diff --git a/.github/filters.yml b/.github/filters.yml index 8cf5f9407..ffee38109 100644 --- a/.github/filters.yml +++ b/.github/filters.yml @@ -155,7 +155,7 @@ simreads: &simreads - 'extractReads.cpp' - 'harpy/bin/inline_to_haplotag.py' - 'harpy/bin/haplotag_barcodes.py' - - 'harpy/scripts/LRSIM_harpy.pl' + - 'harpy/scripts/HaploSim.pl' assembly: &assembly - *common - *container diff --git a/.github/workflows/tests.yml b/.github/workflows/tests.yml index 345d3afc5..15306f65d 100644 --- a/.github/workflows/tests.yml +++ b/.github/workflows/tests.yml @@ -746,7 +746,7 @@ jobs: - name: simulate linked reads shell: micromamba-shell {0} run: | - gunzip test/haplotag.bc.gz + haplotag_barcodes.py -n 14000000 > test/haplotag.bc harpy simulate linkedreads --quiet -t 4 -n 2 -b test/haplotag.bc -l 100 -p 50 test/genome/genome.fasta.gz test/genome/genome2.fasta.gz assembly: diff --git a/.gitignore b/.gitignore index 9489c1938..cc4204d04 100644 --- a/.gitignore +++ b/.gitignore @@ -26,4 +26,5 @@ harpy.egg-info/ __pycache__/ .Benchmark/ extractReads +haplotag.bc _Inline \ No newline at end of file diff --git a/harpy/_validations.py b/harpy/_validations.py index d02302e1f..f659dc6d3 100644 --- a/harpy/_validations.py +++ b/harpy/_validations.py @@ -169,17 +169,16 @@ def check_RG(bamfile): if samplename != samview[0]: return os.path.basename(bamfile), samview[0] - with harpy_progressbar(quiet) as progress: - task_progress = progress.add_task("[green]Checking RG tags...", total=len(bamlist)) - with ThreadPoolExecutor(max_workers=threads) as executor: - futures = [executor.submit(check_RG, i) for i in bamlist] - for future in as_completed(futures): - result = future.result() - progress.update(task_progress, advance=1) - if result: - culpritfiles.append(result[0]) - culpritIDs.append(result[1]) - + with harpy_progressbar(quiet) as progress, ThreadPoolExecutor(max_workers=threads) as executor: + task_progress = progress.add_task("[green]Checking RG tags", total=len(bamlist)) + futures = [executor.submit(check_RG, i) for i in bamlist] + for future in as_completed(futures): + result = future.result() + progress.update(task_progress, advance=1) + if result: + culpritfiles.append(result[0]) + culpritIDs.append(result[1]) + if len(culpritfiles) > 0: print_error("sample ID mismatch",f"There are [bold]{len(culpritfiles)}[/bold] alignment files whose RG tags do not match their filenames.") print_solution_with_culprits( @@ -289,33 +288,6 @@ def validate_demuxschema(infile): _ = [click.echo(f"{i[0]+1}\t{i[1]}", file = sys.stderr) for i in invalids] sys.exit(1) -def check_demux_fastq(file): - """Check for the presence of corresponding FASTQ files from a single provided FASTQ file based on pipeline expectations.""" - bn = os.path.basename(file) - if not bn.lower().endswith("fq") and not bn.lower().endswith("fastq") and not bn.lower().endswith("fastq.gz") and not bn.lower().endswith("fq.gz"): - print_error("unrecognized extension", f"The file [blue]{bn}[/blue] is not recognized as a FASTQ file by the file extension.") - print_solution("Make sure the input file ends with a standard FASTQ extension. These are not case-sensitive.\nAccepted extensions: [green bold].fq .fastq .fq.gz .fastq.gz[/green bold]") - sys.exit(1) - ext = re.search(r"(?:\_00[0-9])*\.f(.*?)q(?:\.gz)?$", file, re.IGNORECASE).group(0) - prefix = re.sub(r"[\_\.][IR][12]?(?:\_00[0-9])*\.f(?:ast)?q(?:\.gz)?$", "", bn) - prefixfull = re.sub(r"[\_\.][IR][12]?(?:\_00[0-9])*\.f(?:ast)?q(?:\.gz)?$", "", file) - filelist = [] - printerr = False - for i in ["I1", "I2","R1","R2"]: - chkfile = f"{prefixfull}_{i}{ext}" - TF = os.path.exists(chkfile) - printerr = True if not TF else printerr - symbol = " " if TF else "X" - filelist.append(f"\033[91m{symbol}\033[0m {prefix}_{i}{ext}") - if printerr: - print_error("missing files", f"Not all necessary files with prefix [bold]{prefix}[/bold] present") - print_solution_with_culprits( - "Demultiplexing requires 4 sequence files: the forward and reverse sequences (R1 and R2), along with the forward and reverse indices (I2 and I2).", - "Necessary/expected files:" - ) - _ = [click.echo(i, file = sys.stderr) for i in filelist] - sys.exit(1) - def validate_regions(regioninput, genome): """validates the --regions input of harpy snp to infer whether it's an integer, region, or file""" try: @@ -350,22 +322,18 @@ def validate_regions(regioninput, genome): # check if the region is in the genome contigs = {} - if is_gzip(genome): - with gzip.open(genome, "rt") as fopen: - for line in fopen: - if line.startswith(">"): - cn = line.rstrip("\n").lstrip(">").split()[0] - contigs[cn] = 0 - else: - contigs[cn] += len(line.rstrip("\n")) - 1 - else: - with open(genome, "r", encoding="utf-8") as fout: - for line in fopen: - if line.startswith(">"): - cn = line.rstrip("\n").lstrip(">").split()[0] - contigs[cn] = 0 - else: - contigs[cn] += len(line.rstrip("\n")) - 1 + opener = gzip.open if is_gzip(genome) else open + mode = "rt" if is_gzip(genome) else "r" + with opener(genome, mode) as fopen: + for line in fopen: + if line.startswith(">"): + cn = line.rstrip("\n").lstrip(">").split()[0] + contigs[cn] = 0 + else: + contigs[cn] += len(line.rstrip("\n")) + # since it's zero-based, subtract 1 from the final sums + #for k,v in contigs.items(): + # contigs[k] = v - 1 err = "" if reg[0] not in contigs: print_error("contig not found", f"The contig ([bold yellow]{reg[0]})[/bold yellow]) of the input region [yellow bold]{regioninput}[/yellow bold] was not found in [blue]{genome}[/blue].") @@ -385,13 +353,7 @@ def validate_regions(regioninput, genome): sys.exit(1) with open(regioninput, "r", encoding="utf-8") as fin: badrows = [] - idx = 0 - while True: - line = fin.readline() - if not line: - break - else: - idx += 1 + for idx, line in enumerate(fin, 1): row = line.split() if len(row) != 3: badrows.append(idx) @@ -415,43 +377,38 @@ def validate_regions(regioninput, genome): def check_fasta(genofile): """perform validations on fasta file for extensions and file contents""" # validate fasta file contents - if is_gzip(genofile): - fasta = gzip.open(genofile, 'rt') - elif is_plaintext(genofile): - fasta = open(genofile, 'r', encoding="utf-8") - else: - print_error("unknown file type", f"Unable to determine file encoding for [blue]{genofile}[/blue]. Please check that it is a gzipped or uncompressed FASTA file.") - sys.exit(1) + opener = gzip.open if is_gzip(genofile) else open + mode = "rt" if is_gzip(genofile) else "r" line_num = 0 seq_id = 0 seq = 0 last_header = False - for line in fasta: - line_num += 1 - if line.startswith(">"): - seq_id += 1 - if last_header: - print_error("consecutive contig names", f"All contig names must be followed by at least one line of nucleotide sequences, but two consecutive lines of contig names were detected. This issue was identified at line [bold]{line_num}[/bold] in [blue]{genofile}[/blue], but there may be others further in the file.") + with opener(genofile, mode) as fasta: + for line in fasta: + line_num += 1 + if line.startswith(">"): + seq_id += 1 + if last_header: + print_error("consecutive contig names", f"All contig names must be followed by at least one line of nucleotide sequences, but two consecutive lines of contig names were detected. This issue was identified at line [bold]{line_num}[/bold] in [blue]{genofile}[/blue], but there may be others further in the file.") + print_solution("See the FASTA file spec and try again after making the appropriate changes: https://www.ncbi.nlm.nih.gov/genbank/fastaformat/") + sys.exit(1) + else: + last_header = True + if len(line.rstrip()) == 1: + print_error("unnamed contigs", f"All contigs must have an alphanumeric name, but a contig was detected without a name. This issue was identified at line [bold]{line_num}[/bold] in [blue]{genofile}[/blue], but there may be others further in the file.") + print_solution("See the FASTA file spec and try again after making the appropriate changes: https://www.ncbi.nlm.nih.gov/genbank/fastaformat/") + sys.exit(1) + if line.startswith("> "): + print_error("invalid contig names", f"All contig names must be named [green bold]>contig_name[/green bold], without a space, but a contig was detected with a space between the [green bold]>[/green bold] and contig_name. This issue was identified at line [bold]{line_num}[/bold] in [blue]{genofile}[/blue], but there may be others further in the file.") + print_solution("See the FASTA file spec and try again after making the appropriate changes: https://www.ncbi.nlm.nih.gov/genbank/fastaformat/") + sys.exit(1) + elif line == "\n": + print_error("empty lines", f"Empty lines are not permitted in FASTA files, but one was detected at line [bold]{line_num}[/bold] in [blue]{genofile}[/blue]. The scan ended at this error, but there may be others further in the file.") print_solution("See the FASTA file spec and try again after making the appropriate changes: https://www.ncbi.nlm.nih.gov/genbank/fastaformat/") sys.exit(1) else: - last_header = True - if len(line.rstrip()) == 1: - print_error("unnamed contigs", f"All contigs must have an alphanumeric name, but a contig was detected without a name. This issue was identified at line [bold]{line_num}[/bold] in [blue]{genofile}[/blue], but there may be others further in the file.") - print_solution("See the FASTA file spec and try again after making the appropriate changes: https://www.ncbi.nlm.nih.gov/genbank/fastaformat/") - sys.exit(1) - if line.startswith("> "): - print_error("invalid contig names", f"All contig names must be named [green bold]>contig_name[/green bold], without a space, but a contig was detected with a space between the [green bold]>[/green bold] and contig_name. This issue was identified at line [bold]{line_num}[/bold] in [blue]{genofile}[/blue], but there may be others further in the file.") - print_solution("See the FASTA file spec and try again after making the appropriate changes: https://www.ncbi.nlm.nih.gov/genbank/fastaformat/") - sys.exit(1) - elif line == "\n": - print_error("empty lines", f"Empty lines are not permitted in FASTA files, but one was detected at line [bold]{line_num}[/bold] in [blue]{genofile}[/blue]. The scan ended at this error, but there may be others further in the file.") - print_solution("See the FASTA file spec and try again after making the appropriate changes: https://www.ncbi.nlm.nih.gov/genbank/fastaformat/") - sys.exit(1) - else: - seq += 1 - last_header = False - fasta.close() + seq += 1 + last_header = False solutiontext = "FASTA files must have at least one contig name followed by sequence data on the next line. Example:\n" solutiontext += "[green] >contig_name\n ATACAGGAGATTAGGCA[/green]\n" # make sure there is at least one of each @@ -497,10 +454,7 @@ def validate(fastq): else: fq = open(fastq, "r") with fq: - while True: - line = fq.readline() - if not line: - break + for line in fq: if not line.startswith("@"): continue BX = True if "BX:Z" in line else BX @@ -516,34 +470,53 @@ def validate(fastq): sys.exit(1) # parellelize over the fastq list - with harpy_progressbar(quiet) as progress: - task_progress = progress.add_task("[green]Validating FASTQ inputs...", total=len(fastq_list)) - with ThreadPoolExecutor(max_workers=threads) as executor: - futures = [executor.submit(validate, i) for i in fastq_list] - for future in as_completed(futures): - progress.update(task_progress, advance=1) + with harpy_progressbar(quiet) as progress, ThreadPoolExecutor(max_workers=threads) as executor: + task_progress = progress.add_task("[green]Validating FASTQ inputs", total=len(fastq_list)) + futures = [executor.submit(validate, i) for i in fastq_list] + for future in as_completed(futures): + progress.update(task_progress, advance=1) -def validate_barcodefile(infile, return_len = False): - """Does validations to make sure it's one length, one per line, and nucleotides""" +def validate_barcodefile(infile, return_len = False, quiet = False, limit = 140): + """Does validations to make sure it's one length, within a length limit, one per line, and nucleotides""" if is_gzip(infile): print_error("Incorrect format", f"The input file must be in uncompressed format. Please decompress [blue]{infile}[/blue] and try again.") sys.exit(1) lengths = set() nucleotides = {'A','C','G','T'} - line_num = 0 - with open(infile, "r") as bc_file: - for line in bc_file: - line_num += 1 - barcode = line.rstrip() - if len(barcode.split()) > 1: - print_error("Incorrect format", f"There must be one barcode per line, but multiple entries were detected on [bold]line {line_num}[/bold] in [blue]{infile}[/blue]") - sys.exit(1) - if not set(barcode).issubset(nucleotides) or barcode != barcode.upper(): - print_error("Incorrect format", f"Invalid barcode format on [bold]line {line_num}[/bold]: [yellow]{barcode}[/yellow].\nBarcodes in [blue]{infile}[/blue] must be captial letters and only contain standard nucleotide characters [green]ATCG[/green].") + def validate(line_num, bc_line): + barcode = bc_line.rstrip() + if len(barcode.split()) > 1: + print_error("Incorrect format", f"There must be one barcode per line, but multiple entries were detected on [bold]line {line_num}[/bold] in [blue]{infile}[/blue]") + sys.exit(1) + if not set(barcode).issubset(nucleotides) or barcode != barcode.upper(): + print_error("Incorrect format", f"Invalid barcode format on [bold]line {line_num }[/bold]: [yellow]{barcode}[/yellow].\nBarcodes in [blue]{infile}[/blue] must be captial letters and only contain standard nucleotide characters [green]ATCG[/green].") + sys.exit(1) + return len(barcode) + + with open(infile, "r") as bc_file, harpy_progressbar(quiet) as progress: + out = subprocess.Popen(['wc', '-l', infile], stdout=subprocess.PIPE, stderr=subprocess.STDOUT).communicate()[0] + linenum = int(out.partition(b' ')[0]) + if linenum > 96**4: + print_error("Too many barcodes", f"The maximum number of barcodes possible with haplotagging is [bold]96^4 (84,934,656)[/bold], but there are [yellow]{linenum}[/yellow] barcodes in [blue]{infile}[/blue]. Please use fewer barcodes.") + sys.exit(1) + task_progress = progress.add_task("[green]Validating barcodes", total=linenum) + # check for duplicates + sort_out = subprocess.Popen(["sort", infile], stdout=subprocess.PIPE) + dup_out = subprocess.run(["uniq", "-d"], stdin=sort_out.stdout, capture_output=True, text=True) + if dup_out.stdout: + print_error("Duplicate barcodes", f"Duplicate barcodes were detected in {infile}, which will result in misleading simulated data.") + print_solution_with_culprits("Check that you remove duplicate barcodes from your input file.", "Duplicates identified:") + click.echo(dup_out.stdout, file = sys.stderr) + sys.exit(1) + for line,bc in enumerate(bc_file): + length = validate(line + 1, bc) + if length > limit: + print_error("Barcodes too long", f"Barcodes in [blue]{infile}[/blue] are [yellow]{length}bp[/yellow] and cannot exceed a length of [bold]{limit}bp[/bold]. Please use shorter barcodes.") sys.exit(1) - lengths.add(len(barcode)) + lengths.add(length) + progress.update(task_progress, advance=1) if len(lengths) > 1: - print_error("Incorrect format", f"Barcodes in [blue]{infile}[/blue] must all be a single length, but multiple lengths were detected: [yellow]" + ", ".join(lengths)) + print_error("Incorrect format", f"Barcodes in [blue]{infile}[/blue] must all be a single length, but multiple lengths were detected: [yellow]" + ", ".join(lengths) + "[/yellow]") sys.exit(1) if return_len: - return lengths.pop() \ No newline at end of file + return lengths.pop() diff --git a/harpy/align.py b/harpy/align.py index 7da07d92c..d050a77b9 100644 --- a/harpy/align.py +++ b/harpy/align.py @@ -210,7 +210,7 @@ def ema(inputs, output_dir, platform, barcode_list, fragment_density, genome, de if contigs: fasta_contig_match(contigs, genome) if barcode_list: - validate_barcodefile(barcode_list) + validate_barcodefile(barcode_list, False, quiet) fetch_rule(workflowdir, "align_ema.smk") fetch_report(workflowdir, "align_stats.Rmd") fetch_report(workflowdir, "align_bxstats.Rmd") diff --git a/harpy/bin/haplotag_barcodes.py b/harpy/bin/haplotag_barcodes.py index e1fb6fc14..170b903f0 100755 --- a/harpy/bin/haplotag_barcodes.py +++ b/harpy/bin/haplotag_barcodes.py @@ -6,19 +6,26 @@ parser = argparse.ArgumentParser( prog = 'haplotag_barcodes.py', - description ="Generates a text file listing the haplotagging ACBD barcodes", - usage = "haplotag_barcodes.py > barcodes.txt" + description ="Prints haplotag linked-read barcodes to stdout", + usage = "haplotag_barcodes.py [-n] > barcodes.txt" ) - +parser.add_argument("-n", "--number", default=96**4, type = int, help = "How many barcodes to print (min: 1, max: 84934656)") args = parser.parse_args() +if args.number < 1 or args.number > 96**4: + parser.error("--number must be between 1 and 96^4 (84934656)") +# subtract 1 b/c of python 0-indexing +args.number -= 1 + BX = { "A": ["ACGGAA", "CCAACA", "AGATCG", "TTCTCC", "TTCCTG", "TTCGGT", "TTGTGG", "TTGCCT", "TTGGTC", "TTACGC", "TTAGCG", "TCTTCG", "TCTCTC", "TCTGGA", "TCCACT", "TCGTAC", "TCGATG", "TCACAG", "TGTTGC", "TGTCCA", "TGTGTG", "TGCTAG", "TGCATC", "TGGAGT", "TGAGAC", "TATCGG", "TATGCC", "TACCAC", "TAGGAG", "CTTCGT", "CTTGCA", "CTCTGA", "CTCAAC", "CTGCTA", "CTGGAT", "CTAAGG", "CCTCAA", "CCTGTT", "CCATTC", "CGTTCT", "CGTAGA", "CGGTAA", "CGACTT", "CATACG", "CACTTG", "CACGAA", "CACAGT", "CAGATC", "CAACGA", "CAAGCT", "GTTCAC", "GTCGTA", "GTGTCA", "GTGAAG", "GTAACC", "GCTTGT", "GCCTAA", "GCACTA", "GCAGAT", "GGTGAA", "GGCAAT", "GGATGA", "GGAATG", "GATCCT", "GATAGC", "GACACA", "GAGCAA", "GAGGTT", "ATTCCG", "ATTGGC", "ATCGAG", "ACTACC", "ACCAGA", "ACGTCT", "ACACGT", "ACAGTG", "AGCTGT", "AGCCTA", "AGGTTC", "AGGCAT", "AGGACA", "AGAAGC", "AACGTC", "AAGCTG", "CGAGTA", "GAATCC", "GAATGG", "AAGTGC", "AAGAGG", "TACAGG", "CTGACT", "CTAGTC", "CCTAAG", "CCATAG", "CGTAAC", "CAATGC"], "C": ["GAAACG", "ACACCA", "TCGAGA", "TCCTTC", "CTGTTC", "GGTTTC", "TGGTTG", "CCTTTG", "GTCTTG", "CGCTTA", "GCGTTA", "TCGTCT", "CTCTCT", "GGATCT", "ACTTCC", "TACTCG", "ATGTCG", "CAGTCA", "TGCTGT", "CCATGT", "GTGTGT", "TAGTGC", "ATCTGC", "AGTTGG", "GACTGA", "CGGTAT", "GCCTAT", "CACTAC", "GAGTAG", "CGTCTT", "GCACTT", "TGACTC", "AACCTC", "CTACTG", "GATCTG", "AGGCTA", "CAACCT", "GTTCCT", "TTCCCA", "TCTCGT", "AGACGT", "TAACGG", "CTTCGA", "ACGCAT", "TTGCAC", "GAACAC", "AGTCAC", "ATCCAG", "CGACAA", "GCTCAA", "CACGTT", "GTAGTC", "TCAGTG", "AAGGTG", "ACCGTA", "TGTGCT", "TAAGCC", "CTAGCA", "GATGCA", "GAAGGT", "AATGGC", "TGAGGA", "ATGGGA", "CCTGAT", "AGCGAT", "ACAGAC", "CAAGAG", "GTTGAG", "CCGATT", "GGCATT", "GAGATC", "ACCACT", "AGAACC", "TCTACG", "CGTACA", "GTGACA", "TGTAGC", "CTAAGC", "TTCAGG", "CATAGG", "ACAAGG", "AGCAGA", "GTCAAC", "CTGAAG", "GTACGA", "TCCGAA", "TGGGAA", "TGCAAG", "AGGAAG", "AGGTAC", "ACTCTG", "GTCCTA", "AAGCCT", "TAGCCA", "AACCGT", "TGCCAA"], "B": ["AACGGA", "ACCAAC", "GAGATC", "CTTCTC", "GTTCCT", "TTTCGG", "GTTGTG", "TTTGCC", "CTTGGT", "CTTACG", "GTTAGC", "GTCTTC", "CTCTCT", "ATCTGG", "TTCCAC", "CTCGTA", "GTCGAT", "GTCACA", "CTGTTG", "ATGTCC", "GTGTGT", "GTGCTA", "CTGCAT", "TTGGAG", "CTGAGA", "GTATCG", "CTATGC", "CTACCA", "GTAGGA", "TCTTCG", "ACTTGC", "ACTCTG", "CCTCAA", "ACTGCT", "TCTGGA", "GCTAAG", "ACCTCA", "TCCTGT", "CCCATT", "TCGTTC", "ACGTAG", "ACGGTA", "TCGACT", "GCATAC", "GCACTT", "ACACGA", "TCACAG", "CCAGAT", "ACAACG", "TCAAGC", "CGTTCA", "AGTCGT", "AGTGTC", "GGTGAA", "CGTAAC", "TGCTTG", "AGCCTA", "AGCACT", "TGCAGA", "AGGTGA", "TGGCAA", "AGGATG", "GGGAAT", "TGATCC", "CGATAG", "AGACAC", "AGAGCA", "TGAGGT", "GATTCC", "CATTGG", "GATCGA", "CACTAC", "AACCAG", "TACGTC", "TACACG", "GACAGT", "TAGCTG", "AAGCCT", "CAGGTT", "TAGGCA", "AAGGAC", "CAGAAG", "CAACGT", "GAAGCT", "ACGAGT", "CGAATC", "GGAATG", "CAAGTG", "GAAGAG", "GTACAG", "TCTGAC", "CCTAGT", "GCCTAA", "GCCATA", "CCGTAA", "CCAATG"], "D": ["GGAAAC", "AACACC", "ATCGAG", "CTCCTT", "CCTGTT", "CGGTTT", "GTGGTT", "GCCTTT", "GGTCTT", "ACGCTT", "AGCGTT", "TTCGTC", "TCTCTC", "TGGATC", "CACTTC", "GTACTC", "GATGTC", "ACAGTC", "TTGCTG", "TCCATG", "TGTGTG", "CTAGTG", "CATCTG", "GAGTTG", "AGACTG", "TCGGTA", "TGCCTA", "CCACTA", "GGAGTA", "TCGTCT", "TGCACT", "CTGACT", "CAACCT", "GCTACT", "GGATCT", "AAGGCT", "TCAACC", "TGTTCC", "ATTCCC", "TTCTCG", "TAGACG", "GTAACG", "ACTTCG", "TACGCA", "CTTGCA", "CGAACA", "CAGTCA", "GATCCA", "ACGACA", "AGCTCA", "TCACGT", "CGTAGT", "GTCAGT", "GAAGGT", "AACCGT", "TTGTGC", "CTAAGC", "ACTAGC", "AGATGC", "TGAAGG", "CAATGG", "ATGAGG", "AATGGG", "TCCTGA", "TAGCGA", "CACAGA", "GCAAGA", "GGTTGA", "TCCGAT", "TGGCAT", "CGAGAT", "TACCAC", "CAGAAC", "GTCTAC", "ACGTAC", "AGTGAC", "CTGTAG", "CCTAAG", "GTTCAG", "GCATAG", "GACAAG", "AAGCAG", "CGTCAA", "GCTGAA", "AGTACG", "ATCCGA", "ATGGGA", "GTGCAA", "GAGGAA", "CAGGTA", "GACTCT", "AGTCCT", "TAAGCC", "ATAGCC", "TAACCG", "ATGCCA"] } - + bc_generator = product(BX["A"], BX["C"], BX["B"], BX["D"]) -for BC in bc_generator: - sys.stdout.write("".join(BC) + "\n") \ No newline at end of file +for i,BC in enumerate(bc_generator): + sys.stdout.write("".join(BC) + "\n") + if i >= args.number: + break \ No newline at end of file diff --git a/harpy/bin/inline_to_haplotag.py b/harpy/bin/inline_to_haplotag.py index 1478bacd4..f44dce9e4 100755 --- a/harpy/bin/inline_to_haplotag.py +++ b/harpy/bin/inline_to_haplotag.py @@ -3,19 +3,18 @@ import os import sys import gzip +import sqlite3 import argparse -from itertools import zip_longest, product +from itertools import zip_longest parser = argparse.ArgumentParser( prog = 'inline_to_haplotag.py', - description = 'Moves inline linked read barcodes to read headers (OX:Z) and converts them into haplotag ACBD format (BX:Z).', - usage = "inline_to_haplotag.py -f -r -b -p ", + description = 'Moves inline linked read barcodes to read headers (OX:Z) and converts them into haplotag ACBD format (BX:Z). Barcodes must all be the same length.', + usage = f"inline_to_haplotag.py -f -r -b -p ", exit_on_error = False ) - parser.add_argument("-f", "--forward", required = True, type = str, help = "Forward reads of paired-end FASTQ file pair (gzipped)") parser.add_argument("-r", "--reverse", required = True, type = str, help = "Reverse reads of paired-end FASTQ file pair (gzipped)") -parser.add_argument("-l", "--length", required = True, type = str, help = "Length of the barcodes (all must be one length)") parser.add_argument("-p", "--prefix", required = True, type = str, help = "Prefix for outfile files (e.g. .R1.fq.gz)") parser.add_argument("-b", "--barcodes", required = True, type=str, help="File listing the linked-read barcodes to convert to haplotag format, one barcode per line") if len(sys.argv) == 1: @@ -29,90 +28,121 @@ if err: parser.error("Some input files were not found on the system:\n" + ", ".join(err)) -def iter_fastq_records(file_handle): - """Iterate over FASTQ records in a file. - file_handle: Opened gzip file handle - Yields: FASTQ record [header, seq, '+', qual] - Raises ValueError If file is not in FASTQ format - """ - record = [] - for line in file_handle: - line = line.decode().rstrip("\n") - record.append(line) - if len(record) == 4: - # format sanity check - if not (record[0].startswith("@") and record[2] == "+"): - raise ValueError("Invalid FASTQ format") - yield record - record = [] - if record: - raise ValueError("Incomplete FASTQ record at end of file") +def valid_record(fq_rec, FR): + """fastq format sanity check""" + if not (fq_rec[0].startswith("@") and fq_rec[2] == "+"): + raise ValueError(f"Invalid FASTQ format for {FR} reads") + +def insert_key_value(conn, key, value): + """insert a key-value pair into sqlite database""" + cursor = conn.cursor() + cursor.execute(''' + INSERT OR REPLACE INTO kv_store (key, value) VALUES (?, ?) + ''', (key, value)) # Use parameterized queries to avoid SQL injection + conn.commit() -def validate_barcode(barcode): - """Validate barcode format (A,C,G,T).""" - if not set(barcode).issubset({'A','C','G','T'}): - raise ValueError(f"Invalid barcode format: {barcode}. Barcodes must be captial letters and only contain standard nucleotide values ATCG.") +def get_value_by_key(conn, key): + """retrieve a value by key from sqlite database""" + cursor = conn.cursor() + cursor.execute(''' + SELECT value FROM kv_store WHERE key = ? + ''', (key,)) + result = cursor.fetchone() # Fetch one row + if result: + # Return the value (first column of the result) + return result[0] + else: + # Return invalid ACBD haplotag if the key does not exist + return "A00C00B00D00" -def process_record(fw_entry, rv_entry, barcode_dict, haplotag_bc, bc_len): +def process_record(fw_entry, rv_entry, barcode_database, bc_len): """convert the barcode to haplotag""" # [0] = header, [1] = seq, [2] = +, [3] = qual - # search for a valid barcode at all possible barcode lengths if fw_entry: + valid_record(fw_entry, "forward") bc_inline = fw_entry[1][:bc_len] - bc_hap = barcode_dict.get(bc_inline, "A00C00B00D00") - # the default barcode entry is None, meaning it hasnt been assigned a haplotag equivalent yet - if not bc_hap: - bc_hap = "".join(next(haplotag_bc)) - barcode_dict[bc_inline] = bc_hap - _new_fw = fw_entry[0].split()[0] + f"\tOX:Z:{bc_inline}\tBX:Z:{bc_hap}\n" - _new_fw += fw_entry[1][bc_len:] + "\n" - _new_fw += fw_entry[2] + "\n" - _new_fw += fw_entry[3][bc_len:] + "\n" + bc_hap = get_value_by_key(barcode_database, bc_inline) + fw_entry[0] = fw_entry[0].split()[0] + f"\tOX:Z:{bc_inline}\tBX:Z:{bc_hap}" + fw_entry[1] = fw_entry[1][bc_len:] + fw_entry[3] = fw_entry[3][bc_len:] + _new_fw = "\n".join(fw_entry) + "\n" if rv_entry: - _new_rv = rv_entry[0].split()[0] + f"\tOX:Z:{bc_inline}\tBX:Z:{bc_hap}\n" - _new_rv += rv_entry[1] + "\n" - _new_rv += rv_entry[2] + "\n" - _new_rv += rv_entry[3] + "\n" + valid_record(rv_entry, "reverse") + rv_entry[0] = rv_entry[0].split()[0] + f"\tOX:Z:{bc_inline}\tBX:Z:{bc_hap}" + _new_rv = "\n".join(rv_entry) + "\n" else: _new_rv = None - return _new_fw, _new_rv else: + _new_fw = None # no forward read, therefor no barcode to search for - _new_rv = rv_entry[0].split()[0] + f"\tBX:Z:A00C00B00D00\n" - _new_rv += rv_entry[1] + "\n" - _new_rv += rv_entry[2] + "\n" - _new_rv += rv_entry[3] + "\n" - return None, _new_rv + if rv_entry: + valid_record(rv_entry, "reverse") + rv_entry[0] = rv_entry[0].split()[0] + "\tBX:Z:A00C00B00D00" + _new_rv = "\n".join(rv_entry) + "\n" + else: + _new_rv = None + return _new_fw, _new_rv -bc_range = [f"{i}".zfill(2) for i in range(1,97)] -bc_generator = product("A", bc_range, "C", bc_range, "B", bc_range, "D", bc_range) +# Connect to an in-memory SQLite database +bc_db = sqlite3.connect(':memory:') +# Create the table to store key-value pairs +bc_db.cursor().execute(''' + CREATE TABLE kv_store ( + key TEXT PRIMARY KEY, + value TEXT + ) +''') +bc_db.commit() + +nucleotides = {'A','C','G','T'} +lengths = set() -bc_dict = {} # read in barcodes opener = gzip.open if args.barcodes.lower().endswith('.gz') else open mode = 'rt' if args.barcodes.lower().endswith('.gz') else 'r' with opener(args.barcodes, mode) as bc_file: for line in bc_file: - barcode = line.rstrip().split()[0] - validate_barcode(barcode) - bc_dict[barcode] = None + try: + ATCG,ACBD = line.rstrip().split() + except ValueError: + sys.stderr.write(f"Invalid barcode entry: {line.rstrip()}\nExpected two entries: a nucleotide barcode and ACBD format barcode with a space/tab separatng them, e.g. ATATCAGA A01C22B13D93") + sys.exit(1) + if not set(ATCG).issubset(nucleotides): + sys.stderr.write(f"Invalid barcode format: {ATCG}. Barcodes must be captial letters and only contain standard nucleotide values ATCG.\n") + sys.exit(1) + + insert_key_value(bc_db, ATCG, ACBD) + #bc_dict[ATCG] = ACBD + lengths.add(len(ATCG)) + if len(lengths) > 1: + sys.stderr.write("Can only search sequences for barcodes of a single length, but multiple barcode legnths detected: " + ",".join([str(i) for i in lengths])) + else: + bc_len = lengths.pop() # simultaneously iterate the forward and reverse fastq files -fw_out = gzip.open(f"{args.prefix}.R1.fq.gz", "wb", 6) -rv_out = gzip.open(f"{args.prefix}.R2.fq.gz", "wb", 6) - -with gzip.open(args.forward, "r") as fw_i, gzip.open(args.reverse, "r") as rv_i: - for fw_record, rv_record in zip_longest(iter_fastq_records(fw_i), iter_fastq_records(rv_i)): - new_fw, new_rv = process_record(fw_record, rv_record, bc_dict, bc_generator, args.length) - if new_fw: - fw_out.write(new_fw.encode("utf-8")) - if new_rv: - rv_out.write(new_rv.encode("utf-8")) - -fw_out.close() -rv_out.close() +with gzip.open(args.forward, "r") as fw_i, gzip.open(args.reverse, "r") as rv_i,\ + gzip.open(f"{args.prefix}.R1.fq.gz", "wb", 6) as fw_out,\ + gzip.open(f"{args.prefix}.R2.fq.gz", "wb", 6) as rv_out: + record_F = [] + record_R = [] + for fw_record, rv_record in zip_longest(fw_i, rv_i): + try: + record_F.append(fw_record.decode().rstrip("\n")) + except AttributeError: + # if the file ends before the other one + pass + try: + record_R.append(rv_record.decode().rstrip("\n")) + except AttributeError: + pass + # sanity checks + if len(record_F) == 4 or len(record_R) == 4: + new_fw, new_rv = process_record(record_F, record_R, bc_db, bc_len) + if new_fw: + fw_out.write(new_fw.encode("utf-8")) + record_F = [] + if new_rv: + rv_out.write(new_rv.encode("utf-8")) + record_R = [] -with open(f"{args.prefix}.barcodes", "w") as bx_out: - for i,j in bc_dict.items(): - if j: - bx_out.write(f"{i}\t{j}\n") +bc_db.cursor().close() diff --git a/harpy/scripts/HaploSim.pl b/harpy/scripts/HaploSim.pl new file mode 100755 index 000000000..11cdca924 --- /dev/null +++ b/harpy/scripts/HaploSim.pl @@ -0,0 +1,490 @@ +#### +# LRSIM for Harpy +# Originally from https://github.com/aquaskyline/LRSIM +# This file was forked from commit 9ad7e54 for Harpy (https://github.com/pdimens/harpy) +# Summary: +# This fork removes everything from LRSIM except where it creates linked reads and modifies the inputs/outputs to be friendlier for Harpy +# Detailed explanation: +# LRSIM first created two haplotypes of a genome by introducing variants via SURVIVOR --REMOVED +# Sections that called external tools (samtools, dwgsim, SURVIVOR) --REMOVED +# The input now expects two haplotypes of a genome (-g) that were created separately, and HaploSim.pl will just +# create linked reads from them. No more, no less. +# NOTABLE CHANGES # +# The -g option now takes the outputs from DWGSIM +# the -a option is new and accepts the .fai files associated with the source genome haplotypes +# seq error insertion for barcodes has been skipped +# -r , -u removed +#### + +use File::Basename; +use strict; +use warnings; +use feature 'state'; +use threads; +use threads::shared; +use IO::Handle; +use Getopt::Std; +use Data::Dumper; +use Cwd 'abs_path'; +use Math::Random qw(random_poisson random_uniform_integer); +use Inline 'C'; + +my %fnToBeUnlinkAtExit = (); + +&main; +0; + +sub main { + our %opts = ( + h => undef, + c => undef, + g => undef, + a => undef, + d => 2, + l => 16, + p => undef, + b => undef, + e => "0.0001,0.0016", + E => "0.0001,0.0016", + i => 350, + s => 35, + x => 600, + f => 100, + t => 1500, + m => 10, + z => 8, + 1 => 1000, + 2 => 1, + 3 => 50, + 4 => 1000, + 5 => 1000, + 6 => 10000, + 7 => 100, + 8 => 1000, + 9 => 10000, + 0 => 100 + ); + &usage( \%opts ) if ( @ARGV < 1 ); + getopts( 'hc:g:a:d:l:p:b:e:E:i:s:x:f:t:m:z:1:2:3:4:5:6:7:8:9:0:', \%opts ); + &usage( \%opts ) if ( defined $opts{h} ); + + #Check options + die "Please provide a output prefix with -p\n" if ( not defined $opts{p} ); + die "Output prefix (-p) cannot end with a /\n" if ( $opts{p} =~ /\/$/ ); + die "Please provide a barcodes file with -b\n" if ( not defined $opts{b} ); + die "Barcodes file $opts{b} not found\n" if ( !-s "$opts{b}" ); + #Check options end + + #Global variables + #Initialize Log routine + our @haplotypes = split /,/, $opts{a}; + our @fastafai = split /,/, $opts{g}; + #Global variables end + #Load barcodes + our @barcodes = (); + our $barcodesMutexLock : shared = 0; + our $numBarcodes = 0; + &Log("Load barcodes: start"); + open my $fh, "$opts{b}" + or &LogAndDie("Barcodes file $opts{b} not found"); + @barcodes = <$fh>; + chomp(@barcodes); + $numBarcodes = scalar(@barcodes); + close $fh; + &Log("Load barcodes: end"); + #Load barcodes end + + our @fragmentSizesList = (); + our $sizesCount = 0; + our $readsPerMolecule = int( 0.499 + ( $opts{x} * 1000000 ) / ( $opts{t} * 1000 / $opts{d} ) / $opts{m} / $opts{d} ); + &Log("readPairsPerMolecule: $readsPerMolecule"); + + # For every Haplotype + sub simReads { + $SIG{'INT'} = $SIG{'TERM'} = $SIG{'KILL'} = sub { threads->exit(); }; + my $i = shift; + &Log("Simulating: haplotype $i"); + if ( -e "$opts{p}.$i.manifest" ) { + &Log("Haplotype $i simulation already completed"); + return; + } + + &Log("Load read positions: haplotype $i"); + my @defaultBarcodeQualAry = split //, "AAAFFF" . "K" x ( $opts{l} - 6 ); + my $haplotype = $haplotypes[$i]; + my %faidx = (); + my @boundary = (); + my $genomeSize = &LoadFaidx( \%faidx, \@boundary, $fastafai[$i] ); + &LogAndDie("Failed loading genome index " . $fastafai[$i]) + if ( $genomeSize == 0 ); + my $readPositionsInFile = mallocAry($genomeSize); + initAryFF( $readPositionsInFile, $genomeSize ); + + if ( -e "$opts{p}.$i.fp" ) { + &Log("Importing $opts{p}.$i.fp"); + importAry( $readPositionsInFile, "$opts{p}.$i.fp", $genomeSize ); + &Log("Imported $opts{p}.$i.fp"); + } + else { + open my $fh, $haplotype + or &LogAndDie("Error opening $haplotype"); + my $l1; + my $l2; + my $l3; + my $l4; + my $l5; + my $l6; + my $l7; + my $l8; + my $newFpos; + my $fpos = tell($fh); + &LogAndDie("Fail to tell file position") if $fpos == -1; + my $failedRegistration = 0; + my $rt; + + while ( $l1 = <$fh> ) { + $l2 = <$fh>; + $l3 = <$fh>; + $l4 = <$fh>; + $l5 = <$fh>; + $l6 = <$fh>; + $l7 = <$fh>; + $l8 = <$fh>; + $newFpos = tell($fh); + unless ( $l1 =~ /@(\S+)_(\d+)_\d+_\d_\d_\d_\d_\d+:\d+:\d+_\d+:\d+:\d+_\S+\/1/) + { + &LogAndDie("Cannot find correct chromosome and position in $l1."); + } + my $gCoord = &GenomeCoord2Idx( \%faidx, "$1", $2 ); + if ( $gCoord < 0 || $gCoord >= $genomeSize ) { + &LogAndDie("$1 $2 $gCoord $fpos"); + } + $rt = writeToPos( $readPositionsInFile, $gCoord, $fpos ); + ++$failedRegistration if $rt == 0; + $fpos = $newFpos; + } + close $fh; + &Log("Reads failed to load: $failedRegistration "); + &Log("Exporting: $opts{p}.$i.fp"); + ++$fnToBeUnlinkAtExit{"$opts{p}.$i.fp"}; + exportAry( $readPositionsInFile, "$opts{p}.$i.fp", $genomeSize ); + delete $fnToBeUnlinkAtExit{"$opts{p}.$i.fp"}; + &Log("Exported: $opts{p}.$i.fp"); + } + + open my $outputfh, "> $opts{p}.$i.manifest" + or &LogAndDie("Error opening: $opts{p}.$i.manifest"); + ++$fnToBeUnlinkAtExit{"$opts{p}.$i.manifest"}; + + my $readsCountDown = int( $opts{x} * 1000000 / $opts{d} ); + &Log("Reads remaining: $readsCountDown"); + + while ( $readsCountDown > 0 ) { + #Pick a barcode + my $selectedBarcode; + { + my $idx = int( rand($numBarcodes) ); + lock($barcodesMutexLock); + my $wentToZero = 0; + while (1) { + if ( $barcodes[$idx] eq "" ) { + ++$idx; + if ( $idx == $numBarcodes && not($wentToZero) ) { + $idx = 0; + $wentToZero = 1; + } + elsif ( $idx == $numBarcodes && $wentToZero ) { + &LogAndDie("Reached end of barcodes list. No more barcodes. Last read processed: $readsCountDown. Exiting."); + } + next; + } + $selectedBarcode = $barcodes[$idx]; + $barcodes[$idx] = ""; + last; + } + } + my @precreatedSelectedBarcodeAry = split //, $selectedBarcode; + my $numberOfMolecules = &PoissonMoleculePerPartition( $opts{m} ); + + for ( my $j = 0 ; $j < $numberOfMolecules ; ++$j ) { + #Pick a starting position + my $startingPosition = int( rand($genomeSize) ); + #Pick a fragment size + my $moleculeSize = ( $sizesCount == 0 ) ? ( &PoissonMoleculeSize( $opts{f} * 1000 ) ) : ( $fragmentSizesList[ rand($sizesCount) ] ); + my $readsToExtract = int($readsPerMolecule * $moleculeSize / ( $opts{f} * 1000 ) + 0.4999 ); + #Check and align to boundary + my $lowerBoundary; + my $upperBoundary; + &bSearch($startingPosition, \@boundary, \$lowerBoundary, \$upperBoundary); + if ( ( $startingPosition + $moleculeSize ) > $upperBoundary ){ + my $newMoleculeSize = $upperBoundary - $startingPosition; + #skip molecule with length < 1000 + if ( $newMoleculeSize < 1000 ){ + --$j; + next; + } + $readsToExtract = int( $readsToExtract * $newMoleculeSize / $moleculeSize ); + $moleculeSize = $newMoleculeSize; + } + + #Get a list of read positions + my @readPosToExtract = random_uniform_integer( $readsToExtract, $startingPosition, $startingPosition + $moleculeSize - 1 ); + foreach my $gCoord (@readPosToExtract) { + my $filePosToExtract = getFromPos( $readPositionsInFile, $gCoord, $genomeSize ); + next if $filePosToExtract == -1; + #Introduce barcode mismatch + my @selectedBarcodeAry = @precreatedSelectedBarcodeAry; + my @barcodeQualAry = @defaultBarcodeQualAry; + my $barcodeLength = $opts{l}; + #Output + print $outputfh "$filePosToExtract\t" + . ( join "", @selectedBarcodeAry ) . "\t" + . ( join "", @barcodeQualAry ) . "\n"; + + --$readsCountDown; + if ( $readsCountDown % 100000 == 0 ) { + &Log("Reads remaining: $readsCountDown"); + } + } + } + } + close $outputfh; + delete $fnToBeUnlinkAtExit{"$opts{p}.$i.manifest"}; + freeAry($readPositionsInFile); + if ( !-s "$opts{p}.$i.manifest" ) { + &LogAndDie("$opts{p}.$i.manifest empty"); + } + } + + for ( my $i = 0 ; $i < $opts{d} ; ++$i ) { + simReads($i); + sleep( 2 + int( rand(3) ) ); + } +} + +#Simulate reads end +0; + +sub usage { + my $opts = shift @_; + die( + qq/ + Usage: $0 -r\/-g -p [options] + + Reference genome and variants: + -g STRING Haploid FASTA .FAI files, separated by comma + -a STRING DWGSIM sequences, interleaved and separated by comma + -p STRING Output prefix + + Illumina reads characteristics: + -e FLOAT Per base error rate of the first read [$$opts{e}] + -E FLOAT Per base error rate of the second read [$$opts{E}] + -i INT Outer distance between the two ends for pairs [$$opts{i}] + -s INT Standard deviation of the distance for pairs [$$opts{s}] + + Linked reads parameters: + -b STRING Barcodes list + -l INT Barcode Length + -x INT # million reads pairs in total to simulated [$$opts{x}] + -f INT Mean molecule length in kbp [$$opts{f}] + -c STRING Input a list of fragment sizes + -t INT n*1000 partitions to generate [$$opts{t}] + -m INT Average # of molecules per partition [$$opts{m}] + + Miscellaneous: + -h Show this help + + / + ); +} + +# Log routine +sub Log { + my $time = localtime; + print STDERR "$time: $_[0]\n"; +} + +sub LogAndDie { + &Log(@_); + die; +} + +# Log routine end + +sub LoadFaidx { + my $faidx = shift; + my $boundary = shift; + my $fai = shift; + open my $fh, "$fai" or &LogAndDie("Error opening faidx: $fai"); + my $accumulation = 0; + while (<$fh>) { + chomp; + my @a = split; + $$faidx{acc}{"$a[0]"} = $accumulation; + $$faidx{size}{"$a[0]"} = $a[1]; + push @$boundary, $accumulation; + $accumulation += $a[1]; + } + push @$boundary, $accumulation; + close $fh; + return $accumulation; +} + +sub getChrSize { return ${ $_[0] }{size}{ $_[1] }; } +sub getChrStart { return ${ $_[0] }{acc}{ $_[1] }; } + +sub GenomeCoord2Idx { + &LogAndDie("not defined $_[1]") unless defined ${ $_[0] }{acc}{ $_[1] }; + return ${ $_[0] }{acc}{ $_[1] } + $_[2]; +} + +sub bSearch { + my ( $elem, $list, $lowerLimit, $upperLimit ) = @_; + my $max = $#$list; + my $min = 0; + + my $index; + while ( $max >= $min ) { + $index = int( ( $max + $min ) / 2 ); + if ( $list->[$index] < $elem ) { $min = $index + 1; } + elsif ( $list->[$index] > $elem ) { $max = $index - 1; } + else { last; } + } + if ( $elem >= $list->[$index] ) { + $$lowerLimit = $list->[$index]; + $$upperLimit = $list->[ $index + 1 ]; + } + elsif ( $elem < $list->[$index] ) { + $$lowerLimit = $list->[ $index - 1 ]; + $$upperLimit = $list->[$index]; + } + else { die "bSearch: Should never reach here"; } +} + +sub PoissonMoleculePerPartition { + state $mu = $_[0]; + state $i = 10000; + state $pool; + $i = 10000 if ( $mu != $_[0] ); + if ( $i == 10000 ) { + @{$pool} = random_poisson( 10000, $_[0] ); + $i = 0; + } + return ${$pool}[ $i++ ]; +} + +sub PoissonMoleculeSize { + state $mu = $_[0]; + state $i = 10000; + state $pool; + $i = 10000 if ( $mu != $_[0] ); + if ( $i == 10000 ) { + @{$pool} = random_poisson( 10000, $_[0] ); + $i = 0; + } + return ${$pool}[ $i++ ]; +} + +0; + +__END__ +__C__ + +#include +#include +#include +#include +#include + +#define AMP_ON_SLOTS 1 +long mallocAry(long size) +{ + long ptr = (long)malloc(size * sizeof(size_t) * AMP_ON_SLOTS); + if(ptr == (long)NULL) + { + fprintf(stderr, "Error allocation, size %zu\n", (size_t)size); + return 0; + } + return ptr; +} + +void initAryFF(long pptr, long size) +{ + size_t* ptr = (size_t*)pptr; + memset(ptr, 0xFF, size * sizeof(size_t) * AMP_ON_SLOTS); +} + +void printAry(long pptr, long size) +{ + size_t* ptr = (size_t*)pptr; + long i; + for(i = 0; i < size*AMP_ON_SLOTS; ++i) + { + fprintf(stderr, "%l\t%lu\n", i, ptr[i]); + } +} + +void importAry(long pptr, char* fn, long size) +{ + void* ptr = (void*)pptr; + FILE* fh = fopen(fn, "rb"); + fread(ptr, sizeof(size_t), size * AMP_ON_SLOTS, fh); + fclose(fh); +} + +void exportAry(long pptr, char* fn, long size) +{ + size_t* ptr = (size_t*)pptr; + FILE* fh = fopen(fn, "wb"); + fwrite(ptr, sizeof(size_t), size * AMP_ON_SLOTS, fh); + fclose(fh); +} + +void freeAry(long pptr) +{ + size_t* ptr = (size_t*)pptr; + free(ptr); +} + +#define CHK_PREV_SLOT_LIMIT (3000*AMP_ON_SLOTS) +int writeToPos(long pptr, long pos, long toWrite) +{ + size_t* ptr = (size_t*)pptr; + int limit = CHK_PREV_SLOT_LIMIT; + pos = (pos + 1) * AMP_ON_SLOTS - 1; + while(limit > 0) + { + if(ptr[pos] == ULLONG_MAX) + { + ptr[pos] = (size_t)toWrite; + break; + } + --pos; + if(pos < 0) { break; } + --limit; + } + return limit; +} + +long getFromPos(long pptr, long pos, long maxSize) +{ + size_t* ptr = (size_t*)pptr; + int limit = 0; + size_t result = ULLONG_MAX; + if(pos >= maxSize) { pos = maxSize - 1; } + if(pos < 0) { pos = 0; } + pos = (pos + 1) * AMP_ON_SLOTS - 1; + while(limit < CHK_PREV_SLOT_LIMIT) + { + if(ptr[pos] != ULLONG_MAX) + { + result = ptr[pos]; + ptr[pos] = ULLONG_MAX; + break; + } + --pos; + if(pos < 0) { break; } + ++limit; + } + return (long)result; +} diff --git a/harpy/scripts/LRSIM_harpy.pl b/harpy/scripts/LRSIM_harpy.pl deleted file mode 100755 index 306ce009c..000000000 --- a/harpy/scripts/LRSIM_harpy.pl +++ /dev/null @@ -1,1094 +0,0 @@ -#### -# LRSIM for Harpy -# Originally from https://github.com/aquaskyline/LRSIM -# This file was forked from commit 9ad7e54 for Harpy (https://github.com/pdimens/harpy) -# Summary: -# This fork removes everything from LRSIM except where it creates linked reads and modifies the inputs/outputs to be friendlier for Harpy -# Detailed explanation: -# LRSIM first created two haplotypes of a genome by introducing variants via SURVIVOR --REMOVED -# Sections that called external tools (samtools, dwgsim, SURVIVOR) --REMOVED -# The input now expects two haplotypes of a genome (-g) that were created separately, and LRSIM_harpy.pl will just -# create linked reads from them. No more, no less. -# The -r option is now a folder prefix to make like easier in the larger Harpy workflow --CHANGED -#### - -use File::Basename; -use strict; -use warnings; -use feature 'state'; -use threads; -use threads::shared; -use IO::Handle; -use Getopt::Std; -use Data::Dumper; -use Cwd 'abs_path'; -use Math::Random qw(random_poisson random_uniform_integer); -use Inline 'C'; - -# Check dependencies -my %fnToBeUnlinkAtExit = (); - -&main; -0; - -sub main { - our %opts = ( - h => undef, - o => undef, - g => undef, - n => undef, - d => 2, - l => 16, - r => undef, - p => undef, - c => undef, - b => undef, - u => 99, - e => "0.0001,0.0016", - E => "0.0001,0.0016", - i => 350, - s => 35, - x => 600, - f => 100, - t => 1500, - m => 10, - z => 8, - 1 => 1000, - 2 => 1, - 3 => 50, - 4 => 1000, - 5 => 1000, - 6 => 10000, - 7 => 100, - 8 => 1000, - 9 => 10000, - 0 => 100 - ); - &usage( \%opts ) if ( @ARGV < 1 ); - getopts( 'hnoc:g:d:l:r:p:b:u:e:E:i:s:x:f:t:m:z:1:2:3:4:5:6:7:8:9:0:', - \%opts ); - &usage( \%opts ) if ( defined $opts{h} ); - - #Check options - die "Please provide a output prefix with -p\n" if ( not defined $opts{p} ); - die "Output prefix (-p) cannot end with a /\n" if ( $opts{p} =~ /\/$/ ); - die "Please provide a barcodes file with -b\n" if ( not defined $opts{b} ); - die "Barcodes file $opts{b} not exist\n" if ( !-s "$opts{b}" ); - #Check options end - - #Global variables - &Log("$opts{r}/lrsim/.status"); #Initialize Log routine - our %barcodeErrorRateFromMismatchObv1 = ( - 0 => { - "A" => 0.00243200183210607, - "C" => 0.00265226825720049, - "G" => 0.00238252487266703, - "T" => 0.00247859241604291 - }, - 1 => { - "A" => 9.84518532280806e-05, - "C" => 0.000105418767099898, - "G" => 0.00012024540587624, - "T" => 0.000149312364560738 - }, - 2 => { - "A" => 6.43035178977319e-05, - "C" => 8.69887571314547e-05, - "G" => 7.63701208403244e-05, - "T" => 7.50233544318644e-05 - }, - 3 => { - "A" => 7.23176133316617e-05, - "C" => 8.47922299523897e-05, - "G" => 7.09183994956776e-05, - "T" => 9.2661673292949e-05 - }, - 4 => { - "A" => 6.0728820107815e-05, - "C" => 8.68149497299812e-05, - "G" => 6.71073268524629e-05, - "T" => 0.000104612297544355 - }, - 5 => { - "A" => 5.75798861973855e-05, - "C" => 6.53444346828966e-05, - "G" => 6.45765176008781e-05, - "T" => 9.95650559011039e-05 - }, - 6 => { - "A" => 0.000113841438435535, - "C" => 0.000140194463619207, - "G" => 0.000193938780289159, - "T" => 0.000151948068667371 - }, - 7 => { - "A" => 0.000337649068858504, - "C" => 0.000249891993056765, - "G" => 0.000186216398571565, - "T" => 0.000232127896750806 - }, - 8 => { - "A" => 0.000208871197414734, - "C" => 0.000252154220076128, - "G" => 0.000218352053830969, - "T" => 0.000268515970157629 - }, - 9 => { - "A" => 0.000220690984209116, - "C" => 0.000171472165707382, - "G" => 0.000161881515059254, - "T" => 0.000244160685961411 - }, - 10 => { - "A" => 0.000217392257875513, - "C" => 0.000222952327734294, - "G" => 0.000193974762597782, - "T" => 0.000228887240080449 - }, - 11 => { - "A" => 0.000200543541862804, - "C" => 0.000196424451019658, - "G" => 0.000162242944498548, - "T" => 0.000226064717112528 - }, - 12 => { - "A" => 0.000204301845807882, - "C" => 0.00021033089044356, - "G" => 0.000204731464934722, - "T" => 0.000255853410228468 - }, - 13 => { - "A" => 0.000201081348868472, - "C" => 0.000242918171866774, - "G" => 0.000236683915627231, - "T" => 0.000240610244102754 - }, - 14 => { - "A" => 0.000213428902961876, - "C" => 0.00025577076336335, - "G" => 0.000205504040440625, - "T" => 0.000223785784021304 - }, - 15 => { - "A" => 0.000376832758819433, - "C" => 0.000361701876772859, - "G" => 0.000321297197848344, - "T" => 0.000475347661405257 - } - ); - our %barcodeErrorRateFromMismatchObv2 = ( - 0 => { - A => { - C => 0.0150060806230109, - G => 0.0372176929088549, - T => 0.0456575461284543, - N => 1 - }, - C => { - A => 0.018543294755385, - G => 0.038966807605046, - T => 0.0544988281077176, - N => 1 - }, - G => { - A => 0.0199607426916924, - C => 0.0283670224586378, - T => 0.0606673270456195, - N => 1 - }, - T => { - A => 0.0114106115349607, - C => 0.0240909626615095, - G => 0.066435695729253, - N => 1 - } - }, - 1 => { - A => { - C => 0.248391841609553, - G => 0.452225152780146, - T => 0.563918024508456, - N => 1 - }, - C => { - A => 0.271759809161439, - G => 0.383139952595116, - T => 0.596635639908786, - N => 1 - }, - G => { - A => 0.253201640746953, - C => 0.356231919488245, - T => 0.612659080115662, - N => 1 - }, - T => { - A => 0.0867939772665535, - C => 0.315210731658511, - G => 0.681413839419953, - N => 1 - } - }, - 2 => { - A => { - C => 0.35875670578243, - G => 0.646852731962304, - T => 0.73066954778514, - N => 1 - }, - C => { - A => 0.343760589219978, - G => 0.479971081907819, - T => 0.793895808076938, - N => 1 - }, - G => { - A => 0.285338081360802, - C => 0.396841355796019, - T => 0.763238404334643, - N => 1 - }, - T => { - A => 0.105581623902801, - C => 0.316107883346555, - G => 0.785941934496185, - N => 1 - } - }, - 3 => { - A => { - C => 0.381603629518156, - G => 0.720009551363568, - T => 0.809796811399441, - N => 1 - }, - C => { - A => 0.310711927790844, - G => 0.494214799315343, - T => 0.833901512819323, - N => 1 - }, - G => { - A => 0.304626183783441, - C => 0.425403239506486, - T => 0.811649040628603, - N => 1 - }, - T => { - A => 0.115669720635526, - C => 0.338093421976441, - G => 0.854613457687941, - N => 1 - } - }, - 4 => { - A => { - C => 0.422569262592116, - G => 0.8786178694049, - T => 0.993668893861723, - N => 1 - }, - C => { - A => 0.418755753334043, - G => 0.699391707797705, - T => 0.994838536583109, - N => 1 - }, - G => { - A => 0.416612808249673, - C => 0.598519013218052, - T => 0.994178503549868, - N => 1 - }, - T => { - A => 0.171887212260899, - C => 0.408418695997334, - G => 0.995999176955996, - N => 1 - } - }, - 5 => { - A => { - C => 0.455596441354606, - G => 0.890908380782869, - T => 0.999912121879978, - N => 1 - }, - C => { - A => 0.413720923086378, - G => 0.692969916725563, - T => 0.999904126847556, - N => 1 - }, - G => { - A => 0.385448512090586, - C => 0.537184675888728, - T => 0.999902986763912, - N => 1 - }, - T => { - A => 0.143105140923864, - C => 0.376153257273678, - G => 0.99994272535355, - N => 1 - } - }, - 6 => { - A => { - C => 0.406327122386922, - G => 0.826869104480771, - T => 0.997881317068697, - N => 1 - }, - C => { - A => 0.374638212546548, - G => 0.705784016041249, - T => 0.998169578917216, - N => 1 - }, - G => { - A => 0.310655760448629, - C => 0.673039164730911, - T => 0.998758410649673, - N => 1 - }, - T => { - A => 0.238939465779065, - C => 0.481877157622821, - G => 0.998489829208511, - N => 1 - } - }, - 7 => { - A => { - C => 0.195755343642281, - G => 0.597418219800039, - T => 0.9999027098749, - N => 1 - }, - C => { - A => 0.306706272884354, - G => 0.623375596535977, - T => 0.999887185275846, - N => 1 - }, - G => { - A => 0.425573183339738, - C => 0.644636465230306, - T => 0.999868880685305, - N => 1 - }, - T => { - A => 0.268149141057318, - C => 0.583011172880877, - G => 0.999894468159314, - N => 1 - } - }, - 8 => { - A => { - C => 0.518582892018808, - G => 0.784930884223576, - T => 0.999240164825784, - N => 1 - }, - C => { - A => 0.27197526200349, - G => 0.677298530767374, - T => 0.999459461525574, - N => 1 - }, - G => { - A => 0.298843598520712, - C => 0.566920693914455, - T => 0.999250351099056, - N => 1 - }, - T => { - A => 0.206940109327211, - C => 0.453842829047238, - G => 0.999488510173712, - N => 1 - } - }, - 9 => { - A => { - C => 0.310375812444249, - G => 0.711274446114916, - T => 0.995279006975584, - N => 1 - }, - C => { - A => 0.33198496434301, - G => 0.682154642434746, - T => 0.994291602749511, - N => 1 - }, - G => { - A => 0.326298575650106, - C => 0.623180862865886, - T => 0.993958370958107, - N => 1 - }, - T => { - A => 0.245572771549946, - C => 0.509869938136896, - G => 0.995911758726658, - N => 1 - } - }, - 10 => { - A => { - C => 0.328380850761973, - G => 0.787038692763321, - T => 0.999824876157147, - N => 1 - }, - C => { - A => 0.314533542852326, - G => 0.761671785760346, - T => 0.999832485674823, - N => 1 - }, - G => { - A => 0.394375376537983, - C => 0.67886273624847, - T => 0.999770609437724, - N => 1 - }, - T => { - A => 0.215190322042968, - C => 0.459559438903071, - G => 0.999832267459712, - N => 1 - } - }, - 11 => { - A => { - C => 0.351088558521034, - G => 0.789439220146743, - T => 0.998694370574477, - N => 1 - }, - C => { - A => 0.313613251580904, - G => 0.711908553951083, - T => 0.998681302505116, - N => 1 - }, - G => { - A => 0.359368440646015, - C => 0.617058478744723, - T => 0.998362884254382, - N => 1 - }, - T => { - A => 0.209646159907881, - C => 0.468978015961584, - G => 0.998889020344748, - N => 1 - } - }, - 12 => { - A => { - C => 0.393658697481948, - G => 0.792198525518021, - T => 0.999928449922612, - N => 1 - }, - C => { - A => 0.410475580222229, - G => 0.722234908570464, - T => 0.999931264601499, - N => 1 - }, - G => { - A => 0.374465971655011, - C => 0.658098282400073, - T => 0.99992428468644, - N => 1 - }, - T => { - A => 0.253478004683067, - C => 0.534648200183392, - G => 0.99995165622933, - N => 1 - } - }, - 13 => { - A => { - C => 0.356711759499212, - G => 0.728725231428964, - T => 0.999992410855512, - N => 1 - }, - C => { - A => 0.382426264718291, - G => 0.663486603263781, - T => 0.999997354906714, - N => 1 - }, - G => { - A => 0.35486390882733, - C => 0.602597758689963, - T => 0.999991516359174, - N => 1 - }, - T => { - A => 0.232284719632891, - C => 0.495108208909138, - G => 0.999995994302563, - N => 1 - } - }, - 14 => { - A => { - C => 0.319898694544483, - G => 0.731679405112689, - T => 1, - N => 1 - }, - C => - { A => 0.37096552352182, G => 0.706085746854284, T => 1, N => 1 }, - G => { - A => 0.390778933035154, - C => 0.642144404001968, - T => 1, - N => 1 - }, - T => - { A => 0.273646850490209, C => 0.52192922481363, G => 1, N => 1 } - }, - 15 => { - A => { - C => 0.2932143024609, - G => 0.710902898260362, - T => 0.999975702185524, - N => 1 - }, - C => { - A => 0.354878944582217, - G => 0.677907230816238, - T => 0.999974463693145, - N => 1 - }, - G => { - A => 0.383118046981612, - C => 0.670801741155919, - T => 0.999968252627095, - N => 1 - }, - T => { - A => 0.258755909167866, - C => 0.495252896670793, - G => 0.999974824047124, - N => 1 - } - } - ); - our %substitute = ( - "A" => [ "C", "G", "T", "N" ], - "C" => [ "A", "G", "T", "N" ], - "G" => [ "A", "C", "T", "N" ], - "T" => [ "A", "C", "G", "N" ] - ); - - #Global variables end - - #Goto checkpoint - if ( $opts{u} == 1 ) { goto CHKPOINT4; } - elsif ( $opts{u} == 4 ) { goto CHKPOINT4; } - - #Simulate reads - CHKPOINT4: - { - &Log("Simulate reads start"); - - #Load barcodes - our $barcodeLength = $opts{l}; - our @barcodes = (); - our $barcodesMutexLock : shared = 0; - our $numBarcodes = 0; - &Log("Load barcodes start"); - open my $fh, "$opts{b}" - or &LogAndDie("Barcodes file $opts{b} not exist"); - @barcodes = <$fh>; - chomp(@barcodes); - $numBarcodes = scalar(@barcodes); - close $fh; - &Log("Load barcodes end"); - - #Load barcodes end - - # depthPerMol * molLength * #molPerPartition * Partitions = readsPairs * length - # ? * 50k * 10 * 1.5M = 600M * 270 - # ? = 0.108x - # readsPerParition = depthPerMol * molLength * #molPerPartition / length - # ? = 0.216x * 100k * 10 / 270 - # ? = 400 - # - - our @fragmentSizesList = (); - our $sizesCount = 0; - our $readsPerMolecule = - int( 0.499 + ( $opts{x} * 1000000 ) / ( $opts{t} * 1000 / $opts{d} ) / $opts{m} / $opts{d} ); - &Log("readPairsPerMolecule: $readsPerMolecule"); - - # For every Haplotype - sub simReads { - $SIG{'INT'} = $SIG{'TERM'} = $SIG{'KILL'} = - sub { threads->exit(); }; - my $i = shift; - &Log("Simulating on haplotype: $i"); - - if ( -e "$opts{p}.$i.manifest" ) { - &Log("Simulating on haplotype $i done already"); - return; - } - - &Log("Load read positions haplotype $i"); - my @defaultBarcodeQualAry = split //, "AAAFFF" . "K" x (barcodeLength - 6); - my %faidx = (); - my @boundary = (); - my $genomeSize = - &LoadFaidx( \%faidx, \@boundary, "$opts{r}/workflow/input/hap.$i.fasta" ); - &LogAndDie( - "Failed loading genome index $opts{r}/workflow/input/hap.$i.fasta.fai") - if ( $genomeSize == 0 ); - my $readPositionsInFile = mallocAry($genomeSize); - initAryFF( $readPositionsInFile, $genomeSize ); - - if ( -e "$opts{p}.$i.fp" ) { - &Log("Importing $opts{p}.$i.fp"); - importAry( $readPositionsInFile, "$opts{p}.$i.fp", - $genomeSize ); - &Log("Imported $opts{p}.$i.fp"); - } - else { - open my $fh, "$opts{r}/dwgsim_simulated/dwgsim.$i.12.fastq" - or &LogAndDie("Error opening $opts{r}/dwgsim_simulated/dwgsim.$i.12.fastq"); - my $l1; - my $l2; - my $l3; - my $l4; - my $l5; - my $l6; - my $l7; - my $l8; - my $newFpos; - my $fpos = tell($fh); - &LogAndDie("Fail to tell file position") if $fpos == -1; - my $failedRegistration = 0; - my $rt; - - while ( $l1 = <$fh> ) { - $l2 = <$fh>; - $l3 = <$fh>; - $l4 = <$fh>; - $l5 = <$fh>; - $l6 = <$fh>; - $l7 = <$fh>; - $l8 = <$fh>; - $newFpos = tell($fh); - unless ( $l1 =~ /@(\S+)_(\d+)_\d+_\d_\d_\d_\d_\d+:\d+:\d+_\d+:\d+:\d+_\S+\/1/) - { - &LogAndDie("Cannot find correct chromosome and position in $l1."); - } - my $gCoord = &GenomeCoord2Idx( \%faidx, "$1", $2 ); - if ( $gCoord < 0 || $gCoord >= $genomeSize ) { - &LogAndDie("$1 $2 $gCoord $fpos"); - } - $rt = writeToPos( $readPositionsInFile, $gCoord, $fpos ); - ++$failedRegistration if $rt == 0; - $fpos = $newFpos; - } - close $fh; - &Log("$failedRegistration reads failed being loaded."); - &Log("Exporting $opts{p}.$i.fp"); - ++$fnToBeUnlinkAtExit{"$opts{p}.$i.fp"}; - exportAry( $readPositionsInFile, "$opts{p}.$i.fp", - $genomeSize ); - delete $fnToBeUnlinkAtExit{"$opts{p}.$i.fp"}; - &Log("Exported $opts{p}.$i.fp"); - } - - open my $outputfh, "> $opts{p}.$i.manifest" - or &LogAndDie("Error opening $opts{p}.$i.manifest"); - ++$fnToBeUnlinkAtExit{"$opts{p}.$i.manifest"}; - - my $readsCountDown = int( $opts{x} * 1000000 / $opts{d} ); - &Log("readsCountDown: $readsCountDown"); - - while ( $readsCountDown > 0 ) { - - #Pick a barcode - my $selectedBarcode; - { - my $idx = int( rand($numBarcodes) ); - lock($barcodesMutexLock); - my $wentToZero = 0; - while (1) { - if ( $barcodes[$idx] eq "" ) { - ++$idx; - if ( $idx == $numBarcodes && not($wentToZero) ) { - $idx = 0; - $wentToZero = 1; - } - elsif ( $idx == $numBarcodes && $wentToZero ) { - &LogAndDie( -"Reached end of barcodes list. No more barcodes. Last read processed: $readsCountDown. Exiting." - ); - } - next; - } - $selectedBarcode = $barcodes[$idx]; - $barcodes[$idx] = ""; - last; - } - } - my @precreatedSelectedBarcodeAry = split //, $selectedBarcode; - - my $numberOfMolecules = - &PoissonMoleculePerPartition( $opts{m} ); - - #&Log("numberOfMolecules: $numberOfMolecules"); - for ( my $j = 0 ; $j < $numberOfMolecules ; ++$j ) { - - #Pick a starting position - my $startingPosition = int( rand($genomeSize) ); - - #&Log("startingPosition: $startingPosition"); - #Pick a fragment size - my $moleculeSize = - ( $sizesCount == 0 ) - ? ( &PoissonMoleculeSize( $opts{f} * 1000 ) ) - : ( $fragmentSizesList[ rand($sizesCount) ] ); - my $readsToExtract = int( - $readsPerMolecule * $moleculeSize / ( $opts{f} * 1000 ) - + 0.4999 ); - - #&Log("readsToExtract: $readsToExtract"); - - #Check and align to boundary - my $lowerBoundary; - my $upperBoundary; - &bSearch( - $startingPosition, \@boundary, - \$lowerBoundary, \$upperBoundary - ); - if ( - ( $startingPosition + $moleculeSize ) > $upperBoundary ) - { - my $newMoleculeSize = - $upperBoundary - $startingPosition; - if ( $newMoleculeSize < - 1000 ) #skip molecule with length < 1000 - { - --$j; - next; - } - $readsToExtract = - int( $readsToExtract * - $newMoleculeSize / - $moleculeSize ); - $moleculeSize = $newMoleculeSize; - } - - #Get a list of read positions - my @readPosToExtract = - random_uniform_integer( $readsToExtract, - $startingPosition, - $startingPosition + $moleculeSize - 1 ); - foreach my $gCoord (@readPosToExtract) { - my $filePosToExtract = - getFromPos( $readPositionsInFile, $gCoord, - $genomeSize ); - next if $filePosToExtract == -1; - - #Introduce barcode mismatch - my @selectedBarcodeAry = @precreatedSelectedBarcodeAry; - my @barcodeQualAry = @defaultBarcodeQualAry; - for ( my $k = 0 ; $k < $barcodeLength ; ++$k ) { - my $isErr = - rand() <= $barcodeErrorRateFromMismatchObv1{$k} - { $selectedBarcodeAry[$k] } ? 1 : 0; - if ( $isErr == 1 ) { - my $rnd = rand(); - my $idx = 1; - while ( $idx < 4 ) { - last - if $rnd < - $barcodeErrorRateFromMismatchObv2{$k} - { $selectedBarcodeAry[$k] } - { $substitute{ $selectedBarcodeAry[$k] } - [$idx] }; - ++$idx; - } - --$idx; - $selectedBarcodeAry[$k] = - $substitute{ $selectedBarcodeAry[$k] }[$idx]; - $barcodeQualAry[$k] = chr(35); - } - } - - #Output - print $outputfh "$filePosToExtract\t" - . ( join "", @selectedBarcodeAry ) . "\t" - . ( join "", @barcodeQualAry ) . "\n"; - - --$readsCountDown; - if ( $readsCountDown % 100000 == 0 ) { - &Log("$readsCountDown reads remaining"); - } - } - } - } - close $outputfh; - delete $fnToBeUnlinkAtExit{"$opts{p}.$i.manifest"}; - freeAry($readPositionsInFile); - if ( !-s "$opts{p}.$i.manifest" ) { - &LogAndDie("$opts{p}.$i.manifest empty"); - } - } - - for ( my $i = 0 ; $i < $opts{d} ; ++$i ) { - simReads($i); - sleep( 2 + int( rand(3) ) ); - } - &Log("Simulate reads end"); - } - - #Simulate reads end - 0; -} - -sub usage { - my $opts = shift @_; - die( - qq/ - Usage: $0 -r\/-g -p [options] - - Reference genome and variants: - -r STRING Name out output project directory - -g STRING Haploid FASTAs separated by comma. - - Illumina reads characteristics: - -e FLOAT Per base error rate of the first read [$$opts{e}] - -E FLOAT Per base error rate of the second read [$$opts{E}] - -i INT Outer distance between the two ends for pairs [$$opts{i}] - -s INT Standard deviation of the distance for pairs [$$opts{s}] - - Linked reads parameters: - -b STRING Barcodes list - -l INT Barcode Length - -x INT # million reads pairs in total to simulated [$$opts{x}] - -f INT Mean molecule length in kbp [$$opts{f}] - -c STRING Input a list of fragment sizes - -t INT n*1000 partitions to generate [$$opts{t}] - -m INT Average # of molecules per partition [$$opts{m}] - - Miscellaneous: - -u INT Continue from a step [auto] - 4. Simulate reads - 5. Sort reads extraction manifest - -h Show this help - - / - ); -} - -# Log routine -sub Log { - state $statusFH; - if ( not defined $statusFH ) { - open $statusFH, ">>$_[0]" or die "Error opening $_[0].\n"; - } - my $time = localtime; - print $statusFH "$time: $_[0]\n"; - print STDERR "$time: $_[0]\n"; -} - -sub LogAndDie { - &Log(@_); - die; -} - -# Log routine end - -sub LoadFaidx { - my $faidx = shift; - my $boundary = shift; - my $fn = shift; - open my $fh, "$fn.fai" or &LogAndDie("Error opening faidx: $fn.fai"); - my $accumulation = 0; - while (<$fh>) { - chomp; - my @a = split; - $$faidx{acc}{"$a[0]"} = $accumulation; - $$faidx{size}{"$a[0]"} = $a[1]; - push @$boundary, $accumulation; - $accumulation += $a[1]; - } - push @$boundary, $accumulation; - close $fh; - return $accumulation; -} - -sub getChrSize { return ${ $_[0] }{size}{ $_[1] }; } -sub getChrStart { return ${ $_[0] }{acc}{ $_[1] }; } - -sub GenomeCoord2Idx { - &LogAndDie("not defined $_[1]") unless defined ${ $_[0] }{acc}{ $_[1] }; - return ${ $_[0] }{acc}{ $_[1] } + $_[2]; -} - -sub bSearch { - my ( $elem, $list, $lowerLimit, $upperLimit ) = @_; - my $max = $#$list; - my $min = 0; - - my $index; - while ( $max >= $min ) { - $index = int( ( $max + $min ) / 2 ); - if ( $list->[$index] < $elem ) { $min = $index + 1; } - elsif ( $list->[$index] > $elem ) { $max = $index - 1; } - else { last; } - } - if ( $elem >= $list->[$index] ) { - $$lowerLimit = $list->[$index]; - $$upperLimit = $list->[ $index + 1 ]; - } - elsif ( $elem < $list->[$index] ) { - $$lowerLimit = $list->[ $index - 1 ]; - $$upperLimit = $list->[$index]; - } - else { die "bSearch: Should never reach here"; } -} - -sub PoissonMoleculePerPartition { - state $mu = $_[0]; - state $i = 10000; - state $pool; - $i = 10000 if ( $mu != $_[0] ); - if ( $i == 10000 ) { - @{$pool} = random_poisson( 10000, $_[0] ); - $i = 0; - } - return ${$pool}[ $i++ ]; -} - -sub PoissonMoleculeSize { - state $mu = $_[0]; - state $i = 10000; - state $pool; - $i = 10000 if ( $mu != $_[0] ); - if ( $i == 10000 ) { - @{$pool} = random_poisson( 10000, $_[0] ); - $i = 0; - } - return ${$pool}[ $i++ ]; -} - -0; - -__END__ -__C__ - -#include -#include -#include -#include -#include - -#define AMP_ON_SLOTS 1 -long mallocAry(long size) -{ - long ptr = (long)malloc(size * sizeof(size_t) * AMP_ON_SLOTS); - if(ptr == (long)NULL) - { - fprintf(stderr, "Error allocation, size %l\n", size); - return 0; - } - return ptr; -} - -void initAryFF(long pptr, long size) -{ - size_t* ptr = (size_t*)pptr; - memset(ptr, 0xFF, size * sizeof(size_t) * AMP_ON_SLOTS); -} - -void printAry(long pptr, long size) -{ - size_t* ptr = (size_t*)pptr; - long i; - for(i = 0; i < size*AMP_ON_SLOTS; ++i) - { - fprintf(stderr, "%l\t%lu\n", i, ptr[i]); - } -} - -void importAry(long pptr, char* fn, long size) -{ - void* ptr = (void*)pptr; - FILE* fh = fopen(fn, "rb"); - fread(ptr, sizeof(size_t), size * AMP_ON_SLOTS, fh); - fclose(fh); -} - -void exportAry(long pptr, char* fn, long size) -{ - size_t* ptr = (size_t*)pptr; - FILE* fh = fopen(fn, "wb"); - fwrite(ptr, sizeof(size_t), size * AMP_ON_SLOTS, fh); - fclose(fh); -} - -void freeAry(long pptr) -{ - size_t* ptr = (size_t*)pptr; - free(ptr); -} - -#define CHK_PREV_SLOT_LIMIT (3000*AMP_ON_SLOTS) -int writeToPos(long pptr, long pos, long toWrite) -{ - size_t* ptr = (size_t*)pptr; - int limit = CHK_PREV_SLOT_LIMIT; - pos = (pos + 1) * AMP_ON_SLOTS - 1; - while(limit > 0) - { - if(ptr[pos] == ULLONG_MAX) - { - ptr[pos] = (size_t)toWrite; - break; - } - --pos; - if(pos < 0) { break; } - --limit; - } - return limit; -} - -long getFromPos(long pptr, long pos, long maxSize) -{ - size_t* ptr = (size_t*)pptr; - int limit = 0; - size_t result = ULLONG_MAX; - if(pos >= maxSize) { pos = maxSize - 1; } - if(pos < 0) { pos = 0; } - pos = (pos + 1) * AMP_ON_SLOTS - 1; - while(limit < CHK_PREV_SLOT_LIMIT) - { - if(ptr[pos] != ULLONG_MAX) - { - result = ptr[pos]; - ptr[pos] = ULLONG_MAX; - break; - } - --pos; - if(pos < 0) { break; } - ++limit; - } - return (long)result; -} diff --git a/harpy/simulate.py b/harpy/simulate.py index 5537cde32..5c082a81e 100644 --- a/harpy/simulate.py +++ b/harpy/simulate.py @@ -166,10 +166,10 @@ def linkedreads(genome_hap1, genome_hap2, output_dir, outer_distance, mutation_r check_fasta(genome_hap1) check_fasta(genome_hap2) if barcodes: - bc_len = validate_barcodefile(barcodes, True) + bc_len = validate_barcodefile(barcodes, True, quiet) os.makedirs(f"{workflowdir}/", exist_ok= True) fetch_rule(workflowdir, "simulate_linkedreads.smk") - fetch_script(workflowdir, "LRSIM_harpy.pl") + fetch_script(workflowdir, "HaploSim.pl") os.makedirs(f"{output_dir}/logs/snakemake", exist_ok = True) sm_log = snakemake_log(output_dir, "simulate_linkedreads") configs = { diff --git a/harpy/snakefiles/simulate_linkedreads.smk b/harpy/snakefiles/simulate_linkedreads.smk index 6631c3a28..9b8d5da4e 100644 --- a/harpy/snakefiles/simulate_linkedreads.smk +++ b/harpy/snakefiles/simulate_linkedreads.smk @@ -2,8 +2,10 @@ containerized: "docker://pdimens/harpy:latest" import os import gzip +import shutil import logging from pathlib import Path +from itertools import product onstart: logger.logger.addHandler(logging.FileHandler(config["snakemake_log"])) @@ -11,6 +13,8 @@ onsuccess: os.remove(logger.logfile) onerror: os.remove(logger.logfile) +wildcard_constraints: + hap = "[01]" outdir = config["output_directory"] gen_hap1 = config["inputs"]["genome_hap1"] @@ -18,27 +22,34 @@ gen_hap2 = config["inputs"]["genome_hap2"] barcode_file = config["barcodes"]["file"] barcode_len = config["barcodes"]["length"] envdir = os.path.join(os.getcwd(), ".harpy_envs") +genodict = {"0": gen_hap1, "1": gen_hap2} -rule link_1st_geno: +rule barcode_keymap: input: - gen_hap1 + barcode_file + output: + outdir + "/barcodes.key.gz" + run: + bc_range = [f"{i}".zfill(2) for i in range(1,97)] + bc_generator = product("A", bc_range, "C", bc_range, "B", bc_range, "D", bc_range) + with open(input[0], "r") as bc_in, gzip.open(output[0], "wb") as bc_out: + for nuc_barcode in bc_in: + haptag = "".join(next(bc_generator)) + bc_out.write((nuc_barcode.rstrip() + "\t" + haptag + "\n").encode("utf-8")) + +rule link_genome: + input: + lambda wc: genodict[wc.get("hap")] output: - f"{outdir}/workflow/input/hap.0.fasta" + outdir + "/workflow/input/hap.{hap}.fasta" run: if input[0].lower().endswith("gz"): - with open(input[0], 'rb') as inf, open(output[0], 'w', encoding='utf8') as outf: - decom_str = gzip.decompress(inf.read()).decode('utf-8') - outf.write(decom_str) + with gzip.open(input[0], 'rb') as gzip_file, open(output[0], 'wb') as output_file: + shutil.copyfileobj(gzip_file, output_file) else: if not (Path(output[0]).is_symlink() or Path(output[0]).exists()): Path(output[0]).symlink_to(Path(input[0]).resolve()) -use rule link_1st_geno as link_2nd_geno with: - input: - gen_hap2 - output: - f"{outdir}/workflow/input/hap.1.fasta" - rule index_genome: input: outdir + "/workflow/input/hap.{hap}.fasta" @@ -58,11 +69,11 @@ if barcode_file == f"{outdir}/workflow/input/haplotag_barcodes.txt": shell: "haplotag_barcodes.py > {output}" -rule create_reads: +rule simulate_reads: input: outdir + "/workflow/input/hap.{hap}.fasta" output: - temp(multiext(outdir + "/dwgsim_simulated/dwgsim.{hap}.12", ".bwa.read1.fastq.gz" ,".bwa.read2.fastq.gz", ".mutations.txt", ".mutations.vcf")) + temp(multiext(outdir + "/dwgsim/sim_reads.{hap}.12", ".bwa.read1.fastq.gz" ,".bwa.read2.fastq.gz", ".mutations.txt", ".mutations.vcf")) log: outdir + "/logs/dwgsim.hap.{hap}.log" params: @@ -70,7 +81,7 @@ rule create_reads: outerdist = config["outer_distance"], distsd = config["distance_sd"], mutationrate = config["mutation_rate"], - prefix = lambda wc: outdir + "/dwgsim_simulated/dwgsim." + wc.get("hap") + ".12" + prefix = lambda wc: outdir + "/dwgsim/sim_reads." + wc.get("hap") + ".12" conda: f"{envdir}/simulations.yaml" shell: @@ -78,70 +89,66 @@ rule create_reads: dwgsim -N {params.readpairs} -e 0.0001,0.0016 -E 0.0001,0.0016 -d {params.outerdist} -s {params.distsd} -1 135 -2 151 -H -y 0 -S 0 -c 0 -R 0 -o 1 -r {params.mutationrate} -F 0 -m /dev/null {input} {params.prefix} 2> {log} """ -rule interleave_dwgsim: +rule interleave_reads: input: - collect(outdir + "/dwgsim_simulated/dwgsim.{{hap}}.12.bwa.read{rd}.fastq.gz", rd = [1,2]) + collect(outdir + "/dwgsim/sim_reads.{{hap}}.12.bwa.read{rd}.fastq.gz", rd = [1,2]) output: - outdir + "/dwgsim_simulated/dwgsim.{hap}.12.fastq" + outdir + "/dwgsim/sim_reads.{hap}.12.fastq" container: None shell: "seqtk mergepe {input} > {output}" -rule lrsim: +rule create_molecules: input: - hap1 = f"{outdir}/dwgsim_simulated/dwgsim.0.12.fastq", - hap2 = f"{outdir}/dwgsim_simulated/dwgsim.1.12.fastq", - fai1 = outdir + "/workflow/input/hap.0.fasta.fai", - fai2 = outdir + "/workflow/input/hap.1.fasta.fai", + hap_reads = collect(outdir + "/dwgsim/sim_reads.{hap}.12.fastq" , hap = [0,1]), + fasta_fai = collect(outdir + "/workflow/input/hap.{hap}.fasta.fai", hap = [0,1]), barcodes = barcode_file output: - collect(outdir + "/lrsim/sim.{hap}.{ext}", hap = [0,1], ext = ["fp", "manifest"]), - temp(f"{outdir}/lrsim/.status") + temp(collect(outdir + "/linked_molecules/lrsim.{hap}.fp" , hap = [0,1])), + temp(collect(outdir + "/linked_molecules/lrsim.{hap}.manifest", hap = [0,1])) log: - f"{outdir}/logs/LRSIM.log" + f"{outdir}/logs/linked_molecules.log" params: - lrsim = f"{outdir}/workflow/scripts/LRSIM_harpy.pl", - infiles = f"-g {outdir}/dwgsim_simulated/dwgsim.0.12.fastq,{outdir}/dwgsim_simulated/dwgsim.1.12.fastq", - inbarcodes = f"-b {barcode_file}", - proj_dir = f"-p {outdir}/lrsim/sim", - prefix = f"-r {outdir}", + haplosim = f"{outdir}/workflow/scripts/HaploSim.pl", + reads_in = f"-a {outdir}/dwgsim/sim_reads.0.12.fastq,{outdir}/dwgsim/sim_reads.1.12.fastq", + fai_in = f"-g {outdir}/workflow/input/hap.0.fasta.fai,{outdir}/workflow/input/hap.1.fasta.fai", + bccodes = f"-b {barcode_file}", + proj_dir = f"-p {outdir}/linked_molecules/lrsim", outdist = f"-i {config['outer_distance']}", dist_sd = f"-s {config['distance_sd']}", n_pairs = f"-x {config['read_pairs']}", mol_len = f"-f {config['molecule_length']}", parts = f"-t {config['partitions']}", mols_per = f"-m {config['molecules_per_partition']}", - bc_len = f"-l {barcode_len}", - static = "-o 1 -d 2 -u 4" + bc_len = f"-l {barcode_len}" threads: workflow.cores conda: f"{envdir}/simulations.yaml" shell: - "perl {params} -z {threads} 2> {log}" + "perl {params} -z {threads} -o 1 -d 2 2> {log}" -rule sort_manifest: +rule sort_molecules: input: - outdir + "/lrsim/sim.{hap}.manifest" + outdir + "/linked_molecules/lrsim.{hap}.manifest" output: - outdir + "/lrsim/sim.{hap}.sort.manifest" + outdir + "/linked_molecules/lrsim.{hap}.sort.manifest" conda: f"{envdir}/simulations.yaml" shell: "msort -kn1 {input} > {output}" -rule extract_reads: +rule create_linked_reads: input: - manifest = outdir + "/lrsim/sim.{hap}.sort.manifest", - dwg_hap = outdir + "/dwgsim_simulated/dwgsim.{hap}.12.fastq" + manifest = outdir + "/linked_molecules/lrsim.{hap}.sort.manifest", + dwg_hap = outdir + "/dwgsim/sim_reads.{hap}.12.fastq" output: - outdir + "/10X/sim_hap{hap}_10x_R1_001.fastq.gz", - outdir + "/10X/sim_hap{hap}_10x_R2_001.fastq.gz" + collect(outdir + "/multiplex/sim_hap{{hap}}_multiplex_R{FR}_001.fastq.gz", FR = [1,2]) log: - outdir + "/logs/extract_linkedreads.hap{hap}.log" + outdir + "/logs/create_linkedreads.hap{hap}.log" params: - lambda wc: f"""{outdir}/10X/sim_hap{wc.get("hap")}_10x""" + lambda wc: f"{outdir}/multiplex/sim_hap{wc.get('hap')}_multiplex" container: None shell: @@ -149,26 +156,25 @@ rule extract_reads: rule demultiplex_barcodes: input: - fw = outdir + "/10X/sim_hap{hap}_10x_R1_001.fastq.gz", - rv = outdir + "/10X/sim_hap{hap}_10x_R2_001.fastq.gz", - barcodes = barcode_file + fw = outdir + "/multiplex/sim_hap{hap}_multiplex_R1_001.fastq.gz", + rv = outdir + "/multiplex/sim_hap{hap}_multiplex_R2_001.fastq.gz", + barcodes = outdir + "/barcodes.key.gz" output: - fw = outdir + "/sim_hap{hap}_haplotag.R1.fq.gz", - rv = outdir + "/sim_hap{hap}_haplotag.R2.fq.gz" + fw = outdir + "/sim_hap{hap}.R1.fq.gz", + rv = outdir + "/sim_hap{hap}.R2.fq.gz" log: - outdir + "/sim_hap/{hap}_haplotag.barcodes" + outdir + "/logs/sim_hap{hap}.demultiplex" params: - outdir = outdir, - bc_len = barcode_len + lambda wc: f"{outdir}/sim_hap{wc.get('hap')}" container: None shell: - "inline_to_haplotag.py -l {params.bc_len} -f {input.fw} -r {input.rv} -b {input.barcodes} -p {params.outdir}/sim_hap{wildcards.hap}_haplotag" + "inline_to_haplotag.py -f {input.fw} -r {input.rv} -b {input.barcodes} -p {params} 2> {log}" rule workflow_summary: default_target: True input: - collect(outdir + "/sim_hap{hap}_haplotag.R{fw}.fq.gz", hap = [0,1], fw = [1,2]) + collect(outdir + "/sim_hap{hap}.R{fw}.fq.gz", hap = [0,1], fw = [1,2]) params: lrsproj_dir = f"{outdir}", lrsoutdist = config["outer_distance"], @@ -177,25 +183,26 @@ rule workflow_summary: lrsmol_len = config["molecule_length"], lrsparts = config["partitions"], lrsmols_per = config["molecules_per_partition"], - lrsstatic = "-o 1 -d 2 -u 4", + lrbc_len = barcode_len, + lrsstatic = "-o 1 -d 2", dwgreadpairs = int(config["read_pairs"] * 500000), dwgouterdist = config["outer_distance"], dwgdistsd = config["distance_sd"], dwgmutationrate = config["mutation_rate"], - dwgprefix = outdir + "/dwgsim_simulated/dwgsim.hap.12" + dwgprefix = outdir + "/dwgsim/sim_reads.hap.12" run: summary = ["The harpy simulate linkedreas workflow ran using these parameters:"] summary.append(f"Genome haplotype 1: {gen_hap1}") summary.append(f"Genome haplotype 2: {gen_hap2}") - summary.append(f"Barcode file: {barcodefile}") + summary.append(f"Barcode file: {barcode_file}") dwgsim = "Reads were simulated from the provided genomes using:\n" dwgsim += f"\tdwgsim -N {params.dwgreadpairs} -e 0.0001,0.0016 -E 0.0001,0.0016 -d {params.dwgouterdist} -s {params.dwgdistsd} -1 135 -2 151 -H -y 0 -S 0 -c 0 -R 0 -r {params.dwgmutationrate} -F 0 -o 1 -m /dev/null GENO PREFIX" summary.append(dwgsim) - lrsim = "LRSIM was started from step 3 (-u 3) with these parameters:\n" - lrsim += f"\tLRSIM_harpy.pl -g genome1,genome2 -p {params.lrsproj_dir}/lrsim/sim -b BARCODES -r {params.lrsproj_dir} -i {params.lrsoutdist} -s {params.lrsdist_sd} -x {params.lrsn_pairs} -f {params.lrsmol_len} -t {params.lrsparts} -m {params.lrsmols_per} -z THREADS {params.lrsstatic}" - summary.append(lrsim) + haplosim = "HaploSim (Harpy's fork of LRSIM) was used with these parameters:\n" + haplosim += f"\tHaploSim.pl -g genome1,genome2 -a dwgsimreads1,dwgsimreads2 -l {params.lrbc_len} -p {params.lrsproj_dir}/linked_molecules/lrsim -b BARCODES -i {params.lrsoutdist} -s {params.lrsdist_sd} -x {params.lrsn_pairs} -f {params.lrsmol_len} -t {params.lrsparts} -m {params.lrsmols_per} -z THREADS {params.lrsstatic}" + summary.append(haplosim) bxconvert = "Inline barcodes were converted in haplotag BX:Z tags using:\n" - bxconvert += "\tinline_to_haplotag.py" + bxconvert += "\tinline_to_haplotag.py -f -r -b -p " summary.append(bxconvert) sm = "The Snakemake workflow was called via command line:\n" sm += f"\t{config['workflow_call']}" diff --git a/resources/createharpyenv.sh b/resources/createharpyenv.sh index 2648d3aab..06c40d6a2 100644 --- a/resources/createharpyenv.sh +++ b/resources/createharpyenv.sh @@ -2,9 +2,9 @@ ## Use the first positional argument to set a name, usually `harpy` or `harpytest` -if command -v mamba &> /dev/null -then - mamba env create -n $1 -f resources/harpy.yaml -else - conda env create -n $1 -f resources/harpy.yaml +if ! command -v conda &> /dev/null; then + echo "Error: conda is not installed or not in PATH" >&2 + exit 1 fi + +conda env create -n $1 -f resources/harpy.yaml \ No newline at end of file diff --git a/test/haplotag.bc b/test/haplotag.bc deleted file mode 100644 index f271d0394..000000000 --- a/test/haplotag.bc +++ /dev/null @@ -1,1000000 +0,0 @@ -ACGGAAGAAACGAACGGAGGAAAC -ACGGAAGAAACGAACGGAAACACC -ACGGAAGAAACGAACGGAATCGAG -ACGGAAGAAACGAACGGACTCCTT -ACGGAAGAAACGAACGGACCTGTT -ACGGAAGAAACGAACGGACGGTTT -ACGGAAGAAACGAACGGAGTGGTT -ACGGAAGAAACGAACGGAGCCTTT -ACGGAAGAAACGAACGGAGGTCTT -ACGGAAGAAACGAACGGAACGCTT -ACGGAAGAAACGAACGGAAGCGTT -ACGGAAGAAACGAACGGATTCGTC -ACGGAAGAAACGAACGGATCTCTC -ACGGAAGAAACGAACGGATGGATC -ACGGAAGAAACGAACGGACACTTC -ACGGAAGAAACGAACGGAGTACTC -ACGGAAGAAACGAACGGAGATGTC -ACGGAAGAAACGAACGGAACAGTC -ACGGAAGAAACGAACGGATTGCTG -ACGGAAGAAACGAACGGATCCATG -ACGGAAGAAACGAACGGATGTGTG -ACGGAAGAAACGAACGGACTAGTG -ACGGAAGAAACGAACGGACATCTG -ACGGAAGAAACGAACGGAGAGTTG -ACGGAAGAAACGAACGGAAGACTG -ACGGAAGAAACGAACGGATCGGTA -ACGGAAGAAACGAACGGATGCCTA -ACGGAAGAAACGAACGGACCACTA -ACGGAAGAAACGAACGGAGGAGTA -ACGGAAGAAACGAACGGATCGTCT -ACGGAAGAAACGAACGGATGCACT -ACGGAAGAAACGAACGGACTGACT -ACGGAAGAAACGAACGGACAACCT -ACGGAAGAAACGAACGGAGCTACT -ACGGAAGAAACGAACGGAGGATCT -ACGGAAGAAACGAACGGAAAGGCT -ACGGAAGAAACGAACGGATCAACC -ACGGAAGAAACGAACGGATGTTCC -ACGGAAGAAACGAACGGAATTCCC -ACGGAAGAAACGAACGGATTCTCG -ACGGAAGAAACGAACGGATAGACG -ACGGAAGAAACGAACGGAGTAACG -ACGGAAGAAACGAACGGAACTTCG -ACGGAAGAAACGAACGGATACGCA -ACGGAAGAAACGAACGGACTTGCA -ACGGAAGAAACGAACGGACGAACA -ACGGAAGAAACGAACGGACAGTCA -ACGGAAGAAACGAACGGAGATCCA -ACGGAAGAAACGAACGGAACGACA -ACGGAAGAAACGAACGGAAGCTCA -ACGGAAGAAACGAACGGATCACGT -ACGGAAGAAACGAACGGACGTAGT -ACGGAAGAAACGAACGGAGTCAGT -ACGGAAGAAACGAACGGAGAAGGT -ACGGAAGAAACGAACGGAAACCGT -ACGGAAGAAACGAACGGATTGTGC -ACGGAAGAAACGAACGGACTAAGC -ACGGAAGAAACGAACGGAACTAGC -ACGGAAGAAACGAACGGAAGATGC -ACGGAAGAAACGAACGGATGAAGG -ACGGAAGAAACGAACGGACAATGG -ACGGAAGAAACGAACGGAATGAGG -ACGGAAGAAACGAACGGAAATGGG -ACGGAAGAAACGAACGGATCCTGA -ACGGAAGAAACGAACGGATAGCGA -ACGGAAGAAACGAACGGACACAGA -ACGGAAGAAACGAACGGAGCAAGA -ACGGAAGAAACGAACGGAGGTTGA -ACGGAAGAAACGAACGGATCCGAT -ACGGAAGAAACGAACGGATGGCAT -ACGGAAGAAACGAACGGACGAGAT -ACGGAAGAAACGAACGGATACCAC -ACGGAAGAAACGAACGGACAGAAC -ACGGAAGAAACGAACGGAGTCTAC -ACGGAAGAAACGAACGGAACGTAC -ACGGAAGAAACGAACGGAAGTGAC -ACGGAAGAAACGAACGGACTGTAG -ACGGAAGAAACGAACGGACCTAAG -ACGGAAGAAACGAACGGAGTTCAG -ACGGAAGAAACGAACGGAGCATAG -ACGGAAGAAACGAACGGAGACAAG -ACGGAAGAAACGAACGGAAAGCAG -ACGGAAGAAACGAACGGACGTCAA -ACGGAAGAAACGAACGGAGCTGAA -ACGGAAGAAACGAACGGAAGTACG -ACGGAAGAAACGAACGGAATCCGA -ACGGAAGAAACGAACGGAATGGGA -ACGGAAGAAACGAACGGAGTGCAA -ACGGAAGAAACGAACGGAGAGGAA -ACGGAAGAAACGAACGGACAGGTA -ACGGAAGAAACGAACGGAGACTCT -ACGGAAGAAACGAACGGAAGTCCT -ACGGAAGAAACGAACGGATAAGCC -ACGGAAGAAACGAACGGAATAGCC -ACGGAAGAAACGAACGGATAACCG -ACGGAAGAAACGAACGGAATGCCA -ACGGAAGAAACGACCAACGGAAAC -ACGGAAGAAACGACCAACAACACC -ACGGAAGAAACGACCAACATCGAG -ACGGAAGAAACGACCAACCTCCTT -ACGGAAGAAACGACCAACCCTGTT -ACGGAAGAAACGACCAACCGGTTT -ACGGAAGAAACGACCAACGTGGTT -ACGGAAGAAACGACCAACGCCTTT -ACGGAAGAAACGACCAACGGTCTT -ACGGAAGAAACGACCAACACGCTT -ACGGAAGAAACGACCAACAGCGTT -ACGGAAGAAACGACCAACTTCGTC -ACGGAAGAAACGACCAACTCTCTC -ACGGAAGAAACGACCAACTGGATC -ACGGAAGAAACGACCAACCACTTC -ACGGAAGAAACGACCAACGTACTC -ACGGAAGAAACGACCAACGATGTC -ACGGAAGAAACGACCAACACAGTC -ACGGAAGAAACGACCAACTTGCTG -ACGGAAGAAACGACCAACTCCATG -ACGGAAGAAACGACCAACTGTGTG -ACGGAAGAAACGACCAACCTAGTG -ACGGAAGAAACGACCAACCATCTG -ACGGAAGAAACGACCAACGAGTTG -ACGGAAGAAACGACCAACAGACTG -ACGGAAGAAACGACCAACTCGGTA -ACGGAAGAAACGACCAACTGCCTA -ACGGAAGAAACGACCAACCCACTA -ACGGAAGAAACGACCAACGGAGTA -ACGGAAGAAACGACCAACTCGTCT -ACGGAAGAAACGACCAACTGCACT -ACGGAAGAAACGACCAACCTGACT -ACGGAAGAAACGACCAACCAACCT -ACGGAAGAAACGACCAACGCTACT -ACGGAAGAAACGACCAACGGATCT -ACGGAAGAAACGACCAACAAGGCT -ACGGAAGAAACGACCAACTCAACC -ACGGAAGAAACGACCAACTGTTCC -ACGGAAGAAACGACCAACATTCCC -ACGGAAGAAACGACCAACTTCTCG -ACGGAAGAAACGACCAACTAGACG -ACGGAAGAAACGACCAACGTAACG -ACGGAAGAAACGACCAACACTTCG -ACGGAAGAAACGACCAACTACGCA -ACGGAAGAAACGACCAACCTTGCA -ACGGAAGAAACGACCAACCGAACA -ACGGAAGAAACGACCAACCAGTCA -ACGGAAGAAACGACCAACGATCCA -ACGGAAGAAACGACCAACACGACA -ACGGAAGAAACGACCAACAGCTCA -ACGGAAGAAACGACCAACTCACGT -ACGGAAGAAACGACCAACCGTAGT -ACGGAAGAAACGACCAACGTCAGT -ACGGAAGAAACGACCAACGAAGGT -ACGGAAGAAACGACCAACAACCGT -ACGGAAGAAACGACCAACTTGTGC -ACGGAAGAAACGACCAACCTAAGC -ACGGAAGAAACGACCAACACTAGC -ACGGAAGAAACGACCAACAGATGC -ACGGAAGAAACGACCAACTGAAGG -ACGGAAGAAACGACCAACCAATGG -ACGGAAGAAACGACCAACATGAGG -ACGGAAGAAACGACCAACAATGGG -ACGGAAGAAACGACCAACTCCTGA -ACGGAAGAAACGACCAACTAGCGA -ACGGAAGAAACGACCAACCACAGA -ACGGAAGAAACGACCAACGCAAGA -ACGGAAGAAACGACCAACGGTTGA -ACGGAAGAAACGACCAACTCCGAT -ACGGAAGAAACGACCAACTGGCAT -ACGGAAGAAACGACCAACCGAGAT -ACGGAAGAAACGACCAACTACCAC -ACGGAAGAAACGACCAACCAGAAC -ACGGAAGAAACGACCAACGTCTAC -ACGGAAGAAACGACCAACACGTAC -ACGGAAGAAACGACCAACAGTGAC -ACGGAAGAAACGACCAACCTGTAG -ACGGAAGAAACGACCAACCCTAAG -ACGGAAGAAACGACCAACGTTCAG -ACGGAAGAAACGACCAACGCATAG -ACGGAAGAAACGACCAACGACAAG -ACGGAAGAAACGACCAACAAGCAG -ACGGAAGAAACGACCAACCGTCAA -ACGGAAGAAACGACCAACGCTGAA -ACGGAAGAAACGACCAACAGTACG -ACGGAAGAAACGACCAACATCCGA -ACGGAAGAAACGACCAACATGGGA -ACGGAAGAAACGACCAACGTGCAA -ACGGAAGAAACGACCAACGAGGAA -ACGGAAGAAACGACCAACCAGGTA -ACGGAAGAAACGACCAACGACTCT -ACGGAAGAAACGACCAACAGTCCT -ACGGAAGAAACGACCAACTAAGCC -ACGGAAGAAACGACCAACATAGCC -ACGGAAGAAACGACCAACTAACCG -ACGGAAGAAACGACCAACATGCCA -ACGGAAGAAACGGAGATCGGAAAC -ACGGAAGAAACGGAGATCAACACC -ACGGAAGAAACGGAGATCATCGAG -ACGGAAGAAACGGAGATCCTCCTT -ACGGAAGAAACGGAGATCCCTGTT -ACGGAAGAAACGGAGATCCGGTTT -ACGGAAGAAACGGAGATCGTGGTT -ACGGAAGAAACGGAGATCGCCTTT -ACGGAAGAAACGGAGATCGGTCTT -ACGGAAGAAACGGAGATCACGCTT -ACGGAAGAAACGGAGATCAGCGTT -ACGGAAGAAACGGAGATCTTCGTC -ACGGAAGAAACGGAGATCTCTCTC -ACGGAAGAAACGGAGATCTGGATC -ACGGAAGAAACGGAGATCCACTTC -ACGGAAGAAACGGAGATCGTACTC -ACGGAAGAAACGGAGATCGATGTC -ACGGAAGAAACGGAGATCACAGTC -ACGGAAGAAACGGAGATCTTGCTG -ACGGAAGAAACGGAGATCTCCATG -ACGGAAGAAACGGAGATCTGTGTG -ACGGAAGAAACGGAGATCCTAGTG -ACGGAAGAAACGGAGATCCATCTG -ACGGAAGAAACGGAGATCGAGTTG -ACGGAAGAAACGGAGATCAGACTG -ACGGAAGAAACGGAGATCTCGGTA -ACGGAAGAAACGGAGATCTGCCTA -ACGGAAGAAACGGAGATCCCACTA -ACGGAAGAAACGGAGATCGGAGTA -ACGGAAGAAACGGAGATCTCGTCT -ACGGAAGAAACGGAGATCTGCACT -ACGGAAGAAACGGAGATCCTGACT -ACGGAAGAAACGGAGATCCAACCT -ACGGAAGAAACGGAGATCGCTACT -ACGGAAGAAACGGAGATCGGATCT -ACGGAAGAAACGGAGATCAAGGCT -ACGGAAGAAACGGAGATCTCAACC -ACGGAAGAAACGGAGATCTGTTCC -ACGGAAGAAACGGAGATCATTCCC -ACGGAAGAAACGGAGATCTTCTCG -ACGGAAGAAACGGAGATCTAGACG -ACGGAAGAAACGGAGATCGTAACG -ACGGAAGAAACGGAGATCACTTCG -ACGGAAGAAACGGAGATCTACGCA -ACGGAAGAAACGGAGATCCTTGCA -ACGGAAGAAACGGAGATCCGAACA -ACGGAAGAAACGGAGATCCAGTCA -ACGGAAGAAACGGAGATCGATCCA -ACGGAAGAAACGGAGATCACGACA -ACGGAAGAAACGGAGATCAGCTCA -ACGGAAGAAACGGAGATCTCACGT -ACGGAAGAAACGGAGATCCGTAGT -ACGGAAGAAACGGAGATCGTCAGT -ACGGAAGAAACGGAGATCGAAGGT -ACGGAAGAAACGGAGATCAACCGT -ACGGAAGAAACGGAGATCTTGTGC -ACGGAAGAAACGGAGATCCTAAGC -ACGGAAGAAACGGAGATCACTAGC -ACGGAAGAAACGGAGATCAGATGC -ACGGAAGAAACGGAGATCTGAAGG -ACGGAAGAAACGGAGATCCAATGG -ACGGAAGAAACGGAGATCATGAGG -ACGGAAGAAACGGAGATCAATGGG -ACGGAAGAAACGGAGATCTCCTGA -ACGGAAGAAACGGAGATCTAGCGA -ACGGAAGAAACGGAGATCCACAGA -ACGGAAGAAACGGAGATCGCAAGA -ACGGAAGAAACGGAGATCGGTTGA -ACGGAAGAAACGGAGATCTCCGAT -ACGGAAGAAACGGAGATCTGGCAT -ACGGAAGAAACGGAGATCCGAGAT -ACGGAAGAAACGGAGATCTACCAC -ACGGAAGAAACGGAGATCCAGAAC -ACGGAAGAAACGGAGATCGTCTAC -ACGGAAGAAACGGAGATCACGTAC -ACGGAAGAAACGGAGATCAGTGAC -ACGGAAGAAACGGAGATCCTGTAG -ACGGAAGAAACGGAGATCCCTAAG -ACGGAAGAAACGGAGATCGTTCAG -ACGGAAGAAACGGAGATCGCATAG -ACGGAAGAAACGGAGATCGACAAG -ACGGAAGAAACGGAGATCAAGCAG -ACGGAAGAAACGGAGATCCGTCAA -ACGGAAGAAACGGAGATCGCTGAA -ACGGAAGAAACGGAGATCAGTACG -ACGGAAGAAACGGAGATCATCCGA -ACGGAAGAAACGGAGATCATGGGA -ACGGAAGAAACGGAGATCGTGCAA -ACGGAAGAAACGGAGATCGAGGAA -ACGGAAGAAACGGAGATCCAGGTA -ACGGAAGAAACGGAGATCGACTCT -ACGGAAGAAACGGAGATCAGTCCT -ACGGAAGAAACGGAGATCTAAGCC -ACGGAAGAAACGGAGATCATAGCC -ACGGAAGAAACGGAGATCTAACCG -ACGGAAGAAACGGAGATCATGCCA -ACGGAAGAAACGCTTCTCGGAAAC -ACGGAAGAAACGCTTCTCAACACC -ACGGAAGAAACGCTTCTCATCGAG -ACGGAAGAAACGCTTCTCCTCCTT -ACGGAAGAAACGCTTCTCCCTGTT -ACGGAAGAAACGCTTCTCCGGTTT -ACGGAAGAAACGCTTCTCGTGGTT -ACGGAAGAAACGCTTCTCGCCTTT -ACGGAAGAAACGCTTCTCGGTCTT -ACGGAAGAAACGCTTCTCACGCTT -ACGGAAGAAACGCTTCTCAGCGTT -ACGGAAGAAACGCTTCTCTTCGTC -ACGGAAGAAACGCTTCTCTCTCTC -ACGGAAGAAACGCTTCTCTGGATC -ACGGAAGAAACGCTTCTCCACTTC -ACGGAAGAAACGCTTCTCGTACTC -ACGGAAGAAACGCTTCTCGATGTC -ACGGAAGAAACGCTTCTCACAGTC -ACGGAAGAAACGCTTCTCTTGCTG -ACGGAAGAAACGCTTCTCTCCATG -ACGGAAGAAACGCTTCTCTGTGTG -ACGGAAGAAACGCTTCTCCTAGTG -ACGGAAGAAACGCTTCTCCATCTG -ACGGAAGAAACGCTTCTCGAGTTG -ACGGAAGAAACGCTTCTCAGACTG -ACGGAAGAAACGCTTCTCTCGGTA -ACGGAAGAAACGCTTCTCTGCCTA -ACGGAAGAAACGCTTCTCCCACTA -ACGGAAGAAACGCTTCTCGGAGTA -ACGGAAGAAACGCTTCTCTCGTCT -ACGGAAGAAACGCTTCTCTGCACT -ACGGAAGAAACGCTTCTCCTGACT -ACGGAAGAAACGCTTCTCCAACCT -ACGGAAGAAACGCTTCTCGCTACT -ACGGAAGAAACGCTTCTCGGATCT -ACGGAAGAAACGCTTCTCAAGGCT -ACGGAAGAAACGCTTCTCTCAACC -ACGGAAGAAACGCTTCTCTGTTCC -ACGGAAGAAACGCTTCTCATTCCC -ACGGAAGAAACGCTTCTCTTCTCG -ACGGAAGAAACGCTTCTCTAGACG -ACGGAAGAAACGCTTCTCGTAACG -ACGGAAGAAACGCTTCTCACTTCG -ACGGAAGAAACGCTTCTCTACGCA -ACGGAAGAAACGCTTCTCCTTGCA -ACGGAAGAAACGCTTCTCCGAACA -ACGGAAGAAACGCTTCTCCAGTCA -ACGGAAGAAACGCTTCTCGATCCA -ACGGAAGAAACGCTTCTCACGACA -ACGGAAGAAACGCTTCTCAGCTCA -ACGGAAGAAACGCTTCTCTCACGT -ACGGAAGAAACGCTTCTCCGTAGT -ACGGAAGAAACGCTTCTCGTCAGT -ACGGAAGAAACGCTTCTCGAAGGT -ACGGAAGAAACGCTTCTCAACCGT -ACGGAAGAAACGCTTCTCTTGTGC -ACGGAAGAAACGCTTCTCCTAAGC -ACGGAAGAAACGCTTCTCACTAGC -ACGGAAGAAACGCTTCTCAGATGC -ACGGAAGAAACGCTTCTCTGAAGG -ACGGAAGAAACGCTTCTCCAATGG -ACGGAAGAAACGCTTCTCATGAGG -ACGGAAGAAACGCTTCTCAATGGG -ACGGAAGAAACGCTTCTCTCCTGA -ACGGAAGAAACGCTTCTCTAGCGA -ACGGAAGAAACGCTTCTCCACAGA -ACGGAAGAAACGCTTCTCGCAAGA -ACGGAAGAAACGCTTCTCGGTTGA -ACGGAAGAAACGCTTCTCTCCGAT -ACGGAAGAAACGCTTCTCTGGCAT -ACGGAAGAAACGCTTCTCCGAGAT -ACGGAAGAAACGCTTCTCTACCAC -ACGGAAGAAACGCTTCTCCAGAAC -ACGGAAGAAACGCTTCTCGTCTAC -ACGGAAGAAACGCTTCTCACGTAC -ACGGAAGAAACGCTTCTCAGTGAC -ACGGAAGAAACGCTTCTCCTGTAG -ACGGAAGAAACGCTTCTCCCTAAG -ACGGAAGAAACGCTTCTCGTTCAG -ACGGAAGAAACGCTTCTCGCATAG -ACGGAAGAAACGCTTCTCGACAAG -ACGGAAGAAACGCTTCTCAAGCAG -ACGGAAGAAACGCTTCTCCGTCAA -ACGGAAGAAACGCTTCTCGCTGAA -ACGGAAGAAACGCTTCTCAGTACG -ACGGAAGAAACGCTTCTCATCCGA -ACGGAAGAAACGCTTCTCATGGGA -ACGGAAGAAACGCTTCTCGTGCAA -ACGGAAGAAACGCTTCTCGAGGAA -ACGGAAGAAACGCTTCTCCAGGTA -ACGGAAGAAACGCTTCTCGACTCT -ACGGAAGAAACGCTTCTCAGTCCT -ACGGAAGAAACGCTTCTCTAAGCC -ACGGAAGAAACGCTTCTCATAGCC -ACGGAAGAAACGCTTCTCTAACCG -ACGGAAGAAACGCTTCTCATGCCA -ACGGAAGAAACGGTTCCTGGAAAC -ACGGAAGAAACGGTTCCTAACACC -ACGGAAGAAACGGTTCCTATCGAG -ACGGAAGAAACGGTTCCTCTCCTT -ACGGAAGAAACGGTTCCTCCTGTT -ACGGAAGAAACGGTTCCTCGGTTT -ACGGAAGAAACGGTTCCTGTGGTT -ACGGAAGAAACGGTTCCTGCCTTT -ACGGAAGAAACGGTTCCTGGTCTT -ACGGAAGAAACGGTTCCTACGCTT -ACGGAAGAAACGGTTCCTAGCGTT -ACGGAAGAAACGGTTCCTTTCGTC -ACGGAAGAAACGGTTCCTTCTCTC -ACGGAAGAAACGGTTCCTTGGATC -ACGGAAGAAACGGTTCCTCACTTC -ACGGAAGAAACGGTTCCTGTACTC -ACGGAAGAAACGGTTCCTGATGTC -ACGGAAGAAACGGTTCCTACAGTC -ACGGAAGAAACGGTTCCTTTGCTG -ACGGAAGAAACGGTTCCTTCCATG -ACGGAAGAAACGGTTCCTTGTGTG -ACGGAAGAAACGGTTCCTCTAGTG -ACGGAAGAAACGGTTCCTCATCTG -ACGGAAGAAACGGTTCCTGAGTTG -ACGGAAGAAACGGTTCCTAGACTG -ACGGAAGAAACGGTTCCTTCGGTA -ACGGAAGAAACGGTTCCTTGCCTA -ACGGAAGAAACGGTTCCTCCACTA -ACGGAAGAAACGGTTCCTGGAGTA -ACGGAAGAAACGGTTCCTTCGTCT -ACGGAAGAAACGGTTCCTTGCACT -ACGGAAGAAACGGTTCCTCTGACT -ACGGAAGAAACGGTTCCTCAACCT -ACGGAAGAAACGGTTCCTGCTACT -ACGGAAGAAACGGTTCCTGGATCT -ACGGAAGAAACGGTTCCTAAGGCT -ACGGAAGAAACGGTTCCTTCAACC -ACGGAAGAAACGGTTCCTTGTTCC -ACGGAAGAAACGGTTCCTATTCCC -ACGGAAGAAACGGTTCCTTTCTCG -ACGGAAGAAACGGTTCCTTAGACG -ACGGAAGAAACGGTTCCTGTAACG -ACGGAAGAAACGGTTCCTACTTCG -ACGGAAGAAACGGTTCCTTACGCA -ACGGAAGAAACGGTTCCTCTTGCA -ACGGAAGAAACGGTTCCTCGAACA -ACGGAAGAAACGGTTCCTCAGTCA -ACGGAAGAAACGGTTCCTGATCCA -ACGGAAGAAACGGTTCCTACGACA -ACGGAAGAAACGGTTCCTAGCTCA -ACGGAAGAAACGGTTCCTTCACGT -ACGGAAGAAACGGTTCCTCGTAGT -ACGGAAGAAACGGTTCCTGTCAGT -ACGGAAGAAACGGTTCCTGAAGGT -ACGGAAGAAACGGTTCCTAACCGT -ACGGAAGAAACGGTTCCTTTGTGC -ACGGAAGAAACGGTTCCTCTAAGC -ACGGAAGAAACGGTTCCTACTAGC -ACGGAAGAAACGGTTCCTAGATGC -ACGGAAGAAACGGTTCCTTGAAGG -ACGGAAGAAACGGTTCCTCAATGG -ACGGAAGAAACGGTTCCTATGAGG -ACGGAAGAAACGGTTCCTAATGGG -ACGGAAGAAACGGTTCCTTCCTGA -ACGGAAGAAACGGTTCCTTAGCGA -ACGGAAGAAACGGTTCCTCACAGA -ACGGAAGAAACGGTTCCTGCAAGA -ACGGAAGAAACGGTTCCTGGTTGA -ACGGAAGAAACGGTTCCTTCCGAT -ACGGAAGAAACGGTTCCTTGGCAT -ACGGAAGAAACGGTTCCTCGAGAT -ACGGAAGAAACGGTTCCTTACCAC -ACGGAAGAAACGGTTCCTCAGAAC -ACGGAAGAAACGGTTCCTGTCTAC -ACGGAAGAAACGGTTCCTACGTAC -ACGGAAGAAACGGTTCCTAGTGAC -ACGGAAGAAACGGTTCCTCTGTAG -ACGGAAGAAACGGTTCCTCCTAAG -ACGGAAGAAACGGTTCCTGTTCAG -ACGGAAGAAACGGTTCCTGCATAG -ACGGAAGAAACGGTTCCTGACAAG -ACGGAAGAAACGGTTCCTAAGCAG -ACGGAAGAAACGGTTCCTCGTCAA -ACGGAAGAAACGGTTCCTGCTGAA -ACGGAAGAAACGGTTCCTAGTACG -ACGGAAGAAACGGTTCCTATCCGA -ACGGAAGAAACGGTTCCTATGGGA -ACGGAAGAAACGGTTCCTGTGCAA -ACGGAAGAAACGGTTCCTGAGGAA -ACGGAAGAAACGGTTCCTCAGGTA -ACGGAAGAAACGGTTCCTGACTCT -ACGGAAGAAACGGTTCCTAGTCCT -ACGGAAGAAACGGTTCCTTAAGCC -ACGGAAGAAACGGTTCCTATAGCC -ACGGAAGAAACGGTTCCTTAACCG -ACGGAAGAAACGGTTCCTATGCCA -ACGGAAGAAACGTTTCGGGGAAAC -ACGGAAGAAACGTTTCGGAACACC -ACGGAAGAAACGTTTCGGATCGAG -ACGGAAGAAACGTTTCGGCTCCTT -ACGGAAGAAACGTTTCGGCCTGTT -ACGGAAGAAACGTTTCGGCGGTTT -ACGGAAGAAACGTTTCGGGTGGTT -ACGGAAGAAACGTTTCGGGCCTTT -ACGGAAGAAACGTTTCGGGGTCTT -ACGGAAGAAACGTTTCGGACGCTT -ACGGAAGAAACGTTTCGGAGCGTT -ACGGAAGAAACGTTTCGGTTCGTC -ACGGAAGAAACGTTTCGGTCTCTC -ACGGAAGAAACGTTTCGGTGGATC -ACGGAAGAAACGTTTCGGCACTTC -ACGGAAGAAACGTTTCGGGTACTC -ACGGAAGAAACGTTTCGGGATGTC -ACGGAAGAAACGTTTCGGACAGTC -ACGGAAGAAACGTTTCGGTTGCTG -ACGGAAGAAACGTTTCGGTCCATG -ACGGAAGAAACGTTTCGGTGTGTG -ACGGAAGAAACGTTTCGGCTAGTG -ACGGAAGAAACGTTTCGGCATCTG -ACGGAAGAAACGTTTCGGGAGTTG -ACGGAAGAAACGTTTCGGAGACTG -ACGGAAGAAACGTTTCGGTCGGTA -ACGGAAGAAACGTTTCGGTGCCTA -ACGGAAGAAACGTTTCGGCCACTA -ACGGAAGAAACGTTTCGGGGAGTA -ACGGAAGAAACGTTTCGGTCGTCT -ACGGAAGAAACGTTTCGGTGCACT -ACGGAAGAAACGTTTCGGCTGACT -ACGGAAGAAACGTTTCGGCAACCT -ACGGAAGAAACGTTTCGGGCTACT -ACGGAAGAAACGTTTCGGGGATCT -ACGGAAGAAACGTTTCGGAAGGCT -ACGGAAGAAACGTTTCGGTCAACC -ACGGAAGAAACGTTTCGGTGTTCC -ACGGAAGAAACGTTTCGGATTCCC -ACGGAAGAAACGTTTCGGTTCTCG -ACGGAAGAAACGTTTCGGTAGACG -ACGGAAGAAACGTTTCGGGTAACG -ACGGAAGAAACGTTTCGGACTTCG -ACGGAAGAAACGTTTCGGTACGCA -ACGGAAGAAACGTTTCGGCTTGCA -ACGGAAGAAACGTTTCGGCGAACA -ACGGAAGAAACGTTTCGGCAGTCA -ACGGAAGAAACGTTTCGGGATCCA -ACGGAAGAAACGTTTCGGACGACA -ACGGAAGAAACGTTTCGGAGCTCA -ACGGAAGAAACGTTTCGGTCACGT -ACGGAAGAAACGTTTCGGCGTAGT -ACGGAAGAAACGTTTCGGGTCAGT -ACGGAAGAAACGTTTCGGGAAGGT -ACGGAAGAAACGTTTCGGAACCGT -ACGGAAGAAACGTTTCGGTTGTGC -ACGGAAGAAACGTTTCGGCTAAGC -ACGGAAGAAACGTTTCGGACTAGC -ACGGAAGAAACGTTTCGGAGATGC -ACGGAAGAAACGTTTCGGTGAAGG -ACGGAAGAAACGTTTCGGCAATGG -ACGGAAGAAACGTTTCGGATGAGG -ACGGAAGAAACGTTTCGGAATGGG -ACGGAAGAAACGTTTCGGTCCTGA -ACGGAAGAAACGTTTCGGTAGCGA -ACGGAAGAAACGTTTCGGCACAGA -ACGGAAGAAACGTTTCGGGCAAGA -ACGGAAGAAACGTTTCGGGGTTGA -ACGGAAGAAACGTTTCGGTCCGAT -ACGGAAGAAACGTTTCGGTGGCAT -ACGGAAGAAACGTTTCGGCGAGAT -ACGGAAGAAACGTTTCGGTACCAC -ACGGAAGAAACGTTTCGGCAGAAC -ACGGAAGAAACGTTTCGGGTCTAC -ACGGAAGAAACGTTTCGGACGTAC -ACGGAAGAAACGTTTCGGAGTGAC -ACGGAAGAAACGTTTCGGCTGTAG -ACGGAAGAAACGTTTCGGCCTAAG -ACGGAAGAAACGTTTCGGGTTCAG -ACGGAAGAAACGTTTCGGGCATAG -ACGGAAGAAACGTTTCGGGACAAG -ACGGAAGAAACGTTTCGGAAGCAG -ACGGAAGAAACGTTTCGGCGTCAA -ACGGAAGAAACGTTTCGGGCTGAA -ACGGAAGAAACGTTTCGGAGTACG -ACGGAAGAAACGTTTCGGATCCGA -ACGGAAGAAACGTTTCGGATGGGA -ACGGAAGAAACGTTTCGGGTGCAA -ACGGAAGAAACGTTTCGGGAGGAA -ACGGAAGAAACGTTTCGGCAGGTA -ACGGAAGAAACGTTTCGGGACTCT -ACGGAAGAAACGTTTCGGAGTCCT -ACGGAAGAAACGTTTCGGTAAGCC -ACGGAAGAAACGTTTCGGATAGCC -ACGGAAGAAACGTTTCGGTAACCG -ACGGAAGAAACGTTTCGGATGCCA -ACGGAAGAAACGGTTGTGGGAAAC -ACGGAAGAAACGGTTGTGAACACC -ACGGAAGAAACGGTTGTGATCGAG -ACGGAAGAAACGGTTGTGCTCCTT -ACGGAAGAAACGGTTGTGCCTGTT -ACGGAAGAAACGGTTGTGCGGTTT -ACGGAAGAAACGGTTGTGGTGGTT -ACGGAAGAAACGGTTGTGGCCTTT -ACGGAAGAAACGGTTGTGGGTCTT -ACGGAAGAAACGGTTGTGACGCTT -ACGGAAGAAACGGTTGTGAGCGTT -ACGGAAGAAACGGTTGTGTTCGTC -ACGGAAGAAACGGTTGTGTCTCTC -ACGGAAGAAACGGTTGTGTGGATC -ACGGAAGAAACGGTTGTGCACTTC -ACGGAAGAAACGGTTGTGGTACTC -ACGGAAGAAACGGTTGTGGATGTC -ACGGAAGAAACGGTTGTGACAGTC -ACGGAAGAAACGGTTGTGTTGCTG -ACGGAAGAAACGGTTGTGTCCATG -ACGGAAGAAACGGTTGTGTGTGTG -ACGGAAGAAACGGTTGTGCTAGTG -ACGGAAGAAACGGTTGTGCATCTG -ACGGAAGAAACGGTTGTGGAGTTG -ACGGAAGAAACGGTTGTGAGACTG -ACGGAAGAAACGGTTGTGTCGGTA -ACGGAAGAAACGGTTGTGTGCCTA -ACGGAAGAAACGGTTGTGCCACTA -ACGGAAGAAACGGTTGTGGGAGTA -ACGGAAGAAACGGTTGTGTCGTCT -ACGGAAGAAACGGTTGTGTGCACT -ACGGAAGAAACGGTTGTGCTGACT -ACGGAAGAAACGGTTGTGCAACCT -ACGGAAGAAACGGTTGTGGCTACT -ACGGAAGAAACGGTTGTGGGATCT -ACGGAAGAAACGGTTGTGAAGGCT -ACGGAAGAAACGGTTGTGTCAACC -ACGGAAGAAACGGTTGTGTGTTCC -ACGGAAGAAACGGTTGTGATTCCC -ACGGAAGAAACGGTTGTGTTCTCG -ACGGAAGAAACGGTTGTGTAGACG -ACGGAAGAAACGGTTGTGGTAACG -ACGGAAGAAACGGTTGTGACTTCG -ACGGAAGAAACGGTTGTGTACGCA -ACGGAAGAAACGGTTGTGCTTGCA -ACGGAAGAAACGGTTGTGCGAACA -ACGGAAGAAACGGTTGTGCAGTCA -ACGGAAGAAACGGTTGTGGATCCA -ACGGAAGAAACGGTTGTGACGACA -ACGGAAGAAACGGTTGTGAGCTCA -ACGGAAGAAACGGTTGTGTCACGT -ACGGAAGAAACGGTTGTGCGTAGT -ACGGAAGAAACGGTTGTGGTCAGT -ACGGAAGAAACGGTTGTGGAAGGT -ACGGAAGAAACGGTTGTGAACCGT -ACGGAAGAAACGGTTGTGTTGTGC -ACGGAAGAAACGGTTGTGCTAAGC -ACGGAAGAAACGGTTGTGACTAGC -ACGGAAGAAACGGTTGTGAGATGC -ACGGAAGAAACGGTTGTGTGAAGG -ACGGAAGAAACGGTTGTGCAATGG -ACGGAAGAAACGGTTGTGATGAGG -ACGGAAGAAACGGTTGTGAATGGG -ACGGAAGAAACGGTTGTGTCCTGA -ACGGAAGAAACGGTTGTGTAGCGA -ACGGAAGAAACGGTTGTGCACAGA -ACGGAAGAAACGGTTGTGGCAAGA -ACGGAAGAAACGGTTGTGGGTTGA -ACGGAAGAAACGGTTGTGTCCGAT -ACGGAAGAAACGGTTGTGTGGCAT -ACGGAAGAAACGGTTGTGCGAGAT -ACGGAAGAAACGGTTGTGTACCAC -ACGGAAGAAACGGTTGTGCAGAAC -ACGGAAGAAACGGTTGTGGTCTAC -ACGGAAGAAACGGTTGTGACGTAC -ACGGAAGAAACGGTTGTGAGTGAC -ACGGAAGAAACGGTTGTGCTGTAG -ACGGAAGAAACGGTTGTGCCTAAG -ACGGAAGAAACGGTTGTGGTTCAG -ACGGAAGAAACGGTTGTGGCATAG -ACGGAAGAAACGGTTGTGGACAAG -ACGGAAGAAACGGTTGTGAAGCAG -ACGGAAGAAACGGTTGTGCGTCAA -ACGGAAGAAACGGTTGTGGCTGAA -ACGGAAGAAACGGTTGTGAGTACG -ACGGAAGAAACGGTTGTGATCCGA -ACGGAAGAAACGGTTGTGATGGGA -ACGGAAGAAACGGTTGTGGTGCAA -ACGGAAGAAACGGTTGTGGAGGAA -ACGGAAGAAACGGTTGTGCAGGTA -ACGGAAGAAACGGTTGTGGACTCT -ACGGAAGAAACGGTTGTGAGTCCT -ACGGAAGAAACGGTTGTGTAAGCC -ACGGAAGAAACGGTTGTGATAGCC -ACGGAAGAAACGGTTGTGTAACCG -ACGGAAGAAACGGTTGTGATGCCA -ACGGAAGAAACGTTTGCCGGAAAC -ACGGAAGAAACGTTTGCCAACACC -ACGGAAGAAACGTTTGCCATCGAG -ACGGAAGAAACGTTTGCCCTCCTT -ACGGAAGAAACGTTTGCCCCTGTT -ACGGAAGAAACGTTTGCCCGGTTT -ACGGAAGAAACGTTTGCCGTGGTT -ACGGAAGAAACGTTTGCCGCCTTT -ACGGAAGAAACGTTTGCCGGTCTT -ACGGAAGAAACGTTTGCCACGCTT -ACGGAAGAAACGTTTGCCAGCGTT -ACGGAAGAAACGTTTGCCTTCGTC -ACGGAAGAAACGTTTGCCTCTCTC -ACGGAAGAAACGTTTGCCTGGATC -ACGGAAGAAACGTTTGCCCACTTC -ACGGAAGAAACGTTTGCCGTACTC -ACGGAAGAAACGTTTGCCGATGTC -ACGGAAGAAACGTTTGCCACAGTC -ACGGAAGAAACGTTTGCCTTGCTG -ACGGAAGAAACGTTTGCCTCCATG -ACGGAAGAAACGTTTGCCTGTGTG -ACGGAAGAAACGTTTGCCCTAGTG -ACGGAAGAAACGTTTGCCCATCTG -ACGGAAGAAACGTTTGCCGAGTTG -ACGGAAGAAACGTTTGCCAGACTG -ACGGAAGAAACGTTTGCCTCGGTA -ACGGAAGAAACGTTTGCCTGCCTA -ACGGAAGAAACGTTTGCCCCACTA -ACGGAAGAAACGTTTGCCGGAGTA -ACGGAAGAAACGTTTGCCTCGTCT -ACGGAAGAAACGTTTGCCTGCACT -ACGGAAGAAACGTTTGCCCTGACT -ACGGAAGAAACGTTTGCCCAACCT -ACGGAAGAAACGTTTGCCGCTACT -ACGGAAGAAACGTTTGCCGGATCT -ACGGAAGAAACGTTTGCCAAGGCT -ACGGAAGAAACGTTTGCCTCAACC -ACGGAAGAAACGTTTGCCTGTTCC -ACGGAAGAAACGTTTGCCATTCCC -ACGGAAGAAACGTTTGCCTTCTCG -ACGGAAGAAACGTTTGCCTAGACG -ACGGAAGAAACGTTTGCCGTAACG -ACGGAAGAAACGTTTGCCACTTCG -ACGGAAGAAACGTTTGCCTACGCA -ACGGAAGAAACGTTTGCCCTTGCA -ACGGAAGAAACGTTTGCCCGAACA -ACGGAAGAAACGTTTGCCCAGTCA -ACGGAAGAAACGTTTGCCGATCCA -ACGGAAGAAACGTTTGCCACGACA -ACGGAAGAAACGTTTGCCAGCTCA -ACGGAAGAAACGTTTGCCTCACGT -ACGGAAGAAACGTTTGCCCGTAGT -ACGGAAGAAACGTTTGCCGTCAGT -ACGGAAGAAACGTTTGCCGAAGGT -ACGGAAGAAACGTTTGCCAACCGT -ACGGAAGAAACGTTTGCCTTGTGC -ACGGAAGAAACGTTTGCCCTAAGC -ACGGAAGAAACGTTTGCCACTAGC -ACGGAAGAAACGTTTGCCAGATGC -ACGGAAGAAACGTTTGCCTGAAGG -ACGGAAGAAACGTTTGCCCAATGG -ACGGAAGAAACGTTTGCCATGAGG -ACGGAAGAAACGTTTGCCAATGGG -ACGGAAGAAACGTTTGCCTCCTGA -ACGGAAGAAACGTTTGCCTAGCGA -ACGGAAGAAACGTTTGCCCACAGA -ACGGAAGAAACGTTTGCCGCAAGA -ACGGAAGAAACGTTTGCCGGTTGA -ACGGAAGAAACGTTTGCCTCCGAT -ACGGAAGAAACGTTTGCCTGGCAT -ACGGAAGAAACGTTTGCCCGAGAT -ACGGAAGAAACGTTTGCCTACCAC -ACGGAAGAAACGTTTGCCCAGAAC -ACGGAAGAAACGTTTGCCGTCTAC -ACGGAAGAAACGTTTGCCACGTAC -ACGGAAGAAACGTTTGCCAGTGAC -ACGGAAGAAACGTTTGCCCTGTAG -ACGGAAGAAACGTTTGCCCCTAAG -ACGGAAGAAACGTTTGCCGTTCAG -ACGGAAGAAACGTTTGCCGCATAG -ACGGAAGAAACGTTTGCCGACAAG -ACGGAAGAAACGTTTGCCAAGCAG -ACGGAAGAAACGTTTGCCCGTCAA -ACGGAAGAAACGTTTGCCGCTGAA -ACGGAAGAAACGTTTGCCAGTACG -ACGGAAGAAACGTTTGCCATCCGA -ACGGAAGAAACGTTTGCCATGGGA -ACGGAAGAAACGTTTGCCGTGCAA -ACGGAAGAAACGTTTGCCGAGGAA -ACGGAAGAAACGTTTGCCCAGGTA -ACGGAAGAAACGTTTGCCGACTCT -ACGGAAGAAACGTTTGCCAGTCCT -ACGGAAGAAACGTTTGCCTAAGCC -ACGGAAGAAACGTTTGCCATAGCC -ACGGAAGAAACGTTTGCCTAACCG -ACGGAAGAAACGTTTGCCATGCCA -ACGGAAGAAACGCTTGGTGGAAAC -ACGGAAGAAACGCTTGGTAACACC -ACGGAAGAAACGCTTGGTATCGAG -ACGGAAGAAACGCTTGGTCTCCTT -ACGGAAGAAACGCTTGGTCCTGTT -ACGGAAGAAACGCTTGGTCGGTTT -ACGGAAGAAACGCTTGGTGTGGTT -ACGGAAGAAACGCTTGGTGCCTTT -ACGGAAGAAACGCTTGGTGGTCTT -ACGGAAGAAACGCTTGGTACGCTT -ACGGAAGAAACGCTTGGTAGCGTT -ACGGAAGAAACGCTTGGTTTCGTC -ACGGAAGAAACGCTTGGTTCTCTC -ACGGAAGAAACGCTTGGTTGGATC -ACGGAAGAAACGCTTGGTCACTTC -ACGGAAGAAACGCTTGGTGTACTC -ACGGAAGAAACGCTTGGTGATGTC -ACGGAAGAAACGCTTGGTACAGTC -ACGGAAGAAACGCTTGGTTTGCTG -ACGGAAGAAACGCTTGGTTCCATG -ACGGAAGAAACGCTTGGTTGTGTG -ACGGAAGAAACGCTTGGTCTAGTG -ACGGAAGAAACGCTTGGTCATCTG -ACGGAAGAAACGCTTGGTGAGTTG -ACGGAAGAAACGCTTGGTAGACTG -ACGGAAGAAACGCTTGGTTCGGTA -ACGGAAGAAACGCTTGGTTGCCTA -ACGGAAGAAACGCTTGGTCCACTA -ACGGAAGAAACGCTTGGTGGAGTA -ACGGAAGAAACGCTTGGTTCGTCT -ACGGAAGAAACGCTTGGTTGCACT -ACGGAAGAAACGCTTGGTCTGACT -ACGGAAGAAACGCTTGGTCAACCT -ACGGAAGAAACGCTTGGTGCTACT -ACGGAAGAAACGCTTGGTGGATCT -ACGGAAGAAACGCTTGGTAAGGCT -ACGGAAGAAACGCTTGGTTCAACC -ACGGAAGAAACGCTTGGTTGTTCC -ACGGAAGAAACGCTTGGTATTCCC -ACGGAAGAAACGCTTGGTTTCTCG -ACGGAAGAAACGCTTGGTTAGACG -ACGGAAGAAACGCTTGGTGTAACG -ACGGAAGAAACGCTTGGTACTTCG -ACGGAAGAAACGCTTGGTTACGCA -ACGGAAGAAACGCTTGGTCTTGCA -ACGGAAGAAACGCTTGGTCGAACA -ACGGAAGAAACGCTTGGTCAGTCA -ACGGAAGAAACGCTTGGTGATCCA -ACGGAAGAAACGCTTGGTACGACA -ACGGAAGAAACGCTTGGTAGCTCA -ACGGAAGAAACGCTTGGTTCACGT -ACGGAAGAAACGCTTGGTCGTAGT -ACGGAAGAAACGCTTGGTGTCAGT -ACGGAAGAAACGCTTGGTGAAGGT -ACGGAAGAAACGCTTGGTAACCGT -ACGGAAGAAACGCTTGGTTTGTGC -ACGGAAGAAACGCTTGGTCTAAGC -ACGGAAGAAACGCTTGGTACTAGC -ACGGAAGAAACGCTTGGTAGATGC -ACGGAAGAAACGCTTGGTTGAAGG -ACGGAAGAAACGCTTGGTCAATGG -ACGGAAGAAACGCTTGGTATGAGG -ACGGAAGAAACGCTTGGTAATGGG -ACGGAAGAAACGCTTGGTTCCTGA -ACGGAAGAAACGCTTGGTTAGCGA -ACGGAAGAAACGCTTGGTCACAGA -ACGGAAGAAACGCTTGGTGCAAGA -ACGGAAGAAACGCTTGGTGGTTGA -ACGGAAGAAACGCTTGGTTCCGAT -ACGGAAGAAACGCTTGGTTGGCAT -ACGGAAGAAACGCTTGGTCGAGAT -ACGGAAGAAACGCTTGGTTACCAC -ACGGAAGAAACGCTTGGTCAGAAC -ACGGAAGAAACGCTTGGTGTCTAC -ACGGAAGAAACGCTTGGTACGTAC -ACGGAAGAAACGCTTGGTAGTGAC -ACGGAAGAAACGCTTGGTCTGTAG -ACGGAAGAAACGCTTGGTCCTAAG -ACGGAAGAAACGCTTGGTGTTCAG -ACGGAAGAAACGCTTGGTGCATAG -ACGGAAGAAACGCTTGGTGACAAG -ACGGAAGAAACGCTTGGTAAGCAG -ACGGAAGAAACGCTTGGTCGTCAA -ACGGAAGAAACGCTTGGTGCTGAA -ACGGAAGAAACGCTTGGTAGTACG -ACGGAAGAAACGCTTGGTATCCGA -ACGGAAGAAACGCTTGGTATGGGA -ACGGAAGAAACGCTTGGTGTGCAA -ACGGAAGAAACGCTTGGTGAGGAA -ACGGAAGAAACGCTTGGTCAGGTA -ACGGAAGAAACGCTTGGTGACTCT -ACGGAAGAAACGCTTGGTAGTCCT -ACGGAAGAAACGCTTGGTTAAGCC -ACGGAAGAAACGCTTGGTATAGCC -ACGGAAGAAACGCTTGGTTAACCG -ACGGAAGAAACGCTTGGTATGCCA -ACGGAAGAAACGCTTACGGGAAAC -ACGGAAGAAACGCTTACGAACACC -ACGGAAGAAACGCTTACGATCGAG -ACGGAAGAAACGCTTACGCTCCTT -ACGGAAGAAACGCTTACGCCTGTT -ACGGAAGAAACGCTTACGCGGTTT -ACGGAAGAAACGCTTACGGTGGTT -ACGGAAGAAACGCTTACGGCCTTT -ACGGAAGAAACGCTTACGGGTCTT -ACGGAAGAAACGCTTACGACGCTT -ACGGAAGAAACGCTTACGAGCGTT -ACGGAAGAAACGCTTACGTTCGTC -ACGGAAGAAACGCTTACGTCTCTC -ACGGAAGAAACGCTTACGTGGATC -ACGGAAGAAACGCTTACGCACTTC -ACGGAAGAAACGCTTACGGTACTC -ACGGAAGAAACGCTTACGGATGTC -ACGGAAGAAACGCTTACGACAGTC -ACGGAAGAAACGCTTACGTTGCTG -ACGGAAGAAACGCTTACGTCCATG -ACGGAAGAAACGCTTACGTGTGTG -ACGGAAGAAACGCTTACGCTAGTG -ACGGAAGAAACGCTTACGCATCTG -ACGGAAGAAACGCTTACGGAGTTG -ACGGAAGAAACGCTTACGAGACTG -ACGGAAGAAACGCTTACGTCGGTA -ACGGAAGAAACGCTTACGTGCCTA -ACGGAAGAAACGCTTACGCCACTA -ACGGAAGAAACGCTTACGGGAGTA -ACGGAAGAAACGCTTACGTCGTCT -ACGGAAGAAACGCTTACGTGCACT -ACGGAAGAAACGCTTACGCTGACT -ACGGAAGAAACGCTTACGCAACCT -ACGGAAGAAACGCTTACGGCTACT -ACGGAAGAAACGCTTACGGGATCT -ACGGAAGAAACGCTTACGAAGGCT -ACGGAAGAAACGCTTACGTCAACC -ACGGAAGAAACGCTTACGTGTTCC -ACGGAAGAAACGCTTACGATTCCC -ACGGAAGAAACGCTTACGTTCTCG -ACGGAAGAAACGCTTACGTAGACG -ACGGAAGAAACGCTTACGGTAACG -ACGGAAGAAACGCTTACGACTTCG -ACGGAAGAAACGCTTACGTACGCA -ACGGAAGAAACGCTTACGCTTGCA -ACGGAAGAAACGCTTACGCGAACA -ACGGAAGAAACGCTTACGCAGTCA -ACGGAAGAAACGCTTACGGATCCA -ACGGAAGAAACGCTTACGACGACA -ACGGAAGAAACGCTTACGAGCTCA -ACGGAAGAAACGCTTACGTCACGT -ACGGAAGAAACGCTTACGCGTAGT -ACGGAAGAAACGCTTACGGTCAGT -ACGGAAGAAACGCTTACGGAAGGT -ACGGAAGAAACGCTTACGAACCGT -ACGGAAGAAACGCTTACGTTGTGC -ACGGAAGAAACGCTTACGCTAAGC -ACGGAAGAAACGCTTACGACTAGC -ACGGAAGAAACGCTTACGAGATGC -ACGGAAGAAACGCTTACGTGAAGG -ACGGAAGAAACGCTTACGCAATGG -ACGGAAGAAACGCTTACGATGAGG -ACGGAAGAAACGCTTACGAATGGG -ACGGAAGAAACGCTTACGTCCTGA -ACGGAAGAAACGCTTACGTAGCGA -ACGGAAGAAACGCTTACGCACAGA -ACGGAAGAAACGCTTACGGCAAGA -ACGGAAGAAACGCTTACGGGTTGA -ACGGAAGAAACGCTTACGTCCGAT -ACGGAAGAAACGCTTACGTGGCAT -ACGGAAGAAACGCTTACGCGAGAT -ACGGAAGAAACGCTTACGTACCAC -ACGGAAGAAACGCTTACGCAGAAC -ACGGAAGAAACGCTTACGGTCTAC -ACGGAAGAAACGCTTACGACGTAC -ACGGAAGAAACGCTTACGAGTGAC -ACGGAAGAAACGCTTACGCTGTAG -ACGGAAGAAACGCTTACGCCTAAG -ACGGAAGAAACGCTTACGGTTCAG -ACGGAAGAAACGCTTACGGCATAG -ACGGAAGAAACGCTTACGGACAAG -ACGGAAGAAACGCTTACGAAGCAG -ACGGAAGAAACGCTTACGCGTCAA -ACGGAAGAAACGCTTACGGCTGAA -ACGGAAGAAACGCTTACGAGTACG -ACGGAAGAAACGCTTACGATCCGA -ACGGAAGAAACGCTTACGATGGGA -ACGGAAGAAACGCTTACGGTGCAA -ACGGAAGAAACGCTTACGGAGGAA -ACGGAAGAAACGCTTACGCAGGTA -ACGGAAGAAACGCTTACGGACTCT -ACGGAAGAAACGCTTACGAGTCCT -ACGGAAGAAACGCTTACGTAAGCC -ACGGAAGAAACGCTTACGATAGCC -ACGGAAGAAACGCTTACGTAACCG -ACGGAAGAAACGCTTACGATGCCA -ACGGAAGAAACGGTTAGCGGAAAC -ACGGAAGAAACGGTTAGCAACACC -ACGGAAGAAACGGTTAGCATCGAG -ACGGAAGAAACGGTTAGCCTCCTT -ACGGAAGAAACGGTTAGCCCTGTT -ACGGAAGAAACGGTTAGCCGGTTT -ACGGAAGAAACGGTTAGCGTGGTT -ACGGAAGAAACGGTTAGCGCCTTT -ACGGAAGAAACGGTTAGCGGTCTT -ACGGAAGAAACGGTTAGCACGCTT -ACGGAAGAAACGGTTAGCAGCGTT -ACGGAAGAAACGGTTAGCTTCGTC -ACGGAAGAAACGGTTAGCTCTCTC -ACGGAAGAAACGGTTAGCTGGATC -ACGGAAGAAACGGTTAGCCACTTC -ACGGAAGAAACGGTTAGCGTACTC -ACGGAAGAAACGGTTAGCGATGTC -ACGGAAGAAACGGTTAGCACAGTC -ACGGAAGAAACGGTTAGCTTGCTG -ACGGAAGAAACGGTTAGCTCCATG -ACGGAAGAAACGGTTAGCTGTGTG -ACGGAAGAAACGGTTAGCCTAGTG -ACGGAAGAAACGGTTAGCCATCTG -ACGGAAGAAACGGTTAGCGAGTTG -ACGGAAGAAACGGTTAGCAGACTG -ACGGAAGAAACGGTTAGCTCGGTA -ACGGAAGAAACGGTTAGCTGCCTA -ACGGAAGAAACGGTTAGCCCACTA -ACGGAAGAAACGGTTAGCGGAGTA -ACGGAAGAAACGGTTAGCTCGTCT -ACGGAAGAAACGGTTAGCTGCACT -ACGGAAGAAACGGTTAGCCTGACT -ACGGAAGAAACGGTTAGCCAACCT -ACGGAAGAAACGGTTAGCGCTACT -ACGGAAGAAACGGTTAGCGGATCT -ACGGAAGAAACGGTTAGCAAGGCT -ACGGAAGAAACGGTTAGCTCAACC -ACGGAAGAAACGGTTAGCTGTTCC -ACGGAAGAAACGGTTAGCATTCCC -ACGGAAGAAACGGTTAGCTTCTCG -ACGGAAGAAACGGTTAGCTAGACG -ACGGAAGAAACGGTTAGCGTAACG -ACGGAAGAAACGGTTAGCACTTCG -ACGGAAGAAACGGTTAGCTACGCA -ACGGAAGAAACGGTTAGCCTTGCA -ACGGAAGAAACGGTTAGCCGAACA -ACGGAAGAAACGGTTAGCCAGTCA -ACGGAAGAAACGGTTAGCGATCCA -ACGGAAGAAACGGTTAGCACGACA -ACGGAAGAAACGGTTAGCAGCTCA -ACGGAAGAAACGGTTAGCTCACGT -ACGGAAGAAACGGTTAGCCGTAGT -ACGGAAGAAACGGTTAGCGTCAGT -ACGGAAGAAACGGTTAGCGAAGGT -ACGGAAGAAACGGTTAGCAACCGT -ACGGAAGAAACGGTTAGCTTGTGC -ACGGAAGAAACGGTTAGCCTAAGC -ACGGAAGAAACGGTTAGCACTAGC -ACGGAAGAAACGGTTAGCAGATGC -ACGGAAGAAACGGTTAGCTGAAGG -ACGGAAGAAACGGTTAGCCAATGG -ACGGAAGAAACGGTTAGCATGAGG -ACGGAAGAAACGGTTAGCAATGGG -ACGGAAGAAACGGTTAGCTCCTGA -ACGGAAGAAACGGTTAGCTAGCGA -ACGGAAGAAACGGTTAGCCACAGA -ACGGAAGAAACGGTTAGCGCAAGA -ACGGAAGAAACGGTTAGCGGTTGA -ACGGAAGAAACGGTTAGCTCCGAT -ACGGAAGAAACGGTTAGCTGGCAT -ACGGAAGAAACGGTTAGCCGAGAT -ACGGAAGAAACGGTTAGCTACCAC -ACGGAAGAAACGGTTAGCCAGAAC -ACGGAAGAAACGGTTAGCGTCTAC -ACGGAAGAAACGGTTAGCACGTAC -ACGGAAGAAACGGTTAGCAGTGAC -ACGGAAGAAACGGTTAGCCTGTAG -ACGGAAGAAACGGTTAGCCCTAAG -ACGGAAGAAACGGTTAGCGTTCAG -ACGGAAGAAACGGTTAGCGCATAG -ACGGAAGAAACGGTTAGCGACAAG -ACGGAAGAAACGGTTAGCAAGCAG -ACGGAAGAAACGGTTAGCCGTCAA -ACGGAAGAAACGGTTAGCGCTGAA -ACGGAAGAAACGGTTAGCAGTACG -ACGGAAGAAACGGTTAGCATCCGA -ACGGAAGAAACGGTTAGCATGGGA -ACGGAAGAAACGGTTAGCGTGCAA -ACGGAAGAAACGGTTAGCGAGGAA -ACGGAAGAAACGGTTAGCCAGGTA -ACGGAAGAAACGGTTAGCGACTCT -ACGGAAGAAACGGTTAGCAGTCCT -ACGGAAGAAACGGTTAGCTAAGCC -ACGGAAGAAACGGTTAGCATAGCC -ACGGAAGAAACGGTTAGCTAACCG -ACGGAAGAAACGGTTAGCATGCCA -ACGGAAGAAACGGTCTTCGGAAAC -ACGGAAGAAACGGTCTTCAACACC -ACGGAAGAAACGGTCTTCATCGAG -ACGGAAGAAACGGTCTTCCTCCTT -ACGGAAGAAACGGTCTTCCCTGTT -ACGGAAGAAACGGTCTTCCGGTTT -ACGGAAGAAACGGTCTTCGTGGTT -ACGGAAGAAACGGTCTTCGCCTTT -ACGGAAGAAACGGTCTTCGGTCTT -ACGGAAGAAACGGTCTTCACGCTT -ACGGAAGAAACGGTCTTCAGCGTT -ACGGAAGAAACGGTCTTCTTCGTC -ACGGAAGAAACGGTCTTCTCTCTC -ACGGAAGAAACGGTCTTCTGGATC -ACGGAAGAAACGGTCTTCCACTTC -ACGGAAGAAACGGTCTTCGTACTC -ACGGAAGAAACGGTCTTCGATGTC -ACGGAAGAAACGGTCTTCACAGTC -ACGGAAGAAACGGTCTTCTTGCTG -ACGGAAGAAACGGTCTTCTCCATG -ACGGAAGAAACGGTCTTCTGTGTG -ACGGAAGAAACGGTCTTCCTAGTG -ACGGAAGAAACGGTCTTCCATCTG -ACGGAAGAAACGGTCTTCGAGTTG -ACGGAAGAAACGGTCTTCAGACTG -ACGGAAGAAACGGTCTTCTCGGTA -ACGGAAGAAACGGTCTTCTGCCTA -ACGGAAGAAACGGTCTTCCCACTA -ACGGAAGAAACGGTCTTCGGAGTA -ACGGAAGAAACGGTCTTCTCGTCT -ACGGAAGAAACGGTCTTCTGCACT -ACGGAAGAAACGGTCTTCCTGACT -ACGGAAGAAACGGTCTTCCAACCT -ACGGAAGAAACGGTCTTCGCTACT -ACGGAAGAAACGGTCTTCGGATCT -ACGGAAGAAACGGTCTTCAAGGCT -ACGGAAGAAACGGTCTTCTCAACC -ACGGAAGAAACGGTCTTCTGTTCC -ACGGAAGAAACGGTCTTCATTCCC -ACGGAAGAAACGGTCTTCTTCTCG -ACGGAAGAAACGGTCTTCTAGACG -ACGGAAGAAACGGTCTTCGTAACG -ACGGAAGAAACGGTCTTCACTTCG -ACGGAAGAAACGGTCTTCTACGCA -ACGGAAGAAACGGTCTTCCTTGCA -ACGGAAGAAACGGTCTTCCGAACA -ACGGAAGAAACGGTCTTCCAGTCA -ACGGAAGAAACGGTCTTCGATCCA -ACGGAAGAAACGGTCTTCACGACA -ACGGAAGAAACGGTCTTCAGCTCA -ACGGAAGAAACGGTCTTCTCACGT -ACGGAAGAAACGGTCTTCCGTAGT -ACGGAAGAAACGGTCTTCGTCAGT -ACGGAAGAAACGGTCTTCGAAGGT -ACGGAAGAAACGGTCTTCAACCGT -ACGGAAGAAACGGTCTTCTTGTGC -ACGGAAGAAACGGTCTTCCTAAGC -ACGGAAGAAACGGTCTTCACTAGC -ACGGAAGAAACGGTCTTCAGATGC -ACGGAAGAAACGGTCTTCTGAAGG -ACGGAAGAAACGGTCTTCCAATGG -ACGGAAGAAACGGTCTTCATGAGG -ACGGAAGAAACGGTCTTCAATGGG -ACGGAAGAAACGGTCTTCTCCTGA -ACGGAAGAAACGGTCTTCTAGCGA -ACGGAAGAAACGGTCTTCCACAGA -ACGGAAGAAACGGTCTTCGCAAGA -ACGGAAGAAACGGTCTTCGGTTGA -ACGGAAGAAACGGTCTTCTCCGAT -ACGGAAGAAACGGTCTTCTGGCAT -ACGGAAGAAACGGTCTTCCGAGAT -ACGGAAGAAACGGTCTTCTACCAC -ACGGAAGAAACGGTCTTCCAGAAC -ACGGAAGAAACGGTCTTCGTCTAC -ACGGAAGAAACGGTCTTCACGTAC -ACGGAAGAAACGGTCTTCAGTGAC -ACGGAAGAAACGGTCTTCCTGTAG -ACGGAAGAAACGGTCTTCCCTAAG -ACGGAAGAAACGGTCTTCGTTCAG -ACGGAAGAAACGGTCTTCGCATAG -ACGGAAGAAACGGTCTTCGACAAG -ACGGAAGAAACGGTCTTCAAGCAG -ACGGAAGAAACGGTCTTCCGTCAA -ACGGAAGAAACGGTCTTCGCTGAA -ACGGAAGAAACGGTCTTCAGTACG -ACGGAAGAAACGGTCTTCATCCGA -ACGGAAGAAACGGTCTTCATGGGA -ACGGAAGAAACGGTCTTCGTGCAA -ACGGAAGAAACGGTCTTCGAGGAA -ACGGAAGAAACGGTCTTCCAGGTA -ACGGAAGAAACGGTCTTCGACTCT -ACGGAAGAAACGGTCTTCAGTCCT -ACGGAAGAAACGGTCTTCTAAGCC -ACGGAAGAAACGGTCTTCATAGCC -ACGGAAGAAACGGTCTTCTAACCG -ACGGAAGAAACGGTCTTCATGCCA -ACGGAAGAAACGCTCTCTGGAAAC -ACGGAAGAAACGCTCTCTAACACC -ACGGAAGAAACGCTCTCTATCGAG -ACGGAAGAAACGCTCTCTCTCCTT -ACGGAAGAAACGCTCTCTCCTGTT -ACGGAAGAAACGCTCTCTCGGTTT -ACGGAAGAAACGCTCTCTGTGGTT -ACGGAAGAAACGCTCTCTGCCTTT -ACGGAAGAAACGCTCTCTGGTCTT -ACGGAAGAAACGCTCTCTACGCTT -ACGGAAGAAACGCTCTCTAGCGTT -ACGGAAGAAACGCTCTCTTTCGTC -ACGGAAGAAACGCTCTCTTCTCTC -ACGGAAGAAACGCTCTCTTGGATC -ACGGAAGAAACGCTCTCTCACTTC -ACGGAAGAAACGCTCTCTGTACTC -ACGGAAGAAACGCTCTCTGATGTC -ACGGAAGAAACGCTCTCTACAGTC -ACGGAAGAAACGCTCTCTTTGCTG -ACGGAAGAAACGCTCTCTTCCATG -ACGGAAGAAACGCTCTCTTGTGTG -ACGGAAGAAACGCTCTCTCTAGTG -ACGGAAGAAACGCTCTCTCATCTG -ACGGAAGAAACGCTCTCTGAGTTG -ACGGAAGAAACGCTCTCTAGACTG -ACGGAAGAAACGCTCTCTTCGGTA -ACGGAAGAAACGCTCTCTTGCCTA -ACGGAAGAAACGCTCTCTCCACTA -ACGGAAGAAACGCTCTCTGGAGTA -ACGGAAGAAACGCTCTCTTCGTCT -ACGGAAGAAACGCTCTCTTGCACT -ACGGAAGAAACGCTCTCTCTGACT -ACGGAAGAAACGCTCTCTCAACCT -ACGGAAGAAACGCTCTCTGCTACT -ACGGAAGAAACGCTCTCTGGATCT -ACGGAAGAAACGCTCTCTAAGGCT -ACGGAAGAAACGCTCTCTTCAACC -ACGGAAGAAACGCTCTCTTGTTCC -ACGGAAGAAACGCTCTCTATTCCC -ACGGAAGAAACGCTCTCTTTCTCG -ACGGAAGAAACGCTCTCTTAGACG -ACGGAAGAAACGCTCTCTGTAACG -ACGGAAGAAACGCTCTCTACTTCG -ACGGAAGAAACGCTCTCTTACGCA -ACGGAAGAAACGCTCTCTCTTGCA -ACGGAAGAAACGCTCTCTCGAACA -ACGGAAGAAACGCTCTCTCAGTCA -ACGGAAGAAACGCTCTCTGATCCA -ACGGAAGAAACGCTCTCTACGACA -ACGGAAGAAACGCTCTCTAGCTCA -ACGGAAGAAACGCTCTCTTCACGT -ACGGAAGAAACGCTCTCTCGTAGT -ACGGAAGAAACGCTCTCTGTCAGT -ACGGAAGAAACGCTCTCTGAAGGT -ACGGAAGAAACGCTCTCTAACCGT -ACGGAAGAAACGCTCTCTTTGTGC -ACGGAAGAAACGCTCTCTCTAAGC -ACGGAAGAAACGCTCTCTACTAGC -ACGGAAGAAACGCTCTCTAGATGC -ACGGAAGAAACGCTCTCTTGAAGG -ACGGAAGAAACGCTCTCTCAATGG -ACGGAAGAAACGCTCTCTATGAGG -ACGGAAGAAACGCTCTCTAATGGG -ACGGAAGAAACGCTCTCTTCCTGA -ACGGAAGAAACGCTCTCTTAGCGA -ACGGAAGAAACGCTCTCTCACAGA -ACGGAAGAAACGCTCTCTGCAAGA -ACGGAAGAAACGCTCTCTGGTTGA -ACGGAAGAAACGCTCTCTTCCGAT -ACGGAAGAAACGCTCTCTTGGCAT -ACGGAAGAAACGCTCTCTCGAGAT -ACGGAAGAAACGCTCTCTTACCAC -ACGGAAGAAACGCTCTCTCAGAAC -ACGGAAGAAACGCTCTCTGTCTAC -ACGGAAGAAACGCTCTCTACGTAC -ACGGAAGAAACGCTCTCTAGTGAC -ACGGAAGAAACGCTCTCTCTGTAG -ACGGAAGAAACGCTCTCTCCTAAG -ACGGAAGAAACGCTCTCTGTTCAG -ACGGAAGAAACGCTCTCTGCATAG -ACGGAAGAAACGCTCTCTGACAAG -ACGGAAGAAACGCTCTCTAAGCAG -ACGGAAGAAACGCTCTCTCGTCAA -ACGGAAGAAACGCTCTCTGCTGAA -ACGGAAGAAACGCTCTCTAGTACG -ACGGAAGAAACGCTCTCTATCCGA -ACGGAAGAAACGCTCTCTATGGGA -ACGGAAGAAACGCTCTCTGTGCAA -ACGGAAGAAACGCTCTCTGAGGAA -ACGGAAGAAACGCTCTCTCAGGTA -ACGGAAGAAACGCTCTCTGACTCT -ACGGAAGAAACGCTCTCTAGTCCT -ACGGAAGAAACGCTCTCTTAAGCC -ACGGAAGAAACGCTCTCTATAGCC -ACGGAAGAAACGCTCTCTTAACCG -ACGGAAGAAACGCTCTCTATGCCA -ACGGAAGAAACGATCTGGGGAAAC -ACGGAAGAAACGATCTGGAACACC -ACGGAAGAAACGATCTGGATCGAG -ACGGAAGAAACGATCTGGCTCCTT -ACGGAAGAAACGATCTGGCCTGTT -ACGGAAGAAACGATCTGGCGGTTT -ACGGAAGAAACGATCTGGGTGGTT -ACGGAAGAAACGATCTGGGCCTTT -ACGGAAGAAACGATCTGGGGTCTT -ACGGAAGAAACGATCTGGACGCTT -ACGGAAGAAACGATCTGGAGCGTT -ACGGAAGAAACGATCTGGTTCGTC -ACGGAAGAAACGATCTGGTCTCTC -ACGGAAGAAACGATCTGGTGGATC -ACGGAAGAAACGATCTGGCACTTC -ACGGAAGAAACGATCTGGGTACTC -ACGGAAGAAACGATCTGGGATGTC -ACGGAAGAAACGATCTGGACAGTC -ACGGAAGAAACGATCTGGTTGCTG -ACGGAAGAAACGATCTGGTCCATG -ACGGAAGAAACGATCTGGTGTGTG -ACGGAAGAAACGATCTGGCTAGTG -ACGGAAGAAACGATCTGGCATCTG -ACGGAAGAAACGATCTGGGAGTTG -ACGGAAGAAACGATCTGGAGACTG -ACGGAAGAAACGATCTGGTCGGTA -ACGGAAGAAACGATCTGGTGCCTA -ACGGAAGAAACGATCTGGCCACTA -ACGGAAGAAACGATCTGGGGAGTA -ACGGAAGAAACGATCTGGTCGTCT -ACGGAAGAAACGATCTGGTGCACT -ACGGAAGAAACGATCTGGCTGACT -ACGGAAGAAACGATCTGGCAACCT -ACGGAAGAAACGATCTGGGCTACT -ACGGAAGAAACGATCTGGGGATCT -ACGGAAGAAACGATCTGGAAGGCT -ACGGAAGAAACGATCTGGTCAACC -ACGGAAGAAACGATCTGGTGTTCC -ACGGAAGAAACGATCTGGATTCCC -ACGGAAGAAACGATCTGGTTCTCG -ACGGAAGAAACGATCTGGTAGACG -ACGGAAGAAACGATCTGGGTAACG -ACGGAAGAAACGATCTGGACTTCG -ACGGAAGAAACGATCTGGTACGCA -ACGGAAGAAACGATCTGGCTTGCA -ACGGAAGAAACGATCTGGCGAACA -ACGGAAGAAACGATCTGGCAGTCA -ACGGAAGAAACGATCTGGGATCCA -ACGGAAGAAACGATCTGGACGACA -ACGGAAGAAACGATCTGGAGCTCA -ACGGAAGAAACGATCTGGTCACGT -ACGGAAGAAACGATCTGGCGTAGT -ACGGAAGAAACGATCTGGGTCAGT -ACGGAAGAAACGATCTGGGAAGGT -ACGGAAGAAACGATCTGGAACCGT -ACGGAAGAAACGATCTGGTTGTGC -ACGGAAGAAACGATCTGGCTAAGC -ACGGAAGAAACGATCTGGACTAGC -ACGGAAGAAACGATCTGGAGATGC -ACGGAAGAAACGATCTGGTGAAGG -ACGGAAGAAACGATCTGGCAATGG -ACGGAAGAAACGATCTGGATGAGG -ACGGAAGAAACGATCTGGAATGGG -ACGGAAGAAACGATCTGGTCCTGA -ACGGAAGAAACGATCTGGTAGCGA -ACGGAAGAAACGATCTGGCACAGA -ACGGAAGAAACGATCTGGGCAAGA -ACGGAAGAAACGATCTGGGGTTGA -ACGGAAGAAACGATCTGGTCCGAT -ACGGAAGAAACGATCTGGTGGCAT -ACGGAAGAAACGATCTGGCGAGAT -ACGGAAGAAACGATCTGGTACCAC -ACGGAAGAAACGATCTGGCAGAAC -ACGGAAGAAACGATCTGGGTCTAC -ACGGAAGAAACGATCTGGACGTAC -ACGGAAGAAACGATCTGGAGTGAC -ACGGAAGAAACGATCTGGCTGTAG -ACGGAAGAAACGATCTGGCCTAAG -ACGGAAGAAACGATCTGGGTTCAG -ACGGAAGAAACGATCTGGGCATAG -ACGGAAGAAACGATCTGGGACAAG -ACGGAAGAAACGATCTGGAAGCAG -ACGGAAGAAACGATCTGGCGTCAA -ACGGAAGAAACGATCTGGGCTGAA -ACGGAAGAAACGATCTGGAGTACG -ACGGAAGAAACGATCTGGATCCGA -ACGGAAGAAACGATCTGGATGGGA -ACGGAAGAAACGATCTGGGTGCAA -ACGGAAGAAACGATCTGGGAGGAA -ACGGAAGAAACGATCTGGCAGGTA -ACGGAAGAAACGATCTGGGACTCT -ACGGAAGAAACGATCTGGAGTCCT -ACGGAAGAAACGATCTGGTAAGCC -ACGGAAGAAACGATCTGGATAGCC -ACGGAAGAAACGATCTGGTAACCG -ACGGAAGAAACGATCTGGATGCCA -ACGGAAGAAACGTTCCACGGAAAC -ACGGAAGAAACGTTCCACAACACC -ACGGAAGAAACGTTCCACATCGAG -ACGGAAGAAACGTTCCACCTCCTT -ACGGAAGAAACGTTCCACCCTGTT -ACGGAAGAAACGTTCCACCGGTTT -ACGGAAGAAACGTTCCACGTGGTT -ACGGAAGAAACGTTCCACGCCTTT -ACGGAAGAAACGTTCCACGGTCTT -ACGGAAGAAACGTTCCACACGCTT -ACGGAAGAAACGTTCCACAGCGTT -ACGGAAGAAACGTTCCACTTCGTC -ACGGAAGAAACGTTCCACTCTCTC -ACGGAAGAAACGTTCCACTGGATC -ACGGAAGAAACGTTCCACCACTTC -ACGGAAGAAACGTTCCACGTACTC -ACGGAAGAAACGTTCCACGATGTC -ACGGAAGAAACGTTCCACACAGTC -ACGGAAGAAACGTTCCACTTGCTG -ACGGAAGAAACGTTCCACTCCATG -ACGGAAGAAACGTTCCACTGTGTG -ACGGAAGAAACGTTCCACCTAGTG -ACGGAAGAAACGTTCCACCATCTG -ACGGAAGAAACGTTCCACGAGTTG -ACGGAAGAAACGTTCCACAGACTG -ACGGAAGAAACGTTCCACTCGGTA -ACGGAAGAAACGTTCCACTGCCTA -ACGGAAGAAACGTTCCACCCACTA -ACGGAAGAAACGTTCCACGGAGTA -ACGGAAGAAACGTTCCACTCGTCT -ACGGAAGAAACGTTCCACTGCACT -ACGGAAGAAACGTTCCACCTGACT -ACGGAAGAAACGTTCCACCAACCT -ACGGAAGAAACGTTCCACGCTACT -ACGGAAGAAACGTTCCACGGATCT -ACGGAAGAAACGTTCCACAAGGCT -ACGGAAGAAACGTTCCACTCAACC -ACGGAAGAAACGTTCCACTGTTCC -ACGGAAGAAACGTTCCACATTCCC -ACGGAAGAAACGTTCCACTTCTCG -ACGGAAGAAACGTTCCACTAGACG -ACGGAAGAAACGTTCCACGTAACG -ACGGAAGAAACGTTCCACACTTCG -ACGGAAGAAACGTTCCACTACGCA -ACGGAAGAAACGTTCCACCTTGCA -ACGGAAGAAACGTTCCACCGAACA -ACGGAAGAAACGTTCCACCAGTCA -ACGGAAGAAACGTTCCACGATCCA -ACGGAAGAAACGTTCCACACGACA -ACGGAAGAAACGTTCCACAGCTCA -ACGGAAGAAACGTTCCACTCACGT -ACGGAAGAAACGTTCCACCGTAGT -ACGGAAGAAACGTTCCACGTCAGT -ACGGAAGAAACGTTCCACGAAGGT -ACGGAAGAAACGTTCCACAACCGT -ACGGAAGAAACGTTCCACTTGTGC -ACGGAAGAAACGTTCCACCTAAGC -ACGGAAGAAACGTTCCACACTAGC -ACGGAAGAAACGTTCCACAGATGC -ACGGAAGAAACGTTCCACTGAAGG -ACGGAAGAAACGTTCCACCAATGG -ACGGAAGAAACGTTCCACATGAGG -ACGGAAGAAACGTTCCACAATGGG -ACGGAAGAAACGTTCCACTCCTGA -ACGGAAGAAACGTTCCACTAGCGA -ACGGAAGAAACGTTCCACCACAGA -ACGGAAGAAACGTTCCACGCAAGA -ACGGAAGAAACGTTCCACGGTTGA -ACGGAAGAAACGTTCCACTCCGAT -ACGGAAGAAACGTTCCACTGGCAT -ACGGAAGAAACGTTCCACCGAGAT -ACGGAAGAAACGTTCCACTACCAC -ACGGAAGAAACGTTCCACCAGAAC -ACGGAAGAAACGTTCCACGTCTAC -ACGGAAGAAACGTTCCACACGTAC -ACGGAAGAAACGTTCCACAGTGAC -ACGGAAGAAACGTTCCACCTGTAG -ACGGAAGAAACGTTCCACCCTAAG -ACGGAAGAAACGTTCCACGTTCAG -ACGGAAGAAACGTTCCACGCATAG -ACGGAAGAAACGTTCCACGACAAG -ACGGAAGAAACGTTCCACAAGCAG -ACGGAAGAAACGTTCCACCGTCAA -ACGGAAGAAACGTTCCACGCTGAA -ACGGAAGAAACGTTCCACAGTACG -ACGGAAGAAACGTTCCACATCCGA -ACGGAAGAAACGTTCCACATGGGA -ACGGAAGAAACGTTCCACGTGCAA -ACGGAAGAAACGTTCCACGAGGAA -ACGGAAGAAACGTTCCACCAGGTA -ACGGAAGAAACGTTCCACGACTCT -ACGGAAGAAACGTTCCACAGTCCT -ACGGAAGAAACGTTCCACTAAGCC -ACGGAAGAAACGTTCCACATAGCC -ACGGAAGAAACGTTCCACTAACCG -ACGGAAGAAACGTTCCACATGCCA -ACGGAAGAAACGCTCGTAGGAAAC -ACGGAAGAAACGCTCGTAAACACC -ACGGAAGAAACGCTCGTAATCGAG -ACGGAAGAAACGCTCGTACTCCTT -ACGGAAGAAACGCTCGTACCTGTT -ACGGAAGAAACGCTCGTACGGTTT -ACGGAAGAAACGCTCGTAGTGGTT -ACGGAAGAAACGCTCGTAGCCTTT -ACGGAAGAAACGCTCGTAGGTCTT -ACGGAAGAAACGCTCGTAACGCTT -ACGGAAGAAACGCTCGTAAGCGTT -ACGGAAGAAACGCTCGTATTCGTC -ACGGAAGAAACGCTCGTATCTCTC -ACGGAAGAAACGCTCGTATGGATC -ACGGAAGAAACGCTCGTACACTTC -ACGGAAGAAACGCTCGTAGTACTC -ACGGAAGAAACGCTCGTAGATGTC -ACGGAAGAAACGCTCGTAACAGTC -ACGGAAGAAACGCTCGTATTGCTG -ACGGAAGAAACGCTCGTATCCATG -ACGGAAGAAACGCTCGTATGTGTG -ACGGAAGAAACGCTCGTACTAGTG -ACGGAAGAAACGCTCGTACATCTG -ACGGAAGAAACGCTCGTAGAGTTG -ACGGAAGAAACGCTCGTAAGACTG -ACGGAAGAAACGCTCGTATCGGTA -ACGGAAGAAACGCTCGTATGCCTA -ACGGAAGAAACGCTCGTACCACTA -ACGGAAGAAACGCTCGTAGGAGTA -ACGGAAGAAACGCTCGTATCGTCT -ACGGAAGAAACGCTCGTATGCACT -ACGGAAGAAACGCTCGTACTGACT -ACGGAAGAAACGCTCGTACAACCT -ACGGAAGAAACGCTCGTAGCTACT -ACGGAAGAAACGCTCGTAGGATCT -ACGGAAGAAACGCTCGTAAAGGCT -ACGGAAGAAACGCTCGTATCAACC -ACGGAAGAAACGCTCGTATGTTCC -ACGGAAGAAACGCTCGTAATTCCC -ACGGAAGAAACGCTCGTATTCTCG -ACGGAAGAAACGCTCGTATAGACG -ACGGAAGAAACGCTCGTAGTAACG -ACGGAAGAAACGCTCGTAACTTCG -ACGGAAGAAACGCTCGTATACGCA -ACGGAAGAAACGCTCGTACTTGCA -ACGGAAGAAACGCTCGTACGAACA -ACGGAAGAAACGCTCGTACAGTCA -ACGGAAGAAACGCTCGTAGATCCA -ACGGAAGAAACGCTCGTAACGACA -ACGGAAGAAACGCTCGTAAGCTCA -ACGGAAGAAACGCTCGTATCACGT -ACGGAAGAAACGCTCGTACGTAGT -ACGGAAGAAACGCTCGTAGTCAGT -ACGGAAGAAACGCTCGTAGAAGGT -ACGGAAGAAACGCTCGTAAACCGT -ACGGAAGAAACGCTCGTATTGTGC -ACGGAAGAAACGCTCGTACTAAGC -ACGGAAGAAACGCTCGTAACTAGC -ACGGAAGAAACGCTCGTAAGATGC -ACGGAAGAAACGCTCGTATGAAGG -ACGGAAGAAACGCTCGTACAATGG -ACGGAAGAAACGCTCGTAATGAGG -ACGGAAGAAACGCTCGTAAATGGG -ACGGAAGAAACGCTCGTATCCTGA -ACGGAAGAAACGCTCGTATAGCGA -ACGGAAGAAACGCTCGTACACAGA -ACGGAAGAAACGCTCGTAGCAAGA -ACGGAAGAAACGCTCGTAGGTTGA -ACGGAAGAAACGCTCGTATCCGAT -ACGGAAGAAACGCTCGTATGGCAT -ACGGAAGAAACGCTCGTACGAGAT -ACGGAAGAAACGCTCGTATACCAC -ACGGAAGAAACGCTCGTACAGAAC -ACGGAAGAAACGCTCGTAGTCTAC -ACGGAAGAAACGCTCGTAACGTAC -ACGGAAGAAACGCTCGTAAGTGAC -ACGGAAGAAACGCTCGTACTGTAG -ACGGAAGAAACGCTCGTACCTAAG -ACGGAAGAAACGCTCGTAGTTCAG -ACGGAAGAAACGCTCGTAGCATAG -ACGGAAGAAACGCTCGTAGACAAG -ACGGAAGAAACGCTCGTAAAGCAG -ACGGAAGAAACGCTCGTACGTCAA -ACGGAAGAAACGCTCGTAGCTGAA -ACGGAAGAAACGCTCGTAAGTACG -ACGGAAGAAACGCTCGTAATCCGA -ACGGAAGAAACGCTCGTAATGGGA -ACGGAAGAAACGCTCGTAGTGCAA -ACGGAAGAAACGCTCGTAGAGGAA -ACGGAAGAAACGCTCGTACAGGTA -ACGGAAGAAACGCTCGTAGACTCT -ACGGAAGAAACGCTCGTAAGTCCT -ACGGAAGAAACGCTCGTATAAGCC -ACGGAAGAAACGCTCGTAATAGCC -ACGGAAGAAACGCTCGTATAACCG -ACGGAAGAAACGCTCGTAATGCCA -ACGGAAGAAACGGTCGATGGAAAC -ACGGAAGAAACGGTCGATAACACC -ACGGAAGAAACGGTCGATATCGAG -ACGGAAGAAACGGTCGATCTCCTT -ACGGAAGAAACGGTCGATCCTGTT -ACGGAAGAAACGGTCGATCGGTTT -ACGGAAGAAACGGTCGATGTGGTT -ACGGAAGAAACGGTCGATGCCTTT -ACGGAAGAAACGGTCGATGGTCTT -ACGGAAGAAACGGTCGATACGCTT -ACGGAAGAAACGGTCGATAGCGTT -ACGGAAGAAACGGTCGATTTCGTC -ACGGAAGAAACGGTCGATTCTCTC -ACGGAAGAAACGGTCGATTGGATC -ACGGAAGAAACGGTCGATCACTTC -ACGGAAGAAACGGTCGATGTACTC -ACGGAAGAAACGGTCGATGATGTC -ACGGAAGAAACGGTCGATACAGTC -ACGGAAGAAACGGTCGATTTGCTG -ACGGAAGAAACGGTCGATTCCATG -ACGGAAGAAACGGTCGATTGTGTG -ACGGAAGAAACGGTCGATCTAGTG -ACGGAAGAAACGGTCGATCATCTG -ACGGAAGAAACGGTCGATGAGTTG -ACGGAAGAAACGGTCGATAGACTG -ACGGAAGAAACGGTCGATTCGGTA -ACGGAAGAAACGGTCGATTGCCTA -ACGGAAGAAACGGTCGATCCACTA -ACGGAAGAAACGGTCGATGGAGTA -ACGGAAGAAACGGTCGATTCGTCT -ACGGAAGAAACGGTCGATTGCACT -ACGGAAGAAACGGTCGATCTGACT -ACGGAAGAAACGGTCGATCAACCT -ACGGAAGAAACGGTCGATGCTACT -ACGGAAGAAACGGTCGATGGATCT -ACGGAAGAAACGGTCGATAAGGCT -ACGGAAGAAACGGTCGATTCAACC -ACGGAAGAAACGGTCGATTGTTCC -ACGGAAGAAACGGTCGATATTCCC -ACGGAAGAAACGGTCGATTTCTCG -ACGGAAGAAACGGTCGATTAGACG -ACGGAAGAAACGGTCGATGTAACG -ACGGAAGAAACGGTCGATACTTCG -ACGGAAGAAACGGTCGATTACGCA -ACGGAAGAAACGGTCGATCTTGCA -ACGGAAGAAACGGTCGATCGAACA -ACGGAAGAAACGGTCGATCAGTCA -ACGGAAGAAACGGTCGATGATCCA -ACGGAAGAAACGGTCGATACGACA -ACGGAAGAAACGGTCGATAGCTCA -ACGGAAGAAACGGTCGATTCACGT -ACGGAAGAAACGGTCGATCGTAGT -ACGGAAGAAACGGTCGATGTCAGT -ACGGAAGAAACGGTCGATGAAGGT -ACGGAAGAAACGGTCGATAACCGT -ACGGAAGAAACGGTCGATTTGTGC -ACGGAAGAAACGGTCGATCTAAGC -ACGGAAGAAACGGTCGATACTAGC -ACGGAAGAAACGGTCGATAGATGC -ACGGAAGAAACGGTCGATTGAAGG -ACGGAAGAAACGGTCGATCAATGG -ACGGAAGAAACGGTCGATATGAGG -ACGGAAGAAACGGTCGATAATGGG -ACGGAAGAAACGGTCGATTCCTGA -ACGGAAGAAACGGTCGATTAGCGA -ACGGAAGAAACGGTCGATCACAGA -ACGGAAGAAACGGTCGATGCAAGA -ACGGAAGAAACGGTCGATGGTTGA -ACGGAAGAAACGGTCGATTCCGAT -ACGGAAGAAACGGTCGATTGGCAT -ACGGAAGAAACGGTCGATCGAGAT -ACGGAAGAAACGGTCGATTACCAC -ACGGAAGAAACGGTCGATCAGAAC -ACGGAAGAAACGGTCGATGTCTAC -ACGGAAGAAACGGTCGATACGTAC -ACGGAAGAAACGGTCGATAGTGAC -ACGGAAGAAACGGTCGATCTGTAG -ACGGAAGAAACGGTCGATCCTAAG -ACGGAAGAAACGGTCGATGTTCAG -ACGGAAGAAACGGTCGATGCATAG -ACGGAAGAAACGGTCGATGACAAG -ACGGAAGAAACGGTCGATAAGCAG -ACGGAAGAAACGGTCGATCGTCAA -ACGGAAGAAACGGTCGATGCTGAA -ACGGAAGAAACGGTCGATAGTACG -ACGGAAGAAACGGTCGATATCCGA -ACGGAAGAAACGGTCGATATGGGA -ACGGAAGAAACGGTCGATGTGCAA -ACGGAAGAAACGGTCGATGAGGAA -ACGGAAGAAACGGTCGATCAGGTA -ACGGAAGAAACGGTCGATGACTCT -ACGGAAGAAACGGTCGATAGTCCT -ACGGAAGAAACGGTCGATTAAGCC -ACGGAAGAAACGGTCGATATAGCC -ACGGAAGAAACGGTCGATTAACCG -ACGGAAGAAACGGTCGATATGCCA -ACGGAAGAAACGGTCACAGGAAAC -ACGGAAGAAACGGTCACAAACACC -ACGGAAGAAACGGTCACAATCGAG -ACGGAAGAAACGGTCACACTCCTT -ACGGAAGAAACGGTCACACCTGTT -ACGGAAGAAACGGTCACACGGTTT -ACGGAAGAAACGGTCACAGTGGTT -ACGGAAGAAACGGTCACAGCCTTT -ACGGAAGAAACGGTCACAGGTCTT -ACGGAAGAAACGGTCACAACGCTT -ACGGAAGAAACGGTCACAAGCGTT -ACGGAAGAAACGGTCACATTCGTC -ACGGAAGAAACGGTCACATCTCTC -ACGGAAGAAACGGTCACATGGATC -ACGGAAGAAACGGTCACACACTTC -ACGGAAGAAACGGTCACAGTACTC -ACGGAAGAAACGGTCACAGATGTC -ACGGAAGAAACGGTCACAACAGTC -ACGGAAGAAACGGTCACATTGCTG -ACGGAAGAAACGGTCACATCCATG -ACGGAAGAAACGGTCACATGTGTG -ACGGAAGAAACGGTCACACTAGTG -ACGGAAGAAACGGTCACACATCTG -ACGGAAGAAACGGTCACAGAGTTG -ACGGAAGAAACGGTCACAAGACTG -ACGGAAGAAACGGTCACATCGGTA -ACGGAAGAAACGGTCACATGCCTA -ACGGAAGAAACGGTCACACCACTA -ACGGAAGAAACGGTCACAGGAGTA -ACGGAAGAAACGGTCACATCGTCT -ACGGAAGAAACGGTCACATGCACT -ACGGAAGAAACGGTCACACTGACT -ACGGAAGAAACGGTCACACAACCT -ACGGAAGAAACGGTCACAGCTACT -ACGGAAGAAACGGTCACAGGATCT -ACGGAAGAAACGGTCACAAAGGCT -ACGGAAGAAACGGTCACATCAACC -ACGGAAGAAACGGTCACATGTTCC -ACGGAAGAAACGGTCACAATTCCC -ACGGAAGAAACGGTCACATTCTCG -ACGGAAGAAACGGTCACATAGACG -ACGGAAGAAACGGTCACAGTAACG -ACGGAAGAAACGGTCACAACTTCG -ACGGAAGAAACGGTCACATACGCA -ACGGAAGAAACGGTCACACTTGCA -ACGGAAGAAACGGTCACACGAACA -ACGGAAGAAACGGTCACACAGTCA -ACGGAAGAAACGGTCACAGATCCA -ACGGAAGAAACGGTCACAACGACA -ACGGAAGAAACGGTCACAAGCTCA -ACGGAAGAAACGGTCACATCACGT -ACGGAAGAAACGGTCACACGTAGT -ACGGAAGAAACGGTCACAGTCAGT -ACGGAAGAAACGGTCACAGAAGGT -ACGGAAGAAACGGTCACAAACCGT -ACGGAAGAAACGGTCACATTGTGC -ACGGAAGAAACGGTCACACTAAGC -ACGGAAGAAACGGTCACAACTAGC -ACGGAAGAAACGGTCACAAGATGC -ACGGAAGAAACGGTCACATGAAGG -ACGGAAGAAACGGTCACACAATGG -ACGGAAGAAACGGTCACAATGAGG -ACGGAAGAAACGGTCACAAATGGG -ACGGAAGAAACGGTCACATCCTGA -ACGGAAGAAACGGTCACATAGCGA -ACGGAAGAAACGGTCACACACAGA -ACGGAAGAAACGGTCACAGCAAGA -ACGGAAGAAACGGTCACAGGTTGA -ACGGAAGAAACGGTCACATCCGAT -ACGGAAGAAACGGTCACATGGCAT -ACGGAAGAAACGGTCACACGAGAT -ACGGAAGAAACGGTCACATACCAC -ACGGAAGAAACGGTCACACAGAAC -ACGGAAGAAACGGTCACAGTCTAC -ACGGAAGAAACGGTCACAACGTAC -ACGGAAGAAACGGTCACAAGTGAC -ACGGAAGAAACGGTCACACTGTAG -ACGGAAGAAACGGTCACACCTAAG -ACGGAAGAAACGGTCACAGTTCAG -ACGGAAGAAACGGTCACAGCATAG -ACGGAAGAAACGGTCACAGACAAG -ACGGAAGAAACGGTCACAAAGCAG -ACGGAAGAAACGGTCACACGTCAA -ACGGAAGAAACGGTCACAGCTGAA -ACGGAAGAAACGGTCACAAGTACG -ACGGAAGAAACGGTCACAATCCGA -ACGGAAGAAACGGTCACAATGGGA -ACGGAAGAAACGGTCACAGTGCAA -ACGGAAGAAACGGTCACAGAGGAA -ACGGAAGAAACGGTCACACAGGTA -ACGGAAGAAACGGTCACAGACTCT -ACGGAAGAAACGGTCACAAGTCCT -ACGGAAGAAACGGTCACATAAGCC -ACGGAAGAAACGGTCACAATAGCC -ACGGAAGAAACGGTCACATAACCG -ACGGAAGAAACGGTCACAATGCCA -ACGGAAGAAACGCTGTTGGGAAAC -ACGGAAGAAACGCTGTTGAACACC -ACGGAAGAAACGCTGTTGATCGAG -ACGGAAGAAACGCTGTTGCTCCTT -ACGGAAGAAACGCTGTTGCCTGTT -ACGGAAGAAACGCTGTTGCGGTTT -ACGGAAGAAACGCTGTTGGTGGTT -ACGGAAGAAACGCTGTTGGCCTTT -ACGGAAGAAACGCTGTTGGGTCTT -ACGGAAGAAACGCTGTTGACGCTT -ACGGAAGAAACGCTGTTGAGCGTT -ACGGAAGAAACGCTGTTGTTCGTC -ACGGAAGAAACGCTGTTGTCTCTC -ACGGAAGAAACGCTGTTGTGGATC -ACGGAAGAAACGCTGTTGCACTTC -ACGGAAGAAACGCTGTTGGTACTC -ACGGAAGAAACGCTGTTGGATGTC -ACGGAAGAAACGCTGTTGACAGTC -ACGGAAGAAACGCTGTTGTTGCTG -ACGGAAGAAACGCTGTTGTCCATG -ACGGAAGAAACGCTGTTGTGTGTG -ACGGAAGAAACGCTGTTGCTAGTG -ACGGAAGAAACGCTGTTGCATCTG -ACGGAAGAAACGCTGTTGGAGTTG -ACGGAAGAAACGCTGTTGAGACTG -ACGGAAGAAACGCTGTTGTCGGTA -ACGGAAGAAACGCTGTTGTGCCTA -ACGGAAGAAACGCTGTTGCCACTA -ACGGAAGAAACGCTGTTGGGAGTA -ACGGAAGAAACGCTGTTGTCGTCT -ACGGAAGAAACGCTGTTGTGCACT -ACGGAAGAAACGCTGTTGCTGACT -ACGGAAGAAACGCTGTTGCAACCT -ACGGAAGAAACGCTGTTGGCTACT -ACGGAAGAAACGCTGTTGGGATCT -ACGGAAGAAACGCTGTTGAAGGCT -ACGGAAGAAACGCTGTTGTCAACC -ACGGAAGAAACGCTGTTGTGTTCC -ACGGAAGAAACGCTGTTGATTCCC -ACGGAAGAAACGCTGTTGTTCTCG -ACGGAAGAAACGCTGTTGTAGACG -ACGGAAGAAACGCTGTTGGTAACG -ACGGAAGAAACGCTGTTGACTTCG -ACGGAAGAAACGCTGTTGTACGCA -ACGGAAGAAACGCTGTTGCTTGCA -ACGGAAGAAACGCTGTTGCGAACA -ACGGAAGAAACGCTGTTGCAGTCA -ACGGAAGAAACGCTGTTGGATCCA -ACGGAAGAAACGCTGTTGACGACA -ACGGAAGAAACGCTGTTGAGCTCA -ACGGAAGAAACGCTGTTGTCACGT -ACGGAAGAAACGCTGTTGCGTAGT -ACGGAAGAAACGCTGTTGGTCAGT -ACGGAAGAAACGCTGTTGGAAGGT -ACGGAAGAAACGCTGTTGAACCGT -ACGGAAGAAACGCTGTTGTTGTGC -ACGGAAGAAACGCTGTTGCTAAGC -ACGGAAGAAACGCTGTTGACTAGC -ACGGAAGAAACGCTGTTGAGATGC -ACGGAAGAAACGCTGTTGTGAAGG -ACGGAAGAAACGCTGTTGCAATGG -ACGGAAGAAACGCTGTTGATGAGG -ACGGAAGAAACGCTGTTGAATGGG -ACGGAAGAAACGCTGTTGTCCTGA -ACGGAAGAAACGCTGTTGTAGCGA -ACGGAAGAAACGCTGTTGCACAGA -ACGGAAGAAACGCTGTTGGCAAGA -ACGGAAGAAACGCTGTTGGGTTGA -ACGGAAGAAACGCTGTTGTCCGAT -ACGGAAGAAACGCTGTTGTGGCAT -ACGGAAGAAACGCTGTTGCGAGAT -ACGGAAGAAACGCTGTTGTACCAC -ACGGAAGAAACGCTGTTGCAGAAC -ACGGAAGAAACGCTGTTGGTCTAC -ACGGAAGAAACGCTGTTGACGTAC -ACGGAAGAAACGCTGTTGAGTGAC -ACGGAAGAAACGCTGTTGCTGTAG -ACGGAAGAAACGCTGTTGCCTAAG -ACGGAAGAAACGCTGTTGGTTCAG -ACGGAAGAAACGCTGTTGGCATAG -ACGGAAGAAACGCTGTTGGACAAG -ACGGAAGAAACGCTGTTGAAGCAG -ACGGAAGAAACGCTGTTGCGTCAA -ACGGAAGAAACGCTGTTGGCTGAA -ACGGAAGAAACGCTGTTGAGTACG -ACGGAAGAAACGCTGTTGATCCGA -ACGGAAGAAACGCTGTTGATGGGA -ACGGAAGAAACGCTGTTGGTGCAA -ACGGAAGAAACGCTGTTGGAGGAA -ACGGAAGAAACGCTGTTGCAGGTA -ACGGAAGAAACGCTGTTGGACTCT -ACGGAAGAAACGCTGTTGAGTCCT -ACGGAAGAAACGCTGTTGTAAGCC -ACGGAAGAAACGCTGTTGATAGCC -ACGGAAGAAACGCTGTTGTAACCG -ACGGAAGAAACGCTGTTGATGCCA -ACGGAAGAAACGATGTCCGGAAAC -ACGGAAGAAACGATGTCCAACACC -ACGGAAGAAACGATGTCCATCGAG -ACGGAAGAAACGATGTCCCTCCTT -ACGGAAGAAACGATGTCCCCTGTT -ACGGAAGAAACGATGTCCCGGTTT -ACGGAAGAAACGATGTCCGTGGTT -ACGGAAGAAACGATGTCCGCCTTT -ACGGAAGAAACGATGTCCGGTCTT -ACGGAAGAAACGATGTCCACGCTT -ACGGAAGAAACGATGTCCAGCGTT -ACGGAAGAAACGATGTCCTTCGTC -ACGGAAGAAACGATGTCCTCTCTC -ACGGAAGAAACGATGTCCTGGATC -ACGGAAGAAACGATGTCCCACTTC -ACGGAAGAAACGATGTCCGTACTC -ACGGAAGAAACGATGTCCGATGTC -ACGGAAGAAACGATGTCCACAGTC -ACGGAAGAAACGATGTCCTTGCTG -ACGGAAGAAACGATGTCCTCCATG -ACGGAAGAAACGATGTCCTGTGTG -ACGGAAGAAACGATGTCCCTAGTG -ACGGAAGAAACGATGTCCCATCTG -ACGGAAGAAACGATGTCCGAGTTG -ACGGAAGAAACGATGTCCAGACTG -ACGGAAGAAACGATGTCCTCGGTA -ACGGAAGAAACGATGTCCTGCCTA -ACGGAAGAAACGATGTCCCCACTA -ACGGAAGAAACGATGTCCGGAGTA -ACGGAAGAAACGATGTCCTCGTCT -ACGGAAGAAACGATGTCCTGCACT -ACGGAAGAAACGATGTCCCTGACT -ACGGAAGAAACGATGTCCCAACCT -ACGGAAGAAACGATGTCCGCTACT -ACGGAAGAAACGATGTCCGGATCT -ACGGAAGAAACGATGTCCAAGGCT -ACGGAAGAAACGATGTCCTCAACC -ACGGAAGAAACGATGTCCTGTTCC -ACGGAAGAAACGATGTCCATTCCC -ACGGAAGAAACGATGTCCTTCTCG -ACGGAAGAAACGATGTCCTAGACG -ACGGAAGAAACGATGTCCGTAACG -ACGGAAGAAACGATGTCCACTTCG -ACGGAAGAAACGATGTCCTACGCA -ACGGAAGAAACGATGTCCCTTGCA -ACGGAAGAAACGATGTCCCGAACA -ACGGAAGAAACGATGTCCCAGTCA -ACGGAAGAAACGATGTCCGATCCA -ACGGAAGAAACGATGTCCACGACA -ACGGAAGAAACGATGTCCAGCTCA -ACGGAAGAAACGATGTCCTCACGT -ACGGAAGAAACGATGTCCCGTAGT -ACGGAAGAAACGATGTCCGTCAGT -ACGGAAGAAACGATGTCCGAAGGT -ACGGAAGAAACGATGTCCAACCGT -ACGGAAGAAACGATGTCCTTGTGC -ACGGAAGAAACGATGTCCCTAAGC -ACGGAAGAAACGATGTCCACTAGC -ACGGAAGAAACGATGTCCAGATGC -ACGGAAGAAACGATGTCCTGAAGG -ACGGAAGAAACGATGTCCCAATGG -ACGGAAGAAACGATGTCCATGAGG -ACGGAAGAAACGATGTCCAATGGG -ACGGAAGAAACGATGTCCTCCTGA -ACGGAAGAAACGATGTCCTAGCGA -ACGGAAGAAACGATGTCCCACAGA -ACGGAAGAAACGATGTCCGCAAGA -ACGGAAGAAACGATGTCCGGTTGA -ACGGAAGAAACGATGTCCTCCGAT -ACGGAAGAAACGATGTCCTGGCAT -ACGGAAGAAACGATGTCCCGAGAT -ACGGAAGAAACGATGTCCTACCAC -ACGGAAGAAACGATGTCCCAGAAC -ACGGAAGAAACGATGTCCGTCTAC -ACGGAAGAAACGATGTCCACGTAC -ACGGAAGAAACGATGTCCAGTGAC -ACGGAAGAAACGATGTCCCTGTAG -ACGGAAGAAACGATGTCCCCTAAG -ACGGAAGAAACGATGTCCGTTCAG -ACGGAAGAAACGATGTCCGCATAG -ACGGAAGAAACGATGTCCGACAAG -ACGGAAGAAACGATGTCCAAGCAG -ACGGAAGAAACGATGTCCCGTCAA -ACGGAAGAAACGATGTCCGCTGAA -ACGGAAGAAACGATGTCCAGTACG -ACGGAAGAAACGATGTCCATCCGA -ACGGAAGAAACGATGTCCATGGGA -ACGGAAGAAACGATGTCCGTGCAA -ACGGAAGAAACGATGTCCGAGGAA -ACGGAAGAAACGATGTCCCAGGTA -ACGGAAGAAACGATGTCCGACTCT -ACGGAAGAAACGATGTCCAGTCCT -ACGGAAGAAACGATGTCCTAAGCC -ACGGAAGAAACGATGTCCATAGCC -ACGGAAGAAACGATGTCCTAACCG -ACGGAAGAAACGATGTCCATGCCA -ACGGAAGAAACGGTGTGTGGAAAC -ACGGAAGAAACGGTGTGTAACACC -ACGGAAGAAACGGTGTGTATCGAG -ACGGAAGAAACGGTGTGTCTCCTT -ACGGAAGAAACGGTGTGTCCTGTT -ACGGAAGAAACGGTGTGTCGGTTT -ACGGAAGAAACGGTGTGTGTGGTT -ACGGAAGAAACGGTGTGTGCCTTT -ACGGAAGAAACGGTGTGTGGTCTT -ACGGAAGAAACGGTGTGTACGCTT -ACGGAAGAAACGGTGTGTAGCGTT -ACGGAAGAAACGGTGTGTTTCGTC -ACGGAAGAAACGGTGTGTTCTCTC -ACGGAAGAAACGGTGTGTTGGATC -ACGGAAGAAACGGTGTGTCACTTC -ACGGAAGAAACGGTGTGTGTACTC -ACGGAAGAAACGGTGTGTGATGTC -ACGGAAGAAACGGTGTGTACAGTC -ACGGAAGAAACGGTGTGTTTGCTG -ACGGAAGAAACGGTGTGTTCCATG -ACGGAAGAAACGGTGTGTTGTGTG -ACGGAAGAAACGGTGTGTCTAGTG -ACGGAAGAAACGGTGTGTCATCTG -ACGGAAGAAACGGTGTGTGAGTTG -ACGGAAGAAACGGTGTGTAGACTG -ACGGAAGAAACGGTGTGTTCGGTA -ACGGAAGAAACGGTGTGTTGCCTA -ACGGAAGAAACGGTGTGTCCACTA -ACGGAAGAAACGGTGTGTGGAGTA -ACGGAAGAAACGGTGTGTTCGTCT -ACGGAAGAAACGGTGTGTTGCACT -ACGGAAGAAACGGTGTGTCTGACT -ACGGAAGAAACGGTGTGTCAACCT -ACGGAAGAAACGGTGTGTGCTACT -ACGGAAGAAACGGTGTGTGGATCT -ACGGAAGAAACGGTGTGTAAGGCT -ACGGAAGAAACGGTGTGTTCAACC -ACGGAAGAAACGGTGTGTTGTTCC -ACGGAAGAAACGGTGTGTATTCCC -ACGGAAGAAACGGTGTGTTTCTCG -ACGGAAGAAACGGTGTGTTAGACG -ACGGAAGAAACGGTGTGTGTAACG -ACGGAAGAAACGGTGTGTACTTCG -ACGGAAGAAACGGTGTGTTACGCA -ACGGAAGAAACGGTGTGTCTTGCA -ACGGAAGAAACGGTGTGTCGAACA -ACGGAAGAAACGGTGTGTCAGTCA -ACGGAAGAAACGGTGTGTGATCCA -ACGGAAGAAACGGTGTGTACGACA -ACGGAAGAAACGGTGTGTAGCTCA -ACGGAAGAAACGGTGTGTTCACGT -ACGGAAGAAACGGTGTGTCGTAGT -ACGGAAGAAACGGTGTGTGTCAGT -ACGGAAGAAACGGTGTGTGAAGGT -ACGGAAGAAACGGTGTGTAACCGT -ACGGAAGAAACGGTGTGTTTGTGC -ACGGAAGAAACGGTGTGTCTAAGC -ACGGAAGAAACGGTGTGTACTAGC -ACGGAAGAAACGGTGTGTAGATGC -ACGGAAGAAACGGTGTGTTGAAGG -ACGGAAGAAACGGTGTGTCAATGG -ACGGAAGAAACGGTGTGTATGAGG -ACGGAAGAAACGGTGTGTAATGGG -ACGGAAGAAACGGTGTGTTCCTGA -ACGGAAGAAACGGTGTGTTAGCGA -ACGGAAGAAACGGTGTGTCACAGA -ACGGAAGAAACGGTGTGTGCAAGA -ACGGAAGAAACGGTGTGTGGTTGA -ACGGAAGAAACGGTGTGTTCCGAT -ACGGAAGAAACGGTGTGTTGGCAT -ACGGAAGAAACGGTGTGTCGAGAT -ACGGAAGAAACGGTGTGTTACCAC -ACGGAAGAAACGGTGTGTCAGAAC -ACGGAAGAAACGGTGTGTGTCTAC -ACGGAAGAAACGGTGTGTACGTAC -ACGGAAGAAACGGTGTGTAGTGAC -ACGGAAGAAACGGTGTGTCTGTAG -ACGGAAGAAACGGTGTGTCCTAAG -ACGGAAGAAACGGTGTGTGTTCAG -ACGGAAGAAACGGTGTGTGCATAG -ACGGAAGAAACGGTGTGTGACAAG -ACGGAAGAAACGGTGTGTAAGCAG -ACGGAAGAAACGGTGTGTCGTCAA -ACGGAAGAAACGGTGTGTGCTGAA -ACGGAAGAAACGGTGTGTAGTACG -ACGGAAGAAACGGTGTGTATCCGA -ACGGAAGAAACGGTGTGTATGGGA -ACGGAAGAAACGGTGTGTGTGCAA -ACGGAAGAAACGGTGTGTGAGGAA -ACGGAAGAAACGGTGTGTCAGGTA -ACGGAAGAAACGGTGTGTGACTCT -ACGGAAGAAACGGTGTGTAGTCCT -ACGGAAGAAACGGTGTGTTAAGCC -ACGGAAGAAACGGTGTGTATAGCC -ACGGAAGAAACGGTGTGTTAACCG -ACGGAAGAAACGGTGTGTATGCCA -ACGGAAGAAACGGTGCTAGGAAAC -ACGGAAGAAACGGTGCTAAACACC -ACGGAAGAAACGGTGCTAATCGAG -ACGGAAGAAACGGTGCTACTCCTT -ACGGAAGAAACGGTGCTACCTGTT -ACGGAAGAAACGGTGCTACGGTTT -ACGGAAGAAACGGTGCTAGTGGTT -ACGGAAGAAACGGTGCTAGCCTTT -ACGGAAGAAACGGTGCTAGGTCTT -ACGGAAGAAACGGTGCTAACGCTT -ACGGAAGAAACGGTGCTAAGCGTT -ACGGAAGAAACGGTGCTATTCGTC -ACGGAAGAAACGGTGCTATCTCTC -ACGGAAGAAACGGTGCTATGGATC -ACGGAAGAAACGGTGCTACACTTC -ACGGAAGAAACGGTGCTAGTACTC -ACGGAAGAAACGGTGCTAGATGTC -ACGGAAGAAACGGTGCTAACAGTC -ACGGAAGAAACGGTGCTATTGCTG -ACGGAAGAAACGGTGCTATCCATG -ACGGAAGAAACGGTGCTATGTGTG -ACGGAAGAAACGGTGCTACTAGTG -ACGGAAGAAACGGTGCTACATCTG -ACGGAAGAAACGGTGCTAGAGTTG -ACGGAAGAAACGGTGCTAAGACTG -ACGGAAGAAACGGTGCTATCGGTA -ACGGAAGAAACGGTGCTATGCCTA -ACGGAAGAAACGGTGCTACCACTA -ACGGAAGAAACGGTGCTAGGAGTA -ACGGAAGAAACGGTGCTATCGTCT -ACGGAAGAAACGGTGCTATGCACT -ACGGAAGAAACGGTGCTACTGACT -ACGGAAGAAACGGTGCTACAACCT -ACGGAAGAAACGGTGCTAGCTACT -ACGGAAGAAACGGTGCTAGGATCT -ACGGAAGAAACGGTGCTAAAGGCT -ACGGAAGAAACGGTGCTATCAACC -ACGGAAGAAACGGTGCTATGTTCC -ACGGAAGAAACGGTGCTAATTCCC -ACGGAAGAAACGGTGCTATTCTCG -ACGGAAGAAACGGTGCTATAGACG -ACGGAAGAAACGGTGCTAGTAACG -ACGGAAGAAACGGTGCTAACTTCG -ACGGAAGAAACGGTGCTATACGCA -ACGGAAGAAACGGTGCTACTTGCA -ACGGAAGAAACGGTGCTACGAACA -ACGGAAGAAACGGTGCTACAGTCA -ACGGAAGAAACGGTGCTAGATCCA -ACGGAAGAAACGGTGCTAACGACA -ACGGAAGAAACGGTGCTAAGCTCA -ACGGAAGAAACGGTGCTATCACGT -ACGGAAGAAACGGTGCTACGTAGT -ACGGAAGAAACGGTGCTAGTCAGT -ACGGAAGAAACGGTGCTAGAAGGT -ACGGAAGAAACGGTGCTAAACCGT -ACGGAAGAAACGGTGCTATTGTGC -ACGGAAGAAACGGTGCTACTAAGC -ACGGAAGAAACGGTGCTAACTAGC -ACGGAAGAAACGGTGCTAAGATGC -ACGGAAGAAACGGTGCTATGAAGG -ACGGAAGAAACGGTGCTACAATGG -ACGGAAGAAACGGTGCTAATGAGG -ACGGAAGAAACGGTGCTAAATGGG -ACGGAAGAAACGGTGCTATCCTGA -ACGGAAGAAACGGTGCTATAGCGA -ACGGAAGAAACGGTGCTACACAGA -ACGGAAGAAACGGTGCTAGCAAGA -ACGGAAGAAACGGTGCTAGGTTGA -ACGGAAGAAACGGTGCTATCCGAT -ACGGAAGAAACGGTGCTATGGCAT -ACGGAAGAAACGGTGCTACGAGAT -ACGGAAGAAACGGTGCTATACCAC -ACGGAAGAAACGGTGCTACAGAAC -ACGGAAGAAACGGTGCTAGTCTAC -ACGGAAGAAACGGTGCTAACGTAC -ACGGAAGAAACGGTGCTAAGTGAC -ACGGAAGAAACGGTGCTACTGTAG -ACGGAAGAAACGGTGCTACCTAAG -ACGGAAGAAACGGTGCTAGTTCAG -ACGGAAGAAACGGTGCTAGCATAG -ACGGAAGAAACGGTGCTAGACAAG -ACGGAAGAAACGGTGCTAAAGCAG -ACGGAAGAAACGGTGCTACGTCAA -ACGGAAGAAACGGTGCTAGCTGAA -ACGGAAGAAACGGTGCTAAGTACG -ACGGAAGAAACGGTGCTAATCCGA -ACGGAAGAAACGGTGCTAATGGGA -ACGGAAGAAACGGTGCTAGTGCAA -ACGGAAGAAACGGTGCTAGAGGAA -ACGGAAGAAACGGTGCTACAGGTA -ACGGAAGAAACGGTGCTAGACTCT -ACGGAAGAAACGGTGCTAAGTCCT -ACGGAAGAAACGGTGCTATAAGCC -ACGGAAGAAACGGTGCTAATAGCC -ACGGAAGAAACGGTGCTATAACCG -ACGGAAGAAACGGTGCTAATGCCA -ACGGAAGAAACGCTGCATGGAAAC -ACGGAAGAAACGCTGCATAACACC -ACGGAAGAAACGCTGCATATCGAG -ACGGAAGAAACGCTGCATCTCCTT -ACGGAAGAAACGCTGCATCCTGTT -ACGGAAGAAACGCTGCATCGGTTT -ACGGAAGAAACGCTGCATGTGGTT -ACGGAAGAAACGCTGCATGCCTTT -ACGGAAGAAACGCTGCATGGTCTT -ACGGAAGAAACGCTGCATACGCTT -ACGGAAGAAACGCTGCATAGCGTT -ACGGAAGAAACGCTGCATTTCGTC -ACGGAAGAAACGCTGCATTCTCTC -ACGGAAGAAACGCTGCATTGGATC -ACGGAAGAAACGCTGCATCACTTC -ACGGAAGAAACGCTGCATGTACTC -ACGGAAGAAACGCTGCATGATGTC -ACGGAAGAAACGCTGCATACAGTC -ACGGAAGAAACGCTGCATTTGCTG -ACGGAAGAAACGCTGCATTCCATG -ACGGAAGAAACGCTGCATTGTGTG -ACGGAAGAAACGCTGCATCTAGTG -ACGGAAGAAACGCTGCATCATCTG -ACGGAAGAAACGCTGCATGAGTTG -ACGGAAGAAACGCTGCATAGACTG -ACGGAAGAAACGCTGCATTCGGTA -ACGGAAGAAACGCTGCATTGCCTA -ACGGAAGAAACGCTGCATCCACTA -ACGGAAGAAACGCTGCATGGAGTA -ACGGAAGAAACGCTGCATTCGTCT -ACGGAAGAAACGCTGCATTGCACT -ACGGAAGAAACGCTGCATCTGACT -ACGGAAGAAACGCTGCATCAACCT -ACGGAAGAAACGCTGCATGCTACT -ACGGAAGAAACGCTGCATGGATCT -ACGGAAGAAACGCTGCATAAGGCT -ACGGAAGAAACGCTGCATTCAACC -ACGGAAGAAACGCTGCATTGTTCC -ACGGAAGAAACGCTGCATATTCCC -ACGGAAGAAACGCTGCATTTCTCG -ACGGAAGAAACGCTGCATTAGACG -ACGGAAGAAACGCTGCATGTAACG -ACGGAAGAAACGCTGCATACTTCG -ACGGAAGAAACGCTGCATTACGCA -ACGGAAGAAACGCTGCATCTTGCA -ACGGAAGAAACGCTGCATCGAACA -ACGGAAGAAACGCTGCATCAGTCA -ACGGAAGAAACGCTGCATGATCCA -ACGGAAGAAACGCTGCATACGACA -ACGGAAGAAACGCTGCATAGCTCA -ACGGAAGAAACGCTGCATTCACGT -ACGGAAGAAACGCTGCATCGTAGT -ACGGAAGAAACGCTGCATGTCAGT -ACGGAAGAAACGCTGCATGAAGGT -ACGGAAGAAACGCTGCATAACCGT -ACGGAAGAAACGCTGCATTTGTGC -ACGGAAGAAACGCTGCATCTAAGC -ACGGAAGAAACGCTGCATACTAGC -ACGGAAGAAACGCTGCATAGATGC -ACGGAAGAAACGCTGCATTGAAGG -ACGGAAGAAACGCTGCATCAATGG -ACGGAAGAAACGCTGCATATGAGG -ACGGAAGAAACGCTGCATAATGGG -ACGGAAGAAACGCTGCATTCCTGA -ACGGAAGAAACGCTGCATTAGCGA -ACGGAAGAAACGCTGCATCACAGA -ACGGAAGAAACGCTGCATGCAAGA -ACGGAAGAAACGCTGCATGGTTGA -ACGGAAGAAACGCTGCATTCCGAT -ACGGAAGAAACGCTGCATTGGCAT -ACGGAAGAAACGCTGCATCGAGAT -ACGGAAGAAACGCTGCATTACCAC -ACGGAAGAAACGCTGCATCAGAAC -ACGGAAGAAACGCTGCATGTCTAC -ACGGAAGAAACGCTGCATACGTAC -ACGGAAGAAACGCTGCATAGTGAC -ACGGAAGAAACGCTGCATCTGTAG -ACGGAAGAAACGCTGCATCCTAAG -ACGGAAGAAACGCTGCATGTTCAG -ACGGAAGAAACGCTGCATGCATAG -ACGGAAGAAACGCTGCATGACAAG -ACGGAAGAAACGCTGCATAAGCAG -ACGGAAGAAACGCTGCATCGTCAA -ACGGAAGAAACGCTGCATGCTGAA -ACGGAAGAAACGCTGCATAGTACG -ACGGAAGAAACGCTGCATATCCGA -ACGGAAGAAACGCTGCATATGGGA -ACGGAAGAAACGCTGCATGTGCAA -ACGGAAGAAACGCTGCATGAGGAA -ACGGAAGAAACGCTGCATCAGGTA -ACGGAAGAAACGCTGCATGACTCT -ACGGAAGAAACGCTGCATAGTCCT -ACGGAAGAAACGCTGCATTAAGCC -ACGGAAGAAACGCTGCATATAGCC -ACGGAAGAAACGCTGCATTAACCG -ACGGAAGAAACGCTGCATATGCCA -ACGGAAGAAACGTTGGAGGGAAAC -ACGGAAGAAACGTTGGAGAACACC -ACGGAAGAAACGTTGGAGATCGAG -ACGGAAGAAACGTTGGAGCTCCTT -ACGGAAGAAACGTTGGAGCCTGTT -ACGGAAGAAACGTTGGAGCGGTTT -ACGGAAGAAACGTTGGAGGTGGTT -ACGGAAGAAACGTTGGAGGCCTTT -ACGGAAGAAACGTTGGAGGGTCTT -ACGGAAGAAACGTTGGAGACGCTT -ACGGAAGAAACGTTGGAGAGCGTT -ACGGAAGAAACGTTGGAGTTCGTC -ACGGAAGAAACGTTGGAGTCTCTC -ACGGAAGAAACGTTGGAGTGGATC -ACGGAAGAAACGTTGGAGCACTTC -ACGGAAGAAACGTTGGAGGTACTC -ACGGAAGAAACGTTGGAGGATGTC -ACGGAAGAAACGTTGGAGACAGTC -ACGGAAGAAACGTTGGAGTTGCTG -ACGGAAGAAACGTTGGAGTCCATG -ACGGAAGAAACGTTGGAGTGTGTG -ACGGAAGAAACGTTGGAGCTAGTG -ACGGAAGAAACGTTGGAGCATCTG -ACGGAAGAAACGTTGGAGGAGTTG -ACGGAAGAAACGTTGGAGAGACTG -ACGGAAGAAACGTTGGAGTCGGTA -ACGGAAGAAACGTTGGAGTGCCTA -ACGGAAGAAACGTTGGAGCCACTA -ACGGAAGAAACGTTGGAGGGAGTA -ACGGAAGAAACGTTGGAGTCGTCT -ACGGAAGAAACGTTGGAGTGCACT -ACGGAAGAAACGTTGGAGCTGACT -ACGGAAGAAACGTTGGAGCAACCT -ACGGAAGAAACGTTGGAGGCTACT -ACGGAAGAAACGTTGGAGGGATCT -ACGGAAGAAACGTTGGAGAAGGCT -ACGGAAGAAACGTTGGAGTCAACC -ACGGAAGAAACGTTGGAGTGTTCC -ACGGAAGAAACGTTGGAGATTCCC -ACGGAAGAAACGTTGGAGTTCTCG -ACGGAAGAAACGTTGGAGTAGACG -ACGGAAGAAACGTTGGAGGTAACG -ACGGAAGAAACGTTGGAGACTTCG -ACGGAAGAAACGTTGGAGTACGCA -ACGGAAGAAACGTTGGAGCTTGCA -ACGGAAGAAACGTTGGAGCGAACA -ACGGAAGAAACGTTGGAGCAGTCA -ACGGAAGAAACGTTGGAGGATCCA -ACGGAAGAAACGTTGGAGACGACA -ACGGAAGAAACGTTGGAGAGCTCA -ACGGAAGAAACGTTGGAGTCACGT -ACGGAAGAAACGTTGGAGCGTAGT -ACGGAAGAAACGTTGGAGGTCAGT -ACGGAAGAAACGTTGGAGGAAGGT -ACGGAAGAAACGTTGGAGAACCGT -ACGGAAGAAACGTTGGAGTTGTGC -ACGGAAGAAACGTTGGAGCTAAGC -ACGGAAGAAACGTTGGAGACTAGC -ACGGAAGAAACGTTGGAGAGATGC -ACGGAAGAAACGTTGGAGTGAAGG -ACGGAAGAAACGTTGGAGCAATGG -ACGGAAGAAACGTTGGAGATGAGG -ACGGAAGAAACGTTGGAGAATGGG -ACGGAAGAAACGTTGGAGTCCTGA -ACGGAAGAAACGTTGGAGTAGCGA -ACGGAAGAAACGTTGGAGCACAGA -ACGGAAGAAACGTTGGAGGCAAGA -ACGGAAGAAACGTTGGAGGGTTGA -ACGGAAGAAACGTTGGAGTCCGAT -ACGGAAGAAACGTTGGAGTGGCAT -ACGGAAGAAACGTTGGAGCGAGAT -ACGGAAGAAACGTTGGAGTACCAC -ACGGAAGAAACGTTGGAGCAGAAC -ACGGAAGAAACGTTGGAGGTCTAC -ACGGAAGAAACGTTGGAGACGTAC -ACGGAAGAAACGTTGGAGAGTGAC -ACGGAAGAAACGTTGGAGCTGTAG -ACGGAAGAAACGTTGGAGCCTAAG -ACGGAAGAAACGTTGGAGGTTCAG -ACGGAAGAAACGTTGGAGGCATAG -ACGGAAGAAACGTTGGAGGACAAG -ACGGAAGAAACGTTGGAGAAGCAG -ACGGAAGAAACGTTGGAGCGTCAA -ACGGAAGAAACGTTGGAGGCTGAA -ACGGAAGAAACGTTGGAGAGTACG -ACGGAAGAAACGTTGGAGATCCGA -ACGGAAGAAACGTTGGAGATGGGA -ACGGAAGAAACGTTGGAGGTGCAA -ACGGAAGAAACGTTGGAGGAGGAA -ACGGAAGAAACGTTGGAGCAGGTA -ACGGAAGAAACGTTGGAGGACTCT -ACGGAAGAAACGTTGGAGAGTCCT -ACGGAAGAAACGTTGGAGTAAGCC -ACGGAAGAAACGTTGGAGATAGCC -ACGGAAGAAACGTTGGAGTAACCG -ACGGAAGAAACGTTGGAGATGCCA -ACGGAAGAAACGCTGAGAGGAAAC -ACGGAAGAAACGCTGAGAAACACC -ACGGAAGAAACGCTGAGAATCGAG -ACGGAAGAAACGCTGAGACTCCTT -ACGGAAGAAACGCTGAGACCTGTT -ACGGAAGAAACGCTGAGACGGTTT -ACGGAAGAAACGCTGAGAGTGGTT -ACGGAAGAAACGCTGAGAGCCTTT -ACGGAAGAAACGCTGAGAGGTCTT -ACGGAAGAAACGCTGAGAACGCTT -ACGGAAGAAACGCTGAGAAGCGTT -ACGGAAGAAACGCTGAGATTCGTC -ACGGAAGAAACGCTGAGATCTCTC -ACGGAAGAAACGCTGAGATGGATC -ACGGAAGAAACGCTGAGACACTTC -ACGGAAGAAACGCTGAGAGTACTC -ACGGAAGAAACGCTGAGAGATGTC -ACGGAAGAAACGCTGAGAACAGTC -ACGGAAGAAACGCTGAGATTGCTG -ACGGAAGAAACGCTGAGATCCATG -ACGGAAGAAACGCTGAGATGTGTG -ACGGAAGAAACGCTGAGACTAGTG -ACGGAAGAAACGCTGAGACATCTG -ACGGAAGAAACGCTGAGAGAGTTG -ACGGAAGAAACGCTGAGAAGACTG -ACGGAAGAAACGCTGAGATCGGTA -ACGGAAGAAACGCTGAGATGCCTA -ACGGAAGAAACGCTGAGACCACTA -ACGGAAGAAACGCTGAGAGGAGTA -ACGGAAGAAACGCTGAGATCGTCT -ACGGAAGAAACGCTGAGATGCACT -ACGGAAGAAACGCTGAGACTGACT -ACGGAAGAAACGCTGAGACAACCT -ACGGAAGAAACGCTGAGAGCTACT -ACGGAAGAAACGCTGAGAGGATCT -ACGGAAGAAACGCTGAGAAAGGCT -ACGGAAGAAACGCTGAGATCAACC -ACGGAAGAAACGCTGAGATGTTCC -ACGGAAGAAACGCTGAGAATTCCC -ACGGAAGAAACGCTGAGATTCTCG -ACGGAAGAAACGCTGAGATAGACG -ACGGAAGAAACGCTGAGAGTAACG -ACGGAAGAAACGCTGAGAACTTCG -ACGGAAGAAACGCTGAGATACGCA -ACGGAAGAAACGCTGAGACTTGCA -ACGGAAGAAACGCTGAGACGAACA -ACGGAAGAAACGCTGAGACAGTCA -ACGGAAGAAACGCTGAGAGATCCA -ACGGAAGAAACGCTGAGAACGACA -ACGGAAGAAACGCTGAGAAGCTCA -ACGGAAGAAACGCTGAGATCACGT -ACGGAAGAAACGCTGAGACGTAGT -ACGGAAGAAACGCTGAGAGTCAGT -ACGGAAGAAACGCTGAGAGAAGGT -ACGGAAGAAACGCTGAGAAACCGT -ACGGAAGAAACGCTGAGATTGTGC -ACGGAAGAAACGCTGAGACTAAGC -ACGGAAGAAACGCTGAGAACTAGC -ACGGAAGAAACGCTGAGAAGATGC -ACGGAAGAAACGCTGAGATGAAGG -ACGGAAGAAACGCTGAGACAATGG -ACGGAAGAAACGCTGAGAATGAGG -ACGGAAGAAACGCTGAGAAATGGG -ACGGAAGAAACGCTGAGATCCTGA -ACGGAAGAAACGCTGAGATAGCGA -ACGGAAGAAACGCTGAGACACAGA -ACGGAAGAAACGCTGAGAGCAAGA -ACGGAAGAAACGCTGAGAGGTTGA -ACGGAAGAAACGCTGAGATCCGAT -ACGGAAGAAACGCTGAGATGGCAT -ACGGAAGAAACGCTGAGACGAGAT -ACGGAAGAAACGCTGAGATACCAC -ACGGAAGAAACGCTGAGACAGAAC -ACGGAAGAAACGCTGAGAGTCTAC -ACGGAAGAAACGCTGAGAACGTAC -ACGGAAGAAACGCTGAGAAGTGAC -ACGGAAGAAACGCTGAGACTGTAG -ACGGAAGAAACGCTGAGACCTAAG -ACGGAAGAAACGCTGAGAGTTCAG -ACGGAAGAAACGCTGAGAGCATAG -ACGGAAGAAACGCTGAGAGACAAG -ACGGAAGAAACGCTGAGAAAGCAG -ACGGAAGAAACGCTGAGACGTCAA -ACGGAAGAAACGCTGAGAGCTGAA -ACGGAAGAAACGCTGAGAAGTACG -ACGGAAGAAACGCTGAGAATCCGA -ACGGAAGAAACGCTGAGAATGGGA -ACGGAAGAAACGCTGAGAGTGCAA -ACGGAAGAAACGCTGAGAGAGGAA -ACGGAAGAAACGCTGAGACAGGTA -ACGGAAGAAACGCTGAGAGACTCT -ACGGAAGAAACGCTGAGAAGTCCT -ACGGAAGAAACGCTGAGATAAGCC -ACGGAAGAAACGCTGAGAATAGCC -ACGGAAGAAACGCTGAGATAACCG -ACGGAAGAAACGCTGAGAATGCCA -ACGGAAGAAACGGTATCGGGAAAC -ACGGAAGAAACGGTATCGAACACC -ACGGAAGAAACGGTATCGATCGAG -ACGGAAGAAACGGTATCGCTCCTT -ACGGAAGAAACGGTATCGCCTGTT -ACGGAAGAAACGGTATCGCGGTTT -ACGGAAGAAACGGTATCGGTGGTT -ACGGAAGAAACGGTATCGGCCTTT -ACGGAAGAAACGGTATCGGGTCTT -ACGGAAGAAACGGTATCGACGCTT -ACGGAAGAAACGGTATCGAGCGTT -ACGGAAGAAACGGTATCGTTCGTC -ACGGAAGAAACGGTATCGTCTCTC -ACGGAAGAAACGGTATCGTGGATC -ACGGAAGAAACGGTATCGCACTTC -ACGGAAGAAACGGTATCGGTACTC -ACGGAAGAAACGGTATCGGATGTC -ACGGAAGAAACGGTATCGACAGTC -ACGGAAGAAACGGTATCGTTGCTG -ACGGAAGAAACGGTATCGTCCATG -ACGGAAGAAACGGTATCGTGTGTG -ACGGAAGAAACGGTATCGCTAGTG -ACGGAAGAAACGGTATCGCATCTG -ACGGAAGAAACGGTATCGGAGTTG -ACGGAAGAAACGGTATCGAGACTG -ACGGAAGAAACGGTATCGTCGGTA -ACGGAAGAAACGGTATCGTGCCTA -ACGGAAGAAACGGTATCGCCACTA -ACGGAAGAAACGGTATCGGGAGTA -ACGGAAGAAACGGTATCGTCGTCT -ACGGAAGAAACGGTATCGTGCACT -ACGGAAGAAACGGTATCGCTGACT -ACGGAAGAAACGGTATCGCAACCT -ACGGAAGAAACGGTATCGGCTACT -ACGGAAGAAACGGTATCGGGATCT -ACGGAAGAAACGGTATCGAAGGCT -ACGGAAGAAACGGTATCGTCAACC -ACGGAAGAAACGGTATCGTGTTCC -ACGGAAGAAACGGTATCGATTCCC -ACGGAAGAAACGGTATCGTTCTCG -ACGGAAGAAACGGTATCGTAGACG -ACGGAAGAAACGGTATCGGTAACG -ACGGAAGAAACGGTATCGACTTCG -ACGGAAGAAACGGTATCGTACGCA -ACGGAAGAAACGGTATCGCTTGCA -ACGGAAGAAACGGTATCGCGAACA -ACGGAAGAAACGGTATCGCAGTCA -ACGGAAGAAACGGTATCGGATCCA -ACGGAAGAAACGGTATCGACGACA -ACGGAAGAAACGGTATCGAGCTCA -ACGGAAGAAACGGTATCGTCACGT -ACGGAAGAAACGGTATCGCGTAGT -ACGGAAGAAACGGTATCGGTCAGT -ACGGAAGAAACGGTATCGGAAGGT -ACGGAAGAAACGGTATCGAACCGT -ACGGAAGAAACGGTATCGTTGTGC -ACGGAAGAAACGGTATCGCTAAGC -ACGGAAGAAACGGTATCGACTAGC -ACGGAAGAAACGGTATCGAGATGC -ACGGAAGAAACGGTATCGTGAAGG -ACGGAAGAAACGGTATCGCAATGG -ACGGAAGAAACGGTATCGATGAGG -ACGGAAGAAACGGTATCGAATGGG -ACGGAAGAAACGGTATCGTCCTGA -ACGGAAGAAACGGTATCGTAGCGA -ACGGAAGAAACGGTATCGCACAGA -ACGGAAGAAACGGTATCGGCAAGA -ACGGAAGAAACGGTATCGGGTTGA -ACGGAAGAAACGGTATCGTCCGAT -ACGGAAGAAACGGTATCGTGGCAT -ACGGAAGAAACGGTATCGCGAGAT -ACGGAAGAAACGGTATCGTACCAC -ACGGAAGAAACGGTATCGCAGAAC -ACGGAAGAAACGGTATCGGTCTAC -ACGGAAGAAACGGTATCGACGTAC -ACGGAAGAAACGGTATCGAGTGAC -ACGGAAGAAACGGTATCGCTGTAG -ACGGAAGAAACGGTATCGCCTAAG -ACGGAAGAAACGGTATCGGTTCAG -ACGGAAGAAACGGTATCGGCATAG -ACGGAAGAAACGGTATCGGACAAG -ACGGAAGAAACGGTATCGAAGCAG -ACGGAAGAAACGGTATCGCGTCAA -ACGGAAGAAACGGTATCGGCTGAA -ACGGAAGAAACGGTATCGAGTACG -ACGGAAGAAACGGTATCGATCCGA -ACGGAAGAAACGGTATCGATGGGA -ACGGAAGAAACGGTATCGGTGCAA -ACGGAAGAAACGGTATCGGAGGAA -ACGGAAGAAACGGTATCGCAGGTA -ACGGAAGAAACGGTATCGGACTCT -ACGGAAGAAACGGTATCGAGTCCT -ACGGAAGAAACGGTATCGTAAGCC -ACGGAAGAAACGGTATCGATAGCC -ACGGAAGAAACGGTATCGTAACCG -ACGGAAGAAACGGTATCGATGCCA -ACGGAAGAAACGCTATGCGGAAAC -ACGGAAGAAACGCTATGCAACACC -ACGGAAGAAACGCTATGCATCGAG -ACGGAAGAAACGCTATGCCTCCTT -ACGGAAGAAACGCTATGCCCTGTT -ACGGAAGAAACGCTATGCCGGTTT -ACGGAAGAAACGCTATGCGTGGTT -ACGGAAGAAACGCTATGCGCCTTT -ACGGAAGAAACGCTATGCGGTCTT -ACGGAAGAAACGCTATGCACGCTT -ACGGAAGAAACGCTATGCAGCGTT -ACGGAAGAAACGCTATGCTTCGTC -ACGGAAGAAACGCTATGCTCTCTC -ACGGAAGAAACGCTATGCTGGATC -ACGGAAGAAACGCTATGCCACTTC -ACGGAAGAAACGCTATGCGTACTC -ACGGAAGAAACGCTATGCGATGTC -ACGGAAGAAACGCTATGCACAGTC -ACGGAAGAAACGCTATGCTTGCTG -ACGGAAGAAACGCTATGCTCCATG -ACGGAAGAAACGCTATGCTGTGTG -ACGGAAGAAACGCTATGCCTAGTG -ACGGAAGAAACGCTATGCCATCTG -ACGGAAGAAACGCTATGCGAGTTG -ACGGAAGAAACGCTATGCAGACTG -ACGGAAGAAACGCTATGCTCGGTA -ACGGAAGAAACGCTATGCTGCCTA -ACGGAAGAAACGCTATGCCCACTA -ACGGAAGAAACGCTATGCGGAGTA -ACGGAAGAAACGCTATGCTCGTCT -ACGGAAGAAACGCTATGCTGCACT -ACGGAAGAAACGCTATGCCTGACT -ACGGAAGAAACGCTATGCCAACCT -ACGGAAGAAACGCTATGCGCTACT -ACGGAAGAAACGCTATGCGGATCT -ACGGAAGAAACGCTATGCAAGGCT -ACGGAAGAAACGCTATGCTCAACC -ACGGAAGAAACGCTATGCTGTTCC -ACGGAAGAAACGCTATGCATTCCC -ACGGAAGAAACGCTATGCTTCTCG -ACGGAAGAAACGCTATGCTAGACG -ACGGAAGAAACGCTATGCGTAACG -ACGGAAGAAACGCTATGCACTTCG -ACGGAAGAAACGCTATGCTACGCA -ACGGAAGAAACGCTATGCCTTGCA -ACGGAAGAAACGCTATGCCGAACA -ACGGAAGAAACGCTATGCCAGTCA -ACGGAAGAAACGCTATGCGATCCA -ACGGAAGAAACGCTATGCACGACA -ACGGAAGAAACGCTATGCAGCTCA -ACGGAAGAAACGCTATGCTCACGT -ACGGAAGAAACGCTATGCCGTAGT -ACGGAAGAAACGCTATGCGTCAGT -ACGGAAGAAACGCTATGCGAAGGT -ACGGAAGAAACGCTATGCAACCGT -ACGGAAGAAACGCTATGCTTGTGC -ACGGAAGAAACGCTATGCCTAAGC -ACGGAAGAAACGCTATGCACTAGC -ACGGAAGAAACGCTATGCAGATGC -ACGGAAGAAACGCTATGCTGAAGG -ACGGAAGAAACGCTATGCCAATGG -ACGGAAGAAACGCTATGCATGAGG -ACGGAAGAAACGCTATGCAATGGG -ACGGAAGAAACGCTATGCTCCTGA -ACGGAAGAAACGCTATGCTAGCGA -ACGGAAGAAACGCTATGCCACAGA -ACGGAAGAAACGCTATGCGCAAGA -ACGGAAGAAACGCTATGCGGTTGA -ACGGAAGAAACGCTATGCTCCGAT -ACGGAAGAAACGCTATGCTGGCAT -ACGGAAGAAACGCTATGCCGAGAT -ACGGAAGAAACGCTATGCTACCAC -ACGGAAGAAACGCTATGCCAGAAC -ACGGAAGAAACGCTATGCGTCTAC -ACGGAAGAAACGCTATGCACGTAC -ACGGAAGAAACGCTATGCAGTGAC -ACGGAAGAAACGCTATGCCTGTAG -ACGGAAGAAACGCTATGCCCTAAG -ACGGAAGAAACGCTATGCGTTCAG -ACGGAAGAAACGCTATGCGCATAG -ACGGAAGAAACGCTATGCGACAAG -ACGGAAGAAACGCTATGCAAGCAG -ACGGAAGAAACGCTATGCCGTCAA -ACGGAAGAAACGCTATGCGCTGAA -ACGGAAGAAACGCTATGCAGTACG -ACGGAAGAAACGCTATGCATCCGA -ACGGAAGAAACGCTATGCATGGGA -ACGGAAGAAACGCTATGCGTGCAA -ACGGAAGAAACGCTATGCGAGGAA -ACGGAAGAAACGCTATGCCAGGTA -ACGGAAGAAACGCTATGCGACTCT -ACGGAAGAAACGCTATGCAGTCCT -ACGGAAGAAACGCTATGCTAAGCC -ACGGAAGAAACGCTATGCATAGCC -ACGGAAGAAACGCTATGCTAACCG -ACGGAAGAAACGCTATGCATGCCA -ACGGAAGAAACGCTACCAGGAAAC -ACGGAAGAAACGCTACCAAACACC -ACGGAAGAAACGCTACCAATCGAG -ACGGAAGAAACGCTACCACTCCTT -ACGGAAGAAACGCTACCACCTGTT -ACGGAAGAAACGCTACCACGGTTT -ACGGAAGAAACGCTACCAGTGGTT -ACGGAAGAAACGCTACCAGCCTTT -ACGGAAGAAACGCTACCAGGTCTT -ACGGAAGAAACGCTACCAACGCTT -ACGGAAGAAACGCTACCAAGCGTT -ACGGAAGAAACGCTACCATTCGTC -ACGGAAGAAACGCTACCATCTCTC -ACGGAAGAAACGCTACCATGGATC -ACGGAAGAAACGCTACCACACTTC -ACGGAAGAAACGCTACCAGTACTC -ACGGAAGAAACGCTACCAGATGTC -ACGGAAGAAACGCTACCAACAGTC -ACGGAAGAAACGCTACCATTGCTG -ACGGAAGAAACGCTACCATCCATG -ACGGAAGAAACGCTACCATGTGTG -ACGGAAGAAACGCTACCACTAGTG -ACGGAAGAAACGCTACCACATCTG -ACGGAAGAAACGCTACCAGAGTTG -ACGGAAGAAACGCTACCAAGACTG -ACGGAAGAAACGCTACCATCGGTA -ACGGAAGAAACGCTACCATGCCTA -ACGGAAGAAACGCTACCACCACTA -ACGGAAGAAACGCTACCAGGAGTA -ACGGAAGAAACGCTACCATCGTCT -ACGGAAGAAACGCTACCATGCACT -ACGGAAGAAACGCTACCACTGACT -ACGGAAGAAACGCTACCACAACCT -ACGGAAGAAACGCTACCAGCTACT -ACGGAAGAAACGCTACCAGGATCT -ACGGAAGAAACGCTACCAAAGGCT -ACGGAAGAAACGCTACCATCAACC -ACGGAAGAAACGCTACCATGTTCC -ACGGAAGAAACGCTACCAATTCCC -ACGGAAGAAACGCTACCATTCTCG -ACGGAAGAAACGCTACCATAGACG -ACGGAAGAAACGCTACCAGTAACG -ACGGAAGAAACGCTACCAACTTCG -ACGGAAGAAACGCTACCATACGCA -ACGGAAGAAACGCTACCACTTGCA -ACGGAAGAAACGCTACCACGAACA -ACGGAAGAAACGCTACCACAGTCA -ACGGAAGAAACGCTACCAGATCCA -ACGGAAGAAACGCTACCAACGACA -ACGGAAGAAACGCTACCAAGCTCA -ACGGAAGAAACGCTACCATCACGT -ACGGAAGAAACGCTACCACGTAGT -ACGGAAGAAACGCTACCAGTCAGT -ACGGAAGAAACGCTACCAGAAGGT -ACGGAAGAAACGCTACCAAACCGT -ACGGAAGAAACGCTACCATTGTGC -ACGGAAGAAACGCTACCACTAAGC -ACGGAAGAAACGCTACCAACTAGC -ACGGAAGAAACGCTACCAAGATGC -ACGGAAGAAACGCTACCATGAAGG -ACGGAAGAAACGCTACCACAATGG -ACGGAAGAAACGCTACCAATGAGG -ACGGAAGAAACGCTACCAAATGGG -ACGGAAGAAACGCTACCATCCTGA -ACGGAAGAAACGCTACCATAGCGA -ACGGAAGAAACGCTACCACACAGA -ACGGAAGAAACGCTACCAGCAAGA -ACGGAAGAAACGCTACCAGGTTGA -ACGGAAGAAACGCTACCATCCGAT -ACGGAAGAAACGCTACCATGGCAT -ACGGAAGAAACGCTACCACGAGAT -ACGGAAGAAACGCTACCATACCAC -ACGGAAGAAACGCTACCACAGAAC -ACGGAAGAAACGCTACCAGTCTAC -ACGGAAGAAACGCTACCAACGTAC -ACGGAAGAAACGCTACCAAGTGAC -ACGGAAGAAACGCTACCACTGTAG -ACGGAAGAAACGCTACCACCTAAG -ACGGAAGAAACGCTACCAGTTCAG -ACGGAAGAAACGCTACCAGCATAG -ACGGAAGAAACGCTACCAGACAAG -ACGGAAGAAACGCTACCAAAGCAG -ACGGAAGAAACGCTACCACGTCAA -ACGGAAGAAACGCTACCAGCTGAA -ACGGAAGAAACGCTACCAAGTACG -ACGGAAGAAACGCTACCAATCCGA -ACGGAAGAAACGCTACCAATGGGA -ACGGAAGAAACGCTACCAGTGCAA -ACGGAAGAAACGCTACCAGAGGAA -ACGGAAGAAACGCTACCACAGGTA -ACGGAAGAAACGCTACCAGACTCT -ACGGAAGAAACGCTACCAAGTCCT -ACGGAAGAAACGCTACCATAAGCC -ACGGAAGAAACGCTACCAATAGCC -ACGGAAGAAACGCTACCATAACCG -ACGGAAGAAACGCTACCAATGCCA -ACGGAAGAAACGGTAGGAGGAAAC -ACGGAAGAAACGGTAGGAAACACC -ACGGAAGAAACGGTAGGAATCGAG -ACGGAAGAAACGGTAGGACTCCTT -ACGGAAGAAACGGTAGGACCTGTT -ACGGAAGAAACGGTAGGACGGTTT -ACGGAAGAAACGGTAGGAGTGGTT -ACGGAAGAAACGGTAGGAGCCTTT -ACGGAAGAAACGGTAGGAGGTCTT -ACGGAAGAAACGGTAGGAACGCTT -ACGGAAGAAACGGTAGGAAGCGTT -ACGGAAGAAACGGTAGGATTCGTC -ACGGAAGAAACGGTAGGATCTCTC -ACGGAAGAAACGGTAGGATGGATC -ACGGAAGAAACGGTAGGACACTTC -ACGGAAGAAACGGTAGGAGTACTC -ACGGAAGAAACGGTAGGAGATGTC -ACGGAAGAAACGGTAGGAACAGTC -ACGGAAGAAACGGTAGGATTGCTG -ACGGAAGAAACGGTAGGATCCATG -ACGGAAGAAACGGTAGGATGTGTG -ACGGAAGAAACGGTAGGACTAGTG -ACGGAAGAAACGGTAGGACATCTG -ACGGAAGAAACGGTAGGAGAGTTG -ACGGAAGAAACGGTAGGAAGACTG -ACGGAAGAAACGGTAGGATCGGTA -ACGGAAGAAACGGTAGGATGCCTA -ACGGAAGAAACGGTAGGACCACTA -ACGGAAGAAACGGTAGGAGGAGTA -ACGGAAGAAACGGTAGGATCGTCT -ACGGAAGAAACGGTAGGATGCACT -ACGGAAGAAACGGTAGGACTGACT -ACGGAAGAAACGGTAGGACAACCT -ACGGAAGAAACGGTAGGAGCTACT -ACGGAAGAAACGGTAGGAGGATCT -ACGGAAGAAACGGTAGGAAAGGCT -ACGGAAGAAACGGTAGGATCAACC -ACGGAAGAAACGGTAGGATGTTCC -ACGGAAGAAACGGTAGGAATTCCC -ACGGAAGAAACGGTAGGATTCTCG -ACGGAAGAAACGGTAGGATAGACG -ACGGAAGAAACGGTAGGAGTAACG -ACGGAAGAAACGGTAGGAACTTCG -ACGGAAGAAACGGTAGGATACGCA -ACGGAAGAAACGGTAGGACTTGCA -ACGGAAGAAACGGTAGGACGAACA -ACGGAAGAAACGGTAGGACAGTCA -ACGGAAGAAACGGTAGGAGATCCA -ACGGAAGAAACGGTAGGAACGACA -ACGGAAGAAACGGTAGGAAGCTCA -ACGGAAGAAACGGTAGGATCACGT -ACGGAAGAAACGGTAGGACGTAGT -ACGGAAGAAACGGTAGGAGTCAGT -ACGGAAGAAACGGTAGGAGAAGGT -ACGGAAGAAACGGTAGGAAACCGT -ACGGAAGAAACGGTAGGATTGTGC -ACGGAAGAAACGGTAGGACTAAGC -ACGGAAGAAACGGTAGGAACTAGC -ACGGAAGAAACGGTAGGAAGATGC -ACGGAAGAAACGGTAGGATGAAGG -ACGGAAGAAACGGTAGGACAATGG -ACGGAAGAAACGGTAGGAATGAGG -ACGGAAGAAACGGTAGGAAATGGG -ACGGAAGAAACGGTAGGATCCTGA -ACGGAAGAAACGGTAGGATAGCGA -ACGGAAGAAACGGTAGGACACAGA -ACGGAAGAAACGGTAGGAGCAAGA -ACGGAAGAAACGGTAGGAGGTTGA -ACGGAAGAAACGGTAGGATCCGAT -ACGGAAGAAACGGTAGGATGGCAT -ACGGAAGAAACGGTAGGACGAGAT -ACGGAAGAAACGGTAGGATACCAC -ACGGAAGAAACGGTAGGACAGAAC -ACGGAAGAAACGGTAGGAGTCTAC -ACGGAAGAAACGGTAGGAACGTAC -ACGGAAGAAACGGTAGGAAGTGAC -ACGGAAGAAACGGTAGGACTGTAG -ACGGAAGAAACGGTAGGACCTAAG -ACGGAAGAAACGGTAGGAGTTCAG -ACGGAAGAAACGGTAGGAGCATAG -ACGGAAGAAACGGTAGGAGACAAG -ACGGAAGAAACGGTAGGAAAGCAG -ACGGAAGAAACGGTAGGACGTCAA -ACGGAAGAAACGGTAGGAGCTGAA -ACGGAAGAAACGGTAGGAAGTACG -ACGGAAGAAACGGTAGGAATCCGA -ACGGAAGAAACGGTAGGAATGGGA -ACGGAAGAAACGGTAGGAGTGCAA -ACGGAAGAAACGGTAGGAGAGGAA -ACGGAAGAAACGGTAGGACAGGTA -ACGGAAGAAACGGTAGGAGACTCT -ACGGAAGAAACGGTAGGAAGTCCT -ACGGAAGAAACGGTAGGATAAGCC -ACGGAAGAAACGGTAGGAATAGCC -ACGGAAGAAACGGTAGGATAACCG -ACGGAAGAAACGGTAGGAATGCCA -ACGGAAGAAACGTCTTCGGGAAAC -ACGGAAGAAACGTCTTCGAACACC -ACGGAAGAAACGTCTTCGATCGAG -ACGGAAGAAACGTCTTCGCTCCTT -ACGGAAGAAACGTCTTCGCCTGTT -ACGGAAGAAACGTCTTCGCGGTTT -ACGGAAGAAACGTCTTCGGTGGTT -ACGGAAGAAACGTCTTCGGCCTTT -ACGGAAGAAACGTCTTCGGGTCTT -ACGGAAGAAACGTCTTCGACGCTT -ACGGAAGAAACGTCTTCGAGCGTT -ACGGAAGAAACGTCTTCGTTCGTC -ACGGAAGAAACGTCTTCGTCTCTC -ACGGAAGAAACGTCTTCGTGGATC -ACGGAAGAAACGTCTTCGCACTTC -ACGGAAGAAACGTCTTCGGTACTC -ACGGAAGAAACGTCTTCGGATGTC -ACGGAAGAAACGTCTTCGACAGTC -ACGGAAGAAACGTCTTCGTTGCTG -ACGGAAGAAACGTCTTCGTCCATG -ACGGAAGAAACGTCTTCGTGTGTG -ACGGAAGAAACGTCTTCGCTAGTG -ACGGAAGAAACGTCTTCGCATCTG -ACGGAAGAAACGTCTTCGGAGTTG -ACGGAAGAAACGTCTTCGAGACTG -ACGGAAGAAACGTCTTCGTCGGTA -ACGGAAGAAACGTCTTCGTGCCTA -ACGGAAGAAACGTCTTCGCCACTA -ACGGAAGAAACGTCTTCGGGAGTA -ACGGAAGAAACGTCTTCGTCGTCT -ACGGAAGAAACGTCTTCGTGCACT -ACGGAAGAAACGTCTTCGCTGACT -ACGGAAGAAACGTCTTCGCAACCT -ACGGAAGAAACGTCTTCGGCTACT -ACGGAAGAAACGTCTTCGGGATCT -ACGGAAGAAACGTCTTCGAAGGCT -ACGGAAGAAACGTCTTCGTCAACC -ACGGAAGAAACGTCTTCGTGTTCC -ACGGAAGAAACGTCTTCGATTCCC -ACGGAAGAAACGTCTTCGTTCTCG -ACGGAAGAAACGTCTTCGTAGACG -ACGGAAGAAACGTCTTCGGTAACG -ACGGAAGAAACGTCTTCGACTTCG -ACGGAAGAAACGTCTTCGTACGCA -ACGGAAGAAACGTCTTCGCTTGCA -ACGGAAGAAACGTCTTCGCGAACA -ACGGAAGAAACGTCTTCGCAGTCA -ACGGAAGAAACGTCTTCGGATCCA -ACGGAAGAAACGTCTTCGACGACA -ACGGAAGAAACGTCTTCGAGCTCA -ACGGAAGAAACGTCTTCGTCACGT -ACGGAAGAAACGTCTTCGCGTAGT -ACGGAAGAAACGTCTTCGGTCAGT -ACGGAAGAAACGTCTTCGGAAGGT -ACGGAAGAAACGTCTTCGAACCGT -ACGGAAGAAACGTCTTCGTTGTGC -ACGGAAGAAACGTCTTCGCTAAGC -ACGGAAGAAACGTCTTCGACTAGC -ACGGAAGAAACGTCTTCGAGATGC -ACGGAAGAAACGTCTTCGTGAAGG -ACGGAAGAAACGTCTTCGCAATGG -ACGGAAGAAACGTCTTCGATGAGG -ACGGAAGAAACGTCTTCGAATGGG -ACGGAAGAAACGTCTTCGTCCTGA -ACGGAAGAAACGTCTTCGTAGCGA -ACGGAAGAAACGTCTTCGCACAGA -ACGGAAGAAACGTCTTCGGCAAGA -ACGGAAGAAACGTCTTCGGGTTGA -ACGGAAGAAACGTCTTCGTCCGAT -ACGGAAGAAACGTCTTCGTGGCAT -ACGGAAGAAACGTCTTCGCGAGAT -ACGGAAGAAACGTCTTCGTACCAC -ACGGAAGAAACGTCTTCGCAGAAC -ACGGAAGAAACGTCTTCGGTCTAC -ACGGAAGAAACGTCTTCGACGTAC -ACGGAAGAAACGTCTTCGAGTGAC -ACGGAAGAAACGTCTTCGCTGTAG -ACGGAAGAAACGTCTTCGCCTAAG -ACGGAAGAAACGTCTTCGGTTCAG -ACGGAAGAAACGTCTTCGGCATAG -ACGGAAGAAACGTCTTCGGACAAG -ACGGAAGAAACGTCTTCGAAGCAG -ACGGAAGAAACGTCTTCGCGTCAA -ACGGAAGAAACGTCTTCGGCTGAA -ACGGAAGAAACGTCTTCGAGTACG -ACGGAAGAAACGTCTTCGATCCGA -ACGGAAGAAACGTCTTCGATGGGA -ACGGAAGAAACGTCTTCGGTGCAA -ACGGAAGAAACGTCTTCGGAGGAA -ACGGAAGAAACGTCTTCGCAGGTA -ACGGAAGAAACGTCTTCGGACTCT -ACGGAAGAAACGTCTTCGAGTCCT -ACGGAAGAAACGTCTTCGTAAGCC -ACGGAAGAAACGTCTTCGATAGCC -ACGGAAGAAACGTCTTCGTAACCG -ACGGAAGAAACGTCTTCGATGCCA -ACGGAAGAAACGACTTGCGGAAAC -ACGGAAGAAACGACTTGCAACACC -ACGGAAGAAACGACTTGCATCGAG -ACGGAAGAAACGACTTGCCTCCTT -ACGGAAGAAACGACTTGCCCTGTT -ACGGAAGAAACGACTTGCCGGTTT -ACGGAAGAAACGACTTGCGTGGTT -ACGGAAGAAACGACTTGCGCCTTT -ACGGAAGAAACGACTTGCGGTCTT -ACGGAAGAAACGACTTGCACGCTT -ACGGAAGAAACGACTTGCAGCGTT -ACGGAAGAAACGACTTGCTTCGTC -ACGGAAGAAACGACTTGCTCTCTC -ACGGAAGAAACGACTTGCTGGATC -ACGGAAGAAACGACTTGCCACTTC -ACGGAAGAAACGACTTGCGTACTC -ACGGAAGAAACGACTTGCGATGTC -ACGGAAGAAACGACTTGCACAGTC -ACGGAAGAAACGACTTGCTTGCTG -ACGGAAGAAACGACTTGCTCCATG -ACGGAAGAAACGACTTGCTGTGTG -ACGGAAGAAACGACTTGCCTAGTG -ACGGAAGAAACGACTTGCCATCTG -ACGGAAGAAACGACTTGCGAGTTG -ACGGAAGAAACGACTTGCAGACTG -ACGGAAGAAACGACTTGCTCGGTA -ACGGAAGAAACGACTTGCTGCCTA -ACGGAAGAAACGACTTGCCCACTA -ACGGAAGAAACGACTTGCGGAGTA -ACGGAAGAAACGACTTGCTCGTCT -ACGGAAGAAACGACTTGCTGCACT -ACGGAAGAAACGACTTGCCTGACT -ACGGAAGAAACGACTTGCCAACCT -ACGGAAGAAACGACTTGCGCTACT -ACGGAAGAAACGACTTGCGGATCT -ACGGAAGAAACGACTTGCAAGGCT -ACGGAAGAAACGACTTGCTCAACC -ACGGAAGAAACGACTTGCTGTTCC -ACGGAAGAAACGACTTGCATTCCC -ACGGAAGAAACGACTTGCTTCTCG -ACGGAAGAAACGACTTGCTAGACG -ACGGAAGAAACGACTTGCGTAACG -ACGGAAGAAACGACTTGCACTTCG -ACGGAAGAAACGACTTGCTACGCA -ACGGAAGAAACGACTTGCCTTGCA -ACGGAAGAAACGACTTGCCGAACA -ACGGAAGAAACGACTTGCCAGTCA -ACGGAAGAAACGACTTGCGATCCA -ACGGAAGAAACGACTTGCACGACA -ACGGAAGAAACGACTTGCAGCTCA -ACGGAAGAAACGACTTGCTCACGT -ACGGAAGAAACGACTTGCCGTAGT -ACGGAAGAAACGACTTGCGTCAGT -ACGGAAGAAACGACTTGCGAAGGT -ACGGAAGAAACGACTTGCAACCGT -ACGGAAGAAACGACTTGCTTGTGC -ACGGAAGAAACGACTTGCCTAAGC -ACGGAAGAAACGACTTGCACTAGC -ACGGAAGAAACGACTTGCAGATGC -ACGGAAGAAACGACTTGCTGAAGG -ACGGAAGAAACGACTTGCCAATGG -ACGGAAGAAACGACTTGCATGAGG -ACGGAAGAAACGACTTGCAATGGG -ACGGAAGAAACGACTTGCTCCTGA -ACGGAAGAAACGACTTGCTAGCGA -ACGGAAGAAACGACTTGCCACAGA -ACGGAAGAAACGACTTGCGCAAGA -ACGGAAGAAACGACTTGCGGTTGA -ACGGAAGAAACGACTTGCTCCGAT -ACGGAAGAAACGACTTGCTGGCAT -ACGGAAGAAACGACTTGCCGAGAT -ACGGAAGAAACGACTTGCTACCAC -ACGGAAGAAACGACTTGCCAGAAC -ACGGAAGAAACGACTTGCGTCTAC -ACGGAAGAAACGACTTGCACGTAC -ACGGAAGAAACGACTTGCAGTGAC -ACGGAAGAAACGACTTGCCTGTAG -ACGGAAGAAACGACTTGCCCTAAG -ACGGAAGAAACGACTTGCGTTCAG -ACGGAAGAAACGACTTGCGCATAG -ACGGAAGAAACGACTTGCGACAAG -ACGGAAGAAACGACTTGCAAGCAG -ACGGAAGAAACGACTTGCCGTCAA -ACGGAAGAAACGACTTGCGCTGAA -ACGGAAGAAACGACTTGCAGTACG -ACGGAAGAAACGACTTGCATCCGA -ACGGAAGAAACGACTTGCATGGGA -ACGGAAGAAACGACTTGCGTGCAA -ACGGAAGAAACGACTTGCGAGGAA -ACGGAAGAAACGACTTGCCAGGTA -ACGGAAGAAACGACTTGCGACTCT -ACGGAAGAAACGACTTGCAGTCCT -ACGGAAGAAACGACTTGCTAAGCC -ACGGAAGAAACGACTTGCATAGCC -ACGGAAGAAACGACTTGCTAACCG -ACGGAAGAAACGACTTGCATGCCA -ACGGAAGAAACGACTCTGGGAAAC -ACGGAAGAAACGACTCTGAACACC -ACGGAAGAAACGACTCTGATCGAG -ACGGAAGAAACGACTCTGCTCCTT -ACGGAAGAAACGACTCTGCCTGTT -ACGGAAGAAACGACTCTGCGGTTT -ACGGAAGAAACGACTCTGGTGGTT -ACGGAAGAAACGACTCTGGCCTTT -ACGGAAGAAACGACTCTGGGTCTT -ACGGAAGAAACGACTCTGACGCTT -ACGGAAGAAACGACTCTGAGCGTT -ACGGAAGAAACGACTCTGTTCGTC -ACGGAAGAAACGACTCTGTCTCTC -ACGGAAGAAACGACTCTGTGGATC -ACGGAAGAAACGACTCTGCACTTC -ACGGAAGAAACGACTCTGGTACTC -ACGGAAGAAACGACTCTGGATGTC -ACGGAAGAAACGACTCTGACAGTC -ACGGAAGAAACGACTCTGTTGCTG -ACGGAAGAAACGACTCTGTCCATG -ACGGAAGAAACGACTCTGTGTGTG -ACGGAAGAAACGACTCTGCTAGTG -ACGGAAGAAACGACTCTGCATCTG -ACGGAAGAAACGACTCTGGAGTTG -ACGGAAGAAACGACTCTGAGACTG -ACGGAAGAAACGACTCTGTCGGTA -ACGGAAGAAACGACTCTGTGCCTA -ACGGAAGAAACGACTCTGCCACTA -ACGGAAGAAACGACTCTGGGAGTA -ACGGAAGAAACGACTCTGTCGTCT -ACGGAAGAAACGACTCTGTGCACT -ACGGAAGAAACGACTCTGCTGACT -ACGGAAGAAACGACTCTGCAACCT -ACGGAAGAAACGACTCTGGCTACT -ACGGAAGAAACGACTCTGGGATCT -ACGGAAGAAACGACTCTGAAGGCT -ACGGAAGAAACGACTCTGTCAACC -ACGGAAGAAACGACTCTGTGTTCC -ACGGAAGAAACGACTCTGATTCCC -ACGGAAGAAACGACTCTGTTCTCG -ACGGAAGAAACGACTCTGTAGACG -ACGGAAGAAACGACTCTGGTAACG -ACGGAAGAAACGACTCTGACTTCG -ACGGAAGAAACGACTCTGTACGCA -ACGGAAGAAACGACTCTGCTTGCA -ACGGAAGAAACGACTCTGCGAACA -ACGGAAGAAACGACTCTGCAGTCA -ACGGAAGAAACGACTCTGGATCCA -ACGGAAGAAACGACTCTGACGACA -ACGGAAGAAACGACTCTGAGCTCA -ACGGAAGAAACGACTCTGTCACGT -ACGGAAGAAACGACTCTGCGTAGT -ACGGAAGAAACGACTCTGGTCAGT -ACGGAAGAAACGACTCTGGAAGGT -ACGGAAGAAACGACTCTGAACCGT -ACGGAAGAAACGACTCTGTTGTGC -ACGGAAGAAACGACTCTGCTAAGC -ACGGAAGAAACGACTCTGACTAGC -ACGGAAGAAACGACTCTGAGATGC -ACGGAAGAAACGACTCTGTGAAGG -ACGGAAGAAACGACTCTGCAATGG -ACGGAAGAAACGACTCTGATGAGG -ACGGAAGAAACGACTCTGAATGGG -ACGGAAGAAACGACTCTGTCCTGA -ACGGAAGAAACGACTCTGTAGCGA -ACGGAAGAAACGACTCTGCACAGA -ACGGAAGAAACGACTCTGGCAAGA -ACGGAAGAAACGACTCTGGGTTGA -ACGGAAGAAACGACTCTGTCCGAT -ACGGAAGAAACGACTCTGTGGCAT -ACGGAAGAAACGACTCTGCGAGAT -ACGGAAGAAACGACTCTGTACCAC -ACGGAAGAAACGACTCTGCAGAAC -ACGGAAGAAACGACTCTGGTCTAC -ACGGAAGAAACGACTCTGACGTAC -ACGGAAGAAACGACTCTGAGTGAC -ACGGAAGAAACGACTCTGCTGTAG -ACGGAAGAAACGACTCTGCCTAAG -ACGGAAGAAACGACTCTGGTTCAG -ACGGAAGAAACGACTCTGGCATAG -ACGGAAGAAACGACTCTGGACAAG -ACGGAAGAAACGACTCTGAAGCAG -ACGGAAGAAACGACTCTGCGTCAA -ACGGAAGAAACGACTCTGGCTGAA -ACGGAAGAAACGACTCTGAGTACG -ACGGAAGAAACGACTCTGATCCGA -ACGGAAGAAACGACTCTGATGGGA -ACGGAAGAAACGACTCTGGTGCAA -ACGGAAGAAACGACTCTGGAGGAA -ACGGAAGAAACGACTCTGCAGGTA -ACGGAAGAAACGACTCTGGACTCT -ACGGAAGAAACGACTCTGAGTCCT -ACGGAAGAAACGACTCTGTAAGCC -ACGGAAGAAACGACTCTGATAGCC -ACGGAAGAAACGACTCTGTAACCG -ACGGAAGAAACGACTCTGATGCCA -ACGGAAGAAACGCCTCAAGGAAAC -ACGGAAGAAACGCCTCAAAACACC -ACGGAAGAAACGCCTCAAATCGAG -ACGGAAGAAACGCCTCAACTCCTT -ACGGAAGAAACGCCTCAACCTGTT -ACGGAAGAAACGCCTCAACGGTTT -ACGGAAGAAACGCCTCAAGTGGTT -ACGGAAGAAACGCCTCAAGCCTTT -ACGGAAGAAACGCCTCAAGGTCTT -ACGGAAGAAACGCCTCAAACGCTT -ACGGAAGAAACGCCTCAAAGCGTT -ACGGAAGAAACGCCTCAATTCGTC -ACGGAAGAAACGCCTCAATCTCTC -ACGGAAGAAACGCCTCAATGGATC -ACGGAAGAAACGCCTCAACACTTC -ACGGAAGAAACGCCTCAAGTACTC -ACGGAAGAAACGCCTCAAGATGTC -ACGGAAGAAACGCCTCAAACAGTC -ACGGAAGAAACGCCTCAATTGCTG -ACGGAAGAAACGCCTCAATCCATG -ACGGAAGAAACGCCTCAATGTGTG -ACGGAAGAAACGCCTCAACTAGTG -ACGGAAGAAACGCCTCAACATCTG -ACGGAAGAAACGCCTCAAGAGTTG -ACGGAAGAAACGCCTCAAAGACTG -ACGGAAGAAACGCCTCAATCGGTA -ACGGAAGAAACGCCTCAATGCCTA -ACGGAAGAAACGCCTCAACCACTA -ACGGAAGAAACGCCTCAAGGAGTA -ACGGAAGAAACGCCTCAATCGTCT -ACGGAAGAAACGCCTCAATGCACT -ACGGAAGAAACGCCTCAACTGACT -ACGGAAGAAACGCCTCAACAACCT -ACGGAAGAAACGCCTCAAGCTACT -ACGGAAGAAACGCCTCAAGGATCT -ACGGAAGAAACGCCTCAAAAGGCT -ACGGAAGAAACGCCTCAATCAACC -ACGGAAGAAACGCCTCAATGTTCC -ACGGAAGAAACGCCTCAAATTCCC -ACGGAAGAAACGCCTCAATTCTCG -ACGGAAGAAACGCCTCAATAGACG -ACGGAAGAAACGCCTCAAGTAACG -ACGGAAGAAACGCCTCAAACTTCG -ACGGAAGAAACGCCTCAATACGCA -ACGGAAGAAACGCCTCAACTTGCA -ACGGAAGAAACGCCTCAACGAACA -ACGGAAGAAACGCCTCAACAGTCA -ACGGAAGAAACGCCTCAAGATCCA -ACGGAAGAAACGCCTCAAACGACA -ACGGAAGAAACGCCTCAAAGCTCA -ACGGAAGAAACGCCTCAATCACGT -ACGGAAGAAACGCCTCAACGTAGT -ACGGAAGAAACGCCTCAAGTCAGT -ACGGAAGAAACGCCTCAAGAAGGT -ACGGAAGAAACGCCTCAAAACCGT -ACGGAAGAAACGCCTCAATTGTGC -ACGGAAGAAACGCCTCAACTAAGC -ACGGAAGAAACGCCTCAAACTAGC -ACGGAAGAAACGCCTCAAAGATGC -ACGGAAGAAACGCCTCAATGAAGG -ACGGAAGAAACGCCTCAACAATGG -ACGGAAGAAACGCCTCAAATGAGG -ACGGAAGAAACGCCTCAAAATGGG -ACGGAAGAAACGCCTCAATCCTGA -ACGGAAGAAACGCCTCAATAGCGA -ACGGAAGAAACGCCTCAACACAGA -ACGGAAGAAACGCCTCAAGCAAGA -ACGGAAGAAACGCCTCAAGGTTGA -ACGGAAGAAACGCCTCAATCCGAT -ACGGAAGAAACGCCTCAATGGCAT -ACGGAAGAAACGCCTCAACGAGAT -ACGGAAGAAACGCCTCAATACCAC -ACGGAAGAAACGCCTCAACAGAAC -ACGGAAGAAACGCCTCAAGTCTAC -ACGGAAGAAACGCCTCAAACGTAC -ACGGAAGAAACGCCTCAAAGTGAC -ACGGAAGAAACGCCTCAACTGTAG -ACGGAAGAAACGCCTCAACCTAAG -ACGGAAGAAACGCCTCAAGTTCAG -ACGGAAGAAACGCCTCAAGCATAG -ACGGAAGAAACGCCTCAAGACAAG -ACGGAAGAAACGCCTCAAAAGCAG -ACGGAAGAAACGCCTCAACGTCAA -ACGGAAGAAACGCCTCAAGCTGAA -ACGGAAGAAACGCCTCAAAGTACG -ACGGAAGAAACGCCTCAAATCCGA -ACGGAAGAAACGCCTCAAATGGGA -ACGGAAGAAACGCCTCAAGTGCAA -ACGGAAGAAACGCCTCAAGAGGAA -ACGGAAGAAACGCCTCAACAGGTA -ACGGAAGAAACGCCTCAAGACTCT -ACGGAAGAAACGCCTCAAAGTCCT -ACGGAAGAAACGCCTCAATAAGCC -ACGGAAGAAACGCCTCAAATAGCC -ACGGAAGAAACGCCTCAATAACCG -ACGGAAGAAACGCCTCAAATGCCA -ACGGAAGAAACGACTGCTGGAAAC -ACGGAAGAAACGACTGCTAACACC -ACGGAAGAAACGACTGCTATCGAG -ACGGAAGAAACGACTGCTCTCCTT -ACGGAAGAAACGACTGCTCCTGTT -ACGGAAGAAACGACTGCTCGGTTT -ACGGAAGAAACGACTGCTGTGGTT -ACGGAAGAAACGACTGCTGCCTTT -ACGGAAGAAACGACTGCTGGTCTT -ACGGAAGAAACGACTGCTACGCTT -ACGGAAGAAACGACTGCTAGCGTT -ACGGAAGAAACGACTGCTTTCGTC -ACGGAAGAAACGACTGCTTCTCTC -ACGGAAGAAACGACTGCTTGGATC -ACGGAAGAAACGACTGCTCACTTC -ACGGAAGAAACGACTGCTGTACTC -ACGGAAGAAACGACTGCTGATGTC -ACGGAAGAAACGACTGCTACAGTC -ACGGAAGAAACGACTGCTTTGCTG -ACGGAAGAAACGACTGCTTCCATG -ACGGAAGAAACGACTGCTTGTGTG -ACGGAAGAAACGACTGCTCTAGTG -ACGGAAGAAACGACTGCTCATCTG -ACGGAAGAAACGACTGCTGAGTTG -ACGGAAGAAACGACTGCTAGACTG -ACGGAAGAAACGACTGCTTCGGTA -ACGGAAGAAACGACTGCTTGCCTA -ACGGAAGAAACGACTGCTCCACTA -ACGGAAGAAACGACTGCTGGAGTA -ACGGAAGAAACGACTGCTTCGTCT -ACGGAAGAAACGACTGCTTGCACT -ACGGAAGAAACGACTGCTCTGACT -ACGGAAGAAACGACTGCTCAACCT -ACGGAAGAAACGACTGCTGCTACT -ACGGAAGAAACGACTGCTGGATCT -ACGGAAGAAACGACTGCTAAGGCT -ACGGAAGAAACGACTGCTTCAACC -ACGGAAGAAACGACTGCTTGTTCC -ACGGAAGAAACGACTGCTATTCCC -ACGGAAGAAACGACTGCTTTCTCG -ACGGAAGAAACGACTGCTTAGACG -ACGGAAGAAACGACTGCTGTAACG -ACGGAAGAAACGACTGCTACTTCG -ACGGAAGAAACGACTGCTTACGCA -ACGGAAGAAACGACTGCTCTTGCA -ACGGAAGAAACGACTGCTCGAACA -ACGGAAGAAACGACTGCTCAGTCA -ACGGAAGAAACGACTGCTGATCCA -ACGGAAGAAACGACTGCTACGACA -ACGGAAGAAACGACTGCTAGCTCA -ACGGAAGAAACGACTGCTTCACGT -ACGGAAGAAACGACTGCTCGTAGT -ACGGAAGAAACGACTGCTGTCAGT -ACGGAAGAAACGACTGCTGAAGGT -ACGGAAGAAACGACTGCTAACCGT -ACGGAAGAAACGACTGCTTTGTGC -ACGGAAGAAACGACTGCTCTAAGC -ACGGAAGAAACGACTGCTACTAGC -ACGGAAGAAACGACTGCTAGATGC -ACGGAAGAAACGACTGCTTGAAGG -ACGGAAGAAACGACTGCTCAATGG -ACGGAAGAAACGACTGCTATGAGG -ACGGAAGAAACGACTGCTAATGGG -ACGGAAGAAACGACTGCTTCCTGA -ACGGAAGAAACGACTGCTTAGCGA -ACGGAAGAAACGACTGCTCACAGA -ACGGAAGAAACGACTGCTGCAAGA -ACGGAAGAAACGACTGCTGGTTGA -ACGGAAGAAACGACTGCTTCCGAT -ACGGAAGAAACGACTGCTTGGCAT -ACGGAAGAAACGACTGCTCGAGAT -ACGGAAGAAACGACTGCTTACCAC -ACGGAAGAAACGACTGCTCAGAAC -ACGGAAGAAACGACTGCTGTCTAC -ACGGAAGAAACGACTGCTACGTAC -ACGGAAGAAACGACTGCTAGTGAC -ACGGAAGAAACGACTGCTCTGTAG -ACGGAAGAAACGACTGCTCCTAAG -ACGGAAGAAACGACTGCTGTTCAG -ACGGAAGAAACGACTGCTGCATAG -ACGGAAGAAACGACTGCTGACAAG -ACGGAAGAAACGACTGCTAAGCAG -ACGGAAGAAACGACTGCTCGTCAA -ACGGAAGAAACGACTGCTGCTGAA -ACGGAAGAAACGACTGCTAGTACG -ACGGAAGAAACGACTGCTATCCGA -ACGGAAGAAACGACTGCTATGGGA -ACGGAAGAAACGACTGCTGTGCAA -ACGGAAGAAACGACTGCTGAGGAA -ACGGAAGAAACGACTGCTCAGGTA -ACGGAAGAAACGACTGCTGACTCT -ACGGAAGAAACGACTGCTAGTCCT -ACGGAAGAAACGACTGCTTAAGCC -ACGGAAGAAACGACTGCTATAGCC -ACGGAAGAAACGACTGCTTAACCG -ACGGAAGAAACGACTGCTATGCCA -ACGGAAGAAACGTCTGGAGGAAAC -ACGGAAGAAACGTCTGGAAACACC -ACGGAAGAAACGTCTGGAATCGAG -ACGGAAGAAACGTCTGGACTCCTT -ACGGAAGAAACGTCTGGACCTGTT -ACGGAAGAAACGTCTGGACGGTTT -ACGGAAGAAACGTCTGGAGTGGTT -ACGGAAGAAACGTCTGGAGCCTTT -ACGGAAGAAACGTCTGGAGGTCTT -ACGGAAGAAACGTCTGGAACGCTT -ACGGAAGAAACGTCTGGAAGCGTT -ACGGAAGAAACGTCTGGATTCGTC -ACGGAAGAAACGTCTGGATCTCTC -ACGGAAGAAACGTCTGGATGGATC -ACGGAAGAAACGTCTGGACACTTC -ACGGAAGAAACGTCTGGAGTACTC -ACGGAAGAAACGTCTGGAGATGTC -ACGGAAGAAACGTCTGGAACAGTC -ACGGAAGAAACGTCTGGATTGCTG -ACGGAAGAAACGTCTGGATCCATG -ACGGAAGAAACGTCTGGATGTGTG -ACGGAAGAAACGTCTGGACTAGTG -ACGGAAGAAACGTCTGGACATCTG -ACGGAAGAAACGTCTGGAGAGTTG -ACGGAAGAAACGTCTGGAAGACTG -ACGGAAGAAACGTCTGGATCGGTA -ACGGAAGAAACGTCTGGATGCCTA -ACGGAAGAAACGTCTGGACCACTA -ACGGAAGAAACGTCTGGAGGAGTA -ACGGAAGAAACGTCTGGATCGTCT -ACGGAAGAAACGTCTGGATGCACT -ACGGAAGAAACGTCTGGACTGACT -ACGGAAGAAACGTCTGGACAACCT -ACGGAAGAAACGTCTGGAGCTACT -ACGGAAGAAACGTCTGGAGGATCT -ACGGAAGAAACGTCTGGAAAGGCT -ACGGAAGAAACGTCTGGATCAACC -ACGGAAGAAACGTCTGGATGTTCC -ACGGAAGAAACGTCTGGAATTCCC -ACGGAAGAAACGTCTGGATTCTCG -ACGGAAGAAACGTCTGGATAGACG -ACGGAAGAAACGTCTGGAGTAACG -ACGGAAGAAACGTCTGGAACTTCG -ACGGAAGAAACGTCTGGATACGCA -ACGGAAGAAACGTCTGGACTTGCA -ACGGAAGAAACGTCTGGACGAACA -ACGGAAGAAACGTCTGGACAGTCA -ACGGAAGAAACGTCTGGAGATCCA -ACGGAAGAAACGTCTGGAACGACA -ACGGAAGAAACGTCTGGAAGCTCA -ACGGAAGAAACGTCTGGATCACGT -ACGGAAGAAACGTCTGGACGTAGT -ACGGAAGAAACGTCTGGAGTCAGT -ACGGAAGAAACGTCTGGAGAAGGT -ACGGAAGAAACGTCTGGAAACCGT -ACGGAAGAAACGTCTGGATTGTGC -ACGGAAGAAACGTCTGGACTAAGC -ACGGAAGAAACGTCTGGAACTAGC -ACGGAAGAAACGTCTGGAAGATGC -ACGGAAGAAACGTCTGGATGAAGG -ACGGAAGAAACGTCTGGACAATGG -ACGGAAGAAACGTCTGGAATGAGG -ACGGAAGAAACGTCTGGAAATGGG -ACGGAAGAAACGTCTGGATCCTGA -ACGGAAGAAACGTCTGGATAGCGA -ACGGAAGAAACGTCTGGACACAGA -ACGGAAGAAACGTCTGGAGCAAGA -ACGGAAGAAACGTCTGGAGGTTGA -ACGGAAGAAACGTCTGGATCCGAT -ACGGAAGAAACGTCTGGATGGCAT -ACGGAAGAAACGTCTGGACGAGAT -ACGGAAGAAACGTCTGGATACCAC -ACGGAAGAAACGTCTGGACAGAAC -ACGGAAGAAACGTCTGGAGTCTAC -ACGGAAGAAACGTCTGGAACGTAC -ACGGAAGAAACGTCTGGAAGTGAC -ACGGAAGAAACGTCTGGACTGTAG -ACGGAAGAAACGTCTGGACCTAAG -ACGGAAGAAACGTCTGGAGTTCAG -ACGGAAGAAACGTCTGGAGCATAG -ACGGAAGAAACGTCTGGAGACAAG -ACGGAAGAAACGTCTGGAAAGCAG -ACGGAAGAAACGTCTGGACGTCAA -ACGGAAGAAACGTCTGGAGCTGAA -ACGGAAGAAACGTCTGGAAGTACG -ACGGAAGAAACGTCTGGAATCCGA -ACGGAAGAAACGTCTGGAATGGGA -ACGGAAGAAACGTCTGGAGTGCAA -ACGGAAGAAACGTCTGGAGAGGAA -ACGGAAGAAACGTCTGGACAGGTA -ACGGAAGAAACGTCTGGAGACTCT -ACGGAAGAAACGTCTGGAAGTCCT -ACGGAAGAAACGTCTGGATAAGCC -ACGGAAGAAACGTCTGGAATAGCC -ACGGAAGAAACGTCTGGATAACCG -ACGGAAGAAACGTCTGGAATGCCA -ACGGAAGAAACGGCTAAGGGAAAC -ACGGAAGAAACGGCTAAGAACACC -ACGGAAGAAACGGCTAAGATCGAG -ACGGAAGAAACGGCTAAGCTCCTT -ACGGAAGAAACGGCTAAGCCTGTT -ACGGAAGAAACGGCTAAGCGGTTT -ACGGAAGAAACGGCTAAGGTGGTT -ACGGAAGAAACGGCTAAGGCCTTT -ACGGAAGAAACGGCTAAGGGTCTT -ACGGAAGAAACGGCTAAGACGCTT -ACGGAAGAAACGGCTAAGAGCGTT -ACGGAAGAAACGGCTAAGTTCGTC -ACGGAAGAAACGGCTAAGTCTCTC -ACGGAAGAAACGGCTAAGTGGATC -ACGGAAGAAACGGCTAAGCACTTC -ACGGAAGAAACGGCTAAGGTACTC -ACGGAAGAAACGGCTAAGGATGTC -ACGGAAGAAACGGCTAAGACAGTC -ACGGAAGAAACGGCTAAGTTGCTG -ACGGAAGAAACGGCTAAGTCCATG -ACGGAAGAAACGGCTAAGTGTGTG -ACGGAAGAAACGGCTAAGCTAGTG -ACGGAAGAAACGGCTAAGCATCTG -ACGGAAGAAACGGCTAAGGAGTTG -ACGGAAGAAACGGCTAAGAGACTG -ACGGAAGAAACGGCTAAGTCGGTA -ACGGAAGAAACGGCTAAGTGCCTA -ACGGAAGAAACGGCTAAGCCACTA -ACGGAAGAAACGGCTAAGGGAGTA -ACGGAAGAAACGGCTAAGTCGTCT -ACGGAAGAAACGGCTAAGTGCACT -ACGGAAGAAACGGCTAAGCTGACT -ACGGAAGAAACGGCTAAGCAACCT -ACGGAAGAAACGGCTAAGGCTACT -ACGGAAGAAACGGCTAAGGGATCT -ACGGAAGAAACGGCTAAGAAGGCT -ACGGAAGAAACGGCTAAGTCAACC -ACGGAAGAAACGGCTAAGTGTTCC -ACGGAAGAAACGGCTAAGATTCCC -ACGGAAGAAACGGCTAAGTTCTCG -ACGGAAGAAACGGCTAAGTAGACG -ACGGAAGAAACGGCTAAGGTAACG -ACGGAAGAAACGGCTAAGACTTCG -ACGGAAGAAACGGCTAAGTACGCA -ACGGAAGAAACGGCTAAGCTTGCA -ACGGAAGAAACGGCTAAGCGAACA -ACGGAAGAAACGGCTAAGCAGTCA -ACGGAAGAAACGGCTAAGGATCCA -ACGGAAGAAACGGCTAAGACGACA -ACGGAAGAAACGGCTAAGAGCTCA -ACGGAAGAAACGGCTAAGTCACGT -ACGGAAGAAACGGCTAAGCGTAGT -ACGGAAGAAACGGCTAAGGTCAGT -ACGGAAGAAACGGCTAAGGAAGGT -ACGGAAGAAACGGCTAAGAACCGT -ACGGAAGAAACGGCTAAGTTGTGC -ACGGAAGAAACGGCTAAGCTAAGC -ACGGAAGAAACGGCTAAGACTAGC -ACGGAAGAAACGGCTAAGAGATGC -ACGGAAGAAACGGCTAAGTGAAGG -ACGGAAGAAACGGCTAAGCAATGG -ACGGAAGAAACGGCTAAGATGAGG -ACGGAAGAAACGGCTAAGAATGGG -ACGGAAGAAACGGCTAAGTCCTGA -ACGGAAGAAACGGCTAAGTAGCGA -ACGGAAGAAACGGCTAAGCACAGA -ACGGAAGAAACGGCTAAGGCAAGA -ACGGAAGAAACGGCTAAGGGTTGA -ACGGAAGAAACGGCTAAGTCCGAT -ACGGAAGAAACGGCTAAGTGGCAT -ACGGAAGAAACGGCTAAGCGAGAT -ACGGAAGAAACGGCTAAGTACCAC -ACGGAAGAAACGGCTAAGCAGAAC -ACGGAAGAAACGGCTAAGGTCTAC -ACGGAAGAAACGGCTAAGACGTAC -ACGGAAGAAACGGCTAAGAGTGAC -ACGGAAGAAACGGCTAAGCTGTAG -ACGGAAGAAACGGCTAAGCCTAAG -ACGGAAGAAACGGCTAAGGTTCAG -ACGGAAGAAACGGCTAAGGCATAG -ACGGAAGAAACGGCTAAGGACAAG -ACGGAAGAAACGGCTAAGAAGCAG -ACGGAAGAAACGGCTAAGCGTCAA -ACGGAAGAAACGGCTAAGGCTGAA -ACGGAAGAAACGGCTAAGAGTACG -ACGGAAGAAACGGCTAAGATCCGA -ACGGAAGAAACGGCTAAGATGGGA -ACGGAAGAAACGGCTAAGGTGCAA -ACGGAAGAAACGGCTAAGGAGGAA -ACGGAAGAAACGGCTAAGCAGGTA -ACGGAAGAAACGGCTAAGGACTCT -ACGGAAGAAACGGCTAAGAGTCCT -ACGGAAGAAACGGCTAAGTAAGCC -ACGGAAGAAACGGCTAAGATAGCC -ACGGAAGAAACGGCTAAGTAACCG -ACGGAAGAAACGGCTAAGATGCCA -ACGGAAGAAACGACCTCAGGAAAC -ACGGAAGAAACGACCTCAAACACC -ACGGAAGAAACGACCTCAATCGAG -ACGGAAGAAACGACCTCACTCCTT -ACGGAAGAAACGACCTCACCTGTT -ACGGAAGAAACGACCTCACGGTTT -ACGGAAGAAACGACCTCAGTGGTT -ACGGAAGAAACGACCTCAGCCTTT -ACGGAAGAAACGACCTCAGGTCTT -ACGGAAGAAACGACCTCAACGCTT -ACGGAAGAAACGACCTCAAGCGTT -ACGGAAGAAACGACCTCATTCGTC -ACGGAAGAAACGACCTCATCTCTC -ACGGAAGAAACGACCTCATGGATC -ACGGAAGAAACGACCTCACACTTC -ACGGAAGAAACGACCTCAGTACTC -ACGGAAGAAACGACCTCAGATGTC -ACGGAAGAAACGACCTCAACAGTC -ACGGAAGAAACGACCTCATTGCTG -ACGGAAGAAACGACCTCATCCATG -ACGGAAGAAACGACCTCATGTGTG -ACGGAAGAAACGACCTCACTAGTG -ACGGAAGAAACGACCTCACATCTG -ACGGAAGAAACGACCTCAGAGTTG -ACGGAAGAAACGACCTCAAGACTG -ACGGAAGAAACGACCTCATCGGTA -ACGGAAGAAACGACCTCATGCCTA -ACGGAAGAAACGACCTCACCACTA -ACGGAAGAAACGACCTCAGGAGTA -ACGGAAGAAACGACCTCATCGTCT -ACGGAAGAAACGACCTCATGCACT -ACGGAAGAAACGACCTCACTGACT -ACGGAAGAAACGACCTCACAACCT -ACGGAAGAAACGACCTCAGCTACT -ACGGAAGAAACGACCTCAGGATCT -ACGGAAGAAACGACCTCAAAGGCT -ACGGAAGAAACGACCTCATCAACC -ACGGAAGAAACGACCTCATGTTCC -ACGGAAGAAACGACCTCAATTCCC -ACGGAAGAAACGACCTCATTCTCG -ACGGAAGAAACGACCTCATAGACG -ACGGAAGAAACGACCTCAGTAACG -ACGGAAGAAACGACCTCAACTTCG -ACGGAAGAAACGACCTCATACGCA -ACGGAAGAAACGACCTCACTTGCA -ACGGAAGAAACGACCTCACGAACA -ACGGAAGAAACGACCTCACAGTCA -ACGGAAGAAACGACCTCAGATCCA -ACGGAAGAAACGACCTCAACGACA -ACGGAAGAAACGACCTCAAGCTCA -ACGGAAGAAACGACCTCATCACGT -ACGGAAGAAACGACCTCACGTAGT -ACGGAAGAAACGACCTCAGTCAGT -ACGGAAGAAACGACCTCAGAAGGT -ACGGAAGAAACGACCTCAAACCGT -ACGGAAGAAACGACCTCATTGTGC -ACGGAAGAAACGACCTCACTAAGC -ACGGAAGAAACGACCTCAACTAGC -ACGGAAGAAACGACCTCAAGATGC -ACGGAAGAAACGACCTCATGAAGG -ACGGAAGAAACGACCTCACAATGG -ACGGAAGAAACGACCTCAATGAGG -ACGGAAGAAACGACCTCAAATGGG -ACGGAAGAAACGACCTCATCCTGA -ACGGAAGAAACGACCTCATAGCGA -ACGGAAGAAACGACCTCACACAGA -ACGGAAGAAACGACCTCAGCAAGA -ACGGAAGAAACGACCTCAGGTTGA -ACGGAAGAAACGACCTCATCCGAT -ACGGAAGAAACGACCTCATGGCAT -ACGGAAGAAACGACCTCACGAGAT -ACGGAAGAAACGACCTCATACCAC -ACGGAAGAAACGACCTCACAGAAC -ACGGAAGAAACGACCTCAGTCTAC -ACGGAAGAAACGACCTCAACGTAC -ACGGAAGAAACGACCTCAAGTGAC -ACGGAAGAAACGACCTCACTGTAG -ACGGAAGAAACGACCTCACCTAAG -ACGGAAGAAACGACCTCAGTTCAG -ACGGAAGAAACGACCTCAGCATAG -ACGGAAGAAACGACCTCAGACAAG -ACGGAAGAAACGACCTCAAAGCAG -ACGGAAGAAACGACCTCACGTCAA -ACGGAAGAAACGACCTCAGCTGAA -ACGGAAGAAACGACCTCAAGTACG -ACGGAAGAAACGACCTCAATCCGA -ACGGAAGAAACGACCTCAATGGGA -ACGGAAGAAACGACCTCAGTGCAA -ACGGAAGAAACGACCTCAGAGGAA -ACGGAAGAAACGACCTCACAGGTA -ACGGAAGAAACGACCTCAGACTCT -ACGGAAGAAACGACCTCAAGTCCT -ACGGAAGAAACGACCTCATAAGCC -ACGGAAGAAACGACCTCAATAGCC -ACGGAAGAAACGACCTCATAACCG -ACGGAAGAAACGACCTCAATGCCA -ACGGAAGAAACGTCCTGTGGAAAC -ACGGAAGAAACGTCCTGTAACACC -ACGGAAGAAACGTCCTGTATCGAG -ACGGAAGAAACGTCCTGTCTCCTT -ACGGAAGAAACGTCCTGTCCTGTT -ACGGAAGAAACGTCCTGTCGGTTT -ACGGAAGAAACGTCCTGTGTGGTT -ACGGAAGAAACGTCCTGTGCCTTT -ACGGAAGAAACGTCCTGTGGTCTT -ACGGAAGAAACGTCCTGTACGCTT -ACGGAAGAAACGTCCTGTAGCGTT -ACGGAAGAAACGTCCTGTTTCGTC -ACGGAAGAAACGTCCTGTTCTCTC -ACGGAAGAAACGTCCTGTTGGATC -ACGGAAGAAACGTCCTGTCACTTC -ACGGAAGAAACGTCCTGTGTACTC -ACGGAAGAAACGTCCTGTGATGTC -ACGGAAGAAACGTCCTGTACAGTC -ACGGAAGAAACGTCCTGTTTGCTG -ACGGAAGAAACGTCCTGTTCCATG -ACGGAAGAAACGTCCTGTTGTGTG -ACGGAAGAAACGTCCTGTCTAGTG -ACGGAAGAAACGTCCTGTCATCTG -ACGGAAGAAACGTCCTGTGAGTTG -ACGGAAGAAACGTCCTGTAGACTG -ACGGAAGAAACGTCCTGTTCGGTA -ACGGAAGAAACGTCCTGTTGCCTA -ACGGAAGAAACGTCCTGTCCACTA -ACGGAAGAAACGTCCTGTGGAGTA -ACGGAAGAAACGTCCTGTTCGTCT -ACGGAAGAAACGTCCTGTTGCACT -ACGGAAGAAACGTCCTGTCTGACT -ACGGAAGAAACGTCCTGTCAACCT -ACGGAAGAAACGTCCTGTGCTACT -ACGGAAGAAACGTCCTGTGGATCT -ACGGAAGAAACGTCCTGTAAGGCT -ACGGAAGAAACGTCCTGTTCAACC -ACGGAAGAAACGTCCTGTTGTTCC -ACGGAAGAAACGTCCTGTATTCCC -ACGGAAGAAACGTCCTGTTTCTCG -ACGGAAGAAACGTCCTGTTAGACG -ACGGAAGAAACGTCCTGTGTAACG -ACGGAAGAAACGTCCTGTACTTCG -ACGGAAGAAACGTCCTGTTACGCA -ACGGAAGAAACGTCCTGTCTTGCA -ACGGAAGAAACGTCCTGTCGAACA -ACGGAAGAAACGTCCTGTCAGTCA -ACGGAAGAAACGTCCTGTGATCCA -ACGGAAGAAACGTCCTGTACGACA -ACGGAAGAAACGTCCTGTAGCTCA -ACGGAAGAAACGTCCTGTTCACGT -ACGGAAGAAACGTCCTGTCGTAGT -ACGGAAGAAACGTCCTGTGTCAGT -ACGGAAGAAACGTCCTGTGAAGGT -ACGGAAGAAACGTCCTGTAACCGT -ACGGAAGAAACGTCCTGTTTGTGC -ACGGAAGAAACGTCCTGTCTAAGC -ACGGAAGAAACGTCCTGTACTAGC -ACGGAAGAAACGTCCTGTAGATGC -ACGGAAGAAACGTCCTGTTGAAGG -ACGGAAGAAACGTCCTGTCAATGG -ACGGAAGAAACGTCCTGTATGAGG -ACGGAAGAAACGTCCTGTAATGGG -ACGGAAGAAACGTCCTGTTCCTGA -ACGGAAGAAACGTCCTGTTAGCGA -ACGGAAGAAACGTCCTGTCACAGA -ACGGAAGAAACGTCCTGTGCAAGA -ACGGAAGAAACGTCCTGTGGTTGA -ACGGAAGAAACGTCCTGTTCCGAT -ACGGAAGAAACGTCCTGTTGGCAT -ACGGAAGAAACGTCCTGTCGAGAT -ACGGAAGAAACGTCCTGTTACCAC -ACGGAAGAAACGTCCTGTCAGAAC -ACGGAAGAAACGTCCTGTGTCTAC -ACGGAAGAAACGTCCTGTACGTAC -ACGGAAGAAACGTCCTGTAGTGAC -ACGGAAGAAACGTCCTGTCTGTAG -ACGGAAGAAACGTCCTGTCCTAAG -ACGGAAGAAACGTCCTGTGTTCAG -ACGGAAGAAACGTCCTGTGCATAG -ACGGAAGAAACGTCCTGTGACAAG -ACGGAAGAAACGTCCTGTAAGCAG -ACGGAAGAAACGTCCTGTCGTCAA -ACGGAAGAAACGTCCTGTGCTGAA -ACGGAAGAAACGTCCTGTAGTACG -ACGGAAGAAACGTCCTGTATCCGA -ACGGAAGAAACGTCCTGTATGGGA -ACGGAAGAAACGTCCTGTGTGCAA -ACGGAAGAAACGTCCTGTGAGGAA -ACGGAAGAAACGTCCTGTCAGGTA -ACGGAAGAAACGTCCTGTGACTCT -ACGGAAGAAACGTCCTGTAGTCCT -ACGGAAGAAACGTCCTGTTAAGCC -ACGGAAGAAACGTCCTGTATAGCC -ACGGAAGAAACGTCCTGTTAACCG -ACGGAAGAAACGTCCTGTATGCCA -ACGGAAGAAACGCCCATTGGAAAC -ACGGAAGAAACGCCCATTAACACC -ACGGAAGAAACGCCCATTATCGAG -ACGGAAGAAACGCCCATTCTCCTT -ACGGAAGAAACGCCCATTCCTGTT -ACGGAAGAAACGCCCATTCGGTTT -ACGGAAGAAACGCCCATTGTGGTT -ACGGAAGAAACGCCCATTGCCTTT -ACGGAAGAAACGCCCATTGGTCTT -ACGGAAGAAACGCCCATTACGCTT -ACGGAAGAAACGCCCATTAGCGTT -ACGGAAGAAACGCCCATTTTCGTC -ACGGAAGAAACGCCCATTTCTCTC -ACGGAAGAAACGCCCATTTGGATC -ACGGAAGAAACGCCCATTCACTTC -ACGGAAGAAACGCCCATTGTACTC -ACGGAAGAAACGCCCATTGATGTC -ACGGAAGAAACGCCCATTACAGTC -ACGGAAGAAACGCCCATTTTGCTG -ACGGAAGAAACGCCCATTTCCATG -ACGGAAGAAACGCCCATTTGTGTG -ACGGAAGAAACGCCCATTCTAGTG -ACGGAAGAAACGCCCATTCATCTG -ACGGAAGAAACGCCCATTGAGTTG -ACGGAAGAAACGCCCATTAGACTG -ACGGAAGAAACGCCCATTTCGGTA -ACGGAAGAAACGCCCATTTGCCTA -ACGGAAGAAACGCCCATTCCACTA -ACGGAAGAAACGCCCATTGGAGTA -ACGGAAGAAACGCCCATTTCGTCT -ACGGAAGAAACGCCCATTTGCACT -ACGGAAGAAACGCCCATTCTGACT -ACGGAAGAAACGCCCATTCAACCT -ACGGAAGAAACGCCCATTGCTACT -ACGGAAGAAACGCCCATTGGATCT -ACGGAAGAAACGCCCATTAAGGCT -ACGGAAGAAACGCCCATTTCAACC -ACGGAAGAAACGCCCATTTGTTCC -ACGGAAGAAACGCCCATTATTCCC -ACGGAAGAAACGCCCATTTTCTCG -ACGGAAGAAACGCCCATTTAGACG -ACGGAAGAAACGCCCATTGTAACG -ACGGAAGAAACGCCCATTACTTCG -ACGGAAGAAACGCCCATTTACGCA -ACGGAAGAAACGCCCATTCTTGCA -ACGGAAGAAACGCCCATTCGAACA -ACGGAAGAAACGCCCATTCAGTCA -ACGGAAGAAACGCCCATTGATCCA -ACGGAAGAAACGCCCATTACGACA -ACGGAAGAAACGCCCATTAGCTCA -ACGGAAGAAACGCCCATTTCACGT -ACGGAAGAAACGCCCATTCGTAGT -ACGGAAGAAACGCCCATTGTCAGT -ACGGAAGAAACGCCCATTGAAGGT -ACGGAAGAAACGCCCATTAACCGT -ACGGAAGAAACGCCCATTTTGTGC -ACGGAAGAAACGCCCATTCTAAGC -ACGGAAGAAACGCCCATTACTAGC -ACGGAAGAAACGCCCATTAGATGC -ACGGAAGAAACGCCCATTTGAAGG -ACGGAAGAAACGCCCATTCAATGG -ACGGAAGAAACGCCCATTATGAGG -ACGGAAGAAACGCCCATTAATGGG -ACGGAAGAAACGCCCATTTCCTGA -ACGGAAGAAACGCCCATTTAGCGA -ACGGAAGAAACGCCCATTCACAGA -ACGGAAGAAACGCCCATTGCAAGA -ACGGAAGAAACGCCCATTGGTTGA -ACGGAAGAAACGCCCATTTCCGAT -ACGGAAGAAACGCCCATTTGGCAT -ACGGAAGAAACGCCCATTCGAGAT -ACGGAAGAAACGCCCATTTACCAC -ACGGAAGAAACGCCCATTCAGAAC -ACGGAAGAAACGCCCATTGTCTAC -ACGGAAGAAACGCCCATTACGTAC -ACGGAAGAAACGCCCATTAGTGAC -ACGGAAGAAACGCCCATTCTGTAG -ACGGAAGAAACGCCCATTCCTAAG -ACGGAAGAAACGCCCATTGTTCAG -ACGGAAGAAACGCCCATTGCATAG -ACGGAAGAAACGCCCATTGACAAG -ACGGAAGAAACGCCCATTAAGCAG -ACGGAAGAAACGCCCATTCGTCAA -ACGGAAGAAACGCCCATTGCTGAA -ACGGAAGAAACGCCCATTAGTACG -ACGGAAGAAACGCCCATTATCCGA -ACGGAAGAAACGCCCATTATGGGA -ACGGAAGAAACGCCCATTGTGCAA -ACGGAAGAAACGCCCATTGAGGAA -ACGGAAGAAACGCCCATTCAGGTA -ACGGAAGAAACGCCCATTGACTCT -ACGGAAGAAACGCCCATTAGTCCT -ACGGAAGAAACGCCCATTTAAGCC -ACGGAAGAAACGCCCATTATAGCC -ACGGAAGAAACGCCCATTTAACCG -ACGGAAGAAACGCCCATTATGCCA -ACGGAAGAAACGTCGTTCGGAAAC -ACGGAAGAAACGTCGTTCAACACC -ACGGAAGAAACGTCGTTCATCGAG -ACGGAAGAAACGTCGTTCCTCCTT -ACGGAAGAAACGTCGTTCCCTGTT -ACGGAAGAAACGTCGTTCCGGTTT -ACGGAAGAAACGTCGTTCGTGGTT -ACGGAAGAAACGTCGTTCGCCTTT -ACGGAAGAAACGTCGTTCGGTCTT -ACGGAAGAAACGTCGTTCACGCTT -ACGGAAGAAACGTCGTTCAGCGTT -ACGGAAGAAACGTCGTTCTTCGTC -ACGGAAGAAACGTCGTTCTCTCTC -ACGGAAGAAACGTCGTTCTGGATC -ACGGAAGAAACGTCGTTCCACTTC -ACGGAAGAAACGTCGTTCGTACTC -ACGGAAGAAACGTCGTTCGATGTC -ACGGAAGAAACGTCGTTCACAGTC -ACGGAAGAAACGTCGTTCTTGCTG -ACGGAAGAAACGTCGTTCTCCATG -ACGGAAGAAACGTCGTTCTGTGTG -ACGGAAGAAACGTCGTTCCTAGTG -ACGGAAGAAACGTCGTTCCATCTG -ACGGAAGAAACGTCGTTCGAGTTG -ACGGAAGAAACGTCGTTCAGACTG -ACGGAAGAAACGTCGTTCTCGGTA -ACGGAAGAAACGTCGTTCTGCCTA -ACGGAAGAAACGTCGTTCCCACTA -ACGGAAGAAACGTCGTTCGGAGTA -ACGGAAGAAACGTCGTTCTCGTCT -ACGGAAGAAACGTCGTTCTGCACT -ACGGAAGAAACGTCGTTCCTGACT -ACGGAAGAAACGTCGTTCCAACCT -ACGGAAGAAACGTCGTTCGCTACT -ACGGAAGAAACGTCGTTCGGATCT -ACGGAAGAAACGTCGTTCAAGGCT -ACGGAAGAAACGTCGTTCTCAACC -ACGGAAGAAACGTCGTTCTGTTCC -ACGGAAGAAACGTCGTTCATTCCC -ACGGAAGAAACGTCGTTCTTCTCG -ACGGAAGAAACGTCGTTCTAGACG -ACGGAAGAAACGTCGTTCGTAACG -ACGGAAGAAACGTCGTTCACTTCG -ACGGAAGAAACGTCGTTCTACGCA -ACGGAAGAAACGTCGTTCCTTGCA -ACGGAAGAAACGTCGTTCCGAACA -ACGGAAGAAACGTCGTTCCAGTCA -ACGGAAGAAACGTCGTTCGATCCA -ACGGAAGAAACGTCGTTCACGACA -ACGGAAGAAACGTCGTTCAGCTCA -ACGGAAGAAACGTCGTTCTCACGT -ACGGAAGAAACGTCGTTCCGTAGT -ACGGAAGAAACGTCGTTCGTCAGT -ACGGAAGAAACGTCGTTCGAAGGT -ACGGAAGAAACGTCGTTCAACCGT -ACGGAAGAAACGTCGTTCTTGTGC -ACGGAAGAAACGTCGTTCCTAAGC -ACGGAAGAAACGTCGTTCACTAGC -ACGGAAGAAACGTCGTTCAGATGC -ACGGAAGAAACGTCGTTCTGAAGG -ACGGAAGAAACGTCGTTCCAATGG -ACGGAAGAAACGTCGTTCATGAGG -ACGGAAGAAACGTCGTTCAATGGG -ACGGAAGAAACGTCGTTCTCCTGA -ACGGAAGAAACGTCGTTCTAGCGA -ACGGAAGAAACGTCGTTCCACAGA -ACGGAAGAAACGTCGTTCGCAAGA -ACGGAAGAAACGTCGTTCGGTTGA -ACGGAAGAAACGTCGTTCTCCGAT -ACGGAAGAAACGTCGTTCTGGCAT -ACGGAAGAAACGTCGTTCCGAGAT -ACGGAAGAAACGTCGTTCTACCAC -ACGGAAGAAACGTCGTTCCAGAAC -ACGGAAGAAACGTCGTTCGTCTAC -ACGGAAGAAACGTCGTTCACGTAC -ACGGAAGAAACGTCGTTCAGTGAC -ACGGAAGAAACGTCGTTCCTGTAG -ACGGAAGAAACGTCGTTCCCTAAG -ACGGAAGAAACGTCGTTCGTTCAG -ACGGAAGAAACGTCGTTCGCATAG -ACGGAAGAAACGTCGTTCGACAAG -ACGGAAGAAACGTCGTTCAAGCAG -ACGGAAGAAACGTCGTTCCGTCAA -ACGGAAGAAACGTCGTTCGCTGAA -ACGGAAGAAACGTCGTTCAGTACG -ACGGAAGAAACGTCGTTCATCCGA -ACGGAAGAAACGTCGTTCATGGGA -ACGGAAGAAACGTCGTTCGTGCAA -ACGGAAGAAACGTCGTTCGAGGAA -ACGGAAGAAACGTCGTTCCAGGTA -ACGGAAGAAACGTCGTTCGACTCT -ACGGAAGAAACGTCGTTCAGTCCT -ACGGAAGAAACGTCGTTCTAAGCC -ACGGAAGAAACGTCGTTCATAGCC -ACGGAAGAAACGTCGTTCTAACCG -ACGGAAGAAACGTCGTTCATGCCA -ACGGAAGAAACGACGTAGGGAAAC -ACGGAAGAAACGACGTAGAACACC -ACGGAAGAAACGACGTAGATCGAG -ACGGAAGAAACGACGTAGCTCCTT -ACGGAAGAAACGACGTAGCCTGTT -ACGGAAGAAACGACGTAGCGGTTT -ACGGAAGAAACGACGTAGGTGGTT -ACGGAAGAAACGACGTAGGCCTTT -ACGGAAGAAACGACGTAGGGTCTT -ACGGAAGAAACGACGTAGACGCTT -ACGGAAGAAACGACGTAGAGCGTT -ACGGAAGAAACGACGTAGTTCGTC -ACGGAAGAAACGACGTAGTCTCTC -ACGGAAGAAACGACGTAGTGGATC -ACGGAAGAAACGACGTAGCACTTC -ACGGAAGAAACGACGTAGGTACTC -ACGGAAGAAACGACGTAGGATGTC -ACGGAAGAAACGACGTAGACAGTC -ACGGAAGAAACGACGTAGTTGCTG -ACGGAAGAAACGACGTAGTCCATG -ACGGAAGAAACGACGTAGTGTGTG -ACGGAAGAAACGACGTAGCTAGTG -ACGGAAGAAACGACGTAGCATCTG -ACGGAAGAAACGACGTAGGAGTTG -ACGGAAGAAACGACGTAGAGACTG -ACGGAAGAAACGACGTAGTCGGTA -ACGGAAGAAACGACGTAGTGCCTA -ACGGAAGAAACGACGTAGCCACTA -ACGGAAGAAACGACGTAGGGAGTA -ACGGAAGAAACGACGTAGTCGTCT -ACGGAAGAAACGACGTAGTGCACT -ACGGAAGAAACGACGTAGCTGACT -ACGGAAGAAACGACGTAGCAACCT -ACGGAAGAAACGACGTAGGCTACT -ACGGAAGAAACGACGTAGGGATCT -ACGGAAGAAACGACGTAGAAGGCT -ACGGAAGAAACGACGTAGTCAACC -ACGGAAGAAACGACGTAGTGTTCC -ACGGAAGAAACGACGTAGATTCCC -ACGGAAGAAACGACGTAGTTCTCG -ACGGAAGAAACGACGTAGTAGACG -ACGGAAGAAACGACGTAGGTAACG -ACGGAAGAAACGACGTAGACTTCG -ACGGAAGAAACGACGTAGTACGCA -ACGGAAGAAACGACGTAGCTTGCA -ACGGAAGAAACGACGTAGCGAACA -ACGGAAGAAACGACGTAGCAGTCA -ACGGAAGAAACGACGTAGGATCCA -ACGGAAGAAACGACGTAGACGACA -ACGGAAGAAACGACGTAGAGCTCA -ACGGAAGAAACGACGTAGTCACGT -ACGGAAGAAACGACGTAGCGTAGT -ACGGAAGAAACGACGTAGGTCAGT -ACGGAAGAAACGACGTAGGAAGGT -ACGGAAGAAACGACGTAGAACCGT -ACGGAAGAAACGACGTAGTTGTGC -ACGGAAGAAACGACGTAGCTAAGC -ACGGAAGAAACGACGTAGACTAGC -ACGGAAGAAACGACGTAGAGATGC -ACGGAAGAAACGACGTAGTGAAGG -ACGGAAGAAACGACGTAGCAATGG -ACGGAAGAAACGACGTAGATGAGG -ACGGAAGAAACGACGTAGAATGGG -ACGGAAGAAACGACGTAGTCCTGA -ACGGAAGAAACGACGTAGTAGCGA -ACGGAAGAAACGACGTAGCACAGA -ACGGAAGAAACGACGTAGGCAAGA -ACGGAAGAAACGACGTAGGGTTGA -ACGGAAGAAACGACGTAGTCCGAT -ACGGAAGAAACGACGTAGTGGCAT -ACGGAAGAAACGACGTAGCGAGAT -ACGGAAGAAACGACGTAGTACCAC -ACGGAAGAAACGACGTAGCAGAAC -ACGGAAGAAACGACGTAGGTCTAC -ACGGAAGAAACGACGTAGACGTAC -ACGGAAGAAACGACGTAGAGTGAC -ACGGAAGAAACGACGTAGCTGTAG -ACGGAAGAAACGACGTAGCCTAAG -ACGGAAGAAACGACGTAGGTTCAG -ACGGAAGAAACGACGTAGGCATAG -ACGGAAGAAACGACGTAGGACAAG -ACGGAAGAAACGACGTAGAAGCAG -ACGGAAGAAACGACGTAGCGTCAA -ACGGAAGAAACGACGTAGGCTGAA -ACGGAAGAAACGACGTAGAGTACG -ACGGAAGAAACGACGTAGATCCGA -ACGGAAGAAACGACGTAGATGGGA -ACGGAAGAAACGACGTAGGTGCAA -ACGGAAGAAACGACGTAGGAGGAA -ACGGAAGAAACGACGTAGCAGGTA -ACGGAAGAAACGACGTAGGACTCT -ACGGAAGAAACGACGTAGAGTCCT -ACGGAAGAAACGACGTAGTAAGCC -ACGGAAGAAACGACGTAGATAGCC -ACGGAAGAAACGACGTAGTAACCG -ACGGAAGAAACGACGTAGATGCCA -ACGGAAGAAACGACGGTAGGAAAC -ACGGAAGAAACGACGGTAAACACC -ACGGAAGAAACGACGGTAATCGAG -ACGGAAGAAACGACGGTACTCCTT -ACGGAAGAAACGACGGTACCTGTT -ACGGAAGAAACGACGGTACGGTTT -ACGGAAGAAACGACGGTAGTGGTT -ACGGAAGAAACGACGGTAGCCTTT -ACGGAAGAAACGACGGTAGGTCTT -ACGGAAGAAACGACGGTAACGCTT -ACGGAAGAAACGACGGTAAGCGTT -ACGGAAGAAACGACGGTATTCGTC -ACGGAAGAAACGACGGTATCTCTC -ACGGAAGAAACGACGGTATGGATC -ACGGAAGAAACGACGGTACACTTC -ACGGAAGAAACGACGGTAGTACTC -ACGGAAGAAACGACGGTAGATGTC -ACGGAAGAAACGACGGTAACAGTC -ACGGAAGAAACGACGGTATTGCTG -ACGGAAGAAACGACGGTATCCATG -ACGGAAGAAACGACGGTATGTGTG -ACGGAAGAAACGACGGTACTAGTG -ACGGAAGAAACGACGGTACATCTG -ACGGAAGAAACGACGGTAGAGTTG -ACGGAAGAAACGACGGTAAGACTG -ACGGAAGAAACGACGGTATCGGTA -ACGGAAGAAACGACGGTATGCCTA -ACGGAAGAAACGACGGTACCACTA -ACGGAAGAAACGACGGTAGGAGTA -ACGGAAGAAACGACGGTATCGTCT -ACGGAAGAAACGACGGTATGCACT -ACGGAAGAAACGACGGTACTGACT -ACGGAAGAAACGACGGTACAACCT -ACGGAAGAAACGACGGTAGCTACT -ACGGAAGAAACGACGGTAGGATCT -ACGGAAGAAACGACGGTAAAGGCT -ACGGAAGAAACGACGGTATCAACC -ACGGAAGAAACGACGGTATGTTCC -ACGGAAGAAACGACGGTAATTCCC -ACGGAAGAAACGACGGTATTCTCG -ACGGAAGAAACGACGGTATAGACG -ACGGAAGAAACGACGGTAGTAACG -ACGGAAGAAACGACGGTAACTTCG -ACGGAAGAAACGACGGTATACGCA -ACGGAAGAAACGACGGTACTTGCA -ACGGAAGAAACGACGGTACGAACA -ACGGAAGAAACGACGGTACAGTCA -ACGGAAGAAACGACGGTAGATCCA -ACGGAAGAAACGACGGTAACGACA -ACGGAAGAAACGACGGTAAGCTCA -ACGGAAGAAACGACGGTATCACGT -ACGGAAGAAACGACGGTACGTAGT -ACGGAAGAAACGACGGTAGTCAGT -ACGGAAGAAACGACGGTAGAAGGT -ACGGAAGAAACGACGGTAAACCGT -ACGGAAGAAACGACGGTATTGTGC -ACGGAAGAAACGACGGTACTAAGC -ACGGAAGAAACGACGGTAACTAGC -ACGGAAGAAACGACGGTAAGATGC -ACGGAAGAAACGACGGTATGAAGG -ACGGAAGAAACGACGGTACAATGG -ACGGAAGAAACGACGGTAATGAGG -ACGGAAGAAACGACGGTAAATGGG -ACGGAAGAAACGACGGTATCCTGA -ACGGAAGAAACGACGGTATAGCGA -ACGGAAGAAACGACGGTACACAGA -ACGGAAGAAACGACGGTAGCAAGA -ACGGAAGAAACGACGGTAGGTTGA -ACGGAAGAAACGACGGTATCCGAT -ACGGAAGAAACGACGGTATGGCAT -ACGGAAGAAACGACGGTACGAGAT -ACGGAAGAAACGACGGTATACCAC -ACGGAAGAAACGACGGTACAGAAC -ACGGAAGAAACGACGGTAGTCTAC -ACGGAAGAAACGACGGTAACGTAC -ACGGAAGAAACGACGGTAAGTGAC -ACGGAAGAAACGACGGTACTGTAG -ACGGAAGAAACGACGGTACCTAAG -ACGGAAGAAACGACGGTAGTTCAG -ACGGAAGAAACGACGGTAGCATAG -ACGGAAGAAACGACGGTAGACAAG -ACGGAAGAAACGACGGTAAAGCAG -ACGGAAGAAACGACGGTACGTCAA -ACGGAAGAAACGACGGTAGCTGAA -ACGGAAGAAACGACGGTAAGTACG -ACGGAAGAAACGACGGTAATCCGA -ACGGAAGAAACGACGGTAATGGGA -ACGGAAGAAACGACGGTAGTGCAA -ACGGAAGAAACGACGGTAGAGGAA -ACGGAAGAAACGACGGTACAGGTA -ACGGAAGAAACGACGGTAGACTCT -ACGGAAGAAACGACGGTAAGTCCT -ACGGAAGAAACGACGGTATAAGCC -ACGGAAGAAACGACGGTAATAGCC -ACGGAAGAAACGACGGTATAACCG -ACGGAAGAAACGACGGTAATGCCA -ACGGAAGAAACGTCGACTGGAAAC -ACGGAAGAAACGTCGACTAACACC -ACGGAAGAAACGTCGACTATCGAG -ACGGAAGAAACGTCGACTCTCCTT -ACGGAAGAAACGTCGACTCCTGTT -ACGGAAGAAACGTCGACTCGGTTT -ACGGAAGAAACGTCGACTGTGGTT -ACGGAAGAAACGTCGACTGCCTTT -ACGGAAGAAACGTCGACTGGTCTT -ACGGAAGAAACGTCGACTACGCTT -ACGGAAGAAACGTCGACTAGCGTT -ACGGAAGAAACGTCGACTTTCGTC -ACGGAAGAAACGTCGACTTCTCTC -ACGGAAGAAACGTCGACTTGGATC -ACGGAAGAAACGTCGACTCACTTC -ACGGAAGAAACGTCGACTGTACTC -ACGGAAGAAACGTCGACTGATGTC -ACGGAAGAAACGTCGACTACAGTC -ACGGAAGAAACGTCGACTTTGCTG -ACGGAAGAAACGTCGACTTCCATG -ACGGAAGAAACGTCGACTTGTGTG -ACGGAAGAAACGTCGACTCTAGTG -ACGGAAGAAACGTCGACTCATCTG -ACGGAAGAAACGTCGACTGAGTTG -ACGGAAGAAACGTCGACTAGACTG -ACGGAAGAAACGTCGACTTCGGTA -ACGGAAGAAACGTCGACTTGCCTA -ACGGAAGAAACGTCGACTCCACTA -ACGGAAGAAACGTCGACTGGAGTA -ACGGAAGAAACGTCGACTTCGTCT -ACGGAAGAAACGTCGACTTGCACT -ACGGAAGAAACGTCGACTCTGACT -ACGGAAGAAACGTCGACTCAACCT -ACGGAAGAAACGTCGACTGCTACT -ACGGAAGAAACGTCGACTGGATCT -ACGGAAGAAACGTCGACTAAGGCT -ACGGAAGAAACGTCGACTTCAACC -ACGGAAGAAACGTCGACTTGTTCC -ACGGAAGAAACGTCGACTATTCCC -ACGGAAGAAACGTCGACTTTCTCG -ACGGAAGAAACGTCGACTTAGACG -ACGGAAGAAACGTCGACTGTAACG -ACGGAAGAAACGTCGACTACTTCG -ACGGAAGAAACGTCGACTTACGCA -ACGGAAGAAACGTCGACTCTTGCA -ACGGAAGAAACGTCGACTCGAACA -ACGGAAGAAACGTCGACTCAGTCA -ACGGAAGAAACGTCGACTGATCCA -ACGGAAGAAACGTCGACTACGACA -ACGGAAGAAACGTCGACTAGCTCA -ACGGAAGAAACGTCGACTTCACGT -ACGGAAGAAACGTCGACTCGTAGT -ACGGAAGAAACGTCGACTGTCAGT -ACGGAAGAAACGTCGACTGAAGGT -ACGGAAGAAACGTCGACTAACCGT -ACGGAAGAAACGTCGACTTTGTGC -ACGGAAGAAACGTCGACTCTAAGC -ACGGAAGAAACGTCGACTACTAGC -ACGGAAGAAACGTCGACTAGATGC -ACGGAAGAAACGTCGACTTGAAGG -ACGGAAGAAACGTCGACTCAATGG -ACGGAAGAAACGTCGACTATGAGG -ACGGAAGAAACGTCGACTAATGGG -ACGGAAGAAACGTCGACTTCCTGA -ACGGAAGAAACGTCGACTTAGCGA -ACGGAAGAAACGTCGACTCACAGA -ACGGAAGAAACGTCGACTGCAAGA -ACGGAAGAAACGTCGACTGGTTGA -ACGGAAGAAACGTCGACTTCCGAT -ACGGAAGAAACGTCGACTTGGCAT -ACGGAAGAAACGTCGACTCGAGAT -ACGGAAGAAACGTCGACTTACCAC -ACGGAAGAAACGTCGACTCAGAAC -ACGGAAGAAACGTCGACTGTCTAC -ACGGAAGAAACGTCGACTACGTAC -ACGGAAGAAACGTCGACTAGTGAC -ACGGAAGAAACGTCGACTCTGTAG -ACGGAAGAAACGTCGACTCCTAAG -ACGGAAGAAACGTCGACTGTTCAG -ACGGAAGAAACGTCGACTGCATAG -ACGGAAGAAACGTCGACTGACAAG -ACGGAAGAAACGTCGACTAAGCAG -ACGGAAGAAACGTCGACTCGTCAA -ACGGAAGAAACGTCGACTGCTGAA -ACGGAAGAAACGTCGACTAGTACG -ACGGAAGAAACGTCGACTATCCGA -ACGGAAGAAACGTCGACTATGGGA -ACGGAAGAAACGTCGACTGTGCAA -ACGGAAGAAACGTCGACTGAGGAA -ACGGAAGAAACGTCGACTCAGGTA -ACGGAAGAAACGTCGACTGACTCT -ACGGAAGAAACGTCGACTAGTCCT -ACGGAAGAAACGTCGACTTAAGCC -ACGGAAGAAACGTCGACTATAGCC -ACGGAAGAAACGTCGACTTAACCG -ACGGAAGAAACGTCGACTATGCCA -ACGGAAGAAACGGCATACGGAAAC -ACGGAAGAAACGGCATACAACACC -ACGGAAGAAACGGCATACATCGAG -ACGGAAGAAACGGCATACCTCCTT -ACGGAAGAAACGGCATACCCTGTT -ACGGAAGAAACGGCATACCGGTTT -ACGGAAGAAACGGCATACGTGGTT -ACGGAAGAAACGGCATACGCCTTT -ACGGAAGAAACGGCATACGGTCTT -ACGGAAGAAACGGCATACACGCTT -ACGGAAGAAACGGCATACAGCGTT -ACGGAAGAAACGGCATACTTCGTC -ACGGAAGAAACGGCATACTCTCTC -ACGGAAGAAACGGCATACTGGATC -ACGGAAGAAACGGCATACCACTTC -ACGGAAGAAACGGCATACGTACTC -ACGGAAGAAACGGCATACGATGTC -ACGGAAGAAACGGCATACACAGTC -ACGGAAGAAACGGCATACTTGCTG -ACGGAAGAAACGGCATACTCCATG -ACGGAAGAAACGGCATACTGTGTG -ACGGAAGAAACGGCATACCTAGTG -ACGGAAGAAACGGCATACCATCTG -ACGGAAGAAACGGCATACGAGTTG -ACGGAAGAAACGGCATACAGACTG -ACGGAAGAAACGGCATACTCGGTA -ACGGAAGAAACGGCATACTGCCTA -ACGGAAGAAACGGCATACCCACTA -ACGGAAGAAACGGCATACGGAGTA -ACGGAAGAAACGGCATACTCGTCT -ACGGAAGAAACGGCATACTGCACT -ACGGAAGAAACGGCATACCTGACT -ACGGAAGAAACGGCATACCAACCT -ACGGAAGAAACGGCATACGCTACT -ACGGAAGAAACGGCATACGGATCT -ACGGAAGAAACGGCATACAAGGCT -ACGGAAGAAACGGCATACTCAACC -ACGGAAGAAACGGCATACTGTTCC -ACGGAAGAAACGGCATACATTCCC -ACGGAAGAAACGGCATACTTCTCG -ACGGAAGAAACGGCATACTAGACG -ACGGAAGAAACGGCATACGTAACG -ACGGAAGAAACGGCATACACTTCG -ACGGAAGAAACGGCATACTACGCA -ACGGAAGAAACGGCATACCTTGCA -ACGGAAGAAACGGCATACCGAACA -ACGGAAGAAACGGCATACCAGTCA -ACGGAAGAAACGGCATACGATCCA -ACGGAAGAAACGGCATACACGACA -ACGGAAGAAACGGCATACAGCTCA -ACGGAAGAAACGGCATACTCACGT -ACGGAAGAAACGGCATACCGTAGT -ACGGAAGAAACGGCATACGTCAGT -ACGGAAGAAACGGCATACGAAGGT -ACGGAAGAAACGGCATACAACCGT -ACGGAAGAAACGGCATACTTGTGC -ACGGAAGAAACGGCATACCTAAGC -ACGGAAGAAACGGCATACACTAGC -ACGGAAGAAACGGCATACAGATGC -ACGGAAGAAACGGCATACTGAAGG -ACGGAAGAAACGGCATACCAATGG -ACGGAAGAAACGGCATACATGAGG -ACGGAAGAAACGGCATACAATGGG -ACGGAAGAAACGGCATACTCCTGA -ACGGAAGAAACGGCATACTAGCGA -ACGGAAGAAACGGCATACCACAGA -ACGGAAGAAACGGCATACGCAAGA -ACGGAAGAAACGGCATACGGTTGA -ACGGAAGAAACGGCATACTCCGAT -ACGGAAGAAACGGCATACTGGCAT -ACGGAAGAAACGGCATACCGAGAT -ACGGAAGAAACGGCATACTACCAC -ACGGAAGAAACGGCATACCAGAAC -ACGGAAGAAACGGCATACGTCTAC -ACGGAAGAAACGGCATACACGTAC -ACGGAAGAAACGGCATACAGTGAC -ACGGAAGAAACGGCATACCTGTAG -ACGGAAGAAACGGCATACCCTAAG -ACGGAAGAAACGGCATACGTTCAG -ACGGAAGAAACGGCATACGCATAG -ACGGAAGAAACGGCATACGACAAG -ACGGAAGAAACGGCATACAAGCAG -ACGGAAGAAACGGCATACCGTCAA -ACGGAAGAAACGGCATACGCTGAA -ACGGAAGAAACGGCATACAGTACG -ACGGAAGAAACGGCATACATCCGA -ACGGAAGAAACGGCATACATGGGA -ACGGAAGAAACGGCATACGTGCAA -ACGGAAGAAACGGCATACGAGGAA -ACGGAAGAAACGGCATACCAGGTA -ACGGAAGAAACGGCATACGACTCT -ACGGAAGAAACGGCATACAGTCCT -ACGGAAGAAACGGCATACTAAGCC -ACGGAAGAAACGGCATACATAGCC -ACGGAAGAAACGGCATACTAACCG -ACGGAAGAAACGGCATACATGCCA -ACGGAAGAAACGGCACTTGGAAAC -ACGGAAGAAACGGCACTTAACACC -ACGGAAGAAACGGCACTTATCGAG -ACGGAAGAAACGGCACTTCTCCTT -ACGGAAGAAACGGCACTTCCTGTT -ACGGAAGAAACGGCACTTCGGTTT -ACGGAAGAAACGGCACTTGTGGTT -ACGGAAGAAACGGCACTTGCCTTT -ACGGAAGAAACGGCACTTGGTCTT -ACGGAAGAAACGGCACTTACGCTT -ACGGAAGAAACGGCACTTAGCGTT -ACGGAAGAAACGGCACTTTTCGTC -ACGGAAGAAACGGCACTTTCTCTC -ACGGAAGAAACGGCACTTTGGATC -ACGGAAGAAACGGCACTTCACTTC -ACGGAAGAAACGGCACTTGTACTC -ACGGAAGAAACGGCACTTGATGTC -ACGGAAGAAACGGCACTTACAGTC -ACGGAAGAAACGGCACTTTTGCTG -ACGGAAGAAACGGCACTTTCCATG -ACGGAAGAAACGGCACTTTGTGTG -ACGGAAGAAACGGCACTTCTAGTG -ACGGAAGAAACGGCACTTCATCTG -ACGGAAGAAACGGCACTTGAGTTG -ACGGAAGAAACGGCACTTAGACTG -ACGGAAGAAACGGCACTTTCGGTA -ACGGAAGAAACGGCACTTTGCCTA -ACGGAAGAAACGGCACTTCCACTA -ACGGAAGAAACGGCACTTGGAGTA -ACGGAAGAAACGGCACTTTCGTCT -ACGGAAGAAACGGCACTTTGCACT -ACGGAAGAAACGGCACTTCTGACT -ACGGAAGAAACGGCACTTCAACCT -ACGGAAGAAACGGCACTTGCTACT -ACGGAAGAAACGGCACTTGGATCT -ACGGAAGAAACGGCACTTAAGGCT -ACGGAAGAAACGGCACTTTCAACC -ACGGAAGAAACGGCACTTTGTTCC -ACGGAAGAAACGGCACTTATTCCC -ACGGAAGAAACGGCACTTTTCTCG -ACGGAAGAAACGGCACTTTAGACG -ACGGAAGAAACGGCACTTGTAACG -ACGGAAGAAACGGCACTTACTTCG -ACGGAAGAAACGGCACTTTACGCA -ACGGAAGAAACGGCACTTCTTGCA -ACGGAAGAAACGGCACTTCGAACA -ACGGAAGAAACGGCACTTCAGTCA -ACGGAAGAAACGGCACTTGATCCA -ACGGAAGAAACGGCACTTACGACA -ACGGAAGAAACGGCACTTAGCTCA -ACGGAAGAAACGGCACTTTCACGT -ACGGAAGAAACGGCACTTCGTAGT -ACGGAAGAAACGGCACTTGTCAGT -ACGGAAGAAACGGCACTTGAAGGT -ACGGAAGAAACGGCACTTAACCGT -ACGGAAGAAACGGCACTTTTGTGC -ACGGAAGAAACGGCACTTCTAAGC -ACGGAAGAAACGGCACTTACTAGC -ACGGAAGAAACGGCACTTAGATGC -ACGGAAGAAACGGCACTTTGAAGG -ACGGAAGAAACGGCACTTCAATGG -ACGGAAGAAACGGCACTTATGAGG -ACGGAAGAAACGGCACTTAATGGG -ACGGAAGAAACGGCACTTTCCTGA -ACGGAAGAAACGGCACTTTAGCGA -ACGGAAGAAACGGCACTTCACAGA -ACGGAAGAAACGGCACTTGCAAGA -ACGGAAGAAACGGCACTTGGTTGA -ACGGAAGAAACGGCACTTTCCGAT -ACGGAAGAAACGGCACTTTGGCAT -ACGGAAGAAACGGCACTTCGAGAT -ACGGAAGAAACGGCACTTTACCAC -ACGGAAGAAACGGCACTTCAGAAC -ACGGAAGAAACGGCACTTGTCTAC -ACGGAAGAAACGGCACTTACGTAC -ACGGAAGAAACGGCACTTAGTGAC -ACGGAAGAAACGGCACTTCTGTAG -ACGGAAGAAACGGCACTTCCTAAG -ACGGAAGAAACGGCACTTGTTCAG -ACGGAAGAAACGGCACTTGCATAG -ACGGAAGAAACGGCACTTGACAAG -ACGGAAGAAACGGCACTTAAGCAG -ACGGAAGAAACGGCACTTCGTCAA -ACGGAAGAAACGGCACTTGCTGAA -ACGGAAGAAACGGCACTTAGTACG -ACGGAAGAAACGGCACTTATCCGA -ACGGAAGAAACGGCACTTATGGGA -ACGGAAGAAACGGCACTTGTGCAA -ACGGAAGAAACGGCACTTGAGGAA -ACGGAAGAAACGGCACTTCAGGTA -ACGGAAGAAACGGCACTTGACTCT -ACGGAAGAAACGGCACTTAGTCCT -ACGGAAGAAACGGCACTTTAAGCC -ACGGAAGAAACGGCACTTATAGCC -ACGGAAGAAACGGCACTTTAACCG -ACGGAAGAAACGGCACTTATGCCA -ACGGAAGAAACGACACGAGGAAAC -ACGGAAGAAACGACACGAAACACC -ACGGAAGAAACGACACGAATCGAG -ACGGAAGAAACGACACGACTCCTT -ACGGAAGAAACGACACGACCTGTT -ACGGAAGAAACGACACGACGGTTT -ACGGAAGAAACGACACGAGTGGTT -ACGGAAGAAACGACACGAGCCTTT -ACGGAAGAAACGACACGAGGTCTT -ACGGAAGAAACGACACGAACGCTT -ACGGAAGAAACGACACGAAGCGTT -ACGGAAGAAACGACACGATTCGTC -ACGGAAGAAACGACACGATCTCTC -ACGGAAGAAACGACACGATGGATC -ACGGAAGAAACGACACGACACTTC -ACGGAAGAAACGACACGAGTACTC -ACGGAAGAAACGACACGAGATGTC -ACGGAAGAAACGACACGAACAGTC -ACGGAAGAAACGACACGATTGCTG -ACGGAAGAAACGACACGATCCATG -ACGGAAGAAACGACACGATGTGTG -ACGGAAGAAACGACACGACTAGTG -ACGGAAGAAACGACACGACATCTG -ACGGAAGAAACGACACGAGAGTTG -ACGGAAGAAACGACACGAAGACTG -ACGGAAGAAACGACACGATCGGTA -ACGGAAGAAACGACACGATGCCTA -ACGGAAGAAACGACACGACCACTA -ACGGAAGAAACGACACGAGGAGTA -ACGGAAGAAACGACACGATCGTCT -ACGGAAGAAACGACACGATGCACT -ACGGAAGAAACGACACGACTGACT -ACGGAAGAAACGACACGACAACCT -ACGGAAGAAACGACACGAGCTACT -ACGGAAGAAACGACACGAGGATCT -ACGGAAGAAACGACACGAAAGGCT -ACGGAAGAAACGACACGATCAACC -ACGGAAGAAACGACACGATGTTCC -ACGGAAGAAACGACACGAATTCCC -ACGGAAGAAACGACACGATTCTCG -ACGGAAGAAACGACACGATAGACG -ACGGAAGAAACGACACGAGTAACG -ACGGAAGAAACGACACGAACTTCG -ACGGAAGAAACGACACGATACGCA -ACGGAAGAAACGACACGACTTGCA -ACGGAAGAAACGACACGACGAACA -ACGGAAGAAACGACACGACAGTCA -ACGGAAGAAACGACACGAGATCCA -ACGGAAGAAACGACACGAACGACA -ACGGAAGAAACGACACGAAGCTCA -ACGGAAGAAACGACACGATCACGT -ACGGAAGAAACGACACGACGTAGT -ACGGAAGAAACGACACGAGTCAGT -ACGGAAGAAACGACACGAGAAGGT -ACGGAAGAAACGACACGAAACCGT -ACGGAAGAAACGACACGATTGTGC -ACGGAAGAAACGACACGACTAAGC -ACGGAAGAAACGACACGAACTAGC -ACGGAAGAAACGACACGAAGATGC -ACGGAAGAAACGACACGATGAAGG -ACGGAAGAAACGACACGACAATGG -ACGGAAGAAACGACACGAATGAGG -ACGGAAGAAACGACACGAAATGGG -ACGGAAGAAACGACACGATCCTGA -ACGGAAGAAACGACACGATAGCGA -ACGGAAGAAACGACACGACACAGA -ACGGAAGAAACGACACGAGCAAGA -ACGGAAGAAACGACACGAGGTTGA -ACGGAAGAAACGACACGATCCGAT -ACGGAAGAAACGACACGATGGCAT -ACGGAAGAAACGACACGACGAGAT -ACGGAAGAAACGACACGATACCAC -ACGGAAGAAACGACACGACAGAAC -ACGGAAGAAACGACACGAGTCTAC -ACGGAAGAAACGACACGAACGTAC -ACGGAAGAAACGACACGAAGTGAC -ACGGAAGAAACGACACGACTGTAG -ACGGAAGAAACGACACGACCTAAG -ACGGAAGAAACGACACGAGTTCAG -ACGGAAGAAACGACACGAGCATAG -ACGGAAGAAACGACACGAGACAAG -ACGGAAGAAACGACACGAAAGCAG -ACGGAAGAAACGACACGACGTCAA -ACGGAAGAAACGACACGAGCTGAA -ACGGAAGAAACGACACGAAGTACG -ACGGAAGAAACGACACGAATCCGA -ACGGAAGAAACGACACGAATGGGA -ACGGAAGAAACGACACGAGTGCAA -ACGGAAGAAACGACACGAGAGGAA -ACGGAAGAAACGACACGACAGGTA -ACGGAAGAAACGACACGAGACTCT -ACGGAAGAAACGACACGAAGTCCT -ACGGAAGAAACGACACGATAAGCC -ACGGAAGAAACGACACGAATAGCC -ACGGAAGAAACGACACGATAACCG -ACGGAAGAAACGACACGAATGCCA -ACGGAAGAAACGTCACAGGGAAAC -ACGGAAGAAACGTCACAGAACACC -ACGGAAGAAACGTCACAGATCGAG -ACGGAAGAAACGTCACAGCTCCTT -ACGGAAGAAACGTCACAGCCTGTT -ACGGAAGAAACGTCACAGCGGTTT -ACGGAAGAAACGTCACAGGTGGTT -ACGGAAGAAACGTCACAGGCCTTT -ACGGAAGAAACGTCACAGGGTCTT -ACGGAAGAAACGTCACAGACGCTT -ACGGAAGAAACGTCACAGAGCGTT -ACGGAAGAAACGTCACAGTTCGTC -ACGGAAGAAACGTCACAGTCTCTC -ACGGAAGAAACGTCACAGTGGATC -ACGGAAGAAACGTCACAGCACTTC -ACGGAAGAAACGTCACAGGTACTC -ACGGAAGAAACGTCACAGGATGTC -ACGGAAGAAACGTCACAGACAGTC -ACGGAAGAAACGTCACAGTTGCTG -ACGGAAGAAACGTCACAGTCCATG -ACGGAAGAAACGTCACAGTGTGTG -ACGGAAGAAACGTCACAGCTAGTG -ACGGAAGAAACGTCACAGCATCTG -ACGGAAGAAACGTCACAGGAGTTG -ACGGAAGAAACGTCACAGAGACTG -ACGGAAGAAACGTCACAGTCGGTA -ACGGAAGAAACGTCACAGTGCCTA -ACGGAAGAAACGTCACAGCCACTA -ACGGAAGAAACGTCACAGGGAGTA -ACGGAAGAAACGTCACAGTCGTCT -ACGGAAGAAACGTCACAGTGCACT -ACGGAAGAAACGTCACAGCTGACT -ACGGAAGAAACGTCACAGCAACCT -ACGGAAGAAACGTCACAGGCTACT -ACGGAAGAAACGTCACAGGGATCT -ACGGAAGAAACGTCACAGAAGGCT -ACGGAAGAAACGTCACAGTCAACC -ACGGAAGAAACGTCACAGTGTTCC -ACGGAAGAAACGTCACAGATTCCC -ACGGAAGAAACGTCACAGTTCTCG -ACGGAAGAAACGTCACAGTAGACG -ACGGAAGAAACGTCACAGGTAACG -ACGGAAGAAACGTCACAGACTTCG -ACGGAAGAAACGTCACAGTACGCA -ACGGAAGAAACGTCACAGCTTGCA -ACGGAAGAAACGTCACAGCGAACA -ACGGAAGAAACGTCACAGCAGTCA -ACGGAAGAAACGTCACAGGATCCA -ACGGAAGAAACGTCACAGACGACA -ACGGAAGAAACGTCACAGAGCTCA -ACGGAAGAAACGTCACAGTCACGT -ACGGAAGAAACGTCACAGCGTAGT -ACGGAAGAAACGTCACAGGTCAGT -ACGGAAGAAACGTCACAGGAAGGT -ACGGAAGAAACGTCACAGAACCGT -ACGGAAGAAACGTCACAGTTGTGC -ACGGAAGAAACGTCACAGCTAAGC -ACGGAAGAAACGTCACAGACTAGC -ACGGAAGAAACGTCACAGAGATGC -ACGGAAGAAACGTCACAGTGAAGG -ACGGAAGAAACGTCACAGCAATGG -ACGGAAGAAACGTCACAGATGAGG -ACGGAAGAAACGTCACAGAATGGG -ACGGAAGAAACGTCACAGTCCTGA -ACGGAAGAAACGTCACAGTAGCGA -ACGGAAGAAACGTCACAGCACAGA -ACGGAAGAAACGTCACAGGCAAGA -ACGGAAGAAACGTCACAGGGTTGA -ACGGAAGAAACGTCACAGTCCGAT -ACGGAAGAAACGTCACAGTGGCAT -ACGGAAGAAACGTCACAGCGAGAT -ACGGAAGAAACGTCACAGTACCAC -ACGGAAGAAACGTCACAGCAGAAC -ACGGAAGAAACGTCACAGGTCTAC -ACGGAAGAAACGTCACAGACGTAC -ACGGAAGAAACGTCACAGAGTGAC -ACGGAAGAAACGTCACAGCTGTAG -ACGGAAGAAACGTCACAGCCTAAG -ACGGAAGAAACGTCACAGGTTCAG -ACGGAAGAAACGTCACAGGCATAG -ACGGAAGAAACGTCACAGGACAAG -ACGGAAGAAACGTCACAGAAGCAG -ACGGAAGAAACGTCACAGCGTCAA -ACGGAAGAAACGTCACAGGCTGAA -ACGGAAGAAACGTCACAGAGTACG -ACGGAAGAAACGTCACAGATCCGA -ACGGAAGAAACGTCACAGATGGGA -ACGGAAGAAACGTCACAGGTGCAA -ACGGAAGAAACGTCACAGGAGGAA -ACGGAAGAAACGTCACAGCAGGTA -ACGGAAGAAACGTCACAGGACTCT -ACGGAAGAAACGTCACAGAGTCCT -ACGGAAGAAACGTCACAGTAAGCC -ACGGAAGAAACGTCACAGATAGCC -ACGGAAGAAACGTCACAGTAACCG -ACGGAAGAAACGTCACAGATGCCA -ACGGAAGAAACGCCAGATGGAAAC -ACGGAAGAAACGCCAGATAACACC -ACGGAAGAAACGCCAGATATCGAG -ACGGAAGAAACGCCAGATCTCCTT -ACGGAAGAAACGCCAGATCCTGTT -ACGGAAGAAACGCCAGATCGGTTT -ACGGAAGAAACGCCAGATGTGGTT -ACGGAAGAAACGCCAGATGCCTTT -ACGGAAGAAACGCCAGATGGTCTT -ACGGAAGAAACGCCAGATACGCTT -ACGGAAGAAACGCCAGATAGCGTT -ACGGAAGAAACGCCAGATTTCGTC -ACGGAAGAAACGCCAGATTCTCTC -ACGGAAGAAACGCCAGATTGGATC -ACGGAAGAAACGCCAGATCACTTC -ACGGAAGAAACGCCAGATGTACTC -ACGGAAGAAACGCCAGATGATGTC -ACGGAAGAAACGCCAGATACAGTC -ACGGAAGAAACGCCAGATTTGCTG -ACGGAAGAAACGCCAGATTCCATG -ACGGAAGAAACGCCAGATTGTGTG -ACGGAAGAAACGCCAGATCTAGTG -ACGGAAGAAACGCCAGATCATCTG -ACGGAAGAAACGCCAGATGAGTTG -ACGGAAGAAACGCCAGATAGACTG -ACGGAAGAAACGCCAGATTCGGTA -ACGGAAGAAACGCCAGATTGCCTA -ACGGAAGAAACGCCAGATCCACTA -ACGGAAGAAACGCCAGATGGAGTA -ACGGAAGAAACGCCAGATTCGTCT -ACGGAAGAAACGCCAGATTGCACT -ACGGAAGAAACGCCAGATCTGACT -ACGGAAGAAACGCCAGATCAACCT -ACGGAAGAAACGCCAGATGCTACT -ACGGAAGAAACGCCAGATGGATCT -ACGGAAGAAACGCCAGATAAGGCT -ACGGAAGAAACGCCAGATTCAACC -ACGGAAGAAACGCCAGATTGTTCC -ACGGAAGAAACGCCAGATATTCCC -ACGGAAGAAACGCCAGATTTCTCG -ACGGAAGAAACGCCAGATTAGACG -ACGGAAGAAACGCCAGATGTAACG -ACGGAAGAAACGCCAGATACTTCG -ACGGAAGAAACGCCAGATTACGCA -ACGGAAGAAACGCCAGATCTTGCA -ACGGAAGAAACGCCAGATCGAACA -ACGGAAGAAACGCCAGATCAGTCA -ACGGAAGAAACGCCAGATGATCCA -ACGGAAGAAACGCCAGATACGACA -ACGGAAGAAACGCCAGATAGCTCA -ACGGAAGAAACGCCAGATTCACGT -ACGGAAGAAACGCCAGATCGTAGT -ACGGAAGAAACGCCAGATGTCAGT -ACGGAAGAAACGCCAGATGAAGGT -ACGGAAGAAACGCCAGATAACCGT -ACGGAAGAAACGCCAGATTTGTGC -ACGGAAGAAACGCCAGATCTAAGC -ACGGAAGAAACGCCAGATACTAGC -ACGGAAGAAACGCCAGATAGATGC -ACGGAAGAAACGCCAGATTGAAGG -ACGGAAGAAACGCCAGATCAATGG -ACGGAAGAAACGCCAGATATGAGG -ACGGAAGAAACGCCAGATAATGGG -ACGGAAGAAACGCCAGATTCCTGA -ACGGAAGAAACGCCAGATTAGCGA -ACGGAAGAAACGCCAGATCACAGA -ACGGAAGAAACGCCAGATGCAAGA -ACGGAAGAAACGCCAGATGGTTGA -ACGGAAGAAACGCCAGATTCCGAT -ACGGAAGAAACGCCAGATTGGCAT -ACGGAAGAAACGCCAGATCGAGAT -ACGGAAGAAACGCCAGATTACCAC -ACGGAAGAAACGCCAGATCAGAAC -ACGGAAGAAACGCCAGATGTCTAC -ACGGAAGAAACGCCAGATACGTAC -ACGGAAGAAACGCCAGATAGTGAC -ACGGAAGAAACGCCAGATCTGTAG -ACGGAAGAAACGCCAGATCCTAAG -ACGGAAGAAACGCCAGATGTTCAG -ACGGAAGAAACGCCAGATGCATAG -ACGGAAGAAACGCCAGATGACAAG -ACGGAAGAAACGCCAGATAAGCAG -ACGGAAGAAACGCCAGATCGTCAA -ACGGAAGAAACGCCAGATGCTGAA -ACGGAAGAAACGCCAGATAGTACG -ACGGAAGAAACGCCAGATATCCGA -ACGGAAGAAACGCCAGATATGGGA -ACGGAAGAAACGCCAGATGTGCAA -ACGGAAGAAACGCCAGATGAGGAA -ACGGAAGAAACGCCAGATCAGGTA -ACGGAAGAAACGCCAGATGACTCT -ACGGAAGAAACGCCAGATAGTCCT -ACGGAAGAAACGCCAGATTAAGCC -ACGGAAGAAACGCCAGATATAGCC -ACGGAAGAAACGCCAGATTAACCG -ACGGAAGAAACGCCAGATATGCCA -ACGGAAGAAACGACAACGGGAAAC -ACGGAAGAAACGACAACGAACACC -ACGGAAGAAACGACAACGATCGAG -ACGGAAGAAACGACAACGCTCCTT -ACGGAAGAAACGACAACGCCTGTT -ACGGAAGAAACGACAACGCGGTTT -ACGGAAGAAACGACAACGGTGGTT -ACGGAAGAAACGACAACGGCCTTT -ACGGAAGAAACGACAACGGGTCTT -ACGGAAGAAACGACAACGACGCTT -ACGGAAGAAACGACAACGAGCGTT -ACGGAAGAAACGACAACGTTCGTC -ACGGAAGAAACGACAACGTCTCTC -ACGGAAGAAACGACAACGTGGATC -ACGGAAGAAACGACAACGCACTTC -ACGGAAGAAACGACAACGGTACTC -ACGGAAGAAACGACAACGGATGTC -ACGGAAGAAACGACAACGACAGTC -ACGGAAGAAACGACAACGTTGCTG -ACGGAAGAAACGACAACGTCCATG -ACGGAAGAAACGACAACGTGTGTG -ACGGAAGAAACGACAACGCTAGTG -ACGGAAGAAACGACAACGCATCTG -ACGGAAGAAACGACAACGGAGTTG -ACGGAAGAAACGACAACGAGACTG -ACGGAAGAAACGACAACGTCGGTA -ACGGAAGAAACGACAACGTGCCTA -ACGGAAGAAACGACAACGCCACTA -ACGGAAGAAACGACAACGGGAGTA -ACGGAAGAAACGACAACGTCGTCT -ACGGAAGAAACGACAACGTGCACT -ACGGAAGAAACGACAACGCTGACT -ACGGAAGAAACGACAACGCAACCT -ACGGAAGAAACGACAACGGCTACT -ACGGAAGAAACGACAACGGGATCT -ACGGAAGAAACGACAACGAAGGCT -ACGGAAGAAACGACAACGTCAACC -ACGGAAGAAACGACAACGTGTTCC -ACGGAAGAAACGACAACGATTCCC -ACGGAAGAAACGACAACGTTCTCG -ACGGAAGAAACGACAACGTAGACG -ACGGAAGAAACGACAACGGTAACG -ACGGAAGAAACGACAACGACTTCG -ACGGAAGAAACGACAACGTACGCA -ACGGAAGAAACGACAACGCTTGCA -ACGGAAGAAACGACAACGCGAACA -ACGGAAGAAACGACAACGCAGTCA -ACGGAAGAAACGACAACGGATCCA -ACGGAAGAAACGACAACGACGACA -ACGGAAGAAACGACAACGAGCTCA -ACGGAAGAAACGACAACGTCACGT -ACGGAAGAAACGACAACGCGTAGT -ACGGAAGAAACGACAACGGTCAGT -ACGGAAGAAACGACAACGGAAGGT -ACGGAAGAAACGACAACGAACCGT -ACGGAAGAAACGACAACGTTGTGC -ACGGAAGAAACGACAACGCTAAGC -ACGGAAGAAACGACAACGACTAGC -ACGGAAGAAACGACAACGAGATGC -ACGGAAGAAACGACAACGTGAAGG -ACGGAAGAAACGACAACGCAATGG -ACGGAAGAAACGACAACGATGAGG -ACGGAAGAAACGACAACGAATGGG -ACGGAAGAAACGACAACGTCCTGA -ACGGAAGAAACGACAACGTAGCGA -ACGGAAGAAACGACAACGCACAGA -ACGGAAGAAACGACAACGGCAAGA -ACGGAAGAAACGACAACGGGTTGA -ACGGAAGAAACGACAACGTCCGAT -ACGGAAGAAACGACAACGTGGCAT -ACGGAAGAAACGACAACGCGAGAT -ACGGAAGAAACGACAACGTACCAC -ACGGAAGAAACGACAACGCAGAAC -ACGGAAGAAACGACAACGGTCTAC -ACGGAAGAAACGACAACGACGTAC -ACGGAAGAAACGACAACGAGTGAC -ACGGAAGAAACGACAACGCTGTAG -ACGGAAGAAACGACAACGCCTAAG -ACGGAAGAAACGACAACGGTTCAG -ACGGAAGAAACGACAACGGCATAG -ACGGAAGAAACGACAACGGACAAG -ACGGAAGAAACGACAACGAAGCAG -ACGGAAGAAACGACAACGCGTCAA -ACGGAAGAAACGACAACGGCTGAA -ACGGAAGAAACGACAACGAGTACG -ACGGAAGAAACGACAACGATCCGA -ACGGAAGAAACGACAACGATGGGA -ACGGAAGAAACGACAACGGTGCAA -ACGGAAGAAACGACAACGGAGGAA -ACGGAAGAAACGACAACGCAGGTA -ACGGAAGAAACGACAACGGACTCT -ACGGAAGAAACGACAACGAGTCCT -ACGGAAGAAACGACAACGTAAGCC -ACGGAAGAAACGACAACGATAGCC -ACGGAAGAAACGACAACGTAACCG -ACGGAAGAAACGACAACGATGCCA -ACGGAAGAAACGTCAAGCGGAAAC -ACGGAAGAAACGTCAAGCAACACC -ACGGAAGAAACGTCAAGCATCGAG -ACGGAAGAAACGTCAAGCCTCCTT -ACGGAAGAAACGTCAAGCCCTGTT -ACGGAAGAAACGTCAAGCCGGTTT -ACGGAAGAAACGTCAAGCGTGGTT -ACGGAAGAAACGTCAAGCGCCTTT -ACGGAAGAAACGTCAAGCGGTCTT -ACGGAAGAAACGTCAAGCACGCTT -ACGGAAGAAACGTCAAGCAGCGTT -ACGGAAGAAACGTCAAGCTTCGTC -ACGGAAGAAACGTCAAGCTCTCTC -ACGGAAGAAACGTCAAGCTGGATC -ACGGAAGAAACGTCAAGCCACTTC -ACGGAAGAAACGTCAAGCGTACTC -ACGGAAGAAACGTCAAGCGATGTC -ACGGAAGAAACGTCAAGCACAGTC -ACGGAAGAAACGTCAAGCTTGCTG -ACGGAAGAAACGTCAAGCTCCATG -ACGGAAGAAACGTCAAGCTGTGTG -ACGGAAGAAACGTCAAGCCTAGTG -ACGGAAGAAACGTCAAGCCATCTG -ACGGAAGAAACGTCAAGCGAGTTG -ACGGAAGAAACGTCAAGCAGACTG -ACGGAAGAAACGTCAAGCTCGGTA -ACGGAAGAAACGTCAAGCTGCCTA -ACGGAAGAAACGTCAAGCCCACTA -ACGGAAGAAACGTCAAGCGGAGTA -ACGGAAGAAACGTCAAGCTCGTCT -ACGGAAGAAACGTCAAGCTGCACT -ACGGAAGAAACGTCAAGCCTGACT -ACGGAAGAAACGTCAAGCCAACCT -ACGGAAGAAACGTCAAGCGCTACT -ACGGAAGAAACGTCAAGCGGATCT -ACGGAAGAAACGTCAAGCAAGGCT -ACGGAAGAAACGTCAAGCTCAACC -ACGGAAGAAACGTCAAGCTGTTCC -ACGGAAGAAACGTCAAGCATTCCC -ACGGAAGAAACGTCAAGCTTCTCG -ACGGAAGAAACGTCAAGCTAGACG -ACGGAAGAAACGTCAAGCGTAACG -ACGGAAGAAACGTCAAGCACTTCG -ACGGAAGAAACGTCAAGCTACGCA -ACGGAAGAAACGTCAAGCCTTGCA -ACGGAAGAAACGTCAAGCCGAACA -ACGGAAGAAACGTCAAGCCAGTCA -ACGGAAGAAACGTCAAGCGATCCA -ACGGAAGAAACGTCAAGCACGACA -ACGGAAGAAACGTCAAGCAGCTCA -ACGGAAGAAACGTCAAGCTCACGT -ACGGAAGAAACGTCAAGCCGTAGT -ACGGAAGAAACGTCAAGCGTCAGT -ACGGAAGAAACGTCAAGCGAAGGT -ACGGAAGAAACGTCAAGCAACCGT -ACGGAAGAAACGTCAAGCTTGTGC -ACGGAAGAAACGTCAAGCCTAAGC -ACGGAAGAAACGTCAAGCACTAGC -ACGGAAGAAACGTCAAGCAGATGC -ACGGAAGAAACGTCAAGCTGAAGG -ACGGAAGAAACGTCAAGCCAATGG -ACGGAAGAAACGTCAAGCATGAGG -ACGGAAGAAACGTCAAGCAATGGG -ACGGAAGAAACGTCAAGCTCCTGA -ACGGAAGAAACGTCAAGCTAGCGA -ACGGAAGAAACGTCAAGCCACAGA -ACGGAAGAAACGTCAAGCGCAAGA -ACGGAAGAAACGTCAAGCGGTTGA -ACGGAAGAAACGTCAAGCTCCGAT -ACGGAAGAAACGTCAAGCTGGCAT -ACGGAAGAAACGTCAAGCCGAGAT -ACGGAAGAAACGTCAAGCTACCAC -ACGGAAGAAACGTCAAGCCAGAAC -ACGGAAGAAACGTCAAGCGTCTAC -ACGGAAGAAACGTCAAGCACGTAC -ACGGAAGAAACGTCAAGCAGTGAC -ACGGAAGAAACGTCAAGCCTGTAG -ACGGAAGAAACGTCAAGCCCTAAG -ACGGAAGAAACGTCAAGCGTTCAG -ACGGAAGAAACGTCAAGCGCATAG -ACGGAAGAAACGTCAAGCGACAAG -ACGGAAGAAACGTCAAGCAAGCAG -ACGGAAGAAACGTCAAGCCGTCAA -ACGGAAGAAACGTCAAGCGCTGAA -ACGGAAGAAACGTCAAGCAGTACG -ACGGAAGAAACGTCAAGCATCCGA -ACGGAAGAAACGTCAAGCATGGGA -ACGGAAGAAACGTCAAGCGTGCAA -ACGGAAGAAACGTCAAGCGAGGAA -ACGGAAGAAACGTCAAGCCAGGTA -ACGGAAGAAACGTCAAGCGACTCT -ACGGAAGAAACGTCAAGCAGTCCT -ACGGAAGAAACGTCAAGCTAAGCC -ACGGAAGAAACGTCAAGCATAGCC -ACGGAAGAAACGTCAAGCTAACCG -ACGGAAGAAACGTCAAGCATGCCA -ACGGAAGAAACGCGTTCAGGAAAC -ACGGAAGAAACGCGTTCAAACACC -ACGGAAGAAACGCGTTCAATCGAG -ACGGAAGAAACGCGTTCACTCCTT -ACGGAAGAAACGCGTTCACCTGTT -ACGGAAGAAACGCGTTCACGGTTT -ACGGAAGAAACGCGTTCAGTGGTT -ACGGAAGAAACGCGTTCAGCCTTT -ACGGAAGAAACGCGTTCAGGTCTT -ACGGAAGAAACGCGTTCAACGCTT -ACGGAAGAAACGCGTTCAAGCGTT -ACGGAAGAAACGCGTTCATTCGTC -ACGGAAGAAACGCGTTCATCTCTC -ACGGAAGAAACGCGTTCATGGATC -ACGGAAGAAACGCGTTCACACTTC -ACGGAAGAAACGCGTTCAGTACTC -ACGGAAGAAACGCGTTCAGATGTC -ACGGAAGAAACGCGTTCAACAGTC -ACGGAAGAAACGCGTTCATTGCTG -ACGGAAGAAACGCGTTCATCCATG -ACGGAAGAAACGCGTTCATGTGTG -ACGGAAGAAACGCGTTCACTAGTG -ACGGAAGAAACGCGTTCACATCTG -ACGGAAGAAACGCGTTCAGAGTTG -ACGGAAGAAACGCGTTCAAGACTG -ACGGAAGAAACGCGTTCATCGGTA -ACGGAAGAAACGCGTTCATGCCTA -ACGGAAGAAACGCGTTCACCACTA -ACGGAAGAAACGCGTTCAGGAGTA -ACGGAAGAAACGCGTTCATCGTCT -ACGGAAGAAACGCGTTCATGCACT -ACGGAAGAAACGCGTTCACTGACT -ACGGAAGAAACGCGTTCACAACCT -ACGGAAGAAACGCGTTCAGCTACT -ACGGAAGAAACGCGTTCAGGATCT -ACGGAAGAAACGCGTTCAAAGGCT -ACGGAAGAAACGCGTTCATCAACC -ACGGAAGAAACGCGTTCATGTTCC -ACGGAAGAAACGCGTTCAATTCCC -ACGGAAGAAACGCGTTCATTCTCG -ACGGAAGAAACGCGTTCATAGACG -ACGGAAGAAACGCGTTCAGTAACG -ACGGAAGAAACGCGTTCAACTTCG -ACGGAAGAAACGCGTTCATACGCA -ACGGAAGAAACGCGTTCACTTGCA -ACGGAAGAAACGCGTTCACGAACA -ACGGAAGAAACGCGTTCACAGTCA -ACGGAAGAAACGCGTTCAGATCCA -ACGGAAGAAACGCGTTCAACGACA -ACGGAAGAAACGCGTTCAAGCTCA -ACGGAAGAAACGCGTTCATCACGT -ACGGAAGAAACGCGTTCACGTAGT -ACGGAAGAAACGCGTTCAGTCAGT -ACGGAAGAAACGCGTTCAGAAGGT -ACGGAAGAAACGCGTTCAAACCGT -ACGGAAGAAACGCGTTCATTGTGC -ACGGAAGAAACGCGTTCACTAAGC -ACGGAAGAAACGCGTTCAACTAGC -ACGGAAGAAACGCGTTCAAGATGC -ACGGAAGAAACGCGTTCATGAAGG -ACGGAAGAAACGCGTTCACAATGG -ACGGAAGAAACGCGTTCAATGAGG -ACGGAAGAAACGCGTTCAAATGGG -ACGGAAGAAACGCGTTCATCCTGA -ACGGAAGAAACGCGTTCATAGCGA -ACGGAAGAAACGCGTTCACACAGA -ACGGAAGAAACGCGTTCAGCAAGA -ACGGAAGAAACGCGTTCAGGTTGA -ACGGAAGAAACGCGTTCATCCGAT -ACGGAAGAAACGCGTTCATGGCAT -ACGGAAGAAACGCGTTCACGAGAT -ACGGAAGAAACGCGTTCATACCAC -ACGGAAGAAACGCGTTCACAGAAC -ACGGAAGAAACGCGTTCAGTCTAC -ACGGAAGAAACGCGTTCAACGTAC -ACGGAAGAAACGCGTTCAAGTGAC -ACGGAAGAAACGCGTTCACTGTAG -ACGGAAGAAACGCGTTCACCTAAG -ACGGAAGAAACGCGTTCAGTTCAG -ACGGAAGAAACGCGTTCAGCATAG -ACGGAAGAAACGCGTTCAGACAAG -ACGGAAGAAACGCGTTCAAAGCAG -ACGGAAGAAACGCGTTCACGTCAA -ACGGAAGAAACGCGTTCAGCTGAA -ACGGAAGAAACGCGTTCAAGTACG -ACGGAAGAAACGCGTTCAATCCGA -ACGGAAGAAACGCGTTCAATGGGA -ACGGAAGAAACGCGTTCAGTGCAA -ACGGAAGAAACGCGTTCAGAGGAA -ACGGAAGAAACGCGTTCACAGGTA -ACGGAAGAAACGCGTTCAGACTCT -ACGGAAGAAACGCGTTCAAGTCCT -ACGGAAGAAACGCGTTCATAAGCC -ACGGAAGAAACGCGTTCAATAGCC -ACGGAAGAAACGCGTTCATAACCG -ACGGAAGAAACGCGTTCAATGCCA -ACGGAAGAAACGAGTCGTGGAAAC -ACGGAAGAAACGAGTCGTAACACC -ACGGAAGAAACGAGTCGTATCGAG -ACGGAAGAAACGAGTCGTCTCCTT -ACGGAAGAAACGAGTCGTCCTGTT -ACGGAAGAAACGAGTCGTCGGTTT -ACGGAAGAAACGAGTCGTGTGGTT -ACGGAAGAAACGAGTCGTGCCTTT -ACGGAAGAAACGAGTCGTGGTCTT -ACGGAAGAAACGAGTCGTACGCTT -ACGGAAGAAACGAGTCGTAGCGTT -ACGGAAGAAACGAGTCGTTTCGTC -ACGGAAGAAACGAGTCGTTCTCTC -ACGGAAGAAACGAGTCGTTGGATC -ACGGAAGAAACGAGTCGTCACTTC -ACGGAAGAAACGAGTCGTGTACTC -ACGGAAGAAACGAGTCGTGATGTC -ACGGAAGAAACGAGTCGTACAGTC -ACGGAAGAAACGAGTCGTTTGCTG -ACGGAAGAAACGAGTCGTTCCATG -ACGGAAGAAACGAGTCGTTGTGTG -ACGGAAGAAACGAGTCGTCTAGTG -ACGGAAGAAACGAGTCGTCATCTG -ACGGAAGAAACGAGTCGTGAGTTG -ACGGAAGAAACGAGTCGTAGACTG -ACGGAAGAAACGAGTCGTTCGGTA -ACGGAAGAAACGAGTCGTTGCCTA -ACGGAAGAAACGAGTCGTCCACTA -ACGGAAGAAACGAGTCGTGGAGTA -ACGGAAGAAACGAGTCGTTCGTCT -ACGGAAGAAACGAGTCGTTGCACT -ACGGAAGAAACGAGTCGTCTGACT -ACGGAAGAAACGAGTCGTCAACCT -ACGGAAGAAACGAGTCGTGCTACT -ACGGAAGAAACGAGTCGTGGATCT -ACGGAAGAAACGAGTCGTAAGGCT -ACGGAAGAAACGAGTCGTTCAACC -ACGGAAGAAACGAGTCGTTGTTCC -ACGGAAGAAACGAGTCGTATTCCC -ACGGAAGAAACGAGTCGTTTCTCG -ACGGAAGAAACGAGTCGTTAGACG -ACGGAAGAAACGAGTCGTGTAACG -ACGGAAGAAACGAGTCGTACTTCG -ACGGAAGAAACGAGTCGTTACGCA -ACGGAAGAAACGAGTCGTCTTGCA -ACGGAAGAAACGAGTCGTCGAACA -ACGGAAGAAACGAGTCGTCAGTCA -ACGGAAGAAACGAGTCGTGATCCA -ACGGAAGAAACGAGTCGTACGACA -ACGGAAGAAACGAGTCGTAGCTCA -ACGGAAGAAACGAGTCGTTCACGT -ACGGAAGAAACGAGTCGTCGTAGT -ACGGAAGAAACGAGTCGTGTCAGT -ACGGAAGAAACGAGTCGTGAAGGT -ACGGAAGAAACGAGTCGTAACCGT -ACGGAAGAAACGAGTCGTTTGTGC -ACGGAAGAAACGAGTCGTCTAAGC -ACGGAAGAAACGAGTCGTACTAGC -ACGGAAGAAACGAGTCGTAGATGC -ACGGAAGAAACGAGTCGTTGAAGG -ACGGAAGAAACGAGTCGTCAATGG -ACGGAAGAAACGAGTCGTATGAGG -ACGGAAGAAACGAGTCGTAATGGG -ACGGAAGAAACGAGTCGTTCCTGA -ACGGAAGAAACGAGTCGTTAGCGA -ACGGAAGAAACGAGTCGTCACAGA -ACGGAAGAAACGAGTCGTGCAAGA -ACGGAAGAAACGAGTCGTGGTTGA -ACGGAAGAAACGAGTCGTTCCGAT -ACGGAAGAAACGAGTCGTTGGCAT -ACGGAAGAAACGAGTCGTCGAGAT -ACGGAAGAAACGAGTCGTTACCAC -ACGGAAGAAACGAGTCGTCAGAAC -ACGGAAGAAACGAGTCGTGTCTAC -ACGGAAGAAACGAGTCGTACGTAC -ACGGAAGAAACGAGTCGTAGTGAC -ACGGAAGAAACGAGTCGTCTGTAG -ACGGAAGAAACGAGTCGTCCTAAG -ACGGAAGAAACGAGTCGTGTTCAG -ACGGAAGAAACGAGTCGTGCATAG -ACGGAAGAAACGAGTCGTGACAAG -ACGGAAGAAACGAGTCGTAAGCAG -ACGGAAGAAACGAGTCGTCGTCAA -ACGGAAGAAACGAGTCGTGCTGAA -ACGGAAGAAACGAGTCGTAGTACG -ACGGAAGAAACGAGTCGTATCCGA -ACGGAAGAAACGAGTCGTATGGGA -ACGGAAGAAACGAGTCGTGTGCAA -ACGGAAGAAACGAGTCGTGAGGAA -ACGGAAGAAACGAGTCGTCAGGTA -ACGGAAGAAACGAGTCGTGACTCT -ACGGAAGAAACGAGTCGTAGTCCT -ACGGAAGAAACGAGTCGTTAAGCC -ACGGAAGAAACGAGTCGTATAGCC -ACGGAAGAAACGAGTCGTTAACCG -ACGGAAGAAACGAGTCGTATGCCA -ACGGAAGAAACGAGTGTCGGAAAC -ACGGAAGAAACGAGTGTCAACACC -ACGGAAGAAACGAGTGTCATCGAG -ACGGAAGAAACGAGTGTCCTCCTT -ACGGAAGAAACGAGTGTCCCTGTT -ACGGAAGAAACGAGTGTCCGGTTT -ACGGAAGAAACGAGTGTCGTGGTT -ACGGAAGAAACGAGTGTCGCCTTT -ACGGAAGAAACGAGTGTCGGTCTT -ACGGAAGAAACGAGTGTCACGCTT -ACGGAAGAAACGAGTGTCAGCGTT -ACGGAAGAAACGAGTGTCTTCGTC -ACGGAAGAAACGAGTGTCTCTCTC -ACGGAAGAAACGAGTGTCTGGATC -ACGGAAGAAACGAGTGTCCACTTC -ACGGAAGAAACGAGTGTCGTACTC -ACGGAAGAAACGAGTGTCGATGTC -ACGGAAGAAACGAGTGTCACAGTC -ACGGAAGAAACGAGTGTCTTGCTG -ACGGAAGAAACGAGTGTCTCCATG -ACGGAAGAAACGAGTGTCTGTGTG -ACGGAAGAAACGAGTGTCCTAGTG -ACGGAAGAAACGAGTGTCCATCTG -ACGGAAGAAACGAGTGTCGAGTTG -ACGGAAGAAACGAGTGTCAGACTG -ACGGAAGAAACGAGTGTCTCGGTA -ACGGAAGAAACGAGTGTCTGCCTA -ACGGAAGAAACGAGTGTCCCACTA -ACGGAAGAAACGAGTGTCGGAGTA -ACGGAAGAAACGAGTGTCTCGTCT -ACGGAAGAAACGAGTGTCTGCACT -ACGGAAGAAACGAGTGTCCTGACT -ACGGAAGAAACGAGTGTCCAACCT -ACGGAAGAAACGAGTGTCGCTACT -ACGGAAGAAACGAGTGTCGGATCT -ACGGAAGAAACGAGTGTCAAGGCT -ACGGAAGAAACGAGTGTCTCAACC -ACGGAAGAAACGAGTGTCTGTTCC -ACGGAAGAAACGAGTGTCATTCCC -ACGGAAGAAACGAGTGTCTTCTCG -ACGGAAGAAACGAGTGTCTAGACG -ACGGAAGAAACGAGTGTCGTAACG -ACGGAAGAAACGAGTGTCACTTCG -ACGGAAGAAACGAGTGTCTACGCA -ACGGAAGAAACGAGTGTCCTTGCA -ACGGAAGAAACGAGTGTCCGAACA -ACGGAAGAAACGAGTGTCCAGTCA -ACGGAAGAAACGAGTGTCGATCCA -ACGGAAGAAACGAGTGTCACGACA -ACGGAAGAAACGAGTGTCAGCTCA -ACGGAAGAAACGAGTGTCTCACGT -ACGGAAGAAACGAGTGTCCGTAGT -ACGGAAGAAACGAGTGTCGTCAGT -ACGGAAGAAACGAGTGTCGAAGGT -ACGGAAGAAACGAGTGTCAACCGT -ACGGAAGAAACGAGTGTCTTGTGC -ACGGAAGAAACGAGTGTCCTAAGC -ACGGAAGAAACGAGTGTCACTAGC -ACGGAAGAAACGAGTGTCAGATGC -ACGGAAGAAACGAGTGTCTGAAGG -ACGGAAGAAACGAGTGTCCAATGG -ACGGAAGAAACGAGTGTCATGAGG -ACGGAAGAAACGAGTGTCAATGGG -ACGGAAGAAACGAGTGTCTCCTGA -ACGGAAGAAACGAGTGTCTAGCGA -ACGGAAGAAACGAGTGTCCACAGA -ACGGAAGAAACGAGTGTCGCAAGA -ACGGAAGAAACGAGTGTCGGTTGA -ACGGAAGAAACGAGTGTCTCCGAT -ACGGAAGAAACGAGTGTCTGGCAT -ACGGAAGAAACGAGTGTCCGAGAT -ACGGAAGAAACGAGTGTCTACCAC -ACGGAAGAAACGAGTGTCCAGAAC -ACGGAAGAAACGAGTGTCGTCTAC -ACGGAAGAAACGAGTGTCACGTAC -ACGGAAGAAACGAGTGTCAGTGAC -ACGGAAGAAACGAGTGTCCTGTAG -ACGGAAGAAACGAGTGTCCCTAAG -ACGGAAGAAACGAGTGTCGTTCAG -ACGGAAGAAACGAGTGTCGCATAG -ACGGAAGAAACGAGTGTCGACAAG -ACGGAAGAAACGAGTGTCAAGCAG -ACGGAAGAAACGAGTGTCCGTCAA -ACGGAAGAAACGAGTGTCGCTGAA -ACGGAAGAAACGAGTGTCAGTACG -ACGGAAGAAACGAGTGTCATCCGA -ACGGAAGAAACGAGTGTCATGGGA -ACGGAAGAAACGAGTGTCGTGCAA -ACGGAAGAAACGAGTGTCGAGGAA -ACGGAAGAAACGAGTGTCCAGGTA -ACGGAAGAAACGAGTGTCGACTCT -ACGGAAGAAACGAGTGTCAGTCCT -ACGGAAGAAACGAGTGTCTAAGCC -ACGGAAGAAACGAGTGTCATAGCC -ACGGAAGAAACGAGTGTCTAACCG -ACGGAAGAAACGAGTGTCATGCCA -ACGGAAGAAACGGGTGAAGGAAAC -ACGGAAGAAACGGGTGAAAACACC -ACGGAAGAAACGGGTGAAATCGAG -ACGGAAGAAACGGGTGAACTCCTT -ACGGAAGAAACGGGTGAACCTGTT -ACGGAAGAAACGGGTGAACGGTTT -ACGGAAGAAACGGGTGAAGTGGTT -ACGGAAGAAACGGGTGAAGCCTTT -ACGGAAGAAACGGGTGAAGGTCTT -ACGGAAGAAACGGGTGAAACGCTT -ACGGAAGAAACGGGTGAAAGCGTT -ACGGAAGAAACGGGTGAATTCGTC -ACGGAAGAAACGGGTGAATCTCTC -ACGGAAGAAACGGGTGAATGGATC -ACGGAAGAAACGGGTGAACACTTC -ACGGAAGAAACGGGTGAAGTACTC -ACGGAAGAAACGGGTGAAGATGTC -ACGGAAGAAACGGGTGAAACAGTC -ACGGAAGAAACGGGTGAATTGCTG -ACGGAAGAAACGGGTGAATCCATG -ACGGAAGAAACGGGTGAATGTGTG -ACGGAAGAAACGGGTGAACTAGTG -ACGGAAGAAACGGGTGAACATCTG -ACGGAAGAAACGGGTGAAGAGTTG -ACGGAAGAAACGGGTGAAAGACTG -ACGGAAGAAACGGGTGAATCGGTA -ACGGAAGAAACGGGTGAATGCCTA -ACGGAAGAAACGGGTGAACCACTA -ACGGAAGAAACGGGTGAAGGAGTA -ACGGAAGAAACGGGTGAATCGTCT -ACGGAAGAAACGGGTGAATGCACT -ACGGAAGAAACGGGTGAACTGACT -ACGGAAGAAACGGGTGAACAACCT -ACGGAAGAAACGGGTGAAGCTACT -ACGGAAGAAACGGGTGAAGGATCT -ACGGAAGAAACGGGTGAAAAGGCT -ACGGAAGAAACGGGTGAATCAACC -ACGGAAGAAACGGGTGAATGTTCC -ACGGAAGAAACGGGTGAAATTCCC -ACGGAAGAAACGGGTGAATTCTCG -ACGGAAGAAACGGGTGAATAGACG -ACGGAAGAAACGGGTGAAGTAACG -ACGGAAGAAACGGGTGAAACTTCG -ACGGAAGAAACGGGTGAATACGCA -ACGGAAGAAACGGGTGAACTTGCA -ACGGAAGAAACGGGTGAACGAACA -ACGGAAGAAACGGGTGAACAGTCA -ACGGAAGAAACGGGTGAAGATCCA -ACGGAAGAAACGGGTGAAACGACA -ACGGAAGAAACGGGTGAAAGCTCA -ACGGAAGAAACGGGTGAATCACGT -ACGGAAGAAACGGGTGAACGTAGT -ACGGAAGAAACGGGTGAAGTCAGT -ACGGAAGAAACGGGTGAAGAAGGT -ACGGAAGAAACGGGTGAAAACCGT -ACGGAAGAAACGGGTGAATTGTGC -ACGGAAGAAACGGGTGAACTAAGC -ACGGAAGAAACGGGTGAAACTAGC -ACGGAAGAAACGGGTGAAAGATGC -ACGGAAGAAACGGGTGAATGAAGG -ACGGAAGAAACGGGTGAACAATGG -ACGGAAGAAACGGGTGAAATGAGG -ACGGAAGAAACGGGTGAAAATGGG -ACGGAAGAAACGGGTGAATCCTGA -ACGGAAGAAACGGGTGAATAGCGA -ACGGAAGAAACGGGTGAACACAGA -ACGGAAGAAACGGGTGAAGCAAGA -ACGGAAGAAACGGGTGAAGGTTGA -ACGGAAGAAACGGGTGAATCCGAT -ACGGAAGAAACGGGTGAATGGCAT -ACGGAAGAAACGGGTGAACGAGAT -ACGGAAGAAACGGGTGAATACCAC -ACGGAAGAAACGGGTGAACAGAAC -ACGGAAGAAACGGGTGAAGTCTAC -ACGGAAGAAACGGGTGAAACGTAC -ACGGAAGAAACGGGTGAAAGTGAC -ACGGAAGAAACGGGTGAACTGTAG -ACGGAAGAAACGGGTGAACCTAAG -ACGGAAGAAACGGGTGAAGTTCAG -ACGGAAGAAACGGGTGAAGCATAG -ACGGAAGAAACGGGTGAAGACAAG -ACGGAAGAAACGGGTGAAAAGCAG -ACGGAAGAAACGGGTGAACGTCAA -ACGGAAGAAACGGGTGAAGCTGAA -ACGGAAGAAACGGGTGAAAGTACG -ACGGAAGAAACGGGTGAAATCCGA -ACGGAAGAAACGGGTGAAATGGGA -ACGGAAGAAACGGGTGAAGTGCAA -ACGGAAGAAACGGGTGAAGAGGAA -ACGGAAGAAACGGGTGAACAGGTA -ACGGAAGAAACGGGTGAAGACTCT -ACGGAAGAAACGGGTGAAAGTCCT -ACGGAAGAAACGGGTGAATAAGCC -ACGGAAGAAACGGGTGAAATAGCC -ACGGAAGAAACGGGTGAATAACCG -ACGGAAGAAACGGGTGAAATGCCA -ACGGAAGAAACGCGTAACGGAAAC -ACGGAAGAAACGCGTAACAACACC -ACGGAAGAAACGCGTAACATCGAG -ACGGAAGAAACGCGTAACCTCCTT -ACGGAAGAAACGCGTAACCCTGTT -ACGGAAGAAACGCGTAACCGGTTT -ACGGAAGAAACGCGTAACGTGGTT -ACGGAAGAAACGCGTAACGCCTTT -ACGGAAGAAACGCGTAACGGTCTT -ACGGAAGAAACGCGTAACACGCTT -ACGGAAGAAACGCGTAACAGCGTT -ACGGAAGAAACGCGTAACTTCGTC -ACGGAAGAAACGCGTAACTCTCTC -ACGGAAGAAACGCGTAACTGGATC -ACGGAAGAAACGCGTAACCACTTC -ACGGAAGAAACGCGTAACGTACTC -ACGGAAGAAACGCGTAACGATGTC -ACGGAAGAAACGCGTAACACAGTC -ACGGAAGAAACGCGTAACTTGCTG -ACGGAAGAAACGCGTAACTCCATG -ACGGAAGAAACGCGTAACTGTGTG -ACGGAAGAAACGCGTAACCTAGTG -ACGGAAGAAACGCGTAACCATCTG -ACGGAAGAAACGCGTAACGAGTTG -ACGGAAGAAACGCGTAACAGACTG -ACGGAAGAAACGCGTAACTCGGTA -ACGGAAGAAACGCGTAACTGCCTA -ACGGAAGAAACGCGTAACCCACTA -ACGGAAGAAACGCGTAACGGAGTA -ACGGAAGAAACGCGTAACTCGTCT -ACGGAAGAAACGCGTAACTGCACT -ACGGAAGAAACGCGTAACCTGACT -ACGGAAGAAACGCGTAACCAACCT -ACGGAAGAAACGCGTAACGCTACT -ACGGAAGAAACGCGTAACGGATCT -ACGGAAGAAACGCGTAACAAGGCT -ACGGAAGAAACGCGTAACTCAACC -ACGGAAGAAACGCGTAACTGTTCC -ACGGAAGAAACGCGTAACATTCCC -ACGGAAGAAACGCGTAACTTCTCG -ACGGAAGAAACGCGTAACTAGACG -ACGGAAGAAACGCGTAACGTAACG -ACGGAAGAAACGCGTAACACTTCG -ACGGAAGAAACGCGTAACTACGCA -ACGGAAGAAACGCGTAACCTTGCA -ACGGAAGAAACGCGTAACCGAACA -ACGGAAGAAACGCGTAACCAGTCA -ACGGAAGAAACGCGTAACGATCCA -ACGGAAGAAACGCGTAACACGACA -ACGGAAGAAACGCGTAACAGCTCA -ACGGAAGAAACGCGTAACTCACGT -ACGGAAGAAACGCGTAACCGTAGT -ACGGAAGAAACGCGTAACGTCAGT -ACGGAAGAAACGCGTAACGAAGGT -ACGGAAGAAACGCGTAACAACCGT -ACGGAAGAAACGCGTAACTTGTGC -ACGGAAGAAACGCGTAACCTAAGC -ACGGAAGAAACGCGTAACACTAGC -ACGGAAGAAACGCGTAACAGATGC -ACGGAAGAAACGCGTAACTGAAGG -ACGGAAGAAACGCGTAACCAATGG -ACGGAAGAAACGCGTAACATGAGG -ACGGAAGAAACGCGTAACAATGGG -ACGGAAGAAACGCGTAACTCCTGA -ACGGAAGAAACGCGTAACTAGCGA -ACGGAAGAAACGCGTAACCACAGA -ACGGAAGAAACGCGTAACGCAAGA -ACGGAAGAAACGCGTAACGGTTGA -ACGGAAGAAACGCGTAACTCCGAT -ACGGAAGAAACGCGTAACTGGCAT -ACGGAAGAAACGCGTAACCGAGAT -ACGGAAGAAACGCGTAACTACCAC -ACGGAAGAAACGCGTAACCAGAAC -ACGGAAGAAACGCGTAACGTCTAC -ACGGAAGAAACGCGTAACACGTAC -ACGGAAGAAACGCGTAACAGTGAC -ACGGAAGAAACGCGTAACCTGTAG -ACGGAAGAAACGCGTAACCCTAAG -ACGGAAGAAACGCGTAACGTTCAG -ACGGAAGAAACGCGTAACGCATAG -ACGGAAGAAACGCGTAACGACAAG -ACGGAAGAAACGCGTAACAAGCAG -ACGGAAGAAACGCGTAACCGTCAA -ACGGAAGAAACGCGTAACGCTGAA -ACGGAAGAAACGCGTAACAGTACG -ACGGAAGAAACGCGTAACATCCGA -ACGGAAGAAACGCGTAACATGGGA -ACGGAAGAAACGCGTAACGTGCAA -ACGGAAGAAACGCGTAACGAGGAA -ACGGAAGAAACGCGTAACCAGGTA -ACGGAAGAAACGCGTAACGACTCT -ACGGAAGAAACGCGTAACAGTCCT -ACGGAAGAAACGCGTAACTAAGCC -ACGGAAGAAACGCGTAACATAGCC -ACGGAAGAAACGCGTAACTAACCG -ACGGAAGAAACGCGTAACATGCCA -ACGGAAGAAACGTGCTTGGGAAAC -ACGGAAGAAACGTGCTTGAACACC -ACGGAAGAAACGTGCTTGATCGAG -ACGGAAGAAACGTGCTTGCTCCTT -ACGGAAGAAACGTGCTTGCCTGTT -ACGGAAGAAACGTGCTTGCGGTTT -ACGGAAGAAACGTGCTTGGTGGTT -ACGGAAGAAACGTGCTTGGCCTTT -ACGGAAGAAACGTGCTTGGGTCTT -ACGGAAGAAACGTGCTTGACGCTT -ACGGAAGAAACGTGCTTGAGCGTT -ACGGAAGAAACGTGCTTGTTCGTC -ACGGAAGAAACGTGCTTGTCTCTC -ACGGAAGAAACGTGCTTGTGGATC -ACGGAAGAAACGTGCTTGCACTTC -ACGGAAGAAACGTGCTTGGTACTC -ACGGAAGAAACGTGCTTGGATGTC -ACGGAAGAAACGTGCTTGACAGTC -ACGGAAGAAACGTGCTTGTTGCTG -ACGGAAGAAACGTGCTTGTCCATG -ACGGAAGAAACGTGCTTGTGTGTG -ACGGAAGAAACGTGCTTGCTAGTG -ACGGAAGAAACGTGCTTGCATCTG -ACGGAAGAAACGTGCTTGGAGTTG -ACGGAAGAAACGTGCTTGAGACTG -ACGGAAGAAACGTGCTTGTCGGTA -ACGGAAGAAACGTGCTTGTGCCTA -ACGGAAGAAACGTGCTTGCCACTA -ACGGAAGAAACGTGCTTGGGAGTA -ACGGAAGAAACGTGCTTGTCGTCT -ACGGAAGAAACGTGCTTGTGCACT -ACGGAAGAAACGTGCTTGCTGACT -ACGGAAGAAACGTGCTTGCAACCT -ACGGAAGAAACGTGCTTGGCTACT -ACGGAAGAAACGTGCTTGGGATCT -ACGGAAGAAACGTGCTTGAAGGCT -ACGGAAGAAACGTGCTTGTCAACC -ACGGAAGAAACGTGCTTGTGTTCC -ACGGAAGAAACGTGCTTGATTCCC -ACGGAAGAAACGTGCTTGTTCTCG -ACGGAAGAAACGTGCTTGTAGACG -ACGGAAGAAACGTGCTTGGTAACG -ACGGAAGAAACGTGCTTGACTTCG -ACGGAAGAAACGTGCTTGTACGCA -ACGGAAGAAACGTGCTTGCTTGCA -ACGGAAGAAACGTGCTTGCGAACA -ACGGAAGAAACGTGCTTGCAGTCA -ACGGAAGAAACGTGCTTGGATCCA -ACGGAAGAAACGTGCTTGACGACA -ACGGAAGAAACGTGCTTGAGCTCA -ACGGAAGAAACGTGCTTGTCACGT -ACGGAAGAAACGTGCTTGCGTAGT -ACGGAAGAAACGTGCTTGGTCAGT -ACGGAAGAAACGTGCTTGGAAGGT -ACGGAAGAAACGTGCTTGAACCGT -ACGGAAGAAACGTGCTTGTTGTGC -ACGGAAGAAACGTGCTTGCTAAGC -ACGGAAGAAACGTGCTTGACTAGC -ACGGAAGAAACGTGCTTGAGATGC -ACGGAAGAAACGTGCTTGTGAAGG -ACGGAAGAAACGTGCTTGCAATGG -ACGGAAGAAACGTGCTTGATGAGG -ACGGAAGAAACGTGCTTGAATGGG -ACGGAAGAAACGTGCTTGTCCTGA -ACGGAAGAAACGTGCTTGTAGCGA -ACGGAAGAAACGTGCTTGCACAGA -ACGGAAGAAACGTGCTTGGCAAGA -ACGGAAGAAACGTGCTTGGGTTGA -ACGGAAGAAACGTGCTTGTCCGAT -ACGGAAGAAACGTGCTTGTGGCAT -ACGGAAGAAACGTGCTTGCGAGAT -ACGGAAGAAACGTGCTTGTACCAC -ACGGAAGAAACGTGCTTGCAGAAC -ACGGAAGAAACGTGCTTGGTCTAC -ACGGAAGAAACGTGCTTGACGTAC -ACGGAAGAAACGTGCTTGAGTGAC -ACGGAAGAAACGTGCTTGCTGTAG -ACGGAAGAAACGTGCTTGCCTAAG -ACGGAAGAAACGTGCTTGGTTCAG -ACGGAAGAAACGTGCTTGGCATAG -ACGGAAGAAACGTGCTTGGACAAG -ACGGAAGAAACGTGCTTGAAGCAG -ACGGAAGAAACGTGCTTGCGTCAA -ACGGAAGAAACGTGCTTGGCTGAA -ACGGAAGAAACGTGCTTGAGTACG -ACGGAAGAAACGTGCTTGATCCGA -ACGGAAGAAACGTGCTTGATGGGA -ACGGAAGAAACGTGCTTGGTGCAA -ACGGAAGAAACGTGCTTGGAGGAA -ACGGAAGAAACGTGCTTGCAGGTA -ACGGAAGAAACGTGCTTGGACTCT -ACGGAAGAAACGTGCTTGAGTCCT -ACGGAAGAAACGTGCTTGTAAGCC -ACGGAAGAAACGTGCTTGATAGCC -ACGGAAGAAACGTGCTTGTAACCG -ACGGAAGAAACGTGCTTGATGCCA -ACGGAAGAAACGAGCCTAGGAAAC -ACGGAAGAAACGAGCCTAAACACC -ACGGAAGAAACGAGCCTAATCGAG -ACGGAAGAAACGAGCCTACTCCTT -ACGGAAGAAACGAGCCTACCTGTT -ACGGAAGAAACGAGCCTACGGTTT -ACGGAAGAAACGAGCCTAGTGGTT -ACGGAAGAAACGAGCCTAGCCTTT -ACGGAAGAAACGAGCCTAGGTCTT -ACGGAAGAAACGAGCCTAACGCTT -ACGGAAGAAACGAGCCTAAGCGTT -ACGGAAGAAACGAGCCTATTCGTC -ACGGAAGAAACGAGCCTATCTCTC -ACGGAAGAAACGAGCCTATGGATC -ACGGAAGAAACGAGCCTACACTTC -ACGGAAGAAACGAGCCTAGTACTC -ACGGAAGAAACGAGCCTAGATGTC -ACGGAAGAAACGAGCCTAACAGTC -ACGGAAGAAACGAGCCTATTGCTG -ACGGAAGAAACGAGCCTATCCATG -ACGGAAGAAACGAGCCTATGTGTG -ACGGAAGAAACGAGCCTACTAGTG -ACGGAAGAAACGAGCCTACATCTG -ACGGAAGAAACGAGCCTAGAGTTG -ACGGAAGAAACGAGCCTAAGACTG -ACGGAAGAAACGAGCCTATCGGTA -ACGGAAGAAACGAGCCTATGCCTA -ACGGAAGAAACGAGCCTACCACTA -ACGGAAGAAACGAGCCTAGGAGTA -ACGGAAGAAACGAGCCTATCGTCT -ACGGAAGAAACGAGCCTATGCACT -ACGGAAGAAACGAGCCTACTGACT -ACGGAAGAAACGAGCCTACAACCT -ACGGAAGAAACGAGCCTAGCTACT -ACGGAAGAAACGAGCCTAGGATCT -ACGGAAGAAACGAGCCTAAAGGCT -ACGGAAGAAACGAGCCTATCAACC -ACGGAAGAAACGAGCCTATGTTCC -ACGGAAGAAACGAGCCTAATTCCC -ACGGAAGAAACGAGCCTATTCTCG -ACGGAAGAAACGAGCCTATAGACG -ACGGAAGAAACGAGCCTAGTAACG -ACGGAAGAAACGAGCCTAACTTCG -ACGGAAGAAACGAGCCTATACGCA -ACGGAAGAAACGAGCCTACTTGCA -ACGGAAGAAACGAGCCTACGAACA -ACGGAAGAAACGAGCCTACAGTCA -ACGGAAGAAACGAGCCTAGATCCA -ACGGAAGAAACGAGCCTAACGACA -ACGGAAGAAACGAGCCTAAGCTCA -ACGGAAGAAACGAGCCTATCACGT -ACGGAAGAAACGAGCCTACGTAGT -ACGGAAGAAACGAGCCTAGTCAGT -ACGGAAGAAACGAGCCTAGAAGGT -ACGGAAGAAACGAGCCTAAACCGT -ACGGAAGAAACGAGCCTATTGTGC -ACGGAAGAAACGAGCCTACTAAGC -ACGGAAGAAACGAGCCTAACTAGC -ACGGAAGAAACGAGCCTAAGATGC -ACGGAAGAAACGAGCCTATGAAGG -ACGGAAGAAACGAGCCTACAATGG -ACGGAAGAAACGAGCCTAATGAGG -ACGGAAGAAACGAGCCTAAATGGG -ACGGAAGAAACGAGCCTATCCTGA -ACGGAAGAAACGAGCCTATAGCGA -ACGGAAGAAACGAGCCTACACAGA -ACGGAAGAAACGAGCCTAGCAAGA -ACGGAAGAAACGAGCCTAGGTTGA -ACGGAAGAAACGAGCCTATCCGAT -ACGGAAGAAACGAGCCTATGGCAT -ACGGAAGAAACGAGCCTACGAGAT -ACGGAAGAAACGAGCCTATACCAC -ACGGAAGAAACGAGCCTACAGAAC -ACGGAAGAAACGAGCCTAGTCTAC -ACGGAAGAAACGAGCCTAACGTAC -ACGGAAGAAACGAGCCTAAGTGAC -ACGGAAGAAACGAGCCTACTGTAG -ACGGAAGAAACGAGCCTACCTAAG -ACGGAAGAAACGAGCCTAGTTCAG -ACGGAAGAAACGAGCCTAGCATAG -ACGGAAGAAACGAGCCTAGACAAG -ACGGAAGAAACGAGCCTAAAGCAG -ACGGAAGAAACGAGCCTACGTCAA -ACGGAAGAAACGAGCCTAGCTGAA -ACGGAAGAAACGAGCCTAAGTACG -ACGGAAGAAACGAGCCTAATCCGA -ACGGAAGAAACGAGCCTAATGGGA -ACGGAAGAAACGAGCCTAGTGCAA -ACGGAAGAAACGAGCCTAGAGGAA -ACGGAAGAAACGAGCCTACAGGTA -ACGGAAGAAACGAGCCTAGACTCT -ACGGAAGAAACGAGCCTAAGTCCT -ACGGAAGAAACGAGCCTATAAGCC -ACGGAAGAAACGAGCCTAATAGCC -ACGGAAGAAACGAGCCTATAACCG -ACGGAAGAAACGAGCCTAATGCCA -ACGGAAGAAACGAGCACTGGAAAC -ACGGAAGAAACGAGCACTAACACC -ACGGAAGAAACGAGCACTATCGAG -ACGGAAGAAACGAGCACTCTCCTT -ACGGAAGAAACGAGCACTCCTGTT -ACGGAAGAAACGAGCACTCGGTTT -ACGGAAGAAACGAGCACTGTGGTT -ACGGAAGAAACGAGCACTGCCTTT -ACGGAAGAAACGAGCACTGGTCTT -ACGGAAGAAACGAGCACTACGCTT -ACGGAAGAAACGAGCACTAGCGTT -ACGGAAGAAACGAGCACTTTCGTC -ACGGAAGAAACGAGCACTTCTCTC -ACGGAAGAAACGAGCACTTGGATC -ACGGAAGAAACGAGCACTCACTTC -ACGGAAGAAACGAGCACTGTACTC -ACGGAAGAAACGAGCACTGATGTC -ACGGAAGAAACGAGCACTACAGTC -ACGGAAGAAACGAGCACTTTGCTG -ACGGAAGAAACGAGCACTTCCATG -ACGGAAGAAACGAGCACTTGTGTG -ACGGAAGAAACGAGCACTCTAGTG -ACGGAAGAAACGAGCACTCATCTG -ACGGAAGAAACGAGCACTGAGTTG -ACGGAAGAAACGAGCACTAGACTG -ACGGAAGAAACGAGCACTTCGGTA -ACGGAAGAAACGAGCACTTGCCTA -ACGGAAGAAACGAGCACTCCACTA -ACGGAAGAAACGAGCACTGGAGTA -ACGGAAGAAACGAGCACTTCGTCT -ACGGAAGAAACGAGCACTTGCACT -ACGGAAGAAACGAGCACTCTGACT -ACGGAAGAAACGAGCACTCAACCT -ACGGAAGAAACGAGCACTGCTACT -ACGGAAGAAACGAGCACTGGATCT -ACGGAAGAAACGAGCACTAAGGCT -ACGGAAGAAACGAGCACTTCAACC -ACGGAAGAAACGAGCACTTGTTCC -ACGGAAGAAACGAGCACTATTCCC -ACGGAAGAAACGAGCACTTTCTCG -ACGGAAGAAACGAGCACTTAGACG -ACGGAAGAAACGAGCACTGTAACG -ACGGAAGAAACGAGCACTACTTCG -ACGGAAGAAACGAGCACTTACGCA -ACGGAAGAAACGAGCACTCTTGCA -ACGGAAGAAACGAGCACTCGAACA -ACGGAAGAAACGAGCACTCAGTCA -ACGGAAGAAACGAGCACTGATCCA -ACGGAAGAAACGAGCACTACGACA -ACGGAAGAAACGAGCACTAGCTCA -ACGGAAGAAACGAGCACTTCACGT -ACGGAAGAAACGAGCACTCGTAGT -ACGGAAGAAACGAGCACTGTCAGT -ACGGAAGAAACGAGCACTGAAGGT -ACGGAAGAAACGAGCACTAACCGT -ACGGAAGAAACGAGCACTTTGTGC -ACGGAAGAAACGAGCACTCTAAGC -ACGGAAGAAACGAGCACTACTAGC -ACGGAAGAAACGAGCACTAGATGC -ACGGAAGAAACGAGCACTTGAAGG -ACGGAAGAAACGAGCACTCAATGG -ACGGAAGAAACGAGCACTATGAGG -ACGGAAGAAACGAGCACTAATGGG -ACGGAAGAAACGAGCACTTCCTGA -ACGGAAGAAACGAGCACTTAGCGA -ACGGAAGAAACGAGCACTCACAGA -ACGGAAGAAACGAGCACTGCAAGA -ACGGAAGAAACGAGCACTGGTTGA -ACGGAAGAAACGAGCACTTCCGAT -ACGGAAGAAACGAGCACTTGGCAT -ACGGAAGAAACGAGCACTCGAGAT -ACGGAAGAAACGAGCACTTACCAC -ACGGAAGAAACGAGCACTCAGAAC -ACGGAAGAAACGAGCACTGTCTAC -ACGGAAGAAACGAGCACTACGTAC -ACGGAAGAAACGAGCACTAGTGAC -ACGGAAGAAACGAGCACTCTGTAG -ACGGAAGAAACGAGCACTCCTAAG -ACGGAAGAAACGAGCACTGTTCAG -ACGGAAGAAACGAGCACTGCATAG -ACGGAAGAAACGAGCACTGACAAG -ACGGAAGAAACGAGCACTAAGCAG -ACGGAAGAAACGAGCACTCGTCAA -ACGGAAGAAACGAGCACTGCTGAA -ACGGAAGAAACGAGCACTAGTACG -ACGGAAGAAACGAGCACTATCCGA -ACGGAAGAAACGAGCACTATGGGA -ACGGAAGAAACGAGCACTGTGCAA -ACGGAAGAAACGAGCACTGAGGAA -ACGGAAGAAACGAGCACTCAGGTA -ACGGAAGAAACGAGCACTGACTCT -ACGGAAGAAACGAGCACTAGTCCT -ACGGAAGAAACGAGCACTTAAGCC -ACGGAAGAAACGAGCACTATAGCC -ACGGAAGAAACGAGCACTTAACCG -ACGGAAGAAACGAGCACTATGCCA -ACGGAAGAAACGTGCAGAGGAAAC -ACGGAAGAAACGTGCAGAAACACC -ACGGAAGAAACGTGCAGAATCGAG -ACGGAAGAAACGTGCAGACTCCTT -ACGGAAGAAACGTGCAGACCTGTT -ACGGAAGAAACGTGCAGACGGTTT -ACGGAAGAAACGTGCAGAGTGGTT -ACGGAAGAAACGTGCAGAGCCTTT -ACGGAAGAAACGTGCAGAGGTCTT -ACGGAAGAAACGTGCAGAACGCTT -ACGGAAGAAACGTGCAGAAGCGTT -ACGGAAGAAACGTGCAGATTCGTC -ACGGAAGAAACGTGCAGATCTCTC -ACGGAAGAAACGTGCAGATGGATC -ACGGAAGAAACGTGCAGACACTTC -ACGGAAGAAACGTGCAGAGTACTC -ACGGAAGAAACGTGCAGAGATGTC -ACGGAAGAAACGTGCAGAACAGTC -ACGGAAGAAACGTGCAGATTGCTG -ACGGAAGAAACGTGCAGATCCATG -ACGGAAGAAACGTGCAGATGTGTG -ACGGAAGAAACGTGCAGACTAGTG -ACGGAAGAAACGTGCAGACATCTG -ACGGAAGAAACGTGCAGAGAGTTG -ACGGAAGAAACGTGCAGAAGACTG -ACGGAAGAAACGTGCAGATCGGTA -ACGGAAGAAACGTGCAGATGCCTA -ACGGAAGAAACGTGCAGACCACTA -ACGGAAGAAACGTGCAGAGGAGTA -ACGGAAGAAACGTGCAGATCGTCT -ACGGAAGAAACGTGCAGATGCACT -ACGGAAGAAACGTGCAGACTGACT -ACGGAAGAAACGTGCAGACAACCT -ACGGAAGAAACGTGCAGAGCTACT -ACGGAAGAAACGTGCAGAGGATCT -ACGGAAGAAACGTGCAGAAAGGCT -ACGGAAGAAACGTGCAGATCAACC -ACGGAAGAAACGTGCAGATGTTCC -ACGGAAGAAACGTGCAGAATTCCC -ACGGAAGAAACGTGCAGATTCTCG -ACGGAAGAAACGTGCAGATAGACG -ACGGAAGAAACGTGCAGAGTAACG -ACGGAAGAAACGTGCAGAACTTCG -ACGGAAGAAACGTGCAGATACGCA -ACGGAAGAAACGTGCAGACTTGCA -ACGGAAGAAACGTGCAGACGAACA -ACGGAAGAAACGTGCAGACAGTCA -ACGGAAGAAACGTGCAGAGATCCA -ACGGAAGAAACGTGCAGAACGACA -ACGGAAGAAACGTGCAGAAGCTCA -ACGGAAGAAACGTGCAGATCACGT -ACGGAAGAAACGTGCAGACGTAGT -ACGGAAGAAACGTGCAGAGTCAGT -ACGGAAGAAACGTGCAGAGAAGGT -ACGGAAGAAACGTGCAGAAACCGT -ACGGAAGAAACGTGCAGATTGTGC -ACGGAAGAAACGTGCAGACTAAGC -ACGGAAGAAACGTGCAGAACTAGC -ACGGAAGAAACGTGCAGAAGATGC -ACGGAAGAAACGTGCAGATGAAGG -ACGGAAGAAACGTGCAGACAATGG -ACGGAAGAAACGTGCAGAATGAGG -ACGGAAGAAACGTGCAGAAATGGG -ACGGAAGAAACGTGCAGATCCTGA -ACGGAAGAAACGTGCAGATAGCGA -ACGGAAGAAACGTGCAGACACAGA -ACGGAAGAAACGTGCAGAGCAAGA -ACGGAAGAAACGTGCAGAGGTTGA -ACGGAAGAAACGTGCAGATCCGAT -ACGGAAGAAACGTGCAGATGGCAT -ACGGAAGAAACGTGCAGACGAGAT -ACGGAAGAAACGTGCAGATACCAC -ACGGAAGAAACGTGCAGACAGAAC -ACGGAAGAAACGTGCAGAGTCTAC -ACGGAAGAAACGTGCAGAACGTAC -ACGGAAGAAACGTGCAGAAGTGAC -ACGGAAGAAACGTGCAGACTGTAG -ACGGAAGAAACGTGCAGACCTAAG -ACGGAAGAAACGTGCAGAGTTCAG -ACGGAAGAAACGTGCAGAGCATAG -ACGGAAGAAACGTGCAGAGACAAG -ACGGAAGAAACGTGCAGAAAGCAG -ACGGAAGAAACGTGCAGACGTCAA -ACGGAAGAAACGTGCAGAGCTGAA -ACGGAAGAAACGTGCAGAAGTACG -ACGGAAGAAACGTGCAGAATCCGA -ACGGAAGAAACGTGCAGAATGGGA -ACGGAAGAAACGTGCAGAGTGCAA -ACGGAAGAAACGTGCAGAGAGGAA -ACGGAAGAAACGTGCAGACAGGTA -ACGGAAGAAACGTGCAGAGACTCT -ACGGAAGAAACGTGCAGAAGTCCT -ACGGAAGAAACGTGCAGATAAGCC -ACGGAAGAAACGTGCAGAATAGCC -ACGGAAGAAACGTGCAGATAACCG -ACGGAAGAAACGTGCAGAATGCCA -ACGGAAGAAACGAGGTGAGGAAAC -ACGGAAGAAACGAGGTGAAACACC -ACGGAAGAAACGAGGTGAATCGAG -ACGGAAGAAACGAGGTGACTCCTT -ACGGAAGAAACGAGGTGACCTGTT -ACGGAAGAAACGAGGTGACGGTTT -ACGGAAGAAACGAGGTGAGTGGTT -ACGGAAGAAACGAGGTGAGCCTTT -ACGGAAGAAACGAGGTGAGGTCTT -ACGGAAGAAACGAGGTGAACGCTT -ACGGAAGAAACGAGGTGAAGCGTT -ACGGAAGAAACGAGGTGATTCGTC -ACGGAAGAAACGAGGTGATCTCTC -ACGGAAGAAACGAGGTGATGGATC -ACGGAAGAAACGAGGTGACACTTC -ACGGAAGAAACGAGGTGAGTACTC -ACGGAAGAAACGAGGTGAGATGTC -ACGGAAGAAACGAGGTGAACAGTC -ACGGAAGAAACGAGGTGATTGCTG -ACGGAAGAAACGAGGTGATCCATG -ACGGAAGAAACGAGGTGATGTGTG -ACGGAAGAAACGAGGTGACTAGTG -ACGGAAGAAACGAGGTGACATCTG -ACGGAAGAAACGAGGTGAGAGTTG -ACGGAAGAAACGAGGTGAAGACTG -ACGGAAGAAACGAGGTGATCGGTA -ACGGAAGAAACGAGGTGATGCCTA -ACGGAAGAAACGAGGTGACCACTA -ACGGAAGAAACGAGGTGAGGAGTA -ACGGAAGAAACGAGGTGATCGTCT -ACGGAAGAAACGAGGTGATGCACT -ACGGAAGAAACGAGGTGACTGACT -ACGGAAGAAACGAGGTGACAACCT -ACGGAAGAAACGAGGTGAGCTACT -ACGGAAGAAACGAGGTGAGGATCT -ACGGAAGAAACGAGGTGAAAGGCT -ACGGAAGAAACGAGGTGATCAACC -ACGGAAGAAACGAGGTGATGTTCC -ACGGAAGAAACGAGGTGAATTCCC -ACGGAAGAAACGAGGTGATTCTCG -ACGGAAGAAACGAGGTGATAGACG -ACGGAAGAAACGAGGTGAGTAACG -ACGGAAGAAACGAGGTGAACTTCG -ACGGAAGAAACGAGGTGATACGCA -ACGGAAGAAACGAGGTGACTTGCA -ACGGAAGAAACGAGGTGACGAACA -ACGGAAGAAACGAGGTGACAGTCA -ACGGAAGAAACGAGGTGAGATCCA -ACGGAAGAAACGAGGTGAACGACA -ACGGAAGAAACGAGGTGAAGCTCA -ACGGAAGAAACGAGGTGATCACGT -ACGGAAGAAACGAGGTGACGTAGT -ACGGAAGAAACGAGGTGAGTCAGT -ACGGAAGAAACGAGGTGAGAAGGT -ACGGAAGAAACGAGGTGAAACCGT -ACGGAAGAAACGAGGTGATTGTGC -ACGGAAGAAACGAGGTGACTAAGC -ACGGAAGAAACGAGGTGAACTAGC -ACGGAAGAAACGAGGTGAAGATGC -ACGGAAGAAACGAGGTGATGAAGG -ACGGAAGAAACGAGGTGACAATGG -ACGGAAGAAACGAGGTGAATGAGG -ACGGAAGAAACGAGGTGAAATGGG -ACGGAAGAAACGAGGTGATCCTGA -ACGGAAGAAACGAGGTGATAGCGA -ACGGAAGAAACGAGGTGACACAGA -ACGGAAGAAACGAGGTGAGCAAGA -ACGGAAGAAACGAGGTGAGGTTGA -ACGGAAGAAACGAGGTGATCCGAT -ACGGAAGAAACGAGGTGATGGCAT -ACGGAAGAAACGAGGTGACGAGAT -ACGGAAGAAACGAGGTGATACCAC -ACGGAAGAAACGAGGTGACAGAAC -ACGGAAGAAACGAGGTGAGTCTAC -ACGGAAGAAACGAGGTGAACGTAC -ACGGAAGAAACGAGGTGAAGTGAC -ACGGAAGAAACGAGGTGACTGTAG -ACGGAAGAAACGAGGTGACCTAAG -ACGGAAGAAACGAGGTGAGTTCAG -ACGGAAGAAACGAGGTGAGCATAG -ACGGAAGAAACGAGGTGAGACAAG -ACGGAAGAAACGAGGTGAAAGCAG -ACGGAAGAAACGAGGTGACGTCAA -ACGGAAGAAACGAGGTGAGCTGAA -ACGGAAGAAACGAGGTGAAGTACG -ACGGAAGAAACGAGGTGAATCCGA -ACGGAAGAAACGAGGTGAATGGGA -ACGGAAGAAACGAGGTGAGTGCAA -ACGGAAGAAACGAGGTGAGAGGAA -ACGGAAGAAACGAGGTGACAGGTA -ACGGAAGAAACGAGGTGAGACTCT -ACGGAAGAAACGAGGTGAAGTCCT -ACGGAAGAAACGAGGTGATAAGCC -ACGGAAGAAACGAGGTGAATAGCC -ACGGAAGAAACGAGGTGATAACCG -ACGGAAGAAACGAGGTGAATGCCA -ACGGAAGAAACGTGGCAAGGAAAC -ACGGAAGAAACGTGGCAAAACACC -ACGGAAGAAACGTGGCAAATCGAG -ACGGAAGAAACGTGGCAACTCCTT -ACGGAAGAAACGTGGCAACCTGTT -ACGGAAGAAACGTGGCAACGGTTT -ACGGAAGAAACGTGGCAAGTGGTT -ACGGAAGAAACGTGGCAAGCCTTT -ACGGAAGAAACGTGGCAAGGTCTT -ACGGAAGAAACGTGGCAAACGCTT -ACGGAAGAAACGTGGCAAAGCGTT -ACGGAAGAAACGTGGCAATTCGTC -ACGGAAGAAACGTGGCAATCTCTC -ACGGAAGAAACGTGGCAATGGATC -ACGGAAGAAACGTGGCAACACTTC -ACGGAAGAAACGTGGCAAGTACTC -ACGGAAGAAACGTGGCAAGATGTC -ACGGAAGAAACGTGGCAAACAGTC -ACGGAAGAAACGTGGCAATTGCTG -ACGGAAGAAACGTGGCAATCCATG -ACGGAAGAAACGTGGCAATGTGTG -ACGGAAGAAACGTGGCAACTAGTG -ACGGAAGAAACGTGGCAACATCTG -ACGGAAGAAACGTGGCAAGAGTTG -ACGGAAGAAACGTGGCAAAGACTG -ACGGAAGAAACGTGGCAATCGGTA -ACGGAAGAAACGTGGCAATGCCTA -ACGGAAGAAACGTGGCAACCACTA -ACGGAAGAAACGTGGCAAGGAGTA -ACGGAAGAAACGTGGCAATCGTCT -ACGGAAGAAACGTGGCAATGCACT -ACGGAAGAAACGTGGCAACTGACT -ACGGAAGAAACGTGGCAACAACCT -ACGGAAGAAACGTGGCAAGCTACT -ACGGAAGAAACGTGGCAAGGATCT -ACGGAAGAAACGTGGCAAAAGGCT -ACGGAAGAAACGTGGCAATCAACC -ACGGAAGAAACGTGGCAATGTTCC -ACGGAAGAAACGTGGCAAATTCCC -ACGGAAGAAACGTGGCAATTCTCG -ACGGAAGAAACGTGGCAATAGACG -ACGGAAGAAACGTGGCAAGTAACG -ACGGAAGAAACGTGGCAAACTTCG -ACGGAAGAAACGTGGCAATACGCA -ACGGAAGAAACGTGGCAACTTGCA -ACGGAAGAAACGTGGCAACGAACA -ACGGAAGAAACGTGGCAACAGTCA -ACGGAAGAAACGTGGCAAGATCCA -ACGGAAGAAACGTGGCAAACGACA -ACGGAAGAAACGTGGCAAAGCTCA -ACGGAAGAAACGTGGCAATCACGT -ACGGAAGAAACGTGGCAACGTAGT -ACGGAAGAAACGTGGCAAGTCAGT -ACGGAAGAAACGTGGCAAGAAGGT -ACGGAAGAAACGTGGCAAAACCGT -ACGGAAGAAACGTGGCAATTGTGC -ACGGAAGAAACGTGGCAACTAAGC -ACGGAAGAAACGTGGCAAACTAGC -ACGGAAGAAACGTGGCAAAGATGC -ACGGAAGAAACGTGGCAATGAAGG -ACGGAAGAAACGTGGCAACAATGG -ACGGAAGAAACGTGGCAAATGAGG -ACGGAAGAAACGTGGCAAAATGGG -ACGGAAGAAACGTGGCAATCCTGA -ACGGAAGAAACGTGGCAATAGCGA -ACGGAAGAAACGTGGCAACACAGA -ACGGAAGAAACGTGGCAAGCAAGA -ACGGAAGAAACGTGGCAAGGTTGA -ACGGAAGAAACGTGGCAATCCGAT -ACGGAAGAAACGTGGCAATGGCAT -ACGGAAGAAACGTGGCAACGAGAT -ACGGAAGAAACGTGGCAATACCAC -ACGGAAGAAACGTGGCAACAGAAC -ACGGAAGAAACGTGGCAAGTCTAC -ACGGAAGAAACGTGGCAAACGTAC -ACGGAAGAAACGTGGCAAAGTGAC -ACGGAAGAAACGTGGCAACTGTAG -ACGGAAGAAACGTGGCAACCTAAG -ACGGAAGAAACGTGGCAAGTTCAG -ACGGAAGAAACGTGGCAAGCATAG -ACGGAAGAAACGTGGCAAGACAAG -ACGGAAGAAACGTGGCAAAAGCAG -ACGGAAGAAACGTGGCAACGTCAA -ACGGAAGAAACGTGGCAAGCTGAA -ACGGAAGAAACGTGGCAAAGTACG -ACGGAAGAAACGTGGCAAATCCGA -ACGGAAGAAACGTGGCAAATGGGA -ACGGAAGAAACGTGGCAAGTGCAA -ACGGAAGAAACGTGGCAAGAGGAA -ACGGAAGAAACGTGGCAACAGGTA -ACGGAAGAAACGTGGCAAGACTCT -ACGGAAGAAACGTGGCAAAGTCCT -ACGGAAGAAACGTGGCAATAAGCC -ACGGAAGAAACGTGGCAAATAGCC -ACGGAAGAAACGTGGCAATAACCG -ACGGAAGAAACGTGGCAAATGCCA -ACGGAAGAAACGAGGATGGGAAAC -ACGGAAGAAACGAGGATGAACACC -ACGGAAGAAACGAGGATGATCGAG -ACGGAAGAAACGAGGATGCTCCTT -ACGGAAGAAACGAGGATGCCTGTT -ACGGAAGAAACGAGGATGCGGTTT -ACGGAAGAAACGAGGATGGTGGTT -ACGGAAGAAACGAGGATGGCCTTT -ACGGAAGAAACGAGGATGGGTCTT -ACGGAAGAAACGAGGATGACGCTT -ACGGAAGAAACGAGGATGAGCGTT -ACGGAAGAAACGAGGATGTTCGTC -ACGGAAGAAACGAGGATGTCTCTC -ACGGAAGAAACGAGGATGTGGATC -ACGGAAGAAACGAGGATGCACTTC -ACGGAAGAAACGAGGATGGTACTC -ACGGAAGAAACGAGGATGGATGTC -ACGGAAGAAACGAGGATGACAGTC -ACGGAAGAAACGAGGATGTTGCTG -ACGGAAGAAACGAGGATGTCCATG -ACGGAAGAAACGAGGATGTGTGTG -ACGGAAGAAACGAGGATGCTAGTG -ACGGAAGAAACGAGGATGCATCTG -ACGGAAGAAACGAGGATGGAGTTG -ACGGAAGAAACGAGGATGAGACTG -ACGGAAGAAACGAGGATGTCGGTA -ACGGAAGAAACGAGGATGTGCCTA -ACGGAAGAAACGAGGATGCCACTA -ACGGAAGAAACGAGGATGGGAGTA -ACGGAAGAAACGAGGATGTCGTCT -ACGGAAGAAACGAGGATGTGCACT -ACGGAAGAAACGAGGATGCTGACT -ACGGAAGAAACGAGGATGCAACCT -ACGGAAGAAACGAGGATGGCTACT -ACGGAAGAAACGAGGATGGGATCT -ACGGAAGAAACGAGGATGAAGGCT -ACGGAAGAAACGAGGATGTCAACC -ACGGAAGAAACGAGGATGTGTTCC -ACGGAAGAAACGAGGATGATTCCC -ACGGAAGAAACGAGGATGTTCTCG -ACGGAAGAAACGAGGATGTAGACG -ACGGAAGAAACGAGGATGGTAACG -ACGGAAGAAACGAGGATGACTTCG -ACGGAAGAAACGAGGATGTACGCA -ACGGAAGAAACGAGGATGCTTGCA -ACGGAAGAAACGAGGATGCGAACA -ACGGAAGAAACGAGGATGCAGTCA -ACGGAAGAAACGAGGATGGATCCA -ACGGAAGAAACGAGGATGACGACA -ACGGAAGAAACGAGGATGAGCTCA -ACGGAAGAAACGAGGATGTCACGT -ACGGAAGAAACGAGGATGCGTAGT -ACGGAAGAAACGAGGATGGTCAGT -ACGGAAGAAACGAGGATGGAAGGT -ACGGAAGAAACGAGGATGAACCGT -ACGGAAGAAACGAGGATGTTGTGC -ACGGAAGAAACGAGGATGCTAAGC -ACGGAAGAAACGAGGATGACTAGC -ACGGAAGAAACGAGGATGAGATGC -ACGGAAGAAACGAGGATGTGAAGG -ACGGAAGAAACGAGGATGCAATGG -ACGGAAGAAACGAGGATGATGAGG -ACGGAAGAAACGAGGATGAATGGG -ACGGAAGAAACGAGGATGTCCTGA -ACGGAAGAAACGAGGATGTAGCGA -ACGGAAGAAACGAGGATGCACAGA -ACGGAAGAAACGAGGATGGCAAGA -ACGGAAGAAACGAGGATGGGTTGA -ACGGAAGAAACGAGGATGTCCGAT -ACGGAAGAAACGAGGATGTGGCAT -ACGGAAGAAACGAGGATGCGAGAT -ACGGAAGAAACGAGGATGTACCAC -ACGGAAGAAACGAGGATGCAGAAC -ACGGAAGAAACGAGGATGGTCTAC -ACGGAAGAAACGAGGATGACGTAC -ACGGAAGAAACGAGGATGAGTGAC -ACGGAAGAAACGAGGATGCTGTAG -ACGGAAGAAACGAGGATGCCTAAG -ACGGAAGAAACGAGGATGGTTCAG -ACGGAAGAAACGAGGATGGCATAG -ACGGAAGAAACGAGGATGGACAAG -ACGGAAGAAACGAGGATGAAGCAG -ACGGAAGAAACGAGGATGCGTCAA -ACGGAAGAAACGAGGATGGCTGAA -ACGGAAGAAACGAGGATGAGTACG -ACGGAAGAAACGAGGATGATCCGA -ACGGAAGAAACGAGGATGATGGGA -ACGGAAGAAACGAGGATGGTGCAA -ACGGAAGAAACGAGGATGGAGGAA -ACGGAAGAAACGAGGATGCAGGTA -ACGGAAGAAACGAGGATGGACTCT -ACGGAAGAAACGAGGATGAGTCCT -ACGGAAGAAACGAGGATGTAAGCC -ACGGAAGAAACGAGGATGATAGCC -ACGGAAGAAACGAGGATGTAACCG -ACGGAAGAAACGAGGATGATGCCA -ACGGAAGAAACGGGGAATGGAAAC -ACGGAAGAAACGGGGAATAACACC -ACGGAAGAAACGGGGAATATCGAG -ACGGAAGAAACGGGGAATCTCCTT -ACGGAAGAAACGGGGAATCCTGTT -ACGGAAGAAACGGGGAATCGGTTT -ACGGAAGAAACGGGGAATGTGGTT -ACGGAAGAAACGGGGAATGCCTTT -ACGGAAGAAACGGGGAATGGTCTT -ACGGAAGAAACGGGGAATACGCTT -ACGGAAGAAACGGGGAATAGCGTT -ACGGAAGAAACGGGGAATTTCGTC -ACGGAAGAAACGGGGAATTCTCTC -ACGGAAGAAACGGGGAATTGGATC -ACGGAAGAAACGGGGAATCACTTC -ACGGAAGAAACGGGGAATGTACTC -ACGGAAGAAACGGGGAATGATGTC -ACGGAAGAAACGGGGAATACAGTC -ACGGAAGAAACGGGGAATTTGCTG -ACGGAAGAAACGGGGAATTCCATG -ACGGAAGAAACGGGGAATTGTGTG -ACGGAAGAAACGGGGAATCTAGTG -ACGGAAGAAACGGGGAATCATCTG -ACGGAAGAAACGGGGAATGAGTTG -ACGGAAGAAACGGGGAATAGACTG -ACGGAAGAAACGGGGAATTCGGTA -ACGGAAGAAACGGGGAATTGCCTA -ACGGAAGAAACGGGGAATCCACTA -ACGGAAGAAACGGGGAATGGAGTA -ACGGAAGAAACGGGGAATTCGTCT -ACGGAAGAAACGGGGAATTGCACT -ACGGAAGAAACGGGGAATCTGACT -ACGGAAGAAACGGGGAATCAACCT -ACGGAAGAAACGGGGAATGCTACT -ACGGAAGAAACGGGGAATGGATCT -ACGGAAGAAACGGGGAATAAGGCT -ACGGAAGAAACGGGGAATTCAACC -ACGGAAGAAACGGGGAATTGTTCC -ACGGAAGAAACGGGGAATATTCCC -ACGGAAGAAACGGGGAATTTCTCG -ACGGAAGAAACGGGGAATTAGACG -ACGGAAGAAACGGGGAATGTAACG -ACGGAAGAAACGGGGAATACTTCG -ACGGAAGAAACGGGGAATTACGCA -ACGGAAGAAACGGGGAATCTTGCA -ACGGAAGAAACGGGGAATCGAACA -ACGGAAGAAACGGGGAATCAGTCA -ACGGAAGAAACGGGGAATGATCCA -ACGGAAGAAACGGGGAATACGACA -ACGGAAGAAACGGGGAATAGCTCA -ACGGAAGAAACGGGGAATTCACGT -ACGGAAGAAACGGGGAATCGTAGT -ACGGAAGAAACGGGGAATGTCAGT -ACGGAAGAAACGGGGAATGAAGGT -ACGGAAGAAACGGGGAATAACCGT -ACGGAAGAAACGGGGAATTTGTGC -ACGGAAGAAACGGGGAATCTAAGC -ACGGAAGAAACGGGGAATACTAGC -ACGGAAGAAACGGGGAATAGATGC -ACGGAAGAAACGGGGAATTGAAGG -ACGGAAGAAACGGGGAATCAATGG -ACGGAAGAAACGGGGAATATGAGG -ACGGAAGAAACGGGGAATAATGGG -ACGGAAGAAACGGGGAATTCCTGA -ACGGAAGAAACGGGGAATTAGCGA -ACGGAAGAAACGGGGAATCACAGA -ACGGAAGAAACGGGGAATGCAAGA -ACGGAAGAAACGGGGAATGGTTGA -ACGGAAGAAACGGGGAATTCCGAT -ACGGAAGAAACGGGGAATTGGCAT -ACGGAAGAAACGGGGAATCGAGAT -ACGGAAGAAACGGGGAATTACCAC -ACGGAAGAAACGGGGAATCAGAAC -ACGGAAGAAACGGGGAATGTCTAC -ACGGAAGAAACGGGGAATACGTAC -ACGGAAGAAACGGGGAATAGTGAC -ACGGAAGAAACGGGGAATCTGTAG -ACGGAAGAAACGGGGAATCCTAAG -ACGGAAGAAACGGGGAATGTTCAG -ACGGAAGAAACGGGGAATGCATAG -ACGGAAGAAACGGGGAATGACAAG -ACGGAAGAAACGGGGAATAAGCAG -ACGGAAGAAACGGGGAATCGTCAA -ACGGAAGAAACGGGGAATGCTGAA -ACGGAAGAAACGGGGAATAGTACG -ACGGAAGAAACGGGGAATATCCGA -ACGGAAGAAACGGGGAATATGGGA -ACGGAAGAAACGGGGAATGTGCAA -ACGGAAGAAACGGGGAATGAGGAA -ACGGAAGAAACGGGGAATCAGGTA -ACGGAAGAAACGGGGAATGACTCT -ACGGAAGAAACGGGGAATAGTCCT -ACGGAAGAAACGGGGAATTAAGCC -ACGGAAGAAACGGGGAATATAGCC -ACGGAAGAAACGGGGAATTAACCG -ACGGAAGAAACGGGGAATATGCCA -ACGGAAGAAACGTGATCCGGAAAC -ACGGAAGAAACGTGATCCAACACC -ACGGAAGAAACGTGATCCATCGAG -ACGGAAGAAACGTGATCCCTCCTT -ACGGAAGAAACGTGATCCCCTGTT -ACGGAAGAAACGTGATCCCGGTTT -ACGGAAGAAACGTGATCCGTGGTT -ACGGAAGAAACGTGATCCGCCTTT -ACGGAAGAAACGTGATCCGGTCTT -ACGGAAGAAACGTGATCCACGCTT -ACGGAAGAAACGTGATCCAGCGTT -ACGGAAGAAACGTGATCCTTCGTC -ACGGAAGAAACGTGATCCTCTCTC -ACGGAAGAAACGTGATCCTGGATC -ACGGAAGAAACGTGATCCCACTTC -ACGGAAGAAACGTGATCCGTACTC -ACGGAAGAAACGTGATCCGATGTC -ACGGAAGAAACGTGATCCACAGTC -ACGGAAGAAACGTGATCCTTGCTG -ACGGAAGAAACGTGATCCTCCATG -ACGGAAGAAACGTGATCCTGTGTG -ACGGAAGAAACGTGATCCCTAGTG -ACGGAAGAAACGTGATCCCATCTG -ACGGAAGAAACGTGATCCGAGTTG -ACGGAAGAAACGTGATCCAGACTG -ACGGAAGAAACGTGATCCTCGGTA -ACGGAAGAAACGTGATCCTGCCTA -ACGGAAGAAACGTGATCCCCACTA -ACGGAAGAAACGTGATCCGGAGTA -ACGGAAGAAACGTGATCCTCGTCT -ACGGAAGAAACGTGATCCTGCACT -ACGGAAGAAACGTGATCCCTGACT -ACGGAAGAAACGTGATCCCAACCT -ACGGAAGAAACGTGATCCGCTACT -ACGGAAGAAACGTGATCCGGATCT -ACGGAAGAAACGTGATCCAAGGCT -ACGGAAGAAACGTGATCCTCAACC -ACGGAAGAAACGTGATCCTGTTCC -ACGGAAGAAACGTGATCCATTCCC -ACGGAAGAAACGTGATCCTTCTCG -ACGGAAGAAACGTGATCCTAGACG -ACGGAAGAAACGTGATCCGTAACG -ACGGAAGAAACGTGATCCACTTCG -ACGGAAGAAACGTGATCCTACGCA -ACGGAAGAAACGTGATCCCTTGCA -ACGGAAGAAACGTGATCCCGAACA -ACGGAAGAAACGTGATCCCAGTCA -ACGGAAGAAACGTGATCCGATCCA -ACGGAAGAAACGTGATCCACGACA -ACGGAAGAAACGTGATCCAGCTCA -ACGGAAGAAACGTGATCCTCACGT -ACGGAAGAAACGTGATCCCGTAGT -ACGGAAGAAACGTGATCCGTCAGT -ACGGAAGAAACGTGATCCGAAGGT -ACGGAAGAAACGTGATCCAACCGT -ACGGAAGAAACGTGATCCTTGTGC -ACGGAAGAAACGTGATCCCTAAGC -ACGGAAGAAACGTGATCCACTAGC -ACGGAAGAAACGTGATCCAGATGC -ACGGAAGAAACGTGATCCTGAAGG -ACGGAAGAAACGTGATCCCAATGG -ACGGAAGAAACGTGATCCATGAGG -ACGGAAGAAACGTGATCCAATGGG -ACGGAAGAAACGTGATCCTCCTGA -ACGGAAGAAACGTGATCCTAGCGA -ACGGAAGAAACGTGATCCCACAGA -ACGGAAGAAACGTGATCCGCAAGA -ACGGAAGAAACGTGATCCGGTTGA -ACGGAAGAAACGTGATCCTCCGAT -ACGGAAGAAACGTGATCCTGGCAT -ACGGAAGAAACGTGATCCCGAGAT -ACGGAAGAAACGTGATCCTACCAC -ACGGAAGAAACGTGATCCCAGAAC -ACGGAAGAAACGTGATCCGTCTAC -ACGGAAGAAACGTGATCCACGTAC -ACGGAAGAAACGTGATCCAGTGAC -ACGGAAGAAACGTGATCCCTGTAG -ACGGAAGAAACGTGATCCCCTAAG -ACGGAAGAAACGTGATCCGTTCAG -ACGGAAGAAACGTGATCCGCATAG -ACGGAAGAAACGTGATCCGACAAG -ACGGAAGAAACGTGATCCAAGCAG -ACGGAAGAAACGTGATCCCGTCAA -ACGGAAGAAACGTGATCCGCTGAA -ACGGAAGAAACGTGATCCAGTACG -ACGGAAGAAACGTGATCCATCCGA -ACGGAAGAAACGTGATCCATGGGA -ACGGAAGAAACGTGATCCGTGCAA -ACGGAAGAAACGTGATCCGAGGAA -ACGGAAGAAACGTGATCCCAGGTA -ACGGAAGAAACGTGATCCGACTCT -ACGGAAGAAACGTGATCCAGTCCT -ACGGAAGAAACGTGATCCTAAGCC -ACGGAAGAAACGTGATCCATAGCC -ACGGAAGAAACGTGATCCTAACCG -ACGGAAGAAACGTGATCCATGCCA -ACGGAAGAAACGCGATAGGGAAAC -ACGGAAGAAACGCGATAGAACACC -ACGGAAGAAACGCGATAGATCGAG -ACGGAAGAAACGCGATAGCTCCTT -ACGGAAGAAACGCGATAGCCTGTT -ACGGAAGAAACGCGATAGCGGTTT -ACGGAAGAAACGCGATAGGTGGTT -ACGGAAGAAACGCGATAGGCCTTT -ACGGAAGAAACGCGATAGGGTCTT -ACGGAAGAAACGCGATAGACGCTT -ACGGAAGAAACGCGATAGAGCGTT -ACGGAAGAAACGCGATAGTTCGTC -ACGGAAGAAACGCGATAGTCTCTC -ACGGAAGAAACGCGATAGTGGATC -ACGGAAGAAACGCGATAGCACTTC -ACGGAAGAAACGCGATAGGTACTC -ACGGAAGAAACGCGATAGGATGTC -ACGGAAGAAACGCGATAGACAGTC -ACGGAAGAAACGCGATAGTTGCTG -ACGGAAGAAACGCGATAGTCCATG -ACGGAAGAAACGCGATAGTGTGTG -ACGGAAGAAACGCGATAGCTAGTG -ACGGAAGAAACGCGATAGCATCTG -ACGGAAGAAACGCGATAGGAGTTG -ACGGAAGAAACGCGATAGAGACTG -ACGGAAGAAACGCGATAGTCGGTA -ACGGAAGAAACGCGATAGTGCCTA -ACGGAAGAAACGCGATAGCCACTA -ACGGAAGAAACGCGATAGGGAGTA -ACGGAAGAAACGCGATAGTCGTCT -ACGGAAGAAACGCGATAGTGCACT -ACGGAAGAAACGCGATAGCTGACT -ACGGAAGAAACGCGATAGCAACCT -ACGGAAGAAACGCGATAGGCTACT -ACGGAAGAAACGCGATAGGGATCT -ACGGAAGAAACGCGATAGAAGGCT -ACGGAAGAAACGCGATAGTCAACC -ACGGAAGAAACGCGATAGTGTTCC -ACGGAAGAAACGCGATAGATTCCC -ACGGAAGAAACGCGATAGTTCTCG -ACGGAAGAAACGCGATAGTAGACG -ACGGAAGAAACGCGATAGGTAACG -ACGGAAGAAACGCGATAGACTTCG -ACGGAAGAAACGCGATAGTACGCA -ACGGAAGAAACGCGATAGCTTGCA -ACGGAAGAAACGCGATAGCGAACA -ACGGAAGAAACGCGATAGCAGTCA -ACGGAAGAAACGCGATAGGATCCA -ACGGAAGAAACGCGATAGACGACA -ACGGAAGAAACGCGATAGAGCTCA -ACGGAAGAAACGCGATAGTCACGT -ACGGAAGAAACGCGATAGCGTAGT -ACGGAAGAAACGCGATAGGTCAGT -ACGGAAGAAACGCGATAGGAAGGT -ACGGAAGAAACGCGATAGAACCGT -ACGGAAGAAACGCGATAGTTGTGC -ACGGAAGAAACGCGATAGCTAAGC -ACGGAAGAAACGCGATAGACTAGC -ACGGAAGAAACGCGATAGAGATGC -ACGGAAGAAACGCGATAGTGAAGG -ACGGAAGAAACGCGATAGCAATGG -ACGGAAGAAACGCGATAGATGAGG -ACGGAAGAAACGCGATAGAATGGG -ACGGAAGAAACGCGATAGTCCTGA -ACGGAAGAAACGCGATAGTAGCGA -ACGGAAGAAACGCGATAGCACAGA -ACGGAAGAAACGCGATAGGCAAGA -ACGGAAGAAACGCGATAGGGTTGA -ACGGAAGAAACGCGATAGTCCGAT -ACGGAAGAAACGCGATAGTGGCAT -ACGGAAGAAACGCGATAGCGAGAT -ACGGAAGAAACGCGATAGTACCAC -ACGGAAGAAACGCGATAGCAGAAC -ACGGAAGAAACGCGATAGGTCTAC -ACGGAAGAAACGCGATAGACGTAC -ACGGAAGAAACGCGATAGAGTGAC -ACGGAAGAAACGCGATAGCTGTAG -ACGGAAGAAACGCGATAGCCTAAG -ACGGAAGAAACGCGATAGGTTCAG -ACGGAAGAAACGCGATAGGCATAG -ACGGAAGAAACGCGATAGGACAAG -ACGGAAGAAACGCGATAGAAGCAG -ACGGAAGAAACGCGATAGCGTCAA -ACGGAAGAAACGCGATAGGCTGAA -ACGGAAGAAACGCGATAGAGTACG -ACGGAAGAAACGCGATAGATCCGA -ACGGAAGAAACGCGATAGATGGGA -ACGGAAGAAACGCGATAGGTGCAA -ACGGAAGAAACGCGATAGGAGGAA -ACGGAAGAAACGCGATAGCAGGTA -ACGGAAGAAACGCGATAGGACTCT -ACGGAAGAAACGCGATAGAGTCCT -ACGGAAGAAACGCGATAGTAAGCC -ACGGAAGAAACGCGATAGATAGCC -ACGGAAGAAACGCGATAGTAACCG -ACGGAAGAAACGCGATAGATGCCA -ACGGAAGAAACGAGACACGGAAAC -ACGGAAGAAACGAGACACAACACC -ACGGAAGAAACGAGACACATCGAG -ACGGAAGAAACGAGACACCTCCTT -ACGGAAGAAACGAGACACCCTGTT -ACGGAAGAAACGAGACACCGGTTT -ACGGAAGAAACGAGACACGTGGTT -ACGGAAGAAACGAGACACGCCTTT -ACGGAAGAAACGAGACACGGTCTT -ACGGAAGAAACGAGACACACGCTT -ACGGAAGAAACGAGACACAGCGTT -ACGGAAGAAACGAGACACTTCGTC -ACGGAAGAAACGAGACACTCTCTC -ACGGAAGAAACGAGACACTGGATC -ACGGAAGAAACGAGACACCACTTC -ACGGAAGAAACGAGACACGTACTC -ACGGAAGAAACGAGACACGATGTC -ACGGAAGAAACGAGACACACAGTC -ACGGAAGAAACGAGACACTTGCTG -ACGGAAGAAACGAGACACTCCATG -ACGGAAGAAACGAGACACTGTGTG -ACGGAAGAAACGAGACACCTAGTG -ACGGAAGAAACGAGACACCATCTG -ACGGAAGAAACGAGACACGAGTTG -ACGGAAGAAACGAGACACAGACTG -ACGGAAGAAACGAGACACTCGGTA -ACGGAAGAAACGAGACACTGCCTA -ACGGAAGAAACGAGACACCCACTA -ACGGAAGAAACGAGACACGGAGTA -ACGGAAGAAACGAGACACTCGTCT -ACGGAAGAAACGAGACACTGCACT -ACGGAAGAAACGAGACACCTGACT -ACGGAAGAAACGAGACACCAACCT -ACGGAAGAAACGAGACACGCTACT -ACGGAAGAAACGAGACACGGATCT -ACGGAAGAAACGAGACACAAGGCT -ACGGAAGAAACGAGACACTCAACC -ACGGAAGAAACGAGACACTGTTCC -ACGGAAGAAACGAGACACATTCCC -ACGGAAGAAACGAGACACTTCTCG -ACGGAAGAAACGAGACACTAGACG -ACGGAAGAAACGAGACACGTAACG -ACGGAAGAAACGAGACACACTTCG -ACGGAAGAAACGAGACACTACGCA -ACGGAAGAAACGAGACACCTTGCA -ACGGAAGAAACGAGACACCGAACA -ACGGAAGAAACGAGACACCAGTCA -ACGGAAGAAACGAGACACGATCCA -ACGGAAGAAACGAGACACACGACA -ACGGAAGAAACGAGACACAGCTCA -ACGGAAGAAACGAGACACTCACGT -ACGGAAGAAACGAGACACCGTAGT -ACGGAAGAAACGAGACACGTCAGT -ACGGAAGAAACGAGACACGAAGGT -ACGGAAGAAACGAGACACAACCGT -ACGGAAGAAACGAGACACTTGTGC -ACGGAAGAAACGAGACACCTAAGC -ACGGAAGAAACGAGACACACTAGC -ACGGAAGAAACGAGACACAGATGC -ACGGAAGAAACGAGACACTGAAGG -ACGGAAGAAACGAGACACCAATGG -ACGGAAGAAACGAGACACATGAGG -ACGGAAGAAACGAGACACAATGGG -ACGGAAGAAACGAGACACTCCTGA -ACGGAAGAAACGAGACACTAGCGA -ACGGAAGAAACGAGACACCACAGA -ACGGAAGAAACGAGACACGCAAGA -ACGGAAGAAACGAGACACGGTTGA -ACGGAAGAAACGAGACACTCCGAT -ACGGAAGAAACGAGACACTGGCAT -ACGGAAGAAACGAGACACCGAGAT -ACGGAAGAAACGAGACACTACCAC -ACGGAAGAAACGAGACACCAGAAC -ACGGAAGAAACGAGACACGTCTAC -ACGGAAGAAACGAGACACACGTAC -ACGGAAGAAACGAGACACAGTGAC -ACGGAAGAAACGAGACACCTGTAG -ACGGAAGAAACGAGACACCCTAAG -ACGGAAGAAACGAGACACGTTCAG -ACGGAAGAAACGAGACACGCATAG -ACGGAAGAAACGAGACACGACAAG -ACGGAAGAAACGAGACACAAGCAG -ACGGAAGAAACGAGACACCGTCAA -ACGGAAGAAACGAGACACGCTGAA -ACGGAAGAAACGAGACACAGTACG -ACGGAAGAAACGAGACACATCCGA -ACGGAAGAAACGAGACACATGGGA -ACGGAAGAAACGAGACACGTGCAA -ACGGAAGAAACGAGACACGAGGAA -ACGGAAGAAACGAGACACCAGGTA -ACGGAAGAAACGAGACACGACTCT -ACGGAAGAAACGAGACACAGTCCT -ACGGAAGAAACGAGACACTAAGCC -ACGGAAGAAACGAGACACATAGCC -ACGGAAGAAACGAGACACTAACCG -ACGGAAGAAACGAGACACATGCCA -ACGGAAGAAACGAGAGCAGGAAAC -ACGGAAGAAACGAGAGCAAACACC -ACGGAAGAAACGAGAGCAATCGAG -ACGGAAGAAACGAGAGCACTCCTT -ACGGAAGAAACGAGAGCACCTGTT -ACGGAAGAAACGAGAGCACGGTTT -ACGGAAGAAACGAGAGCAGTGGTT -ACGGAAGAAACGAGAGCAGCCTTT -ACGGAAGAAACGAGAGCAGGTCTT -ACGGAAGAAACGAGAGCAACGCTT -ACGGAAGAAACGAGAGCAAGCGTT -ACGGAAGAAACGAGAGCATTCGTC -ACGGAAGAAACGAGAGCATCTCTC -ACGGAAGAAACGAGAGCATGGATC -ACGGAAGAAACGAGAGCACACTTC -ACGGAAGAAACGAGAGCAGTACTC -ACGGAAGAAACGAGAGCAGATGTC -ACGGAAGAAACGAGAGCAACAGTC -ACGGAAGAAACGAGAGCATTGCTG -ACGGAAGAAACGAGAGCATCCATG -ACGGAAGAAACGAGAGCATGTGTG -ACGGAAGAAACGAGAGCACTAGTG -ACGGAAGAAACGAGAGCACATCTG -ACGGAAGAAACGAGAGCAGAGTTG -ACGGAAGAAACGAGAGCAAGACTG -ACGGAAGAAACGAGAGCATCGGTA -ACGGAAGAAACGAGAGCATGCCTA -ACGGAAGAAACGAGAGCACCACTA -ACGGAAGAAACGAGAGCAGGAGTA -ACGGAAGAAACGAGAGCATCGTCT -ACGGAAGAAACGAGAGCATGCACT -ACGGAAGAAACGAGAGCACTGACT -ACGGAAGAAACGAGAGCACAACCT -ACGGAAGAAACGAGAGCAGCTACT -ACGGAAGAAACGAGAGCAGGATCT -ACGGAAGAAACGAGAGCAAAGGCT -ACGGAAGAAACGAGAGCATCAACC -ACGGAAGAAACGAGAGCATGTTCC -ACGGAAGAAACGAGAGCAATTCCC -ACGGAAGAAACGAGAGCATTCTCG -ACGGAAGAAACGAGAGCATAGACG -ACGGAAGAAACGAGAGCAGTAACG -ACGGAAGAAACGAGAGCAACTTCG -ACGGAAGAAACGAGAGCATACGCA -ACGGAAGAAACGAGAGCACTTGCA -ACGGAAGAAACGAGAGCACGAACA -ACGGAAGAAACGAGAGCACAGTCA -ACGGAAGAAACGAGAGCAGATCCA -ACGGAAGAAACGAGAGCAACGACA -ACGGAAGAAACGAGAGCAAGCTCA -ACGGAAGAAACGAGAGCATCACGT -ACGGAAGAAACGAGAGCACGTAGT -ACGGAAGAAACGAGAGCAGTCAGT -ACGGAAGAAACGAGAGCAGAAGGT -ACGGAAGAAACGAGAGCAAACCGT -ACGGAAGAAACGAGAGCATTGTGC -ACGGAAGAAACGAGAGCACTAAGC -ACGGAAGAAACGAGAGCAACTAGC -ACGGAAGAAACGAGAGCAAGATGC -ACGGAAGAAACGAGAGCATGAAGG -ACGGAAGAAACGAGAGCACAATGG -ACGGAAGAAACGAGAGCAATGAGG -ACGGAAGAAACGAGAGCAAATGGG -ACGGAAGAAACGAGAGCATCCTGA -ACGGAAGAAACGAGAGCATAGCGA -ACGGAAGAAACGAGAGCACACAGA -ACGGAAGAAACGAGAGCAGCAAGA -ACGGAAGAAACGAGAGCAGGTTGA -ACGGAAGAAACGAGAGCATCCGAT -ACGGAAGAAACGAGAGCATGGCAT -ACGGAAGAAACGAGAGCACGAGAT -ACGGAAGAAACGAGAGCATACCAC -ACGGAAGAAACGAGAGCACAGAAC -ACGGAAGAAACGAGAGCAGTCTAC -ACGGAAGAAACGAGAGCAACGTAC -ACGGAAGAAACGAGAGCAAGTGAC -ACGGAAGAAACGAGAGCACTGTAG -ACGGAAGAAACGAGAGCACCTAAG -ACGGAAGAAACGAGAGCAGTTCAG -ACGGAAGAAACGAGAGCAGCATAG -ACGGAAGAAACGAGAGCAGACAAG -ACGGAAGAAACGAGAGCAAAGCAG -ACGGAAGAAACGAGAGCACGTCAA -ACGGAAGAAACGAGAGCAGCTGAA -ACGGAAGAAACGAGAGCAAGTACG -ACGGAAGAAACGAGAGCAATCCGA -ACGGAAGAAACGAGAGCAATGGGA -ACGGAAGAAACGAGAGCAGTGCAA -ACGGAAGAAACGAGAGCAGAGGAA -ACGGAAGAAACGAGAGCACAGGTA -ACGGAAGAAACGAGAGCAGACTCT -ACGGAAGAAACGAGAGCAAGTCCT -ACGGAAGAAACGAGAGCATAAGCC -ACGGAAGAAACGAGAGCAATAGCC -ACGGAAGAAACGAGAGCATAACCG -ACGGAAGAAACGAGAGCAATGCCA -ACGGAAGAAACGTGAGGTGGAAAC -ACGGAAGAAACGTGAGGTAACACC -ACGGAAGAAACGTGAGGTATCGAG -ACGGAAGAAACGTGAGGTCTCCTT -ACGGAAGAAACGTGAGGTCCTGTT -ACGGAAGAAACGTGAGGTCGGTTT -ACGGAAGAAACGTGAGGTGTGGTT -ACGGAAGAAACGTGAGGTGCCTTT -ACGGAAGAAACGTGAGGTGGTCTT -ACGGAAGAAACGTGAGGTACGCTT -ACGGAAGAAACGTGAGGTAGCGTT -ACGGAAGAAACGTGAGGTTTCGTC -ACGGAAGAAACGTGAGGTTCTCTC -ACGGAAGAAACGTGAGGTTGGATC -ACGGAAGAAACGTGAGGTCACTTC -ACGGAAGAAACGTGAGGTGTACTC -ACGGAAGAAACGTGAGGTGATGTC -ACGGAAGAAACGTGAGGTACAGTC -ACGGAAGAAACGTGAGGTTTGCTG -ACGGAAGAAACGTGAGGTTCCATG -ACGGAAGAAACGTGAGGTTGTGTG -ACGGAAGAAACGTGAGGTCTAGTG -ACGGAAGAAACGTGAGGTCATCTG -ACGGAAGAAACGTGAGGTGAGTTG -ACGGAAGAAACGTGAGGTAGACTG -ACGGAAGAAACGTGAGGTTCGGTA -ACGGAAGAAACGTGAGGTTGCCTA -ACGGAAGAAACGTGAGGTCCACTA -ACGGAAGAAACGTGAGGTGGAGTA -ACGGAAGAAACGTGAGGTTCGTCT -ACGGAAGAAACGTGAGGTTGCACT -ACGGAAGAAACGTGAGGTCTGACT -ACGGAAGAAACGTGAGGTCAACCT -ACGGAAGAAACGTGAGGTGCTACT -ACGGAAGAAACGTGAGGTGGATCT -ACGGAAGAAACGTGAGGTAAGGCT -ACGGAAGAAACGTGAGGTTCAACC -ACGGAAGAAACGTGAGGTTGTTCC -ACGGAAGAAACGTGAGGTATTCCC -ACGGAAGAAACGTGAGGTTTCTCG -ACGGAAGAAACGTGAGGTTAGACG -ACGGAAGAAACGTGAGGTGTAACG -ACGGAAGAAACGTGAGGTACTTCG -ACGGAAGAAACGTGAGGTTACGCA -ACGGAAGAAACGTGAGGTCTTGCA -ACGGAAGAAACGTGAGGTCGAACA -ACGGAAGAAACGTGAGGTCAGTCA -ACGGAAGAAACGTGAGGTGATCCA -ACGGAAGAAACGTGAGGTACGACA -ACGGAAGAAACGTGAGGTAGCTCA -ACGGAAGAAACGTGAGGTTCACGT -ACGGAAGAAACGTGAGGTCGTAGT -ACGGAAGAAACGTGAGGTGTCAGT -ACGGAAGAAACGTGAGGTGAAGGT -ACGGAAGAAACGTGAGGTAACCGT -ACGGAAGAAACGTGAGGTTTGTGC -ACGGAAGAAACGTGAGGTCTAAGC -ACGGAAGAAACGTGAGGTACTAGC -ACGGAAGAAACGTGAGGTAGATGC -ACGGAAGAAACGTGAGGTTGAAGG -ACGGAAGAAACGTGAGGTCAATGG -ACGGAAGAAACGTGAGGTATGAGG -ACGGAAGAAACGTGAGGTAATGGG -ACGGAAGAAACGTGAGGTTCCTGA -ACGGAAGAAACGTGAGGTTAGCGA -ACGGAAGAAACGTGAGGTCACAGA -ACGGAAGAAACGTGAGGTGCAAGA -ACGGAAGAAACGTGAGGTGGTTGA -ACGGAAGAAACGTGAGGTTCCGAT -ACGGAAGAAACGTGAGGTTGGCAT -ACGGAAGAAACGTGAGGTCGAGAT -ACGGAAGAAACGTGAGGTTACCAC -ACGGAAGAAACGTGAGGTCAGAAC -ACGGAAGAAACGTGAGGTGTCTAC -ACGGAAGAAACGTGAGGTACGTAC -ACGGAAGAAACGTGAGGTAGTGAC -ACGGAAGAAACGTGAGGTCTGTAG -ACGGAAGAAACGTGAGGTCCTAAG -ACGGAAGAAACGTGAGGTGTTCAG -ACGGAAGAAACGTGAGGTGCATAG -ACGGAAGAAACGTGAGGTGACAAG -ACGGAAGAAACGTGAGGTAAGCAG -ACGGAAGAAACGTGAGGTCGTCAA -ACGGAAGAAACGTGAGGTGCTGAA -ACGGAAGAAACGTGAGGTAGTACG -ACGGAAGAAACGTGAGGTATCCGA -ACGGAAGAAACGTGAGGTATGGGA -ACGGAAGAAACGTGAGGTGTGCAA -ACGGAAGAAACGTGAGGTGAGGAA -ACGGAAGAAACGTGAGGTCAGGTA -ACGGAAGAAACGTGAGGTGACTCT -ACGGAAGAAACGTGAGGTAGTCCT -ACGGAAGAAACGTGAGGTTAAGCC -ACGGAAGAAACGTGAGGTATAGCC -ACGGAAGAAACGTGAGGTTAACCG -ACGGAAGAAACGTGAGGTATGCCA -ACGGAAGAAACGGATTCCGGAAAC -ACGGAAGAAACGGATTCCAACACC -ACGGAAGAAACGGATTCCATCGAG -ACGGAAGAAACGGATTCCCTCCTT -ACGGAAGAAACGGATTCCCCTGTT -ACGGAAGAAACGGATTCCCGGTTT -ACGGAAGAAACGGATTCCGTGGTT -ACGGAAGAAACGGATTCCGCCTTT -ACGGAAGAAACGGATTCCGGTCTT -ACGGAAGAAACGGATTCCACGCTT -ACGGAAGAAACGGATTCCAGCGTT -ACGGAAGAAACGGATTCCTTCGTC -ACGGAAGAAACGGATTCCTCTCTC -ACGGAAGAAACGGATTCCTGGATC -ACGGAAGAAACGGATTCCCACTTC -ACGGAAGAAACGGATTCCGTACTC -ACGGAAGAAACGGATTCCGATGTC -ACGGAAGAAACGGATTCCACAGTC -ACGGAAGAAACGGATTCCTTGCTG -ACGGAAGAAACGGATTCCTCCATG -ACGGAAGAAACGGATTCCTGTGTG -ACGGAAGAAACGGATTCCCTAGTG -ACGGAAGAAACGGATTCCCATCTG -ACGGAAGAAACGGATTCCGAGTTG -ACGGAAGAAACGGATTCCAGACTG -ACGGAAGAAACGGATTCCTCGGTA -ACGGAAGAAACGGATTCCTGCCTA -ACGGAAGAAACGGATTCCCCACTA -ACGGAAGAAACGGATTCCGGAGTA -ACGGAAGAAACGGATTCCTCGTCT -ACGGAAGAAACGGATTCCTGCACT -ACGGAAGAAACGGATTCCCTGACT -ACGGAAGAAACGGATTCCCAACCT -ACGGAAGAAACGGATTCCGCTACT -ACGGAAGAAACGGATTCCGGATCT -ACGGAAGAAACGGATTCCAAGGCT -ACGGAAGAAACGGATTCCTCAACC -ACGGAAGAAACGGATTCCTGTTCC -ACGGAAGAAACGGATTCCATTCCC -ACGGAAGAAACGGATTCCTTCTCG -ACGGAAGAAACGGATTCCTAGACG -ACGGAAGAAACGGATTCCGTAACG -ACGGAAGAAACGGATTCCACTTCG -ACGGAAGAAACGGATTCCTACGCA -ACGGAAGAAACGGATTCCCTTGCA -ACGGAAGAAACGGATTCCCGAACA -ACGGAAGAAACGGATTCCCAGTCA -ACGGAAGAAACGGATTCCGATCCA -ACGGAAGAAACGGATTCCACGACA -ACGGAAGAAACGGATTCCAGCTCA -ACGGAAGAAACGGATTCCTCACGT -ACGGAAGAAACGGATTCCCGTAGT -ACGGAAGAAACGGATTCCGTCAGT -ACGGAAGAAACGGATTCCGAAGGT -ACGGAAGAAACGGATTCCAACCGT -ACGGAAGAAACGGATTCCTTGTGC -ACGGAAGAAACGGATTCCCTAAGC -ACGGAAGAAACGGATTCCACTAGC -ACGGAAGAAACGGATTCCAGATGC -ACGGAAGAAACGGATTCCTGAAGG -ACGGAAGAAACGGATTCCCAATGG -ACGGAAGAAACGGATTCCATGAGG -ACGGAAGAAACGGATTCCAATGGG -ACGGAAGAAACGGATTCCTCCTGA -ACGGAAGAAACGGATTCCTAGCGA -ACGGAAGAAACGGATTCCCACAGA -ACGGAAGAAACGGATTCCGCAAGA -ACGGAAGAAACGGATTCCGGTTGA -ACGGAAGAAACGGATTCCTCCGAT -ACGGAAGAAACGGATTCCTGGCAT -ACGGAAGAAACGGATTCCCGAGAT -ACGGAAGAAACGGATTCCTACCAC -ACGGAAGAAACGGATTCCCAGAAC -ACGGAAGAAACGGATTCCGTCTAC -ACGGAAGAAACGGATTCCACGTAC -ACGGAAGAAACGGATTCCAGTGAC -ACGGAAGAAACGGATTCCCTGTAG -ACGGAAGAAACGGATTCCCCTAAG -ACGGAAGAAACGGATTCCGTTCAG -ACGGAAGAAACGGATTCCGCATAG -ACGGAAGAAACGGATTCCGACAAG -ACGGAAGAAACGGATTCCAAGCAG -ACGGAAGAAACGGATTCCCGTCAA -ACGGAAGAAACGGATTCCGCTGAA -ACGGAAGAAACGGATTCCAGTACG -ACGGAAGAAACGGATTCCATCCGA -ACGGAAGAAACGGATTCCATGGGA -ACGGAAGAAACGGATTCCGTGCAA -ACGGAAGAAACGGATTCCGAGGAA -ACGGAAGAAACGGATTCCCAGGTA -ACGGAAGAAACGGATTCCGACTCT -ACGGAAGAAACGGATTCCAGTCCT -ACGGAAGAAACGGATTCCTAAGCC -ACGGAAGAAACGGATTCCATAGCC -ACGGAAGAAACGGATTCCTAACCG -ACGGAAGAAACGGATTCCATGCCA -ACGGAAGAAACGCATTGGGGAAAC -ACGGAAGAAACGCATTGGAACACC -ACGGAAGAAACGCATTGGATCGAG -ACGGAAGAAACGCATTGGCTCCTT -ACGGAAGAAACGCATTGGCCTGTT -ACGGAAGAAACGCATTGGCGGTTT -ACGGAAGAAACGCATTGGGTGGTT -ACGGAAGAAACGCATTGGGCCTTT -ACGGAAGAAACGCATTGGGGTCTT -ACGGAAGAAACGCATTGGACGCTT -ACGGAAGAAACGCATTGGAGCGTT -ACGGAAGAAACGCATTGGTTCGTC -ACGGAAGAAACGCATTGGTCTCTC -ACGGAAGAAACGCATTGGTGGATC -ACGGAAGAAACGCATTGGCACTTC -ACGGAAGAAACGCATTGGGTACTC -ACGGAAGAAACGCATTGGGATGTC -ACGGAAGAAACGCATTGGACAGTC -ACGGAAGAAACGCATTGGTTGCTG -ACGGAAGAAACGCATTGGTCCATG -ACGGAAGAAACGCATTGGTGTGTG -ACGGAAGAAACGCATTGGCTAGTG -ACGGAAGAAACGCATTGGCATCTG -ACGGAAGAAACGCATTGGGAGTTG -ACGGAAGAAACGCATTGGAGACTG -ACGGAAGAAACGCATTGGTCGGTA -ACGGAAGAAACGCATTGGTGCCTA -ACGGAAGAAACGCATTGGCCACTA -ACGGAAGAAACGCATTGGGGAGTA -ACGGAAGAAACGCATTGGTCGTCT -ACGGAAGAAACGCATTGGTGCACT -ACGGAAGAAACGCATTGGCTGACT -ACGGAAGAAACGCATTGGCAACCT -ACGGAAGAAACGCATTGGGCTACT -ACGGAAGAAACGCATTGGGGATCT -ACGGAAGAAACGCATTGGAAGGCT -ACGGAAGAAACGCATTGGTCAACC -ACGGAAGAAACGCATTGGTGTTCC -ACGGAAGAAACGCATTGGATTCCC -ACGGAAGAAACGCATTGGTTCTCG -ACGGAAGAAACGCATTGGTAGACG -ACGGAAGAAACGCATTGGGTAACG -ACGGAAGAAACGCATTGGACTTCG -ACGGAAGAAACGCATTGGTACGCA -ACGGAAGAAACGCATTGGCTTGCA -ACGGAAGAAACGCATTGGCGAACA -ACGGAAGAAACGCATTGGCAGTCA -ACGGAAGAAACGCATTGGGATCCA -ACGGAAGAAACGCATTGGACGACA -ACGGAAGAAACGCATTGGAGCTCA -ACGGAAGAAACGCATTGGTCACGT -ACGGAAGAAACGCATTGGCGTAGT -ACGGAAGAAACGCATTGGGTCAGT -ACGGAAGAAACGCATTGGGAAGGT -ACGGAAGAAACGCATTGGAACCGT -ACGGAAGAAACGCATTGGTTGTGC -ACGGAAGAAACGCATTGGCTAAGC -ACGGAAGAAACGCATTGGACTAGC -ACGGAAGAAACGCATTGGAGATGC -ACGGAAGAAACGCATTGGTGAAGG -ACGGAAGAAACGCATTGGCAATGG -ACGGAAGAAACGCATTGGATGAGG -ACGGAAGAAACGCATTGGAATGGG -ACGGAAGAAACGCATTGGTCCTGA -ACGGAAGAAACGCATTGGTAGCGA -ACGGAAGAAACGCATTGGCACAGA -ACGGAAGAAACGCATTGGGCAAGA -ACGGAAGAAACGCATTGGGGTTGA -ACGGAAGAAACGCATTGGTCCGAT -ACGGAAGAAACGCATTGGTGGCAT -ACGGAAGAAACGCATTGGCGAGAT -ACGGAAGAAACGCATTGGTACCAC -ACGGAAGAAACGCATTGGCAGAAC -ACGGAAGAAACGCATTGGGTCTAC -ACGGAAGAAACGCATTGGACGTAC -ACGGAAGAAACGCATTGGAGTGAC -ACGGAAGAAACGCATTGGCTGTAG -ACGGAAGAAACGCATTGGCCTAAG -ACGGAAGAAACGCATTGGGTTCAG -ACGGAAGAAACGCATTGGGCATAG -ACGGAAGAAACGCATTGGGACAAG -ACGGAAGAAACGCATTGGAAGCAG -ACGGAAGAAACGCATTGGCGTCAA -ACGGAAGAAACGCATTGGGCTGAA -ACGGAAGAAACGCATTGGAGTACG -ACGGAAGAAACGCATTGGATCCGA -ACGGAAGAAACGCATTGGATGGGA -ACGGAAGAAACGCATTGGGTGCAA -ACGGAAGAAACGCATTGGGAGGAA -ACGGAAGAAACGCATTGGCAGGTA -ACGGAAGAAACGCATTGGGACTCT -ACGGAAGAAACGCATTGGAGTCCT -ACGGAAGAAACGCATTGGTAAGCC -ACGGAAGAAACGCATTGGATAGCC -ACGGAAGAAACGCATTGGTAACCG -ACGGAAGAAACGCATTGGATGCCA -ACGGAAGAAACGGATCGAGGAAAC -ACGGAAGAAACGGATCGAAACACC -ACGGAAGAAACGGATCGAATCGAG -ACGGAAGAAACGGATCGACTCCTT -ACGGAAGAAACGGATCGACCTGTT -ACGGAAGAAACGGATCGACGGTTT -ACGGAAGAAACGGATCGAGTGGTT -ACGGAAGAAACGGATCGAGCCTTT -ACGGAAGAAACGGATCGAGGTCTT -ACGGAAGAAACGGATCGAACGCTT -ACGGAAGAAACGGATCGAAGCGTT -ACGGAAGAAACGGATCGATTCGTC -ACGGAAGAAACGGATCGATCTCTC -ACGGAAGAAACGGATCGATGGATC -ACGGAAGAAACGGATCGACACTTC -ACGGAAGAAACGGATCGAGTACTC -ACGGAAGAAACGGATCGAGATGTC -ACGGAAGAAACGGATCGAACAGTC -ACGGAAGAAACGGATCGATTGCTG -ACGGAAGAAACGGATCGATCCATG -ACGGAAGAAACGGATCGATGTGTG -ACGGAAGAAACGGATCGACTAGTG -ACGGAAGAAACGGATCGACATCTG -ACGGAAGAAACGGATCGAGAGTTG -ACGGAAGAAACGGATCGAAGACTG -ACGGAAGAAACGGATCGATCGGTA -ACGGAAGAAACGGATCGATGCCTA -ACGGAAGAAACGGATCGACCACTA -ACGGAAGAAACGGATCGAGGAGTA -ACGGAAGAAACGGATCGATCGTCT -ACGGAAGAAACGGATCGATGCACT -ACGGAAGAAACGGATCGACTGACT -ACGGAAGAAACGGATCGACAACCT -ACGGAAGAAACGGATCGAGCTACT -ACGGAAGAAACGGATCGAGGATCT -ACGGAAGAAACGGATCGAAAGGCT -ACGGAAGAAACGGATCGATCAACC -ACGGAAGAAACGGATCGATGTTCC -ACGGAAGAAACGGATCGAATTCCC -ACGGAAGAAACGGATCGATTCTCG -ACGGAAGAAACGGATCGATAGACG -ACGGAAGAAACGGATCGAGTAACG -ACGGAAGAAACGGATCGAACTTCG -ACGGAAGAAACGGATCGATACGCA -ACGGAAGAAACGGATCGACTTGCA -ACGGAAGAAACGGATCGACGAACA -ACGGAAGAAACGGATCGACAGTCA -ACGGAAGAAACGGATCGAGATCCA -ACGGAAGAAACGGATCGAACGACA -ACGGAAGAAACGGATCGAAGCTCA -ACGGAAGAAACGGATCGATCACGT -ACGGAAGAAACGGATCGACGTAGT -ACGGAAGAAACGGATCGAGTCAGT -ACGGAAGAAACGGATCGAGAAGGT -ACGGAAGAAACGGATCGAAACCGT -ACGGAAGAAACGGATCGATTGTGC -ACGGAAGAAACGGATCGACTAAGC -ACGGAAGAAACGGATCGAACTAGC -ACGGAAGAAACGGATCGAAGATGC -ACGGAAGAAACGGATCGATGAAGG -ACGGAAGAAACGGATCGACAATGG -ACGGAAGAAACGGATCGAATGAGG -ACGGAAGAAACGGATCGAAATGGG -ACGGAAGAAACGGATCGATCCTGA -ACGGAAGAAACGGATCGATAGCGA -ACGGAAGAAACGGATCGACACAGA -ACGGAAGAAACGGATCGAGCAAGA -ACGGAAGAAACGGATCGAGGTTGA -ACGGAAGAAACGGATCGATCCGAT -ACGGAAGAAACGGATCGATGGCAT -ACGGAAGAAACGGATCGACGAGAT -ACGGAAGAAACGGATCGATACCAC -ACGGAAGAAACGGATCGACAGAAC -ACGGAAGAAACGGATCGAGTCTAC -ACGGAAGAAACGGATCGAACGTAC -ACGGAAGAAACGGATCGAAGTGAC -ACGGAAGAAACGGATCGACTGTAG -ACGGAAGAAACGGATCGACCTAAG -ACGGAAGAAACGGATCGAGTTCAG -ACGGAAGAAACGGATCGAGCATAG -ACGGAAGAAACGGATCGAGACAAG -ACGGAAGAAACGGATCGAAAGCAG -ACGGAAGAAACGGATCGACGTCAA -ACGGAAGAAACGGATCGAGCTGAA -ACGGAAGAAACGGATCGAAGTACG -ACGGAAGAAACGGATCGAATCCGA -ACGGAAGAAACGGATCGAATGGGA -ACGGAAGAAACGGATCGAGTGCAA -ACGGAAGAAACGGATCGAGAGGAA -ACGGAAGAAACGGATCGACAGGTA -ACGGAAGAAACGGATCGAGACTCT -ACGGAAGAAACGGATCGAAGTCCT -ACGGAAGAAACGGATCGATAAGCC -ACGGAAGAAACGGATCGAATAGCC -ACGGAAGAAACGGATCGATAACCG -ACGGAAGAAACGGATCGAATGCCA -ACGGAAGAAACGCACTACGGAAAC -ACGGAAGAAACGCACTACAACACC -ACGGAAGAAACGCACTACATCGAG -ACGGAAGAAACGCACTACCTCCTT -ACGGAAGAAACGCACTACCCTGTT -ACGGAAGAAACGCACTACCGGTTT -ACGGAAGAAACGCACTACGTGGTT -ACGGAAGAAACGCACTACGCCTTT -ACGGAAGAAACGCACTACGGTCTT -ACGGAAGAAACGCACTACACGCTT -ACGGAAGAAACGCACTACAGCGTT -ACGGAAGAAACGCACTACTTCGTC -ACGGAAGAAACGCACTACTCTCTC -ACGGAAGAAACGCACTACTGGATC -ACGGAAGAAACGCACTACCACTTC -ACGGAAGAAACGCACTACGTACTC -ACGGAAGAAACGCACTACGATGTC -ACGGAAGAAACGCACTACACAGTC -ACGGAAGAAACGCACTACTTGCTG -ACGGAAGAAACGCACTACTCCATG -ACGGAAGAAACGCACTACTGTGTG -ACGGAAGAAACGCACTACCTAGTG -ACGGAAGAAACGCACTACCATCTG -ACGGAAGAAACGCACTACGAGTTG -ACGGAAGAAACGCACTACAGACTG -ACGGAAGAAACGCACTACTCGGTA -ACGGAAGAAACGCACTACTGCCTA -ACGGAAGAAACGCACTACCCACTA -ACGGAAGAAACGCACTACGGAGTA -ACGGAAGAAACGCACTACTCGTCT -ACGGAAGAAACGCACTACTGCACT -ACGGAAGAAACGCACTACCTGACT -ACGGAAGAAACGCACTACCAACCT -ACGGAAGAAACGCACTACGCTACT -ACGGAAGAAACGCACTACGGATCT -ACGGAAGAAACGCACTACAAGGCT -ACGGAAGAAACGCACTACTCAACC -ACGGAAGAAACGCACTACTGTTCC -ACGGAAGAAACGCACTACATTCCC -ACGGAAGAAACGCACTACTTCTCG -ACGGAAGAAACGCACTACTAGACG -ACGGAAGAAACGCACTACGTAACG -ACGGAAGAAACGCACTACACTTCG -ACGGAAGAAACGCACTACTACGCA -ACGGAAGAAACGCACTACCTTGCA -ACGGAAGAAACGCACTACCGAACA -ACGGAAGAAACGCACTACCAGTCA -ACGGAAGAAACGCACTACGATCCA -ACGGAAGAAACGCACTACACGACA -ACGGAAGAAACGCACTACAGCTCA -ACGGAAGAAACGCACTACTCACGT -ACGGAAGAAACGCACTACCGTAGT -ACGGAAGAAACGCACTACGTCAGT -ACGGAAGAAACGCACTACGAAGGT -ACGGAAGAAACGCACTACAACCGT -ACGGAAGAAACGCACTACTTGTGC -ACGGAAGAAACGCACTACCTAAGC -ACGGAAGAAACGCACTACACTAGC -ACGGAAGAAACGCACTACAGATGC -ACGGAAGAAACGCACTACTGAAGG -ACGGAAGAAACGCACTACCAATGG -ACGGAAGAAACGCACTACATGAGG -ACGGAAGAAACGCACTACAATGGG -ACGGAAGAAACGCACTACTCCTGA -ACGGAAGAAACGCACTACTAGCGA -ACGGAAGAAACGCACTACCACAGA -ACGGAAGAAACGCACTACGCAAGA -ACGGAAGAAACGCACTACGGTTGA -ACGGAAGAAACGCACTACTCCGAT -ACGGAAGAAACGCACTACTGGCAT -ACGGAAGAAACGCACTACCGAGAT -ACGGAAGAAACGCACTACTACCAC -ACGGAAGAAACGCACTACCAGAAC -ACGGAAGAAACGCACTACGTCTAC -ACGGAAGAAACGCACTACACGTAC -ACGGAAGAAACGCACTACAGTGAC -ACGGAAGAAACGCACTACCTGTAG -ACGGAAGAAACGCACTACCCTAAG -ACGGAAGAAACGCACTACGTTCAG -ACGGAAGAAACGCACTACGCATAG -ACGGAAGAAACGCACTACGACAAG -ACGGAAGAAACGCACTACAAGCAG -ACGGAAGAAACGCACTACCGTCAA -ACGGAAGAAACGCACTACGCTGAA -ACGGAAGAAACGCACTACAGTACG -ACGGAAGAAACGCACTACATCCGA -ACGGAAGAAACGCACTACATGGGA -ACGGAAGAAACGCACTACGTGCAA -ACGGAAGAAACGCACTACGAGGAA -ACGGAAGAAACGCACTACCAGGTA -ACGGAAGAAACGCACTACGACTCT -ACGGAAGAAACGCACTACAGTCCT -ACGGAAGAAACGCACTACTAAGCC -ACGGAAGAAACGCACTACATAGCC -ACGGAAGAAACGCACTACTAACCG -ACGGAAGAAACGCACTACATGCCA -ACGGAAGAAACGAACCAGGGAAAC -ACGGAAGAAACGAACCAGAACACC -ACGGAAGAAACGAACCAGATCGAG -ACGGAAGAAACGAACCAGCTCCTT -ACGGAAGAAACGAACCAGCCTGTT -ACGGAAGAAACGAACCAGCGGTTT -ACGGAAGAAACGAACCAGGTGGTT -ACGGAAGAAACGAACCAGGCCTTT -ACGGAAGAAACGAACCAGGGTCTT -ACGGAAGAAACGAACCAGACGCTT -ACGGAAGAAACGAACCAGAGCGTT -ACGGAAGAAACGAACCAGTTCGTC -ACGGAAGAAACGAACCAGTCTCTC -ACGGAAGAAACGAACCAGTGGATC -ACGGAAGAAACGAACCAGCACTTC -ACGGAAGAAACGAACCAGGTACTC -ACGGAAGAAACGAACCAGGATGTC -ACGGAAGAAACGAACCAGACAGTC -ACGGAAGAAACGAACCAGTTGCTG -ACGGAAGAAACGAACCAGTCCATG -ACGGAAGAAACGAACCAGTGTGTG -ACGGAAGAAACGAACCAGCTAGTG -ACGGAAGAAACGAACCAGCATCTG -ACGGAAGAAACGAACCAGGAGTTG -ACGGAAGAAACGAACCAGAGACTG -ACGGAAGAAACGAACCAGTCGGTA -ACGGAAGAAACGAACCAGTGCCTA -ACGGAAGAAACGAACCAGCCACTA -ACGGAAGAAACGAACCAGGGAGTA -ACGGAAGAAACGAACCAGTCGTCT -ACGGAAGAAACGAACCAGTGCACT -ACGGAAGAAACGAACCAGCTGACT -ACGGAAGAAACGAACCAGCAACCT -ACGGAAGAAACGAACCAGGCTACT -ACGGAAGAAACGAACCAGGGATCT -ACGGAAGAAACGAACCAGAAGGCT -ACGGAAGAAACGAACCAGTCAACC -ACGGAAGAAACGAACCAGTGTTCC -ACGGAAGAAACGAACCAGATTCCC -ACGGAAGAAACGAACCAGTTCTCG -ACGGAAGAAACGAACCAGTAGACG -ACGGAAGAAACGAACCAGGTAACG -ACGGAAGAAACGAACCAGACTTCG -ACGGAAGAAACGAACCAGTACGCA -ACGGAAGAAACGAACCAGCTTGCA -ACGGAAGAAACGAACCAGCGAACA -ACGGAAGAAACGAACCAGCAGTCA -ACGGAAGAAACGAACCAGGATCCA -ACGGAAGAAACGAACCAGACGACA -ACGGAAGAAACGAACCAGAGCTCA -ACGGAAGAAACGAACCAGTCACGT -ACGGAAGAAACGAACCAGCGTAGT -ACGGAAGAAACGAACCAGGTCAGT -ACGGAAGAAACGAACCAGGAAGGT -ACGGAAGAAACGAACCAGAACCGT -ACGGAAGAAACGAACCAGTTGTGC -ACGGAAGAAACGAACCAGCTAAGC -ACGGAAGAAACGAACCAGACTAGC -ACGGAAGAAACGAACCAGAGATGC -ACGGAAGAAACGAACCAGTGAAGG -ACGGAAGAAACGAACCAGCAATGG -ACGGAAGAAACGAACCAGATGAGG -ACGGAAGAAACGAACCAGAATGGG -ACGGAAGAAACGAACCAGTCCTGA -ACGGAAGAAACGAACCAGTAGCGA -ACGGAAGAAACGAACCAGCACAGA -ACGGAAGAAACGAACCAGGCAAGA -ACGGAAGAAACGAACCAGGGTTGA -ACGGAAGAAACGAACCAGTCCGAT -ACGGAAGAAACGAACCAGTGGCAT -ACGGAAGAAACGAACCAGCGAGAT -ACGGAAGAAACGAACCAGTACCAC -ACGGAAGAAACGAACCAGCAGAAC -ACGGAAGAAACGAACCAGGTCTAC -ACGGAAGAAACGAACCAGACGTAC -ACGGAAGAAACGAACCAGAGTGAC -ACGGAAGAAACGAACCAGCTGTAG -ACGGAAGAAACGAACCAGCCTAAG -ACGGAAGAAACGAACCAGGTTCAG -ACGGAAGAAACGAACCAGGCATAG -ACGGAAGAAACGAACCAGGACAAG -ACGGAAGAAACGAACCAGAAGCAG -ACGGAAGAAACGAACCAGCGTCAA -ACGGAAGAAACGAACCAGGCTGAA -ACGGAAGAAACGAACCAGAGTACG -ACGGAAGAAACGAACCAGATCCGA -ACGGAAGAAACGAACCAGATGGGA -ACGGAAGAAACGAACCAGGTGCAA -ACGGAAGAAACGAACCAGGAGGAA -ACGGAAGAAACGAACCAGCAGGTA -ACGGAAGAAACGAACCAGGACTCT -ACGGAAGAAACGAACCAGAGTCCT -ACGGAAGAAACGAACCAGTAAGCC -ACGGAAGAAACGAACCAGATAGCC -ACGGAAGAAACGAACCAGTAACCG -ACGGAAGAAACGAACCAGATGCCA -ACGGAAGAAACGTACGTCGGAAAC -ACGGAAGAAACGTACGTCAACACC -ACGGAAGAAACGTACGTCATCGAG -ACGGAAGAAACGTACGTCCTCCTT -ACGGAAGAAACGTACGTCCCTGTT -ACGGAAGAAACGTACGTCCGGTTT -ACGGAAGAAACGTACGTCGTGGTT -ACGGAAGAAACGTACGTCGCCTTT -ACGGAAGAAACGTACGTCGGTCTT -ACGGAAGAAACGTACGTCACGCTT -ACGGAAGAAACGTACGTCAGCGTT -ACGGAAGAAACGTACGTCTTCGTC -ACGGAAGAAACGTACGTCTCTCTC -ACGGAAGAAACGTACGTCTGGATC -ACGGAAGAAACGTACGTCCACTTC -ACGGAAGAAACGTACGTCGTACTC -ACGGAAGAAACGTACGTCGATGTC -ACGGAAGAAACGTACGTCACAGTC -ACGGAAGAAACGTACGTCTTGCTG -ACGGAAGAAACGTACGTCTCCATG -ACGGAAGAAACGTACGTCTGTGTG -ACGGAAGAAACGTACGTCCTAGTG -ACGGAAGAAACGTACGTCCATCTG -ACGGAAGAAACGTACGTCGAGTTG -ACGGAAGAAACGTACGTCAGACTG -ACGGAAGAAACGTACGTCTCGGTA -ACGGAAGAAACGTACGTCTGCCTA -ACGGAAGAAACGTACGTCCCACTA -ACGGAAGAAACGTACGTCGGAGTA -ACGGAAGAAACGTACGTCTCGTCT -ACGGAAGAAACGTACGTCTGCACT -ACGGAAGAAACGTACGTCCTGACT -ACGGAAGAAACGTACGTCCAACCT -ACGGAAGAAACGTACGTCGCTACT -ACGGAAGAAACGTACGTCGGATCT -ACGGAAGAAACGTACGTCAAGGCT -ACGGAAGAAACGTACGTCTCAACC -ACGGAAGAAACGTACGTCTGTTCC -ACGGAAGAAACGTACGTCATTCCC -ACGGAAGAAACGTACGTCTTCTCG -ACGGAAGAAACGTACGTCTAGACG -ACGGAAGAAACGTACGTCGTAACG -ACGGAAGAAACGTACGTCACTTCG -ACGGAAGAAACGTACGTCTACGCA -ACGGAAGAAACGTACGTCCTTGCA -ACGGAAGAAACGTACGTCCGAACA -ACGGAAGAAACGTACGTCCAGTCA -ACGGAAGAAACGTACGTCGATCCA -ACGGAAGAAACGTACGTCACGACA -ACGGAAGAAACGTACGTCAGCTCA -ACGGAAGAAACGTACGTCTCACGT -ACGGAAGAAACGTACGTCCGTAGT -ACGGAAGAAACGTACGTCGTCAGT -ACGGAAGAAACGTACGTCGAAGGT -ACGGAAGAAACGTACGTCAACCGT -ACGGAAGAAACGTACGTCTTGTGC -ACGGAAGAAACGTACGTCCTAAGC -ACGGAAGAAACGTACGTCACTAGC -ACGGAAGAAACGTACGTCAGATGC -ACGGAAGAAACGTACGTCTGAAGG -ACGGAAGAAACGTACGTCCAATGG -ACGGAAGAAACGTACGTCATGAGG -ACGGAAGAAACGTACGTCAATGGG -ACGGAAGAAACGTACGTCTCCTGA -ACGGAAGAAACGTACGTCTAGCGA -ACGGAAGAAACGTACGTCCACAGA -ACGGAAGAAACGTACGTCGCAAGA -ACGGAAGAAACGTACGTCGGTTGA -ACGGAAGAAACGTACGTCTCCGAT -ACGGAAGAAACGTACGTCTGGCAT -ACGGAAGAAACGTACGTCCGAGAT -ACGGAAGAAACGTACGTCTACCAC -ACGGAAGAAACGTACGTCCAGAAC -ACGGAAGAAACGTACGTCGTCTAC -ACGGAAGAAACGTACGTCACGTAC -ACGGAAGAAACGTACGTCAGTGAC -ACGGAAGAAACGTACGTCCTGTAG -ACGGAAGAAACGTACGTCCCTAAG -ACGGAAGAAACGTACGTCGTTCAG -ACGGAAGAAACGTACGTCGCATAG -ACGGAAGAAACGTACGTCGACAAG -ACGGAAGAAACGTACGTCAAGCAG -ACGGAAGAAACGTACGTCCGTCAA -ACGGAAGAAACGTACGTCGCTGAA -ACGGAAGAAACGTACGTCAGTACG -ACGGAAGAAACGTACGTCATCCGA -ACGGAAGAAACGTACGTCATGGGA -ACGGAAGAAACGTACGTCGTGCAA -ACGGAAGAAACGTACGTCGAGGAA -ACGGAAGAAACGTACGTCCAGGTA -ACGGAAGAAACGTACGTCGACTCT -ACGGAAGAAACGTACGTCAGTCCT -ACGGAAGAAACGTACGTCTAAGCC -ACGGAAGAAACGTACGTCATAGCC -ACGGAAGAAACGTACGTCTAACCG -ACGGAAGAAACGTACGTCATGCCA -ACGGAAGAAACGTACACGGGAAAC -ACGGAAGAAACGTACACGAACACC -ACGGAAGAAACGTACACGATCGAG -ACGGAAGAAACGTACACGCTCCTT -ACGGAAGAAACGTACACGCCTGTT -ACGGAAGAAACGTACACGCGGTTT -ACGGAAGAAACGTACACGGTGGTT -ACGGAAGAAACGTACACGGCCTTT -ACGGAAGAAACGTACACGGGTCTT -ACGGAAGAAACGTACACGACGCTT -ACGGAAGAAACGTACACGAGCGTT -ACGGAAGAAACGTACACGTTCGTC -ACGGAAGAAACGTACACGTCTCTC -ACGGAAGAAACGTACACGTGGATC -ACGGAAGAAACGTACACGCACTTC -ACGGAAGAAACGTACACGGTACTC -ACGGAAGAAACGTACACGGATGTC -ACGGAAGAAACGTACACGACAGTC -ACGGAAGAAACGTACACGTTGCTG -ACGGAAGAAACGTACACGTCCATG -ACGGAAGAAACGTACACGTGTGTG -ACGGAAGAAACGTACACGCTAGTG -ACGGAAGAAACGTACACGCATCTG -ACGGAAGAAACGTACACGGAGTTG -ACGGAAGAAACGTACACGAGACTG -ACGGAAGAAACGTACACGTCGGTA -ACGGAAGAAACGTACACGTGCCTA -ACGGAAGAAACGTACACGCCACTA -ACGGAAGAAACGTACACGGGAGTA -ACGGAAGAAACGTACACGTCGTCT -ACGGAAGAAACGTACACGTGCACT -ACGGAAGAAACGTACACGCTGACT -ACGGAAGAAACGTACACGCAACCT -ACGGAAGAAACGTACACGGCTACT -ACGGAAGAAACGTACACGGGATCT -ACGGAAGAAACGTACACGAAGGCT -ACGGAAGAAACGTACACGTCAACC -ACGGAAGAAACGTACACGTGTTCC -ACGGAAGAAACGTACACGATTCCC -ACGGAAGAAACGTACACGTTCTCG -ACGGAAGAAACGTACACGTAGACG -ACGGAAGAAACGTACACGGTAACG -ACGGAAGAAACGTACACGACTTCG -ACGGAAGAAACGTACACGTACGCA -ACGGAAGAAACGTACACGCTTGCA -ACGGAAGAAACGTACACGCGAACA -ACGGAAGAAACGTACACGCAGTCA -ACGGAAGAAACGTACACGGATCCA -ACGGAAGAAACGTACACGACGACA -ACGGAAGAAACGTACACGAGCTCA -ACGGAAGAAACGTACACGTCACGT -ACGGAAGAAACGTACACGCGTAGT -ACGGAAGAAACGTACACGGTCAGT -ACGGAAGAAACGTACACGGAAGGT -ACGGAAGAAACGTACACGAACCGT -ACGGAAGAAACGTACACGTTGTGC -ACGGAAGAAACGTACACGCTAAGC -ACGGAAGAAACGTACACGACTAGC -ACGGAAGAAACGTACACGAGATGC -ACGGAAGAAACGTACACGTGAAGG -ACGGAAGAAACGTACACGCAATGG -ACGGAAGAAACGTACACGATGAGG -ACGGAAGAAACGTACACGAATGGG -ACGGAAGAAACGTACACGTCCTGA -ACGGAAGAAACGTACACGTAGCGA -ACGGAAGAAACGTACACGCACAGA -ACGGAAGAAACGTACACGGCAAGA -ACGGAAGAAACGTACACGGGTTGA -ACGGAAGAAACGTACACGTCCGAT -ACGGAAGAAACGTACACGTGGCAT -ACGGAAGAAACGTACACGCGAGAT -ACGGAAGAAACGTACACGTACCAC -ACGGAAGAAACGTACACGCAGAAC -ACGGAAGAAACGTACACGGTCTAC -ACGGAAGAAACGTACACGACGTAC -ACGGAAGAAACGTACACGAGTGAC -ACGGAAGAAACGTACACGCTGTAG -ACGGAAGAAACGTACACGCCTAAG -ACGGAAGAAACGTACACGGTTCAG -ACGGAAGAAACGTACACGGCATAG -ACGGAAGAAACGTACACGGACAAG -ACGGAAGAAACGTACACGAAGCAG -ACGGAAGAAACGTACACGCGTCAA -ACGGAAGAAACGTACACGGCTGAA -ACGGAAGAAACGTACACGAGTACG -ACGGAAGAAACGTACACGATCCGA -ACGGAAGAAACGTACACGATGGGA -ACGGAAGAAACGTACACGGTGCAA -ACGGAAGAAACGTACACGGAGGAA -ACGGAAGAAACGTACACGCAGGTA -ACGGAAGAAACGTACACGGACTCT -ACGGAAGAAACGTACACGAGTCCT -ACGGAAGAAACGTACACGTAAGCC -ACGGAAGAAACGTACACGATAGCC -ACGGAAGAAACGTACACGTAACCG -ACGGAAGAAACGTACACGATGCCA -ACGGAAGAAACGGACAGTGGAAAC -ACGGAAGAAACGGACAGTAACACC -ACGGAAGAAACGGACAGTATCGAG -ACGGAAGAAACGGACAGTCTCCTT -ACGGAAGAAACGGACAGTCCTGTT -ACGGAAGAAACGGACAGTCGGTTT -ACGGAAGAAACGGACAGTGTGGTT -ACGGAAGAAACGGACAGTGCCTTT -ACGGAAGAAACGGACAGTGGTCTT -ACGGAAGAAACGGACAGTACGCTT -ACGGAAGAAACGGACAGTAGCGTT -ACGGAAGAAACGGACAGTTTCGTC -ACGGAAGAAACGGACAGTTCTCTC -ACGGAAGAAACGGACAGTTGGATC -ACGGAAGAAACGGACAGTCACTTC -ACGGAAGAAACGGACAGTGTACTC -ACGGAAGAAACGGACAGTGATGTC -ACGGAAGAAACGGACAGTACAGTC -ACGGAAGAAACGGACAGTTTGCTG -ACGGAAGAAACGGACAGTTCCATG -ACGGAAGAAACGGACAGTTGTGTG -ACGGAAGAAACGGACAGTCTAGTG -ACGGAAGAAACGGACAGTCATCTG -ACGGAAGAAACGGACAGTGAGTTG -ACGGAAGAAACGGACAGTAGACTG -ACGGAAGAAACGGACAGTTCGGTA -ACGGAAGAAACGGACAGTTGCCTA -ACGGAAGAAACGGACAGTCCACTA -ACGGAAGAAACGGACAGTGGAGTA -ACGGAAGAAACGGACAGTTCGTCT -ACGGAAGAAACGGACAGTTGCACT -ACGGAAGAAACGGACAGTCTGACT -ACGGAAGAAACGGACAGTCAACCT -ACGGAAGAAACGGACAGTGCTACT -ACGGAAGAAACGGACAGTGGATCT -ACGGAAGAAACGGACAGTAAGGCT -ACGGAAGAAACGGACAGTTCAACC -ACGGAAGAAACGGACAGTTGTTCC -ACGGAAGAAACGGACAGTATTCCC -ACGGAAGAAACGGACAGTTTCTCG -ACGGAAGAAACGGACAGTTAGACG -ACGGAAGAAACGGACAGTGTAACG -ACGGAAGAAACGGACAGTACTTCG -ACGGAAGAAACGGACAGTTACGCA -ACGGAAGAAACGGACAGTCTTGCA -ACGGAAGAAACGGACAGTCGAACA -ACGGAAGAAACGGACAGTCAGTCA -ACGGAAGAAACGGACAGTGATCCA -ACGGAAGAAACGGACAGTACGACA -ACGGAAGAAACGGACAGTAGCTCA -ACGGAAGAAACGGACAGTTCACGT -ACGGAAGAAACGGACAGTCGTAGT -ACGGAAGAAACGGACAGTGTCAGT -ACGGAAGAAACGGACAGTGAAGGT -ACGGAAGAAACGGACAGTAACCGT -ACGGAAGAAACGGACAGTTTGTGC -ACGGAAGAAACGGACAGTCTAAGC -ACGGAAGAAACGGACAGTACTAGC -ACGGAAGAAACGGACAGTAGATGC -ACGGAAGAAACGGACAGTTGAAGG -ACGGAAGAAACGGACAGTCAATGG -ACGGAAGAAACGGACAGTATGAGG -ACGGAAGAAACGGACAGTAATGGG -ACGGAAGAAACGGACAGTTCCTGA -ACGGAAGAAACGGACAGTTAGCGA -ACGGAAGAAACGGACAGTCACAGA -ACGGAAGAAACGGACAGTGCAAGA -ACGGAAGAAACGGACAGTGGTTGA -ACGGAAGAAACGGACAGTTCCGAT -ACGGAAGAAACGGACAGTTGGCAT -ACGGAAGAAACGGACAGTCGAGAT -ACGGAAGAAACGGACAGTTACCAC -ACGGAAGAAACGGACAGTCAGAAC -ACGGAAGAAACGGACAGTGTCTAC -ACGGAAGAAACGGACAGTACGTAC -ACGGAAGAAACGGACAGTAGTGAC -ACGGAAGAAACGGACAGTCTGTAG -ACGGAAGAAACGGACAGTCCTAAG -ACGGAAGAAACGGACAGTGTTCAG -ACGGAAGAAACGGACAGTGCATAG -ACGGAAGAAACGGACAGTGACAAG -ACGGAAGAAACGGACAGTAAGCAG -ACGGAAGAAACGGACAGTCGTCAA -ACGGAAGAAACGGACAGTGCTGAA -ACGGAAGAAACGGACAGTAGTACG -ACGGAAGAAACGGACAGTATCCGA -ACGGAAGAAACGGACAGTATGGGA -ACGGAAGAAACGGACAGTGTGCAA -ACGGAAGAAACGGACAGTGAGGAA -ACGGAAGAAACGGACAGTCAGGTA -ACGGAAGAAACGGACAGTGACTCT -ACGGAAGAAACGGACAGTAGTCCT -ACGGAAGAAACGGACAGTTAAGCC -ACGGAAGAAACGGACAGTATAGCC -ACGGAAGAAACGGACAGTTAACCG -ACGGAAGAAACGGACAGTATGCCA -ACGGAAGAAACGTAGCTGGGAAAC -ACGGAAGAAACGTAGCTGAACACC -ACGGAAGAAACGTAGCTGATCGAG -ACGGAAGAAACGTAGCTGCTCCTT -ACGGAAGAAACGTAGCTGCCTGTT -ACGGAAGAAACGTAGCTGCGGTTT -ACGGAAGAAACGTAGCTGGTGGTT -ACGGAAGAAACGTAGCTGGCCTTT -ACGGAAGAAACGTAGCTGGGTCTT -ACGGAAGAAACGTAGCTGACGCTT -ACGGAAGAAACGTAGCTGAGCGTT -ACGGAAGAAACGTAGCTGTTCGTC -ACGGAAGAAACGTAGCTGTCTCTC -ACGGAAGAAACGTAGCTGTGGATC -ACGGAAGAAACGTAGCTGCACTTC -ACGGAAGAAACGTAGCTGGTACTC -ACGGAAGAAACGTAGCTGGATGTC -ACGGAAGAAACGTAGCTGACAGTC -ACGGAAGAAACGTAGCTGTTGCTG -ACGGAAGAAACGTAGCTGTCCATG -ACGGAAGAAACGTAGCTGTGTGTG -ACGGAAGAAACGTAGCTGCTAGTG -ACGGAAGAAACGTAGCTGCATCTG -ACGGAAGAAACGTAGCTGGAGTTG -ACGGAAGAAACGTAGCTGAGACTG -ACGGAAGAAACGTAGCTGTCGGTA -ACGGAAGAAACGTAGCTGTGCCTA -ACGGAAGAAACGTAGCTGCCACTA -ACGGAAGAAACGTAGCTGGGAGTA -ACGGAAGAAACGTAGCTGTCGTCT -ACGGAAGAAACGTAGCTGTGCACT -ACGGAAGAAACGTAGCTGCTGACT -ACGGAAGAAACGTAGCTGCAACCT -ACGGAAGAAACGTAGCTGGCTACT -ACGGAAGAAACGTAGCTGGGATCT -ACGGAAGAAACGTAGCTGAAGGCT -ACGGAAGAAACGTAGCTGTCAACC -ACGGAAGAAACGTAGCTGTGTTCC -ACGGAAGAAACGTAGCTGATTCCC -ACGGAAGAAACGTAGCTGTTCTCG -ACGGAAGAAACGTAGCTGTAGACG -ACGGAAGAAACGTAGCTGGTAACG -ACGGAAGAAACGTAGCTGACTTCG -ACGGAAGAAACGTAGCTGTACGCA -ACGGAAGAAACGTAGCTGCTTGCA -ACGGAAGAAACGTAGCTGCGAACA -ACGGAAGAAACGTAGCTGCAGTCA -ACGGAAGAAACGTAGCTGGATCCA -ACGGAAGAAACGTAGCTGACGACA -ACGGAAGAAACGTAGCTGAGCTCA -ACGGAAGAAACGTAGCTGTCACGT -ACGGAAGAAACGTAGCTGCGTAGT -ACGGAAGAAACGTAGCTGGTCAGT -ACGGAAGAAACGTAGCTGGAAGGT -ACGGAAGAAACGTAGCTGAACCGT -ACGGAAGAAACGTAGCTGTTGTGC -ACGGAAGAAACGTAGCTGCTAAGC -ACGGAAGAAACGTAGCTGACTAGC -ACGGAAGAAACGTAGCTGAGATGC -ACGGAAGAAACGTAGCTGTGAAGG -ACGGAAGAAACGTAGCTGCAATGG -ACGGAAGAAACGTAGCTGATGAGG -ACGGAAGAAACGTAGCTGAATGGG -ACGGAAGAAACGTAGCTGTCCTGA -ACGGAAGAAACGTAGCTGTAGCGA -ACGGAAGAAACGTAGCTGCACAGA -ACGGAAGAAACGTAGCTGGCAAGA -ACGGAAGAAACGTAGCTGGGTTGA -ACGGAAGAAACGTAGCTGTCCGAT -ACGGAAGAAACGTAGCTGTGGCAT -ACGGAAGAAACGTAGCTGCGAGAT -ACGGAAGAAACGTAGCTGTACCAC -ACGGAAGAAACGTAGCTGCAGAAC -ACGGAAGAAACGTAGCTGGTCTAC -ACGGAAGAAACGTAGCTGACGTAC -ACGGAAGAAACGTAGCTGAGTGAC -ACGGAAGAAACGTAGCTGCTGTAG -ACGGAAGAAACGTAGCTGCCTAAG -ACGGAAGAAACGTAGCTGGTTCAG -ACGGAAGAAACGTAGCTGGCATAG -ACGGAAGAAACGTAGCTGGACAAG -ACGGAAGAAACGTAGCTGAAGCAG -ACGGAAGAAACGTAGCTGCGTCAA -ACGGAAGAAACGTAGCTGGCTGAA -ACGGAAGAAACGTAGCTGAGTACG -ACGGAAGAAACGTAGCTGATCCGA -ACGGAAGAAACGTAGCTGATGGGA -ACGGAAGAAACGTAGCTGGTGCAA -ACGGAAGAAACGTAGCTGGAGGAA -ACGGAAGAAACGTAGCTGCAGGTA -ACGGAAGAAACGTAGCTGGACTCT -ACGGAAGAAACGTAGCTGAGTCCT -ACGGAAGAAACGTAGCTGTAAGCC -ACGGAAGAAACGTAGCTGATAGCC -ACGGAAGAAACGTAGCTGTAACCG -ACGGAAGAAACGTAGCTGATGCCA -ACGGAAGAAACGAAGCCTGGAAAC -ACGGAAGAAACGAAGCCTAACACC -ACGGAAGAAACGAAGCCTATCGAG -ACGGAAGAAACGAAGCCTCTCCTT -ACGGAAGAAACGAAGCCTCCTGTT -ACGGAAGAAACGAAGCCTCGGTTT -ACGGAAGAAACGAAGCCTGTGGTT -ACGGAAGAAACGAAGCCTGCCTTT -ACGGAAGAAACGAAGCCTGGTCTT -ACGGAAGAAACGAAGCCTACGCTT -ACGGAAGAAACGAAGCCTAGCGTT -ACGGAAGAAACGAAGCCTTTCGTC -ACGGAAGAAACGAAGCCTTCTCTC -ACGGAAGAAACGAAGCCTTGGATC -ACGGAAGAAACGAAGCCTCACTTC -ACGGAAGAAACGAAGCCTGTACTC -ACGGAAGAAACGAAGCCTGATGTC -ACGGAAGAAACGAAGCCTACAGTC -ACGGAAGAAACGAAGCCTTTGCTG -ACGGAAGAAACGAAGCCTTCCATG -ACGGAAGAAACGAAGCCTTGTGTG -ACGGAAGAAACGAAGCCTCTAGTG -ACGGAAGAAACGAAGCCTCATCTG -ACGGAAGAAACGAAGCCTGAGTTG -ACGGAAGAAACGAAGCCTAGACTG -ACGGAAGAAACGAAGCCTTCGGTA -ACGGAAGAAACGAAGCCTTGCCTA -ACGGAAGAAACGAAGCCTCCACTA -ACGGAAGAAACGAAGCCTGGAGTA -ACGGAAGAAACGAAGCCTTCGTCT -ACGGAAGAAACGAAGCCTTGCACT -ACGGAAGAAACGAAGCCTCTGACT -ACGGAAGAAACGAAGCCTCAACCT -ACGGAAGAAACGAAGCCTGCTACT -ACGGAAGAAACGAAGCCTGGATCT -ACGGAAGAAACGAAGCCTAAGGCT -ACGGAAGAAACGAAGCCTTCAACC -ACGGAAGAAACGAAGCCTTGTTCC -ACGGAAGAAACGAAGCCTATTCCC -ACGGAAGAAACGAAGCCTTTCTCG -ACGGAAGAAACGAAGCCTTAGACG -ACGGAAGAAACGAAGCCTGTAACG -ACGGAAGAAACGAAGCCTACTTCG -ACGGAAGAAACGAAGCCTTACGCA -ACGGAAGAAACGAAGCCTCTTGCA -ACGGAAGAAACGAAGCCTCGAACA -ACGGAAGAAACGAAGCCTCAGTCA -ACGGAAGAAACGAAGCCTGATCCA -ACGGAAGAAACGAAGCCTACGACA -ACGGAAGAAACGAAGCCTAGCTCA -ACGGAAGAAACGAAGCCTTCACGT -ACGGAAGAAACGAAGCCTCGTAGT -ACGGAAGAAACGAAGCCTGTCAGT -ACGGAAGAAACGAAGCCTGAAGGT -ACGGAAGAAACGAAGCCTAACCGT -ACGGAAGAAACGAAGCCTTTGTGC -ACGGAAGAAACGAAGCCTCTAAGC -ACGGAAGAAACGAAGCCTACTAGC -ACGGAAGAAACGAAGCCTAGATGC -ACGGAAGAAACGAAGCCTTGAAGG -ACGGAAGAAACGAAGCCTCAATGG -ACGGAAGAAACGAAGCCTATGAGG -ACGGAAGAAACGAAGCCTAATGGG -ACGGAAGAAACGAAGCCTTCCTGA -ACGGAAGAAACGAAGCCTTAGCGA -ACGGAAGAAACGAAGCCTCACAGA -ACGGAAGAAACGAAGCCTGCAAGA -ACGGAAGAAACGAAGCCTGGTTGA -ACGGAAGAAACGAAGCCTTCCGAT -ACGGAAGAAACGAAGCCTTGGCAT -ACGGAAGAAACGAAGCCTCGAGAT -ACGGAAGAAACGAAGCCTTACCAC -ACGGAAGAAACGAAGCCTCAGAAC -ACGGAAGAAACGAAGCCTGTCTAC -ACGGAAGAAACGAAGCCTACGTAC -ACGGAAGAAACGAAGCCTAGTGAC -ACGGAAGAAACGAAGCCTCTGTAG -ACGGAAGAAACGAAGCCTCCTAAG -ACGGAAGAAACGAAGCCTGTTCAG -ACGGAAGAAACGAAGCCTGCATAG -ACGGAAGAAACGAAGCCTGACAAG -ACGGAAGAAACGAAGCCTAAGCAG -ACGGAAGAAACGAAGCCTCGTCAA -ACGGAAGAAACGAAGCCTGCTGAA -ACGGAAGAAACGAAGCCTAGTACG -ACGGAAGAAACGAAGCCTATCCGA -ACGGAAGAAACGAAGCCTATGGGA -ACGGAAGAAACGAAGCCTGTGCAA -ACGGAAGAAACGAAGCCTGAGGAA -ACGGAAGAAACGAAGCCTCAGGTA -ACGGAAGAAACGAAGCCTGACTCT -ACGGAAGAAACGAAGCCTAGTCCT -ACGGAAGAAACGAAGCCTTAAGCC -ACGGAAGAAACGAAGCCTATAGCC -ACGGAAGAAACGAAGCCTTAACCG -ACGGAAGAAACGAAGCCTATGCCA -ACGGAAGAAACGCAGGTTGGAAAC -ACGGAAGAAACGCAGGTTAACACC -ACGGAAGAAACGCAGGTTATCGAG -ACGGAAGAAACGCAGGTTCTCCTT -ACGGAAGAAACGCAGGTTCCTGTT -ACGGAAGAAACGCAGGTTCGGTTT -ACGGAAGAAACGCAGGTTGTGGTT -ACGGAAGAAACGCAGGTTGCCTTT -ACGGAAGAAACGCAGGTTGGTCTT -ACGGAAGAAACGCAGGTTACGCTT -ACGGAAGAAACGCAGGTTAGCGTT -ACGGAAGAAACGCAGGTTTTCGTC -ACGGAAGAAACGCAGGTTTCTCTC -ACGGAAGAAACGCAGGTTTGGATC -ACGGAAGAAACGCAGGTTCACTTC -ACGGAAGAAACGCAGGTTGTACTC -ACGGAAGAAACGCAGGTTGATGTC -ACGGAAGAAACGCAGGTTACAGTC -ACGGAAGAAACGCAGGTTTTGCTG -ACGGAAGAAACGCAGGTTTCCATG -ACGGAAGAAACGCAGGTTTGTGTG -ACGGAAGAAACGCAGGTTCTAGTG -ACGGAAGAAACGCAGGTTCATCTG -ACGGAAGAAACGCAGGTTGAGTTG -ACGGAAGAAACGCAGGTTAGACTG -ACGGAAGAAACGCAGGTTTCGGTA -ACGGAAGAAACGCAGGTTTGCCTA -ACGGAAGAAACGCAGGTTCCACTA -ACGGAAGAAACGCAGGTTGGAGTA -ACGGAAGAAACGCAGGTTTCGTCT -ACGGAAGAAACGCAGGTTTGCACT -ACGGAAGAAACGCAGGTTCTGACT -ACGGAAGAAACGCAGGTTCAACCT -ACGGAAGAAACGCAGGTTGCTACT -ACGGAAGAAACGCAGGTTGGATCT -ACGGAAGAAACGCAGGTTAAGGCT -ACGGAAGAAACGCAGGTTTCAACC -ACGGAAGAAACGCAGGTTTGTTCC -ACGGAAGAAACGCAGGTTATTCCC -ACGGAAGAAACGCAGGTTTTCTCG -ACGGAAGAAACGCAGGTTTAGACG -ACGGAAGAAACGCAGGTTGTAACG -ACGGAAGAAACGCAGGTTACTTCG -ACGGAAGAAACGCAGGTTTACGCA -ACGGAAGAAACGCAGGTTCTTGCA -ACGGAAGAAACGCAGGTTCGAACA -ACGGAAGAAACGCAGGTTCAGTCA -ACGGAAGAAACGCAGGTTGATCCA -ACGGAAGAAACGCAGGTTACGACA -ACGGAAGAAACGCAGGTTAGCTCA -ACGGAAGAAACGCAGGTTTCACGT -ACGGAAGAAACGCAGGTTCGTAGT -ACGGAAGAAACGCAGGTTGTCAGT -ACGGAAGAAACGCAGGTTGAAGGT -ACGGAAGAAACGCAGGTTAACCGT -ACGGAAGAAACGCAGGTTTTGTGC -ACGGAAGAAACGCAGGTTCTAAGC -ACGGAAGAAACGCAGGTTACTAGC -ACGGAAGAAACGCAGGTTAGATGC -ACGGAAGAAACGCAGGTTTGAAGG -ACGGAAGAAACGCAGGTTCAATGG -ACGGAAGAAACGCAGGTTATGAGG -ACGGAAGAAACGCAGGTTAATGGG -ACGGAAGAAACGCAGGTTTCCTGA -ACGGAAGAAACGCAGGTTTAGCGA -ACGGAAGAAACGCAGGTTCACAGA -ACGGAAGAAACGCAGGTTGCAAGA -ACGGAAGAAACGCAGGTTGGTTGA -ACGGAAGAAACGCAGGTTTCCGAT -ACGGAAGAAACGCAGGTTTGGCAT -ACGGAAGAAACGCAGGTTCGAGAT -ACGGAAGAAACGCAGGTTTACCAC -ACGGAAGAAACGCAGGTTCAGAAC -ACGGAAGAAACGCAGGTTGTCTAC -ACGGAAGAAACGCAGGTTACGTAC -ACGGAAGAAACGCAGGTTAGTGAC -ACGGAAGAAACGCAGGTTCTGTAG -ACGGAAGAAACGCAGGTTCCTAAG -ACGGAAGAAACGCAGGTTGTTCAG -ACGGAAGAAACGCAGGTTGCATAG -ACGGAAGAAACGCAGGTTGACAAG -ACGGAAGAAACGCAGGTTAAGCAG -ACGGAAGAAACGCAGGTTCGTCAA -ACGGAAGAAACGCAGGTTGCTGAA -ACGGAAGAAACGCAGGTTAGTACG -ACGGAAGAAACGCAGGTTATCCGA -ACGGAAGAAACGCAGGTTATGGGA -ACGGAAGAAACGCAGGTTGTGCAA -ACGGAAGAAACGCAGGTTGAGGAA -ACGGAAGAAACGCAGGTTCAGGTA -ACGGAAGAAACGCAGGTTGACTCT -ACGGAAGAAACGCAGGTTAGTCCT -ACGGAAGAAACGCAGGTTTAAGCC -ACGGAAGAAACGCAGGTTATAGCC -ACGGAAGAAACGCAGGTTTAACCG -ACGGAAGAAACGCAGGTTATGCCA -ACGGAAGAAACGTAGGCAGGAAAC -ACGGAAGAAACGTAGGCAAACACC -ACGGAAGAAACGTAGGCAATCGAG -ACGGAAGAAACGTAGGCACTCCTT -ACGGAAGAAACGTAGGCACCTGTT -ACGGAAGAAACGTAGGCACGGTTT -ACGGAAGAAACGTAGGCAGTGGTT -ACGGAAGAAACGTAGGCAGCCTTT -ACGGAAGAAACGTAGGCAGGTCTT -ACGGAAGAAACGTAGGCAACGCTT -ACGGAAGAAACGTAGGCAAGCGTT -ACGGAAGAAACGTAGGCATTCGTC -ACGGAAGAAACGTAGGCATCTCTC -ACGGAAGAAACGTAGGCATGGATC -ACGGAAGAAACGTAGGCACACTTC -ACGGAAGAAACGTAGGCAGTACTC -ACGGAAGAAACGTAGGCAGATGTC -ACGGAAGAAACGTAGGCAACAGTC -ACGGAAGAAACGTAGGCATTGCTG -ACGGAAGAAACGTAGGCATCCATG -ACGGAAGAAACGTAGGCATGTGTG -ACGGAAGAAACGTAGGCACTAGTG -ACGGAAGAAACGTAGGCACATCTG -ACGGAAGAAACGTAGGCAGAGTTG -ACGGAAGAAACGTAGGCAAGACTG -ACGGAAGAAACGTAGGCATCGGTA -ACGGAAGAAACGTAGGCATGCCTA -ACGGAAGAAACGTAGGCACCACTA -ACGGAAGAAACGTAGGCAGGAGTA -ACGGAAGAAACGTAGGCATCGTCT -ACGGAAGAAACGTAGGCATGCACT -ACGGAAGAAACGTAGGCACTGACT -ACGGAAGAAACGTAGGCACAACCT -ACGGAAGAAACGTAGGCAGCTACT -ACGGAAGAAACGTAGGCAGGATCT -ACGGAAGAAACGTAGGCAAAGGCT -ACGGAAGAAACGTAGGCATCAACC -ACGGAAGAAACGTAGGCATGTTCC -ACGGAAGAAACGTAGGCAATTCCC -ACGGAAGAAACGTAGGCATTCTCG -ACGGAAGAAACGTAGGCATAGACG -ACGGAAGAAACGTAGGCAGTAACG -ACGGAAGAAACGTAGGCAACTTCG -ACGGAAGAAACGTAGGCATACGCA -ACGGAAGAAACGTAGGCACTTGCA -ACGGAAGAAACGTAGGCACGAACA -ACGGAAGAAACGTAGGCACAGTCA -ACGGAAGAAACGTAGGCAGATCCA -ACGGAAGAAACGTAGGCAACGACA -ACGGAAGAAACGTAGGCAAGCTCA -ACGGAAGAAACGTAGGCATCACGT -ACGGAAGAAACGTAGGCACGTAGT -ACGGAAGAAACGTAGGCAGTCAGT -ACGGAAGAAACGTAGGCAGAAGGT -ACGGAAGAAACGTAGGCAAACCGT -ACGGAAGAAACGTAGGCATTGTGC -ACGGAAGAAACGTAGGCACTAAGC -ACGGAAGAAACGTAGGCAACTAGC -ACGGAAGAAACGTAGGCAAGATGC -ACGGAAGAAACGTAGGCATGAAGG -ACGGAAGAAACGTAGGCACAATGG -ACGGAAGAAACGTAGGCAATGAGG -ACGGAAGAAACGTAGGCAAATGGG -ACGGAAGAAACGTAGGCATCCTGA -ACGGAAGAAACGTAGGCATAGCGA -ACGGAAGAAACGTAGGCACACAGA -ACGGAAGAAACGTAGGCAGCAAGA -ACGGAAGAAACGTAGGCAGGTTGA -ACGGAAGAAACGTAGGCATCCGAT -ACGGAAGAAACGTAGGCATGGCAT -ACGGAAGAAACGTAGGCACGAGAT -ACGGAAGAAACGTAGGCATACCAC -ACGGAAGAAACGTAGGCACAGAAC -ACGGAAGAAACGTAGGCAGTCTAC -ACGGAAGAAACGTAGGCAACGTAC -ACGGAAGAAACGTAGGCAAGTGAC -ACGGAAGAAACGTAGGCACTGTAG -ACGGAAGAAACGTAGGCACCTAAG -ACGGAAGAAACGTAGGCAGTTCAG -ACGGAAGAAACGTAGGCAGCATAG -ACGGAAGAAACGTAGGCAGACAAG -ACGGAAGAAACGTAGGCAAAGCAG -ACGGAAGAAACGTAGGCACGTCAA -ACGGAAGAAACGTAGGCAGCTGAA -ACGGAAGAAACGTAGGCAAGTACG -ACGGAAGAAACGTAGGCAATCCGA -ACGGAAGAAACGTAGGCAATGGGA -ACGGAAGAAACGTAGGCAGTGCAA -ACGGAAGAAACGTAGGCAGAGGAA -ACGGAAGAAACGTAGGCACAGGTA -ACGGAAGAAACGTAGGCAGACTCT -ACGGAAGAAACGTAGGCAAGTCCT -ACGGAAGAAACGTAGGCATAAGCC -ACGGAAGAAACGTAGGCAATAGCC -ACGGAAGAAACGTAGGCATAACCG -ACGGAAGAAACGTAGGCAATGCCA -ACGGAAGAAACGAAGGACGGAAAC -ACGGAAGAAACGAAGGACAACACC -ACGGAAGAAACGAAGGACATCGAG -ACGGAAGAAACGAAGGACCTCCTT -ACGGAAGAAACGAAGGACCCTGTT -ACGGAAGAAACGAAGGACCGGTTT -ACGGAAGAAACGAAGGACGTGGTT -ACGGAAGAAACGAAGGACGCCTTT -ACGGAAGAAACGAAGGACGGTCTT -ACGGAAGAAACGAAGGACACGCTT -ACGGAAGAAACGAAGGACAGCGTT -ACGGAAGAAACGAAGGACTTCGTC -ACGGAAGAAACGAAGGACTCTCTC -ACGGAAGAAACGAAGGACTGGATC -ACGGAAGAAACGAAGGACCACTTC -ACGGAAGAAACGAAGGACGTACTC -ACGGAAGAAACGAAGGACGATGTC -ACGGAAGAAACGAAGGACACAGTC -ACGGAAGAAACGAAGGACTTGCTG -ACGGAAGAAACGAAGGACTCCATG -ACGGAAGAAACGAAGGACTGTGTG -ACGGAAGAAACGAAGGACCTAGTG -ACGGAAGAAACGAAGGACCATCTG -ACGGAAGAAACGAAGGACGAGTTG -ACGGAAGAAACGAAGGACAGACTG -ACGGAAGAAACGAAGGACTCGGTA -ACGGAAGAAACGAAGGACTGCCTA -ACGGAAGAAACGAAGGACCCACTA -ACGGAAGAAACGAAGGACGGAGTA -ACGGAAGAAACGAAGGACTCGTCT -ACGGAAGAAACGAAGGACTGCACT -ACGGAAGAAACGAAGGACCTGACT -ACGGAAGAAACGAAGGACCAACCT -ACGGAAGAAACGAAGGACGCTACT -ACGGAAGAAACGAAGGACGGATCT -ACGGAAGAAACGAAGGACAAGGCT -ACGGAAGAAACGAAGGACTCAACC -ACGGAAGAAACGAAGGACTGTTCC -ACGGAAGAAACGAAGGACATTCCC -ACGGAAGAAACGAAGGACTTCTCG -ACGGAAGAAACGAAGGACTAGACG -ACGGAAGAAACGAAGGACGTAACG -ACGGAAGAAACGAAGGACACTTCG -ACGGAAGAAACGAAGGACTACGCA -ACGGAAGAAACGAAGGACCTTGCA -ACGGAAGAAACGAAGGACCGAACA -ACGGAAGAAACGAAGGACCAGTCA -ACGGAAGAAACGAAGGACGATCCA -ACGGAAGAAACGAAGGACACGACA -ACGGAAGAAACGAAGGACAGCTCA -ACGGAAGAAACGAAGGACTCACGT -ACGGAAGAAACGAAGGACCGTAGT -ACGGAAGAAACGAAGGACGTCAGT -ACGGAAGAAACGAAGGACGAAGGT -ACGGAAGAAACGAAGGACAACCGT -ACGGAAGAAACGAAGGACTTGTGC -ACGGAAGAAACGAAGGACCTAAGC -ACGGAAGAAACGAAGGACACTAGC -ACGGAAGAAACGAAGGACAGATGC -ACGGAAGAAACGAAGGACTGAAGG -ACGGAAGAAACGAAGGACCAATGG -ACGGAAGAAACGAAGGACATGAGG -ACGGAAGAAACGAAGGACAATGGG -ACGGAAGAAACGAAGGACTCCTGA -ACGGAAGAAACGAAGGACTAGCGA -ACGGAAGAAACGAAGGACCACAGA -ACGGAAGAAACGAAGGACGCAAGA -ACGGAAGAAACGAAGGACGGTTGA -ACGGAAGAAACGAAGGACTCCGAT -ACGGAAGAAACGAAGGACTGGCAT -ACGGAAGAAACGAAGGACCGAGAT -ACGGAAGAAACGAAGGACTACCAC -ACGGAAGAAACGAAGGACCAGAAC -ACGGAAGAAACGAAGGACGTCTAC -ACGGAAGAAACGAAGGACACGTAC -ACGGAAGAAACGAAGGACAGTGAC -ACGGAAGAAACGAAGGACCTGTAG -ACGGAAGAAACGAAGGACCCTAAG -ACGGAAGAAACGAAGGACGTTCAG -ACGGAAGAAACGAAGGACGCATAG -ACGGAAGAAACGAAGGACGACAAG -ACGGAAGAAACGAAGGACAAGCAG -ACGGAAGAAACGAAGGACCGTCAA -ACGGAAGAAACGAAGGACGCTGAA -ACGGAAGAAACGAAGGACAGTACG -ACGGAAGAAACGAAGGACATCCGA -ACGGAAGAAACGAAGGACATGGGA -ACGGAAGAAACGAAGGACGTGCAA -ACGGAAGAAACGAAGGACGAGGAA -ACGGAAGAAACGAAGGACCAGGTA -ACGGAAGAAACGAAGGACGACTCT -ACGGAAGAAACGAAGGACAGTCCT -ACGGAAGAAACGAAGGACTAAGCC -ACGGAAGAAACGAAGGACATAGCC -ACGGAAGAAACGAAGGACTAACCG -ACGGAAGAAACGAAGGACATGCCA -ACGGAAGAAACGCAGAAGGGAAAC -ACGGAAGAAACGCAGAAGAACACC -ACGGAAGAAACGCAGAAGATCGAG -ACGGAAGAAACGCAGAAGCTCCTT -ACGGAAGAAACGCAGAAGCCTGTT -ACGGAAGAAACGCAGAAGCGGTTT -ACGGAAGAAACGCAGAAGGTGGTT -ACGGAAGAAACGCAGAAGGCCTTT -ACGGAAGAAACGCAGAAGGGTCTT -ACGGAAGAAACGCAGAAGACGCTT -ACGGAAGAAACGCAGAAGAGCGTT -ACGGAAGAAACGCAGAAGTTCGTC -ACGGAAGAAACGCAGAAGTCTCTC -ACGGAAGAAACGCAGAAGTGGATC -ACGGAAGAAACGCAGAAGCACTTC -ACGGAAGAAACGCAGAAGGTACTC -ACGGAAGAAACGCAGAAGGATGTC -ACGGAAGAAACGCAGAAGACAGTC -ACGGAAGAAACGCAGAAGTTGCTG -ACGGAAGAAACGCAGAAGTCCATG -ACGGAAGAAACGCAGAAGTGTGTG -ACGGAAGAAACGCAGAAGCTAGTG -ACGGAAGAAACGCAGAAGCATCTG -ACGGAAGAAACGCAGAAGGAGTTG -ACGGAAGAAACGCAGAAGAGACTG -ACGGAAGAAACGCAGAAGTCGGTA -ACGGAAGAAACGCAGAAGTGCCTA -ACGGAAGAAACGCAGAAGCCACTA -ACGGAAGAAACGCAGAAGGGAGTA -ACGGAAGAAACGCAGAAGTCGTCT -ACGGAAGAAACGCAGAAGTGCACT -ACGGAAGAAACGCAGAAGCTGACT -ACGGAAGAAACGCAGAAGCAACCT -ACGGAAGAAACGCAGAAGGCTACT -ACGGAAGAAACGCAGAAGGGATCT -ACGGAAGAAACGCAGAAGAAGGCT -ACGGAAGAAACGCAGAAGTCAACC -ACGGAAGAAACGCAGAAGTGTTCC -ACGGAAGAAACGCAGAAGATTCCC -ACGGAAGAAACGCAGAAGTTCTCG -ACGGAAGAAACGCAGAAGTAGACG -ACGGAAGAAACGCAGAAGGTAACG -ACGGAAGAAACGCAGAAGACTTCG -ACGGAAGAAACGCAGAAGTACGCA -ACGGAAGAAACGCAGAAGCTTGCA -ACGGAAGAAACGCAGAAGCGAACA -ACGGAAGAAACGCAGAAGCAGTCA -ACGGAAGAAACGCAGAAGGATCCA -ACGGAAGAAACGCAGAAGACGACA -ACGGAAGAAACGCAGAAGAGCTCA -ACGGAAGAAACGCAGAAGTCACGT -ACGGAAGAAACGCAGAAGCGTAGT -ACGGAAGAAACGCAGAAGGTCAGT -ACGGAAGAAACGCAGAAGGAAGGT -ACGGAAGAAACGCAGAAGAACCGT -ACGGAAGAAACGCAGAAGTTGTGC -ACGGAAGAAACGCAGAAGCTAAGC -ACGGAAGAAACGCAGAAGACTAGC -ACGGAAGAAACGCAGAAGAGATGC -ACGGAAGAAACGCAGAAGTGAAGG -ACGGAAGAAACGCAGAAGCAATGG -ACGGAAGAAACGCAGAAGATGAGG -ACGGAAGAAACGCAGAAGAATGGG -ACGGAAGAAACGCAGAAGTCCTGA -ACGGAAGAAACGCAGAAGTAGCGA -ACGGAAGAAACGCAGAAGCACAGA -ACGGAAGAAACGCAGAAGGCAAGA -ACGGAAGAAACGCAGAAGGGTTGA -ACGGAAGAAACGCAGAAGTCCGAT -ACGGAAGAAACGCAGAAGTGGCAT -ACGGAAGAAACGCAGAAGCGAGAT -ACGGAAGAAACGCAGAAGTACCAC -ACGGAAGAAACGCAGAAGCAGAAC -ACGGAAGAAACGCAGAAGGTCTAC -ACGGAAGAAACGCAGAAGACGTAC -ACGGAAGAAACGCAGAAGAGTGAC -ACGGAAGAAACGCAGAAGCTGTAG -ACGGAAGAAACGCAGAAGCCTAAG -ACGGAAGAAACGCAGAAGGTTCAG -ACGGAAGAAACGCAGAAGGCATAG -ACGGAAGAAACGCAGAAGGACAAG -ACGGAAGAAACGCAGAAGAAGCAG -ACGGAAGAAACGCAGAAGCGTCAA -ACGGAAGAAACGCAGAAGGCTGAA -ACGGAAGAAACGCAGAAGAGTACG -ACGGAAGAAACGCAGAAGATCCGA -ACGGAAGAAACGCAGAAGATGGGA -ACGGAAGAAACGCAGAAGGTGCAA -ACGGAAGAAACGCAGAAGGAGGAA -ACGGAAGAAACGCAGAAGCAGGTA -ACGGAAGAAACGCAGAAGGACTCT -ACGGAAGAAACGCAGAAGAGTCCT -ACGGAAGAAACGCAGAAGTAAGCC -ACGGAAGAAACGCAGAAGATAGCC -ACGGAAGAAACGCAGAAGTAACCG -ACGGAAGAAACGCAGAAGATGCCA -ACGGAAGAAACGCAACGTGGAAAC -ACGGAAGAAACGCAACGTAACACC -ACGGAAGAAACGCAACGTATCGAG -ACGGAAGAAACGCAACGTCTCCTT -ACGGAAGAAACGCAACGTCCTGTT -ACGGAAGAAACGCAACGTCGGTTT -ACGGAAGAAACGCAACGTGTGGTT -ACGGAAGAAACGCAACGTGCCTTT -ACGGAAGAAACGCAACGTGGTCTT -ACGGAAGAAACGCAACGTACGCTT -ACGGAAGAAACGCAACGTAGCGTT -ACGGAAGAAACGCAACGTTTCGTC -ACGGAAGAAACGCAACGTTCTCTC -ACGGAAGAAACGCAACGTTGGATC -ACGGAAGAAACGCAACGTCACTTC -ACGGAAGAAACGCAACGTGTACTC -ACGGAAGAAACGCAACGTGATGTC -ACGGAAGAAACGCAACGTACAGTC -ACGGAAGAAACGCAACGTTTGCTG -ACGGAAGAAACGCAACGTTCCATG -ACGGAAGAAACGCAACGTTGTGTG -ACGGAAGAAACGCAACGTCTAGTG -ACGGAAGAAACGCAACGTCATCTG -ACGGAAGAAACGCAACGTGAGTTG -ACGGAAGAAACGCAACGTAGACTG -ACGGAAGAAACGCAACGTTCGGTA -ACGGAAGAAACGCAACGTTGCCTA -ACGGAAGAAACGCAACGTCCACTA -ACGGAAGAAACGCAACGTGGAGTA -ACGGAAGAAACGCAACGTTCGTCT -ACGGAAGAAACGCAACGTTGCACT -ACGGAAGAAACGCAACGTCTGACT -ACGGAAGAAACGCAACGTCAACCT -ACGGAAGAAACGCAACGTGCTACT -ACGGAAGAAACGCAACGTGGATCT -ACGGAAGAAACGCAACGTAAGGCT -ACGGAAGAAACGCAACGTTCAACC -ACGGAAGAAACGCAACGTTGTTCC -ACGGAAGAAACGCAACGTATTCCC -ACGGAAGAAACGCAACGTTTCTCG -ACGGAAGAAACGCAACGTTAGACG -ACGGAAGAAACGCAACGTGTAACG -ACGGAAGAAACGCAACGTACTTCG -ACGGAAGAAACGCAACGTTACGCA -ACGGAAGAAACGCAACGTCTTGCA -ACGGAAGAAACGCAACGTCGAACA -ACGGAAGAAACGCAACGTCAGTCA -ACGGAAGAAACGCAACGTGATCCA -ACGGAAGAAACGCAACGTACGACA -ACGGAAGAAACGCAACGTAGCTCA -ACGGAAGAAACGCAACGTTCACGT -ACGGAAGAAACGCAACGTCGTAGT -ACGGAAGAAACGCAACGTGTCAGT -ACGGAAGAAACGCAACGTGAAGGT -ACGGAAGAAACGCAACGTAACCGT -ACGGAAGAAACGCAACGTTTGTGC -ACGGAAGAAACGCAACGTCTAAGC -ACGGAAGAAACGCAACGTACTAGC -ACGGAAGAAACGCAACGTAGATGC -ACGGAAGAAACGCAACGTTGAAGG -ACGGAAGAAACGCAACGTCAATGG -ACGGAAGAAACGCAACGTATGAGG -ACGGAAGAAACGCAACGTAATGGG -ACGGAAGAAACGCAACGTTCCTGA -ACGGAAGAAACGCAACGTTAGCGA -ACGGAAGAAACGCAACGTCACAGA -ACGGAAGAAACGCAACGTGCAAGA -ACGGAAGAAACGCAACGTGGTTGA -ACGGAAGAAACGCAACGTTCCGAT -ACGGAAGAAACGCAACGTTGGCAT -ACGGAAGAAACGCAACGTCGAGAT -ACGGAAGAAACGCAACGTTACCAC -ACGGAAGAAACGCAACGTCAGAAC -ACGGAAGAAACGCAACGTGTCTAC -ACGGAAGAAACGCAACGTACGTAC -ACGGAAGAAACGCAACGTAGTGAC -ACGGAAGAAACGCAACGTCTGTAG -ACGGAAGAAACGCAACGTCCTAAG -ACGGAAGAAACGCAACGTGTTCAG -ACGGAAGAAACGCAACGTGCATAG -ACGGAAGAAACGCAACGTGACAAG -ACGGAAGAAACGCAACGTAAGCAG -ACGGAAGAAACGCAACGTCGTCAA -ACGGAAGAAACGCAACGTGCTGAA -ACGGAAGAAACGCAACGTAGTACG -ACGGAAGAAACGCAACGTATCCGA -ACGGAAGAAACGCAACGTATGGGA -ACGGAAGAAACGCAACGTGTGCAA -ACGGAAGAAACGCAACGTGAGGAA -ACGGAAGAAACGCAACGTCAGGTA -ACGGAAGAAACGCAACGTGACTCT -ACGGAAGAAACGCAACGTAGTCCT -ACGGAAGAAACGCAACGTTAAGCC -ACGGAAGAAACGCAACGTATAGCC -ACGGAAGAAACGCAACGTTAACCG -ACGGAAGAAACGCAACGTATGCCA -ACGGAAGAAACGGAAGCTGGAAAC -ACGGAAGAAACGGAAGCTAACACC -ACGGAAGAAACGGAAGCTATCGAG -ACGGAAGAAACGGAAGCTCTCCTT -ACGGAAGAAACGGAAGCTCCTGTT -ACGGAAGAAACGGAAGCTCGGTTT -ACGGAAGAAACGGAAGCTGTGGTT -ACGGAAGAAACGGAAGCTGCCTTT -ACGGAAGAAACGGAAGCTGGTCTT -ACGGAAGAAACGGAAGCTACGCTT -ACGGAAGAAACGGAAGCTAGCGTT -ACGGAAGAAACGGAAGCTTTCGTC -ACGGAAGAAACGGAAGCTTCTCTC -ACGGAAGAAACGGAAGCTTGGATC -ACGGAAGAAACGGAAGCTCACTTC -ACGGAAGAAACGGAAGCTGTACTC -ACGGAAGAAACGGAAGCTGATGTC -ACGGAAGAAACGGAAGCTACAGTC -ACGGAAGAAACGGAAGCTTTGCTG -ACGGAAGAAACGGAAGCTTCCATG -ACGGAAGAAACGGAAGCTTGTGTG -ACGGAAGAAACGGAAGCTCTAGTG -ACGGAAGAAACGGAAGCTCATCTG -ACGGAAGAAACGGAAGCTGAGTTG -ACGGAAGAAACGGAAGCTAGACTG -ACGGAAGAAACGGAAGCTTCGGTA -ACGGAAGAAACGGAAGCTTGCCTA -ACGGAAGAAACGGAAGCTCCACTA -ACGGAAGAAACGGAAGCTGGAGTA -ACGGAAGAAACGGAAGCTTCGTCT -ACGGAAGAAACGGAAGCTTGCACT -ACGGAAGAAACGGAAGCTCTGACT -ACGGAAGAAACGGAAGCTCAACCT -ACGGAAGAAACGGAAGCTGCTACT -ACGGAAGAAACGGAAGCTGGATCT -ACGGAAGAAACGGAAGCTAAGGCT -ACGGAAGAAACGGAAGCTTCAACC -ACGGAAGAAACGGAAGCTTGTTCC -ACGGAAGAAACGGAAGCTATTCCC -ACGGAAGAAACGGAAGCTTTCTCG -ACGGAAGAAACGGAAGCTTAGACG -ACGGAAGAAACGGAAGCTGTAACG -ACGGAAGAAACGGAAGCTACTTCG -ACGGAAGAAACGGAAGCTTACGCA -ACGGAAGAAACGGAAGCTCTTGCA -ACGGAAGAAACGGAAGCTCGAACA -ACGGAAGAAACGGAAGCTCAGTCA -ACGGAAGAAACGGAAGCTGATCCA -ACGGAAGAAACGGAAGCTACGACA -ACGGAAGAAACGGAAGCTAGCTCA -ACGGAAGAAACGGAAGCTTCACGT -ACGGAAGAAACGGAAGCTCGTAGT -ACGGAAGAAACGGAAGCTGTCAGT -ACGGAAGAAACGGAAGCTGAAGGT -ACGGAAGAAACGGAAGCTAACCGT -ACGGAAGAAACGGAAGCTTTGTGC -ACGGAAGAAACGGAAGCTCTAAGC -ACGGAAGAAACGGAAGCTACTAGC -ACGGAAGAAACGGAAGCTAGATGC -ACGGAAGAAACGGAAGCTTGAAGG -ACGGAAGAAACGGAAGCTCAATGG -ACGGAAGAAACGGAAGCTATGAGG -ACGGAAGAAACGGAAGCTAATGGG -ACGGAAGAAACGGAAGCTTCCTGA -ACGGAAGAAACGGAAGCTTAGCGA -ACGGAAGAAACGGAAGCTCACAGA -ACGGAAGAAACGGAAGCTGCAAGA -ACGGAAGAAACGGAAGCTGGTTGA -ACGGAAGAAACGGAAGCTTCCGAT -ACGGAAGAAACGGAAGCTTGGCAT -ACGGAAGAAACGGAAGCTCGAGAT -ACGGAAGAAACGGAAGCTTACCAC -ACGGAAGAAACGGAAGCTCAGAAC -ACGGAAGAAACGGAAGCTGTCTAC -ACGGAAGAAACGGAAGCTACGTAC -ACGGAAGAAACGGAAGCTAGTGAC -ACGGAAGAAACGGAAGCTCTGTAG -ACGGAAGAAACGGAAGCTCCTAAG -ACGGAAGAAACGGAAGCTGTTCAG -ACGGAAGAAACGGAAGCTGCATAG -ACGGAAGAAACGGAAGCTGACAAG -ACGGAAGAAACGGAAGCTAAGCAG -ACGGAAGAAACGGAAGCTCGTCAA -ACGGAAGAAACGGAAGCTGCTGAA -ACGGAAGAAACGGAAGCTAGTACG -ACGGAAGAAACGGAAGCTATCCGA -ACGGAAGAAACGGAAGCTATGGGA -ACGGAAGAAACGGAAGCTGTGCAA -ACGGAAGAAACGGAAGCTGAGGAA -ACGGAAGAAACGGAAGCTCAGGTA -ACGGAAGAAACGGAAGCTGACTCT -ACGGAAGAAACGGAAGCTAGTCCT -ACGGAAGAAACGGAAGCTTAAGCC -ACGGAAGAAACGGAAGCTATAGCC -ACGGAAGAAACGGAAGCTTAACCG -ACGGAAGAAACGGAAGCTATGCCA -ACGGAAGAAACGACGAGTGGAAAC -ACGGAAGAAACGACGAGTAACACC -ACGGAAGAAACGACGAGTATCGAG -ACGGAAGAAACGACGAGTCTCCTT -ACGGAAGAAACGACGAGTCCTGTT -ACGGAAGAAACGACGAGTCGGTTT -ACGGAAGAAACGACGAGTGTGGTT -ACGGAAGAAACGACGAGTGCCTTT -ACGGAAGAAACGACGAGTGGTCTT -ACGGAAGAAACGACGAGTACGCTT -ACGGAAGAAACGACGAGTAGCGTT -ACGGAAGAAACGACGAGTTTCGTC -ACGGAAGAAACGACGAGTTCTCTC -ACGGAAGAAACGACGAGTTGGATC -ACGGAAGAAACGACGAGTCACTTC -ACGGAAGAAACGACGAGTGTACTC -ACGGAAGAAACGACGAGTGATGTC -ACGGAAGAAACGACGAGTACAGTC -ACGGAAGAAACGACGAGTTTGCTG -ACGGAAGAAACGACGAGTTCCATG -ACGGAAGAAACGACGAGTTGTGTG -ACGGAAGAAACGACGAGTCTAGTG -ACGGAAGAAACGACGAGTCATCTG -ACGGAAGAAACGACGAGTGAGTTG -ACGGAAGAAACGACGAGTAGACTG -ACGGAAGAAACGACGAGTTCGGTA -ACGGAAGAAACGACGAGTTGCCTA -ACGGAAGAAACGACGAGTCCACTA -ACGGAAGAAACGACGAGTGGAGTA -ACGGAAGAAACGACGAGTTCGTCT -ACGGAAGAAACGACGAGTTGCACT -ACGGAAGAAACGACGAGTCTGACT -ACGGAAGAAACGACGAGTCAACCT -ACGGAAGAAACGACGAGTGCTACT -ACGGAAGAAACGACGAGTGGATCT -ACGGAAGAAACGACGAGTAAGGCT -ACGGAAGAAACGACGAGTTCAACC -ACGGAAGAAACGACGAGTTGTTCC -ACGGAAGAAACGACGAGTATTCCC -ACGGAAGAAACGACGAGTTTCTCG -ACGGAAGAAACGACGAGTTAGACG -ACGGAAGAAACGACGAGTGTAACG -ACGGAAGAAACGACGAGTACTTCG -ACGGAAGAAACGACGAGTTACGCA -ACGGAAGAAACGACGAGTCTTGCA -ACGGAAGAAACGACGAGTCGAACA -ACGGAAGAAACGACGAGTCAGTCA -ACGGAAGAAACGACGAGTGATCCA -ACGGAAGAAACGACGAGTACGACA -ACGGAAGAAACGACGAGTAGCTCA -ACGGAAGAAACGACGAGTTCACGT -ACGGAAGAAACGACGAGTCGTAGT -ACGGAAGAAACGACGAGTGTCAGT -ACGGAAGAAACGACGAGTGAAGGT -ACGGAAGAAACGACGAGTAACCGT -ACGGAAGAAACGACGAGTTTGTGC -ACGGAAGAAACGACGAGTCTAAGC -ACGGAAGAAACGACGAGTACTAGC -ACGGAAGAAACGACGAGTAGATGC -ACGGAAGAAACGACGAGTTGAAGG -ACGGAAGAAACGACGAGTCAATGG -ACGGAAGAAACGACGAGTATGAGG -ACGGAAGAAACGACGAGTAATGGG -ACGGAAGAAACGACGAGTTCCTGA -ACGGAAGAAACGACGAGTTAGCGA -ACGGAAGAAACGACGAGTCACAGA -ACGGAAGAAACGACGAGTGCAAGA -ACGGAAGAAACGACGAGTGGTTGA -ACGGAAGAAACGACGAGTTCCGAT -ACGGAAGAAACGACGAGTTGGCAT -ACGGAAGAAACGACGAGTCGAGAT -ACGGAAGAAACGACGAGTTACCAC -ACGGAAGAAACGACGAGTCAGAAC -ACGGAAGAAACGACGAGTGTCTAC -ACGGAAGAAACGACGAGTACGTAC -ACGGAAGAAACGACGAGTAGTGAC -ACGGAAGAAACGACGAGTCTGTAG -ACGGAAGAAACGACGAGTCCTAAG -ACGGAAGAAACGACGAGTGTTCAG -ACGGAAGAAACGACGAGTGCATAG -ACGGAAGAAACGACGAGTGACAAG -ACGGAAGAAACGACGAGTAAGCAG -ACGGAAGAAACGACGAGTCGTCAA -ACGGAAGAAACGACGAGTGCTGAA -ACGGAAGAAACGACGAGTAGTACG -ACGGAAGAAACGACGAGTATCCGA -ACGGAAGAAACGACGAGTATGGGA -ACGGAAGAAACGACGAGTGTGCAA -ACGGAAGAAACGACGAGTGAGGAA -ACGGAAGAAACGACGAGTCAGGTA -ACGGAAGAAACGACGAGTGACTCT -ACGGAAGAAACGACGAGTAGTCCT -ACGGAAGAAACGACGAGTTAAGCC -ACGGAAGAAACGACGAGTATAGCC -ACGGAAGAAACGACGAGTTAACCG -ACGGAAGAAACGACGAGTATGCCA -ACGGAAGAAACGCGAATCGGAAAC -ACGGAAGAAACGCGAATCAACACC -ACGGAAGAAACGCGAATCATCGAG -ACGGAAGAAACGCGAATCCTCCTT -ACGGAAGAAACGCGAATCCCTGTT -ACGGAAGAAACGCGAATCCGGTTT -ACGGAAGAAACGCGAATCGTGGTT -ACGGAAGAAACGCGAATCGCCTTT -ACGGAAGAAACGCGAATCGGTCTT -ACGGAAGAAACGCGAATCACGCTT -ACGGAAGAAACGCGAATCAGCGTT -ACGGAAGAAACGCGAATCTTCGTC -ACGGAAGAAACGCGAATCTCTCTC -ACGGAAGAAACGCGAATCTGGATC -ACGGAAGAAACGCGAATCCACTTC -ACGGAAGAAACGCGAATCGTACTC -ACGGAAGAAACGCGAATCGATGTC -ACGGAAGAAACGCGAATCACAGTC -ACGGAAGAAACGCGAATCTTGCTG -ACGGAAGAAACGCGAATCTCCATG -ACGGAAGAAACGCGAATCTGTGTG -ACGGAAGAAACGCGAATCCTAGTG -ACGGAAGAAACGCGAATCCATCTG -ACGGAAGAAACGCGAATCGAGTTG -ACGGAAGAAACGCGAATCAGACTG -ACGGAAGAAACGCGAATCTCGGTA -ACGGAAGAAACGCGAATCTGCCTA -ACGGAAGAAACGCGAATCCCACTA -ACGGAAGAAACGCGAATCGGAGTA -ACGGAAGAAACGCGAATCTCGTCT -ACGGAAGAAACGCGAATCTGCACT -ACGGAAGAAACGCGAATCCTGACT -ACGGAAGAAACGCGAATCCAACCT -ACGGAAGAAACGCGAATCGCTACT -ACGGAAGAAACGCGAATCGGATCT -ACGGAAGAAACGCGAATCAAGGCT -ACGGAAGAAACGCGAATCTCAACC -ACGGAAGAAACGCGAATCTGTTCC -ACGGAAGAAACGCGAATCATTCCC -ACGGAAGAAACGCGAATCTTCTCG -ACGGAAGAAACGCGAATCTAGACG -ACGGAAGAAACGCGAATCGTAACG -ACGGAAGAAACGCGAATCACTTCG -ACGGAAGAAACGCGAATCTACGCA -ACGGAAGAAACGCGAATCCTTGCA -ACGGAAGAAACGCGAATCCGAACA -ACGGAAGAAACGCGAATCCAGTCA -ACGGAAGAAACGCGAATCGATCCA -ACGGAAGAAACGCGAATCACGACA -ACGGAAGAAACGCGAATCAGCTCA -ACGGAAGAAACGCGAATCTCACGT -ACGGAAGAAACGCGAATCCGTAGT -ACGGAAGAAACGCGAATCGTCAGT -ACGGAAGAAACGCGAATCGAAGGT -ACGGAAGAAACGCGAATCAACCGT -ACGGAAGAAACGCGAATCTTGTGC -ACGGAAGAAACGCGAATCCTAAGC -ACGGAAGAAACGCGAATCACTAGC -ACGGAAGAAACGCGAATCAGATGC -ACGGAAGAAACGCGAATCTGAAGG -ACGGAAGAAACGCGAATCCAATGG -ACGGAAGAAACGCGAATCATGAGG -ACGGAAGAAACGCGAATCAATGGG -ACGGAAGAAACGCGAATCTCCTGA -ACGGAAGAAACGCGAATCTAGCGA -ACGGAAGAAACGCGAATCCACAGA -ACGGAAGAAACGCGAATCGCAAGA -ACGGAAGAAACGCGAATCGGTTGA -ACGGAAGAAACGCGAATCTCCGAT -ACGGAAGAAACGCGAATCTGGCAT -ACGGAAGAAACGCGAATCCGAGAT -ACGGAAGAAACGCGAATCTACCAC -ACGGAAGAAACGCGAATCCAGAAC -ACGGAAGAAACGCGAATCGTCTAC -ACGGAAGAAACGCGAATCACGTAC -ACGGAAGAAACGCGAATCAGTGAC -ACGGAAGAAACGCGAATCCTGTAG -ACGGAAGAAACGCGAATCCCTAAG -ACGGAAGAAACGCGAATCGTTCAG -ACGGAAGAAACGCGAATCGCATAG -ACGGAAGAAACGCGAATCGACAAG -ACGGAAGAAACGCGAATCAAGCAG -ACGGAAGAAACGCGAATCCGTCAA -ACGGAAGAAACGCGAATCGCTGAA -ACGGAAGAAACGCGAATCAGTACG -ACGGAAGAAACGCGAATCATCCGA -ACGGAAGAAACGCGAATCATGGGA -ACGGAAGAAACGCGAATCGTGCAA -ACGGAAGAAACGCGAATCGAGGAA -ACGGAAGAAACGCGAATCCAGGTA -ACGGAAGAAACGCGAATCGACTCT -ACGGAAGAAACGCGAATCAGTCCT -ACGGAAGAAACGCGAATCTAAGCC -ACGGAAGAAACGCGAATCATAGCC -ACGGAAGAAACGCGAATCTAACCG -ACGGAAGAAACGCGAATCATGCCA -ACGGAAGAAACGGGAATGGGAAAC -ACGGAAGAAACGGGAATGAACACC -ACGGAAGAAACGGGAATGATCGAG -ACGGAAGAAACGGGAATGCTCCTT -ACGGAAGAAACGGGAATGCCTGTT -ACGGAAGAAACGGGAATGCGGTTT -ACGGAAGAAACGGGAATGGTGGTT -ACGGAAGAAACGGGAATGGCCTTT -ACGGAAGAAACGGGAATGGGTCTT -ACGGAAGAAACGGGAATGACGCTT -ACGGAAGAAACGGGAATGAGCGTT -ACGGAAGAAACGGGAATGTTCGTC -ACGGAAGAAACGGGAATGTCTCTC -ACGGAAGAAACGGGAATGTGGATC -ACGGAAGAAACGGGAATGCACTTC -ACGGAAGAAACGGGAATGGTACTC -ACGGAAGAAACGGGAATGGATGTC -ACGGAAGAAACGGGAATGACAGTC -ACGGAAGAAACGGGAATGTTGCTG -ACGGAAGAAACGGGAATGTCCATG -ACGGAAGAAACGGGAATGTGTGTG -ACGGAAGAAACGGGAATGCTAGTG -ACGGAAGAAACGGGAATGCATCTG -ACGGAAGAAACGGGAATGGAGTTG -ACGGAAGAAACGGGAATGAGACTG -ACGGAAGAAACGGGAATGTCGGTA -ACGGAAGAAACGGGAATGTGCCTA -ACGGAAGAAACGGGAATGCCACTA -ACGGAAGAAACGGGAATGGGAGTA -ACGGAAGAAACGGGAATGTCGTCT -ACGGAAGAAACGGGAATGTGCACT -ACGGAAGAAACGGGAATGCTGACT -ACGGAAGAAACGGGAATGCAACCT -ACGGAAGAAACGGGAATGGCTACT -ACGGAAGAAACGGGAATGGGATCT -ACGGAAGAAACGGGAATGAAGGCT -ACGGAAGAAACGGGAATGTCAACC -ACGGAAGAAACGGGAATGTGTTCC -ACGGAAGAAACGGGAATGATTCCC -ACGGAAGAAACGGGAATGTTCTCG -ACGGAAGAAACGGGAATGTAGACG -ACGGAAGAAACGGGAATGGTAACG -ACGGAAGAAACGGGAATGACTTCG -ACGGAAGAAACGGGAATGTACGCA -ACGGAAGAAACGGGAATGCTTGCA -ACGGAAGAAACGGGAATGCGAACA -ACGGAAGAAACGGGAATGCAGTCA -ACGGAAGAAACGGGAATGGATCCA -ACGGAAGAAACGGGAATGACGACA -ACGGAAGAAACGGGAATGAGCTCA -ACGGAAGAAACGGGAATGTCACGT -ACGGAAGAAACGGGAATGCGTAGT -ACGGAAGAAACGGGAATGGTCAGT -ACGGAAGAAACGGGAATGGAAGGT -ACGGAAGAAACGGGAATGAACCGT -ACGGAAGAAACGGGAATGTTGTGC -ACGGAAGAAACGGGAATGCTAAGC -ACGGAAGAAACGGGAATGACTAGC -ACGGAAGAAACGGGAATGAGATGC -ACGGAAGAAACGGGAATGTGAAGG -ACGGAAGAAACGGGAATGCAATGG -ACGGAAGAAACGGGAATGATGAGG -ACGGAAGAAACGGGAATGAATGGG -ACGGAAGAAACGGGAATGTCCTGA -ACGGAAGAAACGGGAATGTAGCGA -ACGGAAGAAACGGGAATGCACAGA -ACGGAAGAAACGGGAATGGCAAGA -ACGGAAGAAACGGGAATGGGTTGA -ACGGAAGAAACGGGAATGTCCGAT -ACGGAAGAAACGGGAATGTGGCAT -ACGGAAGAAACGGGAATGCGAGAT -ACGGAAGAAACGGGAATGTACCAC -ACGGAAGAAACGGGAATGCAGAAC -ACGGAAGAAACGGGAATGGTCTAC -ACGGAAGAAACGGGAATGACGTAC -ACGGAAGAAACGGGAATGAGTGAC -ACGGAAGAAACGGGAATGCTGTAG -ACGGAAGAAACGGGAATGCCTAAG -ACGGAAGAAACGGGAATGGTTCAG -ACGGAAGAAACGGGAATGGCATAG -ACGGAAGAAACGGGAATGGACAAG -ACGGAAGAAACGGGAATGAAGCAG -ACGGAAGAAACGGGAATGCGTCAA -ACGGAAGAAACGGGAATGGCTGAA -ACGGAAGAAACGGGAATGAGTACG -ACGGAAGAAACGGGAATGATCCGA -ACGGAAGAAACGGGAATGATGGGA -ACGGAAGAAACGGGAATGGTGCAA -ACGGAAGAAACGGGAATGGAGGAA -ACGGAAGAAACGGGAATGCAGGTA -ACGGAAGAAACGGGAATGGACTCT -ACGGAAGAAACGGGAATGAGTCCT -ACGGAAGAAACGGGAATGTAAGCC -ACGGAAGAAACGGGAATGATAGCC -ACGGAAGAAACGGGAATGTAACCG -ACGGAAGAAACGGGAATGATGCCA -ACGGAAGAAACGCAAGTGGGAAAC -ACGGAAGAAACGCAAGTGAACACC -ACGGAAGAAACGCAAGTGATCGAG -ACGGAAGAAACGCAAGTGCTCCTT -ACGGAAGAAACGCAAGTGCCTGTT -ACGGAAGAAACGCAAGTGCGGTTT -ACGGAAGAAACGCAAGTGGTGGTT -ACGGAAGAAACGCAAGTGGCCTTT -ACGGAAGAAACGCAAGTGGGTCTT -ACGGAAGAAACGCAAGTGACGCTT -ACGGAAGAAACGCAAGTGAGCGTT -ACGGAAGAAACGCAAGTGTTCGTC -ACGGAAGAAACGCAAGTGTCTCTC -ACGGAAGAAACGCAAGTGTGGATC -ACGGAAGAAACGCAAGTGCACTTC -ACGGAAGAAACGCAAGTGGTACTC -ACGGAAGAAACGCAAGTGGATGTC -ACGGAAGAAACGCAAGTGACAGTC -ACGGAAGAAACGCAAGTGTTGCTG -ACGGAAGAAACGCAAGTGTCCATG -ACGGAAGAAACGCAAGTGTGTGTG -ACGGAAGAAACGCAAGTGCTAGTG -ACGGAAGAAACGCAAGTGCATCTG -ACGGAAGAAACGCAAGTGGAGTTG -ACGGAAGAAACGCAAGTGAGACTG -ACGGAAGAAACGCAAGTGTCGGTA -ACGGAAGAAACGCAAGTGTGCCTA -ACGGAAGAAACGCAAGTGCCACTA -ACGGAAGAAACGCAAGTGGGAGTA -ACGGAAGAAACGCAAGTGTCGTCT -ACGGAAGAAACGCAAGTGTGCACT -ACGGAAGAAACGCAAGTGCTGACT -ACGGAAGAAACGCAAGTGCAACCT -ACGGAAGAAACGCAAGTGGCTACT -ACGGAAGAAACGCAAGTGGGATCT -ACGGAAGAAACGCAAGTGAAGGCT -ACGGAAGAAACGCAAGTGTCAACC -ACGGAAGAAACGCAAGTGTGTTCC -ACGGAAGAAACGCAAGTGATTCCC -ACGGAAGAAACGCAAGTGTTCTCG -ACGGAAGAAACGCAAGTGTAGACG -ACGGAAGAAACGCAAGTGGTAACG -ACGGAAGAAACGCAAGTGACTTCG -ACGGAAGAAACGCAAGTGTACGCA -ACGGAAGAAACGCAAGTGCTTGCA -ACGGAAGAAACGCAAGTGCGAACA -ACGGAAGAAACGCAAGTGCAGTCA -ACGGAAGAAACGCAAGTGGATCCA -ACGGAAGAAACGCAAGTGACGACA -ACGGAAGAAACGCAAGTGAGCTCA -ACGGAAGAAACGCAAGTGTCACGT -ACGGAAGAAACGCAAGTGCGTAGT -ACGGAAGAAACGCAAGTGGTCAGT -ACGGAAGAAACGCAAGTGGAAGGT -ACGGAAGAAACGCAAGTGAACCGT -ACGGAAGAAACGCAAGTGTTGTGC -ACGGAAGAAACGCAAGTGCTAAGC -ACGGAAGAAACGCAAGTGACTAGC -ACGGAAGAAACGCAAGTGAGATGC -ACGGAAGAAACGCAAGTGTGAAGG -ACGGAAGAAACGCAAGTGCAATGG -ACGGAAGAAACGCAAGTGATGAGG -ACGGAAGAAACGCAAGTGAATGGG -ACGGAAGAAACGCAAGTGTCCTGA -ACGGAAGAAACGCAAGTGTAGCGA -ACGGAAGAAACGCAAGTGCACAGA -ACGGAAGAAACGCAAGTGGCAAGA -ACGGAAGAAACGCAAGTGGGTTGA -ACGGAAGAAACGCAAGTGTCCGAT -ACGGAAGAAACGCAAGTGTGGCAT -ACGGAAGAAACGCAAGTGCGAGAT -ACGGAAGAAACGCAAGTGTACCAC -ACGGAAGAAACGCAAGTGCAGAAC -ACGGAAGAAACGCAAGTGGTCTAC -ACGGAAGAAACGCAAGTGACGTAC -ACGGAAGAAACGCAAGTGAGTGAC -ACGGAAGAAACGCAAGTGCTGTAG -ACGGAAGAAACGCAAGTGCCTAAG -ACGGAAGAAACGCAAGTGGTTCAG -ACGGAAGAAACGCAAGTGGCATAG -ACGGAAGAAACGCAAGTGGACAAG -ACGGAAGAAACGCAAGTGAAGCAG -ACGGAAGAAACGCAAGTGCGTCAA -ACGGAAGAAACGCAAGTGGCTGAA -ACGGAAGAAACGCAAGTGAGTACG -ACGGAAGAAACGCAAGTGATCCGA -ACGGAAGAAACGCAAGTGATGGGA -ACGGAAGAAACGCAAGTGGTGCAA -ACGGAAGAAACGCAAGTGGAGGAA -ACGGAAGAAACGCAAGTGCAGGTA -ACGGAAGAAACGCAAGTGGACTCT -ACGGAAGAAACGCAAGTGAGTCCT -ACGGAAGAAACGCAAGTGTAAGCC -ACGGAAGAAACGCAAGTGATAGCC -ACGGAAGAAACGCAAGTGTAACCG -ACGGAAGAAACGCAAGTGATGCCA -ACGGAAGAAACGGAAGAGGGAAAC -ACGGAAGAAACGGAAGAGAACACC -ACGGAAGAAACGGAAGAGATCGAG -ACGGAAGAAACGGAAGAGCTCCTT -ACGGAAGAAACGGAAGAGCCTGTT -ACGGAAGAAACGGAAGAGCGGTTT -ACGGAAGAAACGGAAGAGGTGGTT -ACGGAAGAAACGGAAGAGGCCTTT -ACGGAAGAAACGGAAGAGGGTCTT -ACGGAAGAAACGGAAGAGACGCTT -ACGGAAGAAACGGAAGAGAGCGTT -ACGGAAGAAACGGAAGAGTTCGTC -ACGGAAGAAACGGAAGAGTCTCTC -ACGGAAGAAACGGAAGAGTGGATC -ACGGAAGAAACGGAAGAGCACTTC -ACGGAAGAAACGGAAGAGGTACTC -ACGGAAGAAACGGAAGAGGATGTC -ACGGAAGAAACGGAAGAGACAGTC -ACGGAAGAAACGGAAGAGTTGCTG -ACGGAAGAAACGGAAGAGTCCATG -ACGGAAGAAACGGAAGAGTGTGTG -ACGGAAGAAACGGAAGAGCTAGTG -ACGGAAGAAACGGAAGAGCATCTG -ACGGAAGAAACGGAAGAGGAGTTG -ACGGAAGAAACGGAAGAGAGACTG -ACGGAAGAAACGGAAGAGTCGGTA -ACGGAAGAAACGGAAGAGTGCCTA -ACGGAAGAAACGGAAGAGCCACTA -ACGGAAGAAACGGAAGAGGGAGTA -ACGGAAGAAACGGAAGAGTCGTCT -ACGGAAGAAACGGAAGAGTGCACT -ACGGAAGAAACGGAAGAGCTGACT -ACGGAAGAAACGGAAGAGCAACCT -ACGGAAGAAACGGAAGAGGCTACT -ACGGAAGAAACGGAAGAGGGATCT -ACGGAAGAAACGGAAGAGAAGGCT -ACGGAAGAAACGGAAGAGTCAACC -ACGGAAGAAACGGAAGAGTGTTCC -ACGGAAGAAACGGAAGAGATTCCC -ACGGAAGAAACGGAAGAGTTCTCG -ACGGAAGAAACGGAAGAGTAGACG -ACGGAAGAAACGGAAGAGGTAACG -ACGGAAGAAACGGAAGAGACTTCG -ACGGAAGAAACGGAAGAGTACGCA -ACGGAAGAAACGGAAGAGCTTGCA -ACGGAAGAAACGGAAGAGCGAACA -ACGGAAGAAACGGAAGAGCAGTCA -ACGGAAGAAACGGAAGAGGATCCA -ACGGAAGAAACGGAAGAGACGACA -ACGGAAGAAACGGAAGAGAGCTCA -ACGGAAGAAACGGAAGAGTCACGT -ACGGAAGAAACGGAAGAGCGTAGT -ACGGAAGAAACGGAAGAGGTCAGT -ACGGAAGAAACGGAAGAGGAAGGT -ACGGAAGAAACGGAAGAGAACCGT -ACGGAAGAAACGGAAGAGTTGTGC -ACGGAAGAAACGGAAGAGCTAAGC -ACGGAAGAAACGGAAGAGACTAGC -ACGGAAGAAACGGAAGAGAGATGC -ACGGAAGAAACGGAAGAGTGAAGG -ACGGAAGAAACGGAAGAGCAATGG -ACGGAAGAAACGGAAGAGATGAGG -ACGGAAGAAACGGAAGAGAATGGG -ACGGAAGAAACGGAAGAGTCCTGA -ACGGAAGAAACGGAAGAGTAGCGA -ACGGAAGAAACGGAAGAGCACAGA -ACGGAAGAAACGGAAGAGGCAAGA -ACGGAAGAAACGGAAGAGGGTTGA -ACGGAAGAAACGGAAGAGTCCGAT -ACGGAAGAAACGGAAGAGTGGCAT -ACGGAAGAAACGGAAGAGCGAGAT -ACGGAAGAAACGGAAGAGTACCAC -ACGGAAGAAACGGAAGAGCAGAAC -ACGGAAGAAACGGAAGAGGTCTAC -ACGGAAGAAACGGAAGAGACGTAC -ACGGAAGAAACGGAAGAGAGTGAC -ACGGAAGAAACGGAAGAGCTGTAG -ACGGAAGAAACGGAAGAGCCTAAG -ACGGAAGAAACGGAAGAGGTTCAG -ACGGAAGAAACGGAAGAGGCATAG -ACGGAAGAAACGGAAGAGGACAAG -ACGGAAGAAACGGAAGAGAAGCAG -ACGGAAGAAACGGAAGAGCGTCAA -ACGGAAGAAACGGAAGAGGCTGAA -ACGGAAGAAACGGAAGAGAGTACG -ACGGAAGAAACGGAAGAGATCCGA -ACGGAAGAAACGGAAGAGATGGGA -ACGGAAGAAACGGAAGAGGTGCAA -ACGGAAGAAACGGAAGAGGAGGAA -ACGGAAGAAACGGAAGAGCAGGTA -ACGGAAGAAACGGAAGAGGACTCT -ACGGAAGAAACGGAAGAGAGTCCT -ACGGAAGAAACGGAAGAGTAAGCC -ACGGAAGAAACGGAAGAGATAGCC -ACGGAAGAAACGGAAGAGTAACCG -ACGGAAGAAACGGAAGAGATGCCA -ACGGAAGAAACGGTACAGGGAAAC -ACGGAAGAAACGGTACAGAACACC -ACGGAAGAAACGGTACAGATCGAG -ACGGAAGAAACGGTACAGCTCCTT -ACGGAAGAAACGGTACAGCCTGTT -ACGGAAGAAACGGTACAGCGGTTT -ACGGAAGAAACGGTACAGGTGGTT -ACGGAAGAAACGGTACAGGCCTTT -ACGGAAGAAACGGTACAGGGTCTT -ACGGAAGAAACGGTACAGACGCTT -ACGGAAGAAACGGTACAGAGCGTT -ACGGAAGAAACGGTACAGTTCGTC -ACGGAAGAAACGGTACAGTCTCTC -ACGGAAGAAACGGTACAGTGGATC -ACGGAAGAAACGGTACAGCACTTC -ACGGAAGAAACGGTACAGGTACTC -ACGGAAGAAACGGTACAGGATGTC -ACGGAAGAAACGGTACAGACAGTC -ACGGAAGAAACGGTACAGTTGCTG -ACGGAAGAAACGGTACAGTCCATG -ACGGAAGAAACGGTACAGTGTGTG -ACGGAAGAAACGGTACAGCTAGTG -ACGGAAGAAACGGTACAGCATCTG -ACGGAAGAAACGGTACAGGAGTTG -ACGGAAGAAACGGTACAGAGACTG -ACGGAAGAAACGGTACAGTCGGTA -ACGGAAGAAACGGTACAGTGCCTA -ACGGAAGAAACGGTACAGCCACTA -ACGGAAGAAACGGTACAGGGAGTA -ACGGAAGAAACGGTACAGTCGTCT -ACGGAAGAAACGGTACAGTGCACT -ACGGAAGAAACGGTACAGCTGACT -ACGGAAGAAACGGTACAGCAACCT -ACGGAAGAAACGGTACAGGCTACT -ACGGAAGAAACGGTACAGGGATCT -ACGGAAGAAACGGTACAGAAGGCT -ACGGAAGAAACGGTACAGTCAACC -ACGGAAGAAACGGTACAGTGTTCC -ACGGAAGAAACGGTACAGATTCCC -ACGGAAGAAACGGTACAGTTCTCG -ACGGAAGAAACGGTACAGTAGACG -ACGGAAGAAACGGTACAGGTAACG -ACGGAAGAAACGGTACAGACTTCG -ACGGAAGAAACGGTACAGTACGCA -ACGGAAGAAACGGTACAGCTTGCA -ACGGAAGAAACGGTACAGCGAACA -ACGGAAGAAACGGTACAGCAGTCA -ACGGAAGAAACGGTACAGGATCCA -ACGGAAGAAACGGTACAGACGACA -ACGGAAGAAACGGTACAGAGCTCA -ACGGAAGAAACGGTACAGTCACGT -ACGGAAGAAACGGTACAGCGTAGT -ACGGAAGAAACGGTACAGGTCAGT -ACGGAAGAAACGGTACAGGAAGGT -ACGGAAGAAACGGTACAGAACCGT -ACGGAAGAAACGGTACAGTTGTGC -ACGGAAGAAACGGTACAGCTAAGC -ACGGAAGAAACGGTACAGACTAGC -ACGGAAGAAACGGTACAGAGATGC -ACGGAAGAAACGGTACAGTGAAGG -ACGGAAGAAACGGTACAGCAATGG -ACGGAAGAAACGGTACAGATGAGG -ACGGAAGAAACGGTACAGAATGGG -ACGGAAGAAACGGTACAGTCCTGA -ACGGAAGAAACGGTACAGTAGCGA -ACGGAAGAAACGGTACAGCACAGA -ACGGAAGAAACGGTACAGGCAAGA -ACGGAAGAAACGGTACAGGGTTGA -ACGGAAGAAACGGTACAGTCCGAT -ACGGAAGAAACGGTACAGTGGCAT -ACGGAAGAAACGGTACAGCGAGAT -ACGGAAGAAACGGTACAGTACCAC -ACGGAAGAAACGGTACAGCAGAAC -ACGGAAGAAACGGTACAGGTCTAC -ACGGAAGAAACGGTACAGACGTAC -ACGGAAGAAACGGTACAGAGTGAC -ACGGAAGAAACGGTACAGCTGTAG -ACGGAAGAAACGGTACAGCCTAAG -ACGGAAGAAACGGTACAGGTTCAG -ACGGAAGAAACGGTACAGGCATAG -ACGGAAGAAACGGTACAGGACAAG -ACGGAAGAAACGGTACAGAAGCAG -ACGGAAGAAACGGTACAGCGTCAA -ACGGAAGAAACGGTACAGGCTGAA -ACGGAAGAAACGGTACAGAGTACG -ACGGAAGAAACGGTACAGATCCGA -ACGGAAGAAACGGTACAGATGGGA -ACGGAAGAAACGGTACAGGTGCAA -ACGGAAGAAACGGTACAGGAGGAA -ACGGAAGAAACGGTACAGCAGGTA -ACGGAAGAAACGGTACAGGACTCT -ACGGAAGAAACGGTACAGAGTCCT -ACGGAAGAAACGGTACAGTAAGCC -ACGGAAGAAACGGTACAGATAGCC -ACGGAAGAAACGGTACAGTAACCG -ACGGAAGAAACGGTACAGATGCCA -ACGGAAGAAACGTCTGACGGAAAC -ACGGAAGAAACGTCTGACAACACC -ACGGAAGAAACGTCTGACATCGAG -ACGGAAGAAACGTCTGACCTCCTT -ACGGAAGAAACGTCTGACCCTGTT -ACGGAAGAAACGTCTGACCGGTTT -ACGGAAGAAACGTCTGACGTGGTT -ACGGAAGAAACGTCTGACGCCTTT -ACGGAAGAAACGTCTGACGGTCTT -ACGGAAGAAACGTCTGACACGCTT -ACGGAAGAAACGTCTGACAGCGTT -ACGGAAGAAACGTCTGACTTCGTC -ACGGAAGAAACGTCTGACTCTCTC -ACGGAAGAAACGTCTGACTGGATC -ACGGAAGAAACGTCTGACCACTTC -ACGGAAGAAACGTCTGACGTACTC -ACGGAAGAAACGTCTGACGATGTC -ACGGAAGAAACGTCTGACACAGTC -ACGGAAGAAACGTCTGACTTGCTG -ACGGAAGAAACGTCTGACTCCATG -ACGGAAGAAACGTCTGACTGTGTG -ACGGAAGAAACGTCTGACCTAGTG -ACGGAAGAAACGTCTGACCATCTG -ACGGAAGAAACGTCTGACGAGTTG -ACGGAAGAAACGTCTGACAGACTG -ACGGAAGAAACGTCTGACTCGGTA -ACGGAAGAAACGTCTGACTGCCTA -ACGGAAGAAACGTCTGACCCACTA -ACGGAAGAAACGTCTGACGGAGTA -ACGGAAGAAACGTCTGACTCGTCT -ACGGAAGAAACGTCTGACTGCACT -ACGGAAGAAACGTCTGACCTGACT -ACGGAAGAAACGTCTGACCAACCT -ACGGAAGAAACGTCTGACGCTACT -ACGGAAGAAACGTCTGACGGATCT -ACGGAAGAAACGTCTGACAAGGCT -ACGGAAGAAACGTCTGACTCAACC -ACGGAAGAAACGTCTGACTGTTCC -ACGGAAGAAACGTCTGACATTCCC -ACGGAAGAAACGTCTGACTTCTCG -ACGGAAGAAACGTCTGACTAGACG -ACGGAAGAAACGTCTGACGTAACG -ACGGAAGAAACGTCTGACACTTCG -ACGGAAGAAACGTCTGACTACGCA -ACGGAAGAAACGTCTGACCTTGCA -ACGGAAGAAACGTCTGACCGAACA -ACGGAAGAAACGTCTGACCAGTCA -ACGGAAGAAACGTCTGACGATCCA -ACGGAAGAAACGTCTGACACGACA -ACGGAAGAAACGTCTGACAGCTCA -ACGGAAGAAACGTCTGACTCACGT -ACGGAAGAAACGTCTGACCGTAGT -ACGGAAGAAACGTCTGACGTCAGT -ACGGAAGAAACGTCTGACGAAGGT -ACGGAAGAAACGTCTGACAACCGT -ACGGAAGAAACGTCTGACTTGTGC -ACGGAAGAAACGTCTGACCTAAGC -ACGGAAGAAACGTCTGACACTAGC -ACGGAAGAAACGTCTGACAGATGC -ACGGAAGAAACGTCTGACTGAAGG -ACGGAAGAAACGTCTGACCAATGG -ACGGAAGAAACGTCTGACATGAGG -ACGGAAGAAACGTCTGACAATGGG -ACGGAAGAAACGTCTGACTCCTGA -ACGGAAGAAACGTCTGACTAGCGA -ACGGAAGAAACGTCTGACCACAGA -ACGGAAGAAACGTCTGACGCAAGA -ACGGAAGAAACGTCTGACGGTTGA -ACGGAAGAAACGTCTGACTCCGAT -ACGGAAGAAACGTCTGACTGGCAT -ACGGAAGAAACGTCTGACCGAGAT -ACGGAAGAAACGTCTGACTACCAC -ACGGAAGAAACGTCTGACCAGAAC -ACGGAAGAAACGTCTGACGTCTAC -ACGGAAGAAACGTCTGACACGTAC -ACGGAAGAAACGTCTGACAGTGAC -ACGGAAGAAACGTCTGACCTGTAG -ACGGAAGAAACGTCTGACCCTAAG -ACGGAAGAAACGTCTGACGTTCAG -ACGGAAGAAACGTCTGACGCATAG -ACGGAAGAAACGTCTGACGACAAG -ACGGAAGAAACGTCTGACAAGCAG -ACGGAAGAAACGTCTGACCGTCAA -ACGGAAGAAACGTCTGACGCTGAA -ACGGAAGAAACGTCTGACAGTACG -ACGGAAGAAACGTCTGACATCCGA -ACGGAAGAAACGTCTGACATGGGA -ACGGAAGAAACGTCTGACGTGCAA -ACGGAAGAAACGTCTGACGAGGAA -ACGGAAGAAACGTCTGACCAGGTA -ACGGAAGAAACGTCTGACGACTCT -ACGGAAGAAACGTCTGACAGTCCT -ACGGAAGAAACGTCTGACTAAGCC -ACGGAAGAAACGTCTGACATAGCC -ACGGAAGAAACGTCTGACTAACCG -ACGGAAGAAACGTCTGACATGCCA -ACGGAAGAAACGCCTAGTGGAAAC -ACGGAAGAAACGCCTAGTAACACC -ACGGAAGAAACGCCTAGTATCGAG -ACGGAAGAAACGCCTAGTCTCCTT -ACGGAAGAAACGCCTAGTCCTGTT -ACGGAAGAAACGCCTAGTCGGTTT -ACGGAAGAAACGCCTAGTGTGGTT -ACGGAAGAAACGCCTAGTGCCTTT -ACGGAAGAAACGCCTAGTGGTCTT -ACGGAAGAAACGCCTAGTACGCTT -ACGGAAGAAACGCCTAGTAGCGTT -ACGGAAGAAACGCCTAGTTTCGTC -ACGGAAGAAACGCCTAGTTCTCTC -ACGGAAGAAACGCCTAGTTGGATC -ACGGAAGAAACGCCTAGTCACTTC -ACGGAAGAAACGCCTAGTGTACTC -ACGGAAGAAACGCCTAGTGATGTC -ACGGAAGAAACGCCTAGTACAGTC -ACGGAAGAAACGCCTAGTTTGCTG -ACGGAAGAAACGCCTAGTTCCATG -ACGGAAGAAACGCCTAGTTGTGTG -ACGGAAGAAACGCCTAGTCTAGTG -ACGGAAGAAACGCCTAGTCATCTG -ACGGAAGAAACGCCTAGTGAGTTG -ACGGAAGAAACGCCTAGTAGACTG -ACGGAAGAAACGCCTAGTTCGGTA -ACGGAAGAAACGCCTAGTTGCCTA -ACGGAAGAAACGCCTAGTCCACTA -ACGGAAGAAACGCCTAGTGGAGTA -ACGGAAGAAACGCCTAGTTCGTCT -ACGGAAGAAACGCCTAGTTGCACT -ACGGAAGAAACGCCTAGTCTGACT -ACGGAAGAAACGCCTAGTCAACCT -ACGGAAGAAACGCCTAGTGCTACT -ACGGAAGAAACGCCTAGTGGATCT -ACGGAAGAAACGCCTAGTAAGGCT -ACGGAAGAAACGCCTAGTTCAACC -ACGGAAGAAACGCCTAGTTGTTCC -ACGGAAGAAACGCCTAGTATTCCC -ACGGAAGAAACGCCTAGTTTCTCG -ACGGAAGAAACGCCTAGTTAGACG -ACGGAAGAAACGCCTAGTGTAACG -ACGGAAGAAACGCCTAGTACTTCG -ACGGAAGAAACGCCTAGTTACGCA -ACGGAAGAAACGCCTAGTCTTGCA -ACGGAAGAAACGCCTAGTCGAACA -ACGGAAGAAACGCCTAGTCAGTCA -ACGGAAGAAACGCCTAGTGATCCA -ACGGAAGAAACGCCTAGTACGACA -ACGGAAGAAACGCCTAGTAGCTCA -ACGGAAGAAACGCCTAGTTCACGT -ACGGAAGAAACGCCTAGTCGTAGT -ACGGAAGAAACGCCTAGTGTCAGT -ACGGAAGAAACGCCTAGTGAAGGT -ACGGAAGAAACGCCTAGTAACCGT -ACGGAAGAAACGCCTAGTTTGTGC -ACGGAAGAAACGCCTAGTCTAAGC -ACGGAAGAAACGCCTAGTACTAGC -ACGGAAGAAACGCCTAGTAGATGC -ACGGAAGAAACGCCTAGTTGAAGG -ACGGAAGAAACGCCTAGTCAATGG -ACGGAAGAAACGCCTAGTATGAGG -ACGGAAGAAACGCCTAGTAATGGG -ACGGAAGAAACGCCTAGTTCCTGA -ACGGAAGAAACGCCTAGTTAGCGA -ACGGAAGAAACGCCTAGTCACAGA -ACGGAAGAAACGCCTAGTGCAAGA -ACGGAAGAAACGCCTAGTGGTTGA -ACGGAAGAAACGCCTAGTTCCGAT -ACGGAAGAAACGCCTAGTTGGCAT -ACGGAAGAAACGCCTAGTCGAGAT -ACGGAAGAAACGCCTAGTTACCAC -ACGGAAGAAACGCCTAGTCAGAAC -ACGGAAGAAACGCCTAGTGTCTAC -ACGGAAGAAACGCCTAGTACGTAC -ACGGAAGAAACGCCTAGTAGTGAC -ACGGAAGAAACGCCTAGTCTGTAG -ACGGAAGAAACGCCTAGTCCTAAG -ACGGAAGAAACGCCTAGTGTTCAG -ACGGAAGAAACGCCTAGTGCATAG -ACGGAAGAAACGCCTAGTGACAAG -ACGGAAGAAACGCCTAGTAAGCAG -ACGGAAGAAACGCCTAGTCGTCAA -ACGGAAGAAACGCCTAGTGCTGAA -ACGGAAGAAACGCCTAGTAGTACG -ACGGAAGAAACGCCTAGTATCCGA -ACGGAAGAAACGCCTAGTATGGGA -ACGGAAGAAACGCCTAGTGTGCAA -ACGGAAGAAACGCCTAGTGAGGAA -ACGGAAGAAACGCCTAGTCAGGTA -ACGGAAGAAACGCCTAGTGACTCT -ACGGAAGAAACGCCTAGTAGTCCT -ACGGAAGAAACGCCTAGTTAAGCC -ACGGAAGAAACGCCTAGTATAGCC -ACGGAAGAAACGCCTAGTTAACCG -ACGGAAGAAACGCCTAGTATGCCA -ACGGAAGAAACGGCCTAAGGAAAC -ACGGAAGAAACGGCCTAAAACACC -ACGGAAGAAACGGCCTAAATCGAG -ACGGAAGAAACGGCCTAACTCCTT -ACGGAAGAAACGGCCTAACCTGTT -ACGGAAGAAACGGCCTAACGGTTT -ACGGAAGAAACGGCCTAAGTGGTT -ACGGAAGAAACGGCCTAAGCCTTT -ACGGAAGAAACGGCCTAAGGTCTT -ACGGAAGAAACGGCCTAAACGCTT -ACGGAAGAAACGGCCTAAAGCGTT -ACGGAAGAAACGGCCTAATTCGTC -ACGGAAGAAACGGCCTAATCTCTC -ACGGAAGAAACGGCCTAATGGATC -ACGGAAGAAACGGCCTAACACTTC -ACGGAAGAAACGGCCTAAGTACTC -ACGGAAGAAACGGCCTAAGATGTC -ACGGAAGAAACGGCCTAAACAGTC -ACGGAAGAAACGGCCTAATTGCTG -ACGGAAGAAACGGCCTAATCCATG -ACGGAAGAAACGGCCTAATGTGTG -ACGGAAGAAACGGCCTAACTAGTG -ACGGAAGAAACGGCCTAACATCTG -ACGGAAGAAACGGCCTAAGAGTTG -ACGGAAGAAACGGCCTAAAGACTG -ACGGAAGAAACGGCCTAATCGGTA -ACGGAAGAAACGGCCTAATGCCTA -ACGGAAGAAACGGCCTAACCACTA -ACGGAAGAAACGGCCTAAGGAGTA -ACGGAAGAAACGGCCTAATCGTCT -ACGGAAGAAACGGCCTAATGCACT -ACGGAAGAAACGGCCTAACTGACT -ACGGAAGAAACGGCCTAACAACCT -ACGGAAGAAACGGCCTAAGCTACT -ACGGAAGAAACGGCCTAAGGATCT -ACGGAAGAAACGGCCTAAAAGGCT -ACGGAAGAAACGGCCTAATCAACC -ACGGAAGAAACGGCCTAATGTTCC -ACGGAAGAAACGGCCTAAATTCCC -ACGGAAGAAACGGCCTAATTCTCG -ACGGAAGAAACGGCCTAATAGACG -ACGGAAGAAACGGCCTAAGTAACG -ACGGAAGAAACGGCCTAAACTTCG -ACGGAAGAAACGGCCTAATACGCA -ACGGAAGAAACGGCCTAACTTGCA -ACGGAAGAAACGGCCTAACGAACA -ACGGAAGAAACGGCCTAACAGTCA -ACGGAAGAAACGGCCTAAGATCCA -ACGGAAGAAACGGCCTAAACGACA -ACGGAAGAAACGGCCTAAAGCTCA -ACGGAAGAAACGGCCTAATCACGT -ACGGAAGAAACGGCCTAACGTAGT -ACGGAAGAAACGGCCTAAGTCAGT -ACGGAAGAAACGGCCTAAGAAGGT -ACGGAAGAAACGGCCTAAAACCGT -ACGGAAGAAACGGCCTAATTGTGC -ACGGAAGAAACGGCCTAACTAAGC -ACGGAAGAAACGGCCTAAACTAGC -ACGGAAGAAACGGCCTAAAGATGC -ACGGAAGAAACGGCCTAATGAAGG -ACGGAAGAAACGGCCTAACAATGG -ACGGAAGAAACGGCCTAAATGAGG -ACGGAAGAAACGGCCTAAAATGGG -ACGGAAGAAACGGCCTAATCCTGA -ACGGAAGAAACGGCCTAATAGCGA -ACGGAAGAAACGGCCTAACACAGA -ACGGAAGAAACGGCCTAAGCAAGA -ACGGAAGAAACGGCCTAAGGTTGA -ACGGAAGAAACGGCCTAATCCGAT -ACGGAAGAAACGGCCTAATGGCAT -ACGGAAGAAACGGCCTAACGAGAT -ACGGAAGAAACGGCCTAATACCAC -ACGGAAGAAACGGCCTAACAGAAC -ACGGAAGAAACGGCCTAAGTCTAC -ACGGAAGAAACGGCCTAAACGTAC -ACGGAAGAAACGGCCTAAAGTGAC -ACGGAAGAAACGGCCTAACTGTAG -ACGGAAGAAACGGCCTAACCTAAG -ACGGAAGAAACGGCCTAAGTTCAG -ACGGAAGAAACGGCCTAAGCATAG -ACGGAAGAAACGGCCTAAGACAAG -ACGGAAGAAACGGCCTAAAAGCAG -ACGGAAGAAACGGCCTAACGTCAA -ACGGAAGAAACGGCCTAAGCTGAA -ACGGAAGAAACGGCCTAAAGTACG -ACGGAAGAAACGGCCTAAATCCGA -ACGGAAGAAACGGCCTAAATGGGA -ACGGAAGAAACGGCCTAAGTGCAA -ACGGAAGAAACGGCCTAAGAGGAA -ACGGAAGAAACGGCCTAACAGGTA -ACGGAAGAAACGGCCTAAGACTCT -ACGGAAGAAACGGCCTAAAGTCCT -ACGGAAGAAACGGCCTAATAAGCC -ACGGAAGAAACGGCCTAAATAGCC -ACGGAAGAAACGGCCTAATAACCG -ACGGAAGAAACGGCCTAAATGCCA -ACGGAAGAAACGGCCATAGGAAAC -ACGGAAGAAACGGCCATAAACACC -ACGGAAGAAACGGCCATAATCGAG -ACGGAAGAAACGGCCATACTCCTT -ACGGAAGAAACGGCCATACCTGTT -ACGGAAGAAACGGCCATACGGTTT -ACGGAAGAAACGGCCATAGTGGTT -ACGGAAGAAACGGCCATAGCCTTT -ACGGAAGAAACGGCCATAGGTCTT -ACGGAAGAAACGGCCATAACGCTT -ACGGAAGAAACGGCCATAAGCGTT -ACGGAAGAAACGGCCATATTCGTC -ACGGAAGAAACGGCCATATCTCTC -ACGGAAGAAACGGCCATATGGATC -ACGGAAGAAACGGCCATACACTTC -ACGGAAGAAACGGCCATAGTACTC -ACGGAAGAAACGGCCATAGATGTC -ACGGAAGAAACGGCCATAACAGTC -ACGGAAGAAACGGCCATATTGCTG -ACGGAAGAAACGGCCATATCCATG -ACGGAAGAAACGGCCATATGTGTG -ACGGAAGAAACGGCCATACTAGTG -ACGGAAGAAACGGCCATACATCTG -ACGGAAGAAACGGCCATAGAGTTG -ACGGAAGAAACGGCCATAAGACTG -ACGGAAGAAACGGCCATATCGGTA -ACGGAAGAAACGGCCATATGCCTA -ACGGAAGAAACGGCCATACCACTA -ACGGAAGAAACGGCCATAGGAGTA -ACGGAAGAAACGGCCATATCGTCT -ACGGAAGAAACGGCCATATGCACT -ACGGAAGAAACGGCCATACTGACT -ACGGAAGAAACGGCCATACAACCT -ACGGAAGAAACGGCCATAGCTACT -ACGGAAGAAACGGCCATAGGATCT -ACGGAAGAAACGGCCATAAAGGCT -ACGGAAGAAACGGCCATATCAACC -ACGGAAGAAACGGCCATATGTTCC -ACGGAAGAAACGGCCATAATTCCC -ACGGAAGAAACGGCCATATTCTCG -ACGGAAGAAACGGCCATATAGACG -ACGGAAGAAACGGCCATAGTAACG -ACGGAAGAAACGGCCATAACTTCG -ACGGAAGAAACGGCCATATACGCA -ACGGAAGAAACGGCCATACTTGCA -ACGGAAGAAACGGCCATACGAACA -ACGGAAGAAACGGCCATACAGTCA -ACGGAAGAAACGGCCATAGATCCA -ACGGAAGAAACGGCCATAACGACA -ACGGAAGAAACGGCCATAAGCTCA -ACGGAAGAAACGGCCATATCACGT -ACGGAAGAAACGGCCATACGTAGT -ACGGAAGAAACGGCCATAGTCAGT -ACGGAAGAAACGGCCATAGAAGGT -ACGGAAGAAACGGCCATAAACCGT -ACGGAAGAAACGGCCATATTGTGC -ACGGAAGAAACGGCCATACTAAGC -ACGGAAGAAACGGCCATAACTAGC -ACGGAAGAAACGGCCATAAGATGC -ACGGAAGAAACGGCCATATGAAGG -ACGGAAGAAACGGCCATACAATGG -ACGGAAGAAACGGCCATAATGAGG -ACGGAAGAAACGGCCATAAATGGG -ACGGAAGAAACGGCCATATCCTGA -ACGGAAGAAACGGCCATATAGCGA -ACGGAAGAAACGGCCATACACAGA -ACGGAAGAAACGGCCATAGCAAGA -ACGGAAGAAACGGCCATAGGTTGA -ACGGAAGAAACGGCCATATCCGAT -ACGGAAGAAACGGCCATATGGCAT -ACGGAAGAAACGGCCATACGAGAT -ACGGAAGAAACGGCCATATACCAC -ACGGAAGAAACGGCCATACAGAAC -ACGGAAGAAACGGCCATAGTCTAC -ACGGAAGAAACGGCCATAACGTAC -ACGGAAGAAACGGCCATAAGTGAC -ACGGAAGAAACGGCCATACTGTAG -ACGGAAGAAACGGCCATACCTAAG -ACGGAAGAAACGGCCATAGTTCAG -ACGGAAGAAACGGCCATAGCATAG -ACGGAAGAAACGGCCATAGACAAG -ACGGAAGAAACGGCCATAAAGCAG -ACGGAAGAAACGGCCATACGTCAA -ACGGAAGAAACGGCCATAGCTGAA -ACGGAAGAAACGGCCATAAGTACG -ACGGAAGAAACGGCCATAATCCGA -ACGGAAGAAACGGCCATAATGGGA -ACGGAAGAAACGGCCATAGTGCAA -ACGGAAGAAACGGCCATAGAGGAA -ACGGAAGAAACGGCCATACAGGTA -ACGGAAGAAACGGCCATAGACTCT -ACGGAAGAAACGGCCATAAGTCCT -ACGGAAGAAACGGCCATATAAGCC -ACGGAAGAAACGGCCATAATAGCC -ACGGAAGAAACGGCCATATAACCG -ACGGAAGAAACGGCCATAATGCCA -ACGGAAGAAACGCCGTAAGGAAAC -ACGGAAGAAACGCCGTAAAACACC -ACGGAAGAAACGCCGTAAATCGAG -ACGGAAGAAACGCCGTAACTCCTT -ACGGAAGAAACGCCGTAACCTGTT -ACGGAAGAAACGCCGTAACGGTTT -ACGGAAGAAACGCCGTAAGTGGTT -ACGGAAGAAACGCCGTAAGCCTTT -ACGGAAGAAACGCCGTAAGGTCTT -ACGGAAGAAACGCCGTAAACGCTT -ACGGAAGAAACGCCGTAAAGCGTT -ACGGAAGAAACGCCGTAATTCGTC -ACGGAAGAAACGCCGTAATCTCTC -ACGGAAGAAACGCCGTAATGGATC -ACGGAAGAAACGCCGTAACACTTC -ACGGAAGAAACGCCGTAAGTACTC -ACGGAAGAAACGCCGTAAGATGTC -ACGGAAGAAACGCCGTAAACAGTC -ACGGAAGAAACGCCGTAATTGCTG -ACGGAAGAAACGCCGTAATCCATG -ACGGAAGAAACGCCGTAATGTGTG -ACGGAAGAAACGCCGTAACTAGTG -ACGGAAGAAACGCCGTAACATCTG -ACGGAAGAAACGCCGTAAGAGTTG -ACGGAAGAAACGCCGTAAAGACTG -ACGGAAGAAACGCCGTAATCGGTA -ACGGAAGAAACGCCGTAATGCCTA -ACGGAAGAAACGCCGTAACCACTA -ACGGAAGAAACGCCGTAAGGAGTA -ACGGAAGAAACGCCGTAATCGTCT -ACGGAAGAAACGCCGTAATGCACT -ACGGAAGAAACGCCGTAACTGACT -ACGGAAGAAACGCCGTAACAACCT -ACGGAAGAAACGCCGTAAGCTACT -ACGGAAGAAACGCCGTAAGGATCT -ACGGAAGAAACGCCGTAAAAGGCT -ACGGAAGAAACGCCGTAATCAACC -ACGGAAGAAACGCCGTAATGTTCC -ACGGAAGAAACGCCGTAAATTCCC -ACGGAAGAAACGCCGTAATTCTCG -ACGGAAGAAACGCCGTAATAGACG -ACGGAAGAAACGCCGTAAGTAACG -ACGGAAGAAACGCCGTAAACTTCG -ACGGAAGAAACGCCGTAATACGCA -ACGGAAGAAACGCCGTAACTTGCA -ACGGAAGAAACGCCGTAACGAACA -ACGGAAGAAACGCCGTAACAGTCA -ACGGAAGAAACGCCGTAAGATCCA -ACGGAAGAAACGCCGTAAACGACA -ACGGAAGAAACGCCGTAAAGCTCA -ACGGAAGAAACGCCGTAATCACGT -ACGGAAGAAACGCCGTAACGTAGT -ACGGAAGAAACGCCGTAAGTCAGT -ACGGAAGAAACGCCGTAAGAAGGT -ACGGAAGAAACGCCGTAAAACCGT -ACGGAAGAAACGCCGTAATTGTGC -ACGGAAGAAACGCCGTAACTAAGC -ACGGAAGAAACGCCGTAAACTAGC -ACGGAAGAAACGCCGTAAAGATGC -ACGGAAGAAACGCCGTAATGAAGG -ACGGAAGAAACGCCGTAACAATGG -ACGGAAGAAACGCCGTAAATGAGG -ACGGAAGAAACGCCGTAAAATGGG -ACGGAAGAAACGCCGTAATCCTGA -ACGGAAGAAACGCCGTAATAGCGA -ACGGAAGAAACGCCGTAACACAGA -ACGGAAGAAACGCCGTAAGCAAGA -ACGGAAGAAACGCCGTAAGGTTGA -ACGGAAGAAACGCCGTAATCCGAT -ACGGAAGAAACGCCGTAATGGCAT -ACGGAAGAAACGCCGTAACGAGAT -ACGGAAGAAACGCCGTAATACCAC -ACGGAAGAAACGCCGTAACAGAAC -ACGGAAGAAACGCCGTAAGTCTAC -ACGGAAGAAACGCCGTAAACGTAC -ACGGAAGAAACGCCGTAAAGTGAC -ACGGAAGAAACGCCGTAACTGTAG -ACGGAAGAAACGCCGTAACCTAAG -ACGGAAGAAACGCCGTAAGTTCAG -ACGGAAGAAACGCCGTAAGCATAG -ACGGAAGAAACGCCGTAAGACAAG -ACGGAAGAAACGCCGTAAAAGCAG -ACGGAAGAAACGCCGTAACGTCAA -ACGGAAGAAACGCCGTAAGCTGAA -ACGGAAGAAACGCCGTAAAGTACG -ACGGAAGAAACGCCGTAAATCCGA -ACGGAAGAAACGCCGTAAATGGGA -ACGGAAGAAACGCCGTAAGTGCAA -ACGGAAGAAACGCCGTAAGAGGAA -ACGGAAGAAACGCCGTAACAGGTA -ACGGAAGAAACGCCGTAAGACTCT -ACGGAAGAAACGCCGTAAAGTCCT -ACGGAAGAAACGCCGTAATAAGCC -ACGGAAGAAACGCCGTAAATAGCC -ACGGAAGAAACGCCGTAATAACCG -ACGGAAGAAACGCCGTAAATGCCA -ACGGAAGAAACGCCAATGGGAAAC -ACGGAAGAAACGCCAATGAACACC -ACGGAAGAAACGCCAATGATCGAG -ACGGAAGAAACGCCAATGCTCCTT -ACGGAAGAAACGCCAATGCCTGTT -ACGGAAGAAACGCCAATGCGGTTT -ACGGAAGAAACGCCAATGGTGGTT -ACGGAAGAAACGCCAATGGCCTTT -ACGGAAGAAACGCCAATGGGTCTT -ACGGAAGAAACGCCAATGACGCTT -ACGGAAGAAACGCCAATGAGCGTT -ACGGAAGAAACGCCAATGTTCGTC -ACGGAAGAAACGCCAATGTCTCTC -ACGGAAGAAACGCCAATGTGGATC -ACGGAAGAAACGCCAATGCACTTC -ACGGAAGAAACGCCAATGGTACTC -ACGGAAGAAACGCCAATGGATGTC -ACGGAAGAAACGCCAATGACAGTC -ACGGAAGAAACGCCAATGTTGCTG -ACGGAAGAAACGCCAATGTCCATG -ACGGAAGAAACGCCAATGTGTGTG -ACGGAAGAAACGCCAATGCTAGTG -ACGGAAGAAACGCCAATGCATCTG -ACGGAAGAAACGCCAATGGAGTTG -ACGGAAGAAACGCCAATGAGACTG -ACGGAAGAAACGCCAATGTCGGTA -ACGGAAGAAACGCCAATGTGCCTA -ACGGAAGAAACGCCAATGCCACTA -ACGGAAGAAACGCCAATGGGAGTA -ACGGAAGAAACGCCAATGTCGTCT -ACGGAAGAAACGCCAATGTGCACT -ACGGAAGAAACGCCAATGCTGACT -ACGGAAGAAACGCCAATGCAACCT -ACGGAAGAAACGCCAATGGCTACT -ACGGAAGAAACGCCAATGGGATCT -ACGGAAGAAACGCCAATGAAGGCT -ACGGAAGAAACGCCAATGTCAACC -ACGGAAGAAACGCCAATGTGTTCC -ACGGAAGAAACGCCAATGATTCCC -ACGGAAGAAACGCCAATGTTCTCG -ACGGAAGAAACGCCAATGTAGACG -ACGGAAGAAACGCCAATGGTAACG -ACGGAAGAAACGCCAATGACTTCG -ACGGAAGAAACGCCAATGTACGCA -ACGGAAGAAACGCCAATGCTTGCA -ACGGAAGAAACGCCAATGCGAACA -ACGGAAGAAACGCCAATGCAGTCA -ACGGAAGAAACGCCAATGGATCCA -ACGGAAGAAACGCCAATGACGACA -ACGGAAGAAACGCCAATGAGCTCA -ACGGAAGAAACGCCAATGTCACGT -ACGGAAGAAACGCCAATGCGTAGT -ACGGAAGAAACGCCAATGGTCAGT -ACGGAAGAAACGCCAATGGAAGGT -ACGGAAGAAACGCCAATGAACCGT -ACGGAAGAAACGCCAATGTTGTGC -ACGGAAGAAACGCCAATGCTAAGC -ACGGAAGAAACGCCAATGACTAGC -ACGGAAGAAACGCCAATGAGATGC -ACGGAAGAAACGCCAATGTGAAGG -ACGGAAGAAACGCCAATGCAATGG -ACGGAAGAAACGCCAATGATGAGG -ACGGAAGAAACGCCAATGAATGGG -ACGGAAGAAACGCCAATGTCCTGA -ACGGAAGAAACGCCAATGTAGCGA -ACGGAAGAAACGCCAATGCACAGA -ACGGAAGAAACGCCAATGGCAAGA -ACGGAAGAAACGCCAATGGGTTGA -ACGGAAGAAACGCCAATGTCCGAT -ACGGAAGAAACGCCAATGTGGCAT -ACGGAAGAAACGCCAATGCGAGAT -ACGGAAGAAACGCCAATGTACCAC -ACGGAAGAAACGCCAATGCAGAAC -ACGGAAGAAACGCCAATGGTCTAC -ACGGAAGAAACGCCAATGACGTAC -ACGGAAGAAACGCCAATGAGTGAC -ACGGAAGAAACGCCAATGCTGTAG -ACGGAAGAAACGCCAATGCCTAAG -ACGGAAGAAACGCCAATGGTTCAG -ACGGAAGAAACGCCAATGGCATAG -ACGGAAGAAACGCCAATGGACAAG -ACGGAAGAAACGCCAATGAAGCAG -ACGGAAGAAACGCCAATGCGTCAA -ACGGAAGAAACGCCAATGGCTGAA -ACGGAAGAAACGCCAATGAGTACG -ACGGAAGAAACGCCAATGATCCGA -ACGGAAGAAACGCCAATGATGGGA -ACGGAAGAAACGCCAATGGTGCAA -ACGGAAGAAACGCCAATGGAGGAA -ACGGAAGAAACGCCAATGCAGGTA -ACGGAAGAAACGCCAATGGACTCT -ACGGAAGAAACGCCAATGAGTCCT -ACGGAAGAAACGCCAATGTAAGCC -ACGGAAGAAACGCCAATGATAGCC -ACGGAAGAAACGCCAATGTAACCG -ACGGAAGAAACGCCAATGATGCCA -ACGGAAACACCAAACGGAGGAAAC -ACGGAAACACCAAACGGAAACACC -ACGGAAACACCAAACGGAATCGAG -ACGGAAACACCAAACGGACTCCTT -ACGGAAACACCAAACGGACCTGTT -ACGGAAACACCAAACGGACGGTTT -ACGGAAACACCAAACGGAGTGGTT -ACGGAAACACCAAACGGAGCCTTT -ACGGAAACACCAAACGGAGGTCTT -ACGGAAACACCAAACGGAACGCTT -ACGGAAACACCAAACGGAAGCGTT -ACGGAAACACCAAACGGATTCGTC -ACGGAAACACCAAACGGATCTCTC -ACGGAAACACCAAACGGATGGATC -ACGGAAACACCAAACGGACACTTC -ACGGAAACACCAAACGGAGTACTC -ACGGAAACACCAAACGGAGATGTC -ACGGAAACACCAAACGGAACAGTC -ACGGAAACACCAAACGGATTGCTG -ACGGAAACACCAAACGGATCCATG -ACGGAAACACCAAACGGATGTGTG -ACGGAAACACCAAACGGACTAGTG -ACGGAAACACCAAACGGACATCTG -ACGGAAACACCAAACGGAGAGTTG -ACGGAAACACCAAACGGAAGACTG -ACGGAAACACCAAACGGATCGGTA -ACGGAAACACCAAACGGATGCCTA -ACGGAAACACCAAACGGACCACTA -ACGGAAACACCAAACGGAGGAGTA -ACGGAAACACCAAACGGATCGTCT -ACGGAAACACCAAACGGATGCACT -ACGGAAACACCAAACGGACTGACT -ACGGAAACACCAAACGGACAACCT -ACGGAAACACCAAACGGAGCTACT -ACGGAAACACCAAACGGAGGATCT -ACGGAAACACCAAACGGAAAGGCT -ACGGAAACACCAAACGGATCAACC -ACGGAAACACCAAACGGATGTTCC -ACGGAAACACCAAACGGAATTCCC -ACGGAAACACCAAACGGATTCTCG -ACGGAAACACCAAACGGATAGACG -ACGGAAACACCAAACGGAGTAACG -ACGGAAACACCAAACGGAACTTCG -ACGGAAACACCAAACGGATACGCA -ACGGAAACACCAAACGGACTTGCA -ACGGAAACACCAAACGGACGAACA -ACGGAAACACCAAACGGACAGTCA -ACGGAAACACCAAACGGAGATCCA -ACGGAAACACCAAACGGAACGACA -ACGGAAACACCAAACGGAAGCTCA -ACGGAAACACCAAACGGATCACGT -ACGGAAACACCAAACGGACGTAGT -ACGGAAACACCAAACGGAGTCAGT -ACGGAAACACCAAACGGAGAAGGT -ACGGAAACACCAAACGGAAACCGT -ACGGAAACACCAAACGGATTGTGC -ACGGAAACACCAAACGGACTAAGC -ACGGAAACACCAAACGGAACTAGC -ACGGAAACACCAAACGGAAGATGC -ACGGAAACACCAAACGGATGAAGG -ACGGAAACACCAAACGGACAATGG -ACGGAAACACCAAACGGAATGAGG -ACGGAAACACCAAACGGAAATGGG -ACGGAAACACCAAACGGATCCTGA -ACGGAAACACCAAACGGATAGCGA -ACGGAAACACCAAACGGACACAGA -ACGGAAACACCAAACGGAGCAAGA -ACGGAAACACCAAACGGAGGTTGA -ACGGAAACACCAAACGGATCCGAT -ACGGAAACACCAAACGGATGGCAT -ACGGAAACACCAAACGGACGAGAT -ACGGAAACACCAAACGGATACCAC -ACGGAAACACCAAACGGACAGAAC -ACGGAAACACCAAACGGAGTCTAC -ACGGAAACACCAAACGGAACGTAC -ACGGAAACACCAAACGGAAGTGAC -ACGGAAACACCAAACGGACTGTAG -ACGGAAACACCAAACGGACCTAAG -ACGGAAACACCAAACGGAGTTCAG -ACGGAAACACCAAACGGAGCATAG -ACGGAAACACCAAACGGAGACAAG -ACGGAAACACCAAACGGAAAGCAG -ACGGAAACACCAAACGGACGTCAA -ACGGAAACACCAAACGGAGCTGAA -ACGGAAACACCAAACGGAAGTACG -ACGGAAACACCAAACGGAATCCGA -ACGGAAACACCAAACGGAATGGGA -ACGGAAACACCAAACGGAGTGCAA -ACGGAAACACCAAACGGAGAGGAA -ACGGAAACACCAAACGGACAGGTA -ACGGAAACACCAAACGGAGACTCT -ACGGAAACACCAAACGGAAGTCCT -ACGGAAACACCAAACGGATAAGCC -ACGGAAACACCAAACGGAATAGCC -ACGGAAACACCAAACGGATAACCG -ACGGAAACACCAAACGGAATGCCA -ACGGAAACACCAACCAACGGAAAC -ACGGAAACACCAACCAACAACACC -ACGGAAACACCAACCAACATCGAG -ACGGAAACACCAACCAACCTCCTT -ACGGAAACACCAACCAACCCTGTT -ACGGAAACACCAACCAACCGGTTT -ACGGAAACACCAACCAACGTGGTT -ACGGAAACACCAACCAACGCCTTT -ACGGAAACACCAACCAACGGTCTT -ACGGAAACACCAACCAACACGCTT -ACGGAAACACCAACCAACAGCGTT -ACGGAAACACCAACCAACTTCGTC -ACGGAAACACCAACCAACTCTCTC -ACGGAAACACCAACCAACTGGATC -ACGGAAACACCAACCAACCACTTC -ACGGAAACACCAACCAACGTACTC -ACGGAAACACCAACCAACGATGTC -ACGGAAACACCAACCAACACAGTC -ACGGAAACACCAACCAACTTGCTG -ACGGAAACACCAACCAACTCCATG -ACGGAAACACCAACCAACTGTGTG -ACGGAAACACCAACCAACCTAGTG -ACGGAAACACCAACCAACCATCTG -ACGGAAACACCAACCAACGAGTTG -ACGGAAACACCAACCAACAGACTG -ACGGAAACACCAACCAACTCGGTA -ACGGAAACACCAACCAACTGCCTA -ACGGAAACACCAACCAACCCACTA -ACGGAAACACCAACCAACGGAGTA -ACGGAAACACCAACCAACTCGTCT -ACGGAAACACCAACCAACTGCACT -ACGGAAACACCAACCAACCTGACT -ACGGAAACACCAACCAACCAACCT -ACGGAAACACCAACCAACGCTACT -ACGGAAACACCAACCAACGGATCT -ACGGAAACACCAACCAACAAGGCT -ACGGAAACACCAACCAACTCAACC -ACGGAAACACCAACCAACTGTTCC -ACGGAAACACCAACCAACATTCCC -ACGGAAACACCAACCAACTTCTCG -ACGGAAACACCAACCAACTAGACG -ACGGAAACACCAACCAACGTAACG -ACGGAAACACCAACCAACACTTCG -ACGGAAACACCAACCAACTACGCA -ACGGAAACACCAACCAACCTTGCA -ACGGAAACACCAACCAACCGAACA -ACGGAAACACCAACCAACCAGTCA -ACGGAAACACCAACCAACGATCCA -ACGGAAACACCAACCAACACGACA -ACGGAAACACCAACCAACAGCTCA -ACGGAAACACCAACCAACTCACGT -ACGGAAACACCAACCAACCGTAGT -ACGGAAACACCAACCAACGTCAGT -ACGGAAACACCAACCAACGAAGGT -ACGGAAACACCAACCAACAACCGT -ACGGAAACACCAACCAACTTGTGC -ACGGAAACACCAACCAACCTAAGC -ACGGAAACACCAACCAACACTAGC -ACGGAAACACCAACCAACAGATGC -ACGGAAACACCAACCAACTGAAGG -ACGGAAACACCAACCAACCAATGG -ACGGAAACACCAACCAACATGAGG -ACGGAAACACCAACCAACAATGGG -ACGGAAACACCAACCAACTCCTGA -ACGGAAACACCAACCAACTAGCGA -ACGGAAACACCAACCAACCACAGA -ACGGAAACACCAACCAACGCAAGA -ACGGAAACACCAACCAACGGTTGA -ACGGAAACACCAACCAACTCCGAT -ACGGAAACACCAACCAACTGGCAT -ACGGAAACACCAACCAACCGAGAT -ACGGAAACACCAACCAACTACCAC -ACGGAAACACCAACCAACCAGAAC -ACGGAAACACCAACCAACGTCTAC -ACGGAAACACCAACCAACACGTAC -ACGGAAACACCAACCAACAGTGAC -ACGGAAACACCAACCAACCTGTAG -ACGGAAACACCAACCAACCCTAAG -ACGGAAACACCAACCAACGTTCAG -ACGGAAACACCAACCAACGCATAG -ACGGAAACACCAACCAACGACAAG -ACGGAAACACCAACCAACAAGCAG -ACGGAAACACCAACCAACCGTCAA -ACGGAAACACCAACCAACGCTGAA -ACGGAAACACCAACCAACAGTACG -ACGGAAACACCAACCAACATCCGA -ACGGAAACACCAACCAACATGGGA -ACGGAAACACCAACCAACGTGCAA -ACGGAAACACCAACCAACGAGGAA -ACGGAAACACCAACCAACCAGGTA -ACGGAAACACCAACCAACGACTCT -ACGGAAACACCAACCAACAGTCCT -ACGGAAACACCAACCAACTAAGCC -ACGGAAACACCAACCAACATAGCC -ACGGAAACACCAACCAACTAACCG -ACGGAAACACCAACCAACATGCCA -ACGGAAACACCAGAGATCGGAAAC -ACGGAAACACCAGAGATCAACACC -ACGGAAACACCAGAGATCATCGAG -ACGGAAACACCAGAGATCCTCCTT -ACGGAAACACCAGAGATCCCTGTT -ACGGAAACACCAGAGATCCGGTTT -ACGGAAACACCAGAGATCGTGGTT -ACGGAAACACCAGAGATCGCCTTT -ACGGAAACACCAGAGATCGGTCTT -ACGGAAACACCAGAGATCACGCTT -ACGGAAACACCAGAGATCAGCGTT -ACGGAAACACCAGAGATCTTCGTC -ACGGAAACACCAGAGATCTCTCTC -ACGGAAACACCAGAGATCTGGATC -ACGGAAACACCAGAGATCCACTTC -ACGGAAACACCAGAGATCGTACTC -ACGGAAACACCAGAGATCGATGTC -ACGGAAACACCAGAGATCACAGTC -ACGGAAACACCAGAGATCTTGCTG -ACGGAAACACCAGAGATCTCCATG -ACGGAAACACCAGAGATCTGTGTG -ACGGAAACACCAGAGATCCTAGTG -ACGGAAACACCAGAGATCCATCTG -ACGGAAACACCAGAGATCGAGTTG -ACGGAAACACCAGAGATCAGACTG -ACGGAAACACCAGAGATCTCGGTA -ACGGAAACACCAGAGATCTGCCTA -ACGGAAACACCAGAGATCCCACTA -ACGGAAACACCAGAGATCGGAGTA -ACGGAAACACCAGAGATCTCGTCT -ACGGAAACACCAGAGATCTGCACT -ACGGAAACACCAGAGATCCTGACT -ACGGAAACACCAGAGATCCAACCT -ACGGAAACACCAGAGATCGCTACT -ACGGAAACACCAGAGATCGGATCT -ACGGAAACACCAGAGATCAAGGCT -ACGGAAACACCAGAGATCTCAACC -ACGGAAACACCAGAGATCTGTTCC -ACGGAAACACCAGAGATCATTCCC -ACGGAAACACCAGAGATCTTCTCG -ACGGAAACACCAGAGATCTAGACG -ACGGAAACACCAGAGATCGTAACG -ACGGAAACACCAGAGATCACTTCG -ACGGAAACACCAGAGATCTACGCA -ACGGAAACACCAGAGATCCTTGCA -ACGGAAACACCAGAGATCCGAACA -ACGGAAACACCAGAGATCCAGTCA -ACGGAAACACCAGAGATCGATCCA -ACGGAAACACCAGAGATCACGACA -ACGGAAACACCAGAGATCAGCTCA -ACGGAAACACCAGAGATCTCACGT -ACGGAAACACCAGAGATCCGTAGT -ACGGAAACACCAGAGATCGTCAGT -ACGGAAACACCAGAGATCGAAGGT -ACGGAAACACCAGAGATCAACCGT -ACGGAAACACCAGAGATCTTGTGC -ACGGAAACACCAGAGATCCTAAGC -ACGGAAACACCAGAGATCACTAGC -ACGGAAACACCAGAGATCAGATGC -ACGGAAACACCAGAGATCTGAAGG -ACGGAAACACCAGAGATCCAATGG -ACGGAAACACCAGAGATCATGAGG -ACGGAAACACCAGAGATCAATGGG -ACGGAAACACCAGAGATCTCCTGA -ACGGAAACACCAGAGATCTAGCGA -ACGGAAACACCAGAGATCCACAGA -ACGGAAACACCAGAGATCGCAAGA -ACGGAAACACCAGAGATCGGTTGA -ACGGAAACACCAGAGATCTCCGAT -ACGGAAACACCAGAGATCTGGCAT -ACGGAAACACCAGAGATCCGAGAT -ACGGAAACACCAGAGATCTACCAC -ACGGAAACACCAGAGATCCAGAAC -ACGGAAACACCAGAGATCGTCTAC -ACGGAAACACCAGAGATCACGTAC -ACGGAAACACCAGAGATCAGTGAC -ACGGAAACACCAGAGATCCTGTAG -ACGGAAACACCAGAGATCCCTAAG -ACGGAAACACCAGAGATCGTTCAG -ACGGAAACACCAGAGATCGCATAG -ACGGAAACACCAGAGATCGACAAG -ACGGAAACACCAGAGATCAAGCAG -ACGGAAACACCAGAGATCCGTCAA -ACGGAAACACCAGAGATCGCTGAA -ACGGAAACACCAGAGATCAGTACG -ACGGAAACACCAGAGATCATCCGA -ACGGAAACACCAGAGATCATGGGA -ACGGAAACACCAGAGATCGTGCAA -ACGGAAACACCAGAGATCGAGGAA -ACGGAAACACCAGAGATCCAGGTA -ACGGAAACACCAGAGATCGACTCT -ACGGAAACACCAGAGATCAGTCCT -ACGGAAACACCAGAGATCTAAGCC -ACGGAAACACCAGAGATCATAGCC -ACGGAAACACCAGAGATCTAACCG -ACGGAAACACCAGAGATCATGCCA -ACGGAAACACCACTTCTCGGAAAC -ACGGAAACACCACTTCTCAACACC -ACGGAAACACCACTTCTCATCGAG -ACGGAAACACCACTTCTCCTCCTT -ACGGAAACACCACTTCTCCCTGTT -ACGGAAACACCACTTCTCCGGTTT -ACGGAAACACCACTTCTCGTGGTT -ACGGAAACACCACTTCTCGCCTTT -ACGGAAACACCACTTCTCGGTCTT -ACGGAAACACCACTTCTCACGCTT -ACGGAAACACCACTTCTCAGCGTT -ACGGAAACACCACTTCTCTTCGTC -ACGGAAACACCACTTCTCTCTCTC -ACGGAAACACCACTTCTCTGGATC -ACGGAAACACCACTTCTCCACTTC -ACGGAAACACCACTTCTCGTACTC -ACGGAAACACCACTTCTCGATGTC -ACGGAAACACCACTTCTCACAGTC -ACGGAAACACCACTTCTCTTGCTG -ACGGAAACACCACTTCTCTCCATG -ACGGAAACACCACTTCTCTGTGTG -ACGGAAACACCACTTCTCCTAGTG -ACGGAAACACCACTTCTCCATCTG -ACGGAAACACCACTTCTCGAGTTG -ACGGAAACACCACTTCTCAGACTG -ACGGAAACACCACTTCTCTCGGTA -ACGGAAACACCACTTCTCTGCCTA -ACGGAAACACCACTTCTCCCACTA -ACGGAAACACCACTTCTCGGAGTA -ACGGAAACACCACTTCTCTCGTCT -ACGGAAACACCACTTCTCTGCACT -ACGGAAACACCACTTCTCCTGACT -ACGGAAACACCACTTCTCCAACCT -ACGGAAACACCACTTCTCGCTACT -ACGGAAACACCACTTCTCGGATCT -ACGGAAACACCACTTCTCAAGGCT -ACGGAAACACCACTTCTCTCAACC -ACGGAAACACCACTTCTCTGTTCC -ACGGAAACACCACTTCTCATTCCC -ACGGAAACACCACTTCTCTTCTCG -ACGGAAACACCACTTCTCTAGACG -ACGGAAACACCACTTCTCGTAACG -ACGGAAACACCACTTCTCACTTCG -ACGGAAACACCACTTCTCTACGCA -ACGGAAACACCACTTCTCCTTGCA -ACGGAAACACCACTTCTCCGAACA -ACGGAAACACCACTTCTCCAGTCA -ACGGAAACACCACTTCTCGATCCA -ACGGAAACACCACTTCTCACGACA -ACGGAAACACCACTTCTCAGCTCA -ACGGAAACACCACTTCTCTCACGT -ACGGAAACACCACTTCTCCGTAGT -ACGGAAACACCACTTCTCGTCAGT -ACGGAAACACCACTTCTCGAAGGT -ACGGAAACACCACTTCTCAACCGT -ACGGAAACACCACTTCTCTTGTGC -ACGGAAACACCACTTCTCCTAAGC -ACGGAAACACCACTTCTCACTAGC -ACGGAAACACCACTTCTCAGATGC -ACGGAAACACCACTTCTCTGAAGG -ACGGAAACACCACTTCTCCAATGG -ACGGAAACACCACTTCTCATGAGG -ACGGAAACACCACTTCTCAATGGG -ACGGAAACACCACTTCTCTCCTGA -ACGGAAACACCACTTCTCTAGCGA -ACGGAAACACCACTTCTCCACAGA -ACGGAAACACCACTTCTCGCAAGA -ACGGAAACACCACTTCTCGGTTGA -ACGGAAACACCACTTCTCTCCGAT -ACGGAAACACCACTTCTCTGGCAT -ACGGAAACACCACTTCTCCGAGAT -ACGGAAACACCACTTCTCTACCAC -ACGGAAACACCACTTCTCCAGAAC -ACGGAAACACCACTTCTCGTCTAC -ACGGAAACACCACTTCTCACGTAC -ACGGAAACACCACTTCTCAGTGAC -ACGGAAACACCACTTCTCCTGTAG -ACGGAAACACCACTTCTCCCTAAG -ACGGAAACACCACTTCTCGTTCAG -ACGGAAACACCACTTCTCGCATAG -ACGGAAACACCACTTCTCGACAAG -ACGGAAACACCACTTCTCAAGCAG -ACGGAAACACCACTTCTCCGTCAA -ACGGAAACACCACTTCTCGCTGAA -ACGGAAACACCACTTCTCAGTACG -ACGGAAACACCACTTCTCATCCGA -ACGGAAACACCACTTCTCATGGGA -ACGGAAACACCACTTCTCGTGCAA -ACGGAAACACCACTTCTCGAGGAA -ACGGAAACACCACTTCTCCAGGTA -ACGGAAACACCACTTCTCGACTCT -ACGGAAACACCACTTCTCAGTCCT -ACGGAAACACCACTTCTCTAAGCC -ACGGAAACACCACTTCTCATAGCC -ACGGAAACACCACTTCTCTAACCG -ACGGAAACACCACTTCTCATGCCA -ACGGAAACACCAGTTCCTGGAAAC -ACGGAAACACCAGTTCCTAACACC -ACGGAAACACCAGTTCCTATCGAG -ACGGAAACACCAGTTCCTCTCCTT -ACGGAAACACCAGTTCCTCCTGTT -ACGGAAACACCAGTTCCTCGGTTT -ACGGAAACACCAGTTCCTGTGGTT -ACGGAAACACCAGTTCCTGCCTTT -ACGGAAACACCAGTTCCTGGTCTT -ACGGAAACACCAGTTCCTACGCTT -ACGGAAACACCAGTTCCTAGCGTT -ACGGAAACACCAGTTCCTTTCGTC -ACGGAAACACCAGTTCCTTCTCTC -ACGGAAACACCAGTTCCTTGGATC -ACGGAAACACCAGTTCCTCACTTC -ACGGAAACACCAGTTCCTGTACTC -ACGGAAACACCAGTTCCTGATGTC -ACGGAAACACCAGTTCCTACAGTC -ACGGAAACACCAGTTCCTTTGCTG -ACGGAAACACCAGTTCCTTCCATG -ACGGAAACACCAGTTCCTTGTGTG -ACGGAAACACCAGTTCCTCTAGTG -ACGGAAACACCAGTTCCTCATCTG -ACGGAAACACCAGTTCCTGAGTTG -ACGGAAACACCAGTTCCTAGACTG -ACGGAAACACCAGTTCCTTCGGTA -ACGGAAACACCAGTTCCTTGCCTA -ACGGAAACACCAGTTCCTCCACTA -ACGGAAACACCAGTTCCTGGAGTA -ACGGAAACACCAGTTCCTTCGTCT -ACGGAAACACCAGTTCCTTGCACT -ACGGAAACACCAGTTCCTCTGACT -ACGGAAACACCAGTTCCTCAACCT -ACGGAAACACCAGTTCCTGCTACT -ACGGAAACACCAGTTCCTGGATCT -ACGGAAACACCAGTTCCTAAGGCT -ACGGAAACACCAGTTCCTTCAACC -ACGGAAACACCAGTTCCTTGTTCC -ACGGAAACACCAGTTCCTATTCCC -ACGGAAACACCAGTTCCTTTCTCG -ACGGAAACACCAGTTCCTTAGACG -ACGGAAACACCAGTTCCTGTAACG -ACGGAAACACCAGTTCCTACTTCG -ACGGAAACACCAGTTCCTTACGCA -ACGGAAACACCAGTTCCTCTTGCA -ACGGAAACACCAGTTCCTCGAACA -ACGGAAACACCAGTTCCTCAGTCA -ACGGAAACACCAGTTCCTGATCCA -ACGGAAACACCAGTTCCTACGACA -ACGGAAACACCAGTTCCTAGCTCA -ACGGAAACACCAGTTCCTTCACGT -ACGGAAACACCAGTTCCTCGTAGT -ACGGAAACACCAGTTCCTGTCAGT -ACGGAAACACCAGTTCCTGAAGGT -ACGGAAACACCAGTTCCTAACCGT -ACGGAAACACCAGTTCCTTTGTGC -ACGGAAACACCAGTTCCTCTAAGC -ACGGAAACACCAGTTCCTACTAGC -ACGGAAACACCAGTTCCTAGATGC -ACGGAAACACCAGTTCCTTGAAGG -ACGGAAACACCAGTTCCTCAATGG -ACGGAAACACCAGTTCCTATGAGG -ACGGAAACACCAGTTCCTAATGGG -ACGGAAACACCAGTTCCTTCCTGA -ACGGAAACACCAGTTCCTTAGCGA -ACGGAAACACCAGTTCCTCACAGA -ACGGAAACACCAGTTCCTGCAAGA -ACGGAAACACCAGTTCCTGGTTGA -ACGGAAACACCAGTTCCTTCCGAT -ACGGAAACACCAGTTCCTTGGCAT -ACGGAAACACCAGTTCCTCGAGAT -ACGGAAACACCAGTTCCTTACCAC -ACGGAAACACCAGTTCCTCAGAAC -ACGGAAACACCAGTTCCTGTCTAC -ACGGAAACACCAGTTCCTACGTAC -ACGGAAACACCAGTTCCTAGTGAC -ACGGAAACACCAGTTCCTCTGTAG -ACGGAAACACCAGTTCCTCCTAAG -ACGGAAACACCAGTTCCTGTTCAG -ACGGAAACACCAGTTCCTGCATAG -ACGGAAACACCAGTTCCTGACAAG -ACGGAAACACCAGTTCCTAAGCAG -ACGGAAACACCAGTTCCTCGTCAA -ACGGAAACACCAGTTCCTGCTGAA -ACGGAAACACCAGTTCCTAGTACG -ACGGAAACACCAGTTCCTATCCGA -ACGGAAACACCAGTTCCTATGGGA -ACGGAAACACCAGTTCCTGTGCAA -ACGGAAACACCAGTTCCTGAGGAA -ACGGAAACACCAGTTCCTCAGGTA -ACGGAAACACCAGTTCCTGACTCT -ACGGAAACACCAGTTCCTAGTCCT -ACGGAAACACCAGTTCCTTAAGCC -ACGGAAACACCAGTTCCTATAGCC -ACGGAAACACCAGTTCCTTAACCG -ACGGAAACACCAGTTCCTATGCCA -ACGGAAACACCATTTCGGGGAAAC -ACGGAAACACCATTTCGGAACACC -ACGGAAACACCATTTCGGATCGAG -ACGGAAACACCATTTCGGCTCCTT -ACGGAAACACCATTTCGGCCTGTT -ACGGAAACACCATTTCGGCGGTTT -ACGGAAACACCATTTCGGGTGGTT -ACGGAAACACCATTTCGGGCCTTT -ACGGAAACACCATTTCGGGGTCTT -ACGGAAACACCATTTCGGACGCTT -ACGGAAACACCATTTCGGAGCGTT -ACGGAAACACCATTTCGGTTCGTC -ACGGAAACACCATTTCGGTCTCTC -ACGGAAACACCATTTCGGTGGATC -ACGGAAACACCATTTCGGCACTTC -ACGGAAACACCATTTCGGGTACTC -ACGGAAACACCATTTCGGGATGTC -ACGGAAACACCATTTCGGACAGTC -ACGGAAACACCATTTCGGTTGCTG -ACGGAAACACCATTTCGGTCCATG -ACGGAAACACCATTTCGGTGTGTG -ACGGAAACACCATTTCGGCTAGTG -ACGGAAACACCATTTCGGCATCTG -ACGGAAACACCATTTCGGGAGTTG -ACGGAAACACCATTTCGGAGACTG -ACGGAAACACCATTTCGGTCGGTA -ACGGAAACACCATTTCGGTGCCTA -ACGGAAACACCATTTCGGCCACTA -ACGGAAACACCATTTCGGGGAGTA -ACGGAAACACCATTTCGGTCGTCT -ACGGAAACACCATTTCGGTGCACT -ACGGAAACACCATTTCGGCTGACT -ACGGAAACACCATTTCGGCAACCT -ACGGAAACACCATTTCGGGCTACT -ACGGAAACACCATTTCGGGGATCT -ACGGAAACACCATTTCGGAAGGCT -ACGGAAACACCATTTCGGTCAACC -ACGGAAACACCATTTCGGTGTTCC -ACGGAAACACCATTTCGGATTCCC -ACGGAAACACCATTTCGGTTCTCG -ACGGAAACACCATTTCGGTAGACG -ACGGAAACACCATTTCGGGTAACG -ACGGAAACACCATTTCGGACTTCG -ACGGAAACACCATTTCGGTACGCA -ACGGAAACACCATTTCGGCTTGCA -ACGGAAACACCATTTCGGCGAACA -ACGGAAACACCATTTCGGCAGTCA -ACGGAAACACCATTTCGGGATCCA -ACGGAAACACCATTTCGGACGACA -ACGGAAACACCATTTCGGAGCTCA -ACGGAAACACCATTTCGGTCACGT -ACGGAAACACCATTTCGGCGTAGT -ACGGAAACACCATTTCGGGTCAGT -ACGGAAACACCATTTCGGGAAGGT -ACGGAAACACCATTTCGGAACCGT -ACGGAAACACCATTTCGGTTGTGC -ACGGAAACACCATTTCGGCTAAGC -ACGGAAACACCATTTCGGACTAGC -ACGGAAACACCATTTCGGAGATGC -ACGGAAACACCATTTCGGTGAAGG -ACGGAAACACCATTTCGGCAATGG -ACGGAAACACCATTTCGGATGAGG -ACGGAAACACCATTTCGGAATGGG -ACGGAAACACCATTTCGGTCCTGA -ACGGAAACACCATTTCGGTAGCGA -ACGGAAACACCATTTCGGCACAGA -ACGGAAACACCATTTCGGGCAAGA -ACGGAAACACCATTTCGGGGTTGA -ACGGAAACACCATTTCGGTCCGAT -ACGGAAACACCATTTCGGTGGCAT -ACGGAAACACCATTTCGGCGAGAT -ACGGAAACACCATTTCGGTACCAC -ACGGAAACACCATTTCGGCAGAAC -ACGGAAACACCATTTCGGGTCTAC -ACGGAAACACCATTTCGGACGTAC -ACGGAAACACCATTTCGGAGTGAC -ACGGAAACACCATTTCGGCTGTAG -ACGGAAACACCATTTCGGCCTAAG -ACGGAAACACCATTTCGGGTTCAG -ACGGAAACACCATTTCGGGCATAG -ACGGAAACACCATTTCGGGACAAG -ACGGAAACACCATTTCGGAAGCAG -ACGGAAACACCATTTCGGCGTCAA -ACGGAAACACCATTTCGGGCTGAA -ACGGAAACACCATTTCGGAGTACG -ACGGAAACACCATTTCGGATCCGA -ACGGAAACACCATTTCGGATGGGA -ACGGAAACACCATTTCGGGTGCAA -ACGGAAACACCATTTCGGGAGGAA -ACGGAAACACCATTTCGGCAGGTA -ACGGAAACACCATTTCGGGACTCT -ACGGAAACACCATTTCGGAGTCCT -ACGGAAACACCATTTCGGTAAGCC -ACGGAAACACCATTTCGGATAGCC -ACGGAAACACCATTTCGGTAACCG -ACGGAAACACCATTTCGGATGCCA -ACGGAAACACCAGTTGTGGGAAAC -ACGGAAACACCAGTTGTGAACACC -ACGGAAACACCAGTTGTGATCGAG -ACGGAAACACCAGTTGTGCTCCTT -ACGGAAACACCAGTTGTGCCTGTT -ACGGAAACACCAGTTGTGCGGTTT -ACGGAAACACCAGTTGTGGTGGTT -ACGGAAACACCAGTTGTGGCCTTT -ACGGAAACACCAGTTGTGGGTCTT -ACGGAAACACCAGTTGTGACGCTT -ACGGAAACACCAGTTGTGAGCGTT -ACGGAAACACCAGTTGTGTTCGTC -ACGGAAACACCAGTTGTGTCTCTC -ACGGAAACACCAGTTGTGTGGATC -ACGGAAACACCAGTTGTGCACTTC -ACGGAAACACCAGTTGTGGTACTC -ACGGAAACACCAGTTGTGGATGTC -ACGGAAACACCAGTTGTGACAGTC -ACGGAAACACCAGTTGTGTTGCTG -ACGGAAACACCAGTTGTGTCCATG -ACGGAAACACCAGTTGTGTGTGTG -ACGGAAACACCAGTTGTGCTAGTG -ACGGAAACACCAGTTGTGCATCTG -ACGGAAACACCAGTTGTGGAGTTG -ACGGAAACACCAGTTGTGAGACTG -ACGGAAACACCAGTTGTGTCGGTA -ACGGAAACACCAGTTGTGTGCCTA -ACGGAAACACCAGTTGTGCCACTA -ACGGAAACACCAGTTGTGGGAGTA -ACGGAAACACCAGTTGTGTCGTCT -ACGGAAACACCAGTTGTGTGCACT -ACGGAAACACCAGTTGTGCTGACT -ACGGAAACACCAGTTGTGCAACCT -ACGGAAACACCAGTTGTGGCTACT -ACGGAAACACCAGTTGTGGGATCT -ACGGAAACACCAGTTGTGAAGGCT -ACGGAAACACCAGTTGTGTCAACC -ACGGAAACACCAGTTGTGTGTTCC -ACGGAAACACCAGTTGTGATTCCC -ACGGAAACACCAGTTGTGTTCTCG -ACGGAAACACCAGTTGTGTAGACG -ACGGAAACACCAGTTGTGGTAACG -ACGGAAACACCAGTTGTGACTTCG -ACGGAAACACCAGTTGTGTACGCA -ACGGAAACACCAGTTGTGCTTGCA -ACGGAAACACCAGTTGTGCGAACA -ACGGAAACACCAGTTGTGCAGTCA -ACGGAAACACCAGTTGTGGATCCA -ACGGAAACACCAGTTGTGACGACA -ACGGAAACACCAGTTGTGAGCTCA -ACGGAAACACCAGTTGTGTCACGT -ACGGAAACACCAGTTGTGCGTAGT -ACGGAAACACCAGTTGTGGTCAGT -ACGGAAACACCAGTTGTGGAAGGT -ACGGAAACACCAGTTGTGAACCGT -ACGGAAACACCAGTTGTGTTGTGC -ACGGAAACACCAGTTGTGCTAAGC -ACGGAAACACCAGTTGTGACTAGC -ACGGAAACACCAGTTGTGAGATGC -ACGGAAACACCAGTTGTGTGAAGG -ACGGAAACACCAGTTGTGCAATGG -ACGGAAACACCAGTTGTGATGAGG -ACGGAAACACCAGTTGTGAATGGG -ACGGAAACACCAGTTGTGTCCTGA -ACGGAAACACCAGTTGTGTAGCGA -ACGGAAACACCAGTTGTGCACAGA -ACGGAAACACCAGTTGTGGCAAGA -ACGGAAACACCAGTTGTGGGTTGA -ACGGAAACACCAGTTGTGTCCGAT -ACGGAAACACCAGTTGTGTGGCAT -ACGGAAACACCAGTTGTGCGAGAT -ACGGAAACACCAGTTGTGTACCAC -ACGGAAACACCAGTTGTGCAGAAC -ACGGAAACACCAGTTGTGGTCTAC -ACGGAAACACCAGTTGTGACGTAC -ACGGAAACACCAGTTGTGAGTGAC -ACGGAAACACCAGTTGTGCTGTAG -ACGGAAACACCAGTTGTGCCTAAG -ACGGAAACACCAGTTGTGGTTCAG -ACGGAAACACCAGTTGTGGCATAG -ACGGAAACACCAGTTGTGGACAAG -ACGGAAACACCAGTTGTGAAGCAG -ACGGAAACACCAGTTGTGCGTCAA -ACGGAAACACCAGTTGTGGCTGAA -ACGGAAACACCAGTTGTGAGTACG -ACGGAAACACCAGTTGTGATCCGA -ACGGAAACACCAGTTGTGATGGGA -ACGGAAACACCAGTTGTGGTGCAA -ACGGAAACACCAGTTGTGGAGGAA -ACGGAAACACCAGTTGTGCAGGTA -ACGGAAACACCAGTTGTGGACTCT -ACGGAAACACCAGTTGTGAGTCCT -ACGGAAACACCAGTTGTGTAAGCC -ACGGAAACACCAGTTGTGATAGCC -ACGGAAACACCAGTTGTGTAACCG -ACGGAAACACCAGTTGTGATGCCA -ACGGAAACACCATTTGCCGGAAAC -ACGGAAACACCATTTGCCAACACC -ACGGAAACACCATTTGCCATCGAG -ACGGAAACACCATTTGCCCTCCTT -ACGGAAACACCATTTGCCCCTGTT -ACGGAAACACCATTTGCCCGGTTT -ACGGAAACACCATTTGCCGTGGTT -ACGGAAACACCATTTGCCGCCTTT -ACGGAAACACCATTTGCCGGTCTT -ACGGAAACACCATTTGCCACGCTT -ACGGAAACACCATTTGCCAGCGTT -ACGGAAACACCATTTGCCTTCGTC -ACGGAAACACCATTTGCCTCTCTC -ACGGAAACACCATTTGCCTGGATC -ACGGAAACACCATTTGCCCACTTC -ACGGAAACACCATTTGCCGTACTC -ACGGAAACACCATTTGCCGATGTC -ACGGAAACACCATTTGCCACAGTC -ACGGAAACACCATTTGCCTTGCTG -ACGGAAACACCATTTGCCTCCATG -ACGGAAACACCATTTGCCTGTGTG -ACGGAAACACCATTTGCCCTAGTG -ACGGAAACACCATTTGCCCATCTG -ACGGAAACACCATTTGCCGAGTTG -ACGGAAACACCATTTGCCAGACTG -ACGGAAACACCATTTGCCTCGGTA -ACGGAAACACCATTTGCCTGCCTA -ACGGAAACACCATTTGCCCCACTA -ACGGAAACACCATTTGCCGGAGTA -ACGGAAACACCATTTGCCTCGTCT -ACGGAAACACCATTTGCCTGCACT -ACGGAAACACCATTTGCCCTGACT -ACGGAAACACCATTTGCCCAACCT -ACGGAAACACCATTTGCCGCTACT -ACGGAAACACCATTTGCCGGATCT -ACGGAAACACCATTTGCCAAGGCT -ACGGAAACACCATTTGCCTCAACC -ACGGAAACACCATTTGCCTGTTCC -ACGGAAACACCATTTGCCATTCCC -ACGGAAACACCATTTGCCTTCTCG -ACGGAAACACCATTTGCCTAGACG -ACGGAAACACCATTTGCCGTAACG -ACGGAAACACCATTTGCCACTTCG -ACGGAAACACCATTTGCCTACGCA -ACGGAAACACCATTTGCCCTTGCA -ACGGAAACACCATTTGCCCGAACA -ACGGAAACACCATTTGCCCAGTCA -ACGGAAACACCATTTGCCGATCCA -ACGGAAACACCATTTGCCACGACA -ACGGAAACACCATTTGCCAGCTCA -ACGGAAACACCATTTGCCTCACGT -ACGGAAACACCATTTGCCCGTAGT -ACGGAAACACCATTTGCCGTCAGT -ACGGAAACACCATTTGCCGAAGGT -ACGGAAACACCATTTGCCAACCGT -ACGGAAACACCATTTGCCTTGTGC -ACGGAAACACCATTTGCCCTAAGC -ACGGAAACACCATTTGCCACTAGC -ACGGAAACACCATTTGCCAGATGC -ACGGAAACACCATTTGCCTGAAGG -ACGGAAACACCATTTGCCCAATGG -ACGGAAACACCATTTGCCATGAGG -ACGGAAACACCATTTGCCAATGGG -ACGGAAACACCATTTGCCTCCTGA -ACGGAAACACCATTTGCCTAGCGA -ACGGAAACACCATTTGCCCACAGA -ACGGAAACACCATTTGCCGCAAGA -ACGGAAACACCATTTGCCGGTTGA -ACGGAAACACCATTTGCCTCCGAT -ACGGAAACACCATTTGCCTGGCAT -ACGGAAACACCATTTGCCCGAGAT -ACGGAAACACCATTTGCCTACCAC -ACGGAAACACCATTTGCCCAGAAC -ACGGAAACACCATTTGCCGTCTAC -ACGGAAACACCATTTGCCACGTAC -ACGGAAACACCATTTGCCAGTGAC -ACGGAAACACCATTTGCCCTGTAG -ACGGAAACACCATTTGCCCCTAAG -ACGGAAACACCATTTGCCGTTCAG -ACGGAAACACCATTTGCCGCATAG -ACGGAAACACCATTTGCCGACAAG -ACGGAAACACCATTTGCCAAGCAG -ACGGAAACACCATTTGCCCGTCAA -ACGGAAACACCATTTGCCGCTGAA -ACGGAAACACCATTTGCCAGTACG -ACGGAAACACCATTTGCCATCCGA -ACGGAAACACCATTTGCCATGGGA -ACGGAAACACCATTTGCCGTGCAA -ACGGAAACACCATTTGCCGAGGAA -ACGGAAACACCATTTGCCCAGGTA -ACGGAAACACCATTTGCCGACTCT -ACGGAAACACCATTTGCCAGTCCT -ACGGAAACACCATTTGCCTAAGCC -ACGGAAACACCATTTGCCATAGCC -ACGGAAACACCATTTGCCTAACCG -ACGGAAACACCATTTGCCATGCCA -ACGGAAACACCACTTGGTGGAAAC -ACGGAAACACCACTTGGTAACACC -ACGGAAACACCACTTGGTATCGAG -ACGGAAACACCACTTGGTCTCCTT -ACGGAAACACCACTTGGTCCTGTT -ACGGAAACACCACTTGGTCGGTTT -ACGGAAACACCACTTGGTGTGGTT -ACGGAAACACCACTTGGTGCCTTT -ACGGAAACACCACTTGGTGGTCTT -ACGGAAACACCACTTGGTACGCTT -ACGGAAACACCACTTGGTAGCGTT -ACGGAAACACCACTTGGTTTCGTC -ACGGAAACACCACTTGGTTCTCTC -ACGGAAACACCACTTGGTTGGATC -ACGGAAACACCACTTGGTCACTTC -ACGGAAACACCACTTGGTGTACTC -ACGGAAACACCACTTGGTGATGTC -ACGGAAACACCACTTGGTACAGTC -ACGGAAACACCACTTGGTTTGCTG -ACGGAAACACCACTTGGTTCCATG -ACGGAAACACCACTTGGTTGTGTG -ACGGAAACACCACTTGGTCTAGTG -ACGGAAACACCACTTGGTCATCTG -ACGGAAACACCACTTGGTGAGTTG -ACGGAAACACCACTTGGTAGACTG -ACGGAAACACCACTTGGTTCGGTA -ACGGAAACACCACTTGGTTGCCTA -ACGGAAACACCACTTGGTCCACTA -ACGGAAACACCACTTGGTGGAGTA -ACGGAAACACCACTTGGTTCGTCT -ACGGAAACACCACTTGGTTGCACT -ACGGAAACACCACTTGGTCTGACT -ACGGAAACACCACTTGGTCAACCT -ACGGAAACACCACTTGGTGCTACT -ACGGAAACACCACTTGGTGGATCT -ACGGAAACACCACTTGGTAAGGCT -ACGGAAACACCACTTGGTTCAACC -ACGGAAACACCACTTGGTTGTTCC -ACGGAAACACCACTTGGTATTCCC -ACGGAAACACCACTTGGTTTCTCG -ACGGAAACACCACTTGGTTAGACG -ACGGAAACACCACTTGGTGTAACG -ACGGAAACACCACTTGGTACTTCG -ACGGAAACACCACTTGGTTACGCA -ACGGAAACACCACTTGGTCTTGCA -ACGGAAACACCACTTGGTCGAACA -ACGGAAACACCACTTGGTCAGTCA -ACGGAAACACCACTTGGTGATCCA -ACGGAAACACCACTTGGTACGACA -ACGGAAACACCACTTGGTAGCTCA -ACGGAAACACCACTTGGTTCACGT -ACGGAAACACCACTTGGTCGTAGT -ACGGAAACACCACTTGGTGTCAGT -ACGGAAACACCACTTGGTGAAGGT -ACGGAAACACCACTTGGTAACCGT -ACGGAAACACCACTTGGTTTGTGC -ACGGAAACACCACTTGGTCTAAGC -ACGGAAACACCACTTGGTACTAGC -ACGGAAACACCACTTGGTAGATGC -ACGGAAACACCACTTGGTTGAAGG -ACGGAAACACCACTTGGTCAATGG -ACGGAAACACCACTTGGTATGAGG -ACGGAAACACCACTTGGTAATGGG -ACGGAAACACCACTTGGTTCCTGA -ACGGAAACACCACTTGGTTAGCGA -ACGGAAACACCACTTGGTCACAGA -ACGGAAACACCACTTGGTGCAAGA -ACGGAAACACCACTTGGTGGTTGA -ACGGAAACACCACTTGGTTCCGAT -ACGGAAACACCACTTGGTTGGCAT -ACGGAAACACCACTTGGTCGAGAT -ACGGAAACACCACTTGGTTACCAC -ACGGAAACACCACTTGGTCAGAAC -ACGGAAACACCACTTGGTGTCTAC -ACGGAAACACCACTTGGTACGTAC -ACGGAAACACCACTTGGTAGTGAC -ACGGAAACACCACTTGGTCTGTAG -ACGGAAACACCACTTGGTCCTAAG -ACGGAAACACCACTTGGTGTTCAG -ACGGAAACACCACTTGGTGCATAG -ACGGAAACACCACTTGGTGACAAG -ACGGAAACACCACTTGGTAAGCAG -ACGGAAACACCACTTGGTCGTCAA -ACGGAAACACCACTTGGTGCTGAA -ACGGAAACACCACTTGGTAGTACG -ACGGAAACACCACTTGGTATCCGA -ACGGAAACACCACTTGGTATGGGA -ACGGAAACACCACTTGGTGTGCAA -ACGGAAACACCACTTGGTGAGGAA -ACGGAAACACCACTTGGTCAGGTA -ACGGAAACACCACTTGGTGACTCT -ACGGAAACACCACTTGGTAGTCCT -ACGGAAACACCACTTGGTTAAGCC -ACGGAAACACCACTTGGTATAGCC -ACGGAAACACCACTTGGTTAACCG -ACGGAAACACCACTTGGTATGCCA -ACGGAAACACCACTTACGGGAAAC -ACGGAAACACCACTTACGAACACC -ACGGAAACACCACTTACGATCGAG -ACGGAAACACCACTTACGCTCCTT -ACGGAAACACCACTTACGCCTGTT -ACGGAAACACCACTTACGCGGTTT -ACGGAAACACCACTTACGGTGGTT -ACGGAAACACCACTTACGGCCTTT -ACGGAAACACCACTTACGGGTCTT -ACGGAAACACCACTTACGACGCTT -ACGGAAACACCACTTACGAGCGTT -ACGGAAACACCACTTACGTTCGTC -ACGGAAACACCACTTACGTCTCTC -ACGGAAACACCACTTACGTGGATC -ACGGAAACACCACTTACGCACTTC -ACGGAAACACCACTTACGGTACTC -ACGGAAACACCACTTACGGATGTC -ACGGAAACACCACTTACGACAGTC -ACGGAAACACCACTTACGTTGCTG -ACGGAAACACCACTTACGTCCATG -ACGGAAACACCACTTACGTGTGTG -ACGGAAACACCACTTACGCTAGTG -ACGGAAACACCACTTACGCATCTG -ACGGAAACACCACTTACGGAGTTG -ACGGAAACACCACTTACGAGACTG -ACGGAAACACCACTTACGTCGGTA -ACGGAAACACCACTTACGTGCCTA -ACGGAAACACCACTTACGCCACTA -ACGGAAACACCACTTACGGGAGTA -ACGGAAACACCACTTACGTCGTCT -ACGGAAACACCACTTACGTGCACT -ACGGAAACACCACTTACGCTGACT -ACGGAAACACCACTTACGCAACCT -ACGGAAACACCACTTACGGCTACT -ACGGAAACACCACTTACGGGATCT -ACGGAAACACCACTTACGAAGGCT -ACGGAAACACCACTTACGTCAACC -ACGGAAACACCACTTACGTGTTCC -ACGGAAACACCACTTACGATTCCC -ACGGAAACACCACTTACGTTCTCG -ACGGAAACACCACTTACGTAGACG -ACGGAAACACCACTTACGGTAACG -ACGGAAACACCACTTACGACTTCG -ACGGAAACACCACTTACGTACGCA -ACGGAAACACCACTTACGCTTGCA -ACGGAAACACCACTTACGCGAACA -ACGGAAACACCACTTACGCAGTCA -ACGGAAACACCACTTACGGATCCA -ACGGAAACACCACTTACGACGACA -ACGGAAACACCACTTACGAGCTCA -ACGGAAACACCACTTACGTCACGT -ACGGAAACACCACTTACGCGTAGT -ACGGAAACACCACTTACGGTCAGT -ACGGAAACACCACTTACGGAAGGT -ACGGAAACACCACTTACGAACCGT -ACGGAAACACCACTTACGTTGTGC -ACGGAAACACCACTTACGCTAAGC -ACGGAAACACCACTTACGACTAGC -ACGGAAACACCACTTACGAGATGC -ACGGAAACACCACTTACGTGAAGG -ACGGAAACACCACTTACGCAATGG -ACGGAAACACCACTTACGATGAGG -ACGGAAACACCACTTACGAATGGG -ACGGAAACACCACTTACGTCCTGA -ACGGAAACACCACTTACGTAGCGA -ACGGAAACACCACTTACGCACAGA -ACGGAAACACCACTTACGGCAAGA -ACGGAAACACCACTTACGGGTTGA -ACGGAAACACCACTTACGTCCGAT -ACGGAAACACCACTTACGTGGCAT -ACGGAAACACCACTTACGCGAGAT -ACGGAAACACCACTTACGTACCAC -ACGGAAACACCACTTACGCAGAAC -ACGGAAACACCACTTACGGTCTAC -ACGGAAACACCACTTACGACGTAC -ACGGAAACACCACTTACGAGTGAC -ACGGAAACACCACTTACGCTGTAG -ACGGAAACACCACTTACGCCTAAG -ACGGAAACACCACTTACGGTTCAG -ACGGAAACACCACTTACGGCATAG -ACGGAAACACCACTTACGGACAAG -ACGGAAACACCACTTACGAAGCAG -ACGGAAACACCACTTACGCGTCAA -ACGGAAACACCACTTACGGCTGAA -ACGGAAACACCACTTACGAGTACG -ACGGAAACACCACTTACGATCCGA -ACGGAAACACCACTTACGATGGGA -ACGGAAACACCACTTACGGTGCAA -ACGGAAACACCACTTACGGAGGAA -ACGGAAACACCACTTACGCAGGTA -ACGGAAACACCACTTACGGACTCT -ACGGAAACACCACTTACGAGTCCT -ACGGAAACACCACTTACGTAAGCC -ACGGAAACACCACTTACGATAGCC -ACGGAAACACCACTTACGTAACCG -ACGGAAACACCACTTACGATGCCA -ACGGAAACACCAGTTAGCGGAAAC -ACGGAAACACCAGTTAGCAACACC -ACGGAAACACCAGTTAGCATCGAG -ACGGAAACACCAGTTAGCCTCCTT -ACGGAAACACCAGTTAGCCCTGTT -ACGGAAACACCAGTTAGCCGGTTT -ACGGAAACACCAGTTAGCGTGGTT -ACGGAAACACCAGTTAGCGCCTTT -ACGGAAACACCAGTTAGCGGTCTT -ACGGAAACACCAGTTAGCACGCTT -ACGGAAACACCAGTTAGCAGCGTT -ACGGAAACACCAGTTAGCTTCGTC -ACGGAAACACCAGTTAGCTCTCTC -ACGGAAACACCAGTTAGCTGGATC -ACGGAAACACCAGTTAGCCACTTC -ACGGAAACACCAGTTAGCGTACTC -ACGGAAACACCAGTTAGCGATGTC -ACGGAAACACCAGTTAGCACAGTC -ACGGAAACACCAGTTAGCTTGCTG -ACGGAAACACCAGTTAGCTCCATG -ACGGAAACACCAGTTAGCTGTGTG -ACGGAAACACCAGTTAGCCTAGTG -ACGGAAACACCAGTTAGCCATCTG -ACGGAAACACCAGTTAGCGAGTTG -ACGGAAACACCAGTTAGCAGACTG -ACGGAAACACCAGTTAGCTCGGTA -ACGGAAACACCAGTTAGCTGCCTA -ACGGAAACACCAGTTAGCCCACTA -ACGGAAACACCAGTTAGCGGAGTA -ACGGAAACACCAGTTAGCTCGTCT -ACGGAAACACCAGTTAGCTGCACT -ACGGAAACACCAGTTAGCCTGACT -ACGGAAACACCAGTTAGCCAACCT -ACGGAAACACCAGTTAGCGCTACT -ACGGAAACACCAGTTAGCGGATCT -ACGGAAACACCAGTTAGCAAGGCT -ACGGAAACACCAGTTAGCTCAACC -ACGGAAACACCAGTTAGCTGTTCC -ACGGAAACACCAGTTAGCATTCCC -ACGGAAACACCAGTTAGCTTCTCG -ACGGAAACACCAGTTAGCTAGACG -ACGGAAACACCAGTTAGCGTAACG -ACGGAAACACCAGTTAGCACTTCG -ACGGAAACACCAGTTAGCTACGCA -ACGGAAACACCAGTTAGCCTTGCA -ACGGAAACACCAGTTAGCCGAACA -ACGGAAACACCAGTTAGCCAGTCA -ACGGAAACACCAGTTAGCGATCCA -ACGGAAACACCAGTTAGCACGACA -ACGGAAACACCAGTTAGCAGCTCA -ACGGAAACACCAGTTAGCTCACGT -ACGGAAACACCAGTTAGCCGTAGT -ACGGAAACACCAGTTAGCGTCAGT -ACGGAAACACCAGTTAGCGAAGGT -ACGGAAACACCAGTTAGCAACCGT -ACGGAAACACCAGTTAGCTTGTGC -ACGGAAACACCAGTTAGCCTAAGC -ACGGAAACACCAGTTAGCACTAGC -ACGGAAACACCAGTTAGCAGATGC -ACGGAAACACCAGTTAGCTGAAGG -ACGGAAACACCAGTTAGCCAATGG -ACGGAAACACCAGTTAGCATGAGG -ACGGAAACACCAGTTAGCAATGGG -ACGGAAACACCAGTTAGCTCCTGA -ACGGAAACACCAGTTAGCTAGCGA -ACGGAAACACCAGTTAGCCACAGA -ACGGAAACACCAGTTAGCGCAAGA -ACGGAAACACCAGTTAGCGGTTGA -ACGGAAACACCAGTTAGCTCCGAT -ACGGAAACACCAGTTAGCTGGCAT -ACGGAAACACCAGTTAGCCGAGAT -ACGGAAACACCAGTTAGCTACCAC -ACGGAAACACCAGTTAGCCAGAAC -ACGGAAACACCAGTTAGCGTCTAC -ACGGAAACACCAGTTAGCACGTAC -ACGGAAACACCAGTTAGCAGTGAC -ACGGAAACACCAGTTAGCCTGTAG -ACGGAAACACCAGTTAGCCCTAAG -ACGGAAACACCAGTTAGCGTTCAG -ACGGAAACACCAGTTAGCGCATAG -ACGGAAACACCAGTTAGCGACAAG -ACGGAAACACCAGTTAGCAAGCAG -ACGGAAACACCAGTTAGCCGTCAA -ACGGAAACACCAGTTAGCGCTGAA -ACGGAAACACCAGTTAGCAGTACG -ACGGAAACACCAGTTAGCATCCGA -ACGGAAACACCAGTTAGCATGGGA -ACGGAAACACCAGTTAGCGTGCAA -ACGGAAACACCAGTTAGCGAGGAA -ACGGAAACACCAGTTAGCCAGGTA -ACGGAAACACCAGTTAGCGACTCT -ACGGAAACACCAGTTAGCAGTCCT -ACGGAAACACCAGTTAGCTAAGCC -ACGGAAACACCAGTTAGCATAGCC -ACGGAAACACCAGTTAGCTAACCG -ACGGAAACACCAGTTAGCATGCCA -ACGGAAACACCAGTCTTCGGAAAC -ACGGAAACACCAGTCTTCAACACC -ACGGAAACACCAGTCTTCATCGAG -ACGGAAACACCAGTCTTCCTCCTT -ACGGAAACACCAGTCTTCCCTGTT -ACGGAAACACCAGTCTTCCGGTTT -ACGGAAACACCAGTCTTCGTGGTT -ACGGAAACACCAGTCTTCGCCTTT -ACGGAAACACCAGTCTTCGGTCTT -ACGGAAACACCAGTCTTCACGCTT -ACGGAAACACCAGTCTTCAGCGTT -ACGGAAACACCAGTCTTCTTCGTC -ACGGAAACACCAGTCTTCTCTCTC -ACGGAAACACCAGTCTTCTGGATC -ACGGAAACACCAGTCTTCCACTTC -ACGGAAACACCAGTCTTCGTACTC -ACGGAAACACCAGTCTTCGATGTC -ACGGAAACACCAGTCTTCACAGTC -ACGGAAACACCAGTCTTCTTGCTG -ACGGAAACACCAGTCTTCTCCATG -ACGGAAACACCAGTCTTCTGTGTG -ACGGAAACACCAGTCTTCCTAGTG -ACGGAAACACCAGTCTTCCATCTG -ACGGAAACACCAGTCTTCGAGTTG -ACGGAAACACCAGTCTTCAGACTG -ACGGAAACACCAGTCTTCTCGGTA -ACGGAAACACCAGTCTTCTGCCTA -ACGGAAACACCAGTCTTCCCACTA -ACGGAAACACCAGTCTTCGGAGTA -ACGGAAACACCAGTCTTCTCGTCT -ACGGAAACACCAGTCTTCTGCACT -ACGGAAACACCAGTCTTCCTGACT -ACGGAAACACCAGTCTTCCAACCT -ACGGAAACACCAGTCTTCGCTACT -ACGGAAACACCAGTCTTCGGATCT -ACGGAAACACCAGTCTTCAAGGCT -ACGGAAACACCAGTCTTCTCAACC -ACGGAAACACCAGTCTTCTGTTCC -ACGGAAACACCAGTCTTCATTCCC -ACGGAAACACCAGTCTTCTTCTCG -ACGGAAACACCAGTCTTCTAGACG -ACGGAAACACCAGTCTTCGTAACG -ACGGAAACACCAGTCTTCACTTCG -ACGGAAACACCAGTCTTCTACGCA -ACGGAAACACCAGTCTTCCTTGCA -ACGGAAACACCAGTCTTCCGAACA -ACGGAAACACCAGTCTTCCAGTCA -ACGGAAACACCAGTCTTCGATCCA -ACGGAAACACCAGTCTTCACGACA -ACGGAAACACCAGTCTTCAGCTCA -ACGGAAACACCAGTCTTCTCACGT -ACGGAAACACCAGTCTTCCGTAGT -ACGGAAACACCAGTCTTCGTCAGT -ACGGAAACACCAGTCTTCGAAGGT -ACGGAAACACCAGTCTTCAACCGT -ACGGAAACACCAGTCTTCTTGTGC -ACGGAAACACCAGTCTTCCTAAGC -ACGGAAACACCAGTCTTCACTAGC -ACGGAAACACCAGTCTTCAGATGC -ACGGAAACACCAGTCTTCTGAAGG -ACGGAAACACCAGTCTTCCAATGG -ACGGAAACACCAGTCTTCATGAGG -ACGGAAACACCAGTCTTCAATGGG -ACGGAAACACCAGTCTTCTCCTGA -ACGGAAACACCAGTCTTCTAGCGA -ACGGAAACACCAGTCTTCCACAGA -ACGGAAACACCAGTCTTCGCAAGA -ACGGAAACACCAGTCTTCGGTTGA -ACGGAAACACCAGTCTTCTCCGAT -ACGGAAACACCAGTCTTCTGGCAT -ACGGAAACACCAGTCTTCCGAGAT -ACGGAAACACCAGTCTTCTACCAC -ACGGAAACACCAGTCTTCCAGAAC -ACGGAAACACCAGTCTTCGTCTAC -ACGGAAACACCAGTCTTCACGTAC -ACGGAAACACCAGTCTTCAGTGAC -ACGGAAACACCAGTCTTCCTGTAG -ACGGAAACACCAGTCTTCCCTAAG -ACGGAAACACCAGTCTTCGTTCAG -ACGGAAACACCAGTCTTCGCATAG -ACGGAAACACCAGTCTTCGACAAG -ACGGAAACACCAGTCTTCAAGCAG -ACGGAAACACCAGTCTTCCGTCAA -ACGGAAACACCAGTCTTCGCTGAA -ACGGAAACACCAGTCTTCAGTACG -ACGGAAACACCAGTCTTCATCCGA -ACGGAAACACCAGTCTTCATGGGA -ACGGAAACACCAGTCTTCGTGCAA -ACGGAAACACCAGTCTTCGAGGAA -ACGGAAACACCAGTCTTCCAGGTA -ACGGAAACACCAGTCTTCGACTCT -ACGGAAACACCAGTCTTCAGTCCT -ACGGAAACACCAGTCTTCTAAGCC -ACGGAAACACCAGTCTTCATAGCC -ACGGAAACACCAGTCTTCTAACCG -ACGGAAACACCAGTCTTCATGCCA -ACGGAAACACCACTCTCTGGAAAC -ACGGAAACACCACTCTCTAACACC -ACGGAAACACCACTCTCTATCGAG -ACGGAAACACCACTCTCTCTCCTT -ACGGAAACACCACTCTCTCCTGTT -ACGGAAACACCACTCTCTCGGTTT -ACGGAAACACCACTCTCTGTGGTT -ACGGAAACACCACTCTCTGCCTTT -ACGGAAACACCACTCTCTGGTCTT -ACGGAAACACCACTCTCTACGCTT -ACGGAAACACCACTCTCTAGCGTT -ACGGAAACACCACTCTCTTTCGTC -ACGGAAACACCACTCTCTTCTCTC -ACGGAAACACCACTCTCTTGGATC -ACGGAAACACCACTCTCTCACTTC -ACGGAAACACCACTCTCTGTACTC -ACGGAAACACCACTCTCTGATGTC -ACGGAAACACCACTCTCTACAGTC -ACGGAAACACCACTCTCTTTGCTG -ACGGAAACACCACTCTCTTCCATG -ACGGAAACACCACTCTCTTGTGTG -ACGGAAACACCACTCTCTCTAGTG -ACGGAAACACCACTCTCTCATCTG -ACGGAAACACCACTCTCTGAGTTG -ACGGAAACACCACTCTCTAGACTG -ACGGAAACACCACTCTCTTCGGTA -ACGGAAACACCACTCTCTTGCCTA -ACGGAAACACCACTCTCTCCACTA -ACGGAAACACCACTCTCTGGAGTA -ACGGAAACACCACTCTCTTCGTCT -ACGGAAACACCACTCTCTTGCACT -ACGGAAACACCACTCTCTCTGACT -ACGGAAACACCACTCTCTCAACCT -ACGGAAACACCACTCTCTGCTACT -ACGGAAACACCACTCTCTGGATCT -ACGGAAACACCACTCTCTAAGGCT -ACGGAAACACCACTCTCTTCAACC -ACGGAAACACCACTCTCTTGTTCC -ACGGAAACACCACTCTCTATTCCC -ACGGAAACACCACTCTCTTTCTCG -ACGGAAACACCACTCTCTTAGACG -ACGGAAACACCACTCTCTGTAACG -ACGGAAACACCACTCTCTACTTCG -ACGGAAACACCACTCTCTTACGCA -ACGGAAACACCACTCTCTCTTGCA -ACGGAAACACCACTCTCTCGAACA -ACGGAAACACCACTCTCTCAGTCA -ACGGAAACACCACTCTCTGATCCA -ACGGAAACACCACTCTCTACGACA -ACGGAAACACCACTCTCTAGCTCA -ACGGAAACACCACTCTCTTCACGT -ACGGAAACACCACTCTCTCGTAGT -ACGGAAACACCACTCTCTGTCAGT -ACGGAAACACCACTCTCTGAAGGT -ACGGAAACACCACTCTCTAACCGT -ACGGAAACACCACTCTCTTTGTGC -ACGGAAACACCACTCTCTCTAAGC -ACGGAAACACCACTCTCTACTAGC -ACGGAAACACCACTCTCTAGATGC -ACGGAAACACCACTCTCTTGAAGG -ACGGAAACACCACTCTCTCAATGG -ACGGAAACACCACTCTCTATGAGG -ACGGAAACACCACTCTCTAATGGG -ACGGAAACACCACTCTCTTCCTGA -ACGGAAACACCACTCTCTTAGCGA -ACGGAAACACCACTCTCTCACAGA -ACGGAAACACCACTCTCTGCAAGA -ACGGAAACACCACTCTCTGGTTGA -ACGGAAACACCACTCTCTTCCGAT -ACGGAAACACCACTCTCTTGGCAT -ACGGAAACACCACTCTCTCGAGAT -ACGGAAACACCACTCTCTTACCAC -ACGGAAACACCACTCTCTCAGAAC -ACGGAAACACCACTCTCTGTCTAC -ACGGAAACACCACTCTCTACGTAC -ACGGAAACACCACTCTCTAGTGAC -ACGGAAACACCACTCTCTCTGTAG -ACGGAAACACCACTCTCTCCTAAG -ACGGAAACACCACTCTCTGTTCAG -ACGGAAACACCACTCTCTGCATAG -ACGGAAACACCACTCTCTGACAAG -ACGGAAACACCACTCTCTAAGCAG -ACGGAAACACCACTCTCTCGTCAA -ACGGAAACACCACTCTCTGCTGAA -ACGGAAACACCACTCTCTAGTACG -ACGGAAACACCACTCTCTATCCGA -ACGGAAACACCACTCTCTATGGGA -ACGGAAACACCACTCTCTGTGCAA -ACGGAAACACCACTCTCTGAGGAA -ACGGAAACACCACTCTCTCAGGTA -ACGGAAACACCACTCTCTGACTCT -ACGGAAACACCACTCTCTAGTCCT -ACGGAAACACCACTCTCTTAAGCC -ACGGAAACACCACTCTCTATAGCC -ACGGAAACACCACTCTCTTAACCG -ACGGAAACACCACTCTCTATGCCA -ACGGAAACACCAATCTGGGGAAAC -ACGGAAACACCAATCTGGAACACC -ACGGAAACACCAATCTGGATCGAG -ACGGAAACACCAATCTGGCTCCTT -ACGGAAACACCAATCTGGCCTGTT -ACGGAAACACCAATCTGGCGGTTT -ACGGAAACACCAATCTGGGTGGTT -ACGGAAACACCAATCTGGGCCTTT -ACGGAAACACCAATCTGGGGTCTT -ACGGAAACACCAATCTGGACGCTT -ACGGAAACACCAATCTGGAGCGTT -ACGGAAACACCAATCTGGTTCGTC -ACGGAAACACCAATCTGGTCTCTC -ACGGAAACACCAATCTGGTGGATC -ACGGAAACACCAATCTGGCACTTC -ACGGAAACACCAATCTGGGTACTC -ACGGAAACACCAATCTGGGATGTC -ACGGAAACACCAATCTGGACAGTC -ACGGAAACACCAATCTGGTTGCTG -ACGGAAACACCAATCTGGTCCATG -ACGGAAACACCAATCTGGTGTGTG -ACGGAAACACCAATCTGGCTAGTG -ACGGAAACACCAATCTGGCATCTG -ACGGAAACACCAATCTGGGAGTTG -ACGGAAACACCAATCTGGAGACTG -ACGGAAACACCAATCTGGTCGGTA -ACGGAAACACCAATCTGGTGCCTA -ACGGAAACACCAATCTGGCCACTA -ACGGAAACACCAATCTGGGGAGTA -ACGGAAACACCAATCTGGTCGTCT -ACGGAAACACCAATCTGGTGCACT -ACGGAAACACCAATCTGGCTGACT -ACGGAAACACCAATCTGGCAACCT -ACGGAAACACCAATCTGGGCTACT -ACGGAAACACCAATCTGGGGATCT -ACGGAAACACCAATCTGGAAGGCT -ACGGAAACACCAATCTGGTCAACC -ACGGAAACACCAATCTGGTGTTCC -ACGGAAACACCAATCTGGATTCCC -ACGGAAACACCAATCTGGTTCTCG -ACGGAAACACCAATCTGGTAGACG -ACGGAAACACCAATCTGGGTAACG -ACGGAAACACCAATCTGGACTTCG -ACGGAAACACCAATCTGGTACGCA -ACGGAAACACCAATCTGGCTTGCA -ACGGAAACACCAATCTGGCGAACA -ACGGAAACACCAATCTGGCAGTCA -ACGGAAACACCAATCTGGGATCCA -ACGGAAACACCAATCTGGACGACA -ACGGAAACACCAATCTGGAGCTCA -ACGGAAACACCAATCTGGTCACGT -ACGGAAACACCAATCTGGCGTAGT -ACGGAAACACCAATCTGGGTCAGT -ACGGAAACACCAATCTGGGAAGGT -ACGGAAACACCAATCTGGAACCGT -ACGGAAACACCAATCTGGTTGTGC -ACGGAAACACCAATCTGGCTAAGC -ACGGAAACACCAATCTGGACTAGC -ACGGAAACACCAATCTGGAGATGC -ACGGAAACACCAATCTGGTGAAGG -ACGGAAACACCAATCTGGCAATGG -ACGGAAACACCAATCTGGATGAGG -ACGGAAACACCAATCTGGAATGGG -ACGGAAACACCAATCTGGTCCTGA -ACGGAAACACCAATCTGGTAGCGA -ACGGAAACACCAATCTGGCACAGA -ACGGAAACACCAATCTGGGCAAGA -ACGGAAACACCAATCTGGGGTTGA -ACGGAAACACCAATCTGGTCCGAT -ACGGAAACACCAATCTGGTGGCAT -ACGGAAACACCAATCTGGCGAGAT -ACGGAAACACCAATCTGGTACCAC -ACGGAAACACCAATCTGGCAGAAC -ACGGAAACACCAATCTGGGTCTAC -ACGGAAACACCAATCTGGACGTAC -ACGGAAACACCAATCTGGAGTGAC -ACGGAAACACCAATCTGGCTGTAG -ACGGAAACACCAATCTGGCCTAAG -ACGGAAACACCAATCTGGGTTCAG -ACGGAAACACCAATCTGGGCATAG -ACGGAAACACCAATCTGGGACAAG -ACGGAAACACCAATCTGGAAGCAG -ACGGAAACACCAATCTGGCGTCAA -ACGGAAACACCAATCTGGGCTGAA -ACGGAAACACCAATCTGGAGTACG -ACGGAAACACCAATCTGGATCCGA -ACGGAAACACCAATCTGGATGGGA -ACGGAAACACCAATCTGGGTGCAA -ACGGAAACACCAATCTGGGAGGAA -ACGGAAACACCAATCTGGCAGGTA -ACGGAAACACCAATCTGGGACTCT -ACGGAAACACCAATCTGGAGTCCT -ACGGAAACACCAATCTGGTAAGCC -ACGGAAACACCAATCTGGATAGCC -ACGGAAACACCAATCTGGTAACCG -ACGGAAACACCAATCTGGATGCCA -ACGGAAACACCATTCCACGGAAAC -ACGGAAACACCATTCCACAACACC -ACGGAAACACCATTCCACATCGAG -ACGGAAACACCATTCCACCTCCTT -ACGGAAACACCATTCCACCCTGTT -ACGGAAACACCATTCCACCGGTTT -ACGGAAACACCATTCCACGTGGTT -ACGGAAACACCATTCCACGCCTTT -ACGGAAACACCATTCCACGGTCTT -ACGGAAACACCATTCCACACGCTT -ACGGAAACACCATTCCACAGCGTT -ACGGAAACACCATTCCACTTCGTC -ACGGAAACACCATTCCACTCTCTC -ACGGAAACACCATTCCACTGGATC -ACGGAAACACCATTCCACCACTTC -ACGGAAACACCATTCCACGTACTC -ACGGAAACACCATTCCACGATGTC -ACGGAAACACCATTCCACACAGTC -ACGGAAACACCATTCCACTTGCTG -ACGGAAACACCATTCCACTCCATG -ACGGAAACACCATTCCACTGTGTG -ACGGAAACACCATTCCACCTAGTG -ACGGAAACACCATTCCACCATCTG -ACGGAAACACCATTCCACGAGTTG -ACGGAAACACCATTCCACAGACTG -ACGGAAACACCATTCCACTCGGTA -ACGGAAACACCATTCCACTGCCTA -ACGGAAACACCATTCCACCCACTA -ACGGAAACACCATTCCACGGAGTA -ACGGAAACACCATTCCACTCGTCT -ACGGAAACACCATTCCACTGCACT -ACGGAAACACCATTCCACCTGACT -ACGGAAACACCATTCCACCAACCT -ACGGAAACACCATTCCACGCTACT -ACGGAAACACCATTCCACGGATCT -ACGGAAACACCATTCCACAAGGCT -ACGGAAACACCATTCCACTCAACC -ACGGAAACACCATTCCACTGTTCC -ACGGAAACACCATTCCACATTCCC -ACGGAAACACCATTCCACTTCTCG -ACGGAAACACCATTCCACTAGACG -ACGGAAACACCATTCCACGTAACG -ACGGAAACACCATTCCACACTTCG -ACGGAAACACCATTCCACTACGCA -ACGGAAACACCATTCCACCTTGCA -ACGGAAACACCATTCCACCGAACA -ACGGAAACACCATTCCACCAGTCA -ACGGAAACACCATTCCACGATCCA -ACGGAAACACCATTCCACACGACA -ACGGAAACACCATTCCACAGCTCA -ACGGAAACACCATTCCACTCACGT -ACGGAAACACCATTCCACCGTAGT -ACGGAAACACCATTCCACGTCAGT -ACGGAAACACCATTCCACGAAGGT -ACGGAAACACCATTCCACAACCGT -ACGGAAACACCATTCCACTTGTGC -ACGGAAACACCATTCCACCTAAGC -ACGGAAACACCATTCCACACTAGC -ACGGAAACACCATTCCACAGATGC -ACGGAAACACCATTCCACTGAAGG -ACGGAAACACCATTCCACCAATGG -ACGGAAACACCATTCCACATGAGG -ACGGAAACACCATTCCACAATGGG -ACGGAAACACCATTCCACTCCTGA -ACGGAAACACCATTCCACTAGCGA -ACGGAAACACCATTCCACCACAGA -ACGGAAACACCATTCCACGCAAGA -ACGGAAACACCATTCCACGGTTGA -ACGGAAACACCATTCCACTCCGAT -ACGGAAACACCATTCCACTGGCAT -ACGGAAACACCATTCCACCGAGAT -ACGGAAACACCATTCCACTACCAC -ACGGAAACACCATTCCACCAGAAC -ACGGAAACACCATTCCACGTCTAC -ACGGAAACACCATTCCACACGTAC -ACGGAAACACCATTCCACAGTGAC -ACGGAAACACCATTCCACCTGTAG -ACGGAAACACCATTCCACCCTAAG -ACGGAAACACCATTCCACGTTCAG -ACGGAAACACCATTCCACGCATAG -ACGGAAACACCATTCCACGACAAG -ACGGAAACACCATTCCACAAGCAG -ACGGAAACACCATTCCACCGTCAA -ACGGAAACACCATTCCACGCTGAA -ACGGAAACACCATTCCACAGTACG -ACGGAAACACCATTCCACATCCGA -ACGGAAACACCATTCCACATGGGA -ACGGAAACACCATTCCACGTGCAA -ACGGAAACACCATTCCACGAGGAA -ACGGAAACACCATTCCACCAGGTA -ACGGAAACACCATTCCACGACTCT -ACGGAAACACCATTCCACAGTCCT -ACGGAAACACCATTCCACTAAGCC -ACGGAAACACCATTCCACATAGCC -ACGGAAACACCATTCCACTAACCG -ACGGAAACACCATTCCACATGCCA -ACGGAAACACCACTCGTAGGAAAC -ACGGAAACACCACTCGTAAACACC -ACGGAAACACCACTCGTAATCGAG -ACGGAAACACCACTCGTACTCCTT -ACGGAAACACCACTCGTACCTGTT -ACGGAAACACCACTCGTACGGTTT -ACGGAAACACCACTCGTAGTGGTT -ACGGAAACACCACTCGTAGCCTTT -ACGGAAACACCACTCGTAGGTCTT -ACGGAAACACCACTCGTAACGCTT -ACGGAAACACCACTCGTAAGCGTT -ACGGAAACACCACTCGTATTCGTC -ACGGAAACACCACTCGTATCTCTC -ACGGAAACACCACTCGTATGGATC -ACGGAAACACCACTCGTACACTTC -ACGGAAACACCACTCGTAGTACTC -ACGGAAACACCACTCGTAGATGTC -ACGGAAACACCACTCGTAACAGTC -ACGGAAACACCACTCGTATTGCTG -ACGGAAACACCACTCGTATCCATG -ACGGAAACACCACTCGTATGTGTG -ACGGAAACACCACTCGTACTAGTG -ACGGAAACACCACTCGTACATCTG -ACGGAAACACCACTCGTAGAGTTG -ACGGAAACACCACTCGTAAGACTG -ACGGAAACACCACTCGTATCGGTA -ACGGAAACACCACTCGTATGCCTA -ACGGAAACACCACTCGTACCACTA -ACGGAAACACCACTCGTAGGAGTA -ACGGAAACACCACTCGTATCGTCT -ACGGAAACACCACTCGTATGCACT -ACGGAAACACCACTCGTACTGACT -ACGGAAACACCACTCGTACAACCT -ACGGAAACACCACTCGTAGCTACT -ACGGAAACACCACTCGTAGGATCT -ACGGAAACACCACTCGTAAAGGCT -ACGGAAACACCACTCGTATCAACC -ACGGAAACACCACTCGTATGTTCC -ACGGAAACACCACTCGTAATTCCC -ACGGAAACACCACTCGTATTCTCG -ACGGAAACACCACTCGTATAGACG -ACGGAAACACCACTCGTAGTAACG -ACGGAAACACCACTCGTAACTTCG -ACGGAAACACCACTCGTATACGCA -ACGGAAACACCACTCGTACTTGCA -ACGGAAACACCACTCGTACGAACA -ACGGAAACACCACTCGTACAGTCA -ACGGAAACACCACTCGTAGATCCA -ACGGAAACACCACTCGTAACGACA -ACGGAAACACCACTCGTAAGCTCA -ACGGAAACACCACTCGTATCACGT -ACGGAAACACCACTCGTACGTAGT -ACGGAAACACCACTCGTAGTCAGT -ACGGAAACACCACTCGTAGAAGGT -ACGGAAACACCACTCGTAAACCGT -ACGGAAACACCACTCGTATTGTGC -ACGGAAACACCACTCGTACTAAGC -ACGGAAACACCACTCGTAACTAGC -ACGGAAACACCACTCGTAAGATGC -ACGGAAACACCACTCGTATGAAGG -ACGGAAACACCACTCGTACAATGG -ACGGAAACACCACTCGTAATGAGG -ACGGAAACACCACTCGTAAATGGG -ACGGAAACACCACTCGTATCCTGA -ACGGAAACACCACTCGTATAGCGA -ACGGAAACACCACTCGTACACAGA -ACGGAAACACCACTCGTAGCAAGA -ACGGAAACACCACTCGTAGGTTGA -ACGGAAACACCACTCGTATCCGAT -ACGGAAACACCACTCGTATGGCAT -ACGGAAACACCACTCGTACGAGAT -ACGGAAACACCACTCGTATACCAC -ACGGAAACACCACTCGTACAGAAC -ACGGAAACACCACTCGTAGTCTAC -ACGGAAACACCACTCGTAACGTAC -ACGGAAACACCACTCGTAAGTGAC -ACGGAAACACCACTCGTACTGTAG -ACGGAAACACCACTCGTACCTAAG -ACGGAAACACCACTCGTAGTTCAG -ACGGAAACACCACTCGTAGCATAG -ACGGAAACACCACTCGTAGACAAG -ACGGAAACACCACTCGTAAAGCAG -ACGGAAACACCACTCGTACGTCAA -ACGGAAACACCACTCGTAGCTGAA -ACGGAAACACCACTCGTAAGTACG -ACGGAAACACCACTCGTAATCCGA -ACGGAAACACCACTCGTAATGGGA -ACGGAAACACCACTCGTAGTGCAA -ACGGAAACACCACTCGTAGAGGAA -ACGGAAACACCACTCGTACAGGTA -ACGGAAACACCACTCGTAGACTCT -ACGGAAACACCACTCGTAAGTCCT -ACGGAAACACCACTCGTATAAGCC -ACGGAAACACCACTCGTAATAGCC -ACGGAAACACCACTCGTATAACCG -ACGGAAACACCACTCGTAATGCCA -ACGGAAACACCAGTCGATGGAAAC -ACGGAAACACCAGTCGATAACACC -ACGGAAACACCAGTCGATATCGAG -ACGGAAACACCAGTCGATCTCCTT -ACGGAAACACCAGTCGATCCTGTT -ACGGAAACACCAGTCGATCGGTTT -ACGGAAACACCAGTCGATGTGGTT -ACGGAAACACCAGTCGATGCCTTT -ACGGAAACACCAGTCGATGGTCTT -ACGGAAACACCAGTCGATACGCTT -ACGGAAACACCAGTCGATAGCGTT -ACGGAAACACCAGTCGATTTCGTC -ACGGAAACACCAGTCGATTCTCTC -ACGGAAACACCAGTCGATTGGATC -ACGGAAACACCAGTCGATCACTTC -ACGGAAACACCAGTCGATGTACTC -ACGGAAACACCAGTCGATGATGTC -ACGGAAACACCAGTCGATACAGTC -ACGGAAACACCAGTCGATTTGCTG -ACGGAAACACCAGTCGATTCCATG -ACGGAAACACCAGTCGATTGTGTG -ACGGAAACACCAGTCGATCTAGTG -ACGGAAACACCAGTCGATCATCTG -ACGGAAACACCAGTCGATGAGTTG -ACGGAAACACCAGTCGATAGACTG -ACGGAAACACCAGTCGATTCGGTA -ACGGAAACACCAGTCGATTGCCTA -ACGGAAACACCAGTCGATCCACTA -ACGGAAACACCAGTCGATGGAGTA -ACGGAAACACCAGTCGATTCGTCT -ACGGAAACACCAGTCGATTGCACT -ACGGAAACACCAGTCGATCTGACT -ACGGAAACACCAGTCGATCAACCT -ACGGAAACACCAGTCGATGCTACT -ACGGAAACACCAGTCGATGGATCT -ACGGAAACACCAGTCGATAAGGCT -ACGGAAACACCAGTCGATTCAACC -ACGGAAACACCAGTCGATTGTTCC -ACGGAAACACCAGTCGATATTCCC -ACGGAAACACCAGTCGATTTCTCG -ACGGAAACACCAGTCGATTAGACG -ACGGAAACACCAGTCGATGTAACG -ACGGAAACACCAGTCGATACTTCG -ACGGAAACACCAGTCGATTACGCA -ACGGAAACACCAGTCGATCTTGCA -ACGGAAACACCAGTCGATCGAACA -ACGGAAACACCAGTCGATCAGTCA -ACGGAAACACCAGTCGATGATCCA -ACGGAAACACCAGTCGATACGACA -ACGGAAACACCAGTCGATAGCTCA -ACGGAAACACCAGTCGATTCACGT -ACGGAAACACCAGTCGATCGTAGT -ACGGAAACACCAGTCGATGTCAGT -ACGGAAACACCAGTCGATGAAGGT -ACGGAAACACCAGTCGATAACCGT -ACGGAAACACCAGTCGATTTGTGC -ACGGAAACACCAGTCGATCTAAGC -ACGGAAACACCAGTCGATACTAGC -ACGGAAACACCAGTCGATAGATGC -ACGGAAACACCAGTCGATTGAAGG -ACGGAAACACCAGTCGATCAATGG -ACGGAAACACCAGTCGATATGAGG -ACGGAAACACCAGTCGATAATGGG -ACGGAAACACCAGTCGATTCCTGA -ACGGAAACACCAGTCGATTAGCGA -ACGGAAACACCAGTCGATCACAGA -ACGGAAACACCAGTCGATGCAAGA -ACGGAAACACCAGTCGATGGTTGA -ACGGAAACACCAGTCGATTCCGAT -ACGGAAACACCAGTCGATTGGCAT -ACGGAAACACCAGTCGATCGAGAT -ACGGAAACACCAGTCGATTACCAC -ACGGAAACACCAGTCGATCAGAAC -ACGGAAACACCAGTCGATGTCTAC -ACGGAAACACCAGTCGATACGTAC -ACGGAAACACCAGTCGATAGTGAC -ACGGAAACACCAGTCGATCTGTAG -ACGGAAACACCAGTCGATCCTAAG -ACGGAAACACCAGTCGATGTTCAG -ACGGAAACACCAGTCGATGCATAG -ACGGAAACACCAGTCGATGACAAG -ACGGAAACACCAGTCGATAAGCAG -ACGGAAACACCAGTCGATCGTCAA -ACGGAAACACCAGTCGATGCTGAA -ACGGAAACACCAGTCGATAGTACG -ACGGAAACACCAGTCGATATCCGA -ACGGAAACACCAGTCGATATGGGA -ACGGAAACACCAGTCGATGTGCAA -ACGGAAACACCAGTCGATGAGGAA -ACGGAAACACCAGTCGATCAGGTA -ACGGAAACACCAGTCGATGACTCT -ACGGAAACACCAGTCGATAGTCCT -ACGGAAACACCAGTCGATTAAGCC -ACGGAAACACCAGTCGATATAGCC -ACGGAAACACCAGTCGATTAACCG -ACGGAAACACCAGTCGATATGCCA -ACGGAAACACCAGTCACAGGAAAC -ACGGAAACACCAGTCACAAACACC -ACGGAAACACCAGTCACAATCGAG -ACGGAAACACCAGTCACACTCCTT -ACGGAAACACCAGTCACACCTGTT -ACGGAAACACCAGTCACACGGTTT -ACGGAAACACCAGTCACAGTGGTT -ACGGAAACACCAGTCACAGCCTTT -ACGGAAACACCAGTCACAGGTCTT -ACGGAAACACCAGTCACAACGCTT -ACGGAAACACCAGTCACAAGCGTT -ACGGAAACACCAGTCACATTCGTC -ACGGAAACACCAGTCACATCTCTC -ACGGAAACACCAGTCACATGGATC -ACGGAAACACCAGTCACACACTTC -ACGGAAACACCAGTCACAGTACTC -ACGGAAACACCAGTCACAGATGTC -ACGGAAACACCAGTCACAACAGTC -ACGGAAACACCAGTCACATTGCTG -ACGGAAACACCAGTCACATCCATG -ACGGAAACACCAGTCACATGTGTG -ACGGAAACACCAGTCACACTAGTG -ACGGAAACACCAGTCACACATCTG -ACGGAAACACCAGTCACAGAGTTG -ACGGAAACACCAGTCACAAGACTG -ACGGAAACACCAGTCACATCGGTA -ACGGAAACACCAGTCACATGCCTA -ACGGAAACACCAGTCACACCACTA -ACGGAAACACCAGTCACAGGAGTA -ACGGAAACACCAGTCACATCGTCT -ACGGAAACACCAGTCACATGCACT -ACGGAAACACCAGTCACACTGACT -ACGGAAACACCAGTCACACAACCT -ACGGAAACACCAGTCACAGCTACT -ACGGAAACACCAGTCACAGGATCT -ACGGAAACACCAGTCACAAAGGCT -ACGGAAACACCAGTCACATCAACC -ACGGAAACACCAGTCACATGTTCC -ACGGAAACACCAGTCACAATTCCC -ACGGAAACACCAGTCACATTCTCG -ACGGAAACACCAGTCACATAGACG -ACGGAAACACCAGTCACAGTAACG -ACGGAAACACCAGTCACAACTTCG -ACGGAAACACCAGTCACATACGCA -ACGGAAACACCAGTCACACTTGCA -ACGGAAACACCAGTCACACGAACA -ACGGAAACACCAGTCACACAGTCA -ACGGAAACACCAGTCACAGATCCA -ACGGAAACACCAGTCACAACGACA -ACGGAAACACCAGTCACAAGCTCA -ACGGAAACACCAGTCACATCACGT -ACGGAAACACCAGTCACACGTAGT -ACGGAAACACCAGTCACAGTCAGT -ACGGAAACACCAGTCACAGAAGGT -ACGGAAACACCAGTCACAAACCGT -ACGGAAACACCAGTCACATTGTGC -ACGGAAACACCAGTCACACTAAGC -ACGGAAACACCAGTCACAACTAGC -ACGGAAACACCAGTCACAAGATGC -ACGGAAACACCAGTCACATGAAGG -ACGGAAACACCAGTCACACAATGG -ACGGAAACACCAGTCACAATGAGG -ACGGAAACACCAGTCACAAATGGG -ACGGAAACACCAGTCACATCCTGA -ACGGAAACACCAGTCACATAGCGA -ACGGAAACACCAGTCACACACAGA -ACGGAAACACCAGTCACAGCAAGA -ACGGAAACACCAGTCACAGGTTGA -ACGGAAACACCAGTCACATCCGAT -ACGGAAACACCAGTCACATGGCAT -ACGGAAACACCAGTCACACGAGAT -ACGGAAACACCAGTCACATACCAC -ACGGAAACACCAGTCACACAGAAC -ACGGAAACACCAGTCACAGTCTAC -ACGGAAACACCAGTCACAACGTAC -ACGGAAACACCAGTCACAAGTGAC -ACGGAAACACCAGTCACACTGTAG -ACGGAAACACCAGTCACACCTAAG -ACGGAAACACCAGTCACAGTTCAG -ACGGAAACACCAGTCACAGCATAG -ACGGAAACACCAGTCACAGACAAG -ACGGAAACACCAGTCACAAAGCAG -ACGGAAACACCAGTCACACGTCAA -ACGGAAACACCAGTCACAGCTGAA -ACGGAAACACCAGTCACAAGTACG -ACGGAAACACCAGTCACAATCCGA -ACGGAAACACCAGTCACAATGGGA -ACGGAAACACCAGTCACAGTGCAA -ACGGAAACACCAGTCACAGAGGAA -ACGGAAACACCAGTCACACAGGTA -ACGGAAACACCAGTCACAGACTCT -ACGGAAACACCAGTCACAAGTCCT -ACGGAAACACCAGTCACATAAGCC -ACGGAAACACCAGTCACAATAGCC -ACGGAAACACCAGTCACATAACCG -ACGGAAACACCAGTCACAATGCCA -ACGGAAACACCACTGTTGGGAAAC -ACGGAAACACCACTGTTGAACACC -ACGGAAACACCACTGTTGATCGAG -ACGGAAACACCACTGTTGCTCCTT -ACGGAAACACCACTGTTGCCTGTT -ACGGAAACACCACTGTTGCGGTTT -ACGGAAACACCACTGTTGGTGGTT -ACGGAAACACCACTGTTGGCCTTT -ACGGAAACACCACTGTTGGGTCTT -ACGGAAACACCACTGTTGACGCTT -ACGGAAACACCACTGTTGAGCGTT -ACGGAAACACCACTGTTGTTCGTC -ACGGAAACACCACTGTTGTCTCTC -ACGGAAACACCACTGTTGTGGATC -ACGGAAACACCACTGTTGCACTTC -ACGGAAACACCACTGTTGGTACTC -ACGGAAACACCACTGTTGGATGTC -ACGGAAACACCACTGTTGACAGTC -ACGGAAACACCACTGTTGTTGCTG -ACGGAAACACCACTGTTGTCCATG -ACGGAAACACCACTGTTGTGTGTG -ACGGAAACACCACTGTTGCTAGTG -ACGGAAACACCACTGTTGCATCTG -ACGGAAACACCACTGTTGGAGTTG -ACGGAAACACCACTGTTGAGACTG -ACGGAAACACCACTGTTGTCGGTA -ACGGAAACACCACTGTTGTGCCTA -ACGGAAACACCACTGTTGCCACTA -ACGGAAACACCACTGTTGGGAGTA -ACGGAAACACCACTGTTGTCGTCT -ACGGAAACACCACTGTTGTGCACT -ACGGAAACACCACTGTTGCTGACT -ACGGAAACACCACTGTTGCAACCT -ACGGAAACACCACTGTTGGCTACT -ACGGAAACACCACTGTTGGGATCT -ACGGAAACACCACTGTTGAAGGCT -ACGGAAACACCACTGTTGTCAACC -ACGGAAACACCACTGTTGTGTTCC -ACGGAAACACCACTGTTGATTCCC -ACGGAAACACCACTGTTGTTCTCG -ACGGAAACACCACTGTTGTAGACG -ACGGAAACACCACTGTTGGTAACG -ACGGAAACACCACTGTTGACTTCG -ACGGAAACACCACTGTTGTACGCA -ACGGAAACACCACTGTTGCTTGCA -ACGGAAACACCACTGTTGCGAACA -ACGGAAACACCACTGTTGCAGTCA -ACGGAAACACCACTGTTGGATCCA -ACGGAAACACCACTGTTGACGACA -ACGGAAACACCACTGTTGAGCTCA -ACGGAAACACCACTGTTGTCACGT -ACGGAAACACCACTGTTGCGTAGT -ACGGAAACACCACTGTTGGTCAGT -ACGGAAACACCACTGTTGGAAGGT -ACGGAAACACCACTGTTGAACCGT -ACGGAAACACCACTGTTGTTGTGC -ACGGAAACACCACTGTTGCTAAGC -ACGGAAACACCACTGTTGACTAGC -ACGGAAACACCACTGTTGAGATGC -ACGGAAACACCACTGTTGTGAAGG -ACGGAAACACCACTGTTGCAATGG -ACGGAAACACCACTGTTGATGAGG -ACGGAAACACCACTGTTGAATGGG -ACGGAAACACCACTGTTGTCCTGA -ACGGAAACACCACTGTTGTAGCGA -ACGGAAACACCACTGTTGCACAGA -ACGGAAACACCACTGTTGGCAAGA -ACGGAAACACCACTGTTGGGTTGA -ACGGAAACACCACTGTTGTCCGAT -ACGGAAACACCACTGTTGTGGCAT -ACGGAAACACCACTGTTGCGAGAT -ACGGAAACACCACTGTTGTACCAC -ACGGAAACACCACTGTTGCAGAAC -ACGGAAACACCACTGTTGGTCTAC -ACGGAAACACCACTGTTGACGTAC -ACGGAAACACCACTGTTGAGTGAC -ACGGAAACACCACTGTTGCTGTAG -ACGGAAACACCACTGTTGCCTAAG -ACGGAAACACCACTGTTGGTTCAG -ACGGAAACACCACTGTTGGCATAG -ACGGAAACACCACTGTTGGACAAG -ACGGAAACACCACTGTTGAAGCAG -ACGGAAACACCACTGTTGCGTCAA -ACGGAAACACCACTGTTGGCTGAA -ACGGAAACACCACTGTTGAGTACG -ACGGAAACACCACTGTTGATCCGA -ACGGAAACACCACTGTTGATGGGA -ACGGAAACACCACTGTTGGTGCAA -ACGGAAACACCACTGTTGGAGGAA -ACGGAAACACCACTGTTGCAGGTA -ACGGAAACACCACTGTTGGACTCT -ACGGAAACACCACTGTTGAGTCCT -ACGGAAACACCACTGTTGTAAGCC -ACGGAAACACCACTGTTGATAGCC -ACGGAAACACCACTGTTGTAACCG -ACGGAAACACCACTGTTGATGCCA -ACGGAAACACCAATGTCCGGAAAC -ACGGAAACACCAATGTCCAACACC -ACGGAAACACCAATGTCCATCGAG -ACGGAAACACCAATGTCCCTCCTT -ACGGAAACACCAATGTCCCCTGTT -ACGGAAACACCAATGTCCCGGTTT -ACGGAAACACCAATGTCCGTGGTT -ACGGAAACACCAATGTCCGCCTTT -ACGGAAACACCAATGTCCGGTCTT -ACGGAAACACCAATGTCCACGCTT -ACGGAAACACCAATGTCCAGCGTT -ACGGAAACACCAATGTCCTTCGTC -ACGGAAACACCAATGTCCTCTCTC -ACGGAAACACCAATGTCCTGGATC -ACGGAAACACCAATGTCCCACTTC -ACGGAAACACCAATGTCCGTACTC -ACGGAAACACCAATGTCCGATGTC -ACGGAAACACCAATGTCCACAGTC -ACGGAAACACCAATGTCCTTGCTG -ACGGAAACACCAATGTCCTCCATG -ACGGAAACACCAATGTCCTGTGTG -ACGGAAACACCAATGTCCCTAGTG -ACGGAAACACCAATGTCCCATCTG -ACGGAAACACCAATGTCCGAGTTG -ACGGAAACACCAATGTCCAGACTG -ACGGAAACACCAATGTCCTCGGTA -ACGGAAACACCAATGTCCTGCCTA -ACGGAAACACCAATGTCCCCACTA -ACGGAAACACCAATGTCCGGAGTA -ACGGAAACACCAATGTCCTCGTCT -ACGGAAACACCAATGTCCTGCACT -ACGGAAACACCAATGTCCCTGACT -ACGGAAACACCAATGTCCCAACCT -ACGGAAACACCAATGTCCGCTACT -ACGGAAACACCAATGTCCGGATCT -ACGGAAACACCAATGTCCAAGGCT -ACGGAAACACCAATGTCCTCAACC -ACGGAAACACCAATGTCCTGTTCC -ACGGAAACACCAATGTCCATTCCC -ACGGAAACACCAATGTCCTTCTCG -ACGGAAACACCAATGTCCTAGACG -ACGGAAACACCAATGTCCGTAACG -ACGGAAACACCAATGTCCACTTCG -ACGGAAACACCAATGTCCTACGCA -ACGGAAACACCAATGTCCCTTGCA -ACGGAAACACCAATGTCCCGAACA -ACGGAAACACCAATGTCCCAGTCA -ACGGAAACACCAATGTCCGATCCA -ACGGAAACACCAATGTCCACGACA -ACGGAAACACCAATGTCCAGCTCA -ACGGAAACACCAATGTCCTCACGT -ACGGAAACACCAATGTCCCGTAGT -ACGGAAACACCAATGTCCGTCAGT -ACGGAAACACCAATGTCCGAAGGT -ACGGAAACACCAATGTCCAACCGT -ACGGAAACACCAATGTCCTTGTGC -ACGGAAACACCAATGTCCCTAAGC -ACGGAAACACCAATGTCCACTAGC -ACGGAAACACCAATGTCCAGATGC -ACGGAAACACCAATGTCCTGAAGG -ACGGAAACACCAATGTCCCAATGG -ACGGAAACACCAATGTCCATGAGG -ACGGAAACACCAATGTCCAATGGG -ACGGAAACACCAATGTCCTCCTGA -ACGGAAACACCAATGTCCTAGCGA -ACGGAAACACCAATGTCCCACAGA -ACGGAAACACCAATGTCCGCAAGA -ACGGAAACACCAATGTCCGGTTGA -ACGGAAACACCAATGTCCTCCGAT -ACGGAAACACCAATGTCCTGGCAT -ACGGAAACACCAATGTCCCGAGAT -ACGGAAACACCAATGTCCTACCAC -ACGGAAACACCAATGTCCCAGAAC -ACGGAAACACCAATGTCCGTCTAC -ACGGAAACACCAATGTCCACGTAC -ACGGAAACACCAATGTCCAGTGAC -ACGGAAACACCAATGTCCCTGTAG -ACGGAAACACCAATGTCCCCTAAG -ACGGAAACACCAATGTCCGTTCAG -ACGGAAACACCAATGTCCGCATAG -ACGGAAACACCAATGTCCGACAAG -ACGGAAACACCAATGTCCAAGCAG -ACGGAAACACCAATGTCCCGTCAA -ACGGAAACACCAATGTCCGCTGAA -ACGGAAACACCAATGTCCAGTACG -ACGGAAACACCAATGTCCATCCGA -ACGGAAACACCAATGTCCATGGGA -ACGGAAACACCAATGTCCGTGCAA -ACGGAAACACCAATGTCCGAGGAA -ACGGAAACACCAATGTCCCAGGTA -ACGGAAACACCAATGTCCGACTCT -ACGGAAACACCAATGTCCAGTCCT -ACGGAAACACCAATGTCCTAAGCC -ACGGAAACACCAATGTCCATAGCC -ACGGAAACACCAATGTCCTAACCG -ACGGAAACACCAATGTCCATGCCA -ACGGAAACACCAGTGTGTGGAAAC -ACGGAAACACCAGTGTGTAACACC -ACGGAAACACCAGTGTGTATCGAG -ACGGAAACACCAGTGTGTCTCCTT -ACGGAAACACCAGTGTGTCCTGTT -ACGGAAACACCAGTGTGTCGGTTT -ACGGAAACACCAGTGTGTGTGGTT -ACGGAAACACCAGTGTGTGCCTTT -ACGGAAACACCAGTGTGTGGTCTT -ACGGAAACACCAGTGTGTACGCTT -ACGGAAACACCAGTGTGTAGCGTT -ACGGAAACACCAGTGTGTTTCGTC -ACGGAAACACCAGTGTGTTCTCTC -ACGGAAACACCAGTGTGTTGGATC -ACGGAAACACCAGTGTGTCACTTC -ACGGAAACACCAGTGTGTGTACTC -ACGGAAACACCAGTGTGTGATGTC -ACGGAAACACCAGTGTGTACAGTC -ACGGAAACACCAGTGTGTTTGCTG -ACGGAAACACCAGTGTGTTCCATG -ACGGAAACACCAGTGTGTTGTGTG -ACGGAAACACCAGTGTGTCTAGTG -ACGGAAACACCAGTGTGTCATCTG -ACGGAAACACCAGTGTGTGAGTTG -ACGGAAACACCAGTGTGTAGACTG -ACGGAAACACCAGTGTGTTCGGTA -ACGGAAACACCAGTGTGTTGCCTA -ACGGAAACACCAGTGTGTCCACTA -ACGGAAACACCAGTGTGTGGAGTA -ACGGAAACACCAGTGTGTTCGTCT -ACGGAAACACCAGTGTGTTGCACT -ACGGAAACACCAGTGTGTCTGACT -ACGGAAACACCAGTGTGTCAACCT -ACGGAAACACCAGTGTGTGCTACT -ACGGAAACACCAGTGTGTGGATCT -ACGGAAACACCAGTGTGTAAGGCT -ACGGAAACACCAGTGTGTTCAACC -ACGGAAACACCAGTGTGTTGTTCC -ACGGAAACACCAGTGTGTATTCCC -ACGGAAACACCAGTGTGTTTCTCG -ACGGAAACACCAGTGTGTTAGACG -ACGGAAACACCAGTGTGTGTAACG -ACGGAAACACCAGTGTGTACTTCG -ACGGAAACACCAGTGTGTTACGCA -ACGGAAACACCAGTGTGTCTTGCA -ACGGAAACACCAGTGTGTCGAACA -ACGGAAACACCAGTGTGTCAGTCA -ACGGAAACACCAGTGTGTGATCCA -ACGGAAACACCAGTGTGTACGACA -ACGGAAACACCAGTGTGTAGCTCA -ACGGAAACACCAGTGTGTTCACGT -ACGGAAACACCAGTGTGTCGTAGT -ACGGAAACACCAGTGTGTGTCAGT -ACGGAAACACCAGTGTGTGAAGGT -ACGGAAACACCAGTGTGTAACCGT -ACGGAAACACCAGTGTGTTTGTGC -ACGGAAACACCAGTGTGTCTAAGC -ACGGAAACACCAGTGTGTACTAGC -ACGGAAACACCAGTGTGTAGATGC -ACGGAAACACCAGTGTGTTGAAGG -ACGGAAACACCAGTGTGTCAATGG -ACGGAAACACCAGTGTGTATGAGG -ACGGAAACACCAGTGTGTAATGGG -ACGGAAACACCAGTGTGTTCCTGA -ACGGAAACACCAGTGTGTTAGCGA -ACGGAAACACCAGTGTGTCACAGA -ACGGAAACACCAGTGTGTGCAAGA -ACGGAAACACCAGTGTGTGGTTGA -ACGGAAACACCAGTGTGTTCCGAT -ACGGAAACACCAGTGTGTTGGCAT -ACGGAAACACCAGTGTGTCGAGAT -ACGGAAACACCAGTGTGTTACCAC -ACGGAAACACCAGTGTGTCAGAAC -ACGGAAACACCAGTGTGTGTCTAC -ACGGAAACACCAGTGTGTACGTAC -ACGGAAACACCAGTGTGTAGTGAC -ACGGAAACACCAGTGTGTCTGTAG -ACGGAAACACCAGTGTGTCCTAAG -ACGGAAACACCAGTGTGTGTTCAG -ACGGAAACACCAGTGTGTGCATAG -ACGGAAACACCAGTGTGTGACAAG -ACGGAAACACCAGTGTGTAAGCAG -ACGGAAACACCAGTGTGTCGTCAA -ACGGAAACACCAGTGTGTGCTGAA -ACGGAAACACCAGTGTGTAGTACG -ACGGAAACACCAGTGTGTATCCGA -ACGGAAACACCAGTGTGTATGGGA -ACGGAAACACCAGTGTGTGTGCAA -ACGGAAACACCAGTGTGTGAGGAA -ACGGAAACACCAGTGTGTCAGGTA -ACGGAAACACCAGTGTGTGACTCT -ACGGAAACACCAGTGTGTAGTCCT -ACGGAAACACCAGTGTGTTAAGCC -ACGGAAACACCAGTGTGTATAGCC -ACGGAAACACCAGTGTGTTAACCG -ACGGAAACACCAGTGTGTATGCCA -ACGGAAACACCAGTGCTAGGAAAC -ACGGAAACACCAGTGCTAAACACC -ACGGAAACACCAGTGCTAATCGAG -ACGGAAACACCAGTGCTACTCCTT -ACGGAAACACCAGTGCTACCTGTT -ACGGAAACACCAGTGCTACGGTTT -ACGGAAACACCAGTGCTAGTGGTT -ACGGAAACACCAGTGCTAGCCTTT -ACGGAAACACCAGTGCTAGGTCTT -ACGGAAACACCAGTGCTAACGCTT -ACGGAAACACCAGTGCTAAGCGTT -ACGGAAACACCAGTGCTATTCGTC -ACGGAAACACCAGTGCTATCTCTC -ACGGAAACACCAGTGCTATGGATC -ACGGAAACACCAGTGCTACACTTC -ACGGAAACACCAGTGCTAGTACTC -ACGGAAACACCAGTGCTAGATGTC -ACGGAAACACCAGTGCTAACAGTC -ACGGAAACACCAGTGCTATTGCTG -ACGGAAACACCAGTGCTATCCATG -ACGGAAACACCAGTGCTATGTGTG -ACGGAAACACCAGTGCTACTAGTG -ACGGAAACACCAGTGCTACATCTG -ACGGAAACACCAGTGCTAGAGTTG -ACGGAAACACCAGTGCTAAGACTG -ACGGAAACACCAGTGCTATCGGTA -ACGGAAACACCAGTGCTATGCCTA -ACGGAAACACCAGTGCTACCACTA -ACGGAAACACCAGTGCTAGGAGTA -ACGGAAACACCAGTGCTATCGTCT -ACGGAAACACCAGTGCTATGCACT -ACGGAAACACCAGTGCTACTGACT -ACGGAAACACCAGTGCTACAACCT -ACGGAAACACCAGTGCTAGCTACT -ACGGAAACACCAGTGCTAGGATCT -ACGGAAACACCAGTGCTAAAGGCT -ACGGAAACACCAGTGCTATCAACC -ACGGAAACACCAGTGCTATGTTCC -ACGGAAACACCAGTGCTAATTCCC -ACGGAAACACCAGTGCTATTCTCG -ACGGAAACACCAGTGCTATAGACG -ACGGAAACACCAGTGCTAGTAACG -ACGGAAACACCAGTGCTAACTTCG -ACGGAAACACCAGTGCTATACGCA -ACGGAAACACCAGTGCTACTTGCA -ACGGAAACACCAGTGCTACGAACA -ACGGAAACACCAGTGCTACAGTCA -ACGGAAACACCAGTGCTAGATCCA -ACGGAAACACCAGTGCTAACGACA -ACGGAAACACCAGTGCTAAGCTCA -ACGGAAACACCAGTGCTATCACGT -ACGGAAACACCAGTGCTACGTAGT -ACGGAAACACCAGTGCTAGTCAGT -ACGGAAACACCAGTGCTAGAAGGT -ACGGAAACACCAGTGCTAAACCGT -ACGGAAACACCAGTGCTATTGTGC -ACGGAAACACCAGTGCTACTAAGC -ACGGAAACACCAGTGCTAACTAGC -ACGGAAACACCAGTGCTAAGATGC -ACGGAAACACCAGTGCTATGAAGG -ACGGAAACACCAGTGCTACAATGG -ACGGAAACACCAGTGCTAATGAGG -ACGGAAACACCAGTGCTAAATGGG -ACGGAAACACCAGTGCTATCCTGA -ACGGAAACACCAGTGCTATAGCGA -ACGGAAACACCAGTGCTACACAGA -ACGGAAACACCAGTGCTAGCAAGA -ACGGAAACACCAGTGCTAGGTTGA -ACGGAAACACCAGTGCTATCCGAT -ACGGAAACACCAGTGCTATGGCAT -ACGGAAACACCAGTGCTACGAGAT -ACGGAAACACCAGTGCTATACCAC -ACGGAAACACCAGTGCTACAGAAC -ACGGAAACACCAGTGCTAGTCTAC -ACGGAAACACCAGTGCTAACGTAC -ACGGAAACACCAGTGCTAAGTGAC -ACGGAAACACCAGTGCTACTGTAG -ACGGAAACACCAGTGCTACCTAAG -ACGGAAACACCAGTGCTAGTTCAG -ACGGAAACACCAGTGCTAGCATAG -ACGGAAACACCAGTGCTAGACAAG -ACGGAAACACCAGTGCTAAAGCAG -ACGGAAACACCAGTGCTACGTCAA -ACGGAAACACCAGTGCTAGCTGAA -ACGGAAACACCAGTGCTAAGTACG -ACGGAAACACCAGTGCTAATCCGA -ACGGAAACACCAGTGCTAATGGGA -ACGGAAACACCAGTGCTAGTGCAA -ACGGAAACACCAGTGCTAGAGGAA -ACGGAAACACCAGTGCTACAGGTA -ACGGAAACACCAGTGCTAGACTCT -ACGGAAACACCAGTGCTAAGTCCT -ACGGAAACACCAGTGCTATAAGCC -ACGGAAACACCAGTGCTAATAGCC -ACGGAAACACCAGTGCTATAACCG -ACGGAAACACCAGTGCTAATGCCA -ACGGAAACACCACTGCATGGAAAC -ACGGAAACACCACTGCATAACACC -ACGGAAACACCACTGCATATCGAG -ACGGAAACACCACTGCATCTCCTT -ACGGAAACACCACTGCATCCTGTT -ACGGAAACACCACTGCATCGGTTT -ACGGAAACACCACTGCATGTGGTT -ACGGAAACACCACTGCATGCCTTT -ACGGAAACACCACTGCATGGTCTT -ACGGAAACACCACTGCATACGCTT -ACGGAAACACCACTGCATAGCGTT -ACGGAAACACCACTGCATTTCGTC -ACGGAAACACCACTGCATTCTCTC -ACGGAAACACCACTGCATTGGATC -ACGGAAACACCACTGCATCACTTC -ACGGAAACACCACTGCATGTACTC -ACGGAAACACCACTGCATGATGTC -ACGGAAACACCACTGCATACAGTC -ACGGAAACACCACTGCATTTGCTG -ACGGAAACACCACTGCATTCCATG -ACGGAAACACCACTGCATTGTGTG -ACGGAAACACCACTGCATCTAGTG -ACGGAAACACCACTGCATCATCTG -ACGGAAACACCACTGCATGAGTTG -ACGGAAACACCACTGCATAGACTG -ACGGAAACACCACTGCATTCGGTA -ACGGAAACACCACTGCATTGCCTA -ACGGAAACACCACTGCATCCACTA -ACGGAAACACCACTGCATGGAGTA -ACGGAAACACCACTGCATTCGTCT -ACGGAAACACCACTGCATTGCACT -ACGGAAACACCACTGCATCTGACT -ACGGAAACACCACTGCATCAACCT -ACGGAAACACCACTGCATGCTACT -ACGGAAACACCACTGCATGGATCT -ACGGAAACACCACTGCATAAGGCT -ACGGAAACACCACTGCATTCAACC -ACGGAAACACCACTGCATTGTTCC -ACGGAAACACCACTGCATATTCCC -ACGGAAACACCACTGCATTTCTCG -ACGGAAACACCACTGCATTAGACG -ACGGAAACACCACTGCATGTAACG -ACGGAAACACCACTGCATACTTCG -ACGGAAACACCACTGCATTACGCA -ACGGAAACACCACTGCATCTTGCA -ACGGAAACACCACTGCATCGAACA -ACGGAAACACCACTGCATCAGTCA -ACGGAAACACCACTGCATGATCCA -ACGGAAACACCACTGCATACGACA -ACGGAAACACCACTGCATAGCTCA -ACGGAAACACCACTGCATTCACGT -ACGGAAACACCACTGCATCGTAGT -ACGGAAACACCACTGCATGTCAGT -ACGGAAACACCACTGCATGAAGGT -ACGGAAACACCACTGCATAACCGT -ACGGAAACACCACTGCATTTGTGC -ACGGAAACACCACTGCATCTAAGC -ACGGAAACACCACTGCATACTAGC -ACGGAAACACCACTGCATAGATGC -ACGGAAACACCACTGCATTGAAGG -ACGGAAACACCACTGCATCAATGG -ACGGAAACACCACTGCATATGAGG -ACGGAAACACCACTGCATAATGGG -ACGGAAACACCACTGCATTCCTGA -ACGGAAACACCACTGCATTAGCGA -ACGGAAACACCACTGCATCACAGA -ACGGAAACACCACTGCATGCAAGA -ACGGAAACACCACTGCATGGTTGA -ACGGAAACACCACTGCATTCCGAT -ACGGAAACACCACTGCATTGGCAT -ACGGAAACACCACTGCATCGAGAT -ACGGAAACACCACTGCATTACCAC -ACGGAAACACCACTGCATCAGAAC -ACGGAAACACCACTGCATGTCTAC -ACGGAAACACCACTGCATACGTAC -ACGGAAACACCACTGCATAGTGAC -ACGGAAACACCACTGCATCTGTAG -ACGGAAACACCACTGCATCCTAAG -ACGGAAACACCACTGCATGTTCAG -ACGGAAACACCACTGCATGCATAG -ACGGAAACACCACTGCATGACAAG -ACGGAAACACCACTGCATAAGCAG -ACGGAAACACCACTGCATCGTCAA -ACGGAAACACCACTGCATGCTGAA -ACGGAAACACCACTGCATAGTACG -ACGGAAACACCACTGCATATCCGA -ACGGAAACACCACTGCATATGGGA -ACGGAAACACCACTGCATGTGCAA -ACGGAAACACCACTGCATGAGGAA -ACGGAAACACCACTGCATCAGGTA -ACGGAAACACCACTGCATGACTCT -ACGGAAACACCACTGCATAGTCCT -ACGGAAACACCACTGCATTAAGCC -ACGGAAACACCACTGCATATAGCC -ACGGAAACACCACTGCATTAACCG -ACGGAAACACCACTGCATATGCCA -ACGGAAACACCATTGGAGGGAAAC -ACGGAAACACCATTGGAGAACACC -ACGGAAACACCATTGGAGATCGAG -ACGGAAACACCATTGGAGCTCCTT -ACGGAAACACCATTGGAGCCTGTT -ACGGAAACACCATTGGAGCGGTTT -ACGGAAACACCATTGGAGGTGGTT -ACGGAAACACCATTGGAGGCCTTT -ACGGAAACACCATTGGAGGGTCTT -ACGGAAACACCATTGGAGACGCTT -ACGGAAACACCATTGGAGAGCGTT -ACGGAAACACCATTGGAGTTCGTC -ACGGAAACACCATTGGAGTCTCTC -ACGGAAACACCATTGGAGTGGATC -ACGGAAACACCATTGGAGCACTTC -ACGGAAACACCATTGGAGGTACTC -ACGGAAACACCATTGGAGGATGTC -ACGGAAACACCATTGGAGACAGTC -ACGGAAACACCATTGGAGTTGCTG -ACGGAAACACCATTGGAGTCCATG -ACGGAAACACCATTGGAGTGTGTG -ACGGAAACACCATTGGAGCTAGTG -ACGGAAACACCATTGGAGCATCTG -ACGGAAACACCATTGGAGGAGTTG -ACGGAAACACCATTGGAGAGACTG -ACGGAAACACCATTGGAGTCGGTA -ACGGAAACACCATTGGAGTGCCTA -ACGGAAACACCATTGGAGCCACTA -ACGGAAACACCATTGGAGGGAGTA -ACGGAAACACCATTGGAGTCGTCT -ACGGAAACACCATTGGAGTGCACT -ACGGAAACACCATTGGAGCTGACT -ACGGAAACACCATTGGAGCAACCT -ACGGAAACACCATTGGAGGCTACT -ACGGAAACACCATTGGAGGGATCT -ACGGAAACACCATTGGAGAAGGCT -ACGGAAACACCATTGGAGTCAACC -ACGGAAACACCATTGGAGTGTTCC -ACGGAAACACCATTGGAGATTCCC -ACGGAAACACCATTGGAGTTCTCG -ACGGAAACACCATTGGAGTAGACG -ACGGAAACACCATTGGAGGTAACG -ACGGAAACACCATTGGAGACTTCG -ACGGAAACACCATTGGAGTACGCA -ACGGAAACACCATTGGAGCTTGCA -ACGGAAACACCATTGGAGCGAACA -ACGGAAACACCATTGGAGCAGTCA -ACGGAAACACCATTGGAGGATCCA -ACGGAAACACCATTGGAGACGACA -ACGGAAACACCATTGGAGAGCTCA -ACGGAAACACCATTGGAGTCACGT -ACGGAAACACCATTGGAGCGTAGT -ACGGAAACACCATTGGAGGTCAGT -ACGGAAACACCATTGGAGGAAGGT -ACGGAAACACCATTGGAGAACCGT -ACGGAAACACCATTGGAGTTGTGC -ACGGAAACACCATTGGAGCTAAGC -ACGGAAACACCATTGGAGACTAGC -ACGGAAACACCATTGGAGAGATGC -ACGGAAACACCATTGGAGTGAAGG -ACGGAAACACCATTGGAGCAATGG -ACGGAAACACCATTGGAGATGAGG -ACGGAAACACCATTGGAGAATGGG -ACGGAAACACCATTGGAGTCCTGA -ACGGAAACACCATTGGAGTAGCGA -ACGGAAACACCATTGGAGCACAGA -ACGGAAACACCATTGGAGGCAAGA -ACGGAAACACCATTGGAGGGTTGA -ACGGAAACACCATTGGAGTCCGAT -ACGGAAACACCATTGGAGTGGCAT -ACGGAAACACCATTGGAGCGAGAT -ACGGAAACACCATTGGAGTACCAC -ACGGAAACACCATTGGAGCAGAAC -ACGGAAACACCATTGGAGGTCTAC -ACGGAAACACCATTGGAGACGTAC -ACGGAAACACCATTGGAGAGTGAC -ACGGAAACACCATTGGAGCTGTAG -ACGGAAACACCATTGGAGCCTAAG -ACGGAAACACCATTGGAGGTTCAG -ACGGAAACACCATTGGAGGCATAG -ACGGAAACACCATTGGAGGACAAG -ACGGAAACACCATTGGAGAAGCAG -ACGGAAACACCATTGGAGCGTCAA -ACGGAAACACCATTGGAGGCTGAA -ACGGAAACACCATTGGAGAGTACG -ACGGAAACACCATTGGAGATCCGA -ACGGAAACACCATTGGAGATGGGA -ACGGAAACACCATTGGAGGTGCAA -ACGGAAACACCATTGGAGGAGGAA -ACGGAAACACCATTGGAGCAGGTA -ACGGAAACACCATTGGAGGACTCT -ACGGAAACACCATTGGAGAGTCCT -ACGGAAACACCATTGGAGTAAGCC -ACGGAAACACCATTGGAGATAGCC -ACGGAAACACCATTGGAGTAACCG -ACGGAAACACCATTGGAGATGCCA -ACGGAAACACCACTGAGAGGAAAC -ACGGAAACACCACTGAGAAACACC -ACGGAAACACCACTGAGAATCGAG -ACGGAAACACCACTGAGACTCCTT -ACGGAAACACCACTGAGACCTGTT -ACGGAAACACCACTGAGACGGTTT -ACGGAAACACCACTGAGAGTGGTT -ACGGAAACACCACTGAGAGCCTTT -ACGGAAACACCACTGAGAGGTCTT -ACGGAAACACCACTGAGAACGCTT -ACGGAAACACCACTGAGAAGCGTT -ACGGAAACACCACTGAGATTCGTC -ACGGAAACACCACTGAGATCTCTC -ACGGAAACACCACTGAGATGGATC -ACGGAAACACCACTGAGACACTTC -ACGGAAACACCACTGAGAGTACTC -ACGGAAACACCACTGAGAGATGTC -ACGGAAACACCACTGAGAACAGTC -ACGGAAACACCACTGAGATTGCTG -ACGGAAACACCACTGAGATCCATG -ACGGAAACACCACTGAGATGTGTG -ACGGAAACACCACTGAGACTAGTG -ACGGAAACACCACTGAGACATCTG -ACGGAAACACCACTGAGAGAGTTG -ACGGAAACACCACTGAGAAGACTG -ACGGAAACACCACTGAGATCGGTA -ACGGAAACACCACTGAGATGCCTA -ACGGAAACACCACTGAGACCACTA -ACGGAAACACCACTGAGAGGAGTA -ACGGAAACACCACTGAGATCGTCT -ACGGAAACACCACTGAGATGCACT -ACGGAAACACCACTGAGACTGACT -ACGGAAACACCACTGAGACAACCT -ACGGAAACACCACTGAGAGCTACT -ACGGAAACACCACTGAGAGGATCT -ACGGAAACACCACTGAGAAAGGCT -ACGGAAACACCACTGAGATCAACC -ACGGAAACACCACTGAGATGTTCC -ACGGAAACACCACTGAGAATTCCC -ACGGAAACACCACTGAGATTCTCG -ACGGAAACACCACTGAGATAGACG -ACGGAAACACCACTGAGAGTAACG -ACGGAAACACCACTGAGAACTTCG -ACGGAAACACCACTGAGATACGCA -ACGGAAACACCACTGAGACTTGCA -ACGGAAACACCACTGAGACGAACA -ACGGAAACACCACTGAGACAGTCA -ACGGAAACACCACTGAGAGATCCA -ACGGAAACACCACTGAGAACGACA -ACGGAAACACCACTGAGAAGCTCA -ACGGAAACACCACTGAGATCACGT -ACGGAAACACCACTGAGACGTAGT -ACGGAAACACCACTGAGAGTCAGT -ACGGAAACACCACTGAGAGAAGGT -ACGGAAACACCACTGAGAAACCGT -ACGGAAACACCACTGAGATTGTGC -ACGGAAACACCACTGAGACTAAGC -ACGGAAACACCACTGAGAACTAGC -ACGGAAACACCACTGAGAAGATGC -ACGGAAACACCACTGAGATGAAGG -ACGGAAACACCACTGAGACAATGG -ACGGAAACACCACTGAGAATGAGG -ACGGAAACACCACTGAGAAATGGG -ACGGAAACACCACTGAGATCCTGA -ACGGAAACACCACTGAGATAGCGA -ACGGAAACACCACTGAGACACAGA -ACGGAAACACCACTGAGAGCAAGA -ACGGAAACACCACTGAGAGGTTGA -ACGGAAACACCACTGAGATCCGAT -ACGGAAACACCACTGAGATGGCAT -ACGGAAACACCACTGAGACGAGAT -ACGGAAACACCACTGAGATACCAC -ACGGAAACACCACTGAGACAGAAC -ACGGAAACACCACTGAGAGTCTAC -ACGGAAACACCACTGAGAACGTAC -ACGGAAACACCACTGAGAAGTGAC -ACGGAAACACCACTGAGACTGTAG -ACGGAAACACCACTGAGACCTAAG -ACGGAAACACCACTGAGAGTTCAG -ACGGAAACACCACTGAGAGCATAG -ACGGAAACACCACTGAGAGACAAG -ACGGAAACACCACTGAGAAAGCAG -ACGGAAACACCACTGAGACGTCAA -ACGGAAACACCACTGAGAGCTGAA -ACGGAAACACCACTGAGAAGTACG -ACGGAAACACCACTGAGAATCCGA -ACGGAAACACCACTGAGAATGGGA -ACGGAAACACCACTGAGAGTGCAA -ACGGAAACACCACTGAGAGAGGAA -ACGGAAACACCACTGAGACAGGTA -ACGGAAACACCACTGAGAGACTCT -ACGGAAACACCACTGAGAAGTCCT -ACGGAAACACCACTGAGATAAGCC -ACGGAAACACCACTGAGAATAGCC -ACGGAAACACCACTGAGATAACCG -ACGGAAACACCACTGAGAATGCCA -ACGGAAACACCAGTATCGGGAAAC -ACGGAAACACCAGTATCGAACACC -ACGGAAACACCAGTATCGATCGAG -ACGGAAACACCAGTATCGCTCCTT -ACGGAAACACCAGTATCGCCTGTT -ACGGAAACACCAGTATCGCGGTTT -ACGGAAACACCAGTATCGGTGGTT -ACGGAAACACCAGTATCGGCCTTT -ACGGAAACACCAGTATCGGGTCTT -ACGGAAACACCAGTATCGACGCTT -ACGGAAACACCAGTATCGAGCGTT -ACGGAAACACCAGTATCGTTCGTC -ACGGAAACACCAGTATCGTCTCTC -ACGGAAACACCAGTATCGTGGATC -ACGGAAACACCAGTATCGCACTTC -ACGGAAACACCAGTATCGGTACTC -ACGGAAACACCAGTATCGGATGTC -ACGGAAACACCAGTATCGACAGTC -ACGGAAACACCAGTATCGTTGCTG -ACGGAAACACCAGTATCGTCCATG -ACGGAAACACCAGTATCGTGTGTG -ACGGAAACACCAGTATCGCTAGTG -ACGGAAACACCAGTATCGCATCTG -ACGGAAACACCAGTATCGGAGTTG -ACGGAAACACCAGTATCGAGACTG -ACGGAAACACCAGTATCGTCGGTA -ACGGAAACACCAGTATCGTGCCTA -ACGGAAACACCAGTATCGCCACTA -ACGGAAACACCAGTATCGGGAGTA -ACGGAAACACCAGTATCGTCGTCT -ACGGAAACACCAGTATCGTGCACT -ACGGAAACACCAGTATCGCTGACT -ACGGAAACACCAGTATCGCAACCT -ACGGAAACACCAGTATCGGCTACT -ACGGAAACACCAGTATCGGGATCT -ACGGAAACACCAGTATCGAAGGCT -ACGGAAACACCAGTATCGTCAACC -ACGGAAACACCAGTATCGTGTTCC -ACGGAAACACCAGTATCGATTCCC -ACGGAAACACCAGTATCGTTCTCG -ACGGAAACACCAGTATCGTAGACG -ACGGAAACACCAGTATCGGTAACG -ACGGAAACACCAGTATCGACTTCG -ACGGAAACACCAGTATCGTACGCA -ACGGAAACACCAGTATCGCTTGCA -ACGGAAACACCAGTATCGCGAACA -ACGGAAACACCAGTATCGCAGTCA -ACGGAAACACCAGTATCGGATCCA -ACGGAAACACCAGTATCGACGACA -ACGGAAACACCAGTATCGAGCTCA -ACGGAAACACCAGTATCGTCACGT -ACGGAAACACCAGTATCGCGTAGT -ACGGAAACACCAGTATCGGTCAGT -ACGGAAACACCAGTATCGGAAGGT -ACGGAAACACCAGTATCGAACCGT -ACGGAAACACCAGTATCGTTGTGC -ACGGAAACACCAGTATCGCTAAGC -ACGGAAACACCAGTATCGACTAGC -ACGGAAACACCAGTATCGAGATGC -ACGGAAACACCAGTATCGTGAAGG -ACGGAAACACCAGTATCGCAATGG -ACGGAAACACCAGTATCGATGAGG -ACGGAAACACCAGTATCGAATGGG -ACGGAAACACCAGTATCGTCCTGA -ACGGAAACACCAGTATCGTAGCGA -ACGGAAACACCAGTATCGCACAGA -ACGGAAACACCAGTATCGGCAAGA -ACGGAAACACCAGTATCGGGTTGA -ACGGAAACACCAGTATCGTCCGAT -ACGGAAACACCAGTATCGTGGCAT -ACGGAAACACCAGTATCGCGAGAT -ACGGAAACACCAGTATCGTACCAC -ACGGAAACACCAGTATCGCAGAAC -ACGGAAACACCAGTATCGGTCTAC -ACGGAAACACCAGTATCGACGTAC -ACGGAAACACCAGTATCGAGTGAC -ACGGAAACACCAGTATCGCTGTAG -ACGGAAACACCAGTATCGCCTAAG -ACGGAAACACCAGTATCGGTTCAG -ACGGAAACACCAGTATCGGCATAG -ACGGAAACACCAGTATCGGACAAG -ACGGAAACACCAGTATCGAAGCAG -ACGGAAACACCAGTATCGCGTCAA -ACGGAAACACCAGTATCGGCTGAA -ACGGAAACACCAGTATCGAGTACG -ACGGAAACACCAGTATCGATCCGA -ACGGAAACACCAGTATCGATGGGA -ACGGAAACACCAGTATCGGTGCAA -ACGGAAACACCAGTATCGGAGGAA -ACGGAAACACCAGTATCGCAGGTA -ACGGAAACACCAGTATCGGACTCT -ACGGAAACACCAGTATCGAGTCCT -ACGGAAACACCAGTATCGTAAGCC -ACGGAAACACCAGTATCGATAGCC -ACGGAAACACCAGTATCGTAACCG -ACGGAAACACCAGTATCGATGCCA -ACGGAAACACCACTATGCGGAAAC -ACGGAAACACCACTATGCAACACC -ACGGAAACACCACTATGCATCGAG -ACGGAAACACCACTATGCCTCCTT -ACGGAAACACCACTATGCCCTGTT -ACGGAAACACCACTATGCCGGTTT -ACGGAAACACCACTATGCGTGGTT -ACGGAAACACCACTATGCGCCTTT -ACGGAAACACCACTATGCGGTCTT -ACGGAAACACCACTATGCACGCTT -ACGGAAACACCACTATGCAGCGTT -ACGGAAACACCACTATGCTTCGTC -ACGGAAACACCACTATGCTCTCTC -ACGGAAACACCACTATGCTGGATC -ACGGAAACACCACTATGCCACTTC -ACGGAAACACCACTATGCGTACTC -ACGGAAACACCACTATGCGATGTC -ACGGAAACACCACTATGCACAGTC -ACGGAAACACCACTATGCTTGCTG -ACGGAAACACCACTATGCTCCATG -ACGGAAACACCACTATGCTGTGTG -ACGGAAACACCACTATGCCTAGTG -ACGGAAACACCACTATGCCATCTG -ACGGAAACACCACTATGCGAGTTG -ACGGAAACACCACTATGCAGACTG -ACGGAAACACCACTATGCTCGGTA -ACGGAAACACCACTATGCTGCCTA -ACGGAAACACCACTATGCCCACTA -ACGGAAACACCACTATGCGGAGTA -ACGGAAACACCACTATGCTCGTCT -ACGGAAACACCACTATGCTGCACT -ACGGAAACACCACTATGCCTGACT -ACGGAAACACCACTATGCCAACCT -ACGGAAACACCACTATGCGCTACT -ACGGAAACACCACTATGCGGATCT -ACGGAAACACCACTATGCAAGGCT -ACGGAAACACCACTATGCTCAACC -ACGGAAACACCACTATGCTGTTCC -ACGGAAACACCACTATGCATTCCC -ACGGAAACACCACTATGCTTCTCG -ACGGAAACACCACTATGCTAGACG -ACGGAAACACCACTATGCGTAACG -ACGGAAACACCACTATGCACTTCG -ACGGAAACACCACTATGCTACGCA -ACGGAAACACCACTATGCCTTGCA -ACGGAAACACCACTATGCCGAACA -ACGGAAACACCACTATGCCAGTCA -ACGGAAACACCACTATGCGATCCA -ACGGAAACACCACTATGCACGACA -ACGGAAACACCACTATGCAGCTCA -ACGGAAACACCACTATGCTCACGT -ACGGAAACACCACTATGCCGTAGT -ACGGAAACACCACTATGCGTCAGT -ACGGAAACACCACTATGCGAAGGT -ACGGAAACACCACTATGCAACCGT -ACGGAAACACCACTATGCTTGTGC -ACGGAAACACCACTATGCCTAAGC -ACGGAAACACCACTATGCACTAGC -ACGGAAACACCACTATGCAGATGC -ACGGAAACACCACTATGCTGAAGG -ACGGAAACACCACTATGCCAATGG -ACGGAAACACCACTATGCATGAGG -ACGGAAACACCACTATGCAATGGG -ACGGAAACACCACTATGCTCCTGA -ACGGAAACACCACTATGCTAGCGA -ACGGAAACACCACTATGCCACAGA -ACGGAAACACCACTATGCGCAAGA -ACGGAAACACCACTATGCGGTTGA -ACGGAAACACCACTATGCTCCGAT -ACGGAAACACCACTATGCTGGCAT -ACGGAAACACCACTATGCCGAGAT -ACGGAAACACCACTATGCTACCAC -ACGGAAACACCACTATGCCAGAAC -ACGGAAACACCACTATGCGTCTAC -ACGGAAACACCACTATGCACGTAC -ACGGAAACACCACTATGCAGTGAC -ACGGAAACACCACTATGCCTGTAG -ACGGAAACACCACTATGCCCTAAG -ACGGAAACACCACTATGCGTTCAG -ACGGAAACACCACTATGCGCATAG -ACGGAAACACCACTATGCGACAAG -ACGGAAACACCACTATGCAAGCAG -ACGGAAACACCACTATGCCGTCAA -ACGGAAACACCACTATGCGCTGAA -ACGGAAACACCACTATGCAGTACG -ACGGAAACACCACTATGCATCCGA -ACGGAAACACCACTATGCATGGGA -ACGGAAACACCACTATGCGTGCAA -ACGGAAACACCACTATGCGAGGAA -ACGGAAACACCACTATGCCAGGTA -ACGGAAACACCACTATGCGACTCT -ACGGAAACACCACTATGCAGTCCT -ACGGAAACACCACTATGCTAAGCC -ACGGAAACACCACTATGCATAGCC -ACGGAAACACCACTATGCTAACCG -ACGGAAACACCACTATGCATGCCA -ACGGAAACACCACTACCAGGAAAC -ACGGAAACACCACTACCAAACACC -ACGGAAACACCACTACCAATCGAG -ACGGAAACACCACTACCACTCCTT -ACGGAAACACCACTACCACCTGTT -ACGGAAACACCACTACCACGGTTT -ACGGAAACACCACTACCAGTGGTT -ACGGAAACACCACTACCAGCCTTT -ACGGAAACACCACTACCAGGTCTT -ACGGAAACACCACTACCAACGCTT -ACGGAAACACCACTACCAAGCGTT -ACGGAAACACCACTACCATTCGTC -ACGGAAACACCACTACCATCTCTC -ACGGAAACACCACTACCATGGATC -ACGGAAACACCACTACCACACTTC -ACGGAAACACCACTACCAGTACTC -ACGGAAACACCACTACCAGATGTC -ACGGAAACACCACTACCAACAGTC -ACGGAAACACCACTACCATTGCTG -ACGGAAACACCACTACCATCCATG -ACGGAAACACCACTACCATGTGTG -ACGGAAACACCACTACCACTAGTG -ACGGAAACACCACTACCACATCTG -ACGGAAACACCACTACCAGAGTTG -ACGGAAACACCACTACCAAGACTG -ACGGAAACACCACTACCATCGGTA -ACGGAAACACCACTACCATGCCTA -ACGGAAACACCACTACCACCACTA -ACGGAAACACCACTACCAGGAGTA -ACGGAAACACCACTACCATCGTCT -ACGGAAACACCACTACCATGCACT -ACGGAAACACCACTACCACTGACT -ACGGAAACACCACTACCACAACCT -ACGGAAACACCACTACCAGCTACT -ACGGAAACACCACTACCAGGATCT -ACGGAAACACCACTACCAAAGGCT -ACGGAAACACCACTACCATCAACC -ACGGAAACACCACTACCATGTTCC -ACGGAAACACCACTACCAATTCCC -ACGGAAACACCACTACCATTCTCG -ACGGAAACACCACTACCATAGACG -ACGGAAACACCACTACCAGTAACG -ACGGAAACACCACTACCAACTTCG -ACGGAAACACCACTACCATACGCA -ACGGAAACACCACTACCACTTGCA -ACGGAAACACCACTACCACGAACA -ACGGAAACACCACTACCACAGTCA -ACGGAAACACCACTACCAGATCCA -ACGGAAACACCACTACCAACGACA -ACGGAAACACCACTACCAAGCTCA -ACGGAAACACCACTACCATCACGT -ACGGAAACACCACTACCACGTAGT -ACGGAAACACCACTACCAGTCAGT -ACGGAAACACCACTACCAGAAGGT -ACGGAAACACCACTACCAAACCGT -ACGGAAACACCACTACCATTGTGC -ACGGAAACACCACTACCACTAAGC -ACGGAAACACCACTACCAACTAGC -ACGGAAACACCACTACCAAGATGC -ACGGAAACACCACTACCATGAAGG -ACGGAAACACCACTACCACAATGG -ACGGAAACACCACTACCAATGAGG -ACGGAAACACCACTACCAAATGGG -ACGGAAACACCACTACCATCCTGA -ACGGAAACACCACTACCATAGCGA -ACGGAAACACCACTACCACACAGA -ACGGAAACACCACTACCAGCAAGA -ACGGAAACACCACTACCAGGTTGA -ACGGAAACACCACTACCATCCGAT -ACGGAAACACCACTACCATGGCAT -ACGGAAACACCACTACCACGAGAT -ACGGAAACACCACTACCATACCAC -ACGGAAACACCACTACCACAGAAC -ACGGAAACACCACTACCAGTCTAC -ACGGAAACACCACTACCAACGTAC -ACGGAAACACCACTACCAAGTGAC -ACGGAAACACCACTACCACTGTAG -ACGGAAACACCACTACCACCTAAG -ACGGAAACACCACTACCAGTTCAG -ACGGAAACACCACTACCAGCATAG -ACGGAAACACCACTACCAGACAAG -ACGGAAACACCACTACCAAAGCAG -ACGGAAACACCACTACCACGTCAA -ACGGAAACACCACTACCAGCTGAA -ACGGAAACACCACTACCAAGTACG -ACGGAAACACCACTACCAATCCGA -ACGGAAACACCACTACCAATGGGA -ACGGAAACACCACTACCAGTGCAA -ACGGAAACACCACTACCAGAGGAA -ACGGAAACACCACTACCACAGGTA -ACGGAAACACCACTACCAGACTCT -ACGGAAACACCACTACCAAGTCCT -ACGGAAACACCACTACCATAAGCC -ACGGAAACACCACTACCAATAGCC -ACGGAAACACCACTACCATAACCG -ACGGAAACACCACTACCAATGCCA -ACGGAAACACCAGTAGGAGGAAAC -ACGGAAACACCAGTAGGAAACACC -ACGGAAACACCAGTAGGAATCGAG -ACGGAAACACCAGTAGGACTCCTT -ACGGAAACACCAGTAGGACCTGTT -ACGGAAACACCAGTAGGACGGTTT -ACGGAAACACCAGTAGGAGTGGTT -ACGGAAACACCAGTAGGAGCCTTT -ACGGAAACACCAGTAGGAGGTCTT -ACGGAAACACCAGTAGGAACGCTT -ACGGAAACACCAGTAGGAAGCGTT -ACGGAAACACCAGTAGGATTCGTC -ACGGAAACACCAGTAGGATCTCTC -ACGGAAACACCAGTAGGATGGATC -ACGGAAACACCAGTAGGACACTTC -ACGGAAACACCAGTAGGAGTACTC -ACGGAAACACCAGTAGGAGATGTC -ACGGAAACACCAGTAGGAACAGTC -ACGGAAACACCAGTAGGATTGCTG -ACGGAAACACCAGTAGGATCCATG -ACGGAAACACCAGTAGGATGTGTG -ACGGAAACACCAGTAGGACTAGTG -ACGGAAACACCAGTAGGACATCTG -ACGGAAACACCAGTAGGAGAGTTG -ACGGAAACACCAGTAGGAAGACTG -ACGGAAACACCAGTAGGATCGGTA -ACGGAAACACCAGTAGGATGCCTA -ACGGAAACACCAGTAGGACCACTA -ACGGAAACACCAGTAGGAGGAGTA -ACGGAAACACCAGTAGGATCGTCT -ACGGAAACACCAGTAGGATGCACT -ACGGAAACACCAGTAGGACTGACT -ACGGAAACACCAGTAGGACAACCT -ACGGAAACACCAGTAGGAGCTACT -ACGGAAACACCAGTAGGAGGATCT -ACGGAAACACCAGTAGGAAAGGCT -ACGGAAACACCAGTAGGATCAACC -ACGGAAACACCAGTAGGATGTTCC -ACGGAAACACCAGTAGGAATTCCC -ACGGAAACACCAGTAGGATTCTCG -ACGGAAACACCAGTAGGATAGACG -ACGGAAACACCAGTAGGAGTAACG -ACGGAAACACCAGTAGGAACTTCG -ACGGAAACACCAGTAGGATACGCA -ACGGAAACACCAGTAGGACTTGCA -ACGGAAACACCAGTAGGACGAACA -ACGGAAACACCAGTAGGACAGTCA -ACGGAAACACCAGTAGGAGATCCA -ACGGAAACACCAGTAGGAACGACA -ACGGAAACACCAGTAGGAAGCTCA -ACGGAAACACCAGTAGGATCACGT -ACGGAAACACCAGTAGGACGTAGT -ACGGAAACACCAGTAGGAGTCAGT -ACGGAAACACCAGTAGGAGAAGGT -ACGGAAACACCAGTAGGAAACCGT -ACGGAAACACCAGTAGGATTGTGC -ACGGAAACACCAGTAGGACTAAGC -ACGGAAACACCAGTAGGAACTAGC -ACGGAAACACCAGTAGGAAGATGC -ACGGAAACACCAGTAGGATGAAGG -ACGGAAACACCAGTAGGACAATGG -ACGGAAACACCAGTAGGAATGAGG -ACGGAAACACCAGTAGGAAATGGG -ACGGAAACACCAGTAGGATCCTGA -ACGGAAACACCAGTAGGATAGCGA -ACGGAAACACCAGTAGGACACAGA -ACGGAAACACCAGTAGGAGCAAGA -ACGGAAACACCAGTAGGAGGTTGA -ACGGAAACACCAGTAGGATCCGAT -ACGGAAACACCAGTAGGATGGCAT -ACGGAAACACCAGTAGGACGAGAT -ACGGAAACACCAGTAGGATACCAC -ACGGAAACACCAGTAGGACAGAAC -ACGGAAACACCAGTAGGAGTCTAC -ACGGAAACACCAGTAGGAACGTAC -ACGGAAACACCAGTAGGAAGTGAC -ACGGAAACACCAGTAGGACTGTAG -ACGGAAACACCAGTAGGACCTAAG -ACGGAAACACCAGTAGGAGTTCAG -ACGGAAACACCAGTAGGAGCATAG -ACGGAAACACCAGTAGGAGACAAG -ACGGAAACACCAGTAGGAAAGCAG -ACGGAAACACCAGTAGGACGTCAA -ACGGAAACACCAGTAGGAGCTGAA -ACGGAAACACCAGTAGGAAGTACG -ACGGAAACACCAGTAGGAATCCGA -ACGGAAACACCAGTAGGAATGGGA -ACGGAAACACCAGTAGGAGTGCAA -ACGGAAACACCAGTAGGAGAGGAA -ACGGAAACACCAGTAGGACAGGTA -ACGGAAACACCAGTAGGAGACTCT -ACGGAAACACCAGTAGGAAGTCCT -ACGGAAACACCAGTAGGATAAGCC -ACGGAAACACCAGTAGGAATAGCC -ACGGAAACACCAGTAGGATAACCG -ACGGAAACACCAGTAGGAATGCCA -ACGGAAACACCATCTTCGGGAAAC -ACGGAAACACCATCTTCGAACACC -ACGGAAACACCATCTTCGATCGAG -ACGGAAACACCATCTTCGCTCCTT -ACGGAAACACCATCTTCGCCTGTT -ACGGAAACACCATCTTCGCGGTTT -ACGGAAACACCATCTTCGGTGGTT -ACGGAAACACCATCTTCGGCCTTT -ACGGAAACACCATCTTCGGGTCTT -ACGGAAACACCATCTTCGACGCTT -ACGGAAACACCATCTTCGAGCGTT -ACGGAAACACCATCTTCGTTCGTC -ACGGAAACACCATCTTCGTCTCTC -ACGGAAACACCATCTTCGTGGATC -ACGGAAACACCATCTTCGCACTTC -ACGGAAACACCATCTTCGGTACTC -ACGGAAACACCATCTTCGGATGTC -ACGGAAACACCATCTTCGACAGTC -ACGGAAACACCATCTTCGTTGCTG -ACGGAAACACCATCTTCGTCCATG -ACGGAAACACCATCTTCGTGTGTG -ACGGAAACACCATCTTCGCTAGTG -ACGGAAACACCATCTTCGCATCTG -ACGGAAACACCATCTTCGGAGTTG -ACGGAAACACCATCTTCGAGACTG -ACGGAAACACCATCTTCGTCGGTA -ACGGAAACACCATCTTCGTGCCTA -ACGGAAACACCATCTTCGCCACTA -ACGGAAACACCATCTTCGGGAGTA -ACGGAAACACCATCTTCGTCGTCT -ACGGAAACACCATCTTCGTGCACT -ACGGAAACACCATCTTCGCTGACT -ACGGAAACACCATCTTCGCAACCT -ACGGAAACACCATCTTCGGCTACT -ACGGAAACACCATCTTCGGGATCT -ACGGAAACACCATCTTCGAAGGCT -ACGGAAACACCATCTTCGTCAACC -ACGGAAACACCATCTTCGTGTTCC -ACGGAAACACCATCTTCGATTCCC -ACGGAAACACCATCTTCGTTCTCG -ACGGAAACACCATCTTCGTAGACG -ACGGAAACACCATCTTCGGTAACG -ACGGAAACACCATCTTCGACTTCG -ACGGAAACACCATCTTCGTACGCA -ACGGAAACACCATCTTCGCTTGCA -ACGGAAACACCATCTTCGCGAACA -ACGGAAACACCATCTTCGCAGTCA -ACGGAAACACCATCTTCGGATCCA -ACGGAAACACCATCTTCGACGACA -ACGGAAACACCATCTTCGAGCTCA -ACGGAAACACCATCTTCGTCACGT -ACGGAAACACCATCTTCGCGTAGT -ACGGAAACACCATCTTCGGTCAGT -ACGGAAACACCATCTTCGGAAGGT -ACGGAAACACCATCTTCGAACCGT -ACGGAAACACCATCTTCGTTGTGC -ACGGAAACACCATCTTCGCTAAGC -ACGGAAACACCATCTTCGACTAGC -ACGGAAACACCATCTTCGAGATGC -ACGGAAACACCATCTTCGTGAAGG -ACGGAAACACCATCTTCGCAATGG -ACGGAAACACCATCTTCGATGAGG -ACGGAAACACCATCTTCGAATGGG -ACGGAAACACCATCTTCGTCCTGA -ACGGAAACACCATCTTCGTAGCGA -ACGGAAACACCATCTTCGCACAGA -ACGGAAACACCATCTTCGGCAAGA -ACGGAAACACCATCTTCGGGTTGA -ACGGAAACACCATCTTCGTCCGAT -ACGGAAACACCATCTTCGTGGCAT -ACGGAAACACCATCTTCGCGAGAT -ACGGAAACACCATCTTCGTACCAC -ACGGAAACACCATCTTCGCAGAAC -ACGGAAACACCATCTTCGGTCTAC -ACGGAAACACCATCTTCGACGTAC -ACGGAAACACCATCTTCGAGTGAC -ACGGAAACACCATCTTCGCTGTAG -ACGGAAACACCATCTTCGCCTAAG -ACGGAAACACCATCTTCGGTTCAG -ACGGAAACACCATCTTCGGCATAG -ACGGAAACACCATCTTCGGACAAG -ACGGAAACACCATCTTCGAAGCAG -ACGGAAACACCATCTTCGCGTCAA -ACGGAAACACCATCTTCGGCTGAA -ACGGAAACACCATCTTCGAGTACG -ACGGAAACACCATCTTCGATCCGA -ACGGAAACACCATCTTCGATGGGA -ACGGAAACACCATCTTCGGTGCAA -ACGGAAACACCATCTTCGGAGGAA -ACGGAAACACCATCTTCGCAGGTA -ACGGAAACACCATCTTCGGACTCT -ACGGAAACACCATCTTCGAGTCCT -ACGGAAACACCATCTTCGTAAGCC -ACGGAAACACCATCTTCGATAGCC -ACGGAAACACCATCTTCGTAACCG -ACGGAAACACCATCTTCGATGCCA -ACGGAAACACCAACTTGCGGAAAC -ACGGAAACACCAACTTGCAACACC -ACGGAAACACCAACTTGCATCGAG -ACGGAAACACCAACTTGCCTCCTT -ACGGAAACACCAACTTGCCCTGTT -ACGGAAACACCAACTTGCCGGTTT -ACGGAAACACCAACTTGCGTGGTT -ACGGAAACACCAACTTGCGCCTTT -ACGGAAACACCAACTTGCGGTCTT -ACGGAAACACCAACTTGCACGCTT -ACGGAAACACCAACTTGCAGCGTT -ACGGAAACACCAACTTGCTTCGTC -ACGGAAACACCAACTTGCTCTCTC -ACGGAAACACCAACTTGCTGGATC -ACGGAAACACCAACTTGCCACTTC -ACGGAAACACCAACTTGCGTACTC -ACGGAAACACCAACTTGCGATGTC -ACGGAAACACCAACTTGCACAGTC -ACGGAAACACCAACTTGCTTGCTG -ACGGAAACACCAACTTGCTCCATG -ACGGAAACACCAACTTGCTGTGTG -ACGGAAACACCAACTTGCCTAGTG -ACGGAAACACCAACTTGCCATCTG -ACGGAAACACCAACTTGCGAGTTG -ACGGAAACACCAACTTGCAGACTG -ACGGAAACACCAACTTGCTCGGTA -ACGGAAACACCAACTTGCTGCCTA -ACGGAAACACCAACTTGCCCACTA -ACGGAAACACCAACTTGCGGAGTA -ACGGAAACACCAACTTGCTCGTCT -ACGGAAACACCAACTTGCTGCACT -ACGGAAACACCAACTTGCCTGACT -ACGGAAACACCAACTTGCCAACCT -ACGGAAACACCAACTTGCGCTACT -ACGGAAACACCAACTTGCGGATCT -ACGGAAACACCAACTTGCAAGGCT -ACGGAAACACCAACTTGCTCAACC -ACGGAAACACCAACTTGCTGTTCC -ACGGAAACACCAACTTGCATTCCC -ACGGAAACACCAACTTGCTTCTCG -ACGGAAACACCAACTTGCTAGACG -ACGGAAACACCAACTTGCGTAACG -ACGGAAACACCAACTTGCACTTCG -ACGGAAACACCAACTTGCTACGCA -ACGGAAACACCAACTTGCCTTGCA -ACGGAAACACCAACTTGCCGAACA -ACGGAAACACCAACTTGCCAGTCA -ACGGAAACACCAACTTGCGATCCA -ACGGAAACACCAACTTGCACGACA -ACGGAAACACCAACTTGCAGCTCA -ACGGAAACACCAACTTGCTCACGT -ACGGAAACACCAACTTGCCGTAGT -ACGGAAACACCAACTTGCGTCAGT -ACGGAAACACCAACTTGCGAAGGT -ACGGAAACACCAACTTGCAACCGT -ACGGAAACACCAACTTGCTTGTGC -ACGGAAACACCAACTTGCCTAAGC -ACGGAAACACCAACTTGCACTAGC -ACGGAAACACCAACTTGCAGATGC -ACGGAAACACCAACTTGCTGAAGG -ACGGAAACACCAACTTGCCAATGG -ACGGAAACACCAACTTGCATGAGG -ACGGAAACACCAACTTGCAATGGG -ACGGAAACACCAACTTGCTCCTGA -ACGGAAACACCAACTTGCTAGCGA -ACGGAAACACCAACTTGCCACAGA -ACGGAAACACCAACTTGCGCAAGA -ACGGAAACACCAACTTGCGGTTGA -ACGGAAACACCAACTTGCTCCGAT -ACGGAAACACCAACTTGCTGGCAT -ACGGAAACACCAACTTGCCGAGAT -ACGGAAACACCAACTTGCTACCAC -ACGGAAACACCAACTTGCCAGAAC -ACGGAAACACCAACTTGCGTCTAC -ACGGAAACACCAACTTGCACGTAC -ACGGAAACACCAACTTGCAGTGAC -ACGGAAACACCAACTTGCCTGTAG -ACGGAAACACCAACTTGCCCTAAG -ACGGAAACACCAACTTGCGTTCAG -ACGGAAACACCAACTTGCGCATAG -ACGGAAACACCAACTTGCGACAAG -ACGGAAACACCAACTTGCAAGCAG -ACGGAAACACCAACTTGCCGTCAA -ACGGAAACACCAACTTGCGCTGAA -ACGGAAACACCAACTTGCAGTACG -ACGGAAACACCAACTTGCATCCGA -ACGGAAACACCAACTTGCATGGGA -ACGGAAACACCAACTTGCGTGCAA -ACGGAAACACCAACTTGCGAGGAA -ACGGAAACACCAACTTGCCAGGTA -ACGGAAACACCAACTTGCGACTCT -ACGGAAACACCAACTTGCAGTCCT -ACGGAAACACCAACTTGCTAAGCC -ACGGAAACACCAACTTGCATAGCC -ACGGAAACACCAACTTGCTAACCG -ACGGAAACACCAACTTGCATGCCA -ACGGAAACACCAACTCTGGGAAAC -ACGGAAACACCAACTCTGAACACC -ACGGAAACACCAACTCTGATCGAG -ACGGAAACACCAACTCTGCTCCTT -ACGGAAACACCAACTCTGCCTGTT -ACGGAAACACCAACTCTGCGGTTT -ACGGAAACACCAACTCTGGTGGTT -ACGGAAACACCAACTCTGGCCTTT -ACGGAAACACCAACTCTGGGTCTT -ACGGAAACACCAACTCTGACGCTT -ACGGAAACACCAACTCTGAGCGTT -ACGGAAACACCAACTCTGTTCGTC -ACGGAAACACCAACTCTGTCTCTC -ACGGAAACACCAACTCTGTGGATC -ACGGAAACACCAACTCTGCACTTC -ACGGAAACACCAACTCTGGTACTC -ACGGAAACACCAACTCTGGATGTC -ACGGAAACACCAACTCTGACAGTC -ACGGAAACACCAACTCTGTTGCTG -ACGGAAACACCAACTCTGTCCATG -ACGGAAACACCAACTCTGTGTGTG -ACGGAAACACCAACTCTGCTAGTG -ACGGAAACACCAACTCTGCATCTG -ACGGAAACACCAACTCTGGAGTTG -ACGGAAACACCAACTCTGAGACTG -ACGGAAACACCAACTCTGTCGGTA -ACGGAAACACCAACTCTGTGCCTA -ACGGAAACACCAACTCTGCCACTA -ACGGAAACACCAACTCTGGGAGTA -ACGGAAACACCAACTCTGTCGTCT -ACGGAAACACCAACTCTGTGCACT -ACGGAAACACCAACTCTGCTGACT -ACGGAAACACCAACTCTGCAACCT -ACGGAAACACCAACTCTGGCTACT -ACGGAAACACCAACTCTGGGATCT -ACGGAAACACCAACTCTGAAGGCT -ACGGAAACACCAACTCTGTCAACC -ACGGAAACACCAACTCTGTGTTCC -ACGGAAACACCAACTCTGATTCCC -ACGGAAACACCAACTCTGTTCTCG -ACGGAAACACCAACTCTGTAGACG -ACGGAAACACCAACTCTGGTAACG -ACGGAAACACCAACTCTGACTTCG -ACGGAAACACCAACTCTGTACGCA -ACGGAAACACCAACTCTGCTTGCA -ACGGAAACACCAACTCTGCGAACA -ACGGAAACACCAACTCTGCAGTCA -ACGGAAACACCAACTCTGGATCCA -ACGGAAACACCAACTCTGACGACA -ACGGAAACACCAACTCTGAGCTCA -ACGGAAACACCAACTCTGTCACGT -ACGGAAACACCAACTCTGCGTAGT -ACGGAAACACCAACTCTGGTCAGT -ACGGAAACACCAACTCTGGAAGGT -ACGGAAACACCAACTCTGAACCGT -ACGGAAACACCAACTCTGTTGTGC -ACGGAAACACCAACTCTGCTAAGC -ACGGAAACACCAACTCTGACTAGC -ACGGAAACACCAACTCTGAGATGC -ACGGAAACACCAACTCTGTGAAGG -ACGGAAACACCAACTCTGCAATGG -ACGGAAACACCAACTCTGATGAGG -ACGGAAACACCAACTCTGAATGGG -ACGGAAACACCAACTCTGTCCTGA -ACGGAAACACCAACTCTGTAGCGA -ACGGAAACACCAACTCTGCACAGA -ACGGAAACACCAACTCTGGCAAGA -ACGGAAACACCAACTCTGGGTTGA -ACGGAAACACCAACTCTGTCCGAT -ACGGAAACACCAACTCTGTGGCAT -ACGGAAACACCAACTCTGCGAGAT -ACGGAAACACCAACTCTGTACCAC -ACGGAAACACCAACTCTGCAGAAC -ACGGAAACACCAACTCTGGTCTAC -ACGGAAACACCAACTCTGACGTAC -ACGGAAACACCAACTCTGAGTGAC -ACGGAAACACCAACTCTGCTGTAG -ACGGAAACACCAACTCTGCCTAAG -ACGGAAACACCAACTCTGGTTCAG -ACGGAAACACCAACTCTGGCATAG -ACGGAAACACCAACTCTGGACAAG -ACGGAAACACCAACTCTGAAGCAG -ACGGAAACACCAACTCTGCGTCAA -ACGGAAACACCAACTCTGGCTGAA -ACGGAAACACCAACTCTGAGTACG -ACGGAAACACCAACTCTGATCCGA -ACGGAAACACCAACTCTGATGGGA -ACGGAAACACCAACTCTGGTGCAA -ACGGAAACACCAACTCTGGAGGAA -ACGGAAACACCAACTCTGCAGGTA -ACGGAAACACCAACTCTGGACTCT -ACGGAAACACCAACTCTGAGTCCT -ACGGAAACACCAACTCTGTAAGCC -ACGGAAACACCAACTCTGATAGCC -ACGGAAACACCAACTCTGTAACCG -ACGGAAACACCAACTCTGATGCCA -ACGGAAACACCACCTCAAGGAAAC -ACGGAAACACCACCTCAAAACACC -ACGGAAACACCACCTCAAATCGAG -ACGGAAACACCACCTCAACTCCTT -ACGGAAACACCACCTCAACCTGTT -ACGGAAACACCACCTCAACGGTTT -ACGGAAACACCACCTCAAGTGGTT -ACGGAAACACCACCTCAAGCCTTT -ACGGAAACACCACCTCAAGGTCTT -ACGGAAACACCACCTCAAACGCTT -ACGGAAACACCACCTCAAAGCGTT -ACGGAAACACCACCTCAATTCGTC -ACGGAAACACCACCTCAATCTCTC -ACGGAAACACCACCTCAATGGATC -ACGGAAACACCACCTCAACACTTC -ACGGAAACACCACCTCAAGTACTC -ACGGAAACACCACCTCAAGATGTC -ACGGAAACACCACCTCAAACAGTC -ACGGAAACACCACCTCAATTGCTG -ACGGAAACACCACCTCAATCCATG -ACGGAAACACCACCTCAATGTGTG -ACGGAAACACCACCTCAACTAGTG -ACGGAAACACCACCTCAACATCTG -ACGGAAACACCACCTCAAGAGTTG -ACGGAAACACCACCTCAAAGACTG -ACGGAAACACCACCTCAATCGGTA -ACGGAAACACCACCTCAATGCCTA -ACGGAAACACCACCTCAACCACTA -ACGGAAACACCACCTCAAGGAGTA -ACGGAAACACCACCTCAATCGTCT -ACGGAAACACCACCTCAATGCACT -ACGGAAACACCACCTCAACTGACT -ACGGAAACACCACCTCAACAACCT -ACGGAAACACCACCTCAAGCTACT -ACGGAAACACCACCTCAAGGATCT -ACGGAAACACCACCTCAAAAGGCT -ACGGAAACACCACCTCAATCAACC -ACGGAAACACCACCTCAATGTTCC -ACGGAAACACCACCTCAAATTCCC -ACGGAAACACCACCTCAATTCTCG -ACGGAAACACCACCTCAATAGACG -ACGGAAACACCACCTCAAGTAACG -ACGGAAACACCACCTCAAACTTCG -ACGGAAACACCACCTCAATACGCA -ACGGAAACACCACCTCAACTTGCA -ACGGAAACACCACCTCAACGAACA -ACGGAAACACCACCTCAACAGTCA -ACGGAAACACCACCTCAAGATCCA -ACGGAAACACCACCTCAAACGACA -ACGGAAACACCACCTCAAAGCTCA -ACGGAAACACCACCTCAATCACGT -ACGGAAACACCACCTCAACGTAGT -ACGGAAACACCACCTCAAGTCAGT -ACGGAAACACCACCTCAAGAAGGT -ACGGAAACACCACCTCAAAACCGT -ACGGAAACACCACCTCAATTGTGC -ACGGAAACACCACCTCAACTAAGC -ACGGAAACACCACCTCAAACTAGC -ACGGAAACACCACCTCAAAGATGC -ACGGAAACACCACCTCAATGAAGG -ACGGAAACACCACCTCAACAATGG -ACGGAAACACCACCTCAAATGAGG -ACGGAAACACCACCTCAAAATGGG -ACGGAAACACCACCTCAATCCTGA -ACGGAAACACCACCTCAATAGCGA -ACGGAAACACCACCTCAACACAGA -ACGGAAACACCACCTCAAGCAAGA -ACGGAAACACCACCTCAAGGTTGA -ACGGAAACACCACCTCAATCCGAT -ACGGAAACACCACCTCAATGGCAT -ACGGAAACACCACCTCAACGAGAT -ACGGAAACACCACCTCAATACCAC -ACGGAAACACCACCTCAACAGAAC -ACGGAAACACCACCTCAAGTCTAC -ACGGAAACACCACCTCAAACGTAC -ACGGAAACACCACCTCAAAGTGAC -ACGGAAACACCACCTCAACTGTAG -ACGGAAACACCACCTCAACCTAAG -ACGGAAACACCACCTCAAGTTCAG -ACGGAAACACCACCTCAAGCATAG -ACGGAAACACCACCTCAAGACAAG -ACGGAAACACCACCTCAAAAGCAG -ACGGAAACACCACCTCAACGTCAA -ACGGAAACACCACCTCAAGCTGAA -ACGGAAACACCACCTCAAAGTACG -ACGGAAACACCACCTCAAATCCGA -ACGGAAACACCACCTCAAATGGGA -ACGGAAACACCACCTCAAGTGCAA -ACGGAAACACCACCTCAAGAGGAA -ACGGAAACACCACCTCAACAGGTA -ACGGAAACACCACCTCAAGACTCT -ACGGAAACACCACCTCAAAGTCCT -ACGGAAACACCACCTCAATAAGCC -ACGGAAACACCACCTCAAATAGCC -ACGGAAACACCACCTCAATAACCG -ACGGAAACACCACCTCAAATGCCA -ACGGAAACACCAACTGCTGGAAAC -ACGGAAACACCAACTGCTAACACC -ACGGAAACACCAACTGCTATCGAG -ACGGAAACACCAACTGCTCTCCTT -ACGGAAACACCAACTGCTCCTGTT -ACGGAAACACCAACTGCTCGGTTT -ACGGAAACACCAACTGCTGTGGTT -ACGGAAACACCAACTGCTGCCTTT -ACGGAAACACCAACTGCTGGTCTT -ACGGAAACACCAACTGCTACGCTT -ACGGAAACACCAACTGCTAGCGTT -ACGGAAACACCAACTGCTTTCGTC -ACGGAAACACCAACTGCTTCTCTC -ACGGAAACACCAACTGCTTGGATC -ACGGAAACACCAACTGCTCACTTC -ACGGAAACACCAACTGCTGTACTC -ACGGAAACACCAACTGCTGATGTC -ACGGAAACACCAACTGCTACAGTC -ACGGAAACACCAACTGCTTTGCTG -ACGGAAACACCAACTGCTTCCATG -ACGGAAACACCAACTGCTTGTGTG -ACGGAAACACCAACTGCTCTAGTG -ACGGAAACACCAACTGCTCATCTG -ACGGAAACACCAACTGCTGAGTTG -ACGGAAACACCAACTGCTAGACTG -ACGGAAACACCAACTGCTTCGGTA -ACGGAAACACCAACTGCTTGCCTA -ACGGAAACACCAACTGCTCCACTA -ACGGAAACACCAACTGCTGGAGTA -ACGGAAACACCAACTGCTTCGTCT -ACGGAAACACCAACTGCTTGCACT -ACGGAAACACCAACTGCTCTGACT -ACGGAAACACCAACTGCTCAACCT -ACGGAAACACCAACTGCTGCTACT -ACGGAAACACCAACTGCTGGATCT -ACGGAAACACCAACTGCTAAGGCT -ACGGAAACACCAACTGCTTCAACC -ACGGAAACACCAACTGCTTGTTCC -ACGGAAACACCAACTGCTATTCCC -ACGGAAACACCAACTGCTTTCTCG -ACGGAAACACCAACTGCTTAGACG -ACGGAAACACCAACTGCTGTAACG -ACGGAAACACCAACTGCTACTTCG -ACGGAAACACCAACTGCTTACGCA -ACGGAAACACCAACTGCTCTTGCA -ACGGAAACACCAACTGCTCGAACA -ACGGAAACACCAACTGCTCAGTCA -ACGGAAACACCAACTGCTGATCCA -ACGGAAACACCAACTGCTACGACA -ACGGAAACACCAACTGCTAGCTCA -ACGGAAACACCAACTGCTTCACGT -ACGGAAACACCAACTGCTCGTAGT -ACGGAAACACCAACTGCTGTCAGT -ACGGAAACACCAACTGCTGAAGGT -ACGGAAACACCAACTGCTAACCGT -ACGGAAACACCAACTGCTTTGTGC -ACGGAAACACCAACTGCTCTAAGC -ACGGAAACACCAACTGCTACTAGC -ACGGAAACACCAACTGCTAGATGC -ACGGAAACACCAACTGCTTGAAGG -ACGGAAACACCAACTGCTCAATGG -ACGGAAACACCAACTGCTATGAGG -ACGGAAACACCAACTGCTAATGGG -ACGGAAACACCAACTGCTTCCTGA -ACGGAAACACCAACTGCTTAGCGA -ACGGAAACACCAACTGCTCACAGA -ACGGAAACACCAACTGCTGCAAGA -ACGGAAACACCAACTGCTGGTTGA -ACGGAAACACCAACTGCTTCCGAT -ACGGAAACACCAACTGCTTGGCAT -ACGGAAACACCAACTGCTCGAGAT -ACGGAAACACCAACTGCTTACCAC -ACGGAAACACCAACTGCTCAGAAC -ACGGAAACACCAACTGCTGTCTAC -ACGGAAACACCAACTGCTACGTAC -ACGGAAACACCAACTGCTAGTGAC -ACGGAAACACCAACTGCTCTGTAG -ACGGAAACACCAACTGCTCCTAAG -ACGGAAACACCAACTGCTGTTCAG -ACGGAAACACCAACTGCTGCATAG -ACGGAAACACCAACTGCTGACAAG -ACGGAAACACCAACTGCTAAGCAG -ACGGAAACACCAACTGCTCGTCAA -ACGGAAACACCAACTGCTGCTGAA -ACGGAAACACCAACTGCTAGTACG -ACGGAAACACCAACTGCTATCCGA -ACGGAAACACCAACTGCTATGGGA -ACGGAAACACCAACTGCTGTGCAA -ACGGAAACACCAACTGCTGAGGAA -ACGGAAACACCAACTGCTCAGGTA -ACGGAAACACCAACTGCTGACTCT -ACGGAAACACCAACTGCTAGTCCT -ACGGAAACACCAACTGCTTAAGCC -ACGGAAACACCAACTGCTATAGCC -ACGGAAACACCAACTGCTTAACCG -ACGGAAACACCAACTGCTATGCCA -ACGGAAACACCATCTGGAGGAAAC -ACGGAAACACCATCTGGAAACACC -ACGGAAACACCATCTGGAATCGAG -ACGGAAACACCATCTGGACTCCTT -ACGGAAACACCATCTGGACCTGTT -ACGGAAACACCATCTGGACGGTTT -ACGGAAACACCATCTGGAGTGGTT -ACGGAAACACCATCTGGAGCCTTT -ACGGAAACACCATCTGGAGGTCTT -ACGGAAACACCATCTGGAACGCTT -ACGGAAACACCATCTGGAAGCGTT -ACGGAAACACCATCTGGATTCGTC -ACGGAAACACCATCTGGATCTCTC -ACGGAAACACCATCTGGATGGATC -ACGGAAACACCATCTGGACACTTC -ACGGAAACACCATCTGGAGTACTC -ACGGAAACACCATCTGGAGATGTC -ACGGAAACACCATCTGGAACAGTC -ACGGAAACACCATCTGGATTGCTG -ACGGAAACACCATCTGGATCCATG -ACGGAAACACCATCTGGATGTGTG -ACGGAAACACCATCTGGACTAGTG -ACGGAAACACCATCTGGACATCTG -ACGGAAACACCATCTGGAGAGTTG -ACGGAAACACCATCTGGAAGACTG -ACGGAAACACCATCTGGATCGGTA -ACGGAAACACCATCTGGATGCCTA -ACGGAAACACCATCTGGACCACTA -ACGGAAACACCATCTGGAGGAGTA -ACGGAAACACCATCTGGATCGTCT -ACGGAAACACCATCTGGATGCACT -ACGGAAACACCATCTGGACTGACT -ACGGAAACACCATCTGGACAACCT -ACGGAAACACCATCTGGAGCTACT -ACGGAAACACCATCTGGAGGATCT -ACGGAAACACCATCTGGAAAGGCT -ACGGAAACACCATCTGGATCAACC -ACGGAAACACCATCTGGATGTTCC -ACGGAAACACCATCTGGAATTCCC -ACGGAAACACCATCTGGATTCTCG -ACGGAAACACCATCTGGATAGACG -ACGGAAACACCATCTGGAGTAACG -ACGGAAACACCATCTGGAACTTCG -ACGGAAACACCATCTGGATACGCA -ACGGAAACACCATCTGGACTTGCA -ACGGAAACACCATCTGGACGAACA -ACGGAAACACCATCTGGACAGTCA -ACGGAAACACCATCTGGAGATCCA -ACGGAAACACCATCTGGAACGACA -ACGGAAACACCATCTGGAAGCTCA -ACGGAAACACCATCTGGATCACGT -ACGGAAACACCATCTGGACGTAGT -ACGGAAACACCATCTGGAGTCAGT -ACGGAAACACCATCTGGAGAAGGT -ACGGAAACACCATCTGGAAACCGT -ACGGAAACACCATCTGGATTGTGC -ACGGAAACACCATCTGGACTAAGC -ACGGAAACACCATCTGGAACTAGC -ACGGAAACACCATCTGGAAGATGC -ACGGAAACACCATCTGGATGAAGG -ACGGAAACACCATCTGGACAATGG -ACGGAAACACCATCTGGAATGAGG -ACGGAAACACCATCTGGAAATGGG -ACGGAAACACCATCTGGATCCTGA -ACGGAAACACCATCTGGATAGCGA -ACGGAAACACCATCTGGACACAGA -ACGGAAACACCATCTGGAGCAAGA -ACGGAAACACCATCTGGAGGTTGA -ACGGAAACACCATCTGGATCCGAT -ACGGAAACACCATCTGGATGGCAT -ACGGAAACACCATCTGGACGAGAT -ACGGAAACACCATCTGGATACCAC -ACGGAAACACCATCTGGACAGAAC -ACGGAAACACCATCTGGAGTCTAC -ACGGAAACACCATCTGGAACGTAC -ACGGAAACACCATCTGGAAGTGAC -ACGGAAACACCATCTGGACTGTAG -ACGGAAACACCATCTGGACCTAAG -ACGGAAACACCATCTGGAGTTCAG -ACGGAAACACCATCTGGAGCATAG -ACGGAAACACCATCTGGAGACAAG -ACGGAAACACCATCTGGAAAGCAG -ACGGAAACACCATCTGGACGTCAA -ACGGAAACACCATCTGGAGCTGAA -ACGGAAACACCATCTGGAAGTACG -ACGGAAACACCATCTGGAATCCGA -ACGGAAACACCATCTGGAATGGGA -ACGGAAACACCATCTGGAGTGCAA -ACGGAAACACCATCTGGAGAGGAA -ACGGAAACACCATCTGGACAGGTA -ACGGAAACACCATCTGGAGACTCT -ACGGAAACACCATCTGGAAGTCCT -ACGGAAACACCATCTGGATAAGCC -ACGGAAACACCATCTGGAATAGCC -ACGGAAACACCATCTGGATAACCG -ACGGAAACACCATCTGGAATGCCA -ACGGAAACACCAGCTAAGGGAAAC -ACGGAAACACCAGCTAAGAACACC -ACGGAAACACCAGCTAAGATCGAG -ACGGAAACACCAGCTAAGCTCCTT -ACGGAAACACCAGCTAAGCCTGTT -ACGGAAACACCAGCTAAGCGGTTT -ACGGAAACACCAGCTAAGGTGGTT -ACGGAAACACCAGCTAAGGCCTTT -ACGGAAACACCAGCTAAGGGTCTT -ACGGAAACACCAGCTAAGACGCTT -ACGGAAACACCAGCTAAGAGCGTT -ACGGAAACACCAGCTAAGTTCGTC -ACGGAAACACCAGCTAAGTCTCTC -ACGGAAACACCAGCTAAGTGGATC -ACGGAAACACCAGCTAAGCACTTC -ACGGAAACACCAGCTAAGGTACTC -ACGGAAACACCAGCTAAGGATGTC -ACGGAAACACCAGCTAAGACAGTC -ACGGAAACACCAGCTAAGTTGCTG -ACGGAAACACCAGCTAAGTCCATG -ACGGAAACACCAGCTAAGTGTGTG -ACGGAAACACCAGCTAAGCTAGTG -ACGGAAACACCAGCTAAGCATCTG -ACGGAAACACCAGCTAAGGAGTTG -ACGGAAACACCAGCTAAGAGACTG -ACGGAAACACCAGCTAAGTCGGTA -ACGGAAACACCAGCTAAGTGCCTA -ACGGAAACACCAGCTAAGCCACTA -ACGGAAACACCAGCTAAGGGAGTA -ACGGAAACACCAGCTAAGTCGTCT -ACGGAAACACCAGCTAAGTGCACT -ACGGAAACACCAGCTAAGCTGACT -ACGGAAACACCAGCTAAGCAACCT -ACGGAAACACCAGCTAAGGCTACT -ACGGAAACACCAGCTAAGGGATCT -ACGGAAACACCAGCTAAGAAGGCT -ACGGAAACACCAGCTAAGTCAACC -ACGGAAACACCAGCTAAGTGTTCC -ACGGAAACACCAGCTAAGATTCCC -ACGGAAACACCAGCTAAGTTCTCG -ACGGAAACACCAGCTAAGTAGACG -ACGGAAACACCAGCTAAGGTAACG -ACGGAAACACCAGCTAAGACTTCG -ACGGAAACACCAGCTAAGTACGCA -ACGGAAACACCAGCTAAGCTTGCA -ACGGAAACACCAGCTAAGCGAACA -ACGGAAACACCAGCTAAGCAGTCA -ACGGAAACACCAGCTAAGGATCCA -ACGGAAACACCAGCTAAGACGACA -ACGGAAACACCAGCTAAGAGCTCA -ACGGAAACACCAGCTAAGTCACGT -ACGGAAACACCAGCTAAGCGTAGT -ACGGAAACACCAGCTAAGGTCAGT -ACGGAAACACCAGCTAAGGAAGGT -ACGGAAACACCAGCTAAGAACCGT -ACGGAAACACCAGCTAAGTTGTGC -ACGGAAACACCAGCTAAGCTAAGC -ACGGAAACACCAGCTAAGACTAGC -ACGGAAACACCAGCTAAGAGATGC -ACGGAAACACCAGCTAAGTGAAGG -ACGGAAACACCAGCTAAGCAATGG -ACGGAAACACCAGCTAAGATGAGG -ACGGAAACACCAGCTAAGAATGGG -ACGGAAACACCAGCTAAGTCCTGA -ACGGAAACACCAGCTAAGTAGCGA -ACGGAAACACCAGCTAAGCACAGA -ACGGAAACACCAGCTAAGGCAAGA -ACGGAAACACCAGCTAAGGGTTGA -ACGGAAACACCAGCTAAGTCCGAT -ACGGAAACACCAGCTAAGTGGCAT -ACGGAAACACCAGCTAAGCGAGAT -ACGGAAACACCAGCTAAGTACCAC -ACGGAAACACCAGCTAAGCAGAAC -ACGGAAACACCAGCTAAGGTCTAC -ACGGAAACACCAGCTAAGACGTAC -ACGGAAACACCAGCTAAGAGTGAC -ACGGAAACACCAGCTAAGCTGTAG -ACGGAAACACCAGCTAAGCCTAAG -ACGGAAACACCAGCTAAGGTTCAG -ACGGAAACACCAGCTAAGGCATAG -ACGGAAACACCAGCTAAGGACAAG -ACGGAAACACCAGCTAAGAAGCAG -ACGGAAACACCAGCTAAGCGTCAA -ACGGAAACACCAGCTAAGGCTGAA -ACGGAAACACCAGCTAAGAGTACG -ACGGAAACACCAGCTAAGATCCGA -ACGGAAACACCAGCTAAGATGGGA -ACGGAAACACCAGCTAAGGTGCAA -ACGGAAACACCAGCTAAGGAGGAA -ACGGAAACACCAGCTAAGCAGGTA -ACGGAAACACCAGCTAAGGACTCT -ACGGAAACACCAGCTAAGAGTCCT -ACGGAAACACCAGCTAAGTAAGCC -ACGGAAACACCAGCTAAGATAGCC -ACGGAAACACCAGCTAAGTAACCG -ACGGAAACACCAGCTAAGATGCCA -ACGGAAACACCAACCTCAGGAAAC -ACGGAAACACCAACCTCAAACACC -ACGGAAACACCAACCTCAATCGAG -ACGGAAACACCAACCTCACTCCTT -ACGGAAACACCAACCTCACCTGTT -ACGGAAACACCAACCTCACGGTTT -ACGGAAACACCAACCTCAGTGGTT -ACGGAAACACCAACCTCAGCCTTT -ACGGAAACACCAACCTCAGGTCTT -ACGGAAACACCAACCTCAACGCTT -ACGGAAACACCAACCTCAAGCGTT -ACGGAAACACCAACCTCATTCGTC -ACGGAAACACCAACCTCATCTCTC -ACGGAAACACCAACCTCATGGATC -ACGGAAACACCAACCTCACACTTC -ACGGAAACACCAACCTCAGTACTC -ACGGAAACACCAACCTCAGATGTC -ACGGAAACACCAACCTCAACAGTC -ACGGAAACACCAACCTCATTGCTG -ACGGAAACACCAACCTCATCCATG -ACGGAAACACCAACCTCATGTGTG -ACGGAAACACCAACCTCACTAGTG -ACGGAAACACCAACCTCACATCTG -ACGGAAACACCAACCTCAGAGTTG -ACGGAAACACCAACCTCAAGACTG -ACGGAAACACCAACCTCATCGGTA -ACGGAAACACCAACCTCATGCCTA -ACGGAAACACCAACCTCACCACTA -ACGGAAACACCAACCTCAGGAGTA -ACGGAAACACCAACCTCATCGTCT -ACGGAAACACCAACCTCATGCACT -ACGGAAACACCAACCTCACTGACT -ACGGAAACACCAACCTCACAACCT -ACGGAAACACCAACCTCAGCTACT -ACGGAAACACCAACCTCAGGATCT -ACGGAAACACCAACCTCAAAGGCT -ACGGAAACACCAACCTCATCAACC -ACGGAAACACCAACCTCATGTTCC -ACGGAAACACCAACCTCAATTCCC -ACGGAAACACCAACCTCATTCTCG -ACGGAAACACCAACCTCATAGACG -ACGGAAACACCAACCTCAGTAACG -ACGGAAACACCAACCTCAACTTCG -ACGGAAACACCAACCTCATACGCA -ACGGAAACACCAACCTCACTTGCA -ACGGAAACACCAACCTCACGAACA -ACGGAAACACCAACCTCACAGTCA -ACGGAAACACCAACCTCAGATCCA -ACGGAAACACCAACCTCAACGACA -ACGGAAACACCAACCTCAAGCTCA -ACGGAAACACCAACCTCATCACGT -ACGGAAACACCAACCTCACGTAGT -ACGGAAACACCAACCTCAGTCAGT -ACGGAAACACCAACCTCAGAAGGT -ACGGAAACACCAACCTCAAACCGT -ACGGAAACACCAACCTCATTGTGC -ACGGAAACACCAACCTCACTAAGC -ACGGAAACACCAACCTCAACTAGC -ACGGAAACACCAACCTCAAGATGC -ACGGAAACACCAACCTCATGAAGG -ACGGAAACACCAACCTCACAATGG -ACGGAAACACCAACCTCAATGAGG -ACGGAAACACCAACCTCAAATGGG -ACGGAAACACCAACCTCATCCTGA -ACGGAAACACCAACCTCATAGCGA -ACGGAAACACCAACCTCACACAGA -ACGGAAACACCAACCTCAGCAAGA -ACGGAAACACCAACCTCAGGTTGA -ACGGAAACACCAACCTCATCCGAT -ACGGAAACACCAACCTCATGGCAT -ACGGAAACACCAACCTCACGAGAT -ACGGAAACACCAACCTCATACCAC -ACGGAAACACCAACCTCACAGAAC -ACGGAAACACCAACCTCAGTCTAC -ACGGAAACACCAACCTCAACGTAC -ACGGAAACACCAACCTCAAGTGAC -ACGGAAACACCAACCTCACTGTAG -ACGGAAACACCAACCTCACCTAAG -ACGGAAACACCAACCTCAGTTCAG -ACGGAAACACCAACCTCAGCATAG -ACGGAAACACCAACCTCAGACAAG -ACGGAAACACCAACCTCAAAGCAG -ACGGAAACACCAACCTCACGTCAA -ACGGAAACACCAACCTCAGCTGAA -ACGGAAACACCAACCTCAAGTACG -ACGGAAACACCAACCTCAATCCGA -ACGGAAACACCAACCTCAATGGGA -ACGGAAACACCAACCTCAGTGCAA -ACGGAAACACCAACCTCAGAGGAA -ACGGAAACACCAACCTCACAGGTA -ACGGAAACACCAACCTCAGACTCT -ACGGAAACACCAACCTCAAGTCCT -ACGGAAACACCAACCTCATAAGCC -ACGGAAACACCAACCTCAATAGCC -ACGGAAACACCAACCTCATAACCG -ACGGAAACACCAACCTCAATGCCA -ACGGAAACACCATCCTGTGGAAAC -ACGGAAACACCATCCTGTAACACC -ACGGAAACACCATCCTGTATCGAG -ACGGAAACACCATCCTGTCTCCTT -ACGGAAACACCATCCTGTCCTGTT -ACGGAAACACCATCCTGTCGGTTT -ACGGAAACACCATCCTGTGTGGTT -ACGGAAACACCATCCTGTGCCTTT -ACGGAAACACCATCCTGTGGTCTT -ACGGAAACACCATCCTGTACGCTT -ACGGAAACACCATCCTGTAGCGTT -ACGGAAACACCATCCTGTTTCGTC -ACGGAAACACCATCCTGTTCTCTC -ACGGAAACACCATCCTGTTGGATC -ACGGAAACACCATCCTGTCACTTC -ACGGAAACACCATCCTGTGTACTC -ACGGAAACACCATCCTGTGATGTC -ACGGAAACACCATCCTGTACAGTC -ACGGAAACACCATCCTGTTTGCTG -ACGGAAACACCATCCTGTTCCATG -ACGGAAACACCATCCTGTTGTGTG -ACGGAAACACCATCCTGTCTAGTG -ACGGAAACACCATCCTGTCATCTG -ACGGAAACACCATCCTGTGAGTTG -ACGGAAACACCATCCTGTAGACTG -ACGGAAACACCATCCTGTTCGGTA -ACGGAAACACCATCCTGTTGCCTA -ACGGAAACACCATCCTGTCCACTA -ACGGAAACACCATCCTGTGGAGTA -ACGGAAACACCATCCTGTTCGTCT -ACGGAAACACCATCCTGTTGCACT -ACGGAAACACCATCCTGTCTGACT -ACGGAAACACCATCCTGTCAACCT -ACGGAAACACCATCCTGTGCTACT -ACGGAAACACCATCCTGTGGATCT -ACGGAAACACCATCCTGTAAGGCT -ACGGAAACACCATCCTGTTCAACC -ACGGAAACACCATCCTGTTGTTCC -ACGGAAACACCATCCTGTATTCCC -ACGGAAACACCATCCTGTTTCTCG -ACGGAAACACCATCCTGTTAGACG -ACGGAAACACCATCCTGTGTAACG -ACGGAAACACCATCCTGTACTTCG -ACGGAAACACCATCCTGTTACGCA -ACGGAAACACCATCCTGTCTTGCA -ACGGAAACACCATCCTGTCGAACA -ACGGAAACACCATCCTGTCAGTCA -ACGGAAACACCATCCTGTGATCCA -ACGGAAACACCATCCTGTACGACA -ACGGAAACACCATCCTGTAGCTCA -ACGGAAACACCATCCTGTTCACGT -ACGGAAACACCATCCTGTCGTAGT -ACGGAAACACCATCCTGTGTCAGT -ACGGAAACACCATCCTGTGAAGGT -ACGGAAACACCATCCTGTAACCGT -ACGGAAACACCATCCTGTTTGTGC -ACGGAAACACCATCCTGTCTAAGC -ACGGAAACACCATCCTGTACTAGC -ACGGAAACACCATCCTGTAGATGC -ACGGAAACACCATCCTGTTGAAGG -ACGGAAACACCATCCTGTCAATGG -ACGGAAACACCATCCTGTATGAGG -ACGGAAACACCATCCTGTAATGGG -ACGGAAACACCATCCTGTTCCTGA -ACGGAAACACCATCCTGTTAGCGA -ACGGAAACACCATCCTGTCACAGA -ACGGAAACACCATCCTGTGCAAGA -ACGGAAACACCATCCTGTGGTTGA -ACGGAAACACCATCCTGTTCCGAT -ACGGAAACACCATCCTGTTGGCAT -ACGGAAACACCATCCTGTCGAGAT -ACGGAAACACCATCCTGTTACCAC -ACGGAAACACCATCCTGTCAGAAC -ACGGAAACACCATCCTGTGTCTAC -ACGGAAACACCATCCTGTACGTAC -ACGGAAACACCATCCTGTAGTGAC -ACGGAAACACCATCCTGTCTGTAG -ACGGAAACACCATCCTGTCCTAAG -ACGGAAACACCATCCTGTGTTCAG -ACGGAAACACCATCCTGTGCATAG -ACGGAAACACCATCCTGTGACAAG -ACGGAAACACCATCCTGTAAGCAG -ACGGAAACACCATCCTGTCGTCAA -ACGGAAACACCATCCTGTGCTGAA -ACGGAAACACCATCCTGTAGTACG -ACGGAAACACCATCCTGTATCCGA -ACGGAAACACCATCCTGTATGGGA -ACGGAAACACCATCCTGTGTGCAA -ACGGAAACACCATCCTGTGAGGAA -ACGGAAACACCATCCTGTCAGGTA -ACGGAAACACCATCCTGTGACTCT -ACGGAAACACCATCCTGTAGTCCT -ACGGAAACACCATCCTGTTAAGCC -ACGGAAACACCATCCTGTATAGCC -ACGGAAACACCATCCTGTTAACCG -ACGGAAACACCATCCTGTATGCCA -ACGGAAACACCACCCATTGGAAAC -ACGGAAACACCACCCATTAACACC -ACGGAAACACCACCCATTATCGAG -ACGGAAACACCACCCATTCTCCTT -ACGGAAACACCACCCATTCCTGTT -ACGGAAACACCACCCATTCGGTTT -ACGGAAACACCACCCATTGTGGTT -ACGGAAACACCACCCATTGCCTTT -ACGGAAACACCACCCATTGGTCTT -ACGGAAACACCACCCATTACGCTT -ACGGAAACACCACCCATTAGCGTT -ACGGAAACACCACCCATTTTCGTC -ACGGAAACACCACCCATTTCTCTC -ACGGAAACACCACCCATTTGGATC -ACGGAAACACCACCCATTCACTTC -ACGGAAACACCACCCATTGTACTC -ACGGAAACACCACCCATTGATGTC -ACGGAAACACCACCCATTACAGTC -ACGGAAACACCACCCATTTTGCTG -ACGGAAACACCACCCATTTCCATG -ACGGAAACACCACCCATTTGTGTG -ACGGAAACACCACCCATTCTAGTG -ACGGAAACACCACCCATTCATCTG -ACGGAAACACCACCCATTGAGTTG -ACGGAAACACCACCCATTAGACTG -ACGGAAACACCACCCATTTCGGTA -ACGGAAACACCACCCATTTGCCTA -ACGGAAACACCACCCATTCCACTA -ACGGAAACACCACCCATTGGAGTA -ACGGAAACACCACCCATTTCGTCT -ACGGAAACACCACCCATTTGCACT -ACGGAAACACCACCCATTCTGACT -ACGGAAACACCACCCATTCAACCT -ACGGAAACACCACCCATTGCTACT -ACGGAAACACCACCCATTGGATCT -ACGGAAACACCACCCATTAAGGCT -ACGGAAACACCACCCATTTCAACC -ACGGAAACACCACCCATTTGTTCC -ACGGAAACACCACCCATTATTCCC -ACGGAAACACCACCCATTTTCTCG -ACGGAAACACCACCCATTTAGACG -ACGGAAACACCACCCATTGTAACG -ACGGAAACACCACCCATTACTTCG -ACGGAAACACCACCCATTTACGCA -ACGGAAACACCACCCATTCTTGCA -ACGGAAACACCACCCATTCGAACA -ACGGAAACACCACCCATTCAGTCA -ACGGAAACACCACCCATTGATCCA -ACGGAAACACCACCCATTACGACA -ACGGAAACACCACCCATTAGCTCA -ACGGAAACACCACCCATTTCACGT -ACGGAAACACCACCCATTCGTAGT -ACGGAAACACCACCCATTGTCAGT -ACGGAAACACCACCCATTGAAGGT -ACGGAAACACCACCCATTAACCGT -ACGGAAACACCACCCATTTTGTGC -ACGGAAACACCACCCATTCTAAGC -ACGGAAACACCACCCATTACTAGC -ACGGAAACACCACCCATTAGATGC -ACGGAAACACCACCCATTTGAAGG -ACGGAAACACCACCCATTCAATGG -ACGGAAACACCACCCATTATGAGG -ACGGAAACACCACCCATTAATGGG -ACGGAAACACCACCCATTTCCTGA -ACGGAAACACCACCCATTTAGCGA -ACGGAAACACCACCCATTCACAGA -ACGGAAACACCACCCATTGCAAGA -ACGGAAACACCACCCATTGGTTGA -ACGGAAACACCACCCATTTCCGAT -ACGGAAACACCACCCATTTGGCAT -ACGGAAACACCACCCATTCGAGAT -ACGGAAACACCACCCATTTACCAC -ACGGAAACACCACCCATTCAGAAC -ACGGAAACACCACCCATTGTCTAC -ACGGAAACACCACCCATTACGTAC -ACGGAAACACCACCCATTAGTGAC -ACGGAAACACCACCCATTCTGTAG -ACGGAAACACCACCCATTCCTAAG -ACGGAAACACCACCCATTGTTCAG -ACGGAAACACCACCCATTGCATAG -ACGGAAACACCACCCATTGACAAG -ACGGAAACACCACCCATTAAGCAG -ACGGAAACACCACCCATTCGTCAA -ACGGAAACACCACCCATTGCTGAA -ACGGAAACACCACCCATTAGTACG -ACGGAAACACCACCCATTATCCGA -ACGGAAACACCACCCATTATGGGA -ACGGAAACACCACCCATTGTGCAA -ACGGAAACACCACCCATTGAGGAA -ACGGAAACACCACCCATTCAGGTA -ACGGAAACACCACCCATTGACTCT -ACGGAAACACCACCCATTAGTCCT -ACGGAAACACCACCCATTTAAGCC -ACGGAAACACCACCCATTATAGCC -ACGGAAACACCACCCATTTAACCG -ACGGAAACACCACCCATTATGCCA -ACGGAAACACCATCGTTCGGAAAC -ACGGAAACACCATCGTTCAACACC -ACGGAAACACCATCGTTCATCGAG -ACGGAAACACCATCGTTCCTCCTT -ACGGAAACACCATCGTTCCCTGTT -ACGGAAACACCATCGTTCCGGTTT -ACGGAAACACCATCGTTCGTGGTT -ACGGAAACACCATCGTTCGCCTTT -ACGGAAACACCATCGTTCGGTCTT -ACGGAAACACCATCGTTCACGCTT -ACGGAAACACCATCGTTCAGCGTT -ACGGAAACACCATCGTTCTTCGTC -ACGGAAACACCATCGTTCTCTCTC -ACGGAAACACCATCGTTCTGGATC -ACGGAAACACCATCGTTCCACTTC -ACGGAAACACCATCGTTCGTACTC -ACGGAAACACCATCGTTCGATGTC -ACGGAAACACCATCGTTCACAGTC -ACGGAAACACCATCGTTCTTGCTG -ACGGAAACACCATCGTTCTCCATG -ACGGAAACACCATCGTTCTGTGTG -ACGGAAACACCATCGTTCCTAGTG -ACGGAAACACCATCGTTCCATCTG -ACGGAAACACCATCGTTCGAGTTG -ACGGAAACACCATCGTTCAGACTG -ACGGAAACACCATCGTTCTCGGTA -ACGGAAACACCATCGTTCTGCCTA -ACGGAAACACCATCGTTCCCACTA -ACGGAAACACCATCGTTCGGAGTA -ACGGAAACACCATCGTTCTCGTCT -ACGGAAACACCATCGTTCTGCACT -ACGGAAACACCATCGTTCCTGACT -ACGGAAACACCATCGTTCCAACCT -ACGGAAACACCATCGTTCGCTACT -ACGGAAACACCATCGTTCGGATCT -ACGGAAACACCATCGTTCAAGGCT -ACGGAAACACCATCGTTCTCAACC -ACGGAAACACCATCGTTCTGTTCC -ACGGAAACACCATCGTTCATTCCC -ACGGAAACACCATCGTTCTTCTCG -ACGGAAACACCATCGTTCTAGACG -ACGGAAACACCATCGTTCGTAACG -ACGGAAACACCATCGTTCACTTCG -ACGGAAACACCATCGTTCTACGCA -ACGGAAACACCATCGTTCCTTGCA -ACGGAAACACCATCGTTCCGAACA -ACGGAAACACCATCGTTCCAGTCA -ACGGAAACACCATCGTTCGATCCA -ACGGAAACACCATCGTTCACGACA -ACGGAAACACCATCGTTCAGCTCA -ACGGAAACACCATCGTTCTCACGT -ACGGAAACACCATCGTTCCGTAGT -ACGGAAACACCATCGTTCGTCAGT -ACGGAAACACCATCGTTCGAAGGT -ACGGAAACACCATCGTTCAACCGT -ACGGAAACACCATCGTTCTTGTGC -ACGGAAACACCATCGTTCCTAAGC -ACGGAAACACCATCGTTCACTAGC -ACGGAAACACCATCGTTCAGATGC -ACGGAAACACCATCGTTCTGAAGG -ACGGAAACACCATCGTTCCAATGG -ACGGAAACACCATCGTTCATGAGG -ACGGAAACACCATCGTTCAATGGG -ACGGAAACACCATCGTTCTCCTGA -ACGGAAACACCATCGTTCTAGCGA -ACGGAAACACCATCGTTCCACAGA -ACGGAAACACCATCGTTCGCAAGA -ACGGAAACACCATCGTTCGGTTGA -ACGGAAACACCATCGTTCTCCGAT -ACGGAAACACCATCGTTCTGGCAT -ACGGAAACACCATCGTTCCGAGAT -ACGGAAACACCATCGTTCTACCAC -ACGGAAACACCATCGTTCCAGAAC -ACGGAAACACCATCGTTCGTCTAC -ACGGAAACACCATCGTTCACGTAC -ACGGAAACACCATCGTTCAGTGAC -ACGGAAACACCATCGTTCCTGTAG -ACGGAAACACCATCGTTCCCTAAG -ACGGAAACACCATCGTTCGTTCAG -ACGGAAACACCATCGTTCGCATAG -ACGGAAACACCATCGTTCGACAAG -ACGGAAACACCATCGTTCAAGCAG -ACGGAAACACCATCGTTCCGTCAA -ACGGAAACACCATCGTTCGCTGAA -ACGGAAACACCATCGTTCAGTACG -ACGGAAACACCATCGTTCATCCGA -ACGGAAACACCATCGTTCATGGGA -ACGGAAACACCATCGTTCGTGCAA -ACGGAAACACCATCGTTCGAGGAA -ACGGAAACACCATCGTTCCAGGTA -ACGGAAACACCATCGTTCGACTCT -ACGGAAACACCATCGTTCAGTCCT -ACGGAAACACCATCGTTCTAAGCC -ACGGAAACACCATCGTTCATAGCC -ACGGAAACACCATCGTTCTAACCG -ACGGAAACACCATCGTTCATGCCA -ACGGAAACACCAACGTAGGGAAAC -ACGGAAACACCAACGTAGAACACC -ACGGAAACACCAACGTAGATCGAG -ACGGAAACACCAACGTAGCTCCTT -ACGGAAACACCAACGTAGCCTGTT -ACGGAAACACCAACGTAGCGGTTT -ACGGAAACACCAACGTAGGTGGTT -ACGGAAACACCAACGTAGGCCTTT -ACGGAAACACCAACGTAGGGTCTT -ACGGAAACACCAACGTAGACGCTT -ACGGAAACACCAACGTAGAGCGTT -ACGGAAACACCAACGTAGTTCGTC -ACGGAAACACCAACGTAGTCTCTC -ACGGAAACACCAACGTAGTGGATC -ACGGAAACACCAACGTAGCACTTC -ACGGAAACACCAACGTAGGTACTC -ACGGAAACACCAACGTAGGATGTC -ACGGAAACACCAACGTAGACAGTC -ACGGAAACACCAACGTAGTTGCTG -ACGGAAACACCAACGTAGTCCATG -ACGGAAACACCAACGTAGTGTGTG -ACGGAAACACCAACGTAGCTAGTG -ACGGAAACACCAACGTAGCATCTG -ACGGAAACACCAACGTAGGAGTTG -ACGGAAACACCAACGTAGAGACTG -ACGGAAACACCAACGTAGTCGGTA -ACGGAAACACCAACGTAGTGCCTA -ACGGAAACACCAACGTAGCCACTA -ACGGAAACACCAACGTAGGGAGTA -ACGGAAACACCAACGTAGTCGTCT -ACGGAAACACCAACGTAGTGCACT -ACGGAAACACCAACGTAGCTGACT -ACGGAAACACCAACGTAGCAACCT -ACGGAAACACCAACGTAGGCTACT -ACGGAAACACCAACGTAGGGATCT -ACGGAAACACCAACGTAGAAGGCT -ACGGAAACACCAACGTAGTCAACC -ACGGAAACACCAACGTAGTGTTCC -ACGGAAACACCAACGTAGATTCCC -ACGGAAACACCAACGTAGTTCTCG -ACGGAAACACCAACGTAGTAGACG -ACGGAAACACCAACGTAGGTAACG -ACGGAAACACCAACGTAGACTTCG -ACGGAAACACCAACGTAGTACGCA -ACGGAAACACCAACGTAGCTTGCA -ACGGAAACACCAACGTAGCGAACA -ACGGAAACACCAACGTAGCAGTCA -ACGGAAACACCAACGTAGGATCCA -ACGGAAACACCAACGTAGACGACA -ACGGAAACACCAACGTAGAGCTCA -ACGGAAACACCAACGTAGTCACGT -ACGGAAACACCAACGTAGCGTAGT -ACGGAAACACCAACGTAGGTCAGT -ACGGAAACACCAACGTAGGAAGGT -ACGGAAACACCAACGTAGAACCGT -ACGGAAACACCAACGTAGTTGTGC -ACGGAAACACCAACGTAGCTAAGC -ACGGAAACACCAACGTAGACTAGC -ACGGAAACACCAACGTAGAGATGC -ACGGAAACACCAACGTAGTGAAGG -ACGGAAACACCAACGTAGCAATGG -ACGGAAACACCAACGTAGATGAGG -ACGGAAACACCAACGTAGAATGGG -ACGGAAACACCAACGTAGTCCTGA -ACGGAAACACCAACGTAGTAGCGA -ACGGAAACACCAACGTAGCACAGA -ACGGAAACACCAACGTAGGCAAGA -ACGGAAACACCAACGTAGGGTTGA -ACGGAAACACCAACGTAGTCCGAT -ACGGAAACACCAACGTAGTGGCAT -ACGGAAACACCAACGTAGCGAGAT -ACGGAAACACCAACGTAGTACCAC -ACGGAAACACCAACGTAGCAGAAC -ACGGAAACACCAACGTAGGTCTAC -ACGGAAACACCAACGTAGACGTAC -ACGGAAACACCAACGTAGAGTGAC -ACGGAAACACCAACGTAGCTGTAG -ACGGAAACACCAACGTAGCCTAAG -ACGGAAACACCAACGTAGGTTCAG -ACGGAAACACCAACGTAGGCATAG -ACGGAAACACCAACGTAGGACAAG -ACGGAAACACCAACGTAGAAGCAG -ACGGAAACACCAACGTAGCGTCAA -ACGGAAACACCAACGTAGGCTGAA -ACGGAAACACCAACGTAGAGTACG -ACGGAAACACCAACGTAGATCCGA -ACGGAAACACCAACGTAGATGGGA -ACGGAAACACCAACGTAGGTGCAA -ACGGAAACACCAACGTAGGAGGAA -ACGGAAACACCAACGTAGCAGGTA -ACGGAAACACCAACGTAGGACTCT -ACGGAAACACCAACGTAGAGTCCT -ACGGAAACACCAACGTAGTAAGCC -ACGGAAACACCAACGTAGATAGCC -ACGGAAACACCAACGTAGTAACCG -ACGGAAACACCAACGTAGATGCCA -ACGGAAACACCAACGGTAGGAAAC -ACGGAAACACCAACGGTAAACACC -ACGGAAACACCAACGGTAATCGAG -ACGGAAACACCAACGGTACTCCTT -ACGGAAACACCAACGGTACCTGTT -ACGGAAACACCAACGGTACGGTTT -ACGGAAACACCAACGGTAGTGGTT -ACGGAAACACCAACGGTAGCCTTT -ACGGAAACACCAACGGTAGGTCTT -ACGGAAACACCAACGGTAACGCTT -ACGGAAACACCAACGGTAAGCGTT -ACGGAAACACCAACGGTATTCGTC -ACGGAAACACCAACGGTATCTCTC -ACGGAAACACCAACGGTATGGATC -ACGGAAACACCAACGGTACACTTC -ACGGAAACACCAACGGTAGTACTC -ACGGAAACACCAACGGTAGATGTC -ACGGAAACACCAACGGTAACAGTC -ACGGAAACACCAACGGTATTGCTG -ACGGAAACACCAACGGTATCCATG -ACGGAAACACCAACGGTATGTGTG -ACGGAAACACCAACGGTACTAGTG -ACGGAAACACCAACGGTACATCTG -ACGGAAACACCAACGGTAGAGTTG -ACGGAAACACCAACGGTAAGACTG -ACGGAAACACCAACGGTATCGGTA -ACGGAAACACCAACGGTATGCCTA -ACGGAAACACCAACGGTACCACTA -ACGGAAACACCAACGGTAGGAGTA -ACGGAAACACCAACGGTATCGTCT -ACGGAAACACCAACGGTATGCACT -ACGGAAACACCAACGGTACTGACT -ACGGAAACACCAACGGTACAACCT -ACGGAAACACCAACGGTAGCTACT -ACGGAAACACCAACGGTAGGATCT -ACGGAAACACCAACGGTAAAGGCT -ACGGAAACACCAACGGTATCAACC -ACGGAAACACCAACGGTATGTTCC -ACGGAAACACCAACGGTAATTCCC -ACGGAAACACCAACGGTATTCTCG -ACGGAAACACCAACGGTATAGACG -ACGGAAACACCAACGGTAGTAACG -ACGGAAACACCAACGGTAACTTCG -ACGGAAACACCAACGGTATACGCA -ACGGAAACACCAACGGTACTTGCA -ACGGAAACACCAACGGTACGAACA -ACGGAAACACCAACGGTACAGTCA -ACGGAAACACCAACGGTAGATCCA -ACGGAAACACCAACGGTAACGACA -ACGGAAACACCAACGGTAAGCTCA -ACGGAAACACCAACGGTATCACGT -ACGGAAACACCAACGGTACGTAGT -ACGGAAACACCAACGGTAGTCAGT -ACGGAAACACCAACGGTAGAAGGT -ACGGAAACACCAACGGTAAACCGT -ACGGAAACACCAACGGTATTGTGC -ACGGAAACACCAACGGTACTAAGC -ACGGAAACACCAACGGTAACTAGC -ACGGAAACACCAACGGTAAGATGC -ACGGAAACACCAACGGTATGAAGG -ACGGAAACACCAACGGTACAATGG -ACGGAAACACCAACGGTAATGAGG -ACGGAAACACCAACGGTAAATGGG -ACGGAAACACCAACGGTATCCTGA -ACGGAAACACCAACGGTATAGCGA -ACGGAAACACCAACGGTACACAGA -ACGGAAACACCAACGGTAGCAAGA -ACGGAAACACCAACGGTAGGTTGA -ACGGAAACACCAACGGTATCCGAT -ACGGAAACACCAACGGTATGGCAT -ACGGAAACACCAACGGTACGAGAT -ACGGAAACACCAACGGTATACCAC -ACGGAAACACCAACGGTACAGAAC -ACGGAAACACCAACGGTAGTCTAC -ACGGAAACACCAACGGTAACGTAC -ACGGAAACACCAACGGTAAGTGAC -ACGGAAACACCAACGGTACTGTAG -ACGGAAACACCAACGGTACCTAAG -ACGGAAACACCAACGGTAGTTCAG -ACGGAAACACCAACGGTAGCATAG -ACGGAAACACCAACGGTAGACAAG -ACGGAAACACCAACGGTAAAGCAG -ACGGAAACACCAACGGTACGTCAA -ACGGAAACACCAACGGTAGCTGAA -ACGGAAACACCAACGGTAAGTACG -ACGGAAACACCAACGGTAATCCGA -ACGGAAACACCAACGGTAATGGGA -ACGGAAACACCAACGGTAGTGCAA -ACGGAAACACCAACGGTAGAGGAA -ACGGAAACACCAACGGTACAGGTA -ACGGAAACACCAACGGTAGACTCT -ACGGAAACACCAACGGTAAGTCCT -ACGGAAACACCAACGGTATAAGCC -ACGGAAACACCAACGGTAATAGCC -ACGGAAACACCAACGGTATAACCG -ACGGAAACACCAACGGTAATGCCA -ACGGAAACACCATCGACTGGAAAC -ACGGAAACACCATCGACTAACACC -ACGGAAACACCATCGACTATCGAG -ACGGAAACACCATCGACTCTCCTT -ACGGAAACACCATCGACTCCTGTT -ACGGAAACACCATCGACTCGGTTT -ACGGAAACACCATCGACTGTGGTT -ACGGAAACACCATCGACTGCCTTT -ACGGAAACACCATCGACTGGTCTT -ACGGAAACACCATCGACTACGCTT -ACGGAAACACCATCGACTAGCGTT -ACGGAAACACCATCGACTTTCGTC -ACGGAAACACCATCGACTTCTCTC -ACGGAAACACCATCGACTTGGATC -ACGGAAACACCATCGACTCACTTC -ACGGAAACACCATCGACTGTACTC -ACGGAAACACCATCGACTGATGTC -ACGGAAACACCATCGACTACAGTC -ACGGAAACACCATCGACTTTGCTG -ACGGAAACACCATCGACTTCCATG -ACGGAAACACCATCGACTTGTGTG -ACGGAAACACCATCGACTCTAGTG -ACGGAAACACCATCGACTCATCTG -ACGGAAACACCATCGACTGAGTTG -ACGGAAACACCATCGACTAGACTG -ACGGAAACACCATCGACTTCGGTA -ACGGAAACACCATCGACTTGCCTA -ACGGAAACACCATCGACTCCACTA -ACGGAAACACCATCGACTGGAGTA -ACGGAAACACCATCGACTTCGTCT -ACGGAAACACCATCGACTTGCACT -ACGGAAACACCATCGACTCTGACT -ACGGAAACACCATCGACTCAACCT -ACGGAAACACCATCGACTGCTACT -ACGGAAACACCATCGACTGGATCT -ACGGAAACACCATCGACTAAGGCT -ACGGAAACACCATCGACTTCAACC -ACGGAAACACCATCGACTTGTTCC -ACGGAAACACCATCGACTATTCCC -ACGGAAACACCATCGACTTTCTCG -ACGGAAACACCATCGACTTAGACG -ACGGAAACACCATCGACTGTAACG -ACGGAAACACCATCGACTACTTCG -ACGGAAACACCATCGACTTACGCA -ACGGAAACACCATCGACTCTTGCA -ACGGAAACACCATCGACTCGAACA -ACGGAAACACCATCGACTCAGTCA -ACGGAAACACCATCGACTGATCCA -ACGGAAACACCATCGACTACGACA -ACGGAAACACCATCGACTAGCTCA -ACGGAAACACCATCGACTTCACGT -ACGGAAACACCATCGACTCGTAGT -ACGGAAACACCATCGACTGTCAGT -ACGGAAACACCATCGACTGAAGGT -ACGGAAACACCATCGACTAACCGT -ACGGAAACACCATCGACTTTGTGC -ACGGAAACACCATCGACTCTAAGC -ACGGAAACACCATCGACTACTAGC -ACGGAAACACCATCGACTAGATGC -ACGGAAACACCATCGACTTGAAGG -ACGGAAACACCATCGACTCAATGG -ACGGAAACACCATCGACTATGAGG -ACGGAAACACCATCGACTAATGGG -ACGGAAACACCATCGACTTCCTGA -ACGGAAACACCATCGACTTAGCGA -ACGGAAACACCATCGACTCACAGA -ACGGAAACACCATCGACTGCAAGA -ACGGAAACACCATCGACTGGTTGA -ACGGAAACACCATCGACTTCCGAT -ACGGAAACACCATCGACTTGGCAT -ACGGAAACACCATCGACTCGAGAT -ACGGAAACACCATCGACTTACCAC -ACGGAAACACCATCGACTCAGAAC -ACGGAAACACCATCGACTGTCTAC -ACGGAAACACCATCGACTACGTAC -ACGGAAACACCATCGACTAGTGAC -ACGGAAACACCATCGACTCTGTAG -ACGGAAACACCATCGACTCCTAAG -ACGGAAACACCATCGACTGTTCAG -ACGGAAACACCATCGACTGCATAG -ACGGAAACACCATCGACTGACAAG -ACGGAAACACCATCGACTAAGCAG -ACGGAAACACCATCGACTCGTCAA -ACGGAAACACCATCGACTGCTGAA -ACGGAAACACCATCGACTAGTACG -ACGGAAACACCATCGACTATCCGA -ACGGAAACACCATCGACTATGGGA -ACGGAAACACCATCGACTGTGCAA -ACGGAAACACCATCGACTGAGGAA -ACGGAAACACCATCGACTCAGGTA -ACGGAAACACCATCGACTGACTCT -ACGGAAACACCATCGACTAGTCCT -ACGGAAACACCATCGACTTAAGCC -ACGGAAACACCATCGACTATAGCC -ACGGAAACACCATCGACTTAACCG -ACGGAAACACCATCGACTATGCCA -ACGGAAACACCAGCATACGGAAAC -ACGGAAACACCAGCATACAACACC -ACGGAAACACCAGCATACATCGAG -ACGGAAACACCAGCATACCTCCTT -ACGGAAACACCAGCATACCCTGTT -ACGGAAACACCAGCATACCGGTTT -ACGGAAACACCAGCATACGTGGTT -ACGGAAACACCAGCATACGCCTTT -ACGGAAACACCAGCATACGGTCTT -ACGGAAACACCAGCATACACGCTT -ACGGAAACACCAGCATACAGCGTT -ACGGAAACACCAGCATACTTCGTC -ACGGAAACACCAGCATACTCTCTC -ACGGAAACACCAGCATACTGGATC -ACGGAAACACCAGCATACCACTTC -ACGGAAACACCAGCATACGTACTC -ACGGAAACACCAGCATACGATGTC -ACGGAAACACCAGCATACACAGTC -ACGGAAACACCAGCATACTTGCTG -ACGGAAACACCAGCATACTCCATG -ACGGAAACACCAGCATACTGTGTG -ACGGAAACACCAGCATACCTAGTG -ACGGAAACACCAGCATACCATCTG -ACGGAAACACCAGCATACGAGTTG -ACGGAAACACCAGCATACAGACTG -ACGGAAACACCAGCATACTCGGTA -ACGGAAACACCAGCATACTGCCTA -ACGGAAACACCAGCATACCCACTA -ACGGAAACACCAGCATACGGAGTA -ACGGAAACACCAGCATACTCGTCT -ACGGAAACACCAGCATACTGCACT -ACGGAAACACCAGCATACCTGACT -ACGGAAACACCAGCATACCAACCT -ACGGAAACACCAGCATACGCTACT -ACGGAAACACCAGCATACGGATCT -ACGGAAACACCAGCATACAAGGCT -ACGGAAACACCAGCATACTCAACC -ACGGAAACACCAGCATACTGTTCC -ACGGAAACACCAGCATACATTCCC -ACGGAAACACCAGCATACTTCTCG -ACGGAAACACCAGCATACTAGACG -ACGGAAACACCAGCATACGTAACG -ACGGAAACACCAGCATACACTTCG -ACGGAAACACCAGCATACTACGCA -ACGGAAACACCAGCATACCTTGCA -ACGGAAACACCAGCATACCGAACA -ACGGAAACACCAGCATACCAGTCA -ACGGAAACACCAGCATACGATCCA -ACGGAAACACCAGCATACACGACA -ACGGAAACACCAGCATACAGCTCA -ACGGAAACACCAGCATACTCACGT -ACGGAAACACCAGCATACCGTAGT -ACGGAAACACCAGCATACGTCAGT -ACGGAAACACCAGCATACGAAGGT -ACGGAAACACCAGCATACAACCGT -ACGGAAACACCAGCATACTTGTGC -ACGGAAACACCAGCATACCTAAGC -ACGGAAACACCAGCATACACTAGC -ACGGAAACACCAGCATACAGATGC -ACGGAAACACCAGCATACTGAAGG -ACGGAAACACCAGCATACCAATGG -ACGGAAACACCAGCATACATGAGG -ACGGAAACACCAGCATACAATGGG -ACGGAAACACCAGCATACTCCTGA -ACGGAAACACCAGCATACTAGCGA -ACGGAAACACCAGCATACCACAGA -ACGGAAACACCAGCATACGCAAGA -ACGGAAACACCAGCATACGGTTGA -ACGGAAACACCAGCATACTCCGAT -ACGGAAACACCAGCATACTGGCAT -ACGGAAACACCAGCATACCGAGAT -ACGGAAACACCAGCATACTACCAC -ACGGAAACACCAGCATACCAGAAC -ACGGAAACACCAGCATACGTCTAC -ACGGAAACACCAGCATACACGTAC -ACGGAAACACCAGCATACAGTGAC -ACGGAAACACCAGCATACCTGTAG -ACGGAAACACCAGCATACCCTAAG -ACGGAAACACCAGCATACGTTCAG -ACGGAAACACCAGCATACGCATAG -ACGGAAACACCAGCATACGACAAG -ACGGAAACACCAGCATACAAGCAG -ACGGAAACACCAGCATACCGTCAA -ACGGAAACACCAGCATACGCTGAA -ACGGAAACACCAGCATACAGTACG -ACGGAAACACCAGCATACATCCGA -ACGGAAACACCAGCATACATGGGA -ACGGAAACACCAGCATACGTGCAA -ACGGAAACACCAGCATACGAGGAA -ACGGAAACACCAGCATACCAGGTA -ACGGAAACACCAGCATACGACTCT -ACGGAAACACCAGCATACAGTCCT -ACGGAAACACCAGCATACTAAGCC -ACGGAAACACCAGCATACATAGCC -ACGGAAACACCAGCATACTAACCG -ACGGAAACACCAGCATACATGCCA -ACGGAAACACCAGCACTTGGAAAC -ACGGAAACACCAGCACTTAACACC -ACGGAAACACCAGCACTTATCGAG -ACGGAAACACCAGCACTTCTCCTT -ACGGAAACACCAGCACTTCCTGTT -ACGGAAACACCAGCACTTCGGTTT -ACGGAAACACCAGCACTTGTGGTT -ACGGAAACACCAGCACTTGCCTTT -ACGGAAACACCAGCACTTGGTCTT -ACGGAAACACCAGCACTTACGCTT -ACGGAAACACCAGCACTTAGCGTT -ACGGAAACACCAGCACTTTTCGTC -ACGGAAACACCAGCACTTTCTCTC -ACGGAAACACCAGCACTTTGGATC -ACGGAAACACCAGCACTTCACTTC -ACGGAAACACCAGCACTTGTACTC -ACGGAAACACCAGCACTTGATGTC -ACGGAAACACCAGCACTTACAGTC -ACGGAAACACCAGCACTTTTGCTG -ACGGAAACACCAGCACTTTCCATG -ACGGAAACACCAGCACTTTGTGTG -ACGGAAACACCAGCACTTCTAGTG -ACGGAAACACCAGCACTTCATCTG -ACGGAAACACCAGCACTTGAGTTG -ACGGAAACACCAGCACTTAGACTG -ACGGAAACACCAGCACTTTCGGTA -ACGGAAACACCAGCACTTTGCCTA -ACGGAAACACCAGCACTTCCACTA -ACGGAAACACCAGCACTTGGAGTA -ACGGAAACACCAGCACTTTCGTCT -ACGGAAACACCAGCACTTTGCACT -ACGGAAACACCAGCACTTCTGACT -ACGGAAACACCAGCACTTCAACCT -ACGGAAACACCAGCACTTGCTACT -ACGGAAACACCAGCACTTGGATCT -ACGGAAACACCAGCACTTAAGGCT -ACGGAAACACCAGCACTTTCAACC -ACGGAAACACCAGCACTTTGTTCC -ACGGAAACACCAGCACTTATTCCC -ACGGAAACACCAGCACTTTTCTCG -ACGGAAACACCAGCACTTTAGACG -ACGGAAACACCAGCACTTGTAACG -ACGGAAACACCAGCACTTACTTCG -ACGGAAACACCAGCACTTTACGCA -ACGGAAACACCAGCACTTCTTGCA -ACGGAAACACCAGCACTTCGAACA -ACGGAAACACCAGCACTTCAGTCA -ACGGAAACACCAGCACTTGATCCA -ACGGAAACACCAGCACTTACGACA -ACGGAAACACCAGCACTTAGCTCA -ACGGAAACACCAGCACTTTCACGT -ACGGAAACACCAGCACTTCGTAGT -ACGGAAACACCAGCACTTGTCAGT -ACGGAAACACCAGCACTTGAAGGT -ACGGAAACACCAGCACTTAACCGT -ACGGAAACACCAGCACTTTTGTGC -ACGGAAACACCAGCACTTCTAAGC -ACGGAAACACCAGCACTTACTAGC -ACGGAAACACCAGCACTTAGATGC -ACGGAAACACCAGCACTTTGAAGG -ACGGAAACACCAGCACTTCAATGG -ACGGAAACACCAGCACTTATGAGG -ACGGAAACACCAGCACTTAATGGG -ACGGAAACACCAGCACTTTCCTGA -ACGGAAACACCAGCACTTTAGCGA -ACGGAAACACCAGCACTTCACAGA -ACGGAAACACCAGCACTTGCAAGA -ACGGAAACACCAGCACTTGGTTGA -ACGGAAACACCAGCACTTTCCGAT -ACGGAAACACCAGCACTTTGGCAT -ACGGAAACACCAGCACTTCGAGAT -ACGGAAACACCAGCACTTTACCAC -ACGGAAACACCAGCACTTCAGAAC -ACGGAAACACCAGCACTTGTCTAC -ACGGAAACACCAGCACTTACGTAC -ACGGAAACACCAGCACTTAGTGAC -ACGGAAACACCAGCACTTCTGTAG -ACGGAAACACCAGCACTTCCTAAG -ACGGAAACACCAGCACTTGTTCAG -ACGGAAACACCAGCACTTGCATAG -ACGGAAACACCAGCACTTGACAAG -ACGGAAACACCAGCACTTAAGCAG -ACGGAAACACCAGCACTTCGTCAA -ACGGAAACACCAGCACTTGCTGAA -ACGGAAACACCAGCACTTAGTACG -ACGGAAACACCAGCACTTATCCGA -ACGGAAACACCAGCACTTATGGGA -ACGGAAACACCAGCACTTGTGCAA -ACGGAAACACCAGCACTTGAGGAA -ACGGAAACACCAGCACTTCAGGTA -ACGGAAACACCAGCACTTGACTCT -ACGGAAACACCAGCACTTAGTCCT -ACGGAAACACCAGCACTTTAAGCC -ACGGAAACACCAGCACTTATAGCC -ACGGAAACACCAGCACTTTAACCG -ACGGAAACACCAGCACTTATGCCA -ACGGAAACACCAACACGAGGAAAC -ACGGAAACACCAACACGAAACACC -ACGGAAACACCAACACGAATCGAG -ACGGAAACACCAACACGACTCCTT -ACGGAAACACCAACACGACCTGTT -ACGGAAACACCAACACGACGGTTT -ACGGAAACACCAACACGAGTGGTT -ACGGAAACACCAACACGAGCCTTT -ACGGAAACACCAACACGAGGTCTT -ACGGAAACACCAACACGAACGCTT -ACGGAAACACCAACACGAAGCGTT -ACGGAAACACCAACACGATTCGTC -ACGGAAACACCAACACGATCTCTC -ACGGAAACACCAACACGATGGATC -ACGGAAACACCAACACGACACTTC -ACGGAAACACCAACACGAGTACTC -ACGGAAACACCAACACGAGATGTC -ACGGAAACACCAACACGAACAGTC -ACGGAAACACCAACACGATTGCTG -ACGGAAACACCAACACGATCCATG -ACGGAAACACCAACACGATGTGTG -ACGGAAACACCAACACGACTAGTG -ACGGAAACACCAACACGACATCTG -ACGGAAACACCAACACGAGAGTTG -ACGGAAACACCAACACGAAGACTG -ACGGAAACACCAACACGATCGGTA -ACGGAAACACCAACACGATGCCTA -ACGGAAACACCAACACGACCACTA -ACGGAAACACCAACACGAGGAGTA -ACGGAAACACCAACACGATCGTCT -ACGGAAACACCAACACGATGCACT -ACGGAAACACCAACACGACTGACT -ACGGAAACACCAACACGACAACCT -ACGGAAACACCAACACGAGCTACT -ACGGAAACACCAACACGAGGATCT -ACGGAAACACCAACACGAAAGGCT -ACGGAAACACCAACACGATCAACC -ACGGAAACACCAACACGATGTTCC -ACGGAAACACCAACACGAATTCCC -ACGGAAACACCAACACGATTCTCG -ACGGAAACACCAACACGATAGACG -ACGGAAACACCAACACGAGTAACG -ACGGAAACACCAACACGAACTTCG -ACGGAAACACCAACACGATACGCA -ACGGAAACACCAACACGACTTGCA -ACGGAAACACCAACACGACGAACA -ACGGAAACACCAACACGACAGTCA -ACGGAAACACCAACACGAGATCCA -ACGGAAACACCAACACGAACGACA -ACGGAAACACCAACACGAAGCTCA -ACGGAAACACCAACACGATCACGT -ACGGAAACACCAACACGACGTAGT -ACGGAAACACCAACACGAGTCAGT -ACGGAAACACCAACACGAGAAGGT -ACGGAAACACCAACACGAAACCGT -ACGGAAACACCAACACGATTGTGC -ACGGAAACACCAACACGACTAAGC -ACGGAAACACCAACACGAACTAGC -ACGGAAACACCAACACGAAGATGC -ACGGAAACACCAACACGATGAAGG -ACGGAAACACCAACACGACAATGG -ACGGAAACACCAACACGAATGAGG -ACGGAAACACCAACACGAAATGGG -ACGGAAACACCAACACGATCCTGA -ACGGAAACACCAACACGATAGCGA -ACGGAAACACCAACACGACACAGA -ACGGAAACACCAACACGAGCAAGA -ACGGAAACACCAACACGAGGTTGA -ACGGAAACACCAACACGATCCGAT -ACGGAAACACCAACACGATGGCAT -ACGGAAACACCAACACGACGAGAT -ACGGAAACACCAACACGATACCAC -ACGGAAACACCAACACGACAGAAC -ACGGAAACACCAACACGAGTCTAC -ACGGAAACACCAACACGAACGTAC -ACGGAAACACCAACACGAAGTGAC -ACGGAAACACCAACACGACTGTAG -ACGGAAACACCAACACGACCTAAG -ACGGAAACACCAACACGAGTTCAG -ACGGAAACACCAACACGAGCATAG -ACGGAAACACCAACACGAGACAAG -ACGGAAACACCAACACGAAAGCAG -ACGGAAACACCAACACGACGTCAA -ACGGAAACACCAACACGAGCTGAA -ACGGAAACACCAACACGAAGTACG -ACGGAAACACCAACACGAATCCGA -ACGGAAACACCAACACGAATGGGA -ACGGAAACACCAACACGAGTGCAA -ACGGAAACACCAACACGAGAGGAA -ACGGAAACACCAACACGACAGGTA -ACGGAAACACCAACACGAGACTCT -ACGGAAACACCAACACGAAGTCCT -ACGGAAACACCAACACGATAAGCC -ACGGAAACACCAACACGAATAGCC -ACGGAAACACCAACACGATAACCG -ACGGAAACACCAACACGAATGCCA -ACGGAAACACCATCACAGGGAAAC -ACGGAAACACCATCACAGAACACC -ACGGAAACACCATCACAGATCGAG -ACGGAAACACCATCACAGCTCCTT -ACGGAAACACCATCACAGCCTGTT -ACGGAAACACCATCACAGCGGTTT -ACGGAAACACCATCACAGGTGGTT -ACGGAAACACCATCACAGGCCTTT -ACGGAAACACCATCACAGGGTCTT -ACGGAAACACCATCACAGACGCTT -ACGGAAACACCATCACAGAGCGTT -ACGGAAACACCATCACAGTTCGTC -ACGGAAACACCATCACAGTCTCTC -ACGGAAACACCATCACAGTGGATC -ACGGAAACACCATCACAGCACTTC -ACGGAAACACCATCACAGGTACTC -ACGGAAACACCATCACAGGATGTC -ACGGAAACACCATCACAGACAGTC -ACGGAAACACCATCACAGTTGCTG -ACGGAAACACCATCACAGTCCATG -ACGGAAACACCATCACAGTGTGTG -ACGGAAACACCATCACAGCTAGTG -ACGGAAACACCATCACAGCATCTG -ACGGAAACACCATCACAGGAGTTG -ACGGAAACACCATCACAGAGACTG -ACGGAAACACCATCACAGTCGGTA -ACGGAAACACCATCACAGTGCCTA -ACGGAAACACCATCACAGCCACTA -ACGGAAACACCATCACAGGGAGTA -ACGGAAACACCATCACAGTCGTCT -ACGGAAACACCATCACAGTGCACT -ACGGAAACACCATCACAGCTGACT -ACGGAAACACCATCACAGCAACCT -ACGGAAACACCATCACAGGCTACT -ACGGAAACACCATCACAGGGATCT -ACGGAAACACCATCACAGAAGGCT -ACGGAAACACCATCACAGTCAACC -ACGGAAACACCATCACAGTGTTCC -ACGGAAACACCATCACAGATTCCC -ACGGAAACACCATCACAGTTCTCG -ACGGAAACACCATCACAGTAGACG -ACGGAAACACCATCACAGGTAACG -ACGGAAACACCATCACAGACTTCG -ACGGAAACACCATCACAGTACGCA -ACGGAAACACCATCACAGCTTGCA -ACGGAAACACCATCACAGCGAACA -ACGGAAACACCATCACAGCAGTCA -ACGGAAACACCATCACAGGATCCA -ACGGAAACACCATCACAGACGACA -ACGGAAACACCATCACAGAGCTCA -ACGGAAACACCATCACAGTCACGT -ACGGAAACACCATCACAGCGTAGT -ACGGAAACACCATCACAGGTCAGT -ACGGAAACACCATCACAGGAAGGT -ACGGAAACACCATCACAGAACCGT -ACGGAAACACCATCACAGTTGTGC -ACGGAAACACCATCACAGCTAAGC -ACGGAAACACCATCACAGACTAGC -ACGGAAACACCATCACAGAGATGC -ACGGAAACACCATCACAGTGAAGG -ACGGAAACACCATCACAGCAATGG -ACGGAAACACCATCACAGATGAGG -ACGGAAACACCATCACAGAATGGG -ACGGAAACACCATCACAGTCCTGA -ACGGAAACACCATCACAGTAGCGA -ACGGAAACACCATCACAGCACAGA -ACGGAAACACCATCACAGGCAAGA -ACGGAAACACCATCACAGGGTTGA -ACGGAAACACCATCACAGTCCGAT -ACGGAAACACCATCACAGTGGCAT -ACGGAAACACCATCACAGCGAGAT -ACGGAAACACCATCACAGTACCAC -ACGGAAACACCATCACAGCAGAAC -ACGGAAACACCATCACAGGTCTAC -ACGGAAACACCATCACAGACGTAC -ACGGAAACACCATCACAGAGTGAC -ACGGAAACACCATCACAGCTGTAG -ACGGAAACACCATCACAGCCTAAG -ACGGAAACACCATCACAGGTTCAG -ACGGAAACACCATCACAGGCATAG -ACGGAAACACCATCACAGGACAAG -ACGGAAACACCATCACAGAAGCAG -ACGGAAACACCATCACAGCGTCAA -ACGGAAACACCATCACAGGCTGAA -ACGGAAACACCATCACAGAGTACG -ACGGAAACACCATCACAGATCCGA -ACGGAAACACCATCACAGATGGGA -ACGGAAACACCATCACAGGTGCAA -ACGGAAACACCATCACAGGAGGAA -ACGGAAACACCATCACAGCAGGTA -ACGGAAACACCATCACAGGACTCT -ACGGAAACACCATCACAGAGTCCT -ACGGAAACACCATCACAGTAAGCC -ACGGAAACACCATCACAGATAGCC -ACGGAAACACCATCACAGTAACCG -ACGGAAACACCATCACAGATGCCA -ACGGAAACACCACCAGATGGAAAC -ACGGAAACACCACCAGATAACACC -ACGGAAACACCACCAGATATCGAG -ACGGAAACACCACCAGATCTCCTT -ACGGAAACACCACCAGATCCTGTT -ACGGAAACACCACCAGATCGGTTT -ACGGAAACACCACCAGATGTGGTT -ACGGAAACACCACCAGATGCCTTT -ACGGAAACACCACCAGATGGTCTT -ACGGAAACACCACCAGATACGCTT -ACGGAAACACCACCAGATAGCGTT -ACGGAAACACCACCAGATTTCGTC -ACGGAAACACCACCAGATTCTCTC -ACGGAAACACCACCAGATTGGATC -ACGGAAACACCACCAGATCACTTC -ACGGAAACACCACCAGATGTACTC -ACGGAAACACCACCAGATGATGTC -ACGGAAACACCACCAGATACAGTC -ACGGAAACACCACCAGATTTGCTG -ACGGAAACACCACCAGATTCCATG -ACGGAAACACCACCAGATTGTGTG -ACGGAAACACCACCAGATCTAGTG -ACGGAAACACCACCAGATCATCTG -ACGGAAACACCACCAGATGAGTTG -ACGGAAACACCACCAGATAGACTG -ACGGAAACACCACCAGATTCGGTA -ACGGAAACACCACCAGATTGCCTA -ACGGAAACACCACCAGATCCACTA -ACGGAAACACCACCAGATGGAGTA -ACGGAAACACCACCAGATTCGTCT -ACGGAAACACCACCAGATTGCACT -ACGGAAACACCACCAGATCTGACT -ACGGAAACACCACCAGATCAACCT -ACGGAAACACCACCAGATGCTACT -ACGGAAACACCACCAGATGGATCT -ACGGAAACACCACCAGATAAGGCT -ACGGAAACACCACCAGATTCAACC -ACGGAAACACCACCAGATTGTTCC -ACGGAAACACCACCAGATATTCCC -ACGGAAACACCACCAGATTTCTCG -ACGGAAACACCACCAGATTAGACG -ACGGAAACACCACCAGATGTAACG -ACGGAAACACCACCAGATACTTCG -ACGGAAACACCACCAGATTACGCA -ACGGAAACACCACCAGATCTTGCA -ACGGAAACACCACCAGATCGAACA -ACGGAAACACCACCAGATCAGTCA -ACGGAAACACCACCAGATGATCCA -ACGGAAACACCACCAGATACGACA -ACGGAAACACCACCAGATAGCTCA -ACGGAAACACCACCAGATTCACGT -ACGGAAACACCACCAGATCGTAGT -ACGGAAACACCACCAGATGTCAGT -ACGGAAACACCACCAGATGAAGGT -ACGGAAACACCACCAGATAACCGT -ACGGAAACACCACCAGATTTGTGC -ACGGAAACACCACCAGATCTAAGC -ACGGAAACACCACCAGATACTAGC -ACGGAAACACCACCAGATAGATGC -ACGGAAACACCACCAGATTGAAGG -ACGGAAACACCACCAGATCAATGG -ACGGAAACACCACCAGATATGAGG -ACGGAAACACCACCAGATAATGGG -ACGGAAACACCACCAGATTCCTGA -ACGGAAACACCACCAGATTAGCGA -ACGGAAACACCACCAGATCACAGA -ACGGAAACACCACCAGATGCAAGA -ACGGAAACACCACCAGATGGTTGA -ACGGAAACACCACCAGATTCCGAT -ACGGAAACACCACCAGATTGGCAT -ACGGAAACACCACCAGATCGAGAT -ACGGAAACACCACCAGATTACCAC -ACGGAAACACCACCAGATCAGAAC -ACGGAAACACCACCAGATGTCTAC -ACGGAAACACCACCAGATACGTAC -ACGGAAACACCACCAGATAGTGAC -ACGGAAACACCACCAGATCTGTAG -ACGGAAACACCACCAGATCCTAAG -ACGGAAACACCACCAGATGTTCAG -ACGGAAACACCACCAGATGCATAG -ACGGAAACACCACCAGATGACAAG -ACGGAAACACCACCAGATAAGCAG -ACGGAAACACCACCAGATCGTCAA -ACGGAAACACCACCAGATGCTGAA -ACGGAAACACCACCAGATAGTACG -ACGGAAACACCACCAGATATCCGA -ACGGAAACACCACCAGATATGGGA -ACGGAAACACCACCAGATGTGCAA -ACGGAAACACCACCAGATGAGGAA -ACGGAAACACCACCAGATCAGGTA -ACGGAAACACCACCAGATGACTCT -ACGGAAACACCACCAGATAGTCCT -ACGGAAACACCACCAGATTAAGCC -ACGGAAACACCACCAGATATAGCC -ACGGAAACACCACCAGATTAACCG -ACGGAAACACCACCAGATATGCCA -ACGGAAACACCAACAACGGGAAAC -ACGGAAACACCAACAACGAACACC -ACGGAAACACCAACAACGATCGAG -ACGGAAACACCAACAACGCTCCTT -ACGGAAACACCAACAACGCCTGTT -ACGGAAACACCAACAACGCGGTTT -ACGGAAACACCAACAACGGTGGTT -ACGGAAACACCAACAACGGCCTTT -ACGGAAACACCAACAACGGGTCTT -ACGGAAACACCAACAACGACGCTT -ACGGAAACACCAACAACGAGCGTT -ACGGAAACACCAACAACGTTCGTC -ACGGAAACACCAACAACGTCTCTC -ACGGAAACACCAACAACGTGGATC -ACGGAAACACCAACAACGCACTTC -ACGGAAACACCAACAACGGTACTC -ACGGAAACACCAACAACGGATGTC -ACGGAAACACCAACAACGACAGTC -ACGGAAACACCAACAACGTTGCTG -ACGGAAACACCAACAACGTCCATG -ACGGAAACACCAACAACGTGTGTG -ACGGAAACACCAACAACGCTAGTG -ACGGAAACACCAACAACGCATCTG -ACGGAAACACCAACAACGGAGTTG -ACGGAAACACCAACAACGAGACTG -ACGGAAACACCAACAACGTCGGTA -ACGGAAACACCAACAACGTGCCTA -ACGGAAACACCAACAACGCCACTA -ACGGAAACACCAACAACGGGAGTA -ACGGAAACACCAACAACGTCGTCT -ACGGAAACACCAACAACGTGCACT -ACGGAAACACCAACAACGCTGACT -ACGGAAACACCAACAACGCAACCT -ACGGAAACACCAACAACGGCTACT -ACGGAAACACCAACAACGGGATCT -ACGGAAACACCAACAACGAAGGCT -ACGGAAACACCAACAACGTCAACC -ACGGAAACACCAACAACGTGTTCC -ACGGAAACACCAACAACGATTCCC -ACGGAAACACCAACAACGTTCTCG -ACGGAAACACCAACAACGTAGACG -ACGGAAACACCAACAACGGTAACG -ACGGAAACACCAACAACGACTTCG -ACGGAAACACCAACAACGTACGCA -ACGGAAACACCAACAACGCTTGCA -ACGGAAACACCAACAACGCGAACA -ACGGAAACACCAACAACGCAGTCA -ACGGAAACACCAACAACGGATCCA -ACGGAAACACCAACAACGACGACA -ACGGAAACACCAACAACGAGCTCA -ACGGAAACACCAACAACGTCACGT -ACGGAAACACCAACAACGCGTAGT -ACGGAAACACCAACAACGGTCAGT -ACGGAAACACCAACAACGGAAGGT -ACGGAAACACCAACAACGAACCGT -ACGGAAACACCAACAACGTTGTGC -ACGGAAACACCAACAACGCTAAGC -ACGGAAACACCAACAACGACTAGC -ACGGAAACACCAACAACGAGATGC -ACGGAAACACCAACAACGTGAAGG -ACGGAAACACCAACAACGCAATGG -ACGGAAACACCAACAACGATGAGG -ACGGAAACACCAACAACGAATGGG -ACGGAAACACCAACAACGTCCTGA -ACGGAAACACCAACAACGTAGCGA -ACGGAAACACCAACAACGCACAGA -ACGGAAACACCAACAACGGCAAGA -ACGGAAACACCAACAACGGGTTGA -ACGGAAACACCAACAACGTCCGAT -ACGGAAACACCAACAACGTGGCAT -ACGGAAACACCAACAACGCGAGAT -ACGGAAACACCAACAACGTACCAC -ACGGAAACACCAACAACGCAGAAC -ACGGAAACACCAACAACGGTCTAC -ACGGAAACACCAACAACGACGTAC -ACGGAAACACCAACAACGAGTGAC -ACGGAAACACCAACAACGCTGTAG -ACGGAAACACCAACAACGCCTAAG -ACGGAAACACCAACAACGGTTCAG -ACGGAAACACCAACAACGGCATAG -ACGGAAACACCAACAACGGACAAG -ACGGAAACACCAACAACGAAGCAG -ACGGAAACACCAACAACGCGTCAA -ACGGAAACACCAACAACGGCTGAA -ACGGAAACACCAACAACGAGTACG -ACGGAAACACCAACAACGATCCGA -ACGGAAACACCAACAACGATGGGA -ACGGAAACACCAACAACGGTGCAA -ACGGAAACACCAACAACGGAGGAA -ACGGAAACACCAACAACGCAGGTA -ACGGAAACACCAACAACGGACTCT -ACGGAAACACCAACAACGAGTCCT -ACGGAAACACCAACAACGTAAGCC -ACGGAAACACCAACAACGATAGCC -ACGGAAACACCAACAACGTAACCG -ACGGAAACACCAACAACGATGCCA -ACGGAAACACCATCAAGCGGAAAC -ACGGAAACACCATCAAGCAACACC -ACGGAAACACCATCAAGCATCGAG -ACGGAAACACCATCAAGCCTCCTT -ACGGAAACACCATCAAGCCCTGTT -ACGGAAACACCATCAAGCCGGTTT -ACGGAAACACCATCAAGCGTGGTT -ACGGAAACACCATCAAGCGCCTTT -ACGGAAACACCATCAAGCGGTCTT -ACGGAAACACCATCAAGCACGCTT -ACGGAAACACCATCAAGCAGCGTT -ACGGAAACACCATCAAGCTTCGTC -ACGGAAACACCATCAAGCTCTCTC -ACGGAAACACCATCAAGCTGGATC -ACGGAAACACCATCAAGCCACTTC -ACGGAAACACCATCAAGCGTACTC -ACGGAAACACCATCAAGCGATGTC -ACGGAAACACCATCAAGCACAGTC -ACGGAAACACCATCAAGCTTGCTG -ACGGAAACACCATCAAGCTCCATG -ACGGAAACACCATCAAGCTGTGTG -ACGGAAACACCATCAAGCCTAGTG -ACGGAAACACCATCAAGCCATCTG -ACGGAAACACCATCAAGCGAGTTG -ACGGAAACACCATCAAGCAGACTG -ACGGAAACACCATCAAGCTCGGTA -ACGGAAACACCATCAAGCTGCCTA -ACGGAAACACCATCAAGCCCACTA -ACGGAAACACCATCAAGCGGAGTA -ACGGAAACACCATCAAGCTCGTCT -ACGGAAACACCATCAAGCTGCACT -ACGGAAACACCATCAAGCCTGACT -ACGGAAACACCATCAAGCCAACCT -ACGGAAACACCATCAAGCGCTACT -ACGGAAACACCATCAAGCGGATCT -ACGGAAACACCATCAAGCAAGGCT -ACGGAAACACCATCAAGCTCAACC -ACGGAAACACCATCAAGCTGTTCC -ACGGAAACACCATCAAGCATTCCC -ACGGAAACACCATCAAGCTTCTCG -ACGGAAACACCATCAAGCTAGACG -ACGGAAACACCATCAAGCGTAACG -ACGGAAACACCATCAAGCACTTCG -ACGGAAACACCATCAAGCTACGCA -ACGGAAACACCATCAAGCCTTGCA -ACGGAAACACCATCAAGCCGAACA -ACGGAAACACCATCAAGCCAGTCA -ACGGAAACACCATCAAGCGATCCA -ACGGAAACACCATCAAGCACGACA -ACGGAAACACCATCAAGCAGCTCA -ACGGAAACACCATCAAGCTCACGT -ACGGAAACACCATCAAGCCGTAGT -ACGGAAACACCATCAAGCGTCAGT -ACGGAAACACCATCAAGCGAAGGT -ACGGAAACACCATCAAGCAACCGT -ACGGAAACACCATCAAGCTTGTGC -ACGGAAACACCATCAAGCCTAAGC -ACGGAAACACCATCAAGCACTAGC -ACGGAAACACCATCAAGCAGATGC -ACGGAAACACCATCAAGCTGAAGG -ACGGAAACACCATCAAGCCAATGG -ACGGAAACACCATCAAGCATGAGG -ACGGAAACACCATCAAGCAATGGG -ACGGAAACACCATCAAGCTCCTGA -ACGGAAACACCATCAAGCTAGCGA -ACGGAAACACCATCAAGCCACAGA -ACGGAAACACCATCAAGCGCAAGA -ACGGAAACACCATCAAGCGGTTGA -ACGGAAACACCATCAAGCTCCGAT -ACGGAAACACCATCAAGCTGGCAT -ACGGAAACACCATCAAGCCGAGAT -ACGGAAACACCATCAAGCTACCAC -ACGGAAACACCATCAAGCCAGAAC -ACGGAAACACCATCAAGCGTCTAC -ACGGAAACACCATCAAGCACGTAC -ACGGAAACACCATCAAGCAGTGAC -ACGGAAACACCATCAAGCCTGTAG -ACGGAAACACCATCAAGCCCTAAG -ACGGAAACACCATCAAGCGTTCAG -ACGGAAACACCATCAAGCGCATAG -ACGGAAACACCATCAAGCGACAAG -ACGGAAACACCATCAAGCAAGCAG -ACGGAAACACCATCAAGCCGTCAA -ACGGAAACACCATCAAGCGCTGAA -ACGGAAACACCATCAAGCAGTACG -ACGGAAACACCATCAAGCATCCGA -ACGGAAACACCATCAAGCATGGGA -ACGGAAACACCATCAAGCGTGCAA -ACGGAAACACCATCAAGCGAGGAA -ACGGAAACACCATCAAGCCAGGTA -ACGGAAACACCATCAAGCGACTCT -ACGGAAACACCATCAAGCAGTCCT -ACGGAAACACCATCAAGCTAAGCC -ACGGAAACACCATCAAGCATAGCC -ACGGAAACACCATCAAGCTAACCG -ACGGAAACACCATCAAGCATGCCA -ACGGAAACACCACGTTCAGGAAAC -ACGGAAACACCACGTTCAAACACC -ACGGAAACACCACGTTCAATCGAG -ACGGAAACACCACGTTCACTCCTT -ACGGAAACACCACGTTCACCTGTT -ACGGAAACACCACGTTCACGGTTT -ACGGAAACACCACGTTCAGTGGTT -ACGGAAACACCACGTTCAGCCTTT -ACGGAAACACCACGTTCAGGTCTT -ACGGAAACACCACGTTCAACGCTT -ACGGAAACACCACGTTCAAGCGTT -ACGGAAACACCACGTTCATTCGTC -ACGGAAACACCACGTTCATCTCTC -ACGGAAACACCACGTTCATGGATC -ACGGAAACACCACGTTCACACTTC -ACGGAAACACCACGTTCAGTACTC -ACGGAAACACCACGTTCAGATGTC -ACGGAAACACCACGTTCAACAGTC -ACGGAAACACCACGTTCATTGCTG -ACGGAAACACCACGTTCATCCATG -ACGGAAACACCACGTTCATGTGTG -ACGGAAACACCACGTTCACTAGTG -ACGGAAACACCACGTTCACATCTG -ACGGAAACACCACGTTCAGAGTTG -ACGGAAACACCACGTTCAAGACTG -ACGGAAACACCACGTTCATCGGTA -ACGGAAACACCACGTTCATGCCTA -ACGGAAACACCACGTTCACCACTA -ACGGAAACACCACGTTCAGGAGTA -ACGGAAACACCACGTTCATCGTCT -ACGGAAACACCACGTTCATGCACT -ACGGAAACACCACGTTCACTGACT -ACGGAAACACCACGTTCACAACCT -ACGGAAACACCACGTTCAGCTACT -ACGGAAACACCACGTTCAGGATCT -ACGGAAACACCACGTTCAAAGGCT -ACGGAAACACCACGTTCATCAACC -ACGGAAACACCACGTTCATGTTCC -ACGGAAACACCACGTTCAATTCCC -ACGGAAACACCACGTTCATTCTCG -ACGGAAACACCACGTTCATAGACG -ACGGAAACACCACGTTCAGTAACG -ACGGAAACACCACGTTCAACTTCG -ACGGAAACACCACGTTCATACGCA -ACGGAAACACCACGTTCACTTGCA -ACGGAAACACCACGTTCACGAACA -ACGGAAACACCACGTTCACAGTCA -ACGGAAACACCACGTTCAGATCCA -ACGGAAACACCACGTTCAACGACA -ACGGAAACACCACGTTCAAGCTCA -ACGGAAACACCACGTTCATCACGT -ACGGAAACACCACGTTCACGTAGT -ACGGAAACACCACGTTCAGTCAGT -ACGGAAACACCACGTTCAGAAGGT -ACGGAAACACCACGTTCAAACCGT -ACGGAAACACCACGTTCATTGTGC -ACGGAAACACCACGTTCACTAAGC -ACGGAAACACCACGTTCAACTAGC -ACGGAAACACCACGTTCAAGATGC -ACGGAAACACCACGTTCATGAAGG -ACGGAAACACCACGTTCACAATGG -ACGGAAACACCACGTTCAATGAGG -ACGGAAACACCACGTTCAAATGGG -ACGGAAACACCACGTTCATCCTGA -ACGGAAACACCACGTTCATAGCGA -ACGGAAACACCACGTTCACACAGA -ACGGAAACACCACGTTCAGCAAGA -ACGGAAACACCACGTTCAGGTTGA -ACGGAAACACCACGTTCATCCGAT -ACGGAAACACCACGTTCATGGCAT -ACGGAAACACCACGTTCACGAGAT -ACGGAAACACCACGTTCATACCAC -ACGGAAACACCACGTTCACAGAAC -ACGGAAACACCACGTTCAGTCTAC -ACGGAAACACCACGTTCAACGTAC -ACGGAAACACCACGTTCAAGTGAC -ACGGAAACACCACGTTCACTGTAG -ACGGAAACACCACGTTCACCTAAG -ACGGAAACACCACGTTCAGTTCAG -ACGGAAACACCACGTTCAGCATAG -ACGGAAACACCACGTTCAGACAAG -ACGGAAACACCACGTTCAAAGCAG -ACGGAAACACCACGTTCACGTCAA -ACGGAAACACCACGTTCAGCTGAA -ACGGAAACACCACGTTCAAGTACG -ACGGAAACACCACGTTCAATCCGA -ACGGAAACACCACGTTCAATGGGA -ACGGAAACACCACGTTCAGTGCAA -ACGGAAACACCACGTTCAGAGGAA -ACGGAAACACCACGTTCACAGGTA -ACGGAAACACCACGTTCAGACTCT -ACGGAAACACCACGTTCAAGTCCT -ACGGAAACACCACGTTCATAAGCC -ACGGAAACACCACGTTCAATAGCC -ACGGAAACACCACGTTCATAACCG -ACGGAAACACCACGTTCAATGCCA -ACGGAAACACCAAGTCGTGGAAAC -ACGGAAACACCAAGTCGTAACACC -ACGGAAACACCAAGTCGTATCGAG -ACGGAAACACCAAGTCGTCTCCTT -ACGGAAACACCAAGTCGTCCTGTT -ACGGAAACACCAAGTCGTCGGTTT -ACGGAAACACCAAGTCGTGTGGTT -ACGGAAACACCAAGTCGTGCCTTT -ACGGAAACACCAAGTCGTGGTCTT -ACGGAAACACCAAGTCGTACGCTT -ACGGAAACACCAAGTCGTAGCGTT -ACGGAAACACCAAGTCGTTTCGTC -ACGGAAACACCAAGTCGTTCTCTC -ACGGAAACACCAAGTCGTTGGATC -ACGGAAACACCAAGTCGTCACTTC -ACGGAAACACCAAGTCGTGTACTC -ACGGAAACACCAAGTCGTGATGTC -ACGGAAACACCAAGTCGTACAGTC -ACGGAAACACCAAGTCGTTTGCTG -ACGGAAACACCAAGTCGTTCCATG -ACGGAAACACCAAGTCGTTGTGTG -ACGGAAACACCAAGTCGTCTAGTG -ACGGAAACACCAAGTCGTCATCTG -ACGGAAACACCAAGTCGTGAGTTG -ACGGAAACACCAAGTCGTAGACTG -ACGGAAACACCAAGTCGTTCGGTA -ACGGAAACACCAAGTCGTTGCCTA -ACGGAAACACCAAGTCGTCCACTA -ACGGAAACACCAAGTCGTGGAGTA -ACGGAAACACCAAGTCGTTCGTCT -ACGGAAACACCAAGTCGTTGCACT -ACGGAAACACCAAGTCGTCTGACT -ACGGAAACACCAAGTCGTCAACCT -ACGGAAACACCAAGTCGTGCTACT -ACGGAAACACCAAGTCGTGGATCT -ACGGAAACACCAAGTCGTAAGGCT -ACGGAAACACCAAGTCGTTCAACC -ACGGAAACACCAAGTCGTTGTTCC -ACGGAAACACCAAGTCGTATTCCC -ACGGAAACACCAAGTCGTTTCTCG -ACGGAAACACCAAGTCGTTAGACG -ACGGAAACACCAAGTCGTGTAACG -ACGGAAACACCAAGTCGTACTTCG -ACGGAAACACCAAGTCGTTACGCA -ACGGAAACACCAAGTCGTCTTGCA -ACGGAAACACCAAGTCGTCGAACA -ACGGAAACACCAAGTCGTCAGTCA -ACGGAAACACCAAGTCGTGATCCA -ACGGAAACACCAAGTCGTACGACA -ACGGAAACACCAAGTCGTAGCTCA -ACGGAAACACCAAGTCGTTCACGT -ACGGAAACACCAAGTCGTCGTAGT -ACGGAAACACCAAGTCGTGTCAGT -ACGGAAACACCAAGTCGTGAAGGT -ACGGAAACACCAAGTCGTAACCGT -ACGGAAACACCAAGTCGTTTGTGC -ACGGAAACACCAAGTCGTCTAAGC -ACGGAAACACCAAGTCGTACTAGC -ACGGAAACACCAAGTCGTAGATGC -ACGGAAACACCAAGTCGTTGAAGG -ACGGAAACACCAAGTCGTCAATGG -ACGGAAACACCAAGTCGTATGAGG -ACGGAAACACCAAGTCGTAATGGG -ACGGAAACACCAAGTCGTTCCTGA -ACGGAAACACCAAGTCGTTAGCGA -ACGGAAACACCAAGTCGTCACAGA -ACGGAAACACCAAGTCGTGCAAGA -ACGGAAACACCAAGTCGTGGTTGA -ACGGAAACACCAAGTCGTTCCGAT -ACGGAAACACCAAGTCGTTGGCAT -ACGGAAACACCAAGTCGTCGAGAT -ACGGAAACACCAAGTCGTTACCAC -ACGGAAACACCAAGTCGTCAGAAC -ACGGAAACACCAAGTCGTGTCTAC -ACGGAAACACCAAGTCGTACGTAC -ACGGAAACACCAAGTCGTAGTGAC -ACGGAAACACCAAGTCGTCTGTAG -ACGGAAACACCAAGTCGTCCTAAG -ACGGAAACACCAAGTCGTGTTCAG -ACGGAAACACCAAGTCGTGCATAG -ACGGAAACACCAAGTCGTGACAAG -ACGGAAACACCAAGTCGTAAGCAG -ACGGAAACACCAAGTCGTCGTCAA -ACGGAAACACCAAGTCGTGCTGAA -ACGGAAACACCAAGTCGTAGTACG -ACGGAAACACCAAGTCGTATCCGA -ACGGAAACACCAAGTCGTATGGGA -ACGGAAACACCAAGTCGTGTGCAA -ACGGAAACACCAAGTCGTGAGGAA -ACGGAAACACCAAGTCGTCAGGTA -ACGGAAACACCAAGTCGTGACTCT -ACGGAAACACCAAGTCGTAGTCCT -ACGGAAACACCAAGTCGTTAAGCC -ACGGAAACACCAAGTCGTATAGCC -ACGGAAACACCAAGTCGTTAACCG -ACGGAAACACCAAGTCGTATGCCA -ACGGAAACACCAAGTGTCGGAAAC -ACGGAAACACCAAGTGTCAACACC -ACGGAAACACCAAGTGTCATCGAG -ACGGAAACACCAAGTGTCCTCCTT -ACGGAAACACCAAGTGTCCCTGTT -ACGGAAACACCAAGTGTCCGGTTT -ACGGAAACACCAAGTGTCGTGGTT -ACGGAAACACCAAGTGTCGCCTTT -ACGGAAACACCAAGTGTCGGTCTT -ACGGAAACACCAAGTGTCACGCTT -ACGGAAACACCAAGTGTCAGCGTT -ACGGAAACACCAAGTGTCTTCGTC -ACGGAAACACCAAGTGTCTCTCTC -ACGGAAACACCAAGTGTCTGGATC -ACGGAAACACCAAGTGTCCACTTC -ACGGAAACACCAAGTGTCGTACTC -ACGGAAACACCAAGTGTCGATGTC -ACGGAAACACCAAGTGTCACAGTC -ACGGAAACACCAAGTGTCTTGCTG -ACGGAAACACCAAGTGTCTCCATG -ACGGAAACACCAAGTGTCTGTGTG -ACGGAAACACCAAGTGTCCTAGTG -ACGGAAACACCAAGTGTCCATCTG -ACGGAAACACCAAGTGTCGAGTTG -ACGGAAACACCAAGTGTCAGACTG -ACGGAAACACCAAGTGTCTCGGTA -ACGGAAACACCAAGTGTCTGCCTA -ACGGAAACACCAAGTGTCCCACTA -ACGGAAACACCAAGTGTCGGAGTA -ACGGAAACACCAAGTGTCTCGTCT -ACGGAAACACCAAGTGTCTGCACT -ACGGAAACACCAAGTGTCCTGACT -ACGGAAACACCAAGTGTCCAACCT -ACGGAAACACCAAGTGTCGCTACT -ACGGAAACACCAAGTGTCGGATCT -ACGGAAACACCAAGTGTCAAGGCT -ACGGAAACACCAAGTGTCTCAACC -ACGGAAACACCAAGTGTCTGTTCC -ACGGAAACACCAAGTGTCATTCCC -ACGGAAACACCAAGTGTCTTCTCG -ACGGAAACACCAAGTGTCTAGACG -ACGGAAACACCAAGTGTCGTAACG -ACGGAAACACCAAGTGTCACTTCG -ACGGAAACACCAAGTGTCTACGCA -ACGGAAACACCAAGTGTCCTTGCA -ACGGAAACACCAAGTGTCCGAACA -ACGGAAACACCAAGTGTCCAGTCA -ACGGAAACACCAAGTGTCGATCCA -ACGGAAACACCAAGTGTCACGACA -ACGGAAACACCAAGTGTCAGCTCA -ACGGAAACACCAAGTGTCTCACGT -ACGGAAACACCAAGTGTCCGTAGT -ACGGAAACACCAAGTGTCGTCAGT -ACGGAAACACCAAGTGTCGAAGGT -ACGGAAACACCAAGTGTCAACCGT -ACGGAAACACCAAGTGTCTTGTGC -ACGGAAACACCAAGTGTCCTAAGC -ACGGAAACACCAAGTGTCACTAGC -ACGGAAACACCAAGTGTCAGATGC -ACGGAAACACCAAGTGTCTGAAGG -ACGGAAACACCAAGTGTCCAATGG -ACGGAAACACCAAGTGTCATGAGG -ACGGAAACACCAAGTGTCAATGGG -ACGGAAACACCAAGTGTCTCCTGA -ACGGAAACACCAAGTGTCTAGCGA -ACGGAAACACCAAGTGTCCACAGA -ACGGAAACACCAAGTGTCGCAAGA -ACGGAAACACCAAGTGTCGGTTGA -ACGGAAACACCAAGTGTCTCCGAT -ACGGAAACACCAAGTGTCTGGCAT -ACGGAAACACCAAGTGTCCGAGAT -ACGGAAACACCAAGTGTCTACCAC -ACGGAAACACCAAGTGTCCAGAAC -ACGGAAACACCAAGTGTCGTCTAC -ACGGAAACACCAAGTGTCACGTAC -ACGGAAACACCAAGTGTCAGTGAC -ACGGAAACACCAAGTGTCCTGTAG -ACGGAAACACCAAGTGTCCCTAAG -ACGGAAACACCAAGTGTCGTTCAG -ACGGAAACACCAAGTGTCGCATAG -ACGGAAACACCAAGTGTCGACAAG -ACGGAAACACCAAGTGTCAAGCAG -ACGGAAACACCAAGTGTCCGTCAA -ACGGAAACACCAAGTGTCGCTGAA -ACGGAAACACCAAGTGTCAGTACG -ACGGAAACACCAAGTGTCATCCGA -ACGGAAACACCAAGTGTCATGGGA -ACGGAAACACCAAGTGTCGTGCAA -ACGGAAACACCAAGTGTCGAGGAA -ACGGAAACACCAAGTGTCCAGGTA -ACGGAAACACCAAGTGTCGACTCT -ACGGAAACACCAAGTGTCAGTCCT -ACGGAAACACCAAGTGTCTAAGCC -ACGGAAACACCAAGTGTCATAGCC -ACGGAAACACCAAGTGTCTAACCG -ACGGAAACACCAAGTGTCATGCCA -ACGGAAACACCAGGTGAAGGAAAC -ACGGAAACACCAGGTGAAAACACC -ACGGAAACACCAGGTGAAATCGAG -ACGGAAACACCAGGTGAACTCCTT -ACGGAAACACCAGGTGAACCTGTT -ACGGAAACACCAGGTGAACGGTTT -ACGGAAACACCAGGTGAAGTGGTT -ACGGAAACACCAGGTGAAGCCTTT -ACGGAAACACCAGGTGAAGGTCTT -ACGGAAACACCAGGTGAAACGCTT -ACGGAAACACCAGGTGAAAGCGTT -ACGGAAACACCAGGTGAATTCGTC -ACGGAAACACCAGGTGAATCTCTC -ACGGAAACACCAGGTGAATGGATC -ACGGAAACACCAGGTGAACACTTC -ACGGAAACACCAGGTGAAGTACTC -ACGGAAACACCAGGTGAAGATGTC -ACGGAAACACCAGGTGAAACAGTC -ACGGAAACACCAGGTGAATTGCTG -ACGGAAACACCAGGTGAATCCATG -ACGGAAACACCAGGTGAATGTGTG -ACGGAAACACCAGGTGAACTAGTG -ACGGAAACACCAGGTGAACATCTG -ACGGAAACACCAGGTGAAGAGTTG -ACGGAAACACCAGGTGAAAGACTG -ACGGAAACACCAGGTGAATCGGTA -ACGGAAACACCAGGTGAATGCCTA -ACGGAAACACCAGGTGAACCACTA -ACGGAAACACCAGGTGAAGGAGTA -ACGGAAACACCAGGTGAATCGTCT -ACGGAAACACCAGGTGAATGCACT -ACGGAAACACCAGGTGAACTGACT -ACGGAAACACCAGGTGAACAACCT -ACGGAAACACCAGGTGAAGCTACT -ACGGAAACACCAGGTGAAGGATCT -ACGGAAACACCAGGTGAAAAGGCT -ACGGAAACACCAGGTGAATCAACC -ACGGAAACACCAGGTGAATGTTCC -ACGGAAACACCAGGTGAAATTCCC -ACGGAAACACCAGGTGAATTCTCG -ACGGAAACACCAGGTGAATAGACG -ACGGAAACACCAGGTGAAGTAACG -ACGGAAACACCAGGTGAAACTTCG -ACGGAAACACCAGGTGAATACGCA -ACGGAAACACCAGGTGAACTTGCA -ACGGAAACACCAGGTGAACGAACA -ACGGAAACACCAGGTGAACAGTCA -ACGGAAACACCAGGTGAAGATCCA -ACGGAAACACCAGGTGAAACGACA -ACGGAAACACCAGGTGAAAGCTCA -ACGGAAACACCAGGTGAATCACGT -ACGGAAACACCAGGTGAACGTAGT -ACGGAAACACCAGGTGAAGTCAGT -ACGGAAACACCAGGTGAAGAAGGT -ACGGAAACACCAGGTGAAAACCGT -ACGGAAACACCAGGTGAATTGTGC -ACGGAAACACCAGGTGAACTAAGC -ACGGAAACACCAGGTGAAACTAGC -ACGGAAACACCAGGTGAAAGATGC -ACGGAAACACCAGGTGAATGAAGG -ACGGAAACACCAGGTGAACAATGG -ACGGAAACACCAGGTGAAATGAGG -ACGGAAACACCAGGTGAAAATGGG -ACGGAAACACCAGGTGAATCCTGA -ACGGAAACACCAGGTGAATAGCGA -ACGGAAACACCAGGTGAACACAGA -ACGGAAACACCAGGTGAAGCAAGA -ACGGAAACACCAGGTGAAGGTTGA -ACGGAAACACCAGGTGAATCCGAT -ACGGAAACACCAGGTGAATGGCAT -ACGGAAACACCAGGTGAACGAGAT -ACGGAAACACCAGGTGAATACCAC -ACGGAAACACCAGGTGAACAGAAC -ACGGAAACACCAGGTGAAGTCTAC -ACGGAAACACCAGGTGAAACGTAC -ACGGAAACACCAGGTGAAAGTGAC -ACGGAAACACCAGGTGAACTGTAG -ACGGAAACACCAGGTGAACCTAAG -ACGGAAACACCAGGTGAAGTTCAG -ACGGAAACACCAGGTGAAGCATAG -ACGGAAACACCAGGTGAAGACAAG -ACGGAAACACCAGGTGAAAAGCAG -ACGGAAACACCAGGTGAACGTCAA -ACGGAAACACCAGGTGAAGCTGAA -ACGGAAACACCAGGTGAAAGTACG -ACGGAAACACCAGGTGAAATCCGA -ACGGAAACACCAGGTGAAATGGGA -ACGGAAACACCAGGTGAAGTGCAA -ACGGAAACACCAGGTGAAGAGGAA -ACGGAAACACCAGGTGAACAGGTA -ACGGAAACACCAGGTGAAGACTCT -ACGGAAACACCAGGTGAAAGTCCT -ACGGAAACACCAGGTGAATAAGCC -ACGGAAACACCAGGTGAAATAGCC -ACGGAAACACCAGGTGAATAACCG -ACGGAAACACCAGGTGAAATGCCA -ACGGAAACACCACGTAACGGAAAC -ACGGAAACACCACGTAACAACACC -ACGGAAACACCACGTAACATCGAG -ACGGAAACACCACGTAACCTCCTT -ACGGAAACACCACGTAACCCTGTT -ACGGAAACACCACGTAACCGGTTT -ACGGAAACACCACGTAACGTGGTT -ACGGAAACACCACGTAACGCCTTT -ACGGAAACACCACGTAACGGTCTT -ACGGAAACACCACGTAACACGCTT -ACGGAAACACCACGTAACAGCGTT -ACGGAAACACCACGTAACTTCGTC -ACGGAAACACCACGTAACTCTCTC -ACGGAAACACCACGTAACTGGATC -ACGGAAACACCACGTAACCACTTC -ACGGAAACACCACGTAACGTACTC -ACGGAAACACCACGTAACGATGTC -ACGGAAACACCACGTAACACAGTC -ACGGAAACACCACGTAACTTGCTG -ACGGAAACACCACGTAACTCCATG -ACGGAAACACCACGTAACTGTGTG -ACGGAAACACCACGTAACCTAGTG -ACGGAAACACCACGTAACCATCTG -ACGGAAACACCACGTAACGAGTTG -ACGGAAACACCACGTAACAGACTG -ACGGAAACACCACGTAACTCGGTA -ACGGAAACACCACGTAACTGCCTA -ACGGAAACACCACGTAACCCACTA -ACGGAAACACCACGTAACGGAGTA -ACGGAAACACCACGTAACTCGTCT -ACGGAAACACCACGTAACTGCACT -ACGGAAACACCACGTAACCTGACT -ACGGAAACACCACGTAACCAACCT -ACGGAAACACCACGTAACGCTACT -ACGGAAACACCACGTAACGGATCT -ACGGAAACACCACGTAACAAGGCT -ACGGAAACACCACGTAACTCAACC -ACGGAAACACCACGTAACTGTTCC -ACGGAAACACCACGTAACATTCCC -ACGGAAACACCACGTAACTTCTCG -ACGGAAACACCACGTAACTAGACG -ACGGAAACACCACGTAACGTAACG -ACGGAAACACCACGTAACACTTCG -ACGGAAACACCACGTAACTACGCA -ACGGAAACACCACGTAACCTTGCA -ACGGAAACACCACGTAACCGAACA -ACGGAAACACCACGTAACCAGTCA -ACGGAAACACCACGTAACGATCCA -ACGGAAACACCACGTAACACGACA -ACGGAAACACCACGTAACAGCTCA -ACGGAAACACCACGTAACTCACGT -ACGGAAACACCACGTAACCGTAGT -ACGGAAACACCACGTAACGTCAGT -ACGGAAACACCACGTAACGAAGGT -ACGGAAACACCACGTAACAACCGT -ACGGAAACACCACGTAACTTGTGC -ACGGAAACACCACGTAACCTAAGC -ACGGAAACACCACGTAACACTAGC -ACGGAAACACCACGTAACAGATGC -ACGGAAACACCACGTAACTGAAGG -ACGGAAACACCACGTAACCAATGG -ACGGAAACACCACGTAACATGAGG -ACGGAAACACCACGTAACAATGGG -ACGGAAACACCACGTAACTCCTGA -ACGGAAACACCACGTAACTAGCGA -ACGGAAACACCACGTAACCACAGA -ACGGAAACACCACGTAACGCAAGA -ACGGAAACACCACGTAACGGTTGA -ACGGAAACACCACGTAACTCCGAT -ACGGAAACACCACGTAACTGGCAT -ACGGAAACACCACGTAACCGAGAT -ACGGAAACACCACGTAACTACCAC -ACGGAAACACCACGTAACCAGAAC -ACGGAAACACCACGTAACGTCTAC -ACGGAAACACCACGTAACACGTAC -ACGGAAACACCACGTAACAGTGAC -ACGGAAACACCACGTAACCTGTAG -ACGGAAACACCACGTAACCCTAAG -ACGGAAACACCACGTAACGTTCAG -ACGGAAACACCACGTAACGCATAG -ACGGAAACACCACGTAACGACAAG -ACGGAAACACCACGTAACAAGCAG -ACGGAAACACCACGTAACCGTCAA -ACGGAAACACCACGTAACGCTGAA -ACGGAAACACCACGTAACAGTACG -ACGGAAACACCACGTAACATCCGA -ACGGAAACACCACGTAACATGGGA -ACGGAAACACCACGTAACGTGCAA -ACGGAAACACCACGTAACGAGGAA -ACGGAAACACCACGTAACCAGGTA -ACGGAAACACCACGTAACGACTCT -ACGGAAACACCACGTAACAGTCCT -ACGGAAACACCACGTAACTAAGCC -ACGGAAACACCACGTAACATAGCC -ACGGAAACACCACGTAACTAACCG -ACGGAAACACCACGTAACATGCCA -ACGGAAACACCATGCTTGGGAAAC -ACGGAAACACCATGCTTGAACACC -ACGGAAACACCATGCTTGATCGAG -ACGGAAACACCATGCTTGCTCCTT -ACGGAAACACCATGCTTGCCTGTT -ACGGAAACACCATGCTTGCGGTTT -ACGGAAACACCATGCTTGGTGGTT -ACGGAAACACCATGCTTGGCCTTT -ACGGAAACACCATGCTTGGGTCTT -ACGGAAACACCATGCTTGACGCTT -ACGGAAACACCATGCTTGAGCGTT -ACGGAAACACCATGCTTGTTCGTC -ACGGAAACACCATGCTTGTCTCTC -ACGGAAACACCATGCTTGTGGATC -ACGGAAACACCATGCTTGCACTTC -ACGGAAACACCATGCTTGGTACTC -ACGGAAACACCATGCTTGGATGTC -ACGGAAACACCATGCTTGACAGTC -ACGGAAACACCATGCTTGTTGCTG -ACGGAAACACCATGCTTGTCCATG -ACGGAAACACCATGCTTGTGTGTG -ACGGAAACACCATGCTTGCTAGTG -ACGGAAACACCATGCTTGCATCTG -ACGGAAACACCATGCTTGGAGTTG -ACGGAAACACCATGCTTGAGACTG -ACGGAAACACCATGCTTGTCGGTA -ACGGAAACACCATGCTTGTGCCTA -ACGGAAACACCATGCTTGCCACTA -ACGGAAACACCATGCTTGGGAGTA -ACGGAAACACCATGCTTGTCGTCT -ACGGAAACACCATGCTTGTGCACT -ACGGAAACACCATGCTTGCTGACT -ACGGAAACACCATGCTTGCAACCT -ACGGAAACACCATGCTTGGCTACT -ACGGAAACACCATGCTTGGGATCT -ACGGAAACACCATGCTTGAAGGCT -ACGGAAACACCATGCTTGTCAACC -ACGGAAACACCATGCTTGTGTTCC -ACGGAAACACCATGCTTGATTCCC -ACGGAAACACCATGCTTGTTCTCG -ACGGAAACACCATGCTTGTAGACG -ACGGAAACACCATGCTTGGTAACG -ACGGAAACACCATGCTTGACTTCG -ACGGAAACACCATGCTTGTACGCA -ACGGAAACACCATGCTTGCTTGCA -ACGGAAACACCATGCTTGCGAACA -ACGGAAACACCATGCTTGCAGTCA -ACGGAAACACCATGCTTGGATCCA -ACGGAAACACCATGCTTGACGACA -ACGGAAACACCATGCTTGAGCTCA -ACGGAAACACCATGCTTGTCACGT -ACGGAAACACCATGCTTGCGTAGT -ACGGAAACACCATGCTTGGTCAGT -ACGGAAACACCATGCTTGGAAGGT -ACGGAAACACCATGCTTGAACCGT -ACGGAAACACCATGCTTGTTGTGC -ACGGAAACACCATGCTTGCTAAGC -ACGGAAACACCATGCTTGACTAGC -ACGGAAACACCATGCTTGAGATGC -ACGGAAACACCATGCTTGTGAAGG -ACGGAAACACCATGCTTGCAATGG -ACGGAAACACCATGCTTGATGAGG -ACGGAAACACCATGCTTGAATGGG -ACGGAAACACCATGCTTGTCCTGA -ACGGAAACACCATGCTTGTAGCGA -ACGGAAACACCATGCTTGCACAGA -ACGGAAACACCATGCTTGGCAAGA -ACGGAAACACCATGCTTGGGTTGA -ACGGAAACACCATGCTTGTCCGAT -ACGGAAACACCATGCTTGTGGCAT -ACGGAAACACCATGCTTGCGAGAT -ACGGAAACACCATGCTTGTACCAC -ACGGAAACACCATGCTTGCAGAAC -ACGGAAACACCATGCTTGGTCTAC -ACGGAAACACCATGCTTGACGTAC -ACGGAAACACCATGCTTGAGTGAC -ACGGAAACACCATGCTTGCTGTAG -ACGGAAACACCATGCTTGCCTAAG -ACGGAAACACCATGCTTGGTTCAG -ACGGAAACACCATGCTTGGCATAG -ACGGAAACACCATGCTTGGACAAG -ACGGAAACACCATGCTTGAAGCAG -ACGGAAACACCATGCTTGCGTCAA -ACGGAAACACCATGCTTGGCTGAA -ACGGAAACACCATGCTTGAGTACG -ACGGAAACACCATGCTTGATCCGA -ACGGAAACACCATGCTTGATGGGA -ACGGAAACACCATGCTTGGTGCAA -ACGGAAACACCATGCTTGGAGGAA -ACGGAAACACCATGCTTGCAGGTA -ACGGAAACACCATGCTTGGACTCT -ACGGAAACACCATGCTTGAGTCCT -ACGGAAACACCATGCTTGTAAGCC -ACGGAAACACCATGCTTGATAGCC -ACGGAAACACCATGCTTGTAACCG -ACGGAAACACCATGCTTGATGCCA -ACGGAAACACCAAGCCTAGGAAAC -ACGGAAACACCAAGCCTAAACACC -ACGGAAACACCAAGCCTAATCGAG -ACGGAAACACCAAGCCTACTCCTT -ACGGAAACACCAAGCCTACCTGTT -ACGGAAACACCAAGCCTACGGTTT -ACGGAAACACCAAGCCTAGTGGTT -ACGGAAACACCAAGCCTAGCCTTT -ACGGAAACACCAAGCCTAGGTCTT -ACGGAAACACCAAGCCTAACGCTT -ACGGAAACACCAAGCCTAAGCGTT -ACGGAAACACCAAGCCTATTCGTC -ACGGAAACACCAAGCCTATCTCTC -ACGGAAACACCAAGCCTATGGATC -ACGGAAACACCAAGCCTACACTTC -ACGGAAACACCAAGCCTAGTACTC -ACGGAAACACCAAGCCTAGATGTC -ACGGAAACACCAAGCCTAACAGTC -ACGGAAACACCAAGCCTATTGCTG -ACGGAAACACCAAGCCTATCCATG -ACGGAAACACCAAGCCTATGTGTG -ACGGAAACACCAAGCCTACTAGTG -ACGGAAACACCAAGCCTACATCTG -ACGGAAACACCAAGCCTAGAGTTG -ACGGAAACACCAAGCCTAAGACTG -ACGGAAACACCAAGCCTATCGGTA -ACGGAAACACCAAGCCTATGCCTA -ACGGAAACACCAAGCCTACCACTA -ACGGAAACACCAAGCCTAGGAGTA -ACGGAAACACCAAGCCTATCGTCT -ACGGAAACACCAAGCCTATGCACT -ACGGAAACACCAAGCCTACTGACT -ACGGAAACACCAAGCCTACAACCT -ACGGAAACACCAAGCCTAGCTACT -ACGGAAACACCAAGCCTAGGATCT -ACGGAAACACCAAGCCTAAAGGCT -ACGGAAACACCAAGCCTATCAACC -ACGGAAACACCAAGCCTATGTTCC -ACGGAAACACCAAGCCTAATTCCC -ACGGAAACACCAAGCCTATTCTCG -ACGGAAACACCAAGCCTATAGACG -ACGGAAACACCAAGCCTAGTAACG -ACGGAAACACCAAGCCTAACTTCG -ACGGAAACACCAAGCCTATACGCA -ACGGAAACACCAAGCCTACTTGCA -ACGGAAACACCAAGCCTACGAACA -ACGGAAACACCAAGCCTACAGTCA -ACGGAAACACCAAGCCTAGATCCA -ACGGAAACACCAAGCCTAACGACA -ACGGAAACACCAAGCCTAAGCTCA -ACGGAAACACCAAGCCTATCACGT -ACGGAAACACCAAGCCTACGTAGT -ACGGAAACACCAAGCCTAGTCAGT -ACGGAAACACCAAGCCTAGAAGGT -ACGGAAACACCAAGCCTAAACCGT -ACGGAAACACCAAGCCTATTGTGC -ACGGAAACACCAAGCCTACTAAGC -ACGGAAACACCAAGCCTAACTAGC -ACGGAAACACCAAGCCTAAGATGC -ACGGAAACACCAAGCCTATGAAGG -ACGGAAACACCAAGCCTACAATGG -ACGGAAACACCAAGCCTAATGAGG -ACGGAAACACCAAGCCTAAATGGG -ACGGAAACACCAAGCCTATCCTGA -ACGGAAACACCAAGCCTATAGCGA -ACGGAAACACCAAGCCTACACAGA -ACGGAAACACCAAGCCTAGCAAGA -ACGGAAACACCAAGCCTAGGTTGA -ACGGAAACACCAAGCCTATCCGAT -ACGGAAACACCAAGCCTATGGCAT -ACGGAAACACCAAGCCTACGAGAT -ACGGAAACACCAAGCCTATACCAC -ACGGAAACACCAAGCCTACAGAAC -ACGGAAACACCAAGCCTAGTCTAC -ACGGAAACACCAAGCCTAACGTAC -ACGGAAACACCAAGCCTAAGTGAC -ACGGAAACACCAAGCCTACTGTAG -ACGGAAACACCAAGCCTACCTAAG -ACGGAAACACCAAGCCTAGTTCAG -ACGGAAACACCAAGCCTAGCATAG -ACGGAAACACCAAGCCTAGACAAG -ACGGAAACACCAAGCCTAAAGCAG -ACGGAAACACCAAGCCTACGTCAA -ACGGAAACACCAAGCCTAGCTGAA -ACGGAAACACCAAGCCTAAGTACG -ACGGAAACACCAAGCCTAATCCGA -ACGGAAACACCAAGCCTAATGGGA -ACGGAAACACCAAGCCTAGTGCAA -ACGGAAACACCAAGCCTAGAGGAA -ACGGAAACACCAAGCCTACAGGTA -ACGGAAACACCAAGCCTAGACTCT -ACGGAAACACCAAGCCTAAGTCCT -ACGGAAACACCAAGCCTATAAGCC -ACGGAAACACCAAGCCTAATAGCC -ACGGAAACACCAAGCCTATAACCG -ACGGAAACACCAAGCCTAATGCCA -ACGGAAACACCAAGCACTGGAAAC -ACGGAAACACCAAGCACTAACACC -ACGGAAACACCAAGCACTATCGAG -ACGGAAACACCAAGCACTCTCCTT -ACGGAAACACCAAGCACTCCTGTT -ACGGAAACACCAAGCACTCGGTTT -ACGGAAACACCAAGCACTGTGGTT -ACGGAAACACCAAGCACTGCCTTT -ACGGAAACACCAAGCACTGGTCTT -ACGGAAACACCAAGCACTACGCTT -ACGGAAACACCAAGCACTAGCGTT -ACGGAAACACCAAGCACTTTCGTC -ACGGAAACACCAAGCACTTCTCTC -ACGGAAACACCAAGCACTTGGATC -ACGGAAACACCAAGCACTCACTTC -ACGGAAACACCAAGCACTGTACTC -ACGGAAACACCAAGCACTGATGTC -ACGGAAACACCAAGCACTACAGTC -ACGGAAACACCAAGCACTTTGCTG -ACGGAAACACCAAGCACTTCCATG -ACGGAAACACCAAGCACTTGTGTG -ACGGAAACACCAAGCACTCTAGTG -ACGGAAACACCAAGCACTCATCTG -ACGGAAACACCAAGCACTGAGTTG -ACGGAAACACCAAGCACTAGACTG -ACGGAAACACCAAGCACTTCGGTA -ACGGAAACACCAAGCACTTGCCTA -ACGGAAACACCAAGCACTCCACTA -ACGGAAACACCAAGCACTGGAGTA -ACGGAAACACCAAGCACTTCGTCT -ACGGAAACACCAAGCACTTGCACT -ACGGAAACACCAAGCACTCTGACT -ACGGAAACACCAAGCACTCAACCT -ACGGAAACACCAAGCACTGCTACT -ACGGAAACACCAAGCACTGGATCT -ACGGAAACACCAAGCACTAAGGCT -ACGGAAACACCAAGCACTTCAACC -ACGGAAACACCAAGCACTTGTTCC -ACGGAAACACCAAGCACTATTCCC -ACGGAAACACCAAGCACTTTCTCG -ACGGAAACACCAAGCACTTAGACG -ACGGAAACACCAAGCACTGTAACG -ACGGAAACACCAAGCACTACTTCG -ACGGAAACACCAAGCACTTACGCA -ACGGAAACACCAAGCACTCTTGCA -ACGGAAACACCAAGCACTCGAACA -ACGGAAACACCAAGCACTCAGTCA -ACGGAAACACCAAGCACTGATCCA -ACGGAAACACCAAGCACTACGACA -ACGGAAACACCAAGCACTAGCTCA -ACGGAAACACCAAGCACTTCACGT -ACGGAAACACCAAGCACTCGTAGT -ACGGAAACACCAAGCACTGTCAGT -ACGGAAACACCAAGCACTGAAGGT -ACGGAAACACCAAGCACTAACCGT -ACGGAAACACCAAGCACTTTGTGC -ACGGAAACACCAAGCACTCTAAGC -ACGGAAACACCAAGCACTACTAGC -ACGGAAACACCAAGCACTAGATGC -ACGGAAACACCAAGCACTTGAAGG -ACGGAAACACCAAGCACTCAATGG -ACGGAAACACCAAGCACTATGAGG -ACGGAAACACCAAGCACTAATGGG -ACGGAAACACCAAGCACTTCCTGA -ACGGAAACACCAAGCACTTAGCGA -ACGGAAACACCAAGCACTCACAGA -ACGGAAACACCAAGCACTGCAAGA -ACGGAAACACCAAGCACTGGTTGA -ACGGAAACACCAAGCACTTCCGAT -ACGGAAACACCAAGCACTTGGCAT -ACGGAAACACCAAGCACTCGAGAT -ACGGAAACACCAAGCACTTACCAC -ACGGAAACACCAAGCACTCAGAAC -ACGGAAACACCAAGCACTGTCTAC -ACGGAAACACCAAGCACTACGTAC -ACGGAAACACCAAGCACTAGTGAC -ACGGAAACACCAAGCACTCTGTAG -ACGGAAACACCAAGCACTCCTAAG -ACGGAAACACCAAGCACTGTTCAG -ACGGAAACACCAAGCACTGCATAG -ACGGAAACACCAAGCACTGACAAG -ACGGAAACACCAAGCACTAAGCAG -ACGGAAACACCAAGCACTCGTCAA -ACGGAAACACCAAGCACTGCTGAA -ACGGAAACACCAAGCACTAGTACG -ACGGAAACACCAAGCACTATCCGA -ACGGAAACACCAAGCACTATGGGA -ACGGAAACACCAAGCACTGTGCAA -ACGGAAACACCAAGCACTGAGGAA -ACGGAAACACCAAGCACTCAGGTA -ACGGAAACACCAAGCACTGACTCT -ACGGAAACACCAAGCACTAGTCCT -ACGGAAACACCAAGCACTTAAGCC -ACGGAAACACCAAGCACTATAGCC -ACGGAAACACCAAGCACTTAACCG -ACGGAAACACCAAGCACTATGCCA -ACGGAAACACCATGCAGAGGAAAC -ACGGAAACACCATGCAGAAACACC -ACGGAAACACCATGCAGAATCGAG -ACGGAAACACCATGCAGACTCCTT -ACGGAAACACCATGCAGACCTGTT -ACGGAAACACCATGCAGACGGTTT -ACGGAAACACCATGCAGAGTGGTT -ACGGAAACACCATGCAGAGCCTTT -ACGGAAACACCATGCAGAGGTCTT -ACGGAAACACCATGCAGAACGCTT -ACGGAAACACCATGCAGAAGCGTT -ACGGAAACACCATGCAGATTCGTC -ACGGAAACACCATGCAGATCTCTC -ACGGAAACACCATGCAGATGGATC -ACGGAAACACCATGCAGACACTTC -ACGGAAACACCATGCAGAGTACTC -ACGGAAACACCATGCAGAGATGTC -ACGGAAACACCATGCAGAACAGTC -ACGGAAACACCATGCAGATTGCTG -ACGGAAACACCATGCAGATCCATG -ACGGAAACACCATGCAGATGTGTG -ACGGAAACACCATGCAGACTAGTG -ACGGAAACACCATGCAGACATCTG -ACGGAAACACCATGCAGAGAGTTG -ACGGAAACACCATGCAGAAGACTG -ACGGAAACACCATGCAGATCGGTA -ACGGAAACACCATGCAGATGCCTA -ACGGAAACACCATGCAGACCACTA -ACGGAAACACCATGCAGAGGAGTA -ACGGAAACACCATGCAGATCGTCT -ACGGAAACACCATGCAGATGCACT -ACGGAAACACCATGCAGACTGACT -ACGGAAACACCATGCAGACAACCT -ACGGAAACACCATGCAGAGCTACT -ACGGAAACACCATGCAGAGGATCT -ACGGAAACACCATGCAGAAAGGCT -ACGGAAACACCATGCAGATCAACC -ACGGAAACACCATGCAGATGTTCC -ACGGAAACACCATGCAGAATTCCC -ACGGAAACACCATGCAGATTCTCG -ACGGAAACACCATGCAGATAGACG -ACGGAAACACCATGCAGAGTAACG -ACGGAAACACCATGCAGAACTTCG -ACGGAAACACCATGCAGATACGCA -ACGGAAACACCATGCAGACTTGCA -ACGGAAACACCATGCAGACGAACA -ACGGAAACACCATGCAGACAGTCA -ACGGAAACACCATGCAGAGATCCA -ACGGAAACACCATGCAGAACGACA -ACGGAAACACCATGCAGAAGCTCA -ACGGAAACACCATGCAGATCACGT -ACGGAAACACCATGCAGACGTAGT -ACGGAAACACCATGCAGAGTCAGT -ACGGAAACACCATGCAGAGAAGGT -ACGGAAACACCATGCAGAAACCGT -ACGGAAACACCATGCAGATTGTGC -ACGGAAACACCATGCAGACTAAGC -ACGGAAACACCATGCAGAACTAGC -ACGGAAACACCATGCAGAAGATGC -ACGGAAACACCATGCAGATGAAGG -ACGGAAACACCATGCAGACAATGG -ACGGAAACACCATGCAGAATGAGG -ACGGAAACACCATGCAGAAATGGG -ACGGAAACACCATGCAGATCCTGA -ACGGAAACACCATGCAGATAGCGA -ACGGAAACACCATGCAGACACAGA -ACGGAAACACCATGCAGAGCAAGA -ACGGAAACACCATGCAGAGGTTGA -ACGGAAACACCATGCAGATCCGAT -ACGGAAACACCATGCAGATGGCAT -ACGGAAACACCATGCAGACGAGAT -ACGGAAACACCATGCAGATACCAC -ACGGAAACACCATGCAGACAGAAC -ACGGAAACACCATGCAGAGTCTAC -ACGGAAACACCATGCAGAACGTAC -ACGGAAACACCATGCAGAAGTGAC -ACGGAAACACCATGCAGACTGTAG -ACGGAAACACCATGCAGACCTAAG -ACGGAAACACCATGCAGAGTTCAG -ACGGAAACACCATGCAGAGCATAG -ACGGAAACACCATGCAGAGACAAG -ACGGAAACACCATGCAGAAAGCAG -ACGGAAACACCATGCAGACGTCAA -ACGGAAACACCATGCAGAGCTGAA -ACGGAAACACCATGCAGAAGTACG -ACGGAAACACCATGCAGAATCCGA -ACGGAAACACCATGCAGAATGGGA -ACGGAAACACCATGCAGAGTGCAA -ACGGAAACACCATGCAGAGAGGAA -ACGGAAACACCATGCAGACAGGTA -ACGGAAACACCATGCAGAGACTCT -ACGGAAACACCATGCAGAAGTCCT -ACGGAAACACCATGCAGATAAGCC -ACGGAAACACCATGCAGAATAGCC -ACGGAAACACCATGCAGATAACCG -ACGGAAACACCATGCAGAATGCCA -ACGGAAACACCAAGGTGAGGAAAC -ACGGAAACACCAAGGTGAAACACC -ACGGAAACACCAAGGTGAATCGAG -ACGGAAACACCAAGGTGACTCCTT -ACGGAAACACCAAGGTGACCTGTT -ACGGAAACACCAAGGTGACGGTTT -ACGGAAACACCAAGGTGAGTGGTT -ACGGAAACACCAAGGTGAGCCTTT -ACGGAAACACCAAGGTGAGGTCTT -ACGGAAACACCAAGGTGAACGCTT -ACGGAAACACCAAGGTGAAGCGTT -ACGGAAACACCAAGGTGATTCGTC -ACGGAAACACCAAGGTGATCTCTC -ACGGAAACACCAAGGTGATGGATC -ACGGAAACACCAAGGTGACACTTC -ACGGAAACACCAAGGTGAGTACTC -ACGGAAACACCAAGGTGAGATGTC -ACGGAAACACCAAGGTGAACAGTC -ACGGAAACACCAAGGTGATTGCTG -ACGGAAACACCAAGGTGATCCATG -ACGGAAACACCAAGGTGATGTGTG -ACGGAAACACCAAGGTGACTAGTG -ACGGAAACACCAAGGTGACATCTG -ACGGAAACACCAAGGTGAGAGTTG -ACGGAAACACCAAGGTGAAGACTG -ACGGAAACACCAAGGTGATCGGTA -ACGGAAACACCAAGGTGATGCCTA -ACGGAAACACCAAGGTGACCACTA -ACGGAAACACCAAGGTGAGGAGTA -ACGGAAACACCAAGGTGATCGTCT -ACGGAAACACCAAGGTGATGCACT -ACGGAAACACCAAGGTGACTGACT -ACGGAAACACCAAGGTGACAACCT -ACGGAAACACCAAGGTGAGCTACT -ACGGAAACACCAAGGTGAGGATCT -ACGGAAACACCAAGGTGAAAGGCT -ACGGAAACACCAAGGTGATCAACC -ACGGAAACACCAAGGTGATGTTCC -ACGGAAACACCAAGGTGAATTCCC -ACGGAAACACCAAGGTGATTCTCG -ACGGAAACACCAAGGTGATAGACG -ACGGAAACACCAAGGTGAGTAACG -ACGGAAACACCAAGGTGAACTTCG -ACGGAAACACCAAGGTGATACGCA -ACGGAAACACCAAGGTGACTTGCA -ACGGAAACACCAAGGTGACGAACA -ACGGAAACACCAAGGTGACAGTCA -ACGGAAACACCAAGGTGAGATCCA -ACGGAAACACCAAGGTGAACGACA -ACGGAAACACCAAGGTGAAGCTCA -ACGGAAACACCAAGGTGATCACGT -ACGGAAACACCAAGGTGACGTAGT -ACGGAAACACCAAGGTGAGTCAGT -ACGGAAACACCAAGGTGAGAAGGT -ACGGAAACACCAAGGTGAAACCGT -ACGGAAACACCAAGGTGATTGTGC -ACGGAAACACCAAGGTGACTAAGC -ACGGAAACACCAAGGTGAACTAGC -ACGGAAACACCAAGGTGAAGATGC -ACGGAAACACCAAGGTGATGAAGG -ACGGAAACACCAAGGTGACAATGG -ACGGAAACACCAAGGTGAATGAGG -ACGGAAACACCAAGGTGAAATGGG -ACGGAAACACCAAGGTGATCCTGA -ACGGAAACACCAAGGTGATAGCGA -ACGGAAACACCAAGGTGACACAGA -ACGGAAACACCAAGGTGAGCAAGA -ACGGAAACACCAAGGTGAGGTTGA -ACGGAAACACCAAGGTGATCCGAT -ACGGAAACACCAAGGTGATGGCAT -ACGGAAACACCAAGGTGACGAGAT -ACGGAAACACCAAGGTGATACCAC -ACGGAAACACCAAGGTGACAGAAC -ACGGAAACACCAAGGTGAGTCTAC -ACGGAAACACCAAGGTGAACGTAC -ACGGAAACACCAAGGTGAAGTGAC -ACGGAAACACCAAGGTGACTGTAG -ACGGAAACACCAAGGTGACCTAAG -ACGGAAACACCAAGGTGAGTTCAG -ACGGAAACACCAAGGTGAGCATAG -ACGGAAACACCAAGGTGAGACAAG -ACGGAAACACCAAGGTGAAAGCAG -ACGGAAACACCAAGGTGACGTCAA -ACGGAAACACCAAGGTGAGCTGAA -ACGGAAACACCAAGGTGAAGTACG -ACGGAAACACCAAGGTGAATCCGA -ACGGAAACACCAAGGTGAATGGGA -ACGGAAACACCAAGGTGAGTGCAA -ACGGAAACACCAAGGTGAGAGGAA -ACGGAAACACCAAGGTGACAGGTA -ACGGAAACACCAAGGTGAGACTCT -ACGGAAACACCAAGGTGAAGTCCT -ACGGAAACACCAAGGTGATAAGCC -ACGGAAACACCAAGGTGAATAGCC -ACGGAAACACCAAGGTGATAACCG -ACGGAAACACCAAGGTGAATGCCA -ACGGAAACACCATGGCAAGGAAAC -ACGGAAACACCATGGCAAAACACC -ACGGAAACACCATGGCAAATCGAG -ACGGAAACACCATGGCAACTCCTT -ACGGAAACACCATGGCAACCTGTT -ACGGAAACACCATGGCAACGGTTT -ACGGAAACACCATGGCAAGTGGTT -ACGGAAACACCATGGCAAGCCTTT -ACGGAAACACCATGGCAAGGTCTT -ACGGAAACACCATGGCAAACGCTT -ACGGAAACACCATGGCAAAGCGTT -ACGGAAACACCATGGCAATTCGTC -ACGGAAACACCATGGCAATCTCTC -ACGGAAACACCATGGCAATGGATC -ACGGAAACACCATGGCAACACTTC -ACGGAAACACCATGGCAAGTACTC -ACGGAAACACCATGGCAAGATGTC -ACGGAAACACCATGGCAAACAGTC -ACGGAAACACCATGGCAATTGCTG -ACGGAAACACCATGGCAATCCATG -ACGGAAACACCATGGCAATGTGTG -ACGGAAACACCATGGCAACTAGTG -ACGGAAACACCATGGCAACATCTG -ACGGAAACACCATGGCAAGAGTTG -ACGGAAACACCATGGCAAAGACTG -ACGGAAACACCATGGCAATCGGTA -ACGGAAACACCATGGCAATGCCTA -ACGGAAACACCATGGCAACCACTA -ACGGAAACACCATGGCAAGGAGTA -ACGGAAACACCATGGCAATCGTCT -ACGGAAACACCATGGCAATGCACT -ACGGAAACACCATGGCAACTGACT -ACGGAAACACCATGGCAACAACCT -ACGGAAACACCATGGCAAGCTACT -ACGGAAACACCATGGCAAGGATCT -ACGGAAACACCATGGCAAAAGGCT -ACGGAAACACCATGGCAATCAACC -ACGGAAACACCATGGCAATGTTCC -ACGGAAACACCATGGCAAATTCCC -ACGGAAACACCATGGCAATTCTCG -ACGGAAACACCATGGCAATAGACG -ACGGAAACACCATGGCAAGTAACG -ACGGAAACACCATGGCAAACTTCG -ACGGAAACACCATGGCAATACGCA -ACGGAAACACCATGGCAACTTGCA -ACGGAAACACCATGGCAACGAACA -ACGGAAACACCATGGCAACAGTCA -ACGGAAACACCATGGCAAGATCCA -ACGGAAACACCATGGCAAACGACA -ACGGAAACACCATGGCAAAGCTCA -ACGGAAACACCATGGCAATCACGT -ACGGAAACACCATGGCAACGTAGT -ACGGAAACACCATGGCAAGTCAGT -ACGGAAACACCATGGCAAGAAGGT -ACGGAAACACCATGGCAAAACCGT -ACGGAAACACCATGGCAATTGTGC -ACGGAAACACCATGGCAACTAAGC -ACGGAAACACCATGGCAAACTAGC -ACGGAAACACCATGGCAAAGATGC -ACGGAAACACCATGGCAATGAAGG -ACGGAAACACCATGGCAACAATGG -ACGGAAACACCATGGCAAATGAGG -ACGGAAACACCATGGCAAAATGGG -ACGGAAACACCATGGCAATCCTGA -ACGGAAACACCATGGCAATAGCGA -ACGGAAACACCATGGCAACACAGA -ACGGAAACACCATGGCAAGCAAGA -ACGGAAACACCATGGCAAGGTTGA -ACGGAAACACCATGGCAATCCGAT -ACGGAAACACCATGGCAATGGCAT -ACGGAAACACCATGGCAACGAGAT -ACGGAAACACCATGGCAATACCAC -ACGGAAACACCATGGCAACAGAAC -ACGGAAACACCATGGCAAGTCTAC -ACGGAAACACCATGGCAAACGTAC -ACGGAAACACCATGGCAAAGTGAC -ACGGAAACACCATGGCAACTGTAG -ACGGAAACACCATGGCAACCTAAG -ACGGAAACACCATGGCAAGTTCAG -ACGGAAACACCATGGCAAGCATAG -ACGGAAACACCATGGCAAGACAAG -ACGGAAACACCATGGCAAAAGCAG -ACGGAAACACCATGGCAACGTCAA -ACGGAAACACCATGGCAAGCTGAA -ACGGAAACACCATGGCAAAGTACG -ACGGAAACACCATGGCAAATCCGA -ACGGAAACACCATGGCAAATGGGA -ACGGAAACACCATGGCAAGTGCAA -ACGGAAACACCATGGCAAGAGGAA -ACGGAAACACCATGGCAACAGGTA -ACGGAAACACCATGGCAAGACTCT -ACGGAAACACCATGGCAAAGTCCT -ACGGAAACACCATGGCAATAAGCC -ACGGAAACACCATGGCAAATAGCC -ACGGAAACACCATGGCAATAACCG -ACGGAAACACCATGGCAAATGCCA -ACGGAAACACCAAGGATGGGAAAC -ACGGAAACACCAAGGATGAACACC -ACGGAAACACCAAGGATGATCGAG -ACGGAAACACCAAGGATGCTCCTT -ACGGAAACACCAAGGATGCCTGTT -ACGGAAACACCAAGGATGCGGTTT -ACGGAAACACCAAGGATGGTGGTT -ACGGAAACACCAAGGATGGCCTTT -ACGGAAACACCAAGGATGGGTCTT -ACGGAAACACCAAGGATGACGCTT -ACGGAAACACCAAGGATGAGCGTT -ACGGAAACACCAAGGATGTTCGTC -ACGGAAACACCAAGGATGTCTCTC -ACGGAAACACCAAGGATGTGGATC -ACGGAAACACCAAGGATGCACTTC -ACGGAAACACCAAGGATGGTACTC -ACGGAAACACCAAGGATGGATGTC -ACGGAAACACCAAGGATGACAGTC -ACGGAAACACCAAGGATGTTGCTG -ACGGAAACACCAAGGATGTCCATG -ACGGAAACACCAAGGATGTGTGTG -ACGGAAACACCAAGGATGCTAGTG -ACGGAAACACCAAGGATGCATCTG -ACGGAAACACCAAGGATGGAGTTG -ACGGAAACACCAAGGATGAGACTG -ACGGAAACACCAAGGATGTCGGTA -ACGGAAACACCAAGGATGTGCCTA -ACGGAAACACCAAGGATGCCACTA -ACGGAAACACCAAGGATGGGAGTA -ACGGAAACACCAAGGATGTCGTCT -ACGGAAACACCAAGGATGTGCACT -ACGGAAACACCAAGGATGCTGACT -ACGGAAACACCAAGGATGCAACCT -ACGGAAACACCAAGGATGGCTACT -ACGGAAACACCAAGGATGGGATCT -ACGGAAACACCAAGGATGAAGGCT -ACGGAAACACCAAGGATGTCAACC -ACGGAAACACCAAGGATGTGTTCC -ACGGAAACACCAAGGATGATTCCC -ACGGAAACACCAAGGATGTTCTCG -ACGGAAACACCAAGGATGTAGACG -ACGGAAACACCAAGGATGGTAACG -ACGGAAACACCAAGGATGACTTCG -ACGGAAACACCAAGGATGTACGCA -ACGGAAACACCAAGGATGCTTGCA -ACGGAAACACCAAGGATGCGAACA -ACGGAAACACCAAGGATGCAGTCA -ACGGAAACACCAAGGATGGATCCA -ACGGAAACACCAAGGATGACGACA -ACGGAAACACCAAGGATGAGCTCA -ACGGAAACACCAAGGATGTCACGT -ACGGAAACACCAAGGATGCGTAGT -ACGGAAACACCAAGGATGGTCAGT -ACGGAAACACCAAGGATGGAAGGT -ACGGAAACACCAAGGATGAACCGT -ACGGAAACACCAAGGATGTTGTGC -ACGGAAACACCAAGGATGCTAAGC -ACGGAAACACCAAGGATGACTAGC -ACGGAAACACCAAGGATGAGATGC -ACGGAAACACCAAGGATGTGAAGG -ACGGAAACACCAAGGATGCAATGG -ACGGAAACACCAAGGATGATGAGG -ACGGAAACACCAAGGATGAATGGG -ACGGAAACACCAAGGATGTCCTGA -ACGGAAACACCAAGGATGTAGCGA -ACGGAAACACCAAGGATGCACAGA -ACGGAAACACCAAGGATGGCAAGA -ACGGAAACACCAAGGATGGGTTGA -ACGGAAACACCAAGGATGTCCGAT -ACGGAAACACCAAGGATGTGGCAT -ACGGAAACACCAAGGATGCGAGAT -ACGGAAACACCAAGGATGTACCAC -ACGGAAACACCAAGGATGCAGAAC -ACGGAAACACCAAGGATGGTCTAC -ACGGAAACACCAAGGATGACGTAC -ACGGAAACACCAAGGATGAGTGAC -ACGGAAACACCAAGGATGCTGTAG -ACGGAAACACCAAGGATGCCTAAG -ACGGAAACACCAAGGATGGTTCAG -ACGGAAACACCAAGGATGGCATAG -ACGGAAACACCAAGGATGGACAAG -ACGGAAACACCAAGGATGAAGCAG -ACGGAAACACCAAGGATGCGTCAA -ACGGAAACACCAAGGATGGCTGAA -ACGGAAACACCAAGGATGAGTACG -ACGGAAACACCAAGGATGATCCGA -ACGGAAACACCAAGGATGATGGGA -ACGGAAACACCAAGGATGGTGCAA -ACGGAAACACCAAGGATGGAGGAA -ACGGAAACACCAAGGATGCAGGTA -ACGGAAACACCAAGGATGGACTCT -ACGGAAACACCAAGGATGAGTCCT -ACGGAAACACCAAGGATGTAAGCC -ACGGAAACACCAAGGATGATAGCC -ACGGAAACACCAAGGATGTAACCG -ACGGAAACACCAAGGATGATGCCA -ACGGAAACACCAGGGAATGGAAAC -ACGGAAACACCAGGGAATAACACC -ACGGAAACACCAGGGAATATCGAG -ACGGAAACACCAGGGAATCTCCTT -ACGGAAACACCAGGGAATCCTGTT -ACGGAAACACCAGGGAATCGGTTT -ACGGAAACACCAGGGAATGTGGTT -ACGGAAACACCAGGGAATGCCTTT -ACGGAAACACCAGGGAATGGTCTT -ACGGAAACACCAGGGAATACGCTT -ACGGAAACACCAGGGAATAGCGTT -ACGGAAACACCAGGGAATTTCGTC -ACGGAAACACCAGGGAATTCTCTC -ACGGAAACACCAGGGAATTGGATC -ACGGAAACACCAGGGAATCACTTC -ACGGAAACACCAGGGAATGTACTC -ACGGAAACACCAGGGAATGATGTC -ACGGAAACACCAGGGAATACAGTC -ACGGAAACACCAGGGAATTTGCTG -ACGGAAACACCAGGGAATTCCATG -ACGGAAACACCAGGGAATTGTGTG -ACGGAAACACCAGGGAATCTAGTG -ACGGAAACACCAGGGAATCATCTG -ACGGAAACACCAGGGAATGAGTTG -ACGGAAACACCAGGGAATAGACTG -ACGGAAACACCAGGGAATTCGGTA -ACGGAAACACCAGGGAATTGCCTA -ACGGAAACACCAGGGAATCCACTA -ACGGAAACACCAGGGAATGGAGTA -ACGGAAACACCAGGGAATTCGTCT -ACGGAAACACCAGGGAATTGCACT -ACGGAAACACCAGGGAATCTGACT -ACGGAAACACCAGGGAATCAACCT -ACGGAAACACCAGGGAATGCTACT -ACGGAAACACCAGGGAATGGATCT -ACGGAAACACCAGGGAATAAGGCT -ACGGAAACACCAGGGAATTCAACC -ACGGAAACACCAGGGAATTGTTCC -ACGGAAACACCAGGGAATATTCCC -ACGGAAACACCAGGGAATTTCTCG -ACGGAAACACCAGGGAATTAGACG -ACGGAAACACCAGGGAATGTAACG -ACGGAAACACCAGGGAATACTTCG -ACGGAAACACCAGGGAATTACGCA -ACGGAAACACCAGGGAATCTTGCA -ACGGAAACACCAGGGAATCGAACA -ACGGAAACACCAGGGAATCAGTCA -ACGGAAACACCAGGGAATGATCCA -ACGGAAACACCAGGGAATACGACA -ACGGAAACACCAGGGAATAGCTCA -ACGGAAACACCAGGGAATTCACGT -ACGGAAACACCAGGGAATCGTAGT -ACGGAAACACCAGGGAATGTCAGT -ACGGAAACACCAGGGAATGAAGGT -ACGGAAACACCAGGGAATAACCGT -ACGGAAACACCAGGGAATTTGTGC -ACGGAAACACCAGGGAATCTAAGC -ACGGAAACACCAGGGAATACTAGC -ACGGAAACACCAGGGAATAGATGC -ACGGAAACACCAGGGAATTGAAGG -ACGGAAACACCAGGGAATCAATGG -ACGGAAACACCAGGGAATATGAGG -ACGGAAACACCAGGGAATAATGGG -ACGGAAACACCAGGGAATTCCTGA -ACGGAAACACCAGGGAATTAGCGA -ACGGAAACACCAGGGAATCACAGA -ACGGAAACACCAGGGAATGCAAGA -ACGGAAACACCAGGGAATGGTTGA -ACGGAAACACCAGGGAATTCCGAT -ACGGAAACACCAGGGAATTGGCAT -ACGGAAACACCAGGGAATCGAGAT -ACGGAAACACCAGGGAATTACCAC -ACGGAAACACCAGGGAATCAGAAC -ACGGAAACACCAGGGAATGTCTAC -ACGGAAACACCAGGGAATACGTAC -ACGGAAACACCAGGGAATAGTGAC -ACGGAAACACCAGGGAATCTGTAG -ACGGAAACACCAGGGAATCCTAAG -ACGGAAACACCAGGGAATGTTCAG -ACGGAAACACCAGGGAATGCATAG -ACGGAAACACCAGGGAATGACAAG -ACGGAAACACCAGGGAATAAGCAG -ACGGAAACACCAGGGAATCGTCAA -ACGGAAACACCAGGGAATGCTGAA -ACGGAAACACCAGGGAATAGTACG -ACGGAAACACCAGGGAATATCCGA -ACGGAAACACCAGGGAATATGGGA -ACGGAAACACCAGGGAATGTGCAA -ACGGAAACACCAGGGAATGAGGAA -ACGGAAACACCAGGGAATCAGGTA -ACGGAAACACCAGGGAATGACTCT -ACGGAAACACCAGGGAATAGTCCT -ACGGAAACACCAGGGAATTAAGCC -ACGGAAACACCAGGGAATATAGCC -ACGGAAACACCAGGGAATTAACCG -ACGGAAACACCAGGGAATATGCCA -ACGGAAACACCATGATCCGGAAAC -ACGGAAACACCATGATCCAACACC -ACGGAAACACCATGATCCATCGAG -ACGGAAACACCATGATCCCTCCTT -ACGGAAACACCATGATCCCCTGTT -ACGGAAACACCATGATCCCGGTTT -ACGGAAACACCATGATCCGTGGTT -ACGGAAACACCATGATCCGCCTTT -ACGGAAACACCATGATCCGGTCTT -ACGGAAACACCATGATCCACGCTT -ACGGAAACACCATGATCCAGCGTT -ACGGAAACACCATGATCCTTCGTC -ACGGAAACACCATGATCCTCTCTC -ACGGAAACACCATGATCCTGGATC -ACGGAAACACCATGATCCCACTTC -ACGGAAACACCATGATCCGTACTC -ACGGAAACACCATGATCCGATGTC -ACGGAAACACCATGATCCACAGTC -ACGGAAACACCATGATCCTTGCTG -ACGGAAACACCATGATCCTCCATG -ACGGAAACACCATGATCCTGTGTG -ACGGAAACACCATGATCCCTAGTG -ACGGAAACACCATGATCCCATCTG -ACGGAAACACCATGATCCGAGTTG -ACGGAAACACCATGATCCAGACTG -ACGGAAACACCATGATCCTCGGTA -ACGGAAACACCATGATCCTGCCTA -ACGGAAACACCATGATCCCCACTA -ACGGAAACACCATGATCCGGAGTA -ACGGAAACACCATGATCCTCGTCT -ACGGAAACACCATGATCCTGCACT -ACGGAAACACCATGATCCCTGACT -ACGGAAACACCATGATCCCAACCT -ACGGAAACACCATGATCCGCTACT -ACGGAAACACCATGATCCGGATCT -ACGGAAACACCATGATCCAAGGCT -ACGGAAACACCATGATCCTCAACC -ACGGAAACACCATGATCCTGTTCC -ACGGAAACACCATGATCCATTCCC -ACGGAAACACCATGATCCTTCTCG -ACGGAAACACCATGATCCTAGACG -ACGGAAACACCATGATCCGTAACG -ACGGAAACACCATGATCCACTTCG -ACGGAAACACCATGATCCTACGCA -ACGGAAACACCATGATCCCTTGCA -ACGGAAACACCATGATCCCGAACA -ACGGAAACACCATGATCCCAGTCA -ACGGAAACACCATGATCCGATCCA -ACGGAAACACCATGATCCACGACA -ACGGAAACACCATGATCCAGCTCA -ACGGAAACACCATGATCCTCACGT -ACGGAAACACCATGATCCCGTAGT -ACGGAAACACCATGATCCGTCAGT -ACGGAAACACCATGATCCGAAGGT -ACGGAAACACCATGATCCAACCGT -ACGGAAACACCATGATCCTTGTGC -ACGGAAACACCATGATCCCTAAGC -ACGGAAACACCATGATCCACTAGC -ACGGAAACACCATGATCCAGATGC -ACGGAAACACCATGATCCTGAAGG -ACGGAAACACCATGATCCCAATGG -ACGGAAACACCATGATCCATGAGG -ACGGAAACACCATGATCCAATGGG -ACGGAAACACCATGATCCTCCTGA -ACGGAAACACCATGATCCTAGCGA -ACGGAAACACCATGATCCCACAGA -ACGGAAACACCATGATCCGCAAGA -ACGGAAACACCATGATCCGGTTGA -ACGGAAACACCATGATCCTCCGAT -ACGGAAACACCATGATCCTGGCAT -ACGGAAACACCATGATCCCGAGAT -ACGGAAACACCATGATCCTACCAC -ACGGAAACACCATGATCCCAGAAC -ACGGAAACACCATGATCCGTCTAC -ACGGAAACACCATGATCCACGTAC -ACGGAAACACCATGATCCAGTGAC -ACGGAAACACCATGATCCCTGTAG -ACGGAAACACCATGATCCCCTAAG -ACGGAAACACCATGATCCGTTCAG -ACGGAAACACCATGATCCGCATAG -ACGGAAACACCATGATCCGACAAG -ACGGAAACACCATGATCCAAGCAG -ACGGAAACACCATGATCCCGTCAA -ACGGAAACACCATGATCCGCTGAA -ACGGAAACACCATGATCCAGTACG -ACGGAAACACCATGATCCATCCGA -ACGGAAACACCATGATCCATGGGA -ACGGAAACACCATGATCCGTGCAA -ACGGAAACACCATGATCCGAGGAA -ACGGAAACACCATGATCCCAGGTA -ACGGAAACACCATGATCCGACTCT -ACGGAAACACCATGATCCAGTCCT -ACGGAAACACCATGATCCTAAGCC -ACGGAAACACCATGATCCATAGCC -ACGGAAACACCATGATCCTAACCG -ACGGAAACACCATGATCCATGCCA -ACGGAAACACCACGATAGGGAAAC -ACGGAAACACCACGATAGAACACC -ACGGAAACACCACGATAGATCGAG -ACGGAAACACCACGATAGCTCCTT -ACGGAAACACCACGATAGCCTGTT -ACGGAAACACCACGATAGCGGTTT -ACGGAAACACCACGATAGGTGGTT -ACGGAAACACCACGATAGGCCTTT -ACGGAAACACCACGATAGGGTCTT -ACGGAAACACCACGATAGACGCTT -ACGGAAACACCACGATAGAGCGTT -ACGGAAACACCACGATAGTTCGTC -ACGGAAACACCACGATAGTCTCTC -ACGGAAACACCACGATAGTGGATC -ACGGAAACACCACGATAGCACTTC -ACGGAAACACCACGATAGGTACTC -ACGGAAACACCACGATAGGATGTC -ACGGAAACACCACGATAGACAGTC -ACGGAAACACCACGATAGTTGCTG -ACGGAAACACCACGATAGTCCATG -ACGGAAACACCACGATAGTGTGTG -ACGGAAACACCACGATAGCTAGTG -ACGGAAACACCACGATAGCATCTG -ACGGAAACACCACGATAGGAGTTG -ACGGAAACACCACGATAGAGACTG -ACGGAAACACCACGATAGTCGGTA -ACGGAAACACCACGATAGTGCCTA -ACGGAAACACCACGATAGCCACTA -ACGGAAACACCACGATAGGGAGTA -ACGGAAACACCACGATAGTCGTCT -ACGGAAACACCACGATAGTGCACT -ACGGAAACACCACGATAGCTGACT -ACGGAAACACCACGATAGCAACCT -ACGGAAACACCACGATAGGCTACT -ACGGAAACACCACGATAGGGATCT -ACGGAAACACCACGATAGAAGGCT -ACGGAAACACCACGATAGTCAACC -ACGGAAACACCACGATAGTGTTCC -ACGGAAACACCACGATAGATTCCC -ACGGAAACACCACGATAGTTCTCG -ACGGAAACACCACGATAGTAGACG -ACGGAAACACCACGATAGGTAACG -ACGGAAACACCACGATAGACTTCG -ACGGAAACACCACGATAGTACGCA -ACGGAAACACCACGATAGCTTGCA -ACGGAAACACCACGATAGCGAACA -ACGGAAACACCACGATAGCAGTCA -ACGGAAACACCACGATAGGATCCA -ACGGAAACACCACGATAGACGACA -ACGGAAACACCACGATAGAGCTCA -ACGGAAACACCACGATAGTCACGT -ACGGAAACACCACGATAGCGTAGT -ACGGAAACACCACGATAGGTCAGT -ACGGAAACACCACGATAGGAAGGT -ACGGAAACACCACGATAGAACCGT -ACGGAAACACCACGATAGTTGTGC -ACGGAAACACCACGATAGCTAAGC -ACGGAAACACCACGATAGACTAGC -ACGGAAACACCACGATAGAGATGC -ACGGAAACACCACGATAGTGAAGG -ACGGAAACACCACGATAGCAATGG -ACGGAAACACCACGATAGATGAGG -ACGGAAACACCACGATAGAATGGG -ACGGAAACACCACGATAGTCCTGA -ACGGAAACACCACGATAGTAGCGA -ACGGAAACACCACGATAGCACAGA -ACGGAAACACCACGATAGGCAAGA -ACGGAAACACCACGATAGGGTTGA -ACGGAAACACCACGATAGTCCGAT -ACGGAAACACCACGATAGTGGCAT -ACGGAAACACCACGATAGCGAGAT -ACGGAAACACCACGATAGTACCAC -ACGGAAACACCACGATAGCAGAAC -ACGGAAACACCACGATAGGTCTAC -ACGGAAACACCACGATAGACGTAC -ACGGAAACACCACGATAGAGTGAC -ACGGAAACACCACGATAGCTGTAG -ACGGAAACACCACGATAGCCTAAG -ACGGAAACACCACGATAGGTTCAG -ACGGAAACACCACGATAGGCATAG -ACGGAAACACCACGATAGGACAAG -ACGGAAACACCACGATAGAAGCAG -ACGGAAACACCACGATAGCGTCAA -ACGGAAACACCACGATAGGCTGAA -ACGGAAACACCACGATAGAGTACG -ACGGAAACACCACGATAGATCCGA -ACGGAAACACCACGATAGATGGGA -ACGGAAACACCACGATAGGTGCAA -ACGGAAACACCACGATAGGAGGAA -ACGGAAACACCACGATAGCAGGTA -ACGGAAACACCACGATAGGACTCT -ACGGAAACACCACGATAGAGTCCT -ACGGAAACACCACGATAGTAAGCC -ACGGAAACACCACGATAGATAGCC -ACGGAAACACCACGATAGTAACCG -ACGGAAACACCACGATAGATGCCA -ACGGAAACACCAAGACACGGAAAC -ACGGAAACACCAAGACACAACACC -ACGGAAACACCAAGACACATCGAG -ACGGAAACACCAAGACACCTCCTT -ACGGAAACACCAAGACACCCTGTT -ACGGAAACACCAAGACACCGGTTT -ACGGAAACACCAAGACACGTGGTT -ACGGAAACACCAAGACACGCCTTT -ACGGAAACACCAAGACACGGTCTT -ACGGAAACACCAAGACACACGCTT -ACGGAAACACCAAGACACAGCGTT -ACGGAAACACCAAGACACTTCGTC -ACGGAAACACCAAGACACTCTCTC -ACGGAAACACCAAGACACTGGATC -ACGGAAACACCAAGACACCACTTC -ACGGAAACACCAAGACACGTACTC -ACGGAAACACCAAGACACGATGTC -ACGGAAACACCAAGACACACAGTC -ACGGAAACACCAAGACACTTGCTG -ACGGAAACACCAAGACACTCCATG -ACGGAAACACCAAGACACTGTGTG -ACGGAAACACCAAGACACCTAGTG -ACGGAAACACCAAGACACCATCTG -ACGGAAACACCAAGACACGAGTTG -ACGGAAACACCAAGACACAGACTG -ACGGAAACACCAAGACACTCGGTA -ACGGAAACACCAAGACACTGCCTA -ACGGAAACACCAAGACACCCACTA -ACGGAAACACCAAGACACGGAGTA -ACGGAAACACCAAGACACTCGTCT -ACGGAAACACCAAGACACTGCACT -ACGGAAACACCAAGACACCTGACT -ACGGAAACACCAAGACACCAACCT -ACGGAAACACCAAGACACGCTACT -ACGGAAACACCAAGACACGGATCT -ACGGAAACACCAAGACACAAGGCT -ACGGAAACACCAAGACACTCAACC -ACGGAAACACCAAGACACTGTTCC -ACGGAAACACCAAGACACATTCCC -ACGGAAACACCAAGACACTTCTCG -ACGGAAACACCAAGACACTAGACG -ACGGAAACACCAAGACACGTAACG -ACGGAAACACCAAGACACACTTCG -ACGGAAACACCAAGACACTACGCA -ACGGAAACACCAAGACACCTTGCA -ACGGAAACACCAAGACACCGAACA -ACGGAAACACCAAGACACCAGTCA -ACGGAAACACCAAGACACGATCCA -ACGGAAACACCAAGACACACGACA -ACGGAAACACCAAGACACAGCTCA -ACGGAAACACCAAGACACTCACGT -ACGGAAACACCAAGACACCGTAGT -ACGGAAACACCAAGACACGTCAGT -ACGGAAACACCAAGACACGAAGGT -ACGGAAACACCAAGACACAACCGT -ACGGAAACACCAAGACACTTGTGC -ACGGAAACACCAAGACACCTAAGC -ACGGAAACACCAAGACACACTAGC -ACGGAAACACCAAGACACAGATGC -ACGGAAACACCAAGACACTGAAGG -ACGGAAACACCAAGACACCAATGG -ACGGAAACACCAAGACACATGAGG -ACGGAAACACCAAGACACAATGGG -ACGGAAACACCAAGACACTCCTGA -ACGGAAACACCAAGACACTAGCGA -ACGGAAACACCAAGACACCACAGA -ACGGAAACACCAAGACACGCAAGA -ACGGAAACACCAAGACACGGTTGA -ACGGAAACACCAAGACACTCCGAT -ACGGAAACACCAAGACACTGGCAT -ACGGAAACACCAAGACACCGAGAT -ACGGAAACACCAAGACACTACCAC -ACGGAAACACCAAGACACCAGAAC -ACGGAAACACCAAGACACGTCTAC -ACGGAAACACCAAGACACACGTAC -ACGGAAACACCAAGACACAGTGAC -ACGGAAACACCAAGACACCTGTAG -ACGGAAACACCAAGACACCCTAAG -ACGGAAACACCAAGACACGTTCAG -ACGGAAACACCAAGACACGCATAG -ACGGAAACACCAAGACACGACAAG -ACGGAAACACCAAGACACAAGCAG -ACGGAAACACCAAGACACCGTCAA -ACGGAAACACCAAGACACGCTGAA -ACGGAAACACCAAGACACAGTACG -ACGGAAACACCAAGACACATCCGA -ACGGAAACACCAAGACACATGGGA -ACGGAAACACCAAGACACGTGCAA -ACGGAAACACCAAGACACGAGGAA -ACGGAAACACCAAGACACCAGGTA -ACGGAAACACCAAGACACGACTCT -ACGGAAACACCAAGACACAGTCCT -ACGGAAACACCAAGACACTAAGCC -ACGGAAACACCAAGACACATAGCC -ACGGAAACACCAAGACACTAACCG -ACGGAAACACCAAGACACATGCCA -ACGGAAACACCAAGAGCAGGAAAC -ACGGAAACACCAAGAGCAAACACC -ACGGAAACACCAAGAGCAATCGAG -ACGGAAACACCAAGAGCACTCCTT -ACGGAAACACCAAGAGCACCTGTT -ACGGAAACACCAAGAGCACGGTTT -ACGGAAACACCAAGAGCAGTGGTT -ACGGAAACACCAAGAGCAGCCTTT -ACGGAAACACCAAGAGCAGGTCTT -ACGGAAACACCAAGAGCAACGCTT -ACGGAAACACCAAGAGCAAGCGTT -ACGGAAACACCAAGAGCATTCGTC -ACGGAAACACCAAGAGCATCTCTC -ACGGAAACACCAAGAGCATGGATC -ACGGAAACACCAAGAGCACACTTC -ACGGAAACACCAAGAGCAGTACTC -ACGGAAACACCAAGAGCAGATGTC -ACGGAAACACCAAGAGCAACAGTC -ACGGAAACACCAAGAGCATTGCTG -ACGGAAACACCAAGAGCATCCATG -ACGGAAACACCAAGAGCATGTGTG -ACGGAAACACCAAGAGCACTAGTG -ACGGAAACACCAAGAGCACATCTG -ACGGAAACACCAAGAGCAGAGTTG -ACGGAAACACCAAGAGCAAGACTG -ACGGAAACACCAAGAGCATCGGTA -ACGGAAACACCAAGAGCATGCCTA -ACGGAAACACCAAGAGCACCACTA -ACGGAAACACCAAGAGCAGGAGTA -ACGGAAACACCAAGAGCATCGTCT -ACGGAAACACCAAGAGCATGCACT -ACGGAAACACCAAGAGCACTGACT -ACGGAAACACCAAGAGCACAACCT -ACGGAAACACCAAGAGCAGCTACT -ACGGAAACACCAAGAGCAGGATCT -ACGGAAACACCAAGAGCAAAGGCT -ACGGAAACACCAAGAGCATCAACC -ACGGAAACACCAAGAGCATGTTCC -ACGGAAACACCAAGAGCAATTCCC -ACGGAAACACCAAGAGCATTCTCG -ACGGAAACACCAAGAGCATAGACG -ACGGAAACACCAAGAGCAGTAACG -ACGGAAACACCAAGAGCAACTTCG -ACGGAAACACCAAGAGCATACGCA -ACGGAAACACCAAGAGCACTTGCA -ACGGAAACACCAAGAGCACGAACA -ACGGAAACACCAAGAGCACAGTCA -ACGGAAACACCAAGAGCAGATCCA -ACGGAAACACCAAGAGCAACGACA -ACGGAAACACCAAGAGCAAGCTCA -ACGGAAACACCAAGAGCATCACGT -ACGGAAACACCAAGAGCACGTAGT -ACGGAAACACCAAGAGCAGTCAGT -ACGGAAACACCAAGAGCAGAAGGT -ACGGAAACACCAAGAGCAAACCGT -ACGGAAACACCAAGAGCATTGTGC -ACGGAAACACCAAGAGCACTAAGC -ACGGAAACACCAAGAGCAACTAGC -ACGGAAACACCAAGAGCAAGATGC -ACGGAAACACCAAGAGCATGAAGG -ACGGAAACACCAAGAGCACAATGG -ACGGAAACACCAAGAGCAATGAGG -ACGGAAACACCAAGAGCAAATGGG -ACGGAAACACCAAGAGCATCCTGA -ACGGAAACACCAAGAGCATAGCGA -ACGGAAACACCAAGAGCACACAGA -ACGGAAACACCAAGAGCAGCAAGA -ACGGAAACACCAAGAGCAGGTTGA -ACGGAAACACCAAGAGCATCCGAT -ACGGAAACACCAAGAGCATGGCAT -ACGGAAACACCAAGAGCACGAGAT -ACGGAAACACCAAGAGCATACCAC -ACGGAAACACCAAGAGCACAGAAC -ACGGAAACACCAAGAGCAGTCTAC -ACGGAAACACCAAGAGCAACGTAC -ACGGAAACACCAAGAGCAAGTGAC -ACGGAAACACCAAGAGCACTGTAG -ACGGAAACACCAAGAGCACCTAAG -ACGGAAACACCAAGAGCAGTTCAG -ACGGAAACACCAAGAGCAGCATAG -ACGGAAACACCAAGAGCAGACAAG -ACGGAAACACCAAGAGCAAAGCAG -ACGGAAACACCAAGAGCACGTCAA -ACGGAAACACCAAGAGCAGCTGAA -ACGGAAACACCAAGAGCAAGTACG -ACGGAAACACCAAGAGCAATCCGA -ACGGAAACACCAAGAGCAATGGGA -ACGGAAACACCAAGAGCAGTGCAA -ACGGAAACACCAAGAGCAGAGGAA -ACGGAAACACCAAGAGCACAGGTA -ACGGAAACACCAAGAGCAGACTCT -ACGGAAACACCAAGAGCAAGTCCT -ACGGAAACACCAAGAGCATAAGCC -ACGGAAACACCAAGAGCAATAGCC -ACGGAAACACCAAGAGCATAACCG -ACGGAAACACCAAGAGCAATGCCA -ACGGAAACACCATGAGGTGGAAAC -ACGGAAACACCATGAGGTAACACC -ACGGAAACACCATGAGGTATCGAG -ACGGAAACACCATGAGGTCTCCTT -ACGGAAACACCATGAGGTCCTGTT -ACGGAAACACCATGAGGTCGGTTT -ACGGAAACACCATGAGGTGTGGTT -ACGGAAACACCATGAGGTGCCTTT -ACGGAAACACCATGAGGTGGTCTT -ACGGAAACACCATGAGGTACGCTT -ACGGAAACACCATGAGGTAGCGTT -ACGGAAACACCATGAGGTTTCGTC -ACGGAAACACCATGAGGTTCTCTC -ACGGAAACACCATGAGGTTGGATC -ACGGAAACACCATGAGGTCACTTC -ACGGAAACACCATGAGGTGTACTC -ACGGAAACACCATGAGGTGATGTC -ACGGAAACACCATGAGGTACAGTC -ACGGAAACACCATGAGGTTTGCTG -ACGGAAACACCATGAGGTTCCATG -ACGGAAACACCATGAGGTTGTGTG -ACGGAAACACCATGAGGTCTAGTG -ACGGAAACACCATGAGGTCATCTG -ACGGAAACACCATGAGGTGAGTTG -ACGGAAACACCATGAGGTAGACTG -ACGGAAACACCATGAGGTTCGGTA -ACGGAAACACCATGAGGTTGCCTA -ACGGAAACACCATGAGGTCCACTA -ACGGAAACACCATGAGGTGGAGTA -ACGGAAACACCATGAGGTTCGTCT -ACGGAAACACCATGAGGTTGCACT -ACGGAAACACCATGAGGTCTGACT -ACGGAAACACCATGAGGTCAACCT -ACGGAAACACCATGAGGTGCTACT -ACGGAAACACCATGAGGTGGATCT -ACGGAAACACCATGAGGTAAGGCT -ACGGAAACACCATGAGGTTCAACC -ACGGAAACACCATGAGGTTGTTCC -ACGGAAACACCATGAGGTATTCCC -ACGGAAACACCATGAGGTTTCTCG -ACGGAAACACCATGAGGTTAGACG -ACGGAAACACCATGAGGTGTAACG -ACGGAAACACCATGAGGTACTTCG -ACGGAAACACCATGAGGTTACGCA -ACGGAAACACCATGAGGTCTTGCA -ACGGAAACACCATGAGGTCGAACA -ACGGAAACACCATGAGGTCAGTCA -ACGGAAACACCATGAGGTGATCCA -ACGGAAACACCATGAGGTACGACA -ACGGAAACACCATGAGGTAGCTCA -ACGGAAACACCATGAGGTTCACGT -ACGGAAACACCATGAGGTCGTAGT -ACGGAAACACCATGAGGTGTCAGT -ACGGAAACACCATGAGGTGAAGGT -ACGGAAACACCATGAGGTAACCGT -ACGGAAACACCATGAGGTTTGTGC -ACGGAAACACCATGAGGTCTAAGC -ACGGAAACACCATGAGGTACTAGC -ACGGAAACACCATGAGGTAGATGC -ACGGAAACACCATGAGGTTGAAGG -ACGGAAACACCATGAGGTCAATGG -ACGGAAACACCATGAGGTATGAGG -ACGGAAACACCATGAGGTAATGGG -ACGGAAACACCATGAGGTTCCTGA -ACGGAAACACCATGAGGTTAGCGA -ACGGAAACACCATGAGGTCACAGA -ACGGAAACACCATGAGGTGCAAGA -ACGGAAACACCATGAGGTGGTTGA -ACGGAAACACCATGAGGTTCCGAT -ACGGAAACACCATGAGGTTGGCAT -ACGGAAACACCATGAGGTCGAGAT -ACGGAAACACCATGAGGTTACCAC -ACGGAAACACCATGAGGTCAGAAC -ACGGAAACACCATGAGGTGTCTAC -ACGGAAACACCATGAGGTACGTAC -ACGGAAACACCATGAGGTAGTGAC -ACGGAAACACCATGAGGTCTGTAG -ACGGAAACACCATGAGGTCCTAAG -ACGGAAACACCATGAGGTGTTCAG -ACGGAAACACCATGAGGTGCATAG -ACGGAAACACCATGAGGTGACAAG -ACGGAAACACCATGAGGTAAGCAG -ACGGAAACACCATGAGGTCGTCAA -ACGGAAACACCATGAGGTGCTGAA -ACGGAAACACCATGAGGTAGTACG -ACGGAAACACCATGAGGTATCCGA -ACGGAAACACCATGAGGTATGGGA -ACGGAAACACCATGAGGTGTGCAA -ACGGAAACACCATGAGGTGAGGAA -ACGGAAACACCATGAGGTCAGGTA -ACGGAAACACCATGAGGTGACTCT -ACGGAAACACCATGAGGTAGTCCT -ACGGAAACACCATGAGGTTAAGCC -ACGGAAACACCATGAGGTATAGCC -ACGGAAACACCATGAGGTTAACCG -ACGGAAACACCATGAGGTATGCCA -ACGGAAACACCAGATTCCGGAAAC -ACGGAAACACCAGATTCCAACACC -ACGGAAACACCAGATTCCATCGAG -ACGGAAACACCAGATTCCCTCCTT -ACGGAAACACCAGATTCCCCTGTT -ACGGAAACACCAGATTCCCGGTTT -ACGGAAACACCAGATTCCGTGGTT -ACGGAAACACCAGATTCCGCCTTT -ACGGAAACACCAGATTCCGGTCTT -ACGGAAACACCAGATTCCACGCTT -ACGGAAACACCAGATTCCAGCGTT -ACGGAAACACCAGATTCCTTCGTC -ACGGAAACACCAGATTCCTCTCTC -ACGGAAACACCAGATTCCTGGATC -ACGGAAACACCAGATTCCCACTTC -ACGGAAACACCAGATTCCGTACTC -ACGGAAACACCAGATTCCGATGTC -ACGGAAACACCAGATTCCACAGTC -ACGGAAACACCAGATTCCTTGCTG -ACGGAAACACCAGATTCCTCCATG -ACGGAAACACCAGATTCCTGTGTG -ACGGAAACACCAGATTCCCTAGTG -ACGGAAACACCAGATTCCCATCTG -ACGGAAACACCAGATTCCGAGTTG -ACGGAAACACCAGATTCCAGACTG -ACGGAAACACCAGATTCCTCGGTA -ACGGAAACACCAGATTCCTGCCTA -ACGGAAACACCAGATTCCCCACTA -ACGGAAACACCAGATTCCGGAGTA -ACGGAAACACCAGATTCCTCGTCT -ACGGAAACACCAGATTCCTGCACT -ACGGAAACACCAGATTCCCTGACT -ACGGAAACACCAGATTCCCAACCT -ACGGAAACACCAGATTCCGCTACT -ACGGAAACACCAGATTCCGGATCT -ACGGAAACACCAGATTCCAAGGCT -ACGGAAACACCAGATTCCTCAACC -ACGGAAACACCAGATTCCTGTTCC -ACGGAAACACCAGATTCCATTCCC -ACGGAAACACCAGATTCCTTCTCG -ACGGAAACACCAGATTCCTAGACG -ACGGAAACACCAGATTCCGTAACG -ACGGAAACACCAGATTCCACTTCG -ACGGAAACACCAGATTCCTACGCA -ACGGAAACACCAGATTCCCTTGCA -ACGGAAACACCAGATTCCCGAACA -ACGGAAACACCAGATTCCCAGTCA -ACGGAAACACCAGATTCCGATCCA -ACGGAAACACCAGATTCCACGACA -ACGGAAACACCAGATTCCAGCTCA -ACGGAAACACCAGATTCCTCACGT -ACGGAAACACCAGATTCCCGTAGT -ACGGAAACACCAGATTCCGTCAGT -ACGGAAACACCAGATTCCGAAGGT -ACGGAAACACCAGATTCCAACCGT -ACGGAAACACCAGATTCCTTGTGC -ACGGAAACACCAGATTCCCTAAGC -ACGGAAACACCAGATTCCACTAGC -ACGGAAACACCAGATTCCAGATGC -ACGGAAACACCAGATTCCTGAAGG -ACGGAAACACCAGATTCCCAATGG -ACGGAAACACCAGATTCCATGAGG -ACGGAAACACCAGATTCCAATGGG -ACGGAAACACCAGATTCCTCCTGA -ACGGAAACACCAGATTCCTAGCGA -ACGGAAACACCAGATTCCCACAGA -ACGGAAACACCAGATTCCGCAAGA -ACGGAAACACCAGATTCCGGTTGA -ACGGAAACACCAGATTCCTCCGAT -ACGGAAACACCAGATTCCTGGCAT -ACGGAAACACCAGATTCCCGAGAT -ACGGAAACACCAGATTCCTACCAC -ACGGAAACACCAGATTCCCAGAAC -ACGGAAACACCAGATTCCGTCTAC -ACGGAAACACCAGATTCCACGTAC -ACGGAAACACCAGATTCCAGTGAC -ACGGAAACACCAGATTCCCTGTAG -ACGGAAACACCAGATTCCCCTAAG -ACGGAAACACCAGATTCCGTTCAG -ACGGAAACACCAGATTCCGCATAG -ACGGAAACACCAGATTCCGACAAG -ACGGAAACACCAGATTCCAAGCAG -ACGGAAACACCAGATTCCCGTCAA -ACGGAAACACCAGATTCCGCTGAA -ACGGAAACACCAGATTCCAGTACG -ACGGAAACACCAGATTCCATCCGA -ACGGAAACACCAGATTCCATGGGA -ACGGAAACACCAGATTCCGTGCAA -ACGGAAACACCAGATTCCGAGGAA -ACGGAAACACCAGATTCCCAGGTA -ACGGAAACACCAGATTCCGACTCT -ACGGAAACACCAGATTCCAGTCCT -ACGGAAACACCAGATTCCTAAGCC -ACGGAAACACCAGATTCCATAGCC -ACGGAAACACCAGATTCCTAACCG -ACGGAAACACCAGATTCCATGCCA -ACGGAAACACCACATTGGGGAAAC -ACGGAAACACCACATTGGAACACC -ACGGAAACACCACATTGGATCGAG -ACGGAAACACCACATTGGCTCCTT -ACGGAAACACCACATTGGCCTGTT -ACGGAAACACCACATTGGCGGTTT -ACGGAAACACCACATTGGGTGGTT -ACGGAAACACCACATTGGGCCTTT -ACGGAAACACCACATTGGGGTCTT -ACGGAAACACCACATTGGACGCTT -ACGGAAACACCACATTGGAGCGTT -ACGGAAACACCACATTGGTTCGTC -ACGGAAACACCACATTGGTCTCTC -ACGGAAACACCACATTGGTGGATC -ACGGAAACACCACATTGGCACTTC -ACGGAAACACCACATTGGGTACTC -ACGGAAACACCACATTGGGATGTC -ACGGAAACACCACATTGGACAGTC -ACGGAAACACCACATTGGTTGCTG -ACGGAAACACCACATTGGTCCATG -ACGGAAACACCACATTGGTGTGTG -ACGGAAACACCACATTGGCTAGTG -ACGGAAACACCACATTGGCATCTG -ACGGAAACACCACATTGGGAGTTG -ACGGAAACACCACATTGGAGACTG -ACGGAAACACCACATTGGTCGGTA -ACGGAAACACCACATTGGTGCCTA -ACGGAAACACCACATTGGCCACTA -ACGGAAACACCACATTGGGGAGTA -ACGGAAACACCACATTGGTCGTCT -ACGGAAACACCACATTGGTGCACT -ACGGAAACACCACATTGGCTGACT -ACGGAAACACCACATTGGCAACCT -ACGGAAACACCACATTGGGCTACT -ACGGAAACACCACATTGGGGATCT -ACGGAAACACCACATTGGAAGGCT -ACGGAAACACCACATTGGTCAACC -ACGGAAACACCACATTGGTGTTCC -ACGGAAACACCACATTGGATTCCC -ACGGAAACACCACATTGGTTCTCG -ACGGAAACACCACATTGGTAGACG -ACGGAAACACCACATTGGGTAACG -ACGGAAACACCACATTGGACTTCG -ACGGAAACACCACATTGGTACGCA -ACGGAAACACCACATTGGCTTGCA -ACGGAAACACCACATTGGCGAACA -ACGGAAACACCACATTGGCAGTCA -ACGGAAACACCACATTGGGATCCA -ACGGAAACACCACATTGGACGACA -ACGGAAACACCACATTGGAGCTCA -ACGGAAACACCACATTGGTCACGT -ACGGAAACACCACATTGGCGTAGT -ACGGAAACACCACATTGGGTCAGT -ACGGAAACACCACATTGGGAAGGT -ACGGAAACACCACATTGGAACCGT -ACGGAAACACCACATTGGTTGTGC -ACGGAAACACCACATTGGCTAAGC -ACGGAAACACCACATTGGACTAGC -ACGGAAACACCACATTGGAGATGC -ACGGAAACACCACATTGGTGAAGG -ACGGAAACACCACATTGGCAATGG -ACGGAAACACCACATTGGATGAGG -ACGGAAACACCACATTGGAATGGG -ACGGAAACACCACATTGGTCCTGA -ACGGAAACACCACATTGGTAGCGA -ACGGAAACACCACATTGGCACAGA -ACGGAAACACCACATTGGGCAAGA -ACGGAAACACCACATTGGGGTTGA -ACGGAAACACCACATTGGTCCGAT -ACGGAAACACCACATTGGTGGCAT -ACGGAAACACCACATTGGCGAGAT -ACGGAAACACCACATTGGTACCAC -ACGGAAACACCACATTGGCAGAAC -ACGGAAACACCACATTGGGTCTAC -ACGGAAACACCACATTGGACGTAC -ACGGAAACACCACATTGGAGTGAC -ACGGAAACACCACATTGGCTGTAG -ACGGAAACACCACATTGGCCTAAG -ACGGAAACACCACATTGGGTTCAG -ACGGAAACACCACATTGGGCATAG -ACGGAAACACCACATTGGGACAAG -ACGGAAACACCACATTGGAAGCAG -ACGGAAACACCACATTGGCGTCAA -ACGGAAACACCACATTGGGCTGAA -ACGGAAACACCACATTGGAGTACG -ACGGAAACACCACATTGGATCCGA -ACGGAAACACCACATTGGATGGGA -ACGGAAACACCACATTGGGTGCAA -ACGGAAACACCACATTGGGAGGAA -ACGGAAACACCACATTGGCAGGTA -ACGGAAACACCACATTGGGACTCT -ACGGAAACACCACATTGGAGTCCT -ACGGAAACACCACATTGGTAAGCC -ACGGAAACACCACATTGGATAGCC -ACGGAAACACCACATTGGTAACCG -ACGGAAACACCACATTGGATGCCA -ACGGAAACACCAGATCGAGGAAAC -ACGGAAACACCAGATCGAAACACC -ACGGAAACACCAGATCGAATCGAG -ACGGAAACACCAGATCGACTCCTT -ACGGAAACACCAGATCGACCTGTT -ACGGAAACACCAGATCGACGGTTT -ACGGAAACACCAGATCGAGTGGTT -ACGGAAACACCAGATCGAGCCTTT -ACGGAAACACCAGATCGAGGTCTT -ACGGAAACACCAGATCGAACGCTT -ACGGAAACACCAGATCGAAGCGTT -ACGGAAACACCAGATCGATTCGTC -ACGGAAACACCAGATCGATCTCTC -ACGGAAACACCAGATCGATGGATC -ACGGAAACACCAGATCGACACTTC -ACGGAAACACCAGATCGAGTACTC -ACGGAAACACCAGATCGAGATGTC -ACGGAAACACCAGATCGAACAGTC -ACGGAAACACCAGATCGATTGCTG -ACGGAAACACCAGATCGATCCATG -ACGGAAACACCAGATCGATGTGTG -ACGGAAACACCAGATCGACTAGTG -ACGGAAACACCAGATCGACATCTG -ACGGAAACACCAGATCGAGAGTTG -ACGGAAACACCAGATCGAAGACTG -ACGGAAACACCAGATCGATCGGTA -ACGGAAACACCAGATCGATGCCTA -ACGGAAACACCAGATCGACCACTA -ACGGAAACACCAGATCGAGGAGTA -ACGGAAACACCAGATCGATCGTCT -ACGGAAACACCAGATCGATGCACT -ACGGAAACACCAGATCGACTGACT -ACGGAAACACCAGATCGACAACCT -ACGGAAACACCAGATCGAGCTACT -ACGGAAACACCAGATCGAGGATCT -ACGGAAACACCAGATCGAAAGGCT -ACGGAAACACCAGATCGATCAACC -ACGGAAACACCAGATCGATGTTCC -ACGGAAACACCAGATCGAATTCCC -ACGGAAACACCAGATCGATTCTCG -ACGGAAACACCAGATCGATAGACG -ACGGAAACACCAGATCGAGTAACG -ACGGAAACACCAGATCGAACTTCG -ACGGAAACACCAGATCGATACGCA -ACGGAAACACCAGATCGACTTGCA -ACGGAAACACCAGATCGACGAACA -ACGGAAACACCAGATCGACAGTCA -ACGGAAACACCAGATCGAGATCCA -ACGGAAACACCAGATCGAACGACA -ACGGAAACACCAGATCGAAGCTCA -ACGGAAACACCAGATCGATCACGT -ACGGAAACACCAGATCGACGTAGT -ACGGAAACACCAGATCGAGTCAGT -ACGGAAACACCAGATCGAGAAGGT -ACGGAAACACCAGATCGAAACCGT -ACGGAAACACCAGATCGATTGTGC -ACGGAAACACCAGATCGACTAAGC -ACGGAAACACCAGATCGAACTAGC -ACGGAAACACCAGATCGAAGATGC -ACGGAAACACCAGATCGATGAAGG -ACGGAAACACCAGATCGACAATGG -ACGGAAACACCAGATCGAATGAGG -ACGGAAACACCAGATCGAAATGGG -ACGGAAACACCAGATCGATCCTGA -ACGGAAACACCAGATCGATAGCGA -ACGGAAACACCAGATCGACACAGA -ACGGAAACACCAGATCGAGCAAGA -ACGGAAACACCAGATCGAGGTTGA -ACGGAAACACCAGATCGATCCGAT -ACGGAAACACCAGATCGATGGCAT -ACGGAAACACCAGATCGACGAGAT -ACGGAAACACCAGATCGATACCAC -ACGGAAACACCAGATCGACAGAAC -ACGGAAACACCAGATCGAGTCTAC -ACGGAAACACCAGATCGAACGTAC -ACGGAAACACCAGATCGAAGTGAC -ACGGAAACACCAGATCGACTGTAG -ACGGAAACACCAGATCGACCTAAG -ACGGAAACACCAGATCGAGTTCAG -ACGGAAACACCAGATCGAGCATAG -ACGGAAACACCAGATCGAGACAAG -ACGGAAACACCAGATCGAAAGCAG -ACGGAAACACCAGATCGACGTCAA -ACGGAAACACCAGATCGAGCTGAA -ACGGAAACACCAGATCGAAGTACG -ACGGAAACACCAGATCGAATCCGA -ACGGAAACACCAGATCGAATGGGA -ACGGAAACACCAGATCGAGTGCAA -ACGGAAACACCAGATCGAGAGGAA -ACGGAAACACCAGATCGACAGGTA -ACGGAAACACCAGATCGAGACTCT -ACGGAAACACCAGATCGAAGTCCT -ACGGAAACACCAGATCGATAAGCC -ACGGAAACACCAGATCGAATAGCC -ACGGAAACACCAGATCGATAACCG -ACGGAAACACCAGATCGAATGCCA -ACGGAAACACCACACTACGGAAAC -ACGGAAACACCACACTACAACACC -ACGGAAACACCACACTACATCGAG -ACGGAAACACCACACTACCTCCTT -ACGGAAACACCACACTACCCTGTT -ACGGAAACACCACACTACCGGTTT -ACGGAAACACCACACTACGTGGTT -ACGGAAACACCACACTACGCCTTT -ACGGAAACACCACACTACGGTCTT -ACGGAAACACCACACTACACGCTT -ACGGAAACACCACACTACAGCGTT -ACGGAAACACCACACTACTTCGTC -ACGGAAACACCACACTACTCTCTC -ACGGAAACACCACACTACTGGATC -ACGGAAACACCACACTACCACTTC -ACGGAAACACCACACTACGTACTC -ACGGAAACACCACACTACGATGTC -ACGGAAACACCACACTACACAGTC -ACGGAAACACCACACTACTTGCTG -ACGGAAACACCACACTACTCCATG -ACGGAAACACCACACTACTGTGTG -ACGGAAACACCACACTACCTAGTG -ACGGAAACACCACACTACCATCTG -ACGGAAACACCACACTACGAGTTG -ACGGAAACACCACACTACAGACTG -ACGGAAACACCACACTACTCGGTA -ACGGAAACACCACACTACTGCCTA -ACGGAAACACCACACTACCCACTA -ACGGAAACACCACACTACGGAGTA -ACGGAAACACCACACTACTCGTCT -ACGGAAACACCACACTACTGCACT -ACGGAAACACCACACTACCTGACT -ACGGAAACACCACACTACCAACCT -ACGGAAACACCACACTACGCTACT -ACGGAAACACCACACTACGGATCT -ACGGAAACACCACACTACAAGGCT -ACGGAAACACCACACTACTCAACC -ACGGAAACACCACACTACTGTTCC -ACGGAAACACCACACTACATTCCC -ACGGAAACACCACACTACTTCTCG -ACGGAAACACCACACTACTAGACG -ACGGAAACACCACACTACGTAACG -ACGGAAACACCACACTACACTTCG -ACGGAAACACCACACTACTACGCA -ACGGAAACACCACACTACCTTGCA -ACGGAAACACCACACTACCGAACA -ACGGAAACACCACACTACCAGTCA -ACGGAAACACCACACTACGATCCA -ACGGAAACACCACACTACACGACA -ACGGAAACACCACACTACAGCTCA -ACGGAAACACCACACTACTCACGT -ACGGAAACACCACACTACCGTAGT -ACGGAAACACCACACTACGTCAGT -ACGGAAACACCACACTACGAAGGT -ACGGAAACACCACACTACAACCGT -ACGGAAACACCACACTACTTGTGC -ACGGAAACACCACACTACCTAAGC -ACGGAAACACCACACTACACTAGC -ACGGAAACACCACACTACAGATGC -ACGGAAACACCACACTACTGAAGG -ACGGAAACACCACACTACCAATGG -ACGGAAACACCACACTACATGAGG -ACGGAAACACCACACTACAATGGG -ACGGAAACACCACACTACTCCTGA -ACGGAAACACCACACTACTAGCGA -ACGGAAACACCACACTACCACAGA -ACGGAAACACCACACTACGCAAGA -ACGGAAACACCACACTACGGTTGA -ACGGAAACACCACACTACTCCGAT -ACGGAAACACCACACTACTGGCAT -ACGGAAACACCACACTACCGAGAT -ACGGAAACACCACACTACTACCAC -ACGGAAACACCACACTACCAGAAC -ACGGAAACACCACACTACGTCTAC -ACGGAAACACCACACTACACGTAC -ACGGAAACACCACACTACAGTGAC -ACGGAAACACCACACTACCTGTAG -ACGGAAACACCACACTACCCTAAG -ACGGAAACACCACACTACGTTCAG -ACGGAAACACCACACTACGCATAG -ACGGAAACACCACACTACGACAAG -ACGGAAACACCACACTACAAGCAG -ACGGAAACACCACACTACCGTCAA -ACGGAAACACCACACTACGCTGAA -ACGGAAACACCACACTACAGTACG -ACGGAAACACCACACTACATCCGA -ACGGAAACACCACACTACATGGGA -ACGGAAACACCACACTACGTGCAA -ACGGAAACACCACACTACGAGGAA -ACGGAAACACCACACTACCAGGTA -ACGGAAACACCACACTACGACTCT -ACGGAAACACCACACTACAGTCCT -ACGGAAACACCACACTACTAAGCC -ACGGAAACACCACACTACATAGCC -ACGGAAACACCACACTACTAACCG -ACGGAAACACCACACTACATGCCA -ACGGAAACACCAAACCAGGGAAAC -ACGGAAACACCAAACCAGAACACC -ACGGAAACACCAAACCAGATCGAG -ACGGAAACACCAAACCAGCTCCTT -ACGGAAACACCAAACCAGCCTGTT -ACGGAAACACCAAACCAGCGGTTT -ACGGAAACACCAAACCAGGTGGTT -ACGGAAACACCAAACCAGGCCTTT -ACGGAAACACCAAACCAGGGTCTT -ACGGAAACACCAAACCAGACGCTT -ACGGAAACACCAAACCAGAGCGTT -ACGGAAACACCAAACCAGTTCGTC -ACGGAAACACCAAACCAGTCTCTC -ACGGAAACACCAAACCAGTGGATC -ACGGAAACACCAAACCAGCACTTC -ACGGAAACACCAAACCAGGTACTC -ACGGAAACACCAAACCAGGATGTC -ACGGAAACACCAAACCAGACAGTC -ACGGAAACACCAAACCAGTTGCTG -ACGGAAACACCAAACCAGTCCATG -ACGGAAACACCAAACCAGTGTGTG -ACGGAAACACCAAACCAGCTAGTG -ACGGAAACACCAAACCAGCATCTG -ACGGAAACACCAAACCAGGAGTTG -ACGGAAACACCAAACCAGAGACTG -ACGGAAACACCAAACCAGTCGGTA -ACGGAAACACCAAACCAGTGCCTA -ACGGAAACACCAAACCAGCCACTA -ACGGAAACACCAAACCAGGGAGTA -ACGGAAACACCAAACCAGTCGTCT -ACGGAAACACCAAACCAGTGCACT -ACGGAAACACCAAACCAGCTGACT -ACGGAAACACCAAACCAGCAACCT -ACGGAAACACCAAACCAGGCTACT -ACGGAAACACCAAACCAGGGATCT -ACGGAAACACCAAACCAGAAGGCT -ACGGAAACACCAAACCAGTCAACC -ACGGAAACACCAAACCAGTGTTCC -ACGGAAACACCAAACCAGATTCCC -ACGGAAACACCAAACCAGTTCTCG -ACGGAAACACCAAACCAGTAGACG -ACGGAAACACCAAACCAGGTAACG -ACGGAAACACCAAACCAGACTTCG -ACGGAAACACCAAACCAGTACGCA -ACGGAAACACCAAACCAGCTTGCA -ACGGAAACACCAAACCAGCGAACA -ACGGAAACACCAAACCAGCAGTCA -ACGGAAACACCAAACCAGGATCCA -ACGGAAACACCAAACCAGACGACA -ACGGAAACACCAAACCAGAGCTCA -ACGGAAACACCAAACCAGTCACGT -ACGGAAACACCAAACCAGCGTAGT -ACGGAAACACCAAACCAGGTCAGT -ACGGAAACACCAAACCAGGAAGGT -ACGGAAACACCAAACCAGAACCGT -ACGGAAACACCAAACCAGTTGTGC -ACGGAAACACCAAACCAGCTAAGC -ACGGAAACACCAAACCAGACTAGC -ACGGAAACACCAAACCAGAGATGC -ACGGAAACACCAAACCAGTGAAGG -ACGGAAACACCAAACCAGCAATGG -ACGGAAACACCAAACCAGATGAGG -ACGGAAACACCAAACCAGAATGGG -ACGGAAACACCAAACCAGTCCTGA -ACGGAAACACCAAACCAGTAGCGA -ACGGAAACACCAAACCAGCACAGA -ACGGAAACACCAAACCAGGCAAGA -ACGGAAACACCAAACCAGGGTTGA -ACGGAAACACCAAACCAGTCCGAT -ACGGAAACACCAAACCAGTGGCAT -ACGGAAACACCAAACCAGCGAGAT -ACGGAAACACCAAACCAGTACCAC -ACGGAAACACCAAACCAGCAGAAC -ACGGAAACACCAAACCAGGTCTAC -ACGGAAACACCAAACCAGACGTAC -ACGGAAACACCAAACCAGAGTGAC -ACGGAAACACCAAACCAGCTGTAG -ACGGAAACACCAAACCAGCCTAAG -ACGGAAACACCAAACCAGGTTCAG -ACGGAAACACCAAACCAGGCATAG -ACGGAAACACCAAACCAGGACAAG -ACGGAAACACCAAACCAGAAGCAG -ACGGAAACACCAAACCAGCGTCAA -ACGGAAACACCAAACCAGGCTGAA -ACGGAAACACCAAACCAGAGTACG -ACGGAAACACCAAACCAGATCCGA -ACGGAAACACCAAACCAGATGGGA -ACGGAAACACCAAACCAGGTGCAA -ACGGAAACACCAAACCAGGAGGAA -ACGGAAACACCAAACCAGCAGGTA -ACGGAAACACCAAACCAGGACTCT -ACGGAAACACCAAACCAGAGTCCT -ACGGAAACACCAAACCAGTAAGCC -ACGGAAACACCAAACCAGATAGCC -ACGGAAACACCAAACCAGTAACCG -ACGGAAACACCAAACCAGATGCCA -ACGGAAACACCATACGTCGGAAAC -ACGGAAACACCATACGTCAACACC -ACGGAAACACCATACGTCATCGAG -ACGGAAACACCATACGTCCTCCTT -ACGGAAACACCATACGTCCCTGTT -ACGGAAACACCATACGTCCGGTTT -ACGGAAACACCATACGTCGTGGTT -ACGGAAACACCATACGTCGCCTTT -ACGGAAACACCATACGTCGGTCTT -ACGGAAACACCATACGTCACGCTT -ACGGAAACACCATACGTCAGCGTT -ACGGAAACACCATACGTCTTCGTC -ACGGAAACACCATACGTCTCTCTC -ACGGAAACACCATACGTCTGGATC -ACGGAAACACCATACGTCCACTTC -ACGGAAACACCATACGTCGTACTC -ACGGAAACACCATACGTCGATGTC -ACGGAAACACCATACGTCACAGTC -ACGGAAACACCATACGTCTTGCTG -ACGGAAACACCATACGTCTCCATG -ACGGAAACACCATACGTCTGTGTG -ACGGAAACACCATACGTCCTAGTG -ACGGAAACACCATACGTCCATCTG -ACGGAAACACCATACGTCGAGTTG -ACGGAAACACCATACGTCAGACTG -ACGGAAACACCATACGTCTCGGTA -ACGGAAACACCATACGTCTGCCTA -ACGGAAACACCATACGTCCCACTA -ACGGAAACACCATACGTCGGAGTA -ACGGAAACACCATACGTCTCGTCT -ACGGAAACACCATACGTCTGCACT -ACGGAAACACCATACGTCCTGACT -ACGGAAACACCATACGTCCAACCT -ACGGAAACACCATACGTCGCTACT -ACGGAAACACCATACGTCGGATCT -ACGGAAACACCATACGTCAAGGCT -ACGGAAACACCATACGTCTCAACC -ACGGAAACACCATACGTCTGTTCC -ACGGAAACACCATACGTCATTCCC -ACGGAAACACCATACGTCTTCTCG -ACGGAAACACCATACGTCTAGACG -ACGGAAACACCATACGTCGTAACG -ACGGAAACACCATACGTCACTTCG -ACGGAAACACCATACGTCTACGCA -ACGGAAACACCATACGTCCTTGCA -ACGGAAACACCATACGTCCGAACA -ACGGAAACACCATACGTCCAGTCA -ACGGAAACACCATACGTCGATCCA -ACGGAAACACCATACGTCACGACA -ACGGAAACACCATACGTCAGCTCA -ACGGAAACACCATACGTCTCACGT -ACGGAAACACCATACGTCCGTAGT -ACGGAAACACCATACGTCGTCAGT -ACGGAAACACCATACGTCGAAGGT -ACGGAAACACCATACGTCAACCGT -ACGGAAACACCATACGTCTTGTGC -ACGGAAACACCATACGTCCTAAGC -ACGGAAACACCATACGTCACTAGC -ACGGAAACACCATACGTCAGATGC -ACGGAAACACCATACGTCTGAAGG -ACGGAAACACCATACGTCCAATGG -ACGGAAACACCATACGTCATGAGG -ACGGAAACACCATACGTCAATGGG -ACGGAAACACCATACGTCTCCTGA -ACGGAAACACCATACGTCTAGCGA -ACGGAAACACCATACGTCCACAGA -ACGGAAACACCATACGTCGCAAGA -ACGGAAACACCATACGTCGGTTGA -ACGGAAACACCATACGTCTCCGAT -ACGGAAACACCATACGTCTGGCAT -ACGGAAACACCATACGTCCGAGAT -ACGGAAACACCATACGTCTACCAC -ACGGAAACACCATACGTCCAGAAC -ACGGAAACACCATACGTCGTCTAC -ACGGAAACACCATACGTCACGTAC -ACGGAAACACCATACGTCAGTGAC -ACGGAAACACCATACGTCCTGTAG -ACGGAAACACCATACGTCCCTAAG -ACGGAAACACCATACGTCGTTCAG -ACGGAAACACCATACGTCGCATAG -ACGGAAACACCATACGTCGACAAG -ACGGAAACACCATACGTCAAGCAG -ACGGAAACACCATACGTCCGTCAA -ACGGAAACACCATACGTCGCTGAA -ACGGAAACACCATACGTCAGTACG -ACGGAAACACCATACGTCATCCGA -ACGGAAACACCATACGTCATGGGA -ACGGAAACACCATACGTCGTGCAA -ACGGAAACACCATACGTCGAGGAA -ACGGAAACACCATACGTCCAGGTA -ACGGAAACACCATACGTCGACTCT -ACGGAAACACCATACGTCAGTCCT -ACGGAAACACCATACGTCTAAGCC -ACGGAAACACCATACGTCATAGCC -ACGGAAACACCATACGTCTAACCG -ACGGAAACACCATACGTCATGCCA -ACGGAAACACCATACACGGGAAAC -ACGGAAACACCATACACGAACACC -ACGGAAACACCATACACGATCGAG -ACGGAAACACCATACACGCTCCTT -ACGGAAACACCATACACGCCTGTT -ACGGAAACACCATACACGCGGTTT -ACGGAAACACCATACACGGTGGTT -ACGGAAACACCATACACGGCCTTT -ACGGAAACACCATACACGGGTCTT -ACGGAAACACCATACACGACGCTT -ACGGAAACACCATACACGAGCGTT -ACGGAAACACCATACACGTTCGTC -ACGGAAACACCATACACGTCTCTC -ACGGAAACACCATACACGTGGATC -ACGGAAACACCATACACGCACTTC -ACGGAAACACCATACACGGTACTC -ACGGAAACACCATACACGGATGTC -ACGGAAACACCATACACGACAGTC -ACGGAAACACCATACACGTTGCTG -ACGGAAACACCATACACGTCCATG -ACGGAAACACCATACACGTGTGTG -ACGGAAACACCATACACGCTAGTG -ACGGAAACACCATACACGCATCTG -ACGGAAACACCATACACGGAGTTG -ACGGAAACACCATACACGAGACTG -ACGGAAACACCATACACGTCGGTA -ACGGAAACACCATACACGTGCCTA -ACGGAAACACCATACACGCCACTA -ACGGAAACACCATACACGGGAGTA -ACGGAAACACCATACACGTCGTCT -ACGGAAACACCATACACGTGCACT -ACGGAAACACCATACACGCTGACT -ACGGAAACACCATACACGCAACCT -ACGGAAACACCATACACGGCTACT -ACGGAAACACCATACACGGGATCT -ACGGAAACACCATACACGAAGGCT -ACGGAAACACCATACACGTCAACC -ACGGAAACACCATACACGTGTTCC -ACGGAAACACCATACACGATTCCC -ACGGAAACACCATACACGTTCTCG -ACGGAAACACCATACACGTAGACG -ACGGAAACACCATACACGGTAACG -ACGGAAACACCATACACGACTTCG -ACGGAAACACCATACACGTACGCA -ACGGAAACACCATACACGCTTGCA -ACGGAAACACCATACACGCGAACA -ACGGAAACACCATACACGCAGTCA -ACGGAAACACCATACACGGATCCA -ACGGAAACACCATACACGACGACA -ACGGAAACACCATACACGAGCTCA -ACGGAAACACCATACACGTCACGT -ACGGAAACACCATACACGCGTAGT -ACGGAAACACCATACACGGTCAGT -ACGGAAACACCATACACGGAAGGT -ACGGAAACACCATACACGAACCGT -ACGGAAACACCATACACGTTGTGC -ACGGAAACACCATACACGCTAAGC -ACGGAAACACCATACACGACTAGC -ACGGAAACACCATACACGAGATGC -ACGGAAACACCATACACGTGAAGG -ACGGAAACACCATACACGCAATGG -ACGGAAACACCATACACGATGAGG -ACGGAAACACCATACACGAATGGG -ACGGAAACACCATACACGTCCTGA -ACGGAAACACCATACACGTAGCGA -ACGGAAACACCATACACGCACAGA -ACGGAAACACCATACACGGCAAGA -ACGGAAACACCATACACGGGTTGA -ACGGAAACACCATACACGTCCGAT -ACGGAAACACCATACACGTGGCAT -ACGGAAACACCATACACGCGAGAT -ACGGAAACACCATACACGTACCAC -ACGGAAACACCATACACGCAGAAC -ACGGAAACACCATACACGGTCTAC -ACGGAAACACCATACACGACGTAC -ACGGAAACACCATACACGAGTGAC -ACGGAAACACCATACACGCTGTAG -ACGGAAACACCATACACGCCTAAG -ACGGAAACACCATACACGGTTCAG -ACGGAAACACCATACACGGCATAG -ACGGAAACACCATACACGGACAAG -ACGGAAACACCATACACGAAGCAG -ACGGAAACACCATACACGCGTCAA -ACGGAAACACCATACACGGCTGAA -ACGGAAACACCATACACGAGTACG -ACGGAAACACCATACACGATCCGA -ACGGAAACACCATACACGATGGGA -ACGGAAACACCATACACGGTGCAA -ACGGAAACACCATACACGGAGGAA -ACGGAAACACCATACACGCAGGTA -ACGGAAACACCATACACGGACTCT -ACGGAAACACCATACACGAGTCCT -ACGGAAACACCATACACGTAAGCC -ACGGAAACACCATACACGATAGCC -ACGGAAACACCATACACGTAACCG -ACGGAAACACCATACACGATGCCA -ACGGAAACACCAGACAGTGGAAAC -ACGGAAACACCAGACAGTAACACC -ACGGAAACACCAGACAGTATCGAG -ACGGAAACACCAGACAGTCTCCTT -ACGGAAACACCAGACAGTCCTGTT -ACGGAAACACCAGACAGTCGGTTT -ACGGAAACACCAGACAGTGTGGTT -ACGGAAACACCAGACAGTGCCTTT -ACGGAAACACCAGACAGTGGTCTT -ACGGAAACACCAGACAGTACGCTT -ACGGAAACACCAGACAGTAGCGTT -ACGGAAACACCAGACAGTTTCGTC -ACGGAAACACCAGACAGTTCTCTC -ACGGAAACACCAGACAGTTGGATC -ACGGAAACACCAGACAGTCACTTC -ACGGAAACACCAGACAGTGTACTC -ACGGAAACACCAGACAGTGATGTC -ACGGAAACACCAGACAGTACAGTC -ACGGAAACACCAGACAGTTTGCTG -ACGGAAACACCAGACAGTTCCATG -ACGGAAACACCAGACAGTTGTGTG -ACGGAAACACCAGACAGTCTAGTG -ACGGAAACACCAGACAGTCATCTG -ACGGAAACACCAGACAGTGAGTTG -ACGGAAACACCAGACAGTAGACTG -ACGGAAACACCAGACAGTTCGGTA -ACGGAAACACCAGACAGTTGCCTA -ACGGAAACACCAGACAGTCCACTA -ACGGAAACACCAGACAGTGGAGTA -ACGGAAACACCAGACAGTTCGTCT -ACGGAAACACCAGACAGTTGCACT -ACGGAAACACCAGACAGTCTGACT -ACGGAAACACCAGACAGTCAACCT -ACGGAAACACCAGACAGTGCTACT -ACGGAAACACCAGACAGTGGATCT -ACGGAAACACCAGACAGTAAGGCT -ACGGAAACACCAGACAGTTCAACC -ACGGAAACACCAGACAGTTGTTCC -ACGGAAACACCAGACAGTATTCCC -ACGGAAACACCAGACAGTTTCTCG -ACGGAAACACCAGACAGTTAGACG -ACGGAAACACCAGACAGTGTAACG -ACGGAAACACCAGACAGTACTTCG -ACGGAAACACCAGACAGTTACGCA -ACGGAAACACCAGACAGTCTTGCA -ACGGAAACACCAGACAGTCGAACA -ACGGAAACACCAGACAGTCAGTCA -ACGGAAACACCAGACAGTGATCCA -ACGGAAACACCAGACAGTACGACA -ACGGAAACACCAGACAGTAGCTCA -ACGGAAACACCAGACAGTTCACGT -ACGGAAACACCAGACAGTCGTAGT -ACGGAAACACCAGACAGTGTCAGT -ACGGAAACACCAGACAGTGAAGGT -ACGGAAACACCAGACAGTAACCGT -ACGGAAACACCAGACAGTTTGTGC -ACGGAAACACCAGACAGTCTAAGC -ACGGAAACACCAGACAGTACTAGC -ACGGAAACACCAGACAGTAGATGC -ACGGAAACACCAGACAGTTGAAGG -ACGGAAACACCAGACAGTCAATGG -ACGGAAACACCAGACAGTATGAGG -ACGGAAACACCAGACAGTAATGGG -ACGGAAACACCAGACAGTTCCTGA -ACGGAAACACCAGACAGTTAGCGA -ACGGAAACACCAGACAGTCACAGA -ACGGAAACACCAGACAGTGCAAGA -ACGGAAACACCAGACAGTGGTTGA -ACGGAAACACCAGACAGTTCCGAT -ACGGAAACACCAGACAGTTGGCAT -ACGGAAACACCAGACAGTCGAGAT -ACGGAAACACCAGACAGTTACCAC -ACGGAAACACCAGACAGTCAGAAC -ACGGAAACACCAGACAGTGTCTAC -ACGGAAACACCAGACAGTACGTAC -ACGGAAACACCAGACAGTAGTGAC -ACGGAAACACCAGACAGTCTGTAG -ACGGAAACACCAGACAGTCCTAAG -ACGGAAACACCAGACAGTGTTCAG -ACGGAAACACCAGACAGTGCATAG -ACGGAAACACCAGACAGTGACAAG -ACGGAAACACCAGACAGTAAGCAG -ACGGAAACACCAGACAGTCGTCAA -ACGGAAACACCAGACAGTGCTGAA -ACGGAAACACCAGACAGTAGTACG -ACGGAAACACCAGACAGTATCCGA -ACGGAAACACCAGACAGTATGGGA -ACGGAAACACCAGACAGTGTGCAA -ACGGAAACACCAGACAGTGAGGAA -ACGGAAACACCAGACAGTCAGGTA -ACGGAAACACCAGACAGTGACTCT -ACGGAAACACCAGACAGTAGTCCT -ACGGAAACACCAGACAGTTAAGCC -ACGGAAACACCAGACAGTATAGCC -ACGGAAACACCAGACAGTTAACCG -ACGGAAACACCAGACAGTATGCCA -ACGGAAACACCATAGCTGGGAAAC -ACGGAAACACCATAGCTGAACACC -ACGGAAACACCATAGCTGATCGAG -ACGGAAACACCATAGCTGCTCCTT -ACGGAAACACCATAGCTGCCTGTT -ACGGAAACACCATAGCTGCGGTTT -ACGGAAACACCATAGCTGGTGGTT -ACGGAAACACCATAGCTGGCCTTT -ACGGAAACACCATAGCTGGGTCTT -ACGGAAACACCATAGCTGACGCTT -ACGGAAACACCATAGCTGAGCGTT -ACGGAAACACCATAGCTGTTCGTC -ACGGAAACACCATAGCTGTCTCTC -ACGGAAACACCATAGCTGTGGATC -ACGGAAACACCATAGCTGCACTTC -ACGGAAACACCATAGCTGGTACTC -ACGGAAACACCATAGCTGGATGTC -ACGGAAACACCATAGCTGACAGTC -ACGGAAACACCATAGCTGTTGCTG -ACGGAAACACCATAGCTGTCCATG -ACGGAAACACCATAGCTGTGTGTG -ACGGAAACACCATAGCTGCTAGTG -ACGGAAACACCATAGCTGCATCTG -ACGGAAACACCATAGCTGGAGTTG -ACGGAAACACCATAGCTGAGACTG -ACGGAAACACCATAGCTGTCGGTA -ACGGAAACACCATAGCTGTGCCTA -ACGGAAACACCATAGCTGCCACTA -ACGGAAACACCATAGCTGGGAGTA -ACGGAAACACCATAGCTGTCGTCT -ACGGAAACACCATAGCTGTGCACT -ACGGAAACACCATAGCTGCTGACT -ACGGAAACACCATAGCTGCAACCT -ACGGAAACACCATAGCTGGCTACT -ACGGAAACACCATAGCTGGGATCT -ACGGAAACACCATAGCTGAAGGCT -ACGGAAACACCATAGCTGTCAACC -ACGGAAACACCATAGCTGTGTTCC -ACGGAAACACCATAGCTGATTCCC -ACGGAAACACCATAGCTGTTCTCG -ACGGAAACACCATAGCTGTAGACG -ACGGAAACACCATAGCTGGTAACG -ACGGAAACACCATAGCTGACTTCG -ACGGAAACACCATAGCTGTACGCA -ACGGAAACACCATAGCTGCTTGCA -ACGGAAACACCATAGCTGCGAACA -ACGGAAACACCATAGCTGCAGTCA -ACGGAAACACCATAGCTGGATCCA -ACGGAAACACCATAGCTGACGACA -ACGGAAACACCATAGCTGAGCTCA -ACGGAAACACCATAGCTGTCACGT -ACGGAAACACCATAGCTGCGTAGT -ACGGAAACACCATAGCTGGTCAGT -ACGGAAACACCATAGCTGGAAGGT -ACGGAAACACCATAGCTGAACCGT -ACGGAAACACCATAGCTGTTGTGC -ACGGAAACACCATAGCTGCTAAGC -ACGGAAACACCATAGCTGACTAGC -ACGGAAACACCATAGCTGAGATGC -ACGGAAACACCATAGCTGTGAAGG -ACGGAAACACCATAGCTGCAATGG -ACGGAAACACCATAGCTGATGAGG -ACGGAAACACCATAGCTGAATGGG -ACGGAAACACCATAGCTGTCCTGA -ACGGAAACACCATAGCTGTAGCGA -ACGGAAACACCATAGCTGCACAGA -ACGGAAACACCATAGCTGGCAAGA -ACGGAAACACCATAGCTGGGTTGA -ACGGAAACACCATAGCTGTCCGAT -ACGGAAACACCATAGCTGTGGCAT -ACGGAAACACCATAGCTGCGAGAT -ACGGAAACACCATAGCTGTACCAC -ACGGAAACACCATAGCTGCAGAAC -ACGGAAACACCATAGCTGGTCTAC -ACGGAAACACCATAGCTGACGTAC -ACGGAAACACCATAGCTGAGTGAC -ACGGAAACACCATAGCTGCTGTAG -ACGGAAACACCATAGCTGCCTAAG -ACGGAAACACCATAGCTGGTTCAG -ACGGAAACACCATAGCTGGCATAG -ACGGAAACACCATAGCTGGACAAG -ACGGAAACACCATAGCTGAAGCAG -ACGGAAACACCATAGCTGCGTCAA -ACGGAAACACCATAGCTGGCTGAA -ACGGAAACACCATAGCTGAGTACG -ACGGAAACACCATAGCTGATCCGA -ACGGAAACACCATAGCTGATGGGA -ACGGAAACACCATAGCTGGTGCAA -ACGGAAACACCATAGCTGGAGGAA -ACGGAAACACCATAGCTGCAGGTA -ACGGAAACACCATAGCTGGACTCT -ACGGAAACACCATAGCTGAGTCCT -ACGGAAACACCATAGCTGTAAGCC -ACGGAAACACCATAGCTGATAGCC -ACGGAAACACCATAGCTGTAACCG -ACGGAAACACCATAGCTGATGCCA -ACGGAAACACCAAAGCCTGGAAAC -ACGGAAACACCAAAGCCTAACACC -ACGGAAACACCAAAGCCTATCGAG -ACGGAAACACCAAAGCCTCTCCTT -ACGGAAACACCAAAGCCTCCTGTT -ACGGAAACACCAAAGCCTCGGTTT -ACGGAAACACCAAAGCCTGTGGTT -ACGGAAACACCAAAGCCTGCCTTT -ACGGAAACACCAAAGCCTGGTCTT -ACGGAAACACCAAAGCCTACGCTT -ACGGAAACACCAAAGCCTAGCGTT -ACGGAAACACCAAAGCCTTTCGTC -ACGGAAACACCAAAGCCTTCTCTC -ACGGAAACACCAAAGCCTTGGATC -ACGGAAACACCAAAGCCTCACTTC -ACGGAAACACCAAAGCCTGTACTC -ACGGAAACACCAAAGCCTGATGTC -ACGGAAACACCAAAGCCTACAGTC -ACGGAAACACCAAAGCCTTTGCTG -ACGGAAACACCAAAGCCTTCCATG -ACGGAAACACCAAAGCCTTGTGTG -ACGGAAACACCAAAGCCTCTAGTG -ACGGAAACACCAAAGCCTCATCTG -ACGGAAACACCAAAGCCTGAGTTG -ACGGAAACACCAAAGCCTAGACTG -ACGGAAACACCAAAGCCTTCGGTA -ACGGAAACACCAAAGCCTTGCCTA -ACGGAAACACCAAAGCCTCCACTA -ACGGAAACACCAAAGCCTGGAGTA -ACGGAAACACCAAAGCCTTCGTCT -ACGGAAACACCAAAGCCTTGCACT -ACGGAAACACCAAAGCCTCTGACT -ACGGAAACACCAAAGCCTCAACCT -ACGGAAACACCAAAGCCTGCTACT -ACGGAAACACCAAAGCCTGGATCT -ACGGAAACACCAAAGCCTAAGGCT -ACGGAAACACCAAAGCCTTCAACC -ACGGAAACACCAAAGCCTTGTTCC -ACGGAAACACCAAAGCCTATTCCC -ACGGAAACACCAAAGCCTTTCTCG -ACGGAAACACCAAAGCCTTAGACG -ACGGAAACACCAAAGCCTGTAACG -ACGGAAACACCAAAGCCTACTTCG -ACGGAAACACCAAAGCCTTACGCA -ACGGAAACACCAAAGCCTCTTGCA -ACGGAAACACCAAAGCCTCGAACA -ACGGAAACACCAAAGCCTCAGTCA -ACGGAAACACCAAAGCCTGATCCA -ACGGAAACACCAAAGCCTACGACA -ACGGAAACACCAAAGCCTAGCTCA -ACGGAAACACCAAAGCCTTCACGT -ACGGAAACACCAAAGCCTCGTAGT -ACGGAAACACCAAAGCCTGTCAGT -ACGGAAACACCAAAGCCTGAAGGT -ACGGAAACACCAAAGCCTAACCGT -ACGGAAACACCAAAGCCTTTGTGC -ACGGAAACACCAAAGCCTCTAAGC -ACGGAAACACCAAAGCCTACTAGC -ACGGAAACACCAAAGCCTAGATGC -ACGGAAACACCAAAGCCTTGAAGG -ACGGAAACACCAAAGCCTCAATGG -ACGGAAACACCAAAGCCTATGAGG -ACGGAAACACCAAAGCCTAATGGG -ACGGAAACACCAAAGCCTTCCTGA -ACGGAAACACCAAAGCCTTAGCGA -ACGGAAACACCAAAGCCTCACAGA -ACGGAAACACCAAAGCCTGCAAGA -ACGGAAACACCAAAGCCTGGTTGA -ACGGAAACACCAAAGCCTTCCGAT -ACGGAAACACCAAAGCCTTGGCAT -ACGGAAACACCAAAGCCTCGAGAT -ACGGAAACACCAAAGCCTTACCAC -ACGGAAACACCAAAGCCTCAGAAC -ACGGAAACACCAAAGCCTGTCTAC -ACGGAAACACCAAAGCCTACGTAC -ACGGAAACACCAAAGCCTAGTGAC -ACGGAAACACCAAAGCCTCTGTAG -ACGGAAACACCAAAGCCTCCTAAG -ACGGAAACACCAAAGCCTGTTCAG -ACGGAAACACCAAAGCCTGCATAG -ACGGAAACACCAAAGCCTGACAAG -ACGGAAACACCAAAGCCTAAGCAG -ACGGAAACACCAAAGCCTCGTCAA -ACGGAAACACCAAAGCCTGCTGAA -ACGGAAACACCAAAGCCTAGTACG -ACGGAAACACCAAAGCCTATCCGA -ACGGAAACACCAAAGCCTATGGGA -ACGGAAACACCAAAGCCTGTGCAA -ACGGAAACACCAAAGCCTGAGGAA -ACGGAAACACCAAAGCCTCAGGTA -ACGGAAACACCAAAGCCTGACTCT -ACGGAAACACCAAAGCCTAGTCCT -ACGGAAACACCAAAGCCTTAAGCC -ACGGAAACACCAAAGCCTATAGCC -ACGGAAACACCAAAGCCTTAACCG -ACGGAAACACCAAAGCCTATGCCA -ACGGAAACACCACAGGTTGGAAAC -ACGGAAACACCACAGGTTAACACC -ACGGAAACACCACAGGTTATCGAG -ACGGAAACACCACAGGTTCTCCTT -ACGGAAACACCACAGGTTCCTGTT -ACGGAAACACCACAGGTTCGGTTT -ACGGAAACACCACAGGTTGTGGTT -ACGGAAACACCACAGGTTGCCTTT -ACGGAAACACCACAGGTTGGTCTT -ACGGAAACACCACAGGTTACGCTT -ACGGAAACACCACAGGTTAGCGTT -ACGGAAACACCACAGGTTTTCGTC -ACGGAAACACCACAGGTTTCTCTC -ACGGAAACACCACAGGTTTGGATC -ACGGAAACACCACAGGTTCACTTC -ACGGAAACACCACAGGTTGTACTC -ACGGAAACACCACAGGTTGATGTC -ACGGAAACACCACAGGTTACAGTC -ACGGAAACACCACAGGTTTTGCTG -ACGGAAACACCACAGGTTTCCATG -ACGGAAACACCACAGGTTTGTGTG -ACGGAAACACCACAGGTTCTAGTG -ACGGAAACACCACAGGTTCATCTG -ACGGAAACACCACAGGTTGAGTTG -ACGGAAACACCACAGGTTAGACTG -ACGGAAACACCACAGGTTTCGGTA -ACGGAAACACCACAGGTTTGCCTA -ACGGAAACACCACAGGTTCCACTA -ACGGAAACACCACAGGTTGGAGTA -ACGGAAACACCACAGGTTTCGTCT -ACGGAAACACCACAGGTTTGCACT -ACGGAAACACCACAGGTTCTGACT -ACGGAAACACCACAGGTTCAACCT -ACGGAAACACCACAGGTTGCTACT -ACGGAAACACCACAGGTTGGATCT -ACGGAAACACCACAGGTTAAGGCT -ACGGAAACACCACAGGTTTCAACC -ACGGAAACACCACAGGTTTGTTCC -ACGGAAACACCACAGGTTATTCCC -ACGGAAACACCACAGGTTTTCTCG -ACGGAAACACCACAGGTTTAGACG -ACGGAAACACCACAGGTTGTAACG -ACGGAAACACCACAGGTTACTTCG -ACGGAAACACCACAGGTTTACGCA -ACGGAAACACCACAGGTTCTTGCA -ACGGAAACACCACAGGTTCGAACA -ACGGAAACACCACAGGTTCAGTCA -ACGGAAACACCACAGGTTGATCCA -ACGGAAACACCACAGGTTACGACA -ACGGAAACACCACAGGTTAGCTCA -ACGGAAACACCACAGGTTTCACGT -ACGGAAACACCACAGGTTCGTAGT -ACGGAAACACCACAGGTTGTCAGT -ACGGAAACACCACAGGTTGAAGGT -ACGGAAACACCACAGGTTAACCGT -ACGGAAACACCACAGGTTTTGTGC -ACGGAAACACCACAGGTTCTAAGC -ACGGAAACACCACAGGTTACTAGC -ACGGAAACACCACAGGTTAGATGC -ACGGAAACACCACAGGTTTGAAGG -ACGGAAACACCACAGGTTCAATGG -ACGGAAACACCACAGGTTATGAGG -ACGGAAACACCACAGGTTAATGGG -ACGGAAACACCACAGGTTTCCTGA -ACGGAAACACCACAGGTTTAGCGA -ACGGAAACACCACAGGTTCACAGA -ACGGAAACACCACAGGTTGCAAGA -ACGGAAACACCACAGGTTGGTTGA -ACGGAAACACCACAGGTTTCCGAT -ACGGAAACACCACAGGTTTGGCAT -ACGGAAACACCACAGGTTCGAGAT -ACGGAAACACCACAGGTTTACCAC -ACGGAAACACCACAGGTTCAGAAC -ACGGAAACACCACAGGTTGTCTAC -ACGGAAACACCACAGGTTACGTAC -ACGGAAACACCACAGGTTAGTGAC -ACGGAAACACCACAGGTTCTGTAG -ACGGAAACACCACAGGTTCCTAAG -ACGGAAACACCACAGGTTGTTCAG -ACGGAAACACCACAGGTTGCATAG -ACGGAAACACCACAGGTTGACAAG -ACGGAAACACCACAGGTTAAGCAG -ACGGAAACACCACAGGTTCGTCAA -ACGGAAACACCACAGGTTGCTGAA -ACGGAAACACCACAGGTTAGTACG -ACGGAAACACCACAGGTTATCCGA -ACGGAAACACCACAGGTTATGGGA -ACGGAAACACCACAGGTTGTGCAA -ACGGAAACACCACAGGTTGAGGAA -ACGGAAACACCACAGGTTCAGGTA -ACGGAAACACCACAGGTTGACTCT -ACGGAAACACCACAGGTTAGTCCT -ACGGAAACACCACAGGTTTAAGCC -ACGGAAACACCACAGGTTATAGCC -ACGGAAACACCACAGGTTTAACCG -ACGGAAACACCACAGGTTATGCCA -ACGGAAACACCATAGGCAGGAAAC -ACGGAAACACCATAGGCAAACACC -ACGGAAACACCATAGGCAATCGAG -ACGGAAACACCATAGGCACTCCTT -ACGGAAACACCATAGGCACCTGTT -ACGGAAACACCATAGGCACGGTTT -ACGGAAACACCATAGGCAGTGGTT -ACGGAAACACCATAGGCAGCCTTT -ACGGAAACACCATAGGCAGGTCTT -ACGGAAACACCATAGGCAACGCTT -ACGGAAACACCATAGGCAAGCGTT -ACGGAAACACCATAGGCATTCGTC -ACGGAAACACCATAGGCATCTCTC -ACGGAAACACCATAGGCATGGATC -ACGGAAACACCATAGGCACACTTC -ACGGAAACACCATAGGCAGTACTC -ACGGAAACACCATAGGCAGATGTC -ACGGAAACACCATAGGCAACAGTC -ACGGAAACACCATAGGCATTGCTG -ACGGAAACACCATAGGCATCCATG -ACGGAAACACCATAGGCATGTGTG -ACGGAAACACCATAGGCACTAGTG -ACGGAAACACCATAGGCACATCTG -ACGGAAACACCATAGGCAGAGTTG -ACGGAAACACCATAGGCAAGACTG -ACGGAAACACCATAGGCATCGGTA -ACGGAAACACCATAGGCATGCCTA -ACGGAAACACCATAGGCACCACTA -ACGGAAACACCATAGGCAGGAGTA -ACGGAAACACCATAGGCATCGTCT -ACGGAAACACCATAGGCATGCACT -ACGGAAACACCATAGGCACTGACT -ACGGAAACACCATAGGCACAACCT -ACGGAAACACCATAGGCAGCTACT -ACGGAAACACCATAGGCAGGATCT -ACGGAAACACCATAGGCAAAGGCT -ACGGAAACACCATAGGCATCAACC -ACGGAAACACCATAGGCATGTTCC -ACGGAAACACCATAGGCAATTCCC -ACGGAAACACCATAGGCATTCTCG -ACGGAAACACCATAGGCATAGACG -ACGGAAACACCATAGGCAGTAACG -ACGGAAACACCATAGGCAACTTCG -ACGGAAACACCATAGGCATACGCA -ACGGAAACACCATAGGCACTTGCA -ACGGAAACACCATAGGCACGAACA -ACGGAAACACCATAGGCACAGTCA -ACGGAAACACCATAGGCAGATCCA -ACGGAAACACCATAGGCAACGACA -ACGGAAACACCATAGGCAAGCTCA -ACGGAAACACCATAGGCATCACGT -ACGGAAACACCATAGGCACGTAGT -ACGGAAACACCATAGGCAGTCAGT -ACGGAAACACCATAGGCAGAAGGT -ACGGAAACACCATAGGCAAACCGT -ACGGAAACACCATAGGCATTGTGC -ACGGAAACACCATAGGCACTAAGC -ACGGAAACACCATAGGCAACTAGC -ACGGAAACACCATAGGCAAGATGC -ACGGAAACACCATAGGCATGAAGG -ACGGAAACACCATAGGCACAATGG -ACGGAAACACCATAGGCAATGAGG -ACGGAAACACCATAGGCAAATGGG -ACGGAAACACCATAGGCATCCTGA -ACGGAAACACCATAGGCATAGCGA -ACGGAAACACCATAGGCACACAGA -ACGGAAACACCATAGGCAGCAAGA -ACGGAAACACCATAGGCAGGTTGA -ACGGAAACACCATAGGCATCCGAT -ACGGAAACACCATAGGCATGGCAT -ACGGAAACACCATAGGCACGAGAT -ACGGAAACACCATAGGCATACCAC -ACGGAAACACCATAGGCACAGAAC -ACGGAAACACCATAGGCAGTCTAC -ACGGAAACACCATAGGCAACGTAC -ACGGAAACACCATAGGCAAGTGAC -ACGGAAACACCATAGGCACTGTAG -ACGGAAACACCATAGGCACCTAAG -ACGGAAACACCATAGGCAGTTCAG -ACGGAAACACCATAGGCAGCATAG -ACGGAAACACCATAGGCAGACAAG -ACGGAAACACCATAGGCAAAGCAG -ACGGAAACACCATAGGCACGTCAA -ACGGAAACACCATAGGCAGCTGAA -ACGGAAACACCATAGGCAAGTACG -ACGGAAACACCATAGGCAATCCGA -ACGGAAACACCATAGGCAATGGGA -ACGGAAACACCATAGGCAGTGCAA -ACGGAAACACCATAGGCAGAGGAA -ACGGAAACACCATAGGCACAGGTA -ACGGAAACACCATAGGCAGACTCT -ACGGAAACACCATAGGCAAGTCCT -ACGGAAACACCATAGGCATAAGCC -ACGGAAACACCATAGGCAATAGCC -ACGGAAACACCATAGGCATAACCG -ACGGAAACACCATAGGCAATGCCA -ACGGAAACACCAAAGGACGGAAAC -ACGGAAACACCAAAGGACAACACC -ACGGAAACACCAAAGGACATCGAG -ACGGAAACACCAAAGGACCTCCTT -ACGGAAACACCAAAGGACCCTGTT -ACGGAAACACCAAAGGACCGGTTT -ACGGAAACACCAAAGGACGTGGTT -ACGGAAACACCAAAGGACGCCTTT -ACGGAAACACCAAAGGACGGTCTT -ACGGAAACACCAAAGGACACGCTT -ACGGAAACACCAAAGGACAGCGTT -ACGGAAACACCAAAGGACTTCGTC -ACGGAAACACCAAAGGACTCTCTC -ACGGAAACACCAAAGGACTGGATC -ACGGAAACACCAAAGGACCACTTC -ACGGAAACACCAAAGGACGTACTC -ACGGAAACACCAAAGGACGATGTC -ACGGAAACACCAAAGGACACAGTC -ACGGAAACACCAAAGGACTTGCTG -ACGGAAACACCAAAGGACTCCATG -ACGGAAACACCAAAGGACTGTGTG -ACGGAAACACCAAAGGACCTAGTG -ACGGAAACACCAAAGGACCATCTG -ACGGAAACACCAAAGGACGAGTTG -ACGGAAACACCAAAGGACAGACTG -ACGGAAACACCAAAGGACTCGGTA -ACGGAAACACCAAAGGACTGCCTA -ACGGAAACACCAAAGGACCCACTA -ACGGAAACACCAAAGGACGGAGTA -ACGGAAACACCAAAGGACTCGTCT -ACGGAAACACCAAAGGACTGCACT -ACGGAAACACCAAAGGACCTGACT -ACGGAAACACCAAAGGACCAACCT -ACGGAAACACCAAAGGACGCTACT -ACGGAAACACCAAAGGACGGATCT -ACGGAAACACCAAAGGACAAGGCT -ACGGAAACACCAAAGGACTCAACC -ACGGAAACACCAAAGGACTGTTCC -ACGGAAACACCAAAGGACATTCCC -ACGGAAACACCAAAGGACTTCTCG -ACGGAAACACCAAAGGACTAGACG -ACGGAAACACCAAAGGACGTAACG -ACGGAAACACCAAAGGACACTTCG -ACGGAAACACCAAAGGACTACGCA -ACGGAAACACCAAAGGACCTTGCA -ACGGAAACACCAAAGGACCGAACA -ACGGAAACACCAAAGGACCAGTCA -ACGGAAACACCAAAGGACGATCCA -ACGGAAACACCAAAGGACACGACA -ACGGAAACACCAAAGGACAGCTCA -ACGGAAACACCAAAGGACTCACGT -ACGGAAACACCAAAGGACCGTAGT -ACGGAAACACCAAAGGACGTCAGT -ACGGAAACACCAAAGGACGAAGGT -ACGGAAACACCAAAGGACAACCGT -ACGGAAACACCAAAGGACTTGTGC -ACGGAAACACCAAAGGACCTAAGC -ACGGAAACACCAAAGGACACTAGC -ACGGAAACACCAAAGGACAGATGC -ACGGAAACACCAAAGGACTGAAGG -ACGGAAACACCAAAGGACCAATGG -ACGGAAACACCAAAGGACATGAGG -ACGGAAACACCAAAGGACAATGGG -ACGGAAACACCAAAGGACTCCTGA -ACGGAAACACCAAAGGACTAGCGA -ACGGAAACACCAAAGGACCACAGA -ACGGAAACACCAAAGGACGCAAGA -ACGGAAACACCAAAGGACGGTTGA -ACGGAAACACCAAAGGACTCCGAT -ACGGAAACACCAAAGGACTGGCAT -ACGGAAACACCAAAGGACCGAGAT -ACGGAAACACCAAAGGACTACCAC -ACGGAAACACCAAAGGACCAGAAC -ACGGAAACACCAAAGGACGTCTAC -ACGGAAACACCAAAGGACACGTAC -ACGGAAACACCAAAGGACAGTGAC -ACGGAAACACCAAAGGACCTGTAG -ACGGAAACACCAAAGGACCCTAAG -ACGGAAACACCAAAGGACGTTCAG -ACGGAAACACCAAAGGACGCATAG -ACGGAAACACCAAAGGACGACAAG -ACGGAAACACCAAAGGACAAGCAG -ACGGAAACACCAAAGGACCGTCAA -ACGGAAACACCAAAGGACGCTGAA -ACGGAAACACCAAAGGACAGTACG -ACGGAAACACCAAAGGACATCCGA -ACGGAAACACCAAAGGACATGGGA -ACGGAAACACCAAAGGACGTGCAA -ACGGAAACACCAAAGGACGAGGAA -ACGGAAACACCAAAGGACCAGGTA -ACGGAAACACCAAAGGACGACTCT -ACGGAAACACCAAAGGACAGTCCT -ACGGAAACACCAAAGGACTAAGCC -ACGGAAACACCAAAGGACATAGCC -ACGGAAACACCAAAGGACTAACCG -ACGGAAACACCAAAGGACATGCCA -ACGGAAACACCACAGAAGGGAAAC -ACGGAAACACCACAGAAGAACACC -ACGGAAACACCACAGAAGATCGAG -ACGGAAACACCACAGAAGCTCCTT -ACGGAAACACCACAGAAGCCTGTT -ACGGAAACACCACAGAAGCGGTTT -ACGGAAACACCACAGAAGGTGGTT -ACGGAAACACCACAGAAGGCCTTT -ACGGAAACACCACAGAAGGGTCTT -ACGGAAACACCACAGAAGACGCTT -ACGGAAACACCACAGAAGAGCGTT -ACGGAAACACCACAGAAGTTCGTC -ACGGAAACACCACAGAAGTCTCTC -ACGGAAACACCACAGAAGTGGATC -ACGGAAACACCACAGAAGCACTTC -ACGGAAACACCACAGAAGGTACTC -ACGGAAACACCACAGAAGGATGTC -ACGGAAACACCACAGAAGACAGTC -ACGGAAACACCACAGAAGTTGCTG -ACGGAAACACCACAGAAGTCCATG -ACGGAAACACCACAGAAGTGTGTG -ACGGAAACACCACAGAAGCTAGTG -ACGGAAACACCACAGAAGCATCTG -ACGGAAACACCACAGAAGGAGTTG -ACGGAAACACCACAGAAGAGACTG -ACGGAAACACCACAGAAGTCGGTA -ACGGAAACACCACAGAAGTGCCTA -ACGGAAACACCACAGAAGCCACTA -ACGGAAACACCACAGAAGGGAGTA -ACGGAAACACCACAGAAGTCGTCT -ACGGAAACACCACAGAAGTGCACT -ACGGAAACACCACAGAAGCTGACT -ACGGAAACACCACAGAAGCAACCT -ACGGAAACACCACAGAAGGCTACT -ACGGAAACACCACAGAAGGGATCT -ACGGAAACACCACAGAAGAAGGCT -ACGGAAACACCACAGAAGTCAACC -ACGGAAACACCACAGAAGTGTTCC -ACGGAAACACCACAGAAGATTCCC -ACGGAAACACCACAGAAGTTCTCG -ACGGAAACACCACAGAAGTAGACG -ACGGAAACACCACAGAAGGTAACG -ACGGAAACACCACAGAAGACTTCG -ACGGAAACACCACAGAAGTACGCA -ACGGAAACACCACAGAAGCTTGCA -ACGGAAACACCACAGAAGCGAACA -ACGGAAACACCACAGAAGCAGTCA -ACGGAAACACCACAGAAGGATCCA -ACGGAAACACCACAGAAGACGACA -ACGGAAACACCACAGAAGAGCTCA -ACGGAAACACCACAGAAGTCACGT -ACGGAAACACCACAGAAGCGTAGT -ACGGAAACACCACAGAAGGTCAGT -ACGGAAACACCACAGAAGGAAGGT -ACGGAAACACCACAGAAGAACCGT -ACGGAAACACCACAGAAGTTGTGC -ACGGAAACACCACAGAAGCTAAGC -ACGGAAACACCACAGAAGACTAGC -ACGGAAACACCACAGAAGAGATGC -ACGGAAACACCACAGAAGTGAAGG -ACGGAAACACCACAGAAGCAATGG -ACGGAAACACCACAGAAGATGAGG -ACGGAAACACCACAGAAGAATGGG -ACGGAAACACCACAGAAGTCCTGA -ACGGAAACACCACAGAAGTAGCGA -ACGGAAACACCACAGAAGCACAGA -ACGGAAACACCACAGAAGGCAAGA -ACGGAAACACCACAGAAGGGTTGA -ACGGAAACACCACAGAAGTCCGAT -ACGGAAACACCACAGAAGTGGCAT -ACGGAAACACCACAGAAGCGAGAT -ACGGAAACACCACAGAAGTACCAC -ACGGAAACACCACAGAAGCAGAAC -ACGGAAACACCACAGAAGGTCTAC -ACGGAAACACCACAGAAGACGTAC -ACGGAAACACCACAGAAGAGTGAC -ACGGAAACACCACAGAAGCTGTAG -ACGGAAACACCACAGAAGCCTAAG -ACGGAAACACCACAGAAGGTTCAG -ACGGAAACACCACAGAAGGCATAG -ACGGAAACACCACAGAAGGACAAG -ACGGAAACACCACAGAAGAAGCAG -ACGGAAACACCACAGAAGCGTCAA -ACGGAAACACCACAGAAGGCTGAA -ACGGAAACACCACAGAAGAGTACG -ACGGAAACACCACAGAAGATCCGA -ACGGAAACACCACAGAAGATGGGA -ACGGAAACACCACAGAAGGTGCAA -ACGGAAACACCACAGAAGGAGGAA -ACGGAAACACCACAGAAGCAGGTA -ACGGAAACACCACAGAAGGACTCT -ACGGAAACACCACAGAAGAGTCCT -ACGGAAACACCACAGAAGTAAGCC -ACGGAAACACCACAGAAGATAGCC -ACGGAAACACCACAGAAGTAACCG -ACGGAAACACCACAGAAGATGCCA -ACGGAAACACCACAACGTGGAAAC -ACGGAAACACCACAACGTAACACC -ACGGAAACACCACAACGTATCGAG -ACGGAAACACCACAACGTCTCCTT -ACGGAAACACCACAACGTCCTGTT -ACGGAAACACCACAACGTCGGTTT -ACGGAAACACCACAACGTGTGGTT -ACGGAAACACCACAACGTGCCTTT -ACGGAAACACCACAACGTGGTCTT -ACGGAAACACCACAACGTACGCTT -ACGGAAACACCACAACGTAGCGTT -ACGGAAACACCACAACGTTTCGTC -ACGGAAACACCACAACGTTCTCTC -ACGGAAACACCACAACGTTGGATC -ACGGAAACACCACAACGTCACTTC -ACGGAAACACCACAACGTGTACTC -ACGGAAACACCACAACGTGATGTC -ACGGAAACACCACAACGTACAGTC -ACGGAAACACCACAACGTTTGCTG -ACGGAAACACCACAACGTTCCATG -ACGGAAACACCACAACGTTGTGTG -ACGGAAACACCACAACGTCTAGTG -ACGGAAACACCACAACGTCATCTG -ACGGAAACACCACAACGTGAGTTG -ACGGAAACACCACAACGTAGACTG -ACGGAAACACCACAACGTTCGGTA -ACGGAAACACCACAACGTTGCCTA -ACGGAAACACCACAACGTCCACTA -ACGGAAACACCACAACGTGGAGTA -ACGGAAACACCACAACGTTCGTCT -ACGGAAACACCACAACGTTGCACT -ACGGAAACACCACAACGTCTGACT -ACGGAAACACCACAACGTCAACCT -ACGGAAACACCACAACGTGCTACT -ACGGAAACACCACAACGTGGATCT -ACGGAAACACCACAACGTAAGGCT -ACGGAAACACCACAACGTTCAACC -ACGGAAACACCACAACGTTGTTCC -ACGGAAACACCACAACGTATTCCC -ACGGAAACACCACAACGTTTCTCG -ACGGAAACACCACAACGTTAGACG -ACGGAAACACCACAACGTGTAACG -ACGGAAACACCACAACGTACTTCG -ACGGAAACACCACAACGTTACGCA -ACGGAAACACCACAACGTCTTGCA -ACGGAAACACCACAACGTCGAACA -ACGGAAACACCACAACGTCAGTCA -ACGGAAACACCACAACGTGATCCA -ACGGAAACACCACAACGTACGACA -ACGGAAACACCACAACGTAGCTCA -ACGGAAACACCACAACGTTCACGT -ACGGAAACACCACAACGTCGTAGT -ACGGAAACACCACAACGTGTCAGT -ACGGAAACACCACAACGTGAAGGT -ACGGAAACACCACAACGTAACCGT -ACGGAAACACCACAACGTTTGTGC -ACGGAAACACCACAACGTCTAAGC -ACGGAAACACCACAACGTACTAGC -ACGGAAACACCACAACGTAGATGC -ACGGAAACACCACAACGTTGAAGG -ACGGAAACACCACAACGTCAATGG -ACGGAAACACCACAACGTATGAGG -ACGGAAACACCACAACGTAATGGG -ACGGAAACACCACAACGTTCCTGA -ACGGAAACACCACAACGTTAGCGA -ACGGAAACACCACAACGTCACAGA -ACGGAAACACCACAACGTGCAAGA -ACGGAAACACCACAACGTGGTTGA -ACGGAAACACCACAACGTTCCGAT -ACGGAAACACCACAACGTTGGCAT -ACGGAAACACCACAACGTCGAGAT -ACGGAAACACCACAACGTTACCAC -ACGGAAACACCACAACGTCAGAAC -ACGGAAACACCACAACGTGTCTAC -ACGGAAACACCACAACGTACGTAC -ACGGAAACACCACAACGTAGTGAC -ACGGAAACACCACAACGTCTGTAG -ACGGAAACACCACAACGTCCTAAG -ACGGAAACACCACAACGTGTTCAG -ACGGAAACACCACAACGTGCATAG -ACGGAAACACCACAACGTGACAAG -ACGGAAACACCACAACGTAAGCAG -ACGGAAACACCACAACGTCGTCAA -ACGGAAACACCACAACGTGCTGAA -ACGGAAACACCACAACGTAGTACG -ACGGAAACACCACAACGTATCCGA -ACGGAAACACCACAACGTATGGGA -ACGGAAACACCACAACGTGTGCAA -ACGGAAACACCACAACGTGAGGAA -ACGGAAACACCACAACGTCAGGTA -ACGGAAACACCACAACGTGACTCT -ACGGAAACACCACAACGTAGTCCT -ACGGAAACACCACAACGTTAAGCC -ACGGAAACACCACAACGTATAGCC -ACGGAAACACCACAACGTTAACCG -ACGGAAACACCACAACGTATGCCA -ACGGAAACACCAGAAGCTGGAAAC -ACGGAAACACCAGAAGCTAACACC -ACGGAAACACCAGAAGCTATCGAG -ACGGAAACACCAGAAGCTCTCCTT -ACGGAAACACCAGAAGCTCCTGTT -ACGGAAACACCAGAAGCTCGGTTT -ACGGAAACACCAGAAGCTGTGGTT -ACGGAAACACCAGAAGCTGCCTTT -ACGGAAACACCAGAAGCTGGTCTT -ACGGAAACACCAGAAGCTACGCTT -ACGGAAACACCAGAAGCTAGCGTT -ACGGAAACACCAGAAGCTTTCGTC -ACGGAAACACCAGAAGCTTCTCTC -ACGGAAACACCAGAAGCTTGGATC -ACGGAAACACCAGAAGCTCACTTC -ACGGAAACACCAGAAGCTGTACTC -ACGGAAACACCAGAAGCTGATGTC -ACGGAAACACCAGAAGCTACAGTC -ACGGAAACACCAGAAGCTTTGCTG -ACGGAAACACCAGAAGCTTCCATG -ACGGAAACACCAGAAGCTTGTGTG -ACGGAAACACCAGAAGCTCTAGTG -ACGGAAACACCAGAAGCTCATCTG -ACGGAAACACCAGAAGCTGAGTTG -ACGGAAACACCAGAAGCTAGACTG -ACGGAAACACCAGAAGCTTCGGTA -ACGGAAACACCAGAAGCTTGCCTA -ACGGAAACACCAGAAGCTCCACTA -ACGGAAACACCAGAAGCTGGAGTA -ACGGAAACACCAGAAGCTTCGTCT -ACGGAAACACCAGAAGCTTGCACT -ACGGAAACACCAGAAGCTCTGACT -ACGGAAACACCAGAAGCTCAACCT -ACGGAAACACCAGAAGCTGCTACT -ACGGAAACACCAGAAGCTGGATCT -ACGGAAACACCAGAAGCTAAGGCT -ACGGAAACACCAGAAGCTTCAACC -ACGGAAACACCAGAAGCTTGTTCC -ACGGAAACACCAGAAGCTATTCCC -ACGGAAACACCAGAAGCTTTCTCG -ACGGAAACACCAGAAGCTTAGACG -ACGGAAACACCAGAAGCTGTAACG -ACGGAAACACCAGAAGCTACTTCG -ACGGAAACACCAGAAGCTTACGCA -ACGGAAACACCAGAAGCTCTTGCA -ACGGAAACACCAGAAGCTCGAACA -ACGGAAACACCAGAAGCTCAGTCA -ACGGAAACACCAGAAGCTGATCCA -ACGGAAACACCAGAAGCTACGACA -ACGGAAACACCAGAAGCTAGCTCA -ACGGAAACACCAGAAGCTTCACGT -ACGGAAACACCAGAAGCTCGTAGT -ACGGAAACACCAGAAGCTGTCAGT -ACGGAAACACCAGAAGCTGAAGGT -ACGGAAACACCAGAAGCTAACCGT -ACGGAAACACCAGAAGCTTTGTGC -ACGGAAACACCAGAAGCTCTAAGC -ACGGAAACACCAGAAGCTACTAGC -ACGGAAACACCAGAAGCTAGATGC -ACGGAAACACCAGAAGCTTGAAGG -ACGGAAACACCAGAAGCTCAATGG -ACGGAAACACCAGAAGCTATGAGG -ACGGAAACACCAGAAGCTAATGGG -ACGGAAACACCAGAAGCTTCCTGA -ACGGAAACACCAGAAGCTTAGCGA -ACGGAAACACCAGAAGCTCACAGA -ACGGAAACACCAGAAGCTGCAAGA -ACGGAAACACCAGAAGCTGGTTGA -ACGGAAACACCAGAAGCTTCCGAT -ACGGAAACACCAGAAGCTTGGCAT -ACGGAAACACCAGAAGCTCGAGAT -ACGGAAACACCAGAAGCTTACCAC -ACGGAAACACCAGAAGCTCAGAAC -ACGGAAACACCAGAAGCTGTCTAC -ACGGAAACACCAGAAGCTACGTAC -ACGGAAACACCAGAAGCTAGTGAC -ACGGAAACACCAGAAGCTCTGTAG -ACGGAAACACCAGAAGCTCCTAAG -ACGGAAACACCAGAAGCTGTTCAG -ACGGAAACACCAGAAGCTGCATAG -ACGGAAACACCAGAAGCTGACAAG -ACGGAAACACCAGAAGCTAAGCAG -ACGGAAACACCAGAAGCTCGTCAA -ACGGAAACACCAGAAGCTGCTGAA -ACGGAAACACCAGAAGCTAGTACG -ACGGAAACACCAGAAGCTATCCGA -ACGGAAACACCAGAAGCTATGGGA -ACGGAAACACCAGAAGCTGTGCAA -ACGGAAACACCAGAAGCTGAGGAA -ACGGAAACACCAGAAGCTCAGGTA -ACGGAAACACCAGAAGCTGACTCT -ACGGAAACACCAGAAGCTAGTCCT -ACGGAAACACCAGAAGCTTAAGCC -ACGGAAACACCAGAAGCTATAGCC -ACGGAAACACCAGAAGCTTAACCG -ACGGAAACACCAGAAGCTATGCCA -ACGGAAACACCAACGAGTGGAAAC -ACGGAAACACCAACGAGTAACACC -ACGGAAACACCAACGAGTATCGAG -ACGGAAACACCAACGAGTCTCCTT -ACGGAAACACCAACGAGTCCTGTT -ACGGAAACACCAACGAGTCGGTTT -ACGGAAACACCAACGAGTGTGGTT -ACGGAAACACCAACGAGTGCCTTT -ACGGAAACACCAACGAGTGGTCTT -ACGGAAACACCAACGAGTACGCTT -ACGGAAACACCAACGAGTAGCGTT -ACGGAAACACCAACGAGTTTCGTC -ACGGAAACACCAACGAGTTCTCTC -ACGGAAACACCAACGAGTTGGATC -ACGGAAACACCAACGAGTCACTTC -ACGGAAACACCAACGAGTGTACTC -ACGGAAACACCAACGAGTGATGTC -ACGGAAACACCAACGAGTACAGTC -ACGGAAACACCAACGAGTTTGCTG -ACGGAAACACCAACGAGTTCCATG -ACGGAAACACCAACGAGTTGTGTG -ACGGAAACACCAACGAGTCTAGTG -ACGGAAACACCAACGAGTCATCTG -ACGGAAACACCAACGAGTGAGTTG -ACGGAAACACCAACGAGTAGACTG -ACGGAAACACCAACGAGTTCGGTA -ACGGAAACACCAACGAGTTGCCTA -ACGGAAACACCAACGAGTCCACTA -ACGGAAACACCAACGAGTGGAGTA -ACGGAAACACCAACGAGTTCGTCT -ACGGAAACACCAACGAGTTGCACT -ACGGAAACACCAACGAGTCTGACT -ACGGAAACACCAACGAGTCAACCT -ACGGAAACACCAACGAGTGCTACT -ACGGAAACACCAACGAGTGGATCT -ACGGAAACACCAACGAGTAAGGCT -ACGGAAACACCAACGAGTTCAACC -ACGGAAACACCAACGAGTTGTTCC -ACGGAAACACCAACGAGTATTCCC -ACGGAAACACCAACGAGTTTCTCG -ACGGAAACACCAACGAGTTAGACG -ACGGAAACACCAACGAGTGTAACG -ACGGAAACACCAACGAGTACTTCG -ACGGAAACACCAACGAGTTACGCA -ACGGAAACACCAACGAGTCTTGCA -ACGGAAACACCAACGAGTCGAACA -ACGGAAACACCAACGAGTCAGTCA -ACGGAAACACCAACGAGTGATCCA -ACGGAAACACCAACGAGTACGACA -ACGGAAACACCAACGAGTAGCTCA -ACGGAAACACCAACGAGTTCACGT -ACGGAAACACCAACGAGTCGTAGT -ACGGAAACACCAACGAGTGTCAGT -ACGGAAACACCAACGAGTGAAGGT -ACGGAAACACCAACGAGTAACCGT -ACGGAAACACCAACGAGTTTGTGC -ACGGAAACACCAACGAGTCTAAGC -ACGGAAACACCAACGAGTACTAGC -ACGGAAACACCAACGAGTAGATGC -ACGGAAACACCAACGAGTTGAAGG -ACGGAAACACCAACGAGTCAATGG -ACGGAAACACCAACGAGTATGAGG -ACGGAAACACCAACGAGTAATGGG -ACGGAAACACCAACGAGTTCCTGA -ACGGAAACACCAACGAGTTAGCGA -ACGGAAACACCAACGAGTCACAGA -ACGGAAACACCAACGAGTGCAAGA -ACGGAAACACCAACGAGTGGTTGA -ACGGAAACACCAACGAGTTCCGAT -ACGGAAACACCAACGAGTTGGCAT -ACGGAAACACCAACGAGTCGAGAT -ACGGAAACACCAACGAGTTACCAC -ACGGAAACACCAACGAGTCAGAAC -ACGGAAACACCAACGAGTGTCTAC -ACGGAAACACCAACGAGTACGTAC -ACGGAAACACCAACGAGTAGTGAC -ACGGAAACACCAACGAGTCTGTAG -ACGGAAACACCAACGAGTCCTAAG -ACGGAAACACCAACGAGTGTTCAG -ACGGAAACACCAACGAGTGCATAG -ACGGAAACACCAACGAGTGACAAG -ACGGAAACACCAACGAGTAAGCAG -ACGGAAACACCAACGAGTCGTCAA -ACGGAAACACCAACGAGTGCTGAA -ACGGAAACACCAACGAGTAGTACG -ACGGAAACACCAACGAGTATCCGA -ACGGAAACACCAACGAGTATGGGA -ACGGAAACACCAACGAGTGTGCAA -ACGGAAACACCAACGAGTGAGGAA -ACGGAAACACCAACGAGTCAGGTA -ACGGAAACACCAACGAGTGACTCT -ACGGAAACACCAACGAGTAGTCCT -ACGGAAACACCAACGAGTTAAGCC -ACGGAAACACCAACGAGTATAGCC -ACGGAAACACCAACGAGTTAACCG -ACGGAAACACCAACGAGTATGCCA -ACGGAAACACCACGAATCGGAAAC -ACGGAAACACCACGAATCAACACC -ACGGAAACACCACGAATCATCGAG -ACGGAAACACCACGAATCCTCCTT -ACGGAAACACCACGAATCCCTGTT -ACGGAAACACCACGAATCCGGTTT -ACGGAAACACCACGAATCGTGGTT -ACGGAAACACCACGAATCGCCTTT -ACGGAAACACCACGAATCGGTCTT -ACGGAAACACCACGAATCACGCTT -ACGGAAACACCACGAATCAGCGTT -ACGGAAACACCACGAATCTTCGTC -ACGGAAACACCACGAATCTCTCTC -ACGGAAACACCACGAATCTGGATC -ACGGAAACACCACGAATCCACTTC -ACGGAAACACCACGAATCGTACTC -ACGGAAACACCACGAATCGATGTC -ACGGAAACACCACGAATCACAGTC -ACGGAAACACCACGAATCTTGCTG -ACGGAAACACCACGAATCTCCATG -ACGGAAACACCACGAATCTGTGTG -ACGGAAACACCACGAATCCTAGTG -ACGGAAACACCACGAATCCATCTG -ACGGAAACACCACGAATCGAGTTG -ACGGAAACACCACGAATCAGACTG -ACGGAAACACCACGAATCTCGGTA -ACGGAAACACCACGAATCTGCCTA -ACGGAAACACCACGAATCCCACTA -ACGGAAACACCACGAATCGGAGTA -ACGGAAACACCACGAATCTCGTCT -ACGGAAACACCACGAATCTGCACT -ACGGAAACACCACGAATCCTGACT -ACGGAAACACCACGAATCCAACCT -ACGGAAACACCACGAATCGCTACT -ACGGAAACACCACGAATCGGATCT -ACGGAAACACCACGAATCAAGGCT -ACGGAAACACCACGAATCTCAACC -ACGGAAACACCACGAATCTGTTCC -ACGGAAACACCACGAATCATTCCC -ACGGAAACACCACGAATCTTCTCG -ACGGAAACACCACGAATCTAGACG -ACGGAAACACCACGAATCGTAACG -ACGGAAACACCACGAATCACTTCG -ACGGAAACACCACGAATCTACGCA -ACGGAAACACCACGAATCCTTGCA -ACGGAAACACCACGAATCCGAACA -ACGGAAACACCACGAATCCAGTCA -ACGGAAACACCACGAATCGATCCA -ACGGAAACACCACGAATCACGACA -ACGGAAACACCACGAATCAGCTCA -ACGGAAACACCACGAATCTCACGT -ACGGAAACACCACGAATCCGTAGT -ACGGAAACACCACGAATCGTCAGT -ACGGAAACACCACGAATCGAAGGT -ACGGAAACACCACGAATCAACCGT -ACGGAAACACCACGAATCTTGTGC -ACGGAAACACCACGAATCCTAAGC -ACGGAAACACCACGAATCACTAGC -ACGGAAACACCACGAATCAGATGC -ACGGAAACACCACGAATCTGAAGG -ACGGAAACACCACGAATCCAATGG -ACGGAAACACCACGAATCATGAGG -ACGGAAACACCACGAATCAATGGG -ACGGAAACACCACGAATCTCCTGA -ACGGAAACACCACGAATCTAGCGA -ACGGAAACACCACGAATCCACAGA -ACGGAAACACCACGAATCGCAAGA -ACGGAAACACCACGAATCGGTTGA -ACGGAAACACCACGAATCTCCGAT -ACGGAAACACCACGAATCTGGCAT -ACGGAAACACCACGAATCCGAGAT -ACGGAAACACCACGAATCTACCAC -ACGGAAACACCACGAATCCAGAAC -ACGGAAACACCACGAATCGTCTAC -ACGGAAACACCACGAATCACGTAC -ACGGAAACACCACGAATCAGTGAC -ACGGAAACACCACGAATCCTGTAG -ACGGAAACACCACGAATCCCTAAG -ACGGAAACACCACGAATCGTTCAG -ACGGAAACACCACGAATCGCATAG -ACGGAAACACCACGAATCGACAAG -ACGGAAACACCACGAATCAAGCAG -ACGGAAACACCACGAATCCGTCAA -ACGGAAACACCACGAATCGCTGAA -ACGGAAACACCACGAATCAGTACG -ACGGAAACACCACGAATCATCCGA -ACGGAAACACCACGAATCATGGGA -ACGGAAACACCACGAATCGTGCAA -ACGGAAACACCACGAATCGAGGAA -ACGGAAACACCACGAATCCAGGTA -ACGGAAACACCACGAATCGACTCT -ACGGAAACACCACGAATCAGTCCT -ACGGAAACACCACGAATCTAAGCC -ACGGAAACACCACGAATCATAGCC -ACGGAAACACCACGAATCTAACCG -ACGGAAACACCACGAATCATGCCA -ACGGAAACACCAGGAATGGGAAAC -ACGGAAACACCAGGAATGAACACC -ACGGAAACACCAGGAATGATCGAG -ACGGAAACACCAGGAATGCTCCTT -ACGGAAACACCAGGAATGCCTGTT -ACGGAAACACCAGGAATGCGGTTT -ACGGAAACACCAGGAATGGTGGTT -ACGGAAACACCAGGAATGGCCTTT -ACGGAAACACCAGGAATGGGTCTT -ACGGAAACACCAGGAATGACGCTT -ACGGAAACACCAGGAATGAGCGTT -ACGGAAACACCAGGAATGTTCGTC -ACGGAAACACCAGGAATGTCTCTC -ACGGAAACACCAGGAATGTGGATC -ACGGAAACACCAGGAATGCACTTC -ACGGAAACACCAGGAATGGTACTC -ACGGAAACACCAGGAATGGATGTC -ACGGAAACACCAGGAATGACAGTC -ACGGAAACACCAGGAATGTTGCTG -ACGGAAACACCAGGAATGTCCATG -ACGGAAACACCAGGAATGTGTGTG -ACGGAAACACCAGGAATGCTAGTG -ACGGAAACACCAGGAATGCATCTG -ACGGAAACACCAGGAATGGAGTTG -ACGGAAACACCAGGAATGAGACTG -ACGGAAACACCAGGAATGTCGGTA -ACGGAAACACCAGGAATGTGCCTA -ACGGAAACACCAGGAATGCCACTA -ACGGAAACACCAGGAATGGGAGTA -ACGGAAACACCAGGAATGTCGTCT -ACGGAAACACCAGGAATGTGCACT -ACGGAAACACCAGGAATGCTGACT -ACGGAAACACCAGGAATGCAACCT -ACGGAAACACCAGGAATGGCTACT -ACGGAAACACCAGGAATGGGATCT -ACGGAAACACCAGGAATGAAGGCT -ACGGAAACACCAGGAATGTCAACC -ACGGAAACACCAGGAATGTGTTCC -ACGGAAACACCAGGAATGATTCCC -ACGGAAACACCAGGAATGTTCTCG -ACGGAAACACCAGGAATGTAGACG -ACGGAAACACCAGGAATGGTAACG -ACGGAAACACCAGGAATGACTTCG -ACGGAAACACCAGGAATGTACGCA -ACGGAAACACCAGGAATGCTTGCA -ACGGAAACACCAGGAATGCGAACA -ACGGAAACACCAGGAATGCAGTCA -ACGGAAACACCAGGAATGGATCCA -ACGGAAACACCAGGAATGACGACA -ACGGAAACACCAGGAATGAGCTCA -ACGGAAACACCAGGAATGTCACGT -ACGGAAACACCAGGAATGCGTAGT -ACGGAAACACCAGGAATGGTCAGT -ACGGAAACACCAGGAATGGAAGGT -ACGGAAACACCAGGAATGAACCGT -ACGGAAACACCAGGAATGTTGTGC -ACGGAAACACCAGGAATGCTAAGC -ACGGAAACACCAGGAATGACTAGC -ACGGAAACACCAGGAATGAGATGC -ACGGAAACACCAGGAATGTGAAGG -ACGGAAACACCAGGAATGCAATGG -ACGGAAACACCAGGAATGATGAGG -ACGGAAACACCAGGAATGAATGGG -ACGGAAACACCAGGAATGTCCTGA -ACGGAAACACCAGGAATGTAGCGA -ACGGAAACACCAGGAATGCACAGA -ACGGAAACACCAGGAATGGCAAGA -ACGGAAACACCAGGAATGGGTTGA -ACGGAAACACCAGGAATGTCCGAT -ACGGAAACACCAGGAATGTGGCAT -ACGGAAACACCAGGAATGCGAGAT -ACGGAAACACCAGGAATGTACCAC -ACGGAAACACCAGGAATGCAGAAC -ACGGAAACACCAGGAATGGTCTAC -ACGGAAACACCAGGAATGACGTAC -ACGGAAACACCAGGAATGAGTGAC -ACGGAAACACCAGGAATGCTGTAG -ACGGAAACACCAGGAATGCCTAAG -ACGGAAACACCAGGAATGGTTCAG -ACGGAAACACCAGGAATGGCATAG -ACGGAAACACCAGGAATGGACAAG -ACGGAAACACCAGGAATGAAGCAG -ACGGAAACACCAGGAATGCGTCAA -ACGGAAACACCAGGAATGGCTGAA -ACGGAAACACCAGGAATGAGTACG -ACGGAAACACCAGGAATGATCCGA -ACGGAAACACCAGGAATGATGGGA -ACGGAAACACCAGGAATGGTGCAA -ACGGAAACACCAGGAATGGAGGAA -ACGGAAACACCAGGAATGCAGGTA -ACGGAAACACCAGGAATGGACTCT -ACGGAAACACCAGGAATGAGTCCT -ACGGAAACACCAGGAATGTAAGCC -ACGGAAACACCAGGAATGATAGCC -ACGGAAACACCAGGAATGTAACCG -ACGGAAACACCAGGAATGATGCCA -ACGGAAACACCACAAGTGGGAAAC -ACGGAAACACCACAAGTGAACACC -ACGGAAACACCACAAGTGATCGAG -ACGGAAACACCACAAGTGCTCCTT -ACGGAAACACCACAAGTGCCTGTT -ACGGAAACACCACAAGTGCGGTTT -ACGGAAACACCACAAGTGGTGGTT -ACGGAAACACCACAAGTGGCCTTT -ACGGAAACACCACAAGTGGGTCTT -ACGGAAACACCACAAGTGACGCTT -ACGGAAACACCACAAGTGAGCGTT -ACGGAAACACCACAAGTGTTCGTC -ACGGAAACACCACAAGTGTCTCTC -ACGGAAACACCACAAGTGTGGATC -ACGGAAACACCACAAGTGCACTTC -ACGGAAACACCACAAGTGGTACTC -ACGGAAACACCACAAGTGGATGTC -ACGGAAACACCACAAGTGACAGTC -ACGGAAACACCACAAGTGTTGCTG -ACGGAAACACCACAAGTGTCCATG -ACGGAAACACCACAAGTGTGTGTG -ACGGAAACACCACAAGTGCTAGTG -ACGGAAACACCACAAGTGCATCTG -ACGGAAACACCACAAGTGGAGTTG -ACGGAAACACCACAAGTGAGACTG -ACGGAAACACCACAAGTGTCGGTA -ACGGAAACACCACAAGTGTGCCTA -ACGGAAACACCACAAGTGCCACTA -ACGGAAACACCACAAGTGGGAGTA -ACGGAAACACCACAAGTGTCGTCT -ACGGAAACACCACAAGTGTGCACT -ACGGAAACACCACAAGTGCTGACT -ACGGAAACACCACAAGTGCAACCT -ACGGAAACACCACAAGTGGCTACT -ACGGAAACACCACAAGTGGGATCT -ACGGAAACACCACAAGTGAAGGCT -ACGGAAACACCACAAGTGTCAACC -ACGGAAACACCACAAGTGTGTTCC -ACGGAAACACCACAAGTGATTCCC -ACGGAAACACCACAAGTGTTCTCG -ACGGAAACACCACAAGTGTAGACG -ACGGAAACACCACAAGTGGTAACG -ACGGAAACACCACAAGTGACTTCG -ACGGAAACACCACAAGTGTACGCA -ACGGAAACACCACAAGTGCTTGCA -ACGGAAACACCACAAGTGCGAACA -ACGGAAACACCACAAGTGCAGTCA -ACGGAAACACCACAAGTGGATCCA -ACGGAAACACCACAAGTGACGACA -ACGGAAACACCACAAGTGAGCTCA -ACGGAAACACCACAAGTGTCACGT -ACGGAAACACCACAAGTGCGTAGT -ACGGAAACACCACAAGTGGTCAGT -ACGGAAACACCACAAGTGGAAGGT -ACGGAAACACCACAAGTGAACCGT -ACGGAAACACCACAAGTGTTGTGC -ACGGAAACACCACAAGTGCTAAGC -ACGGAAACACCACAAGTGACTAGC -ACGGAAACACCACAAGTGAGATGC -ACGGAAACACCACAAGTGTGAAGG -ACGGAAACACCACAAGTGCAATGG -ACGGAAACACCACAAGTGATGAGG -ACGGAAACACCACAAGTGAATGGG -ACGGAAACACCACAAGTGTCCTGA -ACGGAAACACCACAAGTGTAGCGA -ACGGAAACACCACAAGTGCACAGA -ACGGAAACACCACAAGTGGCAAGA -ACGGAAACACCACAAGTGGGTTGA -ACGGAAACACCACAAGTGTCCGAT -ACGGAAACACCACAAGTGTGGCAT -ACGGAAACACCACAAGTGCGAGAT -ACGGAAACACCACAAGTGTACCAC -ACGGAAACACCACAAGTGCAGAAC -ACGGAAACACCACAAGTGGTCTAC -ACGGAAACACCACAAGTGACGTAC -ACGGAAACACCACAAGTGAGTGAC -ACGGAAACACCACAAGTGCTGTAG -ACGGAAACACCACAAGTGCCTAAG -ACGGAAACACCACAAGTGGTTCAG -ACGGAAACACCACAAGTGGCATAG -ACGGAAACACCACAAGTGGACAAG -ACGGAAACACCACAAGTGAAGCAG -ACGGAAACACCACAAGTGCGTCAA -ACGGAAACACCACAAGTGGCTGAA -ACGGAAACACCACAAGTGAGTACG -ACGGAAACACCACAAGTGATCCGA -ACGGAAACACCACAAGTGATGGGA -ACGGAAACACCACAAGTGGTGCAA -ACGGAAACACCACAAGTGGAGGAA -ACGGAAACACCACAAGTGCAGGTA -ACGGAAACACCACAAGTGGACTCT -ACGGAAACACCACAAGTGAGTCCT -ACGGAAACACCACAAGTGTAAGCC -ACGGAAACACCACAAGTGATAGCC -ACGGAAACACCACAAGTGTAACCG -ACGGAAACACCACAAGTGATGCCA -ACGGAAACACCAGAAGAGGGAAAC -ACGGAAACACCAGAAGAGAACACC -ACGGAAACACCAGAAGAGATCGAG -ACGGAAACACCAGAAGAGCTCCTT -ACGGAAACACCAGAAGAGCCTGTT -ACGGAAACACCAGAAGAGCGGTTT -ACGGAAACACCAGAAGAGGTGGTT -ACGGAAACACCAGAAGAGGCCTTT -ACGGAAACACCAGAAGAGGGTCTT -ACGGAAACACCAGAAGAGACGCTT -ACGGAAACACCAGAAGAGAGCGTT -ACGGAAACACCAGAAGAGTTCGTC -ACGGAAACACCAGAAGAGTCTCTC -ACGGAAACACCAGAAGAGTGGATC -ACGGAAACACCAGAAGAGCACTTC -ACGGAAACACCAGAAGAGGTACTC -ACGGAAACACCAGAAGAGGATGTC -ACGGAAACACCAGAAGAGACAGTC -ACGGAAACACCAGAAGAGTTGCTG -ACGGAAACACCAGAAGAGTCCATG -ACGGAAACACCAGAAGAGTGTGTG -ACGGAAACACCAGAAGAGCTAGTG -ACGGAAACACCAGAAGAGCATCTG -ACGGAAACACCAGAAGAGGAGTTG -ACGGAAACACCAGAAGAGAGACTG -ACGGAAACACCAGAAGAGTCGGTA -ACGGAAACACCAGAAGAGTGCCTA -ACGGAAACACCAGAAGAGCCACTA -ACGGAAACACCAGAAGAGGGAGTA -ACGGAAACACCAGAAGAGTCGTCT -ACGGAAACACCAGAAGAGTGCACT -ACGGAAACACCAGAAGAGCTGACT -ACGGAAACACCAGAAGAGCAACCT -ACGGAAACACCAGAAGAGGCTACT -ACGGAAACACCAGAAGAGGGATCT -ACGGAAACACCAGAAGAGAAGGCT -ACGGAAACACCAGAAGAGTCAACC -ACGGAAACACCAGAAGAGTGTTCC -ACGGAAACACCAGAAGAGATTCCC -ACGGAAACACCAGAAGAGTTCTCG -ACGGAAACACCAGAAGAGTAGACG -ACGGAAACACCAGAAGAGGTAACG -ACGGAAACACCAGAAGAGACTTCG -ACGGAAACACCAGAAGAGTACGCA -ACGGAAACACCAGAAGAGCTTGCA -ACGGAAACACCAGAAGAGCGAACA -ACGGAAACACCAGAAGAGCAGTCA -ACGGAAACACCAGAAGAGGATCCA -ACGGAAACACCAGAAGAGACGACA -ACGGAAACACCAGAAGAGAGCTCA -ACGGAAACACCAGAAGAGTCACGT -ACGGAAACACCAGAAGAGCGTAGT -ACGGAAACACCAGAAGAGGTCAGT -ACGGAAACACCAGAAGAGGAAGGT -ACGGAAACACCAGAAGAGAACCGT -ACGGAAACACCAGAAGAGTTGTGC -ACGGAAACACCAGAAGAGCTAAGC -ACGGAAACACCAGAAGAGACTAGC -ACGGAAACACCAGAAGAGAGATGC -ACGGAAACACCAGAAGAGTGAAGG -ACGGAAACACCAGAAGAGCAATGG -ACGGAAACACCAGAAGAGATGAGG -ACGGAAACACCAGAAGAGAATGGG -ACGGAAACACCAGAAGAGTCCTGA -ACGGAAACACCAGAAGAGTAGCGA -ACGGAAACACCAGAAGAGCACAGA -ACGGAAACACCAGAAGAGGCAAGA -ACGGAAACACCAGAAGAGGGTTGA -ACGGAAACACCAGAAGAGTCCGAT -ACGGAAACACCAGAAGAGTGGCAT -ACGGAAACACCAGAAGAGCGAGAT -ACGGAAACACCAGAAGAGTACCAC -ACGGAAACACCAGAAGAGCAGAAC -ACGGAAACACCAGAAGAGGTCTAC -ACGGAAACACCAGAAGAGACGTAC -ACGGAAACACCAGAAGAGAGTGAC -ACGGAAACACCAGAAGAGCTGTAG -ACGGAAACACCAGAAGAGCCTAAG -ACGGAAACACCAGAAGAGGTTCAG -ACGGAAACACCAGAAGAGGCATAG -ACGGAAACACCAGAAGAGGACAAG -ACGGAAACACCAGAAGAGAAGCAG -ACGGAAACACCAGAAGAGCGTCAA -ACGGAAACACCAGAAGAGGCTGAA -ACGGAAACACCAGAAGAGAGTACG -ACGGAAACACCAGAAGAGATCCGA -ACGGAAACACCAGAAGAGATGGGA -ACGGAAACACCAGAAGAGGTGCAA -ACGGAAACACCAGAAGAGGAGGAA -ACGGAAACACCAGAAGAGCAGGTA -ACGGAAACACCAGAAGAGGACTCT -ACGGAAACACCAGAAGAGAGTCCT -ACGGAAACACCAGAAGAGTAAGCC -ACGGAAACACCAGAAGAGATAGCC -ACGGAAACACCAGAAGAGTAACCG -ACGGAAACACCAGAAGAGATGCCA -ACGGAAACACCAGTACAGGGAAAC -ACGGAAACACCAGTACAGAACACC -ACGGAAACACCAGTACAGATCGAG -ACGGAAACACCAGTACAGCTCCTT -ACGGAAACACCAGTACAGCCTGTT -ACGGAAACACCAGTACAGCGGTTT -ACGGAAACACCAGTACAGGTGGTT -ACGGAAACACCAGTACAGGCCTTT -ACGGAAACACCAGTACAGGGTCTT -ACGGAAACACCAGTACAGACGCTT -ACGGAAACACCAGTACAGAGCGTT -ACGGAAACACCAGTACAGTTCGTC -ACGGAAACACCAGTACAGTCTCTC -ACGGAAACACCAGTACAGTGGATC -ACGGAAACACCAGTACAGCACTTC -ACGGAAACACCAGTACAGGTACTC -ACGGAAACACCAGTACAGGATGTC -ACGGAAACACCAGTACAGACAGTC -ACGGAAACACCAGTACAGTTGCTG -ACGGAAACACCAGTACAGTCCATG -ACGGAAACACCAGTACAGTGTGTG -ACGGAAACACCAGTACAGCTAGTG -ACGGAAACACCAGTACAGCATCTG -ACGGAAACACCAGTACAGGAGTTG -ACGGAAACACCAGTACAGAGACTG -ACGGAAACACCAGTACAGTCGGTA -ACGGAAACACCAGTACAGTGCCTA -ACGGAAACACCAGTACAGCCACTA -ACGGAAACACCAGTACAGGGAGTA -ACGGAAACACCAGTACAGTCGTCT -ACGGAAACACCAGTACAGTGCACT -ACGGAAACACCAGTACAGCTGACT -ACGGAAACACCAGTACAGCAACCT -ACGGAAACACCAGTACAGGCTACT -ACGGAAACACCAGTACAGGGATCT -ACGGAAACACCAGTACAGAAGGCT -ACGGAAACACCAGTACAGTCAACC -ACGGAAACACCAGTACAGTGTTCC -ACGGAAACACCAGTACAGATTCCC -ACGGAAACACCAGTACAGTTCTCG -ACGGAAACACCAGTACAGTAGACG -ACGGAAACACCAGTACAGGTAACG -ACGGAAACACCAGTACAGACTTCG -ACGGAAACACCAGTACAGTACGCA -ACGGAAACACCAGTACAGCTTGCA -ACGGAAACACCAGTACAGCGAACA -ACGGAAACACCAGTACAGCAGTCA -ACGGAAACACCAGTACAGGATCCA -ACGGAAACACCAGTACAGACGACA -ACGGAAACACCAGTACAGAGCTCA -ACGGAAACACCAGTACAGTCACGT -ACGGAAACACCAGTACAGCGTAGT -ACGGAAACACCAGTACAGGTCAGT -ACGGAAACACCAGTACAGGAAGGT -ACGGAAACACCAGTACAGAACCGT -ACGGAAACACCAGTACAGTTGTGC -ACGGAAACACCAGTACAGCTAAGC -ACGGAAACACCAGTACAGACTAGC -ACGGAAACACCAGTACAGAGATGC -ACGGAAACACCAGTACAGTGAAGG -ACGGAAACACCAGTACAGCAATGG -ACGGAAACACCAGTACAGATGAGG -ACGGAAACACCAGTACAGAATGGG -ACGGAAACACCAGTACAGTCCTGA -ACGGAAACACCAGTACAGTAGCGA -ACGGAAACACCAGTACAGCACAGA -ACGGAAACACCAGTACAGGCAAGA -ACGGAAACACCAGTACAGGGTTGA -ACGGAAACACCAGTACAGTCCGAT -ACGGAAACACCAGTACAGTGGCAT -ACGGAAACACCAGTACAGCGAGAT -ACGGAAACACCAGTACAGTACCAC -ACGGAAACACCAGTACAGCAGAAC -ACGGAAACACCAGTACAGGTCTAC -ACGGAAACACCAGTACAGACGTAC -ACGGAAACACCAGTACAGAGTGAC -ACGGAAACACCAGTACAGCTGTAG -ACGGAAACACCAGTACAGCCTAAG -ACGGAAACACCAGTACAGGTTCAG -ACGGAAACACCAGTACAGGCATAG -ACGGAAACACCAGTACAGGACAAG -ACGGAAACACCAGTACAGAAGCAG -ACGGAAACACCAGTACAGCGTCAA -ACGGAAACACCAGTACAGGCTGAA -ACGGAAACACCAGTACAGAGTACG -ACGGAAACACCAGTACAGATCCGA -ACGGAAACACCAGTACAGATGGGA -ACGGAAACACCAGTACAGGTGCAA -ACGGAAACACCAGTACAGGAGGAA -ACGGAAACACCAGTACAGCAGGTA -ACGGAAACACCAGTACAGGACTCT -ACGGAAACACCAGTACAGAGTCCT -ACGGAAACACCAGTACAGTAAGCC -ACGGAAACACCAGTACAGATAGCC -ACGGAAACACCAGTACAGTAACCG -ACGGAAACACCAGTACAGATGCCA -ACGGAAACACCATCTGACGGAAAC -ACGGAAACACCATCTGACAACACC -ACGGAAACACCATCTGACATCGAG -ACGGAAACACCATCTGACCTCCTT -ACGGAAACACCATCTGACCCTGTT -ACGGAAACACCATCTGACCGGTTT -ACGGAAACACCATCTGACGTGGTT -ACGGAAACACCATCTGACGCCTTT -ACGGAAACACCATCTGACGGTCTT -ACGGAAACACCATCTGACACGCTT -ACGGAAACACCATCTGACAGCGTT -ACGGAAACACCATCTGACTTCGTC -ACGGAAACACCATCTGACTCTCTC -ACGGAAACACCATCTGACTGGATC -ACGGAAACACCATCTGACCACTTC -ACGGAAACACCATCTGACGTACTC -ACGGAAACACCATCTGACGATGTC -ACGGAAACACCATCTGACACAGTC -ACGGAAACACCATCTGACTTGCTG -ACGGAAACACCATCTGACTCCATG -ACGGAAACACCATCTGACTGTGTG -ACGGAAACACCATCTGACCTAGTG -ACGGAAACACCATCTGACCATCTG -ACGGAAACACCATCTGACGAGTTG -ACGGAAACACCATCTGACAGACTG -ACGGAAACACCATCTGACTCGGTA -ACGGAAACACCATCTGACTGCCTA -ACGGAAACACCATCTGACCCACTA -ACGGAAACACCATCTGACGGAGTA -ACGGAAACACCATCTGACTCGTCT -ACGGAAACACCATCTGACTGCACT -ACGGAAACACCATCTGACCTGACT -ACGGAAACACCATCTGACCAACCT -ACGGAAACACCATCTGACGCTACT -ACGGAAACACCATCTGACGGATCT -ACGGAAACACCATCTGACAAGGCT -ACGGAAACACCATCTGACTCAACC -ACGGAAACACCATCTGACTGTTCC -ACGGAAACACCATCTGACATTCCC -ACGGAAACACCATCTGACTTCTCG -ACGGAAACACCATCTGACTAGACG -ACGGAAACACCATCTGACGTAACG -ACGGAAACACCATCTGACACTTCG -ACGGAAACACCATCTGACTACGCA -ACGGAAACACCATCTGACCTTGCA -ACGGAAACACCATCTGACCGAACA -ACGGAAACACCATCTGACCAGTCA -ACGGAAACACCATCTGACGATCCA -ACGGAAACACCATCTGACACGACA -ACGGAAACACCATCTGACAGCTCA -ACGGAAACACCATCTGACTCACGT -ACGGAAACACCATCTGACCGTAGT -ACGGAAACACCATCTGACGTCAGT -ACGGAAACACCATCTGACGAAGGT -ACGGAAACACCATCTGACAACCGT -ACGGAAACACCATCTGACTTGTGC -ACGGAAACACCATCTGACCTAAGC -ACGGAAACACCATCTGACACTAGC -ACGGAAACACCATCTGACAGATGC -ACGGAAACACCATCTGACTGAAGG -ACGGAAACACCATCTGACCAATGG -ACGGAAACACCATCTGACATGAGG -ACGGAAACACCATCTGACAATGGG -ACGGAAACACCATCTGACTCCTGA -ACGGAAACACCATCTGACTAGCGA -ACGGAAACACCATCTGACCACAGA -ACGGAAACACCATCTGACGCAAGA -ACGGAAACACCATCTGACGGTTGA -ACGGAAACACCATCTGACTCCGAT -ACGGAAACACCATCTGACTGGCAT -ACGGAAACACCATCTGACCGAGAT -ACGGAAACACCATCTGACTACCAC -ACGGAAACACCATCTGACCAGAAC -ACGGAAACACCATCTGACGTCTAC -ACGGAAACACCATCTGACACGTAC -ACGGAAACACCATCTGACAGTGAC -ACGGAAACACCATCTGACCTGTAG -ACGGAAACACCATCTGACCCTAAG -ACGGAAACACCATCTGACGTTCAG -ACGGAAACACCATCTGACGCATAG -ACGGAAACACCATCTGACGACAAG -ACGGAAACACCATCTGACAAGCAG -ACGGAAACACCATCTGACCGTCAA -ACGGAAACACCATCTGACGCTGAA -ACGGAAACACCATCTGACAGTACG -ACGGAAACACCATCTGACATCCGA -ACGGAAACACCATCTGACATGGGA -ACGGAAACACCATCTGACGTGCAA -ACGGAAACACCATCTGACGAGGAA -ACGGAAACACCATCTGACCAGGTA -ACGGAAACACCATCTGACGACTCT -ACGGAAACACCATCTGACAGTCCT -ACGGAAACACCATCTGACTAAGCC -ACGGAAACACCATCTGACATAGCC -ACGGAAACACCATCTGACTAACCG -ACGGAAACACCATCTGACATGCCA -ACGGAAACACCACCTAGTGGAAAC -ACGGAAACACCACCTAGTAACACC -ACGGAAACACCACCTAGTATCGAG -ACGGAAACACCACCTAGTCTCCTT -ACGGAAACACCACCTAGTCCTGTT -ACGGAAACACCACCTAGTCGGTTT -ACGGAAACACCACCTAGTGTGGTT -ACGGAAACACCACCTAGTGCCTTT -ACGGAAACACCACCTAGTGGTCTT -ACGGAAACACCACCTAGTACGCTT -ACGGAAACACCACCTAGTAGCGTT -ACGGAAACACCACCTAGTTTCGTC -ACGGAAACACCACCTAGTTCTCTC -ACGGAAACACCACCTAGTTGGATC -ACGGAAACACCACCTAGTCACTTC -ACGGAAACACCACCTAGTGTACTC -ACGGAAACACCACCTAGTGATGTC -ACGGAAACACCACCTAGTACAGTC -ACGGAAACACCACCTAGTTTGCTG -ACGGAAACACCACCTAGTTCCATG -ACGGAAACACCACCTAGTTGTGTG -ACGGAAACACCACCTAGTCTAGTG -ACGGAAACACCACCTAGTCATCTG -ACGGAAACACCACCTAGTGAGTTG -ACGGAAACACCACCTAGTAGACTG -ACGGAAACACCACCTAGTTCGGTA -ACGGAAACACCACCTAGTTGCCTA -ACGGAAACACCACCTAGTCCACTA -ACGGAAACACCACCTAGTGGAGTA -ACGGAAACACCACCTAGTTCGTCT -ACGGAAACACCACCTAGTTGCACT -ACGGAAACACCACCTAGTCTGACT -ACGGAAACACCACCTAGTCAACCT -ACGGAAACACCACCTAGTGCTACT -ACGGAAACACCACCTAGTGGATCT -ACGGAAACACCACCTAGTAAGGCT -ACGGAAACACCACCTAGTTCAACC -ACGGAAACACCACCTAGTTGTTCC -ACGGAAACACCACCTAGTATTCCC -ACGGAAACACCACCTAGTTTCTCG -ACGGAAACACCACCTAGTTAGACG -ACGGAAACACCACCTAGTGTAACG -ACGGAAACACCACCTAGTACTTCG -ACGGAAACACCACCTAGTTACGCA -ACGGAAACACCACCTAGTCTTGCA -ACGGAAACACCACCTAGTCGAACA -ACGGAAACACCACCTAGTCAGTCA -ACGGAAACACCACCTAGTGATCCA -ACGGAAACACCACCTAGTACGACA -ACGGAAACACCACCTAGTAGCTCA -ACGGAAACACCACCTAGTTCACGT -ACGGAAACACCACCTAGTCGTAGT -ACGGAAACACCACCTAGTGTCAGT -ACGGAAACACCACCTAGTGAAGGT -ACGGAAACACCACCTAGTAACCGT -ACGGAAACACCACCTAGTTTGTGC -ACGGAAACACCACCTAGTCTAAGC -ACGGAAACACCACCTAGTACTAGC -ACGGAAACACCACCTAGTAGATGC -ACGGAAACACCACCTAGTTGAAGG -ACGGAAACACCACCTAGTCAATGG -ACGGAAACACCACCTAGTATGAGG -ACGGAAACACCACCTAGTAATGGG -ACGGAAACACCACCTAGTTCCTGA -ACGGAAACACCACCTAGTTAGCGA -ACGGAAACACCACCTAGTCACAGA -ACGGAAACACCACCTAGTGCAAGA -ACGGAAACACCACCTAGTGGTTGA -ACGGAAACACCACCTAGTTCCGAT -ACGGAAACACCACCTAGTTGGCAT -ACGGAAACACCACCTAGTCGAGAT -ACGGAAACACCACCTAGTTACCAC -ACGGAAACACCACCTAGTCAGAAC -ACGGAAACACCACCTAGTGTCTAC -ACGGAAACACCACCTAGTACGTAC -ACGGAAACACCACCTAGTAGTGAC -ACGGAAACACCACCTAGTCTGTAG -ACGGAAACACCACCTAGTCCTAAG -ACGGAAACACCACCTAGTGTTCAG -ACGGAAACACCACCTAGTGCATAG -ACGGAAACACCACCTAGTGACAAG -ACGGAAACACCACCTAGTAAGCAG -ACGGAAACACCACCTAGTCGTCAA -ACGGAAACACCACCTAGTGCTGAA -ACGGAAACACCACCTAGTAGTACG -ACGGAAACACCACCTAGTATCCGA -ACGGAAACACCACCTAGTATGGGA -ACGGAAACACCACCTAGTGTGCAA -ACGGAAACACCACCTAGTGAGGAA -ACGGAAACACCACCTAGTCAGGTA -ACGGAAACACCACCTAGTGACTCT -ACGGAAACACCACCTAGTAGTCCT -ACGGAAACACCACCTAGTTAAGCC -ACGGAAACACCACCTAGTATAGCC -ACGGAAACACCACCTAGTTAACCG -ACGGAAACACCACCTAGTATGCCA -ACGGAAACACCAGCCTAAGGAAAC -ACGGAAACACCAGCCTAAAACACC -ACGGAAACACCAGCCTAAATCGAG -ACGGAAACACCAGCCTAACTCCTT -ACGGAAACACCAGCCTAACCTGTT -ACGGAAACACCAGCCTAACGGTTT -ACGGAAACACCAGCCTAAGTGGTT -ACGGAAACACCAGCCTAAGCCTTT -ACGGAAACACCAGCCTAAGGTCTT -ACGGAAACACCAGCCTAAACGCTT -ACGGAAACACCAGCCTAAAGCGTT -ACGGAAACACCAGCCTAATTCGTC -ACGGAAACACCAGCCTAATCTCTC -ACGGAAACACCAGCCTAATGGATC -ACGGAAACACCAGCCTAACACTTC -ACGGAAACACCAGCCTAAGTACTC -ACGGAAACACCAGCCTAAGATGTC -ACGGAAACACCAGCCTAAACAGTC -ACGGAAACACCAGCCTAATTGCTG -ACGGAAACACCAGCCTAATCCATG -ACGGAAACACCAGCCTAATGTGTG -ACGGAAACACCAGCCTAACTAGTG -ACGGAAACACCAGCCTAACATCTG -ACGGAAACACCAGCCTAAGAGTTG -ACGGAAACACCAGCCTAAAGACTG -ACGGAAACACCAGCCTAATCGGTA -ACGGAAACACCAGCCTAATGCCTA -ACGGAAACACCAGCCTAACCACTA -ACGGAAACACCAGCCTAAGGAGTA -ACGGAAACACCAGCCTAATCGTCT -ACGGAAACACCAGCCTAATGCACT -ACGGAAACACCAGCCTAACTGACT -ACGGAAACACCAGCCTAACAACCT -ACGGAAACACCAGCCTAAGCTACT -ACGGAAACACCAGCCTAAGGATCT -ACGGAAACACCAGCCTAAAAGGCT -ACGGAAACACCAGCCTAATCAACC -ACGGAAACACCAGCCTAATGTTCC -ACGGAAACACCAGCCTAAATTCCC -ACGGAAACACCAGCCTAATTCTCG -ACGGAAACACCAGCCTAATAGACG -ACGGAAACACCAGCCTAAGTAACG -ACGGAAACACCAGCCTAAACTTCG -ACGGAAACACCAGCCTAATACGCA -ACGGAAACACCAGCCTAACTTGCA -ACGGAAACACCAGCCTAACGAACA -ACGGAAACACCAGCCTAACAGTCA -ACGGAAACACCAGCCTAAGATCCA -ACGGAAACACCAGCCTAAACGACA -ACGGAAACACCAGCCTAAAGCTCA -ACGGAAACACCAGCCTAATCACGT -ACGGAAACACCAGCCTAACGTAGT -ACGGAAACACCAGCCTAAGTCAGT -ACGGAAACACCAGCCTAAGAAGGT -ACGGAAACACCAGCCTAAAACCGT -ACGGAAACACCAGCCTAATTGTGC -ACGGAAACACCAGCCTAACTAAGC -ACGGAAACACCAGCCTAAACTAGC -ACGGAAACACCAGCCTAAAGATGC -ACGGAAACACCAGCCTAATGAAGG -ACGGAAACACCAGCCTAACAATGG -ACGGAAACACCAGCCTAAATGAGG -ACGGAAACACCAGCCTAAAATGGG -ACGGAAACACCAGCCTAATCCTGA -ACGGAAACACCAGCCTAATAGCGA -ACGGAAACACCAGCCTAACACAGA -ACGGAAACACCAGCCTAAGCAAGA -ACGGAAACACCAGCCTAAGGTTGA -ACGGAAACACCAGCCTAATCCGAT -ACGGAAACACCAGCCTAATGGCAT -ACGGAAACACCAGCCTAACGAGAT -ACGGAAACACCAGCCTAATACCAC -ACGGAAACACCAGCCTAACAGAAC -ACGGAAACACCAGCCTAAGTCTAC -ACGGAAACACCAGCCTAAACGTAC -ACGGAAACACCAGCCTAAAGTGAC -ACGGAAACACCAGCCTAACTGTAG -ACGGAAACACCAGCCTAACCTAAG -ACGGAAACACCAGCCTAAGTTCAG -ACGGAAACACCAGCCTAAGCATAG -ACGGAAACACCAGCCTAAGACAAG -ACGGAAACACCAGCCTAAAAGCAG -ACGGAAACACCAGCCTAACGTCAA -ACGGAAACACCAGCCTAAGCTGAA -ACGGAAACACCAGCCTAAAGTACG -ACGGAAACACCAGCCTAAATCCGA -ACGGAAACACCAGCCTAAATGGGA -ACGGAAACACCAGCCTAAGTGCAA -ACGGAAACACCAGCCTAAGAGGAA -ACGGAAACACCAGCCTAACAGGTA -ACGGAAACACCAGCCTAAGACTCT -ACGGAAACACCAGCCTAAAGTCCT -ACGGAAACACCAGCCTAATAAGCC -ACGGAAACACCAGCCTAAATAGCC -ACGGAAACACCAGCCTAATAACCG -ACGGAAACACCAGCCTAAATGCCA -ACGGAAACACCAGCCATAGGAAAC -ACGGAAACACCAGCCATAAACACC -ACGGAAACACCAGCCATAATCGAG -ACGGAAACACCAGCCATACTCCTT -ACGGAAACACCAGCCATACCTGTT -ACGGAAACACCAGCCATACGGTTT -ACGGAAACACCAGCCATAGTGGTT -ACGGAAACACCAGCCATAGCCTTT -ACGGAAACACCAGCCATAGGTCTT -ACGGAAACACCAGCCATAACGCTT -ACGGAAACACCAGCCATAAGCGTT -ACGGAAACACCAGCCATATTCGTC -ACGGAAACACCAGCCATATCTCTC -ACGGAAACACCAGCCATATGGATC -ACGGAAACACCAGCCATACACTTC -ACGGAAACACCAGCCATAGTACTC -ACGGAAACACCAGCCATAGATGTC -ACGGAAACACCAGCCATAACAGTC -ACGGAAACACCAGCCATATTGCTG -ACGGAAACACCAGCCATATCCATG -ACGGAAACACCAGCCATATGTGTG -ACGGAAACACCAGCCATACTAGTG -ACGGAAACACCAGCCATACATCTG -ACGGAAACACCAGCCATAGAGTTG -ACGGAAACACCAGCCATAAGACTG -ACGGAAACACCAGCCATATCGGTA -ACGGAAACACCAGCCATATGCCTA -ACGGAAACACCAGCCATACCACTA -ACGGAAACACCAGCCATAGGAGTA -ACGGAAACACCAGCCATATCGTCT -ACGGAAACACCAGCCATATGCACT -ACGGAAACACCAGCCATACTGACT -ACGGAAACACCAGCCATACAACCT -ACGGAAACACCAGCCATAGCTACT -ACGGAAACACCAGCCATAGGATCT -ACGGAAACACCAGCCATAAAGGCT -ACGGAAACACCAGCCATATCAACC -ACGGAAACACCAGCCATATGTTCC -ACGGAAACACCAGCCATAATTCCC -ACGGAAACACCAGCCATATTCTCG -ACGGAAACACCAGCCATATAGACG -ACGGAAACACCAGCCATAGTAACG -ACGGAAACACCAGCCATAACTTCG -ACGGAAACACCAGCCATATACGCA -ACGGAAACACCAGCCATACTTGCA -ACGGAAACACCAGCCATACGAACA -ACGGAAACACCAGCCATACAGTCA -ACGGAAACACCAGCCATAGATCCA -ACGGAAACACCAGCCATAACGACA -ACGGAAACACCAGCCATAAGCTCA -ACGGAAACACCAGCCATATCACGT -ACGGAAACACCAGCCATACGTAGT -ACGGAAACACCAGCCATAGTCAGT -ACGGAAACACCAGCCATAGAAGGT -ACGGAAACACCAGCCATAAACCGT -ACGGAAACACCAGCCATATTGTGC -ACGGAAACACCAGCCATACTAAGC -ACGGAAACACCAGCCATAACTAGC -ACGGAAACACCAGCCATAAGATGC -ACGGAAACACCAGCCATATGAAGG -ACGGAAACACCAGCCATACAATGG -ACGGAAACACCAGCCATAATGAGG -ACGGAAACACCAGCCATAAATGGG -ACGGAAACACCAGCCATATCCTGA -ACGGAAACACCAGCCATATAGCGA -ACGGAAACACCAGCCATACACAGA -ACGGAAACACCAGCCATAGCAAGA -ACGGAAACACCAGCCATAGGTTGA -ACGGAAACACCAGCCATATCCGAT -ACGGAAACACCAGCCATATGGCAT -ACGGAAACACCAGCCATACGAGAT -ACGGAAACACCAGCCATATACCAC -ACGGAAACACCAGCCATACAGAAC -ACGGAAACACCAGCCATAGTCTAC -ACGGAAACACCAGCCATAACGTAC -ACGGAAACACCAGCCATAAGTGAC -ACGGAAACACCAGCCATACTGTAG -ACGGAAACACCAGCCATACCTAAG -ACGGAAACACCAGCCATAGTTCAG -ACGGAAACACCAGCCATAGCATAG -ACGGAAACACCAGCCATAGACAAG -ACGGAAACACCAGCCATAAAGCAG -ACGGAAACACCAGCCATACGTCAA -ACGGAAACACCAGCCATAGCTGAA -ACGGAAACACCAGCCATAAGTACG -ACGGAAACACCAGCCATAATCCGA -ACGGAAACACCAGCCATAATGGGA -ACGGAAACACCAGCCATAGTGCAA -ACGGAAACACCAGCCATAGAGGAA -ACGGAAACACCAGCCATACAGGTA -ACGGAAACACCAGCCATAGACTCT -ACGGAAACACCAGCCATAAGTCCT -ACGGAAACACCAGCCATATAAGCC -ACGGAAACACCAGCCATAATAGCC -ACGGAAACACCAGCCATATAACCG -ACGGAAACACCAGCCATAATGCCA -ACGGAAACACCACCGTAAGGAAAC -ACGGAAACACCACCGTAAAACACC -ACGGAAACACCACCGTAAATCGAG -ACGGAAACACCACCGTAACTCCTT -ACGGAAACACCACCGTAACCTGTT -ACGGAAACACCACCGTAACGGTTT -ACGGAAACACCACCGTAAGTGGTT -ACGGAAACACCACCGTAAGCCTTT -ACGGAAACACCACCGTAAGGTCTT -ACGGAAACACCACCGTAAACGCTT -ACGGAAACACCACCGTAAAGCGTT -ACGGAAACACCACCGTAATTCGTC -ACGGAAACACCACCGTAATCTCTC -ACGGAAACACCACCGTAATGGATC -ACGGAAACACCACCGTAACACTTC -ACGGAAACACCACCGTAAGTACTC -ACGGAAACACCACCGTAAGATGTC -ACGGAAACACCACCGTAAACAGTC -ACGGAAACACCACCGTAATTGCTG -ACGGAAACACCACCGTAATCCATG -ACGGAAACACCACCGTAATGTGTG -ACGGAAACACCACCGTAACTAGTG -ACGGAAACACCACCGTAACATCTG -ACGGAAACACCACCGTAAGAGTTG -ACGGAAACACCACCGTAAAGACTG -ACGGAAACACCACCGTAATCGGTA -ACGGAAACACCACCGTAATGCCTA -ACGGAAACACCACCGTAACCACTA -ACGGAAACACCACCGTAAGGAGTA -ACGGAAACACCACCGTAATCGTCT -ACGGAAACACCACCGTAATGCACT -ACGGAAACACCACCGTAACTGACT -ACGGAAACACCACCGTAACAACCT -ACGGAAACACCACCGTAAGCTACT -ACGGAAACACCACCGTAAGGATCT -ACGGAAACACCACCGTAAAAGGCT -ACGGAAACACCACCGTAATCAACC -ACGGAAACACCACCGTAATGTTCC -ACGGAAACACCACCGTAAATTCCC -ACGGAAACACCACCGTAATTCTCG -ACGGAAACACCACCGTAATAGACG -ACGGAAACACCACCGTAAGTAACG -ACGGAAACACCACCGTAAACTTCG -ACGGAAACACCACCGTAATACGCA -ACGGAAACACCACCGTAACTTGCA -ACGGAAACACCACCGTAACGAACA -ACGGAAACACCACCGTAACAGTCA -ACGGAAACACCACCGTAAGATCCA -ACGGAAACACCACCGTAAACGACA -ACGGAAACACCACCGTAAAGCTCA -ACGGAAACACCACCGTAATCACGT -ACGGAAACACCACCGTAACGTAGT -ACGGAAACACCACCGTAAGTCAGT -ACGGAAACACCACCGTAAGAAGGT -ACGGAAACACCACCGTAAAACCGT -ACGGAAACACCACCGTAATTGTGC -ACGGAAACACCACCGTAACTAAGC -ACGGAAACACCACCGTAAACTAGC -ACGGAAACACCACCGTAAAGATGC -ACGGAAACACCACCGTAATGAAGG -ACGGAAACACCACCGTAACAATGG -ACGGAAACACCACCGTAAATGAGG -ACGGAAACACCACCGTAAAATGGG -ACGGAAACACCACCGTAATCCTGA -ACGGAAACACCACCGTAATAGCGA -ACGGAAACACCACCGTAACACAGA -ACGGAAACACCACCGTAAGCAAGA -ACGGAAACACCACCGTAAGGTTGA -ACGGAAACACCACCGTAATCCGAT -ACGGAAACACCACCGTAATGGCAT -ACGGAAACACCACCGTAACGAGAT -ACGGAAACACCACCGTAATACCAC -ACGGAAACACCACCGTAACAGAAC -ACGGAAACACCACCGTAAGTCTAC -ACGGAAACACCACCGTAAACGTAC -ACGGAAACACCACCGTAAAGTGAC -ACGGAAACACCACCGTAACTGTAG -ACGGAAACACCACCGTAACCTAAG -ACGGAAACACCACCGTAAGTTCAG -ACGGAAACACCACCGTAAGCATAG -ACGGAAACACCACCGTAAGACAAG -ACGGAAACACCACCGTAAAAGCAG -ACGGAAACACCACCGTAACGTCAA -ACGGAAACACCACCGTAAGCTGAA -ACGGAAACACCACCGTAAAGTACG -ACGGAAACACCACCGTAAATCCGA -ACGGAAACACCACCGTAAATGGGA -ACGGAAACACCACCGTAAGTGCAA -ACGGAAACACCACCGTAAGAGGAA -ACGGAAACACCACCGTAACAGGTA -ACGGAAACACCACCGTAAGACTCT -ACGGAAACACCACCGTAAAGTCCT -ACGGAAACACCACCGTAATAAGCC -ACGGAAACACCACCGTAAATAGCC -ACGGAAACACCACCGTAATAACCG -ACGGAAACACCACCGTAAATGCCA -ACGGAAACACCACCAATGGGAAAC -ACGGAAACACCACCAATGAACACC -ACGGAAACACCACCAATGATCGAG -ACGGAAACACCACCAATGCTCCTT -ACGGAAACACCACCAATGCCTGTT -ACGGAAACACCACCAATGCGGTTT -ACGGAAACACCACCAATGGTGGTT -ACGGAAACACCACCAATGGCCTTT -ACGGAAACACCACCAATGGGTCTT -ACGGAAACACCACCAATGACGCTT -ACGGAAACACCACCAATGAGCGTT -ACGGAAACACCACCAATGTTCGTC -ACGGAAACACCACCAATGTCTCTC -ACGGAAACACCACCAATGTGGATC -ACGGAAACACCACCAATGCACTTC -ACGGAAACACCACCAATGGTACTC -ACGGAAACACCACCAATGGATGTC -ACGGAAACACCACCAATGACAGTC -ACGGAAACACCACCAATGTTGCTG -ACGGAAACACCACCAATGTCCATG -ACGGAAACACCACCAATGTGTGTG -ACGGAAACACCACCAATGCTAGTG -ACGGAAACACCACCAATGCATCTG -ACGGAAACACCACCAATGGAGTTG -ACGGAAACACCACCAATGAGACTG -ACGGAAACACCACCAATGTCGGTA -ACGGAAACACCACCAATGTGCCTA -ACGGAAACACCACCAATGCCACTA -ACGGAAACACCACCAATGGGAGTA -ACGGAAACACCACCAATGTCGTCT -ACGGAAACACCACCAATGTGCACT -ACGGAAACACCACCAATGCTGACT -ACGGAAACACCACCAATGCAACCT -ACGGAAACACCACCAATGGCTACT -ACGGAAACACCACCAATGGGATCT -ACGGAAACACCACCAATGAAGGCT -ACGGAAACACCACCAATGTCAACC -ACGGAAACACCACCAATGTGTTCC -ACGGAAACACCACCAATGATTCCC -ACGGAAACACCACCAATGTTCTCG -ACGGAAACACCACCAATGTAGACG -ACGGAAACACCACCAATGGTAACG -ACGGAAACACCACCAATGACTTCG -ACGGAAACACCACCAATGTACGCA -ACGGAAACACCACCAATGCTTGCA -ACGGAAACACCACCAATGCGAACA -ACGGAAACACCACCAATGCAGTCA -ACGGAAACACCACCAATGGATCCA -ACGGAAACACCACCAATGACGACA -ACGGAAACACCACCAATGAGCTCA -ACGGAAACACCACCAATGTCACGT -ACGGAAACACCACCAATGCGTAGT -ACGGAAACACCACCAATGGTCAGT -ACGGAAACACCACCAATGGAAGGT -ACGGAAACACCACCAATGAACCGT -ACGGAAACACCACCAATGTTGTGC -ACGGAAACACCACCAATGCTAAGC -ACGGAAACACCACCAATGACTAGC -ACGGAAACACCACCAATGAGATGC -ACGGAAACACCACCAATGTGAAGG -ACGGAAACACCACCAATGCAATGG -ACGGAAACACCACCAATGATGAGG -ACGGAAACACCACCAATGAATGGG -ACGGAAACACCACCAATGTCCTGA -ACGGAAACACCACCAATGTAGCGA -ACGGAAACACCACCAATGCACAGA -ACGGAAACACCACCAATGGCAAGA -ACGGAAACACCACCAATGGGTTGA -ACGGAAACACCACCAATGTCCGAT -ACGGAAACACCACCAATGTGGCAT -ACGGAAACACCACCAATGCGAGAT -ACGGAAACACCACCAATGTACCAC -ACGGAAACACCACCAATGCAGAAC -ACGGAAACACCACCAATGGTCTAC -ACGGAAACACCACCAATGACGTAC -ACGGAAACACCACCAATGAGTGAC -ACGGAAACACCACCAATGCTGTAG -ACGGAAACACCACCAATGCCTAAG -ACGGAAACACCACCAATGGTTCAG -ACGGAAACACCACCAATGGCATAG -ACGGAAACACCACCAATGGACAAG -ACGGAAACACCACCAATGAAGCAG -ACGGAAACACCACCAATGCGTCAA -ACGGAAACACCACCAATGGCTGAA -ACGGAAACACCACCAATGAGTACG -ACGGAAACACCACCAATGATCCGA -ACGGAAACACCACCAATGATGGGA -ACGGAAACACCACCAATGGTGCAA -ACGGAAACACCACCAATGGAGGAA -ACGGAAACACCACCAATGCAGGTA -ACGGAAACACCACCAATGGACTCT -ACGGAAACACCACCAATGAGTCCT -ACGGAAACACCACCAATGTAAGCC -ACGGAAACACCACCAATGATAGCC -ACGGAAACACCACCAATGTAACCG -ACGGAAACACCACCAATGATGCCA -ACGGAATCGAGAAACGGAGGAAAC -ACGGAATCGAGAAACGGAAACACC -ACGGAATCGAGAAACGGAATCGAG -ACGGAATCGAGAAACGGACTCCTT -ACGGAATCGAGAAACGGACCTGTT -ACGGAATCGAGAAACGGACGGTTT -ACGGAATCGAGAAACGGAGTGGTT -ACGGAATCGAGAAACGGAGCCTTT -ACGGAATCGAGAAACGGAGGTCTT -ACGGAATCGAGAAACGGAACGCTT -ACGGAATCGAGAAACGGAAGCGTT -ACGGAATCGAGAAACGGATTCGTC -ACGGAATCGAGAAACGGATCTCTC -ACGGAATCGAGAAACGGATGGATC -ACGGAATCGAGAAACGGACACTTC -ACGGAATCGAGAAACGGAGTACTC -ACGGAATCGAGAAACGGAGATGTC -ACGGAATCGAGAAACGGAACAGTC -ACGGAATCGAGAAACGGATTGCTG -ACGGAATCGAGAAACGGATCCATG -ACGGAATCGAGAAACGGATGTGTG -ACGGAATCGAGAAACGGACTAGTG -ACGGAATCGAGAAACGGACATCTG -ACGGAATCGAGAAACGGAGAGTTG -ACGGAATCGAGAAACGGAAGACTG -ACGGAATCGAGAAACGGATCGGTA -ACGGAATCGAGAAACGGATGCCTA -ACGGAATCGAGAAACGGACCACTA -ACGGAATCGAGAAACGGAGGAGTA -ACGGAATCGAGAAACGGATCGTCT -ACGGAATCGAGAAACGGATGCACT -ACGGAATCGAGAAACGGACTGACT -ACGGAATCGAGAAACGGACAACCT -ACGGAATCGAGAAACGGAGCTACT -ACGGAATCGAGAAACGGAGGATCT -ACGGAATCGAGAAACGGAAAGGCT -ACGGAATCGAGAAACGGATCAACC -ACGGAATCGAGAAACGGATGTTCC -ACGGAATCGAGAAACGGAATTCCC -ACGGAATCGAGAAACGGATTCTCG -ACGGAATCGAGAAACGGATAGACG -ACGGAATCGAGAAACGGAGTAACG -ACGGAATCGAGAAACGGAACTTCG -ACGGAATCGAGAAACGGATACGCA -ACGGAATCGAGAAACGGACTTGCA -ACGGAATCGAGAAACGGACGAACA -ACGGAATCGAGAAACGGACAGTCA -ACGGAATCGAGAAACGGAGATCCA -ACGGAATCGAGAAACGGAACGACA -ACGGAATCGAGAAACGGAAGCTCA -ACGGAATCGAGAAACGGATCACGT -ACGGAATCGAGAAACGGACGTAGT -ACGGAATCGAGAAACGGAGTCAGT -ACGGAATCGAGAAACGGAGAAGGT -ACGGAATCGAGAAACGGAAACCGT -ACGGAATCGAGAAACGGATTGTGC -ACGGAATCGAGAAACGGACTAAGC -ACGGAATCGAGAAACGGAACTAGC -ACGGAATCGAGAAACGGAAGATGC -ACGGAATCGAGAAACGGATGAAGG -ACGGAATCGAGAAACGGACAATGG -ACGGAATCGAGAAACGGAATGAGG -ACGGAATCGAGAAACGGAAATGGG -ACGGAATCGAGAAACGGATCCTGA -ACGGAATCGAGAAACGGATAGCGA -ACGGAATCGAGAAACGGACACAGA -ACGGAATCGAGAAACGGAGCAAGA -ACGGAATCGAGAAACGGAGGTTGA -ACGGAATCGAGAAACGGATCCGAT -ACGGAATCGAGAAACGGATGGCAT -ACGGAATCGAGAAACGGACGAGAT -ACGGAATCGAGAAACGGATACCAC -ACGGAATCGAGAAACGGACAGAAC -ACGGAATCGAGAAACGGAGTCTAC -ACGGAATCGAGAAACGGAACGTAC -ACGGAATCGAGAAACGGAAGTGAC -ACGGAATCGAGAAACGGACTGTAG -ACGGAATCGAGAAACGGACCTAAG -ACGGAATCGAGAAACGGAGTTCAG -ACGGAATCGAGAAACGGAGCATAG -ACGGAATCGAGAAACGGAGACAAG -ACGGAATCGAGAAACGGAAAGCAG -ACGGAATCGAGAAACGGACGTCAA -ACGGAATCGAGAAACGGAGCTGAA -ACGGAATCGAGAAACGGAAGTACG -ACGGAATCGAGAAACGGAATCCGA -ACGGAATCGAGAAACGGAATGGGA -ACGGAATCGAGAAACGGAGTGCAA -ACGGAATCGAGAAACGGAGAGGAA -ACGGAATCGAGAAACGGACAGGTA -ACGGAATCGAGAAACGGAGACTCT -ACGGAATCGAGAAACGGAAGTCCT -ACGGAATCGAGAAACGGATAAGCC -ACGGAATCGAGAAACGGAATAGCC -ACGGAATCGAGAAACGGATAACCG -ACGGAATCGAGAAACGGAATGCCA -ACGGAATCGAGAACCAACGGAAAC -ACGGAATCGAGAACCAACAACACC -ACGGAATCGAGAACCAACATCGAG -ACGGAATCGAGAACCAACCTCCTT -ACGGAATCGAGAACCAACCCTGTT -ACGGAATCGAGAACCAACCGGTTT -ACGGAATCGAGAACCAACGTGGTT -ACGGAATCGAGAACCAACGCCTTT -ACGGAATCGAGAACCAACGGTCTT -ACGGAATCGAGAACCAACACGCTT -ACGGAATCGAGAACCAACAGCGTT -ACGGAATCGAGAACCAACTTCGTC -ACGGAATCGAGAACCAACTCTCTC -ACGGAATCGAGAACCAACTGGATC -ACGGAATCGAGAACCAACCACTTC -ACGGAATCGAGAACCAACGTACTC -ACGGAATCGAGAACCAACGATGTC -ACGGAATCGAGAACCAACACAGTC -ACGGAATCGAGAACCAACTTGCTG -ACGGAATCGAGAACCAACTCCATG -ACGGAATCGAGAACCAACTGTGTG -ACGGAATCGAGAACCAACCTAGTG -ACGGAATCGAGAACCAACCATCTG -ACGGAATCGAGAACCAACGAGTTG -ACGGAATCGAGAACCAACAGACTG -ACGGAATCGAGAACCAACTCGGTA -ACGGAATCGAGAACCAACTGCCTA -ACGGAATCGAGAACCAACCCACTA -ACGGAATCGAGAACCAACGGAGTA -ACGGAATCGAGAACCAACTCGTCT -ACGGAATCGAGAACCAACTGCACT -ACGGAATCGAGAACCAACCTGACT -ACGGAATCGAGAACCAACCAACCT -ACGGAATCGAGAACCAACGCTACT -ACGGAATCGAGAACCAACGGATCT -ACGGAATCGAGAACCAACAAGGCT -ACGGAATCGAGAACCAACTCAACC -ACGGAATCGAGAACCAACTGTTCC -ACGGAATCGAGAACCAACATTCCC -ACGGAATCGAGAACCAACTTCTCG -ACGGAATCGAGAACCAACTAGACG -ACGGAATCGAGAACCAACGTAACG -ACGGAATCGAGAACCAACACTTCG -ACGGAATCGAGAACCAACTACGCA -ACGGAATCGAGAACCAACCTTGCA -ACGGAATCGAGAACCAACCGAACA -ACGGAATCGAGAACCAACCAGTCA -ACGGAATCGAGAACCAACGATCCA -ACGGAATCGAGAACCAACACGACA -ACGGAATCGAGAACCAACAGCTCA -ACGGAATCGAGAACCAACTCACGT -ACGGAATCGAGAACCAACCGTAGT -ACGGAATCGAGAACCAACGTCAGT -ACGGAATCGAGAACCAACGAAGGT -ACGGAATCGAGAACCAACAACCGT -ACGGAATCGAGAACCAACTTGTGC -ACGGAATCGAGAACCAACCTAAGC -ACGGAATCGAGAACCAACACTAGC -ACGGAATCGAGAACCAACAGATGC -ACGGAATCGAGAACCAACTGAAGG -ACGGAATCGAGAACCAACCAATGG -ACGGAATCGAGAACCAACATGAGG -ACGGAATCGAGAACCAACAATGGG -ACGGAATCGAGAACCAACTCCTGA -ACGGAATCGAGAACCAACTAGCGA -ACGGAATCGAGAACCAACCACAGA -ACGGAATCGAGAACCAACGCAAGA -ACGGAATCGAGAACCAACGGTTGA -ACGGAATCGAGAACCAACTCCGAT -ACGGAATCGAGAACCAACTGGCAT -ACGGAATCGAGAACCAACCGAGAT -ACGGAATCGAGAACCAACTACCAC -ACGGAATCGAGAACCAACCAGAAC -ACGGAATCGAGAACCAACGTCTAC -ACGGAATCGAGAACCAACACGTAC -ACGGAATCGAGAACCAACAGTGAC -ACGGAATCGAGAACCAACCTGTAG -ACGGAATCGAGAACCAACCCTAAG -ACGGAATCGAGAACCAACGTTCAG -ACGGAATCGAGAACCAACGCATAG -ACGGAATCGAGAACCAACGACAAG -ACGGAATCGAGAACCAACAAGCAG -ACGGAATCGAGAACCAACCGTCAA -ACGGAATCGAGAACCAACGCTGAA -ACGGAATCGAGAACCAACAGTACG -ACGGAATCGAGAACCAACATCCGA -ACGGAATCGAGAACCAACATGGGA -ACGGAATCGAGAACCAACGTGCAA -ACGGAATCGAGAACCAACGAGGAA -ACGGAATCGAGAACCAACCAGGTA -ACGGAATCGAGAACCAACGACTCT -ACGGAATCGAGAACCAACAGTCCT -ACGGAATCGAGAACCAACTAAGCC -ACGGAATCGAGAACCAACATAGCC -ACGGAATCGAGAACCAACTAACCG -ACGGAATCGAGAACCAACATGCCA -ACGGAATCGAGAGAGATCGGAAAC -ACGGAATCGAGAGAGATCAACACC -ACGGAATCGAGAGAGATCATCGAG -ACGGAATCGAGAGAGATCCTCCTT -ACGGAATCGAGAGAGATCCCTGTT -ACGGAATCGAGAGAGATCCGGTTT -ACGGAATCGAGAGAGATCGTGGTT -ACGGAATCGAGAGAGATCGCCTTT -ACGGAATCGAGAGAGATCGGTCTT -ACGGAATCGAGAGAGATCACGCTT -ACGGAATCGAGAGAGATCAGCGTT -ACGGAATCGAGAGAGATCTTCGTC -ACGGAATCGAGAGAGATCTCTCTC -ACGGAATCGAGAGAGATCTGGATC -ACGGAATCGAGAGAGATCCACTTC -ACGGAATCGAGAGAGATCGTACTC -ACGGAATCGAGAGAGATCGATGTC -ACGGAATCGAGAGAGATCACAGTC -ACGGAATCGAGAGAGATCTTGCTG -ACGGAATCGAGAGAGATCTCCATG -ACGGAATCGAGAGAGATCTGTGTG -ACGGAATCGAGAGAGATCCTAGTG -ACGGAATCGAGAGAGATCCATCTG -ACGGAATCGAGAGAGATCGAGTTG -ACGGAATCGAGAGAGATCAGACTG -ACGGAATCGAGAGAGATCTCGGTA -ACGGAATCGAGAGAGATCTGCCTA -ACGGAATCGAGAGAGATCCCACTA -ACGGAATCGAGAGAGATCGGAGTA -ACGGAATCGAGAGAGATCTCGTCT -ACGGAATCGAGAGAGATCTGCACT -ACGGAATCGAGAGAGATCCTGACT -ACGGAATCGAGAGAGATCCAACCT -ACGGAATCGAGAGAGATCGCTACT -ACGGAATCGAGAGAGATCGGATCT -ACGGAATCGAGAGAGATCAAGGCT -ACGGAATCGAGAGAGATCTCAACC -ACGGAATCGAGAGAGATCTGTTCC -ACGGAATCGAGAGAGATCATTCCC -ACGGAATCGAGAGAGATCTTCTCG -ACGGAATCGAGAGAGATCTAGACG -ACGGAATCGAGAGAGATCGTAACG -ACGGAATCGAGAGAGATCACTTCG -ACGGAATCGAGAGAGATCTACGCA -ACGGAATCGAGAGAGATCCTTGCA -ACGGAATCGAGAGAGATCCGAACA -ACGGAATCGAGAGAGATCCAGTCA -ACGGAATCGAGAGAGATCGATCCA -ACGGAATCGAGAGAGATCACGACA -ACGGAATCGAGAGAGATCAGCTCA -ACGGAATCGAGAGAGATCTCACGT -ACGGAATCGAGAGAGATCCGTAGT -ACGGAATCGAGAGAGATCGTCAGT -ACGGAATCGAGAGAGATCGAAGGT -ACGGAATCGAGAGAGATCAACCGT -ACGGAATCGAGAGAGATCTTGTGC -ACGGAATCGAGAGAGATCCTAAGC -ACGGAATCGAGAGAGATCACTAGC -ACGGAATCGAGAGAGATCAGATGC -ACGGAATCGAGAGAGATCTGAAGG -ACGGAATCGAGAGAGATCCAATGG -ACGGAATCGAGAGAGATCATGAGG -ACGGAATCGAGAGAGATCAATGGG -ACGGAATCGAGAGAGATCTCCTGA -ACGGAATCGAGAGAGATCTAGCGA -ACGGAATCGAGAGAGATCCACAGA -ACGGAATCGAGAGAGATCGCAAGA -ACGGAATCGAGAGAGATCGGTTGA -ACGGAATCGAGAGAGATCTCCGAT -ACGGAATCGAGAGAGATCTGGCAT -ACGGAATCGAGAGAGATCCGAGAT -ACGGAATCGAGAGAGATCTACCAC -ACGGAATCGAGAGAGATCCAGAAC -ACGGAATCGAGAGAGATCGTCTAC -ACGGAATCGAGAGAGATCACGTAC -ACGGAATCGAGAGAGATCAGTGAC -ACGGAATCGAGAGAGATCCTGTAG -ACGGAATCGAGAGAGATCCCTAAG -ACGGAATCGAGAGAGATCGTTCAG -ACGGAATCGAGAGAGATCGCATAG -ACGGAATCGAGAGAGATCGACAAG -ACGGAATCGAGAGAGATCAAGCAG -ACGGAATCGAGAGAGATCCGTCAA -ACGGAATCGAGAGAGATCGCTGAA -ACGGAATCGAGAGAGATCAGTACG -ACGGAATCGAGAGAGATCATCCGA -ACGGAATCGAGAGAGATCATGGGA -ACGGAATCGAGAGAGATCGTGCAA -ACGGAATCGAGAGAGATCGAGGAA -ACGGAATCGAGAGAGATCCAGGTA -ACGGAATCGAGAGAGATCGACTCT -ACGGAATCGAGAGAGATCAGTCCT -ACGGAATCGAGAGAGATCTAAGCC -ACGGAATCGAGAGAGATCATAGCC -ACGGAATCGAGAGAGATCTAACCG -ACGGAATCGAGAGAGATCATGCCA -ACGGAATCGAGACTTCTCGGAAAC -ACGGAATCGAGACTTCTCAACACC -ACGGAATCGAGACTTCTCATCGAG -ACGGAATCGAGACTTCTCCTCCTT -ACGGAATCGAGACTTCTCCCTGTT -ACGGAATCGAGACTTCTCCGGTTT -ACGGAATCGAGACTTCTCGTGGTT -ACGGAATCGAGACTTCTCGCCTTT -ACGGAATCGAGACTTCTCGGTCTT -ACGGAATCGAGACTTCTCACGCTT -ACGGAATCGAGACTTCTCAGCGTT -ACGGAATCGAGACTTCTCTTCGTC -ACGGAATCGAGACTTCTCTCTCTC -ACGGAATCGAGACTTCTCTGGATC -ACGGAATCGAGACTTCTCCACTTC -ACGGAATCGAGACTTCTCGTACTC -ACGGAATCGAGACTTCTCGATGTC -ACGGAATCGAGACTTCTCACAGTC -ACGGAATCGAGACTTCTCTTGCTG -ACGGAATCGAGACTTCTCTCCATG -ACGGAATCGAGACTTCTCTGTGTG -ACGGAATCGAGACTTCTCCTAGTG -ACGGAATCGAGACTTCTCCATCTG -ACGGAATCGAGACTTCTCGAGTTG -ACGGAATCGAGACTTCTCAGACTG -ACGGAATCGAGACTTCTCTCGGTA -ACGGAATCGAGACTTCTCTGCCTA -ACGGAATCGAGACTTCTCCCACTA -ACGGAATCGAGACTTCTCGGAGTA -ACGGAATCGAGACTTCTCTCGTCT -ACGGAATCGAGACTTCTCTGCACT -ACGGAATCGAGACTTCTCCTGACT -ACGGAATCGAGACTTCTCCAACCT -ACGGAATCGAGACTTCTCGCTACT -ACGGAATCGAGACTTCTCGGATCT -ACGGAATCGAGACTTCTCAAGGCT -ACGGAATCGAGACTTCTCTCAACC -ACGGAATCGAGACTTCTCTGTTCC -ACGGAATCGAGACTTCTCATTCCC -ACGGAATCGAGACTTCTCTTCTCG -ACGGAATCGAGACTTCTCTAGACG -ACGGAATCGAGACTTCTCGTAACG -ACGGAATCGAGACTTCTCACTTCG -ACGGAATCGAGACTTCTCTACGCA -ACGGAATCGAGACTTCTCCTTGCA -ACGGAATCGAGACTTCTCCGAACA -ACGGAATCGAGACTTCTCCAGTCA -ACGGAATCGAGACTTCTCGATCCA -ACGGAATCGAGACTTCTCACGACA -ACGGAATCGAGACTTCTCAGCTCA -ACGGAATCGAGACTTCTCTCACGT -ACGGAATCGAGACTTCTCCGTAGT -ACGGAATCGAGACTTCTCGTCAGT -ACGGAATCGAGACTTCTCGAAGGT -ACGGAATCGAGACTTCTCAACCGT -ACGGAATCGAGACTTCTCTTGTGC -ACGGAATCGAGACTTCTCCTAAGC -ACGGAATCGAGACTTCTCACTAGC -ACGGAATCGAGACTTCTCAGATGC -ACGGAATCGAGACTTCTCTGAAGG -ACGGAATCGAGACTTCTCCAATGG -ACGGAATCGAGACTTCTCATGAGG -ACGGAATCGAGACTTCTCAATGGG -ACGGAATCGAGACTTCTCTCCTGA -ACGGAATCGAGACTTCTCTAGCGA -ACGGAATCGAGACTTCTCCACAGA -ACGGAATCGAGACTTCTCGCAAGA -ACGGAATCGAGACTTCTCGGTTGA -ACGGAATCGAGACTTCTCTCCGAT -ACGGAATCGAGACTTCTCTGGCAT -ACGGAATCGAGACTTCTCCGAGAT -ACGGAATCGAGACTTCTCTACCAC -ACGGAATCGAGACTTCTCCAGAAC -ACGGAATCGAGACTTCTCGTCTAC -ACGGAATCGAGACTTCTCACGTAC -ACGGAATCGAGACTTCTCAGTGAC -ACGGAATCGAGACTTCTCCTGTAG -ACGGAATCGAGACTTCTCCCTAAG -ACGGAATCGAGACTTCTCGTTCAG -ACGGAATCGAGACTTCTCGCATAG -ACGGAATCGAGACTTCTCGACAAG -ACGGAATCGAGACTTCTCAAGCAG -ACGGAATCGAGACTTCTCCGTCAA -ACGGAATCGAGACTTCTCGCTGAA -ACGGAATCGAGACTTCTCAGTACG -ACGGAATCGAGACTTCTCATCCGA -ACGGAATCGAGACTTCTCATGGGA -ACGGAATCGAGACTTCTCGTGCAA -ACGGAATCGAGACTTCTCGAGGAA -ACGGAATCGAGACTTCTCCAGGTA -ACGGAATCGAGACTTCTCGACTCT -ACGGAATCGAGACTTCTCAGTCCT -ACGGAATCGAGACTTCTCTAAGCC -ACGGAATCGAGACTTCTCATAGCC -ACGGAATCGAGACTTCTCTAACCG -ACGGAATCGAGACTTCTCATGCCA -ACGGAATCGAGAGTTCCTGGAAAC -ACGGAATCGAGAGTTCCTAACACC -ACGGAATCGAGAGTTCCTATCGAG -ACGGAATCGAGAGTTCCTCTCCTT -ACGGAATCGAGAGTTCCTCCTGTT -ACGGAATCGAGAGTTCCTCGGTTT -ACGGAATCGAGAGTTCCTGTGGTT -ACGGAATCGAGAGTTCCTGCCTTT -ACGGAATCGAGAGTTCCTGGTCTT -ACGGAATCGAGAGTTCCTACGCTT -ACGGAATCGAGAGTTCCTAGCGTT -ACGGAATCGAGAGTTCCTTTCGTC -ACGGAATCGAGAGTTCCTTCTCTC -ACGGAATCGAGAGTTCCTTGGATC -ACGGAATCGAGAGTTCCTCACTTC -ACGGAATCGAGAGTTCCTGTACTC -ACGGAATCGAGAGTTCCTGATGTC -ACGGAATCGAGAGTTCCTACAGTC -ACGGAATCGAGAGTTCCTTTGCTG -ACGGAATCGAGAGTTCCTTCCATG -ACGGAATCGAGAGTTCCTTGTGTG -ACGGAATCGAGAGTTCCTCTAGTG -ACGGAATCGAGAGTTCCTCATCTG -ACGGAATCGAGAGTTCCTGAGTTG -ACGGAATCGAGAGTTCCTAGACTG -ACGGAATCGAGAGTTCCTTCGGTA -ACGGAATCGAGAGTTCCTTGCCTA -ACGGAATCGAGAGTTCCTCCACTA -ACGGAATCGAGAGTTCCTGGAGTA -ACGGAATCGAGAGTTCCTTCGTCT -ACGGAATCGAGAGTTCCTTGCACT -ACGGAATCGAGAGTTCCTCTGACT -ACGGAATCGAGAGTTCCTCAACCT -ACGGAATCGAGAGTTCCTGCTACT -ACGGAATCGAGAGTTCCTGGATCT -ACGGAATCGAGAGTTCCTAAGGCT -ACGGAATCGAGAGTTCCTTCAACC -ACGGAATCGAGAGTTCCTTGTTCC -ACGGAATCGAGAGTTCCTATTCCC -ACGGAATCGAGAGTTCCTTTCTCG -ACGGAATCGAGAGTTCCTTAGACG -ACGGAATCGAGAGTTCCTGTAACG -ACGGAATCGAGAGTTCCTACTTCG -ACGGAATCGAGAGTTCCTTACGCA -ACGGAATCGAGAGTTCCTCTTGCA -ACGGAATCGAGAGTTCCTCGAACA -ACGGAATCGAGAGTTCCTCAGTCA -ACGGAATCGAGAGTTCCTGATCCA -ACGGAATCGAGAGTTCCTACGACA -ACGGAATCGAGAGTTCCTAGCTCA -ACGGAATCGAGAGTTCCTTCACGT -ACGGAATCGAGAGTTCCTCGTAGT -ACGGAATCGAGAGTTCCTGTCAGT -ACGGAATCGAGAGTTCCTGAAGGT -ACGGAATCGAGAGTTCCTAACCGT -ACGGAATCGAGAGTTCCTTTGTGC -ACGGAATCGAGAGTTCCTCTAAGC -ACGGAATCGAGAGTTCCTACTAGC -ACGGAATCGAGAGTTCCTAGATGC -ACGGAATCGAGAGTTCCTTGAAGG -ACGGAATCGAGAGTTCCTCAATGG -ACGGAATCGAGAGTTCCTATGAGG -ACGGAATCGAGAGTTCCTAATGGG -ACGGAATCGAGAGTTCCTTCCTGA -ACGGAATCGAGAGTTCCTTAGCGA -ACGGAATCGAGAGTTCCTCACAGA -ACGGAATCGAGAGTTCCTGCAAGA -ACGGAATCGAGAGTTCCTGGTTGA -ACGGAATCGAGAGTTCCTTCCGAT -ACGGAATCGAGAGTTCCTTGGCAT -ACGGAATCGAGAGTTCCTCGAGAT -ACGGAATCGAGAGTTCCTTACCAC -ACGGAATCGAGAGTTCCTCAGAAC -ACGGAATCGAGAGTTCCTGTCTAC -ACGGAATCGAGAGTTCCTACGTAC -ACGGAATCGAGAGTTCCTAGTGAC -ACGGAATCGAGAGTTCCTCTGTAG -ACGGAATCGAGAGTTCCTCCTAAG -ACGGAATCGAGAGTTCCTGTTCAG -ACGGAATCGAGAGTTCCTGCATAG -ACGGAATCGAGAGTTCCTGACAAG -ACGGAATCGAGAGTTCCTAAGCAG -ACGGAATCGAGAGTTCCTCGTCAA -ACGGAATCGAGAGTTCCTGCTGAA -ACGGAATCGAGAGTTCCTAGTACG -ACGGAATCGAGAGTTCCTATCCGA -ACGGAATCGAGAGTTCCTATGGGA -ACGGAATCGAGAGTTCCTGTGCAA -ACGGAATCGAGAGTTCCTGAGGAA -ACGGAATCGAGAGTTCCTCAGGTA -ACGGAATCGAGAGTTCCTGACTCT -ACGGAATCGAGAGTTCCTAGTCCT -ACGGAATCGAGAGTTCCTTAAGCC -ACGGAATCGAGAGTTCCTATAGCC -ACGGAATCGAGAGTTCCTTAACCG -ACGGAATCGAGAGTTCCTATGCCA -ACGGAATCGAGATTTCGGGGAAAC -ACGGAATCGAGATTTCGGAACACC -ACGGAATCGAGATTTCGGATCGAG -ACGGAATCGAGATTTCGGCTCCTT -ACGGAATCGAGATTTCGGCCTGTT -ACGGAATCGAGATTTCGGCGGTTT -ACGGAATCGAGATTTCGGGTGGTT -ACGGAATCGAGATTTCGGGCCTTT -ACGGAATCGAGATTTCGGGGTCTT -ACGGAATCGAGATTTCGGACGCTT -ACGGAATCGAGATTTCGGAGCGTT -ACGGAATCGAGATTTCGGTTCGTC -ACGGAATCGAGATTTCGGTCTCTC -ACGGAATCGAGATTTCGGTGGATC -ACGGAATCGAGATTTCGGCACTTC -ACGGAATCGAGATTTCGGGTACTC -ACGGAATCGAGATTTCGGGATGTC -ACGGAATCGAGATTTCGGACAGTC -ACGGAATCGAGATTTCGGTTGCTG -ACGGAATCGAGATTTCGGTCCATG -ACGGAATCGAGATTTCGGTGTGTG -ACGGAATCGAGATTTCGGCTAGTG -ACGGAATCGAGATTTCGGCATCTG -ACGGAATCGAGATTTCGGGAGTTG -ACGGAATCGAGATTTCGGAGACTG -ACGGAATCGAGATTTCGGTCGGTA -ACGGAATCGAGATTTCGGTGCCTA -ACGGAATCGAGATTTCGGCCACTA -ACGGAATCGAGATTTCGGGGAGTA -ACGGAATCGAGATTTCGGTCGTCT -ACGGAATCGAGATTTCGGTGCACT -ACGGAATCGAGATTTCGGCTGACT -ACGGAATCGAGATTTCGGCAACCT -ACGGAATCGAGATTTCGGGCTACT -ACGGAATCGAGATTTCGGGGATCT -ACGGAATCGAGATTTCGGAAGGCT -ACGGAATCGAGATTTCGGTCAACC -ACGGAATCGAGATTTCGGTGTTCC -ACGGAATCGAGATTTCGGATTCCC -ACGGAATCGAGATTTCGGTTCTCG -ACGGAATCGAGATTTCGGTAGACG -ACGGAATCGAGATTTCGGGTAACG -ACGGAATCGAGATTTCGGACTTCG -ACGGAATCGAGATTTCGGTACGCA -ACGGAATCGAGATTTCGGCTTGCA -ACGGAATCGAGATTTCGGCGAACA -ACGGAATCGAGATTTCGGCAGTCA -ACGGAATCGAGATTTCGGGATCCA -ACGGAATCGAGATTTCGGACGACA -ACGGAATCGAGATTTCGGAGCTCA -ACGGAATCGAGATTTCGGTCACGT -ACGGAATCGAGATTTCGGCGTAGT -ACGGAATCGAGATTTCGGGTCAGT -ACGGAATCGAGATTTCGGGAAGGT -ACGGAATCGAGATTTCGGAACCGT -ACGGAATCGAGATTTCGGTTGTGC -ACGGAATCGAGATTTCGGCTAAGC -ACGGAATCGAGATTTCGGACTAGC -ACGGAATCGAGATTTCGGAGATGC -ACGGAATCGAGATTTCGGTGAAGG -ACGGAATCGAGATTTCGGCAATGG -ACGGAATCGAGATTTCGGATGAGG -ACGGAATCGAGATTTCGGAATGGG -ACGGAATCGAGATTTCGGTCCTGA -ACGGAATCGAGATTTCGGTAGCGA -ACGGAATCGAGATTTCGGCACAGA -ACGGAATCGAGATTTCGGGCAAGA -ACGGAATCGAGATTTCGGGGTTGA -ACGGAATCGAGATTTCGGTCCGAT -ACGGAATCGAGATTTCGGTGGCAT -ACGGAATCGAGATTTCGGCGAGAT -ACGGAATCGAGATTTCGGTACCAC -ACGGAATCGAGATTTCGGCAGAAC -ACGGAATCGAGATTTCGGGTCTAC -ACGGAATCGAGATTTCGGACGTAC -ACGGAATCGAGATTTCGGAGTGAC -ACGGAATCGAGATTTCGGCTGTAG -ACGGAATCGAGATTTCGGCCTAAG -ACGGAATCGAGATTTCGGGTTCAG -ACGGAATCGAGATTTCGGGCATAG -ACGGAATCGAGATTTCGGGACAAG -ACGGAATCGAGATTTCGGAAGCAG -ACGGAATCGAGATTTCGGCGTCAA -ACGGAATCGAGATTTCGGGCTGAA -ACGGAATCGAGATTTCGGAGTACG -ACGGAATCGAGATTTCGGATCCGA -ACGGAATCGAGATTTCGGATGGGA -ACGGAATCGAGATTTCGGGTGCAA -ACGGAATCGAGATTTCGGGAGGAA -ACGGAATCGAGATTTCGGCAGGTA -ACGGAATCGAGATTTCGGGACTCT -ACGGAATCGAGATTTCGGAGTCCT -ACGGAATCGAGATTTCGGTAAGCC -ACGGAATCGAGATTTCGGATAGCC -ACGGAATCGAGATTTCGGTAACCG -ACGGAATCGAGATTTCGGATGCCA -ACGGAATCGAGAGTTGTGGGAAAC -ACGGAATCGAGAGTTGTGAACACC -ACGGAATCGAGAGTTGTGATCGAG -ACGGAATCGAGAGTTGTGCTCCTT -ACGGAATCGAGAGTTGTGCCTGTT -ACGGAATCGAGAGTTGTGCGGTTT -ACGGAATCGAGAGTTGTGGTGGTT -ACGGAATCGAGAGTTGTGGCCTTT -ACGGAATCGAGAGTTGTGGGTCTT -ACGGAATCGAGAGTTGTGACGCTT -ACGGAATCGAGAGTTGTGAGCGTT -ACGGAATCGAGAGTTGTGTTCGTC -ACGGAATCGAGAGTTGTGTCTCTC -ACGGAATCGAGAGTTGTGTGGATC -ACGGAATCGAGAGTTGTGCACTTC -ACGGAATCGAGAGTTGTGGTACTC -ACGGAATCGAGAGTTGTGGATGTC -ACGGAATCGAGAGTTGTGACAGTC -ACGGAATCGAGAGTTGTGTTGCTG -ACGGAATCGAGAGTTGTGTCCATG -ACGGAATCGAGAGTTGTGTGTGTG -ACGGAATCGAGAGTTGTGCTAGTG -ACGGAATCGAGAGTTGTGCATCTG -ACGGAATCGAGAGTTGTGGAGTTG -ACGGAATCGAGAGTTGTGAGACTG -ACGGAATCGAGAGTTGTGTCGGTA -ACGGAATCGAGAGTTGTGTGCCTA -ACGGAATCGAGAGTTGTGCCACTA -ACGGAATCGAGAGTTGTGGGAGTA -ACGGAATCGAGAGTTGTGTCGTCT -ACGGAATCGAGAGTTGTGTGCACT -ACGGAATCGAGAGTTGTGCTGACT -ACGGAATCGAGAGTTGTGCAACCT -ACGGAATCGAGAGTTGTGGCTACT -ACGGAATCGAGAGTTGTGGGATCT -ACGGAATCGAGAGTTGTGAAGGCT -ACGGAATCGAGAGTTGTGTCAACC -ACGGAATCGAGAGTTGTGTGTTCC -ACGGAATCGAGAGTTGTGATTCCC -ACGGAATCGAGAGTTGTGTTCTCG -ACGGAATCGAGAGTTGTGTAGACG -ACGGAATCGAGAGTTGTGGTAACG -ACGGAATCGAGAGTTGTGACTTCG -ACGGAATCGAGAGTTGTGTACGCA -ACGGAATCGAGAGTTGTGCTTGCA -ACGGAATCGAGAGTTGTGCGAACA -ACGGAATCGAGAGTTGTGCAGTCA -ACGGAATCGAGAGTTGTGGATCCA -ACGGAATCGAGAGTTGTGACGACA -ACGGAATCGAGAGTTGTGAGCTCA -ACGGAATCGAGAGTTGTGTCACGT -ACGGAATCGAGAGTTGTGCGTAGT -ACGGAATCGAGAGTTGTGGTCAGT -ACGGAATCGAGAGTTGTGGAAGGT -ACGGAATCGAGAGTTGTGAACCGT -ACGGAATCGAGAGTTGTGTTGTGC -ACGGAATCGAGAGTTGTGCTAAGC -ACGGAATCGAGAGTTGTGACTAGC -ACGGAATCGAGAGTTGTGAGATGC -ACGGAATCGAGAGTTGTGTGAAGG -ACGGAATCGAGAGTTGTGCAATGG -ACGGAATCGAGAGTTGTGATGAGG -ACGGAATCGAGAGTTGTGAATGGG -ACGGAATCGAGAGTTGTGTCCTGA -ACGGAATCGAGAGTTGTGTAGCGA -ACGGAATCGAGAGTTGTGCACAGA -ACGGAATCGAGAGTTGTGGCAAGA -ACGGAATCGAGAGTTGTGGGTTGA -ACGGAATCGAGAGTTGTGTCCGAT -ACGGAATCGAGAGTTGTGTGGCAT -ACGGAATCGAGAGTTGTGCGAGAT -ACGGAATCGAGAGTTGTGTACCAC -ACGGAATCGAGAGTTGTGCAGAAC -ACGGAATCGAGAGTTGTGGTCTAC -ACGGAATCGAGAGTTGTGACGTAC -ACGGAATCGAGAGTTGTGAGTGAC -ACGGAATCGAGAGTTGTGCTGTAG -ACGGAATCGAGAGTTGTGCCTAAG -ACGGAATCGAGAGTTGTGGTTCAG -ACGGAATCGAGAGTTGTGGCATAG -ACGGAATCGAGAGTTGTGGACAAG -ACGGAATCGAGAGTTGTGAAGCAG -ACGGAATCGAGAGTTGTGCGTCAA -ACGGAATCGAGAGTTGTGGCTGAA -ACGGAATCGAGAGTTGTGAGTACG -ACGGAATCGAGAGTTGTGATCCGA -ACGGAATCGAGAGTTGTGATGGGA -ACGGAATCGAGAGTTGTGGTGCAA -ACGGAATCGAGAGTTGTGGAGGAA -ACGGAATCGAGAGTTGTGCAGGTA -ACGGAATCGAGAGTTGTGGACTCT -ACGGAATCGAGAGTTGTGAGTCCT -ACGGAATCGAGAGTTGTGTAAGCC -ACGGAATCGAGAGTTGTGATAGCC -ACGGAATCGAGAGTTGTGTAACCG -ACGGAATCGAGAGTTGTGATGCCA -ACGGAATCGAGATTTGCCGGAAAC -ACGGAATCGAGATTTGCCAACACC -ACGGAATCGAGATTTGCCATCGAG -ACGGAATCGAGATTTGCCCTCCTT -ACGGAATCGAGATTTGCCCCTGTT -ACGGAATCGAGATTTGCCCGGTTT -ACGGAATCGAGATTTGCCGTGGTT -ACGGAATCGAGATTTGCCGCCTTT -ACGGAATCGAGATTTGCCGGTCTT -ACGGAATCGAGATTTGCCACGCTT -ACGGAATCGAGATTTGCCAGCGTT -ACGGAATCGAGATTTGCCTTCGTC -ACGGAATCGAGATTTGCCTCTCTC -ACGGAATCGAGATTTGCCTGGATC -ACGGAATCGAGATTTGCCCACTTC -ACGGAATCGAGATTTGCCGTACTC -ACGGAATCGAGATTTGCCGATGTC -ACGGAATCGAGATTTGCCACAGTC -ACGGAATCGAGATTTGCCTTGCTG -ACGGAATCGAGATTTGCCTCCATG -ACGGAATCGAGATTTGCCTGTGTG -ACGGAATCGAGATTTGCCCTAGTG -ACGGAATCGAGATTTGCCCATCTG -ACGGAATCGAGATTTGCCGAGTTG -ACGGAATCGAGATTTGCCAGACTG -ACGGAATCGAGATTTGCCTCGGTA -ACGGAATCGAGATTTGCCTGCCTA -ACGGAATCGAGATTTGCCCCACTA -ACGGAATCGAGATTTGCCGGAGTA -ACGGAATCGAGATTTGCCTCGTCT -ACGGAATCGAGATTTGCCTGCACT -ACGGAATCGAGATTTGCCCTGACT -ACGGAATCGAGATTTGCCCAACCT -ACGGAATCGAGATTTGCCGCTACT -ACGGAATCGAGATTTGCCGGATCT -ACGGAATCGAGATTTGCCAAGGCT -ACGGAATCGAGATTTGCCTCAACC -ACGGAATCGAGATTTGCCTGTTCC -ACGGAATCGAGATTTGCCATTCCC -ACGGAATCGAGATTTGCCTTCTCG -ACGGAATCGAGATTTGCCTAGACG -ACGGAATCGAGATTTGCCGTAACG -ACGGAATCGAGATTTGCCACTTCG -ACGGAATCGAGATTTGCCTACGCA -ACGGAATCGAGATTTGCCCTTGCA -ACGGAATCGAGATTTGCCCGAACA -ACGGAATCGAGATTTGCCCAGTCA -ACGGAATCGAGATTTGCCGATCCA -ACGGAATCGAGATTTGCCACGACA -ACGGAATCGAGATTTGCCAGCTCA -ACGGAATCGAGATTTGCCTCACGT -ACGGAATCGAGATTTGCCCGTAGT -ACGGAATCGAGATTTGCCGTCAGT -ACGGAATCGAGATTTGCCGAAGGT -ACGGAATCGAGATTTGCCAACCGT -ACGGAATCGAGATTTGCCTTGTGC -ACGGAATCGAGATTTGCCCTAAGC -ACGGAATCGAGATTTGCCACTAGC -ACGGAATCGAGATTTGCCAGATGC -ACGGAATCGAGATTTGCCTGAAGG -ACGGAATCGAGATTTGCCCAATGG -ACGGAATCGAGATTTGCCATGAGG -ACGGAATCGAGATTTGCCAATGGG -ACGGAATCGAGATTTGCCTCCTGA -ACGGAATCGAGATTTGCCTAGCGA -ACGGAATCGAGATTTGCCCACAGA -ACGGAATCGAGATTTGCCGCAAGA -ACGGAATCGAGATTTGCCGGTTGA -ACGGAATCGAGATTTGCCTCCGAT -ACGGAATCGAGATTTGCCTGGCAT -ACGGAATCGAGATTTGCCCGAGAT -ACGGAATCGAGATTTGCCTACCAC -ACGGAATCGAGATTTGCCCAGAAC -ACGGAATCGAGATTTGCCGTCTAC -ACGGAATCGAGATTTGCCACGTAC -ACGGAATCGAGATTTGCCAGTGAC -ACGGAATCGAGATTTGCCCTGTAG -ACGGAATCGAGATTTGCCCCTAAG -ACGGAATCGAGATTTGCCGTTCAG -ACGGAATCGAGATTTGCCGCATAG -ACGGAATCGAGATTTGCCGACAAG -ACGGAATCGAGATTTGCCAAGCAG -ACGGAATCGAGATTTGCCCGTCAA -ACGGAATCGAGATTTGCCGCTGAA -ACGGAATCGAGATTTGCCAGTACG -ACGGAATCGAGATTTGCCATCCGA -ACGGAATCGAGATTTGCCATGGGA -ACGGAATCGAGATTTGCCGTGCAA -ACGGAATCGAGATTTGCCGAGGAA -ACGGAATCGAGATTTGCCCAGGTA -ACGGAATCGAGATTTGCCGACTCT -ACGGAATCGAGATTTGCCAGTCCT -ACGGAATCGAGATTTGCCTAAGCC -ACGGAATCGAGATTTGCCATAGCC -ACGGAATCGAGATTTGCCTAACCG -ACGGAATCGAGATTTGCCATGCCA -ACGGAATCGAGACTTGGTGGAAAC -ACGGAATCGAGACTTGGTAACACC -ACGGAATCGAGACTTGGTATCGAG -ACGGAATCGAGACTTGGTCTCCTT -ACGGAATCGAGACTTGGTCCTGTT -ACGGAATCGAGACTTGGTCGGTTT -ACGGAATCGAGACTTGGTGTGGTT -ACGGAATCGAGACTTGGTGCCTTT -ACGGAATCGAGACTTGGTGGTCTT -ACGGAATCGAGACTTGGTACGCTT -ACGGAATCGAGACTTGGTAGCGTT -ACGGAATCGAGACTTGGTTTCGTC -ACGGAATCGAGACTTGGTTCTCTC -ACGGAATCGAGACTTGGTTGGATC -ACGGAATCGAGACTTGGTCACTTC -ACGGAATCGAGACTTGGTGTACTC -ACGGAATCGAGACTTGGTGATGTC -ACGGAATCGAGACTTGGTACAGTC -ACGGAATCGAGACTTGGTTTGCTG -ACGGAATCGAGACTTGGTTCCATG -ACGGAATCGAGACTTGGTTGTGTG -ACGGAATCGAGACTTGGTCTAGTG -ACGGAATCGAGACTTGGTCATCTG -ACGGAATCGAGACTTGGTGAGTTG -ACGGAATCGAGACTTGGTAGACTG -ACGGAATCGAGACTTGGTTCGGTA -ACGGAATCGAGACTTGGTTGCCTA -ACGGAATCGAGACTTGGTCCACTA -ACGGAATCGAGACTTGGTGGAGTA -ACGGAATCGAGACTTGGTTCGTCT -ACGGAATCGAGACTTGGTTGCACT -ACGGAATCGAGACTTGGTCTGACT -ACGGAATCGAGACTTGGTCAACCT -ACGGAATCGAGACTTGGTGCTACT -ACGGAATCGAGACTTGGTGGATCT -ACGGAATCGAGACTTGGTAAGGCT -ACGGAATCGAGACTTGGTTCAACC -ACGGAATCGAGACTTGGTTGTTCC -ACGGAATCGAGACTTGGTATTCCC -ACGGAATCGAGACTTGGTTTCTCG -ACGGAATCGAGACTTGGTTAGACG -ACGGAATCGAGACTTGGTGTAACG -ACGGAATCGAGACTTGGTACTTCG -ACGGAATCGAGACTTGGTTACGCA -ACGGAATCGAGACTTGGTCTTGCA -ACGGAATCGAGACTTGGTCGAACA -ACGGAATCGAGACTTGGTCAGTCA -ACGGAATCGAGACTTGGTGATCCA -ACGGAATCGAGACTTGGTACGACA -ACGGAATCGAGACTTGGTAGCTCA -ACGGAATCGAGACTTGGTTCACGT -ACGGAATCGAGACTTGGTCGTAGT -ACGGAATCGAGACTTGGTGTCAGT -ACGGAATCGAGACTTGGTGAAGGT -ACGGAATCGAGACTTGGTAACCGT -ACGGAATCGAGACTTGGTTTGTGC -ACGGAATCGAGACTTGGTCTAAGC -ACGGAATCGAGACTTGGTACTAGC -ACGGAATCGAGACTTGGTAGATGC -ACGGAATCGAGACTTGGTTGAAGG -ACGGAATCGAGACTTGGTCAATGG -ACGGAATCGAGACTTGGTATGAGG -ACGGAATCGAGACTTGGTAATGGG -ACGGAATCGAGACTTGGTTCCTGA -ACGGAATCGAGACTTGGTTAGCGA -ACGGAATCGAGACTTGGTCACAGA -ACGGAATCGAGACTTGGTGCAAGA -ACGGAATCGAGACTTGGTGGTTGA -ACGGAATCGAGACTTGGTTCCGAT -ACGGAATCGAGACTTGGTTGGCAT -ACGGAATCGAGACTTGGTCGAGAT -ACGGAATCGAGACTTGGTTACCAC -ACGGAATCGAGACTTGGTCAGAAC -ACGGAATCGAGACTTGGTGTCTAC -ACGGAATCGAGACTTGGTACGTAC -ACGGAATCGAGACTTGGTAGTGAC -ACGGAATCGAGACTTGGTCTGTAG -ACGGAATCGAGACTTGGTCCTAAG -ACGGAATCGAGACTTGGTGTTCAG -ACGGAATCGAGACTTGGTGCATAG -ACGGAATCGAGACTTGGTGACAAG -ACGGAATCGAGACTTGGTAAGCAG -ACGGAATCGAGACTTGGTCGTCAA -ACGGAATCGAGACTTGGTGCTGAA -ACGGAATCGAGACTTGGTAGTACG -ACGGAATCGAGACTTGGTATCCGA -ACGGAATCGAGACTTGGTATGGGA -ACGGAATCGAGACTTGGTGTGCAA -ACGGAATCGAGACTTGGTGAGGAA -ACGGAATCGAGACTTGGTCAGGTA -ACGGAATCGAGACTTGGTGACTCT -ACGGAATCGAGACTTGGTAGTCCT -ACGGAATCGAGACTTGGTTAAGCC -ACGGAATCGAGACTTGGTATAGCC -ACGGAATCGAGACTTGGTTAACCG -ACGGAATCGAGACTTGGTATGCCA -ACGGAATCGAGACTTACGGGAAAC -ACGGAATCGAGACTTACGAACACC -ACGGAATCGAGACTTACGATCGAG -ACGGAATCGAGACTTACGCTCCTT -ACGGAATCGAGACTTACGCCTGTT -ACGGAATCGAGACTTACGCGGTTT -ACGGAATCGAGACTTACGGTGGTT -ACGGAATCGAGACTTACGGCCTTT -ACGGAATCGAGACTTACGGGTCTT -ACGGAATCGAGACTTACGACGCTT -ACGGAATCGAGACTTACGAGCGTT -ACGGAATCGAGACTTACGTTCGTC -ACGGAATCGAGACTTACGTCTCTC -ACGGAATCGAGACTTACGTGGATC -ACGGAATCGAGACTTACGCACTTC -ACGGAATCGAGACTTACGGTACTC -ACGGAATCGAGACTTACGGATGTC -ACGGAATCGAGACTTACGACAGTC -ACGGAATCGAGACTTACGTTGCTG -ACGGAATCGAGACTTACGTCCATG -ACGGAATCGAGACTTACGTGTGTG -ACGGAATCGAGACTTACGCTAGTG -ACGGAATCGAGACTTACGCATCTG -ACGGAATCGAGACTTACGGAGTTG -ACGGAATCGAGACTTACGAGACTG -ACGGAATCGAGACTTACGTCGGTA -ACGGAATCGAGACTTACGTGCCTA -ACGGAATCGAGACTTACGCCACTA -ACGGAATCGAGACTTACGGGAGTA -ACGGAATCGAGACTTACGTCGTCT -ACGGAATCGAGACTTACGTGCACT -ACGGAATCGAGACTTACGCTGACT -ACGGAATCGAGACTTACGCAACCT -ACGGAATCGAGACTTACGGCTACT -ACGGAATCGAGACTTACGGGATCT -ACGGAATCGAGACTTACGAAGGCT -ACGGAATCGAGACTTACGTCAACC -ACGGAATCGAGACTTACGTGTTCC -ACGGAATCGAGACTTACGATTCCC -ACGGAATCGAGACTTACGTTCTCG -ACGGAATCGAGACTTACGTAGACG -ACGGAATCGAGACTTACGGTAACG -ACGGAATCGAGACTTACGACTTCG -ACGGAATCGAGACTTACGTACGCA -ACGGAATCGAGACTTACGCTTGCA -ACGGAATCGAGACTTACGCGAACA -ACGGAATCGAGACTTACGCAGTCA -ACGGAATCGAGACTTACGGATCCA -ACGGAATCGAGACTTACGACGACA -ACGGAATCGAGACTTACGAGCTCA -ACGGAATCGAGACTTACGTCACGT -ACGGAATCGAGACTTACGCGTAGT -ACGGAATCGAGACTTACGGTCAGT -ACGGAATCGAGACTTACGGAAGGT -ACGGAATCGAGACTTACGAACCGT -ACGGAATCGAGACTTACGTTGTGC -ACGGAATCGAGACTTACGCTAAGC -ACGGAATCGAGACTTACGACTAGC -ACGGAATCGAGACTTACGAGATGC -ACGGAATCGAGACTTACGTGAAGG -ACGGAATCGAGACTTACGCAATGG -ACGGAATCGAGACTTACGATGAGG -ACGGAATCGAGACTTACGAATGGG -ACGGAATCGAGACTTACGTCCTGA -ACGGAATCGAGACTTACGTAGCGA -ACGGAATCGAGACTTACGCACAGA -ACGGAATCGAGACTTACGGCAAGA -ACGGAATCGAGACTTACGGGTTGA -ACGGAATCGAGACTTACGTCCGAT -ACGGAATCGAGACTTACGTGGCAT -ACGGAATCGAGACTTACGCGAGAT -ACGGAATCGAGACTTACGTACCAC -ACGGAATCGAGACTTACGCAGAAC -ACGGAATCGAGACTTACGGTCTAC -ACGGAATCGAGACTTACGACGTAC -ACGGAATCGAGACTTACGAGTGAC -ACGGAATCGAGACTTACGCTGTAG -ACGGAATCGAGACTTACGCCTAAG -ACGGAATCGAGACTTACGGTTCAG -ACGGAATCGAGACTTACGGCATAG -ACGGAATCGAGACTTACGGACAAG -ACGGAATCGAGACTTACGAAGCAG -ACGGAATCGAGACTTACGCGTCAA -ACGGAATCGAGACTTACGGCTGAA -ACGGAATCGAGACTTACGAGTACG -ACGGAATCGAGACTTACGATCCGA -ACGGAATCGAGACTTACGATGGGA -ACGGAATCGAGACTTACGGTGCAA -ACGGAATCGAGACTTACGGAGGAA -ACGGAATCGAGACTTACGCAGGTA -ACGGAATCGAGACTTACGGACTCT -ACGGAATCGAGACTTACGAGTCCT -ACGGAATCGAGACTTACGTAAGCC -ACGGAATCGAGACTTACGATAGCC -ACGGAATCGAGACTTACGTAACCG -ACGGAATCGAGACTTACGATGCCA -ACGGAATCGAGAGTTAGCGGAAAC -ACGGAATCGAGAGTTAGCAACACC -ACGGAATCGAGAGTTAGCATCGAG -ACGGAATCGAGAGTTAGCCTCCTT -ACGGAATCGAGAGTTAGCCCTGTT -ACGGAATCGAGAGTTAGCCGGTTT -ACGGAATCGAGAGTTAGCGTGGTT -ACGGAATCGAGAGTTAGCGCCTTT -ACGGAATCGAGAGTTAGCGGTCTT -ACGGAATCGAGAGTTAGCACGCTT -ACGGAATCGAGAGTTAGCAGCGTT -ACGGAATCGAGAGTTAGCTTCGTC -ACGGAATCGAGAGTTAGCTCTCTC -ACGGAATCGAGAGTTAGCTGGATC -ACGGAATCGAGAGTTAGCCACTTC -ACGGAATCGAGAGTTAGCGTACTC -ACGGAATCGAGAGTTAGCGATGTC -ACGGAATCGAGAGTTAGCACAGTC -ACGGAATCGAGAGTTAGCTTGCTG -ACGGAATCGAGAGTTAGCTCCATG -ACGGAATCGAGAGTTAGCTGTGTG -ACGGAATCGAGAGTTAGCCTAGTG -ACGGAATCGAGAGTTAGCCATCTG -ACGGAATCGAGAGTTAGCGAGTTG -ACGGAATCGAGAGTTAGCAGACTG -ACGGAATCGAGAGTTAGCTCGGTA -ACGGAATCGAGAGTTAGCTGCCTA -ACGGAATCGAGAGTTAGCCCACTA -ACGGAATCGAGAGTTAGCGGAGTA -ACGGAATCGAGAGTTAGCTCGTCT -ACGGAATCGAGAGTTAGCTGCACT -ACGGAATCGAGAGTTAGCCTGACT -ACGGAATCGAGAGTTAGCCAACCT -ACGGAATCGAGAGTTAGCGCTACT -ACGGAATCGAGAGTTAGCGGATCT -ACGGAATCGAGAGTTAGCAAGGCT -ACGGAATCGAGAGTTAGCTCAACC -ACGGAATCGAGAGTTAGCTGTTCC -ACGGAATCGAGAGTTAGCATTCCC -ACGGAATCGAGAGTTAGCTTCTCG -ACGGAATCGAGAGTTAGCTAGACG -ACGGAATCGAGAGTTAGCGTAACG -ACGGAATCGAGAGTTAGCACTTCG -ACGGAATCGAGAGTTAGCTACGCA -ACGGAATCGAGAGTTAGCCTTGCA -ACGGAATCGAGAGTTAGCCGAACA -ACGGAATCGAGAGTTAGCCAGTCA -ACGGAATCGAGAGTTAGCGATCCA -ACGGAATCGAGAGTTAGCACGACA -ACGGAATCGAGAGTTAGCAGCTCA -ACGGAATCGAGAGTTAGCTCACGT -ACGGAATCGAGAGTTAGCCGTAGT -ACGGAATCGAGAGTTAGCGTCAGT -ACGGAATCGAGAGTTAGCGAAGGT -ACGGAATCGAGAGTTAGCAACCGT -ACGGAATCGAGAGTTAGCTTGTGC -ACGGAATCGAGAGTTAGCCTAAGC -ACGGAATCGAGAGTTAGCACTAGC -ACGGAATCGAGAGTTAGCAGATGC -ACGGAATCGAGAGTTAGCTGAAGG -ACGGAATCGAGAGTTAGCCAATGG -ACGGAATCGAGAGTTAGCATGAGG -ACGGAATCGAGAGTTAGCAATGGG -ACGGAATCGAGAGTTAGCTCCTGA -ACGGAATCGAGAGTTAGCTAGCGA -ACGGAATCGAGAGTTAGCCACAGA -ACGGAATCGAGAGTTAGCGCAAGA -ACGGAATCGAGAGTTAGCGGTTGA -ACGGAATCGAGAGTTAGCTCCGAT -ACGGAATCGAGAGTTAGCTGGCAT -ACGGAATCGAGAGTTAGCCGAGAT -ACGGAATCGAGAGTTAGCTACCAC -ACGGAATCGAGAGTTAGCCAGAAC -ACGGAATCGAGAGTTAGCGTCTAC -ACGGAATCGAGAGTTAGCACGTAC -ACGGAATCGAGAGTTAGCAGTGAC -ACGGAATCGAGAGTTAGCCTGTAG -ACGGAATCGAGAGTTAGCCCTAAG -ACGGAATCGAGAGTTAGCGTTCAG -ACGGAATCGAGAGTTAGCGCATAG -ACGGAATCGAGAGTTAGCGACAAG -ACGGAATCGAGAGTTAGCAAGCAG -ACGGAATCGAGAGTTAGCCGTCAA -ACGGAATCGAGAGTTAGCGCTGAA -ACGGAATCGAGAGTTAGCAGTACG -ACGGAATCGAGAGTTAGCATCCGA -ACGGAATCGAGAGTTAGCATGGGA -ACGGAATCGAGAGTTAGCGTGCAA -ACGGAATCGAGAGTTAGCGAGGAA -ACGGAATCGAGAGTTAGCCAGGTA -ACGGAATCGAGAGTTAGCGACTCT -ACGGAATCGAGAGTTAGCAGTCCT -ACGGAATCGAGAGTTAGCTAAGCC -ACGGAATCGAGAGTTAGCATAGCC -ACGGAATCGAGAGTTAGCTAACCG -ACGGAATCGAGAGTTAGCATGCCA -ACGGAATCGAGAGTCTTCGGAAAC -ACGGAATCGAGAGTCTTCAACACC -ACGGAATCGAGAGTCTTCATCGAG -ACGGAATCGAGAGTCTTCCTCCTT -ACGGAATCGAGAGTCTTCCCTGTT -ACGGAATCGAGAGTCTTCCGGTTT -ACGGAATCGAGAGTCTTCGTGGTT -ACGGAATCGAGAGTCTTCGCCTTT -ACGGAATCGAGAGTCTTCGGTCTT -ACGGAATCGAGAGTCTTCACGCTT -ACGGAATCGAGAGTCTTCAGCGTT -ACGGAATCGAGAGTCTTCTTCGTC -ACGGAATCGAGAGTCTTCTCTCTC -ACGGAATCGAGAGTCTTCTGGATC -ACGGAATCGAGAGTCTTCCACTTC -ACGGAATCGAGAGTCTTCGTACTC -ACGGAATCGAGAGTCTTCGATGTC -ACGGAATCGAGAGTCTTCACAGTC -ACGGAATCGAGAGTCTTCTTGCTG -ACGGAATCGAGAGTCTTCTCCATG -ACGGAATCGAGAGTCTTCTGTGTG -ACGGAATCGAGAGTCTTCCTAGTG -ACGGAATCGAGAGTCTTCCATCTG -ACGGAATCGAGAGTCTTCGAGTTG -ACGGAATCGAGAGTCTTCAGACTG -ACGGAATCGAGAGTCTTCTCGGTA -ACGGAATCGAGAGTCTTCTGCCTA -ACGGAATCGAGAGTCTTCCCACTA -ACGGAATCGAGAGTCTTCGGAGTA -ACGGAATCGAGAGTCTTCTCGTCT -ACGGAATCGAGAGTCTTCTGCACT -ACGGAATCGAGAGTCTTCCTGACT -ACGGAATCGAGAGTCTTCCAACCT -ACGGAATCGAGAGTCTTCGCTACT -ACGGAATCGAGAGTCTTCGGATCT -ACGGAATCGAGAGTCTTCAAGGCT -ACGGAATCGAGAGTCTTCTCAACC -ACGGAATCGAGAGTCTTCTGTTCC -ACGGAATCGAGAGTCTTCATTCCC -ACGGAATCGAGAGTCTTCTTCTCG -ACGGAATCGAGAGTCTTCTAGACG -ACGGAATCGAGAGTCTTCGTAACG -ACGGAATCGAGAGTCTTCACTTCG -ACGGAATCGAGAGTCTTCTACGCA -ACGGAATCGAGAGTCTTCCTTGCA -ACGGAATCGAGAGTCTTCCGAACA -ACGGAATCGAGAGTCTTCCAGTCA -ACGGAATCGAGAGTCTTCGATCCA -ACGGAATCGAGAGTCTTCACGACA -ACGGAATCGAGAGTCTTCAGCTCA -ACGGAATCGAGAGTCTTCTCACGT -ACGGAATCGAGAGTCTTCCGTAGT -ACGGAATCGAGAGTCTTCGTCAGT -ACGGAATCGAGAGTCTTCGAAGGT -ACGGAATCGAGAGTCTTCAACCGT -ACGGAATCGAGAGTCTTCTTGTGC -ACGGAATCGAGAGTCTTCCTAAGC -ACGGAATCGAGAGTCTTCACTAGC -ACGGAATCGAGAGTCTTCAGATGC -ACGGAATCGAGAGTCTTCTGAAGG -ACGGAATCGAGAGTCTTCCAATGG -ACGGAATCGAGAGTCTTCATGAGG -ACGGAATCGAGAGTCTTCAATGGG -ACGGAATCGAGAGTCTTCTCCTGA -ACGGAATCGAGAGTCTTCTAGCGA -ACGGAATCGAGAGTCTTCCACAGA -ACGGAATCGAGAGTCTTCGCAAGA -ACGGAATCGAGAGTCTTCGGTTGA -ACGGAATCGAGAGTCTTCTCCGAT -ACGGAATCGAGAGTCTTCTGGCAT -ACGGAATCGAGAGTCTTCCGAGAT -ACGGAATCGAGAGTCTTCTACCAC -ACGGAATCGAGAGTCTTCCAGAAC -ACGGAATCGAGAGTCTTCGTCTAC -ACGGAATCGAGAGTCTTCACGTAC -ACGGAATCGAGAGTCTTCAGTGAC -ACGGAATCGAGAGTCTTCCTGTAG -ACGGAATCGAGAGTCTTCCCTAAG -ACGGAATCGAGAGTCTTCGTTCAG -ACGGAATCGAGAGTCTTCGCATAG -ACGGAATCGAGAGTCTTCGACAAG -ACGGAATCGAGAGTCTTCAAGCAG -ACGGAATCGAGAGTCTTCCGTCAA -ACGGAATCGAGAGTCTTCGCTGAA -ACGGAATCGAGAGTCTTCAGTACG -ACGGAATCGAGAGTCTTCATCCGA -ACGGAATCGAGAGTCTTCATGGGA -ACGGAATCGAGAGTCTTCGTGCAA -ACGGAATCGAGAGTCTTCGAGGAA -ACGGAATCGAGAGTCTTCCAGGTA -ACGGAATCGAGAGTCTTCGACTCT -ACGGAATCGAGAGTCTTCAGTCCT -ACGGAATCGAGAGTCTTCTAAGCC -ACGGAATCGAGAGTCTTCATAGCC -ACGGAATCGAGAGTCTTCTAACCG -ACGGAATCGAGAGTCTTCATGCCA -ACGGAATCGAGACTCTCTGGAAAC -ACGGAATCGAGACTCTCTAACACC -ACGGAATCGAGACTCTCTATCGAG -ACGGAATCGAGACTCTCTCTCCTT -ACGGAATCGAGACTCTCTCCTGTT -ACGGAATCGAGACTCTCTCGGTTT -ACGGAATCGAGACTCTCTGTGGTT -ACGGAATCGAGACTCTCTGCCTTT -ACGGAATCGAGACTCTCTGGTCTT -ACGGAATCGAGACTCTCTACGCTT -ACGGAATCGAGACTCTCTAGCGTT -ACGGAATCGAGACTCTCTTTCGTC -ACGGAATCGAGACTCTCTTCTCTC -ACGGAATCGAGACTCTCTTGGATC -ACGGAATCGAGACTCTCTCACTTC -ACGGAATCGAGACTCTCTGTACTC -ACGGAATCGAGACTCTCTGATGTC -ACGGAATCGAGACTCTCTACAGTC -ACGGAATCGAGACTCTCTTTGCTG -ACGGAATCGAGACTCTCTTCCATG -ACGGAATCGAGACTCTCTTGTGTG -ACGGAATCGAGACTCTCTCTAGTG -ACGGAATCGAGACTCTCTCATCTG -ACGGAATCGAGACTCTCTGAGTTG -ACGGAATCGAGACTCTCTAGACTG -ACGGAATCGAGACTCTCTTCGGTA -ACGGAATCGAGACTCTCTTGCCTA -ACGGAATCGAGACTCTCTCCACTA -ACGGAATCGAGACTCTCTGGAGTA -ACGGAATCGAGACTCTCTTCGTCT -ACGGAATCGAGACTCTCTTGCACT -ACGGAATCGAGACTCTCTCTGACT -ACGGAATCGAGACTCTCTCAACCT -ACGGAATCGAGACTCTCTGCTACT -ACGGAATCGAGACTCTCTGGATCT -ACGGAATCGAGACTCTCTAAGGCT -ACGGAATCGAGACTCTCTTCAACC -ACGGAATCGAGACTCTCTTGTTCC -ACGGAATCGAGACTCTCTATTCCC -ACGGAATCGAGACTCTCTTTCTCG -ACGGAATCGAGACTCTCTTAGACG -ACGGAATCGAGACTCTCTGTAACG -ACGGAATCGAGACTCTCTACTTCG -ACGGAATCGAGACTCTCTTACGCA -ACGGAATCGAGACTCTCTCTTGCA -ACGGAATCGAGACTCTCTCGAACA -ACGGAATCGAGACTCTCTCAGTCA -ACGGAATCGAGACTCTCTGATCCA -ACGGAATCGAGACTCTCTACGACA -ACGGAATCGAGACTCTCTAGCTCA -ACGGAATCGAGACTCTCTTCACGT -ACGGAATCGAGACTCTCTCGTAGT -ACGGAATCGAGACTCTCTGTCAGT -ACGGAATCGAGACTCTCTGAAGGT -ACGGAATCGAGACTCTCTAACCGT -ACGGAATCGAGACTCTCTTTGTGC -ACGGAATCGAGACTCTCTCTAAGC -ACGGAATCGAGACTCTCTACTAGC -ACGGAATCGAGACTCTCTAGATGC -ACGGAATCGAGACTCTCTTGAAGG -ACGGAATCGAGACTCTCTCAATGG -ACGGAATCGAGACTCTCTATGAGG -ACGGAATCGAGACTCTCTAATGGG -ACGGAATCGAGACTCTCTTCCTGA -ACGGAATCGAGACTCTCTTAGCGA -ACGGAATCGAGACTCTCTCACAGA -ACGGAATCGAGACTCTCTGCAAGA -ACGGAATCGAGACTCTCTGGTTGA -ACGGAATCGAGACTCTCTTCCGAT -ACGGAATCGAGACTCTCTTGGCAT -ACGGAATCGAGACTCTCTCGAGAT -ACGGAATCGAGACTCTCTTACCAC -ACGGAATCGAGACTCTCTCAGAAC -ACGGAATCGAGACTCTCTGTCTAC -ACGGAATCGAGACTCTCTACGTAC -ACGGAATCGAGACTCTCTAGTGAC -ACGGAATCGAGACTCTCTCTGTAG -ACGGAATCGAGACTCTCTCCTAAG -ACGGAATCGAGACTCTCTGTTCAG -ACGGAATCGAGACTCTCTGCATAG -ACGGAATCGAGACTCTCTGACAAG -ACGGAATCGAGACTCTCTAAGCAG -ACGGAATCGAGACTCTCTCGTCAA -ACGGAATCGAGACTCTCTGCTGAA -ACGGAATCGAGACTCTCTAGTACG -ACGGAATCGAGACTCTCTATCCGA -ACGGAATCGAGACTCTCTATGGGA -ACGGAATCGAGACTCTCTGTGCAA -ACGGAATCGAGACTCTCTGAGGAA -ACGGAATCGAGACTCTCTCAGGTA -ACGGAATCGAGACTCTCTGACTCT -ACGGAATCGAGACTCTCTAGTCCT -ACGGAATCGAGACTCTCTTAAGCC -ACGGAATCGAGACTCTCTATAGCC -ACGGAATCGAGACTCTCTTAACCG -ACGGAATCGAGACTCTCTATGCCA -ACGGAATCGAGAATCTGGGGAAAC -ACGGAATCGAGAATCTGGAACACC -ACGGAATCGAGAATCTGGATCGAG -ACGGAATCGAGAATCTGGCTCCTT -ACGGAATCGAGAATCTGGCCTGTT -ACGGAATCGAGAATCTGGCGGTTT -ACGGAATCGAGAATCTGGGTGGTT -ACGGAATCGAGAATCTGGGCCTTT -ACGGAATCGAGAATCTGGGGTCTT -ACGGAATCGAGAATCTGGACGCTT -ACGGAATCGAGAATCTGGAGCGTT -ACGGAATCGAGAATCTGGTTCGTC -ACGGAATCGAGAATCTGGTCTCTC -ACGGAATCGAGAATCTGGTGGATC -ACGGAATCGAGAATCTGGCACTTC -ACGGAATCGAGAATCTGGGTACTC -ACGGAATCGAGAATCTGGGATGTC -ACGGAATCGAGAATCTGGACAGTC -ACGGAATCGAGAATCTGGTTGCTG -ACGGAATCGAGAATCTGGTCCATG -ACGGAATCGAGAATCTGGTGTGTG -ACGGAATCGAGAATCTGGCTAGTG -ACGGAATCGAGAATCTGGCATCTG -ACGGAATCGAGAATCTGGGAGTTG -ACGGAATCGAGAATCTGGAGACTG -ACGGAATCGAGAATCTGGTCGGTA -ACGGAATCGAGAATCTGGTGCCTA -ACGGAATCGAGAATCTGGCCACTA -ACGGAATCGAGAATCTGGGGAGTA -ACGGAATCGAGAATCTGGTCGTCT -ACGGAATCGAGAATCTGGTGCACT -ACGGAATCGAGAATCTGGCTGACT -ACGGAATCGAGAATCTGGCAACCT -ACGGAATCGAGAATCTGGGCTACT -ACGGAATCGAGAATCTGGGGATCT -ACGGAATCGAGAATCTGGAAGGCT -ACGGAATCGAGAATCTGGTCAACC -ACGGAATCGAGAATCTGGTGTTCC -ACGGAATCGAGAATCTGGATTCCC -ACGGAATCGAGAATCTGGTTCTCG -ACGGAATCGAGAATCTGGTAGACG -ACGGAATCGAGAATCTGGGTAACG -ACGGAATCGAGAATCTGGACTTCG -ACGGAATCGAGAATCTGGTACGCA -ACGGAATCGAGAATCTGGCTTGCA -ACGGAATCGAGAATCTGGCGAACA -ACGGAATCGAGAATCTGGCAGTCA -ACGGAATCGAGAATCTGGGATCCA -ACGGAATCGAGAATCTGGACGACA -ACGGAATCGAGAATCTGGAGCTCA -ACGGAATCGAGAATCTGGTCACGT -ACGGAATCGAGAATCTGGCGTAGT -ACGGAATCGAGAATCTGGGTCAGT -ACGGAATCGAGAATCTGGGAAGGT -ACGGAATCGAGAATCTGGAACCGT -ACGGAATCGAGAATCTGGTTGTGC -ACGGAATCGAGAATCTGGCTAAGC -ACGGAATCGAGAATCTGGACTAGC -ACGGAATCGAGAATCTGGAGATGC -ACGGAATCGAGAATCTGGTGAAGG -ACGGAATCGAGAATCTGGCAATGG -ACGGAATCGAGAATCTGGATGAGG -ACGGAATCGAGAATCTGGAATGGG -ACGGAATCGAGAATCTGGTCCTGA -ACGGAATCGAGAATCTGGTAGCGA -ACGGAATCGAGAATCTGGCACAGA -ACGGAATCGAGAATCTGGGCAAGA -ACGGAATCGAGAATCTGGGGTTGA -ACGGAATCGAGAATCTGGTCCGAT -ACGGAATCGAGAATCTGGTGGCAT -ACGGAATCGAGAATCTGGCGAGAT -ACGGAATCGAGAATCTGGTACCAC -ACGGAATCGAGAATCTGGCAGAAC -ACGGAATCGAGAATCTGGGTCTAC -ACGGAATCGAGAATCTGGACGTAC -ACGGAATCGAGAATCTGGAGTGAC -ACGGAATCGAGAATCTGGCTGTAG -ACGGAATCGAGAATCTGGCCTAAG -ACGGAATCGAGAATCTGGGTTCAG -ACGGAATCGAGAATCTGGGCATAG -ACGGAATCGAGAATCTGGGACAAG -ACGGAATCGAGAATCTGGAAGCAG -ACGGAATCGAGAATCTGGCGTCAA -ACGGAATCGAGAATCTGGGCTGAA -ACGGAATCGAGAATCTGGAGTACG -ACGGAATCGAGAATCTGGATCCGA -ACGGAATCGAGAATCTGGATGGGA -ACGGAATCGAGAATCTGGGTGCAA -ACGGAATCGAGAATCTGGGAGGAA -ACGGAATCGAGAATCTGGCAGGTA -ACGGAATCGAGAATCTGGGACTCT -ACGGAATCGAGAATCTGGAGTCCT -ACGGAATCGAGAATCTGGTAAGCC -ACGGAATCGAGAATCTGGATAGCC -ACGGAATCGAGAATCTGGTAACCG -ACGGAATCGAGAATCTGGATGCCA -ACGGAATCGAGATTCCACGGAAAC -ACGGAATCGAGATTCCACAACACC -ACGGAATCGAGATTCCACATCGAG -ACGGAATCGAGATTCCACCTCCTT -ACGGAATCGAGATTCCACCCTGTT -ACGGAATCGAGATTCCACCGGTTT -ACGGAATCGAGATTCCACGTGGTT -ACGGAATCGAGATTCCACGCCTTT -ACGGAATCGAGATTCCACGGTCTT -ACGGAATCGAGATTCCACACGCTT -ACGGAATCGAGATTCCACAGCGTT -ACGGAATCGAGATTCCACTTCGTC -ACGGAATCGAGATTCCACTCTCTC -ACGGAATCGAGATTCCACTGGATC -ACGGAATCGAGATTCCACCACTTC -ACGGAATCGAGATTCCACGTACTC -ACGGAATCGAGATTCCACGATGTC -ACGGAATCGAGATTCCACACAGTC -ACGGAATCGAGATTCCACTTGCTG -ACGGAATCGAGATTCCACTCCATG -ACGGAATCGAGATTCCACTGTGTG -ACGGAATCGAGATTCCACCTAGTG -ACGGAATCGAGATTCCACCATCTG -ACGGAATCGAGATTCCACGAGTTG -ACGGAATCGAGATTCCACAGACTG -ACGGAATCGAGATTCCACTCGGTA -ACGGAATCGAGATTCCACTGCCTA -ACGGAATCGAGATTCCACCCACTA -ACGGAATCGAGATTCCACGGAGTA -ACGGAATCGAGATTCCACTCGTCT -ACGGAATCGAGATTCCACTGCACT -ACGGAATCGAGATTCCACCTGACT -ACGGAATCGAGATTCCACCAACCT -ACGGAATCGAGATTCCACGCTACT -ACGGAATCGAGATTCCACGGATCT -ACGGAATCGAGATTCCACAAGGCT -ACGGAATCGAGATTCCACTCAACC -ACGGAATCGAGATTCCACTGTTCC -ACGGAATCGAGATTCCACATTCCC -ACGGAATCGAGATTCCACTTCTCG -ACGGAATCGAGATTCCACTAGACG -ACGGAATCGAGATTCCACGTAACG -ACGGAATCGAGATTCCACACTTCG -ACGGAATCGAGATTCCACTACGCA -ACGGAATCGAGATTCCACCTTGCA -ACGGAATCGAGATTCCACCGAACA -ACGGAATCGAGATTCCACCAGTCA -ACGGAATCGAGATTCCACGATCCA -ACGGAATCGAGATTCCACACGACA -ACGGAATCGAGATTCCACAGCTCA -ACGGAATCGAGATTCCACTCACGT -ACGGAATCGAGATTCCACCGTAGT -ACGGAATCGAGATTCCACGTCAGT -ACGGAATCGAGATTCCACGAAGGT -ACGGAATCGAGATTCCACAACCGT -ACGGAATCGAGATTCCACTTGTGC -ACGGAATCGAGATTCCACCTAAGC -ACGGAATCGAGATTCCACACTAGC -ACGGAATCGAGATTCCACAGATGC -ACGGAATCGAGATTCCACTGAAGG -ACGGAATCGAGATTCCACCAATGG -ACGGAATCGAGATTCCACATGAGG -ACGGAATCGAGATTCCACAATGGG -ACGGAATCGAGATTCCACTCCTGA -ACGGAATCGAGATTCCACTAGCGA -ACGGAATCGAGATTCCACCACAGA -ACGGAATCGAGATTCCACGCAAGA -ACGGAATCGAGATTCCACGGTTGA -ACGGAATCGAGATTCCACTCCGAT -ACGGAATCGAGATTCCACTGGCAT -ACGGAATCGAGATTCCACCGAGAT -ACGGAATCGAGATTCCACTACCAC -ACGGAATCGAGATTCCACCAGAAC -ACGGAATCGAGATTCCACGTCTAC -ACGGAATCGAGATTCCACACGTAC -ACGGAATCGAGATTCCACAGTGAC -ACGGAATCGAGATTCCACCTGTAG -ACGGAATCGAGATTCCACCCTAAG -ACGGAATCGAGATTCCACGTTCAG -ACGGAATCGAGATTCCACGCATAG -ACGGAATCGAGATTCCACGACAAG -ACGGAATCGAGATTCCACAAGCAG -ACGGAATCGAGATTCCACCGTCAA -ACGGAATCGAGATTCCACGCTGAA -ACGGAATCGAGATTCCACAGTACG -ACGGAATCGAGATTCCACATCCGA -ACGGAATCGAGATTCCACATGGGA -ACGGAATCGAGATTCCACGTGCAA -ACGGAATCGAGATTCCACGAGGAA -ACGGAATCGAGATTCCACCAGGTA -ACGGAATCGAGATTCCACGACTCT -ACGGAATCGAGATTCCACAGTCCT -ACGGAATCGAGATTCCACTAAGCC -ACGGAATCGAGATTCCACATAGCC -ACGGAATCGAGATTCCACTAACCG -ACGGAATCGAGATTCCACATGCCA -ACGGAATCGAGACTCGTAGGAAAC -ACGGAATCGAGACTCGTAAACACC -ACGGAATCGAGACTCGTAATCGAG -ACGGAATCGAGACTCGTACTCCTT -ACGGAATCGAGACTCGTACCTGTT -ACGGAATCGAGACTCGTACGGTTT -ACGGAATCGAGACTCGTAGTGGTT -ACGGAATCGAGACTCGTAGCCTTT -ACGGAATCGAGACTCGTAGGTCTT -ACGGAATCGAGACTCGTAACGCTT -ACGGAATCGAGACTCGTAAGCGTT -ACGGAATCGAGACTCGTATTCGTC -ACGGAATCGAGACTCGTATCTCTC -ACGGAATCGAGACTCGTATGGATC -ACGGAATCGAGACTCGTACACTTC -ACGGAATCGAGACTCGTAGTACTC -ACGGAATCGAGACTCGTAGATGTC -ACGGAATCGAGACTCGTAACAGTC -ACGGAATCGAGACTCGTATTGCTG -ACGGAATCGAGACTCGTATCCATG -ACGGAATCGAGACTCGTATGTGTG -ACGGAATCGAGACTCGTACTAGTG -ACGGAATCGAGACTCGTACATCTG -ACGGAATCGAGACTCGTAGAGTTG -ACGGAATCGAGACTCGTAAGACTG -ACGGAATCGAGACTCGTATCGGTA -ACGGAATCGAGACTCGTATGCCTA -ACGGAATCGAGACTCGTACCACTA -ACGGAATCGAGACTCGTAGGAGTA -ACGGAATCGAGACTCGTATCGTCT -ACGGAATCGAGACTCGTATGCACT -ACGGAATCGAGACTCGTACTGACT -ACGGAATCGAGACTCGTACAACCT -ACGGAATCGAGACTCGTAGCTACT -ACGGAATCGAGACTCGTAGGATCT -ACGGAATCGAGACTCGTAAAGGCT -ACGGAATCGAGACTCGTATCAACC -ACGGAATCGAGACTCGTATGTTCC -ACGGAATCGAGACTCGTAATTCCC -ACGGAATCGAGACTCGTATTCTCG -ACGGAATCGAGACTCGTATAGACG -ACGGAATCGAGACTCGTAGTAACG -ACGGAATCGAGACTCGTAACTTCG -ACGGAATCGAGACTCGTATACGCA -ACGGAATCGAGACTCGTACTTGCA -ACGGAATCGAGACTCGTACGAACA -ACGGAATCGAGACTCGTACAGTCA -ACGGAATCGAGACTCGTAGATCCA -ACGGAATCGAGACTCGTAACGACA -ACGGAATCGAGACTCGTAAGCTCA -ACGGAATCGAGACTCGTATCACGT -ACGGAATCGAGACTCGTACGTAGT -ACGGAATCGAGACTCGTAGTCAGT -ACGGAATCGAGACTCGTAGAAGGT -ACGGAATCGAGACTCGTAAACCGT -ACGGAATCGAGACTCGTATTGTGC -ACGGAATCGAGACTCGTACTAAGC -ACGGAATCGAGACTCGTAACTAGC -ACGGAATCGAGACTCGTAAGATGC -ACGGAATCGAGACTCGTATGAAGG -ACGGAATCGAGACTCGTACAATGG -ACGGAATCGAGACTCGTAATGAGG -ACGGAATCGAGACTCGTAAATGGG -ACGGAATCGAGACTCGTATCCTGA -ACGGAATCGAGACTCGTATAGCGA -ACGGAATCGAGACTCGTACACAGA -ACGGAATCGAGACTCGTAGCAAGA -ACGGAATCGAGACTCGTAGGTTGA -ACGGAATCGAGACTCGTATCCGAT -ACGGAATCGAGACTCGTATGGCAT -ACGGAATCGAGACTCGTACGAGAT -ACGGAATCGAGACTCGTATACCAC -ACGGAATCGAGACTCGTACAGAAC -ACGGAATCGAGACTCGTAGTCTAC -ACGGAATCGAGACTCGTAACGTAC -ACGGAATCGAGACTCGTAAGTGAC -ACGGAATCGAGACTCGTACTGTAG -ACGGAATCGAGACTCGTACCTAAG -ACGGAATCGAGACTCGTAGTTCAG -ACGGAATCGAGACTCGTAGCATAG -ACGGAATCGAGACTCGTAGACAAG -ACGGAATCGAGACTCGTAAAGCAG -ACGGAATCGAGACTCGTACGTCAA -ACGGAATCGAGACTCGTAGCTGAA -ACGGAATCGAGACTCGTAAGTACG -ACGGAATCGAGACTCGTAATCCGA -ACGGAATCGAGACTCGTAATGGGA -ACGGAATCGAGACTCGTAGTGCAA -ACGGAATCGAGACTCGTAGAGGAA -ACGGAATCGAGACTCGTACAGGTA -ACGGAATCGAGACTCGTAGACTCT -ACGGAATCGAGACTCGTAAGTCCT -ACGGAATCGAGACTCGTATAAGCC -ACGGAATCGAGACTCGTAATAGCC -ACGGAATCGAGACTCGTATAACCG -ACGGAATCGAGACTCGTAATGCCA -ACGGAATCGAGAGTCGATGGAAAC -ACGGAATCGAGAGTCGATAACACC -ACGGAATCGAGAGTCGATATCGAG -ACGGAATCGAGAGTCGATCTCCTT -ACGGAATCGAGAGTCGATCCTGTT -ACGGAATCGAGAGTCGATCGGTTT -ACGGAATCGAGAGTCGATGTGGTT -ACGGAATCGAGAGTCGATGCCTTT -ACGGAATCGAGAGTCGATGGTCTT -ACGGAATCGAGAGTCGATACGCTT -ACGGAATCGAGAGTCGATAGCGTT -ACGGAATCGAGAGTCGATTTCGTC -ACGGAATCGAGAGTCGATTCTCTC -ACGGAATCGAGAGTCGATTGGATC -ACGGAATCGAGAGTCGATCACTTC -ACGGAATCGAGAGTCGATGTACTC -ACGGAATCGAGAGTCGATGATGTC -ACGGAATCGAGAGTCGATACAGTC -ACGGAATCGAGAGTCGATTTGCTG -ACGGAATCGAGAGTCGATTCCATG -ACGGAATCGAGAGTCGATTGTGTG -ACGGAATCGAGAGTCGATCTAGTG -ACGGAATCGAGAGTCGATCATCTG -ACGGAATCGAGAGTCGATGAGTTG -ACGGAATCGAGAGTCGATAGACTG -ACGGAATCGAGAGTCGATTCGGTA -ACGGAATCGAGAGTCGATTGCCTA -ACGGAATCGAGAGTCGATCCACTA -ACGGAATCGAGAGTCGATGGAGTA -ACGGAATCGAGAGTCGATTCGTCT -ACGGAATCGAGAGTCGATTGCACT -ACGGAATCGAGAGTCGATCTGACT -ACGGAATCGAGAGTCGATCAACCT -ACGGAATCGAGAGTCGATGCTACT -ACGGAATCGAGAGTCGATGGATCT -ACGGAATCGAGAGTCGATAAGGCT -ACGGAATCGAGAGTCGATTCAACC -ACGGAATCGAGAGTCGATTGTTCC -ACGGAATCGAGAGTCGATATTCCC -ACGGAATCGAGAGTCGATTTCTCG -ACGGAATCGAGAGTCGATTAGACG -ACGGAATCGAGAGTCGATGTAACG -ACGGAATCGAGAGTCGATACTTCG -ACGGAATCGAGAGTCGATTACGCA -ACGGAATCGAGAGTCGATCTTGCA -ACGGAATCGAGAGTCGATCGAACA -ACGGAATCGAGAGTCGATCAGTCA -ACGGAATCGAGAGTCGATGATCCA -ACGGAATCGAGAGTCGATACGACA -ACGGAATCGAGAGTCGATAGCTCA -ACGGAATCGAGAGTCGATTCACGT -ACGGAATCGAGAGTCGATCGTAGT -ACGGAATCGAGAGTCGATGTCAGT -ACGGAATCGAGAGTCGATGAAGGT -ACGGAATCGAGAGTCGATAACCGT -ACGGAATCGAGAGTCGATTTGTGC -ACGGAATCGAGAGTCGATCTAAGC -ACGGAATCGAGAGTCGATACTAGC -ACGGAATCGAGAGTCGATAGATGC -ACGGAATCGAGAGTCGATTGAAGG -ACGGAATCGAGAGTCGATCAATGG -ACGGAATCGAGAGTCGATATGAGG -ACGGAATCGAGAGTCGATAATGGG -ACGGAATCGAGAGTCGATTCCTGA -ACGGAATCGAGAGTCGATTAGCGA -ACGGAATCGAGAGTCGATCACAGA -ACGGAATCGAGAGTCGATGCAAGA -ACGGAATCGAGAGTCGATGGTTGA -ACGGAATCGAGAGTCGATTCCGAT -ACGGAATCGAGAGTCGATTGGCAT -ACGGAATCGAGAGTCGATCGAGAT -ACGGAATCGAGAGTCGATTACCAC -ACGGAATCGAGAGTCGATCAGAAC -ACGGAATCGAGAGTCGATGTCTAC -ACGGAATCGAGAGTCGATACGTAC -ACGGAATCGAGAGTCGATAGTGAC -ACGGAATCGAGAGTCGATCTGTAG -ACGGAATCGAGAGTCGATCCTAAG -ACGGAATCGAGAGTCGATGTTCAG -ACGGAATCGAGAGTCGATGCATAG -ACGGAATCGAGAGTCGATGACAAG -ACGGAATCGAGAGTCGATAAGCAG -ACGGAATCGAGAGTCGATCGTCAA -ACGGAATCGAGAGTCGATGCTGAA -ACGGAATCGAGAGTCGATAGTACG -ACGGAATCGAGAGTCGATATCCGA -ACGGAATCGAGAGTCGATATGGGA -ACGGAATCGAGAGTCGATGTGCAA -ACGGAATCGAGAGTCGATGAGGAA -ACGGAATCGAGAGTCGATCAGGTA -ACGGAATCGAGAGTCGATGACTCT -ACGGAATCGAGAGTCGATAGTCCT -ACGGAATCGAGAGTCGATTAAGCC -ACGGAATCGAGAGTCGATATAGCC -ACGGAATCGAGAGTCGATTAACCG -ACGGAATCGAGAGTCGATATGCCA -ACGGAATCGAGAGTCACAGGAAAC -ACGGAATCGAGAGTCACAAACACC -ACGGAATCGAGAGTCACAATCGAG -ACGGAATCGAGAGTCACACTCCTT -ACGGAATCGAGAGTCACACCTGTT -ACGGAATCGAGAGTCACACGGTTT -ACGGAATCGAGAGTCACAGTGGTT -ACGGAATCGAGAGTCACAGCCTTT -ACGGAATCGAGAGTCACAGGTCTT -ACGGAATCGAGAGTCACAACGCTT -ACGGAATCGAGAGTCACAAGCGTT -ACGGAATCGAGAGTCACATTCGTC -ACGGAATCGAGAGTCACATCTCTC -ACGGAATCGAGAGTCACATGGATC -ACGGAATCGAGAGTCACACACTTC -ACGGAATCGAGAGTCACAGTACTC -ACGGAATCGAGAGTCACAGATGTC -ACGGAATCGAGAGTCACAACAGTC -ACGGAATCGAGAGTCACATTGCTG -ACGGAATCGAGAGTCACATCCATG -ACGGAATCGAGAGTCACATGTGTG -ACGGAATCGAGAGTCACACTAGTG -ACGGAATCGAGAGTCACACATCTG -ACGGAATCGAGAGTCACAGAGTTG -ACGGAATCGAGAGTCACAAGACTG -ACGGAATCGAGAGTCACATCGGTA -ACGGAATCGAGAGTCACATGCCTA -ACGGAATCGAGAGTCACACCACTA -ACGGAATCGAGAGTCACAGGAGTA -ACGGAATCGAGAGTCACATCGTCT -ACGGAATCGAGAGTCACATGCACT -ACGGAATCGAGAGTCACACTGACT -ACGGAATCGAGAGTCACACAACCT -ACGGAATCGAGAGTCACAGCTACT -ACGGAATCGAGAGTCACAGGATCT -ACGGAATCGAGAGTCACAAAGGCT -ACGGAATCGAGAGTCACATCAACC -ACGGAATCGAGAGTCACATGTTCC -ACGGAATCGAGAGTCACAATTCCC -ACGGAATCGAGAGTCACATTCTCG -ACGGAATCGAGAGTCACATAGACG -ACGGAATCGAGAGTCACAGTAACG -ACGGAATCGAGAGTCACAACTTCG -ACGGAATCGAGAGTCACATACGCA -ACGGAATCGAGAGTCACACTTGCA -ACGGAATCGAGAGTCACACGAACA -ACGGAATCGAGAGTCACACAGTCA -ACGGAATCGAGAGTCACAGATCCA -ACGGAATCGAGAGTCACAACGACA -ACGGAATCGAGAGTCACAAGCTCA -ACGGAATCGAGAGTCACATCACGT -ACGGAATCGAGAGTCACACGTAGT -ACGGAATCGAGAGTCACAGTCAGT -ACGGAATCGAGAGTCACAGAAGGT -ACGGAATCGAGAGTCACAAACCGT -ACGGAATCGAGAGTCACATTGTGC -ACGGAATCGAGAGTCACACTAAGC -ACGGAATCGAGAGTCACAACTAGC -ACGGAATCGAGAGTCACAAGATGC -ACGGAATCGAGAGTCACATGAAGG -ACGGAATCGAGAGTCACACAATGG -ACGGAATCGAGAGTCACAATGAGG -ACGGAATCGAGAGTCACAAATGGG -ACGGAATCGAGAGTCACATCCTGA -ACGGAATCGAGAGTCACATAGCGA -ACGGAATCGAGAGTCACACACAGA -ACGGAATCGAGAGTCACAGCAAGA -ACGGAATCGAGAGTCACAGGTTGA -ACGGAATCGAGAGTCACATCCGAT -ACGGAATCGAGAGTCACATGGCAT -ACGGAATCGAGAGTCACACGAGAT -ACGGAATCGAGAGTCACATACCAC -ACGGAATCGAGAGTCACACAGAAC -ACGGAATCGAGAGTCACAGTCTAC -ACGGAATCGAGAGTCACAACGTAC -ACGGAATCGAGAGTCACAAGTGAC -ACGGAATCGAGAGTCACACTGTAG -ACGGAATCGAGAGTCACACCTAAG -ACGGAATCGAGAGTCACAGTTCAG -ACGGAATCGAGAGTCACAGCATAG -ACGGAATCGAGAGTCACAGACAAG -ACGGAATCGAGAGTCACAAAGCAG -ACGGAATCGAGAGTCACACGTCAA -ACGGAATCGAGAGTCACAGCTGAA -ACGGAATCGAGAGTCACAAGTACG -ACGGAATCGAGAGTCACAATCCGA -ACGGAATCGAGAGTCACAATGGGA -ACGGAATCGAGAGTCACAGTGCAA -ACGGAATCGAGAGTCACAGAGGAA -ACGGAATCGAGAGTCACACAGGTA -ACGGAATCGAGAGTCACAGACTCT -ACGGAATCGAGAGTCACAAGTCCT -ACGGAATCGAGAGTCACATAAGCC -ACGGAATCGAGAGTCACAATAGCC -ACGGAATCGAGAGTCACATAACCG -ACGGAATCGAGAGTCACAATGCCA -ACGGAATCGAGACTGTTGGGAAAC -ACGGAATCGAGACTGTTGAACACC -ACGGAATCGAGACTGTTGATCGAG -ACGGAATCGAGACTGTTGCTCCTT -ACGGAATCGAGACTGTTGCCTGTT -ACGGAATCGAGACTGTTGCGGTTT -ACGGAATCGAGACTGTTGGTGGTT -ACGGAATCGAGACTGTTGGCCTTT -ACGGAATCGAGACTGTTGGGTCTT -ACGGAATCGAGACTGTTGACGCTT -ACGGAATCGAGACTGTTGAGCGTT -ACGGAATCGAGACTGTTGTTCGTC -ACGGAATCGAGACTGTTGTCTCTC -ACGGAATCGAGACTGTTGTGGATC -ACGGAATCGAGACTGTTGCACTTC -ACGGAATCGAGACTGTTGGTACTC -ACGGAATCGAGACTGTTGGATGTC -ACGGAATCGAGACTGTTGACAGTC -ACGGAATCGAGACTGTTGTTGCTG -ACGGAATCGAGACTGTTGTCCATG -ACGGAATCGAGACTGTTGTGTGTG -ACGGAATCGAGACTGTTGCTAGTG -ACGGAATCGAGACTGTTGCATCTG -ACGGAATCGAGACTGTTGGAGTTG -ACGGAATCGAGACTGTTGAGACTG -ACGGAATCGAGACTGTTGTCGGTA -ACGGAATCGAGACTGTTGTGCCTA -ACGGAATCGAGACTGTTGCCACTA -ACGGAATCGAGACTGTTGGGAGTA -ACGGAATCGAGACTGTTGTCGTCT -ACGGAATCGAGACTGTTGTGCACT -ACGGAATCGAGACTGTTGCTGACT -ACGGAATCGAGACTGTTGCAACCT -ACGGAATCGAGACTGTTGGCTACT -ACGGAATCGAGACTGTTGGGATCT -ACGGAATCGAGACTGTTGAAGGCT -ACGGAATCGAGACTGTTGTCAACC -ACGGAATCGAGACTGTTGTGTTCC -ACGGAATCGAGACTGTTGATTCCC -ACGGAATCGAGACTGTTGTTCTCG -ACGGAATCGAGACTGTTGTAGACG -ACGGAATCGAGACTGTTGGTAACG -ACGGAATCGAGACTGTTGACTTCG -ACGGAATCGAGACTGTTGTACGCA -ACGGAATCGAGACTGTTGCTTGCA -ACGGAATCGAGACTGTTGCGAACA -ACGGAATCGAGACTGTTGCAGTCA -ACGGAATCGAGACTGTTGGATCCA -ACGGAATCGAGACTGTTGACGACA -ACGGAATCGAGACTGTTGAGCTCA -ACGGAATCGAGACTGTTGTCACGT -ACGGAATCGAGACTGTTGCGTAGT -ACGGAATCGAGACTGTTGGTCAGT -ACGGAATCGAGACTGTTGGAAGGT -ACGGAATCGAGACTGTTGAACCGT -ACGGAATCGAGACTGTTGTTGTGC -ACGGAATCGAGACTGTTGCTAAGC -ACGGAATCGAGACTGTTGACTAGC -ACGGAATCGAGACTGTTGAGATGC -ACGGAATCGAGACTGTTGTGAAGG -ACGGAATCGAGACTGTTGCAATGG -ACGGAATCGAGACTGTTGATGAGG -ACGGAATCGAGACTGTTGAATGGG -ACGGAATCGAGACTGTTGTCCTGA -ACGGAATCGAGACTGTTGTAGCGA -ACGGAATCGAGACTGTTGCACAGA -ACGGAATCGAGACTGTTGGCAAGA -ACGGAATCGAGACTGTTGGGTTGA -ACGGAATCGAGACTGTTGTCCGAT -ACGGAATCGAGACTGTTGTGGCAT -ACGGAATCGAGACTGTTGCGAGAT -ACGGAATCGAGACTGTTGTACCAC -ACGGAATCGAGACTGTTGCAGAAC -ACGGAATCGAGACTGTTGGTCTAC -ACGGAATCGAGACTGTTGACGTAC -ACGGAATCGAGACTGTTGAGTGAC -ACGGAATCGAGACTGTTGCTGTAG -ACGGAATCGAGACTGTTGCCTAAG -ACGGAATCGAGACTGTTGGTTCAG -ACGGAATCGAGACTGTTGGCATAG -ACGGAATCGAGACTGTTGGACAAG -ACGGAATCGAGACTGTTGAAGCAG -ACGGAATCGAGACTGTTGCGTCAA -ACGGAATCGAGACTGTTGGCTGAA -ACGGAATCGAGACTGTTGAGTACG -ACGGAATCGAGACTGTTGATCCGA -ACGGAATCGAGACTGTTGATGGGA -ACGGAATCGAGACTGTTGGTGCAA -ACGGAATCGAGACTGTTGGAGGAA -ACGGAATCGAGACTGTTGCAGGTA -ACGGAATCGAGACTGTTGGACTCT -ACGGAATCGAGACTGTTGAGTCCT -ACGGAATCGAGACTGTTGTAAGCC -ACGGAATCGAGACTGTTGATAGCC -ACGGAATCGAGACTGTTGTAACCG -ACGGAATCGAGACTGTTGATGCCA -ACGGAATCGAGAATGTCCGGAAAC -ACGGAATCGAGAATGTCCAACACC -ACGGAATCGAGAATGTCCATCGAG -ACGGAATCGAGAATGTCCCTCCTT -ACGGAATCGAGAATGTCCCCTGTT -ACGGAATCGAGAATGTCCCGGTTT -ACGGAATCGAGAATGTCCGTGGTT -ACGGAATCGAGAATGTCCGCCTTT -ACGGAATCGAGAATGTCCGGTCTT -ACGGAATCGAGAATGTCCACGCTT -ACGGAATCGAGAATGTCCAGCGTT -ACGGAATCGAGAATGTCCTTCGTC -ACGGAATCGAGAATGTCCTCTCTC -ACGGAATCGAGAATGTCCTGGATC -ACGGAATCGAGAATGTCCCACTTC -ACGGAATCGAGAATGTCCGTACTC -ACGGAATCGAGAATGTCCGATGTC -ACGGAATCGAGAATGTCCACAGTC -ACGGAATCGAGAATGTCCTTGCTG -ACGGAATCGAGAATGTCCTCCATG -ACGGAATCGAGAATGTCCTGTGTG -ACGGAATCGAGAATGTCCCTAGTG -ACGGAATCGAGAATGTCCCATCTG -ACGGAATCGAGAATGTCCGAGTTG -ACGGAATCGAGAATGTCCAGACTG -ACGGAATCGAGAATGTCCTCGGTA -ACGGAATCGAGAATGTCCTGCCTA -ACGGAATCGAGAATGTCCCCACTA -ACGGAATCGAGAATGTCCGGAGTA -ACGGAATCGAGAATGTCCTCGTCT -ACGGAATCGAGAATGTCCTGCACT -ACGGAATCGAGAATGTCCCTGACT -ACGGAATCGAGAATGTCCCAACCT -ACGGAATCGAGAATGTCCGCTACT -ACGGAATCGAGAATGTCCGGATCT -ACGGAATCGAGAATGTCCAAGGCT -ACGGAATCGAGAATGTCCTCAACC -ACGGAATCGAGAATGTCCTGTTCC -ACGGAATCGAGAATGTCCATTCCC -ACGGAATCGAGAATGTCCTTCTCG -ACGGAATCGAGAATGTCCTAGACG -ACGGAATCGAGAATGTCCGTAACG -ACGGAATCGAGAATGTCCACTTCG -ACGGAATCGAGAATGTCCTACGCA -ACGGAATCGAGAATGTCCCTTGCA -ACGGAATCGAGAATGTCCCGAACA -ACGGAATCGAGAATGTCCCAGTCA -ACGGAATCGAGAATGTCCGATCCA -ACGGAATCGAGAATGTCCACGACA -ACGGAATCGAGAATGTCCAGCTCA -ACGGAATCGAGAATGTCCTCACGT -ACGGAATCGAGAATGTCCCGTAGT -ACGGAATCGAGAATGTCCGTCAGT -ACGGAATCGAGAATGTCCGAAGGT -ACGGAATCGAGAATGTCCAACCGT -ACGGAATCGAGAATGTCCTTGTGC -ACGGAATCGAGAATGTCCCTAAGC -ACGGAATCGAGAATGTCCACTAGC -ACGGAATCGAGAATGTCCAGATGC -ACGGAATCGAGAATGTCCTGAAGG -ACGGAATCGAGAATGTCCCAATGG -ACGGAATCGAGAATGTCCATGAGG -ACGGAATCGAGAATGTCCAATGGG -ACGGAATCGAGAATGTCCTCCTGA -ACGGAATCGAGAATGTCCTAGCGA -ACGGAATCGAGAATGTCCCACAGA -ACGGAATCGAGAATGTCCGCAAGA -ACGGAATCGAGAATGTCCGGTTGA -ACGGAATCGAGAATGTCCTCCGAT -ACGGAATCGAGAATGTCCTGGCAT -ACGGAATCGAGAATGTCCCGAGAT -ACGGAATCGAGAATGTCCTACCAC -ACGGAATCGAGAATGTCCCAGAAC -ACGGAATCGAGAATGTCCGTCTAC -ACGGAATCGAGAATGTCCACGTAC -ACGGAATCGAGAATGTCCAGTGAC -ACGGAATCGAGAATGTCCCTGTAG -ACGGAATCGAGAATGTCCCCTAAG -ACGGAATCGAGAATGTCCGTTCAG -ACGGAATCGAGAATGTCCGCATAG -ACGGAATCGAGAATGTCCGACAAG -ACGGAATCGAGAATGTCCAAGCAG -ACGGAATCGAGAATGTCCCGTCAA -ACGGAATCGAGAATGTCCGCTGAA -ACGGAATCGAGAATGTCCAGTACG -ACGGAATCGAGAATGTCCATCCGA -ACGGAATCGAGAATGTCCATGGGA -ACGGAATCGAGAATGTCCGTGCAA -ACGGAATCGAGAATGTCCGAGGAA -ACGGAATCGAGAATGTCCCAGGTA -ACGGAATCGAGAATGTCCGACTCT -ACGGAATCGAGAATGTCCAGTCCT -ACGGAATCGAGAATGTCCTAAGCC -ACGGAATCGAGAATGTCCATAGCC -ACGGAATCGAGAATGTCCTAACCG -ACGGAATCGAGAATGTCCATGCCA -ACGGAATCGAGAGTGTGTGGAAAC -ACGGAATCGAGAGTGTGTAACACC -ACGGAATCGAGAGTGTGTATCGAG -ACGGAATCGAGAGTGTGTCTCCTT -ACGGAATCGAGAGTGTGTCCTGTT -ACGGAATCGAGAGTGTGTCGGTTT -ACGGAATCGAGAGTGTGTGTGGTT -ACGGAATCGAGAGTGTGTGCCTTT -ACGGAATCGAGAGTGTGTGGTCTT -ACGGAATCGAGAGTGTGTACGCTT -ACGGAATCGAGAGTGTGTAGCGTT -ACGGAATCGAGAGTGTGTTTCGTC -ACGGAATCGAGAGTGTGTTCTCTC -ACGGAATCGAGAGTGTGTTGGATC -ACGGAATCGAGAGTGTGTCACTTC -ACGGAATCGAGAGTGTGTGTACTC -ACGGAATCGAGAGTGTGTGATGTC -ACGGAATCGAGAGTGTGTACAGTC -ACGGAATCGAGAGTGTGTTTGCTG -ACGGAATCGAGAGTGTGTTCCATG -ACGGAATCGAGAGTGTGTTGTGTG -ACGGAATCGAGAGTGTGTCTAGTG -ACGGAATCGAGAGTGTGTCATCTG -ACGGAATCGAGAGTGTGTGAGTTG -ACGGAATCGAGAGTGTGTAGACTG -ACGGAATCGAGAGTGTGTTCGGTA -ACGGAATCGAGAGTGTGTTGCCTA -ACGGAATCGAGAGTGTGTCCACTA -ACGGAATCGAGAGTGTGTGGAGTA -ACGGAATCGAGAGTGTGTTCGTCT -ACGGAATCGAGAGTGTGTTGCACT -ACGGAATCGAGAGTGTGTCTGACT -ACGGAATCGAGAGTGTGTCAACCT -ACGGAATCGAGAGTGTGTGCTACT -ACGGAATCGAGAGTGTGTGGATCT -ACGGAATCGAGAGTGTGTAAGGCT -ACGGAATCGAGAGTGTGTTCAACC -ACGGAATCGAGAGTGTGTTGTTCC -ACGGAATCGAGAGTGTGTATTCCC -ACGGAATCGAGAGTGTGTTTCTCG -ACGGAATCGAGAGTGTGTTAGACG -ACGGAATCGAGAGTGTGTGTAACG -ACGGAATCGAGAGTGTGTACTTCG -ACGGAATCGAGAGTGTGTTACGCA -ACGGAATCGAGAGTGTGTCTTGCA -ACGGAATCGAGAGTGTGTCGAACA -ACGGAATCGAGAGTGTGTCAGTCA -ACGGAATCGAGAGTGTGTGATCCA -ACGGAATCGAGAGTGTGTACGACA -ACGGAATCGAGAGTGTGTAGCTCA -ACGGAATCGAGAGTGTGTTCACGT -ACGGAATCGAGAGTGTGTCGTAGT -ACGGAATCGAGAGTGTGTGTCAGT -ACGGAATCGAGAGTGTGTGAAGGT -ACGGAATCGAGAGTGTGTAACCGT -ACGGAATCGAGAGTGTGTTTGTGC -ACGGAATCGAGAGTGTGTCTAAGC -ACGGAATCGAGAGTGTGTACTAGC -ACGGAATCGAGAGTGTGTAGATGC -ACGGAATCGAGAGTGTGTTGAAGG -ACGGAATCGAGAGTGTGTCAATGG -ACGGAATCGAGAGTGTGTATGAGG -ACGGAATCGAGAGTGTGTAATGGG -ACGGAATCGAGAGTGTGTTCCTGA -ACGGAATCGAGAGTGTGTTAGCGA -ACGGAATCGAGAGTGTGTCACAGA -ACGGAATCGAGAGTGTGTGCAAGA -ACGGAATCGAGAGTGTGTGGTTGA -ACGGAATCGAGAGTGTGTTCCGAT -ACGGAATCGAGAGTGTGTTGGCAT -ACGGAATCGAGAGTGTGTCGAGAT -ACGGAATCGAGAGTGTGTTACCAC -ACGGAATCGAGAGTGTGTCAGAAC -ACGGAATCGAGAGTGTGTGTCTAC -ACGGAATCGAGAGTGTGTACGTAC -ACGGAATCGAGAGTGTGTAGTGAC -ACGGAATCGAGAGTGTGTCTGTAG -ACGGAATCGAGAGTGTGTCCTAAG -ACGGAATCGAGAGTGTGTGTTCAG -ACGGAATCGAGAGTGTGTGCATAG -ACGGAATCGAGAGTGTGTGACAAG -ACGGAATCGAGAGTGTGTAAGCAG -ACGGAATCGAGAGTGTGTCGTCAA -ACGGAATCGAGAGTGTGTGCTGAA -ACGGAATCGAGAGTGTGTAGTACG -ACGGAATCGAGAGTGTGTATCCGA -ACGGAATCGAGAGTGTGTATGGGA -ACGGAATCGAGAGTGTGTGTGCAA -ACGGAATCGAGAGTGTGTGAGGAA -ACGGAATCGAGAGTGTGTCAGGTA -ACGGAATCGAGAGTGTGTGACTCT -ACGGAATCGAGAGTGTGTAGTCCT -ACGGAATCGAGAGTGTGTTAAGCC -ACGGAATCGAGAGTGTGTATAGCC -ACGGAATCGAGAGTGTGTTAACCG -ACGGAATCGAGAGTGTGTATGCCA -ACGGAATCGAGAGTGCTAGGAAAC -ACGGAATCGAGAGTGCTAAACACC -ACGGAATCGAGAGTGCTAATCGAG -ACGGAATCGAGAGTGCTACTCCTT -ACGGAATCGAGAGTGCTACCTGTT -ACGGAATCGAGAGTGCTACGGTTT -ACGGAATCGAGAGTGCTAGTGGTT -ACGGAATCGAGAGTGCTAGCCTTT -ACGGAATCGAGAGTGCTAGGTCTT -ACGGAATCGAGAGTGCTAACGCTT -ACGGAATCGAGAGTGCTAAGCGTT -ACGGAATCGAGAGTGCTATTCGTC -ACGGAATCGAGAGTGCTATCTCTC -ACGGAATCGAGAGTGCTATGGATC -ACGGAATCGAGAGTGCTACACTTC -ACGGAATCGAGAGTGCTAGTACTC -ACGGAATCGAGAGTGCTAGATGTC -ACGGAATCGAGAGTGCTAACAGTC -ACGGAATCGAGAGTGCTATTGCTG -ACGGAATCGAGAGTGCTATCCATG -ACGGAATCGAGAGTGCTATGTGTG -ACGGAATCGAGAGTGCTACTAGTG -ACGGAATCGAGAGTGCTACATCTG -ACGGAATCGAGAGTGCTAGAGTTG -ACGGAATCGAGAGTGCTAAGACTG -ACGGAATCGAGAGTGCTATCGGTA -ACGGAATCGAGAGTGCTATGCCTA -ACGGAATCGAGAGTGCTACCACTA -ACGGAATCGAGAGTGCTAGGAGTA -ACGGAATCGAGAGTGCTATCGTCT -ACGGAATCGAGAGTGCTATGCACT -ACGGAATCGAGAGTGCTACTGACT -ACGGAATCGAGAGTGCTACAACCT -ACGGAATCGAGAGTGCTAGCTACT -ACGGAATCGAGAGTGCTAGGATCT -ACGGAATCGAGAGTGCTAAAGGCT -ACGGAATCGAGAGTGCTATCAACC -ACGGAATCGAGAGTGCTATGTTCC -ACGGAATCGAGAGTGCTAATTCCC -ACGGAATCGAGAGTGCTATTCTCG -ACGGAATCGAGAGTGCTATAGACG -ACGGAATCGAGAGTGCTAGTAACG -ACGGAATCGAGAGTGCTAACTTCG -ACGGAATCGAGAGTGCTATACGCA -ACGGAATCGAGAGTGCTACTTGCA -ACGGAATCGAGAGTGCTACGAACA -ACGGAATCGAGAGTGCTACAGTCA -ACGGAATCGAGAGTGCTAGATCCA -ACGGAATCGAGAGTGCTAACGACA -ACGGAATCGAGAGTGCTAAGCTCA -ACGGAATCGAGAGTGCTATCACGT -ACGGAATCGAGAGTGCTACGTAGT -ACGGAATCGAGAGTGCTAGTCAGT -ACGGAATCGAGAGTGCTAGAAGGT -ACGGAATCGAGAGTGCTAAACCGT -ACGGAATCGAGAGTGCTATTGTGC -ACGGAATCGAGAGTGCTACTAAGC -ACGGAATCGAGAGTGCTAACTAGC -ACGGAATCGAGAGTGCTAAGATGC -ACGGAATCGAGAGTGCTATGAAGG -ACGGAATCGAGAGTGCTACAATGG -ACGGAATCGAGAGTGCTAATGAGG -ACGGAATCGAGAGTGCTAAATGGG -ACGGAATCGAGAGTGCTATCCTGA -ACGGAATCGAGAGTGCTATAGCGA -ACGGAATCGAGAGTGCTACACAGA -ACGGAATCGAGAGTGCTAGCAAGA -ACGGAATCGAGAGTGCTAGGTTGA -ACGGAATCGAGAGTGCTATCCGAT -ACGGAATCGAGAGTGCTATGGCAT -ACGGAATCGAGAGTGCTACGAGAT -ACGGAATCGAGAGTGCTATACCAC -ACGGAATCGAGAGTGCTACAGAAC -ACGGAATCGAGAGTGCTAGTCTAC -ACGGAATCGAGAGTGCTAACGTAC -ACGGAATCGAGAGTGCTAAGTGAC -ACGGAATCGAGAGTGCTACTGTAG -ACGGAATCGAGAGTGCTACCTAAG -ACGGAATCGAGAGTGCTAGTTCAG -ACGGAATCGAGAGTGCTAGCATAG -ACGGAATCGAGAGTGCTAGACAAG -ACGGAATCGAGAGTGCTAAAGCAG -ACGGAATCGAGAGTGCTACGTCAA -ACGGAATCGAGAGTGCTAGCTGAA -ACGGAATCGAGAGTGCTAAGTACG -ACGGAATCGAGAGTGCTAATCCGA -ACGGAATCGAGAGTGCTAATGGGA -ACGGAATCGAGAGTGCTAGTGCAA -ACGGAATCGAGAGTGCTAGAGGAA -ACGGAATCGAGAGTGCTACAGGTA -ACGGAATCGAGAGTGCTAGACTCT -ACGGAATCGAGAGTGCTAAGTCCT -ACGGAATCGAGAGTGCTATAAGCC -ACGGAATCGAGAGTGCTAATAGCC -ACGGAATCGAGAGTGCTATAACCG -ACGGAATCGAGAGTGCTAATGCCA -ACGGAATCGAGACTGCATGGAAAC -ACGGAATCGAGACTGCATAACACC -ACGGAATCGAGACTGCATATCGAG -ACGGAATCGAGACTGCATCTCCTT -ACGGAATCGAGACTGCATCCTGTT -ACGGAATCGAGACTGCATCGGTTT -ACGGAATCGAGACTGCATGTGGTT -ACGGAATCGAGACTGCATGCCTTT -ACGGAATCGAGACTGCATGGTCTT -ACGGAATCGAGACTGCATACGCTT -ACGGAATCGAGACTGCATAGCGTT -ACGGAATCGAGACTGCATTTCGTC -ACGGAATCGAGACTGCATTCTCTC -ACGGAATCGAGACTGCATTGGATC -ACGGAATCGAGACTGCATCACTTC -ACGGAATCGAGACTGCATGTACTC -ACGGAATCGAGACTGCATGATGTC -ACGGAATCGAGACTGCATACAGTC -ACGGAATCGAGACTGCATTTGCTG -ACGGAATCGAGACTGCATTCCATG -ACGGAATCGAGACTGCATTGTGTG -ACGGAATCGAGACTGCATCTAGTG -ACGGAATCGAGACTGCATCATCTG -ACGGAATCGAGACTGCATGAGTTG -ACGGAATCGAGACTGCATAGACTG -ACGGAATCGAGACTGCATTCGGTA -ACGGAATCGAGACTGCATTGCCTA -ACGGAATCGAGACTGCATCCACTA -ACGGAATCGAGACTGCATGGAGTA -ACGGAATCGAGACTGCATTCGTCT -ACGGAATCGAGACTGCATTGCACT -ACGGAATCGAGACTGCATCTGACT -ACGGAATCGAGACTGCATCAACCT -ACGGAATCGAGACTGCATGCTACT -ACGGAATCGAGACTGCATGGATCT -ACGGAATCGAGACTGCATAAGGCT -ACGGAATCGAGACTGCATTCAACC -ACGGAATCGAGACTGCATTGTTCC -ACGGAATCGAGACTGCATATTCCC -ACGGAATCGAGACTGCATTTCTCG -ACGGAATCGAGACTGCATTAGACG -ACGGAATCGAGACTGCATGTAACG -ACGGAATCGAGACTGCATACTTCG -ACGGAATCGAGACTGCATTACGCA -ACGGAATCGAGACTGCATCTTGCA -ACGGAATCGAGACTGCATCGAACA -ACGGAATCGAGACTGCATCAGTCA -ACGGAATCGAGACTGCATGATCCA -ACGGAATCGAGACTGCATACGACA -ACGGAATCGAGACTGCATAGCTCA -ACGGAATCGAGACTGCATTCACGT -ACGGAATCGAGACTGCATCGTAGT -ACGGAATCGAGACTGCATGTCAGT -ACGGAATCGAGACTGCATGAAGGT -ACGGAATCGAGACTGCATAACCGT -ACGGAATCGAGACTGCATTTGTGC -ACGGAATCGAGACTGCATCTAAGC -ACGGAATCGAGACTGCATACTAGC -ACGGAATCGAGACTGCATAGATGC -ACGGAATCGAGACTGCATTGAAGG -ACGGAATCGAGACTGCATCAATGG -ACGGAATCGAGACTGCATATGAGG -ACGGAATCGAGACTGCATAATGGG -ACGGAATCGAGACTGCATTCCTGA -ACGGAATCGAGACTGCATTAGCGA -ACGGAATCGAGACTGCATCACAGA -ACGGAATCGAGACTGCATGCAAGA -ACGGAATCGAGACTGCATGGTTGA -ACGGAATCGAGACTGCATTCCGAT -ACGGAATCGAGACTGCATTGGCAT -ACGGAATCGAGACTGCATCGAGAT -ACGGAATCGAGACTGCATTACCAC -ACGGAATCGAGACTGCATCAGAAC -ACGGAATCGAGACTGCATGTCTAC -ACGGAATCGAGACTGCATACGTAC -ACGGAATCGAGACTGCATAGTGAC -ACGGAATCGAGACTGCATCTGTAG -ACGGAATCGAGACTGCATCCTAAG -ACGGAATCGAGACTGCATGTTCAG -ACGGAATCGAGACTGCATGCATAG -ACGGAATCGAGACTGCATGACAAG -ACGGAATCGAGACTGCATAAGCAG -ACGGAATCGAGACTGCATCGTCAA -ACGGAATCGAGACTGCATGCTGAA -ACGGAATCGAGACTGCATAGTACG -ACGGAATCGAGACTGCATATCCGA -ACGGAATCGAGACTGCATATGGGA -ACGGAATCGAGACTGCATGTGCAA -ACGGAATCGAGACTGCATGAGGAA -ACGGAATCGAGACTGCATCAGGTA -ACGGAATCGAGACTGCATGACTCT -ACGGAATCGAGACTGCATAGTCCT -ACGGAATCGAGACTGCATTAAGCC -ACGGAATCGAGACTGCATATAGCC -ACGGAATCGAGACTGCATTAACCG -ACGGAATCGAGACTGCATATGCCA -ACGGAATCGAGATTGGAGGGAAAC -ACGGAATCGAGATTGGAGAACACC -ACGGAATCGAGATTGGAGATCGAG -ACGGAATCGAGATTGGAGCTCCTT -ACGGAATCGAGATTGGAGCCTGTT -ACGGAATCGAGATTGGAGCGGTTT -ACGGAATCGAGATTGGAGGTGGTT -ACGGAATCGAGATTGGAGGCCTTT -ACGGAATCGAGATTGGAGGGTCTT -ACGGAATCGAGATTGGAGACGCTT -ACGGAATCGAGATTGGAGAGCGTT -ACGGAATCGAGATTGGAGTTCGTC -ACGGAATCGAGATTGGAGTCTCTC -ACGGAATCGAGATTGGAGTGGATC -ACGGAATCGAGATTGGAGCACTTC -ACGGAATCGAGATTGGAGGTACTC -ACGGAATCGAGATTGGAGGATGTC -ACGGAATCGAGATTGGAGACAGTC -ACGGAATCGAGATTGGAGTTGCTG -ACGGAATCGAGATTGGAGTCCATG -ACGGAATCGAGATTGGAGTGTGTG -ACGGAATCGAGATTGGAGCTAGTG -ACGGAATCGAGATTGGAGCATCTG -ACGGAATCGAGATTGGAGGAGTTG -ACGGAATCGAGATTGGAGAGACTG -ACGGAATCGAGATTGGAGTCGGTA -ACGGAATCGAGATTGGAGTGCCTA -ACGGAATCGAGATTGGAGCCACTA -ACGGAATCGAGATTGGAGGGAGTA -ACGGAATCGAGATTGGAGTCGTCT -ACGGAATCGAGATTGGAGTGCACT -ACGGAATCGAGATTGGAGCTGACT -ACGGAATCGAGATTGGAGCAACCT -ACGGAATCGAGATTGGAGGCTACT -ACGGAATCGAGATTGGAGGGATCT -ACGGAATCGAGATTGGAGAAGGCT -ACGGAATCGAGATTGGAGTCAACC -ACGGAATCGAGATTGGAGTGTTCC -ACGGAATCGAGATTGGAGATTCCC -ACGGAATCGAGATTGGAGTTCTCG -ACGGAATCGAGATTGGAGTAGACG -ACGGAATCGAGATTGGAGGTAACG -ACGGAATCGAGATTGGAGACTTCG -ACGGAATCGAGATTGGAGTACGCA -ACGGAATCGAGATTGGAGCTTGCA -ACGGAATCGAGATTGGAGCGAACA -ACGGAATCGAGATTGGAGCAGTCA -ACGGAATCGAGATTGGAGGATCCA -ACGGAATCGAGATTGGAGACGACA -ACGGAATCGAGATTGGAGAGCTCA -ACGGAATCGAGATTGGAGTCACGT -ACGGAATCGAGATTGGAGCGTAGT -ACGGAATCGAGATTGGAGGTCAGT -ACGGAATCGAGATTGGAGGAAGGT -ACGGAATCGAGATTGGAGAACCGT -ACGGAATCGAGATTGGAGTTGTGC -ACGGAATCGAGATTGGAGCTAAGC -ACGGAATCGAGATTGGAGACTAGC -ACGGAATCGAGATTGGAGAGATGC -ACGGAATCGAGATTGGAGTGAAGG -ACGGAATCGAGATTGGAGCAATGG -ACGGAATCGAGATTGGAGATGAGG -ACGGAATCGAGATTGGAGAATGGG -ACGGAATCGAGATTGGAGTCCTGA -ACGGAATCGAGATTGGAGTAGCGA -ACGGAATCGAGATTGGAGCACAGA -ACGGAATCGAGATTGGAGGCAAGA -ACGGAATCGAGATTGGAGGGTTGA -ACGGAATCGAGATTGGAGTCCGAT -ACGGAATCGAGATTGGAGTGGCAT -ACGGAATCGAGATTGGAGCGAGAT -ACGGAATCGAGATTGGAGTACCAC -ACGGAATCGAGATTGGAGCAGAAC -ACGGAATCGAGATTGGAGGTCTAC -ACGGAATCGAGATTGGAGACGTAC -ACGGAATCGAGATTGGAGAGTGAC -ACGGAATCGAGATTGGAGCTGTAG -ACGGAATCGAGATTGGAGCCTAAG -ACGGAATCGAGATTGGAGGTTCAG -ACGGAATCGAGATTGGAGGCATAG -ACGGAATCGAGATTGGAGGACAAG -ACGGAATCGAGATTGGAGAAGCAG -ACGGAATCGAGATTGGAGCGTCAA -ACGGAATCGAGATTGGAGGCTGAA -ACGGAATCGAGATTGGAGAGTACG -ACGGAATCGAGATTGGAGATCCGA -ACGGAATCGAGATTGGAGATGGGA -ACGGAATCGAGATTGGAGGTGCAA -ACGGAATCGAGATTGGAGGAGGAA -ACGGAATCGAGATTGGAGCAGGTA -ACGGAATCGAGATTGGAGGACTCT -ACGGAATCGAGATTGGAGAGTCCT -ACGGAATCGAGATTGGAGTAAGCC -ACGGAATCGAGATTGGAGATAGCC -ACGGAATCGAGATTGGAGTAACCG -ACGGAATCGAGATTGGAGATGCCA -ACGGAATCGAGACTGAGAGGAAAC -ACGGAATCGAGACTGAGAAACACC -ACGGAATCGAGACTGAGAATCGAG -ACGGAATCGAGACTGAGACTCCTT -ACGGAATCGAGACTGAGACCTGTT -ACGGAATCGAGACTGAGACGGTTT -ACGGAATCGAGACTGAGAGTGGTT -ACGGAATCGAGACTGAGAGCCTTT -ACGGAATCGAGACTGAGAGGTCTT -ACGGAATCGAGACTGAGAACGCTT -ACGGAATCGAGACTGAGAAGCGTT -ACGGAATCGAGACTGAGATTCGTC -ACGGAATCGAGACTGAGATCTCTC -ACGGAATCGAGACTGAGATGGATC -ACGGAATCGAGACTGAGACACTTC -ACGGAATCGAGACTGAGAGTACTC -ACGGAATCGAGACTGAGAGATGTC -ACGGAATCGAGACTGAGAACAGTC -ACGGAATCGAGACTGAGATTGCTG -ACGGAATCGAGACTGAGATCCATG -ACGGAATCGAGACTGAGATGTGTG -ACGGAATCGAGACTGAGACTAGTG -ACGGAATCGAGACTGAGACATCTG -ACGGAATCGAGACTGAGAGAGTTG -ACGGAATCGAGACTGAGAAGACTG -ACGGAATCGAGACTGAGATCGGTA -ACGGAATCGAGACTGAGATGCCTA -ACGGAATCGAGACTGAGACCACTA -ACGGAATCGAGACTGAGAGGAGTA -ACGGAATCGAGACTGAGATCGTCT -ACGGAATCGAGACTGAGATGCACT -ACGGAATCGAGACTGAGACTGACT -ACGGAATCGAGACTGAGACAACCT -ACGGAATCGAGACTGAGAGCTACT -ACGGAATCGAGACTGAGAGGATCT -ACGGAATCGAGACTGAGAAAGGCT -ACGGAATCGAGACTGAGATCAACC -ACGGAATCGAGACTGAGATGTTCC -ACGGAATCGAGACTGAGAATTCCC -ACGGAATCGAGACTGAGATTCTCG -ACGGAATCGAGACTGAGATAGACG -ACGGAATCGAGACTGAGAGTAACG -ACGGAATCGAGACTGAGAACTTCG -ACGGAATCGAGACTGAGATACGCA -ACGGAATCGAGACTGAGACTTGCA -ACGGAATCGAGACTGAGACGAACA -ACGGAATCGAGACTGAGACAGTCA -ACGGAATCGAGACTGAGAGATCCA -ACGGAATCGAGACTGAGAACGACA -ACGGAATCGAGACTGAGAAGCTCA -ACGGAATCGAGACTGAGATCACGT -ACGGAATCGAGACTGAGACGTAGT -ACGGAATCGAGACTGAGAGTCAGT -ACGGAATCGAGACTGAGAGAAGGT -ACGGAATCGAGACTGAGAAACCGT -ACGGAATCGAGACTGAGATTGTGC -ACGGAATCGAGACTGAGACTAAGC -ACGGAATCGAGACTGAGAACTAGC -ACGGAATCGAGACTGAGAAGATGC -ACGGAATCGAGACTGAGATGAAGG -ACGGAATCGAGACTGAGACAATGG -ACGGAATCGAGACTGAGAATGAGG -ACGGAATCGAGACTGAGAAATGGG -ACGGAATCGAGACTGAGATCCTGA -ACGGAATCGAGACTGAGATAGCGA -ACGGAATCGAGACTGAGACACAGA -ACGGAATCGAGACTGAGAGCAAGA -ACGGAATCGAGACTGAGAGGTTGA -ACGGAATCGAGACTGAGATCCGAT -ACGGAATCGAGACTGAGATGGCAT -ACGGAATCGAGACTGAGACGAGAT -ACGGAATCGAGACTGAGATACCAC -ACGGAATCGAGACTGAGACAGAAC -ACGGAATCGAGACTGAGAGTCTAC -ACGGAATCGAGACTGAGAACGTAC -ACGGAATCGAGACTGAGAAGTGAC -ACGGAATCGAGACTGAGACTGTAG -ACGGAATCGAGACTGAGACCTAAG -ACGGAATCGAGACTGAGAGTTCAG -ACGGAATCGAGACTGAGAGCATAG -ACGGAATCGAGACTGAGAGACAAG -ACGGAATCGAGACTGAGAAAGCAG -ACGGAATCGAGACTGAGACGTCAA -ACGGAATCGAGACTGAGAGCTGAA -ACGGAATCGAGACTGAGAAGTACG -ACGGAATCGAGACTGAGAATCCGA -ACGGAATCGAGACTGAGAATGGGA -ACGGAATCGAGACTGAGAGTGCAA -ACGGAATCGAGACTGAGAGAGGAA -ACGGAATCGAGACTGAGACAGGTA -ACGGAATCGAGACTGAGAGACTCT -ACGGAATCGAGACTGAGAAGTCCT -ACGGAATCGAGACTGAGATAAGCC -ACGGAATCGAGACTGAGAATAGCC -ACGGAATCGAGACTGAGATAACCG -ACGGAATCGAGACTGAGAATGCCA -ACGGAATCGAGAGTATCGGGAAAC -ACGGAATCGAGAGTATCGAACACC -ACGGAATCGAGAGTATCGATCGAG -ACGGAATCGAGAGTATCGCTCCTT -ACGGAATCGAGAGTATCGCCTGTT -ACGGAATCGAGAGTATCGCGGTTT -ACGGAATCGAGAGTATCGGTGGTT -ACGGAATCGAGAGTATCGGCCTTT -ACGGAATCGAGAGTATCGGGTCTT -ACGGAATCGAGAGTATCGACGCTT -ACGGAATCGAGAGTATCGAGCGTT -ACGGAATCGAGAGTATCGTTCGTC -ACGGAATCGAGAGTATCGTCTCTC -ACGGAATCGAGAGTATCGTGGATC -ACGGAATCGAGAGTATCGCACTTC -ACGGAATCGAGAGTATCGGTACTC -ACGGAATCGAGAGTATCGGATGTC -ACGGAATCGAGAGTATCGACAGTC -ACGGAATCGAGAGTATCGTTGCTG -ACGGAATCGAGAGTATCGTCCATG -ACGGAATCGAGAGTATCGTGTGTG -ACGGAATCGAGAGTATCGCTAGTG -ACGGAATCGAGAGTATCGCATCTG -ACGGAATCGAGAGTATCGGAGTTG -ACGGAATCGAGAGTATCGAGACTG -ACGGAATCGAGAGTATCGTCGGTA -ACGGAATCGAGAGTATCGTGCCTA -ACGGAATCGAGAGTATCGCCACTA -ACGGAATCGAGAGTATCGGGAGTA -ACGGAATCGAGAGTATCGTCGTCT -ACGGAATCGAGAGTATCGTGCACT -ACGGAATCGAGAGTATCGCTGACT -ACGGAATCGAGAGTATCGCAACCT -ACGGAATCGAGAGTATCGGCTACT -ACGGAATCGAGAGTATCGGGATCT -ACGGAATCGAGAGTATCGAAGGCT -ACGGAATCGAGAGTATCGTCAACC -ACGGAATCGAGAGTATCGTGTTCC -ACGGAATCGAGAGTATCGATTCCC -ACGGAATCGAGAGTATCGTTCTCG -ACGGAATCGAGAGTATCGTAGACG -ACGGAATCGAGAGTATCGGTAACG -ACGGAATCGAGAGTATCGACTTCG -ACGGAATCGAGAGTATCGTACGCA -ACGGAATCGAGAGTATCGCTTGCA -ACGGAATCGAGAGTATCGCGAACA -ACGGAATCGAGAGTATCGCAGTCA -ACGGAATCGAGAGTATCGGATCCA -ACGGAATCGAGAGTATCGACGACA -ACGGAATCGAGAGTATCGAGCTCA -ACGGAATCGAGAGTATCGTCACGT -ACGGAATCGAGAGTATCGCGTAGT -ACGGAATCGAGAGTATCGGTCAGT -ACGGAATCGAGAGTATCGGAAGGT -ACGGAATCGAGAGTATCGAACCGT -ACGGAATCGAGAGTATCGTTGTGC -ACGGAATCGAGAGTATCGCTAAGC -ACGGAATCGAGAGTATCGACTAGC -ACGGAATCGAGAGTATCGAGATGC -ACGGAATCGAGAGTATCGTGAAGG -ACGGAATCGAGAGTATCGCAATGG -ACGGAATCGAGAGTATCGATGAGG -ACGGAATCGAGAGTATCGAATGGG -ACGGAATCGAGAGTATCGTCCTGA -ACGGAATCGAGAGTATCGTAGCGA -ACGGAATCGAGAGTATCGCACAGA -ACGGAATCGAGAGTATCGGCAAGA -ACGGAATCGAGAGTATCGGGTTGA -ACGGAATCGAGAGTATCGTCCGAT -ACGGAATCGAGAGTATCGTGGCAT -ACGGAATCGAGAGTATCGCGAGAT -ACGGAATCGAGAGTATCGTACCAC -ACGGAATCGAGAGTATCGCAGAAC -ACGGAATCGAGAGTATCGGTCTAC -ACGGAATCGAGAGTATCGACGTAC -ACGGAATCGAGAGTATCGAGTGAC -ACGGAATCGAGAGTATCGCTGTAG -ACGGAATCGAGAGTATCGCCTAAG -ACGGAATCGAGAGTATCGGTTCAG -ACGGAATCGAGAGTATCGGCATAG -ACGGAATCGAGAGTATCGGACAAG -ACGGAATCGAGAGTATCGAAGCAG -ACGGAATCGAGAGTATCGCGTCAA -ACGGAATCGAGAGTATCGGCTGAA -ACGGAATCGAGAGTATCGAGTACG -ACGGAATCGAGAGTATCGATCCGA -ACGGAATCGAGAGTATCGATGGGA -ACGGAATCGAGAGTATCGGTGCAA -ACGGAATCGAGAGTATCGGAGGAA -ACGGAATCGAGAGTATCGCAGGTA -ACGGAATCGAGAGTATCGGACTCT -ACGGAATCGAGAGTATCGAGTCCT -ACGGAATCGAGAGTATCGTAAGCC -ACGGAATCGAGAGTATCGATAGCC -ACGGAATCGAGAGTATCGTAACCG -ACGGAATCGAGAGTATCGATGCCA -ACGGAATCGAGACTATGCGGAAAC -ACGGAATCGAGACTATGCAACACC -ACGGAATCGAGACTATGCATCGAG -ACGGAATCGAGACTATGCCTCCTT -ACGGAATCGAGACTATGCCCTGTT -ACGGAATCGAGACTATGCCGGTTT -ACGGAATCGAGACTATGCGTGGTT -ACGGAATCGAGACTATGCGCCTTT -ACGGAATCGAGACTATGCGGTCTT -ACGGAATCGAGACTATGCACGCTT -ACGGAATCGAGACTATGCAGCGTT -ACGGAATCGAGACTATGCTTCGTC -ACGGAATCGAGACTATGCTCTCTC -ACGGAATCGAGACTATGCTGGATC -ACGGAATCGAGACTATGCCACTTC -ACGGAATCGAGACTATGCGTACTC -ACGGAATCGAGACTATGCGATGTC -ACGGAATCGAGACTATGCACAGTC -ACGGAATCGAGACTATGCTTGCTG -ACGGAATCGAGACTATGCTCCATG -ACGGAATCGAGACTATGCTGTGTG -ACGGAATCGAGACTATGCCTAGTG -ACGGAATCGAGACTATGCCATCTG -ACGGAATCGAGACTATGCGAGTTG -ACGGAATCGAGACTATGCAGACTG -ACGGAATCGAGACTATGCTCGGTA -ACGGAATCGAGACTATGCTGCCTA -ACGGAATCGAGACTATGCCCACTA -ACGGAATCGAGACTATGCGGAGTA -ACGGAATCGAGACTATGCTCGTCT -ACGGAATCGAGACTATGCTGCACT -ACGGAATCGAGACTATGCCTGACT -ACGGAATCGAGACTATGCCAACCT -ACGGAATCGAGACTATGCGCTACT -ACGGAATCGAGACTATGCGGATCT -ACGGAATCGAGACTATGCAAGGCT -ACGGAATCGAGACTATGCTCAACC -ACGGAATCGAGACTATGCTGTTCC -ACGGAATCGAGACTATGCATTCCC -ACGGAATCGAGACTATGCTTCTCG -ACGGAATCGAGACTATGCTAGACG -ACGGAATCGAGACTATGCGTAACG -ACGGAATCGAGACTATGCACTTCG -ACGGAATCGAGACTATGCTACGCA -ACGGAATCGAGACTATGCCTTGCA -ACGGAATCGAGACTATGCCGAACA -ACGGAATCGAGACTATGCCAGTCA -ACGGAATCGAGACTATGCGATCCA -ACGGAATCGAGACTATGCACGACA -ACGGAATCGAGACTATGCAGCTCA -ACGGAATCGAGACTATGCTCACGT -ACGGAATCGAGACTATGCCGTAGT -ACGGAATCGAGACTATGCGTCAGT -ACGGAATCGAGACTATGCGAAGGT -ACGGAATCGAGACTATGCAACCGT -ACGGAATCGAGACTATGCTTGTGC -ACGGAATCGAGACTATGCCTAAGC -ACGGAATCGAGACTATGCACTAGC -ACGGAATCGAGACTATGCAGATGC -ACGGAATCGAGACTATGCTGAAGG -ACGGAATCGAGACTATGCCAATGG -ACGGAATCGAGACTATGCATGAGG -ACGGAATCGAGACTATGCAATGGG -ACGGAATCGAGACTATGCTCCTGA -ACGGAATCGAGACTATGCTAGCGA -ACGGAATCGAGACTATGCCACAGA -ACGGAATCGAGACTATGCGCAAGA -ACGGAATCGAGACTATGCGGTTGA -ACGGAATCGAGACTATGCTCCGAT -ACGGAATCGAGACTATGCTGGCAT -ACGGAATCGAGACTATGCCGAGAT -ACGGAATCGAGACTATGCTACCAC -ACGGAATCGAGACTATGCCAGAAC -ACGGAATCGAGACTATGCGTCTAC -ACGGAATCGAGACTATGCACGTAC -ACGGAATCGAGACTATGCAGTGAC -ACGGAATCGAGACTATGCCTGTAG -ACGGAATCGAGACTATGCCCTAAG -ACGGAATCGAGACTATGCGTTCAG -ACGGAATCGAGACTATGCGCATAG -ACGGAATCGAGACTATGCGACAAG -ACGGAATCGAGACTATGCAAGCAG -ACGGAATCGAGACTATGCCGTCAA -ACGGAATCGAGACTATGCGCTGAA -ACGGAATCGAGACTATGCAGTACG -ACGGAATCGAGACTATGCATCCGA -ACGGAATCGAGACTATGCATGGGA -ACGGAATCGAGACTATGCGTGCAA -ACGGAATCGAGACTATGCGAGGAA -ACGGAATCGAGACTATGCCAGGTA -ACGGAATCGAGACTATGCGACTCT -ACGGAATCGAGACTATGCAGTCCT -ACGGAATCGAGACTATGCTAAGCC -ACGGAATCGAGACTATGCATAGCC -ACGGAATCGAGACTATGCTAACCG -ACGGAATCGAGACTATGCATGCCA -ACGGAATCGAGACTACCAGGAAAC -ACGGAATCGAGACTACCAAACACC -ACGGAATCGAGACTACCAATCGAG -ACGGAATCGAGACTACCACTCCTT -ACGGAATCGAGACTACCACCTGTT -ACGGAATCGAGACTACCACGGTTT -ACGGAATCGAGACTACCAGTGGTT -ACGGAATCGAGACTACCAGCCTTT -ACGGAATCGAGACTACCAGGTCTT -ACGGAATCGAGACTACCAACGCTT -ACGGAATCGAGACTACCAAGCGTT -ACGGAATCGAGACTACCATTCGTC -ACGGAATCGAGACTACCATCTCTC -ACGGAATCGAGACTACCATGGATC -ACGGAATCGAGACTACCACACTTC -ACGGAATCGAGACTACCAGTACTC -ACGGAATCGAGACTACCAGATGTC -ACGGAATCGAGACTACCAACAGTC -ACGGAATCGAGACTACCATTGCTG -ACGGAATCGAGACTACCATCCATG -ACGGAATCGAGACTACCATGTGTG -ACGGAATCGAGACTACCACTAGTG -ACGGAATCGAGACTACCACATCTG -ACGGAATCGAGACTACCAGAGTTG -ACGGAATCGAGACTACCAAGACTG -ACGGAATCGAGACTACCATCGGTA -ACGGAATCGAGACTACCATGCCTA -ACGGAATCGAGACTACCACCACTA -ACGGAATCGAGACTACCAGGAGTA -ACGGAATCGAGACTACCATCGTCT -ACGGAATCGAGACTACCATGCACT -ACGGAATCGAGACTACCACTGACT -ACGGAATCGAGACTACCACAACCT -ACGGAATCGAGACTACCAGCTACT -ACGGAATCGAGACTACCAGGATCT -ACGGAATCGAGACTACCAAAGGCT -ACGGAATCGAGACTACCATCAACC -ACGGAATCGAGACTACCATGTTCC -ACGGAATCGAGACTACCAATTCCC -ACGGAATCGAGACTACCATTCTCG -ACGGAATCGAGACTACCATAGACG -ACGGAATCGAGACTACCAGTAACG -ACGGAATCGAGACTACCAACTTCG -ACGGAATCGAGACTACCATACGCA -ACGGAATCGAGACTACCACTTGCA -ACGGAATCGAGACTACCACGAACA -ACGGAATCGAGACTACCACAGTCA -ACGGAATCGAGACTACCAGATCCA -ACGGAATCGAGACTACCAACGACA -ACGGAATCGAGACTACCAAGCTCA -ACGGAATCGAGACTACCATCACGT -ACGGAATCGAGACTACCACGTAGT -ACGGAATCGAGACTACCAGTCAGT -ACGGAATCGAGACTACCAGAAGGT -ACGGAATCGAGACTACCAAACCGT -ACGGAATCGAGACTACCATTGTGC -ACGGAATCGAGACTACCACTAAGC -ACGGAATCGAGACTACCAACTAGC -ACGGAATCGAGACTACCAAGATGC -ACGGAATCGAGACTACCATGAAGG -ACGGAATCGAGACTACCACAATGG -ACGGAATCGAGACTACCAATGAGG -ACGGAATCGAGACTACCAAATGGG -ACGGAATCGAGACTACCATCCTGA -ACGGAATCGAGACTACCATAGCGA -ACGGAATCGAGACTACCACACAGA -ACGGAATCGAGACTACCAGCAAGA -ACGGAATCGAGACTACCAGGTTGA -ACGGAATCGAGACTACCATCCGAT -ACGGAATCGAGACTACCATGGCAT -ACGGAATCGAGACTACCACGAGAT -ACGGAATCGAGACTACCATACCAC -ACGGAATCGAGACTACCACAGAAC -ACGGAATCGAGACTACCAGTCTAC -ACGGAATCGAGACTACCAACGTAC -ACGGAATCGAGACTACCAAGTGAC -ACGGAATCGAGACTACCACTGTAG -ACGGAATCGAGACTACCACCTAAG -ACGGAATCGAGACTACCAGTTCAG -ACGGAATCGAGACTACCAGCATAG -ACGGAATCGAGACTACCAGACAAG -ACGGAATCGAGACTACCAAAGCAG -ACGGAATCGAGACTACCACGTCAA -ACGGAATCGAGACTACCAGCTGAA -ACGGAATCGAGACTACCAAGTACG -ACGGAATCGAGACTACCAATCCGA -ACGGAATCGAGACTACCAATGGGA -ACGGAATCGAGACTACCAGTGCAA -ACGGAATCGAGACTACCAGAGGAA -ACGGAATCGAGACTACCACAGGTA -ACGGAATCGAGACTACCAGACTCT -ACGGAATCGAGACTACCAAGTCCT -ACGGAATCGAGACTACCATAAGCC -ACGGAATCGAGACTACCAATAGCC -ACGGAATCGAGACTACCATAACCG -ACGGAATCGAGACTACCAATGCCA -ACGGAATCGAGAGTAGGAGGAAAC -ACGGAATCGAGAGTAGGAAACACC -ACGGAATCGAGAGTAGGAATCGAG -ACGGAATCGAGAGTAGGACTCCTT -ACGGAATCGAGAGTAGGACCTGTT -ACGGAATCGAGAGTAGGACGGTTT -ACGGAATCGAGAGTAGGAGTGGTT -ACGGAATCGAGAGTAGGAGCCTTT -ACGGAATCGAGAGTAGGAGGTCTT -ACGGAATCGAGAGTAGGAACGCTT -ACGGAATCGAGAGTAGGAAGCGTT -ACGGAATCGAGAGTAGGATTCGTC -ACGGAATCGAGAGTAGGATCTCTC -ACGGAATCGAGAGTAGGATGGATC -ACGGAATCGAGAGTAGGACACTTC -ACGGAATCGAGAGTAGGAGTACTC -ACGGAATCGAGAGTAGGAGATGTC -ACGGAATCGAGAGTAGGAACAGTC -ACGGAATCGAGAGTAGGATTGCTG -ACGGAATCGAGAGTAGGATCCATG -ACGGAATCGAGAGTAGGATGTGTG -ACGGAATCGAGAGTAGGACTAGTG -ACGGAATCGAGAGTAGGACATCTG -ACGGAATCGAGAGTAGGAGAGTTG -ACGGAATCGAGAGTAGGAAGACTG -ACGGAATCGAGAGTAGGATCGGTA -ACGGAATCGAGAGTAGGATGCCTA -ACGGAATCGAGAGTAGGACCACTA -ACGGAATCGAGAGTAGGAGGAGTA -ACGGAATCGAGAGTAGGATCGTCT -ACGGAATCGAGAGTAGGATGCACT -ACGGAATCGAGAGTAGGACTGACT -ACGGAATCGAGAGTAGGACAACCT -ACGGAATCGAGAGTAGGAGCTACT -ACGGAATCGAGAGTAGGAGGATCT -ACGGAATCGAGAGTAGGAAAGGCT -ACGGAATCGAGAGTAGGATCAACC -ACGGAATCGAGAGTAGGATGTTCC -ACGGAATCGAGAGTAGGAATTCCC -ACGGAATCGAGAGTAGGATTCTCG -ACGGAATCGAGAGTAGGATAGACG -ACGGAATCGAGAGTAGGAGTAACG -ACGGAATCGAGAGTAGGAACTTCG -ACGGAATCGAGAGTAGGATACGCA -ACGGAATCGAGAGTAGGACTTGCA -ACGGAATCGAGAGTAGGACGAACA -ACGGAATCGAGAGTAGGACAGTCA -ACGGAATCGAGAGTAGGAGATCCA -ACGGAATCGAGAGTAGGAACGACA -ACGGAATCGAGAGTAGGAAGCTCA -ACGGAATCGAGAGTAGGATCACGT -ACGGAATCGAGAGTAGGACGTAGT -ACGGAATCGAGAGTAGGAGTCAGT -ACGGAATCGAGAGTAGGAGAAGGT -ACGGAATCGAGAGTAGGAAACCGT -ACGGAATCGAGAGTAGGATTGTGC -ACGGAATCGAGAGTAGGACTAAGC -ACGGAATCGAGAGTAGGAACTAGC -ACGGAATCGAGAGTAGGAAGATGC -ACGGAATCGAGAGTAGGATGAAGG -ACGGAATCGAGAGTAGGACAATGG -ACGGAATCGAGAGTAGGAATGAGG -ACGGAATCGAGAGTAGGAAATGGG -ACGGAATCGAGAGTAGGATCCTGA -ACGGAATCGAGAGTAGGATAGCGA -ACGGAATCGAGAGTAGGACACAGA -ACGGAATCGAGAGTAGGAGCAAGA -ACGGAATCGAGAGTAGGAGGTTGA -ACGGAATCGAGAGTAGGATCCGAT -ACGGAATCGAGAGTAGGATGGCAT -ACGGAATCGAGAGTAGGACGAGAT -ACGGAATCGAGAGTAGGATACCAC -ACGGAATCGAGAGTAGGACAGAAC -ACGGAATCGAGAGTAGGAGTCTAC -ACGGAATCGAGAGTAGGAACGTAC -ACGGAATCGAGAGTAGGAAGTGAC -ACGGAATCGAGAGTAGGACTGTAG -ACGGAATCGAGAGTAGGACCTAAG -ACGGAATCGAGAGTAGGAGTTCAG -ACGGAATCGAGAGTAGGAGCATAG -ACGGAATCGAGAGTAGGAGACAAG -ACGGAATCGAGAGTAGGAAAGCAG -ACGGAATCGAGAGTAGGACGTCAA -ACGGAATCGAGAGTAGGAGCTGAA -ACGGAATCGAGAGTAGGAAGTACG -ACGGAATCGAGAGTAGGAATCCGA -ACGGAATCGAGAGTAGGAATGGGA -ACGGAATCGAGAGTAGGAGTGCAA -ACGGAATCGAGAGTAGGAGAGGAA -ACGGAATCGAGAGTAGGACAGGTA -ACGGAATCGAGAGTAGGAGACTCT -ACGGAATCGAGAGTAGGAAGTCCT -ACGGAATCGAGAGTAGGATAAGCC -ACGGAATCGAGAGTAGGAATAGCC -ACGGAATCGAGAGTAGGATAACCG -ACGGAATCGAGAGTAGGAATGCCA -ACGGAATCGAGATCTTCGGGAAAC -ACGGAATCGAGATCTTCGAACACC -ACGGAATCGAGATCTTCGATCGAG -ACGGAATCGAGATCTTCGCTCCTT -ACGGAATCGAGATCTTCGCCTGTT -ACGGAATCGAGATCTTCGCGGTTT -ACGGAATCGAGATCTTCGGTGGTT -ACGGAATCGAGATCTTCGGCCTTT -ACGGAATCGAGATCTTCGGGTCTT -ACGGAATCGAGATCTTCGACGCTT -ACGGAATCGAGATCTTCGAGCGTT -ACGGAATCGAGATCTTCGTTCGTC -ACGGAATCGAGATCTTCGTCTCTC -ACGGAATCGAGATCTTCGTGGATC -ACGGAATCGAGATCTTCGCACTTC -ACGGAATCGAGATCTTCGGTACTC -ACGGAATCGAGATCTTCGGATGTC -ACGGAATCGAGATCTTCGACAGTC -ACGGAATCGAGATCTTCGTTGCTG -ACGGAATCGAGATCTTCGTCCATG -ACGGAATCGAGATCTTCGTGTGTG -ACGGAATCGAGATCTTCGCTAGTG -ACGGAATCGAGATCTTCGCATCTG -ACGGAATCGAGATCTTCGGAGTTG -ACGGAATCGAGATCTTCGAGACTG -ACGGAATCGAGATCTTCGTCGGTA -ACGGAATCGAGATCTTCGTGCCTA -ACGGAATCGAGATCTTCGCCACTA -ACGGAATCGAGATCTTCGGGAGTA -ACGGAATCGAGATCTTCGTCGTCT -ACGGAATCGAGATCTTCGTGCACT -ACGGAATCGAGATCTTCGCTGACT -ACGGAATCGAGATCTTCGCAACCT -ACGGAATCGAGATCTTCGGCTACT -ACGGAATCGAGATCTTCGGGATCT -ACGGAATCGAGATCTTCGAAGGCT -ACGGAATCGAGATCTTCGTCAACC -ACGGAATCGAGATCTTCGTGTTCC -ACGGAATCGAGATCTTCGATTCCC -ACGGAATCGAGATCTTCGTTCTCG -ACGGAATCGAGATCTTCGTAGACG -ACGGAATCGAGATCTTCGGTAACG -ACGGAATCGAGATCTTCGACTTCG -ACGGAATCGAGATCTTCGTACGCA -ACGGAATCGAGATCTTCGCTTGCA -ACGGAATCGAGATCTTCGCGAACA -ACGGAATCGAGATCTTCGCAGTCA -ACGGAATCGAGATCTTCGGATCCA -ACGGAATCGAGATCTTCGACGACA -ACGGAATCGAGATCTTCGAGCTCA -ACGGAATCGAGATCTTCGTCACGT -ACGGAATCGAGATCTTCGCGTAGT -ACGGAATCGAGATCTTCGGTCAGT -ACGGAATCGAGATCTTCGGAAGGT -ACGGAATCGAGATCTTCGAACCGT -ACGGAATCGAGATCTTCGTTGTGC -ACGGAATCGAGATCTTCGCTAAGC -ACGGAATCGAGATCTTCGACTAGC -ACGGAATCGAGATCTTCGAGATGC -ACGGAATCGAGATCTTCGTGAAGG -ACGGAATCGAGATCTTCGCAATGG -ACGGAATCGAGATCTTCGATGAGG -ACGGAATCGAGATCTTCGAATGGG -ACGGAATCGAGATCTTCGTCCTGA -ACGGAATCGAGATCTTCGTAGCGA -ACGGAATCGAGATCTTCGCACAGA -ACGGAATCGAGATCTTCGGCAAGA -ACGGAATCGAGATCTTCGGGTTGA -ACGGAATCGAGATCTTCGTCCGAT -ACGGAATCGAGATCTTCGTGGCAT -ACGGAATCGAGATCTTCGCGAGAT -ACGGAATCGAGATCTTCGTACCAC -ACGGAATCGAGATCTTCGCAGAAC -ACGGAATCGAGATCTTCGGTCTAC -ACGGAATCGAGATCTTCGACGTAC -ACGGAATCGAGATCTTCGAGTGAC -ACGGAATCGAGATCTTCGCTGTAG -ACGGAATCGAGATCTTCGCCTAAG -ACGGAATCGAGATCTTCGGTTCAG -ACGGAATCGAGATCTTCGGCATAG -ACGGAATCGAGATCTTCGGACAAG -ACGGAATCGAGATCTTCGAAGCAG -ACGGAATCGAGATCTTCGCGTCAA -ACGGAATCGAGATCTTCGGCTGAA -ACGGAATCGAGATCTTCGAGTACG -ACGGAATCGAGATCTTCGATCCGA -ACGGAATCGAGATCTTCGATGGGA -ACGGAATCGAGATCTTCGGTGCAA -ACGGAATCGAGATCTTCGGAGGAA -ACGGAATCGAGATCTTCGCAGGTA -ACGGAATCGAGATCTTCGGACTCT -ACGGAATCGAGATCTTCGAGTCCT -ACGGAATCGAGATCTTCGTAAGCC -ACGGAATCGAGATCTTCGATAGCC -ACGGAATCGAGATCTTCGTAACCG -ACGGAATCGAGATCTTCGATGCCA -ACGGAATCGAGAACTTGCGGAAAC -ACGGAATCGAGAACTTGCAACACC -ACGGAATCGAGAACTTGCATCGAG -ACGGAATCGAGAACTTGCCTCCTT -ACGGAATCGAGAACTTGCCCTGTT -ACGGAATCGAGAACTTGCCGGTTT -ACGGAATCGAGAACTTGCGTGGTT -ACGGAATCGAGAACTTGCGCCTTT -ACGGAATCGAGAACTTGCGGTCTT -ACGGAATCGAGAACTTGCACGCTT -ACGGAATCGAGAACTTGCAGCGTT -ACGGAATCGAGAACTTGCTTCGTC -ACGGAATCGAGAACTTGCTCTCTC -ACGGAATCGAGAACTTGCTGGATC -ACGGAATCGAGAACTTGCCACTTC -ACGGAATCGAGAACTTGCGTACTC -ACGGAATCGAGAACTTGCGATGTC -ACGGAATCGAGAACTTGCACAGTC -ACGGAATCGAGAACTTGCTTGCTG -ACGGAATCGAGAACTTGCTCCATG -ACGGAATCGAGAACTTGCTGTGTG -ACGGAATCGAGAACTTGCCTAGTG -ACGGAATCGAGAACTTGCCATCTG -ACGGAATCGAGAACTTGCGAGTTG -ACGGAATCGAGAACTTGCAGACTG -ACGGAATCGAGAACTTGCTCGGTA -ACGGAATCGAGAACTTGCTGCCTA -ACGGAATCGAGAACTTGCCCACTA -ACGGAATCGAGAACTTGCGGAGTA -ACGGAATCGAGAACTTGCTCGTCT -ACGGAATCGAGAACTTGCTGCACT -ACGGAATCGAGAACTTGCCTGACT -ACGGAATCGAGAACTTGCCAACCT -ACGGAATCGAGAACTTGCGCTACT -ACGGAATCGAGAACTTGCGGATCT -ACGGAATCGAGAACTTGCAAGGCT -ACGGAATCGAGAACTTGCTCAACC -ACGGAATCGAGAACTTGCTGTTCC -ACGGAATCGAGAACTTGCATTCCC -ACGGAATCGAGAACTTGCTTCTCG -ACGGAATCGAGAACTTGCTAGACG -ACGGAATCGAGAACTTGCGTAACG -ACGGAATCGAGAACTTGCACTTCG -ACGGAATCGAGAACTTGCTACGCA -ACGGAATCGAGAACTTGCCTTGCA -ACGGAATCGAGAACTTGCCGAACA -ACGGAATCGAGAACTTGCCAGTCA -ACGGAATCGAGAACTTGCGATCCA -ACGGAATCGAGAACTTGCACGACA -ACGGAATCGAGAACTTGCAGCTCA -ACGGAATCGAGAACTTGCTCACGT -ACGGAATCGAGAACTTGCCGTAGT -ACGGAATCGAGAACTTGCGTCAGT -ACGGAATCGAGAACTTGCGAAGGT -ACGGAATCGAGAACTTGCAACCGT -ACGGAATCGAGAACTTGCTTGTGC -ACGGAATCGAGAACTTGCCTAAGC -ACGGAATCGAGAACTTGCACTAGC -ACGGAATCGAGAACTTGCAGATGC -ACGGAATCGAGAACTTGCTGAAGG -ACGGAATCGAGAACTTGCCAATGG -ACGGAATCGAGAACTTGCATGAGG -ACGGAATCGAGAACTTGCAATGGG -ACGGAATCGAGAACTTGCTCCTGA -ACGGAATCGAGAACTTGCTAGCGA -ACGGAATCGAGAACTTGCCACAGA -ACGGAATCGAGAACTTGCGCAAGA -ACGGAATCGAGAACTTGCGGTTGA -ACGGAATCGAGAACTTGCTCCGAT -ACGGAATCGAGAACTTGCTGGCAT -ACGGAATCGAGAACTTGCCGAGAT -ACGGAATCGAGAACTTGCTACCAC -ACGGAATCGAGAACTTGCCAGAAC -ACGGAATCGAGAACTTGCGTCTAC -ACGGAATCGAGAACTTGCACGTAC -ACGGAATCGAGAACTTGCAGTGAC -ACGGAATCGAGAACTTGCCTGTAG -ACGGAATCGAGAACTTGCCCTAAG -ACGGAATCGAGAACTTGCGTTCAG -ACGGAATCGAGAACTTGCGCATAG -ACGGAATCGAGAACTTGCGACAAG -ACGGAATCGAGAACTTGCAAGCAG -ACGGAATCGAGAACTTGCCGTCAA -ACGGAATCGAGAACTTGCGCTGAA -ACGGAATCGAGAACTTGCAGTACG -ACGGAATCGAGAACTTGCATCCGA -ACGGAATCGAGAACTTGCATGGGA -ACGGAATCGAGAACTTGCGTGCAA -ACGGAATCGAGAACTTGCGAGGAA -ACGGAATCGAGAACTTGCCAGGTA -ACGGAATCGAGAACTTGCGACTCT -ACGGAATCGAGAACTTGCAGTCCT -ACGGAATCGAGAACTTGCTAAGCC -ACGGAATCGAGAACTTGCATAGCC -ACGGAATCGAGAACTTGCTAACCG -ACGGAATCGAGAACTTGCATGCCA -ACGGAATCGAGAACTCTGGGAAAC -ACGGAATCGAGAACTCTGAACACC -ACGGAATCGAGAACTCTGATCGAG -ACGGAATCGAGAACTCTGCTCCTT -ACGGAATCGAGAACTCTGCCTGTT -ACGGAATCGAGAACTCTGCGGTTT -ACGGAATCGAGAACTCTGGTGGTT -ACGGAATCGAGAACTCTGGCCTTT -ACGGAATCGAGAACTCTGGGTCTT -ACGGAATCGAGAACTCTGACGCTT -ACGGAATCGAGAACTCTGAGCGTT -ACGGAATCGAGAACTCTGTTCGTC -ACGGAATCGAGAACTCTGTCTCTC -ACGGAATCGAGAACTCTGTGGATC -ACGGAATCGAGAACTCTGCACTTC -ACGGAATCGAGAACTCTGGTACTC -ACGGAATCGAGAACTCTGGATGTC -ACGGAATCGAGAACTCTGACAGTC -ACGGAATCGAGAACTCTGTTGCTG -ACGGAATCGAGAACTCTGTCCATG -ACGGAATCGAGAACTCTGTGTGTG -ACGGAATCGAGAACTCTGCTAGTG -ACGGAATCGAGAACTCTGCATCTG -ACGGAATCGAGAACTCTGGAGTTG -ACGGAATCGAGAACTCTGAGACTG -ACGGAATCGAGAACTCTGTCGGTA -ACGGAATCGAGAACTCTGTGCCTA -ACGGAATCGAGAACTCTGCCACTA -ACGGAATCGAGAACTCTGGGAGTA -ACGGAATCGAGAACTCTGTCGTCT -ACGGAATCGAGAACTCTGTGCACT -ACGGAATCGAGAACTCTGCTGACT -ACGGAATCGAGAACTCTGCAACCT -ACGGAATCGAGAACTCTGGCTACT -ACGGAATCGAGAACTCTGGGATCT -ACGGAATCGAGAACTCTGAAGGCT -ACGGAATCGAGAACTCTGTCAACC -ACGGAATCGAGAACTCTGTGTTCC -ACGGAATCGAGAACTCTGATTCCC -ACGGAATCGAGAACTCTGTTCTCG -ACGGAATCGAGAACTCTGTAGACG -ACGGAATCGAGAACTCTGGTAACG -ACGGAATCGAGAACTCTGACTTCG -ACGGAATCGAGAACTCTGTACGCA -ACGGAATCGAGAACTCTGCTTGCA -ACGGAATCGAGAACTCTGCGAACA -ACGGAATCGAGAACTCTGCAGTCA -ACGGAATCGAGAACTCTGGATCCA -ACGGAATCGAGAACTCTGACGACA -ACGGAATCGAGAACTCTGAGCTCA -ACGGAATCGAGAACTCTGTCACGT -ACGGAATCGAGAACTCTGCGTAGT -ACGGAATCGAGAACTCTGGTCAGT -ACGGAATCGAGAACTCTGGAAGGT -ACGGAATCGAGAACTCTGAACCGT -ACGGAATCGAGAACTCTGTTGTGC -ACGGAATCGAGAACTCTGCTAAGC -ACGGAATCGAGAACTCTGACTAGC -ACGGAATCGAGAACTCTGAGATGC -ACGGAATCGAGAACTCTGTGAAGG -ACGGAATCGAGAACTCTGCAATGG -ACGGAATCGAGAACTCTGATGAGG -ACGGAATCGAGAACTCTGAATGGG -ACGGAATCGAGAACTCTGTCCTGA -ACGGAATCGAGAACTCTGTAGCGA -ACGGAATCGAGAACTCTGCACAGA -ACGGAATCGAGAACTCTGGCAAGA -ACGGAATCGAGAACTCTGGGTTGA -ACGGAATCGAGAACTCTGTCCGAT -ACGGAATCGAGAACTCTGTGGCAT -ACGGAATCGAGAACTCTGCGAGAT -ACGGAATCGAGAACTCTGTACCAC -ACGGAATCGAGAACTCTGCAGAAC -ACGGAATCGAGAACTCTGGTCTAC -ACGGAATCGAGAACTCTGACGTAC -ACGGAATCGAGAACTCTGAGTGAC -ACGGAATCGAGAACTCTGCTGTAG -ACGGAATCGAGAACTCTGCCTAAG -ACGGAATCGAGAACTCTGGTTCAG -ACGGAATCGAGAACTCTGGCATAG -ACGGAATCGAGAACTCTGGACAAG -ACGGAATCGAGAACTCTGAAGCAG -ACGGAATCGAGAACTCTGCGTCAA -ACGGAATCGAGAACTCTGGCTGAA -ACGGAATCGAGAACTCTGAGTACG -ACGGAATCGAGAACTCTGATCCGA -ACGGAATCGAGAACTCTGATGGGA -ACGGAATCGAGAACTCTGGTGCAA -ACGGAATCGAGAACTCTGGAGGAA -ACGGAATCGAGAACTCTGCAGGTA -ACGGAATCGAGAACTCTGGACTCT -ACGGAATCGAGAACTCTGAGTCCT -ACGGAATCGAGAACTCTGTAAGCC -ACGGAATCGAGAACTCTGATAGCC -ACGGAATCGAGAACTCTGTAACCG -ACGGAATCGAGAACTCTGATGCCA -ACGGAATCGAGACCTCAAGGAAAC -ACGGAATCGAGACCTCAAAACACC -ACGGAATCGAGACCTCAAATCGAG -ACGGAATCGAGACCTCAACTCCTT -ACGGAATCGAGACCTCAACCTGTT -ACGGAATCGAGACCTCAACGGTTT -ACGGAATCGAGACCTCAAGTGGTT -ACGGAATCGAGACCTCAAGCCTTT -ACGGAATCGAGACCTCAAGGTCTT -ACGGAATCGAGACCTCAAACGCTT -ACGGAATCGAGACCTCAAAGCGTT -ACGGAATCGAGACCTCAATTCGTC -ACGGAATCGAGACCTCAATCTCTC -ACGGAATCGAGACCTCAATGGATC -ACGGAATCGAGACCTCAACACTTC -ACGGAATCGAGACCTCAAGTACTC -ACGGAATCGAGACCTCAAGATGTC -ACGGAATCGAGACCTCAAACAGTC -ACGGAATCGAGACCTCAATTGCTG -ACGGAATCGAGACCTCAATCCATG -ACGGAATCGAGACCTCAATGTGTG -ACGGAATCGAGACCTCAACTAGTG -ACGGAATCGAGACCTCAACATCTG -ACGGAATCGAGACCTCAAGAGTTG -ACGGAATCGAGACCTCAAAGACTG -ACGGAATCGAGACCTCAATCGGTA -ACGGAATCGAGACCTCAATGCCTA -ACGGAATCGAGACCTCAACCACTA -ACGGAATCGAGACCTCAAGGAGTA -ACGGAATCGAGACCTCAATCGTCT -ACGGAATCGAGACCTCAATGCACT -ACGGAATCGAGACCTCAACTGACT -ACGGAATCGAGACCTCAACAACCT -ACGGAATCGAGACCTCAAGCTACT -ACGGAATCGAGACCTCAAGGATCT -ACGGAATCGAGACCTCAAAAGGCT -ACGGAATCGAGACCTCAATCAACC -ACGGAATCGAGACCTCAATGTTCC -ACGGAATCGAGACCTCAAATTCCC -ACGGAATCGAGACCTCAATTCTCG -ACGGAATCGAGACCTCAATAGACG -ACGGAATCGAGACCTCAAGTAACG -ACGGAATCGAGACCTCAAACTTCG -ACGGAATCGAGACCTCAATACGCA -ACGGAATCGAGACCTCAACTTGCA -ACGGAATCGAGACCTCAACGAACA -ACGGAATCGAGACCTCAACAGTCA -ACGGAATCGAGACCTCAAGATCCA -ACGGAATCGAGACCTCAAACGACA -ACGGAATCGAGACCTCAAAGCTCA -ACGGAATCGAGACCTCAATCACGT -ACGGAATCGAGACCTCAACGTAGT -ACGGAATCGAGACCTCAAGTCAGT -ACGGAATCGAGACCTCAAGAAGGT -ACGGAATCGAGACCTCAAAACCGT -ACGGAATCGAGACCTCAATTGTGC -ACGGAATCGAGACCTCAACTAAGC -ACGGAATCGAGACCTCAAACTAGC -ACGGAATCGAGACCTCAAAGATGC -ACGGAATCGAGACCTCAATGAAGG -ACGGAATCGAGACCTCAACAATGG -ACGGAATCGAGACCTCAAATGAGG -ACGGAATCGAGACCTCAAAATGGG -ACGGAATCGAGACCTCAATCCTGA -ACGGAATCGAGACCTCAATAGCGA -ACGGAATCGAGACCTCAACACAGA -ACGGAATCGAGACCTCAAGCAAGA -ACGGAATCGAGACCTCAAGGTTGA -ACGGAATCGAGACCTCAATCCGAT -ACGGAATCGAGACCTCAATGGCAT -ACGGAATCGAGACCTCAACGAGAT -ACGGAATCGAGACCTCAATACCAC -ACGGAATCGAGACCTCAACAGAAC -ACGGAATCGAGACCTCAAGTCTAC -ACGGAATCGAGACCTCAAACGTAC -ACGGAATCGAGACCTCAAAGTGAC -ACGGAATCGAGACCTCAACTGTAG -ACGGAATCGAGACCTCAACCTAAG -ACGGAATCGAGACCTCAAGTTCAG -ACGGAATCGAGACCTCAAGCATAG -ACGGAATCGAGACCTCAAGACAAG -ACGGAATCGAGACCTCAAAAGCAG -ACGGAATCGAGACCTCAACGTCAA -ACGGAATCGAGACCTCAAGCTGAA -ACGGAATCGAGACCTCAAAGTACG -ACGGAATCGAGACCTCAAATCCGA -ACGGAATCGAGACCTCAAATGGGA -ACGGAATCGAGACCTCAAGTGCAA -ACGGAATCGAGACCTCAAGAGGAA -ACGGAATCGAGACCTCAACAGGTA -ACGGAATCGAGACCTCAAGACTCT -ACGGAATCGAGACCTCAAAGTCCT -ACGGAATCGAGACCTCAATAAGCC -ACGGAATCGAGACCTCAAATAGCC -ACGGAATCGAGACCTCAATAACCG -ACGGAATCGAGACCTCAAATGCCA -ACGGAATCGAGAACTGCTGGAAAC -ACGGAATCGAGAACTGCTAACACC -ACGGAATCGAGAACTGCTATCGAG -ACGGAATCGAGAACTGCTCTCCTT -ACGGAATCGAGAACTGCTCCTGTT -ACGGAATCGAGAACTGCTCGGTTT -ACGGAATCGAGAACTGCTGTGGTT -ACGGAATCGAGAACTGCTGCCTTT -ACGGAATCGAGAACTGCTGGTCTT -ACGGAATCGAGAACTGCTACGCTT -ACGGAATCGAGAACTGCTAGCGTT -ACGGAATCGAGAACTGCTTTCGTC -ACGGAATCGAGAACTGCTTCTCTC -ACGGAATCGAGAACTGCTTGGATC -ACGGAATCGAGAACTGCTCACTTC -ACGGAATCGAGAACTGCTGTACTC -ACGGAATCGAGAACTGCTGATGTC -ACGGAATCGAGAACTGCTACAGTC -ACGGAATCGAGAACTGCTTTGCTG -ACGGAATCGAGAACTGCTTCCATG -ACGGAATCGAGAACTGCTTGTGTG -ACGGAATCGAGAACTGCTCTAGTG -ACGGAATCGAGAACTGCTCATCTG -ACGGAATCGAGAACTGCTGAGTTG -ACGGAATCGAGAACTGCTAGACTG -ACGGAATCGAGAACTGCTTCGGTA -ACGGAATCGAGAACTGCTTGCCTA -ACGGAATCGAGAACTGCTCCACTA -ACGGAATCGAGAACTGCTGGAGTA -ACGGAATCGAGAACTGCTTCGTCT -ACGGAATCGAGAACTGCTTGCACT -ACGGAATCGAGAACTGCTCTGACT -ACGGAATCGAGAACTGCTCAACCT -ACGGAATCGAGAACTGCTGCTACT -ACGGAATCGAGAACTGCTGGATCT -ACGGAATCGAGAACTGCTAAGGCT -ACGGAATCGAGAACTGCTTCAACC -ACGGAATCGAGAACTGCTTGTTCC -ACGGAATCGAGAACTGCTATTCCC -ACGGAATCGAGAACTGCTTTCTCG -ACGGAATCGAGAACTGCTTAGACG -ACGGAATCGAGAACTGCTGTAACG -ACGGAATCGAGAACTGCTACTTCG -ACGGAATCGAGAACTGCTTACGCA -ACGGAATCGAGAACTGCTCTTGCA -ACGGAATCGAGAACTGCTCGAACA -ACGGAATCGAGAACTGCTCAGTCA -ACGGAATCGAGAACTGCTGATCCA -ACGGAATCGAGAACTGCTACGACA -ACGGAATCGAGAACTGCTAGCTCA -ACGGAATCGAGAACTGCTTCACGT -ACGGAATCGAGAACTGCTCGTAGT -ACGGAATCGAGAACTGCTGTCAGT -ACGGAATCGAGAACTGCTGAAGGT -ACGGAATCGAGAACTGCTAACCGT -ACGGAATCGAGAACTGCTTTGTGC -ACGGAATCGAGAACTGCTCTAAGC -ACGGAATCGAGAACTGCTACTAGC -ACGGAATCGAGAACTGCTAGATGC -ACGGAATCGAGAACTGCTTGAAGG -ACGGAATCGAGAACTGCTCAATGG -ACGGAATCGAGAACTGCTATGAGG -ACGGAATCGAGAACTGCTAATGGG -ACGGAATCGAGAACTGCTTCCTGA -ACGGAATCGAGAACTGCTTAGCGA -ACGGAATCGAGAACTGCTCACAGA -ACGGAATCGAGAACTGCTGCAAGA -ACGGAATCGAGAACTGCTGGTTGA -ACGGAATCGAGAACTGCTTCCGAT -ACGGAATCGAGAACTGCTTGGCAT -ACGGAATCGAGAACTGCTCGAGAT -ACGGAATCGAGAACTGCTTACCAC -ACGGAATCGAGAACTGCTCAGAAC -ACGGAATCGAGAACTGCTGTCTAC -ACGGAATCGAGAACTGCTACGTAC -ACGGAATCGAGAACTGCTAGTGAC -ACGGAATCGAGAACTGCTCTGTAG -ACGGAATCGAGAACTGCTCCTAAG -ACGGAATCGAGAACTGCTGTTCAG -ACGGAATCGAGAACTGCTGCATAG -ACGGAATCGAGAACTGCTGACAAG -ACGGAATCGAGAACTGCTAAGCAG -ACGGAATCGAGAACTGCTCGTCAA -ACGGAATCGAGAACTGCTGCTGAA -ACGGAATCGAGAACTGCTAGTACG -ACGGAATCGAGAACTGCTATCCGA -ACGGAATCGAGAACTGCTATGGGA -ACGGAATCGAGAACTGCTGTGCAA -ACGGAATCGAGAACTGCTGAGGAA -ACGGAATCGAGAACTGCTCAGGTA -ACGGAATCGAGAACTGCTGACTCT -ACGGAATCGAGAACTGCTAGTCCT -ACGGAATCGAGAACTGCTTAAGCC -ACGGAATCGAGAACTGCTATAGCC -ACGGAATCGAGAACTGCTTAACCG -ACGGAATCGAGAACTGCTATGCCA -ACGGAATCGAGATCTGGAGGAAAC -ACGGAATCGAGATCTGGAAACACC -ACGGAATCGAGATCTGGAATCGAG -ACGGAATCGAGATCTGGACTCCTT -ACGGAATCGAGATCTGGACCTGTT -ACGGAATCGAGATCTGGACGGTTT -ACGGAATCGAGATCTGGAGTGGTT -ACGGAATCGAGATCTGGAGCCTTT -ACGGAATCGAGATCTGGAGGTCTT -ACGGAATCGAGATCTGGAACGCTT -ACGGAATCGAGATCTGGAAGCGTT -ACGGAATCGAGATCTGGATTCGTC -ACGGAATCGAGATCTGGATCTCTC -ACGGAATCGAGATCTGGATGGATC -ACGGAATCGAGATCTGGACACTTC -ACGGAATCGAGATCTGGAGTACTC -ACGGAATCGAGATCTGGAGATGTC -ACGGAATCGAGATCTGGAACAGTC -ACGGAATCGAGATCTGGATTGCTG -ACGGAATCGAGATCTGGATCCATG -ACGGAATCGAGATCTGGATGTGTG -ACGGAATCGAGATCTGGACTAGTG -ACGGAATCGAGATCTGGACATCTG -ACGGAATCGAGATCTGGAGAGTTG -ACGGAATCGAGATCTGGAAGACTG -ACGGAATCGAGATCTGGATCGGTA -ACGGAATCGAGATCTGGATGCCTA -ACGGAATCGAGATCTGGACCACTA -ACGGAATCGAGATCTGGAGGAGTA -ACGGAATCGAGATCTGGATCGTCT -ACGGAATCGAGATCTGGATGCACT -ACGGAATCGAGATCTGGACTGACT -ACGGAATCGAGATCTGGACAACCT -ACGGAATCGAGATCTGGAGCTACT -ACGGAATCGAGATCTGGAGGATCT -ACGGAATCGAGATCTGGAAAGGCT -ACGGAATCGAGATCTGGATCAACC -ACGGAATCGAGATCTGGATGTTCC -ACGGAATCGAGATCTGGAATTCCC -ACGGAATCGAGATCTGGATTCTCG -ACGGAATCGAGATCTGGATAGACG -ACGGAATCGAGATCTGGAGTAACG -ACGGAATCGAGATCTGGAACTTCG -ACGGAATCGAGATCTGGATACGCA -ACGGAATCGAGATCTGGACTTGCA -ACGGAATCGAGATCTGGACGAACA -ACGGAATCGAGATCTGGACAGTCA -ACGGAATCGAGATCTGGAGATCCA -ACGGAATCGAGATCTGGAACGACA -ACGGAATCGAGATCTGGAAGCTCA -ACGGAATCGAGATCTGGATCACGT -ACGGAATCGAGATCTGGACGTAGT -ACGGAATCGAGATCTGGAGTCAGT -ACGGAATCGAGATCTGGAGAAGGT -ACGGAATCGAGATCTGGAAACCGT -ACGGAATCGAGATCTGGATTGTGC -ACGGAATCGAGATCTGGACTAAGC -ACGGAATCGAGATCTGGAACTAGC -ACGGAATCGAGATCTGGAAGATGC -ACGGAATCGAGATCTGGATGAAGG -ACGGAATCGAGATCTGGACAATGG -ACGGAATCGAGATCTGGAATGAGG -ACGGAATCGAGATCTGGAAATGGG -ACGGAATCGAGATCTGGATCCTGA -ACGGAATCGAGATCTGGATAGCGA -ACGGAATCGAGATCTGGACACAGA -ACGGAATCGAGATCTGGAGCAAGA -ACGGAATCGAGATCTGGAGGTTGA -ACGGAATCGAGATCTGGATCCGAT -ACGGAATCGAGATCTGGATGGCAT -ACGGAATCGAGATCTGGACGAGAT -ACGGAATCGAGATCTGGATACCAC -ACGGAATCGAGATCTGGACAGAAC -ACGGAATCGAGATCTGGAGTCTAC -ACGGAATCGAGATCTGGAACGTAC -ACGGAATCGAGATCTGGAAGTGAC -ACGGAATCGAGATCTGGACTGTAG -ACGGAATCGAGATCTGGACCTAAG -ACGGAATCGAGATCTGGAGTTCAG -ACGGAATCGAGATCTGGAGCATAG -ACGGAATCGAGATCTGGAGACAAG -ACGGAATCGAGATCTGGAAAGCAG -ACGGAATCGAGATCTGGACGTCAA -ACGGAATCGAGATCTGGAGCTGAA -ACGGAATCGAGATCTGGAAGTACG -ACGGAATCGAGATCTGGAATCCGA -ACGGAATCGAGATCTGGAATGGGA -ACGGAATCGAGATCTGGAGTGCAA -ACGGAATCGAGATCTGGAGAGGAA -ACGGAATCGAGATCTGGACAGGTA -ACGGAATCGAGATCTGGAGACTCT -ACGGAATCGAGATCTGGAAGTCCT -ACGGAATCGAGATCTGGATAAGCC -ACGGAATCGAGATCTGGAATAGCC -ACGGAATCGAGATCTGGATAACCG -ACGGAATCGAGATCTGGAATGCCA -ACGGAATCGAGAGCTAAGGGAAAC -ACGGAATCGAGAGCTAAGAACACC -ACGGAATCGAGAGCTAAGATCGAG -ACGGAATCGAGAGCTAAGCTCCTT -ACGGAATCGAGAGCTAAGCCTGTT -ACGGAATCGAGAGCTAAGCGGTTT -ACGGAATCGAGAGCTAAGGTGGTT -ACGGAATCGAGAGCTAAGGCCTTT -ACGGAATCGAGAGCTAAGGGTCTT -ACGGAATCGAGAGCTAAGACGCTT -ACGGAATCGAGAGCTAAGAGCGTT -ACGGAATCGAGAGCTAAGTTCGTC -ACGGAATCGAGAGCTAAGTCTCTC -ACGGAATCGAGAGCTAAGTGGATC -ACGGAATCGAGAGCTAAGCACTTC -ACGGAATCGAGAGCTAAGGTACTC -ACGGAATCGAGAGCTAAGGATGTC -ACGGAATCGAGAGCTAAGACAGTC -ACGGAATCGAGAGCTAAGTTGCTG -ACGGAATCGAGAGCTAAGTCCATG -ACGGAATCGAGAGCTAAGTGTGTG -ACGGAATCGAGAGCTAAGCTAGTG -ACGGAATCGAGAGCTAAGCATCTG -ACGGAATCGAGAGCTAAGGAGTTG -ACGGAATCGAGAGCTAAGAGACTG -ACGGAATCGAGAGCTAAGTCGGTA -ACGGAATCGAGAGCTAAGTGCCTA -ACGGAATCGAGAGCTAAGCCACTA -ACGGAATCGAGAGCTAAGGGAGTA -ACGGAATCGAGAGCTAAGTCGTCT -ACGGAATCGAGAGCTAAGTGCACT -ACGGAATCGAGAGCTAAGCTGACT -ACGGAATCGAGAGCTAAGCAACCT -ACGGAATCGAGAGCTAAGGCTACT -ACGGAATCGAGAGCTAAGGGATCT -ACGGAATCGAGAGCTAAGAAGGCT -ACGGAATCGAGAGCTAAGTCAACC -ACGGAATCGAGAGCTAAGTGTTCC -ACGGAATCGAGAGCTAAGATTCCC -ACGGAATCGAGAGCTAAGTTCTCG -ACGGAATCGAGAGCTAAGTAGACG -ACGGAATCGAGAGCTAAGGTAACG -ACGGAATCGAGAGCTAAGACTTCG -ACGGAATCGAGAGCTAAGTACGCA -ACGGAATCGAGAGCTAAGCTTGCA -ACGGAATCGAGAGCTAAGCGAACA -ACGGAATCGAGAGCTAAGCAGTCA -ACGGAATCGAGAGCTAAGGATCCA -ACGGAATCGAGAGCTAAGACGACA -ACGGAATCGAGAGCTAAGAGCTCA -ACGGAATCGAGAGCTAAGTCACGT -ACGGAATCGAGAGCTAAGCGTAGT -ACGGAATCGAGAGCTAAGGTCAGT -ACGGAATCGAGAGCTAAGGAAGGT -ACGGAATCGAGAGCTAAGAACCGT -ACGGAATCGAGAGCTAAGTTGTGC -ACGGAATCGAGAGCTAAGCTAAGC -ACGGAATCGAGAGCTAAGACTAGC -ACGGAATCGAGAGCTAAGAGATGC -ACGGAATCGAGAGCTAAGTGAAGG -ACGGAATCGAGAGCTAAGCAATGG -ACGGAATCGAGAGCTAAGATGAGG -ACGGAATCGAGAGCTAAGAATGGG -ACGGAATCGAGAGCTAAGTCCTGA -ACGGAATCGAGAGCTAAGTAGCGA -ACGGAATCGAGAGCTAAGCACAGA -ACGGAATCGAGAGCTAAGGCAAGA -ACGGAATCGAGAGCTAAGGGTTGA -ACGGAATCGAGAGCTAAGTCCGAT -ACGGAATCGAGAGCTAAGTGGCAT -ACGGAATCGAGAGCTAAGCGAGAT -ACGGAATCGAGAGCTAAGTACCAC -ACGGAATCGAGAGCTAAGCAGAAC -ACGGAATCGAGAGCTAAGGTCTAC -ACGGAATCGAGAGCTAAGACGTAC -ACGGAATCGAGAGCTAAGAGTGAC -ACGGAATCGAGAGCTAAGCTGTAG -ACGGAATCGAGAGCTAAGCCTAAG -ACGGAATCGAGAGCTAAGGTTCAG -ACGGAATCGAGAGCTAAGGCATAG -ACGGAATCGAGAGCTAAGGACAAG -ACGGAATCGAGAGCTAAGAAGCAG -ACGGAATCGAGAGCTAAGCGTCAA -ACGGAATCGAGAGCTAAGGCTGAA -ACGGAATCGAGAGCTAAGAGTACG -ACGGAATCGAGAGCTAAGATCCGA -ACGGAATCGAGAGCTAAGATGGGA -ACGGAATCGAGAGCTAAGGTGCAA -ACGGAATCGAGAGCTAAGGAGGAA -ACGGAATCGAGAGCTAAGCAGGTA -ACGGAATCGAGAGCTAAGGACTCT -ACGGAATCGAGAGCTAAGAGTCCT -ACGGAATCGAGAGCTAAGTAAGCC -ACGGAATCGAGAGCTAAGATAGCC -ACGGAATCGAGAGCTAAGTAACCG -ACGGAATCGAGAGCTAAGATGCCA -ACGGAATCGAGAACCTCAGGAAAC -ACGGAATCGAGAACCTCAAACACC -ACGGAATCGAGAACCTCAATCGAG -ACGGAATCGAGAACCTCACTCCTT -ACGGAATCGAGAACCTCACCTGTT -ACGGAATCGAGAACCTCACGGTTT -ACGGAATCGAGAACCTCAGTGGTT -ACGGAATCGAGAACCTCAGCCTTT -ACGGAATCGAGAACCTCAGGTCTT -ACGGAATCGAGAACCTCAACGCTT -ACGGAATCGAGAACCTCAAGCGTT -ACGGAATCGAGAACCTCATTCGTC -ACGGAATCGAGAACCTCATCTCTC -ACGGAATCGAGAACCTCATGGATC -ACGGAATCGAGAACCTCACACTTC -ACGGAATCGAGAACCTCAGTACTC -ACGGAATCGAGAACCTCAGATGTC -ACGGAATCGAGAACCTCAACAGTC -ACGGAATCGAGAACCTCATTGCTG -ACGGAATCGAGAACCTCATCCATG -ACGGAATCGAGAACCTCATGTGTG -ACGGAATCGAGAACCTCACTAGTG -ACGGAATCGAGAACCTCACATCTG -ACGGAATCGAGAACCTCAGAGTTG -ACGGAATCGAGAACCTCAAGACTG -ACGGAATCGAGAACCTCATCGGTA -ACGGAATCGAGAACCTCATGCCTA -ACGGAATCGAGAACCTCACCACTA -ACGGAATCGAGAACCTCAGGAGTA -ACGGAATCGAGAACCTCATCGTCT -ACGGAATCGAGAACCTCATGCACT -ACGGAATCGAGAACCTCACTGACT -ACGGAATCGAGAACCTCACAACCT -ACGGAATCGAGAACCTCAGCTACT -ACGGAATCGAGAACCTCAGGATCT -ACGGAATCGAGAACCTCAAAGGCT -ACGGAATCGAGAACCTCATCAACC -ACGGAATCGAGAACCTCATGTTCC -ACGGAATCGAGAACCTCAATTCCC -ACGGAATCGAGAACCTCATTCTCG -ACGGAATCGAGAACCTCATAGACG -ACGGAATCGAGAACCTCAGTAACG -ACGGAATCGAGAACCTCAACTTCG -ACGGAATCGAGAACCTCATACGCA -ACGGAATCGAGAACCTCACTTGCA -ACGGAATCGAGAACCTCACGAACA -ACGGAATCGAGAACCTCACAGTCA -ACGGAATCGAGAACCTCAGATCCA -ACGGAATCGAGAACCTCAACGACA -ACGGAATCGAGAACCTCAAGCTCA -ACGGAATCGAGAACCTCATCACGT -ACGGAATCGAGAACCTCACGTAGT -ACGGAATCGAGAACCTCAGTCAGT -ACGGAATCGAGAACCTCAGAAGGT -ACGGAATCGAGAACCTCAAACCGT -ACGGAATCGAGAACCTCATTGTGC -ACGGAATCGAGAACCTCACTAAGC -ACGGAATCGAGAACCTCAACTAGC -ACGGAATCGAGAACCTCAAGATGC -ACGGAATCGAGAACCTCATGAAGG -ACGGAATCGAGAACCTCACAATGG -ACGGAATCGAGAACCTCAATGAGG -ACGGAATCGAGAACCTCAAATGGG -ACGGAATCGAGAACCTCATCCTGA -ACGGAATCGAGAACCTCATAGCGA -ACGGAATCGAGAACCTCACACAGA -ACGGAATCGAGAACCTCAGCAAGA -ACGGAATCGAGAACCTCAGGTTGA -ACGGAATCGAGAACCTCATCCGAT -ACGGAATCGAGAACCTCATGGCAT -ACGGAATCGAGAACCTCACGAGAT -ACGGAATCGAGAACCTCATACCAC -ACGGAATCGAGAACCTCACAGAAC -ACGGAATCGAGAACCTCAGTCTAC -ACGGAATCGAGAACCTCAACGTAC -ACGGAATCGAGAACCTCAAGTGAC -ACGGAATCGAGAACCTCACTGTAG -ACGGAATCGAGAACCTCACCTAAG -ACGGAATCGAGAACCTCAGTTCAG -ACGGAATCGAGAACCTCAGCATAG -ACGGAATCGAGAACCTCAGACAAG -ACGGAATCGAGAACCTCAAAGCAG -ACGGAATCGAGAACCTCACGTCAA -ACGGAATCGAGAACCTCAGCTGAA -ACGGAATCGAGAACCTCAAGTACG -ACGGAATCGAGAACCTCAATCCGA -ACGGAATCGAGAACCTCAATGGGA -ACGGAATCGAGAACCTCAGTGCAA -ACGGAATCGAGAACCTCAGAGGAA -ACGGAATCGAGAACCTCACAGGTA -ACGGAATCGAGAACCTCAGACTCT -ACGGAATCGAGAACCTCAAGTCCT -ACGGAATCGAGAACCTCATAAGCC -ACGGAATCGAGAACCTCAATAGCC -ACGGAATCGAGAACCTCATAACCG -ACGGAATCGAGAACCTCAATGCCA -ACGGAATCGAGATCCTGTGGAAAC -ACGGAATCGAGATCCTGTAACACC -ACGGAATCGAGATCCTGTATCGAG -ACGGAATCGAGATCCTGTCTCCTT -ACGGAATCGAGATCCTGTCCTGTT -ACGGAATCGAGATCCTGTCGGTTT -ACGGAATCGAGATCCTGTGTGGTT -ACGGAATCGAGATCCTGTGCCTTT -ACGGAATCGAGATCCTGTGGTCTT -ACGGAATCGAGATCCTGTACGCTT -ACGGAATCGAGATCCTGTAGCGTT -ACGGAATCGAGATCCTGTTTCGTC -ACGGAATCGAGATCCTGTTCTCTC -ACGGAATCGAGATCCTGTTGGATC -ACGGAATCGAGATCCTGTCACTTC -ACGGAATCGAGATCCTGTGTACTC -ACGGAATCGAGATCCTGTGATGTC -ACGGAATCGAGATCCTGTACAGTC -ACGGAATCGAGATCCTGTTTGCTG -ACGGAATCGAGATCCTGTTCCATG -ACGGAATCGAGATCCTGTTGTGTG -ACGGAATCGAGATCCTGTCTAGTG -ACGGAATCGAGATCCTGTCATCTG -ACGGAATCGAGATCCTGTGAGTTG -ACGGAATCGAGATCCTGTAGACTG -ACGGAATCGAGATCCTGTTCGGTA -ACGGAATCGAGATCCTGTTGCCTA -ACGGAATCGAGATCCTGTCCACTA -ACGGAATCGAGATCCTGTGGAGTA -ACGGAATCGAGATCCTGTTCGTCT -ACGGAATCGAGATCCTGTTGCACT -ACGGAATCGAGATCCTGTCTGACT -ACGGAATCGAGATCCTGTCAACCT -ACGGAATCGAGATCCTGTGCTACT -ACGGAATCGAGATCCTGTGGATCT -ACGGAATCGAGATCCTGTAAGGCT -ACGGAATCGAGATCCTGTTCAACC -ACGGAATCGAGATCCTGTTGTTCC -ACGGAATCGAGATCCTGTATTCCC -ACGGAATCGAGATCCTGTTTCTCG -ACGGAATCGAGATCCTGTTAGACG -ACGGAATCGAGATCCTGTGTAACG -ACGGAATCGAGATCCTGTACTTCG -ACGGAATCGAGATCCTGTTACGCA -ACGGAATCGAGATCCTGTCTTGCA -ACGGAATCGAGATCCTGTCGAACA -ACGGAATCGAGATCCTGTCAGTCA -ACGGAATCGAGATCCTGTGATCCA -ACGGAATCGAGATCCTGTACGACA -ACGGAATCGAGATCCTGTAGCTCA -ACGGAATCGAGATCCTGTTCACGT -ACGGAATCGAGATCCTGTCGTAGT -ACGGAATCGAGATCCTGTGTCAGT -ACGGAATCGAGATCCTGTGAAGGT -ACGGAATCGAGATCCTGTAACCGT -ACGGAATCGAGATCCTGTTTGTGC -ACGGAATCGAGATCCTGTCTAAGC -ACGGAATCGAGATCCTGTACTAGC -ACGGAATCGAGATCCTGTAGATGC -ACGGAATCGAGATCCTGTTGAAGG -ACGGAATCGAGATCCTGTCAATGG -ACGGAATCGAGATCCTGTATGAGG -ACGGAATCGAGATCCTGTAATGGG -ACGGAATCGAGATCCTGTTCCTGA -ACGGAATCGAGATCCTGTTAGCGA -ACGGAATCGAGATCCTGTCACAGA -ACGGAATCGAGATCCTGTGCAAGA -ACGGAATCGAGATCCTGTGGTTGA -ACGGAATCGAGATCCTGTTCCGAT -ACGGAATCGAGATCCTGTTGGCAT -ACGGAATCGAGATCCTGTCGAGAT -ACGGAATCGAGATCCTGTTACCAC -ACGGAATCGAGATCCTGTCAGAAC -ACGGAATCGAGATCCTGTGTCTAC -ACGGAATCGAGATCCTGTACGTAC -ACGGAATCGAGATCCTGTAGTGAC -ACGGAATCGAGATCCTGTCTGTAG -ACGGAATCGAGATCCTGTCCTAAG -ACGGAATCGAGATCCTGTGTTCAG -ACGGAATCGAGATCCTGTGCATAG -ACGGAATCGAGATCCTGTGACAAG -ACGGAATCGAGATCCTGTAAGCAG -ACGGAATCGAGATCCTGTCGTCAA -ACGGAATCGAGATCCTGTGCTGAA -ACGGAATCGAGATCCTGTAGTACG -ACGGAATCGAGATCCTGTATCCGA -ACGGAATCGAGATCCTGTATGGGA -ACGGAATCGAGATCCTGTGTGCAA -ACGGAATCGAGATCCTGTGAGGAA -ACGGAATCGAGATCCTGTCAGGTA -ACGGAATCGAGATCCTGTGACTCT -ACGGAATCGAGATCCTGTAGTCCT -ACGGAATCGAGATCCTGTTAAGCC -ACGGAATCGAGATCCTGTATAGCC -ACGGAATCGAGATCCTGTTAACCG -ACGGAATCGAGATCCTGTATGCCA -ACGGAATCGAGACCCATTGGAAAC -ACGGAATCGAGACCCATTAACACC -ACGGAATCGAGACCCATTATCGAG -ACGGAATCGAGACCCATTCTCCTT -ACGGAATCGAGACCCATTCCTGTT -ACGGAATCGAGACCCATTCGGTTT -ACGGAATCGAGACCCATTGTGGTT -ACGGAATCGAGACCCATTGCCTTT -ACGGAATCGAGACCCATTGGTCTT -ACGGAATCGAGACCCATTACGCTT -ACGGAATCGAGACCCATTAGCGTT -ACGGAATCGAGACCCATTTTCGTC -ACGGAATCGAGACCCATTTCTCTC -ACGGAATCGAGACCCATTTGGATC -ACGGAATCGAGACCCATTCACTTC -ACGGAATCGAGACCCATTGTACTC -ACGGAATCGAGACCCATTGATGTC -ACGGAATCGAGACCCATTACAGTC -ACGGAATCGAGACCCATTTTGCTG -ACGGAATCGAGACCCATTTCCATG -ACGGAATCGAGACCCATTTGTGTG -ACGGAATCGAGACCCATTCTAGTG -ACGGAATCGAGACCCATTCATCTG -ACGGAATCGAGACCCATTGAGTTG -ACGGAATCGAGACCCATTAGACTG -ACGGAATCGAGACCCATTTCGGTA -ACGGAATCGAGACCCATTTGCCTA -ACGGAATCGAGACCCATTCCACTA -ACGGAATCGAGACCCATTGGAGTA -ACGGAATCGAGACCCATTTCGTCT -ACGGAATCGAGACCCATTTGCACT -ACGGAATCGAGACCCATTCTGACT -ACGGAATCGAGACCCATTCAACCT -ACGGAATCGAGACCCATTGCTACT -ACGGAATCGAGACCCATTGGATCT -ACGGAATCGAGACCCATTAAGGCT -ACGGAATCGAGACCCATTTCAACC -ACGGAATCGAGACCCATTTGTTCC -ACGGAATCGAGACCCATTATTCCC -ACGGAATCGAGACCCATTTTCTCG -ACGGAATCGAGACCCATTTAGACG -ACGGAATCGAGACCCATTGTAACG -ACGGAATCGAGACCCATTACTTCG -ACGGAATCGAGACCCATTTACGCA -ACGGAATCGAGACCCATTCTTGCA -ACGGAATCGAGACCCATTCGAACA -ACGGAATCGAGACCCATTCAGTCA -ACGGAATCGAGACCCATTGATCCA -ACGGAATCGAGACCCATTACGACA -ACGGAATCGAGACCCATTAGCTCA -ACGGAATCGAGACCCATTTCACGT -ACGGAATCGAGACCCATTCGTAGT -ACGGAATCGAGACCCATTGTCAGT -ACGGAATCGAGACCCATTGAAGGT -ACGGAATCGAGACCCATTAACCGT -ACGGAATCGAGACCCATTTTGTGC -ACGGAATCGAGACCCATTCTAAGC -ACGGAATCGAGACCCATTACTAGC -ACGGAATCGAGACCCATTAGATGC -ACGGAATCGAGACCCATTTGAAGG -ACGGAATCGAGACCCATTCAATGG -ACGGAATCGAGACCCATTATGAGG -ACGGAATCGAGACCCATTAATGGG -ACGGAATCGAGACCCATTTCCTGA -ACGGAATCGAGACCCATTTAGCGA -ACGGAATCGAGACCCATTCACAGA -ACGGAATCGAGACCCATTGCAAGA -ACGGAATCGAGACCCATTGGTTGA -ACGGAATCGAGACCCATTTCCGAT -ACGGAATCGAGACCCATTTGGCAT -ACGGAATCGAGACCCATTCGAGAT -ACGGAATCGAGACCCATTTACCAC -ACGGAATCGAGACCCATTCAGAAC -ACGGAATCGAGACCCATTGTCTAC -ACGGAATCGAGACCCATTACGTAC -ACGGAATCGAGACCCATTAGTGAC -ACGGAATCGAGACCCATTCTGTAG -ACGGAATCGAGACCCATTCCTAAG -ACGGAATCGAGACCCATTGTTCAG -ACGGAATCGAGACCCATTGCATAG -ACGGAATCGAGACCCATTGACAAG -ACGGAATCGAGACCCATTAAGCAG -ACGGAATCGAGACCCATTCGTCAA -ACGGAATCGAGACCCATTGCTGAA -ACGGAATCGAGACCCATTAGTACG -ACGGAATCGAGACCCATTATCCGA -ACGGAATCGAGACCCATTATGGGA -ACGGAATCGAGACCCATTGTGCAA -ACGGAATCGAGACCCATTGAGGAA -ACGGAATCGAGACCCATTCAGGTA -ACGGAATCGAGACCCATTGACTCT -ACGGAATCGAGACCCATTAGTCCT -ACGGAATCGAGACCCATTTAAGCC -ACGGAATCGAGACCCATTATAGCC -ACGGAATCGAGACCCATTTAACCG -ACGGAATCGAGACCCATTATGCCA -ACGGAATCGAGATCGTTCGGAAAC -ACGGAATCGAGATCGTTCAACACC -ACGGAATCGAGATCGTTCATCGAG -ACGGAATCGAGATCGTTCCTCCTT -ACGGAATCGAGATCGTTCCCTGTT -ACGGAATCGAGATCGTTCCGGTTT -ACGGAATCGAGATCGTTCGTGGTT -ACGGAATCGAGATCGTTCGCCTTT -ACGGAATCGAGATCGTTCGGTCTT -ACGGAATCGAGATCGTTCACGCTT -ACGGAATCGAGATCGTTCAGCGTT -ACGGAATCGAGATCGTTCTTCGTC -ACGGAATCGAGATCGTTCTCTCTC -ACGGAATCGAGATCGTTCTGGATC -ACGGAATCGAGATCGTTCCACTTC -ACGGAATCGAGATCGTTCGTACTC -ACGGAATCGAGATCGTTCGATGTC -ACGGAATCGAGATCGTTCACAGTC -ACGGAATCGAGATCGTTCTTGCTG -ACGGAATCGAGATCGTTCTCCATG -ACGGAATCGAGATCGTTCTGTGTG -ACGGAATCGAGATCGTTCCTAGTG -ACGGAATCGAGATCGTTCCATCTG -ACGGAATCGAGATCGTTCGAGTTG -ACGGAATCGAGATCGTTCAGACTG -ACGGAATCGAGATCGTTCTCGGTA -ACGGAATCGAGATCGTTCTGCCTA -ACGGAATCGAGATCGTTCCCACTA -ACGGAATCGAGATCGTTCGGAGTA -ACGGAATCGAGATCGTTCTCGTCT -ACGGAATCGAGATCGTTCTGCACT -ACGGAATCGAGATCGTTCCTGACT -ACGGAATCGAGATCGTTCCAACCT -ACGGAATCGAGATCGTTCGCTACT -ACGGAATCGAGATCGTTCGGATCT -ACGGAATCGAGATCGTTCAAGGCT -ACGGAATCGAGATCGTTCTCAACC -ACGGAATCGAGATCGTTCTGTTCC -ACGGAATCGAGATCGTTCATTCCC -ACGGAATCGAGATCGTTCTTCTCG -ACGGAATCGAGATCGTTCTAGACG -ACGGAATCGAGATCGTTCGTAACG -ACGGAATCGAGATCGTTCACTTCG -ACGGAATCGAGATCGTTCTACGCA -ACGGAATCGAGATCGTTCCTTGCA -ACGGAATCGAGATCGTTCCGAACA -ACGGAATCGAGATCGTTCCAGTCA -ACGGAATCGAGATCGTTCGATCCA -ACGGAATCGAGATCGTTCACGACA -ACGGAATCGAGATCGTTCAGCTCA -ACGGAATCGAGATCGTTCTCACGT -ACGGAATCGAGATCGTTCCGTAGT -ACGGAATCGAGATCGTTCGTCAGT -ACGGAATCGAGATCGTTCGAAGGT -ACGGAATCGAGATCGTTCAACCGT -ACGGAATCGAGATCGTTCTTGTGC -ACGGAATCGAGATCGTTCCTAAGC -ACGGAATCGAGATCGTTCACTAGC -ACGGAATCGAGATCGTTCAGATGC -ACGGAATCGAGATCGTTCTGAAGG -ACGGAATCGAGATCGTTCCAATGG -ACGGAATCGAGATCGTTCATGAGG -ACGGAATCGAGATCGTTCAATGGG -ACGGAATCGAGATCGTTCTCCTGA -ACGGAATCGAGATCGTTCTAGCGA -ACGGAATCGAGATCGTTCCACAGA -ACGGAATCGAGATCGTTCGCAAGA -ACGGAATCGAGATCGTTCGGTTGA -ACGGAATCGAGATCGTTCTCCGAT -ACGGAATCGAGATCGTTCTGGCAT -ACGGAATCGAGATCGTTCCGAGAT -ACGGAATCGAGATCGTTCTACCAC -ACGGAATCGAGATCGTTCCAGAAC -ACGGAATCGAGATCGTTCGTCTAC -ACGGAATCGAGATCGTTCACGTAC -ACGGAATCGAGATCGTTCAGTGAC -ACGGAATCGAGATCGTTCCTGTAG -ACGGAATCGAGATCGTTCCCTAAG -ACGGAATCGAGATCGTTCGTTCAG -ACGGAATCGAGATCGTTCGCATAG -ACGGAATCGAGATCGTTCGACAAG -ACGGAATCGAGATCGTTCAAGCAG -ACGGAATCGAGATCGTTCCGTCAA -ACGGAATCGAGATCGTTCGCTGAA -ACGGAATCGAGATCGTTCAGTACG -ACGGAATCGAGATCGTTCATCCGA -ACGGAATCGAGATCGTTCATGGGA -ACGGAATCGAGATCGTTCGTGCAA -ACGGAATCGAGATCGTTCGAGGAA -ACGGAATCGAGATCGTTCCAGGTA -ACGGAATCGAGATCGTTCGACTCT -ACGGAATCGAGATCGTTCAGTCCT -ACGGAATCGAGATCGTTCTAAGCC -ACGGAATCGAGATCGTTCATAGCC -ACGGAATCGAGATCGTTCTAACCG -ACGGAATCGAGATCGTTCATGCCA -ACGGAATCGAGAACGTAGGGAAAC -ACGGAATCGAGAACGTAGAACACC -ACGGAATCGAGAACGTAGATCGAG -ACGGAATCGAGAACGTAGCTCCTT -ACGGAATCGAGAACGTAGCCTGTT -ACGGAATCGAGAACGTAGCGGTTT -ACGGAATCGAGAACGTAGGTGGTT -ACGGAATCGAGAACGTAGGCCTTT -ACGGAATCGAGAACGTAGGGTCTT -ACGGAATCGAGAACGTAGACGCTT -ACGGAATCGAGAACGTAGAGCGTT -ACGGAATCGAGAACGTAGTTCGTC -ACGGAATCGAGAACGTAGTCTCTC -ACGGAATCGAGAACGTAGTGGATC -ACGGAATCGAGAACGTAGCACTTC -ACGGAATCGAGAACGTAGGTACTC -ACGGAATCGAGAACGTAGGATGTC -ACGGAATCGAGAACGTAGACAGTC -ACGGAATCGAGAACGTAGTTGCTG -ACGGAATCGAGAACGTAGTCCATG -ACGGAATCGAGAACGTAGTGTGTG -ACGGAATCGAGAACGTAGCTAGTG -ACGGAATCGAGAACGTAGCATCTG -ACGGAATCGAGAACGTAGGAGTTG -ACGGAATCGAGAACGTAGAGACTG -ACGGAATCGAGAACGTAGTCGGTA -ACGGAATCGAGAACGTAGTGCCTA -ACGGAATCGAGAACGTAGCCACTA -ACGGAATCGAGAACGTAGGGAGTA -ACGGAATCGAGAACGTAGTCGTCT -ACGGAATCGAGAACGTAGTGCACT -ACGGAATCGAGAACGTAGCTGACT -ACGGAATCGAGAACGTAGCAACCT -ACGGAATCGAGAACGTAGGCTACT -ACGGAATCGAGAACGTAGGGATCT -ACGGAATCGAGAACGTAGAAGGCT -ACGGAATCGAGAACGTAGTCAACC -ACGGAATCGAGAACGTAGTGTTCC -ACGGAATCGAGAACGTAGATTCCC -ACGGAATCGAGAACGTAGTTCTCG -ACGGAATCGAGAACGTAGTAGACG -ACGGAATCGAGAACGTAGGTAACG -ACGGAATCGAGAACGTAGACTTCG -ACGGAATCGAGAACGTAGTACGCA -ACGGAATCGAGAACGTAGCTTGCA -ACGGAATCGAGAACGTAGCGAACA -ACGGAATCGAGAACGTAGCAGTCA -ACGGAATCGAGAACGTAGGATCCA -ACGGAATCGAGAACGTAGACGACA -ACGGAATCGAGAACGTAGAGCTCA -ACGGAATCGAGAACGTAGTCACGT -ACGGAATCGAGAACGTAGCGTAGT -ACGGAATCGAGAACGTAGGTCAGT -ACGGAATCGAGAACGTAGGAAGGT -ACGGAATCGAGAACGTAGAACCGT -ACGGAATCGAGAACGTAGTTGTGC -ACGGAATCGAGAACGTAGCTAAGC -ACGGAATCGAGAACGTAGACTAGC -ACGGAATCGAGAACGTAGAGATGC -ACGGAATCGAGAACGTAGTGAAGG -ACGGAATCGAGAACGTAGCAATGG -ACGGAATCGAGAACGTAGATGAGG -ACGGAATCGAGAACGTAGAATGGG -ACGGAATCGAGAACGTAGTCCTGA -ACGGAATCGAGAACGTAGTAGCGA -ACGGAATCGAGAACGTAGCACAGA -ACGGAATCGAGAACGTAGGCAAGA -ACGGAATCGAGAACGTAGGGTTGA -ACGGAATCGAGAACGTAGTCCGAT -ACGGAATCGAGAACGTAGTGGCAT -ACGGAATCGAGAACGTAGCGAGAT -ACGGAATCGAGAACGTAGTACCAC -ACGGAATCGAGAACGTAGCAGAAC -ACGGAATCGAGAACGTAGGTCTAC -ACGGAATCGAGAACGTAGACGTAC -ACGGAATCGAGAACGTAGAGTGAC -ACGGAATCGAGAACGTAGCTGTAG -ACGGAATCGAGAACGTAGCCTAAG -ACGGAATCGAGAACGTAGGTTCAG -ACGGAATCGAGAACGTAGGCATAG -ACGGAATCGAGAACGTAGGACAAG -ACGGAATCGAGAACGTAGAAGCAG -ACGGAATCGAGAACGTAGCGTCAA -ACGGAATCGAGAACGTAGGCTGAA -ACGGAATCGAGAACGTAGAGTACG -ACGGAATCGAGAACGTAGATCCGA -ACGGAATCGAGAACGTAGATGGGA -ACGGAATCGAGAACGTAGGTGCAA -ACGGAATCGAGAACGTAGGAGGAA -ACGGAATCGAGAACGTAGCAGGTA -ACGGAATCGAGAACGTAGGACTCT -ACGGAATCGAGAACGTAGAGTCCT -ACGGAATCGAGAACGTAGTAAGCC -ACGGAATCGAGAACGTAGATAGCC -ACGGAATCGAGAACGTAGTAACCG -ACGGAATCGAGAACGTAGATGCCA -ACGGAATCGAGAACGGTAGGAAAC -ACGGAATCGAGAACGGTAAACACC -ACGGAATCGAGAACGGTAATCGAG -ACGGAATCGAGAACGGTACTCCTT -ACGGAATCGAGAACGGTACCTGTT -ACGGAATCGAGAACGGTACGGTTT -ACGGAATCGAGAACGGTAGTGGTT -ACGGAATCGAGAACGGTAGCCTTT -ACGGAATCGAGAACGGTAGGTCTT -ACGGAATCGAGAACGGTAACGCTT -ACGGAATCGAGAACGGTAAGCGTT -ACGGAATCGAGAACGGTATTCGTC -ACGGAATCGAGAACGGTATCTCTC -ACGGAATCGAGAACGGTATGGATC -ACGGAATCGAGAACGGTACACTTC -ACGGAATCGAGAACGGTAGTACTC -ACGGAATCGAGAACGGTAGATGTC -ACGGAATCGAGAACGGTAACAGTC -ACGGAATCGAGAACGGTATTGCTG -ACGGAATCGAGAACGGTATCCATG -ACGGAATCGAGAACGGTATGTGTG -ACGGAATCGAGAACGGTACTAGTG -ACGGAATCGAGAACGGTACATCTG -ACGGAATCGAGAACGGTAGAGTTG -ACGGAATCGAGAACGGTAAGACTG -ACGGAATCGAGAACGGTATCGGTA -ACGGAATCGAGAACGGTATGCCTA -ACGGAATCGAGAACGGTACCACTA -ACGGAATCGAGAACGGTAGGAGTA -ACGGAATCGAGAACGGTATCGTCT -ACGGAATCGAGAACGGTATGCACT -ACGGAATCGAGAACGGTACTGACT -ACGGAATCGAGAACGGTACAACCT -ACGGAATCGAGAACGGTAGCTACT -ACGGAATCGAGAACGGTAGGATCT -ACGGAATCGAGAACGGTAAAGGCT -ACGGAATCGAGAACGGTATCAACC -ACGGAATCGAGAACGGTATGTTCC -ACGGAATCGAGAACGGTAATTCCC -ACGGAATCGAGAACGGTATTCTCG -ACGGAATCGAGAACGGTATAGACG -ACGGAATCGAGAACGGTAGTAACG -ACGGAATCGAGAACGGTAACTTCG -ACGGAATCGAGAACGGTATACGCA -ACGGAATCGAGAACGGTACTTGCA -ACGGAATCGAGAACGGTACGAACA -ACGGAATCGAGAACGGTACAGTCA -ACGGAATCGAGAACGGTAGATCCA -ACGGAATCGAGAACGGTAACGACA -ACGGAATCGAGAACGGTAAGCTCA -ACGGAATCGAGAACGGTATCACGT -ACGGAATCGAGAACGGTACGTAGT -ACGGAATCGAGAACGGTAGTCAGT -ACGGAATCGAGAACGGTAGAAGGT -ACGGAATCGAGAACGGTAAACCGT -ACGGAATCGAGAACGGTATTGTGC -ACGGAATCGAGAACGGTACTAAGC -ACGGAATCGAGAACGGTAACTAGC -ACGGAATCGAGAACGGTAAGATGC -ACGGAATCGAGAACGGTATGAAGG -ACGGAATCGAGAACGGTACAATGG -ACGGAATCGAGAACGGTAATGAGG -ACGGAATCGAGAACGGTAAATGGG -ACGGAATCGAGAACGGTATCCTGA -ACGGAATCGAGAACGGTATAGCGA -ACGGAATCGAGAACGGTACACAGA -ACGGAATCGAGAACGGTAGCAAGA -ACGGAATCGAGAACGGTAGGTTGA -ACGGAATCGAGAACGGTATCCGAT -ACGGAATCGAGAACGGTATGGCAT -ACGGAATCGAGAACGGTACGAGAT -ACGGAATCGAGAACGGTATACCAC -ACGGAATCGAGAACGGTACAGAAC -ACGGAATCGAGAACGGTAGTCTAC -ACGGAATCGAGAACGGTAACGTAC -ACGGAATCGAGAACGGTAAGTGAC -ACGGAATCGAGAACGGTACTGTAG -ACGGAATCGAGAACGGTACCTAAG -ACGGAATCGAGAACGGTAGTTCAG -ACGGAATCGAGAACGGTAGCATAG -ACGGAATCGAGAACGGTAGACAAG -ACGGAATCGAGAACGGTAAAGCAG -ACGGAATCGAGAACGGTACGTCAA -ACGGAATCGAGAACGGTAGCTGAA -ACGGAATCGAGAACGGTAAGTACG -ACGGAATCGAGAACGGTAATCCGA -ACGGAATCGAGAACGGTAATGGGA -ACGGAATCGAGAACGGTAGTGCAA -ACGGAATCGAGAACGGTAGAGGAA -ACGGAATCGAGAACGGTACAGGTA -ACGGAATCGAGAACGGTAGACTCT -ACGGAATCGAGAACGGTAAGTCCT -ACGGAATCGAGAACGGTATAAGCC -ACGGAATCGAGAACGGTAATAGCC -ACGGAATCGAGAACGGTATAACCG -ACGGAATCGAGAACGGTAATGCCA -ACGGAATCGAGATCGACTGGAAAC -ACGGAATCGAGATCGACTAACACC -ACGGAATCGAGATCGACTATCGAG -ACGGAATCGAGATCGACTCTCCTT -ACGGAATCGAGATCGACTCCTGTT -ACGGAATCGAGATCGACTCGGTTT -ACGGAATCGAGATCGACTGTGGTT -ACGGAATCGAGATCGACTGCCTTT -ACGGAATCGAGATCGACTGGTCTT -ACGGAATCGAGATCGACTACGCTT -ACGGAATCGAGATCGACTAGCGTT -ACGGAATCGAGATCGACTTTCGTC -ACGGAATCGAGATCGACTTCTCTC -ACGGAATCGAGATCGACTTGGATC -ACGGAATCGAGATCGACTCACTTC -ACGGAATCGAGATCGACTGTACTC -ACGGAATCGAGATCGACTGATGTC -ACGGAATCGAGATCGACTACAGTC -ACGGAATCGAGATCGACTTTGCTG -ACGGAATCGAGATCGACTTCCATG -ACGGAATCGAGATCGACTTGTGTG -ACGGAATCGAGATCGACTCTAGTG -ACGGAATCGAGATCGACTCATCTG -ACGGAATCGAGATCGACTGAGTTG -ACGGAATCGAGATCGACTAGACTG -ACGGAATCGAGATCGACTTCGGTA -ACGGAATCGAGATCGACTTGCCTA -ACGGAATCGAGATCGACTCCACTA -ACGGAATCGAGATCGACTGGAGTA -ACGGAATCGAGATCGACTTCGTCT -ACGGAATCGAGATCGACTTGCACT -ACGGAATCGAGATCGACTCTGACT -ACGGAATCGAGATCGACTCAACCT -ACGGAATCGAGATCGACTGCTACT -ACGGAATCGAGATCGACTGGATCT -ACGGAATCGAGATCGACTAAGGCT -ACGGAATCGAGATCGACTTCAACC -ACGGAATCGAGATCGACTTGTTCC -ACGGAATCGAGATCGACTATTCCC -ACGGAATCGAGATCGACTTTCTCG -ACGGAATCGAGATCGACTTAGACG -ACGGAATCGAGATCGACTGTAACG -ACGGAATCGAGATCGACTACTTCG -ACGGAATCGAGATCGACTTACGCA -ACGGAATCGAGATCGACTCTTGCA -ACGGAATCGAGATCGACTCGAACA -ACGGAATCGAGATCGACTCAGTCA -ACGGAATCGAGATCGACTGATCCA -ACGGAATCGAGATCGACTACGACA -ACGGAATCGAGATCGACTAGCTCA -ACGGAATCGAGATCGACTTCACGT -ACGGAATCGAGATCGACTCGTAGT -ACGGAATCGAGATCGACTGTCAGT -ACGGAATCGAGATCGACTGAAGGT -ACGGAATCGAGATCGACTAACCGT -ACGGAATCGAGATCGACTTTGTGC -ACGGAATCGAGATCGACTCTAAGC -ACGGAATCGAGATCGACTACTAGC -ACGGAATCGAGATCGACTAGATGC -ACGGAATCGAGATCGACTTGAAGG -ACGGAATCGAGATCGACTCAATGG -ACGGAATCGAGATCGACTATGAGG -ACGGAATCGAGATCGACTAATGGG -ACGGAATCGAGATCGACTTCCTGA -ACGGAATCGAGATCGACTTAGCGA -ACGGAATCGAGATCGACTCACAGA -ACGGAATCGAGATCGACTGCAAGA -ACGGAATCGAGATCGACTGGTTGA -ACGGAATCGAGATCGACTTCCGAT -ACGGAATCGAGATCGACTTGGCAT -ACGGAATCGAGATCGACTCGAGAT -ACGGAATCGAGATCGACTTACCAC -ACGGAATCGAGATCGACTCAGAAC -ACGGAATCGAGATCGACTGTCTAC -ACGGAATCGAGATCGACTACGTAC -ACGGAATCGAGATCGACTAGTGAC -ACGGAATCGAGATCGACTCTGTAG -ACGGAATCGAGATCGACTCCTAAG -ACGGAATCGAGATCGACTGTTCAG -ACGGAATCGAGATCGACTGCATAG -ACGGAATCGAGATCGACTGACAAG -ACGGAATCGAGATCGACTAAGCAG -ACGGAATCGAGATCGACTCGTCAA -ACGGAATCGAGATCGACTGCTGAA -ACGGAATCGAGATCGACTAGTACG -ACGGAATCGAGATCGACTATCCGA -ACGGAATCGAGATCGACTATGGGA -ACGGAATCGAGATCGACTGTGCAA -ACGGAATCGAGATCGACTGAGGAA -ACGGAATCGAGATCGACTCAGGTA -ACGGAATCGAGATCGACTGACTCT -ACGGAATCGAGATCGACTAGTCCT -ACGGAATCGAGATCGACTTAAGCC -ACGGAATCGAGATCGACTATAGCC -ACGGAATCGAGATCGACTTAACCG -ACGGAATCGAGATCGACTATGCCA -ACGGAATCGAGAGCATACGGAAAC -ACGGAATCGAGAGCATACAACACC -ACGGAATCGAGAGCATACATCGAG -ACGGAATCGAGAGCATACCTCCTT -ACGGAATCGAGAGCATACCCTGTT -ACGGAATCGAGAGCATACCGGTTT -ACGGAATCGAGAGCATACGTGGTT -ACGGAATCGAGAGCATACGCCTTT -ACGGAATCGAGAGCATACGGTCTT -ACGGAATCGAGAGCATACACGCTT -ACGGAATCGAGAGCATACAGCGTT -ACGGAATCGAGAGCATACTTCGTC -ACGGAATCGAGAGCATACTCTCTC -ACGGAATCGAGAGCATACTGGATC -ACGGAATCGAGAGCATACCACTTC -ACGGAATCGAGAGCATACGTACTC -ACGGAATCGAGAGCATACGATGTC -ACGGAATCGAGAGCATACACAGTC -ACGGAATCGAGAGCATACTTGCTG -ACGGAATCGAGAGCATACTCCATG -ACGGAATCGAGAGCATACTGTGTG -ACGGAATCGAGAGCATACCTAGTG -ACGGAATCGAGAGCATACCATCTG -ACGGAATCGAGAGCATACGAGTTG -ACGGAATCGAGAGCATACAGACTG -ACGGAATCGAGAGCATACTCGGTA -ACGGAATCGAGAGCATACTGCCTA -ACGGAATCGAGAGCATACCCACTA -ACGGAATCGAGAGCATACGGAGTA -ACGGAATCGAGAGCATACTCGTCT -ACGGAATCGAGAGCATACTGCACT -ACGGAATCGAGAGCATACCTGACT -ACGGAATCGAGAGCATACCAACCT -ACGGAATCGAGAGCATACGCTACT -ACGGAATCGAGAGCATACGGATCT -ACGGAATCGAGAGCATACAAGGCT -ACGGAATCGAGAGCATACTCAACC -ACGGAATCGAGAGCATACTGTTCC -ACGGAATCGAGAGCATACATTCCC -ACGGAATCGAGAGCATACTTCTCG -ACGGAATCGAGAGCATACTAGACG -ACGGAATCGAGAGCATACGTAACG -ACGGAATCGAGAGCATACACTTCG -ACGGAATCGAGAGCATACTACGCA -ACGGAATCGAGAGCATACCTTGCA -ACGGAATCGAGAGCATACCGAACA -ACGGAATCGAGAGCATACCAGTCA -ACGGAATCGAGAGCATACGATCCA -ACGGAATCGAGAGCATACACGACA -ACGGAATCGAGAGCATACAGCTCA -ACGGAATCGAGAGCATACTCACGT -ACGGAATCGAGAGCATACCGTAGT -ACGGAATCGAGAGCATACGTCAGT -ACGGAATCGAGAGCATACGAAGGT -ACGGAATCGAGAGCATACAACCGT -ACGGAATCGAGAGCATACTTGTGC -ACGGAATCGAGAGCATACCTAAGC -ACGGAATCGAGAGCATACACTAGC -ACGGAATCGAGAGCATACAGATGC -ACGGAATCGAGAGCATACTGAAGG -ACGGAATCGAGAGCATACCAATGG -ACGGAATCGAGAGCATACATGAGG -ACGGAATCGAGAGCATACAATGGG -ACGGAATCGAGAGCATACTCCTGA -ACGGAATCGAGAGCATACTAGCGA -ACGGAATCGAGAGCATACCACAGA -ACGGAATCGAGAGCATACGCAAGA -ACGGAATCGAGAGCATACGGTTGA -ACGGAATCGAGAGCATACTCCGAT -ACGGAATCGAGAGCATACTGGCAT -ACGGAATCGAGAGCATACCGAGAT -ACGGAATCGAGAGCATACTACCAC -ACGGAATCGAGAGCATACCAGAAC -ACGGAATCGAGAGCATACGTCTAC -ACGGAATCGAGAGCATACACGTAC -ACGGAATCGAGAGCATACAGTGAC -ACGGAATCGAGAGCATACCTGTAG -ACGGAATCGAGAGCATACCCTAAG -ACGGAATCGAGAGCATACGTTCAG -ACGGAATCGAGAGCATACGCATAG -ACGGAATCGAGAGCATACGACAAG -ACGGAATCGAGAGCATACAAGCAG -ACGGAATCGAGAGCATACCGTCAA -ACGGAATCGAGAGCATACGCTGAA -ACGGAATCGAGAGCATACAGTACG -ACGGAATCGAGAGCATACATCCGA -ACGGAATCGAGAGCATACATGGGA -ACGGAATCGAGAGCATACGTGCAA -ACGGAATCGAGAGCATACGAGGAA -ACGGAATCGAGAGCATACCAGGTA -ACGGAATCGAGAGCATACGACTCT -ACGGAATCGAGAGCATACAGTCCT -ACGGAATCGAGAGCATACTAAGCC -ACGGAATCGAGAGCATACATAGCC -ACGGAATCGAGAGCATACTAACCG -ACGGAATCGAGAGCATACATGCCA -ACGGAATCGAGAGCACTTGGAAAC -ACGGAATCGAGAGCACTTAACACC -ACGGAATCGAGAGCACTTATCGAG -ACGGAATCGAGAGCACTTCTCCTT -ACGGAATCGAGAGCACTTCCTGTT -ACGGAATCGAGAGCACTTCGGTTT -ACGGAATCGAGAGCACTTGTGGTT -ACGGAATCGAGAGCACTTGCCTTT -ACGGAATCGAGAGCACTTGGTCTT -ACGGAATCGAGAGCACTTACGCTT -ACGGAATCGAGAGCACTTAGCGTT -ACGGAATCGAGAGCACTTTTCGTC -ACGGAATCGAGAGCACTTTCTCTC -ACGGAATCGAGAGCACTTTGGATC -ACGGAATCGAGAGCACTTCACTTC -ACGGAATCGAGAGCACTTGTACTC -ACGGAATCGAGAGCACTTGATGTC -ACGGAATCGAGAGCACTTACAGTC -ACGGAATCGAGAGCACTTTTGCTG -ACGGAATCGAGAGCACTTTCCATG -ACGGAATCGAGAGCACTTTGTGTG -ACGGAATCGAGAGCACTTCTAGTG -ACGGAATCGAGAGCACTTCATCTG -ACGGAATCGAGAGCACTTGAGTTG -ACGGAATCGAGAGCACTTAGACTG -ACGGAATCGAGAGCACTTTCGGTA -ACGGAATCGAGAGCACTTTGCCTA -ACGGAATCGAGAGCACTTCCACTA -ACGGAATCGAGAGCACTTGGAGTA -ACGGAATCGAGAGCACTTTCGTCT -ACGGAATCGAGAGCACTTTGCACT -ACGGAATCGAGAGCACTTCTGACT -ACGGAATCGAGAGCACTTCAACCT -ACGGAATCGAGAGCACTTGCTACT -ACGGAATCGAGAGCACTTGGATCT -ACGGAATCGAGAGCACTTAAGGCT -ACGGAATCGAGAGCACTTTCAACC -ACGGAATCGAGAGCACTTTGTTCC -ACGGAATCGAGAGCACTTATTCCC -ACGGAATCGAGAGCACTTTTCTCG -ACGGAATCGAGAGCACTTTAGACG -ACGGAATCGAGAGCACTTGTAACG -ACGGAATCGAGAGCACTTACTTCG -ACGGAATCGAGAGCACTTTACGCA -ACGGAATCGAGAGCACTTCTTGCA -ACGGAATCGAGAGCACTTCGAACA -ACGGAATCGAGAGCACTTCAGTCA -ACGGAATCGAGAGCACTTGATCCA -ACGGAATCGAGAGCACTTACGACA -ACGGAATCGAGAGCACTTAGCTCA -ACGGAATCGAGAGCACTTTCACGT -ACGGAATCGAGAGCACTTCGTAGT -ACGGAATCGAGAGCACTTGTCAGT -ACGGAATCGAGAGCACTTGAAGGT -ACGGAATCGAGAGCACTTAACCGT -ACGGAATCGAGAGCACTTTTGTGC -ACGGAATCGAGAGCACTTCTAAGC -ACGGAATCGAGAGCACTTACTAGC -ACGGAATCGAGAGCACTTAGATGC -ACGGAATCGAGAGCACTTTGAAGG -ACGGAATCGAGAGCACTTCAATGG -ACGGAATCGAGAGCACTTATGAGG -ACGGAATCGAGAGCACTTAATGGG -ACGGAATCGAGAGCACTTTCCTGA -ACGGAATCGAGAGCACTTTAGCGA -ACGGAATCGAGAGCACTTCACAGA -ACGGAATCGAGAGCACTTGCAAGA -ACGGAATCGAGAGCACTTGGTTGA -ACGGAATCGAGAGCACTTTCCGAT -ACGGAATCGAGAGCACTTTGGCAT -ACGGAATCGAGAGCACTTCGAGAT -ACGGAATCGAGAGCACTTTACCAC -ACGGAATCGAGAGCACTTCAGAAC -ACGGAATCGAGAGCACTTGTCTAC -ACGGAATCGAGAGCACTTACGTAC -ACGGAATCGAGAGCACTTAGTGAC -ACGGAATCGAGAGCACTTCTGTAG -ACGGAATCGAGAGCACTTCCTAAG -ACGGAATCGAGAGCACTTGTTCAG -ACGGAATCGAGAGCACTTGCATAG -ACGGAATCGAGAGCACTTGACAAG -ACGGAATCGAGAGCACTTAAGCAG -ACGGAATCGAGAGCACTTCGTCAA -ACGGAATCGAGAGCACTTGCTGAA -ACGGAATCGAGAGCACTTAGTACG -ACGGAATCGAGAGCACTTATCCGA -ACGGAATCGAGAGCACTTATGGGA -ACGGAATCGAGAGCACTTGTGCAA -ACGGAATCGAGAGCACTTGAGGAA -ACGGAATCGAGAGCACTTCAGGTA -ACGGAATCGAGAGCACTTGACTCT -ACGGAATCGAGAGCACTTAGTCCT -ACGGAATCGAGAGCACTTTAAGCC -ACGGAATCGAGAGCACTTATAGCC -ACGGAATCGAGAGCACTTTAACCG -ACGGAATCGAGAGCACTTATGCCA -ACGGAATCGAGAACACGAGGAAAC -ACGGAATCGAGAACACGAAACACC -ACGGAATCGAGAACACGAATCGAG -ACGGAATCGAGAACACGACTCCTT -ACGGAATCGAGAACACGACCTGTT -ACGGAATCGAGAACACGACGGTTT -ACGGAATCGAGAACACGAGTGGTT -ACGGAATCGAGAACACGAGCCTTT -ACGGAATCGAGAACACGAGGTCTT -ACGGAATCGAGAACACGAACGCTT -ACGGAATCGAGAACACGAAGCGTT -ACGGAATCGAGAACACGATTCGTC -ACGGAATCGAGAACACGATCTCTC -ACGGAATCGAGAACACGATGGATC -ACGGAATCGAGAACACGACACTTC -ACGGAATCGAGAACACGAGTACTC -ACGGAATCGAGAACACGAGATGTC -ACGGAATCGAGAACACGAACAGTC -ACGGAATCGAGAACACGATTGCTG -ACGGAATCGAGAACACGATCCATG -ACGGAATCGAGAACACGATGTGTG -ACGGAATCGAGAACACGACTAGTG -ACGGAATCGAGAACACGACATCTG -ACGGAATCGAGAACACGAGAGTTG -ACGGAATCGAGAACACGAAGACTG -ACGGAATCGAGAACACGATCGGTA -ACGGAATCGAGAACACGATGCCTA -ACGGAATCGAGAACACGACCACTA -ACGGAATCGAGAACACGAGGAGTA -ACGGAATCGAGAACACGATCGTCT -ACGGAATCGAGAACACGATGCACT -ACGGAATCGAGAACACGACTGACT -ACGGAATCGAGAACACGACAACCT -ACGGAATCGAGAACACGAGCTACT -ACGGAATCGAGAACACGAGGATCT -ACGGAATCGAGAACACGAAAGGCT -ACGGAATCGAGAACACGATCAACC -ACGGAATCGAGAACACGATGTTCC -ACGGAATCGAGAACACGAATTCCC -ACGGAATCGAGAACACGATTCTCG -ACGGAATCGAGAACACGATAGACG -ACGGAATCGAGAACACGAGTAACG -ACGGAATCGAGAACACGAACTTCG -ACGGAATCGAGAACACGATACGCA -ACGGAATCGAGAACACGACTTGCA -ACGGAATCGAGAACACGACGAACA -ACGGAATCGAGAACACGACAGTCA -ACGGAATCGAGAACACGAGATCCA -ACGGAATCGAGAACACGAACGACA -ACGGAATCGAGAACACGAAGCTCA -ACGGAATCGAGAACACGATCACGT -ACGGAATCGAGAACACGACGTAGT -ACGGAATCGAGAACACGAGTCAGT -ACGGAATCGAGAACACGAGAAGGT -ACGGAATCGAGAACACGAAACCGT -ACGGAATCGAGAACACGATTGTGC -ACGGAATCGAGAACACGACTAAGC -ACGGAATCGAGAACACGAACTAGC -ACGGAATCGAGAACACGAAGATGC -ACGGAATCGAGAACACGATGAAGG -ACGGAATCGAGAACACGACAATGG -ACGGAATCGAGAACACGAATGAGG -ACGGAATCGAGAACACGAAATGGG -ACGGAATCGAGAACACGATCCTGA -ACGGAATCGAGAACACGATAGCGA -ACGGAATCGAGAACACGACACAGA -ACGGAATCGAGAACACGAGCAAGA -ACGGAATCGAGAACACGAGGTTGA -ACGGAATCGAGAACACGATCCGAT -ACGGAATCGAGAACACGATGGCAT -ACGGAATCGAGAACACGACGAGAT -ACGGAATCGAGAACACGATACCAC -ACGGAATCGAGAACACGACAGAAC -ACGGAATCGAGAACACGAGTCTAC -ACGGAATCGAGAACACGAACGTAC -ACGGAATCGAGAACACGAAGTGAC -ACGGAATCGAGAACACGACTGTAG -ACGGAATCGAGAACACGACCTAAG -ACGGAATCGAGAACACGAGTTCAG -ACGGAATCGAGAACACGAGCATAG -ACGGAATCGAGAACACGAGACAAG -ACGGAATCGAGAACACGAAAGCAG -ACGGAATCGAGAACACGACGTCAA -ACGGAATCGAGAACACGAGCTGAA -ACGGAATCGAGAACACGAAGTACG -ACGGAATCGAGAACACGAATCCGA -ACGGAATCGAGAACACGAATGGGA -ACGGAATCGAGAACACGAGTGCAA -ACGGAATCGAGAACACGAGAGGAA -ACGGAATCGAGAACACGACAGGTA -ACGGAATCGAGAACACGAGACTCT -ACGGAATCGAGAACACGAAGTCCT -ACGGAATCGAGAACACGATAAGCC -ACGGAATCGAGAACACGAATAGCC -ACGGAATCGAGAACACGATAACCG -ACGGAATCGAGAACACGAATGCCA -ACGGAATCGAGATCACAGGGAAAC -ACGGAATCGAGATCACAGAACACC -ACGGAATCGAGATCACAGATCGAG -ACGGAATCGAGATCACAGCTCCTT -ACGGAATCGAGATCACAGCCTGTT -ACGGAATCGAGATCACAGCGGTTT -ACGGAATCGAGATCACAGGTGGTT -ACGGAATCGAGATCACAGGCCTTT -ACGGAATCGAGATCACAGGGTCTT -ACGGAATCGAGATCACAGACGCTT -ACGGAATCGAGATCACAGAGCGTT -ACGGAATCGAGATCACAGTTCGTC -ACGGAATCGAGATCACAGTCTCTC -ACGGAATCGAGATCACAGTGGATC -ACGGAATCGAGATCACAGCACTTC -ACGGAATCGAGATCACAGGTACTC -ACGGAATCGAGATCACAGGATGTC -ACGGAATCGAGATCACAGACAGTC -ACGGAATCGAGATCACAGTTGCTG -ACGGAATCGAGATCACAGTCCATG -ACGGAATCGAGATCACAGTGTGTG -ACGGAATCGAGATCACAGCTAGTG -ACGGAATCGAGATCACAGCATCTG -ACGGAATCGAGATCACAGGAGTTG -ACGGAATCGAGATCACAGAGACTG -ACGGAATCGAGATCACAGTCGGTA -ACGGAATCGAGATCACAGTGCCTA -ACGGAATCGAGATCACAGCCACTA -ACGGAATCGAGATCACAGGGAGTA -ACGGAATCGAGATCACAGTCGTCT -ACGGAATCGAGATCACAGTGCACT -ACGGAATCGAGATCACAGCTGACT -ACGGAATCGAGATCACAGCAACCT -ACGGAATCGAGATCACAGGCTACT -ACGGAATCGAGATCACAGGGATCT -ACGGAATCGAGATCACAGAAGGCT -ACGGAATCGAGATCACAGTCAACC -ACGGAATCGAGATCACAGTGTTCC -ACGGAATCGAGATCACAGATTCCC -ACGGAATCGAGATCACAGTTCTCG -ACGGAATCGAGATCACAGTAGACG -ACGGAATCGAGATCACAGGTAACG -ACGGAATCGAGATCACAGACTTCG -ACGGAATCGAGATCACAGTACGCA -ACGGAATCGAGATCACAGCTTGCA -ACGGAATCGAGATCACAGCGAACA -ACGGAATCGAGATCACAGCAGTCA -ACGGAATCGAGATCACAGGATCCA -ACGGAATCGAGATCACAGACGACA -ACGGAATCGAGATCACAGAGCTCA -ACGGAATCGAGATCACAGTCACGT -ACGGAATCGAGATCACAGCGTAGT -ACGGAATCGAGATCACAGGTCAGT -ACGGAATCGAGATCACAGGAAGGT -ACGGAATCGAGATCACAGAACCGT -ACGGAATCGAGATCACAGTTGTGC -ACGGAATCGAGATCACAGCTAAGC -ACGGAATCGAGATCACAGACTAGC -ACGGAATCGAGATCACAGAGATGC -ACGGAATCGAGATCACAGTGAAGG -ACGGAATCGAGATCACAGCAATGG -ACGGAATCGAGATCACAGATGAGG -ACGGAATCGAGATCACAGAATGGG -ACGGAATCGAGATCACAGTCCTGA -ACGGAATCGAGATCACAGTAGCGA -ACGGAATCGAGATCACAGCACAGA -ACGGAATCGAGATCACAGGCAAGA -ACGGAATCGAGATCACAGGGTTGA -ACGGAATCGAGATCACAGTCCGAT -ACGGAATCGAGATCACAGTGGCAT -ACGGAATCGAGATCACAGCGAGAT -ACGGAATCGAGATCACAGTACCAC -ACGGAATCGAGATCACAGCAGAAC -ACGGAATCGAGATCACAGGTCTAC -ACGGAATCGAGATCACAGACGTAC -ACGGAATCGAGATCACAGAGTGAC -ACGGAATCGAGATCACAGCTGTAG -ACGGAATCGAGATCACAGCCTAAG -ACGGAATCGAGATCACAGGTTCAG -ACGGAATCGAGATCACAGGCATAG -ACGGAATCGAGATCACAGGACAAG -ACGGAATCGAGATCACAGAAGCAG -ACGGAATCGAGATCACAGCGTCAA -ACGGAATCGAGATCACAGGCTGAA -ACGGAATCGAGATCACAGAGTACG -ACGGAATCGAGATCACAGATCCGA -ACGGAATCGAGATCACAGATGGGA -ACGGAATCGAGATCACAGGTGCAA -ACGGAATCGAGATCACAGGAGGAA -ACGGAATCGAGATCACAGCAGGTA -ACGGAATCGAGATCACAGGACTCT -ACGGAATCGAGATCACAGAGTCCT -ACGGAATCGAGATCACAGTAAGCC -ACGGAATCGAGATCACAGATAGCC -ACGGAATCGAGATCACAGTAACCG -ACGGAATCGAGATCACAGATGCCA -ACGGAATCGAGACCAGATGGAAAC -ACGGAATCGAGACCAGATAACACC -ACGGAATCGAGACCAGATATCGAG -ACGGAATCGAGACCAGATCTCCTT -ACGGAATCGAGACCAGATCCTGTT -ACGGAATCGAGACCAGATCGGTTT -ACGGAATCGAGACCAGATGTGGTT -ACGGAATCGAGACCAGATGCCTTT -ACGGAATCGAGACCAGATGGTCTT -ACGGAATCGAGACCAGATACGCTT -ACGGAATCGAGACCAGATAGCGTT -ACGGAATCGAGACCAGATTTCGTC -ACGGAATCGAGACCAGATTCTCTC -ACGGAATCGAGACCAGATTGGATC -ACGGAATCGAGACCAGATCACTTC -ACGGAATCGAGACCAGATGTACTC -ACGGAATCGAGACCAGATGATGTC -ACGGAATCGAGACCAGATACAGTC -ACGGAATCGAGACCAGATTTGCTG -ACGGAATCGAGACCAGATTCCATG -ACGGAATCGAGACCAGATTGTGTG -ACGGAATCGAGACCAGATCTAGTG -ACGGAATCGAGACCAGATCATCTG -ACGGAATCGAGACCAGATGAGTTG -ACGGAATCGAGACCAGATAGACTG -ACGGAATCGAGACCAGATTCGGTA -ACGGAATCGAGACCAGATTGCCTA -ACGGAATCGAGACCAGATCCACTA -ACGGAATCGAGACCAGATGGAGTA -ACGGAATCGAGACCAGATTCGTCT -ACGGAATCGAGACCAGATTGCACT -ACGGAATCGAGACCAGATCTGACT -ACGGAATCGAGACCAGATCAACCT -ACGGAATCGAGACCAGATGCTACT -ACGGAATCGAGACCAGATGGATCT -ACGGAATCGAGACCAGATAAGGCT -ACGGAATCGAGACCAGATTCAACC -ACGGAATCGAGACCAGATTGTTCC -ACGGAATCGAGACCAGATATTCCC -ACGGAATCGAGACCAGATTTCTCG -ACGGAATCGAGACCAGATTAGACG -ACGGAATCGAGACCAGATGTAACG -ACGGAATCGAGACCAGATACTTCG -ACGGAATCGAGACCAGATTACGCA -ACGGAATCGAGACCAGATCTTGCA -ACGGAATCGAGACCAGATCGAACA -ACGGAATCGAGACCAGATCAGTCA -ACGGAATCGAGACCAGATGATCCA -ACGGAATCGAGACCAGATACGACA -ACGGAATCGAGACCAGATAGCTCA -ACGGAATCGAGACCAGATTCACGT -ACGGAATCGAGACCAGATCGTAGT -ACGGAATCGAGACCAGATGTCAGT -ACGGAATCGAGACCAGATGAAGGT -ACGGAATCGAGACCAGATAACCGT -ACGGAATCGAGACCAGATTTGTGC -ACGGAATCGAGACCAGATCTAAGC -ACGGAATCGAGACCAGATACTAGC -ACGGAATCGAGACCAGATAGATGC -ACGGAATCGAGACCAGATTGAAGG -ACGGAATCGAGACCAGATCAATGG -ACGGAATCGAGACCAGATATGAGG -ACGGAATCGAGACCAGATAATGGG -ACGGAATCGAGACCAGATTCCTGA -ACGGAATCGAGACCAGATTAGCGA -ACGGAATCGAGACCAGATCACAGA -ACGGAATCGAGACCAGATGCAAGA -ACGGAATCGAGACCAGATGGTTGA -ACGGAATCGAGACCAGATTCCGAT -ACGGAATCGAGACCAGATTGGCAT -ACGGAATCGAGACCAGATCGAGAT -ACGGAATCGAGACCAGATTACCAC -ACGGAATCGAGACCAGATCAGAAC -ACGGAATCGAGACCAGATGTCTAC -ACGGAATCGAGACCAGATACGTAC -ACGGAATCGAGACCAGATAGTGAC -ACGGAATCGAGACCAGATCTGTAG -ACGGAATCGAGACCAGATCCTAAG -ACGGAATCGAGACCAGATGTTCAG -ACGGAATCGAGACCAGATGCATAG -ACGGAATCGAGACCAGATGACAAG -ACGGAATCGAGACCAGATAAGCAG -ACGGAATCGAGACCAGATCGTCAA -ACGGAATCGAGACCAGATGCTGAA -ACGGAATCGAGACCAGATAGTACG -ACGGAATCGAGACCAGATATCCGA -ACGGAATCGAGACCAGATATGGGA -ACGGAATCGAGACCAGATGTGCAA -ACGGAATCGAGACCAGATGAGGAA -ACGGAATCGAGACCAGATCAGGTA -ACGGAATCGAGACCAGATGACTCT -ACGGAATCGAGACCAGATAGTCCT -ACGGAATCGAGACCAGATTAAGCC -ACGGAATCGAGACCAGATATAGCC -ACGGAATCGAGACCAGATTAACCG -ACGGAATCGAGACCAGATATGCCA -ACGGAATCGAGAACAACGGGAAAC -ACGGAATCGAGAACAACGAACACC -ACGGAATCGAGAACAACGATCGAG -ACGGAATCGAGAACAACGCTCCTT -ACGGAATCGAGAACAACGCCTGTT -ACGGAATCGAGAACAACGCGGTTT -ACGGAATCGAGAACAACGGTGGTT -ACGGAATCGAGAACAACGGCCTTT -ACGGAATCGAGAACAACGGGTCTT -ACGGAATCGAGAACAACGACGCTT -ACGGAATCGAGAACAACGAGCGTT -ACGGAATCGAGAACAACGTTCGTC -ACGGAATCGAGAACAACGTCTCTC -ACGGAATCGAGAACAACGTGGATC -ACGGAATCGAGAACAACGCACTTC -ACGGAATCGAGAACAACGGTACTC -ACGGAATCGAGAACAACGGATGTC -ACGGAATCGAGAACAACGACAGTC -ACGGAATCGAGAACAACGTTGCTG -ACGGAATCGAGAACAACGTCCATG -ACGGAATCGAGAACAACGTGTGTG -ACGGAATCGAGAACAACGCTAGTG -ACGGAATCGAGAACAACGCATCTG -ACGGAATCGAGAACAACGGAGTTG -ACGGAATCGAGAACAACGAGACTG -ACGGAATCGAGAACAACGTCGGTA -ACGGAATCGAGAACAACGTGCCTA -ACGGAATCGAGAACAACGCCACTA -ACGGAATCGAGAACAACGGGAGTA -ACGGAATCGAGAACAACGTCGTCT -ACGGAATCGAGAACAACGTGCACT -ACGGAATCGAGAACAACGCTGACT -ACGGAATCGAGAACAACGCAACCT -ACGGAATCGAGAACAACGGCTACT -ACGGAATCGAGAACAACGGGATCT -ACGGAATCGAGAACAACGAAGGCT -ACGGAATCGAGAACAACGTCAACC -ACGGAATCGAGAACAACGTGTTCC -ACGGAATCGAGAACAACGATTCCC -ACGGAATCGAGAACAACGTTCTCG -ACGGAATCGAGAACAACGTAGACG -ACGGAATCGAGAACAACGGTAACG -ACGGAATCGAGAACAACGACTTCG -ACGGAATCGAGAACAACGTACGCA -ACGGAATCGAGAACAACGCTTGCA -ACGGAATCGAGAACAACGCGAACA -ACGGAATCGAGAACAACGCAGTCA -ACGGAATCGAGAACAACGGATCCA -ACGGAATCGAGAACAACGACGACA -ACGGAATCGAGAACAACGAGCTCA -ACGGAATCGAGAACAACGTCACGT -ACGGAATCGAGAACAACGCGTAGT -ACGGAATCGAGAACAACGGTCAGT -ACGGAATCGAGAACAACGGAAGGT -ACGGAATCGAGAACAACGAACCGT -ACGGAATCGAGAACAACGTTGTGC -ACGGAATCGAGAACAACGCTAAGC -ACGGAATCGAGAACAACGACTAGC -ACGGAATCGAGAACAACGAGATGC -ACGGAATCGAGAACAACGTGAAGG -ACGGAATCGAGAACAACGCAATGG -ACGGAATCGAGAACAACGATGAGG -ACGGAATCGAGAACAACGAATGGG -ACGGAATCGAGAACAACGTCCTGA -ACGGAATCGAGAACAACGTAGCGA -ACGGAATCGAGAACAACGCACAGA -ACGGAATCGAGAACAACGGCAAGA -ACGGAATCGAGAACAACGGGTTGA -ACGGAATCGAGAACAACGTCCGAT -ACGGAATCGAGAACAACGTGGCAT -ACGGAATCGAGAACAACGCGAGAT -ACGGAATCGAGAACAACGTACCAC -ACGGAATCGAGAACAACGCAGAAC -ACGGAATCGAGAACAACGGTCTAC -ACGGAATCGAGAACAACGACGTAC -ACGGAATCGAGAACAACGAGTGAC -ACGGAATCGAGAACAACGCTGTAG -ACGGAATCGAGAACAACGCCTAAG -ACGGAATCGAGAACAACGGTTCAG -ACGGAATCGAGAACAACGGCATAG -ACGGAATCGAGAACAACGGACAAG -ACGGAATCGAGAACAACGAAGCAG -ACGGAATCGAGAACAACGCGTCAA -ACGGAATCGAGAACAACGGCTGAA -ACGGAATCGAGAACAACGAGTACG -ACGGAATCGAGAACAACGATCCGA -ACGGAATCGAGAACAACGATGGGA -ACGGAATCGAGAACAACGGTGCAA -ACGGAATCGAGAACAACGGAGGAA -ACGGAATCGAGAACAACGCAGGTA -ACGGAATCGAGAACAACGGACTCT -ACGGAATCGAGAACAACGAGTCCT -ACGGAATCGAGAACAACGTAAGCC -ACGGAATCGAGAACAACGATAGCC -ACGGAATCGAGAACAACGTAACCG -ACGGAATCGAGAACAACGATGCCA -ACGGAATCGAGATCAAGCGGAAAC -ACGGAATCGAGATCAAGCAACACC -ACGGAATCGAGATCAAGCATCGAG -ACGGAATCGAGATCAAGCCTCCTT -ACGGAATCGAGATCAAGCCCTGTT -ACGGAATCGAGATCAAGCCGGTTT -ACGGAATCGAGATCAAGCGTGGTT -ACGGAATCGAGATCAAGCGCCTTT -ACGGAATCGAGATCAAGCGGTCTT -ACGGAATCGAGATCAAGCACGCTT -ACGGAATCGAGATCAAGCAGCGTT -ACGGAATCGAGATCAAGCTTCGTC -ACGGAATCGAGATCAAGCTCTCTC -ACGGAATCGAGATCAAGCTGGATC -ACGGAATCGAGATCAAGCCACTTC -ACGGAATCGAGATCAAGCGTACTC -ACGGAATCGAGATCAAGCGATGTC -ACGGAATCGAGATCAAGCACAGTC -ACGGAATCGAGATCAAGCTTGCTG -ACGGAATCGAGATCAAGCTCCATG -ACGGAATCGAGATCAAGCTGTGTG -ACGGAATCGAGATCAAGCCTAGTG -ACGGAATCGAGATCAAGCCATCTG -ACGGAATCGAGATCAAGCGAGTTG -ACGGAATCGAGATCAAGCAGACTG -ACGGAATCGAGATCAAGCTCGGTA -ACGGAATCGAGATCAAGCTGCCTA -ACGGAATCGAGATCAAGCCCACTA -ACGGAATCGAGATCAAGCGGAGTA -ACGGAATCGAGATCAAGCTCGTCT -ACGGAATCGAGATCAAGCTGCACT -ACGGAATCGAGATCAAGCCTGACT -ACGGAATCGAGATCAAGCCAACCT -ACGGAATCGAGATCAAGCGCTACT -ACGGAATCGAGATCAAGCGGATCT -ACGGAATCGAGATCAAGCAAGGCT -ACGGAATCGAGATCAAGCTCAACC -ACGGAATCGAGATCAAGCTGTTCC -ACGGAATCGAGATCAAGCATTCCC -ACGGAATCGAGATCAAGCTTCTCG -ACGGAATCGAGATCAAGCTAGACG -ACGGAATCGAGATCAAGCGTAACG -ACGGAATCGAGATCAAGCACTTCG -ACGGAATCGAGATCAAGCTACGCA -ACGGAATCGAGATCAAGCCTTGCA -ACGGAATCGAGATCAAGCCGAACA -ACGGAATCGAGATCAAGCCAGTCA -ACGGAATCGAGATCAAGCGATCCA -ACGGAATCGAGATCAAGCACGACA -ACGGAATCGAGATCAAGCAGCTCA -ACGGAATCGAGATCAAGCTCACGT -ACGGAATCGAGATCAAGCCGTAGT -ACGGAATCGAGATCAAGCGTCAGT -ACGGAATCGAGATCAAGCGAAGGT -ACGGAATCGAGATCAAGCAACCGT -ACGGAATCGAGATCAAGCTTGTGC -ACGGAATCGAGATCAAGCCTAAGC -ACGGAATCGAGATCAAGCACTAGC -ACGGAATCGAGATCAAGCAGATGC -ACGGAATCGAGATCAAGCTGAAGG -ACGGAATCGAGATCAAGCCAATGG -ACGGAATCGAGATCAAGCATGAGG -ACGGAATCGAGATCAAGCAATGGG -ACGGAATCGAGATCAAGCTCCTGA -ACGGAATCGAGATCAAGCTAGCGA -ACGGAATCGAGATCAAGCCACAGA -ACGGAATCGAGATCAAGCGCAAGA -ACGGAATCGAGATCAAGCGGTTGA -ACGGAATCGAGATCAAGCTCCGAT -ACGGAATCGAGATCAAGCTGGCAT -ACGGAATCGAGATCAAGCCGAGAT -ACGGAATCGAGATCAAGCTACCAC -ACGGAATCGAGATCAAGCCAGAAC -ACGGAATCGAGATCAAGCGTCTAC -ACGGAATCGAGATCAAGCACGTAC -ACGGAATCGAGATCAAGCAGTGAC -ACGGAATCGAGATCAAGCCTGTAG -ACGGAATCGAGATCAAGCCCTAAG -ACGGAATCGAGATCAAGCGTTCAG -ACGGAATCGAGATCAAGCGCATAG -ACGGAATCGAGATCAAGCGACAAG -ACGGAATCGAGATCAAGCAAGCAG -ACGGAATCGAGATCAAGCCGTCAA -ACGGAATCGAGATCAAGCGCTGAA -ACGGAATCGAGATCAAGCAGTACG -ACGGAATCGAGATCAAGCATCCGA -ACGGAATCGAGATCAAGCATGGGA -ACGGAATCGAGATCAAGCGTGCAA -ACGGAATCGAGATCAAGCGAGGAA -ACGGAATCGAGATCAAGCCAGGTA -ACGGAATCGAGATCAAGCGACTCT -ACGGAATCGAGATCAAGCAGTCCT -ACGGAATCGAGATCAAGCTAAGCC -ACGGAATCGAGATCAAGCATAGCC -ACGGAATCGAGATCAAGCTAACCG -ACGGAATCGAGATCAAGCATGCCA -ACGGAATCGAGACGTTCAGGAAAC -ACGGAATCGAGACGTTCAAACACC -ACGGAATCGAGACGTTCAATCGAG -ACGGAATCGAGACGTTCACTCCTT -ACGGAATCGAGACGTTCACCTGTT -ACGGAATCGAGACGTTCACGGTTT -ACGGAATCGAGACGTTCAGTGGTT -ACGGAATCGAGACGTTCAGCCTTT -ACGGAATCGAGACGTTCAGGTCTT -ACGGAATCGAGACGTTCAACGCTT -ACGGAATCGAGACGTTCAAGCGTT -ACGGAATCGAGACGTTCATTCGTC -ACGGAATCGAGACGTTCATCTCTC -ACGGAATCGAGACGTTCATGGATC -ACGGAATCGAGACGTTCACACTTC -ACGGAATCGAGACGTTCAGTACTC -ACGGAATCGAGACGTTCAGATGTC -ACGGAATCGAGACGTTCAACAGTC -ACGGAATCGAGACGTTCATTGCTG -ACGGAATCGAGACGTTCATCCATG -ACGGAATCGAGACGTTCATGTGTG -ACGGAATCGAGACGTTCACTAGTG -ACGGAATCGAGACGTTCACATCTG -ACGGAATCGAGACGTTCAGAGTTG -ACGGAATCGAGACGTTCAAGACTG -ACGGAATCGAGACGTTCATCGGTA -ACGGAATCGAGACGTTCATGCCTA -ACGGAATCGAGACGTTCACCACTA -ACGGAATCGAGACGTTCAGGAGTA -ACGGAATCGAGACGTTCATCGTCT -ACGGAATCGAGACGTTCATGCACT -ACGGAATCGAGACGTTCACTGACT -ACGGAATCGAGACGTTCACAACCT -ACGGAATCGAGACGTTCAGCTACT -ACGGAATCGAGACGTTCAGGATCT -ACGGAATCGAGACGTTCAAAGGCT -ACGGAATCGAGACGTTCATCAACC -ACGGAATCGAGACGTTCATGTTCC -ACGGAATCGAGACGTTCAATTCCC -ACGGAATCGAGACGTTCATTCTCG -ACGGAATCGAGACGTTCATAGACG -ACGGAATCGAGACGTTCAGTAACG -ACGGAATCGAGACGTTCAACTTCG -ACGGAATCGAGACGTTCATACGCA -ACGGAATCGAGACGTTCACTTGCA -ACGGAATCGAGACGTTCACGAACA -ACGGAATCGAGACGTTCACAGTCA -ACGGAATCGAGACGTTCAGATCCA -ACGGAATCGAGACGTTCAACGACA -ACGGAATCGAGACGTTCAAGCTCA -ACGGAATCGAGACGTTCATCACGT -ACGGAATCGAGACGTTCACGTAGT -ACGGAATCGAGACGTTCAGTCAGT -ACGGAATCGAGACGTTCAGAAGGT -ACGGAATCGAGACGTTCAAACCGT -ACGGAATCGAGACGTTCATTGTGC -ACGGAATCGAGACGTTCACTAAGC -ACGGAATCGAGACGTTCAACTAGC -ACGGAATCGAGACGTTCAAGATGC -ACGGAATCGAGACGTTCATGAAGG -ACGGAATCGAGACGTTCACAATGG -ACGGAATCGAGACGTTCAATGAGG -ACGGAATCGAGACGTTCAAATGGG -ACGGAATCGAGACGTTCATCCTGA -ACGGAATCGAGACGTTCATAGCGA -ACGGAATCGAGACGTTCACACAGA -ACGGAATCGAGACGTTCAGCAAGA -ACGGAATCGAGACGTTCAGGTTGA -ACGGAATCGAGACGTTCATCCGAT -ACGGAATCGAGACGTTCATGGCAT -ACGGAATCGAGACGTTCACGAGAT -ACGGAATCGAGACGTTCATACCAC -ACGGAATCGAGACGTTCACAGAAC -ACGGAATCGAGACGTTCAGTCTAC -ACGGAATCGAGACGTTCAACGTAC -ACGGAATCGAGACGTTCAAGTGAC -ACGGAATCGAGACGTTCACTGTAG -ACGGAATCGAGACGTTCACCTAAG -ACGGAATCGAGACGTTCAGTTCAG -ACGGAATCGAGACGTTCAGCATAG -ACGGAATCGAGACGTTCAGACAAG -ACGGAATCGAGACGTTCAAAGCAG -ACGGAATCGAGACGTTCACGTCAA -ACGGAATCGAGACGTTCAGCTGAA -ACGGAATCGAGACGTTCAAGTACG -ACGGAATCGAGACGTTCAATCCGA -ACGGAATCGAGACGTTCAATGGGA -ACGGAATCGAGACGTTCAGTGCAA -ACGGAATCGAGACGTTCAGAGGAA -ACGGAATCGAGACGTTCACAGGTA -ACGGAATCGAGACGTTCAGACTCT -ACGGAATCGAGACGTTCAAGTCCT -ACGGAATCGAGACGTTCATAAGCC -ACGGAATCGAGACGTTCAATAGCC -ACGGAATCGAGACGTTCATAACCG -ACGGAATCGAGACGTTCAATGCCA -ACGGAATCGAGAAGTCGTGGAAAC -ACGGAATCGAGAAGTCGTAACACC -ACGGAATCGAGAAGTCGTATCGAG -ACGGAATCGAGAAGTCGTCTCCTT -ACGGAATCGAGAAGTCGTCCTGTT -ACGGAATCGAGAAGTCGTCGGTTT -ACGGAATCGAGAAGTCGTGTGGTT -ACGGAATCGAGAAGTCGTGCCTTT -ACGGAATCGAGAAGTCGTGGTCTT -ACGGAATCGAGAAGTCGTACGCTT -ACGGAATCGAGAAGTCGTAGCGTT -ACGGAATCGAGAAGTCGTTTCGTC -ACGGAATCGAGAAGTCGTTCTCTC -ACGGAATCGAGAAGTCGTTGGATC -ACGGAATCGAGAAGTCGTCACTTC -ACGGAATCGAGAAGTCGTGTACTC -ACGGAATCGAGAAGTCGTGATGTC -ACGGAATCGAGAAGTCGTACAGTC -ACGGAATCGAGAAGTCGTTTGCTG -ACGGAATCGAGAAGTCGTTCCATG -ACGGAATCGAGAAGTCGTTGTGTG -ACGGAATCGAGAAGTCGTCTAGTG -ACGGAATCGAGAAGTCGTCATCTG -ACGGAATCGAGAAGTCGTGAGTTG -ACGGAATCGAGAAGTCGTAGACTG -ACGGAATCGAGAAGTCGTTCGGTA -ACGGAATCGAGAAGTCGTTGCCTA -ACGGAATCGAGAAGTCGTCCACTA -ACGGAATCGAGAAGTCGTGGAGTA -ACGGAATCGAGAAGTCGTTCGTCT -ACGGAATCGAGAAGTCGTTGCACT -ACGGAATCGAGAAGTCGTCTGACT -ACGGAATCGAGAAGTCGTCAACCT -ACGGAATCGAGAAGTCGTGCTACT -ACGGAATCGAGAAGTCGTGGATCT -ACGGAATCGAGAAGTCGTAAGGCT -ACGGAATCGAGAAGTCGTTCAACC -ACGGAATCGAGAAGTCGTTGTTCC -ACGGAATCGAGAAGTCGTATTCCC -ACGGAATCGAGAAGTCGTTTCTCG -ACGGAATCGAGAAGTCGTTAGACG -ACGGAATCGAGAAGTCGTGTAACG -ACGGAATCGAGAAGTCGTACTTCG -ACGGAATCGAGAAGTCGTTACGCA -ACGGAATCGAGAAGTCGTCTTGCA -ACGGAATCGAGAAGTCGTCGAACA -ACGGAATCGAGAAGTCGTCAGTCA -ACGGAATCGAGAAGTCGTGATCCA -ACGGAATCGAGAAGTCGTACGACA -ACGGAATCGAGAAGTCGTAGCTCA -ACGGAATCGAGAAGTCGTTCACGT -ACGGAATCGAGAAGTCGTCGTAGT -ACGGAATCGAGAAGTCGTGTCAGT -ACGGAATCGAGAAGTCGTGAAGGT -ACGGAATCGAGAAGTCGTAACCGT -ACGGAATCGAGAAGTCGTTTGTGC -ACGGAATCGAGAAGTCGTCTAAGC -ACGGAATCGAGAAGTCGTACTAGC -ACGGAATCGAGAAGTCGTAGATGC -ACGGAATCGAGAAGTCGTTGAAGG -ACGGAATCGAGAAGTCGTCAATGG -ACGGAATCGAGAAGTCGTATGAGG -ACGGAATCGAGAAGTCGTAATGGG -ACGGAATCGAGAAGTCGTTCCTGA -ACGGAATCGAGAAGTCGTTAGCGA -ACGGAATCGAGAAGTCGTCACAGA -ACGGAATCGAGAAGTCGTGCAAGA -ACGGAATCGAGAAGTCGTGGTTGA -ACGGAATCGAGAAGTCGTTCCGAT -ACGGAATCGAGAAGTCGTTGGCAT -ACGGAATCGAGAAGTCGTCGAGAT -ACGGAATCGAGAAGTCGTTACCAC -ACGGAATCGAGAAGTCGTCAGAAC -ACGGAATCGAGAAGTCGTGTCTAC -ACGGAATCGAGAAGTCGTACGTAC -ACGGAATCGAGAAGTCGTAGTGAC -ACGGAATCGAGAAGTCGTCTGTAG -ACGGAATCGAGAAGTCGTCCTAAG -ACGGAATCGAGAAGTCGTGTTCAG -ACGGAATCGAGAAGTCGTGCATAG -ACGGAATCGAGAAGTCGTGACAAG -ACGGAATCGAGAAGTCGTAAGCAG -ACGGAATCGAGAAGTCGTCGTCAA -ACGGAATCGAGAAGTCGTGCTGAA -ACGGAATCGAGAAGTCGTAGTACG -ACGGAATCGAGAAGTCGTATCCGA -ACGGAATCGAGAAGTCGTATGGGA -ACGGAATCGAGAAGTCGTGTGCAA -ACGGAATCGAGAAGTCGTGAGGAA -ACGGAATCGAGAAGTCGTCAGGTA -ACGGAATCGAGAAGTCGTGACTCT -ACGGAATCGAGAAGTCGTAGTCCT -ACGGAATCGAGAAGTCGTTAAGCC -ACGGAATCGAGAAGTCGTATAGCC -ACGGAATCGAGAAGTCGTTAACCG -ACGGAATCGAGAAGTCGTATGCCA -ACGGAATCGAGAAGTGTCGGAAAC -ACGGAATCGAGAAGTGTCAACACC -ACGGAATCGAGAAGTGTCATCGAG -ACGGAATCGAGAAGTGTCCTCCTT -ACGGAATCGAGAAGTGTCCCTGTT -ACGGAATCGAGAAGTGTCCGGTTT -ACGGAATCGAGAAGTGTCGTGGTT -ACGGAATCGAGAAGTGTCGCCTTT -ACGGAATCGAGAAGTGTCGGTCTT -ACGGAATCGAGAAGTGTCACGCTT -ACGGAATCGAGAAGTGTCAGCGTT -ACGGAATCGAGAAGTGTCTTCGTC -ACGGAATCGAGAAGTGTCTCTCTC -ACGGAATCGAGAAGTGTCTGGATC -ACGGAATCGAGAAGTGTCCACTTC -ACGGAATCGAGAAGTGTCGTACTC -ACGGAATCGAGAAGTGTCGATGTC -ACGGAATCGAGAAGTGTCACAGTC -ACGGAATCGAGAAGTGTCTTGCTG -ACGGAATCGAGAAGTGTCTCCATG -ACGGAATCGAGAAGTGTCTGTGTG -ACGGAATCGAGAAGTGTCCTAGTG -ACGGAATCGAGAAGTGTCCATCTG -ACGGAATCGAGAAGTGTCGAGTTG -ACGGAATCGAGAAGTGTCAGACTG -ACGGAATCGAGAAGTGTCTCGGTA -ACGGAATCGAGAAGTGTCTGCCTA -ACGGAATCGAGAAGTGTCCCACTA -ACGGAATCGAGAAGTGTCGGAGTA -ACGGAATCGAGAAGTGTCTCGTCT -ACGGAATCGAGAAGTGTCTGCACT -ACGGAATCGAGAAGTGTCCTGACT -ACGGAATCGAGAAGTGTCCAACCT -ACGGAATCGAGAAGTGTCGCTACT -ACGGAATCGAGAAGTGTCGGATCT -ACGGAATCGAGAAGTGTCAAGGCT -ACGGAATCGAGAAGTGTCTCAACC -ACGGAATCGAGAAGTGTCTGTTCC -ACGGAATCGAGAAGTGTCATTCCC -ACGGAATCGAGAAGTGTCTTCTCG -ACGGAATCGAGAAGTGTCTAGACG -ACGGAATCGAGAAGTGTCGTAACG -ACGGAATCGAGAAGTGTCACTTCG -ACGGAATCGAGAAGTGTCTACGCA -ACGGAATCGAGAAGTGTCCTTGCA -ACGGAATCGAGAAGTGTCCGAACA -ACGGAATCGAGAAGTGTCCAGTCA -ACGGAATCGAGAAGTGTCGATCCA -ACGGAATCGAGAAGTGTCACGACA -ACGGAATCGAGAAGTGTCAGCTCA -ACGGAATCGAGAAGTGTCTCACGT -ACGGAATCGAGAAGTGTCCGTAGT -ACGGAATCGAGAAGTGTCGTCAGT -ACGGAATCGAGAAGTGTCGAAGGT -ACGGAATCGAGAAGTGTCAACCGT -ACGGAATCGAGAAGTGTCTTGTGC -ACGGAATCGAGAAGTGTCCTAAGC -ACGGAATCGAGAAGTGTCACTAGC -ACGGAATCGAGAAGTGTCAGATGC -ACGGAATCGAGAAGTGTCTGAAGG -ACGGAATCGAGAAGTGTCCAATGG -ACGGAATCGAGAAGTGTCATGAGG -ACGGAATCGAGAAGTGTCAATGGG -ACGGAATCGAGAAGTGTCTCCTGA -ACGGAATCGAGAAGTGTCTAGCGA -ACGGAATCGAGAAGTGTCCACAGA -ACGGAATCGAGAAGTGTCGCAAGA -ACGGAATCGAGAAGTGTCGGTTGA -ACGGAATCGAGAAGTGTCTCCGAT -ACGGAATCGAGAAGTGTCTGGCAT -ACGGAATCGAGAAGTGTCCGAGAT -ACGGAATCGAGAAGTGTCTACCAC -ACGGAATCGAGAAGTGTCCAGAAC -ACGGAATCGAGAAGTGTCGTCTAC -ACGGAATCGAGAAGTGTCACGTAC -ACGGAATCGAGAAGTGTCAGTGAC -ACGGAATCGAGAAGTGTCCTGTAG -ACGGAATCGAGAAGTGTCCCTAAG -ACGGAATCGAGAAGTGTCGTTCAG -ACGGAATCGAGAAGTGTCGCATAG -ACGGAATCGAGAAGTGTCGACAAG -ACGGAATCGAGAAGTGTCAAGCAG -ACGGAATCGAGAAGTGTCCGTCAA -ACGGAATCGAGAAGTGTCGCTGAA -ACGGAATCGAGAAGTGTCAGTACG -ACGGAATCGAGAAGTGTCATCCGA -ACGGAATCGAGAAGTGTCATGGGA -ACGGAATCGAGAAGTGTCGTGCAA -ACGGAATCGAGAAGTGTCGAGGAA -ACGGAATCGAGAAGTGTCCAGGTA -ACGGAATCGAGAAGTGTCGACTCT -ACGGAATCGAGAAGTGTCAGTCCT -ACGGAATCGAGAAGTGTCTAAGCC -ACGGAATCGAGAAGTGTCATAGCC -ACGGAATCGAGAAGTGTCTAACCG -ACGGAATCGAGAAGTGTCATGCCA -ACGGAATCGAGAGGTGAAGGAAAC -ACGGAATCGAGAGGTGAAAACACC -ACGGAATCGAGAGGTGAAATCGAG -ACGGAATCGAGAGGTGAACTCCTT -ACGGAATCGAGAGGTGAACCTGTT -ACGGAATCGAGAGGTGAACGGTTT -ACGGAATCGAGAGGTGAAGTGGTT -ACGGAATCGAGAGGTGAAGCCTTT -ACGGAATCGAGAGGTGAAGGTCTT -ACGGAATCGAGAGGTGAAACGCTT -ACGGAATCGAGAGGTGAAAGCGTT -ACGGAATCGAGAGGTGAATTCGTC -ACGGAATCGAGAGGTGAATCTCTC -ACGGAATCGAGAGGTGAATGGATC -ACGGAATCGAGAGGTGAACACTTC -ACGGAATCGAGAGGTGAAGTACTC -ACGGAATCGAGAGGTGAAGATGTC -ACGGAATCGAGAGGTGAAACAGTC -ACGGAATCGAGAGGTGAATTGCTG -ACGGAATCGAGAGGTGAATCCATG -ACGGAATCGAGAGGTGAATGTGTG -ACGGAATCGAGAGGTGAACTAGTG -ACGGAATCGAGAGGTGAACATCTG -ACGGAATCGAGAGGTGAAGAGTTG -ACGGAATCGAGAGGTGAAAGACTG -ACGGAATCGAGAGGTGAATCGGTA -ACGGAATCGAGAGGTGAATGCCTA -ACGGAATCGAGAGGTGAACCACTA -ACGGAATCGAGAGGTGAAGGAGTA -ACGGAATCGAGAGGTGAATCGTCT -ACGGAATCGAGAGGTGAATGCACT -ACGGAATCGAGAGGTGAACTGACT -ACGGAATCGAGAGGTGAACAACCT -ACGGAATCGAGAGGTGAAGCTACT -ACGGAATCGAGAGGTGAAGGATCT -ACGGAATCGAGAGGTGAAAAGGCT -ACGGAATCGAGAGGTGAATCAACC -ACGGAATCGAGAGGTGAATGTTCC -ACGGAATCGAGAGGTGAAATTCCC -ACGGAATCGAGAGGTGAATTCTCG -ACGGAATCGAGAGGTGAATAGACG -ACGGAATCGAGAGGTGAAGTAACG -ACGGAATCGAGAGGTGAAACTTCG -ACGGAATCGAGAGGTGAATACGCA -ACGGAATCGAGAGGTGAACTTGCA -ACGGAATCGAGAGGTGAACGAACA -ACGGAATCGAGAGGTGAACAGTCA -ACGGAATCGAGAGGTGAAGATCCA -ACGGAATCGAGAGGTGAAACGACA -ACGGAATCGAGAGGTGAAAGCTCA -ACGGAATCGAGAGGTGAATCACGT -ACGGAATCGAGAGGTGAACGTAGT -ACGGAATCGAGAGGTGAAGTCAGT -ACGGAATCGAGAGGTGAAGAAGGT -ACGGAATCGAGAGGTGAAAACCGT -ACGGAATCGAGAGGTGAATTGTGC -ACGGAATCGAGAGGTGAACTAAGC -ACGGAATCGAGAGGTGAAACTAGC -ACGGAATCGAGAGGTGAAAGATGC -ACGGAATCGAGAGGTGAATGAAGG -ACGGAATCGAGAGGTGAACAATGG -ACGGAATCGAGAGGTGAAATGAGG -ACGGAATCGAGAGGTGAAAATGGG -ACGGAATCGAGAGGTGAATCCTGA -ACGGAATCGAGAGGTGAATAGCGA -ACGGAATCGAGAGGTGAACACAGA -ACGGAATCGAGAGGTGAAGCAAGA -ACGGAATCGAGAGGTGAAGGTTGA -ACGGAATCGAGAGGTGAATCCGAT -ACGGAATCGAGAGGTGAATGGCAT -ACGGAATCGAGAGGTGAACGAGAT -ACGGAATCGAGAGGTGAATACCAC -ACGGAATCGAGAGGTGAACAGAAC -ACGGAATCGAGAGGTGAAGTCTAC -ACGGAATCGAGAGGTGAAACGTAC -ACGGAATCGAGAGGTGAAAGTGAC -ACGGAATCGAGAGGTGAACTGTAG -ACGGAATCGAGAGGTGAACCTAAG -ACGGAATCGAGAGGTGAAGTTCAG -ACGGAATCGAGAGGTGAAGCATAG -ACGGAATCGAGAGGTGAAGACAAG -ACGGAATCGAGAGGTGAAAAGCAG -ACGGAATCGAGAGGTGAACGTCAA -ACGGAATCGAGAGGTGAAGCTGAA -ACGGAATCGAGAGGTGAAAGTACG -ACGGAATCGAGAGGTGAAATCCGA -ACGGAATCGAGAGGTGAAATGGGA -ACGGAATCGAGAGGTGAAGTGCAA -ACGGAATCGAGAGGTGAAGAGGAA -ACGGAATCGAGAGGTGAACAGGTA -ACGGAATCGAGAGGTGAAGACTCT -ACGGAATCGAGAGGTGAAAGTCCT -ACGGAATCGAGAGGTGAATAAGCC -ACGGAATCGAGAGGTGAAATAGCC -ACGGAATCGAGAGGTGAATAACCG -ACGGAATCGAGAGGTGAAATGCCA -ACGGAATCGAGACGTAACGGAAAC -ACGGAATCGAGACGTAACAACACC -ACGGAATCGAGACGTAACATCGAG -ACGGAATCGAGACGTAACCTCCTT -ACGGAATCGAGACGTAACCCTGTT -ACGGAATCGAGACGTAACCGGTTT -ACGGAATCGAGACGTAACGTGGTT -ACGGAATCGAGACGTAACGCCTTT -ACGGAATCGAGACGTAACGGTCTT -ACGGAATCGAGACGTAACACGCTT -ACGGAATCGAGACGTAACAGCGTT -ACGGAATCGAGACGTAACTTCGTC -ACGGAATCGAGACGTAACTCTCTC -ACGGAATCGAGACGTAACTGGATC -ACGGAATCGAGACGTAACCACTTC -ACGGAATCGAGACGTAACGTACTC -ACGGAATCGAGACGTAACGATGTC -ACGGAATCGAGACGTAACACAGTC -ACGGAATCGAGACGTAACTTGCTG -ACGGAATCGAGACGTAACTCCATG -ACGGAATCGAGACGTAACTGTGTG -ACGGAATCGAGACGTAACCTAGTG -ACGGAATCGAGACGTAACCATCTG -ACGGAATCGAGACGTAACGAGTTG -ACGGAATCGAGACGTAACAGACTG -ACGGAATCGAGACGTAACTCGGTA -ACGGAATCGAGACGTAACTGCCTA -ACGGAATCGAGACGTAACCCACTA -ACGGAATCGAGACGTAACGGAGTA -ACGGAATCGAGACGTAACTCGTCT -ACGGAATCGAGACGTAACTGCACT -ACGGAATCGAGACGTAACCTGACT -ACGGAATCGAGACGTAACCAACCT -ACGGAATCGAGACGTAACGCTACT -ACGGAATCGAGACGTAACGGATCT -ACGGAATCGAGACGTAACAAGGCT -ACGGAATCGAGACGTAACTCAACC -ACGGAATCGAGACGTAACTGTTCC -ACGGAATCGAGACGTAACATTCCC -ACGGAATCGAGACGTAACTTCTCG -ACGGAATCGAGACGTAACTAGACG -ACGGAATCGAGACGTAACGTAACG -ACGGAATCGAGACGTAACACTTCG -ACGGAATCGAGACGTAACTACGCA -ACGGAATCGAGACGTAACCTTGCA -ACGGAATCGAGACGTAACCGAACA -ACGGAATCGAGACGTAACCAGTCA -ACGGAATCGAGACGTAACGATCCA -ACGGAATCGAGACGTAACACGACA -ACGGAATCGAGACGTAACAGCTCA -ACGGAATCGAGACGTAACTCACGT -ACGGAATCGAGACGTAACCGTAGT -ACGGAATCGAGACGTAACGTCAGT -ACGGAATCGAGACGTAACGAAGGT -ACGGAATCGAGACGTAACAACCGT -ACGGAATCGAGACGTAACTTGTGC -ACGGAATCGAGACGTAACCTAAGC -ACGGAATCGAGACGTAACACTAGC -ACGGAATCGAGACGTAACAGATGC -ACGGAATCGAGACGTAACTGAAGG -ACGGAATCGAGACGTAACCAATGG -ACGGAATCGAGACGTAACATGAGG -ACGGAATCGAGACGTAACAATGGG -ACGGAATCGAGACGTAACTCCTGA -ACGGAATCGAGACGTAACTAGCGA -ACGGAATCGAGACGTAACCACAGA -ACGGAATCGAGACGTAACGCAAGA -ACGGAATCGAGACGTAACGGTTGA -ACGGAATCGAGACGTAACTCCGAT -ACGGAATCGAGACGTAACTGGCAT -ACGGAATCGAGACGTAACCGAGAT -ACGGAATCGAGACGTAACTACCAC -ACGGAATCGAGACGTAACCAGAAC -ACGGAATCGAGACGTAACGTCTAC -ACGGAATCGAGACGTAACACGTAC -ACGGAATCGAGACGTAACAGTGAC -ACGGAATCGAGACGTAACCTGTAG -ACGGAATCGAGACGTAACCCTAAG -ACGGAATCGAGACGTAACGTTCAG -ACGGAATCGAGACGTAACGCATAG -ACGGAATCGAGACGTAACGACAAG -ACGGAATCGAGACGTAACAAGCAG -ACGGAATCGAGACGTAACCGTCAA -ACGGAATCGAGACGTAACGCTGAA -ACGGAATCGAGACGTAACAGTACG -ACGGAATCGAGACGTAACATCCGA -ACGGAATCGAGACGTAACATGGGA -ACGGAATCGAGACGTAACGTGCAA -ACGGAATCGAGACGTAACGAGGAA -ACGGAATCGAGACGTAACCAGGTA -ACGGAATCGAGACGTAACGACTCT -ACGGAATCGAGACGTAACAGTCCT -ACGGAATCGAGACGTAACTAAGCC -ACGGAATCGAGACGTAACATAGCC -ACGGAATCGAGACGTAACTAACCG -ACGGAATCGAGACGTAACATGCCA -ACGGAATCGAGATGCTTGGGAAAC -ACGGAATCGAGATGCTTGAACACC -ACGGAATCGAGATGCTTGATCGAG -ACGGAATCGAGATGCTTGCTCCTT -ACGGAATCGAGATGCTTGCCTGTT -ACGGAATCGAGATGCTTGCGGTTT -ACGGAATCGAGATGCTTGGTGGTT -ACGGAATCGAGATGCTTGGCCTTT -ACGGAATCGAGATGCTTGGGTCTT -ACGGAATCGAGATGCTTGACGCTT -ACGGAATCGAGATGCTTGAGCGTT -ACGGAATCGAGATGCTTGTTCGTC -ACGGAATCGAGATGCTTGTCTCTC -ACGGAATCGAGATGCTTGTGGATC -ACGGAATCGAGATGCTTGCACTTC -ACGGAATCGAGATGCTTGGTACTC -ACGGAATCGAGATGCTTGGATGTC -ACGGAATCGAGATGCTTGACAGTC -ACGGAATCGAGATGCTTGTTGCTG -ACGGAATCGAGATGCTTGTCCATG -ACGGAATCGAGATGCTTGTGTGTG -ACGGAATCGAGATGCTTGCTAGTG -ACGGAATCGAGATGCTTGCATCTG -ACGGAATCGAGATGCTTGGAGTTG -ACGGAATCGAGATGCTTGAGACTG -ACGGAATCGAGATGCTTGTCGGTA -ACGGAATCGAGATGCTTGTGCCTA -ACGGAATCGAGATGCTTGCCACTA -ACGGAATCGAGATGCTTGGGAGTA -ACGGAATCGAGATGCTTGTCGTCT -ACGGAATCGAGATGCTTGTGCACT -ACGGAATCGAGATGCTTGCTGACT -ACGGAATCGAGATGCTTGCAACCT -ACGGAATCGAGATGCTTGGCTACT -ACGGAATCGAGATGCTTGGGATCT -ACGGAATCGAGATGCTTGAAGGCT -ACGGAATCGAGATGCTTGTCAACC -ACGGAATCGAGATGCTTGTGTTCC -ACGGAATCGAGATGCTTGATTCCC -ACGGAATCGAGATGCTTGTTCTCG -ACGGAATCGAGATGCTTGTAGACG -ACGGAATCGAGATGCTTGGTAACG -ACGGAATCGAGATGCTTGACTTCG -ACGGAATCGAGATGCTTGTACGCA -ACGGAATCGAGATGCTTGCTTGCA -ACGGAATCGAGATGCTTGCGAACA -ACGGAATCGAGATGCTTGCAGTCA -ACGGAATCGAGATGCTTGGATCCA -ACGGAATCGAGATGCTTGACGACA -ACGGAATCGAGATGCTTGAGCTCA -ACGGAATCGAGATGCTTGTCACGT -ACGGAATCGAGATGCTTGCGTAGT -ACGGAATCGAGATGCTTGGTCAGT -ACGGAATCGAGATGCTTGGAAGGT -ACGGAATCGAGATGCTTGAACCGT -ACGGAATCGAGATGCTTGTTGTGC -ACGGAATCGAGATGCTTGCTAAGC -ACGGAATCGAGATGCTTGACTAGC -ACGGAATCGAGATGCTTGAGATGC -ACGGAATCGAGATGCTTGTGAAGG -ACGGAATCGAGATGCTTGCAATGG -ACGGAATCGAGATGCTTGATGAGG -ACGGAATCGAGATGCTTGAATGGG -ACGGAATCGAGATGCTTGTCCTGA -ACGGAATCGAGATGCTTGTAGCGA -ACGGAATCGAGATGCTTGCACAGA -ACGGAATCGAGATGCTTGGCAAGA -ACGGAATCGAGATGCTTGGGTTGA -ACGGAATCGAGATGCTTGTCCGAT -ACGGAATCGAGATGCTTGTGGCAT -ACGGAATCGAGATGCTTGCGAGAT -ACGGAATCGAGATGCTTGTACCAC -ACGGAATCGAGATGCTTGCAGAAC -ACGGAATCGAGATGCTTGGTCTAC -ACGGAATCGAGATGCTTGACGTAC -ACGGAATCGAGATGCTTGAGTGAC -ACGGAATCGAGATGCTTGCTGTAG -ACGGAATCGAGATGCTTGCCTAAG -ACGGAATCGAGATGCTTGGTTCAG -ACGGAATCGAGATGCTTGGCATAG -ACGGAATCGAGATGCTTGGACAAG -ACGGAATCGAGATGCTTGAAGCAG -ACGGAATCGAGATGCTTGCGTCAA -ACGGAATCGAGATGCTTGGCTGAA -ACGGAATCGAGATGCTTGAGTACG -ACGGAATCGAGATGCTTGATCCGA -ACGGAATCGAGATGCTTGATGGGA -ACGGAATCGAGATGCTTGGTGCAA -ACGGAATCGAGATGCTTGGAGGAA -ACGGAATCGAGATGCTTGCAGGTA -ACGGAATCGAGATGCTTGGACTCT -ACGGAATCGAGATGCTTGAGTCCT -ACGGAATCGAGATGCTTGTAAGCC -ACGGAATCGAGATGCTTGATAGCC -ACGGAATCGAGATGCTTGTAACCG -ACGGAATCGAGATGCTTGATGCCA -ACGGAATCGAGAAGCCTAGGAAAC -ACGGAATCGAGAAGCCTAAACACC -ACGGAATCGAGAAGCCTAATCGAG -ACGGAATCGAGAAGCCTACTCCTT -ACGGAATCGAGAAGCCTACCTGTT -ACGGAATCGAGAAGCCTACGGTTT -ACGGAATCGAGAAGCCTAGTGGTT -ACGGAATCGAGAAGCCTAGCCTTT -ACGGAATCGAGAAGCCTAGGTCTT -ACGGAATCGAGAAGCCTAACGCTT -ACGGAATCGAGAAGCCTAAGCGTT -ACGGAATCGAGAAGCCTATTCGTC -ACGGAATCGAGAAGCCTATCTCTC -ACGGAATCGAGAAGCCTATGGATC -ACGGAATCGAGAAGCCTACACTTC -ACGGAATCGAGAAGCCTAGTACTC -ACGGAATCGAGAAGCCTAGATGTC -ACGGAATCGAGAAGCCTAACAGTC -ACGGAATCGAGAAGCCTATTGCTG -ACGGAATCGAGAAGCCTATCCATG -ACGGAATCGAGAAGCCTATGTGTG -ACGGAATCGAGAAGCCTACTAGTG -ACGGAATCGAGAAGCCTACATCTG -ACGGAATCGAGAAGCCTAGAGTTG -ACGGAATCGAGAAGCCTAAGACTG -ACGGAATCGAGAAGCCTATCGGTA -ACGGAATCGAGAAGCCTATGCCTA -ACGGAATCGAGAAGCCTACCACTA -ACGGAATCGAGAAGCCTAGGAGTA -ACGGAATCGAGAAGCCTATCGTCT -ACGGAATCGAGAAGCCTATGCACT -ACGGAATCGAGAAGCCTACTGACT -ACGGAATCGAGAAGCCTACAACCT -ACGGAATCGAGAAGCCTAGCTACT -ACGGAATCGAGAAGCCTAGGATCT -ACGGAATCGAGAAGCCTAAAGGCT -ACGGAATCGAGAAGCCTATCAACC -ACGGAATCGAGAAGCCTATGTTCC -ACGGAATCGAGAAGCCTAATTCCC -ACGGAATCGAGAAGCCTATTCTCG -ACGGAATCGAGAAGCCTATAGACG -ACGGAATCGAGAAGCCTAGTAACG -ACGGAATCGAGAAGCCTAACTTCG -ACGGAATCGAGAAGCCTATACGCA -ACGGAATCGAGAAGCCTACTTGCA -ACGGAATCGAGAAGCCTACGAACA -ACGGAATCGAGAAGCCTACAGTCA -ACGGAATCGAGAAGCCTAGATCCA -ACGGAATCGAGAAGCCTAACGACA -ACGGAATCGAGAAGCCTAAGCTCA -ACGGAATCGAGAAGCCTATCACGT -ACGGAATCGAGAAGCCTACGTAGT -ACGGAATCGAGAAGCCTAGTCAGT -ACGGAATCGAGAAGCCTAGAAGGT -ACGGAATCGAGAAGCCTAAACCGT -ACGGAATCGAGAAGCCTATTGTGC -ACGGAATCGAGAAGCCTACTAAGC -ACGGAATCGAGAAGCCTAACTAGC -ACGGAATCGAGAAGCCTAAGATGC -ACGGAATCGAGAAGCCTATGAAGG -ACGGAATCGAGAAGCCTACAATGG -ACGGAATCGAGAAGCCTAATGAGG -ACGGAATCGAGAAGCCTAAATGGG -ACGGAATCGAGAAGCCTATCCTGA -ACGGAATCGAGAAGCCTATAGCGA -ACGGAATCGAGAAGCCTACACAGA -ACGGAATCGAGAAGCCTAGCAAGA -ACGGAATCGAGAAGCCTAGGTTGA -ACGGAATCGAGAAGCCTATCCGAT -ACGGAATCGAGAAGCCTATGGCAT -ACGGAATCGAGAAGCCTACGAGAT -ACGGAATCGAGAAGCCTATACCAC -ACGGAATCGAGAAGCCTACAGAAC -ACGGAATCGAGAAGCCTAGTCTAC -ACGGAATCGAGAAGCCTAACGTAC -ACGGAATCGAGAAGCCTAAGTGAC -ACGGAATCGAGAAGCCTACTGTAG -ACGGAATCGAGAAGCCTACCTAAG -ACGGAATCGAGAAGCCTAGTTCAG -ACGGAATCGAGAAGCCTAGCATAG -ACGGAATCGAGAAGCCTAGACAAG -ACGGAATCGAGAAGCCTAAAGCAG -ACGGAATCGAGAAGCCTACGTCAA -ACGGAATCGAGAAGCCTAGCTGAA -ACGGAATCGAGAAGCCTAAGTACG -ACGGAATCGAGAAGCCTAATCCGA -ACGGAATCGAGAAGCCTAATGGGA -ACGGAATCGAGAAGCCTAGTGCAA -ACGGAATCGAGAAGCCTAGAGGAA -ACGGAATCGAGAAGCCTACAGGTA -ACGGAATCGAGAAGCCTAGACTCT -ACGGAATCGAGAAGCCTAAGTCCT -ACGGAATCGAGAAGCCTATAAGCC -ACGGAATCGAGAAGCCTAATAGCC -ACGGAATCGAGAAGCCTATAACCG -ACGGAATCGAGAAGCCTAATGCCA -ACGGAATCGAGAAGCACTGGAAAC -ACGGAATCGAGAAGCACTAACACC -ACGGAATCGAGAAGCACTATCGAG -ACGGAATCGAGAAGCACTCTCCTT -ACGGAATCGAGAAGCACTCCTGTT -ACGGAATCGAGAAGCACTCGGTTT -ACGGAATCGAGAAGCACTGTGGTT -ACGGAATCGAGAAGCACTGCCTTT -ACGGAATCGAGAAGCACTGGTCTT -ACGGAATCGAGAAGCACTACGCTT -ACGGAATCGAGAAGCACTAGCGTT -ACGGAATCGAGAAGCACTTTCGTC -ACGGAATCGAGAAGCACTTCTCTC -ACGGAATCGAGAAGCACTTGGATC -ACGGAATCGAGAAGCACTCACTTC -ACGGAATCGAGAAGCACTGTACTC -ACGGAATCGAGAAGCACTGATGTC -ACGGAATCGAGAAGCACTACAGTC -ACGGAATCGAGAAGCACTTTGCTG -ACGGAATCGAGAAGCACTTCCATG -ACGGAATCGAGAAGCACTTGTGTG -ACGGAATCGAGAAGCACTCTAGTG -ACGGAATCGAGAAGCACTCATCTG -ACGGAATCGAGAAGCACTGAGTTG -ACGGAATCGAGAAGCACTAGACTG -ACGGAATCGAGAAGCACTTCGGTA -ACGGAATCGAGAAGCACTTGCCTA -ACGGAATCGAGAAGCACTCCACTA -ACGGAATCGAGAAGCACTGGAGTA -ACGGAATCGAGAAGCACTTCGTCT -ACGGAATCGAGAAGCACTTGCACT -ACGGAATCGAGAAGCACTCTGACT -ACGGAATCGAGAAGCACTCAACCT -ACGGAATCGAGAAGCACTGCTACT -ACGGAATCGAGAAGCACTGGATCT -ACGGAATCGAGAAGCACTAAGGCT -ACGGAATCGAGAAGCACTTCAACC -ACGGAATCGAGAAGCACTTGTTCC -ACGGAATCGAGAAGCACTATTCCC -ACGGAATCGAGAAGCACTTTCTCG -ACGGAATCGAGAAGCACTTAGACG -ACGGAATCGAGAAGCACTGTAACG -ACGGAATCGAGAAGCACTACTTCG -ACGGAATCGAGAAGCACTTACGCA -ACGGAATCGAGAAGCACTCTTGCA -ACGGAATCGAGAAGCACTCGAACA -ACGGAATCGAGAAGCACTCAGTCA -ACGGAATCGAGAAGCACTGATCCA -ACGGAATCGAGAAGCACTACGACA -ACGGAATCGAGAAGCACTAGCTCA -ACGGAATCGAGAAGCACTTCACGT -ACGGAATCGAGAAGCACTCGTAGT -ACGGAATCGAGAAGCACTGTCAGT -ACGGAATCGAGAAGCACTGAAGGT -ACGGAATCGAGAAGCACTAACCGT -ACGGAATCGAGAAGCACTTTGTGC -ACGGAATCGAGAAGCACTCTAAGC -ACGGAATCGAGAAGCACTACTAGC -ACGGAATCGAGAAGCACTAGATGC -ACGGAATCGAGAAGCACTTGAAGG -ACGGAATCGAGAAGCACTCAATGG -ACGGAATCGAGAAGCACTATGAGG -ACGGAATCGAGAAGCACTAATGGG -ACGGAATCGAGAAGCACTTCCTGA -ACGGAATCGAGAAGCACTTAGCGA -ACGGAATCGAGAAGCACTCACAGA -ACGGAATCGAGAAGCACTGCAAGA -ACGGAATCGAGAAGCACTGGTTGA -ACGGAATCGAGAAGCACTTCCGAT -ACGGAATCGAGAAGCACTTGGCAT -ACGGAATCGAGAAGCACTCGAGAT -ACGGAATCGAGAAGCACTTACCAC -ACGGAATCGAGAAGCACTCAGAAC -ACGGAATCGAGAAGCACTGTCTAC -ACGGAATCGAGAAGCACTACGTAC -ACGGAATCGAGAAGCACTAGTGAC -ACGGAATCGAGAAGCACTCTGTAG -ACGGAATCGAGAAGCACTCCTAAG -ACGGAATCGAGAAGCACTGTTCAG -ACGGAATCGAGAAGCACTGCATAG -ACGGAATCGAGAAGCACTGACAAG -ACGGAATCGAGAAGCACTAAGCAG -ACGGAATCGAGAAGCACTCGTCAA -ACGGAATCGAGAAGCACTGCTGAA -ACGGAATCGAGAAGCACTAGTACG -ACGGAATCGAGAAGCACTATCCGA -ACGGAATCGAGAAGCACTATGGGA -ACGGAATCGAGAAGCACTGTGCAA -ACGGAATCGAGAAGCACTGAGGAA -ACGGAATCGAGAAGCACTCAGGTA -ACGGAATCGAGAAGCACTGACTCT -ACGGAATCGAGAAGCACTAGTCCT -ACGGAATCGAGAAGCACTTAAGCC -ACGGAATCGAGAAGCACTATAGCC -ACGGAATCGAGAAGCACTTAACCG -ACGGAATCGAGAAGCACTATGCCA -ACGGAATCGAGATGCAGAGGAAAC -ACGGAATCGAGATGCAGAAACACC -ACGGAATCGAGATGCAGAATCGAG -ACGGAATCGAGATGCAGACTCCTT -ACGGAATCGAGATGCAGACCTGTT -ACGGAATCGAGATGCAGACGGTTT -ACGGAATCGAGATGCAGAGTGGTT -ACGGAATCGAGATGCAGAGCCTTT -ACGGAATCGAGATGCAGAGGTCTT -ACGGAATCGAGATGCAGAACGCTT -ACGGAATCGAGATGCAGAAGCGTT -ACGGAATCGAGATGCAGATTCGTC -ACGGAATCGAGATGCAGATCTCTC -ACGGAATCGAGATGCAGATGGATC -ACGGAATCGAGATGCAGACACTTC -ACGGAATCGAGATGCAGAGTACTC -ACGGAATCGAGATGCAGAGATGTC -ACGGAATCGAGATGCAGAACAGTC -ACGGAATCGAGATGCAGATTGCTG -ACGGAATCGAGATGCAGATCCATG -ACGGAATCGAGATGCAGATGTGTG -ACGGAATCGAGATGCAGACTAGTG -ACGGAATCGAGATGCAGACATCTG -ACGGAATCGAGATGCAGAGAGTTG -ACGGAATCGAGATGCAGAAGACTG -ACGGAATCGAGATGCAGATCGGTA -ACGGAATCGAGATGCAGATGCCTA -ACGGAATCGAGATGCAGACCACTA -ACGGAATCGAGATGCAGAGGAGTA -ACGGAATCGAGATGCAGATCGTCT -ACGGAATCGAGATGCAGATGCACT -ACGGAATCGAGATGCAGACTGACT -ACGGAATCGAGATGCAGACAACCT -ACGGAATCGAGATGCAGAGCTACT -ACGGAATCGAGATGCAGAGGATCT -ACGGAATCGAGATGCAGAAAGGCT -ACGGAATCGAGATGCAGATCAACC -ACGGAATCGAGATGCAGATGTTCC -ACGGAATCGAGATGCAGAATTCCC -ACGGAATCGAGATGCAGATTCTCG -ACGGAATCGAGATGCAGATAGACG -ACGGAATCGAGATGCAGAGTAACG -ACGGAATCGAGATGCAGAACTTCG -ACGGAATCGAGATGCAGATACGCA -ACGGAATCGAGATGCAGACTTGCA -ACGGAATCGAGATGCAGACGAACA -ACGGAATCGAGATGCAGACAGTCA -ACGGAATCGAGATGCAGAGATCCA -ACGGAATCGAGATGCAGAACGACA -ACGGAATCGAGATGCAGAAGCTCA -ACGGAATCGAGATGCAGATCACGT -ACGGAATCGAGATGCAGACGTAGT -ACGGAATCGAGATGCAGAGTCAGT -ACGGAATCGAGATGCAGAGAAGGT -ACGGAATCGAGATGCAGAAACCGT -ACGGAATCGAGATGCAGATTGTGC -ACGGAATCGAGATGCAGACTAAGC -ACGGAATCGAGATGCAGAACTAGC -ACGGAATCGAGATGCAGAAGATGC -ACGGAATCGAGATGCAGATGAAGG -ACGGAATCGAGATGCAGACAATGG -ACGGAATCGAGATGCAGAATGAGG -ACGGAATCGAGATGCAGAAATGGG -ACGGAATCGAGATGCAGATCCTGA -ACGGAATCGAGATGCAGATAGCGA -ACGGAATCGAGATGCAGACACAGA -ACGGAATCGAGATGCAGAGCAAGA -ACGGAATCGAGATGCAGAGGTTGA -ACGGAATCGAGATGCAGATCCGAT -ACGGAATCGAGATGCAGATGGCAT -ACGGAATCGAGATGCAGACGAGAT -ACGGAATCGAGATGCAGATACCAC -ACGGAATCGAGATGCAGACAGAAC -ACGGAATCGAGATGCAGAGTCTAC -ACGGAATCGAGATGCAGAACGTAC -ACGGAATCGAGATGCAGAAGTGAC -ACGGAATCGAGATGCAGACTGTAG -ACGGAATCGAGATGCAGACCTAAG -ACGGAATCGAGATGCAGAGTTCAG -ACGGAATCGAGATGCAGAGCATAG -ACGGAATCGAGATGCAGAGACAAG -ACGGAATCGAGATGCAGAAAGCAG -ACGGAATCGAGATGCAGACGTCAA -ACGGAATCGAGATGCAGAGCTGAA -ACGGAATCGAGATGCAGAAGTACG -ACGGAATCGAGATGCAGAATCCGA -ACGGAATCGAGATGCAGAATGGGA -ACGGAATCGAGATGCAGAGTGCAA -ACGGAATCGAGATGCAGAGAGGAA -ACGGAATCGAGATGCAGACAGGTA -ACGGAATCGAGATGCAGAGACTCT -ACGGAATCGAGATGCAGAAGTCCT -ACGGAATCGAGATGCAGATAAGCC -ACGGAATCGAGATGCAGAATAGCC -ACGGAATCGAGATGCAGATAACCG -ACGGAATCGAGATGCAGAATGCCA -ACGGAATCGAGAAGGTGAGGAAAC -ACGGAATCGAGAAGGTGAAACACC -ACGGAATCGAGAAGGTGAATCGAG -ACGGAATCGAGAAGGTGACTCCTT -ACGGAATCGAGAAGGTGACCTGTT -ACGGAATCGAGAAGGTGACGGTTT -ACGGAATCGAGAAGGTGAGTGGTT -ACGGAATCGAGAAGGTGAGCCTTT -ACGGAATCGAGAAGGTGAGGTCTT -ACGGAATCGAGAAGGTGAACGCTT -ACGGAATCGAGAAGGTGAAGCGTT -ACGGAATCGAGAAGGTGATTCGTC -ACGGAATCGAGAAGGTGATCTCTC -ACGGAATCGAGAAGGTGATGGATC -ACGGAATCGAGAAGGTGACACTTC -ACGGAATCGAGAAGGTGAGTACTC -ACGGAATCGAGAAGGTGAGATGTC -ACGGAATCGAGAAGGTGAACAGTC -ACGGAATCGAGAAGGTGATTGCTG -ACGGAATCGAGAAGGTGATCCATG -ACGGAATCGAGAAGGTGATGTGTG -ACGGAATCGAGAAGGTGACTAGTG -ACGGAATCGAGAAGGTGACATCTG -ACGGAATCGAGAAGGTGAGAGTTG -ACGGAATCGAGAAGGTGAAGACTG -ACGGAATCGAGAAGGTGATCGGTA -ACGGAATCGAGAAGGTGATGCCTA -ACGGAATCGAGAAGGTGACCACTA -ACGGAATCGAGAAGGTGAGGAGTA -ACGGAATCGAGAAGGTGATCGTCT -ACGGAATCGAGAAGGTGATGCACT -ACGGAATCGAGAAGGTGACTGACT -ACGGAATCGAGAAGGTGACAACCT -ACGGAATCGAGAAGGTGAGCTACT -ACGGAATCGAGAAGGTGAGGATCT -ACGGAATCGAGAAGGTGAAAGGCT -ACGGAATCGAGAAGGTGATCAACC -ACGGAATCGAGAAGGTGATGTTCC -ACGGAATCGAGAAGGTGAATTCCC -ACGGAATCGAGAAGGTGATTCTCG -ACGGAATCGAGAAGGTGATAGACG -ACGGAATCGAGAAGGTGAGTAACG -ACGGAATCGAGAAGGTGAACTTCG -ACGGAATCGAGAAGGTGATACGCA -ACGGAATCGAGAAGGTGACTTGCA -ACGGAATCGAGAAGGTGACGAACA -ACGGAATCGAGAAGGTGACAGTCA -ACGGAATCGAGAAGGTGAGATCCA -ACGGAATCGAGAAGGTGAACGACA -ACGGAATCGAGAAGGTGAAGCTCA -ACGGAATCGAGAAGGTGATCACGT -ACGGAATCGAGAAGGTGACGTAGT -ACGGAATCGAGAAGGTGAGTCAGT -ACGGAATCGAGAAGGTGAGAAGGT -ACGGAATCGAGAAGGTGAAACCGT -ACGGAATCGAGAAGGTGATTGTGC -ACGGAATCGAGAAGGTGACTAAGC -ACGGAATCGAGAAGGTGAACTAGC -ACGGAATCGAGAAGGTGAAGATGC -ACGGAATCGAGAAGGTGATGAAGG -ACGGAATCGAGAAGGTGACAATGG -ACGGAATCGAGAAGGTGAATGAGG -ACGGAATCGAGAAGGTGAAATGGG -ACGGAATCGAGAAGGTGATCCTGA -ACGGAATCGAGAAGGTGATAGCGA -ACGGAATCGAGAAGGTGACACAGA -ACGGAATCGAGAAGGTGAGCAAGA -ACGGAATCGAGAAGGTGAGGTTGA -ACGGAATCGAGAAGGTGATCCGAT -ACGGAATCGAGAAGGTGATGGCAT -ACGGAATCGAGAAGGTGACGAGAT -ACGGAATCGAGAAGGTGATACCAC -ACGGAATCGAGAAGGTGACAGAAC -ACGGAATCGAGAAGGTGAGTCTAC -ACGGAATCGAGAAGGTGAACGTAC -ACGGAATCGAGAAGGTGAAGTGAC -ACGGAATCGAGAAGGTGACTGTAG -ACGGAATCGAGAAGGTGACCTAAG -ACGGAATCGAGAAGGTGAGTTCAG -ACGGAATCGAGAAGGTGAGCATAG -ACGGAATCGAGAAGGTGAGACAAG -ACGGAATCGAGAAGGTGAAAGCAG -ACGGAATCGAGAAGGTGACGTCAA -ACGGAATCGAGAAGGTGAGCTGAA -ACGGAATCGAGAAGGTGAAGTACG -ACGGAATCGAGAAGGTGAATCCGA -ACGGAATCGAGAAGGTGAATGGGA -ACGGAATCGAGAAGGTGAGTGCAA -ACGGAATCGAGAAGGTGAGAGGAA -ACGGAATCGAGAAGGTGACAGGTA -ACGGAATCGAGAAGGTGAGACTCT -ACGGAATCGAGAAGGTGAAGTCCT -ACGGAATCGAGAAGGTGATAAGCC -ACGGAATCGAGAAGGTGAATAGCC -ACGGAATCGAGAAGGTGATAACCG -ACGGAATCGAGAAGGTGAATGCCA -ACGGAATCGAGATGGCAAGGAAAC -ACGGAATCGAGATGGCAAAACACC -ACGGAATCGAGATGGCAAATCGAG -ACGGAATCGAGATGGCAACTCCTT -ACGGAATCGAGATGGCAACCTGTT -ACGGAATCGAGATGGCAACGGTTT -ACGGAATCGAGATGGCAAGTGGTT -ACGGAATCGAGATGGCAAGCCTTT -ACGGAATCGAGATGGCAAGGTCTT -ACGGAATCGAGATGGCAAACGCTT -ACGGAATCGAGATGGCAAAGCGTT -ACGGAATCGAGATGGCAATTCGTC -ACGGAATCGAGATGGCAATCTCTC -ACGGAATCGAGATGGCAATGGATC -ACGGAATCGAGATGGCAACACTTC -ACGGAATCGAGATGGCAAGTACTC -ACGGAATCGAGATGGCAAGATGTC -ACGGAATCGAGATGGCAAACAGTC -ACGGAATCGAGATGGCAATTGCTG -ACGGAATCGAGATGGCAATCCATG -ACGGAATCGAGATGGCAATGTGTG -ACGGAATCGAGATGGCAACTAGTG -ACGGAATCGAGATGGCAACATCTG -ACGGAATCGAGATGGCAAGAGTTG -ACGGAATCGAGATGGCAAAGACTG -ACGGAATCGAGATGGCAATCGGTA -ACGGAATCGAGATGGCAATGCCTA -ACGGAATCGAGATGGCAACCACTA -ACGGAATCGAGATGGCAAGGAGTA -ACGGAATCGAGATGGCAATCGTCT -ACGGAATCGAGATGGCAATGCACT -ACGGAATCGAGATGGCAACTGACT -ACGGAATCGAGATGGCAACAACCT -ACGGAATCGAGATGGCAAGCTACT -ACGGAATCGAGATGGCAAGGATCT -ACGGAATCGAGATGGCAAAAGGCT -ACGGAATCGAGATGGCAATCAACC -ACGGAATCGAGATGGCAATGTTCC -ACGGAATCGAGATGGCAAATTCCC -ACGGAATCGAGATGGCAATTCTCG -ACGGAATCGAGATGGCAATAGACG -ACGGAATCGAGATGGCAAGTAACG -ACGGAATCGAGATGGCAAACTTCG -ACGGAATCGAGATGGCAATACGCA -ACGGAATCGAGATGGCAACTTGCA -ACGGAATCGAGATGGCAACGAACA -ACGGAATCGAGATGGCAACAGTCA -ACGGAATCGAGATGGCAAGATCCA -ACGGAATCGAGATGGCAAACGACA -ACGGAATCGAGATGGCAAAGCTCA -ACGGAATCGAGATGGCAATCACGT -ACGGAATCGAGATGGCAACGTAGT -ACGGAATCGAGATGGCAAGTCAGT -ACGGAATCGAGATGGCAAGAAGGT -ACGGAATCGAGATGGCAAAACCGT -ACGGAATCGAGATGGCAATTGTGC -ACGGAATCGAGATGGCAACTAAGC -ACGGAATCGAGATGGCAAACTAGC -ACGGAATCGAGATGGCAAAGATGC -ACGGAATCGAGATGGCAATGAAGG -ACGGAATCGAGATGGCAACAATGG -ACGGAATCGAGATGGCAAATGAGG -ACGGAATCGAGATGGCAAAATGGG -ACGGAATCGAGATGGCAATCCTGA -ACGGAATCGAGATGGCAATAGCGA -ACGGAATCGAGATGGCAACACAGA -ACGGAATCGAGATGGCAAGCAAGA -ACGGAATCGAGATGGCAAGGTTGA -ACGGAATCGAGATGGCAATCCGAT -ACGGAATCGAGATGGCAATGGCAT -ACGGAATCGAGATGGCAACGAGAT -ACGGAATCGAGATGGCAATACCAC -ACGGAATCGAGATGGCAACAGAAC -ACGGAATCGAGATGGCAAGTCTAC -ACGGAATCGAGATGGCAAACGTAC -ACGGAATCGAGATGGCAAAGTGAC -ACGGAATCGAGATGGCAACTGTAG -ACGGAATCGAGATGGCAACCTAAG -ACGGAATCGAGATGGCAAGTTCAG -ACGGAATCGAGATGGCAAGCATAG -ACGGAATCGAGATGGCAAGACAAG -ACGGAATCGAGATGGCAAAAGCAG -ACGGAATCGAGATGGCAACGTCAA -ACGGAATCGAGATGGCAAGCTGAA -ACGGAATCGAGATGGCAAAGTACG -ACGGAATCGAGATGGCAAATCCGA -ACGGAATCGAGATGGCAAATGGGA -ACGGAATCGAGATGGCAAGTGCAA -ACGGAATCGAGATGGCAAGAGGAA -ACGGAATCGAGATGGCAACAGGTA -ACGGAATCGAGATGGCAAGACTCT -ACGGAATCGAGATGGCAAAGTCCT -ACGGAATCGAGATGGCAATAAGCC -ACGGAATCGAGATGGCAAATAGCC -ACGGAATCGAGATGGCAATAACCG -ACGGAATCGAGATGGCAAATGCCA -ACGGAATCGAGAAGGATGGGAAAC -ACGGAATCGAGAAGGATGAACACC -ACGGAATCGAGAAGGATGATCGAG -ACGGAATCGAGAAGGATGCTCCTT -ACGGAATCGAGAAGGATGCCTGTT -ACGGAATCGAGAAGGATGCGGTTT -ACGGAATCGAGAAGGATGGTGGTT -ACGGAATCGAGAAGGATGGCCTTT -ACGGAATCGAGAAGGATGGGTCTT -ACGGAATCGAGAAGGATGACGCTT -ACGGAATCGAGAAGGATGAGCGTT -ACGGAATCGAGAAGGATGTTCGTC -ACGGAATCGAGAAGGATGTCTCTC -ACGGAATCGAGAAGGATGTGGATC -ACGGAATCGAGAAGGATGCACTTC -ACGGAATCGAGAAGGATGGTACTC -ACGGAATCGAGAAGGATGGATGTC -ACGGAATCGAGAAGGATGACAGTC -ACGGAATCGAGAAGGATGTTGCTG -ACGGAATCGAGAAGGATGTCCATG -ACGGAATCGAGAAGGATGTGTGTG -ACGGAATCGAGAAGGATGCTAGTG -ACGGAATCGAGAAGGATGCATCTG -ACGGAATCGAGAAGGATGGAGTTG -ACGGAATCGAGAAGGATGAGACTG -ACGGAATCGAGAAGGATGTCGGTA -ACGGAATCGAGAAGGATGTGCCTA -ACGGAATCGAGAAGGATGCCACTA -ACGGAATCGAGAAGGATGGGAGTA -ACGGAATCGAGAAGGATGTCGTCT -ACGGAATCGAGAAGGATGTGCACT -ACGGAATCGAGAAGGATGCTGACT -ACGGAATCGAGAAGGATGCAACCT -ACGGAATCGAGAAGGATGGCTACT -ACGGAATCGAGAAGGATGGGATCT -ACGGAATCGAGAAGGATGAAGGCT -ACGGAATCGAGAAGGATGTCAACC -ACGGAATCGAGAAGGATGTGTTCC -ACGGAATCGAGAAGGATGATTCCC -ACGGAATCGAGAAGGATGTTCTCG -ACGGAATCGAGAAGGATGTAGACG -ACGGAATCGAGAAGGATGGTAACG -ACGGAATCGAGAAGGATGACTTCG -ACGGAATCGAGAAGGATGTACGCA -ACGGAATCGAGAAGGATGCTTGCA -ACGGAATCGAGAAGGATGCGAACA -ACGGAATCGAGAAGGATGCAGTCA -ACGGAATCGAGAAGGATGGATCCA -ACGGAATCGAGAAGGATGACGACA -ACGGAATCGAGAAGGATGAGCTCA -ACGGAATCGAGAAGGATGTCACGT -ACGGAATCGAGAAGGATGCGTAGT -ACGGAATCGAGAAGGATGGTCAGT -ACGGAATCGAGAAGGATGGAAGGT -ACGGAATCGAGAAGGATGAACCGT -ACGGAATCGAGAAGGATGTTGTGC -ACGGAATCGAGAAGGATGCTAAGC -ACGGAATCGAGAAGGATGACTAGC -ACGGAATCGAGAAGGATGAGATGC -ACGGAATCGAGAAGGATGTGAAGG -ACGGAATCGAGAAGGATGCAATGG -ACGGAATCGAGAAGGATGATGAGG -ACGGAATCGAGAAGGATGAATGGG -ACGGAATCGAGAAGGATGTCCTGA -ACGGAATCGAGAAGGATGTAGCGA -ACGGAATCGAGAAGGATGCACAGA -ACGGAATCGAGAAGGATGGCAAGA -ACGGAATCGAGAAGGATGGGTTGA -ACGGAATCGAGAAGGATGTCCGAT -ACGGAATCGAGAAGGATGTGGCAT -ACGGAATCGAGAAGGATGCGAGAT -ACGGAATCGAGAAGGATGTACCAC -ACGGAATCGAGAAGGATGCAGAAC -ACGGAATCGAGAAGGATGGTCTAC -ACGGAATCGAGAAGGATGACGTAC -ACGGAATCGAGAAGGATGAGTGAC -ACGGAATCGAGAAGGATGCTGTAG -ACGGAATCGAGAAGGATGCCTAAG -ACGGAATCGAGAAGGATGGTTCAG -ACGGAATCGAGAAGGATGGCATAG -ACGGAATCGAGAAGGATGGACAAG -ACGGAATCGAGAAGGATGAAGCAG -ACGGAATCGAGAAGGATGCGTCAA -ACGGAATCGAGAAGGATGGCTGAA -ACGGAATCGAGAAGGATGAGTACG -ACGGAATCGAGAAGGATGATCCGA -ACGGAATCGAGAAGGATGATGGGA -ACGGAATCGAGAAGGATGGTGCAA -ACGGAATCGAGAAGGATGGAGGAA -ACGGAATCGAGAAGGATGCAGGTA -ACGGAATCGAGAAGGATGGACTCT -ACGGAATCGAGAAGGATGAGTCCT -ACGGAATCGAGAAGGATGTAAGCC -ACGGAATCGAGAAGGATGATAGCC -ACGGAATCGAGAAGGATGTAACCG -ACGGAATCGAGAAGGATGATGCCA -ACGGAATCGAGAGGGAATGGAAAC -ACGGAATCGAGAGGGAATAACACC -ACGGAATCGAGAGGGAATATCGAG -ACGGAATCGAGAGGGAATCTCCTT -ACGGAATCGAGAGGGAATCCTGTT -ACGGAATCGAGAGGGAATCGGTTT -ACGGAATCGAGAGGGAATGTGGTT -ACGGAATCGAGAGGGAATGCCTTT -ACGGAATCGAGAGGGAATGGTCTT -ACGGAATCGAGAGGGAATACGCTT -ACGGAATCGAGAGGGAATAGCGTT -ACGGAATCGAGAGGGAATTTCGTC -ACGGAATCGAGAGGGAATTCTCTC -ACGGAATCGAGAGGGAATTGGATC -ACGGAATCGAGAGGGAATCACTTC -ACGGAATCGAGAGGGAATGTACTC -ACGGAATCGAGAGGGAATGATGTC -ACGGAATCGAGAGGGAATACAGTC -ACGGAATCGAGAGGGAATTTGCTG -ACGGAATCGAGAGGGAATTCCATG -ACGGAATCGAGAGGGAATTGTGTG -ACGGAATCGAGAGGGAATCTAGTG -ACGGAATCGAGAGGGAATCATCTG -ACGGAATCGAGAGGGAATGAGTTG -ACGGAATCGAGAGGGAATAGACTG -ACGGAATCGAGAGGGAATTCGGTA -ACGGAATCGAGAGGGAATTGCCTA -ACGGAATCGAGAGGGAATCCACTA -ACGGAATCGAGAGGGAATGGAGTA -ACGGAATCGAGAGGGAATTCGTCT -ACGGAATCGAGAGGGAATTGCACT -ACGGAATCGAGAGGGAATCTGACT -ACGGAATCGAGAGGGAATCAACCT -ACGGAATCGAGAGGGAATGCTACT -ACGGAATCGAGAGGGAATGGATCT -ACGGAATCGAGAGGGAATAAGGCT -ACGGAATCGAGAGGGAATTCAACC -ACGGAATCGAGAGGGAATTGTTCC -ACGGAATCGAGAGGGAATATTCCC -ACGGAATCGAGAGGGAATTTCTCG -ACGGAATCGAGAGGGAATTAGACG -ACGGAATCGAGAGGGAATGTAACG -ACGGAATCGAGAGGGAATACTTCG -ACGGAATCGAGAGGGAATTACGCA -ACGGAATCGAGAGGGAATCTTGCA -ACGGAATCGAGAGGGAATCGAACA -ACGGAATCGAGAGGGAATCAGTCA -ACGGAATCGAGAGGGAATGATCCA -ACGGAATCGAGAGGGAATACGACA -ACGGAATCGAGAGGGAATAGCTCA -ACGGAATCGAGAGGGAATTCACGT -ACGGAATCGAGAGGGAATCGTAGT -ACGGAATCGAGAGGGAATGTCAGT -ACGGAATCGAGAGGGAATGAAGGT -ACGGAATCGAGAGGGAATAACCGT -ACGGAATCGAGAGGGAATTTGTGC -ACGGAATCGAGAGGGAATCTAAGC -ACGGAATCGAGAGGGAATACTAGC -ACGGAATCGAGAGGGAATAGATGC -ACGGAATCGAGAGGGAATTGAAGG -ACGGAATCGAGAGGGAATCAATGG -ACGGAATCGAGAGGGAATATGAGG -ACGGAATCGAGAGGGAATAATGGG -ACGGAATCGAGAGGGAATTCCTGA -ACGGAATCGAGAGGGAATTAGCGA -ACGGAATCGAGAGGGAATCACAGA -ACGGAATCGAGAGGGAATGCAAGA -ACGGAATCGAGAGGGAATGGTTGA -ACGGAATCGAGAGGGAATTCCGAT -ACGGAATCGAGAGGGAATTGGCAT -ACGGAATCGAGAGGGAATCGAGAT -ACGGAATCGAGAGGGAATTACCAC -ACGGAATCGAGAGGGAATCAGAAC -ACGGAATCGAGAGGGAATGTCTAC -ACGGAATCGAGAGGGAATACGTAC -ACGGAATCGAGAGGGAATAGTGAC -ACGGAATCGAGAGGGAATCTGTAG -ACGGAATCGAGAGGGAATCCTAAG -ACGGAATCGAGAGGGAATGTTCAG -ACGGAATCGAGAGGGAATGCATAG -ACGGAATCGAGAGGGAATGACAAG -ACGGAATCGAGAGGGAATAAGCAG -ACGGAATCGAGAGGGAATCGTCAA -ACGGAATCGAGAGGGAATGCTGAA -ACGGAATCGAGAGGGAATAGTACG -ACGGAATCGAGAGGGAATATCCGA -ACGGAATCGAGAGGGAATATGGGA -ACGGAATCGAGAGGGAATGTGCAA -ACGGAATCGAGAGGGAATGAGGAA -ACGGAATCGAGAGGGAATCAGGTA -ACGGAATCGAGAGGGAATGACTCT -ACGGAATCGAGAGGGAATAGTCCT -ACGGAATCGAGAGGGAATTAAGCC -ACGGAATCGAGAGGGAATATAGCC -ACGGAATCGAGAGGGAATTAACCG -ACGGAATCGAGAGGGAATATGCCA -ACGGAATCGAGATGATCCGGAAAC -ACGGAATCGAGATGATCCAACACC -ACGGAATCGAGATGATCCATCGAG -ACGGAATCGAGATGATCCCTCCTT -ACGGAATCGAGATGATCCCCTGTT -ACGGAATCGAGATGATCCCGGTTT -ACGGAATCGAGATGATCCGTGGTT -ACGGAATCGAGATGATCCGCCTTT -ACGGAATCGAGATGATCCGGTCTT -ACGGAATCGAGATGATCCACGCTT -ACGGAATCGAGATGATCCAGCGTT -ACGGAATCGAGATGATCCTTCGTC -ACGGAATCGAGATGATCCTCTCTC -ACGGAATCGAGATGATCCTGGATC -ACGGAATCGAGATGATCCCACTTC -ACGGAATCGAGATGATCCGTACTC -ACGGAATCGAGATGATCCGATGTC -ACGGAATCGAGATGATCCACAGTC -ACGGAATCGAGATGATCCTTGCTG -ACGGAATCGAGATGATCCTCCATG -ACGGAATCGAGATGATCCTGTGTG -ACGGAATCGAGATGATCCCTAGTG -ACGGAATCGAGATGATCCCATCTG -ACGGAATCGAGATGATCCGAGTTG -ACGGAATCGAGATGATCCAGACTG -ACGGAATCGAGATGATCCTCGGTA -ACGGAATCGAGATGATCCTGCCTA -ACGGAATCGAGATGATCCCCACTA -ACGGAATCGAGATGATCCGGAGTA -ACGGAATCGAGATGATCCTCGTCT -ACGGAATCGAGATGATCCTGCACT -ACGGAATCGAGATGATCCCTGACT -ACGGAATCGAGATGATCCCAACCT -ACGGAATCGAGATGATCCGCTACT -ACGGAATCGAGATGATCCGGATCT -ACGGAATCGAGATGATCCAAGGCT -ACGGAATCGAGATGATCCTCAACC -ACGGAATCGAGATGATCCTGTTCC -ACGGAATCGAGATGATCCATTCCC -ACGGAATCGAGATGATCCTTCTCG -ACGGAATCGAGATGATCCTAGACG -ACGGAATCGAGATGATCCGTAACG -ACGGAATCGAGATGATCCACTTCG -ACGGAATCGAGATGATCCTACGCA -ACGGAATCGAGATGATCCCTTGCA -ACGGAATCGAGATGATCCCGAACA -ACGGAATCGAGATGATCCCAGTCA -ACGGAATCGAGATGATCCGATCCA -ACGGAATCGAGATGATCCACGACA -ACGGAATCGAGATGATCCAGCTCA -ACGGAATCGAGATGATCCTCACGT -ACGGAATCGAGATGATCCCGTAGT -ACGGAATCGAGATGATCCGTCAGT -ACGGAATCGAGATGATCCGAAGGT -ACGGAATCGAGATGATCCAACCGT -ACGGAATCGAGATGATCCTTGTGC -ACGGAATCGAGATGATCCCTAAGC -ACGGAATCGAGATGATCCACTAGC -ACGGAATCGAGATGATCCAGATGC -ACGGAATCGAGATGATCCTGAAGG -ACGGAATCGAGATGATCCCAATGG -ACGGAATCGAGATGATCCATGAGG -ACGGAATCGAGATGATCCAATGGG -ACGGAATCGAGATGATCCTCCTGA -ACGGAATCGAGATGATCCTAGCGA -ACGGAATCGAGATGATCCCACAGA -ACGGAATCGAGATGATCCGCAAGA -ACGGAATCGAGATGATCCGGTTGA -ACGGAATCGAGATGATCCTCCGAT -ACGGAATCGAGATGATCCTGGCAT -ACGGAATCGAGATGATCCCGAGAT -ACGGAATCGAGATGATCCTACCAC -ACGGAATCGAGATGATCCCAGAAC -ACGGAATCGAGATGATCCGTCTAC -ACGGAATCGAGATGATCCACGTAC -ACGGAATCGAGATGATCCAGTGAC -ACGGAATCGAGATGATCCCTGTAG -ACGGAATCGAGATGATCCCCTAAG -ACGGAATCGAGATGATCCGTTCAG -ACGGAATCGAGATGATCCGCATAG -ACGGAATCGAGATGATCCGACAAG -ACGGAATCGAGATGATCCAAGCAG -ACGGAATCGAGATGATCCCGTCAA -ACGGAATCGAGATGATCCGCTGAA -ACGGAATCGAGATGATCCAGTACG -ACGGAATCGAGATGATCCATCCGA -ACGGAATCGAGATGATCCATGGGA -ACGGAATCGAGATGATCCGTGCAA -ACGGAATCGAGATGATCCGAGGAA -ACGGAATCGAGATGATCCCAGGTA -ACGGAATCGAGATGATCCGACTCT -ACGGAATCGAGATGATCCAGTCCT -ACGGAATCGAGATGATCCTAAGCC -ACGGAATCGAGATGATCCATAGCC -ACGGAATCGAGATGATCCTAACCG -ACGGAATCGAGATGATCCATGCCA -ACGGAATCGAGACGATAGGGAAAC -ACGGAATCGAGACGATAGAACACC -ACGGAATCGAGACGATAGATCGAG -ACGGAATCGAGACGATAGCTCCTT -ACGGAATCGAGACGATAGCCTGTT -ACGGAATCGAGACGATAGCGGTTT -ACGGAATCGAGACGATAGGTGGTT -ACGGAATCGAGACGATAGGCCTTT -ACGGAATCGAGACGATAGGGTCTT -ACGGAATCGAGACGATAGACGCTT -ACGGAATCGAGACGATAGAGCGTT -ACGGAATCGAGACGATAGTTCGTC -ACGGAATCGAGACGATAGTCTCTC -ACGGAATCGAGACGATAGTGGATC -ACGGAATCGAGACGATAGCACTTC -ACGGAATCGAGACGATAGGTACTC -ACGGAATCGAGACGATAGGATGTC -ACGGAATCGAGACGATAGACAGTC -ACGGAATCGAGACGATAGTTGCTG -ACGGAATCGAGACGATAGTCCATG -ACGGAATCGAGACGATAGTGTGTG -ACGGAATCGAGACGATAGCTAGTG -ACGGAATCGAGACGATAGCATCTG -ACGGAATCGAGACGATAGGAGTTG -ACGGAATCGAGACGATAGAGACTG -ACGGAATCGAGACGATAGTCGGTA -ACGGAATCGAGACGATAGTGCCTA -ACGGAATCGAGACGATAGCCACTA -ACGGAATCGAGACGATAGGGAGTA -ACGGAATCGAGACGATAGTCGTCT -ACGGAATCGAGACGATAGTGCACT -ACGGAATCGAGACGATAGCTGACT -ACGGAATCGAGACGATAGCAACCT -ACGGAATCGAGACGATAGGCTACT -ACGGAATCGAGACGATAGGGATCT -ACGGAATCGAGACGATAGAAGGCT -ACGGAATCGAGACGATAGTCAACC -ACGGAATCGAGACGATAGTGTTCC -ACGGAATCGAGACGATAGATTCCC -ACGGAATCGAGACGATAGTTCTCG -ACGGAATCGAGACGATAGTAGACG -ACGGAATCGAGACGATAGGTAACG -ACGGAATCGAGACGATAGACTTCG -ACGGAATCGAGACGATAGTACGCA -ACGGAATCGAGACGATAGCTTGCA -ACGGAATCGAGACGATAGCGAACA -ACGGAATCGAGACGATAGCAGTCA -ACGGAATCGAGACGATAGGATCCA -ACGGAATCGAGACGATAGACGACA -ACGGAATCGAGACGATAGAGCTCA -ACGGAATCGAGACGATAGTCACGT -ACGGAATCGAGACGATAGCGTAGT -ACGGAATCGAGACGATAGGTCAGT -ACGGAATCGAGACGATAGGAAGGT -ACGGAATCGAGACGATAGAACCGT -ACGGAATCGAGACGATAGTTGTGC -ACGGAATCGAGACGATAGCTAAGC -ACGGAATCGAGACGATAGACTAGC -ACGGAATCGAGACGATAGAGATGC -ACGGAATCGAGACGATAGTGAAGG -ACGGAATCGAGACGATAGCAATGG -ACGGAATCGAGACGATAGATGAGG -ACGGAATCGAGACGATAGAATGGG -ACGGAATCGAGACGATAGTCCTGA -ACGGAATCGAGACGATAGTAGCGA -ACGGAATCGAGACGATAGCACAGA -ACGGAATCGAGACGATAGGCAAGA -ACGGAATCGAGACGATAGGGTTGA -ACGGAATCGAGACGATAGTCCGAT -ACGGAATCGAGACGATAGTGGCAT -ACGGAATCGAGACGATAGCGAGAT -ACGGAATCGAGACGATAGTACCAC -ACGGAATCGAGACGATAGCAGAAC -ACGGAATCGAGACGATAGGTCTAC -ACGGAATCGAGACGATAGACGTAC -ACGGAATCGAGACGATAGAGTGAC -ACGGAATCGAGACGATAGCTGTAG -ACGGAATCGAGACGATAGCCTAAG -ACGGAATCGAGACGATAGGTTCAG -ACGGAATCGAGACGATAGGCATAG -ACGGAATCGAGACGATAGGACAAG -ACGGAATCGAGACGATAGAAGCAG -ACGGAATCGAGACGATAGCGTCAA -ACGGAATCGAGACGATAGGCTGAA -ACGGAATCGAGACGATAGAGTACG -ACGGAATCGAGACGATAGATCCGA -ACGGAATCGAGACGATAGATGGGA -ACGGAATCGAGACGATAGGTGCAA -ACGGAATCGAGACGATAGGAGGAA -ACGGAATCGAGACGATAGCAGGTA -ACGGAATCGAGACGATAGGACTCT -ACGGAATCGAGACGATAGAGTCCT -ACGGAATCGAGACGATAGTAAGCC -ACGGAATCGAGACGATAGATAGCC -ACGGAATCGAGACGATAGTAACCG -ACGGAATCGAGACGATAGATGCCA -ACGGAATCGAGAAGACACGGAAAC -ACGGAATCGAGAAGACACAACACC -ACGGAATCGAGAAGACACATCGAG -ACGGAATCGAGAAGACACCTCCTT -ACGGAATCGAGAAGACACCCTGTT -ACGGAATCGAGAAGACACCGGTTT -ACGGAATCGAGAAGACACGTGGTT -ACGGAATCGAGAAGACACGCCTTT -ACGGAATCGAGAAGACACGGTCTT -ACGGAATCGAGAAGACACACGCTT -ACGGAATCGAGAAGACACAGCGTT -ACGGAATCGAGAAGACACTTCGTC -ACGGAATCGAGAAGACACTCTCTC -ACGGAATCGAGAAGACACTGGATC -ACGGAATCGAGAAGACACCACTTC -ACGGAATCGAGAAGACACGTACTC -ACGGAATCGAGAAGACACGATGTC -ACGGAATCGAGAAGACACACAGTC -ACGGAATCGAGAAGACACTTGCTG -ACGGAATCGAGAAGACACTCCATG -ACGGAATCGAGAAGACACTGTGTG -ACGGAATCGAGAAGACACCTAGTG -ACGGAATCGAGAAGACACCATCTG -ACGGAATCGAGAAGACACGAGTTG -ACGGAATCGAGAAGACACAGACTG -ACGGAATCGAGAAGACACTCGGTA -ACGGAATCGAGAAGACACTGCCTA -ACGGAATCGAGAAGACACCCACTA -ACGGAATCGAGAAGACACGGAGTA -ACGGAATCGAGAAGACACTCGTCT -ACGGAATCGAGAAGACACTGCACT -ACGGAATCGAGAAGACACCTGACT -ACGGAATCGAGAAGACACCAACCT -ACGGAATCGAGAAGACACGCTACT -ACGGAATCGAGAAGACACGGATCT -ACGGAATCGAGAAGACACAAGGCT -ACGGAATCGAGAAGACACTCAACC -ACGGAATCGAGAAGACACTGTTCC -ACGGAATCGAGAAGACACATTCCC -ACGGAATCGAGAAGACACTTCTCG -ACGGAATCGAGAAGACACTAGACG -ACGGAATCGAGAAGACACGTAACG -ACGGAATCGAGAAGACACACTTCG -ACGGAATCGAGAAGACACTACGCA -ACGGAATCGAGAAGACACCTTGCA -ACGGAATCGAGAAGACACCGAACA -ACGGAATCGAGAAGACACCAGTCA -ACGGAATCGAGAAGACACGATCCA -ACGGAATCGAGAAGACACACGACA -ACGGAATCGAGAAGACACAGCTCA -ACGGAATCGAGAAGACACTCACGT -ACGGAATCGAGAAGACACCGTAGT -ACGGAATCGAGAAGACACGTCAGT -ACGGAATCGAGAAGACACGAAGGT -ACGGAATCGAGAAGACACAACCGT -ACGGAATCGAGAAGACACTTGTGC -ACGGAATCGAGAAGACACCTAAGC -ACGGAATCGAGAAGACACACTAGC -ACGGAATCGAGAAGACACAGATGC -ACGGAATCGAGAAGACACTGAAGG -ACGGAATCGAGAAGACACCAATGG -ACGGAATCGAGAAGACACATGAGG -ACGGAATCGAGAAGACACAATGGG -ACGGAATCGAGAAGACACTCCTGA -ACGGAATCGAGAAGACACTAGCGA -ACGGAATCGAGAAGACACCACAGA -ACGGAATCGAGAAGACACGCAAGA -ACGGAATCGAGAAGACACGGTTGA -ACGGAATCGAGAAGACACTCCGAT -ACGGAATCGAGAAGACACTGGCAT -ACGGAATCGAGAAGACACCGAGAT -ACGGAATCGAGAAGACACTACCAC -ACGGAATCGAGAAGACACCAGAAC -ACGGAATCGAGAAGACACGTCTAC -ACGGAATCGAGAAGACACACGTAC -ACGGAATCGAGAAGACACAGTGAC -ACGGAATCGAGAAGACACCTGTAG -ACGGAATCGAGAAGACACCCTAAG -ACGGAATCGAGAAGACACGTTCAG -ACGGAATCGAGAAGACACGCATAG -ACGGAATCGAGAAGACACGACAAG -ACGGAATCGAGAAGACACAAGCAG -ACGGAATCGAGAAGACACCGTCAA -ACGGAATCGAGAAGACACGCTGAA -ACGGAATCGAGAAGACACAGTACG -ACGGAATCGAGAAGACACATCCGA -ACGGAATCGAGAAGACACATGGGA -ACGGAATCGAGAAGACACGTGCAA -ACGGAATCGAGAAGACACGAGGAA -ACGGAATCGAGAAGACACCAGGTA -ACGGAATCGAGAAGACACGACTCT -ACGGAATCGAGAAGACACAGTCCT -ACGGAATCGAGAAGACACTAAGCC -ACGGAATCGAGAAGACACATAGCC -ACGGAATCGAGAAGACACTAACCG -ACGGAATCGAGAAGACACATGCCA -ACGGAATCGAGAAGAGCAGGAAAC -ACGGAATCGAGAAGAGCAAACACC -ACGGAATCGAGAAGAGCAATCGAG -ACGGAATCGAGAAGAGCACTCCTT -ACGGAATCGAGAAGAGCACCTGTT -ACGGAATCGAGAAGAGCACGGTTT -ACGGAATCGAGAAGAGCAGTGGTT -ACGGAATCGAGAAGAGCAGCCTTT -ACGGAATCGAGAAGAGCAGGTCTT -ACGGAATCGAGAAGAGCAACGCTT -ACGGAATCGAGAAGAGCAAGCGTT -ACGGAATCGAGAAGAGCATTCGTC -ACGGAATCGAGAAGAGCATCTCTC -ACGGAATCGAGAAGAGCATGGATC -ACGGAATCGAGAAGAGCACACTTC -ACGGAATCGAGAAGAGCAGTACTC -ACGGAATCGAGAAGAGCAGATGTC -ACGGAATCGAGAAGAGCAACAGTC -ACGGAATCGAGAAGAGCATTGCTG -ACGGAATCGAGAAGAGCATCCATG -ACGGAATCGAGAAGAGCATGTGTG -ACGGAATCGAGAAGAGCACTAGTG -ACGGAATCGAGAAGAGCACATCTG -ACGGAATCGAGAAGAGCAGAGTTG -ACGGAATCGAGAAGAGCAAGACTG -ACGGAATCGAGAAGAGCATCGGTA -ACGGAATCGAGAAGAGCATGCCTA -ACGGAATCGAGAAGAGCACCACTA -ACGGAATCGAGAAGAGCAGGAGTA -ACGGAATCGAGAAGAGCATCGTCT -ACGGAATCGAGAAGAGCATGCACT -ACGGAATCGAGAAGAGCACTGACT -ACGGAATCGAGAAGAGCACAACCT -ACGGAATCGAGAAGAGCAGCTACT -ACGGAATCGAGAAGAGCAGGATCT -ACGGAATCGAGAAGAGCAAAGGCT -ACGGAATCGAGAAGAGCATCAACC -ACGGAATCGAGAAGAGCATGTTCC -ACGGAATCGAGAAGAGCAATTCCC -ACGGAATCGAGAAGAGCATTCTCG -ACGGAATCGAGAAGAGCATAGACG -ACGGAATCGAGAAGAGCAGTAACG -ACGGAATCGAGAAGAGCAACTTCG -ACGGAATCGAGAAGAGCATACGCA -ACGGAATCGAGAAGAGCACTTGCA -ACGGAATCGAGAAGAGCACGAACA -ACGGAATCGAGAAGAGCACAGTCA -ACGGAATCGAGAAGAGCAGATCCA -ACGGAATCGAGAAGAGCAACGACA -ACGGAATCGAGAAGAGCAAGCTCA -ACGGAATCGAGAAGAGCATCACGT -ACGGAATCGAGAAGAGCACGTAGT -ACGGAATCGAGAAGAGCAGTCAGT -ACGGAATCGAGAAGAGCAGAAGGT -ACGGAATCGAGAAGAGCAAACCGT -ACGGAATCGAGAAGAGCATTGTGC -ACGGAATCGAGAAGAGCACTAAGC -ACGGAATCGAGAAGAGCAACTAGC -ACGGAATCGAGAAGAGCAAGATGC -ACGGAATCGAGAAGAGCATGAAGG -ACGGAATCGAGAAGAGCACAATGG -ACGGAATCGAGAAGAGCAATGAGG -ACGGAATCGAGAAGAGCAAATGGG -ACGGAATCGAGAAGAGCATCCTGA -ACGGAATCGAGAAGAGCATAGCGA -ACGGAATCGAGAAGAGCACACAGA -ACGGAATCGAGAAGAGCAGCAAGA -ACGGAATCGAGAAGAGCAGGTTGA -ACGGAATCGAGAAGAGCATCCGAT -ACGGAATCGAGAAGAGCATGGCAT -ACGGAATCGAGAAGAGCACGAGAT -ACGGAATCGAGAAGAGCATACCAC -ACGGAATCGAGAAGAGCACAGAAC -ACGGAATCGAGAAGAGCAGTCTAC -ACGGAATCGAGAAGAGCAACGTAC -ACGGAATCGAGAAGAGCAAGTGAC -ACGGAATCGAGAAGAGCACTGTAG -ACGGAATCGAGAAGAGCACCTAAG -ACGGAATCGAGAAGAGCAGTTCAG -ACGGAATCGAGAAGAGCAGCATAG -ACGGAATCGAGAAGAGCAGACAAG -ACGGAATCGAGAAGAGCAAAGCAG -ACGGAATCGAGAAGAGCACGTCAA -ACGGAATCGAGAAGAGCAGCTGAA -ACGGAATCGAGAAGAGCAAGTACG -ACGGAATCGAGAAGAGCAATCCGA -ACGGAATCGAGAAGAGCAATGGGA -ACGGAATCGAGAAGAGCAGTGCAA -ACGGAATCGAGAAGAGCAGAGGAA -ACGGAATCGAGAAGAGCACAGGTA -ACGGAATCGAGAAGAGCAGACTCT -ACGGAATCGAGAAGAGCAAGTCCT -ACGGAATCGAGAAGAGCATAAGCC -ACGGAATCGAGAAGAGCAATAGCC -ACGGAATCGAGAAGAGCATAACCG -ACGGAATCGAGAAGAGCAATGCCA -ACGGAATCGAGATGAGGTGGAAAC -ACGGAATCGAGATGAGGTAACACC -ACGGAATCGAGATGAGGTATCGAG -ACGGAATCGAGATGAGGTCTCCTT -ACGGAATCGAGATGAGGTCCTGTT -ACGGAATCGAGATGAGGTCGGTTT -ACGGAATCGAGATGAGGTGTGGTT -ACGGAATCGAGATGAGGTGCCTTT -ACGGAATCGAGATGAGGTGGTCTT -ACGGAATCGAGATGAGGTACGCTT -ACGGAATCGAGATGAGGTAGCGTT -ACGGAATCGAGATGAGGTTTCGTC -ACGGAATCGAGATGAGGTTCTCTC -ACGGAATCGAGATGAGGTTGGATC -ACGGAATCGAGATGAGGTCACTTC -ACGGAATCGAGATGAGGTGTACTC -ACGGAATCGAGATGAGGTGATGTC -ACGGAATCGAGATGAGGTACAGTC -ACGGAATCGAGATGAGGTTTGCTG -ACGGAATCGAGATGAGGTTCCATG -ACGGAATCGAGATGAGGTTGTGTG -ACGGAATCGAGATGAGGTCTAGTG -ACGGAATCGAGATGAGGTCATCTG -ACGGAATCGAGATGAGGTGAGTTG -ACGGAATCGAGATGAGGTAGACTG -ACGGAATCGAGATGAGGTTCGGTA -ACGGAATCGAGATGAGGTTGCCTA -ACGGAATCGAGATGAGGTCCACTA -ACGGAATCGAGATGAGGTGGAGTA -ACGGAATCGAGATGAGGTTCGTCT -ACGGAATCGAGATGAGGTTGCACT -ACGGAATCGAGATGAGGTCTGACT -ACGGAATCGAGATGAGGTCAACCT -ACGGAATCGAGATGAGGTGCTACT -ACGGAATCGAGATGAGGTGGATCT -ACGGAATCGAGATGAGGTAAGGCT -ACGGAATCGAGATGAGGTTCAACC -ACGGAATCGAGATGAGGTTGTTCC -ACGGAATCGAGATGAGGTATTCCC -ACGGAATCGAGATGAGGTTTCTCG -ACGGAATCGAGATGAGGTTAGACG -ACGGAATCGAGATGAGGTGTAACG -ACGGAATCGAGATGAGGTACTTCG -ACGGAATCGAGATGAGGTTACGCA -ACGGAATCGAGATGAGGTCTTGCA -ACGGAATCGAGATGAGGTCGAACA -ACGGAATCGAGATGAGGTCAGTCA -ACGGAATCGAGATGAGGTGATCCA -ACGGAATCGAGATGAGGTACGACA -ACGGAATCGAGATGAGGTAGCTCA -ACGGAATCGAGATGAGGTTCACGT -ACGGAATCGAGATGAGGTCGTAGT -ACGGAATCGAGATGAGGTGTCAGT -ACGGAATCGAGATGAGGTGAAGGT -ACGGAATCGAGATGAGGTAACCGT -ACGGAATCGAGATGAGGTTTGTGC -ACGGAATCGAGATGAGGTCTAAGC -ACGGAATCGAGATGAGGTACTAGC -ACGGAATCGAGATGAGGTAGATGC -ACGGAATCGAGATGAGGTTGAAGG -ACGGAATCGAGATGAGGTCAATGG -ACGGAATCGAGATGAGGTATGAGG -ACGGAATCGAGATGAGGTAATGGG -ACGGAATCGAGATGAGGTTCCTGA -ACGGAATCGAGATGAGGTTAGCGA -ACGGAATCGAGATGAGGTCACAGA -ACGGAATCGAGATGAGGTGCAAGA -ACGGAATCGAGATGAGGTGGTTGA -ACGGAATCGAGATGAGGTTCCGAT -ACGGAATCGAGATGAGGTTGGCAT -ACGGAATCGAGATGAGGTCGAGAT -ACGGAATCGAGATGAGGTTACCAC -ACGGAATCGAGATGAGGTCAGAAC -ACGGAATCGAGATGAGGTGTCTAC -ACGGAATCGAGATGAGGTACGTAC -ACGGAATCGAGATGAGGTAGTGAC -ACGGAATCGAGATGAGGTCTGTAG -ACGGAATCGAGATGAGGTCCTAAG -ACGGAATCGAGATGAGGTGTTCAG -ACGGAATCGAGATGAGGTGCATAG -ACGGAATCGAGATGAGGTGACAAG -ACGGAATCGAGATGAGGTAAGCAG -ACGGAATCGAGATGAGGTCGTCAA -ACGGAATCGAGATGAGGTGCTGAA -ACGGAATCGAGATGAGGTAGTACG -ACGGAATCGAGATGAGGTATCCGA -ACGGAATCGAGATGAGGTATGGGA -ACGGAATCGAGATGAGGTGTGCAA -ACGGAATCGAGATGAGGTGAGGAA -ACGGAATCGAGATGAGGTCAGGTA -ACGGAATCGAGATGAGGTGACTCT -ACGGAATCGAGATGAGGTAGTCCT -ACGGAATCGAGATGAGGTTAAGCC -ACGGAATCGAGATGAGGTATAGCC -ACGGAATCGAGATGAGGTTAACCG -ACGGAATCGAGATGAGGTATGCCA -ACGGAATCGAGAGATTCCGGAAAC -ACGGAATCGAGAGATTCCAACACC -ACGGAATCGAGAGATTCCATCGAG -ACGGAATCGAGAGATTCCCTCCTT -ACGGAATCGAGAGATTCCCCTGTT -ACGGAATCGAGAGATTCCCGGTTT -ACGGAATCGAGAGATTCCGTGGTT -ACGGAATCGAGAGATTCCGCCTTT -ACGGAATCGAGAGATTCCGGTCTT -ACGGAATCGAGAGATTCCACGCTT -ACGGAATCGAGAGATTCCAGCGTT -ACGGAATCGAGAGATTCCTTCGTC -ACGGAATCGAGAGATTCCTCTCTC -ACGGAATCGAGAGATTCCTGGATC -ACGGAATCGAGAGATTCCCACTTC -ACGGAATCGAGAGATTCCGTACTC -ACGGAATCGAGAGATTCCGATGTC -ACGGAATCGAGAGATTCCACAGTC -ACGGAATCGAGAGATTCCTTGCTG -ACGGAATCGAGAGATTCCTCCATG -ACGGAATCGAGAGATTCCTGTGTG -ACGGAATCGAGAGATTCCCTAGTG -ACGGAATCGAGAGATTCCCATCTG -ACGGAATCGAGAGATTCCGAGTTG -ACGGAATCGAGAGATTCCAGACTG -ACGGAATCGAGAGATTCCTCGGTA -ACGGAATCGAGAGATTCCTGCCTA -ACGGAATCGAGAGATTCCCCACTA -ACGGAATCGAGAGATTCCGGAGTA -ACGGAATCGAGAGATTCCTCGTCT -ACGGAATCGAGAGATTCCTGCACT -ACGGAATCGAGAGATTCCCTGACT -ACGGAATCGAGAGATTCCCAACCT -ACGGAATCGAGAGATTCCGCTACT -ACGGAATCGAGAGATTCCGGATCT -ACGGAATCGAGAGATTCCAAGGCT -ACGGAATCGAGAGATTCCTCAACC -ACGGAATCGAGAGATTCCTGTTCC -ACGGAATCGAGAGATTCCATTCCC -ACGGAATCGAGAGATTCCTTCTCG -ACGGAATCGAGAGATTCCTAGACG -ACGGAATCGAGAGATTCCGTAACG -ACGGAATCGAGAGATTCCACTTCG -ACGGAATCGAGAGATTCCTACGCA -ACGGAATCGAGAGATTCCCTTGCA -ACGGAATCGAGAGATTCCCGAACA -ACGGAATCGAGAGATTCCCAGTCA -ACGGAATCGAGAGATTCCGATCCA -ACGGAATCGAGAGATTCCACGACA -ACGGAATCGAGAGATTCCAGCTCA -ACGGAATCGAGAGATTCCTCACGT -ACGGAATCGAGAGATTCCCGTAGT -ACGGAATCGAGAGATTCCGTCAGT -ACGGAATCGAGAGATTCCGAAGGT -ACGGAATCGAGAGATTCCAACCGT -ACGGAATCGAGAGATTCCTTGTGC -ACGGAATCGAGAGATTCCCTAAGC -ACGGAATCGAGAGATTCCACTAGC -ACGGAATCGAGAGATTCCAGATGC -ACGGAATCGAGAGATTCCTGAAGG -ACGGAATCGAGAGATTCCCAATGG -ACGGAATCGAGAGATTCCATGAGG -ACGGAATCGAGAGATTCCAATGGG -ACGGAATCGAGAGATTCCTCCTGA -ACGGAATCGAGAGATTCCTAGCGA -ACGGAATCGAGAGATTCCCACAGA -ACGGAATCGAGAGATTCCGCAAGA -ACGGAATCGAGAGATTCCGGTTGA -ACGGAATCGAGAGATTCCTCCGAT -ACGGAATCGAGAGATTCCTGGCAT -ACGGAATCGAGAGATTCCCGAGAT -ACGGAATCGAGAGATTCCTACCAC -ACGGAATCGAGAGATTCCCAGAAC -ACGGAATCGAGAGATTCCGTCTAC -ACGGAATCGAGAGATTCCACGTAC -ACGGAATCGAGAGATTCCAGTGAC -ACGGAATCGAGAGATTCCCTGTAG -ACGGAATCGAGAGATTCCCCTAAG -ACGGAATCGAGAGATTCCGTTCAG -ACGGAATCGAGAGATTCCGCATAG -ACGGAATCGAGAGATTCCGACAAG -ACGGAATCGAGAGATTCCAAGCAG -ACGGAATCGAGAGATTCCCGTCAA -ACGGAATCGAGAGATTCCGCTGAA -ACGGAATCGAGAGATTCCAGTACG -ACGGAATCGAGAGATTCCATCCGA -ACGGAATCGAGAGATTCCATGGGA -ACGGAATCGAGAGATTCCGTGCAA -ACGGAATCGAGAGATTCCGAGGAA -ACGGAATCGAGAGATTCCCAGGTA -ACGGAATCGAGAGATTCCGACTCT -ACGGAATCGAGAGATTCCAGTCCT -ACGGAATCGAGAGATTCCTAAGCC -ACGGAATCGAGAGATTCCATAGCC -ACGGAATCGAGAGATTCCTAACCG -ACGGAATCGAGAGATTCCATGCCA -ACGGAATCGAGACATTGGGGAAAC -ACGGAATCGAGACATTGGAACACC -ACGGAATCGAGACATTGGATCGAG -ACGGAATCGAGACATTGGCTCCTT -ACGGAATCGAGACATTGGCCTGTT -ACGGAATCGAGACATTGGCGGTTT -ACGGAATCGAGACATTGGGTGGTT -ACGGAATCGAGACATTGGGCCTTT -ACGGAATCGAGACATTGGGGTCTT -ACGGAATCGAGACATTGGACGCTT -ACGGAATCGAGACATTGGAGCGTT -ACGGAATCGAGACATTGGTTCGTC -ACGGAATCGAGACATTGGTCTCTC -ACGGAATCGAGACATTGGTGGATC -ACGGAATCGAGACATTGGCACTTC -ACGGAATCGAGACATTGGGTACTC -ACGGAATCGAGACATTGGGATGTC -ACGGAATCGAGACATTGGACAGTC -ACGGAATCGAGACATTGGTTGCTG -ACGGAATCGAGACATTGGTCCATG -ACGGAATCGAGACATTGGTGTGTG -ACGGAATCGAGACATTGGCTAGTG -ACGGAATCGAGACATTGGCATCTG -ACGGAATCGAGACATTGGGAGTTG -ACGGAATCGAGACATTGGAGACTG -ACGGAATCGAGACATTGGTCGGTA -ACGGAATCGAGACATTGGTGCCTA -ACGGAATCGAGACATTGGCCACTA -ACGGAATCGAGACATTGGGGAGTA -ACGGAATCGAGACATTGGTCGTCT -ACGGAATCGAGACATTGGTGCACT -ACGGAATCGAGACATTGGCTGACT -ACGGAATCGAGACATTGGCAACCT -ACGGAATCGAGACATTGGGCTACT -ACGGAATCGAGACATTGGGGATCT -ACGGAATCGAGACATTGGAAGGCT -ACGGAATCGAGACATTGGTCAACC -ACGGAATCGAGACATTGGTGTTCC -ACGGAATCGAGACATTGGATTCCC -ACGGAATCGAGACATTGGTTCTCG -ACGGAATCGAGACATTGGTAGACG -ACGGAATCGAGACATTGGGTAACG -ACGGAATCGAGACATTGGACTTCG -ACGGAATCGAGACATTGGTACGCA -ACGGAATCGAGACATTGGCTTGCA -ACGGAATCGAGACATTGGCGAACA -ACGGAATCGAGACATTGGCAGTCA -ACGGAATCGAGACATTGGGATCCA -ACGGAATCGAGACATTGGACGACA -ACGGAATCGAGACATTGGAGCTCA -ACGGAATCGAGACATTGGTCACGT -ACGGAATCGAGACATTGGCGTAGT -ACGGAATCGAGACATTGGGTCAGT -ACGGAATCGAGACATTGGGAAGGT -ACGGAATCGAGACATTGGAACCGT -ACGGAATCGAGACATTGGTTGTGC -ACGGAATCGAGACATTGGCTAAGC -ACGGAATCGAGACATTGGACTAGC -ACGGAATCGAGACATTGGAGATGC -ACGGAATCGAGACATTGGTGAAGG -ACGGAATCGAGACATTGGCAATGG -ACGGAATCGAGACATTGGATGAGG -ACGGAATCGAGACATTGGAATGGG -ACGGAATCGAGACATTGGTCCTGA -ACGGAATCGAGACATTGGTAGCGA -ACGGAATCGAGACATTGGCACAGA -ACGGAATCGAGACATTGGGCAAGA -ACGGAATCGAGACATTGGGGTTGA -ACGGAATCGAGACATTGGTCCGAT -ACGGAATCGAGACATTGGTGGCAT -ACGGAATCGAGACATTGGCGAGAT -ACGGAATCGAGACATTGGTACCAC -ACGGAATCGAGACATTGGCAGAAC -ACGGAATCGAGACATTGGGTCTAC -ACGGAATCGAGACATTGGACGTAC -ACGGAATCGAGACATTGGAGTGAC -ACGGAATCGAGACATTGGCTGTAG -ACGGAATCGAGACATTGGCCTAAG -ACGGAATCGAGACATTGGGTTCAG -ACGGAATCGAGACATTGGGCATAG -ACGGAATCGAGACATTGGGACAAG -ACGGAATCGAGACATTGGAAGCAG -ACGGAATCGAGACATTGGCGTCAA -ACGGAATCGAGACATTGGGCTGAA -ACGGAATCGAGACATTGGAGTACG -ACGGAATCGAGACATTGGATCCGA -ACGGAATCGAGACATTGGATGGGA -ACGGAATCGAGACATTGGGTGCAA -ACGGAATCGAGACATTGGGAGGAA -ACGGAATCGAGACATTGGCAGGTA -ACGGAATCGAGACATTGGGACTCT -ACGGAATCGAGACATTGGAGTCCT -ACGGAATCGAGACATTGGTAAGCC -ACGGAATCGAGACATTGGATAGCC -ACGGAATCGAGACATTGGTAACCG -ACGGAATCGAGACATTGGATGCCA -ACGGAATCGAGAGATCGAGGAAAC -ACGGAATCGAGAGATCGAAACACC -ACGGAATCGAGAGATCGAATCGAG -ACGGAATCGAGAGATCGACTCCTT -ACGGAATCGAGAGATCGACCTGTT -ACGGAATCGAGAGATCGACGGTTT -ACGGAATCGAGAGATCGAGTGGTT -ACGGAATCGAGAGATCGAGCCTTT -ACGGAATCGAGAGATCGAGGTCTT -ACGGAATCGAGAGATCGAACGCTT -ACGGAATCGAGAGATCGAAGCGTT -ACGGAATCGAGAGATCGATTCGTC -ACGGAATCGAGAGATCGATCTCTC -ACGGAATCGAGAGATCGATGGATC -ACGGAATCGAGAGATCGACACTTC -ACGGAATCGAGAGATCGAGTACTC -ACGGAATCGAGAGATCGAGATGTC -ACGGAATCGAGAGATCGAACAGTC -ACGGAATCGAGAGATCGATTGCTG -ACGGAATCGAGAGATCGATCCATG -ACGGAATCGAGAGATCGATGTGTG -ACGGAATCGAGAGATCGACTAGTG -ACGGAATCGAGAGATCGACATCTG -ACGGAATCGAGAGATCGAGAGTTG -ACGGAATCGAGAGATCGAAGACTG -ACGGAATCGAGAGATCGATCGGTA -ACGGAATCGAGAGATCGATGCCTA -ACGGAATCGAGAGATCGACCACTA -ACGGAATCGAGAGATCGAGGAGTA -ACGGAATCGAGAGATCGATCGTCT -ACGGAATCGAGAGATCGATGCACT -ACGGAATCGAGAGATCGACTGACT -ACGGAATCGAGAGATCGACAACCT -ACGGAATCGAGAGATCGAGCTACT -ACGGAATCGAGAGATCGAGGATCT -ACGGAATCGAGAGATCGAAAGGCT -ACGGAATCGAGAGATCGATCAACC -ACGGAATCGAGAGATCGATGTTCC -ACGGAATCGAGAGATCGAATTCCC -ACGGAATCGAGAGATCGATTCTCG -ACGGAATCGAGAGATCGATAGACG -ACGGAATCGAGAGATCGAGTAACG -ACGGAATCGAGAGATCGAACTTCG -ACGGAATCGAGAGATCGATACGCA -ACGGAATCGAGAGATCGACTTGCA -ACGGAATCGAGAGATCGACGAACA -ACGGAATCGAGAGATCGACAGTCA -ACGGAATCGAGAGATCGAGATCCA -ACGGAATCGAGAGATCGAACGACA -ACGGAATCGAGAGATCGAAGCTCA -ACGGAATCGAGAGATCGATCACGT -ACGGAATCGAGAGATCGACGTAGT -ACGGAATCGAGAGATCGAGTCAGT -ACGGAATCGAGAGATCGAGAAGGT -ACGGAATCGAGAGATCGAAACCGT -ACGGAATCGAGAGATCGATTGTGC -ACGGAATCGAGAGATCGACTAAGC -ACGGAATCGAGAGATCGAACTAGC -ACGGAATCGAGAGATCGAAGATGC -ACGGAATCGAGAGATCGATGAAGG -ACGGAATCGAGAGATCGACAATGG -ACGGAATCGAGAGATCGAATGAGG -ACGGAATCGAGAGATCGAAATGGG -ACGGAATCGAGAGATCGATCCTGA -ACGGAATCGAGAGATCGATAGCGA -ACGGAATCGAGAGATCGACACAGA -ACGGAATCGAGAGATCGAGCAAGA -ACGGAATCGAGAGATCGAGGTTGA -ACGGAATCGAGAGATCGATCCGAT -ACGGAATCGAGAGATCGATGGCAT -ACGGAATCGAGAGATCGACGAGAT -ACGGAATCGAGAGATCGATACCAC -ACGGAATCGAGAGATCGACAGAAC -ACGGAATCGAGAGATCGAGTCTAC -ACGGAATCGAGAGATCGAACGTAC -ACGGAATCGAGAGATCGAAGTGAC -ACGGAATCGAGAGATCGACTGTAG -ACGGAATCGAGAGATCGACCTAAG -ACGGAATCGAGAGATCGAGTTCAG -ACGGAATCGAGAGATCGAGCATAG -ACGGAATCGAGAGATCGAGACAAG -ACGGAATCGAGAGATCGAAAGCAG -ACGGAATCGAGAGATCGACGTCAA -ACGGAATCGAGAGATCGAGCTGAA -ACGGAATCGAGAGATCGAAGTACG -ACGGAATCGAGAGATCGAATCCGA -ACGGAATCGAGAGATCGAATGGGA -ACGGAATCGAGAGATCGAGTGCAA -ACGGAATCGAGAGATCGAGAGGAA -ACGGAATCGAGAGATCGACAGGTA -ACGGAATCGAGAGATCGAGACTCT -ACGGAATCGAGAGATCGAAGTCCT -ACGGAATCGAGAGATCGATAAGCC -ACGGAATCGAGAGATCGAATAGCC -ACGGAATCGAGAGATCGATAACCG -ACGGAATCGAGAGATCGAATGCCA -ACGGAATCGAGACACTACGGAAAC -ACGGAATCGAGACACTACAACACC -ACGGAATCGAGACACTACATCGAG -ACGGAATCGAGACACTACCTCCTT -ACGGAATCGAGACACTACCCTGTT -ACGGAATCGAGACACTACCGGTTT -ACGGAATCGAGACACTACGTGGTT -ACGGAATCGAGACACTACGCCTTT -ACGGAATCGAGACACTACGGTCTT -ACGGAATCGAGACACTACACGCTT -ACGGAATCGAGACACTACAGCGTT -ACGGAATCGAGACACTACTTCGTC -ACGGAATCGAGACACTACTCTCTC -ACGGAATCGAGACACTACTGGATC -ACGGAATCGAGACACTACCACTTC -ACGGAATCGAGACACTACGTACTC -ACGGAATCGAGACACTACGATGTC -ACGGAATCGAGACACTACACAGTC -ACGGAATCGAGACACTACTTGCTG -ACGGAATCGAGACACTACTCCATG -ACGGAATCGAGACACTACTGTGTG -ACGGAATCGAGACACTACCTAGTG -ACGGAATCGAGACACTACCATCTG -ACGGAATCGAGACACTACGAGTTG -ACGGAATCGAGACACTACAGACTG -ACGGAATCGAGACACTACTCGGTA -ACGGAATCGAGACACTACTGCCTA -ACGGAATCGAGACACTACCCACTA -ACGGAATCGAGACACTACGGAGTA -ACGGAATCGAGACACTACTCGTCT -ACGGAATCGAGACACTACTGCACT -ACGGAATCGAGACACTACCTGACT -ACGGAATCGAGACACTACCAACCT -ACGGAATCGAGACACTACGCTACT -ACGGAATCGAGACACTACGGATCT -ACGGAATCGAGACACTACAAGGCT -ACGGAATCGAGACACTACTCAACC -ACGGAATCGAGACACTACTGTTCC -ACGGAATCGAGACACTACATTCCC -ACGGAATCGAGACACTACTTCTCG -ACGGAATCGAGACACTACTAGACG -ACGGAATCGAGACACTACGTAACG -ACGGAATCGAGACACTACACTTCG -ACGGAATCGAGACACTACTACGCA -ACGGAATCGAGACACTACCTTGCA -ACGGAATCGAGACACTACCGAACA -ACGGAATCGAGACACTACCAGTCA -ACGGAATCGAGACACTACGATCCA -ACGGAATCGAGACACTACACGACA -ACGGAATCGAGACACTACAGCTCA -ACGGAATCGAGACACTACTCACGT -ACGGAATCGAGACACTACCGTAGT -ACGGAATCGAGACACTACGTCAGT -ACGGAATCGAGACACTACGAAGGT -ACGGAATCGAGACACTACAACCGT -ACGGAATCGAGACACTACTTGTGC -ACGGAATCGAGACACTACCTAAGC -ACGGAATCGAGACACTACACTAGC -ACGGAATCGAGACACTACAGATGC -ACGGAATCGAGACACTACTGAAGG -ACGGAATCGAGACACTACCAATGG -ACGGAATCGAGACACTACATGAGG -ACGGAATCGAGACACTACAATGGG -ACGGAATCGAGACACTACTCCTGA -ACGGAATCGAGACACTACTAGCGA -ACGGAATCGAGACACTACCACAGA -ACGGAATCGAGACACTACGCAAGA -ACGGAATCGAGACACTACGGTTGA -ACGGAATCGAGACACTACTCCGAT -ACGGAATCGAGACACTACTGGCAT -ACGGAATCGAGACACTACCGAGAT -ACGGAATCGAGACACTACTACCAC -ACGGAATCGAGACACTACCAGAAC -ACGGAATCGAGACACTACGTCTAC -ACGGAATCGAGACACTACACGTAC -ACGGAATCGAGACACTACAGTGAC -ACGGAATCGAGACACTACCTGTAG -ACGGAATCGAGACACTACCCTAAG -ACGGAATCGAGACACTACGTTCAG -ACGGAATCGAGACACTACGCATAG -ACGGAATCGAGACACTACGACAAG -ACGGAATCGAGACACTACAAGCAG -ACGGAATCGAGACACTACCGTCAA -ACGGAATCGAGACACTACGCTGAA -ACGGAATCGAGACACTACAGTACG -ACGGAATCGAGACACTACATCCGA -ACGGAATCGAGACACTACATGGGA -ACGGAATCGAGACACTACGTGCAA -ACGGAATCGAGACACTACGAGGAA -ACGGAATCGAGACACTACCAGGTA -ACGGAATCGAGACACTACGACTCT -ACGGAATCGAGACACTACAGTCCT -ACGGAATCGAGACACTACTAAGCC -ACGGAATCGAGACACTACATAGCC -ACGGAATCGAGACACTACTAACCG -ACGGAATCGAGACACTACATGCCA -ACGGAATCGAGAAACCAGGGAAAC -ACGGAATCGAGAAACCAGAACACC -ACGGAATCGAGAAACCAGATCGAG -ACGGAATCGAGAAACCAGCTCCTT -ACGGAATCGAGAAACCAGCCTGTT -ACGGAATCGAGAAACCAGCGGTTT -ACGGAATCGAGAAACCAGGTGGTT -ACGGAATCGAGAAACCAGGCCTTT -ACGGAATCGAGAAACCAGGGTCTT -ACGGAATCGAGAAACCAGACGCTT -ACGGAATCGAGAAACCAGAGCGTT -ACGGAATCGAGAAACCAGTTCGTC -ACGGAATCGAGAAACCAGTCTCTC -ACGGAATCGAGAAACCAGTGGATC -ACGGAATCGAGAAACCAGCACTTC -ACGGAATCGAGAAACCAGGTACTC -ACGGAATCGAGAAACCAGGATGTC -ACGGAATCGAGAAACCAGACAGTC -ACGGAATCGAGAAACCAGTTGCTG -ACGGAATCGAGAAACCAGTCCATG -ACGGAATCGAGAAACCAGTGTGTG -ACGGAATCGAGAAACCAGCTAGTG -ACGGAATCGAGAAACCAGCATCTG -ACGGAATCGAGAAACCAGGAGTTG -ACGGAATCGAGAAACCAGAGACTG -ACGGAATCGAGAAACCAGTCGGTA -ACGGAATCGAGAAACCAGTGCCTA -ACGGAATCGAGAAACCAGCCACTA -ACGGAATCGAGAAACCAGGGAGTA -ACGGAATCGAGAAACCAGTCGTCT -ACGGAATCGAGAAACCAGTGCACT -ACGGAATCGAGAAACCAGCTGACT -ACGGAATCGAGAAACCAGCAACCT -ACGGAATCGAGAAACCAGGCTACT -ACGGAATCGAGAAACCAGGGATCT -ACGGAATCGAGAAACCAGAAGGCT -ACGGAATCGAGAAACCAGTCAACC -ACGGAATCGAGAAACCAGTGTTCC -ACGGAATCGAGAAACCAGATTCCC -ACGGAATCGAGAAACCAGTTCTCG -ACGGAATCGAGAAACCAGTAGACG -ACGGAATCGAGAAACCAGGTAACG -ACGGAATCGAGAAACCAGACTTCG -ACGGAATCGAGAAACCAGTACGCA -ACGGAATCGAGAAACCAGCTTGCA -ACGGAATCGAGAAACCAGCGAACA -ACGGAATCGAGAAACCAGCAGTCA -ACGGAATCGAGAAACCAGGATCCA -ACGGAATCGAGAAACCAGACGACA -ACGGAATCGAGAAACCAGAGCTCA -ACGGAATCGAGAAACCAGTCACGT -ACGGAATCGAGAAACCAGCGTAGT -ACGGAATCGAGAAACCAGGTCAGT -ACGGAATCGAGAAACCAGGAAGGT -ACGGAATCGAGAAACCAGAACCGT -ACGGAATCGAGAAACCAGTTGTGC -ACGGAATCGAGAAACCAGCTAAGC -ACGGAATCGAGAAACCAGACTAGC -ACGGAATCGAGAAACCAGAGATGC -ACGGAATCGAGAAACCAGTGAAGG -ACGGAATCGAGAAACCAGCAATGG -ACGGAATCGAGAAACCAGATGAGG -ACGGAATCGAGAAACCAGAATGGG -ACGGAATCGAGAAACCAGTCCTGA -ACGGAATCGAGAAACCAGTAGCGA -ACGGAATCGAGAAACCAGCACAGA -ACGGAATCGAGAAACCAGGCAAGA -ACGGAATCGAGAAACCAGGGTTGA -ACGGAATCGAGAAACCAGTCCGAT -ACGGAATCGAGAAACCAGTGGCAT -ACGGAATCGAGAAACCAGCGAGAT -ACGGAATCGAGAAACCAGTACCAC -ACGGAATCGAGAAACCAGCAGAAC -ACGGAATCGAGAAACCAGGTCTAC -ACGGAATCGAGAAACCAGACGTAC -ACGGAATCGAGAAACCAGAGTGAC -ACGGAATCGAGAAACCAGCTGTAG -ACGGAATCGAGAAACCAGCCTAAG -ACGGAATCGAGAAACCAGGTTCAG -ACGGAATCGAGAAACCAGGCATAG -ACGGAATCGAGAAACCAGGACAAG -ACGGAATCGAGAAACCAGAAGCAG -ACGGAATCGAGAAACCAGCGTCAA -ACGGAATCGAGAAACCAGGCTGAA -ACGGAATCGAGAAACCAGAGTACG -ACGGAATCGAGAAACCAGATCCGA -ACGGAATCGAGAAACCAGATGGGA -ACGGAATCGAGAAACCAGGTGCAA -ACGGAATCGAGAAACCAGGAGGAA -ACGGAATCGAGAAACCAGCAGGTA -ACGGAATCGAGAAACCAGGACTCT -ACGGAATCGAGAAACCAGAGTCCT -ACGGAATCGAGAAACCAGTAAGCC -ACGGAATCGAGAAACCAGATAGCC -ACGGAATCGAGAAACCAGTAACCG -ACGGAATCGAGAAACCAGATGCCA -ACGGAATCGAGATACGTCGGAAAC -ACGGAATCGAGATACGTCAACACC -ACGGAATCGAGATACGTCATCGAG -ACGGAATCGAGATACGTCCTCCTT -ACGGAATCGAGATACGTCCCTGTT -ACGGAATCGAGATACGTCCGGTTT -ACGGAATCGAGATACGTCGTGGTT -ACGGAATCGAGATACGTCGCCTTT -ACGGAATCGAGATACGTCGGTCTT -ACGGAATCGAGATACGTCACGCTT -ACGGAATCGAGATACGTCAGCGTT -ACGGAATCGAGATACGTCTTCGTC -ACGGAATCGAGATACGTCTCTCTC -ACGGAATCGAGATACGTCTGGATC -ACGGAATCGAGATACGTCCACTTC -ACGGAATCGAGATACGTCGTACTC -ACGGAATCGAGATACGTCGATGTC -ACGGAATCGAGATACGTCACAGTC -ACGGAATCGAGATACGTCTTGCTG -ACGGAATCGAGATACGTCTCCATG -ACGGAATCGAGATACGTCTGTGTG -ACGGAATCGAGATACGTCCTAGTG -ACGGAATCGAGATACGTCCATCTG -ACGGAATCGAGATACGTCGAGTTG -ACGGAATCGAGATACGTCAGACTG -ACGGAATCGAGATACGTCTCGGTA -ACGGAATCGAGATACGTCTGCCTA -ACGGAATCGAGATACGTCCCACTA -ACGGAATCGAGATACGTCGGAGTA -ACGGAATCGAGATACGTCTCGTCT -ACGGAATCGAGATACGTCTGCACT -ACGGAATCGAGATACGTCCTGACT -ACGGAATCGAGATACGTCCAACCT -ACGGAATCGAGATACGTCGCTACT -ACGGAATCGAGATACGTCGGATCT -ACGGAATCGAGATACGTCAAGGCT -ACGGAATCGAGATACGTCTCAACC -ACGGAATCGAGATACGTCTGTTCC -ACGGAATCGAGATACGTCATTCCC -ACGGAATCGAGATACGTCTTCTCG -ACGGAATCGAGATACGTCTAGACG -ACGGAATCGAGATACGTCGTAACG -ACGGAATCGAGATACGTCACTTCG -ACGGAATCGAGATACGTCTACGCA -ACGGAATCGAGATACGTCCTTGCA -ACGGAATCGAGATACGTCCGAACA -ACGGAATCGAGATACGTCCAGTCA -ACGGAATCGAGATACGTCGATCCA -ACGGAATCGAGATACGTCACGACA -ACGGAATCGAGATACGTCAGCTCA -ACGGAATCGAGATACGTCTCACGT -ACGGAATCGAGATACGTCCGTAGT -ACGGAATCGAGATACGTCGTCAGT -ACGGAATCGAGATACGTCGAAGGT -ACGGAATCGAGATACGTCAACCGT -ACGGAATCGAGATACGTCTTGTGC -ACGGAATCGAGATACGTCCTAAGC -ACGGAATCGAGATACGTCACTAGC -ACGGAATCGAGATACGTCAGATGC -ACGGAATCGAGATACGTCTGAAGG -ACGGAATCGAGATACGTCCAATGG -ACGGAATCGAGATACGTCATGAGG -ACGGAATCGAGATACGTCAATGGG -ACGGAATCGAGATACGTCTCCTGA -ACGGAATCGAGATACGTCTAGCGA -ACGGAATCGAGATACGTCCACAGA -ACGGAATCGAGATACGTCGCAAGA -ACGGAATCGAGATACGTCGGTTGA -ACGGAATCGAGATACGTCTCCGAT -ACGGAATCGAGATACGTCTGGCAT -ACGGAATCGAGATACGTCCGAGAT -ACGGAATCGAGATACGTCTACCAC -ACGGAATCGAGATACGTCCAGAAC -ACGGAATCGAGATACGTCGTCTAC -ACGGAATCGAGATACGTCACGTAC -ACGGAATCGAGATACGTCAGTGAC -ACGGAATCGAGATACGTCCTGTAG -ACGGAATCGAGATACGTCCCTAAG -ACGGAATCGAGATACGTCGTTCAG -ACGGAATCGAGATACGTCGCATAG -ACGGAATCGAGATACGTCGACAAG -ACGGAATCGAGATACGTCAAGCAG -ACGGAATCGAGATACGTCCGTCAA -ACGGAATCGAGATACGTCGCTGAA -ACGGAATCGAGATACGTCAGTACG -ACGGAATCGAGATACGTCATCCGA -ACGGAATCGAGATACGTCATGGGA -ACGGAATCGAGATACGTCGTGCAA -ACGGAATCGAGATACGTCGAGGAA -ACGGAATCGAGATACGTCCAGGTA -ACGGAATCGAGATACGTCGACTCT -ACGGAATCGAGATACGTCAGTCCT -ACGGAATCGAGATACGTCTAAGCC -ACGGAATCGAGATACGTCATAGCC -ACGGAATCGAGATACGTCTAACCG -ACGGAATCGAGATACGTCATGCCA -ACGGAATCGAGATACACGGGAAAC -ACGGAATCGAGATACACGAACACC -ACGGAATCGAGATACACGATCGAG -ACGGAATCGAGATACACGCTCCTT -ACGGAATCGAGATACACGCCTGTT -ACGGAATCGAGATACACGCGGTTT -ACGGAATCGAGATACACGGTGGTT -ACGGAATCGAGATACACGGCCTTT -ACGGAATCGAGATACACGGGTCTT -ACGGAATCGAGATACACGACGCTT -ACGGAATCGAGATACACGAGCGTT -ACGGAATCGAGATACACGTTCGTC -ACGGAATCGAGATACACGTCTCTC -ACGGAATCGAGATACACGTGGATC -ACGGAATCGAGATACACGCACTTC -ACGGAATCGAGATACACGGTACTC -ACGGAATCGAGATACACGGATGTC -ACGGAATCGAGATACACGACAGTC -ACGGAATCGAGATACACGTTGCTG -ACGGAATCGAGATACACGTCCATG -ACGGAATCGAGATACACGTGTGTG -ACGGAATCGAGATACACGCTAGTG -ACGGAATCGAGATACACGCATCTG -ACGGAATCGAGATACACGGAGTTG -ACGGAATCGAGATACACGAGACTG -ACGGAATCGAGATACACGTCGGTA -ACGGAATCGAGATACACGTGCCTA -ACGGAATCGAGATACACGCCACTA -ACGGAATCGAGATACACGGGAGTA -ACGGAATCGAGATACACGTCGTCT -ACGGAATCGAGATACACGTGCACT -ACGGAATCGAGATACACGCTGACT -ACGGAATCGAGATACACGCAACCT -ACGGAATCGAGATACACGGCTACT -ACGGAATCGAGATACACGGGATCT -ACGGAATCGAGATACACGAAGGCT -ACGGAATCGAGATACACGTCAACC -ACGGAATCGAGATACACGTGTTCC -ACGGAATCGAGATACACGATTCCC -ACGGAATCGAGATACACGTTCTCG -ACGGAATCGAGATACACGTAGACG -ACGGAATCGAGATACACGGTAACG -ACGGAATCGAGATACACGACTTCG -ACGGAATCGAGATACACGTACGCA -ACGGAATCGAGATACACGCTTGCA -ACGGAATCGAGATACACGCGAACA -ACGGAATCGAGATACACGCAGTCA -ACGGAATCGAGATACACGGATCCA -ACGGAATCGAGATACACGACGACA -ACGGAATCGAGATACACGAGCTCA -ACGGAATCGAGATACACGTCACGT -ACGGAATCGAGATACACGCGTAGT -ACGGAATCGAGATACACGGTCAGT -ACGGAATCGAGATACACGGAAGGT -ACGGAATCGAGATACACGAACCGT -ACGGAATCGAGATACACGTTGTGC -ACGGAATCGAGATACACGCTAAGC -ACGGAATCGAGATACACGACTAGC -ACGGAATCGAGATACACGAGATGC -ACGGAATCGAGATACACGTGAAGG -ACGGAATCGAGATACACGCAATGG -ACGGAATCGAGATACACGATGAGG -ACGGAATCGAGATACACGAATGGG -ACGGAATCGAGATACACGTCCTGA -ACGGAATCGAGATACACGTAGCGA -ACGGAATCGAGATACACGCACAGA -ACGGAATCGAGATACACGGCAAGA -ACGGAATCGAGATACACGGGTTGA -ACGGAATCGAGATACACGTCCGAT -ACGGAATCGAGATACACGTGGCAT -ACGGAATCGAGATACACGCGAGAT -ACGGAATCGAGATACACGTACCAC -ACGGAATCGAGATACACGCAGAAC -ACGGAATCGAGATACACGGTCTAC -ACGGAATCGAGATACACGACGTAC -ACGGAATCGAGATACACGAGTGAC -ACGGAATCGAGATACACGCTGTAG -ACGGAATCGAGATACACGCCTAAG -ACGGAATCGAGATACACGGTTCAG -ACGGAATCGAGATACACGGCATAG -ACGGAATCGAGATACACGGACAAG -ACGGAATCGAGATACACGAAGCAG -ACGGAATCGAGATACACGCGTCAA -ACGGAATCGAGATACACGGCTGAA -ACGGAATCGAGATACACGAGTACG -ACGGAATCGAGATACACGATCCGA -ACGGAATCGAGATACACGATGGGA -ACGGAATCGAGATACACGGTGCAA -ACGGAATCGAGATACACGGAGGAA -ACGGAATCGAGATACACGCAGGTA -ACGGAATCGAGATACACGGACTCT -ACGGAATCGAGATACACGAGTCCT -ACGGAATCGAGATACACGTAAGCC -ACGGAATCGAGATACACGATAGCC -ACGGAATCGAGATACACGTAACCG -ACGGAATCGAGATACACGATGCCA -ACGGAATCGAGAGACAGTGGAAAC -ACGGAATCGAGAGACAGTAACACC -ACGGAATCGAGAGACAGTATCGAG -ACGGAATCGAGAGACAGTCTCCTT -ACGGAATCGAGAGACAGTCCTGTT -ACGGAATCGAGAGACAGTCGGTTT -ACGGAATCGAGAGACAGTGTGGTT -ACGGAATCGAGAGACAGTGCCTTT -ACGGAATCGAGAGACAGTGGTCTT -ACGGAATCGAGAGACAGTACGCTT -ACGGAATCGAGAGACAGTAGCGTT -ACGGAATCGAGAGACAGTTTCGTC -ACGGAATCGAGAGACAGTTCTCTC -ACGGAATCGAGAGACAGTTGGATC -ACGGAATCGAGAGACAGTCACTTC -ACGGAATCGAGAGACAGTGTACTC -ACGGAATCGAGAGACAGTGATGTC -ACGGAATCGAGAGACAGTACAGTC -ACGGAATCGAGAGACAGTTTGCTG -ACGGAATCGAGAGACAGTTCCATG -ACGGAATCGAGAGACAGTTGTGTG -ACGGAATCGAGAGACAGTCTAGTG -ACGGAATCGAGAGACAGTCATCTG -ACGGAATCGAGAGACAGTGAGTTG -ACGGAATCGAGAGACAGTAGACTG -ACGGAATCGAGAGACAGTTCGGTA -ACGGAATCGAGAGACAGTTGCCTA -ACGGAATCGAGAGACAGTCCACTA -ACGGAATCGAGAGACAGTGGAGTA -ACGGAATCGAGAGACAGTTCGTCT -ACGGAATCGAGAGACAGTTGCACT -ACGGAATCGAGAGACAGTCTGACT -ACGGAATCGAGAGACAGTCAACCT -ACGGAATCGAGAGACAGTGCTACT -ACGGAATCGAGAGACAGTGGATCT -ACGGAATCGAGAGACAGTAAGGCT -ACGGAATCGAGAGACAGTTCAACC -ACGGAATCGAGAGACAGTTGTTCC -ACGGAATCGAGAGACAGTATTCCC -ACGGAATCGAGAGACAGTTTCTCG -ACGGAATCGAGAGACAGTTAGACG -ACGGAATCGAGAGACAGTGTAACG -ACGGAATCGAGAGACAGTACTTCG -ACGGAATCGAGAGACAGTTACGCA -ACGGAATCGAGAGACAGTCTTGCA -ACGGAATCGAGAGACAGTCGAACA -ACGGAATCGAGAGACAGTCAGTCA -ACGGAATCGAGAGACAGTGATCCA -ACGGAATCGAGAGACAGTACGACA -ACGGAATCGAGAGACAGTAGCTCA -ACGGAATCGAGAGACAGTTCACGT -ACGGAATCGAGAGACAGTCGTAGT -ACGGAATCGAGAGACAGTGTCAGT -ACGGAATCGAGAGACAGTGAAGGT -ACGGAATCGAGAGACAGTAACCGT -ACGGAATCGAGAGACAGTTTGTGC -ACGGAATCGAGAGACAGTCTAAGC -ACGGAATCGAGAGACAGTACTAGC -ACGGAATCGAGAGACAGTAGATGC -ACGGAATCGAGAGACAGTTGAAGG -ACGGAATCGAGAGACAGTCAATGG -ACGGAATCGAGAGACAGTATGAGG -ACGGAATCGAGAGACAGTAATGGG -ACGGAATCGAGAGACAGTTCCTGA -ACGGAATCGAGAGACAGTTAGCGA -ACGGAATCGAGAGACAGTCACAGA -ACGGAATCGAGAGACAGTGCAAGA -ACGGAATCGAGAGACAGTGGTTGA -ACGGAATCGAGAGACAGTTCCGAT -ACGGAATCGAGAGACAGTTGGCAT -ACGGAATCGAGAGACAGTCGAGAT -ACGGAATCGAGAGACAGTTACCAC -ACGGAATCGAGAGACAGTCAGAAC -ACGGAATCGAGAGACAGTGTCTAC -ACGGAATCGAGAGACAGTACGTAC -ACGGAATCGAGAGACAGTAGTGAC -ACGGAATCGAGAGACAGTCTGTAG -ACGGAATCGAGAGACAGTCCTAAG -ACGGAATCGAGAGACAGTGTTCAG -ACGGAATCGAGAGACAGTGCATAG -ACGGAATCGAGAGACAGTGACAAG -ACGGAATCGAGAGACAGTAAGCAG -ACGGAATCGAGAGACAGTCGTCAA -ACGGAATCGAGAGACAGTGCTGAA -ACGGAATCGAGAGACAGTAGTACG -ACGGAATCGAGAGACAGTATCCGA -ACGGAATCGAGAGACAGTATGGGA -ACGGAATCGAGAGACAGTGTGCAA -ACGGAATCGAGAGACAGTGAGGAA -ACGGAATCGAGAGACAGTCAGGTA -ACGGAATCGAGAGACAGTGACTCT -ACGGAATCGAGAGACAGTAGTCCT -ACGGAATCGAGAGACAGTTAAGCC -ACGGAATCGAGAGACAGTATAGCC -ACGGAATCGAGAGACAGTTAACCG -ACGGAATCGAGAGACAGTATGCCA -ACGGAATCGAGATAGCTGGGAAAC -ACGGAATCGAGATAGCTGAACACC -ACGGAATCGAGATAGCTGATCGAG -ACGGAATCGAGATAGCTGCTCCTT -ACGGAATCGAGATAGCTGCCTGTT -ACGGAATCGAGATAGCTGCGGTTT -ACGGAATCGAGATAGCTGGTGGTT -ACGGAATCGAGATAGCTGGCCTTT -ACGGAATCGAGATAGCTGGGTCTT -ACGGAATCGAGATAGCTGACGCTT -ACGGAATCGAGATAGCTGAGCGTT -ACGGAATCGAGATAGCTGTTCGTC -ACGGAATCGAGATAGCTGTCTCTC -ACGGAATCGAGATAGCTGTGGATC -ACGGAATCGAGATAGCTGCACTTC -ACGGAATCGAGATAGCTGGTACTC -ACGGAATCGAGATAGCTGGATGTC -ACGGAATCGAGATAGCTGACAGTC -ACGGAATCGAGATAGCTGTTGCTG -ACGGAATCGAGATAGCTGTCCATG -ACGGAATCGAGATAGCTGTGTGTG -ACGGAATCGAGATAGCTGCTAGTG -ACGGAATCGAGATAGCTGCATCTG -ACGGAATCGAGATAGCTGGAGTTG -ACGGAATCGAGATAGCTGAGACTG -ACGGAATCGAGATAGCTGTCGGTA -ACGGAATCGAGATAGCTGTGCCTA -ACGGAATCGAGATAGCTGCCACTA -ACGGAATCGAGATAGCTGGGAGTA -ACGGAATCGAGATAGCTGTCGTCT -ACGGAATCGAGATAGCTGTGCACT -ACGGAATCGAGATAGCTGCTGACT -ACGGAATCGAGATAGCTGCAACCT -ACGGAATCGAGATAGCTGGCTACT -ACGGAATCGAGATAGCTGGGATCT -ACGGAATCGAGATAGCTGAAGGCT -ACGGAATCGAGATAGCTGTCAACC -ACGGAATCGAGATAGCTGTGTTCC -ACGGAATCGAGATAGCTGATTCCC -ACGGAATCGAGATAGCTGTTCTCG -ACGGAATCGAGATAGCTGTAGACG -ACGGAATCGAGATAGCTGGTAACG -ACGGAATCGAGATAGCTGACTTCG -ACGGAATCGAGATAGCTGTACGCA -ACGGAATCGAGATAGCTGCTTGCA -ACGGAATCGAGATAGCTGCGAACA -ACGGAATCGAGATAGCTGCAGTCA -ACGGAATCGAGATAGCTGGATCCA -ACGGAATCGAGATAGCTGACGACA -ACGGAATCGAGATAGCTGAGCTCA -ACGGAATCGAGATAGCTGTCACGT -ACGGAATCGAGATAGCTGCGTAGT -ACGGAATCGAGATAGCTGGTCAGT -ACGGAATCGAGATAGCTGGAAGGT -ACGGAATCGAGATAGCTGAACCGT -ACGGAATCGAGATAGCTGTTGTGC -ACGGAATCGAGATAGCTGCTAAGC -ACGGAATCGAGATAGCTGACTAGC -ACGGAATCGAGATAGCTGAGATGC -ACGGAATCGAGATAGCTGTGAAGG -ACGGAATCGAGATAGCTGCAATGG -ACGGAATCGAGATAGCTGATGAGG -ACGGAATCGAGATAGCTGAATGGG -ACGGAATCGAGATAGCTGTCCTGA -ACGGAATCGAGATAGCTGTAGCGA -ACGGAATCGAGATAGCTGCACAGA -ACGGAATCGAGATAGCTGGCAAGA -ACGGAATCGAGATAGCTGGGTTGA -ACGGAATCGAGATAGCTGTCCGAT -ACGGAATCGAGATAGCTGTGGCAT -ACGGAATCGAGATAGCTGCGAGAT -ACGGAATCGAGATAGCTGTACCAC -ACGGAATCGAGATAGCTGCAGAAC -ACGGAATCGAGATAGCTGGTCTAC -ACGGAATCGAGATAGCTGACGTAC -ACGGAATCGAGATAGCTGAGTGAC -ACGGAATCGAGATAGCTGCTGTAG -ACGGAATCGAGATAGCTGCCTAAG -ACGGAATCGAGATAGCTGGTTCAG -ACGGAATCGAGATAGCTGGCATAG -ACGGAATCGAGATAGCTGGACAAG -ACGGAATCGAGATAGCTGAAGCAG -ACGGAATCGAGATAGCTGCGTCAA -ACGGAATCGAGATAGCTGGCTGAA -ACGGAATCGAGATAGCTGAGTACG -ACGGAATCGAGATAGCTGATCCGA -ACGGAATCGAGATAGCTGATGGGA -ACGGAATCGAGATAGCTGGTGCAA -ACGGAATCGAGATAGCTGGAGGAA -ACGGAATCGAGATAGCTGCAGGTA -ACGGAATCGAGATAGCTGGACTCT -ACGGAATCGAGATAGCTGAGTCCT -ACGGAATCGAGATAGCTGTAAGCC -ACGGAATCGAGATAGCTGATAGCC -ACGGAATCGAGATAGCTGTAACCG -ACGGAATCGAGATAGCTGATGCCA -ACGGAATCGAGAAAGCCTGGAAAC -ACGGAATCGAGAAAGCCTAACACC -ACGGAATCGAGAAAGCCTATCGAG -ACGGAATCGAGAAAGCCTCTCCTT -ACGGAATCGAGAAAGCCTCCTGTT -ACGGAATCGAGAAAGCCTCGGTTT -ACGGAATCGAGAAAGCCTGTGGTT -ACGGAATCGAGAAAGCCTGCCTTT -ACGGAATCGAGAAAGCCTGGTCTT -ACGGAATCGAGAAAGCCTACGCTT -ACGGAATCGAGAAAGCCTAGCGTT -ACGGAATCGAGAAAGCCTTTCGTC -ACGGAATCGAGAAAGCCTTCTCTC -ACGGAATCGAGAAAGCCTTGGATC -ACGGAATCGAGAAAGCCTCACTTC -ACGGAATCGAGAAAGCCTGTACTC -ACGGAATCGAGAAAGCCTGATGTC -ACGGAATCGAGAAAGCCTACAGTC -ACGGAATCGAGAAAGCCTTTGCTG -ACGGAATCGAGAAAGCCTTCCATG -ACGGAATCGAGAAAGCCTTGTGTG -ACGGAATCGAGAAAGCCTCTAGTG -ACGGAATCGAGAAAGCCTCATCTG -ACGGAATCGAGAAAGCCTGAGTTG -ACGGAATCGAGAAAGCCTAGACTG -ACGGAATCGAGAAAGCCTTCGGTA -ACGGAATCGAGAAAGCCTTGCCTA -ACGGAATCGAGAAAGCCTCCACTA -ACGGAATCGAGAAAGCCTGGAGTA -ACGGAATCGAGAAAGCCTTCGTCT -ACGGAATCGAGAAAGCCTTGCACT -ACGGAATCGAGAAAGCCTCTGACT -ACGGAATCGAGAAAGCCTCAACCT -ACGGAATCGAGAAAGCCTGCTACT -ACGGAATCGAGAAAGCCTGGATCT -ACGGAATCGAGAAAGCCTAAGGCT -ACGGAATCGAGAAAGCCTTCAACC -ACGGAATCGAGAAAGCCTTGTTCC -ACGGAATCGAGAAAGCCTATTCCC -ACGGAATCGAGAAAGCCTTTCTCG -ACGGAATCGAGAAAGCCTTAGACG -ACGGAATCGAGAAAGCCTGTAACG -ACGGAATCGAGAAAGCCTACTTCG -ACGGAATCGAGAAAGCCTTACGCA -ACGGAATCGAGAAAGCCTCTTGCA -ACGGAATCGAGAAAGCCTCGAACA -ACGGAATCGAGAAAGCCTCAGTCA -ACGGAATCGAGAAAGCCTGATCCA -ACGGAATCGAGAAAGCCTACGACA -ACGGAATCGAGAAAGCCTAGCTCA -ACGGAATCGAGAAAGCCTTCACGT -ACGGAATCGAGAAAGCCTCGTAGT -ACGGAATCGAGAAAGCCTGTCAGT -ACGGAATCGAGAAAGCCTGAAGGT -ACGGAATCGAGAAAGCCTAACCGT -ACGGAATCGAGAAAGCCTTTGTGC -ACGGAATCGAGAAAGCCTCTAAGC -ACGGAATCGAGAAAGCCTACTAGC -ACGGAATCGAGAAAGCCTAGATGC -ACGGAATCGAGAAAGCCTTGAAGG -ACGGAATCGAGAAAGCCTCAATGG -ACGGAATCGAGAAAGCCTATGAGG -ACGGAATCGAGAAAGCCTAATGGG -ACGGAATCGAGAAAGCCTTCCTGA -ACGGAATCGAGAAAGCCTTAGCGA -ACGGAATCGAGAAAGCCTCACAGA -ACGGAATCGAGAAAGCCTGCAAGA -ACGGAATCGAGAAAGCCTGGTTGA -ACGGAATCGAGAAAGCCTTCCGAT -ACGGAATCGAGAAAGCCTTGGCAT -ACGGAATCGAGAAAGCCTCGAGAT -ACGGAATCGAGAAAGCCTTACCAC -ACGGAATCGAGAAAGCCTCAGAAC -ACGGAATCGAGAAAGCCTGTCTAC -ACGGAATCGAGAAAGCCTACGTAC -ACGGAATCGAGAAAGCCTAGTGAC -ACGGAATCGAGAAAGCCTCTGTAG -ACGGAATCGAGAAAGCCTCCTAAG -ACGGAATCGAGAAAGCCTGTTCAG -ACGGAATCGAGAAAGCCTGCATAG -ACGGAATCGAGAAAGCCTGACAAG -ACGGAATCGAGAAAGCCTAAGCAG -ACGGAATCGAGAAAGCCTCGTCAA -ACGGAATCGAGAAAGCCTGCTGAA -ACGGAATCGAGAAAGCCTAGTACG -ACGGAATCGAGAAAGCCTATCCGA -ACGGAATCGAGAAAGCCTATGGGA -ACGGAATCGAGAAAGCCTGTGCAA -ACGGAATCGAGAAAGCCTGAGGAA -ACGGAATCGAGAAAGCCTCAGGTA -ACGGAATCGAGAAAGCCTGACTCT -ACGGAATCGAGAAAGCCTAGTCCT -ACGGAATCGAGAAAGCCTTAAGCC -ACGGAATCGAGAAAGCCTATAGCC -ACGGAATCGAGAAAGCCTTAACCG -ACGGAATCGAGAAAGCCTATGCCA -ACGGAATCGAGACAGGTTGGAAAC -ACGGAATCGAGACAGGTTAACACC -ACGGAATCGAGACAGGTTATCGAG -ACGGAATCGAGACAGGTTCTCCTT -ACGGAATCGAGACAGGTTCCTGTT -ACGGAATCGAGACAGGTTCGGTTT -ACGGAATCGAGACAGGTTGTGGTT -ACGGAATCGAGACAGGTTGCCTTT -ACGGAATCGAGACAGGTTGGTCTT -ACGGAATCGAGACAGGTTACGCTT -ACGGAATCGAGACAGGTTAGCGTT -ACGGAATCGAGACAGGTTTTCGTC -ACGGAATCGAGACAGGTTTCTCTC -ACGGAATCGAGACAGGTTTGGATC -ACGGAATCGAGACAGGTTCACTTC -ACGGAATCGAGACAGGTTGTACTC -ACGGAATCGAGACAGGTTGATGTC -ACGGAATCGAGACAGGTTACAGTC -ACGGAATCGAGACAGGTTTTGCTG -ACGGAATCGAGACAGGTTTCCATG -ACGGAATCGAGACAGGTTTGTGTG -ACGGAATCGAGACAGGTTCTAGTG -ACGGAATCGAGACAGGTTCATCTG -ACGGAATCGAGACAGGTTGAGTTG -ACGGAATCGAGACAGGTTAGACTG -ACGGAATCGAGACAGGTTTCGGTA -ACGGAATCGAGACAGGTTTGCCTA -ACGGAATCGAGACAGGTTCCACTA -ACGGAATCGAGACAGGTTGGAGTA -ACGGAATCGAGACAGGTTTCGTCT -ACGGAATCGAGACAGGTTTGCACT -ACGGAATCGAGACAGGTTCTGACT -ACGGAATCGAGACAGGTTCAACCT -ACGGAATCGAGACAGGTTGCTACT -ACGGAATCGAGACAGGTTGGATCT -ACGGAATCGAGACAGGTTAAGGCT -ACGGAATCGAGACAGGTTTCAACC -ACGGAATCGAGACAGGTTTGTTCC -ACGGAATCGAGACAGGTTATTCCC -ACGGAATCGAGACAGGTTTTCTCG -ACGGAATCGAGACAGGTTTAGACG -ACGGAATCGAGACAGGTTGTAACG -ACGGAATCGAGACAGGTTACTTCG -ACGGAATCGAGACAGGTTTACGCA -ACGGAATCGAGACAGGTTCTTGCA -ACGGAATCGAGACAGGTTCGAACA -ACGGAATCGAGACAGGTTCAGTCA -ACGGAATCGAGACAGGTTGATCCA -ACGGAATCGAGACAGGTTACGACA -ACGGAATCGAGACAGGTTAGCTCA -ACGGAATCGAGACAGGTTTCACGT -ACGGAATCGAGACAGGTTCGTAGT -ACGGAATCGAGACAGGTTGTCAGT -ACGGAATCGAGACAGGTTGAAGGT -ACGGAATCGAGACAGGTTAACCGT -ACGGAATCGAGACAGGTTTTGTGC -ACGGAATCGAGACAGGTTCTAAGC -ACGGAATCGAGACAGGTTACTAGC -ACGGAATCGAGACAGGTTAGATGC -ACGGAATCGAGACAGGTTTGAAGG -ACGGAATCGAGACAGGTTCAATGG -ACGGAATCGAGACAGGTTATGAGG -ACGGAATCGAGACAGGTTAATGGG -ACGGAATCGAGACAGGTTTCCTGA -ACGGAATCGAGACAGGTTTAGCGA -ACGGAATCGAGACAGGTTCACAGA -ACGGAATCGAGACAGGTTGCAAGA -ACGGAATCGAGACAGGTTGGTTGA -ACGGAATCGAGACAGGTTTCCGAT -ACGGAATCGAGACAGGTTTGGCAT -ACGGAATCGAGACAGGTTCGAGAT -ACGGAATCGAGACAGGTTTACCAC -ACGGAATCGAGACAGGTTCAGAAC -ACGGAATCGAGACAGGTTGTCTAC -ACGGAATCGAGACAGGTTACGTAC -ACGGAATCGAGACAGGTTAGTGAC -ACGGAATCGAGACAGGTTCTGTAG -ACGGAATCGAGACAGGTTCCTAAG -ACGGAATCGAGACAGGTTGTTCAG -ACGGAATCGAGACAGGTTGCATAG -ACGGAATCGAGACAGGTTGACAAG -ACGGAATCGAGACAGGTTAAGCAG -ACGGAATCGAGACAGGTTCGTCAA -ACGGAATCGAGACAGGTTGCTGAA -ACGGAATCGAGACAGGTTAGTACG -ACGGAATCGAGACAGGTTATCCGA -ACGGAATCGAGACAGGTTATGGGA -ACGGAATCGAGACAGGTTGTGCAA -ACGGAATCGAGACAGGTTGAGGAA -ACGGAATCGAGACAGGTTCAGGTA -ACGGAATCGAGACAGGTTGACTCT -ACGGAATCGAGACAGGTTAGTCCT -ACGGAATCGAGACAGGTTTAAGCC -ACGGAATCGAGACAGGTTATAGCC -ACGGAATCGAGACAGGTTTAACCG -ACGGAATCGAGACAGGTTATGCCA -ACGGAATCGAGATAGGCAGGAAAC -ACGGAATCGAGATAGGCAAACACC -ACGGAATCGAGATAGGCAATCGAG -ACGGAATCGAGATAGGCACTCCTT -ACGGAATCGAGATAGGCACCTGTT -ACGGAATCGAGATAGGCACGGTTT -ACGGAATCGAGATAGGCAGTGGTT -ACGGAATCGAGATAGGCAGCCTTT -ACGGAATCGAGATAGGCAGGTCTT -ACGGAATCGAGATAGGCAACGCTT -ACGGAATCGAGATAGGCAAGCGTT -ACGGAATCGAGATAGGCATTCGTC -ACGGAATCGAGATAGGCATCTCTC -ACGGAATCGAGATAGGCATGGATC -ACGGAATCGAGATAGGCACACTTC -ACGGAATCGAGATAGGCAGTACTC -ACGGAATCGAGATAGGCAGATGTC -ACGGAATCGAGATAGGCAACAGTC -ACGGAATCGAGATAGGCATTGCTG -ACGGAATCGAGATAGGCATCCATG -ACGGAATCGAGATAGGCATGTGTG -ACGGAATCGAGATAGGCACTAGTG -ACGGAATCGAGATAGGCACATCTG -ACGGAATCGAGATAGGCAGAGTTG -ACGGAATCGAGATAGGCAAGACTG -ACGGAATCGAGATAGGCATCGGTA -ACGGAATCGAGATAGGCATGCCTA -ACGGAATCGAGATAGGCACCACTA -ACGGAATCGAGATAGGCAGGAGTA -ACGGAATCGAGATAGGCATCGTCT -ACGGAATCGAGATAGGCATGCACT -ACGGAATCGAGATAGGCACTGACT -ACGGAATCGAGATAGGCACAACCT -ACGGAATCGAGATAGGCAGCTACT -ACGGAATCGAGATAGGCAGGATCT -ACGGAATCGAGATAGGCAAAGGCT -ACGGAATCGAGATAGGCATCAACC -ACGGAATCGAGATAGGCATGTTCC -ACGGAATCGAGATAGGCAATTCCC -ACGGAATCGAGATAGGCATTCTCG -ACGGAATCGAGATAGGCATAGACG -ACGGAATCGAGATAGGCAGTAACG -ACGGAATCGAGATAGGCAACTTCG -ACGGAATCGAGATAGGCATACGCA -ACGGAATCGAGATAGGCACTTGCA -ACGGAATCGAGATAGGCACGAACA -ACGGAATCGAGATAGGCACAGTCA -ACGGAATCGAGATAGGCAGATCCA -ACGGAATCGAGATAGGCAACGACA -ACGGAATCGAGATAGGCAAGCTCA -ACGGAATCGAGATAGGCATCACGT -ACGGAATCGAGATAGGCACGTAGT -ACGGAATCGAGATAGGCAGTCAGT -ACGGAATCGAGATAGGCAGAAGGT -ACGGAATCGAGATAGGCAAACCGT -ACGGAATCGAGATAGGCATTGTGC -ACGGAATCGAGATAGGCACTAAGC -ACGGAATCGAGATAGGCAACTAGC -ACGGAATCGAGATAGGCAAGATGC -ACGGAATCGAGATAGGCATGAAGG -ACGGAATCGAGATAGGCACAATGG -ACGGAATCGAGATAGGCAATGAGG -ACGGAATCGAGATAGGCAAATGGG -ACGGAATCGAGATAGGCATCCTGA -ACGGAATCGAGATAGGCATAGCGA -ACGGAATCGAGATAGGCACACAGA -ACGGAATCGAGATAGGCAGCAAGA -ACGGAATCGAGATAGGCAGGTTGA -ACGGAATCGAGATAGGCATCCGAT -ACGGAATCGAGATAGGCATGGCAT -ACGGAATCGAGATAGGCACGAGAT -ACGGAATCGAGATAGGCATACCAC -ACGGAATCGAGATAGGCACAGAAC -ACGGAATCGAGATAGGCAGTCTAC -ACGGAATCGAGATAGGCAACGTAC -ACGGAATCGAGATAGGCAAGTGAC -ACGGAATCGAGATAGGCACTGTAG -ACGGAATCGAGATAGGCACCTAAG -ACGGAATCGAGATAGGCAGTTCAG -ACGGAATCGAGATAGGCAGCATAG -ACGGAATCGAGATAGGCAGACAAG -ACGGAATCGAGATAGGCAAAGCAG -ACGGAATCGAGATAGGCACGTCAA -ACGGAATCGAGATAGGCAGCTGAA -ACGGAATCGAGATAGGCAAGTACG -ACGGAATCGAGATAGGCAATCCGA -ACGGAATCGAGATAGGCAATGGGA -ACGGAATCGAGATAGGCAGTGCAA -ACGGAATCGAGATAGGCAGAGGAA -ACGGAATCGAGATAGGCACAGGTA -ACGGAATCGAGATAGGCAGACTCT -ACGGAATCGAGATAGGCAAGTCCT -ACGGAATCGAGATAGGCATAAGCC -ACGGAATCGAGATAGGCAATAGCC -ACGGAATCGAGATAGGCATAACCG -ACGGAATCGAGATAGGCAATGCCA -ACGGAATCGAGAAAGGACGGAAAC -ACGGAATCGAGAAAGGACAACACC -ACGGAATCGAGAAAGGACATCGAG -ACGGAATCGAGAAAGGACCTCCTT -ACGGAATCGAGAAAGGACCCTGTT -ACGGAATCGAGAAAGGACCGGTTT -ACGGAATCGAGAAAGGACGTGGTT -ACGGAATCGAGAAAGGACGCCTTT -ACGGAATCGAGAAAGGACGGTCTT -ACGGAATCGAGAAAGGACACGCTT -ACGGAATCGAGAAAGGACAGCGTT -ACGGAATCGAGAAAGGACTTCGTC -ACGGAATCGAGAAAGGACTCTCTC -ACGGAATCGAGAAAGGACTGGATC -ACGGAATCGAGAAAGGACCACTTC -ACGGAATCGAGAAAGGACGTACTC -ACGGAATCGAGAAAGGACGATGTC -ACGGAATCGAGAAAGGACACAGTC -ACGGAATCGAGAAAGGACTTGCTG -ACGGAATCGAGAAAGGACTCCATG -ACGGAATCGAGAAAGGACTGTGTG -ACGGAATCGAGAAAGGACCTAGTG -ACGGAATCGAGAAAGGACCATCTG -ACGGAATCGAGAAAGGACGAGTTG -ACGGAATCGAGAAAGGACAGACTG -ACGGAATCGAGAAAGGACTCGGTA -ACGGAATCGAGAAAGGACTGCCTA -ACGGAATCGAGAAAGGACCCACTA -ACGGAATCGAGAAAGGACGGAGTA -ACGGAATCGAGAAAGGACTCGTCT -ACGGAATCGAGAAAGGACTGCACT -ACGGAATCGAGAAAGGACCTGACT -ACGGAATCGAGAAAGGACCAACCT -ACGGAATCGAGAAAGGACGCTACT -ACGGAATCGAGAAAGGACGGATCT -ACGGAATCGAGAAAGGACAAGGCT -ACGGAATCGAGAAAGGACTCAACC -ACGGAATCGAGAAAGGACTGTTCC -ACGGAATCGAGAAAGGACATTCCC -ACGGAATCGAGAAAGGACTTCTCG -ACGGAATCGAGAAAGGACTAGACG -ACGGAATCGAGAAAGGACGTAACG -ACGGAATCGAGAAAGGACACTTCG -ACGGAATCGAGAAAGGACTACGCA -ACGGAATCGAGAAAGGACCTTGCA -ACGGAATCGAGAAAGGACCGAACA -ACGGAATCGAGAAAGGACCAGTCA -ACGGAATCGAGAAAGGACGATCCA -ACGGAATCGAGAAAGGACACGACA -ACGGAATCGAGAAAGGACAGCTCA -ACGGAATCGAGAAAGGACTCACGT -ACGGAATCGAGAAAGGACCGTAGT -ACGGAATCGAGAAAGGACGTCAGT -ACGGAATCGAGAAAGGACGAAGGT -ACGGAATCGAGAAAGGACAACCGT -ACGGAATCGAGAAAGGACTTGTGC -ACGGAATCGAGAAAGGACCTAAGC -ACGGAATCGAGAAAGGACACTAGC -ACGGAATCGAGAAAGGACAGATGC -ACGGAATCGAGAAAGGACTGAAGG -ACGGAATCGAGAAAGGACCAATGG -ACGGAATCGAGAAAGGACATGAGG -ACGGAATCGAGAAAGGACAATGGG -ACGGAATCGAGAAAGGACTCCTGA -ACGGAATCGAGAAAGGACTAGCGA -ACGGAATCGAGAAAGGACCACAGA -ACGGAATCGAGAAAGGACGCAAGA -ACGGAATCGAGAAAGGACGGTTGA -ACGGAATCGAGAAAGGACTCCGAT -ACGGAATCGAGAAAGGACTGGCAT -ACGGAATCGAGAAAGGACCGAGAT -ACGGAATCGAGAAAGGACTACCAC -ACGGAATCGAGAAAGGACCAGAAC -ACGGAATCGAGAAAGGACGTCTAC -ACGGAATCGAGAAAGGACACGTAC -ACGGAATCGAGAAAGGACAGTGAC -ACGGAATCGAGAAAGGACCTGTAG -ACGGAATCGAGAAAGGACCCTAAG -ACGGAATCGAGAAAGGACGTTCAG -ACGGAATCGAGAAAGGACGCATAG -ACGGAATCGAGAAAGGACGACAAG -ACGGAATCGAGAAAGGACAAGCAG -ACGGAATCGAGAAAGGACCGTCAA -ACGGAATCGAGAAAGGACGCTGAA -ACGGAATCGAGAAAGGACAGTACG -ACGGAATCGAGAAAGGACATCCGA -ACGGAATCGAGAAAGGACATGGGA -ACGGAATCGAGAAAGGACGTGCAA -ACGGAATCGAGAAAGGACGAGGAA -ACGGAATCGAGAAAGGACCAGGTA -ACGGAATCGAGAAAGGACGACTCT -ACGGAATCGAGAAAGGACAGTCCT -ACGGAATCGAGAAAGGACTAAGCC -ACGGAATCGAGAAAGGACATAGCC -ACGGAATCGAGAAAGGACTAACCG -ACGGAATCGAGAAAGGACATGCCA -ACGGAATCGAGACAGAAGGGAAAC -ACGGAATCGAGACAGAAGAACACC -ACGGAATCGAGACAGAAGATCGAG -ACGGAATCGAGACAGAAGCTCCTT -ACGGAATCGAGACAGAAGCCTGTT -ACGGAATCGAGACAGAAGCGGTTT -ACGGAATCGAGACAGAAGGTGGTT -ACGGAATCGAGACAGAAGGCCTTT -ACGGAATCGAGACAGAAGGGTCTT -ACGGAATCGAGACAGAAGACGCTT -ACGGAATCGAGACAGAAGAGCGTT -ACGGAATCGAGACAGAAGTTCGTC -ACGGAATCGAGACAGAAGTCTCTC -ACGGAATCGAGACAGAAGTGGATC -ACGGAATCGAGACAGAAGCACTTC -ACGGAATCGAGACAGAAGGTACTC -ACGGAATCGAGACAGAAGGATGTC -ACGGAATCGAGACAGAAGACAGTC -ACGGAATCGAGACAGAAGTTGCTG -ACGGAATCGAGACAGAAGTCCATG -ACGGAATCGAGACAGAAGTGTGTG -ACGGAATCGAGACAGAAGCTAGTG -ACGGAATCGAGACAGAAGCATCTG -ACGGAATCGAGACAGAAGGAGTTG -ACGGAATCGAGACAGAAGAGACTG -ACGGAATCGAGACAGAAGTCGGTA -ACGGAATCGAGACAGAAGTGCCTA -ACGGAATCGAGACAGAAGCCACTA -ACGGAATCGAGACAGAAGGGAGTA -ACGGAATCGAGACAGAAGTCGTCT -ACGGAATCGAGACAGAAGTGCACT -ACGGAATCGAGACAGAAGCTGACT -ACGGAATCGAGACAGAAGCAACCT -ACGGAATCGAGACAGAAGGCTACT -ACGGAATCGAGACAGAAGGGATCT -ACGGAATCGAGACAGAAGAAGGCT -ACGGAATCGAGACAGAAGTCAACC -ACGGAATCGAGACAGAAGTGTTCC -ACGGAATCGAGACAGAAGATTCCC -ACGGAATCGAGACAGAAGTTCTCG -ACGGAATCGAGACAGAAGTAGACG -ACGGAATCGAGACAGAAGGTAACG -ACGGAATCGAGACAGAAGACTTCG -ACGGAATCGAGACAGAAGTACGCA -ACGGAATCGAGACAGAAGCTTGCA -ACGGAATCGAGACAGAAGCGAACA -ACGGAATCGAGACAGAAGCAGTCA -ACGGAATCGAGACAGAAGGATCCA -ACGGAATCGAGACAGAAGACGACA -ACGGAATCGAGACAGAAGAGCTCA -ACGGAATCGAGACAGAAGTCACGT -ACGGAATCGAGACAGAAGCGTAGT -ACGGAATCGAGACAGAAGGTCAGT -ACGGAATCGAGACAGAAGGAAGGT -ACGGAATCGAGACAGAAGAACCGT -ACGGAATCGAGACAGAAGTTGTGC -ACGGAATCGAGACAGAAGCTAAGC -ACGGAATCGAGACAGAAGACTAGC -ACGGAATCGAGACAGAAGAGATGC -ACGGAATCGAGACAGAAGTGAAGG -ACGGAATCGAGACAGAAGCAATGG -ACGGAATCGAGACAGAAGATGAGG -ACGGAATCGAGACAGAAGAATGGG -ACGGAATCGAGACAGAAGTCCTGA -ACGGAATCGAGACAGAAGTAGCGA -ACGGAATCGAGACAGAAGCACAGA -ACGGAATCGAGACAGAAGGCAAGA -ACGGAATCGAGACAGAAGGGTTGA -ACGGAATCGAGACAGAAGTCCGAT -ACGGAATCGAGACAGAAGTGGCAT -ACGGAATCGAGACAGAAGCGAGAT -ACGGAATCGAGACAGAAGTACCAC -ACGGAATCGAGACAGAAGCAGAAC -ACGGAATCGAGACAGAAGGTCTAC -ACGGAATCGAGACAGAAGACGTAC -ACGGAATCGAGACAGAAGAGTGAC -ACGGAATCGAGACAGAAGCTGTAG -ACGGAATCGAGACAGAAGCCTAAG -ACGGAATCGAGACAGAAGGTTCAG -ACGGAATCGAGACAGAAGGCATAG -ACGGAATCGAGACAGAAGGACAAG -ACGGAATCGAGACAGAAGAAGCAG -ACGGAATCGAGACAGAAGCGTCAA -ACGGAATCGAGACAGAAGGCTGAA -ACGGAATCGAGACAGAAGAGTACG -ACGGAATCGAGACAGAAGATCCGA -ACGGAATCGAGACAGAAGATGGGA -ACGGAATCGAGACAGAAGGTGCAA -ACGGAATCGAGACAGAAGGAGGAA -ACGGAATCGAGACAGAAGCAGGTA -ACGGAATCGAGACAGAAGGACTCT -ACGGAATCGAGACAGAAGAGTCCT -ACGGAATCGAGACAGAAGTAAGCC -ACGGAATCGAGACAGAAGATAGCC -ACGGAATCGAGACAGAAGTAACCG -ACGGAATCGAGACAGAAGATGCCA -ACGGAATCGAGACAACGTGGAAAC -ACGGAATCGAGACAACGTAACACC -ACGGAATCGAGACAACGTATCGAG -ACGGAATCGAGACAACGTCTCCTT -ACGGAATCGAGACAACGTCCTGTT -ACGGAATCGAGACAACGTCGGTTT -ACGGAATCGAGACAACGTGTGGTT -ACGGAATCGAGACAACGTGCCTTT -ACGGAATCGAGACAACGTGGTCTT -ACGGAATCGAGACAACGTACGCTT -ACGGAATCGAGACAACGTAGCGTT -ACGGAATCGAGACAACGTTTCGTC -ACGGAATCGAGACAACGTTCTCTC -ACGGAATCGAGACAACGTTGGATC -ACGGAATCGAGACAACGTCACTTC -ACGGAATCGAGACAACGTGTACTC -ACGGAATCGAGACAACGTGATGTC -ACGGAATCGAGACAACGTACAGTC -ACGGAATCGAGACAACGTTTGCTG -ACGGAATCGAGACAACGTTCCATG -ACGGAATCGAGACAACGTTGTGTG -ACGGAATCGAGACAACGTCTAGTG -ACGGAATCGAGACAACGTCATCTG -ACGGAATCGAGACAACGTGAGTTG -ACGGAATCGAGACAACGTAGACTG -ACGGAATCGAGACAACGTTCGGTA -ACGGAATCGAGACAACGTTGCCTA -ACGGAATCGAGACAACGTCCACTA -ACGGAATCGAGACAACGTGGAGTA -ACGGAATCGAGACAACGTTCGTCT -ACGGAATCGAGACAACGTTGCACT -ACGGAATCGAGACAACGTCTGACT -ACGGAATCGAGACAACGTCAACCT -ACGGAATCGAGACAACGTGCTACT -ACGGAATCGAGACAACGTGGATCT -ACGGAATCGAGACAACGTAAGGCT -ACGGAATCGAGACAACGTTCAACC -ACGGAATCGAGACAACGTTGTTCC -ACGGAATCGAGACAACGTATTCCC -ACGGAATCGAGACAACGTTTCTCG -ACGGAATCGAGACAACGTTAGACG -ACGGAATCGAGACAACGTGTAACG -ACGGAATCGAGACAACGTACTTCG -ACGGAATCGAGACAACGTTACGCA -ACGGAATCGAGACAACGTCTTGCA -ACGGAATCGAGACAACGTCGAACA -ACGGAATCGAGACAACGTCAGTCA -ACGGAATCGAGACAACGTGATCCA -ACGGAATCGAGACAACGTACGACA -ACGGAATCGAGACAACGTAGCTCA -ACGGAATCGAGACAACGTTCACGT -ACGGAATCGAGACAACGTCGTAGT -ACGGAATCGAGACAACGTGTCAGT -ACGGAATCGAGACAACGTGAAGGT -ACGGAATCGAGACAACGTAACCGT -ACGGAATCGAGACAACGTTTGTGC -ACGGAATCGAGACAACGTCTAAGC -ACGGAATCGAGACAACGTACTAGC -ACGGAATCGAGACAACGTAGATGC -ACGGAATCGAGACAACGTTGAAGG -ACGGAATCGAGACAACGTCAATGG -ACGGAATCGAGACAACGTATGAGG -ACGGAATCGAGACAACGTAATGGG -ACGGAATCGAGACAACGTTCCTGA -ACGGAATCGAGACAACGTTAGCGA -ACGGAATCGAGACAACGTCACAGA -ACGGAATCGAGACAACGTGCAAGA -ACGGAATCGAGACAACGTGGTTGA -ACGGAATCGAGACAACGTTCCGAT -ACGGAATCGAGACAACGTTGGCAT -ACGGAATCGAGACAACGTCGAGAT -ACGGAATCGAGACAACGTTACCAC -ACGGAATCGAGACAACGTCAGAAC -ACGGAATCGAGACAACGTGTCTAC -ACGGAATCGAGACAACGTACGTAC -ACGGAATCGAGACAACGTAGTGAC -ACGGAATCGAGACAACGTCTGTAG -ACGGAATCGAGACAACGTCCTAAG -ACGGAATCGAGACAACGTGTTCAG -ACGGAATCGAGACAACGTGCATAG -ACGGAATCGAGACAACGTGACAAG -ACGGAATCGAGACAACGTAAGCAG -ACGGAATCGAGACAACGTCGTCAA -ACGGAATCGAGACAACGTGCTGAA -ACGGAATCGAGACAACGTAGTACG -ACGGAATCGAGACAACGTATCCGA -ACGGAATCGAGACAACGTATGGGA -ACGGAATCGAGACAACGTGTGCAA -ACGGAATCGAGACAACGTGAGGAA -ACGGAATCGAGACAACGTCAGGTA -ACGGAATCGAGACAACGTGACTCT -ACGGAATCGAGACAACGTAGTCCT -ACGGAATCGAGACAACGTTAAGCC -ACGGAATCGAGACAACGTATAGCC -ACGGAATCGAGACAACGTTAACCG -ACGGAATCGAGACAACGTATGCCA -ACGGAATCGAGAGAAGCTGGAAAC -ACGGAATCGAGAGAAGCTAACACC -ACGGAATCGAGAGAAGCTATCGAG -ACGGAATCGAGAGAAGCTCTCCTT -ACGGAATCGAGAGAAGCTCCTGTT -ACGGAATCGAGAGAAGCTCGGTTT -ACGGAATCGAGAGAAGCTGTGGTT -ACGGAATCGAGAGAAGCTGCCTTT -ACGGAATCGAGAGAAGCTGGTCTT -ACGGAATCGAGAGAAGCTACGCTT -ACGGAATCGAGAGAAGCTAGCGTT -ACGGAATCGAGAGAAGCTTTCGTC -ACGGAATCGAGAGAAGCTTCTCTC -ACGGAATCGAGAGAAGCTTGGATC -ACGGAATCGAGAGAAGCTCACTTC -ACGGAATCGAGAGAAGCTGTACTC -ACGGAATCGAGAGAAGCTGATGTC -ACGGAATCGAGAGAAGCTACAGTC -ACGGAATCGAGAGAAGCTTTGCTG -ACGGAATCGAGAGAAGCTTCCATG -ACGGAATCGAGAGAAGCTTGTGTG -ACGGAATCGAGAGAAGCTCTAGTG -ACGGAATCGAGAGAAGCTCATCTG -ACGGAATCGAGAGAAGCTGAGTTG -ACGGAATCGAGAGAAGCTAGACTG -ACGGAATCGAGAGAAGCTTCGGTA -ACGGAATCGAGAGAAGCTTGCCTA -ACGGAATCGAGAGAAGCTCCACTA -ACGGAATCGAGAGAAGCTGGAGTA -ACGGAATCGAGAGAAGCTTCGTCT -ACGGAATCGAGAGAAGCTTGCACT -ACGGAATCGAGAGAAGCTCTGACT -ACGGAATCGAGAGAAGCTCAACCT -ACGGAATCGAGAGAAGCTGCTACT -ACGGAATCGAGAGAAGCTGGATCT -ACGGAATCGAGAGAAGCTAAGGCT -ACGGAATCGAGAGAAGCTTCAACC -ACGGAATCGAGAGAAGCTTGTTCC -ACGGAATCGAGAGAAGCTATTCCC -ACGGAATCGAGAGAAGCTTTCTCG -ACGGAATCGAGAGAAGCTTAGACG -ACGGAATCGAGAGAAGCTGTAACG -ACGGAATCGAGAGAAGCTACTTCG -ACGGAATCGAGAGAAGCTTACGCA -ACGGAATCGAGAGAAGCTCTTGCA -ACGGAATCGAGAGAAGCTCGAACA -ACGGAATCGAGAGAAGCTCAGTCA -ACGGAATCGAGAGAAGCTGATCCA -ACGGAATCGAGAGAAGCTACGACA -ACGGAATCGAGAGAAGCTAGCTCA -ACGGAATCGAGAGAAGCTTCACGT -ACGGAATCGAGAGAAGCTCGTAGT -ACGGAATCGAGAGAAGCTGTCAGT -ACGGAATCGAGAGAAGCTGAAGGT -ACGGAATCGAGAGAAGCTAACCGT -ACGGAATCGAGAGAAGCTTTGTGC -ACGGAATCGAGAGAAGCTCTAAGC -ACGGAATCGAGAGAAGCTACTAGC -ACGGAATCGAGAGAAGCTAGATGC -ACGGAATCGAGAGAAGCTTGAAGG -ACGGAATCGAGAGAAGCTCAATGG -ACGGAATCGAGAGAAGCTATGAGG -ACGGAATCGAGAGAAGCTAATGGG -ACGGAATCGAGAGAAGCTTCCTGA -ACGGAATCGAGAGAAGCTTAGCGA -ACGGAATCGAGAGAAGCTCACAGA -ACGGAATCGAGAGAAGCTGCAAGA -ACGGAATCGAGAGAAGCTGGTTGA -ACGGAATCGAGAGAAGCTTCCGAT -ACGGAATCGAGAGAAGCTTGGCAT -ACGGAATCGAGAGAAGCTCGAGAT -ACGGAATCGAGAGAAGCTTACCAC -ACGGAATCGAGAGAAGCTCAGAAC -ACGGAATCGAGAGAAGCTGTCTAC -ACGGAATCGAGAGAAGCTACGTAC -ACGGAATCGAGAGAAGCTAGTGAC -ACGGAATCGAGAGAAGCTCTGTAG -ACGGAATCGAGAGAAGCTCCTAAG -ACGGAATCGAGAGAAGCTGTTCAG -ACGGAATCGAGAGAAGCTGCATAG -ACGGAATCGAGAGAAGCTGACAAG -ACGGAATCGAGAGAAGCTAAGCAG -ACGGAATCGAGAGAAGCTCGTCAA -ACGGAATCGAGAGAAGCTGCTGAA -ACGGAATCGAGAGAAGCTAGTACG -ACGGAATCGAGAGAAGCTATCCGA -ACGGAATCGAGAGAAGCTATGGGA -ACGGAATCGAGAGAAGCTGTGCAA -ACGGAATCGAGAGAAGCTGAGGAA -ACGGAATCGAGAGAAGCTCAGGTA -ACGGAATCGAGAGAAGCTGACTCT -ACGGAATCGAGAGAAGCTAGTCCT -ACGGAATCGAGAGAAGCTTAAGCC -ACGGAATCGAGAGAAGCTATAGCC -ACGGAATCGAGAGAAGCTTAACCG -ACGGAATCGAGAGAAGCTATGCCA -ACGGAATCGAGAACGAGTGGAAAC -ACGGAATCGAGAACGAGTAACACC -ACGGAATCGAGAACGAGTATCGAG -ACGGAATCGAGAACGAGTCTCCTT -ACGGAATCGAGAACGAGTCCTGTT -ACGGAATCGAGAACGAGTCGGTTT -ACGGAATCGAGAACGAGTGTGGTT -ACGGAATCGAGAACGAGTGCCTTT -ACGGAATCGAGAACGAGTGGTCTT -ACGGAATCGAGAACGAGTACGCTT -ACGGAATCGAGAACGAGTAGCGTT -ACGGAATCGAGAACGAGTTTCGTC -ACGGAATCGAGAACGAGTTCTCTC -ACGGAATCGAGAACGAGTTGGATC -ACGGAATCGAGAACGAGTCACTTC -ACGGAATCGAGAACGAGTGTACTC -ACGGAATCGAGAACGAGTGATGTC -ACGGAATCGAGAACGAGTACAGTC -ACGGAATCGAGAACGAGTTTGCTG -ACGGAATCGAGAACGAGTTCCATG -ACGGAATCGAGAACGAGTTGTGTG -ACGGAATCGAGAACGAGTCTAGTG -ACGGAATCGAGAACGAGTCATCTG -ACGGAATCGAGAACGAGTGAGTTG -ACGGAATCGAGAACGAGTAGACTG -ACGGAATCGAGAACGAGTTCGGTA -ACGGAATCGAGAACGAGTTGCCTA -ACGGAATCGAGAACGAGTCCACTA -ACGGAATCGAGAACGAGTGGAGTA -ACGGAATCGAGAACGAGTTCGTCT -ACGGAATCGAGAACGAGTTGCACT -ACGGAATCGAGAACGAGTCTGACT -ACGGAATCGAGAACGAGTCAACCT -ACGGAATCGAGAACGAGTGCTACT -ACGGAATCGAGAACGAGTGGATCT -ACGGAATCGAGAACGAGTAAGGCT -ACGGAATCGAGAACGAGTTCAACC -ACGGAATCGAGAACGAGTTGTTCC -ACGGAATCGAGAACGAGTATTCCC -ACGGAATCGAGAACGAGTTTCTCG -ACGGAATCGAGAACGAGTTAGACG -ACGGAATCGAGAACGAGTGTAACG -ACGGAATCGAGAACGAGTACTTCG -ACGGAATCGAGAACGAGTTACGCA -ACGGAATCGAGAACGAGTCTTGCA -ACGGAATCGAGAACGAGTCGAACA -ACGGAATCGAGAACGAGTCAGTCA -ACGGAATCGAGAACGAGTGATCCA -ACGGAATCGAGAACGAGTACGACA -ACGGAATCGAGAACGAGTAGCTCA -ACGGAATCGAGAACGAGTTCACGT -ACGGAATCGAGAACGAGTCGTAGT -ACGGAATCGAGAACGAGTGTCAGT -ACGGAATCGAGAACGAGTGAAGGT -ACGGAATCGAGAACGAGTAACCGT -ACGGAATCGAGAACGAGTTTGTGC -ACGGAATCGAGAACGAGTCTAAGC -ACGGAATCGAGAACGAGTACTAGC -ACGGAATCGAGAACGAGTAGATGC -ACGGAATCGAGAACGAGTTGAAGG -ACGGAATCGAGAACGAGTCAATGG -ACGGAATCGAGAACGAGTATGAGG -ACGGAATCGAGAACGAGTAATGGG -ACGGAATCGAGAACGAGTTCCTGA -ACGGAATCGAGAACGAGTTAGCGA -ACGGAATCGAGAACGAGTCACAGA -ACGGAATCGAGAACGAGTGCAAGA -ACGGAATCGAGAACGAGTGGTTGA -ACGGAATCGAGAACGAGTTCCGAT -ACGGAATCGAGAACGAGTTGGCAT -ACGGAATCGAGAACGAGTCGAGAT -ACGGAATCGAGAACGAGTTACCAC -ACGGAATCGAGAACGAGTCAGAAC -ACGGAATCGAGAACGAGTGTCTAC -ACGGAATCGAGAACGAGTACGTAC -ACGGAATCGAGAACGAGTAGTGAC -ACGGAATCGAGAACGAGTCTGTAG -ACGGAATCGAGAACGAGTCCTAAG -ACGGAATCGAGAACGAGTGTTCAG -ACGGAATCGAGAACGAGTGCATAG -ACGGAATCGAGAACGAGTGACAAG -ACGGAATCGAGAACGAGTAAGCAG -ACGGAATCGAGAACGAGTCGTCAA -ACGGAATCGAGAACGAGTGCTGAA -ACGGAATCGAGAACGAGTAGTACG -ACGGAATCGAGAACGAGTATCCGA -ACGGAATCGAGAACGAGTATGGGA -ACGGAATCGAGAACGAGTGTGCAA -ACGGAATCGAGAACGAGTGAGGAA -ACGGAATCGAGAACGAGTCAGGTA -ACGGAATCGAGAACGAGTGACTCT -ACGGAATCGAGAACGAGTAGTCCT -ACGGAATCGAGAACGAGTTAAGCC -ACGGAATCGAGAACGAGTATAGCC -ACGGAATCGAGAACGAGTTAACCG -ACGGAATCGAGAACGAGTATGCCA -ACGGAATCGAGACGAATCGGAAAC -ACGGAATCGAGACGAATCAACACC -ACGGAATCGAGACGAATCATCGAG -ACGGAATCGAGACGAATCCTCCTT -ACGGAATCGAGACGAATCCCTGTT -ACGGAATCGAGACGAATCCGGTTT -ACGGAATCGAGACGAATCGTGGTT -ACGGAATCGAGACGAATCGCCTTT -ACGGAATCGAGACGAATCGGTCTT -ACGGAATCGAGACGAATCACGCTT -ACGGAATCGAGACGAATCAGCGTT -ACGGAATCGAGACGAATCTTCGTC -ACGGAATCGAGACGAATCTCTCTC -ACGGAATCGAGACGAATCTGGATC -ACGGAATCGAGACGAATCCACTTC -ACGGAATCGAGACGAATCGTACTC -ACGGAATCGAGACGAATCGATGTC -ACGGAATCGAGACGAATCACAGTC -ACGGAATCGAGACGAATCTTGCTG -ACGGAATCGAGACGAATCTCCATG -ACGGAATCGAGACGAATCTGTGTG -ACGGAATCGAGACGAATCCTAGTG -ACGGAATCGAGACGAATCCATCTG -ACGGAATCGAGACGAATCGAGTTG -ACGGAATCGAGACGAATCAGACTG -ACGGAATCGAGACGAATCTCGGTA -ACGGAATCGAGACGAATCTGCCTA -ACGGAATCGAGACGAATCCCACTA -ACGGAATCGAGACGAATCGGAGTA -ACGGAATCGAGACGAATCTCGTCT -ACGGAATCGAGACGAATCTGCACT -ACGGAATCGAGACGAATCCTGACT -ACGGAATCGAGACGAATCCAACCT -ACGGAATCGAGACGAATCGCTACT -ACGGAATCGAGACGAATCGGATCT -ACGGAATCGAGACGAATCAAGGCT -ACGGAATCGAGACGAATCTCAACC -ACGGAATCGAGACGAATCTGTTCC -ACGGAATCGAGACGAATCATTCCC -ACGGAATCGAGACGAATCTTCTCG -ACGGAATCGAGACGAATCTAGACG -ACGGAATCGAGACGAATCGTAACG -ACGGAATCGAGACGAATCACTTCG -ACGGAATCGAGACGAATCTACGCA -ACGGAATCGAGACGAATCCTTGCA -ACGGAATCGAGACGAATCCGAACA -ACGGAATCGAGACGAATCCAGTCA -ACGGAATCGAGACGAATCGATCCA -ACGGAATCGAGACGAATCACGACA -ACGGAATCGAGACGAATCAGCTCA -ACGGAATCGAGACGAATCTCACGT -ACGGAATCGAGACGAATCCGTAGT -ACGGAATCGAGACGAATCGTCAGT -ACGGAATCGAGACGAATCGAAGGT -ACGGAATCGAGACGAATCAACCGT -ACGGAATCGAGACGAATCTTGTGC -ACGGAATCGAGACGAATCCTAAGC -ACGGAATCGAGACGAATCACTAGC -ACGGAATCGAGACGAATCAGATGC -ACGGAATCGAGACGAATCTGAAGG -ACGGAATCGAGACGAATCCAATGG -ACGGAATCGAGACGAATCATGAGG -ACGGAATCGAGACGAATCAATGGG -ACGGAATCGAGACGAATCTCCTGA -ACGGAATCGAGACGAATCTAGCGA -ACGGAATCGAGACGAATCCACAGA -ACGGAATCGAGACGAATCGCAAGA -ACGGAATCGAGACGAATCGGTTGA -ACGGAATCGAGACGAATCTCCGAT -ACGGAATCGAGACGAATCTGGCAT -ACGGAATCGAGACGAATCCGAGAT -ACGGAATCGAGACGAATCTACCAC -ACGGAATCGAGACGAATCCAGAAC -ACGGAATCGAGACGAATCGTCTAC -ACGGAATCGAGACGAATCACGTAC -ACGGAATCGAGACGAATCAGTGAC -ACGGAATCGAGACGAATCCTGTAG -ACGGAATCGAGACGAATCCCTAAG -ACGGAATCGAGACGAATCGTTCAG -ACGGAATCGAGACGAATCGCATAG -ACGGAATCGAGACGAATCGACAAG -ACGGAATCGAGACGAATCAAGCAG -ACGGAATCGAGACGAATCCGTCAA -ACGGAATCGAGACGAATCGCTGAA -ACGGAATCGAGACGAATCAGTACG -ACGGAATCGAGACGAATCATCCGA -ACGGAATCGAGACGAATCATGGGA -ACGGAATCGAGACGAATCGTGCAA -ACGGAATCGAGACGAATCGAGGAA -ACGGAATCGAGACGAATCCAGGTA -ACGGAATCGAGACGAATCGACTCT -ACGGAATCGAGACGAATCAGTCCT -ACGGAATCGAGACGAATCTAAGCC -ACGGAATCGAGACGAATCATAGCC -ACGGAATCGAGACGAATCTAACCG -ACGGAATCGAGACGAATCATGCCA -ACGGAATCGAGAGGAATGGGAAAC -ACGGAATCGAGAGGAATGAACACC -ACGGAATCGAGAGGAATGATCGAG -ACGGAATCGAGAGGAATGCTCCTT -ACGGAATCGAGAGGAATGCCTGTT -ACGGAATCGAGAGGAATGCGGTTT -ACGGAATCGAGAGGAATGGTGGTT -ACGGAATCGAGAGGAATGGCCTTT -ACGGAATCGAGAGGAATGGGTCTT -ACGGAATCGAGAGGAATGACGCTT -ACGGAATCGAGAGGAATGAGCGTT -ACGGAATCGAGAGGAATGTTCGTC -ACGGAATCGAGAGGAATGTCTCTC -ACGGAATCGAGAGGAATGTGGATC -ACGGAATCGAGAGGAATGCACTTC -ACGGAATCGAGAGGAATGGTACTC -ACGGAATCGAGAGGAATGGATGTC -ACGGAATCGAGAGGAATGACAGTC -ACGGAATCGAGAGGAATGTTGCTG -ACGGAATCGAGAGGAATGTCCATG -ACGGAATCGAGAGGAATGTGTGTG -ACGGAATCGAGAGGAATGCTAGTG -ACGGAATCGAGAGGAATGCATCTG -ACGGAATCGAGAGGAATGGAGTTG -ACGGAATCGAGAGGAATGAGACTG -ACGGAATCGAGAGGAATGTCGGTA -ACGGAATCGAGAGGAATGTGCCTA -ACGGAATCGAGAGGAATGCCACTA -ACGGAATCGAGAGGAATGGGAGTA -ACGGAATCGAGAGGAATGTCGTCT -ACGGAATCGAGAGGAATGTGCACT -ACGGAATCGAGAGGAATGCTGACT -ACGGAATCGAGAGGAATGCAACCT -ACGGAATCGAGAGGAATGGCTACT -ACGGAATCGAGAGGAATGGGATCT -ACGGAATCGAGAGGAATGAAGGCT -ACGGAATCGAGAGGAATGTCAACC -ACGGAATCGAGAGGAATGTGTTCC -ACGGAATCGAGAGGAATGATTCCC -ACGGAATCGAGAGGAATGTTCTCG -ACGGAATCGAGAGGAATGTAGACG -ACGGAATCGAGAGGAATGGTAACG -ACGGAATCGAGAGGAATGACTTCG -ACGGAATCGAGAGGAATGTACGCA -ACGGAATCGAGAGGAATGCTTGCA -ACGGAATCGAGAGGAATGCGAACA -ACGGAATCGAGAGGAATGCAGTCA -ACGGAATCGAGAGGAATGGATCCA -ACGGAATCGAGAGGAATGACGACA -ACGGAATCGAGAGGAATGAGCTCA -ACGGAATCGAGAGGAATGTCACGT -ACGGAATCGAGAGGAATGCGTAGT -ACGGAATCGAGAGGAATGGTCAGT -ACGGAATCGAGAGGAATGGAAGGT -ACGGAATCGAGAGGAATGAACCGT -ACGGAATCGAGAGGAATGTTGTGC -ACGGAATCGAGAGGAATGCTAAGC -ACGGAATCGAGAGGAATGACTAGC -ACGGAATCGAGAGGAATGAGATGC -ACGGAATCGAGAGGAATGTGAAGG -ACGGAATCGAGAGGAATGCAATGG -ACGGAATCGAGAGGAATGATGAGG -ACGGAATCGAGAGGAATGAATGGG -ACGGAATCGAGAGGAATGTCCTGA -ACGGAATCGAGAGGAATGTAGCGA -ACGGAATCGAGAGGAATGCACAGA -ACGGAATCGAGAGGAATGGCAAGA -ACGGAATCGAGAGGAATGGGTTGA -ACGGAATCGAGAGGAATGTCCGAT -ACGGAATCGAGAGGAATGTGGCAT -ACGGAATCGAGAGGAATGCGAGAT -ACGGAATCGAGAGGAATGTACCAC -ACGGAATCGAGAGGAATGCAGAAC -ACGGAATCGAGAGGAATGGTCTAC -ACGGAATCGAGAGGAATGACGTAC -ACGGAATCGAGAGGAATGAGTGAC -ACGGAATCGAGAGGAATGCTGTAG -ACGGAATCGAGAGGAATGCCTAAG -ACGGAATCGAGAGGAATGGTTCAG -ACGGAATCGAGAGGAATGGCATAG -ACGGAATCGAGAGGAATGGACAAG -ACGGAATCGAGAGGAATGAAGCAG -ACGGAATCGAGAGGAATGCGTCAA -ACGGAATCGAGAGGAATGGCTGAA -ACGGAATCGAGAGGAATGAGTACG -ACGGAATCGAGAGGAATGATCCGA -ACGGAATCGAGAGGAATGATGGGA -ACGGAATCGAGAGGAATGGTGCAA -ACGGAATCGAGAGGAATGGAGGAA -ACGGAATCGAGAGGAATGCAGGTA -ACGGAATCGAGAGGAATGGACTCT -ACGGAATCGAGAGGAATGAGTCCT -ACGGAATCGAGAGGAATGTAAGCC -ACGGAATCGAGAGGAATGATAGCC -ACGGAATCGAGAGGAATGTAACCG -ACGGAATCGAGAGGAATGATGCCA -ACGGAATCGAGACAAGTGGGAAAC -ACGGAATCGAGACAAGTGAACACC -ACGGAATCGAGACAAGTGATCGAG -ACGGAATCGAGACAAGTGCTCCTT -ACGGAATCGAGACAAGTGCCTGTT -ACGGAATCGAGACAAGTGCGGTTT -ACGGAATCGAGACAAGTGGTGGTT -ACGGAATCGAGACAAGTGGCCTTT -ACGGAATCGAGACAAGTGGGTCTT -ACGGAATCGAGACAAGTGACGCTT -ACGGAATCGAGACAAGTGAGCGTT -ACGGAATCGAGACAAGTGTTCGTC -ACGGAATCGAGACAAGTGTCTCTC -ACGGAATCGAGACAAGTGTGGATC -ACGGAATCGAGACAAGTGCACTTC -ACGGAATCGAGACAAGTGGTACTC -ACGGAATCGAGACAAGTGGATGTC -ACGGAATCGAGACAAGTGACAGTC -ACGGAATCGAGACAAGTGTTGCTG -ACGGAATCGAGACAAGTGTCCATG -ACGGAATCGAGACAAGTGTGTGTG -ACGGAATCGAGACAAGTGCTAGTG -ACGGAATCGAGACAAGTGCATCTG -ACGGAATCGAGACAAGTGGAGTTG -ACGGAATCGAGACAAGTGAGACTG -ACGGAATCGAGACAAGTGTCGGTA -ACGGAATCGAGACAAGTGTGCCTA -ACGGAATCGAGACAAGTGCCACTA -ACGGAATCGAGACAAGTGGGAGTA -ACGGAATCGAGACAAGTGTCGTCT -ACGGAATCGAGACAAGTGTGCACT -ACGGAATCGAGACAAGTGCTGACT -ACGGAATCGAGACAAGTGCAACCT -ACGGAATCGAGACAAGTGGCTACT -ACGGAATCGAGACAAGTGGGATCT -ACGGAATCGAGACAAGTGAAGGCT -ACGGAATCGAGACAAGTGTCAACC -ACGGAATCGAGACAAGTGTGTTCC -ACGGAATCGAGACAAGTGATTCCC -ACGGAATCGAGACAAGTGTTCTCG -ACGGAATCGAGACAAGTGTAGACG -ACGGAATCGAGACAAGTGGTAACG -ACGGAATCGAGACAAGTGACTTCG -ACGGAATCGAGACAAGTGTACGCA -ACGGAATCGAGACAAGTGCTTGCA -ACGGAATCGAGACAAGTGCGAACA -ACGGAATCGAGACAAGTGCAGTCA -ACGGAATCGAGACAAGTGGATCCA -ACGGAATCGAGACAAGTGACGACA -ACGGAATCGAGACAAGTGAGCTCA -ACGGAATCGAGACAAGTGTCACGT -ACGGAATCGAGACAAGTGCGTAGT -ACGGAATCGAGACAAGTGGTCAGT -ACGGAATCGAGACAAGTGGAAGGT -ACGGAATCGAGACAAGTGAACCGT -ACGGAATCGAGACAAGTGTTGTGC -ACGGAATCGAGACAAGTGCTAAGC -ACGGAATCGAGACAAGTGACTAGC -ACGGAATCGAGACAAGTGAGATGC -ACGGAATCGAGACAAGTGTGAAGG -ACGGAATCGAGACAAGTGCAATGG -ACGGAATCGAGACAAGTGATGAGG -ACGGAATCGAGACAAGTGAATGGG -ACGGAATCGAGACAAGTGTCCTGA -ACGGAATCGAGACAAGTGTAGCGA -ACGGAATCGAGACAAGTGCACAGA -ACGGAATCGAGACAAGTGGCAAGA -ACGGAATCGAGACAAGTGGGTTGA -ACGGAATCGAGACAAGTGTCCGAT -ACGGAATCGAGACAAGTGTGGCAT -ACGGAATCGAGACAAGTGCGAGAT -ACGGAATCGAGACAAGTGTACCAC -ACGGAATCGAGACAAGTGCAGAAC -ACGGAATCGAGACAAGTGGTCTAC -ACGGAATCGAGACAAGTGACGTAC -ACGGAATCGAGACAAGTGAGTGAC -ACGGAATCGAGACAAGTGCTGTAG -ACGGAATCGAGACAAGTGCCTAAG -ACGGAATCGAGACAAGTGGTTCAG -ACGGAATCGAGACAAGTGGCATAG -ACGGAATCGAGACAAGTGGACAAG -ACGGAATCGAGACAAGTGAAGCAG -ACGGAATCGAGACAAGTGCGTCAA -ACGGAATCGAGACAAGTGGCTGAA -ACGGAATCGAGACAAGTGAGTACG -ACGGAATCGAGACAAGTGATCCGA -ACGGAATCGAGACAAGTGATGGGA -ACGGAATCGAGACAAGTGGTGCAA -ACGGAATCGAGACAAGTGGAGGAA -ACGGAATCGAGACAAGTGCAGGTA -ACGGAATCGAGACAAGTGGACTCT -ACGGAATCGAGACAAGTGAGTCCT -ACGGAATCGAGACAAGTGTAAGCC -ACGGAATCGAGACAAGTGATAGCC -ACGGAATCGAGACAAGTGTAACCG -ACGGAATCGAGACAAGTGATGCCA -ACGGAATCGAGAGAAGAGGGAAAC -ACGGAATCGAGAGAAGAGAACACC -ACGGAATCGAGAGAAGAGATCGAG -ACGGAATCGAGAGAAGAGCTCCTT -ACGGAATCGAGAGAAGAGCCTGTT -ACGGAATCGAGAGAAGAGCGGTTT -ACGGAATCGAGAGAAGAGGTGGTT -ACGGAATCGAGAGAAGAGGCCTTT -ACGGAATCGAGAGAAGAGGGTCTT -ACGGAATCGAGAGAAGAGACGCTT -ACGGAATCGAGAGAAGAGAGCGTT -ACGGAATCGAGAGAAGAGTTCGTC -ACGGAATCGAGAGAAGAGTCTCTC -ACGGAATCGAGAGAAGAGTGGATC -ACGGAATCGAGAGAAGAGCACTTC -ACGGAATCGAGAGAAGAGGTACTC -ACGGAATCGAGAGAAGAGGATGTC -ACGGAATCGAGAGAAGAGACAGTC -ACGGAATCGAGAGAAGAGTTGCTG -ACGGAATCGAGAGAAGAGTCCATG -ACGGAATCGAGAGAAGAGTGTGTG -ACGGAATCGAGAGAAGAGCTAGTG -ACGGAATCGAGAGAAGAGCATCTG -ACGGAATCGAGAGAAGAGGAGTTG -ACGGAATCGAGAGAAGAGAGACTG -ACGGAATCGAGAGAAGAGTCGGTA -ACGGAATCGAGAGAAGAGTGCCTA -ACGGAATCGAGAGAAGAGCCACTA -ACGGAATCGAGAGAAGAGGGAGTA -ACGGAATCGAGAGAAGAGTCGTCT -ACGGAATCGAGAGAAGAGTGCACT -ACGGAATCGAGAGAAGAGCTGACT -ACGGAATCGAGAGAAGAGCAACCT -ACGGAATCGAGAGAAGAGGCTACT -ACGGAATCGAGAGAAGAGGGATCT -ACGGAATCGAGAGAAGAGAAGGCT -ACGGAATCGAGAGAAGAGTCAACC -ACGGAATCGAGAGAAGAGTGTTCC -ACGGAATCGAGAGAAGAGATTCCC -ACGGAATCGAGAGAAGAGTTCTCG -ACGGAATCGAGAGAAGAGTAGACG -ACGGAATCGAGAGAAGAGGTAACG -ACGGAATCGAGAGAAGAGACTTCG -ACGGAATCGAGAGAAGAGTACGCA -ACGGAATCGAGAGAAGAGCTTGCA -ACGGAATCGAGAGAAGAGCGAACA -ACGGAATCGAGAGAAGAGCAGTCA -ACGGAATCGAGAGAAGAGGATCCA -ACGGAATCGAGAGAAGAGACGACA -ACGGAATCGAGAGAAGAGAGCTCA -ACGGAATCGAGAGAAGAGTCACGT -ACGGAATCGAGAGAAGAGCGTAGT -ACGGAATCGAGAGAAGAGGTCAGT -ACGGAATCGAGAGAAGAGGAAGGT -ACGGAATCGAGAGAAGAGAACCGT -ACGGAATCGAGAGAAGAGTTGTGC -ACGGAATCGAGAGAAGAGCTAAGC -ACGGAATCGAGAGAAGAGACTAGC -ACGGAATCGAGAGAAGAGAGATGC -ACGGAATCGAGAGAAGAGTGAAGG -ACGGAATCGAGAGAAGAGCAATGG -ACGGAATCGAGAGAAGAGATGAGG -ACGGAATCGAGAGAAGAGAATGGG -ACGGAATCGAGAGAAGAGTCCTGA -ACGGAATCGAGAGAAGAGTAGCGA -ACGGAATCGAGAGAAGAGCACAGA -ACGGAATCGAGAGAAGAGGCAAGA -ACGGAATCGAGAGAAGAGGGTTGA -ACGGAATCGAGAGAAGAGTCCGAT -ACGGAATCGAGAGAAGAGTGGCAT -ACGGAATCGAGAGAAGAGCGAGAT -ACGGAATCGAGAGAAGAGTACCAC -ACGGAATCGAGAGAAGAGCAGAAC -ACGGAATCGAGAGAAGAGGTCTAC -ACGGAATCGAGAGAAGAGACGTAC -ACGGAATCGAGAGAAGAGAGTGAC -ACGGAATCGAGAGAAGAGCTGTAG -ACGGAATCGAGAGAAGAGCCTAAG -ACGGAATCGAGAGAAGAGGTTCAG -ACGGAATCGAGAGAAGAGGCATAG -ACGGAATCGAGAGAAGAGGACAAG -ACGGAATCGAGAGAAGAGAAGCAG -ACGGAATCGAGAGAAGAGCGTCAA -ACGGAATCGAGAGAAGAGGCTGAA -ACGGAATCGAGAGAAGAGAGTACG -ACGGAATCGAGAGAAGAGATCCGA -ACGGAATCGAGAGAAGAGATGGGA -ACGGAATCGAGAGAAGAGGTGCAA -ACGGAATCGAGAGAAGAGGAGGAA -ACGGAATCGAGAGAAGAGCAGGTA -ACGGAATCGAGAGAAGAGGACTCT -ACGGAATCGAGAGAAGAGAGTCCT -ACGGAATCGAGAGAAGAGTAAGCC -ACGGAATCGAGAGAAGAGATAGCC -ACGGAATCGAGAGAAGAGTAACCG -ACGGAATCGAGAGAAGAGATGCCA -ACGGAATCGAGAGTACAGGGAAAC -ACGGAATCGAGAGTACAGAACACC -ACGGAATCGAGAGTACAGATCGAG -ACGGAATCGAGAGTACAGCTCCTT -ACGGAATCGAGAGTACAGCCTGTT -ACGGAATCGAGAGTACAGCGGTTT -ACGGAATCGAGAGTACAGGTGGTT -ACGGAATCGAGAGTACAGGCCTTT -ACGGAATCGAGAGTACAGGGTCTT -ACGGAATCGAGAGTACAGACGCTT -ACGGAATCGAGAGTACAGAGCGTT -ACGGAATCGAGAGTACAGTTCGTC -ACGGAATCGAGAGTACAGTCTCTC -ACGGAATCGAGAGTACAGTGGATC -ACGGAATCGAGAGTACAGCACTTC -ACGGAATCGAGAGTACAGGTACTC -ACGGAATCGAGAGTACAGGATGTC -ACGGAATCGAGAGTACAGACAGTC -ACGGAATCGAGAGTACAGTTGCTG -ACGGAATCGAGAGTACAGTCCATG -ACGGAATCGAGAGTACAGTGTGTG -ACGGAATCGAGAGTACAGCTAGTG -ACGGAATCGAGAGTACAGCATCTG -ACGGAATCGAGAGTACAGGAGTTG -ACGGAATCGAGAGTACAGAGACTG -ACGGAATCGAGAGTACAGTCGGTA -ACGGAATCGAGAGTACAGTGCCTA -ACGGAATCGAGAGTACAGCCACTA -ACGGAATCGAGAGTACAGGGAGTA -ACGGAATCGAGAGTACAGTCGTCT -ACGGAATCGAGAGTACAGTGCACT -ACGGAATCGAGAGTACAGCTGACT -ACGGAATCGAGAGTACAGCAACCT -ACGGAATCGAGAGTACAGGCTACT -ACGGAATCGAGAGTACAGGGATCT -ACGGAATCGAGAGTACAGAAGGCT -ACGGAATCGAGAGTACAGTCAACC -ACGGAATCGAGAGTACAGTGTTCC -ACGGAATCGAGAGTACAGATTCCC -ACGGAATCGAGAGTACAGTTCTCG -ACGGAATCGAGAGTACAGTAGACG -ACGGAATCGAGAGTACAGGTAACG -ACGGAATCGAGAGTACAGACTTCG -ACGGAATCGAGAGTACAGTACGCA -ACGGAATCGAGAGTACAGCTTGCA -ACGGAATCGAGAGTACAGCGAACA -ACGGAATCGAGAGTACAGCAGTCA -ACGGAATCGAGAGTACAGGATCCA -ACGGAATCGAGAGTACAGACGACA -ACGGAATCGAGAGTACAGAGCTCA -ACGGAATCGAGAGTACAGTCACGT -ACGGAATCGAGAGTACAGCGTAGT -ACGGAATCGAGAGTACAGGTCAGT -ACGGAATCGAGAGTACAGGAAGGT -ACGGAATCGAGAGTACAGAACCGT -ACGGAATCGAGAGTACAGTTGTGC -ACGGAATCGAGAGTACAGCTAAGC -ACGGAATCGAGAGTACAGACTAGC -ACGGAATCGAGAGTACAGAGATGC -ACGGAATCGAGAGTACAGTGAAGG -ACGGAATCGAGAGTACAGCAATGG -ACGGAATCGAGAGTACAGATGAGG -ACGGAATCGAGAGTACAGAATGGG -ACGGAATCGAGAGTACAGTCCTGA -ACGGAATCGAGAGTACAGTAGCGA -ACGGAATCGAGAGTACAGCACAGA -ACGGAATCGAGAGTACAGGCAAGA -ACGGAATCGAGAGTACAGGGTTGA -ACGGAATCGAGAGTACAGTCCGAT -ACGGAATCGAGAGTACAGTGGCAT -ACGGAATCGAGAGTACAGCGAGAT -ACGGAATCGAGAGTACAGTACCAC -ACGGAATCGAGAGTACAGCAGAAC -ACGGAATCGAGAGTACAGGTCTAC -ACGGAATCGAGAGTACAGACGTAC -ACGGAATCGAGAGTACAGAGTGAC -ACGGAATCGAGAGTACAGCTGTAG -ACGGAATCGAGAGTACAGCCTAAG -ACGGAATCGAGAGTACAGGTTCAG -ACGGAATCGAGAGTACAGGCATAG -ACGGAATCGAGAGTACAGGACAAG -ACGGAATCGAGAGTACAGAAGCAG -ACGGAATCGAGAGTACAGCGTCAA -ACGGAATCGAGAGTACAGGCTGAA -ACGGAATCGAGAGTACAGAGTACG -ACGGAATCGAGAGTACAGATCCGA -ACGGAATCGAGAGTACAGATGGGA -ACGGAATCGAGAGTACAGGTGCAA -ACGGAATCGAGAGTACAGGAGGAA -ACGGAATCGAGAGTACAGCAGGTA -ACGGAATCGAGAGTACAGGACTCT -ACGGAATCGAGAGTACAGAGTCCT -ACGGAATCGAGAGTACAGTAAGCC -ACGGAATCGAGAGTACAGATAGCC -ACGGAATCGAGAGTACAGTAACCG -ACGGAATCGAGAGTACAGATGCCA -ACGGAATCGAGATCTGACGGAAAC -ACGGAATCGAGATCTGACAACACC -ACGGAATCGAGATCTGACATCGAG -ACGGAATCGAGATCTGACCTCCTT -ACGGAATCGAGATCTGACCCTGTT -ACGGAATCGAGATCTGACCGGTTT -ACGGAATCGAGATCTGACGTGGTT -ACGGAATCGAGATCTGACGCCTTT -ACGGAATCGAGATCTGACGGTCTT -ACGGAATCGAGATCTGACACGCTT -ACGGAATCGAGATCTGACAGCGTT -ACGGAATCGAGATCTGACTTCGTC -ACGGAATCGAGATCTGACTCTCTC -ACGGAATCGAGATCTGACTGGATC -ACGGAATCGAGATCTGACCACTTC -ACGGAATCGAGATCTGACGTACTC -ACGGAATCGAGATCTGACGATGTC -ACGGAATCGAGATCTGACACAGTC -ACGGAATCGAGATCTGACTTGCTG -ACGGAATCGAGATCTGACTCCATG -ACGGAATCGAGATCTGACTGTGTG -ACGGAATCGAGATCTGACCTAGTG -ACGGAATCGAGATCTGACCATCTG -ACGGAATCGAGATCTGACGAGTTG -ACGGAATCGAGATCTGACAGACTG -ACGGAATCGAGATCTGACTCGGTA -ACGGAATCGAGATCTGACTGCCTA -ACGGAATCGAGATCTGACCCACTA -ACGGAATCGAGATCTGACGGAGTA -ACGGAATCGAGATCTGACTCGTCT -ACGGAATCGAGATCTGACTGCACT -ACGGAATCGAGATCTGACCTGACT -ACGGAATCGAGATCTGACCAACCT -ACGGAATCGAGATCTGACGCTACT -ACGGAATCGAGATCTGACGGATCT -ACGGAATCGAGATCTGACAAGGCT -ACGGAATCGAGATCTGACTCAACC -ACGGAATCGAGATCTGACTGTTCC -ACGGAATCGAGATCTGACATTCCC -ACGGAATCGAGATCTGACTTCTCG -ACGGAATCGAGATCTGACTAGACG -ACGGAATCGAGATCTGACGTAACG -ACGGAATCGAGATCTGACACTTCG -ACGGAATCGAGATCTGACTACGCA -ACGGAATCGAGATCTGACCTTGCA -ACGGAATCGAGATCTGACCGAACA -ACGGAATCGAGATCTGACCAGTCA -ACGGAATCGAGATCTGACGATCCA -ACGGAATCGAGATCTGACACGACA -ACGGAATCGAGATCTGACAGCTCA -ACGGAATCGAGATCTGACTCACGT -ACGGAATCGAGATCTGACCGTAGT -ACGGAATCGAGATCTGACGTCAGT -ACGGAATCGAGATCTGACGAAGGT -ACGGAATCGAGATCTGACAACCGT -ACGGAATCGAGATCTGACTTGTGC -ACGGAATCGAGATCTGACCTAAGC -ACGGAATCGAGATCTGACACTAGC -ACGGAATCGAGATCTGACAGATGC -ACGGAATCGAGATCTGACTGAAGG -ACGGAATCGAGATCTGACCAATGG -ACGGAATCGAGATCTGACATGAGG -ACGGAATCGAGATCTGACAATGGG -ACGGAATCGAGATCTGACTCCTGA -ACGGAATCGAGATCTGACTAGCGA -ACGGAATCGAGATCTGACCACAGA -ACGGAATCGAGATCTGACGCAAGA -ACGGAATCGAGATCTGACGGTTGA -ACGGAATCGAGATCTGACTCCGAT -ACGGAATCGAGATCTGACTGGCAT -ACGGAATCGAGATCTGACCGAGAT -ACGGAATCGAGATCTGACTACCAC -ACGGAATCGAGATCTGACCAGAAC -ACGGAATCGAGATCTGACGTCTAC -ACGGAATCGAGATCTGACACGTAC -ACGGAATCGAGATCTGACAGTGAC -ACGGAATCGAGATCTGACCTGTAG -ACGGAATCGAGATCTGACCCTAAG -ACGGAATCGAGATCTGACGTTCAG -ACGGAATCGAGATCTGACGCATAG -ACGGAATCGAGATCTGACGACAAG -ACGGAATCGAGATCTGACAAGCAG -ACGGAATCGAGATCTGACCGTCAA -ACGGAATCGAGATCTGACGCTGAA -ACGGAATCGAGATCTGACAGTACG -ACGGAATCGAGATCTGACATCCGA -ACGGAATCGAGATCTGACATGGGA -ACGGAATCGAGATCTGACGTGCAA -ACGGAATCGAGATCTGACGAGGAA -ACGGAATCGAGATCTGACCAGGTA -ACGGAATCGAGATCTGACGACTCT -ACGGAATCGAGATCTGACAGTCCT -ACGGAATCGAGATCTGACTAAGCC -ACGGAATCGAGATCTGACATAGCC -ACGGAATCGAGATCTGACTAACCG -ACGGAATCGAGATCTGACATGCCA -ACGGAATCGAGACCTAGTGGAAAC -ACGGAATCGAGACCTAGTAACACC -ACGGAATCGAGACCTAGTATCGAG -ACGGAATCGAGACCTAGTCTCCTT -ACGGAATCGAGACCTAGTCCTGTT -ACGGAATCGAGACCTAGTCGGTTT -ACGGAATCGAGACCTAGTGTGGTT -ACGGAATCGAGACCTAGTGCCTTT -ACGGAATCGAGACCTAGTGGTCTT -ACGGAATCGAGACCTAGTACGCTT -ACGGAATCGAGACCTAGTAGCGTT -ACGGAATCGAGACCTAGTTTCGTC -ACGGAATCGAGACCTAGTTCTCTC -ACGGAATCGAGACCTAGTTGGATC -ACGGAATCGAGACCTAGTCACTTC -ACGGAATCGAGACCTAGTGTACTC -ACGGAATCGAGACCTAGTGATGTC -ACGGAATCGAGACCTAGTACAGTC -ACGGAATCGAGACCTAGTTTGCTG -ACGGAATCGAGACCTAGTTCCATG -ACGGAATCGAGACCTAGTTGTGTG -ACGGAATCGAGACCTAGTCTAGTG -ACGGAATCGAGACCTAGTCATCTG -ACGGAATCGAGACCTAGTGAGTTG -ACGGAATCGAGACCTAGTAGACTG -ACGGAATCGAGACCTAGTTCGGTA -ACGGAATCGAGACCTAGTTGCCTA -ACGGAATCGAGACCTAGTCCACTA -ACGGAATCGAGACCTAGTGGAGTA -ACGGAATCGAGACCTAGTTCGTCT -ACGGAATCGAGACCTAGTTGCACT -ACGGAATCGAGACCTAGTCTGACT -ACGGAATCGAGACCTAGTCAACCT -ACGGAATCGAGACCTAGTGCTACT -ACGGAATCGAGACCTAGTGGATCT -ACGGAATCGAGACCTAGTAAGGCT -ACGGAATCGAGACCTAGTTCAACC -ACGGAATCGAGACCTAGTTGTTCC -ACGGAATCGAGACCTAGTATTCCC -ACGGAATCGAGACCTAGTTTCTCG -ACGGAATCGAGACCTAGTTAGACG -ACGGAATCGAGACCTAGTGTAACG -ACGGAATCGAGACCTAGTACTTCG -ACGGAATCGAGACCTAGTTACGCA -ACGGAATCGAGACCTAGTCTTGCA -ACGGAATCGAGACCTAGTCGAACA -ACGGAATCGAGACCTAGTCAGTCA -ACGGAATCGAGACCTAGTGATCCA -ACGGAATCGAGACCTAGTACGACA -ACGGAATCGAGACCTAGTAGCTCA -ACGGAATCGAGACCTAGTTCACGT -ACGGAATCGAGACCTAGTCGTAGT -ACGGAATCGAGACCTAGTGTCAGT -ACGGAATCGAGACCTAGTGAAGGT -ACGGAATCGAGACCTAGTAACCGT -ACGGAATCGAGACCTAGTTTGTGC -ACGGAATCGAGACCTAGTCTAAGC -ACGGAATCGAGACCTAGTACTAGC -ACGGAATCGAGACCTAGTAGATGC -ACGGAATCGAGACCTAGTTGAAGG -ACGGAATCGAGACCTAGTCAATGG -ACGGAATCGAGACCTAGTATGAGG -ACGGAATCGAGACCTAGTAATGGG -ACGGAATCGAGACCTAGTTCCTGA -ACGGAATCGAGACCTAGTTAGCGA -ACGGAATCGAGACCTAGTCACAGA -ACGGAATCGAGACCTAGTGCAAGA -ACGGAATCGAGACCTAGTGGTTGA -ACGGAATCGAGACCTAGTTCCGAT -ACGGAATCGAGACCTAGTTGGCAT -ACGGAATCGAGACCTAGTCGAGAT -ACGGAATCGAGACCTAGTTACCAC -ACGGAATCGAGACCTAGTCAGAAC -ACGGAATCGAGACCTAGTGTCTAC -ACGGAATCGAGACCTAGTACGTAC -ACGGAATCGAGACCTAGTAGTGAC -ACGGAATCGAGACCTAGTCTGTAG -ACGGAATCGAGACCTAGTCCTAAG -ACGGAATCGAGACCTAGTGTTCAG -ACGGAATCGAGACCTAGTGCATAG -ACGGAATCGAGACCTAGTGACAAG -ACGGAATCGAGACCTAGTAAGCAG -ACGGAATCGAGACCTAGTCGTCAA -ACGGAATCGAGACCTAGTGCTGAA -ACGGAATCGAGACCTAGTAGTACG -ACGGAATCGAGACCTAGTATCCGA -ACGGAATCGAGACCTAGTATGGGA -ACGGAATCGAGACCTAGTGTGCAA -ACGGAATCGAGACCTAGTGAGGAA -ACGGAATCGAGACCTAGTCAGGTA -ACGGAATCGAGACCTAGTGACTCT -ACGGAATCGAGACCTAGTAGTCCT -ACGGAATCGAGACCTAGTTAAGCC -ACGGAATCGAGACCTAGTATAGCC -ACGGAATCGAGACCTAGTTAACCG -ACGGAATCGAGACCTAGTATGCCA -ACGGAATCGAGAGCCTAAGGAAAC -ACGGAATCGAGAGCCTAAAACACC -ACGGAATCGAGAGCCTAAATCGAG -ACGGAATCGAGAGCCTAACTCCTT -ACGGAATCGAGAGCCTAACCTGTT -ACGGAATCGAGAGCCTAACGGTTT -ACGGAATCGAGAGCCTAAGTGGTT -ACGGAATCGAGAGCCTAAGCCTTT -ACGGAATCGAGAGCCTAAGGTCTT -ACGGAATCGAGAGCCTAAACGCTT -ACGGAATCGAGAGCCTAAAGCGTT -ACGGAATCGAGAGCCTAATTCGTC -ACGGAATCGAGAGCCTAATCTCTC -ACGGAATCGAGAGCCTAATGGATC -ACGGAATCGAGAGCCTAACACTTC -ACGGAATCGAGAGCCTAAGTACTC -ACGGAATCGAGAGCCTAAGATGTC -ACGGAATCGAGAGCCTAAACAGTC -ACGGAATCGAGAGCCTAATTGCTG -ACGGAATCGAGAGCCTAATCCATG -ACGGAATCGAGAGCCTAATGTGTG -ACGGAATCGAGAGCCTAACTAGTG -ACGGAATCGAGAGCCTAACATCTG -ACGGAATCGAGAGCCTAAGAGTTG -ACGGAATCGAGAGCCTAAAGACTG -ACGGAATCGAGAGCCTAATCGGTA -ACGGAATCGAGAGCCTAATGCCTA -ACGGAATCGAGAGCCTAACCACTA -ACGGAATCGAGAGCCTAAGGAGTA -ACGGAATCGAGAGCCTAATCGTCT -ACGGAATCGAGAGCCTAATGCACT -ACGGAATCGAGAGCCTAACTGACT -ACGGAATCGAGAGCCTAACAACCT -ACGGAATCGAGAGCCTAAGCTACT -ACGGAATCGAGAGCCTAAGGATCT -ACGGAATCGAGAGCCTAAAAGGCT -ACGGAATCGAGAGCCTAATCAACC -ACGGAATCGAGAGCCTAATGTTCC -ACGGAATCGAGAGCCTAAATTCCC -ACGGAATCGAGAGCCTAATTCTCG -ACGGAATCGAGAGCCTAATAGACG -ACGGAATCGAGAGCCTAAGTAACG -ACGGAATCGAGAGCCTAAACTTCG -ACGGAATCGAGAGCCTAATACGCA -ACGGAATCGAGAGCCTAACTTGCA -ACGGAATCGAGAGCCTAACGAACA -ACGGAATCGAGAGCCTAACAGTCA -ACGGAATCGAGAGCCTAAGATCCA -ACGGAATCGAGAGCCTAAACGACA -ACGGAATCGAGAGCCTAAAGCTCA -ACGGAATCGAGAGCCTAATCACGT -ACGGAATCGAGAGCCTAACGTAGT -ACGGAATCGAGAGCCTAAGTCAGT -ACGGAATCGAGAGCCTAAGAAGGT -ACGGAATCGAGAGCCTAAAACCGT -ACGGAATCGAGAGCCTAATTGTGC -ACGGAATCGAGAGCCTAACTAAGC -ACGGAATCGAGAGCCTAAACTAGC -ACGGAATCGAGAGCCTAAAGATGC -ACGGAATCGAGAGCCTAATGAAGG -ACGGAATCGAGAGCCTAACAATGG -ACGGAATCGAGAGCCTAAATGAGG -ACGGAATCGAGAGCCTAAAATGGG -ACGGAATCGAGAGCCTAATCCTGA -ACGGAATCGAGAGCCTAATAGCGA -ACGGAATCGAGAGCCTAACACAGA -ACGGAATCGAGAGCCTAAGCAAGA -ACGGAATCGAGAGCCTAAGGTTGA -ACGGAATCGAGAGCCTAATCCGAT -ACGGAATCGAGAGCCTAATGGCAT -ACGGAATCGAGAGCCTAACGAGAT -ACGGAATCGAGAGCCTAATACCAC -ACGGAATCGAGAGCCTAACAGAAC -ACGGAATCGAGAGCCTAAGTCTAC -ACGGAATCGAGAGCCTAAACGTAC -ACGGAATCGAGAGCCTAAAGTGAC -ACGGAATCGAGAGCCTAACTGTAG -ACGGAATCGAGAGCCTAACCTAAG -ACGGAATCGAGAGCCTAAGTTCAG -ACGGAATCGAGAGCCTAAGCATAG -ACGGAATCGAGAGCCTAAGACAAG -ACGGAATCGAGAGCCTAAAAGCAG -ACGGAATCGAGAGCCTAACGTCAA -ACGGAATCGAGAGCCTAAGCTGAA -ACGGAATCGAGAGCCTAAAGTACG -ACGGAATCGAGAGCCTAAATCCGA -ACGGAATCGAGAGCCTAAATGGGA -ACGGAATCGAGAGCCTAAGTGCAA -ACGGAATCGAGAGCCTAAGAGGAA -ACGGAATCGAGAGCCTAACAGGTA -ACGGAATCGAGAGCCTAAGACTCT -ACGGAATCGAGAGCCTAAAGTCCT -ACGGAATCGAGAGCCTAATAAGCC -ACGGAATCGAGAGCCTAAATAGCC -ACGGAATCGAGAGCCTAATAACCG -ACGGAATCGAGAGCCTAAATGCCA -ACGGAATCGAGAGCCATAGGAAAC -ACGGAATCGAGAGCCATAAACACC -ACGGAATCGAGAGCCATAATCGAG -ACGGAATCGAGAGCCATACTCCTT -ACGGAATCGAGAGCCATACCTGTT -ACGGAATCGAGAGCCATACGGTTT -ACGGAATCGAGAGCCATAGTGGTT -ACGGAATCGAGAGCCATAGCCTTT -ACGGAATCGAGAGCCATAGGTCTT -ACGGAATCGAGAGCCATAACGCTT -ACGGAATCGAGAGCCATAAGCGTT -ACGGAATCGAGAGCCATATTCGTC -ACGGAATCGAGAGCCATATCTCTC -ACGGAATCGAGAGCCATATGGATC -ACGGAATCGAGAGCCATACACTTC -ACGGAATCGAGAGCCATAGTACTC -ACGGAATCGAGAGCCATAGATGTC -ACGGAATCGAGAGCCATAACAGTC -ACGGAATCGAGAGCCATATTGCTG -ACGGAATCGAGAGCCATATCCATG -ACGGAATCGAGAGCCATATGTGTG -ACGGAATCGAGAGCCATACTAGTG -ACGGAATCGAGAGCCATACATCTG -ACGGAATCGAGAGCCATAGAGTTG -ACGGAATCGAGAGCCATAAGACTG -ACGGAATCGAGAGCCATATCGGTA -ACGGAATCGAGAGCCATATGCCTA -ACGGAATCGAGAGCCATACCACTA -ACGGAATCGAGAGCCATAGGAGTA -ACGGAATCGAGAGCCATATCGTCT -ACGGAATCGAGAGCCATATGCACT -ACGGAATCGAGAGCCATACTGACT -ACGGAATCGAGAGCCATACAACCT -ACGGAATCGAGAGCCATAGCTACT -ACGGAATCGAGAGCCATAGGATCT -ACGGAATCGAGAGCCATAAAGGCT -ACGGAATCGAGAGCCATATCAACC -ACGGAATCGAGAGCCATATGTTCC -ACGGAATCGAGAGCCATAATTCCC -ACGGAATCGAGAGCCATATTCTCG -ACGGAATCGAGAGCCATATAGACG -ACGGAATCGAGAGCCATAGTAACG -ACGGAATCGAGAGCCATAACTTCG -ACGGAATCGAGAGCCATATACGCA -ACGGAATCGAGAGCCATACTTGCA -ACGGAATCGAGAGCCATACGAACA -ACGGAATCGAGAGCCATACAGTCA -ACGGAATCGAGAGCCATAGATCCA -ACGGAATCGAGAGCCATAACGACA -ACGGAATCGAGAGCCATAAGCTCA -ACGGAATCGAGAGCCATATCACGT -ACGGAATCGAGAGCCATACGTAGT -ACGGAATCGAGAGCCATAGTCAGT -ACGGAATCGAGAGCCATAGAAGGT -ACGGAATCGAGAGCCATAAACCGT -ACGGAATCGAGAGCCATATTGTGC -ACGGAATCGAGAGCCATACTAAGC -ACGGAATCGAGAGCCATAACTAGC -ACGGAATCGAGAGCCATAAGATGC -ACGGAATCGAGAGCCATATGAAGG -ACGGAATCGAGAGCCATACAATGG -ACGGAATCGAGAGCCATAATGAGG -ACGGAATCGAGAGCCATAAATGGG -ACGGAATCGAGAGCCATATCCTGA -ACGGAATCGAGAGCCATATAGCGA -ACGGAATCGAGAGCCATACACAGA -ACGGAATCGAGAGCCATAGCAAGA -ACGGAATCGAGAGCCATAGGTTGA -ACGGAATCGAGAGCCATATCCGAT -ACGGAATCGAGAGCCATATGGCAT -ACGGAATCGAGAGCCATACGAGAT -ACGGAATCGAGAGCCATATACCAC -ACGGAATCGAGAGCCATACAGAAC -ACGGAATCGAGAGCCATAGTCTAC -ACGGAATCGAGAGCCATAACGTAC -ACGGAATCGAGAGCCATAAGTGAC -ACGGAATCGAGAGCCATACTGTAG -ACGGAATCGAGAGCCATACCTAAG -ACGGAATCGAGAGCCATAGTTCAG -ACGGAATCGAGAGCCATAGCATAG -ACGGAATCGAGAGCCATAGACAAG -ACGGAATCGAGAGCCATAAAGCAG -ACGGAATCGAGAGCCATACGTCAA -ACGGAATCGAGAGCCATAGCTGAA -ACGGAATCGAGAGCCATAAGTACG -ACGGAATCGAGAGCCATAATCCGA -ACGGAATCGAGAGCCATAATGGGA -ACGGAATCGAGAGCCATAGTGCAA -ACGGAATCGAGAGCCATAGAGGAA -ACGGAATCGAGAGCCATACAGGTA -ACGGAATCGAGAGCCATAGACTCT -ACGGAATCGAGAGCCATAAGTCCT -ACGGAATCGAGAGCCATATAAGCC -ACGGAATCGAGAGCCATAATAGCC -ACGGAATCGAGAGCCATATAACCG -ACGGAATCGAGAGCCATAATGCCA -ACGGAATCGAGACCGTAAGGAAAC -ACGGAATCGAGACCGTAAAACACC -ACGGAATCGAGACCGTAAATCGAG -ACGGAATCGAGACCGTAACTCCTT -ACGGAATCGAGACCGTAACCTGTT -ACGGAATCGAGACCGTAACGGTTT -ACGGAATCGAGACCGTAAGTGGTT -ACGGAATCGAGACCGTAAGCCTTT -ACGGAATCGAGACCGTAAGGTCTT -ACGGAATCGAGACCGTAAACGCTT -ACGGAATCGAGACCGTAAAGCGTT -ACGGAATCGAGACCGTAATTCGTC -ACGGAATCGAGACCGTAATCTCTC -ACGGAATCGAGACCGTAATGGATC -ACGGAATCGAGACCGTAACACTTC -ACGGAATCGAGACCGTAAGTACTC -ACGGAATCGAGACCGTAAGATGTC -ACGGAATCGAGACCGTAAACAGTC -ACGGAATCGAGACCGTAATTGCTG -ACGGAATCGAGACCGTAATCCATG -ACGGAATCGAGACCGTAATGTGTG -ACGGAATCGAGACCGTAACTAGTG -ACGGAATCGAGACCGTAACATCTG -ACGGAATCGAGACCGTAAGAGTTG -ACGGAATCGAGACCGTAAAGACTG -ACGGAATCGAGACCGTAATCGGTA -ACGGAATCGAGACCGTAATGCCTA -ACGGAATCGAGACCGTAACCACTA -ACGGAATCGAGACCGTAAGGAGTA -ACGGAATCGAGACCGTAATCGTCT -ACGGAATCGAGACCGTAATGCACT -ACGGAATCGAGACCGTAACTGACT -ACGGAATCGAGACCGTAACAACCT -ACGGAATCGAGACCGTAAGCTACT -ACGGAATCGAGACCGTAAGGATCT -ACGGAATCGAGACCGTAAAAGGCT -ACGGAATCGAGACCGTAATCAACC -ACGGAATCGAGACCGTAATGTTCC -ACGGAATCGAGACCGTAAATTCCC -ACGGAATCGAGACCGTAATTCTCG -ACGGAATCGAGACCGTAATAGACG -ACGGAATCGAGACCGTAAGTAACG -ACGGAATCGAGACCGTAAACTTCG -ACGGAATCGAGACCGTAATACGCA -ACGGAATCGAGACCGTAACTTGCA -ACGGAATCGAGACCGTAACGAACA -ACGGAATCGAGACCGTAACAGTCA -ACGGAATCGAGACCGTAAGATCCA -ACGGAATCGAGACCGTAAACGACA -ACGGAATCGAGACCGTAAAGCTCA -ACGGAATCGAGACCGTAATCACGT -ACGGAATCGAGACCGTAACGTAGT -ACGGAATCGAGACCGTAAGTCAGT -ACGGAATCGAGACCGTAAGAAGGT -ACGGAATCGAGACCGTAAAACCGT -ACGGAATCGAGACCGTAATTGTGC -ACGGAATCGAGACCGTAACTAAGC -ACGGAATCGAGACCGTAAACTAGC -ACGGAATCGAGACCGTAAAGATGC -ACGGAATCGAGACCGTAATGAAGG -ACGGAATCGAGACCGTAACAATGG -ACGGAATCGAGACCGTAAATGAGG -ACGGAATCGAGACCGTAAAATGGG -ACGGAATCGAGACCGTAATCCTGA -ACGGAATCGAGACCGTAATAGCGA -ACGGAATCGAGACCGTAACACAGA -ACGGAATCGAGACCGTAAGCAAGA -ACGGAATCGAGACCGTAAGGTTGA -ACGGAATCGAGACCGTAATCCGAT -ACGGAATCGAGACCGTAATGGCAT -ACGGAATCGAGACCGTAACGAGAT -ACGGAATCGAGACCGTAATACCAC -ACGGAATCGAGACCGTAACAGAAC -ACGGAATCGAGACCGTAAGTCTAC -ACGGAATCGAGACCGTAAACGTAC -ACGGAATCGAGACCGTAAAGTGAC -ACGGAATCGAGACCGTAACTGTAG -ACGGAATCGAGACCGTAACCTAAG -ACGGAATCGAGACCGTAAGTTCAG -ACGGAATCGAGACCGTAAGCATAG -ACGGAATCGAGACCGTAAGACAAG -ACGGAATCGAGACCGTAAAAGCAG -ACGGAATCGAGACCGTAACGTCAA -ACGGAATCGAGACCGTAAGCTGAA -ACGGAATCGAGACCGTAAAGTACG -ACGGAATCGAGACCGTAAATCCGA -ACGGAATCGAGACCGTAAATGGGA -ACGGAATCGAGACCGTAAGTGCAA -ACGGAATCGAGACCGTAAGAGGAA -ACGGAATCGAGACCGTAACAGGTA -ACGGAATCGAGACCGTAAGACTCT -ACGGAATCGAGACCGTAAAGTCCT -ACGGAATCGAGACCGTAATAAGCC -ACGGAATCGAGACCGTAAATAGCC -ACGGAATCGAGACCGTAATAACCG -ACGGAATCGAGACCGTAAATGCCA -ACGGAATCGAGACCAATGGGAAAC -ACGGAATCGAGACCAATGAACACC -ACGGAATCGAGACCAATGATCGAG -ACGGAATCGAGACCAATGCTCCTT -ACGGAATCGAGACCAATGCCTGTT -ACGGAATCGAGACCAATGCGGTTT -ACGGAATCGAGACCAATGGTGGTT -ACGGAATCGAGACCAATGGCCTTT -ACGGAATCGAGACCAATGGGTCTT -ACGGAATCGAGACCAATGACGCTT -ACGGAATCGAGACCAATGAGCGTT -ACGGAATCGAGACCAATGTTCGTC -ACGGAATCGAGACCAATGTCTCTC -ACGGAATCGAGACCAATGTGGATC -ACGGAATCGAGACCAATGCACTTC -ACGGAATCGAGACCAATGGTACTC -ACGGAATCGAGACCAATGGATGTC -ACGGAATCGAGACCAATGACAGTC -ACGGAATCGAGACCAATGTTGCTG -ACGGAATCGAGACCAATGTCCATG -ACGGAATCGAGACCAATGTGTGTG -ACGGAATCGAGACCAATGCTAGTG -ACGGAATCGAGACCAATGCATCTG -ACGGAATCGAGACCAATGGAGTTG -ACGGAATCGAGACCAATGAGACTG -ACGGAATCGAGACCAATGTCGGTA -ACGGAATCGAGACCAATGTGCCTA -ACGGAATCGAGACCAATGCCACTA -ACGGAATCGAGACCAATGGGAGTA -ACGGAATCGAGACCAATGTCGTCT -ACGGAATCGAGACCAATGTGCACT -ACGGAATCGAGACCAATGCTGACT -ACGGAATCGAGACCAATGCAACCT -ACGGAATCGAGACCAATGGCTACT -ACGGAATCGAGACCAATGGGATCT -ACGGAATCGAGACCAATGAAGGCT -ACGGAATCGAGACCAATGTCAACC -ACGGAATCGAGACCAATGTGTTCC -ACGGAATCGAGACCAATGATTCCC -ACGGAATCGAGACCAATGTTCTCG -ACGGAATCGAGACCAATGTAGACG -ACGGAATCGAGACCAATGGTAACG -ACGGAATCGAGACCAATGACTTCG -ACGGAATCGAGACCAATGTACGCA -ACGGAATCGAGACCAATGCTTGCA -ACGGAATCGAGACCAATGCGAACA -ACGGAATCGAGACCAATGCAGTCA -ACGGAATCGAGACCAATGGATCCA -ACGGAATCGAGACCAATGACGACA -ACGGAATCGAGACCAATGAGCTCA -ACGGAATCGAGACCAATGTCACGT -ACGGAATCGAGACCAATGCGTAGT -ACGGAATCGAGACCAATGGTCAGT -ACGGAATCGAGACCAATGGAAGGT -ACGGAATCGAGACCAATGAACCGT -ACGGAATCGAGACCAATGTTGTGC -ACGGAATCGAGACCAATGCTAAGC -ACGGAATCGAGACCAATGACTAGC -ACGGAATCGAGACCAATGAGATGC -ACGGAATCGAGACCAATGTGAAGG -ACGGAATCGAGACCAATGCAATGG -ACGGAATCGAGACCAATGATGAGG -ACGGAATCGAGACCAATGAATGGG -ACGGAATCGAGACCAATGTCCTGA -ACGGAATCGAGACCAATGTAGCGA -ACGGAATCGAGACCAATGCACAGA -ACGGAATCGAGACCAATGGCAAGA -ACGGAATCGAGACCAATGGGTTGA -ACGGAATCGAGACCAATGTCCGAT -ACGGAATCGAGACCAATGTGGCAT -ACGGAATCGAGACCAATGCGAGAT -ACGGAATCGAGACCAATGTACCAC -ACGGAATCGAGACCAATGCAGAAC -ACGGAATCGAGACCAATGGTCTAC -ACGGAATCGAGACCAATGACGTAC -ACGGAATCGAGACCAATGAGTGAC -ACGGAATCGAGACCAATGCTGTAG -ACGGAATCGAGACCAATGCCTAAG -ACGGAATCGAGACCAATGGTTCAG -ACGGAATCGAGACCAATGGCATAG -ACGGAATCGAGACCAATGGACAAG -ACGGAATCGAGACCAATGAAGCAG -ACGGAATCGAGACCAATGCGTCAA -ACGGAATCGAGACCAATGGCTGAA -ACGGAATCGAGACCAATGAGTACG -ACGGAATCGAGACCAATGATCCGA -ACGGAATCGAGACCAATGATGGGA -ACGGAATCGAGACCAATGGTGCAA -ACGGAATCGAGACCAATGGAGGAA -ACGGAATCGAGACCAATGCAGGTA -ACGGAATCGAGACCAATGGACTCT -ACGGAATCGAGACCAATGAGTCCT -ACGGAATCGAGACCAATGTAAGCC -ACGGAATCGAGACCAATGATAGCC -ACGGAATCGAGACCAATGTAACCG -ACGGAATCGAGACCAATGATGCCA -ACGGAATCCTTCAACGGAGGAAAC -ACGGAATCCTTCAACGGAAACACC -ACGGAATCCTTCAACGGAATCGAG -ACGGAATCCTTCAACGGACTCCTT -ACGGAATCCTTCAACGGACCTGTT -ACGGAATCCTTCAACGGACGGTTT -ACGGAATCCTTCAACGGAGTGGTT -ACGGAATCCTTCAACGGAGCCTTT -ACGGAATCCTTCAACGGAGGTCTT -ACGGAATCCTTCAACGGAACGCTT -ACGGAATCCTTCAACGGAAGCGTT -ACGGAATCCTTCAACGGATTCGTC -ACGGAATCCTTCAACGGATCTCTC -ACGGAATCCTTCAACGGATGGATC -ACGGAATCCTTCAACGGACACTTC -ACGGAATCCTTCAACGGAGTACTC -ACGGAATCCTTCAACGGAGATGTC -ACGGAATCCTTCAACGGAACAGTC -ACGGAATCCTTCAACGGATTGCTG -ACGGAATCCTTCAACGGATCCATG -ACGGAATCCTTCAACGGATGTGTG -ACGGAATCCTTCAACGGACTAGTG -ACGGAATCCTTCAACGGACATCTG -ACGGAATCCTTCAACGGAGAGTTG -ACGGAATCCTTCAACGGAAGACTG -ACGGAATCCTTCAACGGATCGGTA -ACGGAATCCTTCAACGGATGCCTA -ACGGAATCCTTCAACGGACCACTA -ACGGAATCCTTCAACGGAGGAGTA -ACGGAATCCTTCAACGGATCGTCT -ACGGAATCCTTCAACGGATGCACT -ACGGAATCCTTCAACGGACTGACT -ACGGAATCCTTCAACGGACAACCT -ACGGAATCCTTCAACGGAGCTACT -ACGGAATCCTTCAACGGAGGATCT -ACGGAATCCTTCAACGGAAAGGCT -ACGGAATCCTTCAACGGATCAACC -ACGGAATCCTTCAACGGATGTTCC -ACGGAATCCTTCAACGGAATTCCC -ACGGAATCCTTCAACGGATTCTCG -ACGGAATCCTTCAACGGATAGACG -ACGGAATCCTTCAACGGAGTAACG -ACGGAATCCTTCAACGGAACTTCG -ACGGAATCCTTCAACGGATACGCA -ACGGAATCCTTCAACGGACTTGCA -ACGGAATCCTTCAACGGACGAACA -ACGGAATCCTTCAACGGACAGTCA -ACGGAATCCTTCAACGGAGATCCA -ACGGAATCCTTCAACGGAACGACA -ACGGAATCCTTCAACGGAAGCTCA -ACGGAATCCTTCAACGGATCACGT -ACGGAATCCTTCAACGGACGTAGT -ACGGAATCCTTCAACGGAGTCAGT -ACGGAATCCTTCAACGGAGAAGGT -ACGGAATCCTTCAACGGAAACCGT -ACGGAATCCTTCAACGGATTGTGC -ACGGAATCCTTCAACGGACTAAGC -ACGGAATCCTTCAACGGAACTAGC -ACGGAATCCTTCAACGGAAGATGC -ACGGAATCCTTCAACGGATGAAGG -ACGGAATCCTTCAACGGACAATGG -ACGGAATCCTTCAACGGAATGAGG -ACGGAATCCTTCAACGGAAATGGG -ACGGAATCCTTCAACGGATCCTGA -ACGGAATCCTTCAACGGATAGCGA -ACGGAATCCTTCAACGGACACAGA -ACGGAATCCTTCAACGGAGCAAGA -ACGGAATCCTTCAACGGAGGTTGA -ACGGAATCCTTCAACGGATCCGAT -ACGGAATCCTTCAACGGATGGCAT -ACGGAATCCTTCAACGGACGAGAT -ACGGAATCCTTCAACGGATACCAC -ACGGAATCCTTCAACGGACAGAAC -ACGGAATCCTTCAACGGAGTCTAC -ACGGAATCCTTCAACGGAACGTAC -ACGGAATCCTTCAACGGAAGTGAC -ACGGAATCCTTCAACGGACTGTAG -ACGGAATCCTTCAACGGACCTAAG -ACGGAATCCTTCAACGGAGTTCAG -ACGGAATCCTTCAACGGAGCATAG -ACGGAATCCTTCAACGGAGACAAG -ACGGAATCCTTCAACGGAAAGCAG -ACGGAATCCTTCAACGGACGTCAA -ACGGAATCCTTCAACGGAGCTGAA -ACGGAATCCTTCAACGGAAGTACG -ACGGAATCCTTCAACGGAATCCGA -ACGGAATCCTTCAACGGAATGGGA -ACGGAATCCTTCAACGGAGTGCAA -ACGGAATCCTTCAACGGAGAGGAA -ACGGAATCCTTCAACGGACAGGTA -ACGGAATCCTTCAACGGAGACTCT -ACGGAATCCTTCAACGGAAGTCCT -ACGGAATCCTTCAACGGATAAGCC -ACGGAATCCTTCAACGGAATAGCC -ACGGAATCCTTCAACGGATAACCG -ACGGAATCCTTCAACGGAATGCCA -ACGGAATCCTTCACCAACGGAAAC -ACGGAATCCTTCACCAACAACACC -ACGGAATCCTTCACCAACATCGAG -ACGGAATCCTTCACCAACCTCCTT -ACGGAATCCTTCACCAACCCTGTT -ACGGAATCCTTCACCAACCGGTTT -ACGGAATCCTTCACCAACGTGGTT -ACGGAATCCTTCACCAACGCCTTT -ACGGAATCCTTCACCAACGGTCTT -ACGGAATCCTTCACCAACACGCTT -ACGGAATCCTTCACCAACAGCGTT -ACGGAATCCTTCACCAACTTCGTC -ACGGAATCCTTCACCAACTCTCTC -ACGGAATCCTTCACCAACTGGATC -ACGGAATCCTTCACCAACCACTTC -ACGGAATCCTTCACCAACGTACTC -ACGGAATCCTTCACCAACGATGTC -ACGGAATCCTTCACCAACACAGTC -ACGGAATCCTTCACCAACTTGCTG -ACGGAATCCTTCACCAACTCCATG -ACGGAATCCTTCACCAACTGTGTG -ACGGAATCCTTCACCAACCTAGTG -ACGGAATCCTTCACCAACCATCTG -ACGGAATCCTTCACCAACGAGTTG -ACGGAATCCTTCACCAACAGACTG -ACGGAATCCTTCACCAACTCGGTA -ACGGAATCCTTCACCAACTGCCTA -ACGGAATCCTTCACCAACCCACTA -ACGGAATCCTTCACCAACGGAGTA -ACGGAATCCTTCACCAACTCGTCT -ACGGAATCCTTCACCAACTGCACT -ACGGAATCCTTCACCAACCTGACT -ACGGAATCCTTCACCAACCAACCT -ACGGAATCCTTCACCAACGCTACT -ACGGAATCCTTCACCAACGGATCT -ACGGAATCCTTCACCAACAAGGCT -ACGGAATCCTTCACCAACTCAACC -ACGGAATCCTTCACCAACTGTTCC -ACGGAATCCTTCACCAACATTCCC -ACGGAATCCTTCACCAACTTCTCG -ACGGAATCCTTCACCAACTAGACG -ACGGAATCCTTCACCAACGTAACG -ACGGAATCCTTCACCAACACTTCG -ACGGAATCCTTCACCAACTACGCA -ACGGAATCCTTCACCAACCTTGCA -ACGGAATCCTTCACCAACCGAACA -ACGGAATCCTTCACCAACCAGTCA -ACGGAATCCTTCACCAACGATCCA -ACGGAATCCTTCACCAACACGACA -ACGGAATCCTTCACCAACAGCTCA -ACGGAATCCTTCACCAACTCACGT -ACGGAATCCTTCACCAACCGTAGT -ACGGAATCCTTCACCAACGTCAGT -ACGGAATCCTTCACCAACGAAGGT -ACGGAATCCTTCACCAACAACCGT -ACGGAATCCTTCACCAACTTGTGC -ACGGAATCCTTCACCAACCTAAGC -ACGGAATCCTTCACCAACACTAGC -ACGGAATCCTTCACCAACAGATGC -ACGGAATCCTTCACCAACTGAAGG -ACGGAATCCTTCACCAACCAATGG -ACGGAATCCTTCACCAACATGAGG -ACGGAATCCTTCACCAACAATGGG -ACGGAATCCTTCACCAACTCCTGA -ACGGAATCCTTCACCAACTAGCGA -ACGGAATCCTTCACCAACCACAGA -ACGGAATCCTTCACCAACGCAAGA -ACGGAATCCTTCACCAACGGTTGA -ACGGAATCCTTCACCAACTCCGAT -ACGGAATCCTTCACCAACTGGCAT -ACGGAATCCTTCACCAACCGAGAT -ACGGAATCCTTCACCAACTACCAC -ACGGAATCCTTCACCAACCAGAAC -ACGGAATCCTTCACCAACGTCTAC -ACGGAATCCTTCACCAACACGTAC -ACGGAATCCTTCACCAACAGTGAC -ACGGAATCCTTCACCAACCTGTAG -ACGGAATCCTTCACCAACCCTAAG -ACGGAATCCTTCACCAACGTTCAG -ACGGAATCCTTCACCAACGCATAG -ACGGAATCCTTCACCAACGACAAG -ACGGAATCCTTCACCAACAAGCAG -ACGGAATCCTTCACCAACCGTCAA -ACGGAATCCTTCACCAACGCTGAA -ACGGAATCCTTCACCAACAGTACG -ACGGAATCCTTCACCAACATCCGA -ACGGAATCCTTCACCAACATGGGA -ACGGAATCCTTCACCAACGTGCAA -ACGGAATCCTTCACCAACGAGGAA -ACGGAATCCTTCACCAACCAGGTA -ACGGAATCCTTCACCAACGACTCT -ACGGAATCCTTCACCAACAGTCCT -ACGGAATCCTTCACCAACTAAGCC -ACGGAATCCTTCACCAACATAGCC -ACGGAATCCTTCACCAACTAACCG -ACGGAATCCTTCACCAACATGCCA -ACGGAATCCTTCGAGATCGGAAAC -ACGGAATCCTTCGAGATCAACACC -ACGGAATCCTTCGAGATCATCGAG -ACGGAATCCTTCGAGATCCTCCTT -ACGGAATCCTTCGAGATCCCTGTT -ACGGAATCCTTCGAGATCCGGTTT -ACGGAATCCTTCGAGATCGTGGTT -ACGGAATCCTTCGAGATCGCCTTT -ACGGAATCCTTCGAGATCGGTCTT -ACGGAATCCTTCGAGATCACGCTT -ACGGAATCCTTCGAGATCAGCGTT -ACGGAATCCTTCGAGATCTTCGTC -ACGGAATCCTTCGAGATCTCTCTC -ACGGAATCCTTCGAGATCTGGATC -ACGGAATCCTTCGAGATCCACTTC -ACGGAATCCTTCGAGATCGTACTC -ACGGAATCCTTCGAGATCGATGTC -ACGGAATCCTTCGAGATCACAGTC -ACGGAATCCTTCGAGATCTTGCTG -ACGGAATCCTTCGAGATCTCCATG -ACGGAATCCTTCGAGATCTGTGTG -ACGGAATCCTTCGAGATCCTAGTG -ACGGAATCCTTCGAGATCCATCTG -ACGGAATCCTTCGAGATCGAGTTG -ACGGAATCCTTCGAGATCAGACTG -ACGGAATCCTTCGAGATCTCGGTA -ACGGAATCCTTCGAGATCTGCCTA -ACGGAATCCTTCGAGATCCCACTA -ACGGAATCCTTCGAGATCGGAGTA -ACGGAATCCTTCGAGATCTCGTCT -ACGGAATCCTTCGAGATCTGCACT -ACGGAATCCTTCGAGATCCTGACT -ACGGAATCCTTCGAGATCCAACCT -ACGGAATCCTTCGAGATCGCTACT -ACGGAATCCTTCGAGATCGGATCT -ACGGAATCCTTCGAGATCAAGGCT -ACGGAATCCTTCGAGATCTCAACC -ACGGAATCCTTCGAGATCTGTTCC -ACGGAATCCTTCGAGATCATTCCC -ACGGAATCCTTCGAGATCTTCTCG -ACGGAATCCTTCGAGATCTAGACG -ACGGAATCCTTCGAGATCGTAACG -ACGGAATCCTTCGAGATCACTTCG -ACGGAATCCTTCGAGATCTACGCA -ACGGAATCCTTCGAGATCCTTGCA -ACGGAATCCTTCGAGATCCGAACA -ACGGAATCCTTCGAGATCCAGTCA -ACGGAATCCTTCGAGATCGATCCA -ACGGAATCCTTCGAGATCACGACA -ACGGAATCCTTCGAGATCAGCTCA -ACGGAATCCTTCGAGATCTCACGT -ACGGAATCCTTCGAGATCCGTAGT -ACGGAATCCTTCGAGATCGTCAGT -ACGGAATCCTTCGAGATCGAAGGT -ACGGAATCCTTCGAGATCAACCGT -ACGGAATCCTTCGAGATCTTGTGC -ACGGAATCCTTCGAGATCCTAAGC -ACGGAATCCTTCGAGATCACTAGC -ACGGAATCCTTCGAGATCAGATGC -ACGGAATCCTTCGAGATCTGAAGG -ACGGAATCCTTCGAGATCCAATGG -ACGGAATCCTTCGAGATCATGAGG -ACGGAATCCTTCGAGATCAATGGG -ACGGAATCCTTCGAGATCTCCTGA -ACGGAATCCTTCGAGATCTAGCGA -ACGGAATCCTTCGAGATCCACAGA -ACGGAATCCTTCGAGATCGCAAGA -ACGGAATCCTTCGAGATCGGTTGA -ACGGAATCCTTCGAGATCTCCGAT -ACGGAATCCTTCGAGATCTGGCAT -ACGGAATCCTTCGAGATCCGAGAT -ACGGAATCCTTCGAGATCTACCAC -ACGGAATCCTTCGAGATCCAGAAC -ACGGAATCCTTCGAGATCGTCTAC -ACGGAATCCTTCGAGATCACGTAC -ACGGAATCCTTCGAGATCAGTGAC -ACGGAATCCTTCGAGATCCTGTAG -ACGGAATCCTTCGAGATCCCTAAG -ACGGAATCCTTCGAGATCGTTCAG -ACGGAATCCTTCGAGATCGCATAG -ACGGAATCCTTCGAGATCGACAAG -ACGGAATCCTTCGAGATCAAGCAG -ACGGAATCCTTCGAGATCCGTCAA -ACGGAATCCTTCGAGATCGCTGAA -ACGGAATCCTTCGAGATCAGTACG -ACGGAATCCTTCGAGATCATCCGA -ACGGAATCCTTCGAGATCATGGGA -ACGGAATCCTTCGAGATCGTGCAA -ACGGAATCCTTCGAGATCGAGGAA -ACGGAATCCTTCGAGATCCAGGTA -ACGGAATCCTTCGAGATCGACTCT -ACGGAATCCTTCGAGATCAGTCCT -ACGGAATCCTTCGAGATCTAAGCC -ACGGAATCCTTCGAGATCATAGCC -ACGGAATCCTTCGAGATCTAACCG -ACGGAATCCTTCGAGATCATGCCA -ACGGAATCCTTCCTTCTCGGAAAC -ACGGAATCCTTCCTTCTCAACACC -ACGGAATCCTTCCTTCTCATCGAG -ACGGAATCCTTCCTTCTCCTCCTT -ACGGAATCCTTCCTTCTCCCTGTT -ACGGAATCCTTCCTTCTCCGGTTT -ACGGAATCCTTCCTTCTCGTGGTT -ACGGAATCCTTCCTTCTCGCCTTT -ACGGAATCCTTCCTTCTCGGTCTT -ACGGAATCCTTCCTTCTCACGCTT -ACGGAATCCTTCCTTCTCAGCGTT -ACGGAATCCTTCCTTCTCTTCGTC -ACGGAATCCTTCCTTCTCTCTCTC -ACGGAATCCTTCCTTCTCTGGATC -ACGGAATCCTTCCTTCTCCACTTC -ACGGAATCCTTCCTTCTCGTACTC -ACGGAATCCTTCCTTCTCGATGTC -ACGGAATCCTTCCTTCTCACAGTC -ACGGAATCCTTCCTTCTCTTGCTG -ACGGAATCCTTCCTTCTCTCCATG -ACGGAATCCTTCCTTCTCTGTGTG -ACGGAATCCTTCCTTCTCCTAGTG -ACGGAATCCTTCCTTCTCCATCTG -ACGGAATCCTTCCTTCTCGAGTTG -ACGGAATCCTTCCTTCTCAGACTG -ACGGAATCCTTCCTTCTCTCGGTA -ACGGAATCCTTCCTTCTCTGCCTA -ACGGAATCCTTCCTTCTCCCACTA -ACGGAATCCTTCCTTCTCGGAGTA -ACGGAATCCTTCCTTCTCTCGTCT -ACGGAATCCTTCCTTCTCTGCACT -ACGGAATCCTTCCTTCTCCTGACT -ACGGAATCCTTCCTTCTCCAACCT -ACGGAATCCTTCCTTCTCGCTACT -ACGGAATCCTTCCTTCTCGGATCT -ACGGAATCCTTCCTTCTCAAGGCT -ACGGAATCCTTCCTTCTCTCAACC -ACGGAATCCTTCCTTCTCTGTTCC -ACGGAATCCTTCCTTCTCATTCCC -ACGGAATCCTTCCTTCTCTTCTCG -ACGGAATCCTTCCTTCTCTAGACG -ACGGAATCCTTCCTTCTCGTAACG -ACGGAATCCTTCCTTCTCACTTCG -ACGGAATCCTTCCTTCTCTACGCA -ACGGAATCCTTCCTTCTCCTTGCA -ACGGAATCCTTCCTTCTCCGAACA -ACGGAATCCTTCCTTCTCCAGTCA -ACGGAATCCTTCCTTCTCGATCCA -ACGGAATCCTTCCTTCTCACGACA -ACGGAATCCTTCCTTCTCAGCTCA -ACGGAATCCTTCCTTCTCTCACGT -ACGGAATCCTTCCTTCTCCGTAGT -ACGGAATCCTTCCTTCTCGTCAGT -ACGGAATCCTTCCTTCTCGAAGGT -ACGGAATCCTTCCTTCTCAACCGT -ACGGAATCCTTCCTTCTCTTGTGC -ACGGAATCCTTCCTTCTCCTAAGC -ACGGAATCCTTCCTTCTCACTAGC -ACGGAATCCTTCCTTCTCAGATGC -ACGGAATCCTTCCTTCTCTGAAGG -ACGGAATCCTTCCTTCTCCAATGG -ACGGAATCCTTCCTTCTCATGAGG -ACGGAATCCTTCCTTCTCAATGGG -ACGGAATCCTTCCTTCTCTCCTGA -ACGGAATCCTTCCTTCTCTAGCGA -ACGGAATCCTTCCTTCTCCACAGA -ACGGAATCCTTCCTTCTCGCAAGA -ACGGAATCCTTCCTTCTCGGTTGA -ACGGAATCCTTCCTTCTCTCCGAT -ACGGAATCCTTCCTTCTCTGGCAT -ACGGAATCCTTCCTTCTCCGAGAT -ACGGAATCCTTCCTTCTCTACCAC -ACGGAATCCTTCCTTCTCCAGAAC -ACGGAATCCTTCCTTCTCGTCTAC -ACGGAATCCTTCCTTCTCACGTAC -ACGGAATCCTTCCTTCTCAGTGAC -ACGGAATCCTTCCTTCTCCTGTAG -ACGGAATCCTTCCTTCTCCCTAAG -ACGGAATCCTTCCTTCTCGTTCAG -ACGGAATCCTTCCTTCTCGCATAG -ACGGAATCCTTCCTTCTCGACAAG -ACGGAATCCTTCCTTCTCAAGCAG -ACGGAATCCTTCCTTCTCCGTCAA -ACGGAATCCTTCCTTCTCGCTGAA -ACGGAATCCTTCCTTCTCAGTACG -ACGGAATCCTTCCTTCTCATCCGA -ACGGAATCCTTCCTTCTCATGGGA -ACGGAATCCTTCCTTCTCGTGCAA -ACGGAATCCTTCCTTCTCGAGGAA -ACGGAATCCTTCCTTCTCCAGGTA -ACGGAATCCTTCCTTCTCGACTCT -ACGGAATCCTTCCTTCTCAGTCCT -ACGGAATCCTTCCTTCTCTAAGCC -ACGGAATCCTTCCTTCTCATAGCC -ACGGAATCCTTCCTTCTCTAACCG -ACGGAATCCTTCCTTCTCATGCCA -ACGGAATCCTTCGTTCCTGGAAAC -ACGGAATCCTTCGTTCCTAACACC -ACGGAATCCTTCGTTCCTATCGAG -ACGGAATCCTTCGTTCCTCTCCTT -ACGGAATCCTTCGTTCCTCCTGTT -ACGGAATCCTTCGTTCCTCGGTTT -ACGGAATCCTTCGTTCCTGTGGTT -ACGGAATCCTTCGTTCCTGCCTTT -ACGGAATCCTTCGTTCCTGGTCTT -ACGGAATCCTTCGTTCCTACGCTT -ACGGAATCCTTCGTTCCTAGCGTT -ACGGAATCCTTCGTTCCTTTCGTC -ACGGAATCCTTCGTTCCTTCTCTC -ACGGAATCCTTCGTTCCTTGGATC -ACGGAATCCTTCGTTCCTCACTTC -ACGGAATCCTTCGTTCCTGTACTC -ACGGAATCCTTCGTTCCTGATGTC -ACGGAATCCTTCGTTCCTACAGTC -ACGGAATCCTTCGTTCCTTTGCTG -ACGGAATCCTTCGTTCCTTCCATG -ACGGAATCCTTCGTTCCTTGTGTG -ACGGAATCCTTCGTTCCTCTAGTG -ACGGAATCCTTCGTTCCTCATCTG -ACGGAATCCTTCGTTCCTGAGTTG -ACGGAATCCTTCGTTCCTAGACTG -ACGGAATCCTTCGTTCCTTCGGTA -ACGGAATCCTTCGTTCCTTGCCTA -ACGGAATCCTTCGTTCCTCCACTA -ACGGAATCCTTCGTTCCTGGAGTA -ACGGAATCCTTCGTTCCTTCGTCT -ACGGAATCCTTCGTTCCTTGCACT -ACGGAATCCTTCGTTCCTCTGACT -ACGGAATCCTTCGTTCCTCAACCT -ACGGAATCCTTCGTTCCTGCTACT -ACGGAATCCTTCGTTCCTGGATCT -ACGGAATCCTTCGTTCCTAAGGCT -ACGGAATCCTTCGTTCCTTCAACC -ACGGAATCCTTCGTTCCTTGTTCC -ACGGAATCCTTCGTTCCTATTCCC -ACGGAATCCTTCGTTCCTTTCTCG -ACGGAATCCTTCGTTCCTTAGACG -ACGGAATCCTTCGTTCCTGTAACG -ACGGAATCCTTCGTTCCTACTTCG -ACGGAATCCTTCGTTCCTTACGCA -ACGGAATCCTTCGTTCCTCTTGCA -ACGGAATCCTTCGTTCCTCGAACA -ACGGAATCCTTCGTTCCTCAGTCA -ACGGAATCCTTCGTTCCTGATCCA -ACGGAATCCTTCGTTCCTACGACA -ACGGAATCCTTCGTTCCTAGCTCA -ACGGAATCCTTCGTTCCTTCACGT -ACGGAATCCTTCGTTCCTCGTAGT -ACGGAATCCTTCGTTCCTGTCAGT -ACGGAATCCTTCGTTCCTGAAGGT -ACGGAATCCTTCGTTCCTAACCGT -ACGGAATCCTTCGTTCCTTTGTGC -ACGGAATCCTTCGTTCCTCTAAGC -ACGGAATCCTTCGTTCCTACTAGC -ACGGAATCCTTCGTTCCTAGATGC -ACGGAATCCTTCGTTCCTTGAAGG -ACGGAATCCTTCGTTCCTCAATGG -ACGGAATCCTTCGTTCCTATGAGG -ACGGAATCCTTCGTTCCTAATGGG -ACGGAATCCTTCGTTCCTTCCTGA -ACGGAATCCTTCGTTCCTTAGCGA -ACGGAATCCTTCGTTCCTCACAGA -ACGGAATCCTTCGTTCCTGCAAGA -ACGGAATCCTTCGTTCCTGGTTGA -ACGGAATCCTTCGTTCCTTCCGAT -ACGGAATCCTTCGTTCCTTGGCAT -ACGGAATCCTTCGTTCCTCGAGAT -ACGGAATCCTTCGTTCCTTACCAC -ACGGAATCCTTCGTTCCTCAGAAC -ACGGAATCCTTCGTTCCTGTCTAC -ACGGAATCCTTCGTTCCTACGTAC -ACGGAATCCTTCGTTCCTAGTGAC -ACGGAATCCTTCGTTCCTCTGTAG -ACGGAATCCTTCGTTCCTCCTAAG -ACGGAATCCTTCGTTCCTGTTCAG -ACGGAATCCTTCGTTCCTGCATAG -ACGGAATCCTTCGTTCCTGACAAG -ACGGAATCCTTCGTTCCTAAGCAG -ACGGAATCCTTCGTTCCTCGTCAA -ACGGAATCCTTCGTTCCTGCTGAA -ACGGAATCCTTCGTTCCTAGTACG -ACGGAATCCTTCGTTCCTATCCGA -ACGGAATCCTTCGTTCCTATGGGA -ACGGAATCCTTCGTTCCTGTGCAA -ACGGAATCCTTCGTTCCTGAGGAA -ACGGAATCCTTCGTTCCTCAGGTA -ACGGAATCCTTCGTTCCTGACTCT -ACGGAATCCTTCGTTCCTAGTCCT -ACGGAATCCTTCGTTCCTTAAGCC -ACGGAATCCTTCGTTCCTATAGCC -ACGGAATCCTTCGTTCCTTAACCG -ACGGAATCCTTCGTTCCTATGCCA -ACGGAATCCTTCTTTCGGGGAAAC -ACGGAATCCTTCTTTCGGAACACC -ACGGAATCCTTCTTTCGGATCGAG -ACGGAATCCTTCTTTCGGCTCCTT -ACGGAATCCTTCTTTCGGCCTGTT -ACGGAATCCTTCTTTCGGCGGTTT -ACGGAATCCTTCTTTCGGGTGGTT -ACGGAATCCTTCTTTCGGGCCTTT -ACGGAATCCTTCTTTCGGGGTCTT -ACGGAATCCTTCTTTCGGACGCTT -ACGGAATCCTTCTTTCGGAGCGTT -ACGGAATCCTTCTTTCGGTTCGTC -ACGGAATCCTTCTTTCGGTCTCTC -ACGGAATCCTTCTTTCGGTGGATC -ACGGAATCCTTCTTTCGGCACTTC -ACGGAATCCTTCTTTCGGGTACTC -ACGGAATCCTTCTTTCGGGATGTC -ACGGAATCCTTCTTTCGGACAGTC -ACGGAATCCTTCTTTCGGTTGCTG -ACGGAATCCTTCTTTCGGTCCATG -ACGGAATCCTTCTTTCGGTGTGTG -ACGGAATCCTTCTTTCGGCTAGTG -ACGGAATCCTTCTTTCGGCATCTG -ACGGAATCCTTCTTTCGGGAGTTG -ACGGAATCCTTCTTTCGGAGACTG -ACGGAATCCTTCTTTCGGTCGGTA -ACGGAATCCTTCTTTCGGTGCCTA -ACGGAATCCTTCTTTCGGCCACTA -ACGGAATCCTTCTTTCGGGGAGTA -ACGGAATCCTTCTTTCGGTCGTCT -ACGGAATCCTTCTTTCGGTGCACT -ACGGAATCCTTCTTTCGGCTGACT -ACGGAATCCTTCTTTCGGCAACCT -ACGGAATCCTTCTTTCGGGCTACT -ACGGAATCCTTCTTTCGGGGATCT -ACGGAATCCTTCTTTCGGAAGGCT -ACGGAATCCTTCTTTCGGTCAACC -ACGGAATCCTTCTTTCGGTGTTCC -ACGGAATCCTTCTTTCGGATTCCC -ACGGAATCCTTCTTTCGGTTCTCG -ACGGAATCCTTCTTTCGGTAGACG -ACGGAATCCTTCTTTCGGGTAACG -ACGGAATCCTTCTTTCGGACTTCG -ACGGAATCCTTCTTTCGGTACGCA -ACGGAATCCTTCTTTCGGCTTGCA -ACGGAATCCTTCTTTCGGCGAACA -ACGGAATCCTTCTTTCGGCAGTCA -ACGGAATCCTTCTTTCGGGATCCA -ACGGAATCCTTCTTTCGGACGACA -ACGGAATCCTTCTTTCGGAGCTCA -ACGGAATCCTTCTTTCGGTCACGT -ACGGAATCCTTCTTTCGGCGTAGT -ACGGAATCCTTCTTTCGGGTCAGT -ACGGAATCCTTCTTTCGGGAAGGT -ACGGAATCCTTCTTTCGGAACCGT -ACGGAATCCTTCTTTCGGTTGTGC -ACGGAATCCTTCTTTCGGCTAAGC -ACGGAATCCTTCTTTCGGACTAGC -ACGGAATCCTTCTTTCGGAGATGC -ACGGAATCCTTCTTTCGGTGAAGG -ACGGAATCCTTCTTTCGGCAATGG -ACGGAATCCTTCTTTCGGATGAGG -ACGGAATCCTTCTTTCGGAATGGG -ACGGAATCCTTCTTTCGGTCCTGA -ACGGAATCCTTCTTTCGGTAGCGA -ACGGAATCCTTCTTTCGGCACAGA -ACGGAATCCTTCTTTCGGGCAAGA -ACGGAATCCTTCTTTCGGGGTTGA -ACGGAATCCTTCTTTCGGTCCGAT -ACGGAATCCTTCTTTCGGTGGCAT -ACGGAATCCTTCTTTCGGCGAGAT -ACGGAATCCTTCTTTCGGTACCAC -ACGGAATCCTTCTTTCGGCAGAAC -ACGGAATCCTTCTTTCGGGTCTAC -ACGGAATCCTTCTTTCGGACGTAC -ACGGAATCCTTCTTTCGGAGTGAC -ACGGAATCCTTCTTTCGGCTGTAG -ACGGAATCCTTCTTTCGGCCTAAG -ACGGAATCCTTCTTTCGGGTTCAG -ACGGAATCCTTCTTTCGGGCATAG -ACGGAATCCTTCTTTCGGGACAAG -ACGGAATCCTTCTTTCGGAAGCAG -ACGGAATCCTTCTTTCGGCGTCAA -ACGGAATCCTTCTTTCGGGCTGAA -ACGGAATCCTTCTTTCGGAGTACG -ACGGAATCCTTCTTTCGGATCCGA -ACGGAATCCTTCTTTCGGATGGGA -ACGGAATCCTTCTTTCGGGTGCAA -ACGGAATCCTTCTTTCGGGAGGAA -ACGGAATCCTTCTTTCGGCAGGTA -ACGGAATCCTTCTTTCGGGACTCT -ACGGAATCCTTCTTTCGGAGTCCT -ACGGAATCCTTCTTTCGGTAAGCC -ACGGAATCCTTCTTTCGGATAGCC -ACGGAATCCTTCTTTCGGTAACCG -ACGGAATCCTTCTTTCGGATGCCA -ACGGAATCCTTCGTTGTGGGAAAC -ACGGAATCCTTCGTTGTGAACACC -ACGGAATCCTTCGTTGTGATCGAG -ACGGAATCCTTCGTTGTGCTCCTT -ACGGAATCCTTCGTTGTGCCTGTT -ACGGAATCCTTCGTTGTGCGGTTT -ACGGAATCCTTCGTTGTGGTGGTT -ACGGAATCCTTCGTTGTGGCCTTT -ACGGAATCCTTCGTTGTGGGTCTT -ACGGAATCCTTCGTTGTGACGCTT -ACGGAATCCTTCGTTGTGAGCGTT -ACGGAATCCTTCGTTGTGTTCGTC -ACGGAATCCTTCGTTGTGTCTCTC -ACGGAATCCTTCGTTGTGTGGATC -ACGGAATCCTTCGTTGTGCACTTC -ACGGAATCCTTCGTTGTGGTACTC -ACGGAATCCTTCGTTGTGGATGTC -ACGGAATCCTTCGTTGTGACAGTC -ACGGAATCCTTCGTTGTGTTGCTG -ACGGAATCCTTCGTTGTGTCCATG -ACGGAATCCTTCGTTGTGTGTGTG -ACGGAATCCTTCGTTGTGCTAGTG -ACGGAATCCTTCGTTGTGCATCTG -ACGGAATCCTTCGTTGTGGAGTTG -ACGGAATCCTTCGTTGTGAGACTG -ACGGAATCCTTCGTTGTGTCGGTA -ACGGAATCCTTCGTTGTGTGCCTA -ACGGAATCCTTCGTTGTGCCACTA -ACGGAATCCTTCGTTGTGGGAGTA -ACGGAATCCTTCGTTGTGTCGTCT -ACGGAATCCTTCGTTGTGTGCACT -ACGGAATCCTTCGTTGTGCTGACT -ACGGAATCCTTCGTTGTGCAACCT -ACGGAATCCTTCGTTGTGGCTACT -ACGGAATCCTTCGTTGTGGGATCT -ACGGAATCCTTCGTTGTGAAGGCT -ACGGAATCCTTCGTTGTGTCAACC -ACGGAATCCTTCGTTGTGTGTTCC -ACGGAATCCTTCGTTGTGATTCCC -ACGGAATCCTTCGTTGTGTTCTCG -ACGGAATCCTTCGTTGTGTAGACG -ACGGAATCCTTCGTTGTGGTAACG -ACGGAATCCTTCGTTGTGACTTCG -ACGGAATCCTTCGTTGTGTACGCA -ACGGAATCCTTCGTTGTGCTTGCA -ACGGAATCCTTCGTTGTGCGAACA -ACGGAATCCTTCGTTGTGCAGTCA -ACGGAATCCTTCGTTGTGGATCCA -ACGGAATCCTTCGTTGTGACGACA -ACGGAATCCTTCGTTGTGAGCTCA -ACGGAATCCTTCGTTGTGTCACGT -ACGGAATCCTTCGTTGTGCGTAGT -ACGGAATCCTTCGTTGTGGTCAGT -ACGGAATCCTTCGTTGTGGAAGGT -ACGGAATCCTTCGTTGTGAACCGT -ACGGAATCCTTCGTTGTGTTGTGC -ACGGAATCCTTCGTTGTGCTAAGC -ACGGAATCCTTCGTTGTGACTAGC -ACGGAATCCTTCGTTGTGAGATGC -ACGGAATCCTTCGTTGTGTGAAGG -ACGGAATCCTTCGTTGTGCAATGG -ACGGAATCCTTCGTTGTGATGAGG -ACGGAATCCTTCGTTGTGAATGGG -ACGGAATCCTTCGTTGTGTCCTGA -ACGGAATCCTTCGTTGTGTAGCGA -ACGGAATCCTTCGTTGTGCACAGA -ACGGAATCCTTCGTTGTGGCAAGA -ACGGAATCCTTCGTTGTGGGTTGA -ACGGAATCCTTCGTTGTGTCCGAT -ACGGAATCCTTCGTTGTGTGGCAT -ACGGAATCCTTCGTTGTGCGAGAT -ACGGAATCCTTCGTTGTGTACCAC -ACGGAATCCTTCGTTGTGCAGAAC -ACGGAATCCTTCGTTGTGGTCTAC -ACGGAATCCTTCGTTGTGACGTAC -ACGGAATCCTTCGTTGTGAGTGAC -ACGGAATCCTTCGTTGTGCTGTAG -ACGGAATCCTTCGTTGTGCCTAAG -ACGGAATCCTTCGTTGTGGTTCAG -ACGGAATCCTTCGTTGTGGCATAG -ACGGAATCCTTCGTTGTGGACAAG -ACGGAATCCTTCGTTGTGAAGCAG -ACGGAATCCTTCGTTGTGCGTCAA -ACGGAATCCTTCGTTGTGGCTGAA -ACGGAATCCTTCGTTGTGAGTACG -ACGGAATCCTTCGTTGTGATCCGA -ACGGAATCCTTCGTTGTGATGGGA -ACGGAATCCTTCGTTGTGGTGCAA -ACGGAATCCTTCGTTGTGGAGGAA -ACGGAATCCTTCGTTGTGCAGGTA -ACGGAATCCTTCGTTGTGGACTCT -ACGGAATCCTTCGTTGTGAGTCCT -ACGGAATCCTTCGTTGTGTAAGCC -ACGGAATCCTTCGTTGTGATAGCC -ACGGAATCCTTCGTTGTGTAACCG -ACGGAATCCTTCGTTGTGATGCCA -ACGGAATCCTTCTTTGCCGGAAAC -ACGGAATCCTTCTTTGCCAACACC -ACGGAATCCTTCTTTGCCATCGAG -ACGGAATCCTTCTTTGCCCTCCTT -ACGGAATCCTTCTTTGCCCCTGTT -ACGGAATCCTTCTTTGCCCGGTTT -ACGGAATCCTTCTTTGCCGTGGTT -ACGGAATCCTTCTTTGCCGCCTTT -ACGGAATCCTTCTTTGCCGGTCTT -ACGGAATCCTTCTTTGCCACGCTT -ACGGAATCCTTCTTTGCCAGCGTT -ACGGAATCCTTCTTTGCCTTCGTC -ACGGAATCCTTCTTTGCCTCTCTC -ACGGAATCCTTCTTTGCCTGGATC -ACGGAATCCTTCTTTGCCCACTTC -ACGGAATCCTTCTTTGCCGTACTC -ACGGAATCCTTCTTTGCCGATGTC -ACGGAATCCTTCTTTGCCACAGTC -ACGGAATCCTTCTTTGCCTTGCTG -ACGGAATCCTTCTTTGCCTCCATG -ACGGAATCCTTCTTTGCCTGTGTG -ACGGAATCCTTCTTTGCCCTAGTG -ACGGAATCCTTCTTTGCCCATCTG -ACGGAATCCTTCTTTGCCGAGTTG -ACGGAATCCTTCTTTGCCAGACTG -ACGGAATCCTTCTTTGCCTCGGTA -ACGGAATCCTTCTTTGCCTGCCTA -ACGGAATCCTTCTTTGCCCCACTA -ACGGAATCCTTCTTTGCCGGAGTA -ACGGAATCCTTCTTTGCCTCGTCT -ACGGAATCCTTCTTTGCCTGCACT -ACGGAATCCTTCTTTGCCCTGACT -ACGGAATCCTTCTTTGCCCAACCT -ACGGAATCCTTCTTTGCCGCTACT -ACGGAATCCTTCTTTGCCGGATCT -ACGGAATCCTTCTTTGCCAAGGCT -ACGGAATCCTTCTTTGCCTCAACC -ACGGAATCCTTCTTTGCCTGTTCC -ACGGAATCCTTCTTTGCCATTCCC -ACGGAATCCTTCTTTGCCTTCTCG -ACGGAATCCTTCTTTGCCTAGACG -ACGGAATCCTTCTTTGCCGTAACG -ACGGAATCCTTCTTTGCCACTTCG -ACGGAATCCTTCTTTGCCTACGCA -ACGGAATCCTTCTTTGCCCTTGCA -ACGGAATCCTTCTTTGCCCGAACA -ACGGAATCCTTCTTTGCCCAGTCA -ACGGAATCCTTCTTTGCCGATCCA -ACGGAATCCTTCTTTGCCACGACA -ACGGAATCCTTCTTTGCCAGCTCA -ACGGAATCCTTCTTTGCCTCACGT -ACGGAATCCTTCTTTGCCCGTAGT -ACGGAATCCTTCTTTGCCGTCAGT -ACGGAATCCTTCTTTGCCGAAGGT -ACGGAATCCTTCTTTGCCAACCGT -ACGGAATCCTTCTTTGCCTTGTGC -ACGGAATCCTTCTTTGCCCTAAGC -ACGGAATCCTTCTTTGCCACTAGC -ACGGAATCCTTCTTTGCCAGATGC -ACGGAATCCTTCTTTGCCTGAAGG -ACGGAATCCTTCTTTGCCCAATGG -ACGGAATCCTTCTTTGCCATGAGG -ACGGAATCCTTCTTTGCCAATGGG -ACGGAATCCTTCTTTGCCTCCTGA -ACGGAATCCTTCTTTGCCTAGCGA -ACGGAATCCTTCTTTGCCCACAGA -ACGGAATCCTTCTTTGCCGCAAGA -ACGGAATCCTTCTTTGCCGGTTGA -ACGGAATCCTTCTTTGCCTCCGAT -ACGGAATCCTTCTTTGCCTGGCAT -ACGGAATCCTTCTTTGCCCGAGAT -ACGGAATCCTTCTTTGCCTACCAC -ACGGAATCCTTCTTTGCCCAGAAC -ACGGAATCCTTCTTTGCCGTCTAC -ACGGAATCCTTCTTTGCCACGTAC -ACGGAATCCTTCTTTGCCAGTGAC -ACGGAATCCTTCTTTGCCCTGTAG -ACGGAATCCTTCTTTGCCCCTAAG -ACGGAATCCTTCTTTGCCGTTCAG -ACGGAATCCTTCTTTGCCGCATAG -ACGGAATCCTTCTTTGCCGACAAG -ACGGAATCCTTCTTTGCCAAGCAG -ACGGAATCCTTCTTTGCCCGTCAA -ACGGAATCCTTCTTTGCCGCTGAA -ACGGAATCCTTCTTTGCCAGTACG -ACGGAATCCTTCTTTGCCATCCGA -ACGGAATCCTTCTTTGCCATGGGA -ACGGAATCCTTCTTTGCCGTGCAA -ACGGAATCCTTCTTTGCCGAGGAA -ACGGAATCCTTCTTTGCCCAGGTA -ACGGAATCCTTCTTTGCCGACTCT -ACGGAATCCTTCTTTGCCAGTCCT -ACGGAATCCTTCTTTGCCTAAGCC -ACGGAATCCTTCTTTGCCATAGCC -ACGGAATCCTTCTTTGCCTAACCG -ACGGAATCCTTCTTTGCCATGCCA -ACGGAATCCTTCCTTGGTGGAAAC -ACGGAATCCTTCCTTGGTAACACC -ACGGAATCCTTCCTTGGTATCGAG -ACGGAATCCTTCCTTGGTCTCCTT -ACGGAATCCTTCCTTGGTCCTGTT -ACGGAATCCTTCCTTGGTCGGTTT -ACGGAATCCTTCCTTGGTGTGGTT -ACGGAATCCTTCCTTGGTGCCTTT -ACGGAATCCTTCCTTGGTGGTCTT -ACGGAATCCTTCCTTGGTACGCTT -ACGGAATCCTTCCTTGGTAGCGTT -ACGGAATCCTTCCTTGGTTTCGTC -ACGGAATCCTTCCTTGGTTCTCTC -ACGGAATCCTTCCTTGGTTGGATC -ACGGAATCCTTCCTTGGTCACTTC -ACGGAATCCTTCCTTGGTGTACTC -ACGGAATCCTTCCTTGGTGATGTC -ACGGAATCCTTCCTTGGTACAGTC -ACGGAATCCTTCCTTGGTTTGCTG -ACGGAATCCTTCCTTGGTTCCATG -ACGGAATCCTTCCTTGGTTGTGTG -ACGGAATCCTTCCTTGGTCTAGTG -ACGGAATCCTTCCTTGGTCATCTG -ACGGAATCCTTCCTTGGTGAGTTG -ACGGAATCCTTCCTTGGTAGACTG -ACGGAATCCTTCCTTGGTTCGGTA -ACGGAATCCTTCCTTGGTTGCCTA -ACGGAATCCTTCCTTGGTCCACTA -ACGGAATCCTTCCTTGGTGGAGTA -ACGGAATCCTTCCTTGGTTCGTCT -ACGGAATCCTTCCTTGGTTGCACT -ACGGAATCCTTCCTTGGTCTGACT -ACGGAATCCTTCCTTGGTCAACCT -ACGGAATCCTTCCTTGGTGCTACT -ACGGAATCCTTCCTTGGTGGATCT -ACGGAATCCTTCCTTGGTAAGGCT -ACGGAATCCTTCCTTGGTTCAACC -ACGGAATCCTTCCTTGGTTGTTCC -ACGGAATCCTTCCTTGGTATTCCC -ACGGAATCCTTCCTTGGTTTCTCG -ACGGAATCCTTCCTTGGTTAGACG -ACGGAATCCTTCCTTGGTGTAACG -ACGGAATCCTTCCTTGGTACTTCG -ACGGAATCCTTCCTTGGTTACGCA -ACGGAATCCTTCCTTGGTCTTGCA -ACGGAATCCTTCCTTGGTCGAACA -ACGGAATCCTTCCTTGGTCAGTCA -ACGGAATCCTTCCTTGGTGATCCA -ACGGAATCCTTCCTTGGTACGACA -ACGGAATCCTTCCTTGGTAGCTCA -ACGGAATCCTTCCTTGGTTCACGT -ACGGAATCCTTCCTTGGTCGTAGT -ACGGAATCCTTCCTTGGTGTCAGT -ACGGAATCCTTCCTTGGTGAAGGT -ACGGAATCCTTCCTTGGTAACCGT -ACGGAATCCTTCCTTGGTTTGTGC -ACGGAATCCTTCCTTGGTCTAAGC -ACGGAATCCTTCCTTGGTACTAGC -ACGGAATCCTTCCTTGGTAGATGC -ACGGAATCCTTCCTTGGTTGAAGG -ACGGAATCCTTCCTTGGTCAATGG -ACGGAATCCTTCCTTGGTATGAGG -ACGGAATCCTTCCTTGGTAATGGG -ACGGAATCCTTCCTTGGTTCCTGA -ACGGAATCCTTCCTTGGTTAGCGA -ACGGAATCCTTCCTTGGTCACAGA -ACGGAATCCTTCCTTGGTGCAAGA -ACGGAATCCTTCCTTGGTGGTTGA -ACGGAATCCTTCCTTGGTTCCGAT -ACGGAATCCTTCCTTGGTTGGCAT -ACGGAATCCTTCCTTGGTCGAGAT -ACGGAATCCTTCCTTGGTTACCAC -ACGGAATCCTTCCTTGGTCAGAAC -ACGGAATCCTTCCTTGGTGTCTAC -ACGGAATCCTTCCTTGGTACGTAC -ACGGAATCCTTCCTTGGTAGTGAC -ACGGAATCCTTCCTTGGTCTGTAG -ACGGAATCCTTCCTTGGTCCTAAG -ACGGAATCCTTCCTTGGTGTTCAG -ACGGAATCCTTCCTTGGTGCATAG -ACGGAATCCTTCCTTGGTGACAAG -ACGGAATCCTTCCTTGGTAAGCAG -ACGGAATCCTTCCTTGGTCGTCAA -ACGGAATCCTTCCTTGGTGCTGAA -ACGGAATCCTTCCTTGGTAGTACG -ACGGAATCCTTCCTTGGTATCCGA -ACGGAATCCTTCCTTGGTATGGGA -ACGGAATCCTTCCTTGGTGTGCAA -ACGGAATCCTTCCTTGGTGAGGAA -ACGGAATCCTTCCTTGGTCAGGTA -ACGGAATCCTTCCTTGGTGACTCT -ACGGAATCCTTCCTTGGTAGTCCT -ACGGAATCCTTCCTTGGTTAAGCC -ACGGAATCCTTCCTTGGTATAGCC -ACGGAATCCTTCCTTGGTTAACCG -ACGGAATCCTTCCTTGGTATGCCA -ACGGAATCCTTCCTTACGGGAAAC -ACGGAATCCTTCCTTACGAACACC -ACGGAATCCTTCCTTACGATCGAG -ACGGAATCCTTCCTTACGCTCCTT -ACGGAATCCTTCCTTACGCCTGTT -ACGGAATCCTTCCTTACGCGGTTT -ACGGAATCCTTCCTTACGGTGGTT -ACGGAATCCTTCCTTACGGCCTTT -ACGGAATCCTTCCTTACGGGTCTT -ACGGAATCCTTCCTTACGACGCTT -ACGGAATCCTTCCTTACGAGCGTT -ACGGAATCCTTCCTTACGTTCGTC -ACGGAATCCTTCCTTACGTCTCTC -ACGGAATCCTTCCTTACGTGGATC -ACGGAATCCTTCCTTACGCACTTC -ACGGAATCCTTCCTTACGGTACTC -ACGGAATCCTTCCTTACGGATGTC -ACGGAATCCTTCCTTACGACAGTC -ACGGAATCCTTCCTTACGTTGCTG -ACGGAATCCTTCCTTACGTCCATG -ACGGAATCCTTCCTTACGTGTGTG -ACGGAATCCTTCCTTACGCTAGTG -ACGGAATCCTTCCTTACGCATCTG -ACGGAATCCTTCCTTACGGAGTTG -ACGGAATCCTTCCTTACGAGACTG -ACGGAATCCTTCCTTACGTCGGTA -ACGGAATCCTTCCTTACGTGCCTA -ACGGAATCCTTCCTTACGCCACTA -ACGGAATCCTTCCTTACGGGAGTA -ACGGAATCCTTCCTTACGTCGTCT -ACGGAATCCTTCCTTACGTGCACT -ACGGAATCCTTCCTTACGCTGACT -ACGGAATCCTTCCTTACGCAACCT -ACGGAATCCTTCCTTACGGCTACT -ACGGAATCCTTCCTTACGGGATCT -ACGGAATCCTTCCTTACGAAGGCT -ACGGAATCCTTCCTTACGTCAACC -ACGGAATCCTTCCTTACGTGTTCC -ACGGAATCCTTCCTTACGATTCCC -ACGGAATCCTTCCTTACGTTCTCG -ACGGAATCCTTCCTTACGTAGACG -ACGGAATCCTTCCTTACGGTAACG -ACGGAATCCTTCCTTACGACTTCG -ACGGAATCCTTCCTTACGTACGCA -ACGGAATCCTTCCTTACGCTTGCA -ACGGAATCCTTCCTTACGCGAACA -ACGGAATCCTTCCTTACGCAGTCA -ACGGAATCCTTCCTTACGGATCCA -ACGGAATCCTTCCTTACGACGACA -ACGGAATCCTTCCTTACGAGCTCA -ACGGAATCCTTCCTTACGTCACGT -ACGGAATCCTTCCTTACGCGTAGT -ACGGAATCCTTCCTTACGGTCAGT -ACGGAATCCTTCCTTACGGAAGGT -ACGGAATCCTTCCTTACGAACCGT -ACGGAATCCTTCCTTACGTTGTGC -ACGGAATCCTTCCTTACGCTAAGC -ACGGAATCCTTCCTTACGACTAGC -ACGGAATCCTTCCTTACGAGATGC -ACGGAATCCTTCCTTACGTGAAGG -ACGGAATCCTTCCTTACGCAATGG -ACGGAATCCTTCCTTACGATGAGG -ACGGAATCCTTCCTTACGAATGGG -ACGGAATCCTTCCTTACGTCCTGA -ACGGAATCCTTCCTTACGTAGCGA -ACGGAATCCTTCCTTACGCACAGA -ACGGAATCCTTCCTTACGGCAAGA -ACGGAATCCTTCCTTACGGGTTGA -ACGGAATCCTTCCTTACGTCCGAT -ACGGAATCCTTCCTTACGTGGCAT -ACGGAATCCTTCCTTACGCGAGAT -ACGGAATCCTTCCTTACGTACCAC -ACGGAATCCTTCCTTACGCAGAAC -ACGGAATCCTTCCTTACGGTCTAC -ACGGAATCCTTCCTTACGACGTAC -ACGGAATCCTTCCTTACGAGTGAC -ACGGAATCCTTCCTTACGCTGTAG -ACGGAATCCTTCCTTACGCCTAAG -ACGGAATCCTTCCTTACGGTTCAG -ACGGAATCCTTCCTTACGGCATAG -ACGGAATCCTTCCTTACGGACAAG -ACGGAATCCTTCCTTACGAAGCAG -ACGGAATCCTTCCTTACGCGTCAA -ACGGAATCCTTCCTTACGGCTGAA -ACGGAATCCTTCCTTACGAGTACG -ACGGAATCCTTCCTTACGATCCGA -ACGGAATCCTTCCTTACGATGGGA -ACGGAATCCTTCCTTACGGTGCAA -ACGGAATCCTTCCTTACGGAGGAA -ACGGAATCCTTCCTTACGCAGGTA -ACGGAATCCTTCCTTACGGACTCT -ACGGAATCCTTCCTTACGAGTCCT -ACGGAATCCTTCCTTACGTAAGCC -ACGGAATCCTTCCTTACGATAGCC -ACGGAATCCTTCCTTACGTAACCG -ACGGAATCCTTCCTTACGATGCCA -ACGGAATCCTTCGTTAGCGGAAAC -ACGGAATCCTTCGTTAGCAACACC -ACGGAATCCTTCGTTAGCATCGAG -ACGGAATCCTTCGTTAGCCTCCTT -ACGGAATCCTTCGTTAGCCCTGTT -ACGGAATCCTTCGTTAGCCGGTTT -ACGGAATCCTTCGTTAGCGTGGTT -ACGGAATCCTTCGTTAGCGCCTTT -ACGGAATCCTTCGTTAGCGGTCTT -ACGGAATCCTTCGTTAGCACGCTT -ACGGAATCCTTCGTTAGCAGCGTT -ACGGAATCCTTCGTTAGCTTCGTC -ACGGAATCCTTCGTTAGCTCTCTC -ACGGAATCCTTCGTTAGCTGGATC -ACGGAATCCTTCGTTAGCCACTTC -ACGGAATCCTTCGTTAGCGTACTC -ACGGAATCCTTCGTTAGCGATGTC -ACGGAATCCTTCGTTAGCACAGTC -ACGGAATCCTTCGTTAGCTTGCTG -ACGGAATCCTTCGTTAGCTCCATG -ACGGAATCCTTCGTTAGCTGTGTG -ACGGAATCCTTCGTTAGCCTAGTG -ACGGAATCCTTCGTTAGCCATCTG -ACGGAATCCTTCGTTAGCGAGTTG -ACGGAATCCTTCGTTAGCAGACTG -ACGGAATCCTTCGTTAGCTCGGTA -ACGGAATCCTTCGTTAGCTGCCTA -ACGGAATCCTTCGTTAGCCCACTA -ACGGAATCCTTCGTTAGCGGAGTA -ACGGAATCCTTCGTTAGCTCGTCT -ACGGAATCCTTCGTTAGCTGCACT -ACGGAATCCTTCGTTAGCCTGACT -ACGGAATCCTTCGTTAGCCAACCT -ACGGAATCCTTCGTTAGCGCTACT -ACGGAATCCTTCGTTAGCGGATCT -ACGGAATCCTTCGTTAGCAAGGCT -ACGGAATCCTTCGTTAGCTCAACC -ACGGAATCCTTCGTTAGCTGTTCC -ACGGAATCCTTCGTTAGCATTCCC -ACGGAATCCTTCGTTAGCTTCTCG -ACGGAATCCTTCGTTAGCTAGACG -ACGGAATCCTTCGTTAGCGTAACG -ACGGAATCCTTCGTTAGCACTTCG -ACGGAATCCTTCGTTAGCTACGCA -ACGGAATCCTTCGTTAGCCTTGCA -ACGGAATCCTTCGTTAGCCGAACA -ACGGAATCCTTCGTTAGCCAGTCA -ACGGAATCCTTCGTTAGCGATCCA -ACGGAATCCTTCGTTAGCACGACA -ACGGAATCCTTCGTTAGCAGCTCA -ACGGAATCCTTCGTTAGCTCACGT -ACGGAATCCTTCGTTAGCCGTAGT -ACGGAATCCTTCGTTAGCGTCAGT -ACGGAATCCTTCGTTAGCGAAGGT -ACGGAATCCTTCGTTAGCAACCGT -ACGGAATCCTTCGTTAGCTTGTGC -ACGGAATCCTTCGTTAGCCTAAGC -ACGGAATCCTTCGTTAGCACTAGC -ACGGAATCCTTCGTTAGCAGATGC -ACGGAATCCTTCGTTAGCTGAAGG -ACGGAATCCTTCGTTAGCCAATGG -ACGGAATCCTTCGTTAGCATGAGG -ACGGAATCCTTCGTTAGCAATGGG -ACGGAATCCTTCGTTAGCTCCTGA -ACGGAATCCTTCGTTAGCTAGCGA -ACGGAATCCTTCGTTAGCCACAGA -ACGGAATCCTTCGTTAGCGCAAGA -ACGGAATCCTTCGTTAGCGGTTGA -ACGGAATCCTTCGTTAGCTCCGAT -ACGGAATCCTTCGTTAGCTGGCAT -ACGGAATCCTTCGTTAGCCGAGAT -ACGGAATCCTTCGTTAGCTACCAC -ACGGAATCCTTCGTTAGCCAGAAC -ACGGAATCCTTCGTTAGCGTCTAC -ACGGAATCCTTCGTTAGCACGTAC -ACGGAATCCTTCGTTAGCAGTGAC -ACGGAATCCTTCGTTAGCCTGTAG -ACGGAATCCTTCGTTAGCCCTAAG -ACGGAATCCTTCGTTAGCGTTCAG -ACGGAATCCTTCGTTAGCGCATAG -ACGGAATCCTTCGTTAGCGACAAG -ACGGAATCCTTCGTTAGCAAGCAG -ACGGAATCCTTCGTTAGCCGTCAA -ACGGAATCCTTCGTTAGCGCTGAA -ACGGAATCCTTCGTTAGCAGTACG -ACGGAATCCTTCGTTAGCATCCGA -ACGGAATCCTTCGTTAGCATGGGA -ACGGAATCCTTCGTTAGCGTGCAA -ACGGAATCCTTCGTTAGCGAGGAA -ACGGAATCCTTCGTTAGCCAGGTA -ACGGAATCCTTCGTTAGCGACTCT -ACGGAATCCTTCGTTAGCAGTCCT -ACGGAATCCTTCGTTAGCTAAGCC -ACGGAATCCTTCGTTAGCATAGCC -ACGGAATCCTTCGTTAGCTAACCG -ACGGAATCCTTCGTTAGCATGCCA -ACGGAATCCTTCGTCTTCGGAAAC -ACGGAATCCTTCGTCTTCAACACC -ACGGAATCCTTCGTCTTCATCGAG -ACGGAATCCTTCGTCTTCCTCCTT -ACGGAATCCTTCGTCTTCCCTGTT -ACGGAATCCTTCGTCTTCCGGTTT -ACGGAATCCTTCGTCTTCGTGGTT -ACGGAATCCTTCGTCTTCGCCTTT -ACGGAATCCTTCGTCTTCGGTCTT -ACGGAATCCTTCGTCTTCACGCTT -ACGGAATCCTTCGTCTTCAGCGTT -ACGGAATCCTTCGTCTTCTTCGTC -ACGGAATCCTTCGTCTTCTCTCTC -ACGGAATCCTTCGTCTTCTGGATC -ACGGAATCCTTCGTCTTCCACTTC -ACGGAATCCTTCGTCTTCGTACTC -ACGGAATCCTTCGTCTTCGATGTC -ACGGAATCCTTCGTCTTCACAGTC -ACGGAATCCTTCGTCTTCTTGCTG -ACGGAATCCTTCGTCTTCTCCATG -ACGGAATCCTTCGTCTTCTGTGTG -ACGGAATCCTTCGTCTTCCTAGTG -ACGGAATCCTTCGTCTTCCATCTG -ACGGAATCCTTCGTCTTCGAGTTG -ACGGAATCCTTCGTCTTCAGACTG -ACGGAATCCTTCGTCTTCTCGGTA -ACGGAATCCTTCGTCTTCTGCCTA -ACGGAATCCTTCGTCTTCCCACTA -ACGGAATCCTTCGTCTTCGGAGTA -ACGGAATCCTTCGTCTTCTCGTCT -ACGGAATCCTTCGTCTTCTGCACT -ACGGAATCCTTCGTCTTCCTGACT -ACGGAATCCTTCGTCTTCCAACCT -ACGGAATCCTTCGTCTTCGCTACT -ACGGAATCCTTCGTCTTCGGATCT -ACGGAATCCTTCGTCTTCAAGGCT -ACGGAATCCTTCGTCTTCTCAACC -ACGGAATCCTTCGTCTTCTGTTCC -ACGGAATCCTTCGTCTTCATTCCC -ACGGAATCCTTCGTCTTCTTCTCG -ACGGAATCCTTCGTCTTCTAGACG -ACGGAATCCTTCGTCTTCGTAACG -ACGGAATCCTTCGTCTTCACTTCG -ACGGAATCCTTCGTCTTCTACGCA -ACGGAATCCTTCGTCTTCCTTGCA -ACGGAATCCTTCGTCTTCCGAACA -ACGGAATCCTTCGTCTTCCAGTCA -ACGGAATCCTTCGTCTTCGATCCA -ACGGAATCCTTCGTCTTCACGACA -ACGGAATCCTTCGTCTTCAGCTCA -ACGGAATCCTTCGTCTTCTCACGT -ACGGAATCCTTCGTCTTCCGTAGT -ACGGAATCCTTCGTCTTCGTCAGT -ACGGAATCCTTCGTCTTCGAAGGT -ACGGAATCCTTCGTCTTCAACCGT -ACGGAATCCTTCGTCTTCTTGTGC -ACGGAATCCTTCGTCTTCCTAAGC -ACGGAATCCTTCGTCTTCACTAGC -ACGGAATCCTTCGTCTTCAGATGC -ACGGAATCCTTCGTCTTCTGAAGG -ACGGAATCCTTCGTCTTCCAATGG -ACGGAATCCTTCGTCTTCATGAGG -ACGGAATCCTTCGTCTTCAATGGG -ACGGAATCCTTCGTCTTCTCCTGA -ACGGAATCCTTCGTCTTCTAGCGA -ACGGAATCCTTCGTCTTCCACAGA -ACGGAATCCTTCGTCTTCGCAAGA -ACGGAATCCTTCGTCTTCGGTTGA -ACGGAATCCTTCGTCTTCTCCGAT -ACGGAATCCTTCGTCTTCTGGCAT -ACGGAATCCTTCGTCTTCCGAGAT -ACGGAATCCTTCGTCTTCTACCAC -ACGGAATCCTTCGTCTTCCAGAAC -ACGGAATCCTTCGTCTTCGTCTAC -ACGGAATCCTTCGTCTTCACGTAC -ACGGAATCCTTCGTCTTCAGTGAC -ACGGAATCCTTCGTCTTCCTGTAG -ACGGAATCCTTCGTCTTCCCTAAG -ACGGAATCCTTCGTCTTCGTTCAG -ACGGAATCCTTCGTCTTCGCATAG -ACGGAATCCTTCGTCTTCGACAAG -ACGGAATCCTTCGTCTTCAAGCAG -ACGGAATCCTTCGTCTTCCGTCAA -ACGGAATCCTTCGTCTTCGCTGAA -ACGGAATCCTTCGTCTTCAGTACG -ACGGAATCCTTCGTCTTCATCCGA -ACGGAATCCTTCGTCTTCATGGGA -ACGGAATCCTTCGTCTTCGTGCAA -ACGGAATCCTTCGTCTTCGAGGAA -ACGGAATCCTTCGTCTTCCAGGTA -ACGGAATCCTTCGTCTTCGACTCT -ACGGAATCCTTCGTCTTCAGTCCT -ACGGAATCCTTCGTCTTCTAAGCC -ACGGAATCCTTCGTCTTCATAGCC -ACGGAATCCTTCGTCTTCTAACCG -ACGGAATCCTTCGTCTTCATGCCA -ACGGAATCCTTCCTCTCTGGAAAC -ACGGAATCCTTCCTCTCTAACACC -ACGGAATCCTTCCTCTCTATCGAG -ACGGAATCCTTCCTCTCTCTCCTT -ACGGAATCCTTCCTCTCTCCTGTT -ACGGAATCCTTCCTCTCTCGGTTT -ACGGAATCCTTCCTCTCTGTGGTT -ACGGAATCCTTCCTCTCTGCCTTT -ACGGAATCCTTCCTCTCTGGTCTT -ACGGAATCCTTCCTCTCTACGCTT -ACGGAATCCTTCCTCTCTAGCGTT -ACGGAATCCTTCCTCTCTTTCGTC -ACGGAATCCTTCCTCTCTTCTCTC -ACGGAATCCTTCCTCTCTTGGATC -ACGGAATCCTTCCTCTCTCACTTC -ACGGAATCCTTCCTCTCTGTACTC -ACGGAATCCTTCCTCTCTGATGTC -ACGGAATCCTTCCTCTCTACAGTC -ACGGAATCCTTCCTCTCTTTGCTG -ACGGAATCCTTCCTCTCTTCCATG -ACGGAATCCTTCCTCTCTTGTGTG -ACGGAATCCTTCCTCTCTCTAGTG -ACGGAATCCTTCCTCTCTCATCTG -ACGGAATCCTTCCTCTCTGAGTTG -ACGGAATCCTTCCTCTCTAGACTG -ACGGAATCCTTCCTCTCTTCGGTA -ACGGAATCCTTCCTCTCTTGCCTA -ACGGAATCCTTCCTCTCTCCACTA -ACGGAATCCTTCCTCTCTGGAGTA -ACGGAATCCTTCCTCTCTTCGTCT -ACGGAATCCTTCCTCTCTTGCACT -ACGGAATCCTTCCTCTCTCTGACT -ACGGAATCCTTCCTCTCTCAACCT -ACGGAATCCTTCCTCTCTGCTACT -ACGGAATCCTTCCTCTCTGGATCT -ACGGAATCCTTCCTCTCTAAGGCT -ACGGAATCCTTCCTCTCTTCAACC -ACGGAATCCTTCCTCTCTTGTTCC -ACGGAATCCTTCCTCTCTATTCCC -ACGGAATCCTTCCTCTCTTTCTCG -ACGGAATCCTTCCTCTCTTAGACG -ACGGAATCCTTCCTCTCTGTAACG -ACGGAATCCTTCCTCTCTACTTCG -ACGGAATCCTTCCTCTCTTACGCA -ACGGAATCCTTCCTCTCTCTTGCA -ACGGAATCCTTCCTCTCTCGAACA -ACGGAATCCTTCCTCTCTCAGTCA -ACGGAATCCTTCCTCTCTGATCCA -ACGGAATCCTTCCTCTCTACGACA -ACGGAATCCTTCCTCTCTAGCTCA -ACGGAATCCTTCCTCTCTTCACGT -ACGGAATCCTTCCTCTCTCGTAGT -ACGGAATCCTTCCTCTCTGTCAGT -ACGGAATCCTTCCTCTCTGAAGGT -ACGGAATCCTTCCTCTCTAACCGT -ACGGAATCCTTCCTCTCTTTGTGC -ACGGAATCCTTCCTCTCTCTAAGC -ACGGAATCCTTCCTCTCTACTAGC -ACGGAATCCTTCCTCTCTAGATGC -ACGGAATCCTTCCTCTCTTGAAGG -ACGGAATCCTTCCTCTCTCAATGG -ACGGAATCCTTCCTCTCTATGAGG -ACGGAATCCTTCCTCTCTAATGGG -ACGGAATCCTTCCTCTCTTCCTGA -ACGGAATCCTTCCTCTCTTAGCGA -ACGGAATCCTTCCTCTCTCACAGA -ACGGAATCCTTCCTCTCTGCAAGA -ACGGAATCCTTCCTCTCTGGTTGA -ACGGAATCCTTCCTCTCTTCCGAT -ACGGAATCCTTCCTCTCTTGGCAT -ACGGAATCCTTCCTCTCTCGAGAT -ACGGAATCCTTCCTCTCTTACCAC -ACGGAATCCTTCCTCTCTCAGAAC -ACGGAATCCTTCCTCTCTGTCTAC -ACGGAATCCTTCCTCTCTACGTAC -ACGGAATCCTTCCTCTCTAGTGAC -ACGGAATCCTTCCTCTCTCTGTAG -ACGGAATCCTTCCTCTCTCCTAAG -ACGGAATCCTTCCTCTCTGTTCAG -ACGGAATCCTTCCTCTCTGCATAG -ACGGAATCCTTCCTCTCTGACAAG -ACGGAATCCTTCCTCTCTAAGCAG -ACGGAATCCTTCCTCTCTCGTCAA -ACGGAATCCTTCCTCTCTGCTGAA -ACGGAATCCTTCCTCTCTAGTACG -ACGGAATCCTTCCTCTCTATCCGA -ACGGAATCCTTCCTCTCTATGGGA -ACGGAATCCTTCCTCTCTGTGCAA -ACGGAATCCTTCCTCTCTGAGGAA -ACGGAATCCTTCCTCTCTCAGGTA -ACGGAATCCTTCCTCTCTGACTCT -ACGGAATCCTTCCTCTCTAGTCCT -ACGGAATCCTTCCTCTCTTAAGCC -ACGGAATCCTTCCTCTCTATAGCC -ACGGAATCCTTCCTCTCTTAACCG -ACGGAATCCTTCCTCTCTATGCCA -ACGGAATCCTTCATCTGGGGAAAC -ACGGAATCCTTCATCTGGAACACC -ACGGAATCCTTCATCTGGATCGAG -ACGGAATCCTTCATCTGGCTCCTT -ACGGAATCCTTCATCTGGCCTGTT -ACGGAATCCTTCATCTGGCGGTTT -ACGGAATCCTTCATCTGGGTGGTT -ACGGAATCCTTCATCTGGGCCTTT -ACGGAATCCTTCATCTGGGGTCTT -ACGGAATCCTTCATCTGGACGCTT -ACGGAATCCTTCATCTGGAGCGTT -ACGGAATCCTTCATCTGGTTCGTC -ACGGAATCCTTCATCTGGTCTCTC -ACGGAATCCTTCATCTGGTGGATC -ACGGAATCCTTCATCTGGCACTTC -ACGGAATCCTTCATCTGGGTACTC -ACGGAATCCTTCATCTGGGATGTC -ACGGAATCCTTCATCTGGACAGTC -ACGGAATCCTTCATCTGGTTGCTG -ACGGAATCCTTCATCTGGTCCATG -ACGGAATCCTTCATCTGGTGTGTG -ACGGAATCCTTCATCTGGCTAGTG -ACGGAATCCTTCATCTGGCATCTG -ACGGAATCCTTCATCTGGGAGTTG -ACGGAATCCTTCATCTGGAGACTG -ACGGAATCCTTCATCTGGTCGGTA -ACGGAATCCTTCATCTGGTGCCTA -ACGGAATCCTTCATCTGGCCACTA -ACGGAATCCTTCATCTGGGGAGTA -ACGGAATCCTTCATCTGGTCGTCT -ACGGAATCCTTCATCTGGTGCACT -ACGGAATCCTTCATCTGGCTGACT -ACGGAATCCTTCATCTGGCAACCT -ACGGAATCCTTCATCTGGGCTACT -ACGGAATCCTTCATCTGGGGATCT -ACGGAATCCTTCATCTGGAAGGCT -ACGGAATCCTTCATCTGGTCAACC -ACGGAATCCTTCATCTGGTGTTCC -ACGGAATCCTTCATCTGGATTCCC -ACGGAATCCTTCATCTGGTTCTCG -ACGGAATCCTTCATCTGGTAGACG -ACGGAATCCTTCATCTGGGTAACG -ACGGAATCCTTCATCTGGACTTCG -ACGGAATCCTTCATCTGGTACGCA -ACGGAATCCTTCATCTGGCTTGCA -ACGGAATCCTTCATCTGGCGAACA -ACGGAATCCTTCATCTGGCAGTCA -ACGGAATCCTTCATCTGGGATCCA -ACGGAATCCTTCATCTGGACGACA -ACGGAATCCTTCATCTGGAGCTCA -ACGGAATCCTTCATCTGGTCACGT -ACGGAATCCTTCATCTGGCGTAGT -ACGGAATCCTTCATCTGGGTCAGT -ACGGAATCCTTCATCTGGGAAGGT -ACGGAATCCTTCATCTGGAACCGT -ACGGAATCCTTCATCTGGTTGTGC -ACGGAATCCTTCATCTGGCTAAGC -ACGGAATCCTTCATCTGGACTAGC -ACGGAATCCTTCATCTGGAGATGC -ACGGAATCCTTCATCTGGTGAAGG -ACGGAATCCTTCATCTGGCAATGG -ACGGAATCCTTCATCTGGATGAGG -ACGGAATCCTTCATCTGGAATGGG -ACGGAATCCTTCATCTGGTCCTGA -ACGGAATCCTTCATCTGGTAGCGA -ACGGAATCCTTCATCTGGCACAGA -ACGGAATCCTTCATCTGGGCAAGA -ACGGAATCCTTCATCTGGGGTTGA -ACGGAATCCTTCATCTGGTCCGAT -ACGGAATCCTTCATCTGGTGGCAT -ACGGAATCCTTCATCTGGCGAGAT -ACGGAATCCTTCATCTGGTACCAC -ACGGAATCCTTCATCTGGCAGAAC -ACGGAATCCTTCATCTGGGTCTAC -ACGGAATCCTTCATCTGGACGTAC -ACGGAATCCTTCATCTGGAGTGAC -ACGGAATCCTTCATCTGGCTGTAG -ACGGAATCCTTCATCTGGCCTAAG -ACGGAATCCTTCATCTGGGTTCAG -ACGGAATCCTTCATCTGGGCATAG -ACGGAATCCTTCATCTGGGACAAG -ACGGAATCCTTCATCTGGAAGCAG -ACGGAATCCTTCATCTGGCGTCAA -ACGGAATCCTTCATCTGGGCTGAA -ACGGAATCCTTCATCTGGAGTACG -ACGGAATCCTTCATCTGGATCCGA -ACGGAATCCTTCATCTGGATGGGA -ACGGAATCCTTCATCTGGGTGCAA -ACGGAATCCTTCATCTGGGAGGAA -ACGGAATCCTTCATCTGGCAGGTA -ACGGAATCCTTCATCTGGGACTCT -ACGGAATCCTTCATCTGGAGTCCT -ACGGAATCCTTCATCTGGTAAGCC -ACGGAATCCTTCATCTGGATAGCC -ACGGAATCCTTCATCTGGTAACCG -ACGGAATCCTTCATCTGGATGCCA -ACGGAATCCTTCTTCCACGGAAAC -ACGGAATCCTTCTTCCACAACACC -ACGGAATCCTTCTTCCACATCGAG -ACGGAATCCTTCTTCCACCTCCTT -ACGGAATCCTTCTTCCACCCTGTT -ACGGAATCCTTCTTCCACCGGTTT -ACGGAATCCTTCTTCCACGTGGTT -ACGGAATCCTTCTTCCACGCCTTT -ACGGAATCCTTCTTCCACGGTCTT -ACGGAATCCTTCTTCCACACGCTT -ACGGAATCCTTCTTCCACAGCGTT -ACGGAATCCTTCTTCCACTTCGTC -ACGGAATCCTTCTTCCACTCTCTC -ACGGAATCCTTCTTCCACTGGATC -ACGGAATCCTTCTTCCACCACTTC -ACGGAATCCTTCTTCCACGTACTC -ACGGAATCCTTCTTCCACGATGTC -ACGGAATCCTTCTTCCACACAGTC -ACGGAATCCTTCTTCCACTTGCTG -ACGGAATCCTTCTTCCACTCCATG -ACGGAATCCTTCTTCCACTGTGTG -ACGGAATCCTTCTTCCACCTAGTG -ACGGAATCCTTCTTCCACCATCTG -ACGGAATCCTTCTTCCACGAGTTG -ACGGAATCCTTCTTCCACAGACTG -ACGGAATCCTTCTTCCACTCGGTA -ACGGAATCCTTCTTCCACTGCCTA -ACGGAATCCTTCTTCCACCCACTA -ACGGAATCCTTCTTCCACGGAGTA -ACGGAATCCTTCTTCCACTCGTCT -ACGGAATCCTTCTTCCACTGCACT -ACGGAATCCTTCTTCCACCTGACT -ACGGAATCCTTCTTCCACCAACCT -ACGGAATCCTTCTTCCACGCTACT -ACGGAATCCTTCTTCCACGGATCT -ACGGAATCCTTCTTCCACAAGGCT -ACGGAATCCTTCTTCCACTCAACC -ACGGAATCCTTCTTCCACTGTTCC -ACGGAATCCTTCTTCCACATTCCC -ACGGAATCCTTCTTCCACTTCTCG -ACGGAATCCTTCTTCCACTAGACG -ACGGAATCCTTCTTCCACGTAACG -ACGGAATCCTTCTTCCACACTTCG -ACGGAATCCTTCTTCCACTACGCA -ACGGAATCCTTCTTCCACCTTGCA -ACGGAATCCTTCTTCCACCGAACA -ACGGAATCCTTCTTCCACCAGTCA -ACGGAATCCTTCTTCCACGATCCA -ACGGAATCCTTCTTCCACACGACA -ACGGAATCCTTCTTCCACAGCTCA -ACGGAATCCTTCTTCCACTCACGT -ACGGAATCCTTCTTCCACCGTAGT -ACGGAATCCTTCTTCCACGTCAGT -ACGGAATCCTTCTTCCACGAAGGT -ACGGAATCCTTCTTCCACAACCGT -ACGGAATCCTTCTTCCACTTGTGC -ACGGAATCCTTCTTCCACCTAAGC -ACGGAATCCTTCTTCCACACTAGC -ACGGAATCCTTCTTCCACAGATGC -ACGGAATCCTTCTTCCACTGAAGG -ACGGAATCCTTCTTCCACCAATGG -ACGGAATCCTTCTTCCACATGAGG -ACGGAATCCTTCTTCCACAATGGG -ACGGAATCCTTCTTCCACTCCTGA -ACGGAATCCTTCTTCCACTAGCGA -ACGGAATCCTTCTTCCACCACAGA -ACGGAATCCTTCTTCCACGCAAGA -ACGGAATCCTTCTTCCACGGTTGA -ACGGAATCCTTCTTCCACTCCGAT -ACGGAATCCTTCTTCCACTGGCAT -ACGGAATCCTTCTTCCACCGAGAT -ACGGAATCCTTCTTCCACTACCAC -ACGGAATCCTTCTTCCACCAGAAC -ACGGAATCCTTCTTCCACGTCTAC -ACGGAATCCTTCTTCCACACGTAC -ACGGAATCCTTCTTCCACAGTGAC -ACGGAATCCTTCTTCCACCTGTAG -ACGGAATCCTTCTTCCACCCTAAG -ACGGAATCCTTCTTCCACGTTCAG -ACGGAATCCTTCTTCCACGCATAG -ACGGAATCCTTCTTCCACGACAAG -ACGGAATCCTTCTTCCACAAGCAG -ACGGAATCCTTCTTCCACCGTCAA -ACGGAATCCTTCTTCCACGCTGAA -ACGGAATCCTTCTTCCACAGTACG -ACGGAATCCTTCTTCCACATCCGA -ACGGAATCCTTCTTCCACATGGGA -ACGGAATCCTTCTTCCACGTGCAA -ACGGAATCCTTCTTCCACGAGGAA -ACGGAATCCTTCTTCCACCAGGTA -ACGGAATCCTTCTTCCACGACTCT -ACGGAATCCTTCTTCCACAGTCCT -ACGGAATCCTTCTTCCACTAAGCC -ACGGAATCCTTCTTCCACATAGCC -ACGGAATCCTTCTTCCACTAACCG -ACGGAATCCTTCTTCCACATGCCA -ACGGAATCCTTCCTCGTAGGAAAC -ACGGAATCCTTCCTCGTAAACACC -ACGGAATCCTTCCTCGTAATCGAG -ACGGAATCCTTCCTCGTACTCCTT -ACGGAATCCTTCCTCGTACCTGTT -ACGGAATCCTTCCTCGTACGGTTT -ACGGAATCCTTCCTCGTAGTGGTT -ACGGAATCCTTCCTCGTAGCCTTT -ACGGAATCCTTCCTCGTAGGTCTT -ACGGAATCCTTCCTCGTAACGCTT -ACGGAATCCTTCCTCGTAAGCGTT -ACGGAATCCTTCCTCGTATTCGTC -ACGGAATCCTTCCTCGTATCTCTC -ACGGAATCCTTCCTCGTATGGATC -ACGGAATCCTTCCTCGTACACTTC -ACGGAATCCTTCCTCGTAGTACTC -ACGGAATCCTTCCTCGTAGATGTC -ACGGAATCCTTCCTCGTAACAGTC -ACGGAATCCTTCCTCGTATTGCTG -ACGGAATCCTTCCTCGTATCCATG -ACGGAATCCTTCCTCGTATGTGTG -ACGGAATCCTTCCTCGTACTAGTG -ACGGAATCCTTCCTCGTACATCTG -ACGGAATCCTTCCTCGTAGAGTTG -ACGGAATCCTTCCTCGTAAGACTG -ACGGAATCCTTCCTCGTATCGGTA -ACGGAATCCTTCCTCGTATGCCTA -ACGGAATCCTTCCTCGTACCACTA -ACGGAATCCTTCCTCGTAGGAGTA -ACGGAATCCTTCCTCGTATCGTCT -ACGGAATCCTTCCTCGTATGCACT -ACGGAATCCTTCCTCGTACTGACT -ACGGAATCCTTCCTCGTACAACCT -ACGGAATCCTTCCTCGTAGCTACT -ACGGAATCCTTCCTCGTAGGATCT -ACGGAATCCTTCCTCGTAAAGGCT -ACGGAATCCTTCCTCGTATCAACC -ACGGAATCCTTCCTCGTATGTTCC -ACGGAATCCTTCCTCGTAATTCCC -ACGGAATCCTTCCTCGTATTCTCG -ACGGAATCCTTCCTCGTATAGACG -ACGGAATCCTTCCTCGTAGTAACG -ACGGAATCCTTCCTCGTAACTTCG -ACGGAATCCTTCCTCGTATACGCA -ACGGAATCCTTCCTCGTACTTGCA -ACGGAATCCTTCCTCGTACGAACA -ACGGAATCCTTCCTCGTACAGTCA -ACGGAATCCTTCCTCGTAGATCCA -ACGGAATCCTTCCTCGTAACGACA -ACGGAATCCTTCCTCGTAAGCTCA -ACGGAATCCTTCCTCGTATCACGT -ACGGAATCCTTCCTCGTACGTAGT -ACGGAATCCTTCCTCGTAGTCAGT -ACGGAATCCTTCCTCGTAGAAGGT -ACGGAATCCTTCCTCGTAAACCGT -ACGGAATCCTTCCTCGTATTGTGC -ACGGAATCCTTCCTCGTACTAAGC -ACGGAATCCTTCCTCGTAACTAGC -ACGGAATCCTTCCTCGTAAGATGC -ACGGAATCCTTCCTCGTATGAAGG -ACGGAATCCTTCCTCGTACAATGG -ACGGAATCCTTCCTCGTAATGAGG -ACGGAATCCTTCCTCGTAAATGGG -ACGGAATCCTTCCTCGTATCCTGA -ACGGAATCCTTCCTCGTATAGCGA -ACGGAATCCTTCCTCGTACACAGA -ACGGAATCCTTCCTCGTAGCAAGA -ACGGAATCCTTCCTCGTAGGTTGA -ACGGAATCCTTCCTCGTATCCGAT -ACGGAATCCTTCCTCGTATGGCAT -ACGGAATCCTTCCTCGTACGAGAT -ACGGAATCCTTCCTCGTATACCAC -ACGGAATCCTTCCTCGTACAGAAC -ACGGAATCCTTCCTCGTAGTCTAC -ACGGAATCCTTCCTCGTAACGTAC -ACGGAATCCTTCCTCGTAAGTGAC -ACGGAATCCTTCCTCGTACTGTAG -ACGGAATCCTTCCTCGTACCTAAG -ACGGAATCCTTCCTCGTAGTTCAG -ACGGAATCCTTCCTCGTAGCATAG -ACGGAATCCTTCCTCGTAGACAAG -ACGGAATCCTTCCTCGTAAAGCAG -ACGGAATCCTTCCTCGTACGTCAA -ACGGAATCCTTCCTCGTAGCTGAA -ACGGAATCCTTCCTCGTAAGTACG -ACGGAATCCTTCCTCGTAATCCGA -ACGGAATCCTTCCTCGTAATGGGA -ACGGAATCCTTCCTCGTAGTGCAA -ACGGAATCCTTCCTCGTAGAGGAA -ACGGAATCCTTCCTCGTACAGGTA -ACGGAATCCTTCCTCGTAGACTCT -ACGGAATCCTTCCTCGTAAGTCCT -ACGGAATCCTTCCTCGTATAAGCC -ACGGAATCCTTCCTCGTAATAGCC -ACGGAATCCTTCCTCGTATAACCG -ACGGAATCCTTCCTCGTAATGCCA -ACGGAATCCTTCGTCGATGGAAAC -ACGGAATCCTTCGTCGATAACACC -ACGGAATCCTTCGTCGATATCGAG -ACGGAATCCTTCGTCGATCTCCTT -ACGGAATCCTTCGTCGATCCTGTT -ACGGAATCCTTCGTCGATCGGTTT -ACGGAATCCTTCGTCGATGTGGTT -ACGGAATCCTTCGTCGATGCCTTT -ACGGAATCCTTCGTCGATGGTCTT -ACGGAATCCTTCGTCGATACGCTT -ACGGAATCCTTCGTCGATAGCGTT -ACGGAATCCTTCGTCGATTTCGTC -ACGGAATCCTTCGTCGATTCTCTC -ACGGAATCCTTCGTCGATTGGATC -ACGGAATCCTTCGTCGATCACTTC -ACGGAATCCTTCGTCGATGTACTC -ACGGAATCCTTCGTCGATGATGTC -ACGGAATCCTTCGTCGATACAGTC -ACGGAATCCTTCGTCGATTTGCTG -ACGGAATCCTTCGTCGATTCCATG -ACGGAATCCTTCGTCGATTGTGTG -ACGGAATCCTTCGTCGATCTAGTG -ACGGAATCCTTCGTCGATCATCTG -ACGGAATCCTTCGTCGATGAGTTG -ACGGAATCCTTCGTCGATAGACTG -ACGGAATCCTTCGTCGATTCGGTA -ACGGAATCCTTCGTCGATTGCCTA -ACGGAATCCTTCGTCGATCCACTA -ACGGAATCCTTCGTCGATGGAGTA -ACGGAATCCTTCGTCGATTCGTCT -ACGGAATCCTTCGTCGATTGCACT -ACGGAATCCTTCGTCGATCTGACT -ACGGAATCCTTCGTCGATCAACCT -ACGGAATCCTTCGTCGATGCTACT -ACGGAATCCTTCGTCGATGGATCT -ACGGAATCCTTCGTCGATAAGGCT -ACGGAATCCTTCGTCGATTCAACC -ACGGAATCCTTCGTCGATTGTTCC -ACGGAATCCTTCGTCGATATTCCC -ACGGAATCCTTCGTCGATTTCTCG -ACGGAATCCTTCGTCGATTAGACG -ACGGAATCCTTCGTCGATGTAACG -ACGGAATCCTTCGTCGATACTTCG -ACGGAATCCTTCGTCGATTACGCA -ACGGAATCCTTCGTCGATCTTGCA -ACGGAATCCTTCGTCGATCGAACA -ACGGAATCCTTCGTCGATCAGTCA -ACGGAATCCTTCGTCGATGATCCA -ACGGAATCCTTCGTCGATACGACA -ACGGAATCCTTCGTCGATAGCTCA -ACGGAATCCTTCGTCGATTCACGT -ACGGAATCCTTCGTCGATCGTAGT -ACGGAATCCTTCGTCGATGTCAGT -ACGGAATCCTTCGTCGATGAAGGT -ACGGAATCCTTCGTCGATAACCGT -ACGGAATCCTTCGTCGATTTGTGC -ACGGAATCCTTCGTCGATCTAAGC -ACGGAATCCTTCGTCGATACTAGC -ACGGAATCCTTCGTCGATAGATGC -ACGGAATCCTTCGTCGATTGAAGG -ACGGAATCCTTCGTCGATCAATGG -ACGGAATCCTTCGTCGATATGAGG -ACGGAATCCTTCGTCGATAATGGG -ACGGAATCCTTCGTCGATTCCTGA -ACGGAATCCTTCGTCGATTAGCGA -ACGGAATCCTTCGTCGATCACAGA -ACGGAATCCTTCGTCGATGCAAGA -ACGGAATCCTTCGTCGATGGTTGA -ACGGAATCCTTCGTCGATTCCGAT -ACGGAATCCTTCGTCGATTGGCAT -ACGGAATCCTTCGTCGATCGAGAT -ACGGAATCCTTCGTCGATTACCAC -ACGGAATCCTTCGTCGATCAGAAC -ACGGAATCCTTCGTCGATGTCTAC -ACGGAATCCTTCGTCGATACGTAC -ACGGAATCCTTCGTCGATAGTGAC -ACGGAATCCTTCGTCGATCTGTAG -ACGGAATCCTTCGTCGATCCTAAG -ACGGAATCCTTCGTCGATGTTCAG -ACGGAATCCTTCGTCGATGCATAG -ACGGAATCCTTCGTCGATGACAAG -ACGGAATCCTTCGTCGATAAGCAG -ACGGAATCCTTCGTCGATCGTCAA -ACGGAATCCTTCGTCGATGCTGAA -ACGGAATCCTTCGTCGATAGTACG -ACGGAATCCTTCGTCGATATCCGA -ACGGAATCCTTCGTCGATATGGGA -ACGGAATCCTTCGTCGATGTGCAA -ACGGAATCCTTCGTCGATGAGGAA -ACGGAATCCTTCGTCGATCAGGTA -ACGGAATCCTTCGTCGATGACTCT -ACGGAATCCTTCGTCGATAGTCCT -ACGGAATCCTTCGTCGATTAAGCC -ACGGAATCCTTCGTCGATATAGCC -ACGGAATCCTTCGTCGATTAACCG -ACGGAATCCTTCGTCGATATGCCA -ACGGAATCCTTCGTCACAGGAAAC -ACGGAATCCTTCGTCACAAACACC -ACGGAATCCTTCGTCACAATCGAG -ACGGAATCCTTCGTCACACTCCTT -ACGGAATCCTTCGTCACACCTGTT -ACGGAATCCTTCGTCACACGGTTT -ACGGAATCCTTCGTCACAGTGGTT -ACGGAATCCTTCGTCACAGCCTTT -ACGGAATCCTTCGTCACAGGTCTT -ACGGAATCCTTCGTCACAACGCTT -ACGGAATCCTTCGTCACAAGCGTT -ACGGAATCCTTCGTCACATTCGTC -ACGGAATCCTTCGTCACATCTCTC -ACGGAATCCTTCGTCACATGGATC -ACGGAATCCTTCGTCACACACTTC -ACGGAATCCTTCGTCACAGTACTC -ACGGAATCCTTCGTCACAGATGTC -ACGGAATCCTTCGTCACAACAGTC -ACGGAATCCTTCGTCACATTGCTG -ACGGAATCCTTCGTCACATCCATG -ACGGAATCCTTCGTCACATGTGTG -ACGGAATCCTTCGTCACACTAGTG -ACGGAATCCTTCGTCACACATCTG -ACGGAATCCTTCGTCACAGAGTTG -ACGGAATCCTTCGTCACAAGACTG -ACGGAATCCTTCGTCACATCGGTA -ACGGAATCCTTCGTCACATGCCTA -ACGGAATCCTTCGTCACACCACTA -ACGGAATCCTTCGTCACAGGAGTA -ACGGAATCCTTCGTCACATCGTCT -ACGGAATCCTTCGTCACATGCACT -ACGGAATCCTTCGTCACACTGACT -ACGGAATCCTTCGTCACACAACCT -ACGGAATCCTTCGTCACAGCTACT -ACGGAATCCTTCGTCACAGGATCT -ACGGAATCCTTCGTCACAAAGGCT -ACGGAATCCTTCGTCACATCAACC -ACGGAATCCTTCGTCACATGTTCC -ACGGAATCCTTCGTCACAATTCCC -ACGGAATCCTTCGTCACATTCTCG -ACGGAATCCTTCGTCACATAGACG -ACGGAATCCTTCGTCACAGTAACG -ACGGAATCCTTCGTCACAACTTCG -ACGGAATCCTTCGTCACATACGCA -ACGGAATCCTTCGTCACACTTGCA -ACGGAATCCTTCGTCACACGAACA -ACGGAATCCTTCGTCACACAGTCA -ACGGAATCCTTCGTCACAGATCCA -ACGGAATCCTTCGTCACAACGACA -ACGGAATCCTTCGTCACAAGCTCA -ACGGAATCCTTCGTCACATCACGT -ACGGAATCCTTCGTCACACGTAGT -ACGGAATCCTTCGTCACAGTCAGT -ACGGAATCCTTCGTCACAGAAGGT -ACGGAATCCTTCGTCACAAACCGT -ACGGAATCCTTCGTCACATTGTGC -ACGGAATCCTTCGTCACACTAAGC -ACGGAATCCTTCGTCACAACTAGC -ACGGAATCCTTCGTCACAAGATGC -ACGGAATCCTTCGTCACATGAAGG -ACGGAATCCTTCGTCACACAATGG -ACGGAATCCTTCGTCACAATGAGG -ACGGAATCCTTCGTCACAAATGGG -ACGGAATCCTTCGTCACATCCTGA -ACGGAATCCTTCGTCACATAGCGA -ACGGAATCCTTCGTCACACACAGA -ACGGAATCCTTCGTCACAGCAAGA -ACGGAATCCTTCGTCACAGGTTGA -ACGGAATCCTTCGTCACATCCGAT -ACGGAATCCTTCGTCACATGGCAT -ACGGAATCCTTCGTCACACGAGAT -ACGGAATCCTTCGTCACATACCAC -ACGGAATCCTTCGTCACACAGAAC -ACGGAATCCTTCGTCACAGTCTAC -ACGGAATCCTTCGTCACAACGTAC -ACGGAATCCTTCGTCACAAGTGAC -ACGGAATCCTTCGTCACACTGTAG -ACGGAATCCTTCGTCACACCTAAG -ACGGAATCCTTCGTCACAGTTCAG -ACGGAATCCTTCGTCACAGCATAG -ACGGAATCCTTCGTCACAGACAAG -ACGGAATCCTTCGTCACAAAGCAG -ACGGAATCCTTCGTCACACGTCAA -ACGGAATCCTTCGTCACAGCTGAA -ACGGAATCCTTCGTCACAAGTACG -ACGGAATCCTTCGTCACAATCCGA -ACGGAATCCTTCGTCACAATGGGA -ACGGAATCCTTCGTCACAGTGCAA -ACGGAATCCTTCGTCACAGAGGAA -ACGGAATCCTTCGTCACACAGGTA -ACGGAATCCTTCGTCACAGACTCT -ACGGAATCCTTCGTCACAAGTCCT -ACGGAATCCTTCGTCACATAAGCC -ACGGAATCCTTCGTCACAATAGCC -ACGGAATCCTTCGTCACATAACCG -ACGGAATCCTTCGTCACAATGCCA -ACGGAATCCTTCCTGTTGGGAAAC -ACGGAATCCTTCCTGTTGAACACC -ACGGAATCCTTCCTGTTGATCGAG -ACGGAATCCTTCCTGTTGCTCCTT -ACGGAATCCTTCCTGTTGCCTGTT -ACGGAATCCTTCCTGTTGCGGTTT -ACGGAATCCTTCCTGTTGGTGGTT -ACGGAATCCTTCCTGTTGGCCTTT -ACGGAATCCTTCCTGTTGGGTCTT -ACGGAATCCTTCCTGTTGACGCTT -ACGGAATCCTTCCTGTTGAGCGTT -ACGGAATCCTTCCTGTTGTTCGTC -ACGGAATCCTTCCTGTTGTCTCTC -ACGGAATCCTTCCTGTTGTGGATC -ACGGAATCCTTCCTGTTGCACTTC -ACGGAATCCTTCCTGTTGGTACTC -ACGGAATCCTTCCTGTTGGATGTC -ACGGAATCCTTCCTGTTGACAGTC -ACGGAATCCTTCCTGTTGTTGCTG -ACGGAATCCTTCCTGTTGTCCATG -ACGGAATCCTTCCTGTTGTGTGTG -ACGGAATCCTTCCTGTTGCTAGTG -ACGGAATCCTTCCTGTTGCATCTG -ACGGAATCCTTCCTGTTGGAGTTG -ACGGAATCCTTCCTGTTGAGACTG -ACGGAATCCTTCCTGTTGTCGGTA -ACGGAATCCTTCCTGTTGTGCCTA -ACGGAATCCTTCCTGTTGCCACTA -ACGGAATCCTTCCTGTTGGGAGTA -ACGGAATCCTTCCTGTTGTCGTCT -ACGGAATCCTTCCTGTTGTGCACT -ACGGAATCCTTCCTGTTGCTGACT -ACGGAATCCTTCCTGTTGCAACCT -ACGGAATCCTTCCTGTTGGCTACT -ACGGAATCCTTCCTGTTGGGATCT -ACGGAATCCTTCCTGTTGAAGGCT -ACGGAATCCTTCCTGTTGTCAACC -ACGGAATCCTTCCTGTTGTGTTCC -ACGGAATCCTTCCTGTTGATTCCC -ACGGAATCCTTCCTGTTGTTCTCG -ACGGAATCCTTCCTGTTGTAGACG -ACGGAATCCTTCCTGTTGGTAACG -ACGGAATCCTTCCTGTTGACTTCG -ACGGAATCCTTCCTGTTGTACGCA -ACGGAATCCTTCCTGTTGCTTGCA -ACGGAATCCTTCCTGTTGCGAACA -ACGGAATCCTTCCTGTTGCAGTCA -ACGGAATCCTTCCTGTTGGATCCA -ACGGAATCCTTCCTGTTGACGACA -ACGGAATCCTTCCTGTTGAGCTCA -ACGGAATCCTTCCTGTTGTCACGT -ACGGAATCCTTCCTGTTGCGTAGT -ACGGAATCCTTCCTGTTGGTCAGT -ACGGAATCCTTCCTGTTGGAAGGT -ACGGAATCCTTCCTGTTGAACCGT -ACGGAATCCTTCCTGTTGTTGTGC -ACGGAATCCTTCCTGTTGCTAAGC -ACGGAATCCTTCCTGTTGACTAGC -ACGGAATCCTTCCTGTTGAGATGC -ACGGAATCCTTCCTGTTGTGAAGG -ACGGAATCCTTCCTGTTGCAATGG -ACGGAATCCTTCCTGTTGATGAGG -ACGGAATCCTTCCTGTTGAATGGG -ACGGAATCCTTCCTGTTGTCCTGA -ACGGAATCCTTCCTGTTGTAGCGA -ACGGAATCCTTCCTGTTGCACAGA -ACGGAATCCTTCCTGTTGGCAAGA -ACGGAATCCTTCCTGTTGGGTTGA -ACGGAATCCTTCCTGTTGTCCGAT -ACGGAATCCTTCCTGTTGTGGCAT -ACGGAATCCTTCCTGTTGCGAGAT -ACGGAATCCTTCCTGTTGTACCAC -ACGGAATCCTTCCTGTTGCAGAAC -ACGGAATCCTTCCTGTTGGTCTAC -ACGGAATCCTTCCTGTTGACGTAC -ACGGAATCCTTCCTGTTGAGTGAC -ACGGAATCCTTCCTGTTGCTGTAG -ACGGAATCCTTCCTGTTGCCTAAG -ACGGAATCCTTCCTGTTGGTTCAG -ACGGAATCCTTCCTGTTGGCATAG -ACGGAATCCTTCCTGTTGGACAAG -ACGGAATCCTTCCTGTTGAAGCAG -ACGGAATCCTTCCTGTTGCGTCAA -ACGGAATCCTTCCTGTTGGCTGAA -ACGGAATCCTTCCTGTTGAGTACG -ACGGAATCCTTCCTGTTGATCCGA -ACGGAATCCTTCCTGTTGATGGGA -ACGGAATCCTTCCTGTTGGTGCAA -ACGGAATCCTTCCTGTTGGAGGAA -ACGGAATCCTTCCTGTTGCAGGTA -ACGGAATCCTTCCTGTTGGACTCT -ACGGAATCCTTCCTGTTGAGTCCT -ACGGAATCCTTCCTGTTGTAAGCC -ACGGAATCCTTCCTGTTGATAGCC -ACGGAATCCTTCCTGTTGTAACCG -ACGGAATCCTTCCTGTTGATGCCA -ACGGAATCCTTCATGTCCGGAAAC -ACGGAATCCTTCATGTCCAACACC -ACGGAATCCTTCATGTCCATCGAG -ACGGAATCCTTCATGTCCCTCCTT -ACGGAATCCTTCATGTCCCCTGTT -ACGGAATCCTTCATGTCCCGGTTT -ACGGAATCCTTCATGTCCGTGGTT -ACGGAATCCTTCATGTCCGCCTTT -ACGGAATCCTTCATGTCCGGTCTT -ACGGAATCCTTCATGTCCACGCTT -ACGGAATCCTTCATGTCCAGCGTT -ACGGAATCCTTCATGTCCTTCGTC -ACGGAATCCTTCATGTCCTCTCTC -ACGGAATCCTTCATGTCCTGGATC -ACGGAATCCTTCATGTCCCACTTC -ACGGAATCCTTCATGTCCGTACTC -ACGGAATCCTTCATGTCCGATGTC -ACGGAATCCTTCATGTCCACAGTC -ACGGAATCCTTCATGTCCTTGCTG -ACGGAATCCTTCATGTCCTCCATG -ACGGAATCCTTCATGTCCTGTGTG -ACGGAATCCTTCATGTCCCTAGTG -ACGGAATCCTTCATGTCCCATCTG -ACGGAATCCTTCATGTCCGAGTTG -ACGGAATCCTTCATGTCCAGACTG -ACGGAATCCTTCATGTCCTCGGTA -ACGGAATCCTTCATGTCCTGCCTA -ACGGAATCCTTCATGTCCCCACTA -ACGGAATCCTTCATGTCCGGAGTA -ACGGAATCCTTCATGTCCTCGTCT -ACGGAATCCTTCATGTCCTGCACT -ACGGAATCCTTCATGTCCCTGACT -ACGGAATCCTTCATGTCCCAACCT -ACGGAATCCTTCATGTCCGCTACT -ACGGAATCCTTCATGTCCGGATCT -ACGGAATCCTTCATGTCCAAGGCT -ACGGAATCCTTCATGTCCTCAACC -ACGGAATCCTTCATGTCCTGTTCC -ACGGAATCCTTCATGTCCATTCCC -ACGGAATCCTTCATGTCCTTCTCG -ACGGAATCCTTCATGTCCTAGACG -ACGGAATCCTTCATGTCCGTAACG -ACGGAATCCTTCATGTCCACTTCG -ACGGAATCCTTCATGTCCTACGCA -ACGGAATCCTTCATGTCCCTTGCA -ACGGAATCCTTCATGTCCCGAACA -ACGGAATCCTTCATGTCCCAGTCA -ACGGAATCCTTCATGTCCGATCCA -ACGGAATCCTTCATGTCCACGACA -ACGGAATCCTTCATGTCCAGCTCA -ACGGAATCCTTCATGTCCTCACGT -ACGGAATCCTTCATGTCCCGTAGT -ACGGAATCCTTCATGTCCGTCAGT -ACGGAATCCTTCATGTCCGAAGGT -ACGGAATCCTTCATGTCCAACCGT -ACGGAATCCTTCATGTCCTTGTGC -ACGGAATCCTTCATGTCCCTAAGC -ACGGAATCCTTCATGTCCACTAGC -ACGGAATCCTTCATGTCCAGATGC -ACGGAATCCTTCATGTCCTGAAGG -ACGGAATCCTTCATGTCCCAATGG -ACGGAATCCTTCATGTCCATGAGG -ACGGAATCCTTCATGTCCAATGGG -ACGGAATCCTTCATGTCCTCCTGA -ACGGAATCCTTCATGTCCTAGCGA -ACGGAATCCTTCATGTCCCACAGA -ACGGAATCCTTCATGTCCGCAAGA -ACGGAATCCTTCATGTCCGGTTGA -ACGGAATCCTTCATGTCCTCCGAT -ACGGAATCCTTCATGTCCTGGCAT -ACGGAATCCTTCATGTCCCGAGAT -ACGGAATCCTTCATGTCCTACCAC -ACGGAATCCTTCATGTCCCAGAAC -ACGGAATCCTTCATGTCCGTCTAC -ACGGAATCCTTCATGTCCACGTAC -ACGGAATCCTTCATGTCCAGTGAC -ACGGAATCCTTCATGTCCCTGTAG -ACGGAATCCTTCATGTCCCCTAAG -ACGGAATCCTTCATGTCCGTTCAG -ACGGAATCCTTCATGTCCGCATAG -ACGGAATCCTTCATGTCCGACAAG -ACGGAATCCTTCATGTCCAAGCAG -ACGGAATCCTTCATGTCCCGTCAA -ACGGAATCCTTCATGTCCGCTGAA -ACGGAATCCTTCATGTCCAGTACG -ACGGAATCCTTCATGTCCATCCGA -ACGGAATCCTTCATGTCCATGGGA -ACGGAATCCTTCATGTCCGTGCAA -ACGGAATCCTTCATGTCCGAGGAA -ACGGAATCCTTCATGTCCCAGGTA -ACGGAATCCTTCATGTCCGACTCT -ACGGAATCCTTCATGTCCAGTCCT -ACGGAATCCTTCATGTCCTAAGCC -ACGGAATCCTTCATGTCCATAGCC -ACGGAATCCTTCATGTCCTAACCG -ACGGAATCCTTCATGTCCATGCCA -ACGGAATCCTTCGTGTGTGGAAAC -ACGGAATCCTTCGTGTGTAACACC -ACGGAATCCTTCGTGTGTATCGAG -ACGGAATCCTTCGTGTGTCTCCTT -ACGGAATCCTTCGTGTGTCCTGTT -ACGGAATCCTTCGTGTGTCGGTTT -ACGGAATCCTTCGTGTGTGTGGTT -ACGGAATCCTTCGTGTGTGCCTTT -ACGGAATCCTTCGTGTGTGGTCTT -ACGGAATCCTTCGTGTGTACGCTT -ACGGAATCCTTCGTGTGTAGCGTT -ACGGAATCCTTCGTGTGTTTCGTC -ACGGAATCCTTCGTGTGTTCTCTC -ACGGAATCCTTCGTGTGTTGGATC -ACGGAATCCTTCGTGTGTCACTTC -ACGGAATCCTTCGTGTGTGTACTC -ACGGAATCCTTCGTGTGTGATGTC -ACGGAATCCTTCGTGTGTACAGTC -ACGGAATCCTTCGTGTGTTTGCTG -ACGGAATCCTTCGTGTGTTCCATG -ACGGAATCCTTCGTGTGTTGTGTG -ACGGAATCCTTCGTGTGTCTAGTG -ACGGAATCCTTCGTGTGTCATCTG -ACGGAATCCTTCGTGTGTGAGTTG -ACGGAATCCTTCGTGTGTAGACTG -ACGGAATCCTTCGTGTGTTCGGTA -ACGGAATCCTTCGTGTGTTGCCTA -ACGGAATCCTTCGTGTGTCCACTA -ACGGAATCCTTCGTGTGTGGAGTA -ACGGAATCCTTCGTGTGTTCGTCT -ACGGAATCCTTCGTGTGTTGCACT -ACGGAATCCTTCGTGTGTCTGACT -ACGGAATCCTTCGTGTGTCAACCT -ACGGAATCCTTCGTGTGTGCTACT -ACGGAATCCTTCGTGTGTGGATCT -ACGGAATCCTTCGTGTGTAAGGCT -ACGGAATCCTTCGTGTGTTCAACC -ACGGAATCCTTCGTGTGTTGTTCC -ACGGAATCCTTCGTGTGTATTCCC -ACGGAATCCTTCGTGTGTTTCTCG -ACGGAATCCTTCGTGTGTTAGACG -ACGGAATCCTTCGTGTGTGTAACG -ACGGAATCCTTCGTGTGTACTTCG -ACGGAATCCTTCGTGTGTTACGCA -ACGGAATCCTTCGTGTGTCTTGCA -ACGGAATCCTTCGTGTGTCGAACA -ACGGAATCCTTCGTGTGTCAGTCA -ACGGAATCCTTCGTGTGTGATCCA -ACGGAATCCTTCGTGTGTACGACA -ACGGAATCCTTCGTGTGTAGCTCA -ACGGAATCCTTCGTGTGTTCACGT -ACGGAATCCTTCGTGTGTCGTAGT -ACGGAATCCTTCGTGTGTGTCAGT -ACGGAATCCTTCGTGTGTGAAGGT -ACGGAATCCTTCGTGTGTAACCGT -ACGGAATCCTTCGTGTGTTTGTGC -ACGGAATCCTTCGTGTGTCTAAGC -ACGGAATCCTTCGTGTGTACTAGC -ACGGAATCCTTCGTGTGTAGATGC -ACGGAATCCTTCGTGTGTTGAAGG -ACGGAATCCTTCGTGTGTCAATGG -ACGGAATCCTTCGTGTGTATGAGG -ACGGAATCCTTCGTGTGTAATGGG -ACGGAATCCTTCGTGTGTTCCTGA -ACGGAATCCTTCGTGTGTTAGCGA -ACGGAATCCTTCGTGTGTCACAGA -ACGGAATCCTTCGTGTGTGCAAGA -ACGGAATCCTTCGTGTGTGGTTGA -ACGGAATCCTTCGTGTGTTCCGAT -ACGGAATCCTTCGTGTGTTGGCAT -ACGGAATCCTTCGTGTGTCGAGAT -ACGGAATCCTTCGTGTGTTACCAC -ACGGAATCCTTCGTGTGTCAGAAC -ACGGAATCCTTCGTGTGTGTCTAC -ACGGAATCCTTCGTGTGTACGTAC -ACGGAATCCTTCGTGTGTAGTGAC -ACGGAATCCTTCGTGTGTCTGTAG -ACGGAATCCTTCGTGTGTCCTAAG -ACGGAATCCTTCGTGTGTGTTCAG -ACGGAATCCTTCGTGTGTGCATAG -ACGGAATCCTTCGTGTGTGACAAG -ACGGAATCCTTCGTGTGTAAGCAG -ACGGAATCCTTCGTGTGTCGTCAA -ACGGAATCCTTCGTGTGTGCTGAA -ACGGAATCCTTCGTGTGTAGTACG -ACGGAATCCTTCGTGTGTATCCGA -ACGGAATCCTTCGTGTGTATGGGA -ACGGAATCCTTCGTGTGTGTGCAA -ACGGAATCCTTCGTGTGTGAGGAA -ACGGAATCCTTCGTGTGTCAGGTA -ACGGAATCCTTCGTGTGTGACTCT -ACGGAATCCTTCGTGTGTAGTCCT -ACGGAATCCTTCGTGTGTTAAGCC -ACGGAATCCTTCGTGTGTATAGCC -ACGGAATCCTTCGTGTGTTAACCG -ACGGAATCCTTCGTGTGTATGCCA -ACGGAATCCTTCGTGCTAGGAAAC -ACGGAATCCTTCGTGCTAAACACC -ACGGAATCCTTCGTGCTAATCGAG -ACGGAATCCTTCGTGCTACTCCTT -ACGGAATCCTTCGTGCTACCTGTT -ACGGAATCCTTCGTGCTACGGTTT -ACGGAATCCTTCGTGCTAGTGGTT -ACGGAATCCTTCGTGCTAGCCTTT -ACGGAATCCTTCGTGCTAGGTCTT -ACGGAATCCTTCGTGCTAACGCTT -ACGGAATCCTTCGTGCTAAGCGTT -ACGGAATCCTTCGTGCTATTCGTC -ACGGAATCCTTCGTGCTATCTCTC -ACGGAATCCTTCGTGCTATGGATC -ACGGAATCCTTCGTGCTACACTTC -ACGGAATCCTTCGTGCTAGTACTC -ACGGAATCCTTCGTGCTAGATGTC -ACGGAATCCTTCGTGCTAACAGTC -ACGGAATCCTTCGTGCTATTGCTG -ACGGAATCCTTCGTGCTATCCATG -ACGGAATCCTTCGTGCTATGTGTG -ACGGAATCCTTCGTGCTACTAGTG -ACGGAATCCTTCGTGCTACATCTG -ACGGAATCCTTCGTGCTAGAGTTG -ACGGAATCCTTCGTGCTAAGACTG -ACGGAATCCTTCGTGCTATCGGTA -ACGGAATCCTTCGTGCTATGCCTA -ACGGAATCCTTCGTGCTACCACTA -ACGGAATCCTTCGTGCTAGGAGTA -ACGGAATCCTTCGTGCTATCGTCT -ACGGAATCCTTCGTGCTATGCACT -ACGGAATCCTTCGTGCTACTGACT -ACGGAATCCTTCGTGCTACAACCT -ACGGAATCCTTCGTGCTAGCTACT -ACGGAATCCTTCGTGCTAGGATCT -ACGGAATCCTTCGTGCTAAAGGCT -ACGGAATCCTTCGTGCTATCAACC -ACGGAATCCTTCGTGCTATGTTCC -ACGGAATCCTTCGTGCTAATTCCC -ACGGAATCCTTCGTGCTATTCTCG -ACGGAATCCTTCGTGCTATAGACG -ACGGAATCCTTCGTGCTAGTAACG -ACGGAATCCTTCGTGCTAACTTCG -ACGGAATCCTTCGTGCTATACGCA -ACGGAATCCTTCGTGCTACTTGCA -ACGGAATCCTTCGTGCTACGAACA -ACGGAATCCTTCGTGCTACAGTCA -ACGGAATCCTTCGTGCTAGATCCA -ACGGAATCCTTCGTGCTAACGACA -ACGGAATCCTTCGTGCTAAGCTCA -ACGGAATCCTTCGTGCTATCACGT -ACGGAATCCTTCGTGCTACGTAGT -ACGGAATCCTTCGTGCTAGTCAGT -ACGGAATCCTTCGTGCTAGAAGGT -ACGGAATCCTTCGTGCTAAACCGT -ACGGAATCCTTCGTGCTATTGTGC -ACGGAATCCTTCGTGCTACTAAGC -ACGGAATCCTTCGTGCTAACTAGC -ACGGAATCCTTCGTGCTAAGATGC -ACGGAATCCTTCGTGCTATGAAGG -ACGGAATCCTTCGTGCTACAATGG -ACGGAATCCTTCGTGCTAATGAGG -ACGGAATCCTTCGTGCTAAATGGG -ACGGAATCCTTCGTGCTATCCTGA -ACGGAATCCTTCGTGCTATAGCGA -ACGGAATCCTTCGTGCTACACAGA -ACGGAATCCTTCGTGCTAGCAAGA -ACGGAATCCTTCGTGCTAGGTTGA -ACGGAATCCTTCGTGCTATCCGAT -ACGGAATCCTTCGTGCTATGGCAT -ACGGAATCCTTCGTGCTACGAGAT -ACGGAATCCTTCGTGCTATACCAC -ACGGAATCCTTCGTGCTACAGAAC -ACGGAATCCTTCGTGCTAGTCTAC -ACGGAATCCTTCGTGCTAACGTAC -ACGGAATCCTTCGTGCTAAGTGAC -ACGGAATCCTTCGTGCTACTGTAG -ACGGAATCCTTCGTGCTACCTAAG -ACGGAATCCTTCGTGCTAGTTCAG -ACGGAATCCTTCGTGCTAGCATAG -ACGGAATCCTTCGTGCTAGACAAG -ACGGAATCCTTCGTGCTAAAGCAG -ACGGAATCCTTCGTGCTACGTCAA -ACGGAATCCTTCGTGCTAGCTGAA -ACGGAATCCTTCGTGCTAAGTACG -ACGGAATCCTTCGTGCTAATCCGA -ACGGAATCCTTCGTGCTAATGGGA -ACGGAATCCTTCGTGCTAGTGCAA -ACGGAATCCTTCGTGCTAGAGGAA -ACGGAATCCTTCGTGCTACAGGTA -ACGGAATCCTTCGTGCTAGACTCT -ACGGAATCCTTCGTGCTAAGTCCT -ACGGAATCCTTCGTGCTATAAGCC -ACGGAATCCTTCGTGCTAATAGCC -ACGGAATCCTTCGTGCTATAACCG -ACGGAATCCTTCGTGCTAATGCCA -ACGGAATCCTTCCTGCATGGAAAC -ACGGAATCCTTCCTGCATAACACC -ACGGAATCCTTCCTGCATATCGAG -ACGGAATCCTTCCTGCATCTCCTT -ACGGAATCCTTCCTGCATCCTGTT -ACGGAATCCTTCCTGCATCGGTTT -ACGGAATCCTTCCTGCATGTGGTT -ACGGAATCCTTCCTGCATGCCTTT -ACGGAATCCTTCCTGCATGGTCTT -ACGGAATCCTTCCTGCATACGCTT -ACGGAATCCTTCCTGCATAGCGTT -ACGGAATCCTTCCTGCATTTCGTC -ACGGAATCCTTCCTGCATTCTCTC -ACGGAATCCTTCCTGCATTGGATC -ACGGAATCCTTCCTGCATCACTTC -ACGGAATCCTTCCTGCATGTACTC -ACGGAATCCTTCCTGCATGATGTC -ACGGAATCCTTCCTGCATACAGTC -ACGGAATCCTTCCTGCATTTGCTG -ACGGAATCCTTCCTGCATTCCATG -ACGGAATCCTTCCTGCATTGTGTG -ACGGAATCCTTCCTGCATCTAGTG -ACGGAATCCTTCCTGCATCATCTG -ACGGAATCCTTCCTGCATGAGTTG -ACGGAATCCTTCCTGCATAGACTG -ACGGAATCCTTCCTGCATTCGGTA -ACGGAATCCTTCCTGCATTGCCTA -ACGGAATCCTTCCTGCATCCACTA -ACGGAATCCTTCCTGCATGGAGTA -ACGGAATCCTTCCTGCATTCGTCT -ACGGAATCCTTCCTGCATTGCACT -ACGGAATCCTTCCTGCATCTGACT -ACGGAATCCTTCCTGCATCAACCT -ACGGAATCCTTCCTGCATGCTACT -ACGGAATCCTTCCTGCATGGATCT -ACGGAATCCTTCCTGCATAAGGCT -ACGGAATCCTTCCTGCATTCAACC -ACGGAATCCTTCCTGCATTGTTCC -ACGGAATCCTTCCTGCATATTCCC -ACGGAATCCTTCCTGCATTTCTCG -ACGGAATCCTTCCTGCATTAGACG -ACGGAATCCTTCCTGCATGTAACG -ACGGAATCCTTCCTGCATACTTCG -ACGGAATCCTTCCTGCATTACGCA -ACGGAATCCTTCCTGCATCTTGCA -ACGGAATCCTTCCTGCATCGAACA -ACGGAATCCTTCCTGCATCAGTCA -ACGGAATCCTTCCTGCATGATCCA -ACGGAATCCTTCCTGCATACGACA -ACGGAATCCTTCCTGCATAGCTCA -ACGGAATCCTTCCTGCATTCACGT -ACGGAATCCTTCCTGCATCGTAGT -ACGGAATCCTTCCTGCATGTCAGT -ACGGAATCCTTCCTGCATGAAGGT -ACGGAATCCTTCCTGCATAACCGT -ACGGAATCCTTCCTGCATTTGTGC -ACGGAATCCTTCCTGCATCTAAGC -ACGGAATCCTTCCTGCATACTAGC -ACGGAATCCTTCCTGCATAGATGC -ACGGAATCCTTCCTGCATTGAAGG -ACGGAATCCTTCCTGCATCAATGG -ACGGAATCCTTCCTGCATATGAGG -ACGGAATCCTTCCTGCATAATGGG -ACGGAATCCTTCCTGCATTCCTGA -ACGGAATCCTTCCTGCATTAGCGA -ACGGAATCCTTCCTGCATCACAGA -ACGGAATCCTTCCTGCATGCAAGA -ACGGAATCCTTCCTGCATGGTTGA -ACGGAATCCTTCCTGCATTCCGAT -ACGGAATCCTTCCTGCATTGGCAT -ACGGAATCCTTCCTGCATCGAGAT -ACGGAATCCTTCCTGCATTACCAC -ACGGAATCCTTCCTGCATCAGAAC -ACGGAATCCTTCCTGCATGTCTAC -ACGGAATCCTTCCTGCATACGTAC -ACGGAATCCTTCCTGCATAGTGAC -ACGGAATCCTTCCTGCATCTGTAG -ACGGAATCCTTCCTGCATCCTAAG -ACGGAATCCTTCCTGCATGTTCAG -ACGGAATCCTTCCTGCATGCATAG -ACGGAATCCTTCCTGCATGACAAG -ACGGAATCCTTCCTGCATAAGCAG -ACGGAATCCTTCCTGCATCGTCAA -ACGGAATCCTTCCTGCATGCTGAA -ACGGAATCCTTCCTGCATAGTACG -ACGGAATCCTTCCTGCATATCCGA -ACGGAATCCTTCCTGCATATGGGA -ACGGAATCCTTCCTGCATGTGCAA -ACGGAATCCTTCCTGCATGAGGAA -ACGGAATCCTTCCTGCATCAGGTA -ACGGAATCCTTCCTGCATGACTCT -ACGGAATCCTTCCTGCATAGTCCT -ACGGAATCCTTCCTGCATTAAGCC -ACGGAATCCTTCCTGCATATAGCC -ACGGAATCCTTCCTGCATTAACCG -ACGGAATCCTTCCTGCATATGCCA -ACGGAATCCTTCTTGGAGGGAAAC -ACGGAATCCTTCTTGGAGAACACC -ACGGAATCCTTCTTGGAGATCGAG -ACGGAATCCTTCTTGGAGCTCCTT -ACGGAATCCTTCTTGGAGCCTGTT -ACGGAATCCTTCTTGGAGCGGTTT -ACGGAATCCTTCTTGGAGGTGGTT -ACGGAATCCTTCTTGGAGGCCTTT -ACGGAATCCTTCTTGGAGGGTCTT -ACGGAATCCTTCTTGGAGACGCTT -ACGGAATCCTTCTTGGAGAGCGTT -ACGGAATCCTTCTTGGAGTTCGTC -ACGGAATCCTTCTTGGAGTCTCTC -ACGGAATCCTTCTTGGAGTGGATC -ACGGAATCCTTCTTGGAGCACTTC -ACGGAATCCTTCTTGGAGGTACTC -ACGGAATCCTTCTTGGAGGATGTC -ACGGAATCCTTCTTGGAGACAGTC -ACGGAATCCTTCTTGGAGTTGCTG -ACGGAATCCTTCTTGGAGTCCATG -ACGGAATCCTTCTTGGAGTGTGTG -ACGGAATCCTTCTTGGAGCTAGTG -ACGGAATCCTTCTTGGAGCATCTG -ACGGAATCCTTCTTGGAGGAGTTG -ACGGAATCCTTCTTGGAGAGACTG -ACGGAATCCTTCTTGGAGTCGGTA -ACGGAATCCTTCTTGGAGTGCCTA -ACGGAATCCTTCTTGGAGCCACTA -ACGGAATCCTTCTTGGAGGGAGTA -ACGGAATCCTTCTTGGAGTCGTCT -ACGGAATCCTTCTTGGAGTGCACT -ACGGAATCCTTCTTGGAGCTGACT -ACGGAATCCTTCTTGGAGCAACCT -ACGGAATCCTTCTTGGAGGCTACT -ACGGAATCCTTCTTGGAGGGATCT -ACGGAATCCTTCTTGGAGAAGGCT -ACGGAATCCTTCTTGGAGTCAACC -ACGGAATCCTTCTTGGAGTGTTCC -ACGGAATCCTTCTTGGAGATTCCC -ACGGAATCCTTCTTGGAGTTCTCG -ACGGAATCCTTCTTGGAGTAGACG -ACGGAATCCTTCTTGGAGGTAACG -ACGGAATCCTTCTTGGAGACTTCG -ACGGAATCCTTCTTGGAGTACGCA -ACGGAATCCTTCTTGGAGCTTGCA -ACGGAATCCTTCTTGGAGCGAACA -ACGGAATCCTTCTTGGAGCAGTCA -ACGGAATCCTTCTTGGAGGATCCA -ACGGAATCCTTCTTGGAGACGACA -ACGGAATCCTTCTTGGAGAGCTCA -ACGGAATCCTTCTTGGAGTCACGT -ACGGAATCCTTCTTGGAGCGTAGT -ACGGAATCCTTCTTGGAGGTCAGT -ACGGAATCCTTCTTGGAGGAAGGT -ACGGAATCCTTCTTGGAGAACCGT -ACGGAATCCTTCTTGGAGTTGTGC -ACGGAATCCTTCTTGGAGCTAAGC -ACGGAATCCTTCTTGGAGACTAGC -ACGGAATCCTTCTTGGAGAGATGC -ACGGAATCCTTCTTGGAGTGAAGG -ACGGAATCCTTCTTGGAGCAATGG -ACGGAATCCTTCTTGGAGATGAGG -ACGGAATCCTTCTTGGAGAATGGG -ACGGAATCCTTCTTGGAGTCCTGA -ACGGAATCCTTCTTGGAGTAGCGA -ACGGAATCCTTCTTGGAGCACAGA -ACGGAATCCTTCTTGGAGGCAAGA -ACGGAATCCTTCTTGGAGGGTTGA -ACGGAATCCTTCTTGGAGTCCGAT -ACGGAATCCTTCTTGGAGTGGCAT -ACGGAATCCTTCTTGGAGCGAGAT -ACGGAATCCTTCTTGGAGTACCAC -ACGGAATCCTTCTTGGAGCAGAAC -ACGGAATCCTTCTTGGAGGTCTAC -ACGGAATCCTTCTTGGAGACGTAC -ACGGAATCCTTCTTGGAGAGTGAC -ACGGAATCCTTCTTGGAGCTGTAG -ACGGAATCCTTCTTGGAGCCTAAG -ACGGAATCCTTCTTGGAGGTTCAG -ACGGAATCCTTCTTGGAGGCATAG -ACGGAATCCTTCTTGGAGGACAAG -ACGGAATCCTTCTTGGAGAAGCAG -ACGGAATCCTTCTTGGAGCGTCAA -ACGGAATCCTTCTTGGAGGCTGAA -ACGGAATCCTTCTTGGAGAGTACG -ACGGAATCCTTCTTGGAGATCCGA -ACGGAATCCTTCTTGGAGATGGGA -ACGGAATCCTTCTTGGAGGTGCAA -ACGGAATCCTTCTTGGAGGAGGAA -ACGGAATCCTTCTTGGAGCAGGTA -ACGGAATCCTTCTTGGAGGACTCT -ACGGAATCCTTCTTGGAGAGTCCT -ACGGAATCCTTCTTGGAGTAAGCC -ACGGAATCCTTCTTGGAGATAGCC -ACGGAATCCTTCTTGGAGTAACCG -ACGGAATCCTTCTTGGAGATGCCA -ACGGAATCCTTCCTGAGAGGAAAC -ACGGAATCCTTCCTGAGAAACACC -ACGGAATCCTTCCTGAGAATCGAG -ACGGAATCCTTCCTGAGACTCCTT -ACGGAATCCTTCCTGAGACCTGTT -ACGGAATCCTTCCTGAGACGGTTT -ACGGAATCCTTCCTGAGAGTGGTT -ACGGAATCCTTCCTGAGAGCCTTT -ACGGAATCCTTCCTGAGAGGTCTT -ACGGAATCCTTCCTGAGAACGCTT -ACGGAATCCTTCCTGAGAAGCGTT -ACGGAATCCTTCCTGAGATTCGTC -ACGGAATCCTTCCTGAGATCTCTC -ACGGAATCCTTCCTGAGATGGATC -ACGGAATCCTTCCTGAGACACTTC -ACGGAATCCTTCCTGAGAGTACTC -ACGGAATCCTTCCTGAGAGATGTC -ACGGAATCCTTCCTGAGAACAGTC -ACGGAATCCTTCCTGAGATTGCTG -ACGGAATCCTTCCTGAGATCCATG -ACGGAATCCTTCCTGAGATGTGTG -ACGGAATCCTTCCTGAGACTAGTG -ACGGAATCCTTCCTGAGACATCTG -ACGGAATCCTTCCTGAGAGAGTTG -ACGGAATCCTTCCTGAGAAGACTG -ACGGAATCCTTCCTGAGATCGGTA -ACGGAATCCTTCCTGAGATGCCTA -ACGGAATCCTTCCTGAGACCACTA -ACGGAATCCTTCCTGAGAGGAGTA -ACGGAATCCTTCCTGAGATCGTCT -ACGGAATCCTTCCTGAGATGCACT -ACGGAATCCTTCCTGAGACTGACT -ACGGAATCCTTCCTGAGACAACCT -ACGGAATCCTTCCTGAGAGCTACT -ACGGAATCCTTCCTGAGAGGATCT -ACGGAATCCTTCCTGAGAAAGGCT -ACGGAATCCTTCCTGAGATCAACC -ACGGAATCCTTCCTGAGATGTTCC -ACGGAATCCTTCCTGAGAATTCCC -ACGGAATCCTTCCTGAGATTCTCG -ACGGAATCCTTCCTGAGATAGACG -ACGGAATCCTTCCTGAGAGTAACG -ACGGAATCCTTCCTGAGAACTTCG -ACGGAATCCTTCCTGAGATACGCA -ACGGAATCCTTCCTGAGACTTGCA -ACGGAATCCTTCCTGAGACGAACA -ACGGAATCCTTCCTGAGACAGTCA -ACGGAATCCTTCCTGAGAGATCCA -ACGGAATCCTTCCTGAGAACGACA -ACGGAATCCTTCCTGAGAAGCTCA -ACGGAATCCTTCCTGAGATCACGT -ACGGAATCCTTCCTGAGACGTAGT -ACGGAATCCTTCCTGAGAGTCAGT -ACGGAATCCTTCCTGAGAGAAGGT -ACGGAATCCTTCCTGAGAAACCGT -ACGGAATCCTTCCTGAGATTGTGC -ACGGAATCCTTCCTGAGACTAAGC -ACGGAATCCTTCCTGAGAACTAGC -ACGGAATCCTTCCTGAGAAGATGC -ACGGAATCCTTCCTGAGATGAAGG -ACGGAATCCTTCCTGAGACAATGG -ACGGAATCCTTCCTGAGAATGAGG -ACGGAATCCTTCCTGAGAAATGGG -ACGGAATCCTTCCTGAGATCCTGA -ACGGAATCCTTCCTGAGATAGCGA -ACGGAATCCTTCCTGAGACACAGA -ACGGAATCCTTCCTGAGAGCAAGA -ACGGAATCCTTCCTGAGAGGTTGA -ACGGAATCCTTCCTGAGATCCGAT -ACGGAATCCTTCCTGAGATGGCAT -ACGGAATCCTTCCTGAGACGAGAT -ACGGAATCCTTCCTGAGATACCAC -ACGGAATCCTTCCTGAGACAGAAC -ACGGAATCCTTCCTGAGAGTCTAC -ACGGAATCCTTCCTGAGAACGTAC -ACGGAATCCTTCCTGAGAAGTGAC -ACGGAATCCTTCCTGAGACTGTAG -ACGGAATCCTTCCTGAGACCTAAG -ACGGAATCCTTCCTGAGAGTTCAG -ACGGAATCCTTCCTGAGAGCATAG -ACGGAATCCTTCCTGAGAGACAAG -ACGGAATCCTTCCTGAGAAAGCAG -ACGGAATCCTTCCTGAGACGTCAA -ACGGAATCCTTCCTGAGAGCTGAA -ACGGAATCCTTCCTGAGAAGTACG -ACGGAATCCTTCCTGAGAATCCGA -ACGGAATCCTTCCTGAGAATGGGA -ACGGAATCCTTCCTGAGAGTGCAA -ACGGAATCCTTCCTGAGAGAGGAA -ACGGAATCCTTCCTGAGACAGGTA -ACGGAATCCTTCCTGAGAGACTCT -ACGGAATCCTTCCTGAGAAGTCCT -ACGGAATCCTTCCTGAGATAAGCC -ACGGAATCCTTCCTGAGAATAGCC -ACGGAATCCTTCCTGAGATAACCG -ACGGAATCCTTCCTGAGAATGCCA -ACGGAATCCTTCGTATCGGGAAAC -ACGGAATCCTTCGTATCGAACACC -ACGGAATCCTTCGTATCGATCGAG -ACGGAATCCTTCGTATCGCTCCTT -ACGGAATCCTTCGTATCGCCTGTT -ACGGAATCCTTCGTATCGCGGTTT -ACGGAATCCTTCGTATCGGTGGTT -ACGGAATCCTTCGTATCGGCCTTT -ACGGAATCCTTCGTATCGGGTCTT -ACGGAATCCTTCGTATCGACGCTT -ACGGAATCCTTCGTATCGAGCGTT -ACGGAATCCTTCGTATCGTTCGTC -ACGGAATCCTTCGTATCGTCTCTC -ACGGAATCCTTCGTATCGTGGATC -ACGGAATCCTTCGTATCGCACTTC -ACGGAATCCTTCGTATCGGTACTC -ACGGAATCCTTCGTATCGGATGTC -ACGGAATCCTTCGTATCGACAGTC -ACGGAATCCTTCGTATCGTTGCTG -ACGGAATCCTTCGTATCGTCCATG -ACGGAATCCTTCGTATCGTGTGTG -ACGGAATCCTTCGTATCGCTAGTG -ACGGAATCCTTCGTATCGCATCTG -ACGGAATCCTTCGTATCGGAGTTG -ACGGAATCCTTCGTATCGAGACTG -ACGGAATCCTTCGTATCGTCGGTA -ACGGAATCCTTCGTATCGTGCCTA -ACGGAATCCTTCGTATCGCCACTA -ACGGAATCCTTCGTATCGGGAGTA -ACGGAATCCTTCGTATCGTCGTCT -ACGGAATCCTTCGTATCGTGCACT -ACGGAATCCTTCGTATCGCTGACT -ACGGAATCCTTCGTATCGCAACCT -ACGGAATCCTTCGTATCGGCTACT -ACGGAATCCTTCGTATCGGGATCT -ACGGAATCCTTCGTATCGAAGGCT -ACGGAATCCTTCGTATCGTCAACC -ACGGAATCCTTCGTATCGTGTTCC -ACGGAATCCTTCGTATCGATTCCC -ACGGAATCCTTCGTATCGTTCTCG -ACGGAATCCTTCGTATCGTAGACG -ACGGAATCCTTCGTATCGGTAACG -ACGGAATCCTTCGTATCGACTTCG -ACGGAATCCTTCGTATCGTACGCA -ACGGAATCCTTCGTATCGCTTGCA -ACGGAATCCTTCGTATCGCGAACA -ACGGAATCCTTCGTATCGCAGTCA -ACGGAATCCTTCGTATCGGATCCA -ACGGAATCCTTCGTATCGACGACA -ACGGAATCCTTCGTATCGAGCTCA -ACGGAATCCTTCGTATCGTCACGT -ACGGAATCCTTCGTATCGCGTAGT -ACGGAATCCTTCGTATCGGTCAGT -ACGGAATCCTTCGTATCGGAAGGT -ACGGAATCCTTCGTATCGAACCGT -ACGGAATCCTTCGTATCGTTGTGC -ACGGAATCCTTCGTATCGCTAAGC -ACGGAATCCTTCGTATCGACTAGC -ACGGAATCCTTCGTATCGAGATGC -ACGGAATCCTTCGTATCGTGAAGG -ACGGAATCCTTCGTATCGCAATGG -ACGGAATCCTTCGTATCGATGAGG -ACGGAATCCTTCGTATCGAATGGG -ACGGAATCCTTCGTATCGTCCTGA -ACGGAATCCTTCGTATCGTAGCGA -ACGGAATCCTTCGTATCGCACAGA -ACGGAATCCTTCGTATCGGCAAGA -ACGGAATCCTTCGTATCGGGTTGA -ACGGAATCCTTCGTATCGTCCGAT -ACGGAATCCTTCGTATCGTGGCAT -ACGGAATCCTTCGTATCGCGAGAT -ACGGAATCCTTCGTATCGTACCAC -ACGGAATCCTTCGTATCGCAGAAC -ACGGAATCCTTCGTATCGGTCTAC -ACGGAATCCTTCGTATCGACGTAC -ACGGAATCCTTCGTATCGAGTGAC -ACGGAATCCTTCGTATCGCTGTAG -ACGGAATCCTTCGTATCGCCTAAG -ACGGAATCCTTCGTATCGGTTCAG -ACGGAATCCTTCGTATCGGCATAG -ACGGAATCCTTCGTATCGGACAAG -ACGGAATCCTTCGTATCGAAGCAG -ACGGAATCCTTCGTATCGCGTCAA -ACGGAATCCTTCGTATCGGCTGAA -ACGGAATCCTTCGTATCGAGTACG -ACGGAATCCTTCGTATCGATCCGA -ACGGAATCCTTCGTATCGATGGGA -ACGGAATCCTTCGTATCGGTGCAA -ACGGAATCCTTCGTATCGGAGGAA -ACGGAATCCTTCGTATCGCAGGTA -ACGGAATCCTTCGTATCGGACTCT -ACGGAATCCTTCGTATCGAGTCCT -ACGGAATCCTTCGTATCGTAAGCC -ACGGAATCCTTCGTATCGATAGCC -ACGGAATCCTTCGTATCGTAACCG -ACGGAATCCTTCGTATCGATGCCA -ACGGAATCCTTCCTATGCGGAAAC -ACGGAATCCTTCCTATGCAACACC -ACGGAATCCTTCCTATGCATCGAG -ACGGAATCCTTCCTATGCCTCCTT -ACGGAATCCTTCCTATGCCCTGTT -ACGGAATCCTTCCTATGCCGGTTT -ACGGAATCCTTCCTATGCGTGGTT -ACGGAATCCTTCCTATGCGCCTTT -ACGGAATCCTTCCTATGCGGTCTT -ACGGAATCCTTCCTATGCACGCTT -ACGGAATCCTTCCTATGCAGCGTT -ACGGAATCCTTCCTATGCTTCGTC -ACGGAATCCTTCCTATGCTCTCTC -ACGGAATCCTTCCTATGCTGGATC -ACGGAATCCTTCCTATGCCACTTC -ACGGAATCCTTCCTATGCGTACTC -ACGGAATCCTTCCTATGCGATGTC -ACGGAATCCTTCCTATGCACAGTC -ACGGAATCCTTCCTATGCTTGCTG -ACGGAATCCTTCCTATGCTCCATG -ACGGAATCCTTCCTATGCTGTGTG -ACGGAATCCTTCCTATGCCTAGTG -ACGGAATCCTTCCTATGCCATCTG -ACGGAATCCTTCCTATGCGAGTTG -ACGGAATCCTTCCTATGCAGACTG -ACGGAATCCTTCCTATGCTCGGTA -ACGGAATCCTTCCTATGCTGCCTA -ACGGAATCCTTCCTATGCCCACTA -ACGGAATCCTTCCTATGCGGAGTA -ACGGAATCCTTCCTATGCTCGTCT -ACGGAATCCTTCCTATGCTGCACT -ACGGAATCCTTCCTATGCCTGACT -ACGGAATCCTTCCTATGCCAACCT -ACGGAATCCTTCCTATGCGCTACT -ACGGAATCCTTCCTATGCGGATCT -ACGGAATCCTTCCTATGCAAGGCT -ACGGAATCCTTCCTATGCTCAACC -ACGGAATCCTTCCTATGCTGTTCC -ACGGAATCCTTCCTATGCATTCCC -ACGGAATCCTTCCTATGCTTCTCG -ACGGAATCCTTCCTATGCTAGACG -ACGGAATCCTTCCTATGCGTAACG -ACGGAATCCTTCCTATGCACTTCG -ACGGAATCCTTCCTATGCTACGCA -ACGGAATCCTTCCTATGCCTTGCA -ACGGAATCCTTCCTATGCCGAACA -ACGGAATCCTTCCTATGCCAGTCA -ACGGAATCCTTCCTATGCGATCCA -ACGGAATCCTTCCTATGCACGACA -ACGGAATCCTTCCTATGCAGCTCA -ACGGAATCCTTCCTATGCTCACGT -ACGGAATCCTTCCTATGCCGTAGT -ACGGAATCCTTCCTATGCGTCAGT -ACGGAATCCTTCCTATGCGAAGGT -ACGGAATCCTTCCTATGCAACCGT -ACGGAATCCTTCCTATGCTTGTGC -ACGGAATCCTTCCTATGCCTAAGC -ACGGAATCCTTCCTATGCACTAGC -ACGGAATCCTTCCTATGCAGATGC -ACGGAATCCTTCCTATGCTGAAGG -ACGGAATCCTTCCTATGCCAATGG -ACGGAATCCTTCCTATGCATGAGG -ACGGAATCCTTCCTATGCAATGGG -ACGGAATCCTTCCTATGCTCCTGA -ACGGAATCCTTCCTATGCTAGCGA -ACGGAATCCTTCCTATGCCACAGA -ACGGAATCCTTCCTATGCGCAAGA -ACGGAATCCTTCCTATGCGGTTGA -ACGGAATCCTTCCTATGCTCCGAT -ACGGAATCCTTCCTATGCTGGCAT -ACGGAATCCTTCCTATGCCGAGAT -ACGGAATCCTTCCTATGCTACCAC -ACGGAATCCTTCCTATGCCAGAAC -ACGGAATCCTTCCTATGCGTCTAC -ACGGAATCCTTCCTATGCACGTAC -ACGGAATCCTTCCTATGCAGTGAC -ACGGAATCCTTCCTATGCCTGTAG -ACGGAATCCTTCCTATGCCCTAAG -ACGGAATCCTTCCTATGCGTTCAG -ACGGAATCCTTCCTATGCGCATAG -ACGGAATCCTTCCTATGCGACAAG -ACGGAATCCTTCCTATGCAAGCAG -ACGGAATCCTTCCTATGCCGTCAA -ACGGAATCCTTCCTATGCGCTGAA -ACGGAATCCTTCCTATGCAGTACG -ACGGAATCCTTCCTATGCATCCGA -ACGGAATCCTTCCTATGCATGGGA -ACGGAATCCTTCCTATGCGTGCAA -ACGGAATCCTTCCTATGCGAGGAA -ACGGAATCCTTCCTATGCCAGGTA -ACGGAATCCTTCCTATGCGACTCT -ACGGAATCCTTCCTATGCAGTCCT -ACGGAATCCTTCCTATGCTAAGCC -ACGGAATCCTTCCTATGCATAGCC -ACGGAATCCTTCCTATGCTAACCG -ACGGAATCCTTCCTATGCATGCCA -ACGGAATCCTTCCTACCAGGAAAC -ACGGAATCCTTCCTACCAAACACC -ACGGAATCCTTCCTACCAATCGAG -ACGGAATCCTTCCTACCACTCCTT -ACGGAATCCTTCCTACCACCTGTT -ACGGAATCCTTCCTACCACGGTTT -ACGGAATCCTTCCTACCAGTGGTT -ACGGAATCCTTCCTACCAGCCTTT -ACGGAATCCTTCCTACCAGGTCTT -ACGGAATCCTTCCTACCAACGCTT -ACGGAATCCTTCCTACCAAGCGTT -ACGGAATCCTTCCTACCATTCGTC -ACGGAATCCTTCCTACCATCTCTC -ACGGAATCCTTCCTACCATGGATC -ACGGAATCCTTCCTACCACACTTC -ACGGAATCCTTCCTACCAGTACTC -ACGGAATCCTTCCTACCAGATGTC -ACGGAATCCTTCCTACCAACAGTC -ACGGAATCCTTCCTACCATTGCTG -ACGGAATCCTTCCTACCATCCATG -ACGGAATCCTTCCTACCATGTGTG -ACGGAATCCTTCCTACCACTAGTG -ACGGAATCCTTCCTACCACATCTG -ACGGAATCCTTCCTACCAGAGTTG -ACGGAATCCTTCCTACCAAGACTG -ACGGAATCCTTCCTACCATCGGTA -ACGGAATCCTTCCTACCATGCCTA -ACGGAATCCTTCCTACCACCACTA -ACGGAATCCTTCCTACCAGGAGTA -ACGGAATCCTTCCTACCATCGTCT -ACGGAATCCTTCCTACCATGCACT -ACGGAATCCTTCCTACCACTGACT -ACGGAATCCTTCCTACCACAACCT -ACGGAATCCTTCCTACCAGCTACT -ACGGAATCCTTCCTACCAGGATCT -ACGGAATCCTTCCTACCAAAGGCT -ACGGAATCCTTCCTACCATCAACC -ACGGAATCCTTCCTACCATGTTCC -ACGGAATCCTTCCTACCAATTCCC -ACGGAATCCTTCCTACCATTCTCG -ACGGAATCCTTCCTACCATAGACG -ACGGAATCCTTCCTACCAGTAACG -ACGGAATCCTTCCTACCAACTTCG -ACGGAATCCTTCCTACCATACGCA -ACGGAATCCTTCCTACCACTTGCA -ACGGAATCCTTCCTACCACGAACA -ACGGAATCCTTCCTACCACAGTCA -ACGGAATCCTTCCTACCAGATCCA -ACGGAATCCTTCCTACCAACGACA -ACGGAATCCTTCCTACCAAGCTCA -ACGGAATCCTTCCTACCATCACGT -ACGGAATCCTTCCTACCACGTAGT -ACGGAATCCTTCCTACCAGTCAGT -ACGGAATCCTTCCTACCAGAAGGT -ACGGAATCCTTCCTACCAAACCGT -ACGGAATCCTTCCTACCATTGTGC -ACGGAATCCTTCCTACCACTAAGC -ACGGAATCCTTCCTACCAACTAGC -ACGGAATCCTTCCTACCAAGATGC -ACGGAATCCTTCCTACCATGAAGG -ACGGAATCCTTCCTACCACAATGG -ACGGAATCCTTCCTACCAATGAGG -ACGGAATCCTTCCTACCAAATGGG -ACGGAATCCTTCCTACCATCCTGA -ACGGAATCCTTCCTACCATAGCGA -ACGGAATCCTTCCTACCACACAGA -ACGGAATCCTTCCTACCAGCAAGA -ACGGAATCCTTCCTACCAGGTTGA -ACGGAATCCTTCCTACCATCCGAT -ACGGAATCCTTCCTACCATGGCAT -ACGGAATCCTTCCTACCACGAGAT -ACGGAATCCTTCCTACCATACCAC -ACGGAATCCTTCCTACCACAGAAC -ACGGAATCCTTCCTACCAGTCTAC -ACGGAATCCTTCCTACCAACGTAC -ACGGAATCCTTCCTACCAAGTGAC -ACGGAATCCTTCCTACCACTGTAG -ACGGAATCCTTCCTACCACCTAAG -ACGGAATCCTTCCTACCAGTTCAG -ACGGAATCCTTCCTACCAGCATAG -ACGGAATCCTTCCTACCAGACAAG -ACGGAATCCTTCCTACCAAAGCAG -ACGGAATCCTTCCTACCACGTCAA -ACGGAATCCTTCCTACCAGCTGAA -ACGGAATCCTTCCTACCAAGTACG -ACGGAATCCTTCCTACCAATCCGA -ACGGAATCCTTCCTACCAATGGGA -ACGGAATCCTTCCTACCAGTGCAA -ACGGAATCCTTCCTACCAGAGGAA -ACGGAATCCTTCCTACCACAGGTA -ACGGAATCCTTCCTACCAGACTCT -ACGGAATCCTTCCTACCAAGTCCT -ACGGAATCCTTCCTACCATAAGCC -ACGGAATCCTTCCTACCAATAGCC -ACGGAATCCTTCCTACCATAACCG -ACGGAATCCTTCCTACCAATGCCA -ACGGAATCCTTCGTAGGAGGAAAC -ACGGAATCCTTCGTAGGAAACACC -ACGGAATCCTTCGTAGGAATCGAG -ACGGAATCCTTCGTAGGACTCCTT -ACGGAATCCTTCGTAGGACCTGTT -ACGGAATCCTTCGTAGGACGGTTT -ACGGAATCCTTCGTAGGAGTGGTT -ACGGAATCCTTCGTAGGAGCCTTT -ACGGAATCCTTCGTAGGAGGTCTT -ACGGAATCCTTCGTAGGAACGCTT -ACGGAATCCTTCGTAGGAAGCGTT -ACGGAATCCTTCGTAGGATTCGTC -ACGGAATCCTTCGTAGGATCTCTC -ACGGAATCCTTCGTAGGATGGATC -ACGGAATCCTTCGTAGGACACTTC -ACGGAATCCTTCGTAGGAGTACTC -ACGGAATCCTTCGTAGGAGATGTC -ACGGAATCCTTCGTAGGAACAGTC -ACGGAATCCTTCGTAGGATTGCTG -ACGGAATCCTTCGTAGGATCCATG -ACGGAATCCTTCGTAGGATGTGTG -ACGGAATCCTTCGTAGGACTAGTG -ACGGAATCCTTCGTAGGACATCTG -ACGGAATCCTTCGTAGGAGAGTTG -ACGGAATCCTTCGTAGGAAGACTG -ACGGAATCCTTCGTAGGATCGGTA -ACGGAATCCTTCGTAGGATGCCTA -ACGGAATCCTTCGTAGGACCACTA -ACGGAATCCTTCGTAGGAGGAGTA -ACGGAATCCTTCGTAGGATCGTCT -ACGGAATCCTTCGTAGGATGCACT -ACGGAATCCTTCGTAGGACTGACT -ACGGAATCCTTCGTAGGACAACCT -ACGGAATCCTTCGTAGGAGCTACT -ACGGAATCCTTCGTAGGAGGATCT -ACGGAATCCTTCGTAGGAAAGGCT -ACGGAATCCTTCGTAGGATCAACC -ACGGAATCCTTCGTAGGATGTTCC -ACGGAATCCTTCGTAGGAATTCCC -ACGGAATCCTTCGTAGGATTCTCG -ACGGAATCCTTCGTAGGATAGACG -ACGGAATCCTTCGTAGGAGTAACG -ACGGAATCCTTCGTAGGAACTTCG -ACGGAATCCTTCGTAGGATACGCA -ACGGAATCCTTCGTAGGACTTGCA -ACGGAATCCTTCGTAGGACGAACA -ACGGAATCCTTCGTAGGACAGTCA -ACGGAATCCTTCGTAGGAGATCCA -ACGGAATCCTTCGTAGGAACGACA -ACGGAATCCTTCGTAGGAAGCTCA -ACGGAATCCTTCGTAGGATCACGT -ACGGAATCCTTCGTAGGACGTAGT -ACGGAATCCTTCGTAGGAGTCAGT -ACGGAATCCTTCGTAGGAGAAGGT -ACGGAATCCTTCGTAGGAAACCGT -ACGGAATCCTTCGTAGGATTGTGC -ACGGAATCCTTCGTAGGACTAAGC -ACGGAATCCTTCGTAGGAACTAGC -ACGGAATCCTTCGTAGGAAGATGC -ACGGAATCCTTCGTAGGATGAAGG -ACGGAATCCTTCGTAGGACAATGG -ACGGAATCCTTCGTAGGAATGAGG -ACGGAATCCTTCGTAGGAAATGGG -ACGGAATCCTTCGTAGGATCCTGA -ACGGAATCCTTCGTAGGATAGCGA -ACGGAATCCTTCGTAGGACACAGA -ACGGAATCCTTCGTAGGAGCAAGA -ACGGAATCCTTCGTAGGAGGTTGA -ACGGAATCCTTCGTAGGATCCGAT -ACGGAATCCTTCGTAGGATGGCAT -ACGGAATCCTTCGTAGGACGAGAT -ACGGAATCCTTCGTAGGATACCAC -ACGGAATCCTTCGTAGGACAGAAC -ACGGAATCCTTCGTAGGAGTCTAC -ACGGAATCCTTCGTAGGAACGTAC -ACGGAATCCTTCGTAGGAAGTGAC -ACGGAATCCTTCGTAGGACTGTAG -ACGGAATCCTTCGTAGGACCTAAG -ACGGAATCCTTCGTAGGAGTTCAG -ACGGAATCCTTCGTAGGAGCATAG -ACGGAATCCTTCGTAGGAGACAAG -ACGGAATCCTTCGTAGGAAAGCAG -ACGGAATCCTTCGTAGGACGTCAA -ACGGAATCCTTCGTAGGAGCTGAA -ACGGAATCCTTCGTAGGAAGTACG -ACGGAATCCTTCGTAGGAATCCGA -ACGGAATCCTTCGTAGGAATGGGA -ACGGAATCCTTCGTAGGAGTGCAA -ACGGAATCCTTCGTAGGAGAGGAA -ACGGAATCCTTCGTAGGACAGGTA -ACGGAATCCTTCGTAGGAGACTCT -ACGGAATCCTTCGTAGGAAGTCCT -ACGGAATCCTTCGTAGGATAAGCC -ACGGAATCCTTCGTAGGAATAGCC -ACGGAATCCTTCGTAGGATAACCG -ACGGAATCCTTCGTAGGAATGCCA -ACGGAATCCTTCTCTTCGGGAAAC -ACGGAATCCTTCTCTTCGAACACC -ACGGAATCCTTCTCTTCGATCGAG -ACGGAATCCTTCTCTTCGCTCCTT -ACGGAATCCTTCTCTTCGCCTGTT -ACGGAATCCTTCTCTTCGCGGTTT -ACGGAATCCTTCTCTTCGGTGGTT -ACGGAATCCTTCTCTTCGGCCTTT -ACGGAATCCTTCTCTTCGGGTCTT -ACGGAATCCTTCTCTTCGACGCTT -ACGGAATCCTTCTCTTCGAGCGTT -ACGGAATCCTTCTCTTCGTTCGTC -ACGGAATCCTTCTCTTCGTCTCTC -ACGGAATCCTTCTCTTCGTGGATC -ACGGAATCCTTCTCTTCGCACTTC -ACGGAATCCTTCTCTTCGGTACTC -ACGGAATCCTTCTCTTCGGATGTC -ACGGAATCCTTCTCTTCGACAGTC -ACGGAATCCTTCTCTTCGTTGCTG -ACGGAATCCTTCTCTTCGTCCATG -ACGGAATCCTTCTCTTCGTGTGTG -ACGGAATCCTTCTCTTCGCTAGTG -ACGGAATCCTTCTCTTCGCATCTG -ACGGAATCCTTCTCTTCGGAGTTG -ACGGAATCCTTCTCTTCGAGACTG -ACGGAATCCTTCTCTTCGTCGGTA -ACGGAATCCTTCTCTTCGTGCCTA -ACGGAATCCTTCTCTTCGCCACTA -ACGGAATCCTTCTCTTCGGGAGTA -ACGGAATCCTTCTCTTCGTCGTCT -ACGGAATCCTTCTCTTCGTGCACT -ACGGAATCCTTCTCTTCGCTGACT -ACGGAATCCTTCTCTTCGCAACCT -ACGGAATCCTTCTCTTCGGCTACT -ACGGAATCCTTCTCTTCGGGATCT -ACGGAATCCTTCTCTTCGAAGGCT -ACGGAATCCTTCTCTTCGTCAACC -ACGGAATCCTTCTCTTCGTGTTCC -ACGGAATCCTTCTCTTCGATTCCC -ACGGAATCCTTCTCTTCGTTCTCG -ACGGAATCCTTCTCTTCGTAGACG -ACGGAATCCTTCTCTTCGGTAACG -ACGGAATCCTTCTCTTCGACTTCG -ACGGAATCCTTCTCTTCGTACGCA -ACGGAATCCTTCTCTTCGCTTGCA -ACGGAATCCTTCTCTTCGCGAACA -ACGGAATCCTTCTCTTCGCAGTCA -ACGGAATCCTTCTCTTCGGATCCA -ACGGAATCCTTCTCTTCGACGACA -ACGGAATCCTTCTCTTCGAGCTCA -ACGGAATCCTTCTCTTCGTCACGT -ACGGAATCCTTCTCTTCGCGTAGT -ACGGAATCCTTCTCTTCGGTCAGT -ACGGAATCCTTCTCTTCGGAAGGT -ACGGAATCCTTCTCTTCGAACCGT -ACGGAATCCTTCTCTTCGTTGTGC -ACGGAATCCTTCTCTTCGCTAAGC -ACGGAATCCTTCTCTTCGACTAGC -ACGGAATCCTTCTCTTCGAGATGC -ACGGAATCCTTCTCTTCGTGAAGG -ACGGAATCCTTCTCTTCGCAATGG -ACGGAATCCTTCTCTTCGATGAGG -ACGGAATCCTTCTCTTCGAATGGG -ACGGAATCCTTCTCTTCGTCCTGA -ACGGAATCCTTCTCTTCGTAGCGA -ACGGAATCCTTCTCTTCGCACAGA -ACGGAATCCTTCTCTTCGGCAAGA -ACGGAATCCTTCTCTTCGGGTTGA -ACGGAATCCTTCTCTTCGTCCGAT -ACGGAATCCTTCTCTTCGTGGCAT -ACGGAATCCTTCTCTTCGCGAGAT -ACGGAATCCTTCTCTTCGTACCAC -ACGGAATCCTTCTCTTCGCAGAAC -ACGGAATCCTTCTCTTCGGTCTAC -ACGGAATCCTTCTCTTCGACGTAC -ACGGAATCCTTCTCTTCGAGTGAC -ACGGAATCCTTCTCTTCGCTGTAG -ACGGAATCCTTCTCTTCGCCTAAG -ACGGAATCCTTCTCTTCGGTTCAG -ACGGAATCCTTCTCTTCGGCATAG -ACGGAATCCTTCTCTTCGGACAAG -ACGGAATCCTTCTCTTCGAAGCAG -ACGGAATCCTTCTCTTCGCGTCAA -ACGGAATCCTTCTCTTCGGCTGAA -ACGGAATCCTTCTCTTCGAGTACG -ACGGAATCCTTCTCTTCGATCCGA -ACGGAATCCTTCTCTTCGATGGGA -ACGGAATCCTTCTCTTCGGTGCAA -ACGGAATCCTTCTCTTCGGAGGAA -ACGGAATCCTTCTCTTCGCAGGTA -ACGGAATCCTTCTCTTCGGACTCT -ACGGAATCCTTCTCTTCGAGTCCT -ACGGAATCCTTCTCTTCGTAAGCC -ACGGAATCCTTCTCTTCGATAGCC -ACGGAATCCTTCTCTTCGTAACCG -ACGGAATCCTTCTCTTCGATGCCA -ACGGAATCCTTCACTTGCGGAAAC -ACGGAATCCTTCACTTGCAACACC -ACGGAATCCTTCACTTGCATCGAG -ACGGAATCCTTCACTTGCCTCCTT -ACGGAATCCTTCACTTGCCCTGTT -ACGGAATCCTTCACTTGCCGGTTT -ACGGAATCCTTCACTTGCGTGGTT -ACGGAATCCTTCACTTGCGCCTTT -ACGGAATCCTTCACTTGCGGTCTT -ACGGAATCCTTCACTTGCACGCTT -ACGGAATCCTTCACTTGCAGCGTT -ACGGAATCCTTCACTTGCTTCGTC -ACGGAATCCTTCACTTGCTCTCTC -ACGGAATCCTTCACTTGCTGGATC -ACGGAATCCTTCACTTGCCACTTC -ACGGAATCCTTCACTTGCGTACTC -ACGGAATCCTTCACTTGCGATGTC -ACGGAATCCTTCACTTGCACAGTC -ACGGAATCCTTCACTTGCTTGCTG -ACGGAATCCTTCACTTGCTCCATG -ACGGAATCCTTCACTTGCTGTGTG -ACGGAATCCTTCACTTGCCTAGTG -ACGGAATCCTTCACTTGCCATCTG -ACGGAATCCTTCACTTGCGAGTTG -ACGGAATCCTTCACTTGCAGACTG -ACGGAATCCTTCACTTGCTCGGTA -ACGGAATCCTTCACTTGCTGCCTA -ACGGAATCCTTCACTTGCCCACTA -ACGGAATCCTTCACTTGCGGAGTA -ACGGAATCCTTCACTTGCTCGTCT -ACGGAATCCTTCACTTGCTGCACT -ACGGAATCCTTCACTTGCCTGACT -ACGGAATCCTTCACTTGCCAACCT -ACGGAATCCTTCACTTGCGCTACT -ACGGAATCCTTCACTTGCGGATCT -ACGGAATCCTTCACTTGCAAGGCT -ACGGAATCCTTCACTTGCTCAACC -ACGGAATCCTTCACTTGCTGTTCC -ACGGAATCCTTCACTTGCATTCCC -ACGGAATCCTTCACTTGCTTCTCG -ACGGAATCCTTCACTTGCTAGACG -ACGGAATCCTTCACTTGCGTAACG -ACGGAATCCTTCACTTGCACTTCG -ACGGAATCCTTCACTTGCTACGCA -ACGGAATCCTTCACTTGCCTTGCA -ACGGAATCCTTCACTTGCCGAACA -ACGGAATCCTTCACTTGCCAGTCA -ACGGAATCCTTCACTTGCGATCCA -ACGGAATCCTTCACTTGCACGACA -ACGGAATCCTTCACTTGCAGCTCA -ACGGAATCCTTCACTTGCTCACGT -ACGGAATCCTTCACTTGCCGTAGT -ACGGAATCCTTCACTTGCGTCAGT -ACGGAATCCTTCACTTGCGAAGGT -ACGGAATCCTTCACTTGCAACCGT -ACGGAATCCTTCACTTGCTTGTGC -ACGGAATCCTTCACTTGCCTAAGC -ACGGAATCCTTCACTTGCACTAGC -ACGGAATCCTTCACTTGCAGATGC -ACGGAATCCTTCACTTGCTGAAGG -ACGGAATCCTTCACTTGCCAATGG -ACGGAATCCTTCACTTGCATGAGG -ACGGAATCCTTCACTTGCAATGGG -ACGGAATCCTTCACTTGCTCCTGA -ACGGAATCCTTCACTTGCTAGCGA -ACGGAATCCTTCACTTGCCACAGA -ACGGAATCCTTCACTTGCGCAAGA -ACGGAATCCTTCACTTGCGGTTGA -ACGGAATCCTTCACTTGCTCCGAT -ACGGAATCCTTCACTTGCTGGCAT -ACGGAATCCTTCACTTGCCGAGAT -ACGGAATCCTTCACTTGCTACCAC -ACGGAATCCTTCACTTGCCAGAAC -ACGGAATCCTTCACTTGCGTCTAC -ACGGAATCCTTCACTTGCACGTAC -ACGGAATCCTTCACTTGCAGTGAC -ACGGAATCCTTCACTTGCCTGTAG -ACGGAATCCTTCACTTGCCCTAAG -ACGGAATCCTTCACTTGCGTTCAG -ACGGAATCCTTCACTTGCGCATAG -ACGGAATCCTTCACTTGCGACAAG -ACGGAATCCTTCACTTGCAAGCAG -ACGGAATCCTTCACTTGCCGTCAA -ACGGAATCCTTCACTTGCGCTGAA -ACGGAATCCTTCACTTGCAGTACG -ACGGAATCCTTCACTTGCATCCGA -ACGGAATCCTTCACTTGCATGGGA -ACGGAATCCTTCACTTGCGTGCAA -ACGGAATCCTTCACTTGCGAGGAA -ACGGAATCCTTCACTTGCCAGGTA -ACGGAATCCTTCACTTGCGACTCT -ACGGAATCCTTCACTTGCAGTCCT -ACGGAATCCTTCACTTGCTAAGCC -ACGGAATCCTTCACTTGCATAGCC -ACGGAATCCTTCACTTGCTAACCG -ACGGAATCCTTCACTTGCATGCCA -ACGGAATCCTTCACTCTGGGAAAC -ACGGAATCCTTCACTCTGAACACC -ACGGAATCCTTCACTCTGATCGAG -ACGGAATCCTTCACTCTGCTCCTT -ACGGAATCCTTCACTCTGCCTGTT -ACGGAATCCTTCACTCTGCGGTTT -ACGGAATCCTTCACTCTGGTGGTT -ACGGAATCCTTCACTCTGGCCTTT -ACGGAATCCTTCACTCTGGGTCTT -ACGGAATCCTTCACTCTGACGCTT -ACGGAATCCTTCACTCTGAGCGTT -ACGGAATCCTTCACTCTGTTCGTC -ACGGAATCCTTCACTCTGTCTCTC -ACGGAATCCTTCACTCTGTGGATC -ACGGAATCCTTCACTCTGCACTTC -ACGGAATCCTTCACTCTGGTACTC -ACGGAATCCTTCACTCTGGATGTC -ACGGAATCCTTCACTCTGACAGTC -ACGGAATCCTTCACTCTGTTGCTG -ACGGAATCCTTCACTCTGTCCATG -ACGGAATCCTTCACTCTGTGTGTG -ACGGAATCCTTCACTCTGCTAGTG -ACGGAATCCTTCACTCTGCATCTG -ACGGAATCCTTCACTCTGGAGTTG -ACGGAATCCTTCACTCTGAGACTG -ACGGAATCCTTCACTCTGTCGGTA -ACGGAATCCTTCACTCTGTGCCTA -ACGGAATCCTTCACTCTGCCACTA -ACGGAATCCTTCACTCTGGGAGTA -ACGGAATCCTTCACTCTGTCGTCT -ACGGAATCCTTCACTCTGTGCACT -ACGGAATCCTTCACTCTGCTGACT -ACGGAATCCTTCACTCTGCAACCT -ACGGAATCCTTCACTCTGGCTACT -ACGGAATCCTTCACTCTGGGATCT -ACGGAATCCTTCACTCTGAAGGCT -ACGGAATCCTTCACTCTGTCAACC -ACGGAATCCTTCACTCTGTGTTCC -ACGGAATCCTTCACTCTGATTCCC -ACGGAATCCTTCACTCTGTTCTCG -ACGGAATCCTTCACTCTGTAGACG -ACGGAATCCTTCACTCTGGTAACG -ACGGAATCCTTCACTCTGACTTCG -ACGGAATCCTTCACTCTGTACGCA -ACGGAATCCTTCACTCTGCTTGCA -ACGGAATCCTTCACTCTGCGAACA -ACGGAATCCTTCACTCTGCAGTCA -ACGGAATCCTTCACTCTGGATCCA -ACGGAATCCTTCACTCTGACGACA -ACGGAATCCTTCACTCTGAGCTCA -ACGGAATCCTTCACTCTGTCACGT -ACGGAATCCTTCACTCTGCGTAGT -ACGGAATCCTTCACTCTGGTCAGT -ACGGAATCCTTCACTCTGGAAGGT -ACGGAATCCTTCACTCTGAACCGT -ACGGAATCCTTCACTCTGTTGTGC -ACGGAATCCTTCACTCTGCTAAGC -ACGGAATCCTTCACTCTGACTAGC -ACGGAATCCTTCACTCTGAGATGC -ACGGAATCCTTCACTCTGTGAAGG -ACGGAATCCTTCACTCTGCAATGG -ACGGAATCCTTCACTCTGATGAGG -ACGGAATCCTTCACTCTGAATGGG -ACGGAATCCTTCACTCTGTCCTGA -ACGGAATCCTTCACTCTGTAGCGA -ACGGAATCCTTCACTCTGCACAGA -ACGGAATCCTTCACTCTGGCAAGA -ACGGAATCCTTCACTCTGGGTTGA -ACGGAATCCTTCACTCTGTCCGAT -ACGGAATCCTTCACTCTGTGGCAT -ACGGAATCCTTCACTCTGCGAGAT -ACGGAATCCTTCACTCTGTACCAC -ACGGAATCCTTCACTCTGCAGAAC -ACGGAATCCTTCACTCTGGTCTAC -ACGGAATCCTTCACTCTGACGTAC -ACGGAATCCTTCACTCTGAGTGAC -ACGGAATCCTTCACTCTGCTGTAG -ACGGAATCCTTCACTCTGCCTAAG -ACGGAATCCTTCACTCTGGTTCAG -ACGGAATCCTTCACTCTGGCATAG -ACGGAATCCTTCACTCTGGACAAG -ACGGAATCCTTCACTCTGAAGCAG -ACGGAATCCTTCACTCTGCGTCAA -ACGGAATCCTTCACTCTGGCTGAA -ACGGAATCCTTCACTCTGAGTACG -ACGGAATCCTTCACTCTGATCCGA -ACGGAATCCTTCACTCTGATGGGA -ACGGAATCCTTCACTCTGGTGCAA -ACGGAATCCTTCACTCTGGAGGAA -ACGGAATCCTTCACTCTGCAGGTA -ACGGAATCCTTCACTCTGGACTCT -ACGGAATCCTTCACTCTGAGTCCT -ACGGAATCCTTCACTCTGTAAGCC -ACGGAATCCTTCACTCTGATAGCC -ACGGAATCCTTCACTCTGTAACCG -ACGGAATCCTTCACTCTGATGCCA -ACGGAATCCTTCCCTCAAGGAAAC -ACGGAATCCTTCCCTCAAAACACC -ACGGAATCCTTCCCTCAAATCGAG -ACGGAATCCTTCCCTCAACTCCTT -ACGGAATCCTTCCCTCAACCTGTT -ACGGAATCCTTCCCTCAACGGTTT -ACGGAATCCTTCCCTCAAGTGGTT -ACGGAATCCTTCCCTCAAGCCTTT -ACGGAATCCTTCCCTCAAGGTCTT -ACGGAATCCTTCCCTCAAACGCTT -ACGGAATCCTTCCCTCAAAGCGTT -ACGGAATCCTTCCCTCAATTCGTC -ACGGAATCCTTCCCTCAATCTCTC -ACGGAATCCTTCCCTCAATGGATC -ACGGAATCCTTCCCTCAACACTTC -ACGGAATCCTTCCCTCAAGTACTC -ACGGAATCCTTCCCTCAAGATGTC -ACGGAATCCTTCCCTCAAACAGTC -ACGGAATCCTTCCCTCAATTGCTG -ACGGAATCCTTCCCTCAATCCATG -ACGGAATCCTTCCCTCAATGTGTG -ACGGAATCCTTCCCTCAACTAGTG -ACGGAATCCTTCCCTCAACATCTG -ACGGAATCCTTCCCTCAAGAGTTG -ACGGAATCCTTCCCTCAAAGACTG -ACGGAATCCTTCCCTCAATCGGTA -ACGGAATCCTTCCCTCAATGCCTA -ACGGAATCCTTCCCTCAACCACTA -ACGGAATCCTTCCCTCAAGGAGTA -ACGGAATCCTTCCCTCAATCGTCT -ACGGAATCCTTCCCTCAATGCACT -ACGGAATCCTTCCCTCAACTGACT -ACGGAATCCTTCCCTCAACAACCT -ACGGAATCCTTCCCTCAAGCTACT -ACGGAATCCTTCCCTCAAGGATCT -ACGGAATCCTTCCCTCAAAAGGCT -ACGGAATCCTTCCCTCAATCAACC -ACGGAATCCTTCCCTCAATGTTCC -ACGGAATCCTTCCCTCAAATTCCC -ACGGAATCCTTCCCTCAATTCTCG -ACGGAATCCTTCCCTCAATAGACG -ACGGAATCCTTCCCTCAAGTAACG -ACGGAATCCTTCCCTCAAACTTCG -ACGGAATCCTTCCCTCAATACGCA -ACGGAATCCTTCCCTCAACTTGCA -ACGGAATCCTTCCCTCAACGAACA -ACGGAATCCTTCCCTCAACAGTCA -ACGGAATCCTTCCCTCAAGATCCA -ACGGAATCCTTCCCTCAAACGACA -ACGGAATCCTTCCCTCAAAGCTCA -ACGGAATCCTTCCCTCAATCACGT -ACGGAATCCTTCCCTCAACGTAGT -ACGGAATCCTTCCCTCAAGTCAGT -ACGGAATCCTTCCCTCAAGAAGGT -ACGGAATCCTTCCCTCAAAACCGT -ACGGAATCCTTCCCTCAATTGTGC -ACGGAATCCTTCCCTCAACTAAGC -ACGGAATCCTTCCCTCAAACTAGC -ACGGAATCCTTCCCTCAAAGATGC -ACGGAATCCTTCCCTCAATGAAGG -ACGGAATCCTTCCCTCAACAATGG -ACGGAATCCTTCCCTCAAATGAGG -ACGGAATCCTTCCCTCAAAATGGG -ACGGAATCCTTCCCTCAATCCTGA -ACGGAATCCTTCCCTCAATAGCGA -ACGGAATCCTTCCCTCAACACAGA -ACGGAATCCTTCCCTCAAGCAAGA -ACGGAATCCTTCCCTCAAGGTTGA -ACGGAATCCTTCCCTCAATCCGAT -ACGGAATCCTTCCCTCAATGGCAT -ACGGAATCCTTCCCTCAACGAGAT -ACGGAATCCTTCCCTCAATACCAC -ACGGAATCCTTCCCTCAACAGAAC -ACGGAATCCTTCCCTCAAGTCTAC -ACGGAATCCTTCCCTCAAACGTAC -ACGGAATCCTTCCCTCAAAGTGAC -ACGGAATCCTTCCCTCAACTGTAG -ACGGAATCCTTCCCTCAACCTAAG -ACGGAATCCTTCCCTCAAGTTCAG -ACGGAATCCTTCCCTCAAGCATAG -ACGGAATCCTTCCCTCAAGACAAG -ACGGAATCCTTCCCTCAAAAGCAG -ACGGAATCCTTCCCTCAACGTCAA -ACGGAATCCTTCCCTCAAGCTGAA -ACGGAATCCTTCCCTCAAAGTACG -ACGGAATCCTTCCCTCAAATCCGA -ACGGAATCCTTCCCTCAAATGGGA -ACGGAATCCTTCCCTCAAGTGCAA -ACGGAATCCTTCCCTCAAGAGGAA -ACGGAATCCTTCCCTCAACAGGTA -ACGGAATCCTTCCCTCAAGACTCT -ACGGAATCCTTCCCTCAAAGTCCT -ACGGAATCCTTCCCTCAATAAGCC -ACGGAATCCTTCCCTCAAATAGCC -ACGGAATCCTTCCCTCAATAACCG -ACGGAATCCTTCCCTCAAATGCCA -ACGGAATCCTTCACTGCTGGAAAC -ACGGAATCCTTCACTGCTAACACC -ACGGAATCCTTCACTGCTATCGAG -ACGGAATCCTTCACTGCTCTCCTT -ACGGAATCCTTCACTGCTCCTGTT -ACGGAATCCTTCACTGCTCGGTTT -ACGGAATCCTTCACTGCTGTGGTT -ACGGAATCCTTCACTGCTGCCTTT -ACGGAATCCTTCACTGCTGGTCTT -ACGGAATCCTTCACTGCTACGCTT -ACGGAATCCTTCACTGCTAGCGTT -ACGGAATCCTTCACTGCTTTCGTC -ACGGAATCCTTCACTGCTTCTCTC -ACGGAATCCTTCACTGCTTGGATC -ACGGAATCCTTCACTGCTCACTTC -ACGGAATCCTTCACTGCTGTACTC -ACGGAATCCTTCACTGCTGATGTC -ACGGAATCCTTCACTGCTACAGTC -ACGGAATCCTTCACTGCTTTGCTG -ACGGAATCCTTCACTGCTTCCATG -ACGGAATCCTTCACTGCTTGTGTG -ACGGAATCCTTCACTGCTCTAGTG -ACGGAATCCTTCACTGCTCATCTG -ACGGAATCCTTCACTGCTGAGTTG -ACGGAATCCTTCACTGCTAGACTG -ACGGAATCCTTCACTGCTTCGGTA -ACGGAATCCTTCACTGCTTGCCTA -ACGGAATCCTTCACTGCTCCACTA -ACGGAATCCTTCACTGCTGGAGTA -ACGGAATCCTTCACTGCTTCGTCT -ACGGAATCCTTCACTGCTTGCACT -ACGGAATCCTTCACTGCTCTGACT -ACGGAATCCTTCACTGCTCAACCT -ACGGAATCCTTCACTGCTGCTACT -ACGGAATCCTTCACTGCTGGATCT -ACGGAATCCTTCACTGCTAAGGCT -ACGGAATCCTTCACTGCTTCAACC -ACGGAATCCTTCACTGCTTGTTCC -ACGGAATCCTTCACTGCTATTCCC -ACGGAATCCTTCACTGCTTTCTCG -ACGGAATCCTTCACTGCTTAGACG -ACGGAATCCTTCACTGCTGTAACG -ACGGAATCCTTCACTGCTACTTCG -ACGGAATCCTTCACTGCTTACGCA -ACGGAATCCTTCACTGCTCTTGCA -ACGGAATCCTTCACTGCTCGAACA -ACGGAATCCTTCACTGCTCAGTCA -ACGGAATCCTTCACTGCTGATCCA -ACGGAATCCTTCACTGCTACGACA -ACGGAATCCTTCACTGCTAGCTCA -ACGGAATCCTTCACTGCTTCACGT -ACGGAATCCTTCACTGCTCGTAGT -ACGGAATCCTTCACTGCTGTCAGT -ACGGAATCCTTCACTGCTGAAGGT -ACGGAATCCTTCACTGCTAACCGT -ACGGAATCCTTCACTGCTTTGTGC -ACGGAATCCTTCACTGCTCTAAGC -ACGGAATCCTTCACTGCTACTAGC -ACGGAATCCTTCACTGCTAGATGC -ACGGAATCCTTCACTGCTTGAAGG -ACGGAATCCTTCACTGCTCAATGG -ACGGAATCCTTCACTGCTATGAGG -ACGGAATCCTTCACTGCTAATGGG -ACGGAATCCTTCACTGCTTCCTGA -ACGGAATCCTTCACTGCTTAGCGA -ACGGAATCCTTCACTGCTCACAGA -ACGGAATCCTTCACTGCTGCAAGA -ACGGAATCCTTCACTGCTGGTTGA -ACGGAATCCTTCACTGCTTCCGAT -ACGGAATCCTTCACTGCTTGGCAT -ACGGAATCCTTCACTGCTCGAGAT -ACGGAATCCTTCACTGCTTACCAC -ACGGAATCCTTCACTGCTCAGAAC -ACGGAATCCTTCACTGCTGTCTAC -ACGGAATCCTTCACTGCTACGTAC -ACGGAATCCTTCACTGCTAGTGAC -ACGGAATCCTTCACTGCTCTGTAG -ACGGAATCCTTCACTGCTCCTAAG -ACGGAATCCTTCACTGCTGTTCAG -ACGGAATCCTTCACTGCTGCATAG -ACGGAATCCTTCACTGCTGACAAG -ACGGAATCCTTCACTGCTAAGCAG -ACGGAATCCTTCACTGCTCGTCAA -ACGGAATCCTTCACTGCTGCTGAA -ACGGAATCCTTCACTGCTAGTACG -ACGGAATCCTTCACTGCTATCCGA -ACGGAATCCTTCACTGCTATGGGA -ACGGAATCCTTCACTGCTGTGCAA -ACGGAATCCTTCACTGCTGAGGAA -ACGGAATCCTTCACTGCTCAGGTA -ACGGAATCCTTCACTGCTGACTCT -ACGGAATCCTTCACTGCTAGTCCT -ACGGAATCCTTCACTGCTTAAGCC -ACGGAATCCTTCACTGCTATAGCC -ACGGAATCCTTCACTGCTTAACCG -ACGGAATCCTTCACTGCTATGCCA -ACGGAATCCTTCTCTGGAGGAAAC -ACGGAATCCTTCTCTGGAAACACC -ACGGAATCCTTCTCTGGAATCGAG -ACGGAATCCTTCTCTGGACTCCTT -ACGGAATCCTTCTCTGGACCTGTT -ACGGAATCCTTCTCTGGACGGTTT -ACGGAATCCTTCTCTGGAGTGGTT -ACGGAATCCTTCTCTGGAGCCTTT -ACGGAATCCTTCTCTGGAGGTCTT -ACGGAATCCTTCTCTGGAACGCTT -ACGGAATCCTTCTCTGGAAGCGTT -ACGGAATCCTTCTCTGGATTCGTC -ACGGAATCCTTCTCTGGATCTCTC -ACGGAATCCTTCTCTGGATGGATC -ACGGAATCCTTCTCTGGACACTTC -ACGGAATCCTTCTCTGGAGTACTC -ACGGAATCCTTCTCTGGAGATGTC -ACGGAATCCTTCTCTGGAACAGTC -ACGGAATCCTTCTCTGGATTGCTG -ACGGAATCCTTCTCTGGATCCATG -ACGGAATCCTTCTCTGGATGTGTG -ACGGAATCCTTCTCTGGACTAGTG -ACGGAATCCTTCTCTGGACATCTG -ACGGAATCCTTCTCTGGAGAGTTG -ACGGAATCCTTCTCTGGAAGACTG -ACGGAATCCTTCTCTGGATCGGTA -ACGGAATCCTTCTCTGGATGCCTA -ACGGAATCCTTCTCTGGACCACTA -ACGGAATCCTTCTCTGGAGGAGTA -ACGGAATCCTTCTCTGGATCGTCT -ACGGAATCCTTCTCTGGATGCACT -ACGGAATCCTTCTCTGGACTGACT -ACGGAATCCTTCTCTGGACAACCT -ACGGAATCCTTCTCTGGAGCTACT -ACGGAATCCTTCTCTGGAGGATCT -ACGGAATCCTTCTCTGGAAAGGCT -ACGGAATCCTTCTCTGGATCAACC -ACGGAATCCTTCTCTGGATGTTCC -ACGGAATCCTTCTCTGGAATTCCC -ACGGAATCCTTCTCTGGATTCTCG -ACGGAATCCTTCTCTGGATAGACG -ACGGAATCCTTCTCTGGAGTAACG -ACGGAATCCTTCTCTGGAACTTCG -ACGGAATCCTTCTCTGGATACGCA -ACGGAATCCTTCTCTGGACTTGCA -ACGGAATCCTTCTCTGGACGAACA -ACGGAATCCTTCTCTGGACAGTCA -ACGGAATCCTTCTCTGGAGATCCA -ACGGAATCCTTCTCTGGAACGACA -ACGGAATCCTTCTCTGGAAGCTCA -ACGGAATCCTTCTCTGGATCACGT -ACGGAATCCTTCTCTGGACGTAGT -ACGGAATCCTTCTCTGGAGTCAGT -ACGGAATCCTTCTCTGGAGAAGGT -ACGGAATCCTTCTCTGGAAACCGT -ACGGAATCCTTCTCTGGATTGTGC -ACGGAATCCTTCTCTGGACTAAGC -ACGGAATCCTTCTCTGGAACTAGC -ACGGAATCCTTCTCTGGAAGATGC -ACGGAATCCTTCTCTGGATGAAGG -ACGGAATCCTTCTCTGGACAATGG -ACGGAATCCTTCTCTGGAATGAGG -ACGGAATCCTTCTCTGGAAATGGG -ACGGAATCCTTCTCTGGATCCTGA -ACGGAATCCTTCTCTGGATAGCGA -ACGGAATCCTTCTCTGGACACAGA -ACGGAATCCTTCTCTGGAGCAAGA -ACGGAATCCTTCTCTGGAGGTTGA -ACGGAATCCTTCTCTGGATCCGAT -ACGGAATCCTTCTCTGGATGGCAT -ACGGAATCCTTCTCTGGACGAGAT -ACGGAATCCTTCTCTGGATACCAC -ACGGAATCCTTCTCTGGACAGAAC -ACGGAATCCTTCTCTGGAGTCTAC -ACGGAATCCTTCTCTGGAACGTAC -ACGGAATCCTTCTCTGGAAGTGAC -ACGGAATCCTTCTCTGGACTGTAG -ACGGAATCCTTCTCTGGACCTAAG -ACGGAATCCTTCTCTGGAGTTCAG -ACGGAATCCTTCTCTGGAGCATAG -ACGGAATCCTTCTCTGGAGACAAG -ACGGAATCCTTCTCTGGAAAGCAG -ACGGAATCCTTCTCTGGACGTCAA -ACGGAATCCTTCTCTGGAGCTGAA -ACGGAATCCTTCTCTGGAAGTACG -ACGGAATCCTTCTCTGGAATCCGA -ACGGAATCCTTCTCTGGAATGGGA -ACGGAATCCTTCTCTGGAGTGCAA -ACGGAATCCTTCTCTGGAGAGGAA -ACGGAATCCTTCTCTGGACAGGTA -ACGGAATCCTTCTCTGGAGACTCT -ACGGAATCCTTCTCTGGAAGTCCT -ACGGAATCCTTCTCTGGATAAGCC -ACGGAATCCTTCTCTGGAATAGCC -ACGGAATCCTTCTCTGGATAACCG -ACGGAATCCTTCTCTGGAATGCCA -ACGGAATCCTTCGCTAAGGGAAAC -ACGGAATCCTTCGCTAAGAACACC -ACGGAATCCTTCGCTAAGATCGAG -ACGGAATCCTTCGCTAAGCTCCTT -ACGGAATCCTTCGCTAAGCCTGTT -ACGGAATCCTTCGCTAAGCGGTTT -ACGGAATCCTTCGCTAAGGTGGTT -ACGGAATCCTTCGCTAAGGCCTTT -ACGGAATCCTTCGCTAAGGGTCTT -ACGGAATCCTTCGCTAAGACGCTT -ACGGAATCCTTCGCTAAGAGCGTT -ACGGAATCCTTCGCTAAGTTCGTC -ACGGAATCCTTCGCTAAGTCTCTC -ACGGAATCCTTCGCTAAGTGGATC -ACGGAATCCTTCGCTAAGCACTTC -ACGGAATCCTTCGCTAAGGTACTC -ACGGAATCCTTCGCTAAGGATGTC -ACGGAATCCTTCGCTAAGACAGTC -ACGGAATCCTTCGCTAAGTTGCTG -ACGGAATCCTTCGCTAAGTCCATG -ACGGAATCCTTCGCTAAGTGTGTG -ACGGAATCCTTCGCTAAGCTAGTG -ACGGAATCCTTCGCTAAGCATCTG -ACGGAATCCTTCGCTAAGGAGTTG -ACGGAATCCTTCGCTAAGAGACTG -ACGGAATCCTTCGCTAAGTCGGTA -ACGGAATCCTTCGCTAAGTGCCTA -ACGGAATCCTTCGCTAAGCCACTA -ACGGAATCCTTCGCTAAGGGAGTA -ACGGAATCCTTCGCTAAGTCGTCT -ACGGAATCCTTCGCTAAGTGCACT -ACGGAATCCTTCGCTAAGCTGACT -ACGGAATCCTTCGCTAAGCAACCT -ACGGAATCCTTCGCTAAGGCTACT -ACGGAATCCTTCGCTAAGGGATCT -ACGGAATCCTTCGCTAAGAAGGCT -ACGGAATCCTTCGCTAAGTCAACC -ACGGAATCCTTCGCTAAGTGTTCC -ACGGAATCCTTCGCTAAGATTCCC -ACGGAATCCTTCGCTAAGTTCTCG -ACGGAATCCTTCGCTAAGTAGACG -ACGGAATCCTTCGCTAAGGTAACG -ACGGAATCCTTCGCTAAGACTTCG -ACGGAATCCTTCGCTAAGTACGCA -ACGGAATCCTTCGCTAAGCTTGCA -ACGGAATCCTTCGCTAAGCGAACA -ACGGAATCCTTCGCTAAGCAGTCA -ACGGAATCCTTCGCTAAGGATCCA -ACGGAATCCTTCGCTAAGACGACA -ACGGAATCCTTCGCTAAGAGCTCA -ACGGAATCCTTCGCTAAGTCACGT -ACGGAATCCTTCGCTAAGCGTAGT -ACGGAATCCTTCGCTAAGGTCAGT -ACGGAATCCTTCGCTAAGGAAGGT -ACGGAATCCTTCGCTAAGAACCGT -ACGGAATCCTTCGCTAAGTTGTGC -ACGGAATCCTTCGCTAAGCTAAGC -ACGGAATCCTTCGCTAAGACTAGC -ACGGAATCCTTCGCTAAGAGATGC -ACGGAATCCTTCGCTAAGTGAAGG -ACGGAATCCTTCGCTAAGCAATGG -ACGGAATCCTTCGCTAAGATGAGG -ACGGAATCCTTCGCTAAGAATGGG -ACGGAATCCTTCGCTAAGTCCTGA -ACGGAATCCTTCGCTAAGTAGCGA -ACGGAATCCTTCGCTAAGCACAGA -ACGGAATCCTTCGCTAAGGCAAGA -ACGGAATCCTTCGCTAAGGGTTGA -ACGGAATCCTTCGCTAAGTCCGAT -ACGGAATCCTTCGCTAAGTGGCAT -ACGGAATCCTTCGCTAAGCGAGAT -ACGGAATCCTTCGCTAAGTACCAC -ACGGAATCCTTCGCTAAGCAGAAC -ACGGAATCCTTCGCTAAGGTCTAC -ACGGAATCCTTCGCTAAGACGTAC -ACGGAATCCTTCGCTAAGAGTGAC -ACGGAATCCTTCGCTAAGCTGTAG -ACGGAATCCTTCGCTAAGCCTAAG -ACGGAATCCTTCGCTAAGGTTCAG -ACGGAATCCTTCGCTAAGGCATAG -ACGGAATCCTTCGCTAAGGACAAG -ACGGAATCCTTCGCTAAGAAGCAG -ACGGAATCCTTCGCTAAGCGTCAA -ACGGAATCCTTCGCTAAGGCTGAA -ACGGAATCCTTCGCTAAGAGTACG -ACGGAATCCTTCGCTAAGATCCGA -ACGGAATCCTTCGCTAAGATGGGA -ACGGAATCCTTCGCTAAGGTGCAA -ACGGAATCCTTCGCTAAGGAGGAA -ACGGAATCCTTCGCTAAGCAGGTA -ACGGAATCCTTCGCTAAGGACTCT -ACGGAATCCTTCGCTAAGAGTCCT -ACGGAATCCTTCGCTAAGTAAGCC -ACGGAATCCTTCGCTAAGATAGCC -ACGGAATCCTTCGCTAAGTAACCG -ACGGAATCCTTCGCTAAGATGCCA -ACGGAATCCTTCACCTCAGGAAAC -ACGGAATCCTTCACCTCAAACACC -ACGGAATCCTTCACCTCAATCGAG -ACGGAATCCTTCACCTCACTCCTT -ACGGAATCCTTCACCTCACCTGTT -ACGGAATCCTTCACCTCACGGTTT -ACGGAATCCTTCACCTCAGTGGTT -ACGGAATCCTTCACCTCAGCCTTT -ACGGAATCCTTCACCTCAGGTCTT -ACGGAATCCTTCACCTCAACGCTT -ACGGAATCCTTCACCTCAAGCGTT -ACGGAATCCTTCACCTCATTCGTC -ACGGAATCCTTCACCTCATCTCTC -ACGGAATCCTTCACCTCATGGATC -ACGGAATCCTTCACCTCACACTTC -ACGGAATCCTTCACCTCAGTACTC -ACGGAATCCTTCACCTCAGATGTC -ACGGAATCCTTCACCTCAACAGTC -ACGGAATCCTTCACCTCATTGCTG -ACGGAATCCTTCACCTCATCCATG -ACGGAATCCTTCACCTCATGTGTG -ACGGAATCCTTCACCTCACTAGTG -ACGGAATCCTTCACCTCACATCTG -ACGGAATCCTTCACCTCAGAGTTG -ACGGAATCCTTCACCTCAAGACTG -ACGGAATCCTTCACCTCATCGGTA -ACGGAATCCTTCACCTCATGCCTA -ACGGAATCCTTCACCTCACCACTA -ACGGAATCCTTCACCTCAGGAGTA -ACGGAATCCTTCACCTCATCGTCT -ACGGAATCCTTCACCTCATGCACT -ACGGAATCCTTCACCTCACTGACT -ACGGAATCCTTCACCTCACAACCT -ACGGAATCCTTCACCTCAGCTACT -ACGGAATCCTTCACCTCAGGATCT -ACGGAATCCTTCACCTCAAAGGCT -ACGGAATCCTTCACCTCATCAACC -ACGGAATCCTTCACCTCATGTTCC -ACGGAATCCTTCACCTCAATTCCC -ACGGAATCCTTCACCTCATTCTCG -ACGGAATCCTTCACCTCATAGACG -ACGGAATCCTTCACCTCAGTAACG -ACGGAATCCTTCACCTCAACTTCG -ACGGAATCCTTCACCTCATACGCA -ACGGAATCCTTCACCTCACTTGCA -ACGGAATCCTTCACCTCACGAACA -ACGGAATCCTTCACCTCACAGTCA -ACGGAATCCTTCACCTCAGATCCA -ACGGAATCCTTCACCTCAACGACA -ACGGAATCCTTCACCTCAAGCTCA -ACGGAATCCTTCACCTCATCACGT -ACGGAATCCTTCACCTCACGTAGT -ACGGAATCCTTCACCTCAGTCAGT -ACGGAATCCTTCACCTCAGAAGGT -ACGGAATCCTTCACCTCAAACCGT -ACGGAATCCTTCACCTCATTGTGC -ACGGAATCCTTCACCTCACTAAGC -ACGGAATCCTTCACCTCAACTAGC -ACGGAATCCTTCACCTCAAGATGC -ACGGAATCCTTCACCTCATGAAGG -ACGGAATCCTTCACCTCACAATGG -ACGGAATCCTTCACCTCAATGAGG -ACGGAATCCTTCACCTCAAATGGG -ACGGAATCCTTCACCTCATCCTGA -ACGGAATCCTTCACCTCATAGCGA -ACGGAATCCTTCACCTCACACAGA -ACGGAATCCTTCACCTCAGCAAGA -ACGGAATCCTTCACCTCAGGTTGA -ACGGAATCCTTCACCTCATCCGAT -ACGGAATCCTTCACCTCATGGCAT -ACGGAATCCTTCACCTCACGAGAT -ACGGAATCCTTCACCTCATACCAC -ACGGAATCCTTCACCTCACAGAAC -ACGGAATCCTTCACCTCAGTCTAC -ACGGAATCCTTCACCTCAACGTAC -ACGGAATCCTTCACCTCAAGTGAC -ACGGAATCCTTCACCTCACTGTAG -ACGGAATCCTTCACCTCACCTAAG -ACGGAATCCTTCACCTCAGTTCAG -ACGGAATCCTTCACCTCAGCATAG -ACGGAATCCTTCACCTCAGACAAG -ACGGAATCCTTCACCTCAAAGCAG -ACGGAATCCTTCACCTCACGTCAA -ACGGAATCCTTCACCTCAGCTGAA -ACGGAATCCTTCACCTCAAGTACG -ACGGAATCCTTCACCTCAATCCGA -ACGGAATCCTTCACCTCAATGGGA -ACGGAATCCTTCACCTCAGTGCAA -ACGGAATCCTTCACCTCAGAGGAA -ACGGAATCCTTCACCTCACAGGTA -ACGGAATCCTTCACCTCAGACTCT -ACGGAATCCTTCACCTCAAGTCCT -ACGGAATCCTTCACCTCATAAGCC -ACGGAATCCTTCACCTCAATAGCC -ACGGAATCCTTCACCTCATAACCG -ACGGAATCCTTCACCTCAATGCCA -ACGGAATCCTTCTCCTGTGGAAAC -ACGGAATCCTTCTCCTGTAACACC -ACGGAATCCTTCTCCTGTATCGAG -ACGGAATCCTTCTCCTGTCTCCTT -ACGGAATCCTTCTCCTGTCCTGTT -ACGGAATCCTTCTCCTGTCGGTTT -ACGGAATCCTTCTCCTGTGTGGTT -ACGGAATCCTTCTCCTGTGCCTTT -ACGGAATCCTTCTCCTGTGGTCTT -ACGGAATCCTTCTCCTGTACGCTT -ACGGAATCCTTCTCCTGTAGCGTT -ACGGAATCCTTCTCCTGTTTCGTC -ACGGAATCCTTCTCCTGTTCTCTC -ACGGAATCCTTCTCCTGTTGGATC -ACGGAATCCTTCTCCTGTCACTTC -ACGGAATCCTTCTCCTGTGTACTC -ACGGAATCCTTCTCCTGTGATGTC -ACGGAATCCTTCTCCTGTACAGTC -ACGGAATCCTTCTCCTGTTTGCTG -ACGGAATCCTTCTCCTGTTCCATG -ACGGAATCCTTCTCCTGTTGTGTG -ACGGAATCCTTCTCCTGTCTAGTG -ACGGAATCCTTCTCCTGTCATCTG -ACGGAATCCTTCTCCTGTGAGTTG -ACGGAATCCTTCTCCTGTAGACTG -ACGGAATCCTTCTCCTGTTCGGTA -ACGGAATCCTTCTCCTGTTGCCTA -ACGGAATCCTTCTCCTGTCCACTA -ACGGAATCCTTCTCCTGTGGAGTA -ACGGAATCCTTCTCCTGTTCGTCT -ACGGAATCCTTCTCCTGTTGCACT -ACGGAATCCTTCTCCTGTCTGACT -ACGGAATCCTTCTCCTGTCAACCT -ACGGAATCCTTCTCCTGTGCTACT -ACGGAATCCTTCTCCTGTGGATCT -ACGGAATCCTTCTCCTGTAAGGCT -ACGGAATCCTTCTCCTGTTCAACC -ACGGAATCCTTCTCCTGTTGTTCC -ACGGAATCCTTCTCCTGTATTCCC -ACGGAATCCTTCTCCTGTTTCTCG -ACGGAATCCTTCTCCTGTTAGACG -ACGGAATCCTTCTCCTGTGTAACG -ACGGAATCCTTCTCCTGTACTTCG -ACGGAATCCTTCTCCTGTTACGCA -ACGGAATCCTTCTCCTGTCTTGCA -ACGGAATCCTTCTCCTGTCGAACA -ACGGAATCCTTCTCCTGTCAGTCA -ACGGAATCCTTCTCCTGTGATCCA -ACGGAATCCTTCTCCTGTACGACA -ACGGAATCCTTCTCCTGTAGCTCA -ACGGAATCCTTCTCCTGTTCACGT -ACGGAATCCTTCTCCTGTCGTAGT -ACGGAATCCTTCTCCTGTGTCAGT -ACGGAATCCTTCTCCTGTGAAGGT -ACGGAATCCTTCTCCTGTAACCGT -ACGGAATCCTTCTCCTGTTTGTGC -ACGGAATCCTTCTCCTGTCTAAGC -ACGGAATCCTTCTCCTGTACTAGC -ACGGAATCCTTCTCCTGTAGATGC -ACGGAATCCTTCTCCTGTTGAAGG -ACGGAATCCTTCTCCTGTCAATGG -ACGGAATCCTTCTCCTGTATGAGG -ACGGAATCCTTCTCCTGTAATGGG -ACGGAATCCTTCTCCTGTTCCTGA -ACGGAATCCTTCTCCTGTTAGCGA -ACGGAATCCTTCTCCTGTCACAGA -ACGGAATCCTTCTCCTGTGCAAGA -ACGGAATCCTTCTCCTGTGGTTGA -ACGGAATCCTTCTCCTGTTCCGAT -ACGGAATCCTTCTCCTGTTGGCAT -ACGGAATCCTTCTCCTGTCGAGAT -ACGGAATCCTTCTCCTGTTACCAC -ACGGAATCCTTCTCCTGTCAGAAC -ACGGAATCCTTCTCCTGTGTCTAC -ACGGAATCCTTCTCCTGTACGTAC -ACGGAATCCTTCTCCTGTAGTGAC -ACGGAATCCTTCTCCTGTCTGTAG -ACGGAATCCTTCTCCTGTCCTAAG -ACGGAATCCTTCTCCTGTGTTCAG -ACGGAATCCTTCTCCTGTGCATAG -ACGGAATCCTTCTCCTGTGACAAG -ACGGAATCCTTCTCCTGTAAGCAG -ACGGAATCCTTCTCCTGTCGTCAA -ACGGAATCCTTCTCCTGTGCTGAA -ACGGAATCCTTCTCCTGTAGTACG -ACGGAATCCTTCTCCTGTATCCGA -ACGGAATCCTTCTCCTGTATGGGA -ACGGAATCCTTCTCCTGTGTGCAA -ACGGAATCCTTCTCCTGTGAGGAA -ACGGAATCCTTCTCCTGTCAGGTA -ACGGAATCCTTCTCCTGTGACTCT -ACGGAATCCTTCTCCTGTAGTCCT -ACGGAATCCTTCTCCTGTTAAGCC -ACGGAATCCTTCTCCTGTATAGCC -ACGGAATCCTTCTCCTGTTAACCG -ACGGAATCCTTCTCCTGTATGCCA -ACGGAATCCTTCCCCATTGGAAAC -ACGGAATCCTTCCCCATTAACACC -ACGGAATCCTTCCCCATTATCGAG -ACGGAATCCTTCCCCATTCTCCTT -ACGGAATCCTTCCCCATTCCTGTT -ACGGAATCCTTCCCCATTCGGTTT -ACGGAATCCTTCCCCATTGTGGTT -ACGGAATCCTTCCCCATTGCCTTT -ACGGAATCCTTCCCCATTGGTCTT -ACGGAATCCTTCCCCATTACGCTT -ACGGAATCCTTCCCCATTAGCGTT -ACGGAATCCTTCCCCATTTTCGTC -ACGGAATCCTTCCCCATTTCTCTC -ACGGAATCCTTCCCCATTTGGATC -ACGGAATCCTTCCCCATTCACTTC -ACGGAATCCTTCCCCATTGTACTC -ACGGAATCCTTCCCCATTGATGTC -ACGGAATCCTTCCCCATTACAGTC -ACGGAATCCTTCCCCATTTTGCTG -ACGGAATCCTTCCCCATTTCCATG -ACGGAATCCTTCCCCATTTGTGTG -ACGGAATCCTTCCCCATTCTAGTG -ACGGAATCCTTCCCCATTCATCTG -ACGGAATCCTTCCCCATTGAGTTG -ACGGAATCCTTCCCCATTAGACTG -ACGGAATCCTTCCCCATTTCGGTA -ACGGAATCCTTCCCCATTTGCCTA -ACGGAATCCTTCCCCATTCCACTA -ACGGAATCCTTCCCCATTGGAGTA -ACGGAATCCTTCCCCATTTCGTCT -ACGGAATCCTTCCCCATTTGCACT -ACGGAATCCTTCCCCATTCTGACT -ACGGAATCCTTCCCCATTCAACCT -ACGGAATCCTTCCCCATTGCTACT -ACGGAATCCTTCCCCATTGGATCT -ACGGAATCCTTCCCCATTAAGGCT -ACGGAATCCTTCCCCATTTCAACC -ACGGAATCCTTCCCCATTTGTTCC -ACGGAATCCTTCCCCATTATTCCC -ACGGAATCCTTCCCCATTTTCTCG -ACGGAATCCTTCCCCATTTAGACG -ACGGAATCCTTCCCCATTGTAACG -ACGGAATCCTTCCCCATTACTTCG -ACGGAATCCTTCCCCATTTACGCA -ACGGAATCCTTCCCCATTCTTGCA -ACGGAATCCTTCCCCATTCGAACA -ACGGAATCCTTCCCCATTCAGTCA -ACGGAATCCTTCCCCATTGATCCA -ACGGAATCCTTCCCCATTACGACA -ACGGAATCCTTCCCCATTAGCTCA -ACGGAATCCTTCCCCATTTCACGT -ACGGAATCCTTCCCCATTCGTAGT -ACGGAATCCTTCCCCATTGTCAGT -ACGGAATCCTTCCCCATTGAAGGT -ACGGAATCCTTCCCCATTAACCGT -ACGGAATCCTTCCCCATTTTGTGC -ACGGAATCCTTCCCCATTCTAAGC -ACGGAATCCTTCCCCATTACTAGC -ACGGAATCCTTCCCCATTAGATGC -ACGGAATCCTTCCCCATTTGAAGG -ACGGAATCCTTCCCCATTCAATGG -ACGGAATCCTTCCCCATTATGAGG -ACGGAATCCTTCCCCATTAATGGG -ACGGAATCCTTCCCCATTTCCTGA -ACGGAATCCTTCCCCATTTAGCGA -ACGGAATCCTTCCCCATTCACAGA -ACGGAATCCTTCCCCATTGCAAGA -ACGGAATCCTTCCCCATTGGTTGA -ACGGAATCCTTCCCCATTTCCGAT -ACGGAATCCTTCCCCATTTGGCAT -ACGGAATCCTTCCCCATTCGAGAT -ACGGAATCCTTCCCCATTTACCAC -ACGGAATCCTTCCCCATTCAGAAC -ACGGAATCCTTCCCCATTGTCTAC -ACGGAATCCTTCCCCATTACGTAC -ACGGAATCCTTCCCCATTAGTGAC -ACGGAATCCTTCCCCATTCTGTAG -ACGGAATCCTTCCCCATTCCTAAG -ACGGAATCCTTCCCCATTGTTCAG -ACGGAATCCTTCCCCATTGCATAG -ACGGAATCCTTCCCCATTGACAAG -ACGGAATCCTTCCCCATTAAGCAG -ACGGAATCCTTCCCCATTCGTCAA -ACGGAATCCTTCCCCATTGCTGAA -ACGGAATCCTTCCCCATTAGTACG -ACGGAATCCTTCCCCATTATCCGA -ACGGAATCCTTCCCCATTATGGGA -ACGGAATCCTTCCCCATTGTGCAA -ACGGAATCCTTCCCCATTGAGGAA -ACGGAATCCTTCCCCATTCAGGTA -ACGGAATCCTTCCCCATTGACTCT -ACGGAATCCTTCCCCATTAGTCCT -ACGGAATCCTTCCCCATTTAAGCC -ACGGAATCCTTCCCCATTATAGCC -ACGGAATCCTTCCCCATTTAACCG -ACGGAATCCTTCCCCATTATGCCA -ACGGAATCCTTCTCGTTCGGAAAC -ACGGAATCCTTCTCGTTCAACACC -ACGGAATCCTTCTCGTTCATCGAG -ACGGAATCCTTCTCGTTCCTCCTT -ACGGAATCCTTCTCGTTCCCTGTT -ACGGAATCCTTCTCGTTCCGGTTT -ACGGAATCCTTCTCGTTCGTGGTT -ACGGAATCCTTCTCGTTCGCCTTT -ACGGAATCCTTCTCGTTCGGTCTT -ACGGAATCCTTCTCGTTCACGCTT -ACGGAATCCTTCTCGTTCAGCGTT -ACGGAATCCTTCTCGTTCTTCGTC -ACGGAATCCTTCTCGTTCTCTCTC -ACGGAATCCTTCTCGTTCTGGATC -ACGGAATCCTTCTCGTTCCACTTC -ACGGAATCCTTCTCGTTCGTACTC -ACGGAATCCTTCTCGTTCGATGTC -ACGGAATCCTTCTCGTTCACAGTC -ACGGAATCCTTCTCGTTCTTGCTG -ACGGAATCCTTCTCGTTCTCCATG -ACGGAATCCTTCTCGTTCTGTGTG -ACGGAATCCTTCTCGTTCCTAGTG -ACGGAATCCTTCTCGTTCCATCTG -ACGGAATCCTTCTCGTTCGAGTTG -ACGGAATCCTTCTCGTTCAGACTG -ACGGAATCCTTCTCGTTCTCGGTA -ACGGAATCCTTCTCGTTCTGCCTA -ACGGAATCCTTCTCGTTCCCACTA -ACGGAATCCTTCTCGTTCGGAGTA -ACGGAATCCTTCTCGTTCTCGTCT -ACGGAATCCTTCTCGTTCTGCACT -ACGGAATCCTTCTCGTTCCTGACT -ACGGAATCCTTCTCGTTCCAACCT -ACGGAATCCTTCTCGTTCGCTACT -ACGGAATCCTTCTCGTTCGGATCT -ACGGAATCCTTCTCGTTCAAGGCT -ACGGAATCCTTCTCGTTCTCAACC -ACGGAATCCTTCTCGTTCTGTTCC -ACGGAATCCTTCTCGTTCATTCCC -ACGGAATCCTTCTCGTTCTTCTCG -ACGGAATCCTTCTCGTTCTAGACG -ACGGAATCCTTCTCGTTCGTAACG -ACGGAATCCTTCTCGTTCACTTCG -ACGGAATCCTTCTCGTTCTACGCA -ACGGAATCCTTCTCGTTCCTTGCA -ACGGAATCCTTCTCGTTCCGAACA -ACGGAATCCTTCTCGTTCCAGTCA -ACGGAATCCTTCTCGTTCGATCCA -ACGGAATCCTTCTCGTTCACGACA -ACGGAATCCTTCTCGTTCAGCTCA -ACGGAATCCTTCTCGTTCTCACGT -ACGGAATCCTTCTCGTTCCGTAGT -ACGGAATCCTTCTCGTTCGTCAGT -ACGGAATCCTTCTCGTTCGAAGGT -ACGGAATCCTTCTCGTTCAACCGT -ACGGAATCCTTCTCGTTCTTGTGC -ACGGAATCCTTCTCGTTCCTAAGC -ACGGAATCCTTCTCGTTCACTAGC -ACGGAATCCTTCTCGTTCAGATGC -ACGGAATCCTTCTCGTTCTGAAGG -ACGGAATCCTTCTCGTTCCAATGG -ACGGAATCCTTCTCGTTCATGAGG -ACGGAATCCTTCTCGTTCAATGGG -ACGGAATCCTTCTCGTTCTCCTGA -ACGGAATCCTTCTCGTTCTAGCGA -ACGGAATCCTTCTCGTTCCACAGA -ACGGAATCCTTCTCGTTCGCAAGA -ACGGAATCCTTCTCGTTCGGTTGA -ACGGAATCCTTCTCGTTCTCCGAT -ACGGAATCCTTCTCGTTCTGGCAT -ACGGAATCCTTCTCGTTCCGAGAT -ACGGAATCCTTCTCGTTCTACCAC -ACGGAATCCTTCTCGTTCCAGAAC -ACGGAATCCTTCTCGTTCGTCTAC -ACGGAATCCTTCTCGTTCACGTAC -ACGGAATCCTTCTCGTTCAGTGAC -ACGGAATCCTTCTCGTTCCTGTAG -ACGGAATCCTTCTCGTTCCCTAAG -ACGGAATCCTTCTCGTTCGTTCAG -ACGGAATCCTTCTCGTTCGCATAG -ACGGAATCCTTCTCGTTCGACAAG -ACGGAATCCTTCTCGTTCAAGCAG -ACGGAATCCTTCTCGTTCCGTCAA -ACGGAATCCTTCTCGTTCGCTGAA -ACGGAATCCTTCTCGTTCAGTACG -ACGGAATCCTTCTCGTTCATCCGA -ACGGAATCCTTCTCGTTCATGGGA -ACGGAATCCTTCTCGTTCGTGCAA -ACGGAATCCTTCTCGTTCGAGGAA -ACGGAATCCTTCTCGTTCCAGGTA -ACGGAATCCTTCTCGTTCGACTCT -ACGGAATCCTTCTCGTTCAGTCCT -ACGGAATCCTTCTCGTTCTAAGCC -ACGGAATCCTTCTCGTTCATAGCC -ACGGAATCCTTCTCGTTCTAACCG -ACGGAATCCTTCTCGTTCATGCCA -ACGGAATCCTTCACGTAGGGAAAC -ACGGAATCCTTCACGTAGAACACC -ACGGAATCCTTCACGTAGATCGAG -ACGGAATCCTTCACGTAGCTCCTT -ACGGAATCCTTCACGTAGCCTGTT -ACGGAATCCTTCACGTAGCGGTTT -ACGGAATCCTTCACGTAGGTGGTT -ACGGAATCCTTCACGTAGGCCTTT -ACGGAATCCTTCACGTAGGGTCTT -ACGGAATCCTTCACGTAGACGCTT -ACGGAATCCTTCACGTAGAGCGTT -ACGGAATCCTTCACGTAGTTCGTC -ACGGAATCCTTCACGTAGTCTCTC -ACGGAATCCTTCACGTAGTGGATC -ACGGAATCCTTCACGTAGCACTTC -ACGGAATCCTTCACGTAGGTACTC -ACGGAATCCTTCACGTAGGATGTC -ACGGAATCCTTCACGTAGACAGTC -ACGGAATCCTTCACGTAGTTGCTG -ACGGAATCCTTCACGTAGTCCATG -ACGGAATCCTTCACGTAGTGTGTG -ACGGAATCCTTCACGTAGCTAGTG -ACGGAATCCTTCACGTAGCATCTG -ACGGAATCCTTCACGTAGGAGTTG -ACGGAATCCTTCACGTAGAGACTG -ACGGAATCCTTCACGTAGTCGGTA -ACGGAATCCTTCACGTAGTGCCTA -ACGGAATCCTTCACGTAGCCACTA -ACGGAATCCTTCACGTAGGGAGTA -ACGGAATCCTTCACGTAGTCGTCT -ACGGAATCCTTCACGTAGTGCACT -ACGGAATCCTTCACGTAGCTGACT -ACGGAATCCTTCACGTAGCAACCT -ACGGAATCCTTCACGTAGGCTACT -ACGGAATCCTTCACGTAGGGATCT -ACGGAATCCTTCACGTAGAAGGCT -ACGGAATCCTTCACGTAGTCAACC -ACGGAATCCTTCACGTAGTGTTCC -ACGGAATCCTTCACGTAGATTCCC -ACGGAATCCTTCACGTAGTTCTCG -ACGGAATCCTTCACGTAGTAGACG -ACGGAATCCTTCACGTAGGTAACG -ACGGAATCCTTCACGTAGACTTCG -ACGGAATCCTTCACGTAGTACGCA -ACGGAATCCTTCACGTAGCTTGCA -ACGGAATCCTTCACGTAGCGAACA -ACGGAATCCTTCACGTAGCAGTCA -ACGGAATCCTTCACGTAGGATCCA -ACGGAATCCTTCACGTAGACGACA -ACGGAATCCTTCACGTAGAGCTCA -ACGGAATCCTTCACGTAGTCACGT -ACGGAATCCTTCACGTAGCGTAGT -ACGGAATCCTTCACGTAGGTCAGT -ACGGAATCCTTCACGTAGGAAGGT -ACGGAATCCTTCACGTAGAACCGT -ACGGAATCCTTCACGTAGTTGTGC -ACGGAATCCTTCACGTAGCTAAGC -ACGGAATCCTTCACGTAGACTAGC -ACGGAATCCTTCACGTAGAGATGC -ACGGAATCCTTCACGTAGTGAAGG -ACGGAATCCTTCACGTAGCAATGG -ACGGAATCCTTCACGTAGATGAGG -ACGGAATCCTTCACGTAGAATGGG -ACGGAATCCTTCACGTAGTCCTGA -ACGGAATCCTTCACGTAGTAGCGA -ACGGAATCCTTCACGTAGCACAGA -ACGGAATCCTTCACGTAGGCAAGA -ACGGAATCCTTCACGTAGGGTTGA -ACGGAATCCTTCACGTAGTCCGAT -ACGGAATCCTTCACGTAGTGGCAT -ACGGAATCCTTCACGTAGCGAGAT -ACGGAATCCTTCACGTAGTACCAC -ACGGAATCCTTCACGTAGCAGAAC -ACGGAATCCTTCACGTAGGTCTAC -ACGGAATCCTTCACGTAGACGTAC -ACGGAATCCTTCACGTAGAGTGAC -ACGGAATCCTTCACGTAGCTGTAG -ACGGAATCCTTCACGTAGCCTAAG -ACGGAATCCTTCACGTAGGTTCAG -ACGGAATCCTTCACGTAGGCATAG -ACGGAATCCTTCACGTAGGACAAG -ACGGAATCCTTCACGTAGAAGCAG -ACGGAATCCTTCACGTAGCGTCAA -ACGGAATCCTTCACGTAGGCTGAA -ACGGAATCCTTCACGTAGAGTACG -ACGGAATCCTTCACGTAGATCCGA -ACGGAATCCTTCACGTAGATGGGA -ACGGAATCCTTCACGTAGGTGCAA -ACGGAATCCTTCACGTAGGAGGAA -ACGGAATCCTTCACGTAGCAGGTA -ACGGAATCCTTCACGTAGGACTCT -ACGGAATCCTTCACGTAGAGTCCT -ACGGAATCCTTCACGTAGTAAGCC -ACGGAATCCTTCACGTAGATAGCC -ACGGAATCCTTCACGTAGTAACCG -ACGGAATCCTTCACGTAGATGCCA -ACGGAATCCTTCACGGTAGGAAAC -ACGGAATCCTTCACGGTAAACACC -ACGGAATCCTTCACGGTAATCGAG -ACGGAATCCTTCACGGTACTCCTT -ACGGAATCCTTCACGGTACCTGTT -ACGGAATCCTTCACGGTACGGTTT -ACGGAATCCTTCACGGTAGTGGTT -ACGGAATCCTTCACGGTAGCCTTT -ACGGAATCCTTCACGGTAGGTCTT -ACGGAATCCTTCACGGTAACGCTT -ACGGAATCCTTCACGGTAAGCGTT -ACGGAATCCTTCACGGTATTCGTC -ACGGAATCCTTCACGGTATCTCTC -ACGGAATCCTTCACGGTATGGATC -ACGGAATCCTTCACGGTACACTTC -ACGGAATCCTTCACGGTAGTACTC -ACGGAATCCTTCACGGTAGATGTC -ACGGAATCCTTCACGGTAACAGTC -ACGGAATCCTTCACGGTATTGCTG -ACGGAATCCTTCACGGTATCCATG -ACGGAATCCTTCACGGTATGTGTG -ACGGAATCCTTCACGGTACTAGTG -ACGGAATCCTTCACGGTACATCTG -ACGGAATCCTTCACGGTAGAGTTG -ACGGAATCCTTCACGGTAAGACTG -ACGGAATCCTTCACGGTATCGGTA -ACGGAATCCTTCACGGTATGCCTA -ACGGAATCCTTCACGGTACCACTA -ACGGAATCCTTCACGGTAGGAGTA -ACGGAATCCTTCACGGTATCGTCT -ACGGAATCCTTCACGGTATGCACT -ACGGAATCCTTCACGGTACTGACT -ACGGAATCCTTCACGGTACAACCT -ACGGAATCCTTCACGGTAGCTACT -ACGGAATCCTTCACGGTAGGATCT -ACGGAATCCTTCACGGTAAAGGCT -ACGGAATCCTTCACGGTATCAACC -ACGGAATCCTTCACGGTATGTTCC -ACGGAATCCTTCACGGTAATTCCC -ACGGAATCCTTCACGGTATTCTCG -ACGGAATCCTTCACGGTATAGACG -ACGGAATCCTTCACGGTAGTAACG -ACGGAATCCTTCACGGTAACTTCG -ACGGAATCCTTCACGGTATACGCA -ACGGAATCCTTCACGGTACTTGCA -ACGGAATCCTTCACGGTACGAACA -ACGGAATCCTTCACGGTACAGTCA -ACGGAATCCTTCACGGTAGATCCA -ACGGAATCCTTCACGGTAACGACA -ACGGAATCCTTCACGGTAAGCTCA -ACGGAATCCTTCACGGTATCACGT -ACGGAATCCTTCACGGTACGTAGT -ACGGAATCCTTCACGGTAGTCAGT -ACGGAATCCTTCACGGTAGAAGGT -ACGGAATCCTTCACGGTAAACCGT -ACGGAATCCTTCACGGTATTGTGC -ACGGAATCCTTCACGGTACTAAGC -ACGGAATCCTTCACGGTAACTAGC -ACGGAATCCTTCACGGTAAGATGC -ACGGAATCCTTCACGGTATGAAGG -ACGGAATCCTTCACGGTACAATGG -ACGGAATCCTTCACGGTAATGAGG -ACGGAATCCTTCACGGTAAATGGG -ACGGAATCCTTCACGGTATCCTGA -ACGGAATCCTTCACGGTATAGCGA -ACGGAATCCTTCACGGTACACAGA -ACGGAATCCTTCACGGTAGCAAGA -ACGGAATCCTTCACGGTAGGTTGA -ACGGAATCCTTCACGGTATCCGAT -ACGGAATCCTTCACGGTATGGCAT -ACGGAATCCTTCACGGTACGAGAT -ACGGAATCCTTCACGGTATACCAC -ACGGAATCCTTCACGGTACAGAAC -ACGGAATCCTTCACGGTAGTCTAC -ACGGAATCCTTCACGGTAACGTAC -ACGGAATCCTTCACGGTAAGTGAC -ACGGAATCCTTCACGGTACTGTAG -ACGGAATCCTTCACGGTACCTAAG -ACGGAATCCTTCACGGTAGTTCAG -ACGGAATCCTTCACGGTAGCATAG -ACGGAATCCTTCACGGTAGACAAG -ACGGAATCCTTCACGGTAAAGCAG -ACGGAATCCTTCACGGTACGTCAA -ACGGAATCCTTCACGGTAGCTGAA -ACGGAATCCTTCACGGTAAGTACG -ACGGAATCCTTCACGGTAATCCGA -ACGGAATCCTTCACGGTAATGGGA -ACGGAATCCTTCACGGTAGTGCAA -ACGGAATCCTTCACGGTAGAGGAA -ACGGAATCCTTCACGGTACAGGTA -ACGGAATCCTTCACGGTAGACTCT -ACGGAATCCTTCACGGTAAGTCCT -ACGGAATCCTTCACGGTATAAGCC -ACGGAATCCTTCACGGTAATAGCC -ACGGAATCCTTCACGGTATAACCG -ACGGAATCCTTCACGGTAATGCCA -ACGGAATCCTTCTCGACTGGAAAC -ACGGAATCCTTCTCGACTAACACC -ACGGAATCCTTCTCGACTATCGAG -ACGGAATCCTTCTCGACTCTCCTT -ACGGAATCCTTCTCGACTCCTGTT -ACGGAATCCTTCTCGACTCGGTTT -ACGGAATCCTTCTCGACTGTGGTT -ACGGAATCCTTCTCGACTGCCTTT -ACGGAATCCTTCTCGACTGGTCTT -ACGGAATCCTTCTCGACTACGCTT -ACGGAATCCTTCTCGACTAGCGTT -ACGGAATCCTTCTCGACTTTCGTC -ACGGAATCCTTCTCGACTTCTCTC -ACGGAATCCTTCTCGACTTGGATC -ACGGAATCCTTCTCGACTCACTTC -ACGGAATCCTTCTCGACTGTACTC -ACGGAATCCTTCTCGACTGATGTC -ACGGAATCCTTCTCGACTACAGTC -ACGGAATCCTTCTCGACTTTGCTG -ACGGAATCCTTCTCGACTTCCATG -ACGGAATCCTTCTCGACTTGTGTG -ACGGAATCCTTCTCGACTCTAGTG -ACGGAATCCTTCTCGACTCATCTG -ACGGAATCCTTCTCGACTGAGTTG -ACGGAATCCTTCTCGACTAGACTG -ACGGAATCCTTCTCGACTTCGGTA -ACGGAATCCTTCTCGACTTGCCTA -ACGGAATCCTTCTCGACTCCACTA -ACGGAATCCTTCTCGACTGGAGTA -ACGGAATCCTTCTCGACTTCGTCT -ACGGAATCCTTCTCGACTTGCACT -ACGGAATCCTTCTCGACTCTGACT -ACGGAATCCTTCTCGACTCAACCT -ACGGAATCCTTCTCGACTGCTACT -ACGGAATCCTTCTCGACTGGATCT -ACGGAATCCTTCTCGACTAAGGCT -ACGGAATCCTTCTCGACTTCAACC -ACGGAATCCTTCTCGACTTGTTCC -ACGGAATCCTTCTCGACTATTCCC -ACGGAATCCTTCTCGACTTTCTCG -ACGGAATCCTTCTCGACTTAGACG -ACGGAATCCTTCTCGACTGTAACG -ACGGAATCCTTCTCGACTACTTCG -ACGGAATCCTTCTCGACTTACGCA -ACGGAATCCTTCTCGACTCTTGCA -ACGGAATCCTTCTCGACTCGAACA -ACGGAATCCTTCTCGACTCAGTCA -ACGGAATCCTTCTCGACTGATCCA -ACGGAATCCTTCTCGACTACGACA -ACGGAATCCTTCTCGACTAGCTCA -ACGGAATCCTTCTCGACTTCACGT -ACGGAATCCTTCTCGACTCGTAGT -ACGGAATCCTTCTCGACTGTCAGT -ACGGAATCCTTCTCGACTGAAGGT -ACGGAATCCTTCTCGACTAACCGT -ACGGAATCCTTCTCGACTTTGTGC -ACGGAATCCTTCTCGACTCTAAGC -ACGGAATCCTTCTCGACTACTAGC -ACGGAATCCTTCTCGACTAGATGC -ACGGAATCCTTCTCGACTTGAAGG -ACGGAATCCTTCTCGACTCAATGG -ACGGAATCCTTCTCGACTATGAGG -ACGGAATCCTTCTCGACTAATGGG -ACGGAATCCTTCTCGACTTCCTGA -ACGGAATCCTTCTCGACTTAGCGA -ACGGAATCCTTCTCGACTCACAGA -ACGGAATCCTTCTCGACTGCAAGA -ACGGAATCCTTCTCGACTGGTTGA -ACGGAATCCTTCTCGACTTCCGAT -ACGGAATCCTTCTCGACTTGGCAT -ACGGAATCCTTCTCGACTCGAGAT -ACGGAATCCTTCTCGACTTACCAC -ACGGAATCCTTCTCGACTCAGAAC -ACGGAATCCTTCTCGACTGTCTAC -ACGGAATCCTTCTCGACTACGTAC -ACGGAATCCTTCTCGACTAGTGAC -ACGGAATCCTTCTCGACTCTGTAG -ACGGAATCCTTCTCGACTCCTAAG -ACGGAATCCTTCTCGACTGTTCAG -ACGGAATCCTTCTCGACTGCATAG -ACGGAATCCTTCTCGACTGACAAG -ACGGAATCCTTCTCGACTAAGCAG -ACGGAATCCTTCTCGACTCGTCAA -ACGGAATCCTTCTCGACTGCTGAA -ACGGAATCCTTCTCGACTAGTACG -ACGGAATCCTTCTCGACTATCCGA -ACGGAATCCTTCTCGACTATGGGA -ACGGAATCCTTCTCGACTGTGCAA -ACGGAATCCTTCTCGACTGAGGAA -ACGGAATCCTTCTCGACTCAGGTA -ACGGAATCCTTCTCGACTGACTCT -ACGGAATCCTTCTCGACTAGTCCT -ACGGAATCCTTCTCGACTTAAGCC -ACGGAATCCTTCTCGACTATAGCC -ACGGAATCCTTCTCGACTTAACCG -ACGGAATCCTTCTCGACTATGCCA -ACGGAATCCTTCGCATACGGAAAC -ACGGAATCCTTCGCATACAACACC -ACGGAATCCTTCGCATACATCGAG -ACGGAATCCTTCGCATACCTCCTT -ACGGAATCCTTCGCATACCCTGTT -ACGGAATCCTTCGCATACCGGTTT -ACGGAATCCTTCGCATACGTGGTT -ACGGAATCCTTCGCATACGCCTTT -ACGGAATCCTTCGCATACGGTCTT -ACGGAATCCTTCGCATACACGCTT -ACGGAATCCTTCGCATACAGCGTT -ACGGAATCCTTCGCATACTTCGTC -ACGGAATCCTTCGCATACTCTCTC -ACGGAATCCTTCGCATACTGGATC -ACGGAATCCTTCGCATACCACTTC -ACGGAATCCTTCGCATACGTACTC -ACGGAATCCTTCGCATACGATGTC -ACGGAATCCTTCGCATACACAGTC -ACGGAATCCTTCGCATACTTGCTG -ACGGAATCCTTCGCATACTCCATG -ACGGAATCCTTCGCATACTGTGTG -ACGGAATCCTTCGCATACCTAGTG -ACGGAATCCTTCGCATACCATCTG -ACGGAATCCTTCGCATACGAGTTG -ACGGAATCCTTCGCATACAGACTG -ACGGAATCCTTCGCATACTCGGTA -ACGGAATCCTTCGCATACTGCCTA -ACGGAATCCTTCGCATACCCACTA -ACGGAATCCTTCGCATACGGAGTA -ACGGAATCCTTCGCATACTCGTCT -ACGGAATCCTTCGCATACTGCACT -ACGGAATCCTTCGCATACCTGACT -ACGGAATCCTTCGCATACCAACCT -ACGGAATCCTTCGCATACGCTACT -ACGGAATCCTTCGCATACGGATCT -ACGGAATCCTTCGCATACAAGGCT -ACGGAATCCTTCGCATACTCAACC -ACGGAATCCTTCGCATACTGTTCC -ACGGAATCCTTCGCATACATTCCC -ACGGAATCCTTCGCATACTTCTCG -ACGGAATCCTTCGCATACTAGACG -ACGGAATCCTTCGCATACGTAACG -ACGGAATCCTTCGCATACACTTCG -ACGGAATCCTTCGCATACTACGCA -ACGGAATCCTTCGCATACCTTGCA -ACGGAATCCTTCGCATACCGAACA -ACGGAATCCTTCGCATACCAGTCA -ACGGAATCCTTCGCATACGATCCA -ACGGAATCCTTCGCATACACGACA -ACGGAATCCTTCGCATACAGCTCA -ACGGAATCCTTCGCATACTCACGT -ACGGAATCCTTCGCATACCGTAGT -ACGGAATCCTTCGCATACGTCAGT -ACGGAATCCTTCGCATACGAAGGT -ACGGAATCCTTCGCATACAACCGT -ACGGAATCCTTCGCATACTTGTGC -ACGGAATCCTTCGCATACCTAAGC -ACGGAATCCTTCGCATACACTAGC -ACGGAATCCTTCGCATACAGATGC -ACGGAATCCTTCGCATACTGAAGG -ACGGAATCCTTCGCATACCAATGG -ACGGAATCCTTCGCATACATGAGG -ACGGAATCCTTCGCATACAATGGG -ACGGAATCCTTCGCATACTCCTGA -ACGGAATCCTTCGCATACTAGCGA -ACGGAATCCTTCGCATACCACAGA -ACGGAATCCTTCGCATACGCAAGA -ACGGAATCCTTCGCATACGGTTGA -ACGGAATCCTTCGCATACTCCGAT -ACGGAATCCTTCGCATACTGGCAT -ACGGAATCCTTCGCATACCGAGAT -ACGGAATCCTTCGCATACTACCAC -ACGGAATCCTTCGCATACCAGAAC -ACGGAATCCTTCGCATACGTCTAC -ACGGAATCCTTCGCATACACGTAC -ACGGAATCCTTCGCATACAGTGAC -ACGGAATCCTTCGCATACCTGTAG -ACGGAATCCTTCGCATACCCTAAG -ACGGAATCCTTCGCATACGTTCAG -ACGGAATCCTTCGCATACGCATAG -ACGGAATCCTTCGCATACGACAAG -ACGGAATCCTTCGCATACAAGCAG -ACGGAATCCTTCGCATACCGTCAA -ACGGAATCCTTCGCATACGCTGAA -ACGGAATCCTTCGCATACAGTACG -ACGGAATCCTTCGCATACATCCGA -ACGGAATCCTTCGCATACATGGGA -ACGGAATCCTTCGCATACGTGCAA -ACGGAATCCTTCGCATACGAGGAA -ACGGAATCCTTCGCATACCAGGTA -ACGGAATCCTTCGCATACGACTCT -ACGGAATCCTTCGCATACAGTCCT -ACGGAATCCTTCGCATACTAAGCC -ACGGAATCCTTCGCATACATAGCC -ACGGAATCCTTCGCATACTAACCG -ACGGAATCCTTCGCATACATGCCA -ACGGAATCCTTCGCACTTGGAAAC -ACGGAATCCTTCGCACTTAACACC -ACGGAATCCTTCGCACTTATCGAG -ACGGAATCCTTCGCACTTCTCCTT -ACGGAATCCTTCGCACTTCCTGTT -ACGGAATCCTTCGCACTTCGGTTT -ACGGAATCCTTCGCACTTGTGGTT -ACGGAATCCTTCGCACTTGCCTTT -ACGGAATCCTTCGCACTTGGTCTT -ACGGAATCCTTCGCACTTACGCTT -ACGGAATCCTTCGCACTTAGCGTT -ACGGAATCCTTCGCACTTTTCGTC -ACGGAATCCTTCGCACTTTCTCTC -ACGGAATCCTTCGCACTTTGGATC -ACGGAATCCTTCGCACTTCACTTC -ACGGAATCCTTCGCACTTGTACTC -ACGGAATCCTTCGCACTTGATGTC -ACGGAATCCTTCGCACTTACAGTC -ACGGAATCCTTCGCACTTTTGCTG -ACGGAATCCTTCGCACTTTCCATG -ACGGAATCCTTCGCACTTTGTGTG -ACGGAATCCTTCGCACTTCTAGTG -ACGGAATCCTTCGCACTTCATCTG -ACGGAATCCTTCGCACTTGAGTTG -ACGGAATCCTTCGCACTTAGACTG -ACGGAATCCTTCGCACTTTCGGTA -ACGGAATCCTTCGCACTTTGCCTA -ACGGAATCCTTCGCACTTCCACTA -ACGGAATCCTTCGCACTTGGAGTA -ACGGAATCCTTCGCACTTTCGTCT -ACGGAATCCTTCGCACTTTGCACT -ACGGAATCCTTCGCACTTCTGACT -ACGGAATCCTTCGCACTTCAACCT -ACGGAATCCTTCGCACTTGCTACT -ACGGAATCCTTCGCACTTGGATCT -ACGGAATCCTTCGCACTTAAGGCT -ACGGAATCCTTCGCACTTTCAACC -ACGGAATCCTTCGCACTTTGTTCC -ACGGAATCCTTCGCACTTATTCCC -ACGGAATCCTTCGCACTTTTCTCG -ACGGAATCCTTCGCACTTTAGACG -ACGGAATCCTTCGCACTTGTAACG -ACGGAATCCTTCGCACTTACTTCG -ACGGAATCCTTCGCACTTTACGCA -ACGGAATCCTTCGCACTTCTTGCA -ACGGAATCCTTCGCACTTCGAACA -ACGGAATCCTTCGCACTTCAGTCA -ACGGAATCCTTCGCACTTGATCCA -ACGGAATCCTTCGCACTTACGACA -ACGGAATCCTTCGCACTTAGCTCA -ACGGAATCCTTCGCACTTTCACGT -ACGGAATCCTTCGCACTTCGTAGT -ACGGAATCCTTCGCACTTGTCAGT -ACGGAATCCTTCGCACTTGAAGGT -ACGGAATCCTTCGCACTTAACCGT -ACGGAATCCTTCGCACTTTTGTGC -ACGGAATCCTTCGCACTTCTAAGC -ACGGAATCCTTCGCACTTACTAGC -ACGGAATCCTTCGCACTTAGATGC -ACGGAATCCTTCGCACTTTGAAGG -ACGGAATCCTTCGCACTTCAATGG -ACGGAATCCTTCGCACTTATGAGG -ACGGAATCCTTCGCACTTAATGGG -ACGGAATCCTTCGCACTTTCCTGA -ACGGAATCCTTCGCACTTTAGCGA -ACGGAATCCTTCGCACTTCACAGA -ACGGAATCCTTCGCACTTGCAAGA -ACGGAATCCTTCGCACTTGGTTGA -ACGGAATCCTTCGCACTTTCCGAT -ACGGAATCCTTCGCACTTTGGCAT -ACGGAATCCTTCGCACTTCGAGAT -ACGGAATCCTTCGCACTTTACCAC -ACGGAATCCTTCGCACTTCAGAAC -ACGGAATCCTTCGCACTTGTCTAC -ACGGAATCCTTCGCACTTACGTAC -ACGGAATCCTTCGCACTTAGTGAC -ACGGAATCCTTCGCACTTCTGTAG -ACGGAATCCTTCGCACTTCCTAAG -ACGGAATCCTTCGCACTTGTTCAG -ACGGAATCCTTCGCACTTGCATAG -ACGGAATCCTTCGCACTTGACAAG -ACGGAATCCTTCGCACTTAAGCAG -ACGGAATCCTTCGCACTTCGTCAA -ACGGAATCCTTCGCACTTGCTGAA -ACGGAATCCTTCGCACTTAGTACG -ACGGAATCCTTCGCACTTATCCGA -ACGGAATCCTTCGCACTTATGGGA -ACGGAATCCTTCGCACTTGTGCAA -ACGGAATCCTTCGCACTTGAGGAA -ACGGAATCCTTCGCACTTCAGGTA -ACGGAATCCTTCGCACTTGACTCT -ACGGAATCCTTCGCACTTAGTCCT -ACGGAATCCTTCGCACTTTAAGCC -ACGGAATCCTTCGCACTTATAGCC -ACGGAATCCTTCGCACTTTAACCG -ACGGAATCCTTCGCACTTATGCCA -ACGGAATCCTTCACACGAGGAAAC -ACGGAATCCTTCACACGAAACACC -ACGGAATCCTTCACACGAATCGAG -ACGGAATCCTTCACACGACTCCTT -ACGGAATCCTTCACACGACCTGTT -ACGGAATCCTTCACACGACGGTTT -ACGGAATCCTTCACACGAGTGGTT -ACGGAATCCTTCACACGAGCCTTT -ACGGAATCCTTCACACGAGGTCTT -ACGGAATCCTTCACACGAACGCTT -ACGGAATCCTTCACACGAAGCGTT -ACGGAATCCTTCACACGATTCGTC -ACGGAATCCTTCACACGATCTCTC -ACGGAATCCTTCACACGATGGATC -ACGGAATCCTTCACACGACACTTC -ACGGAATCCTTCACACGAGTACTC -ACGGAATCCTTCACACGAGATGTC -ACGGAATCCTTCACACGAACAGTC -ACGGAATCCTTCACACGATTGCTG -ACGGAATCCTTCACACGATCCATG -ACGGAATCCTTCACACGATGTGTG -ACGGAATCCTTCACACGACTAGTG -ACGGAATCCTTCACACGACATCTG -ACGGAATCCTTCACACGAGAGTTG -ACGGAATCCTTCACACGAAGACTG -ACGGAATCCTTCACACGATCGGTA -ACGGAATCCTTCACACGATGCCTA -ACGGAATCCTTCACACGACCACTA -ACGGAATCCTTCACACGAGGAGTA -ACGGAATCCTTCACACGATCGTCT -ACGGAATCCTTCACACGATGCACT -ACGGAATCCTTCACACGACTGACT -ACGGAATCCTTCACACGACAACCT -ACGGAATCCTTCACACGAGCTACT -ACGGAATCCTTCACACGAGGATCT -ACGGAATCCTTCACACGAAAGGCT -ACGGAATCCTTCACACGATCAACC -ACGGAATCCTTCACACGATGTTCC -ACGGAATCCTTCACACGAATTCCC -ACGGAATCCTTCACACGATTCTCG -ACGGAATCCTTCACACGATAGACG -ACGGAATCCTTCACACGAGTAACG -ACGGAATCCTTCACACGAACTTCG -ACGGAATCCTTCACACGATACGCA -ACGGAATCCTTCACACGACTTGCA -ACGGAATCCTTCACACGACGAACA -ACGGAATCCTTCACACGACAGTCA -ACGGAATCCTTCACACGAGATCCA -ACGGAATCCTTCACACGAACGACA -ACGGAATCCTTCACACGAAGCTCA -ACGGAATCCTTCACACGATCACGT -ACGGAATCCTTCACACGACGTAGT -ACGGAATCCTTCACACGAGTCAGT -ACGGAATCCTTCACACGAGAAGGT -ACGGAATCCTTCACACGAAACCGT -ACGGAATCCTTCACACGATTGTGC -ACGGAATCCTTCACACGACTAAGC -ACGGAATCCTTCACACGAACTAGC -ACGGAATCCTTCACACGAAGATGC -ACGGAATCCTTCACACGATGAAGG -ACGGAATCCTTCACACGACAATGG -ACGGAATCCTTCACACGAATGAGG -ACGGAATCCTTCACACGAAATGGG -ACGGAATCCTTCACACGATCCTGA -ACGGAATCCTTCACACGATAGCGA -ACGGAATCCTTCACACGACACAGA -ACGGAATCCTTCACACGAGCAAGA -ACGGAATCCTTCACACGAGGTTGA -ACGGAATCCTTCACACGATCCGAT -ACGGAATCCTTCACACGATGGCAT -ACGGAATCCTTCACACGACGAGAT -ACGGAATCCTTCACACGATACCAC -ACGGAATCCTTCACACGACAGAAC -ACGGAATCCTTCACACGAGTCTAC -ACGGAATCCTTCACACGAACGTAC -ACGGAATCCTTCACACGAAGTGAC -ACGGAATCCTTCACACGACTGTAG -ACGGAATCCTTCACACGACCTAAG -ACGGAATCCTTCACACGAGTTCAG -ACGGAATCCTTCACACGAGCATAG -ACGGAATCCTTCACACGAGACAAG -ACGGAATCCTTCACACGAAAGCAG -ACGGAATCCTTCACACGACGTCAA -ACGGAATCCTTCACACGAGCTGAA -ACGGAATCCTTCACACGAAGTACG -ACGGAATCCTTCACACGAATCCGA -ACGGAATCCTTCACACGAATGGGA -ACGGAATCCTTCACACGAGTGCAA -ACGGAATCCTTCACACGAGAGGAA -ACGGAATCCTTCACACGACAGGTA -ACGGAATCCTTCACACGAGACTCT -ACGGAATCCTTCACACGAAGTCCT -ACGGAATCCTTCACACGATAAGCC -ACGGAATCCTTCACACGAATAGCC -ACGGAATCCTTCACACGATAACCG -ACGGAATCCTTCACACGAATGCCA -ACGGAATCCTTCTCACAGGGAAAC -ACGGAATCCTTCTCACAGAACACC -ACGGAATCCTTCTCACAGATCGAG -ACGGAATCCTTCTCACAGCTCCTT -ACGGAATCCTTCTCACAGCCTGTT -ACGGAATCCTTCTCACAGCGGTTT -ACGGAATCCTTCTCACAGGTGGTT -ACGGAATCCTTCTCACAGGCCTTT -ACGGAATCCTTCTCACAGGGTCTT -ACGGAATCCTTCTCACAGACGCTT -ACGGAATCCTTCTCACAGAGCGTT -ACGGAATCCTTCTCACAGTTCGTC -ACGGAATCCTTCTCACAGTCTCTC -ACGGAATCCTTCTCACAGTGGATC -ACGGAATCCTTCTCACAGCACTTC -ACGGAATCCTTCTCACAGGTACTC -ACGGAATCCTTCTCACAGGATGTC -ACGGAATCCTTCTCACAGACAGTC -ACGGAATCCTTCTCACAGTTGCTG -ACGGAATCCTTCTCACAGTCCATG -ACGGAATCCTTCTCACAGTGTGTG -ACGGAATCCTTCTCACAGCTAGTG -ACGGAATCCTTCTCACAGCATCTG -ACGGAATCCTTCTCACAGGAGTTG -ACGGAATCCTTCTCACAGAGACTG -ACGGAATCCTTCTCACAGTCGGTA -ACGGAATCCTTCTCACAGTGCCTA -ACGGAATCCTTCTCACAGCCACTA -ACGGAATCCTTCTCACAGGGAGTA -ACGGAATCCTTCTCACAGTCGTCT -ACGGAATCCTTCTCACAGTGCACT -ACGGAATCCTTCTCACAGCTGACT -ACGGAATCCTTCTCACAGCAACCT -ACGGAATCCTTCTCACAGGCTACT -ACGGAATCCTTCTCACAGGGATCT -ACGGAATCCTTCTCACAGAAGGCT -ACGGAATCCTTCTCACAGTCAACC -ACGGAATCCTTCTCACAGTGTTCC -ACGGAATCCTTCTCACAGATTCCC -ACGGAATCCTTCTCACAGTTCTCG -ACGGAATCCTTCTCACAGTAGACG -ACGGAATCCTTCTCACAGGTAACG -ACGGAATCCTTCTCACAGACTTCG -ACGGAATCCTTCTCACAGTACGCA -ACGGAATCCTTCTCACAGCTTGCA -ACGGAATCCTTCTCACAGCGAACA -ACGGAATCCTTCTCACAGCAGTCA -ACGGAATCCTTCTCACAGGATCCA -ACGGAATCCTTCTCACAGACGACA -ACGGAATCCTTCTCACAGAGCTCA -ACGGAATCCTTCTCACAGTCACGT -ACGGAATCCTTCTCACAGCGTAGT -ACGGAATCCTTCTCACAGGTCAGT -ACGGAATCCTTCTCACAGGAAGGT -ACGGAATCCTTCTCACAGAACCGT -ACGGAATCCTTCTCACAGTTGTGC -ACGGAATCCTTCTCACAGCTAAGC -ACGGAATCCTTCTCACAGACTAGC -ACGGAATCCTTCTCACAGAGATGC -ACGGAATCCTTCTCACAGTGAAGG -ACGGAATCCTTCTCACAGCAATGG -ACGGAATCCTTCTCACAGATGAGG -ACGGAATCCTTCTCACAGAATGGG -ACGGAATCCTTCTCACAGTCCTGA -ACGGAATCCTTCTCACAGTAGCGA -ACGGAATCCTTCTCACAGCACAGA -ACGGAATCCTTCTCACAGGCAAGA -ACGGAATCCTTCTCACAGGGTTGA -ACGGAATCCTTCTCACAGTCCGAT -ACGGAATCCTTCTCACAGTGGCAT -ACGGAATCCTTCTCACAGCGAGAT -ACGGAATCCTTCTCACAGTACCAC -ACGGAATCCTTCTCACAGCAGAAC -ACGGAATCCTTCTCACAGGTCTAC -ACGGAATCCTTCTCACAGACGTAC -ACGGAATCCTTCTCACAGAGTGAC -ACGGAATCCTTCTCACAGCTGTAG -ACGGAATCCTTCTCACAGCCTAAG -ACGGAATCCTTCTCACAGGTTCAG -ACGGAATCCTTCTCACAGGCATAG -ACGGAATCCTTCTCACAGGACAAG -ACGGAATCCTTCTCACAGAAGCAG -ACGGAATCCTTCTCACAGCGTCAA -ACGGAATCCTTCTCACAGGCTGAA -ACGGAATCCTTCTCACAGAGTACG -ACGGAATCCTTCTCACAGATCCGA -ACGGAATCCTTCTCACAGATGGGA -ACGGAATCCTTCTCACAGGTGCAA -ACGGAATCCTTCTCACAGGAGGAA -ACGGAATCCTTCTCACAGCAGGTA -ACGGAATCCTTCTCACAGGACTCT -ACGGAATCCTTCTCACAGAGTCCT -ACGGAATCCTTCTCACAGTAAGCC -ACGGAATCCTTCTCACAGATAGCC -ACGGAATCCTTCTCACAGTAACCG -ACGGAATCCTTCTCACAGATGCCA -ACGGAATCCTTCCCAGATGGAAAC -ACGGAATCCTTCCCAGATAACACC -ACGGAATCCTTCCCAGATATCGAG -ACGGAATCCTTCCCAGATCTCCTT -ACGGAATCCTTCCCAGATCCTGTT -ACGGAATCCTTCCCAGATCGGTTT -ACGGAATCCTTCCCAGATGTGGTT -ACGGAATCCTTCCCAGATGCCTTT -ACGGAATCCTTCCCAGATGGTCTT -ACGGAATCCTTCCCAGATACGCTT -ACGGAATCCTTCCCAGATAGCGTT -ACGGAATCCTTCCCAGATTTCGTC -ACGGAATCCTTCCCAGATTCTCTC -ACGGAATCCTTCCCAGATTGGATC -ACGGAATCCTTCCCAGATCACTTC -ACGGAATCCTTCCCAGATGTACTC -ACGGAATCCTTCCCAGATGATGTC -ACGGAATCCTTCCCAGATACAGTC -ACGGAATCCTTCCCAGATTTGCTG -ACGGAATCCTTCCCAGATTCCATG -ACGGAATCCTTCCCAGATTGTGTG -ACGGAATCCTTCCCAGATCTAGTG -ACGGAATCCTTCCCAGATCATCTG -ACGGAATCCTTCCCAGATGAGTTG -ACGGAATCCTTCCCAGATAGACTG -ACGGAATCCTTCCCAGATTCGGTA -ACGGAATCCTTCCCAGATTGCCTA -ACGGAATCCTTCCCAGATCCACTA -ACGGAATCCTTCCCAGATGGAGTA -ACGGAATCCTTCCCAGATTCGTCT -ACGGAATCCTTCCCAGATTGCACT -ACGGAATCCTTCCCAGATCTGACT -ACGGAATCCTTCCCAGATCAACCT -ACGGAATCCTTCCCAGATGCTACT -ACGGAATCCTTCCCAGATGGATCT -ACGGAATCCTTCCCAGATAAGGCT -ACGGAATCCTTCCCAGATTCAACC -ACGGAATCCTTCCCAGATTGTTCC -ACGGAATCCTTCCCAGATATTCCC -ACGGAATCCTTCCCAGATTTCTCG -ACGGAATCCTTCCCAGATTAGACG -ACGGAATCCTTCCCAGATGTAACG -ACGGAATCCTTCCCAGATACTTCG -ACGGAATCCTTCCCAGATTACGCA -ACGGAATCCTTCCCAGATCTTGCA -ACGGAATCCTTCCCAGATCGAACA -ACGGAATCCTTCCCAGATCAGTCA -ACGGAATCCTTCCCAGATGATCCA -ACGGAATCCTTCCCAGATACGACA -ACGGAATCCTTCCCAGATAGCTCA -ACGGAATCCTTCCCAGATTCACGT -ACGGAATCCTTCCCAGATCGTAGT -ACGGAATCCTTCCCAGATGTCAGT -ACGGAATCCTTCCCAGATGAAGGT -ACGGAATCCTTCCCAGATAACCGT -ACGGAATCCTTCCCAGATTTGTGC -ACGGAATCCTTCCCAGATCTAAGC -ACGGAATCCTTCCCAGATACTAGC -ACGGAATCCTTCCCAGATAGATGC -ACGGAATCCTTCCCAGATTGAAGG -ACGGAATCCTTCCCAGATCAATGG -ACGGAATCCTTCCCAGATATGAGG -ACGGAATCCTTCCCAGATAATGGG -ACGGAATCCTTCCCAGATTCCTGA -ACGGAATCCTTCCCAGATTAGCGA -ACGGAATCCTTCCCAGATCACAGA -ACGGAATCCTTCCCAGATGCAAGA -ACGGAATCCTTCCCAGATGGTTGA -ACGGAATCCTTCCCAGATTCCGAT -ACGGAATCCTTCCCAGATTGGCAT -ACGGAATCCTTCCCAGATCGAGAT -ACGGAATCCTTCCCAGATTACCAC -ACGGAATCCTTCCCAGATCAGAAC -ACGGAATCCTTCCCAGATGTCTAC -ACGGAATCCTTCCCAGATACGTAC -ACGGAATCCTTCCCAGATAGTGAC -ACGGAATCCTTCCCAGATCTGTAG -ACGGAATCCTTCCCAGATCCTAAG -ACGGAATCCTTCCCAGATGTTCAG -ACGGAATCCTTCCCAGATGCATAG -ACGGAATCCTTCCCAGATGACAAG -ACGGAATCCTTCCCAGATAAGCAG -ACGGAATCCTTCCCAGATCGTCAA -ACGGAATCCTTCCCAGATGCTGAA -ACGGAATCCTTCCCAGATAGTACG -ACGGAATCCTTCCCAGATATCCGA -ACGGAATCCTTCCCAGATATGGGA -ACGGAATCCTTCCCAGATGTGCAA -ACGGAATCCTTCCCAGATGAGGAA -ACGGAATCCTTCCCAGATCAGGTA -ACGGAATCCTTCCCAGATGACTCT -ACGGAATCCTTCCCAGATAGTCCT -ACGGAATCCTTCCCAGATTAAGCC -ACGGAATCCTTCCCAGATATAGCC -ACGGAATCCTTCCCAGATTAACCG -ACGGAATCCTTCCCAGATATGCCA -ACGGAATCCTTCACAACGGGAAAC -ACGGAATCCTTCACAACGAACACC -ACGGAATCCTTCACAACGATCGAG -ACGGAATCCTTCACAACGCTCCTT -ACGGAATCCTTCACAACGCCTGTT -ACGGAATCCTTCACAACGCGGTTT -ACGGAATCCTTCACAACGGTGGTT -ACGGAATCCTTCACAACGGCCTTT -ACGGAATCCTTCACAACGGGTCTT -ACGGAATCCTTCACAACGACGCTT -ACGGAATCCTTCACAACGAGCGTT -ACGGAATCCTTCACAACGTTCGTC -ACGGAATCCTTCACAACGTCTCTC -ACGGAATCCTTCACAACGTGGATC -ACGGAATCCTTCACAACGCACTTC -ACGGAATCCTTCACAACGGTACTC -ACGGAATCCTTCACAACGGATGTC -ACGGAATCCTTCACAACGACAGTC -ACGGAATCCTTCACAACGTTGCTG -ACGGAATCCTTCACAACGTCCATG -ACGGAATCCTTCACAACGTGTGTG -ACGGAATCCTTCACAACGCTAGTG -ACGGAATCCTTCACAACGCATCTG -ACGGAATCCTTCACAACGGAGTTG -ACGGAATCCTTCACAACGAGACTG -ACGGAATCCTTCACAACGTCGGTA -ACGGAATCCTTCACAACGTGCCTA -ACGGAATCCTTCACAACGCCACTA -ACGGAATCCTTCACAACGGGAGTA -ACGGAATCCTTCACAACGTCGTCT -ACGGAATCCTTCACAACGTGCACT -ACGGAATCCTTCACAACGCTGACT -ACGGAATCCTTCACAACGCAACCT -ACGGAATCCTTCACAACGGCTACT -ACGGAATCCTTCACAACGGGATCT -ACGGAATCCTTCACAACGAAGGCT -ACGGAATCCTTCACAACGTCAACC -ACGGAATCCTTCACAACGTGTTCC -ACGGAATCCTTCACAACGATTCCC -ACGGAATCCTTCACAACGTTCTCG -ACGGAATCCTTCACAACGTAGACG -ACGGAATCCTTCACAACGGTAACG -ACGGAATCCTTCACAACGACTTCG -ACGGAATCCTTCACAACGTACGCA -ACGGAATCCTTCACAACGCTTGCA -ACGGAATCCTTCACAACGCGAACA -ACGGAATCCTTCACAACGCAGTCA -ACGGAATCCTTCACAACGGATCCA -ACGGAATCCTTCACAACGACGACA -ACGGAATCCTTCACAACGAGCTCA -ACGGAATCCTTCACAACGTCACGT -ACGGAATCCTTCACAACGCGTAGT -ACGGAATCCTTCACAACGGTCAGT -ACGGAATCCTTCACAACGGAAGGT -ACGGAATCCTTCACAACGAACCGT -ACGGAATCCTTCACAACGTTGTGC -ACGGAATCCTTCACAACGCTAAGC -ACGGAATCCTTCACAACGACTAGC -ACGGAATCCTTCACAACGAGATGC -ACGGAATCCTTCACAACGTGAAGG -ACGGAATCCTTCACAACGCAATGG -ACGGAATCCTTCACAACGATGAGG -ACGGAATCCTTCACAACGAATGGG -ACGGAATCCTTCACAACGTCCTGA -ACGGAATCCTTCACAACGTAGCGA -ACGGAATCCTTCACAACGCACAGA -ACGGAATCCTTCACAACGGCAAGA -ACGGAATCCTTCACAACGGGTTGA -ACGGAATCCTTCACAACGTCCGAT -ACGGAATCCTTCACAACGTGGCAT -ACGGAATCCTTCACAACGCGAGAT -ACGGAATCCTTCACAACGTACCAC -ACGGAATCCTTCACAACGCAGAAC -ACGGAATCCTTCACAACGGTCTAC -ACGGAATCCTTCACAACGACGTAC -ACGGAATCCTTCACAACGAGTGAC -ACGGAATCCTTCACAACGCTGTAG -ACGGAATCCTTCACAACGCCTAAG -ACGGAATCCTTCACAACGGTTCAG -ACGGAATCCTTCACAACGGCATAG -ACGGAATCCTTCACAACGGACAAG -ACGGAATCCTTCACAACGAAGCAG -ACGGAATCCTTCACAACGCGTCAA -ACGGAATCCTTCACAACGGCTGAA -ACGGAATCCTTCACAACGAGTACG -ACGGAATCCTTCACAACGATCCGA -ACGGAATCCTTCACAACGATGGGA -ACGGAATCCTTCACAACGGTGCAA -ACGGAATCCTTCACAACGGAGGAA -ACGGAATCCTTCACAACGCAGGTA -ACGGAATCCTTCACAACGGACTCT -ACGGAATCCTTCACAACGAGTCCT -ACGGAATCCTTCACAACGTAAGCC -ACGGAATCCTTCACAACGATAGCC -ACGGAATCCTTCACAACGTAACCG -ACGGAATCCTTCACAACGATGCCA -ACGGAATCCTTCTCAAGCGGAAAC -ACGGAATCCTTCTCAAGCAACACC -ACGGAATCCTTCTCAAGCATCGAG -ACGGAATCCTTCTCAAGCCTCCTT -ACGGAATCCTTCTCAAGCCCTGTT -ACGGAATCCTTCTCAAGCCGGTTT -ACGGAATCCTTCTCAAGCGTGGTT -ACGGAATCCTTCTCAAGCGCCTTT -ACGGAATCCTTCTCAAGCGGTCTT -ACGGAATCCTTCTCAAGCACGCTT -ACGGAATCCTTCTCAAGCAGCGTT -ACGGAATCCTTCTCAAGCTTCGTC -ACGGAATCCTTCTCAAGCTCTCTC -ACGGAATCCTTCTCAAGCTGGATC -ACGGAATCCTTCTCAAGCCACTTC -ACGGAATCCTTCTCAAGCGTACTC -ACGGAATCCTTCTCAAGCGATGTC -ACGGAATCCTTCTCAAGCACAGTC -ACGGAATCCTTCTCAAGCTTGCTG -ACGGAATCCTTCTCAAGCTCCATG -ACGGAATCCTTCTCAAGCTGTGTG -ACGGAATCCTTCTCAAGCCTAGTG -ACGGAATCCTTCTCAAGCCATCTG -ACGGAATCCTTCTCAAGCGAGTTG -ACGGAATCCTTCTCAAGCAGACTG -ACGGAATCCTTCTCAAGCTCGGTA -ACGGAATCCTTCTCAAGCTGCCTA -ACGGAATCCTTCTCAAGCCCACTA -ACGGAATCCTTCTCAAGCGGAGTA -ACGGAATCCTTCTCAAGCTCGTCT -ACGGAATCCTTCTCAAGCTGCACT -ACGGAATCCTTCTCAAGCCTGACT -ACGGAATCCTTCTCAAGCCAACCT -ACGGAATCCTTCTCAAGCGCTACT -ACGGAATCCTTCTCAAGCGGATCT -ACGGAATCCTTCTCAAGCAAGGCT -ACGGAATCCTTCTCAAGCTCAACC -ACGGAATCCTTCTCAAGCTGTTCC -ACGGAATCCTTCTCAAGCATTCCC -ACGGAATCCTTCTCAAGCTTCTCG -ACGGAATCCTTCTCAAGCTAGACG -ACGGAATCCTTCTCAAGCGTAACG -ACGGAATCCTTCTCAAGCACTTCG -ACGGAATCCTTCTCAAGCTACGCA -ACGGAATCCTTCTCAAGCCTTGCA -ACGGAATCCTTCTCAAGCCGAACA -ACGGAATCCTTCTCAAGCCAGTCA -ACGGAATCCTTCTCAAGCGATCCA -ACGGAATCCTTCTCAAGCACGACA -ACGGAATCCTTCTCAAGCAGCTCA -ACGGAATCCTTCTCAAGCTCACGT -ACGGAATCCTTCTCAAGCCGTAGT -ACGGAATCCTTCTCAAGCGTCAGT -ACGGAATCCTTCTCAAGCGAAGGT -ACGGAATCCTTCTCAAGCAACCGT -ACGGAATCCTTCTCAAGCTTGTGC -ACGGAATCCTTCTCAAGCCTAAGC -ACGGAATCCTTCTCAAGCACTAGC -ACGGAATCCTTCTCAAGCAGATGC -ACGGAATCCTTCTCAAGCTGAAGG -ACGGAATCCTTCTCAAGCCAATGG -ACGGAATCCTTCTCAAGCATGAGG -ACGGAATCCTTCTCAAGCAATGGG -ACGGAATCCTTCTCAAGCTCCTGA -ACGGAATCCTTCTCAAGCTAGCGA -ACGGAATCCTTCTCAAGCCACAGA -ACGGAATCCTTCTCAAGCGCAAGA -ACGGAATCCTTCTCAAGCGGTTGA -ACGGAATCCTTCTCAAGCTCCGAT -ACGGAATCCTTCTCAAGCTGGCAT -ACGGAATCCTTCTCAAGCCGAGAT -ACGGAATCCTTCTCAAGCTACCAC -ACGGAATCCTTCTCAAGCCAGAAC -ACGGAATCCTTCTCAAGCGTCTAC -ACGGAATCCTTCTCAAGCACGTAC -ACGGAATCCTTCTCAAGCAGTGAC -ACGGAATCCTTCTCAAGCCTGTAG -ACGGAATCCTTCTCAAGCCCTAAG -ACGGAATCCTTCTCAAGCGTTCAG -ACGGAATCCTTCTCAAGCGCATAG -ACGGAATCCTTCTCAAGCGACAAG -ACGGAATCCTTCTCAAGCAAGCAG -ACGGAATCCTTCTCAAGCCGTCAA -ACGGAATCCTTCTCAAGCGCTGAA -ACGGAATCCTTCTCAAGCAGTACG -ACGGAATCCTTCTCAAGCATCCGA -ACGGAATCCTTCTCAAGCATGGGA -ACGGAATCCTTCTCAAGCGTGCAA -ACGGAATCCTTCTCAAGCGAGGAA -ACGGAATCCTTCTCAAGCCAGGTA -ACGGAATCCTTCTCAAGCGACTCT -ACGGAATCCTTCTCAAGCAGTCCT -ACGGAATCCTTCTCAAGCTAAGCC -ACGGAATCCTTCTCAAGCATAGCC -ACGGAATCCTTCTCAAGCTAACCG -ACGGAATCCTTCTCAAGCATGCCA -ACGGAATCCTTCCGTTCAGGAAAC -ACGGAATCCTTCCGTTCAAACACC -ACGGAATCCTTCCGTTCAATCGAG -ACGGAATCCTTCCGTTCACTCCTT -ACGGAATCCTTCCGTTCACCTGTT -ACGGAATCCTTCCGTTCACGGTTT -ACGGAATCCTTCCGTTCAGTGGTT -ACGGAATCCTTCCGTTCAGCCTTT -ACGGAATCCTTCCGTTCAGGTCTT -ACGGAATCCTTCCGTTCAACGCTT -ACGGAATCCTTCCGTTCAAGCGTT -ACGGAATCCTTCCGTTCATTCGTC -ACGGAATCCTTCCGTTCATCTCTC -ACGGAATCCTTCCGTTCATGGATC -ACGGAATCCTTCCGTTCACACTTC -ACGGAATCCTTCCGTTCAGTACTC -ACGGAATCCTTCCGTTCAGATGTC -ACGGAATCCTTCCGTTCAACAGTC -ACGGAATCCTTCCGTTCATTGCTG -ACGGAATCCTTCCGTTCATCCATG -ACGGAATCCTTCCGTTCATGTGTG -ACGGAATCCTTCCGTTCACTAGTG -ACGGAATCCTTCCGTTCACATCTG -ACGGAATCCTTCCGTTCAGAGTTG -ACGGAATCCTTCCGTTCAAGACTG -ACGGAATCCTTCCGTTCATCGGTA -ACGGAATCCTTCCGTTCATGCCTA -ACGGAATCCTTCCGTTCACCACTA -ACGGAATCCTTCCGTTCAGGAGTA -ACGGAATCCTTCCGTTCATCGTCT -ACGGAATCCTTCCGTTCATGCACT -ACGGAATCCTTCCGTTCACTGACT -ACGGAATCCTTCCGTTCACAACCT -ACGGAATCCTTCCGTTCAGCTACT -ACGGAATCCTTCCGTTCAGGATCT -ACGGAATCCTTCCGTTCAAAGGCT -ACGGAATCCTTCCGTTCATCAACC -ACGGAATCCTTCCGTTCATGTTCC -ACGGAATCCTTCCGTTCAATTCCC -ACGGAATCCTTCCGTTCATTCTCG -ACGGAATCCTTCCGTTCATAGACG -ACGGAATCCTTCCGTTCAGTAACG -ACGGAATCCTTCCGTTCAACTTCG -ACGGAATCCTTCCGTTCATACGCA -ACGGAATCCTTCCGTTCACTTGCA -ACGGAATCCTTCCGTTCACGAACA -ACGGAATCCTTCCGTTCACAGTCA -ACGGAATCCTTCCGTTCAGATCCA -ACGGAATCCTTCCGTTCAACGACA -ACGGAATCCTTCCGTTCAAGCTCA -ACGGAATCCTTCCGTTCATCACGT -ACGGAATCCTTCCGTTCACGTAGT -ACGGAATCCTTCCGTTCAGTCAGT -ACGGAATCCTTCCGTTCAGAAGGT -ACGGAATCCTTCCGTTCAAACCGT -ACGGAATCCTTCCGTTCATTGTGC -ACGGAATCCTTCCGTTCACTAAGC -ACGGAATCCTTCCGTTCAACTAGC -ACGGAATCCTTCCGTTCAAGATGC -ACGGAATCCTTCCGTTCATGAAGG -ACGGAATCCTTCCGTTCACAATGG -ACGGAATCCTTCCGTTCAATGAGG -ACGGAATCCTTCCGTTCAAATGGG -ACGGAATCCTTCCGTTCATCCTGA -ACGGAATCCTTCCGTTCATAGCGA -ACGGAATCCTTCCGTTCACACAGA -ACGGAATCCTTCCGTTCAGCAAGA -ACGGAATCCTTCCGTTCAGGTTGA -ACGGAATCCTTCCGTTCATCCGAT -ACGGAATCCTTCCGTTCATGGCAT -ACGGAATCCTTCCGTTCACGAGAT -ACGGAATCCTTCCGTTCATACCAC -ACGGAATCCTTCCGTTCACAGAAC -ACGGAATCCTTCCGTTCAGTCTAC -ACGGAATCCTTCCGTTCAACGTAC -ACGGAATCCTTCCGTTCAAGTGAC -ACGGAATCCTTCCGTTCACTGTAG -ACGGAATCCTTCCGTTCACCTAAG -ACGGAATCCTTCCGTTCAGTTCAG -ACGGAATCCTTCCGTTCAGCATAG -ACGGAATCCTTCCGTTCAGACAAG -ACGGAATCCTTCCGTTCAAAGCAG -ACGGAATCCTTCCGTTCACGTCAA -ACGGAATCCTTCCGTTCAGCTGAA -ACGGAATCCTTCCGTTCAAGTACG -ACGGAATCCTTCCGTTCAATCCGA -ACGGAATCCTTCCGTTCAATGGGA -ACGGAATCCTTCCGTTCAGTGCAA -ACGGAATCCTTCCGTTCAGAGGAA -ACGGAATCCTTCCGTTCACAGGTA -ACGGAATCCTTCCGTTCAGACTCT -ACGGAATCCTTCCGTTCAAGTCCT -ACGGAATCCTTCCGTTCATAAGCC -ACGGAATCCTTCCGTTCAATAGCC -ACGGAATCCTTCCGTTCATAACCG -ACGGAATCCTTCCGTTCAATGCCA -ACGGAATCCTTCAGTCGTGGAAAC -ACGGAATCCTTCAGTCGTAACACC -ACGGAATCCTTCAGTCGTATCGAG -ACGGAATCCTTCAGTCGTCTCCTT -ACGGAATCCTTCAGTCGTCCTGTT -ACGGAATCCTTCAGTCGTCGGTTT -ACGGAATCCTTCAGTCGTGTGGTT -ACGGAATCCTTCAGTCGTGCCTTT -ACGGAATCCTTCAGTCGTGGTCTT -ACGGAATCCTTCAGTCGTACGCTT -ACGGAATCCTTCAGTCGTAGCGTT -ACGGAATCCTTCAGTCGTTTCGTC -ACGGAATCCTTCAGTCGTTCTCTC -ACGGAATCCTTCAGTCGTTGGATC -ACGGAATCCTTCAGTCGTCACTTC -ACGGAATCCTTCAGTCGTGTACTC -ACGGAATCCTTCAGTCGTGATGTC -ACGGAATCCTTCAGTCGTACAGTC -ACGGAATCCTTCAGTCGTTTGCTG -ACGGAATCCTTCAGTCGTTCCATG -ACGGAATCCTTCAGTCGTTGTGTG -ACGGAATCCTTCAGTCGTCTAGTG -ACGGAATCCTTCAGTCGTCATCTG -ACGGAATCCTTCAGTCGTGAGTTG -ACGGAATCCTTCAGTCGTAGACTG -ACGGAATCCTTCAGTCGTTCGGTA -ACGGAATCCTTCAGTCGTTGCCTA -ACGGAATCCTTCAGTCGTCCACTA -ACGGAATCCTTCAGTCGTGGAGTA -ACGGAATCCTTCAGTCGTTCGTCT -ACGGAATCCTTCAGTCGTTGCACT -ACGGAATCCTTCAGTCGTCTGACT -ACGGAATCCTTCAGTCGTCAACCT -ACGGAATCCTTCAGTCGTGCTACT -ACGGAATCCTTCAGTCGTGGATCT -ACGGAATCCTTCAGTCGTAAGGCT -ACGGAATCCTTCAGTCGTTCAACC -ACGGAATCCTTCAGTCGTTGTTCC -ACGGAATCCTTCAGTCGTATTCCC -ACGGAATCCTTCAGTCGTTTCTCG -ACGGAATCCTTCAGTCGTTAGACG -ACGGAATCCTTCAGTCGTGTAACG -ACGGAATCCTTCAGTCGTACTTCG -ACGGAATCCTTCAGTCGTTACGCA -ACGGAATCCTTCAGTCGTCTTGCA -ACGGAATCCTTCAGTCGTCGAACA -ACGGAATCCTTCAGTCGTCAGTCA -ACGGAATCCTTCAGTCGTGATCCA -ACGGAATCCTTCAGTCGTACGACA -ACGGAATCCTTCAGTCGTAGCTCA -ACGGAATCCTTCAGTCGTTCACGT -ACGGAATCCTTCAGTCGTCGTAGT -ACGGAATCCTTCAGTCGTGTCAGT -ACGGAATCCTTCAGTCGTGAAGGT -ACGGAATCCTTCAGTCGTAACCGT -ACGGAATCCTTCAGTCGTTTGTGC -ACGGAATCCTTCAGTCGTCTAAGC -ACGGAATCCTTCAGTCGTACTAGC -ACGGAATCCTTCAGTCGTAGATGC -ACGGAATCCTTCAGTCGTTGAAGG -ACGGAATCCTTCAGTCGTCAATGG -ACGGAATCCTTCAGTCGTATGAGG -ACGGAATCCTTCAGTCGTAATGGG -ACGGAATCCTTCAGTCGTTCCTGA -ACGGAATCCTTCAGTCGTTAGCGA -ACGGAATCCTTCAGTCGTCACAGA -ACGGAATCCTTCAGTCGTGCAAGA -ACGGAATCCTTCAGTCGTGGTTGA -ACGGAATCCTTCAGTCGTTCCGAT -ACGGAATCCTTCAGTCGTTGGCAT -ACGGAATCCTTCAGTCGTCGAGAT -ACGGAATCCTTCAGTCGTTACCAC -ACGGAATCCTTCAGTCGTCAGAAC -ACGGAATCCTTCAGTCGTGTCTAC -ACGGAATCCTTCAGTCGTACGTAC -ACGGAATCCTTCAGTCGTAGTGAC -ACGGAATCCTTCAGTCGTCTGTAG -ACGGAATCCTTCAGTCGTCCTAAG -ACGGAATCCTTCAGTCGTGTTCAG -ACGGAATCCTTCAGTCGTGCATAG -ACGGAATCCTTCAGTCGTGACAAG -ACGGAATCCTTCAGTCGTAAGCAG -ACGGAATCCTTCAGTCGTCGTCAA -ACGGAATCCTTCAGTCGTGCTGAA -ACGGAATCCTTCAGTCGTAGTACG -ACGGAATCCTTCAGTCGTATCCGA -ACGGAATCCTTCAGTCGTATGGGA -ACGGAATCCTTCAGTCGTGTGCAA -ACGGAATCCTTCAGTCGTGAGGAA -ACGGAATCCTTCAGTCGTCAGGTA -ACGGAATCCTTCAGTCGTGACTCT -ACGGAATCCTTCAGTCGTAGTCCT -ACGGAATCCTTCAGTCGTTAAGCC -ACGGAATCCTTCAGTCGTATAGCC -ACGGAATCCTTCAGTCGTTAACCG -ACGGAATCCTTCAGTCGTATGCCA -ACGGAATCCTTCAGTGTCGGAAAC -ACGGAATCCTTCAGTGTCAACACC -ACGGAATCCTTCAGTGTCATCGAG -ACGGAATCCTTCAGTGTCCTCCTT -ACGGAATCCTTCAGTGTCCCTGTT -ACGGAATCCTTCAGTGTCCGGTTT -ACGGAATCCTTCAGTGTCGTGGTT -ACGGAATCCTTCAGTGTCGCCTTT -ACGGAATCCTTCAGTGTCGGTCTT -ACGGAATCCTTCAGTGTCACGCTT -ACGGAATCCTTCAGTGTCAGCGTT -ACGGAATCCTTCAGTGTCTTCGTC -ACGGAATCCTTCAGTGTCTCTCTC -ACGGAATCCTTCAGTGTCTGGATC -ACGGAATCCTTCAGTGTCCACTTC -ACGGAATCCTTCAGTGTCGTACTC -ACGGAATCCTTCAGTGTCGATGTC -ACGGAATCCTTCAGTGTCACAGTC -ACGGAATCCTTCAGTGTCTTGCTG -ACGGAATCCTTCAGTGTCTCCATG -ACGGAATCCTTCAGTGTCTGTGTG -ACGGAATCCTTCAGTGTCCTAGTG -ACGGAATCCTTCAGTGTCCATCTG -ACGGAATCCTTCAGTGTCGAGTTG -ACGGAATCCTTCAGTGTCAGACTG -ACGGAATCCTTCAGTGTCTCGGTA -ACGGAATCCTTCAGTGTCTGCCTA -ACGGAATCCTTCAGTGTCCCACTA -ACGGAATCCTTCAGTGTCGGAGTA -ACGGAATCCTTCAGTGTCTCGTCT -ACGGAATCCTTCAGTGTCTGCACT -ACGGAATCCTTCAGTGTCCTGACT -ACGGAATCCTTCAGTGTCCAACCT -ACGGAATCCTTCAGTGTCGCTACT -ACGGAATCCTTCAGTGTCGGATCT -ACGGAATCCTTCAGTGTCAAGGCT -ACGGAATCCTTCAGTGTCTCAACC -ACGGAATCCTTCAGTGTCTGTTCC -ACGGAATCCTTCAGTGTCATTCCC -ACGGAATCCTTCAGTGTCTTCTCG -ACGGAATCCTTCAGTGTCTAGACG -ACGGAATCCTTCAGTGTCGTAACG -ACGGAATCCTTCAGTGTCACTTCG -ACGGAATCCTTCAGTGTCTACGCA -ACGGAATCCTTCAGTGTCCTTGCA -ACGGAATCCTTCAGTGTCCGAACA -ACGGAATCCTTCAGTGTCCAGTCA -ACGGAATCCTTCAGTGTCGATCCA -ACGGAATCCTTCAGTGTCACGACA -ACGGAATCCTTCAGTGTCAGCTCA -ACGGAATCCTTCAGTGTCTCACGT -ACGGAATCCTTCAGTGTCCGTAGT -ACGGAATCCTTCAGTGTCGTCAGT -ACGGAATCCTTCAGTGTCGAAGGT -ACGGAATCCTTCAGTGTCAACCGT -ACGGAATCCTTCAGTGTCTTGTGC -ACGGAATCCTTCAGTGTCCTAAGC -ACGGAATCCTTCAGTGTCACTAGC -ACGGAATCCTTCAGTGTCAGATGC -ACGGAATCCTTCAGTGTCTGAAGG -ACGGAATCCTTCAGTGTCCAATGG -ACGGAATCCTTCAGTGTCATGAGG -ACGGAATCCTTCAGTGTCAATGGG -ACGGAATCCTTCAGTGTCTCCTGA -ACGGAATCCTTCAGTGTCTAGCGA -ACGGAATCCTTCAGTGTCCACAGA -ACGGAATCCTTCAGTGTCGCAAGA -ACGGAATCCTTCAGTGTCGGTTGA -ACGGAATCCTTCAGTGTCTCCGAT -ACGGAATCCTTCAGTGTCTGGCAT -ACGGAATCCTTCAGTGTCCGAGAT -ACGGAATCCTTCAGTGTCTACCAC -ACGGAATCCTTCAGTGTCCAGAAC -ACGGAATCCTTCAGTGTCGTCTAC -ACGGAATCCTTCAGTGTCACGTAC -ACGGAATCCTTCAGTGTCAGTGAC -ACGGAATCCTTCAGTGTCCTGTAG -ACGGAATCCTTCAGTGTCCCTAAG -ACGGAATCCTTCAGTGTCGTTCAG -ACGGAATCCTTCAGTGTCGCATAG -ACGGAATCCTTCAGTGTCGACAAG -ACGGAATCCTTCAGTGTCAAGCAG -ACGGAATCCTTCAGTGTCCGTCAA -ACGGAATCCTTCAGTGTCGCTGAA -ACGGAATCCTTCAGTGTCAGTACG -ACGGAATCCTTCAGTGTCATCCGA -ACGGAATCCTTCAGTGTCATGGGA -ACGGAATCCTTCAGTGTCGTGCAA -ACGGAATCCTTCAGTGTCGAGGAA -ACGGAATCCTTCAGTGTCCAGGTA -ACGGAATCCTTCAGTGTCGACTCT -ACGGAATCCTTCAGTGTCAGTCCT -ACGGAATCCTTCAGTGTCTAAGCC -ACGGAATCCTTCAGTGTCATAGCC -ACGGAATCCTTCAGTGTCTAACCG -ACGGAATCCTTCAGTGTCATGCCA -ACGGAATCCTTCGGTGAAGGAAAC -ACGGAATCCTTCGGTGAAAACACC -ACGGAATCCTTCGGTGAAATCGAG -ACGGAATCCTTCGGTGAACTCCTT -ACGGAATCCTTCGGTGAACCTGTT -ACGGAATCCTTCGGTGAACGGTTT -ACGGAATCCTTCGGTGAAGTGGTT -ACGGAATCCTTCGGTGAAGCCTTT -ACGGAATCCTTCGGTGAAGGTCTT -ACGGAATCCTTCGGTGAAACGCTT -ACGGAATCCTTCGGTGAAAGCGTT -ACGGAATCCTTCGGTGAATTCGTC -ACGGAATCCTTCGGTGAATCTCTC -ACGGAATCCTTCGGTGAATGGATC -ACGGAATCCTTCGGTGAACACTTC -ACGGAATCCTTCGGTGAAGTACTC -ACGGAATCCTTCGGTGAAGATGTC -ACGGAATCCTTCGGTGAAACAGTC -ACGGAATCCTTCGGTGAATTGCTG -ACGGAATCCTTCGGTGAATCCATG -ACGGAATCCTTCGGTGAATGTGTG -ACGGAATCCTTCGGTGAACTAGTG -ACGGAATCCTTCGGTGAACATCTG -ACGGAATCCTTCGGTGAAGAGTTG -ACGGAATCCTTCGGTGAAAGACTG -ACGGAATCCTTCGGTGAATCGGTA -ACGGAATCCTTCGGTGAATGCCTA -ACGGAATCCTTCGGTGAACCACTA -ACGGAATCCTTCGGTGAAGGAGTA -ACGGAATCCTTCGGTGAATCGTCT -ACGGAATCCTTCGGTGAATGCACT -ACGGAATCCTTCGGTGAACTGACT -ACGGAATCCTTCGGTGAACAACCT -ACGGAATCCTTCGGTGAAGCTACT -ACGGAATCCTTCGGTGAAGGATCT -ACGGAATCCTTCGGTGAAAAGGCT -ACGGAATCCTTCGGTGAATCAACC -ACGGAATCCTTCGGTGAATGTTCC -ACGGAATCCTTCGGTGAAATTCCC -ACGGAATCCTTCGGTGAATTCTCG -ACGGAATCCTTCGGTGAATAGACG -ACGGAATCCTTCGGTGAAGTAACG -ACGGAATCCTTCGGTGAAACTTCG -ACGGAATCCTTCGGTGAATACGCA -ACGGAATCCTTCGGTGAACTTGCA -ACGGAATCCTTCGGTGAACGAACA -ACGGAATCCTTCGGTGAACAGTCA -ACGGAATCCTTCGGTGAAGATCCA -ACGGAATCCTTCGGTGAAACGACA -ACGGAATCCTTCGGTGAAAGCTCA -ACGGAATCCTTCGGTGAATCACGT -ACGGAATCCTTCGGTGAACGTAGT -ACGGAATCCTTCGGTGAAGTCAGT -ACGGAATCCTTCGGTGAAGAAGGT -ACGGAATCCTTCGGTGAAAACCGT -ACGGAATCCTTCGGTGAATTGTGC -ACGGAATCCTTCGGTGAACTAAGC -ACGGAATCCTTCGGTGAAACTAGC -ACGGAATCCTTCGGTGAAAGATGC -ACGGAATCCTTCGGTGAATGAAGG -ACGGAATCCTTCGGTGAACAATGG -ACGGAATCCTTCGGTGAAATGAGG -ACGGAATCCTTCGGTGAAAATGGG -ACGGAATCCTTCGGTGAATCCTGA -ACGGAATCCTTCGGTGAATAGCGA -ACGGAATCCTTCGGTGAACACAGA -ACGGAATCCTTCGGTGAAGCAAGA -ACGGAATCCTTCGGTGAAGGTTGA -ACGGAATCCTTCGGTGAATCCGAT -ACGGAATCCTTCGGTGAATGGCAT -ACGGAATCCTTCGGTGAACGAGAT -ACGGAATCCTTCGGTGAATACCAC -ACGGAATCCTTCGGTGAACAGAAC -ACGGAATCCTTCGGTGAAGTCTAC -ACGGAATCCTTCGGTGAAACGTAC -ACGGAATCCTTCGGTGAAAGTGAC -ACGGAATCCTTCGGTGAACTGTAG -ACGGAATCCTTCGGTGAACCTAAG -ACGGAATCCTTCGGTGAAGTTCAG -ACGGAATCCTTCGGTGAAGCATAG -ACGGAATCCTTCGGTGAAGACAAG -ACGGAATCCTTCGGTGAAAAGCAG -ACGGAATCCTTCGGTGAACGTCAA -ACGGAATCCTTCGGTGAAGCTGAA -ACGGAATCCTTCGGTGAAAGTACG -ACGGAATCCTTCGGTGAAATCCGA -ACGGAATCCTTCGGTGAAATGGGA -ACGGAATCCTTCGGTGAAGTGCAA -ACGGAATCCTTCGGTGAAGAGGAA -ACGGAATCCTTCGGTGAACAGGTA -ACGGAATCCTTCGGTGAAGACTCT -ACGGAATCCTTCGGTGAAAGTCCT -ACGGAATCCTTCGGTGAATAAGCC -ACGGAATCCTTCGGTGAAATAGCC -ACGGAATCCTTCGGTGAATAACCG -ACGGAATCCTTCGGTGAAATGCCA -ACGGAATCCTTCCGTAACGGAAAC -ACGGAATCCTTCCGTAACAACACC -ACGGAATCCTTCCGTAACATCGAG -ACGGAATCCTTCCGTAACCTCCTT -ACGGAATCCTTCCGTAACCCTGTT -ACGGAATCCTTCCGTAACCGGTTT -ACGGAATCCTTCCGTAACGTGGTT -ACGGAATCCTTCCGTAACGCCTTT -ACGGAATCCTTCCGTAACGGTCTT -ACGGAATCCTTCCGTAACACGCTT -ACGGAATCCTTCCGTAACAGCGTT -ACGGAATCCTTCCGTAACTTCGTC -ACGGAATCCTTCCGTAACTCTCTC -ACGGAATCCTTCCGTAACTGGATC -ACGGAATCCTTCCGTAACCACTTC -ACGGAATCCTTCCGTAACGTACTC -ACGGAATCCTTCCGTAACGATGTC -ACGGAATCCTTCCGTAACACAGTC -ACGGAATCCTTCCGTAACTTGCTG -ACGGAATCCTTCCGTAACTCCATG -ACGGAATCCTTCCGTAACTGTGTG -ACGGAATCCTTCCGTAACCTAGTG -ACGGAATCCTTCCGTAACCATCTG -ACGGAATCCTTCCGTAACGAGTTG -ACGGAATCCTTCCGTAACAGACTG -ACGGAATCCTTCCGTAACTCGGTA -ACGGAATCCTTCCGTAACTGCCTA -ACGGAATCCTTCCGTAACCCACTA -ACGGAATCCTTCCGTAACGGAGTA -ACGGAATCCTTCCGTAACTCGTCT -ACGGAATCCTTCCGTAACTGCACT -ACGGAATCCTTCCGTAACCTGACT -ACGGAATCCTTCCGTAACCAACCT -ACGGAATCCTTCCGTAACGCTACT -ACGGAATCCTTCCGTAACGGATCT -ACGGAATCCTTCCGTAACAAGGCT -ACGGAATCCTTCCGTAACTCAACC -ACGGAATCCTTCCGTAACTGTTCC -ACGGAATCCTTCCGTAACATTCCC -ACGGAATCCTTCCGTAACTTCTCG -ACGGAATCCTTCCGTAACTAGACG -ACGGAATCCTTCCGTAACGTAACG -ACGGAATCCTTCCGTAACACTTCG -ACGGAATCCTTCCGTAACTACGCA -ACGGAATCCTTCCGTAACCTTGCA -ACGGAATCCTTCCGTAACCGAACA -ACGGAATCCTTCCGTAACCAGTCA -ACGGAATCCTTCCGTAACGATCCA -ACGGAATCCTTCCGTAACACGACA -ACGGAATCCTTCCGTAACAGCTCA -ACGGAATCCTTCCGTAACTCACGT -ACGGAATCCTTCCGTAACCGTAGT -ACGGAATCCTTCCGTAACGTCAGT -ACGGAATCCTTCCGTAACGAAGGT -ACGGAATCCTTCCGTAACAACCGT -ACGGAATCCTTCCGTAACTTGTGC -ACGGAATCCTTCCGTAACCTAAGC -ACGGAATCCTTCCGTAACACTAGC -ACGGAATCCTTCCGTAACAGATGC -ACGGAATCCTTCCGTAACTGAAGG -ACGGAATCCTTCCGTAACCAATGG -ACGGAATCCTTCCGTAACATGAGG -ACGGAATCCTTCCGTAACAATGGG -ACGGAATCCTTCCGTAACTCCTGA -ACGGAATCCTTCCGTAACTAGCGA -ACGGAATCCTTCCGTAACCACAGA -ACGGAATCCTTCCGTAACGCAAGA -ACGGAATCCTTCCGTAACGGTTGA -ACGGAATCCTTCCGTAACTCCGAT -ACGGAATCCTTCCGTAACTGGCAT -ACGGAATCCTTCCGTAACCGAGAT -ACGGAATCCTTCCGTAACTACCAC -ACGGAATCCTTCCGTAACCAGAAC -ACGGAATCCTTCCGTAACGTCTAC -ACGGAATCCTTCCGTAACACGTAC -ACGGAATCCTTCCGTAACAGTGAC -ACGGAATCCTTCCGTAACCTGTAG -ACGGAATCCTTCCGTAACCCTAAG -ACGGAATCCTTCCGTAACGTTCAG -ACGGAATCCTTCCGTAACGCATAG -ACGGAATCCTTCCGTAACGACAAG -ACGGAATCCTTCCGTAACAAGCAG -ACGGAATCCTTCCGTAACCGTCAA -ACGGAATCCTTCCGTAACGCTGAA -ACGGAATCCTTCCGTAACAGTACG -ACGGAATCCTTCCGTAACATCCGA -ACGGAATCCTTCCGTAACATGGGA -ACGGAATCCTTCCGTAACGTGCAA -ACGGAATCCTTCCGTAACGAGGAA -ACGGAATCCTTCCGTAACCAGGTA -ACGGAATCCTTCCGTAACGACTCT -ACGGAATCCTTCCGTAACAGTCCT -ACGGAATCCTTCCGTAACTAAGCC -ACGGAATCCTTCCGTAACATAGCC -ACGGAATCCTTCCGTAACTAACCG -ACGGAATCCTTCCGTAACATGCCA -ACGGAATCCTTCTGCTTGGGAAAC -ACGGAATCCTTCTGCTTGAACACC -ACGGAATCCTTCTGCTTGATCGAG -ACGGAATCCTTCTGCTTGCTCCTT -ACGGAATCCTTCTGCTTGCCTGTT -ACGGAATCCTTCTGCTTGCGGTTT -ACGGAATCCTTCTGCTTGGTGGTT -ACGGAATCCTTCTGCTTGGCCTTT -ACGGAATCCTTCTGCTTGGGTCTT -ACGGAATCCTTCTGCTTGACGCTT -ACGGAATCCTTCTGCTTGAGCGTT -ACGGAATCCTTCTGCTTGTTCGTC -ACGGAATCCTTCTGCTTGTCTCTC -ACGGAATCCTTCTGCTTGTGGATC -ACGGAATCCTTCTGCTTGCACTTC -ACGGAATCCTTCTGCTTGGTACTC -ACGGAATCCTTCTGCTTGGATGTC -ACGGAATCCTTCTGCTTGACAGTC -ACGGAATCCTTCTGCTTGTTGCTG -ACGGAATCCTTCTGCTTGTCCATG -ACGGAATCCTTCTGCTTGTGTGTG -ACGGAATCCTTCTGCTTGCTAGTG -ACGGAATCCTTCTGCTTGCATCTG -ACGGAATCCTTCTGCTTGGAGTTG -ACGGAATCCTTCTGCTTGAGACTG -ACGGAATCCTTCTGCTTGTCGGTA -ACGGAATCCTTCTGCTTGTGCCTA -ACGGAATCCTTCTGCTTGCCACTA -ACGGAATCCTTCTGCTTGGGAGTA -ACGGAATCCTTCTGCTTGTCGTCT -ACGGAATCCTTCTGCTTGTGCACT -ACGGAATCCTTCTGCTTGCTGACT -ACGGAATCCTTCTGCTTGCAACCT -ACGGAATCCTTCTGCTTGGCTACT -ACGGAATCCTTCTGCTTGGGATCT -ACGGAATCCTTCTGCTTGAAGGCT -ACGGAATCCTTCTGCTTGTCAACC -ACGGAATCCTTCTGCTTGTGTTCC -ACGGAATCCTTCTGCTTGATTCCC -ACGGAATCCTTCTGCTTGTTCTCG -ACGGAATCCTTCTGCTTGTAGACG -ACGGAATCCTTCTGCTTGGTAACG -ACGGAATCCTTCTGCTTGACTTCG -ACGGAATCCTTCTGCTTGTACGCA -ACGGAATCCTTCTGCTTGCTTGCA -ACGGAATCCTTCTGCTTGCGAACA -ACGGAATCCTTCTGCTTGCAGTCA -ACGGAATCCTTCTGCTTGGATCCA -ACGGAATCCTTCTGCTTGACGACA -ACGGAATCCTTCTGCTTGAGCTCA -ACGGAATCCTTCTGCTTGTCACGT -ACGGAATCCTTCTGCTTGCGTAGT -ACGGAATCCTTCTGCTTGGTCAGT -ACGGAATCCTTCTGCTTGGAAGGT -ACGGAATCCTTCTGCTTGAACCGT -ACGGAATCCTTCTGCTTGTTGTGC -ACGGAATCCTTCTGCTTGCTAAGC -ACGGAATCCTTCTGCTTGACTAGC -ACGGAATCCTTCTGCTTGAGATGC -ACGGAATCCTTCTGCTTGTGAAGG -ACGGAATCCTTCTGCTTGCAATGG -ACGGAATCCTTCTGCTTGATGAGG -ACGGAATCCTTCTGCTTGAATGGG -ACGGAATCCTTCTGCTTGTCCTGA -ACGGAATCCTTCTGCTTGTAGCGA -ACGGAATCCTTCTGCTTGCACAGA -ACGGAATCCTTCTGCTTGGCAAGA -ACGGAATCCTTCTGCTTGGGTTGA -ACGGAATCCTTCTGCTTGTCCGAT -ACGGAATCCTTCTGCTTGTGGCAT -ACGGAATCCTTCTGCTTGCGAGAT -ACGGAATCCTTCTGCTTGTACCAC -ACGGAATCCTTCTGCTTGCAGAAC -ACGGAATCCTTCTGCTTGGTCTAC -ACGGAATCCTTCTGCTTGACGTAC -ACGGAATCCTTCTGCTTGAGTGAC -ACGGAATCCTTCTGCTTGCTGTAG -ACGGAATCCTTCTGCTTGCCTAAG -ACGGAATCCTTCTGCTTGGTTCAG -ACGGAATCCTTCTGCTTGGCATAG -ACGGAATCCTTCTGCTTGGACAAG -ACGGAATCCTTCTGCTTGAAGCAG -ACGGAATCCTTCTGCTTGCGTCAA -ACGGAATCCTTCTGCTTGGCTGAA -ACGGAATCCTTCTGCTTGAGTACG -ACGGAATCCTTCTGCTTGATCCGA -ACGGAATCCTTCTGCTTGATGGGA -ACGGAATCCTTCTGCTTGGTGCAA -ACGGAATCCTTCTGCTTGGAGGAA -ACGGAATCCTTCTGCTTGCAGGTA -ACGGAATCCTTCTGCTTGGACTCT -ACGGAATCCTTCTGCTTGAGTCCT -ACGGAATCCTTCTGCTTGTAAGCC -ACGGAATCCTTCTGCTTGATAGCC -ACGGAATCCTTCTGCTTGTAACCG -ACGGAATCCTTCTGCTTGATGCCA -ACGGAATCCTTCAGCCTAGGAAAC -ACGGAATCCTTCAGCCTAAACACC -ACGGAATCCTTCAGCCTAATCGAG -ACGGAATCCTTCAGCCTACTCCTT -ACGGAATCCTTCAGCCTACCTGTT -ACGGAATCCTTCAGCCTACGGTTT -ACGGAATCCTTCAGCCTAGTGGTT -ACGGAATCCTTCAGCCTAGCCTTT -ACGGAATCCTTCAGCCTAGGTCTT -ACGGAATCCTTCAGCCTAACGCTT -ACGGAATCCTTCAGCCTAAGCGTT -ACGGAATCCTTCAGCCTATTCGTC -ACGGAATCCTTCAGCCTATCTCTC -ACGGAATCCTTCAGCCTATGGATC -ACGGAATCCTTCAGCCTACACTTC -ACGGAATCCTTCAGCCTAGTACTC -ACGGAATCCTTCAGCCTAGATGTC -ACGGAATCCTTCAGCCTAACAGTC -ACGGAATCCTTCAGCCTATTGCTG -ACGGAATCCTTCAGCCTATCCATG -ACGGAATCCTTCAGCCTATGTGTG -ACGGAATCCTTCAGCCTACTAGTG -ACGGAATCCTTCAGCCTACATCTG -ACGGAATCCTTCAGCCTAGAGTTG -ACGGAATCCTTCAGCCTAAGACTG -ACGGAATCCTTCAGCCTATCGGTA -ACGGAATCCTTCAGCCTATGCCTA -ACGGAATCCTTCAGCCTACCACTA -ACGGAATCCTTCAGCCTAGGAGTA -ACGGAATCCTTCAGCCTATCGTCT -ACGGAATCCTTCAGCCTATGCACT -ACGGAATCCTTCAGCCTACTGACT -ACGGAATCCTTCAGCCTACAACCT -ACGGAATCCTTCAGCCTAGCTACT -ACGGAATCCTTCAGCCTAGGATCT -ACGGAATCCTTCAGCCTAAAGGCT -ACGGAATCCTTCAGCCTATCAACC -ACGGAATCCTTCAGCCTATGTTCC -ACGGAATCCTTCAGCCTAATTCCC -ACGGAATCCTTCAGCCTATTCTCG -ACGGAATCCTTCAGCCTATAGACG -ACGGAATCCTTCAGCCTAGTAACG -ACGGAATCCTTCAGCCTAACTTCG -ACGGAATCCTTCAGCCTATACGCA -ACGGAATCCTTCAGCCTACTTGCA -ACGGAATCCTTCAGCCTACGAACA -ACGGAATCCTTCAGCCTACAGTCA -ACGGAATCCTTCAGCCTAGATCCA -ACGGAATCCTTCAGCCTAACGACA -ACGGAATCCTTCAGCCTAAGCTCA -ACGGAATCCTTCAGCCTATCACGT -ACGGAATCCTTCAGCCTACGTAGT -ACGGAATCCTTCAGCCTAGTCAGT -ACGGAATCCTTCAGCCTAGAAGGT -ACGGAATCCTTCAGCCTAAACCGT -ACGGAATCCTTCAGCCTATTGTGC -ACGGAATCCTTCAGCCTACTAAGC -ACGGAATCCTTCAGCCTAACTAGC -ACGGAATCCTTCAGCCTAAGATGC -ACGGAATCCTTCAGCCTATGAAGG -ACGGAATCCTTCAGCCTACAATGG -ACGGAATCCTTCAGCCTAATGAGG -ACGGAATCCTTCAGCCTAAATGGG -ACGGAATCCTTCAGCCTATCCTGA -ACGGAATCCTTCAGCCTATAGCGA -ACGGAATCCTTCAGCCTACACAGA -ACGGAATCCTTCAGCCTAGCAAGA -ACGGAATCCTTCAGCCTAGGTTGA -ACGGAATCCTTCAGCCTATCCGAT -ACGGAATCCTTCAGCCTATGGCAT -ACGGAATCCTTCAGCCTACGAGAT -ACGGAATCCTTCAGCCTATACCAC -ACGGAATCCTTCAGCCTACAGAAC -ACGGAATCCTTCAGCCTAGTCTAC -ACGGAATCCTTCAGCCTAACGTAC -ACGGAATCCTTCAGCCTAAGTGAC -ACGGAATCCTTCAGCCTACTGTAG -ACGGAATCCTTCAGCCTACCTAAG -ACGGAATCCTTCAGCCTAGTTCAG -ACGGAATCCTTCAGCCTAGCATAG -ACGGAATCCTTCAGCCTAGACAAG -ACGGAATCCTTCAGCCTAAAGCAG -ACGGAATCCTTCAGCCTACGTCAA -ACGGAATCCTTCAGCCTAGCTGAA -ACGGAATCCTTCAGCCTAAGTACG -ACGGAATCCTTCAGCCTAATCCGA -ACGGAATCCTTCAGCCTAATGGGA -ACGGAATCCTTCAGCCTAGTGCAA -ACGGAATCCTTCAGCCTAGAGGAA -ACGGAATCCTTCAGCCTACAGGTA -ACGGAATCCTTCAGCCTAGACTCT -ACGGAATCCTTCAGCCTAAGTCCT -ACGGAATCCTTCAGCCTATAAGCC -ACGGAATCCTTCAGCCTAATAGCC -ACGGAATCCTTCAGCCTATAACCG -ACGGAATCCTTCAGCCTAATGCCA -ACGGAATCCTTCAGCACTGGAAAC -ACGGAATCCTTCAGCACTAACACC -ACGGAATCCTTCAGCACTATCGAG -ACGGAATCCTTCAGCACTCTCCTT -ACGGAATCCTTCAGCACTCCTGTT -ACGGAATCCTTCAGCACTCGGTTT -ACGGAATCCTTCAGCACTGTGGTT -ACGGAATCCTTCAGCACTGCCTTT -ACGGAATCCTTCAGCACTGGTCTT -ACGGAATCCTTCAGCACTACGCTT -ACGGAATCCTTCAGCACTAGCGTT -ACGGAATCCTTCAGCACTTTCGTC -ACGGAATCCTTCAGCACTTCTCTC -ACGGAATCCTTCAGCACTTGGATC -ACGGAATCCTTCAGCACTCACTTC -ACGGAATCCTTCAGCACTGTACTC -ACGGAATCCTTCAGCACTGATGTC -ACGGAATCCTTCAGCACTACAGTC -ACGGAATCCTTCAGCACTTTGCTG -ACGGAATCCTTCAGCACTTCCATG -ACGGAATCCTTCAGCACTTGTGTG -ACGGAATCCTTCAGCACTCTAGTG -ACGGAATCCTTCAGCACTCATCTG -ACGGAATCCTTCAGCACTGAGTTG -ACGGAATCCTTCAGCACTAGACTG -ACGGAATCCTTCAGCACTTCGGTA -ACGGAATCCTTCAGCACTTGCCTA -ACGGAATCCTTCAGCACTCCACTA -ACGGAATCCTTCAGCACTGGAGTA -ACGGAATCCTTCAGCACTTCGTCT -ACGGAATCCTTCAGCACTTGCACT -ACGGAATCCTTCAGCACTCTGACT -ACGGAATCCTTCAGCACTCAACCT -ACGGAATCCTTCAGCACTGCTACT -ACGGAATCCTTCAGCACTGGATCT -ACGGAATCCTTCAGCACTAAGGCT -ACGGAATCCTTCAGCACTTCAACC -ACGGAATCCTTCAGCACTTGTTCC -ACGGAATCCTTCAGCACTATTCCC -ACGGAATCCTTCAGCACTTTCTCG -ACGGAATCCTTCAGCACTTAGACG -ACGGAATCCTTCAGCACTGTAACG -ACGGAATCCTTCAGCACTACTTCG -ACGGAATCCTTCAGCACTTACGCA -ACGGAATCCTTCAGCACTCTTGCA -ACGGAATCCTTCAGCACTCGAACA -ACGGAATCCTTCAGCACTCAGTCA -ACGGAATCCTTCAGCACTGATCCA -ACGGAATCCTTCAGCACTACGACA -ACGGAATCCTTCAGCACTAGCTCA -ACGGAATCCTTCAGCACTTCACGT -ACGGAATCCTTCAGCACTCGTAGT -ACGGAATCCTTCAGCACTGTCAGT -ACGGAATCCTTCAGCACTGAAGGT -ACGGAATCCTTCAGCACTAACCGT -ACGGAATCCTTCAGCACTTTGTGC -ACGGAATCCTTCAGCACTCTAAGC -ACGGAATCCTTCAGCACTACTAGC -ACGGAATCCTTCAGCACTAGATGC -ACGGAATCCTTCAGCACTTGAAGG -ACGGAATCCTTCAGCACTCAATGG -ACGGAATCCTTCAGCACTATGAGG -ACGGAATCCTTCAGCACTAATGGG -ACGGAATCCTTCAGCACTTCCTGA -ACGGAATCCTTCAGCACTTAGCGA -ACGGAATCCTTCAGCACTCACAGA -ACGGAATCCTTCAGCACTGCAAGA -ACGGAATCCTTCAGCACTGGTTGA -ACGGAATCCTTCAGCACTTCCGAT -ACGGAATCCTTCAGCACTTGGCAT -ACGGAATCCTTCAGCACTCGAGAT -ACGGAATCCTTCAGCACTTACCAC -ACGGAATCCTTCAGCACTCAGAAC -ACGGAATCCTTCAGCACTGTCTAC -ACGGAATCCTTCAGCACTACGTAC -ACGGAATCCTTCAGCACTAGTGAC -ACGGAATCCTTCAGCACTCTGTAG -ACGGAATCCTTCAGCACTCCTAAG -ACGGAATCCTTCAGCACTGTTCAG -ACGGAATCCTTCAGCACTGCATAG -ACGGAATCCTTCAGCACTGACAAG -ACGGAATCCTTCAGCACTAAGCAG -ACGGAATCCTTCAGCACTCGTCAA -ACGGAATCCTTCAGCACTGCTGAA -ACGGAATCCTTCAGCACTAGTACG -ACGGAATCCTTCAGCACTATCCGA -ACGGAATCCTTCAGCACTATGGGA -ACGGAATCCTTCAGCACTGTGCAA -ACGGAATCCTTCAGCACTGAGGAA -ACGGAATCCTTCAGCACTCAGGTA -ACGGAATCCTTCAGCACTGACTCT -ACGGAATCCTTCAGCACTAGTCCT -ACGGAATCCTTCAGCACTTAAGCC -ACGGAATCCTTCAGCACTATAGCC -ACGGAATCCTTCAGCACTTAACCG -ACGGAATCCTTCAGCACTATGCCA -ACGGAATCCTTCTGCAGAGGAAAC -ACGGAATCCTTCTGCAGAAACACC -ACGGAATCCTTCTGCAGAATCGAG -ACGGAATCCTTCTGCAGACTCCTT -ACGGAATCCTTCTGCAGACCTGTT -ACGGAATCCTTCTGCAGACGGTTT -ACGGAATCCTTCTGCAGAGTGGTT -ACGGAATCCTTCTGCAGAGCCTTT -ACGGAATCCTTCTGCAGAGGTCTT -ACGGAATCCTTCTGCAGAACGCTT -ACGGAATCCTTCTGCAGAAGCGTT -ACGGAATCCTTCTGCAGATTCGTC -ACGGAATCCTTCTGCAGATCTCTC -ACGGAATCCTTCTGCAGATGGATC -ACGGAATCCTTCTGCAGACACTTC -ACGGAATCCTTCTGCAGAGTACTC -ACGGAATCCTTCTGCAGAGATGTC -ACGGAATCCTTCTGCAGAACAGTC -ACGGAATCCTTCTGCAGATTGCTG -ACGGAATCCTTCTGCAGATCCATG -ACGGAATCCTTCTGCAGATGTGTG -ACGGAATCCTTCTGCAGACTAGTG -ACGGAATCCTTCTGCAGACATCTG -ACGGAATCCTTCTGCAGAGAGTTG -ACGGAATCCTTCTGCAGAAGACTG -ACGGAATCCTTCTGCAGATCGGTA -ACGGAATCCTTCTGCAGATGCCTA -ACGGAATCCTTCTGCAGACCACTA -ACGGAATCCTTCTGCAGAGGAGTA -ACGGAATCCTTCTGCAGATCGTCT -ACGGAATCCTTCTGCAGATGCACT -ACGGAATCCTTCTGCAGACTGACT -ACGGAATCCTTCTGCAGACAACCT -ACGGAATCCTTCTGCAGAGCTACT -ACGGAATCCTTCTGCAGAGGATCT -ACGGAATCCTTCTGCAGAAAGGCT -ACGGAATCCTTCTGCAGATCAACC -ACGGAATCCTTCTGCAGATGTTCC -ACGGAATCCTTCTGCAGAATTCCC -ACGGAATCCTTCTGCAGATTCTCG -ACGGAATCCTTCTGCAGATAGACG -ACGGAATCCTTCTGCAGAGTAACG -ACGGAATCCTTCTGCAGAACTTCG -ACGGAATCCTTCTGCAGATACGCA -ACGGAATCCTTCTGCAGACTTGCA -ACGGAATCCTTCTGCAGACGAACA -ACGGAATCCTTCTGCAGACAGTCA -ACGGAATCCTTCTGCAGAGATCCA -ACGGAATCCTTCTGCAGAACGACA -ACGGAATCCTTCTGCAGAAGCTCA -ACGGAATCCTTCTGCAGATCACGT -ACGGAATCCTTCTGCAGACGTAGT -ACGGAATCCTTCTGCAGAGTCAGT -ACGGAATCCTTCTGCAGAGAAGGT -ACGGAATCCTTCTGCAGAAACCGT -ACGGAATCCTTCTGCAGATTGTGC -ACGGAATCCTTCTGCAGACTAAGC -ACGGAATCCTTCTGCAGAACTAGC -ACGGAATCCTTCTGCAGAAGATGC -ACGGAATCCTTCTGCAGATGAAGG -ACGGAATCCTTCTGCAGACAATGG -ACGGAATCCTTCTGCAGAATGAGG -ACGGAATCCTTCTGCAGAAATGGG -ACGGAATCCTTCTGCAGATCCTGA -ACGGAATCCTTCTGCAGATAGCGA -ACGGAATCCTTCTGCAGACACAGA -ACGGAATCCTTCTGCAGAGCAAGA -ACGGAATCCTTCTGCAGAGGTTGA -ACGGAATCCTTCTGCAGATCCGAT -ACGGAATCCTTCTGCAGATGGCAT -ACGGAATCCTTCTGCAGACGAGAT -ACGGAATCCTTCTGCAGATACCAC -ACGGAATCCTTCTGCAGACAGAAC -ACGGAATCCTTCTGCAGAGTCTAC -ACGGAATCCTTCTGCAGAACGTAC -ACGGAATCCTTCTGCAGAAGTGAC -ACGGAATCCTTCTGCAGACTGTAG -ACGGAATCCTTCTGCAGACCTAAG -ACGGAATCCTTCTGCAGAGTTCAG -ACGGAATCCTTCTGCAGAGCATAG -ACGGAATCCTTCTGCAGAGACAAG -ACGGAATCCTTCTGCAGAAAGCAG -ACGGAATCCTTCTGCAGACGTCAA -ACGGAATCCTTCTGCAGAGCTGAA -ACGGAATCCTTCTGCAGAAGTACG -ACGGAATCCTTCTGCAGAATCCGA -ACGGAATCCTTCTGCAGAATGGGA -ACGGAATCCTTCTGCAGAGTGCAA -ACGGAATCCTTCTGCAGAGAGGAA -ACGGAATCCTTCTGCAGACAGGTA -ACGGAATCCTTCTGCAGAGACTCT -ACGGAATCCTTCTGCAGAAGTCCT -ACGGAATCCTTCTGCAGATAAGCC -ACGGAATCCTTCTGCAGAATAGCC -ACGGAATCCTTCTGCAGATAACCG -ACGGAATCCTTCTGCAGAATGCCA -ACGGAATCCTTCAGGTGAGGAAAC -ACGGAATCCTTCAGGTGAAACACC -ACGGAATCCTTCAGGTGAATCGAG -ACGGAATCCTTCAGGTGACTCCTT -ACGGAATCCTTCAGGTGACCTGTT -ACGGAATCCTTCAGGTGACGGTTT -ACGGAATCCTTCAGGTGAGTGGTT -ACGGAATCCTTCAGGTGAGCCTTT -ACGGAATCCTTCAGGTGAGGTCTT -ACGGAATCCTTCAGGTGAACGCTT -ACGGAATCCTTCAGGTGAAGCGTT -ACGGAATCCTTCAGGTGATTCGTC -ACGGAATCCTTCAGGTGATCTCTC -ACGGAATCCTTCAGGTGATGGATC -ACGGAATCCTTCAGGTGACACTTC -ACGGAATCCTTCAGGTGAGTACTC -ACGGAATCCTTCAGGTGAGATGTC -ACGGAATCCTTCAGGTGAACAGTC -ACGGAATCCTTCAGGTGATTGCTG -ACGGAATCCTTCAGGTGATCCATG -ACGGAATCCTTCAGGTGATGTGTG -ACGGAATCCTTCAGGTGACTAGTG -ACGGAATCCTTCAGGTGACATCTG -ACGGAATCCTTCAGGTGAGAGTTG -ACGGAATCCTTCAGGTGAAGACTG -ACGGAATCCTTCAGGTGATCGGTA -ACGGAATCCTTCAGGTGATGCCTA -ACGGAATCCTTCAGGTGACCACTA -ACGGAATCCTTCAGGTGAGGAGTA -ACGGAATCCTTCAGGTGATCGTCT -ACGGAATCCTTCAGGTGATGCACT -ACGGAATCCTTCAGGTGACTGACT -ACGGAATCCTTCAGGTGACAACCT -ACGGAATCCTTCAGGTGAGCTACT -ACGGAATCCTTCAGGTGAGGATCT -ACGGAATCCTTCAGGTGAAAGGCT -ACGGAATCCTTCAGGTGATCAACC -ACGGAATCCTTCAGGTGATGTTCC -ACGGAATCCTTCAGGTGAATTCCC -ACGGAATCCTTCAGGTGATTCTCG -ACGGAATCCTTCAGGTGATAGACG -ACGGAATCCTTCAGGTGAGTAACG -ACGGAATCCTTCAGGTGAACTTCG -ACGGAATCCTTCAGGTGATACGCA -ACGGAATCCTTCAGGTGACTTGCA -ACGGAATCCTTCAGGTGACGAACA -ACGGAATCCTTCAGGTGACAGTCA -ACGGAATCCTTCAGGTGAGATCCA -ACGGAATCCTTCAGGTGAACGACA -ACGGAATCCTTCAGGTGAAGCTCA -ACGGAATCCTTCAGGTGATCACGT -ACGGAATCCTTCAGGTGACGTAGT -ACGGAATCCTTCAGGTGAGTCAGT -ACGGAATCCTTCAGGTGAGAAGGT -ACGGAATCCTTCAGGTGAAACCGT -ACGGAATCCTTCAGGTGATTGTGC -ACGGAATCCTTCAGGTGACTAAGC -ACGGAATCCTTCAGGTGAACTAGC -ACGGAATCCTTCAGGTGAAGATGC -ACGGAATCCTTCAGGTGATGAAGG -ACGGAATCCTTCAGGTGACAATGG -ACGGAATCCTTCAGGTGAATGAGG -ACGGAATCCTTCAGGTGAAATGGG -ACGGAATCCTTCAGGTGATCCTGA -ACGGAATCCTTCAGGTGATAGCGA -ACGGAATCCTTCAGGTGACACAGA -ACGGAATCCTTCAGGTGAGCAAGA -ACGGAATCCTTCAGGTGAGGTTGA -ACGGAATCCTTCAGGTGATCCGAT -ACGGAATCCTTCAGGTGATGGCAT -ACGGAATCCTTCAGGTGACGAGAT -ACGGAATCCTTCAGGTGATACCAC -ACGGAATCCTTCAGGTGACAGAAC -ACGGAATCCTTCAGGTGAGTCTAC -ACGGAATCCTTCAGGTGAACGTAC -ACGGAATCCTTCAGGTGAAGTGAC -ACGGAATCCTTCAGGTGACTGTAG -ACGGAATCCTTCAGGTGACCTAAG -ACGGAATCCTTCAGGTGAGTTCAG -ACGGAATCCTTCAGGTGAGCATAG -ACGGAATCCTTCAGGTGAGACAAG -ACGGAATCCTTCAGGTGAAAGCAG -ACGGAATCCTTCAGGTGACGTCAA -ACGGAATCCTTCAGGTGAGCTGAA -ACGGAATCCTTCAGGTGAAGTACG -ACGGAATCCTTCAGGTGAATCCGA -ACGGAATCCTTCAGGTGAATGGGA -ACGGAATCCTTCAGGTGAGTGCAA -ACGGAATCCTTCAGGTGAGAGGAA -ACGGAATCCTTCAGGTGACAGGTA -ACGGAATCCTTCAGGTGAGACTCT -ACGGAATCCTTCAGGTGAAGTCCT -ACGGAATCCTTCAGGTGATAAGCC -ACGGAATCCTTCAGGTGAATAGCC -ACGGAATCCTTCAGGTGATAACCG -ACGGAATCCTTCAGGTGAATGCCA -ACGGAATCCTTCTGGCAAGGAAAC -ACGGAATCCTTCTGGCAAAACACC -ACGGAATCCTTCTGGCAAATCGAG -ACGGAATCCTTCTGGCAACTCCTT -ACGGAATCCTTCTGGCAACCTGTT -ACGGAATCCTTCTGGCAACGGTTT -ACGGAATCCTTCTGGCAAGTGGTT -ACGGAATCCTTCTGGCAAGCCTTT -ACGGAATCCTTCTGGCAAGGTCTT -ACGGAATCCTTCTGGCAAACGCTT -ACGGAATCCTTCTGGCAAAGCGTT -ACGGAATCCTTCTGGCAATTCGTC -ACGGAATCCTTCTGGCAATCTCTC -ACGGAATCCTTCTGGCAATGGATC -ACGGAATCCTTCTGGCAACACTTC -ACGGAATCCTTCTGGCAAGTACTC -ACGGAATCCTTCTGGCAAGATGTC -ACGGAATCCTTCTGGCAAACAGTC -ACGGAATCCTTCTGGCAATTGCTG -ACGGAATCCTTCTGGCAATCCATG -ACGGAATCCTTCTGGCAATGTGTG -ACGGAATCCTTCTGGCAACTAGTG -ACGGAATCCTTCTGGCAACATCTG -ACGGAATCCTTCTGGCAAGAGTTG -ACGGAATCCTTCTGGCAAAGACTG -ACGGAATCCTTCTGGCAATCGGTA -ACGGAATCCTTCTGGCAATGCCTA -ACGGAATCCTTCTGGCAACCACTA -ACGGAATCCTTCTGGCAAGGAGTA -ACGGAATCCTTCTGGCAATCGTCT -ACGGAATCCTTCTGGCAATGCACT -ACGGAATCCTTCTGGCAACTGACT -ACGGAATCCTTCTGGCAACAACCT -ACGGAATCCTTCTGGCAAGCTACT -ACGGAATCCTTCTGGCAAGGATCT -ACGGAATCCTTCTGGCAAAAGGCT -ACGGAATCCTTCTGGCAATCAACC -ACGGAATCCTTCTGGCAATGTTCC -ACGGAATCCTTCTGGCAAATTCCC -ACGGAATCCTTCTGGCAATTCTCG -ACGGAATCCTTCTGGCAATAGACG -ACGGAATCCTTCTGGCAAGTAACG -ACGGAATCCTTCTGGCAAACTTCG -ACGGAATCCTTCTGGCAATACGCA -ACGGAATCCTTCTGGCAACTTGCA -ACGGAATCCTTCTGGCAACGAACA -ACGGAATCCTTCTGGCAACAGTCA -ACGGAATCCTTCTGGCAAGATCCA -ACGGAATCCTTCTGGCAAACGACA -ACGGAATCCTTCTGGCAAAGCTCA -ACGGAATCCTTCTGGCAATCACGT -ACGGAATCCTTCTGGCAACGTAGT -ACGGAATCCTTCTGGCAAGTCAGT -ACGGAATCCTTCTGGCAAGAAGGT -ACGGAATCCTTCTGGCAAAACCGT -ACGGAATCCTTCTGGCAATTGTGC -ACGGAATCCTTCTGGCAACTAAGC -ACGGAATCCTTCTGGCAAACTAGC -ACGGAATCCTTCTGGCAAAGATGC -ACGGAATCCTTCTGGCAATGAAGG -ACGGAATCCTTCTGGCAACAATGG -ACGGAATCCTTCTGGCAAATGAGG -ACGGAATCCTTCTGGCAAAATGGG -ACGGAATCCTTCTGGCAATCCTGA -ACGGAATCCTTCTGGCAATAGCGA -ACGGAATCCTTCTGGCAACACAGA -ACGGAATCCTTCTGGCAAGCAAGA -ACGGAATCCTTCTGGCAAGGTTGA -ACGGAATCCTTCTGGCAATCCGAT -ACGGAATCCTTCTGGCAATGGCAT -ACGGAATCCTTCTGGCAACGAGAT -ACGGAATCCTTCTGGCAATACCAC -ACGGAATCCTTCTGGCAACAGAAC -ACGGAATCCTTCTGGCAAGTCTAC -ACGGAATCCTTCTGGCAAACGTAC -ACGGAATCCTTCTGGCAAAGTGAC -ACGGAATCCTTCTGGCAACTGTAG -ACGGAATCCTTCTGGCAACCTAAG -ACGGAATCCTTCTGGCAAGTTCAG -ACGGAATCCTTCTGGCAAGCATAG -ACGGAATCCTTCTGGCAAGACAAG -ACGGAATCCTTCTGGCAAAAGCAG -ACGGAATCCTTCTGGCAACGTCAA -ACGGAATCCTTCTGGCAAGCTGAA -ACGGAATCCTTCTGGCAAAGTACG -ACGGAATCCTTCTGGCAAATCCGA -ACGGAATCCTTCTGGCAAATGGGA -ACGGAATCCTTCTGGCAAGTGCAA -ACGGAATCCTTCTGGCAAGAGGAA -ACGGAATCCTTCTGGCAACAGGTA -ACGGAATCCTTCTGGCAAGACTCT -ACGGAATCCTTCTGGCAAAGTCCT -ACGGAATCCTTCTGGCAATAAGCC -ACGGAATCCTTCTGGCAAATAGCC -ACGGAATCCTTCTGGCAATAACCG -ACGGAATCCTTCTGGCAAATGCCA -ACGGAATCCTTCAGGATGGGAAAC -ACGGAATCCTTCAGGATGAACACC -ACGGAATCCTTCAGGATGATCGAG -ACGGAATCCTTCAGGATGCTCCTT -ACGGAATCCTTCAGGATGCCTGTT -ACGGAATCCTTCAGGATGCGGTTT -ACGGAATCCTTCAGGATGGTGGTT -ACGGAATCCTTCAGGATGGCCTTT -ACGGAATCCTTCAGGATGGGTCTT -ACGGAATCCTTCAGGATGACGCTT -ACGGAATCCTTCAGGATGAGCGTT -ACGGAATCCTTCAGGATGTTCGTC -ACGGAATCCTTCAGGATGTCTCTC -ACGGAATCCTTCAGGATGTGGATC -ACGGAATCCTTCAGGATGCACTTC -ACGGAATCCTTCAGGATGGTACTC -ACGGAATCCTTCAGGATGGATGTC -ACGGAATCCTTCAGGATGACAGTC -ACGGAATCCTTCAGGATGTTGCTG -ACGGAATCCTTCAGGATGTCCATG -ACGGAATCCTTCAGGATGTGTGTG -ACGGAATCCTTCAGGATGCTAGTG -ACGGAATCCTTCAGGATGCATCTG -ACGGAATCCTTCAGGATGGAGTTG -ACGGAATCCTTCAGGATGAGACTG -ACGGAATCCTTCAGGATGTCGGTA -ACGGAATCCTTCAGGATGTGCCTA -ACGGAATCCTTCAGGATGCCACTA -ACGGAATCCTTCAGGATGGGAGTA -ACGGAATCCTTCAGGATGTCGTCT -ACGGAATCCTTCAGGATGTGCACT -ACGGAATCCTTCAGGATGCTGACT -ACGGAATCCTTCAGGATGCAACCT -ACGGAATCCTTCAGGATGGCTACT -ACGGAATCCTTCAGGATGGGATCT -ACGGAATCCTTCAGGATGAAGGCT -ACGGAATCCTTCAGGATGTCAACC -ACGGAATCCTTCAGGATGTGTTCC -ACGGAATCCTTCAGGATGATTCCC -ACGGAATCCTTCAGGATGTTCTCG -ACGGAATCCTTCAGGATGTAGACG -ACGGAATCCTTCAGGATGGTAACG -ACGGAATCCTTCAGGATGACTTCG -ACGGAATCCTTCAGGATGTACGCA -ACGGAATCCTTCAGGATGCTTGCA -ACGGAATCCTTCAGGATGCGAACA -ACGGAATCCTTCAGGATGCAGTCA -ACGGAATCCTTCAGGATGGATCCA -ACGGAATCCTTCAGGATGACGACA -ACGGAATCCTTCAGGATGAGCTCA -ACGGAATCCTTCAGGATGTCACGT -ACGGAATCCTTCAGGATGCGTAGT -ACGGAATCCTTCAGGATGGTCAGT -ACGGAATCCTTCAGGATGGAAGGT -ACGGAATCCTTCAGGATGAACCGT -ACGGAATCCTTCAGGATGTTGTGC -ACGGAATCCTTCAGGATGCTAAGC -ACGGAATCCTTCAGGATGACTAGC -ACGGAATCCTTCAGGATGAGATGC -ACGGAATCCTTCAGGATGTGAAGG -ACGGAATCCTTCAGGATGCAATGG -ACGGAATCCTTCAGGATGATGAGG -ACGGAATCCTTCAGGATGAATGGG -ACGGAATCCTTCAGGATGTCCTGA -ACGGAATCCTTCAGGATGTAGCGA -ACGGAATCCTTCAGGATGCACAGA -ACGGAATCCTTCAGGATGGCAAGA -ACGGAATCCTTCAGGATGGGTTGA -ACGGAATCCTTCAGGATGTCCGAT -ACGGAATCCTTCAGGATGTGGCAT -ACGGAATCCTTCAGGATGCGAGAT -ACGGAATCCTTCAGGATGTACCAC -ACGGAATCCTTCAGGATGCAGAAC -ACGGAATCCTTCAGGATGGTCTAC -ACGGAATCCTTCAGGATGACGTAC -ACGGAATCCTTCAGGATGAGTGAC -ACGGAATCCTTCAGGATGCTGTAG -ACGGAATCCTTCAGGATGCCTAAG -ACGGAATCCTTCAGGATGGTTCAG -ACGGAATCCTTCAGGATGGCATAG -ACGGAATCCTTCAGGATGGACAAG -ACGGAATCCTTCAGGATGAAGCAG -ACGGAATCCTTCAGGATGCGTCAA -ACGGAATCCTTCAGGATGGCTGAA -ACGGAATCCTTCAGGATGAGTACG -ACGGAATCCTTCAGGATGATCCGA -ACGGAATCCTTCAGGATGATGGGA -ACGGAATCCTTCAGGATGGTGCAA -ACGGAATCCTTCAGGATGGAGGAA -ACGGAATCCTTCAGGATGCAGGTA -ACGGAATCCTTCAGGATGGACTCT -ACGGAATCCTTCAGGATGAGTCCT -ACGGAATCCTTCAGGATGTAAGCC -ACGGAATCCTTCAGGATGATAGCC -ACGGAATCCTTCAGGATGTAACCG -ACGGAATCCTTCAGGATGATGCCA -ACGGAATCCTTCGGGAATGGAAAC -ACGGAATCCTTCGGGAATAACACC -ACGGAATCCTTCGGGAATATCGAG -ACGGAATCCTTCGGGAATCTCCTT -ACGGAATCCTTCGGGAATCCTGTT -ACGGAATCCTTCGGGAATCGGTTT -ACGGAATCCTTCGGGAATGTGGTT -ACGGAATCCTTCGGGAATGCCTTT -ACGGAATCCTTCGGGAATGGTCTT -ACGGAATCCTTCGGGAATACGCTT -ACGGAATCCTTCGGGAATAGCGTT -ACGGAATCCTTCGGGAATTTCGTC -ACGGAATCCTTCGGGAATTCTCTC -ACGGAATCCTTCGGGAATTGGATC -ACGGAATCCTTCGGGAATCACTTC -ACGGAATCCTTCGGGAATGTACTC -ACGGAATCCTTCGGGAATGATGTC -ACGGAATCCTTCGGGAATACAGTC -ACGGAATCCTTCGGGAATTTGCTG -ACGGAATCCTTCGGGAATTCCATG -ACGGAATCCTTCGGGAATTGTGTG -ACGGAATCCTTCGGGAATCTAGTG -ACGGAATCCTTCGGGAATCATCTG -ACGGAATCCTTCGGGAATGAGTTG -ACGGAATCCTTCGGGAATAGACTG -ACGGAATCCTTCGGGAATTCGGTA -ACGGAATCCTTCGGGAATTGCCTA -ACGGAATCCTTCGGGAATCCACTA -ACGGAATCCTTCGGGAATGGAGTA -ACGGAATCCTTCGGGAATTCGTCT -ACGGAATCCTTCGGGAATTGCACT -ACGGAATCCTTCGGGAATCTGACT -ACGGAATCCTTCGGGAATCAACCT -ACGGAATCCTTCGGGAATGCTACT -ACGGAATCCTTCGGGAATGGATCT -ACGGAATCCTTCGGGAATAAGGCT -ACGGAATCCTTCGGGAATTCAACC -ACGGAATCCTTCGGGAATTGTTCC -ACGGAATCCTTCGGGAATATTCCC -ACGGAATCCTTCGGGAATTTCTCG -ACGGAATCCTTCGGGAATTAGACG -ACGGAATCCTTCGGGAATGTAACG -ACGGAATCCTTCGGGAATACTTCG -ACGGAATCCTTCGGGAATTACGCA -ACGGAATCCTTCGGGAATCTTGCA -ACGGAATCCTTCGGGAATCGAACA -ACGGAATCCTTCGGGAATCAGTCA -ACGGAATCCTTCGGGAATGATCCA -ACGGAATCCTTCGGGAATACGACA -ACGGAATCCTTCGGGAATAGCTCA -ACGGAATCCTTCGGGAATTCACGT -ACGGAATCCTTCGGGAATCGTAGT -ACGGAATCCTTCGGGAATGTCAGT -ACGGAATCCTTCGGGAATGAAGGT -ACGGAATCCTTCGGGAATAACCGT -ACGGAATCCTTCGGGAATTTGTGC -ACGGAATCCTTCGGGAATCTAAGC -ACGGAATCCTTCGGGAATACTAGC -ACGGAATCCTTCGGGAATAGATGC -ACGGAATCCTTCGGGAATTGAAGG -ACGGAATCCTTCGGGAATCAATGG -ACGGAATCCTTCGGGAATATGAGG -ACGGAATCCTTCGGGAATAATGGG -ACGGAATCCTTCGGGAATTCCTGA -ACGGAATCCTTCGGGAATTAGCGA -ACGGAATCCTTCGGGAATCACAGA -ACGGAATCCTTCGGGAATGCAAGA -ACGGAATCCTTCGGGAATGGTTGA -ACGGAATCCTTCGGGAATTCCGAT -ACGGAATCCTTCGGGAATTGGCAT -ACGGAATCCTTCGGGAATCGAGAT -ACGGAATCCTTCGGGAATTACCAC -ACGGAATCCTTCGGGAATCAGAAC -ACGGAATCCTTCGGGAATGTCTAC -ACGGAATCCTTCGGGAATACGTAC -ACGGAATCCTTCGGGAATAGTGAC -ACGGAATCCTTCGGGAATCTGTAG -ACGGAATCCTTCGGGAATCCTAAG -ACGGAATCCTTCGGGAATGTTCAG -ACGGAATCCTTCGGGAATGCATAG -ACGGAATCCTTCGGGAATGACAAG -ACGGAATCCTTCGGGAATAAGCAG -ACGGAATCCTTCGGGAATCGTCAA -ACGGAATCCTTCGGGAATGCTGAA -ACGGAATCCTTCGGGAATAGTACG -ACGGAATCCTTCGGGAATATCCGA -ACGGAATCCTTCGGGAATATGGGA -ACGGAATCCTTCGGGAATGTGCAA -ACGGAATCCTTCGGGAATGAGGAA -ACGGAATCCTTCGGGAATCAGGTA -ACGGAATCCTTCGGGAATGACTCT -ACGGAATCCTTCGGGAATAGTCCT -ACGGAATCCTTCGGGAATTAAGCC -ACGGAATCCTTCGGGAATATAGCC -ACGGAATCCTTCGGGAATTAACCG -ACGGAATCCTTCGGGAATATGCCA -ACGGAATCCTTCTGATCCGGAAAC -ACGGAATCCTTCTGATCCAACACC -ACGGAATCCTTCTGATCCATCGAG -ACGGAATCCTTCTGATCCCTCCTT -ACGGAATCCTTCTGATCCCCTGTT -ACGGAATCCTTCTGATCCCGGTTT -ACGGAATCCTTCTGATCCGTGGTT -ACGGAATCCTTCTGATCCGCCTTT -ACGGAATCCTTCTGATCCGGTCTT -ACGGAATCCTTCTGATCCACGCTT -ACGGAATCCTTCTGATCCAGCGTT -ACGGAATCCTTCTGATCCTTCGTC -ACGGAATCCTTCTGATCCTCTCTC -ACGGAATCCTTCTGATCCTGGATC -ACGGAATCCTTCTGATCCCACTTC -ACGGAATCCTTCTGATCCGTACTC -ACGGAATCCTTCTGATCCGATGTC -ACGGAATCCTTCTGATCCACAGTC -ACGGAATCCTTCTGATCCTTGCTG -ACGGAATCCTTCTGATCCTCCATG -ACGGAATCCTTCTGATCCTGTGTG -ACGGAATCCTTCTGATCCCTAGTG -ACGGAATCCTTCTGATCCCATCTG -ACGGAATCCTTCTGATCCGAGTTG -ACGGAATCCTTCTGATCCAGACTG -ACGGAATCCTTCTGATCCTCGGTA -ACGGAATCCTTCTGATCCTGCCTA -ACGGAATCCTTCTGATCCCCACTA -ACGGAATCCTTCTGATCCGGAGTA -ACGGAATCCTTCTGATCCTCGTCT -ACGGAATCCTTCTGATCCTGCACT -ACGGAATCCTTCTGATCCCTGACT -ACGGAATCCTTCTGATCCCAACCT -ACGGAATCCTTCTGATCCGCTACT -ACGGAATCCTTCTGATCCGGATCT -ACGGAATCCTTCTGATCCAAGGCT -ACGGAATCCTTCTGATCCTCAACC -ACGGAATCCTTCTGATCCTGTTCC -ACGGAATCCTTCTGATCCATTCCC -ACGGAATCCTTCTGATCCTTCTCG -ACGGAATCCTTCTGATCCTAGACG -ACGGAATCCTTCTGATCCGTAACG -ACGGAATCCTTCTGATCCACTTCG -ACGGAATCCTTCTGATCCTACGCA -ACGGAATCCTTCTGATCCCTTGCA -ACGGAATCCTTCTGATCCCGAACA -ACGGAATCCTTCTGATCCCAGTCA -ACGGAATCCTTCTGATCCGATCCA -ACGGAATCCTTCTGATCCACGACA -ACGGAATCCTTCTGATCCAGCTCA -ACGGAATCCTTCTGATCCTCACGT -ACGGAATCCTTCTGATCCCGTAGT -ACGGAATCCTTCTGATCCGTCAGT -ACGGAATCCTTCTGATCCGAAGGT -ACGGAATCCTTCTGATCCAACCGT -ACGGAATCCTTCTGATCCTTGTGC -ACGGAATCCTTCTGATCCCTAAGC -ACGGAATCCTTCTGATCCACTAGC -ACGGAATCCTTCTGATCCAGATGC -ACGGAATCCTTCTGATCCTGAAGG -ACGGAATCCTTCTGATCCCAATGG -ACGGAATCCTTCTGATCCATGAGG -ACGGAATCCTTCTGATCCAATGGG -ACGGAATCCTTCTGATCCTCCTGA -ACGGAATCCTTCTGATCCTAGCGA -ACGGAATCCTTCTGATCCCACAGA -ACGGAATCCTTCTGATCCGCAAGA -ACGGAATCCTTCTGATCCGGTTGA -ACGGAATCCTTCTGATCCTCCGAT -ACGGAATCCTTCTGATCCTGGCAT -ACGGAATCCTTCTGATCCCGAGAT -ACGGAATCCTTCTGATCCTACCAC -ACGGAATCCTTCTGATCCCAGAAC -ACGGAATCCTTCTGATCCGTCTAC -ACGGAATCCTTCTGATCCACGTAC -ACGGAATCCTTCTGATCCAGTGAC -ACGGAATCCTTCTGATCCCTGTAG -ACGGAATCCTTCTGATCCCCTAAG -ACGGAATCCTTCTGATCCGTTCAG -ACGGAATCCTTCTGATCCGCATAG -ACGGAATCCTTCTGATCCGACAAG -ACGGAATCCTTCTGATCCAAGCAG -ACGGAATCCTTCTGATCCCGTCAA -ACGGAATCCTTCTGATCCGCTGAA -ACGGAATCCTTCTGATCCAGTACG -ACGGAATCCTTCTGATCCATCCGA -ACGGAATCCTTCTGATCCATGGGA -ACGGAATCCTTCTGATCCGTGCAA -ACGGAATCCTTCTGATCCGAGGAA -ACGGAATCCTTCTGATCCCAGGTA -ACGGAATCCTTCTGATCCGACTCT -ACGGAATCCTTCTGATCCAGTCCT -ACGGAATCCTTCTGATCCTAAGCC -ACGGAATCCTTCTGATCCATAGCC -ACGGAATCCTTCTGATCCTAACCG -ACGGAATCCTTCTGATCCATGCCA -ACGGAATCCTTCCGATAGGGAAAC -ACGGAATCCTTCCGATAGAACACC -ACGGAATCCTTCCGATAGATCGAG -ACGGAATCCTTCCGATAGCTCCTT -ACGGAATCCTTCCGATAGCCTGTT -ACGGAATCCTTCCGATAGCGGTTT -ACGGAATCCTTCCGATAGGTGGTT -ACGGAATCCTTCCGATAGGCCTTT -ACGGAATCCTTCCGATAGGGTCTT -ACGGAATCCTTCCGATAGACGCTT -ACGGAATCCTTCCGATAGAGCGTT -ACGGAATCCTTCCGATAGTTCGTC -ACGGAATCCTTCCGATAGTCTCTC -ACGGAATCCTTCCGATAGTGGATC -ACGGAATCCTTCCGATAGCACTTC -ACGGAATCCTTCCGATAGGTACTC -ACGGAATCCTTCCGATAGGATGTC -ACGGAATCCTTCCGATAGACAGTC -ACGGAATCCTTCCGATAGTTGCTG -ACGGAATCCTTCCGATAGTCCATG -ACGGAATCCTTCCGATAGTGTGTG -ACGGAATCCTTCCGATAGCTAGTG -ACGGAATCCTTCCGATAGCATCTG -ACGGAATCCTTCCGATAGGAGTTG -ACGGAATCCTTCCGATAGAGACTG -ACGGAATCCTTCCGATAGTCGGTA -ACGGAATCCTTCCGATAGTGCCTA -ACGGAATCCTTCCGATAGCCACTA -ACGGAATCCTTCCGATAGGGAGTA -ACGGAATCCTTCCGATAGTCGTCT -ACGGAATCCTTCCGATAGTGCACT -ACGGAATCCTTCCGATAGCTGACT -ACGGAATCCTTCCGATAGCAACCT -ACGGAATCCTTCCGATAGGCTACT -ACGGAATCCTTCCGATAGGGATCT -ACGGAATCCTTCCGATAGAAGGCT -ACGGAATCCTTCCGATAGTCAACC -ACGGAATCCTTCCGATAGTGTTCC -ACGGAATCCTTCCGATAGATTCCC -ACGGAATCCTTCCGATAGTTCTCG -ACGGAATCCTTCCGATAGTAGACG -ACGGAATCCTTCCGATAGGTAACG -ACGGAATCCTTCCGATAGACTTCG -ACGGAATCCTTCCGATAGTACGCA -ACGGAATCCTTCCGATAGCTTGCA -ACGGAATCCTTCCGATAGCGAACA -ACGGAATCCTTCCGATAGCAGTCA -ACGGAATCCTTCCGATAGGATCCA -ACGGAATCCTTCCGATAGACGACA -ACGGAATCCTTCCGATAGAGCTCA -ACGGAATCCTTCCGATAGTCACGT -ACGGAATCCTTCCGATAGCGTAGT -ACGGAATCCTTCCGATAGGTCAGT -ACGGAATCCTTCCGATAGGAAGGT -ACGGAATCCTTCCGATAGAACCGT -ACGGAATCCTTCCGATAGTTGTGC -ACGGAATCCTTCCGATAGCTAAGC -ACGGAATCCTTCCGATAGACTAGC -ACGGAATCCTTCCGATAGAGATGC -ACGGAATCCTTCCGATAGTGAAGG -ACGGAATCCTTCCGATAGCAATGG -ACGGAATCCTTCCGATAGATGAGG -ACGGAATCCTTCCGATAGAATGGG -ACGGAATCCTTCCGATAGTCCTGA -ACGGAATCCTTCCGATAGTAGCGA -ACGGAATCCTTCCGATAGCACAGA -ACGGAATCCTTCCGATAGGCAAGA -ACGGAATCCTTCCGATAGGGTTGA -ACGGAATCCTTCCGATAGTCCGAT -ACGGAATCCTTCCGATAGTGGCAT -ACGGAATCCTTCCGATAGCGAGAT -ACGGAATCCTTCCGATAGTACCAC -ACGGAATCCTTCCGATAGCAGAAC -ACGGAATCCTTCCGATAGGTCTAC -ACGGAATCCTTCCGATAGACGTAC -ACGGAATCCTTCCGATAGAGTGAC -ACGGAATCCTTCCGATAGCTGTAG -ACGGAATCCTTCCGATAGCCTAAG -ACGGAATCCTTCCGATAGGTTCAG -ACGGAATCCTTCCGATAGGCATAG -ACGGAATCCTTCCGATAGGACAAG -ACGGAATCCTTCCGATAGAAGCAG -ACGGAATCCTTCCGATAGCGTCAA -ACGGAATCCTTCCGATAGGCTGAA -ACGGAATCCTTCCGATAGAGTACG -ACGGAATCCTTCCGATAGATCCGA -ACGGAATCCTTCCGATAGATGGGA -ACGGAATCCTTCCGATAGGTGCAA -ACGGAATCCTTCCGATAGGAGGAA -ACGGAATCCTTCCGATAGCAGGTA -ACGGAATCCTTCCGATAGGACTCT -ACGGAATCCTTCCGATAGAGTCCT -ACGGAATCCTTCCGATAGTAAGCC -ACGGAATCCTTCCGATAGATAGCC -ACGGAATCCTTCCGATAGTAACCG -ACGGAATCCTTCCGATAGATGCCA -ACGGAATCCTTCAGACACGGAAAC -ACGGAATCCTTCAGACACAACACC -ACGGAATCCTTCAGACACATCGAG -ACGGAATCCTTCAGACACCTCCTT -ACGGAATCCTTCAGACACCCTGTT -ACGGAATCCTTCAGACACCGGTTT -ACGGAATCCTTCAGACACGTGGTT -ACGGAATCCTTCAGACACGCCTTT -ACGGAATCCTTCAGACACGGTCTT -ACGGAATCCTTCAGACACACGCTT -ACGGAATCCTTCAGACACAGCGTT -ACGGAATCCTTCAGACACTTCGTC -ACGGAATCCTTCAGACACTCTCTC -ACGGAATCCTTCAGACACTGGATC -ACGGAATCCTTCAGACACCACTTC -ACGGAATCCTTCAGACACGTACTC -ACGGAATCCTTCAGACACGATGTC -ACGGAATCCTTCAGACACACAGTC -ACGGAATCCTTCAGACACTTGCTG -ACGGAATCCTTCAGACACTCCATG -ACGGAATCCTTCAGACACTGTGTG -ACGGAATCCTTCAGACACCTAGTG -ACGGAATCCTTCAGACACCATCTG -ACGGAATCCTTCAGACACGAGTTG -ACGGAATCCTTCAGACACAGACTG -ACGGAATCCTTCAGACACTCGGTA -ACGGAATCCTTCAGACACTGCCTA -ACGGAATCCTTCAGACACCCACTA -ACGGAATCCTTCAGACACGGAGTA -ACGGAATCCTTCAGACACTCGTCT -ACGGAATCCTTCAGACACTGCACT -ACGGAATCCTTCAGACACCTGACT -ACGGAATCCTTCAGACACCAACCT -ACGGAATCCTTCAGACACGCTACT -ACGGAATCCTTCAGACACGGATCT -ACGGAATCCTTCAGACACAAGGCT -ACGGAATCCTTCAGACACTCAACC -ACGGAATCCTTCAGACACTGTTCC -ACGGAATCCTTCAGACACATTCCC -ACGGAATCCTTCAGACACTTCTCG -ACGGAATCCTTCAGACACTAGACG -ACGGAATCCTTCAGACACGTAACG -ACGGAATCCTTCAGACACACTTCG -ACGGAATCCTTCAGACACTACGCA -ACGGAATCCTTCAGACACCTTGCA -ACGGAATCCTTCAGACACCGAACA -ACGGAATCCTTCAGACACCAGTCA -ACGGAATCCTTCAGACACGATCCA -ACGGAATCCTTCAGACACACGACA -ACGGAATCCTTCAGACACAGCTCA -ACGGAATCCTTCAGACACTCACGT -ACGGAATCCTTCAGACACCGTAGT -ACGGAATCCTTCAGACACGTCAGT -ACGGAATCCTTCAGACACGAAGGT -ACGGAATCCTTCAGACACAACCGT -ACGGAATCCTTCAGACACTTGTGC -ACGGAATCCTTCAGACACCTAAGC -ACGGAATCCTTCAGACACACTAGC -ACGGAATCCTTCAGACACAGATGC -ACGGAATCCTTCAGACACTGAAGG -ACGGAATCCTTCAGACACCAATGG -ACGGAATCCTTCAGACACATGAGG -ACGGAATCCTTCAGACACAATGGG -ACGGAATCCTTCAGACACTCCTGA -ACGGAATCCTTCAGACACTAGCGA -ACGGAATCCTTCAGACACCACAGA -ACGGAATCCTTCAGACACGCAAGA -ACGGAATCCTTCAGACACGGTTGA -ACGGAATCCTTCAGACACTCCGAT -ACGGAATCCTTCAGACACTGGCAT -ACGGAATCCTTCAGACACCGAGAT -ACGGAATCCTTCAGACACTACCAC -ACGGAATCCTTCAGACACCAGAAC -ACGGAATCCTTCAGACACGTCTAC -ACGGAATCCTTCAGACACACGTAC -ACGGAATCCTTCAGACACAGTGAC -ACGGAATCCTTCAGACACCTGTAG -ACGGAATCCTTCAGACACCCTAAG -ACGGAATCCTTCAGACACGTTCAG -ACGGAATCCTTCAGACACGCATAG -ACGGAATCCTTCAGACACGACAAG -ACGGAATCCTTCAGACACAAGCAG -ACGGAATCCTTCAGACACCGTCAA -ACGGAATCCTTCAGACACGCTGAA -ACGGAATCCTTCAGACACAGTACG -ACGGAATCCTTCAGACACATCCGA -ACGGAATCCTTCAGACACATGGGA -ACGGAATCCTTCAGACACGTGCAA -ACGGAATCCTTCAGACACGAGGAA -ACGGAATCCTTCAGACACCAGGTA -ACGGAATCCTTCAGACACGACTCT -ACGGAATCCTTCAGACACAGTCCT -ACGGAATCCTTCAGACACTAAGCC -ACGGAATCCTTCAGACACATAGCC -ACGGAATCCTTCAGACACTAACCG -ACGGAATCCTTCAGACACATGCCA -ACGGAATCCTTCAGAGCAGGAAAC -ACGGAATCCTTCAGAGCAAACACC -ACGGAATCCTTCAGAGCAATCGAG -ACGGAATCCTTCAGAGCACTCCTT -ACGGAATCCTTCAGAGCACCTGTT -ACGGAATCCTTCAGAGCACGGTTT -ACGGAATCCTTCAGAGCAGTGGTT -ACGGAATCCTTCAGAGCAGCCTTT -ACGGAATCCTTCAGAGCAGGTCTT -ACGGAATCCTTCAGAGCAACGCTT -ACGGAATCCTTCAGAGCAAGCGTT -ACGGAATCCTTCAGAGCATTCGTC -ACGGAATCCTTCAGAGCATCTCTC -ACGGAATCCTTCAGAGCATGGATC -ACGGAATCCTTCAGAGCACACTTC -ACGGAATCCTTCAGAGCAGTACTC -ACGGAATCCTTCAGAGCAGATGTC -ACGGAATCCTTCAGAGCAACAGTC -ACGGAATCCTTCAGAGCATTGCTG -ACGGAATCCTTCAGAGCATCCATG -ACGGAATCCTTCAGAGCATGTGTG -ACGGAATCCTTCAGAGCACTAGTG -ACGGAATCCTTCAGAGCACATCTG -ACGGAATCCTTCAGAGCAGAGTTG -ACGGAATCCTTCAGAGCAAGACTG -ACGGAATCCTTCAGAGCATCGGTA -ACGGAATCCTTCAGAGCATGCCTA -ACGGAATCCTTCAGAGCACCACTA -ACGGAATCCTTCAGAGCAGGAGTA -ACGGAATCCTTCAGAGCATCGTCT -ACGGAATCCTTCAGAGCATGCACT -ACGGAATCCTTCAGAGCACTGACT -ACGGAATCCTTCAGAGCACAACCT -ACGGAATCCTTCAGAGCAGCTACT -ACGGAATCCTTCAGAGCAGGATCT -ACGGAATCCTTCAGAGCAAAGGCT -ACGGAATCCTTCAGAGCATCAACC -ACGGAATCCTTCAGAGCATGTTCC -ACGGAATCCTTCAGAGCAATTCCC -ACGGAATCCTTCAGAGCATTCTCG -ACGGAATCCTTCAGAGCATAGACG -ACGGAATCCTTCAGAGCAGTAACG -ACGGAATCCTTCAGAGCAACTTCG -ACGGAATCCTTCAGAGCATACGCA -ACGGAATCCTTCAGAGCACTTGCA -ACGGAATCCTTCAGAGCACGAACA -ACGGAATCCTTCAGAGCACAGTCA -ACGGAATCCTTCAGAGCAGATCCA -ACGGAATCCTTCAGAGCAACGACA -ACGGAATCCTTCAGAGCAAGCTCA -ACGGAATCCTTCAGAGCATCACGT -ACGGAATCCTTCAGAGCACGTAGT -ACGGAATCCTTCAGAGCAGTCAGT -ACGGAATCCTTCAGAGCAGAAGGT -ACGGAATCCTTCAGAGCAAACCGT -ACGGAATCCTTCAGAGCATTGTGC -ACGGAATCCTTCAGAGCACTAAGC -ACGGAATCCTTCAGAGCAACTAGC -ACGGAATCCTTCAGAGCAAGATGC -ACGGAATCCTTCAGAGCATGAAGG -ACGGAATCCTTCAGAGCACAATGG -ACGGAATCCTTCAGAGCAATGAGG -ACGGAATCCTTCAGAGCAAATGGG -ACGGAATCCTTCAGAGCATCCTGA -ACGGAATCCTTCAGAGCATAGCGA -ACGGAATCCTTCAGAGCACACAGA -ACGGAATCCTTCAGAGCAGCAAGA -ACGGAATCCTTCAGAGCAGGTTGA -ACGGAATCCTTCAGAGCATCCGAT -ACGGAATCCTTCAGAGCATGGCAT -ACGGAATCCTTCAGAGCACGAGAT -ACGGAATCCTTCAGAGCATACCAC -ACGGAATCCTTCAGAGCACAGAAC -ACGGAATCCTTCAGAGCAGTCTAC -ACGGAATCCTTCAGAGCAACGTAC -ACGGAATCCTTCAGAGCAAGTGAC -ACGGAATCCTTCAGAGCACTGTAG -ACGGAATCCTTCAGAGCACCTAAG -ACGGAATCCTTCAGAGCAGTTCAG -ACGGAATCCTTCAGAGCAGCATAG -ACGGAATCCTTCAGAGCAGACAAG -ACGGAATCCTTCAGAGCAAAGCAG -ACGGAATCCTTCAGAGCACGTCAA -ACGGAATCCTTCAGAGCAGCTGAA -ACGGAATCCTTCAGAGCAAGTACG -ACGGAATCCTTCAGAGCAATCCGA -ACGGAATCCTTCAGAGCAATGGGA -ACGGAATCCTTCAGAGCAGTGCAA -ACGGAATCCTTCAGAGCAGAGGAA -ACGGAATCCTTCAGAGCACAGGTA -ACGGAATCCTTCAGAGCAGACTCT -ACGGAATCCTTCAGAGCAAGTCCT -ACGGAATCCTTCAGAGCATAAGCC -ACGGAATCCTTCAGAGCAATAGCC -ACGGAATCCTTCAGAGCATAACCG -ACGGAATCCTTCAGAGCAATGCCA -ACGGAATCCTTCTGAGGTGGAAAC -ACGGAATCCTTCTGAGGTAACACC -ACGGAATCCTTCTGAGGTATCGAG -ACGGAATCCTTCTGAGGTCTCCTT -ACGGAATCCTTCTGAGGTCCTGTT -ACGGAATCCTTCTGAGGTCGGTTT -ACGGAATCCTTCTGAGGTGTGGTT -ACGGAATCCTTCTGAGGTGCCTTT -ACGGAATCCTTCTGAGGTGGTCTT -ACGGAATCCTTCTGAGGTACGCTT -ACGGAATCCTTCTGAGGTAGCGTT -ACGGAATCCTTCTGAGGTTTCGTC -ACGGAATCCTTCTGAGGTTCTCTC -ACGGAATCCTTCTGAGGTTGGATC -ACGGAATCCTTCTGAGGTCACTTC -ACGGAATCCTTCTGAGGTGTACTC -ACGGAATCCTTCTGAGGTGATGTC -ACGGAATCCTTCTGAGGTACAGTC -ACGGAATCCTTCTGAGGTTTGCTG -ACGGAATCCTTCTGAGGTTCCATG -ACGGAATCCTTCTGAGGTTGTGTG -ACGGAATCCTTCTGAGGTCTAGTG -ACGGAATCCTTCTGAGGTCATCTG -ACGGAATCCTTCTGAGGTGAGTTG -ACGGAATCCTTCTGAGGTAGACTG -ACGGAATCCTTCTGAGGTTCGGTA -ACGGAATCCTTCTGAGGTTGCCTA -ACGGAATCCTTCTGAGGTCCACTA -ACGGAATCCTTCTGAGGTGGAGTA -ACGGAATCCTTCTGAGGTTCGTCT -ACGGAATCCTTCTGAGGTTGCACT -ACGGAATCCTTCTGAGGTCTGACT -ACGGAATCCTTCTGAGGTCAACCT -ACGGAATCCTTCTGAGGTGCTACT -ACGGAATCCTTCTGAGGTGGATCT -ACGGAATCCTTCTGAGGTAAGGCT -ACGGAATCCTTCTGAGGTTCAACC -ACGGAATCCTTCTGAGGTTGTTCC -ACGGAATCCTTCTGAGGTATTCCC -ACGGAATCCTTCTGAGGTTTCTCG -ACGGAATCCTTCTGAGGTTAGACG -ACGGAATCCTTCTGAGGTGTAACG -ACGGAATCCTTCTGAGGTACTTCG -ACGGAATCCTTCTGAGGTTACGCA -ACGGAATCCTTCTGAGGTCTTGCA -ACGGAATCCTTCTGAGGTCGAACA -ACGGAATCCTTCTGAGGTCAGTCA -ACGGAATCCTTCTGAGGTGATCCA -ACGGAATCCTTCTGAGGTACGACA -ACGGAATCCTTCTGAGGTAGCTCA -ACGGAATCCTTCTGAGGTTCACGT -ACGGAATCCTTCTGAGGTCGTAGT -ACGGAATCCTTCTGAGGTGTCAGT -ACGGAATCCTTCTGAGGTGAAGGT -ACGGAATCCTTCTGAGGTAACCGT -ACGGAATCCTTCTGAGGTTTGTGC -ACGGAATCCTTCTGAGGTCTAAGC -ACGGAATCCTTCTGAGGTACTAGC -ACGGAATCCTTCTGAGGTAGATGC -ACGGAATCCTTCTGAGGTTGAAGG -ACGGAATCCTTCTGAGGTCAATGG -ACGGAATCCTTCTGAGGTATGAGG -ACGGAATCCTTCTGAGGTAATGGG -ACGGAATCCTTCTGAGGTTCCTGA -ACGGAATCCTTCTGAGGTTAGCGA -ACGGAATCCTTCTGAGGTCACAGA -ACGGAATCCTTCTGAGGTGCAAGA -ACGGAATCCTTCTGAGGTGGTTGA -ACGGAATCCTTCTGAGGTTCCGAT -ACGGAATCCTTCTGAGGTTGGCAT -ACGGAATCCTTCTGAGGTCGAGAT -ACGGAATCCTTCTGAGGTTACCAC -ACGGAATCCTTCTGAGGTCAGAAC -ACGGAATCCTTCTGAGGTGTCTAC -ACGGAATCCTTCTGAGGTACGTAC -ACGGAATCCTTCTGAGGTAGTGAC -ACGGAATCCTTCTGAGGTCTGTAG -ACGGAATCCTTCTGAGGTCCTAAG -ACGGAATCCTTCTGAGGTGTTCAG -ACGGAATCCTTCTGAGGTGCATAG -ACGGAATCCTTCTGAGGTGACAAG -ACGGAATCCTTCTGAGGTAAGCAG -ACGGAATCCTTCTGAGGTCGTCAA -ACGGAATCCTTCTGAGGTGCTGAA -ACGGAATCCTTCTGAGGTAGTACG -ACGGAATCCTTCTGAGGTATCCGA -ACGGAATCCTTCTGAGGTATGGGA -ACGGAATCCTTCTGAGGTGTGCAA -ACGGAATCCTTCTGAGGTGAGGAA -ACGGAATCCTTCTGAGGTCAGGTA -ACGGAATCCTTCTGAGGTGACTCT -ACGGAATCCTTCTGAGGTAGTCCT -ACGGAATCCTTCTGAGGTTAAGCC -ACGGAATCCTTCTGAGGTATAGCC -ACGGAATCCTTCTGAGGTTAACCG -ACGGAATCCTTCTGAGGTATGCCA -ACGGAATCCTTCGATTCCGGAAAC -ACGGAATCCTTCGATTCCAACACC -ACGGAATCCTTCGATTCCATCGAG -ACGGAATCCTTCGATTCCCTCCTT -ACGGAATCCTTCGATTCCCCTGTT -ACGGAATCCTTCGATTCCCGGTTT -ACGGAATCCTTCGATTCCGTGGTT -ACGGAATCCTTCGATTCCGCCTTT -ACGGAATCCTTCGATTCCGGTCTT -ACGGAATCCTTCGATTCCACGCTT -ACGGAATCCTTCGATTCCAGCGTT -ACGGAATCCTTCGATTCCTTCGTC -ACGGAATCCTTCGATTCCTCTCTC -ACGGAATCCTTCGATTCCTGGATC -ACGGAATCCTTCGATTCCCACTTC -ACGGAATCCTTCGATTCCGTACTC -ACGGAATCCTTCGATTCCGATGTC -ACGGAATCCTTCGATTCCACAGTC -ACGGAATCCTTCGATTCCTTGCTG -ACGGAATCCTTCGATTCCTCCATG -ACGGAATCCTTCGATTCCTGTGTG -ACGGAATCCTTCGATTCCCTAGTG -ACGGAATCCTTCGATTCCCATCTG -ACGGAATCCTTCGATTCCGAGTTG -ACGGAATCCTTCGATTCCAGACTG -ACGGAATCCTTCGATTCCTCGGTA -ACGGAATCCTTCGATTCCTGCCTA -ACGGAATCCTTCGATTCCCCACTA -ACGGAATCCTTCGATTCCGGAGTA -ACGGAATCCTTCGATTCCTCGTCT -ACGGAATCCTTCGATTCCTGCACT -ACGGAATCCTTCGATTCCCTGACT -ACGGAATCCTTCGATTCCCAACCT -ACGGAATCCTTCGATTCCGCTACT -ACGGAATCCTTCGATTCCGGATCT -ACGGAATCCTTCGATTCCAAGGCT -ACGGAATCCTTCGATTCCTCAACC -ACGGAATCCTTCGATTCCTGTTCC -ACGGAATCCTTCGATTCCATTCCC -ACGGAATCCTTCGATTCCTTCTCG -ACGGAATCCTTCGATTCCTAGACG -ACGGAATCCTTCGATTCCGTAACG -ACGGAATCCTTCGATTCCACTTCG -ACGGAATCCTTCGATTCCTACGCA -ACGGAATCCTTCGATTCCCTTGCA -ACGGAATCCTTCGATTCCCGAACA -ACGGAATCCTTCGATTCCCAGTCA -ACGGAATCCTTCGATTCCGATCCA -ACGGAATCCTTCGATTCCACGACA -ACGGAATCCTTCGATTCCAGCTCA -ACGGAATCCTTCGATTCCTCACGT -ACGGAATCCTTCGATTCCCGTAGT -ACGGAATCCTTCGATTCCGTCAGT -ACGGAATCCTTCGATTCCGAAGGT -ACGGAATCCTTCGATTCCAACCGT -ACGGAATCCTTCGATTCCTTGTGC -ACGGAATCCTTCGATTCCCTAAGC -ACGGAATCCTTCGATTCCACTAGC -ACGGAATCCTTCGATTCCAGATGC -ACGGAATCCTTCGATTCCTGAAGG -ACGGAATCCTTCGATTCCCAATGG -ACGGAATCCTTCGATTCCATGAGG -ACGGAATCCTTCGATTCCAATGGG -ACGGAATCCTTCGATTCCTCCTGA -ACGGAATCCTTCGATTCCTAGCGA -ACGGAATCCTTCGATTCCCACAGA -ACGGAATCCTTCGATTCCGCAAGA -ACGGAATCCTTCGATTCCGGTTGA -ACGGAATCCTTCGATTCCTCCGAT -ACGGAATCCTTCGATTCCTGGCAT -ACGGAATCCTTCGATTCCCGAGAT -ACGGAATCCTTCGATTCCTACCAC -ACGGAATCCTTCGATTCCCAGAAC -ACGGAATCCTTCGATTCCGTCTAC -ACGGAATCCTTCGATTCCACGTAC -ACGGAATCCTTCGATTCCAGTGAC -ACGGAATCCTTCGATTCCCTGTAG -ACGGAATCCTTCGATTCCCCTAAG -ACGGAATCCTTCGATTCCGTTCAG -ACGGAATCCTTCGATTCCGCATAG -ACGGAATCCTTCGATTCCGACAAG -ACGGAATCCTTCGATTCCAAGCAG -ACGGAATCCTTCGATTCCCGTCAA -ACGGAATCCTTCGATTCCGCTGAA -ACGGAATCCTTCGATTCCAGTACG -ACGGAATCCTTCGATTCCATCCGA -ACGGAATCCTTCGATTCCATGGGA -ACGGAATCCTTCGATTCCGTGCAA -ACGGAATCCTTCGATTCCGAGGAA -ACGGAATCCTTCGATTCCCAGGTA -ACGGAATCCTTCGATTCCGACTCT -ACGGAATCCTTCGATTCCAGTCCT -ACGGAATCCTTCGATTCCTAAGCC -ACGGAATCCTTCGATTCCATAGCC -ACGGAATCCTTCGATTCCTAACCG -ACGGAATCCTTCGATTCCATGCCA -ACGGAATCCTTCCATTGGGGAAAC -ACGGAATCCTTCCATTGGAACACC -ACGGAATCCTTCCATTGGATCGAG -ACGGAATCCTTCCATTGGCTCCTT -ACGGAATCCTTCCATTGGCCTGTT -ACGGAATCCTTCCATTGGCGGTTT -ACGGAATCCTTCCATTGGGTGGTT -ACGGAATCCTTCCATTGGGCCTTT -ACGGAATCCTTCCATTGGGGTCTT -ACGGAATCCTTCCATTGGACGCTT -ACGGAATCCTTCCATTGGAGCGTT -ACGGAATCCTTCCATTGGTTCGTC -ACGGAATCCTTCCATTGGTCTCTC -ACGGAATCCTTCCATTGGTGGATC -ACGGAATCCTTCCATTGGCACTTC -ACGGAATCCTTCCATTGGGTACTC -ACGGAATCCTTCCATTGGGATGTC -ACGGAATCCTTCCATTGGACAGTC -ACGGAATCCTTCCATTGGTTGCTG -ACGGAATCCTTCCATTGGTCCATG -ACGGAATCCTTCCATTGGTGTGTG -ACGGAATCCTTCCATTGGCTAGTG -ACGGAATCCTTCCATTGGCATCTG -ACGGAATCCTTCCATTGGGAGTTG -ACGGAATCCTTCCATTGGAGACTG -ACGGAATCCTTCCATTGGTCGGTA -ACGGAATCCTTCCATTGGTGCCTA -ACGGAATCCTTCCATTGGCCACTA -ACGGAATCCTTCCATTGGGGAGTA -ACGGAATCCTTCCATTGGTCGTCT -ACGGAATCCTTCCATTGGTGCACT -ACGGAATCCTTCCATTGGCTGACT -ACGGAATCCTTCCATTGGCAACCT -ACGGAATCCTTCCATTGGGCTACT -ACGGAATCCTTCCATTGGGGATCT -ACGGAATCCTTCCATTGGAAGGCT -ACGGAATCCTTCCATTGGTCAACC -ACGGAATCCTTCCATTGGTGTTCC -ACGGAATCCTTCCATTGGATTCCC -ACGGAATCCTTCCATTGGTTCTCG -ACGGAATCCTTCCATTGGTAGACG -ACGGAATCCTTCCATTGGGTAACG -ACGGAATCCTTCCATTGGACTTCG -ACGGAATCCTTCCATTGGTACGCA -ACGGAATCCTTCCATTGGCTTGCA -ACGGAATCCTTCCATTGGCGAACA -ACGGAATCCTTCCATTGGCAGTCA -ACGGAATCCTTCCATTGGGATCCA -ACGGAATCCTTCCATTGGACGACA -ACGGAATCCTTCCATTGGAGCTCA -ACGGAATCCTTCCATTGGTCACGT -ACGGAATCCTTCCATTGGCGTAGT -ACGGAATCCTTCCATTGGGTCAGT -ACGGAATCCTTCCATTGGGAAGGT -ACGGAATCCTTCCATTGGAACCGT -ACGGAATCCTTCCATTGGTTGTGC -ACGGAATCCTTCCATTGGCTAAGC -ACGGAATCCTTCCATTGGACTAGC -ACGGAATCCTTCCATTGGAGATGC -ACGGAATCCTTCCATTGGTGAAGG -ACGGAATCCTTCCATTGGCAATGG -ACGGAATCCTTCCATTGGATGAGG -ACGGAATCCTTCCATTGGAATGGG -ACGGAATCCTTCCATTGGTCCTGA -ACGGAATCCTTCCATTGGTAGCGA -ACGGAATCCTTCCATTGGCACAGA -ACGGAATCCTTCCATTGGGCAAGA -ACGGAATCCTTCCATTGGGGTTGA -ACGGAATCCTTCCATTGGTCCGAT -ACGGAATCCTTCCATTGGTGGCAT -ACGGAATCCTTCCATTGGCGAGAT -ACGGAATCCTTCCATTGGTACCAC -ACGGAATCCTTCCATTGGCAGAAC -ACGGAATCCTTCCATTGGGTCTAC -ACGGAATCCTTCCATTGGACGTAC -ACGGAATCCTTCCATTGGAGTGAC -ACGGAATCCTTCCATTGGCTGTAG -ACGGAATCCTTCCATTGGCCTAAG -ACGGAATCCTTCCATTGGGTTCAG -ACGGAATCCTTCCATTGGGCATAG -ACGGAATCCTTCCATTGGGACAAG -ACGGAATCCTTCCATTGGAAGCAG -ACGGAATCCTTCCATTGGCGTCAA -ACGGAATCCTTCCATTGGGCTGAA -ACGGAATCCTTCCATTGGAGTACG -ACGGAATCCTTCCATTGGATCCGA -ACGGAATCCTTCCATTGGATGGGA -ACGGAATCCTTCCATTGGGTGCAA -ACGGAATCCTTCCATTGGGAGGAA -ACGGAATCCTTCCATTGGCAGGTA -ACGGAATCCTTCCATTGGGACTCT -ACGGAATCCTTCCATTGGAGTCCT -ACGGAATCCTTCCATTGGTAAGCC -ACGGAATCCTTCCATTGGATAGCC -ACGGAATCCTTCCATTGGTAACCG -ACGGAATCCTTCCATTGGATGCCA -ACGGAATCCTTCGATCGAGGAAAC -ACGGAATCCTTCGATCGAAACACC -ACGGAATCCTTCGATCGAATCGAG -ACGGAATCCTTCGATCGACTCCTT -ACGGAATCCTTCGATCGACCTGTT -ACGGAATCCTTCGATCGACGGTTT -ACGGAATCCTTCGATCGAGTGGTT -ACGGAATCCTTCGATCGAGCCTTT -ACGGAATCCTTCGATCGAGGTCTT -ACGGAATCCTTCGATCGAACGCTT -ACGGAATCCTTCGATCGAAGCGTT -ACGGAATCCTTCGATCGATTCGTC -ACGGAATCCTTCGATCGATCTCTC -ACGGAATCCTTCGATCGATGGATC -ACGGAATCCTTCGATCGACACTTC -ACGGAATCCTTCGATCGAGTACTC -ACGGAATCCTTCGATCGAGATGTC -ACGGAATCCTTCGATCGAACAGTC -ACGGAATCCTTCGATCGATTGCTG -ACGGAATCCTTCGATCGATCCATG -ACGGAATCCTTCGATCGATGTGTG -ACGGAATCCTTCGATCGACTAGTG -ACGGAATCCTTCGATCGACATCTG -ACGGAATCCTTCGATCGAGAGTTG -ACGGAATCCTTCGATCGAAGACTG -ACGGAATCCTTCGATCGATCGGTA -ACGGAATCCTTCGATCGATGCCTA -ACGGAATCCTTCGATCGACCACTA -ACGGAATCCTTCGATCGAGGAGTA -ACGGAATCCTTCGATCGATCGTCT -ACGGAATCCTTCGATCGATGCACT -ACGGAATCCTTCGATCGACTGACT -ACGGAATCCTTCGATCGACAACCT -ACGGAATCCTTCGATCGAGCTACT -ACGGAATCCTTCGATCGAGGATCT -ACGGAATCCTTCGATCGAAAGGCT -ACGGAATCCTTCGATCGATCAACC -ACGGAATCCTTCGATCGATGTTCC -ACGGAATCCTTCGATCGAATTCCC -ACGGAATCCTTCGATCGATTCTCG -ACGGAATCCTTCGATCGATAGACG -ACGGAATCCTTCGATCGAGTAACG -ACGGAATCCTTCGATCGAACTTCG -ACGGAATCCTTCGATCGATACGCA -ACGGAATCCTTCGATCGACTTGCA -ACGGAATCCTTCGATCGACGAACA -ACGGAATCCTTCGATCGACAGTCA -ACGGAATCCTTCGATCGAGATCCA -ACGGAATCCTTCGATCGAACGACA -ACGGAATCCTTCGATCGAAGCTCA -ACGGAATCCTTCGATCGATCACGT -ACGGAATCCTTCGATCGACGTAGT -ACGGAATCCTTCGATCGAGTCAGT -ACGGAATCCTTCGATCGAGAAGGT -ACGGAATCCTTCGATCGAAACCGT -ACGGAATCCTTCGATCGATTGTGC -ACGGAATCCTTCGATCGACTAAGC -ACGGAATCCTTCGATCGAACTAGC -ACGGAATCCTTCGATCGAAGATGC -ACGGAATCCTTCGATCGATGAAGG -ACGGAATCCTTCGATCGACAATGG -ACGGAATCCTTCGATCGAATGAGG -ACGGAATCCTTCGATCGAAATGGG -ACGGAATCCTTCGATCGATCCTGA -ACGGAATCCTTCGATCGATAGCGA -ACGGAATCCTTCGATCGACACAGA -ACGGAATCCTTCGATCGAGCAAGA -ACGGAATCCTTCGATCGAGGTTGA -ACGGAATCCTTCGATCGATCCGAT -ACGGAATCCTTCGATCGATGGCAT -ACGGAATCCTTCGATCGACGAGAT -ACGGAATCCTTCGATCGATACCAC -ACGGAATCCTTCGATCGACAGAAC -ACGGAATCCTTCGATCGAGTCTAC -ACGGAATCCTTCGATCGAACGTAC -ACGGAATCCTTCGATCGAAGTGAC -ACGGAATCCTTCGATCGACTGTAG -ACGGAATCCTTCGATCGACCTAAG -ACGGAATCCTTCGATCGAGTTCAG -ACGGAATCCTTCGATCGAGCATAG -ACGGAATCCTTCGATCGAGACAAG -ACGGAATCCTTCGATCGAAAGCAG -ACGGAATCCTTCGATCGACGTCAA -ACGGAATCCTTCGATCGAGCTGAA -ACGGAATCCTTCGATCGAAGTACG -ACGGAATCCTTCGATCGAATCCGA -ACGGAATCCTTCGATCGAATGGGA -ACGGAATCCTTCGATCGAGTGCAA -ACGGAATCCTTCGATCGAGAGGAA -ACGGAATCCTTCGATCGACAGGTA -ACGGAATCCTTCGATCGAGACTCT -ACGGAATCCTTCGATCGAAGTCCT -ACGGAATCCTTCGATCGATAAGCC -ACGGAATCCTTCGATCGAATAGCC -ACGGAATCCTTCGATCGATAACCG -ACGGAATCCTTCGATCGAATGCCA -ACGGAATCCTTCCACTACGGAAAC -ACGGAATCCTTCCACTACAACACC -ACGGAATCCTTCCACTACATCGAG -ACGGAATCCTTCCACTACCTCCTT -ACGGAATCCTTCCACTACCCTGTT -ACGGAATCCTTCCACTACCGGTTT -ACGGAATCCTTCCACTACGTGGTT -ACGGAATCCTTCCACTACGCCTTT -ACGGAATCCTTCCACTACGGTCTT -ACGGAATCCTTCCACTACACGCTT -ACGGAATCCTTCCACTACAGCGTT -ACGGAATCCTTCCACTACTTCGTC -ACGGAATCCTTCCACTACTCTCTC -ACGGAATCCTTCCACTACTGGATC -ACGGAATCCTTCCACTACCACTTC -ACGGAATCCTTCCACTACGTACTC -ACGGAATCCTTCCACTACGATGTC -ACGGAATCCTTCCACTACACAGTC -ACGGAATCCTTCCACTACTTGCTG -ACGGAATCCTTCCACTACTCCATG -ACGGAATCCTTCCACTACTGTGTG -ACGGAATCCTTCCACTACCTAGTG -ACGGAATCCTTCCACTACCATCTG -ACGGAATCCTTCCACTACGAGTTG -ACGGAATCCTTCCACTACAGACTG -ACGGAATCCTTCCACTACTCGGTA -ACGGAATCCTTCCACTACTGCCTA -ACGGAATCCTTCCACTACCCACTA -ACGGAATCCTTCCACTACGGAGTA -ACGGAATCCTTCCACTACTCGTCT -ACGGAATCCTTCCACTACTGCACT -ACGGAATCCTTCCACTACCTGACT -ACGGAATCCTTCCACTACCAACCT -ACGGAATCCTTCCACTACGCTACT -ACGGAATCCTTCCACTACGGATCT -ACGGAATCCTTCCACTACAAGGCT -ACGGAATCCTTCCACTACTCAACC -ACGGAATCCTTCCACTACTGTTCC -ACGGAATCCTTCCACTACATTCCC -ACGGAATCCTTCCACTACTTCTCG -ACGGAATCCTTCCACTACTAGACG -ACGGAATCCTTCCACTACGTAACG -ACGGAATCCTTCCACTACACTTCG -ACGGAATCCTTCCACTACTACGCA -ACGGAATCCTTCCACTACCTTGCA -ACGGAATCCTTCCACTACCGAACA -ACGGAATCCTTCCACTACCAGTCA -ACGGAATCCTTCCACTACGATCCA -ACGGAATCCTTCCACTACACGACA -ACGGAATCCTTCCACTACAGCTCA -ACGGAATCCTTCCACTACTCACGT -ACGGAATCCTTCCACTACCGTAGT -ACGGAATCCTTCCACTACGTCAGT -ACGGAATCCTTCCACTACGAAGGT -ACGGAATCCTTCCACTACAACCGT -ACGGAATCCTTCCACTACTTGTGC -ACGGAATCCTTCCACTACCTAAGC -ACGGAATCCTTCCACTACACTAGC -ACGGAATCCTTCCACTACAGATGC -ACGGAATCCTTCCACTACTGAAGG -ACGGAATCCTTCCACTACCAATGG -ACGGAATCCTTCCACTACATGAGG -ACGGAATCCTTCCACTACAATGGG -ACGGAATCCTTCCACTACTCCTGA -ACGGAATCCTTCCACTACTAGCGA -ACGGAATCCTTCCACTACCACAGA -ACGGAATCCTTCCACTACGCAAGA -ACGGAATCCTTCCACTACGGTTGA -ACGGAATCCTTCCACTACTCCGAT -ACGGAATCCTTCCACTACTGGCAT -ACGGAATCCTTCCACTACCGAGAT -ACGGAATCCTTCCACTACTACCAC -ACGGAATCCTTCCACTACCAGAAC -ACGGAATCCTTCCACTACGTCTAC -ACGGAATCCTTCCACTACACGTAC -ACGGAATCCTTCCACTACAGTGAC -ACGGAATCCTTCCACTACCTGTAG -ACGGAATCCTTCCACTACCCTAAG -ACGGAATCCTTCCACTACGTTCAG -ACGGAATCCTTCCACTACGCATAG -ACGGAATCCTTCCACTACGACAAG -ACGGAATCCTTCCACTACAAGCAG -ACGGAATCCTTCCACTACCGTCAA -ACGGAATCCTTCCACTACGCTGAA -ACGGAATCCTTCCACTACAGTACG -ACGGAATCCTTCCACTACATCCGA -ACGGAATCCTTCCACTACATGGGA -ACGGAATCCTTCCACTACGTGCAA -ACGGAATCCTTCCACTACGAGGAA -ACGGAATCCTTCCACTACCAGGTA -ACGGAATCCTTCCACTACGACTCT -ACGGAATCCTTCCACTACAGTCCT -ACGGAATCCTTCCACTACTAAGCC -ACGGAATCCTTCCACTACATAGCC -ACGGAATCCTTCCACTACTAACCG -ACGGAATCCTTCCACTACATGCCA -ACGGAATCCTTCAACCAGGGAAAC -ACGGAATCCTTCAACCAGAACACC -ACGGAATCCTTCAACCAGATCGAG -ACGGAATCCTTCAACCAGCTCCTT -ACGGAATCCTTCAACCAGCCTGTT -ACGGAATCCTTCAACCAGCGGTTT -ACGGAATCCTTCAACCAGGTGGTT -ACGGAATCCTTCAACCAGGCCTTT -ACGGAATCCTTCAACCAGGGTCTT -ACGGAATCCTTCAACCAGACGCTT -ACGGAATCCTTCAACCAGAGCGTT -ACGGAATCCTTCAACCAGTTCGTC -ACGGAATCCTTCAACCAGTCTCTC -ACGGAATCCTTCAACCAGTGGATC -ACGGAATCCTTCAACCAGCACTTC -ACGGAATCCTTCAACCAGGTACTC -ACGGAATCCTTCAACCAGGATGTC -ACGGAATCCTTCAACCAGACAGTC -ACGGAATCCTTCAACCAGTTGCTG -ACGGAATCCTTCAACCAGTCCATG -ACGGAATCCTTCAACCAGTGTGTG -ACGGAATCCTTCAACCAGCTAGTG -ACGGAATCCTTCAACCAGCATCTG -ACGGAATCCTTCAACCAGGAGTTG -ACGGAATCCTTCAACCAGAGACTG -ACGGAATCCTTCAACCAGTCGGTA -ACGGAATCCTTCAACCAGTGCCTA -ACGGAATCCTTCAACCAGCCACTA -ACGGAATCCTTCAACCAGGGAGTA -ACGGAATCCTTCAACCAGTCGTCT -ACGGAATCCTTCAACCAGTGCACT -ACGGAATCCTTCAACCAGCTGACT -ACGGAATCCTTCAACCAGCAACCT -ACGGAATCCTTCAACCAGGCTACT -ACGGAATCCTTCAACCAGGGATCT -ACGGAATCCTTCAACCAGAAGGCT -ACGGAATCCTTCAACCAGTCAACC -ACGGAATCCTTCAACCAGTGTTCC -ACGGAATCCTTCAACCAGATTCCC -ACGGAATCCTTCAACCAGTTCTCG -ACGGAATCCTTCAACCAGTAGACG -ACGGAATCCTTCAACCAGGTAACG -ACGGAATCCTTCAACCAGACTTCG -ACGGAATCCTTCAACCAGTACGCA -ACGGAATCCTTCAACCAGCTTGCA -ACGGAATCCTTCAACCAGCGAACA -ACGGAATCCTTCAACCAGCAGTCA -ACGGAATCCTTCAACCAGGATCCA -ACGGAATCCTTCAACCAGACGACA -ACGGAATCCTTCAACCAGAGCTCA -ACGGAATCCTTCAACCAGTCACGT -ACGGAATCCTTCAACCAGCGTAGT -ACGGAATCCTTCAACCAGGTCAGT -ACGGAATCCTTCAACCAGGAAGGT -ACGGAATCCTTCAACCAGAACCGT -ACGGAATCCTTCAACCAGTTGTGC -ACGGAATCCTTCAACCAGCTAAGC -ACGGAATCCTTCAACCAGACTAGC -ACGGAATCCTTCAACCAGAGATGC -ACGGAATCCTTCAACCAGTGAAGG -ACGGAATCCTTCAACCAGCAATGG -ACGGAATCCTTCAACCAGATGAGG -ACGGAATCCTTCAACCAGAATGGG -ACGGAATCCTTCAACCAGTCCTGA -ACGGAATCCTTCAACCAGTAGCGA -ACGGAATCCTTCAACCAGCACAGA -ACGGAATCCTTCAACCAGGCAAGA -ACGGAATCCTTCAACCAGGGTTGA -ACGGAATCCTTCAACCAGTCCGAT -ACGGAATCCTTCAACCAGTGGCAT -ACGGAATCCTTCAACCAGCGAGAT -ACGGAATCCTTCAACCAGTACCAC -ACGGAATCCTTCAACCAGCAGAAC -ACGGAATCCTTCAACCAGGTCTAC -ACGGAATCCTTCAACCAGACGTAC -ACGGAATCCTTCAACCAGAGTGAC -ACGGAATCCTTCAACCAGCTGTAG -ACGGAATCCTTCAACCAGCCTAAG -ACGGAATCCTTCAACCAGGTTCAG -ACGGAATCCTTCAACCAGGCATAG -ACGGAATCCTTCAACCAGGACAAG -ACGGAATCCTTCAACCAGAAGCAG -ACGGAATCCTTCAACCAGCGTCAA -ACGGAATCCTTCAACCAGGCTGAA -ACGGAATCCTTCAACCAGAGTACG -ACGGAATCCTTCAACCAGATCCGA -ACGGAATCCTTCAACCAGATGGGA -ACGGAATCCTTCAACCAGGTGCAA -ACGGAATCCTTCAACCAGGAGGAA -ACGGAATCCTTCAACCAGCAGGTA -ACGGAATCCTTCAACCAGGACTCT -ACGGAATCCTTCAACCAGAGTCCT -ACGGAATCCTTCAACCAGTAAGCC -ACGGAATCCTTCAACCAGATAGCC -ACGGAATCCTTCAACCAGTAACCG -ACGGAATCCTTCAACCAGATGCCA -ACGGAATCCTTCTACGTCGGAAAC -ACGGAATCCTTCTACGTCAACACC -ACGGAATCCTTCTACGTCATCGAG -ACGGAATCCTTCTACGTCCTCCTT -ACGGAATCCTTCTACGTCCCTGTT -ACGGAATCCTTCTACGTCCGGTTT -ACGGAATCCTTCTACGTCGTGGTT -ACGGAATCCTTCTACGTCGCCTTT -ACGGAATCCTTCTACGTCGGTCTT -ACGGAATCCTTCTACGTCACGCTT -ACGGAATCCTTCTACGTCAGCGTT -ACGGAATCCTTCTACGTCTTCGTC -ACGGAATCCTTCTACGTCTCTCTC -ACGGAATCCTTCTACGTCTGGATC -ACGGAATCCTTCTACGTCCACTTC -ACGGAATCCTTCTACGTCGTACTC -ACGGAATCCTTCTACGTCGATGTC -ACGGAATCCTTCTACGTCACAGTC -ACGGAATCCTTCTACGTCTTGCTG -ACGGAATCCTTCTACGTCTCCATG -ACGGAATCCTTCTACGTCTGTGTG -ACGGAATCCTTCTACGTCCTAGTG -ACGGAATCCTTCTACGTCCATCTG -ACGGAATCCTTCTACGTCGAGTTG -ACGGAATCCTTCTACGTCAGACTG -ACGGAATCCTTCTACGTCTCGGTA -ACGGAATCCTTCTACGTCTGCCTA -ACGGAATCCTTCTACGTCCCACTA -ACGGAATCCTTCTACGTCGGAGTA -ACGGAATCCTTCTACGTCTCGTCT -ACGGAATCCTTCTACGTCTGCACT -ACGGAATCCTTCTACGTCCTGACT -ACGGAATCCTTCTACGTCCAACCT -ACGGAATCCTTCTACGTCGCTACT -ACGGAATCCTTCTACGTCGGATCT -ACGGAATCCTTCTACGTCAAGGCT -ACGGAATCCTTCTACGTCTCAACC -ACGGAATCCTTCTACGTCTGTTCC -ACGGAATCCTTCTACGTCATTCCC -ACGGAATCCTTCTACGTCTTCTCG -ACGGAATCCTTCTACGTCTAGACG -ACGGAATCCTTCTACGTCGTAACG -ACGGAATCCTTCTACGTCACTTCG -ACGGAATCCTTCTACGTCTACGCA -ACGGAATCCTTCTACGTCCTTGCA -ACGGAATCCTTCTACGTCCGAACA -ACGGAATCCTTCTACGTCCAGTCA -ACGGAATCCTTCTACGTCGATCCA -ACGGAATCCTTCTACGTCACGACA -ACGGAATCCTTCTACGTCAGCTCA -ACGGAATCCTTCTACGTCTCACGT -ACGGAATCCTTCTACGTCCGTAGT -ACGGAATCCTTCTACGTCGTCAGT -ACGGAATCCTTCTACGTCGAAGGT -ACGGAATCCTTCTACGTCAACCGT -ACGGAATCCTTCTACGTCTTGTGC -ACGGAATCCTTCTACGTCCTAAGC -ACGGAATCCTTCTACGTCACTAGC -ACGGAATCCTTCTACGTCAGATGC -ACGGAATCCTTCTACGTCTGAAGG -ACGGAATCCTTCTACGTCCAATGG -ACGGAATCCTTCTACGTCATGAGG -ACGGAATCCTTCTACGTCAATGGG -ACGGAATCCTTCTACGTCTCCTGA -ACGGAATCCTTCTACGTCTAGCGA -ACGGAATCCTTCTACGTCCACAGA -ACGGAATCCTTCTACGTCGCAAGA -ACGGAATCCTTCTACGTCGGTTGA -ACGGAATCCTTCTACGTCTCCGAT -ACGGAATCCTTCTACGTCTGGCAT -ACGGAATCCTTCTACGTCCGAGAT -ACGGAATCCTTCTACGTCTACCAC -ACGGAATCCTTCTACGTCCAGAAC -ACGGAATCCTTCTACGTCGTCTAC -ACGGAATCCTTCTACGTCACGTAC -ACGGAATCCTTCTACGTCAGTGAC -ACGGAATCCTTCTACGTCCTGTAG -ACGGAATCCTTCTACGTCCCTAAG -ACGGAATCCTTCTACGTCGTTCAG -ACGGAATCCTTCTACGTCGCATAG -ACGGAATCCTTCTACGTCGACAAG -ACGGAATCCTTCTACGTCAAGCAG -ACGGAATCCTTCTACGTCCGTCAA -ACGGAATCCTTCTACGTCGCTGAA -ACGGAATCCTTCTACGTCAGTACG -ACGGAATCCTTCTACGTCATCCGA -ACGGAATCCTTCTACGTCATGGGA -ACGGAATCCTTCTACGTCGTGCAA -ACGGAATCCTTCTACGTCGAGGAA -ACGGAATCCTTCTACGTCCAGGTA -ACGGAATCCTTCTACGTCGACTCT -ACGGAATCCTTCTACGTCAGTCCT -ACGGAATCCTTCTACGTCTAAGCC -ACGGAATCCTTCTACGTCATAGCC -ACGGAATCCTTCTACGTCTAACCG -ACGGAATCCTTCTACGTCATGCCA -ACGGAATCCTTCTACACGGGAAAC -ACGGAATCCTTCTACACGAACACC -ACGGAATCCTTCTACACGATCGAG -ACGGAATCCTTCTACACGCTCCTT -ACGGAATCCTTCTACACGCCTGTT -ACGGAATCCTTCTACACGCGGTTT -ACGGAATCCTTCTACACGGTGGTT -ACGGAATCCTTCTACACGGCCTTT -ACGGAATCCTTCTACACGGGTCTT -ACGGAATCCTTCTACACGACGCTT -ACGGAATCCTTCTACACGAGCGTT -ACGGAATCCTTCTACACGTTCGTC -ACGGAATCCTTCTACACGTCTCTC -ACGGAATCCTTCTACACGTGGATC -ACGGAATCCTTCTACACGCACTTC -ACGGAATCCTTCTACACGGTACTC -ACGGAATCCTTCTACACGGATGTC -ACGGAATCCTTCTACACGACAGTC -ACGGAATCCTTCTACACGTTGCTG -ACGGAATCCTTCTACACGTCCATG -ACGGAATCCTTCTACACGTGTGTG -ACGGAATCCTTCTACACGCTAGTG -ACGGAATCCTTCTACACGCATCTG -ACGGAATCCTTCTACACGGAGTTG -ACGGAATCCTTCTACACGAGACTG -ACGGAATCCTTCTACACGTCGGTA -ACGGAATCCTTCTACACGTGCCTA -ACGGAATCCTTCTACACGCCACTA -ACGGAATCCTTCTACACGGGAGTA -ACGGAATCCTTCTACACGTCGTCT -ACGGAATCCTTCTACACGTGCACT -ACGGAATCCTTCTACACGCTGACT -ACGGAATCCTTCTACACGCAACCT -ACGGAATCCTTCTACACGGCTACT -ACGGAATCCTTCTACACGGGATCT -ACGGAATCCTTCTACACGAAGGCT -ACGGAATCCTTCTACACGTCAACC -ACGGAATCCTTCTACACGTGTTCC -ACGGAATCCTTCTACACGATTCCC -ACGGAATCCTTCTACACGTTCTCG -ACGGAATCCTTCTACACGTAGACG -ACGGAATCCTTCTACACGGTAACG -ACGGAATCCTTCTACACGACTTCG -ACGGAATCCTTCTACACGTACGCA -ACGGAATCCTTCTACACGCTTGCA -ACGGAATCCTTCTACACGCGAACA -ACGGAATCCTTCTACACGCAGTCA -ACGGAATCCTTCTACACGGATCCA -ACGGAATCCTTCTACACGACGACA -ACGGAATCCTTCTACACGAGCTCA -ACGGAATCCTTCTACACGTCACGT -ACGGAATCCTTCTACACGCGTAGT -ACGGAATCCTTCTACACGGTCAGT -ACGGAATCCTTCTACACGGAAGGT -ACGGAATCCTTCTACACGAACCGT -ACGGAATCCTTCTACACGTTGTGC -ACGGAATCCTTCTACACGCTAAGC -ACGGAATCCTTCTACACGACTAGC -ACGGAATCCTTCTACACGAGATGC -ACGGAATCCTTCTACACGTGAAGG -ACGGAATCCTTCTACACGCAATGG -ACGGAATCCTTCTACACGATGAGG -ACGGAATCCTTCTACACGAATGGG -ACGGAATCCTTCTACACGTCCTGA -ACGGAATCCTTCTACACGTAGCGA -ACGGAATCCTTCTACACGCACAGA -ACGGAATCCTTCTACACGGCAAGA -ACGGAATCCTTCTACACGGGTTGA -ACGGAATCCTTCTACACGTCCGAT -ACGGAATCCTTCTACACGTGGCAT -ACGGAATCCTTCTACACGCGAGAT -ACGGAATCCTTCTACACGTACCAC -ACGGAATCCTTCTACACGCAGAAC -ACGGAATCCTTCTACACGGTCTAC -ACGGAATCCTTCTACACGACGTAC -ACGGAATCCTTCTACACGAGTGAC -ACGGAATCCTTCTACACGCTGTAG -ACGGAATCCTTCTACACGCCTAAG -ACGGAATCCTTCTACACGGTTCAG -ACGGAATCCTTCTACACGGCATAG -ACGGAATCCTTCTACACGGACAAG -ACGGAATCCTTCTACACGAAGCAG -ACGGAATCCTTCTACACGCGTCAA -ACGGAATCCTTCTACACGGCTGAA -ACGGAATCCTTCTACACGAGTACG -ACGGAATCCTTCTACACGATCCGA -ACGGAATCCTTCTACACGATGGGA -ACGGAATCCTTCTACACGGTGCAA -ACGGAATCCTTCTACACGGAGGAA -ACGGAATCCTTCTACACGCAGGTA -ACGGAATCCTTCTACACGGACTCT -ACGGAATCCTTCTACACGAGTCCT -ACGGAATCCTTCTACACGTAAGCC -ACGGAATCCTTCTACACGATAGCC -ACGGAATCCTTCTACACGTAACCG -ACGGAATCCTTCTACACGATGCCA -ACGGAATCCTTCGACAGTGGAAAC -ACGGAATCCTTCGACAGTAACACC -ACGGAATCCTTCGACAGTATCGAG -ACGGAATCCTTCGACAGTCTCCTT -ACGGAATCCTTCGACAGTCCTGTT -ACGGAATCCTTCGACAGTCGGTTT -ACGGAATCCTTCGACAGTGTGGTT -ACGGAATCCTTCGACAGTGCCTTT -ACGGAATCCTTCGACAGTGGTCTT -ACGGAATCCTTCGACAGTACGCTT -ACGGAATCCTTCGACAGTAGCGTT -ACGGAATCCTTCGACAGTTTCGTC -ACGGAATCCTTCGACAGTTCTCTC -ACGGAATCCTTCGACAGTTGGATC -ACGGAATCCTTCGACAGTCACTTC -ACGGAATCCTTCGACAGTGTACTC -ACGGAATCCTTCGACAGTGATGTC -ACGGAATCCTTCGACAGTACAGTC -ACGGAATCCTTCGACAGTTTGCTG -ACGGAATCCTTCGACAGTTCCATG -ACGGAATCCTTCGACAGTTGTGTG -ACGGAATCCTTCGACAGTCTAGTG -ACGGAATCCTTCGACAGTCATCTG -ACGGAATCCTTCGACAGTGAGTTG -ACGGAATCCTTCGACAGTAGACTG -ACGGAATCCTTCGACAGTTCGGTA -ACGGAATCCTTCGACAGTTGCCTA -ACGGAATCCTTCGACAGTCCACTA -ACGGAATCCTTCGACAGTGGAGTA -ACGGAATCCTTCGACAGTTCGTCT -ACGGAATCCTTCGACAGTTGCACT -ACGGAATCCTTCGACAGTCTGACT -ACGGAATCCTTCGACAGTCAACCT -ACGGAATCCTTCGACAGTGCTACT -ACGGAATCCTTCGACAGTGGATCT -ACGGAATCCTTCGACAGTAAGGCT -ACGGAATCCTTCGACAGTTCAACC -ACGGAATCCTTCGACAGTTGTTCC -ACGGAATCCTTCGACAGTATTCCC -ACGGAATCCTTCGACAGTTTCTCG -ACGGAATCCTTCGACAGTTAGACG -ACGGAATCCTTCGACAGTGTAACG -ACGGAATCCTTCGACAGTACTTCG -ACGGAATCCTTCGACAGTTACGCA -ACGGAATCCTTCGACAGTCTTGCA -ACGGAATCCTTCGACAGTCGAACA -ACGGAATCCTTCGACAGTCAGTCA -ACGGAATCCTTCGACAGTGATCCA -ACGGAATCCTTCGACAGTACGACA -ACGGAATCCTTCGACAGTAGCTCA -ACGGAATCCTTCGACAGTTCACGT -ACGGAATCCTTCGACAGTCGTAGT -ACGGAATCCTTCGACAGTGTCAGT -ACGGAATCCTTCGACAGTGAAGGT -ACGGAATCCTTCGACAGTAACCGT -ACGGAATCCTTCGACAGTTTGTGC -ACGGAATCCTTCGACAGTCTAAGC -ACGGAATCCTTCGACAGTACTAGC -ACGGAATCCTTCGACAGTAGATGC -ACGGAATCCTTCGACAGTTGAAGG -ACGGAATCCTTCGACAGTCAATGG -ACGGAATCCTTCGACAGTATGAGG -ACGGAATCCTTCGACAGTAATGGG -ACGGAATCCTTCGACAGTTCCTGA -ACGGAATCCTTCGACAGTTAGCGA -ACGGAATCCTTCGACAGTCACAGA -ACGGAATCCTTCGACAGTGCAAGA -ACGGAATCCTTCGACAGTGGTTGA -ACGGAATCCTTCGACAGTTCCGAT -ACGGAATCCTTCGACAGTTGGCAT -ACGGAATCCTTCGACAGTCGAGAT -ACGGAATCCTTCGACAGTTACCAC -ACGGAATCCTTCGACAGTCAGAAC -ACGGAATCCTTCGACAGTGTCTAC -ACGGAATCCTTCGACAGTACGTAC -ACGGAATCCTTCGACAGTAGTGAC -ACGGAATCCTTCGACAGTCTGTAG -ACGGAATCCTTCGACAGTCCTAAG -ACGGAATCCTTCGACAGTGTTCAG -ACGGAATCCTTCGACAGTGCATAG -ACGGAATCCTTCGACAGTGACAAG -ACGGAATCCTTCGACAGTAAGCAG -ACGGAATCCTTCGACAGTCGTCAA -ACGGAATCCTTCGACAGTGCTGAA -ACGGAATCCTTCGACAGTAGTACG -ACGGAATCCTTCGACAGTATCCGA -ACGGAATCCTTCGACAGTATGGGA -ACGGAATCCTTCGACAGTGTGCAA -ACGGAATCCTTCGACAGTGAGGAA -ACGGAATCCTTCGACAGTCAGGTA -ACGGAATCCTTCGACAGTGACTCT -ACGGAATCCTTCGACAGTAGTCCT -ACGGAATCCTTCGACAGTTAAGCC -ACGGAATCCTTCGACAGTATAGCC -ACGGAATCCTTCGACAGTTAACCG -ACGGAATCCTTCGACAGTATGCCA -ACGGAATCCTTCTAGCTGGGAAAC -ACGGAATCCTTCTAGCTGAACACC -ACGGAATCCTTCTAGCTGATCGAG -ACGGAATCCTTCTAGCTGCTCCTT -ACGGAATCCTTCTAGCTGCCTGTT -ACGGAATCCTTCTAGCTGCGGTTT -ACGGAATCCTTCTAGCTGGTGGTT -ACGGAATCCTTCTAGCTGGCCTTT -ACGGAATCCTTCTAGCTGGGTCTT -ACGGAATCCTTCTAGCTGACGCTT -ACGGAATCCTTCTAGCTGAGCGTT -ACGGAATCCTTCTAGCTGTTCGTC -ACGGAATCCTTCTAGCTGTCTCTC -ACGGAATCCTTCTAGCTGTGGATC -ACGGAATCCTTCTAGCTGCACTTC -ACGGAATCCTTCTAGCTGGTACTC -ACGGAATCCTTCTAGCTGGATGTC -ACGGAATCCTTCTAGCTGACAGTC -ACGGAATCCTTCTAGCTGTTGCTG -ACGGAATCCTTCTAGCTGTCCATG -ACGGAATCCTTCTAGCTGTGTGTG -ACGGAATCCTTCTAGCTGCTAGTG -ACGGAATCCTTCTAGCTGCATCTG -ACGGAATCCTTCTAGCTGGAGTTG -ACGGAATCCTTCTAGCTGAGACTG -ACGGAATCCTTCTAGCTGTCGGTA -ACGGAATCCTTCTAGCTGTGCCTA -ACGGAATCCTTCTAGCTGCCACTA -ACGGAATCCTTCTAGCTGGGAGTA -ACGGAATCCTTCTAGCTGTCGTCT -ACGGAATCCTTCTAGCTGTGCACT -ACGGAATCCTTCTAGCTGCTGACT -ACGGAATCCTTCTAGCTGCAACCT -ACGGAATCCTTCTAGCTGGCTACT -ACGGAATCCTTCTAGCTGGGATCT -ACGGAATCCTTCTAGCTGAAGGCT -ACGGAATCCTTCTAGCTGTCAACC -ACGGAATCCTTCTAGCTGTGTTCC -ACGGAATCCTTCTAGCTGATTCCC -ACGGAATCCTTCTAGCTGTTCTCG -ACGGAATCCTTCTAGCTGTAGACG -ACGGAATCCTTCTAGCTGGTAACG -ACGGAATCCTTCTAGCTGACTTCG -ACGGAATCCTTCTAGCTGTACGCA -ACGGAATCCTTCTAGCTGCTTGCA -ACGGAATCCTTCTAGCTGCGAACA -ACGGAATCCTTCTAGCTGCAGTCA -ACGGAATCCTTCTAGCTGGATCCA -ACGGAATCCTTCTAGCTGACGACA -ACGGAATCCTTCTAGCTGAGCTCA -ACGGAATCCTTCTAGCTGTCACGT -ACGGAATCCTTCTAGCTGCGTAGT -ACGGAATCCTTCTAGCTGGTCAGT -ACGGAATCCTTCTAGCTGGAAGGT -ACGGAATCCTTCTAGCTGAACCGT -ACGGAATCCTTCTAGCTGTTGTGC -ACGGAATCCTTCTAGCTGCTAAGC -ACGGAATCCTTCTAGCTGACTAGC -ACGGAATCCTTCTAGCTGAGATGC -ACGGAATCCTTCTAGCTGTGAAGG -ACGGAATCCTTCTAGCTGCAATGG -ACGGAATCCTTCTAGCTGATGAGG -ACGGAATCCTTCTAGCTGAATGGG -ACGGAATCCTTCTAGCTGTCCTGA -ACGGAATCCTTCTAGCTGTAGCGA -ACGGAATCCTTCTAGCTGCACAGA -ACGGAATCCTTCTAGCTGGCAAGA -ACGGAATCCTTCTAGCTGGGTTGA -ACGGAATCCTTCTAGCTGTCCGAT -ACGGAATCCTTCTAGCTGTGGCAT -ACGGAATCCTTCTAGCTGCGAGAT -ACGGAATCCTTCTAGCTGTACCAC -ACGGAATCCTTCTAGCTGCAGAAC -ACGGAATCCTTCTAGCTGGTCTAC -ACGGAATCCTTCTAGCTGACGTAC -ACGGAATCCTTCTAGCTGAGTGAC -ACGGAATCCTTCTAGCTGCTGTAG -ACGGAATCCTTCTAGCTGCCTAAG -ACGGAATCCTTCTAGCTGGTTCAG -ACGGAATCCTTCTAGCTGGCATAG -ACGGAATCCTTCTAGCTGGACAAG -ACGGAATCCTTCTAGCTGAAGCAG -ACGGAATCCTTCTAGCTGCGTCAA -ACGGAATCCTTCTAGCTGGCTGAA -ACGGAATCCTTCTAGCTGAGTACG -ACGGAATCCTTCTAGCTGATCCGA -ACGGAATCCTTCTAGCTGATGGGA -ACGGAATCCTTCTAGCTGGTGCAA -ACGGAATCCTTCTAGCTGGAGGAA -ACGGAATCCTTCTAGCTGCAGGTA -ACGGAATCCTTCTAGCTGGACTCT -ACGGAATCCTTCTAGCTGAGTCCT -ACGGAATCCTTCTAGCTGTAAGCC -ACGGAATCCTTCTAGCTGATAGCC -ACGGAATCCTTCTAGCTGTAACCG -ACGGAATCCTTCTAGCTGATGCCA -ACGGAATCCTTCAAGCCTGGAAAC -ACGGAATCCTTCAAGCCTAACACC -ACGGAATCCTTCAAGCCTATCGAG -ACGGAATCCTTCAAGCCTCTCCTT -ACGGAATCCTTCAAGCCTCCTGTT -ACGGAATCCTTCAAGCCTCGGTTT -ACGGAATCCTTCAAGCCTGTGGTT -ACGGAATCCTTCAAGCCTGCCTTT -ACGGAATCCTTCAAGCCTGGTCTT -ACGGAATCCTTCAAGCCTACGCTT -ACGGAATCCTTCAAGCCTAGCGTT -ACGGAATCCTTCAAGCCTTTCGTC -ACGGAATCCTTCAAGCCTTCTCTC -ACGGAATCCTTCAAGCCTTGGATC -ACGGAATCCTTCAAGCCTCACTTC -ACGGAATCCTTCAAGCCTGTACTC -ACGGAATCCTTCAAGCCTGATGTC -ACGGAATCCTTCAAGCCTACAGTC -ACGGAATCCTTCAAGCCTTTGCTG -ACGGAATCCTTCAAGCCTTCCATG -ACGGAATCCTTCAAGCCTTGTGTG -ACGGAATCCTTCAAGCCTCTAGTG -ACGGAATCCTTCAAGCCTCATCTG -ACGGAATCCTTCAAGCCTGAGTTG -ACGGAATCCTTCAAGCCTAGACTG -ACGGAATCCTTCAAGCCTTCGGTA -ACGGAATCCTTCAAGCCTTGCCTA -ACGGAATCCTTCAAGCCTCCACTA -ACGGAATCCTTCAAGCCTGGAGTA -ACGGAATCCTTCAAGCCTTCGTCT -ACGGAATCCTTCAAGCCTTGCACT -ACGGAATCCTTCAAGCCTCTGACT -ACGGAATCCTTCAAGCCTCAACCT -ACGGAATCCTTCAAGCCTGCTACT -ACGGAATCCTTCAAGCCTGGATCT -ACGGAATCCTTCAAGCCTAAGGCT -ACGGAATCCTTCAAGCCTTCAACC -ACGGAATCCTTCAAGCCTTGTTCC -ACGGAATCCTTCAAGCCTATTCCC -ACGGAATCCTTCAAGCCTTTCTCG -ACGGAATCCTTCAAGCCTTAGACG -ACGGAATCCTTCAAGCCTGTAACG -ACGGAATCCTTCAAGCCTACTTCG -ACGGAATCCTTCAAGCCTTACGCA -ACGGAATCCTTCAAGCCTCTTGCA -ACGGAATCCTTCAAGCCTCGAACA -ACGGAATCCTTCAAGCCTCAGTCA -ACGGAATCCTTCAAGCCTGATCCA -ACGGAATCCTTCAAGCCTACGACA -ACGGAATCCTTCAAGCCTAGCTCA -ACGGAATCCTTCAAGCCTTCACGT -ACGGAATCCTTCAAGCCTCGTAGT -ACGGAATCCTTCAAGCCTGTCAGT -ACGGAATCCTTCAAGCCTGAAGGT -ACGGAATCCTTCAAGCCTAACCGT -ACGGAATCCTTCAAGCCTTTGTGC -ACGGAATCCTTCAAGCCTCTAAGC -ACGGAATCCTTCAAGCCTACTAGC -ACGGAATCCTTCAAGCCTAGATGC -ACGGAATCCTTCAAGCCTTGAAGG -ACGGAATCCTTCAAGCCTCAATGG -ACGGAATCCTTCAAGCCTATGAGG -ACGGAATCCTTCAAGCCTAATGGG -ACGGAATCCTTCAAGCCTTCCTGA -ACGGAATCCTTCAAGCCTTAGCGA -ACGGAATCCTTCAAGCCTCACAGA -ACGGAATCCTTCAAGCCTGCAAGA -ACGGAATCCTTCAAGCCTGGTTGA -ACGGAATCCTTCAAGCCTTCCGAT -ACGGAATCCTTCAAGCCTTGGCAT -ACGGAATCCTTCAAGCCTCGAGAT -ACGGAATCCTTCAAGCCTTACCAC -ACGGAATCCTTCAAGCCTCAGAAC -ACGGAATCCTTCAAGCCTGTCTAC -ACGGAATCCTTCAAGCCTACGTAC -ACGGAATCCTTCAAGCCTAGTGAC -ACGGAATCCTTCAAGCCTCTGTAG -ACGGAATCCTTCAAGCCTCCTAAG -ACGGAATCCTTCAAGCCTGTTCAG -ACGGAATCCTTCAAGCCTGCATAG -ACGGAATCCTTCAAGCCTGACAAG -ACGGAATCCTTCAAGCCTAAGCAG -ACGGAATCCTTCAAGCCTCGTCAA -ACGGAATCCTTCAAGCCTGCTGAA -ACGGAATCCTTCAAGCCTAGTACG -ACGGAATCCTTCAAGCCTATCCGA -ACGGAATCCTTCAAGCCTATGGGA -ACGGAATCCTTCAAGCCTGTGCAA -ACGGAATCCTTCAAGCCTGAGGAA -ACGGAATCCTTCAAGCCTCAGGTA -ACGGAATCCTTCAAGCCTGACTCT -ACGGAATCCTTCAAGCCTAGTCCT -ACGGAATCCTTCAAGCCTTAAGCC -ACGGAATCCTTCAAGCCTATAGCC -ACGGAATCCTTCAAGCCTTAACCG -ACGGAATCCTTCAAGCCTATGCCA -ACGGAATCCTTCCAGGTTGGAAAC -ACGGAATCCTTCCAGGTTAACACC -ACGGAATCCTTCCAGGTTATCGAG -ACGGAATCCTTCCAGGTTCTCCTT -ACGGAATCCTTCCAGGTTCCTGTT -ACGGAATCCTTCCAGGTTCGGTTT -ACGGAATCCTTCCAGGTTGTGGTT -ACGGAATCCTTCCAGGTTGCCTTT -ACGGAATCCTTCCAGGTTGGTCTT -ACGGAATCCTTCCAGGTTACGCTT -ACGGAATCCTTCCAGGTTAGCGTT -ACGGAATCCTTCCAGGTTTTCGTC -ACGGAATCCTTCCAGGTTTCTCTC -ACGGAATCCTTCCAGGTTTGGATC -ACGGAATCCTTCCAGGTTCACTTC -ACGGAATCCTTCCAGGTTGTACTC -ACGGAATCCTTCCAGGTTGATGTC -ACGGAATCCTTCCAGGTTACAGTC -ACGGAATCCTTCCAGGTTTTGCTG -ACGGAATCCTTCCAGGTTTCCATG -ACGGAATCCTTCCAGGTTTGTGTG -ACGGAATCCTTCCAGGTTCTAGTG -ACGGAATCCTTCCAGGTTCATCTG -ACGGAATCCTTCCAGGTTGAGTTG -ACGGAATCCTTCCAGGTTAGACTG -ACGGAATCCTTCCAGGTTTCGGTA -ACGGAATCCTTCCAGGTTTGCCTA -ACGGAATCCTTCCAGGTTCCACTA -ACGGAATCCTTCCAGGTTGGAGTA -ACGGAATCCTTCCAGGTTTCGTCT -ACGGAATCCTTCCAGGTTTGCACT -ACGGAATCCTTCCAGGTTCTGACT -ACGGAATCCTTCCAGGTTCAACCT -ACGGAATCCTTCCAGGTTGCTACT -ACGGAATCCTTCCAGGTTGGATCT -ACGGAATCCTTCCAGGTTAAGGCT -ACGGAATCCTTCCAGGTTTCAACC -ACGGAATCCTTCCAGGTTTGTTCC -ACGGAATCCTTCCAGGTTATTCCC -ACGGAATCCTTCCAGGTTTTCTCG -ACGGAATCCTTCCAGGTTTAGACG -ACGGAATCCTTCCAGGTTGTAACG -ACGGAATCCTTCCAGGTTACTTCG -ACGGAATCCTTCCAGGTTTACGCA -ACGGAATCCTTCCAGGTTCTTGCA -ACGGAATCCTTCCAGGTTCGAACA -ACGGAATCCTTCCAGGTTCAGTCA -ACGGAATCCTTCCAGGTTGATCCA -ACGGAATCCTTCCAGGTTACGACA -ACGGAATCCTTCCAGGTTAGCTCA -ACGGAATCCTTCCAGGTTTCACGT -ACGGAATCCTTCCAGGTTCGTAGT -ACGGAATCCTTCCAGGTTGTCAGT -ACGGAATCCTTCCAGGTTGAAGGT -ACGGAATCCTTCCAGGTTAACCGT -ACGGAATCCTTCCAGGTTTTGTGC -ACGGAATCCTTCCAGGTTCTAAGC -ACGGAATCCTTCCAGGTTACTAGC -ACGGAATCCTTCCAGGTTAGATGC -ACGGAATCCTTCCAGGTTTGAAGG -ACGGAATCCTTCCAGGTTCAATGG -ACGGAATCCTTCCAGGTTATGAGG -ACGGAATCCTTCCAGGTTAATGGG -ACGGAATCCTTCCAGGTTTCCTGA -ACGGAATCCTTCCAGGTTTAGCGA -ACGGAATCCTTCCAGGTTCACAGA -ACGGAATCCTTCCAGGTTGCAAGA -ACGGAATCCTTCCAGGTTGGTTGA -ACGGAATCCTTCCAGGTTTCCGAT -ACGGAATCCTTCCAGGTTTGGCAT -ACGGAATCCTTCCAGGTTCGAGAT -ACGGAATCCTTCCAGGTTTACCAC -ACGGAATCCTTCCAGGTTCAGAAC -ACGGAATCCTTCCAGGTTGTCTAC -ACGGAATCCTTCCAGGTTACGTAC -ACGGAATCCTTCCAGGTTAGTGAC -ACGGAATCCTTCCAGGTTCTGTAG -ACGGAATCCTTCCAGGTTCCTAAG -ACGGAATCCTTCCAGGTTGTTCAG -ACGGAATCCTTCCAGGTTGCATAG -ACGGAATCCTTCCAGGTTGACAAG -ACGGAATCCTTCCAGGTTAAGCAG -ACGGAATCCTTCCAGGTTCGTCAA -ACGGAATCCTTCCAGGTTGCTGAA -ACGGAATCCTTCCAGGTTAGTACG -ACGGAATCCTTCCAGGTTATCCGA -ACGGAATCCTTCCAGGTTATGGGA -ACGGAATCCTTCCAGGTTGTGCAA -ACGGAATCCTTCCAGGTTGAGGAA -ACGGAATCCTTCCAGGTTCAGGTA -ACGGAATCCTTCCAGGTTGACTCT -ACGGAATCCTTCCAGGTTAGTCCT -ACGGAATCCTTCCAGGTTTAAGCC -ACGGAATCCTTCCAGGTTATAGCC -ACGGAATCCTTCCAGGTTTAACCG -ACGGAATCCTTCCAGGTTATGCCA -ACGGAATCCTTCTAGGCAGGAAAC -ACGGAATCCTTCTAGGCAAACACC -ACGGAATCCTTCTAGGCAATCGAG -ACGGAATCCTTCTAGGCACTCCTT -ACGGAATCCTTCTAGGCACCTGTT -ACGGAATCCTTCTAGGCACGGTTT -ACGGAATCCTTCTAGGCAGTGGTT -ACGGAATCCTTCTAGGCAGCCTTT -ACGGAATCCTTCTAGGCAGGTCTT -ACGGAATCCTTCTAGGCAACGCTT -ACGGAATCCTTCTAGGCAAGCGTT -ACGGAATCCTTCTAGGCATTCGTC -ACGGAATCCTTCTAGGCATCTCTC -ACGGAATCCTTCTAGGCATGGATC -ACGGAATCCTTCTAGGCACACTTC -ACGGAATCCTTCTAGGCAGTACTC -ACGGAATCCTTCTAGGCAGATGTC -ACGGAATCCTTCTAGGCAACAGTC -ACGGAATCCTTCTAGGCATTGCTG -ACGGAATCCTTCTAGGCATCCATG -ACGGAATCCTTCTAGGCATGTGTG -ACGGAATCCTTCTAGGCACTAGTG -ACGGAATCCTTCTAGGCACATCTG -ACGGAATCCTTCTAGGCAGAGTTG -ACGGAATCCTTCTAGGCAAGACTG -ACGGAATCCTTCTAGGCATCGGTA -ACGGAATCCTTCTAGGCATGCCTA -ACGGAATCCTTCTAGGCACCACTA -ACGGAATCCTTCTAGGCAGGAGTA -ACGGAATCCTTCTAGGCATCGTCT -ACGGAATCCTTCTAGGCATGCACT -ACGGAATCCTTCTAGGCACTGACT -ACGGAATCCTTCTAGGCACAACCT -ACGGAATCCTTCTAGGCAGCTACT -ACGGAATCCTTCTAGGCAGGATCT -ACGGAATCCTTCTAGGCAAAGGCT -ACGGAATCCTTCTAGGCATCAACC -ACGGAATCCTTCTAGGCATGTTCC -ACGGAATCCTTCTAGGCAATTCCC -ACGGAATCCTTCTAGGCATTCTCG -ACGGAATCCTTCTAGGCATAGACG -ACGGAATCCTTCTAGGCAGTAACG -ACGGAATCCTTCTAGGCAACTTCG -ACGGAATCCTTCTAGGCATACGCA -ACGGAATCCTTCTAGGCACTTGCA -ACGGAATCCTTCTAGGCACGAACA -ACGGAATCCTTCTAGGCACAGTCA -ACGGAATCCTTCTAGGCAGATCCA -ACGGAATCCTTCTAGGCAACGACA -ACGGAATCCTTCTAGGCAAGCTCA -ACGGAATCCTTCTAGGCATCACGT -ACGGAATCCTTCTAGGCACGTAGT -ACGGAATCCTTCTAGGCAGTCAGT -ACGGAATCCTTCTAGGCAGAAGGT -ACGGAATCCTTCTAGGCAAACCGT -ACGGAATCCTTCTAGGCATTGTGC -ACGGAATCCTTCTAGGCACTAAGC -ACGGAATCCTTCTAGGCAACTAGC -ACGGAATCCTTCTAGGCAAGATGC -ACGGAATCCTTCTAGGCATGAAGG -ACGGAATCCTTCTAGGCACAATGG -ACGGAATCCTTCTAGGCAATGAGG -ACGGAATCCTTCTAGGCAAATGGG -ACGGAATCCTTCTAGGCATCCTGA -ACGGAATCCTTCTAGGCATAGCGA -ACGGAATCCTTCTAGGCACACAGA -ACGGAATCCTTCTAGGCAGCAAGA -ACGGAATCCTTCTAGGCAGGTTGA -ACGGAATCCTTCTAGGCATCCGAT -ACGGAATCCTTCTAGGCATGGCAT -ACGGAATCCTTCTAGGCACGAGAT -ACGGAATCCTTCTAGGCATACCAC -ACGGAATCCTTCTAGGCACAGAAC -ACGGAATCCTTCTAGGCAGTCTAC -ACGGAATCCTTCTAGGCAACGTAC -ACGGAATCCTTCTAGGCAAGTGAC -ACGGAATCCTTCTAGGCACTGTAG -ACGGAATCCTTCTAGGCACCTAAG -ACGGAATCCTTCTAGGCAGTTCAG -ACGGAATCCTTCTAGGCAGCATAG -ACGGAATCCTTCTAGGCAGACAAG -ACGGAATCCTTCTAGGCAAAGCAG -ACGGAATCCTTCTAGGCACGTCAA -ACGGAATCCTTCTAGGCAGCTGAA -ACGGAATCCTTCTAGGCAAGTACG -ACGGAATCCTTCTAGGCAATCCGA -ACGGAATCCTTCTAGGCAATGGGA -ACGGAATCCTTCTAGGCAGTGCAA -ACGGAATCCTTCTAGGCAGAGGAA -ACGGAATCCTTCTAGGCACAGGTA -ACGGAATCCTTCTAGGCAGACTCT -ACGGAATCCTTCTAGGCAAGTCCT -ACGGAATCCTTCTAGGCATAAGCC -ACGGAATCCTTCTAGGCAATAGCC -ACGGAATCCTTCTAGGCATAACCG -ACGGAATCCTTCTAGGCAATGCCA -ACGGAATCCTTCAAGGACGGAAAC -ACGGAATCCTTCAAGGACAACACC -ACGGAATCCTTCAAGGACATCGAG -ACGGAATCCTTCAAGGACCTCCTT -ACGGAATCCTTCAAGGACCCTGTT -ACGGAATCCTTCAAGGACCGGTTT -ACGGAATCCTTCAAGGACGTGGTT -ACGGAATCCTTCAAGGACGCCTTT -ACGGAATCCTTCAAGGACGGTCTT -ACGGAATCCTTCAAGGACACGCTT -ACGGAATCCTTCAAGGACAGCGTT -ACGGAATCCTTCAAGGACTTCGTC -ACGGAATCCTTCAAGGACTCTCTC -ACGGAATCCTTCAAGGACTGGATC -ACGGAATCCTTCAAGGACCACTTC -ACGGAATCCTTCAAGGACGTACTC -ACGGAATCCTTCAAGGACGATGTC -ACGGAATCCTTCAAGGACACAGTC -ACGGAATCCTTCAAGGACTTGCTG -ACGGAATCCTTCAAGGACTCCATG -ACGGAATCCTTCAAGGACTGTGTG -ACGGAATCCTTCAAGGACCTAGTG -ACGGAATCCTTCAAGGACCATCTG -ACGGAATCCTTCAAGGACGAGTTG -ACGGAATCCTTCAAGGACAGACTG -ACGGAATCCTTCAAGGACTCGGTA -ACGGAATCCTTCAAGGACTGCCTA -ACGGAATCCTTCAAGGACCCACTA -ACGGAATCCTTCAAGGACGGAGTA -ACGGAATCCTTCAAGGACTCGTCT -ACGGAATCCTTCAAGGACTGCACT -ACGGAATCCTTCAAGGACCTGACT -ACGGAATCCTTCAAGGACCAACCT -ACGGAATCCTTCAAGGACGCTACT -ACGGAATCCTTCAAGGACGGATCT -ACGGAATCCTTCAAGGACAAGGCT -ACGGAATCCTTCAAGGACTCAACC -ACGGAATCCTTCAAGGACTGTTCC -ACGGAATCCTTCAAGGACATTCCC -ACGGAATCCTTCAAGGACTTCTCG -ACGGAATCCTTCAAGGACTAGACG -ACGGAATCCTTCAAGGACGTAACG -ACGGAATCCTTCAAGGACACTTCG -ACGGAATCCTTCAAGGACTACGCA -ACGGAATCCTTCAAGGACCTTGCA -ACGGAATCCTTCAAGGACCGAACA -ACGGAATCCTTCAAGGACCAGTCA -ACGGAATCCTTCAAGGACGATCCA -ACGGAATCCTTCAAGGACACGACA -ACGGAATCCTTCAAGGACAGCTCA -ACGGAATCCTTCAAGGACTCACGT -ACGGAATCCTTCAAGGACCGTAGT -ACGGAATCCTTCAAGGACGTCAGT -ACGGAATCCTTCAAGGACGAAGGT -ACGGAATCCTTCAAGGACAACCGT -ACGGAATCCTTCAAGGACTTGTGC -ACGGAATCCTTCAAGGACCTAAGC -ACGGAATCCTTCAAGGACACTAGC -ACGGAATCCTTCAAGGACAGATGC -ACGGAATCCTTCAAGGACTGAAGG -ACGGAATCCTTCAAGGACCAATGG -ACGGAATCCTTCAAGGACATGAGG -ACGGAATCCTTCAAGGACAATGGG -ACGGAATCCTTCAAGGACTCCTGA -ACGGAATCCTTCAAGGACTAGCGA -ACGGAATCCTTCAAGGACCACAGA -ACGGAATCCTTCAAGGACGCAAGA -ACGGAATCCTTCAAGGACGGTTGA -ACGGAATCCTTCAAGGACTCCGAT -ACGGAATCCTTCAAGGACTGGCAT -ACGGAATCCTTCAAGGACCGAGAT -ACGGAATCCTTCAAGGACTACCAC -ACGGAATCCTTCAAGGACCAGAAC -ACGGAATCCTTCAAGGACGTCTAC -ACGGAATCCTTCAAGGACACGTAC -ACGGAATCCTTCAAGGACAGTGAC -ACGGAATCCTTCAAGGACCTGTAG -ACGGAATCCTTCAAGGACCCTAAG -ACGGAATCCTTCAAGGACGTTCAG -ACGGAATCCTTCAAGGACGCATAG -ACGGAATCCTTCAAGGACGACAAG -ACGGAATCCTTCAAGGACAAGCAG -ACGGAATCCTTCAAGGACCGTCAA -ACGGAATCCTTCAAGGACGCTGAA -ACGGAATCCTTCAAGGACAGTACG -ACGGAATCCTTCAAGGACATCCGA -ACGGAATCCTTCAAGGACATGGGA -ACGGAATCCTTCAAGGACGTGCAA -ACGGAATCCTTCAAGGACGAGGAA -ACGGAATCCTTCAAGGACCAGGTA -ACGGAATCCTTCAAGGACGACTCT -ACGGAATCCTTCAAGGACAGTCCT -ACGGAATCCTTCAAGGACTAAGCC -ACGGAATCCTTCAAGGACATAGCC -ACGGAATCCTTCAAGGACTAACCG -ACGGAATCCTTCAAGGACATGCCA -ACGGAATCCTTCCAGAAGGGAAAC -ACGGAATCCTTCCAGAAGAACACC -ACGGAATCCTTCCAGAAGATCGAG -ACGGAATCCTTCCAGAAGCTCCTT -ACGGAATCCTTCCAGAAGCCTGTT -ACGGAATCCTTCCAGAAGCGGTTT -ACGGAATCCTTCCAGAAGGTGGTT -ACGGAATCCTTCCAGAAGGCCTTT -ACGGAATCCTTCCAGAAGGGTCTT -ACGGAATCCTTCCAGAAGACGCTT -ACGGAATCCTTCCAGAAGAGCGTT -ACGGAATCCTTCCAGAAGTTCGTC -ACGGAATCCTTCCAGAAGTCTCTC -ACGGAATCCTTCCAGAAGTGGATC -ACGGAATCCTTCCAGAAGCACTTC -ACGGAATCCTTCCAGAAGGTACTC -ACGGAATCCTTCCAGAAGGATGTC -ACGGAATCCTTCCAGAAGACAGTC -ACGGAATCCTTCCAGAAGTTGCTG -ACGGAATCCTTCCAGAAGTCCATG -ACGGAATCCTTCCAGAAGTGTGTG -ACGGAATCCTTCCAGAAGCTAGTG -ACGGAATCCTTCCAGAAGCATCTG -ACGGAATCCTTCCAGAAGGAGTTG -ACGGAATCCTTCCAGAAGAGACTG -ACGGAATCCTTCCAGAAGTCGGTA -ACGGAATCCTTCCAGAAGTGCCTA -ACGGAATCCTTCCAGAAGCCACTA -ACGGAATCCTTCCAGAAGGGAGTA -ACGGAATCCTTCCAGAAGTCGTCT -ACGGAATCCTTCCAGAAGTGCACT -ACGGAATCCTTCCAGAAGCTGACT -ACGGAATCCTTCCAGAAGCAACCT -ACGGAATCCTTCCAGAAGGCTACT -ACGGAATCCTTCCAGAAGGGATCT -ACGGAATCCTTCCAGAAGAAGGCT -ACGGAATCCTTCCAGAAGTCAACC -ACGGAATCCTTCCAGAAGTGTTCC -ACGGAATCCTTCCAGAAGATTCCC -ACGGAATCCTTCCAGAAGTTCTCG -ACGGAATCCTTCCAGAAGTAGACG -ACGGAATCCTTCCAGAAGGTAACG -ACGGAATCCTTCCAGAAGACTTCG -ACGGAATCCTTCCAGAAGTACGCA -ACGGAATCCTTCCAGAAGCTTGCA -ACGGAATCCTTCCAGAAGCGAACA -ACGGAATCCTTCCAGAAGCAGTCA -ACGGAATCCTTCCAGAAGGATCCA -ACGGAATCCTTCCAGAAGACGACA -ACGGAATCCTTCCAGAAGAGCTCA -ACGGAATCCTTCCAGAAGTCACGT -ACGGAATCCTTCCAGAAGCGTAGT -ACGGAATCCTTCCAGAAGGTCAGT -ACGGAATCCTTCCAGAAGGAAGGT -ACGGAATCCTTCCAGAAGAACCGT -ACGGAATCCTTCCAGAAGTTGTGC -ACGGAATCCTTCCAGAAGCTAAGC -ACGGAATCCTTCCAGAAGACTAGC -ACGGAATCCTTCCAGAAGAGATGC -ACGGAATCCTTCCAGAAGTGAAGG -ACGGAATCCTTCCAGAAGCAATGG -ACGGAATCCTTCCAGAAGATGAGG -ACGGAATCCTTCCAGAAGAATGGG -ACGGAATCCTTCCAGAAGTCCTGA -ACGGAATCCTTCCAGAAGTAGCGA -ACGGAATCCTTCCAGAAGCACAGA -ACGGAATCCTTCCAGAAGGCAAGA -ACGGAATCCTTCCAGAAGGGTTGA -ACGGAATCCTTCCAGAAGTCCGAT -ACGGAATCCTTCCAGAAGTGGCAT -ACGGAATCCTTCCAGAAGCGAGAT -ACGGAATCCTTCCAGAAGTACCAC -ACGGAATCCTTCCAGAAGCAGAAC -ACGGAATCCTTCCAGAAGGTCTAC -ACGGAATCCTTCCAGAAGACGTAC -ACGGAATCCTTCCAGAAGAGTGAC -ACGGAATCCTTCCAGAAGCTGTAG -ACGGAATCCTTCCAGAAGCCTAAG -ACGGAATCCTTCCAGAAGGTTCAG -ACGGAATCCTTCCAGAAGGCATAG -ACGGAATCCTTCCAGAAGGACAAG -ACGGAATCCTTCCAGAAGAAGCAG -ACGGAATCCTTCCAGAAGCGTCAA -ACGGAATCCTTCCAGAAGGCTGAA -ACGGAATCCTTCCAGAAGAGTACG -ACGGAATCCTTCCAGAAGATCCGA -ACGGAATCCTTCCAGAAGATGGGA -ACGGAATCCTTCCAGAAGGTGCAA -ACGGAATCCTTCCAGAAGGAGGAA -ACGGAATCCTTCCAGAAGCAGGTA -ACGGAATCCTTCCAGAAGGACTCT -ACGGAATCCTTCCAGAAGAGTCCT -ACGGAATCCTTCCAGAAGTAAGCC -ACGGAATCCTTCCAGAAGATAGCC -ACGGAATCCTTCCAGAAGTAACCG -ACGGAATCCTTCCAGAAGATGCCA -ACGGAATCCTTCCAACGTGGAAAC -ACGGAATCCTTCCAACGTAACACC -ACGGAATCCTTCCAACGTATCGAG -ACGGAATCCTTCCAACGTCTCCTT -ACGGAATCCTTCCAACGTCCTGTT -ACGGAATCCTTCCAACGTCGGTTT -ACGGAATCCTTCCAACGTGTGGTT -ACGGAATCCTTCCAACGTGCCTTT -ACGGAATCCTTCCAACGTGGTCTT -ACGGAATCCTTCCAACGTACGCTT -ACGGAATCCTTCCAACGTAGCGTT -ACGGAATCCTTCCAACGTTTCGTC -ACGGAATCCTTCCAACGTTCTCTC -ACGGAATCCTTCCAACGTTGGATC -ACGGAATCCTTCCAACGTCACTTC -ACGGAATCCTTCCAACGTGTACTC -ACGGAATCCTTCCAACGTGATGTC -ACGGAATCCTTCCAACGTACAGTC -ACGGAATCCTTCCAACGTTTGCTG -ACGGAATCCTTCCAACGTTCCATG -ACGGAATCCTTCCAACGTTGTGTG -ACGGAATCCTTCCAACGTCTAGTG -ACGGAATCCTTCCAACGTCATCTG -ACGGAATCCTTCCAACGTGAGTTG -ACGGAATCCTTCCAACGTAGACTG -ACGGAATCCTTCCAACGTTCGGTA -ACGGAATCCTTCCAACGTTGCCTA -ACGGAATCCTTCCAACGTCCACTA -ACGGAATCCTTCCAACGTGGAGTA -ACGGAATCCTTCCAACGTTCGTCT -ACGGAATCCTTCCAACGTTGCACT -ACGGAATCCTTCCAACGTCTGACT -ACGGAATCCTTCCAACGTCAACCT -ACGGAATCCTTCCAACGTGCTACT -ACGGAATCCTTCCAACGTGGATCT -ACGGAATCCTTCCAACGTAAGGCT -ACGGAATCCTTCCAACGTTCAACC -ACGGAATCCTTCCAACGTTGTTCC -ACGGAATCCTTCCAACGTATTCCC -ACGGAATCCTTCCAACGTTTCTCG -ACGGAATCCTTCCAACGTTAGACG -ACGGAATCCTTCCAACGTGTAACG -ACGGAATCCTTCCAACGTACTTCG -ACGGAATCCTTCCAACGTTACGCA -ACGGAATCCTTCCAACGTCTTGCA -ACGGAATCCTTCCAACGTCGAACA -ACGGAATCCTTCCAACGTCAGTCA -ACGGAATCCTTCCAACGTGATCCA -ACGGAATCCTTCCAACGTACGACA -ACGGAATCCTTCCAACGTAGCTCA -ACGGAATCCTTCCAACGTTCACGT -ACGGAATCCTTCCAACGTCGTAGT -ACGGAATCCTTCCAACGTGTCAGT -ACGGAATCCTTCCAACGTGAAGGT -ACGGAATCCTTCCAACGTAACCGT -ACGGAATCCTTCCAACGTTTGTGC -ACGGAATCCTTCCAACGTCTAAGC -ACGGAATCCTTCCAACGTACTAGC -ACGGAATCCTTCCAACGTAGATGC -ACGGAATCCTTCCAACGTTGAAGG -ACGGAATCCTTCCAACGTCAATGG -ACGGAATCCTTCCAACGTATGAGG -ACGGAATCCTTCCAACGTAATGGG -ACGGAATCCTTCCAACGTTCCTGA -ACGGAATCCTTCCAACGTTAGCGA -ACGGAATCCTTCCAACGTCACAGA -ACGGAATCCTTCCAACGTGCAAGA -ACGGAATCCTTCCAACGTGGTTGA -ACGGAATCCTTCCAACGTTCCGAT -ACGGAATCCTTCCAACGTTGGCAT -ACGGAATCCTTCCAACGTCGAGAT -ACGGAATCCTTCCAACGTTACCAC -ACGGAATCCTTCCAACGTCAGAAC -ACGGAATCCTTCCAACGTGTCTAC -ACGGAATCCTTCCAACGTACGTAC -ACGGAATCCTTCCAACGTAGTGAC -ACGGAATCCTTCCAACGTCTGTAG -ACGGAATCCTTCCAACGTCCTAAG -ACGGAATCCTTCCAACGTGTTCAG -ACGGAATCCTTCCAACGTGCATAG -ACGGAATCCTTCCAACGTGACAAG -ACGGAATCCTTCCAACGTAAGCAG -ACGGAATCCTTCCAACGTCGTCAA -ACGGAATCCTTCCAACGTGCTGAA -ACGGAATCCTTCCAACGTAGTACG -ACGGAATCCTTCCAACGTATCCGA -ACGGAATCCTTCCAACGTATGGGA -ACGGAATCCTTCCAACGTGTGCAA -ACGGAATCCTTCCAACGTGAGGAA -ACGGAATCCTTCCAACGTCAGGTA -ACGGAATCCTTCCAACGTGACTCT -ACGGAATCCTTCCAACGTAGTCCT -ACGGAATCCTTCCAACGTTAAGCC -ACGGAATCCTTCCAACGTATAGCC -ACGGAATCCTTCCAACGTTAACCG -ACGGAATCCTTCCAACGTATGCCA -ACGGAATCCTTCGAAGCTGGAAAC -ACGGAATCCTTCGAAGCTAACACC -ACGGAATCCTTCGAAGCTATCGAG -ACGGAATCCTTCGAAGCTCTCCTT -ACGGAATCCTTCGAAGCTCCTGTT -ACGGAATCCTTCGAAGCTCGGTTT -ACGGAATCCTTCGAAGCTGTGGTT -ACGGAATCCTTCGAAGCTGCCTTT -ACGGAATCCTTCGAAGCTGGTCTT -ACGGAATCCTTCGAAGCTACGCTT -ACGGAATCCTTCGAAGCTAGCGTT -ACGGAATCCTTCGAAGCTTTCGTC -ACGGAATCCTTCGAAGCTTCTCTC -ACGGAATCCTTCGAAGCTTGGATC -ACGGAATCCTTCGAAGCTCACTTC -ACGGAATCCTTCGAAGCTGTACTC -ACGGAATCCTTCGAAGCTGATGTC -ACGGAATCCTTCGAAGCTACAGTC -ACGGAATCCTTCGAAGCTTTGCTG -ACGGAATCCTTCGAAGCTTCCATG -ACGGAATCCTTCGAAGCTTGTGTG -ACGGAATCCTTCGAAGCTCTAGTG -ACGGAATCCTTCGAAGCTCATCTG -ACGGAATCCTTCGAAGCTGAGTTG -ACGGAATCCTTCGAAGCTAGACTG -ACGGAATCCTTCGAAGCTTCGGTA -ACGGAATCCTTCGAAGCTTGCCTA -ACGGAATCCTTCGAAGCTCCACTA -ACGGAATCCTTCGAAGCTGGAGTA -ACGGAATCCTTCGAAGCTTCGTCT -ACGGAATCCTTCGAAGCTTGCACT -ACGGAATCCTTCGAAGCTCTGACT -ACGGAATCCTTCGAAGCTCAACCT -ACGGAATCCTTCGAAGCTGCTACT -ACGGAATCCTTCGAAGCTGGATCT -ACGGAATCCTTCGAAGCTAAGGCT -ACGGAATCCTTCGAAGCTTCAACC -ACGGAATCCTTCGAAGCTTGTTCC -ACGGAATCCTTCGAAGCTATTCCC -ACGGAATCCTTCGAAGCTTTCTCG -ACGGAATCCTTCGAAGCTTAGACG -ACGGAATCCTTCGAAGCTGTAACG -ACGGAATCCTTCGAAGCTACTTCG -ACGGAATCCTTCGAAGCTTACGCA -ACGGAATCCTTCGAAGCTCTTGCA -ACGGAATCCTTCGAAGCTCGAACA -ACGGAATCCTTCGAAGCTCAGTCA -ACGGAATCCTTCGAAGCTGATCCA -ACGGAATCCTTCGAAGCTACGACA -ACGGAATCCTTCGAAGCTAGCTCA -ACGGAATCCTTCGAAGCTTCACGT -ACGGAATCCTTCGAAGCTCGTAGT -ACGGAATCCTTCGAAGCTGTCAGT -ACGGAATCCTTCGAAGCTGAAGGT -ACGGAATCCTTCGAAGCTAACCGT -ACGGAATCCTTCGAAGCTTTGTGC -ACGGAATCCTTCGAAGCTCTAAGC -ACGGAATCCTTCGAAGCTACTAGC -ACGGAATCCTTCGAAGCTAGATGC -ACGGAATCCTTCGAAGCTTGAAGG -ACGGAATCCTTCGAAGCTCAATGG -ACGGAATCCTTCGAAGCTATGAGG -ACGGAATCCTTCGAAGCTAATGGG -ACGGAATCCTTCGAAGCTTCCTGA -ACGGAATCCTTCGAAGCTTAGCGA -ACGGAATCCTTCGAAGCTCACAGA -ACGGAATCCTTCGAAGCTGCAAGA -ACGGAATCCTTCGAAGCTGGTTGA -ACGGAATCCTTCGAAGCTTCCGAT -ACGGAATCCTTCGAAGCTTGGCAT -ACGGAATCCTTCGAAGCTCGAGAT -ACGGAATCCTTCGAAGCTTACCAC -ACGGAATCCTTCGAAGCTCAGAAC -ACGGAATCCTTCGAAGCTGTCTAC -ACGGAATCCTTCGAAGCTACGTAC -ACGGAATCCTTCGAAGCTAGTGAC -ACGGAATCCTTCGAAGCTCTGTAG -ACGGAATCCTTCGAAGCTCCTAAG -ACGGAATCCTTCGAAGCTGTTCAG -ACGGAATCCTTCGAAGCTGCATAG -ACGGAATCCTTCGAAGCTGACAAG -ACGGAATCCTTCGAAGCTAAGCAG -ACGGAATCCTTCGAAGCTCGTCAA -ACGGAATCCTTCGAAGCTGCTGAA -ACGGAATCCTTCGAAGCTAGTACG -ACGGAATCCTTCGAAGCTATCCGA -ACGGAATCCTTCGAAGCTATGGGA -ACGGAATCCTTCGAAGCTGTGCAA -ACGGAATCCTTCGAAGCTGAGGAA -ACGGAATCCTTCGAAGCTCAGGTA -ACGGAATCCTTCGAAGCTGACTCT -ACGGAATCCTTCGAAGCTAGTCCT -ACGGAATCCTTCGAAGCTTAAGCC -ACGGAATCCTTCGAAGCTATAGCC -ACGGAATCCTTCGAAGCTTAACCG -ACGGAATCCTTCGAAGCTATGCCA -ACGGAATCCTTCACGAGTGGAAAC -ACGGAATCCTTCACGAGTAACACC -ACGGAATCCTTCACGAGTATCGAG -ACGGAATCCTTCACGAGTCTCCTT -ACGGAATCCTTCACGAGTCCTGTT -ACGGAATCCTTCACGAGTCGGTTT -ACGGAATCCTTCACGAGTGTGGTT -ACGGAATCCTTCACGAGTGCCTTT -ACGGAATCCTTCACGAGTGGTCTT -ACGGAATCCTTCACGAGTACGCTT -ACGGAATCCTTCACGAGTAGCGTT -ACGGAATCCTTCACGAGTTTCGTC -ACGGAATCCTTCACGAGTTCTCTC -ACGGAATCCTTCACGAGTTGGATC -ACGGAATCCTTCACGAGTCACTTC -ACGGAATCCTTCACGAGTGTACTC -ACGGAATCCTTCACGAGTGATGTC -ACGGAATCCTTCACGAGTACAGTC -ACGGAATCCTTCACGAGTTTGCTG -ACGGAATCCTTCACGAGTTCCATG -ACGGAATCCTTCACGAGTTGTGTG -ACGGAATCCTTCACGAGTCTAGTG -ACGGAATCCTTCACGAGTCATCTG -ACGGAATCCTTCACGAGTGAGTTG -ACGGAATCCTTCACGAGTAGACTG -ACGGAATCCTTCACGAGTTCGGTA -ACGGAATCCTTCACGAGTTGCCTA -ACGGAATCCTTCACGAGTCCACTA -ACGGAATCCTTCACGAGTGGAGTA -ACGGAATCCTTCACGAGTTCGTCT -ACGGAATCCTTCACGAGTTGCACT -ACGGAATCCTTCACGAGTCTGACT -ACGGAATCCTTCACGAGTCAACCT -ACGGAATCCTTCACGAGTGCTACT -ACGGAATCCTTCACGAGTGGATCT -ACGGAATCCTTCACGAGTAAGGCT -ACGGAATCCTTCACGAGTTCAACC -ACGGAATCCTTCACGAGTTGTTCC -ACGGAATCCTTCACGAGTATTCCC -ACGGAATCCTTCACGAGTTTCTCG -ACGGAATCCTTCACGAGTTAGACG -ACGGAATCCTTCACGAGTGTAACG -ACGGAATCCTTCACGAGTACTTCG -ACGGAATCCTTCACGAGTTACGCA -ACGGAATCCTTCACGAGTCTTGCA -ACGGAATCCTTCACGAGTCGAACA -ACGGAATCCTTCACGAGTCAGTCA -ACGGAATCCTTCACGAGTGATCCA -ACGGAATCCTTCACGAGTACGACA -ACGGAATCCTTCACGAGTAGCTCA -ACGGAATCCTTCACGAGTTCACGT -ACGGAATCCTTCACGAGTCGTAGT -ACGGAATCCTTCACGAGTGTCAGT -ACGGAATCCTTCACGAGTGAAGGT -ACGGAATCCTTCACGAGTAACCGT -ACGGAATCCTTCACGAGTTTGTGC -ACGGAATCCTTCACGAGTCTAAGC -ACGGAATCCTTCACGAGTACTAGC -ACGGAATCCTTCACGAGTAGATGC -ACGGAATCCTTCACGAGTTGAAGG -ACGGAATCCTTCACGAGTCAATGG -ACGGAATCCTTCACGAGTATGAGG -ACGGAATCCTTCACGAGTAATGGG -ACGGAATCCTTCACGAGTTCCTGA -ACGGAATCCTTCACGAGTTAGCGA -ACGGAATCCTTCACGAGTCACAGA -ACGGAATCCTTCACGAGTGCAAGA -ACGGAATCCTTCACGAGTGGTTGA -ACGGAATCCTTCACGAGTTCCGAT -ACGGAATCCTTCACGAGTTGGCAT -ACGGAATCCTTCACGAGTCGAGAT -ACGGAATCCTTCACGAGTTACCAC -ACGGAATCCTTCACGAGTCAGAAC -ACGGAATCCTTCACGAGTGTCTAC -ACGGAATCCTTCACGAGTACGTAC -ACGGAATCCTTCACGAGTAGTGAC -ACGGAATCCTTCACGAGTCTGTAG -ACGGAATCCTTCACGAGTCCTAAG -ACGGAATCCTTCACGAGTGTTCAG -ACGGAATCCTTCACGAGTGCATAG -ACGGAATCCTTCACGAGTGACAAG -ACGGAATCCTTCACGAGTAAGCAG -ACGGAATCCTTCACGAGTCGTCAA -ACGGAATCCTTCACGAGTGCTGAA -ACGGAATCCTTCACGAGTAGTACG -ACGGAATCCTTCACGAGTATCCGA -ACGGAATCCTTCACGAGTATGGGA -ACGGAATCCTTCACGAGTGTGCAA -ACGGAATCCTTCACGAGTGAGGAA -ACGGAATCCTTCACGAGTCAGGTA -ACGGAATCCTTCACGAGTGACTCT -ACGGAATCCTTCACGAGTAGTCCT -ACGGAATCCTTCACGAGTTAAGCC -ACGGAATCCTTCACGAGTATAGCC -ACGGAATCCTTCACGAGTTAACCG -ACGGAATCCTTCACGAGTATGCCA -ACGGAATCCTTCCGAATCGGAAAC -ACGGAATCCTTCCGAATCAACACC -ACGGAATCCTTCCGAATCATCGAG -ACGGAATCCTTCCGAATCCTCCTT -ACGGAATCCTTCCGAATCCCTGTT -ACGGAATCCTTCCGAATCCGGTTT -ACGGAATCCTTCCGAATCGTGGTT -ACGGAATCCTTCCGAATCGCCTTT -ACGGAATCCTTCCGAATCGGTCTT -ACGGAATCCTTCCGAATCACGCTT -ACGGAATCCTTCCGAATCAGCGTT -ACGGAATCCTTCCGAATCTTCGTC -ACGGAATCCTTCCGAATCTCTCTC -ACGGAATCCTTCCGAATCTGGATC -ACGGAATCCTTCCGAATCCACTTC -ACGGAATCCTTCCGAATCGTACTC -ACGGAATCCTTCCGAATCGATGTC -ACGGAATCCTTCCGAATCACAGTC -ACGGAATCCTTCCGAATCTTGCTG -ACGGAATCCTTCCGAATCTCCATG -ACGGAATCCTTCCGAATCTGTGTG -ACGGAATCCTTCCGAATCCTAGTG -ACGGAATCCTTCCGAATCCATCTG -ACGGAATCCTTCCGAATCGAGTTG -ACGGAATCCTTCCGAATCAGACTG -ACGGAATCCTTCCGAATCTCGGTA -ACGGAATCCTTCCGAATCTGCCTA -ACGGAATCCTTCCGAATCCCACTA -ACGGAATCCTTCCGAATCGGAGTA -ACGGAATCCTTCCGAATCTCGTCT -ACGGAATCCTTCCGAATCTGCACT -ACGGAATCCTTCCGAATCCTGACT -ACGGAATCCTTCCGAATCCAACCT -ACGGAATCCTTCCGAATCGCTACT -ACGGAATCCTTCCGAATCGGATCT -ACGGAATCCTTCCGAATCAAGGCT -ACGGAATCCTTCCGAATCTCAACC -ACGGAATCCTTCCGAATCTGTTCC -ACGGAATCCTTCCGAATCATTCCC -ACGGAATCCTTCCGAATCTTCTCG -ACGGAATCCTTCCGAATCTAGACG -ACGGAATCCTTCCGAATCGTAACG -ACGGAATCCTTCCGAATCACTTCG -ACGGAATCCTTCCGAATCTACGCA -ACGGAATCCTTCCGAATCCTTGCA -ACGGAATCCTTCCGAATCCGAACA -ACGGAATCCTTCCGAATCCAGTCA -ACGGAATCCTTCCGAATCGATCCA -ACGGAATCCTTCCGAATCACGACA -ACGGAATCCTTCCGAATCAGCTCA -ACGGAATCCTTCCGAATCTCACGT -ACGGAATCCTTCCGAATCCGTAGT -ACGGAATCCTTCCGAATCGTCAGT -ACGGAATCCTTCCGAATCGAAGGT -ACGGAATCCTTCCGAATCAACCGT -ACGGAATCCTTCCGAATCTTGTGC -ACGGAATCCTTCCGAATCCTAAGC -ACGGAATCCTTCCGAATCACTAGC -ACGGAATCCTTCCGAATCAGATGC -ACGGAATCCTTCCGAATCTGAAGG -ACGGAATCCTTCCGAATCCAATGG -ACGGAATCCTTCCGAATCATGAGG -ACGGAATCCTTCCGAATCAATGGG -ACGGAATCCTTCCGAATCTCCTGA -ACGGAATCCTTCCGAATCTAGCGA -ACGGAATCCTTCCGAATCCACAGA -ACGGAATCCTTCCGAATCGCAAGA -ACGGAATCCTTCCGAATCGGTTGA -ACGGAATCCTTCCGAATCTCCGAT -ACGGAATCCTTCCGAATCTGGCAT -ACGGAATCCTTCCGAATCCGAGAT -ACGGAATCCTTCCGAATCTACCAC -ACGGAATCCTTCCGAATCCAGAAC -ACGGAATCCTTCCGAATCGTCTAC -ACGGAATCCTTCCGAATCACGTAC -ACGGAATCCTTCCGAATCAGTGAC -ACGGAATCCTTCCGAATCCTGTAG -ACGGAATCCTTCCGAATCCCTAAG -ACGGAATCCTTCCGAATCGTTCAG -ACGGAATCCTTCCGAATCGCATAG -ACGGAATCCTTCCGAATCGACAAG -ACGGAATCCTTCCGAATCAAGCAG -ACGGAATCCTTCCGAATCCGTCAA -ACGGAATCCTTCCGAATCGCTGAA -ACGGAATCCTTCCGAATCAGTACG -ACGGAATCCTTCCGAATCATCCGA -ACGGAATCCTTCCGAATCATGGGA -ACGGAATCCTTCCGAATCGTGCAA -ACGGAATCCTTCCGAATCGAGGAA -ACGGAATCCTTCCGAATCCAGGTA -ACGGAATCCTTCCGAATCGACTCT -ACGGAATCCTTCCGAATCAGTCCT -ACGGAATCCTTCCGAATCTAAGCC -ACGGAATCCTTCCGAATCATAGCC -ACGGAATCCTTCCGAATCTAACCG -ACGGAATCCTTCCGAATCATGCCA -ACGGAATCCTTCGGAATGGGAAAC -ACGGAATCCTTCGGAATGAACACC -ACGGAATCCTTCGGAATGATCGAG -ACGGAATCCTTCGGAATGCTCCTT -ACGGAATCCTTCGGAATGCCTGTT -ACGGAATCCTTCGGAATGCGGTTT -ACGGAATCCTTCGGAATGGTGGTT -ACGGAATCCTTCGGAATGGCCTTT -ACGGAATCCTTCGGAATGGGTCTT -ACGGAATCCTTCGGAATGACGCTT -ACGGAATCCTTCGGAATGAGCGTT -ACGGAATCCTTCGGAATGTTCGTC -ACGGAATCCTTCGGAATGTCTCTC -ACGGAATCCTTCGGAATGTGGATC -ACGGAATCCTTCGGAATGCACTTC -ACGGAATCCTTCGGAATGGTACTC -ACGGAATCCTTCGGAATGGATGTC -ACGGAATCCTTCGGAATGACAGTC -ACGGAATCCTTCGGAATGTTGCTG -ACGGAATCCTTCGGAATGTCCATG -ACGGAATCCTTCGGAATGTGTGTG -ACGGAATCCTTCGGAATGCTAGTG -ACGGAATCCTTCGGAATGCATCTG -ACGGAATCCTTCGGAATGGAGTTG -ACGGAATCCTTCGGAATGAGACTG -ACGGAATCCTTCGGAATGTCGGTA -ACGGAATCCTTCGGAATGTGCCTA -ACGGAATCCTTCGGAATGCCACTA -ACGGAATCCTTCGGAATGGGAGTA -ACGGAATCCTTCGGAATGTCGTCT -ACGGAATCCTTCGGAATGTGCACT -ACGGAATCCTTCGGAATGCTGACT -ACGGAATCCTTCGGAATGCAACCT -ACGGAATCCTTCGGAATGGCTACT -ACGGAATCCTTCGGAATGGGATCT -ACGGAATCCTTCGGAATGAAGGCT -ACGGAATCCTTCGGAATGTCAACC -ACGGAATCCTTCGGAATGTGTTCC -ACGGAATCCTTCGGAATGATTCCC -ACGGAATCCTTCGGAATGTTCTCG -ACGGAATCCTTCGGAATGTAGACG -ACGGAATCCTTCGGAATGGTAACG -ACGGAATCCTTCGGAATGACTTCG -ACGGAATCCTTCGGAATGTACGCA -ACGGAATCCTTCGGAATGCTTGCA -ACGGAATCCTTCGGAATGCGAACA -ACGGAATCCTTCGGAATGCAGTCA -ACGGAATCCTTCGGAATGGATCCA -ACGGAATCCTTCGGAATGACGACA -ACGGAATCCTTCGGAATGAGCTCA -ACGGAATCCTTCGGAATGTCACGT -ACGGAATCCTTCGGAATGCGTAGT -ACGGAATCCTTCGGAATGGTCAGT -ACGGAATCCTTCGGAATGGAAGGT -ACGGAATCCTTCGGAATGAACCGT -ACGGAATCCTTCGGAATGTTGTGC -ACGGAATCCTTCGGAATGCTAAGC -ACGGAATCCTTCGGAATGACTAGC -ACGGAATCCTTCGGAATGAGATGC -ACGGAATCCTTCGGAATGTGAAGG -ACGGAATCCTTCGGAATGCAATGG -ACGGAATCCTTCGGAATGATGAGG -ACGGAATCCTTCGGAATGAATGGG -ACGGAATCCTTCGGAATGTCCTGA -ACGGAATCCTTCGGAATGTAGCGA -ACGGAATCCTTCGGAATGCACAGA -ACGGAATCCTTCGGAATGGCAAGA -ACGGAATCCTTCGGAATGGGTTGA -ACGGAATCCTTCGGAATGTCCGAT -ACGGAATCCTTCGGAATGTGGCAT -ACGGAATCCTTCGGAATGCGAGAT -ACGGAATCCTTCGGAATGTACCAC -ACGGAATCCTTCGGAATGCAGAAC -ACGGAATCCTTCGGAATGGTCTAC -ACGGAATCCTTCGGAATGACGTAC -ACGGAATCCTTCGGAATGAGTGAC -ACGGAATCCTTCGGAATGCTGTAG -ACGGAATCCTTCGGAATGCCTAAG -ACGGAATCCTTCGGAATGGTTCAG -ACGGAATCCTTCGGAATGGCATAG -ACGGAATCCTTCGGAATGGACAAG -ACGGAATCCTTCGGAATGAAGCAG -ACGGAATCCTTCGGAATGCGTCAA -ACGGAATCCTTCGGAATGGCTGAA -ACGGAATCCTTCGGAATGAGTACG -ACGGAATCCTTCGGAATGATCCGA -ACGGAATCCTTCGGAATGATGGGA -ACGGAATCCTTCGGAATGGTGCAA -ACGGAATCCTTCGGAATGGAGGAA -ACGGAATCCTTCGGAATGCAGGTA -ACGGAATCCTTCGGAATGGACTCT -ACGGAATCCTTCGGAATGAGTCCT -ACGGAATCCTTCGGAATGTAAGCC -ACGGAATCCTTCGGAATGATAGCC -ACGGAATCCTTCGGAATGTAACCG -ACGGAATCCTTCGGAATGATGCCA -ACGGAATCCTTCCAAGTGGGAAAC -ACGGAATCCTTCCAAGTGAACACC -ACGGAATCCTTCCAAGTGATCGAG -ACGGAATCCTTCCAAGTGCTCCTT -ACGGAATCCTTCCAAGTGCCTGTT -ACGGAATCCTTCCAAGTGCGGTTT -ACGGAATCCTTCCAAGTGGTGGTT -ACGGAATCCTTCCAAGTGGCCTTT -ACGGAATCCTTCCAAGTGGGTCTT -ACGGAATCCTTCCAAGTGACGCTT -ACGGAATCCTTCCAAGTGAGCGTT -ACGGAATCCTTCCAAGTGTTCGTC -ACGGAATCCTTCCAAGTGTCTCTC -ACGGAATCCTTCCAAGTGTGGATC -ACGGAATCCTTCCAAGTGCACTTC -ACGGAATCCTTCCAAGTGGTACTC -ACGGAATCCTTCCAAGTGGATGTC -ACGGAATCCTTCCAAGTGACAGTC -ACGGAATCCTTCCAAGTGTTGCTG -ACGGAATCCTTCCAAGTGTCCATG -ACGGAATCCTTCCAAGTGTGTGTG -ACGGAATCCTTCCAAGTGCTAGTG -ACGGAATCCTTCCAAGTGCATCTG -ACGGAATCCTTCCAAGTGGAGTTG -ACGGAATCCTTCCAAGTGAGACTG -ACGGAATCCTTCCAAGTGTCGGTA -ACGGAATCCTTCCAAGTGTGCCTA -ACGGAATCCTTCCAAGTGCCACTA -ACGGAATCCTTCCAAGTGGGAGTA -ACGGAATCCTTCCAAGTGTCGTCT -ACGGAATCCTTCCAAGTGTGCACT -ACGGAATCCTTCCAAGTGCTGACT -ACGGAATCCTTCCAAGTGCAACCT -ACGGAATCCTTCCAAGTGGCTACT -ACGGAATCCTTCCAAGTGGGATCT -ACGGAATCCTTCCAAGTGAAGGCT -ACGGAATCCTTCCAAGTGTCAACC -ACGGAATCCTTCCAAGTGTGTTCC -ACGGAATCCTTCCAAGTGATTCCC -ACGGAATCCTTCCAAGTGTTCTCG -ACGGAATCCTTCCAAGTGTAGACG -ACGGAATCCTTCCAAGTGGTAACG -ACGGAATCCTTCCAAGTGACTTCG -ACGGAATCCTTCCAAGTGTACGCA -ACGGAATCCTTCCAAGTGCTTGCA -ACGGAATCCTTCCAAGTGCGAACA -ACGGAATCCTTCCAAGTGCAGTCA -ACGGAATCCTTCCAAGTGGATCCA -ACGGAATCCTTCCAAGTGACGACA -ACGGAATCCTTCCAAGTGAGCTCA -ACGGAATCCTTCCAAGTGTCACGT -ACGGAATCCTTCCAAGTGCGTAGT -ACGGAATCCTTCCAAGTGGTCAGT -ACGGAATCCTTCCAAGTGGAAGGT -ACGGAATCCTTCCAAGTGAACCGT -ACGGAATCCTTCCAAGTGTTGTGC -ACGGAATCCTTCCAAGTGCTAAGC -ACGGAATCCTTCCAAGTGACTAGC -ACGGAATCCTTCCAAGTGAGATGC -ACGGAATCCTTCCAAGTGTGAAGG -ACGGAATCCTTCCAAGTGCAATGG -ACGGAATCCTTCCAAGTGATGAGG -ACGGAATCCTTCCAAGTGAATGGG -ACGGAATCCTTCCAAGTGTCCTGA -ACGGAATCCTTCCAAGTGTAGCGA -ACGGAATCCTTCCAAGTGCACAGA -ACGGAATCCTTCCAAGTGGCAAGA -ACGGAATCCTTCCAAGTGGGTTGA -ACGGAATCCTTCCAAGTGTCCGAT -ACGGAATCCTTCCAAGTGTGGCAT -ACGGAATCCTTCCAAGTGCGAGAT -ACGGAATCCTTCCAAGTGTACCAC -ACGGAATCCTTCCAAGTGCAGAAC -ACGGAATCCTTCCAAGTGGTCTAC -ACGGAATCCTTCCAAGTGACGTAC -ACGGAATCCTTCCAAGTGAGTGAC -ACGGAATCCTTCCAAGTGCTGTAG -ACGGAATCCTTCCAAGTGCCTAAG -ACGGAATCCTTCCAAGTGGTTCAG -ACGGAATCCTTCCAAGTGGCATAG -ACGGAATCCTTCCAAGTGGACAAG -ACGGAATCCTTCCAAGTGAAGCAG -ACGGAATCCTTCCAAGTGCGTCAA -ACGGAATCCTTCCAAGTGGCTGAA -ACGGAATCCTTCCAAGTGAGTACG -ACGGAATCCTTCCAAGTGATCCGA -ACGGAATCCTTCCAAGTGATGGGA -ACGGAATCCTTCCAAGTGGTGCAA -ACGGAATCCTTCCAAGTGGAGGAA -ACGGAATCCTTCCAAGTGCAGGTA -ACGGAATCCTTCCAAGTGGACTCT -ACGGAATCCTTCCAAGTGAGTCCT -ACGGAATCCTTCCAAGTGTAAGCC -ACGGAATCCTTCCAAGTGATAGCC -ACGGAATCCTTCCAAGTGTAACCG -ACGGAATCCTTCCAAGTGATGCCA -ACGGAATCCTTCGAAGAGGGAAAC -ACGGAATCCTTCGAAGAGAACACC -ACGGAATCCTTCGAAGAGATCGAG -ACGGAATCCTTCGAAGAGCTCCTT -ACGGAATCCTTCGAAGAGCCTGTT -ACGGAATCCTTCGAAGAGCGGTTT -ACGGAATCCTTCGAAGAGGTGGTT -ACGGAATCCTTCGAAGAGGCCTTT -ACGGAATCCTTCGAAGAGGGTCTT -ACGGAATCCTTCGAAGAGACGCTT -ACGGAATCCTTCGAAGAGAGCGTT -ACGGAATCCTTCGAAGAGTTCGTC -ACGGAATCCTTCGAAGAGTCTCTC -ACGGAATCCTTCGAAGAGTGGATC -ACGGAATCCTTCGAAGAGCACTTC -ACGGAATCCTTCGAAGAGGTACTC -ACGGAATCCTTCGAAGAGGATGTC -ACGGAATCCTTCGAAGAGACAGTC -ACGGAATCCTTCGAAGAGTTGCTG -ACGGAATCCTTCGAAGAGTCCATG -ACGGAATCCTTCGAAGAGTGTGTG -ACGGAATCCTTCGAAGAGCTAGTG -ACGGAATCCTTCGAAGAGCATCTG -ACGGAATCCTTCGAAGAGGAGTTG -ACGGAATCCTTCGAAGAGAGACTG -ACGGAATCCTTCGAAGAGTCGGTA -ACGGAATCCTTCGAAGAGTGCCTA -ACGGAATCCTTCGAAGAGCCACTA -ACGGAATCCTTCGAAGAGGGAGTA -ACGGAATCCTTCGAAGAGTCGTCT -ACGGAATCCTTCGAAGAGTGCACT -ACGGAATCCTTCGAAGAGCTGACT -ACGGAATCCTTCGAAGAGCAACCT -ACGGAATCCTTCGAAGAGGCTACT -ACGGAATCCTTCGAAGAGGGATCT -ACGGAATCCTTCGAAGAGAAGGCT -ACGGAATCCTTCGAAGAGTCAACC -ACGGAATCCTTCGAAGAGTGTTCC -ACGGAATCCTTCGAAGAGATTCCC -ACGGAATCCTTCGAAGAGTTCTCG -ACGGAATCCTTCGAAGAGTAGACG -ACGGAATCCTTCGAAGAGGTAACG -ACGGAATCCTTCGAAGAGACTTCG -ACGGAATCCTTCGAAGAGTACGCA -ACGGAATCCTTCGAAGAGCTTGCA -ACGGAATCCTTCGAAGAGCGAACA -ACGGAATCCTTCGAAGAGCAGTCA -ACGGAATCCTTCGAAGAGGATCCA -ACGGAATCCTTCGAAGAGACGACA -ACGGAATCCTTCGAAGAGAGCTCA -ACGGAATCCTTCGAAGAGTCACGT -ACGGAATCCTTCGAAGAGCGTAGT -ACGGAATCCTTCGAAGAGGTCAGT -ACGGAATCCTTCGAAGAGGAAGGT -ACGGAATCCTTCGAAGAGAACCGT -ACGGAATCCTTCGAAGAGTTGTGC -ACGGAATCCTTCGAAGAGCTAAGC -ACGGAATCCTTCGAAGAGACTAGC -ACGGAATCCTTCGAAGAGAGATGC -ACGGAATCCTTCGAAGAGTGAAGG -ACGGAATCCTTCGAAGAGCAATGG -ACGGAATCCTTCGAAGAGATGAGG -ACGGAATCCTTCGAAGAGAATGGG -ACGGAATCCTTCGAAGAGTCCTGA -ACGGAATCCTTCGAAGAGTAGCGA -ACGGAATCCTTCGAAGAGCACAGA -ACGGAATCCTTCGAAGAGGCAAGA -ACGGAATCCTTCGAAGAGGGTTGA -ACGGAATCCTTCGAAGAGTCCGAT -ACGGAATCCTTCGAAGAGTGGCAT -ACGGAATCCTTCGAAGAGCGAGAT -ACGGAATCCTTCGAAGAGTACCAC -ACGGAATCCTTCGAAGAGCAGAAC -ACGGAATCCTTCGAAGAGGTCTAC -ACGGAATCCTTCGAAGAGACGTAC -ACGGAATCCTTCGAAGAGAGTGAC -ACGGAATCCTTCGAAGAGCTGTAG -ACGGAATCCTTCGAAGAGCCTAAG -ACGGAATCCTTCGAAGAGGTTCAG -ACGGAATCCTTCGAAGAGGCATAG -ACGGAATCCTTCGAAGAGGACAAG -ACGGAATCCTTCGAAGAGAAGCAG -ACGGAATCCTTCGAAGAGCGTCAA -ACGGAATCCTTCGAAGAGGCTGAA -ACGGAATCCTTCGAAGAGAGTACG -ACGGAATCCTTCGAAGAGATCCGA -ACGGAATCCTTCGAAGAGATGGGA -ACGGAATCCTTCGAAGAGGTGCAA -ACGGAATCCTTCGAAGAGGAGGAA -ACGGAATCCTTCGAAGAGCAGGTA -ACGGAATCCTTCGAAGAGGACTCT -ACGGAATCCTTCGAAGAGAGTCCT -ACGGAATCCTTCGAAGAGTAAGCC -ACGGAATCCTTCGAAGAGATAGCC -ACGGAATCCTTCGAAGAGTAACCG -ACGGAATCCTTCGAAGAGATGCCA -ACGGAATCCTTCGTACAGGGAAAC -ACGGAATCCTTCGTACAGAACACC -ACGGAATCCTTCGTACAGATCGAG -ACGGAATCCTTCGTACAGCTCCTT -ACGGAATCCTTCGTACAGCCTGTT -ACGGAATCCTTCGTACAGCGGTTT -ACGGAATCCTTCGTACAGGTGGTT -ACGGAATCCTTCGTACAGGCCTTT -ACGGAATCCTTCGTACAGGGTCTT -ACGGAATCCTTCGTACAGACGCTT -ACGGAATCCTTCGTACAGAGCGTT -ACGGAATCCTTCGTACAGTTCGTC -ACGGAATCCTTCGTACAGTCTCTC -ACGGAATCCTTCGTACAGTGGATC -ACGGAATCCTTCGTACAGCACTTC -ACGGAATCCTTCGTACAGGTACTC -ACGGAATCCTTCGTACAGGATGTC -ACGGAATCCTTCGTACAGACAGTC -ACGGAATCCTTCGTACAGTTGCTG -ACGGAATCCTTCGTACAGTCCATG -ACGGAATCCTTCGTACAGTGTGTG -ACGGAATCCTTCGTACAGCTAGTG -ACGGAATCCTTCGTACAGCATCTG -ACGGAATCCTTCGTACAGGAGTTG -ACGGAATCCTTCGTACAGAGACTG -ACGGAATCCTTCGTACAGTCGGTA -ACGGAATCCTTCGTACAGTGCCTA -ACGGAATCCTTCGTACAGCCACTA -ACGGAATCCTTCGTACAGGGAGTA -ACGGAATCCTTCGTACAGTCGTCT -ACGGAATCCTTCGTACAGTGCACT -ACGGAATCCTTCGTACAGCTGACT -ACGGAATCCTTCGTACAGCAACCT -ACGGAATCCTTCGTACAGGCTACT -ACGGAATCCTTCGTACAGGGATCT -ACGGAATCCTTCGTACAGAAGGCT -ACGGAATCCTTCGTACAGTCAACC -ACGGAATCCTTCGTACAGTGTTCC -ACGGAATCCTTCGTACAGATTCCC -ACGGAATCCTTCGTACAGTTCTCG -ACGGAATCCTTCGTACAGTAGACG -ACGGAATCCTTCGTACAGGTAACG -ACGGAATCCTTCGTACAGACTTCG -ACGGAATCCTTCGTACAGTACGCA -ACGGAATCCTTCGTACAGCTTGCA -ACGGAATCCTTCGTACAGCGAACA -ACGGAATCCTTCGTACAGCAGTCA -ACGGAATCCTTCGTACAGGATCCA -ACGGAATCCTTCGTACAGACGACA -ACGGAATCCTTCGTACAGAGCTCA -ACGGAATCCTTCGTACAGTCACGT -ACGGAATCCTTCGTACAGCGTAGT -ACGGAATCCTTCGTACAGGTCAGT -ACGGAATCCTTCGTACAGGAAGGT -ACGGAATCCTTCGTACAGAACCGT -ACGGAATCCTTCGTACAGTTGTGC -ACGGAATCCTTCGTACAGCTAAGC -ACGGAATCCTTCGTACAGACTAGC -ACGGAATCCTTCGTACAGAGATGC -ACGGAATCCTTCGTACAGTGAAGG -ACGGAATCCTTCGTACAGCAATGG -ACGGAATCCTTCGTACAGATGAGG -ACGGAATCCTTCGTACAGAATGGG -ACGGAATCCTTCGTACAGTCCTGA -ACGGAATCCTTCGTACAGTAGCGA -ACGGAATCCTTCGTACAGCACAGA -ACGGAATCCTTCGTACAGGCAAGA -ACGGAATCCTTCGTACAGGGTTGA -ACGGAATCCTTCGTACAGTCCGAT -ACGGAATCCTTCGTACAGTGGCAT -ACGGAATCCTTCGTACAGCGAGAT -ACGGAATCCTTCGTACAGTACCAC -ACGGAATCCTTCGTACAGCAGAAC -ACGGAATCCTTCGTACAGGTCTAC -ACGGAATCCTTCGTACAGACGTAC -ACGGAATCCTTCGTACAGAGTGAC -ACGGAATCCTTCGTACAGCTGTAG -ACGGAATCCTTCGTACAGCCTAAG -ACGGAATCCTTCGTACAGGTTCAG -ACGGAATCCTTCGTACAGGCATAG -ACGGAATCCTTCGTACAGGACAAG -ACGGAATCCTTCGTACAGAAGCAG -ACGGAATCCTTCGTACAGCGTCAA -ACGGAATCCTTCGTACAGGCTGAA -ACGGAATCCTTCGTACAGAGTACG -ACGGAATCCTTCGTACAGATCCGA -ACGGAATCCTTCGTACAGATGGGA -ACGGAATCCTTCGTACAGGTGCAA -ACGGAATCCTTCGTACAGGAGGAA -ACGGAATCCTTCGTACAGCAGGTA -ACGGAATCCTTCGTACAGGACTCT -ACGGAATCCTTCGTACAGAGTCCT -ACGGAATCCTTCGTACAGTAAGCC -ACGGAATCCTTCGTACAGATAGCC -ACGGAATCCTTCGTACAGTAACCG -ACGGAATCCTTCGTACAGATGCCA -ACGGAATCCTTCTCTGACGGAAAC -ACGGAATCCTTCTCTGACAACACC -ACGGAATCCTTCTCTGACATCGAG -ACGGAATCCTTCTCTGACCTCCTT -ACGGAATCCTTCTCTGACCCTGTT -ACGGAATCCTTCTCTGACCGGTTT -ACGGAATCCTTCTCTGACGTGGTT -ACGGAATCCTTCTCTGACGCCTTT -ACGGAATCCTTCTCTGACGGTCTT -ACGGAATCCTTCTCTGACACGCTT -ACGGAATCCTTCTCTGACAGCGTT -ACGGAATCCTTCTCTGACTTCGTC -ACGGAATCCTTCTCTGACTCTCTC -ACGGAATCCTTCTCTGACTGGATC -ACGGAATCCTTCTCTGACCACTTC -ACGGAATCCTTCTCTGACGTACTC -ACGGAATCCTTCTCTGACGATGTC -ACGGAATCCTTCTCTGACACAGTC -ACGGAATCCTTCTCTGACTTGCTG -ACGGAATCCTTCTCTGACTCCATG -ACGGAATCCTTCTCTGACTGTGTG -ACGGAATCCTTCTCTGACCTAGTG -ACGGAATCCTTCTCTGACCATCTG -ACGGAATCCTTCTCTGACGAGTTG -ACGGAATCCTTCTCTGACAGACTG -ACGGAATCCTTCTCTGACTCGGTA -ACGGAATCCTTCTCTGACTGCCTA -ACGGAATCCTTCTCTGACCCACTA -ACGGAATCCTTCTCTGACGGAGTA -ACGGAATCCTTCTCTGACTCGTCT -ACGGAATCCTTCTCTGACTGCACT -ACGGAATCCTTCTCTGACCTGACT -ACGGAATCCTTCTCTGACCAACCT -ACGGAATCCTTCTCTGACGCTACT -ACGGAATCCTTCTCTGACGGATCT -ACGGAATCCTTCTCTGACAAGGCT -ACGGAATCCTTCTCTGACTCAACC -ACGGAATCCTTCTCTGACTGTTCC -ACGGAATCCTTCTCTGACATTCCC -ACGGAATCCTTCTCTGACTTCTCG -ACGGAATCCTTCTCTGACTAGACG -ACGGAATCCTTCTCTGACGTAACG -ACGGAATCCTTCTCTGACACTTCG -ACGGAATCCTTCTCTGACTACGCA -ACGGAATCCTTCTCTGACCTTGCA -ACGGAATCCTTCTCTGACCGAACA -ACGGAATCCTTCTCTGACCAGTCA -ACGGAATCCTTCTCTGACGATCCA -ACGGAATCCTTCTCTGACACGACA -ACGGAATCCTTCTCTGACAGCTCA -ACGGAATCCTTCTCTGACTCACGT -ACGGAATCCTTCTCTGACCGTAGT -ACGGAATCCTTCTCTGACGTCAGT -ACGGAATCCTTCTCTGACGAAGGT -ACGGAATCCTTCTCTGACAACCGT -ACGGAATCCTTCTCTGACTTGTGC -ACGGAATCCTTCTCTGACCTAAGC -ACGGAATCCTTCTCTGACACTAGC -ACGGAATCCTTCTCTGACAGATGC -ACGGAATCCTTCTCTGACTGAAGG -ACGGAATCCTTCTCTGACCAATGG -ACGGAATCCTTCTCTGACATGAGG -ACGGAATCCTTCTCTGACAATGGG -ACGGAATCCTTCTCTGACTCCTGA -ACGGAATCCTTCTCTGACTAGCGA -ACGGAATCCTTCTCTGACCACAGA -ACGGAATCCTTCTCTGACGCAAGA -ACGGAATCCTTCTCTGACGGTTGA -ACGGAATCCTTCTCTGACTCCGAT -ACGGAATCCTTCTCTGACTGGCAT -ACGGAATCCTTCTCTGACCGAGAT -ACGGAATCCTTCTCTGACTACCAC -ACGGAATCCTTCTCTGACCAGAAC -ACGGAATCCTTCTCTGACGTCTAC -ACGGAATCCTTCTCTGACACGTAC -ACGGAATCCTTCTCTGACAGTGAC -ACGGAATCCTTCTCTGACCTGTAG -ACGGAATCCTTCTCTGACCCTAAG -ACGGAATCCTTCTCTGACGTTCAG -ACGGAATCCTTCTCTGACGCATAG -ACGGAATCCTTCTCTGACGACAAG -ACGGAATCCTTCTCTGACAAGCAG -ACGGAATCCTTCTCTGACCGTCAA -ACGGAATCCTTCTCTGACGCTGAA -ACGGAATCCTTCTCTGACAGTACG -ACGGAATCCTTCTCTGACATCCGA -ACGGAATCCTTCTCTGACATGGGA -ACGGAATCCTTCTCTGACGTGCAA -ACGGAATCCTTCTCTGACGAGGAA -ACGGAATCCTTCTCTGACCAGGTA -ACGGAATCCTTCTCTGACGACTCT -ACGGAATCCTTCTCTGACAGTCCT -ACGGAATCCTTCTCTGACTAAGCC -ACGGAATCCTTCTCTGACATAGCC -ACGGAATCCTTCTCTGACTAACCG -ACGGAATCCTTCTCTGACATGCCA -ACGGAATCCTTCCCTAGTGGAAAC -ACGGAATCCTTCCCTAGTAACACC -ACGGAATCCTTCCCTAGTATCGAG -ACGGAATCCTTCCCTAGTCTCCTT -ACGGAATCCTTCCCTAGTCCTGTT -ACGGAATCCTTCCCTAGTCGGTTT -ACGGAATCCTTCCCTAGTGTGGTT -ACGGAATCCTTCCCTAGTGCCTTT -ACGGAATCCTTCCCTAGTGGTCTT -ACGGAATCCTTCCCTAGTACGCTT -ACGGAATCCTTCCCTAGTAGCGTT -ACGGAATCCTTCCCTAGTTTCGTC -ACGGAATCCTTCCCTAGTTCTCTC -ACGGAATCCTTCCCTAGTTGGATC -ACGGAATCCTTCCCTAGTCACTTC -ACGGAATCCTTCCCTAGTGTACTC -ACGGAATCCTTCCCTAGTGATGTC -ACGGAATCCTTCCCTAGTACAGTC -ACGGAATCCTTCCCTAGTTTGCTG -ACGGAATCCTTCCCTAGTTCCATG -ACGGAATCCTTCCCTAGTTGTGTG -ACGGAATCCTTCCCTAGTCTAGTG -ACGGAATCCTTCCCTAGTCATCTG -ACGGAATCCTTCCCTAGTGAGTTG -ACGGAATCCTTCCCTAGTAGACTG -ACGGAATCCTTCCCTAGTTCGGTA -ACGGAATCCTTCCCTAGTTGCCTA -ACGGAATCCTTCCCTAGTCCACTA -ACGGAATCCTTCCCTAGTGGAGTA -ACGGAATCCTTCCCTAGTTCGTCT -ACGGAATCCTTCCCTAGTTGCACT -ACGGAATCCTTCCCTAGTCTGACT -ACGGAATCCTTCCCTAGTCAACCT -ACGGAATCCTTCCCTAGTGCTACT -ACGGAATCCTTCCCTAGTGGATCT -ACGGAATCCTTCCCTAGTAAGGCT -ACGGAATCCTTCCCTAGTTCAACC -ACGGAATCCTTCCCTAGTTGTTCC -ACGGAATCCTTCCCTAGTATTCCC -ACGGAATCCTTCCCTAGTTTCTCG -ACGGAATCCTTCCCTAGTTAGACG -ACGGAATCCTTCCCTAGTGTAACG -ACGGAATCCTTCCCTAGTACTTCG -ACGGAATCCTTCCCTAGTTACGCA -ACGGAATCCTTCCCTAGTCTTGCA -ACGGAATCCTTCCCTAGTCGAACA -ACGGAATCCTTCCCTAGTCAGTCA -ACGGAATCCTTCCCTAGTGATCCA -ACGGAATCCTTCCCTAGTACGACA -ACGGAATCCTTCCCTAGTAGCTCA -ACGGAATCCTTCCCTAGTTCACGT -ACGGAATCCTTCCCTAGTCGTAGT -ACGGAATCCTTCCCTAGTGTCAGT -ACGGAATCCTTCCCTAGTGAAGGT -ACGGAATCCTTCCCTAGTAACCGT -ACGGAATCCTTCCCTAGTTTGTGC -ACGGAATCCTTCCCTAGTCTAAGC -ACGGAATCCTTCCCTAGTACTAGC -ACGGAATCCTTCCCTAGTAGATGC -ACGGAATCCTTCCCTAGTTGAAGG -ACGGAATCCTTCCCTAGTCAATGG -ACGGAATCCTTCCCTAGTATGAGG -ACGGAATCCTTCCCTAGTAATGGG -ACGGAATCCTTCCCTAGTTCCTGA -ACGGAATCCTTCCCTAGTTAGCGA -ACGGAATCCTTCCCTAGTCACAGA -ACGGAATCCTTCCCTAGTGCAAGA -ACGGAATCCTTCCCTAGTGGTTGA -ACGGAATCCTTCCCTAGTTCCGAT -ACGGAATCCTTCCCTAGTTGGCAT -ACGGAATCCTTCCCTAGTCGAGAT -ACGGAATCCTTCCCTAGTTACCAC -ACGGAATCCTTCCCTAGTCAGAAC -ACGGAATCCTTCCCTAGTGTCTAC -ACGGAATCCTTCCCTAGTACGTAC -ACGGAATCCTTCCCTAGTAGTGAC -ACGGAATCCTTCCCTAGTCTGTAG -ACGGAATCCTTCCCTAGTCCTAAG -ACGGAATCCTTCCCTAGTGTTCAG -ACGGAATCCTTCCCTAGTGCATAG -ACGGAATCCTTCCCTAGTGACAAG -ACGGAATCCTTCCCTAGTAAGCAG -ACGGAATCCTTCCCTAGTCGTCAA -ACGGAATCCTTCCCTAGTGCTGAA -ACGGAATCCTTCCCTAGTAGTACG -ACGGAATCCTTCCCTAGTATCCGA -ACGGAATCCTTCCCTAGTATGGGA -ACGGAATCCTTCCCTAGTGTGCAA -ACGGAATCCTTCCCTAGTGAGGAA -ACGGAATCCTTCCCTAGTCAGGTA -ACGGAATCCTTCCCTAGTGACTCT -ACGGAATCCTTCCCTAGTAGTCCT -ACGGAATCCTTCCCTAGTTAAGCC -ACGGAATCCTTCCCTAGTATAGCC -ACGGAATCCTTCCCTAGTTAACCG -ACGGAATCCTTCCCTAGTATGCCA -ACGGAATCCTTCGCCTAAGGAAAC -ACGGAATCCTTCGCCTAAAACACC -ACGGAATCCTTCGCCTAAATCGAG -ACGGAATCCTTCGCCTAACTCCTT -ACGGAATCCTTCGCCTAACCTGTT -ACGGAATCCTTCGCCTAACGGTTT -ACGGAATCCTTCGCCTAAGTGGTT -ACGGAATCCTTCGCCTAAGCCTTT -ACGGAATCCTTCGCCTAAGGTCTT -ACGGAATCCTTCGCCTAAACGCTT -ACGGAATCCTTCGCCTAAAGCGTT -ACGGAATCCTTCGCCTAATTCGTC -ACGGAATCCTTCGCCTAATCTCTC -ACGGAATCCTTCGCCTAATGGATC -ACGGAATCCTTCGCCTAACACTTC -ACGGAATCCTTCGCCTAAGTACTC -ACGGAATCCTTCGCCTAAGATGTC -ACGGAATCCTTCGCCTAAACAGTC -ACGGAATCCTTCGCCTAATTGCTG -ACGGAATCCTTCGCCTAATCCATG -ACGGAATCCTTCGCCTAATGTGTG -ACGGAATCCTTCGCCTAACTAGTG -ACGGAATCCTTCGCCTAACATCTG -ACGGAATCCTTCGCCTAAGAGTTG -ACGGAATCCTTCGCCTAAAGACTG -ACGGAATCCTTCGCCTAATCGGTA -ACGGAATCCTTCGCCTAATGCCTA -ACGGAATCCTTCGCCTAACCACTA -ACGGAATCCTTCGCCTAAGGAGTA -ACGGAATCCTTCGCCTAATCGTCT -ACGGAATCCTTCGCCTAATGCACT -ACGGAATCCTTCGCCTAACTGACT -ACGGAATCCTTCGCCTAACAACCT -ACGGAATCCTTCGCCTAAGCTACT -ACGGAATCCTTCGCCTAAGGATCT -ACGGAATCCTTCGCCTAAAAGGCT -ACGGAATCCTTCGCCTAATCAACC -ACGGAATCCTTCGCCTAATGTTCC -ACGGAATCCTTCGCCTAAATTCCC -ACGGAATCCTTCGCCTAATTCTCG -ACGGAATCCTTCGCCTAATAGACG -ACGGAATCCTTCGCCTAAGTAACG -ACGGAATCCTTCGCCTAAACTTCG -ACGGAATCCTTCGCCTAATACGCA -ACGGAATCCTTCGCCTAACTTGCA -ACGGAATCCTTCGCCTAACGAACA -ACGGAATCCTTCGCCTAACAGTCA -ACGGAATCCTTCGCCTAAGATCCA -ACGGAATCCTTCGCCTAAACGACA -ACGGAATCCTTCGCCTAAAGCTCA -ACGGAATCCTTCGCCTAATCACGT -ACGGAATCCTTCGCCTAACGTAGT -ACGGAATCCTTCGCCTAAGTCAGT -ACGGAATCCTTCGCCTAAGAAGGT -ACGGAATCCTTCGCCTAAAACCGT -ACGGAATCCTTCGCCTAATTGTGC -ACGGAATCCTTCGCCTAACTAAGC -ACGGAATCCTTCGCCTAAACTAGC -ACGGAATCCTTCGCCTAAAGATGC -ACGGAATCCTTCGCCTAATGAAGG -ACGGAATCCTTCGCCTAACAATGG -ACGGAATCCTTCGCCTAAATGAGG -ACGGAATCCTTCGCCTAAAATGGG -ACGGAATCCTTCGCCTAATCCTGA -ACGGAATCCTTCGCCTAATAGCGA -ACGGAATCCTTCGCCTAACACAGA -ACGGAATCCTTCGCCTAAGCAAGA -ACGGAATCCTTCGCCTAAGGTTGA -ACGGAATCCTTCGCCTAATCCGAT -ACGGAATCCTTCGCCTAATGGCAT -ACGGAATCCTTCGCCTAACGAGAT -ACGGAATCCTTCGCCTAATACCAC -ACGGAATCCTTCGCCTAACAGAAC -ACGGAATCCTTCGCCTAAGTCTAC -ACGGAATCCTTCGCCTAAACGTAC -ACGGAATCCTTCGCCTAAAGTGAC -ACGGAATCCTTCGCCTAACTGTAG -ACGGAATCCTTCGCCTAACCTAAG -ACGGAATCCTTCGCCTAAGTTCAG -ACGGAATCCTTCGCCTAAGCATAG -ACGGAATCCTTCGCCTAAGACAAG -ACGGAATCCTTCGCCTAAAAGCAG -ACGGAATCCTTCGCCTAACGTCAA -ACGGAATCCTTCGCCTAAGCTGAA -ACGGAATCCTTCGCCTAAAGTACG -ACGGAATCCTTCGCCTAAATCCGA -ACGGAATCCTTCGCCTAAATGGGA -ACGGAATCCTTCGCCTAAGTGCAA -ACGGAATCCTTCGCCTAAGAGGAA -ACGGAATCCTTCGCCTAACAGGTA -ACGGAATCCTTCGCCTAAGACTCT -ACGGAATCCTTCGCCTAAAGTCCT -ACGGAATCCTTCGCCTAATAAGCC -ACGGAATCCTTCGCCTAAATAGCC -ACGGAATCCTTCGCCTAATAACCG -ACGGAATCCTTCGCCTAAATGCCA -ACGGAATCCTTCGCCATAGGAAAC -ACGGAATCCTTCGCCATAAACACC -ACGGAATCCTTCGCCATAATCGAG -ACGGAATCCTTCGCCATACTCCTT -ACGGAATCCTTCGCCATACCTGTT -ACGGAATCCTTCGCCATACGGTTT -ACGGAATCCTTCGCCATAGTGGTT -ACGGAATCCTTCGCCATAGCCTTT -ACGGAATCCTTCGCCATAGGTCTT -ACGGAATCCTTCGCCATAACGCTT -ACGGAATCCTTCGCCATAAGCGTT -ACGGAATCCTTCGCCATATTCGTC -ACGGAATCCTTCGCCATATCTCTC -ACGGAATCCTTCGCCATATGGATC -ACGGAATCCTTCGCCATACACTTC -ACGGAATCCTTCGCCATAGTACTC -ACGGAATCCTTCGCCATAGATGTC -ACGGAATCCTTCGCCATAACAGTC -ACGGAATCCTTCGCCATATTGCTG -ACGGAATCCTTCGCCATATCCATG -ACGGAATCCTTCGCCATATGTGTG -ACGGAATCCTTCGCCATACTAGTG -ACGGAATCCTTCGCCATACATCTG -ACGGAATCCTTCGCCATAGAGTTG -ACGGAATCCTTCGCCATAAGACTG -ACGGAATCCTTCGCCATATCGGTA -ACGGAATCCTTCGCCATATGCCTA -ACGGAATCCTTCGCCATACCACTA -ACGGAATCCTTCGCCATAGGAGTA -ACGGAATCCTTCGCCATATCGTCT -ACGGAATCCTTCGCCATATGCACT -ACGGAATCCTTCGCCATACTGACT -ACGGAATCCTTCGCCATACAACCT -ACGGAATCCTTCGCCATAGCTACT -ACGGAATCCTTCGCCATAGGATCT -ACGGAATCCTTCGCCATAAAGGCT -ACGGAATCCTTCGCCATATCAACC -ACGGAATCCTTCGCCATATGTTCC -ACGGAATCCTTCGCCATAATTCCC -ACGGAATCCTTCGCCATATTCTCG -ACGGAATCCTTCGCCATATAGACG -ACGGAATCCTTCGCCATAGTAACG -ACGGAATCCTTCGCCATAACTTCG -ACGGAATCCTTCGCCATATACGCA -ACGGAATCCTTCGCCATACTTGCA -ACGGAATCCTTCGCCATACGAACA -ACGGAATCCTTCGCCATACAGTCA -ACGGAATCCTTCGCCATAGATCCA -ACGGAATCCTTCGCCATAACGACA -ACGGAATCCTTCGCCATAAGCTCA -ACGGAATCCTTCGCCATATCACGT -ACGGAATCCTTCGCCATACGTAGT -ACGGAATCCTTCGCCATAGTCAGT -ACGGAATCCTTCGCCATAGAAGGT -ACGGAATCCTTCGCCATAAACCGT -ACGGAATCCTTCGCCATATTGTGC -ACGGAATCCTTCGCCATACTAAGC -ACGGAATCCTTCGCCATAACTAGC -ACGGAATCCTTCGCCATAAGATGC -ACGGAATCCTTCGCCATATGAAGG -ACGGAATCCTTCGCCATACAATGG -ACGGAATCCTTCGCCATAATGAGG -ACGGAATCCTTCGCCATAAATGGG -ACGGAATCCTTCGCCATATCCTGA -ACGGAATCCTTCGCCATATAGCGA -ACGGAATCCTTCGCCATACACAGA -ACGGAATCCTTCGCCATAGCAAGA -ACGGAATCCTTCGCCATAGGTTGA -ACGGAATCCTTCGCCATATCCGAT -ACGGAATCCTTCGCCATATGGCAT -ACGGAATCCTTCGCCATACGAGAT -ACGGAATCCTTCGCCATATACCAC -ACGGAATCCTTCGCCATACAGAAC -ACGGAATCCTTCGCCATAGTCTAC -ACGGAATCCTTCGCCATAACGTAC -ACGGAATCCTTCGCCATAAGTGAC -ACGGAATCCTTCGCCATACTGTAG -ACGGAATCCTTCGCCATACCTAAG -ACGGAATCCTTCGCCATAGTTCAG -ACGGAATCCTTCGCCATAGCATAG -ACGGAATCCTTCGCCATAGACAAG -ACGGAATCCTTCGCCATAAAGCAG -ACGGAATCCTTCGCCATACGTCAA -ACGGAATCCTTCGCCATAGCTGAA -ACGGAATCCTTCGCCATAAGTACG -ACGGAATCCTTCGCCATAATCCGA -ACGGAATCCTTCGCCATAATGGGA -ACGGAATCCTTCGCCATAGTGCAA -ACGGAATCCTTCGCCATAGAGGAA -ACGGAATCCTTCGCCATACAGGTA -ACGGAATCCTTCGCCATAGACTCT -ACGGAATCCTTCGCCATAAGTCCT -ACGGAATCCTTCGCCATATAAGCC -ACGGAATCCTTCGCCATAATAGCC -ACGGAATCCTTCGCCATATAACCG -ACGGAATCCTTCGCCATAATGCCA -ACGGAATCCTTCCCGTAAGGAAAC -ACGGAATCCTTCCCGTAAAACACC -ACGGAATCCTTCCCGTAAATCGAG -ACGGAATCCTTCCCGTAACTCCTT -ACGGAATCCTTCCCGTAACCTGTT -ACGGAATCCTTCCCGTAACGGTTT -ACGGAATCCTTCCCGTAAGTGGTT -ACGGAATCCTTCCCGTAAGCCTTT -ACGGAATCCTTCCCGTAAGGTCTT -ACGGAATCCTTCCCGTAAACGCTT -ACGGAATCCTTCCCGTAAAGCGTT -ACGGAATCCTTCCCGTAATTCGTC -ACGGAATCCTTCCCGTAATCTCTC -ACGGAATCCTTCCCGTAATGGATC -ACGGAATCCTTCCCGTAACACTTC -ACGGAATCCTTCCCGTAAGTACTC -ACGGAATCCTTCCCGTAAGATGTC -ACGGAATCCTTCCCGTAAACAGTC -ACGGAATCCTTCCCGTAATTGCTG -ACGGAATCCTTCCCGTAATCCATG -ACGGAATCCTTCCCGTAATGTGTG -ACGGAATCCTTCCCGTAACTAGTG -ACGGAATCCTTCCCGTAACATCTG -ACGGAATCCTTCCCGTAAGAGTTG -ACGGAATCCTTCCCGTAAAGACTG -ACGGAATCCTTCCCGTAATCGGTA -ACGGAATCCTTCCCGTAATGCCTA -ACGGAATCCTTCCCGTAACCACTA -ACGGAATCCTTCCCGTAAGGAGTA -ACGGAATCCTTCCCGTAATCGTCT -ACGGAATCCTTCCCGTAATGCACT -ACGGAATCCTTCCCGTAACTGACT -ACGGAATCCTTCCCGTAACAACCT -ACGGAATCCTTCCCGTAAGCTACT -ACGGAATCCTTCCCGTAAGGATCT -ACGGAATCCTTCCCGTAAAAGGCT -ACGGAATCCTTCCCGTAATCAACC -ACGGAATCCTTCCCGTAATGTTCC -ACGGAATCCTTCCCGTAAATTCCC -ACGGAATCCTTCCCGTAATTCTCG -ACGGAATCCTTCCCGTAATAGACG -ACGGAATCCTTCCCGTAAGTAACG -ACGGAATCCTTCCCGTAAACTTCG -ACGGAATCCTTCCCGTAATACGCA -ACGGAATCCTTCCCGTAACTTGCA -ACGGAATCCTTCCCGTAACGAACA -ACGGAATCCTTCCCGTAACAGTCA -ACGGAATCCTTCCCGTAAGATCCA -ACGGAATCCTTCCCGTAAACGACA -ACGGAATCCTTCCCGTAAAGCTCA -ACGGAATCCTTCCCGTAATCACGT -ACGGAATCCTTCCCGTAACGTAGT -ACGGAATCCTTCCCGTAAGTCAGT -ACGGAATCCTTCCCGTAAGAAGGT -ACGGAATCCTTCCCGTAAAACCGT -ACGGAATCCTTCCCGTAATTGTGC -ACGGAATCCTTCCCGTAACTAAGC -ACGGAATCCTTCCCGTAAACTAGC -ACGGAATCCTTCCCGTAAAGATGC -ACGGAATCCTTCCCGTAATGAAGG -ACGGAATCCTTCCCGTAACAATGG -ACGGAATCCTTCCCGTAAATGAGG -ACGGAATCCTTCCCGTAAAATGGG -ACGGAATCCTTCCCGTAATCCTGA -ACGGAATCCTTCCCGTAATAGCGA -ACGGAATCCTTCCCGTAACACAGA -ACGGAATCCTTCCCGTAAGCAAGA -ACGGAATCCTTCCCGTAAGGTTGA -ACGGAATCCTTCCCGTAATCCGAT -ACGGAATCCTTCCCGTAATGGCAT -ACGGAATCCTTCCCGTAACGAGAT -ACGGAATCCTTCCCGTAATACCAC -ACGGAATCCTTCCCGTAACAGAAC -ACGGAATCCTTCCCGTAAGTCTAC -ACGGAATCCTTCCCGTAAACGTAC -ACGGAATCCTTCCCGTAAAGTGAC -ACGGAATCCTTCCCGTAACTGTAG -ACGGAATCCTTCCCGTAACCTAAG -ACGGAATCCTTCCCGTAAGTTCAG -ACGGAATCCTTCCCGTAAGCATAG -ACGGAATCCTTCCCGTAAGACAAG -ACGGAATCCTTCCCGTAAAAGCAG -ACGGAATCCTTCCCGTAACGTCAA -ACGGAATCCTTCCCGTAAGCTGAA -ACGGAATCCTTCCCGTAAAGTACG -ACGGAATCCTTCCCGTAAATCCGA -ACGGAATCCTTCCCGTAAATGGGA -ACGGAATCCTTCCCGTAAGTGCAA -ACGGAATCCTTCCCGTAAGAGGAA -ACGGAATCCTTCCCGTAACAGGTA -ACGGAATCCTTCCCGTAAGACTCT -ACGGAATCCTTCCCGTAAAGTCCT -ACGGAATCCTTCCCGTAATAAGCC -ACGGAATCCTTCCCGTAAATAGCC -ACGGAATCCTTCCCGTAATAACCG -ACGGAATCCTTCCCGTAAATGCCA -ACGGAATCCTTCCCAATGGGAAAC -ACGGAATCCTTCCCAATGAACACC -ACGGAATCCTTCCCAATGATCGAG -ACGGAATCCTTCCCAATGCTCCTT -ACGGAATCCTTCCCAATGCCTGTT -ACGGAATCCTTCCCAATGCGGTTT -ACGGAATCCTTCCCAATGGTGGTT -ACGGAATCCTTCCCAATGGCCTTT -ACGGAATCCTTCCCAATGGGTCTT -ACGGAATCCTTCCCAATGACGCTT -ACGGAATCCTTCCCAATGAGCGTT -ACGGAATCCTTCCCAATGTTCGTC -ACGGAATCCTTCCCAATGTCTCTC -ACGGAATCCTTCCCAATGTGGATC -ACGGAATCCTTCCCAATGCACTTC -ACGGAATCCTTCCCAATGGTACTC -ACGGAATCCTTCCCAATGGATGTC -ACGGAATCCTTCCCAATGACAGTC -ACGGAATCCTTCCCAATGTTGCTG -ACGGAATCCTTCCCAATGTCCATG -ACGGAATCCTTCCCAATGTGTGTG -ACGGAATCCTTCCCAATGCTAGTG -ACGGAATCCTTCCCAATGCATCTG -ACGGAATCCTTCCCAATGGAGTTG -ACGGAATCCTTCCCAATGAGACTG -ACGGAATCCTTCCCAATGTCGGTA -ACGGAATCCTTCCCAATGTGCCTA -ACGGAATCCTTCCCAATGCCACTA -ACGGAATCCTTCCCAATGGGAGTA -ACGGAATCCTTCCCAATGTCGTCT -ACGGAATCCTTCCCAATGTGCACT -ACGGAATCCTTCCCAATGCTGACT -ACGGAATCCTTCCCAATGCAACCT -ACGGAATCCTTCCCAATGGCTACT -ACGGAATCCTTCCCAATGGGATCT -ACGGAATCCTTCCCAATGAAGGCT -ACGGAATCCTTCCCAATGTCAACC -ACGGAATCCTTCCCAATGTGTTCC -ACGGAATCCTTCCCAATGATTCCC -ACGGAATCCTTCCCAATGTTCTCG -ACGGAATCCTTCCCAATGTAGACG -ACGGAATCCTTCCCAATGGTAACG -ACGGAATCCTTCCCAATGACTTCG -ACGGAATCCTTCCCAATGTACGCA -ACGGAATCCTTCCCAATGCTTGCA -ACGGAATCCTTCCCAATGCGAACA -ACGGAATCCTTCCCAATGCAGTCA -ACGGAATCCTTCCCAATGGATCCA -ACGGAATCCTTCCCAATGACGACA -ACGGAATCCTTCCCAATGAGCTCA -ACGGAATCCTTCCCAATGTCACGT -ACGGAATCCTTCCCAATGCGTAGT -ACGGAATCCTTCCCAATGGTCAGT -ACGGAATCCTTCCCAATGGAAGGT -ACGGAATCCTTCCCAATGAACCGT -ACGGAATCCTTCCCAATGTTGTGC -ACGGAATCCTTCCCAATGCTAAGC -ACGGAATCCTTCCCAATGACTAGC -ACGGAATCCTTCCCAATGAGATGC -ACGGAATCCTTCCCAATGTGAAGG -ACGGAATCCTTCCCAATGCAATGG -ACGGAATCCTTCCCAATGATGAGG -ACGGAATCCTTCCCAATGAATGGG -ACGGAATCCTTCCCAATGTCCTGA -ACGGAATCCTTCCCAATGTAGCGA -ACGGAATCCTTCCCAATGCACAGA -ACGGAATCCTTCCCAATGGCAAGA -ACGGAATCCTTCCCAATGGGTTGA -ACGGAATCCTTCCCAATGTCCGAT -ACGGAATCCTTCCCAATGTGGCAT -ACGGAATCCTTCCCAATGCGAGAT -ACGGAATCCTTCCCAATGTACCAC -ACGGAATCCTTCCCAATGCAGAAC -ACGGAATCCTTCCCAATGGTCTAC -ACGGAATCCTTCCCAATGACGTAC -ACGGAATCCTTCCCAATGAGTGAC -ACGGAATCCTTCCCAATGCTGTAG -ACGGAATCCTTCCCAATGCCTAAG -ACGGAATCCTTCCCAATGGTTCAG -ACGGAATCCTTCCCAATGGCATAG -ACGGAATCCTTCCCAATGGACAAG -ACGGAATCCTTCCCAATGAAGCAG -ACGGAATCCTTCCCAATGCGTCAA -ACGGAATCCTTCCCAATGGCTGAA -ACGGAATCCTTCCCAATGAGTACG -ACGGAATCCTTCCCAATGATCCGA -ACGGAATCCTTCCCAATGATGGGA -ACGGAATCCTTCCCAATGGTGCAA -ACGGAATCCTTCCCAATGGAGGAA -ACGGAATCCTTCCCAATGCAGGTA -ACGGAATCCTTCCCAATGGACTCT -ACGGAATCCTTCCCAATGAGTCCT -ACGGAATCCTTCCCAATGTAAGCC -ACGGAATCCTTCCCAATGATAGCC -ACGGAATCCTTCCCAATGTAACCG -ACGGAATCCTTCCCAATGATGCCA -ACGGAACTGTTCAACGGAGGAAAC -ACGGAACTGTTCAACGGAAACACC -ACGGAACTGTTCAACGGAATCGAG -ACGGAACTGTTCAACGGACTCCTT -ACGGAACTGTTCAACGGACCTGTT -ACGGAACTGTTCAACGGACGGTTT -ACGGAACTGTTCAACGGAGTGGTT -ACGGAACTGTTCAACGGAGCCTTT -ACGGAACTGTTCAACGGAGGTCTT -ACGGAACTGTTCAACGGAACGCTT -ACGGAACTGTTCAACGGAAGCGTT -ACGGAACTGTTCAACGGATTCGTC -ACGGAACTGTTCAACGGATCTCTC -ACGGAACTGTTCAACGGATGGATC -ACGGAACTGTTCAACGGACACTTC -ACGGAACTGTTCAACGGAGTACTC -ACGGAACTGTTCAACGGAGATGTC -ACGGAACTGTTCAACGGAACAGTC -ACGGAACTGTTCAACGGATTGCTG -ACGGAACTGTTCAACGGATCCATG -ACGGAACTGTTCAACGGATGTGTG -ACGGAACTGTTCAACGGACTAGTG -ACGGAACTGTTCAACGGACATCTG -ACGGAACTGTTCAACGGAGAGTTG -ACGGAACTGTTCAACGGAAGACTG -ACGGAACTGTTCAACGGATCGGTA -ACGGAACTGTTCAACGGATGCCTA -ACGGAACTGTTCAACGGACCACTA -ACGGAACTGTTCAACGGAGGAGTA -ACGGAACTGTTCAACGGATCGTCT -ACGGAACTGTTCAACGGATGCACT -ACGGAACTGTTCAACGGACTGACT -ACGGAACTGTTCAACGGACAACCT -ACGGAACTGTTCAACGGAGCTACT -ACGGAACTGTTCAACGGAGGATCT -ACGGAACTGTTCAACGGAAAGGCT -ACGGAACTGTTCAACGGATCAACC -ACGGAACTGTTCAACGGATGTTCC -ACGGAACTGTTCAACGGAATTCCC -ACGGAACTGTTCAACGGATTCTCG -ACGGAACTGTTCAACGGATAGACG -ACGGAACTGTTCAACGGAGTAACG -ACGGAACTGTTCAACGGAACTTCG -ACGGAACTGTTCAACGGATACGCA -ACGGAACTGTTCAACGGACTTGCA -ACGGAACTGTTCAACGGACGAACA -ACGGAACTGTTCAACGGACAGTCA -ACGGAACTGTTCAACGGAGATCCA -ACGGAACTGTTCAACGGAACGACA -ACGGAACTGTTCAACGGAAGCTCA -ACGGAACTGTTCAACGGATCACGT -ACGGAACTGTTCAACGGACGTAGT -ACGGAACTGTTCAACGGAGTCAGT -ACGGAACTGTTCAACGGAGAAGGT -ACGGAACTGTTCAACGGAAACCGT -ACGGAACTGTTCAACGGATTGTGC -ACGGAACTGTTCAACGGACTAAGC -ACGGAACTGTTCAACGGAACTAGC -ACGGAACTGTTCAACGGAAGATGC -ACGGAACTGTTCAACGGATGAAGG -ACGGAACTGTTCAACGGACAATGG -ACGGAACTGTTCAACGGAATGAGG -ACGGAACTGTTCAACGGAAATGGG -ACGGAACTGTTCAACGGATCCTGA -ACGGAACTGTTCAACGGATAGCGA -ACGGAACTGTTCAACGGACACAGA -ACGGAACTGTTCAACGGAGCAAGA -ACGGAACTGTTCAACGGAGGTTGA -ACGGAACTGTTCAACGGATCCGAT -ACGGAACTGTTCAACGGATGGCAT -ACGGAACTGTTCAACGGACGAGAT -ACGGAACTGTTCAACGGATACCAC -ACGGAACTGTTCAACGGACAGAAC -ACGGAACTGTTCAACGGAGTCTAC -ACGGAACTGTTCAACGGAACGTAC -ACGGAACTGTTCAACGGAAGTGAC -ACGGAACTGTTCAACGGACTGTAG -ACGGAACTGTTCAACGGACCTAAG -ACGGAACTGTTCAACGGAGTTCAG -ACGGAACTGTTCAACGGAGCATAG -ACGGAACTGTTCAACGGAGACAAG -ACGGAACTGTTCAACGGAAAGCAG -ACGGAACTGTTCAACGGACGTCAA -ACGGAACTGTTCAACGGAGCTGAA -ACGGAACTGTTCAACGGAAGTACG -ACGGAACTGTTCAACGGAATCCGA -ACGGAACTGTTCAACGGAATGGGA -ACGGAACTGTTCAACGGAGTGCAA -ACGGAACTGTTCAACGGAGAGGAA -ACGGAACTGTTCAACGGACAGGTA -ACGGAACTGTTCAACGGAGACTCT -ACGGAACTGTTCAACGGAAGTCCT -ACGGAACTGTTCAACGGATAAGCC -ACGGAACTGTTCAACGGAATAGCC -ACGGAACTGTTCAACGGATAACCG -ACGGAACTGTTCAACGGAATGCCA -ACGGAACTGTTCACCAACGGAAAC -ACGGAACTGTTCACCAACAACACC -ACGGAACTGTTCACCAACATCGAG -ACGGAACTGTTCACCAACCTCCTT -ACGGAACTGTTCACCAACCCTGTT -ACGGAACTGTTCACCAACCGGTTT -ACGGAACTGTTCACCAACGTGGTT -ACGGAACTGTTCACCAACGCCTTT -ACGGAACTGTTCACCAACGGTCTT -ACGGAACTGTTCACCAACACGCTT -ACGGAACTGTTCACCAACAGCGTT -ACGGAACTGTTCACCAACTTCGTC -ACGGAACTGTTCACCAACTCTCTC -ACGGAACTGTTCACCAACTGGATC -ACGGAACTGTTCACCAACCACTTC -ACGGAACTGTTCACCAACGTACTC -ACGGAACTGTTCACCAACGATGTC -ACGGAACTGTTCACCAACACAGTC -ACGGAACTGTTCACCAACTTGCTG -ACGGAACTGTTCACCAACTCCATG -ACGGAACTGTTCACCAACTGTGTG -ACGGAACTGTTCACCAACCTAGTG -ACGGAACTGTTCACCAACCATCTG -ACGGAACTGTTCACCAACGAGTTG -ACGGAACTGTTCACCAACAGACTG -ACGGAACTGTTCACCAACTCGGTA -ACGGAACTGTTCACCAACTGCCTA -ACGGAACTGTTCACCAACCCACTA -ACGGAACTGTTCACCAACGGAGTA -ACGGAACTGTTCACCAACTCGTCT -ACGGAACTGTTCACCAACTGCACT -ACGGAACTGTTCACCAACCTGACT -ACGGAACTGTTCACCAACCAACCT -ACGGAACTGTTCACCAACGCTACT -ACGGAACTGTTCACCAACGGATCT -ACGGAACTGTTCACCAACAAGGCT -ACGGAACTGTTCACCAACTCAACC -ACGGAACTGTTCACCAACTGTTCC -ACGGAACTGTTCACCAACATTCCC -ACGGAACTGTTCACCAACTTCTCG -ACGGAACTGTTCACCAACTAGACG -ACGGAACTGTTCACCAACGTAACG -ACGGAACTGTTCACCAACACTTCG -ACGGAACTGTTCACCAACTACGCA -ACGGAACTGTTCACCAACCTTGCA -ACGGAACTGTTCACCAACCGAACA -ACGGAACTGTTCACCAACCAGTCA -ACGGAACTGTTCACCAACGATCCA -ACGGAACTGTTCACCAACACGACA -ACGGAACTGTTCACCAACAGCTCA -ACGGAACTGTTCACCAACTCACGT -ACGGAACTGTTCACCAACCGTAGT -ACGGAACTGTTCACCAACGTCAGT -ACGGAACTGTTCACCAACGAAGGT -ACGGAACTGTTCACCAACAACCGT -ACGGAACTGTTCACCAACTTGTGC -ACGGAACTGTTCACCAACCTAAGC -ACGGAACTGTTCACCAACACTAGC -ACGGAACTGTTCACCAACAGATGC -ACGGAACTGTTCACCAACTGAAGG -ACGGAACTGTTCACCAACCAATGG -ACGGAACTGTTCACCAACATGAGG -ACGGAACTGTTCACCAACAATGGG -ACGGAACTGTTCACCAACTCCTGA -ACGGAACTGTTCACCAACTAGCGA -ACGGAACTGTTCACCAACCACAGA -ACGGAACTGTTCACCAACGCAAGA -ACGGAACTGTTCACCAACGGTTGA -ACGGAACTGTTCACCAACTCCGAT -ACGGAACTGTTCACCAACTGGCAT -ACGGAACTGTTCACCAACCGAGAT -ACGGAACTGTTCACCAACTACCAC -ACGGAACTGTTCACCAACCAGAAC -ACGGAACTGTTCACCAACGTCTAC -ACGGAACTGTTCACCAACACGTAC -ACGGAACTGTTCACCAACAGTGAC -ACGGAACTGTTCACCAACCTGTAG -ACGGAACTGTTCACCAACCCTAAG -ACGGAACTGTTCACCAACGTTCAG -ACGGAACTGTTCACCAACGCATAG -ACGGAACTGTTCACCAACGACAAG -ACGGAACTGTTCACCAACAAGCAG -ACGGAACTGTTCACCAACCGTCAA -ACGGAACTGTTCACCAACGCTGAA -ACGGAACTGTTCACCAACAGTACG -ACGGAACTGTTCACCAACATCCGA -ACGGAACTGTTCACCAACATGGGA -ACGGAACTGTTCACCAACGTGCAA -ACGGAACTGTTCACCAACGAGGAA -ACGGAACTGTTCACCAACCAGGTA -ACGGAACTGTTCACCAACGACTCT -ACGGAACTGTTCACCAACAGTCCT -ACGGAACTGTTCACCAACTAAGCC -ACGGAACTGTTCACCAACATAGCC -ACGGAACTGTTCACCAACTAACCG -ACGGAACTGTTCACCAACATGCCA -ACGGAACTGTTCGAGATCGGAAAC -ACGGAACTGTTCGAGATCAACACC -ACGGAACTGTTCGAGATCATCGAG -ACGGAACTGTTCGAGATCCTCCTT -ACGGAACTGTTCGAGATCCCTGTT -ACGGAACTGTTCGAGATCCGGTTT -ACGGAACTGTTCGAGATCGTGGTT -ACGGAACTGTTCGAGATCGCCTTT -ACGGAACTGTTCGAGATCGGTCTT -ACGGAACTGTTCGAGATCACGCTT -ACGGAACTGTTCGAGATCAGCGTT -ACGGAACTGTTCGAGATCTTCGTC -ACGGAACTGTTCGAGATCTCTCTC -ACGGAACTGTTCGAGATCTGGATC -ACGGAACTGTTCGAGATCCACTTC -ACGGAACTGTTCGAGATCGTACTC -ACGGAACTGTTCGAGATCGATGTC -ACGGAACTGTTCGAGATCACAGTC -ACGGAACTGTTCGAGATCTTGCTG -ACGGAACTGTTCGAGATCTCCATG -ACGGAACTGTTCGAGATCTGTGTG -ACGGAACTGTTCGAGATCCTAGTG -ACGGAACTGTTCGAGATCCATCTG -ACGGAACTGTTCGAGATCGAGTTG -ACGGAACTGTTCGAGATCAGACTG -ACGGAACTGTTCGAGATCTCGGTA -ACGGAACTGTTCGAGATCTGCCTA -ACGGAACTGTTCGAGATCCCACTA -ACGGAACTGTTCGAGATCGGAGTA -ACGGAACTGTTCGAGATCTCGTCT -ACGGAACTGTTCGAGATCTGCACT -ACGGAACTGTTCGAGATCCTGACT -ACGGAACTGTTCGAGATCCAACCT -ACGGAACTGTTCGAGATCGCTACT -ACGGAACTGTTCGAGATCGGATCT -ACGGAACTGTTCGAGATCAAGGCT -ACGGAACTGTTCGAGATCTCAACC -ACGGAACTGTTCGAGATCTGTTCC -ACGGAACTGTTCGAGATCATTCCC -ACGGAACTGTTCGAGATCTTCTCG -ACGGAACTGTTCGAGATCTAGACG -ACGGAACTGTTCGAGATCGTAACG -ACGGAACTGTTCGAGATCACTTCG -ACGGAACTGTTCGAGATCTACGCA -ACGGAACTGTTCGAGATCCTTGCA -ACGGAACTGTTCGAGATCCGAACA -ACGGAACTGTTCGAGATCCAGTCA -ACGGAACTGTTCGAGATCGATCCA -ACGGAACTGTTCGAGATCACGACA -ACGGAACTGTTCGAGATCAGCTCA -ACGGAACTGTTCGAGATCTCACGT -ACGGAACTGTTCGAGATCCGTAGT -ACGGAACTGTTCGAGATCGTCAGT -ACGGAACTGTTCGAGATCGAAGGT -ACGGAACTGTTCGAGATCAACCGT -ACGGAACTGTTCGAGATCTTGTGC -ACGGAACTGTTCGAGATCCTAAGC -ACGGAACTGTTCGAGATCACTAGC -ACGGAACTGTTCGAGATCAGATGC -ACGGAACTGTTCGAGATCTGAAGG -ACGGAACTGTTCGAGATCCAATGG -ACGGAACTGTTCGAGATCATGAGG -ACGGAACTGTTCGAGATCAATGGG -ACGGAACTGTTCGAGATCTCCTGA -ACGGAACTGTTCGAGATCTAGCGA -ACGGAACTGTTCGAGATCCACAGA -ACGGAACTGTTCGAGATCGCAAGA -ACGGAACTGTTCGAGATCGGTTGA -ACGGAACTGTTCGAGATCTCCGAT -ACGGAACTGTTCGAGATCTGGCAT -ACGGAACTGTTCGAGATCCGAGAT -ACGGAACTGTTCGAGATCTACCAC -ACGGAACTGTTCGAGATCCAGAAC -ACGGAACTGTTCGAGATCGTCTAC -ACGGAACTGTTCGAGATCACGTAC -ACGGAACTGTTCGAGATCAGTGAC -ACGGAACTGTTCGAGATCCTGTAG -ACGGAACTGTTCGAGATCCCTAAG -ACGGAACTGTTCGAGATCGTTCAG -ACGGAACTGTTCGAGATCGCATAG -ACGGAACTGTTCGAGATCGACAAG -ACGGAACTGTTCGAGATCAAGCAG -ACGGAACTGTTCGAGATCCGTCAA -ACGGAACTGTTCGAGATCGCTGAA -ACGGAACTGTTCGAGATCAGTACG -ACGGAACTGTTCGAGATCATCCGA -ACGGAACTGTTCGAGATCATGGGA -ACGGAACTGTTCGAGATCGTGCAA -ACGGAACTGTTCGAGATCGAGGAA -ACGGAACTGTTCGAGATCCAGGTA -ACGGAACTGTTCGAGATCGACTCT -ACGGAACTGTTCGAGATCAGTCCT -ACGGAACTGTTCGAGATCTAAGCC -ACGGAACTGTTCGAGATCATAGCC -ACGGAACTGTTCGAGATCTAACCG -ACGGAACTGTTCGAGATCATGCCA -ACGGAACTGTTCCTTCTCGGAAAC -ACGGAACTGTTCCTTCTCAACACC -ACGGAACTGTTCCTTCTCATCGAG -ACGGAACTGTTCCTTCTCCTCCTT -ACGGAACTGTTCCTTCTCCCTGTT -ACGGAACTGTTCCTTCTCCGGTTT -ACGGAACTGTTCCTTCTCGTGGTT -ACGGAACTGTTCCTTCTCGCCTTT -ACGGAACTGTTCCTTCTCGGTCTT -ACGGAACTGTTCCTTCTCACGCTT -ACGGAACTGTTCCTTCTCAGCGTT -ACGGAACTGTTCCTTCTCTTCGTC -ACGGAACTGTTCCTTCTCTCTCTC -ACGGAACTGTTCCTTCTCTGGATC -ACGGAACTGTTCCTTCTCCACTTC -ACGGAACTGTTCCTTCTCGTACTC -ACGGAACTGTTCCTTCTCGATGTC -ACGGAACTGTTCCTTCTCACAGTC -ACGGAACTGTTCCTTCTCTTGCTG -ACGGAACTGTTCCTTCTCTCCATG -ACGGAACTGTTCCTTCTCTGTGTG -ACGGAACTGTTCCTTCTCCTAGTG -ACGGAACTGTTCCTTCTCCATCTG -ACGGAACTGTTCCTTCTCGAGTTG -ACGGAACTGTTCCTTCTCAGACTG -ACGGAACTGTTCCTTCTCTCGGTA -ACGGAACTGTTCCTTCTCTGCCTA -ACGGAACTGTTCCTTCTCCCACTA -ACGGAACTGTTCCTTCTCGGAGTA -ACGGAACTGTTCCTTCTCTCGTCT -ACGGAACTGTTCCTTCTCTGCACT -ACGGAACTGTTCCTTCTCCTGACT -ACGGAACTGTTCCTTCTCCAACCT -ACGGAACTGTTCCTTCTCGCTACT -ACGGAACTGTTCCTTCTCGGATCT -ACGGAACTGTTCCTTCTCAAGGCT -ACGGAACTGTTCCTTCTCTCAACC -ACGGAACTGTTCCTTCTCTGTTCC -ACGGAACTGTTCCTTCTCATTCCC -ACGGAACTGTTCCTTCTCTTCTCG -ACGGAACTGTTCCTTCTCTAGACG -ACGGAACTGTTCCTTCTCGTAACG -ACGGAACTGTTCCTTCTCACTTCG -ACGGAACTGTTCCTTCTCTACGCA -ACGGAACTGTTCCTTCTCCTTGCA -ACGGAACTGTTCCTTCTCCGAACA -ACGGAACTGTTCCTTCTCCAGTCA -ACGGAACTGTTCCTTCTCGATCCA -ACGGAACTGTTCCTTCTCACGACA -ACGGAACTGTTCCTTCTCAGCTCA -ACGGAACTGTTCCTTCTCTCACGT -ACGGAACTGTTCCTTCTCCGTAGT -ACGGAACTGTTCCTTCTCGTCAGT -ACGGAACTGTTCCTTCTCGAAGGT -ACGGAACTGTTCCTTCTCAACCGT -ACGGAACTGTTCCTTCTCTTGTGC -ACGGAACTGTTCCTTCTCCTAAGC -ACGGAACTGTTCCTTCTCACTAGC -ACGGAACTGTTCCTTCTCAGATGC -ACGGAACTGTTCCTTCTCTGAAGG -ACGGAACTGTTCCTTCTCCAATGG -ACGGAACTGTTCCTTCTCATGAGG -ACGGAACTGTTCCTTCTCAATGGG -ACGGAACTGTTCCTTCTCTCCTGA -ACGGAACTGTTCCTTCTCTAGCGA -ACGGAACTGTTCCTTCTCCACAGA -ACGGAACTGTTCCTTCTCGCAAGA -ACGGAACTGTTCCTTCTCGGTTGA -ACGGAACTGTTCCTTCTCTCCGAT -ACGGAACTGTTCCTTCTCTGGCAT -ACGGAACTGTTCCTTCTCCGAGAT -ACGGAACTGTTCCTTCTCTACCAC -ACGGAACTGTTCCTTCTCCAGAAC -ACGGAACTGTTCCTTCTCGTCTAC -ACGGAACTGTTCCTTCTCACGTAC -ACGGAACTGTTCCTTCTCAGTGAC -ACGGAACTGTTCCTTCTCCTGTAG -ACGGAACTGTTCCTTCTCCCTAAG -ACGGAACTGTTCCTTCTCGTTCAG -ACGGAACTGTTCCTTCTCGCATAG -ACGGAACTGTTCCTTCTCGACAAG -ACGGAACTGTTCCTTCTCAAGCAG -ACGGAACTGTTCCTTCTCCGTCAA -ACGGAACTGTTCCTTCTCGCTGAA -ACGGAACTGTTCCTTCTCAGTACG -ACGGAACTGTTCCTTCTCATCCGA -ACGGAACTGTTCCTTCTCATGGGA -ACGGAACTGTTCCTTCTCGTGCAA -ACGGAACTGTTCCTTCTCGAGGAA -ACGGAACTGTTCCTTCTCCAGGTA -ACGGAACTGTTCCTTCTCGACTCT -ACGGAACTGTTCCTTCTCAGTCCT -ACGGAACTGTTCCTTCTCTAAGCC -ACGGAACTGTTCCTTCTCATAGCC -ACGGAACTGTTCCTTCTCTAACCG -ACGGAACTGTTCCTTCTCATGCCA -ACGGAACTGTTCGTTCCTGGAAAC -ACGGAACTGTTCGTTCCTAACACC -ACGGAACTGTTCGTTCCTATCGAG -ACGGAACTGTTCGTTCCTCTCCTT -ACGGAACTGTTCGTTCCTCCTGTT -ACGGAACTGTTCGTTCCTCGGTTT -ACGGAACTGTTCGTTCCTGTGGTT -ACGGAACTGTTCGTTCCTGCCTTT -ACGGAACTGTTCGTTCCTGGTCTT -ACGGAACTGTTCGTTCCTACGCTT -ACGGAACTGTTCGTTCCTAGCGTT -ACGGAACTGTTCGTTCCTTTCGTC -ACGGAACTGTTCGTTCCTTCTCTC -ACGGAACTGTTCGTTCCTTGGATC -ACGGAACTGTTCGTTCCTCACTTC -ACGGAACTGTTCGTTCCTGTACTC -ACGGAACTGTTCGTTCCTGATGTC -ACGGAACTGTTCGTTCCTACAGTC -ACGGAACTGTTCGTTCCTTTGCTG -ACGGAACTGTTCGTTCCTTCCATG -ACGGAACTGTTCGTTCCTTGTGTG -ACGGAACTGTTCGTTCCTCTAGTG -ACGGAACTGTTCGTTCCTCATCTG -ACGGAACTGTTCGTTCCTGAGTTG -ACGGAACTGTTCGTTCCTAGACTG -ACGGAACTGTTCGTTCCTTCGGTA -ACGGAACTGTTCGTTCCTTGCCTA -ACGGAACTGTTCGTTCCTCCACTA -ACGGAACTGTTCGTTCCTGGAGTA -ACGGAACTGTTCGTTCCTTCGTCT -ACGGAACTGTTCGTTCCTTGCACT -ACGGAACTGTTCGTTCCTCTGACT -ACGGAACTGTTCGTTCCTCAACCT -ACGGAACTGTTCGTTCCTGCTACT -ACGGAACTGTTCGTTCCTGGATCT -ACGGAACTGTTCGTTCCTAAGGCT -ACGGAACTGTTCGTTCCTTCAACC -ACGGAACTGTTCGTTCCTTGTTCC -ACGGAACTGTTCGTTCCTATTCCC -ACGGAACTGTTCGTTCCTTTCTCG -ACGGAACTGTTCGTTCCTTAGACG -ACGGAACTGTTCGTTCCTGTAACG -ACGGAACTGTTCGTTCCTACTTCG -ACGGAACTGTTCGTTCCTTACGCA -ACGGAACTGTTCGTTCCTCTTGCA -ACGGAACTGTTCGTTCCTCGAACA -ACGGAACTGTTCGTTCCTCAGTCA -ACGGAACTGTTCGTTCCTGATCCA -ACGGAACTGTTCGTTCCTACGACA -ACGGAACTGTTCGTTCCTAGCTCA -ACGGAACTGTTCGTTCCTTCACGT -ACGGAACTGTTCGTTCCTCGTAGT -ACGGAACTGTTCGTTCCTGTCAGT -ACGGAACTGTTCGTTCCTGAAGGT -ACGGAACTGTTCGTTCCTAACCGT -ACGGAACTGTTCGTTCCTTTGTGC -ACGGAACTGTTCGTTCCTCTAAGC -ACGGAACTGTTCGTTCCTACTAGC -ACGGAACTGTTCGTTCCTAGATGC -ACGGAACTGTTCGTTCCTTGAAGG -ACGGAACTGTTCGTTCCTCAATGG -ACGGAACTGTTCGTTCCTATGAGG -ACGGAACTGTTCGTTCCTAATGGG -ACGGAACTGTTCGTTCCTTCCTGA -ACGGAACTGTTCGTTCCTTAGCGA -ACGGAACTGTTCGTTCCTCACAGA -ACGGAACTGTTCGTTCCTGCAAGA -ACGGAACTGTTCGTTCCTGGTTGA -ACGGAACTGTTCGTTCCTTCCGAT -ACGGAACTGTTCGTTCCTTGGCAT -ACGGAACTGTTCGTTCCTCGAGAT -ACGGAACTGTTCGTTCCTTACCAC -ACGGAACTGTTCGTTCCTCAGAAC -ACGGAACTGTTCGTTCCTGTCTAC -ACGGAACTGTTCGTTCCTACGTAC -ACGGAACTGTTCGTTCCTAGTGAC -ACGGAACTGTTCGTTCCTCTGTAG -ACGGAACTGTTCGTTCCTCCTAAG -ACGGAACTGTTCGTTCCTGTTCAG -ACGGAACTGTTCGTTCCTGCATAG -ACGGAACTGTTCGTTCCTGACAAG -ACGGAACTGTTCGTTCCTAAGCAG -ACGGAACTGTTCGTTCCTCGTCAA -ACGGAACTGTTCGTTCCTGCTGAA -ACGGAACTGTTCGTTCCTAGTACG -ACGGAACTGTTCGTTCCTATCCGA -ACGGAACTGTTCGTTCCTATGGGA -ACGGAACTGTTCGTTCCTGTGCAA -ACGGAACTGTTCGTTCCTGAGGAA -ACGGAACTGTTCGTTCCTCAGGTA -ACGGAACTGTTCGTTCCTGACTCT -ACGGAACTGTTCGTTCCTAGTCCT -ACGGAACTGTTCGTTCCTTAAGCC -ACGGAACTGTTCGTTCCTATAGCC -ACGGAACTGTTCGTTCCTTAACCG -ACGGAACTGTTCGTTCCTATGCCA -ACGGAACTGTTCTTTCGGGGAAAC -ACGGAACTGTTCTTTCGGAACACC -ACGGAACTGTTCTTTCGGATCGAG -ACGGAACTGTTCTTTCGGCTCCTT -ACGGAACTGTTCTTTCGGCCTGTT -ACGGAACTGTTCTTTCGGCGGTTT -ACGGAACTGTTCTTTCGGGTGGTT -ACGGAACTGTTCTTTCGGGCCTTT -ACGGAACTGTTCTTTCGGGGTCTT -ACGGAACTGTTCTTTCGGACGCTT -ACGGAACTGTTCTTTCGGAGCGTT -ACGGAACTGTTCTTTCGGTTCGTC -ACGGAACTGTTCTTTCGGTCTCTC -ACGGAACTGTTCTTTCGGTGGATC -ACGGAACTGTTCTTTCGGCACTTC -ACGGAACTGTTCTTTCGGGTACTC -ACGGAACTGTTCTTTCGGGATGTC -ACGGAACTGTTCTTTCGGACAGTC -ACGGAACTGTTCTTTCGGTTGCTG -ACGGAACTGTTCTTTCGGTCCATG -ACGGAACTGTTCTTTCGGTGTGTG -ACGGAACTGTTCTTTCGGCTAGTG -ACGGAACTGTTCTTTCGGCATCTG -ACGGAACTGTTCTTTCGGGAGTTG -ACGGAACTGTTCTTTCGGAGACTG -ACGGAACTGTTCTTTCGGTCGGTA -ACGGAACTGTTCTTTCGGTGCCTA -ACGGAACTGTTCTTTCGGCCACTA -ACGGAACTGTTCTTTCGGGGAGTA -ACGGAACTGTTCTTTCGGTCGTCT -ACGGAACTGTTCTTTCGGTGCACT -ACGGAACTGTTCTTTCGGCTGACT -ACGGAACTGTTCTTTCGGCAACCT -ACGGAACTGTTCTTTCGGGCTACT -ACGGAACTGTTCTTTCGGGGATCT -ACGGAACTGTTCTTTCGGAAGGCT -ACGGAACTGTTCTTTCGGTCAACC -ACGGAACTGTTCTTTCGGTGTTCC -ACGGAACTGTTCTTTCGGATTCCC -ACGGAACTGTTCTTTCGGTTCTCG -ACGGAACTGTTCTTTCGGTAGACG -ACGGAACTGTTCTTTCGGGTAACG -ACGGAACTGTTCTTTCGGACTTCG -ACGGAACTGTTCTTTCGGTACGCA -ACGGAACTGTTCTTTCGGCTTGCA -ACGGAACTGTTCTTTCGGCGAACA -ACGGAACTGTTCTTTCGGCAGTCA -ACGGAACTGTTCTTTCGGGATCCA -ACGGAACTGTTCTTTCGGACGACA -ACGGAACTGTTCTTTCGGAGCTCA -ACGGAACTGTTCTTTCGGTCACGT -ACGGAACTGTTCTTTCGGCGTAGT -ACGGAACTGTTCTTTCGGGTCAGT -ACGGAACTGTTCTTTCGGGAAGGT -ACGGAACTGTTCTTTCGGAACCGT -ACGGAACTGTTCTTTCGGTTGTGC -ACGGAACTGTTCTTTCGGCTAAGC -ACGGAACTGTTCTTTCGGACTAGC -ACGGAACTGTTCTTTCGGAGATGC -ACGGAACTGTTCTTTCGGTGAAGG -ACGGAACTGTTCTTTCGGCAATGG -ACGGAACTGTTCTTTCGGATGAGG -ACGGAACTGTTCTTTCGGAATGGG -ACGGAACTGTTCTTTCGGTCCTGA -ACGGAACTGTTCTTTCGGTAGCGA -ACGGAACTGTTCTTTCGGCACAGA -ACGGAACTGTTCTTTCGGGCAAGA -ACGGAACTGTTCTTTCGGGGTTGA -ACGGAACTGTTCTTTCGGTCCGAT -ACGGAACTGTTCTTTCGGTGGCAT -ACGGAACTGTTCTTTCGGCGAGAT -ACGGAACTGTTCTTTCGGTACCAC -ACGGAACTGTTCTTTCGGCAGAAC -ACGGAACTGTTCTTTCGGGTCTAC -ACGGAACTGTTCTTTCGGACGTAC -ACGGAACTGTTCTTTCGGAGTGAC -ACGGAACTGTTCTTTCGGCTGTAG -ACGGAACTGTTCTTTCGGCCTAAG -ACGGAACTGTTCTTTCGGGTTCAG -ACGGAACTGTTCTTTCGGGCATAG -ACGGAACTGTTCTTTCGGGACAAG -ACGGAACTGTTCTTTCGGAAGCAG -ACGGAACTGTTCTTTCGGCGTCAA -ACGGAACTGTTCTTTCGGGCTGAA -ACGGAACTGTTCTTTCGGAGTACG -ACGGAACTGTTCTTTCGGATCCGA -ACGGAACTGTTCTTTCGGATGGGA -ACGGAACTGTTCTTTCGGGTGCAA -ACGGAACTGTTCTTTCGGGAGGAA -ACGGAACTGTTCTTTCGGCAGGTA -ACGGAACTGTTCTTTCGGGACTCT -ACGGAACTGTTCTTTCGGAGTCCT -ACGGAACTGTTCTTTCGGTAAGCC -ACGGAACTGTTCTTTCGGATAGCC -ACGGAACTGTTCTTTCGGTAACCG -ACGGAACTGTTCTTTCGGATGCCA -ACGGAACTGTTCGTTGTGGGAAAC -ACGGAACTGTTCGTTGTGAACACC -ACGGAACTGTTCGTTGTGATCGAG -ACGGAACTGTTCGTTGTGCTCCTT -ACGGAACTGTTCGTTGTGCCTGTT -ACGGAACTGTTCGTTGTGCGGTTT -ACGGAACTGTTCGTTGTGGTGGTT -ACGGAACTGTTCGTTGTGGCCTTT -ACGGAACTGTTCGTTGTGGGTCTT -ACGGAACTGTTCGTTGTGACGCTT -ACGGAACTGTTCGTTGTGAGCGTT -ACGGAACTGTTCGTTGTGTTCGTC -ACGGAACTGTTCGTTGTGTCTCTC -ACGGAACTGTTCGTTGTGTGGATC -ACGGAACTGTTCGTTGTGCACTTC -ACGGAACTGTTCGTTGTGGTACTC -ACGGAACTGTTCGTTGTGGATGTC -ACGGAACTGTTCGTTGTGACAGTC -ACGGAACTGTTCGTTGTGTTGCTG -ACGGAACTGTTCGTTGTGTCCATG -ACGGAACTGTTCGTTGTGTGTGTG -ACGGAACTGTTCGTTGTGCTAGTG -ACGGAACTGTTCGTTGTGCATCTG -ACGGAACTGTTCGTTGTGGAGTTG -ACGGAACTGTTCGTTGTGAGACTG -ACGGAACTGTTCGTTGTGTCGGTA -ACGGAACTGTTCGTTGTGTGCCTA -ACGGAACTGTTCGTTGTGCCACTA -ACGGAACTGTTCGTTGTGGGAGTA -ACGGAACTGTTCGTTGTGTCGTCT -ACGGAACTGTTCGTTGTGTGCACT -ACGGAACTGTTCGTTGTGCTGACT -ACGGAACTGTTCGTTGTGCAACCT -ACGGAACTGTTCGTTGTGGCTACT -ACGGAACTGTTCGTTGTGGGATCT -ACGGAACTGTTCGTTGTGAAGGCT -ACGGAACTGTTCGTTGTGTCAACC -ACGGAACTGTTCGTTGTGTGTTCC -ACGGAACTGTTCGTTGTGATTCCC -ACGGAACTGTTCGTTGTGTTCTCG -ACGGAACTGTTCGTTGTGTAGACG -ACGGAACTGTTCGTTGTGGTAACG -ACGGAACTGTTCGTTGTGACTTCG -ACGGAACTGTTCGTTGTGTACGCA -ACGGAACTGTTCGTTGTGCTTGCA -ACGGAACTGTTCGTTGTGCGAACA -ACGGAACTGTTCGTTGTGCAGTCA -ACGGAACTGTTCGTTGTGGATCCA -ACGGAACTGTTCGTTGTGACGACA -ACGGAACTGTTCGTTGTGAGCTCA -ACGGAACTGTTCGTTGTGTCACGT -ACGGAACTGTTCGTTGTGCGTAGT -ACGGAACTGTTCGTTGTGGTCAGT -ACGGAACTGTTCGTTGTGGAAGGT -ACGGAACTGTTCGTTGTGAACCGT -ACGGAACTGTTCGTTGTGTTGTGC -ACGGAACTGTTCGTTGTGCTAAGC -ACGGAACTGTTCGTTGTGACTAGC -ACGGAACTGTTCGTTGTGAGATGC -ACGGAACTGTTCGTTGTGTGAAGG -ACGGAACTGTTCGTTGTGCAATGG -ACGGAACTGTTCGTTGTGATGAGG -ACGGAACTGTTCGTTGTGAATGGG -ACGGAACTGTTCGTTGTGTCCTGA -ACGGAACTGTTCGTTGTGTAGCGA -ACGGAACTGTTCGTTGTGCACAGA -ACGGAACTGTTCGTTGTGGCAAGA -ACGGAACTGTTCGTTGTGGGTTGA -ACGGAACTGTTCGTTGTGTCCGAT -ACGGAACTGTTCGTTGTGTGGCAT -ACGGAACTGTTCGTTGTGCGAGAT -ACGGAACTGTTCGTTGTGTACCAC -ACGGAACTGTTCGTTGTGCAGAAC -ACGGAACTGTTCGTTGTGGTCTAC -ACGGAACTGTTCGTTGTGACGTAC -ACGGAACTGTTCGTTGTGAGTGAC -ACGGAACTGTTCGTTGTGCTGTAG -ACGGAACTGTTCGTTGTGCCTAAG -ACGGAACTGTTCGTTGTGGTTCAG -ACGGAACTGTTCGTTGTGGCATAG -ACGGAACTGTTCGTTGTGGACAAG -ACGGAACTGTTCGTTGTGAAGCAG -ACGGAACTGTTCGTTGTGCGTCAA -ACGGAACTGTTCGTTGTGGCTGAA -ACGGAACTGTTCGTTGTGAGTACG -ACGGAACTGTTCGTTGTGATCCGA -ACGGAACTGTTCGTTGTGATGGGA -ACGGAACTGTTCGTTGTGGTGCAA -ACGGAACTGTTCGTTGTGGAGGAA -ACGGAACTGTTCGTTGTGCAGGTA -ACGGAACTGTTCGTTGTGGACTCT -ACGGAACTGTTCGTTGTGAGTCCT -ACGGAACTGTTCGTTGTGTAAGCC -ACGGAACTGTTCGTTGTGATAGCC -ACGGAACTGTTCGTTGTGTAACCG -ACGGAACTGTTCGTTGTGATGCCA -ACGGAACTGTTCTTTGCCGGAAAC -ACGGAACTGTTCTTTGCCAACACC -ACGGAACTGTTCTTTGCCATCGAG -ACGGAACTGTTCTTTGCCCTCCTT -ACGGAACTGTTCTTTGCCCCTGTT -ACGGAACTGTTCTTTGCCCGGTTT -ACGGAACTGTTCTTTGCCGTGGTT -ACGGAACTGTTCTTTGCCGCCTTT -ACGGAACTGTTCTTTGCCGGTCTT -ACGGAACTGTTCTTTGCCACGCTT -ACGGAACTGTTCTTTGCCAGCGTT -ACGGAACTGTTCTTTGCCTTCGTC -ACGGAACTGTTCTTTGCCTCTCTC -ACGGAACTGTTCTTTGCCTGGATC -ACGGAACTGTTCTTTGCCCACTTC -ACGGAACTGTTCTTTGCCGTACTC -ACGGAACTGTTCTTTGCCGATGTC -ACGGAACTGTTCTTTGCCACAGTC -ACGGAACTGTTCTTTGCCTTGCTG -ACGGAACTGTTCTTTGCCTCCATG -ACGGAACTGTTCTTTGCCTGTGTG -ACGGAACTGTTCTTTGCCCTAGTG -ACGGAACTGTTCTTTGCCCATCTG -ACGGAACTGTTCTTTGCCGAGTTG -ACGGAACTGTTCTTTGCCAGACTG -ACGGAACTGTTCTTTGCCTCGGTA -ACGGAACTGTTCTTTGCCTGCCTA -ACGGAACTGTTCTTTGCCCCACTA -ACGGAACTGTTCTTTGCCGGAGTA -ACGGAACTGTTCTTTGCCTCGTCT -ACGGAACTGTTCTTTGCCTGCACT -ACGGAACTGTTCTTTGCCCTGACT -ACGGAACTGTTCTTTGCCCAACCT -ACGGAACTGTTCTTTGCCGCTACT -ACGGAACTGTTCTTTGCCGGATCT -ACGGAACTGTTCTTTGCCAAGGCT -ACGGAACTGTTCTTTGCCTCAACC -ACGGAACTGTTCTTTGCCTGTTCC -ACGGAACTGTTCTTTGCCATTCCC -ACGGAACTGTTCTTTGCCTTCTCG -ACGGAACTGTTCTTTGCCTAGACG -ACGGAACTGTTCTTTGCCGTAACG -ACGGAACTGTTCTTTGCCACTTCG -ACGGAACTGTTCTTTGCCTACGCA -ACGGAACTGTTCTTTGCCCTTGCA -ACGGAACTGTTCTTTGCCCGAACA -ACGGAACTGTTCTTTGCCCAGTCA -ACGGAACTGTTCTTTGCCGATCCA -ACGGAACTGTTCTTTGCCACGACA -ACGGAACTGTTCTTTGCCAGCTCA -ACGGAACTGTTCTTTGCCTCACGT -ACGGAACTGTTCTTTGCCCGTAGT -ACGGAACTGTTCTTTGCCGTCAGT -ACGGAACTGTTCTTTGCCGAAGGT -ACGGAACTGTTCTTTGCCAACCGT -ACGGAACTGTTCTTTGCCTTGTGC -ACGGAACTGTTCTTTGCCCTAAGC -ACGGAACTGTTCTTTGCCACTAGC -ACGGAACTGTTCTTTGCCAGATGC -ACGGAACTGTTCTTTGCCTGAAGG -ACGGAACTGTTCTTTGCCCAATGG -ACGGAACTGTTCTTTGCCATGAGG -ACGGAACTGTTCTTTGCCAATGGG -ACGGAACTGTTCTTTGCCTCCTGA -ACGGAACTGTTCTTTGCCTAGCGA -ACGGAACTGTTCTTTGCCCACAGA -ACGGAACTGTTCTTTGCCGCAAGA -ACGGAACTGTTCTTTGCCGGTTGA -ACGGAACTGTTCTTTGCCTCCGAT -ACGGAACTGTTCTTTGCCTGGCAT -ACGGAACTGTTCTTTGCCCGAGAT -ACGGAACTGTTCTTTGCCTACCAC -ACGGAACTGTTCTTTGCCCAGAAC -ACGGAACTGTTCTTTGCCGTCTAC -ACGGAACTGTTCTTTGCCACGTAC -ACGGAACTGTTCTTTGCCAGTGAC -ACGGAACTGTTCTTTGCCCTGTAG -ACGGAACTGTTCTTTGCCCCTAAG -ACGGAACTGTTCTTTGCCGTTCAG -ACGGAACTGTTCTTTGCCGCATAG -ACGGAACTGTTCTTTGCCGACAAG -ACGGAACTGTTCTTTGCCAAGCAG -ACGGAACTGTTCTTTGCCCGTCAA -ACGGAACTGTTCTTTGCCGCTGAA -ACGGAACTGTTCTTTGCCAGTACG -ACGGAACTGTTCTTTGCCATCCGA -ACGGAACTGTTCTTTGCCATGGGA -ACGGAACTGTTCTTTGCCGTGCAA -ACGGAACTGTTCTTTGCCGAGGAA -ACGGAACTGTTCTTTGCCCAGGTA -ACGGAACTGTTCTTTGCCGACTCT -ACGGAACTGTTCTTTGCCAGTCCT -ACGGAACTGTTCTTTGCCTAAGCC -ACGGAACTGTTCTTTGCCATAGCC -ACGGAACTGTTCTTTGCCTAACCG -ACGGAACTGTTCTTTGCCATGCCA -ACGGAACTGTTCCTTGGTGGAAAC -ACGGAACTGTTCCTTGGTAACACC -ACGGAACTGTTCCTTGGTATCGAG -ACGGAACTGTTCCTTGGTCTCCTT -ACGGAACTGTTCCTTGGTCCTGTT -ACGGAACTGTTCCTTGGTCGGTTT -ACGGAACTGTTCCTTGGTGTGGTT -ACGGAACTGTTCCTTGGTGCCTTT -ACGGAACTGTTCCTTGGTGGTCTT -ACGGAACTGTTCCTTGGTACGCTT -ACGGAACTGTTCCTTGGTAGCGTT -ACGGAACTGTTCCTTGGTTTCGTC -ACGGAACTGTTCCTTGGTTCTCTC -ACGGAACTGTTCCTTGGTTGGATC -ACGGAACTGTTCCTTGGTCACTTC -ACGGAACTGTTCCTTGGTGTACTC -ACGGAACTGTTCCTTGGTGATGTC -ACGGAACTGTTCCTTGGTACAGTC -ACGGAACTGTTCCTTGGTTTGCTG -ACGGAACTGTTCCTTGGTTCCATG -ACGGAACTGTTCCTTGGTTGTGTG -ACGGAACTGTTCCTTGGTCTAGTG -ACGGAACTGTTCCTTGGTCATCTG -ACGGAACTGTTCCTTGGTGAGTTG -ACGGAACTGTTCCTTGGTAGACTG -ACGGAACTGTTCCTTGGTTCGGTA -ACGGAACTGTTCCTTGGTTGCCTA -ACGGAACTGTTCCTTGGTCCACTA -ACGGAACTGTTCCTTGGTGGAGTA -ACGGAACTGTTCCTTGGTTCGTCT -ACGGAACTGTTCCTTGGTTGCACT -ACGGAACTGTTCCTTGGTCTGACT -ACGGAACTGTTCCTTGGTCAACCT -ACGGAACTGTTCCTTGGTGCTACT -ACGGAACTGTTCCTTGGTGGATCT -ACGGAACTGTTCCTTGGTAAGGCT -ACGGAACTGTTCCTTGGTTCAACC -ACGGAACTGTTCCTTGGTTGTTCC -ACGGAACTGTTCCTTGGTATTCCC -ACGGAACTGTTCCTTGGTTTCTCG -ACGGAACTGTTCCTTGGTTAGACG -ACGGAACTGTTCCTTGGTGTAACG -ACGGAACTGTTCCTTGGTACTTCG -ACGGAACTGTTCCTTGGTTACGCA -ACGGAACTGTTCCTTGGTCTTGCA -ACGGAACTGTTCCTTGGTCGAACA -ACGGAACTGTTCCTTGGTCAGTCA -ACGGAACTGTTCCTTGGTGATCCA -ACGGAACTGTTCCTTGGTACGACA -ACGGAACTGTTCCTTGGTAGCTCA -ACGGAACTGTTCCTTGGTTCACGT -ACGGAACTGTTCCTTGGTCGTAGT -ACGGAACTGTTCCTTGGTGTCAGT -ACGGAACTGTTCCTTGGTGAAGGT -ACGGAACTGTTCCTTGGTAACCGT -ACGGAACTGTTCCTTGGTTTGTGC -ACGGAACTGTTCCTTGGTCTAAGC -ACGGAACTGTTCCTTGGTACTAGC -ACGGAACTGTTCCTTGGTAGATGC -ACGGAACTGTTCCTTGGTTGAAGG -ACGGAACTGTTCCTTGGTCAATGG -ACGGAACTGTTCCTTGGTATGAGG -ACGGAACTGTTCCTTGGTAATGGG -ACGGAACTGTTCCTTGGTTCCTGA -ACGGAACTGTTCCTTGGTTAGCGA -ACGGAACTGTTCCTTGGTCACAGA -ACGGAACTGTTCCTTGGTGCAAGA -ACGGAACTGTTCCTTGGTGGTTGA -ACGGAACTGTTCCTTGGTTCCGAT -ACGGAACTGTTCCTTGGTTGGCAT -ACGGAACTGTTCCTTGGTCGAGAT -ACGGAACTGTTCCTTGGTTACCAC -ACGGAACTGTTCCTTGGTCAGAAC -ACGGAACTGTTCCTTGGTGTCTAC -ACGGAACTGTTCCTTGGTACGTAC -ACGGAACTGTTCCTTGGTAGTGAC -ACGGAACTGTTCCTTGGTCTGTAG -ACGGAACTGTTCCTTGGTCCTAAG -ACGGAACTGTTCCTTGGTGTTCAG -ACGGAACTGTTCCTTGGTGCATAG -ACGGAACTGTTCCTTGGTGACAAG -ACGGAACTGTTCCTTGGTAAGCAG -ACGGAACTGTTCCTTGGTCGTCAA -ACGGAACTGTTCCTTGGTGCTGAA -ACGGAACTGTTCCTTGGTAGTACG -ACGGAACTGTTCCTTGGTATCCGA -ACGGAACTGTTCCTTGGTATGGGA -ACGGAACTGTTCCTTGGTGTGCAA -ACGGAACTGTTCCTTGGTGAGGAA -ACGGAACTGTTCCTTGGTCAGGTA -ACGGAACTGTTCCTTGGTGACTCT -ACGGAACTGTTCCTTGGTAGTCCT -ACGGAACTGTTCCTTGGTTAAGCC -ACGGAACTGTTCCTTGGTATAGCC -ACGGAACTGTTCCTTGGTTAACCG -ACGGAACTGTTCCTTGGTATGCCA -ACGGAACTGTTCCTTACGGGAAAC -ACGGAACTGTTCCTTACGAACACC -ACGGAACTGTTCCTTACGATCGAG -ACGGAACTGTTCCTTACGCTCCTT -ACGGAACTGTTCCTTACGCCTGTT -ACGGAACTGTTCCTTACGCGGTTT -ACGGAACTGTTCCTTACGGTGGTT -ACGGAACTGTTCCTTACGGCCTTT -ACGGAACTGTTCCTTACGGGTCTT -ACGGAACTGTTCCTTACGACGCTT -ACGGAACTGTTCCTTACGAGCGTT -ACGGAACTGTTCCTTACGTTCGTC -ACGGAACTGTTCCTTACGTCTCTC -ACGGAACTGTTCCTTACGTGGATC -ACGGAACTGTTCCTTACGCACTTC -ACGGAACTGTTCCTTACGGTACTC -ACGGAACTGTTCCTTACGGATGTC -ACGGAACTGTTCCTTACGACAGTC -ACGGAACTGTTCCTTACGTTGCTG -ACGGAACTGTTCCTTACGTCCATG -ACGGAACTGTTCCTTACGTGTGTG -ACGGAACTGTTCCTTACGCTAGTG -ACGGAACTGTTCCTTACGCATCTG -ACGGAACTGTTCCTTACGGAGTTG -ACGGAACTGTTCCTTACGAGACTG -ACGGAACTGTTCCTTACGTCGGTA -ACGGAACTGTTCCTTACGTGCCTA -ACGGAACTGTTCCTTACGCCACTA -ACGGAACTGTTCCTTACGGGAGTA -ACGGAACTGTTCCTTACGTCGTCT -ACGGAACTGTTCCTTACGTGCACT -ACGGAACTGTTCCTTACGCTGACT -ACGGAACTGTTCCTTACGCAACCT -ACGGAACTGTTCCTTACGGCTACT -ACGGAACTGTTCCTTACGGGATCT -ACGGAACTGTTCCTTACGAAGGCT -ACGGAACTGTTCCTTACGTCAACC -ACGGAACTGTTCCTTACGTGTTCC -ACGGAACTGTTCCTTACGATTCCC -ACGGAACTGTTCCTTACGTTCTCG -ACGGAACTGTTCCTTACGTAGACG -ACGGAACTGTTCCTTACGGTAACG -ACGGAACTGTTCCTTACGACTTCG -ACGGAACTGTTCCTTACGTACGCA -ACGGAACTGTTCCTTACGCTTGCA -ACGGAACTGTTCCTTACGCGAACA -ACGGAACTGTTCCTTACGCAGTCA -ACGGAACTGTTCCTTACGGATCCA -ACGGAACTGTTCCTTACGACGACA -ACGGAACTGTTCCTTACGAGCTCA -ACGGAACTGTTCCTTACGTCACGT -ACGGAACTGTTCCTTACGCGTAGT -ACGGAACTGTTCCTTACGGTCAGT -ACGGAACTGTTCCTTACGGAAGGT -ACGGAACTGTTCCTTACGAACCGT -ACGGAACTGTTCCTTACGTTGTGC -ACGGAACTGTTCCTTACGCTAAGC -ACGGAACTGTTCCTTACGACTAGC -ACGGAACTGTTCCTTACGAGATGC -ACGGAACTGTTCCTTACGTGAAGG -ACGGAACTGTTCCTTACGCAATGG -ACGGAACTGTTCCTTACGATGAGG -ACGGAACTGTTCCTTACGAATGGG -ACGGAACTGTTCCTTACGTCCTGA -ACGGAACTGTTCCTTACGTAGCGA -ACGGAACTGTTCCTTACGCACAGA -ACGGAACTGTTCCTTACGGCAAGA -ACGGAACTGTTCCTTACGGGTTGA -ACGGAACTGTTCCTTACGTCCGAT -ACGGAACTGTTCCTTACGTGGCAT -ACGGAACTGTTCCTTACGCGAGAT -ACGGAACTGTTCCTTACGTACCAC -ACGGAACTGTTCCTTACGCAGAAC -ACGGAACTGTTCCTTACGGTCTAC -ACGGAACTGTTCCTTACGACGTAC -ACGGAACTGTTCCTTACGAGTGAC -ACGGAACTGTTCCTTACGCTGTAG -ACGGAACTGTTCCTTACGCCTAAG -ACGGAACTGTTCCTTACGGTTCAG -ACGGAACTGTTCCTTACGGCATAG -ACGGAACTGTTCCTTACGGACAAG -ACGGAACTGTTCCTTACGAAGCAG -ACGGAACTGTTCCTTACGCGTCAA -ACGGAACTGTTCCTTACGGCTGAA -ACGGAACTGTTCCTTACGAGTACG -ACGGAACTGTTCCTTACGATCCGA -ACGGAACTGTTCCTTACGATGGGA -ACGGAACTGTTCCTTACGGTGCAA -ACGGAACTGTTCCTTACGGAGGAA -ACGGAACTGTTCCTTACGCAGGTA -ACGGAACTGTTCCTTACGGACTCT -ACGGAACTGTTCCTTACGAGTCCT -ACGGAACTGTTCCTTACGTAAGCC -ACGGAACTGTTCCTTACGATAGCC -ACGGAACTGTTCCTTACGTAACCG -ACGGAACTGTTCCTTACGATGCCA -ACGGAACTGTTCGTTAGCGGAAAC -ACGGAACTGTTCGTTAGCAACACC -ACGGAACTGTTCGTTAGCATCGAG -ACGGAACTGTTCGTTAGCCTCCTT -ACGGAACTGTTCGTTAGCCCTGTT -ACGGAACTGTTCGTTAGCCGGTTT -ACGGAACTGTTCGTTAGCGTGGTT -ACGGAACTGTTCGTTAGCGCCTTT -ACGGAACTGTTCGTTAGCGGTCTT -ACGGAACTGTTCGTTAGCACGCTT -ACGGAACTGTTCGTTAGCAGCGTT -ACGGAACTGTTCGTTAGCTTCGTC -ACGGAACTGTTCGTTAGCTCTCTC -ACGGAACTGTTCGTTAGCTGGATC -ACGGAACTGTTCGTTAGCCACTTC -ACGGAACTGTTCGTTAGCGTACTC -ACGGAACTGTTCGTTAGCGATGTC -ACGGAACTGTTCGTTAGCACAGTC -ACGGAACTGTTCGTTAGCTTGCTG -ACGGAACTGTTCGTTAGCTCCATG -ACGGAACTGTTCGTTAGCTGTGTG -ACGGAACTGTTCGTTAGCCTAGTG -ACGGAACTGTTCGTTAGCCATCTG -ACGGAACTGTTCGTTAGCGAGTTG -ACGGAACTGTTCGTTAGCAGACTG -ACGGAACTGTTCGTTAGCTCGGTA -ACGGAACTGTTCGTTAGCTGCCTA -ACGGAACTGTTCGTTAGCCCACTA -ACGGAACTGTTCGTTAGCGGAGTA -ACGGAACTGTTCGTTAGCTCGTCT -ACGGAACTGTTCGTTAGCTGCACT -ACGGAACTGTTCGTTAGCCTGACT -ACGGAACTGTTCGTTAGCCAACCT -ACGGAACTGTTCGTTAGCGCTACT -ACGGAACTGTTCGTTAGCGGATCT -ACGGAACTGTTCGTTAGCAAGGCT -ACGGAACTGTTCGTTAGCTCAACC -ACGGAACTGTTCGTTAGCTGTTCC -ACGGAACTGTTCGTTAGCATTCCC -ACGGAACTGTTCGTTAGCTTCTCG -ACGGAACTGTTCGTTAGCTAGACG -ACGGAACTGTTCGTTAGCGTAACG -ACGGAACTGTTCGTTAGCACTTCG -ACGGAACTGTTCGTTAGCTACGCA -ACGGAACTGTTCGTTAGCCTTGCA -ACGGAACTGTTCGTTAGCCGAACA -ACGGAACTGTTCGTTAGCCAGTCA -ACGGAACTGTTCGTTAGCGATCCA -ACGGAACTGTTCGTTAGCACGACA -ACGGAACTGTTCGTTAGCAGCTCA -ACGGAACTGTTCGTTAGCTCACGT -ACGGAACTGTTCGTTAGCCGTAGT -ACGGAACTGTTCGTTAGCGTCAGT -ACGGAACTGTTCGTTAGCGAAGGT -ACGGAACTGTTCGTTAGCAACCGT -ACGGAACTGTTCGTTAGCTTGTGC -ACGGAACTGTTCGTTAGCCTAAGC -ACGGAACTGTTCGTTAGCACTAGC -ACGGAACTGTTCGTTAGCAGATGC -ACGGAACTGTTCGTTAGCTGAAGG -ACGGAACTGTTCGTTAGCCAATGG -ACGGAACTGTTCGTTAGCATGAGG -ACGGAACTGTTCGTTAGCAATGGG -ACGGAACTGTTCGTTAGCTCCTGA -ACGGAACTGTTCGTTAGCTAGCGA -ACGGAACTGTTCGTTAGCCACAGA -ACGGAACTGTTCGTTAGCGCAAGA -ACGGAACTGTTCGTTAGCGGTTGA -ACGGAACTGTTCGTTAGCTCCGAT -ACGGAACTGTTCGTTAGCTGGCAT -ACGGAACTGTTCGTTAGCCGAGAT -ACGGAACTGTTCGTTAGCTACCAC -ACGGAACTGTTCGTTAGCCAGAAC -ACGGAACTGTTCGTTAGCGTCTAC -ACGGAACTGTTCGTTAGCACGTAC -ACGGAACTGTTCGTTAGCAGTGAC -ACGGAACTGTTCGTTAGCCTGTAG -ACGGAACTGTTCGTTAGCCCTAAG -ACGGAACTGTTCGTTAGCGTTCAG -ACGGAACTGTTCGTTAGCGCATAG -ACGGAACTGTTCGTTAGCGACAAG -ACGGAACTGTTCGTTAGCAAGCAG -ACGGAACTGTTCGTTAGCCGTCAA -ACGGAACTGTTCGTTAGCGCTGAA -ACGGAACTGTTCGTTAGCAGTACG -ACGGAACTGTTCGTTAGCATCCGA -ACGGAACTGTTCGTTAGCATGGGA -ACGGAACTGTTCGTTAGCGTGCAA -ACGGAACTGTTCGTTAGCGAGGAA -ACGGAACTGTTCGTTAGCCAGGTA -ACGGAACTGTTCGTTAGCGACTCT -ACGGAACTGTTCGTTAGCAGTCCT -ACGGAACTGTTCGTTAGCTAAGCC -ACGGAACTGTTCGTTAGCATAGCC -ACGGAACTGTTCGTTAGCTAACCG -ACGGAACTGTTCGTTAGCATGCCA -ACGGAACTGTTCGTCTTCGGAAAC -ACGGAACTGTTCGTCTTCAACACC -ACGGAACTGTTCGTCTTCATCGAG -ACGGAACTGTTCGTCTTCCTCCTT -ACGGAACTGTTCGTCTTCCCTGTT -ACGGAACTGTTCGTCTTCCGGTTT -ACGGAACTGTTCGTCTTCGTGGTT -ACGGAACTGTTCGTCTTCGCCTTT -ACGGAACTGTTCGTCTTCGGTCTT -ACGGAACTGTTCGTCTTCACGCTT -ACGGAACTGTTCGTCTTCAGCGTT -ACGGAACTGTTCGTCTTCTTCGTC -ACGGAACTGTTCGTCTTCTCTCTC -ACGGAACTGTTCGTCTTCTGGATC -ACGGAACTGTTCGTCTTCCACTTC -ACGGAACTGTTCGTCTTCGTACTC -ACGGAACTGTTCGTCTTCGATGTC -ACGGAACTGTTCGTCTTCACAGTC -ACGGAACTGTTCGTCTTCTTGCTG -ACGGAACTGTTCGTCTTCTCCATG -ACGGAACTGTTCGTCTTCTGTGTG -ACGGAACTGTTCGTCTTCCTAGTG -ACGGAACTGTTCGTCTTCCATCTG -ACGGAACTGTTCGTCTTCGAGTTG -ACGGAACTGTTCGTCTTCAGACTG -ACGGAACTGTTCGTCTTCTCGGTA -ACGGAACTGTTCGTCTTCTGCCTA -ACGGAACTGTTCGTCTTCCCACTA -ACGGAACTGTTCGTCTTCGGAGTA -ACGGAACTGTTCGTCTTCTCGTCT -ACGGAACTGTTCGTCTTCTGCACT -ACGGAACTGTTCGTCTTCCTGACT -ACGGAACTGTTCGTCTTCCAACCT -ACGGAACTGTTCGTCTTCGCTACT -ACGGAACTGTTCGTCTTCGGATCT -ACGGAACTGTTCGTCTTCAAGGCT -ACGGAACTGTTCGTCTTCTCAACC -ACGGAACTGTTCGTCTTCTGTTCC -ACGGAACTGTTCGTCTTCATTCCC -ACGGAACTGTTCGTCTTCTTCTCG -ACGGAACTGTTCGTCTTCTAGACG -ACGGAACTGTTCGTCTTCGTAACG -ACGGAACTGTTCGTCTTCACTTCG -ACGGAACTGTTCGTCTTCTACGCA -ACGGAACTGTTCGTCTTCCTTGCA -ACGGAACTGTTCGTCTTCCGAACA -ACGGAACTGTTCGTCTTCCAGTCA -ACGGAACTGTTCGTCTTCGATCCA -ACGGAACTGTTCGTCTTCACGACA -ACGGAACTGTTCGTCTTCAGCTCA -ACGGAACTGTTCGTCTTCTCACGT -ACGGAACTGTTCGTCTTCCGTAGT -ACGGAACTGTTCGTCTTCGTCAGT -ACGGAACTGTTCGTCTTCGAAGGT -ACGGAACTGTTCGTCTTCAACCGT -ACGGAACTGTTCGTCTTCTTGTGC -ACGGAACTGTTCGTCTTCCTAAGC -ACGGAACTGTTCGTCTTCACTAGC -ACGGAACTGTTCGTCTTCAGATGC -ACGGAACTGTTCGTCTTCTGAAGG -ACGGAACTGTTCGTCTTCCAATGG -ACGGAACTGTTCGTCTTCATGAGG -ACGGAACTGTTCGTCTTCAATGGG -ACGGAACTGTTCGTCTTCTCCTGA -ACGGAACTGTTCGTCTTCTAGCGA -ACGGAACTGTTCGTCTTCCACAGA -ACGGAACTGTTCGTCTTCGCAAGA -ACGGAACTGTTCGTCTTCGGTTGA -ACGGAACTGTTCGTCTTCTCCGAT -ACGGAACTGTTCGTCTTCTGGCAT -ACGGAACTGTTCGTCTTCCGAGAT -ACGGAACTGTTCGTCTTCTACCAC -ACGGAACTGTTCGTCTTCCAGAAC -ACGGAACTGTTCGTCTTCGTCTAC -ACGGAACTGTTCGTCTTCACGTAC -ACGGAACTGTTCGTCTTCAGTGAC -ACGGAACTGTTCGTCTTCCTGTAG -ACGGAACTGTTCGTCTTCCCTAAG -ACGGAACTGTTCGTCTTCGTTCAG -ACGGAACTGTTCGTCTTCGCATAG -ACGGAACTGTTCGTCTTCGACAAG -ACGGAACTGTTCGTCTTCAAGCAG -ACGGAACTGTTCGTCTTCCGTCAA -ACGGAACTGTTCGTCTTCGCTGAA -ACGGAACTGTTCGTCTTCAGTACG -ACGGAACTGTTCGTCTTCATCCGA -ACGGAACTGTTCGTCTTCATGGGA -ACGGAACTGTTCGTCTTCGTGCAA -ACGGAACTGTTCGTCTTCGAGGAA -ACGGAACTGTTCGTCTTCCAGGTA -ACGGAACTGTTCGTCTTCGACTCT -ACGGAACTGTTCGTCTTCAGTCCT -ACGGAACTGTTCGTCTTCTAAGCC -ACGGAACTGTTCGTCTTCATAGCC -ACGGAACTGTTCGTCTTCTAACCG -ACGGAACTGTTCGTCTTCATGCCA -ACGGAACTGTTCCTCTCTGGAAAC -ACGGAACTGTTCCTCTCTAACACC -ACGGAACTGTTCCTCTCTATCGAG -ACGGAACTGTTCCTCTCTCTCCTT -ACGGAACTGTTCCTCTCTCCTGTT -ACGGAACTGTTCCTCTCTCGGTTT -ACGGAACTGTTCCTCTCTGTGGTT -ACGGAACTGTTCCTCTCTGCCTTT -ACGGAACTGTTCCTCTCTGGTCTT -ACGGAACTGTTCCTCTCTACGCTT -ACGGAACTGTTCCTCTCTAGCGTT -ACGGAACTGTTCCTCTCTTTCGTC -ACGGAACTGTTCCTCTCTTCTCTC -ACGGAACTGTTCCTCTCTTGGATC -ACGGAACTGTTCCTCTCTCACTTC -ACGGAACTGTTCCTCTCTGTACTC -ACGGAACTGTTCCTCTCTGATGTC -ACGGAACTGTTCCTCTCTACAGTC -ACGGAACTGTTCCTCTCTTTGCTG -ACGGAACTGTTCCTCTCTTCCATG -ACGGAACTGTTCCTCTCTTGTGTG -ACGGAACTGTTCCTCTCTCTAGTG -ACGGAACTGTTCCTCTCTCATCTG -ACGGAACTGTTCCTCTCTGAGTTG -ACGGAACTGTTCCTCTCTAGACTG -ACGGAACTGTTCCTCTCTTCGGTA -ACGGAACTGTTCCTCTCTTGCCTA -ACGGAACTGTTCCTCTCTCCACTA -ACGGAACTGTTCCTCTCTGGAGTA -ACGGAACTGTTCCTCTCTTCGTCT -ACGGAACTGTTCCTCTCTTGCACT -ACGGAACTGTTCCTCTCTCTGACT -ACGGAACTGTTCCTCTCTCAACCT -ACGGAACTGTTCCTCTCTGCTACT -ACGGAACTGTTCCTCTCTGGATCT -ACGGAACTGTTCCTCTCTAAGGCT -ACGGAACTGTTCCTCTCTTCAACC -ACGGAACTGTTCCTCTCTTGTTCC -ACGGAACTGTTCCTCTCTATTCCC -ACGGAACTGTTCCTCTCTTTCTCG -ACGGAACTGTTCCTCTCTTAGACG -ACGGAACTGTTCCTCTCTGTAACG -ACGGAACTGTTCCTCTCTACTTCG -ACGGAACTGTTCCTCTCTTACGCA -ACGGAACTGTTCCTCTCTCTTGCA -ACGGAACTGTTCCTCTCTCGAACA -ACGGAACTGTTCCTCTCTCAGTCA -ACGGAACTGTTCCTCTCTGATCCA -ACGGAACTGTTCCTCTCTACGACA -ACGGAACTGTTCCTCTCTAGCTCA -ACGGAACTGTTCCTCTCTTCACGT -ACGGAACTGTTCCTCTCTCGTAGT -ACGGAACTGTTCCTCTCTGTCAGT -ACGGAACTGTTCCTCTCTGAAGGT -ACGGAACTGTTCCTCTCTAACCGT -ACGGAACTGTTCCTCTCTTTGTGC -ACGGAACTGTTCCTCTCTCTAAGC -ACGGAACTGTTCCTCTCTACTAGC -ACGGAACTGTTCCTCTCTAGATGC -ACGGAACTGTTCCTCTCTTGAAGG -ACGGAACTGTTCCTCTCTCAATGG -ACGGAACTGTTCCTCTCTATGAGG -ACGGAACTGTTCCTCTCTAATGGG -ACGGAACTGTTCCTCTCTTCCTGA -ACGGAACTGTTCCTCTCTTAGCGA -ACGGAACTGTTCCTCTCTCACAGA -ACGGAACTGTTCCTCTCTGCAAGA -ACGGAACTGTTCCTCTCTGGTTGA -ACGGAACTGTTCCTCTCTTCCGAT -ACGGAACTGTTCCTCTCTTGGCAT -ACGGAACTGTTCCTCTCTCGAGAT -ACGGAACTGTTCCTCTCTTACCAC -ACGGAACTGTTCCTCTCTCAGAAC -ACGGAACTGTTCCTCTCTGTCTAC -ACGGAACTGTTCCTCTCTACGTAC -ACGGAACTGTTCCTCTCTAGTGAC -ACGGAACTGTTCCTCTCTCTGTAG -ACGGAACTGTTCCTCTCTCCTAAG -ACGGAACTGTTCCTCTCTGTTCAG -ACGGAACTGTTCCTCTCTGCATAG -ACGGAACTGTTCCTCTCTGACAAG -ACGGAACTGTTCCTCTCTAAGCAG -ACGGAACTGTTCCTCTCTCGTCAA -ACGGAACTGTTCCTCTCTGCTGAA -ACGGAACTGTTCCTCTCTAGTACG -ACGGAACTGTTCCTCTCTATCCGA -ACGGAACTGTTCCTCTCTATGGGA -ACGGAACTGTTCCTCTCTGTGCAA -ACGGAACTGTTCCTCTCTGAGGAA -ACGGAACTGTTCCTCTCTCAGGTA -ACGGAACTGTTCCTCTCTGACTCT -ACGGAACTGTTCCTCTCTAGTCCT -ACGGAACTGTTCCTCTCTTAAGCC -ACGGAACTGTTCCTCTCTATAGCC -ACGGAACTGTTCCTCTCTTAACCG -ACGGAACTGTTCCTCTCTATGCCA -ACGGAACTGTTCATCTGGGGAAAC -ACGGAACTGTTCATCTGGAACACC -ACGGAACTGTTCATCTGGATCGAG -ACGGAACTGTTCATCTGGCTCCTT -ACGGAACTGTTCATCTGGCCTGTT -ACGGAACTGTTCATCTGGCGGTTT -ACGGAACTGTTCATCTGGGTGGTT -ACGGAACTGTTCATCTGGGCCTTT -ACGGAACTGTTCATCTGGGGTCTT -ACGGAACTGTTCATCTGGACGCTT -ACGGAACTGTTCATCTGGAGCGTT -ACGGAACTGTTCATCTGGTTCGTC -ACGGAACTGTTCATCTGGTCTCTC -ACGGAACTGTTCATCTGGTGGATC -ACGGAACTGTTCATCTGGCACTTC -ACGGAACTGTTCATCTGGGTACTC -ACGGAACTGTTCATCTGGGATGTC -ACGGAACTGTTCATCTGGACAGTC -ACGGAACTGTTCATCTGGTTGCTG -ACGGAACTGTTCATCTGGTCCATG -ACGGAACTGTTCATCTGGTGTGTG -ACGGAACTGTTCATCTGGCTAGTG -ACGGAACTGTTCATCTGGCATCTG -ACGGAACTGTTCATCTGGGAGTTG -ACGGAACTGTTCATCTGGAGACTG -ACGGAACTGTTCATCTGGTCGGTA -ACGGAACTGTTCATCTGGTGCCTA -ACGGAACTGTTCATCTGGCCACTA -ACGGAACTGTTCATCTGGGGAGTA -ACGGAACTGTTCATCTGGTCGTCT -ACGGAACTGTTCATCTGGTGCACT -ACGGAACTGTTCATCTGGCTGACT -ACGGAACTGTTCATCTGGCAACCT -ACGGAACTGTTCATCTGGGCTACT -ACGGAACTGTTCATCTGGGGATCT -ACGGAACTGTTCATCTGGAAGGCT -ACGGAACTGTTCATCTGGTCAACC -ACGGAACTGTTCATCTGGTGTTCC -ACGGAACTGTTCATCTGGATTCCC -ACGGAACTGTTCATCTGGTTCTCG -ACGGAACTGTTCATCTGGTAGACG -ACGGAACTGTTCATCTGGGTAACG -ACGGAACTGTTCATCTGGACTTCG -ACGGAACTGTTCATCTGGTACGCA -ACGGAACTGTTCATCTGGCTTGCA -ACGGAACTGTTCATCTGGCGAACA -ACGGAACTGTTCATCTGGCAGTCA -ACGGAACTGTTCATCTGGGATCCA -ACGGAACTGTTCATCTGGACGACA -ACGGAACTGTTCATCTGGAGCTCA -ACGGAACTGTTCATCTGGTCACGT -ACGGAACTGTTCATCTGGCGTAGT -ACGGAACTGTTCATCTGGGTCAGT -ACGGAACTGTTCATCTGGGAAGGT -ACGGAACTGTTCATCTGGAACCGT -ACGGAACTGTTCATCTGGTTGTGC -ACGGAACTGTTCATCTGGCTAAGC -ACGGAACTGTTCATCTGGACTAGC -ACGGAACTGTTCATCTGGAGATGC -ACGGAACTGTTCATCTGGTGAAGG -ACGGAACTGTTCATCTGGCAATGG -ACGGAACTGTTCATCTGGATGAGG -ACGGAACTGTTCATCTGGAATGGG -ACGGAACTGTTCATCTGGTCCTGA -ACGGAACTGTTCATCTGGTAGCGA -ACGGAACTGTTCATCTGGCACAGA -ACGGAACTGTTCATCTGGGCAAGA -ACGGAACTGTTCATCTGGGGTTGA -ACGGAACTGTTCATCTGGTCCGAT -ACGGAACTGTTCATCTGGTGGCAT -ACGGAACTGTTCATCTGGCGAGAT -ACGGAACTGTTCATCTGGTACCAC -ACGGAACTGTTCATCTGGCAGAAC -ACGGAACTGTTCATCTGGGTCTAC -ACGGAACTGTTCATCTGGACGTAC -ACGGAACTGTTCATCTGGAGTGAC -ACGGAACTGTTCATCTGGCTGTAG -ACGGAACTGTTCATCTGGCCTAAG -ACGGAACTGTTCATCTGGGTTCAG -ACGGAACTGTTCATCTGGGCATAG -ACGGAACTGTTCATCTGGGACAAG -ACGGAACTGTTCATCTGGAAGCAG -ACGGAACTGTTCATCTGGCGTCAA -ACGGAACTGTTCATCTGGGCTGAA -ACGGAACTGTTCATCTGGAGTACG -ACGGAACTGTTCATCTGGATCCGA -ACGGAACTGTTCATCTGGATGGGA -ACGGAACTGTTCATCTGGGTGCAA -ACGGAACTGTTCATCTGGGAGGAA -ACGGAACTGTTCATCTGGCAGGTA -ACGGAACTGTTCATCTGGGACTCT -ACGGAACTGTTCATCTGGAGTCCT -ACGGAACTGTTCATCTGGTAAGCC -ACGGAACTGTTCATCTGGATAGCC -ACGGAACTGTTCATCTGGTAACCG -ACGGAACTGTTCATCTGGATGCCA -ACGGAACTGTTCTTCCACGGAAAC -ACGGAACTGTTCTTCCACAACACC -ACGGAACTGTTCTTCCACATCGAG -ACGGAACTGTTCTTCCACCTCCTT -ACGGAACTGTTCTTCCACCCTGTT -ACGGAACTGTTCTTCCACCGGTTT -ACGGAACTGTTCTTCCACGTGGTT -ACGGAACTGTTCTTCCACGCCTTT -ACGGAACTGTTCTTCCACGGTCTT -ACGGAACTGTTCTTCCACACGCTT -ACGGAACTGTTCTTCCACAGCGTT -ACGGAACTGTTCTTCCACTTCGTC -ACGGAACTGTTCTTCCACTCTCTC -ACGGAACTGTTCTTCCACTGGATC -ACGGAACTGTTCTTCCACCACTTC -ACGGAACTGTTCTTCCACGTACTC -ACGGAACTGTTCTTCCACGATGTC -ACGGAACTGTTCTTCCACACAGTC -ACGGAACTGTTCTTCCACTTGCTG -ACGGAACTGTTCTTCCACTCCATG -ACGGAACTGTTCTTCCACTGTGTG -ACGGAACTGTTCTTCCACCTAGTG -ACGGAACTGTTCTTCCACCATCTG -ACGGAACTGTTCTTCCACGAGTTG -ACGGAACTGTTCTTCCACAGACTG -ACGGAACTGTTCTTCCACTCGGTA -ACGGAACTGTTCTTCCACTGCCTA -ACGGAACTGTTCTTCCACCCACTA -ACGGAACTGTTCTTCCACGGAGTA -ACGGAACTGTTCTTCCACTCGTCT -ACGGAACTGTTCTTCCACTGCACT -ACGGAACTGTTCTTCCACCTGACT -ACGGAACTGTTCTTCCACCAACCT -ACGGAACTGTTCTTCCACGCTACT -ACGGAACTGTTCTTCCACGGATCT -ACGGAACTGTTCTTCCACAAGGCT -ACGGAACTGTTCTTCCACTCAACC -ACGGAACTGTTCTTCCACTGTTCC -ACGGAACTGTTCTTCCACATTCCC -ACGGAACTGTTCTTCCACTTCTCG -ACGGAACTGTTCTTCCACTAGACG -ACGGAACTGTTCTTCCACGTAACG -ACGGAACTGTTCTTCCACACTTCG -ACGGAACTGTTCTTCCACTACGCA -ACGGAACTGTTCTTCCACCTTGCA -ACGGAACTGTTCTTCCACCGAACA -ACGGAACTGTTCTTCCACCAGTCA -ACGGAACTGTTCTTCCACGATCCA -ACGGAACTGTTCTTCCACACGACA -ACGGAACTGTTCTTCCACAGCTCA -ACGGAACTGTTCTTCCACTCACGT -ACGGAACTGTTCTTCCACCGTAGT -ACGGAACTGTTCTTCCACGTCAGT -ACGGAACTGTTCTTCCACGAAGGT -ACGGAACTGTTCTTCCACAACCGT -ACGGAACTGTTCTTCCACTTGTGC -ACGGAACTGTTCTTCCACCTAAGC -ACGGAACTGTTCTTCCACACTAGC -ACGGAACTGTTCTTCCACAGATGC -ACGGAACTGTTCTTCCACTGAAGG -ACGGAACTGTTCTTCCACCAATGG -ACGGAACTGTTCTTCCACATGAGG -ACGGAACTGTTCTTCCACAATGGG -ACGGAACTGTTCTTCCACTCCTGA -ACGGAACTGTTCTTCCACTAGCGA -ACGGAACTGTTCTTCCACCACAGA -ACGGAACTGTTCTTCCACGCAAGA -ACGGAACTGTTCTTCCACGGTTGA -ACGGAACTGTTCTTCCACTCCGAT -ACGGAACTGTTCTTCCACTGGCAT -ACGGAACTGTTCTTCCACCGAGAT -ACGGAACTGTTCTTCCACTACCAC -ACGGAACTGTTCTTCCACCAGAAC -ACGGAACTGTTCTTCCACGTCTAC -ACGGAACTGTTCTTCCACACGTAC -ACGGAACTGTTCTTCCACAGTGAC -ACGGAACTGTTCTTCCACCTGTAG -ACGGAACTGTTCTTCCACCCTAAG -ACGGAACTGTTCTTCCACGTTCAG -ACGGAACTGTTCTTCCACGCATAG -ACGGAACTGTTCTTCCACGACAAG -ACGGAACTGTTCTTCCACAAGCAG -ACGGAACTGTTCTTCCACCGTCAA -ACGGAACTGTTCTTCCACGCTGAA -ACGGAACTGTTCTTCCACAGTACG -ACGGAACTGTTCTTCCACATCCGA -ACGGAACTGTTCTTCCACATGGGA -ACGGAACTGTTCTTCCACGTGCAA -ACGGAACTGTTCTTCCACGAGGAA -ACGGAACTGTTCTTCCACCAGGTA -ACGGAACTGTTCTTCCACGACTCT -ACGGAACTGTTCTTCCACAGTCCT -ACGGAACTGTTCTTCCACTAAGCC -ACGGAACTGTTCTTCCACATAGCC -ACGGAACTGTTCTTCCACTAACCG -ACGGAACTGTTCTTCCACATGCCA -ACGGAACTGTTCCTCGTAGGAAAC -ACGGAACTGTTCCTCGTAAACACC -ACGGAACTGTTCCTCGTAATCGAG -ACGGAACTGTTCCTCGTACTCCTT -ACGGAACTGTTCCTCGTACCTGTT -ACGGAACTGTTCCTCGTACGGTTT -ACGGAACTGTTCCTCGTAGTGGTT -ACGGAACTGTTCCTCGTAGCCTTT -ACGGAACTGTTCCTCGTAGGTCTT -ACGGAACTGTTCCTCGTAACGCTT -ACGGAACTGTTCCTCGTAAGCGTT -ACGGAACTGTTCCTCGTATTCGTC -ACGGAACTGTTCCTCGTATCTCTC -ACGGAACTGTTCCTCGTATGGATC -ACGGAACTGTTCCTCGTACACTTC -ACGGAACTGTTCCTCGTAGTACTC -ACGGAACTGTTCCTCGTAGATGTC -ACGGAACTGTTCCTCGTAACAGTC -ACGGAACTGTTCCTCGTATTGCTG -ACGGAACTGTTCCTCGTATCCATG -ACGGAACTGTTCCTCGTATGTGTG -ACGGAACTGTTCCTCGTACTAGTG -ACGGAACTGTTCCTCGTACATCTG -ACGGAACTGTTCCTCGTAGAGTTG -ACGGAACTGTTCCTCGTAAGACTG -ACGGAACTGTTCCTCGTATCGGTA -ACGGAACTGTTCCTCGTATGCCTA -ACGGAACTGTTCCTCGTACCACTA -ACGGAACTGTTCCTCGTAGGAGTA -ACGGAACTGTTCCTCGTATCGTCT -ACGGAACTGTTCCTCGTATGCACT -ACGGAACTGTTCCTCGTACTGACT -ACGGAACTGTTCCTCGTACAACCT -ACGGAACTGTTCCTCGTAGCTACT -ACGGAACTGTTCCTCGTAGGATCT -ACGGAACTGTTCCTCGTAAAGGCT -ACGGAACTGTTCCTCGTATCAACC -ACGGAACTGTTCCTCGTATGTTCC -ACGGAACTGTTCCTCGTAATTCCC -ACGGAACTGTTCCTCGTATTCTCG -ACGGAACTGTTCCTCGTATAGACG -ACGGAACTGTTCCTCGTAGTAACG -ACGGAACTGTTCCTCGTAACTTCG -ACGGAACTGTTCCTCGTATACGCA -ACGGAACTGTTCCTCGTACTTGCA -ACGGAACTGTTCCTCGTACGAACA -ACGGAACTGTTCCTCGTACAGTCA -ACGGAACTGTTCCTCGTAGATCCA -ACGGAACTGTTCCTCGTAACGACA -ACGGAACTGTTCCTCGTAAGCTCA -ACGGAACTGTTCCTCGTATCACGT -ACGGAACTGTTCCTCGTACGTAGT -ACGGAACTGTTCCTCGTAGTCAGT -ACGGAACTGTTCCTCGTAGAAGGT -ACGGAACTGTTCCTCGTAAACCGT -ACGGAACTGTTCCTCGTATTGTGC -ACGGAACTGTTCCTCGTACTAAGC -ACGGAACTGTTCCTCGTAACTAGC -ACGGAACTGTTCCTCGTAAGATGC -ACGGAACTGTTCCTCGTATGAAGG -ACGGAACTGTTCCTCGTACAATGG -ACGGAACTGTTCCTCGTAATGAGG -ACGGAACTGTTCCTCGTAAATGGG -ACGGAACTGTTCCTCGTATCCTGA -ACGGAACTGTTCCTCGTATAGCGA -ACGGAACTGTTCCTCGTACACAGA -ACGGAACTGTTCCTCGTAGCAAGA -ACGGAACTGTTCCTCGTAGGTTGA -ACGGAACTGTTCCTCGTATCCGAT -ACGGAACTGTTCCTCGTATGGCAT -ACGGAACTGTTCCTCGTACGAGAT -ACGGAACTGTTCCTCGTATACCAC -ACGGAACTGTTCCTCGTACAGAAC -ACGGAACTGTTCCTCGTAGTCTAC -ACGGAACTGTTCCTCGTAACGTAC -ACGGAACTGTTCCTCGTAAGTGAC -ACGGAACTGTTCCTCGTACTGTAG -ACGGAACTGTTCCTCGTACCTAAG -ACGGAACTGTTCCTCGTAGTTCAG -ACGGAACTGTTCCTCGTAGCATAG -ACGGAACTGTTCCTCGTAGACAAG -ACGGAACTGTTCCTCGTAAAGCAG -ACGGAACTGTTCCTCGTACGTCAA -ACGGAACTGTTCCTCGTAGCTGAA -ACGGAACTGTTCCTCGTAAGTACG -ACGGAACTGTTCCTCGTAATCCGA -ACGGAACTGTTCCTCGTAATGGGA -ACGGAACTGTTCCTCGTAGTGCAA -ACGGAACTGTTCCTCGTAGAGGAA -ACGGAACTGTTCCTCGTACAGGTA -ACGGAACTGTTCCTCGTAGACTCT -ACGGAACTGTTCCTCGTAAGTCCT -ACGGAACTGTTCCTCGTATAAGCC -ACGGAACTGTTCCTCGTAATAGCC -ACGGAACTGTTCCTCGTATAACCG -ACGGAACTGTTCCTCGTAATGCCA -ACGGAACTGTTCGTCGATGGAAAC -ACGGAACTGTTCGTCGATAACACC -ACGGAACTGTTCGTCGATATCGAG -ACGGAACTGTTCGTCGATCTCCTT -ACGGAACTGTTCGTCGATCCTGTT -ACGGAACTGTTCGTCGATCGGTTT -ACGGAACTGTTCGTCGATGTGGTT -ACGGAACTGTTCGTCGATGCCTTT -ACGGAACTGTTCGTCGATGGTCTT -ACGGAACTGTTCGTCGATACGCTT -ACGGAACTGTTCGTCGATAGCGTT -ACGGAACTGTTCGTCGATTTCGTC -ACGGAACTGTTCGTCGATTCTCTC -ACGGAACTGTTCGTCGATTGGATC -ACGGAACTGTTCGTCGATCACTTC -ACGGAACTGTTCGTCGATGTACTC -ACGGAACTGTTCGTCGATGATGTC -ACGGAACTGTTCGTCGATACAGTC -ACGGAACTGTTCGTCGATTTGCTG -ACGGAACTGTTCGTCGATTCCATG -ACGGAACTGTTCGTCGATTGTGTG -ACGGAACTGTTCGTCGATCTAGTG -ACGGAACTGTTCGTCGATCATCTG -ACGGAACTGTTCGTCGATGAGTTG -ACGGAACTGTTCGTCGATAGACTG -ACGGAACTGTTCGTCGATTCGGTA -ACGGAACTGTTCGTCGATTGCCTA -ACGGAACTGTTCGTCGATCCACTA -ACGGAACTGTTCGTCGATGGAGTA -ACGGAACTGTTCGTCGATTCGTCT -ACGGAACTGTTCGTCGATTGCACT -ACGGAACTGTTCGTCGATCTGACT -ACGGAACTGTTCGTCGATCAACCT -ACGGAACTGTTCGTCGATGCTACT -ACGGAACTGTTCGTCGATGGATCT -ACGGAACTGTTCGTCGATAAGGCT -ACGGAACTGTTCGTCGATTCAACC -ACGGAACTGTTCGTCGATTGTTCC -ACGGAACTGTTCGTCGATATTCCC -ACGGAACTGTTCGTCGATTTCTCG -ACGGAACTGTTCGTCGATTAGACG -ACGGAACTGTTCGTCGATGTAACG -ACGGAACTGTTCGTCGATACTTCG -ACGGAACTGTTCGTCGATTACGCA -ACGGAACTGTTCGTCGATCTTGCA -ACGGAACTGTTCGTCGATCGAACA -ACGGAACTGTTCGTCGATCAGTCA -ACGGAACTGTTCGTCGATGATCCA -ACGGAACTGTTCGTCGATACGACA -ACGGAACTGTTCGTCGATAGCTCA -ACGGAACTGTTCGTCGATTCACGT -ACGGAACTGTTCGTCGATCGTAGT -ACGGAACTGTTCGTCGATGTCAGT -ACGGAACTGTTCGTCGATGAAGGT -ACGGAACTGTTCGTCGATAACCGT -ACGGAACTGTTCGTCGATTTGTGC -ACGGAACTGTTCGTCGATCTAAGC -ACGGAACTGTTCGTCGATACTAGC -ACGGAACTGTTCGTCGATAGATGC -ACGGAACTGTTCGTCGATTGAAGG -ACGGAACTGTTCGTCGATCAATGG -ACGGAACTGTTCGTCGATATGAGG -ACGGAACTGTTCGTCGATAATGGG -ACGGAACTGTTCGTCGATTCCTGA -ACGGAACTGTTCGTCGATTAGCGA -ACGGAACTGTTCGTCGATCACAGA -ACGGAACTGTTCGTCGATGCAAGA -ACGGAACTGTTCGTCGATGGTTGA -ACGGAACTGTTCGTCGATTCCGAT -ACGGAACTGTTCGTCGATTGGCAT -ACGGAACTGTTCGTCGATCGAGAT -ACGGAACTGTTCGTCGATTACCAC -ACGGAACTGTTCGTCGATCAGAAC -ACGGAACTGTTCGTCGATGTCTAC -ACGGAACTGTTCGTCGATACGTAC -ACGGAACTGTTCGTCGATAGTGAC -ACGGAACTGTTCGTCGATCTGTAG -ACGGAACTGTTCGTCGATCCTAAG -ACGGAACTGTTCGTCGATGTTCAG -ACGGAACTGTTCGTCGATGCATAG -ACGGAACTGTTCGTCGATGACAAG -ACGGAACTGTTCGTCGATAAGCAG -ACGGAACTGTTCGTCGATCGTCAA -ACGGAACTGTTCGTCGATGCTGAA -ACGGAACTGTTCGTCGATAGTACG -ACGGAACTGTTCGTCGATATCCGA -ACGGAACTGTTCGTCGATATGGGA -ACGGAACTGTTCGTCGATGTGCAA -ACGGAACTGTTCGTCGATGAGGAA -ACGGAACTGTTCGTCGATCAGGTA -ACGGAACTGTTCGTCGATGACTCT -ACGGAACTGTTCGTCGATAGTCCT -ACGGAACTGTTCGTCGATTAAGCC -ACGGAACTGTTCGTCGATATAGCC -ACGGAACTGTTCGTCGATTAACCG -ACGGAACTGTTCGTCGATATGCCA -ACGGAACTGTTCGTCACAGGAAAC -ACGGAACTGTTCGTCACAAACACC -ACGGAACTGTTCGTCACAATCGAG -ACGGAACTGTTCGTCACACTCCTT -ACGGAACTGTTCGTCACACCTGTT -ACGGAACTGTTCGTCACACGGTTT -ACGGAACTGTTCGTCACAGTGGTT -ACGGAACTGTTCGTCACAGCCTTT -ACGGAACTGTTCGTCACAGGTCTT -ACGGAACTGTTCGTCACAACGCTT -ACGGAACTGTTCGTCACAAGCGTT -ACGGAACTGTTCGTCACATTCGTC -ACGGAACTGTTCGTCACATCTCTC -ACGGAACTGTTCGTCACATGGATC -ACGGAACTGTTCGTCACACACTTC -ACGGAACTGTTCGTCACAGTACTC -ACGGAACTGTTCGTCACAGATGTC -ACGGAACTGTTCGTCACAACAGTC -ACGGAACTGTTCGTCACATTGCTG -ACGGAACTGTTCGTCACATCCATG -ACGGAACTGTTCGTCACATGTGTG -ACGGAACTGTTCGTCACACTAGTG -ACGGAACTGTTCGTCACACATCTG -ACGGAACTGTTCGTCACAGAGTTG -ACGGAACTGTTCGTCACAAGACTG -ACGGAACTGTTCGTCACATCGGTA -ACGGAACTGTTCGTCACATGCCTA -ACGGAACTGTTCGTCACACCACTA -ACGGAACTGTTCGTCACAGGAGTA -ACGGAACTGTTCGTCACATCGTCT -ACGGAACTGTTCGTCACATGCACT -ACGGAACTGTTCGTCACACTGACT -ACGGAACTGTTCGTCACACAACCT -ACGGAACTGTTCGTCACAGCTACT -ACGGAACTGTTCGTCACAGGATCT -ACGGAACTGTTCGTCACAAAGGCT -ACGGAACTGTTCGTCACATCAACC -ACGGAACTGTTCGTCACATGTTCC -ACGGAACTGTTCGTCACAATTCCC -ACGGAACTGTTCGTCACATTCTCG -ACGGAACTGTTCGTCACATAGACG -ACGGAACTGTTCGTCACAGTAACG -ACGGAACTGTTCGTCACAACTTCG -ACGGAACTGTTCGTCACATACGCA -ACGGAACTGTTCGTCACACTTGCA -ACGGAACTGTTCGTCACACGAACA -ACGGAACTGTTCGTCACACAGTCA -ACGGAACTGTTCGTCACAGATCCA -ACGGAACTGTTCGTCACAACGACA -ACGGAACTGTTCGTCACAAGCTCA -ACGGAACTGTTCGTCACATCACGT -ACGGAACTGTTCGTCACACGTAGT -ACGGAACTGTTCGTCACAGTCAGT -ACGGAACTGTTCGTCACAGAAGGT -ACGGAACTGTTCGTCACAAACCGT -ACGGAACTGTTCGTCACATTGTGC -ACGGAACTGTTCGTCACACTAAGC -ACGGAACTGTTCGTCACAACTAGC -ACGGAACTGTTCGTCACAAGATGC -ACGGAACTGTTCGTCACATGAAGG -ACGGAACTGTTCGTCACACAATGG -ACGGAACTGTTCGTCACAATGAGG -ACGGAACTGTTCGTCACAAATGGG -ACGGAACTGTTCGTCACATCCTGA -ACGGAACTGTTCGTCACATAGCGA -ACGGAACTGTTCGTCACACACAGA -ACGGAACTGTTCGTCACAGCAAGA -ACGGAACTGTTCGTCACAGGTTGA -ACGGAACTGTTCGTCACATCCGAT -ACGGAACTGTTCGTCACATGGCAT -ACGGAACTGTTCGTCACACGAGAT -ACGGAACTGTTCGTCACATACCAC -ACGGAACTGTTCGTCACACAGAAC -ACGGAACTGTTCGTCACAGTCTAC -ACGGAACTGTTCGTCACAACGTAC -ACGGAACTGTTCGTCACAAGTGAC -ACGGAACTGTTCGTCACACTGTAG -ACGGAACTGTTCGTCACACCTAAG -ACGGAACTGTTCGTCACAGTTCAG -ACGGAACTGTTCGTCACAGCATAG -ACGGAACTGTTCGTCACAGACAAG -ACGGAACTGTTCGTCACAAAGCAG -ACGGAACTGTTCGTCACACGTCAA -ACGGAACTGTTCGTCACAGCTGAA -ACGGAACTGTTCGTCACAAGTACG -ACGGAACTGTTCGTCACAATCCGA -ACGGAACTGTTCGTCACAATGGGA -ACGGAACTGTTCGTCACAGTGCAA -ACGGAACTGTTCGTCACAGAGGAA -ACGGAACTGTTCGTCACACAGGTA -ACGGAACTGTTCGTCACAGACTCT -ACGGAACTGTTCGTCACAAGTCCT -ACGGAACTGTTCGTCACATAAGCC -ACGGAACTGTTCGTCACAATAGCC -ACGGAACTGTTCGTCACATAACCG -ACGGAACTGTTCGTCACAATGCCA -ACGGAACTGTTCCTGTTGGGAAAC -ACGGAACTGTTCCTGTTGAACACC -ACGGAACTGTTCCTGTTGATCGAG -ACGGAACTGTTCCTGTTGCTCCTT -ACGGAACTGTTCCTGTTGCCTGTT -ACGGAACTGTTCCTGTTGCGGTTT -ACGGAACTGTTCCTGTTGGTGGTT -ACGGAACTGTTCCTGTTGGCCTTT -ACGGAACTGTTCCTGTTGGGTCTT -ACGGAACTGTTCCTGTTGACGCTT -ACGGAACTGTTCCTGTTGAGCGTT -ACGGAACTGTTCCTGTTGTTCGTC -ACGGAACTGTTCCTGTTGTCTCTC -ACGGAACTGTTCCTGTTGTGGATC -ACGGAACTGTTCCTGTTGCACTTC -ACGGAACTGTTCCTGTTGGTACTC -ACGGAACTGTTCCTGTTGGATGTC -ACGGAACTGTTCCTGTTGACAGTC -ACGGAACTGTTCCTGTTGTTGCTG -ACGGAACTGTTCCTGTTGTCCATG -ACGGAACTGTTCCTGTTGTGTGTG -ACGGAACTGTTCCTGTTGCTAGTG -ACGGAACTGTTCCTGTTGCATCTG -ACGGAACTGTTCCTGTTGGAGTTG -ACGGAACTGTTCCTGTTGAGACTG -ACGGAACTGTTCCTGTTGTCGGTA -ACGGAACTGTTCCTGTTGTGCCTA -ACGGAACTGTTCCTGTTGCCACTA -ACGGAACTGTTCCTGTTGGGAGTA -ACGGAACTGTTCCTGTTGTCGTCT -ACGGAACTGTTCCTGTTGTGCACT -ACGGAACTGTTCCTGTTGCTGACT -ACGGAACTGTTCCTGTTGCAACCT -ACGGAACTGTTCCTGTTGGCTACT -ACGGAACTGTTCCTGTTGGGATCT -ACGGAACTGTTCCTGTTGAAGGCT -ACGGAACTGTTCCTGTTGTCAACC -ACGGAACTGTTCCTGTTGTGTTCC -ACGGAACTGTTCCTGTTGATTCCC -ACGGAACTGTTCCTGTTGTTCTCG -ACGGAACTGTTCCTGTTGTAGACG -ACGGAACTGTTCCTGTTGGTAACG -ACGGAACTGTTCCTGTTGACTTCG -ACGGAACTGTTCCTGTTGTACGCA -ACGGAACTGTTCCTGTTGCTTGCA -ACGGAACTGTTCCTGTTGCGAACA -ACGGAACTGTTCCTGTTGCAGTCA -ACGGAACTGTTCCTGTTGGATCCA -ACGGAACTGTTCCTGTTGACGACA -ACGGAACTGTTCCTGTTGAGCTCA -ACGGAACTGTTCCTGTTGTCACGT -ACGGAACTGTTCCTGTTGCGTAGT -ACGGAACTGTTCCTGTTGGTCAGT -ACGGAACTGTTCCTGTTGGAAGGT -ACGGAACTGTTCCTGTTGAACCGT -ACGGAACTGTTCCTGTTGTTGTGC -ACGGAACTGTTCCTGTTGCTAAGC -ACGGAACTGTTCCTGTTGACTAGC -ACGGAACTGTTCCTGTTGAGATGC -ACGGAACTGTTCCTGTTGTGAAGG -ACGGAACTGTTCCTGTTGCAATGG -ACGGAACTGTTCCTGTTGATGAGG -ACGGAACTGTTCCTGTTGAATGGG -ACGGAACTGTTCCTGTTGTCCTGA -ACGGAACTGTTCCTGTTGTAGCGA -ACGGAACTGTTCCTGTTGCACAGA -ACGGAACTGTTCCTGTTGGCAAGA -ACGGAACTGTTCCTGTTGGGTTGA -ACGGAACTGTTCCTGTTGTCCGAT -ACGGAACTGTTCCTGTTGTGGCAT -ACGGAACTGTTCCTGTTGCGAGAT -ACGGAACTGTTCCTGTTGTACCAC -ACGGAACTGTTCCTGTTGCAGAAC -ACGGAACTGTTCCTGTTGGTCTAC -ACGGAACTGTTCCTGTTGACGTAC -ACGGAACTGTTCCTGTTGAGTGAC -ACGGAACTGTTCCTGTTGCTGTAG -ACGGAACTGTTCCTGTTGCCTAAG -ACGGAACTGTTCCTGTTGGTTCAG -ACGGAACTGTTCCTGTTGGCATAG -ACGGAACTGTTCCTGTTGGACAAG -ACGGAACTGTTCCTGTTGAAGCAG -ACGGAACTGTTCCTGTTGCGTCAA -ACGGAACTGTTCCTGTTGGCTGAA -ACGGAACTGTTCCTGTTGAGTACG -ACGGAACTGTTCCTGTTGATCCGA -ACGGAACTGTTCCTGTTGATGGGA -ACGGAACTGTTCCTGTTGGTGCAA -ACGGAACTGTTCCTGTTGGAGGAA -ACGGAACTGTTCCTGTTGCAGGTA -ACGGAACTGTTCCTGTTGGACTCT -ACGGAACTGTTCCTGTTGAGTCCT -ACGGAACTGTTCCTGTTGTAAGCC -ACGGAACTGTTCCTGTTGATAGCC -ACGGAACTGTTCCTGTTGTAACCG -ACGGAACTGTTCCTGTTGATGCCA -ACGGAACTGTTCATGTCCGGAAAC -ACGGAACTGTTCATGTCCAACACC -ACGGAACTGTTCATGTCCATCGAG -ACGGAACTGTTCATGTCCCTCCTT -ACGGAACTGTTCATGTCCCCTGTT -ACGGAACTGTTCATGTCCCGGTTT -ACGGAACTGTTCATGTCCGTGGTT -ACGGAACTGTTCATGTCCGCCTTT -ACGGAACTGTTCATGTCCGGTCTT -ACGGAACTGTTCATGTCCACGCTT -ACGGAACTGTTCATGTCCAGCGTT -ACGGAACTGTTCATGTCCTTCGTC -ACGGAACTGTTCATGTCCTCTCTC -ACGGAACTGTTCATGTCCTGGATC -ACGGAACTGTTCATGTCCCACTTC -ACGGAACTGTTCATGTCCGTACTC -ACGGAACTGTTCATGTCCGATGTC -ACGGAACTGTTCATGTCCACAGTC -ACGGAACTGTTCATGTCCTTGCTG -ACGGAACTGTTCATGTCCTCCATG -ACGGAACTGTTCATGTCCTGTGTG -ACGGAACTGTTCATGTCCCTAGTG -ACGGAACTGTTCATGTCCCATCTG -ACGGAACTGTTCATGTCCGAGTTG -ACGGAACTGTTCATGTCCAGACTG -ACGGAACTGTTCATGTCCTCGGTA -ACGGAACTGTTCATGTCCTGCCTA -ACGGAACTGTTCATGTCCCCACTA -ACGGAACTGTTCATGTCCGGAGTA -ACGGAACTGTTCATGTCCTCGTCT -ACGGAACTGTTCATGTCCTGCACT -ACGGAACTGTTCATGTCCCTGACT -ACGGAACTGTTCATGTCCCAACCT -ACGGAACTGTTCATGTCCGCTACT -ACGGAACTGTTCATGTCCGGATCT -ACGGAACTGTTCATGTCCAAGGCT -ACGGAACTGTTCATGTCCTCAACC -ACGGAACTGTTCATGTCCTGTTCC -ACGGAACTGTTCATGTCCATTCCC -ACGGAACTGTTCATGTCCTTCTCG -ACGGAACTGTTCATGTCCTAGACG -ACGGAACTGTTCATGTCCGTAACG -ACGGAACTGTTCATGTCCACTTCG -ACGGAACTGTTCATGTCCTACGCA -ACGGAACTGTTCATGTCCCTTGCA -ACGGAACTGTTCATGTCCCGAACA -ACGGAACTGTTCATGTCCCAGTCA -ACGGAACTGTTCATGTCCGATCCA -ACGGAACTGTTCATGTCCACGACA -ACGGAACTGTTCATGTCCAGCTCA -ACGGAACTGTTCATGTCCTCACGT -ACGGAACTGTTCATGTCCCGTAGT -ACGGAACTGTTCATGTCCGTCAGT -ACGGAACTGTTCATGTCCGAAGGT -ACGGAACTGTTCATGTCCAACCGT -ACGGAACTGTTCATGTCCTTGTGC -ACGGAACTGTTCATGTCCCTAAGC -ACGGAACTGTTCATGTCCACTAGC -ACGGAACTGTTCATGTCCAGATGC -ACGGAACTGTTCATGTCCTGAAGG -ACGGAACTGTTCATGTCCCAATGG -ACGGAACTGTTCATGTCCATGAGG -ACGGAACTGTTCATGTCCAATGGG -ACGGAACTGTTCATGTCCTCCTGA -ACGGAACTGTTCATGTCCTAGCGA -ACGGAACTGTTCATGTCCCACAGA -ACGGAACTGTTCATGTCCGCAAGA -ACGGAACTGTTCATGTCCGGTTGA -ACGGAACTGTTCATGTCCTCCGAT -ACGGAACTGTTCATGTCCTGGCAT -ACGGAACTGTTCATGTCCCGAGAT -ACGGAACTGTTCATGTCCTACCAC -ACGGAACTGTTCATGTCCCAGAAC -ACGGAACTGTTCATGTCCGTCTAC -ACGGAACTGTTCATGTCCACGTAC -ACGGAACTGTTCATGTCCAGTGAC -ACGGAACTGTTCATGTCCCTGTAG -ACGGAACTGTTCATGTCCCCTAAG -ACGGAACTGTTCATGTCCGTTCAG -ACGGAACTGTTCATGTCCGCATAG -ACGGAACTGTTCATGTCCGACAAG -ACGGAACTGTTCATGTCCAAGCAG -ACGGAACTGTTCATGTCCCGTCAA -ACGGAACTGTTCATGTCCGCTGAA -ACGGAACTGTTCATGTCCAGTACG -ACGGAACTGTTCATGTCCATCCGA -ACGGAACTGTTCATGTCCATGGGA -ACGGAACTGTTCATGTCCGTGCAA -ACGGAACTGTTCATGTCCGAGGAA -ACGGAACTGTTCATGTCCCAGGTA -ACGGAACTGTTCATGTCCGACTCT -ACGGAACTGTTCATGTCCAGTCCT -ACGGAACTGTTCATGTCCTAAGCC -ACGGAACTGTTCATGTCCATAGCC -ACGGAACTGTTCATGTCCTAACCG -ACGGAACTGTTCATGTCCATGCCA -ACGGAACTGTTCGTGTGTGGAAAC -ACGGAACTGTTCGTGTGTAACACC -ACGGAACTGTTCGTGTGTATCGAG -ACGGAACTGTTCGTGTGTCTCCTT -ACGGAACTGTTCGTGTGTCCTGTT -ACGGAACTGTTCGTGTGTCGGTTT -ACGGAACTGTTCGTGTGTGTGGTT -ACGGAACTGTTCGTGTGTGCCTTT -ACGGAACTGTTCGTGTGTGGTCTT -ACGGAACTGTTCGTGTGTACGCTT -ACGGAACTGTTCGTGTGTAGCGTT -ACGGAACTGTTCGTGTGTTTCGTC -ACGGAACTGTTCGTGTGTTCTCTC -ACGGAACTGTTCGTGTGTTGGATC -ACGGAACTGTTCGTGTGTCACTTC -ACGGAACTGTTCGTGTGTGTACTC -ACGGAACTGTTCGTGTGTGATGTC -ACGGAACTGTTCGTGTGTACAGTC -ACGGAACTGTTCGTGTGTTTGCTG -ACGGAACTGTTCGTGTGTTCCATG -ACGGAACTGTTCGTGTGTTGTGTG -ACGGAACTGTTCGTGTGTCTAGTG -ACGGAACTGTTCGTGTGTCATCTG -ACGGAACTGTTCGTGTGTGAGTTG -ACGGAACTGTTCGTGTGTAGACTG -ACGGAACTGTTCGTGTGTTCGGTA -ACGGAACTGTTCGTGTGTTGCCTA -ACGGAACTGTTCGTGTGTCCACTA -ACGGAACTGTTCGTGTGTGGAGTA -ACGGAACTGTTCGTGTGTTCGTCT -ACGGAACTGTTCGTGTGTTGCACT -ACGGAACTGTTCGTGTGTCTGACT -ACGGAACTGTTCGTGTGTCAACCT -ACGGAACTGTTCGTGTGTGCTACT -ACGGAACTGTTCGTGTGTGGATCT -ACGGAACTGTTCGTGTGTAAGGCT -ACGGAACTGTTCGTGTGTTCAACC -ACGGAACTGTTCGTGTGTTGTTCC -ACGGAACTGTTCGTGTGTATTCCC -ACGGAACTGTTCGTGTGTTTCTCG -ACGGAACTGTTCGTGTGTTAGACG -ACGGAACTGTTCGTGTGTGTAACG -ACGGAACTGTTCGTGTGTACTTCG -ACGGAACTGTTCGTGTGTTACGCA -ACGGAACTGTTCGTGTGTCTTGCA -ACGGAACTGTTCGTGTGTCGAACA -ACGGAACTGTTCGTGTGTCAGTCA -ACGGAACTGTTCGTGTGTGATCCA -ACGGAACTGTTCGTGTGTACGACA -ACGGAACTGTTCGTGTGTAGCTCA -ACGGAACTGTTCGTGTGTTCACGT -ACGGAACTGTTCGTGTGTCGTAGT -ACGGAACTGTTCGTGTGTGTCAGT -ACGGAACTGTTCGTGTGTGAAGGT -ACGGAACTGTTCGTGTGTAACCGT -ACGGAACTGTTCGTGTGTTTGTGC -ACGGAACTGTTCGTGTGTCTAAGC -ACGGAACTGTTCGTGTGTACTAGC -ACGGAACTGTTCGTGTGTAGATGC -ACGGAACTGTTCGTGTGTTGAAGG -ACGGAACTGTTCGTGTGTCAATGG -ACGGAACTGTTCGTGTGTATGAGG -ACGGAACTGTTCGTGTGTAATGGG -ACGGAACTGTTCGTGTGTTCCTGA -ACGGAACTGTTCGTGTGTTAGCGA -ACGGAACTGTTCGTGTGTCACAGA -ACGGAACTGTTCGTGTGTGCAAGA -ACGGAACTGTTCGTGTGTGGTTGA -ACGGAACTGTTCGTGTGTTCCGAT -ACGGAACTGTTCGTGTGTTGGCAT -ACGGAACTGTTCGTGTGTCGAGAT -ACGGAACTGTTCGTGTGTTACCAC -ACGGAACTGTTCGTGTGTCAGAAC -ACGGAACTGTTCGTGTGTGTCTAC -ACGGAACTGTTCGTGTGTACGTAC -ACGGAACTGTTCGTGTGTAGTGAC -ACGGAACTGTTCGTGTGTCTGTAG -ACGGAACTGTTCGTGTGTCCTAAG -ACGGAACTGTTCGTGTGTGTTCAG -ACGGAACTGTTCGTGTGTGCATAG -ACGGAACTGTTCGTGTGTGACAAG -ACGGAACTGTTCGTGTGTAAGCAG -ACGGAACTGTTCGTGTGTCGTCAA -ACGGAACTGTTCGTGTGTGCTGAA -ACGGAACTGTTCGTGTGTAGTACG -ACGGAACTGTTCGTGTGTATCCGA -ACGGAACTGTTCGTGTGTATGGGA -ACGGAACTGTTCGTGTGTGTGCAA -ACGGAACTGTTCGTGTGTGAGGAA -ACGGAACTGTTCGTGTGTCAGGTA -ACGGAACTGTTCGTGTGTGACTCT -ACGGAACTGTTCGTGTGTAGTCCT -ACGGAACTGTTCGTGTGTTAAGCC -ACGGAACTGTTCGTGTGTATAGCC -ACGGAACTGTTCGTGTGTTAACCG -ACGGAACTGTTCGTGTGTATGCCA -ACGGAACTGTTCGTGCTAGGAAAC -ACGGAACTGTTCGTGCTAAACACC -ACGGAACTGTTCGTGCTAATCGAG -ACGGAACTGTTCGTGCTACTCCTT -ACGGAACTGTTCGTGCTACCTGTT -ACGGAACTGTTCGTGCTACGGTTT -ACGGAACTGTTCGTGCTAGTGGTT -ACGGAACTGTTCGTGCTAGCCTTT -ACGGAACTGTTCGTGCTAGGTCTT -ACGGAACTGTTCGTGCTAACGCTT -ACGGAACTGTTCGTGCTAAGCGTT -ACGGAACTGTTCGTGCTATTCGTC -ACGGAACTGTTCGTGCTATCTCTC -ACGGAACTGTTCGTGCTATGGATC -ACGGAACTGTTCGTGCTACACTTC -ACGGAACTGTTCGTGCTAGTACTC -ACGGAACTGTTCGTGCTAGATGTC -ACGGAACTGTTCGTGCTAACAGTC -ACGGAACTGTTCGTGCTATTGCTG -ACGGAACTGTTCGTGCTATCCATG -ACGGAACTGTTCGTGCTATGTGTG -ACGGAACTGTTCGTGCTACTAGTG -ACGGAACTGTTCGTGCTACATCTG -ACGGAACTGTTCGTGCTAGAGTTG -ACGGAACTGTTCGTGCTAAGACTG -ACGGAACTGTTCGTGCTATCGGTA -ACGGAACTGTTCGTGCTATGCCTA -ACGGAACTGTTCGTGCTACCACTA -ACGGAACTGTTCGTGCTAGGAGTA -ACGGAACTGTTCGTGCTATCGTCT -ACGGAACTGTTCGTGCTATGCACT -ACGGAACTGTTCGTGCTACTGACT -ACGGAACTGTTCGTGCTACAACCT -ACGGAACTGTTCGTGCTAGCTACT -ACGGAACTGTTCGTGCTAGGATCT -ACGGAACTGTTCGTGCTAAAGGCT -ACGGAACTGTTCGTGCTATCAACC -ACGGAACTGTTCGTGCTATGTTCC -ACGGAACTGTTCGTGCTAATTCCC -ACGGAACTGTTCGTGCTATTCTCG -ACGGAACTGTTCGTGCTATAGACG -ACGGAACTGTTCGTGCTAGTAACG -ACGGAACTGTTCGTGCTAACTTCG -ACGGAACTGTTCGTGCTATACGCA -ACGGAACTGTTCGTGCTACTTGCA -ACGGAACTGTTCGTGCTACGAACA -ACGGAACTGTTCGTGCTACAGTCA -ACGGAACTGTTCGTGCTAGATCCA -ACGGAACTGTTCGTGCTAACGACA -ACGGAACTGTTCGTGCTAAGCTCA -ACGGAACTGTTCGTGCTATCACGT -ACGGAACTGTTCGTGCTACGTAGT -ACGGAACTGTTCGTGCTAGTCAGT -ACGGAACTGTTCGTGCTAGAAGGT -ACGGAACTGTTCGTGCTAAACCGT -ACGGAACTGTTCGTGCTATTGTGC -ACGGAACTGTTCGTGCTACTAAGC -ACGGAACTGTTCGTGCTAACTAGC -ACGGAACTGTTCGTGCTAAGATGC -ACGGAACTGTTCGTGCTATGAAGG -ACGGAACTGTTCGTGCTACAATGG -ACGGAACTGTTCGTGCTAATGAGG -ACGGAACTGTTCGTGCTAAATGGG -ACGGAACTGTTCGTGCTATCCTGA -ACGGAACTGTTCGTGCTATAGCGA -ACGGAACTGTTCGTGCTACACAGA -ACGGAACTGTTCGTGCTAGCAAGA -ACGGAACTGTTCGTGCTAGGTTGA -ACGGAACTGTTCGTGCTATCCGAT -ACGGAACTGTTCGTGCTATGGCAT -ACGGAACTGTTCGTGCTACGAGAT -ACGGAACTGTTCGTGCTATACCAC -ACGGAACTGTTCGTGCTACAGAAC -ACGGAACTGTTCGTGCTAGTCTAC -ACGGAACTGTTCGTGCTAACGTAC -ACGGAACTGTTCGTGCTAAGTGAC -ACGGAACTGTTCGTGCTACTGTAG -ACGGAACTGTTCGTGCTACCTAAG -ACGGAACTGTTCGTGCTAGTTCAG -ACGGAACTGTTCGTGCTAGCATAG -ACGGAACTGTTCGTGCTAGACAAG -ACGGAACTGTTCGTGCTAAAGCAG -ACGGAACTGTTCGTGCTACGTCAA -ACGGAACTGTTCGTGCTAGCTGAA -ACGGAACTGTTCGTGCTAAGTACG -ACGGAACTGTTCGTGCTAATCCGA -ACGGAACTGTTCGTGCTAATGGGA -ACGGAACTGTTCGTGCTAGTGCAA -ACGGAACTGTTCGTGCTAGAGGAA -ACGGAACTGTTCGTGCTACAGGTA -ACGGAACTGTTCGTGCTAGACTCT -ACGGAACTGTTCGTGCTAAGTCCT -ACGGAACTGTTCGTGCTATAAGCC -ACGGAACTGTTCGTGCTAATAGCC -ACGGAACTGTTCGTGCTATAACCG -ACGGAACTGTTCGTGCTAATGCCA -ACGGAACTGTTCCTGCATGGAAAC -ACGGAACTGTTCCTGCATAACACC -ACGGAACTGTTCCTGCATATCGAG -ACGGAACTGTTCCTGCATCTCCTT -ACGGAACTGTTCCTGCATCCTGTT -ACGGAACTGTTCCTGCATCGGTTT -ACGGAACTGTTCCTGCATGTGGTT -ACGGAACTGTTCCTGCATGCCTTT -ACGGAACTGTTCCTGCATGGTCTT -ACGGAACTGTTCCTGCATACGCTT -ACGGAACTGTTCCTGCATAGCGTT -ACGGAACTGTTCCTGCATTTCGTC -ACGGAACTGTTCCTGCATTCTCTC -ACGGAACTGTTCCTGCATTGGATC -ACGGAACTGTTCCTGCATCACTTC -ACGGAACTGTTCCTGCATGTACTC -ACGGAACTGTTCCTGCATGATGTC -ACGGAACTGTTCCTGCATACAGTC -ACGGAACTGTTCCTGCATTTGCTG -ACGGAACTGTTCCTGCATTCCATG -ACGGAACTGTTCCTGCATTGTGTG -ACGGAACTGTTCCTGCATCTAGTG -ACGGAACTGTTCCTGCATCATCTG -ACGGAACTGTTCCTGCATGAGTTG -ACGGAACTGTTCCTGCATAGACTG -ACGGAACTGTTCCTGCATTCGGTA -ACGGAACTGTTCCTGCATTGCCTA -ACGGAACTGTTCCTGCATCCACTA -ACGGAACTGTTCCTGCATGGAGTA -ACGGAACTGTTCCTGCATTCGTCT -ACGGAACTGTTCCTGCATTGCACT -ACGGAACTGTTCCTGCATCTGACT -ACGGAACTGTTCCTGCATCAACCT -ACGGAACTGTTCCTGCATGCTACT -ACGGAACTGTTCCTGCATGGATCT -ACGGAACTGTTCCTGCATAAGGCT -ACGGAACTGTTCCTGCATTCAACC -ACGGAACTGTTCCTGCATTGTTCC -ACGGAACTGTTCCTGCATATTCCC -ACGGAACTGTTCCTGCATTTCTCG -ACGGAACTGTTCCTGCATTAGACG -ACGGAACTGTTCCTGCATGTAACG -ACGGAACTGTTCCTGCATACTTCG -ACGGAACTGTTCCTGCATTACGCA -ACGGAACTGTTCCTGCATCTTGCA -ACGGAACTGTTCCTGCATCGAACA -ACGGAACTGTTCCTGCATCAGTCA -ACGGAACTGTTCCTGCATGATCCA -ACGGAACTGTTCCTGCATACGACA -ACGGAACTGTTCCTGCATAGCTCA -ACGGAACTGTTCCTGCATTCACGT -ACGGAACTGTTCCTGCATCGTAGT -ACGGAACTGTTCCTGCATGTCAGT -ACGGAACTGTTCCTGCATGAAGGT -ACGGAACTGTTCCTGCATAACCGT -ACGGAACTGTTCCTGCATTTGTGC -ACGGAACTGTTCCTGCATCTAAGC -ACGGAACTGTTCCTGCATACTAGC -ACGGAACTGTTCCTGCATAGATGC -ACGGAACTGTTCCTGCATTGAAGG -ACGGAACTGTTCCTGCATCAATGG -ACGGAACTGTTCCTGCATATGAGG -ACGGAACTGTTCCTGCATAATGGG -ACGGAACTGTTCCTGCATTCCTGA -ACGGAACTGTTCCTGCATTAGCGA -ACGGAACTGTTCCTGCATCACAGA -ACGGAACTGTTCCTGCATGCAAGA -ACGGAACTGTTCCTGCATGGTTGA -ACGGAACTGTTCCTGCATTCCGAT -ACGGAACTGTTCCTGCATTGGCAT -ACGGAACTGTTCCTGCATCGAGAT -ACGGAACTGTTCCTGCATTACCAC -ACGGAACTGTTCCTGCATCAGAAC -ACGGAACTGTTCCTGCATGTCTAC -ACGGAACTGTTCCTGCATACGTAC -ACGGAACTGTTCCTGCATAGTGAC -ACGGAACTGTTCCTGCATCTGTAG -ACGGAACTGTTCCTGCATCCTAAG -ACGGAACTGTTCCTGCATGTTCAG -ACGGAACTGTTCCTGCATGCATAG -ACGGAACTGTTCCTGCATGACAAG -ACGGAACTGTTCCTGCATAAGCAG -ACGGAACTGTTCCTGCATCGTCAA -ACGGAACTGTTCCTGCATGCTGAA -ACGGAACTGTTCCTGCATAGTACG -ACGGAACTGTTCCTGCATATCCGA -ACGGAACTGTTCCTGCATATGGGA -ACGGAACTGTTCCTGCATGTGCAA -ACGGAACTGTTCCTGCATGAGGAA -ACGGAACTGTTCCTGCATCAGGTA -ACGGAACTGTTCCTGCATGACTCT -ACGGAACTGTTCCTGCATAGTCCT -ACGGAACTGTTCCTGCATTAAGCC -ACGGAACTGTTCCTGCATATAGCC -ACGGAACTGTTCCTGCATTAACCG -ACGGAACTGTTCCTGCATATGCCA -ACGGAACTGTTCTTGGAGGGAAAC -ACGGAACTGTTCTTGGAGAACACC -ACGGAACTGTTCTTGGAGATCGAG -ACGGAACTGTTCTTGGAGCTCCTT -ACGGAACTGTTCTTGGAGCCTGTT -ACGGAACTGTTCTTGGAGCGGTTT -ACGGAACTGTTCTTGGAGGTGGTT -ACGGAACTGTTCTTGGAGGCCTTT -ACGGAACTGTTCTTGGAGGGTCTT -ACGGAACTGTTCTTGGAGACGCTT -ACGGAACTGTTCTTGGAGAGCGTT -ACGGAACTGTTCTTGGAGTTCGTC -ACGGAACTGTTCTTGGAGTCTCTC -ACGGAACTGTTCTTGGAGTGGATC -ACGGAACTGTTCTTGGAGCACTTC -ACGGAACTGTTCTTGGAGGTACTC -ACGGAACTGTTCTTGGAGGATGTC -ACGGAACTGTTCTTGGAGACAGTC -ACGGAACTGTTCTTGGAGTTGCTG -ACGGAACTGTTCTTGGAGTCCATG -ACGGAACTGTTCTTGGAGTGTGTG -ACGGAACTGTTCTTGGAGCTAGTG -ACGGAACTGTTCTTGGAGCATCTG -ACGGAACTGTTCTTGGAGGAGTTG -ACGGAACTGTTCTTGGAGAGACTG -ACGGAACTGTTCTTGGAGTCGGTA -ACGGAACTGTTCTTGGAGTGCCTA -ACGGAACTGTTCTTGGAGCCACTA -ACGGAACTGTTCTTGGAGGGAGTA -ACGGAACTGTTCTTGGAGTCGTCT -ACGGAACTGTTCTTGGAGTGCACT -ACGGAACTGTTCTTGGAGCTGACT -ACGGAACTGTTCTTGGAGCAACCT -ACGGAACTGTTCTTGGAGGCTACT -ACGGAACTGTTCTTGGAGGGATCT -ACGGAACTGTTCTTGGAGAAGGCT -ACGGAACTGTTCTTGGAGTCAACC -ACGGAACTGTTCTTGGAGTGTTCC -ACGGAACTGTTCTTGGAGATTCCC -ACGGAACTGTTCTTGGAGTTCTCG -ACGGAACTGTTCTTGGAGTAGACG -ACGGAACTGTTCTTGGAGGTAACG -ACGGAACTGTTCTTGGAGACTTCG -ACGGAACTGTTCTTGGAGTACGCA -ACGGAACTGTTCTTGGAGCTTGCA -ACGGAACTGTTCTTGGAGCGAACA -ACGGAACTGTTCTTGGAGCAGTCA -ACGGAACTGTTCTTGGAGGATCCA -ACGGAACTGTTCTTGGAGACGACA -ACGGAACTGTTCTTGGAGAGCTCA -ACGGAACTGTTCTTGGAGTCACGT -ACGGAACTGTTCTTGGAGCGTAGT -ACGGAACTGTTCTTGGAGGTCAGT -ACGGAACTGTTCTTGGAGGAAGGT -ACGGAACTGTTCTTGGAGAACCGT -ACGGAACTGTTCTTGGAGTTGTGC -ACGGAACTGTTCTTGGAGCTAAGC -ACGGAACTGTTCTTGGAGACTAGC -ACGGAACTGTTCTTGGAGAGATGC -ACGGAACTGTTCTTGGAGTGAAGG -ACGGAACTGTTCTTGGAGCAATGG -ACGGAACTGTTCTTGGAGATGAGG -ACGGAACTGTTCTTGGAGAATGGG -ACGGAACTGTTCTTGGAGTCCTGA -ACGGAACTGTTCTTGGAGTAGCGA -ACGGAACTGTTCTTGGAGCACAGA -ACGGAACTGTTCTTGGAGGCAAGA -ACGGAACTGTTCTTGGAGGGTTGA -ACGGAACTGTTCTTGGAGTCCGAT -ACGGAACTGTTCTTGGAGTGGCAT -ACGGAACTGTTCTTGGAGCGAGAT -ACGGAACTGTTCTTGGAGTACCAC -ACGGAACTGTTCTTGGAGCAGAAC -ACGGAACTGTTCTTGGAGGTCTAC -ACGGAACTGTTCTTGGAGACGTAC -ACGGAACTGTTCTTGGAGAGTGAC -ACGGAACTGTTCTTGGAGCTGTAG -ACGGAACTGTTCTTGGAGCCTAAG -ACGGAACTGTTCTTGGAGGTTCAG -ACGGAACTGTTCTTGGAGGCATAG -ACGGAACTGTTCTTGGAGGACAAG -ACGGAACTGTTCTTGGAGAAGCAG -ACGGAACTGTTCTTGGAGCGTCAA -ACGGAACTGTTCTTGGAGGCTGAA -ACGGAACTGTTCTTGGAGAGTACG -ACGGAACTGTTCTTGGAGATCCGA -ACGGAACTGTTCTTGGAGATGGGA -ACGGAACTGTTCTTGGAGGTGCAA -ACGGAACTGTTCTTGGAGGAGGAA -ACGGAACTGTTCTTGGAGCAGGTA -ACGGAACTGTTCTTGGAGGACTCT -ACGGAACTGTTCTTGGAGAGTCCT -ACGGAACTGTTCTTGGAGTAAGCC -ACGGAACTGTTCTTGGAGATAGCC -ACGGAACTGTTCTTGGAGTAACCG -ACGGAACTGTTCTTGGAGATGCCA -ACGGAACTGTTCCTGAGAGGAAAC -ACGGAACTGTTCCTGAGAAACACC -ACGGAACTGTTCCTGAGAATCGAG -ACGGAACTGTTCCTGAGACTCCTT -ACGGAACTGTTCCTGAGACCTGTT -ACGGAACTGTTCCTGAGACGGTTT -ACGGAACTGTTCCTGAGAGTGGTT -ACGGAACTGTTCCTGAGAGCCTTT -ACGGAACTGTTCCTGAGAGGTCTT -ACGGAACTGTTCCTGAGAACGCTT -ACGGAACTGTTCCTGAGAAGCGTT -ACGGAACTGTTCCTGAGATTCGTC -ACGGAACTGTTCCTGAGATCTCTC -ACGGAACTGTTCCTGAGATGGATC -ACGGAACTGTTCCTGAGACACTTC -ACGGAACTGTTCCTGAGAGTACTC -ACGGAACTGTTCCTGAGAGATGTC -ACGGAACTGTTCCTGAGAACAGTC -ACGGAACTGTTCCTGAGATTGCTG -ACGGAACTGTTCCTGAGATCCATG -ACGGAACTGTTCCTGAGATGTGTG -ACGGAACTGTTCCTGAGACTAGTG -ACGGAACTGTTCCTGAGACATCTG -ACGGAACTGTTCCTGAGAGAGTTG -ACGGAACTGTTCCTGAGAAGACTG -ACGGAACTGTTCCTGAGATCGGTA -ACGGAACTGTTCCTGAGATGCCTA -ACGGAACTGTTCCTGAGACCACTA -ACGGAACTGTTCCTGAGAGGAGTA -ACGGAACTGTTCCTGAGATCGTCT -ACGGAACTGTTCCTGAGATGCACT -ACGGAACTGTTCCTGAGACTGACT -ACGGAACTGTTCCTGAGACAACCT -ACGGAACTGTTCCTGAGAGCTACT -ACGGAACTGTTCCTGAGAGGATCT -ACGGAACTGTTCCTGAGAAAGGCT -ACGGAACTGTTCCTGAGATCAACC -ACGGAACTGTTCCTGAGATGTTCC -ACGGAACTGTTCCTGAGAATTCCC -ACGGAACTGTTCCTGAGATTCTCG -ACGGAACTGTTCCTGAGATAGACG -ACGGAACTGTTCCTGAGAGTAACG -ACGGAACTGTTCCTGAGAACTTCG -ACGGAACTGTTCCTGAGATACGCA -ACGGAACTGTTCCTGAGACTTGCA -ACGGAACTGTTCCTGAGACGAACA -ACGGAACTGTTCCTGAGACAGTCA -ACGGAACTGTTCCTGAGAGATCCA -ACGGAACTGTTCCTGAGAACGACA -ACGGAACTGTTCCTGAGAAGCTCA -ACGGAACTGTTCCTGAGATCACGT -ACGGAACTGTTCCTGAGACGTAGT -ACGGAACTGTTCCTGAGAGTCAGT -ACGGAACTGTTCCTGAGAGAAGGT -ACGGAACTGTTCCTGAGAAACCGT -ACGGAACTGTTCCTGAGATTGTGC -ACGGAACTGTTCCTGAGACTAAGC -ACGGAACTGTTCCTGAGAACTAGC -ACGGAACTGTTCCTGAGAAGATGC -ACGGAACTGTTCCTGAGATGAAGG -ACGGAACTGTTCCTGAGACAATGG -ACGGAACTGTTCCTGAGAATGAGG -ACGGAACTGTTCCTGAGAAATGGG -ACGGAACTGTTCCTGAGATCCTGA -ACGGAACTGTTCCTGAGATAGCGA -ACGGAACTGTTCCTGAGACACAGA -ACGGAACTGTTCCTGAGAGCAAGA -ACGGAACTGTTCCTGAGAGGTTGA -ACGGAACTGTTCCTGAGATCCGAT -ACGGAACTGTTCCTGAGATGGCAT -ACGGAACTGTTCCTGAGACGAGAT -ACGGAACTGTTCCTGAGATACCAC -ACGGAACTGTTCCTGAGACAGAAC -ACGGAACTGTTCCTGAGAGTCTAC -ACGGAACTGTTCCTGAGAACGTAC -ACGGAACTGTTCCTGAGAAGTGAC -ACGGAACTGTTCCTGAGACTGTAG -ACGGAACTGTTCCTGAGACCTAAG -ACGGAACTGTTCCTGAGAGTTCAG -ACGGAACTGTTCCTGAGAGCATAG -ACGGAACTGTTCCTGAGAGACAAG -ACGGAACTGTTCCTGAGAAAGCAG -ACGGAACTGTTCCTGAGACGTCAA -ACGGAACTGTTCCTGAGAGCTGAA -ACGGAACTGTTCCTGAGAAGTACG -ACGGAACTGTTCCTGAGAATCCGA -ACGGAACTGTTCCTGAGAATGGGA -ACGGAACTGTTCCTGAGAGTGCAA -ACGGAACTGTTCCTGAGAGAGGAA -ACGGAACTGTTCCTGAGACAGGTA -ACGGAACTGTTCCTGAGAGACTCT -ACGGAACTGTTCCTGAGAAGTCCT -ACGGAACTGTTCCTGAGATAAGCC -ACGGAACTGTTCCTGAGAATAGCC -ACGGAACTGTTCCTGAGATAACCG -ACGGAACTGTTCCTGAGAATGCCA -ACGGAACTGTTCGTATCGGGAAAC -ACGGAACTGTTCGTATCGAACACC -ACGGAACTGTTCGTATCGATCGAG -ACGGAACTGTTCGTATCGCTCCTT -ACGGAACTGTTCGTATCGCCTGTT -ACGGAACTGTTCGTATCGCGGTTT -ACGGAACTGTTCGTATCGGTGGTT -ACGGAACTGTTCGTATCGGCCTTT -ACGGAACTGTTCGTATCGGGTCTT -ACGGAACTGTTCGTATCGACGCTT -ACGGAACTGTTCGTATCGAGCGTT -ACGGAACTGTTCGTATCGTTCGTC -ACGGAACTGTTCGTATCGTCTCTC -ACGGAACTGTTCGTATCGTGGATC -ACGGAACTGTTCGTATCGCACTTC -ACGGAACTGTTCGTATCGGTACTC -ACGGAACTGTTCGTATCGGATGTC -ACGGAACTGTTCGTATCGACAGTC -ACGGAACTGTTCGTATCGTTGCTG -ACGGAACTGTTCGTATCGTCCATG -ACGGAACTGTTCGTATCGTGTGTG -ACGGAACTGTTCGTATCGCTAGTG -ACGGAACTGTTCGTATCGCATCTG -ACGGAACTGTTCGTATCGGAGTTG -ACGGAACTGTTCGTATCGAGACTG -ACGGAACTGTTCGTATCGTCGGTA -ACGGAACTGTTCGTATCGTGCCTA -ACGGAACTGTTCGTATCGCCACTA -ACGGAACTGTTCGTATCGGGAGTA -ACGGAACTGTTCGTATCGTCGTCT -ACGGAACTGTTCGTATCGTGCACT -ACGGAACTGTTCGTATCGCTGACT -ACGGAACTGTTCGTATCGCAACCT -ACGGAACTGTTCGTATCGGCTACT -ACGGAACTGTTCGTATCGGGATCT -ACGGAACTGTTCGTATCGAAGGCT -ACGGAACTGTTCGTATCGTCAACC -ACGGAACTGTTCGTATCGTGTTCC -ACGGAACTGTTCGTATCGATTCCC -ACGGAACTGTTCGTATCGTTCTCG -ACGGAACTGTTCGTATCGTAGACG -ACGGAACTGTTCGTATCGGTAACG -ACGGAACTGTTCGTATCGACTTCG -ACGGAACTGTTCGTATCGTACGCA -ACGGAACTGTTCGTATCGCTTGCA -ACGGAACTGTTCGTATCGCGAACA -ACGGAACTGTTCGTATCGCAGTCA -ACGGAACTGTTCGTATCGGATCCA -ACGGAACTGTTCGTATCGACGACA -ACGGAACTGTTCGTATCGAGCTCA -ACGGAACTGTTCGTATCGTCACGT -ACGGAACTGTTCGTATCGCGTAGT -ACGGAACTGTTCGTATCGGTCAGT -ACGGAACTGTTCGTATCGGAAGGT -ACGGAACTGTTCGTATCGAACCGT -ACGGAACTGTTCGTATCGTTGTGC -ACGGAACTGTTCGTATCGCTAAGC -ACGGAACTGTTCGTATCGACTAGC -ACGGAACTGTTCGTATCGAGATGC -ACGGAACTGTTCGTATCGTGAAGG -ACGGAACTGTTCGTATCGCAATGG -ACGGAACTGTTCGTATCGATGAGG -ACGGAACTGTTCGTATCGAATGGG -ACGGAACTGTTCGTATCGTCCTGA -ACGGAACTGTTCGTATCGTAGCGA -ACGGAACTGTTCGTATCGCACAGA -ACGGAACTGTTCGTATCGGCAAGA -ACGGAACTGTTCGTATCGGGTTGA -ACGGAACTGTTCGTATCGTCCGAT -ACGGAACTGTTCGTATCGTGGCAT -ACGGAACTGTTCGTATCGCGAGAT -ACGGAACTGTTCGTATCGTACCAC -ACGGAACTGTTCGTATCGCAGAAC -ACGGAACTGTTCGTATCGGTCTAC -ACGGAACTGTTCGTATCGACGTAC -ACGGAACTGTTCGTATCGAGTGAC -ACGGAACTGTTCGTATCGCTGTAG -ACGGAACTGTTCGTATCGCCTAAG -ACGGAACTGTTCGTATCGGTTCAG -ACGGAACTGTTCGTATCGGCATAG -ACGGAACTGTTCGTATCGGACAAG -ACGGAACTGTTCGTATCGAAGCAG -ACGGAACTGTTCGTATCGCGTCAA -ACGGAACTGTTCGTATCGGCTGAA -ACGGAACTGTTCGTATCGAGTACG -ACGGAACTGTTCGTATCGATCCGA -ACGGAACTGTTCGTATCGATGGGA -ACGGAACTGTTCGTATCGGTGCAA -ACGGAACTGTTCGTATCGGAGGAA -ACGGAACTGTTCGTATCGCAGGTA -ACGGAACTGTTCGTATCGGACTCT -ACGGAACTGTTCGTATCGAGTCCT -ACGGAACTGTTCGTATCGTAAGCC -ACGGAACTGTTCGTATCGATAGCC -ACGGAACTGTTCGTATCGTAACCG -ACGGAACTGTTCGTATCGATGCCA -ACGGAACTGTTCCTATGCGGAAAC -ACGGAACTGTTCCTATGCAACACC -ACGGAACTGTTCCTATGCATCGAG -ACGGAACTGTTCCTATGCCTCCTT -ACGGAACTGTTCCTATGCCCTGTT -ACGGAACTGTTCCTATGCCGGTTT -ACGGAACTGTTCCTATGCGTGGTT -ACGGAACTGTTCCTATGCGCCTTT -ACGGAACTGTTCCTATGCGGTCTT -ACGGAACTGTTCCTATGCACGCTT -ACGGAACTGTTCCTATGCAGCGTT -ACGGAACTGTTCCTATGCTTCGTC -ACGGAACTGTTCCTATGCTCTCTC -ACGGAACTGTTCCTATGCTGGATC -ACGGAACTGTTCCTATGCCACTTC -ACGGAACTGTTCCTATGCGTACTC -ACGGAACTGTTCCTATGCGATGTC -ACGGAACTGTTCCTATGCACAGTC -ACGGAACTGTTCCTATGCTTGCTG -ACGGAACTGTTCCTATGCTCCATG -ACGGAACTGTTCCTATGCTGTGTG -ACGGAACTGTTCCTATGCCTAGTG -ACGGAACTGTTCCTATGCCATCTG -ACGGAACTGTTCCTATGCGAGTTG -ACGGAACTGTTCCTATGCAGACTG -ACGGAACTGTTCCTATGCTCGGTA -ACGGAACTGTTCCTATGCTGCCTA -ACGGAACTGTTCCTATGCCCACTA -ACGGAACTGTTCCTATGCGGAGTA -ACGGAACTGTTCCTATGCTCGTCT -ACGGAACTGTTCCTATGCTGCACT -ACGGAACTGTTCCTATGCCTGACT -ACGGAACTGTTCCTATGCCAACCT -ACGGAACTGTTCCTATGCGCTACT -ACGGAACTGTTCCTATGCGGATCT -ACGGAACTGTTCCTATGCAAGGCT -ACGGAACTGTTCCTATGCTCAACC -ACGGAACTGTTCCTATGCTGTTCC -ACGGAACTGTTCCTATGCATTCCC -ACGGAACTGTTCCTATGCTTCTCG -ACGGAACTGTTCCTATGCTAGACG -ACGGAACTGTTCCTATGCGTAACG -ACGGAACTGTTCCTATGCACTTCG -ACGGAACTGTTCCTATGCTACGCA -ACGGAACTGTTCCTATGCCTTGCA -ACGGAACTGTTCCTATGCCGAACA -ACGGAACTGTTCCTATGCCAGTCA -ACGGAACTGTTCCTATGCGATCCA -ACGGAACTGTTCCTATGCACGACA -ACGGAACTGTTCCTATGCAGCTCA -ACGGAACTGTTCCTATGCTCACGT -ACGGAACTGTTCCTATGCCGTAGT -ACGGAACTGTTCCTATGCGTCAGT -ACGGAACTGTTCCTATGCGAAGGT -ACGGAACTGTTCCTATGCAACCGT -ACGGAACTGTTCCTATGCTTGTGC -ACGGAACTGTTCCTATGCCTAAGC -ACGGAACTGTTCCTATGCACTAGC -ACGGAACTGTTCCTATGCAGATGC -ACGGAACTGTTCCTATGCTGAAGG -ACGGAACTGTTCCTATGCCAATGG -ACGGAACTGTTCCTATGCATGAGG -ACGGAACTGTTCCTATGCAATGGG -ACGGAACTGTTCCTATGCTCCTGA -ACGGAACTGTTCCTATGCTAGCGA -ACGGAACTGTTCCTATGCCACAGA -ACGGAACTGTTCCTATGCGCAAGA -ACGGAACTGTTCCTATGCGGTTGA -ACGGAACTGTTCCTATGCTCCGAT -ACGGAACTGTTCCTATGCTGGCAT -ACGGAACTGTTCCTATGCCGAGAT -ACGGAACTGTTCCTATGCTACCAC -ACGGAACTGTTCCTATGCCAGAAC -ACGGAACTGTTCCTATGCGTCTAC -ACGGAACTGTTCCTATGCACGTAC -ACGGAACTGTTCCTATGCAGTGAC -ACGGAACTGTTCCTATGCCTGTAG -ACGGAACTGTTCCTATGCCCTAAG -ACGGAACTGTTCCTATGCGTTCAG -ACGGAACTGTTCCTATGCGCATAG -ACGGAACTGTTCCTATGCGACAAG -ACGGAACTGTTCCTATGCAAGCAG -ACGGAACTGTTCCTATGCCGTCAA -ACGGAACTGTTCCTATGCGCTGAA -ACGGAACTGTTCCTATGCAGTACG -ACGGAACTGTTCCTATGCATCCGA -ACGGAACTGTTCCTATGCATGGGA -ACGGAACTGTTCCTATGCGTGCAA -ACGGAACTGTTCCTATGCGAGGAA -ACGGAACTGTTCCTATGCCAGGTA -ACGGAACTGTTCCTATGCGACTCT -ACGGAACTGTTCCTATGCAGTCCT -ACGGAACTGTTCCTATGCTAAGCC -ACGGAACTGTTCCTATGCATAGCC -ACGGAACTGTTCCTATGCTAACCG -ACGGAACTGTTCCTATGCATGCCA -ACGGAACTGTTCCTACCAGGAAAC -ACGGAACTGTTCCTACCAAACACC -ACGGAACTGTTCCTACCAATCGAG -ACGGAACTGTTCCTACCACTCCTT -ACGGAACTGTTCCTACCACCTGTT -ACGGAACTGTTCCTACCACGGTTT -ACGGAACTGTTCCTACCAGTGGTT -ACGGAACTGTTCCTACCAGCCTTT -ACGGAACTGTTCCTACCAGGTCTT -ACGGAACTGTTCCTACCAACGCTT -ACGGAACTGTTCCTACCAAGCGTT -ACGGAACTGTTCCTACCATTCGTC -ACGGAACTGTTCCTACCATCTCTC -ACGGAACTGTTCCTACCATGGATC -ACGGAACTGTTCCTACCACACTTC -ACGGAACTGTTCCTACCAGTACTC -ACGGAACTGTTCCTACCAGATGTC -ACGGAACTGTTCCTACCAACAGTC -ACGGAACTGTTCCTACCATTGCTG -ACGGAACTGTTCCTACCATCCATG -ACGGAACTGTTCCTACCATGTGTG -ACGGAACTGTTCCTACCACTAGTG -ACGGAACTGTTCCTACCACATCTG -ACGGAACTGTTCCTACCAGAGTTG -ACGGAACTGTTCCTACCAAGACTG -ACGGAACTGTTCCTACCATCGGTA -ACGGAACTGTTCCTACCATGCCTA -ACGGAACTGTTCCTACCACCACTA -ACGGAACTGTTCCTACCAGGAGTA -ACGGAACTGTTCCTACCATCGTCT -ACGGAACTGTTCCTACCATGCACT -ACGGAACTGTTCCTACCACTGACT -ACGGAACTGTTCCTACCACAACCT -ACGGAACTGTTCCTACCAGCTACT -ACGGAACTGTTCCTACCAGGATCT -ACGGAACTGTTCCTACCAAAGGCT -ACGGAACTGTTCCTACCATCAACC -ACGGAACTGTTCCTACCATGTTCC -ACGGAACTGTTCCTACCAATTCCC -ACGGAACTGTTCCTACCATTCTCG -ACGGAACTGTTCCTACCATAGACG -ACGGAACTGTTCCTACCAGTAACG -ACGGAACTGTTCCTACCAACTTCG -ACGGAACTGTTCCTACCATACGCA -ACGGAACTGTTCCTACCACTTGCA -ACGGAACTGTTCCTACCACGAACA -ACGGAACTGTTCCTACCACAGTCA -ACGGAACTGTTCCTACCAGATCCA -ACGGAACTGTTCCTACCAACGACA -ACGGAACTGTTCCTACCAAGCTCA -ACGGAACTGTTCCTACCATCACGT -ACGGAACTGTTCCTACCACGTAGT -ACGGAACTGTTCCTACCAGTCAGT -ACGGAACTGTTCCTACCAGAAGGT -ACGGAACTGTTCCTACCAAACCGT -ACGGAACTGTTCCTACCATTGTGC -ACGGAACTGTTCCTACCACTAAGC -ACGGAACTGTTCCTACCAACTAGC -ACGGAACTGTTCCTACCAAGATGC -ACGGAACTGTTCCTACCATGAAGG -ACGGAACTGTTCCTACCACAATGG -ACGGAACTGTTCCTACCAATGAGG -ACGGAACTGTTCCTACCAAATGGG -ACGGAACTGTTCCTACCATCCTGA -ACGGAACTGTTCCTACCATAGCGA -ACGGAACTGTTCCTACCACACAGA -ACGGAACTGTTCCTACCAGCAAGA -ACGGAACTGTTCCTACCAGGTTGA -ACGGAACTGTTCCTACCATCCGAT -ACGGAACTGTTCCTACCATGGCAT -ACGGAACTGTTCCTACCACGAGAT -ACGGAACTGTTCCTACCATACCAC -ACGGAACTGTTCCTACCACAGAAC -ACGGAACTGTTCCTACCAGTCTAC -ACGGAACTGTTCCTACCAACGTAC -ACGGAACTGTTCCTACCAAGTGAC -ACGGAACTGTTCCTACCACTGTAG -ACGGAACTGTTCCTACCACCTAAG -ACGGAACTGTTCCTACCAGTTCAG -ACGGAACTGTTCCTACCAGCATAG -ACGGAACTGTTCCTACCAGACAAG -ACGGAACTGTTCCTACCAAAGCAG -ACGGAACTGTTCCTACCACGTCAA -ACGGAACTGTTCCTACCAGCTGAA -ACGGAACTGTTCCTACCAAGTACG -ACGGAACTGTTCCTACCAATCCGA -ACGGAACTGTTCCTACCAATGGGA -ACGGAACTGTTCCTACCAGTGCAA -ACGGAACTGTTCCTACCAGAGGAA -ACGGAACTGTTCCTACCACAGGTA -ACGGAACTGTTCCTACCAGACTCT -ACGGAACTGTTCCTACCAAGTCCT -ACGGAACTGTTCCTACCATAAGCC -ACGGAACTGTTCCTACCAATAGCC -ACGGAACTGTTCCTACCATAACCG -ACGGAACTGTTCCTACCAATGCCA -ACGGAACTGTTCGTAGGAGGAAAC -ACGGAACTGTTCGTAGGAAACACC -ACGGAACTGTTCGTAGGAATCGAG -ACGGAACTGTTCGTAGGACTCCTT -ACGGAACTGTTCGTAGGACCTGTT -ACGGAACTGTTCGTAGGACGGTTT -ACGGAACTGTTCGTAGGAGTGGTT -ACGGAACTGTTCGTAGGAGCCTTT -ACGGAACTGTTCGTAGGAGGTCTT -ACGGAACTGTTCGTAGGAACGCTT -ACGGAACTGTTCGTAGGAAGCGTT -ACGGAACTGTTCGTAGGATTCGTC -ACGGAACTGTTCGTAGGATCTCTC -ACGGAACTGTTCGTAGGATGGATC -ACGGAACTGTTCGTAGGACACTTC -ACGGAACTGTTCGTAGGAGTACTC -ACGGAACTGTTCGTAGGAGATGTC -ACGGAACTGTTCGTAGGAACAGTC -ACGGAACTGTTCGTAGGATTGCTG -ACGGAACTGTTCGTAGGATCCATG -ACGGAACTGTTCGTAGGATGTGTG -ACGGAACTGTTCGTAGGACTAGTG -ACGGAACTGTTCGTAGGACATCTG -ACGGAACTGTTCGTAGGAGAGTTG -ACGGAACTGTTCGTAGGAAGACTG -ACGGAACTGTTCGTAGGATCGGTA -ACGGAACTGTTCGTAGGATGCCTA -ACGGAACTGTTCGTAGGACCACTA -ACGGAACTGTTCGTAGGAGGAGTA -ACGGAACTGTTCGTAGGATCGTCT -ACGGAACTGTTCGTAGGATGCACT -ACGGAACTGTTCGTAGGACTGACT -ACGGAACTGTTCGTAGGACAACCT -ACGGAACTGTTCGTAGGAGCTACT -ACGGAACTGTTCGTAGGAGGATCT -ACGGAACTGTTCGTAGGAAAGGCT -ACGGAACTGTTCGTAGGATCAACC -ACGGAACTGTTCGTAGGATGTTCC -ACGGAACTGTTCGTAGGAATTCCC -ACGGAACTGTTCGTAGGATTCTCG -ACGGAACTGTTCGTAGGATAGACG -ACGGAACTGTTCGTAGGAGTAACG -ACGGAACTGTTCGTAGGAACTTCG -ACGGAACTGTTCGTAGGATACGCA -ACGGAACTGTTCGTAGGACTTGCA -ACGGAACTGTTCGTAGGACGAACA -ACGGAACTGTTCGTAGGACAGTCA -ACGGAACTGTTCGTAGGAGATCCA -ACGGAACTGTTCGTAGGAACGACA -ACGGAACTGTTCGTAGGAAGCTCA -ACGGAACTGTTCGTAGGATCACGT -ACGGAACTGTTCGTAGGACGTAGT -ACGGAACTGTTCGTAGGAGTCAGT -ACGGAACTGTTCGTAGGAGAAGGT -ACGGAACTGTTCGTAGGAAACCGT -ACGGAACTGTTCGTAGGATTGTGC -ACGGAACTGTTCGTAGGACTAAGC -ACGGAACTGTTCGTAGGAACTAGC -ACGGAACTGTTCGTAGGAAGATGC -ACGGAACTGTTCGTAGGATGAAGG -ACGGAACTGTTCGTAGGACAATGG -ACGGAACTGTTCGTAGGAATGAGG -ACGGAACTGTTCGTAGGAAATGGG -ACGGAACTGTTCGTAGGATCCTGA -ACGGAACTGTTCGTAGGATAGCGA -ACGGAACTGTTCGTAGGACACAGA -ACGGAACTGTTCGTAGGAGCAAGA -ACGGAACTGTTCGTAGGAGGTTGA -ACGGAACTGTTCGTAGGATCCGAT -ACGGAACTGTTCGTAGGATGGCAT -ACGGAACTGTTCGTAGGACGAGAT -ACGGAACTGTTCGTAGGATACCAC -ACGGAACTGTTCGTAGGACAGAAC -ACGGAACTGTTCGTAGGAGTCTAC -ACGGAACTGTTCGTAGGAACGTAC -ACGGAACTGTTCGTAGGAAGTGAC -ACGGAACTGTTCGTAGGACTGTAG -ACGGAACTGTTCGTAGGACCTAAG -ACGGAACTGTTCGTAGGAGTTCAG -ACGGAACTGTTCGTAGGAGCATAG -ACGGAACTGTTCGTAGGAGACAAG -ACGGAACTGTTCGTAGGAAAGCAG -ACGGAACTGTTCGTAGGACGTCAA -ACGGAACTGTTCGTAGGAGCTGAA -ACGGAACTGTTCGTAGGAAGTACG -ACGGAACTGTTCGTAGGAATCCGA -ACGGAACTGTTCGTAGGAATGGGA -ACGGAACTGTTCGTAGGAGTGCAA -ACGGAACTGTTCGTAGGAGAGGAA -ACGGAACTGTTCGTAGGACAGGTA -ACGGAACTGTTCGTAGGAGACTCT -ACGGAACTGTTCGTAGGAAGTCCT -ACGGAACTGTTCGTAGGATAAGCC -ACGGAACTGTTCGTAGGAATAGCC -ACGGAACTGTTCGTAGGATAACCG -ACGGAACTGTTCGTAGGAATGCCA -ACGGAACTGTTCTCTTCGGGAAAC -ACGGAACTGTTCTCTTCGAACACC -ACGGAACTGTTCTCTTCGATCGAG -ACGGAACTGTTCTCTTCGCTCCTT -ACGGAACTGTTCTCTTCGCCTGTT -ACGGAACTGTTCTCTTCGCGGTTT -ACGGAACTGTTCTCTTCGGTGGTT -ACGGAACTGTTCTCTTCGGCCTTT -ACGGAACTGTTCTCTTCGGGTCTT -ACGGAACTGTTCTCTTCGACGCTT -ACGGAACTGTTCTCTTCGAGCGTT -ACGGAACTGTTCTCTTCGTTCGTC -ACGGAACTGTTCTCTTCGTCTCTC -ACGGAACTGTTCTCTTCGTGGATC -ACGGAACTGTTCTCTTCGCACTTC -ACGGAACTGTTCTCTTCGGTACTC -ACGGAACTGTTCTCTTCGGATGTC -ACGGAACTGTTCTCTTCGACAGTC -ACGGAACTGTTCTCTTCGTTGCTG -ACGGAACTGTTCTCTTCGTCCATG -ACGGAACTGTTCTCTTCGTGTGTG -ACGGAACTGTTCTCTTCGCTAGTG -ACGGAACTGTTCTCTTCGCATCTG -ACGGAACTGTTCTCTTCGGAGTTG -ACGGAACTGTTCTCTTCGAGACTG -ACGGAACTGTTCTCTTCGTCGGTA -ACGGAACTGTTCTCTTCGTGCCTA -ACGGAACTGTTCTCTTCGCCACTA -ACGGAACTGTTCTCTTCGGGAGTA -ACGGAACTGTTCTCTTCGTCGTCT -ACGGAACTGTTCTCTTCGTGCACT -ACGGAACTGTTCTCTTCGCTGACT -ACGGAACTGTTCTCTTCGCAACCT -ACGGAACTGTTCTCTTCGGCTACT -ACGGAACTGTTCTCTTCGGGATCT -ACGGAACTGTTCTCTTCGAAGGCT -ACGGAACTGTTCTCTTCGTCAACC -ACGGAACTGTTCTCTTCGTGTTCC -ACGGAACTGTTCTCTTCGATTCCC -ACGGAACTGTTCTCTTCGTTCTCG -ACGGAACTGTTCTCTTCGTAGACG -ACGGAACTGTTCTCTTCGGTAACG -ACGGAACTGTTCTCTTCGACTTCG -ACGGAACTGTTCTCTTCGTACGCA -ACGGAACTGTTCTCTTCGCTTGCA -ACGGAACTGTTCTCTTCGCGAACA -ACGGAACTGTTCTCTTCGCAGTCA -ACGGAACTGTTCTCTTCGGATCCA -ACGGAACTGTTCTCTTCGACGACA -ACGGAACTGTTCTCTTCGAGCTCA -ACGGAACTGTTCTCTTCGTCACGT -ACGGAACTGTTCTCTTCGCGTAGT -ACGGAACTGTTCTCTTCGGTCAGT -ACGGAACTGTTCTCTTCGGAAGGT -ACGGAACTGTTCTCTTCGAACCGT -ACGGAACTGTTCTCTTCGTTGTGC -ACGGAACTGTTCTCTTCGCTAAGC -ACGGAACTGTTCTCTTCGACTAGC -ACGGAACTGTTCTCTTCGAGATGC -ACGGAACTGTTCTCTTCGTGAAGG -ACGGAACTGTTCTCTTCGCAATGG -ACGGAACTGTTCTCTTCGATGAGG -ACGGAACTGTTCTCTTCGAATGGG -ACGGAACTGTTCTCTTCGTCCTGA -ACGGAACTGTTCTCTTCGTAGCGA -ACGGAACTGTTCTCTTCGCACAGA -ACGGAACTGTTCTCTTCGGCAAGA -ACGGAACTGTTCTCTTCGGGTTGA -ACGGAACTGTTCTCTTCGTCCGAT -ACGGAACTGTTCTCTTCGTGGCAT -ACGGAACTGTTCTCTTCGCGAGAT -ACGGAACTGTTCTCTTCGTACCAC -ACGGAACTGTTCTCTTCGCAGAAC -ACGGAACTGTTCTCTTCGGTCTAC -ACGGAACTGTTCTCTTCGACGTAC -ACGGAACTGTTCTCTTCGAGTGAC -ACGGAACTGTTCTCTTCGCTGTAG -ACGGAACTGTTCTCTTCGCCTAAG -ACGGAACTGTTCTCTTCGGTTCAG -ACGGAACTGTTCTCTTCGGCATAG -ACGGAACTGTTCTCTTCGGACAAG -ACGGAACTGTTCTCTTCGAAGCAG -ACGGAACTGTTCTCTTCGCGTCAA -ACGGAACTGTTCTCTTCGGCTGAA -ACGGAACTGTTCTCTTCGAGTACG -ACGGAACTGTTCTCTTCGATCCGA -ACGGAACTGTTCTCTTCGATGGGA -ACGGAACTGTTCTCTTCGGTGCAA -ACGGAACTGTTCTCTTCGGAGGAA -ACGGAACTGTTCTCTTCGCAGGTA -ACGGAACTGTTCTCTTCGGACTCT -ACGGAACTGTTCTCTTCGAGTCCT -ACGGAACTGTTCTCTTCGTAAGCC -ACGGAACTGTTCTCTTCGATAGCC -ACGGAACTGTTCTCTTCGTAACCG -ACGGAACTGTTCTCTTCGATGCCA -ACGGAACTGTTCACTTGCGGAAAC -ACGGAACTGTTCACTTGCAACACC -ACGGAACTGTTCACTTGCATCGAG -ACGGAACTGTTCACTTGCCTCCTT -ACGGAACTGTTCACTTGCCCTGTT -ACGGAACTGTTCACTTGCCGGTTT -ACGGAACTGTTCACTTGCGTGGTT -ACGGAACTGTTCACTTGCGCCTTT -ACGGAACTGTTCACTTGCGGTCTT -ACGGAACTGTTCACTTGCACGCTT -ACGGAACTGTTCACTTGCAGCGTT -ACGGAACTGTTCACTTGCTTCGTC -ACGGAACTGTTCACTTGCTCTCTC -ACGGAACTGTTCACTTGCTGGATC -ACGGAACTGTTCACTTGCCACTTC -ACGGAACTGTTCACTTGCGTACTC -ACGGAACTGTTCACTTGCGATGTC -ACGGAACTGTTCACTTGCACAGTC -ACGGAACTGTTCACTTGCTTGCTG -ACGGAACTGTTCACTTGCTCCATG -ACGGAACTGTTCACTTGCTGTGTG -ACGGAACTGTTCACTTGCCTAGTG -ACGGAACTGTTCACTTGCCATCTG -ACGGAACTGTTCACTTGCGAGTTG -ACGGAACTGTTCACTTGCAGACTG -ACGGAACTGTTCACTTGCTCGGTA -ACGGAACTGTTCACTTGCTGCCTA -ACGGAACTGTTCACTTGCCCACTA -ACGGAACTGTTCACTTGCGGAGTA -ACGGAACTGTTCACTTGCTCGTCT -ACGGAACTGTTCACTTGCTGCACT -ACGGAACTGTTCACTTGCCTGACT -ACGGAACTGTTCACTTGCCAACCT -ACGGAACTGTTCACTTGCGCTACT -ACGGAACTGTTCACTTGCGGATCT -ACGGAACTGTTCACTTGCAAGGCT -ACGGAACTGTTCACTTGCTCAACC -ACGGAACTGTTCACTTGCTGTTCC -ACGGAACTGTTCACTTGCATTCCC -ACGGAACTGTTCACTTGCTTCTCG -ACGGAACTGTTCACTTGCTAGACG -ACGGAACTGTTCACTTGCGTAACG -ACGGAACTGTTCACTTGCACTTCG -ACGGAACTGTTCACTTGCTACGCA -ACGGAACTGTTCACTTGCCTTGCA -ACGGAACTGTTCACTTGCCGAACA -ACGGAACTGTTCACTTGCCAGTCA -ACGGAACTGTTCACTTGCGATCCA -ACGGAACTGTTCACTTGCACGACA -ACGGAACTGTTCACTTGCAGCTCA -ACGGAACTGTTCACTTGCTCACGT -ACGGAACTGTTCACTTGCCGTAGT -ACGGAACTGTTCACTTGCGTCAGT -ACGGAACTGTTCACTTGCGAAGGT -ACGGAACTGTTCACTTGCAACCGT -ACGGAACTGTTCACTTGCTTGTGC -ACGGAACTGTTCACTTGCCTAAGC -ACGGAACTGTTCACTTGCACTAGC -ACGGAACTGTTCACTTGCAGATGC -ACGGAACTGTTCACTTGCTGAAGG -ACGGAACTGTTCACTTGCCAATGG -ACGGAACTGTTCACTTGCATGAGG -ACGGAACTGTTCACTTGCAATGGG -ACGGAACTGTTCACTTGCTCCTGA -ACGGAACTGTTCACTTGCTAGCGA -ACGGAACTGTTCACTTGCCACAGA -ACGGAACTGTTCACTTGCGCAAGA -ACGGAACTGTTCACTTGCGGTTGA -ACGGAACTGTTCACTTGCTCCGAT -ACGGAACTGTTCACTTGCTGGCAT -ACGGAACTGTTCACTTGCCGAGAT -ACGGAACTGTTCACTTGCTACCAC -ACGGAACTGTTCACTTGCCAGAAC -ACGGAACTGTTCACTTGCGTCTAC -ACGGAACTGTTCACTTGCACGTAC -ACGGAACTGTTCACTTGCAGTGAC -ACGGAACTGTTCACTTGCCTGTAG -ACGGAACTGTTCACTTGCCCTAAG -ACGGAACTGTTCACTTGCGTTCAG -ACGGAACTGTTCACTTGCGCATAG -ACGGAACTGTTCACTTGCGACAAG -ACGGAACTGTTCACTTGCAAGCAG -ACGGAACTGTTCACTTGCCGTCAA -ACGGAACTGTTCACTTGCGCTGAA -ACGGAACTGTTCACTTGCAGTACG -ACGGAACTGTTCACTTGCATCCGA -ACGGAACTGTTCACTTGCATGGGA -ACGGAACTGTTCACTTGCGTGCAA -ACGGAACTGTTCACTTGCGAGGAA -ACGGAACTGTTCACTTGCCAGGTA -ACGGAACTGTTCACTTGCGACTCT -ACGGAACTGTTCACTTGCAGTCCT -ACGGAACTGTTCACTTGCTAAGCC -ACGGAACTGTTCACTTGCATAGCC -ACGGAACTGTTCACTTGCTAACCG -ACGGAACTGTTCACTTGCATGCCA -ACGGAACTGTTCACTCTGGGAAAC -ACGGAACTGTTCACTCTGAACACC -ACGGAACTGTTCACTCTGATCGAG -ACGGAACTGTTCACTCTGCTCCTT -ACGGAACTGTTCACTCTGCCTGTT -ACGGAACTGTTCACTCTGCGGTTT -ACGGAACTGTTCACTCTGGTGGTT -ACGGAACTGTTCACTCTGGCCTTT -ACGGAACTGTTCACTCTGGGTCTT -ACGGAACTGTTCACTCTGACGCTT -ACGGAACTGTTCACTCTGAGCGTT -ACGGAACTGTTCACTCTGTTCGTC -ACGGAACTGTTCACTCTGTCTCTC -ACGGAACTGTTCACTCTGTGGATC -ACGGAACTGTTCACTCTGCACTTC -ACGGAACTGTTCACTCTGGTACTC -ACGGAACTGTTCACTCTGGATGTC -ACGGAACTGTTCACTCTGACAGTC -ACGGAACTGTTCACTCTGTTGCTG -ACGGAACTGTTCACTCTGTCCATG -ACGGAACTGTTCACTCTGTGTGTG -ACGGAACTGTTCACTCTGCTAGTG -ACGGAACTGTTCACTCTGCATCTG -ACGGAACTGTTCACTCTGGAGTTG -ACGGAACTGTTCACTCTGAGACTG -ACGGAACTGTTCACTCTGTCGGTA -ACGGAACTGTTCACTCTGTGCCTA -ACGGAACTGTTCACTCTGCCACTA -ACGGAACTGTTCACTCTGGGAGTA -ACGGAACTGTTCACTCTGTCGTCT -ACGGAACTGTTCACTCTGTGCACT -ACGGAACTGTTCACTCTGCTGACT -ACGGAACTGTTCACTCTGCAACCT -ACGGAACTGTTCACTCTGGCTACT -ACGGAACTGTTCACTCTGGGATCT -ACGGAACTGTTCACTCTGAAGGCT -ACGGAACTGTTCACTCTGTCAACC -ACGGAACTGTTCACTCTGTGTTCC -ACGGAACTGTTCACTCTGATTCCC -ACGGAACTGTTCACTCTGTTCTCG -ACGGAACTGTTCACTCTGTAGACG -ACGGAACTGTTCACTCTGGTAACG -ACGGAACTGTTCACTCTGACTTCG -ACGGAACTGTTCACTCTGTACGCA -ACGGAACTGTTCACTCTGCTTGCA -ACGGAACTGTTCACTCTGCGAACA -ACGGAACTGTTCACTCTGCAGTCA -ACGGAACTGTTCACTCTGGATCCA -ACGGAACTGTTCACTCTGACGACA -ACGGAACTGTTCACTCTGAGCTCA -ACGGAACTGTTCACTCTGTCACGT -ACGGAACTGTTCACTCTGCGTAGT -ACGGAACTGTTCACTCTGGTCAGT -ACGGAACTGTTCACTCTGGAAGGT -ACGGAACTGTTCACTCTGAACCGT -ACGGAACTGTTCACTCTGTTGTGC -ACGGAACTGTTCACTCTGCTAAGC -ACGGAACTGTTCACTCTGACTAGC -ACGGAACTGTTCACTCTGAGATGC -ACGGAACTGTTCACTCTGTGAAGG -ACGGAACTGTTCACTCTGCAATGG -ACGGAACTGTTCACTCTGATGAGG -ACGGAACTGTTCACTCTGAATGGG -ACGGAACTGTTCACTCTGTCCTGA -ACGGAACTGTTCACTCTGTAGCGA -ACGGAACTGTTCACTCTGCACAGA -ACGGAACTGTTCACTCTGGCAAGA -ACGGAACTGTTCACTCTGGGTTGA -ACGGAACTGTTCACTCTGTCCGAT -ACGGAACTGTTCACTCTGTGGCAT -ACGGAACTGTTCACTCTGCGAGAT -ACGGAACTGTTCACTCTGTACCAC -ACGGAACTGTTCACTCTGCAGAAC -ACGGAACTGTTCACTCTGGTCTAC -ACGGAACTGTTCACTCTGACGTAC -ACGGAACTGTTCACTCTGAGTGAC -ACGGAACTGTTCACTCTGCTGTAG -ACGGAACTGTTCACTCTGCCTAAG -ACGGAACTGTTCACTCTGGTTCAG -ACGGAACTGTTCACTCTGGCATAG -ACGGAACTGTTCACTCTGGACAAG -ACGGAACTGTTCACTCTGAAGCAG -ACGGAACTGTTCACTCTGCGTCAA -ACGGAACTGTTCACTCTGGCTGAA -ACGGAACTGTTCACTCTGAGTACG -ACGGAACTGTTCACTCTGATCCGA -ACGGAACTGTTCACTCTGATGGGA -ACGGAACTGTTCACTCTGGTGCAA -ACGGAACTGTTCACTCTGGAGGAA -ACGGAACTGTTCACTCTGCAGGTA -ACGGAACTGTTCACTCTGGACTCT -ACGGAACTGTTCACTCTGAGTCCT -ACGGAACTGTTCACTCTGTAAGCC -ACGGAACTGTTCACTCTGATAGCC -ACGGAACTGTTCACTCTGTAACCG -ACGGAACTGTTCACTCTGATGCCA -ACGGAACTGTTCCCTCAAGGAAAC -ACGGAACTGTTCCCTCAAAACACC -ACGGAACTGTTCCCTCAAATCGAG -ACGGAACTGTTCCCTCAACTCCTT -ACGGAACTGTTCCCTCAACCTGTT -ACGGAACTGTTCCCTCAACGGTTT -ACGGAACTGTTCCCTCAAGTGGTT -ACGGAACTGTTCCCTCAAGCCTTT -ACGGAACTGTTCCCTCAAGGTCTT -ACGGAACTGTTCCCTCAAACGCTT -ACGGAACTGTTCCCTCAAAGCGTT -ACGGAACTGTTCCCTCAATTCGTC -ACGGAACTGTTCCCTCAATCTCTC -ACGGAACTGTTCCCTCAATGGATC -ACGGAACTGTTCCCTCAACACTTC -ACGGAACTGTTCCCTCAAGTACTC -ACGGAACTGTTCCCTCAAGATGTC -ACGGAACTGTTCCCTCAAACAGTC -ACGGAACTGTTCCCTCAATTGCTG -ACGGAACTGTTCCCTCAATCCATG -ACGGAACTGTTCCCTCAATGTGTG -ACGGAACTGTTCCCTCAACTAGTG -ACGGAACTGTTCCCTCAACATCTG -ACGGAACTGTTCCCTCAAGAGTTG -ACGGAACTGTTCCCTCAAAGACTG -ACGGAACTGTTCCCTCAATCGGTA -ACGGAACTGTTCCCTCAATGCCTA -ACGGAACTGTTCCCTCAACCACTA -ACGGAACTGTTCCCTCAAGGAGTA -ACGGAACTGTTCCCTCAATCGTCT -ACGGAACTGTTCCCTCAATGCACT -ACGGAACTGTTCCCTCAACTGACT -ACGGAACTGTTCCCTCAACAACCT -ACGGAACTGTTCCCTCAAGCTACT -ACGGAACTGTTCCCTCAAGGATCT -ACGGAACTGTTCCCTCAAAAGGCT -ACGGAACTGTTCCCTCAATCAACC -ACGGAACTGTTCCCTCAATGTTCC -ACGGAACTGTTCCCTCAAATTCCC -ACGGAACTGTTCCCTCAATTCTCG -ACGGAACTGTTCCCTCAATAGACG -ACGGAACTGTTCCCTCAAGTAACG -ACGGAACTGTTCCCTCAAACTTCG -ACGGAACTGTTCCCTCAATACGCA -ACGGAACTGTTCCCTCAACTTGCA -ACGGAACTGTTCCCTCAACGAACA -ACGGAACTGTTCCCTCAACAGTCA -ACGGAACTGTTCCCTCAAGATCCA -ACGGAACTGTTCCCTCAAACGACA -ACGGAACTGTTCCCTCAAAGCTCA -ACGGAACTGTTCCCTCAATCACGT -ACGGAACTGTTCCCTCAACGTAGT -ACGGAACTGTTCCCTCAAGTCAGT -ACGGAACTGTTCCCTCAAGAAGGT -ACGGAACTGTTCCCTCAAAACCGT -ACGGAACTGTTCCCTCAATTGTGC -ACGGAACTGTTCCCTCAACTAAGC -ACGGAACTGTTCCCTCAAACTAGC -ACGGAACTGTTCCCTCAAAGATGC -ACGGAACTGTTCCCTCAATGAAGG -ACGGAACTGTTCCCTCAACAATGG -ACGGAACTGTTCCCTCAAATGAGG -ACGGAACTGTTCCCTCAAAATGGG -ACGGAACTGTTCCCTCAATCCTGA -ACGGAACTGTTCCCTCAATAGCGA -ACGGAACTGTTCCCTCAACACAGA -ACGGAACTGTTCCCTCAAGCAAGA -ACGGAACTGTTCCCTCAAGGTTGA -ACGGAACTGTTCCCTCAATCCGAT -ACGGAACTGTTCCCTCAATGGCAT -ACGGAACTGTTCCCTCAACGAGAT -ACGGAACTGTTCCCTCAATACCAC -ACGGAACTGTTCCCTCAACAGAAC -ACGGAACTGTTCCCTCAAGTCTAC -ACGGAACTGTTCCCTCAAACGTAC -ACGGAACTGTTCCCTCAAAGTGAC -ACGGAACTGTTCCCTCAACTGTAG -ACGGAACTGTTCCCTCAACCTAAG -ACGGAACTGTTCCCTCAAGTTCAG -ACGGAACTGTTCCCTCAAGCATAG -ACGGAACTGTTCCCTCAAGACAAG -ACGGAACTGTTCCCTCAAAAGCAG -ACGGAACTGTTCCCTCAACGTCAA -ACGGAACTGTTCCCTCAAGCTGAA -ACGGAACTGTTCCCTCAAAGTACG -ACGGAACTGTTCCCTCAAATCCGA -ACGGAACTGTTCCCTCAAATGGGA -ACGGAACTGTTCCCTCAAGTGCAA -ACGGAACTGTTCCCTCAAGAGGAA -ACGGAACTGTTCCCTCAACAGGTA -ACGGAACTGTTCCCTCAAGACTCT -ACGGAACTGTTCCCTCAAAGTCCT -ACGGAACTGTTCCCTCAATAAGCC -ACGGAACTGTTCCCTCAAATAGCC -ACGGAACTGTTCCCTCAATAACCG -ACGGAACTGTTCCCTCAAATGCCA -ACGGAACTGTTCACTGCTGGAAAC -ACGGAACTGTTCACTGCTAACACC -ACGGAACTGTTCACTGCTATCGAG -ACGGAACTGTTCACTGCTCTCCTT -ACGGAACTGTTCACTGCTCCTGTT -ACGGAACTGTTCACTGCTCGGTTT -ACGGAACTGTTCACTGCTGTGGTT -ACGGAACTGTTCACTGCTGCCTTT -ACGGAACTGTTCACTGCTGGTCTT -ACGGAACTGTTCACTGCTACGCTT -ACGGAACTGTTCACTGCTAGCGTT -ACGGAACTGTTCACTGCTTTCGTC -ACGGAACTGTTCACTGCTTCTCTC -ACGGAACTGTTCACTGCTTGGATC -ACGGAACTGTTCACTGCTCACTTC -ACGGAACTGTTCACTGCTGTACTC -ACGGAACTGTTCACTGCTGATGTC -ACGGAACTGTTCACTGCTACAGTC -ACGGAACTGTTCACTGCTTTGCTG -ACGGAACTGTTCACTGCTTCCATG -ACGGAACTGTTCACTGCTTGTGTG -ACGGAACTGTTCACTGCTCTAGTG -ACGGAACTGTTCACTGCTCATCTG -ACGGAACTGTTCACTGCTGAGTTG -ACGGAACTGTTCACTGCTAGACTG -ACGGAACTGTTCACTGCTTCGGTA -ACGGAACTGTTCACTGCTTGCCTA -ACGGAACTGTTCACTGCTCCACTA -ACGGAACTGTTCACTGCTGGAGTA -ACGGAACTGTTCACTGCTTCGTCT -ACGGAACTGTTCACTGCTTGCACT -ACGGAACTGTTCACTGCTCTGACT -ACGGAACTGTTCACTGCTCAACCT -ACGGAACTGTTCACTGCTGCTACT -ACGGAACTGTTCACTGCTGGATCT -ACGGAACTGTTCACTGCTAAGGCT -ACGGAACTGTTCACTGCTTCAACC -ACGGAACTGTTCACTGCTTGTTCC -ACGGAACTGTTCACTGCTATTCCC -ACGGAACTGTTCACTGCTTTCTCG -ACGGAACTGTTCACTGCTTAGACG -ACGGAACTGTTCACTGCTGTAACG -ACGGAACTGTTCACTGCTACTTCG -ACGGAACTGTTCACTGCTTACGCA -ACGGAACTGTTCACTGCTCTTGCA -ACGGAACTGTTCACTGCTCGAACA -ACGGAACTGTTCACTGCTCAGTCA -ACGGAACTGTTCACTGCTGATCCA -ACGGAACTGTTCACTGCTACGACA -ACGGAACTGTTCACTGCTAGCTCA -ACGGAACTGTTCACTGCTTCACGT -ACGGAACTGTTCACTGCTCGTAGT -ACGGAACTGTTCACTGCTGTCAGT -ACGGAACTGTTCACTGCTGAAGGT -ACGGAACTGTTCACTGCTAACCGT -ACGGAACTGTTCACTGCTTTGTGC -ACGGAACTGTTCACTGCTCTAAGC -ACGGAACTGTTCACTGCTACTAGC -ACGGAACTGTTCACTGCTAGATGC -ACGGAACTGTTCACTGCTTGAAGG -ACGGAACTGTTCACTGCTCAATGG -ACGGAACTGTTCACTGCTATGAGG -ACGGAACTGTTCACTGCTAATGGG -ACGGAACTGTTCACTGCTTCCTGA -ACGGAACTGTTCACTGCTTAGCGA -ACGGAACTGTTCACTGCTCACAGA -ACGGAACTGTTCACTGCTGCAAGA -ACGGAACTGTTCACTGCTGGTTGA -ACGGAACTGTTCACTGCTTCCGAT -ACGGAACTGTTCACTGCTTGGCAT -ACGGAACTGTTCACTGCTCGAGAT -ACGGAACTGTTCACTGCTTACCAC -ACGGAACTGTTCACTGCTCAGAAC -ACGGAACTGTTCACTGCTGTCTAC -ACGGAACTGTTCACTGCTACGTAC -ACGGAACTGTTCACTGCTAGTGAC -ACGGAACTGTTCACTGCTCTGTAG -ACGGAACTGTTCACTGCTCCTAAG -ACGGAACTGTTCACTGCTGTTCAG -ACGGAACTGTTCACTGCTGCATAG -ACGGAACTGTTCACTGCTGACAAG -ACGGAACTGTTCACTGCTAAGCAG -ACGGAACTGTTCACTGCTCGTCAA -ACGGAACTGTTCACTGCTGCTGAA -ACGGAACTGTTCACTGCTAGTACG -ACGGAACTGTTCACTGCTATCCGA -ACGGAACTGTTCACTGCTATGGGA -ACGGAACTGTTCACTGCTGTGCAA -ACGGAACTGTTCACTGCTGAGGAA -ACGGAACTGTTCACTGCTCAGGTA -ACGGAACTGTTCACTGCTGACTCT -ACGGAACTGTTCACTGCTAGTCCT -ACGGAACTGTTCACTGCTTAAGCC -ACGGAACTGTTCACTGCTATAGCC -ACGGAACTGTTCACTGCTTAACCG -ACGGAACTGTTCACTGCTATGCCA -ACGGAACTGTTCTCTGGAGGAAAC -ACGGAACTGTTCTCTGGAAACACC -ACGGAACTGTTCTCTGGAATCGAG -ACGGAACTGTTCTCTGGACTCCTT -ACGGAACTGTTCTCTGGACCTGTT -ACGGAACTGTTCTCTGGACGGTTT -ACGGAACTGTTCTCTGGAGTGGTT -ACGGAACTGTTCTCTGGAGCCTTT -ACGGAACTGTTCTCTGGAGGTCTT -ACGGAACTGTTCTCTGGAACGCTT -ACGGAACTGTTCTCTGGAAGCGTT -ACGGAACTGTTCTCTGGATTCGTC -ACGGAACTGTTCTCTGGATCTCTC -ACGGAACTGTTCTCTGGATGGATC -ACGGAACTGTTCTCTGGACACTTC -ACGGAACTGTTCTCTGGAGTACTC -ACGGAACTGTTCTCTGGAGATGTC -ACGGAACTGTTCTCTGGAACAGTC -ACGGAACTGTTCTCTGGATTGCTG -ACGGAACTGTTCTCTGGATCCATG -ACGGAACTGTTCTCTGGATGTGTG -ACGGAACTGTTCTCTGGACTAGTG -ACGGAACTGTTCTCTGGACATCTG -ACGGAACTGTTCTCTGGAGAGTTG -ACGGAACTGTTCTCTGGAAGACTG -ACGGAACTGTTCTCTGGATCGGTA -ACGGAACTGTTCTCTGGATGCCTA -ACGGAACTGTTCTCTGGACCACTA -ACGGAACTGTTCTCTGGAGGAGTA -ACGGAACTGTTCTCTGGATCGTCT -ACGGAACTGTTCTCTGGATGCACT -ACGGAACTGTTCTCTGGACTGACT -ACGGAACTGTTCTCTGGACAACCT -ACGGAACTGTTCTCTGGAGCTACT -ACGGAACTGTTCTCTGGAGGATCT -ACGGAACTGTTCTCTGGAAAGGCT -ACGGAACTGTTCTCTGGATCAACC -ACGGAACTGTTCTCTGGATGTTCC -ACGGAACTGTTCTCTGGAATTCCC -ACGGAACTGTTCTCTGGATTCTCG -ACGGAACTGTTCTCTGGATAGACG -ACGGAACTGTTCTCTGGAGTAACG -ACGGAACTGTTCTCTGGAACTTCG -ACGGAACTGTTCTCTGGATACGCA -ACGGAACTGTTCTCTGGACTTGCA -ACGGAACTGTTCTCTGGACGAACA -ACGGAACTGTTCTCTGGACAGTCA -ACGGAACTGTTCTCTGGAGATCCA -ACGGAACTGTTCTCTGGAACGACA -ACGGAACTGTTCTCTGGAAGCTCA -ACGGAACTGTTCTCTGGATCACGT -ACGGAACTGTTCTCTGGACGTAGT -ACGGAACTGTTCTCTGGAGTCAGT -ACGGAACTGTTCTCTGGAGAAGGT -ACGGAACTGTTCTCTGGAAACCGT -ACGGAACTGTTCTCTGGATTGTGC -ACGGAACTGTTCTCTGGACTAAGC -ACGGAACTGTTCTCTGGAACTAGC -ACGGAACTGTTCTCTGGAAGATGC -ACGGAACTGTTCTCTGGATGAAGG -ACGGAACTGTTCTCTGGACAATGG -ACGGAACTGTTCTCTGGAATGAGG -ACGGAACTGTTCTCTGGAAATGGG -ACGGAACTGTTCTCTGGATCCTGA -ACGGAACTGTTCTCTGGATAGCGA -ACGGAACTGTTCTCTGGACACAGA -ACGGAACTGTTCTCTGGAGCAAGA -ACGGAACTGTTCTCTGGAGGTTGA -ACGGAACTGTTCTCTGGATCCGAT -ACGGAACTGTTCTCTGGATGGCAT -ACGGAACTGTTCTCTGGACGAGAT -ACGGAACTGTTCTCTGGATACCAC -ACGGAACTGTTCTCTGGACAGAAC -ACGGAACTGTTCTCTGGAGTCTAC -ACGGAACTGTTCTCTGGAACGTAC -ACGGAACTGTTCTCTGGAAGTGAC -ACGGAACTGTTCTCTGGACTGTAG -ACGGAACTGTTCTCTGGACCTAAG -ACGGAACTGTTCTCTGGAGTTCAG -ACGGAACTGTTCTCTGGAGCATAG -ACGGAACTGTTCTCTGGAGACAAG -ACGGAACTGTTCTCTGGAAAGCAG -ACGGAACTGTTCTCTGGACGTCAA -ACGGAACTGTTCTCTGGAGCTGAA -ACGGAACTGTTCTCTGGAAGTACG -ACGGAACTGTTCTCTGGAATCCGA -ACGGAACTGTTCTCTGGAATGGGA -ACGGAACTGTTCTCTGGAGTGCAA -ACGGAACTGTTCTCTGGAGAGGAA -ACGGAACTGTTCTCTGGACAGGTA -ACGGAACTGTTCTCTGGAGACTCT -ACGGAACTGTTCTCTGGAAGTCCT -ACGGAACTGTTCTCTGGATAAGCC -ACGGAACTGTTCTCTGGAATAGCC -ACGGAACTGTTCTCTGGATAACCG -ACGGAACTGTTCTCTGGAATGCCA -ACGGAACTGTTCGCTAAGGGAAAC -ACGGAACTGTTCGCTAAGAACACC -ACGGAACTGTTCGCTAAGATCGAG -ACGGAACTGTTCGCTAAGCTCCTT -ACGGAACTGTTCGCTAAGCCTGTT -ACGGAACTGTTCGCTAAGCGGTTT -ACGGAACTGTTCGCTAAGGTGGTT -ACGGAACTGTTCGCTAAGGCCTTT -ACGGAACTGTTCGCTAAGGGTCTT -ACGGAACTGTTCGCTAAGACGCTT -ACGGAACTGTTCGCTAAGAGCGTT -ACGGAACTGTTCGCTAAGTTCGTC -ACGGAACTGTTCGCTAAGTCTCTC -ACGGAACTGTTCGCTAAGTGGATC -ACGGAACTGTTCGCTAAGCACTTC -ACGGAACTGTTCGCTAAGGTACTC -ACGGAACTGTTCGCTAAGGATGTC -ACGGAACTGTTCGCTAAGACAGTC -ACGGAACTGTTCGCTAAGTTGCTG -ACGGAACTGTTCGCTAAGTCCATG -ACGGAACTGTTCGCTAAGTGTGTG -ACGGAACTGTTCGCTAAGCTAGTG -ACGGAACTGTTCGCTAAGCATCTG -ACGGAACTGTTCGCTAAGGAGTTG -ACGGAACTGTTCGCTAAGAGACTG -ACGGAACTGTTCGCTAAGTCGGTA -ACGGAACTGTTCGCTAAGTGCCTA -ACGGAACTGTTCGCTAAGCCACTA -ACGGAACTGTTCGCTAAGGGAGTA -ACGGAACTGTTCGCTAAGTCGTCT -ACGGAACTGTTCGCTAAGTGCACT -ACGGAACTGTTCGCTAAGCTGACT -ACGGAACTGTTCGCTAAGCAACCT -ACGGAACTGTTCGCTAAGGCTACT -ACGGAACTGTTCGCTAAGGGATCT -ACGGAACTGTTCGCTAAGAAGGCT -ACGGAACTGTTCGCTAAGTCAACC -ACGGAACTGTTCGCTAAGTGTTCC -ACGGAACTGTTCGCTAAGATTCCC -ACGGAACTGTTCGCTAAGTTCTCG -ACGGAACTGTTCGCTAAGTAGACG -ACGGAACTGTTCGCTAAGGTAACG -ACGGAACTGTTCGCTAAGACTTCG -ACGGAACTGTTCGCTAAGTACGCA -ACGGAACTGTTCGCTAAGCTTGCA -ACGGAACTGTTCGCTAAGCGAACA -ACGGAACTGTTCGCTAAGCAGTCA -ACGGAACTGTTCGCTAAGGATCCA -ACGGAACTGTTCGCTAAGACGACA -ACGGAACTGTTCGCTAAGAGCTCA -ACGGAACTGTTCGCTAAGTCACGT -ACGGAACTGTTCGCTAAGCGTAGT -ACGGAACTGTTCGCTAAGGTCAGT -ACGGAACTGTTCGCTAAGGAAGGT -ACGGAACTGTTCGCTAAGAACCGT -ACGGAACTGTTCGCTAAGTTGTGC -ACGGAACTGTTCGCTAAGCTAAGC -ACGGAACTGTTCGCTAAGACTAGC -ACGGAACTGTTCGCTAAGAGATGC -ACGGAACTGTTCGCTAAGTGAAGG -ACGGAACTGTTCGCTAAGCAATGG -ACGGAACTGTTCGCTAAGATGAGG -ACGGAACTGTTCGCTAAGAATGGG -ACGGAACTGTTCGCTAAGTCCTGA -ACGGAACTGTTCGCTAAGTAGCGA -ACGGAACTGTTCGCTAAGCACAGA -ACGGAACTGTTCGCTAAGGCAAGA -ACGGAACTGTTCGCTAAGGGTTGA -ACGGAACTGTTCGCTAAGTCCGAT -ACGGAACTGTTCGCTAAGTGGCAT -ACGGAACTGTTCGCTAAGCGAGAT -ACGGAACTGTTCGCTAAGTACCAC -ACGGAACTGTTCGCTAAGCAGAAC -ACGGAACTGTTCGCTAAGGTCTAC -ACGGAACTGTTCGCTAAGACGTAC -ACGGAACTGTTCGCTAAGAGTGAC -ACGGAACTGTTCGCTAAGCTGTAG -ACGGAACTGTTCGCTAAGCCTAAG -ACGGAACTGTTCGCTAAGGTTCAG -ACGGAACTGTTCGCTAAGGCATAG -ACGGAACTGTTCGCTAAGGACAAG -ACGGAACTGTTCGCTAAGAAGCAG -ACGGAACTGTTCGCTAAGCGTCAA -ACGGAACTGTTCGCTAAGGCTGAA -ACGGAACTGTTCGCTAAGAGTACG -ACGGAACTGTTCGCTAAGATCCGA -ACGGAACTGTTCGCTAAGATGGGA -ACGGAACTGTTCGCTAAGGTGCAA -ACGGAACTGTTCGCTAAGGAGGAA -ACGGAACTGTTCGCTAAGCAGGTA -ACGGAACTGTTCGCTAAGGACTCT -ACGGAACTGTTCGCTAAGAGTCCT -ACGGAACTGTTCGCTAAGTAAGCC -ACGGAACTGTTCGCTAAGATAGCC -ACGGAACTGTTCGCTAAGTAACCG -ACGGAACTGTTCGCTAAGATGCCA -ACGGAACTGTTCACCTCAGGAAAC -ACGGAACTGTTCACCTCAAACACC -ACGGAACTGTTCACCTCAATCGAG -ACGGAACTGTTCACCTCACTCCTT -ACGGAACTGTTCACCTCACCTGTT -ACGGAACTGTTCACCTCACGGTTT -ACGGAACTGTTCACCTCAGTGGTT -ACGGAACTGTTCACCTCAGCCTTT -ACGGAACTGTTCACCTCAGGTCTT -ACGGAACTGTTCACCTCAACGCTT -ACGGAACTGTTCACCTCAAGCGTT -ACGGAACTGTTCACCTCATTCGTC -ACGGAACTGTTCACCTCATCTCTC -ACGGAACTGTTCACCTCATGGATC -ACGGAACTGTTCACCTCACACTTC -ACGGAACTGTTCACCTCAGTACTC -ACGGAACTGTTCACCTCAGATGTC -ACGGAACTGTTCACCTCAACAGTC -ACGGAACTGTTCACCTCATTGCTG -ACGGAACTGTTCACCTCATCCATG -ACGGAACTGTTCACCTCATGTGTG -ACGGAACTGTTCACCTCACTAGTG -ACGGAACTGTTCACCTCACATCTG -ACGGAACTGTTCACCTCAGAGTTG -ACGGAACTGTTCACCTCAAGACTG -ACGGAACTGTTCACCTCATCGGTA -ACGGAACTGTTCACCTCATGCCTA -ACGGAACTGTTCACCTCACCACTA -ACGGAACTGTTCACCTCAGGAGTA -ACGGAACTGTTCACCTCATCGTCT -ACGGAACTGTTCACCTCATGCACT -ACGGAACTGTTCACCTCACTGACT -ACGGAACTGTTCACCTCACAACCT -ACGGAACTGTTCACCTCAGCTACT -ACGGAACTGTTCACCTCAGGATCT -ACGGAACTGTTCACCTCAAAGGCT -ACGGAACTGTTCACCTCATCAACC -ACGGAACTGTTCACCTCATGTTCC -ACGGAACTGTTCACCTCAATTCCC -ACGGAACTGTTCACCTCATTCTCG -ACGGAACTGTTCACCTCATAGACG -ACGGAACTGTTCACCTCAGTAACG -ACGGAACTGTTCACCTCAACTTCG -ACGGAACTGTTCACCTCATACGCA -ACGGAACTGTTCACCTCACTTGCA -ACGGAACTGTTCACCTCACGAACA -ACGGAACTGTTCACCTCACAGTCA -ACGGAACTGTTCACCTCAGATCCA -ACGGAACTGTTCACCTCAACGACA -ACGGAACTGTTCACCTCAAGCTCA -ACGGAACTGTTCACCTCATCACGT -ACGGAACTGTTCACCTCACGTAGT -ACGGAACTGTTCACCTCAGTCAGT -ACGGAACTGTTCACCTCAGAAGGT -ACGGAACTGTTCACCTCAAACCGT -ACGGAACTGTTCACCTCATTGTGC -ACGGAACTGTTCACCTCACTAAGC -ACGGAACTGTTCACCTCAACTAGC -ACGGAACTGTTCACCTCAAGATGC -ACGGAACTGTTCACCTCATGAAGG -ACGGAACTGTTCACCTCACAATGG -ACGGAACTGTTCACCTCAATGAGG -ACGGAACTGTTCACCTCAAATGGG -ACGGAACTGTTCACCTCATCCTGA -ACGGAACTGTTCACCTCATAGCGA -ACGGAACTGTTCACCTCACACAGA -ACGGAACTGTTCACCTCAGCAAGA -ACGGAACTGTTCACCTCAGGTTGA -ACGGAACTGTTCACCTCATCCGAT -ACGGAACTGTTCACCTCATGGCAT -ACGGAACTGTTCACCTCACGAGAT -ACGGAACTGTTCACCTCATACCAC -ACGGAACTGTTCACCTCACAGAAC -ACGGAACTGTTCACCTCAGTCTAC -ACGGAACTGTTCACCTCAACGTAC -ACGGAACTGTTCACCTCAAGTGAC -ACGGAACTGTTCACCTCACTGTAG -ACGGAACTGTTCACCTCACCTAAG -ACGGAACTGTTCACCTCAGTTCAG -ACGGAACTGTTCACCTCAGCATAG -ACGGAACTGTTCACCTCAGACAAG -ACGGAACTGTTCACCTCAAAGCAG -ACGGAACTGTTCACCTCACGTCAA -ACGGAACTGTTCACCTCAGCTGAA -ACGGAACTGTTCACCTCAAGTACG -ACGGAACTGTTCACCTCAATCCGA -ACGGAACTGTTCACCTCAATGGGA -ACGGAACTGTTCACCTCAGTGCAA -ACGGAACTGTTCACCTCAGAGGAA -ACGGAACTGTTCACCTCACAGGTA -ACGGAACTGTTCACCTCAGACTCT -ACGGAACTGTTCACCTCAAGTCCT -ACGGAACTGTTCACCTCATAAGCC -ACGGAACTGTTCACCTCAATAGCC -ACGGAACTGTTCACCTCATAACCG -ACGGAACTGTTCACCTCAATGCCA -ACGGAACTGTTCTCCTGTGGAAAC -ACGGAACTGTTCTCCTGTAACACC -ACGGAACTGTTCTCCTGTATCGAG -ACGGAACTGTTCTCCTGTCTCCTT -ACGGAACTGTTCTCCTGTCCTGTT -ACGGAACTGTTCTCCTGTCGGTTT -ACGGAACTGTTCTCCTGTGTGGTT -ACGGAACTGTTCTCCTGTGCCTTT -ACGGAACTGTTCTCCTGTGGTCTT -ACGGAACTGTTCTCCTGTACGCTT -ACGGAACTGTTCTCCTGTAGCGTT -ACGGAACTGTTCTCCTGTTTCGTC -ACGGAACTGTTCTCCTGTTCTCTC -ACGGAACTGTTCTCCTGTTGGATC -ACGGAACTGTTCTCCTGTCACTTC -ACGGAACTGTTCTCCTGTGTACTC -ACGGAACTGTTCTCCTGTGATGTC -ACGGAACTGTTCTCCTGTACAGTC -ACGGAACTGTTCTCCTGTTTGCTG -ACGGAACTGTTCTCCTGTTCCATG -ACGGAACTGTTCTCCTGTTGTGTG -ACGGAACTGTTCTCCTGTCTAGTG -ACGGAACTGTTCTCCTGTCATCTG -ACGGAACTGTTCTCCTGTGAGTTG -ACGGAACTGTTCTCCTGTAGACTG -ACGGAACTGTTCTCCTGTTCGGTA -ACGGAACTGTTCTCCTGTTGCCTA -ACGGAACTGTTCTCCTGTCCACTA -ACGGAACTGTTCTCCTGTGGAGTA -ACGGAACTGTTCTCCTGTTCGTCT -ACGGAACTGTTCTCCTGTTGCACT -ACGGAACTGTTCTCCTGTCTGACT -ACGGAACTGTTCTCCTGTCAACCT -ACGGAACTGTTCTCCTGTGCTACT -ACGGAACTGTTCTCCTGTGGATCT -ACGGAACTGTTCTCCTGTAAGGCT -ACGGAACTGTTCTCCTGTTCAACC -ACGGAACTGTTCTCCTGTTGTTCC -ACGGAACTGTTCTCCTGTATTCCC -ACGGAACTGTTCTCCTGTTTCTCG -ACGGAACTGTTCTCCTGTTAGACG -ACGGAACTGTTCTCCTGTGTAACG -ACGGAACTGTTCTCCTGTACTTCG -ACGGAACTGTTCTCCTGTTACGCA -ACGGAACTGTTCTCCTGTCTTGCA -ACGGAACTGTTCTCCTGTCGAACA -ACGGAACTGTTCTCCTGTCAGTCA -ACGGAACTGTTCTCCTGTGATCCA -ACGGAACTGTTCTCCTGTACGACA -ACGGAACTGTTCTCCTGTAGCTCA -ACGGAACTGTTCTCCTGTTCACGT -ACGGAACTGTTCTCCTGTCGTAGT -ACGGAACTGTTCTCCTGTGTCAGT -ACGGAACTGTTCTCCTGTGAAGGT -ACGGAACTGTTCTCCTGTAACCGT -ACGGAACTGTTCTCCTGTTTGTGC -ACGGAACTGTTCTCCTGTCTAAGC -ACGGAACTGTTCTCCTGTACTAGC -ACGGAACTGTTCTCCTGTAGATGC -ACGGAACTGTTCTCCTGTTGAAGG -ACGGAACTGTTCTCCTGTCAATGG -ACGGAACTGTTCTCCTGTATGAGG -ACGGAACTGTTCTCCTGTAATGGG -ACGGAACTGTTCTCCTGTTCCTGA -ACGGAACTGTTCTCCTGTTAGCGA -ACGGAACTGTTCTCCTGTCACAGA -ACGGAACTGTTCTCCTGTGCAAGA -ACGGAACTGTTCTCCTGTGGTTGA -ACGGAACTGTTCTCCTGTTCCGAT -ACGGAACTGTTCTCCTGTTGGCAT -ACGGAACTGTTCTCCTGTCGAGAT -ACGGAACTGTTCTCCTGTTACCAC -ACGGAACTGTTCTCCTGTCAGAAC -ACGGAACTGTTCTCCTGTGTCTAC -ACGGAACTGTTCTCCTGTACGTAC -ACGGAACTGTTCTCCTGTAGTGAC -ACGGAACTGTTCTCCTGTCTGTAG -ACGGAACTGTTCTCCTGTCCTAAG -ACGGAACTGTTCTCCTGTGTTCAG -ACGGAACTGTTCTCCTGTGCATAG -ACGGAACTGTTCTCCTGTGACAAG -ACGGAACTGTTCTCCTGTAAGCAG -ACGGAACTGTTCTCCTGTCGTCAA -ACGGAACTGTTCTCCTGTGCTGAA -ACGGAACTGTTCTCCTGTAGTACG -ACGGAACTGTTCTCCTGTATCCGA -ACGGAACTGTTCTCCTGTATGGGA -ACGGAACTGTTCTCCTGTGTGCAA -ACGGAACTGTTCTCCTGTGAGGAA -ACGGAACTGTTCTCCTGTCAGGTA -ACGGAACTGTTCTCCTGTGACTCT -ACGGAACTGTTCTCCTGTAGTCCT -ACGGAACTGTTCTCCTGTTAAGCC -ACGGAACTGTTCTCCTGTATAGCC -ACGGAACTGTTCTCCTGTTAACCG -ACGGAACTGTTCTCCTGTATGCCA -ACGGAACTGTTCCCCATTGGAAAC -ACGGAACTGTTCCCCATTAACACC -ACGGAACTGTTCCCCATTATCGAG -ACGGAACTGTTCCCCATTCTCCTT -ACGGAACTGTTCCCCATTCCTGTT -ACGGAACTGTTCCCCATTCGGTTT -ACGGAACTGTTCCCCATTGTGGTT -ACGGAACTGTTCCCCATTGCCTTT -ACGGAACTGTTCCCCATTGGTCTT -ACGGAACTGTTCCCCATTACGCTT -ACGGAACTGTTCCCCATTAGCGTT -ACGGAACTGTTCCCCATTTTCGTC -ACGGAACTGTTCCCCATTTCTCTC -ACGGAACTGTTCCCCATTTGGATC -ACGGAACTGTTCCCCATTCACTTC -ACGGAACTGTTCCCCATTGTACTC -ACGGAACTGTTCCCCATTGATGTC -ACGGAACTGTTCCCCATTACAGTC -ACGGAACTGTTCCCCATTTTGCTG -ACGGAACTGTTCCCCATTTCCATG -ACGGAACTGTTCCCCATTTGTGTG -ACGGAACTGTTCCCCATTCTAGTG -ACGGAACTGTTCCCCATTCATCTG -ACGGAACTGTTCCCCATTGAGTTG -ACGGAACTGTTCCCCATTAGACTG -ACGGAACTGTTCCCCATTTCGGTA -ACGGAACTGTTCCCCATTTGCCTA -ACGGAACTGTTCCCCATTCCACTA -ACGGAACTGTTCCCCATTGGAGTA -ACGGAACTGTTCCCCATTTCGTCT -ACGGAACTGTTCCCCATTTGCACT -ACGGAACTGTTCCCCATTCTGACT -ACGGAACTGTTCCCCATTCAACCT -ACGGAACTGTTCCCCATTGCTACT -ACGGAACTGTTCCCCATTGGATCT -ACGGAACTGTTCCCCATTAAGGCT -ACGGAACTGTTCCCCATTTCAACC -ACGGAACTGTTCCCCATTTGTTCC -ACGGAACTGTTCCCCATTATTCCC -ACGGAACTGTTCCCCATTTTCTCG -ACGGAACTGTTCCCCATTTAGACG -ACGGAACTGTTCCCCATTGTAACG -ACGGAACTGTTCCCCATTACTTCG -ACGGAACTGTTCCCCATTTACGCA -ACGGAACTGTTCCCCATTCTTGCA -ACGGAACTGTTCCCCATTCGAACA -ACGGAACTGTTCCCCATTCAGTCA -ACGGAACTGTTCCCCATTGATCCA -ACGGAACTGTTCCCCATTACGACA -ACGGAACTGTTCCCCATTAGCTCA -ACGGAACTGTTCCCCATTTCACGT -ACGGAACTGTTCCCCATTCGTAGT -ACGGAACTGTTCCCCATTGTCAGT -ACGGAACTGTTCCCCATTGAAGGT -ACGGAACTGTTCCCCATTAACCGT -ACGGAACTGTTCCCCATTTTGTGC -ACGGAACTGTTCCCCATTCTAAGC -ACGGAACTGTTCCCCATTACTAGC -ACGGAACTGTTCCCCATTAGATGC -ACGGAACTGTTCCCCATTTGAAGG -ACGGAACTGTTCCCCATTCAATGG -ACGGAACTGTTCCCCATTATGAGG -ACGGAACTGTTCCCCATTAATGGG -ACGGAACTGTTCCCCATTTCCTGA -ACGGAACTGTTCCCCATTTAGCGA -ACGGAACTGTTCCCCATTCACAGA -ACGGAACTGTTCCCCATTGCAAGA -ACGGAACTGTTCCCCATTGGTTGA -ACGGAACTGTTCCCCATTTCCGAT -ACGGAACTGTTCCCCATTTGGCAT -ACGGAACTGTTCCCCATTCGAGAT -ACGGAACTGTTCCCCATTTACCAC -ACGGAACTGTTCCCCATTCAGAAC -ACGGAACTGTTCCCCATTGTCTAC -ACGGAACTGTTCCCCATTACGTAC -ACGGAACTGTTCCCCATTAGTGAC -ACGGAACTGTTCCCCATTCTGTAG -ACGGAACTGTTCCCCATTCCTAAG -ACGGAACTGTTCCCCATTGTTCAG -ACGGAACTGTTCCCCATTGCATAG -ACGGAACTGTTCCCCATTGACAAG -ACGGAACTGTTCCCCATTAAGCAG -ACGGAACTGTTCCCCATTCGTCAA -ACGGAACTGTTCCCCATTGCTGAA -ACGGAACTGTTCCCCATTAGTACG -ACGGAACTGTTCCCCATTATCCGA -ACGGAACTGTTCCCCATTATGGGA -ACGGAACTGTTCCCCATTGTGCAA -ACGGAACTGTTCCCCATTGAGGAA -ACGGAACTGTTCCCCATTCAGGTA -ACGGAACTGTTCCCCATTGACTCT -ACGGAACTGTTCCCCATTAGTCCT -ACGGAACTGTTCCCCATTTAAGCC -ACGGAACTGTTCCCCATTATAGCC -ACGGAACTGTTCCCCATTTAACCG -ACGGAACTGTTCCCCATTATGCCA -ACGGAACTGTTCTCGTTCGGAAAC -ACGGAACTGTTCTCGTTCAACACC -ACGGAACTGTTCTCGTTCATCGAG -ACGGAACTGTTCTCGTTCCTCCTT -ACGGAACTGTTCTCGTTCCCTGTT -ACGGAACTGTTCTCGTTCCGGTTT -ACGGAACTGTTCTCGTTCGTGGTT -ACGGAACTGTTCTCGTTCGCCTTT -ACGGAACTGTTCTCGTTCGGTCTT -ACGGAACTGTTCTCGTTCACGCTT -ACGGAACTGTTCTCGTTCAGCGTT -ACGGAACTGTTCTCGTTCTTCGTC -ACGGAACTGTTCTCGTTCTCTCTC -ACGGAACTGTTCTCGTTCTGGATC -ACGGAACTGTTCTCGTTCCACTTC -ACGGAACTGTTCTCGTTCGTACTC -ACGGAACTGTTCTCGTTCGATGTC -ACGGAACTGTTCTCGTTCACAGTC -ACGGAACTGTTCTCGTTCTTGCTG -ACGGAACTGTTCTCGTTCTCCATG -ACGGAACTGTTCTCGTTCTGTGTG -ACGGAACTGTTCTCGTTCCTAGTG -ACGGAACTGTTCTCGTTCCATCTG -ACGGAACTGTTCTCGTTCGAGTTG -ACGGAACTGTTCTCGTTCAGACTG -ACGGAACTGTTCTCGTTCTCGGTA -ACGGAACTGTTCTCGTTCTGCCTA -ACGGAACTGTTCTCGTTCCCACTA -ACGGAACTGTTCTCGTTCGGAGTA -ACGGAACTGTTCTCGTTCTCGTCT -ACGGAACTGTTCTCGTTCTGCACT -ACGGAACTGTTCTCGTTCCTGACT -ACGGAACTGTTCTCGTTCCAACCT -ACGGAACTGTTCTCGTTCGCTACT -ACGGAACTGTTCTCGTTCGGATCT -ACGGAACTGTTCTCGTTCAAGGCT -ACGGAACTGTTCTCGTTCTCAACC -ACGGAACTGTTCTCGTTCTGTTCC -ACGGAACTGTTCTCGTTCATTCCC -ACGGAACTGTTCTCGTTCTTCTCG -ACGGAACTGTTCTCGTTCTAGACG -ACGGAACTGTTCTCGTTCGTAACG -ACGGAACTGTTCTCGTTCACTTCG -ACGGAACTGTTCTCGTTCTACGCA -ACGGAACTGTTCTCGTTCCTTGCA -ACGGAACTGTTCTCGTTCCGAACA -ACGGAACTGTTCTCGTTCCAGTCA -ACGGAACTGTTCTCGTTCGATCCA -ACGGAACTGTTCTCGTTCACGACA -ACGGAACTGTTCTCGTTCAGCTCA -ACGGAACTGTTCTCGTTCTCACGT -ACGGAACTGTTCTCGTTCCGTAGT -ACGGAACTGTTCTCGTTCGTCAGT -ACGGAACTGTTCTCGTTCGAAGGT -ACGGAACTGTTCTCGTTCAACCGT -ACGGAACTGTTCTCGTTCTTGTGC -ACGGAACTGTTCTCGTTCCTAAGC -ACGGAACTGTTCTCGTTCACTAGC -ACGGAACTGTTCTCGTTCAGATGC -ACGGAACTGTTCTCGTTCTGAAGG -ACGGAACTGTTCTCGTTCCAATGG -ACGGAACTGTTCTCGTTCATGAGG -ACGGAACTGTTCTCGTTCAATGGG -ACGGAACTGTTCTCGTTCTCCTGA -ACGGAACTGTTCTCGTTCTAGCGA -ACGGAACTGTTCTCGTTCCACAGA -ACGGAACTGTTCTCGTTCGCAAGA -ACGGAACTGTTCTCGTTCGGTTGA -ACGGAACTGTTCTCGTTCTCCGAT -ACGGAACTGTTCTCGTTCTGGCAT -ACGGAACTGTTCTCGTTCCGAGAT -ACGGAACTGTTCTCGTTCTACCAC -ACGGAACTGTTCTCGTTCCAGAAC -ACGGAACTGTTCTCGTTCGTCTAC -ACGGAACTGTTCTCGTTCACGTAC -ACGGAACTGTTCTCGTTCAGTGAC -ACGGAACTGTTCTCGTTCCTGTAG -ACGGAACTGTTCTCGTTCCCTAAG -ACGGAACTGTTCTCGTTCGTTCAG -ACGGAACTGTTCTCGTTCGCATAG -ACGGAACTGTTCTCGTTCGACAAG -ACGGAACTGTTCTCGTTCAAGCAG -ACGGAACTGTTCTCGTTCCGTCAA -ACGGAACTGTTCTCGTTCGCTGAA -ACGGAACTGTTCTCGTTCAGTACG -ACGGAACTGTTCTCGTTCATCCGA -ACGGAACTGTTCTCGTTCATGGGA -ACGGAACTGTTCTCGTTCGTGCAA -ACGGAACTGTTCTCGTTCGAGGAA -ACGGAACTGTTCTCGTTCCAGGTA -ACGGAACTGTTCTCGTTCGACTCT -ACGGAACTGTTCTCGTTCAGTCCT -ACGGAACTGTTCTCGTTCTAAGCC -ACGGAACTGTTCTCGTTCATAGCC -ACGGAACTGTTCTCGTTCTAACCG -ACGGAACTGTTCTCGTTCATGCCA -ACGGAACTGTTCACGTAGGGAAAC -ACGGAACTGTTCACGTAGAACACC -ACGGAACTGTTCACGTAGATCGAG -ACGGAACTGTTCACGTAGCTCCTT -ACGGAACTGTTCACGTAGCCTGTT -ACGGAACTGTTCACGTAGCGGTTT -ACGGAACTGTTCACGTAGGTGGTT -ACGGAACTGTTCACGTAGGCCTTT -ACGGAACTGTTCACGTAGGGTCTT -ACGGAACTGTTCACGTAGACGCTT -ACGGAACTGTTCACGTAGAGCGTT -ACGGAACTGTTCACGTAGTTCGTC -ACGGAACTGTTCACGTAGTCTCTC -ACGGAACTGTTCACGTAGTGGATC -ACGGAACTGTTCACGTAGCACTTC -ACGGAACTGTTCACGTAGGTACTC -ACGGAACTGTTCACGTAGGATGTC -ACGGAACTGTTCACGTAGACAGTC -ACGGAACTGTTCACGTAGTTGCTG -ACGGAACTGTTCACGTAGTCCATG -ACGGAACTGTTCACGTAGTGTGTG -ACGGAACTGTTCACGTAGCTAGTG -ACGGAACTGTTCACGTAGCATCTG -ACGGAACTGTTCACGTAGGAGTTG -ACGGAACTGTTCACGTAGAGACTG -ACGGAACTGTTCACGTAGTCGGTA -ACGGAACTGTTCACGTAGTGCCTA -ACGGAACTGTTCACGTAGCCACTA -ACGGAACTGTTCACGTAGGGAGTA -ACGGAACTGTTCACGTAGTCGTCT -ACGGAACTGTTCACGTAGTGCACT -ACGGAACTGTTCACGTAGCTGACT -ACGGAACTGTTCACGTAGCAACCT -ACGGAACTGTTCACGTAGGCTACT -ACGGAACTGTTCACGTAGGGATCT -ACGGAACTGTTCACGTAGAAGGCT -ACGGAACTGTTCACGTAGTCAACC -ACGGAACTGTTCACGTAGTGTTCC -ACGGAACTGTTCACGTAGATTCCC -ACGGAACTGTTCACGTAGTTCTCG -ACGGAACTGTTCACGTAGTAGACG -ACGGAACTGTTCACGTAGGTAACG -ACGGAACTGTTCACGTAGACTTCG -ACGGAACTGTTCACGTAGTACGCA -ACGGAACTGTTCACGTAGCTTGCA -ACGGAACTGTTCACGTAGCGAACA -ACGGAACTGTTCACGTAGCAGTCA -ACGGAACTGTTCACGTAGGATCCA -ACGGAACTGTTCACGTAGACGACA -ACGGAACTGTTCACGTAGAGCTCA -ACGGAACTGTTCACGTAGTCACGT -ACGGAACTGTTCACGTAGCGTAGT -ACGGAACTGTTCACGTAGGTCAGT -ACGGAACTGTTCACGTAGGAAGGT -ACGGAACTGTTCACGTAGAACCGT -ACGGAACTGTTCACGTAGTTGTGC -ACGGAACTGTTCACGTAGCTAAGC -ACGGAACTGTTCACGTAGACTAGC -ACGGAACTGTTCACGTAGAGATGC -ACGGAACTGTTCACGTAGTGAAGG -ACGGAACTGTTCACGTAGCAATGG -ACGGAACTGTTCACGTAGATGAGG -ACGGAACTGTTCACGTAGAATGGG -ACGGAACTGTTCACGTAGTCCTGA -ACGGAACTGTTCACGTAGTAGCGA -ACGGAACTGTTCACGTAGCACAGA -ACGGAACTGTTCACGTAGGCAAGA -ACGGAACTGTTCACGTAGGGTTGA -ACGGAACTGTTCACGTAGTCCGAT -ACGGAACTGTTCACGTAGTGGCAT -ACGGAACTGTTCACGTAGCGAGAT -ACGGAACTGTTCACGTAGTACCAC -ACGGAACTGTTCACGTAGCAGAAC -ACGGAACTGTTCACGTAGGTCTAC -ACGGAACTGTTCACGTAGACGTAC -ACGGAACTGTTCACGTAGAGTGAC -ACGGAACTGTTCACGTAGCTGTAG -ACGGAACTGTTCACGTAGCCTAAG -ACGGAACTGTTCACGTAGGTTCAG -ACGGAACTGTTCACGTAGGCATAG -ACGGAACTGTTCACGTAGGACAAG -ACGGAACTGTTCACGTAGAAGCAG -ACGGAACTGTTCACGTAGCGTCAA -ACGGAACTGTTCACGTAGGCTGAA -ACGGAACTGTTCACGTAGAGTACG -ACGGAACTGTTCACGTAGATCCGA -ACGGAACTGTTCACGTAGATGGGA -ACGGAACTGTTCACGTAGGTGCAA -ACGGAACTGTTCACGTAGGAGGAA -ACGGAACTGTTCACGTAGCAGGTA -ACGGAACTGTTCACGTAGGACTCT -ACGGAACTGTTCACGTAGAGTCCT -ACGGAACTGTTCACGTAGTAAGCC -ACGGAACTGTTCACGTAGATAGCC -ACGGAACTGTTCACGTAGTAACCG -ACGGAACTGTTCACGTAGATGCCA -ACGGAACTGTTCACGGTAGGAAAC -ACGGAACTGTTCACGGTAAACACC -ACGGAACTGTTCACGGTAATCGAG -ACGGAACTGTTCACGGTACTCCTT -ACGGAACTGTTCACGGTACCTGTT -ACGGAACTGTTCACGGTACGGTTT -ACGGAACTGTTCACGGTAGTGGTT -ACGGAACTGTTCACGGTAGCCTTT -ACGGAACTGTTCACGGTAGGTCTT -ACGGAACTGTTCACGGTAACGCTT -ACGGAACTGTTCACGGTAAGCGTT -ACGGAACTGTTCACGGTATTCGTC -ACGGAACTGTTCACGGTATCTCTC -ACGGAACTGTTCACGGTATGGATC -ACGGAACTGTTCACGGTACACTTC -ACGGAACTGTTCACGGTAGTACTC -ACGGAACTGTTCACGGTAGATGTC -ACGGAACTGTTCACGGTAACAGTC -ACGGAACTGTTCACGGTATTGCTG -ACGGAACTGTTCACGGTATCCATG -ACGGAACTGTTCACGGTATGTGTG -ACGGAACTGTTCACGGTACTAGTG -ACGGAACTGTTCACGGTACATCTG -ACGGAACTGTTCACGGTAGAGTTG -ACGGAACTGTTCACGGTAAGACTG -ACGGAACTGTTCACGGTATCGGTA -ACGGAACTGTTCACGGTATGCCTA -ACGGAACTGTTCACGGTACCACTA -ACGGAACTGTTCACGGTAGGAGTA -ACGGAACTGTTCACGGTATCGTCT -ACGGAACTGTTCACGGTATGCACT -ACGGAACTGTTCACGGTACTGACT -ACGGAACTGTTCACGGTACAACCT -ACGGAACTGTTCACGGTAGCTACT -ACGGAACTGTTCACGGTAGGATCT -ACGGAACTGTTCACGGTAAAGGCT -ACGGAACTGTTCACGGTATCAACC -ACGGAACTGTTCACGGTATGTTCC -ACGGAACTGTTCACGGTAATTCCC -ACGGAACTGTTCACGGTATTCTCG -ACGGAACTGTTCACGGTATAGACG -ACGGAACTGTTCACGGTAGTAACG -ACGGAACTGTTCACGGTAACTTCG -ACGGAACTGTTCACGGTATACGCA -ACGGAACTGTTCACGGTACTTGCA -ACGGAACTGTTCACGGTACGAACA -ACGGAACTGTTCACGGTACAGTCA -ACGGAACTGTTCACGGTAGATCCA -ACGGAACTGTTCACGGTAACGACA -ACGGAACTGTTCACGGTAAGCTCA -ACGGAACTGTTCACGGTATCACGT -ACGGAACTGTTCACGGTACGTAGT -ACGGAACTGTTCACGGTAGTCAGT -ACGGAACTGTTCACGGTAGAAGGT -ACGGAACTGTTCACGGTAAACCGT -ACGGAACTGTTCACGGTATTGTGC -ACGGAACTGTTCACGGTACTAAGC -ACGGAACTGTTCACGGTAACTAGC -ACGGAACTGTTCACGGTAAGATGC -ACGGAACTGTTCACGGTATGAAGG -ACGGAACTGTTCACGGTACAATGG -ACGGAACTGTTCACGGTAATGAGG -ACGGAACTGTTCACGGTAAATGGG -ACGGAACTGTTCACGGTATCCTGA -ACGGAACTGTTCACGGTATAGCGA -ACGGAACTGTTCACGGTACACAGA -ACGGAACTGTTCACGGTAGCAAGA -ACGGAACTGTTCACGGTAGGTTGA -ACGGAACTGTTCACGGTATCCGAT -ACGGAACTGTTCACGGTATGGCAT -ACGGAACTGTTCACGGTACGAGAT -ACGGAACTGTTCACGGTATACCAC -ACGGAACTGTTCACGGTACAGAAC -ACGGAACTGTTCACGGTAGTCTAC -ACGGAACTGTTCACGGTAACGTAC -ACGGAACTGTTCACGGTAAGTGAC -ACGGAACTGTTCACGGTACTGTAG -ACGGAACTGTTCACGGTACCTAAG -ACGGAACTGTTCACGGTAGTTCAG -ACGGAACTGTTCACGGTAGCATAG -ACGGAACTGTTCACGGTAGACAAG -ACGGAACTGTTCACGGTAAAGCAG -ACGGAACTGTTCACGGTACGTCAA -ACGGAACTGTTCACGGTAGCTGAA -ACGGAACTGTTCACGGTAAGTACG -ACGGAACTGTTCACGGTAATCCGA -ACGGAACTGTTCACGGTAATGGGA -ACGGAACTGTTCACGGTAGTGCAA -ACGGAACTGTTCACGGTAGAGGAA -ACGGAACTGTTCACGGTACAGGTA -ACGGAACTGTTCACGGTAGACTCT -ACGGAACTGTTCACGGTAAGTCCT -ACGGAACTGTTCACGGTATAAGCC -ACGGAACTGTTCACGGTAATAGCC -ACGGAACTGTTCACGGTATAACCG -ACGGAACTGTTCACGGTAATGCCA -ACGGAACTGTTCTCGACTGGAAAC -ACGGAACTGTTCTCGACTAACACC -ACGGAACTGTTCTCGACTATCGAG -ACGGAACTGTTCTCGACTCTCCTT -ACGGAACTGTTCTCGACTCCTGTT -ACGGAACTGTTCTCGACTCGGTTT -ACGGAACTGTTCTCGACTGTGGTT -ACGGAACTGTTCTCGACTGCCTTT -ACGGAACTGTTCTCGACTGGTCTT -ACGGAACTGTTCTCGACTACGCTT -ACGGAACTGTTCTCGACTAGCGTT -ACGGAACTGTTCTCGACTTTCGTC -ACGGAACTGTTCTCGACTTCTCTC -ACGGAACTGTTCTCGACTTGGATC -ACGGAACTGTTCTCGACTCACTTC -ACGGAACTGTTCTCGACTGTACTC -ACGGAACTGTTCTCGACTGATGTC -ACGGAACTGTTCTCGACTACAGTC -ACGGAACTGTTCTCGACTTTGCTG -ACGGAACTGTTCTCGACTTCCATG -ACGGAACTGTTCTCGACTTGTGTG -ACGGAACTGTTCTCGACTCTAGTG -ACGGAACTGTTCTCGACTCATCTG -ACGGAACTGTTCTCGACTGAGTTG -ACGGAACTGTTCTCGACTAGACTG -ACGGAACTGTTCTCGACTTCGGTA -ACGGAACTGTTCTCGACTTGCCTA -ACGGAACTGTTCTCGACTCCACTA -ACGGAACTGTTCTCGACTGGAGTA -ACGGAACTGTTCTCGACTTCGTCT -ACGGAACTGTTCTCGACTTGCACT -ACGGAACTGTTCTCGACTCTGACT -ACGGAACTGTTCTCGACTCAACCT -ACGGAACTGTTCTCGACTGCTACT -ACGGAACTGTTCTCGACTGGATCT -ACGGAACTGTTCTCGACTAAGGCT -ACGGAACTGTTCTCGACTTCAACC -ACGGAACTGTTCTCGACTTGTTCC -ACGGAACTGTTCTCGACTATTCCC -ACGGAACTGTTCTCGACTTTCTCG -ACGGAACTGTTCTCGACTTAGACG -ACGGAACTGTTCTCGACTGTAACG -ACGGAACTGTTCTCGACTACTTCG -ACGGAACTGTTCTCGACTTACGCA -ACGGAACTGTTCTCGACTCTTGCA -ACGGAACTGTTCTCGACTCGAACA -ACGGAACTGTTCTCGACTCAGTCA -ACGGAACTGTTCTCGACTGATCCA -ACGGAACTGTTCTCGACTACGACA -ACGGAACTGTTCTCGACTAGCTCA -ACGGAACTGTTCTCGACTTCACGT -ACGGAACTGTTCTCGACTCGTAGT -ACGGAACTGTTCTCGACTGTCAGT -ACGGAACTGTTCTCGACTGAAGGT -ACGGAACTGTTCTCGACTAACCGT -ACGGAACTGTTCTCGACTTTGTGC -ACGGAACTGTTCTCGACTCTAAGC -ACGGAACTGTTCTCGACTACTAGC -ACGGAACTGTTCTCGACTAGATGC -ACGGAACTGTTCTCGACTTGAAGG -ACGGAACTGTTCTCGACTCAATGG -ACGGAACTGTTCTCGACTATGAGG -ACGGAACTGTTCTCGACTAATGGG -ACGGAACTGTTCTCGACTTCCTGA -ACGGAACTGTTCTCGACTTAGCGA -ACGGAACTGTTCTCGACTCACAGA -ACGGAACTGTTCTCGACTGCAAGA -ACGGAACTGTTCTCGACTGGTTGA -ACGGAACTGTTCTCGACTTCCGAT -ACGGAACTGTTCTCGACTTGGCAT -ACGGAACTGTTCTCGACTCGAGAT -ACGGAACTGTTCTCGACTTACCAC -ACGGAACTGTTCTCGACTCAGAAC -ACGGAACTGTTCTCGACTGTCTAC -ACGGAACTGTTCTCGACTACGTAC -ACGGAACTGTTCTCGACTAGTGAC -ACGGAACTGTTCTCGACTCTGTAG -ACGGAACTGTTCTCGACTCCTAAG -ACGGAACTGTTCTCGACTGTTCAG -ACGGAACTGTTCTCGACTGCATAG -ACGGAACTGTTCTCGACTGACAAG -ACGGAACTGTTCTCGACTAAGCAG -ACGGAACTGTTCTCGACTCGTCAA -ACGGAACTGTTCTCGACTGCTGAA -ACGGAACTGTTCTCGACTAGTACG -ACGGAACTGTTCTCGACTATCCGA -ACGGAACTGTTCTCGACTATGGGA -ACGGAACTGTTCTCGACTGTGCAA -ACGGAACTGTTCTCGACTGAGGAA -ACGGAACTGTTCTCGACTCAGGTA -ACGGAACTGTTCTCGACTGACTCT -ACGGAACTGTTCTCGACTAGTCCT -ACGGAACTGTTCTCGACTTAAGCC -ACGGAACTGTTCTCGACTATAGCC -ACGGAACTGTTCTCGACTTAACCG -ACGGAACTGTTCTCGACTATGCCA -ACGGAACTGTTCGCATACGGAAAC -ACGGAACTGTTCGCATACAACACC -ACGGAACTGTTCGCATACATCGAG -ACGGAACTGTTCGCATACCTCCTT -ACGGAACTGTTCGCATACCCTGTT -ACGGAACTGTTCGCATACCGGTTT -ACGGAACTGTTCGCATACGTGGTT -ACGGAACTGTTCGCATACGCCTTT -ACGGAACTGTTCGCATACGGTCTT -ACGGAACTGTTCGCATACACGCTT -ACGGAACTGTTCGCATACAGCGTT -ACGGAACTGTTCGCATACTTCGTC -ACGGAACTGTTCGCATACTCTCTC -ACGGAACTGTTCGCATACTGGATC -ACGGAACTGTTCGCATACCACTTC -ACGGAACTGTTCGCATACGTACTC -ACGGAACTGTTCGCATACGATGTC -ACGGAACTGTTCGCATACACAGTC -ACGGAACTGTTCGCATACTTGCTG -ACGGAACTGTTCGCATACTCCATG -ACGGAACTGTTCGCATACTGTGTG -ACGGAACTGTTCGCATACCTAGTG -ACGGAACTGTTCGCATACCATCTG -ACGGAACTGTTCGCATACGAGTTG -ACGGAACTGTTCGCATACAGACTG -ACGGAACTGTTCGCATACTCGGTA -ACGGAACTGTTCGCATACTGCCTA -ACGGAACTGTTCGCATACCCACTA -ACGGAACTGTTCGCATACGGAGTA -ACGGAACTGTTCGCATACTCGTCT -ACGGAACTGTTCGCATACTGCACT -ACGGAACTGTTCGCATACCTGACT -ACGGAACTGTTCGCATACCAACCT -ACGGAACTGTTCGCATACGCTACT -ACGGAACTGTTCGCATACGGATCT -ACGGAACTGTTCGCATACAAGGCT -ACGGAACTGTTCGCATACTCAACC -ACGGAACTGTTCGCATACTGTTCC -ACGGAACTGTTCGCATACATTCCC -ACGGAACTGTTCGCATACTTCTCG -ACGGAACTGTTCGCATACTAGACG -ACGGAACTGTTCGCATACGTAACG -ACGGAACTGTTCGCATACACTTCG -ACGGAACTGTTCGCATACTACGCA -ACGGAACTGTTCGCATACCTTGCA -ACGGAACTGTTCGCATACCGAACA -ACGGAACTGTTCGCATACCAGTCA -ACGGAACTGTTCGCATACGATCCA -ACGGAACTGTTCGCATACACGACA -ACGGAACTGTTCGCATACAGCTCA -ACGGAACTGTTCGCATACTCACGT -ACGGAACTGTTCGCATACCGTAGT -ACGGAACTGTTCGCATACGTCAGT -ACGGAACTGTTCGCATACGAAGGT -ACGGAACTGTTCGCATACAACCGT -ACGGAACTGTTCGCATACTTGTGC -ACGGAACTGTTCGCATACCTAAGC -ACGGAACTGTTCGCATACACTAGC -ACGGAACTGTTCGCATACAGATGC -ACGGAACTGTTCGCATACTGAAGG -ACGGAACTGTTCGCATACCAATGG -ACGGAACTGTTCGCATACATGAGG -ACGGAACTGTTCGCATACAATGGG -ACGGAACTGTTCGCATACTCCTGA -ACGGAACTGTTCGCATACTAGCGA -ACGGAACTGTTCGCATACCACAGA -ACGGAACTGTTCGCATACGCAAGA -ACGGAACTGTTCGCATACGGTTGA -ACGGAACTGTTCGCATACTCCGAT -ACGGAACTGTTCGCATACTGGCAT -ACGGAACTGTTCGCATACCGAGAT -ACGGAACTGTTCGCATACTACCAC -ACGGAACTGTTCGCATACCAGAAC -ACGGAACTGTTCGCATACGTCTAC -ACGGAACTGTTCGCATACACGTAC -ACGGAACTGTTCGCATACAGTGAC -ACGGAACTGTTCGCATACCTGTAG -ACGGAACTGTTCGCATACCCTAAG -ACGGAACTGTTCGCATACGTTCAG -ACGGAACTGTTCGCATACGCATAG -ACGGAACTGTTCGCATACGACAAG -ACGGAACTGTTCGCATACAAGCAG -ACGGAACTGTTCGCATACCGTCAA -ACGGAACTGTTCGCATACGCTGAA -ACGGAACTGTTCGCATACAGTACG -ACGGAACTGTTCGCATACATCCGA -ACGGAACTGTTCGCATACATGGGA -ACGGAACTGTTCGCATACGTGCAA -ACGGAACTGTTCGCATACGAGGAA -ACGGAACTGTTCGCATACCAGGTA -ACGGAACTGTTCGCATACGACTCT -ACGGAACTGTTCGCATACAGTCCT -ACGGAACTGTTCGCATACTAAGCC -ACGGAACTGTTCGCATACATAGCC -ACGGAACTGTTCGCATACTAACCG -ACGGAACTGTTCGCATACATGCCA -ACGGAACTGTTCGCACTTGGAAAC -ACGGAACTGTTCGCACTTAACACC -ACGGAACTGTTCGCACTTATCGAG -ACGGAACTGTTCGCACTTCTCCTT -ACGGAACTGTTCGCACTTCCTGTT -ACGGAACTGTTCGCACTTCGGTTT -ACGGAACTGTTCGCACTTGTGGTT -ACGGAACTGTTCGCACTTGCCTTT -ACGGAACTGTTCGCACTTGGTCTT -ACGGAACTGTTCGCACTTACGCTT -ACGGAACTGTTCGCACTTAGCGTT -ACGGAACTGTTCGCACTTTTCGTC -ACGGAACTGTTCGCACTTTCTCTC -ACGGAACTGTTCGCACTTTGGATC -ACGGAACTGTTCGCACTTCACTTC -ACGGAACTGTTCGCACTTGTACTC -ACGGAACTGTTCGCACTTGATGTC -ACGGAACTGTTCGCACTTACAGTC -ACGGAACTGTTCGCACTTTTGCTG -ACGGAACTGTTCGCACTTTCCATG -ACGGAACTGTTCGCACTTTGTGTG -ACGGAACTGTTCGCACTTCTAGTG -ACGGAACTGTTCGCACTTCATCTG -ACGGAACTGTTCGCACTTGAGTTG -ACGGAACTGTTCGCACTTAGACTG -ACGGAACTGTTCGCACTTTCGGTA -ACGGAACTGTTCGCACTTTGCCTA -ACGGAACTGTTCGCACTTCCACTA -ACGGAACTGTTCGCACTTGGAGTA -ACGGAACTGTTCGCACTTTCGTCT -ACGGAACTGTTCGCACTTTGCACT -ACGGAACTGTTCGCACTTCTGACT -ACGGAACTGTTCGCACTTCAACCT -ACGGAACTGTTCGCACTTGCTACT -ACGGAACTGTTCGCACTTGGATCT -ACGGAACTGTTCGCACTTAAGGCT -ACGGAACTGTTCGCACTTTCAACC -ACGGAACTGTTCGCACTTTGTTCC -ACGGAACTGTTCGCACTTATTCCC -ACGGAACTGTTCGCACTTTTCTCG -ACGGAACTGTTCGCACTTTAGACG -ACGGAACTGTTCGCACTTGTAACG -ACGGAACTGTTCGCACTTACTTCG -ACGGAACTGTTCGCACTTTACGCA -ACGGAACTGTTCGCACTTCTTGCA -ACGGAACTGTTCGCACTTCGAACA -ACGGAACTGTTCGCACTTCAGTCA -ACGGAACTGTTCGCACTTGATCCA -ACGGAACTGTTCGCACTTACGACA -ACGGAACTGTTCGCACTTAGCTCA -ACGGAACTGTTCGCACTTTCACGT -ACGGAACTGTTCGCACTTCGTAGT -ACGGAACTGTTCGCACTTGTCAGT -ACGGAACTGTTCGCACTTGAAGGT -ACGGAACTGTTCGCACTTAACCGT -ACGGAACTGTTCGCACTTTTGTGC -ACGGAACTGTTCGCACTTCTAAGC -ACGGAACTGTTCGCACTTACTAGC -ACGGAACTGTTCGCACTTAGATGC -ACGGAACTGTTCGCACTTTGAAGG -ACGGAACTGTTCGCACTTCAATGG -ACGGAACTGTTCGCACTTATGAGG -ACGGAACTGTTCGCACTTAATGGG -ACGGAACTGTTCGCACTTTCCTGA -ACGGAACTGTTCGCACTTTAGCGA -ACGGAACTGTTCGCACTTCACAGA -ACGGAACTGTTCGCACTTGCAAGA -ACGGAACTGTTCGCACTTGGTTGA -ACGGAACTGTTCGCACTTTCCGAT -ACGGAACTGTTCGCACTTTGGCAT -ACGGAACTGTTCGCACTTCGAGAT -ACGGAACTGTTCGCACTTTACCAC -ACGGAACTGTTCGCACTTCAGAAC -ACGGAACTGTTCGCACTTGTCTAC -ACGGAACTGTTCGCACTTACGTAC -ACGGAACTGTTCGCACTTAGTGAC -ACGGAACTGTTCGCACTTCTGTAG -ACGGAACTGTTCGCACTTCCTAAG -ACGGAACTGTTCGCACTTGTTCAG -ACGGAACTGTTCGCACTTGCATAG -ACGGAACTGTTCGCACTTGACAAG -ACGGAACTGTTCGCACTTAAGCAG -ACGGAACTGTTCGCACTTCGTCAA -ACGGAACTGTTCGCACTTGCTGAA -ACGGAACTGTTCGCACTTAGTACG -ACGGAACTGTTCGCACTTATCCGA -ACGGAACTGTTCGCACTTATGGGA -ACGGAACTGTTCGCACTTGTGCAA -ACGGAACTGTTCGCACTTGAGGAA -ACGGAACTGTTCGCACTTCAGGTA -ACGGAACTGTTCGCACTTGACTCT -ACGGAACTGTTCGCACTTAGTCCT -ACGGAACTGTTCGCACTTTAAGCC -ACGGAACTGTTCGCACTTATAGCC -ACGGAACTGTTCGCACTTTAACCG -ACGGAACTGTTCGCACTTATGCCA -ACGGAACTGTTCACACGAGGAAAC -ACGGAACTGTTCACACGAAACACC -ACGGAACTGTTCACACGAATCGAG -ACGGAACTGTTCACACGACTCCTT -ACGGAACTGTTCACACGACCTGTT -ACGGAACTGTTCACACGACGGTTT -ACGGAACTGTTCACACGAGTGGTT -ACGGAACTGTTCACACGAGCCTTT -ACGGAACTGTTCACACGAGGTCTT -ACGGAACTGTTCACACGAACGCTT -ACGGAACTGTTCACACGAAGCGTT -ACGGAACTGTTCACACGATTCGTC -ACGGAACTGTTCACACGATCTCTC -ACGGAACTGTTCACACGATGGATC -ACGGAACTGTTCACACGACACTTC -ACGGAACTGTTCACACGAGTACTC -ACGGAACTGTTCACACGAGATGTC -ACGGAACTGTTCACACGAACAGTC -ACGGAACTGTTCACACGATTGCTG -ACGGAACTGTTCACACGATCCATG -ACGGAACTGTTCACACGATGTGTG -ACGGAACTGTTCACACGACTAGTG -ACGGAACTGTTCACACGACATCTG -ACGGAACTGTTCACACGAGAGTTG -ACGGAACTGTTCACACGAAGACTG -ACGGAACTGTTCACACGATCGGTA -ACGGAACTGTTCACACGATGCCTA -ACGGAACTGTTCACACGACCACTA -ACGGAACTGTTCACACGAGGAGTA -ACGGAACTGTTCACACGATCGTCT -ACGGAACTGTTCACACGATGCACT -ACGGAACTGTTCACACGACTGACT -ACGGAACTGTTCACACGACAACCT -ACGGAACTGTTCACACGAGCTACT -ACGGAACTGTTCACACGAGGATCT -ACGGAACTGTTCACACGAAAGGCT -ACGGAACTGTTCACACGATCAACC -ACGGAACTGTTCACACGATGTTCC -ACGGAACTGTTCACACGAATTCCC -ACGGAACTGTTCACACGATTCTCG -ACGGAACTGTTCACACGATAGACG -ACGGAACTGTTCACACGAGTAACG -ACGGAACTGTTCACACGAACTTCG -ACGGAACTGTTCACACGATACGCA -ACGGAACTGTTCACACGACTTGCA -ACGGAACTGTTCACACGACGAACA -ACGGAACTGTTCACACGACAGTCA -ACGGAACTGTTCACACGAGATCCA -ACGGAACTGTTCACACGAACGACA -ACGGAACTGTTCACACGAAGCTCA -ACGGAACTGTTCACACGATCACGT -ACGGAACTGTTCACACGACGTAGT -ACGGAACTGTTCACACGAGTCAGT -ACGGAACTGTTCACACGAGAAGGT -ACGGAACTGTTCACACGAAACCGT -ACGGAACTGTTCACACGATTGTGC -ACGGAACTGTTCACACGACTAAGC -ACGGAACTGTTCACACGAACTAGC -ACGGAACTGTTCACACGAAGATGC -ACGGAACTGTTCACACGATGAAGG -ACGGAACTGTTCACACGACAATGG -ACGGAACTGTTCACACGAATGAGG -ACGGAACTGTTCACACGAAATGGG -ACGGAACTGTTCACACGATCCTGA -ACGGAACTGTTCACACGATAGCGA -ACGGAACTGTTCACACGACACAGA -ACGGAACTGTTCACACGAGCAAGA -ACGGAACTGTTCACACGAGGTTGA -ACGGAACTGTTCACACGATCCGAT -ACGGAACTGTTCACACGATGGCAT -ACGGAACTGTTCACACGACGAGAT -ACGGAACTGTTCACACGATACCAC -ACGGAACTGTTCACACGACAGAAC -ACGGAACTGTTCACACGAGTCTAC -ACGGAACTGTTCACACGAACGTAC -ACGGAACTGTTCACACGAAGTGAC -ACGGAACTGTTCACACGACTGTAG -ACGGAACTGTTCACACGACCTAAG -ACGGAACTGTTCACACGAGTTCAG -ACGGAACTGTTCACACGAGCATAG -ACGGAACTGTTCACACGAGACAAG -ACGGAACTGTTCACACGAAAGCAG -ACGGAACTGTTCACACGACGTCAA -ACGGAACTGTTCACACGAGCTGAA -ACGGAACTGTTCACACGAAGTACG -ACGGAACTGTTCACACGAATCCGA -ACGGAACTGTTCACACGAATGGGA -ACGGAACTGTTCACACGAGTGCAA -ACGGAACTGTTCACACGAGAGGAA -ACGGAACTGTTCACACGACAGGTA -ACGGAACTGTTCACACGAGACTCT -ACGGAACTGTTCACACGAAGTCCT -ACGGAACTGTTCACACGATAAGCC -ACGGAACTGTTCACACGAATAGCC -ACGGAACTGTTCACACGATAACCG -ACGGAACTGTTCACACGAATGCCA -ACGGAACTGTTCTCACAGGGAAAC -ACGGAACTGTTCTCACAGAACACC -ACGGAACTGTTCTCACAGATCGAG -ACGGAACTGTTCTCACAGCTCCTT -ACGGAACTGTTCTCACAGCCTGTT -ACGGAACTGTTCTCACAGCGGTTT -ACGGAACTGTTCTCACAGGTGGTT -ACGGAACTGTTCTCACAGGCCTTT -ACGGAACTGTTCTCACAGGGTCTT -ACGGAACTGTTCTCACAGACGCTT -ACGGAACTGTTCTCACAGAGCGTT -ACGGAACTGTTCTCACAGTTCGTC -ACGGAACTGTTCTCACAGTCTCTC -ACGGAACTGTTCTCACAGTGGATC -ACGGAACTGTTCTCACAGCACTTC -ACGGAACTGTTCTCACAGGTACTC -ACGGAACTGTTCTCACAGGATGTC -ACGGAACTGTTCTCACAGACAGTC -ACGGAACTGTTCTCACAGTTGCTG -ACGGAACTGTTCTCACAGTCCATG -ACGGAACTGTTCTCACAGTGTGTG -ACGGAACTGTTCTCACAGCTAGTG -ACGGAACTGTTCTCACAGCATCTG -ACGGAACTGTTCTCACAGGAGTTG -ACGGAACTGTTCTCACAGAGACTG -ACGGAACTGTTCTCACAGTCGGTA -ACGGAACTGTTCTCACAGTGCCTA -ACGGAACTGTTCTCACAGCCACTA -ACGGAACTGTTCTCACAGGGAGTA -ACGGAACTGTTCTCACAGTCGTCT -ACGGAACTGTTCTCACAGTGCACT -ACGGAACTGTTCTCACAGCTGACT -ACGGAACTGTTCTCACAGCAACCT -ACGGAACTGTTCTCACAGGCTACT -ACGGAACTGTTCTCACAGGGATCT -ACGGAACTGTTCTCACAGAAGGCT -ACGGAACTGTTCTCACAGTCAACC -ACGGAACTGTTCTCACAGTGTTCC -ACGGAACTGTTCTCACAGATTCCC -ACGGAACTGTTCTCACAGTTCTCG -ACGGAACTGTTCTCACAGTAGACG -ACGGAACTGTTCTCACAGGTAACG -ACGGAACTGTTCTCACAGACTTCG -ACGGAACTGTTCTCACAGTACGCA -ACGGAACTGTTCTCACAGCTTGCA -ACGGAACTGTTCTCACAGCGAACA -ACGGAACTGTTCTCACAGCAGTCA -ACGGAACTGTTCTCACAGGATCCA -ACGGAACTGTTCTCACAGACGACA -ACGGAACTGTTCTCACAGAGCTCA -ACGGAACTGTTCTCACAGTCACGT -ACGGAACTGTTCTCACAGCGTAGT -ACGGAACTGTTCTCACAGGTCAGT -ACGGAACTGTTCTCACAGGAAGGT -ACGGAACTGTTCTCACAGAACCGT -ACGGAACTGTTCTCACAGTTGTGC -ACGGAACTGTTCTCACAGCTAAGC -ACGGAACTGTTCTCACAGACTAGC -ACGGAACTGTTCTCACAGAGATGC -ACGGAACTGTTCTCACAGTGAAGG -ACGGAACTGTTCTCACAGCAATGG -ACGGAACTGTTCTCACAGATGAGG -ACGGAACTGTTCTCACAGAATGGG -ACGGAACTGTTCTCACAGTCCTGA -ACGGAACTGTTCTCACAGTAGCGA -ACGGAACTGTTCTCACAGCACAGA -ACGGAACTGTTCTCACAGGCAAGA -ACGGAACTGTTCTCACAGGGTTGA -ACGGAACTGTTCTCACAGTCCGAT -ACGGAACTGTTCTCACAGTGGCAT -ACGGAACTGTTCTCACAGCGAGAT -ACGGAACTGTTCTCACAGTACCAC -ACGGAACTGTTCTCACAGCAGAAC -ACGGAACTGTTCTCACAGGTCTAC -ACGGAACTGTTCTCACAGACGTAC -ACGGAACTGTTCTCACAGAGTGAC -ACGGAACTGTTCTCACAGCTGTAG -ACGGAACTGTTCTCACAGCCTAAG -ACGGAACTGTTCTCACAGGTTCAG -ACGGAACTGTTCTCACAGGCATAG -ACGGAACTGTTCTCACAGGACAAG -ACGGAACTGTTCTCACAGAAGCAG -ACGGAACTGTTCTCACAGCGTCAA -ACGGAACTGTTCTCACAGGCTGAA -ACGGAACTGTTCTCACAGAGTACG -ACGGAACTGTTCTCACAGATCCGA -ACGGAACTGTTCTCACAGATGGGA -ACGGAACTGTTCTCACAGGTGCAA -ACGGAACTGTTCTCACAGGAGGAA -ACGGAACTGTTCTCACAGCAGGTA -ACGGAACTGTTCTCACAGGACTCT -ACGGAACTGTTCTCACAGAGTCCT -ACGGAACTGTTCTCACAGTAAGCC -ACGGAACTGTTCTCACAGATAGCC -ACGGAACTGTTCTCACAGTAACCG -ACGGAACTGTTCTCACAGATGCCA -ACGGAACTGTTCCCAGATGGAAAC -ACGGAACTGTTCCCAGATAACACC -ACGGAACTGTTCCCAGATATCGAG -ACGGAACTGTTCCCAGATCTCCTT -ACGGAACTGTTCCCAGATCCTGTT -ACGGAACTGTTCCCAGATCGGTTT -ACGGAACTGTTCCCAGATGTGGTT -ACGGAACTGTTCCCAGATGCCTTT -ACGGAACTGTTCCCAGATGGTCTT -ACGGAACTGTTCCCAGATACGCTT -ACGGAACTGTTCCCAGATAGCGTT -ACGGAACTGTTCCCAGATTTCGTC -ACGGAACTGTTCCCAGATTCTCTC -ACGGAACTGTTCCCAGATTGGATC -ACGGAACTGTTCCCAGATCACTTC -ACGGAACTGTTCCCAGATGTACTC -ACGGAACTGTTCCCAGATGATGTC -ACGGAACTGTTCCCAGATACAGTC -ACGGAACTGTTCCCAGATTTGCTG -ACGGAACTGTTCCCAGATTCCATG -ACGGAACTGTTCCCAGATTGTGTG -ACGGAACTGTTCCCAGATCTAGTG -ACGGAACTGTTCCCAGATCATCTG -ACGGAACTGTTCCCAGATGAGTTG -ACGGAACTGTTCCCAGATAGACTG -ACGGAACTGTTCCCAGATTCGGTA -ACGGAACTGTTCCCAGATTGCCTA -ACGGAACTGTTCCCAGATCCACTA -ACGGAACTGTTCCCAGATGGAGTA -ACGGAACTGTTCCCAGATTCGTCT -ACGGAACTGTTCCCAGATTGCACT -ACGGAACTGTTCCCAGATCTGACT -ACGGAACTGTTCCCAGATCAACCT -ACGGAACTGTTCCCAGATGCTACT -ACGGAACTGTTCCCAGATGGATCT -ACGGAACTGTTCCCAGATAAGGCT -ACGGAACTGTTCCCAGATTCAACC -ACGGAACTGTTCCCAGATTGTTCC -ACGGAACTGTTCCCAGATATTCCC -ACGGAACTGTTCCCAGATTTCTCG -ACGGAACTGTTCCCAGATTAGACG -ACGGAACTGTTCCCAGATGTAACG -ACGGAACTGTTCCCAGATACTTCG -ACGGAACTGTTCCCAGATTACGCA -ACGGAACTGTTCCCAGATCTTGCA -ACGGAACTGTTCCCAGATCGAACA -ACGGAACTGTTCCCAGATCAGTCA -ACGGAACTGTTCCCAGATGATCCA -ACGGAACTGTTCCCAGATACGACA -ACGGAACTGTTCCCAGATAGCTCA -ACGGAACTGTTCCCAGATTCACGT -ACGGAACTGTTCCCAGATCGTAGT -ACGGAACTGTTCCCAGATGTCAGT -ACGGAACTGTTCCCAGATGAAGGT -ACGGAACTGTTCCCAGATAACCGT -ACGGAACTGTTCCCAGATTTGTGC -ACGGAACTGTTCCCAGATCTAAGC -ACGGAACTGTTCCCAGATACTAGC -ACGGAACTGTTCCCAGATAGATGC -ACGGAACTGTTCCCAGATTGAAGG -ACGGAACTGTTCCCAGATCAATGG -ACGGAACTGTTCCCAGATATGAGG -ACGGAACTGTTCCCAGATAATGGG -ACGGAACTGTTCCCAGATTCCTGA -ACGGAACTGTTCCCAGATTAGCGA -ACGGAACTGTTCCCAGATCACAGA -ACGGAACTGTTCCCAGATGCAAGA -ACGGAACTGTTCCCAGATGGTTGA -ACGGAACTGTTCCCAGATTCCGAT -ACGGAACTGTTCCCAGATTGGCAT -ACGGAACTGTTCCCAGATCGAGAT -ACGGAACTGTTCCCAGATTACCAC -ACGGAACTGTTCCCAGATCAGAAC -ACGGAACTGTTCCCAGATGTCTAC -ACGGAACTGTTCCCAGATACGTAC -ACGGAACTGTTCCCAGATAGTGAC -ACGGAACTGTTCCCAGATCTGTAG -ACGGAACTGTTCCCAGATCCTAAG -ACGGAACTGTTCCCAGATGTTCAG -ACGGAACTGTTCCCAGATGCATAG -ACGGAACTGTTCCCAGATGACAAG -ACGGAACTGTTCCCAGATAAGCAG -ACGGAACTGTTCCCAGATCGTCAA -ACGGAACTGTTCCCAGATGCTGAA -ACGGAACTGTTCCCAGATAGTACG -ACGGAACTGTTCCCAGATATCCGA -ACGGAACTGTTCCCAGATATGGGA -ACGGAACTGTTCCCAGATGTGCAA -ACGGAACTGTTCCCAGATGAGGAA -ACGGAACTGTTCCCAGATCAGGTA -ACGGAACTGTTCCCAGATGACTCT -ACGGAACTGTTCCCAGATAGTCCT -ACGGAACTGTTCCCAGATTAAGCC -ACGGAACTGTTCCCAGATATAGCC -ACGGAACTGTTCCCAGATTAACCG -ACGGAACTGTTCCCAGATATGCCA -ACGGAACTGTTCACAACGGGAAAC -ACGGAACTGTTCACAACGAACACC -ACGGAACTGTTCACAACGATCGAG -ACGGAACTGTTCACAACGCTCCTT -ACGGAACTGTTCACAACGCCTGTT -ACGGAACTGTTCACAACGCGGTTT -ACGGAACTGTTCACAACGGTGGTT -ACGGAACTGTTCACAACGGCCTTT -ACGGAACTGTTCACAACGGGTCTT -ACGGAACTGTTCACAACGACGCTT -ACGGAACTGTTCACAACGAGCGTT -ACGGAACTGTTCACAACGTTCGTC -ACGGAACTGTTCACAACGTCTCTC -ACGGAACTGTTCACAACGTGGATC -ACGGAACTGTTCACAACGCACTTC -ACGGAACTGTTCACAACGGTACTC -ACGGAACTGTTCACAACGGATGTC -ACGGAACTGTTCACAACGACAGTC -ACGGAACTGTTCACAACGTTGCTG -ACGGAACTGTTCACAACGTCCATG -ACGGAACTGTTCACAACGTGTGTG -ACGGAACTGTTCACAACGCTAGTG -ACGGAACTGTTCACAACGCATCTG -ACGGAACTGTTCACAACGGAGTTG -ACGGAACTGTTCACAACGAGACTG -ACGGAACTGTTCACAACGTCGGTA -ACGGAACTGTTCACAACGTGCCTA -ACGGAACTGTTCACAACGCCACTA -ACGGAACTGTTCACAACGGGAGTA -ACGGAACTGTTCACAACGTCGTCT -ACGGAACTGTTCACAACGTGCACT -ACGGAACTGTTCACAACGCTGACT -ACGGAACTGTTCACAACGCAACCT -ACGGAACTGTTCACAACGGCTACT -ACGGAACTGTTCACAACGGGATCT -ACGGAACTGTTCACAACGAAGGCT -ACGGAACTGTTCACAACGTCAACC -ACGGAACTGTTCACAACGTGTTCC -ACGGAACTGTTCACAACGATTCCC -ACGGAACTGTTCACAACGTTCTCG -ACGGAACTGTTCACAACGTAGACG -ACGGAACTGTTCACAACGGTAACG -ACGGAACTGTTCACAACGACTTCG -ACGGAACTGTTCACAACGTACGCA -ACGGAACTGTTCACAACGCTTGCA -ACGGAACTGTTCACAACGCGAACA -ACGGAACTGTTCACAACGCAGTCA -ACGGAACTGTTCACAACGGATCCA -ACGGAACTGTTCACAACGACGACA -ACGGAACTGTTCACAACGAGCTCA -ACGGAACTGTTCACAACGTCACGT -ACGGAACTGTTCACAACGCGTAGT -ACGGAACTGTTCACAACGGTCAGT -ACGGAACTGTTCACAACGGAAGGT -ACGGAACTGTTCACAACGAACCGT -ACGGAACTGTTCACAACGTTGTGC -ACGGAACTGTTCACAACGCTAAGC -ACGGAACTGTTCACAACGACTAGC -ACGGAACTGTTCACAACGAGATGC -ACGGAACTGTTCACAACGTGAAGG -ACGGAACTGTTCACAACGCAATGG -ACGGAACTGTTCACAACGATGAGG -ACGGAACTGTTCACAACGAATGGG -ACGGAACTGTTCACAACGTCCTGA -ACGGAACTGTTCACAACGTAGCGA -ACGGAACTGTTCACAACGCACAGA -ACGGAACTGTTCACAACGGCAAGA -ACGGAACTGTTCACAACGGGTTGA -ACGGAACTGTTCACAACGTCCGAT -ACGGAACTGTTCACAACGTGGCAT -ACGGAACTGTTCACAACGCGAGAT -ACGGAACTGTTCACAACGTACCAC -ACGGAACTGTTCACAACGCAGAAC -ACGGAACTGTTCACAACGGTCTAC -ACGGAACTGTTCACAACGACGTAC -ACGGAACTGTTCACAACGAGTGAC -ACGGAACTGTTCACAACGCTGTAG -ACGGAACTGTTCACAACGCCTAAG -ACGGAACTGTTCACAACGGTTCAG -ACGGAACTGTTCACAACGGCATAG -ACGGAACTGTTCACAACGGACAAG -ACGGAACTGTTCACAACGAAGCAG -ACGGAACTGTTCACAACGCGTCAA -ACGGAACTGTTCACAACGGCTGAA -ACGGAACTGTTCACAACGAGTACG -ACGGAACTGTTCACAACGATCCGA -ACGGAACTGTTCACAACGATGGGA -ACGGAACTGTTCACAACGGTGCAA -ACGGAACTGTTCACAACGGAGGAA -ACGGAACTGTTCACAACGCAGGTA -ACGGAACTGTTCACAACGGACTCT -ACGGAACTGTTCACAACGAGTCCT -ACGGAACTGTTCACAACGTAAGCC -ACGGAACTGTTCACAACGATAGCC -ACGGAACTGTTCACAACGTAACCG -ACGGAACTGTTCACAACGATGCCA -ACGGAACTGTTCTCAAGCGGAAAC -ACGGAACTGTTCTCAAGCAACACC -ACGGAACTGTTCTCAAGCATCGAG -ACGGAACTGTTCTCAAGCCTCCTT -ACGGAACTGTTCTCAAGCCCTGTT -ACGGAACTGTTCTCAAGCCGGTTT -ACGGAACTGTTCTCAAGCGTGGTT -ACGGAACTGTTCTCAAGCGCCTTT -ACGGAACTGTTCTCAAGCGGTCTT -ACGGAACTGTTCTCAAGCACGCTT -ACGGAACTGTTCTCAAGCAGCGTT -ACGGAACTGTTCTCAAGCTTCGTC -ACGGAACTGTTCTCAAGCTCTCTC -ACGGAACTGTTCTCAAGCTGGATC -ACGGAACTGTTCTCAAGCCACTTC -ACGGAACTGTTCTCAAGCGTACTC -ACGGAACTGTTCTCAAGCGATGTC -ACGGAACTGTTCTCAAGCACAGTC -ACGGAACTGTTCTCAAGCTTGCTG -ACGGAACTGTTCTCAAGCTCCATG -ACGGAACTGTTCTCAAGCTGTGTG -ACGGAACTGTTCTCAAGCCTAGTG -ACGGAACTGTTCTCAAGCCATCTG -ACGGAACTGTTCTCAAGCGAGTTG -ACGGAACTGTTCTCAAGCAGACTG -ACGGAACTGTTCTCAAGCTCGGTA -ACGGAACTGTTCTCAAGCTGCCTA -ACGGAACTGTTCTCAAGCCCACTA -ACGGAACTGTTCTCAAGCGGAGTA -ACGGAACTGTTCTCAAGCTCGTCT -ACGGAACTGTTCTCAAGCTGCACT -ACGGAACTGTTCTCAAGCCTGACT -ACGGAACTGTTCTCAAGCCAACCT -ACGGAACTGTTCTCAAGCGCTACT -ACGGAACTGTTCTCAAGCGGATCT -ACGGAACTGTTCTCAAGCAAGGCT -ACGGAACTGTTCTCAAGCTCAACC -ACGGAACTGTTCTCAAGCTGTTCC -ACGGAACTGTTCTCAAGCATTCCC -ACGGAACTGTTCTCAAGCTTCTCG -ACGGAACTGTTCTCAAGCTAGACG -ACGGAACTGTTCTCAAGCGTAACG -ACGGAACTGTTCTCAAGCACTTCG -ACGGAACTGTTCTCAAGCTACGCA -ACGGAACTGTTCTCAAGCCTTGCA -ACGGAACTGTTCTCAAGCCGAACA -ACGGAACTGTTCTCAAGCCAGTCA -ACGGAACTGTTCTCAAGCGATCCA -ACGGAACTGTTCTCAAGCACGACA -ACGGAACTGTTCTCAAGCAGCTCA -ACGGAACTGTTCTCAAGCTCACGT -ACGGAACTGTTCTCAAGCCGTAGT -ACGGAACTGTTCTCAAGCGTCAGT -ACGGAACTGTTCTCAAGCGAAGGT -ACGGAACTGTTCTCAAGCAACCGT -ACGGAACTGTTCTCAAGCTTGTGC -ACGGAACTGTTCTCAAGCCTAAGC -ACGGAACTGTTCTCAAGCACTAGC -ACGGAACTGTTCTCAAGCAGATGC -ACGGAACTGTTCTCAAGCTGAAGG -ACGGAACTGTTCTCAAGCCAATGG -ACGGAACTGTTCTCAAGCATGAGG -ACGGAACTGTTCTCAAGCAATGGG -ACGGAACTGTTCTCAAGCTCCTGA -ACGGAACTGTTCTCAAGCTAGCGA -ACGGAACTGTTCTCAAGCCACAGA -ACGGAACTGTTCTCAAGCGCAAGA -ACGGAACTGTTCTCAAGCGGTTGA -ACGGAACTGTTCTCAAGCTCCGAT -ACGGAACTGTTCTCAAGCTGGCAT -ACGGAACTGTTCTCAAGCCGAGAT -ACGGAACTGTTCTCAAGCTACCAC -ACGGAACTGTTCTCAAGCCAGAAC -ACGGAACTGTTCTCAAGCGTCTAC -ACGGAACTGTTCTCAAGCACGTAC -ACGGAACTGTTCTCAAGCAGTGAC -ACGGAACTGTTCTCAAGCCTGTAG -ACGGAACTGTTCTCAAGCCCTAAG -ACGGAACTGTTCTCAAGCGTTCAG -ACGGAACTGTTCTCAAGCGCATAG -ACGGAACTGTTCTCAAGCGACAAG -ACGGAACTGTTCTCAAGCAAGCAG -ACGGAACTGTTCTCAAGCCGTCAA -ACGGAACTGTTCTCAAGCGCTGAA -ACGGAACTGTTCTCAAGCAGTACG -ACGGAACTGTTCTCAAGCATCCGA -ACGGAACTGTTCTCAAGCATGGGA -ACGGAACTGTTCTCAAGCGTGCAA -ACGGAACTGTTCTCAAGCGAGGAA -ACGGAACTGTTCTCAAGCCAGGTA -ACGGAACTGTTCTCAAGCGACTCT -ACGGAACTGTTCTCAAGCAGTCCT -ACGGAACTGTTCTCAAGCTAAGCC -ACGGAACTGTTCTCAAGCATAGCC -ACGGAACTGTTCTCAAGCTAACCG -ACGGAACTGTTCTCAAGCATGCCA -ACGGAACTGTTCCGTTCAGGAAAC -ACGGAACTGTTCCGTTCAAACACC -ACGGAACTGTTCCGTTCAATCGAG -ACGGAACTGTTCCGTTCACTCCTT -ACGGAACTGTTCCGTTCACCTGTT -ACGGAACTGTTCCGTTCACGGTTT -ACGGAACTGTTCCGTTCAGTGGTT -ACGGAACTGTTCCGTTCAGCCTTT -ACGGAACTGTTCCGTTCAGGTCTT -ACGGAACTGTTCCGTTCAACGCTT -ACGGAACTGTTCCGTTCAAGCGTT -ACGGAACTGTTCCGTTCATTCGTC -ACGGAACTGTTCCGTTCATCTCTC -ACGGAACTGTTCCGTTCATGGATC -ACGGAACTGTTCCGTTCACACTTC -ACGGAACTGTTCCGTTCAGTACTC -ACGGAACTGTTCCGTTCAGATGTC -ACGGAACTGTTCCGTTCAACAGTC -ACGGAACTGTTCCGTTCATTGCTG -ACGGAACTGTTCCGTTCATCCATG -ACGGAACTGTTCCGTTCATGTGTG -ACGGAACTGTTCCGTTCACTAGTG -ACGGAACTGTTCCGTTCACATCTG -ACGGAACTGTTCCGTTCAGAGTTG -ACGGAACTGTTCCGTTCAAGACTG -ACGGAACTGTTCCGTTCATCGGTA -ACGGAACTGTTCCGTTCATGCCTA -ACGGAACTGTTCCGTTCACCACTA -ACGGAACTGTTCCGTTCAGGAGTA -ACGGAACTGTTCCGTTCATCGTCT -ACGGAACTGTTCCGTTCATGCACT -ACGGAACTGTTCCGTTCACTGACT -ACGGAACTGTTCCGTTCACAACCT -ACGGAACTGTTCCGTTCAGCTACT -ACGGAACTGTTCCGTTCAGGATCT -ACGGAACTGTTCCGTTCAAAGGCT -ACGGAACTGTTCCGTTCATCAACC -ACGGAACTGTTCCGTTCATGTTCC -ACGGAACTGTTCCGTTCAATTCCC -ACGGAACTGTTCCGTTCATTCTCG -ACGGAACTGTTCCGTTCATAGACG -ACGGAACTGTTCCGTTCAGTAACG -ACGGAACTGTTCCGTTCAACTTCG -ACGGAACTGTTCCGTTCATACGCA -ACGGAACTGTTCCGTTCACTTGCA -ACGGAACTGTTCCGTTCACGAACA -ACGGAACTGTTCCGTTCACAGTCA -ACGGAACTGTTCCGTTCAGATCCA -ACGGAACTGTTCCGTTCAACGACA -ACGGAACTGTTCCGTTCAAGCTCA -ACGGAACTGTTCCGTTCATCACGT -ACGGAACTGTTCCGTTCACGTAGT -ACGGAACTGTTCCGTTCAGTCAGT -ACGGAACTGTTCCGTTCAGAAGGT -ACGGAACTGTTCCGTTCAAACCGT -ACGGAACTGTTCCGTTCATTGTGC -ACGGAACTGTTCCGTTCACTAAGC -ACGGAACTGTTCCGTTCAACTAGC -ACGGAACTGTTCCGTTCAAGATGC -ACGGAACTGTTCCGTTCATGAAGG -ACGGAACTGTTCCGTTCACAATGG -ACGGAACTGTTCCGTTCAATGAGG -ACGGAACTGTTCCGTTCAAATGGG -ACGGAACTGTTCCGTTCATCCTGA -ACGGAACTGTTCCGTTCATAGCGA -ACGGAACTGTTCCGTTCACACAGA -ACGGAACTGTTCCGTTCAGCAAGA -ACGGAACTGTTCCGTTCAGGTTGA -ACGGAACTGTTCCGTTCATCCGAT -ACGGAACTGTTCCGTTCATGGCAT -ACGGAACTGTTCCGTTCACGAGAT -ACGGAACTGTTCCGTTCATACCAC -ACGGAACTGTTCCGTTCACAGAAC -ACGGAACTGTTCCGTTCAGTCTAC -ACGGAACTGTTCCGTTCAACGTAC -ACGGAACTGTTCCGTTCAAGTGAC -ACGGAACTGTTCCGTTCACTGTAG -ACGGAACTGTTCCGTTCACCTAAG -ACGGAACTGTTCCGTTCAGTTCAG -ACGGAACTGTTCCGTTCAGCATAG -ACGGAACTGTTCCGTTCAGACAAG -ACGGAACTGTTCCGTTCAAAGCAG -ACGGAACTGTTCCGTTCACGTCAA -ACGGAACTGTTCCGTTCAGCTGAA -ACGGAACTGTTCCGTTCAAGTACG -ACGGAACTGTTCCGTTCAATCCGA -ACGGAACTGTTCCGTTCAATGGGA -ACGGAACTGTTCCGTTCAGTGCAA -ACGGAACTGTTCCGTTCAGAGGAA -ACGGAACTGTTCCGTTCACAGGTA -ACGGAACTGTTCCGTTCAGACTCT -ACGGAACTGTTCCGTTCAAGTCCT -ACGGAACTGTTCCGTTCATAAGCC -ACGGAACTGTTCCGTTCAATAGCC -ACGGAACTGTTCCGTTCATAACCG -ACGGAACTGTTCCGTTCAATGCCA -ACGGAACTGTTCAGTCGTGGAAAC -ACGGAACTGTTCAGTCGTAACACC -ACGGAACTGTTCAGTCGTATCGAG -ACGGAACTGTTCAGTCGTCTCCTT -ACGGAACTGTTCAGTCGTCCTGTT -ACGGAACTGTTCAGTCGTCGGTTT -ACGGAACTGTTCAGTCGTGTGGTT -ACGGAACTGTTCAGTCGTGCCTTT -ACGGAACTGTTCAGTCGTGGTCTT -ACGGAACTGTTCAGTCGTACGCTT -ACGGAACTGTTCAGTCGTAGCGTT -ACGGAACTGTTCAGTCGTTTCGTC -ACGGAACTGTTCAGTCGTTCTCTC -ACGGAACTGTTCAGTCGTTGGATC -ACGGAACTGTTCAGTCGTCACTTC -ACGGAACTGTTCAGTCGTGTACTC -ACGGAACTGTTCAGTCGTGATGTC -ACGGAACTGTTCAGTCGTACAGTC -ACGGAACTGTTCAGTCGTTTGCTG -ACGGAACTGTTCAGTCGTTCCATG -ACGGAACTGTTCAGTCGTTGTGTG -ACGGAACTGTTCAGTCGTCTAGTG -ACGGAACTGTTCAGTCGTCATCTG -ACGGAACTGTTCAGTCGTGAGTTG -ACGGAACTGTTCAGTCGTAGACTG -ACGGAACTGTTCAGTCGTTCGGTA -ACGGAACTGTTCAGTCGTTGCCTA -ACGGAACTGTTCAGTCGTCCACTA -ACGGAACTGTTCAGTCGTGGAGTA -ACGGAACTGTTCAGTCGTTCGTCT -ACGGAACTGTTCAGTCGTTGCACT -ACGGAACTGTTCAGTCGTCTGACT -ACGGAACTGTTCAGTCGTCAACCT -ACGGAACTGTTCAGTCGTGCTACT -ACGGAACTGTTCAGTCGTGGATCT -ACGGAACTGTTCAGTCGTAAGGCT -ACGGAACTGTTCAGTCGTTCAACC -ACGGAACTGTTCAGTCGTTGTTCC -ACGGAACTGTTCAGTCGTATTCCC -ACGGAACTGTTCAGTCGTTTCTCG -ACGGAACTGTTCAGTCGTTAGACG -ACGGAACTGTTCAGTCGTGTAACG -ACGGAACTGTTCAGTCGTACTTCG -ACGGAACTGTTCAGTCGTTACGCA -ACGGAACTGTTCAGTCGTCTTGCA -ACGGAACTGTTCAGTCGTCGAACA -ACGGAACTGTTCAGTCGTCAGTCA -ACGGAACTGTTCAGTCGTGATCCA -ACGGAACTGTTCAGTCGTACGACA -ACGGAACTGTTCAGTCGTAGCTCA -ACGGAACTGTTCAGTCGTTCACGT -ACGGAACTGTTCAGTCGTCGTAGT -ACGGAACTGTTCAGTCGTGTCAGT -ACGGAACTGTTCAGTCGTGAAGGT -ACGGAACTGTTCAGTCGTAACCGT -ACGGAACTGTTCAGTCGTTTGTGC -ACGGAACTGTTCAGTCGTCTAAGC -ACGGAACTGTTCAGTCGTACTAGC -ACGGAACTGTTCAGTCGTAGATGC -ACGGAACTGTTCAGTCGTTGAAGG -ACGGAACTGTTCAGTCGTCAATGG -ACGGAACTGTTCAGTCGTATGAGG -ACGGAACTGTTCAGTCGTAATGGG -ACGGAACTGTTCAGTCGTTCCTGA -ACGGAACTGTTCAGTCGTTAGCGA -ACGGAACTGTTCAGTCGTCACAGA -ACGGAACTGTTCAGTCGTGCAAGA -ACGGAACTGTTCAGTCGTGGTTGA -ACGGAACTGTTCAGTCGTTCCGAT -ACGGAACTGTTCAGTCGTTGGCAT -ACGGAACTGTTCAGTCGTCGAGAT -ACGGAACTGTTCAGTCGTTACCAC -ACGGAACTGTTCAGTCGTCAGAAC -ACGGAACTGTTCAGTCGTGTCTAC -ACGGAACTGTTCAGTCGTACGTAC -ACGGAACTGTTCAGTCGTAGTGAC -ACGGAACTGTTCAGTCGTCTGTAG -ACGGAACTGTTCAGTCGTCCTAAG -ACGGAACTGTTCAGTCGTGTTCAG -ACGGAACTGTTCAGTCGTGCATAG -ACGGAACTGTTCAGTCGTGACAAG -ACGGAACTGTTCAGTCGTAAGCAG -ACGGAACTGTTCAGTCGTCGTCAA -ACGGAACTGTTCAGTCGTGCTGAA -ACGGAACTGTTCAGTCGTAGTACG -ACGGAACTGTTCAGTCGTATCCGA -ACGGAACTGTTCAGTCGTATGGGA -ACGGAACTGTTCAGTCGTGTGCAA -ACGGAACTGTTCAGTCGTGAGGAA -ACGGAACTGTTCAGTCGTCAGGTA -ACGGAACTGTTCAGTCGTGACTCT -ACGGAACTGTTCAGTCGTAGTCCT -ACGGAACTGTTCAGTCGTTAAGCC -ACGGAACTGTTCAGTCGTATAGCC -ACGGAACTGTTCAGTCGTTAACCG -ACGGAACTGTTCAGTCGTATGCCA -ACGGAACTGTTCAGTGTCGGAAAC -ACGGAACTGTTCAGTGTCAACACC -ACGGAACTGTTCAGTGTCATCGAG -ACGGAACTGTTCAGTGTCCTCCTT -ACGGAACTGTTCAGTGTCCCTGTT -ACGGAACTGTTCAGTGTCCGGTTT -ACGGAACTGTTCAGTGTCGTGGTT -ACGGAACTGTTCAGTGTCGCCTTT -ACGGAACTGTTCAGTGTCGGTCTT -ACGGAACTGTTCAGTGTCACGCTT -ACGGAACTGTTCAGTGTCAGCGTT -ACGGAACTGTTCAGTGTCTTCGTC -ACGGAACTGTTCAGTGTCTCTCTC -ACGGAACTGTTCAGTGTCTGGATC -ACGGAACTGTTCAGTGTCCACTTC -ACGGAACTGTTCAGTGTCGTACTC -ACGGAACTGTTCAGTGTCGATGTC -ACGGAACTGTTCAGTGTCACAGTC -ACGGAACTGTTCAGTGTCTTGCTG -ACGGAACTGTTCAGTGTCTCCATG -ACGGAACTGTTCAGTGTCTGTGTG -ACGGAACTGTTCAGTGTCCTAGTG -ACGGAACTGTTCAGTGTCCATCTG -ACGGAACTGTTCAGTGTCGAGTTG -ACGGAACTGTTCAGTGTCAGACTG -ACGGAACTGTTCAGTGTCTCGGTA -ACGGAACTGTTCAGTGTCTGCCTA -ACGGAACTGTTCAGTGTCCCACTA -ACGGAACTGTTCAGTGTCGGAGTA -ACGGAACTGTTCAGTGTCTCGTCT -ACGGAACTGTTCAGTGTCTGCACT -ACGGAACTGTTCAGTGTCCTGACT -ACGGAACTGTTCAGTGTCCAACCT -ACGGAACTGTTCAGTGTCGCTACT -ACGGAACTGTTCAGTGTCGGATCT -ACGGAACTGTTCAGTGTCAAGGCT -ACGGAACTGTTCAGTGTCTCAACC -ACGGAACTGTTCAGTGTCTGTTCC -ACGGAACTGTTCAGTGTCATTCCC -ACGGAACTGTTCAGTGTCTTCTCG -ACGGAACTGTTCAGTGTCTAGACG -ACGGAACTGTTCAGTGTCGTAACG -ACGGAACTGTTCAGTGTCACTTCG -ACGGAACTGTTCAGTGTCTACGCA -ACGGAACTGTTCAGTGTCCTTGCA -ACGGAACTGTTCAGTGTCCGAACA -ACGGAACTGTTCAGTGTCCAGTCA -ACGGAACTGTTCAGTGTCGATCCA -ACGGAACTGTTCAGTGTCACGACA -ACGGAACTGTTCAGTGTCAGCTCA -ACGGAACTGTTCAGTGTCTCACGT -ACGGAACTGTTCAGTGTCCGTAGT -ACGGAACTGTTCAGTGTCGTCAGT -ACGGAACTGTTCAGTGTCGAAGGT -ACGGAACTGTTCAGTGTCAACCGT -ACGGAACTGTTCAGTGTCTTGTGC -ACGGAACTGTTCAGTGTCCTAAGC -ACGGAACTGTTCAGTGTCACTAGC -ACGGAACTGTTCAGTGTCAGATGC -ACGGAACTGTTCAGTGTCTGAAGG -ACGGAACTGTTCAGTGTCCAATGG -ACGGAACTGTTCAGTGTCATGAGG -ACGGAACTGTTCAGTGTCAATGGG -ACGGAACTGTTCAGTGTCTCCTGA -ACGGAACTGTTCAGTGTCTAGCGA -ACGGAACTGTTCAGTGTCCACAGA -ACGGAACTGTTCAGTGTCGCAAGA -ACGGAACTGTTCAGTGTCGGTTGA -ACGGAACTGTTCAGTGTCTCCGAT -ACGGAACTGTTCAGTGTCTGGCAT -ACGGAACTGTTCAGTGTCCGAGAT -ACGGAACTGTTCAGTGTCTACCAC -ACGGAACTGTTCAGTGTCCAGAAC -ACGGAACTGTTCAGTGTCGTCTAC -ACGGAACTGTTCAGTGTCACGTAC -ACGGAACTGTTCAGTGTCAGTGAC -ACGGAACTGTTCAGTGTCCTGTAG -ACGGAACTGTTCAGTGTCCCTAAG -ACGGAACTGTTCAGTGTCGTTCAG -ACGGAACTGTTCAGTGTCGCATAG -ACGGAACTGTTCAGTGTCGACAAG -ACGGAACTGTTCAGTGTCAAGCAG -ACGGAACTGTTCAGTGTCCGTCAA -ACGGAACTGTTCAGTGTCGCTGAA -ACGGAACTGTTCAGTGTCAGTACG -ACGGAACTGTTCAGTGTCATCCGA -ACGGAACTGTTCAGTGTCATGGGA -ACGGAACTGTTCAGTGTCGTGCAA -ACGGAACTGTTCAGTGTCGAGGAA -ACGGAACTGTTCAGTGTCCAGGTA -ACGGAACTGTTCAGTGTCGACTCT -ACGGAACTGTTCAGTGTCAGTCCT -ACGGAACTGTTCAGTGTCTAAGCC -ACGGAACTGTTCAGTGTCATAGCC -ACGGAACTGTTCAGTGTCTAACCG -ACGGAACTGTTCAGTGTCATGCCA -ACGGAACTGTTCGGTGAAGGAAAC -ACGGAACTGTTCGGTGAAAACACC -ACGGAACTGTTCGGTGAAATCGAG -ACGGAACTGTTCGGTGAACTCCTT -ACGGAACTGTTCGGTGAACCTGTT -ACGGAACTGTTCGGTGAACGGTTT -ACGGAACTGTTCGGTGAAGTGGTT -ACGGAACTGTTCGGTGAAGCCTTT -ACGGAACTGTTCGGTGAAGGTCTT -ACGGAACTGTTCGGTGAAACGCTT -ACGGAACTGTTCGGTGAAAGCGTT -ACGGAACTGTTCGGTGAATTCGTC -ACGGAACTGTTCGGTGAATCTCTC -ACGGAACTGTTCGGTGAATGGATC -ACGGAACTGTTCGGTGAACACTTC -ACGGAACTGTTCGGTGAAGTACTC -ACGGAACTGTTCGGTGAAGATGTC -ACGGAACTGTTCGGTGAAACAGTC -ACGGAACTGTTCGGTGAATTGCTG -ACGGAACTGTTCGGTGAATCCATG -ACGGAACTGTTCGGTGAATGTGTG -ACGGAACTGTTCGGTGAACTAGTG -ACGGAACTGTTCGGTGAACATCTG -ACGGAACTGTTCGGTGAAGAGTTG -ACGGAACTGTTCGGTGAAAGACTG -ACGGAACTGTTCGGTGAATCGGTA -ACGGAACTGTTCGGTGAATGCCTA -ACGGAACTGTTCGGTGAACCACTA -ACGGAACTGTTCGGTGAAGGAGTA -ACGGAACTGTTCGGTGAATCGTCT -ACGGAACTGTTCGGTGAATGCACT -ACGGAACTGTTCGGTGAACTGACT -ACGGAACTGTTCGGTGAACAACCT -ACGGAACTGTTCGGTGAAGCTACT -ACGGAACTGTTCGGTGAAGGATCT -ACGGAACTGTTCGGTGAAAAGGCT -ACGGAACTGTTCGGTGAATCAACC -ACGGAACTGTTCGGTGAATGTTCC -ACGGAACTGTTCGGTGAAATTCCC -ACGGAACTGTTCGGTGAATTCTCG -ACGGAACTGTTCGGTGAATAGACG -ACGGAACTGTTCGGTGAAGTAACG -ACGGAACTGTTCGGTGAAACTTCG -ACGGAACTGTTCGGTGAATACGCA -ACGGAACTGTTCGGTGAACTTGCA -ACGGAACTGTTCGGTGAACGAACA -ACGGAACTGTTCGGTGAACAGTCA -ACGGAACTGTTCGGTGAAGATCCA -ACGGAACTGTTCGGTGAAACGACA -ACGGAACTGTTCGGTGAAAGCTCA -ACGGAACTGTTCGGTGAATCACGT -ACGGAACTGTTCGGTGAACGTAGT -ACGGAACTGTTCGGTGAAGTCAGT -ACGGAACTGTTCGGTGAAGAAGGT -ACGGAACTGTTCGGTGAAAACCGT -ACGGAACTGTTCGGTGAATTGTGC -ACGGAACTGTTCGGTGAACTAAGC -ACGGAACTGTTCGGTGAAACTAGC -ACGGAACTGTTCGGTGAAAGATGC -ACGGAACTGTTCGGTGAATGAAGG -ACGGAACTGTTCGGTGAACAATGG -ACGGAACTGTTCGGTGAAATGAGG -ACGGAACTGTTCGGTGAAAATGGG -ACGGAACTGTTCGGTGAATCCTGA -ACGGAACTGTTCGGTGAATAGCGA -ACGGAACTGTTCGGTGAACACAGA -ACGGAACTGTTCGGTGAAGCAAGA -ACGGAACTGTTCGGTGAAGGTTGA -ACGGAACTGTTCGGTGAATCCGAT -ACGGAACTGTTCGGTGAATGGCAT -ACGGAACTGTTCGGTGAACGAGAT -ACGGAACTGTTCGGTGAATACCAC -ACGGAACTGTTCGGTGAACAGAAC -ACGGAACTGTTCGGTGAAGTCTAC -ACGGAACTGTTCGGTGAAACGTAC -ACGGAACTGTTCGGTGAAAGTGAC -ACGGAACTGTTCGGTGAACTGTAG -ACGGAACTGTTCGGTGAACCTAAG -ACGGAACTGTTCGGTGAAGTTCAG -ACGGAACTGTTCGGTGAAGCATAG -ACGGAACTGTTCGGTGAAGACAAG -ACGGAACTGTTCGGTGAAAAGCAG -ACGGAACTGTTCGGTGAACGTCAA -ACGGAACTGTTCGGTGAAGCTGAA -ACGGAACTGTTCGGTGAAAGTACG -ACGGAACTGTTCGGTGAAATCCGA -ACGGAACTGTTCGGTGAAATGGGA -ACGGAACTGTTCGGTGAAGTGCAA -ACGGAACTGTTCGGTGAAGAGGAA -ACGGAACTGTTCGGTGAACAGGTA -ACGGAACTGTTCGGTGAAGACTCT -ACGGAACTGTTCGGTGAAAGTCCT -ACGGAACTGTTCGGTGAATAAGCC -ACGGAACTGTTCGGTGAAATAGCC -ACGGAACTGTTCGGTGAATAACCG -ACGGAACTGTTCGGTGAAATGCCA -ACGGAACTGTTCCGTAACGGAAAC -ACGGAACTGTTCCGTAACAACACC -ACGGAACTGTTCCGTAACATCGAG -ACGGAACTGTTCCGTAACCTCCTT -ACGGAACTGTTCCGTAACCCTGTT -ACGGAACTGTTCCGTAACCGGTTT -ACGGAACTGTTCCGTAACGTGGTT -ACGGAACTGTTCCGTAACGCCTTT -ACGGAACTGTTCCGTAACGGTCTT -ACGGAACTGTTCCGTAACACGCTT -ACGGAACTGTTCCGTAACAGCGTT -ACGGAACTGTTCCGTAACTTCGTC -ACGGAACTGTTCCGTAACTCTCTC -ACGGAACTGTTCCGTAACTGGATC -ACGGAACTGTTCCGTAACCACTTC -ACGGAACTGTTCCGTAACGTACTC -ACGGAACTGTTCCGTAACGATGTC -ACGGAACTGTTCCGTAACACAGTC -ACGGAACTGTTCCGTAACTTGCTG -ACGGAACTGTTCCGTAACTCCATG -ACGGAACTGTTCCGTAACTGTGTG -ACGGAACTGTTCCGTAACCTAGTG -ACGGAACTGTTCCGTAACCATCTG -ACGGAACTGTTCCGTAACGAGTTG -ACGGAACTGTTCCGTAACAGACTG -ACGGAACTGTTCCGTAACTCGGTA -ACGGAACTGTTCCGTAACTGCCTA -ACGGAACTGTTCCGTAACCCACTA -ACGGAACTGTTCCGTAACGGAGTA -ACGGAACTGTTCCGTAACTCGTCT -ACGGAACTGTTCCGTAACTGCACT -ACGGAACTGTTCCGTAACCTGACT -ACGGAACTGTTCCGTAACCAACCT -ACGGAACTGTTCCGTAACGCTACT -ACGGAACTGTTCCGTAACGGATCT -ACGGAACTGTTCCGTAACAAGGCT -ACGGAACTGTTCCGTAACTCAACC -ACGGAACTGTTCCGTAACTGTTCC -ACGGAACTGTTCCGTAACATTCCC -ACGGAACTGTTCCGTAACTTCTCG -ACGGAACTGTTCCGTAACTAGACG -ACGGAACTGTTCCGTAACGTAACG -ACGGAACTGTTCCGTAACACTTCG -ACGGAACTGTTCCGTAACTACGCA -ACGGAACTGTTCCGTAACCTTGCA -ACGGAACTGTTCCGTAACCGAACA -ACGGAACTGTTCCGTAACCAGTCA -ACGGAACTGTTCCGTAACGATCCA -ACGGAACTGTTCCGTAACACGACA -ACGGAACTGTTCCGTAACAGCTCA -ACGGAACTGTTCCGTAACTCACGT -ACGGAACTGTTCCGTAACCGTAGT -ACGGAACTGTTCCGTAACGTCAGT -ACGGAACTGTTCCGTAACGAAGGT -ACGGAACTGTTCCGTAACAACCGT -ACGGAACTGTTCCGTAACTTGTGC -ACGGAACTGTTCCGTAACCTAAGC -ACGGAACTGTTCCGTAACACTAGC -ACGGAACTGTTCCGTAACAGATGC -ACGGAACTGTTCCGTAACTGAAGG -ACGGAACTGTTCCGTAACCAATGG -ACGGAACTGTTCCGTAACATGAGG -ACGGAACTGTTCCGTAACAATGGG -ACGGAACTGTTCCGTAACTCCTGA -ACGGAACTGTTCCGTAACTAGCGA -ACGGAACTGTTCCGTAACCACAGA -ACGGAACTGTTCCGTAACGCAAGA -ACGGAACTGTTCCGTAACGGTTGA -ACGGAACTGTTCCGTAACTCCGAT -ACGGAACTGTTCCGTAACTGGCAT -ACGGAACTGTTCCGTAACCGAGAT -ACGGAACTGTTCCGTAACTACCAC -ACGGAACTGTTCCGTAACCAGAAC -ACGGAACTGTTCCGTAACGTCTAC -ACGGAACTGTTCCGTAACACGTAC -ACGGAACTGTTCCGTAACAGTGAC -ACGGAACTGTTCCGTAACCTGTAG -ACGGAACTGTTCCGTAACCCTAAG -ACGGAACTGTTCCGTAACGTTCAG -ACGGAACTGTTCCGTAACGCATAG -ACGGAACTGTTCCGTAACGACAAG -ACGGAACTGTTCCGTAACAAGCAG -ACGGAACTGTTCCGTAACCGTCAA -ACGGAACTGTTCCGTAACGCTGAA -ACGGAACTGTTCCGTAACAGTACG -ACGGAACTGTTCCGTAACATCCGA -ACGGAACTGTTCCGTAACATGGGA -ACGGAACTGTTCCGTAACGTGCAA -ACGGAACTGTTCCGTAACGAGGAA -ACGGAACTGTTCCGTAACCAGGTA -ACGGAACTGTTCCGTAACGACTCT -ACGGAACTGTTCCGTAACAGTCCT -ACGGAACTGTTCCGTAACTAAGCC -ACGGAACTGTTCCGTAACATAGCC -ACGGAACTGTTCCGTAACTAACCG -ACGGAACTGTTCCGTAACATGCCA -ACGGAACTGTTCTGCTTGGGAAAC -ACGGAACTGTTCTGCTTGAACACC -ACGGAACTGTTCTGCTTGATCGAG -ACGGAACTGTTCTGCTTGCTCCTT -ACGGAACTGTTCTGCTTGCCTGTT -ACGGAACTGTTCTGCTTGCGGTTT -ACGGAACTGTTCTGCTTGGTGGTT -ACGGAACTGTTCTGCTTGGCCTTT -ACGGAACTGTTCTGCTTGGGTCTT -ACGGAACTGTTCTGCTTGACGCTT -ACGGAACTGTTCTGCTTGAGCGTT -ACGGAACTGTTCTGCTTGTTCGTC -ACGGAACTGTTCTGCTTGTCTCTC -ACGGAACTGTTCTGCTTGTGGATC -ACGGAACTGTTCTGCTTGCACTTC -ACGGAACTGTTCTGCTTGGTACTC -ACGGAACTGTTCTGCTTGGATGTC -ACGGAACTGTTCTGCTTGACAGTC -ACGGAACTGTTCTGCTTGTTGCTG -ACGGAACTGTTCTGCTTGTCCATG -ACGGAACTGTTCTGCTTGTGTGTG -ACGGAACTGTTCTGCTTGCTAGTG -ACGGAACTGTTCTGCTTGCATCTG -ACGGAACTGTTCTGCTTGGAGTTG -ACGGAACTGTTCTGCTTGAGACTG -ACGGAACTGTTCTGCTTGTCGGTA -ACGGAACTGTTCTGCTTGTGCCTA -ACGGAACTGTTCTGCTTGCCACTA -ACGGAACTGTTCTGCTTGGGAGTA -ACGGAACTGTTCTGCTTGTCGTCT -ACGGAACTGTTCTGCTTGTGCACT -ACGGAACTGTTCTGCTTGCTGACT -ACGGAACTGTTCTGCTTGCAACCT -ACGGAACTGTTCTGCTTGGCTACT -ACGGAACTGTTCTGCTTGGGATCT -ACGGAACTGTTCTGCTTGAAGGCT -ACGGAACTGTTCTGCTTGTCAACC -ACGGAACTGTTCTGCTTGTGTTCC -ACGGAACTGTTCTGCTTGATTCCC -ACGGAACTGTTCTGCTTGTTCTCG -ACGGAACTGTTCTGCTTGTAGACG -ACGGAACTGTTCTGCTTGGTAACG -ACGGAACTGTTCTGCTTGACTTCG -ACGGAACTGTTCTGCTTGTACGCA -ACGGAACTGTTCTGCTTGCTTGCA -ACGGAACTGTTCTGCTTGCGAACA -ACGGAACTGTTCTGCTTGCAGTCA -ACGGAACTGTTCTGCTTGGATCCA -ACGGAACTGTTCTGCTTGACGACA -ACGGAACTGTTCTGCTTGAGCTCA -ACGGAACTGTTCTGCTTGTCACGT -ACGGAACTGTTCTGCTTGCGTAGT -ACGGAACTGTTCTGCTTGGTCAGT -ACGGAACTGTTCTGCTTGGAAGGT -ACGGAACTGTTCTGCTTGAACCGT -ACGGAACTGTTCTGCTTGTTGTGC -ACGGAACTGTTCTGCTTGCTAAGC -ACGGAACTGTTCTGCTTGACTAGC -ACGGAACTGTTCTGCTTGAGATGC -ACGGAACTGTTCTGCTTGTGAAGG -ACGGAACTGTTCTGCTTGCAATGG -ACGGAACTGTTCTGCTTGATGAGG -ACGGAACTGTTCTGCTTGAATGGG -ACGGAACTGTTCTGCTTGTCCTGA -ACGGAACTGTTCTGCTTGTAGCGA -ACGGAACTGTTCTGCTTGCACAGA -ACGGAACTGTTCTGCTTGGCAAGA -ACGGAACTGTTCTGCTTGGGTTGA -ACGGAACTGTTCTGCTTGTCCGAT -ACGGAACTGTTCTGCTTGTGGCAT -ACGGAACTGTTCTGCTTGCGAGAT -ACGGAACTGTTCTGCTTGTACCAC -ACGGAACTGTTCTGCTTGCAGAAC -ACGGAACTGTTCTGCTTGGTCTAC -ACGGAACTGTTCTGCTTGACGTAC -ACGGAACTGTTCTGCTTGAGTGAC -ACGGAACTGTTCTGCTTGCTGTAG -ACGGAACTGTTCTGCTTGCCTAAG -ACGGAACTGTTCTGCTTGGTTCAG -ACGGAACTGTTCTGCTTGGCATAG -ACGGAACTGTTCTGCTTGGACAAG -ACGGAACTGTTCTGCTTGAAGCAG -ACGGAACTGTTCTGCTTGCGTCAA -ACGGAACTGTTCTGCTTGGCTGAA -ACGGAACTGTTCTGCTTGAGTACG -ACGGAACTGTTCTGCTTGATCCGA -ACGGAACTGTTCTGCTTGATGGGA -ACGGAACTGTTCTGCTTGGTGCAA -ACGGAACTGTTCTGCTTGGAGGAA -ACGGAACTGTTCTGCTTGCAGGTA -ACGGAACTGTTCTGCTTGGACTCT -ACGGAACTGTTCTGCTTGAGTCCT -ACGGAACTGTTCTGCTTGTAAGCC -ACGGAACTGTTCTGCTTGATAGCC -ACGGAACTGTTCTGCTTGTAACCG -ACGGAACTGTTCTGCTTGATGCCA -ACGGAACTGTTCAGCCTAGGAAAC -ACGGAACTGTTCAGCCTAAACACC -ACGGAACTGTTCAGCCTAATCGAG -ACGGAACTGTTCAGCCTACTCCTT -ACGGAACTGTTCAGCCTACCTGTT -ACGGAACTGTTCAGCCTACGGTTT -ACGGAACTGTTCAGCCTAGTGGTT -ACGGAACTGTTCAGCCTAGCCTTT -ACGGAACTGTTCAGCCTAGGTCTT -ACGGAACTGTTCAGCCTAACGCTT -ACGGAACTGTTCAGCCTAAGCGTT -ACGGAACTGTTCAGCCTATTCGTC -ACGGAACTGTTCAGCCTATCTCTC -ACGGAACTGTTCAGCCTATGGATC -ACGGAACTGTTCAGCCTACACTTC -ACGGAACTGTTCAGCCTAGTACTC -ACGGAACTGTTCAGCCTAGATGTC -ACGGAACTGTTCAGCCTAACAGTC -ACGGAACTGTTCAGCCTATTGCTG -ACGGAACTGTTCAGCCTATCCATG -ACGGAACTGTTCAGCCTATGTGTG -ACGGAACTGTTCAGCCTACTAGTG -ACGGAACTGTTCAGCCTACATCTG -ACGGAACTGTTCAGCCTAGAGTTG -ACGGAACTGTTCAGCCTAAGACTG -ACGGAACTGTTCAGCCTATCGGTA -ACGGAACTGTTCAGCCTATGCCTA -ACGGAACTGTTCAGCCTACCACTA -ACGGAACTGTTCAGCCTAGGAGTA -ACGGAACTGTTCAGCCTATCGTCT -ACGGAACTGTTCAGCCTATGCACT -ACGGAACTGTTCAGCCTACTGACT -ACGGAACTGTTCAGCCTACAACCT -ACGGAACTGTTCAGCCTAGCTACT -ACGGAACTGTTCAGCCTAGGATCT -ACGGAACTGTTCAGCCTAAAGGCT -ACGGAACTGTTCAGCCTATCAACC -ACGGAACTGTTCAGCCTATGTTCC -ACGGAACTGTTCAGCCTAATTCCC -ACGGAACTGTTCAGCCTATTCTCG -ACGGAACTGTTCAGCCTATAGACG -ACGGAACTGTTCAGCCTAGTAACG -ACGGAACTGTTCAGCCTAACTTCG -ACGGAACTGTTCAGCCTATACGCA -ACGGAACTGTTCAGCCTACTTGCA -ACGGAACTGTTCAGCCTACGAACA -ACGGAACTGTTCAGCCTACAGTCA -ACGGAACTGTTCAGCCTAGATCCA -ACGGAACTGTTCAGCCTAACGACA -ACGGAACTGTTCAGCCTAAGCTCA -ACGGAACTGTTCAGCCTATCACGT -ACGGAACTGTTCAGCCTACGTAGT -ACGGAACTGTTCAGCCTAGTCAGT -ACGGAACTGTTCAGCCTAGAAGGT -ACGGAACTGTTCAGCCTAAACCGT -ACGGAACTGTTCAGCCTATTGTGC -ACGGAACTGTTCAGCCTACTAAGC -ACGGAACTGTTCAGCCTAACTAGC -ACGGAACTGTTCAGCCTAAGATGC -ACGGAACTGTTCAGCCTATGAAGG -ACGGAACTGTTCAGCCTACAATGG -ACGGAACTGTTCAGCCTAATGAGG -ACGGAACTGTTCAGCCTAAATGGG -ACGGAACTGTTCAGCCTATCCTGA -ACGGAACTGTTCAGCCTATAGCGA -ACGGAACTGTTCAGCCTACACAGA -ACGGAACTGTTCAGCCTAGCAAGA -ACGGAACTGTTCAGCCTAGGTTGA -ACGGAACTGTTCAGCCTATCCGAT -ACGGAACTGTTCAGCCTATGGCAT -ACGGAACTGTTCAGCCTACGAGAT -ACGGAACTGTTCAGCCTATACCAC -ACGGAACTGTTCAGCCTACAGAAC -ACGGAACTGTTCAGCCTAGTCTAC -ACGGAACTGTTCAGCCTAACGTAC -ACGGAACTGTTCAGCCTAAGTGAC -ACGGAACTGTTCAGCCTACTGTAG -ACGGAACTGTTCAGCCTACCTAAG -ACGGAACTGTTCAGCCTAGTTCAG -ACGGAACTGTTCAGCCTAGCATAG -ACGGAACTGTTCAGCCTAGACAAG -ACGGAACTGTTCAGCCTAAAGCAG -ACGGAACTGTTCAGCCTACGTCAA -ACGGAACTGTTCAGCCTAGCTGAA -ACGGAACTGTTCAGCCTAAGTACG -ACGGAACTGTTCAGCCTAATCCGA -ACGGAACTGTTCAGCCTAATGGGA -ACGGAACTGTTCAGCCTAGTGCAA -ACGGAACTGTTCAGCCTAGAGGAA -ACGGAACTGTTCAGCCTACAGGTA -ACGGAACTGTTCAGCCTAGACTCT -ACGGAACTGTTCAGCCTAAGTCCT -ACGGAACTGTTCAGCCTATAAGCC -ACGGAACTGTTCAGCCTAATAGCC -ACGGAACTGTTCAGCCTATAACCG -ACGGAACTGTTCAGCCTAATGCCA -ACGGAACTGTTCAGCACTGGAAAC -ACGGAACTGTTCAGCACTAACACC -ACGGAACTGTTCAGCACTATCGAG -ACGGAACTGTTCAGCACTCTCCTT -ACGGAACTGTTCAGCACTCCTGTT -ACGGAACTGTTCAGCACTCGGTTT -ACGGAACTGTTCAGCACTGTGGTT -ACGGAACTGTTCAGCACTGCCTTT -ACGGAACTGTTCAGCACTGGTCTT -ACGGAACTGTTCAGCACTACGCTT -ACGGAACTGTTCAGCACTAGCGTT -ACGGAACTGTTCAGCACTTTCGTC -ACGGAACTGTTCAGCACTTCTCTC -ACGGAACTGTTCAGCACTTGGATC -ACGGAACTGTTCAGCACTCACTTC -ACGGAACTGTTCAGCACTGTACTC -ACGGAACTGTTCAGCACTGATGTC -ACGGAACTGTTCAGCACTACAGTC -ACGGAACTGTTCAGCACTTTGCTG -ACGGAACTGTTCAGCACTTCCATG -ACGGAACTGTTCAGCACTTGTGTG -ACGGAACTGTTCAGCACTCTAGTG -ACGGAACTGTTCAGCACTCATCTG -ACGGAACTGTTCAGCACTGAGTTG -ACGGAACTGTTCAGCACTAGACTG -ACGGAACTGTTCAGCACTTCGGTA -ACGGAACTGTTCAGCACTTGCCTA -ACGGAACTGTTCAGCACTCCACTA -ACGGAACTGTTCAGCACTGGAGTA -ACGGAACTGTTCAGCACTTCGTCT -ACGGAACTGTTCAGCACTTGCACT -ACGGAACTGTTCAGCACTCTGACT -ACGGAACTGTTCAGCACTCAACCT -ACGGAACTGTTCAGCACTGCTACT -ACGGAACTGTTCAGCACTGGATCT -ACGGAACTGTTCAGCACTAAGGCT -ACGGAACTGTTCAGCACTTCAACC -ACGGAACTGTTCAGCACTTGTTCC -ACGGAACTGTTCAGCACTATTCCC -ACGGAACTGTTCAGCACTTTCTCG -ACGGAACTGTTCAGCACTTAGACG -ACGGAACTGTTCAGCACTGTAACG -ACGGAACTGTTCAGCACTACTTCG -ACGGAACTGTTCAGCACTTACGCA -ACGGAACTGTTCAGCACTCTTGCA -ACGGAACTGTTCAGCACTCGAACA -ACGGAACTGTTCAGCACTCAGTCA -ACGGAACTGTTCAGCACTGATCCA -ACGGAACTGTTCAGCACTACGACA -ACGGAACTGTTCAGCACTAGCTCA -ACGGAACTGTTCAGCACTTCACGT -ACGGAACTGTTCAGCACTCGTAGT -ACGGAACTGTTCAGCACTGTCAGT -ACGGAACTGTTCAGCACTGAAGGT -ACGGAACTGTTCAGCACTAACCGT -ACGGAACTGTTCAGCACTTTGTGC -ACGGAACTGTTCAGCACTCTAAGC -ACGGAACTGTTCAGCACTACTAGC -ACGGAACTGTTCAGCACTAGATGC -ACGGAACTGTTCAGCACTTGAAGG -ACGGAACTGTTCAGCACTCAATGG -ACGGAACTGTTCAGCACTATGAGG -ACGGAACTGTTCAGCACTAATGGG -ACGGAACTGTTCAGCACTTCCTGA -ACGGAACTGTTCAGCACTTAGCGA -ACGGAACTGTTCAGCACTCACAGA -ACGGAACTGTTCAGCACTGCAAGA -ACGGAACTGTTCAGCACTGGTTGA -ACGGAACTGTTCAGCACTTCCGAT -ACGGAACTGTTCAGCACTTGGCAT -ACGGAACTGTTCAGCACTCGAGAT -ACGGAACTGTTCAGCACTTACCAC -ACGGAACTGTTCAGCACTCAGAAC -ACGGAACTGTTCAGCACTGTCTAC -ACGGAACTGTTCAGCACTACGTAC -ACGGAACTGTTCAGCACTAGTGAC -ACGGAACTGTTCAGCACTCTGTAG -ACGGAACTGTTCAGCACTCCTAAG -ACGGAACTGTTCAGCACTGTTCAG -ACGGAACTGTTCAGCACTGCATAG -ACGGAACTGTTCAGCACTGACAAG -ACGGAACTGTTCAGCACTAAGCAG -ACGGAACTGTTCAGCACTCGTCAA -ACGGAACTGTTCAGCACTGCTGAA -ACGGAACTGTTCAGCACTAGTACG -ACGGAACTGTTCAGCACTATCCGA -ACGGAACTGTTCAGCACTATGGGA -ACGGAACTGTTCAGCACTGTGCAA -ACGGAACTGTTCAGCACTGAGGAA -ACGGAACTGTTCAGCACTCAGGTA -ACGGAACTGTTCAGCACTGACTCT -ACGGAACTGTTCAGCACTAGTCCT -ACGGAACTGTTCAGCACTTAAGCC -ACGGAACTGTTCAGCACTATAGCC -ACGGAACTGTTCAGCACTTAACCG -ACGGAACTGTTCAGCACTATGCCA -ACGGAACTGTTCTGCAGAGGAAAC -ACGGAACTGTTCTGCAGAAACACC -ACGGAACTGTTCTGCAGAATCGAG -ACGGAACTGTTCTGCAGACTCCTT -ACGGAACTGTTCTGCAGACCTGTT -ACGGAACTGTTCTGCAGACGGTTT -ACGGAACTGTTCTGCAGAGTGGTT -ACGGAACTGTTCTGCAGAGCCTTT -ACGGAACTGTTCTGCAGAGGTCTT -ACGGAACTGTTCTGCAGAACGCTT -ACGGAACTGTTCTGCAGAAGCGTT -ACGGAACTGTTCTGCAGATTCGTC -ACGGAACTGTTCTGCAGATCTCTC -ACGGAACTGTTCTGCAGATGGATC -ACGGAACTGTTCTGCAGACACTTC -ACGGAACTGTTCTGCAGAGTACTC -ACGGAACTGTTCTGCAGAGATGTC -ACGGAACTGTTCTGCAGAACAGTC -ACGGAACTGTTCTGCAGATTGCTG -ACGGAACTGTTCTGCAGATCCATG -ACGGAACTGTTCTGCAGATGTGTG -ACGGAACTGTTCTGCAGACTAGTG -ACGGAACTGTTCTGCAGACATCTG -ACGGAACTGTTCTGCAGAGAGTTG -ACGGAACTGTTCTGCAGAAGACTG -ACGGAACTGTTCTGCAGATCGGTA -ACGGAACTGTTCTGCAGATGCCTA -ACGGAACTGTTCTGCAGACCACTA -ACGGAACTGTTCTGCAGAGGAGTA -ACGGAACTGTTCTGCAGATCGTCT -ACGGAACTGTTCTGCAGATGCACT -ACGGAACTGTTCTGCAGACTGACT -ACGGAACTGTTCTGCAGACAACCT -ACGGAACTGTTCTGCAGAGCTACT -ACGGAACTGTTCTGCAGAGGATCT -ACGGAACTGTTCTGCAGAAAGGCT -ACGGAACTGTTCTGCAGATCAACC -ACGGAACTGTTCTGCAGATGTTCC -ACGGAACTGTTCTGCAGAATTCCC -ACGGAACTGTTCTGCAGATTCTCG -ACGGAACTGTTCTGCAGATAGACG -ACGGAACTGTTCTGCAGAGTAACG -ACGGAACTGTTCTGCAGAACTTCG -ACGGAACTGTTCTGCAGATACGCA -ACGGAACTGTTCTGCAGACTTGCA -ACGGAACTGTTCTGCAGACGAACA -ACGGAACTGTTCTGCAGACAGTCA -ACGGAACTGTTCTGCAGAGATCCA -ACGGAACTGTTCTGCAGAACGACA -ACGGAACTGTTCTGCAGAAGCTCA -ACGGAACTGTTCTGCAGATCACGT -ACGGAACTGTTCTGCAGACGTAGT -ACGGAACTGTTCTGCAGAGTCAGT -ACGGAACTGTTCTGCAGAGAAGGT -ACGGAACTGTTCTGCAGAAACCGT -ACGGAACTGTTCTGCAGATTGTGC -ACGGAACTGTTCTGCAGACTAAGC -ACGGAACTGTTCTGCAGAACTAGC -ACGGAACTGTTCTGCAGAAGATGC -ACGGAACTGTTCTGCAGATGAAGG -ACGGAACTGTTCTGCAGACAATGG -ACGGAACTGTTCTGCAGAATGAGG -ACGGAACTGTTCTGCAGAAATGGG -ACGGAACTGTTCTGCAGATCCTGA -ACGGAACTGTTCTGCAGATAGCGA -ACGGAACTGTTCTGCAGACACAGA -ACGGAACTGTTCTGCAGAGCAAGA -ACGGAACTGTTCTGCAGAGGTTGA -ACGGAACTGTTCTGCAGATCCGAT -ACGGAACTGTTCTGCAGATGGCAT -ACGGAACTGTTCTGCAGACGAGAT -ACGGAACTGTTCTGCAGATACCAC -ACGGAACTGTTCTGCAGACAGAAC -ACGGAACTGTTCTGCAGAGTCTAC -ACGGAACTGTTCTGCAGAACGTAC -ACGGAACTGTTCTGCAGAAGTGAC -ACGGAACTGTTCTGCAGACTGTAG -ACGGAACTGTTCTGCAGACCTAAG -ACGGAACTGTTCTGCAGAGTTCAG -ACGGAACTGTTCTGCAGAGCATAG -ACGGAACTGTTCTGCAGAGACAAG -ACGGAACTGTTCTGCAGAAAGCAG -ACGGAACTGTTCTGCAGACGTCAA -ACGGAACTGTTCTGCAGAGCTGAA -ACGGAACTGTTCTGCAGAAGTACG -ACGGAACTGTTCTGCAGAATCCGA -ACGGAACTGTTCTGCAGAATGGGA -ACGGAACTGTTCTGCAGAGTGCAA -ACGGAACTGTTCTGCAGAGAGGAA -ACGGAACTGTTCTGCAGACAGGTA -ACGGAACTGTTCTGCAGAGACTCT -ACGGAACTGTTCTGCAGAAGTCCT -ACGGAACTGTTCTGCAGATAAGCC -ACGGAACTGTTCTGCAGAATAGCC -ACGGAACTGTTCTGCAGATAACCG -ACGGAACTGTTCTGCAGAATGCCA -ACGGAACTGTTCAGGTGAGGAAAC -ACGGAACTGTTCAGGTGAAACACC -ACGGAACTGTTCAGGTGAATCGAG -ACGGAACTGTTCAGGTGACTCCTT -ACGGAACTGTTCAGGTGACCTGTT -ACGGAACTGTTCAGGTGACGGTTT -ACGGAACTGTTCAGGTGAGTGGTT -ACGGAACTGTTCAGGTGAGCCTTT -ACGGAACTGTTCAGGTGAGGTCTT -ACGGAACTGTTCAGGTGAACGCTT -ACGGAACTGTTCAGGTGAAGCGTT -ACGGAACTGTTCAGGTGATTCGTC -ACGGAACTGTTCAGGTGATCTCTC -ACGGAACTGTTCAGGTGATGGATC -ACGGAACTGTTCAGGTGACACTTC -ACGGAACTGTTCAGGTGAGTACTC -ACGGAACTGTTCAGGTGAGATGTC -ACGGAACTGTTCAGGTGAACAGTC -ACGGAACTGTTCAGGTGATTGCTG -ACGGAACTGTTCAGGTGATCCATG -ACGGAACTGTTCAGGTGATGTGTG -ACGGAACTGTTCAGGTGACTAGTG -ACGGAACTGTTCAGGTGACATCTG -ACGGAACTGTTCAGGTGAGAGTTG -ACGGAACTGTTCAGGTGAAGACTG -ACGGAACTGTTCAGGTGATCGGTA -ACGGAACTGTTCAGGTGATGCCTA -ACGGAACTGTTCAGGTGACCACTA -ACGGAACTGTTCAGGTGAGGAGTA -ACGGAACTGTTCAGGTGATCGTCT -ACGGAACTGTTCAGGTGATGCACT -ACGGAACTGTTCAGGTGACTGACT -ACGGAACTGTTCAGGTGACAACCT -ACGGAACTGTTCAGGTGAGCTACT -ACGGAACTGTTCAGGTGAGGATCT -ACGGAACTGTTCAGGTGAAAGGCT -ACGGAACTGTTCAGGTGATCAACC -ACGGAACTGTTCAGGTGATGTTCC -ACGGAACTGTTCAGGTGAATTCCC -ACGGAACTGTTCAGGTGATTCTCG -ACGGAACTGTTCAGGTGATAGACG -ACGGAACTGTTCAGGTGAGTAACG -ACGGAACTGTTCAGGTGAACTTCG -ACGGAACTGTTCAGGTGATACGCA -ACGGAACTGTTCAGGTGACTTGCA -ACGGAACTGTTCAGGTGACGAACA -ACGGAACTGTTCAGGTGACAGTCA -ACGGAACTGTTCAGGTGAGATCCA -ACGGAACTGTTCAGGTGAACGACA -ACGGAACTGTTCAGGTGAAGCTCA -ACGGAACTGTTCAGGTGATCACGT -ACGGAACTGTTCAGGTGACGTAGT -ACGGAACTGTTCAGGTGAGTCAGT -ACGGAACTGTTCAGGTGAGAAGGT -ACGGAACTGTTCAGGTGAAACCGT -ACGGAACTGTTCAGGTGATTGTGC -ACGGAACTGTTCAGGTGACTAAGC -ACGGAACTGTTCAGGTGAACTAGC -ACGGAACTGTTCAGGTGAAGATGC -ACGGAACTGTTCAGGTGATGAAGG -ACGGAACTGTTCAGGTGACAATGG -ACGGAACTGTTCAGGTGAATGAGG -ACGGAACTGTTCAGGTGAAATGGG -ACGGAACTGTTCAGGTGATCCTGA -ACGGAACTGTTCAGGTGATAGCGA -ACGGAACTGTTCAGGTGACACAGA -ACGGAACTGTTCAGGTGAGCAAGA -ACGGAACTGTTCAGGTGAGGTTGA -ACGGAACTGTTCAGGTGATCCGAT -ACGGAACTGTTCAGGTGATGGCAT -ACGGAACTGTTCAGGTGACGAGAT -ACGGAACTGTTCAGGTGATACCAC -ACGGAACTGTTCAGGTGACAGAAC -ACGGAACTGTTCAGGTGAGTCTAC -ACGGAACTGTTCAGGTGAACGTAC -ACGGAACTGTTCAGGTGAAGTGAC -ACGGAACTGTTCAGGTGACTGTAG -ACGGAACTGTTCAGGTGACCTAAG -ACGGAACTGTTCAGGTGAGTTCAG -ACGGAACTGTTCAGGTGAGCATAG -ACGGAACTGTTCAGGTGAGACAAG -ACGGAACTGTTCAGGTGAAAGCAG -ACGGAACTGTTCAGGTGACGTCAA -ACGGAACTGTTCAGGTGAGCTGAA -ACGGAACTGTTCAGGTGAAGTACG -ACGGAACTGTTCAGGTGAATCCGA -ACGGAACTGTTCAGGTGAATGGGA -ACGGAACTGTTCAGGTGAGTGCAA -ACGGAACTGTTCAGGTGAGAGGAA -ACGGAACTGTTCAGGTGACAGGTA -ACGGAACTGTTCAGGTGAGACTCT -ACGGAACTGTTCAGGTGAAGTCCT -ACGGAACTGTTCAGGTGATAAGCC -ACGGAACTGTTCAGGTGAATAGCC -ACGGAACTGTTCAGGTGATAACCG -ACGGAACTGTTCAGGTGAATGCCA -ACGGAACTGTTCTGGCAAGGAAAC -ACGGAACTGTTCTGGCAAAACACC -ACGGAACTGTTCTGGCAAATCGAG -ACGGAACTGTTCTGGCAACTCCTT -ACGGAACTGTTCTGGCAACCTGTT -ACGGAACTGTTCTGGCAACGGTTT -ACGGAACTGTTCTGGCAAGTGGTT -ACGGAACTGTTCTGGCAAGCCTTT -ACGGAACTGTTCTGGCAAGGTCTT -ACGGAACTGTTCTGGCAAACGCTT -ACGGAACTGTTCTGGCAAAGCGTT -ACGGAACTGTTCTGGCAATTCGTC -ACGGAACTGTTCTGGCAATCTCTC -ACGGAACTGTTCTGGCAATGGATC -ACGGAACTGTTCTGGCAACACTTC -ACGGAACTGTTCTGGCAAGTACTC -ACGGAACTGTTCTGGCAAGATGTC -ACGGAACTGTTCTGGCAAACAGTC -ACGGAACTGTTCTGGCAATTGCTG -ACGGAACTGTTCTGGCAATCCATG -ACGGAACTGTTCTGGCAATGTGTG -ACGGAACTGTTCTGGCAACTAGTG -ACGGAACTGTTCTGGCAACATCTG -ACGGAACTGTTCTGGCAAGAGTTG -ACGGAACTGTTCTGGCAAAGACTG -ACGGAACTGTTCTGGCAATCGGTA -ACGGAACTGTTCTGGCAATGCCTA -ACGGAACTGTTCTGGCAACCACTA -ACGGAACTGTTCTGGCAAGGAGTA -ACGGAACTGTTCTGGCAATCGTCT -ACGGAACTGTTCTGGCAATGCACT -ACGGAACTGTTCTGGCAACTGACT -ACGGAACTGTTCTGGCAACAACCT -ACGGAACTGTTCTGGCAAGCTACT -ACGGAACTGTTCTGGCAAGGATCT -ACGGAACTGTTCTGGCAAAAGGCT -ACGGAACTGTTCTGGCAATCAACC -ACGGAACTGTTCTGGCAATGTTCC -ACGGAACTGTTCTGGCAAATTCCC -ACGGAACTGTTCTGGCAATTCTCG -ACGGAACTGTTCTGGCAATAGACG -ACGGAACTGTTCTGGCAAGTAACG -ACGGAACTGTTCTGGCAAACTTCG -ACGGAACTGTTCTGGCAATACGCA -ACGGAACTGTTCTGGCAACTTGCA -ACGGAACTGTTCTGGCAACGAACA -ACGGAACTGTTCTGGCAACAGTCA -ACGGAACTGTTCTGGCAAGATCCA -ACGGAACTGTTCTGGCAAACGACA -ACGGAACTGTTCTGGCAAAGCTCA -ACGGAACTGTTCTGGCAATCACGT -ACGGAACTGTTCTGGCAACGTAGT -ACGGAACTGTTCTGGCAAGTCAGT -ACGGAACTGTTCTGGCAAGAAGGT -ACGGAACTGTTCTGGCAAAACCGT -ACGGAACTGTTCTGGCAATTGTGC -ACGGAACTGTTCTGGCAACTAAGC -ACGGAACTGTTCTGGCAAACTAGC -ACGGAACTGTTCTGGCAAAGATGC -ACGGAACTGTTCTGGCAATGAAGG -ACGGAACTGTTCTGGCAACAATGG -ACGGAACTGTTCTGGCAAATGAGG -ACGGAACTGTTCTGGCAAAATGGG -ACGGAACTGTTCTGGCAATCCTGA -ACGGAACTGTTCTGGCAATAGCGA -ACGGAACTGTTCTGGCAACACAGA -ACGGAACTGTTCTGGCAAGCAAGA -ACGGAACTGTTCTGGCAAGGTTGA -ACGGAACTGTTCTGGCAATCCGAT -ACGGAACTGTTCTGGCAATGGCAT -ACGGAACTGTTCTGGCAACGAGAT -ACGGAACTGTTCTGGCAATACCAC -ACGGAACTGTTCTGGCAACAGAAC -ACGGAACTGTTCTGGCAAGTCTAC -ACGGAACTGTTCTGGCAAACGTAC -ACGGAACTGTTCTGGCAAAGTGAC -ACGGAACTGTTCTGGCAACTGTAG -ACGGAACTGTTCTGGCAACCTAAG -ACGGAACTGTTCTGGCAAGTTCAG -ACGGAACTGTTCTGGCAAGCATAG -ACGGAACTGTTCTGGCAAGACAAG -ACGGAACTGTTCTGGCAAAAGCAG -ACGGAACTGTTCTGGCAACGTCAA -ACGGAACTGTTCTGGCAAGCTGAA -ACGGAACTGTTCTGGCAAAGTACG -ACGGAACTGTTCTGGCAAATCCGA -ACGGAACTGTTCTGGCAAATGGGA -ACGGAACTGTTCTGGCAAGTGCAA -ACGGAACTGTTCTGGCAAGAGGAA -ACGGAACTGTTCTGGCAACAGGTA -ACGGAACTGTTCTGGCAAGACTCT -ACGGAACTGTTCTGGCAAAGTCCT -ACGGAACTGTTCTGGCAATAAGCC -ACGGAACTGTTCTGGCAAATAGCC -ACGGAACTGTTCTGGCAATAACCG -ACGGAACTGTTCTGGCAAATGCCA -ACGGAACTGTTCAGGATGGGAAAC -ACGGAACTGTTCAGGATGAACACC -ACGGAACTGTTCAGGATGATCGAG -ACGGAACTGTTCAGGATGCTCCTT -ACGGAACTGTTCAGGATGCCTGTT -ACGGAACTGTTCAGGATGCGGTTT -ACGGAACTGTTCAGGATGGTGGTT -ACGGAACTGTTCAGGATGGCCTTT -ACGGAACTGTTCAGGATGGGTCTT -ACGGAACTGTTCAGGATGACGCTT -ACGGAACTGTTCAGGATGAGCGTT -ACGGAACTGTTCAGGATGTTCGTC -ACGGAACTGTTCAGGATGTCTCTC -ACGGAACTGTTCAGGATGTGGATC -ACGGAACTGTTCAGGATGCACTTC -ACGGAACTGTTCAGGATGGTACTC -ACGGAACTGTTCAGGATGGATGTC -ACGGAACTGTTCAGGATGACAGTC -ACGGAACTGTTCAGGATGTTGCTG -ACGGAACTGTTCAGGATGTCCATG -ACGGAACTGTTCAGGATGTGTGTG -ACGGAACTGTTCAGGATGCTAGTG -ACGGAACTGTTCAGGATGCATCTG -ACGGAACTGTTCAGGATGGAGTTG -ACGGAACTGTTCAGGATGAGACTG -ACGGAACTGTTCAGGATGTCGGTA -ACGGAACTGTTCAGGATGTGCCTA -ACGGAACTGTTCAGGATGCCACTA -ACGGAACTGTTCAGGATGGGAGTA -ACGGAACTGTTCAGGATGTCGTCT -ACGGAACTGTTCAGGATGTGCACT -ACGGAACTGTTCAGGATGCTGACT -ACGGAACTGTTCAGGATGCAACCT -ACGGAACTGTTCAGGATGGCTACT -ACGGAACTGTTCAGGATGGGATCT -ACGGAACTGTTCAGGATGAAGGCT -ACGGAACTGTTCAGGATGTCAACC -ACGGAACTGTTCAGGATGTGTTCC -ACGGAACTGTTCAGGATGATTCCC -ACGGAACTGTTCAGGATGTTCTCG -ACGGAACTGTTCAGGATGTAGACG -ACGGAACTGTTCAGGATGGTAACG -ACGGAACTGTTCAGGATGACTTCG -ACGGAACTGTTCAGGATGTACGCA -ACGGAACTGTTCAGGATGCTTGCA -ACGGAACTGTTCAGGATGCGAACA -ACGGAACTGTTCAGGATGCAGTCA -ACGGAACTGTTCAGGATGGATCCA -ACGGAACTGTTCAGGATGACGACA -ACGGAACTGTTCAGGATGAGCTCA -ACGGAACTGTTCAGGATGTCACGT -ACGGAACTGTTCAGGATGCGTAGT -ACGGAACTGTTCAGGATGGTCAGT -ACGGAACTGTTCAGGATGGAAGGT -ACGGAACTGTTCAGGATGAACCGT -ACGGAACTGTTCAGGATGTTGTGC -ACGGAACTGTTCAGGATGCTAAGC -ACGGAACTGTTCAGGATGACTAGC -ACGGAACTGTTCAGGATGAGATGC -ACGGAACTGTTCAGGATGTGAAGG -ACGGAACTGTTCAGGATGCAATGG -ACGGAACTGTTCAGGATGATGAGG -ACGGAACTGTTCAGGATGAATGGG -ACGGAACTGTTCAGGATGTCCTGA -ACGGAACTGTTCAGGATGTAGCGA -ACGGAACTGTTCAGGATGCACAGA -ACGGAACTGTTCAGGATGGCAAGA -ACGGAACTGTTCAGGATGGGTTGA -ACGGAACTGTTCAGGATGTCCGAT -ACGGAACTGTTCAGGATGTGGCAT -ACGGAACTGTTCAGGATGCGAGAT -ACGGAACTGTTCAGGATGTACCAC -ACGGAACTGTTCAGGATGCAGAAC -ACGGAACTGTTCAGGATGGTCTAC -ACGGAACTGTTCAGGATGACGTAC -ACGGAACTGTTCAGGATGAGTGAC -ACGGAACTGTTCAGGATGCTGTAG -ACGGAACTGTTCAGGATGCCTAAG -ACGGAACTGTTCAGGATGGTTCAG -ACGGAACTGTTCAGGATGGCATAG -ACGGAACTGTTCAGGATGGACAAG -ACGGAACTGTTCAGGATGAAGCAG -ACGGAACTGTTCAGGATGCGTCAA -ACGGAACTGTTCAGGATGGCTGAA -ACGGAACTGTTCAGGATGAGTACG -ACGGAACTGTTCAGGATGATCCGA -ACGGAACTGTTCAGGATGATGGGA -ACGGAACTGTTCAGGATGGTGCAA -ACGGAACTGTTCAGGATGGAGGAA -ACGGAACTGTTCAGGATGCAGGTA -ACGGAACTGTTCAGGATGGACTCT -ACGGAACTGTTCAGGATGAGTCCT -ACGGAACTGTTCAGGATGTAAGCC -ACGGAACTGTTCAGGATGATAGCC -ACGGAACTGTTCAGGATGTAACCG -ACGGAACTGTTCAGGATGATGCCA -ACGGAACTGTTCGGGAATGGAAAC -ACGGAACTGTTCGGGAATAACACC -ACGGAACTGTTCGGGAATATCGAG -ACGGAACTGTTCGGGAATCTCCTT -ACGGAACTGTTCGGGAATCCTGTT -ACGGAACTGTTCGGGAATCGGTTT -ACGGAACTGTTCGGGAATGTGGTT -ACGGAACTGTTCGGGAATGCCTTT -ACGGAACTGTTCGGGAATGGTCTT -ACGGAACTGTTCGGGAATACGCTT -ACGGAACTGTTCGGGAATAGCGTT -ACGGAACTGTTCGGGAATTTCGTC -ACGGAACTGTTCGGGAATTCTCTC -ACGGAACTGTTCGGGAATTGGATC -ACGGAACTGTTCGGGAATCACTTC -ACGGAACTGTTCGGGAATGTACTC -ACGGAACTGTTCGGGAATGATGTC -ACGGAACTGTTCGGGAATACAGTC -ACGGAACTGTTCGGGAATTTGCTG -ACGGAACTGTTCGGGAATTCCATG -ACGGAACTGTTCGGGAATTGTGTG -ACGGAACTGTTCGGGAATCTAGTG -ACGGAACTGTTCGGGAATCATCTG -ACGGAACTGTTCGGGAATGAGTTG -ACGGAACTGTTCGGGAATAGACTG -ACGGAACTGTTCGGGAATTCGGTA -ACGGAACTGTTCGGGAATTGCCTA -ACGGAACTGTTCGGGAATCCACTA -ACGGAACTGTTCGGGAATGGAGTA -ACGGAACTGTTCGGGAATTCGTCT -ACGGAACTGTTCGGGAATTGCACT -ACGGAACTGTTCGGGAATCTGACT -ACGGAACTGTTCGGGAATCAACCT -ACGGAACTGTTCGGGAATGCTACT -ACGGAACTGTTCGGGAATGGATCT -ACGGAACTGTTCGGGAATAAGGCT -ACGGAACTGTTCGGGAATTCAACC -ACGGAACTGTTCGGGAATTGTTCC -ACGGAACTGTTCGGGAATATTCCC -ACGGAACTGTTCGGGAATTTCTCG -ACGGAACTGTTCGGGAATTAGACG -ACGGAACTGTTCGGGAATGTAACG -ACGGAACTGTTCGGGAATACTTCG -ACGGAACTGTTCGGGAATTACGCA -ACGGAACTGTTCGGGAATCTTGCA -ACGGAACTGTTCGGGAATCGAACA -ACGGAACTGTTCGGGAATCAGTCA -ACGGAACTGTTCGGGAATGATCCA -ACGGAACTGTTCGGGAATACGACA -ACGGAACTGTTCGGGAATAGCTCA -ACGGAACTGTTCGGGAATTCACGT -ACGGAACTGTTCGGGAATCGTAGT -ACGGAACTGTTCGGGAATGTCAGT -ACGGAACTGTTCGGGAATGAAGGT -ACGGAACTGTTCGGGAATAACCGT -ACGGAACTGTTCGGGAATTTGTGC -ACGGAACTGTTCGGGAATCTAAGC -ACGGAACTGTTCGGGAATACTAGC -ACGGAACTGTTCGGGAATAGATGC -ACGGAACTGTTCGGGAATTGAAGG -ACGGAACTGTTCGGGAATCAATGG -ACGGAACTGTTCGGGAATATGAGG -ACGGAACTGTTCGGGAATAATGGG -ACGGAACTGTTCGGGAATTCCTGA -ACGGAACTGTTCGGGAATTAGCGA -ACGGAACTGTTCGGGAATCACAGA -ACGGAACTGTTCGGGAATGCAAGA -ACGGAACTGTTCGGGAATGGTTGA -ACGGAACTGTTCGGGAATTCCGAT -ACGGAACTGTTCGGGAATTGGCAT -ACGGAACTGTTCGGGAATCGAGAT -ACGGAACTGTTCGGGAATTACCAC -ACGGAACTGTTCGGGAATCAGAAC -ACGGAACTGTTCGGGAATGTCTAC -ACGGAACTGTTCGGGAATACGTAC -ACGGAACTGTTCGGGAATAGTGAC -ACGGAACTGTTCGGGAATCTGTAG -ACGGAACTGTTCGGGAATCCTAAG -ACGGAACTGTTCGGGAATGTTCAG -ACGGAACTGTTCGGGAATGCATAG -ACGGAACTGTTCGGGAATGACAAG -ACGGAACTGTTCGGGAATAAGCAG -ACGGAACTGTTCGGGAATCGTCAA -ACGGAACTGTTCGGGAATGCTGAA -ACGGAACTGTTCGGGAATAGTACG -ACGGAACTGTTCGGGAATATCCGA -ACGGAACTGTTCGGGAATATGGGA -ACGGAACTGTTCGGGAATGTGCAA -ACGGAACTGTTCGGGAATGAGGAA -ACGGAACTGTTCGGGAATCAGGTA -ACGGAACTGTTCGGGAATGACTCT -ACGGAACTGTTCGGGAATAGTCCT -ACGGAACTGTTCGGGAATTAAGCC -ACGGAACTGTTCGGGAATATAGCC -ACGGAACTGTTCGGGAATTAACCG -ACGGAACTGTTCGGGAATATGCCA -ACGGAACTGTTCTGATCCGGAAAC -ACGGAACTGTTCTGATCCAACACC -ACGGAACTGTTCTGATCCATCGAG -ACGGAACTGTTCTGATCCCTCCTT -ACGGAACTGTTCTGATCCCCTGTT -ACGGAACTGTTCTGATCCCGGTTT -ACGGAACTGTTCTGATCCGTGGTT -ACGGAACTGTTCTGATCCGCCTTT -ACGGAACTGTTCTGATCCGGTCTT -ACGGAACTGTTCTGATCCACGCTT -ACGGAACTGTTCTGATCCAGCGTT -ACGGAACTGTTCTGATCCTTCGTC -ACGGAACTGTTCTGATCCTCTCTC -ACGGAACTGTTCTGATCCTGGATC -ACGGAACTGTTCTGATCCCACTTC -ACGGAACTGTTCTGATCCGTACTC -ACGGAACTGTTCTGATCCGATGTC -ACGGAACTGTTCTGATCCACAGTC -ACGGAACTGTTCTGATCCTTGCTG -ACGGAACTGTTCTGATCCTCCATG -ACGGAACTGTTCTGATCCTGTGTG -ACGGAACTGTTCTGATCCCTAGTG -ACGGAACTGTTCTGATCCCATCTG -ACGGAACTGTTCTGATCCGAGTTG -ACGGAACTGTTCTGATCCAGACTG -ACGGAACTGTTCTGATCCTCGGTA -ACGGAACTGTTCTGATCCTGCCTA -ACGGAACTGTTCTGATCCCCACTA -ACGGAACTGTTCTGATCCGGAGTA -ACGGAACTGTTCTGATCCTCGTCT -ACGGAACTGTTCTGATCCTGCACT -ACGGAACTGTTCTGATCCCTGACT -ACGGAACTGTTCTGATCCCAACCT -ACGGAACTGTTCTGATCCGCTACT -ACGGAACTGTTCTGATCCGGATCT -ACGGAACTGTTCTGATCCAAGGCT -ACGGAACTGTTCTGATCCTCAACC -ACGGAACTGTTCTGATCCTGTTCC -ACGGAACTGTTCTGATCCATTCCC -ACGGAACTGTTCTGATCCTTCTCG -ACGGAACTGTTCTGATCCTAGACG -ACGGAACTGTTCTGATCCGTAACG -ACGGAACTGTTCTGATCCACTTCG -ACGGAACTGTTCTGATCCTACGCA -ACGGAACTGTTCTGATCCCTTGCA -ACGGAACTGTTCTGATCCCGAACA -ACGGAACTGTTCTGATCCCAGTCA -ACGGAACTGTTCTGATCCGATCCA -ACGGAACTGTTCTGATCCACGACA -ACGGAACTGTTCTGATCCAGCTCA -ACGGAACTGTTCTGATCCTCACGT -ACGGAACTGTTCTGATCCCGTAGT -ACGGAACTGTTCTGATCCGTCAGT -ACGGAACTGTTCTGATCCGAAGGT -ACGGAACTGTTCTGATCCAACCGT -ACGGAACTGTTCTGATCCTTGTGC -ACGGAACTGTTCTGATCCCTAAGC -ACGGAACTGTTCTGATCCACTAGC -ACGGAACTGTTCTGATCCAGATGC -ACGGAACTGTTCTGATCCTGAAGG -ACGGAACTGTTCTGATCCCAATGG -ACGGAACTGTTCTGATCCATGAGG -ACGGAACTGTTCTGATCCAATGGG -ACGGAACTGTTCTGATCCTCCTGA -ACGGAACTGTTCTGATCCTAGCGA -ACGGAACTGTTCTGATCCCACAGA -ACGGAACTGTTCTGATCCGCAAGA -ACGGAACTGTTCTGATCCGGTTGA -ACGGAACTGTTCTGATCCTCCGAT -ACGGAACTGTTCTGATCCTGGCAT -ACGGAACTGTTCTGATCCCGAGAT -ACGGAACTGTTCTGATCCTACCAC -ACGGAACTGTTCTGATCCCAGAAC -ACGGAACTGTTCTGATCCGTCTAC -ACGGAACTGTTCTGATCCACGTAC -ACGGAACTGTTCTGATCCAGTGAC -ACGGAACTGTTCTGATCCCTGTAG -ACGGAACTGTTCTGATCCCCTAAG -ACGGAACTGTTCTGATCCGTTCAG -ACGGAACTGTTCTGATCCGCATAG -ACGGAACTGTTCTGATCCGACAAG -ACGGAACTGTTCTGATCCAAGCAG -ACGGAACTGTTCTGATCCCGTCAA -ACGGAACTGTTCTGATCCGCTGAA -ACGGAACTGTTCTGATCCAGTACG -ACGGAACTGTTCTGATCCATCCGA -ACGGAACTGTTCTGATCCATGGGA -ACGGAACTGTTCTGATCCGTGCAA -ACGGAACTGTTCTGATCCGAGGAA -ACGGAACTGTTCTGATCCCAGGTA -ACGGAACTGTTCTGATCCGACTCT -ACGGAACTGTTCTGATCCAGTCCT -ACGGAACTGTTCTGATCCTAAGCC -ACGGAACTGTTCTGATCCATAGCC -ACGGAACTGTTCTGATCCTAACCG -ACGGAACTGTTCTGATCCATGCCA -ACGGAACTGTTCCGATAGGGAAAC -ACGGAACTGTTCCGATAGAACACC -ACGGAACTGTTCCGATAGATCGAG -ACGGAACTGTTCCGATAGCTCCTT -ACGGAACTGTTCCGATAGCCTGTT -ACGGAACTGTTCCGATAGCGGTTT -ACGGAACTGTTCCGATAGGTGGTT -ACGGAACTGTTCCGATAGGCCTTT -ACGGAACTGTTCCGATAGGGTCTT -ACGGAACTGTTCCGATAGACGCTT -ACGGAACTGTTCCGATAGAGCGTT -ACGGAACTGTTCCGATAGTTCGTC -ACGGAACTGTTCCGATAGTCTCTC -ACGGAACTGTTCCGATAGTGGATC -ACGGAACTGTTCCGATAGCACTTC -ACGGAACTGTTCCGATAGGTACTC -ACGGAACTGTTCCGATAGGATGTC -ACGGAACTGTTCCGATAGACAGTC -ACGGAACTGTTCCGATAGTTGCTG -ACGGAACTGTTCCGATAGTCCATG -ACGGAACTGTTCCGATAGTGTGTG -ACGGAACTGTTCCGATAGCTAGTG -ACGGAACTGTTCCGATAGCATCTG -ACGGAACTGTTCCGATAGGAGTTG -ACGGAACTGTTCCGATAGAGACTG -ACGGAACTGTTCCGATAGTCGGTA -ACGGAACTGTTCCGATAGTGCCTA -ACGGAACTGTTCCGATAGCCACTA -ACGGAACTGTTCCGATAGGGAGTA -ACGGAACTGTTCCGATAGTCGTCT -ACGGAACTGTTCCGATAGTGCACT -ACGGAACTGTTCCGATAGCTGACT -ACGGAACTGTTCCGATAGCAACCT -ACGGAACTGTTCCGATAGGCTACT -ACGGAACTGTTCCGATAGGGATCT -ACGGAACTGTTCCGATAGAAGGCT -ACGGAACTGTTCCGATAGTCAACC -ACGGAACTGTTCCGATAGTGTTCC -ACGGAACTGTTCCGATAGATTCCC -ACGGAACTGTTCCGATAGTTCTCG -ACGGAACTGTTCCGATAGTAGACG -ACGGAACTGTTCCGATAGGTAACG -ACGGAACTGTTCCGATAGACTTCG -ACGGAACTGTTCCGATAGTACGCA -ACGGAACTGTTCCGATAGCTTGCA -ACGGAACTGTTCCGATAGCGAACA -ACGGAACTGTTCCGATAGCAGTCA -ACGGAACTGTTCCGATAGGATCCA -ACGGAACTGTTCCGATAGACGACA -ACGGAACTGTTCCGATAGAGCTCA -ACGGAACTGTTCCGATAGTCACGT -ACGGAACTGTTCCGATAGCGTAGT -ACGGAACTGTTCCGATAGGTCAGT -ACGGAACTGTTCCGATAGGAAGGT -ACGGAACTGTTCCGATAGAACCGT -ACGGAACTGTTCCGATAGTTGTGC -ACGGAACTGTTCCGATAGCTAAGC -ACGGAACTGTTCCGATAGACTAGC -ACGGAACTGTTCCGATAGAGATGC -ACGGAACTGTTCCGATAGTGAAGG -ACGGAACTGTTCCGATAGCAATGG -ACGGAACTGTTCCGATAGATGAGG -ACGGAACTGTTCCGATAGAATGGG -ACGGAACTGTTCCGATAGTCCTGA -ACGGAACTGTTCCGATAGTAGCGA -ACGGAACTGTTCCGATAGCACAGA -ACGGAACTGTTCCGATAGGCAAGA -ACGGAACTGTTCCGATAGGGTTGA -ACGGAACTGTTCCGATAGTCCGAT -ACGGAACTGTTCCGATAGTGGCAT -ACGGAACTGTTCCGATAGCGAGAT -ACGGAACTGTTCCGATAGTACCAC -ACGGAACTGTTCCGATAGCAGAAC -ACGGAACTGTTCCGATAGGTCTAC -ACGGAACTGTTCCGATAGACGTAC -ACGGAACTGTTCCGATAGAGTGAC -ACGGAACTGTTCCGATAGCTGTAG -ACGGAACTGTTCCGATAGCCTAAG -ACGGAACTGTTCCGATAGGTTCAG -ACGGAACTGTTCCGATAGGCATAG -ACGGAACTGTTCCGATAGGACAAG -ACGGAACTGTTCCGATAGAAGCAG -ACGGAACTGTTCCGATAGCGTCAA -ACGGAACTGTTCCGATAGGCTGAA -ACGGAACTGTTCCGATAGAGTACG -ACGGAACTGTTCCGATAGATCCGA -ACGGAACTGTTCCGATAGATGGGA -ACGGAACTGTTCCGATAGGTGCAA -ACGGAACTGTTCCGATAGGAGGAA -ACGGAACTGTTCCGATAGCAGGTA -ACGGAACTGTTCCGATAGGACTCT -ACGGAACTGTTCCGATAGAGTCCT -ACGGAACTGTTCCGATAGTAAGCC -ACGGAACTGTTCCGATAGATAGCC -ACGGAACTGTTCCGATAGTAACCG -ACGGAACTGTTCCGATAGATGCCA -ACGGAACTGTTCAGACACGGAAAC -ACGGAACTGTTCAGACACAACACC -ACGGAACTGTTCAGACACATCGAG -ACGGAACTGTTCAGACACCTCCTT -ACGGAACTGTTCAGACACCCTGTT -ACGGAACTGTTCAGACACCGGTTT -ACGGAACTGTTCAGACACGTGGTT -ACGGAACTGTTCAGACACGCCTTT -ACGGAACTGTTCAGACACGGTCTT -ACGGAACTGTTCAGACACACGCTT -ACGGAACTGTTCAGACACAGCGTT -ACGGAACTGTTCAGACACTTCGTC -ACGGAACTGTTCAGACACTCTCTC -ACGGAACTGTTCAGACACTGGATC -ACGGAACTGTTCAGACACCACTTC -ACGGAACTGTTCAGACACGTACTC -ACGGAACTGTTCAGACACGATGTC -ACGGAACTGTTCAGACACACAGTC -ACGGAACTGTTCAGACACTTGCTG -ACGGAACTGTTCAGACACTCCATG -ACGGAACTGTTCAGACACTGTGTG -ACGGAACTGTTCAGACACCTAGTG -ACGGAACTGTTCAGACACCATCTG -ACGGAACTGTTCAGACACGAGTTG -ACGGAACTGTTCAGACACAGACTG -ACGGAACTGTTCAGACACTCGGTA -ACGGAACTGTTCAGACACTGCCTA -ACGGAACTGTTCAGACACCCACTA -ACGGAACTGTTCAGACACGGAGTA -ACGGAACTGTTCAGACACTCGTCT -ACGGAACTGTTCAGACACTGCACT -ACGGAACTGTTCAGACACCTGACT -ACGGAACTGTTCAGACACCAACCT -ACGGAACTGTTCAGACACGCTACT -ACGGAACTGTTCAGACACGGATCT -ACGGAACTGTTCAGACACAAGGCT -ACGGAACTGTTCAGACACTCAACC -ACGGAACTGTTCAGACACTGTTCC -ACGGAACTGTTCAGACACATTCCC -ACGGAACTGTTCAGACACTTCTCG -ACGGAACTGTTCAGACACTAGACG -ACGGAACTGTTCAGACACGTAACG -ACGGAACTGTTCAGACACACTTCG -ACGGAACTGTTCAGACACTACGCA -ACGGAACTGTTCAGACACCTTGCA -ACGGAACTGTTCAGACACCGAACA -ACGGAACTGTTCAGACACCAGTCA -ACGGAACTGTTCAGACACGATCCA -ACGGAACTGTTCAGACACACGACA -ACGGAACTGTTCAGACACAGCTCA -ACGGAACTGTTCAGACACTCACGT -ACGGAACTGTTCAGACACCGTAGT -ACGGAACTGTTCAGACACGTCAGT -ACGGAACTGTTCAGACACGAAGGT -ACGGAACTGTTCAGACACAACCGT -ACGGAACTGTTCAGACACTTGTGC -ACGGAACTGTTCAGACACCTAAGC -ACGGAACTGTTCAGACACACTAGC -ACGGAACTGTTCAGACACAGATGC -ACGGAACTGTTCAGACACTGAAGG -ACGGAACTGTTCAGACACCAATGG -ACGGAACTGTTCAGACACATGAGG -ACGGAACTGTTCAGACACAATGGG -ACGGAACTGTTCAGACACTCCTGA -ACGGAACTGTTCAGACACTAGCGA -ACGGAACTGTTCAGACACCACAGA -ACGGAACTGTTCAGACACGCAAGA -ACGGAACTGTTCAGACACGGTTGA -ACGGAACTGTTCAGACACTCCGAT -ACGGAACTGTTCAGACACTGGCAT -ACGGAACTGTTCAGACACCGAGAT -ACGGAACTGTTCAGACACTACCAC -ACGGAACTGTTCAGACACCAGAAC -ACGGAACTGTTCAGACACGTCTAC -ACGGAACTGTTCAGACACACGTAC -ACGGAACTGTTCAGACACAGTGAC -ACGGAACTGTTCAGACACCTGTAG -ACGGAACTGTTCAGACACCCTAAG -ACGGAACTGTTCAGACACGTTCAG -ACGGAACTGTTCAGACACGCATAG -ACGGAACTGTTCAGACACGACAAG -ACGGAACTGTTCAGACACAAGCAG -ACGGAACTGTTCAGACACCGTCAA -ACGGAACTGTTCAGACACGCTGAA -ACGGAACTGTTCAGACACAGTACG -ACGGAACTGTTCAGACACATCCGA -ACGGAACTGTTCAGACACATGGGA -ACGGAACTGTTCAGACACGTGCAA -ACGGAACTGTTCAGACACGAGGAA -ACGGAACTGTTCAGACACCAGGTA -ACGGAACTGTTCAGACACGACTCT -ACGGAACTGTTCAGACACAGTCCT -ACGGAACTGTTCAGACACTAAGCC -ACGGAACTGTTCAGACACATAGCC -ACGGAACTGTTCAGACACTAACCG -ACGGAACTGTTCAGACACATGCCA -ACGGAACTGTTCAGAGCAGGAAAC -ACGGAACTGTTCAGAGCAAACACC -ACGGAACTGTTCAGAGCAATCGAG -ACGGAACTGTTCAGAGCACTCCTT -ACGGAACTGTTCAGAGCACCTGTT -ACGGAACTGTTCAGAGCACGGTTT -ACGGAACTGTTCAGAGCAGTGGTT -ACGGAACTGTTCAGAGCAGCCTTT -ACGGAACTGTTCAGAGCAGGTCTT -ACGGAACTGTTCAGAGCAACGCTT -ACGGAACTGTTCAGAGCAAGCGTT -ACGGAACTGTTCAGAGCATTCGTC -ACGGAACTGTTCAGAGCATCTCTC -ACGGAACTGTTCAGAGCATGGATC -ACGGAACTGTTCAGAGCACACTTC -ACGGAACTGTTCAGAGCAGTACTC -ACGGAACTGTTCAGAGCAGATGTC -ACGGAACTGTTCAGAGCAACAGTC -ACGGAACTGTTCAGAGCATTGCTG -ACGGAACTGTTCAGAGCATCCATG -ACGGAACTGTTCAGAGCATGTGTG -ACGGAACTGTTCAGAGCACTAGTG -ACGGAACTGTTCAGAGCACATCTG -ACGGAACTGTTCAGAGCAGAGTTG -ACGGAACTGTTCAGAGCAAGACTG -ACGGAACTGTTCAGAGCATCGGTA -ACGGAACTGTTCAGAGCATGCCTA -ACGGAACTGTTCAGAGCACCACTA -ACGGAACTGTTCAGAGCAGGAGTA -ACGGAACTGTTCAGAGCATCGTCT -ACGGAACTGTTCAGAGCATGCACT -ACGGAACTGTTCAGAGCACTGACT -ACGGAACTGTTCAGAGCACAACCT -ACGGAACTGTTCAGAGCAGCTACT -ACGGAACTGTTCAGAGCAGGATCT -ACGGAACTGTTCAGAGCAAAGGCT -ACGGAACTGTTCAGAGCATCAACC -ACGGAACTGTTCAGAGCATGTTCC -ACGGAACTGTTCAGAGCAATTCCC -ACGGAACTGTTCAGAGCATTCTCG -ACGGAACTGTTCAGAGCATAGACG -ACGGAACTGTTCAGAGCAGTAACG -ACGGAACTGTTCAGAGCAACTTCG -ACGGAACTGTTCAGAGCATACGCA -ACGGAACTGTTCAGAGCACTTGCA -ACGGAACTGTTCAGAGCACGAACA -ACGGAACTGTTCAGAGCACAGTCA -ACGGAACTGTTCAGAGCAGATCCA -ACGGAACTGTTCAGAGCAACGACA -ACGGAACTGTTCAGAGCAAGCTCA -ACGGAACTGTTCAGAGCATCACGT -ACGGAACTGTTCAGAGCACGTAGT -ACGGAACTGTTCAGAGCAGTCAGT -ACGGAACTGTTCAGAGCAGAAGGT -ACGGAACTGTTCAGAGCAAACCGT -ACGGAACTGTTCAGAGCATTGTGC -ACGGAACTGTTCAGAGCACTAAGC -ACGGAACTGTTCAGAGCAACTAGC -ACGGAACTGTTCAGAGCAAGATGC -ACGGAACTGTTCAGAGCATGAAGG -ACGGAACTGTTCAGAGCACAATGG -ACGGAACTGTTCAGAGCAATGAGG -ACGGAACTGTTCAGAGCAAATGGG -ACGGAACTGTTCAGAGCATCCTGA -ACGGAACTGTTCAGAGCATAGCGA -ACGGAACTGTTCAGAGCACACAGA -ACGGAACTGTTCAGAGCAGCAAGA -ACGGAACTGTTCAGAGCAGGTTGA -ACGGAACTGTTCAGAGCATCCGAT -ACGGAACTGTTCAGAGCATGGCAT -ACGGAACTGTTCAGAGCACGAGAT -ACGGAACTGTTCAGAGCATACCAC -ACGGAACTGTTCAGAGCACAGAAC -ACGGAACTGTTCAGAGCAGTCTAC -ACGGAACTGTTCAGAGCAACGTAC -ACGGAACTGTTCAGAGCAAGTGAC -ACGGAACTGTTCAGAGCACTGTAG -ACGGAACTGTTCAGAGCACCTAAG -ACGGAACTGTTCAGAGCAGTTCAG -ACGGAACTGTTCAGAGCAGCATAG -ACGGAACTGTTCAGAGCAGACAAG -ACGGAACTGTTCAGAGCAAAGCAG -ACGGAACTGTTCAGAGCACGTCAA -ACGGAACTGTTCAGAGCAGCTGAA -ACGGAACTGTTCAGAGCAAGTACG -ACGGAACTGTTCAGAGCAATCCGA -ACGGAACTGTTCAGAGCAATGGGA -ACGGAACTGTTCAGAGCAGTGCAA -ACGGAACTGTTCAGAGCAGAGGAA -ACGGAACTGTTCAGAGCACAGGTA -ACGGAACTGTTCAGAGCAGACTCT -ACGGAACTGTTCAGAGCAAGTCCT -ACGGAACTGTTCAGAGCATAAGCC -ACGGAACTGTTCAGAGCAATAGCC -ACGGAACTGTTCAGAGCATAACCG -ACGGAACTGTTCAGAGCAATGCCA -ACGGAACTGTTCTGAGGTGGAAAC -ACGGAACTGTTCTGAGGTAACACC -ACGGAACTGTTCTGAGGTATCGAG -ACGGAACTGTTCTGAGGTCTCCTT -ACGGAACTGTTCTGAGGTCCTGTT -ACGGAACTGTTCTGAGGTCGGTTT -ACGGAACTGTTCTGAGGTGTGGTT -ACGGAACTGTTCTGAGGTGCCTTT -ACGGAACTGTTCTGAGGTGGTCTT -ACGGAACTGTTCTGAGGTACGCTT -ACGGAACTGTTCTGAGGTAGCGTT -ACGGAACTGTTCTGAGGTTTCGTC -ACGGAACTGTTCTGAGGTTCTCTC -ACGGAACTGTTCTGAGGTTGGATC -ACGGAACTGTTCTGAGGTCACTTC -ACGGAACTGTTCTGAGGTGTACTC -ACGGAACTGTTCTGAGGTGATGTC -ACGGAACTGTTCTGAGGTACAGTC -ACGGAACTGTTCTGAGGTTTGCTG -ACGGAACTGTTCTGAGGTTCCATG -ACGGAACTGTTCTGAGGTTGTGTG -ACGGAACTGTTCTGAGGTCTAGTG -ACGGAACTGTTCTGAGGTCATCTG -ACGGAACTGTTCTGAGGTGAGTTG -ACGGAACTGTTCTGAGGTAGACTG -ACGGAACTGTTCTGAGGTTCGGTA -ACGGAACTGTTCTGAGGTTGCCTA -ACGGAACTGTTCTGAGGTCCACTA -ACGGAACTGTTCTGAGGTGGAGTA -ACGGAACTGTTCTGAGGTTCGTCT -ACGGAACTGTTCTGAGGTTGCACT -ACGGAACTGTTCTGAGGTCTGACT -ACGGAACTGTTCTGAGGTCAACCT -ACGGAACTGTTCTGAGGTGCTACT -ACGGAACTGTTCTGAGGTGGATCT -ACGGAACTGTTCTGAGGTAAGGCT -ACGGAACTGTTCTGAGGTTCAACC -ACGGAACTGTTCTGAGGTTGTTCC -ACGGAACTGTTCTGAGGTATTCCC -ACGGAACTGTTCTGAGGTTTCTCG -ACGGAACTGTTCTGAGGTTAGACG -ACGGAACTGTTCTGAGGTGTAACG -ACGGAACTGTTCTGAGGTACTTCG -ACGGAACTGTTCTGAGGTTACGCA -ACGGAACTGTTCTGAGGTCTTGCA -ACGGAACTGTTCTGAGGTCGAACA -ACGGAACTGTTCTGAGGTCAGTCA -ACGGAACTGTTCTGAGGTGATCCA -ACGGAACTGTTCTGAGGTACGACA -ACGGAACTGTTCTGAGGTAGCTCA -ACGGAACTGTTCTGAGGTTCACGT -ACGGAACTGTTCTGAGGTCGTAGT -ACGGAACTGTTCTGAGGTGTCAGT -ACGGAACTGTTCTGAGGTGAAGGT -ACGGAACTGTTCTGAGGTAACCGT -ACGGAACTGTTCTGAGGTTTGTGC -ACGGAACTGTTCTGAGGTCTAAGC -ACGGAACTGTTCTGAGGTACTAGC -ACGGAACTGTTCTGAGGTAGATGC -ACGGAACTGTTCTGAGGTTGAAGG -ACGGAACTGTTCTGAGGTCAATGG -ACGGAACTGTTCTGAGGTATGAGG -ACGGAACTGTTCTGAGGTAATGGG -ACGGAACTGTTCTGAGGTTCCTGA -ACGGAACTGTTCTGAGGTTAGCGA -ACGGAACTGTTCTGAGGTCACAGA -ACGGAACTGTTCTGAGGTGCAAGA -ACGGAACTGTTCTGAGGTGGTTGA -ACGGAACTGTTCTGAGGTTCCGAT -ACGGAACTGTTCTGAGGTTGGCAT -ACGGAACTGTTCTGAGGTCGAGAT -ACGGAACTGTTCTGAGGTTACCAC -ACGGAACTGTTCTGAGGTCAGAAC -ACGGAACTGTTCTGAGGTGTCTAC -ACGGAACTGTTCTGAGGTACGTAC -ACGGAACTGTTCTGAGGTAGTGAC -ACGGAACTGTTCTGAGGTCTGTAG -ACGGAACTGTTCTGAGGTCCTAAG -ACGGAACTGTTCTGAGGTGTTCAG -ACGGAACTGTTCTGAGGTGCATAG -ACGGAACTGTTCTGAGGTGACAAG -ACGGAACTGTTCTGAGGTAAGCAG -ACGGAACTGTTCTGAGGTCGTCAA -ACGGAACTGTTCTGAGGTGCTGAA -ACGGAACTGTTCTGAGGTAGTACG -ACGGAACTGTTCTGAGGTATCCGA -ACGGAACTGTTCTGAGGTATGGGA -ACGGAACTGTTCTGAGGTGTGCAA -ACGGAACTGTTCTGAGGTGAGGAA -ACGGAACTGTTCTGAGGTCAGGTA -ACGGAACTGTTCTGAGGTGACTCT -ACGGAACTGTTCTGAGGTAGTCCT -ACGGAACTGTTCTGAGGTTAAGCC -ACGGAACTGTTCTGAGGTATAGCC -ACGGAACTGTTCTGAGGTTAACCG -ACGGAACTGTTCTGAGGTATGCCA -ACGGAACTGTTCGATTCCGGAAAC -ACGGAACTGTTCGATTCCAACACC -ACGGAACTGTTCGATTCCATCGAG -ACGGAACTGTTCGATTCCCTCCTT -ACGGAACTGTTCGATTCCCCTGTT -ACGGAACTGTTCGATTCCCGGTTT -ACGGAACTGTTCGATTCCGTGGTT -ACGGAACTGTTCGATTCCGCCTTT -ACGGAACTGTTCGATTCCGGTCTT -ACGGAACTGTTCGATTCCACGCTT -ACGGAACTGTTCGATTCCAGCGTT -ACGGAACTGTTCGATTCCTTCGTC -ACGGAACTGTTCGATTCCTCTCTC -ACGGAACTGTTCGATTCCTGGATC -ACGGAACTGTTCGATTCCCACTTC -ACGGAACTGTTCGATTCCGTACTC -ACGGAACTGTTCGATTCCGATGTC -ACGGAACTGTTCGATTCCACAGTC -ACGGAACTGTTCGATTCCTTGCTG -ACGGAACTGTTCGATTCCTCCATG -ACGGAACTGTTCGATTCCTGTGTG -ACGGAACTGTTCGATTCCCTAGTG -ACGGAACTGTTCGATTCCCATCTG -ACGGAACTGTTCGATTCCGAGTTG -ACGGAACTGTTCGATTCCAGACTG -ACGGAACTGTTCGATTCCTCGGTA -ACGGAACTGTTCGATTCCTGCCTA -ACGGAACTGTTCGATTCCCCACTA -ACGGAACTGTTCGATTCCGGAGTA -ACGGAACTGTTCGATTCCTCGTCT -ACGGAACTGTTCGATTCCTGCACT -ACGGAACTGTTCGATTCCCTGACT -ACGGAACTGTTCGATTCCCAACCT -ACGGAACTGTTCGATTCCGCTACT -ACGGAACTGTTCGATTCCGGATCT -ACGGAACTGTTCGATTCCAAGGCT -ACGGAACTGTTCGATTCCTCAACC -ACGGAACTGTTCGATTCCTGTTCC -ACGGAACTGTTCGATTCCATTCCC -ACGGAACTGTTCGATTCCTTCTCG -ACGGAACTGTTCGATTCCTAGACG -ACGGAACTGTTCGATTCCGTAACG -ACGGAACTGTTCGATTCCACTTCG -ACGGAACTGTTCGATTCCTACGCA -ACGGAACTGTTCGATTCCCTTGCA -ACGGAACTGTTCGATTCCCGAACA -ACGGAACTGTTCGATTCCCAGTCA -ACGGAACTGTTCGATTCCGATCCA -ACGGAACTGTTCGATTCCACGACA -ACGGAACTGTTCGATTCCAGCTCA -ACGGAACTGTTCGATTCCTCACGT -ACGGAACTGTTCGATTCCCGTAGT -ACGGAACTGTTCGATTCCGTCAGT -ACGGAACTGTTCGATTCCGAAGGT -ACGGAACTGTTCGATTCCAACCGT -ACGGAACTGTTCGATTCCTTGTGC -ACGGAACTGTTCGATTCCCTAAGC -ACGGAACTGTTCGATTCCACTAGC -ACGGAACTGTTCGATTCCAGATGC -ACGGAACTGTTCGATTCCTGAAGG -ACGGAACTGTTCGATTCCCAATGG -ACGGAACTGTTCGATTCCATGAGG -ACGGAACTGTTCGATTCCAATGGG -ACGGAACTGTTCGATTCCTCCTGA -ACGGAACTGTTCGATTCCTAGCGA -ACGGAACTGTTCGATTCCCACAGA -ACGGAACTGTTCGATTCCGCAAGA -ACGGAACTGTTCGATTCCGGTTGA -ACGGAACTGTTCGATTCCTCCGAT -ACGGAACTGTTCGATTCCTGGCAT -ACGGAACTGTTCGATTCCCGAGAT -ACGGAACTGTTCGATTCCTACCAC -ACGGAACTGTTCGATTCCCAGAAC -ACGGAACTGTTCGATTCCGTCTAC -ACGGAACTGTTCGATTCCACGTAC -ACGGAACTGTTCGATTCCAGTGAC -ACGGAACTGTTCGATTCCCTGTAG -ACGGAACTGTTCGATTCCCCTAAG -ACGGAACTGTTCGATTCCGTTCAG -ACGGAACTGTTCGATTCCGCATAG -ACGGAACTGTTCGATTCCGACAAG -ACGGAACTGTTCGATTCCAAGCAG -ACGGAACTGTTCGATTCCCGTCAA -ACGGAACTGTTCGATTCCGCTGAA -ACGGAACTGTTCGATTCCAGTACG -ACGGAACTGTTCGATTCCATCCGA -ACGGAACTGTTCGATTCCATGGGA -ACGGAACTGTTCGATTCCGTGCAA -ACGGAACTGTTCGATTCCGAGGAA -ACGGAACTGTTCGATTCCCAGGTA -ACGGAACTGTTCGATTCCGACTCT -ACGGAACTGTTCGATTCCAGTCCT -ACGGAACTGTTCGATTCCTAAGCC -ACGGAACTGTTCGATTCCATAGCC -ACGGAACTGTTCGATTCCTAACCG -ACGGAACTGTTCGATTCCATGCCA -ACGGAACTGTTCCATTGGGGAAAC -ACGGAACTGTTCCATTGGAACACC -ACGGAACTGTTCCATTGGATCGAG -ACGGAACTGTTCCATTGGCTCCTT -ACGGAACTGTTCCATTGGCCTGTT -ACGGAACTGTTCCATTGGCGGTTT -ACGGAACTGTTCCATTGGGTGGTT -ACGGAACTGTTCCATTGGGCCTTT -ACGGAACTGTTCCATTGGGGTCTT -ACGGAACTGTTCCATTGGACGCTT -ACGGAACTGTTCCATTGGAGCGTT -ACGGAACTGTTCCATTGGTTCGTC -ACGGAACTGTTCCATTGGTCTCTC -ACGGAACTGTTCCATTGGTGGATC -ACGGAACTGTTCCATTGGCACTTC -ACGGAACTGTTCCATTGGGTACTC -ACGGAACTGTTCCATTGGGATGTC -ACGGAACTGTTCCATTGGACAGTC -ACGGAACTGTTCCATTGGTTGCTG -ACGGAACTGTTCCATTGGTCCATG -ACGGAACTGTTCCATTGGTGTGTG -ACGGAACTGTTCCATTGGCTAGTG -ACGGAACTGTTCCATTGGCATCTG -ACGGAACTGTTCCATTGGGAGTTG -ACGGAACTGTTCCATTGGAGACTG -ACGGAACTGTTCCATTGGTCGGTA -ACGGAACTGTTCCATTGGTGCCTA -ACGGAACTGTTCCATTGGCCACTA -ACGGAACTGTTCCATTGGGGAGTA -ACGGAACTGTTCCATTGGTCGTCT -ACGGAACTGTTCCATTGGTGCACT -ACGGAACTGTTCCATTGGCTGACT -ACGGAACTGTTCCATTGGCAACCT -ACGGAACTGTTCCATTGGGCTACT -ACGGAACTGTTCCATTGGGGATCT -ACGGAACTGTTCCATTGGAAGGCT -ACGGAACTGTTCCATTGGTCAACC -ACGGAACTGTTCCATTGGTGTTCC -ACGGAACTGTTCCATTGGATTCCC -ACGGAACTGTTCCATTGGTTCTCG -ACGGAACTGTTCCATTGGTAGACG -ACGGAACTGTTCCATTGGGTAACG -ACGGAACTGTTCCATTGGACTTCG -ACGGAACTGTTCCATTGGTACGCA -ACGGAACTGTTCCATTGGCTTGCA -ACGGAACTGTTCCATTGGCGAACA -ACGGAACTGTTCCATTGGCAGTCA -ACGGAACTGTTCCATTGGGATCCA -ACGGAACTGTTCCATTGGACGACA -ACGGAACTGTTCCATTGGAGCTCA -ACGGAACTGTTCCATTGGTCACGT -ACGGAACTGTTCCATTGGCGTAGT -ACGGAACTGTTCCATTGGGTCAGT -ACGGAACTGTTCCATTGGGAAGGT -ACGGAACTGTTCCATTGGAACCGT -ACGGAACTGTTCCATTGGTTGTGC -ACGGAACTGTTCCATTGGCTAAGC -ACGGAACTGTTCCATTGGACTAGC -ACGGAACTGTTCCATTGGAGATGC -ACGGAACTGTTCCATTGGTGAAGG -ACGGAACTGTTCCATTGGCAATGG -ACGGAACTGTTCCATTGGATGAGG -ACGGAACTGTTCCATTGGAATGGG -ACGGAACTGTTCCATTGGTCCTGA -ACGGAACTGTTCCATTGGTAGCGA -ACGGAACTGTTCCATTGGCACAGA -ACGGAACTGTTCCATTGGGCAAGA -ACGGAACTGTTCCATTGGGGTTGA -ACGGAACTGTTCCATTGGTCCGAT -ACGGAACTGTTCCATTGGTGGCAT -ACGGAACTGTTCCATTGGCGAGAT -ACGGAACTGTTCCATTGGTACCAC -ACGGAACTGTTCCATTGGCAGAAC -ACGGAACTGTTCCATTGGGTCTAC -ACGGAACTGTTCCATTGGACGTAC -ACGGAACTGTTCCATTGGAGTGAC -ACGGAACTGTTCCATTGGCTGTAG -ACGGAACTGTTCCATTGGCCTAAG -ACGGAACTGTTCCATTGGGTTCAG -ACGGAACTGTTCCATTGGGCATAG -ACGGAACTGTTCCATTGGGACAAG -ACGGAACTGTTCCATTGGAAGCAG -ACGGAACTGTTCCATTGGCGTCAA -ACGGAACTGTTCCATTGGGCTGAA -ACGGAACTGTTCCATTGGAGTACG -ACGGAACTGTTCCATTGGATCCGA -ACGGAACTGTTCCATTGGATGGGA -ACGGAACTGTTCCATTGGGTGCAA -ACGGAACTGTTCCATTGGGAGGAA -ACGGAACTGTTCCATTGGCAGGTA -ACGGAACTGTTCCATTGGGACTCT -ACGGAACTGTTCCATTGGAGTCCT -ACGGAACTGTTCCATTGGTAAGCC -ACGGAACTGTTCCATTGGATAGCC -ACGGAACTGTTCCATTGGTAACCG -ACGGAACTGTTCCATTGGATGCCA -ACGGAACTGTTCGATCGAGGAAAC -ACGGAACTGTTCGATCGAAACACC -ACGGAACTGTTCGATCGAATCGAG -ACGGAACTGTTCGATCGACTCCTT -ACGGAACTGTTCGATCGACCTGTT -ACGGAACTGTTCGATCGACGGTTT -ACGGAACTGTTCGATCGAGTGGTT -ACGGAACTGTTCGATCGAGCCTTT -ACGGAACTGTTCGATCGAGGTCTT -ACGGAACTGTTCGATCGAACGCTT -ACGGAACTGTTCGATCGAAGCGTT -ACGGAACTGTTCGATCGATTCGTC -ACGGAACTGTTCGATCGATCTCTC -ACGGAACTGTTCGATCGATGGATC -ACGGAACTGTTCGATCGACACTTC -ACGGAACTGTTCGATCGAGTACTC -ACGGAACTGTTCGATCGAGATGTC -ACGGAACTGTTCGATCGAACAGTC -ACGGAACTGTTCGATCGATTGCTG -ACGGAACTGTTCGATCGATCCATG -ACGGAACTGTTCGATCGATGTGTG -ACGGAACTGTTCGATCGACTAGTG -ACGGAACTGTTCGATCGACATCTG -ACGGAACTGTTCGATCGAGAGTTG -ACGGAACTGTTCGATCGAAGACTG -ACGGAACTGTTCGATCGATCGGTA -ACGGAACTGTTCGATCGATGCCTA -ACGGAACTGTTCGATCGACCACTA -ACGGAACTGTTCGATCGAGGAGTA -ACGGAACTGTTCGATCGATCGTCT -ACGGAACTGTTCGATCGATGCACT -ACGGAACTGTTCGATCGACTGACT -ACGGAACTGTTCGATCGACAACCT -ACGGAACTGTTCGATCGAGCTACT -ACGGAACTGTTCGATCGAGGATCT -ACGGAACTGTTCGATCGAAAGGCT -ACGGAACTGTTCGATCGATCAACC -ACGGAACTGTTCGATCGATGTTCC -ACGGAACTGTTCGATCGAATTCCC -ACGGAACTGTTCGATCGATTCTCG -ACGGAACTGTTCGATCGATAGACG -ACGGAACTGTTCGATCGAGTAACG -ACGGAACTGTTCGATCGAACTTCG -ACGGAACTGTTCGATCGATACGCA -ACGGAACTGTTCGATCGACTTGCA -ACGGAACTGTTCGATCGACGAACA -ACGGAACTGTTCGATCGACAGTCA -ACGGAACTGTTCGATCGAGATCCA -ACGGAACTGTTCGATCGAACGACA -ACGGAACTGTTCGATCGAAGCTCA -ACGGAACTGTTCGATCGATCACGT -ACGGAACTGTTCGATCGACGTAGT -ACGGAACTGTTCGATCGAGTCAGT -ACGGAACTGTTCGATCGAGAAGGT -ACGGAACTGTTCGATCGAAACCGT -ACGGAACTGTTCGATCGATTGTGC -ACGGAACTGTTCGATCGACTAAGC -ACGGAACTGTTCGATCGAACTAGC -ACGGAACTGTTCGATCGAAGATGC -ACGGAACTGTTCGATCGATGAAGG -ACGGAACTGTTCGATCGACAATGG -ACGGAACTGTTCGATCGAATGAGG -ACGGAACTGTTCGATCGAAATGGG -ACGGAACTGTTCGATCGATCCTGA -ACGGAACTGTTCGATCGATAGCGA -ACGGAACTGTTCGATCGACACAGA -ACGGAACTGTTCGATCGAGCAAGA -ACGGAACTGTTCGATCGAGGTTGA -ACGGAACTGTTCGATCGATCCGAT -ACGGAACTGTTCGATCGATGGCAT -ACGGAACTGTTCGATCGACGAGAT -ACGGAACTGTTCGATCGATACCAC -ACGGAACTGTTCGATCGACAGAAC -ACGGAACTGTTCGATCGAGTCTAC -ACGGAACTGTTCGATCGAACGTAC -ACGGAACTGTTCGATCGAAGTGAC -ACGGAACTGTTCGATCGACTGTAG -ACGGAACTGTTCGATCGACCTAAG -ACGGAACTGTTCGATCGAGTTCAG -ACGGAACTGTTCGATCGAGCATAG -ACGGAACTGTTCGATCGAGACAAG -ACGGAACTGTTCGATCGAAAGCAG -ACGGAACTGTTCGATCGACGTCAA -ACGGAACTGTTCGATCGAGCTGAA -ACGGAACTGTTCGATCGAAGTACG -ACGGAACTGTTCGATCGAATCCGA -ACGGAACTGTTCGATCGAATGGGA -ACGGAACTGTTCGATCGAGTGCAA -ACGGAACTGTTCGATCGAGAGGAA -ACGGAACTGTTCGATCGACAGGTA -ACGGAACTGTTCGATCGAGACTCT -ACGGAACTGTTCGATCGAAGTCCT -ACGGAACTGTTCGATCGATAAGCC -ACGGAACTGTTCGATCGAATAGCC -ACGGAACTGTTCGATCGATAACCG -ACGGAACTGTTCGATCGAATGCCA -ACGGAACTGTTCCACTACGGAAAC -ACGGAACTGTTCCACTACAACACC -ACGGAACTGTTCCACTACATCGAG -ACGGAACTGTTCCACTACCTCCTT -ACGGAACTGTTCCACTACCCTGTT -ACGGAACTGTTCCACTACCGGTTT -ACGGAACTGTTCCACTACGTGGTT -ACGGAACTGTTCCACTACGCCTTT -ACGGAACTGTTCCACTACGGTCTT -ACGGAACTGTTCCACTACACGCTT -ACGGAACTGTTCCACTACAGCGTT -ACGGAACTGTTCCACTACTTCGTC -ACGGAACTGTTCCACTACTCTCTC -ACGGAACTGTTCCACTACTGGATC -ACGGAACTGTTCCACTACCACTTC -ACGGAACTGTTCCACTACGTACTC -ACGGAACTGTTCCACTACGATGTC -ACGGAACTGTTCCACTACACAGTC -ACGGAACTGTTCCACTACTTGCTG -ACGGAACTGTTCCACTACTCCATG -ACGGAACTGTTCCACTACTGTGTG -ACGGAACTGTTCCACTACCTAGTG -ACGGAACTGTTCCACTACCATCTG -ACGGAACTGTTCCACTACGAGTTG -ACGGAACTGTTCCACTACAGACTG -ACGGAACTGTTCCACTACTCGGTA -ACGGAACTGTTCCACTACTGCCTA -ACGGAACTGTTCCACTACCCACTA -ACGGAACTGTTCCACTACGGAGTA -ACGGAACTGTTCCACTACTCGTCT -ACGGAACTGTTCCACTACTGCACT -ACGGAACTGTTCCACTACCTGACT -ACGGAACTGTTCCACTACCAACCT -ACGGAACTGTTCCACTACGCTACT -ACGGAACTGTTCCACTACGGATCT -ACGGAACTGTTCCACTACAAGGCT -ACGGAACTGTTCCACTACTCAACC -ACGGAACTGTTCCACTACTGTTCC -ACGGAACTGTTCCACTACATTCCC -ACGGAACTGTTCCACTACTTCTCG -ACGGAACTGTTCCACTACTAGACG -ACGGAACTGTTCCACTACGTAACG -ACGGAACTGTTCCACTACACTTCG -ACGGAACTGTTCCACTACTACGCA -ACGGAACTGTTCCACTACCTTGCA -ACGGAACTGTTCCACTACCGAACA -ACGGAACTGTTCCACTACCAGTCA -ACGGAACTGTTCCACTACGATCCA -ACGGAACTGTTCCACTACACGACA -ACGGAACTGTTCCACTACAGCTCA -ACGGAACTGTTCCACTACTCACGT -ACGGAACTGTTCCACTACCGTAGT -ACGGAACTGTTCCACTACGTCAGT -ACGGAACTGTTCCACTACGAAGGT -ACGGAACTGTTCCACTACAACCGT -ACGGAACTGTTCCACTACTTGTGC -ACGGAACTGTTCCACTACCTAAGC -ACGGAACTGTTCCACTACACTAGC -ACGGAACTGTTCCACTACAGATGC -ACGGAACTGTTCCACTACTGAAGG -ACGGAACTGTTCCACTACCAATGG -ACGGAACTGTTCCACTACATGAGG -ACGGAACTGTTCCACTACAATGGG -ACGGAACTGTTCCACTACTCCTGA -ACGGAACTGTTCCACTACTAGCGA -ACGGAACTGTTCCACTACCACAGA -ACGGAACTGTTCCACTACGCAAGA -ACGGAACTGTTCCACTACGGTTGA -ACGGAACTGTTCCACTACTCCGAT -ACGGAACTGTTCCACTACTGGCAT -ACGGAACTGTTCCACTACCGAGAT -ACGGAACTGTTCCACTACTACCAC -ACGGAACTGTTCCACTACCAGAAC -ACGGAACTGTTCCACTACGTCTAC -ACGGAACTGTTCCACTACACGTAC -ACGGAACTGTTCCACTACAGTGAC -ACGGAACTGTTCCACTACCTGTAG -ACGGAACTGTTCCACTACCCTAAG -ACGGAACTGTTCCACTACGTTCAG -ACGGAACTGTTCCACTACGCATAG -ACGGAACTGTTCCACTACGACAAG -ACGGAACTGTTCCACTACAAGCAG -ACGGAACTGTTCCACTACCGTCAA -ACGGAACTGTTCCACTACGCTGAA -ACGGAACTGTTCCACTACAGTACG -ACGGAACTGTTCCACTACATCCGA -ACGGAACTGTTCCACTACATGGGA -ACGGAACTGTTCCACTACGTGCAA -ACGGAACTGTTCCACTACGAGGAA -ACGGAACTGTTCCACTACCAGGTA -ACGGAACTGTTCCACTACGACTCT -ACGGAACTGTTCCACTACAGTCCT -ACGGAACTGTTCCACTACTAAGCC -ACGGAACTGTTCCACTACATAGCC -ACGGAACTGTTCCACTACTAACCG -ACGGAACTGTTCCACTACATGCCA -ACGGAACTGTTCAACCAGGGAAAC -ACGGAACTGTTCAACCAGAACACC -ACGGAACTGTTCAACCAGATCGAG -ACGGAACTGTTCAACCAGCTCCTT -ACGGAACTGTTCAACCAGCCTGTT -ACGGAACTGTTCAACCAGCGGTTT -ACGGAACTGTTCAACCAGGTGGTT -ACGGAACTGTTCAACCAGGCCTTT -ACGGAACTGTTCAACCAGGGTCTT -ACGGAACTGTTCAACCAGACGCTT -ACGGAACTGTTCAACCAGAGCGTT -ACGGAACTGTTCAACCAGTTCGTC -ACGGAACTGTTCAACCAGTCTCTC -ACGGAACTGTTCAACCAGTGGATC -ACGGAACTGTTCAACCAGCACTTC -ACGGAACTGTTCAACCAGGTACTC -ACGGAACTGTTCAACCAGGATGTC -ACGGAACTGTTCAACCAGACAGTC -ACGGAACTGTTCAACCAGTTGCTG -ACGGAACTGTTCAACCAGTCCATG -ACGGAACTGTTCAACCAGTGTGTG -ACGGAACTGTTCAACCAGCTAGTG -ACGGAACTGTTCAACCAGCATCTG -ACGGAACTGTTCAACCAGGAGTTG -ACGGAACTGTTCAACCAGAGACTG -ACGGAACTGTTCAACCAGTCGGTA -ACGGAACTGTTCAACCAGTGCCTA -ACGGAACTGTTCAACCAGCCACTA -ACGGAACTGTTCAACCAGGGAGTA -ACGGAACTGTTCAACCAGTCGTCT -ACGGAACTGTTCAACCAGTGCACT -ACGGAACTGTTCAACCAGCTGACT -ACGGAACTGTTCAACCAGCAACCT -ACGGAACTGTTCAACCAGGCTACT -ACGGAACTGTTCAACCAGGGATCT -ACGGAACTGTTCAACCAGAAGGCT -ACGGAACTGTTCAACCAGTCAACC -ACGGAACTGTTCAACCAGTGTTCC -ACGGAACTGTTCAACCAGATTCCC -ACGGAACTGTTCAACCAGTTCTCG -ACGGAACTGTTCAACCAGTAGACG -ACGGAACTGTTCAACCAGGTAACG -ACGGAACTGTTCAACCAGACTTCG -ACGGAACTGTTCAACCAGTACGCA -ACGGAACTGTTCAACCAGCTTGCA -ACGGAACTGTTCAACCAGCGAACA -ACGGAACTGTTCAACCAGCAGTCA -ACGGAACTGTTCAACCAGGATCCA -ACGGAACTGTTCAACCAGACGACA -ACGGAACTGTTCAACCAGAGCTCA -ACGGAACTGTTCAACCAGTCACGT -ACGGAACTGTTCAACCAGCGTAGT -ACGGAACTGTTCAACCAGGTCAGT -ACGGAACTGTTCAACCAGGAAGGT -ACGGAACTGTTCAACCAGAACCGT -ACGGAACTGTTCAACCAGTTGTGC -ACGGAACTGTTCAACCAGCTAAGC -ACGGAACTGTTCAACCAGACTAGC -ACGGAACTGTTCAACCAGAGATGC -ACGGAACTGTTCAACCAGTGAAGG -ACGGAACTGTTCAACCAGCAATGG -ACGGAACTGTTCAACCAGATGAGG -ACGGAACTGTTCAACCAGAATGGG -ACGGAACTGTTCAACCAGTCCTGA -ACGGAACTGTTCAACCAGTAGCGA -ACGGAACTGTTCAACCAGCACAGA -ACGGAACTGTTCAACCAGGCAAGA -ACGGAACTGTTCAACCAGGGTTGA -ACGGAACTGTTCAACCAGTCCGAT -ACGGAACTGTTCAACCAGTGGCAT -ACGGAACTGTTCAACCAGCGAGAT -ACGGAACTGTTCAACCAGTACCAC -ACGGAACTGTTCAACCAGCAGAAC -ACGGAACTGTTCAACCAGGTCTAC -ACGGAACTGTTCAACCAGACGTAC -ACGGAACTGTTCAACCAGAGTGAC -ACGGAACTGTTCAACCAGCTGTAG -ACGGAACTGTTCAACCAGCCTAAG -ACGGAACTGTTCAACCAGGTTCAG -ACGGAACTGTTCAACCAGGCATAG -ACGGAACTGTTCAACCAGGACAAG -ACGGAACTGTTCAACCAGAAGCAG -ACGGAACTGTTCAACCAGCGTCAA -ACGGAACTGTTCAACCAGGCTGAA -ACGGAACTGTTCAACCAGAGTACG -ACGGAACTGTTCAACCAGATCCGA -ACGGAACTGTTCAACCAGATGGGA -ACGGAACTGTTCAACCAGGTGCAA -ACGGAACTGTTCAACCAGGAGGAA -ACGGAACTGTTCAACCAGCAGGTA -ACGGAACTGTTCAACCAGGACTCT -ACGGAACTGTTCAACCAGAGTCCT -ACGGAACTGTTCAACCAGTAAGCC -ACGGAACTGTTCAACCAGATAGCC -ACGGAACTGTTCAACCAGTAACCG -ACGGAACTGTTCAACCAGATGCCA -ACGGAACTGTTCTACGTCGGAAAC -ACGGAACTGTTCTACGTCAACACC -ACGGAACTGTTCTACGTCATCGAG -ACGGAACTGTTCTACGTCCTCCTT -ACGGAACTGTTCTACGTCCCTGTT -ACGGAACTGTTCTACGTCCGGTTT -ACGGAACTGTTCTACGTCGTGGTT -ACGGAACTGTTCTACGTCGCCTTT -ACGGAACTGTTCTACGTCGGTCTT -ACGGAACTGTTCTACGTCACGCTT -ACGGAACTGTTCTACGTCAGCGTT -ACGGAACTGTTCTACGTCTTCGTC -ACGGAACTGTTCTACGTCTCTCTC -ACGGAACTGTTCTACGTCTGGATC -ACGGAACTGTTCTACGTCCACTTC -ACGGAACTGTTCTACGTCGTACTC -ACGGAACTGTTCTACGTCGATGTC -ACGGAACTGTTCTACGTCACAGTC -ACGGAACTGTTCTACGTCTTGCTG -ACGGAACTGTTCTACGTCTCCATG -ACGGAACTGTTCTACGTCTGTGTG -ACGGAACTGTTCTACGTCCTAGTG -ACGGAACTGTTCTACGTCCATCTG -ACGGAACTGTTCTACGTCGAGTTG -ACGGAACTGTTCTACGTCAGACTG -ACGGAACTGTTCTACGTCTCGGTA -ACGGAACTGTTCTACGTCTGCCTA -ACGGAACTGTTCTACGTCCCACTA -ACGGAACTGTTCTACGTCGGAGTA -ACGGAACTGTTCTACGTCTCGTCT -ACGGAACTGTTCTACGTCTGCACT -ACGGAACTGTTCTACGTCCTGACT -ACGGAACTGTTCTACGTCCAACCT -ACGGAACTGTTCTACGTCGCTACT -ACGGAACTGTTCTACGTCGGATCT -ACGGAACTGTTCTACGTCAAGGCT -ACGGAACTGTTCTACGTCTCAACC -ACGGAACTGTTCTACGTCTGTTCC -ACGGAACTGTTCTACGTCATTCCC -ACGGAACTGTTCTACGTCTTCTCG -ACGGAACTGTTCTACGTCTAGACG -ACGGAACTGTTCTACGTCGTAACG -ACGGAACTGTTCTACGTCACTTCG -ACGGAACTGTTCTACGTCTACGCA -ACGGAACTGTTCTACGTCCTTGCA -ACGGAACTGTTCTACGTCCGAACA -ACGGAACTGTTCTACGTCCAGTCA -ACGGAACTGTTCTACGTCGATCCA -ACGGAACTGTTCTACGTCACGACA -ACGGAACTGTTCTACGTCAGCTCA -ACGGAACTGTTCTACGTCTCACGT -ACGGAACTGTTCTACGTCCGTAGT -ACGGAACTGTTCTACGTCGTCAGT -ACGGAACTGTTCTACGTCGAAGGT -ACGGAACTGTTCTACGTCAACCGT -ACGGAACTGTTCTACGTCTTGTGC -ACGGAACTGTTCTACGTCCTAAGC -ACGGAACTGTTCTACGTCACTAGC -ACGGAACTGTTCTACGTCAGATGC -ACGGAACTGTTCTACGTCTGAAGG -ACGGAACTGTTCTACGTCCAATGG -ACGGAACTGTTCTACGTCATGAGG -ACGGAACTGTTCTACGTCAATGGG -ACGGAACTGTTCTACGTCTCCTGA -ACGGAACTGTTCTACGTCTAGCGA -ACGGAACTGTTCTACGTCCACAGA -ACGGAACTGTTCTACGTCGCAAGA -ACGGAACTGTTCTACGTCGGTTGA -ACGGAACTGTTCTACGTCTCCGAT -ACGGAACTGTTCTACGTCTGGCAT -ACGGAACTGTTCTACGTCCGAGAT -ACGGAACTGTTCTACGTCTACCAC -ACGGAACTGTTCTACGTCCAGAAC -ACGGAACTGTTCTACGTCGTCTAC -ACGGAACTGTTCTACGTCACGTAC -ACGGAACTGTTCTACGTCAGTGAC -ACGGAACTGTTCTACGTCCTGTAG -ACGGAACTGTTCTACGTCCCTAAG -ACGGAACTGTTCTACGTCGTTCAG -ACGGAACTGTTCTACGTCGCATAG -ACGGAACTGTTCTACGTCGACAAG -ACGGAACTGTTCTACGTCAAGCAG -ACGGAACTGTTCTACGTCCGTCAA -ACGGAACTGTTCTACGTCGCTGAA -ACGGAACTGTTCTACGTCAGTACG -ACGGAACTGTTCTACGTCATCCGA -ACGGAACTGTTCTACGTCATGGGA -ACGGAACTGTTCTACGTCGTGCAA -ACGGAACTGTTCTACGTCGAGGAA -ACGGAACTGTTCTACGTCCAGGTA -ACGGAACTGTTCTACGTCGACTCT -ACGGAACTGTTCTACGTCAGTCCT -ACGGAACTGTTCTACGTCTAAGCC -ACGGAACTGTTCTACGTCATAGCC -ACGGAACTGTTCTACGTCTAACCG -ACGGAACTGTTCTACGTCATGCCA -ACGGAACTGTTCTACACGGGAAAC -ACGGAACTGTTCTACACGAACACC -ACGGAACTGTTCTACACGATCGAG -ACGGAACTGTTCTACACGCTCCTT -ACGGAACTGTTCTACACGCCTGTT -ACGGAACTGTTCTACACGCGGTTT -ACGGAACTGTTCTACACGGTGGTT -ACGGAACTGTTCTACACGGCCTTT -ACGGAACTGTTCTACACGGGTCTT -ACGGAACTGTTCTACACGACGCTT -ACGGAACTGTTCTACACGAGCGTT -ACGGAACTGTTCTACACGTTCGTC -ACGGAACTGTTCTACACGTCTCTC -ACGGAACTGTTCTACACGTGGATC -ACGGAACTGTTCTACACGCACTTC -ACGGAACTGTTCTACACGGTACTC -ACGGAACTGTTCTACACGGATGTC -ACGGAACTGTTCTACACGACAGTC -ACGGAACTGTTCTACACGTTGCTG -ACGGAACTGTTCTACACGTCCATG -ACGGAACTGTTCTACACGTGTGTG -ACGGAACTGTTCTACACGCTAGTG -ACGGAACTGTTCTACACGCATCTG -ACGGAACTGTTCTACACGGAGTTG -ACGGAACTGTTCTACACGAGACTG -ACGGAACTGTTCTACACGTCGGTA -ACGGAACTGTTCTACACGTGCCTA -ACGGAACTGTTCTACACGCCACTA -ACGGAACTGTTCTACACGGGAGTA -ACGGAACTGTTCTACACGTCGTCT -ACGGAACTGTTCTACACGTGCACT -ACGGAACTGTTCTACACGCTGACT -ACGGAACTGTTCTACACGCAACCT -ACGGAACTGTTCTACACGGCTACT -ACGGAACTGTTCTACACGGGATCT -ACGGAACTGTTCTACACGAAGGCT -ACGGAACTGTTCTACACGTCAACC -ACGGAACTGTTCTACACGTGTTCC -ACGGAACTGTTCTACACGATTCCC -ACGGAACTGTTCTACACGTTCTCG -ACGGAACTGTTCTACACGTAGACG -ACGGAACTGTTCTACACGGTAACG -ACGGAACTGTTCTACACGACTTCG -ACGGAACTGTTCTACACGTACGCA -ACGGAACTGTTCTACACGCTTGCA -ACGGAACTGTTCTACACGCGAACA -ACGGAACTGTTCTACACGCAGTCA -ACGGAACTGTTCTACACGGATCCA -ACGGAACTGTTCTACACGACGACA -ACGGAACTGTTCTACACGAGCTCA -ACGGAACTGTTCTACACGTCACGT -ACGGAACTGTTCTACACGCGTAGT -ACGGAACTGTTCTACACGGTCAGT -ACGGAACTGTTCTACACGGAAGGT -ACGGAACTGTTCTACACGAACCGT -ACGGAACTGTTCTACACGTTGTGC -ACGGAACTGTTCTACACGCTAAGC -ACGGAACTGTTCTACACGACTAGC -ACGGAACTGTTCTACACGAGATGC -ACGGAACTGTTCTACACGTGAAGG -ACGGAACTGTTCTACACGCAATGG -ACGGAACTGTTCTACACGATGAGG -ACGGAACTGTTCTACACGAATGGG -ACGGAACTGTTCTACACGTCCTGA -ACGGAACTGTTCTACACGTAGCGA -ACGGAACTGTTCTACACGCACAGA -ACGGAACTGTTCTACACGGCAAGA -ACGGAACTGTTCTACACGGGTTGA -ACGGAACTGTTCTACACGTCCGAT -ACGGAACTGTTCTACACGTGGCAT -ACGGAACTGTTCTACACGCGAGAT -ACGGAACTGTTCTACACGTACCAC -ACGGAACTGTTCTACACGCAGAAC -ACGGAACTGTTCTACACGGTCTAC -ACGGAACTGTTCTACACGACGTAC -ACGGAACTGTTCTACACGAGTGAC -ACGGAACTGTTCTACACGCTGTAG -ACGGAACTGTTCTACACGCCTAAG -ACGGAACTGTTCTACACGGTTCAG -ACGGAACTGTTCTACACGGCATAG -ACGGAACTGTTCTACACGGACAAG -ACGGAACTGTTCTACACGAAGCAG -ACGGAACTGTTCTACACGCGTCAA -ACGGAACTGTTCTACACGGCTGAA -ACGGAACTGTTCTACACGAGTACG -ACGGAACTGTTCTACACGATCCGA -ACGGAACTGTTCTACACGATGGGA -ACGGAACTGTTCTACACGGTGCAA -ACGGAACTGTTCTACACGGAGGAA -ACGGAACTGTTCTACACGCAGGTA -ACGGAACTGTTCTACACGGACTCT -ACGGAACTGTTCTACACGAGTCCT -ACGGAACTGTTCTACACGTAAGCC -ACGGAACTGTTCTACACGATAGCC -ACGGAACTGTTCTACACGTAACCG -ACGGAACTGTTCTACACGATGCCA -ACGGAACTGTTCGACAGTGGAAAC -ACGGAACTGTTCGACAGTAACACC -ACGGAACTGTTCGACAGTATCGAG -ACGGAACTGTTCGACAGTCTCCTT -ACGGAACTGTTCGACAGTCCTGTT -ACGGAACTGTTCGACAGTCGGTTT -ACGGAACTGTTCGACAGTGTGGTT -ACGGAACTGTTCGACAGTGCCTTT -ACGGAACTGTTCGACAGTGGTCTT -ACGGAACTGTTCGACAGTACGCTT -ACGGAACTGTTCGACAGTAGCGTT -ACGGAACTGTTCGACAGTTTCGTC -ACGGAACTGTTCGACAGTTCTCTC -ACGGAACTGTTCGACAGTTGGATC -ACGGAACTGTTCGACAGTCACTTC -ACGGAACTGTTCGACAGTGTACTC -ACGGAACTGTTCGACAGTGATGTC -ACGGAACTGTTCGACAGTACAGTC -ACGGAACTGTTCGACAGTTTGCTG -ACGGAACTGTTCGACAGTTCCATG -ACGGAACTGTTCGACAGTTGTGTG -ACGGAACTGTTCGACAGTCTAGTG -ACGGAACTGTTCGACAGTCATCTG -ACGGAACTGTTCGACAGTGAGTTG -ACGGAACTGTTCGACAGTAGACTG -ACGGAACTGTTCGACAGTTCGGTA -ACGGAACTGTTCGACAGTTGCCTA -ACGGAACTGTTCGACAGTCCACTA -ACGGAACTGTTCGACAGTGGAGTA -ACGGAACTGTTCGACAGTTCGTCT -ACGGAACTGTTCGACAGTTGCACT -ACGGAACTGTTCGACAGTCTGACT -ACGGAACTGTTCGACAGTCAACCT -ACGGAACTGTTCGACAGTGCTACT -ACGGAACTGTTCGACAGTGGATCT -ACGGAACTGTTCGACAGTAAGGCT -ACGGAACTGTTCGACAGTTCAACC -ACGGAACTGTTCGACAGTTGTTCC -ACGGAACTGTTCGACAGTATTCCC -ACGGAACTGTTCGACAGTTTCTCG -ACGGAACTGTTCGACAGTTAGACG -ACGGAACTGTTCGACAGTGTAACG -ACGGAACTGTTCGACAGTACTTCG -ACGGAACTGTTCGACAGTTACGCA -ACGGAACTGTTCGACAGTCTTGCA -ACGGAACTGTTCGACAGTCGAACA -ACGGAACTGTTCGACAGTCAGTCA -ACGGAACTGTTCGACAGTGATCCA -ACGGAACTGTTCGACAGTACGACA -ACGGAACTGTTCGACAGTAGCTCA -ACGGAACTGTTCGACAGTTCACGT -ACGGAACTGTTCGACAGTCGTAGT -ACGGAACTGTTCGACAGTGTCAGT -ACGGAACTGTTCGACAGTGAAGGT -ACGGAACTGTTCGACAGTAACCGT -ACGGAACTGTTCGACAGTTTGTGC -ACGGAACTGTTCGACAGTCTAAGC -ACGGAACTGTTCGACAGTACTAGC -ACGGAACTGTTCGACAGTAGATGC -ACGGAACTGTTCGACAGTTGAAGG -ACGGAACTGTTCGACAGTCAATGG -ACGGAACTGTTCGACAGTATGAGG -ACGGAACTGTTCGACAGTAATGGG -ACGGAACTGTTCGACAGTTCCTGA -ACGGAACTGTTCGACAGTTAGCGA -ACGGAACTGTTCGACAGTCACAGA -ACGGAACTGTTCGACAGTGCAAGA -ACGGAACTGTTCGACAGTGGTTGA -ACGGAACTGTTCGACAGTTCCGAT -ACGGAACTGTTCGACAGTTGGCAT -ACGGAACTGTTCGACAGTCGAGAT -ACGGAACTGTTCGACAGTTACCAC -ACGGAACTGTTCGACAGTCAGAAC -ACGGAACTGTTCGACAGTGTCTAC -ACGGAACTGTTCGACAGTACGTAC -ACGGAACTGTTCGACAGTAGTGAC -ACGGAACTGTTCGACAGTCTGTAG -ACGGAACTGTTCGACAGTCCTAAG -ACGGAACTGTTCGACAGTGTTCAG -ACGGAACTGTTCGACAGTGCATAG -ACGGAACTGTTCGACAGTGACAAG -ACGGAACTGTTCGACAGTAAGCAG -ACGGAACTGTTCGACAGTCGTCAA -ACGGAACTGTTCGACAGTGCTGAA -ACGGAACTGTTCGACAGTAGTACG -ACGGAACTGTTCGACAGTATCCGA -ACGGAACTGTTCGACAGTATGGGA -ACGGAACTGTTCGACAGTGTGCAA -ACGGAACTGTTCGACAGTGAGGAA -ACGGAACTGTTCGACAGTCAGGTA -ACGGAACTGTTCGACAGTGACTCT -ACGGAACTGTTCGACAGTAGTCCT -ACGGAACTGTTCGACAGTTAAGCC -ACGGAACTGTTCGACAGTATAGCC -ACGGAACTGTTCGACAGTTAACCG -ACGGAACTGTTCGACAGTATGCCA -ACGGAACTGTTCTAGCTGGGAAAC -ACGGAACTGTTCTAGCTGAACACC -ACGGAACTGTTCTAGCTGATCGAG -ACGGAACTGTTCTAGCTGCTCCTT -ACGGAACTGTTCTAGCTGCCTGTT -ACGGAACTGTTCTAGCTGCGGTTT -ACGGAACTGTTCTAGCTGGTGGTT -ACGGAACTGTTCTAGCTGGCCTTT -ACGGAACTGTTCTAGCTGGGTCTT -ACGGAACTGTTCTAGCTGACGCTT -ACGGAACTGTTCTAGCTGAGCGTT -ACGGAACTGTTCTAGCTGTTCGTC -ACGGAACTGTTCTAGCTGTCTCTC -ACGGAACTGTTCTAGCTGTGGATC -ACGGAACTGTTCTAGCTGCACTTC -ACGGAACTGTTCTAGCTGGTACTC -ACGGAACTGTTCTAGCTGGATGTC -ACGGAACTGTTCTAGCTGACAGTC -ACGGAACTGTTCTAGCTGTTGCTG -ACGGAACTGTTCTAGCTGTCCATG -ACGGAACTGTTCTAGCTGTGTGTG -ACGGAACTGTTCTAGCTGCTAGTG -ACGGAACTGTTCTAGCTGCATCTG -ACGGAACTGTTCTAGCTGGAGTTG -ACGGAACTGTTCTAGCTGAGACTG -ACGGAACTGTTCTAGCTGTCGGTA -ACGGAACTGTTCTAGCTGTGCCTA -ACGGAACTGTTCTAGCTGCCACTA -ACGGAACTGTTCTAGCTGGGAGTA -ACGGAACTGTTCTAGCTGTCGTCT -ACGGAACTGTTCTAGCTGTGCACT -ACGGAACTGTTCTAGCTGCTGACT -ACGGAACTGTTCTAGCTGCAACCT -ACGGAACTGTTCTAGCTGGCTACT -ACGGAACTGTTCTAGCTGGGATCT -ACGGAACTGTTCTAGCTGAAGGCT -ACGGAACTGTTCTAGCTGTCAACC -ACGGAACTGTTCTAGCTGTGTTCC -ACGGAACTGTTCTAGCTGATTCCC -ACGGAACTGTTCTAGCTGTTCTCG -ACGGAACTGTTCTAGCTGTAGACG -ACGGAACTGTTCTAGCTGGTAACG -ACGGAACTGTTCTAGCTGACTTCG -ACGGAACTGTTCTAGCTGTACGCA -ACGGAACTGTTCTAGCTGCTTGCA -ACGGAACTGTTCTAGCTGCGAACA -ACGGAACTGTTCTAGCTGCAGTCA -ACGGAACTGTTCTAGCTGGATCCA -ACGGAACTGTTCTAGCTGACGACA -ACGGAACTGTTCTAGCTGAGCTCA -ACGGAACTGTTCTAGCTGTCACGT -ACGGAACTGTTCTAGCTGCGTAGT -ACGGAACTGTTCTAGCTGGTCAGT -ACGGAACTGTTCTAGCTGGAAGGT -ACGGAACTGTTCTAGCTGAACCGT -ACGGAACTGTTCTAGCTGTTGTGC -ACGGAACTGTTCTAGCTGCTAAGC -ACGGAACTGTTCTAGCTGACTAGC -ACGGAACTGTTCTAGCTGAGATGC -ACGGAACTGTTCTAGCTGTGAAGG -ACGGAACTGTTCTAGCTGCAATGG -ACGGAACTGTTCTAGCTGATGAGG -ACGGAACTGTTCTAGCTGAATGGG -ACGGAACTGTTCTAGCTGTCCTGA -ACGGAACTGTTCTAGCTGTAGCGA -ACGGAACTGTTCTAGCTGCACAGA -ACGGAACTGTTCTAGCTGGCAAGA -ACGGAACTGTTCTAGCTGGGTTGA -ACGGAACTGTTCTAGCTGTCCGAT -ACGGAACTGTTCTAGCTGTGGCAT -ACGGAACTGTTCTAGCTGCGAGAT -ACGGAACTGTTCTAGCTGTACCAC -ACGGAACTGTTCTAGCTGCAGAAC -ACGGAACTGTTCTAGCTGGTCTAC -ACGGAACTGTTCTAGCTGACGTAC -ACGGAACTGTTCTAGCTGAGTGAC -ACGGAACTGTTCTAGCTGCTGTAG -ACGGAACTGTTCTAGCTGCCTAAG -ACGGAACTGTTCTAGCTGGTTCAG -ACGGAACTGTTCTAGCTGGCATAG -ACGGAACTGTTCTAGCTGGACAAG -ACGGAACTGTTCTAGCTGAAGCAG -ACGGAACTGTTCTAGCTGCGTCAA -ACGGAACTGTTCTAGCTGGCTGAA -ACGGAACTGTTCTAGCTGAGTACG -ACGGAACTGTTCTAGCTGATCCGA -ACGGAACTGTTCTAGCTGATGGGA -ACGGAACTGTTCTAGCTGGTGCAA -ACGGAACTGTTCTAGCTGGAGGAA -ACGGAACTGTTCTAGCTGCAGGTA -ACGGAACTGTTCTAGCTGGACTCT -ACGGAACTGTTCTAGCTGAGTCCT -ACGGAACTGTTCTAGCTGTAAGCC -ACGGAACTGTTCTAGCTGATAGCC -ACGGAACTGTTCTAGCTGTAACCG -ACGGAACTGTTCTAGCTGATGCCA -ACGGAACTGTTCAAGCCTGGAAAC -ACGGAACTGTTCAAGCCTAACACC -ACGGAACTGTTCAAGCCTATCGAG -ACGGAACTGTTCAAGCCTCTCCTT -ACGGAACTGTTCAAGCCTCCTGTT -ACGGAACTGTTCAAGCCTCGGTTT -ACGGAACTGTTCAAGCCTGTGGTT -ACGGAACTGTTCAAGCCTGCCTTT -ACGGAACTGTTCAAGCCTGGTCTT -ACGGAACTGTTCAAGCCTACGCTT -ACGGAACTGTTCAAGCCTAGCGTT -ACGGAACTGTTCAAGCCTTTCGTC -ACGGAACTGTTCAAGCCTTCTCTC -ACGGAACTGTTCAAGCCTTGGATC -ACGGAACTGTTCAAGCCTCACTTC -ACGGAACTGTTCAAGCCTGTACTC -ACGGAACTGTTCAAGCCTGATGTC -ACGGAACTGTTCAAGCCTACAGTC -ACGGAACTGTTCAAGCCTTTGCTG -ACGGAACTGTTCAAGCCTTCCATG -ACGGAACTGTTCAAGCCTTGTGTG -ACGGAACTGTTCAAGCCTCTAGTG -ACGGAACTGTTCAAGCCTCATCTG -ACGGAACTGTTCAAGCCTGAGTTG -ACGGAACTGTTCAAGCCTAGACTG -ACGGAACTGTTCAAGCCTTCGGTA -ACGGAACTGTTCAAGCCTTGCCTA -ACGGAACTGTTCAAGCCTCCACTA -ACGGAACTGTTCAAGCCTGGAGTA -ACGGAACTGTTCAAGCCTTCGTCT -ACGGAACTGTTCAAGCCTTGCACT -ACGGAACTGTTCAAGCCTCTGACT -ACGGAACTGTTCAAGCCTCAACCT -ACGGAACTGTTCAAGCCTGCTACT -ACGGAACTGTTCAAGCCTGGATCT -ACGGAACTGTTCAAGCCTAAGGCT -ACGGAACTGTTCAAGCCTTCAACC -ACGGAACTGTTCAAGCCTTGTTCC -ACGGAACTGTTCAAGCCTATTCCC -ACGGAACTGTTCAAGCCTTTCTCG -ACGGAACTGTTCAAGCCTTAGACG -ACGGAACTGTTCAAGCCTGTAACG -ACGGAACTGTTCAAGCCTACTTCG -ACGGAACTGTTCAAGCCTTACGCA -ACGGAACTGTTCAAGCCTCTTGCA -ACGGAACTGTTCAAGCCTCGAACA -ACGGAACTGTTCAAGCCTCAGTCA -ACGGAACTGTTCAAGCCTGATCCA -ACGGAACTGTTCAAGCCTACGACA -ACGGAACTGTTCAAGCCTAGCTCA -ACGGAACTGTTCAAGCCTTCACGT -ACGGAACTGTTCAAGCCTCGTAGT -ACGGAACTGTTCAAGCCTGTCAGT -ACGGAACTGTTCAAGCCTGAAGGT -ACGGAACTGTTCAAGCCTAACCGT -ACGGAACTGTTCAAGCCTTTGTGC -ACGGAACTGTTCAAGCCTCTAAGC -ACGGAACTGTTCAAGCCTACTAGC -ACGGAACTGTTCAAGCCTAGATGC -ACGGAACTGTTCAAGCCTTGAAGG -ACGGAACTGTTCAAGCCTCAATGG -ACGGAACTGTTCAAGCCTATGAGG -ACGGAACTGTTCAAGCCTAATGGG -ACGGAACTGTTCAAGCCTTCCTGA -ACGGAACTGTTCAAGCCTTAGCGA -ACGGAACTGTTCAAGCCTCACAGA -ACGGAACTGTTCAAGCCTGCAAGA -ACGGAACTGTTCAAGCCTGGTTGA -ACGGAACTGTTCAAGCCTTCCGAT -ACGGAACTGTTCAAGCCTTGGCAT -ACGGAACTGTTCAAGCCTCGAGAT -ACGGAACTGTTCAAGCCTTACCAC -ACGGAACTGTTCAAGCCTCAGAAC -ACGGAACTGTTCAAGCCTGTCTAC -ACGGAACTGTTCAAGCCTACGTAC -ACGGAACTGTTCAAGCCTAGTGAC -ACGGAACTGTTCAAGCCTCTGTAG -ACGGAACTGTTCAAGCCTCCTAAG -ACGGAACTGTTCAAGCCTGTTCAG -ACGGAACTGTTCAAGCCTGCATAG -ACGGAACTGTTCAAGCCTGACAAG -ACGGAACTGTTCAAGCCTAAGCAG -ACGGAACTGTTCAAGCCTCGTCAA -ACGGAACTGTTCAAGCCTGCTGAA -ACGGAACTGTTCAAGCCTAGTACG -ACGGAACTGTTCAAGCCTATCCGA -ACGGAACTGTTCAAGCCTATGGGA -ACGGAACTGTTCAAGCCTGTGCAA -ACGGAACTGTTCAAGCCTGAGGAA -ACGGAACTGTTCAAGCCTCAGGTA -ACGGAACTGTTCAAGCCTGACTCT -ACGGAACTGTTCAAGCCTAGTCCT -ACGGAACTGTTCAAGCCTTAAGCC -ACGGAACTGTTCAAGCCTATAGCC -ACGGAACTGTTCAAGCCTTAACCG -ACGGAACTGTTCAAGCCTATGCCA -ACGGAACTGTTCCAGGTTGGAAAC -ACGGAACTGTTCCAGGTTAACACC -ACGGAACTGTTCCAGGTTATCGAG -ACGGAACTGTTCCAGGTTCTCCTT -ACGGAACTGTTCCAGGTTCCTGTT -ACGGAACTGTTCCAGGTTCGGTTT -ACGGAACTGTTCCAGGTTGTGGTT -ACGGAACTGTTCCAGGTTGCCTTT -ACGGAACTGTTCCAGGTTGGTCTT -ACGGAACTGTTCCAGGTTACGCTT -ACGGAACTGTTCCAGGTTAGCGTT -ACGGAACTGTTCCAGGTTTTCGTC -ACGGAACTGTTCCAGGTTTCTCTC -ACGGAACTGTTCCAGGTTTGGATC -ACGGAACTGTTCCAGGTTCACTTC -ACGGAACTGTTCCAGGTTGTACTC -ACGGAACTGTTCCAGGTTGATGTC -ACGGAACTGTTCCAGGTTACAGTC -ACGGAACTGTTCCAGGTTTTGCTG -ACGGAACTGTTCCAGGTTTCCATG -ACGGAACTGTTCCAGGTTTGTGTG -ACGGAACTGTTCCAGGTTCTAGTG -ACGGAACTGTTCCAGGTTCATCTG -ACGGAACTGTTCCAGGTTGAGTTG -ACGGAACTGTTCCAGGTTAGACTG -ACGGAACTGTTCCAGGTTTCGGTA -ACGGAACTGTTCCAGGTTTGCCTA -ACGGAACTGTTCCAGGTTCCACTA -ACGGAACTGTTCCAGGTTGGAGTA -ACGGAACTGTTCCAGGTTTCGTCT -ACGGAACTGTTCCAGGTTTGCACT -ACGGAACTGTTCCAGGTTCTGACT -ACGGAACTGTTCCAGGTTCAACCT -ACGGAACTGTTCCAGGTTGCTACT -ACGGAACTGTTCCAGGTTGGATCT -ACGGAACTGTTCCAGGTTAAGGCT -ACGGAACTGTTCCAGGTTTCAACC -ACGGAACTGTTCCAGGTTTGTTCC -ACGGAACTGTTCCAGGTTATTCCC -ACGGAACTGTTCCAGGTTTTCTCG -ACGGAACTGTTCCAGGTTTAGACG -ACGGAACTGTTCCAGGTTGTAACG -ACGGAACTGTTCCAGGTTACTTCG -ACGGAACTGTTCCAGGTTTACGCA -ACGGAACTGTTCCAGGTTCTTGCA -ACGGAACTGTTCCAGGTTCGAACA -ACGGAACTGTTCCAGGTTCAGTCA -ACGGAACTGTTCCAGGTTGATCCA -ACGGAACTGTTCCAGGTTACGACA -ACGGAACTGTTCCAGGTTAGCTCA -ACGGAACTGTTCCAGGTTTCACGT -ACGGAACTGTTCCAGGTTCGTAGT -ACGGAACTGTTCCAGGTTGTCAGT -ACGGAACTGTTCCAGGTTGAAGGT -ACGGAACTGTTCCAGGTTAACCGT -ACGGAACTGTTCCAGGTTTTGTGC -ACGGAACTGTTCCAGGTTCTAAGC -ACGGAACTGTTCCAGGTTACTAGC -ACGGAACTGTTCCAGGTTAGATGC -ACGGAACTGTTCCAGGTTTGAAGG -ACGGAACTGTTCCAGGTTCAATGG -ACGGAACTGTTCCAGGTTATGAGG -ACGGAACTGTTCCAGGTTAATGGG -ACGGAACTGTTCCAGGTTTCCTGA -ACGGAACTGTTCCAGGTTTAGCGA -ACGGAACTGTTCCAGGTTCACAGA -ACGGAACTGTTCCAGGTTGCAAGA -ACGGAACTGTTCCAGGTTGGTTGA -ACGGAACTGTTCCAGGTTTCCGAT -ACGGAACTGTTCCAGGTTTGGCAT -ACGGAACTGTTCCAGGTTCGAGAT -ACGGAACTGTTCCAGGTTTACCAC -ACGGAACTGTTCCAGGTTCAGAAC -ACGGAACTGTTCCAGGTTGTCTAC -ACGGAACTGTTCCAGGTTACGTAC -ACGGAACTGTTCCAGGTTAGTGAC -ACGGAACTGTTCCAGGTTCTGTAG -ACGGAACTGTTCCAGGTTCCTAAG -ACGGAACTGTTCCAGGTTGTTCAG -ACGGAACTGTTCCAGGTTGCATAG -ACGGAACTGTTCCAGGTTGACAAG -ACGGAACTGTTCCAGGTTAAGCAG -ACGGAACTGTTCCAGGTTCGTCAA -ACGGAACTGTTCCAGGTTGCTGAA -ACGGAACTGTTCCAGGTTAGTACG -ACGGAACTGTTCCAGGTTATCCGA -ACGGAACTGTTCCAGGTTATGGGA -ACGGAACTGTTCCAGGTTGTGCAA -ACGGAACTGTTCCAGGTTGAGGAA -ACGGAACTGTTCCAGGTTCAGGTA -ACGGAACTGTTCCAGGTTGACTCT -ACGGAACTGTTCCAGGTTAGTCCT -ACGGAACTGTTCCAGGTTTAAGCC -ACGGAACTGTTCCAGGTTATAGCC -ACGGAACTGTTCCAGGTTTAACCG -ACGGAACTGTTCCAGGTTATGCCA -ACGGAACTGTTCTAGGCAGGAAAC -ACGGAACTGTTCTAGGCAAACACC -ACGGAACTGTTCTAGGCAATCGAG -ACGGAACTGTTCTAGGCACTCCTT -ACGGAACTGTTCTAGGCACCTGTT -ACGGAACTGTTCTAGGCACGGTTT -ACGGAACTGTTCTAGGCAGTGGTT -ACGGAACTGTTCTAGGCAGCCTTT -ACGGAACTGTTCTAGGCAGGTCTT -ACGGAACTGTTCTAGGCAACGCTT -ACGGAACTGTTCTAGGCAAGCGTT -ACGGAACTGTTCTAGGCATTCGTC -ACGGAACTGTTCTAGGCATCTCTC -ACGGAACTGTTCTAGGCATGGATC -ACGGAACTGTTCTAGGCACACTTC -ACGGAACTGTTCTAGGCAGTACTC -ACGGAACTGTTCTAGGCAGATGTC -ACGGAACTGTTCTAGGCAACAGTC -ACGGAACTGTTCTAGGCATTGCTG -ACGGAACTGTTCTAGGCATCCATG -ACGGAACTGTTCTAGGCATGTGTG -ACGGAACTGTTCTAGGCACTAGTG -ACGGAACTGTTCTAGGCACATCTG -ACGGAACTGTTCTAGGCAGAGTTG -ACGGAACTGTTCTAGGCAAGACTG -ACGGAACTGTTCTAGGCATCGGTA -ACGGAACTGTTCTAGGCATGCCTA -ACGGAACTGTTCTAGGCACCACTA -ACGGAACTGTTCTAGGCAGGAGTA -ACGGAACTGTTCTAGGCATCGTCT -ACGGAACTGTTCTAGGCATGCACT -ACGGAACTGTTCTAGGCACTGACT -ACGGAACTGTTCTAGGCACAACCT -ACGGAACTGTTCTAGGCAGCTACT -ACGGAACTGTTCTAGGCAGGATCT -ACGGAACTGTTCTAGGCAAAGGCT -ACGGAACTGTTCTAGGCATCAACC -ACGGAACTGTTCTAGGCATGTTCC -ACGGAACTGTTCTAGGCAATTCCC -ACGGAACTGTTCTAGGCATTCTCG -ACGGAACTGTTCTAGGCATAGACG -ACGGAACTGTTCTAGGCAGTAACG -ACGGAACTGTTCTAGGCAACTTCG -ACGGAACTGTTCTAGGCATACGCA -ACGGAACTGTTCTAGGCACTTGCA -ACGGAACTGTTCTAGGCACGAACA -ACGGAACTGTTCTAGGCACAGTCA -ACGGAACTGTTCTAGGCAGATCCA -ACGGAACTGTTCTAGGCAACGACA -ACGGAACTGTTCTAGGCAAGCTCA -ACGGAACTGTTCTAGGCATCACGT -ACGGAACTGTTCTAGGCACGTAGT -ACGGAACTGTTCTAGGCAGTCAGT -ACGGAACTGTTCTAGGCAGAAGGT -ACGGAACTGTTCTAGGCAAACCGT -ACGGAACTGTTCTAGGCATTGTGC -ACGGAACTGTTCTAGGCACTAAGC -ACGGAACTGTTCTAGGCAACTAGC -ACGGAACTGTTCTAGGCAAGATGC -ACGGAACTGTTCTAGGCATGAAGG -ACGGAACTGTTCTAGGCACAATGG -ACGGAACTGTTCTAGGCAATGAGG -ACGGAACTGTTCTAGGCAAATGGG -ACGGAACTGTTCTAGGCATCCTGA -ACGGAACTGTTCTAGGCATAGCGA -ACGGAACTGTTCTAGGCACACAGA -ACGGAACTGTTCTAGGCAGCAAGA -ACGGAACTGTTCTAGGCAGGTTGA -ACGGAACTGTTCTAGGCATCCGAT -ACGGAACTGTTCTAGGCATGGCAT -ACGGAACTGTTCTAGGCACGAGAT -ACGGAACTGTTCTAGGCATACCAC -ACGGAACTGTTCTAGGCACAGAAC -ACGGAACTGTTCTAGGCAGTCTAC -ACGGAACTGTTCTAGGCAACGTAC -ACGGAACTGTTCTAGGCAAGTGAC -ACGGAACTGTTCTAGGCACTGTAG -ACGGAACTGTTCTAGGCACCTAAG -ACGGAACTGTTCTAGGCAGTTCAG -ACGGAACTGTTCTAGGCAGCATAG -ACGGAACTGTTCTAGGCAGACAAG -ACGGAACTGTTCTAGGCAAAGCAG -ACGGAACTGTTCTAGGCACGTCAA -ACGGAACTGTTCTAGGCAGCTGAA -ACGGAACTGTTCTAGGCAAGTACG -ACGGAACTGTTCTAGGCAATCCGA -ACGGAACTGTTCTAGGCAATGGGA -ACGGAACTGTTCTAGGCAGTGCAA -ACGGAACTGTTCTAGGCAGAGGAA -ACGGAACTGTTCTAGGCACAGGTA -ACGGAACTGTTCTAGGCAGACTCT -ACGGAACTGTTCTAGGCAAGTCCT -ACGGAACTGTTCTAGGCATAAGCC -ACGGAACTGTTCTAGGCAATAGCC -ACGGAACTGTTCTAGGCATAACCG -ACGGAACTGTTCTAGGCAATGCCA -ACGGAACTGTTCAAGGACGGAAAC -ACGGAACTGTTCAAGGACAACACC -ACGGAACTGTTCAAGGACATCGAG -ACGGAACTGTTCAAGGACCTCCTT -ACGGAACTGTTCAAGGACCCTGTT -ACGGAACTGTTCAAGGACCGGTTT -ACGGAACTGTTCAAGGACGTGGTT -ACGGAACTGTTCAAGGACGCCTTT -ACGGAACTGTTCAAGGACGGTCTT -ACGGAACTGTTCAAGGACACGCTT -ACGGAACTGTTCAAGGACAGCGTT -ACGGAACTGTTCAAGGACTTCGTC -ACGGAACTGTTCAAGGACTCTCTC -ACGGAACTGTTCAAGGACTGGATC -ACGGAACTGTTCAAGGACCACTTC -ACGGAACTGTTCAAGGACGTACTC -ACGGAACTGTTCAAGGACGATGTC -ACGGAACTGTTCAAGGACACAGTC -ACGGAACTGTTCAAGGACTTGCTG -ACGGAACTGTTCAAGGACTCCATG -ACGGAACTGTTCAAGGACTGTGTG -ACGGAACTGTTCAAGGACCTAGTG -ACGGAACTGTTCAAGGACCATCTG -ACGGAACTGTTCAAGGACGAGTTG -ACGGAACTGTTCAAGGACAGACTG -ACGGAACTGTTCAAGGACTCGGTA -ACGGAACTGTTCAAGGACTGCCTA -ACGGAACTGTTCAAGGACCCACTA -ACGGAACTGTTCAAGGACGGAGTA -ACGGAACTGTTCAAGGACTCGTCT -ACGGAACTGTTCAAGGACTGCACT -ACGGAACTGTTCAAGGACCTGACT -ACGGAACTGTTCAAGGACCAACCT -ACGGAACTGTTCAAGGACGCTACT -ACGGAACTGTTCAAGGACGGATCT -ACGGAACTGTTCAAGGACAAGGCT -ACGGAACTGTTCAAGGACTCAACC -ACGGAACTGTTCAAGGACTGTTCC -ACGGAACTGTTCAAGGACATTCCC -ACGGAACTGTTCAAGGACTTCTCG -ACGGAACTGTTCAAGGACTAGACG -ACGGAACTGTTCAAGGACGTAACG -ACGGAACTGTTCAAGGACACTTCG -ACGGAACTGTTCAAGGACTACGCA -ACGGAACTGTTCAAGGACCTTGCA -ACGGAACTGTTCAAGGACCGAACA -ACGGAACTGTTCAAGGACCAGTCA -ACGGAACTGTTCAAGGACGATCCA -ACGGAACTGTTCAAGGACACGACA -ACGGAACTGTTCAAGGACAGCTCA -ACGGAACTGTTCAAGGACTCACGT -ACGGAACTGTTCAAGGACCGTAGT -ACGGAACTGTTCAAGGACGTCAGT -ACGGAACTGTTCAAGGACGAAGGT -ACGGAACTGTTCAAGGACAACCGT -ACGGAACTGTTCAAGGACTTGTGC -ACGGAACTGTTCAAGGACCTAAGC -ACGGAACTGTTCAAGGACACTAGC -ACGGAACTGTTCAAGGACAGATGC -ACGGAACTGTTCAAGGACTGAAGG -ACGGAACTGTTCAAGGACCAATGG -ACGGAACTGTTCAAGGACATGAGG -ACGGAACTGTTCAAGGACAATGGG -ACGGAACTGTTCAAGGACTCCTGA -ACGGAACTGTTCAAGGACTAGCGA -ACGGAACTGTTCAAGGACCACAGA -ACGGAACTGTTCAAGGACGCAAGA -ACGGAACTGTTCAAGGACGGTTGA -ACGGAACTGTTCAAGGACTCCGAT -ACGGAACTGTTCAAGGACTGGCAT -ACGGAACTGTTCAAGGACCGAGAT -ACGGAACTGTTCAAGGACTACCAC -ACGGAACTGTTCAAGGACCAGAAC -ACGGAACTGTTCAAGGACGTCTAC -ACGGAACTGTTCAAGGACACGTAC -ACGGAACTGTTCAAGGACAGTGAC -ACGGAACTGTTCAAGGACCTGTAG -ACGGAACTGTTCAAGGACCCTAAG -ACGGAACTGTTCAAGGACGTTCAG -ACGGAACTGTTCAAGGACGCATAG -ACGGAACTGTTCAAGGACGACAAG -ACGGAACTGTTCAAGGACAAGCAG -ACGGAACTGTTCAAGGACCGTCAA -ACGGAACTGTTCAAGGACGCTGAA -ACGGAACTGTTCAAGGACAGTACG -ACGGAACTGTTCAAGGACATCCGA -ACGGAACTGTTCAAGGACATGGGA -ACGGAACTGTTCAAGGACGTGCAA -ACGGAACTGTTCAAGGACGAGGAA -ACGGAACTGTTCAAGGACCAGGTA -ACGGAACTGTTCAAGGACGACTCT -ACGGAACTGTTCAAGGACAGTCCT -ACGGAACTGTTCAAGGACTAAGCC -ACGGAACTGTTCAAGGACATAGCC -ACGGAACTGTTCAAGGACTAACCG -ACGGAACTGTTCAAGGACATGCCA -ACGGAACTGTTCCAGAAGGGAAAC -ACGGAACTGTTCCAGAAGAACACC -ACGGAACTGTTCCAGAAGATCGAG -ACGGAACTGTTCCAGAAGCTCCTT -ACGGAACTGTTCCAGAAGCCTGTT -ACGGAACTGTTCCAGAAGCGGTTT -ACGGAACTGTTCCAGAAGGTGGTT -ACGGAACTGTTCCAGAAGGCCTTT -ACGGAACTGTTCCAGAAGGGTCTT -ACGGAACTGTTCCAGAAGACGCTT -ACGGAACTGTTCCAGAAGAGCGTT -ACGGAACTGTTCCAGAAGTTCGTC -ACGGAACTGTTCCAGAAGTCTCTC -ACGGAACTGTTCCAGAAGTGGATC -ACGGAACTGTTCCAGAAGCACTTC -ACGGAACTGTTCCAGAAGGTACTC -ACGGAACTGTTCCAGAAGGATGTC -ACGGAACTGTTCCAGAAGACAGTC -ACGGAACTGTTCCAGAAGTTGCTG -ACGGAACTGTTCCAGAAGTCCATG -ACGGAACTGTTCCAGAAGTGTGTG -ACGGAACTGTTCCAGAAGCTAGTG -ACGGAACTGTTCCAGAAGCATCTG -ACGGAACTGTTCCAGAAGGAGTTG -ACGGAACTGTTCCAGAAGAGACTG -ACGGAACTGTTCCAGAAGTCGGTA -ACGGAACTGTTCCAGAAGTGCCTA -ACGGAACTGTTCCAGAAGCCACTA -ACGGAACTGTTCCAGAAGGGAGTA -ACGGAACTGTTCCAGAAGTCGTCT -ACGGAACTGTTCCAGAAGTGCACT -ACGGAACTGTTCCAGAAGCTGACT -ACGGAACTGTTCCAGAAGCAACCT -ACGGAACTGTTCCAGAAGGCTACT -ACGGAACTGTTCCAGAAGGGATCT -ACGGAACTGTTCCAGAAGAAGGCT -ACGGAACTGTTCCAGAAGTCAACC -ACGGAACTGTTCCAGAAGTGTTCC -ACGGAACTGTTCCAGAAGATTCCC -ACGGAACTGTTCCAGAAGTTCTCG -ACGGAACTGTTCCAGAAGTAGACG -ACGGAACTGTTCCAGAAGGTAACG -ACGGAACTGTTCCAGAAGACTTCG -ACGGAACTGTTCCAGAAGTACGCA -ACGGAACTGTTCCAGAAGCTTGCA -ACGGAACTGTTCCAGAAGCGAACA -ACGGAACTGTTCCAGAAGCAGTCA -ACGGAACTGTTCCAGAAGGATCCA -ACGGAACTGTTCCAGAAGACGACA -ACGGAACTGTTCCAGAAGAGCTCA -ACGGAACTGTTCCAGAAGTCACGT -ACGGAACTGTTCCAGAAGCGTAGT -ACGGAACTGTTCCAGAAGGTCAGT -ACGGAACTGTTCCAGAAGGAAGGT -ACGGAACTGTTCCAGAAGAACCGT -ACGGAACTGTTCCAGAAGTTGTGC -ACGGAACTGTTCCAGAAGCTAAGC -ACGGAACTGTTCCAGAAGACTAGC -ACGGAACTGTTCCAGAAGAGATGC -ACGGAACTGTTCCAGAAGTGAAGG -ACGGAACTGTTCCAGAAGCAATGG -ACGGAACTGTTCCAGAAGATGAGG -ACGGAACTGTTCCAGAAGAATGGG -ACGGAACTGTTCCAGAAGTCCTGA -ACGGAACTGTTCCAGAAGTAGCGA -ACGGAACTGTTCCAGAAGCACAGA -ACGGAACTGTTCCAGAAGGCAAGA -ACGGAACTGTTCCAGAAGGGTTGA -ACGGAACTGTTCCAGAAGTCCGAT -ACGGAACTGTTCCAGAAGTGGCAT -ACGGAACTGTTCCAGAAGCGAGAT -ACGGAACTGTTCCAGAAGTACCAC -ACGGAACTGTTCCAGAAGCAGAAC -ACGGAACTGTTCCAGAAGGTCTAC -ACGGAACTGTTCCAGAAGACGTAC -ACGGAACTGTTCCAGAAGAGTGAC -ACGGAACTGTTCCAGAAGCTGTAG -ACGGAACTGTTCCAGAAGCCTAAG -ACGGAACTGTTCCAGAAGGTTCAG -ACGGAACTGTTCCAGAAGGCATAG -ACGGAACTGTTCCAGAAGGACAAG -ACGGAACTGTTCCAGAAGAAGCAG -ACGGAACTGTTCCAGAAGCGTCAA -ACGGAACTGTTCCAGAAGGCTGAA -ACGGAACTGTTCCAGAAGAGTACG -ACGGAACTGTTCCAGAAGATCCGA -ACGGAACTGTTCCAGAAGATGGGA -ACGGAACTGTTCCAGAAGGTGCAA -ACGGAACTGTTCCAGAAGGAGGAA -ACGGAACTGTTCCAGAAGCAGGTA -ACGGAACTGTTCCAGAAGGACTCT -ACGGAACTGTTCCAGAAGAGTCCT -ACGGAACTGTTCCAGAAGTAAGCC -ACGGAACTGTTCCAGAAGATAGCC -ACGGAACTGTTCCAGAAGTAACCG -ACGGAACTGTTCCAGAAGATGCCA -ACGGAACTGTTCCAACGTGGAAAC -ACGGAACTGTTCCAACGTAACACC -ACGGAACTGTTCCAACGTATCGAG -ACGGAACTGTTCCAACGTCTCCTT -ACGGAACTGTTCCAACGTCCTGTT -ACGGAACTGTTCCAACGTCGGTTT -ACGGAACTGTTCCAACGTGTGGTT -ACGGAACTGTTCCAACGTGCCTTT -ACGGAACTGTTCCAACGTGGTCTT -ACGGAACTGTTCCAACGTACGCTT -ACGGAACTGTTCCAACGTAGCGTT -ACGGAACTGTTCCAACGTTTCGTC -ACGGAACTGTTCCAACGTTCTCTC -ACGGAACTGTTCCAACGTTGGATC -ACGGAACTGTTCCAACGTCACTTC -ACGGAACTGTTCCAACGTGTACTC -ACGGAACTGTTCCAACGTGATGTC -ACGGAACTGTTCCAACGTACAGTC -ACGGAACTGTTCCAACGTTTGCTG -ACGGAACTGTTCCAACGTTCCATG -ACGGAACTGTTCCAACGTTGTGTG -ACGGAACTGTTCCAACGTCTAGTG -ACGGAACTGTTCCAACGTCATCTG -ACGGAACTGTTCCAACGTGAGTTG -ACGGAACTGTTCCAACGTAGACTG -ACGGAACTGTTCCAACGTTCGGTA -ACGGAACTGTTCCAACGTTGCCTA -ACGGAACTGTTCCAACGTCCACTA -ACGGAACTGTTCCAACGTGGAGTA -ACGGAACTGTTCCAACGTTCGTCT -ACGGAACTGTTCCAACGTTGCACT -ACGGAACTGTTCCAACGTCTGACT -ACGGAACTGTTCCAACGTCAACCT -ACGGAACTGTTCCAACGTGCTACT -ACGGAACTGTTCCAACGTGGATCT -ACGGAACTGTTCCAACGTAAGGCT -ACGGAACTGTTCCAACGTTCAACC -ACGGAACTGTTCCAACGTTGTTCC -ACGGAACTGTTCCAACGTATTCCC -ACGGAACTGTTCCAACGTTTCTCG -ACGGAACTGTTCCAACGTTAGACG -ACGGAACTGTTCCAACGTGTAACG -ACGGAACTGTTCCAACGTACTTCG -ACGGAACTGTTCCAACGTTACGCA -ACGGAACTGTTCCAACGTCTTGCA -ACGGAACTGTTCCAACGTCGAACA -ACGGAACTGTTCCAACGTCAGTCA -ACGGAACTGTTCCAACGTGATCCA -ACGGAACTGTTCCAACGTACGACA -ACGGAACTGTTCCAACGTAGCTCA -ACGGAACTGTTCCAACGTTCACGT -ACGGAACTGTTCCAACGTCGTAGT -ACGGAACTGTTCCAACGTGTCAGT -ACGGAACTGTTCCAACGTGAAGGT -ACGGAACTGTTCCAACGTAACCGT -ACGGAACTGTTCCAACGTTTGTGC -ACGGAACTGTTCCAACGTCTAAGC -ACGGAACTGTTCCAACGTACTAGC -ACGGAACTGTTCCAACGTAGATGC -ACGGAACTGTTCCAACGTTGAAGG -ACGGAACTGTTCCAACGTCAATGG -ACGGAACTGTTCCAACGTATGAGG -ACGGAACTGTTCCAACGTAATGGG -ACGGAACTGTTCCAACGTTCCTGA -ACGGAACTGTTCCAACGTTAGCGA -ACGGAACTGTTCCAACGTCACAGA -ACGGAACTGTTCCAACGTGCAAGA -ACGGAACTGTTCCAACGTGGTTGA -ACGGAACTGTTCCAACGTTCCGAT -ACGGAACTGTTCCAACGTTGGCAT -ACGGAACTGTTCCAACGTCGAGAT -ACGGAACTGTTCCAACGTTACCAC -ACGGAACTGTTCCAACGTCAGAAC -ACGGAACTGTTCCAACGTGTCTAC -ACGGAACTGTTCCAACGTACGTAC -ACGGAACTGTTCCAACGTAGTGAC -ACGGAACTGTTCCAACGTCTGTAG -ACGGAACTGTTCCAACGTCCTAAG -ACGGAACTGTTCCAACGTGTTCAG -ACGGAACTGTTCCAACGTGCATAG -ACGGAACTGTTCCAACGTGACAAG -ACGGAACTGTTCCAACGTAAGCAG -ACGGAACTGTTCCAACGTCGTCAA -ACGGAACTGTTCCAACGTGCTGAA -ACGGAACTGTTCCAACGTAGTACG -ACGGAACTGTTCCAACGTATCCGA -ACGGAACTGTTCCAACGTATGGGA -ACGGAACTGTTCCAACGTGTGCAA -ACGGAACTGTTCCAACGTGAGGAA -ACGGAACTGTTCCAACGTCAGGTA -ACGGAACTGTTCCAACGTGACTCT -ACGGAACTGTTCCAACGTAGTCCT -ACGGAACTGTTCCAACGTTAAGCC -ACGGAACTGTTCCAACGTATAGCC -ACGGAACTGTTCCAACGTTAACCG -ACGGAACTGTTCCAACGTATGCCA -ACGGAACTGTTCGAAGCTGGAAAC -ACGGAACTGTTCGAAGCTAACACC -ACGGAACTGTTCGAAGCTATCGAG -ACGGAACTGTTCGAAGCTCTCCTT -ACGGAACTGTTCGAAGCTCCTGTT -ACGGAACTGTTCGAAGCTCGGTTT -ACGGAACTGTTCGAAGCTGTGGTT -ACGGAACTGTTCGAAGCTGCCTTT -ACGGAACTGTTCGAAGCTGGTCTT -ACGGAACTGTTCGAAGCTACGCTT -ACGGAACTGTTCGAAGCTAGCGTT -ACGGAACTGTTCGAAGCTTTCGTC -ACGGAACTGTTCGAAGCTTCTCTC -ACGGAACTGTTCGAAGCTTGGATC -ACGGAACTGTTCGAAGCTCACTTC -ACGGAACTGTTCGAAGCTGTACTC -ACGGAACTGTTCGAAGCTGATGTC -ACGGAACTGTTCGAAGCTACAGTC -ACGGAACTGTTCGAAGCTTTGCTG -ACGGAACTGTTCGAAGCTTCCATG -ACGGAACTGTTCGAAGCTTGTGTG -ACGGAACTGTTCGAAGCTCTAGTG -ACGGAACTGTTCGAAGCTCATCTG -ACGGAACTGTTCGAAGCTGAGTTG -ACGGAACTGTTCGAAGCTAGACTG -ACGGAACTGTTCGAAGCTTCGGTA -ACGGAACTGTTCGAAGCTTGCCTA -ACGGAACTGTTCGAAGCTCCACTA -ACGGAACTGTTCGAAGCTGGAGTA -ACGGAACTGTTCGAAGCTTCGTCT -ACGGAACTGTTCGAAGCTTGCACT -ACGGAACTGTTCGAAGCTCTGACT -ACGGAACTGTTCGAAGCTCAACCT -ACGGAACTGTTCGAAGCTGCTACT -ACGGAACTGTTCGAAGCTGGATCT -ACGGAACTGTTCGAAGCTAAGGCT -ACGGAACTGTTCGAAGCTTCAACC -ACGGAACTGTTCGAAGCTTGTTCC -ACGGAACTGTTCGAAGCTATTCCC -ACGGAACTGTTCGAAGCTTTCTCG -ACGGAACTGTTCGAAGCTTAGACG -ACGGAACTGTTCGAAGCTGTAACG -ACGGAACTGTTCGAAGCTACTTCG -ACGGAACTGTTCGAAGCTTACGCA -ACGGAACTGTTCGAAGCTCTTGCA -ACGGAACTGTTCGAAGCTCGAACA -ACGGAACTGTTCGAAGCTCAGTCA -ACGGAACTGTTCGAAGCTGATCCA -ACGGAACTGTTCGAAGCTACGACA -ACGGAACTGTTCGAAGCTAGCTCA -ACGGAACTGTTCGAAGCTTCACGT -ACGGAACTGTTCGAAGCTCGTAGT -ACGGAACTGTTCGAAGCTGTCAGT -ACGGAACTGTTCGAAGCTGAAGGT -ACGGAACTGTTCGAAGCTAACCGT -ACGGAACTGTTCGAAGCTTTGTGC -ACGGAACTGTTCGAAGCTCTAAGC -ACGGAACTGTTCGAAGCTACTAGC -ACGGAACTGTTCGAAGCTAGATGC -ACGGAACTGTTCGAAGCTTGAAGG -ACGGAACTGTTCGAAGCTCAATGG -ACGGAACTGTTCGAAGCTATGAGG -ACGGAACTGTTCGAAGCTAATGGG -ACGGAACTGTTCGAAGCTTCCTGA -ACGGAACTGTTCGAAGCTTAGCGA -ACGGAACTGTTCGAAGCTCACAGA -ACGGAACTGTTCGAAGCTGCAAGA -ACGGAACTGTTCGAAGCTGGTTGA -ACGGAACTGTTCGAAGCTTCCGAT -ACGGAACTGTTCGAAGCTTGGCAT -ACGGAACTGTTCGAAGCTCGAGAT -ACGGAACTGTTCGAAGCTTACCAC -ACGGAACTGTTCGAAGCTCAGAAC -ACGGAACTGTTCGAAGCTGTCTAC -ACGGAACTGTTCGAAGCTACGTAC -ACGGAACTGTTCGAAGCTAGTGAC -ACGGAACTGTTCGAAGCTCTGTAG -ACGGAACTGTTCGAAGCTCCTAAG -ACGGAACTGTTCGAAGCTGTTCAG -ACGGAACTGTTCGAAGCTGCATAG -ACGGAACTGTTCGAAGCTGACAAG -ACGGAACTGTTCGAAGCTAAGCAG -ACGGAACTGTTCGAAGCTCGTCAA -ACGGAACTGTTCGAAGCTGCTGAA -ACGGAACTGTTCGAAGCTAGTACG -ACGGAACTGTTCGAAGCTATCCGA -ACGGAACTGTTCGAAGCTATGGGA -ACGGAACTGTTCGAAGCTGTGCAA -ACGGAACTGTTCGAAGCTGAGGAA -ACGGAACTGTTCGAAGCTCAGGTA -ACGGAACTGTTCGAAGCTGACTCT -ACGGAACTGTTCGAAGCTAGTCCT -ACGGAACTGTTCGAAGCTTAAGCC -ACGGAACTGTTCGAAGCTATAGCC -ACGGAACTGTTCGAAGCTTAACCG -ACGGAACTGTTCGAAGCTATGCCA -ACGGAACTGTTCACGAGTGGAAAC -ACGGAACTGTTCACGAGTAACACC -ACGGAACTGTTCACGAGTATCGAG -ACGGAACTGTTCACGAGTCTCCTT -ACGGAACTGTTCACGAGTCCTGTT -ACGGAACTGTTCACGAGTCGGTTT -ACGGAACTGTTCACGAGTGTGGTT -ACGGAACTGTTCACGAGTGCCTTT -ACGGAACTGTTCACGAGTGGTCTT -ACGGAACTGTTCACGAGTACGCTT -ACGGAACTGTTCACGAGTAGCGTT -ACGGAACTGTTCACGAGTTTCGTC -ACGGAACTGTTCACGAGTTCTCTC -ACGGAACTGTTCACGAGTTGGATC -ACGGAACTGTTCACGAGTCACTTC -ACGGAACTGTTCACGAGTGTACTC -ACGGAACTGTTCACGAGTGATGTC -ACGGAACTGTTCACGAGTACAGTC -ACGGAACTGTTCACGAGTTTGCTG -ACGGAACTGTTCACGAGTTCCATG -ACGGAACTGTTCACGAGTTGTGTG -ACGGAACTGTTCACGAGTCTAGTG -ACGGAACTGTTCACGAGTCATCTG -ACGGAACTGTTCACGAGTGAGTTG -ACGGAACTGTTCACGAGTAGACTG -ACGGAACTGTTCACGAGTTCGGTA -ACGGAACTGTTCACGAGTTGCCTA -ACGGAACTGTTCACGAGTCCACTA -ACGGAACTGTTCACGAGTGGAGTA -ACGGAACTGTTCACGAGTTCGTCT -ACGGAACTGTTCACGAGTTGCACT -ACGGAACTGTTCACGAGTCTGACT -ACGGAACTGTTCACGAGTCAACCT -ACGGAACTGTTCACGAGTGCTACT -ACGGAACTGTTCACGAGTGGATCT -ACGGAACTGTTCACGAGTAAGGCT -ACGGAACTGTTCACGAGTTCAACC -ACGGAACTGTTCACGAGTTGTTCC -ACGGAACTGTTCACGAGTATTCCC -ACGGAACTGTTCACGAGTTTCTCG -ACGGAACTGTTCACGAGTTAGACG -ACGGAACTGTTCACGAGTGTAACG -ACGGAACTGTTCACGAGTACTTCG -ACGGAACTGTTCACGAGTTACGCA -ACGGAACTGTTCACGAGTCTTGCA -ACGGAACTGTTCACGAGTCGAACA -ACGGAACTGTTCACGAGTCAGTCA -ACGGAACTGTTCACGAGTGATCCA -ACGGAACTGTTCACGAGTACGACA -ACGGAACTGTTCACGAGTAGCTCA -ACGGAACTGTTCACGAGTTCACGT -ACGGAACTGTTCACGAGTCGTAGT -ACGGAACTGTTCACGAGTGTCAGT -ACGGAACTGTTCACGAGTGAAGGT -ACGGAACTGTTCACGAGTAACCGT -ACGGAACTGTTCACGAGTTTGTGC -ACGGAACTGTTCACGAGTCTAAGC -ACGGAACTGTTCACGAGTACTAGC -ACGGAACTGTTCACGAGTAGATGC -ACGGAACTGTTCACGAGTTGAAGG -ACGGAACTGTTCACGAGTCAATGG -ACGGAACTGTTCACGAGTATGAGG -ACGGAACTGTTCACGAGTAATGGG -ACGGAACTGTTCACGAGTTCCTGA -ACGGAACTGTTCACGAGTTAGCGA -ACGGAACTGTTCACGAGTCACAGA -ACGGAACTGTTCACGAGTGCAAGA -ACGGAACTGTTCACGAGTGGTTGA -ACGGAACTGTTCACGAGTTCCGAT -ACGGAACTGTTCACGAGTTGGCAT -ACGGAACTGTTCACGAGTCGAGAT -ACGGAACTGTTCACGAGTTACCAC -ACGGAACTGTTCACGAGTCAGAAC -ACGGAACTGTTCACGAGTGTCTAC -ACGGAACTGTTCACGAGTACGTAC -ACGGAACTGTTCACGAGTAGTGAC -ACGGAACTGTTCACGAGTCTGTAG -ACGGAACTGTTCACGAGTCCTAAG -ACGGAACTGTTCACGAGTGTTCAG -ACGGAACTGTTCACGAGTGCATAG -ACGGAACTGTTCACGAGTGACAAG -ACGGAACTGTTCACGAGTAAGCAG -ACGGAACTGTTCACGAGTCGTCAA -ACGGAACTGTTCACGAGTGCTGAA -ACGGAACTGTTCACGAGTAGTACG -ACGGAACTGTTCACGAGTATCCGA -ACGGAACTGTTCACGAGTATGGGA -ACGGAACTGTTCACGAGTGTGCAA -ACGGAACTGTTCACGAGTGAGGAA -ACGGAACTGTTCACGAGTCAGGTA -ACGGAACTGTTCACGAGTGACTCT -ACGGAACTGTTCACGAGTAGTCCT -ACGGAACTGTTCACGAGTTAAGCC -ACGGAACTGTTCACGAGTATAGCC -ACGGAACTGTTCACGAGTTAACCG -ACGGAACTGTTCACGAGTATGCCA -ACGGAACTGTTCCGAATCGGAAAC -ACGGAACTGTTCCGAATCAACACC -ACGGAACTGTTCCGAATCATCGAG -ACGGAACTGTTCCGAATCCTCCTT -ACGGAACTGTTCCGAATCCCTGTT -ACGGAACTGTTCCGAATCCGGTTT -ACGGAACTGTTCCGAATCGTGGTT -ACGGAACTGTTCCGAATCGCCTTT -ACGGAACTGTTCCGAATCGGTCTT -ACGGAACTGTTCCGAATCACGCTT -ACGGAACTGTTCCGAATCAGCGTT -ACGGAACTGTTCCGAATCTTCGTC -ACGGAACTGTTCCGAATCTCTCTC -ACGGAACTGTTCCGAATCTGGATC -ACGGAACTGTTCCGAATCCACTTC -ACGGAACTGTTCCGAATCGTACTC -ACGGAACTGTTCCGAATCGATGTC -ACGGAACTGTTCCGAATCACAGTC -ACGGAACTGTTCCGAATCTTGCTG -ACGGAACTGTTCCGAATCTCCATG -ACGGAACTGTTCCGAATCTGTGTG -ACGGAACTGTTCCGAATCCTAGTG -ACGGAACTGTTCCGAATCCATCTG -ACGGAACTGTTCCGAATCGAGTTG -ACGGAACTGTTCCGAATCAGACTG -ACGGAACTGTTCCGAATCTCGGTA -ACGGAACTGTTCCGAATCTGCCTA -ACGGAACTGTTCCGAATCCCACTA -ACGGAACTGTTCCGAATCGGAGTA -ACGGAACTGTTCCGAATCTCGTCT -ACGGAACTGTTCCGAATCTGCACT -ACGGAACTGTTCCGAATCCTGACT -ACGGAACTGTTCCGAATCCAACCT -ACGGAACTGTTCCGAATCGCTACT -ACGGAACTGTTCCGAATCGGATCT -ACGGAACTGTTCCGAATCAAGGCT -ACGGAACTGTTCCGAATCTCAACC -ACGGAACTGTTCCGAATCTGTTCC -ACGGAACTGTTCCGAATCATTCCC -ACGGAACTGTTCCGAATCTTCTCG -ACGGAACTGTTCCGAATCTAGACG -ACGGAACTGTTCCGAATCGTAACG -ACGGAACTGTTCCGAATCACTTCG -ACGGAACTGTTCCGAATCTACGCA -ACGGAACTGTTCCGAATCCTTGCA -ACGGAACTGTTCCGAATCCGAACA -ACGGAACTGTTCCGAATCCAGTCA -ACGGAACTGTTCCGAATCGATCCA -ACGGAACTGTTCCGAATCACGACA -ACGGAACTGTTCCGAATCAGCTCA -ACGGAACTGTTCCGAATCTCACGT -ACGGAACTGTTCCGAATCCGTAGT -ACGGAACTGTTCCGAATCGTCAGT -ACGGAACTGTTCCGAATCGAAGGT -ACGGAACTGTTCCGAATCAACCGT -ACGGAACTGTTCCGAATCTTGTGC -ACGGAACTGTTCCGAATCCTAAGC -ACGGAACTGTTCCGAATCACTAGC -ACGGAACTGTTCCGAATCAGATGC -ACGGAACTGTTCCGAATCTGAAGG -ACGGAACTGTTCCGAATCCAATGG -ACGGAACTGTTCCGAATCATGAGG -ACGGAACTGTTCCGAATCAATGGG -ACGGAACTGTTCCGAATCTCCTGA -ACGGAACTGTTCCGAATCTAGCGA -ACGGAACTGTTCCGAATCCACAGA -ACGGAACTGTTCCGAATCGCAAGA -ACGGAACTGTTCCGAATCGGTTGA -ACGGAACTGTTCCGAATCTCCGAT -ACGGAACTGTTCCGAATCTGGCAT -ACGGAACTGTTCCGAATCCGAGAT -ACGGAACTGTTCCGAATCTACCAC -ACGGAACTGTTCCGAATCCAGAAC -ACGGAACTGTTCCGAATCGTCTAC -ACGGAACTGTTCCGAATCACGTAC -ACGGAACTGTTCCGAATCAGTGAC -ACGGAACTGTTCCGAATCCTGTAG -ACGGAACTGTTCCGAATCCCTAAG -ACGGAACTGTTCCGAATCGTTCAG -ACGGAACTGTTCCGAATCGCATAG -ACGGAACTGTTCCGAATCGACAAG -ACGGAACTGTTCCGAATCAAGCAG -ACGGAACTGTTCCGAATCCGTCAA -ACGGAACTGTTCCGAATCGCTGAA -ACGGAACTGTTCCGAATCAGTACG -ACGGAACTGTTCCGAATCATCCGA -ACGGAACTGTTCCGAATCATGGGA -ACGGAACTGTTCCGAATCGTGCAA -ACGGAACTGTTCCGAATCGAGGAA -ACGGAACTGTTCCGAATCCAGGTA -ACGGAACTGTTCCGAATCGACTCT -ACGGAACTGTTCCGAATCAGTCCT -ACGGAACTGTTCCGAATCTAAGCC -ACGGAACTGTTCCGAATCATAGCC -ACGGAACTGTTCCGAATCTAACCG -ACGGAACTGTTCCGAATCATGCCA -ACGGAACTGTTCGGAATGGGAAAC -ACGGAACTGTTCGGAATGAACACC -ACGGAACTGTTCGGAATGATCGAG -ACGGAACTGTTCGGAATGCTCCTT -ACGGAACTGTTCGGAATGCCTGTT -ACGGAACTGTTCGGAATGCGGTTT -ACGGAACTGTTCGGAATGGTGGTT -ACGGAACTGTTCGGAATGGCCTTT -ACGGAACTGTTCGGAATGGGTCTT -ACGGAACTGTTCGGAATGACGCTT -ACGGAACTGTTCGGAATGAGCGTT -ACGGAACTGTTCGGAATGTTCGTC -ACGGAACTGTTCGGAATGTCTCTC -ACGGAACTGTTCGGAATGTGGATC -ACGGAACTGTTCGGAATGCACTTC -ACGGAACTGTTCGGAATGGTACTC -ACGGAACTGTTCGGAATGGATGTC -ACGGAACTGTTCGGAATGACAGTC -ACGGAACTGTTCGGAATGTTGCTG -ACGGAACTGTTCGGAATGTCCATG -ACGGAACTGTTCGGAATGTGTGTG -ACGGAACTGTTCGGAATGCTAGTG -ACGGAACTGTTCGGAATGCATCTG -ACGGAACTGTTCGGAATGGAGTTG -ACGGAACTGTTCGGAATGAGACTG -ACGGAACTGTTCGGAATGTCGGTA -ACGGAACTGTTCGGAATGTGCCTA -ACGGAACTGTTCGGAATGCCACTA -ACGGAACTGTTCGGAATGGGAGTA -ACGGAACTGTTCGGAATGTCGTCT -ACGGAACTGTTCGGAATGTGCACT -ACGGAACTGTTCGGAATGCTGACT -ACGGAACTGTTCGGAATGCAACCT -ACGGAACTGTTCGGAATGGCTACT -ACGGAACTGTTCGGAATGGGATCT -ACGGAACTGTTCGGAATGAAGGCT -ACGGAACTGTTCGGAATGTCAACC -ACGGAACTGTTCGGAATGTGTTCC -ACGGAACTGTTCGGAATGATTCCC -ACGGAACTGTTCGGAATGTTCTCG -ACGGAACTGTTCGGAATGTAGACG -ACGGAACTGTTCGGAATGGTAACG -ACGGAACTGTTCGGAATGACTTCG -ACGGAACTGTTCGGAATGTACGCA -ACGGAACTGTTCGGAATGCTTGCA -ACGGAACTGTTCGGAATGCGAACA -ACGGAACTGTTCGGAATGCAGTCA -ACGGAACTGTTCGGAATGGATCCA -ACGGAACTGTTCGGAATGACGACA -ACGGAACTGTTCGGAATGAGCTCA -ACGGAACTGTTCGGAATGTCACGT -ACGGAACTGTTCGGAATGCGTAGT -ACGGAACTGTTCGGAATGGTCAGT -ACGGAACTGTTCGGAATGGAAGGT -ACGGAACTGTTCGGAATGAACCGT -ACGGAACTGTTCGGAATGTTGTGC -ACGGAACTGTTCGGAATGCTAAGC -ACGGAACTGTTCGGAATGACTAGC -ACGGAACTGTTCGGAATGAGATGC -ACGGAACTGTTCGGAATGTGAAGG -ACGGAACTGTTCGGAATGCAATGG -ACGGAACTGTTCGGAATGATGAGG -ACGGAACTGTTCGGAATGAATGGG -ACGGAACTGTTCGGAATGTCCTGA -ACGGAACTGTTCGGAATGTAGCGA -ACGGAACTGTTCGGAATGCACAGA -ACGGAACTGTTCGGAATGGCAAGA -ACGGAACTGTTCGGAATGGGTTGA -ACGGAACTGTTCGGAATGTCCGAT -ACGGAACTGTTCGGAATGTGGCAT -ACGGAACTGTTCGGAATGCGAGAT -ACGGAACTGTTCGGAATGTACCAC -ACGGAACTGTTCGGAATGCAGAAC -ACGGAACTGTTCGGAATGGTCTAC -ACGGAACTGTTCGGAATGACGTAC -ACGGAACTGTTCGGAATGAGTGAC -ACGGAACTGTTCGGAATGCTGTAG -ACGGAACTGTTCGGAATGCCTAAG -ACGGAACTGTTCGGAATGGTTCAG -ACGGAACTGTTCGGAATGGCATAG -ACGGAACTGTTCGGAATGGACAAG -ACGGAACTGTTCGGAATGAAGCAG -ACGGAACTGTTCGGAATGCGTCAA -ACGGAACTGTTCGGAATGGCTGAA -ACGGAACTGTTCGGAATGAGTACG -ACGGAACTGTTCGGAATGATCCGA -ACGGAACTGTTCGGAATGATGGGA -ACGGAACTGTTCGGAATGGTGCAA -ACGGAACTGTTCGGAATGGAGGAA -ACGGAACTGTTCGGAATGCAGGTA -ACGGAACTGTTCGGAATGGACTCT -ACGGAACTGTTCGGAATGAGTCCT -ACGGAACTGTTCGGAATGTAAGCC -ACGGAACTGTTCGGAATGATAGCC -ACGGAACTGTTCGGAATGTAACCG -ACGGAACTGTTCGGAATGATGCCA -ACGGAACTGTTCCAAGTGGGAAAC -ACGGAACTGTTCCAAGTGAACACC -ACGGAACTGTTCCAAGTGATCGAG -ACGGAACTGTTCCAAGTGCTCCTT -ACGGAACTGTTCCAAGTGCCTGTT -ACGGAACTGTTCCAAGTGCGGTTT -ACGGAACTGTTCCAAGTGGTGGTT -ACGGAACTGTTCCAAGTGGCCTTT -ACGGAACTGTTCCAAGTGGGTCTT -ACGGAACTGTTCCAAGTGACGCTT -ACGGAACTGTTCCAAGTGAGCGTT -ACGGAACTGTTCCAAGTGTTCGTC -ACGGAACTGTTCCAAGTGTCTCTC -ACGGAACTGTTCCAAGTGTGGATC -ACGGAACTGTTCCAAGTGCACTTC -ACGGAACTGTTCCAAGTGGTACTC -ACGGAACTGTTCCAAGTGGATGTC -ACGGAACTGTTCCAAGTGACAGTC -ACGGAACTGTTCCAAGTGTTGCTG -ACGGAACTGTTCCAAGTGTCCATG -ACGGAACTGTTCCAAGTGTGTGTG -ACGGAACTGTTCCAAGTGCTAGTG -ACGGAACTGTTCCAAGTGCATCTG -ACGGAACTGTTCCAAGTGGAGTTG -ACGGAACTGTTCCAAGTGAGACTG -ACGGAACTGTTCCAAGTGTCGGTA -ACGGAACTGTTCCAAGTGTGCCTA -ACGGAACTGTTCCAAGTGCCACTA -ACGGAACTGTTCCAAGTGGGAGTA -ACGGAACTGTTCCAAGTGTCGTCT -ACGGAACTGTTCCAAGTGTGCACT -ACGGAACTGTTCCAAGTGCTGACT -ACGGAACTGTTCCAAGTGCAACCT -ACGGAACTGTTCCAAGTGGCTACT -ACGGAACTGTTCCAAGTGGGATCT -ACGGAACTGTTCCAAGTGAAGGCT -ACGGAACTGTTCCAAGTGTCAACC -ACGGAACTGTTCCAAGTGTGTTCC -ACGGAACTGTTCCAAGTGATTCCC -ACGGAACTGTTCCAAGTGTTCTCG -ACGGAACTGTTCCAAGTGTAGACG -ACGGAACTGTTCCAAGTGGTAACG -ACGGAACTGTTCCAAGTGACTTCG -ACGGAACTGTTCCAAGTGTACGCA -ACGGAACTGTTCCAAGTGCTTGCA -ACGGAACTGTTCCAAGTGCGAACA -ACGGAACTGTTCCAAGTGCAGTCA -ACGGAACTGTTCCAAGTGGATCCA -ACGGAACTGTTCCAAGTGACGACA -ACGGAACTGTTCCAAGTGAGCTCA -ACGGAACTGTTCCAAGTGTCACGT -ACGGAACTGTTCCAAGTGCGTAGT -ACGGAACTGTTCCAAGTGGTCAGT -ACGGAACTGTTCCAAGTGGAAGGT -ACGGAACTGTTCCAAGTGAACCGT -ACGGAACTGTTCCAAGTGTTGTGC -ACGGAACTGTTCCAAGTGCTAAGC -ACGGAACTGTTCCAAGTGACTAGC -ACGGAACTGTTCCAAGTGAGATGC -ACGGAACTGTTCCAAGTGTGAAGG -ACGGAACTGTTCCAAGTGCAATGG -ACGGAACTGTTCCAAGTGATGAGG -ACGGAACTGTTCCAAGTGAATGGG -ACGGAACTGTTCCAAGTGTCCTGA -ACGGAACTGTTCCAAGTGTAGCGA -ACGGAACTGTTCCAAGTGCACAGA -ACGGAACTGTTCCAAGTGGCAAGA -ACGGAACTGTTCCAAGTGGGTTGA -ACGGAACTGTTCCAAGTGTCCGAT -ACGGAACTGTTCCAAGTGTGGCAT -ACGGAACTGTTCCAAGTGCGAGAT -ACGGAACTGTTCCAAGTGTACCAC -ACGGAACTGTTCCAAGTGCAGAAC -ACGGAACTGTTCCAAGTGGTCTAC -ACGGAACTGTTCCAAGTGACGTAC -ACGGAACTGTTCCAAGTGAGTGAC -ACGGAACTGTTCCAAGTGCTGTAG -ACGGAACTGTTCCAAGTGCCTAAG -ACGGAACTGTTCCAAGTGGTTCAG -ACGGAACTGTTCCAAGTGGCATAG -ACGGAACTGTTCCAAGTGGACAAG -ACGGAACTGTTCCAAGTGAAGCAG -ACGGAACTGTTCCAAGTGCGTCAA -ACGGAACTGTTCCAAGTGGCTGAA -ACGGAACTGTTCCAAGTGAGTACG -ACGGAACTGTTCCAAGTGATCCGA -ACGGAACTGTTCCAAGTGATGGGA -ACGGAACTGTTCCAAGTGGTGCAA -ACGGAACTGTTCCAAGTGGAGGAA -ACGGAACTGTTCCAAGTGCAGGTA -ACGGAACTGTTCCAAGTGGACTCT -ACGGAACTGTTCCAAGTGAGTCCT -ACGGAACTGTTCCAAGTGTAAGCC -ACGGAACTGTTCCAAGTGATAGCC -ACGGAACTGTTCCAAGTGTAACCG -ACGGAACTGTTCCAAGTGATGCCA -ACGGAACTGTTCGAAGAGGGAAAC -ACGGAACTGTTCGAAGAGAACACC -ACGGAACTGTTCGAAGAGATCGAG -ACGGAACTGTTCGAAGAGCTCCTT -ACGGAACTGTTCGAAGAGCCTGTT -ACGGAACTGTTCGAAGAGCGGTTT -ACGGAACTGTTCGAAGAGGTGGTT -ACGGAACTGTTCGAAGAGGCCTTT -ACGGAACTGTTCGAAGAGGGTCTT -ACGGAACTGTTCGAAGAGACGCTT -ACGGAACTGTTCGAAGAGAGCGTT -ACGGAACTGTTCGAAGAGTTCGTC -ACGGAACTGTTCGAAGAGTCTCTC -ACGGAACTGTTCGAAGAGTGGATC -ACGGAACTGTTCGAAGAGCACTTC -ACGGAACTGTTCGAAGAGGTACTC -ACGGAACTGTTCGAAGAGGATGTC -ACGGAACTGTTCGAAGAGACAGTC -ACGGAACTGTTCGAAGAGTTGCTG -ACGGAACTGTTCGAAGAGTCCATG -ACGGAACTGTTCGAAGAGTGTGTG -ACGGAACTGTTCGAAGAGCTAGTG -ACGGAACTGTTCGAAGAGCATCTG -ACGGAACTGTTCGAAGAGGAGTTG -ACGGAACTGTTCGAAGAGAGACTG -ACGGAACTGTTCGAAGAGTCGGTA -ACGGAACTGTTCGAAGAGTGCCTA -ACGGAACTGTTCGAAGAGCCACTA -ACGGAACTGTTCGAAGAGGGAGTA -ACGGAACTGTTCGAAGAGTCGTCT -ACGGAACTGTTCGAAGAGTGCACT -ACGGAACTGTTCGAAGAGCTGACT -ACGGAACTGTTCGAAGAGCAACCT -ACGGAACTGTTCGAAGAGGCTACT -ACGGAACTGTTCGAAGAGGGATCT -ACGGAACTGTTCGAAGAGAAGGCT -ACGGAACTGTTCGAAGAGTCAACC -ACGGAACTGTTCGAAGAGTGTTCC -ACGGAACTGTTCGAAGAGATTCCC -ACGGAACTGTTCGAAGAGTTCTCG -ACGGAACTGTTCGAAGAGTAGACG -ACGGAACTGTTCGAAGAGGTAACG -ACGGAACTGTTCGAAGAGACTTCG -ACGGAACTGTTCGAAGAGTACGCA -ACGGAACTGTTCGAAGAGCTTGCA -ACGGAACTGTTCGAAGAGCGAACA -ACGGAACTGTTCGAAGAGCAGTCA -ACGGAACTGTTCGAAGAGGATCCA -ACGGAACTGTTCGAAGAGACGACA -ACGGAACTGTTCGAAGAGAGCTCA -ACGGAACTGTTCGAAGAGTCACGT -ACGGAACTGTTCGAAGAGCGTAGT -ACGGAACTGTTCGAAGAGGTCAGT -ACGGAACTGTTCGAAGAGGAAGGT -ACGGAACTGTTCGAAGAGAACCGT -ACGGAACTGTTCGAAGAGTTGTGC -ACGGAACTGTTCGAAGAGCTAAGC -ACGGAACTGTTCGAAGAGACTAGC -ACGGAACTGTTCGAAGAGAGATGC -ACGGAACTGTTCGAAGAGTGAAGG -ACGGAACTGTTCGAAGAGCAATGG -ACGGAACTGTTCGAAGAGATGAGG -ACGGAACTGTTCGAAGAGAATGGG -ACGGAACTGTTCGAAGAGTCCTGA -ACGGAACTGTTCGAAGAGTAGCGA -ACGGAACTGTTCGAAGAGCACAGA -ACGGAACTGTTCGAAGAGGCAAGA -ACGGAACTGTTCGAAGAGGGTTGA -ACGGAACTGTTCGAAGAGTCCGAT -ACGGAACTGTTCGAAGAGTGGCAT -ACGGAACTGTTCGAAGAGCGAGAT -ACGGAACTGTTCGAAGAGTACCAC -ACGGAACTGTTCGAAGAGCAGAAC -ACGGAACTGTTCGAAGAGGTCTAC -ACGGAACTGTTCGAAGAGACGTAC -ACGGAACTGTTCGAAGAGAGTGAC -ACGGAACTGTTCGAAGAGCTGTAG -ACGGAACTGTTCGAAGAGCCTAAG -ACGGAACTGTTCGAAGAGGTTCAG -ACGGAACTGTTCGAAGAGGCATAG -ACGGAACTGTTCGAAGAGGACAAG -ACGGAACTGTTCGAAGAGAAGCAG -ACGGAACTGTTCGAAGAGCGTCAA -ACGGAACTGTTCGAAGAGGCTGAA -ACGGAACTGTTCGAAGAGAGTACG -ACGGAACTGTTCGAAGAGATCCGA -ACGGAACTGTTCGAAGAGATGGGA -ACGGAACTGTTCGAAGAGGTGCAA -ACGGAACTGTTCGAAGAGGAGGAA -ACGGAACTGTTCGAAGAGCAGGTA -ACGGAACTGTTCGAAGAGGACTCT -ACGGAACTGTTCGAAGAGAGTCCT -ACGGAACTGTTCGAAGAGTAAGCC -ACGGAACTGTTCGAAGAGATAGCC -ACGGAACTGTTCGAAGAGTAACCG -ACGGAACTGTTCGAAGAGATGCCA -ACGGAACTGTTCGTACAGGGAAAC -ACGGAACTGTTCGTACAGAACACC -ACGGAACTGTTCGTACAGATCGAG -ACGGAACTGTTCGTACAGCTCCTT -ACGGAACTGTTCGTACAGCCTGTT -ACGGAACTGTTCGTACAGCGGTTT -ACGGAACTGTTCGTACAGGTGGTT -ACGGAACTGTTCGTACAGGCCTTT -ACGGAACTGTTCGTACAGGGTCTT -ACGGAACTGTTCGTACAGACGCTT -ACGGAACTGTTCGTACAGAGCGTT -ACGGAACTGTTCGTACAGTTCGTC -ACGGAACTGTTCGTACAGTCTCTC -ACGGAACTGTTCGTACAGTGGATC -ACGGAACTGTTCGTACAGCACTTC -ACGGAACTGTTCGTACAGGTACTC -ACGGAACTGTTCGTACAGGATGTC -ACGGAACTGTTCGTACAGACAGTC -ACGGAACTGTTCGTACAGTTGCTG -ACGGAACTGTTCGTACAGTCCATG -ACGGAACTGTTCGTACAGTGTGTG -ACGGAACTGTTCGTACAGCTAGTG -ACGGAACTGTTCGTACAGCATCTG -ACGGAACTGTTCGTACAGGAGTTG -ACGGAACTGTTCGTACAGAGACTG -ACGGAACTGTTCGTACAGTCGGTA -ACGGAACTGTTCGTACAGTGCCTA -ACGGAACTGTTCGTACAGCCACTA -ACGGAACTGTTCGTACAGGGAGTA -ACGGAACTGTTCGTACAGTCGTCT -ACGGAACTGTTCGTACAGTGCACT -ACGGAACTGTTCGTACAGCTGACT -ACGGAACTGTTCGTACAGCAACCT -ACGGAACTGTTCGTACAGGCTACT -ACGGAACTGTTCGTACAGGGATCT -ACGGAACTGTTCGTACAGAAGGCT -ACGGAACTGTTCGTACAGTCAACC -ACGGAACTGTTCGTACAGTGTTCC -ACGGAACTGTTCGTACAGATTCCC -ACGGAACTGTTCGTACAGTTCTCG -ACGGAACTGTTCGTACAGTAGACG -ACGGAACTGTTCGTACAGGTAACG -ACGGAACTGTTCGTACAGACTTCG -ACGGAACTGTTCGTACAGTACGCA -ACGGAACTGTTCGTACAGCTTGCA -ACGGAACTGTTCGTACAGCGAACA -ACGGAACTGTTCGTACAGCAGTCA -ACGGAACTGTTCGTACAGGATCCA -ACGGAACTGTTCGTACAGACGACA -ACGGAACTGTTCGTACAGAGCTCA -ACGGAACTGTTCGTACAGTCACGT -ACGGAACTGTTCGTACAGCGTAGT -ACGGAACTGTTCGTACAGGTCAGT -ACGGAACTGTTCGTACAGGAAGGT -ACGGAACTGTTCGTACAGAACCGT -ACGGAACTGTTCGTACAGTTGTGC -ACGGAACTGTTCGTACAGCTAAGC -ACGGAACTGTTCGTACAGACTAGC -ACGGAACTGTTCGTACAGAGATGC -ACGGAACTGTTCGTACAGTGAAGG -ACGGAACTGTTCGTACAGCAATGG -ACGGAACTGTTCGTACAGATGAGG -ACGGAACTGTTCGTACAGAATGGG -ACGGAACTGTTCGTACAGTCCTGA -ACGGAACTGTTCGTACAGTAGCGA -ACGGAACTGTTCGTACAGCACAGA -ACGGAACTGTTCGTACAGGCAAGA -ACGGAACTGTTCGTACAGGGTTGA -ACGGAACTGTTCGTACAGTCCGAT -ACGGAACTGTTCGTACAGTGGCAT -ACGGAACTGTTCGTACAGCGAGAT -ACGGAACTGTTCGTACAGTACCAC -ACGGAACTGTTCGTACAGCAGAAC -ACGGAACTGTTCGTACAGGTCTAC -ACGGAACTGTTCGTACAGACGTAC -ACGGAACTGTTCGTACAGAGTGAC -ACGGAACTGTTCGTACAGCTGTAG -ACGGAACTGTTCGTACAGCCTAAG -ACGGAACTGTTCGTACAGGTTCAG -ACGGAACTGTTCGTACAGGCATAG -ACGGAACTGTTCGTACAGGACAAG -ACGGAACTGTTCGTACAGAAGCAG -ACGGAACTGTTCGTACAGCGTCAA -ACGGAACTGTTCGTACAGGCTGAA -ACGGAACTGTTCGTACAGAGTACG -ACGGAACTGTTCGTACAGATCCGA -ACGGAACTGTTCGTACAGATGGGA -ACGGAACTGTTCGTACAGGTGCAA -ACGGAACTGTTCGTACAGGAGGAA -ACGGAACTGTTCGTACAGCAGGTA -ACGGAACTGTTCGTACAGGACTCT -ACGGAACTGTTCGTACAGAGTCCT -ACGGAACTGTTCGTACAGTAAGCC -ACGGAACTGTTCGTACAGATAGCC -ACGGAACTGTTCGTACAGTAACCG -ACGGAACTGTTCGTACAGATGCCA -ACGGAACTGTTCTCTGACGGAAAC -ACGGAACTGTTCTCTGACAACACC -ACGGAACTGTTCTCTGACATCGAG -ACGGAACTGTTCTCTGACCTCCTT -ACGGAACTGTTCTCTGACCCTGTT -ACGGAACTGTTCTCTGACCGGTTT -ACGGAACTGTTCTCTGACGTGGTT -ACGGAACTGTTCTCTGACGCCTTT -ACGGAACTGTTCTCTGACGGTCTT -ACGGAACTGTTCTCTGACACGCTT -ACGGAACTGTTCTCTGACAGCGTT -ACGGAACTGTTCTCTGACTTCGTC -ACGGAACTGTTCTCTGACTCTCTC -ACGGAACTGTTCTCTGACTGGATC -ACGGAACTGTTCTCTGACCACTTC -ACGGAACTGTTCTCTGACGTACTC -ACGGAACTGTTCTCTGACGATGTC -ACGGAACTGTTCTCTGACACAGTC -ACGGAACTGTTCTCTGACTTGCTG -ACGGAACTGTTCTCTGACTCCATG -ACGGAACTGTTCTCTGACTGTGTG -ACGGAACTGTTCTCTGACCTAGTG -ACGGAACTGTTCTCTGACCATCTG -ACGGAACTGTTCTCTGACGAGTTG -ACGGAACTGTTCTCTGACAGACTG -ACGGAACTGTTCTCTGACTCGGTA -ACGGAACTGTTCTCTGACTGCCTA -ACGGAACTGTTCTCTGACCCACTA -ACGGAACTGTTCTCTGACGGAGTA -ACGGAACTGTTCTCTGACTCGTCT -ACGGAACTGTTCTCTGACTGCACT -ACGGAACTGTTCTCTGACCTGACT -ACGGAACTGTTCTCTGACCAACCT -ACGGAACTGTTCTCTGACGCTACT -ACGGAACTGTTCTCTGACGGATCT -ACGGAACTGTTCTCTGACAAGGCT -ACGGAACTGTTCTCTGACTCAACC -ACGGAACTGTTCTCTGACTGTTCC -ACGGAACTGTTCTCTGACATTCCC -ACGGAACTGTTCTCTGACTTCTCG -ACGGAACTGTTCTCTGACTAGACG -ACGGAACTGTTCTCTGACGTAACG -ACGGAACTGTTCTCTGACACTTCG -ACGGAACTGTTCTCTGACTACGCA -ACGGAACTGTTCTCTGACCTTGCA -ACGGAACTGTTCTCTGACCGAACA -ACGGAACTGTTCTCTGACCAGTCA -ACGGAACTGTTCTCTGACGATCCA -ACGGAACTGTTCTCTGACACGACA -ACGGAACTGTTCTCTGACAGCTCA -ACGGAACTGTTCTCTGACTCACGT -ACGGAACTGTTCTCTGACCGTAGT -ACGGAACTGTTCTCTGACGTCAGT -ACGGAACTGTTCTCTGACGAAGGT -ACGGAACTGTTCTCTGACAACCGT -ACGGAACTGTTCTCTGACTTGTGC -ACGGAACTGTTCTCTGACCTAAGC -ACGGAACTGTTCTCTGACACTAGC -ACGGAACTGTTCTCTGACAGATGC -ACGGAACTGTTCTCTGACTGAAGG -ACGGAACTGTTCTCTGACCAATGG -ACGGAACTGTTCTCTGACATGAGG -ACGGAACTGTTCTCTGACAATGGG -ACGGAACTGTTCTCTGACTCCTGA -ACGGAACTGTTCTCTGACTAGCGA -ACGGAACTGTTCTCTGACCACAGA -ACGGAACTGTTCTCTGACGCAAGA -ACGGAACTGTTCTCTGACGGTTGA -ACGGAACTGTTCTCTGACTCCGAT -ACGGAACTGTTCTCTGACTGGCAT -ACGGAACTGTTCTCTGACCGAGAT -ACGGAACTGTTCTCTGACTACCAC -ACGGAACTGTTCTCTGACCAGAAC -ACGGAACTGTTCTCTGACGTCTAC -ACGGAACTGTTCTCTGACACGTAC -ACGGAACTGTTCTCTGACAGTGAC -ACGGAACTGTTCTCTGACCTGTAG -ACGGAACTGTTCTCTGACCCTAAG -ACGGAACTGTTCTCTGACGTTCAG -ACGGAACTGTTCTCTGACGCATAG -ACGGAACTGTTCTCTGACGACAAG -ACGGAACTGTTCTCTGACAAGCAG -ACGGAACTGTTCTCTGACCGTCAA -ACGGAACTGTTCTCTGACGCTGAA -ACGGAACTGTTCTCTGACAGTACG -ACGGAACTGTTCTCTGACATCCGA -ACGGAACTGTTCTCTGACATGGGA -ACGGAACTGTTCTCTGACGTGCAA -ACGGAACTGTTCTCTGACGAGGAA -ACGGAACTGTTCTCTGACCAGGTA -ACGGAACTGTTCTCTGACGACTCT -ACGGAACTGTTCTCTGACAGTCCT -ACGGAACTGTTCTCTGACTAAGCC -ACGGAACTGTTCTCTGACATAGCC -ACGGAACTGTTCTCTGACTAACCG -ACGGAACTGTTCTCTGACATGCCA -ACGGAACTGTTCCCTAGTGGAAAC -ACGGAACTGTTCCCTAGTAACACC -ACGGAACTGTTCCCTAGTATCGAG -ACGGAACTGTTCCCTAGTCTCCTT -ACGGAACTGTTCCCTAGTCCTGTT -ACGGAACTGTTCCCTAGTCGGTTT -ACGGAACTGTTCCCTAGTGTGGTT -ACGGAACTGTTCCCTAGTGCCTTT -ACGGAACTGTTCCCTAGTGGTCTT -ACGGAACTGTTCCCTAGTACGCTT -ACGGAACTGTTCCCTAGTAGCGTT -ACGGAACTGTTCCCTAGTTTCGTC -ACGGAACTGTTCCCTAGTTCTCTC -ACGGAACTGTTCCCTAGTTGGATC -ACGGAACTGTTCCCTAGTCACTTC -ACGGAACTGTTCCCTAGTGTACTC -ACGGAACTGTTCCCTAGTGATGTC -ACGGAACTGTTCCCTAGTACAGTC -ACGGAACTGTTCCCTAGTTTGCTG -ACGGAACTGTTCCCTAGTTCCATG -ACGGAACTGTTCCCTAGTTGTGTG -ACGGAACTGTTCCCTAGTCTAGTG -ACGGAACTGTTCCCTAGTCATCTG -ACGGAACTGTTCCCTAGTGAGTTG -ACGGAACTGTTCCCTAGTAGACTG -ACGGAACTGTTCCCTAGTTCGGTA -ACGGAACTGTTCCCTAGTTGCCTA -ACGGAACTGTTCCCTAGTCCACTA -ACGGAACTGTTCCCTAGTGGAGTA -ACGGAACTGTTCCCTAGTTCGTCT -ACGGAACTGTTCCCTAGTTGCACT -ACGGAACTGTTCCCTAGTCTGACT -ACGGAACTGTTCCCTAGTCAACCT -ACGGAACTGTTCCCTAGTGCTACT -ACGGAACTGTTCCCTAGTGGATCT -ACGGAACTGTTCCCTAGTAAGGCT -ACGGAACTGTTCCCTAGTTCAACC -ACGGAACTGTTCCCTAGTTGTTCC -ACGGAACTGTTCCCTAGTATTCCC -ACGGAACTGTTCCCTAGTTTCTCG -ACGGAACTGTTCCCTAGTTAGACG -ACGGAACTGTTCCCTAGTGTAACG -ACGGAACTGTTCCCTAGTACTTCG -ACGGAACTGTTCCCTAGTTACGCA -ACGGAACTGTTCCCTAGTCTTGCA -ACGGAACTGTTCCCTAGTCGAACA -ACGGAACTGTTCCCTAGTCAGTCA -ACGGAACTGTTCCCTAGTGATCCA -ACGGAACTGTTCCCTAGTACGACA -ACGGAACTGTTCCCTAGTAGCTCA -ACGGAACTGTTCCCTAGTTCACGT -ACGGAACTGTTCCCTAGTCGTAGT -ACGGAACTGTTCCCTAGTGTCAGT -ACGGAACTGTTCCCTAGTGAAGGT -ACGGAACTGTTCCCTAGTAACCGT -ACGGAACTGTTCCCTAGTTTGTGC -ACGGAACTGTTCCCTAGTCTAAGC -ACGGAACTGTTCCCTAGTACTAGC -ACGGAACTGTTCCCTAGTAGATGC -ACGGAACTGTTCCCTAGTTGAAGG -ACGGAACTGTTCCCTAGTCAATGG -ACGGAACTGTTCCCTAGTATGAGG -ACGGAACTGTTCCCTAGTAATGGG -ACGGAACTGTTCCCTAGTTCCTGA -ACGGAACTGTTCCCTAGTTAGCGA -ACGGAACTGTTCCCTAGTCACAGA -ACGGAACTGTTCCCTAGTGCAAGA -ACGGAACTGTTCCCTAGTGGTTGA -ACGGAACTGTTCCCTAGTTCCGAT -ACGGAACTGTTCCCTAGTTGGCAT -ACGGAACTGTTCCCTAGTCGAGAT -ACGGAACTGTTCCCTAGTTACCAC -ACGGAACTGTTCCCTAGTCAGAAC -ACGGAACTGTTCCCTAGTGTCTAC -ACGGAACTGTTCCCTAGTACGTAC -ACGGAACTGTTCCCTAGTAGTGAC -ACGGAACTGTTCCCTAGTCTGTAG -ACGGAACTGTTCCCTAGTCCTAAG -ACGGAACTGTTCCCTAGTGTTCAG -ACGGAACTGTTCCCTAGTGCATAG -ACGGAACTGTTCCCTAGTGACAAG -ACGGAACTGTTCCCTAGTAAGCAG -ACGGAACTGTTCCCTAGTCGTCAA -ACGGAACTGTTCCCTAGTGCTGAA -ACGGAACTGTTCCCTAGTAGTACG -ACGGAACTGTTCCCTAGTATCCGA -ACGGAACTGTTCCCTAGTATGGGA -ACGGAACTGTTCCCTAGTGTGCAA -ACGGAACTGTTCCCTAGTGAGGAA -ACGGAACTGTTCCCTAGTCAGGTA -ACGGAACTGTTCCCTAGTGACTCT -ACGGAACTGTTCCCTAGTAGTCCT -ACGGAACTGTTCCCTAGTTAAGCC -ACGGAACTGTTCCCTAGTATAGCC -ACGGAACTGTTCCCTAGTTAACCG -ACGGAACTGTTCCCTAGTATGCCA -ACGGAACTGTTCGCCTAAGGAAAC -ACGGAACTGTTCGCCTAAAACACC -ACGGAACTGTTCGCCTAAATCGAG -ACGGAACTGTTCGCCTAACTCCTT -ACGGAACTGTTCGCCTAACCTGTT -ACGGAACTGTTCGCCTAACGGTTT -ACGGAACTGTTCGCCTAAGTGGTT -ACGGAACTGTTCGCCTAAGCCTTT -ACGGAACTGTTCGCCTAAGGTCTT -ACGGAACTGTTCGCCTAAACGCTT -ACGGAACTGTTCGCCTAAAGCGTT -ACGGAACTGTTCGCCTAATTCGTC -ACGGAACTGTTCGCCTAATCTCTC -ACGGAACTGTTCGCCTAATGGATC -ACGGAACTGTTCGCCTAACACTTC -ACGGAACTGTTCGCCTAAGTACTC -ACGGAACTGTTCGCCTAAGATGTC -ACGGAACTGTTCGCCTAAACAGTC -ACGGAACTGTTCGCCTAATTGCTG -ACGGAACTGTTCGCCTAATCCATG -ACGGAACTGTTCGCCTAATGTGTG -ACGGAACTGTTCGCCTAACTAGTG -ACGGAACTGTTCGCCTAACATCTG -ACGGAACTGTTCGCCTAAGAGTTG -ACGGAACTGTTCGCCTAAAGACTG -ACGGAACTGTTCGCCTAATCGGTA -ACGGAACTGTTCGCCTAATGCCTA -ACGGAACTGTTCGCCTAACCACTA -ACGGAACTGTTCGCCTAAGGAGTA -ACGGAACTGTTCGCCTAATCGTCT -ACGGAACTGTTCGCCTAATGCACT -ACGGAACTGTTCGCCTAACTGACT -ACGGAACTGTTCGCCTAACAACCT -ACGGAACTGTTCGCCTAAGCTACT -ACGGAACTGTTCGCCTAAGGATCT -ACGGAACTGTTCGCCTAAAAGGCT -ACGGAACTGTTCGCCTAATCAACC -ACGGAACTGTTCGCCTAATGTTCC -ACGGAACTGTTCGCCTAAATTCCC -ACGGAACTGTTCGCCTAATTCTCG -ACGGAACTGTTCGCCTAATAGACG -ACGGAACTGTTCGCCTAAGTAACG -ACGGAACTGTTCGCCTAAACTTCG -ACGGAACTGTTCGCCTAATACGCA -ACGGAACTGTTCGCCTAACTTGCA -ACGGAACTGTTCGCCTAACGAACA -ACGGAACTGTTCGCCTAACAGTCA -ACGGAACTGTTCGCCTAAGATCCA -ACGGAACTGTTCGCCTAAACGACA -ACGGAACTGTTCGCCTAAAGCTCA -ACGGAACTGTTCGCCTAATCACGT -ACGGAACTGTTCGCCTAACGTAGT -ACGGAACTGTTCGCCTAAGTCAGT -ACGGAACTGTTCGCCTAAGAAGGT -ACGGAACTGTTCGCCTAAAACCGT -ACGGAACTGTTCGCCTAATTGTGC -ACGGAACTGTTCGCCTAACTAAGC -ACGGAACTGTTCGCCTAAACTAGC -ACGGAACTGTTCGCCTAAAGATGC -ACGGAACTGTTCGCCTAATGAAGG -ACGGAACTGTTCGCCTAACAATGG -ACGGAACTGTTCGCCTAAATGAGG -ACGGAACTGTTCGCCTAAAATGGG -ACGGAACTGTTCGCCTAATCCTGA -ACGGAACTGTTCGCCTAATAGCGA -ACGGAACTGTTCGCCTAACACAGA -ACGGAACTGTTCGCCTAAGCAAGA -ACGGAACTGTTCGCCTAAGGTTGA -ACGGAACTGTTCGCCTAATCCGAT -ACGGAACTGTTCGCCTAATGGCAT -ACGGAACTGTTCGCCTAACGAGAT -ACGGAACTGTTCGCCTAATACCAC -ACGGAACTGTTCGCCTAACAGAAC -ACGGAACTGTTCGCCTAAGTCTAC -ACGGAACTGTTCGCCTAAACGTAC -ACGGAACTGTTCGCCTAAAGTGAC -ACGGAACTGTTCGCCTAACTGTAG -ACGGAACTGTTCGCCTAACCTAAG -ACGGAACTGTTCGCCTAAGTTCAG -ACGGAACTGTTCGCCTAAGCATAG -ACGGAACTGTTCGCCTAAGACAAG -ACGGAACTGTTCGCCTAAAAGCAG -ACGGAACTGTTCGCCTAACGTCAA -ACGGAACTGTTCGCCTAAGCTGAA -ACGGAACTGTTCGCCTAAAGTACG -ACGGAACTGTTCGCCTAAATCCGA -ACGGAACTGTTCGCCTAAATGGGA -ACGGAACTGTTCGCCTAAGTGCAA -ACGGAACTGTTCGCCTAAGAGGAA -ACGGAACTGTTCGCCTAACAGGTA -ACGGAACTGTTCGCCTAAGACTCT -ACGGAACTGTTCGCCTAAAGTCCT -ACGGAACTGTTCGCCTAATAAGCC -ACGGAACTGTTCGCCTAAATAGCC -ACGGAACTGTTCGCCTAATAACCG -ACGGAACTGTTCGCCTAAATGCCA -ACGGAACTGTTCGCCATAGGAAAC -ACGGAACTGTTCGCCATAAACACC -ACGGAACTGTTCGCCATAATCGAG -ACGGAACTGTTCGCCATACTCCTT -ACGGAACTGTTCGCCATACCTGTT -ACGGAACTGTTCGCCATACGGTTT -ACGGAACTGTTCGCCATAGTGGTT -ACGGAACTGTTCGCCATAGCCTTT -ACGGAACTGTTCGCCATAGGTCTT -ACGGAACTGTTCGCCATAACGCTT -ACGGAACTGTTCGCCATAAGCGTT -ACGGAACTGTTCGCCATATTCGTC -ACGGAACTGTTCGCCATATCTCTC -ACGGAACTGTTCGCCATATGGATC -ACGGAACTGTTCGCCATACACTTC -ACGGAACTGTTCGCCATAGTACTC -ACGGAACTGTTCGCCATAGATGTC -ACGGAACTGTTCGCCATAACAGTC -ACGGAACTGTTCGCCATATTGCTG -ACGGAACTGTTCGCCATATCCATG -ACGGAACTGTTCGCCATATGTGTG -ACGGAACTGTTCGCCATACTAGTG -ACGGAACTGTTCGCCATACATCTG -ACGGAACTGTTCGCCATAGAGTTG -ACGGAACTGTTCGCCATAAGACTG -ACGGAACTGTTCGCCATATCGGTA -ACGGAACTGTTCGCCATATGCCTA -ACGGAACTGTTCGCCATACCACTA -ACGGAACTGTTCGCCATAGGAGTA -ACGGAACTGTTCGCCATATCGTCT -ACGGAACTGTTCGCCATATGCACT -ACGGAACTGTTCGCCATACTGACT -ACGGAACTGTTCGCCATACAACCT -ACGGAACTGTTCGCCATAGCTACT -ACGGAACTGTTCGCCATAGGATCT -ACGGAACTGTTCGCCATAAAGGCT -ACGGAACTGTTCGCCATATCAACC -ACGGAACTGTTCGCCATATGTTCC -ACGGAACTGTTCGCCATAATTCCC -ACGGAACTGTTCGCCATATTCTCG -ACGGAACTGTTCGCCATATAGACG -ACGGAACTGTTCGCCATAGTAACG -ACGGAACTGTTCGCCATAACTTCG -ACGGAACTGTTCGCCATATACGCA -ACGGAACTGTTCGCCATACTTGCA -ACGGAACTGTTCGCCATACGAACA -ACGGAACTGTTCGCCATACAGTCA -ACGGAACTGTTCGCCATAGATCCA -ACGGAACTGTTCGCCATAACGACA -ACGGAACTGTTCGCCATAAGCTCA -ACGGAACTGTTCGCCATATCACGT -ACGGAACTGTTCGCCATACGTAGT -ACGGAACTGTTCGCCATAGTCAGT -ACGGAACTGTTCGCCATAGAAGGT -ACGGAACTGTTCGCCATAAACCGT -ACGGAACTGTTCGCCATATTGTGC -ACGGAACTGTTCGCCATACTAAGC -ACGGAACTGTTCGCCATAACTAGC -ACGGAACTGTTCGCCATAAGATGC -ACGGAACTGTTCGCCATATGAAGG -ACGGAACTGTTCGCCATACAATGG -ACGGAACTGTTCGCCATAATGAGG -ACGGAACTGTTCGCCATAAATGGG -ACGGAACTGTTCGCCATATCCTGA -ACGGAACTGTTCGCCATATAGCGA -ACGGAACTGTTCGCCATACACAGA -ACGGAACTGTTCGCCATAGCAAGA -ACGGAACTGTTCGCCATAGGTTGA -ACGGAACTGTTCGCCATATCCGAT -ACGGAACTGTTCGCCATATGGCAT -ACGGAACTGTTCGCCATACGAGAT -ACGGAACTGTTCGCCATATACCAC -ACGGAACTGTTCGCCATACAGAAC -ACGGAACTGTTCGCCATAGTCTAC -ACGGAACTGTTCGCCATAACGTAC -ACGGAACTGTTCGCCATAAGTGAC -ACGGAACTGTTCGCCATACTGTAG -ACGGAACTGTTCGCCATACCTAAG -ACGGAACTGTTCGCCATAGTTCAG -ACGGAACTGTTCGCCATAGCATAG -ACGGAACTGTTCGCCATAGACAAG -ACGGAACTGTTCGCCATAAAGCAG -ACGGAACTGTTCGCCATACGTCAA -ACGGAACTGTTCGCCATAGCTGAA -ACGGAACTGTTCGCCATAAGTACG -ACGGAACTGTTCGCCATAATCCGA -ACGGAACTGTTCGCCATAATGGGA -ACGGAACTGTTCGCCATAGTGCAA -ACGGAACTGTTCGCCATAGAGGAA -ACGGAACTGTTCGCCATACAGGTA -ACGGAACTGTTCGCCATAGACTCT -ACGGAACTGTTCGCCATAAGTCCT -ACGGAACTGTTCGCCATATAAGCC -ACGGAACTGTTCGCCATAATAGCC -ACGGAACTGTTCGCCATATAACCG -ACGGAACTGTTCGCCATAATGCCA -ACGGAACTGTTCCCGTAAGGAAAC -ACGGAACTGTTCCCGTAAAACACC -ACGGAACTGTTCCCGTAAATCGAG -ACGGAACTGTTCCCGTAACTCCTT -ACGGAACTGTTCCCGTAACCTGTT -ACGGAACTGTTCCCGTAACGGTTT -ACGGAACTGTTCCCGTAAGTGGTT -ACGGAACTGTTCCCGTAAGCCTTT -ACGGAACTGTTCCCGTAAGGTCTT -ACGGAACTGTTCCCGTAAACGCTT -ACGGAACTGTTCCCGTAAAGCGTT -ACGGAACTGTTCCCGTAATTCGTC -ACGGAACTGTTCCCGTAATCTCTC -ACGGAACTGTTCCCGTAATGGATC -ACGGAACTGTTCCCGTAACACTTC -ACGGAACTGTTCCCGTAAGTACTC -ACGGAACTGTTCCCGTAAGATGTC -ACGGAACTGTTCCCGTAAACAGTC -ACGGAACTGTTCCCGTAATTGCTG -ACGGAACTGTTCCCGTAATCCATG -ACGGAACTGTTCCCGTAATGTGTG -ACGGAACTGTTCCCGTAACTAGTG -ACGGAACTGTTCCCGTAACATCTG -ACGGAACTGTTCCCGTAAGAGTTG -ACGGAACTGTTCCCGTAAAGACTG -ACGGAACTGTTCCCGTAATCGGTA -ACGGAACTGTTCCCGTAATGCCTA -ACGGAACTGTTCCCGTAACCACTA -ACGGAACTGTTCCCGTAAGGAGTA -ACGGAACTGTTCCCGTAATCGTCT -ACGGAACTGTTCCCGTAATGCACT -ACGGAACTGTTCCCGTAACTGACT -ACGGAACTGTTCCCGTAACAACCT -ACGGAACTGTTCCCGTAAGCTACT -ACGGAACTGTTCCCGTAAGGATCT -ACGGAACTGTTCCCGTAAAAGGCT -ACGGAACTGTTCCCGTAATCAACC -ACGGAACTGTTCCCGTAATGTTCC -ACGGAACTGTTCCCGTAAATTCCC -ACGGAACTGTTCCCGTAATTCTCG -ACGGAACTGTTCCCGTAATAGACG -ACGGAACTGTTCCCGTAAGTAACG -ACGGAACTGTTCCCGTAAACTTCG -ACGGAACTGTTCCCGTAATACGCA -ACGGAACTGTTCCCGTAACTTGCA -ACGGAACTGTTCCCGTAACGAACA -ACGGAACTGTTCCCGTAACAGTCA -ACGGAACTGTTCCCGTAAGATCCA -ACGGAACTGTTCCCGTAAACGACA -ACGGAACTGTTCCCGTAAAGCTCA -ACGGAACTGTTCCCGTAATCACGT -ACGGAACTGTTCCCGTAACGTAGT -ACGGAACTGTTCCCGTAAGTCAGT -ACGGAACTGTTCCCGTAAGAAGGT -ACGGAACTGTTCCCGTAAAACCGT -ACGGAACTGTTCCCGTAATTGTGC -ACGGAACTGTTCCCGTAACTAAGC -ACGGAACTGTTCCCGTAAACTAGC -ACGGAACTGTTCCCGTAAAGATGC -ACGGAACTGTTCCCGTAATGAAGG -ACGGAACTGTTCCCGTAACAATGG -ACGGAACTGTTCCCGTAAATGAGG -ACGGAACTGTTCCCGTAAAATGGG -ACGGAACTGTTCCCGTAATCCTGA -ACGGAACTGTTCCCGTAATAGCGA -ACGGAACTGTTCCCGTAACACAGA -ACGGAACTGTTCCCGTAAGCAAGA -ACGGAACTGTTCCCGTAAGGTTGA -ACGGAACTGTTCCCGTAATCCGAT -ACGGAACTGTTCCCGTAATGGCAT -ACGGAACTGTTCCCGTAACGAGAT -ACGGAACTGTTCCCGTAATACCAC -ACGGAACTGTTCCCGTAACAGAAC -ACGGAACTGTTCCCGTAAGTCTAC -ACGGAACTGTTCCCGTAAACGTAC -ACGGAACTGTTCCCGTAAAGTGAC -ACGGAACTGTTCCCGTAACTGTAG -ACGGAACTGTTCCCGTAACCTAAG -ACGGAACTGTTCCCGTAAGTTCAG -ACGGAACTGTTCCCGTAAGCATAG -ACGGAACTGTTCCCGTAAGACAAG -ACGGAACTGTTCCCGTAAAAGCAG -ACGGAACTGTTCCCGTAACGTCAA -ACGGAACTGTTCCCGTAAGCTGAA -ACGGAACTGTTCCCGTAAAGTACG -ACGGAACTGTTCCCGTAAATCCGA -ACGGAACTGTTCCCGTAAATGGGA -ACGGAACTGTTCCCGTAAGTGCAA -ACGGAACTGTTCCCGTAAGAGGAA -ACGGAACTGTTCCCGTAACAGGTA -ACGGAACTGTTCCCGTAAGACTCT -ACGGAACTGTTCCCGTAAAGTCCT -ACGGAACTGTTCCCGTAATAAGCC -ACGGAACTGTTCCCGTAAATAGCC -ACGGAACTGTTCCCGTAATAACCG -ACGGAACTGTTCCCGTAAATGCCA -ACGGAACTGTTCCCAATGGGAAAC -ACGGAACTGTTCCCAATGAACACC -ACGGAACTGTTCCCAATGATCGAG -ACGGAACTGTTCCCAATGCTCCTT -ACGGAACTGTTCCCAATGCCTGTT -ACGGAACTGTTCCCAATGCGGTTT -ACGGAACTGTTCCCAATGGTGGTT -ACGGAACTGTTCCCAATGGCCTTT -ACGGAACTGTTCCCAATGGGTCTT -ACGGAACTGTTCCCAATGACGCTT -ACGGAACTGTTCCCAATGAGCGTT -ACGGAACTGTTCCCAATGTTCGTC -ACGGAACTGTTCCCAATGTCTCTC -ACGGAACTGTTCCCAATGTGGATC -ACGGAACTGTTCCCAATGCACTTC -ACGGAACTGTTCCCAATGGTACTC -ACGGAACTGTTCCCAATGGATGTC -ACGGAACTGTTCCCAATGACAGTC -ACGGAACTGTTCCCAATGTTGCTG -ACGGAACTGTTCCCAATGTCCATG -ACGGAACTGTTCCCAATGTGTGTG -ACGGAACTGTTCCCAATGCTAGTG -ACGGAACTGTTCCCAATGCATCTG -ACGGAACTGTTCCCAATGGAGTTG -ACGGAACTGTTCCCAATGAGACTG -ACGGAACTGTTCCCAATGTCGGTA -ACGGAACTGTTCCCAATGTGCCTA -ACGGAACTGTTCCCAATGCCACTA -ACGGAACTGTTCCCAATGGGAGTA -ACGGAACTGTTCCCAATGTCGTCT -ACGGAACTGTTCCCAATGTGCACT -ACGGAACTGTTCCCAATGCTGACT -ACGGAACTGTTCCCAATGCAACCT -ACGGAACTGTTCCCAATGGCTACT -ACGGAACTGTTCCCAATGGGATCT -ACGGAACTGTTCCCAATGAAGGCT -ACGGAACTGTTCCCAATGTCAACC -ACGGAACTGTTCCCAATGTGTTCC -ACGGAACTGTTCCCAATGATTCCC -ACGGAACTGTTCCCAATGTTCTCG -ACGGAACTGTTCCCAATGTAGACG -ACGGAACTGTTCCCAATGGTAACG -ACGGAACTGTTCCCAATGACTTCG -ACGGAACTGTTCCCAATGTACGCA -ACGGAACTGTTCCCAATGCTTGCA -ACGGAACTGTTCCCAATGCGAACA -ACGGAACTGTTCCCAATGCAGTCA -ACGGAACTGTTCCCAATGGATCCA -ACGGAACTGTTCCCAATGACGACA -ACGGAACTGTTCCCAATGAGCTCA -ACGGAACTGTTCCCAATGTCACGT -ACGGAACTGTTCCCAATGCGTAGT -ACGGAACTGTTCCCAATGGTCAGT -ACGGAACTGTTCCCAATGGAAGGT -ACGGAACTGTTCCCAATGAACCGT -ACGGAACTGTTCCCAATGTTGTGC -ACGGAACTGTTCCCAATGCTAAGC -ACGGAACTGTTCCCAATGACTAGC -ACGGAACTGTTCCCAATGAGATGC -ACGGAACTGTTCCCAATGTGAAGG -ACGGAACTGTTCCCAATGCAATGG -ACGGAACTGTTCCCAATGATGAGG -ACGGAACTGTTCCCAATGAATGGG -ACGGAACTGTTCCCAATGTCCTGA -ACGGAACTGTTCCCAATGTAGCGA -ACGGAACTGTTCCCAATGCACAGA -ACGGAACTGTTCCCAATGGCAAGA -ACGGAACTGTTCCCAATGGGTTGA -ACGGAACTGTTCCCAATGTCCGAT -ACGGAACTGTTCCCAATGTGGCAT -ACGGAACTGTTCCCAATGCGAGAT -ACGGAACTGTTCCCAATGTACCAC -ACGGAACTGTTCCCAATGCAGAAC -ACGGAACTGTTCCCAATGGTCTAC -ACGGAACTGTTCCCAATGACGTAC -ACGGAACTGTTCCCAATGAGTGAC -ACGGAACTGTTCCCAATGCTGTAG -ACGGAACTGTTCCCAATGCCTAAG -ACGGAACTGTTCCCAATGGTTCAG -ACGGAACTGTTCCCAATGGCATAG -ACGGAACTGTTCCCAATGGACAAG -ACGGAACTGTTCCCAATGAAGCAG -ACGGAACTGTTCCCAATGCGTCAA -ACGGAACTGTTCCCAATGGCTGAA -ACGGAACTGTTCCCAATGAGTACG -ACGGAACTGTTCCCAATGATCCGA -ACGGAACTGTTCCCAATGATGGGA -ACGGAACTGTTCCCAATGGTGCAA -ACGGAACTGTTCCCAATGGAGGAA -ACGGAACTGTTCCCAATGCAGGTA -ACGGAACTGTTCCCAATGGACTCT -ACGGAACTGTTCCCAATGAGTCCT -ACGGAACTGTTCCCAATGTAAGCC -ACGGAACTGTTCCCAATGATAGCC -ACGGAACTGTTCCCAATGTAACCG -ACGGAACTGTTCCCAATGATGCCA -ACGGAAGGTTTCAACGGAGGAAAC -ACGGAAGGTTTCAACGGAAACACC -ACGGAAGGTTTCAACGGAATCGAG -ACGGAAGGTTTCAACGGACTCCTT -ACGGAAGGTTTCAACGGACCTGTT -ACGGAAGGTTTCAACGGACGGTTT -ACGGAAGGTTTCAACGGAGTGGTT -ACGGAAGGTTTCAACGGAGCCTTT -ACGGAAGGTTTCAACGGAGGTCTT -ACGGAAGGTTTCAACGGAACGCTT -ACGGAAGGTTTCAACGGAAGCGTT -ACGGAAGGTTTCAACGGATTCGTC -ACGGAAGGTTTCAACGGATCTCTC -ACGGAAGGTTTCAACGGATGGATC -ACGGAAGGTTTCAACGGACACTTC -ACGGAAGGTTTCAACGGAGTACTC -ACGGAAGGTTTCAACGGAGATGTC -ACGGAAGGTTTCAACGGAACAGTC -ACGGAAGGTTTCAACGGATTGCTG -ACGGAAGGTTTCAACGGATCCATG -ACGGAAGGTTTCAACGGATGTGTG -ACGGAAGGTTTCAACGGACTAGTG -ACGGAAGGTTTCAACGGACATCTG -ACGGAAGGTTTCAACGGAGAGTTG -ACGGAAGGTTTCAACGGAAGACTG -ACGGAAGGTTTCAACGGATCGGTA -ACGGAAGGTTTCAACGGATGCCTA -ACGGAAGGTTTCAACGGACCACTA -ACGGAAGGTTTCAACGGAGGAGTA -ACGGAAGGTTTCAACGGATCGTCT -ACGGAAGGTTTCAACGGATGCACT -ACGGAAGGTTTCAACGGACTGACT -ACGGAAGGTTTCAACGGACAACCT -ACGGAAGGTTTCAACGGAGCTACT -ACGGAAGGTTTCAACGGAGGATCT -ACGGAAGGTTTCAACGGAAAGGCT -ACGGAAGGTTTCAACGGATCAACC -ACGGAAGGTTTCAACGGATGTTCC -ACGGAAGGTTTCAACGGAATTCCC -ACGGAAGGTTTCAACGGATTCTCG -ACGGAAGGTTTCAACGGATAGACG -ACGGAAGGTTTCAACGGAGTAACG -ACGGAAGGTTTCAACGGAACTTCG -ACGGAAGGTTTCAACGGATACGCA -ACGGAAGGTTTCAACGGACTTGCA -ACGGAAGGTTTCAACGGACGAACA -ACGGAAGGTTTCAACGGACAGTCA -ACGGAAGGTTTCAACGGAGATCCA -ACGGAAGGTTTCAACGGAACGACA -ACGGAAGGTTTCAACGGAAGCTCA -ACGGAAGGTTTCAACGGATCACGT -ACGGAAGGTTTCAACGGACGTAGT -ACGGAAGGTTTCAACGGAGTCAGT -ACGGAAGGTTTCAACGGAGAAGGT -ACGGAAGGTTTCAACGGAAACCGT -ACGGAAGGTTTCAACGGATTGTGC -ACGGAAGGTTTCAACGGACTAAGC -ACGGAAGGTTTCAACGGAACTAGC -ACGGAAGGTTTCAACGGAAGATGC -ACGGAAGGTTTCAACGGATGAAGG -ACGGAAGGTTTCAACGGACAATGG -ACGGAAGGTTTCAACGGAATGAGG -ACGGAAGGTTTCAACGGAAATGGG -ACGGAAGGTTTCAACGGATCCTGA -ACGGAAGGTTTCAACGGATAGCGA -ACGGAAGGTTTCAACGGACACAGA -ACGGAAGGTTTCAACGGAGCAAGA -ACGGAAGGTTTCAACGGAGGTTGA -ACGGAAGGTTTCAACGGATCCGAT -ACGGAAGGTTTCAACGGATGGCAT -ACGGAAGGTTTCAACGGACGAGAT -ACGGAAGGTTTCAACGGATACCAC -ACGGAAGGTTTCAACGGACAGAAC -ACGGAAGGTTTCAACGGAGTCTAC -ACGGAAGGTTTCAACGGAACGTAC -ACGGAAGGTTTCAACGGAAGTGAC -ACGGAAGGTTTCAACGGACTGTAG -ACGGAAGGTTTCAACGGACCTAAG -ACGGAAGGTTTCAACGGAGTTCAG -ACGGAAGGTTTCAACGGAGCATAG -ACGGAAGGTTTCAACGGAGACAAG -ACGGAAGGTTTCAACGGAAAGCAG -ACGGAAGGTTTCAACGGACGTCAA -ACGGAAGGTTTCAACGGAGCTGAA -ACGGAAGGTTTCAACGGAAGTACG -ACGGAAGGTTTCAACGGAATCCGA -ACGGAAGGTTTCAACGGAATGGGA -ACGGAAGGTTTCAACGGAGTGCAA -ACGGAAGGTTTCAACGGAGAGGAA -ACGGAAGGTTTCAACGGACAGGTA -ACGGAAGGTTTCAACGGAGACTCT -ACGGAAGGTTTCAACGGAAGTCCT -ACGGAAGGTTTCAACGGATAAGCC -ACGGAAGGTTTCAACGGAATAGCC -ACGGAAGGTTTCAACGGATAACCG -ACGGAAGGTTTCAACGGAATGCCA -ACGGAAGGTTTCACCAACGGAAAC -ACGGAAGGTTTCACCAACAACACC -ACGGAAGGTTTCACCAACATCGAG -ACGGAAGGTTTCACCAACCTCCTT -ACGGAAGGTTTCACCAACCCTGTT -ACGGAAGGTTTCACCAACCGGTTT -ACGGAAGGTTTCACCAACGTGGTT -ACGGAAGGTTTCACCAACGCCTTT -ACGGAAGGTTTCACCAACGGTCTT -ACGGAAGGTTTCACCAACACGCTT -ACGGAAGGTTTCACCAACAGCGTT -ACGGAAGGTTTCACCAACTTCGTC -ACGGAAGGTTTCACCAACTCTCTC -ACGGAAGGTTTCACCAACTGGATC -ACGGAAGGTTTCACCAACCACTTC -ACGGAAGGTTTCACCAACGTACTC -ACGGAAGGTTTCACCAACGATGTC -ACGGAAGGTTTCACCAACACAGTC -ACGGAAGGTTTCACCAACTTGCTG -ACGGAAGGTTTCACCAACTCCATG -ACGGAAGGTTTCACCAACTGTGTG -ACGGAAGGTTTCACCAACCTAGTG -ACGGAAGGTTTCACCAACCATCTG -ACGGAAGGTTTCACCAACGAGTTG -ACGGAAGGTTTCACCAACAGACTG -ACGGAAGGTTTCACCAACTCGGTA -ACGGAAGGTTTCACCAACTGCCTA -ACGGAAGGTTTCACCAACCCACTA -ACGGAAGGTTTCACCAACGGAGTA -ACGGAAGGTTTCACCAACTCGTCT -ACGGAAGGTTTCACCAACTGCACT -ACGGAAGGTTTCACCAACCTGACT -ACGGAAGGTTTCACCAACCAACCT -ACGGAAGGTTTCACCAACGCTACT -ACGGAAGGTTTCACCAACGGATCT -ACGGAAGGTTTCACCAACAAGGCT -ACGGAAGGTTTCACCAACTCAACC -ACGGAAGGTTTCACCAACTGTTCC -ACGGAAGGTTTCACCAACATTCCC -ACGGAAGGTTTCACCAACTTCTCG -ACGGAAGGTTTCACCAACTAGACG -ACGGAAGGTTTCACCAACGTAACG -ACGGAAGGTTTCACCAACACTTCG -ACGGAAGGTTTCACCAACTACGCA -ACGGAAGGTTTCACCAACCTTGCA -ACGGAAGGTTTCACCAACCGAACA -ACGGAAGGTTTCACCAACCAGTCA -ACGGAAGGTTTCACCAACGATCCA -ACGGAAGGTTTCACCAACACGACA -ACGGAAGGTTTCACCAACAGCTCA -ACGGAAGGTTTCACCAACTCACGT -ACGGAAGGTTTCACCAACCGTAGT -ACGGAAGGTTTCACCAACGTCAGT -ACGGAAGGTTTCACCAACGAAGGT -ACGGAAGGTTTCACCAACAACCGT -ACGGAAGGTTTCACCAACTTGTGC -ACGGAAGGTTTCACCAACCTAAGC -ACGGAAGGTTTCACCAACACTAGC -ACGGAAGGTTTCACCAACAGATGC -ACGGAAGGTTTCACCAACTGAAGG -ACGGAAGGTTTCACCAACCAATGG -ACGGAAGGTTTCACCAACATGAGG -ACGGAAGGTTTCACCAACAATGGG -ACGGAAGGTTTCACCAACTCCTGA -ACGGAAGGTTTCACCAACTAGCGA -ACGGAAGGTTTCACCAACCACAGA -ACGGAAGGTTTCACCAACGCAAGA -ACGGAAGGTTTCACCAACGGTTGA -ACGGAAGGTTTCACCAACTCCGAT -ACGGAAGGTTTCACCAACTGGCAT -ACGGAAGGTTTCACCAACCGAGAT -ACGGAAGGTTTCACCAACTACCAC -ACGGAAGGTTTCACCAACCAGAAC -ACGGAAGGTTTCACCAACGTCTAC -ACGGAAGGTTTCACCAACACGTAC -ACGGAAGGTTTCACCAACAGTGAC -ACGGAAGGTTTCACCAACCTGTAG -ACGGAAGGTTTCACCAACCCTAAG -ACGGAAGGTTTCACCAACGTTCAG -ACGGAAGGTTTCACCAACGCATAG -ACGGAAGGTTTCACCAACGACAAG -ACGGAAGGTTTCACCAACAAGCAG -ACGGAAGGTTTCACCAACCGTCAA -ACGGAAGGTTTCACCAACGCTGAA -ACGGAAGGTTTCACCAACAGTACG -ACGGAAGGTTTCACCAACATCCGA -ACGGAAGGTTTCACCAACATGGGA -ACGGAAGGTTTCACCAACGTGCAA -ACGGAAGGTTTCACCAACGAGGAA -ACGGAAGGTTTCACCAACCAGGTA -ACGGAAGGTTTCACCAACGACTCT -ACGGAAGGTTTCACCAACAGTCCT -ACGGAAGGTTTCACCAACTAAGCC -ACGGAAGGTTTCACCAACATAGCC -ACGGAAGGTTTCACCAACTAACCG -ACGGAAGGTTTCACCAACATGCCA -ACGGAAGGTTTCGAGATCGGAAAC -ACGGAAGGTTTCGAGATCAACACC -ACGGAAGGTTTCGAGATCATCGAG -ACGGAAGGTTTCGAGATCCTCCTT -ACGGAAGGTTTCGAGATCCCTGTT -ACGGAAGGTTTCGAGATCCGGTTT -ACGGAAGGTTTCGAGATCGTGGTT -ACGGAAGGTTTCGAGATCGCCTTT -ACGGAAGGTTTCGAGATCGGTCTT -ACGGAAGGTTTCGAGATCACGCTT -ACGGAAGGTTTCGAGATCAGCGTT -ACGGAAGGTTTCGAGATCTTCGTC -ACGGAAGGTTTCGAGATCTCTCTC -ACGGAAGGTTTCGAGATCTGGATC -ACGGAAGGTTTCGAGATCCACTTC -ACGGAAGGTTTCGAGATCGTACTC -ACGGAAGGTTTCGAGATCGATGTC -ACGGAAGGTTTCGAGATCACAGTC -ACGGAAGGTTTCGAGATCTTGCTG -ACGGAAGGTTTCGAGATCTCCATG -ACGGAAGGTTTCGAGATCTGTGTG -ACGGAAGGTTTCGAGATCCTAGTG -ACGGAAGGTTTCGAGATCCATCTG -ACGGAAGGTTTCGAGATCGAGTTG -ACGGAAGGTTTCGAGATCAGACTG -ACGGAAGGTTTCGAGATCTCGGTA -ACGGAAGGTTTCGAGATCTGCCTA -ACGGAAGGTTTCGAGATCCCACTA -ACGGAAGGTTTCGAGATCGGAGTA -ACGGAAGGTTTCGAGATCTCGTCT -ACGGAAGGTTTCGAGATCTGCACT -ACGGAAGGTTTCGAGATCCTGACT -ACGGAAGGTTTCGAGATCCAACCT -ACGGAAGGTTTCGAGATCGCTACT -ACGGAAGGTTTCGAGATCGGATCT -ACGGAAGGTTTCGAGATCAAGGCT -ACGGAAGGTTTCGAGATCTCAACC -ACGGAAGGTTTCGAGATCTGTTCC -ACGGAAGGTTTCGAGATCATTCCC -ACGGAAGGTTTCGAGATCTTCTCG -ACGGAAGGTTTCGAGATCTAGACG -ACGGAAGGTTTCGAGATCGTAACG -ACGGAAGGTTTCGAGATCACTTCG -ACGGAAGGTTTCGAGATCTACGCA -ACGGAAGGTTTCGAGATCCTTGCA -ACGGAAGGTTTCGAGATCCGAACA -ACGGAAGGTTTCGAGATCCAGTCA -ACGGAAGGTTTCGAGATCGATCCA -ACGGAAGGTTTCGAGATCACGACA -ACGGAAGGTTTCGAGATCAGCTCA -ACGGAAGGTTTCGAGATCTCACGT -ACGGAAGGTTTCGAGATCCGTAGT -ACGGAAGGTTTCGAGATCGTCAGT -ACGGAAGGTTTCGAGATCGAAGGT -ACGGAAGGTTTCGAGATCAACCGT -ACGGAAGGTTTCGAGATCTTGTGC -ACGGAAGGTTTCGAGATCCTAAGC -ACGGAAGGTTTCGAGATCACTAGC -ACGGAAGGTTTCGAGATCAGATGC -ACGGAAGGTTTCGAGATCTGAAGG -ACGGAAGGTTTCGAGATCCAATGG -ACGGAAGGTTTCGAGATCATGAGG -ACGGAAGGTTTCGAGATCAATGGG -ACGGAAGGTTTCGAGATCTCCTGA -ACGGAAGGTTTCGAGATCTAGCGA -ACGGAAGGTTTCGAGATCCACAGA -ACGGAAGGTTTCGAGATCGCAAGA -ACGGAAGGTTTCGAGATCGGTTGA -ACGGAAGGTTTCGAGATCTCCGAT -ACGGAAGGTTTCGAGATCTGGCAT -ACGGAAGGTTTCGAGATCCGAGAT -ACGGAAGGTTTCGAGATCTACCAC -ACGGAAGGTTTCGAGATCCAGAAC -ACGGAAGGTTTCGAGATCGTCTAC -ACGGAAGGTTTCGAGATCACGTAC -ACGGAAGGTTTCGAGATCAGTGAC -ACGGAAGGTTTCGAGATCCTGTAG -ACGGAAGGTTTCGAGATCCCTAAG -ACGGAAGGTTTCGAGATCGTTCAG -ACGGAAGGTTTCGAGATCGCATAG -ACGGAAGGTTTCGAGATCGACAAG -ACGGAAGGTTTCGAGATCAAGCAG -ACGGAAGGTTTCGAGATCCGTCAA -ACGGAAGGTTTCGAGATCGCTGAA -ACGGAAGGTTTCGAGATCAGTACG -ACGGAAGGTTTCGAGATCATCCGA -ACGGAAGGTTTCGAGATCATGGGA -ACGGAAGGTTTCGAGATCGTGCAA -ACGGAAGGTTTCGAGATCGAGGAA -ACGGAAGGTTTCGAGATCCAGGTA -ACGGAAGGTTTCGAGATCGACTCT -ACGGAAGGTTTCGAGATCAGTCCT -ACGGAAGGTTTCGAGATCTAAGCC -ACGGAAGGTTTCGAGATCATAGCC -ACGGAAGGTTTCGAGATCTAACCG -ACGGAAGGTTTCGAGATCATGCCA -ACGGAAGGTTTCCTTCTCGGAAAC -ACGGAAGGTTTCCTTCTCAACACC -ACGGAAGGTTTCCTTCTCATCGAG -ACGGAAGGTTTCCTTCTCCTCCTT -ACGGAAGGTTTCCTTCTCCCTGTT -ACGGAAGGTTTCCTTCTCCGGTTT -ACGGAAGGTTTCCTTCTCGTGGTT -ACGGAAGGTTTCCTTCTCGCCTTT -ACGGAAGGTTTCCTTCTCGGTCTT -ACGGAAGGTTTCCTTCTCACGCTT -ACGGAAGGTTTCCTTCTCAGCGTT -ACGGAAGGTTTCCTTCTCTTCGTC -ACGGAAGGTTTCCTTCTCTCTCTC -ACGGAAGGTTTCCTTCTCTGGATC -ACGGAAGGTTTCCTTCTCCACTTC -ACGGAAGGTTTCCTTCTCGTACTC -ACGGAAGGTTTCCTTCTCGATGTC -ACGGAAGGTTTCCTTCTCACAGTC -ACGGAAGGTTTCCTTCTCTTGCTG -ACGGAAGGTTTCCTTCTCTCCATG -ACGGAAGGTTTCCTTCTCTGTGTG -ACGGAAGGTTTCCTTCTCCTAGTG -ACGGAAGGTTTCCTTCTCCATCTG -ACGGAAGGTTTCCTTCTCGAGTTG -ACGGAAGGTTTCCTTCTCAGACTG -ACGGAAGGTTTCCTTCTCTCGGTA -ACGGAAGGTTTCCTTCTCTGCCTA -ACGGAAGGTTTCCTTCTCCCACTA -ACGGAAGGTTTCCTTCTCGGAGTA -ACGGAAGGTTTCCTTCTCTCGTCT -ACGGAAGGTTTCCTTCTCTGCACT -ACGGAAGGTTTCCTTCTCCTGACT -ACGGAAGGTTTCCTTCTCCAACCT -ACGGAAGGTTTCCTTCTCGCTACT -ACGGAAGGTTTCCTTCTCGGATCT -ACGGAAGGTTTCCTTCTCAAGGCT -ACGGAAGGTTTCCTTCTCTCAACC -ACGGAAGGTTTCCTTCTCTGTTCC -ACGGAAGGTTTCCTTCTCATTCCC -ACGGAAGGTTTCCTTCTCTTCTCG -ACGGAAGGTTTCCTTCTCTAGACG -ACGGAAGGTTTCCTTCTCGTAACG -ACGGAAGGTTTCCTTCTCACTTCG -ACGGAAGGTTTCCTTCTCTACGCA -ACGGAAGGTTTCCTTCTCCTTGCA -ACGGAAGGTTTCCTTCTCCGAACA -ACGGAAGGTTTCCTTCTCCAGTCA -ACGGAAGGTTTCCTTCTCGATCCA -ACGGAAGGTTTCCTTCTCACGACA -ACGGAAGGTTTCCTTCTCAGCTCA -ACGGAAGGTTTCCTTCTCTCACGT -ACGGAAGGTTTCCTTCTCCGTAGT -ACGGAAGGTTTCCTTCTCGTCAGT -ACGGAAGGTTTCCTTCTCGAAGGT -ACGGAAGGTTTCCTTCTCAACCGT -ACGGAAGGTTTCCTTCTCTTGTGC -ACGGAAGGTTTCCTTCTCCTAAGC -ACGGAAGGTTTCCTTCTCACTAGC -ACGGAAGGTTTCCTTCTCAGATGC -ACGGAAGGTTTCCTTCTCTGAAGG -ACGGAAGGTTTCCTTCTCCAATGG -ACGGAAGGTTTCCTTCTCATGAGG -ACGGAAGGTTTCCTTCTCAATGGG -ACGGAAGGTTTCCTTCTCTCCTGA -ACGGAAGGTTTCCTTCTCTAGCGA -ACGGAAGGTTTCCTTCTCCACAGA -ACGGAAGGTTTCCTTCTCGCAAGA -ACGGAAGGTTTCCTTCTCGGTTGA -ACGGAAGGTTTCCTTCTCTCCGAT -ACGGAAGGTTTCCTTCTCTGGCAT -ACGGAAGGTTTCCTTCTCCGAGAT -ACGGAAGGTTTCCTTCTCTACCAC -ACGGAAGGTTTCCTTCTCCAGAAC -ACGGAAGGTTTCCTTCTCGTCTAC -ACGGAAGGTTTCCTTCTCACGTAC -ACGGAAGGTTTCCTTCTCAGTGAC -ACGGAAGGTTTCCTTCTCCTGTAG -ACGGAAGGTTTCCTTCTCCCTAAG -ACGGAAGGTTTCCTTCTCGTTCAG -ACGGAAGGTTTCCTTCTCGCATAG -ACGGAAGGTTTCCTTCTCGACAAG -ACGGAAGGTTTCCTTCTCAAGCAG -ACGGAAGGTTTCCTTCTCCGTCAA -ACGGAAGGTTTCCTTCTCGCTGAA -ACGGAAGGTTTCCTTCTCAGTACG -ACGGAAGGTTTCCTTCTCATCCGA -ACGGAAGGTTTCCTTCTCATGGGA -ACGGAAGGTTTCCTTCTCGTGCAA -ACGGAAGGTTTCCTTCTCGAGGAA -ACGGAAGGTTTCCTTCTCCAGGTA -ACGGAAGGTTTCCTTCTCGACTCT -ACGGAAGGTTTCCTTCTCAGTCCT -ACGGAAGGTTTCCTTCTCTAAGCC -ACGGAAGGTTTCCTTCTCATAGCC -ACGGAAGGTTTCCTTCTCTAACCG -ACGGAAGGTTTCCTTCTCATGCCA -ACGGAAGGTTTCGTTCCTGGAAAC -ACGGAAGGTTTCGTTCCTAACACC -ACGGAAGGTTTCGTTCCTATCGAG -ACGGAAGGTTTCGTTCCTCTCCTT -ACGGAAGGTTTCGTTCCTCCTGTT -ACGGAAGGTTTCGTTCCTCGGTTT -ACGGAAGGTTTCGTTCCTGTGGTT -ACGGAAGGTTTCGTTCCTGCCTTT -ACGGAAGGTTTCGTTCCTGGTCTT -ACGGAAGGTTTCGTTCCTACGCTT -ACGGAAGGTTTCGTTCCTAGCGTT -ACGGAAGGTTTCGTTCCTTTCGTC -ACGGAAGGTTTCGTTCCTTCTCTC -ACGGAAGGTTTCGTTCCTTGGATC -ACGGAAGGTTTCGTTCCTCACTTC -ACGGAAGGTTTCGTTCCTGTACTC -ACGGAAGGTTTCGTTCCTGATGTC -ACGGAAGGTTTCGTTCCTACAGTC -ACGGAAGGTTTCGTTCCTTTGCTG -ACGGAAGGTTTCGTTCCTTCCATG -ACGGAAGGTTTCGTTCCTTGTGTG -ACGGAAGGTTTCGTTCCTCTAGTG -ACGGAAGGTTTCGTTCCTCATCTG -ACGGAAGGTTTCGTTCCTGAGTTG -ACGGAAGGTTTCGTTCCTAGACTG -ACGGAAGGTTTCGTTCCTTCGGTA -ACGGAAGGTTTCGTTCCTTGCCTA -ACGGAAGGTTTCGTTCCTCCACTA -ACGGAAGGTTTCGTTCCTGGAGTA -ACGGAAGGTTTCGTTCCTTCGTCT -ACGGAAGGTTTCGTTCCTTGCACT -ACGGAAGGTTTCGTTCCTCTGACT -ACGGAAGGTTTCGTTCCTCAACCT -ACGGAAGGTTTCGTTCCTGCTACT -ACGGAAGGTTTCGTTCCTGGATCT -ACGGAAGGTTTCGTTCCTAAGGCT -ACGGAAGGTTTCGTTCCTTCAACC -ACGGAAGGTTTCGTTCCTTGTTCC -ACGGAAGGTTTCGTTCCTATTCCC -ACGGAAGGTTTCGTTCCTTTCTCG -ACGGAAGGTTTCGTTCCTTAGACG -ACGGAAGGTTTCGTTCCTGTAACG -ACGGAAGGTTTCGTTCCTACTTCG -ACGGAAGGTTTCGTTCCTTACGCA -ACGGAAGGTTTCGTTCCTCTTGCA -ACGGAAGGTTTCGTTCCTCGAACA -ACGGAAGGTTTCGTTCCTCAGTCA -ACGGAAGGTTTCGTTCCTGATCCA -ACGGAAGGTTTCGTTCCTACGACA -ACGGAAGGTTTCGTTCCTAGCTCA -ACGGAAGGTTTCGTTCCTTCACGT -ACGGAAGGTTTCGTTCCTCGTAGT -ACGGAAGGTTTCGTTCCTGTCAGT -ACGGAAGGTTTCGTTCCTGAAGGT -ACGGAAGGTTTCGTTCCTAACCGT -ACGGAAGGTTTCGTTCCTTTGTGC -ACGGAAGGTTTCGTTCCTCTAAGC -ACGGAAGGTTTCGTTCCTACTAGC -ACGGAAGGTTTCGTTCCTAGATGC -ACGGAAGGTTTCGTTCCTTGAAGG -ACGGAAGGTTTCGTTCCTCAATGG -ACGGAAGGTTTCGTTCCTATGAGG -ACGGAAGGTTTCGTTCCTAATGGG -ACGGAAGGTTTCGTTCCTTCCTGA -ACGGAAGGTTTCGTTCCTTAGCGA -ACGGAAGGTTTCGTTCCTCACAGA -ACGGAAGGTTTCGTTCCTGCAAGA -ACGGAAGGTTTCGTTCCTGGTTGA -ACGGAAGGTTTCGTTCCTTCCGAT -ACGGAAGGTTTCGTTCCTTGGCAT -ACGGAAGGTTTCGTTCCTCGAGAT -ACGGAAGGTTTCGTTCCTTACCAC -ACGGAAGGTTTCGTTCCTCAGAAC -ACGGAAGGTTTCGTTCCTGTCTAC -ACGGAAGGTTTCGTTCCTACGTAC -ACGGAAGGTTTCGTTCCTAGTGAC -ACGGAAGGTTTCGTTCCTCTGTAG -ACGGAAGGTTTCGTTCCTCCTAAG -ACGGAAGGTTTCGTTCCTGTTCAG -ACGGAAGGTTTCGTTCCTGCATAG -ACGGAAGGTTTCGTTCCTGACAAG -ACGGAAGGTTTCGTTCCTAAGCAG -ACGGAAGGTTTCGTTCCTCGTCAA -ACGGAAGGTTTCGTTCCTGCTGAA -ACGGAAGGTTTCGTTCCTAGTACG -ACGGAAGGTTTCGTTCCTATCCGA -ACGGAAGGTTTCGTTCCTATGGGA -ACGGAAGGTTTCGTTCCTGTGCAA -ACGGAAGGTTTCGTTCCTGAGGAA -ACGGAAGGTTTCGTTCCTCAGGTA -ACGGAAGGTTTCGTTCCTGACTCT -ACGGAAGGTTTCGTTCCTAGTCCT -ACGGAAGGTTTCGTTCCTTAAGCC -ACGGAAGGTTTCGTTCCTATAGCC -ACGGAAGGTTTCGTTCCTTAACCG -ACGGAAGGTTTCGTTCCTATGCCA -ACGGAAGGTTTCTTTCGGGGAAAC -ACGGAAGGTTTCTTTCGGAACACC -ACGGAAGGTTTCTTTCGGATCGAG -ACGGAAGGTTTCTTTCGGCTCCTT -ACGGAAGGTTTCTTTCGGCCTGTT -ACGGAAGGTTTCTTTCGGCGGTTT -ACGGAAGGTTTCTTTCGGGTGGTT -ACGGAAGGTTTCTTTCGGGCCTTT -ACGGAAGGTTTCTTTCGGGGTCTT -ACGGAAGGTTTCTTTCGGACGCTT -ACGGAAGGTTTCTTTCGGAGCGTT -ACGGAAGGTTTCTTTCGGTTCGTC -ACGGAAGGTTTCTTTCGGTCTCTC -ACGGAAGGTTTCTTTCGGTGGATC -ACGGAAGGTTTCTTTCGGCACTTC -ACGGAAGGTTTCTTTCGGGTACTC -ACGGAAGGTTTCTTTCGGGATGTC -ACGGAAGGTTTCTTTCGGACAGTC -ACGGAAGGTTTCTTTCGGTTGCTG -ACGGAAGGTTTCTTTCGGTCCATG -ACGGAAGGTTTCTTTCGGTGTGTG -ACGGAAGGTTTCTTTCGGCTAGTG -ACGGAAGGTTTCTTTCGGCATCTG -ACGGAAGGTTTCTTTCGGGAGTTG -ACGGAAGGTTTCTTTCGGAGACTG -ACGGAAGGTTTCTTTCGGTCGGTA -ACGGAAGGTTTCTTTCGGTGCCTA -ACGGAAGGTTTCTTTCGGCCACTA -ACGGAAGGTTTCTTTCGGGGAGTA -ACGGAAGGTTTCTTTCGGTCGTCT -ACGGAAGGTTTCTTTCGGTGCACT -ACGGAAGGTTTCTTTCGGCTGACT -ACGGAAGGTTTCTTTCGGCAACCT -ACGGAAGGTTTCTTTCGGGCTACT -ACGGAAGGTTTCTTTCGGGGATCT -ACGGAAGGTTTCTTTCGGAAGGCT -ACGGAAGGTTTCTTTCGGTCAACC -ACGGAAGGTTTCTTTCGGTGTTCC -ACGGAAGGTTTCTTTCGGATTCCC -ACGGAAGGTTTCTTTCGGTTCTCG -ACGGAAGGTTTCTTTCGGTAGACG -ACGGAAGGTTTCTTTCGGGTAACG -ACGGAAGGTTTCTTTCGGACTTCG -ACGGAAGGTTTCTTTCGGTACGCA -ACGGAAGGTTTCTTTCGGCTTGCA -ACGGAAGGTTTCTTTCGGCGAACA -ACGGAAGGTTTCTTTCGGCAGTCA -ACGGAAGGTTTCTTTCGGGATCCA -ACGGAAGGTTTCTTTCGGACGACA -ACGGAAGGTTTCTTTCGGAGCTCA -ACGGAAGGTTTCTTTCGGTCACGT -ACGGAAGGTTTCTTTCGGCGTAGT -ACGGAAGGTTTCTTTCGGGTCAGT -ACGGAAGGTTTCTTTCGGGAAGGT -ACGGAAGGTTTCTTTCGGAACCGT -ACGGAAGGTTTCTTTCGGTTGTGC -ACGGAAGGTTTCTTTCGGCTAAGC -ACGGAAGGTTTCTTTCGGACTAGC -ACGGAAGGTTTCTTTCGGAGATGC -ACGGAAGGTTTCTTTCGGTGAAGG -ACGGAAGGTTTCTTTCGGCAATGG -ACGGAAGGTTTCTTTCGGATGAGG -ACGGAAGGTTTCTTTCGGAATGGG -ACGGAAGGTTTCTTTCGGTCCTGA -ACGGAAGGTTTCTTTCGGTAGCGA -ACGGAAGGTTTCTTTCGGCACAGA -ACGGAAGGTTTCTTTCGGGCAAGA -ACGGAAGGTTTCTTTCGGGGTTGA -ACGGAAGGTTTCTTTCGGTCCGAT -ACGGAAGGTTTCTTTCGGTGGCAT -ACGGAAGGTTTCTTTCGGCGAGAT -ACGGAAGGTTTCTTTCGGTACCAC -ACGGAAGGTTTCTTTCGGCAGAAC -ACGGAAGGTTTCTTTCGGGTCTAC -ACGGAAGGTTTCTTTCGGACGTAC -ACGGAAGGTTTCTTTCGGAGTGAC -ACGGAAGGTTTCTTTCGGCTGTAG -ACGGAAGGTTTCTTTCGGCCTAAG -ACGGAAGGTTTCTTTCGGGTTCAG -ACGGAAGGTTTCTTTCGGGCATAG -ACGGAAGGTTTCTTTCGGGACAAG -ACGGAAGGTTTCTTTCGGAAGCAG -ACGGAAGGTTTCTTTCGGCGTCAA -ACGGAAGGTTTCTTTCGGGCTGAA -ACGGAAGGTTTCTTTCGGAGTACG -ACGGAAGGTTTCTTTCGGATCCGA -ACGGAAGGTTTCTTTCGGATGGGA -ACGGAAGGTTTCTTTCGGGTGCAA -ACGGAAGGTTTCTTTCGGGAGGAA -ACGGAAGGTTTCTTTCGGCAGGTA -ACGGAAGGTTTCTTTCGGGACTCT -ACGGAAGGTTTCTTTCGGAGTCCT -ACGGAAGGTTTCTTTCGGTAAGCC -ACGGAAGGTTTCTTTCGGATAGCC -ACGGAAGGTTTCTTTCGGTAACCG -ACGGAAGGTTTCTTTCGGATGCCA -ACGGAAGGTTTCGTTGTGGGAAAC -ACGGAAGGTTTCGTTGTGAACACC -ACGGAAGGTTTCGTTGTGATCGAG -ACGGAAGGTTTCGTTGTGCTCCTT -ACGGAAGGTTTCGTTGTGCCTGTT -ACGGAAGGTTTCGTTGTGCGGTTT -ACGGAAGGTTTCGTTGTGGTGGTT -ACGGAAGGTTTCGTTGTGGCCTTT -ACGGAAGGTTTCGTTGTGGGTCTT -ACGGAAGGTTTCGTTGTGACGCTT -ACGGAAGGTTTCGTTGTGAGCGTT -ACGGAAGGTTTCGTTGTGTTCGTC -ACGGAAGGTTTCGTTGTGTCTCTC -ACGGAAGGTTTCGTTGTGTGGATC -ACGGAAGGTTTCGTTGTGCACTTC -ACGGAAGGTTTCGTTGTGGTACTC -ACGGAAGGTTTCGTTGTGGATGTC -ACGGAAGGTTTCGTTGTGACAGTC -ACGGAAGGTTTCGTTGTGTTGCTG -ACGGAAGGTTTCGTTGTGTCCATG -ACGGAAGGTTTCGTTGTGTGTGTG -ACGGAAGGTTTCGTTGTGCTAGTG -ACGGAAGGTTTCGTTGTGCATCTG -ACGGAAGGTTTCGTTGTGGAGTTG -ACGGAAGGTTTCGTTGTGAGACTG -ACGGAAGGTTTCGTTGTGTCGGTA -ACGGAAGGTTTCGTTGTGTGCCTA -ACGGAAGGTTTCGTTGTGCCACTA -ACGGAAGGTTTCGTTGTGGGAGTA -ACGGAAGGTTTCGTTGTGTCGTCT -ACGGAAGGTTTCGTTGTGTGCACT -ACGGAAGGTTTCGTTGTGCTGACT -ACGGAAGGTTTCGTTGTGCAACCT -ACGGAAGGTTTCGTTGTGGCTACT -ACGGAAGGTTTCGTTGTGGGATCT -ACGGAAGGTTTCGTTGTGAAGGCT -ACGGAAGGTTTCGTTGTGTCAACC -ACGGAAGGTTTCGTTGTGTGTTCC -ACGGAAGGTTTCGTTGTGATTCCC -ACGGAAGGTTTCGTTGTGTTCTCG -ACGGAAGGTTTCGTTGTGTAGACG -ACGGAAGGTTTCGTTGTGGTAACG -ACGGAAGGTTTCGTTGTGACTTCG -ACGGAAGGTTTCGTTGTGTACGCA -ACGGAAGGTTTCGTTGTGCTTGCA -ACGGAAGGTTTCGTTGTGCGAACA -ACGGAAGGTTTCGTTGTGCAGTCA -ACGGAAGGTTTCGTTGTGGATCCA -ACGGAAGGTTTCGTTGTGACGACA -ACGGAAGGTTTCGTTGTGAGCTCA -ACGGAAGGTTTCGTTGTGTCACGT -ACGGAAGGTTTCGTTGTGCGTAGT -ACGGAAGGTTTCGTTGTGGTCAGT -ACGGAAGGTTTCGTTGTGGAAGGT -ACGGAAGGTTTCGTTGTGAACCGT -ACGGAAGGTTTCGTTGTGTTGTGC -ACGGAAGGTTTCGTTGTGCTAAGC -ACGGAAGGTTTCGTTGTGACTAGC -ACGGAAGGTTTCGTTGTGAGATGC -ACGGAAGGTTTCGTTGTGTGAAGG -ACGGAAGGTTTCGTTGTGCAATGG -ACGGAAGGTTTCGTTGTGATGAGG -ACGGAAGGTTTCGTTGTGAATGGG -ACGGAAGGTTTCGTTGTGTCCTGA -ACGGAAGGTTTCGTTGTGTAGCGA -ACGGAAGGTTTCGTTGTGCACAGA -ACGGAAGGTTTCGTTGTGGCAAGA -ACGGAAGGTTTCGTTGTGGGTTGA -ACGGAAGGTTTCGTTGTGTCCGAT -ACGGAAGGTTTCGTTGTGTGGCAT -ACGGAAGGTTTCGTTGTGCGAGAT -ACGGAAGGTTTCGTTGTGTACCAC -ACGGAAGGTTTCGTTGTGCAGAAC -ACGGAAGGTTTCGTTGTGGTCTAC -ACGGAAGGTTTCGTTGTGACGTAC -ACGGAAGGTTTCGTTGTGAGTGAC -ACGGAAGGTTTCGTTGTGCTGTAG -ACGGAAGGTTTCGTTGTGCCTAAG -ACGGAAGGTTTCGTTGTGGTTCAG -ACGGAAGGTTTCGTTGTGGCATAG -ACGGAAGGTTTCGTTGTGGACAAG -ACGGAAGGTTTCGTTGTGAAGCAG -ACGGAAGGTTTCGTTGTGCGTCAA -ACGGAAGGTTTCGTTGTGGCTGAA -ACGGAAGGTTTCGTTGTGAGTACG -ACGGAAGGTTTCGTTGTGATCCGA -ACGGAAGGTTTCGTTGTGATGGGA -ACGGAAGGTTTCGTTGTGGTGCAA -ACGGAAGGTTTCGTTGTGGAGGAA -ACGGAAGGTTTCGTTGTGCAGGTA -ACGGAAGGTTTCGTTGTGGACTCT -ACGGAAGGTTTCGTTGTGAGTCCT -ACGGAAGGTTTCGTTGTGTAAGCC -ACGGAAGGTTTCGTTGTGATAGCC -ACGGAAGGTTTCGTTGTGTAACCG -ACGGAAGGTTTCGTTGTGATGCCA -ACGGAAGGTTTCTTTGCCGGAAAC -ACGGAAGGTTTCTTTGCCAACACC -ACGGAAGGTTTCTTTGCCATCGAG -ACGGAAGGTTTCTTTGCCCTCCTT -ACGGAAGGTTTCTTTGCCCCTGTT -ACGGAAGGTTTCTTTGCCCGGTTT -ACGGAAGGTTTCTTTGCCGTGGTT -ACGGAAGGTTTCTTTGCCGCCTTT -ACGGAAGGTTTCTTTGCCGGTCTT -ACGGAAGGTTTCTTTGCCACGCTT -ACGGAAGGTTTCTTTGCCAGCGTT -ACGGAAGGTTTCTTTGCCTTCGTC -ACGGAAGGTTTCTTTGCCTCTCTC -ACGGAAGGTTTCTTTGCCTGGATC -ACGGAAGGTTTCTTTGCCCACTTC -ACGGAAGGTTTCTTTGCCGTACTC -ACGGAAGGTTTCTTTGCCGATGTC -ACGGAAGGTTTCTTTGCCACAGTC -ACGGAAGGTTTCTTTGCCTTGCTG -ACGGAAGGTTTCTTTGCCTCCATG -ACGGAAGGTTTCTTTGCCTGTGTG -ACGGAAGGTTTCTTTGCCCTAGTG -ACGGAAGGTTTCTTTGCCCATCTG -ACGGAAGGTTTCTTTGCCGAGTTG -ACGGAAGGTTTCTTTGCCAGACTG -ACGGAAGGTTTCTTTGCCTCGGTA -ACGGAAGGTTTCTTTGCCTGCCTA -ACGGAAGGTTTCTTTGCCCCACTA -ACGGAAGGTTTCTTTGCCGGAGTA -ACGGAAGGTTTCTTTGCCTCGTCT -ACGGAAGGTTTCTTTGCCTGCACT -ACGGAAGGTTTCTTTGCCCTGACT -ACGGAAGGTTTCTTTGCCCAACCT -ACGGAAGGTTTCTTTGCCGCTACT -ACGGAAGGTTTCTTTGCCGGATCT -ACGGAAGGTTTCTTTGCCAAGGCT -ACGGAAGGTTTCTTTGCCTCAACC -ACGGAAGGTTTCTTTGCCTGTTCC -ACGGAAGGTTTCTTTGCCATTCCC -ACGGAAGGTTTCTTTGCCTTCTCG -ACGGAAGGTTTCTTTGCCTAGACG -ACGGAAGGTTTCTTTGCCGTAACG -ACGGAAGGTTTCTTTGCCACTTCG -ACGGAAGGTTTCTTTGCCTACGCA -ACGGAAGGTTTCTTTGCCCTTGCA -ACGGAAGGTTTCTTTGCCCGAACA -ACGGAAGGTTTCTTTGCCCAGTCA -ACGGAAGGTTTCTTTGCCGATCCA -ACGGAAGGTTTCTTTGCCACGACA -ACGGAAGGTTTCTTTGCCAGCTCA -ACGGAAGGTTTCTTTGCCTCACGT -ACGGAAGGTTTCTTTGCCCGTAGT -ACGGAAGGTTTCTTTGCCGTCAGT -ACGGAAGGTTTCTTTGCCGAAGGT -ACGGAAGGTTTCTTTGCCAACCGT -ACGGAAGGTTTCTTTGCCTTGTGC -ACGGAAGGTTTCTTTGCCCTAAGC -ACGGAAGGTTTCTTTGCCACTAGC -ACGGAAGGTTTCTTTGCCAGATGC -ACGGAAGGTTTCTTTGCCTGAAGG -ACGGAAGGTTTCTTTGCCCAATGG -ACGGAAGGTTTCTTTGCCATGAGG -ACGGAAGGTTTCTTTGCCAATGGG -ACGGAAGGTTTCTTTGCCTCCTGA -ACGGAAGGTTTCTTTGCCTAGCGA -ACGGAAGGTTTCTTTGCCCACAGA -ACGGAAGGTTTCTTTGCCGCAAGA -ACGGAAGGTTTCTTTGCCGGTTGA -ACGGAAGGTTTCTTTGCCTCCGAT -ACGGAAGGTTTCTTTGCCTGGCAT -ACGGAAGGTTTCTTTGCCCGAGAT -ACGGAAGGTTTCTTTGCCTACCAC -ACGGAAGGTTTCTTTGCCCAGAAC -ACGGAAGGTTTCTTTGCCGTCTAC -ACGGAAGGTTTCTTTGCCACGTAC -ACGGAAGGTTTCTTTGCCAGTGAC -ACGGAAGGTTTCTTTGCCCTGTAG -ACGGAAGGTTTCTTTGCCCCTAAG -ACGGAAGGTTTCTTTGCCGTTCAG -ACGGAAGGTTTCTTTGCCGCATAG -ACGGAAGGTTTCTTTGCCGACAAG -ACGGAAGGTTTCTTTGCCAAGCAG -ACGGAAGGTTTCTTTGCCCGTCAA -ACGGAAGGTTTCTTTGCCGCTGAA -ACGGAAGGTTTCTTTGCCAGTACG -ACGGAAGGTTTCTTTGCCATCCGA -ACGGAAGGTTTCTTTGCCATGGGA -ACGGAAGGTTTCTTTGCCGTGCAA -ACGGAAGGTTTCTTTGCCGAGGAA -ACGGAAGGTTTCTTTGCCCAGGTA -ACGGAAGGTTTCTTTGCCGACTCT -ACGGAAGGTTTCTTTGCCAGTCCT -ACGGAAGGTTTCTTTGCCTAAGCC -ACGGAAGGTTTCTTTGCCATAGCC -ACGGAAGGTTTCTTTGCCTAACCG -ACGGAAGGTTTCTTTGCCATGCCA -ACGGAAGGTTTCCTTGGTGGAAAC -ACGGAAGGTTTCCTTGGTAACACC -ACGGAAGGTTTCCTTGGTATCGAG -ACGGAAGGTTTCCTTGGTCTCCTT -ACGGAAGGTTTCCTTGGTCCTGTT -ACGGAAGGTTTCCTTGGTCGGTTT -ACGGAAGGTTTCCTTGGTGTGGTT -ACGGAAGGTTTCCTTGGTGCCTTT -ACGGAAGGTTTCCTTGGTGGTCTT -ACGGAAGGTTTCCTTGGTACGCTT -ACGGAAGGTTTCCTTGGTAGCGTT -ACGGAAGGTTTCCTTGGTTTCGTC -ACGGAAGGTTTCCTTGGTTCTCTC -ACGGAAGGTTTCCTTGGTTGGATC -ACGGAAGGTTTCCTTGGTCACTTC -ACGGAAGGTTTCCTTGGTGTACTC -ACGGAAGGTTTCCTTGGTGATGTC -ACGGAAGGTTTCCTTGGTACAGTC -ACGGAAGGTTTCCTTGGTTTGCTG -ACGGAAGGTTTCCTTGGTTCCATG -ACGGAAGGTTTCCTTGGTTGTGTG -ACGGAAGGTTTCCTTGGTCTAGTG -ACGGAAGGTTTCCTTGGTCATCTG -ACGGAAGGTTTCCTTGGTGAGTTG -ACGGAAGGTTTCCTTGGTAGACTG -ACGGAAGGTTTCCTTGGTTCGGTA -ACGGAAGGTTTCCTTGGTTGCCTA -ACGGAAGGTTTCCTTGGTCCACTA -ACGGAAGGTTTCCTTGGTGGAGTA -ACGGAAGGTTTCCTTGGTTCGTCT -ACGGAAGGTTTCCTTGGTTGCACT -ACGGAAGGTTTCCTTGGTCTGACT -ACGGAAGGTTTCCTTGGTCAACCT -ACGGAAGGTTTCCTTGGTGCTACT -ACGGAAGGTTTCCTTGGTGGATCT -ACGGAAGGTTTCCTTGGTAAGGCT -ACGGAAGGTTTCCTTGGTTCAACC -ACGGAAGGTTTCCTTGGTTGTTCC -ACGGAAGGTTTCCTTGGTATTCCC -ACGGAAGGTTTCCTTGGTTTCTCG -ACGGAAGGTTTCCTTGGTTAGACG -ACGGAAGGTTTCCTTGGTGTAACG -ACGGAAGGTTTCCTTGGTACTTCG -ACGGAAGGTTTCCTTGGTTACGCA -ACGGAAGGTTTCCTTGGTCTTGCA -ACGGAAGGTTTCCTTGGTCGAACA -ACGGAAGGTTTCCTTGGTCAGTCA -ACGGAAGGTTTCCTTGGTGATCCA -ACGGAAGGTTTCCTTGGTACGACA -ACGGAAGGTTTCCTTGGTAGCTCA -ACGGAAGGTTTCCTTGGTTCACGT -ACGGAAGGTTTCCTTGGTCGTAGT -ACGGAAGGTTTCCTTGGTGTCAGT -ACGGAAGGTTTCCTTGGTGAAGGT -ACGGAAGGTTTCCTTGGTAACCGT -ACGGAAGGTTTCCTTGGTTTGTGC -ACGGAAGGTTTCCTTGGTCTAAGC -ACGGAAGGTTTCCTTGGTACTAGC -ACGGAAGGTTTCCTTGGTAGATGC -ACGGAAGGTTTCCTTGGTTGAAGG -ACGGAAGGTTTCCTTGGTCAATGG -ACGGAAGGTTTCCTTGGTATGAGG -ACGGAAGGTTTCCTTGGTAATGGG -ACGGAAGGTTTCCTTGGTTCCTGA -ACGGAAGGTTTCCTTGGTTAGCGA -ACGGAAGGTTTCCTTGGTCACAGA -ACGGAAGGTTTCCTTGGTGCAAGA -ACGGAAGGTTTCCTTGGTGGTTGA -ACGGAAGGTTTCCTTGGTTCCGAT -ACGGAAGGTTTCCTTGGTTGGCAT -ACGGAAGGTTTCCTTGGTCGAGAT -ACGGAAGGTTTCCTTGGTTACCAC -ACGGAAGGTTTCCTTGGTCAGAAC -ACGGAAGGTTTCCTTGGTGTCTAC -ACGGAAGGTTTCCTTGGTACGTAC -ACGGAAGGTTTCCTTGGTAGTGAC -ACGGAAGGTTTCCTTGGTCTGTAG -ACGGAAGGTTTCCTTGGTCCTAAG -ACGGAAGGTTTCCTTGGTGTTCAG -ACGGAAGGTTTCCTTGGTGCATAG -ACGGAAGGTTTCCTTGGTGACAAG -ACGGAAGGTTTCCTTGGTAAGCAG -ACGGAAGGTTTCCTTGGTCGTCAA -ACGGAAGGTTTCCTTGGTGCTGAA -ACGGAAGGTTTCCTTGGTAGTACG -ACGGAAGGTTTCCTTGGTATCCGA -ACGGAAGGTTTCCTTGGTATGGGA -ACGGAAGGTTTCCTTGGTGTGCAA -ACGGAAGGTTTCCTTGGTGAGGAA -ACGGAAGGTTTCCTTGGTCAGGTA -ACGGAAGGTTTCCTTGGTGACTCT -ACGGAAGGTTTCCTTGGTAGTCCT -ACGGAAGGTTTCCTTGGTTAAGCC -ACGGAAGGTTTCCTTGGTATAGCC -ACGGAAGGTTTCCTTGGTTAACCG -ACGGAAGGTTTCCTTGGTATGCCA -ACGGAAGGTTTCCTTACGGGAAAC -ACGGAAGGTTTCCTTACGAACACC -ACGGAAGGTTTCCTTACGATCGAG -ACGGAAGGTTTCCTTACGCTCCTT -ACGGAAGGTTTCCTTACGCCTGTT -ACGGAAGGTTTCCTTACGCGGTTT -ACGGAAGGTTTCCTTACGGTGGTT -ACGGAAGGTTTCCTTACGGCCTTT -ACGGAAGGTTTCCTTACGGGTCTT -ACGGAAGGTTTCCTTACGACGCTT -ACGGAAGGTTTCCTTACGAGCGTT -ACGGAAGGTTTCCTTACGTTCGTC -ACGGAAGGTTTCCTTACGTCTCTC -ACGGAAGGTTTCCTTACGTGGATC -ACGGAAGGTTTCCTTACGCACTTC -ACGGAAGGTTTCCTTACGGTACTC -ACGGAAGGTTTCCTTACGGATGTC -ACGGAAGGTTTCCTTACGACAGTC -ACGGAAGGTTTCCTTACGTTGCTG -ACGGAAGGTTTCCTTACGTCCATG -ACGGAAGGTTTCCTTACGTGTGTG -ACGGAAGGTTTCCTTACGCTAGTG -ACGGAAGGTTTCCTTACGCATCTG -ACGGAAGGTTTCCTTACGGAGTTG -ACGGAAGGTTTCCTTACGAGACTG -ACGGAAGGTTTCCTTACGTCGGTA -ACGGAAGGTTTCCTTACGTGCCTA -ACGGAAGGTTTCCTTACGCCACTA -ACGGAAGGTTTCCTTACGGGAGTA -ACGGAAGGTTTCCTTACGTCGTCT -ACGGAAGGTTTCCTTACGTGCACT -ACGGAAGGTTTCCTTACGCTGACT -ACGGAAGGTTTCCTTACGCAACCT -ACGGAAGGTTTCCTTACGGCTACT -ACGGAAGGTTTCCTTACGGGATCT -ACGGAAGGTTTCCTTACGAAGGCT -ACGGAAGGTTTCCTTACGTCAACC -ACGGAAGGTTTCCTTACGTGTTCC -ACGGAAGGTTTCCTTACGATTCCC -ACGGAAGGTTTCCTTACGTTCTCG -ACGGAAGGTTTCCTTACGTAGACG -ACGGAAGGTTTCCTTACGGTAACG -ACGGAAGGTTTCCTTACGACTTCG -ACGGAAGGTTTCCTTACGTACGCA -ACGGAAGGTTTCCTTACGCTTGCA -ACGGAAGGTTTCCTTACGCGAACA -ACGGAAGGTTTCCTTACGCAGTCA -ACGGAAGGTTTCCTTACGGATCCA -ACGGAAGGTTTCCTTACGACGACA -ACGGAAGGTTTCCTTACGAGCTCA -ACGGAAGGTTTCCTTACGTCACGT -ACGGAAGGTTTCCTTACGCGTAGT -ACGGAAGGTTTCCTTACGGTCAGT -ACGGAAGGTTTCCTTACGGAAGGT -ACGGAAGGTTTCCTTACGAACCGT -ACGGAAGGTTTCCTTACGTTGTGC -ACGGAAGGTTTCCTTACGCTAAGC -ACGGAAGGTTTCCTTACGACTAGC -ACGGAAGGTTTCCTTACGAGATGC -ACGGAAGGTTTCCTTACGTGAAGG -ACGGAAGGTTTCCTTACGCAATGG -ACGGAAGGTTTCCTTACGATGAGG -ACGGAAGGTTTCCTTACGAATGGG -ACGGAAGGTTTCCTTACGTCCTGA -ACGGAAGGTTTCCTTACGTAGCGA -ACGGAAGGTTTCCTTACGCACAGA -ACGGAAGGTTTCCTTACGGCAAGA -ACGGAAGGTTTCCTTACGGGTTGA -ACGGAAGGTTTCCTTACGTCCGAT -ACGGAAGGTTTCCTTACGTGGCAT -ACGGAAGGTTTCCTTACGCGAGAT -ACGGAAGGTTTCCTTACGTACCAC -ACGGAAGGTTTCCTTACGCAGAAC -ACGGAAGGTTTCCTTACGGTCTAC -ACGGAAGGTTTCCTTACGACGTAC -ACGGAAGGTTTCCTTACGAGTGAC -ACGGAAGGTTTCCTTACGCTGTAG -ACGGAAGGTTTCCTTACGCCTAAG -ACGGAAGGTTTCCTTACGGTTCAG -ACGGAAGGTTTCCTTACGGCATAG -ACGGAAGGTTTCCTTACGGACAAG -ACGGAAGGTTTCCTTACGAAGCAG -ACGGAAGGTTTCCTTACGCGTCAA -ACGGAAGGTTTCCTTACGGCTGAA -ACGGAAGGTTTCCTTACGAGTACG -ACGGAAGGTTTCCTTACGATCCGA -ACGGAAGGTTTCCTTACGATGGGA -ACGGAAGGTTTCCTTACGGTGCAA -ACGGAAGGTTTCCTTACGGAGGAA -ACGGAAGGTTTCCTTACGCAGGTA -ACGGAAGGTTTCCTTACGGACTCT -ACGGAAGGTTTCCTTACGAGTCCT -ACGGAAGGTTTCCTTACGTAAGCC -ACGGAAGGTTTCCTTACGATAGCC -ACGGAAGGTTTCCTTACGTAACCG -ACGGAAGGTTTCCTTACGATGCCA -ACGGAAGGTTTCGTTAGCGGAAAC -ACGGAAGGTTTCGTTAGCAACACC -ACGGAAGGTTTCGTTAGCATCGAG -ACGGAAGGTTTCGTTAGCCTCCTT -ACGGAAGGTTTCGTTAGCCCTGTT -ACGGAAGGTTTCGTTAGCCGGTTT -ACGGAAGGTTTCGTTAGCGTGGTT -ACGGAAGGTTTCGTTAGCGCCTTT -ACGGAAGGTTTCGTTAGCGGTCTT -ACGGAAGGTTTCGTTAGCACGCTT -ACGGAAGGTTTCGTTAGCAGCGTT -ACGGAAGGTTTCGTTAGCTTCGTC -ACGGAAGGTTTCGTTAGCTCTCTC -ACGGAAGGTTTCGTTAGCTGGATC -ACGGAAGGTTTCGTTAGCCACTTC -ACGGAAGGTTTCGTTAGCGTACTC -ACGGAAGGTTTCGTTAGCGATGTC -ACGGAAGGTTTCGTTAGCACAGTC -ACGGAAGGTTTCGTTAGCTTGCTG -ACGGAAGGTTTCGTTAGCTCCATG -ACGGAAGGTTTCGTTAGCTGTGTG -ACGGAAGGTTTCGTTAGCCTAGTG -ACGGAAGGTTTCGTTAGCCATCTG -ACGGAAGGTTTCGTTAGCGAGTTG -ACGGAAGGTTTCGTTAGCAGACTG -ACGGAAGGTTTCGTTAGCTCGGTA -ACGGAAGGTTTCGTTAGCTGCCTA -ACGGAAGGTTTCGTTAGCCCACTA -ACGGAAGGTTTCGTTAGCGGAGTA -ACGGAAGGTTTCGTTAGCTCGTCT -ACGGAAGGTTTCGTTAGCTGCACT -ACGGAAGGTTTCGTTAGCCTGACT -ACGGAAGGTTTCGTTAGCCAACCT -ACGGAAGGTTTCGTTAGCGCTACT -ACGGAAGGTTTCGTTAGCGGATCT -ACGGAAGGTTTCGTTAGCAAGGCT -ACGGAAGGTTTCGTTAGCTCAACC -ACGGAAGGTTTCGTTAGCTGTTCC -ACGGAAGGTTTCGTTAGCATTCCC -ACGGAAGGTTTCGTTAGCTTCTCG -ACGGAAGGTTTCGTTAGCTAGACG -ACGGAAGGTTTCGTTAGCGTAACG -ACGGAAGGTTTCGTTAGCACTTCG -ACGGAAGGTTTCGTTAGCTACGCA -ACGGAAGGTTTCGTTAGCCTTGCA -ACGGAAGGTTTCGTTAGCCGAACA -ACGGAAGGTTTCGTTAGCCAGTCA -ACGGAAGGTTTCGTTAGCGATCCA -ACGGAAGGTTTCGTTAGCACGACA -ACGGAAGGTTTCGTTAGCAGCTCA -ACGGAAGGTTTCGTTAGCTCACGT -ACGGAAGGTTTCGTTAGCCGTAGT -ACGGAAGGTTTCGTTAGCGTCAGT -ACGGAAGGTTTCGTTAGCGAAGGT -ACGGAAGGTTTCGTTAGCAACCGT -ACGGAAGGTTTCGTTAGCTTGTGC -ACGGAAGGTTTCGTTAGCCTAAGC -ACGGAAGGTTTCGTTAGCACTAGC -ACGGAAGGTTTCGTTAGCAGATGC -ACGGAAGGTTTCGTTAGCTGAAGG -ACGGAAGGTTTCGTTAGCCAATGG -ACGGAAGGTTTCGTTAGCATGAGG -ACGGAAGGTTTCGTTAGCAATGGG -ACGGAAGGTTTCGTTAGCTCCTGA -ACGGAAGGTTTCGTTAGCTAGCGA -ACGGAAGGTTTCGTTAGCCACAGA -ACGGAAGGTTTCGTTAGCGCAAGA -ACGGAAGGTTTCGTTAGCGGTTGA -ACGGAAGGTTTCGTTAGCTCCGAT -ACGGAAGGTTTCGTTAGCTGGCAT -ACGGAAGGTTTCGTTAGCCGAGAT -ACGGAAGGTTTCGTTAGCTACCAC -ACGGAAGGTTTCGTTAGCCAGAAC -ACGGAAGGTTTCGTTAGCGTCTAC -ACGGAAGGTTTCGTTAGCACGTAC -ACGGAAGGTTTCGTTAGCAGTGAC -ACGGAAGGTTTCGTTAGCCTGTAG -ACGGAAGGTTTCGTTAGCCCTAAG -ACGGAAGGTTTCGTTAGCGTTCAG -ACGGAAGGTTTCGTTAGCGCATAG -ACGGAAGGTTTCGTTAGCGACAAG -ACGGAAGGTTTCGTTAGCAAGCAG -ACGGAAGGTTTCGTTAGCCGTCAA -ACGGAAGGTTTCGTTAGCGCTGAA -ACGGAAGGTTTCGTTAGCAGTACG -ACGGAAGGTTTCGTTAGCATCCGA -ACGGAAGGTTTCGTTAGCATGGGA -ACGGAAGGTTTCGTTAGCGTGCAA -ACGGAAGGTTTCGTTAGCGAGGAA -ACGGAAGGTTTCGTTAGCCAGGTA -ACGGAAGGTTTCGTTAGCGACTCT -ACGGAAGGTTTCGTTAGCAGTCCT -ACGGAAGGTTTCGTTAGCTAAGCC -ACGGAAGGTTTCGTTAGCATAGCC -ACGGAAGGTTTCGTTAGCTAACCG -ACGGAAGGTTTCGTTAGCATGCCA -ACGGAAGGTTTCGTCTTCGGAAAC -ACGGAAGGTTTCGTCTTCAACACC -ACGGAAGGTTTCGTCTTCATCGAG -ACGGAAGGTTTCGTCTTCCTCCTT -ACGGAAGGTTTCGTCTTCCCTGTT -ACGGAAGGTTTCGTCTTCCGGTTT -ACGGAAGGTTTCGTCTTCGTGGTT -ACGGAAGGTTTCGTCTTCGCCTTT -ACGGAAGGTTTCGTCTTCGGTCTT -ACGGAAGGTTTCGTCTTCACGCTT -ACGGAAGGTTTCGTCTTCAGCGTT -ACGGAAGGTTTCGTCTTCTTCGTC -ACGGAAGGTTTCGTCTTCTCTCTC -ACGGAAGGTTTCGTCTTCTGGATC -ACGGAAGGTTTCGTCTTCCACTTC -ACGGAAGGTTTCGTCTTCGTACTC -ACGGAAGGTTTCGTCTTCGATGTC -ACGGAAGGTTTCGTCTTCACAGTC -ACGGAAGGTTTCGTCTTCTTGCTG -ACGGAAGGTTTCGTCTTCTCCATG -ACGGAAGGTTTCGTCTTCTGTGTG -ACGGAAGGTTTCGTCTTCCTAGTG -ACGGAAGGTTTCGTCTTCCATCTG -ACGGAAGGTTTCGTCTTCGAGTTG -ACGGAAGGTTTCGTCTTCAGACTG -ACGGAAGGTTTCGTCTTCTCGGTA -ACGGAAGGTTTCGTCTTCTGCCTA -ACGGAAGGTTTCGTCTTCCCACTA -ACGGAAGGTTTCGTCTTCGGAGTA -ACGGAAGGTTTCGTCTTCTCGTCT -ACGGAAGGTTTCGTCTTCTGCACT -ACGGAAGGTTTCGTCTTCCTGACT -ACGGAAGGTTTCGTCTTCCAACCT -ACGGAAGGTTTCGTCTTCGCTACT -ACGGAAGGTTTCGTCTTCGGATCT -ACGGAAGGTTTCGTCTTCAAGGCT -ACGGAAGGTTTCGTCTTCTCAACC -ACGGAAGGTTTCGTCTTCTGTTCC -ACGGAAGGTTTCGTCTTCATTCCC -ACGGAAGGTTTCGTCTTCTTCTCG -ACGGAAGGTTTCGTCTTCTAGACG -ACGGAAGGTTTCGTCTTCGTAACG -ACGGAAGGTTTCGTCTTCACTTCG -ACGGAAGGTTTCGTCTTCTACGCA -ACGGAAGGTTTCGTCTTCCTTGCA -ACGGAAGGTTTCGTCTTCCGAACA -ACGGAAGGTTTCGTCTTCCAGTCA -ACGGAAGGTTTCGTCTTCGATCCA -ACGGAAGGTTTCGTCTTCACGACA -ACGGAAGGTTTCGTCTTCAGCTCA -ACGGAAGGTTTCGTCTTCTCACGT -ACGGAAGGTTTCGTCTTCCGTAGT -ACGGAAGGTTTCGTCTTCGTCAGT -ACGGAAGGTTTCGTCTTCGAAGGT -ACGGAAGGTTTCGTCTTCAACCGT -ACGGAAGGTTTCGTCTTCTTGTGC -ACGGAAGGTTTCGTCTTCCTAAGC -ACGGAAGGTTTCGTCTTCACTAGC -ACGGAAGGTTTCGTCTTCAGATGC -ACGGAAGGTTTCGTCTTCTGAAGG -ACGGAAGGTTTCGTCTTCCAATGG -ACGGAAGGTTTCGTCTTCATGAGG -ACGGAAGGTTTCGTCTTCAATGGG -ACGGAAGGTTTCGTCTTCTCCTGA -ACGGAAGGTTTCGTCTTCTAGCGA -ACGGAAGGTTTCGTCTTCCACAGA -ACGGAAGGTTTCGTCTTCGCAAGA -ACGGAAGGTTTCGTCTTCGGTTGA -ACGGAAGGTTTCGTCTTCTCCGAT -ACGGAAGGTTTCGTCTTCTGGCAT -ACGGAAGGTTTCGTCTTCCGAGAT -ACGGAAGGTTTCGTCTTCTACCAC -ACGGAAGGTTTCGTCTTCCAGAAC -ACGGAAGGTTTCGTCTTCGTCTAC -ACGGAAGGTTTCGTCTTCACGTAC -ACGGAAGGTTTCGTCTTCAGTGAC -ACGGAAGGTTTCGTCTTCCTGTAG -ACGGAAGGTTTCGTCTTCCCTAAG -ACGGAAGGTTTCGTCTTCGTTCAG -ACGGAAGGTTTCGTCTTCGCATAG -ACGGAAGGTTTCGTCTTCGACAAG -ACGGAAGGTTTCGTCTTCAAGCAG -ACGGAAGGTTTCGTCTTCCGTCAA -ACGGAAGGTTTCGTCTTCGCTGAA -ACGGAAGGTTTCGTCTTCAGTACG -ACGGAAGGTTTCGTCTTCATCCGA -ACGGAAGGTTTCGTCTTCATGGGA -ACGGAAGGTTTCGTCTTCGTGCAA -ACGGAAGGTTTCGTCTTCGAGGAA -ACGGAAGGTTTCGTCTTCCAGGTA -ACGGAAGGTTTCGTCTTCGACTCT -ACGGAAGGTTTCGTCTTCAGTCCT -ACGGAAGGTTTCGTCTTCTAAGCC -ACGGAAGGTTTCGTCTTCATAGCC -ACGGAAGGTTTCGTCTTCTAACCG -ACGGAAGGTTTCGTCTTCATGCCA -ACGGAAGGTTTCCTCTCTGGAAAC -ACGGAAGGTTTCCTCTCTAACACC -ACGGAAGGTTTCCTCTCTATCGAG -ACGGAAGGTTTCCTCTCTCTCCTT -ACGGAAGGTTTCCTCTCTCCTGTT -ACGGAAGGTTTCCTCTCTCGGTTT -ACGGAAGGTTTCCTCTCTGTGGTT -ACGGAAGGTTTCCTCTCTGCCTTT -ACGGAAGGTTTCCTCTCTGGTCTT -ACGGAAGGTTTCCTCTCTACGCTT -ACGGAAGGTTTCCTCTCTAGCGTT -ACGGAAGGTTTCCTCTCTTTCGTC -ACGGAAGGTTTCCTCTCTTCTCTC -ACGGAAGGTTTCCTCTCTTGGATC -ACGGAAGGTTTCCTCTCTCACTTC -ACGGAAGGTTTCCTCTCTGTACTC -ACGGAAGGTTTCCTCTCTGATGTC -ACGGAAGGTTTCCTCTCTACAGTC -ACGGAAGGTTTCCTCTCTTTGCTG -ACGGAAGGTTTCCTCTCTTCCATG -ACGGAAGGTTTCCTCTCTTGTGTG -ACGGAAGGTTTCCTCTCTCTAGTG -ACGGAAGGTTTCCTCTCTCATCTG -ACGGAAGGTTTCCTCTCTGAGTTG -ACGGAAGGTTTCCTCTCTAGACTG -ACGGAAGGTTTCCTCTCTTCGGTA -ACGGAAGGTTTCCTCTCTTGCCTA -ACGGAAGGTTTCCTCTCTCCACTA -ACGGAAGGTTTCCTCTCTGGAGTA -ACGGAAGGTTTCCTCTCTTCGTCT -ACGGAAGGTTTCCTCTCTTGCACT -ACGGAAGGTTTCCTCTCTCTGACT -ACGGAAGGTTTCCTCTCTCAACCT -ACGGAAGGTTTCCTCTCTGCTACT -ACGGAAGGTTTCCTCTCTGGATCT -ACGGAAGGTTTCCTCTCTAAGGCT -ACGGAAGGTTTCCTCTCTTCAACC -ACGGAAGGTTTCCTCTCTTGTTCC -ACGGAAGGTTTCCTCTCTATTCCC -ACGGAAGGTTTCCTCTCTTTCTCG -ACGGAAGGTTTCCTCTCTTAGACG -ACGGAAGGTTTCCTCTCTGTAACG -ACGGAAGGTTTCCTCTCTACTTCG -ACGGAAGGTTTCCTCTCTTACGCA -ACGGAAGGTTTCCTCTCTCTTGCA -ACGGAAGGTTTCCTCTCTCGAACA -ACGGAAGGTTTCCTCTCTCAGTCA -ACGGAAGGTTTCCTCTCTGATCCA -ACGGAAGGTTTCCTCTCTACGACA -ACGGAAGGTTTCCTCTCTAGCTCA -ACGGAAGGTTTCCTCTCTTCACGT -ACGGAAGGTTTCCTCTCTCGTAGT -ACGGAAGGTTTCCTCTCTGTCAGT -ACGGAAGGTTTCCTCTCTGAAGGT -ACGGAAGGTTTCCTCTCTAACCGT -ACGGAAGGTTTCCTCTCTTTGTGC -ACGGAAGGTTTCCTCTCTCTAAGC -ACGGAAGGTTTCCTCTCTACTAGC -ACGGAAGGTTTCCTCTCTAGATGC -ACGGAAGGTTTCCTCTCTTGAAGG -ACGGAAGGTTTCCTCTCTCAATGG -ACGGAAGGTTTCCTCTCTATGAGG -ACGGAAGGTTTCCTCTCTAATGGG -ACGGAAGGTTTCCTCTCTTCCTGA -ACGGAAGGTTTCCTCTCTTAGCGA -ACGGAAGGTTTCCTCTCTCACAGA -ACGGAAGGTTTCCTCTCTGCAAGA -ACGGAAGGTTTCCTCTCTGGTTGA -ACGGAAGGTTTCCTCTCTTCCGAT -ACGGAAGGTTTCCTCTCTTGGCAT -ACGGAAGGTTTCCTCTCTCGAGAT -ACGGAAGGTTTCCTCTCTTACCAC -ACGGAAGGTTTCCTCTCTCAGAAC -ACGGAAGGTTTCCTCTCTGTCTAC -ACGGAAGGTTTCCTCTCTACGTAC -ACGGAAGGTTTCCTCTCTAGTGAC -ACGGAAGGTTTCCTCTCTCTGTAG -ACGGAAGGTTTCCTCTCTCCTAAG -ACGGAAGGTTTCCTCTCTGTTCAG -ACGGAAGGTTTCCTCTCTGCATAG -ACGGAAGGTTTCCTCTCTGACAAG -ACGGAAGGTTTCCTCTCTAAGCAG -ACGGAAGGTTTCCTCTCTCGTCAA -ACGGAAGGTTTCCTCTCTGCTGAA -ACGGAAGGTTTCCTCTCTAGTACG -ACGGAAGGTTTCCTCTCTATCCGA -ACGGAAGGTTTCCTCTCTATGGGA -ACGGAAGGTTTCCTCTCTGTGCAA -ACGGAAGGTTTCCTCTCTGAGGAA -ACGGAAGGTTTCCTCTCTCAGGTA -ACGGAAGGTTTCCTCTCTGACTCT -ACGGAAGGTTTCCTCTCTAGTCCT -ACGGAAGGTTTCCTCTCTTAAGCC -ACGGAAGGTTTCCTCTCTATAGCC -ACGGAAGGTTTCCTCTCTTAACCG -ACGGAAGGTTTCCTCTCTATGCCA -ACGGAAGGTTTCATCTGGGGAAAC -ACGGAAGGTTTCATCTGGAACACC -ACGGAAGGTTTCATCTGGATCGAG -ACGGAAGGTTTCATCTGGCTCCTT -ACGGAAGGTTTCATCTGGCCTGTT -ACGGAAGGTTTCATCTGGCGGTTT -ACGGAAGGTTTCATCTGGGTGGTT -ACGGAAGGTTTCATCTGGGCCTTT -ACGGAAGGTTTCATCTGGGGTCTT -ACGGAAGGTTTCATCTGGACGCTT -ACGGAAGGTTTCATCTGGAGCGTT -ACGGAAGGTTTCATCTGGTTCGTC -ACGGAAGGTTTCATCTGGTCTCTC -ACGGAAGGTTTCATCTGGTGGATC -ACGGAAGGTTTCATCTGGCACTTC -ACGGAAGGTTTCATCTGGGTACTC -ACGGAAGGTTTCATCTGGGATGTC -ACGGAAGGTTTCATCTGGACAGTC -ACGGAAGGTTTCATCTGGTTGCTG -ACGGAAGGTTTCATCTGGTCCATG -ACGGAAGGTTTCATCTGGTGTGTG -ACGGAAGGTTTCATCTGGCTAGTG -ACGGAAGGTTTCATCTGGCATCTG -ACGGAAGGTTTCATCTGGGAGTTG -ACGGAAGGTTTCATCTGGAGACTG -ACGGAAGGTTTCATCTGGTCGGTA -ACGGAAGGTTTCATCTGGTGCCTA -ACGGAAGGTTTCATCTGGCCACTA -ACGGAAGGTTTCATCTGGGGAGTA -ACGGAAGGTTTCATCTGGTCGTCT -ACGGAAGGTTTCATCTGGTGCACT -ACGGAAGGTTTCATCTGGCTGACT -ACGGAAGGTTTCATCTGGCAACCT -ACGGAAGGTTTCATCTGGGCTACT -ACGGAAGGTTTCATCTGGGGATCT -ACGGAAGGTTTCATCTGGAAGGCT -ACGGAAGGTTTCATCTGGTCAACC -ACGGAAGGTTTCATCTGGTGTTCC -ACGGAAGGTTTCATCTGGATTCCC -ACGGAAGGTTTCATCTGGTTCTCG -ACGGAAGGTTTCATCTGGTAGACG -ACGGAAGGTTTCATCTGGGTAACG -ACGGAAGGTTTCATCTGGACTTCG -ACGGAAGGTTTCATCTGGTACGCA -ACGGAAGGTTTCATCTGGCTTGCA -ACGGAAGGTTTCATCTGGCGAACA -ACGGAAGGTTTCATCTGGCAGTCA -ACGGAAGGTTTCATCTGGGATCCA -ACGGAAGGTTTCATCTGGACGACA -ACGGAAGGTTTCATCTGGAGCTCA -ACGGAAGGTTTCATCTGGTCACGT -ACGGAAGGTTTCATCTGGCGTAGT -ACGGAAGGTTTCATCTGGGTCAGT -ACGGAAGGTTTCATCTGGGAAGGT -ACGGAAGGTTTCATCTGGAACCGT -ACGGAAGGTTTCATCTGGTTGTGC -ACGGAAGGTTTCATCTGGCTAAGC -ACGGAAGGTTTCATCTGGACTAGC -ACGGAAGGTTTCATCTGGAGATGC -ACGGAAGGTTTCATCTGGTGAAGG -ACGGAAGGTTTCATCTGGCAATGG -ACGGAAGGTTTCATCTGGATGAGG -ACGGAAGGTTTCATCTGGAATGGG -ACGGAAGGTTTCATCTGGTCCTGA -ACGGAAGGTTTCATCTGGTAGCGA -ACGGAAGGTTTCATCTGGCACAGA -ACGGAAGGTTTCATCTGGGCAAGA -ACGGAAGGTTTCATCTGGGGTTGA -ACGGAAGGTTTCATCTGGTCCGAT -ACGGAAGGTTTCATCTGGTGGCAT -ACGGAAGGTTTCATCTGGCGAGAT -ACGGAAGGTTTCATCTGGTACCAC -ACGGAAGGTTTCATCTGGCAGAAC -ACGGAAGGTTTCATCTGGGTCTAC -ACGGAAGGTTTCATCTGGACGTAC -ACGGAAGGTTTCATCTGGAGTGAC -ACGGAAGGTTTCATCTGGCTGTAG -ACGGAAGGTTTCATCTGGCCTAAG -ACGGAAGGTTTCATCTGGGTTCAG -ACGGAAGGTTTCATCTGGGCATAG -ACGGAAGGTTTCATCTGGGACAAG -ACGGAAGGTTTCATCTGGAAGCAG -ACGGAAGGTTTCATCTGGCGTCAA -ACGGAAGGTTTCATCTGGGCTGAA -ACGGAAGGTTTCATCTGGAGTACG -ACGGAAGGTTTCATCTGGATCCGA -ACGGAAGGTTTCATCTGGATGGGA -ACGGAAGGTTTCATCTGGGTGCAA -ACGGAAGGTTTCATCTGGGAGGAA -ACGGAAGGTTTCATCTGGCAGGTA -ACGGAAGGTTTCATCTGGGACTCT -ACGGAAGGTTTCATCTGGAGTCCT -ACGGAAGGTTTCATCTGGTAAGCC -ACGGAAGGTTTCATCTGGATAGCC -ACGGAAGGTTTCATCTGGTAACCG -ACGGAAGGTTTCATCTGGATGCCA -ACGGAAGGTTTCTTCCACGGAAAC -ACGGAAGGTTTCTTCCACAACACC -ACGGAAGGTTTCTTCCACATCGAG -ACGGAAGGTTTCTTCCACCTCCTT -ACGGAAGGTTTCTTCCACCCTGTT -ACGGAAGGTTTCTTCCACCGGTTT -ACGGAAGGTTTCTTCCACGTGGTT -ACGGAAGGTTTCTTCCACGCCTTT -ACGGAAGGTTTCTTCCACGGTCTT -ACGGAAGGTTTCTTCCACACGCTT -ACGGAAGGTTTCTTCCACAGCGTT -ACGGAAGGTTTCTTCCACTTCGTC -ACGGAAGGTTTCTTCCACTCTCTC -ACGGAAGGTTTCTTCCACTGGATC -ACGGAAGGTTTCTTCCACCACTTC -ACGGAAGGTTTCTTCCACGTACTC -ACGGAAGGTTTCTTCCACGATGTC -ACGGAAGGTTTCTTCCACACAGTC -ACGGAAGGTTTCTTCCACTTGCTG -ACGGAAGGTTTCTTCCACTCCATG -ACGGAAGGTTTCTTCCACTGTGTG -ACGGAAGGTTTCTTCCACCTAGTG -ACGGAAGGTTTCTTCCACCATCTG -ACGGAAGGTTTCTTCCACGAGTTG -ACGGAAGGTTTCTTCCACAGACTG -ACGGAAGGTTTCTTCCACTCGGTA -ACGGAAGGTTTCTTCCACTGCCTA -ACGGAAGGTTTCTTCCACCCACTA -ACGGAAGGTTTCTTCCACGGAGTA -ACGGAAGGTTTCTTCCACTCGTCT -ACGGAAGGTTTCTTCCACTGCACT -ACGGAAGGTTTCTTCCACCTGACT -ACGGAAGGTTTCTTCCACCAACCT -ACGGAAGGTTTCTTCCACGCTACT -ACGGAAGGTTTCTTCCACGGATCT -ACGGAAGGTTTCTTCCACAAGGCT -ACGGAAGGTTTCTTCCACTCAACC -ACGGAAGGTTTCTTCCACTGTTCC -ACGGAAGGTTTCTTCCACATTCCC -ACGGAAGGTTTCTTCCACTTCTCG -ACGGAAGGTTTCTTCCACTAGACG -ACGGAAGGTTTCTTCCACGTAACG -ACGGAAGGTTTCTTCCACACTTCG -ACGGAAGGTTTCTTCCACTACGCA -ACGGAAGGTTTCTTCCACCTTGCA -ACGGAAGGTTTCTTCCACCGAACA -ACGGAAGGTTTCTTCCACCAGTCA -ACGGAAGGTTTCTTCCACGATCCA -ACGGAAGGTTTCTTCCACACGACA -ACGGAAGGTTTCTTCCACAGCTCA -ACGGAAGGTTTCTTCCACTCACGT -ACGGAAGGTTTCTTCCACCGTAGT -ACGGAAGGTTTCTTCCACGTCAGT -ACGGAAGGTTTCTTCCACGAAGGT -ACGGAAGGTTTCTTCCACAACCGT -ACGGAAGGTTTCTTCCACTTGTGC -ACGGAAGGTTTCTTCCACCTAAGC -ACGGAAGGTTTCTTCCACACTAGC -ACGGAAGGTTTCTTCCACAGATGC -ACGGAAGGTTTCTTCCACTGAAGG -ACGGAAGGTTTCTTCCACCAATGG -ACGGAAGGTTTCTTCCACATGAGG -ACGGAAGGTTTCTTCCACAATGGG -ACGGAAGGTTTCTTCCACTCCTGA -ACGGAAGGTTTCTTCCACTAGCGA -ACGGAAGGTTTCTTCCACCACAGA -ACGGAAGGTTTCTTCCACGCAAGA -ACGGAAGGTTTCTTCCACGGTTGA -ACGGAAGGTTTCTTCCACTCCGAT -ACGGAAGGTTTCTTCCACTGGCAT -ACGGAAGGTTTCTTCCACCGAGAT -ACGGAAGGTTTCTTCCACTACCAC -ACGGAAGGTTTCTTCCACCAGAAC -ACGGAAGGTTTCTTCCACGTCTAC -ACGGAAGGTTTCTTCCACACGTAC -ACGGAAGGTTTCTTCCACAGTGAC -ACGGAAGGTTTCTTCCACCTGTAG -ACGGAAGGTTTCTTCCACCCTAAG -ACGGAAGGTTTCTTCCACGTTCAG -ACGGAAGGTTTCTTCCACGCATAG -ACGGAAGGTTTCTTCCACGACAAG -ACGGAAGGTTTCTTCCACAAGCAG -ACGGAAGGTTTCTTCCACCGTCAA -ACGGAAGGTTTCTTCCACGCTGAA -ACGGAAGGTTTCTTCCACAGTACG -ACGGAAGGTTTCTTCCACATCCGA -ACGGAAGGTTTCTTCCACATGGGA -ACGGAAGGTTTCTTCCACGTGCAA -ACGGAAGGTTTCTTCCACGAGGAA -ACGGAAGGTTTCTTCCACCAGGTA -ACGGAAGGTTTCTTCCACGACTCT -ACGGAAGGTTTCTTCCACAGTCCT -ACGGAAGGTTTCTTCCACTAAGCC -ACGGAAGGTTTCTTCCACATAGCC -ACGGAAGGTTTCTTCCACTAACCG -ACGGAAGGTTTCTTCCACATGCCA -ACGGAAGGTTTCCTCGTAGGAAAC -ACGGAAGGTTTCCTCGTAAACACC -ACGGAAGGTTTCCTCGTAATCGAG -ACGGAAGGTTTCCTCGTACTCCTT -ACGGAAGGTTTCCTCGTACCTGTT -ACGGAAGGTTTCCTCGTACGGTTT -ACGGAAGGTTTCCTCGTAGTGGTT -ACGGAAGGTTTCCTCGTAGCCTTT -ACGGAAGGTTTCCTCGTAGGTCTT -ACGGAAGGTTTCCTCGTAACGCTT -ACGGAAGGTTTCCTCGTAAGCGTT -ACGGAAGGTTTCCTCGTATTCGTC -ACGGAAGGTTTCCTCGTATCTCTC -ACGGAAGGTTTCCTCGTATGGATC -ACGGAAGGTTTCCTCGTACACTTC -ACGGAAGGTTTCCTCGTAGTACTC -ACGGAAGGTTTCCTCGTAGATGTC -ACGGAAGGTTTCCTCGTAACAGTC -ACGGAAGGTTTCCTCGTATTGCTG -ACGGAAGGTTTCCTCGTATCCATG -ACGGAAGGTTTCCTCGTATGTGTG -ACGGAAGGTTTCCTCGTACTAGTG -ACGGAAGGTTTCCTCGTACATCTG -ACGGAAGGTTTCCTCGTAGAGTTG -ACGGAAGGTTTCCTCGTAAGACTG -ACGGAAGGTTTCCTCGTATCGGTA -ACGGAAGGTTTCCTCGTATGCCTA -ACGGAAGGTTTCCTCGTACCACTA -ACGGAAGGTTTCCTCGTAGGAGTA -ACGGAAGGTTTCCTCGTATCGTCT -ACGGAAGGTTTCCTCGTATGCACT -ACGGAAGGTTTCCTCGTACTGACT -ACGGAAGGTTTCCTCGTACAACCT -ACGGAAGGTTTCCTCGTAGCTACT -ACGGAAGGTTTCCTCGTAGGATCT -ACGGAAGGTTTCCTCGTAAAGGCT -ACGGAAGGTTTCCTCGTATCAACC -ACGGAAGGTTTCCTCGTATGTTCC -ACGGAAGGTTTCCTCGTAATTCCC -ACGGAAGGTTTCCTCGTATTCTCG -ACGGAAGGTTTCCTCGTATAGACG -ACGGAAGGTTTCCTCGTAGTAACG -ACGGAAGGTTTCCTCGTAACTTCG -ACGGAAGGTTTCCTCGTATACGCA -ACGGAAGGTTTCCTCGTACTTGCA -ACGGAAGGTTTCCTCGTACGAACA -ACGGAAGGTTTCCTCGTACAGTCA -ACGGAAGGTTTCCTCGTAGATCCA -ACGGAAGGTTTCCTCGTAACGACA -ACGGAAGGTTTCCTCGTAAGCTCA -ACGGAAGGTTTCCTCGTATCACGT -ACGGAAGGTTTCCTCGTACGTAGT -ACGGAAGGTTTCCTCGTAGTCAGT -ACGGAAGGTTTCCTCGTAGAAGGT -ACGGAAGGTTTCCTCGTAAACCGT -ACGGAAGGTTTCCTCGTATTGTGC -ACGGAAGGTTTCCTCGTACTAAGC -ACGGAAGGTTTCCTCGTAACTAGC -ACGGAAGGTTTCCTCGTAAGATGC -ACGGAAGGTTTCCTCGTATGAAGG -ACGGAAGGTTTCCTCGTACAATGG -ACGGAAGGTTTCCTCGTAATGAGG -ACGGAAGGTTTCCTCGTAAATGGG -ACGGAAGGTTTCCTCGTATCCTGA -ACGGAAGGTTTCCTCGTATAGCGA -ACGGAAGGTTTCCTCGTACACAGA -ACGGAAGGTTTCCTCGTAGCAAGA -ACGGAAGGTTTCCTCGTAGGTTGA -ACGGAAGGTTTCCTCGTATCCGAT -ACGGAAGGTTTCCTCGTATGGCAT -ACGGAAGGTTTCCTCGTACGAGAT -ACGGAAGGTTTCCTCGTATACCAC -ACGGAAGGTTTCCTCGTACAGAAC -ACGGAAGGTTTCCTCGTAGTCTAC -ACGGAAGGTTTCCTCGTAACGTAC -ACGGAAGGTTTCCTCGTAAGTGAC -ACGGAAGGTTTCCTCGTACTGTAG -ACGGAAGGTTTCCTCGTACCTAAG -ACGGAAGGTTTCCTCGTAGTTCAG -ACGGAAGGTTTCCTCGTAGCATAG -ACGGAAGGTTTCCTCGTAGACAAG -ACGGAAGGTTTCCTCGTAAAGCAG -ACGGAAGGTTTCCTCGTACGTCAA -ACGGAAGGTTTCCTCGTAGCTGAA -ACGGAAGGTTTCCTCGTAAGTACG -ACGGAAGGTTTCCTCGTAATCCGA -ACGGAAGGTTTCCTCGTAATGGGA -ACGGAAGGTTTCCTCGTAGTGCAA -ACGGAAGGTTTCCTCGTAGAGGAA -ACGGAAGGTTTCCTCGTACAGGTA -ACGGAAGGTTTCCTCGTAGACTCT -ACGGAAGGTTTCCTCGTAAGTCCT -ACGGAAGGTTTCCTCGTATAAGCC -ACGGAAGGTTTCCTCGTAATAGCC -ACGGAAGGTTTCCTCGTATAACCG -ACGGAAGGTTTCCTCGTAATGCCA -ACGGAAGGTTTCGTCGATGGAAAC -ACGGAAGGTTTCGTCGATAACACC -ACGGAAGGTTTCGTCGATATCGAG -ACGGAAGGTTTCGTCGATCTCCTT -ACGGAAGGTTTCGTCGATCCTGTT -ACGGAAGGTTTCGTCGATCGGTTT -ACGGAAGGTTTCGTCGATGTGGTT -ACGGAAGGTTTCGTCGATGCCTTT -ACGGAAGGTTTCGTCGATGGTCTT -ACGGAAGGTTTCGTCGATACGCTT -ACGGAAGGTTTCGTCGATAGCGTT -ACGGAAGGTTTCGTCGATTTCGTC -ACGGAAGGTTTCGTCGATTCTCTC -ACGGAAGGTTTCGTCGATTGGATC -ACGGAAGGTTTCGTCGATCACTTC -ACGGAAGGTTTCGTCGATGTACTC -ACGGAAGGTTTCGTCGATGATGTC -ACGGAAGGTTTCGTCGATACAGTC -ACGGAAGGTTTCGTCGATTTGCTG -ACGGAAGGTTTCGTCGATTCCATG -ACGGAAGGTTTCGTCGATTGTGTG -ACGGAAGGTTTCGTCGATCTAGTG -ACGGAAGGTTTCGTCGATCATCTG -ACGGAAGGTTTCGTCGATGAGTTG -ACGGAAGGTTTCGTCGATAGACTG -ACGGAAGGTTTCGTCGATTCGGTA -ACGGAAGGTTTCGTCGATTGCCTA -ACGGAAGGTTTCGTCGATCCACTA -ACGGAAGGTTTCGTCGATGGAGTA -ACGGAAGGTTTCGTCGATTCGTCT -ACGGAAGGTTTCGTCGATTGCACT -ACGGAAGGTTTCGTCGATCTGACT -ACGGAAGGTTTCGTCGATCAACCT -ACGGAAGGTTTCGTCGATGCTACT -ACGGAAGGTTTCGTCGATGGATCT -ACGGAAGGTTTCGTCGATAAGGCT -ACGGAAGGTTTCGTCGATTCAACC -ACGGAAGGTTTCGTCGATTGTTCC -ACGGAAGGTTTCGTCGATATTCCC -ACGGAAGGTTTCGTCGATTTCTCG -ACGGAAGGTTTCGTCGATTAGACG -ACGGAAGGTTTCGTCGATGTAACG -ACGGAAGGTTTCGTCGATACTTCG -ACGGAAGGTTTCGTCGATTACGCA -ACGGAAGGTTTCGTCGATCTTGCA -ACGGAAGGTTTCGTCGATCGAACA -ACGGAAGGTTTCGTCGATCAGTCA -ACGGAAGGTTTCGTCGATGATCCA -ACGGAAGGTTTCGTCGATACGACA -ACGGAAGGTTTCGTCGATAGCTCA -ACGGAAGGTTTCGTCGATTCACGT -ACGGAAGGTTTCGTCGATCGTAGT -ACGGAAGGTTTCGTCGATGTCAGT -ACGGAAGGTTTCGTCGATGAAGGT -ACGGAAGGTTTCGTCGATAACCGT -ACGGAAGGTTTCGTCGATTTGTGC -ACGGAAGGTTTCGTCGATCTAAGC -ACGGAAGGTTTCGTCGATACTAGC -ACGGAAGGTTTCGTCGATAGATGC -ACGGAAGGTTTCGTCGATTGAAGG -ACGGAAGGTTTCGTCGATCAATGG -ACGGAAGGTTTCGTCGATATGAGG -ACGGAAGGTTTCGTCGATAATGGG -ACGGAAGGTTTCGTCGATTCCTGA -ACGGAAGGTTTCGTCGATTAGCGA -ACGGAAGGTTTCGTCGATCACAGA -ACGGAAGGTTTCGTCGATGCAAGA -ACGGAAGGTTTCGTCGATGGTTGA -ACGGAAGGTTTCGTCGATTCCGAT -ACGGAAGGTTTCGTCGATTGGCAT -ACGGAAGGTTTCGTCGATCGAGAT -ACGGAAGGTTTCGTCGATTACCAC -ACGGAAGGTTTCGTCGATCAGAAC -ACGGAAGGTTTCGTCGATGTCTAC -ACGGAAGGTTTCGTCGATACGTAC -ACGGAAGGTTTCGTCGATAGTGAC -ACGGAAGGTTTCGTCGATCTGTAG -ACGGAAGGTTTCGTCGATCCTAAG -ACGGAAGGTTTCGTCGATGTTCAG -ACGGAAGGTTTCGTCGATGCATAG -ACGGAAGGTTTCGTCGATGACAAG -ACGGAAGGTTTCGTCGATAAGCAG -ACGGAAGGTTTCGTCGATCGTCAA -ACGGAAGGTTTCGTCGATGCTGAA -ACGGAAGGTTTCGTCGATAGTACG -ACGGAAGGTTTCGTCGATATCCGA -ACGGAAGGTTTCGTCGATATGGGA -ACGGAAGGTTTCGTCGATGTGCAA -ACGGAAGGTTTCGTCGATGAGGAA -ACGGAAGGTTTCGTCGATCAGGTA -ACGGAAGGTTTCGTCGATGACTCT -ACGGAAGGTTTCGTCGATAGTCCT -ACGGAAGGTTTCGTCGATTAAGCC -ACGGAAGGTTTCGTCGATATAGCC -ACGGAAGGTTTCGTCGATTAACCG -ACGGAAGGTTTCGTCGATATGCCA -ACGGAAGGTTTCGTCACAGGAAAC -ACGGAAGGTTTCGTCACAAACACC -ACGGAAGGTTTCGTCACAATCGAG -ACGGAAGGTTTCGTCACACTCCTT -ACGGAAGGTTTCGTCACACCTGTT -ACGGAAGGTTTCGTCACACGGTTT -ACGGAAGGTTTCGTCACAGTGGTT -ACGGAAGGTTTCGTCACAGCCTTT -ACGGAAGGTTTCGTCACAGGTCTT -ACGGAAGGTTTCGTCACAACGCTT -ACGGAAGGTTTCGTCACAAGCGTT -ACGGAAGGTTTCGTCACATTCGTC -ACGGAAGGTTTCGTCACATCTCTC -ACGGAAGGTTTCGTCACATGGATC -ACGGAAGGTTTCGTCACACACTTC -ACGGAAGGTTTCGTCACAGTACTC -ACGGAAGGTTTCGTCACAGATGTC -ACGGAAGGTTTCGTCACAACAGTC -ACGGAAGGTTTCGTCACATTGCTG -ACGGAAGGTTTCGTCACATCCATG -ACGGAAGGTTTCGTCACATGTGTG -ACGGAAGGTTTCGTCACACTAGTG -ACGGAAGGTTTCGTCACACATCTG -ACGGAAGGTTTCGTCACAGAGTTG -ACGGAAGGTTTCGTCACAAGACTG -ACGGAAGGTTTCGTCACATCGGTA -ACGGAAGGTTTCGTCACATGCCTA -ACGGAAGGTTTCGTCACACCACTA -ACGGAAGGTTTCGTCACAGGAGTA -ACGGAAGGTTTCGTCACATCGTCT -ACGGAAGGTTTCGTCACATGCACT -ACGGAAGGTTTCGTCACACTGACT -ACGGAAGGTTTCGTCACACAACCT -ACGGAAGGTTTCGTCACAGCTACT -ACGGAAGGTTTCGTCACAGGATCT -ACGGAAGGTTTCGTCACAAAGGCT -ACGGAAGGTTTCGTCACATCAACC -ACGGAAGGTTTCGTCACATGTTCC -ACGGAAGGTTTCGTCACAATTCCC -ACGGAAGGTTTCGTCACATTCTCG -ACGGAAGGTTTCGTCACATAGACG -ACGGAAGGTTTCGTCACAGTAACG -ACGGAAGGTTTCGTCACAACTTCG -ACGGAAGGTTTCGTCACATACGCA -ACGGAAGGTTTCGTCACACTTGCA -ACGGAAGGTTTCGTCACACGAACA -ACGGAAGGTTTCGTCACACAGTCA -ACGGAAGGTTTCGTCACAGATCCA -ACGGAAGGTTTCGTCACAACGACA -ACGGAAGGTTTCGTCACAAGCTCA -ACGGAAGGTTTCGTCACATCACGT -ACGGAAGGTTTCGTCACACGTAGT -ACGGAAGGTTTCGTCACAGTCAGT -ACGGAAGGTTTCGTCACAGAAGGT -ACGGAAGGTTTCGTCACAAACCGT -ACGGAAGGTTTCGTCACATTGTGC -ACGGAAGGTTTCGTCACACTAAGC -ACGGAAGGTTTCGTCACAACTAGC -ACGGAAGGTTTCGTCACAAGATGC -ACGGAAGGTTTCGTCACATGAAGG -ACGGAAGGTTTCGTCACACAATGG -ACGGAAGGTTTCGTCACAATGAGG -ACGGAAGGTTTCGTCACAAATGGG -ACGGAAGGTTTCGTCACATCCTGA -ACGGAAGGTTTCGTCACATAGCGA -ACGGAAGGTTTCGTCACACACAGA -ACGGAAGGTTTCGTCACAGCAAGA -ACGGAAGGTTTCGTCACAGGTTGA -ACGGAAGGTTTCGTCACATCCGAT -ACGGAAGGTTTCGTCACATGGCAT -ACGGAAGGTTTCGTCACACGAGAT -ACGGAAGGTTTCGTCACATACCAC -ACGGAAGGTTTCGTCACACAGAAC -ACGGAAGGTTTCGTCACAGTCTAC -ACGGAAGGTTTCGTCACAACGTAC -ACGGAAGGTTTCGTCACAAGTGAC -ACGGAAGGTTTCGTCACACTGTAG -ACGGAAGGTTTCGTCACACCTAAG -ACGGAAGGTTTCGTCACAGTTCAG -ACGGAAGGTTTCGTCACAGCATAG -ACGGAAGGTTTCGTCACAGACAAG -ACGGAAGGTTTCGTCACAAAGCAG -ACGGAAGGTTTCGTCACACGTCAA -ACGGAAGGTTTCGTCACAGCTGAA -ACGGAAGGTTTCGTCACAAGTACG -ACGGAAGGTTTCGTCACAATCCGA -ACGGAAGGTTTCGTCACAATGGGA -ACGGAAGGTTTCGTCACAGTGCAA -ACGGAAGGTTTCGTCACAGAGGAA -ACGGAAGGTTTCGTCACACAGGTA -ACGGAAGGTTTCGTCACAGACTCT -ACGGAAGGTTTCGTCACAAGTCCT -ACGGAAGGTTTCGTCACATAAGCC -ACGGAAGGTTTCGTCACAATAGCC -ACGGAAGGTTTCGTCACATAACCG -ACGGAAGGTTTCGTCACAATGCCA -ACGGAAGGTTTCCTGTTGGGAAAC -ACGGAAGGTTTCCTGTTGAACACC -ACGGAAGGTTTCCTGTTGATCGAG -ACGGAAGGTTTCCTGTTGCTCCTT -ACGGAAGGTTTCCTGTTGCCTGTT -ACGGAAGGTTTCCTGTTGCGGTTT -ACGGAAGGTTTCCTGTTGGTGGTT -ACGGAAGGTTTCCTGTTGGCCTTT -ACGGAAGGTTTCCTGTTGGGTCTT -ACGGAAGGTTTCCTGTTGACGCTT -ACGGAAGGTTTCCTGTTGAGCGTT -ACGGAAGGTTTCCTGTTGTTCGTC -ACGGAAGGTTTCCTGTTGTCTCTC -ACGGAAGGTTTCCTGTTGTGGATC -ACGGAAGGTTTCCTGTTGCACTTC -ACGGAAGGTTTCCTGTTGGTACTC -ACGGAAGGTTTCCTGTTGGATGTC -ACGGAAGGTTTCCTGTTGACAGTC -ACGGAAGGTTTCCTGTTGTTGCTG -ACGGAAGGTTTCCTGTTGTCCATG -ACGGAAGGTTTCCTGTTGTGTGTG -ACGGAAGGTTTCCTGTTGCTAGTG -ACGGAAGGTTTCCTGTTGCATCTG -ACGGAAGGTTTCCTGTTGGAGTTG -ACGGAAGGTTTCCTGTTGAGACTG -ACGGAAGGTTTCCTGTTGTCGGTA -ACGGAAGGTTTCCTGTTGTGCCTA -ACGGAAGGTTTCCTGTTGCCACTA -ACGGAAGGTTTCCTGTTGGGAGTA -ACGGAAGGTTTCCTGTTGTCGTCT -ACGGAAGGTTTCCTGTTGTGCACT -ACGGAAGGTTTCCTGTTGCTGACT -ACGGAAGGTTTCCTGTTGCAACCT -ACGGAAGGTTTCCTGTTGGCTACT -ACGGAAGGTTTCCTGTTGGGATCT -ACGGAAGGTTTCCTGTTGAAGGCT -ACGGAAGGTTTCCTGTTGTCAACC -ACGGAAGGTTTCCTGTTGTGTTCC -ACGGAAGGTTTCCTGTTGATTCCC -ACGGAAGGTTTCCTGTTGTTCTCG -ACGGAAGGTTTCCTGTTGTAGACG -ACGGAAGGTTTCCTGTTGGTAACG -ACGGAAGGTTTCCTGTTGACTTCG -ACGGAAGGTTTCCTGTTGTACGCA -ACGGAAGGTTTCCTGTTGCTTGCA -ACGGAAGGTTTCCTGTTGCGAACA -ACGGAAGGTTTCCTGTTGCAGTCA -ACGGAAGGTTTCCTGTTGGATCCA -ACGGAAGGTTTCCTGTTGACGACA -ACGGAAGGTTTCCTGTTGAGCTCA -ACGGAAGGTTTCCTGTTGTCACGT -ACGGAAGGTTTCCTGTTGCGTAGT -ACGGAAGGTTTCCTGTTGGTCAGT -ACGGAAGGTTTCCTGTTGGAAGGT -ACGGAAGGTTTCCTGTTGAACCGT -ACGGAAGGTTTCCTGTTGTTGTGC -ACGGAAGGTTTCCTGTTGCTAAGC -ACGGAAGGTTTCCTGTTGACTAGC -ACGGAAGGTTTCCTGTTGAGATGC -ACGGAAGGTTTCCTGTTGTGAAGG -ACGGAAGGTTTCCTGTTGCAATGG -ACGGAAGGTTTCCTGTTGATGAGG -ACGGAAGGTTTCCTGTTGAATGGG -ACGGAAGGTTTCCTGTTGTCCTGA -ACGGAAGGTTTCCTGTTGTAGCGA -ACGGAAGGTTTCCTGTTGCACAGA -ACGGAAGGTTTCCTGTTGGCAAGA -ACGGAAGGTTTCCTGTTGGGTTGA -ACGGAAGGTTTCCTGTTGTCCGAT -ACGGAAGGTTTCCTGTTGTGGCAT -ACGGAAGGTTTCCTGTTGCGAGAT -ACGGAAGGTTTCCTGTTGTACCAC -ACGGAAGGTTTCCTGTTGCAGAAC -ACGGAAGGTTTCCTGTTGGTCTAC -ACGGAAGGTTTCCTGTTGACGTAC -ACGGAAGGTTTCCTGTTGAGTGAC -ACGGAAGGTTTCCTGTTGCTGTAG -ACGGAAGGTTTCCTGTTGCCTAAG -ACGGAAGGTTTCCTGTTGGTTCAG -ACGGAAGGTTTCCTGTTGGCATAG -ACGGAAGGTTTCCTGTTGGACAAG -ACGGAAGGTTTCCTGTTGAAGCAG -ACGGAAGGTTTCCTGTTGCGTCAA -ACGGAAGGTTTCCTGTTGGCTGAA -ACGGAAGGTTTCCTGTTGAGTACG -ACGGAAGGTTTCCTGTTGATCCGA -ACGGAAGGTTTCCTGTTGATGGGA -ACGGAAGGTTTCCTGTTGGTGCAA -ACGGAAGGTTTCCTGTTGGAGGAA -ACGGAAGGTTTCCTGTTGCAGGTA -ACGGAAGGTTTCCTGTTGGACTCT -ACGGAAGGTTTCCTGTTGAGTCCT -ACGGAAGGTTTCCTGTTGTAAGCC -ACGGAAGGTTTCCTGTTGATAGCC -ACGGAAGGTTTCCTGTTGTAACCG -ACGGAAGGTTTCCTGTTGATGCCA -ACGGAAGGTTTCATGTCCGGAAAC -ACGGAAGGTTTCATGTCCAACACC -ACGGAAGGTTTCATGTCCATCGAG -ACGGAAGGTTTCATGTCCCTCCTT -ACGGAAGGTTTCATGTCCCCTGTT -ACGGAAGGTTTCATGTCCCGGTTT -ACGGAAGGTTTCATGTCCGTGGTT -ACGGAAGGTTTCATGTCCGCCTTT -ACGGAAGGTTTCATGTCCGGTCTT -ACGGAAGGTTTCATGTCCACGCTT -ACGGAAGGTTTCATGTCCAGCGTT -ACGGAAGGTTTCATGTCCTTCGTC -ACGGAAGGTTTCATGTCCTCTCTC -ACGGAAGGTTTCATGTCCTGGATC -ACGGAAGGTTTCATGTCCCACTTC -ACGGAAGGTTTCATGTCCGTACTC -ACGGAAGGTTTCATGTCCGATGTC -ACGGAAGGTTTCATGTCCACAGTC -ACGGAAGGTTTCATGTCCTTGCTG -ACGGAAGGTTTCATGTCCTCCATG -ACGGAAGGTTTCATGTCCTGTGTG -ACGGAAGGTTTCATGTCCCTAGTG -ACGGAAGGTTTCATGTCCCATCTG -ACGGAAGGTTTCATGTCCGAGTTG -ACGGAAGGTTTCATGTCCAGACTG -ACGGAAGGTTTCATGTCCTCGGTA -ACGGAAGGTTTCATGTCCTGCCTA -ACGGAAGGTTTCATGTCCCCACTA -ACGGAAGGTTTCATGTCCGGAGTA -ACGGAAGGTTTCATGTCCTCGTCT -ACGGAAGGTTTCATGTCCTGCACT -ACGGAAGGTTTCATGTCCCTGACT -ACGGAAGGTTTCATGTCCCAACCT -ACGGAAGGTTTCATGTCCGCTACT -ACGGAAGGTTTCATGTCCGGATCT -ACGGAAGGTTTCATGTCCAAGGCT -ACGGAAGGTTTCATGTCCTCAACC -ACGGAAGGTTTCATGTCCTGTTCC -ACGGAAGGTTTCATGTCCATTCCC -ACGGAAGGTTTCATGTCCTTCTCG -ACGGAAGGTTTCATGTCCTAGACG -ACGGAAGGTTTCATGTCCGTAACG -ACGGAAGGTTTCATGTCCACTTCG -ACGGAAGGTTTCATGTCCTACGCA -ACGGAAGGTTTCATGTCCCTTGCA -ACGGAAGGTTTCATGTCCCGAACA -ACGGAAGGTTTCATGTCCCAGTCA -ACGGAAGGTTTCATGTCCGATCCA -ACGGAAGGTTTCATGTCCACGACA -ACGGAAGGTTTCATGTCCAGCTCA -ACGGAAGGTTTCATGTCCTCACGT -ACGGAAGGTTTCATGTCCCGTAGT -ACGGAAGGTTTCATGTCCGTCAGT -ACGGAAGGTTTCATGTCCGAAGGT -ACGGAAGGTTTCATGTCCAACCGT -ACGGAAGGTTTCATGTCCTTGTGC -ACGGAAGGTTTCATGTCCCTAAGC -ACGGAAGGTTTCATGTCCACTAGC -ACGGAAGGTTTCATGTCCAGATGC -ACGGAAGGTTTCATGTCCTGAAGG -ACGGAAGGTTTCATGTCCCAATGG -ACGGAAGGTTTCATGTCCATGAGG -ACGGAAGGTTTCATGTCCAATGGG -ACGGAAGGTTTCATGTCCTCCTGA -ACGGAAGGTTTCATGTCCTAGCGA -ACGGAAGGTTTCATGTCCCACAGA -ACGGAAGGTTTCATGTCCGCAAGA -ACGGAAGGTTTCATGTCCGGTTGA -ACGGAAGGTTTCATGTCCTCCGAT -ACGGAAGGTTTCATGTCCTGGCAT -ACGGAAGGTTTCATGTCCCGAGAT -ACGGAAGGTTTCATGTCCTACCAC -ACGGAAGGTTTCATGTCCCAGAAC -ACGGAAGGTTTCATGTCCGTCTAC -ACGGAAGGTTTCATGTCCACGTAC -ACGGAAGGTTTCATGTCCAGTGAC -ACGGAAGGTTTCATGTCCCTGTAG -ACGGAAGGTTTCATGTCCCCTAAG -ACGGAAGGTTTCATGTCCGTTCAG -ACGGAAGGTTTCATGTCCGCATAG -ACGGAAGGTTTCATGTCCGACAAG -ACGGAAGGTTTCATGTCCAAGCAG -ACGGAAGGTTTCATGTCCCGTCAA -ACGGAAGGTTTCATGTCCGCTGAA -ACGGAAGGTTTCATGTCCAGTACG -ACGGAAGGTTTCATGTCCATCCGA -ACGGAAGGTTTCATGTCCATGGGA -ACGGAAGGTTTCATGTCCGTGCAA -ACGGAAGGTTTCATGTCCGAGGAA -ACGGAAGGTTTCATGTCCCAGGTA -ACGGAAGGTTTCATGTCCGACTCT -ACGGAAGGTTTCATGTCCAGTCCT -ACGGAAGGTTTCATGTCCTAAGCC -ACGGAAGGTTTCATGTCCATAGCC -ACGGAAGGTTTCATGTCCTAACCG -ACGGAAGGTTTCATGTCCATGCCA -ACGGAAGGTTTCGTGTGTGGAAAC -ACGGAAGGTTTCGTGTGTAACACC -ACGGAAGGTTTCGTGTGTATCGAG -ACGGAAGGTTTCGTGTGTCTCCTT -ACGGAAGGTTTCGTGTGTCCTGTT -ACGGAAGGTTTCGTGTGTCGGTTT -ACGGAAGGTTTCGTGTGTGTGGTT -ACGGAAGGTTTCGTGTGTGCCTTT -ACGGAAGGTTTCGTGTGTGGTCTT -ACGGAAGGTTTCGTGTGTACGCTT -ACGGAAGGTTTCGTGTGTAGCGTT -ACGGAAGGTTTCGTGTGTTTCGTC -ACGGAAGGTTTCGTGTGTTCTCTC -ACGGAAGGTTTCGTGTGTTGGATC -ACGGAAGGTTTCGTGTGTCACTTC -ACGGAAGGTTTCGTGTGTGTACTC -ACGGAAGGTTTCGTGTGTGATGTC -ACGGAAGGTTTCGTGTGTACAGTC -ACGGAAGGTTTCGTGTGTTTGCTG -ACGGAAGGTTTCGTGTGTTCCATG -ACGGAAGGTTTCGTGTGTTGTGTG -ACGGAAGGTTTCGTGTGTCTAGTG -ACGGAAGGTTTCGTGTGTCATCTG -ACGGAAGGTTTCGTGTGTGAGTTG -ACGGAAGGTTTCGTGTGTAGACTG -ACGGAAGGTTTCGTGTGTTCGGTA -ACGGAAGGTTTCGTGTGTTGCCTA -ACGGAAGGTTTCGTGTGTCCACTA -ACGGAAGGTTTCGTGTGTGGAGTA -ACGGAAGGTTTCGTGTGTTCGTCT -ACGGAAGGTTTCGTGTGTTGCACT -ACGGAAGGTTTCGTGTGTCTGACT -ACGGAAGGTTTCGTGTGTCAACCT -ACGGAAGGTTTCGTGTGTGCTACT -ACGGAAGGTTTCGTGTGTGGATCT -ACGGAAGGTTTCGTGTGTAAGGCT -ACGGAAGGTTTCGTGTGTTCAACC -ACGGAAGGTTTCGTGTGTTGTTCC -ACGGAAGGTTTCGTGTGTATTCCC -ACGGAAGGTTTCGTGTGTTTCTCG -ACGGAAGGTTTCGTGTGTTAGACG -ACGGAAGGTTTCGTGTGTGTAACG -ACGGAAGGTTTCGTGTGTACTTCG -ACGGAAGGTTTCGTGTGTTACGCA -ACGGAAGGTTTCGTGTGTCTTGCA -ACGGAAGGTTTCGTGTGTCGAACA -ACGGAAGGTTTCGTGTGTCAGTCA -ACGGAAGGTTTCGTGTGTGATCCA -ACGGAAGGTTTCGTGTGTACGACA -ACGGAAGGTTTCGTGTGTAGCTCA -ACGGAAGGTTTCGTGTGTTCACGT -ACGGAAGGTTTCGTGTGTCGTAGT -ACGGAAGGTTTCGTGTGTGTCAGT -ACGGAAGGTTTCGTGTGTGAAGGT -ACGGAAGGTTTCGTGTGTAACCGT -ACGGAAGGTTTCGTGTGTTTGTGC -ACGGAAGGTTTCGTGTGTCTAAGC -ACGGAAGGTTTCGTGTGTACTAGC -ACGGAAGGTTTCGTGTGTAGATGC -ACGGAAGGTTTCGTGTGTTGAAGG -ACGGAAGGTTTCGTGTGTCAATGG -ACGGAAGGTTTCGTGTGTATGAGG -ACGGAAGGTTTCGTGTGTAATGGG -ACGGAAGGTTTCGTGTGTTCCTGA -ACGGAAGGTTTCGTGTGTTAGCGA -ACGGAAGGTTTCGTGTGTCACAGA -ACGGAAGGTTTCGTGTGTGCAAGA -ACGGAAGGTTTCGTGTGTGGTTGA -ACGGAAGGTTTCGTGTGTTCCGAT -ACGGAAGGTTTCGTGTGTTGGCAT -ACGGAAGGTTTCGTGTGTCGAGAT -ACGGAAGGTTTCGTGTGTTACCAC -ACGGAAGGTTTCGTGTGTCAGAAC -ACGGAAGGTTTCGTGTGTGTCTAC -ACGGAAGGTTTCGTGTGTACGTAC -ACGGAAGGTTTCGTGTGTAGTGAC -ACGGAAGGTTTCGTGTGTCTGTAG -ACGGAAGGTTTCGTGTGTCCTAAG -ACGGAAGGTTTCGTGTGTGTTCAG -ACGGAAGGTTTCGTGTGTGCATAG -ACGGAAGGTTTCGTGTGTGACAAG -ACGGAAGGTTTCGTGTGTAAGCAG -ACGGAAGGTTTCGTGTGTCGTCAA -ACGGAAGGTTTCGTGTGTGCTGAA -ACGGAAGGTTTCGTGTGTAGTACG -ACGGAAGGTTTCGTGTGTATCCGA -ACGGAAGGTTTCGTGTGTATGGGA -ACGGAAGGTTTCGTGTGTGTGCAA -ACGGAAGGTTTCGTGTGTGAGGAA -ACGGAAGGTTTCGTGTGTCAGGTA -ACGGAAGGTTTCGTGTGTGACTCT -ACGGAAGGTTTCGTGTGTAGTCCT -ACGGAAGGTTTCGTGTGTTAAGCC -ACGGAAGGTTTCGTGTGTATAGCC -ACGGAAGGTTTCGTGTGTTAACCG -ACGGAAGGTTTCGTGTGTATGCCA -ACGGAAGGTTTCGTGCTAGGAAAC -ACGGAAGGTTTCGTGCTAAACACC -ACGGAAGGTTTCGTGCTAATCGAG -ACGGAAGGTTTCGTGCTACTCCTT -ACGGAAGGTTTCGTGCTACCTGTT -ACGGAAGGTTTCGTGCTACGGTTT -ACGGAAGGTTTCGTGCTAGTGGTT -ACGGAAGGTTTCGTGCTAGCCTTT -ACGGAAGGTTTCGTGCTAGGTCTT -ACGGAAGGTTTCGTGCTAACGCTT -ACGGAAGGTTTCGTGCTAAGCGTT -ACGGAAGGTTTCGTGCTATTCGTC -ACGGAAGGTTTCGTGCTATCTCTC -ACGGAAGGTTTCGTGCTATGGATC -ACGGAAGGTTTCGTGCTACACTTC -ACGGAAGGTTTCGTGCTAGTACTC -ACGGAAGGTTTCGTGCTAGATGTC -ACGGAAGGTTTCGTGCTAACAGTC -ACGGAAGGTTTCGTGCTATTGCTG -ACGGAAGGTTTCGTGCTATCCATG -ACGGAAGGTTTCGTGCTATGTGTG -ACGGAAGGTTTCGTGCTACTAGTG -ACGGAAGGTTTCGTGCTACATCTG -ACGGAAGGTTTCGTGCTAGAGTTG -ACGGAAGGTTTCGTGCTAAGACTG -ACGGAAGGTTTCGTGCTATCGGTA -ACGGAAGGTTTCGTGCTATGCCTA -ACGGAAGGTTTCGTGCTACCACTA -ACGGAAGGTTTCGTGCTAGGAGTA -ACGGAAGGTTTCGTGCTATCGTCT -ACGGAAGGTTTCGTGCTATGCACT -ACGGAAGGTTTCGTGCTACTGACT -ACGGAAGGTTTCGTGCTACAACCT -ACGGAAGGTTTCGTGCTAGCTACT -ACGGAAGGTTTCGTGCTAGGATCT -ACGGAAGGTTTCGTGCTAAAGGCT -ACGGAAGGTTTCGTGCTATCAACC -ACGGAAGGTTTCGTGCTATGTTCC -ACGGAAGGTTTCGTGCTAATTCCC -ACGGAAGGTTTCGTGCTATTCTCG -ACGGAAGGTTTCGTGCTATAGACG -ACGGAAGGTTTCGTGCTAGTAACG -ACGGAAGGTTTCGTGCTAACTTCG -ACGGAAGGTTTCGTGCTATACGCA -ACGGAAGGTTTCGTGCTACTTGCA -ACGGAAGGTTTCGTGCTACGAACA -ACGGAAGGTTTCGTGCTACAGTCA -ACGGAAGGTTTCGTGCTAGATCCA -ACGGAAGGTTTCGTGCTAACGACA -ACGGAAGGTTTCGTGCTAAGCTCA -ACGGAAGGTTTCGTGCTATCACGT -ACGGAAGGTTTCGTGCTACGTAGT -ACGGAAGGTTTCGTGCTAGTCAGT -ACGGAAGGTTTCGTGCTAGAAGGT -ACGGAAGGTTTCGTGCTAAACCGT -ACGGAAGGTTTCGTGCTATTGTGC -ACGGAAGGTTTCGTGCTACTAAGC -ACGGAAGGTTTCGTGCTAACTAGC -ACGGAAGGTTTCGTGCTAAGATGC -ACGGAAGGTTTCGTGCTATGAAGG -ACGGAAGGTTTCGTGCTACAATGG -ACGGAAGGTTTCGTGCTAATGAGG -ACGGAAGGTTTCGTGCTAAATGGG -ACGGAAGGTTTCGTGCTATCCTGA -ACGGAAGGTTTCGTGCTATAGCGA -ACGGAAGGTTTCGTGCTACACAGA -ACGGAAGGTTTCGTGCTAGCAAGA -ACGGAAGGTTTCGTGCTAGGTTGA -ACGGAAGGTTTCGTGCTATCCGAT -ACGGAAGGTTTCGTGCTATGGCAT -ACGGAAGGTTTCGTGCTACGAGAT -ACGGAAGGTTTCGTGCTATACCAC -ACGGAAGGTTTCGTGCTACAGAAC -ACGGAAGGTTTCGTGCTAGTCTAC -ACGGAAGGTTTCGTGCTAACGTAC -ACGGAAGGTTTCGTGCTAAGTGAC -ACGGAAGGTTTCGTGCTACTGTAG -ACGGAAGGTTTCGTGCTACCTAAG -ACGGAAGGTTTCGTGCTAGTTCAG -ACGGAAGGTTTCGTGCTAGCATAG -ACGGAAGGTTTCGTGCTAGACAAG -ACGGAAGGTTTCGTGCTAAAGCAG -ACGGAAGGTTTCGTGCTACGTCAA -ACGGAAGGTTTCGTGCTAGCTGAA -ACGGAAGGTTTCGTGCTAAGTACG -ACGGAAGGTTTCGTGCTAATCCGA -ACGGAAGGTTTCGTGCTAATGGGA -ACGGAAGGTTTCGTGCTAGTGCAA -ACGGAAGGTTTCGTGCTAGAGGAA -ACGGAAGGTTTCGTGCTACAGGTA -ACGGAAGGTTTCGTGCTAGACTCT -ACGGAAGGTTTCGTGCTAAGTCCT -ACGGAAGGTTTCGTGCTATAAGCC -ACGGAAGGTTTCGTGCTAATAGCC -ACGGAAGGTTTCGTGCTATAACCG -ACGGAAGGTTTCGTGCTAATGCCA -ACGGAAGGTTTCCTGCATGGAAAC -ACGGAAGGTTTCCTGCATAACACC -ACGGAAGGTTTCCTGCATATCGAG -ACGGAAGGTTTCCTGCATCTCCTT -ACGGAAGGTTTCCTGCATCCTGTT -ACGGAAGGTTTCCTGCATCGGTTT -ACGGAAGGTTTCCTGCATGTGGTT -ACGGAAGGTTTCCTGCATGCCTTT -ACGGAAGGTTTCCTGCATGGTCTT -ACGGAAGGTTTCCTGCATACGCTT -ACGGAAGGTTTCCTGCATAGCGTT -ACGGAAGGTTTCCTGCATTTCGTC -ACGGAAGGTTTCCTGCATTCTCTC -ACGGAAGGTTTCCTGCATTGGATC -ACGGAAGGTTTCCTGCATCACTTC -ACGGAAGGTTTCCTGCATGTACTC -ACGGAAGGTTTCCTGCATGATGTC -ACGGAAGGTTTCCTGCATACAGTC -ACGGAAGGTTTCCTGCATTTGCTG -ACGGAAGGTTTCCTGCATTCCATG -ACGGAAGGTTTCCTGCATTGTGTG -ACGGAAGGTTTCCTGCATCTAGTG -ACGGAAGGTTTCCTGCATCATCTG -ACGGAAGGTTTCCTGCATGAGTTG -ACGGAAGGTTTCCTGCATAGACTG -ACGGAAGGTTTCCTGCATTCGGTA -ACGGAAGGTTTCCTGCATTGCCTA -ACGGAAGGTTTCCTGCATCCACTA -ACGGAAGGTTTCCTGCATGGAGTA -ACGGAAGGTTTCCTGCATTCGTCT -ACGGAAGGTTTCCTGCATTGCACT -ACGGAAGGTTTCCTGCATCTGACT -ACGGAAGGTTTCCTGCATCAACCT -ACGGAAGGTTTCCTGCATGCTACT -ACGGAAGGTTTCCTGCATGGATCT -ACGGAAGGTTTCCTGCATAAGGCT -ACGGAAGGTTTCCTGCATTCAACC -ACGGAAGGTTTCCTGCATTGTTCC -ACGGAAGGTTTCCTGCATATTCCC -ACGGAAGGTTTCCTGCATTTCTCG -ACGGAAGGTTTCCTGCATTAGACG -ACGGAAGGTTTCCTGCATGTAACG -ACGGAAGGTTTCCTGCATACTTCG -ACGGAAGGTTTCCTGCATTACGCA -ACGGAAGGTTTCCTGCATCTTGCA -ACGGAAGGTTTCCTGCATCGAACA -ACGGAAGGTTTCCTGCATCAGTCA -ACGGAAGGTTTCCTGCATGATCCA -ACGGAAGGTTTCCTGCATACGACA -ACGGAAGGTTTCCTGCATAGCTCA -ACGGAAGGTTTCCTGCATTCACGT -ACGGAAGGTTTCCTGCATCGTAGT -ACGGAAGGTTTCCTGCATGTCAGT -ACGGAAGGTTTCCTGCATGAAGGT -ACGGAAGGTTTCCTGCATAACCGT -ACGGAAGGTTTCCTGCATTTGTGC -ACGGAAGGTTTCCTGCATCTAAGC -ACGGAAGGTTTCCTGCATACTAGC -ACGGAAGGTTTCCTGCATAGATGC -ACGGAAGGTTTCCTGCATTGAAGG -ACGGAAGGTTTCCTGCATCAATGG -ACGGAAGGTTTCCTGCATATGAGG -ACGGAAGGTTTCCTGCATAATGGG -ACGGAAGGTTTCCTGCATTCCTGA -ACGGAAGGTTTCCTGCATTAGCGA -ACGGAAGGTTTCCTGCATCACAGA -ACGGAAGGTTTCCTGCATGCAAGA -ACGGAAGGTTTCCTGCATGGTTGA -ACGGAAGGTTTCCTGCATTCCGAT -ACGGAAGGTTTCCTGCATTGGCAT -ACGGAAGGTTTCCTGCATCGAGAT -ACGGAAGGTTTCCTGCATTACCAC -ACGGAAGGTTTCCTGCATCAGAAC -ACGGAAGGTTTCCTGCATGTCTAC -ACGGAAGGTTTCCTGCATACGTAC -ACGGAAGGTTTCCTGCATAGTGAC -ACGGAAGGTTTCCTGCATCTGTAG -ACGGAAGGTTTCCTGCATCCTAAG -ACGGAAGGTTTCCTGCATGTTCAG -ACGGAAGGTTTCCTGCATGCATAG -ACGGAAGGTTTCCTGCATGACAAG -ACGGAAGGTTTCCTGCATAAGCAG -ACGGAAGGTTTCCTGCATCGTCAA -ACGGAAGGTTTCCTGCATGCTGAA -ACGGAAGGTTTCCTGCATAGTACG -ACGGAAGGTTTCCTGCATATCCGA -ACGGAAGGTTTCCTGCATATGGGA -ACGGAAGGTTTCCTGCATGTGCAA -ACGGAAGGTTTCCTGCATGAGGAA -ACGGAAGGTTTCCTGCATCAGGTA -ACGGAAGGTTTCCTGCATGACTCT -ACGGAAGGTTTCCTGCATAGTCCT -ACGGAAGGTTTCCTGCATTAAGCC -ACGGAAGGTTTCCTGCATATAGCC -ACGGAAGGTTTCCTGCATTAACCG -ACGGAAGGTTTCCTGCATATGCCA -ACGGAAGGTTTCTTGGAGGGAAAC -ACGGAAGGTTTCTTGGAGAACACC -ACGGAAGGTTTCTTGGAGATCGAG -ACGGAAGGTTTCTTGGAGCTCCTT -ACGGAAGGTTTCTTGGAGCCTGTT -ACGGAAGGTTTCTTGGAGCGGTTT -ACGGAAGGTTTCTTGGAGGTGGTT -ACGGAAGGTTTCTTGGAGGCCTTT -ACGGAAGGTTTCTTGGAGGGTCTT -ACGGAAGGTTTCTTGGAGACGCTT -ACGGAAGGTTTCTTGGAGAGCGTT -ACGGAAGGTTTCTTGGAGTTCGTC -ACGGAAGGTTTCTTGGAGTCTCTC -ACGGAAGGTTTCTTGGAGTGGATC -ACGGAAGGTTTCTTGGAGCACTTC -ACGGAAGGTTTCTTGGAGGTACTC -ACGGAAGGTTTCTTGGAGGATGTC -ACGGAAGGTTTCTTGGAGACAGTC -ACGGAAGGTTTCTTGGAGTTGCTG -ACGGAAGGTTTCTTGGAGTCCATG -ACGGAAGGTTTCTTGGAGTGTGTG -ACGGAAGGTTTCTTGGAGCTAGTG -ACGGAAGGTTTCTTGGAGCATCTG -ACGGAAGGTTTCTTGGAGGAGTTG -ACGGAAGGTTTCTTGGAGAGACTG -ACGGAAGGTTTCTTGGAGTCGGTA -ACGGAAGGTTTCTTGGAGTGCCTA -ACGGAAGGTTTCTTGGAGCCACTA -ACGGAAGGTTTCTTGGAGGGAGTA -ACGGAAGGTTTCTTGGAGTCGTCT -ACGGAAGGTTTCTTGGAGTGCACT -ACGGAAGGTTTCTTGGAGCTGACT -ACGGAAGGTTTCTTGGAGCAACCT -ACGGAAGGTTTCTTGGAGGCTACT -ACGGAAGGTTTCTTGGAGGGATCT -ACGGAAGGTTTCTTGGAGAAGGCT -ACGGAAGGTTTCTTGGAGTCAACC -ACGGAAGGTTTCTTGGAGTGTTCC -ACGGAAGGTTTCTTGGAGATTCCC -ACGGAAGGTTTCTTGGAGTTCTCG -ACGGAAGGTTTCTTGGAGTAGACG -ACGGAAGGTTTCTTGGAGGTAACG -ACGGAAGGTTTCTTGGAGACTTCG -ACGGAAGGTTTCTTGGAGTACGCA -ACGGAAGGTTTCTTGGAGCTTGCA -ACGGAAGGTTTCTTGGAGCGAACA -ACGGAAGGTTTCTTGGAGCAGTCA -ACGGAAGGTTTCTTGGAGGATCCA -ACGGAAGGTTTCTTGGAGACGACA -ACGGAAGGTTTCTTGGAGAGCTCA -ACGGAAGGTTTCTTGGAGTCACGT -ACGGAAGGTTTCTTGGAGCGTAGT -ACGGAAGGTTTCTTGGAGGTCAGT -ACGGAAGGTTTCTTGGAGGAAGGT -ACGGAAGGTTTCTTGGAGAACCGT -ACGGAAGGTTTCTTGGAGTTGTGC -ACGGAAGGTTTCTTGGAGCTAAGC -ACGGAAGGTTTCTTGGAGACTAGC -ACGGAAGGTTTCTTGGAGAGATGC -ACGGAAGGTTTCTTGGAGTGAAGG -ACGGAAGGTTTCTTGGAGCAATGG -ACGGAAGGTTTCTTGGAGATGAGG -ACGGAAGGTTTCTTGGAGAATGGG -ACGGAAGGTTTCTTGGAGTCCTGA -ACGGAAGGTTTCTTGGAGTAGCGA -ACGGAAGGTTTCTTGGAGCACAGA -ACGGAAGGTTTCTTGGAGGCAAGA -ACGGAAGGTTTCTTGGAGGGTTGA -ACGGAAGGTTTCTTGGAGTCCGAT -ACGGAAGGTTTCTTGGAGTGGCAT -ACGGAAGGTTTCTTGGAGCGAGAT -ACGGAAGGTTTCTTGGAGTACCAC -ACGGAAGGTTTCTTGGAGCAGAAC -ACGGAAGGTTTCTTGGAGGTCTAC -ACGGAAGGTTTCTTGGAGACGTAC -ACGGAAGGTTTCTTGGAGAGTGAC -ACGGAAGGTTTCTTGGAGCTGTAG -ACGGAAGGTTTCTTGGAGCCTAAG -ACGGAAGGTTTCTTGGAGGTTCAG -ACGGAAGGTTTCTTGGAGGCATAG -ACGGAAGGTTTCTTGGAGGACAAG -ACGGAAGGTTTCTTGGAGAAGCAG -ACGGAAGGTTTCTTGGAGCGTCAA -ACGGAAGGTTTCTTGGAGGCTGAA -ACGGAAGGTTTCTTGGAGAGTACG -ACGGAAGGTTTCTTGGAGATCCGA -ACGGAAGGTTTCTTGGAGATGGGA -ACGGAAGGTTTCTTGGAGGTGCAA -ACGGAAGGTTTCTTGGAGGAGGAA -ACGGAAGGTTTCTTGGAGCAGGTA -ACGGAAGGTTTCTTGGAGGACTCT -ACGGAAGGTTTCTTGGAGAGTCCT -ACGGAAGGTTTCTTGGAGTAAGCC -ACGGAAGGTTTCTTGGAGATAGCC -ACGGAAGGTTTCTTGGAGTAACCG -ACGGAAGGTTTCTTGGAGATGCCA -ACGGAAGGTTTCCTGAGAGGAAAC -ACGGAAGGTTTCCTGAGAAACACC -ACGGAAGGTTTCCTGAGAATCGAG -ACGGAAGGTTTCCTGAGACTCCTT -ACGGAAGGTTTCCTGAGACCTGTT -ACGGAAGGTTTCCTGAGACGGTTT -ACGGAAGGTTTCCTGAGAGTGGTT -ACGGAAGGTTTCCTGAGAGCCTTT -ACGGAAGGTTTCCTGAGAGGTCTT -ACGGAAGGTTTCCTGAGAACGCTT -ACGGAAGGTTTCCTGAGAAGCGTT -ACGGAAGGTTTCCTGAGATTCGTC -ACGGAAGGTTTCCTGAGATCTCTC -ACGGAAGGTTTCCTGAGATGGATC -ACGGAAGGTTTCCTGAGACACTTC -ACGGAAGGTTTCCTGAGAGTACTC -ACGGAAGGTTTCCTGAGAGATGTC -ACGGAAGGTTTCCTGAGAACAGTC -ACGGAAGGTTTCCTGAGATTGCTG -ACGGAAGGTTTCCTGAGATCCATG -ACGGAAGGTTTCCTGAGATGTGTG -ACGGAAGGTTTCCTGAGACTAGTG -ACGGAAGGTTTCCTGAGACATCTG -ACGGAAGGTTTCCTGAGAGAGTTG -ACGGAAGGTTTCCTGAGAAGACTG -ACGGAAGGTTTCCTGAGATCGGTA -ACGGAAGGTTTCCTGAGATGCCTA -ACGGAAGGTTTCCTGAGACCACTA -ACGGAAGGTTTCCTGAGAGGAGTA -ACGGAAGGTTTCCTGAGATCGTCT -ACGGAAGGTTTCCTGAGATGCACT -ACGGAAGGTTTCCTGAGACTGACT -ACGGAAGGTTTCCTGAGACAACCT -ACGGAAGGTTTCCTGAGAGCTACT -ACGGAAGGTTTCCTGAGAGGATCT -ACGGAAGGTTTCCTGAGAAAGGCT -ACGGAAGGTTTCCTGAGATCAACC -ACGGAAGGTTTCCTGAGATGTTCC -ACGGAAGGTTTCCTGAGAATTCCC -ACGGAAGGTTTCCTGAGATTCTCG -ACGGAAGGTTTCCTGAGATAGACG -ACGGAAGGTTTCCTGAGAGTAACG -ACGGAAGGTTTCCTGAGAACTTCG -ACGGAAGGTTTCCTGAGATACGCA -ACGGAAGGTTTCCTGAGACTTGCA -ACGGAAGGTTTCCTGAGACGAACA -ACGGAAGGTTTCCTGAGACAGTCA -ACGGAAGGTTTCCTGAGAGATCCA -ACGGAAGGTTTCCTGAGAACGACA -ACGGAAGGTTTCCTGAGAAGCTCA -ACGGAAGGTTTCCTGAGATCACGT -ACGGAAGGTTTCCTGAGACGTAGT -ACGGAAGGTTTCCTGAGAGTCAGT -ACGGAAGGTTTCCTGAGAGAAGGT -ACGGAAGGTTTCCTGAGAAACCGT -ACGGAAGGTTTCCTGAGATTGTGC -ACGGAAGGTTTCCTGAGACTAAGC -ACGGAAGGTTTCCTGAGAACTAGC -ACGGAAGGTTTCCTGAGAAGATGC -ACGGAAGGTTTCCTGAGATGAAGG -ACGGAAGGTTTCCTGAGACAATGG -ACGGAAGGTTTCCTGAGAATGAGG -ACGGAAGGTTTCCTGAGAAATGGG -ACGGAAGGTTTCCTGAGATCCTGA -ACGGAAGGTTTCCTGAGATAGCGA -ACGGAAGGTTTCCTGAGACACAGA -ACGGAAGGTTTCCTGAGAGCAAGA -ACGGAAGGTTTCCTGAGAGGTTGA -ACGGAAGGTTTCCTGAGATCCGAT -ACGGAAGGTTTCCTGAGATGGCAT -ACGGAAGGTTTCCTGAGACGAGAT -ACGGAAGGTTTCCTGAGATACCAC -ACGGAAGGTTTCCTGAGACAGAAC -ACGGAAGGTTTCCTGAGAGTCTAC -ACGGAAGGTTTCCTGAGAACGTAC -ACGGAAGGTTTCCTGAGAAGTGAC -ACGGAAGGTTTCCTGAGACTGTAG -ACGGAAGGTTTCCTGAGACCTAAG -ACGGAAGGTTTCCTGAGAGTTCAG -ACGGAAGGTTTCCTGAGAGCATAG -ACGGAAGGTTTCCTGAGAGACAAG -ACGGAAGGTTTCCTGAGAAAGCAG -ACGGAAGGTTTCCTGAGACGTCAA -ACGGAAGGTTTCCTGAGAGCTGAA -ACGGAAGGTTTCCTGAGAAGTACG -ACGGAAGGTTTCCTGAGAATCCGA -ACGGAAGGTTTCCTGAGAATGGGA -ACGGAAGGTTTCCTGAGAGTGCAA -ACGGAAGGTTTCCTGAGAGAGGAA -ACGGAAGGTTTCCTGAGACAGGTA -ACGGAAGGTTTCCTGAGAGACTCT -ACGGAAGGTTTCCTGAGAAGTCCT -ACGGAAGGTTTCCTGAGATAAGCC -ACGGAAGGTTTCCTGAGAATAGCC -ACGGAAGGTTTCCTGAGATAACCG -ACGGAAGGTTTCCTGAGAATGCCA -ACGGAAGGTTTCGTATCGGGAAAC -ACGGAAGGTTTCGTATCGAACACC -ACGGAAGGTTTCGTATCGATCGAG -ACGGAAGGTTTCGTATCGCTCCTT -ACGGAAGGTTTCGTATCGCCTGTT -ACGGAAGGTTTCGTATCGCGGTTT -ACGGAAGGTTTCGTATCGGTGGTT -ACGGAAGGTTTCGTATCGGCCTTT -ACGGAAGGTTTCGTATCGGGTCTT -ACGGAAGGTTTCGTATCGACGCTT -ACGGAAGGTTTCGTATCGAGCGTT -ACGGAAGGTTTCGTATCGTTCGTC -ACGGAAGGTTTCGTATCGTCTCTC -ACGGAAGGTTTCGTATCGTGGATC -ACGGAAGGTTTCGTATCGCACTTC -ACGGAAGGTTTCGTATCGGTACTC -ACGGAAGGTTTCGTATCGGATGTC -ACGGAAGGTTTCGTATCGACAGTC -ACGGAAGGTTTCGTATCGTTGCTG -ACGGAAGGTTTCGTATCGTCCATG -ACGGAAGGTTTCGTATCGTGTGTG -ACGGAAGGTTTCGTATCGCTAGTG -ACGGAAGGTTTCGTATCGCATCTG -ACGGAAGGTTTCGTATCGGAGTTG -ACGGAAGGTTTCGTATCGAGACTG -ACGGAAGGTTTCGTATCGTCGGTA -ACGGAAGGTTTCGTATCGTGCCTA -ACGGAAGGTTTCGTATCGCCACTA -ACGGAAGGTTTCGTATCGGGAGTA -ACGGAAGGTTTCGTATCGTCGTCT -ACGGAAGGTTTCGTATCGTGCACT -ACGGAAGGTTTCGTATCGCTGACT -ACGGAAGGTTTCGTATCGCAACCT -ACGGAAGGTTTCGTATCGGCTACT -ACGGAAGGTTTCGTATCGGGATCT -ACGGAAGGTTTCGTATCGAAGGCT -ACGGAAGGTTTCGTATCGTCAACC -ACGGAAGGTTTCGTATCGTGTTCC -ACGGAAGGTTTCGTATCGATTCCC -ACGGAAGGTTTCGTATCGTTCTCG -ACGGAAGGTTTCGTATCGTAGACG -ACGGAAGGTTTCGTATCGGTAACG -ACGGAAGGTTTCGTATCGACTTCG -ACGGAAGGTTTCGTATCGTACGCA -ACGGAAGGTTTCGTATCGCTTGCA -ACGGAAGGTTTCGTATCGCGAACA -ACGGAAGGTTTCGTATCGCAGTCA -ACGGAAGGTTTCGTATCGGATCCA -ACGGAAGGTTTCGTATCGACGACA -ACGGAAGGTTTCGTATCGAGCTCA -ACGGAAGGTTTCGTATCGTCACGT -ACGGAAGGTTTCGTATCGCGTAGT -ACGGAAGGTTTCGTATCGGTCAGT -ACGGAAGGTTTCGTATCGGAAGGT -ACGGAAGGTTTCGTATCGAACCGT -ACGGAAGGTTTCGTATCGTTGTGC -ACGGAAGGTTTCGTATCGCTAAGC -ACGGAAGGTTTCGTATCGACTAGC -ACGGAAGGTTTCGTATCGAGATGC -ACGGAAGGTTTCGTATCGTGAAGG -ACGGAAGGTTTCGTATCGCAATGG -ACGGAAGGTTTCGTATCGATGAGG -ACGGAAGGTTTCGTATCGAATGGG -ACGGAAGGTTTCGTATCGTCCTGA -ACGGAAGGTTTCGTATCGTAGCGA -ACGGAAGGTTTCGTATCGCACAGA -ACGGAAGGTTTCGTATCGGCAAGA -ACGGAAGGTTTCGTATCGGGTTGA -ACGGAAGGTTTCGTATCGTCCGAT -ACGGAAGGTTTCGTATCGTGGCAT -ACGGAAGGTTTCGTATCGCGAGAT -ACGGAAGGTTTCGTATCGTACCAC -ACGGAAGGTTTCGTATCGCAGAAC -ACGGAAGGTTTCGTATCGGTCTAC -ACGGAAGGTTTCGTATCGACGTAC -ACGGAAGGTTTCGTATCGAGTGAC -ACGGAAGGTTTCGTATCGCTGTAG -ACGGAAGGTTTCGTATCGCCTAAG -ACGGAAGGTTTCGTATCGGTTCAG -ACGGAAGGTTTCGTATCGGCATAG -ACGGAAGGTTTCGTATCGGACAAG -ACGGAAGGTTTCGTATCGAAGCAG -ACGGAAGGTTTCGTATCGCGTCAA -ACGGAAGGTTTCGTATCGGCTGAA -ACGGAAGGTTTCGTATCGAGTACG -ACGGAAGGTTTCGTATCGATCCGA -ACGGAAGGTTTCGTATCGATGGGA -ACGGAAGGTTTCGTATCGGTGCAA -ACGGAAGGTTTCGTATCGGAGGAA -ACGGAAGGTTTCGTATCGCAGGTA -ACGGAAGGTTTCGTATCGGACTCT -ACGGAAGGTTTCGTATCGAGTCCT -ACGGAAGGTTTCGTATCGTAAGCC -ACGGAAGGTTTCGTATCGATAGCC -ACGGAAGGTTTCGTATCGTAACCG -ACGGAAGGTTTCGTATCGATGCCA -ACGGAAGGTTTCCTATGCGGAAAC -ACGGAAGGTTTCCTATGCAACACC -ACGGAAGGTTTCCTATGCATCGAG -ACGGAAGGTTTCCTATGCCTCCTT -ACGGAAGGTTTCCTATGCCCTGTT -ACGGAAGGTTTCCTATGCCGGTTT -ACGGAAGGTTTCCTATGCGTGGTT -ACGGAAGGTTTCCTATGCGCCTTT -ACGGAAGGTTTCCTATGCGGTCTT -ACGGAAGGTTTCCTATGCACGCTT -ACGGAAGGTTTCCTATGCAGCGTT -ACGGAAGGTTTCCTATGCTTCGTC -ACGGAAGGTTTCCTATGCTCTCTC -ACGGAAGGTTTCCTATGCTGGATC -ACGGAAGGTTTCCTATGCCACTTC -ACGGAAGGTTTCCTATGCGTACTC -ACGGAAGGTTTCCTATGCGATGTC -ACGGAAGGTTTCCTATGCACAGTC -ACGGAAGGTTTCCTATGCTTGCTG -ACGGAAGGTTTCCTATGCTCCATG -ACGGAAGGTTTCCTATGCTGTGTG -ACGGAAGGTTTCCTATGCCTAGTG -ACGGAAGGTTTCCTATGCCATCTG -ACGGAAGGTTTCCTATGCGAGTTG -ACGGAAGGTTTCCTATGCAGACTG -ACGGAAGGTTTCCTATGCTCGGTA -ACGGAAGGTTTCCTATGCTGCCTA -ACGGAAGGTTTCCTATGCCCACTA -ACGGAAGGTTTCCTATGCGGAGTA -ACGGAAGGTTTCCTATGCTCGTCT -ACGGAAGGTTTCCTATGCTGCACT -ACGGAAGGTTTCCTATGCCTGACT -ACGGAAGGTTTCCTATGCCAACCT -ACGGAAGGTTTCCTATGCGCTACT -ACGGAAGGTTTCCTATGCGGATCT -ACGGAAGGTTTCCTATGCAAGGCT -ACGGAAGGTTTCCTATGCTCAACC -ACGGAAGGTTTCCTATGCTGTTCC -ACGGAAGGTTTCCTATGCATTCCC -ACGGAAGGTTTCCTATGCTTCTCG -ACGGAAGGTTTCCTATGCTAGACG -ACGGAAGGTTTCCTATGCGTAACG -ACGGAAGGTTTCCTATGCACTTCG -ACGGAAGGTTTCCTATGCTACGCA -ACGGAAGGTTTCCTATGCCTTGCA -ACGGAAGGTTTCCTATGCCGAACA -ACGGAAGGTTTCCTATGCCAGTCA -ACGGAAGGTTTCCTATGCGATCCA -ACGGAAGGTTTCCTATGCACGACA -ACGGAAGGTTTCCTATGCAGCTCA -ACGGAAGGTTTCCTATGCTCACGT -ACGGAAGGTTTCCTATGCCGTAGT -ACGGAAGGTTTCCTATGCGTCAGT -ACGGAAGGTTTCCTATGCGAAGGT -ACGGAAGGTTTCCTATGCAACCGT -ACGGAAGGTTTCCTATGCTTGTGC -ACGGAAGGTTTCCTATGCCTAAGC -ACGGAAGGTTTCCTATGCACTAGC -ACGGAAGGTTTCCTATGCAGATGC -ACGGAAGGTTTCCTATGCTGAAGG -ACGGAAGGTTTCCTATGCCAATGG -ACGGAAGGTTTCCTATGCATGAGG -ACGGAAGGTTTCCTATGCAATGGG -ACGGAAGGTTTCCTATGCTCCTGA -ACGGAAGGTTTCCTATGCTAGCGA -ACGGAAGGTTTCCTATGCCACAGA -ACGGAAGGTTTCCTATGCGCAAGA -ACGGAAGGTTTCCTATGCGGTTGA -ACGGAAGGTTTCCTATGCTCCGAT -ACGGAAGGTTTCCTATGCTGGCAT -ACGGAAGGTTTCCTATGCCGAGAT -ACGGAAGGTTTCCTATGCTACCAC -ACGGAAGGTTTCCTATGCCAGAAC -ACGGAAGGTTTCCTATGCGTCTAC -ACGGAAGGTTTCCTATGCACGTAC -ACGGAAGGTTTCCTATGCAGTGAC -ACGGAAGGTTTCCTATGCCTGTAG -ACGGAAGGTTTCCTATGCCCTAAG -ACGGAAGGTTTCCTATGCGTTCAG -ACGGAAGGTTTCCTATGCGCATAG -ACGGAAGGTTTCCTATGCGACAAG -ACGGAAGGTTTCCTATGCAAGCAG -ACGGAAGGTTTCCTATGCCGTCAA -ACGGAAGGTTTCCTATGCGCTGAA -ACGGAAGGTTTCCTATGCAGTACG -ACGGAAGGTTTCCTATGCATCCGA -ACGGAAGGTTTCCTATGCATGGGA -ACGGAAGGTTTCCTATGCGTGCAA -ACGGAAGGTTTCCTATGCGAGGAA -ACGGAAGGTTTCCTATGCCAGGTA -ACGGAAGGTTTCCTATGCGACTCT -ACGGAAGGTTTCCTATGCAGTCCT -ACGGAAGGTTTCCTATGCTAAGCC -ACGGAAGGTTTCCTATGCATAGCC -ACGGAAGGTTTCCTATGCTAACCG -ACGGAAGGTTTCCTATGCATGCCA -ACGGAAGGTTTCCTACCAGGAAAC -ACGGAAGGTTTCCTACCAAACACC -ACGGAAGGTTTCCTACCAATCGAG -ACGGAAGGTTTCCTACCACTCCTT -ACGGAAGGTTTCCTACCACCTGTT -ACGGAAGGTTTCCTACCACGGTTT -ACGGAAGGTTTCCTACCAGTGGTT -ACGGAAGGTTTCCTACCAGCCTTT -ACGGAAGGTTTCCTACCAGGTCTT -ACGGAAGGTTTCCTACCAACGCTT -ACGGAAGGTTTCCTACCAAGCGTT -ACGGAAGGTTTCCTACCATTCGTC -ACGGAAGGTTTCCTACCATCTCTC -ACGGAAGGTTTCCTACCATGGATC -ACGGAAGGTTTCCTACCACACTTC -ACGGAAGGTTTCCTACCAGTACTC -ACGGAAGGTTTCCTACCAGATGTC -ACGGAAGGTTTCCTACCAACAGTC -ACGGAAGGTTTCCTACCATTGCTG -ACGGAAGGTTTCCTACCATCCATG -ACGGAAGGTTTCCTACCATGTGTG -ACGGAAGGTTTCCTACCACTAGTG -ACGGAAGGTTTCCTACCACATCTG -ACGGAAGGTTTCCTACCAGAGTTG -ACGGAAGGTTTCCTACCAAGACTG -ACGGAAGGTTTCCTACCATCGGTA -ACGGAAGGTTTCCTACCATGCCTA -ACGGAAGGTTTCCTACCACCACTA -ACGGAAGGTTTCCTACCAGGAGTA -ACGGAAGGTTTCCTACCATCGTCT -ACGGAAGGTTTCCTACCATGCACT -ACGGAAGGTTTCCTACCACTGACT -ACGGAAGGTTTCCTACCACAACCT -ACGGAAGGTTTCCTACCAGCTACT -ACGGAAGGTTTCCTACCAGGATCT -ACGGAAGGTTTCCTACCAAAGGCT -ACGGAAGGTTTCCTACCATCAACC -ACGGAAGGTTTCCTACCATGTTCC -ACGGAAGGTTTCCTACCAATTCCC -ACGGAAGGTTTCCTACCATTCTCG -ACGGAAGGTTTCCTACCATAGACG -ACGGAAGGTTTCCTACCAGTAACG -ACGGAAGGTTTCCTACCAACTTCG -ACGGAAGGTTTCCTACCATACGCA -ACGGAAGGTTTCCTACCACTTGCA -ACGGAAGGTTTCCTACCACGAACA -ACGGAAGGTTTCCTACCACAGTCA -ACGGAAGGTTTCCTACCAGATCCA -ACGGAAGGTTTCCTACCAACGACA -ACGGAAGGTTTCCTACCAAGCTCA -ACGGAAGGTTTCCTACCATCACGT -ACGGAAGGTTTCCTACCACGTAGT -ACGGAAGGTTTCCTACCAGTCAGT -ACGGAAGGTTTCCTACCAGAAGGT -ACGGAAGGTTTCCTACCAAACCGT -ACGGAAGGTTTCCTACCATTGTGC -ACGGAAGGTTTCCTACCACTAAGC -ACGGAAGGTTTCCTACCAACTAGC -ACGGAAGGTTTCCTACCAAGATGC -ACGGAAGGTTTCCTACCATGAAGG -ACGGAAGGTTTCCTACCACAATGG -ACGGAAGGTTTCCTACCAATGAGG -ACGGAAGGTTTCCTACCAAATGGG -ACGGAAGGTTTCCTACCATCCTGA -ACGGAAGGTTTCCTACCATAGCGA -ACGGAAGGTTTCCTACCACACAGA -ACGGAAGGTTTCCTACCAGCAAGA -ACGGAAGGTTTCCTACCAGGTTGA -ACGGAAGGTTTCCTACCATCCGAT -ACGGAAGGTTTCCTACCATGGCAT -ACGGAAGGTTTCCTACCACGAGAT -ACGGAAGGTTTCCTACCATACCAC -ACGGAAGGTTTCCTACCACAGAAC -ACGGAAGGTTTCCTACCAGTCTAC -ACGGAAGGTTTCCTACCAACGTAC -ACGGAAGGTTTCCTACCAAGTGAC -ACGGAAGGTTTCCTACCACTGTAG -ACGGAAGGTTTCCTACCACCTAAG -ACGGAAGGTTTCCTACCAGTTCAG -ACGGAAGGTTTCCTACCAGCATAG -ACGGAAGGTTTCCTACCAGACAAG -ACGGAAGGTTTCCTACCAAAGCAG -ACGGAAGGTTTCCTACCACGTCAA -ACGGAAGGTTTCCTACCAGCTGAA -ACGGAAGGTTTCCTACCAAGTACG -ACGGAAGGTTTCCTACCAATCCGA -ACGGAAGGTTTCCTACCAATGGGA -ACGGAAGGTTTCCTACCAGTGCAA -ACGGAAGGTTTCCTACCAGAGGAA -ACGGAAGGTTTCCTACCACAGGTA -ACGGAAGGTTTCCTACCAGACTCT -ACGGAAGGTTTCCTACCAAGTCCT -ACGGAAGGTTTCCTACCATAAGCC -ACGGAAGGTTTCCTACCAATAGCC -ACGGAAGGTTTCCTACCATAACCG -ACGGAAGGTTTCCTACCAATGCCA -ACGGAAGGTTTCGTAGGAGGAAAC -ACGGAAGGTTTCGTAGGAAACACC -ACGGAAGGTTTCGTAGGAATCGAG -ACGGAAGGTTTCGTAGGACTCCTT -ACGGAAGGTTTCGTAGGACCTGTT -ACGGAAGGTTTCGTAGGACGGTTT -ACGGAAGGTTTCGTAGGAGTGGTT -ACGGAAGGTTTCGTAGGAGCCTTT -ACGGAAGGTTTCGTAGGAGGTCTT -ACGGAAGGTTTCGTAGGAACGCTT -ACGGAAGGTTTCGTAGGAAGCGTT -ACGGAAGGTTTCGTAGGATTCGTC -ACGGAAGGTTTCGTAGGATCTCTC -ACGGAAGGTTTCGTAGGATGGATC -ACGGAAGGTTTCGTAGGACACTTC -ACGGAAGGTTTCGTAGGAGTACTC -ACGGAAGGTTTCGTAGGAGATGTC -ACGGAAGGTTTCGTAGGAACAGTC -ACGGAAGGTTTCGTAGGATTGCTG -ACGGAAGGTTTCGTAGGATCCATG -ACGGAAGGTTTCGTAGGATGTGTG -ACGGAAGGTTTCGTAGGACTAGTG -ACGGAAGGTTTCGTAGGACATCTG -ACGGAAGGTTTCGTAGGAGAGTTG -ACGGAAGGTTTCGTAGGAAGACTG -ACGGAAGGTTTCGTAGGATCGGTA -ACGGAAGGTTTCGTAGGATGCCTA -ACGGAAGGTTTCGTAGGACCACTA -ACGGAAGGTTTCGTAGGAGGAGTA -ACGGAAGGTTTCGTAGGATCGTCT -ACGGAAGGTTTCGTAGGATGCACT -ACGGAAGGTTTCGTAGGACTGACT -ACGGAAGGTTTCGTAGGACAACCT -ACGGAAGGTTTCGTAGGAGCTACT -ACGGAAGGTTTCGTAGGAGGATCT -ACGGAAGGTTTCGTAGGAAAGGCT -ACGGAAGGTTTCGTAGGATCAACC -ACGGAAGGTTTCGTAGGATGTTCC -ACGGAAGGTTTCGTAGGAATTCCC -ACGGAAGGTTTCGTAGGATTCTCG -ACGGAAGGTTTCGTAGGATAGACG -ACGGAAGGTTTCGTAGGAGTAACG -ACGGAAGGTTTCGTAGGAACTTCG -ACGGAAGGTTTCGTAGGATACGCA -ACGGAAGGTTTCGTAGGACTTGCA -ACGGAAGGTTTCGTAGGACGAACA -ACGGAAGGTTTCGTAGGACAGTCA -ACGGAAGGTTTCGTAGGAGATCCA -ACGGAAGGTTTCGTAGGAACGACA -ACGGAAGGTTTCGTAGGAAGCTCA -ACGGAAGGTTTCGTAGGATCACGT -ACGGAAGGTTTCGTAGGACGTAGT -ACGGAAGGTTTCGTAGGAGTCAGT -ACGGAAGGTTTCGTAGGAGAAGGT -ACGGAAGGTTTCGTAGGAAACCGT -ACGGAAGGTTTCGTAGGATTGTGC -ACGGAAGGTTTCGTAGGACTAAGC -ACGGAAGGTTTCGTAGGAACTAGC -ACGGAAGGTTTCGTAGGAAGATGC -ACGGAAGGTTTCGTAGGATGAAGG -ACGGAAGGTTTCGTAGGACAATGG -ACGGAAGGTTTCGTAGGAATGAGG -ACGGAAGGTTTCGTAGGAAATGGG -ACGGAAGGTTTCGTAGGATCCTGA -ACGGAAGGTTTCGTAGGATAGCGA -ACGGAAGGTTTCGTAGGACACAGA -ACGGAAGGTTTCGTAGGAGCAAGA -ACGGAAGGTTTCGTAGGAGGTTGA -ACGGAAGGTTTCGTAGGATCCGAT -ACGGAAGGTTTCGTAGGATGGCAT -ACGGAAGGTTTCGTAGGACGAGAT -ACGGAAGGTTTCGTAGGATACCAC -ACGGAAGGTTTCGTAGGACAGAAC -ACGGAAGGTTTCGTAGGAGTCTAC -ACGGAAGGTTTCGTAGGAACGTAC -ACGGAAGGTTTCGTAGGAAGTGAC -ACGGAAGGTTTCGTAGGACTGTAG -ACGGAAGGTTTCGTAGGACCTAAG -ACGGAAGGTTTCGTAGGAGTTCAG -ACGGAAGGTTTCGTAGGAGCATAG -ACGGAAGGTTTCGTAGGAGACAAG -ACGGAAGGTTTCGTAGGAAAGCAG -ACGGAAGGTTTCGTAGGACGTCAA -ACGGAAGGTTTCGTAGGAGCTGAA -ACGGAAGGTTTCGTAGGAAGTACG -ACGGAAGGTTTCGTAGGAATCCGA -ACGGAAGGTTTCGTAGGAATGGGA -ACGGAAGGTTTCGTAGGAGTGCAA -ACGGAAGGTTTCGTAGGAGAGGAA -ACGGAAGGTTTCGTAGGACAGGTA -ACGGAAGGTTTCGTAGGAGACTCT -ACGGAAGGTTTCGTAGGAAGTCCT -ACGGAAGGTTTCGTAGGATAAGCC -ACGGAAGGTTTCGTAGGAATAGCC -ACGGAAGGTTTCGTAGGATAACCG -ACGGAAGGTTTCGTAGGAATGCCA -ACGGAAGGTTTCTCTTCGGGAAAC -ACGGAAGGTTTCTCTTCGAACACC -ACGGAAGGTTTCTCTTCGATCGAG -ACGGAAGGTTTCTCTTCGCTCCTT -ACGGAAGGTTTCTCTTCGCCTGTT -ACGGAAGGTTTCTCTTCGCGGTTT -ACGGAAGGTTTCTCTTCGGTGGTT -ACGGAAGGTTTCTCTTCGGCCTTT -ACGGAAGGTTTCTCTTCGGGTCTT -ACGGAAGGTTTCTCTTCGACGCTT -ACGGAAGGTTTCTCTTCGAGCGTT -ACGGAAGGTTTCTCTTCGTTCGTC -ACGGAAGGTTTCTCTTCGTCTCTC -ACGGAAGGTTTCTCTTCGTGGATC -ACGGAAGGTTTCTCTTCGCACTTC -ACGGAAGGTTTCTCTTCGGTACTC -ACGGAAGGTTTCTCTTCGGATGTC -ACGGAAGGTTTCTCTTCGACAGTC -ACGGAAGGTTTCTCTTCGTTGCTG -ACGGAAGGTTTCTCTTCGTCCATG -ACGGAAGGTTTCTCTTCGTGTGTG -ACGGAAGGTTTCTCTTCGCTAGTG -ACGGAAGGTTTCTCTTCGCATCTG -ACGGAAGGTTTCTCTTCGGAGTTG -ACGGAAGGTTTCTCTTCGAGACTG -ACGGAAGGTTTCTCTTCGTCGGTA -ACGGAAGGTTTCTCTTCGTGCCTA -ACGGAAGGTTTCTCTTCGCCACTA -ACGGAAGGTTTCTCTTCGGGAGTA -ACGGAAGGTTTCTCTTCGTCGTCT -ACGGAAGGTTTCTCTTCGTGCACT -ACGGAAGGTTTCTCTTCGCTGACT -ACGGAAGGTTTCTCTTCGCAACCT -ACGGAAGGTTTCTCTTCGGCTACT -ACGGAAGGTTTCTCTTCGGGATCT -ACGGAAGGTTTCTCTTCGAAGGCT -ACGGAAGGTTTCTCTTCGTCAACC -ACGGAAGGTTTCTCTTCGTGTTCC -ACGGAAGGTTTCTCTTCGATTCCC -ACGGAAGGTTTCTCTTCGTTCTCG -ACGGAAGGTTTCTCTTCGTAGACG -ACGGAAGGTTTCTCTTCGGTAACG -ACGGAAGGTTTCTCTTCGACTTCG -ACGGAAGGTTTCTCTTCGTACGCA -ACGGAAGGTTTCTCTTCGCTTGCA -ACGGAAGGTTTCTCTTCGCGAACA -ACGGAAGGTTTCTCTTCGCAGTCA -ACGGAAGGTTTCTCTTCGGATCCA -ACGGAAGGTTTCTCTTCGACGACA -ACGGAAGGTTTCTCTTCGAGCTCA -ACGGAAGGTTTCTCTTCGTCACGT -ACGGAAGGTTTCTCTTCGCGTAGT -ACGGAAGGTTTCTCTTCGGTCAGT -ACGGAAGGTTTCTCTTCGGAAGGT -ACGGAAGGTTTCTCTTCGAACCGT -ACGGAAGGTTTCTCTTCGTTGTGC -ACGGAAGGTTTCTCTTCGCTAAGC -ACGGAAGGTTTCTCTTCGACTAGC -ACGGAAGGTTTCTCTTCGAGATGC -ACGGAAGGTTTCTCTTCGTGAAGG -ACGGAAGGTTTCTCTTCGCAATGG -ACGGAAGGTTTCTCTTCGATGAGG -ACGGAAGGTTTCTCTTCGAATGGG -ACGGAAGGTTTCTCTTCGTCCTGA -ACGGAAGGTTTCTCTTCGTAGCGA -ACGGAAGGTTTCTCTTCGCACAGA -ACGGAAGGTTTCTCTTCGGCAAGA -ACGGAAGGTTTCTCTTCGGGTTGA -ACGGAAGGTTTCTCTTCGTCCGAT -ACGGAAGGTTTCTCTTCGTGGCAT -ACGGAAGGTTTCTCTTCGCGAGAT -ACGGAAGGTTTCTCTTCGTACCAC -ACGGAAGGTTTCTCTTCGCAGAAC -ACGGAAGGTTTCTCTTCGGTCTAC -ACGGAAGGTTTCTCTTCGACGTAC -ACGGAAGGTTTCTCTTCGAGTGAC -ACGGAAGGTTTCTCTTCGCTGTAG -ACGGAAGGTTTCTCTTCGCCTAAG -ACGGAAGGTTTCTCTTCGGTTCAG -ACGGAAGGTTTCTCTTCGGCATAG -ACGGAAGGTTTCTCTTCGGACAAG -ACGGAAGGTTTCTCTTCGAAGCAG -ACGGAAGGTTTCTCTTCGCGTCAA -ACGGAAGGTTTCTCTTCGGCTGAA -ACGGAAGGTTTCTCTTCGAGTACG -ACGGAAGGTTTCTCTTCGATCCGA -ACGGAAGGTTTCTCTTCGATGGGA -ACGGAAGGTTTCTCTTCGGTGCAA -ACGGAAGGTTTCTCTTCGGAGGAA -ACGGAAGGTTTCTCTTCGCAGGTA -ACGGAAGGTTTCTCTTCGGACTCT -ACGGAAGGTTTCTCTTCGAGTCCT -ACGGAAGGTTTCTCTTCGTAAGCC -ACGGAAGGTTTCTCTTCGATAGCC -ACGGAAGGTTTCTCTTCGTAACCG -ACGGAAGGTTTCTCTTCGATGCCA -ACGGAAGGTTTCACTTGCGGAAAC -ACGGAAGGTTTCACTTGCAACACC -ACGGAAGGTTTCACTTGCATCGAG -ACGGAAGGTTTCACTTGCCTCCTT -ACGGAAGGTTTCACTTGCCCTGTT -ACGGAAGGTTTCACTTGCCGGTTT -ACGGAAGGTTTCACTTGCGTGGTT -ACGGAAGGTTTCACTTGCGCCTTT -ACGGAAGGTTTCACTTGCGGTCTT -ACGGAAGGTTTCACTTGCACGCTT -ACGGAAGGTTTCACTTGCAGCGTT -ACGGAAGGTTTCACTTGCTTCGTC -ACGGAAGGTTTCACTTGCTCTCTC -ACGGAAGGTTTCACTTGCTGGATC -ACGGAAGGTTTCACTTGCCACTTC -ACGGAAGGTTTCACTTGCGTACTC -ACGGAAGGTTTCACTTGCGATGTC -ACGGAAGGTTTCACTTGCACAGTC -ACGGAAGGTTTCACTTGCTTGCTG -ACGGAAGGTTTCACTTGCTCCATG -ACGGAAGGTTTCACTTGCTGTGTG -ACGGAAGGTTTCACTTGCCTAGTG -ACGGAAGGTTTCACTTGCCATCTG -ACGGAAGGTTTCACTTGCGAGTTG -ACGGAAGGTTTCACTTGCAGACTG -ACGGAAGGTTTCACTTGCTCGGTA -ACGGAAGGTTTCACTTGCTGCCTA -ACGGAAGGTTTCACTTGCCCACTA -ACGGAAGGTTTCACTTGCGGAGTA -ACGGAAGGTTTCACTTGCTCGTCT -ACGGAAGGTTTCACTTGCTGCACT -ACGGAAGGTTTCACTTGCCTGACT -ACGGAAGGTTTCACTTGCCAACCT -ACGGAAGGTTTCACTTGCGCTACT -ACGGAAGGTTTCACTTGCGGATCT -ACGGAAGGTTTCACTTGCAAGGCT -ACGGAAGGTTTCACTTGCTCAACC -ACGGAAGGTTTCACTTGCTGTTCC -ACGGAAGGTTTCACTTGCATTCCC -ACGGAAGGTTTCACTTGCTTCTCG -ACGGAAGGTTTCACTTGCTAGACG -ACGGAAGGTTTCACTTGCGTAACG -ACGGAAGGTTTCACTTGCACTTCG -ACGGAAGGTTTCACTTGCTACGCA -ACGGAAGGTTTCACTTGCCTTGCA -ACGGAAGGTTTCACTTGCCGAACA -ACGGAAGGTTTCACTTGCCAGTCA -ACGGAAGGTTTCACTTGCGATCCA -ACGGAAGGTTTCACTTGCACGACA -ACGGAAGGTTTCACTTGCAGCTCA -ACGGAAGGTTTCACTTGCTCACGT -ACGGAAGGTTTCACTTGCCGTAGT -ACGGAAGGTTTCACTTGCGTCAGT -ACGGAAGGTTTCACTTGCGAAGGT -ACGGAAGGTTTCACTTGCAACCGT -ACGGAAGGTTTCACTTGCTTGTGC -ACGGAAGGTTTCACTTGCCTAAGC -ACGGAAGGTTTCACTTGCACTAGC -ACGGAAGGTTTCACTTGCAGATGC -ACGGAAGGTTTCACTTGCTGAAGG -ACGGAAGGTTTCACTTGCCAATGG -ACGGAAGGTTTCACTTGCATGAGG -ACGGAAGGTTTCACTTGCAATGGG -ACGGAAGGTTTCACTTGCTCCTGA -ACGGAAGGTTTCACTTGCTAGCGA -ACGGAAGGTTTCACTTGCCACAGA -ACGGAAGGTTTCACTTGCGCAAGA -ACGGAAGGTTTCACTTGCGGTTGA -ACGGAAGGTTTCACTTGCTCCGAT -ACGGAAGGTTTCACTTGCTGGCAT -ACGGAAGGTTTCACTTGCCGAGAT -ACGGAAGGTTTCACTTGCTACCAC -ACGGAAGGTTTCACTTGCCAGAAC -ACGGAAGGTTTCACTTGCGTCTAC -ACGGAAGGTTTCACTTGCACGTAC -ACGGAAGGTTTCACTTGCAGTGAC -ACGGAAGGTTTCACTTGCCTGTAG -ACGGAAGGTTTCACTTGCCCTAAG -ACGGAAGGTTTCACTTGCGTTCAG -ACGGAAGGTTTCACTTGCGCATAG -ACGGAAGGTTTCACTTGCGACAAG -ACGGAAGGTTTCACTTGCAAGCAG -ACGGAAGGTTTCACTTGCCGTCAA -ACGGAAGGTTTCACTTGCGCTGAA -ACGGAAGGTTTCACTTGCAGTACG -ACGGAAGGTTTCACTTGCATCCGA -ACGGAAGGTTTCACTTGCATGGGA -ACGGAAGGTTTCACTTGCGTGCAA -ACGGAAGGTTTCACTTGCGAGGAA -ACGGAAGGTTTCACTTGCCAGGTA -ACGGAAGGTTTCACTTGCGACTCT -ACGGAAGGTTTCACTTGCAGTCCT -ACGGAAGGTTTCACTTGCTAAGCC -ACGGAAGGTTTCACTTGCATAGCC -ACGGAAGGTTTCACTTGCTAACCG -ACGGAAGGTTTCACTTGCATGCCA -ACGGAAGGTTTCACTCTGGGAAAC -ACGGAAGGTTTCACTCTGAACACC -ACGGAAGGTTTCACTCTGATCGAG -ACGGAAGGTTTCACTCTGCTCCTT -ACGGAAGGTTTCACTCTGCCTGTT -ACGGAAGGTTTCACTCTGCGGTTT -ACGGAAGGTTTCACTCTGGTGGTT -ACGGAAGGTTTCACTCTGGCCTTT -ACGGAAGGTTTCACTCTGGGTCTT -ACGGAAGGTTTCACTCTGACGCTT -ACGGAAGGTTTCACTCTGAGCGTT -ACGGAAGGTTTCACTCTGTTCGTC -ACGGAAGGTTTCACTCTGTCTCTC -ACGGAAGGTTTCACTCTGTGGATC -ACGGAAGGTTTCACTCTGCACTTC -ACGGAAGGTTTCACTCTGGTACTC -ACGGAAGGTTTCACTCTGGATGTC -ACGGAAGGTTTCACTCTGACAGTC -ACGGAAGGTTTCACTCTGTTGCTG -ACGGAAGGTTTCACTCTGTCCATG -ACGGAAGGTTTCACTCTGTGTGTG -ACGGAAGGTTTCACTCTGCTAGTG -ACGGAAGGTTTCACTCTGCATCTG -ACGGAAGGTTTCACTCTGGAGTTG -ACGGAAGGTTTCACTCTGAGACTG -ACGGAAGGTTTCACTCTGTCGGTA -ACGGAAGGTTTCACTCTGTGCCTA -ACGGAAGGTTTCACTCTGCCACTA -ACGGAAGGTTTCACTCTGGGAGTA -ACGGAAGGTTTCACTCTGTCGTCT -ACGGAAGGTTTCACTCTGTGCACT -ACGGAAGGTTTCACTCTGCTGACT -ACGGAAGGTTTCACTCTGCAACCT -ACGGAAGGTTTCACTCTGGCTACT -ACGGAAGGTTTCACTCTGGGATCT -ACGGAAGGTTTCACTCTGAAGGCT -ACGGAAGGTTTCACTCTGTCAACC -ACGGAAGGTTTCACTCTGTGTTCC -ACGGAAGGTTTCACTCTGATTCCC -ACGGAAGGTTTCACTCTGTTCTCG -ACGGAAGGTTTCACTCTGTAGACG -ACGGAAGGTTTCACTCTGGTAACG -ACGGAAGGTTTCACTCTGACTTCG -ACGGAAGGTTTCACTCTGTACGCA -ACGGAAGGTTTCACTCTGCTTGCA -ACGGAAGGTTTCACTCTGCGAACA -ACGGAAGGTTTCACTCTGCAGTCA -ACGGAAGGTTTCACTCTGGATCCA -ACGGAAGGTTTCACTCTGACGACA -ACGGAAGGTTTCACTCTGAGCTCA -ACGGAAGGTTTCACTCTGTCACGT -ACGGAAGGTTTCACTCTGCGTAGT -ACGGAAGGTTTCACTCTGGTCAGT -ACGGAAGGTTTCACTCTGGAAGGT -ACGGAAGGTTTCACTCTGAACCGT -ACGGAAGGTTTCACTCTGTTGTGC -ACGGAAGGTTTCACTCTGCTAAGC -ACGGAAGGTTTCACTCTGACTAGC -ACGGAAGGTTTCACTCTGAGATGC -ACGGAAGGTTTCACTCTGTGAAGG -ACGGAAGGTTTCACTCTGCAATGG -ACGGAAGGTTTCACTCTGATGAGG -ACGGAAGGTTTCACTCTGAATGGG -ACGGAAGGTTTCACTCTGTCCTGA -ACGGAAGGTTTCACTCTGTAGCGA -ACGGAAGGTTTCACTCTGCACAGA -ACGGAAGGTTTCACTCTGGCAAGA -ACGGAAGGTTTCACTCTGGGTTGA -ACGGAAGGTTTCACTCTGTCCGAT -ACGGAAGGTTTCACTCTGTGGCAT -ACGGAAGGTTTCACTCTGCGAGAT -ACGGAAGGTTTCACTCTGTACCAC -ACGGAAGGTTTCACTCTGCAGAAC -ACGGAAGGTTTCACTCTGGTCTAC -ACGGAAGGTTTCACTCTGACGTAC -ACGGAAGGTTTCACTCTGAGTGAC -ACGGAAGGTTTCACTCTGCTGTAG -ACGGAAGGTTTCACTCTGCCTAAG -ACGGAAGGTTTCACTCTGGTTCAG -ACGGAAGGTTTCACTCTGGCATAG -ACGGAAGGTTTCACTCTGGACAAG -ACGGAAGGTTTCACTCTGAAGCAG -ACGGAAGGTTTCACTCTGCGTCAA -ACGGAAGGTTTCACTCTGGCTGAA -ACGGAAGGTTTCACTCTGAGTACG -ACGGAAGGTTTCACTCTGATCCGA -ACGGAAGGTTTCACTCTGATGGGA -ACGGAAGGTTTCACTCTGGTGCAA -ACGGAAGGTTTCACTCTGGAGGAA -ACGGAAGGTTTCACTCTGCAGGTA -ACGGAAGGTTTCACTCTGGACTCT -ACGGAAGGTTTCACTCTGAGTCCT -ACGGAAGGTTTCACTCTGTAAGCC -ACGGAAGGTTTCACTCTGATAGCC -ACGGAAGGTTTCACTCTGTAACCG -ACGGAAGGTTTCACTCTGATGCCA -ACGGAAGGTTTCCCTCAAGGAAAC -ACGGAAGGTTTCCCTCAAAACACC -ACGGAAGGTTTCCCTCAAATCGAG -ACGGAAGGTTTCCCTCAACTCCTT -ACGGAAGGTTTCCCTCAACCTGTT -ACGGAAGGTTTCCCTCAACGGTTT -ACGGAAGGTTTCCCTCAAGTGGTT -ACGGAAGGTTTCCCTCAAGCCTTT -ACGGAAGGTTTCCCTCAAGGTCTT -ACGGAAGGTTTCCCTCAAACGCTT -ACGGAAGGTTTCCCTCAAAGCGTT -ACGGAAGGTTTCCCTCAATTCGTC -ACGGAAGGTTTCCCTCAATCTCTC -ACGGAAGGTTTCCCTCAATGGATC -ACGGAAGGTTTCCCTCAACACTTC -ACGGAAGGTTTCCCTCAAGTACTC -ACGGAAGGTTTCCCTCAAGATGTC -ACGGAAGGTTTCCCTCAAACAGTC -ACGGAAGGTTTCCCTCAATTGCTG -ACGGAAGGTTTCCCTCAATCCATG -ACGGAAGGTTTCCCTCAATGTGTG -ACGGAAGGTTTCCCTCAACTAGTG -ACGGAAGGTTTCCCTCAACATCTG -ACGGAAGGTTTCCCTCAAGAGTTG -ACGGAAGGTTTCCCTCAAAGACTG -ACGGAAGGTTTCCCTCAATCGGTA -ACGGAAGGTTTCCCTCAATGCCTA -ACGGAAGGTTTCCCTCAACCACTA -ACGGAAGGTTTCCCTCAAGGAGTA -ACGGAAGGTTTCCCTCAATCGTCT -ACGGAAGGTTTCCCTCAATGCACT -ACGGAAGGTTTCCCTCAACTGACT -ACGGAAGGTTTCCCTCAACAACCT -ACGGAAGGTTTCCCTCAAGCTACT -ACGGAAGGTTTCCCTCAAGGATCT -ACGGAAGGTTTCCCTCAAAAGGCT -ACGGAAGGTTTCCCTCAATCAACC -ACGGAAGGTTTCCCTCAATGTTCC -ACGGAAGGTTTCCCTCAAATTCCC -ACGGAAGGTTTCCCTCAATTCTCG -ACGGAAGGTTTCCCTCAATAGACG -ACGGAAGGTTTCCCTCAAGTAACG -ACGGAAGGTTTCCCTCAAACTTCG -ACGGAAGGTTTCCCTCAATACGCA -ACGGAAGGTTTCCCTCAACTTGCA -ACGGAAGGTTTCCCTCAACGAACA -ACGGAAGGTTTCCCTCAACAGTCA -ACGGAAGGTTTCCCTCAAGATCCA -ACGGAAGGTTTCCCTCAAACGACA -ACGGAAGGTTTCCCTCAAAGCTCA -ACGGAAGGTTTCCCTCAATCACGT -ACGGAAGGTTTCCCTCAACGTAGT -ACGGAAGGTTTCCCTCAAGTCAGT -ACGGAAGGTTTCCCTCAAGAAGGT -ACGGAAGGTTTCCCTCAAAACCGT -ACGGAAGGTTTCCCTCAATTGTGC -ACGGAAGGTTTCCCTCAACTAAGC -ACGGAAGGTTTCCCTCAAACTAGC -ACGGAAGGTTTCCCTCAAAGATGC -ACGGAAGGTTTCCCTCAATGAAGG -ACGGAAGGTTTCCCTCAACAATGG -ACGGAAGGTTTCCCTCAAATGAGG -ACGGAAGGTTTCCCTCAAAATGGG -ACGGAAGGTTTCCCTCAATCCTGA -ACGGAAGGTTTCCCTCAATAGCGA -ACGGAAGGTTTCCCTCAACACAGA -ACGGAAGGTTTCCCTCAAGCAAGA -ACGGAAGGTTTCCCTCAAGGTTGA -ACGGAAGGTTTCCCTCAATCCGAT -ACGGAAGGTTTCCCTCAATGGCAT -ACGGAAGGTTTCCCTCAACGAGAT -ACGGAAGGTTTCCCTCAATACCAC -ACGGAAGGTTTCCCTCAACAGAAC -ACGGAAGGTTTCCCTCAAGTCTAC -ACGGAAGGTTTCCCTCAAACGTAC -ACGGAAGGTTTCCCTCAAAGTGAC -ACGGAAGGTTTCCCTCAACTGTAG -ACGGAAGGTTTCCCTCAACCTAAG -ACGGAAGGTTTCCCTCAAGTTCAG -ACGGAAGGTTTCCCTCAAGCATAG -ACGGAAGGTTTCCCTCAAGACAAG -ACGGAAGGTTTCCCTCAAAAGCAG -ACGGAAGGTTTCCCTCAACGTCAA -ACGGAAGGTTTCCCTCAAGCTGAA -ACGGAAGGTTTCCCTCAAAGTACG -ACGGAAGGTTTCCCTCAAATCCGA -ACGGAAGGTTTCCCTCAAATGGGA -ACGGAAGGTTTCCCTCAAGTGCAA -ACGGAAGGTTTCCCTCAAGAGGAA -ACGGAAGGTTTCCCTCAACAGGTA -ACGGAAGGTTTCCCTCAAGACTCT -ACGGAAGGTTTCCCTCAAAGTCCT -ACGGAAGGTTTCCCTCAATAAGCC -ACGGAAGGTTTCCCTCAAATAGCC -ACGGAAGGTTTCCCTCAATAACCG -ACGGAAGGTTTCCCTCAAATGCCA -ACGGAAGGTTTCACTGCTGGAAAC -ACGGAAGGTTTCACTGCTAACACC -ACGGAAGGTTTCACTGCTATCGAG -ACGGAAGGTTTCACTGCTCTCCTT -ACGGAAGGTTTCACTGCTCCTGTT -ACGGAAGGTTTCACTGCTCGGTTT -ACGGAAGGTTTCACTGCTGTGGTT -ACGGAAGGTTTCACTGCTGCCTTT -ACGGAAGGTTTCACTGCTGGTCTT -ACGGAAGGTTTCACTGCTACGCTT -ACGGAAGGTTTCACTGCTAGCGTT -ACGGAAGGTTTCACTGCTTTCGTC -ACGGAAGGTTTCACTGCTTCTCTC -ACGGAAGGTTTCACTGCTTGGATC -ACGGAAGGTTTCACTGCTCACTTC -ACGGAAGGTTTCACTGCTGTACTC -ACGGAAGGTTTCACTGCTGATGTC -ACGGAAGGTTTCACTGCTACAGTC -ACGGAAGGTTTCACTGCTTTGCTG -ACGGAAGGTTTCACTGCTTCCATG -ACGGAAGGTTTCACTGCTTGTGTG -ACGGAAGGTTTCACTGCTCTAGTG -ACGGAAGGTTTCACTGCTCATCTG -ACGGAAGGTTTCACTGCTGAGTTG -ACGGAAGGTTTCACTGCTAGACTG -ACGGAAGGTTTCACTGCTTCGGTA -ACGGAAGGTTTCACTGCTTGCCTA -ACGGAAGGTTTCACTGCTCCACTA -ACGGAAGGTTTCACTGCTGGAGTA -ACGGAAGGTTTCACTGCTTCGTCT -ACGGAAGGTTTCACTGCTTGCACT -ACGGAAGGTTTCACTGCTCTGACT -ACGGAAGGTTTCACTGCTCAACCT -ACGGAAGGTTTCACTGCTGCTACT -ACGGAAGGTTTCACTGCTGGATCT -ACGGAAGGTTTCACTGCTAAGGCT -ACGGAAGGTTTCACTGCTTCAACC -ACGGAAGGTTTCACTGCTTGTTCC -ACGGAAGGTTTCACTGCTATTCCC -ACGGAAGGTTTCACTGCTTTCTCG -ACGGAAGGTTTCACTGCTTAGACG -ACGGAAGGTTTCACTGCTGTAACG -ACGGAAGGTTTCACTGCTACTTCG -ACGGAAGGTTTCACTGCTTACGCA -ACGGAAGGTTTCACTGCTCTTGCA -ACGGAAGGTTTCACTGCTCGAACA -ACGGAAGGTTTCACTGCTCAGTCA -ACGGAAGGTTTCACTGCTGATCCA -ACGGAAGGTTTCACTGCTACGACA -ACGGAAGGTTTCACTGCTAGCTCA -ACGGAAGGTTTCACTGCTTCACGT -ACGGAAGGTTTCACTGCTCGTAGT -ACGGAAGGTTTCACTGCTGTCAGT -ACGGAAGGTTTCACTGCTGAAGGT -ACGGAAGGTTTCACTGCTAACCGT -ACGGAAGGTTTCACTGCTTTGTGC -ACGGAAGGTTTCACTGCTCTAAGC -ACGGAAGGTTTCACTGCTACTAGC -ACGGAAGGTTTCACTGCTAGATGC -ACGGAAGGTTTCACTGCTTGAAGG -ACGGAAGGTTTCACTGCTCAATGG -ACGGAAGGTTTCACTGCTATGAGG -ACGGAAGGTTTCACTGCTAATGGG -ACGGAAGGTTTCACTGCTTCCTGA -ACGGAAGGTTTCACTGCTTAGCGA -ACGGAAGGTTTCACTGCTCACAGA -ACGGAAGGTTTCACTGCTGCAAGA -ACGGAAGGTTTCACTGCTGGTTGA -ACGGAAGGTTTCACTGCTTCCGAT -ACGGAAGGTTTCACTGCTTGGCAT -ACGGAAGGTTTCACTGCTCGAGAT -ACGGAAGGTTTCACTGCTTACCAC -ACGGAAGGTTTCACTGCTCAGAAC -ACGGAAGGTTTCACTGCTGTCTAC -ACGGAAGGTTTCACTGCTACGTAC -ACGGAAGGTTTCACTGCTAGTGAC -ACGGAAGGTTTCACTGCTCTGTAG -ACGGAAGGTTTCACTGCTCCTAAG -ACGGAAGGTTTCACTGCTGTTCAG -ACGGAAGGTTTCACTGCTGCATAG -ACGGAAGGTTTCACTGCTGACAAG -ACGGAAGGTTTCACTGCTAAGCAG -ACGGAAGGTTTCACTGCTCGTCAA -ACGGAAGGTTTCACTGCTGCTGAA -ACGGAAGGTTTCACTGCTAGTACG -ACGGAAGGTTTCACTGCTATCCGA -ACGGAAGGTTTCACTGCTATGGGA -ACGGAAGGTTTCACTGCTGTGCAA -ACGGAAGGTTTCACTGCTGAGGAA -ACGGAAGGTTTCACTGCTCAGGTA -ACGGAAGGTTTCACTGCTGACTCT -ACGGAAGGTTTCACTGCTAGTCCT -ACGGAAGGTTTCACTGCTTAAGCC -ACGGAAGGTTTCACTGCTATAGCC -ACGGAAGGTTTCACTGCTTAACCG -ACGGAAGGTTTCACTGCTATGCCA -ACGGAAGGTTTCTCTGGAGGAAAC -ACGGAAGGTTTCTCTGGAAACACC -ACGGAAGGTTTCTCTGGAATCGAG -ACGGAAGGTTTCTCTGGACTCCTT -ACGGAAGGTTTCTCTGGACCTGTT -ACGGAAGGTTTCTCTGGACGGTTT -ACGGAAGGTTTCTCTGGAGTGGTT -ACGGAAGGTTTCTCTGGAGCCTTT -ACGGAAGGTTTCTCTGGAGGTCTT -ACGGAAGGTTTCTCTGGAACGCTT -ACGGAAGGTTTCTCTGGAAGCGTT -ACGGAAGGTTTCTCTGGATTCGTC -ACGGAAGGTTTCTCTGGATCTCTC -ACGGAAGGTTTCTCTGGATGGATC -ACGGAAGGTTTCTCTGGACACTTC -ACGGAAGGTTTCTCTGGAGTACTC -ACGGAAGGTTTCTCTGGAGATGTC -ACGGAAGGTTTCTCTGGAACAGTC -ACGGAAGGTTTCTCTGGATTGCTG -ACGGAAGGTTTCTCTGGATCCATG -ACGGAAGGTTTCTCTGGATGTGTG -ACGGAAGGTTTCTCTGGACTAGTG -ACGGAAGGTTTCTCTGGACATCTG -ACGGAAGGTTTCTCTGGAGAGTTG -ACGGAAGGTTTCTCTGGAAGACTG -ACGGAAGGTTTCTCTGGATCGGTA -ACGGAAGGTTTCTCTGGATGCCTA -ACGGAAGGTTTCTCTGGACCACTA -ACGGAAGGTTTCTCTGGAGGAGTA -ACGGAAGGTTTCTCTGGATCGTCT -ACGGAAGGTTTCTCTGGATGCACT -ACGGAAGGTTTCTCTGGACTGACT -ACGGAAGGTTTCTCTGGACAACCT -ACGGAAGGTTTCTCTGGAGCTACT -ACGGAAGGTTTCTCTGGAGGATCT -ACGGAAGGTTTCTCTGGAAAGGCT -ACGGAAGGTTTCTCTGGATCAACC -ACGGAAGGTTTCTCTGGATGTTCC -ACGGAAGGTTTCTCTGGAATTCCC -ACGGAAGGTTTCTCTGGATTCTCG -ACGGAAGGTTTCTCTGGATAGACG -ACGGAAGGTTTCTCTGGAGTAACG -ACGGAAGGTTTCTCTGGAACTTCG -ACGGAAGGTTTCTCTGGATACGCA -ACGGAAGGTTTCTCTGGACTTGCA -ACGGAAGGTTTCTCTGGACGAACA -ACGGAAGGTTTCTCTGGACAGTCA -ACGGAAGGTTTCTCTGGAGATCCA -ACGGAAGGTTTCTCTGGAACGACA -ACGGAAGGTTTCTCTGGAAGCTCA -ACGGAAGGTTTCTCTGGATCACGT -ACGGAAGGTTTCTCTGGACGTAGT -ACGGAAGGTTTCTCTGGAGTCAGT -ACGGAAGGTTTCTCTGGAGAAGGT -ACGGAAGGTTTCTCTGGAAACCGT -ACGGAAGGTTTCTCTGGATTGTGC -ACGGAAGGTTTCTCTGGACTAAGC -ACGGAAGGTTTCTCTGGAACTAGC -ACGGAAGGTTTCTCTGGAAGATGC -ACGGAAGGTTTCTCTGGATGAAGG -ACGGAAGGTTTCTCTGGACAATGG -ACGGAAGGTTTCTCTGGAATGAGG -ACGGAAGGTTTCTCTGGAAATGGG -ACGGAAGGTTTCTCTGGATCCTGA -ACGGAAGGTTTCTCTGGATAGCGA -ACGGAAGGTTTCTCTGGACACAGA -ACGGAAGGTTTCTCTGGAGCAAGA -ACGGAAGGTTTCTCTGGAGGTTGA -ACGGAAGGTTTCTCTGGATCCGAT -ACGGAAGGTTTCTCTGGATGGCAT -ACGGAAGGTTTCTCTGGACGAGAT -ACGGAAGGTTTCTCTGGATACCAC -ACGGAAGGTTTCTCTGGACAGAAC -ACGGAAGGTTTCTCTGGAGTCTAC -ACGGAAGGTTTCTCTGGAACGTAC -ACGGAAGGTTTCTCTGGAAGTGAC -ACGGAAGGTTTCTCTGGACTGTAG -ACGGAAGGTTTCTCTGGACCTAAG -ACGGAAGGTTTCTCTGGAGTTCAG -ACGGAAGGTTTCTCTGGAGCATAG -ACGGAAGGTTTCTCTGGAGACAAG -ACGGAAGGTTTCTCTGGAAAGCAG -ACGGAAGGTTTCTCTGGACGTCAA -ACGGAAGGTTTCTCTGGAGCTGAA -ACGGAAGGTTTCTCTGGAAGTACG -ACGGAAGGTTTCTCTGGAATCCGA -ACGGAAGGTTTCTCTGGAATGGGA -ACGGAAGGTTTCTCTGGAGTGCAA -ACGGAAGGTTTCTCTGGAGAGGAA -ACGGAAGGTTTCTCTGGACAGGTA -ACGGAAGGTTTCTCTGGAGACTCT -ACGGAAGGTTTCTCTGGAAGTCCT -ACGGAAGGTTTCTCTGGATAAGCC -ACGGAAGGTTTCTCTGGAATAGCC -ACGGAAGGTTTCTCTGGATAACCG -ACGGAAGGTTTCTCTGGAATGCCA -ACGGAAGGTTTCGCTAAGGGAAAC -ACGGAAGGTTTCGCTAAGAACACC -ACGGAAGGTTTCGCTAAGATCGAG -ACGGAAGGTTTCGCTAAGCTCCTT -ACGGAAGGTTTCGCTAAGCCTGTT -ACGGAAGGTTTCGCTAAGCGGTTT -ACGGAAGGTTTCGCTAAGGTGGTT -ACGGAAGGTTTCGCTAAGGCCTTT -ACGGAAGGTTTCGCTAAGGGTCTT -ACGGAAGGTTTCGCTAAGACGCTT -ACGGAAGGTTTCGCTAAGAGCGTT -ACGGAAGGTTTCGCTAAGTTCGTC -ACGGAAGGTTTCGCTAAGTCTCTC -ACGGAAGGTTTCGCTAAGTGGATC -ACGGAAGGTTTCGCTAAGCACTTC -ACGGAAGGTTTCGCTAAGGTACTC -ACGGAAGGTTTCGCTAAGGATGTC -ACGGAAGGTTTCGCTAAGACAGTC -ACGGAAGGTTTCGCTAAGTTGCTG -ACGGAAGGTTTCGCTAAGTCCATG -ACGGAAGGTTTCGCTAAGTGTGTG -ACGGAAGGTTTCGCTAAGCTAGTG -ACGGAAGGTTTCGCTAAGCATCTG -ACGGAAGGTTTCGCTAAGGAGTTG -ACGGAAGGTTTCGCTAAGAGACTG -ACGGAAGGTTTCGCTAAGTCGGTA -ACGGAAGGTTTCGCTAAGTGCCTA -ACGGAAGGTTTCGCTAAGCCACTA -ACGGAAGGTTTCGCTAAGGGAGTA -ACGGAAGGTTTCGCTAAGTCGTCT -ACGGAAGGTTTCGCTAAGTGCACT -ACGGAAGGTTTCGCTAAGCTGACT -ACGGAAGGTTTCGCTAAGCAACCT -ACGGAAGGTTTCGCTAAGGCTACT -ACGGAAGGTTTCGCTAAGGGATCT -ACGGAAGGTTTCGCTAAGAAGGCT -ACGGAAGGTTTCGCTAAGTCAACC -ACGGAAGGTTTCGCTAAGTGTTCC -ACGGAAGGTTTCGCTAAGATTCCC -ACGGAAGGTTTCGCTAAGTTCTCG -ACGGAAGGTTTCGCTAAGTAGACG -ACGGAAGGTTTCGCTAAGGTAACG -ACGGAAGGTTTCGCTAAGACTTCG -ACGGAAGGTTTCGCTAAGTACGCA -ACGGAAGGTTTCGCTAAGCTTGCA -ACGGAAGGTTTCGCTAAGCGAACA -ACGGAAGGTTTCGCTAAGCAGTCA -ACGGAAGGTTTCGCTAAGGATCCA -ACGGAAGGTTTCGCTAAGACGACA -ACGGAAGGTTTCGCTAAGAGCTCA -ACGGAAGGTTTCGCTAAGTCACGT -ACGGAAGGTTTCGCTAAGCGTAGT -ACGGAAGGTTTCGCTAAGGTCAGT -ACGGAAGGTTTCGCTAAGGAAGGT -ACGGAAGGTTTCGCTAAGAACCGT -ACGGAAGGTTTCGCTAAGTTGTGC -ACGGAAGGTTTCGCTAAGCTAAGC -ACGGAAGGTTTCGCTAAGACTAGC -ACGGAAGGTTTCGCTAAGAGATGC -ACGGAAGGTTTCGCTAAGTGAAGG -ACGGAAGGTTTCGCTAAGCAATGG -ACGGAAGGTTTCGCTAAGATGAGG -ACGGAAGGTTTCGCTAAGAATGGG -ACGGAAGGTTTCGCTAAGTCCTGA -ACGGAAGGTTTCGCTAAGTAGCGA -ACGGAAGGTTTCGCTAAGCACAGA -ACGGAAGGTTTCGCTAAGGCAAGA -ACGGAAGGTTTCGCTAAGGGTTGA -ACGGAAGGTTTCGCTAAGTCCGAT -ACGGAAGGTTTCGCTAAGTGGCAT -ACGGAAGGTTTCGCTAAGCGAGAT -ACGGAAGGTTTCGCTAAGTACCAC -ACGGAAGGTTTCGCTAAGCAGAAC -ACGGAAGGTTTCGCTAAGGTCTAC -ACGGAAGGTTTCGCTAAGACGTAC -ACGGAAGGTTTCGCTAAGAGTGAC -ACGGAAGGTTTCGCTAAGCTGTAG -ACGGAAGGTTTCGCTAAGCCTAAG -ACGGAAGGTTTCGCTAAGGTTCAG -ACGGAAGGTTTCGCTAAGGCATAG -ACGGAAGGTTTCGCTAAGGACAAG -ACGGAAGGTTTCGCTAAGAAGCAG -ACGGAAGGTTTCGCTAAGCGTCAA -ACGGAAGGTTTCGCTAAGGCTGAA -ACGGAAGGTTTCGCTAAGAGTACG -ACGGAAGGTTTCGCTAAGATCCGA -ACGGAAGGTTTCGCTAAGATGGGA -ACGGAAGGTTTCGCTAAGGTGCAA -ACGGAAGGTTTCGCTAAGGAGGAA -ACGGAAGGTTTCGCTAAGCAGGTA -ACGGAAGGTTTCGCTAAGGACTCT -ACGGAAGGTTTCGCTAAGAGTCCT -ACGGAAGGTTTCGCTAAGTAAGCC -ACGGAAGGTTTCGCTAAGATAGCC -ACGGAAGGTTTCGCTAAGTAACCG -ACGGAAGGTTTCGCTAAGATGCCA -ACGGAAGGTTTCACCTCAGGAAAC -ACGGAAGGTTTCACCTCAAACACC -ACGGAAGGTTTCACCTCAATCGAG -ACGGAAGGTTTCACCTCACTCCTT -ACGGAAGGTTTCACCTCACCTGTT -ACGGAAGGTTTCACCTCACGGTTT -ACGGAAGGTTTCACCTCAGTGGTT -ACGGAAGGTTTCACCTCAGCCTTT -ACGGAAGGTTTCACCTCAGGTCTT -ACGGAAGGTTTCACCTCAACGCTT -ACGGAAGGTTTCACCTCAAGCGTT -ACGGAAGGTTTCACCTCATTCGTC -ACGGAAGGTTTCACCTCATCTCTC -ACGGAAGGTTTCACCTCATGGATC -ACGGAAGGTTTCACCTCACACTTC -ACGGAAGGTTTCACCTCAGTACTC -ACGGAAGGTTTCACCTCAGATGTC -ACGGAAGGTTTCACCTCAACAGTC -ACGGAAGGTTTCACCTCATTGCTG -ACGGAAGGTTTCACCTCATCCATG -ACGGAAGGTTTCACCTCATGTGTG -ACGGAAGGTTTCACCTCACTAGTG -ACGGAAGGTTTCACCTCACATCTG -ACGGAAGGTTTCACCTCAGAGTTG -ACGGAAGGTTTCACCTCAAGACTG -ACGGAAGGTTTCACCTCATCGGTA -ACGGAAGGTTTCACCTCATGCCTA -ACGGAAGGTTTCACCTCACCACTA -ACGGAAGGTTTCACCTCAGGAGTA -ACGGAAGGTTTCACCTCATCGTCT -ACGGAAGGTTTCACCTCATGCACT -ACGGAAGGTTTCACCTCACTGACT -ACGGAAGGTTTCACCTCACAACCT -ACGGAAGGTTTCACCTCAGCTACT -ACGGAAGGTTTCACCTCAGGATCT -ACGGAAGGTTTCACCTCAAAGGCT -ACGGAAGGTTTCACCTCATCAACC -ACGGAAGGTTTCACCTCATGTTCC -ACGGAAGGTTTCACCTCAATTCCC -ACGGAAGGTTTCACCTCATTCTCG -ACGGAAGGTTTCACCTCATAGACG -ACGGAAGGTTTCACCTCAGTAACG -ACGGAAGGTTTCACCTCAACTTCG -ACGGAAGGTTTCACCTCATACGCA -ACGGAAGGTTTCACCTCACTTGCA -ACGGAAGGTTTCACCTCACGAACA -ACGGAAGGTTTCACCTCACAGTCA -ACGGAAGGTTTCACCTCAGATCCA -ACGGAAGGTTTCACCTCAACGACA -ACGGAAGGTTTCACCTCAAGCTCA -ACGGAAGGTTTCACCTCATCACGT -ACGGAAGGTTTCACCTCACGTAGT -ACGGAAGGTTTCACCTCAGTCAGT -ACGGAAGGTTTCACCTCAGAAGGT -ACGGAAGGTTTCACCTCAAACCGT -ACGGAAGGTTTCACCTCATTGTGC -ACGGAAGGTTTCACCTCACTAAGC -ACGGAAGGTTTCACCTCAACTAGC -ACGGAAGGTTTCACCTCAAGATGC -ACGGAAGGTTTCACCTCATGAAGG -ACGGAAGGTTTCACCTCACAATGG -ACGGAAGGTTTCACCTCAATGAGG -ACGGAAGGTTTCACCTCAAATGGG -ACGGAAGGTTTCACCTCATCCTGA -ACGGAAGGTTTCACCTCATAGCGA -ACGGAAGGTTTCACCTCACACAGA -ACGGAAGGTTTCACCTCAGCAAGA -ACGGAAGGTTTCACCTCAGGTTGA -ACGGAAGGTTTCACCTCATCCGAT -ACGGAAGGTTTCACCTCATGGCAT -ACGGAAGGTTTCACCTCACGAGAT -ACGGAAGGTTTCACCTCATACCAC -ACGGAAGGTTTCACCTCACAGAAC -ACGGAAGGTTTCACCTCAGTCTAC -ACGGAAGGTTTCACCTCAACGTAC -ACGGAAGGTTTCACCTCAAGTGAC -ACGGAAGGTTTCACCTCACTGTAG -ACGGAAGGTTTCACCTCACCTAAG -ACGGAAGGTTTCACCTCAGTTCAG -ACGGAAGGTTTCACCTCAGCATAG -ACGGAAGGTTTCACCTCAGACAAG -ACGGAAGGTTTCACCTCAAAGCAG -ACGGAAGGTTTCACCTCACGTCAA -ACGGAAGGTTTCACCTCAGCTGAA -ACGGAAGGTTTCACCTCAAGTACG -ACGGAAGGTTTCACCTCAATCCGA -ACGGAAGGTTTCACCTCAATGGGA -ACGGAAGGTTTCACCTCAGTGCAA -ACGGAAGGTTTCACCTCAGAGGAA -ACGGAAGGTTTCACCTCACAGGTA -ACGGAAGGTTTCACCTCAGACTCT -ACGGAAGGTTTCACCTCAAGTCCT -ACGGAAGGTTTCACCTCATAAGCC -ACGGAAGGTTTCACCTCAATAGCC -ACGGAAGGTTTCACCTCATAACCG -ACGGAAGGTTTCACCTCAATGCCA -ACGGAAGGTTTCTCCTGTGGAAAC -ACGGAAGGTTTCTCCTGTAACACC -ACGGAAGGTTTCTCCTGTATCGAG -ACGGAAGGTTTCTCCTGTCTCCTT -ACGGAAGGTTTCTCCTGTCCTGTT -ACGGAAGGTTTCTCCTGTCGGTTT -ACGGAAGGTTTCTCCTGTGTGGTT -ACGGAAGGTTTCTCCTGTGCCTTT -ACGGAAGGTTTCTCCTGTGGTCTT -ACGGAAGGTTTCTCCTGTACGCTT -ACGGAAGGTTTCTCCTGTAGCGTT -ACGGAAGGTTTCTCCTGTTTCGTC -ACGGAAGGTTTCTCCTGTTCTCTC -ACGGAAGGTTTCTCCTGTTGGATC -ACGGAAGGTTTCTCCTGTCACTTC -ACGGAAGGTTTCTCCTGTGTACTC -ACGGAAGGTTTCTCCTGTGATGTC -ACGGAAGGTTTCTCCTGTACAGTC -ACGGAAGGTTTCTCCTGTTTGCTG -ACGGAAGGTTTCTCCTGTTCCATG -ACGGAAGGTTTCTCCTGTTGTGTG -ACGGAAGGTTTCTCCTGTCTAGTG -ACGGAAGGTTTCTCCTGTCATCTG -ACGGAAGGTTTCTCCTGTGAGTTG -ACGGAAGGTTTCTCCTGTAGACTG -ACGGAAGGTTTCTCCTGTTCGGTA -ACGGAAGGTTTCTCCTGTTGCCTA -ACGGAAGGTTTCTCCTGTCCACTA -ACGGAAGGTTTCTCCTGTGGAGTA -ACGGAAGGTTTCTCCTGTTCGTCT -ACGGAAGGTTTCTCCTGTTGCACT -ACGGAAGGTTTCTCCTGTCTGACT -ACGGAAGGTTTCTCCTGTCAACCT -ACGGAAGGTTTCTCCTGTGCTACT -ACGGAAGGTTTCTCCTGTGGATCT -ACGGAAGGTTTCTCCTGTAAGGCT -ACGGAAGGTTTCTCCTGTTCAACC -ACGGAAGGTTTCTCCTGTTGTTCC -ACGGAAGGTTTCTCCTGTATTCCC -ACGGAAGGTTTCTCCTGTTTCTCG -ACGGAAGGTTTCTCCTGTTAGACG -ACGGAAGGTTTCTCCTGTGTAACG -ACGGAAGGTTTCTCCTGTACTTCG -ACGGAAGGTTTCTCCTGTTACGCA -ACGGAAGGTTTCTCCTGTCTTGCA -ACGGAAGGTTTCTCCTGTCGAACA -ACGGAAGGTTTCTCCTGTCAGTCA -ACGGAAGGTTTCTCCTGTGATCCA -ACGGAAGGTTTCTCCTGTACGACA -ACGGAAGGTTTCTCCTGTAGCTCA -ACGGAAGGTTTCTCCTGTTCACGT -ACGGAAGGTTTCTCCTGTCGTAGT -ACGGAAGGTTTCTCCTGTGTCAGT -ACGGAAGGTTTCTCCTGTGAAGGT -ACGGAAGGTTTCTCCTGTAACCGT -ACGGAAGGTTTCTCCTGTTTGTGC -ACGGAAGGTTTCTCCTGTCTAAGC -ACGGAAGGTTTCTCCTGTACTAGC -ACGGAAGGTTTCTCCTGTAGATGC -ACGGAAGGTTTCTCCTGTTGAAGG -ACGGAAGGTTTCTCCTGTCAATGG -ACGGAAGGTTTCTCCTGTATGAGG -ACGGAAGGTTTCTCCTGTAATGGG -ACGGAAGGTTTCTCCTGTTCCTGA -ACGGAAGGTTTCTCCTGTTAGCGA -ACGGAAGGTTTCTCCTGTCACAGA -ACGGAAGGTTTCTCCTGTGCAAGA -ACGGAAGGTTTCTCCTGTGGTTGA -ACGGAAGGTTTCTCCTGTTCCGAT -ACGGAAGGTTTCTCCTGTTGGCAT -ACGGAAGGTTTCTCCTGTCGAGAT -ACGGAAGGTTTCTCCTGTTACCAC -ACGGAAGGTTTCTCCTGTCAGAAC -ACGGAAGGTTTCTCCTGTGTCTAC -ACGGAAGGTTTCTCCTGTACGTAC -ACGGAAGGTTTCTCCTGTAGTGAC -ACGGAAGGTTTCTCCTGTCTGTAG -ACGGAAGGTTTCTCCTGTCCTAAG -ACGGAAGGTTTCTCCTGTGTTCAG -ACGGAAGGTTTCTCCTGTGCATAG -ACGGAAGGTTTCTCCTGTGACAAG -ACGGAAGGTTTCTCCTGTAAGCAG -ACGGAAGGTTTCTCCTGTCGTCAA -ACGGAAGGTTTCTCCTGTGCTGAA -ACGGAAGGTTTCTCCTGTAGTACG -ACGGAAGGTTTCTCCTGTATCCGA -ACGGAAGGTTTCTCCTGTATGGGA -ACGGAAGGTTTCTCCTGTGTGCAA -ACGGAAGGTTTCTCCTGTGAGGAA -ACGGAAGGTTTCTCCTGTCAGGTA -ACGGAAGGTTTCTCCTGTGACTCT -ACGGAAGGTTTCTCCTGTAGTCCT -ACGGAAGGTTTCTCCTGTTAAGCC -ACGGAAGGTTTCTCCTGTATAGCC -ACGGAAGGTTTCTCCTGTTAACCG -ACGGAAGGTTTCTCCTGTATGCCA -ACGGAAGGTTTCCCCATTGGAAAC -ACGGAAGGTTTCCCCATTAACACC -ACGGAAGGTTTCCCCATTATCGAG -ACGGAAGGTTTCCCCATTCTCCTT -ACGGAAGGTTTCCCCATTCCTGTT -ACGGAAGGTTTCCCCATTCGGTTT -ACGGAAGGTTTCCCCATTGTGGTT -ACGGAAGGTTTCCCCATTGCCTTT -ACGGAAGGTTTCCCCATTGGTCTT -ACGGAAGGTTTCCCCATTACGCTT -ACGGAAGGTTTCCCCATTAGCGTT -ACGGAAGGTTTCCCCATTTTCGTC -ACGGAAGGTTTCCCCATTTCTCTC -ACGGAAGGTTTCCCCATTTGGATC -ACGGAAGGTTTCCCCATTCACTTC -ACGGAAGGTTTCCCCATTGTACTC -ACGGAAGGTTTCCCCATTGATGTC -ACGGAAGGTTTCCCCATTACAGTC -ACGGAAGGTTTCCCCATTTTGCTG -ACGGAAGGTTTCCCCATTTCCATG -ACGGAAGGTTTCCCCATTTGTGTG -ACGGAAGGTTTCCCCATTCTAGTG -ACGGAAGGTTTCCCCATTCATCTG -ACGGAAGGTTTCCCCATTGAGTTG -ACGGAAGGTTTCCCCATTAGACTG -ACGGAAGGTTTCCCCATTTCGGTA -ACGGAAGGTTTCCCCATTTGCCTA -ACGGAAGGTTTCCCCATTCCACTA -ACGGAAGGTTTCCCCATTGGAGTA -ACGGAAGGTTTCCCCATTTCGTCT -ACGGAAGGTTTCCCCATTTGCACT -ACGGAAGGTTTCCCCATTCTGACT -ACGGAAGGTTTCCCCATTCAACCT -ACGGAAGGTTTCCCCATTGCTACT -ACGGAAGGTTTCCCCATTGGATCT -ACGGAAGGTTTCCCCATTAAGGCT -ACGGAAGGTTTCCCCATTTCAACC -ACGGAAGGTTTCCCCATTTGTTCC -ACGGAAGGTTTCCCCATTATTCCC -ACGGAAGGTTTCCCCATTTTCTCG -ACGGAAGGTTTCCCCATTTAGACG -ACGGAAGGTTTCCCCATTGTAACG -ACGGAAGGTTTCCCCATTACTTCG -ACGGAAGGTTTCCCCATTTACGCA -ACGGAAGGTTTCCCCATTCTTGCA -ACGGAAGGTTTCCCCATTCGAACA -ACGGAAGGTTTCCCCATTCAGTCA -ACGGAAGGTTTCCCCATTGATCCA -ACGGAAGGTTTCCCCATTACGACA -ACGGAAGGTTTCCCCATTAGCTCA -ACGGAAGGTTTCCCCATTTCACGT -ACGGAAGGTTTCCCCATTCGTAGT -ACGGAAGGTTTCCCCATTGTCAGT -ACGGAAGGTTTCCCCATTGAAGGT -ACGGAAGGTTTCCCCATTAACCGT -ACGGAAGGTTTCCCCATTTTGTGC -ACGGAAGGTTTCCCCATTCTAAGC -ACGGAAGGTTTCCCCATTACTAGC -ACGGAAGGTTTCCCCATTAGATGC -ACGGAAGGTTTCCCCATTTGAAGG -ACGGAAGGTTTCCCCATTCAATGG -ACGGAAGGTTTCCCCATTATGAGG -ACGGAAGGTTTCCCCATTAATGGG -ACGGAAGGTTTCCCCATTTCCTGA -ACGGAAGGTTTCCCCATTTAGCGA -ACGGAAGGTTTCCCCATTCACAGA -ACGGAAGGTTTCCCCATTGCAAGA -ACGGAAGGTTTCCCCATTGGTTGA -ACGGAAGGTTTCCCCATTTCCGAT -ACGGAAGGTTTCCCCATTTGGCAT -ACGGAAGGTTTCCCCATTCGAGAT -ACGGAAGGTTTCCCCATTTACCAC -ACGGAAGGTTTCCCCATTCAGAAC -ACGGAAGGTTTCCCCATTGTCTAC -ACGGAAGGTTTCCCCATTACGTAC -ACGGAAGGTTTCCCCATTAGTGAC -ACGGAAGGTTTCCCCATTCTGTAG -ACGGAAGGTTTCCCCATTCCTAAG -ACGGAAGGTTTCCCCATTGTTCAG -ACGGAAGGTTTCCCCATTGCATAG -ACGGAAGGTTTCCCCATTGACAAG -ACGGAAGGTTTCCCCATTAAGCAG -ACGGAAGGTTTCCCCATTCGTCAA -ACGGAAGGTTTCCCCATTGCTGAA -ACGGAAGGTTTCCCCATTAGTACG -ACGGAAGGTTTCCCCATTATCCGA -ACGGAAGGTTTCCCCATTATGGGA -ACGGAAGGTTTCCCCATTGTGCAA -ACGGAAGGTTTCCCCATTGAGGAA -ACGGAAGGTTTCCCCATTCAGGTA -ACGGAAGGTTTCCCCATTGACTCT -ACGGAAGGTTTCCCCATTAGTCCT -ACGGAAGGTTTCCCCATTTAAGCC -ACGGAAGGTTTCCCCATTATAGCC -ACGGAAGGTTTCCCCATTTAACCG -ACGGAAGGTTTCCCCATTATGCCA -ACGGAAGGTTTCTCGTTCGGAAAC -ACGGAAGGTTTCTCGTTCAACACC -ACGGAAGGTTTCTCGTTCATCGAG -ACGGAAGGTTTCTCGTTCCTCCTT -ACGGAAGGTTTCTCGTTCCCTGTT -ACGGAAGGTTTCTCGTTCCGGTTT -ACGGAAGGTTTCTCGTTCGTGGTT -ACGGAAGGTTTCTCGTTCGCCTTT -ACGGAAGGTTTCTCGTTCGGTCTT -ACGGAAGGTTTCTCGTTCACGCTT -ACGGAAGGTTTCTCGTTCAGCGTT -ACGGAAGGTTTCTCGTTCTTCGTC -ACGGAAGGTTTCTCGTTCTCTCTC -ACGGAAGGTTTCTCGTTCTGGATC -ACGGAAGGTTTCTCGTTCCACTTC -ACGGAAGGTTTCTCGTTCGTACTC -ACGGAAGGTTTCTCGTTCGATGTC -ACGGAAGGTTTCTCGTTCACAGTC -ACGGAAGGTTTCTCGTTCTTGCTG -ACGGAAGGTTTCTCGTTCTCCATG -ACGGAAGGTTTCTCGTTCTGTGTG -ACGGAAGGTTTCTCGTTCCTAGTG -ACGGAAGGTTTCTCGTTCCATCTG -ACGGAAGGTTTCTCGTTCGAGTTG -ACGGAAGGTTTCTCGTTCAGACTG -ACGGAAGGTTTCTCGTTCTCGGTA -ACGGAAGGTTTCTCGTTCTGCCTA -ACGGAAGGTTTCTCGTTCCCACTA -ACGGAAGGTTTCTCGTTCGGAGTA -ACGGAAGGTTTCTCGTTCTCGTCT -ACGGAAGGTTTCTCGTTCTGCACT -ACGGAAGGTTTCTCGTTCCTGACT -ACGGAAGGTTTCTCGTTCCAACCT -ACGGAAGGTTTCTCGTTCGCTACT -ACGGAAGGTTTCTCGTTCGGATCT -ACGGAAGGTTTCTCGTTCAAGGCT -ACGGAAGGTTTCTCGTTCTCAACC -ACGGAAGGTTTCTCGTTCTGTTCC -ACGGAAGGTTTCTCGTTCATTCCC -ACGGAAGGTTTCTCGTTCTTCTCG -ACGGAAGGTTTCTCGTTCTAGACG -ACGGAAGGTTTCTCGTTCGTAACG -ACGGAAGGTTTCTCGTTCACTTCG -ACGGAAGGTTTCTCGTTCTACGCA -ACGGAAGGTTTCTCGTTCCTTGCA -ACGGAAGGTTTCTCGTTCCGAACA -ACGGAAGGTTTCTCGTTCCAGTCA -ACGGAAGGTTTCTCGTTCGATCCA -ACGGAAGGTTTCTCGTTCACGACA -ACGGAAGGTTTCTCGTTCAGCTCA -ACGGAAGGTTTCTCGTTCTCACGT -ACGGAAGGTTTCTCGTTCCGTAGT -ACGGAAGGTTTCTCGTTCGTCAGT -ACGGAAGGTTTCTCGTTCGAAGGT -ACGGAAGGTTTCTCGTTCAACCGT -ACGGAAGGTTTCTCGTTCTTGTGC -ACGGAAGGTTTCTCGTTCCTAAGC -ACGGAAGGTTTCTCGTTCACTAGC -ACGGAAGGTTTCTCGTTCAGATGC -ACGGAAGGTTTCTCGTTCTGAAGG -ACGGAAGGTTTCTCGTTCCAATGG -ACGGAAGGTTTCTCGTTCATGAGG -ACGGAAGGTTTCTCGTTCAATGGG -ACGGAAGGTTTCTCGTTCTCCTGA -ACGGAAGGTTTCTCGTTCTAGCGA -ACGGAAGGTTTCTCGTTCCACAGA -ACGGAAGGTTTCTCGTTCGCAAGA -ACGGAAGGTTTCTCGTTCGGTTGA -ACGGAAGGTTTCTCGTTCTCCGAT -ACGGAAGGTTTCTCGTTCTGGCAT -ACGGAAGGTTTCTCGTTCCGAGAT -ACGGAAGGTTTCTCGTTCTACCAC -ACGGAAGGTTTCTCGTTCCAGAAC -ACGGAAGGTTTCTCGTTCGTCTAC -ACGGAAGGTTTCTCGTTCACGTAC -ACGGAAGGTTTCTCGTTCAGTGAC -ACGGAAGGTTTCTCGTTCCTGTAG -ACGGAAGGTTTCTCGTTCCCTAAG -ACGGAAGGTTTCTCGTTCGTTCAG -ACGGAAGGTTTCTCGTTCGCATAG -ACGGAAGGTTTCTCGTTCGACAAG -ACGGAAGGTTTCTCGTTCAAGCAG -ACGGAAGGTTTCTCGTTCCGTCAA -ACGGAAGGTTTCTCGTTCGCTGAA -ACGGAAGGTTTCTCGTTCAGTACG -ACGGAAGGTTTCTCGTTCATCCGA -ACGGAAGGTTTCTCGTTCATGGGA -ACGGAAGGTTTCTCGTTCGTGCAA -ACGGAAGGTTTCTCGTTCGAGGAA -ACGGAAGGTTTCTCGTTCCAGGTA -ACGGAAGGTTTCTCGTTCGACTCT -ACGGAAGGTTTCTCGTTCAGTCCT -ACGGAAGGTTTCTCGTTCTAAGCC -ACGGAAGGTTTCTCGTTCATAGCC -ACGGAAGGTTTCTCGTTCTAACCG -ACGGAAGGTTTCTCGTTCATGCCA -ACGGAAGGTTTCACGTAGGGAAAC -ACGGAAGGTTTCACGTAGAACACC -ACGGAAGGTTTCACGTAGATCGAG -ACGGAAGGTTTCACGTAGCTCCTT -ACGGAAGGTTTCACGTAGCCTGTT -ACGGAAGGTTTCACGTAGCGGTTT -ACGGAAGGTTTCACGTAGGTGGTT -ACGGAAGGTTTCACGTAGGCCTTT -ACGGAAGGTTTCACGTAGGGTCTT -ACGGAAGGTTTCACGTAGACGCTT -ACGGAAGGTTTCACGTAGAGCGTT -ACGGAAGGTTTCACGTAGTTCGTC -ACGGAAGGTTTCACGTAGTCTCTC -ACGGAAGGTTTCACGTAGTGGATC -ACGGAAGGTTTCACGTAGCACTTC -ACGGAAGGTTTCACGTAGGTACTC -ACGGAAGGTTTCACGTAGGATGTC -ACGGAAGGTTTCACGTAGACAGTC -ACGGAAGGTTTCACGTAGTTGCTG -ACGGAAGGTTTCACGTAGTCCATG -ACGGAAGGTTTCACGTAGTGTGTG -ACGGAAGGTTTCACGTAGCTAGTG -ACGGAAGGTTTCACGTAGCATCTG -ACGGAAGGTTTCACGTAGGAGTTG -ACGGAAGGTTTCACGTAGAGACTG -ACGGAAGGTTTCACGTAGTCGGTA -ACGGAAGGTTTCACGTAGTGCCTA -ACGGAAGGTTTCACGTAGCCACTA -ACGGAAGGTTTCACGTAGGGAGTA -ACGGAAGGTTTCACGTAGTCGTCT -ACGGAAGGTTTCACGTAGTGCACT -ACGGAAGGTTTCACGTAGCTGACT -ACGGAAGGTTTCACGTAGCAACCT -ACGGAAGGTTTCACGTAGGCTACT -ACGGAAGGTTTCACGTAGGGATCT -ACGGAAGGTTTCACGTAGAAGGCT -ACGGAAGGTTTCACGTAGTCAACC -ACGGAAGGTTTCACGTAGTGTTCC -ACGGAAGGTTTCACGTAGATTCCC -ACGGAAGGTTTCACGTAGTTCTCG -ACGGAAGGTTTCACGTAGTAGACG -ACGGAAGGTTTCACGTAGGTAACG -ACGGAAGGTTTCACGTAGACTTCG -ACGGAAGGTTTCACGTAGTACGCA -ACGGAAGGTTTCACGTAGCTTGCA -ACGGAAGGTTTCACGTAGCGAACA -ACGGAAGGTTTCACGTAGCAGTCA -ACGGAAGGTTTCACGTAGGATCCA -ACGGAAGGTTTCACGTAGACGACA -ACGGAAGGTTTCACGTAGAGCTCA -ACGGAAGGTTTCACGTAGTCACGT -ACGGAAGGTTTCACGTAGCGTAGT -ACGGAAGGTTTCACGTAGGTCAGT -ACGGAAGGTTTCACGTAGGAAGGT -ACGGAAGGTTTCACGTAGAACCGT -ACGGAAGGTTTCACGTAGTTGTGC -ACGGAAGGTTTCACGTAGCTAAGC -ACGGAAGGTTTCACGTAGACTAGC -ACGGAAGGTTTCACGTAGAGATGC -ACGGAAGGTTTCACGTAGTGAAGG -ACGGAAGGTTTCACGTAGCAATGG -ACGGAAGGTTTCACGTAGATGAGG -ACGGAAGGTTTCACGTAGAATGGG -ACGGAAGGTTTCACGTAGTCCTGA -ACGGAAGGTTTCACGTAGTAGCGA -ACGGAAGGTTTCACGTAGCACAGA -ACGGAAGGTTTCACGTAGGCAAGA -ACGGAAGGTTTCACGTAGGGTTGA -ACGGAAGGTTTCACGTAGTCCGAT -ACGGAAGGTTTCACGTAGTGGCAT -ACGGAAGGTTTCACGTAGCGAGAT -ACGGAAGGTTTCACGTAGTACCAC -ACGGAAGGTTTCACGTAGCAGAAC -ACGGAAGGTTTCACGTAGGTCTAC -ACGGAAGGTTTCACGTAGACGTAC -ACGGAAGGTTTCACGTAGAGTGAC -ACGGAAGGTTTCACGTAGCTGTAG -ACGGAAGGTTTCACGTAGCCTAAG -ACGGAAGGTTTCACGTAGGTTCAG -ACGGAAGGTTTCACGTAGGCATAG -ACGGAAGGTTTCACGTAGGACAAG -ACGGAAGGTTTCACGTAGAAGCAG -ACGGAAGGTTTCACGTAGCGTCAA -ACGGAAGGTTTCACGTAGGCTGAA -ACGGAAGGTTTCACGTAGAGTACG -ACGGAAGGTTTCACGTAGATCCGA -ACGGAAGGTTTCACGTAGATGGGA -ACGGAAGGTTTCACGTAGGTGCAA -ACGGAAGGTTTCACGTAGGAGGAA -ACGGAAGGTTTCACGTAGCAGGTA -ACGGAAGGTTTCACGTAGGACTCT -ACGGAAGGTTTCACGTAGAGTCCT -ACGGAAGGTTTCACGTAGTAAGCC -ACGGAAGGTTTCACGTAGATAGCC -ACGGAAGGTTTCACGTAGTAACCG -ACGGAAGGTTTCACGTAGATGCCA -ACGGAAGGTTTCACGGTAGGAAAC -ACGGAAGGTTTCACGGTAAACACC -ACGGAAGGTTTCACGGTAATCGAG -ACGGAAGGTTTCACGGTACTCCTT -ACGGAAGGTTTCACGGTACCTGTT -ACGGAAGGTTTCACGGTACGGTTT -ACGGAAGGTTTCACGGTAGTGGTT -ACGGAAGGTTTCACGGTAGCCTTT -ACGGAAGGTTTCACGGTAGGTCTT -ACGGAAGGTTTCACGGTAACGCTT -ACGGAAGGTTTCACGGTAAGCGTT -ACGGAAGGTTTCACGGTATTCGTC -ACGGAAGGTTTCACGGTATCTCTC -ACGGAAGGTTTCACGGTATGGATC -ACGGAAGGTTTCACGGTACACTTC -ACGGAAGGTTTCACGGTAGTACTC -ACGGAAGGTTTCACGGTAGATGTC -ACGGAAGGTTTCACGGTAACAGTC -ACGGAAGGTTTCACGGTATTGCTG -ACGGAAGGTTTCACGGTATCCATG -ACGGAAGGTTTCACGGTATGTGTG -ACGGAAGGTTTCACGGTACTAGTG -ACGGAAGGTTTCACGGTACATCTG -ACGGAAGGTTTCACGGTAGAGTTG -ACGGAAGGTTTCACGGTAAGACTG -ACGGAAGGTTTCACGGTATCGGTA -ACGGAAGGTTTCACGGTATGCCTA -ACGGAAGGTTTCACGGTACCACTA -ACGGAAGGTTTCACGGTAGGAGTA -ACGGAAGGTTTCACGGTATCGTCT -ACGGAAGGTTTCACGGTATGCACT -ACGGAAGGTTTCACGGTACTGACT -ACGGAAGGTTTCACGGTACAACCT -ACGGAAGGTTTCACGGTAGCTACT -ACGGAAGGTTTCACGGTAGGATCT -ACGGAAGGTTTCACGGTAAAGGCT -ACGGAAGGTTTCACGGTATCAACC -ACGGAAGGTTTCACGGTATGTTCC -ACGGAAGGTTTCACGGTAATTCCC -ACGGAAGGTTTCACGGTATTCTCG -ACGGAAGGTTTCACGGTATAGACG -ACGGAAGGTTTCACGGTAGTAACG -ACGGAAGGTTTCACGGTAACTTCG -ACGGAAGGTTTCACGGTATACGCA -ACGGAAGGTTTCACGGTACTTGCA -ACGGAAGGTTTCACGGTACGAACA -ACGGAAGGTTTCACGGTACAGTCA -ACGGAAGGTTTCACGGTAGATCCA -ACGGAAGGTTTCACGGTAACGACA -ACGGAAGGTTTCACGGTAAGCTCA -ACGGAAGGTTTCACGGTATCACGT -ACGGAAGGTTTCACGGTACGTAGT -ACGGAAGGTTTCACGGTAGTCAGT -ACGGAAGGTTTCACGGTAGAAGGT -ACGGAAGGTTTCACGGTAAACCGT -ACGGAAGGTTTCACGGTATTGTGC -ACGGAAGGTTTCACGGTACTAAGC -ACGGAAGGTTTCACGGTAACTAGC -ACGGAAGGTTTCACGGTAAGATGC -ACGGAAGGTTTCACGGTATGAAGG -ACGGAAGGTTTCACGGTACAATGG -ACGGAAGGTTTCACGGTAATGAGG -ACGGAAGGTTTCACGGTAAATGGG -ACGGAAGGTTTCACGGTATCCTGA -ACGGAAGGTTTCACGGTATAGCGA -ACGGAAGGTTTCACGGTACACAGA -ACGGAAGGTTTCACGGTAGCAAGA -ACGGAAGGTTTCACGGTAGGTTGA -ACGGAAGGTTTCACGGTATCCGAT -ACGGAAGGTTTCACGGTATGGCAT -ACGGAAGGTTTCACGGTACGAGAT -ACGGAAGGTTTCACGGTATACCAC -ACGGAAGGTTTCACGGTACAGAAC -ACGGAAGGTTTCACGGTAGTCTAC -ACGGAAGGTTTCACGGTAACGTAC -ACGGAAGGTTTCACGGTAAGTGAC -ACGGAAGGTTTCACGGTACTGTAG -ACGGAAGGTTTCACGGTACCTAAG -ACGGAAGGTTTCACGGTAGTTCAG -ACGGAAGGTTTCACGGTAGCATAG -ACGGAAGGTTTCACGGTAGACAAG -ACGGAAGGTTTCACGGTAAAGCAG -ACGGAAGGTTTCACGGTACGTCAA -ACGGAAGGTTTCACGGTAGCTGAA -ACGGAAGGTTTCACGGTAAGTACG -ACGGAAGGTTTCACGGTAATCCGA -ACGGAAGGTTTCACGGTAATGGGA -ACGGAAGGTTTCACGGTAGTGCAA -ACGGAAGGTTTCACGGTAGAGGAA -ACGGAAGGTTTCACGGTACAGGTA -ACGGAAGGTTTCACGGTAGACTCT -ACGGAAGGTTTCACGGTAAGTCCT -ACGGAAGGTTTCACGGTATAAGCC -ACGGAAGGTTTCACGGTAATAGCC -ACGGAAGGTTTCACGGTATAACCG -ACGGAAGGTTTCACGGTAATGCCA -ACGGAAGGTTTCTCGACTGGAAAC -ACGGAAGGTTTCTCGACTAACACC -ACGGAAGGTTTCTCGACTATCGAG -ACGGAAGGTTTCTCGACTCTCCTT -ACGGAAGGTTTCTCGACTCCTGTT -ACGGAAGGTTTCTCGACTCGGTTT -ACGGAAGGTTTCTCGACTGTGGTT -ACGGAAGGTTTCTCGACTGCCTTT -ACGGAAGGTTTCTCGACTGGTCTT -ACGGAAGGTTTCTCGACTACGCTT -ACGGAAGGTTTCTCGACTAGCGTT -ACGGAAGGTTTCTCGACTTTCGTC -ACGGAAGGTTTCTCGACTTCTCTC -ACGGAAGGTTTCTCGACTTGGATC -ACGGAAGGTTTCTCGACTCACTTC -ACGGAAGGTTTCTCGACTGTACTC -ACGGAAGGTTTCTCGACTGATGTC -ACGGAAGGTTTCTCGACTACAGTC -ACGGAAGGTTTCTCGACTTTGCTG -ACGGAAGGTTTCTCGACTTCCATG -ACGGAAGGTTTCTCGACTTGTGTG -ACGGAAGGTTTCTCGACTCTAGTG -ACGGAAGGTTTCTCGACTCATCTG -ACGGAAGGTTTCTCGACTGAGTTG -ACGGAAGGTTTCTCGACTAGACTG -ACGGAAGGTTTCTCGACTTCGGTA -ACGGAAGGTTTCTCGACTTGCCTA -ACGGAAGGTTTCTCGACTCCACTA -ACGGAAGGTTTCTCGACTGGAGTA -ACGGAAGGTTTCTCGACTTCGTCT -ACGGAAGGTTTCTCGACTTGCACT -ACGGAAGGTTTCTCGACTCTGACT -ACGGAAGGTTTCTCGACTCAACCT -ACGGAAGGTTTCTCGACTGCTACT -ACGGAAGGTTTCTCGACTGGATCT -ACGGAAGGTTTCTCGACTAAGGCT -ACGGAAGGTTTCTCGACTTCAACC -ACGGAAGGTTTCTCGACTTGTTCC -ACGGAAGGTTTCTCGACTATTCCC -ACGGAAGGTTTCTCGACTTTCTCG -ACGGAAGGTTTCTCGACTTAGACG -ACGGAAGGTTTCTCGACTGTAACG -ACGGAAGGTTTCTCGACTACTTCG -ACGGAAGGTTTCTCGACTTACGCA -ACGGAAGGTTTCTCGACTCTTGCA -ACGGAAGGTTTCTCGACTCGAACA -ACGGAAGGTTTCTCGACTCAGTCA -ACGGAAGGTTTCTCGACTGATCCA -ACGGAAGGTTTCTCGACTACGACA -ACGGAAGGTTTCTCGACTAGCTCA -ACGGAAGGTTTCTCGACTTCACGT -ACGGAAGGTTTCTCGACTCGTAGT -ACGGAAGGTTTCTCGACTGTCAGT -ACGGAAGGTTTCTCGACTGAAGGT -ACGGAAGGTTTCTCGACTAACCGT -ACGGAAGGTTTCTCGACTTTGTGC -ACGGAAGGTTTCTCGACTCTAAGC -ACGGAAGGTTTCTCGACTACTAGC -ACGGAAGGTTTCTCGACTAGATGC -ACGGAAGGTTTCTCGACTTGAAGG -ACGGAAGGTTTCTCGACTCAATGG -ACGGAAGGTTTCTCGACTATGAGG -ACGGAAGGTTTCTCGACTAATGGG -ACGGAAGGTTTCTCGACTTCCTGA -ACGGAAGGTTTCTCGACTTAGCGA -ACGGAAGGTTTCTCGACTCACAGA -ACGGAAGGTTTCTCGACTGCAAGA -ACGGAAGGTTTCTCGACTGGTTGA -ACGGAAGGTTTCTCGACTTCCGAT -ACGGAAGGTTTCTCGACTTGGCAT -ACGGAAGGTTTCTCGACTCGAGAT -ACGGAAGGTTTCTCGACTTACCAC -ACGGAAGGTTTCTCGACTCAGAAC -ACGGAAGGTTTCTCGACTGTCTAC -ACGGAAGGTTTCTCGACTACGTAC -ACGGAAGGTTTCTCGACTAGTGAC -ACGGAAGGTTTCTCGACTCTGTAG -ACGGAAGGTTTCTCGACTCCTAAG -ACGGAAGGTTTCTCGACTGTTCAG -ACGGAAGGTTTCTCGACTGCATAG -ACGGAAGGTTTCTCGACTGACAAG -ACGGAAGGTTTCTCGACTAAGCAG -ACGGAAGGTTTCTCGACTCGTCAA -ACGGAAGGTTTCTCGACTGCTGAA -ACGGAAGGTTTCTCGACTAGTACG -ACGGAAGGTTTCTCGACTATCCGA -ACGGAAGGTTTCTCGACTATGGGA -ACGGAAGGTTTCTCGACTGTGCAA -ACGGAAGGTTTCTCGACTGAGGAA -ACGGAAGGTTTCTCGACTCAGGTA -ACGGAAGGTTTCTCGACTGACTCT -ACGGAAGGTTTCTCGACTAGTCCT -ACGGAAGGTTTCTCGACTTAAGCC -ACGGAAGGTTTCTCGACTATAGCC -ACGGAAGGTTTCTCGACTTAACCG -ACGGAAGGTTTCTCGACTATGCCA -ACGGAAGGTTTCGCATACGGAAAC -ACGGAAGGTTTCGCATACAACACC -ACGGAAGGTTTCGCATACATCGAG -ACGGAAGGTTTCGCATACCTCCTT -ACGGAAGGTTTCGCATACCCTGTT -ACGGAAGGTTTCGCATACCGGTTT -ACGGAAGGTTTCGCATACGTGGTT -ACGGAAGGTTTCGCATACGCCTTT -ACGGAAGGTTTCGCATACGGTCTT -ACGGAAGGTTTCGCATACACGCTT -ACGGAAGGTTTCGCATACAGCGTT -ACGGAAGGTTTCGCATACTTCGTC -ACGGAAGGTTTCGCATACTCTCTC -ACGGAAGGTTTCGCATACTGGATC -ACGGAAGGTTTCGCATACCACTTC -ACGGAAGGTTTCGCATACGTACTC -ACGGAAGGTTTCGCATACGATGTC -ACGGAAGGTTTCGCATACACAGTC -ACGGAAGGTTTCGCATACTTGCTG -ACGGAAGGTTTCGCATACTCCATG -ACGGAAGGTTTCGCATACTGTGTG -ACGGAAGGTTTCGCATACCTAGTG -ACGGAAGGTTTCGCATACCATCTG -ACGGAAGGTTTCGCATACGAGTTG -ACGGAAGGTTTCGCATACAGACTG -ACGGAAGGTTTCGCATACTCGGTA -ACGGAAGGTTTCGCATACTGCCTA -ACGGAAGGTTTCGCATACCCACTA -ACGGAAGGTTTCGCATACGGAGTA -ACGGAAGGTTTCGCATACTCGTCT -ACGGAAGGTTTCGCATACTGCACT -ACGGAAGGTTTCGCATACCTGACT -ACGGAAGGTTTCGCATACCAACCT -ACGGAAGGTTTCGCATACGCTACT -ACGGAAGGTTTCGCATACGGATCT -ACGGAAGGTTTCGCATACAAGGCT -ACGGAAGGTTTCGCATACTCAACC -ACGGAAGGTTTCGCATACTGTTCC -ACGGAAGGTTTCGCATACATTCCC -ACGGAAGGTTTCGCATACTTCTCG -ACGGAAGGTTTCGCATACTAGACG -ACGGAAGGTTTCGCATACGTAACG -ACGGAAGGTTTCGCATACACTTCG -ACGGAAGGTTTCGCATACTACGCA -ACGGAAGGTTTCGCATACCTTGCA -ACGGAAGGTTTCGCATACCGAACA -ACGGAAGGTTTCGCATACCAGTCA -ACGGAAGGTTTCGCATACGATCCA -ACGGAAGGTTTCGCATACACGACA -ACGGAAGGTTTCGCATACAGCTCA -ACGGAAGGTTTCGCATACTCACGT -ACGGAAGGTTTCGCATACCGTAGT -ACGGAAGGTTTCGCATACGTCAGT -ACGGAAGGTTTCGCATACGAAGGT -ACGGAAGGTTTCGCATACAACCGT -ACGGAAGGTTTCGCATACTTGTGC -ACGGAAGGTTTCGCATACCTAAGC -ACGGAAGGTTTCGCATACACTAGC -ACGGAAGGTTTCGCATACAGATGC -ACGGAAGGTTTCGCATACTGAAGG -ACGGAAGGTTTCGCATACCAATGG -ACGGAAGGTTTCGCATACATGAGG -ACGGAAGGTTTCGCATACAATGGG -ACGGAAGGTTTCGCATACTCCTGA -ACGGAAGGTTTCGCATACTAGCGA -ACGGAAGGTTTCGCATACCACAGA -ACGGAAGGTTTCGCATACGCAAGA -ACGGAAGGTTTCGCATACGGTTGA -ACGGAAGGTTTCGCATACTCCGAT -ACGGAAGGTTTCGCATACTGGCAT -ACGGAAGGTTTCGCATACCGAGAT -ACGGAAGGTTTCGCATACTACCAC -ACGGAAGGTTTCGCATACCAGAAC -ACGGAAGGTTTCGCATACGTCTAC -ACGGAAGGTTTCGCATACACGTAC -ACGGAAGGTTTCGCATACAGTGAC -ACGGAAGGTTTCGCATACCTGTAG -ACGGAAGGTTTCGCATACCCTAAG -ACGGAAGGTTTCGCATACGTTCAG -ACGGAAGGTTTCGCATACGCATAG -ACGGAAGGTTTCGCATACGACAAG -ACGGAAGGTTTCGCATACAAGCAG -ACGGAAGGTTTCGCATACCGTCAA -ACGGAAGGTTTCGCATACGCTGAA -ACGGAAGGTTTCGCATACAGTACG -ACGGAAGGTTTCGCATACATCCGA -ACGGAAGGTTTCGCATACATGGGA -ACGGAAGGTTTCGCATACGTGCAA -ACGGAAGGTTTCGCATACGAGGAA -ACGGAAGGTTTCGCATACCAGGTA -ACGGAAGGTTTCGCATACGACTCT -ACGGAAGGTTTCGCATACAGTCCT -ACGGAAGGTTTCGCATACTAAGCC -ACGGAAGGTTTCGCATACATAGCC -ACGGAAGGTTTCGCATACTAACCG -ACGGAAGGTTTCGCATACATGCCA -ACGGAAGGTTTCGCACTTGGAAAC -ACGGAAGGTTTCGCACTTAACACC -ACGGAAGGTTTCGCACTTATCGAG -ACGGAAGGTTTCGCACTTCTCCTT -ACGGAAGGTTTCGCACTTCCTGTT -ACGGAAGGTTTCGCACTTCGGTTT -ACGGAAGGTTTCGCACTTGTGGTT -ACGGAAGGTTTCGCACTTGCCTTT -ACGGAAGGTTTCGCACTTGGTCTT -ACGGAAGGTTTCGCACTTACGCTT -ACGGAAGGTTTCGCACTTAGCGTT -ACGGAAGGTTTCGCACTTTTCGTC -ACGGAAGGTTTCGCACTTTCTCTC -ACGGAAGGTTTCGCACTTTGGATC -ACGGAAGGTTTCGCACTTCACTTC -ACGGAAGGTTTCGCACTTGTACTC -ACGGAAGGTTTCGCACTTGATGTC -ACGGAAGGTTTCGCACTTACAGTC -ACGGAAGGTTTCGCACTTTTGCTG -ACGGAAGGTTTCGCACTTTCCATG -ACGGAAGGTTTCGCACTTTGTGTG -ACGGAAGGTTTCGCACTTCTAGTG -ACGGAAGGTTTCGCACTTCATCTG -ACGGAAGGTTTCGCACTTGAGTTG -ACGGAAGGTTTCGCACTTAGACTG -ACGGAAGGTTTCGCACTTTCGGTA -ACGGAAGGTTTCGCACTTTGCCTA -ACGGAAGGTTTCGCACTTCCACTA -ACGGAAGGTTTCGCACTTGGAGTA -ACGGAAGGTTTCGCACTTTCGTCT -ACGGAAGGTTTCGCACTTTGCACT -ACGGAAGGTTTCGCACTTCTGACT -ACGGAAGGTTTCGCACTTCAACCT -ACGGAAGGTTTCGCACTTGCTACT -ACGGAAGGTTTCGCACTTGGATCT -ACGGAAGGTTTCGCACTTAAGGCT -ACGGAAGGTTTCGCACTTTCAACC -ACGGAAGGTTTCGCACTTTGTTCC -ACGGAAGGTTTCGCACTTATTCCC -ACGGAAGGTTTCGCACTTTTCTCG -ACGGAAGGTTTCGCACTTTAGACG -ACGGAAGGTTTCGCACTTGTAACG -ACGGAAGGTTTCGCACTTACTTCG -ACGGAAGGTTTCGCACTTTACGCA -ACGGAAGGTTTCGCACTTCTTGCA -ACGGAAGGTTTCGCACTTCGAACA -ACGGAAGGTTTCGCACTTCAGTCA -ACGGAAGGTTTCGCACTTGATCCA -ACGGAAGGTTTCGCACTTACGACA -ACGGAAGGTTTCGCACTTAGCTCA -ACGGAAGGTTTCGCACTTTCACGT -ACGGAAGGTTTCGCACTTCGTAGT -ACGGAAGGTTTCGCACTTGTCAGT -ACGGAAGGTTTCGCACTTGAAGGT -ACGGAAGGTTTCGCACTTAACCGT -ACGGAAGGTTTCGCACTTTTGTGC -ACGGAAGGTTTCGCACTTCTAAGC -ACGGAAGGTTTCGCACTTACTAGC -ACGGAAGGTTTCGCACTTAGATGC -ACGGAAGGTTTCGCACTTTGAAGG -ACGGAAGGTTTCGCACTTCAATGG -ACGGAAGGTTTCGCACTTATGAGG -ACGGAAGGTTTCGCACTTAATGGG -ACGGAAGGTTTCGCACTTTCCTGA -ACGGAAGGTTTCGCACTTTAGCGA -ACGGAAGGTTTCGCACTTCACAGA -ACGGAAGGTTTCGCACTTGCAAGA -ACGGAAGGTTTCGCACTTGGTTGA -ACGGAAGGTTTCGCACTTTCCGAT -ACGGAAGGTTTCGCACTTTGGCAT -ACGGAAGGTTTCGCACTTCGAGAT -ACGGAAGGTTTCGCACTTTACCAC -ACGGAAGGTTTCGCACTTCAGAAC -ACGGAAGGTTTCGCACTTGTCTAC -ACGGAAGGTTTCGCACTTACGTAC -ACGGAAGGTTTCGCACTTAGTGAC -ACGGAAGGTTTCGCACTTCTGTAG -ACGGAAGGTTTCGCACTTCCTAAG -ACGGAAGGTTTCGCACTTGTTCAG -ACGGAAGGTTTCGCACTTGCATAG -ACGGAAGGTTTCGCACTTGACAAG -ACGGAAGGTTTCGCACTTAAGCAG -ACGGAAGGTTTCGCACTTCGTCAA -ACGGAAGGTTTCGCACTTGCTGAA -ACGGAAGGTTTCGCACTTAGTACG -ACGGAAGGTTTCGCACTTATCCGA -ACGGAAGGTTTCGCACTTATGGGA -ACGGAAGGTTTCGCACTTGTGCAA -ACGGAAGGTTTCGCACTTGAGGAA -ACGGAAGGTTTCGCACTTCAGGTA -ACGGAAGGTTTCGCACTTGACTCT -ACGGAAGGTTTCGCACTTAGTCCT -ACGGAAGGTTTCGCACTTTAAGCC -ACGGAAGGTTTCGCACTTATAGCC -ACGGAAGGTTTCGCACTTTAACCG -ACGGAAGGTTTCGCACTTATGCCA -ACGGAAGGTTTCACACGAGGAAAC -ACGGAAGGTTTCACACGAAACACC -ACGGAAGGTTTCACACGAATCGAG -ACGGAAGGTTTCACACGACTCCTT -ACGGAAGGTTTCACACGACCTGTT -ACGGAAGGTTTCACACGACGGTTT -ACGGAAGGTTTCACACGAGTGGTT -ACGGAAGGTTTCACACGAGCCTTT -ACGGAAGGTTTCACACGAGGTCTT -ACGGAAGGTTTCACACGAACGCTT -ACGGAAGGTTTCACACGAAGCGTT -ACGGAAGGTTTCACACGATTCGTC -ACGGAAGGTTTCACACGATCTCTC -ACGGAAGGTTTCACACGATGGATC -ACGGAAGGTTTCACACGACACTTC -ACGGAAGGTTTCACACGAGTACTC -ACGGAAGGTTTCACACGAGATGTC -ACGGAAGGTTTCACACGAACAGTC -ACGGAAGGTTTCACACGATTGCTG -ACGGAAGGTTTCACACGATCCATG -ACGGAAGGTTTCACACGATGTGTG -ACGGAAGGTTTCACACGACTAGTG -ACGGAAGGTTTCACACGACATCTG -ACGGAAGGTTTCACACGAGAGTTG -ACGGAAGGTTTCACACGAAGACTG -ACGGAAGGTTTCACACGATCGGTA -ACGGAAGGTTTCACACGATGCCTA -ACGGAAGGTTTCACACGACCACTA -ACGGAAGGTTTCACACGAGGAGTA -ACGGAAGGTTTCACACGATCGTCT -ACGGAAGGTTTCACACGATGCACT -ACGGAAGGTTTCACACGACTGACT -ACGGAAGGTTTCACACGACAACCT -ACGGAAGGTTTCACACGAGCTACT -ACGGAAGGTTTCACACGAGGATCT -ACGGAAGGTTTCACACGAAAGGCT -ACGGAAGGTTTCACACGATCAACC -ACGGAAGGTTTCACACGATGTTCC -ACGGAAGGTTTCACACGAATTCCC -ACGGAAGGTTTCACACGATTCTCG -ACGGAAGGTTTCACACGATAGACG -ACGGAAGGTTTCACACGAGTAACG -ACGGAAGGTTTCACACGAACTTCG -ACGGAAGGTTTCACACGATACGCA -ACGGAAGGTTTCACACGACTTGCA -ACGGAAGGTTTCACACGACGAACA -ACGGAAGGTTTCACACGACAGTCA -ACGGAAGGTTTCACACGAGATCCA -ACGGAAGGTTTCACACGAACGACA -ACGGAAGGTTTCACACGAAGCTCA -ACGGAAGGTTTCACACGATCACGT -ACGGAAGGTTTCACACGACGTAGT -ACGGAAGGTTTCACACGAGTCAGT -ACGGAAGGTTTCACACGAGAAGGT -ACGGAAGGTTTCACACGAAACCGT -ACGGAAGGTTTCACACGATTGTGC -ACGGAAGGTTTCACACGACTAAGC -ACGGAAGGTTTCACACGAACTAGC -ACGGAAGGTTTCACACGAAGATGC -ACGGAAGGTTTCACACGATGAAGG -ACGGAAGGTTTCACACGACAATGG -ACGGAAGGTTTCACACGAATGAGG -ACGGAAGGTTTCACACGAAATGGG -ACGGAAGGTTTCACACGATCCTGA -ACGGAAGGTTTCACACGATAGCGA -ACGGAAGGTTTCACACGACACAGA -ACGGAAGGTTTCACACGAGCAAGA -ACGGAAGGTTTCACACGAGGTTGA -ACGGAAGGTTTCACACGATCCGAT -ACGGAAGGTTTCACACGATGGCAT -ACGGAAGGTTTCACACGACGAGAT -ACGGAAGGTTTCACACGATACCAC -ACGGAAGGTTTCACACGACAGAAC -ACGGAAGGTTTCACACGAGTCTAC -ACGGAAGGTTTCACACGAACGTAC -ACGGAAGGTTTCACACGAAGTGAC -ACGGAAGGTTTCACACGACTGTAG -ACGGAAGGTTTCACACGACCTAAG -ACGGAAGGTTTCACACGAGTTCAG -ACGGAAGGTTTCACACGAGCATAG -ACGGAAGGTTTCACACGAGACAAG -ACGGAAGGTTTCACACGAAAGCAG -ACGGAAGGTTTCACACGACGTCAA -ACGGAAGGTTTCACACGAGCTGAA -ACGGAAGGTTTCACACGAAGTACG -ACGGAAGGTTTCACACGAATCCGA -ACGGAAGGTTTCACACGAATGGGA -ACGGAAGGTTTCACACGAGTGCAA -ACGGAAGGTTTCACACGAGAGGAA -ACGGAAGGTTTCACACGACAGGTA -ACGGAAGGTTTCACACGAGACTCT -ACGGAAGGTTTCACACGAAGTCCT -ACGGAAGGTTTCACACGATAAGCC -ACGGAAGGTTTCACACGAATAGCC -ACGGAAGGTTTCACACGATAACCG -ACGGAAGGTTTCACACGAATGCCA -ACGGAAGGTTTCTCACAGGGAAAC -ACGGAAGGTTTCTCACAGAACACC -ACGGAAGGTTTCTCACAGATCGAG -ACGGAAGGTTTCTCACAGCTCCTT -ACGGAAGGTTTCTCACAGCCTGTT -ACGGAAGGTTTCTCACAGCGGTTT -ACGGAAGGTTTCTCACAGGTGGTT -ACGGAAGGTTTCTCACAGGCCTTT -ACGGAAGGTTTCTCACAGGGTCTT -ACGGAAGGTTTCTCACAGACGCTT -ACGGAAGGTTTCTCACAGAGCGTT -ACGGAAGGTTTCTCACAGTTCGTC -ACGGAAGGTTTCTCACAGTCTCTC -ACGGAAGGTTTCTCACAGTGGATC -ACGGAAGGTTTCTCACAGCACTTC -ACGGAAGGTTTCTCACAGGTACTC -ACGGAAGGTTTCTCACAGGATGTC -ACGGAAGGTTTCTCACAGACAGTC -ACGGAAGGTTTCTCACAGTTGCTG -ACGGAAGGTTTCTCACAGTCCATG -ACGGAAGGTTTCTCACAGTGTGTG -ACGGAAGGTTTCTCACAGCTAGTG -ACGGAAGGTTTCTCACAGCATCTG -ACGGAAGGTTTCTCACAGGAGTTG -ACGGAAGGTTTCTCACAGAGACTG -ACGGAAGGTTTCTCACAGTCGGTA -ACGGAAGGTTTCTCACAGTGCCTA -ACGGAAGGTTTCTCACAGCCACTA -ACGGAAGGTTTCTCACAGGGAGTA -ACGGAAGGTTTCTCACAGTCGTCT -ACGGAAGGTTTCTCACAGTGCACT -ACGGAAGGTTTCTCACAGCTGACT -ACGGAAGGTTTCTCACAGCAACCT -ACGGAAGGTTTCTCACAGGCTACT -ACGGAAGGTTTCTCACAGGGATCT -ACGGAAGGTTTCTCACAGAAGGCT -ACGGAAGGTTTCTCACAGTCAACC -ACGGAAGGTTTCTCACAGTGTTCC -ACGGAAGGTTTCTCACAGATTCCC -ACGGAAGGTTTCTCACAGTTCTCG -ACGGAAGGTTTCTCACAGTAGACG -ACGGAAGGTTTCTCACAGGTAACG -ACGGAAGGTTTCTCACAGACTTCG -ACGGAAGGTTTCTCACAGTACGCA -ACGGAAGGTTTCTCACAGCTTGCA -ACGGAAGGTTTCTCACAGCGAACA -ACGGAAGGTTTCTCACAGCAGTCA -ACGGAAGGTTTCTCACAGGATCCA -ACGGAAGGTTTCTCACAGACGACA -ACGGAAGGTTTCTCACAGAGCTCA -ACGGAAGGTTTCTCACAGTCACGT -ACGGAAGGTTTCTCACAGCGTAGT -ACGGAAGGTTTCTCACAGGTCAGT -ACGGAAGGTTTCTCACAGGAAGGT -ACGGAAGGTTTCTCACAGAACCGT -ACGGAAGGTTTCTCACAGTTGTGC -ACGGAAGGTTTCTCACAGCTAAGC -ACGGAAGGTTTCTCACAGACTAGC -ACGGAAGGTTTCTCACAGAGATGC -ACGGAAGGTTTCTCACAGTGAAGG -ACGGAAGGTTTCTCACAGCAATGG -ACGGAAGGTTTCTCACAGATGAGG -ACGGAAGGTTTCTCACAGAATGGG -ACGGAAGGTTTCTCACAGTCCTGA -ACGGAAGGTTTCTCACAGTAGCGA -ACGGAAGGTTTCTCACAGCACAGA -ACGGAAGGTTTCTCACAGGCAAGA -ACGGAAGGTTTCTCACAGGGTTGA -ACGGAAGGTTTCTCACAGTCCGAT -ACGGAAGGTTTCTCACAGTGGCAT -ACGGAAGGTTTCTCACAGCGAGAT -ACGGAAGGTTTCTCACAGTACCAC -ACGGAAGGTTTCTCACAGCAGAAC -ACGGAAGGTTTCTCACAGGTCTAC -ACGGAAGGTTTCTCACAGACGTAC -ACGGAAGGTTTCTCACAGAGTGAC -ACGGAAGGTTTCTCACAGCTGTAG -ACGGAAGGTTTCTCACAGCCTAAG -ACGGAAGGTTTCTCACAGGTTCAG -ACGGAAGGTTTCTCACAGGCATAG -ACGGAAGGTTTCTCACAGGACAAG -ACGGAAGGTTTCTCACAGAAGCAG -ACGGAAGGTTTCTCACAGCGTCAA -ACGGAAGGTTTCTCACAGGCTGAA -ACGGAAGGTTTCTCACAGAGTACG -ACGGAAGGTTTCTCACAGATCCGA -ACGGAAGGTTTCTCACAGATGGGA -ACGGAAGGTTTCTCACAGGTGCAA -ACGGAAGGTTTCTCACAGGAGGAA -ACGGAAGGTTTCTCACAGCAGGTA -ACGGAAGGTTTCTCACAGGACTCT -ACGGAAGGTTTCTCACAGAGTCCT -ACGGAAGGTTTCTCACAGTAAGCC -ACGGAAGGTTTCTCACAGATAGCC -ACGGAAGGTTTCTCACAGTAACCG -ACGGAAGGTTTCTCACAGATGCCA -ACGGAAGGTTTCCCAGATGGAAAC -ACGGAAGGTTTCCCAGATAACACC -ACGGAAGGTTTCCCAGATATCGAG -ACGGAAGGTTTCCCAGATCTCCTT -ACGGAAGGTTTCCCAGATCCTGTT -ACGGAAGGTTTCCCAGATCGGTTT -ACGGAAGGTTTCCCAGATGTGGTT -ACGGAAGGTTTCCCAGATGCCTTT -ACGGAAGGTTTCCCAGATGGTCTT -ACGGAAGGTTTCCCAGATACGCTT -ACGGAAGGTTTCCCAGATAGCGTT -ACGGAAGGTTTCCCAGATTTCGTC -ACGGAAGGTTTCCCAGATTCTCTC -ACGGAAGGTTTCCCAGATTGGATC -ACGGAAGGTTTCCCAGATCACTTC -ACGGAAGGTTTCCCAGATGTACTC -ACGGAAGGTTTCCCAGATGATGTC -ACGGAAGGTTTCCCAGATACAGTC -ACGGAAGGTTTCCCAGATTTGCTG -ACGGAAGGTTTCCCAGATTCCATG -ACGGAAGGTTTCCCAGATTGTGTG -ACGGAAGGTTTCCCAGATCTAGTG -ACGGAAGGTTTCCCAGATCATCTG -ACGGAAGGTTTCCCAGATGAGTTG -ACGGAAGGTTTCCCAGATAGACTG -ACGGAAGGTTTCCCAGATTCGGTA -ACGGAAGGTTTCCCAGATTGCCTA -ACGGAAGGTTTCCCAGATCCACTA -ACGGAAGGTTTCCCAGATGGAGTA -ACGGAAGGTTTCCCAGATTCGTCT -ACGGAAGGTTTCCCAGATTGCACT -ACGGAAGGTTTCCCAGATCTGACT -ACGGAAGGTTTCCCAGATCAACCT -ACGGAAGGTTTCCCAGATGCTACT -ACGGAAGGTTTCCCAGATGGATCT -ACGGAAGGTTTCCCAGATAAGGCT -ACGGAAGGTTTCCCAGATTCAACC -ACGGAAGGTTTCCCAGATTGTTCC -ACGGAAGGTTTCCCAGATATTCCC -ACGGAAGGTTTCCCAGATTTCTCG -ACGGAAGGTTTCCCAGATTAGACG -ACGGAAGGTTTCCCAGATGTAACG -ACGGAAGGTTTCCCAGATACTTCG -ACGGAAGGTTTCCCAGATTACGCA -ACGGAAGGTTTCCCAGATCTTGCA -ACGGAAGGTTTCCCAGATCGAACA -ACGGAAGGTTTCCCAGATCAGTCA -ACGGAAGGTTTCCCAGATGATCCA -ACGGAAGGTTTCCCAGATACGACA -ACGGAAGGTTTCCCAGATAGCTCA -ACGGAAGGTTTCCCAGATTCACGT -ACGGAAGGTTTCCCAGATCGTAGT -ACGGAAGGTTTCCCAGATGTCAGT -ACGGAAGGTTTCCCAGATGAAGGT -ACGGAAGGTTTCCCAGATAACCGT -ACGGAAGGTTTCCCAGATTTGTGC -ACGGAAGGTTTCCCAGATCTAAGC -ACGGAAGGTTTCCCAGATACTAGC -ACGGAAGGTTTCCCAGATAGATGC -ACGGAAGGTTTCCCAGATTGAAGG -ACGGAAGGTTTCCCAGATCAATGG -ACGGAAGGTTTCCCAGATATGAGG -ACGGAAGGTTTCCCAGATAATGGG -ACGGAAGGTTTCCCAGATTCCTGA -ACGGAAGGTTTCCCAGATTAGCGA -ACGGAAGGTTTCCCAGATCACAGA -ACGGAAGGTTTCCCAGATGCAAGA -ACGGAAGGTTTCCCAGATGGTTGA -ACGGAAGGTTTCCCAGATTCCGAT -ACGGAAGGTTTCCCAGATTGGCAT -ACGGAAGGTTTCCCAGATCGAGAT -ACGGAAGGTTTCCCAGATTACCAC -ACGGAAGGTTTCCCAGATCAGAAC -ACGGAAGGTTTCCCAGATGTCTAC -ACGGAAGGTTTCCCAGATACGTAC -ACGGAAGGTTTCCCAGATAGTGAC -ACGGAAGGTTTCCCAGATCTGTAG -ACGGAAGGTTTCCCAGATCCTAAG -ACGGAAGGTTTCCCAGATGTTCAG -ACGGAAGGTTTCCCAGATGCATAG -ACGGAAGGTTTCCCAGATGACAAG -ACGGAAGGTTTCCCAGATAAGCAG -ACGGAAGGTTTCCCAGATCGTCAA -ACGGAAGGTTTCCCAGATGCTGAA -ACGGAAGGTTTCCCAGATAGTACG -ACGGAAGGTTTCCCAGATATCCGA -ACGGAAGGTTTCCCAGATATGGGA -ACGGAAGGTTTCCCAGATGTGCAA -ACGGAAGGTTTCCCAGATGAGGAA -ACGGAAGGTTTCCCAGATCAGGTA -ACGGAAGGTTTCCCAGATGACTCT -ACGGAAGGTTTCCCAGATAGTCCT -ACGGAAGGTTTCCCAGATTAAGCC -ACGGAAGGTTTCCCAGATATAGCC -ACGGAAGGTTTCCCAGATTAACCG -ACGGAAGGTTTCCCAGATATGCCA -ACGGAAGGTTTCACAACGGGAAAC -ACGGAAGGTTTCACAACGAACACC -ACGGAAGGTTTCACAACGATCGAG -ACGGAAGGTTTCACAACGCTCCTT -ACGGAAGGTTTCACAACGCCTGTT -ACGGAAGGTTTCACAACGCGGTTT -ACGGAAGGTTTCACAACGGTGGTT -ACGGAAGGTTTCACAACGGCCTTT -ACGGAAGGTTTCACAACGGGTCTT -ACGGAAGGTTTCACAACGACGCTT -ACGGAAGGTTTCACAACGAGCGTT -ACGGAAGGTTTCACAACGTTCGTC -ACGGAAGGTTTCACAACGTCTCTC -ACGGAAGGTTTCACAACGTGGATC -ACGGAAGGTTTCACAACGCACTTC -ACGGAAGGTTTCACAACGGTACTC -ACGGAAGGTTTCACAACGGATGTC -ACGGAAGGTTTCACAACGACAGTC -ACGGAAGGTTTCACAACGTTGCTG -ACGGAAGGTTTCACAACGTCCATG -ACGGAAGGTTTCACAACGTGTGTG -ACGGAAGGTTTCACAACGCTAGTG -ACGGAAGGTTTCACAACGCATCTG -ACGGAAGGTTTCACAACGGAGTTG -ACGGAAGGTTTCACAACGAGACTG -ACGGAAGGTTTCACAACGTCGGTA -ACGGAAGGTTTCACAACGTGCCTA -ACGGAAGGTTTCACAACGCCACTA -ACGGAAGGTTTCACAACGGGAGTA -ACGGAAGGTTTCACAACGTCGTCT -ACGGAAGGTTTCACAACGTGCACT -ACGGAAGGTTTCACAACGCTGACT -ACGGAAGGTTTCACAACGCAACCT -ACGGAAGGTTTCACAACGGCTACT -ACGGAAGGTTTCACAACGGGATCT -ACGGAAGGTTTCACAACGAAGGCT -ACGGAAGGTTTCACAACGTCAACC -ACGGAAGGTTTCACAACGTGTTCC -ACGGAAGGTTTCACAACGATTCCC -ACGGAAGGTTTCACAACGTTCTCG -ACGGAAGGTTTCACAACGTAGACG -ACGGAAGGTTTCACAACGGTAACG -ACGGAAGGTTTCACAACGACTTCG -ACGGAAGGTTTCACAACGTACGCA -ACGGAAGGTTTCACAACGCTTGCA -ACGGAAGGTTTCACAACGCGAACA -ACGGAAGGTTTCACAACGCAGTCA -ACGGAAGGTTTCACAACGGATCCA -ACGGAAGGTTTCACAACGACGACA -ACGGAAGGTTTCACAACGAGCTCA -ACGGAAGGTTTCACAACGTCACGT -ACGGAAGGTTTCACAACGCGTAGT -ACGGAAGGTTTCACAACGGTCAGT -ACGGAAGGTTTCACAACGGAAGGT -ACGGAAGGTTTCACAACGAACCGT -ACGGAAGGTTTCACAACGTTGTGC -ACGGAAGGTTTCACAACGCTAAGC -ACGGAAGGTTTCACAACGACTAGC -ACGGAAGGTTTCACAACGAGATGC -ACGGAAGGTTTCACAACGTGAAGG -ACGGAAGGTTTCACAACGCAATGG -ACGGAAGGTTTCACAACGATGAGG -ACGGAAGGTTTCACAACGAATGGG -ACGGAAGGTTTCACAACGTCCTGA -ACGGAAGGTTTCACAACGTAGCGA -ACGGAAGGTTTCACAACGCACAGA -ACGGAAGGTTTCACAACGGCAAGA -ACGGAAGGTTTCACAACGGGTTGA -ACGGAAGGTTTCACAACGTCCGAT -ACGGAAGGTTTCACAACGTGGCAT -ACGGAAGGTTTCACAACGCGAGAT -ACGGAAGGTTTCACAACGTACCAC -ACGGAAGGTTTCACAACGCAGAAC -ACGGAAGGTTTCACAACGGTCTAC -ACGGAAGGTTTCACAACGACGTAC -ACGGAAGGTTTCACAACGAGTGAC -ACGGAAGGTTTCACAACGCTGTAG -ACGGAAGGTTTCACAACGCCTAAG -ACGGAAGGTTTCACAACGGTTCAG -ACGGAAGGTTTCACAACGGCATAG -ACGGAAGGTTTCACAACGGACAAG -ACGGAAGGTTTCACAACGAAGCAG -ACGGAAGGTTTCACAACGCGTCAA -ACGGAAGGTTTCACAACGGCTGAA -ACGGAAGGTTTCACAACGAGTACG -ACGGAAGGTTTCACAACGATCCGA -ACGGAAGGTTTCACAACGATGGGA -ACGGAAGGTTTCACAACGGTGCAA -ACGGAAGGTTTCACAACGGAGGAA -ACGGAAGGTTTCACAACGCAGGTA -ACGGAAGGTTTCACAACGGACTCT -ACGGAAGGTTTCACAACGAGTCCT -ACGGAAGGTTTCACAACGTAAGCC -ACGGAAGGTTTCACAACGATAGCC -ACGGAAGGTTTCACAACGTAACCG -ACGGAAGGTTTCACAACGATGCCA -ACGGAAGGTTTCTCAAGCGGAAAC -ACGGAAGGTTTCTCAAGCAACACC -ACGGAAGGTTTCTCAAGCATCGAG -ACGGAAGGTTTCTCAAGCCTCCTT -ACGGAAGGTTTCTCAAGCCCTGTT -ACGGAAGGTTTCTCAAGCCGGTTT -ACGGAAGGTTTCTCAAGCGTGGTT -ACGGAAGGTTTCTCAAGCGCCTTT -ACGGAAGGTTTCTCAAGCGGTCTT -ACGGAAGGTTTCTCAAGCACGCTT -ACGGAAGGTTTCTCAAGCAGCGTT -ACGGAAGGTTTCTCAAGCTTCGTC -ACGGAAGGTTTCTCAAGCTCTCTC -ACGGAAGGTTTCTCAAGCTGGATC -ACGGAAGGTTTCTCAAGCCACTTC -ACGGAAGGTTTCTCAAGCGTACTC -ACGGAAGGTTTCTCAAGCGATGTC -ACGGAAGGTTTCTCAAGCACAGTC -ACGGAAGGTTTCTCAAGCTTGCTG -ACGGAAGGTTTCTCAAGCTCCATG -ACGGAAGGTTTCTCAAGCTGTGTG -ACGGAAGGTTTCTCAAGCCTAGTG -ACGGAAGGTTTCTCAAGCCATCTG -ACGGAAGGTTTCTCAAGCGAGTTG -ACGGAAGGTTTCTCAAGCAGACTG -ACGGAAGGTTTCTCAAGCTCGGTA -ACGGAAGGTTTCTCAAGCTGCCTA -ACGGAAGGTTTCTCAAGCCCACTA -ACGGAAGGTTTCTCAAGCGGAGTA -ACGGAAGGTTTCTCAAGCTCGTCT -ACGGAAGGTTTCTCAAGCTGCACT -ACGGAAGGTTTCTCAAGCCTGACT -ACGGAAGGTTTCTCAAGCCAACCT -ACGGAAGGTTTCTCAAGCGCTACT -ACGGAAGGTTTCTCAAGCGGATCT -ACGGAAGGTTTCTCAAGCAAGGCT -ACGGAAGGTTTCTCAAGCTCAACC -ACGGAAGGTTTCTCAAGCTGTTCC -ACGGAAGGTTTCTCAAGCATTCCC -ACGGAAGGTTTCTCAAGCTTCTCG -ACGGAAGGTTTCTCAAGCTAGACG -ACGGAAGGTTTCTCAAGCGTAACG -ACGGAAGGTTTCTCAAGCACTTCG -ACGGAAGGTTTCTCAAGCTACGCA -ACGGAAGGTTTCTCAAGCCTTGCA -ACGGAAGGTTTCTCAAGCCGAACA -ACGGAAGGTTTCTCAAGCCAGTCA -ACGGAAGGTTTCTCAAGCGATCCA -ACGGAAGGTTTCTCAAGCACGACA -ACGGAAGGTTTCTCAAGCAGCTCA -ACGGAAGGTTTCTCAAGCTCACGT -ACGGAAGGTTTCTCAAGCCGTAGT -ACGGAAGGTTTCTCAAGCGTCAGT -ACGGAAGGTTTCTCAAGCGAAGGT -ACGGAAGGTTTCTCAAGCAACCGT -ACGGAAGGTTTCTCAAGCTTGTGC -ACGGAAGGTTTCTCAAGCCTAAGC -ACGGAAGGTTTCTCAAGCACTAGC -ACGGAAGGTTTCTCAAGCAGATGC -ACGGAAGGTTTCTCAAGCTGAAGG -ACGGAAGGTTTCTCAAGCCAATGG -ACGGAAGGTTTCTCAAGCATGAGG -ACGGAAGGTTTCTCAAGCAATGGG -ACGGAAGGTTTCTCAAGCTCCTGA -ACGGAAGGTTTCTCAAGCTAGCGA -ACGGAAGGTTTCTCAAGCCACAGA -ACGGAAGGTTTCTCAAGCGCAAGA -ACGGAAGGTTTCTCAAGCGGTTGA -ACGGAAGGTTTCTCAAGCTCCGAT -ACGGAAGGTTTCTCAAGCTGGCAT -ACGGAAGGTTTCTCAAGCCGAGAT -ACGGAAGGTTTCTCAAGCTACCAC -ACGGAAGGTTTCTCAAGCCAGAAC -ACGGAAGGTTTCTCAAGCGTCTAC -ACGGAAGGTTTCTCAAGCACGTAC -ACGGAAGGTTTCTCAAGCAGTGAC -ACGGAAGGTTTCTCAAGCCTGTAG -ACGGAAGGTTTCTCAAGCCCTAAG -ACGGAAGGTTTCTCAAGCGTTCAG -ACGGAAGGTTTCTCAAGCGCATAG -ACGGAAGGTTTCTCAAGCGACAAG -ACGGAAGGTTTCTCAAGCAAGCAG -ACGGAAGGTTTCTCAAGCCGTCAA -ACGGAAGGTTTCTCAAGCGCTGAA -ACGGAAGGTTTCTCAAGCAGTACG -ACGGAAGGTTTCTCAAGCATCCGA -ACGGAAGGTTTCTCAAGCATGGGA -ACGGAAGGTTTCTCAAGCGTGCAA -ACGGAAGGTTTCTCAAGCGAGGAA -ACGGAAGGTTTCTCAAGCCAGGTA -ACGGAAGGTTTCTCAAGCGACTCT -ACGGAAGGTTTCTCAAGCAGTCCT -ACGGAAGGTTTCTCAAGCTAAGCC -ACGGAAGGTTTCTCAAGCATAGCC -ACGGAAGGTTTCTCAAGCTAACCG -ACGGAAGGTTTCTCAAGCATGCCA -ACGGAAGGTTTCCGTTCAGGAAAC -ACGGAAGGTTTCCGTTCAAACACC -ACGGAAGGTTTCCGTTCAATCGAG -ACGGAAGGTTTCCGTTCACTCCTT -ACGGAAGGTTTCCGTTCACCTGTT -ACGGAAGGTTTCCGTTCACGGTTT -ACGGAAGGTTTCCGTTCAGTGGTT -ACGGAAGGTTTCCGTTCAGCCTTT -ACGGAAGGTTTCCGTTCAGGTCTT -ACGGAAGGTTTCCGTTCAACGCTT -ACGGAAGGTTTCCGTTCAAGCGTT -ACGGAAGGTTTCCGTTCATTCGTC -ACGGAAGGTTTCCGTTCATCTCTC -ACGGAAGGTTTCCGTTCATGGATC -ACGGAAGGTTTCCGTTCACACTTC -ACGGAAGGTTTCCGTTCAGTACTC -ACGGAAGGTTTCCGTTCAGATGTC -ACGGAAGGTTTCCGTTCAACAGTC -ACGGAAGGTTTCCGTTCATTGCTG -ACGGAAGGTTTCCGTTCATCCATG -ACGGAAGGTTTCCGTTCATGTGTG -ACGGAAGGTTTCCGTTCACTAGTG -ACGGAAGGTTTCCGTTCACATCTG -ACGGAAGGTTTCCGTTCAGAGTTG -ACGGAAGGTTTCCGTTCAAGACTG -ACGGAAGGTTTCCGTTCATCGGTA -ACGGAAGGTTTCCGTTCATGCCTA -ACGGAAGGTTTCCGTTCACCACTA -ACGGAAGGTTTCCGTTCAGGAGTA -ACGGAAGGTTTCCGTTCATCGTCT -ACGGAAGGTTTCCGTTCATGCACT -ACGGAAGGTTTCCGTTCACTGACT -ACGGAAGGTTTCCGTTCACAACCT -ACGGAAGGTTTCCGTTCAGCTACT -ACGGAAGGTTTCCGTTCAGGATCT -ACGGAAGGTTTCCGTTCAAAGGCT -ACGGAAGGTTTCCGTTCATCAACC -ACGGAAGGTTTCCGTTCATGTTCC -ACGGAAGGTTTCCGTTCAATTCCC -ACGGAAGGTTTCCGTTCATTCTCG -ACGGAAGGTTTCCGTTCATAGACG -ACGGAAGGTTTCCGTTCAGTAACG -ACGGAAGGTTTCCGTTCAACTTCG -ACGGAAGGTTTCCGTTCATACGCA -ACGGAAGGTTTCCGTTCACTTGCA -ACGGAAGGTTTCCGTTCACGAACA -ACGGAAGGTTTCCGTTCACAGTCA -ACGGAAGGTTTCCGTTCAGATCCA -ACGGAAGGTTTCCGTTCAACGACA -ACGGAAGGTTTCCGTTCAAGCTCA -ACGGAAGGTTTCCGTTCATCACGT -ACGGAAGGTTTCCGTTCACGTAGT -ACGGAAGGTTTCCGTTCAGTCAGT -ACGGAAGGTTTCCGTTCAGAAGGT -ACGGAAGGTTTCCGTTCAAACCGT -ACGGAAGGTTTCCGTTCATTGTGC -ACGGAAGGTTTCCGTTCACTAAGC -ACGGAAGGTTTCCGTTCAACTAGC -ACGGAAGGTTTCCGTTCAAGATGC -ACGGAAGGTTTCCGTTCATGAAGG -ACGGAAGGTTTCCGTTCACAATGG -ACGGAAGGTTTCCGTTCAATGAGG -ACGGAAGGTTTCCGTTCAAATGGG -ACGGAAGGTTTCCGTTCATCCTGA -ACGGAAGGTTTCCGTTCATAGCGA -ACGGAAGGTTTCCGTTCACACAGA -ACGGAAGGTTTCCGTTCAGCAAGA -ACGGAAGGTTTCCGTTCAGGTTGA -ACGGAAGGTTTCCGTTCATCCGAT -ACGGAAGGTTTCCGTTCATGGCAT -ACGGAAGGTTTCCGTTCACGAGAT -ACGGAAGGTTTCCGTTCATACCAC -ACGGAAGGTTTCCGTTCACAGAAC -ACGGAAGGTTTCCGTTCAGTCTAC -ACGGAAGGTTTCCGTTCAACGTAC -ACGGAAGGTTTCCGTTCAAGTGAC -ACGGAAGGTTTCCGTTCACTGTAG -ACGGAAGGTTTCCGTTCACCTAAG -ACGGAAGGTTTCCGTTCAGTTCAG -ACGGAAGGTTTCCGTTCAGCATAG -ACGGAAGGTTTCCGTTCAGACAAG -ACGGAAGGTTTCCGTTCAAAGCAG -ACGGAAGGTTTCCGTTCACGTCAA -ACGGAAGGTTTCCGTTCAGCTGAA -ACGGAAGGTTTCCGTTCAAGTACG -ACGGAAGGTTTCCGTTCAATCCGA -ACGGAAGGTTTCCGTTCAATGGGA -ACGGAAGGTTTCCGTTCAGTGCAA -ACGGAAGGTTTCCGTTCAGAGGAA -ACGGAAGGTTTCCGTTCACAGGTA -ACGGAAGGTTTCCGTTCAGACTCT -ACGGAAGGTTTCCGTTCAAGTCCT -ACGGAAGGTTTCCGTTCATAAGCC -ACGGAAGGTTTCCGTTCAATAGCC -ACGGAAGGTTTCCGTTCATAACCG -ACGGAAGGTTTCCGTTCAATGCCA -ACGGAAGGTTTCAGTCGTGGAAAC -ACGGAAGGTTTCAGTCGTAACACC -ACGGAAGGTTTCAGTCGTATCGAG -ACGGAAGGTTTCAGTCGTCTCCTT -ACGGAAGGTTTCAGTCGTCCTGTT -ACGGAAGGTTTCAGTCGTCGGTTT -ACGGAAGGTTTCAGTCGTGTGGTT -ACGGAAGGTTTCAGTCGTGCCTTT -ACGGAAGGTTTCAGTCGTGGTCTT -ACGGAAGGTTTCAGTCGTACGCTT -ACGGAAGGTTTCAGTCGTAGCGTT -ACGGAAGGTTTCAGTCGTTTCGTC -ACGGAAGGTTTCAGTCGTTCTCTC -ACGGAAGGTTTCAGTCGTTGGATC -ACGGAAGGTTTCAGTCGTCACTTC -ACGGAAGGTTTCAGTCGTGTACTC -ACGGAAGGTTTCAGTCGTGATGTC -ACGGAAGGTTTCAGTCGTACAGTC -ACGGAAGGTTTCAGTCGTTTGCTG -ACGGAAGGTTTCAGTCGTTCCATG -ACGGAAGGTTTCAGTCGTTGTGTG -ACGGAAGGTTTCAGTCGTCTAGTG -ACGGAAGGTTTCAGTCGTCATCTG -ACGGAAGGTTTCAGTCGTGAGTTG -ACGGAAGGTTTCAGTCGTAGACTG -ACGGAAGGTTTCAGTCGTTCGGTA -ACGGAAGGTTTCAGTCGTTGCCTA -ACGGAAGGTTTCAGTCGTCCACTA -ACGGAAGGTTTCAGTCGTGGAGTA -ACGGAAGGTTTCAGTCGTTCGTCT -ACGGAAGGTTTCAGTCGTTGCACT -ACGGAAGGTTTCAGTCGTCTGACT -ACGGAAGGTTTCAGTCGTCAACCT -ACGGAAGGTTTCAGTCGTGCTACT -ACGGAAGGTTTCAGTCGTGGATCT -ACGGAAGGTTTCAGTCGTAAGGCT -ACGGAAGGTTTCAGTCGTTCAACC -ACGGAAGGTTTCAGTCGTTGTTCC -ACGGAAGGTTTCAGTCGTATTCCC -ACGGAAGGTTTCAGTCGTTTCTCG -ACGGAAGGTTTCAGTCGTTAGACG -ACGGAAGGTTTCAGTCGTGTAACG -ACGGAAGGTTTCAGTCGTACTTCG -ACGGAAGGTTTCAGTCGTTACGCA -ACGGAAGGTTTCAGTCGTCTTGCA -ACGGAAGGTTTCAGTCGTCGAACA -ACGGAAGGTTTCAGTCGTCAGTCA -ACGGAAGGTTTCAGTCGTGATCCA -ACGGAAGGTTTCAGTCGTACGACA -ACGGAAGGTTTCAGTCGTAGCTCA -ACGGAAGGTTTCAGTCGTTCACGT -ACGGAAGGTTTCAGTCGTCGTAGT -ACGGAAGGTTTCAGTCGTGTCAGT -ACGGAAGGTTTCAGTCGTGAAGGT -ACGGAAGGTTTCAGTCGTAACCGT -ACGGAAGGTTTCAGTCGTTTGTGC -ACGGAAGGTTTCAGTCGTCTAAGC -ACGGAAGGTTTCAGTCGTACTAGC -ACGGAAGGTTTCAGTCGTAGATGC -ACGGAAGGTTTCAGTCGTTGAAGG -ACGGAAGGTTTCAGTCGTCAATGG -ACGGAAGGTTTCAGTCGTATGAGG -ACGGAAGGTTTCAGTCGTAATGGG -ACGGAAGGTTTCAGTCGTTCCTGA -ACGGAAGGTTTCAGTCGTTAGCGA -ACGGAAGGTTTCAGTCGTCACAGA -ACGGAAGGTTTCAGTCGTGCAAGA -ACGGAAGGTTTCAGTCGTGGTTGA -ACGGAAGGTTTCAGTCGTTCCGAT -ACGGAAGGTTTCAGTCGTTGGCAT -ACGGAAGGTTTCAGTCGTCGAGAT -ACGGAAGGTTTCAGTCGTTACCAC -ACGGAAGGTTTCAGTCGTCAGAAC -ACGGAAGGTTTCAGTCGTGTCTAC -ACGGAAGGTTTCAGTCGTACGTAC -ACGGAAGGTTTCAGTCGTAGTGAC -ACGGAAGGTTTCAGTCGTCTGTAG -ACGGAAGGTTTCAGTCGTCCTAAG -ACGGAAGGTTTCAGTCGTGTTCAG -ACGGAAGGTTTCAGTCGTGCATAG -ACGGAAGGTTTCAGTCGTGACAAG -ACGGAAGGTTTCAGTCGTAAGCAG -ACGGAAGGTTTCAGTCGTCGTCAA -ACGGAAGGTTTCAGTCGTGCTGAA -ACGGAAGGTTTCAGTCGTAGTACG -ACGGAAGGTTTCAGTCGTATCCGA -ACGGAAGGTTTCAGTCGTATGGGA -ACGGAAGGTTTCAGTCGTGTGCAA -ACGGAAGGTTTCAGTCGTGAGGAA -ACGGAAGGTTTCAGTCGTCAGGTA -ACGGAAGGTTTCAGTCGTGACTCT -ACGGAAGGTTTCAGTCGTAGTCCT -ACGGAAGGTTTCAGTCGTTAAGCC -ACGGAAGGTTTCAGTCGTATAGCC -ACGGAAGGTTTCAGTCGTTAACCG -ACGGAAGGTTTCAGTCGTATGCCA -ACGGAAGGTTTCAGTGTCGGAAAC -ACGGAAGGTTTCAGTGTCAACACC -ACGGAAGGTTTCAGTGTCATCGAG -ACGGAAGGTTTCAGTGTCCTCCTT -ACGGAAGGTTTCAGTGTCCCTGTT -ACGGAAGGTTTCAGTGTCCGGTTT -ACGGAAGGTTTCAGTGTCGTGGTT -ACGGAAGGTTTCAGTGTCGCCTTT -ACGGAAGGTTTCAGTGTCGGTCTT -ACGGAAGGTTTCAGTGTCACGCTT -ACGGAAGGTTTCAGTGTCAGCGTT -ACGGAAGGTTTCAGTGTCTTCGTC -ACGGAAGGTTTCAGTGTCTCTCTC -ACGGAAGGTTTCAGTGTCTGGATC -ACGGAAGGTTTCAGTGTCCACTTC -ACGGAAGGTTTCAGTGTCGTACTC -ACGGAAGGTTTCAGTGTCGATGTC -ACGGAAGGTTTCAGTGTCACAGTC -ACGGAAGGTTTCAGTGTCTTGCTG -ACGGAAGGTTTCAGTGTCTCCATG -ACGGAAGGTTTCAGTGTCTGTGTG -ACGGAAGGTTTCAGTGTCCTAGTG -ACGGAAGGTTTCAGTGTCCATCTG -ACGGAAGGTTTCAGTGTCGAGTTG -ACGGAAGGTTTCAGTGTCAGACTG -ACGGAAGGTTTCAGTGTCTCGGTA -ACGGAAGGTTTCAGTGTCTGCCTA -ACGGAAGGTTTCAGTGTCCCACTA -ACGGAAGGTTTCAGTGTCGGAGTA -ACGGAAGGTTTCAGTGTCTCGTCT -ACGGAAGGTTTCAGTGTCTGCACT -ACGGAAGGTTTCAGTGTCCTGACT -ACGGAAGGTTTCAGTGTCCAACCT -ACGGAAGGTTTCAGTGTCGCTACT -ACGGAAGGTTTCAGTGTCGGATCT -ACGGAAGGTTTCAGTGTCAAGGCT -ACGGAAGGTTTCAGTGTCTCAACC -ACGGAAGGTTTCAGTGTCTGTTCC -ACGGAAGGTTTCAGTGTCATTCCC -ACGGAAGGTTTCAGTGTCTTCTCG -ACGGAAGGTTTCAGTGTCTAGACG -ACGGAAGGTTTCAGTGTCGTAACG -ACGGAAGGTTTCAGTGTCACTTCG -ACGGAAGGTTTCAGTGTCTACGCA -ACGGAAGGTTTCAGTGTCCTTGCA -ACGGAAGGTTTCAGTGTCCGAACA -ACGGAAGGTTTCAGTGTCCAGTCA -ACGGAAGGTTTCAGTGTCGATCCA -ACGGAAGGTTTCAGTGTCACGACA -ACGGAAGGTTTCAGTGTCAGCTCA -ACGGAAGGTTTCAGTGTCTCACGT -ACGGAAGGTTTCAGTGTCCGTAGT -ACGGAAGGTTTCAGTGTCGTCAGT -ACGGAAGGTTTCAGTGTCGAAGGT -ACGGAAGGTTTCAGTGTCAACCGT -ACGGAAGGTTTCAGTGTCTTGTGC -ACGGAAGGTTTCAGTGTCCTAAGC -ACGGAAGGTTTCAGTGTCACTAGC -ACGGAAGGTTTCAGTGTCAGATGC -ACGGAAGGTTTCAGTGTCTGAAGG -ACGGAAGGTTTCAGTGTCCAATGG -ACGGAAGGTTTCAGTGTCATGAGG -ACGGAAGGTTTCAGTGTCAATGGG -ACGGAAGGTTTCAGTGTCTCCTGA -ACGGAAGGTTTCAGTGTCTAGCGA -ACGGAAGGTTTCAGTGTCCACAGA -ACGGAAGGTTTCAGTGTCGCAAGA -ACGGAAGGTTTCAGTGTCGGTTGA -ACGGAAGGTTTCAGTGTCTCCGAT -ACGGAAGGTTTCAGTGTCTGGCAT -ACGGAAGGTTTCAGTGTCCGAGAT -ACGGAAGGTTTCAGTGTCTACCAC -ACGGAAGGTTTCAGTGTCCAGAAC -ACGGAAGGTTTCAGTGTCGTCTAC -ACGGAAGGTTTCAGTGTCACGTAC -ACGGAAGGTTTCAGTGTCAGTGAC -ACGGAAGGTTTCAGTGTCCTGTAG -ACGGAAGGTTTCAGTGTCCCTAAG -ACGGAAGGTTTCAGTGTCGTTCAG -ACGGAAGGTTTCAGTGTCGCATAG -ACGGAAGGTTTCAGTGTCGACAAG -ACGGAAGGTTTCAGTGTCAAGCAG -ACGGAAGGTTTCAGTGTCCGTCAA -ACGGAAGGTTTCAGTGTCGCTGAA -ACGGAAGGTTTCAGTGTCAGTACG -ACGGAAGGTTTCAGTGTCATCCGA -ACGGAAGGTTTCAGTGTCATGGGA -ACGGAAGGTTTCAGTGTCGTGCAA -ACGGAAGGTTTCAGTGTCGAGGAA -ACGGAAGGTTTCAGTGTCCAGGTA -ACGGAAGGTTTCAGTGTCGACTCT -ACGGAAGGTTTCAGTGTCAGTCCT -ACGGAAGGTTTCAGTGTCTAAGCC -ACGGAAGGTTTCAGTGTCATAGCC -ACGGAAGGTTTCAGTGTCTAACCG -ACGGAAGGTTTCAGTGTCATGCCA -ACGGAAGGTTTCGGTGAAGGAAAC -ACGGAAGGTTTCGGTGAAAACACC -ACGGAAGGTTTCGGTGAAATCGAG -ACGGAAGGTTTCGGTGAACTCCTT -ACGGAAGGTTTCGGTGAACCTGTT -ACGGAAGGTTTCGGTGAACGGTTT -ACGGAAGGTTTCGGTGAAGTGGTT -ACGGAAGGTTTCGGTGAAGCCTTT -ACGGAAGGTTTCGGTGAAGGTCTT -ACGGAAGGTTTCGGTGAAACGCTT -ACGGAAGGTTTCGGTGAAAGCGTT -ACGGAAGGTTTCGGTGAATTCGTC -ACGGAAGGTTTCGGTGAATCTCTC -ACGGAAGGTTTCGGTGAATGGATC -ACGGAAGGTTTCGGTGAACACTTC -ACGGAAGGTTTCGGTGAAGTACTC -ACGGAAGGTTTCGGTGAAGATGTC -ACGGAAGGTTTCGGTGAAACAGTC -ACGGAAGGTTTCGGTGAATTGCTG -ACGGAAGGTTTCGGTGAATCCATG -ACGGAAGGTTTCGGTGAATGTGTG -ACGGAAGGTTTCGGTGAACTAGTG -ACGGAAGGTTTCGGTGAACATCTG -ACGGAAGGTTTCGGTGAAGAGTTG -ACGGAAGGTTTCGGTGAAAGACTG -ACGGAAGGTTTCGGTGAATCGGTA -ACGGAAGGTTTCGGTGAATGCCTA -ACGGAAGGTTTCGGTGAACCACTA -ACGGAAGGTTTCGGTGAAGGAGTA -ACGGAAGGTTTCGGTGAATCGTCT -ACGGAAGGTTTCGGTGAATGCACT -ACGGAAGGTTTCGGTGAACTGACT -ACGGAAGGTTTCGGTGAACAACCT -ACGGAAGGTTTCGGTGAAGCTACT -ACGGAAGGTTTCGGTGAAGGATCT -ACGGAAGGTTTCGGTGAAAAGGCT -ACGGAAGGTTTCGGTGAATCAACC -ACGGAAGGTTTCGGTGAATGTTCC -ACGGAAGGTTTCGGTGAAATTCCC -ACGGAAGGTTTCGGTGAATTCTCG -ACGGAAGGTTTCGGTGAATAGACG -ACGGAAGGTTTCGGTGAAGTAACG -ACGGAAGGTTTCGGTGAAACTTCG -ACGGAAGGTTTCGGTGAATACGCA -ACGGAAGGTTTCGGTGAACTTGCA -ACGGAAGGTTTCGGTGAACGAACA -ACGGAAGGTTTCGGTGAACAGTCA -ACGGAAGGTTTCGGTGAAGATCCA -ACGGAAGGTTTCGGTGAAACGACA -ACGGAAGGTTTCGGTGAAAGCTCA -ACGGAAGGTTTCGGTGAATCACGT -ACGGAAGGTTTCGGTGAACGTAGT -ACGGAAGGTTTCGGTGAAGTCAGT -ACGGAAGGTTTCGGTGAAGAAGGT -ACGGAAGGTTTCGGTGAAAACCGT -ACGGAAGGTTTCGGTGAATTGTGC -ACGGAAGGTTTCGGTGAACTAAGC -ACGGAAGGTTTCGGTGAAACTAGC -ACGGAAGGTTTCGGTGAAAGATGC -ACGGAAGGTTTCGGTGAATGAAGG -ACGGAAGGTTTCGGTGAACAATGG -ACGGAAGGTTTCGGTGAAATGAGG -ACGGAAGGTTTCGGTGAAAATGGG -ACGGAAGGTTTCGGTGAATCCTGA -ACGGAAGGTTTCGGTGAATAGCGA -ACGGAAGGTTTCGGTGAACACAGA -ACGGAAGGTTTCGGTGAAGCAAGA -ACGGAAGGTTTCGGTGAAGGTTGA -ACGGAAGGTTTCGGTGAATCCGAT -ACGGAAGGTTTCGGTGAATGGCAT -ACGGAAGGTTTCGGTGAACGAGAT -ACGGAAGGTTTCGGTGAATACCAC -ACGGAAGGTTTCGGTGAACAGAAC -ACGGAAGGTTTCGGTGAAGTCTAC -ACGGAAGGTTTCGGTGAAACGTAC -ACGGAAGGTTTCGGTGAAAGTGAC -ACGGAAGGTTTCGGTGAACTGTAG -ACGGAAGGTTTCGGTGAACCTAAG -ACGGAAGGTTTCGGTGAAGTTCAG -ACGGAAGGTTTCGGTGAAGCATAG -ACGGAAGGTTTCGGTGAAGACAAG -ACGGAAGGTTTCGGTGAAAAGCAG -ACGGAAGGTTTCGGTGAACGTCAA -ACGGAAGGTTTCGGTGAAGCTGAA -ACGGAAGGTTTCGGTGAAAGTACG -ACGGAAGGTTTCGGTGAAATCCGA -ACGGAAGGTTTCGGTGAAATGGGA -ACGGAAGGTTTCGGTGAAGTGCAA -ACGGAAGGTTTCGGTGAAGAGGAA -ACGGAAGGTTTCGGTGAACAGGTA -ACGGAAGGTTTCGGTGAAGACTCT -ACGGAAGGTTTCGGTGAAAGTCCT -ACGGAAGGTTTCGGTGAATAAGCC -ACGGAAGGTTTCGGTGAAATAGCC -ACGGAAGGTTTCGGTGAATAACCG -ACGGAAGGTTTCGGTGAAATGCCA -ACGGAAGGTTTCCGTAACGGAAAC -ACGGAAGGTTTCCGTAACAACACC -ACGGAAGGTTTCCGTAACATCGAG -ACGGAAGGTTTCCGTAACCTCCTT -ACGGAAGGTTTCCGTAACCCTGTT -ACGGAAGGTTTCCGTAACCGGTTT -ACGGAAGGTTTCCGTAACGTGGTT -ACGGAAGGTTTCCGTAACGCCTTT -ACGGAAGGTTTCCGTAACGGTCTT -ACGGAAGGTTTCCGTAACACGCTT -ACGGAAGGTTTCCGTAACAGCGTT -ACGGAAGGTTTCCGTAACTTCGTC -ACGGAAGGTTTCCGTAACTCTCTC -ACGGAAGGTTTCCGTAACTGGATC -ACGGAAGGTTTCCGTAACCACTTC -ACGGAAGGTTTCCGTAACGTACTC -ACGGAAGGTTTCCGTAACGATGTC -ACGGAAGGTTTCCGTAACACAGTC -ACGGAAGGTTTCCGTAACTTGCTG -ACGGAAGGTTTCCGTAACTCCATG -ACGGAAGGTTTCCGTAACTGTGTG -ACGGAAGGTTTCCGTAACCTAGTG -ACGGAAGGTTTCCGTAACCATCTG -ACGGAAGGTTTCCGTAACGAGTTG -ACGGAAGGTTTCCGTAACAGACTG -ACGGAAGGTTTCCGTAACTCGGTA -ACGGAAGGTTTCCGTAACTGCCTA -ACGGAAGGTTTCCGTAACCCACTA -ACGGAAGGTTTCCGTAACGGAGTA -ACGGAAGGTTTCCGTAACTCGTCT -ACGGAAGGTTTCCGTAACTGCACT -ACGGAAGGTTTCCGTAACCTGACT -ACGGAAGGTTTCCGTAACCAACCT -ACGGAAGGTTTCCGTAACGCTACT -ACGGAAGGTTTCCGTAACGGATCT -ACGGAAGGTTTCCGTAACAAGGCT -ACGGAAGGTTTCCGTAACTCAACC -ACGGAAGGTTTCCGTAACTGTTCC -ACGGAAGGTTTCCGTAACATTCCC -ACGGAAGGTTTCCGTAACTTCTCG -ACGGAAGGTTTCCGTAACTAGACG -ACGGAAGGTTTCCGTAACGTAACG -ACGGAAGGTTTCCGTAACACTTCG -ACGGAAGGTTTCCGTAACTACGCA -ACGGAAGGTTTCCGTAACCTTGCA -ACGGAAGGTTTCCGTAACCGAACA -ACGGAAGGTTTCCGTAACCAGTCA -ACGGAAGGTTTCCGTAACGATCCA -ACGGAAGGTTTCCGTAACACGACA -ACGGAAGGTTTCCGTAACAGCTCA -ACGGAAGGTTTCCGTAACTCACGT -ACGGAAGGTTTCCGTAACCGTAGT -ACGGAAGGTTTCCGTAACGTCAGT -ACGGAAGGTTTCCGTAACGAAGGT -ACGGAAGGTTTCCGTAACAACCGT -ACGGAAGGTTTCCGTAACTTGTGC -ACGGAAGGTTTCCGTAACCTAAGC -ACGGAAGGTTTCCGTAACACTAGC -ACGGAAGGTTTCCGTAACAGATGC -ACGGAAGGTTTCCGTAACTGAAGG -ACGGAAGGTTTCCGTAACCAATGG -ACGGAAGGTTTCCGTAACATGAGG -ACGGAAGGTTTCCGTAACAATGGG -ACGGAAGGTTTCCGTAACTCCTGA -ACGGAAGGTTTCCGTAACTAGCGA -ACGGAAGGTTTCCGTAACCACAGA -ACGGAAGGTTTCCGTAACGCAAGA -ACGGAAGGTTTCCGTAACGGTTGA -ACGGAAGGTTTCCGTAACTCCGAT -ACGGAAGGTTTCCGTAACTGGCAT -ACGGAAGGTTTCCGTAACCGAGAT -ACGGAAGGTTTCCGTAACTACCAC -ACGGAAGGTTTCCGTAACCAGAAC -ACGGAAGGTTTCCGTAACGTCTAC -ACGGAAGGTTTCCGTAACACGTAC -ACGGAAGGTTTCCGTAACAGTGAC -ACGGAAGGTTTCCGTAACCTGTAG -ACGGAAGGTTTCCGTAACCCTAAG -ACGGAAGGTTTCCGTAACGTTCAG -ACGGAAGGTTTCCGTAACGCATAG -ACGGAAGGTTTCCGTAACGACAAG -ACGGAAGGTTTCCGTAACAAGCAG -ACGGAAGGTTTCCGTAACCGTCAA -ACGGAAGGTTTCCGTAACGCTGAA -ACGGAAGGTTTCCGTAACAGTACG -ACGGAAGGTTTCCGTAACATCCGA -ACGGAAGGTTTCCGTAACATGGGA -ACGGAAGGTTTCCGTAACGTGCAA -ACGGAAGGTTTCCGTAACGAGGAA -ACGGAAGGTTTCCGTAACCAGGTA -ACGGAAGGTTTCCGTAACGACTCT -ACGGAAGGTTTCCGTAACAGTCCT -ACGGAAGGTTTCCGTAACTAAGCC -ACGGAAGGTTTCCGTAACATAGCC -ACGGAAGGTTTCCGTAACTAACCG -ACGGAAGGTTTCCGTAACATGCCA -ACGGAAGGTTTCTGCTTGGGAAAC -ACGGAAGGTTTCTGCTTGAACACC -ACGGAAGGTTTCTGCTTGATCGAG -ACGGAAGGTTTCTGCTTGCTCCTT -ACGGAAGGTTTCTGCTTGCCTGTT -ACGGAAGGTTTCTGCTTGCGGTTT -ACGGAAGGTTTCTGCTTGGTGGTT -ACGGAAGGTTTCTGCTTGGCCTTT -ACGGAAGGTTTCTGCTTGGGTCTT -ACGGAAGGTTTCTGCTTGACGCTT -ACGGAAGGTTTCTGCTTGAGCGTT -ACGGAAGGTTTCTGCTTGTTCGTC -ACGGAAGGTTTCTGCTTGTCTCTC -ACGGAAGGTTTCTGCTTGTGGATC -ACGGAAGGTTTCTGCTTGCACTTC -ACGGAAGGTTTCTGCTTGGTACTC -ACGGAAGGTTTCTGCTTGGATGTC -ACGGAAGGTTTCTGCTTGACAGTC -ACGGAAGGTTTCTGCTTGTTGCTG -ACGGAAGGTTTCTGCTTGTCCATG -ACGGAAGGTTTCTGCTTGTGTGTG -ACGGAAGGTTTCTGCTTGCTAGTG -ACGGAAGGTTTCTGCTTGCATCTG -ACGGAAGGTTTCTGCTTGGAGTTG -ACGGAAGGTTTCTGCTTGAGACTG -ACGGAAGGTTTCTGCTTGTCGGTA -ACGGAAGGTTTCTGCTTGTGCCTA -ACGGAAGGTTTCTGCTTGCCACTA -ACGGAAGGTTTCTGCTTGGGAGTA -ACGGAAGGTTTCTGCTTGTCGTCT -ACGGAAGGTTTCTGCTTGTGCACT -ACGGAAGGTTTCTGCTTGCTGACT -ACGGAAGGTTTCTGCTTGCAACCT -ACGGAAGGTTTCTGCTTGGCTACT -ACGGAAGGTTTCTGCTTGGGATCT -ACGGAAGGTTTCTGCTTGAAGGCT -ACGGAAGGTTTCTGCTTGTCAACC -ACGGAAGGTTTCTGCTTGTGTTCC -ACGGAAGGTTTCTGCTTGATTCCC -ACGGAAGGTTTCTGCTTGTTCTCG -ACGGAAGGTTTCTGCTTGTAGACG -ACGGAAGGTTTCTGCTTGGTAACG -ACGGAAGGTTTCTGCTTGACTTCG -ACGGAAGGTTTCTGCTTGTACGCA -ACGGAAGGTTTCTGCTTGCTTGCA -ACGGAAGGTTTCTGCTTGCGAACA -ACGGAAGGTTTCTGCTTGCAGTCA -ACGGAAGGTTTCTGCTTGGATCCA -ACGGAAGGTTTCTGCTTGACGACA -ACGGAAGGTTTCTGCTTGAGCTCA -ACGGAAGGTTTCTGCTTGTCACGT -ACGGAAGGTTTCTGCTTGCGTAGT -ACGGAAGGTTTCTGCTTGGTCAGT -ACGGAAGGTTTCTGCTTGGAAGGT -ACGGAAGGTTTCTGCTTGAACCGT -ACGGAAGGTTTCTGCTTGTTGTGC -ACGGAAGGTTTCTGCTTGCTAAGC -ACGGAAGGTTTCTGCTTGACTAGC -ACGGAAGGTTTCTGCTTGAGATGC -ACGGAAGGTTTCTGCTTGTGAAGG -ACGGAAGGTTTCTGCTTGCAATGG -ACGGAAGGTTTCTGCTTGATGAGG -ACGGAAGGTTTCTGCTTGAATGGG -ACGGAAGGTTTCTGCTTGTCCTGA -ACGGAAGGTTTCTGCTTGTAGCGA -ACGGAAGGTTTCTGCTTGCACAGA -ACGGAAGGTTTCTGCTTGGCAAGA -ACGGAAGGTTTCTGCTTGGGTTGA -ACGGAAGGTTTCTGCTTGTCCGAT -ACGGAAGGTTTCTGCTTGTGGCAT -ACGGAAGGTTTCTGCTTGCGAGAT -ACGGAAGGTTTCTGCTTGTACCAC -ACGGAAGGTTTCTGCTTGCAGAAC -ACGGAAGGTTTCTGCTTGGTCTAC -ACGGAAGGTTTCTGCTTGACGTAC -ACGGAAGGTTTCTGCTTGAGTGAC -ACGGAAGGTTTCTGCTTGCTGTAG -ACGGAAGGTTTCTGCTTGCCTAAG -ACGGAAGGTTTCTGCTTGGTTCAG -ACGGAAGGTTTCTGCTTGGCATAG -ACGGAAGGTTTCTGCTTGGACAAG -ACGGAAGGTTTCTGCTTGAAGCAG -ACGGAAGGTTTCTGCTTGCGTCAA -ACGGAAGGTTTCTGCTTGGCTGAA -ACGGAAGGTTTCTGCTTGAGTACG -ACGGAAGGTTTCTGCTTGATCCGA -ACGGAAGGTTTCTGCTTGATGGGA -ACGGAAGGTTTCTGCTTGGTGCAA -ACGGAAGGTTTCTGCTTGGAGGAA -ACGGAAGGTTTCTGCTTGCAGGTA -ACGGAAGGTTTCTGCTTGGACTCT -ACGGAAGGTTTCTGCTTGAGTCCT -ACGGAAGGTTTCTGCTTGTAAGCC -ACGGAAGGTTTCTGCTTGATAGCC -ACGGAAGGTTTCTGCTTGTAACCG -ACGGAAGGTTTCTGCTTGATGCCA -ACGGAAGGTTTCAGCCTAGGAAAC -ACGGAAGGTTTCAGCCTAAACACC -ACGGAAGGTTTCAGCCTAATCGAG -ACGGAAGGTTTCAGCCTACTCCTT -ACGGAAGGTTTCAGCCTACCTGTT -ACGGAAGGTTTCAGCCTACGGTTT -ACGGAAGGTTTCAGCCTAGTGGTT -ACGGAAGGTTTCAGCCTAGCCTTT -ACGGAAGGTTTCAGCCTAGGTCTT -ACGGAAGGTTTCAGCCTAACGCTT -ACGGAAGGTTTCAGCCTAAGCGTT -ACGGAAGGTTTCAGCCTATTCGTC -ACGGAAGGTTTCAGCCTATCTCTC -ACGGAAGGTTTCAGCCTATGGATC -ACGGAAGGTTTCAGCCTACACTTC -ACGGAAGGTTTCAGCCTAGTACTC -ACGGAAGGTTTCAGCCTAGATGTC -ACGGAAGGTTTCAGCCTAACAGTC -ACGGAAGGTTTCAGCCTATTGCTG -ACGGAAGGTTTCAGCCTATCCATG -ACGGAAGGTTTCAGCCTATGTGTG -ACGGAAGGTTTCAGCCTACTAGTG -ACGGAAGGTTTCAGCCTACATCTG -ACGGAAGGTTTCAGCCTAGAGTTG -ACGGAAGGTTTCAGCCTAAGACTG -ACGGAAGGTTTCAGCCTATCGGTA -ACGGAAGGTTTCAGCCTATGCCTA -ACGGAAGGTTTCAGCCTACCACTA -ACGGAAGGTTTCAGCCTAGGAGTA -ACGGAAGGTTTCAGCCTATCGTCT -ACGGAAGGTTTCAGCCTATGCACT -ACGGAAGGTTTCAGCCTACTGACT -ACGGAAGGTTTCAGCCTACAACCT -ACGGAAGGTTTCAGCCTAGCTACT -ACGGAAGGTTTCAGCCTAGGATCT -ACGGAAGGTTTCAGCCTAAAGGCT -ACGGAAGGTTTCAGCCTATCAACC -ACGGAAGGTTTCAGCCTATGTTCC -ACGGAAGGTTTCAGCCTAATTCCC -ACGGAAGGTTTCAGCCTATTCTCG -ACGGAAGGTTTCAGCCTATAGACG -ACGGAAGGTTTCAGCCTAGTAACG -ACGGAAGGTTTCAGCCTAACTTCG -ACGGAAGGTTTCAGCCTATACGCA -ACGGAAGGTTTCAGCCTACTTGCA -ACGGAAGGTTTCAGCCTACGAACA -ACGGAAGGTTTCAGCCTACAGTCA -ACGGAAGGTTTCAGCCTAGATCCA -ACGGAAGGTTTCAGCCTAACGACA -ACGGAAGGTTTCAGCCTAAGCTCA -ACGGAAGGTTTCAGCCTATCACGT -ACGGAAGGTTTCAGCCTACGTAGT -ACGGAAGGTTTCAGCCTAGTCAGT -ACGGAAGGTTTCAGCCTAGAAGGT -ACGGAAGGTTTCAGCCTAAACCGT -ACGGAAGGTTTCAGCCTATTGTGC -ACGGAAGGTTTCAGCCTACTAAGC -ACGGAAGGTTTCAGCCTAACTAGC -ACGGAAGGTTTCAGCCTAAGATGC -ACGGAAGGTTTCAGCCTATGAAGG -ACGGAAGGTTTCAGCCTACAATGG -ACGGAAGGTTTCAGCCTAATGAGG -ACGGAAGGTTTCAGCCTAAATGGG -ACGGAAGGTTTCAGCCTATCCTGA -ACGGAAGGTTTCAGCCTATAGCGA -ACGGAAGGTTTCAGCCTACACAGA -ACGGAAGGTTTCAGCCTAGCAAGA -ACGGAAGGTTTCAGCCTAGGTTGA -ACGGAAGGTTTCAGCCTATCCGAT -ACGGAAGGTTTCAGCCTATGGCAT -ACGGAAGGTTTCAGCCTACGAGAT -ACGGAAGGTTTCAGCCTATACCAC -ACGGAAGGTTTCAGCCTACAGAAC -ACGGAAGGTTTCAGCCTAGTCTAC -ACGGAAGGTTTCAGCCTAACGTAC -ACGGAAGGTTTCAGCCTAAGTGAC -ACGGAAGGTTTCAGCCTACTGTAG -ACGGAAGGTTTCAGCCTACCTAAG -ACGGAAGGTTTCAGCCTAGTTCAG -ACGGAAGGTTTCAGCCTAGCATAG -ACGGAAGGTTTCAGCCTAGACAAG -ACGGAAGGTTTCAGCCTAAAGCAG -ACGGAAGGTTTCAGCCTACGTCAA -ACGGAAGGTTTCAGCCTAGCTGAA -ACGGAAGGTTTCAGCCTAAGTACG -ACGGAAGGTTTCAGCCTAATCCGA -ACGGAAGGTTTCAGCCTAATGGGA -ACGGAAGGTTTCAGCCTAGTGCAA -ACGGAAGGTTTCAGCCTAGAGGAA -ACGGAAGGTTTCAGCCTACAGGTA -ACGGAAGGTTTCAGCCTAGACTCT -ACGGAAGGTTTCAGCCTAAGTCCT -ACGGAAGGTTTCAGCCTATAAGCC -ACGGAAGGTTTCAGCCTAATAGCC -ACGGAAGGTTTCAGCCTATAACCG -ACGGAAGGTTTCAGCCTAATGCCA -ACGGAAGGTTTCAGCACTGGAAAC -ACGGAAGGTTTCAGCACTAACACC -ACGGAAGGTTTCAGCACTATCGAG -ACGGAAGGTTTCAGCACTCTCCTT -ACGGAAGGTTTCAGCACTCCTGTT -ACGGAAGGTTTCAGCACTCGGTTT -ACGGAAGGTTTCAGCACTGTGGTT -ACGGAAGGTTTCAGCACTGCCTTT -ACGGAAGGTTTCAGCACTGGTCTT -ACGGAAGGTTTCAGCACTACGCTT -ACGGAAGGTTTCAGCACTAGCGTT -ACGGAAGGTTTCAGCACTTTCGTC -ACGGAAGGTTTCAGCACTTCTCTC -ACGGAAGGTTTCAGCACTTGGATC -ACGGAAGGTTTCAGCACTCACTTC -ACGGAAGGTTTCAGCACTGTACTC -ACGGAAGGTTTCAGCACTGATGTC -ACGGAAGGTTTCAGCACTACAGTC -ACGGAAGGTTTCAGCACTTTGCTG -ACGGAAGGTTTCAGCACTTCCATG -ACGGAAGGTTTCAGCACTTGTGTG -ACGGAAGGTTTCAGCACTCTAGTG -ACGGAAGGTTTCAGCACTCATCTG -ACGGAAGGTTTCAGCACTGAGTTG -ACGGAAGGTTTCAGCACTAGACTG -ACGGAAGGTTTCAGCACTTCGGTA -ACGGAAGGTTTCAGCACTTGCCTA -ACGGAAGGTTTCAGCACTCCACTA -ACGGAAGGTTTCAGCACTGGAGTA -ACGGAAGGTTTCAGCACTTCGTCT -ACGGAAGGTTTCAGCACTTGCACT -ACGGAAGGTTTCAGCACTCTGACT -ACGGAAGGTTTCAGCACTCAACCT -ACGGAAGGTTTCAGCACTGCTACT -ACGGAAGGTTTCAGCACTGGATCT -ACGGAAGGTTTCAGCACTAAGGCT -ACGGAAGGTTTCAGCACTTCAACC -ACGGAAGGTTTCAGCACTTGTTCC -ACGGAAGGTTTCAGCACTATTCCC -ACGGAAGGTTTCAGCACTTTCTCG -ACGGAAGGTTTCAGCACTTAGACG -ACGGAAGGTTTCAGCACTGTAACG -ACGGAAGGTTTCAGCACTACTTCG -ACGGAAGGTTTCAGCACTTACGCA -ACGGAAGGTTTCAGCACTCTTGCA -ACGGAAGGTTTCAGCACTCGAACA -ACGGAAGGTTTCAGCACTCAGTCA -ACGGAAGGTTTCAGCACTGATCCA -ACGGAAGGTTTCAGCACTACGACA -ACGGAAGGTTTCAGCACTAGCTCA -ACGGAAGGTTTCAGCACTTCACGT -ACGGAAGGTTTCAGCACTCGTAGT -ACGGAAGGTTTCAGCACTGTCAGT -ACGGAAGGTTTCAGCACTGAAGGT -ACGGAAGGTTTCAGCACTAACCGT -ACGGAAGGTTTCAGCACTTTGTGC -ACGGAAGGTTTCAGCACTCTAAGC -ACGGAAGGTTTCAGCACTACTAGC -ACGGAAGGTTTCAGCACTAGATGC -ACGGAAGGTTTCAGCACTTGAAGG -ACGGAAGGTTTCAGCACTCAATGG -ACGGAAGGTTTCAGCACTATGAGG -ACGGAAGGTTTCAGCACTAATGGG -ACGGAAGGTTTCAGCACTTCCTGA -ACGGAAGGTTTCAGCACTTAGCGA -ACGGAAGGTTTCAGCACTCACAGA -ACGGAAGGTTTCAGCACTGCAAGA -ACGGAAGGTTTCAGCACTGGTTGA -ACGGAAGGTTTCAGCACTTCCGAT -ACGGAAGGTTTCAGCACTTGGCAT -ACGGAAGGTTTCAGCACTCGAGAT -ACGGAAGGTTTCAGCACTTACCAC -ACGGAAGGTTTCAGCACTCAGAAC -ACGGAAGGTTTCAGCACTGTCTAC -ACGGAAGGTTTCAGCACTACGTAC -ACGGAAGGTTTCAGCACTAGTGAC -ACGGAAGGTTTCAGCACTCTGTAG -ACGGAAGGTTTCAGCACTCCTAAG -ACGGAAGGTTTCAGCACTGTTCAG -ACGGAAGGTTTCAGCACTGCATAG -ACGGAAGGTTTCAGCACTGACAAG -ACGGAAGGTTTCAGCACTAAGCAG -ACGGAAGGTTTCAGCACTCGTCAA -ACGGAAGGTTTCAGCACTGCTGAA -ACGGAAGGTTTCAGCACTAGTACG -ACGGAAGGTTTCAGCACTATCCGA -ACGGAAGGTTTCAGCACTATGGGA -ACGGAAGGTTTCAGCACTGTGCAA -ACGGAAGGTTTCAGCACTGAGGAA -ACGGAAGGTTTCAGCACTCAGGTA -ACGGAAGGTTTCAGCACTGACTCT -ACGGAAGGTTTCAGCACTAGTCCT -ACGGAAGGTTTCAGCACTTAAGCC -ACGGAAGGTTTCAGCACTATAGCC -ACGGAAGGTTTCAGCACTTAACCG -ACGGAAGGTTTCAGCACTATGCCA -ACGGAAGGTTTCTGCAGAGGAAAC -ACGGAAGGTTTCTGCAGAAACACC -ACGGAAGGTTTCTGCAGAATCGAG -ACGGAAGGTTTCTGCAGACTCCTT -ACGGAAGGTTTCTGCAGACCTGTT -ACGGAAGGTTTCTGCAGACGGTTT -ACGGAAGGTTTCTGCAGAGTGGTT -ACGGAAGGTTTCTGCAGAGCCTTT -ACGGAAGGTTTCTGCAGAGGTCTT -ACGGAAGGTTTCTGCAGAACGCTT -ACGGAAGGTTTCTGCAGAAGCGTT -ACGGAAGGTTTCTGCAGATTCGTC -ACGGAAGGTTTCTGCAGATCTCTC -ACGGAAGGTTTCTGCAGATGGATC -ACGGAAGGTTTCTGCAGACACTTC -ACGGAAGGTTTCTGCAGAGTACTC -ACGGAAGGTTTCTGCAGAGATGTC -ACGGAAGGTTTCTGCAGAACAGTC -ACGGAAGGTTTCTGCAGATTGCTG -ACGGAAGGTTTCTGCAGATCCATG -ACGGAAGGTTTCTGCAGATGTGTG -ACGGAAGGTTTCTGCAGACTAGTG -ACGGAAGGTTTCTGCAGACATCTG -ACGGAAGGTTTCTGCAGAGAGTTG -ACGGAAGGTTTCTGCAGAAGACTG -ACGGAAGGTTTCTGCAGATCGGTA -ACGGAAGGTTTCTGCAGATGCCTA -ACGGAAGGTTTCTGCAGACCACTA -ACGGAAGGTTTCTGCAGAGGAGTA -ACGGAAGGTTTCTGCAGATCGTCT -ACGGAAGGTTTCTGCAGATGCACT -ACGGAAGGTTTCTGCAGACTGACT -ACGGAAGGTTTCTGCAGACAACCT -ACGGAAGGTTTCTGCAGAGCTACT -ACGGAAGGTTTCTGCAGAGGATCT -ACGGAAGGTTTCTGCAGAAAGGCT -ACGGAAGGTTTCTGCAGATCAACC -ACGGAAGGTTTCTGCAGATGTTCC -ACGGAAGGTTTCTGCAGAATTCCC -ACGGAAGGTTTCTGCAGATTCTCG -ACGGAAGGTTTCTGCAGATAGACG -ACGGAAGGTTTCTGCAGAGTAACG -ACGGAAGGTTTCTGCAGAACTTCG -ACGGAAGGTTTCTGCAGATACGCA -ACGGAAGGTTTCTGCAGACTTGCA -ACGGAAGGTTTCTGCAGACGAACA -ACGGAAGGTTTCTGCAGACAGTCA -ACGGAAGGTTTCTGCAGAGATCCA -ACGGAAGGTTTCTGCAGAACGACA -ACGGAAGGTTTCTGCAGAAGCTCA -ACGGAAGGTTTCTGCAGATCACGT -ACGGAAGGTTTCTGCAGACGTAGT -ACGGAAGGTTTCTGCAGAGTCAGT -ACGGAAGGTTTCTGCAGAGAAGGT -ACGGAAGGTTTCTGCAGAAACCGT -ACGGAAGGTTTCTGCAGATTGTGC -ACGGAAGGTTTCTGCAGACTAAGC -ACGGAAGGTTTCTGCAGAACTAGC -ACGGAAGGTTTCTGCAGAAGATGC -ACGGAAGGTTTCTGCAGATGAAGG -ACGGAAGGTTTCTGCAGACAATGG -ACGGAAGGTTTCTGCAGAATGAGG -ACGGAAGGTTTCTGCAGAAATGGG -ACGGAAGGTTTCTGCAGATCCTGA -ACGGAAGGTTTCTGCAGATAGCGA -ACGGAAGGTTTCTGCAGACACAGA -ACGGAAGGTTTCTGCAGAGCAAGA -ACGGAAGGTTTCTGCAGAGGTTGA -ACGGAAGGTTTCTGCAGATCCGAT -ACGGAAGGTTTCTGCAGATGGCAT -ACGGAAGGTTTCTGCAGACGAGAT -ACGGAAGGTTTCTGCAGATACCAC -ACGGAAGGTTTCTGCAGACAGAAC -ACGGAAGGTTTCTGCAGAGTCTAC -ACGGAAGGTTTCTGCAGAACGTAC -ACGGAAGGTTTCTGCAGAAGTGAC -ACGGAAGGTTTCTGCAGACTGTAG -ACGGAAGGTTTCTGCAGACCTAAG -ACGGAAGGTTTCTGCAGAGTTCAG -ACGGAAGGTTTCTGCAGAGCATAG -ACGGAAGGTTTCTGCAGAGACAAG -ACGGAAGGTTTCTGCAGAAAGCAG -ACGGAAGGTTTCTGCAGACGTCAA -ACGGAAGGTTTCTGCAGAGCTGAA -ACGGAAGGTTTCTGCAGAAGTACG -ACGGAAGGTTTCTGCAGAATCCGA -ACGGAAGGTTTCTGCAGAATGGGA -ACGGAAGGTTTCTGCAGAGTGCAA -ACGGAAGGTTTCTGCAGAGAGGAA -ACGGAAGGTTTCTGCAGACAGGTA -ACGGAAGGTTTCTGCAGAGACTCT -ACGGAAGGTTTCTGCAGAAGTCCT -ACGGAAGGTTTCTGCAGATAAGCC -ACGGAAGGTTTCTGCAGAATAGCC -ACGGAAGGTTTCTGCAGATAACCG -ACGGAAGGTTTCTGCAGAATGCCA -ACGGAAGGTTTCAGGTGAGGAAAC -ACGGAAGGTTTCAGGTGAAACACC -ACGGAAGGTTTCAGGTGAATCGAG -ACGGAAGGTTTCAGGTGACTCCTT -ACGGAAGGTTTCAGGTGACCTGTT -ACGGAAGGTTTCAGGTGACGGTTT -ACGGAAGGTTTCAGGTGAGTGGTT -ACGGAAGGTTTCAGGTGAGCCTTT -ACGGAAGGTTTCAGGTGAGGTCTT -ACGGAAGGTTTCAGGTGAACGCTT -ACGGAAGGTTTCAGGTGAAGCGTT -ACGGAAGGTTTCAGGTGATTCGTC -ACGGAAGGTTTCAGGTGATCTCTC -ACGGAAGGTTTCAGGTGATGGATC -ACGGAAGGTTTCAGGTGACACTTC -ACGGAAGGTTTCAGGTGAGTACTC -ACGGAAGGTTTCAGGTGAGATGTC -ACGGAAGGTTTCAGGTGAACAGTC -ACGGAAGGTTTCAGGTGATTGCTG -ACGGAAGGTTTCAGGTGATCCATG -ACGGAAGGTTTCAGGTGATGTGTG -ACGGAAGGTTTCAGGTGACTAGTG -ACGGAAGGTTTCAGGTGACATCTG -ACGGAAGGTTTCAGGTGAGAGTTG -ACGGAAGGTTTCAGGTGAAGACTG -ACGGAAGGTTTCAGGTGATCGGTA -ACGGAAGGTTTCAGGTGATGCCTA -ACGGAAGGTTTCAGGTGACCACTA -ACGGAAGGTTTCAGGTGAGGAGTA -ACGGAAGGTTTCAGGTGATCGTCT -ACGGAAGGTTTCAGGTGATGCACT -ACGGAAGGTTTCAGGTGACTGACT -ACGGAAGGTTTCAGGTGACAACCT -ACGGAAGGTTTCAGGTGAGCTACT -ACGGAAGGTTTCAGGTGAGGATCT -ACGGAAGGTTTCAGGTGAAAGGCT -ACGGAAGGTTTCAGGTGATCAACC -ACGGAAGGTTTCAGGTGATGTTCC -ACGGAAGGTTTCAGGTGAATTCCC -ACGGAAGGTTTCAGGTGATTCTCG -ACGGAAGGTTTCAGGTGATAGACG -ACGGAAGGTTTCAGGTGAGTAACG -ACGGAAGGTTTCAGGTGAACTTCG -ACGGAAGGTTTCAGGTGATACGCA -ACGGAAGGTTTCAGGTGACTTGCA -ACGGAAGGTTTCAGGTGACGAACA -ACGGAAGGTTTCAGGTGACAGTCA -ACGGAAGGTTTCAGGTGAGATCCA -ACGGAAGGTTTCAGGTGAACGACA -ACGGAAGGTTTCAGGTGAAGCTCA -ACGGAAGGTTTCAGGTGATCACGT -ACGGAAGGTTTCAGGTGACGTAGT -ACGGAAGGTTTCAGGTGAGTCAGT -ACGGAAGGTTTCAGGTGAGAAGGT -ACGGAAGGTTTCAGGTGAAACCGT -ACGGAAGGTTTCAGGTGATTGTGC -ACGGAAGGTTTCAGGTGACTAAGC -ACGGAAGGTTTCAGGTGAACTAGC -ACGGAAGGTTTCAGGTGAAGATGC -ACGGAAGGTTTCAGGTGATGAAGG -ACGGAAGGTTTCAGGTGACAATGG -ACGGAAGGTTTCAGGTGAATGAGG -ACGGAAGGTTTCAGGTGAAATGGG -ACGGAAGGTTTCAGGTGATCCTGA -ACGGAAGGTTTCAGGTGATAGCGA -ACGGAAGGTTTCAGGTGACACAGA -ACGGAAGGTTTCAGGTGAGCAAGA -ACGGAAGGTTTCAGGTGAGGTTGA -ACGGAAGGTTTCAGGTGATCCGAT -ACGGAAGGTTTCAGGTGATGGCAT -ACGGAAGGTTTCAGGTGACGAGAT -ACGGAAGGTTTCAGGTGATACCAC -ACGGAAGGTTTCAGGTGACAGAAC -ACGGAAGGTTTCAGGTGAGTCTAC -ACGGAAGGTTTCAGGTGAACGTAC -ACGGAAGGTTTCAGGTGAAGTGAC -ACGGAAGGTTTCAGGTGACTGTAG -ACGGAAGGTTTCAGGTGACCTAAG -ACGGAAGGTTTCAGGTGAGTTCAG -ACGGAAGGTTTCAGGTGAGCATAG -ACGGAAGGTTTCAGGTGAGACAAG -ACGGAAGGTTTCAGGTGAAAGCAG -ACGGAAGGTTTCAGGTGACGTCAA -ACGGAAGGTTTCAGGTGAGCTGAA -ACGGAAGGTTTCAGGTGAAGTACG -ACGGAAGGTTTCAGGTGAATCCGA -ACGGAAGGTTTCAGGTGAATGGGA -ACGGAAGGTTTCAGGTGAGTGCAA -ACGGAAGGTTTCAGGTGAGAGGAA -ACGGAAGGTTTCAGGTGACAGGTA -ACGGAAGGTTTCAGGTGAGACTCT -ACGGAAGGTTTCAGGTGAAGTCCT -ACGGAAGGTTTCAGGTGATAAGCC -ACGGAAGGTTTCAGGTGAATAGCC -ACGGAAGGTTTCAGGTGATAACCG -ACGGAAGGTTTCAGGTGAATGCCA -ACGGAAGGTTTCTGGCAAGGAAAC -ACGGAAGGTTTCTGGCAAAACACC -ACGGAAGGTTTCTGGCAAATCGAG -ACGGAAGGTTTCTGGCAACTCCTT -ACGGAAGGTTTCTGGCAACCTGTT -ACGGAAGGTTTCTGGCAACGGTTT -ACGGAAGGTTTCTGGCAAGTGGTT -ACGGAAGGTTTCTGGCAAGCCTTT -ACGGAAGGTTTCTGGCAAGGTCTT -ACGGAAGGTTTCTGGCAAACGCTT -ACGGAAGGTTTCTGGCAAAGCGTT -ACGGAAGGTTTCTGGCAATTCGTC -ACGGAAGGTTTCTGGCAATCTCTC -ACGGAAGGTTTCTGGCAATGGATC -ACGGAAGGTTTCTGGCAACACTTC -ACGGAAGGTTTCTGGCAAGTACTC -ACGGAAGGTTTCTGGCAAGATGTC -ACGGAAGGTTTCTGGCAAACAGTC -ACGGAAGGTTTCTGGCAATTGCTG -ACGGAAGGTTTCTGGCAATCCATG -ACGGAAGGTTTCTGGCAATGTGTG -ACGGAAGGTTTCTGGCAACTAGTG -ACGGAAGGTTTCTGGCAACATCTG -ACGGAAGGTTTCTGGCAAGAGTTG -ACGGAAGGTTTCTGGCAAAGACTG -ACGGAAGGTTTCTGGCAATCGGTA -ACGGAAGGTTTCTGGCAATGCCTA -ACGGAAGGTTTCTGGCAACCACTA -ACGGAAGGTTTCTGGCAAGGAGTA -ACGGAAGGTTTCTGGCAATCGTCT -ACGGAAGGTTTCTGGCAATGCACT -ACGGAAGGTTTCTGGCAACTGACT -ACGGAAGGTTTCTGGCAACAACCT -ACGGAAGGTTTCTGGCAAGCTACT -ACGGAAGGTTTCTGGCAAGGATCT -ACGGAAGGTTTCTGGCAAAAGGCT -ACGGAAGGTTTCTGGCAATCAACC -ACGGAAGGTTTCTGGCAATGTTCC -ACGGAAGGTTTCTGGCAAATTCCC -ACGGAAGGTTTCTGGCAATTCTCG -ACGGAAGGTTTCTGGCAATAGACG -ACGGAAGGTTTCTGGCAAGTAACG -ACGGAAGGTTTCTGGCAAACTTCG -ACGGAAGGTTTCTGGCAATACGCA -ACGGAAGGTTTCTGGCAACTTGCA -ACGGAAGGTTTCTGGCAACGAACA -ACGGAAGGTTTCTGGCAACAGTCA -ACGGAAGGTTTCTGGCAAGATCCA -ACGGAAGGTTTCTGGCAAACGACA -ACGGAAGGTTTCTGGCAAAGCTCA -ACGGAAGGTTTCTGGCAATCACGT -ACGGAAGGTTTCTGGCAACGTAGT -ACGGAAGGTTTCTGGCAAGTCAGT -ACGGAAGGTTTCTGGCAAGAAGGT -ACGGAAGGTTTCTGGCAAAACCGT -ACGGAAGGTTTCTGGCAATTGTGC -ACGGAAGGTTTCTGGCAACTAAGC -ACGGAAGGTTTCTGGCAAACTAGC -ACGGAAGGTTTCTGGCAAAGATGC -ACGGAAGGTTTCTGGCAATGAAGG -ACGGAAGGTTTCTGGCAACAATGG -ACGGAAGGTTTCTGGCAAATGAGG -ACGGAAGGTTTCTGGCAAAATGGG -ACGGAAGGTTTCTGGCAATCCTGA -ACGGAAGGTTTCTGGCAATAGCGA -ACGGAAGGTTTCTGGCAACACAGA -ACGGAAGGTTTCTGGCAAGCAAGA -ACGGAAGGTTTCTGGCAAGGTTGA -ACGGAAGGTTTCTGGCAATCCGAT -ACGGAAGGTTTCTGGCAATGGCAT -ACGGAAGGTTTCTGGCAACGAGAT -ACGGAAGGTTTCTGGCAATACCAC -ACGGAAGGTTTCTGGCAACAGAAC -ACGGAAGGTTTCTGGCAAGTCTAC -ACGGAAGGTTTCTGGCAAACGTAC -ACGGAAGGTTTCTGGCAAAGTGAC -ACGGAAGGTTTCTGGCAACTGTAG -ACGGAAGGTTTCTGGCAACCTAAG -ACGGAAGGTTTCTGGCAAGTTCAG -ACGGAAGGTTTCTGGCAAGCATAG -ACGGAAGGTTTCTGGCAAGACAAG -ACGGAAGGTTTCTGGCAAAAGCAG -ACGGAAGGTTTCTGGCAACGTCAA -ACGGAAGGTTTCTGGCAAGCTGAA -ACGGAAGGTTTCTGGCAAAGTACG -ACGGAAGGTTTCTGGCAAATCCGA -ACGGAAGGTTTCTGGCAAATGGGA -ACGGAAGGTTTCTGGCAAGTGCAA -ACGGAAGGTTTCTGGCAAGAGGAA -ACGGAAGGTTTCTGGCAACAGGTA -ACGGAAGGTTTCTGGCAAGACTCT -ACGGAAGGTTTCTGGCAAAGTCCT -ACGGAAGGTTTCTGGCAATAAGCC -ACGGAAGGTTTCTGGCAAATAGCC -ACGGAAGGTTTCTGGCAATAACCG -ACGGAAGGTTTCTGGCAAATGCCA -ACGGAAGGTTTCAGGATGGGAAAC -ACGGAAGGTTTCAGGATGAACACC -ACGGAAGGTTTCAGGATGATCGAG -ACGGAAGGTTTCAGGATGCTCCTT -ACGGAAGGTTTCAGGATGCCTGTT -ACGGAAGGTTTCAGGATGCGGTTT -ACGGAAGGTTTCAGGATGGTGGTT -ACGGAAGGTTTCAGGATGGCCTTT -ACGGAAGGTTTCAGGATGGGTCTT -ACGGAAGGTTTCAGGATGACGCTT -ACGGAAGGTTTCAGGATGAGCGTT -ACGGAAGGTTTCAGGATGTTCGTC -ACGGAAGGTTTCAGGATGTCTCTC -ACGGAAGGTTTCAGGATGTGGATC -ACGGAAGGTTTCAGGATGCACTTC -ACGGAAGGTTTCAGGATGGTACTC -ACGGAAGGTTTCAGGATGGATGTC -ACGGAAGGTTTCAGGATGACAGTC -ACGGAAGGTTTCAGGATGTTGCTG -ACGGAAGGTTTCAGGATGTCCATG -ACGGAAGGTTTCAGGATGTGTGTG -ACGGAAGGTTTCAGGATGCTAGTG -ACGGAAGGTTTCAGGATGCATCTG -ACGGAAGGTTTCAGGATGGAGTTG -ACGGAAGGTTTCAGGATGAGACTG -ACGGAAGGTTTCAGGATGTCGGTA -ACGGAAGGTTTCAGGATGTGCCTA -ACGGAAGGTTTCAGGATGCCACTA -ACGGAAGGTTTCAGGATGGGAGTA -ACGGAAGGTTTCAGGATGTCGTCT -ACGGAAGGTTTCAGGATGTGCACT -ACGGAAGGTTTCAGGATGCTGACT -ACGGAAGGTTTCAGGATGCAACCT -ACGGAAGGTTTCAGGATGGCTACT -ACGGAAGGTTTCAGGATGGGATCT -ACGGAAGGTTTCAGGATGAAGGCT -ACGGAAGGTTTCAGGATGTCAACC -ACGGAAGGTTTCAGGATGTGTTCC -ACGGAAGGTTTCAGGATGATTCCC -ACGGAAGGTTTCAGGATGTTCTCG -ACGGAAGGTTTCAGGATGTAGACG -ACGGAAGGTTTCAGGATGGTAACG -ACGGAAGGTTTCAGGATGACTTCG -ACGGAAGGTTTCAGGATGTACGCA -ACGGAAGGTTTCAGGATGCTTGCA -ACGGAAGGTTTCAGGATGCGAACA -ACGGAAGGTTTCAGGATGCAGTCA -ACGGAAGGTTTCAGGATGGATCCA -ACGGAAGGTTTCAGGATGACGACA -ACGGAAGGTTTCAGGATGAGCTCA -ACGGAAGGTTTCAGGATGTCACGT -ACGGAAGGTTTCAGGATGCGTAGT -ACGGAAGGTTTCAGGATGGTCAGT -ACGGAAGGTTTCAGGATGGAAGGT -ACGGAAGGTTTCAGGATGAACCGT -ACGGAAGGTTTCAGGATGTTGTGC -ACGGAAGGTTTCAGGATGCTAAGC -ACGGAAGGTTTCAGGATGACTAGC -ACGGAAGGTTTCAGGATGAGATGC -ACGGAAGGTTTCAGGATGTGAAGG -ACGGAAGGTTTCAGGATGCAATGG -ACGGAAGGTTTCAGGATGATGAGG -ACGGAAGGTTTCAGGATGAATGGG -ACGGAAGGTTTCAGGATGTCCTGA -ACGGAAGGTTTCAGGATGTAGCGA -ACGGAAGGTTTCAGGATGCACAGA -ACGGAAGGTTTCAGGATGGCAAGA -ACGGAAGGTTTCAGGATGGGTTGA -ACGGAAGGTTTCAGGATGTCCGAT -ACGGAAGGTTTCAGGATGTGGCAT -ACGGAAGGTTTCAGGATGCGAGAT -ACGGAAGGTTTCAGGATGTACCAC -ACGGAAGGTTTCAGGATGCAGAAC -ACGGAAGGTTTCAGGATGGTCTAC -ACGGAAGGTTTCAGGATGACGTAC -ACGGAAGGTTTCAGGATGAGTGAC -ACGGAAGGTTTCAGGATGCTGTAG -ACGGAAGGTTTCAGGATGCCTAAG -ACGGAAGGTTTCAGGATGGTTCAG -ACGGAAGGTTTCAGGATGGCATAG -ACGGAAGGTTTCAGGATGGACAAG -ACGGAAGGTTTCAGGATGAAGCAG -ACGGAAGGTTTCAGGATGCGTCAA -ACGGAAGGTTTCAGGATGGCTGAA -ACGGAAGGTTTCAGGATGAGTACG -ACGGAAGGTTTCAGGATGATCCGA -ACGGAAGGTTTCAGGATGATGGGA -ACGGAAGGTTTCAGGATGGTGCAA -ACGGAAGGTTTCAGGATGGAGGAA -ACGGAAGGTTTCAGGATGCAGGTA -ACGGAAGGTTTCAGGATGGACTCT -ACGGAAGGTTTCAGGATGAGTCCT -ACGGAAGGTTTCAGGATGTAAGCC -ACGGAAGGTTTCAGGATGATAGCC -ACGGAAGGTTTCAGGATGTAACCG -ACGGAAGGTTTCAGGATGATGCCA -ACGGAAGGTTTCGGGAATGGAAAC -ACGGAAGGTTTCGGGAATAACACC -ACGGAAGGTTTCGGGAATATCGAG -ACGGAAGGTTTCGGGAATCTCCTT -ACGGAAGGTTTCGGGAATCCTGTT -ACGGAAGGTTTCGGGAATCGGTTT -ACGGAAGGTTTCGGGAATGTGGTT -ACGGAAGGTTTCGGGAATGCCTTT -ACGGAAGGTTTCGGGAATGGTCTT -ACGGAAGGTTTCGGGAATACGCTT -ACGGAAGGTTTCGGGAATAGCGTT -ACGGAAGGTTTCGGGAATTTCGTC -ACGGAAGGTTTCGGGAATTCTCTC -ACGGAAGGTTTCGGGAATTGGATC -ACGGAAGGTTTCGGGAATCACTTC -ACGGAAGGTTTCGGGAATGTACTC -ACGGAAGGTTTCGGGAATGATGTC -ACGGAAGGTTTCGGGAATACAGTC -ACGGAAGGTTTCGGGAATTTGCTG -ACGGAAGGTTTCGGGAATTCCATG -ACGGAAGGTTTCGGGAATTGTGTG -ACGGAAGGTTTCGGGAATCTAGTG -ACGGAAGGTTTCGGGAATCATCTG -ACGGAAGGTTTCGGGAATGAGTTG -ACGGAAGGTTTCGGGAATAGACTG -ACGGAAGGTTTCGGGAATTCGGTA -ACGGAAGGTTTCGGGAATTGCCTA -ACGGAAGGTTTCGGGAATCCACTA -ACGGAAGGTTTCGGGAATGGAGTA -ACGGAAGGTTTCGGGAATTCGTCT -ACGGAAGGTTTCGGGAATTGCACT -ACGGAAGGTTTCGGGAATCTGACT -ACGGAAGGTTTCGGGAATCAACCT -ACGGAAGGTTTCGGGAATGCTACT -ACGGAAGGTTTCGGGAATGGATCT -ACGGAAGGTTTCGGGAATAAGGCT -ACGGAAGGTTTCGGGAATTCAACC -ACGGAAGGTTTCGGGAATTGTTCC -ACGGAAGGTTTCGGGAATATTCCC -ACGGAAGGTTTCGGGAATTTCTCG -ACGGAAGGTTTCGGGAATTAGACG -ACGGAAGGTTTCGGGAATGTAACG -ACGGAAGGTTTCGGGAATACTTCG -ACGGAAGGTTTCGGGAATTACGCA -ACGGAAGGTTTCGGGAATCTTGCA -ACGGAAGGTTTCGGGAATCGAACA -ACGGAAGGTTTCGGGAATCAGTCA -ACGGAAGGTTTCGGGAATGATCCA -ACGGAAGGTTTCGGGAATACGACA -ACGGAAGGTTTCGGGAATAGCTCA -ACGGAAGGTTTCGGGAATTCACGT -ACGGAAGGTTTCGGGAATCGTAGT -ACGGAAGGTTTCGGGAATGTCAGT -ACGGAAGGTTTCGGGAATGAAGGT -ACGGAAGGTTTCGGGAATAACCGT -ACGGAAGGTTTCGGGAATTTGTGC -ACGGAAGGTTTCGGGAATCTAAGC -ACGGAAGGTTTCGGGAATACTAGC -ACGGAAGGTTTCGGGAATAGATGC -ACGGAAGGTTTCGGGAATTGAAGG -ACGGAAGGTTTCGGGAATCAATGG -ACGGAAGGTTTCGGGAATATGAGG -ACGGAAGGTTTCGGGAATAATGGG -ACGGAAGGTTTCGGGAATTCCTGA -ACGGAAGGTTTCGGGAATTAGCGA -ACGGAAGGTTTCGGGAATCACAGA -ACGGAAGGTTTCGGGAATGCAAGA -ACGGAAGGTTTCGGGAATGGTTGA -ACGGAAGGTTTCGGGAATTCCGAT -ACGGAAGGTTTCGGGAATTGGCAT -ACGGAAGGTTTCGGGAATCGAGAT -ACGGAAGGTTTCGGGAATTACCAC -ACGGAAGGTTTCGGGAATCAGAAC -ACGGAAGGTTTCGGGAATGTCTAC -ACGGAAGGTTTCGGGAATACGTAC -ACGGAAGGTTTCGGGAATAGTGAC -ACGGAAGGTTTCGGGAATCTGTAG -ACGGAAGGTTTCGGGAATCCTAAG -ACGGAAGGTTTCGGGAATGTTCAG -ACGGAAGGTTTCGGGAATGCATAG -ACGGAAGGTTTCGGGAATGACAAG -ACGGAAGGTTTCGGGAATAAGCAG -ACGGAAGGTTTCGGGAATCGTCAA -ACGGAAGGTTTCGGGAATGCTGAA -ACGGAAGGTTTCGGGAATAGTACG -ACGGAAGGTTTCGGGAATATCCGA -ACGGAAGGTTTCGGGAATATGGGA -ACGGAAGGTTTCGGGAATGTGCAA -ACGGAAGGTTTCGGGAATGAGGAA -ACGGAAGGTTTCGGGAATCAGGTA -ACGGAAGGTTTCGGGAATGACTCT -ACGGAAGGTTTCGGGAATAGTCCT -ACGGAAGGTTTCGGGAATTAAGCC -ACGGAAGGTTTCGGGAATATAGCC -ACGGAAGGTTTCGGGAATTAACCG -ACGGAAGGTTTCGGGAATATGCCA -ACGGAAGGTTTCTGATCCGGAAAC -ACGGAAGGTTTCTGATCCAACACC -ACGGAAGGTTTCTGATCCATCGAG -ACGGAAGGTTTCTGATCCCTCCTT -ACGGAAGGTTTCTGATCCCCTGTT -ACGGAAGGTTTCTGATCCCGGTTT -ACGGAAGGTTTCTGATCCGTGGTT -ACGGAAGGTTTCTGATCCGCCTTT -ACGGAAGGTTTCTGATCCGGTCTT -ACGGAAGGTTTCTGATCCACGCTT -ACGGAAGGTTTCTGATCCAGCGTT -ACGGAAGGTTTCTGATCCTTCGTC -ACGGAAGGTTTCTGATCCTCTCTC -ACGGAAGGTTTCTGATCCTGGATC -ACGGAAGGTTTCTGATCCCACTTC -ACGGAAGGTTTCTGATCCGTACTC -ACGGAAGGTTTCTGATCCGATGTC -ACGGAAGGTTTCTGATCCACAGTC -ACGGAAGGTTTCTGATCCTTGCTG -ACGGAAGGTTTCTGATCCTCCATG -ACGGAAGGTTTCTGATCCTGTGTG -ACGGAAGGTTTCTGATCCCTAGTG -ACGGAAGGTTTCTGATCCCATCTG -ACGGAAGGTTTCTGATCCGAGTTG -ACGGAAGGTTTCTGATCCAGACTG -ACGGAAGGTTTCTGATCCTCGGTA -ACGGAAGGTTTCTGATCCTGCCTA -ACGGAAGGTTTCTGATCCCCACTA -ACGGAAGGTTTCTGATCCGGAGTA -ACGGAAGGTTTCTGATCCTCGTCT -ACGGAAGGTTTCTGATCCTGCACT -ACGGAAGGTTTCTGATCCCTGACT -ACGGAAGGTTTCTGATCCCAACCT -ACGGAAGGTTTCTGATCCGCTACT -ACGGAAGGTTTCTGATCCGGATCT -ACGGAAGGTTTCTGATCCAAGGCT -ACGGAAGGTTTCTGATCCTCAACC -ACGGAAGGTTTCTGATCCTGTTCC -ACGGAAGGTTTCTGATCCATTCCC -ACGGAAGGTTTCTGATCCTTCTCG -ACGGAAGGTTTCTGATCCTAGACG -ACGGAAGGTTTCTGATCCGTAACG -ACGGAAGGTTTCTGATCCACTTCG -ACGGAAGGTTTCTGATCCTACGCA -ACGGAAGGTTTCTGATCCCTTGCA -ACGGAAGGTTTCTGATCCCGAACA -ACGGAAGGTTTCTGATCCCAGTCA -ACGGAAGGTTTCTGATCCGATCCA -ACGGAAGGTTTCTGATCCACGACA -ACGGAAGGTTTCTGATCCAGCTCA -ACGGAAGGTTTCTGATCCTCACGT -ACGGAAGGTTTCTGATCCCGTAGT -ACGGAAGGTTTCTGATCCGTCAGT -ACGGAAGGTTTCTGATCCGAAGGT -ACGGAAGGTTTCTGATCCAACCGT -ACGGAAGGTTTCTGATCCTTGTGC -ACGGAAGGTTTCTGATCCCTAAGC -ACGGAAGGTTTCTGATCCACTAGC -ACGGAAGGTTTCTGATCCAGATGC -ACGGAAGGTTTCTGATCCTGAAGG -ACGGAAGGTTTCTGATCCCAATGG -ACGGAAGGTTTCTGATCCATGAGG -ACGGAAGGTTTCTGATCCAATGGG -ACGGAAGGTTTCTGATCCTCCTGA -ACGGAAGGTTTCTGATCCTAGCGA -ACGGAAGGTTTCTGATCCCACAGA -ACGGAAGGTTTCTGATCCGCAAGA -ACGGAAGGTTTCTGATCCGGTTGA -ACGGAAGGTTTCTGATCCTCCGAT -ACGGAAGGTTTCTGATCCTGGCAT -ACGGAAGGTTTCTGATCCCGAGAT -ACGGAAGGTTTCTGATCCTACCAC -ACGGAAGGTTTCTGATCCCAGAAC -ACGGAAGGTTTCTGATCCGTCTAC -ACGGAAGGTTTCTGATCCACGTAC -ACGGAAGGTTTCTGATCCAGTGAC -ACGGAAGGTTTCTGATCCCTGTAG -ACGGAAGGTTTCTGATCCCCTAAG -ACGGAAGGTTTCTGATCCGTTCAG -ACGGAAGGTTTCTGATCCGCATAG -ACGGAAGGTTTCTGATCCGACAAG -ACGGAAGGTTTCTGATCCAAGCAG -ACGGAAGGTTTCTGATCCCGTCAA -ACGGAAGGTTTCTGATCCGCTGAA -ACGGAAGGTTTCTGATCCAGTACG -ACGGAAGGTTTCTGATCCATCCGA -ACGGAAGGTTTCTGATCCATGGGA -ACGGAAGGTTTCTGATCCGTGCAA -ACGGAAGGTTTCTGATCCGAGGAA -ACGGAAGGTTTCTGATCCCAGGTA -ACGGAAGGTTTCTGATCCGACTCT -ACGGAAGGTTTCTGATCCAGTCCT -ACGGAAGGTTTCTGATCCTAAGCC -ACGGAAGGTTTCTGATCCATAGCC -ACGGAAGGTTTCTGATCCTAACCG -ACGGAAGGTTTCTGATCCATGCCA -ACGGAAGGTTTCCGATAGGGAAAC -ACGGAAGGTTTCCGATAGAACACC -ACGGAAGGTTTCCGATAGATCGAG -ACGGAAGGTTTCCGATAGCTCCTT -ACGGAAGGTTTCCGATAGCCTGTT -ACGGAAGGTTTCCGATAGCGGTTT -ACGGAAGGTTTCCGATAGGTGGTT -ACGGAAGGTTTCCGATAGGCCTTT -ACGGAAGGTTTCCGATAGGGTCTT -ACGGAAGGTTTCCGATAGACGCTT -ACGGAAGGTTTCCGATAGAGCGTT -ACGGAAGGTTTCCGATAGTTCGTC -ACGGAAGGTTTCCGATAGTCTCTC -ACGGAAGGTTTCCGATAGTGGATC -ACGGAAGGTTTCCGATAGCACTTC -ACGGAAGGTTTCCGATAGGTACTC -ACGGAAGGTTTCCGATAGGATGTC -ACGGAAGGTTTCCGATAGACAGTC -ACGGAAGGTTTCCGATAGTTGCTG -ACGGAAGGTTTCCGATAGTCCATG -ACGGAAGGTTTCCGATAGTGTGTG -ACGGAAGGTTTCCGATAGCTAGTG -ACGGAAGGTTTCCGATAGCATCTG -ACGGAAGGTTTCCGATAGGAGTTG -ACGGAAGGTTTCCGATAGAGACTG -ACGGAAGGTTTCCGATAGTCGGTA -ACGGAAGGTTTCCGATAGTGCCTA -ACGGAAGGTTTCCGATAGCCACTA -ACGGAAGGTTTCCGATAGGGAGTA -ACGGAAGGTTTCCGATAGTCGTCT -ACGGAAGGTTTCCGATAGTGCACT -ACGGAAGGTTTCCGATAGCTGACT -ACGGAAGGTTTCCGATAGCAACCT -ACGGAAGGTTTCCGATAGGCTACT -ACGGAAGGTTTCCGATAGGGATCT -ACGGAAGGTTTCCGATAGAAGGCT -ACGGAAGGTTTCCGATAGTCAACC -ACGGAAGGTTTCCGATAGTGTTCC -ACGGAAGGTTTCCGATAGATTCCC -ACGGAAGGTTTCCGATAGTTCTCG -ACGGAAGGTTTCCGATAGTAGACG -ACGGAAGGTTTCCGATAGGTAACG -ACGGAAGGTTTCCGATAGACTTCG -ACGGAAGGTTTCCGATAGTACGCA -ACGGAAGGTTTCCGATAGCTTGCA -ACGGAAGGTTTCCGATAGCGAACA -ACGGAAGGTTTCCGATAGCAGTCA -ACGGAAGGTTTCCGATAGGATCCA -ACGGAAGGTTTCCGATAGACGACA -ACGGAAGGTTTCCGATAGAGCTCA -ACGGAAGGTTTCCGATAGTCACGT -ACGGAAGGTTTCCGATAGCGTAGT -ACGGAAGGTTTCCGATAGGTCAGT -ACGGAAGGTTTCCGATAGGAAGGT -ACGGAAGGTTTCCGATAGAACCGT -ACGGAAGGTTTCCGATAGTTGTGC -ACGGAAGGTTTCCGATAGCTAAGC -ACGGAAGGTTTCCGATAGACTAGC -ACGGAAGGTTTCCGATAGAGATGC -ACGGAAGGTTTCCGATAGTGAAGG -ACGGAAGGTTTCCGATAGCAATGG -ACGGAAGGTTTCCGATAGATGAGG -ACGGAAGGTTTCCGATAGAATGGG -ACGGAAGGTTTCCGATAGTCCTGA -ACGGAAGGTTTCCGATAGTAGCGA -ACGGAAGGTTTCCGATAGCACAGA -ACGGAAGGTTTCCGATAGGCAAGA -ACGGAAGGTTTCCGATAGGGTTGA -ACGGAAGGTTTCCGATAGTCCGAT -ACGGAAGGTTTCCGATAGTGGCAT -ACGGAAGGTTTCCGATAGCGAGAT -ACGGAAGGTTTCCGATAGTACCAC -ACGGAAGGTTTCCGATAGCAGAAC -ACGGAAGGTTTCCGATAGGTCTAC -ACGGAAGGTTTCCGATAGACGTAC -ACGGAAGGTTTCCGATAGAGTGAC -ACGGAAGGTTTCCGATAGCTGTAG -ACGGAAGGTTTCCGATAGCCTAAG -ACGGAAGGTTTCCGATAGGTTCAG -ACGGAAGGTTTCCGATAGGCATAG -ACGGAAGGTTTCCGATAGGACAAG -ACGGAAGGTTTCCGATAGAAGCAG -ACGGAAGGTTTCCGATAGCGTCAA -ACGGAAGGTTTCCGATAGGCTGAA -ACGGAAGGTTTCCGATAGAGTACG -ACGGAAGGTTTCCGATAGATCCGA -ACGGAAGGTTTCCGATAGATGGGA -ACGGAAGGTTTCCGATAGGTGCAA -ACGGAAGGTTTCCGATAGGAGGAA -ACGGAAGGTTTCCGATAGCAGGTA -ACGGAAGGTTTCCGATAGGACTCT -ACGGAAGGTTTCCGATAGAGTCCT -ACGGAAGGTTTCCGATAGTAAGCC -ACGGAAGGTTTCCGATAGATAGCC -ACGGAAGGTTTCCGATAGTAACCG -ACGGAAGGTTTCCGATAGATGCCA -ACGGAAGGTTTCAGACACGGAAAC -ACGGAAGGTTTCAGACACAACACC -ACGGAAGGTTTCAGACACATCGAG -ACGGAAGGTTTCAGACACCTCCTT -ACGGAAGGTTTCAGACACCCTGTT -ACGGAAGGTTTCAGACACCGGTTT -ACGGAAGGTTTCAGACACGTGGTT -ACGGAAGGTTTCAGACACGCCTTT -ACGGAAGGTTTCAGACACGGTCTT -ACGGAAGGTTTCAGACACACGCTT -ACGGAAGGTTTCAGACACAGCGTT -ACGGAAGGTTTCAGACACTTCGTC -ACGGAAGGTTTCAGACACTCTCTC -ACGGAAGGTTTCAGACACTGGATC -ACGGAAGGTTTCAGACACCACTTC -ACGGAAGGTTTCAGACACGTACTC -ACGGAAGGTTTCAGACACGATGTC -ACGGAAGGTTTCAGACACACAGTC -ACGGAAGGTTTCAGACACTTGCTG -ACGGAAGGTTTCAGACACTCCATG -ACGGAAGGTTTCAGACACTGTGTG -ACGGAAGGTTTCAGACACCTAGTG -ACGGAAGGTTTCAGACACCATCTG -ACGGAAGGTTTCAGACACGAGTTG -ACGGAAGGTTTCAGACACAGACTG -ACGGAAGGTTTCAGACACTCGGTA -ACGGAAGGTTTCAGACACTGCCTA -ACGGAAGGTTTCAGACACCCACTA -ACGGAAGGTTTCAGACACGGAGTA -ACGGAAGGTTTCAGACACTCGTCT -ACGGAAGGTTTCAGACACTGCACT -ACGGAAGGTTTCAGACACCTGACT -ACGGAAGGTTTCAGACACCAACCT -ACGGAAGGTTTCAGACACGCTACT -ACGGAAGGTTTCAGACACGGATCT -ACGGAAGGTTTCAGACACAAGGCT -ACGGAAGGTTTCAGACACTCAACC -ACGGAAGGTTTCAGACACTGTTCC -ACGGAAGGTTTCAGACACATTCCC -ACGGAAGGTTTCAGACACTTCTCG -ACGGAAGGTTTCAGACACTAGACG -ACGGAAGGTTTCAGACACGTAACG -ACGGAAGGTTTCAGACACACTTCG -ACGGAAGGTTTCAGACACTACGCA -ACGGAAGGTTTCAGACACCTTGCA -ACGGAAGGTTTCAGACACCGAACA -ACGGAAGGTTTCAGACACCAGTCA -ACGGAAGGTTTCAGACACGATCCA -ACGGAAGGTTTCAGACACACGACA -ACGGAAGGTTTCAGACACAGCTCA -ACGGAAGGTTTCAGACACTCACGT -ACGGAAGGTTTCAGACACCGTAGT -ACGGAAGGTTTCAGACACGTCAGT -ACGGAAGGTTTCAGACACGAAGGT -ACGGAAGGTTTCAGACACAACCGT -ACGGAAGGTTTCAGACACTTGTGC -ACGGAAGGTTTCAGACACCTAAGC -ACGGAAGGTTTCAGACACACTAGC -ACGGAAGGTTTCAGACACAGATGC -ACGGAAGGTTTCAGACACTGAAGG -ACGGAAGGTTTCAGACACCAATGG -ACGGAAGGTTTCAGACACATGAGG -ACGGAAGGTTTCAGACACAATGGG -ACGGAAGGTTTCAGACACTCCTGA -ACGGAAGGTTTCAGACACTAGCGA -ACGGAAGGTTTCAGACACCACAGA -ACGGAAGGTTTCAGACACGCAAGA -ACGGAAGGTTTCAGACACGGTTGA -ACGGAAGGTTTCAGACACTCCGAT -ACGGAAGGTTTCAGACACTGGCAT -ACGGAAGGTTTCAGACACCGAGAT -ACGGAAGGTTTCAGACACTACCAC -ACGGAAGGTTTCAGACACCAGAAC -ACGGAAGGTTTCAGACACGTCTAC -ACGGAAGGTTTCAGACACACGTAC -ACGGAAGGTTTCAGACACAGTGAC -ACGGAAGGTTTCAGACACCTGTAG -ACGGAAGGTTTCAGACACCCTAAG -ACGGAAGGTTTCAGACACGTTCAG -ACGGAAGGTTTCAGACACGCATAG -ACGGAAGGTTTCAGACACGACAAG -ACGGAAGGTTTCAGACACAAGCAG -ACGGAAGGTTTCAGACACCGTCAA -ACGGAAGGTTTCAGACACGCTGAA -ACGGAAGGTTTCAGACACAGTACG -ACGGAAGGTTTCAGACACATCCGA -ACGGAAGGTTTCAGACACATGGGA -ACGGAAGGTTTCAGACACGTGCAA -ACGGAAGGTTTCAGACACGAGGAA -ACGGAAGGTTTCAGACACCAGGTA -ACGGAAGGTTTCAGACACGACTCT -ACGGAAGGTTTCAGACACAGTCCT -ACGGAAGGTTTCAGACACTAAGCC -ACGGAAGGTTTCAGACACATAGCC -ACGGAAGGTTTCAGACACTAACCG -ACGGAAGGTTTCAGACACATGCCA -ACGGAAGGTTTCAGAGCAGGAAAC -ACGGAAGGTTTCAGAGCAAACACC -ACGGAAGGTTTCAGAGCAATCGAG -ACGGAAGGTTTCAGAGCACTCCTT -ACGGAAGGTTTCAGAGCACCTGTT -ACGGAAGGTTTCAGAGCACGGTTT -ACGGAAGGTTTCAGAGCAGTGGTT -ACGGAAGGTTTCAGAGCAGCCTTT -ACGGAAGGTTTCAGAGCAGGTCTT -ACGGAAGGTTTCAGAGCAACGCTT -ACGGAAGGTTTCAGAGCAAGCGTT -ACGGAAGGTTTCAGAGCATTCGTC -ACGGAAGGTTTCAGAGCATCTCTC -ACGGAAGGTTTCAGAGCATGGATC -ACGGAAGGTTTCAGAGCACACTTC -ACGGAAGGTTTCAGAGCAGTACTC -ACGGAAGGTTTCAGAGCAGATGTC -ACGGAAGGTTTCAGAGCAACAGTC -ACGGAAGGTTTCAGAGCATTGCTG -ACGGAAGGTTTCAGAGCATCCATG -ACGGAAGGTTTCAGAGCATGTGTG -ACGGAAGGTTTCAGAGCACTAGTG -ACGGAAGGTTTCAGAGCACATCTG -ACGGAAGGTTTCAGAGCAGAGTTG -ACGGAAGGTTTCAGAGCAAGACTG -ACGGAAGGTTTCAGAGCATCGGTA -ACGGAAGGTTTCAGAGCATGCCTA -ACGGAAGGTTTCAGAGCACCACTA -ACGGAAGGTTTCAGAGCAGGAGTA -ACGGAAGGTTTCAGAGCATCGTCT -ACGGAAGGTTTCAGAGCATGCACT -ACGGAAGGTTTCAGAGCACTGACT -ACGGAAGGTTTCAGAGCACAACCT -ACGGAAGGTTTCAGAGCAGCTACT -ACGGAAGGTTTCAGAGCAGGATCT -ACGGAAGGTTTCAGAGCAAAGGCT -ACGGAAGGTTTCAGAGCATCAACC -ACGGAAGGTTTCAGAGCATGTTCC -ACGGAAGGTTTCAGAGCAATTCCC -ACGGAAGGTTTCAGAGCATTCTCG -ACGGAAGGTTTCAGAGCATAGACG -ACGGAAGGTTTCAGAGCAGTAACG -ACGGAAGGTTTCAGAGCAACTTCG -ACGGAAGGTTTCAGAGCATACGCA -ACGGAAGGTTTCAGAGCACTTGCA -ACGGAAGGTTTCAGAGCACGAACA -ACGGAAGGTTTCAGAGCACAGTCA -ACGGAAGGTTTCAGAGCAGATCCA -ACGGAAGGTTTCAGAGCAACGACA -ACGGAAGGTTTCAGAGCAAGCTCA -ACGGAAGGTTTCAGAGCATCACGT -ACGGAAGGTTTCAGAGCACGTAGT -ACGGAAGGTTTCAGAGCAGTCAGT -ACGGAAGGTTTCAGAGCAGAAGGT -ACGGAAGGTTTCAGAGCAAACCGT -ACGGAAGGTTTCAGAGCATTGTGC -ACGGAAGGTTTCAGAGCACTAAGC -ACGGAAGGTTTCAGAGCAACTAGC -ACGGAAGGTTTCAGAGCAAGATGC -ACGGAAGGTTTCAGAGCATGAAGG -ACGGAAGGTTTCAGAGCACAATGG -ACGGAAGGTTTCAGAGCAATGAGG -ACGGAAGGTTTCAGAGCAAATGGG -ACGGAAGGTTTCAGAGCATCCTGA -ACGGAAGGTTTCAGAGCATAGCGA -ACGGAAGGTTTCAGAGCACACAGA -ACGGAAGGTTTCAGAGCAGCAAGA -ACGGAAGGTTTCAGAGCAGGTTGA -ACGGAAGGTTTCAGAGCATCCGAT -ACGGAAGGTTTCAGAGCATGGCAT -ACGGAAGGTTTCAGAGCACGAGAT -ACGGAAGGTTTCAGAGCATACCAC -ACGGAAGGTTTCAGAGCACAGAAC -ACGGAAGGTTTCAGAGCAGTCTAC -ACGGAAGGTTTCAGAGCAACGTAC -ACGGAAGGTTTCAGAGCAAGTGAC -ACGGAAGGTTTCAGAGCACTGTAG -ACGGAAGGTTTCAGAGCACCTAAG -ACGGAAGGTTTCAGAGCAGTTCAG -ACGGAAGGTTTCAGAGCAGCATAG -ACGGAAGGTTTCAGAGCAGACAAG -ACGGAAGGTTTCAGAGCAAAGCAG -ACGGAAGGTTTCAGAGCACGTCAA -ACGGAAGGTTTCAGAGCAGCTGAA -ACGGAAGGTTTCAGAGCAAGTACG -ACGGAAGGTTTCAGAGCAATCCGA -ACGGAAGGTTTCAGAGCAATGGGA -ACGGAAGGTTTCAGAGCAGTGCAA -ACGGAAGGTTTCAGAGCAGAGGAA -ACGGAAGGTTTCAGAGCACAGGTA -ACGGAAGGTTTCAGAGCAGACTCT -ACGGAAGGTTTCAGAGCAAGTCCT -ACGGAAGGTTTCAGAGCATAAGCC -ACGGAAGGTTTCAGAGCAATAGCC -ACGGAAGGTTTCAGAGCATAACCG -ACGGAAGGTTTCAGAGCAATGCCA -ACGGAAGGTTTCTGAGGTGGAAAC -ACGGAAGGTTTCTGAGGTAACACC -ACGGAAGGTTTCTGAGGTATCGAG -ACGGAAGGTTTCTGAGGTCTCCTT -ACGGAAGGTTTCTGAGGTCCTGTT -ACGGAAGGTTTCTGAGGTCGGTTT -ACGGAAGGTTTCTGAGGTGTGGTT -ACGGAAGGTTTCTGAGGTGCCTTT -ACGGAAGGTTTCTGAGGTGGTCTT -ACGGAAGGTTTCTGAGGTACGCTT -ACGGAAGGTTTCTGAGGTAGCGTT -ACGGAAGGTTTCTGAGGTTTCGTC -ACGGAAGGTTTCTGAGGTTCTCTC -ACGGAAGGTTTCTGAGGTTGGATC -ACGGAAGGTTTCTGAGGTCACTTC -ACGGAAGGTTTCTGAGGTGTACTC -ACGGAAGGTTTCTGAGGTGATGTC -ACGGAAGGTTTCTGAGGTACAGTC -ACGGAAGGTTTCTGAGGTTTGCTG -ACGGAAGGTTTCTGAGGTTCCATG -ACGGAAGGTTTCTGAGGTTGTGTG -ACGGAAGGTTTCTGAGGTCTAGTG -ACGGAAGGTTTCTGAGGTCATCTG -ACGGAAGGTTTCTGAGGTGAGTTG -ACGGAAGGTTTCTGAGGTAGACTG -ACGGAAGGTTTCTGAGGTTCGGTA -ACGGAAGGTTTCTGAGGTTGCCTA -ACGGAAGGTTTCTGAGGTCCACTA -ACGGAAGGTTTCTGAGGTGGAGTA -ACGGAAGGTTTCTGAGGTTCGTCT -ACGGAAGGTTTCTGAGGTTGCACT -ACGGAAGGTTTCTGAGGTCTGACT -ACGGAAGGTTTCTGAGGTCAACCT -ACGGAAGGTTTCTGAGGTGCTACT -ACGGAAGGTTTCTGAGGTGGATCT -ACGGAAGGTTTCTGAGGTAAGGCT -ACGGAAGGTTTCTGAGGTTCAACC -ACGGAAGGTTTCTGAGGTTGTTCC -ACGGAAGGTTTCTGAGGTATTCCC -ACGGAAGGTTTCTGAGGTTTCTCG -ACGGAAGGTTTCTGAGGTTAGACG -ACGGAAGGTTTCTGAGGTGTAACG -ACGGAAGGTTTCTGAGGTACTTCG -ACGGAAGGTTTCTGAGGTTACGCA -ACGGAAGGTTTCTGAGGTCTTGCA -ACGGAAGGTTTCTGAGGTCGAACA -ACGGAAGGTTTCTGAGGTCAGTCA -ACGGAAGGTTTCTGAGGTGATCCA -ACGGAAGGTTTCTGAGGTACGACA -ACGGAAGGTTTCTGAGGTAGCTCA -ACGGAAGGTTTCTGAGGTTCACGT -ACGGAAGGTTTCTGAGGTCGTAGT -ACGGAAGGTTTCTGAGGTGTCAGT -ACGGAAGGTTTCTGAGGTGAAGGT -ACGGAAGGTTTCTGAGGTAACCGT -ACGGAAGGTTTCTGAGGTTTGTGC -ACGGAAGGTTTCTGAGGTCTAAGC -ACGGAAGGTTTCTGAGGTACTAGC -ACGGAAGGTTTCTGAGGTAGATGC -ACGGAAGGTTTCTGAGGTTGAAGG -ACGGAAGGTTTCTGAGGTCAATGG -ACGGAAGGTTTCTGAGGTATGAGG -ACGGAAGGTTTCTGAGGTAATGGG -ACGGAAGGTTTCTGAGGTTCCTGA -ACGGAAGGTTTCTGAGGTTAGCGA -ACGGAAGGTTTCTGAGGTCACAGA -ACGGAAGGTTTCTGAGGTGCAAGA -ACGGAAGGTTTCTGAGGTGGTTGA -ACGGAAGGTTTCTGAGGTTCCGAT -ACGGAAGGTTTCTGAGGTTGGCAT -ACGGAAGGTTTCTGAGGTCGAGAT -ACGGAAGGTTTCTGAGGTTACCAC -ACGGAAGGTTTCTGAGGTCAGAAC -ACGGAAGGTTTCTGAGGTGTCTAC -ACGGAAGGTTTCTGAGGTACGTAC -ACGGAAGGTTTCTGAGGTAGTGAC -ACGGAAGGTTTCTGAGGTCTGTAG -ACGGAAGGTTTCTGAGGTCCTAAG -ACGGAAGGTTTCTGAGGTGTTCAG -ACGGAAGGTTTCTGAGGTGCATAG -ACGGAAGGTTTCTGAGGTGACAAG -ACGGAAGGTTTCTGAGGTAAGCAG -ACGGAAGGTTTCTGAGGTCGTCAA -ACGGAAGGTTTCTGAGGTGCTGAA -ACGGAAGGTTTCTGAGGTAGTACG -ACGGAAGGTTTCTGAGGTATCCGA -ACGGAAGGTTTCTGAGGTATGGGA -ACGGAAGGTTTCTGAGGTGTGCAA -ACGGAAGGTTTCTGAGGTGAGGAA -ACGGAAGGTTTCTGAGGTCAGGTA -ACGGAAGGTTTCTGAGGTGACTCT -ACGGAAGGTTTCTGAGGTAGTCCT -ACGGAAGGTTTCTGAGGTTAAGCC -ACGGAAGGTTTCTGAGGTATAGCC -ACGGAAGGTTTCTGAGGTTAACCG -ACGGAAGGTTTCTGAGGTATGCCA -ACGGAAGGTTTCGATTCCGGAAAC -ACGGAAGGTTTCGATTCCAACACC -ACGGAAGGTTTCGATTCCATCGAG -ACGGAAGGTTTCGATTCCCTCCTT -ACGGAAGGTTTCGATTCCCCTGTT -ACGGAAGGTTTCGATTCCCGGTTT -ACGGAAGGTTTCGATTCCGTGGTT -ACGGAAGGTTTCGATTCCGCCTTT -ACGGAAGGTTTCGATTCCGGTCTT -ACGGAAGGTTTCGATTCCACGCTT -ACGGAAGGTTTCGATTCCAGCGTT -ACGGAAGGTTTCGATTCCTTCGTC -ACGGAAGGTTTCGATTCCTCTCTC -ACGGAAGGTTTCGATTCCTGGATC -ACGGAAGGTTTCGATTCCCACTTC -ACGGAAGGTTTCGATTCCGTACTC -ACGGAAGGTTTCGATTCCGATGTC -ACGGAAGGTTTCGATTCCACAGTC -ACGGAAGGTTTCGATTCCTTGCTG -ACGGAAGGTTTCGATTCCTCCATG -ACGGAAGGTTTCGATTCCTGTGTG -ACGGAAGGTTTCGATTCCCTAGTG -ACGGAAGGTTTCGATTCCCATCTG -ACGGAAGGTTTCGATTCCGAGTTG -ACGGAAGGTTTCGATTCCAGACTG -ACGGAAGGTTTCGATTCCTCGGTA -ACGGAAGGTTTCGATTCCTGCCTA -ACGGAAGGTTTCGATTCCCCACTA -ACGGAAGGTTTCGATTCCGGAGTA -ACGGAAGGTTTCGATTCCTCGTCT -ACGGAAGGTTTCGATTCCTGCACT -ACGGAAGGTTTCGATTCCCTGACT -ACGGAAGGTTTCGATTCCCAACCT -ACGGAAGGTTTCGATTCCGCTACT -ACGGAAGGTTTCGATTCCGGATCT -ACGGAAGGTTTCGATTCCAAGGCT -ACGGAAGGTTTCGATTCCTCAACC -ACGGAAGGTTTCGATTCCTGTTCC -ACGGAAGGTTTCGATTCCATTCCC -ACGGAAGGTTTCGATTCCTTCTCG -ACGGAAGGTTTCGATTCCTAGACG -ACGGAAGGTTTCGATTCCGTAACG -ACGGAAGGTTTCGATTCCACTTCG -ACGGAAGGTTTCGATTCCTACGCA -ACGGAAGGTTTCGATTCCCTTGCA -ACGGAAGGTTTCGATTCCCGAACA -ACGGAAGGTTTCGATTCCCAGTCA -ACGGAAGGTTTCGATTCCGATCCA -ACGGAAGGTTTCGATTCCACGACA -ACGGAAGGTTTCGATTCCAGCTCA -ACGGAAGGTTTCGATTCCTCACGT -ACGGAAGGTTTCGATTCCCGTAGT -ACGGAAGGTTTCGATTCCGTCAGT -ACGGAAGGTTTCGATTCCGAAGGT -ACGGAAGGTTTCGATTCCAACCGT -ACGGAAGGTTTCGATTCCTTGTGC -ACGGAAGGTTTCGATTCCCTAAGC -ACGGAAGGTTTCGATTCCACTAGC -ACGGAAGGTTTCGATTCCAGATGC -ACGGAAGGTTTCGATTCCTGAAGG -ACGGAAGGTTTCGATTCCCAATGG -ACGGAAGGTTTCGATTCCATGAGG -ACGGAAGGTTTCGATTCCAATGGG -ACGGAAGGTTTCGATTCCTCCTGA -ACGGAAGGTTTCGATTCCTAGCGA -ACGGAAGGTTTCGATTCCCACAGA -ACGGAAGGTTTCGATTCCGCAAGA -ACGGAAGGTTTCGATTCCGGTTGA -ACGGAAGGTTTCGATTCCTCCGAT -ACGGAAGGTTTCGATTCCTGGCAT -ACGGAAGGTTTCGATTCCCGAGAT -ACGGAAGGTTTCGATTCCTACCAC -ACGGAAGGTTTCGATTCCCAGAAC -ACGGAAGGTTTCGATTCCGTCTAC -ACGGAAGGTTTCGATTCCACGTAC -ACGGAAGGTTTCGATTCCAGTGAC -ACGGAAGGTTTCGATTCCCTGTAG -ACGGAAGGTTTCGATTCCCCTAAG -ACGGAAGGTTTCGATTCCGTTCAG -ACGGAAGGTTTCGATTCCGCATAG -ACGGAAGGTTTCGATTCCGACAAG -ACGGAAGGTTTCGATTCCAAGCAG -ACGGAAGGTTTCGATTCCCGTCAA -ACGGAAGGTTTCGATTCCGCTGAA -ACGGAAGGTTTCGATTCCAGTACG -ACGGAAGGTTTCGATTCCATCCGA -ACGGAAGGTTTCGATTCCATGGGA -ACGGAAGGTTTCGATTCCGTGCAA -ACGGAAGGTTTCGATTCCGAGGAA -ACGGAAGGTTTCGATTCCCAGGTA -ACGGAAGGTTTCGATTCCGACTCT -ACGGAAGGTTTCGATTCCAGTCCT -ACGGAAGGTTTCGATTCCTAAGCC -ACGGAAGGTTTCGATTCCATAGCC -ACGGAAGGTTTCGATTCCTAACCG -ACGGAAGGTTTCGATTCCATGCCA -ACGGAAGGTTTCCATTGGGGAAAC -ACGGAAGGTTTCCATTGGAACACC -ACGGAAGGTTTCCATTGGATCGAG -ACGGAAGGTTTCCATTGGCTCCTT -ACGGAAGGTTTCCATTGGCCTGTT -ACGGAAGGTTTCCATTGGCGGTTT -ACGGAAGGTTTCCATTGGGTGGTT -ACGGAAGGTTTCCATTGGGCCTTT -ACGGAAGGTTTCCATTGGGGTCTT -ACGGAAGGTTTCCATTGGACGCTT -ACGGAAGGTTTCCATTGGAGCGTT -ACGGAAGGTTTCCATTGGTTCGTC -ACGGAAGGTTTCCATTGGTCTCTC -ACGGAAGGTTTCCATTGGTGGATC -ACGGAAGGTTTCCATTGGCACTTC -ACGGAAGGTTTCCATTGGGTACTC -ACGGAAGGTTTCCATTGGGATGTC -ACGGAAGGTTTCCATTGGACAGTC -ACGGAAGGTTTCCATTGGTTGCTG -ACGGAAGGTTTCCATTGGTCCATG -ACGGAAGGTTTCCATTGGTGTGTG -ACGGAAGGTTTCCATTGGCTAGTG -ACGGAAGGTTTCCATTGGCATCTG -ACGGAAGGTTTCCATTGGGAGTTG -ACGGAAGGTTTCCATTGGAGACTG -ACGGAAGGTTTCCATTGGTCGGTA -ACGGAAGGTTTCCATTGGTGCCTA -ACGGAAGGTTTCCATTGGCCACTA -ACGGAAGGTTTCCATTGGGGAGTA -ACGGAAGGTTTCCATTGGTCGTCT -ACGGAAGGTTTCCATTGGTGCACT -ACGGAAGGTTTCCATTGGCTGACT -ACGGAAGGTTTCCATTGGCAACCT -ACGGAAGGTTTCCATTGGGCTACT -ACGGAAGGTTTCCATTGGGGATCT -ACGGAAGGTTTCCATTGGAAGGCT -ACGGAAGGTTTCCATTGGTCAACC -ACGGAAGGTTTCCATTGGTGTTCC -ACGGAAGGTTTCCATTGGATTCCC -ACGGAAGGTTTCCATTGGTTCTCG -ACGGAAGGTTTCCATTGGTAGACG -ACGGAAGGTTTCCATTGGGTAACG -ACGGAAGGTTTCCATTGGACTTCG -ACGGAAGGTTTCCATTGGTACGCA -ACGGAAGGTTTCCATTGGCTTGCA -ACGGAAGGTTTCCATTGGCGAACA -ACGGAAGGTTTCCATTGGCAGTCA -ACGGAAGGTTTCCATTGGGATCCA -ACGGAAGGTTTCCATTGGACGACA -ACGGAAGGTTTCCATTGGAGCTCA -ACGGAAGGTTTCCATTGGTCACGT -ACGGAAGGTTTCCATTGGCGTAGT -ACGGAAGGTTTCCATTGGGTCAGT -ACGGAAGGTTTCCATTGGGAAGGT -ACGGAAGGTTTCCATTGGAACCGT -ACGGAAGGTTTCCATTGGTTGTGC -ACGGAAGGTTTCCATTGGCTAAGC -ACGGAAGGTTTCCATTGGACTAGC -ACGGAAGGTTTCCATTGGAGATGC -ACGGAAGGTTTCCATTGGTGAAGG -ACGGAAGGTTTCCATTGGCAATGG -ACGGAAGGTTTCCATTGGATGAGG -ACGGAAGGTTTCCATTGGAATGGG -ACGGAAGGTTTCCATTGGTCCTGA -ACGGAAGGTTTCCATTGGTAGCGA -ACGGAAGGTTTCCATTGGCACAGA -ACGGAAGGTTTCCATTGGGCAAGA -ACGGAAGGTTTCCATTGGGGTTGA -ACGGAAGGTTTCCATTGGTCCGAT -ACGGAAGGTTTCCATTGGTGGCAT -ACGGAAGGTTTCCATTGGCGAGAT -ACGGAAGGTTTCCATTGGTACCAC -ACGGAAGGTTTCCATTGGCAGAAC -ACGGAAGGTTTCCATTGGGTCTAC -ACGGAAGGTTTCCATTGGACGTAC -ACGGAAGGTTTCCATTGGAGTGAC -ACGGAAGGTTTCCATTGGCTGTAG -ACGGAAGGTTTCCATTGGCCTAAG -ACGGAAGGTTTCCATTGGGTTCAG -ACGGAAGGTTTCCATTGGGCATAG -ACGGAAGGTTTCCATTGGGACAAG -ACGGAAGGTTTCCATTGGAAGCAG -ACGGAAGGTTTCCATTGGCGTCAA -ACGGAAGGTTTCCATTGGGCTGAA -ACGGAAGGTTTCCATTGGAGTACG -ACGGAAGGTTTCCATTGGATCCGA -ACGGAAGGTTTCCATTGGATGGGA -ACGGAAGGTTTCCATTGGGTGCAA -ACGGAAGGTTTCCATTGGGAGGAA -ACGGAAGGTTTCCATTGGCAGGTA -ACGGAAGGTTTCCATTGGGACTCT -ACGGAAGGTTTCCATTGGAGTCCT -ACGGAAGGTTTCCATTGGTAAGCC -ACGGAAGGTTTCCATTGGATAGCC -ACGGAAGGTTTCCATTGGTAACCG -ACGGAAGGTTTCCATTGGATGCCA -ACGGAAGGTTTCGATCGAGGAAAC -ACGGAAGGTTTCGATCGAAACACC -ACGGAAGGTTTCGATCGAATCGAG -ACGGAAGGTTTCGATCGACTCCTT -ACGGAAGGTTTCGATCGACCTGTT -ACGGAAGGTTTCGATCGACGGTTT -ACGGAAGGTTTCGATCGAGTGGTT -ACGGAAGGTTTCGATCGAGCCTTT -ACGGAAGGTTTCGATCGAGGTCTT -ACGGAAGGTTTCGATCGAACGCTT -ACGGAAGGTTTCGATCGAAGCGTT -ACGGAAGGTTTCGATCGATTCGTC -ACGGAAGGTTTCGATCGATCTCTC -ACGGAAGGTTTCGATCGATGGATC -ACGGAAGGTTTCGATCGACACTTC -ACGGAAGGTTTCGATCGAGTACTC -ACGGAAGGTTTCGATCGAGATGTC -ACGGAAGGTTTCGATCGAACAGTC -ACGGAAGGTTTCGATCGATTGCTG -ACGGAAGGTTTCGATCGATCCATG -ACGGAAGGTTTCGATCGATGTGTG -ACGGAAGGTTTCGATCGACTAGTG -ACGGAAGGTTTCGATCGACATCTG -ACGGAAGGTTTCGATCGAGAGTTG -ACGGAAGGTTTCGATCGAAGACTG -ACGGAAGGTTTCGATCGATCGGTA -ACGGAAGGTTTCGATCGATGCCTA -ACGGAAGGTTTCGATCGACCACTA -ACGGAAGGTTTCGATCGAGGAGTA -ACGGAAGGTTTCGATCGATCGTCT -ACGGAAGGTTTCGATCGATGCACT -ACGGAAGGTTTCGATCGACTGACT -ACGGAAGGTTTCGATCGACAACCT -ACGGAAGGTTTCGATCGAGCTACT -ACGGAAGGTTTCGATCGAGGATCT -ACGGAAGGTTTCGATCGAAAGGCT -ACGGAAGGTTTCGATCGATCAACC -ACGGAAGGTTTCGATCGATGTTCC -ACGGAAGGTTTCGATCGAATTCCC -ACGGAAGGTTTCGATCGATTCTCG -ACGGAAGGTTTCGATCGATAGACG -ACGGAAGGTTTCGATCGAGTAACG -ACGGAAGGTTTCGATCGAACTTCG -ACGGAAGGTTTCGATCGATACGCA -ACGGAAGGTTTCGATCGACTTGCA -ACGGAAGGTTTCGATCGACGAACA -ACGGAAGGTTTCGATCGACAGTCA -ACGGAAGGTTTCGATCGAGATCCA -ACGGAAGGTTTCGATCGAACGACA -ACGGAAGGTTTCGATCGAAGCTCA -ACGGAAGGTTTCGATCGATCACGT -ACGGAAGGTTTCGATCGACGTAGT -ACGGAAGGTTTCGATCGAGTCAGT -ACGGAAGGTTTCGATCGAGAAGGT -ACGGAAGGTTTCGATCGAAACCGT -ACGGAAGGTTTCGATCGATTGTGC -ACGGAAGGTTTCGATCGACTAAGC -ACGGAAGGTTTCGATCGAACTAGC -ACGGAAGGTTTCGATCGAAGATGC -ACGGAAGGTTTCGATCGATGAAGG -ACGGAAGGTTTCGATCGACAATGG -ACGGAAGGTTTCGATCGAATGAGG -ACGGAAGGTTTCGATCGAAATGGG -ACGGAAGGTTTCGATCGATCCTGA -ACGGAAGGTTTCGATCGATAGCGA -ACGGAAGGTTTCGATCGACACAGA -ACGGAAGGTTTCGATCGAGCAAGA -ACGGAAGGTTTCGATCGAGGTTGA -ACGGAAGGTTTCGATCGATCCGAT -ACGGAAGGTTTCGATCGATGGCAT -ACGGAAGGTTTCGATCGACGAGAT -ACGGAAGGTTTCGATCGATACCAC -ACGGAAGGTTTCGATCGACAGAAC -ACGGAAGGTTTCGATCGAGTCTAC -ACGGAAGGTTTCGATCGAACGTAC -ACGGAAGGTTTCGATCGAAGTGAC -ACGGAAGGTTTCGATCGACTGTAG -ACGGAAGGTTTCGATCGACCTAAG -ACGGAAGGTTTCGATCGAGTTCAG -ACGGAAGGTTTCGATCGAGCATAG -ACGGAAGGTTTCGATCGAGACAAG -ACGGAAGGTTTCGATCGAAAGCAG -ACGGAAGGTTTCGATCGACGTCAA -ACGGAAGGTTTCGATCGAGCTGAA -ACGGAAGGTTTCGATCGAAGTACG -ACGGAAGGTTTCGATCGAATCCGA -ACGGAAGGTTTCGATCGAATGGGA -ACGGAAGGTTTCGATCGAGTGCAA -ACGGAAGGTTTCGATCGAGAGGAA -ACGGAAGGTTTCGATCGACAGGTA -ACGGAAGGTTTCGATCGAGACTCT -ACGGAAGGTTTCGATCGAAGTCCT -ACGGAAGGTTTCGATCGATAAGCC -ACGGAAGGTTTCGATCGAATAGCC -ACGGAAGGTTTCGATCGATAACCG -ACGGAAGGTTTCGATCGAATGCCA -ACGGAAGGTTTCCACTACGGAAAC -ACGGAAGGTTTCCACTACAACACC -ACGGAAGGTTTCCACTACATCGAG -ACGGAAGGTTTCCACTACCTCCTT -ACGGAAGGTTTCCACTACCCTGTT -ACGGAAGGTTTCCACTACCGGTTT -ACGGAAGGTTTCCACTACGTGGTT -ACGGAAGGTTTCCACTACGCCTTT -ACGGAAGGTTTCCACTACGGTCTT -ACGGAAGGTTTCCACTACACGCTT -ACGGAAGGTTTCCACTACAGCGTT -ACGGAAGGTTTCCACTACTTCGTC -ACGGAAGGTTTCCACTACTCTCTC -ACGGAAGGTTTCCACTACTGGATC -ACGGAAGGTTTCCACTACCACTTC -ACGGAAGGTTTCCACTACGTACTC -ACGGAAGGTTTCCACTACGATGTC -ACGGAAGGTTTCCACTACACAGTC -ACGGAAGGTTTCCACTACTTGCTG -ACGGAAGGTTTCCACTACTCCATG -ACGGAAGGTTTCCACTACTGTGTG -ACGGAAGGTTTCCACTACCTAGTG -ACGGAAGGTTTCCACTACCATCTG -ACGGAAGGTTTCCACTACGAGTTG -ACGGAAGGTTTCCACTACAGACTG -ACGGAAGGTTTCCACTACTCGGTA -ACGGAAGGTTTCCACTACTGCCTA -ACGGAAGGTTTCCACTACCCACTA -ACGGAAGGTTTCCACTACGGAGTA -ACGGAAGGTTTCCACTACTCGTCT -ACGGAAGGTTTCCACTACTGCACT -ACGGAAGGTTTCCACTACCTGACT -ACGGAAGGTTTCCACTACCAACCT -ACGGAAGGTTTCCACTACGCTACT -ACGGAAGGTTTCCACTACGGATCT -ACGGAAGGTTTCCACTACAAGGCT -ACGGAAGGTTTCCACTACTCAACC -ACGGAAGGTTTCCACTACTGTTCC -ACGGAAGGTTTCCACTACATTCCC -ACGGAAGGTTTCCACTACTTCTCG -ACGGAAGGTTTCCACTACTAGACG -ACGGAAGGTTTCCACTACGTAACG -ACGGAAGGTTTCCACTACACTTCG -ACGGAAGGTTTCCACTACTACGCA -ACGGAAGGTTTCCACTACCTTGCA -ACGGAAGGTTTCCACTACCGAACA -ACGGAAGGTTTCCACTACCAGTCA -ACGGAAGGTTTCCACTACGATCCA -ACGGAAGGTTTCCACTACACGACA -ACGGAAGGTTTCCACTACAGCTCA -ACGGAAGGTTTCCACTACTCACGT -ACGGAAGGTTTCCACTACCGTAGT -ACGGAAGGTTTCCACTACGTCAGT -ACGGAAGGTTTCCACTACGAAGGT -ACGGAAGGTTTCCACTACAACCGT -ACGGAAGGTTTCCACTACTTGTGC -ACGGAAGGTTTCCACTACCTAAGC -ACGGAAGGTTTCCACTACACTAGC -ACGGAAGGTTTCCACTACAGATGC -ACGGAAGGTTTCCACTACTGAAGG -ACGGAAGGTTTCCACTACCAATGG -ACGGAAGGTTTCCACTACATGAGG -ACGGAAGGTTTCCACTACAATGGG -ACGGAAGGTTTCCACTACTCCTGA -ACGGAAGGTTTCCACTACTAGCGA -ACGGAAGGTTTCCACTACCACAGA -ACGGAAGGTTTCCACTACGCAAGA -ACGGAAGGTTTCCACTACGGTTGA -ACGGAAGGTTTCCACTACTCCGAT -ACGGAAGGTTTCCACTACTGGCAT -ACGGAAGGTTTCCACTACCGAGAT -ACGGAAGGTTTCCACTACTACCAC -ACGGAAGGTTTCCACTACCAGAAC -ACGGAAGGTTTCCACTACGTCTAC -ACGGAAGGTTTCCACTACACGTAC -ACGGAAGGTTTCCACTACAGTGAC -ACGGAAGGTTTCCACTACCTGTAG -ACGGAAGGTTTCCACTACCCTAAG -ACGGAAGGTTTCCACTACGTTCAG -ACGGAAGGTTTCCACTACGCATAG -ACGGAAGGTTTCCACTACGACAAG -ACGGAAGGTTTCCACTACAAGCAG -ACGGAAGGTTTCCACTACCGTCAA -ACGGAAGGTTTCCACTACGCTGAA -ACGGAAGGTTTCCACTACAGTACG -ACGGAAGGTTTCCACTACATCCGA -ACGGAAGGTTTCCACTACATGGGA -ACGGAAGGTTTCCACTACGTGCAA -ACGGAAGGTTTCCACTACGAGGAA -ACGGAAGGTTTCCACTACCAGGTA -ACGGAAGGTTTCCACTACGACTCT -ACGGAAGGTTTCCACTACAGTCCT -ACGGAAGGTTTCCACTACTAAGCC -ACGGAAGGTTTCCACTACATAGCC -ACGGAAGGTTTCCACTACTAACCG -ACGGAAGGTTTCCACTACATGCCA -ACGGAAGGTTTCAACCAGGGAAAC -ACGGAAGGTTTCAACCAGAACACC -ACGGAAGGTTTCAACCAGATCGAG -ACGGAAGGTTTCAACCAGCTCCTT -ACGGAAGGTTTCAACCAGCCTGTT -ACGGAAGGTTTCAACCAGCGGTTT -ACGGAAGGTTTCAACCAGGTGGTT -ACGGAAGGTTTCAACCAGGCCTTT -ACGGAAGGTTTCAACCAGGGTCTT -ACGGAAGGTTTCAACCAGACGCTT -ACGGAAGGTTTCAACCAGAGCGTT -ACGGAAGGTTTCAACCAGTTCGTC -ACGGAAGGTTTCAACCAGTCTCTC -ACGGAAGGTTTCAACCAGTGGATC -ACGGAAGGTTTCAACCAGCACTTC -ACGGAAGGTTTCAACCAGGTACTC -ACGGAAGGTTTCAACCAGGATGTC -ACGGAAGGTTTCAACCAGACAGTC -ACGGAAGGTTTCAACCAGTTGCTG -ACGGAAGGTTTCAACCAGTCCATG -ACGGAAGGTTTCAACCAGTGTGTG -ACGGAAGGTTTCAACCAGCTAGTG -ACGGAAGGTTTCAACCAGCATCTG -ACGGAAGGTTTCAACCAGGAGTTG -ACGGAAGGTTTCAACCAGAGACTG -ACGGAAGGTTTCAACCAGTCGGTA -ACGGAAGGTTTCAACCAGTGCCTA -ACGGAAGGTTTCAACCAGCCACTA -ACGGAAGGTTTCAACCAGGGAGTA -ACGGAAGGTTTCAACCAGTCGTCT -ACGGAAGGTTTCAACCAGTGCACT -ACGGAAGGTTTCAACCAGCTGACT -ACGGAAGGTTTCAACCAGCAACCT -ACGGAAGGTTTCAACCAGGCTACT -ACGGAAGGTTTCAACCAGGGATCT -ACGGAAGGTTTCAACCAGAAGGCT -ACGGAAGGTTTCAACCAGTCAACC -ACGGAAGGTTTCAACCAGTGTTCC -ACGGAAGGTTTCAACCAGATTCCC -ACGGAAGGTTTCAACCAGTTCTCG -ACGGAAGGTTTCAACCAGTAGACG -ACGGAAGGTTTCAACCAGGTAACG -ACGGAAGGTTTCAACCAGACTTCG -ACGGAAGGTTTCAACCAGTACGCA -ACGGAAGGTTTCAACCAGCTTGCA -ACGGAAGGTTTCAACCAGCGAACA -ACGGAAGGTTTCAACCAGCAGTCA -ACGGAAGGTTTCAACCAGGATCCA -ACGGAAGGTTTCAACCAGACGACA -ACGGAAGGTTTCAACCAGAGCTCA -ACGGAAGGTTTCAACCAGTCACGT -ACGGAAGGTTTCAACCAGCGTAGT -ACGGAAGGTTTCAACCAGGTCAGT -ACGGAAGGTTTCAACCAGGAAGGT -ACGGAAGGTTTCAACCAGAACCGT -ACGGAAGGTTTCAACCAGTTGTGC -ACGGAAGGTTTCAACCAGCTAAGC -ACGGAAGGTTTCAACCAGACTAGC -ACGGAAGGTTTCAACCAGAGATGC -ACGGAAGGTTTCAACCAGTGAAGG -ACGGAAGGTTTCAACCAGCAATGG -ACGGAAGGTTTCAACCAGATGAGG -ACGGAAGGTTTCAACCAGAATGGG -ACGGAAGGTTTCAACCAGTCCTGA -ACGGAAGGTTTCAACCAGTAGCGA -ACGGAAGGTTTCAACCAGCACAGA -ACGGAAGGTTTCAACCAGGCAAGA -ACGGAAGGTTTCAACCAGGGTTGA -ACGGAAGGTTTCAACCAGTCCGAT -ACGGAAGGTTTCAACCAGTGGCAT -ACGGAAGGTTTCAACCAGCGAGAT -ACGGAAGGTTTCAACCAGTACCAC -ACGGAAGGTTTCAACCAGCAGAAC -ACGGAAGGTTTCAACCAGGTCTAC -ACGGAAGGTTTCAACCAGACGTAC -ACGGAAGGTTTCAACCAGAGTGAC -ACGGAAGGTTTCAACCAGCTGTAG -ACGGAAGGTTTCAACCAGCCTAAG -ACGGAAGGTTTCAACCAGGTTCAG -ACGGAAGGTTTCAACCAGGCATAG -ACGGAAGGTTTCAACCAGGACAAG -ACGGAAGGTTTCAACCAGAAGCAG -ACGGAAGGTTTCAACCAGCGTCAA -ACGGAAGGTTTCAACCAGGCTGAA -ACGGAAGGTTTCAACCAGAGTACG -ACGGAAGGTTTCAACCAGATCCGA -ACGGAAGGTTTCAACCAGATGGGA -ACGGAAGGTTTCAACCAGGTGCAA -ACGGAAGGTTTCAACCAGGAGGAA -ACGGAAGGTTTCAACCAGCAGGTA -ACGGAAGGTTTCAACCAGGACTCT -ACGGAAGGTTTCAACCAGAGTCCT -ACGGAAGGTTTCAACCAGTAAGCC -ACGGAAGGTTTCAACCAGATAGCC -ACGGAAGGTTTCAACCAGTAACCG -ACGGAAGGTTTCAACCAGATGCCA -ACGGAAGGTTTCTACGTCGGAAAC -ACGGAAGGTTTCTACGTCAACACC -ACGGAAGGTTTCTACGTCATCGAG -ACGGAAGGTTTCTACGTCCTCCTT -ACGGAAGGTTTCTACGTCCCTGTT -ACGGAAGGTTTCTACGTCCGGTTT -ACGGAAGGTTTCTACGTCGTGGTT -ACGGAAGGTTTCTACGTCGCCTTT -ACGGAAGGTTTCTACGTCGGTCTT -ACGGAAGGTTTCTACGTCACGCTT -ACGGAAGGTTTCTACGTCAGCGTT -ACGGAAGGTTTCTACGTCTTCGTC -ACGGAAGGTTTCTACGTCTCTCTC -ACGGAAGGTTTCTACGTCTGGATC -ACGGAAGGTTTCTACGTCCACTTC -ACGGAAGGTTTCTACGTCGTACTC -ACGGAAGGTTTCTACGTCGATGTC -ACGGAAGGTTTCTACGTCACAGTC -ACGGAAGGTTTCTACGTCTTGCTG -ACGGAAGGTTTCTACGTCTCCATG -ACGGAAGGTTTCTACGTCTGTGTG -ACGGAAGGTTTCTACGTCCTAGTG -ACGGAAGGTTTCTACGTCCATCTG -ACGGAAGGTTTCTACGTCGAGTTG -ACGGAAGGTTTCTACGTCAGACTG -ACGGAAGGTTTCTACGTCTCGGTA -ACGGAAGGTTTCTACGTCTGCCTA -ACGGAAGGTTTCTACGTCCCACTA -ACGGAAGGTTTCTACGTCGGAGTA -ACGGAAGGTTTCTACGTCTCGTCT -ACGGAAGGTTTCTACGTCTGCACT -ACGGAAGGTTTCTACGTCCTGACT -ACGGAAGGTTTCTACGTCCAACCT -ACGGAAGGTTTCTACGTCGCTACT -ACGGAAGGTTTCTACGTCGGATCT -ACGGAAGGTTTCTACGTCAAGGCT -ACGGAAGGTTTCTACGTCTCAACC -ACGGAAGGTTTCTACGTCTGTTCC -ACGGAAGGTTTCTACGTCATTCCC -ACGGAAGGTTTCTACGTCTTCTCG -ACGGAAGGTTTCTACGTCTAGACG -ACGGAAGGTTTCTACGTCGTAACG -ACGGAAGGTTTCTACGTCACTTCG -ACGGAAGGTTTCTACGTCTACGCA -ACGGAAGGTTTCTACGTCCTTGCA -ACGGAAGGTTTCTACGTCCGAACA -ACGGAAGGTTTCTACGTCCAGTCA -ACGGAAGGTTTCTACGTCGATCCA -ACGGAAGGTTTCTACGTCACGACA -ACGGAAGGTTTCTACGTCAGCTCA -ACGGAAGGTTTCTACGTCTCACGT -ACGGAAGGTTTCTACGTCCGTAGT -ACGGAAGGTTTCTACGTCGTCAGT -ACGGAAGGTTTCTACGTCGAAGGT -ACGGAAGGTTTCTACGTCAACCGT -ACGGAAGGTTTCTACGTCTTGTGC -ACGGAAGGTTTCTACGTCCTAAGC -ACGGAAGGTTTCTACGTCACTAGC -ACGGAAGGTTTCTACGTCAGATGC -ACGGAAGGTTTCTACGTCTGAAGG -ACGGAAGGTTTCTACGTCCAATGG -ACGGAAGGTTTCTACGTCATGAGG -ACGGAAGGTTTCTACGTCAATGGG -ACGGAAGGTTTCTACGTCTCCTGA -ACGGAAGGTTTCTACGTCTAGCGA -ACGGAAGGTTTCTACGTCCACAGA -ACGGAAGGTTTCTACGTCGCAAGA -ACGGAAGGTTTCTACGTCGGTTGA -ACGGAAGGTTTCTACGTCTCCGAT -ACGGAAGGTTTCTACGTCTGGCAT -ACGGAAGGTTTCTACGTCCGAGAT -ACGGAAGGTTTCTACGTCTACCAC -ACGGAAGGTTTCTACGTCCAGAAC -ACGGAAGGTTTCTACGTCGTCTAC -ACGGAAGGTTTCTACGTCACGTAC -ACGGAAGGTTTCTACGTCAGTGAC -ACGGAAGGTTTCTACGTCCTGTAG -ACGGAAGGTTTCTACGTCCCTAAG -ACGGAAGGTTTCTACGTCGTTCAG -ACGGAAGGTTTCTACGTCGCATAG -ACGGAAGGTTTCTACGTCGACAAG -ACGGAAGGTTTCTACGTCAAGCAG -ACGGAAGGTTTCTACGTCCGTCAA -ACGGAAGGTTTCTACGTCGCTGAA -ACGGAAGGTTTCTACGTCAGTACG -ACGGAAGGTTTCTACGTCATCCGA -ACGGAAGGTTTCTACGTCATGGGA -ACGGAAGGTTTCTACGTCGTGCAA -ACGGAAGGTTTCTACGTCGAGGAA -ACGGAAGGTTTCTACGTCCAGGTA -ACGGAAGGTTTCTACGTCGACTCT -ACGGAAGGTTTCTACGTCAGTCCT -ACGGAAGGTTTCTACGTCTAAGCC -ACGGAAGGTTTCTACGTCATAGCC -ACGGAAGGTTTCTACGTCTAACCG -ACGGAAGGTTTCTACGTCATGCCA -ACGGAAGGTTTCTACACGGGAAAC -ACGGAAGGTTTCTACACGAACACC -ACGGAAGGTTTCTACACGATCGAG -ACGGAAGGTTTCTACACGCTCCTT -ACGGAAGGTTTCTACACGCCTGTT -ACGGAAGGTTTCTACACGCGGTTT -ACGGAAGGTTTCTACACGGTGGTT -ACGGAAGGTTTCTACACGGCCTTT -ACGGAAGGTTTCTACACGGGTCTT -ACGGAAGGTTTCTACACGACGCTT -ACGGAAGGTTTCTACACGAGCGTT -ACGGAAGGTTTCTACACGTTCGTC -ACGGAAGGTTTCTACACGTCTCTC -ACGGAAGGTTTCTACACGTGGATC -ACGGAAGGTTTCTACACGCACTTC -ACGGAAGGTTTCTACACGGTACTC -ACGGAAGGTTTCTACACGGATGTC -ACGGAAGGTTTCTACACGACAGTC -ACGGAAGGTTTCTACACGTTGCTG -ACGGAAGGTTTCTACACGTCCATG -ACGGAAGGTTTCTACACGTGTGTG -ACGGAAGGTTTCTACACGCTAGTG -ACGGAAGGTTTCTACACGCATCTG -ACGGAAGGTTTCTACACGGAGTTG -ACGGAAGGTTTCTACACGAGACTG -ACGGAAGGTTTCTACACGTCGGTA -ACGGAAGGTTTCTACACGTGCCTA -ACGGAAGGTTTCTACACGCCACTA -ACGGAAGGTTTCTACACGGGAGTA -ACGGAAGGTTTCTACACGTCGTCT -ACGGAAGGTTTCTACACGTGCACT -ACGGAAGGTTTCTACACGCTGACT -ACGGAAGGTTTCTACACGCAACCT -ACGGAAGGTTTCTACACGGCTACT -ACGGAAGGTTTCTACACGGGATCT -ACGGAAGGTTTCTACACGAAGGCT -ACGGAAGGTTTCTACACGTCAACC -ACGGAAGGTTTCTACACGTGTTCC -ACGGAAGGTTTCTACACGATTCCC -ACGGAAGGTTTCTACACGTTCTCG -ACGGAAGGTTTCTACACGTAGACG -ACGGAAGGTTTCTACACGGTAACG -ACGGAAGGTTTCTACACGACTTCG -ACGGAAGGTTTCTACACGTACGCA -ACGGAAGGTTTCTACACGCTTGCA -ACGGAAGGTTTCTACACGCGAACA -ACGGAAGGTTTCTACACGCAGTCA -ACGGAAGGTTTCTACACGGATCCA -ACGGAAGGTTTCTACACGACGACA -ACGGAAGGTTTCTACACGAGCTCA -ACGGAAGGTTTCTACACGTCACGT -ACGGAAGGTTTCTACACGCGTAGT -ACGGAAGGTTTCTACACGGTCAGT -ACGGAAGGTTTCTACACGGAAGGT -ACGGAAGGTTTCTACACGAACCGT -ACGGAAGGTTTCTACACGTTGTGC -ACGGAAGGTTTCTACACGCTAAGC -ACGGAAGGTTTCTACACGACTAGC -ACGGAAGGTTTCTACACGAGATGC -ACGGAAGGTTTCTACACGTGAAGG -ACGGAAGGTTTCTACACGCAATGG -ACGGAAGGTTTCTACACGATGAGG -ACGGAAGGTTTCTACACGAATGGG -ACGGAAGGTTTCTACACGTCCTGA -ACGGAAGGTTTCTACACGTAGCGA -ACGGAAGGTTTCTACACGCACAGA -ACGGAAGGTTTCTACACGGCAAGA -ACGGAAGGTTTCTACACGGGTTGA -ACGGAAGGTTTCTACACGTCCGAT -ACGGAAGGTTTCTACACGTGGCAT -ACGGAAGGTTTCTACACGCGAGAT -ACGGAAGGTTTCTACACGTACCAC -ACGGAAGGTTTCTACACGCAGAAC -ACGGAAGGTTTCTACACGGTCTAC -ACGGAAGGTTTCTACACGACGTAC -ACGGAAGGTTTCTACACGAGTGAC -ACGGAAGGTTTCTACACGCTGTAG -ACGGAAGGTTTCTACACGCCTAAG -ACGGAAGGTTTCTACACGGTTCAG -ACGGAAGGTTTCTACACGGCATAG -ACGGAAGGTTTCTACACGGACAAG -ACGGAAGGTTTCTACACGAAGCAG -ACGGAAGGTTTCTACACGCGTCAA -ACGGAAGGTTTCTACACGGCTGAA -ACGGAAGGTTTCTACACGAGTACG -ACGGAAGGTTTCTACACGATCCGA -ACGGAAGGTTTCTACACGATGGGA -ACGGAAGGTTTCTACACGGTGCAA -ACGGAAGGTTTCTACACGGAGGAA -ACGGAAGGTTTCTACACGCAGGTA -ACGGAAGGTTTCTACACGGACTCT -ACGGAAGGTTTCTACACGAGTCCT -ACGGAAGGTTTCTACACGTAAGCC -ACGGAAGGTTTCTACACGATAGCC -ACGGAAGGTTTCTACACGTAACCG -ACGGAAGGTTTCTACACGATGCCA -ACGGAAGGTTTCGACAGTGGAAAC -ACGGAAGGTTTCGACAGTAACACC -ACGGAAGGTTTCGACAGTATCGAG -ACGGAAGGTTTCGACAGTCTCCTT -ACGGAAGGTTTCGACAGTCCTGTT -ACGGAAGGTTTCGACAGTCGGTTT -ACGGAAGGTTTCGACAGTGTGGTT -ACGGAAGGTTTCGACAGTGCCTTT -ACGGAAGGTTTCGACAGTGGTCTT -ACGGAAGGTTTCGACAGTACGCTT -ACGGAAGGTTTCGACAGTAGCGTT -ACGGAAGGTTTCGACAGTTTCGTC -ACGGAAGGTTTCGACAGTTCTCTC -ACGGAAGGTTTCGACAGTTGGATC -ACGGAAGGTTTCGACAGTCACTTC -ACGGAAGGTTTCGACAGTGTACTC -ACGGAAGGTTTCGACAGTGATGTC -ACGGAAGGTTTCGACAGTACAGTC -ACGGAAGGTTTCGACAGTTTGCTG -ACGGAAGGTTTCGACAGTTCCATG -ACGGAAGGTTTCGACAGTTGTGTG -ACGGAAGGTTTCGACAGTCTAGTG -ACGGAAGGTTTCGACAGTCATCTG -ACGGAAGGTTTCGACAGTGAGTTG -ACGGAAGGTTTCGACAGTAGACTG -ACGGAAGGTTTCGACAGTTCGGTA -ACGGAAGGTTTCGACAGTTGCCTA -ACGGAAGGTTTCGACAGTCCACTA -ACGGAAGGTTTCGACAGTGGAGTA -ACGGAAGGTTTCGACAGTTCGTCT -ACGGAAGGTTTCGACAGTTGCACT -ACGGAAGGTTTCGACAGTCTGACT -ACGGAAGGTTTCGACAGTCAACCT -ACGGAAGGTTTCGACAGTGCTACT -ACGGAAGGTTTCGACAGTGGATCT -ACGGAAGGTTTCGACAGTAAGGCT -ACGGAAGGTTTCGACAGTTCAACC -ACGGAAGGTTTCGACAGTTGTTCC -ACGGAAGGTTTCGACAGTATTCCC -ACGGAAGGTTTCGACAGTTTCTCG -ACGGAAGGTTTCGACAGTTAGACG -ACGGAAGGTTTCGACAGTGTAACG -ACGGAAGGTTTCGACAGTACTTCG -ACGGAAGGTTTCGACAGTTACGCA -ACGGAAGGTTTCGACAGTCTTGCA -ACGGAAGGTTTCGACAGTCGAACA -ACGGAAGGTTTCGACAGTCAGTCA -ACGGAAGGTTTCGACAGTGATCCA -ACGGAAGGTTTCGACAGTACGACA -ACGGAAGGTTTCGACAGTAGCTCA -ACGGAAGGTTTCGACAGTTCACGT -ACGGAAGGTTTCGACAGTCGTAGT -ACGGAAGGTTTCGACAGTGTCAGT -ACGGAAGGTTTCGACAGTGAAGGT -ACGGAAGGTTTCGACAGTAACCGT -ACGGAAGGTTTCGACAGTTTGTGC -ACGGAAGGTTTCGACAGTCTAAGC -ACGGAAGGTTTCGACAGTACTAGC -ACGGAAGGTTTCGACAGTAGATGC -ACGGAAGGTTTCGACAGTTGAAGG -ACGGAAGGTTTCGACAGTCAATGG -ACGGAAGGTTTCGACAGTATGAGG -ACGGAAGGTTTCGACAGTAATGGG -ACGGAAGGTTTCGACAGTTCCTGA -ACGGAAGGTTTCGACAGTTAGCGA -ACGGAAGGTTTCGACAGTCACAGA -ACGGAAGGTTTCGACAGTGCAAGA -ACGGAAGGTTTCGACAGTGGTTGA -ACGGAAGGTTTCGACAGTTCCGAT -ACGGAAGGTTTCGACAGTTGGCAT -ACGGAAGGTTTCGACAGTCGAGAT -ACGGAAGGTTTCGACAGTTACCAC -ACGGAAGGTTTCGACAGTCAGAAC -ACGGAAGGTTTCGACAGTGTCTAC -ACGGAAGGTTTCGACAGTACGTAC -ACGGAAGGTTTCGACAGTAGTGAC -ACGGAAGGTTTCGACAGTCTGTAG -ACGGAAGGTTTCGACAGTCCTAAG -ACGGAAGGTTTCGACAGTGTTCAG -ACGGAAGGTTTCGACAGTGCATAG -ACGGAAGGTTTCGACAGTGACAAG -ACGGAAGGTTTCGACAGTAAGCAG -ACGGAAGGTTTCGACAGTCGTCAA -ACGGAAGGTTTCGACAGTGCTGAA -ACGGAAGGTTTCGACAGTAGTACG -ACGGAAGGTTTCGACAGTATCCGA -ACGGAAGGTTTCGACAGTATGGGA -ACGGAAGGTTTCGACAGTGTGCAA -ACGGAAGGTTTCGACAGTGAGGAA -ACGGAAGGTTTCGACAGTCAGGTA -ACGGAAGGTTTCGACAGTGACTCT -ACGGAAGGTTTCGACAGTAGTCCT -ACGGAAGGTTTCGACAGTTAAGCC -ACGGAAGGTTTCGACAGTATAGCC -ACGGAAGGTTTCGACAGTTAACCG -ACGGAAGGTTTCGACAGTATGCCA -ACGGAAGGTTTCTAGCTGGGAAAC -ACGGAAGGTTTCTAGCTGAACACC -ACGGAAGGTTTCTAGCTGATCGAG -ACGGAAGGTTTCTAGCTGCTCCTT -ACGGAAGGTTTCTAGCTGCCTGTT -ACGGAAGGTTTCTAGCTGCGGTTT -ACGGAAGGTTTCTAGCTGGTGGTT -ACGGAAGGTTTCTAGCTGGCCTTT -ACGGAAGGTTTCTAGCTGGGTCTT -ACGGAAGGTTTCTAGCTGACGCTT -ACGGAAGGTTTCTAGCTGAGCGTT -ACGGAAGGTTTCTAGCTGTTCGTC -ACGGAAGGTTTCTAGCTGTCTCTC -ACGGAAGGTTTCTAGCTGTGGATC -ACGGAAGGTTTCTAGCTGCACTTC -ACGGAAGGTTTCTAGCTGGTACTC -ACGGAAGGTTTCTAGCTGGATGTC -ACGGAAGGTTTCTAGCTGACAGTC -ACGGAAGGTTTCTAGCTGTTGCTG -ACGGAAGGTTTCTAGCTGTCCATG -ACGGAAGGTTTCTAGCTGTGTGTG -ACGGAAGGTTTCTAGCTGCTAGTG -ACGGAAGGTTTCTAGCTGCATCTG -ACGGAAGGTTTCTAGCTGGAGTTG -ACGGAAGGTTTCTAGCTGAGACTG -ACGGAAGGTTTCTAGCTGTCGGTA -ACGGAAGGTTTCTAGCTGTGCCTA -ACGGAAGGTTTCTAGCTGCCACTA -ACGGAAGGTTTCTAGCTGGGAGTA -ACGGAAGGTTTCTAGCTGTCGTCT -ACGGAAGGTTTCTAGCTGTGCACT -ACGGAAGGTTTCTAGCTGCTGACT -ACGGAAGGTTTCTAGCTGCAACCT -ACGGAAGGTTTCTAGCTGGCTACT -ACGGAAGGTTTCTAGCTGGGATCT -ACGGAAGGTTTCTAGCTGAAGGCT -ACGGAAGGTTTCTAGCTGTCAACC -ACGGAAGGTTTCTAGCTGTGTTCC -ACGGAAGGTTTCTAGCTGATTCCC -ACGGAAGGTTTCTAGCTGTTCTCG -ACGGAAGGTTTCTAGCTGTAGACG -ACGGAAGGTTTCTAGCTGGTAACG -ACGGAAGGTTTCTAGCTGACTTCG -ACGGAAGGTTTCTAGCTGTACGCA -ACGGAAGGTTTCTAGCTGCTTGCA -ACGGAAGGTTTCTAGCTGCGAACA -ACGGAAGGTTTCTAGCTGCAGTCA -ACGGAAGGTTTCTAGCTGGATCCA -ACGGAAGGTTTCTAGCTGACGACA -ACGGAAGGTTTCTAGCTGAGCTCA -ACGGAAGGTTTCTAGCTGTCACGT -ACGGAAGGTTTCTAGCTGCGTAGT -ACGGAAGGTTTCTAGCTGGTCAGT -ACGGAAGGTTTCTAGCTGGAAGGT -ACGGAAGGTTTCTAGCTGAACCGT -ACGGAAGGTTTCTAGCTGTTGTGC -ACGGAAGGTTTCTAGCTGCTAAGC -ACGGAAGGTTTCTAGCTGACTAGC -ACGGAAGGTTTCTAGCTGAGATGC -ACGGAAGGTTTCTAGCTGTGAAGG -ACGGAAGGTTTCTAGCTGCAATGG -ACGGAAGGTTTCTAGCTGATGAGG -ACGGAAGGTTTCTAGCTGAATGGG -ACGGAAGGTTTCTAGCTGTCCTGA -ACGGAAGGTTTCTAGCTGTAGCGA -ACGGAAGGTTTCTAGCTGCACAGA -ACGGAAGGTTTCTAGCTGGCAAGA -ACGGAAGGTTTCTAGCTGGGTTGA -ACGGAAGGTTTCTAGCTGTCCGAT -ACGGAAGGTTTCTAGCTGTGGCAT -ACGGAAGGTTTCTAGCTGCGAGAT -ACGGAAGGTTTCTAGCTGTACCAC -ACGGAAGGTTTCTAGCTGCAGAAC -ACGGAAGGTTTCTAGCTGGTCTAC -ACGGAAGGTTTCTAGCTGACGTAC -ACGGAAGGTTTCTAGCTGAGTGAC -ACGGAAGGTTTCTAGCTGCTGTAG -ACGGAAGGTTTCTAGCTGCCTAAG -ACGGAAGGTTTCTAGCTGGTTCAG -ACGGAAGGTTTCTAGCTGGCATAG -ACGGAAGGTTTCTAGCTGGACAAG -ACGGAAGGTTTCTAGCTGAAGCAG -ACGGAAGGTTTCTAGCTGCGTCAA -ACGGAAGGTTTCTAGCTGGCTGAA -ACGGAAGGTTTCTAGCTGAGTACG -ACGGAAGGTTTCTAGCTGATCCGA -ACGGAAGGTTTCTAGCTGATGGGA -ACGGAAGGTTTCTAGCTGGTGCAA -ACGGAAGGTTTCTAGCTGGAGGAA -ACGGAAGGTTTCTAGCTGCAGGTA -ACGGAAGGTTTCTAGCTGGACTCT -ACGGAAGGTTTCTAGCTGAGTCCT -ACGGAAGGTTTCTAGCTGTAAGCC -ACGGAAGGTTTCTAGCTGATAGCC -ACGGAAGGTTTCTAGCTGTAACCG -ACGGAAGGTTTCTAGCTGATGCCA -ACGGAAGGTTTCAAGCCTGGAAAC -ACGGAAGGTTTCAAGCCTAACACC -ACGGAAGGTTTCAAGCCTATCGAG -ACGGAAGGTTTCAAGCCTCTCCTT -ACGGAAGGTTTCAAGCCTCCTGTT -ACGGAAGGTTTCAAGCCTCGGTTT -ACGGAAGGTTTCAAGCCTGTGGTT -ACGGAAGGTTTCAAGCCTGCCTTT -ACGGAAGGTTTCAAGCCTGGTCTT -ACGGAAGGTTTCAAGCCTACGCTT -ACGGAAGGTTTCAAGCCTAGCGTT -ACGGAAGGTTTCAAGCCTTTCGTC -ACGGAAGGTTTCAAGCCTTCTCTC -ACGGAAGGTTTCAAGCCTTGGATC -ACGGAAGGTTTCAAGCCTCACTTC -ACGGAAGGTTTCAAGCCTGTACTC -ACGGAAGGTTTCAAGCCTGATGTC -ACGGAAGGTTTCAAGCCTACAGTC -ACGGAAGGTTTCAAGCCTTTGCTG -ACGGAAGGTTTCAAGCCTTCCATG -ACGGAAGGTTTCAAGCCTTGTGTG -ACGGAAGGTTTCAAGCCTCTAGTG -ACGGAAGGTTTCAAGCCTCATCTG -ACGGAAGGTTTCAAGCCTGAGTTG -ACGGAAGGTTTCAAGCCTAGACTG -ACGGAAGGTTTCAAGCCTTCGGTA -ACGGAAGGTTTCAAGCCTTGCCTA -ACGGAAGGTTTCAAGCCTCCACTA -ACGGAAGGTTTCAAGCCTGGAGTA -ACGGAAGGTTTCAAGCCTTCGTCT -ACGGAAGGTTTCAAGCCTTGCACT -ACGGAAGGTTTCAAGCCTCTGACT -ACGGAAGGTTTCAAGCCTCAACCT -ACGGAAGGTTTCAAGCCTGCTACT -ACGGAAGGTTTCAAGCCTGGATCT -ACGGAAGGTTTCAAGCCTAAGGCT -ACGGAAGGTTTCAAGCCTTCAACC -ACGGAAGGTTTCAAGCCTTGTTCC -ACGGAAGGTTTCAAGCCTATTCCC -ACGGAAGGTTTCAAGCCTTTCTCG -ACGGAAGGTTTCAAGCCTTAGACG -ACGGAAGGTTTCAAGCCTGTAACG -ACGGAAGGTTTCAAGCCTACTTCG -ACGGAAGGTTTCAAGCCTTACGCA -ACGGAAGGTTTCAAGCCTCTTGCA -ACGGAAGGTTTCAAGCCTCGAACA -ACGGAAGGTTTCAAGCCTCAGTCA -ACGGAAGGTTTCAAGCCTGATCCA -ACGGAAGGTTTCAAGCCTACGACA -ACGGAAGGTTTCAAGCCTAGCTCA -ACGGAAGGTTTCAAGCCTTCACGT -ACGGAAGGTTTCAAGCCTCGTAGT -ACGGAAGGTTTCAAGCCTGTCAGT -ACGGAAGGTTTCAAGCCTGAAGGT -ACGGAAGGTTTCAAGCCTAACCGT -ACGGAAGGTTTCAAGCCTTTGTGC -ACGGAAGGTTTCAAGCCTCTAAGC -ACGGAAGGTTTCAAGCCTACTAGC -ACGGAAGGTTTCAAGCCTAGATGC -ACGGAAGGTTTCAAGCCTTGAAGG -ACGGAAGGTTTCAAGCCTCAATGG -ACGGAAGGTTTCAAGCCTATGAGG -ACGGAAGGTTTCAAGCCTAATGGG -ACGGAAGGTTTCAAGCCTTCCTGA -ACGGAAGGTTTCAAGCCTTAGCGA -ACGGAAGGTTTCAAGCCTCACAGA -ACGGAAGGTTTCAAGCCTGCAAGA -ACGGAAGGTTTCAAGCCTGGTTGA -ACGGAAGGTTTCAAGCCTTCCGAT -ACGGAAGGTTTCAAGCCTTGGCAT -ACGGAAGGTTTCAAGCCTCGAGAT -ACGGAAGGTTTCAAGCCTTACCAC -ACGGAAGGTTTCAAGCCTCAGAAC -ACGGAAGGTTTCAAGCCTGTCTAC -ACGGAAGGTTTCAAGCCTACGTAC -ACGGAAGGTTTCAAGCCTAGTGAC -ACGGAAGGTTTCAAGCCTCTGTAG -ACGGAAGGTTTCAAGCCTCCTAAG -ACGGAAGGTTTCAAGCCTGTTCAG -ACGGAAGGTTTCAAGCCTGCATAG -ACGGAAGGTTTCAAGCCTGACAAG -ACGGAAGGTTTCAAGCCTAAGCAG -ACGGAAGGTTTCAAGCCTCGTCAA -ACGGAAGGTTTCAAGCCTGCTGAA -ACGGAAGGTTTCAAGCCTAGTACG -ACGGAAGGTTTCAAGCCTATCCGA -ACGGAAGGTTTCAAGCCTATGGGA -ACGGAAGGTTTCAAGCCTGTGCAA -ACGGAAGGTTTCAAGCCTGAGGAA -ACGGAAGGTTTCAAGCCTCAGGTA -ACGGAAGGTTTCAAGCCTGACTCT -ACGGAAGGTTTCAAGCCTAGTCCT -ACGGAAGGTTTCAAGCCTTAAGCC -ACGGAAGGTTTCAAGCCTATAGCC -ACGGAAGGTTTCAAGCCTTAACCG -ACGGAAGGTTTCAAGCCTATGCCA -ACGGAAGGTTTCCAGGTTGGAAAC -ACGGAAGGTTTCCAGGTTAACACC -ACGGAAGGTTTCCAGGTTATCGAG -ACGGAAGGTTTCCAGGTTCTCCTT -ACGGAAGGTTTCCAGGTTCCTGTT -ACGGAAGGTTTCCAGGTTCGGTTT -ACGGAAGGTTTCCAGGTTGTGGTT -ACGGAAGGTTTCCAGGTTGCCTTT -ACGGAAGGTTTCCAGGTTGGTCTT -ACGGAAGGTTTCCAGGTTACGCTT -ACGGAAGGTTTCCAGGTTAGCGTT -ACGGAAGGTTTCCAGGTTTTCGTC -ACGGAAGGTTTCCAGGTTTCTCTC -ACGGAAGGTTTCCAGGTTTGGATC -ACGGAAGGTTTCCAGGTTCACTTC -ACGGAAGGTTTCCAGGTTGTACTC -ACGGAAGGTTTCCAGGTTGATGTC -ACGGAAGGTTTCCAGGTTACAGTC -ACGGAAGGTTTCCAGGTTTTGCTG -ACGGAAGGTTTCCAGGTTTCCATG -ACGGAAGGTTTCCAGGTTTGTGTG -ACGGAAGGTTTCCAGGTTCTAGTG -ACGGAAGGTTTCCAGGTTCATCTG -ACGGAAGGTTTCCAGGTTGAGTTG -ACGGAAGGTTTCCAGGTTAGACTG -ACGGAAGGTTTCCAGGTTTCGGTA -ACGGAAGGTTTCCAGGTTTGCCTA -ACGGAAGGTTTCCAGGTTCCACTA -ACGGAAGGTTTCCAGGTTGGAGTA -ACGGAAGGTTTCCAGGTTTCGTCT -ACGGAAGGTTTCCAGGTTTGCACT -ACGGAAGGTTTCCAGGTTCTGACT -ACGGAAGGTTTCCAGGTTCAACCT -ACGGAAGGTTTCCAGGTTGCTACT -ACGGAAGGTTTCCAGGTTGGATCT -ACGGAAGGTTTCCAGGTTAAGGCT -ACGGAAGGTTTCCAGGTTTCAACC -ACGGAAGGTTTCCAGGTTTGTTCC -ACGGAAGGTTTCCAGGTTATTCCC -ACGGAAGGTTTCCAGGTTTTCTCG -ACGGAAGGTTTCCAGGTTTAGACG -ACGGAAGGTTTCCAGGTTGTAACG -ACGGAAGGTTTCCAGGTTACTTCG -ACGGAAGGTTTCCAGGTTTACGCA -ACGGAAGGTTTCCAGGTTCTTGCA -ACGGAAGGTTTCCAGGTTCGAACA -ACGGAAGGTTTCCAGGTTCAGTCA -ACGGAAGGTTTCCAGGTTGATCCA -ACGGAAGGTTTCCAGGTTACGACA -ACGGAAGGTTTCCAGGTTAGCTCA -ACGGAAGGTTTCCAGGTTTCACGT -ACGGAAGGTTTCCAGGTTCGTAGT -ACGGAAGGTTTCCAGGTTGTCAGT -ACGGAAGGTTTCCAGGTTGAAGGT -ACGGAAGGTTTCCAGGTTAACCGT -ACGGAAGGTTTCCAGGTTTTGTGC -ACGGAAGGTTTCCAGGTTCTAAGC -ACGGAAGGTTTCCAGGTTACTAGC -ACGGAAGGTTTCCAGGTTAGATGC -ACGGAAGGTTTCCAGGTTTGAAGG -ACGGAAGGTTTCCAGGTTCAATGG -ACGGAAGGTTTCCAGGTTATGAGG -ACGGAAGGTTTCCAGGTTAATGGG -ACGGAAGGTTTCCAGGTTTCCTGA -ACGGAAGGTTTCCAGGTTTAGCGA -ACGGAAGGTTTCCAGGTTCACAGA -ACGGAAGGTTTCCAGGTTGCAAGA -ACGGAAGGTTTCCAGGTTGGTTGA -ACGGAAGGTTTCCAGGTTTCCGAT -ACGGAAGGTTTCCAGGTTTGGCAT -ACGGAAGGTTTCCAGGTTCGAGAT -ACGGAAGGTTTCCAGGTTTACCAC -ACGGAAGGTTTCCAGGTTCAGAAC -ACGGAAGGTTTCCAGGTTGTCTAC -ACGGAAGGTTTCCAGGTTACGTAC -ACGGAAGGTTTCCAGGTTAGTGAC -ACGGAAGGTTTCCAGGTTCTGTAG -ACGGAAGGTTTCCAGGTTCCTAAG -ACGGAAGGTTTCCAGGTTGTTCAG -ACGGAAGGTTTCCAGGTTGCATAG -ACGGAAGGTTTCCAGGTTGACAAG -ACGGAAGGTTTCCAGGTTAAGCAG -ACGGAAGGTTTCCAGGTTCGTCAA -ACGGAAGGTTTCCAGGTTGCTGAA -ACGGAAGGTTTCCAGGTTAGTACG -ACGGAAGGTTTCCAGGTTATCCGA -ACGGAAGGTTTCCAGGTTATGGGA -ACGGAAGGTTTCCAGGTTGTGCAA -ACGGAAGGTTTCCAGGTTGAGGAA -ACGGAAGGTTTCCAGGTTCAGGTA -ACGGAAGGTTTCCAGGTTGACTCT -ACGGAAGGTTTCCAGGTTAGTCCT -ACGGAAGGTTTCCAGGTTTAAGCC -ACGGAAGGTTTCCAGGTTATAGCC -ACGGAAGGTTTCCAGGTTTAACCG -ACGGAAGGTTTCCAGGTTATGCCA -ACGGAAGGTTTCTAGGCAGGAAAC -ACGGAAGGTTTCTAGGCAAACACC -ACGGAAGGTTTCTAGGCAATCGAG -ACGGAAGGTTTCTAGGCACTCCTT -ACGGAAGGTTTCTAGGCACCTGTT -ACGGAAGGTTTCTAGGCACGGTTT -ACGGAAGGTTTCTAGGCAGTGGTT -ACGGAAGGTTTCTAGGCAGCCTTT -ACGGAAGGTTTCTAGGCAGGTCTT -ACGGAAGGTTTCTAGGCAACGCTT -ACGGAAGGTTTCTAGGCAAGCGTT -ACGGAAGGTTTCTAGGCATTCGTC -ACGGAAGGTTTCTAGGCATCTCTC -ACGGAAGGTTTCTAGGCATGGATC -ACGGAAGGTTTCTAGGCACACTTC -ACGGAAGGTTTCTAGGCAGTACTC -ACGGAAGGTTTCTAGGCAGATGTC -ACGGAAGGTTTCTAGGCAACAGTC -ACGGAAGGTTTCTAGGCATTGCTG -ACGGAAGGTTTCTAGGCATCCATG -ACGGAAGGTTTCTAGGCATGTGTG -ACGGAAGGTTTCTAGGCACTAGTG -ACGGAAGGTTTCTAGGCACATCTG -ACGGAAGGTTTCTAGGCAGAGTTG -ACGGAAGGTTTCTAGGCAAGACTG -ACGGAAGGTTTCTAGGCATCGGTA -ACGGAAGGTTTCTAGGCATGCCTA -ACGGAAGGTTTCTAGGCACCACTA -ACGGAAGGTTTCTAGGCAGGAGTA -ACGGAAGGTTTCTAGGCATCGTCT -ACGGAAGGTTTCTAGGCATGCACT -ACGGAAGGTTTCTAGGCACTGACT -ACGGAAGGTTTCTAGGCACAACCT -ACGGAAGGTTTCTAGGCAGCTACT -ACGGAAGGTTTCTAGGCAGGATCT -ACGGAAGGTTTCTAGGCAAAGGCT -ACGGAAGGTTTCTAGGCATCAACC -ACGGAAGGTTTCTAGGCATGTTCC -ACGGAAGGTTTCTAGGCAATTCCC -ACGGAAGGTTTCTAGGCATTCTCG -ACGGAAGGTTTCTAGGCATAGACG -ACGGAAGGTTTCTAGGCAGTAACG -ACGGAAGGTTTCTAGGCAACTTCG -ACGGAAGGTTTCTAGGCATACGCA -ACGGAAGGTTTCTAGGCACTTGCA -ACGGAAGGTTTCTAGGCACGAACA -ACGGAAGGTTTCTAGGCACAGTCA -ACGGAAGGTTTCTAGGCAGATCCA -ACGGAAGGTTTCTAGGCAACGACA -ACGGAAGGTTTCTAGGCAAGCTCA -ACGGAAGGTTTCTAGGCATCACGT -ACGGAAGGTTTCTAGGCACGTAGT -ACGGAAGGTTTCTAGGCAGTCAGT -ACGGAAGGTTTCTAGGCAGAAGGT -ACGGAAGGTTTCTAGGCAAACCGT -ACGGAAGGTTTCTAGGCATTGTGC -ACGGAAGGTTTCTAGGCACTAAGC -ACGGAAGGTTTCTAGGCAACTAGC -ACGGAAGGTTTCTAGGCAAGATGC -ACGGAAGGTTTCTAGGCATGAAGG -ACGGAAGGTTTCTAGGCACAATGG -ACGGAAGGTTTCTAGGCAATGAGG -ACGGAAGGTTTCTAGGCAAATGGG -ACGGAAGGTTTCTAGGCATCCTGA -ACGGAAGGTTTCTAGGCATAGCGA -ACGGAAGGTTTCTAGGCACACAGA -ACGGAAGGTTTCTAGGCAGCAAGA -ACGGAAGGTTTCTAGGCAGGTTGA -ACGGAAGGTTTCTAGGCATCCGAT -ACGGAAGGTTTCTAGGCATGGCAT -ACGGAAGGTTTCTAGGCACGAGAT -ACGGAAGGTTTCTAGGCATACCAC -ACGGAAGGTTTCTAGGCACAGAAC -ACGGAAGGTTTCTAGGCAGTCTAC -ACGGAAGGTTTCTAGGCAACGTAC -ACGGAAGGTTTCTAGGCAAGTGAC -ACGGAAGGTTTCTAGGCACTGTAG -ACGGAAGGTTTCTAGGCACCTAAG -ACGGAAGGTTTCTAGGCAGTTCAG -ACGGAAGGTTTCTAGGCAGCATAG -ACGGAAGGTTTCTAGGCAGACAAG -ACGGAAGGTTTCTAGGCAAAGCAG -ACGGAAGGTTTCTAGGCACGTCAA -ACGGAAGGTTTCTAGGCAGCTGAA -ACGGAAGGTTTCTAGGCAAGTACG -ACGGAAGGTTTCTAGGCAATCCGA -ACGGAAGGTTTCTAGGCAATGGGA -ACGGAAGGTTTCTAGGCAGTGCAA -ACGGAAGGTTTCTAGGCAGAGGAA -ACGGAAGGTTTCTAGGCACAGGTA -ACGGAAGGTTTCTAGGCAGACTCT -ACGGAAGGTTTCTAGGCAAGTCCT -ACGGAAGGTTTCTAGGCATAAGCC -ACGGAAGGTTTCTAGGCAATAGCC -ACGGAAGGTTTCTAGGCATAACCG -ACGGAAGGTTTCTAGGCAATGCCA -ACGGAAGGTTTCAAGGACGGAAAC -ACGGAAGGTTTCAAGGACAACACC -ACGGAAGGTTTCAAGGACATCGAG -ACGGAAGGTTTCAAGGACCTCCTT -ACGGAAGGTTTCAAGGACCCTGTT -ACGGAAGGTTTCAAGGACCGGTTT -ACGGAAGGTTTCAAGGACGTGGTT -ACGGAAGGTTTCAAGGACGCCTTT -ACGGAAGGTTTCAAGGACGGTCTT -ACGGAAGGTTTCAAGGACACGCTT -ACGGAAGGTTTCAAGGACAGCGTT -ACGGAAGGTTTCAAGGACTTCGTC -ACGGAAGGTTTCAAGGACTCTCTC -ACGGAAGGTTTCAAGGACTGGATC -ACGGAAGGTTTCAAGGACCACTTC -ACGGAAGGTTTCAAGGACGTACTC -ACGGAAGGTTTCAAGGACGATGTC -ACGGAAGGTTTCAAGGACACAGTC -ACGGAAGGTTTCAAGGACTTGCTG -ACGGAAGGTTTCAAGGACTCCATG -ACGGAAGGTTTCAAGGACTGTGTG -ACGGAAGGTTTCAAGGACCTAGTG -ACGGAAGGTTTCAAGGACCATCTG -ACGGAAGGTTTCAAGGACGAGTTG -ACGGAAGGTTTCAAGGACAGACTG -ACGGAAGGTTTCAAGGACTCGGTA -ACGGAAGGTTTCAAGGACTGCCTA -ACGGAAGGTTTCAAGGACCCACTA -ACGGAAGGTTTCAAGGACGGAGTA -ACGGAAGGTTTCAAGGACTCGTCT -ACGGAAGGTTTCAAGGACTGCACT -ACGGAAGGTTTCAAGGACCTGACT -ACGGAAGGTTTCAAGGACCAACCT -ACGGAAGGTTTCAAGGACGCTACT -ACGGAAGGTTTCAAGGACGGATCT -ACGGAAGGTTTCAAGGACAAGGCT -ACGGAAGGTTTCAAGGACTCAACC -ACGGAAGGTTTCAAGGACTGTTCC -ACGGAAGGTTTCAAGGACATTCCC -ACGGAAGGTTTCAAGGACTTCTCG -ACGGAAGGTTTCAAGGACTAGACG -ACGGAAGGTTTCAAGGACGTAACG -ACGGAAGGTTTCAAGGACACTTCG -ACGGAAGGTTTCAAGGACTACGCA -ACGGAAGGTTTCAAGGACCTTGCA -ACGGAAGGTTTCAAGGACCGAACA -ACGGAAGGTTTCAAGGACCAGTCA -ACGGAAGGTTTCAAGGACGATCCA -ACGGAAGGTTTCAAGGACACGACA -ACGGAAGGTTTCAAGGACAGCTCA -ACGGAAGGTTTCAAGGACTCACGT -ACGGAAGGTTTCAAGGACCGTAGT -ACGGAAGGTTTCAAGGACGTCAGT -ACGGAAGGTTTCAAGGACGAAGGT -ACGGAAGGTTTCAAGGACAACCGT -ACGGAAGGTTTCAAGGACTTGTGC -ACGGAAGGTTTCAAGGACCTAAGC -ACGGAAGGTTTCAAGGACACTAGC -ACGGAAGGTTTCAAGGACAGATGC -ACGGAAGGTTTCAAGGACTGAAGG -ACGGAAGGTTTCAAGGACCAATGG -ACGGAAGGTTTCAAGGACATGAGG -ACGGAAGGTTTCAAGGACAATGGG -ACGGAAGGTTTCAAGGACTCCTGA -ACGGAAGGTTTCAAGGACTAGCGA -ACGGAAGGTTTCAAGGACCACAGA -ACGGAAGGTTTCAAGGACGCAAGA -ACGGAAGGTTTCAAGGACGGTTGA -ACGGAAGGTTTCAAGGACTCCGAT -ACGGAAGGTTTCAAGGACTGGCAT -ACGGAAGGTTTCAAGGACCGAGAT -ACGGAAGGTTTCAAGGACTACCAC -ACGGAAGGTTTCAAGGACCAGAAC -ACGGAAGGTTTCAAGGACGTCTAC -ACGGAAGGTTTCAAGGACACGTAC -ACGGAAGGTTTCAAGGACAGTGAC -ACGGAAGGTTTCAAGGACCTGTAG -ACGGAAGGTTTCAAGGACCCTAAG -ACGGAAGGTTTCAAGGACGTTCAG -ACGGAAGGTTTCAAGGACGCATAG -ACGGAAGGTTTCAAGGACGACAAG -ACGGAAGGTTTCAAGGACAAGCAG -ACGGAAGGTTTCAAGGACCGTCAA -ACGGAAGGTTTCAAGGACGCTGAA -ACGGAAGGTTTCAAGGACAGTACG -ACGGAAGGTTTCAAGGACATCCGA -ACGGAAGGTTTCAAGGACATGGGA -ACGGAAGGTTTCAAGGACGTGCAA -ACGGAAGGTTTCAAGGACGAGGAA -ACGGAAGGTTTCAAGGACCAGGTA -ACGGAAGGTTTCAAGGACGACTCT -ACGGAAGGTTTCAAGGACAGTCCT -ACGGAAGGTTTCAAGGACTAAGCC -ACGGAAGGTTTCAAGGACATAGCC -ACGGAAGGTTTCAAGGACTAACCG -ACGGAAGGTTTCAAGGACATGCCA -ACGGAAGGTTTCCAGAAGGGAAAC -ACGGAAGGTTTCCAGAAGAACACC -ACGGAAGGTTTCCAGAAGATCGAG -ACGGAAGGTTTCCAGAAGCTCCTT -ACGGAAGGTTTCCAGAAGCCTGTT -ACGGAAGGTTTCCAGAAGCGGTTT -ACGGAAGGTTTCCAGAAGGTGGTT -ACGGAAGGTTTCCAGAAGGCCTTT -ACGGAAGGTTTCCAGAAGGGTCTT -ACGGAAGGTTTCCAGAAGACGCTT -ACGGAAGGTTTCCAGAAGAGCGTT -ACGGAAGGTTTCCAGAAGTTCGTC -ACGGAAGGTTTCCAGAAGTCTCTC -ACGGAAGGTTTCCAGAAGTGGATC -ACGGAAGGTTTCCAGAAGCACTTC -ACGGAAGGTTTCCAGAAGGTACTC -ACGGAAGGTTTCCAGAAGGATGTC -ACGGAAGGTTTCCAGAAGACAGTC -ACGGAAGGTTTCCAGAAGTTGCTG -ACGGAAGGTTTCCAGAAGTCCATG -ACGGAAGGTTTCCAGAAGTGTGTG -ACGGAAGGTTTCCAGAAGCTAGTG -ACGGAAGGTTTCCAGAAGCATCTG -ACGGAAGGTTTCCAGAAGGAGTTG -ACGGAAGGTTTCCAGAAGAGACTG -ACGGAAGGTTTCCAGAAGTCGGTA -ACGGAAGGTTTCCAGAAGTGCCTA -ACGGAAGGTTTCCAGAAGCCACTA -ACGGAAGGTTTCCAGAAGGGAGTA -ACGGAAGGTTTCCAGAAGTCGTCT -ACGGAAGGTTTCCAGAAGTGCACT -ACGGAAGGTTTCCAGAAGCTGACT -ACGGAAGGTTTCCAGAAGCAACCT -ACGGAAGGTTTCCAGAAGGCTACT -ACGGAAGGTTTCCAGAAGGGATCT -ACGGAAGGTTTCCAGAAGAAGGCT -ACGGAAGGTTTCCAGAAGTCAACC -ACGGAAGGTTTCCAGAAGTGTTCC -ACGGAAGGTTTCCAGAAGATTCCC -ACGGAAGGTTTCCAGAAGTTCTCG -ACGGAAGGTTTCCAGAAGTAGACG -ACGGAAGGTTTCCAGAAGGTAACG -ACGGAAGGTTTCCAGAAGACTTCG -ACGGAAGGTTTCCAGAAGTACGCA -ACGGAAGGTTTCCAGAAGCTTGCA -ACGGAAGGTTTCCAGAAGCGAACA -ACGGAAGGTTTCCAGAAGCAGTCA -ACGGAAGGTTTCCAGAAGGATCCA -ACGGAAGGTTTCCAGAAGACGACA -ACGGAAGGTTTCCAGAAGAGCTCA -ACGGAAGGTTTCCAGAAGTCACGT -ACGGAAGGTTTCCAGAAGCGTAGT -ACGGAAGGTTTCCAGAAGGTCAGT -ACGGAAGGTTTCCAGAAGGAAGGT -ACGGAAGGTTTCCAGAAGAACCGT -ACGGAAGGTTTCCAGAAGTTGTGC -ACGGAAGGTTTCCAGAAGCTAAGC -ACGGAAGGTTTCCAGAAGACTAGC -ACGGAAGGTTTCCAGAAGAGATGC -ACGGAAGGTTTCCAGAAGTGAAGG -ACGGAAGGTTTCCAGAAGCAATGG -ACGGAAGGTTTCCAGAAGATGAGG -ACGGAAGGTTTCCAGAAGAATGGG -ACGGAAGGTTTCCAGAAGTCCTGA -ACGGAAGGTTTCCAGAAGTAGCGA -ACGGAAGGTTTCCAGAAGCACAGA -ACGGAAGGTTTCCAGAAGGCAAGA -ACGGAAGGTTTCCAGAAGGGTTGA -ACGGAAGGTTTCCAGAAGTCCGAT -ACGGAAGGTTTCCAGAAGTGGCAT -ACGGAAGGTTTCCAGAAGCGAGAT -ACGGAAGGTTTCCAGAAGTACCAC -ACGGAAGGTTTCCAGAAGCAGAAC -ACGGAAGGTTTCCAGAAGGTCTAC -ACGGAAGGTTTCCAGAAGACGTAC -ACGGAAGGTTTCCAGAAGAGTGAC -ACGGAAGGTTTCCAGAAGCTGTAG -ACGGAAGGTTTCCAGAAGCCTAAG -ACGGAAGGTTTCCAGAAGGTTCAG -ACGGAAGGTTTCCAGAAGGCATAG -ACGGAAGGTTTCCAGAAGGACAAG -ACGGAAGGTTTCCAGAAGAAGCAG -ACGGAAGGTTTCCAGAAGCGTCAA -ACGGAAGGTTTCCAGAAGGCTGAA -ACGGAAGGTTTCCAGAAGAGTACG -ACGGAAGGTTTCCAGAAGATCCGA -ACGGAAGGTTTCCAGAAGATGGGA -ACGGAAGGTTTCCAGAAGGTGCAA -ACGGAAGGTTTCCAGAAGGAGGAA -ACGGAAGGTTTCCAGAAGCAGGTA -ACGGAAGGTTTCCAGAAGGACTCT -ACGGAAGGTTTCCAGAAGAGTCCT -ACGGAAGGTTTCCAGAAGTAAGCC -ACGGAAGGTTTCCAGAAGATAGCC -ACGGAAGGTTTCCAGAAGTAACCG -ACGGAAGGTTTCCAGAAGATGCCA -ACGGAAGGTTTCCAACGTGGAAAC -ACGGAAGGTTTCCAACGTAACACC -ACGGAAGGTTTCCAACGTATCGAG -ACGGAAGGTTTCCAACGTCTCCTT -ACGGAAGGTTTCCAACGTCCTGTT -ACGGAAGGTTTCCAACGTCGGTTT -ACGGAAGGTTTCCAACGTGTGGTT -ACGGAAGGTTTCCAACGTGCCTTT -ACGGAAGGTTTCCAACGTGGTCTT -ACGGAAGGTTTCCAACGTACGCTT -ACGGAAGGTTTCCAACGTAGCGTT -ACGGAAGGTTTCCAACGTTTCGTC -ACGGAAGGTTTCCAACGTTCTCTC -ACGGAAGGTTTCCAACGTTGGATC -ACGGAAGGTTTCCAACGTCACTTC -ACGGAAGGTTTCCAACGTGTACTC -ACGGAAGGTTTCCAACGTGATGTC -ACGGAAGGTTTCCAACGTACAGTC -ACGGAAGGTTTCCAACGTTTGCTG -ACGGAAGGTTTCCAACGTTCCATG -ACGGAAGGTTTCCAACGTTGTGTG -ACGGAAGGTTTCCAACGTCTAGTG -ACGGAAGGTTTCCAACGTCATCTG -ACGGAAGGTTTCCAACGTGAGTTG -ACGGAAGGTTTCCAACGTAGACTG -ACGGAAGGTTTCCAACGTTCGGTA -ACGGAAGGTTTCCAACGTTGCCTA -ACGGAAGGTTTCCAACGTCCACTA -ACGGAAGGTTTCCAACGTGGAGTA -ACGGAAGGTTTCCAACGTTCGTCT -ACGGAAGGTTTCCAACGTTGCACT -ACGGAAGGTTTCCAACGTCTGACT -ACGGAAGGTTTCCAACGTCAACCT -ACGGAAGGTTTCCAACGTGCTACT -ACGGAAGGTTTCCAACGTGGATCT -ACGGAAGGTTTCCAACGTAAGGCT -ACGGAAGGTTTCCAACGTTCAACC -ACGGAAGGTTTCCAACGTTGTTCC -ACGGAAGGTTTCCAACGTATTCCC -ACGGAAGGTTTCCAACGTTTCTCG -ACGGAAGGTTTCCAACGTTAGACG -ACGGAAGGTTTCCAACGTGTAACG -ACGGAAGGTTTCCAACGTACTTCG -ACGGAAGGTTTCCAACGTTACGCA -ACGGAAGGTTTCCAACGTCTTGCA -ACGGAAGGTTTCCAACGTCGAACA -ACGGAAGGTTTCCAACGTCAGTCA -ACGGAAGGTTTCCAACGTGATCCA -ACGGAAGGTTTCCAACGTACGACA -ACGGAAGGTTTCCAACGTAGCTCA -ACGGAAGGTTTCCAACGTTCACGT -ACGGAAGGTTTCCAACGTCGTAGT -ACGGAAGGTTTCCAACGTGTCAGT -ACGGAAGGTTTCCAACGTGAAGGT -ACGGAAGGTTTCCAACGTAACCGT -ACGGAAGGTTTCCAACGTTTGTGC -ACGGAAGGTTTCCAACGTCTAAGC -ACGGAAGGTTTCCAACGTACTAGC -ACGGAAGGTTTCCAACGTAGATGC -ACGGAAGGTTTCCAACGTTGAAGG -ACGGAAGGTTTCCAACGTCAATGG -ACGGAAGGTTTCCAACGTATGAGG -ACGGAAGGTTTCCAACGTAATGGG -ACGGAAGGTTTCCAACGTTCCTGA -ACGGAAGGTTTCCAACGTTAGCGA -ACGGAAGGTTTCCAACGTCACAGA -ACGGAAGGTTTCCAACGTGCAAGA -ACGGAAGGTTTCCAACGTGGTTGA -ACGGAAGGTTTCCAACGTTCCGAT -ACGGAAGGTTTCCAACGTTGGCAT -ACGGAAGGTTTCCAACGTCGAGAT -ACGGAAGGTTTCCAACGTTACCAC -ACGGAAGGTTTCCAACGTCAGAAC -ACGGAAGGTTTCCAACGTGTCTAC -ACGGAAGGTTTCCAACGTACGTAC -ACGGAAGGTTTCCAACGTAGTGAC -ACGGAAGGTTTCCAACGTCTGTAG -ACGGAAGGTTTCCAACGTCCTAAG -ACGGAAGGTTTCCAACGTGTTCAG -ACGGAAGGTTTCCAACGTGCATAG -ACGGAAGGTTTCCAACGTGACAAG -ACGGAAGGTTTCCAACGTAAGCAG -ACGGAAGGTTTCCAACGTCGTCAA -ACGGAAGGTTTCCAACGTGCTGAA -ACGGAAGGTTTCCAACGTAGTACG -ACGGAAGGTTTCCAACGTATCCGA -ACGGAAGGTTTCCAACGTATGGGA -ACGGAAGGTTTCCAACGTGTGCAA -ACGGAAGGTTTCCAACGTGAGGAA -ACGGAAGGTTTCCAACGTCAGGTA -ACGGAAGGTTTCCAACGTGACTCT -ACGGAAGGTTTCCAACGTAGTCCT -ACGGAAGGTTTCCAACGTTAAGCC -ACGGAAGGTTTCCAACGTATAGCC -ACGGAAGGTTTCCAACGTTAACCG -ACGGAAGGTTTCCAACGTATGCCA -ACGGAAGGTTTCGAAGCTGGAAAC -ACGGAAGGTTTCGAAGCTAACACC -ACGGAAGGTTTCGAAGCTATCGAG -ACGGAAGGTTTCGAAGCTCTCCTT -ACGGAAGGTTTCGAAGCTCCTGTT -ACGGAAGGTTTCGAAGCTCGGTTT -ACGGAAGGTTTCGAAGCTGTGGTT -ACGGAAGGTTTCGAAGCTGCCTTT -ACGGAAGGTTTCGAAGCTGGTCTT -ACGGAAGGTTTCGAAGCTACGCTT -ACGGAAGGTTTCGAAGCTAGCGTT -ACGGAAGGTTTCGAAGCTTTCGTC -ACGGAAGGTTTCGAAGCTTCTCTC -ACGGAAGGTTTCGAAGCTTGGATC -ACGGAAGGTTTCGAAGCTCACTTC -ACGGAAGGTTTCGAAGCTGTACTC -ACGGAAGGTTTCGAAGCTGATGTC -ACGGAAGGTTTCGAAGCTACAGTC -ACGGAAGGTTTCGAAGCTTTGCTG -ACGGAAGGTTTCGAAGCTTCCATG -ACGGAAGGTTTCGAAGCTTGTGTG -ACGGAAGGTTTCGAAGCTCTAGTG -ACGGAAGGTTTCGAAGCTCATCTG -ACGGAAGGTTTCGAAGCTGAGTTG -ACGGAAGGTTTCGAAGCTAGACTG -ACGGAAGGTTTCGAAGCTTCGGTA -ACGGAAGGTTTCGAAGCTTGCCTA -ACGGAAGGTTTCGAAGCTCCACTA -ACGGAAGGTTTCGAAGCTGGAGTA -ACGGAAGGTTTCGAAGCTTCGTCT -ACGGAAGGTTTCGAAGCTTGCACT -ACGGAAGGTTTCGAAGCTCTGACT -ACGGAAGGTTTCGAAGCTCAACCT -ACGGAAGGTTTCGAAGCTGCTACT -ACGGAAGGTTTCGAAGCTGGATCT -ACGGAAGGTTTCGAAGCTAAGGCT -ACGGAAGGTTTCGAAGCTTCAACC -ACGGAAGGTTTCGAAGCTTGTTCC -ACGGAAGGTTTCGAAGCTATTCCC -ACGGAAGGTTTCGAAGCTTTCTCG -ACGGAAGGTTTCGAAGCTTAGACG -ACGGAAGGTTTCGAAGCTGTAACG -ACGGAAGGTTTCGAAGCTACTTCG -ACGGAAGGTTTCGAAGCTTACGCA -ACGGAAGGTTTCGAAGCTCTTGCA -ACGGAAGGTTTCGAAGCTCGAACA -ACGGAAGGTTTCGAAGCTCAGTCA -ACGGAAGGTTTCGAAGCTGATCCA -ACGGAAGGTTTCGAAGCTACGACA -ACGGAAGGTTTCGAAGCTAGCTCA -ACGGAAGGTTTCGAAGCTTCACGT -ACGGAAGGTTTCGAAGCTCGTAGT -ACGGAAGGTTTCGAAGCTGTCAGT -ACGGAAGGTTTCGAAGCTGAAGGT -ACGGAAGGTTTCGAAGCTAACCGT -ACGGAAGGTTTCGAAGCTTTGTGC -ACGGAAGGTTTCGAAGCTCTAAGC -ACGGAAGGTTTCGAAGCTACTAGC -ACGGAAGGTTTCGAAGCTAGATGC -ACGGAAGGTTTCGAAGCTTGAAGG -ACGGAAGGTTTCGAAGCTCAATGG -ACGGAAGGTTTCGAAGCTATGAGG -ACGGAAGGTTTCGAAGCTAATGGG -ACGGAAGGTTTCGAAGCTTCCTGA -ACGGAAGGTTTCGAAGCTTAGCGA -ACGGAAGGTTTCGAAGCTCACAGA -ACGGAAGGTTTCGAAGCTGCAAGA -ACGGAAGGTTTCGAAGCTGGTTGA -ACGGAAGGTTTCGAAGCTTCCGAT -ACGGAAGGTTTCGAAGCTTGGCAT -ACGGAAGGTTTCGAAGCTCGAGAT -ACGGAAGGTTTCGAAGCTTACCAC -ACGGAAGGTTTCGAAGCTCAGAAC -ACGGAAGGTTTCGAAGCTGTCTAC -ACGGAAGGTTTCGAAGCTACGTAC -ACGGAAGGTTTCGAAGCTAGTGAC -ACGGAAGGTTTCGAAGCTCTGTAG -ACGGAAGGTTTCGAAGCTCCTAAG -ACGGAAGGTTTCGAAGCTGTTCAG -ACGGAAGGTTTCGAAGCTGCATAG -ACGGAAGGTTTCGAAGCTGACAAG -ACGGAAGGTTTCGAAGCTAAGCAG -ACGGAAGGTTTCGAAGCTCGTCAA -ACGGAAGGTTTCGAAGCTGCTGAA -ACGGAAGGTTTCGAAGCTAGTACG -ACGGAAGGTTTCGAAGCTATCCGA -ACGGAAGGTTTCGAAGCTATGGGA -ACGGAAGGTTTCGAAGCTGTGCAA -ACGGAAGGTTTCGAAGCTGAGGAA -ACGGAAGGTTTCGAAGCTCAGGTA -ACGGAAGGTTTCGAAGCTGACTCT -ACGGAAGGTTTCGAAGCTAGTCCT -ACGGAAGGTTTCGAAGCTTAAGCC -ACGGAAGGTTTCGAAGCTATAGCC -ACGGAAGGTTTCGAAGCTTAACCG -ACGGAAGGTTTCGAAGCTATGCCA -ACGGAAGGTTTCACGAGTGGAAAC -ACGGAAGGTTTCACGAGTAACACC -ACGGAAGGTTTCACGAGTATCGAG -ACGGAAGGTTTCACGAGTCTCCTT -ACGGAAGGTTTCACGAGTCCTGTT -ACGGAAGGTTTCACGAGTCGGTTT -ACGGAAGGTTTCACGAGTGTGGTT -ACGGAAGGTTTCACGAGTGCCTTT -ACGGAAGGTTTCACGAGTGGTCTT -ACGGAAGGTTTCACGAGTACGCTT -ACGGAAGGTTTCACGAGTAGCGTT -ACGGAAGGTTTCACGAGTTTCGTC -ACGGAAGGTTTCACGAGTTCTCTC -ACGGAAGGTTTCACGAGTTGGATC -ACGGAAGGTTTCACGAGTCACTTC -ACGGAAGGTTTCACGAGTGTACTC -ACGGAAGGTTTCACGAGTGATGTC -ACGGAAGGTTTCACGAGTACAGTC -ACGGAAGGTTTCACGAGTTTGCTG -ACGGAAGGTTTCACGAGTTCCATG -ACGGAAGGTTTCACGAGTTGTGTG -ACGGAAGGTTTCACGAGTCTAGTG -ACGGAAGGTTTCACGAGTCATCTG -ACGGAAGGTTTCACGAGTGAGTTG -ACGGAAGGTTTCACGAGTAGACTG -ACGGAAGGTTTCACGAGTTCGGTA -ACGGAAGGTTTCACGAGTTGCCTA -ACGGAAGGTTTCACGAGTCCACTA -ACGGAAGGTTTCACGAGTGGAGTA -ACGGAAGGTTTCACGAGTTCGTCT -ACGGAAGGTTTCACGAGTTGCACT -ACGGAAGGTTTCACGAGTCTGACT -ACGGAAGGTTTCACGAGTCAACCT -ACGGAAGGTTTCACGAGTGCTACT -ACGGAAGGTTTCACGAGTGGATCT -ACGGAAGGTTTCACGAGTAAGGCT -ACGGAAGGTTTCACGAGTTCAACC -ACGGAAGGTTTCACGAGTTGTTCC -ACGGAAGGTTTCACGAGTATTCCC -ACGGAAGGTTTCACGAGTTTCTCG -ACGGAAGGTTTCACGAGTTAGACG -ACGGAAGGTTTCACGAGTGTAACG -ACGGAAGGTTTCACGAGTACTTCG -ACGGAAGGTTTCACGAGTTACGCA -ACGGAAGGTTTCACGAGTCTTGCA -ACGGAAGGTTTCACGAGTCGAACA -ACGGAAGGTTTCACGAGTCAGTCA -ACGGAAGGTTTCACGAGTGATCCA -ACGGAAGGTTTCACGAGTACGACA -ACGGAAGGTTTCACGAGTAGCTCA -ACGGAAGGTTTCACGAGTTCACGT -ACGGAAGGTTTCACGAGTCGTAGT -ACGGAAGGTTTCACGAGTGTCAGT -ACGGAAGGTTTCACGAGTGAAGGT -ACGGAAGGTTTCACGAGTAACCGT -ACGGAAGGTTTCACGAGTTTGTGC -ACGGAAGGTTTCACGAGTCTAAGC -ACGGAAGGTTTCACGAGTACTAGC -ACGGAAGGTTTCACGAGTAGATGC -ACGGAAGGTTTCACGAGTTGAAGG -ACGGAAGGTTTCACGAGTCAATGG -ACGGAAGGTTTCACGAGTATGAGG -ACGGAAGGTTTCACGAGTAATGGG -ACGGAAGGTTTCACGAGTTCCTGA -ACGGAAGGTTTCACGAGTTAGCGA -ACGGAAGGTTTCACGAGTCACAGA -ACGGAAGGTTTCACGAGTGCAAGA -ACGGAAGGTTTCACGAGTGGTTGA -ACGGAAGGTTTCACGAGTTCCGAT -ACGGAAGGTTTCACGAGTTGGCAT -ACGGAAGGTTTCACGAGTCGAGAT -ACGGAAGGTTTCACGAGTTACCAC -ACGGAAGGTTTCACGAGTCAGAAC -ACGGAAGGTTTCACGAGTGTCTAC -ACGGAAGGTTTCACGAGTACGTAC -ACGGAAGGTTTCACGAGTAGTGAC -ACGGAAGGTTTCACGAGTCTGTAG -ACGGAAGGTTTCACGAGTCCTAAG -ACGGAAGGTTTCACGAGTGTTCAG -ACGGAAGGTTTCACGAGTGCATAG -ACGGAAGGTTTCACGAGTGACAAG -ACGGAAGGTTTCACGAGTAAGCAG -ACGGAAGGTTTCACGAGTCGTCAA -ACGGAAGGTTTCACGAGTGCTGAA -ACGGAAGGTTTCACGAGTAGTACG -ACGGAAGGTTTCACGAGTATCCGA -ACGGAAGGTTTCACGAGTATGGGA -ACGGAAGGTTTCACGAGTGTGCAA -ACGGAAGGTTTCACGAGTGAGGAA -ACGGAAGGTTTCACGAGTCAGGTA -ACGGAAGGTTTCACGAGTGACTCT -ACGGAAGGTTTCACGAGTAGTCCT -ACGGAAGGTTTCACGAGTTAAGCC -ACGGAAGGTTTCACGAGTATAGCC -ACGGAAGGTTTCACGAGTTAACCG -ACGGAAGGTTTCACGAGTATGCCA -ACGGAAGGTTTCCGAATCGGAAAC -ACGGAAGGTTTCCGAATCAACACC -ACGGAAGGTTTCCGAATCATCGAG -ACGGAAGGTTTCCGAATCCTCCTT -ACGGAAGGTTTCCGAATCCCTGTT -ACGGAAGGTTTCCGAATCCGGTTT -ACGGAAGGTTTCCGAATCGTGGTT -ACGGAAGGTTTCCGAATCGCCTTT -ACGGAAGGTTTCCGAATCGGTCTT -ACGGAAGGTTTCCGAATCACGCTT -ACGGAAGGTTTCCGAATCAGCGTT -ACGGAAGGTTTCCGAATCTTCGTC -ACGGAAGGTTTCCGAATCTCTCTC -ACGGAAGGTTTCCGAATCTGGATC -ACGGAAGGTTTCCGAATCCACTTC -ACGGAAGGTTTCCGAATCGTACTC -ACGGAAGGTTTCCGAATCGATGTC -ACGGAAGGTTTCCGAATCACAGTC -ACGGAAGGTTTCCGAATCTTGCTG -ACGGAAGGTTTCCGAATCTCCATG -ACGGAAGGTTTCCGAATCTGTGTG -ACGGAAGGTTTCCGAATCCTAGTG -ACGGAAGGTTTCCGAATCCATCTG -ACGGAAGGTTTCCGAATCGAGTTG -ACGGAAGGTTTCCGAATCAGACTG -ACGGAAGGTTTCCGAATCTCGGTA -ACGGAAGGTTTCCGAATCTGCCTA -ACGGAAGGTTTCCGAATCCCACTA -ACGGAAGGTTTCCGAATCGGAGTA -ACGGAAGGTTTCCGAATCTCGTCT -ACGGAAGGTTTCCGAATCTGCACT -ACGGAAGGTTTCCGAATCCTGACT -ACGGAAGGTTTCCGAATCCAACCT -ACGGAAGGTTTCCGAATCGCTACT -ACGGAAGGTTTCCGAATCGGATCT -ACGGAAGGTTTCCGAATCAAGGCT -ACGGAAGGTTTCCGAATCTCAACC -ACGGAAGGTTTCCGAATCTGTTCC -ACGGAAGGTTTCCGAATCATTCCC -ACGGAAGGTTTCCGAATCTTCTCG -ACGGAAGGTTTCCGAATCTAGACG -ACGGAAGGTTTCCGAATCGTAACG -ACGGAAGGTTTCCGAATCACTTCG -ACGGAAGGTTTCCGAATCTACGCA -ACGGAAGGTTTCCGAATCCTTGCA -ACGGAAGGTTTCCGAATCCGAACA -ACGGAAGGTTTCCGAATCCAGTCA -ACGGAAGGTTTCCGAATCGATCCA -ACGGAAGGTTTCCGAATCACGACA -ACGGAAGGTTTCCGAATCAGCTCA -ACGGAAGGTTTCCGAATCTCACGT -ACGGAAGGTTTCCGAATCCGTAGT -ACGGAAGGTTTCCGAATCGTCAGT -ACGGAAGGTTTCCGAATCGAAGGT -ACGGAAGGTTTCCGAATCAACCGT -ACGGAAGGTTTCCGAATCTTGTGC -ACGGAAGGTTTCCGAATCCTAAGC -ACGGAAGGTTTCCGAATCACTAGC -ACGGAAGGTTTCCGAATCAGATGC -ACGGAAGGTTTCCGAATCTGAAGG -ACGGAAGGTTTCCGAATCCAATGG -ACGGAAGGTTTCCGAATCATGAGG -ACGGAAGGTTTCCGAATCAATGGG -ACGGAAGGTTTCCGAATCTCCTGA -ACGGAAGGTTTCCGAATCTAGCGA -ACGGAAGGTTTCCGAATCCACAGA -ACGGAAGGTTTCCGAATCGCAAGA -ACGGAAGGTTTCCGAATCGGTTGA -ACGGAAGGTTTCCGAATCTCCGAT -ACGGAAGGTTTCCGAATCTGGCAT -ACGGAAGGTTTCCGAATCCGAGAT -ACGGAAGGTTTCCGAATCTACCAC -ACGGAAGGTTTCCGAATCCAGAAC -ACGGAAGGTTTCCGAATCGTCTAC -ACGGAAGGTTTCCGAATCACGTAC -ACGGAAGGTTTCCGAATCAGTGAC -ACGGAAGGTTTCCGAATCCTGTAG -ACGGAAGGTTTCCGAATCCCTAAG -ACGGAAGGTTTCCGAATCGTTCAG -ACGGAAGGTTTCCGAATCGCATAG -ACGGAAGGTTTCCGAATCGACAAG -ACGGAAGGTTTCCGAATCAAGCAG -ACGGAAGGTTTCCGAATCCGTCAA -ACGGAAGGTTTCCGAATCGCTGAA -ACGGAAGGTTTCCGAATCAGTACG -ACGGAAGGTTTCCGAATCATCCGA -ACGGAAGGTTTCCGAATCATGGGA -ACGGAAGGTTTCCGAATCGTGCAA -ACGGAAGGTTTCCGAATCGAGGAA -ACGGAAGGTTTCCGAATCCAGGTA -ACGGAAGGTTTCCGAATCGACTCT -ACGGAAGGTTTCCGAATCAGTCCT -ACGGAAGGTTTCCGAATCTAAGCC -ACGGAAGGTTTCCGAATCATAGCC -ACGGAAGGTTTCCGAATCTAACCG -ACGGAAGGTTTCCGAATCATGCCA -ACGGAAGGTTTCGGAATGGGAAAC -ACGGAAGGTTTCGGAATGAACACC -ACGGAAGGTTTCGGAATGATCGAG -ACGGAAGGTTTCGGAATGCTCCTT -ACGGAAGGTTTCGGAATGCCTGTT -ACGGAAGGTTTCGGAATGCGGTTT -ACGGAAGGTTTCGGAATGGTGGTT -ACGGAAGGTTTCGGAATGGCCTTT -ACGGAAGGTTTCGGAATGGGTCTT -ACGGAAGGTTTCGGAATGACGCTT -ACGGAAGGTTTCGGAATGAGCGTT -ACGGAAGGTTTCGGAATGTTCGTC -ACGGAAGGTTTCGGAATGTCTCTC -ACGGAAGGTTTCGGAATGTGGATC -ACGGAAGGTTTCGGAATGCACTTC -ACGGAAGGTTTCGGAATGGTACTC -ACGGAAGGTTTCGGAATGGATGTC -ACGGAAGGTTTCGGAATGACAGTC -ACGGAAGGTTTCGGAATGTTGCTG -ACGGAAGGTTTCGGAATGTCCATG -ACGGAAGGTTTCGGAATGTGTGTG -ACGGAAGGTTTCGGAATGCTAGTG -ACGGAAGGTTTCGGAATGCATCTG -ACGGAAGGTTTCGGAATGGAGTTG -ACGGAAGGTTTCGGAATGAGACTG -ACGGAAGGTTTCGGAATGTCGGTA -ACGGAAGGTTTCGGAATGTGCCTA -ACGGAAGGTTTCGGAATGCCACTA -ACGGAAGGTTTCGGAATGGGAGTA -ACGGAAGGTTTCGGAATGTCGTCT -ACGGAAGGTTTCGGAATGTGCACT -ACGGAAGGTTTCGGAATGCTGACT -ACGGAAGGTTTCGGAATGCAACCT -ACGGAAGGTTTCGGAATGGCTACT -ACGGAAGGTTTCGGAATGGGATCT -ACGGAAGGTTTCGGAATGAAGGCT -ACGGAAGGTTTCGGAATGTCAACC -ACGGAAGGTTTCGGAATGTGTTCC -ACGGAAGGTTTCGGAATGATTCCC -ACGGAAGGTTTCGGAATGTTCTCG -ACGGAAGGTTTCGGAATGTAGACG -ACGGAAGGTTTCGGAATGGTAACG -ACGGAAGGTTTCGGAATGACTTCG -ACGGAAGGTTTCGGAATGTACGCA -ACGGAAGGTTTCGGAATGCTTGCA -ACGGAAGGTTTCGGAATGCGAACA -ACGGAAGGTTTCGGAATGCAGTCA -ACGGAAGGTTTCGGAATGGATCCA -ACGGAAGGTTTCGGAATGACGACA -ACGGAAGGTTTCGGAATGAGCTCA -ACGGAAGGTTTCGGAATGTCACGT -ACGGAAGGTTTCGGAATGCGTAGT -ACGGAAGGTTTCGGAATGGTCAGT -ACGGAAGGTTTCGGAATGGAAGGT -ACGGAAGGTTTCGGAATGAACCGT -ACGGAAGGTTTCGGAATGTTGTGC -ACGGAAGGTTTCGGAATGCTAAGC -ACGGAAGGTTTCGGAATGACTAGC -ACGGAAGGTTTCGGAATGAGATGC -ACGGAAGGTTTCGGAATGTGAAGG -ACGGAAGGTTTCGGAATGCAATGG -ACGGAAGGTTTCGGAATGATGAGG -ACGGAAGGTTTCGGAATGAATGGG -ACGGAAGGTTTCGGAATGTCCTGA -ACGGAAGGTTTCGGAATGTAGCGA -ACGGAAGGTTTCGGAATGCACAGA -ACGGAAGGTTTCGGAATGGCAAGA -ACGGAAGGTTTCGGAATGGGTTGA -ACGGAAGGTTTCGGAATGTCCGAT -ACGGAAGGTTTCGGAATGTGGCAT -ACGGAAGGTTTCGGAATGCGAGAT -ACGGAAGGTTTCGGAATGTACCAC -ACGGAAGGTTTCGGAATGCAGAAC -ACGGAAGGTTTCGGAATGGTCTAC -ACGGAAGGTTTCGGAATGACGTAC -ACGGAAGGTTTCGGAATGAGTGAC -ACGGAAGGTTTCGGAATGCTGTAG -ACGGAAGGTTTCGGAATGCCTAAG -ACGGAAGGTTTCGGAATGGTTCAG -ACGGAAGGTTTCGGAATGGCATAG -ACGGAAGGTTTCGGAATGGACAAG -ACGGAAGGTTTCGGAATGAAGCAG -ACGGAAGGTTTCGGAATGCGTCAA -ACGGAAGGTTTCGGAATGGCTGAA -ACGGAAGGTTTCGGAATGAGTACG -ACGGAAGGTTTCGGAATGATCCGA -ACGGAAGGTTTCGGAATGATGGGA -ACGGAAGGTTTCGGAATGGTGCAA -ACGGAAGGTTTCGGAATGGAGGAA -ACGGAAGGTTTCGGAATGCAGGTA -ACGGAAGGTTTCGGAATGGACTCT -ACGGAAGGTTTCGGAATGAGTCCT -ACGGAAGGTTTCGGAATGTAAGCC -ACGGAAGGTTTCGGAATGATAGCC -ACGGAAGGTTTCGGAATGTAACCG -ACGGAAGGTTTCGGAATGATGCCA -ACGGAAGGTTTCCAAGTGGGAAAC -ACGGAAGGTTTCCAAGTGAACACC -ACGGAAGGTTTCCAAGTGATCGAG -ACGGAAGGTTTCCAAGTGCTCCTT -ACGGAAGGTTTCCAAGTGCCTGTT -ACGGAAGGTTTCCAAGTGCGGTTT -ACGGAAGGTTTCCAAGTGGTGGTT -ACGGAAGGTTTCCAAGTGGCCTTT -ACGGAAGGTTTCCAAGTGGGTCTT -ACGGAAGGTTTCCAAGTGACGCTT -ACGGAAGGTTTCCAAGTGAGCGTT -ACGGAAGGTTTCCAAGTGTTCGTC -ACGGAAGGTTTCCAAGTGTCTCTC -ACGGAAGGTTTCCAAGTGTGGATC -ACGGAAGGTTTCCAAGTGCACTTC -ACGGAAGGTTTCCAAGTGGTACTC -ACGGAAGGTTTCCAAGTGGATGTC -ACGGAAGGTTTCCAAGTGACAGTC -ACGGAAGGTTTCCAAGTGTTGCTG -ACGGAAGGTTTCCAAGTGTCCATG -ACGGAAGGTTTCCAAGTGTGTGTG -ACGGAAGGTTTCCAAGTGCTAGTG -ACGGAAGGTTTCCAAGTGCATCTG -ACGGAAGGTTTCCAAGTGGAGTTG -ACGGAAGGTTTCCAAGTGAGACTG -ACGGAAGGTTTCCAAGTGTCGGTA -ACGGAAGGTTTCCAAGTGTGCCTA -ACGGAAGGTTTCCAAGTGCCACTA -ACGGAAGGTTTCCAAGTGGGAGTA -ACGGAAGGTTTCCAAGTGTCGTCT -ACGGAAGGTTTCCAAGTGTGCACT -ACGGAAGGTTTCCAAGTGCTGACT -ACGGAAGGTTTCCAAGTGCAACCT -ACGGAAGGTTTCCAAGTGGCTACT -ACGGAAGGTTTCCAAGTGGGATCT -ACGGAAGGTTTCCAAGTGAAGGCT -ACGGAAGGTTTCCAAGTGTCAACC -ACGGAAGGTTTCCAAGTGTGTTCC -ACGGAAGGTTTCCAAGTGATTCCC -ACGGAAGGTTTCCAAGTGTTCTCG -ACGGAAGGTTTCCAAGTGTAGACG -ACGGAAGGTTTCCAAGTGGTAACG -ACGGAAGGTTTCCAAGTGACTTCG -ACGGAAGGTTTCCAAGTGTACGCA -ACGGAAGGTTTCCAAGTGCTTGCA -ACGGAAGGTTTCCAAGTGCGAACA -ACGGAAGGTTTCCAAGTGCAGTCA -ACGGAAGGTTTCCAAGTGGATCCA -ACGGAAGGTTTCCAAGTGACGACA -ACGGAAGGTTTCCAAGTGAGCTCA -ACGGAAGGTTTCCAAGTGTCACGT -ACGGAAGGTTTCCAAGTGCGTAGT -ACGGAAGGTTTCCAAGTGGTCAGT -ACGGAAGGTTTCCAAGTGGAAGGT -ACGGAAGGTTTCCAAGTGAACCGT -ACGGAAGGTTTCCAAGTGTTGTGC -ACGGAAGGTTTCCAAGTGCTAAGC -ACGGAAGGTTTCCAAGTGACTAGC -ACGGAAGGTTTCCAAGTGAGATGC -ACGGAAGGTTTCCAAGTGTGAAGG -ACGGAAGGTTTCCAAGTGCAATGG -ACGGAAGGTTTCCAAGTGATGAGG -ACGGAAGGTTTCCAAGTGAATGGG -ACGGAAGGTTTCCAAGTGTCCTGA -ACGGAAGGTTTCCAAGTGTAGCGA -ACGGAAGGTTTCCAAGTGCACAGA -ACGGAAGGTTTCCAAGTGGCAAGA -ACGGAAGGTTTCCAAGTGGGTTGA -ACGGAAGGTTTCCAAGTGTCCGAT -ACGGAAGGTTTCCAAGTGTGGCAT -ACGGAAGGTTTCCAAGTGCGAGAT -ACGGAAGGTTTCCAAGTGTACCAC -ACGGAAGGTTTCCAAGTGCAGAAC -ACGGAAGGTTTCCAAGTGGTCTAC -ACGGAAGGTTTCCAAGTGACGTAC -ACGGAAGGTTTCCAAGTGAGTGAC -ACGGAAGGTTTCCAAGTGCTGTAG -ACGGAAGGTTTCCAAGTGCCTAAG -ACGGAAGGTTTCCAAGTGGTTCAG -ACGGAAGGTTTCCAAGTGGCATAG -ACGGAAGGTTTCCAAGTGGACAAG -ACGGAAGGTTTCCAAGTGAAGCAG -ACGGAAGGTTTCCAAGTGCGTCAA -ACGGAAGGTTTCCAAGTGGCTGAA -ACGGAAGGTTTCCAAGTGAGTACG -ACGGAAGGTTTCCAAGTGATCCGA -ACGGAAGGTTTCCAAGTGATGGGA -ACGGAAGGTTTCCAAGTGGTGCAA -ACGGAAGGTTTCCAAGTGGAGGAA -ACGGAAGGTTTCCAAGTGCAGGTA -ACGGAAGGTTTCCAAGTGGACTCT -ACGGAAGGTTTCCAAGTGAGTCCT -ACGGAAGGTTTCCAAGTGTAAGCC -ACGGAAGGTTTCCAAGTGATAGCC -ACGGAAGGTTTCCAAGTGTAACCG -ACGGAAGGTTTCCAAGTGATGCCA -ACGGAAGGTTTCGAAGAGGGAAAC -ACGGAAGGTTTCGAAGAGAACACC -ACGGAAGGTTTCGAAGAGATCGAG -ACGGAAGGTTTCGAAGAGCTCCTT -ACGGAAGGTTTCGAAGAGCCTGTT -ACGGAAGGTTTCGAAGAGCGGTTT -ACGGAAGGTTTCGAAGAGGTGGTT -ACGGAAGGTTTCGAAGAGGCCTTT -ACGGAAGGTTTCGAAGAGGGTCTT -ACGGAAGGTTTCGAAGAGACGCTT -ACGGAAGGTTTCGAAGAGAGCGTT -ACGGAAGGTTTCGAAGAGTTCGTC -ACGGAAGGTTTCGAAGAGTCTCTC -ACGGAAGGTTTCGAAGAGTGGATC -ACGGAAGGTTTCGAAGAGCACTTC -ACGGAAGGTTTCGAAGAGGTACTC -ACGGAAGGTTTCGAAGAGGATGTC -ACGGAAGGTTTCGAAGAGACAGTC -ACGGAAGGTTTCGAAGAGTTGCTG -ACGGAAGGTTTCGAAGAGTCCATG -ACGGAAGGTTTCGAAGAGTGTGTG -ACGGAAGGTTTCGAAGAGCTAGTG -ACGGAAGGTTTCGAAGAGCATCTG -ACGGAAGGTTTCGAAGAGGAGTTG -ACGGAAGGTTTCGAAGAGAGACTG -ACGGAAGGTTTCGAAGAGTCGGTA -ACGGAAGGTTTCGAAGAGTGCCTA -ACGGAAGGTTTCGAAGAGCCACTA -ACGGAAGGTTTCGAAGAGGGAGTA -ACGGAAGGTTTCGAAGAGTCGTCT -ACGGAAGGTTTCGAAGAGTGCACT -ACGGAAGGTTTCGAAGAGCTGACT -ACGGAAGGTTTCGAAGAGCAACCT -ACGGAAGGTTTCGAAGAGGCTACT -ACGGAAGGTTTCGAAGAGGGATCT -ACGGAAGGTTTCGAAGAGAAGGCT -ACGGAAGGTTTCGAAGAGTCAACC -ACGGAAGGTTTCGAAGAGTGTTCC -ACGGAAGGTTTCGAAGAGATTCCC -ACGGAAGGTTTCGAAGAGTTCTCG -ACGGAAGGTTTCGAAGAGTAGACG -ACGGAAGGTTTCGAAGAGGTAACG -ACGGAAGGTTTCGAAGAGACTTCG -ACGGAAGGTTTCGAAGAGTACGCA -ACGGAAGGTTTCGAAGAGCTTGCA -ACGGAAGGTTTCGAAGAGCGAACA -ACGGAAGGTTTCGAAGAGCAGTCA -ACGGAAGGTTTCGAAGAGGATCCA -ACGGAAGGTTTCGAAGAGACGACA -ACGGAAGGTTTCGAAGAGAGCTCA -ACGGAAGGTTTCGAAGAGTCACGT -ACGGAAGGTTTCGAAGAGCGTAGT -ACGGAAGGTTTCGAAGAGGTCAGT -ACGGAAGGTTTCGAAGAGGAAGGT -ACGGAAGGTTTCGAAGAGAACCGT -ACGGAAGGTTTCGAAGAGTTGTGC -ACGGAAGGTTTCGAAGAGCTAAGC -ACGGAAGGTTTCGAAGAGACTAGC -ACGGAAGGTTTCGAAGAGAGATGC -ACGGAAGGTTTCGAAGAGTGAAGG -ACGGAAGGTTTCGAAGAGCAATGG -ACGGAAGGTTTCGAAGAGATGAGG -ACGGAAGGTTTCGAAGAGAATGGG -ACGGAAGGTTTCGAAGAGTCCTGA -ACGGAAGGTTTCGAAGAGTAGCGA -ACGGAAGGTTTCGAAGAGCACAGA -ACGGAAGGTTTCGAAGAGGCAAGA -ACGGAAGGTTTCGAAGAGGGTTGA -ACGGAAGGTTTCGAAGAGTCCGAT -ACGGAAGGTTTCGAAGAGTGGCAT -ACGGAAGGTTTCGAAGAGCGAGAT -ACGGAAGGTTTCGAAGAGTACCAC -ACGGAAGGTTTCGAAGAGCAGAAC -ACGGAAGGTTTCGAAGAGGTCTAC -ACGGAAGGTTTCGAAGAGACGTAC -ACGGAAGGTTTCGAAGAGAGTGAC -ACGGAAGGTTTCGAAGAGCTGTAG -ACGGAAGGTTTCGAAGAGCCTAAG -ACGGAAGGTTTCGAAGAGGTTCAG -ACGGAAGGTTTCGAAGAGGCATAG -ACGGAAGGTTTCGAAGAGGACAAG -ACGGAAGGTTTCGAAGAGAAGCAG -ACGGAAGGTTTCGAAGAGCGTCAA -ACGGAAGGTTTCGAAGAGGCTGAA -ACGGAAGGTTTCGAAGAGAGTACG -ACGGAAGGTTTCGAAGAGATCCGA -ACGGAAGGTTTCGAAGAGATGGGA -ACGGAAGGTTTCGAAGAGGTGCAA -ACGGAAGGTTTCGAAGAGGAGGAA -ACGGAAGGTTTCGAAGAGCAGGTA -ACGGAAGGTTTCGAAGAGGACTCT -ACGGAAGGTTTCGAAGAGAGTCCT -ACGGAAGGTTTCGAAGAGTAAGCC -ACGGAAGGTTTCGAAGAGATAGCC -ACGGAAGGTTTCGAAGAGTAACCG -ACGGAAGGTTTCGAAGAGATGCCA -ACGGAAGGTTTCGTACAGGGAAAC -ACGGAAGGTTTCGTACAGAACACC -ACGGAAGGTTTCGTACAGATCGAG -ACGGAAGGTTTCGTACAGCTCCTT -ACGGAAGGTTTCGTACAGCCTGTT -ACGGAAGGTTTCGTACAGCGGTTT -ACGGAAGGTTTCGTACAGGTGGTT -ACGGAAGGTTTCGTACAGGCCTTT -ACGGAAGGTTTCGTACAGGGTCTT -ACGGAAGGTTTCGTACAGACGCTT -ACGGAAGGTTTCGTACAGAGCGTT -ACGGAAGGTTTCGTACAGTTCGTC -ACGGAAGGTTTCGTACAGTCTCTC -ACGGAAGGTTTCGTACAGTGGATC -ACGGAAGGTTTCGTACAGCACTTC -ACGGAAGGTTTCGTACAGGTACTC -ACGGAAGGTTTCGTACAGGATGTC -ACGGAAGGTTTCGTACAGACAGTC -ACGGAAGGTTTCGTACAGTTGCTG -ACGGAAGGTTTCGTACAGTCCATG -ACGGAAGGTTTCGTACAGTGTGTG -ACGGAAGGTTTCGTACAGCTAGTG -ACGGAAGGTTTCGTACAGCATCTG -ACGGAAGGTTTCGTACAGGAGTTG -ACGGAAGGTTTCGTACAGAGACTG -ACGGAAGGTTTCGTACAGTCGGTA -ACGGAAGGTTTCGTACAGTGCCTA -ACGGAAGGTTTCGTACAGCCACTA -ACGGAAGGTTTCGTACAGGGAGTA -ACGGAAGGTTTCGTACAGTCGTCT -ACGGAAGGTTTCGTACAGTGCACT -ACGGAAGGTTTCGTACAGCTGACT -ACGGAAGGTTTCGTACAGCAACCT -ACGGAAGGTTTCGTACAGGCTACT -ACGGAAGGTTTCGTACAGGGATCT -ACGGAAGGTTTCGTACAGAAGGCT -ACGGAAGGTTTCGTACAGTCAACC -ACGGAAGGTTTCGTACAGTGTTCC -ACGGAAGGTTTCGTACAGATTCCC -ACGGAAGGTTTCGTACAGTTCTCG -ACGGAAGGTTTCGTACAGTAGACG -ACGGAAGGTTTCGTACAGGTAACG -ACGGAAGGTTTCGTACAGACTTCG -ACGGAAGGTTTCGTACAGTACGCA -ACGGAAGGTTTCGTACAGCTTGCA -ACGGAAGGTTTCGTACAGCGAACA -ACGGAAGGTTTCGTACAGCAGTCA -ACGGAAGGTTTCGTACAGGATCCA -ACGGAAGGTTTCGTACAGACGACA -ACGGAAGGTTTCGTACAGAGCTCA -ACGGAAGGTTTCGTACAGTCACGT -ACGGAAGGTTTCGTACAGCGTAGT -ACGGAAGGTTTCGTACAGGTCAGT -ACGGAAGGTTTCGTACAGGAAGGT -ACGGAAGGTTTCGTACAGAACCGT -ACGGAAGGTTTCGTACAGTTGTGC -ACGGAAGGTTTCGTACAGCTAAGC -ACGGAAGGTTTCGTACAGACTAGC -ACGGAAGGTTTCGTACAGAGATGC -ACGGAAGGTTTCGTACAGTGAAGG -ACGGAAGGTTTCGTACAGCAATGG -ACGGAAGGTTTCGTACAGATGAGG -ACGGAAGGTTTCGTACAGAATGGG -ACGGAAGGTTTCGTACAGTCCTGA -ACGGAAGGTTTCGTACAGTAGCGA -ACGGAAGGTTTCGTACAGCACAGA -ACGGAAGGTTTCGTACAGGCAAGA -ACGGAAGGTTTCGTACAGGGTTGA -ACGGAAGGTTTCGTACAGTCCGAT -ACGGAAGGTTTCGTACAGTGGCAT -ACGGAAGGTTTCGTACAGCGAGAT -ACGGAAGGTTTCGTACAGTACCAC -ACGGAAGGTTTCGTACAGCAGAAC -ACGGAAGGTTTCGTACAGGTCTAC -ACGGAAGGTTTCGTACAGACGTAC -ACGGAAGGTTTCGTACAGAGTGAC -ACGGAAGGTTTCGTACAGCTGTAG -ACGGAAGGTTTCGTACAGCCTAAG -ACGGAAGGTTTCGTACAGGTTCAG -ACGGAAGGTTTCGTACAGGCATAG -ACGGAAGGTTTCGTACAGGACAAG -ACGGAAGGTTTCGTACAGAAGCAG -ACGGAAGGTTTCGTACAGCGTCAA -ACGGAAGGTTTCGTACAGGCTGAA -ACGGAAGGTTTCGTACAGAGTACG -ACGGAAGGTTTCGTACAGATCCGA -ACGGAAGGTTTCGTACAGATGGGA -ACGGAAGGTTTCGTACAGGTGCAA -ACGGAAGGTTTCGTACAGGAGGAA -ACGGAAGGTTTCGTACAGCAGGTA -ACGGAAGGTTTCGTACAGGACTCT -ACGGAAGGTTTCGTACAGAGTCCT -ACGGAAGGTTTCGTACAGTAAGCC -ACGGAAGGTTTCGTACAGATAGCC -ACGGAAGGTTTCGTACAGTAACCG -ACGGAAGGTTTCGTACAGATGCCA -ACGGAAGGTTTCTCTGACGGAAAC -ACGGAAGGTTTCTCTGACAACACC -ACGGAAGGTTTCTCTGACATCGAG -ACGGAAGGTTTCTCTGACCTCCTT -ACGGAAGGTTTCTCTGACCCTGTT -ACGGAAGGTTTCTCTGACCGGTTT -ACGGAAGGTTTCTCTGACGTGGTT -ACGGAAGGTTTCTCTGACGCCTTT -ACGGAAGGTTTCTCTGACGGTCTT -ACGGAAGGTTTCTCTGACACGCTT -ACGGAAGGTTTCTCTGACAGCGTT -ACGGAAGGTTTCTCTGACTTCGTC -ACGGAAGGTTTCTCTGACTCTCTC -ACGGAAGGTTTCTCTGACTGGATC -ACGGAAGGTTTCTCTGACCACTTC -ACGGAAGGTTTCTCTGACGTACTC -ACGGAAGGTTTCTCTGACGATGTC -ACGGAAGGTTTCTCTGACACAGTC -ACGGAAGGTTTCTCTGACTTGCTG -ACGGAAGGTTTCTCTGACTCCATG -ACGGAAGGTTTCTCTGACTGTGTG -ACGGAAGGTTTCTCTGACCTAGTG -ACGGAAGGTTTCTCTGACCATCTG -ACGGAAGGTTTCTCTGACGAGTTG -ACGGAAGGTTTCTCTGACAGACTG -ACGGAAGGTTTCTCTGACTCGGTA -ACGGAAGGTTTCTCTGACTGCCTA -ACGGAAGGTTTCTCTGACCCACTA -ACGGAAGGTTTCTCTGACGGAGTA -ACGGAAGGTTTCTCTGACTCGTCT -ACGGAAGGTTTCTCTGACTGCACT -ACGGAAGGTTTCTCTGACCTGACT -ACGGAAGGTTTCTCTGACCAACCT -ACGGAAGGTTTCTCTGACGCTACT -ACGGAAGGTTTCTCTGACGGATCT -ACGGAAGGTTTCTCTGACAAGGCT -ACGGAAGGTTTCTCTGACTCAACC -ACGGAAGGTTTCTCTGACTGTTCC -ACGGAAGGTTTCTCTGACATTCCC -ACGGAAGGTTTCTCTGACTTCTCG -ACGGAAGGTTTCTCTGACTAGACG -ACGGAAGGTTTCTCTGACGTAACG -ACGGAAGGTTTCTCTGACACTTCG -ACGGAAGGTTTCTCTGACTACGCA -ACGGAAGGTTTCTCTGACCTTGCA -ACGGAAGGTTTCTCTGACCGAACA -ACGGAAGGTTTCTCTGACCAGTCA -ACGGAAGGTTTCTCTGACGATCCA -ACGGAAGGTTTCTCTGACACGACA -ACGGAAGGTTTCTCTGACAGCTCA -ACGGAAGGTTTCTCTGACTCACGT -ACGGAAGGTTTCTCTGACCGTAGT -ACGGAAGGTTTCTCTGACGTCAGT -ACGGAAGGTTTCTCTGACGAAGGT -ACGGAAGGTTTCTCTGACAACCGT -ACGGAAGGTTTCTCTGACTTGTGC -ACGGAAGGTTTCTCTGACCTAAGC -ACGGAAGGTTTCTCTGACACTAGC -ACGGAAGGTTTCTCTGACAGATGC -ACGGAAGGTTTCTCTGACTGAAGG -ACGGAAGGTTTCTCTGACCAATGG -ACGGAAGGTTTCTCTGACATGAGG -ACGGAAGGTTTCTCTGACAATGGG -ACGGAAGGTTTCTCTGACTCCTGA -ACGGAAGGTTTCTCTGACTAGCGA -ACGGAAGGTTTCTCTGACCACAGA -ACGGAAGGTTTCTCTGACGCAAGA -ACGGAAGGTTTCTCTGACGGTTGA -ACGGAAGGTTTCTCTGACTCCGAT -ACGGAAGGTTTCTCTGACTGGCAT -ACGGAAGGTTTCTCTGACCGAGAT -ACGGAAGGTTTCTCTGACTACCAC -ACGGAAGGTTTCTCTGACCAGAAC -ACGGAAGGTTTCTCTGACGTCTAC -ACGGAAGGTTTCTCTGACACGTAC -ACGGAAGGTTTCTCTGACAGTGAC -ACGGAAGGTTTCTCTGACCTGTAG -ACGGAAGGTTTCTCTGACCCTAAG -ACGGAAGGTTTCTCTGACGTTCAG -ACGGAAGGTTTCTCTGACGCATAG -ACGGAAGGTTTCTCTGACGACAAG -ACGGAAGGTTTCTCTGACAAGCAG -ACGGAAGGTTTCTCTGACCGTCAA -ACGGAAGGTTTCTCTGACGCTGAA -ACGGAAGGTTTCTCTGACAGTACG -ACGGAAGGTTTCTCTGACATCCGA -ACGGAAGGTTTCTCTGACATGGGA -ACGGAAGGTTTCTCTGACGTGCAA -ACGGAAGGTTTCTCTGACGAGGAA -ACGGAAGGTTTCTCTGACCAGGTA -ACGGAAGGTTTCTCTGACGACTCT -ACGGAAGGTTTCTCTGACAGTCCT -ACGGAAGGTTTCTCTGACTAAGCC -ACGGAAGGTTTCTCTGACATAGCC -ACGGAAGGTTTCTCTGACTAACCG -ACGGAAGGTTTCTCTGACATGCCA -ACGGAAGGTTTCCCTAGTGGAAAC -ACGGAAGGTTTCCCTAGTAACACC -ACGGAAGGTTTCCCTAGTATCGAG -ACGGAAGGTTTCCCTAGTCTCCTT -ACGGAAGGTTTCCCTAGTCCTGTT -ACGGAAGGTTTCCCTAGTCGGTTT -ACGGAAGGTTTCCCTAGTGTGGTT -ACGGAAGGTTTCCCTAGTGCCTTT -ACGGAAGGTTTCCCTAGTGGTCTT -ACGGAAGGTTTCCCTAGTACGCTT -ACGGAAGGTTTCCCTAGTAGCGTT -ACGGAAGGTTTCCCTAGTTTCGTC -ACGGAAGGTTTCCCTAGTTCTCTC -ACGGAAGGTTTCCCTAGTTGGATC -ACGGAAGGTTTCCCTAGTCACTTC -ACGGAAGGTTTCCCTAGTGTACTC -ACGGAAGGTTTCCCTAGTGATGTC -ACGGAAGGTTTCCCTAGTACAGTC -ACGGAAGGTTTCCCTAGTTTGCTG -ACGGAAGGTTTCCCTAGTTCCATG -ACGGAAGGTTTCCCTAGTTGTGTG -ACGGAAGGTTTCCCTAGTCTAGTG -ACGGAAGGTTTCCCTAGTCATCTG -ACGGAAGGTTTCCCTAGTGAGTTG -ACGGAAGGTTTCCCTAGTAGACTG -ACGGAAGGTTTCCCTAGTTCGGTA -ACGGAAGGTTTCCCTAGTTGCCTA -ACGGAAGGTTTCCCTAGTCCACTA -ACGGAAGGTTTCCCTAGTGGAGTA -ACGGAAGGTTTCCCTAGTTCGTCT -ACGGAAGGTTTCCCTAGTTGCACT -ACGGAAGGTTTCCCTAGTCTGACT -ACGGAAGGTTTCCCTAGTCAACCT -ACGGAAGGTTTCCCTAGTGCTACT -ACGGAAGGTTTCCCTAGTGGATCT -ACGGAAGGTTTCCCTAGTAAGGCT -ACGGAAGGTTTCCCTAGTTCAACC -ACGGAAGGTTTCCCTAGTTGTTCC -ACGGAAGGTTTCCCTAGTATTCCC -ACGGAAGGTTTCCCTAGTTTCTCG -ACGGAAGGTTTCCCTAGTTAGACG -ACGGAAGGTTTCCCTAGTGTAACG -ACGGAAGGTTTCCCTAGTACTTCG -ACGGAAGGTTTCCCTAGTTACGCA -ACGGAAGGTTTCCCTAGTCTTGCA -ACGGAAGGTTTCCCTAGTCGAACA -ACGGAAGGTTTCCCTAGTCAGTCA -ACGGAAGGTTTCCCTAGTGATCCA -ACGGAAGGTTTCCCTAGTACGACA -ACGGAAGGTTTCCCTAGTAGCTCA -ACGGAAGGTTTCCCTAGTTCACGT -ACGGAAGGTTTCCCTAGTCGTAGT -ACGGAAGGTTTCCCTAGTGTCAGT -ACGGAAGGTTTCCCTAGTGAAGGT -ACGGAAGGTTTCCCTAGTAACCGT -ACGGAAGGTTTCCCTAGTTTGTGC -ACGGAAGGTTTCCCTAGTCTAAGC -ACGGAAGGTTTCCCTAGTACTAGC -ACGGAAGGTTTCCCTAGTAGATGC -ACGGAAGGTTTCCCTAGTTGAAGG -ACGGAAGGTTTCCCTAGTCAATGG -ACGGAAGGTTTCCCTAGTATGAGG -ACGGAAGGTTTCCCTAGTAATGGG -ACGGAAGGTTTCCCTAGTTCCTGA -ACGGAAGGTTTCCCTAGTTAGCGA -ACGGAAGGTTTCCCTAGTCACAGA -ACGGAAGGTTTCCCTAGTGCAAGA -ACGGAAGGTTTCCCTAGTGGTTGA -ACGGAAGGTTTCCCTAGTTCCGAT -ACGGAAGGTTTCCCTAGTTGGCAT -ACGGAAGGTTTCCCTAGTCGAGAT -ACGGAAGGTTTCCCTAGTTACCAC -ACGGAAGGTTTCCCTAGTCAGAAC -ACGGAAGGTTTCCCTAGTGTCTAC -ACGGAAGGTTTCCCTAGTACGTAC -ACGGAAGGTTTCCCTAGTAGTGAC -ACGGAAGGTTTCCCTAGTCTGTAG -ACGGAAGGTTTCCCTAGTCCTAAG -ACGGAAGGTTTCCCTAGTGTTCAG -ACGGAAGGTTTCCCTAGTGCATAG -ACGGAAGGTTTCCCTAGTGACAAG -ACGGAAGGTTTCCCTAGTAAGCAG -ACGGAAGGTTTCCCTAGTCGTCAA -ACGGAAGGTTTCCCTAGTGCTGAA -ACGGAAGGTTTCCCTAGTAGTACG -ACGGAAGGTTTCCCTAGTATCCGA -ACGGAAGGTTTCCCTAGTATGGGA -ACGGAAGGTTTCCCTAGTGTGCAA -ACGGAAGGTTTCCCTAGTGAGGAA -ACGGAAGGTTTCCCTAGTCAGGTA -ACGGAAGGTTTCCCTAGTGACTCT -ACGGAAGGTTTCCCTAGTAGTCCT -ACGGAAGGTTTCCCTAGTTAAGCC -ACGGAAGGTTTCCCTAGTATAGCC -ACGGAAGGTTTCCCTAGTTAACCG -ACGGAAGGTTTCCCTAGTATGCCA -ACGGAAGGTTTCGCCTAAGGAAAC -ACGGAAGGTTTCGCCTAAAACACC -ACGGAAGGTTTCGCCTAAATCGAG -ACGGAAGGTTTCGCCTAACTCCTT -ACGGAAGGTTTCGCCTAACCTGTT -ACGGAAGGTTTCGCCTAACGGTTT -ACGGAAGGTTTCGCCTAAGTGGTT -ACGGAAGGTTTCGCCTAAGCCTTT -ACGGAAGGTTTCGCCTAAGGTCTT -ACGGAAGGTTTCGCCTAAACGCTT -ACGGAAGGTTTCGCCTAAAGCGTT -ACGGAAGGTTTCGCCTAATTCGTC -ACGGAAGGTTTCGCCTAATCTCTC -ACGGAAGGTTTCGCCTAATGGATC -ACGGAAGGTTTCGCCTAACACTTC -ACGGAAGGTTTCGCCTAAGTACTC -ACGGAAGGTTTCGCCTAAGATGTC -ACGGAAGGTTTCGCCTAAACAGTC -ACGGAAGGTTTCGCCTAATTGCTG -ACGGAAGGTTTCGCCTAATCCATG -ACGGAAGGTTTCGCCTAATGTGTG -ACGGAAGGTTTCGCCTAACTAGTG -ACGGAAGGTTTCGCCTAACATCTG -ACGGAAGGTTTCGCCTAAGAGTTG -ACGGAAGGTTTCGCCTAAAGACTG -ACGGAAGGTTTCGCCTAATCGGTA -ACGGAAGGTTTCGCCTAATGCCTA -ACGGAAGGTTTCGCCTAACCACTA -ACGGAAGGTTTCGCCTAAGGAGTA -ACGGAAGGTTTCGCCTAATCGTCT -ACGGAAGGTTTCGCCTAATGCACT -ACGGAAGGTTTCGCCTAACTGACT -ACGGAAGGTTTCGCCTAACAACCT -ACGGAAGGTTTCGCCTAAGCTACT -ACGGAAGGTTTCGCCTAAGGATCT -ACGGAAGGTTTCGCCTAAAAGGCT -ACGGAAGGTTTCGCCTAATCAACC -ACGGAAGGTTTCGCCTAATGTTCC -ACGGAAGGTTTCGCCTAAATTCCC -ACGGAAGGTTTCGCCTAATTCTCG -ACGGAAGGTTTCGCCTAATAGACG -ACGGAAGGTTTCGCCTAAGTAACG -ACGGAAGGTTTCGCCTAAACTTCG -ACGGAAGGTTTCGCCTAATACGCA -ACGGAAGGTTTCGCCTAACTTGCA -ACGGAAGGTTTCGCCTAACGAACA -ACGGAAGGTTTCGCCTAACAGTCA -ACGGAAGGTTTCGCCTAAGATCCA -ACGGAAGGTTTCGCCTAAACGACA -ACGGAAGGTTTCGCCTAAAGCTCA -ACGGAAGGTTTCGCCTAATCACGT -ACGGAAGGTTTCGCCTAACGTAGT -ACGGAAGGTTTCGCCTAAGTCAGT -ACGGAAGGTTTCGCCTAAGAAGGT -ACGGAAGGTTTCGCCTAAAACCGT -ACGGAAGGTTTCGCCTAATTGTGC -ACGGAAGGTTTCGCCTAACTAAGC -ACGGAAGGTTTCGCCTAAACTAGC -ACGGAAGGTTTCGCCTAAAGATGC -ACGGAAGGTTTCGCCTAATGAAGG -ACGGAAGGTTTCGCCTAACAATGG -ACGGAAGGTTTCGCCTAAATGAGG -ACGGAAGGTTTCGCCTAAAATGGG -ACGGAAGGTTTCGCCTAATCCTGA -ACGGAAGGTTTCGCCTAATAGCGA -ACGGAAGGTTTCGCCTAACACAGA -ACGGAAGGTTTCGCCTAAGCAAGA -ACGGAAGGTTTCGCCTAAGGTTGA -ACGGAAGGTTTCGCCTAATCCGAT -ACGGAAGGTTTCGCCTAATGGCAT -ACGGAAGGTTTCGCCTAACGAGAT -ACGGAAGGTTTCGCCTAATACCAC -ACGGAAGGTTTCGCCTAACAGAAC -ACGGAAGGTTTCGCCTAAGTCTAC -ACGGAAGGTTTCGCCTAAACGTAC -ACGGAAGGTTTCGCCTAAAGTGAC -ACGGAAGGTTTCGCCTAACTGTAG -ACGGAAGGTTTCGCCTAACCTAAG -ACGGAAGGTTTCGCCTAAGTTCAG -ACGGAAGGTTTCGCCTAAGCATAG -ACGGAAGGTTTCGCCTAAGACAAG -ACGGAAGGTTTCGCCTAAAAGCAG -ACGGAAGGTTTCGCCTAACGTCAA -ACGGAAGGTTTCGCCTAAGCTGAA -ACGGAAGGTTTCGCCTAAAGTACG -ACGGAAGGTTTCGCCTAAATCCGA -ACGGAAGGTTTCGCCTAAATGGGA -ACGGAAGGTTTCGCCTAAGTGCAA -ACGGAAGGTTTCGCCTAAGAGGAA -ACGGAAGGTTTCGCCTAACAGGTA -ACGGAAGGTTTCGCCTAAGACTCT -ACGGAAGGTTTCGCCTAAAGTCCT -ACGGAAGGTTTCGCCTAATAAGCC -ACGGAAGGTTTCGCCTAAATAGCC -ACGGAAGGTTTCGCCTAATAACCG -ACGGAAGGTTTCGCCTAAATGCCA -ACGGAAGGTTTCGCCATAGGAAAC -ACGGAAGGTTTCGCCATAAACACC -ACGGAAGGTTTCGCCATAATCGAG -ACGGAAGGTTTCGCCATACTCCTT -ACGGAAGGTTTCGCCATACCTGTT -ACGGAAGGTTTCGCCATACGGTTT -ACGGAAGGTTTCGCCATAGTGGTT -ACGGAAGGTTTCGCCATAGCCTTT -ACGGAAGGTTTCGCCATAGGTCTT -ACGGAAGGTTTCGCCATAACGCTT -ACGGAAGGTTTCGCCATAAGCGTT -ACGGAAGGTTTCGCCATATTCGTC -ACGGAAGGTTTCGCCATATCTCTC -ACGGAAGGTTTCGCCATATGGATC -ACGGAAGGTTTCGCCATACACTTC -ACGGAAGGTTTCGCCATAGTACTC -ACGGAAGGTTTCGCCATAGATGTC -ACGGAAGGTTTCGCCATAACAGTC -ACGGAAGGTTTCGCCATATTGCTG -ACGGAAGGTTTCGCCATATCCATG -ACGGAAGGTTTCGCCATATGTGTG -ACGGAAGGTTTCGCCATACTAGTG -ACGGAAGGTTTCGCCATACATCTG -ACGGAAGGTTTCGCCATAGAGTTG -ACGGAAGGTTTCGCCATAAGACTG -ACGGAAGGTTTCGCCATATCGGTA -ACGGAAGGTTTCGCCATATGCCTA -ACGGAAGGTTTCGCCATACCACTA -ACGGAAGGTTTCGCCATAGGAGTA -ACGGAAGGTTTCGCCATATCGTCT -ACGGAAGGTTTCGCCATATGCACT -ACGGAAGGTTTCGCCATACTGACT -ACGGAAGGTTTCGCCATACAACCT -ACGGAAGGTTTCGCCATAGCTACT -ACGGAAGGTTTCGCCATAGGATCT -ACGGAAGGTTTCGCCATAAAGGCT -ACGGAAGGTTTCGCCATATCAACC -ACGGAAGGTTTCGCCATATGTTCC -ACGGAAGGTTTCGCCATAATTCCC -ACGGAAGGTTTCGCCATATTCTCG -ACGGAAGGTTTCGCCATATAGACG -ACGGAAGGTTTCGCCATAGTAACG -ACGGAAGGTTTCGCCATAACTTCG -ACGGAAGGTTTCGCCATATACGCA -ACGGAAGGTTTCGCCATACTTGCA -ACGGAAGGTTTCGCCATACGAACA -ACGGAAGGTTTCGCCATACAGTCA -ACGGAAGGTTTCGCCATAGATCCA -ACGGAAGGTTTCGCCATAACGACA -ACGGAAGGTTTCGCCATAAGCTCA -ACGGAAGGTTTCGCCATATCACGT -ACGGAAGGTTTCGCCATACGTAGT -ACGGAAGGTTTCGCCATAGTCAGT -ACGGAAGGTTTCGCCATAGAAGGT -ACGGAAGGTTTCGCCATAAACCGT -ACGGAAGGTTTCGCCATATTGTGC -ACGGAAGGTTTCGCCATACTAAGC -ACGGAAGGTTTCGCCATAACTAGC -ACGGAAGGTTTCGCCATAAGATGC -ACGGAAGGTTTCGCCATATGAAGG -ACGGAAGGTTTCGCCATACAATGG -ACGGAAGGTTTCGCCATAATGAGG -ACGGAAGGTTTCGCCATAAATGGG -ACGGAAGGTTTCGCCATATCCTGA -ACGGAAGGTTTCGCCATATAGCGA -ACGGAAGGTTTCGCCATACACAGA -ACGGAAGGTTTCGCCATAGCAAGA -ACGGAAGGTTTCGCCATAGGTTGA -ACGGAAGGTTTCGCCATATCCGAT -ACGGAAGGTTTCGCCATATGGCAT -ACGGAAGGTTTCGCCATACGAGAT -ACGGAAGGTTTCGCCATATACCAC -ACGGAAGGTTTCGCCATACAGAAC -ACGGAAGGTTTCGCCATAGTCTAC -ACGGAAGGTTTCGCCATAACGTAC -ACGGAAGGTTTCGCCATAAGTGAC -ACGGAAGGTTTCGCCATACTGTAG -ACGGAAGGTTTCGCCATACCTAAG -ACGGAAGGTTTCGCCATAGTTCAG -ACGGAAGGTTTCGCCATAGCATAG -ACGGAAGGTTTCGCCATAGACAAG -ACGGAAGGTTTCGCCATAAAGCAG -ACGGAAGGTTTCGCCATACGTCAA -ACGGAAGGTTTCGCCATAGCTGAA -ACGGAAGGTTTCGCCATAAGTACG -ACGGAAGGTTTCGCCATAATCCGA -ACGGAAGGTTTCGCCATAATGGGA -ACGGAAGGTTTCGCCATAGTGCAA -ACGGAAGGTTTCGCCATAGAGGAA -ACGGAAGGTTTCGCCATACAGGTA -ACGGAAGGTTTCGCCATAGACTCT -ACGGAAGGTTTCGCCATAAGTCCT -ACGGAAGGTTTCGCCATATAAGCC -ACGGAAGGTTTCGCCATAATAGCC -ACGGAAGGTTTCGCCATATAACCG -ACGGAAGGTTTCGCCATAATGCCA -ACGGAAGGTTTCCCGTAAGGAAAC -ACGGAAGGTTTCCCGTAAAACACC -ACGGAAGGTTTCCCGTAAATCGAG -ACGGAAGGTTTCCCGTAACTCCTT -ACGGAAGGTTTCCCGTAACCTGTT -ACGGAAGGTTTCCCGTAACGGTTT -ACGGAAGGTTTCCCGTAAGTGGTT -ACGGAAGGTTTCCCGTAAGCCTTT -ACGGAAGGTTTCCCGTAAGGTCTT -ACGGAAGGTTTCCCGTAAACGCTT -ACGGAAGGTTTCCCGTAAAGCGTT -ACGGAAGGTTTCCCGTAATTCGTC -ACGGAAGGTTTCCCGTAATCTCTC -ACGGAAGGTTTCCCGTAATGGATC -ACGGAAGGTTTCCCGTAACACTTC -ACGGAAGGTTTCCCGTAAGTACTC -ACGGAAGGTTTCCCGTAAGATGTC -ACGGAAGGTTTCCCGTAAACAGTC -ACGGAAGGTTTCCCGTAATTGCTG -ACGGAAGGTTTCCCGTAATCCATG -ACGGAAGGTTTCCCGTAATGTGTG -ACGGAAGGTTTCCCGTAACTAGTG -ACGGAAGGTTTCCCGTAACATCTG -ACGGAAGGTTTCCCGTAAGAGTTG -ACGGAAGGTTTCCCGTAAAGACTG -ACGGAAGGTTTCCCGTAATCGGTA -ACGGAAGGTTTCCCGTAATGCCTA -ACGGAAGGTTTCCCGTAACCACTA -ACGGAAGGTTTCCCGTAAGGAGTA -ACGGAAGGTTTCCCGTAATCGTCT -ACGGAAGGTTTCCCGTAATGCACT -ACGGAAGGTTTCCCGTAACTGACT -ACGGAAGGTTTCCCGTAACAACCT -ACGGAAGGTTTCCCGTAAGCTACT -ACGGAAGGTTTCCCGTAAGGATCT -ACGGAAGGTTTCCCGTAAAAGGCT -ACGGAAGGTTTCCCGTAATCAACC -ACGGAAGGTTTCCCGTAATGTTCC -ACGGAAGGTTTCCCGTAAATTCCC -ACGGAAGGTTTCCCGTAATTCTCG -ACGGAAGGTTTCCCGTAATAGACG -ACGGAAGGTTTCCCGTAAGTAACG -ACGGAAGGTTTCCCGTAAACTTCG -ACGGAAGGTTTCCCGTAATACGCA -ACGGAAGGTTTCCCGTAACTTGCA -ACGGAAGGTTTCCCGTAACGAACA -ACGGAAGGTTTCCCGTAACAGTCA -ACGGAAGGTTTCCCGTAAGATCCA -ACGGAAGGTTTCCCGTAAACGACA -ACGGAAGGTTTCCCGTAAAGCTCA -ACGGAAGGTTTCCCGTAATCACGT -ACGGAAGGTTTCCCGTAACGTAGT -ACGGAAGGTTTCCCGTAAGTCAGT -ACGGAAGGTTTCCCGTAAGAAGGT -ACGGAAGGTTTCCCGTAAAACCGT -ACGGAAGGTTTCCCGTAATTGTGC -ACGGAAGGTTTCCCGTAACTAAGC -ACGGAAGGTTTCCCGTAAACTAGC -ACGGAAGGTTTCCCGTAAAGATGC -ACGGAAGGTTTCCCGTAATGAAGG -ACGGAAGGTTTCCCGTAACAATGG -ACGGAAGGTTTCCCGTAAATGAGG -ACGGAAGGTTTCCCGTAAAATGGG -ACGGAAGGTTTCCCGTAATCCTGA -ACGGAAGGTTTCCCGTAATAGCGA -ACGGAAGGTTTCCCGTAACACAGA -ACGGAAGGTTTCCCGTAAGCAAGA -ACGGAAGGTTTCCCGTAAGGTTGA -ACGGAAGGTTTCCCGTAATCCGAT -ACGGAAGGTTTCCCGTAATGGCAT -ACGGAAGGTTTCCCGTAACGAGAT -ACGGAAGGTTTCCCGTAATACCAC -ACGGAAGGTTTCCCGTAACAGAAC -ACGGAAGGTTTCCCGTAAGTCTAC -ACGGAAGGTTTCCCGTAAACGTAC -ACGGAAGGTTTCCCGTAAAGTGAC -ACGGAAGGTTTCCCGTAACTGTAG -ACGGAAGGTTTCCCGTAACCTAAG -ACGGAAGGTTTCCCGTAAGTTCAG -ACGGAAGGTTTCCCGTAAGCATAG -ACGGAAGGTTTCCCGTAAGACAAG -ACGGAAGGTTTCCCGTAAAAGCAG -ACGGAAGGTTTCCCGTAACGTCAA -ACGGAAGGTTTCCCGTAAGCTGAA -ACGGAAGGTTTCCCGTAAAGTACG -ACGGAAGGTTTCCCGTAAATCCGA -ACGGAAGGTTTCCCGTAAATGGGA -ACGGAAGGTTTCCCGTAAGTGCAA -ACGGAAGGTTTCCCGTAAGAGGAA -ACGGAAGGTTTCCCGTAACAGGTA -ACGGAAGGTTTCCCGTAAGACTCT -ACGGAAGGTTTCCCGTAAAGTCCT -ACGGAAGGTTTCCCGTAATAAGCC -ACGGAAGGTTTCCCGTAAATAGCC -ACGGAAGGTTTCCCGTAATAACCG -ACGGAAGGTTTCCCGTAAATGCCA -ACGGAAGGTTTCCCAATGGGAAAC -ACGGAAGGTTTCCCAATGAACACC -ACGGAAGGTTTCCCAATGATCGAG -ACGGAAGGTTTCCCAATGCTCCTT -ACGGAAGGTTTCCCAATGCCTGTT -ACGGAAGGTTTCCCAATGCGGTTT -ACGGAAGGTTTCCCAATGGTGGTT -ACGGAAGGTTTCCCAATGGCCTTT -ACGGAAGGTTTCCCAATGGGTCTT -ACGGAAGGTTTCCCAATGACGCTT -ACGGAAGGTTTCCCAATGAGCGTT -ACGGAAGGTTTCCCAATGTTCGTC -ACGGAAGGTTTCCCAATGTCTCTC -ACGGAAGGTTTCCCAATGTGGATC -ACGGAAGGTTTCCCAATGCACTTC -ACGGAAGGTTTCCCAATGGTACTC -ACGGAAGGTTTCCCAATGGATGTC -ACGGAAGGTTTCCCAATGACAGTC -ACGGAAGGTTTCCCAATGTTGCTG -ACGGAAGGTTTCCCAATGTCCATG -ACGGAAGGTTTCCCAATGTGTGTG -ACGGAAGGTTTCCCAATGCTAGTG -ACGGAAGGTTTCCCAATGCATCTG -ACGGAAGGTTTCCCAATGGAGTTG -ACGGAAGGTTTCCCAATGAGACTG -ACGGAAGGTTTCCCAATGTCGGTA -ACGGAAGGTTTCCCAATGTGCCTA -ACGGAAGGTTTCCCAATGCCACTA -ACGGAAGGTTTCCCAATGGGAGTA -ACGGAAGGTTTCCCAATGTCGTCT -ACGGAAGGTTTCCCAATGTGCACT -ACGGAAGGTTTCCCAATGCTGACT -ACGGAAGGTTTCCCAATGCAACCT -ACGGAAGGTTTCCCAATGGCTACT -ACGGAAGGTTTCCCAATGGGATCT -ACGGAAGGTTTCCCAATGAAGGCT -ACGGAAGGTTTCCCAATGTCAACC -ACGGAAGGTTTCCCAATGTGTTCC -ACGGAAGGTTTCCCAATGATTCCC -ACGGAAGGTTTCCCAATGTTCTCG -ACGGAAGGTTTCCCAATGTAGACG -ACGGAAGGTTTCCCAATGGTAACG -ACGGAAGGTTTCCCAATGACTTCG -ACGGAAGGTTTCCCAATGTACGCA -ACGGAAGGTTTCCCAATGCTTGCA -ACGGAAGGTTTCCCAATGCGAACA -ACGGAAGGTTTCCCAATGCAGTCA -ACGGAAGGTTTCCCAATGGATCCA -ACGGAAGGTTTCCCAATGACGACA -ACGGAAGGTTTCCCAATGAGCTCA -ACGGAAGGTTTCCCAATGTCACGT -ACGGAAGGTTTCCCAATGCGTAGT -ACGGAAGGTTTCCCAATGGTCAGT -ACGGAAGGTTTCCCAATGGAAGGT -ACGGAAGGTTTCCCAATGAACCGT -ACGGAAGGTTTCCCAATGTTGTGC -ACGGAAGGTTTCCCAATGCTAAGC -ACGGAAGGTTTCCCAATGACTAGC -ACGGAAGGTTTCCCAATGAGATGC -ACGGAAGGTTTCCCAATGTGAAGG -ACGGAAGGTTTCCCAATGCAATGG -ACGGAAGGTTTCCCAATGATGAGG -ACGGAAGGTTTCCCAATGAATGGG -ACGGAAGGTTTCCCAATGTCCTGA -ACGGAAGGTTTCCCAATGTAGCGA -ACGGAAGGTTTCCCAATGCACAGA -ACGGAAGGTTTCCCAATGGCAAGA -ACGGAAGGTTTCCCAATGGGTTGA -ACGGAAGGTTTCCCAATGTCCGAT -ACGGAAGGTTTCCCAATGTGGCAT -ACGGAAGGTTTCCCAATGCGAGAT -ACGGAAGGTTTCCCAATGTACCAC -ACGGAAGGTTTCCCAATGCAGAAC -ACGGAAGGTTTCCCAATGGTCTAC -ACGGAAGGTTTCCCAATGACGTAC -ACGGAAGGTTTCCCAATGAGTGAC -ACGGAAGGTTTCCCAATGCTGTAG -ACGGAAGGTTTCCCAATGCCTAAG -ACGGAAGGTTTCCCAATGGTTCAG -ACGGAAGGTTTCCCAATGGCATAG -ACGGAAGGTTTCCCAATGGACAAG -ACGGAAGGTTTCCCAATGAAGCAG -ACGGAAGGTTTCCCAATGCGTCAA -ACGGAAGGTTTCCCAATGGCTGAA -ACGGAAGGTTTCCCAATGAGTACG -ACGGAAGGTTTCCCAATGATCCGA -ACGGAAGGTTTCCCAATGATGGGA -ACGGAAGGTTTCCCAATGGTGCAA -ACGGAAGGTTTCCCAATGGAGGAA -ACGGAAGGTTTCCCAATGCAGGTA -ACGGAAGGTTTCCCAATGGACTCT -ACGGAAGGTTTCCCAATGAGTCCT -ACGGAAGGTTTCCCAATGTAAGCC -ACGGAAGGTTTCCCAATGATAGCC -ACGGAAGGTTTCCCAATGTAACCG -ACGGAAGGTTTCCCAATGATGCCA -ACGGAATGGTTGAACGGAGGAAAC -ACGGAATGGTTGAACGGAAACACC -ACGGAATGGTTGAACGGAATCGAG -ACGGAATGGTTGAACGGACTCCTT -ACGGAATGGTTGAACGGACCTGTT -ACGGAATGGTTGAACGGACGGTTT -ACGGAATGGTTGAACGGAGTGGTT -ACGGAATGGTTGAACGGAGCCTTT -ACGGAATGGTTGAACGGAGGTCTT -ACGGAATGGTTGAACGGAACGCTT -ACGGAATGGTTGAACGGAAGCGTT -ACGGAATGGTTGAACGGATTCGTC -ACGGAATGGTTGAACGGATCTCTC -ACGGAATGGTTGAACGGATGGATC -ACGGAATGGTTGAACGGACACTTC -ACGGAATGGTTGAACGGAGTACTC -ACGGAATGGTTGAACGGAGATGTC -ACGGAATGGTTGAACGGAACAGTC -ACGGAATGGTTGAACGGATTGCTG -ACGGAATGGTTGAACGGATCCATG -ACGGAATGGTTGAACGGATGTGTG -ACGGAATGGTTGAACGGACTAGTG -ACGGAATGGTTGAACGGACATCTG -ACGGAATGGTTGAACGGAGAGTTG -ACGGAATGGTTGAACGGAAGACTG -ACGGAATGGTTGAACGGATCGGTA -ACGGAATGGTTGAACGGATGCCTA -ACGGAATGGTTGAACGGACCACTA -ACGGAATGGTTGAACGGAGGAGTA -ACGGAATGGTTGAACGGATCGTCT -ACGGAATGGTTGAACGGATGCACT -ACGGAATGGTTGAACGGACTGACT -ACGGAATGGTTGAACGGACAACCT -ACGGAATGGTTGAACGGAGCTACT -ACGGAATGGTTGAACGGAGGATCT -ACGGAATGGTTGAACGGAAAGGCT -ACGGAATGGTTGAACGGATCAACC -ACGGAATGGTTGAACGGATGTTCC -ACGGAATGGTTGAACGGAATTCCC -ACGGAATGGTTGAACGGATTCTCG -ACGGAATGGTTGAACGGATAGACG -ACGGAATGGTTGAACGGAGTAACG -ACGGAATGGTTGAACGGAACTTCG -ACGGAATGGTTGAACGGATACGCA -ACGGAATGGTTGAACGGACTTGCA -ACGGAATGGTTGAACGGACGAACA -ACGGAATGGTTGAACGGACAGTCA -ACGGAATGGTTGAACGGAGATCCA -ACGGAATGGTTGAACGGAACGACA -ACGGAATGGTTGAACGGAAGCTCA -ACGGAATGGTTGAACGGATCACGT -ACGGAATGGTTGAACGGACGTAGT -ACGGAATGGTTGAACGGAGTCAGT -ACGGAATGGTTGAACGGAGAAGGT -ACGGAATGGTTGAACGGAAACCGT -ACGGAATGGTTGAACGGATTGTGC -ACGGAATGGTTGAACGGACTAAGC -ACGGAATGGTTGAACGGAACTAGC -ACGGAATGGTTGAACGGAAGATGC -ACGGAATGGTTGAACGGATGAAGG -ACGGAATGGTTGAACGGACAATGG -ACGGAATGGTTGAACGGAATGAGG -ACGGAATGGTTGAACGGAAATGGG -ACGGAATGGTTGAACGGATCCTGA -ACGGAATGGTTGAACGGATAGCGA -ACGGAATGGTTGAACGGACACAGA -ACGGAATGGTTGAACGGAGCAAGA -ACGGAATGGTTGAACGGAGGTTGA -ACGGAATGGTTGAACGGATCCGAT -ACGGAATGGTTGAACGGATGGCAT -ACGGAATGGTTGAACGGACGAGAT -ACGGAATGGTTGAACGGATACCAC -ACGGAATGGTTGAACGGACAGAAC -ACGGAATGGTTGAACGGAGTCTAC -ACGGAATGGTTGAACGGAACGTAC -ACGGAATGGTTGAACGGAAGTGAC -ACGGAATGGTTGAACGGACTGTAG -ACGGAATGGTTGAACGGACCTAAG -ACGGAATGGTTGAACGGAGTTCAG -ACGGAATGGTTGAACGGAGCATAG -ACGGAATGGTTGAACGGAGACAAG -ACGGAATGGTTGAACGGAAAGCAG -ACGGAATGGTTGAACGGACGTCAA -ACGGAATGGTTGAACGGAGCTGAA -ACGGAATGGTTGAACGGAAGTACG -ACGGAATGGTTGAACGGAATCCGA -ACGGAATGGTTGAACGGAATGGGA -ACGGAATGGTTGAACGGAGTGCAA -ACGGAATGGTTGAACGGAGAGGAA -ACGGAATGGTTGAACGGACAGGTA -ACGGAATGGTTGAACGGAGACTCT -ACGGAATGGTTGAACGGAAGTCCT -ACGGAATGGTTGAACGGATAAGCC -ACGGAATGGTTGAACGGAATAGCC -ACGGAATGGTTGAACGGATAACCG -ACGGAATGGTTGAACGGAATGCCA -ACGGAATGGTTGACCAACGGAAAC -ACGGAATGGTTGACCAACAACACC -ACGGAATGGTTGACCAACATCGAG -ACGGAATGGTTGACCAACCTCCTT -ACGGAATGGTTGACCAACCCTGTT -ACGGAATGGTTGACCAACCGGTTT -ACGGAATGGTTGACCAACGTGGTT -ACGGAATGGTTGACCAACGCCTTT -ACGGAATGGTTGACCAACGGTCTT -ACGGAATGGTTGACCAACACGCTT -ACGGAATGGTTGACCAACAGCGTT -ACGGAATGGTTGACCAACTTCGTC -ACGGAATGGTTGACCAACTCTCTC -ACGGAATGGTTGACCAACTGGATC -ACGGAATGGTTGACCAACCACTTC -ACGGAATGGTTGACCAACGTACTC -ACGGAATGGTTGACCAACGATGTC -ACGGAATGGTTGACCAACACAGTC -ACGGAATGGTTGACCAACTTGCTG -ACGGAATGGTTGACCAACTCCATG -ACGGAATGGTTGACCAACTGTGTG -ACGGAATGGTTGACCAACCTAGTG -ACGGAATGGTTGACCAACCATCTG -ACGGAATGGTTGACCAACGAGTTG -ACGGAATGGTTGACCAACAGACTG -ACGGAATGGTTGACCAACTCGGTA -ACGGAATGGTTGACCAACTGCCTA -ACGGAATGGTTGACCAACCCACTA -ACGGAATGGTTGACCAACGGAGTA -ACGGAATGGTTGACCAACTCGTCT -ACGGAATGGTTGACCAACTGCACT -ACGGAATGGTTGACCAACCTGACT -ACGGAATGGTTGACCAACCAACCT -ACGGAATGGTTGACCAACGCTACT -ACGGAATGGTTGACCAACGGATCT -ACGGAATGGTTGACCAACAAGGCT -ACGGAATGGTTGACCAACTCAACC -ACGGAATGGTTGACCAACTGTTCC -ACGGAATGGTTGACCAACATTCCC -ACGGAATGGTTGACCAACTTCTCG -ACGGAATGGTTGACCAACTAGACG -ACGGAATGGTTGACCAACGTAACG -ACGGAATGGTTGACCAACACTTCG -ACGGAATGGTTGACCAACTACGCA -ACGGAATGGTTGACCAACCTTGCA -ACGGAATGGTTGACCAACCGAACA -ACGGAATGGTTGACCAACCAGTCA -ACGGAATGGTTGACCAACGATCCA -ACGGAATGGTTGACCAACACGACA -ACGGAATGGTTGACCAACAGCTCA -ACGGAATGGTTGACCAACTCACGT -ACGGAATGGTTGACCAACCGTAGT -ACGGAATGGTTGACCAACGTCAGT -ACGGAATGGTTGACCAACGAAGGT -ACGGAATGGTTGACCAACAACCGT -ACGGAATGGTTGACCAACTTGTGC -ACGGAATGGTTGACCAACCTAAGC -ACGGAATGGTTGACCAACACTAGC -ACGGAATGGTTGACCAACAGATGC -ACGGAATGGTTGACCAACTGAAGG -ACGGAATGGTTGACCAACCAATGG -ACGGAATGGTTGACCAACATGAGG -ACGGAATGGTTGACCAACAATGGG -ACGGAATGGTTGACCAACTCCTGA -ACGGAATGGTTGACCAACTAGCGA -ACGGAATGGTTGACCAACCACAGA -ACGGAATGGTTGACCAACGCAAGA -ACGGAATGGTTGACCAACGGTTGA -ACGGAATGGTTGACCAACTCCGAT -ACGGAATGGTTGACCAACTGGCAT -ACGGAATGGTTGACCAACCGAGAT -ACGGAATGGTTGACCAACTACCAC -ACGGAATGGTTGACCAACCAGAAC -ACGGAATGGTTGACCAACGTCTAC -ACGGAATGGTTGACCAACACGTAC -ACGGAATGGTTGACCAACAGTGAC -ACGGAATGGTTGACCAACCTGTAG -ACGGAATGGTTGACCAACCCTAAG -ACGGAATGGTTGACCAACGTTCAG -ACGGAATGGTTGACCAACGCATAG -ACGGAATGGTTGACCAACGACAAG -ACGGAATGGTTGACCAACAAGCAG -ACGGAATGGTTGACCAACCGTCAA -ACGGAATGGTTGACCAACGCTGAA -ACGGAATGGTTGACCAACAGTACG -ACGGAATGGTTGACCAACATCCGA -ACGGAATGGTTGACCAACATGGGA -ACGGAATGGTTGACCAACGTGCAA -ACGGAATGGTTGACCAACGAGGAA -ACGGAATGGTTGACCAACCAGGTA -ACGGAATGGTTGACCAACGACTCT -ACGGAATGGTTGACCAACAGTCCT -ACGGAATGGTTGACCAACTAAGCC -ACGGAATGGTTGACCAACATAGCC -ACGGAATGGTTGACCAACTAACCG -ACGGAATGGTTGACCAACATGCCA -ACGGAATGGTTGGAGATCGGAAAC -ACGGAATGGTTGGAGATCAACACC -ACGGAATGGTTGGAGATCATCGAG -ACGGAATGGTTGGAGATCCTCCTT -ACGGAATGGTTGGAGATCCCTGTT -ACGGAATGGTTGGAGATCCGGTTT -ACGGAATGGTTGGAGATCGTGGTT -ACGGAATGGTTGGAGATCGCCTTT -ACGGAATGGTTGGAGATCGGTCTT -ACGGAATGGTTGGAGATCACGCTT -ACGGAATGGTTGGAGATCAGCGTT -ACGGAATGGTTGGAGATCTTCGTC -ACGGAATGGTTGGAGATCTCTCTC -ACGGAATGGTTGGAGATCTGGATC -ACGGAATGGTTGGAGATCCACTTC -ACGGAATGGTTGGAGATCGTACTC -ACGGAATGGTTGGAGATCGATGTC -ACGGAATGGTTGGAGATCACAGTC -ACGGAATGGTTGGAGATCTTGCTG -ACGGAATGGTTGGAGATCTCCATG -ACGGAATGGTTGGAGATCTGTGTG -ACGGAATGGTTGGAGATCCTAGTG -ACGGAATGGTTGGAGATCCATCTG -ACGGAATGGTTGGAGATCGAGTTG -ACGGAATGGTTGGAGATCAGACTG -ACGGAATGGTTGGAGATCTCGGTA -ACGGAATGGTTGGAGATCTGCCTA -ACGGAATGGTTGGAGATCCCACTA -ACGGAATGGTTGGAGATCGGAGTA -ACGGAATGGTTGGAGATCTCGTCT -ACGGAATGGTTGGAGATCTGCACT -ACGGAATGGTTGGAGATCCTGACT -ACGGAATGGTTGGAGATCCAACCT -ACGGAATGGTTGGAGATCGCTACT -ACGGAATGGTTGGAGATCGGATCT -ACGGAATGGTTGGAGATCAAGGCT -ACGGAATGGTTGGAGATCTCAACC -ACGGAATGGTTGGAGATCTGTTCC -ACGGAATGGTTGGAGATCATTCCC -ACGGAATGGTTGGAGATCTTCTCG -ACGGAATGGTTGGAGATCTAGACG -ACGGAATGGTTGGAGATCGTAACG -ACGGAATGGTTGGAGATCACTTCG -ACGGAATGGTTGGAGATCTACGCA -ACGGAATGGTTGGAGATCCTTGCA -ACGGAATGGTTGGAGATCCGAACA -ACGGAATGGTTGGAGATCCAGTCA -ACGGAATGGTTGGAGATCGATCCA -ACGGAATGGTTGGAGATCACGACA -ACGGAATGGTTGGAGATCAGCTCA -ACGGAATGGTTGGAGATCTCACGT -ACGGAATGGTTGGAGATCCGTAGT -ACGGAATGGTTGGAGATCGTCAGT -ACGGAATGGTTGGAGATCGAAGGT -ACGGAATGGTTGGAGATCAACCGT -ACGGAATGGTTGGAGATCTTGTGC -ACGGAATGGTTGGAGATCCTAAGC -ACGGAATGGTTGGAGATCACTAGC -ACGGAATGGTTGGAGATCAGATGC -ACGGAATGGTTGGAGATCTGAAGG -ACGGAATGGTTGGAGATCCAATGG -ACGGAATGGTTGGAGATCATGAGG -ACGGAATGGTTGGAGATCAATGGG -ACGGAATGGTTGGAGATCTCCTGA -ACGGAATGGTTGGAGATCTAGCGA -ACGGAATGGTTGGAGATCCACAGA -ACGGAATGGTTGGAGATCGCAAGA -ACGGAATGGTTGGAGATCGGTTGA -ACGGAATGGTTGGAGATCTCCGAT -ACGGAATGGTTGGAGATCTGGCAT -ACGGAATGGTTGGAGATCCGAGAT -ACGGAATGGTTGGAGATCTACCAC -ACGGAATGGTTGGAGATCCAGAAC -ACGGAATGGTTGGAGATCGTCTAC -ACGGAATGGTTGGAGATCACGTAC -ACGGAATGGTTGGAGATCAGTGAC -ACGGAATGGTTGGAGATCCTGTAG -ACGGAATGGTTGGAGATCCCTAAG -ACGGAATGGTTGGAGATCGTTCAG -ACGGAATGGTTGGAGATCGCATAG -ACGGAATGGTTGGAGATCGACAAG -ACGGAATGGTTGGAGATCAAGCAG -ACGGAATGGTTGGAGATCCGTCAA -ACGGAATGGTTGGAGATCGCTGAA -ACGGAATGGTTGGAGATCAGTACG -ACGGAATGGTTGGAGATCATCCGA -ACGGAATGGTTGGAGATCATGGGA -ACGGAATGGTTGGAGATCGTGCAA -ACGGAATGGTTGGAGATCGAGGAA -ACGGAATGGTTGGAGATCCAGGTA -ACGGAATGGTTGGAGATCGACTCT -ACGGAATGGTTGGAGATCAGTCCT -ACGGAATGGTTGGAGATCTAAGCC -ACGGAATGGTTGGAGATCATAGCC -ACGGAATGGTTGGAGATCTAACCG -ACGGAATGGTTGGAGATCATGCCA -ACGGAATGGTTGCTTCTCGGAAAC -ACGGAATGGTTGCTTCTCAACACC -ACGGAATGGTTGCTTCTCATCGAG -ACGGAATGGTTGCTTCTCCTCCTT -ACGGAATGGTTGCTTCTCCCTGTT -ACGGAATGGTTGCTTCTCCGGTTT -ACGGAATGGTTGCTTCTCGTGGTT -ACGGAATGGTTGCTTCTCGCCTTT -ACGGAATGGTTGCTTCTCGGTCTT -ACGGAATGGTTGCTTCTCACGCTT -ACGGAATGGTTGCTTCTCAGCGTT -ACGGAATGGTTGCTTCTCTTCGTC -ACGGAATGGTTGCTTCTCTCTCTC -ACGGAATGGTTGCTTCTCTGGATC -ACGGAATGGTTGCTTCTCCACTTC -ACGGAATGGTTGCTTCTCGTACTC -ACGGAATGGTTGCTTCTCGATGTC -ACGGAATGGTTGCTTCTCACAGTC -ACGGAATGGTTGCTTCTCTTGCTG -ACGGAATGGTTGCTTCTCTCCATG -ACGGAATGGTTGCTTCTCTGTGTG -ACGGAATGGTTGCTTCTCCTAGTG -ACGGAATGGTTGCTTCTCCATCTG -ACGGAATGGTTGCTTCTCGAGTTG -ACGGAATGGTTGCTTCTCAGACTG -ACGGAATGGTTGCTTCTCTCGGTA -ACGGAATGGTTGCTTCTCTGCCTA -ACGGAATGGTTGCTTCTCCCACTA -ACGGAATGGTTGCTTCTCGGAGTA -ACGGAATGGTTGCTTCTCTCGTCT -ACGGAATGGTTGCTTCTCTGCACT -ACGGAATGGTTGCTTCTCCTGACT -ACGGAATGGTTGCTTCTCCAACCT -ACGGAATGGTTGCTTCTCGCTACT -ACGGAATGGTTGCTTCTCGGATCT -ACGGAATGGTTGCTTCTCAAGGCT -ACGGAATGGTTGCTTCTCTCAACC -ACGGAATGGTTGCTTCTCTGTTCC -ACGGAATGGTTGCTTCTCATTCCC -ACGGAATGGTTGCTTCTCTTCTCG -ACGGAATGGTTGCTTCTCTAGACG -ACGGAATGGTTGCTTCTCGTAACG -ACGGAATGGTTGCTTCTCACTTCG -ACGGAATGGTTGCTTCTCTACGCA -ACGGAATGGTTGCTTCTCCTTGCA -ACGGAATGGTTGCTTCTCCGAACA -ACGGAATGGTTGCTTCTCCAGTCA -ACGGAATGGTTGCTTCTCGATCCA -ACGGAATGGTTGCTTCTCACGACA -ACGGAATGGTTGCTTCTCAGCTCA -ACGGAATGGTTGCTTCTCTCACGT -ACGGAATGGTTGCTTCTCCGTAGT -ACGGAATGGTTGCTTCTCGTCAGT -ACGGAATGGTTGCTTCTCGAAGGT -ACGGAATGGTTGCTTCTCAACCGT -ACGGAATGGTTGCTTCTCTTGTGC -ACGGAATGGTTGCTTCTCCTAAGC -ACGGAATGGTTGCTTCTCACTAGC -ACGGAATGGTTGCTTCTCAGATGC -ACGGAATGGTTGCTTCTCTGAAGG -ACGGAATGGTTGCTTCTCCAATGG -ACGGAATGGTTGCTTCTCATGAGG -ACGGAATGGTTGCTTCTCAATGGG -ACGGAATGGTTGCTTCTCTCCTGA -ACGGAATGGTTGCTTCTCTAGCGA -ACGGAATGGTTGCTTCTCCACAGA -ACGGAATGGTTGCTTCTCGCAAGA -ACGGAATGGTTGCTTCTCGGTTGA -ACGGAATGGTTGCTTCTCTCCGAT -ACGGAATGGTTGCTTCTCTGGCAT -ACGGAATGGTTGCTTCTCCGAGAT -ACGGAATGGTTGCTTCTCTACCAC -ACGGAATGGTTGCTTCTCCAGAAC -ACGGAATGGTTGCTTCTCGTCTAC -ACGGAATGGTTGCTTCTCACGTAC -ACGGAATGGTTGCTTCTCAGTGAC -ACGGAATGGTTGCTTCTCCTGTAG -ACGGAATGGTTGCTTCTCCCTAAG -ACGGAATGGTTGCTTCTCGTTCAG -ACGGAATGGTTGCTTCTCGCATAG -ACGGAATGGTTGCTTCTCGACAAG -ACGGAATGGTTGCTTCTCAAGCAG -ACGGAATGGTTGCTTCTCCGTCAA -ACGGAATGGTTGCTTCTCGCTGAA -ACGGAATGGTTGCTTCTCAGTACG -ACGGAATGGTTGCTTCTCATCCGA -ACGGAATGGTTGCTTCTCATGGGA -ACGGAATGGTTGCTTCTCGTGCAA -ACGGAATGGTTGCTTCTCGAGGAA -ACGGAATGGTTGCTTCTCCAGGTA -ACGGAATGGTTGCTTCTCGACTCT -ACGGAATGGTTGCTTCTCAGTCCT -ACGGAATGGTTGCTTCTCTAAGCC -ACGGAATGGTTGCTTCTCATAGCC -ACGGAATGGTTGCTTCTCTAACCG -ACGGAATGGTTGCTTCTCATGCCA -ACGGAATGGTTGGTTCCTGGAAAC -ACGGAATGGTTGGTTCCTAACACC -ACGGAATGGTTGGTTCCTATCGAG -ACGGAATGGTTGGTTCCTCTCCTT -ACGGAATGGTTGGTTCCTCCTGTT -ACGGAATGGTTGGTTCCTCGGTTT -ACGGAATGGTTGGTTCCTGTGGTT -ACGGAATGGTTGGTTCCTGCCTTT -ACGGAATGGTTGGTTCCTGGTCTT -ACGGAATGGTTGGTTCCTACGCTT -ACGGAATGGTTGGTTCCTAGCGTT -ACGGAATGGTTGGTTCCTTTCGTC -ACGGAATGGTTGGTTCCTTCTCTC -ACGGAATGGTTGGTTCCTTGGATC -ACGGAATGGTTGGTTCCTCACTTC -ACGGAATGGTTGGTTCCTGTACTC -ACGGAATGGTTGGTTCCTGATGTC -ACGGAATGGTTGGTTCCTACAGTC -ACGGAATGGTTGGTTCCTTTGCTG -ACGGAATGGTTGGTTCCTTCCATG -ACGGAATGGTTGGTTCCTTGTGTG -ACGGAATGGTTGGTTCCTCTAGTG -ACGGAATGGTTGGTTCCTCATCTG -ACGGAATGGTTGGTTCCTGAGTTG -ACGGAATGGTTGGTTCCTAGACTG -ACGGAATGGTTGGTTCCTTCGGTA -ACGGAATGGTTGGTTCCTTGCCTA -ACGGAATGGTTGGTTCCTCCACTA -ACGGAATGGTTGGTTCCTGGAGTA -ACGGAATGGTTGGTTCCTTCGTCT -ACGGAATGGTTGGTTCCTTGCACT -ACGGAATGGTTGGTTCCTCTGACT -ACGGAATGGTTGGTTCCTCAACCT -ACGGAATGGTTGGTTCCTGCTACT -ACGGAATGGTTGGTTCCTGGATCT -ACGGAATGGTTGGTTCCTAAGGCT -ACGGAATGGTTGGTTCCTTCAACC -ACGGAATGGTTGGTTCCTTGTTCC -ACGGAATGGTTGGTTCCTATTCCC -ACGGAATGGTTGGTTCCTTTCTCG -ACGGAATGGTTGGTTCCTTAGACG -ACGGAATGGTTGGTTCCTGTAACG -ACGGAATGGTTGGTTCCTACTTCG -ACGGAATGGTTGGTTCCTTACGCA -ACGGAATGGTTGGTTCCTCTTGCA -ACGGAATGGTTGGTTCCTCGAACA -ACGGAATGGTTGGTTCCTCAGTCA -ACGGAATGGTTGGTTCCTGATCCA -ACGGAATGGTTGGTTCCTACGACA -ACGGAATGGTTGGTTCCTAGCTCA -ACGGAATGGTTGGTTCCTTCACGT -ACGGAATGGTTGGTTCCTCGTAGT -ACGGAATGGTTGGTTCCTGTCAGT -ACGGAATGGTTGGTTCCTGAAGGT -ACGGAATGGTTGGTTCCTAACCGT -ACGGAATGGTTGGTTCCTTTGTGC -ACGGAATGGTTGGTTCCTCTAAGC -ACGGAATGGTTGGTTCCTACTAGC -ACGGAATGGTTGGTTCCTAGATGC -ACGGAATGGTTGGTTCCTTGAAGG -ACGGAATGGTTGGTTCCTCAATGG -ACGGAATGGTTGGTTCCTATGAGG -ACGGAATGGTTGGTTCCTAATGGG -ACGGAATGGTTGGTTCCTTCCTGA -ACGGAATGGTTGGTTCCTTAGCGA -ACGGAATGGTTGGTTCCTCACAGA -ACGGAATGGTTGGTTCCTGCAAGA -ACGGAATGGTTGGTTCCTGGTTGA -ACGGAATGGTTGGTTCCTTCCGAT -ACGGAATGGTTGGTTCCTTGGCAT -ACGGAATGGTTGGTTCCTCGAGAT -ACGGAATGGTTGGTTCCTTACCAC -ACGGAATGGTTGGTTCCTCAGAAC -ACGGAATGGTTGGTTCCTGTCTAC -ACGGAATGGTTGGTTCCTACGTAC -ACGGAATGGTTGGTTCCTAGTGAC -ACGGAATGGTTGGTTCCTCTGTAG -ACGGAATGGTTGGTTCCTCCTAAG -ACGGAATGGTTGGTTCCTGTTCAG -ACGGAATGGTTGGTTCCTGCATAG -ACGGAATGGTTGGTTCCTGACAAG -ACGGAATGGTTGGTTCCTAAGCAG -ACGGAATGGTTGGTTCCTCGTCAA -ACGGAATGGTTGGTTCCTGCTGAA -ACGGAATGGTTGGTTCCTAGTACG -ACGGAATGGTTGGTTCCTATCCGA -ACGGAATGGTTGGTTCCTATGGGA -ACGGAATGGTTGGTTCCTGTGCAA -ACGGAATGGTTGGTTCCTGAGGAA -ACGGAATGGTTGGTTCCTCAGGTA -ACGGAATGGTTGGTTCCTGACTCT -ACGGAATGGTTGGTTCCTAGTCCT -ACGGAATGGTTGGTTCCTTAAGCC -ACGGAATGGTTGGTTCCTATAGCC -ACGGAATGGTTGGTTCCTTAACCG -ACGGAATGGTTGGTTCCTATGCCA -ACGGAATGGTTGTTTCGGGGAAAC -ACGGAATGGTTGTTTCGGAACACC -ACGGAATGGTTGTTTCGGATCGAG -ACGGAATGGTTGTTTCGGCTCCTT -ACGGAATGGTTGTTTCGGCCTGTT -ACGGAATGGTTGTTTCGGCGGTTT -ACGGAATGGTTGTTTCGGGTGGTT -ACGGAATGGTTGTTTCGGGCCTTT -ACGGAATGGTTGTTTCGGGGTCTT -ACGGAATGGTTGTTTCGGACGCTT -ACGGAATGGTTGTTTCGGAGCGTT -ACGGAATGGTTGTTTCGGTTCGTC -ACGGAATGGTTGTTTCGGTCTCTC -ACGGAATGGTTGTTTCGGTGGATC -ACGGAATGGTTGTTTCGGCACTTC -ACGGAATGGTTGTTTCGGGTACTC -ACGGAATGGTTGTTTCGGGATGTC -ACGGAATGGTTGTTTCGGACAGTC -ACGGAATGGTTGTTTCGGTTGCTG -ACGGAATGGTTGTTTCGGTCCATG -ACGGAATGGTTGTTTCGGTGTGTG -ACGGAATGGTTGTTTCGGCTAGTG -ACGGAATGGTTGTTTCGGCATCTG -ACGGAATGGTTGTTTCGGGAGTTG -ACGGAATGGTTGTTTCGGAGACTG -ACGGAATGGTTGTTTCGGTCGGTA -ACGGAATGGTTGTTTCGGTGCCTA -ACGGAATGGTTGTTTCGGCCACTA -ACGGAATGGTTGTTTCGGGGAGTA -ACGGAATGGTTGTTTCGGTCGTCT -ACGGAATGGTTGTTTCGGTGCACT -ACGGAATGGTTGTTTCGGCTGACT -ACGGAATGGTTGTTTCGGCAACCT -ACGGAATGGTTGTTTCGGGCTACT -ACGGAATGGTTGTTTCGGGGATCT -ACGGAATGGTTGTTTCGGAAGGCT -ACGGAATGGTTGTTTCGGTCAACC -ACGGAATGGTTGTTTCGGTGTTCC -ACGGAATGGTTGTTTCGGATTCCC -ACGGAATGGTTGTTTCGGTTCTCG -ACGGAATGGTTGTTTCGGTAGACG -ACGGAATGGTTGTTTCGGGTAACG -ACGGAATGGTTGTTTCGGACTTCG -ACGGAATGGTTGTTTCGGTACGCA -ACGGAATGGTTGTTTCGGCTTGCA -ACGGAATGGTTGTTTCGGCGAACA -ACGGAATGGTTGTTTCGGCAGTCA -ACGGAATGGTTGTTTCGGGATCCA -ACGGAATGGTTGTTTCGGACGACA -ACGGAATGGTTGTTTCGGAGCTCA -ACGGAATGGTTGTTTCGGTCACGT -ACGGAATGGTTGTTTCGGCGTAGT -ACGGAATGGTTGTTTCGGGTCAGT -ACGGAATGGTTGTTTCGGGAAGGT -ACGGAATGGTTGTTTCGGAACCGT -ACGGAATGGTTGTTTCGGTTGTGC -ACGGAATGGTTGTTTCGGCTAAGC -ACGGAATGGTTGTTTCGGACTAGC -ACGGAATGGTTGTTTCGGAGATGC -ACGGAATGGTTGTTTCGGTGAAGG -ACGGAATGGTTGTTTCGGCAATGG -ACGGAATGGTTGTTTCGGATGAGG -ACGGAATGGTTGTTTCGGAATGGG -ACGGAATGGTTGTTTCGGTCCTGA -ACGGAATGGTTGTTTCGGTAGCGA -ACGGAATGGTTGTTTCGGCACAGA -ACGGAATGGTTGTTTCGGGCAAGA -ACGGAATGGTTGTTTCGGGGTTGA -ACGGAATGGTTGTTTCGGTCCGAT -ACGGAATGGTTGTTTCGGTGGCAT -ACGGAATGGTTGTTTCGGCGAGAT -ACGGAATGGTTGTTTCGGTACCAC -ACGGAATGGTTGTTTCGGCAGAAC -ACGGAATGGTTGTTTCGGGTCTAC -ACGGAATGGTTGTTTCGGACGTAC -ACGGAATGGTTGTTTCGGAGTGAC -ACGGAATGGTTGTTTCGGCTGTAG -ACGGAATGGTTGTTTCGGCCTAAG -ACGGAATGGTTGTTTCGGGTTCAG -ACGGAATGGTTGTTTCGGGCATAG -ACGGAATGGTTGTTTCGGGACAAG -ACGGAATGGTTGTTTCGGAAGCAG -ACGGAATGGTTGTTTCGGCGTCAA -ACGGAATGGTTGTTTCGGGCTGAA -ACGGAATGGTTGTTTCGGAGTACG -ACGGAATGGTTGTTTCGGATCCGA -ACGGAATGGTTGTTTCGGATGGGA -ACGGAATGGTTGTTTCGGGTGCAA -ACGGAATGGTTGTTTCGGGAGGAA -ACGGAATGGTTGTTTCGGCAGGTA -ACGGAATGGTTGTTTCGGGACTCT -ACGGAATGGTTGTTTCGGAGTCCT -ACGGAATGGTTGTTTCGGTAAGCC -ACGGAATGGTTGTTTCGGATAGCC -ACGGAATGGTTGTTTCGGTAACCG -ACGGAATGGTTGTTTCGGATGCCA -ACGGAATGGTTGGTTGTGGGAAAC -ACGGAATGGTTGGTTGTGAACACC -ACGGAATGGTTGGTTGTGATCGAG -ACGGAATGGTTGGTTGTGCTCCTT -ACGGAATGGTTGGTTGTGCCTGTT -ACGGAATGGTTGGTTGTGCGGTTT -ACGGAATGGTTGGTTGTGGTGGTT -ACGGAATGGTTGGTTGTGGCCTTT -ACGGAATGGTTGGTTGTGGGTCTT -ACGGAATGGTTGGTTGTGACGCTT -ACGGAATGGTTGGTTGTGAGCGTT -ACGGAATGGTTGGTTGTGTTCGTC -ACGGAATGGTTGGTTGTGTCTCTC -ACGGAATGGTTGGTTGTGTGGATC -ACGGAATGGTTGGTTGTGCACTTC -ACGGAATGGTTGGTTGTGGTACTC -ACGGAATGGTTGGTTGTGGATGTC -ACGGAATGGTTGGTTGTGACAGTC -ACGGAATGGTTGGTTGTGTTGCTG -ACGGAATGGTTGGTTGTGTCCATG -ACGGAATGGTTGGTTGTGTGTGTG -ACGGAATGGTTGGTTGTGCTAGTG -ACGGAATGGTTGGTTGTGCATCTG -ACGGAATGGTTGGTTGTGGAGTTG -ACGGAATGGTTGGTTGTGAGACTG -ACGGAATGGTTGGTTGTGTCGGTA -ACGGAATGGTTGGTTGTGTGCCTA -ACGGAATGGTTGGTTGTGCCACTA -ACGGAATGGTTGGTTGTGGGAGTA -ACGGAATGGTTGGTTGTGTCGTCT -ACGGAATGGTTGGTTGTGTGCACT -ACGGAATGGTTGGTTGTGCTGACT -ACGGAATGGTTGGTTGTGCAACCT -ACGGAATGGTTGGTTGTGGCTACT -ACGGAATGGTTGGTTGTGGGATCT -ACGGAATGGTTGGTTGTGAAGGCT -ACGGAATGGTTGGTTGTGTCAACC -ACGGAATGGTTGGTTGTGTGTTCC -ACGGAATGGTTGGTTGTGATTCCC -ACGGAATGGTTGGTTGTGTTCTCG -ACGGAATGGTTGGTTGTGTAGACG -ACGGAATGGTTGGTTGTGGTAACG -ACGGAATGGTTGGTTGTGACTTCG -ACGGAATGGTTGGTTGTGTACGCA -ACGGAATGGTTGGTTGTGCTTGCA -ACGGAATGGTTGGTTGTGCGAACA -ACGGAATGGTTGGTTGTGCAGTCA -ACGGAATGGTTGGTTGTGGATCCA -ACGGAATGGTTGGTTGTGACGACA -ACGGAATGGTTGGTTGTGAGCTCA -ACGGAATGGTTGGTTGTGTCACGT -ACGGAATGGTTGGTTGTGCGTAGT -ACGGAATGGTTGGTTGTGGTCAGT -ACGGAATGGTTGGTTGTGGAAGGT -ACGGAATGGTTGGTTGTGAACCGT -ACGGAATGGTTGGTTGTGTTGTGC -ACGGAATGGTTGGTTGTGCTAAGC -ACGGAATGGTTGGTTGTGACTAGC -ACGGAATGGTTGGTTGTGAGATGC -ACGGAATGGTTGGTTGTGTGAAGG -ACGGAATGGTTGGTTGTGCAATGG -ACGGAATGGTTGGTTGTGATGAGG -ACGGAATGGTTGGTTGTGAATGGG -ACGGAATGGTTGGTTGTGTCCTGA -ACGGAATGGTTGGTTGTGTAGCGA -ACGGAATGGTTGGTTGTGCACAGA -ACGGAATGGTTGGTTGTGGCAAGA -ACGGAATGGTTGGTTGTGGGTTGA -ACGGAATGGTTGGTTGTGTCCGAT -ACGGAATGGTTGGTTGTGTGGCAT -ACGGAATGGTTGGTTGTGCGAGAT -ACGGAATGGTTGGTTGTGTACCAC -ACGGAATGGTTGGTTGTGCAGAAC -ACGGAATGGTTGGTTGTGGTCTAC -ACGGAATGGTTGGTTGTGACGTAC -ACGGAATGGTTGGTTGTGAGTGAC -ACGGAATGGTTGGTTGTGCTGTAG -ACGGAATGGTTGGTTGTGCCTAAG -ACGGAATGGTTGGTTGTGGTTCAG -ACGGAATGGTTGGTTGTGGCATAG -ACGGAATGGTTGGTTGTGGACAAG -ACGGAATGGTTGGTTGTGAAGCAG -ACGGAATGGTTGGTTGTGCGTCAA -ACGGAATGGTTGGTTGTGGCTGAA -ACGGAATGGTTGGTTGTGAGTACG -ACGGAATGGTTGGTTGTGATCCGA -ACGGAATGGTTGGTTGTGATGGGA -ACGGAATGGTTGGTTGTGGTGCAA -ACGGAATGGTTGGTTGTGGAGGAA -ACGGAATGGTTGGTTGTGCAGGTA -ACGGAATGGTTGGTTGTGGACTCT -ACGGAATGGTTGGTTGTGAGTCCT -ACGGAATGGTTGGTTGTGTAAGCC -ACGGAATGGTTGGTTGTGATAGCC -ACGGAATGGTTGGTTGTGTAACCG -ACGGAATGGTTGGTTGTGATGCCA -ACGGAATGGTTGTTTGCCGGAAAC -ACGGAATGGTTGTTTGCCAACACC -ACGGAATGGTTGTTTGCCATCGAG -ACGGAATGGTTGTTTGCCCTCCTT -ACGGAATGGTTGTTTGCCCCTGTT -ACGGAATGGTTGTTTGCCCGGTTT -ACGGAATGGTTGTTTGCCGTGGTT -ACGGAATGGTTGTTTGCCGCCTTT -ACGGAATGGTTGTTTGCCGGTCTT -ACGGAATGGTTGTTTGCCACGCTT -ACGGAATGGTTGTTTGCCAGCGTT -ACGGAATGGTTGTTTGCCTTCGTC -ACGGAATGGTTGTTTGCCTCTCTC -ACGGAATGGTTGTTTGCCTGGATC -ACGGAATGGTTGTTTGCCCACTTC -ACGGAATGGTTGTTTGCCGTACTC -ACGGAATGGTTGTTTGCCGATGTC -ACGGAATGGTTGTTTGCCACAGTC -ACGGAATGGTTGTTTGCCTTGCTG -ACGGAATGGTTGTTTGCCTCCATG -ACGGAATGGTTGTTTGCCTGTGTG -ACGGAATGGTTGTTTGCCCTAGTG -ACGGAATGGTTGTTTGCCCATCTG -ACGGAATGGTTGTTTGCCGAGTTG -ACGGAATGGTTGTTTGCCAGACTG -ACGGAATGGTTGTTTGCCTCGGTA -ACGGAATGGTTGTTTGCCTGCCTA -ACGGAATGGTTGTTTGCCCCACTA -ACGGAATGGTTGTTTGCCGGAGTA -ACGGAATGGTTGTTTGCCTCGTCT -ACGGAATGGTTGTTTGCCTGCACT -ACGGAATGGTTGTTTGCCCTGACT -ACGGAATGGTTGTTTGCCCAACCT -ACGGAATGGTTGTTTGCCGCTACT -ACGGAATGGTTGTTTGCCGGATCT -ACGGAATGGTTGTTTGCCAAGGCT -ACGGAATGGTTGTTTGCCTCAACC -ACGGAATGGTTGTTTGCCTGTTCC -ACGGAATGGTTGTTTGCCATTCCC -ACGGAATGGTTGTTTGCCTTCTCG -ACGGAATGGTTGTTTGCCTAGACG -ACGGAATGGTTGTTTGCCGTAACG -ACGGAATGGTTGTTTGCCACTTCG -ACGGAATGGTTGTTTGCCTACGCA -ACGGAATGGTTGTTTGCCCTTGCA -ACGGAATGGTTGTTTGCCCGAACA -ACGGAATGGTTGTTTGCCCAGTCA -ACGGAATGGTTGTTTGCCGATCCA -ACGGAATGGTTGTTTGCCACGACA -ACGGAATGGTTGTTTGCCAGCTCA -ACGGAATGGTTGTTTGCCTCACGT -ACGGAATGGTTGTTTGCCCGTAGT -ACGGAATGGTTGTTTGCCGTCAGT -ACGGAATGGTTGTTTGCCGAAGGT -ACGGAATGGTTGTTTGCCAACCGT -ACGGAATGGTTGTTTGCCTTGTGC -ACGGAATGGTTGTTTGCCCTAAGC -ACGGAATGGTTGTTTGCCACTAGC -ACGGAATGGTTGTTTGCCAGATGC -ACGGAATGGTTGTTTGCCTGAAGG -ACGGAATGGTTGTTTGCCCAATGG -ACGGAATGGTTGTTTGCCATGAGG -ACGGAATGGTTGTTTGCCAATGGG -ACGGAATGGTTGTTTGCCTCCTGA -ACGGAATGGTTGTTTGCCTAGCGA -ACGGAATGGTTGTTTGCCCACAGA -ACGGAATGGTTGTTTGCCGCAAGA -ACGGAATGGTTGTTTGCCGGTTGA -ACGGAATGGTTGTTTGCCTCCGAT -ACGGAATGGTTGTTTGCCTGGCAT -ACGGAATGGTTGTTTGCCCGAGAT -ACGGAATGGTTGTTTGCCTACCAC -ACGGAATGGTTGTTTGCCCAGAAC -ACGGAATGGTTGTTTGCCGTCTAC -ACGGAATGGTTGTTTGCCACGTAC -ACGGAATGGTTGTTTGCCAGTGAC -ACGGAATGGTTGTTTGCCCTGTAG -ACGGAATGGTTGTTTGCCCCTAAG -ACGGAATGGTTGTTTGCCGTTCAG -ACGGAATGGTTGTTTGCCGCATAG -ACGGAATGGTTGTTTGCCGACAAG -ACGGAATGGTTGTTTGCCAAGCAG -ACGGAATGGTTGTTTGCCCGTCAA -ACGGAATGGTTGTTTGCCGCTGAA -ACGGAATGGTTGTTTGCCAGTACG -ACGGAATGGTTGTTTGCCATCCGA -ACGGAATGGTTGTTTGCCATGGGA -ACGGAATGGTTGTTTGCCGTGCAA -ACGGAATGGTTGTTTGCCGAGGAA -ACGGAATGGTTGTTTGCCCAGGTA -ACGGAATGGTTGTTTGCCGACTCT -ACGGAATGGTTGTTTGCCAGTCCT -ACGGAATGGTTGTTTGCCTAAGCC -ACGGAATGGTTGTTTGCCATAGCC -ACGGAATGGTTGTTTGCCTAACCG -ACGGAATGGTTGTTTGCCATGCCA -ACGGAATGGTTGCTTGGTGGAAAC -ACGGAATGGTTGCTTGGTAACACC -ACGGAATGGTTGCTTGGTATCGAG -ACGGAATGGTTGCTTGGTCTCCTT -ACGGAATGGTTGCTTGGTCCTGTT -ACGGAATGGTTGCTTGGTCGGTTT -ACGGAATGGTTGCTTGGTGTGGTT -ACGGAATGGTTGCTTGGTGCCTTT -ACGGAATGGTTGCTTGGTGGTCTT -ACGGAATGGTTGCTTGGTACGCTT -ACGGAATGGTTGCTTGGTAGCGTT -ACGGAATGGTTGCTTGGTTTCGTC -ACGGAATGGTTGCTTGGTTCTCTC -ACGGAATGGTTGCTTGGTTGGATC -ACGGAATGGTTGCTTGGTCACTTC -ACGGAATGGTTGCTTGGTGTACTC -ACGGAATGGTTGCTTGGTGATGTC -ACGGAATGGTTGCTTGGTACAGTC -ACGGAATGGTTGCTTGGTTTGCTG -ACGGAATGGTTGCTTGGTTCCATG -ACGGAATGGTTGCTTGGTTGTGTG -ACGGAATGGTTGCTTGGTCTAGTG -ACGGAATGGTTGCTTGGTCATCTG -ACGGAATGGTTGCTTGGTGAGTTG -ACGGAATGGTTGCTTGGTAGACTG -ACGGAATGGTTGCTTGGTTCGGTA -ACGGAATGGTTGCTTGGTTGCCTA -ACGGAATGGTTGCTTGGTCCACTA -ACGGAATGGTTGCTTGGTGGAGTA -ACGGAATGGTTGCTTGGTTCGTCT -ACGGAATGGTTGCTTGGTTGCACT -ACGGAATGGTTGCTTGGTCTGACT -ACGGAATGGTTGCTTGGTCAACCT -ACGGAATGGTTGCTTGGTGCTACT -ACGGAATGGTTGCTTGGTGGATCT -ACGGAATGGTTGCTTGGTAAGGCT -ACGGAATGGTTGCTTGGTTCAACC -ACGGAATGGTTGCTTGGTTGTTCC -ACGGAATGGTTGCTTGGTATTCCC -ACGGAATGGTTGCTTGGTTTCTCG -ACGGAATGGTTGCTTGGTTAGACG -ACGGAATGGTTGCTTGGTGTAACG -ACGGAATGGTTGCTTGGTACTTCG -ACGGAATGGTTGCTTGGTTACGCA -ACGGAATGGTTGCTTGGTCTTGCA -ACGGAATGGTTGCTTGGTCGAACA -ACGGAATGGTTGCTTGGTCAGTCA -ACGGAATGGTTGCTTGGTGATCCA -ACGGAATGGTTGCTTGGTACGACA -ACGGAATGGTTGCTTGGTAGCTCA -ACGGAATGGTTGCTTGGTTCACGT -ACGGAATGGTTGCTTGGTCGTAGT -ACGGAATGGTTGCTTGGTGTCAGT -ACGGAATGGTTGCTTGGTGAAGGT -ACGGAATGGTTGCTTGGTAACCGT -ACGGAATGGTTGCTTGGTTTGTGC -ACGGAATGGTTGCTTGGTCTAAGC -ACGGAATGGTTGCTTGGTACTAGC -ACGGAATGGTTGCTTGGTAGATGC -ACGGAATGGTTGCTTGGTTGAAGG -ACGGAATGGTTGCTTGGTCAATGG -ACGGAATGGTTGCTTGGTATGAGG -ACGGAATGGTTGCTTGGTAATGGG -ACGGAATGGTTGCTTGGTTCCTGA -ACGGAATGGTTGCTTGGTTAGCGA -ACGGAATGGTTGCTTGGTCACAGA -ACGGAATGGTTGCTTGGTGCAAGA -ACGGAATGGTTGCTTGGTGGTTGA -ACGGAATGGTTGCTTGGTTCCGAT -ACGGAATGGTTGCTTGGTTGGCAT -ACGGAATGGTTGCTTGGTCGAGAT -ACGGAATGGTTGCTTGGTTACCAC -ACGGAATGGTTGCTTGGTCAGAAC -ACGGAATGGTTGCTTGGTGTCTAC -ACGGAATGGTTGCTTGGTACGTAC -ACGGAATGGTTGCTTGGTAGTGAC -ACGGAATGGTTGCTTGGTCTGTAG -ACGGAATGGTTGCTTGGTCCTAAG -ACGGAATGGTTGCTTGGTGTTCAG -ACGGAATGGTTGCTTGGTGCATAG -ACGGAATGGTTGCTTGGTGACAAG -ACGGAATGGTTGCTTGGTAAGCAG -ACGGAATGGTTGCTTGGTCGTCAA -ACGGAATGGTTGCTTGGTGCTGAA -ACGGAATGGTTGCTTGGTAGTACG -ACGGAATGGTTGCTTGGTATCCGA -ACGGAATGGTTGCTTGGTATGGGA -ACGGAATGGTTGCTTGGTGTGCAA -ACGGAATGGTTGCTTGGTGAGGAA -ACGGAATGGTTGCTTGGTCAGGTA -ACGGAATGGTTGCTTGGTGACTCT -ACGGAATGGTTGCTTGGTAGTCCT -ACGGAATGGTTGCTTGGTTAAGCC -ACGGAATGGTTGCTTGGTATAGCC -ACGGAATGGTTGCTTGGTTAACCG -ACGGAATGGTTGCTTGGTATGCCA -ACGGAATGGTTGCTTACGGGAAAC -ACGGAATGGTTGCTTACGAACACC -ACGGAATGGTTGCTTACGATCGAG -ACGGAATGGTTGCTTACGCTCCTT -ACGGAATGGTTGCTTACGCCTGTT -ACGGAATGGTTGCTTACGCGGTTT -ACGGAATGGTTGCTTACGGTGGTT -ACGGAATGGTTGCTTACGGCCTTT -ACGGAATGGTTGCTTACGGGTCTT -ACGGAATGGTTGCTTACGACGCTT -ACGGAATGGTTGCTTACGAGCGTT -ACGGAATGGTTGCTTACGTTCGTC -ACGGAATGGTTGCTTACGTCTCTC -ACGGAATGGTTGCTTACGTGGATC -ACGGAATGGTTGCTTACGCACTTC -ACGGAATGGTTGCTTACGGTACTC -ACGGAATGGTTGCTTACGGATGTC -ACGGAATGGTTGCTTACGACAGTC -ACGGAATGGTTGCTTACGTTGCTG -ACGGAATGGTTGCTTACGTCCATG -ACGGAATGGTTGCTTACGTGTGTG -ACGGAATGGTTGCTTACGCTAGTG -ACGGAATGGTTGCTTACGCATCTG -ACGGAATGGTTGCTTACGGAGTTG -ACGGAATGGTTGCTTACGAGACTG -ACGGAATGGTTGCTTACGTCGGTA -ACGGAATGGTTGCTTACGTGCCTA -ACGGAATGGTTGCTTACGCCACTA -ACGGAATGGTTGCTTACGGGAGTA -ACGGAATGGTTGCTTACGTCGTCT -ACGGAATGGTTGCTTACGTGCACT -ACGGAATGGTTGCTTACGCTGACT -ACGGAATGGTTGCTTACGCAACCT -ACGGAATGGTTGCTTACGGCTACT -ACGGAATGGTTGCTTACGGGATCT -ACGGAATGGTTGCTTACGAAGGCT -ACGGAATGGTTGCTTACGTCAACC -ACGGAATGGTTGCTTACGTGTTCC -ACGGAATGGTTGCTTACGATTCCC -ACGGAATGGTTGCTTACGTTCTCG -ACGGAATGGTTGCTTACGTAGACG -ACGGAATGGTTGCTTACGGTAACG -ACGGAATGGTTGCTTACGACTTCG -ACGGAATGGTTGCTTACGTACGCA -ACGGAATGGTTGCTTACGCTTGCA -ACGGAATGGTTGCTTACGCGAACA -ACGGAATGGTTGCTTACGCAGTCA -ACGGAATGGTTGCTTACGGATCCA -ACGGAATGGTTGCTTACGACGACA -ACGGAATGGTTGCTTACGAGCTCA -ACGGAATGGTTGCTTACGTCACGT -ACGGAATGGTTGCTTACGCGTAGT -ACGGAATGGTTGCTTACGGTCAGT -ACGGAATGGTTGCTTACGGAAGGT -ACGGAATGGTTGCTTACGAACCGT -ACGGAATGGTTGCTTACGTTGTGC -ACGGAATGGTTGCTTACGCTAAGC -ACGGAATGGTTGCTTACGACTAGC -ACGGAATGGTTGCTTACGAGATGC -ACGGAATGGTTGCTTACGTGAAGG -ACGGAATGGTTGCTTACGCAATGG -ACGGAATGGTTGCTTACGATGAGG -ACGGAATGGTTGCTTACGAATGGG -ACGGAATGGTTGCTTACGTCCTGA -ACGGAATGGTTGCTTACGTAGCGA -ACGGAATGGTTGCTTACGCACAGA -ACGGAATGGTTGCTTACGGCAAGA -ACGGAATGGTTGCTTACGGGTTGA -ACGGAATGGTTGCTTACGTCCGAT -ACGGAATGGTTGCTTACGTGGCAT -ACGGAATGGTTGCTTACGCGAGAT -ACGGAATGGTTGCTTACGTACCAC -ACGGAATGGTTGCTTACGCAGAAC -ACGGAATGGTTGCTTACGGTCTAC -ACGGAATGGTTGCTTACGACGTAC -ACGGAATGGTTGCTTACGAGTGAC -ACGGAATGGTTGCTTACGCTGTAG -ACGGAATGGTTGCTTACGCCTAAG -ACGGAATGGTTGCTTACGGTTCAG -ACGGAATGGTTGCTTACGGCATAG -ACGGAATGGTTGCTTACGGACAAG -ACGGAATGGTTGCTTACGAAGCAG -ACGGAATGGTTGCTTACGCGTCAA -ACGGAATGGTTGCTTACGGCTGAA -ACGGAATGGTTGCTTACGAGTACG -ACGGAATGGTTGCTTACGATCCGA -ACGGAATGGTTGCTTACGATGGGA -ACGGAATGGTTGCTTACGGTGCAA -ACGGAATGGTTGCTTACGGAGGAA -ACGGAATGGTTGCTTACGCAGGTA -ACGGAATGGTTGCTTACGGACTCT -ACGGAATGGTTGCTTACGAGTCCT -ACGGAATGGTTGCTTACGTAAGCC -ACGGAATGGTTGCTTACGATAGCC -ACGGAATGGTTGCTTACGTAACCG -ACGGAATGGTTGCTTACGATGCCA -ACGGAATGGTTGGTTAGCGGAAAC -ACGGAATGGTTGGTTAGCAACACC -ACGGAATGGTTGGTTAGCATCGAG -ACGGAATGGTTGGTTAGCCTCCTT -ACGGAATGGTTGGTTAGCCCTGTT -ACGGAATGGTTGGTTAGCCGGTTT -ACGGAATGGTTGGTTAGCGTGGTT -ACGGAATGGTTGGTTAGCGCCTTT -ACGGAATGGTTGGTTAGCGGTCTT -ACGGAATGGTTGGTTAGCACGCTT -ACGGAATGGTTGGTTAGCAGCGTT -ACGGAATGGTTGGTTAGCTTCGTC -ACGGAATGGTTGGTTAGCTCTCTC -ACGGAATGGTTGGTTAGCTGGATC -ACGGAATGGTTGGTTAGCCACTTC -ACGGAATGGTTGGTTAGCGTACTC -ACGGAATGGTTGGTTAGCGATGTC -ACGGAATGGTTGGTTAGCACAGTC -ACGGAATGGTTGGTTAGCTTGCTG -ACGGAATGGTTGGTTAGCTCCATG -ACGGAATGGTTGGTTAGCTGTGTG -ACGGAATGGTTGGTTAGCCTAGTG -ACGGAATGGTTGGTTAGCCATCTG -ACGGAATGGTTGGTTAGCGAGTTG -ACGGAATGGTTGGTTAGCAGACTG -ACGGAATGGTTGGTTAGCTCGGTA -ACGGAATGGTTGGTTAGCTGCCTA -ACGGAATGGTTGGTTAGCCCACTA -ACGGAATGGTTGGTTAGCGGAGTA -ACGGAATGGTTGGTTAGCTCGTCT -ACGGAATGGTTGGTTAGCTGCACT -ACGGAATGGTTGGTTAGCCTGACT -ACGGAATGGTTGGTTAGCCAACCT -ACGGAATGGTTGGTTAGCGCTACT -ACGGAATGGTTGGTTAGCGGATCT -ACGGAATGGTTGGTTAGCAAGGCT -ACGGAATGGTTGGTTAGCTCAACC -ACGGAATGGTTGGTTAGCTGTTCC -ACGGAATGGTTGGTTAGCATTCCC -ACGGAATGGTTGGTTAGCTTCTCG -ACGGAATGGTTGGTTAGCTAGACG -ACGGAATGGTTGGTTAGCGTAACG -ACGGAATGGTTGGTTAGCACTTCG -ACGGAATGGTTGGTTAGCTACGCA -ACGGAATGGTTGGTTAGCCTTGCA -ACGGAATGGTTGGTTAGCCGAACA -ACGGAATGGTTGGTTAGCCAGTCA -ACGGAATGGTTGGTTAGCGATCCA -ACGGAATGGTTGGTTAGCACGACA -ACGGAATGGTTGGTTAGCAGCTCA -ACGGAATGGTTGGTTAGCTCACGT -ACGGAATGGTTGGTTAGCCGTAGT -ACGGAATGGTTGGTTAGCGTCAGT -ACGGAATGGTTGGTTAGCGAAGGT -ACGGAATGGTTGGTTAGCAACCGT -ACGGAATGGTTGGTTAGCTTGTGC -ACGGAATGGTTGGTTAGCCTAAGC -ACGGAATGGTTGGTTAGCACTAGC -ACGGAATGGTTGGTTAGCAGATGC -ACGGAATGGTTGGTTAGCTGAAGG -ACGGAATGGTTGGTTAGCCAATGG -ACGGAATGGTTGGTTAGCATGAGG -ACGGAATGGTTGGTTAGCAATGGG -ACGGAATGGTTGGTTAGCTCCTGA -ACGGAATGGTTGGTTAGCTAGCGA -ACGGAATGGTTGGTTAGCCACAGA -ACGGAATGGTTGGTTAGCGCAAGA -ACGGAATGGTTGGTTAGCGGTTGA -ACGGAATGGTTGGTTAGCTCCGAT -ACGGAATGGTTGGTTAGCTGGCAT -ACGGAATGGTTGGTTAGCCGAGAT -ACGGAATGGTTGGTTAGCTACCAC -ACGGAATGGTTGGTTAGCCAGAAC -ACGGAATGGTTGGTTAGCGTCTAC -ACGGAATGGTTGGTTAGCACGTAC -ACGGAATGGTTGGTTAGCAGTGAC -ACGGAATGGTTGGTTAGCCTGTAG -ACGGAATGGTTGGTTAGCCCTAAG -ACGGAATGGTTGGTTAGCGTTCAG -ACGGAATGGTTGGTTAGCGCATAG -ACGGAATGGTTGGTTAGCGACAAG -ACGGAATGGTTGGTTAGCAAGCAG -ACGGAATGGTTGGTTAGCCGTCAA -ACGGAATGGTTGGTTAGCGCTGAA -ACGGAATGGTTGGTTAGCAGTACG -ACGGAATGGTTGGTTAGCATCCGA -ACGGAATGGTTGGTTAGCATGGGA -ACGGAATGGTTGGTTAGCGTGCAA -ACGGAATGGTTGGTTAGCGAGGAA -ACGGAATGGTTGGTTAGCCAGGTA -ACGGAATGGTTGGTTAGCGACTCT -ACGGAATGGTTGGTTAGCAGTCCT -ACGGAATGGTTGGTTAGCTAAGCC -ACGGAATGGTTGGTTAGCATAGCC -ACGGAATGGTTGGTTAGCTAACCG -ACGGAATGGTTGGTTAGCATGCCA -ACGGAATGGTTGGTCTTCGGAAAC -ACGGAATGGTTGGTCTTCAACACC -ACGGAATGGTTGGTCTTCATCGAG -ACGGAATGGTTGGTCTTCCTCCTT -ACGGAATGGTTGGTCTTCCCTGTT -ACGGAATGGTTGGTCTTCCGGTTT -ACGGAATGGTTGGTCTTCGTGGTT -ACGGAATGGTTGGTCTTCGCCTTT -ACGGAATGGTTGGTCTTCGGTCTT -ACGGAATGGTTGGTCTTCACGCTT -ACGGAATGGTTGGTCTTCAGCGTT -ACGGAATGGTTGGTCTTCTTCGTC -ACGGAATGGTTGGTCTTCTCTCTC -ACGGAATGGTTGGTCTTCTGGATC -ACGGAATGGTTGGTCTTCCACTTC -ACGGAATGGTTGGTCTTCGTACTC -ACGGAATGGTTGGTCTTCGATGTC -ACGGAATGGTTGGTCTTCACAGTC -ACGGAATGGTTGGTCTTCTTGCTG -ACGGAATGGTTGGTCTTCTCCATG -ACGGAATGGTTGGTCTTCTGTGTG -ACGGAATGGTTGGTCTTCCTAGTG -ACGGAATGGTTGGTCTTCCATCTG -ACGGAATGGTTGGTCTTCGAGTTG -ACGGAATGGTTGGTCTTCAGACTG -ACGGAATGGTTGGTCTTCTCGGTA -ACGGAATGGTTGGTCTTCTGCCTA -ACGGAATGGTTGGTCTTCCCACTA -ACGGAATGGTTGGTCTTCGGAGTA -ACGGAATGGTTGGTCTTCTCGTCT -ACGGAATGGTTGGTCTTCTGCACT -ACGGAATGGTTGGTCTTCCTGACT -ACGGAATGGTTGGTCTTCCAACCT -ACGGAATGGTTGGTCTTCGCTACT -ACGGAATGGTTGGTCTTCGGATCT -ACGGAATGGTTGGTCTTCAAGGCT -ACGGAATGGTTGGTCTTCTCAACC -ACGGAATGGTTGGTCTTCTGTTCC -ACGGAATGGTTGGTCTTCATTCCC -ACGGAATGGTTGGTCTTCTTCTCG -ACGGAATGGTTGGTCTTCTAGACG -ACGGAATGGTTGGTCTTCGTAACG -ACGGAATGGTTGGTCTTCACTTCG -ACGGAATGGTTGGTCTTCTACGCA -ACGGAATGGTTGGTCTTCCTTGCA -ACGGAATGGTTGGTCTTCCGAACA -ACGGAATGGTTGGTCTTCCAGTCA -ACGGAATGGTTGGTCTTCGATCCA -ACGGAATGGTTGGTCTTCACGACA -ACGGAATGGTTGGTCTTCAGCTCA -ACGGAATGGTTGGTCTTCTCACGT -ACGGAATGGTTGGTCTTCCGTAGT -ACGGAATGGTTGGTCTTCGTCAGT -ACGGAATGGTTGGTCTTCGAAGGT -ACGGAATGGTTGGTCTTCAACCGT -ACGGAATGGTTGGTCTTCTTGTGC -ACGGAATGGTTGGTCTTCCTAAGC -ACGGAATGGTTGGTCTTCACTAGC -ACGGAATGGTTGGTCTTCAGATGC -ACGGAATGGTTGGTCTTCTGAAGG -ACGGAATGGTTGGTCTTCCAATGG -ACGGAATGGTTGGTCTTCATGAGG -ACGGAATGGTTGGTCTTCAATGGG -ACGGAATGGTTGGTCTTCTCCTGA -ACGGAATGGTTGGTCTTCTAGCGA -ACGGAATGGTTGGTCTTCCACAGA -ACGGAATGGTTGGTCTTCGCAAGA -ACGGAATGGTTGGTCTTCGGTTGA -ACGGAATGGTTGGTCTTCTCCGAT -ACGGAATGGTTGGTCTTCTGGCAT -ACGGAATGGTTGGTCTTCCGAGAT -ACGGAATGGTTGGTCTTCTACCAC -ACGGAATGGTTGGTCTTCCAGAAC -ACGGAATGGTTGGTCTTCGTCTAC -ACGGAATGGTTGGTCTTCACGTAC -ACGGAATGGTTGGTCTTCAGTGAC -ACGGAATGGTTGGTCTTCCTGTAG -ACGGAATGGTTGGTCTTCCCTAAG -ACGGAATGGTTGGTCTTCGTTCAG -ACGGAATGGTTGGTCTTCGCATAG -ACGGAATGGTTGGTCTTCGACAAG -ACGGAATGGTTGGTCTTCAAGCAG -ACGGAATGGTTGGTCTTCCGTCAA -ACGGAATGGTTGGTCTTCGCTGAA -ACGGAATGGTTGGTCTTCAGTACG -ACGGAATGGTTGGTCTTCATCCGA -ACGGAATGGTTGGTCTTCATGGGA -ACGGAATGGTTGGTCTTCGTGCAA -ACGGAATGGTTGGTCTTCGAGGAA -ACGGAATGGTTGGTCTTCCAGGTA -ACGGAATGGTTGGTCTTCGACTCT -ACGGAATGGTTGGTCTTCAGTCCT -ACGGAATGGTTGGTCTTCTAAGCC -ACGGAATGGTTGGTCTTCATAGCC -ACGGAATGGTTGGTCTTCTAACCG -ACGGAATGGTTGGTCTTCATGCCA -ACGGAATGGTTGCTCTCTGGAAAC -ACGGAATGGTTGCTCTCTAACACC -ACGGAATGGTTGCTCTCTATCGAG -ACGGAATGGTTGCTCTCTCTCCTT -ACGGAATGGTTGCTCTCTCCTGTT -ACGGAATGGTTGCTCTCTCGGTTT -ACGGAATGGTTGCTCTCTGTGGTT -ACGGAATGGTTGCTCTCTGCCTTT -ACGGAATGGTTGCTCTCTGGTCTT -ACGGAATGGTTGCTCTCTACGCTT -ACGGAATGGTTGCTCTCTAGCGTT -ACGGAATGGTTGCTCTCTTTCGTC -ACGGAATGGTTGCTCTCTTCTCTC -ACGGAATGGTTGCTCTCTTGGATC -ACGGAATGGTTGCTCTCTCACTTC -ACGGAATGGTTGCTCTCTGTACTC -ACGGAATGGTTGCTCTCTGATGTC -ACGGAATGGTTGCTCTCTACAGTC -ACGGAATGGTTGCTCTCTTTGCTG -ACGGAATGGTTGCTCTCTTCCATG -ACGGAATGGTTGCTCTCTTGTGTG -ACGGAATGGTTGCTCTCTCTAGTG -ACGGAATGGTTGCTCTCTCATCTG -ACGGAATGGTTGCTCTCTGAGTTG -ACGGAATGGTTGCTCTCTAGACTG -ACGGAATGGTTGCTCTCTTCGGTA -ACGGAATGGTTGCTCTCTTGCCTA -ACGGAATGGTTGCTCTCTCCACTA -ACGGAATGGTTGCTCTCTGGAGTA -ACGGAATGGTTGCTCTCTTCGTCT -ACGGAATGGTTGCTCTCTTGCACT -ACGGAATGGTTGCTCTCTCTGACT -ACGGAATGGTTGCTCTCTCAACCT -ACGGAATGGTTGCTCTCTGCTACT -ACGGAATGGTTGCTCTCTGGATCT -ACGGAATGGTTGCTCTCTAAGGCT -ACGGAATGGTTGCTCTCTTCAACC -ACGGAATGGTTGCTCTCTTGTTCC -ACGGAATGGTTGCTCTCTATTCCC -ACGGAATGGTTGCTCTCTTTCTCG -ACGGAATGGTTGCTCTCTTAGACG -ACGGAATGGTTGCTCTCTGTAACG -ACGGAATGGTTGCTCTCTACTTCG -ACGGAATGGTTGCTCTCTTACGCA -ACGGAATGGTTGCTCTCTCTTGCA -ACGGAATGGTTGCTCTCTCGAACA -ACGGAATGGTTGCTCTCTCAGTCA -ACGGAATGGTTGCTCTCTGATCCA -ACGGAATGGTTGCTCTCTACGACA -ACGGAATGGTTGCTCTCTAGCTCA -ACGGAATGGTTGCTCTCTTCACGT -ACGGAATGGTTGCTCTCTCGTAGT -ACGGAATGGTTGCTCTCTGTCAGT -ACGGAATGGTTGCTCTCTGAAGGT -ACGGAATGGTTGCTCTCTAACCGT -ACGGAATGGTTGCTCTCTTTGTGC -ACGGAATGGTTGCTCTCTCTAAGC -ACGGAATGGTTGCTCTCTACTAGC -ACGGAATGGTTGCTCTCTAGATGC -ACGGAATGGTTGCTCTCTTGAAGG -ACGGAATGGTTGCTCTCTCAATGG -ACGGAATGGTTGCTCTCTATGAGG -ACGGAATGGTTGCTCTCTAATGGG -ACGGAATGGTTGCTCTCTTCCTGA -ACGGAATGGTTGCTCTCTTAGCGA -ACGGAATGGTTGCTCTCTCACAGA -ACGGAATGGTTGCTCTCTGCAAGA -ACGGAATGGTTGCTCTCTGGTTGA -ACGGAATGGTTGCTCTCTTCCGAT -ACGGAATGGTTGCTCTCTTGGCAT -ACGGAATGGTTGCTCTCTCGAGAT -ACGGAATGGTTGCTCTCTTACCAC -ACGGAATGGTTGCTCTCTCAGAAC -ACGGAATGGTTGCTCTCTGTCTAC -ACGGAATGGTTGCTCTCTACGTAC -ACGGAATGGTTGCTCTCTAGTGAC -ACGGAATGGTTGCTCTCTCTGTAG -ACGGAATGGTTGCTCTCTCCTAAG -ACGGAATGGTTGCTCTCTGTTCAG -ACGGAATGGTTGCTCTCTGCATAG -ACGGAATGGTTGCTCTCTGACAAG -ACGGAATGGTTGCTCTCTAAGCAG -ACGGAATGGTTGCTCTCTCGTCAA -ACGGAATGGTTGCTCTCTGCTGAA -ACGGAATGGTTGCTCTCTAGTACG -ACGGAATGGTTGCTCTCTATCCGA -ACGGAATGGTTGCTCTCTATGGGA -ACGGAATGGTTGCTCTCTGTGCAA -ACGGAATGGTTGCTCTCTGAGGAA -ACGGAATGGTTGCTCTCTCAGGTA -ACGGAATGGTTGCTCTCTGACTCT -ACGGAATGGTTGCTCTCTAGTCCT -ACGGAATGGTTGCTCTCTTAAGCC -ACGGAATGGTTGCTCTCTATAGCC -ACGGAATGGTTGCTCTCTTAACCG -ACGGAATGGTTGCTCTCTATGCCA -ACGGAATGGTTGATCTGGGGAAAC -ACGGAATGGTTGATCTGGAACACC -ACGGAATGGTTGATCTGGATCGAG -ACGGAATGGTTGATCTGGCTCCTT -ACGGAATGGTTGATCTGGCCTGTT -ACGGAATGGTTGATCTGGCGGTTT -ACGGAATGGTTGATCTGGGTGGTT -ACGGAATGGTTGATCTGGGCCTTT -ACGGAATGGTTGATCTGGGGTCTT -ACGGAATGGTTGATCTGGACGCTT -ACGGAATGGTTGATCTGGAGCGTT -ACGGAATGGTTGATCTGGTTCGTC -ACGGAATGGTTGATCTGGTCTCTC -ACGGAATGGTTGATCTGGTGGATC -ACGGAATGGTTGATCTGGCACTTC -ACGGAATGGTTGATCTGGGTACTC -ACGGAATGGTTGATCTGGGATGTC -ACGGAATGGTTGATCTGGACAGTC -ACGGAATGGTTGATCTGGTTGCTG -ACGGAATGGTTGATCTGGTCCATG -ACGGAATGGTTGATCTGGTGTGTG -ACGGAATGGTTGATCTGGCTAGTG -ACGGAATGGTTGATCTGGCATCTG -ACGGAATGGTTGATCTGGGAGTTG -ACGGAATGGTTGATCTGGAGACTG -ACGGAATGGTTGATCTGGTCGGTA -ACGGAATGGTTGATCTGGTGCCTA -ACGGAATGGTTGATCTGGCCACTA -ACGGAATGGTTGATCTGGGGAGTA -ACGGAATGGTTGATCTGGTCGTCT -ACGGAATGGTTGATCTGGTGCACT -ACGGAATGGTTGATCTGGCTGACT -ACGGAATGGTTGATCTGGCAACCT -ACGGAATGGTTGATCTGGGCTACT -ACGGAATGGTTGATCTGGGGATCT -ACGGAATGGTTGATCTGGAAGGCT -ACGGAATGGTTGATCTGGTCAACC -ACGGAATGGTTGATCTGGTGTTCC -ACGGAATGGTTGATCTGGATTCCC -ACGGAATGGTTGATCTGGTTCTCG -ACGGAATGGTTGATCTGGTAGACG -ACGGAATGGTTGATCTGGGTAACG -ACGGAATGGTTGATCTGGACTTCG -ACGGAATGGTTGATCTGGTACGCA -ACGGAATGGTTGATCTGGCTTGCA -ACGGAATGGTTGATCTGGCGAACA -ACGGAATGGTTGATCTGGCAGTCA -ACGGAATGGTTGATCTGGGATCCA -ACGGAATGGTTGATCTGGACGACA -ACGGAATGGTTGATCTGGAGCTCA -ACGGAATGGTTGATCTGGTCACGT -ACGGAATGGTTGATCTGGCGTAGT -ACGGAATGGTTGATCTGGGTCAGT -ACGGAATGGTTGATCTGGGAAGGT -ACGGAATGGTTGATCTGGAACCGT -ACGGAATGGTTGATCTGGTTGTGC -ACGGAATGGTTGATCTGGCTAAGC -ACGGAATGGTTGATCTGGACTAGC -ACGGAATGGTTGATCTGGAGATGC -ACGGAATGGTTGATCTGGTGAAGG -ACGGAATGGTTGATCTGGCAATGG -ACGGAATGGTTGATCTGGATGAGG -ACGGAATGGTTGATCTGGAATGGG -ACGGAATGGTTGATCTGGTCCTGA -ACGGAATGGTTGATCTGGTAGCGA -ACGGAATGGTTGATCTGGCACAGA -ACGGAATGGTTGATCTGGGCAAGA -ACGGAATGGTTGATCTGGGGTTGA -ACGGAATGGTTGATCTGGTCCGAT -ACGGAATGGTTGATCTGGTGGCAT -ACGGAATGGTTGATCTGGCGAGAT -ACGGAATGGTTGATCTGGTACCAC -ACGGAATGGTTGATCTGGCAGAAC -ACGGAATGGTTGATCTGGGTCTAC -ACGGAATGGTTGATCTGGACGTAC -ACGGAATGGTTGATCTGGAGTGAC -ACGGAATGGTTGATCTGGCTGTAG -ACGGAATGGTTGATCTGGCCTAAG -ACGGAATGGTTGATCTGGGTTCAG -ACGGAATGGTTGATCTGGGCATAG -ACGGAATGGTTGATCTGGGACAAG -ACGGAATGGTTGATCTGGAAGCAG -ACGGAATGGTTGATCTGGCGTCAA -ACGGAATGGTTGATCTGGGCTGAA -ACGGAATGGTTGATCTGGAGTACG -ACGGAATGGTTGATCTGGATCCGA -ACGGAATGGTTGATCTGGATGGGA -ACGGAATGGTTGATCTGGGTGCAA -ACGGAATGGTTGATCTGGGAGGAA -ACGGAATGGTTGATCTGGCAGGTA -ACGGAATGGTTGATCTGGGACTCT -ACGGAATGGTTGATCTGGAGTCCT -ACGGAATGGTTGATCTGGTAAGCC -ACGGAATGGTTGATCTGGATAGCC -ACGGAATGGTTGATCTGGTAACCG -ACGGAATGGTTGATCTGGATGCCA -ACGGAATGGTTGTTCCACGGAAAC -ACGGAATGGTTGTTCCACAACACC -ACGGAATGGTTGTTCCACATCGAG -ACGGAATGGTTGTTCCACCTCCTT -ACGGAATGGTTGTTCCACCCTGTT -ACGGAATGGTTGTTCCACCGGTTT -ACGGAATGGTTGTTCCACGTGGTT -ACGGAATGGTTGTTCCACGCCTTT -ACGGAATGGTTGTTCCACGGTCTT -ACGGAATGGTTGTTCCACACGCTT -ACGGAATGGTTGTTCCACAGCGTT -ACGGAATGGTTGTTCCACTTCGTC -ACGGAATGGTTGTTCCACTCTCTC -ACGGAATGGTTGTTCCACTGGATC -ACGGAATGGTTGTTCCACCACTTC -ACGGAATGGTTGTTCCACGTACTC -ACGGAATGGTTGTTCCACGATGTC -ACGGAATGGTTGTTCCACACAGTC -ACGGAATGGTTGTTCCACTTGCTG -ACGGAATGGTTGTTCCACTCCATG -ACGGAATGGTTGTTCCACTGTGTG -ACGGAATGGTTGTTCCACCTAGTG -ACGGAATGGTTGTTCCACCATCTG -ACGGAATGGTTGTTCCACGAGTTG -ACGGAATGGTTGTTCCACAGACTG -ACGGAATGGTTGTTCCACTCGGTA -ACGGAATGGTTGTTCCACTGCCTA -ACGGAATGGTTGTTCCACCCACTA -ACGGAATGGTTGTTCCACGGAGTA -ACGGAATGGTTGTTCCACTCGTCT -ACGGAATGGTTGTTCCACTGCACT -ACGGAATGGTTGTTCCACCTGACT -ACGGAATGGTTGTTCCACCAACCT -ACGGAATGGTTGTTCCACGCTACT -ACGGAATGGTTGTTCCACGGATCT -ACGGAATGGTTGTTCCACAAGGCT -ACGGAATGGTTGTTCCACTCAACC -ACGGAATGGTTGTTCCACTGTTCC -ACGGAATGGTTGTTCCACATTCCC -ACGGAATGGTTGTTCCACTTCTCG -ACGGAATGGTTGTTCCACTAGACG -ACGGAATGGTTGTTCCACGTAACG -ACGGAATGGTTGTTCCACACTTCG -ACGGAATGGTTGTTCCACTACGCA -ACGGAATGGTTGTTCCACCTTGCA -ACGGAATGGTTGTTCCACCGAACA -ACGGAATGGTTGTTCCACCAGTCA -ACGGAATGGTTGTTCCACGATCCA -ACGGAATGGTTGTTCCACACGACA -ACGGAATGGTTGTTCCACAGCTCA -ACGGAATGGTTGTTCCACTCACGT -ACGGAATGGTTGTTCCACCGTAGT -ACGGAATGGTTGTTCCACGTCAGT -ACGGAATGGTTGTTCCACGAAGGT -ACGGAATGGTTGTTCCACAACCGT -ACGGAATGGTTGTTCCACTTGTGC -ACGGAATGGTTGTTCCACCTAAGC -ACGGAATGGTTGTTCCACACTAGC -ACGGAATGGTTGTTCCACAGATGC -ACGGAATGGTTGTTCCACTGAAGG -ACGGAATGGTTGTTCCACCAATGG -ACGGAATGGTTGTTCCACATGAGG -ACGGAATGGTTGTTCCACAATGGG -ACGGAATGGTTGTTCCACTCCTGA -ACGGAATGGTTGTTCCACTAGCGA -ACGGAATGGTTGTTCCACCACAGA -ACGGAATGGTTGTTCCACGCAAGA -ACGGAATGGTTGTTCCACGGTTGA -ACGGAATGGTTGTTCCACTCCGAT -ACGGAATGGTTGTTCCACTGGCAT -ACGGAATGGTTGTTCCACCGAGAT -ACGGAATGGTTGTTCCACTACCAC -ACGGAATGGTTGTTCCACCAGAAC -ACGGAATGGTTGTTCCACGTCTAC -ACGGAATGGTTGTTCCACACGTAC -ACGGAATGGTTGTTCCACAGTGAC -ACGGAATGGTTGTTCCACCTGTAG -ACGGAATGGTTGTTCCACCCTAAG -ACGGAATGGTTGTTCCACGTTCAG -ACGGAATGGTTGTTCCACGCATAG -ACGGAATGGTTGTTCCACGACAAG -ACGGAATGGTTGTTCCACAAGCAG -ACGGAATGGTTGTTCCACCGTCAA -ACGGAATGGTTGTTCCACGCTGAA -ACGGAATGGTTGTTCCACAGTACG -ACGGAATGGTTGTTCCACATCCGA -ACGGAATGGTTGTTCCACATGGGA -ACGGAATGGTTGTTCCACGTGCAA -ACGGAATGGTTGTTCCACGAGGAA -ACGGAATGGTTGTTCCACCAGGTA -ACGGAATGGTTGTTCCACGACTCT -ACGGAATGGTTGTTCCACAGTCCT -ACGGAATGGTTGTTCCACTAAGCC -ACGGAATGGTTGTTCCACATAGCC -ACGGAATGGTTGTTCCACTAACCG -ACGGAATGGTTGTTCCACATGCCA -ACGGAATGGTTGCTCGTAGGAAAC -ACGGAATGGTTGCTCGTAAACACC -ACGGAATGGTTGCTCGTAATCGAG -ACGGAATGGTTGCTCGTACTCCTT -ACGGAATGGTTGCTCGTACCTGTT -ACGGAATGGTTGCTCGTACGGTTT -ACGGAATGGTTGCTCGTAGTGGTT -ACGGAATGGTTGCTCGTAGCCTTT -ACGGAATGGTTGCTCGTAGGTCTT -ACGGAATGGTTGCTCGTAACGCTT -ACGGAATGGTTGCTCGTAAGCGTT -ACGGAATGGTTGCTCGTATTCGTC -ACGGAATGGTTGCTCGTATCTCTC -ACGGAATGGTTGCTCGTATGGATC -ACGGAATGGTTGCTCGTACACTTC -ACGGAATGGTTGCTCGTAGTACTC -ACGGAATGGTTGCTCGTAGATGTC -ACGGAATGGTTGCTCGTAACAGTC -ACGGAATGGTTGCTCGTATTGCTG -ACGGAATGGTTGCTCGTATCCATG -ACGGAATGGTTGCTCGTATGTGTG -ACGGAATGGTTGCTCGTACTAGTG -ACGGAATGGTTGCTCGTACATCTG -ACGGAATGGTTGCTCGTAGAGTTG -ACGGAATGGTTGCTCGTAAGACTG -ACGGAATGGTTGCTCGTATCGGTA -ACGGAATGGTTGCTCGTATGCCTA -ACGGAATGGTTGCTCGTACCACTA -ACGGAATGGTTGCTCGTAGGAGTA -ACGGAATGGTTGCTCGTATCGTCT -ACGGAATGGTTGCTCGTATGCACT -ACGGAATGGTTGCTCGTACTGACT -ACGGAATGGTTGCTCGTACAACCT -ACGGAATGGTTGCTCGTAGCTACT -ACGGAATGGTTGCTCGTAGGATCT -ACGGAATGGTTGCTCGTAAAGGCT -ACGGAATGGTTGCTCGTATCAACC -ACGGAATGGTTGCTCGTATGTTCC -ACGGAATGGTTGCTCGTAATTCCC -ACGGAATGGTTGCTCGTATTCTCG -ACGGAATGGTTGCTCGTATAGACG -ACGGAATGGTTGCTCGTAGTAACG -ACGGAATGGTTGCTCGTAACTTCG -ACGGAATGGTTGCTCGTATACGCA -ACGGAATGGTTGCTCGTACTTGCA -ACGGAATGGTTGCTCGTACGAACA -ACGGAATGGTTGCTCGTACAGTCA -ACGGAATGGTTGCTCGTAGATCCA -ACGGAATGGTTGCTCGTAACGACA -ACGGAATGGTTGCTCGTAAGCTCA -ACGGAATGGTTGCTCGTATCACGT -ACGGAATGGTTGCTCGTACGTAGT -ACGGAATGGTTGCTCGTAGTCAGT -ACGGAATGGTTGCTCGTAGAAGGT -ACGGAATGGTTGCTCGTAAACCGT -ACGGAATGGTTGCTCGTATTGTGC -ACGGAATGGTTGCTCGTACTAAGC -ACGGAATGGTTGCTCGTAACTAGC -ACGGAATGGTTGCTCGTAAGATGC -ACGGAATGGTTGCTCGTATGAAGG -ACGGAATGGTTGCTCGTACAATGG -ACGGAATGGTTGCTCGTAATGAGG -ACGGAATGGTTGCTCGTAAATGGG -ACGGAATGGTTGCTCGTATCCTGA -ACGGAATGGTTGCTCGTATAGCGA -ACGGAATGGTTGCTCGTACACAGA -ACGGAATGGTTGCTCGTAGCAAGA -ACGGAATGGTTGCTCGTAGGTTGA -ACGGAATGGTTGCTCGTATCCGAT -ACGGAATGGTTGCTCGTATGGCAT -ACGGAATGGTTGCTCGTACGAGAT -ACGGAATGGTTGCTCGTATACCAC -ACGGAATGGTTGCTCGTACAGAAC -ACGGAATGGTTGCTCGTAGTCTAC -ACGGAATGGTTGCTCGTAACGTAC -ACGGAATGGTTGCTCGTAAGTGAC -ACGGAATGGTTGCTCGTACTGTAG -ACGGAATGGTTGCTCGTACCTAAG -ACGGAATGGTTGCTCGTAGTTCAG -ACGGAATGGTTGCTCGTAGCATAG -ACGGAATGGTTGCTCGTAGACAAG -ACGGAATGGTTGCTCGTAAAGCAG -ACGGAATGGTTGCTCGTACGTCAA -ACGGAATGGTTGCTCGTAGCTGAA -ACGGAATGGTTGCTCGTAAGTACG -ACGGAATGGTTGCTCGTAATCCGA -ACGGAATGGTTGCTCGTAATGGGA -ACGGAATGGTTGCTCGTAGTGCAA -ACGGAATGGTTGCTCGTAGAGGAA -ACGGAATGGTTGCTCGTACAGGTA -ACGGAATGGTTGCTCGTAGACTCT -ACGGAATGGTTGCTCGTAAGTCCT -ACGGAATGGTTGCTCGTATAAGCC -ACGGAATGGTTGCTCGTAATAGCC -ACGGAATGGTTGCTCGTATAACCG -ACGGAATGGTTGCTCGTAATGCCA -ACGGAATGGTTGGTCGATGGAAAC -ACGGAATGGTTGGTCGATAACACC -ACGGAATGGTTGGTCGATATCGAG -ACGGAATGGTTGGTCGATCTCCTT -ACGGAATGGTTGGTCGATCCTGTT -ACGGAATGGTTGGTCGATCGGTTT -ACGGAATGGTTGGTCGATGTGGTT -ACGGAATGGTTGGTCGATGCCTTT -ACGGAATGGTTGGTCGATGGTCTT -ACGGAATGGTTGGTCGATACGCTT -ACGGAATGGTTGGTCGATAGCGTT -ACGGAATGGTTGGTCGATTTCGTC -ACGGAATGGTTGGTCGATTCTCTC -ACGGAATGGTTGGTCGATTGGATC -ACGGAATGGTTGGTCGATCACTTC -ACGGAATGGTTGGTCGATGTACTC -ACGGAATGGTTGGTCGATGATGTC -ACGGAATGGTTGGTCGATACAGTC -ACGGAATGGTTGGTCGATTTGCTG -ACGGAATGGTTGGTCGATTCCATG -ACGGAATGGTTGGTCGATTGTGTG -ACGGAATGGTTGGTCGATCTAGTG -ACGGAATGGTTGGTCGATCATCTG -ACGGAATGGTTGGTCGATGAGTTG -ACGGAATGGTTGGTCGATAGACTG -ACGGAATGGTTGGTCGATTCGGTA -ACGGAATGGTTGGTCGATTGCCTA -ACGGAATGGTTGGTCGATCCACTA -ACGGAATGGTTGGTCGATGGAGTA -ACGGAATGGTTGGTCGATTCGTCT -ACGGAATGGTTGGTCGATTGCACT -ACGGAATGGTTGGTCGATCTGACT -ACGGAATGGTTGGTCGATCAACCT -ACGGAATGGTTGGTCGATGCTACT -ACGGAATGGTTGGTCGATGGATCT -ACGGAATGGTTGGTCGATAAGGCT -ACGGAATGGTTGGTCGATTCAACC -ACGGAATGGTTGGTCGATTGTTCC -ACGGAATGGTTGGTCGATATTCCC -ACGGAATGGTTGGTCGATTTCTCG -ACGGAATGGTTGGTCGATTAGACG -ACGGAATGGTTGGTCGATGTAACG -ACGGAATGGTTGGTCGATACTTCG -ACGGAATGGTTGGTCGATTACGCA -ACGGAATGGTTGGTCGATCTTGCA -ACGGAATGGTTGGTCGATCGAACA -ACGGAATGGTTGGTCGATCAGTCA -ACGGAATGGTTGGTCGATGATCCA -ACGGAATGGTTGGTCGATACGACA -ACGGAATGGTTGGTCGATAGCTCA -ACGGAATGGTTGGTCGATTCACGT -ACGGAATGGTTGGTCGATCGTAGT -ACGGAATGGTTGGTCGATGTCAGT -ACGGAATGGTTGGTCGATGAAGGT -ACGGAATGGTTGGTCGATAACCGT -ACGGAATGGTTGGTCGATTTGTGC -ACGGAATGGTTGGTCGATCTAAGC -ACGGAATGGTTGGTCGATACTAGC -ACGGAATGGTTGGTCGATAGATGC -ACGGAATGGTTGGTCGATTGAAGG -ACGGAATGGTTGGTCGATCAATGG -ACGGAATGGTTGGTCGATATGAGG -ACGGAATGGTTGGTCGATAATGGG -ACGGAATGGTTGGTCGATTCCTGA -ACGGAATGGTTGGTCGATTAGCGA -ACGGAATGGTTGGTCGATCACAGA -ACGGAATGGTTGGTCGATGCAAGA -ACGGAATGGTTGGTCGATGGTTGA -ACGGAATGGTTGGTCGATTCCGAT -ACGGAATGGTTGGTCGATTGGCAT -ACGGAATGGTTGGTCGATCGAGAT -ACGGAATGGTTGGTCGATTACCAC -ACGGAATGGTTGGTCGATCAGAAC -ACGGAATGGTTGGTCGATGTCTAC -ACGGAATGGTTGGTCGATACGTAC -ACGGAATGGTTGGTCGATAGTGAC -ACGGAATGGTTGGTCGATCTGTAG -ACGGAATGGTTGGTCGATCCTAAG -ACGGAATGGTTGGTCGATGTTCAG -ACGGAATGGTTGGTCGATGCATAG -ACGGAATGGTTGGTCGATGACAAG -ACGGAATGGTTGGTCGATAAGCAG -ACGGAATGGTTGGTCGATCGTCAA -ACGGAATGGTTGGTCGATGCTGAA -ACGGAATGGTTGGTCGATAGTACG -ACGGAATGGTTGGTCGATATCCGA -ACGGAATGGTTGGTCGATATGGGA -ACGGAATGGTTGGTCGATGTGCAA -ACGGAATGGTTGGTCGATGAGGAA -ACGGAATGGTTGGTCGATCAGGTA -ACGGAATGGTTGGTCGATGACTCT -ACGGAATGGTTGGTCGATAGTCCT -ACGGAATGGTTGGTCGATTAAGCC -ACGGAATGGTTGGTCGATATAGCC -ACGGAATGGTTGGTCGATTAACCG -ACGGAATGGTTGGTCGATATGCCA -ACGGAATGGTTGGTCACAGGAAAC -ACGGAATGGTTGGTCACAAACACC -ACGGAATGGTTGGTCACAATCGAG -ACGGAATGGTTGGTCACACTCCTT -ACGGAATGGTTGGTCACACCTGTT -ACGGAATGGTTGGTCACACGGTTT -ACGGAATGGTTGGTCACAGTGGTT -ACGGAATGGTTGGTCACAGCCTTT -ACGGAATGGTTGGTCACAGGTCTT -ACGGAATGGTTGGTCACAACGCTT -ACGGAATGGTTGGTCACAAGCGTT -ACGGAATGGTTGGTCACATTCGTC -ACGGAATGGTTGGTCACATCTCTC -ACGGAATGGTTGGTCACATGGATC -ACGGAATGGTTGGTCACACACTTC -ACGGAATGGTTGGTCACAGTACTC -ACGGAATGGTTGGTCACAGATGTC -ACGGAATGGTTGGTCACAACAGTC -ACGGAATGGTTGGTCACATTGCTG -ACGGAATGGTTGGTCACATCCATG -ACGGAATGGTTGGTCACATGTGTG -ACGGAATGGTTGGTCACACTAGTG -ACGGAATGGTTGGTCACACATCTG -ACGGAATGGTTGGTCACAGAGTTG -ACGGAATGGTTGGTCACAAGACTG -ACGGAATGGTTGGTCACATCGGTA -ACGGAATGGTTGGTCACATGCCTA -ACGGAATGGTTGGTCACACCACTA -ACGGAATGGTTGGTCACAGGAGTA -ACGGAATGGTTGGTCACATCGTCT -ACGGAATGGTTGGTCACATGCACT -ACGGAATGGTTGGTCACACTGACT -ACGGAATGGTTGGTCACACAACCT -ACGGAATGGTTGGTCACAGCTACT -ACGGAATGGTTGGTCACAGGATCT -ACGGAATGGTTGGTCACAAAGGCT -ACGGAATGGTTGGTCACATCAACC -ACGGAATGGTTGGTCACATGTTCC -ACGGAATGGTTGGTCACAATTCCC -ACGGAATGGTTGGTCACATTCTCG -ACGGAATGGTTGGTCACATAGACG -ACGGAATGGTTGGTCACAGTAACG -ACGGAATGGTTGGTCACAACTTCG -ACGGAATGGTTGGTCACATACGCA -ACGGAATGGTTGGTCACACTTGCA -ACGGAATGGTTGGTCACACGAACA -ACGGAATGGTTGGTCACACAGTCA -ACGGAATGGTTGGTCACAGATCCA -ACGGAATGGTTGGTCACAACGACA -ACGGAATGGTTGGTCACAAGCTCA -ACGGAATGGTTGGTCACATCACGT -ACGGAATGGTTGGTCACACGTAGT -ACGGAATGGTTGGTCACAGTCAGT -ACGGAATGGTTGGTCACAGAAGGT -ACGGAATGGTTGGTCACAAACCGT -ACGGAATGGTTGGTCACATTGTGC -ACGGAATGGTTGGTCACACTAAGC -ACGGAATGGTTGGTCACAACTAGC -ACGGAATGGTTGGTCACAAGATGC -ACGGAATGGTTGGTCACATGAAGG -ACGGAATGGTTGGTCACACAATGG -ACGGAATGGTTGGTCACAATGAGG -ACGGAATGGTTGGTCACAAATGGG -ACGGAATGGTTGGTCACATCCTGA -ACGGAATGGTTGGTCACATAGCGA -ACGGAATGGTTGGTCACACACAGA -ACGGAATGGTTGGTCACAGCAAGA -ACGGAATGGTTGGTCACAGGTTGA -ACGGAATGGTTGGTCACATCCGAT -ACGGAATGGTTGGTCACATGGCAT -ACGGAATGGTTGGTCACACGAGAT -ACGGAATGGTTGGTCACATACCAC -ACGGAATGGTTGGTCACACAGAAC -ACGGAATGGTTGGTCACAGTCTAC -ACGGAATGGTTGGTCACAACGTAC -ACGGAATGGTTGGTCACAAGTGAC -ACGGAATGGTTGGTCACACTGTAG -ACGGAATGGTTGGTCACACCTAAG -ACGGAATGGTTGGTCACAGTTCAG -ACGGAATGGTTGGTCACAGCATAG -ACGGAATGGTTGGTCACAGACAAG -ACGGAATGGTTGGTCACAAAGCAG -ACGGAATGGTTGGTCACACGTCAA -ACGGAATGGTTGGTCACAGCTGAA -ACGGAATGGTTGGTCACAAGTACG -ACGGAATGGTTGGTCACAATCCGA -ACGGAATGGTTGGTCACAATGGGA -ACGGAATGGTTGGTCACAGTGCAA -ACGGAATGGTTGGTCACAGAGGAA -ACGGAATGGTTGGTCACACAGGTA -ACGGAATGGTTGGTCACAGACTCT -ACGGAATGGTTGGTCACAAGTCCT -ACGGAATGGTTGGTCACATAAGCC -ACGGAATGGTTGGTCACAATAGCC -ACGGAATGGTTGGTCACATAACCG -ACGGAATGGTTGGTCACAATGCCA -ACGGAATGGTTGCTGTTGGGAAAC -ACGGAATGGTTGCTGTTGAACACC -ACGGAATGGTTGCTGTTGATCGAG -ACGGAATGGTTGCTGTTGCTCCTT -ACGGAATGGTTGCTGTTGCCTGTT -ACGGAATGGTTGCTGTTGCGGTTT -ACGGAATGGTTGCTGTTGGTGGTT -ACGGAATGGTTGCTGTTGGCCTTT -ACGGAATGGTTGCTGTTGGGTCTT -ACGGAATGGTTGCTGTTGACGCTT -ACGGAATGGTTGCTGTTGAGCGTT -ACGGAATGGTTGCTGTTGTTCGTC -ACGGAATGGTTGCTGTTGTCTCTC -ACGGAATGGTTGCTGTTGTGGATC -ACGGAATGGTTGCTGTTGCACTTC -ACGGAATGGTTGCTGTTGGTACTC -ACGGAATGGTTGCTGTTGGATGTC -ACGGAATGGTTGCTGTTGACAGTC -ACGGAATGGTTGCTGTTGTTGCTG -ACGGAATGGTTGCTGTTGTCCATG -ACGGAATGGTTGCTGTTGTGTGTG -ACGGAATGGTTGCTGTTGCTAGTG -ACGGAATGGTTGCTGTTGCATCTG -ACGGAATGGTTGCTGTTGGAGTTG -ACGGAATGGTTGCTGTTGAGACTG -ACGGAATGGTTGCTGTTGTCGGTA -ACGGAATGGTTGCTGTTGTGCCTA -ACGGAATGGTTGCTGTTGCCACTA -ACGGAATGGTTGCTGTTGGGAGTA -ACGGAATGGTTGCTGTTGTCGTCT -ACGGAATGGTTGCTGTTGTGCACT -ACGGAATGGTTGCTGTTGCTGACT -ACGGAATGGTTGCTGTTGCAACCT -ACGGAATGGTTGCTGTTGGCTACT -ACGGAATGGTTGCTGTTGGGATCT -ACGGAATGGTTGCTGTTGAAGGCT -ACGGAATGGTTGCTGTTGTCAACC -ACGGAATGGTTGCTGTTGTGTTCC -ACGGAATGGTTGCTGTTGATTCCC -ACGGAATGGTTGCTGTTGTTCTCG -ACGGAATGGTTGCTGTTGTAGACG -ACGGAATGGTTGCTGTTGGTAACG -ACGGAATGGTTGCTGTTGACTTCG -ACGGAATGGTTGCTGTTGTACGCA -ACGGAATGGTTGCTGTTGCTTGCA -ACGGAATGGTTGCTGTTGCGAACA -ACGGAATGGTTGCTGTTGCAGTCA -ACGGAATGGTTGCTGTTGGATCCA -ACGGAATGGTTGCTGTTGACGACA -ACGGAATGGTTGCTGTTGAGCTCA -ACGGAATGGTTGCTGTTGTCACGT -ACGGAATGGTTGCTGTTGCGTAGT -ACGGAATGGTTGCTGTTGGTCAGT -ACGGAATGGTTGCTGTTGGAAGGT -ACGGAATGGTTGCTGTTGAACCGT -ACGGAATGGTTGCTGTTGTTGTGC -ACGGAATGGTTGCTGTTGCTAAGC -ACGGAATGGTTGCTGTTGACTAGC -ACGGAATGGTTGCTGTTGAGATGC -ACGGAATGGTTGCTGTTGTGAAGG -ACGGAATGGTTGCTGTTGCAATGG -ACGGAATGGTTGCTGTTGATGAGG -ACGGAATGGTTGCTGTTGAATGGG -ACGGAATGGTTGCTGTTGTCCTGA -ACGGAATGGTTGCTGTTGTAGCGA -ACGGAATGGTTGCTGTTGCACAGA -ACGGAATGGTTGCTGTTGGCAAGA -ACGGAATGGTTGCTGTTGGGTTGA -ACGGAATGGTTGCTGTTGTCCGAT -ACGGAATGGTTGCTGTTGTGGCAT -ACGGAATGGTTGCTGTTGCGAGAT -ACGGAATGGTTGCTGTTGTACCAC -ACGGAATGGTTGCTGTTGCAGAAC -ACGGAATGGTTGCTGTTGGTCTAC -ACGGAATGGTTGCTGTTGACGTAC -ACGGAATGGTTGCTGTTGAGTGAC -ACGGAATGGTTGCTGTTGCTGTAG -ACGGAATGGTTGCTGTTGCCTAAG -ACGGAATGGTTGCTGTTGGTTCAG -ACGGAATGGTTGCTGTTGGCATAG -ACGGAATGGTTGCTGTTGGACAAG -ACGGAATGGTTGCTGTTGAAGCAG -ACGGAATGGTTGCTGTTGCGTCAA -ACGGAATGGTTGCTGTTGGCTGAA -ACGGAATGGTTGCTGTTGAGTACG -ACGGAATGGTTGCTGTTGATCCGA -ACGGAATGGTTGCTGTTGATGGGA -ACGGAATGGTTGCTGTTGGTGCAA -ACGGAATGGTTGCTGTTGGAGGAA -ACGGAATGGTTGCTGTTGCAGGTA -ACGGAATGGTTGCTGTTGGACTCT -ACGGAATGGTTGCTGTTGAGTCCT -ACGGAATGGTTGCTGTTGTAAGCC -ACGGAATGGTTGCTGTTGATAGCC -ACGGAATGGTTGCTGTTGTAACCG -ACGGAATGGTTGCTGTTGATGCCA -ACGGAATGGTTGATGTCCGGAAAC -ACGGAATGGTTGATGTCCAACACC -ACGGAATGGTTGATGTCCATCGAG -ACGGAATGGTTGATGTCCCTCCTT -ACGGAATGGTTGATGTCCCCTGTT -ACGGAATGGTTGATGTCCCGGTTT -ACGGAATGGTTGATGTCCGTGGTT -ACGGAATGGTTGATGTCCGCCTTT -ACGGAATGGTTGATGTCCGGTCTT -ACGGAATGGTTGATGTCCACGCTT -ACGGAATGGTTGATGTCCAGCGTT -ACGGAATGGTTGATGTCCTTCGTC -ACGGAATGGTTGATGTCCTCTCTC -ACGGAATGGTTGATGTCCTGGATC -ACGGAATGGTTGATGTCCCACTTC -ACGGAATGGTTGATGTCCGTACTC -ACGGAATGGTTGATGTCCGATGTC -ACGGAATGGTTGATGTCCACAGTC -ACGGAATGGTTGATGTCCTTGCTG -ACGGAATGGTTGATGTCCTCCATG -ACGGAATGGTTGATGTCCTGTGTG -ACGGAATGGTTGATGTCCCTAGTG -ACGGAATGGTTGATGTCCCATCTG -ACGGAATGGTTGATGTCCGAGTTG -ACGGAATGGTTGATGTCCAGACTG -ACGGAATGGTTGATGTCCTCGGTA -ACGGAATGGTTGATGTCCTGCCTA -ACGGAATGGTTGATGTCCCCACTA -ACGGAATGGTTGATGTCCGGAGTA -ACGGAATGGTTGATGTCCTCGTCT -ACGGAATGGTTGATGTCCTGCACT -ACGGAATGGTTGATGTCCCTGACT -ACGGAATGGTTGATGTCCCAACCT -ACGGAATGGTTGATGTCCGCTACT -ACGGAATGGTTGATGTCCGGATCT -ACGGAATGGTTGATGTCCAAGGCT -ACGGAATGGTTGATGTCCTCAACC -ACGGAATGGTTGATGTCCTGTTCC -ACGGAATGGTTGATGTCCATTCCC -ACGGAATGGTTGATGTCCTTCTCG -ACGGAATGGTTGATGTCCTAGACG -ACGGAATGGTTGATGTCCGTAACG -ACGGAATGGTTGATGTCCACTTCG -ACGGAATGGTTGATGTCCTACGCA -ACGGAATGGTTGATGTCCCTTGCA -ACGGAATGGTTGATGTCCCGAACA -ACGGAATGGTTGATGTCCCAGTCA -ACGGAATGGTTGATGTCCGATCCA -ACGGAATGGTTGATGTCCACGACA -ACGGAATGGTTGATGTCCAGCTCA -ACGGAATGGTTGATGTCCTCACGT -ACGGAATGGTTGATGTCCCGTAGT -ACGGAATGGTTGATGTCCGTCAGT -ACGGAATGGTTGATGTCCGAAGGT -ACGGAATGGTTGATGTCCAACCGT -ACGGAATGGTTGATGTCCTTGTGC -ACGGAATGGTTGATGTCCCTAAGC -ACGGAATGGTTGATGTCCACTAGC -ACGGAATGGTTGATGTCCAGATGC -ACGGAATGGTTGATGTCCTGAAGG -ACGGAATGGTTGATGTCCCAATGG -ACGGAATGGTTGATGTCCATGAGG -ACGGAATGGTTGATGTCCAATGGG -ACGGAATGGTTGATGTCCTCCTGA -ACGGAATGGTTGATGTCCTAGCGA -ACGGAATGGTTGATGTCCCACAGA -ACGGAATGGTTGATGTCCGCAAGA -ACGGAATGGTTGATGTCCGGTTGA -ACGGAATGGTTGATGTCCTCCGAT -ACGGAATGGTTGATGTCCTGGCAT -ACGGAATGGTTGATGTCCCGAGAT -ACGGAATGGTTGATGTCCTACCAC -ACGGAATGGTTGATGTCCCAGAAC -ACGGAATGGTTGATGTCCGTCTAC -ACGGAATGGTTGATGTCCACGTAC -ACGGAATGGTTGATGTCCAGTGAC -ACGGAATGGTTGATGTCCCTGTAG -ACGGAATGGTTGATGTCCCCTAAG -ACGGAATGGTTGATGTCCGTTCAG -ACGGAATGGTTGATGTCCGCATAG -ACGGAATGGTTGATGTCCGACAAG -ACGGAATGGTTGATGTCCAAGCAG -ACGGAATGGTTGATGTCCCGTCAA -ACGGAATGGTTGATGTCCGCTGAA -ACGGAATGGTTGATGTCCAGTACG -ACGGAATGGTTGATGTCCATCCGA -ACGGAATGGTTGATGTCCATGGGA -ACGGAATGGTTGATGTCCGTGCAA -ACGGAATGGTTGATGTCCGAGGAA -ACGGAATGGTTGATGTCCCAGGTA -ACGGAATGGTTGATGTCCGACTCT -ACGGAATGGTTGATGTCCAGTCCT -ACGGAATGGTTGATGTCCTAAGCC -ACGGAATGGTTGATGTCCATAGCC -ACGGAATGGTTGATGTCCTAACCG -ACGGAATGGTTGATGTCCATGCCA -ACGGAATGGTTGGTGTGTGGAAAC -ACGGAATGGTTGGTGTGTAACACC -ACGGAATGGTTGGTGTGTATCGAG -ACGGAATGGTTGGTGTGTCTCCTT -ACGGAATGGTTGGTGTGTCCTGTT -ACGGAATGGTTGGTGTGTCGGTTT -ACGGAATGGTTGGTGTGTGTGGTT -ACGGAATGGTTGGTGTGTGCCTTT -ACGGAATGGTTGGTGTGTGGTCTT -ACGGAATGGTTGGTGTGTACGCTT -ACGGAATGGTTGGTGTGTAGCGTT -ACGGAATGGTTGGTGTGTTTCGTC -ACGGAATGGTTGGTGTGTTCTCTC -ACGGAATGGTTGGTGTGTTGGATC -ACGGAATGGTTGGTGTGTCACTTC -ACGGAATGGTTGGTGTGTGTACTC -ACGGAATGGTTGGTGTGTGATGTC -ACGGAATGGTTGGTGTGTACAGTC -ACGGAATGGTTGGTGTGTTTGCTG -ACGGAATGGTTGGTGTGTTCCATG -ACGGAATGGTTGGTGTGTTGTGTG -ACGGAATGGTTGGTGTGTCTAGTG -ACGGAATGGTTGGTGTGTCATCTG -ACGGAATGGTTGGTGTGTGAGTTG -ACGGAATGGTTGGTGTGTAGACTG -ACGGAATGGTTGGTGTGTTCGGTA -ACGGAATGGTTGGTGTGTTGCCTA -ACGGAATGGTTGGTGTGTCCACTA -ACGGAATGGTTGGTGTGTGGAGTA -ACGGAATGGTTGGTGTGTTCGTCT -ACGGAATGGTTGGTGTGTTGCACT -ACGGAATGGTTGGTGTGTCTGACT -ACGGAATGGTTGGTGTGTCAACCT -ACGGAATGGTTGGTGTGTGCTACT -ACGGAATGGTTGGTGTGTGGATCT -ACGGAATGGTTGGTGTGTAAGGCT -ACGGAATGGTTGGTGTGTTCAACC -ACGGAATGGTTGGTGTGTTGTTCC -ACGGAATGGTTGGTGTGTATTCCC -ACGGAATGGTTGGTGTGTTTCTCG -ACGGAATGGTTGGTGTGTTAGACG -ACGGAATGGTTGGTGTGTGTAACG -ACGGAATGGTTGGTGTGTACTTCG -ACGGAATGGTTGGTGTGTTACGCA -ACGGAATGGTTGGTGTGTCTTGCA -ACGGAATGGTTGGTGTGTCGAACA -ACGGAATGGTTGGTGTGTCAGTCA -ACGGAATGGTTGGTGTGTGATCCA -ACGGAATGGTTGGTGTGTACGACA -ACGGAATGGTTGGTGTGTAGCTCA -ACGGAATGGTTGGTGTGTTCACGT -ACGGAATGGTTGGTGTGTCGTAGT -ACGGAATGGTTGGTGTGTGTCAGT -ACGGAATGGTTGGTGTGTGAAGGT -ACGGAATGGTTGGTGTGTAACCGT -ACGGAATGGTTGGTGTGTTTGTGC -ACGGAATGGTTGGTGTGTCTAAGC -ACGGAATGGTTGGTGTGTACTAGC -ACGGAATGGTTGGTGTGTAGATGC -ACGGAATGGTTGGTGTGTTGAAGG -ACGGAATGGTTGGTGTGTCAATGG -ACGGAATGGTTGGTGTGTATGAGG -ACGGAATGGTTGGTGTGTAATGGG -ACGGAATGGTTGGTGTGTTCCTGA -ACGGAATGGTTGGTGTGTTAGCGA -ACGGAATGGTTGGTGTGTCACAGA -ACGGAATGGTTGGTGTGTGCAAGA -ACGGAATGGTTGGTGTGTGGTTGA -ACGGAATGGTTGGTGTGTTCCGAT -ACGGAATGGTTGGTGTGTTGGCAT -ACGGAATGGTTGGTGTGTCGAGAT -ACGGAATGGTTGGTGTGTTACCAC -ACGGAATGGTTGGTGTGTCAGAAC -ACGGAATGGTTGGTGTGTGTCTAC -ACGGAATGGTTGGTGTGTACGTAC -ACGGAATGGTTGGTGTGTAGTGAC -ACGGAATGGTTGGTGTGTCTGTAG -ACGGAATGGTTGGTGTGTCCTAAG -ACGGAATGGTTGGTGTGTGTTCAG -ACGGAATGGTTGGTGTGTGCATAG -ACGGAATGGTTGGTGTGTGACAAG -ACGGAATGGTTGGTGTGTAAGCAG -ACGGAATGGTTGGTGTGTCGTCAA -ACGGAATGGTTGGTGTGTGCTGAA -ACGGAATGGTTGGTGTGTAGTACG -ACGGAATGGTTGGTGTGTATCCGA -ACGGAATGGTTGGTGTGTATGGGA -ACGGAATGGTTGGTGTGTGTGCAA -ACGGAATGGTTGGTGTGTGAGGAA -ACGGAATGGTTGGTGTGTCAGGTA -ACGGAATGGTTGGTGTGTGACTCT -ACGGAATGGTTGGTGTGTAGTCCT -ACGGAATGGTTGGTGTGTTAAGCC -ACGGAATGGTTGGTGTGTATAGCC -ACGGAATGGTTGGTGTGTTAACCG -ACGGAATGGTTGGTGTGTATGCCA -ACGGAATGGTTGGTGCTAGGAAAC -ACGGAATGGTTGGTGCTAAACACC -ACGGAATGGTTGGTGCTAATCGAG -ACGGAATGGTTGGTGCTACTCCTT -ACGGAATGGTTGGTGCTACCTGTT -ACGGAATGGTTGGTGCTACGGTTT -ACGGAATGGTTGGTGCTAGTGGTT -ACGGAATGGTTGGTGCTAGCCTTT -ACGGAATGGTTGGTGCTAGGTCTT -ACGGAATGGTTGGTGCTAACGCTT -ACGGAATGGTTGGTGCTAAGCGTT -ACGGAATGGTTGGTGCTATTCGTC -ACGGAATGGTTGGTGCTATCTCTC -ACGGAATGGTTGGTGCTATGGATC -ACGGAATGGTTGGTGCTACACTTC -ACGGAATGGTTGGTGCTAGTACTC -ACGGAATGGTTGGTGCTAGATGTC -ACGGAATGGTTGGTGCTAACAGTC -ACGGAATGGTTGGTGCTATTGCTG -ACGGAATGGTTGGTGCTATCCATG -ACGGAATGGTTGGTGCTATGTGTG -ACGGAATGGTTGGTGCTACTAGTG -ACGGAATGGTTGGTGCTACATCTG -ACGGAATGGTTGGTGCTAGAGTTG -ACGGAATGGTTGGTGCTAAGACTG -ACGGAATGGTTGGTGCTATCGGTA -ACGGAATGGTTGGTGCTATGCCTA -ACGGAATGGTTGGTGCTACCACTA -ACGGAATGGTTGGTGCTAGGAGTA -ACGGAATGGTTGGTGCTATCGTCT -ACGGAATGGTTGGTGCTATGCACT -ACGGAATGGTTGGTGCTACTGACT -ACGGAATGGTTGGTGCTACAACCT -ACGGAATGGTTGGTGCTAGCTACT -ACGGAATGGTTGGTGCTAGGATCT -ACGGAATGGTTGGTGCTAAAGGCT -ACGGAATGGTTGGTGCTATCAACC -ACGGAATGGTTGGTGCTATGTTCC -ACGGAATGGTTGGTGCTAATTCCC -ACGGAATGGTTGGTGCTATTCTCG -ACGGAATGGTTGGTGCTATAGACG -ACGGAATGGTTGGTGCTAGTAACG -ACGGAATGGTTGGTGCTAACTTCG -ACGGAATGGTTGGTGCTATACGCA -ACGGAATGGTTGGTGCTACTTGCA -ACGGAATGGTTGGTGCTACGAACA -ACGGAATGGTTGGTGCTACAGTCA -ACGGAATGGTTGGTGCTAGATCCA -ACGGAATGGTTGGTGCTAACGACA -ACGGAATGGTTGGTGCTAAGCTCA -ACGGAATGGTTGGTGCTATCACGT -ACGGAATGGTTGGTGCTACGTAGT -ACGGAATGGTTGGTGCTAGTCAGT -ACGGAATGGTTGGTGCTAGAAGGT -ACGGAATGGTTGGTGCTAAACCGT -ACGGAATGGTTGGTGCTATTGTGC -ACGGAATGGTTGGTGCTACTAAGC -ACGGAATGGTTGGTGCTAACTAGC -ACGGAATGGTTGGTGCTAAGATGC -ACGGAATGGTTGGTGCTATGAAGG -ACGGAATGGTTGGTGCTACAATGG -ACGGAATGGTTGGTGCTAATGAGG -ACGGAATGGTTGGTGCTAAATGGG -ACGGAATGGTTGGTGCTATCCTGA -ACGGAATGGTTGGTGCTATAGCGA -ACGGAATGGTTGGTGCTACACAGA -ACGGAATGGTTGGTGCTAGCAAGA -ACGGAATGGTTGGTGCTAGGTTGA -ACGGAATGGTTGGTGCTATCCGAT -ACGGAATGGTTGGTGCTATGGCAT -ACGGAATGGTTGGTGCTACGAGAT -ACGGAATGGTTGGTGCTATACCAC -ACGGAATGGTTGGTGCTACAGAAC -ACGGAATGGTTGGTGCTAGTCTAC -ACGGAATGGTTGGTGCTAACGTAC -ACGGAATGGTTGGTGCTAAGTGAC -ACGGAATGGTTGGTGCTACTGTAG -ACGGAATGGTTGGTGCTACCTAAG -ACGGAATGGTTGGTGCTAGTTCAG -ACGGAATGGTTGGTGCTAGCATAG -ACGGAATGGTTGGTGCTAGACAAG -ACGGAATGGTTGGTGCTAAAGCAG -ACGGAATGGTTGGTGCTACGTCAA -ACGGAATGGTTGGTGCTAGCTGAA -ACGGAATGGTTGGTGCTAAGTACG -ACGGAATGGTTGGTGCTAATCCGA -ACGGAATGGTTGGTGCTAATGGGA -ACGGAATGGTTGGTGCTAGTGCAA -ACGGAATGGTTGGTGCTAGAGGAA -ACGGAATGGTTGGTGCTACAGGTA -ACGGAATGGTTGGTGCTAGACTCT -ACGGAATGGTTGGTGCTAAGTCCT -ACGGAATGGTTGGTGCTATAAGCC -ACGGAATGGTTGGTGCTAATAGCC -ACGGAATGGTTGGTGCTATAACCG -ACGGAATGGTTGGTGCTAATGCCA -ACGGAATGGTTGCTGCATGGAAAC -ACGGAATGGTTGCTGCATAACACC -ACGGAATGGTTGCTGCATATCGAG -ACGGAATGGTTGCTGCATCTCCTT -ACGGAATGGTTGCTGCATCCTGTT -ACGGAATGGTTGCTGCATCGGTTT -ACGGAATGGTTGCTGCATGTGGTT -ACGGAATGGTTGCTGCATGCCTTT -ACGGAATGGTTGCTGCATGGTCTT -ACGGAATGGTTGCTGCATACGCTT -ACGGAATGGTTGCTGCATAGCGTT -ACGGAATGGTTGCTGCATTTCGTC -ACGGAATGGTTGCTGCATTCTCTC -ACGGAATGGTTGCTGCATTGGATC -ACGGAATGGTTGCTGCATCACTTC -ACGGAATGGTTGCTGCATGTACTC -ACGGAATGGTTGCTGCATGATGTC -ACGGAATGGTTGCTGCATACAGTC -ACGGAATGGTTGCTGCATTTGCTG -ACGGAATGGTTGCTGCATTCCATG -ACGGAATGGTTGCTGCATTGTGTG -ACGGAATGGTTGCTGCATCTAGTG -ACGGAATGGTTGCTGCATCATCTG -ACGGAATGGTTGCTGCATGAGTTG -ACGGAATGGTTGCTGCATAGACTG -ACGGAATGGTTGCTGCATTCGGTA -ACGGAATGGTTGCTGCATTGCCTA -ACGGAATGGTTGCTGCATCCACTA -ACGGAATGGTTGCTGCATGGAGTA -ACGGAATGGTTGCTGCATTCGTCT -ACGGAATGGTTGCTGCATTGCACT -ACGGAATGGTTGCTGCATCTGACT -ACGGAATGGTTGCTGCATCAACCT -ACGGAATGGTTGCTGCATGCTACT -ACGGAATGGTTGCTGCATGGATCT -ACGGAATGGTTGCTGCATAAGGCT -ACGGAATGGTTGCTGCATTCAACC -ACGGAATGGTTGCTGCATTGTTCC -ACGGAATGGTTGCTGCATATTCCC -ACGGAATGGTTGCTGCATTTCTCG -ACGGAATGGTTGCTGCATTAGACG -ACGGAATGGTTGCTGCATGTAACG -ACGGAATGGTTGCTGCATACTTCG -ACGGAATGGTTGCTGCATTACGCA -ACGGAATGGTTGCTGCATCTTGCA -ACGGAATGGTTGCTGCATCGAACA -ACGGAATGGTTGCTGCATCAGTCA -ACGGAATGGTTGCTGCATGATCCA -ACGGAATGGTTGCTGCATACGACA -ACGGAATGGTTGCTGCATAGCTCA -ACGGAATGGTTGCTGCATTCACGT -ACGGAATGGTTGCTGCATCGTAGT -ACGGAATGGTTGCTGCATGTCAGT -ACGGAATGGTTGCTGCATGAAGGT -ACGGAATGGTTGCTGCATAACCGT -ACGGAATGGTTGCTGCATTTGTGC -ACGGAATGGTTGCTGCATCTAAGC -ACGGAATGGTTGCTGCATACTAGC -ACGGAATGGTTGCTGCATAGATGC -ACGGAATGGTTGCTGCATTGAAGG -ACGGAATGGTTGCTGCATCAATGG -ACGGAATGGTTGCTGCATATGAGG -ACGGAATGGTTGCTGCATAATGGG -ACGGAATGGTTGCTGCATTCCTGA -ACGGAATGGTTGCTGCATTAGCGA -ACGGAATGGTTGCTGCATCACAGA -ACGGAATGGTTGCTGCATGCAAGA -ACGGAATGGTTGCTGCATGGTTGA -ACGGAATGGTTGCTGCATTCCGAT -ACGGAATGGTTGCTGCATTGGCAT -ACGGAATGGTTGCTGCATCGAGAT -ACGGAATGGTTGCTGCATTACCAC -ACGGAATGGTTGCTGCATCAGAAC -ACGGAATGGTTGCTGCATGTCTAC -ACGGAATGGTTGCTGCATACGTAC -ACGGAATGGTTGCTGCATAGTGAC -ACGGAATGGTTGCTGCATCTGTAG -ACGGAATGGTTGCTGCATCCTAAG -ACGGAATGGTTGCTGCATGTTCAG -ACGGAATGGTTGCTGCATGCATAG -ACGGAATGGTTGCTGCATGACAAG -ACGGAATGGTTGCTGCATAAGCAG -ACGGAATGGTTGCTGCATCGTCAA -ACGGAATGGTTGCTGCATGCTGAA -ACGGAATGGTTGCTGCATAGTACG -ACGGAATGGTTGCTGCATATCCGA -ACGGAATGGTTGCTGCATATGGGA -ACGGAATGGTTGCTGCATGTGCAA -ACGGAATGGTTGCTGCATGAGGAA -ACGGAATGGTTGCTGCATCAGGTA -ACGGAATGGTTGCTGCATGACTCT -ACGGAATGGTTGCTGCATAGTCCT -ACGGAATGGTTGCTGCATTAAGCC -ACGGAATGGTTGCTGCATATAGCC -ACGGAATGGTTGCTGCATTAACCG -ACGGAATGGTTGCTGCATATGCCA -ACGGAATGGTTGTTGGAGGGAAAC -ACGGAATGGTTGTTGGAGAACACC -ACGGAATGGTTGTTGGAGATCGAG -ACGGAATGGTTGTTGGAGCTCCTT -ACGGAATGGTTGTTGGAGCCTGTT -ACGGAATGGTTGTTGGAGCGGTTT -ACGGAATGGTTGTTGGAGGTGGTT -ACGGAATGGTTGTTGGAGGCCTTT -ACGGAATGGTTGTTGGAGGGTCTT -ACGGAATGGTTGTTGGAGACGCTT -ACGGAATGGTTGTTGGAGAGCGTT -ACGGAATGGTTGTTGGAGTTCGTC -ACGGAATGGTTGTTGGAGTCTCTC -ACGGAATGGTTGTTGGAGTGGATC -ACGGAATGGTTGTTGGAGCACTTC -ACGGAATGGTTGTTGGAGGTACTC -ACGGAATGGTTGTTGGAGGATGTC -ACGGAATGGTTGTTGGAGACAGTC -ACGGAATGGTTGTTGGAGTTGCTG -ACGGAATGGTTGTTGGAGTCCATG -ACGGAATGGTTGTTGGAGTGTGTG -ACGGAATGGTTGTTGGAGCTAGTG -ACGGAATGGTTGTTGGAGCATCTG -ACGGAATGGTTGTTGGAGGAGTTG -ACGGAATGGTTGTTGGAGAGACTG -ACGGAATGGTTGTTGGAGTCGGTA -ACGGAATGGTTGTTGGAGTGCCTA -ACGGAATGGTTGTTGGAGCCACTA -ACGGAATGGTTGTTGGAGGGAGTA -ACGGAATGGTTGTTGGAGTCGTCT -ACGGAATGGTTGTTGGAGTGCACT -ACGGAATGGTTGTTGGAGCTGACT -ACGGAATGGTTGTTGGAGCAACCT -ACGGAATGGTTGTTGGAGGCTACT -ACGGAATGGTTGTTGGAGGGATCT -ACGGAATGGTTGTTGGAGAAGGCT -ACGGAATGGTTGTTGGAGTCAACC -ACGGAATGGTTGTTGGAGTGTTCC -ACGGAATGGTTGTTGGAGATTCCC -ACGGAATGGTTGTTGGAGTTCTCG -ACGGAATGGTTGTTGGAGTAGACG -ACGGAATGGTTGTTGGAGGTAACG -ACGGAATGGTTGTTGGAGACTTCG -ACGGAATGGTTGTTGGAGTACGCA -ACGGAATGGTTGTTGGAGCTTGCA -ACGGAATGGTTGTTGGAGCGAACA -ACGGAATGGTTGTTGGAGCAGTCA -ACGGAATGGTTGTTGGAGGATCCA -ACGGAATGGTTGTTGGAGACGACA -ACGGAATGGTTGTTGGAGAGCTCA -ACGGAATGGTTGTTGGAGTCACGT -ACGGAATGGTTGTTGGAGCGTAGT -ACGGAATGGTTGTTGGAGGTCAGT -ACGGAATGGTTGTTGGAGGAAGGT -ACGGAATGGTTGTTGGAGAACCGT -ACGGAATGGTTGTTGGAGTTGTGC -ACGGAATGGTTGTTGGAGCTAAGC -ACGGAATGGTTGTTGGAGACTAGC -ACGGAATGGTTGTTGGAGAGATGC -ACGGAATGGTTGTTGGAGTGAAGG -ACGGAATGGTTGTTGGAGCAATGG -ACGGAATGGTTGTTGGAGATGAGG -ACGGAATGGTTGTTGGAGAATGGG -ACGGAATGGTTGTTGGAGTCCTGA -ACGGAATGGTTGTTGGAGTAGCGA -ACGGAATGGTTGTTGGAGCACAGA -ACGGAATGGTTGTTGGAGGCAAGA -ACGGAATGGTTGTTGGAGGGTTGA -ACGGAATGGTTGTTGGAGTCCGAT -ACGGAATGGTTGTTGGAGTGGCAT -ACGGAATGGTTGTTGGAGCGAGAT -ACGGAATGGTTGTTGGAGTACCAC -ACGGAATGGTTGTTGGAGCAGAAC -ACGGAATGGTTGTTGGAGGTCTAC -ACGGAATGGTTGTTGGAGACGTAC -ACGGAATGGTTGTTGGAGAGTGAC -ACGGAATGGTTGTTGGAGCTGTAG -ACGGAATGGTTGTTGGAGCCTAAG -ACGGAATGGTTGTTGGAGGTTCAG -ACGGAATGGTTGTTGGAGGCATAG -ACGGAATGGTTGTTGGAGGACAAG -ACGGAATGGTTGTTGGAGAAGCAG -ACGGAATGGTTGTTGGAGCGTCAA -ACGGAATGGTTGTTGGAGGCTGAA -ACGGAATGGTTGTTGGAGAGTACG -ACGGAATGGTTGTTGGAGATCCGA -ACGGAATGGTTGTTGGAGATGGGA -ACGGAATGGTTGTTGGAGGTGCAA -ACGGAATGGTTGTTGGAGGAGGAA -ACGGAATGGTTGTTGGAGCAGGTA -ACGGAATGGTTGTTGGAGGACTCT -ACGGAATGGTTGTTGGAGAGTCCT -ACGGAATGGTTGTTGGAGTAAGCC -ACGGAATGGTTGTTGGAGATAGCC -ACGGAATGGTTGTTGGAGTAACCG -ACGGAATGGTTGTTGGAGATGCCA -ACGGAATGGTTGCTGAGAGGAAAC -ACGGAATGGTTGCTGAGAAACACC -ACGGAATGGTTGCTGAGAATCGAG -ACGGAATGGTTGCTGAGACTCCTT -ACGGAATGGTTGCTGAGACCTGTT -ACGGAATGGTTGCTGAGACGGTTT -ACGGAATGGTTGCTGAGAGTGGTT -ACGGAATGGTTGCTGAGAGCCTTT -ACGGAATGGTTGCTGAGAGGTCTT -ACGGAATGGTTGCTGAGAACGCTT -ACGGAATGGTTGCTGAGAAGCGTT -ACGGAATGGTTGCTGAGATTCGTC -ACGGAATGGTTGCTGAGATCTCTC -ACGGAATGGTTGCTGAGATGGATC -ACGGAATGGTTGCTGAGACACTTC -ACGGAATGGTTGCTGAGAGTACTC -ACGGAATGGTTGCTGAGAGATGTC -ACGGAATGGTTGCTGAGAACAGTC -ACGGAATGGTTGCTGAGATTGCTG -ACGGAATGGTTGCTGAGATCCATG -ACGGAATGGTTGCTGAGATGTGTG -ACGGAATGGTTGCTGAGACTAGTG -ACGGAATGGTTGCTGAGACATCTG -ACGGAATGGTTGCTGAGAGAGTTG -ACGGAATGGTTGCTGAGAAGACTG -ACGGAATGGTTGCTGAGATCGGTA -ACGGAATGGTTGCTGAGATGCCTA -ACGGAATGGTTGCTGAGACCACTA -ACGGAATGGTTGCTGAGAGGAGTA -ACGGAATGGTTGCTGAGATCGTCT -ACGGAATGGTTGCTGAGATGCACT -ACGGAATGGTTGCTGAGACTGACT -ACGGAATGGTTGCTGAGACAACCT -ACGGAATGGTTGCTGAGAGCTACT -ACGGAATGGTTGCTGAGAGGATCT -ACGGAATGGTTGCTGAGAAAGGCT -ACGGAATGGTTGCTGAGATCAACC -ACGGAATGGTTGCTGAGATGTTCC -ACGGAATGGTTGCTGAGAATTCCC -ACGGAATGGTTGCTGAGATTCTCG -ACGGAATGGTTGCTGAGATAGACG -ACGGAATGGTTGCTGAGAGTAACG -ACGGAATGGTTGCTGAGAACTTCG -ACGGAATGGTTGCTGAGATACGCA -ACGGAATGGTTGCTGAGACTTGCA -ACGGAATGGTTGCTGAGACGAACA -ACGGAATGGTTGCTGAGACAGTCA -ACGGAATGGTTGCTGAGAGATCCA -ACGGAATGGTTGCTGAGAACGACA -ACGGAATGGTTGCTGAGAAGCTCA -ACGGAATGGTTGCTGAGATCACGT -ACGGAATGGTTGCTGAGACGTAGT -ACGGAATGGTTGCTGAGAGTCAGT -ACGGAATGGTTGCTGAGAGAAGGT -ACGGAATGGTTGCTGAGAAACCGT -ACGGAATGGTTGCTGAGATTGTGC -ACGGAATGGTTGCTGAGACTAAGC -ACGGAATGGTTGCTGAGAACTAGC -ACGGAATGGTTGCTGAGAAGATGC -ACGGAATGGTTGCTGAGATGAAGG -ACGGAATGGTTGCTGAGACAATGG -ACGGAATGGTTGCTGAGAATGAGG -ACGGAATGGTTGCTGAGAAATGGG -ACGGAATGGTTGCTGAGATCCTGA -ACGGAATGGTTGCTGAGATAGCGA -ACGGAATGGTTGCTGAGACACAGA -ACGGAATGGTTGCTGAGAGCAAGA -ACGGAATGGTTGCTGAGAGGTTGA -ACGGAATGGTTGCTGAGATCCGAT -ACGGAATGGTTGCTGAGATGGCAT -ACGGAATGGTTGCTGAGACGAGAT -ACGGAATGGTTGCTGAGATACCAC -ACGGAATGGTTGCTGAGACAGAAC -ACGGAATGGTTGCTGAGAGTCTAC -ACGGAATGGTTGCTGAGAACGTAC -ACGGAATGGTTGCTGAGAAGTGAC -ACGGAATGGTTGCTGAGACTGTAG -ACGGAATGGTTGCTGAGACCTAAG -ACGGAATGGTTGCTGAGAGTTCAG -ACGGAATGGTTGCTGAGAGCATAG -ACGGAATGGTTGCTGAGAGACAAG -ACGGAATGGTTGCTGAGAAAGCAG -ACGGAATGGTTGCTGAGACGTCAA -ACGGAATGGTTGCTGAGAGCTGAA -ACGGAATGGTTGCTGAGAAGTACG -ACGGAATGGTTGCTGAGAATCCGA -ACGGAATGGTTGCTGAGAATGGGA -ACGGAATGGTTGCTGAGAGTGCAA -ACGGAATGGTTGCTGAGAGAGGAA -ACGGAATGGTTGCTGAGACAGGTA -ACGGAATGGTTGCTGAGAGACTCT -ACGGAATGGTTGCTGAGAAGTCCT -ACGGAATGGTTGCTGAGATAAGCC -ACGGAATGGTTGCTGAGAATAGCC -ACGGAATGGTTGCTGAGATAACCG -ACGGAATGGTTGCTGAGAATGCCA -ACGGAATGGTTGGTATCGGGAAAC -ACGGAATGGTTGGTATCGAACACC -ACGGAATGGTTGGTATCGATCGAG -ACGGAATGGTTGGTATCGCTCCTT -ACGGAATGGTTGGTATCGCCTGTT -ACGGAATGGTTGGTATCGCGGTTT -ACGGAATGGTTGGTATCGGTGGTT -ACGGAATGGTTGGTATCGGCCTTT -ACGGAATGGTTGGTATCGGGTCTT -ACGGAATGGTTGGTATCGACGCTT -ACGGAATGGTTGGTATCGAGCGTT -ACGGAATGGTTGGTATCGTTCGTC -ACGGAATGGTTGGTATCGTCTCTC -ACGGAATGGTTGGTATCGTGGATC -ACGGAATGGTTGGTATCGCACTTC -ACGGAATGGTTGGTATCGGTACTC -ACGGAATGGTTGGTATCGGATGTC -ACGGAATGGTTGGTATCGACAGTC -ACGGAATGGTTGGTATCGTTGCTG -ACGGAATGGTTGGTATCGTCCATG -ACGGAATGGTTGGTATCGTGTGTG -ACGGAATGGTTGGTATCGCTAGTG -ACGGAATGGTTGGTATCGCATCTG -ACGGAATGGTTGGTATCGGAGTTG -ACGGAATGGTTGGTATCGAGACTG -ACGGAATGGTTGGTATCGTCGGTA -ACGGAATGGTTGGTATCGTGCCTA -ACGGAATGGTTGGTATCGCCACTA -ACGGAATGGTTGGTATCGGGAGTA -ACGGAATGGTTGGTATCGTCGTCT -ACGGAATGGTTGGTATCGTGCACT -ACGGAATGGTTGGTATCGCTGACT -ACGGAATGGTTGGTATCGCAACCT -ACGGAATGGTTGGTATCGGCTACT -ACGGAATGGTTGGTATCGGGATCT -ACGGAATGGTTGGTATCGAAGGCT -ACGGAATGGTTGGTATCGTCAACC -ACGGAATGGTTGGTATCGTGTTCC -ACGGAATGGTTGGTATCGATTCCC -ACGGAATGGTTGGTATCGTTCTCG -ACGGAATGGTTGGTATCGTAGACG -ACGGAATGGTTGGTATCGGTAACG -ACGGAATGGTTGGTATCGACTTCG -ACGGAATGGTTGGTATCGTACGCA -ACGGAATGGTTGGTATCGCTTGCA -ACGGAATGGTTGGTATCGCGAACA -ACGGAATGGTTGGTATCGCAGTCA -ACGGAATGGTTGGTATCGGATCCA -ACGGAATGGTTGGTATCGACGACA -ACGGAATGGTTGGTATCGAGCTCA -ACGGAATGGTTGGTATCGTCACGT -ACGGAATGGTTGGTATCGCGTAGT -ACGGAATGGTTGGTATCGGTCAGT -ACGGAATGGTTGGTATCGGAAGGT -ACGGAATGGTTGGTATCGAACCGT -ACGGAATGGTTGGTATCGTTGTGC -ACGGAATGGTTGGTATCGCTAAGC -ACGGAATGGTTGGTATCGACTAGC -ACGGAATGGTTGGTATCGAGATGC -ACGGAATGGTTGGTATCGTGAAGG -ACGGAATGGTTGGTATCGCAATGG -ACGGAATGGTTGGTATCGATGAGG -ACGGAATGGTTGGTATCGAATGGG -ACGGAATGGTTGGTATCGTCCTGA -ACGGAATGGTTGGTATCGTAGCGA -ACGGAATGGTTGGTATCGCACAGA -ACGGAATGGTTGGTATCGGCAAGA -ACGGAATGGTTGGTATCGGGTTGA -ACGGAATGGTTGGTATCGTCCGAT -ACGGAATGGTTGGTATCGTGGCAT -ACGGAATGGTTGGTATCGCGAGAT -ACGGAATGGTTGGTATCGTACCAC -ACGGAATGGTTGGTATCGCAGAAC -ACGGAATGGTTGGTATCGGTCTAC -ACGGAATGGTTGGTATCGACGTAC -ACGGAATGGTTGGTATCGAGTGAC -ACGGAATGGTTGGTATCGCTGTAG -ACGGAATGGTTGGTATCGCCTAAG -ACGGAATGGTTGGTATCGGTTCAG -ACGGAATGGTTGGTATCGGCATAG -ACGGAATGGTTGGTATCGGACAAG -ACGGAATGGTTGGTATCGAAGCAG -ACGGAATGGTTGGTATCGCGTCAA -ACGGAATGGTTGGTATCGGCTGAA -ACGGAATGGTTGGTATCGAGTACG -ACGGAATGGTTGGTATCGATCCGA -ACGGAATGGTTGGTATCGATGGGA -ACGGAATGGTTGGTATCGGTGCAA -ACGGAATGGTTGGTATCGGAGGAA -ACGGAATGGTTGGTATCGCAGGTA -ACGGAATGGTTGGTATCGGACTCT -ACGGAATGGTTGGTATCGAGTCCT -ACGGAATGGTTGGTATCGTAAGCC -ACGGAATGGTTGGTATCGATAGCC -ACGGAATGGTTGGTATCGTAACCG -ACGGAATGGTTGGTATCGATGCCA -ACGGAATGGTTGCTATGCGGAAAC -ACGGAATGGTTGCTATGCAACACC -ACGGAATGGTTGCTATGCATCGAG -ACGGAATGGTTGCTATGCCTCCTT -ACGGAATGGTTGCTATGCCCTGTT -ACGGAATGGTTGCTATGCCGGTTT -ACGGAATGGTTGCTATGCGTGGTT -ACGGAATGGTTGCTATGCGCCTTT -ACGGAATGGTTGCTATGCGGTCTT -ACGGAATGGTTGCTATGCACGCTT -ACGGAATGGTTGCTATGCAGCGTT -ACGGAATGGTTGCTATGCTTCGTC -ACGGAATGGTTGCTATGCTCTCTC -ACGGAATGGTTGCTATGCTGGATC -ACGGAATGGTTGCTATGCCACTTC -ACGGAATGGTTGCTATGCGTACTC -ACGGAATGGTTGCTATGCGATGTC -ACGGAATGGTTGCTATGCACAGTC -ACGGAATGGTTGCTATGCTTGCTG -ACGGAATGGTTGCTATGCTCCATG -ACGGAATGGTTGCTATGCTGTGTG -ACGGAATGGTTGCTATGCCTAGTG -ACGGAATGGTTGCTATGCCATCTG -ACGGAATGGTTGCTATGCGAGTTG -ACGGAATGGTTGCTATGCAGACTG -ACGGAATGGTTGCTATGCTCGGTA -ACGGAATGGTTGCTATGCTGCCTA -ACGGAATGGTTGCTATGCCCACTA -ACGGAATGGTTGCTATGCGGAGTA -ACGGAATGGTTGCTATGCTCGTCT -ACGGAATGGTTGCTATGCTGCACT -ACGGAATGGTTGCTATGCCTGACT -ACGGAATGGTTGCTATGCCAACCT -ACGGAATGGTTGCTATGCGCTACT -ACGGAATGGTTGCTATGCGGATCT -ACGGAATGGTTGCTATGCAAGGCT -ACGGAATGGTTGCTATGCTCAACC -ACGGAATGGTTGCTATGCTGTTCC -ACGGAATGGTTGCTATGCATTCCC -ACGGAATGGTTGCTATGCTTCTCG -ACGGAATGGTTGCTATGCTAGACG -ACGGAATGGTTGCTATGCGTAACG -ACGGAATGGTTGCTATGCACTTCG -ACGGAATGGTTGCTATGCTACGCA -ACGGAATGGTTGCTATGCCTTGCA -ACGGAATGGTTGCTATGCCGAACA -ACGGAATGGTTGCTATGCCAGTCA -ACGGAATGGTTGCTATGCGATCCA -ACGGAATGGTTGCTATGCACGACA -ACGGAATGGTTGCTATGCAGCTCA -ACGGAATGGTTGCTATGCTCACGT -ACGGAATGGTTGCTATGCCGTAGT -ACGGAATGGTTGCTATGCGTCAGT -ACGGAATGGTTGCTATGCGAAGGT -ACGGAATGGTTGCTATGCAACCGT -ACGGAATGGTTGCTATGCTTGTGC -ACGGAATGGTTGCTATGCCTAAGC -ACGGAATGGTTGCTATGCACTAGC -ACGGAATGGTTGCTATGCAGATGC -ACGGAATGGTTGCTATGCTGAAGG -ACGGAATGGTTGCTATGCCAATGG -ACGGAATGGTTGCTATGCATGAGG -ACGGAATGGTTGCTATGCAATGGG -ACGGAATGGTTGCTATGCTCCTGA -ACGGAATGGTTGCTATGCTAGCGA -ACGGAATGGTTGCTATGCCACAGA -ACGGAATGGTTGCTATGCGCAAGA -ACGGAATGGTTGCTATGCGGTTGA -ACGGAATGGTTGCTATGCTCCGAT -ACGGAATGGTTGCTATGCTGGCAT -ACGGAATGGTTGCTATGCCGAGAT -ACGGAATGGTTGCTATGCTACCAC -ACGGAATGGTTGCTATGCCAGAAC -ACGGAATGGTTGCTATGCGTCTAC -ACGGAATGGTTGCTATGCACGTAC -ACGGAATGGTTGCTATGCAGTGAC -ACGGAATGGTTGCTATGCCTGTAG -ACGGAATGGTTGCTATGCCCTAAG -ACGGAATGGTTGCTATGCGTTCAG -ACGGAATGGTTGCTATGCGCATAG -ACGGAATGGTTGCTATGCGACAAG -ACGGAATGGTTGCTATGCAAGCAG -ACGGAATGGTTGCTATGCCGTCAA -ACGGAATGGTTGCTATGCGCTGAA -ACGGAATGGTTGCTATGCAGTACG -ACGGAATGGTTGCTATGCATCCGA -ACGGAATGGTTGCTATGCATGGGA -ACGGAATGGTTGCTATGCGTGCAA -ACGGAATGGTTGCTATGCGAGGAA -ACGGAATGGTTGCTATGCCAGGTA -ACGGAATGGTTGCTATGCGACTCT -ACGGAATGGTTGCTATGCAGTCCT -ACGGAATGGTTGCTATGCTAAGCC -ACGGAATGGTTGCTATGCATAGCC -ACGGAATGGTTGCTATGCTAACCG -ACGGAATGGTTGCTATGCATGCCA -ACGGAATGGTTGCTACCAGGAAAC -ACGGAATGGTTGCTACCAAACACC -ACGGAATGGTTGCTACCAATCGAG -ACGGAATGGTTGCTACCACTCCTT -ACGGAATGGTTGCTACCACCTGTT -ACGGAATGGTTGCTACCACGGTTT -ACGGAATGGTTGCTACCAGTGGTT -ACGGAATGGTTGCTACCAGCCTTT -ACGGAATGGTTGCTACCAGGTCTT -ACGGAATGGTTGCTACCAACGCTT -ACGGAATGGTTGCTACCAAGCGTT -ACGGAATGGTTGCTACCATTCGTC -ACGGAATGGTTGCTACCATCTCTC -ACGGAATGGTTGCTACCATGGATC -ACGGAATGGTTGCTACCACACTTC -ACGGAATGGTTGCTACCAGTACTC -ACGGAATGGTTGCTACCAGATGTC -ACGGAATGGTTGCTACCAACAGTC -ACGGAATGGTTGCTACCATTGCTG -ACGGAATGGTTGCTACCATCCATG -ACGGAATGGTTGCTACCATGTGTG -ACGGAATGGTTGCTACCACTAGTG -ACGGAATGGTTGCTACCACATCTG -ACGGAATGGTTGCTACCAGAGTTG -ACGGAATGGTTGCTACCAAGACTG -ACGGAATGGTTGCTACCATCGGTA -ACGGAATGGTTGCTACCATGCCTA -ACGGAATGGTTGCTACCACCACTA -ACGGAATGGTTGCTACCAGGAGTA -ACGGAATGGTTGCTACCATCGTCT -ACGGAATGGTTGCTACCATGCACT -ACGGAATGGTTGCTACCACTGACT -ACGGAATGGTTGCTACCACAACCT -ACGGAATGGTTGCTACCAGCTACT -ACGGAATGGTTGCTACCAGGATCT -ACGGAATGGTTGCTACCAAAGGCT -ACGGAATGGTTGCTACCATCAACC -ACGGAATGGTTGCTACCATGTTCC -ACGGAATGGTTGCTACCAATTCCC -ACGGAATGGTTGCTACCATTCTCG -ACGGAATGGTTGCTACCATAGACG -ACGGAATGGTTGCTACCAGTAACG -ACGGAATGGTTGCTACCAACTTCG -ACGGAATGGTTGCTACCATACGCA -ACGGAATGGTTGCTACCACTTGCA -ACGGAATGGTTGCTACCACGAACA -ACGGAATGGTTGCTACCACAGTCA -ACGGAATGGTTGCTACCAGATCCA -ACGGAATGGTTGCTACCAACGACA -ACGGAATGGTTGCTACCAAGCTCA -ACGGAATGGTTGCTACCATCACGT -ACGGAATGGTTGCTACCACGTAGT -ACGGAATGGTTGCTACCAGTCAGT -ACGGAATGGTTGCTACCAGAAGGT -ACGGAATGGTTGCTACCAAACCGT -ACGGAATGGTTGCTACCATTGTGC -ACGGAATGGTTGCTACCACTAAGC -ACGGAATGGTTGCTACCAACTAGC -ACGGAATGGTTGCTACCAAGATGC -ACGGAATGGTTGCTACCATGAAGG -ACGGAATGGTTGCTACCACAATGG -ACGGAATGGTTGCTACCAATGAGG -ACGGAATGGTTGCTACCAAATGGG -ACGGAATGGTTGCTACCATCCTGA -ACGGAATGGTTGCTACCATAGCGA -ACGGAATGGTTGCTACCACACAGA -ACGGAATGGTTGCTACCAGCAAGA -ACGGAATGGTTGCTACCAGGTTGA -ACGGAATGGTTGCTACCATCCGAT -ACGGAATGGTTGCTACCATGGCAT -ACGGAATGGTTGCTACCACGAGAT -ACGGAATGGTTGCTACCATACCAC -ACGGAATGGTTGCTACCACAGAAC -ACGGAATGGTTGCTACCAGTCTAC -ACGGAATGGTTGCTACCAACGTAC -ACGGAATGGTTGCTACCAAGTGAC -ACGGAATGGTTGCTACCACTGTAG -ACGGAATGGTTGCTACCACCTAAG -ACGGAATGGTTGCTACCAGTTCAG -ACGGAATGGTTGCTACCAGCATAG -ACGGAATGGTTGCTACCAGACAAG -ACGGAATGGTTGCTACCAAAGCAG -ACGGAATGGTTGCTACCACGTCAA -ACGGAATGGTTGCTACCAGCTGAA -ACGGAATGGTTGCTACCAAGTACG -ACGGAATGGTTGCTACCAATCCGA -ACGGAATGGTTGCTACCAATGGGA -ACGGAATGGTTGCTACCAGTGCAA -ACGGAATGGTTGCTACCAGAGGAA -ACGGAATGGTTGCTACCACAGGTA -ACGGAATGGTTGCTACCAGACTCT -ACGGAATGGTTGCTACCAAGTCCT -ACGGAATGGTTGCTACCATAAGCC -ACGGAATGGTTGCTACCAATAGCC -ACGGAATGGTTGCTACCATAACCG -ACGGAATGGTTGCTACCAATGCCA -ACGGAATGGTTGGTAGGAGGAAAC -ACGGAATGGTTGGTAGGAAACACC -ACGGAATGGTTGGTAGGAATCGAG -ACGGAATGGTTGGTAGGACTCCTT -ACGGAATGGTTGGTAGGACCTGTT -ACGGAATGGTTGGTAGGACGGTTT -ACGGAATGGTTGGTAGGAGTGGTT -ACGGAATGGTTGGTAGGAGCCTTT -ACGGAATGGTTGGTAGGAGGTCTT -ACGGAATGGTTGGTAGGAACGCTT -ACGGAATGGTTGGTAGGAAGCGTT -ACGGAATGGTTGGTAGGATTCGTC -ACGGAATGGTTGGTAGGATCTCTC -ACGGAATGGTTGGTAGGATGGATC -ACGGAATGGTTGGTAGGACACTTC -ACGGAATGGTTGGTAGGAGTACTC -ACGGAATGGTTGGTAGGAGATGTC -ACGGAATGGTTGGTAGGAACAGTC -ACGGAATGGTTGGTAGGATTGCTG -ACGGAATGGTTGGTAGGATCCATG -ACGGAATGGTTGGTAGGATGTGTG -ACGGAATGGTTGGTAGGACTAGTG -ACGGAATGGTTGGTAGGACATCTG -ACGGAATGGTTGGTAGGAGAGTTG -ACGGAATGGTTGGTAGGAAGACTG -ACGGAATGGTTGGTAGGATCGGTA -ACGGAATGGTTGGTAGGATGCCTA -ACGGAATGGTTGGTAGGACCACTA -ACGGAATGGTTGGTAGGAGGAGTA -ACGGAATGGTTGGTAGGATCGTCT -ACGGAATGGTTGGTAGGATGCACT -ACGGAATGGTTGGTAGGACTGACT -ACGGAATGGTTGGTAGGACAACCT -ACGGAATGGTTGGTAGGAGCTACT -ACGGAATGGTTGGTAGGAGGATCT -ACGGAATGGTTGGTAGGAAAGGCT -ACGGAATGGTTGGTAGGATCAACC -ACGGAATGGTTGGTAGGATGTTCC -ACGGAATGGTTGGTAGGAATTCCC -ACGGAATGGTTGGTAGGATTCTCG -ACGGAATGGTTGGTAGGATAGACG -ACGGAATGGTTGGTAGGAGTAACG -ACGGAATGGTTGGTAGGAACTTCG -ACGGAATGGTTGGTAGGATACGCA -ACGGAATGGTTGGTAGGACTTGCA -ACGGAATGGTTGGTAGGACGAACA -ACGGAATGGTTGGTAGGACAGTCA -ACGGAATGGTTGGTAGGAGATCCA -ACGGAATGGTTGGTAGGAACGACA -ACGGAATGGTTGGTAGGAAGCTCA -ACGGAATGGTTGGTAGGATCACGT -ACGGAATGGTTGGTAGGACGTAGT -ACGGAATGGTTGGTAGGAGTCAGT -ACGGAATGGTTGGTAGGAGAAGGT -ACGGAATGGTTGGTAGGAAACCGT -ACGGAATGGTTGGTAGGATTGTGC -ACGGAATGGTTGGTAGGACTAAGC -ACGGAATGGTTGGTAGGAACTAGC -ACGGAATGGTTGGTAGGAAGATGC -ACGGAATGGTTGGTAGGATGAAGG -ACGGAATGGTTGGTAGGACAATGG -ACGGAATGGTTGGTAGGAATGAGG -ACGGAATGGTTGGTAGGAAATGGG -ACGGAATGGTTGGTAGGATCCTGA -ACGGAATGGTTGGTAGGATAGCGA -ACGGAATGGTTGGTAGGACACAGA -ACGGAATGGTTGGTAGGAGCAAGA -ACGGAATGGTTGGTAGGAGGTTGA -ACGGAATGGTTGGTAGGATCCGAT -ACGGAATGGTTGGTAGGATGGCAT -ACGGAATGGTTGGTAGGACGAGAT -ACGGAATGGTTGGTAGGATACCAC -ACGGAATGGTTGGTAGGACAGAAC -ACGGAATGGTTGGTAGGAGTCTAC -ACGGAATGGTTGGTAGGAACGTAC -ACGGAATGGTTGGTAGGAAGTGAC -ACGGAATGGTTGGTAGGACTGTAG -ACGGAATGGTTGGTAGGACCTAAG -ACGGAATGGTTGGTAGGAGTTCAG -ACGGAATGGTTGGTAGGAGCATAG -ACGGAATGGTTGGTAGGAGACAAG -ACGGAATGGTTGGTAGGAAAGCAG -ACGGAATGGTTGGTAGGACGTCAA -ACGGAATGGTTGGTAGGAGCTGAA -ACGGAATGGTTGGTAGGAAGTACG -ACGGAATGGTTGGTAGGAATCCGA -ACGGAATGGTTGGTAGGAATGGGA -ACGGAATGGTTGGTAGGAGTGCAA -ACGGAATGGTTGGTAGGAGAGGAA -ACGGAATGGTTGGTAGGACAGGTA -ACGGAATGGTTGGTAGGAGACTCT -ACGGAATGGTTGGTAGGAAGTCCT -ACGGAATGGTTGGTAGGATAAGCC -ACGGAATGGTTGGTAGGAATAGCC -ACGGAATGGTTGGTAGGATAACCG -ACGGAATGGTTGGTAGGAATGCCA -ACGGAATGGTTGTCTTCGGGAAAC -ACGGAATGGTTGTCTTCGAACACC -ACGGAATGGTTGTCTTCGATCGAG -ACGGAATGGTTGTCTTCGCTCCTT -ACGGAATGGTTGTCTTCGCCTGTT -ACGGAATGGTTGTCTTCGCGGTTT -ACGGAATGGTTGTCTTCGGTGGTT -ACGGAATGGTTGTCTTCGGCCTTT -ACGGAATGGTTGTCTTCGGGTCTT -ACGGAATGGTTGTCTTCGACGCTT -ACGGAATGGTTGTCTTCGAGCGTT -ACGGAATGGTTGTCTTCGTTCGTC -ACGGAATGGTTGTCTTCGTCTCTC -ACGGAATGGTTGTCTTCGTGGATC -ACGGAATGGTTGTCTTCGCACTTC -ACGGAATGGTTGTCTTCGGTACTC -ACGGAATGGTTGTCTTCGGATGTC -ACGGAATGGTTGTCTTCGACAGTC -ACGGAATGGTTGTCTTCGTTGCTG -ACGGAATGGTTGTCTTCGTCCATG -ACGGAATGGTTGTCTTCGTGTGTG -ACGGAATGGTTGTCTTCGCTAGTG -ACGGAATGGTTGTCTTCGCATCTG -ACGGAATGGTTGTCTTCGGAGTTG -ACGGAATGGTTGTCTTCGAGACTG -ACGGAATGGTTGTCTTCGTCGGTA -ACGGAATGGTTGTCTTCGTGCCTA -ACGGAATGGTTGTCTTCGCCACTA -ACGGAATGGTTGTCTTCGGGAGTA -ACGGAATGGTTGTCTTCGTCGTCT -ACGGAATGGTTGTCTTCGTGCACT -ACGGAATGGTTGTCTTCGCTGACT -ACGGAATGGTTGTCTTCGCAACCT -ACGGAATGGTTGTCTTCGGCTACT -ACGGAATGGTTGTCTTCGGGATCT -ACGGAATGGTTGTCTTCGAAGGCT -ACGGAATGGTTGTCTTCGTCAACC -ACGGAATGGTTGTCTTCGTGTTCC -ACGGAATGGTTGTCTTCGATTCCC -ACGGAATGGTTGTCTTCGTTCTCG -ACGGAATGGTTGTCTTCGTAGACG -ACGGAATGGTTGTCTTCGGTAACG -ACGGAATGGTTGTCTTCGACTTCG -ACGGAATGGTTGTCTTCGTACGCA -ACGGAATGGTTGTCTTCGCTTGCA -ACGGAATGGTTGTCTTCGCGAACA -ACGGAATGGTTGTCTTCGCAGTCA -ACGGAATGGTTGTCTTCGGATCCA -ACGGAATGGTTGTCTTCGACGACA -ACGGAATGGTTGTCTTCGAGCTCA -ACGGAATGGTTGTCTTCGTCACGT -ACGGAATGGTTGTCTTCGCGTAGT -ACGGAATGGTTGTCTTCGGTCAGT -ACGGAATGGTTGTCTTCGGAAGGT -ACGGAATGGTTGTCTTCGAACCGT -ACGGAATGGTTGTCTTCGTTGTGC -ACGGAATGGTTGTCTTCGCTAAGC -ACGGAATGGTTGTCTTCGACTAGC -ACGGAATGGTTGTCTTCGAGATGC -ACGGAATGGTTGTCTTCGTGAAGG -ACGGAATGGTTGTCTTCGCAATGG -ACGGAATGGTTGTCTTCGATGAGG -ACGGAATGGTTGTCTTCGAATGGG -ACGGAATGGTTGTCTTCGTCCTGA -ACGGAATGGTTGTCTTCGTAGCGA -ACGGAATGGTTGTCTTCGCACAGA -ACGGAATGGTTGTCTTCGGCAAGA -ACGGAATGGTTGTCTTCGGGTTGA -ACGGAATGGTTGTCTTCGTCCGAT -ACGGAATGGTTGTCTTCGTGGCAT -ACGGAATGGTTGTCTTCGCGAGAT -ACGGAATGGTTGTCTTCGTACCAC -ACGGAATGGTTGTCTTCGCAGAAC -ACGGAATGGTTGTCTTCGGTCTAC -ACGGAATGGTTGTCTTCGACGTAC -ACGGAATGGTTGTCTTCGAGTGAC -ACGGAATGGTTGTCTTCGCTGTAG -ACGGAATGGTTGTCTTCGCCTAAG -ACGGAATGGTTGTCTTCGGTTCAG -ACGGAATGGTTGTCTTCGGCATAG -ACGGAATGGTTGTCTTCGGACAAG -ACGGAATGGTTGTCTTCGAAGCAG -ACGGAATGGTTGTCTTCGCGTCAA -ACGGAATGGTTGTCTTCGGCTGAA -ACGGAATGGTTGTCTTCGAGTACG -ACGGAATGGTTGTCTTCGATCCGA -ACGGAATGGTTGTCTTCGATGGGA -ACGGAATGGTTGTCTTCGGTGCAA -ACGGAATGGTTGTCTTCGGAGGAA -ACGGAATGGTTGTCTTCGCAGGTA -ACGGAATGGTTGTCTTCGGACTCT -ACGGAATGGTTGTCTTCGAGTCCT -ACGGAATGGTTGTCTTCGTAAGCC -ACGGAATGGTTGTCTTCGATAGCC -ACGGAATGGTTGTCTTCGTAACCG -ACGGAATGGTTGTCTTCGATGCCA -ACGGAATGGTTGACTTGCGGAAAC -ACGGAATGGTTGACTTGCAACACC -ACGGAATGGTTGACTTGCATCGAG -ACGGAATGGTTGACTTGCCTCCTT -ACGGAATGGTTGACTTGCCCTGTT -ACGGAATGGTTGACTTGCCGGTTT -ACGGAATGGTTGACTTGCGTGGTT -ACGGAATGGTTGACTTGCGCCTTT -ACGGAATGGTTGACTTGCGGTCTT -ACGGAATGGTTGACTTGCACGCTT -ACGGAATGGTTGACTTGCAGCGTT -ACGGAATGGTTGACTTGCTTCGTC -ACGGAATGGTTGACTTGCTCTCTC -ACGGAATGGTTGACTTGCTGGATC -ACGGAATGGTTGACTTGCCACTTC -ACGGAATGGTTGACTTGCGTACTC -ACGGAATGGTTGACTTGCGATGTC -ACGGAATGGTTGACTTGCACAGTC -ACGGAATGGTTGACTTGCTTGCTG -ACGGAATGGTTGACTTGCTCCATG -ACGGAATGGTTGACTTGCTGTGTG -ACGGAATGGTTGACTTGCCTAGTG -ACGGAATGGTTGACTTGCCATCTG -ACGGAATGGTTGACTTGCGAGTTG -ACGGAATGGTTGACTTGCAGACTG -ACGGAATGGTTGACTTGCTCGGTA -ACGGAATGGTTGACTTGCTGCCTA -ACGGAATGGTTGACTTGCCCACTA -ACGGAATGGTTGACTTGCGGAGTA -ACGGAATGGTTGACTTGCTCGTCT -ACGGAATGGTTGACTTGCTGCACT -ACGGAATGGTTGACTTGCCTGACT -ACGGAATGGTTGACTTGCCAACCT -ACGGAATGGTTGACTTGCGCTACT -ACGGAATGGTTGACTTGCGGATCT -ACGGAATGGTTGACTTGCAAGGCT -ACGGAATGGTTGACTTGCTCAACC -ACGGAATGGTTGACTTGCTGTTCC -ACGGAATGGTTGACTTGCATTCCC -ACGGAATGGTTGACTTGCTTCTCG -ACGGAATGGTTGACTTGCTAGACG -ACGGAATGGTTGACTTGCGTAACG -ACGGAATGGTTGACTTGCACTTCG -ACGGAATGGTTGACTTGCTACGCA -ACGGAATGGTTGACTTGCCTTGCA -ACGGAATGGTTGACTTGCCGAACA -ACGGAATGGTTGACTTGCCAGTCA -ACGGAATGGTTGACTTGCGATCCA -ACGGAATGGTTGACTTGCACGACA -ACGGAATGGTTGACTTGCAGCTCA -ACGGAATGGTTGACTTGCTCACGT -ACGGAATGGTTGACTTGCCGTAGT -ACGGAATGGTTGACTTGCGTCAGT -ACGGAATGGTTGACTTGCGAAGGT -ACGGAATGGTTGACTTGCAACCGT -ACGGAATGGTTGACTTGCTTGTGC -ACGGAATGGTTGACTTGCCTAAGC -ACGGAATGGTTGACTTGCACTAGC -ACGGAATGGTTGACTTGCAGATGC -ACGGAATGGTTGACTTGCTGAAGG -ACGGAATGGTTGACTTGCCAATGG -ACGGAATGGTTGACTTGCATGAGG -ACGGAATGGTTGACTTGCAATGGG -ACGGAATGGTTGACTTGCTCCTGA -ACGGAATGGTTGACTTGCTAGCGA -ACGGAATGGTTGACTTGCCACAGA -ACGGAATGGTTGACTTGCGCAAGA -ACGGAATGGTTGACTTGCGGTTGA -ACGGAATGGTTGACTTGCTCCGAT -ACGGAATGGTTGACTTGCTGGCAT -ACGGAATGGTTGACTTGCCGAGAT -ACGGAATGGTTGACTTGCTACCAC -ACGGAATGGTTGACTTGCCAGAAC -ACGGAATGGTTGACTTGCGTCTAC -ACGGAATGGTTGACTTGCACGTAC -ACGGAATGGTTGACTTGCAGTGAC -ACGGAATGGTTGACTTGCCTGTAG -ACGGAATGGTTGACTTGCCCTAAG -ACGGAATGGTTGACTTGCGTTCAG -ACGGAATGGTTGACTTGCGCATAG -ACGGAATGGTTGACTTGCGACAAG -ACGGAATGGTTGACTTGCAAGCAG -ACGGAATGGTTGACTTGCCGTCAA -ACGGAATGGTTGACTTGCGCTGAA -ACGGAATGGTTGACTTGCAGTACG -ACGGAATGGTTGACTTGCATCCGA -ACGGAATGGTTGACTTGCATGGGA -ACGGAATGGTTGACTTGCGTGCAA -ACGGAATGGTTGACTTGCGAGGAA -ACGGAATGGTTGACTTGCCAGGTA -ACGGAATGGTTGACTTGCGACTCT -ACGGAATGGTTGACTTGCAGTCCT -ACGGAATGGTTGACTTGCTAAGCC -ACGGAATGGTTGACTTGCATAGCC -ACGGAATGGTTGACTTGCTAACCG -ACGGAATGGTTGACTTGCATGCCA -ACGGAATGGTTGACTCTGGGAAAC -ACGGAATGGTTGACTCTGAACACC -ACGGAATGGTTGACTCTGATCGAG -ACGGAATGGTTGACTCTGCTCCTT -ACGGAATGGTTGACTCTGCCTGTT -ACGGAATGGTTGACTCTGCGGTTT -ACGGAATGGTTGACTCTGGTGGTT -ACGGAATGGTTGACTCTGGCCTTT -ACGGAATGGTTGACTCTGGGTCTT -ACGGAATGGTTGACTCTGACGCTT -ACGGAATGGTTGACTCTGAGCGTT -ACGGAATGGTTGACTCTGTTCGTC -ACGGAATGGTTGACTCTGTCTCTC -ACGGAATGGTTGACTCTGTGGATC -ACGGAATGGTTGACTCTGCACTTC -ACGGAATGGTTGACTCTGGTACTC -ACGGAATGGTTGACTCTGGATGTC -ACGGAATGGTTGACTCTGACAGTC -ACGGAATGGTTGACTCTGTTGCTG -ACGGAATGGTTGACTCTGTCCATG -ACGGAATGGTTGACTCTGTGTGTG -ACGGAATGGTTGACTCTGCTAGTG -ACGGAATGGTTGACTCTGCATCTG -ACGGAATGGTTGACTCTGGAGTTG -ACGGAATGGTTGACTCTGAGACTG -ACGGAATGGTTGACTCTGTCGGTA -ACGGAATGGTTGACTCTGTGCCTA -ACGGAATGGTTGACTCTGCCACTA -ACGGAATGGTTGACTCTGGGAGTA -ACGGAATGGTTGACTCTGTCGTCT -ACGGAATGGTTGACTCTGTGCACT -ACGGAATGGTTGACTCTGCTGACT -ACGGAATGGTTGACTCTGCAACCT -ACGGAATGGTTGACTCTGGCTACT -ACGGAATGGTTGACTCTGGGATCT -ACGGAATGGTTGACTCTGAAGGCT -ACGGAATGGTTGACTCTGTCAACC -ACGGAATGGTTGACTCTGTGTTCC -ACGGAATGGTTGACTCTGATTCCC -ACGGAATGGTTGACTCTGTTCTCG -ACGGAATGGTTGACTCTGTAGACG -ACGGAATGGTTGACTCTGGTAACG -ACGGAATGGTTGACTCTGACTTCG -ACGGAATGGTTGACTCTGTACGCA -ACGGAATGGTTGACTCTGCTTGCA -ACGGAATGGTTGACTCTGCGAACA -ACGGAATGGTTGACTCTGCAGTCA -ACGGAATGGTTGACTCTGGATCCA -ACGGAATGGTTGACTCTGACGACA -ACGGAATGGTTGACTCTGAGCTCA -ACGGAATGGTTGACTCTGTCACGT -ACGGAATGGTTGACTCTGCGTAGT -ACGGAATGGTTGACTCTGGTCAGT -ACGGAATGGTTGACTCTGGAAGGT -ACGGAATGGTTGACTCTGAACCGT -ACGGAATGGTTGACTCTGTTGTGC -ACGGAATGGTTGACTCTGCTAAGC -ACGGAATGGTTGACTCTGACTAGC -ACGGAATGGTTGACTCTGAGATGC -ACGGAATGGTTGACTCTGTGAAGG -ACGGAATGGTTGACTCTGCAATGG -ACGGAATGGTTGACTCTGATGAGG -ACGGAATGGTTGACTCTGAATGGG -ACGGAATGGTTGACTCTGTCCTGA -ACGGAATGGTTGACTCTGTAGCGA -ACGGAATGGTTGACTCTGCACAGA -ACGGAATGGTTGACTCTGGCAAGA -ACGGAATGGTTGACTCTGGGTTGA -ACGGAATGGTTGACTCTGTCCGAT -ACGGAATGGTTGACTCTGTGGCAT -ACGGAATGGTTGACTCTGCGAGAT -ACGGAATGGTTGACTCTGTACCAC -ACGGAATGGTTGACTCTGCAGAAC -ACGGAATGGTTGACTCTGGTCTAC -ACGGAATGGTTGACTCTGACGTAC -ACGGAATGGTTGACTCTGAGTGAC -ACGGAATGGTTGACTCTGCTGTAG -ACGGAATGGTTGACTCTGCCTAAG -ACGGAATGGTTGACTCTGGTTCAG -ACGGAATGGTTGACTCTGGCATAG -ACGGAATGGTTGACTCTGGACAAG -ACGGAATGGTTGACTCTGAAGCAG -ACGGAATGGTTGACTCTGCGTCAA -ACGGAATGGTTGACTCTGGCTGAA -ACGGAATGGTTGACTCTGAGTACG -ACGGAATGGTTGACTCTGATCCGA -ACGGAATGGTTGACTCTGATGGGA -ACGGAATGGTTGACTCTGGTGCAA -ACGGAATGGTTGACTCTGGAGGAA -ACGGAATGGTTGACTCTGCAGGTA -ACGGAATGGTTGACTCTGGACTCT -ACGGAATGGTTGACTCTGAGTCCT -ACGGAATGGTTGACTCTGTAAGCC -ACGGAATGGTTGACTCTGATAGCC -ACGGAATGGTTGACTCTGTAACCG -ACGGAATGGTTGACTCTGATGCCA -ACGGAATGGTTGCCTCAAGGAAAC -ACGGAATGGTTGCCTCAAAACACC -ACGGAATGGTTGCCTCAAATCGAG -ACGGAATGGTTGCCTCAACTCCTT -ACGGAATGGTTGCCTCAACCTGTT -ACGGAATGGTTGCCTCAACGGTTT -ACGGAATGGTTGCCTCAAGTGGTT -ACGGAATGGTTGCCTCAAGCCTTT -ACGGAATGGTTGCCTCAAGGTCTT -ACGGAATGGTTGCCTCAAACGCTT -ACGGAATGGTTGCCTCAAAGCGTT -ACGGAATGGTTGCCTCAATTCGTC -ACGGAATGGTTGCCTCAATCTCTC -ACGGAATGGTTGCCTCAATGGATC -ACGGAATGGTTGCCTCAACACTTC -ACGGAATGGTTGCCTCAAGTACTC -ACGGAATGGTTGCCTCAAGATGTC -ACGGAATGGTTGCCTCAAACAGTC -ACGGAATGGTTGCCTCAATTGCTG -ACGGAATGGTTGCCTCAATCCATG -ACGGAATGGTTGCCTCAATGTGTG -ACGGAATGGTTGCCTCAACTAGTG -ACGGAATGGTTGCCTCAACATCTG -ACGGAATGGTTGCCTCAAGAGTTG -ACGGAATGGTTGCCTCAAAGACTG -ACGGAATGGTTGCCTCAATCGGTA -ACGGAATGGTTGCCTCAATGCCTA -ACGGAATGGTTGCCTCAACCACTA -ACGGAATGGTTGCCTCAAGGAGTA -ACGGAATGGTTGCCTCAATCGTCT -ACGGAATGGTTGCCTCAATGCACT -ACGGAATGGTTGCCTCAACTGACT -ACGGAATGGTTGCCTCAACAACCT -ACGGAATGGTTGCCTCAAGCTACT -ACGGAATGGTTGCCTCAAGGATCT -ACGGAATGGTTGCCTCAAAAGGCT -ACGGAATGGTTGCCTCAATCAACC -ACGGAATGGTTGCCTCAATGTTCC -ACGGAATGGTTGCCTCAAATTCCC -ACGGAATGGTTGCCTCAATTCTCG -ACGGAATGGTTGCCTCAATAGACG -ACGGAATGGTTGCCTCAAGTAACG -ACGGAATGGTTGCCTCAAACTTCG -ACGGAATGGTTGCCTCAATACGCA -ACGGAATGGTTGCCTCAACTTGCA -ACGGAATGGTTGCCTCAACGAACA -ACGGAATGGTTGCCTCAACAGTCA -ACGGAATGGTTGCCTCAAGATCCA -ACGGAATGGTTGCCTCAAACGACA -ACGGAATGGTTGCCTCAAAGCTCA -ACGGAATGGTTGCCTCAATCACGT -ACGGAATGGTTGCCTCAACGTAGT -ACGGAATGGTTGCCTCAAGTCAGT -ACGGAATGGTTGCCTCAAGAAGGT -ACGGAATGGTTGCCTCAAAACCGT -ACGGAATGGTTGCCTCAATTGTGC -ACGGAATGGTTGCCTCAACTAAGC -ACGGAATGGTTGCCTCAAACTAGC -ACGGAATGGTTGCCTCAAAGATGC -ACGGAATGGTTGCCTCAATGAAGG -ACGGAATGGTTGCCTCAACAATGG -ACGGAATGGTTGCCTCAAATGAGG -ACGGAATGGTTGCCTCAAAATGGG -ACGGAATGGTTGCCTCAATCCTGA -ACGGAATGGTTGCCTCAATAGCGA -ACGGAATGGTTGCCTCAACACAGA -ACGGAATGGTTGCCTCAAGCAAGA -ACGGAATGGTTGCCTCAAGGTTGA -ACGGAATGGTTGCCTCAATCCGAT -ACGGAATGGTTGCCTCAATGGCAT -ACGGAATGGTTGCCTCAACGAGAT -ACGGAATGGTTGCCTCAATACCAC -ACGGAATGGTTGCCTCAACAGAAC -ACGGAATGGTTGCCTCAAGTCTAC -ACGGAATGGTTGCCTCAAACGTAC -ACGGAATGGTTGCCTCAAAGTGAC -ACGGAATGGTTGCCTCAACTGTAG -ACGGAATGGTTGCCTCAACCTAAG -ACGGAATGGTTGCCTCAAGTTCAG -ACGGAATGGTTGCCTCAAGCATAG -ACGGAATGGTTGCCTCAAGACAAG -ACGGAATGGTTGCCTCAAAAGCAG -ACGGAATGGTTGCCTCAACGTCAA -ACGGAATGGTTGCCTCAAGCTGAA -ACGGAATGGTTGCCTCAAAGTACG -ACGGAATGGTTGCCTCAAATCCGA -ACGGAATGGTTGCCTCAAATGGGA -ACGGAATGGTTGCCTCAAGTGCAA -ACGGAATGGTTGCCTCAAGAGGAA -ACGGAATGGTTGCCTCAACAGGTA -ACGGAATGGTTGCCTCAAGACTCT -ACGGAATGGTTGCCTCAAAGTCCT -ACGGAATGGTTGCCTCAATAAGCC -ACGGAATGGTTGCCTCAAATAGCC -ACGGAATGGTTGCCTCAATAACCG -ACGGAATGGTTGCCTCAAATGCCA -ACGGAATGGTTGACTGCTGGAAAC -ACGGAATGGTTGACTGCTAACACC -ACGGAATGGTTGACTGCTATCGAG -ACGGAATGGTTGACTGCTCTCCTT -ACGGAATGGTTGACTGCTCCTGTT -ACGGAATGGTTGACTGCTCGGTTT -ACGGAATGGTTGACTGCTGTGGTT -ACGGAATGGTTGACTGCTGCCTTT -ACGGAATGGTTGACTGCTGGTCTT -ACGGAATGGTTGACTGCTACGCTT -ACGGAATGGTTGACTGCTAGCGTT -ACGGAATGGTTGACTGCTTTCGTC -ACGGAATGGTTGACTGCTTCTCTC -ACGGAATGGTTGACTGCTTGGATC -ACGGAATGGTTGACTGCTCACTTC -ACGGAATGGTTGACTGCTGTACTC -ACGGAATGGTTGACTGCTGATGTC -ACGGAATGGTTGACTGCTACAGTC -ACGGAATGGTTGACTGCTTTGCTG -ACGGAATGGTTGACTGCTTCCATG -ACGGAATGGTTGACTGCTTGTGTG -ACGGAATGGTTGACTGCTCTAGTG -ACGGAATGGTTGACTGCTCATCTG -ACGGAATGGTTGACTGCTGAGTTG -ACGGAATGGTTGACTGCTAGACTG -ACGGAATGGTTGACTGCTTCGGTA -ACGGAATGGTTGACTGCTTGCCTA -ACGGAATGGTTGACTGCTCCACTA -ACGGAATGGTTGACTGCTGGAGTA -ACGGAATGGTTGACTGCTTCGTCT -ACGGAATGGTTGACTGCTTGCACT -ACGGAATGGTTGACTGCTCTGACT -ACGGAATGGTTGACTGCTCAACCT -ACGGAATGGTTGACTGCTGCTACT -ACGGAATGGTTGACTGCTGGATCT -ACGGAATGGTTGACTGCTAAGGCT -ACGGAATGGTTGACTGCTTCAACC -ACGGAATGGTTGACTGCTTGTTCC -ACGGAATGGTTGACTGCTATTCCC -ACGGAATGGTTGACTGCTTTCTCG -ACGGAATGGTTGACTGCTTAGACG -ACGGAATGGTTGACTGCTGTAACG -ACGGAATGGTTGACTGCTACTTCG -ACGGAATGGTTGACTGCTTACGCA -ACGGAATGGTTGACTGCTCTTGCA -ACGGAATGGTTGACTGCTCGAACA -ACGGAATGGTTGACTGCTCAGTCA -ACGGAATGGTTGACTGCTGATCCA -ACGGAATGGTTGACTGCTACGACA -ACGGAATGGTTGACTGCTAGCTCA -ACGGAATGGTTGACTGCTTCACGT -ACGGAATGGTTGACTGCTCGTAGT -ACGGAATGGTTGACTGCTGTCAGT -ACGGAATGGTTGACTGCTGAAGGT -ACGGAATGGTTGACTGCTAACCGT -ACGGAATGGTTGACTGCTTTGTGC -ACGGAATGGTTGACTGCTCTAAGC -ACGGAATGGTTGACTGCTACTAGC -ACGGAATGGTTGACTGCTAGATGC -ACGGAATGGTTGACTGCTTGAAGG -ACGGAATGGTTGACTGCTCAATGG -ACGGAATGGTTGACTGCTATGAGG -ACGGAATGGTTGACTGCTAATGGG -ACGGAATGGTTGACTGCTTCCTGA -ACGGAATGGTTGACTGCTTAGCGA -ACGGAATGGTTGACTGCTCACAGA -ACGGAATGGTTGACTGCTGCAAGA -ACGGAATGGTTGACTGCTGGTTGA -ACGGAATGGTTGACTGCTTCCGAT -ACGGAATGGTTGACTGCTTGGCAT -ACGGAATGGTTGACTGCTCGAGAT -ACGGAATGGTTGACTGCTTACCAC -ACGGAATGGTTGACTGCTCAGAAC -ACGGAATGGTTGACTGCTGTCTAC -ACGGAATGGTTGACTGCTACGTAC -ACGGAATGGTTGACTGCTAGTGAC -ACGGAATGGTTGACTGCTCTGTAG -ACGGAATGGTTGACTGCTCCTAAG -ACGGAATGGTTGACTGCTGTTCAG -ACGGAATGGTTGACTGCTGCATAG -ACGGAATGGTTGACTGCTGACAAG -ACGGAATGGTTGACTGCTAAGCAG -ACGGAATGGTTGACTGCTCGTCAA -ACGGAATGGTTGACTGCTGCTGAA -ACGGAATGGTTGACTGCTAGTACG -ACGGAATGGTTGACTGCTATCCGA -ACGGAATGGTTGACTGCTATGGGA -ACGGAATGGTTGACTGCTGTGCAA -ACGGAATGGTTGACTGCTGAGGAA -ACGGAATGGTTGACTGCTCAGGTA -ACGGAATGGTTGACTGCTGACTCT -ACGGAATGGTTGACTGCTAGTCCT -ACGGAATGGTTGACTGCTTAAGCC -ACGGAATGGTTGACTGCTATAGCC -ACGGAATGGTTGACTGCTTAACCG -ACGGAATGGTTGACTGCTATGCCA -ACGGAATGGTTGTCTGGAGGAAAC -ACGGAATGGTTGTCTGGAAACACC -ACGGAATGGTTGTCTGGAATCGAG -ACGGAATGGTTGTCTGGACTCCTT -ACGGAATGGTTGTCTGGACCTGTT -ACGGAATGGTTGTCTGGACGGTTT -ACGGAATGGTTGTCTGGAGTGGTT -ACGGAATGGTTGTCTGGAGCCTTT -ACGGAATGGTTGTCTGGAGGTCTT -ACGGAATGGTTGTCTGGAACGCTT -ACGGAATGGTTGTCTGGAAGCGTT -ACGGAATGGTTGTCTGGATTCGTC -ACGGAATGGTTGTCTGGATCTCTC -ACGGAATGGTTGTCTGGATGGATC -ACGGAATGGTTGTCTGGACACTTC -ACGGAATGGTTGTCTGGAGTACTC -ACGGAATGGTTGTCTGGAGATGTC -ACGGAATGGTTGTCTGGAACAGTC -ACGGAATGGTTGTCTGGATTGCTG -ACGGAATGGTTGTCTGGATCCATG -ACGGAATGGTTGTCTGGATGTGTG -ACGGAATGGTTGTCTGGACTAGTG -ACGGAATGGTTGTCTGGACATCTG -ACGGAATGGTTGTCTGGAGAGTTG -ACGGAATGGTTGTCTGGAAGACTG -ACGGAATGGTTGTCTGGATCGGTA -ACGGAATGGTTGTCTGGATGCCTA -ACGGAATGGTTGTCTGGACCACTA -ACGGAATGGTTGTCTGGAGGAGTA -ACGGAATGGTTGTCTGGATCGTCT -ACGGAATGGTTGTCTGGATGCACT -ACGGAATGGTTGTCTGGACTGACT -ACGGAATGGTTGTCTGGACAACCT -ACGGAATGGTTGTCTGGAGCTACT -ACGGAATGGTTGTCTGGAGGATCT -ACGGAATGGTTGTCTGGAAAGGCT -ACGGAATGGTTGTCTGGATCAACC -ACGGAATGGTTGTCTGGATGTTCC -ACGGAATGGTTGTCTGGAATTCCC -ACGGAATGGTTGTCTGGATTCTCG -ACGGAATGGTTGTCTGGATAGACG -ACGGAATGGTTGTCTGGAGTAACG -ACGGAATGGTTGTCTGGAACTTCG -ACGGAATGGTTGTCTGGATACGCA -ACGGAATGGTTGTCTGGACTTGCA -ACGGAATGGTTGTCTGGACGAACA -ACGGAATGGTTGTCTGGACAGTCA -ACGGAATGGTTGTCTGGAGATCCA -ACGGAATGGTTGTCTGGAACGACA -ACGGAATGGTTGTCTGGAAGCTCA -ACGGAATGGTTGTCTGGATCACGT -ACGGAATGGTTGTCTGGACGTAGT -ACGGAATGGTTGTCTGGAGTCAGT -ACGGAATGGTTGTCTGGAGAAGGT -ACGGAATGGTTGTCTGGAAACCGT -ACGGAATGGTTGTCTGGATTGTGC -ACGGAATGGTTGTCTGGACTAAGC -ACGGAATGGTTGTCTGGAACTAGC -ACGGAATGGTTGTCTGGAAGATGC -ACGGAATGGTTGTCTGGATGAAGG -ACGGAATGGTTGTCTGGACAATGG -ACGGAATGGTTGTCTGGAATGAGG -ACGGAATGGTTGTCTGGAAATGGG -ACGGAATGGTTGTCTGGATCCTGA -ACGGAATGGTTGTCTGGATAGCGA -ACGGAATGGTTGTCTGGACACAGA -ACGGAATGGTTGTCTGGAGCAAGA -ACGGAATGGTTGTCTGGAGGTTGA -ACGGAATGGTTGTCTGGATCCGAT -ACGGAATGGTTGTCTGGATGGCAT -ACGGAATGGTTGTCTGGACGAGAT -ACGGAATGGTTGTCTGGATACCAC -ACGGAATGGTTGTCTGGACAGAAC -ACGGAATGGTTGTCTGGAGTCTAC -ACGGAATGGTTGTCTGGAACGTAC -ACGGAATGGTTGTCTGGAAGTGAC -ACGGAATGGTTGTCTGGACTGTAG -ACGGAATGGTTGTCTGGACCTAAG -ACGGAATGGTTGTCTGGAGTTCAG -ACGGAATGGTTGTCTGGAGCATAG -ACGGAATGGTTGTCTGGAGACAAG -ACGGAATGGTTGTCTGGAAAGCAG -ACGGAATGGTTGTCTGGACGTCAA -ACGGAATGGTTGTCTGGAGCTGAA -ACGGAATGGTTGTCTGGAAGTACG -ACGGAATGGTTGTCTGGAATCCGA -ACGGAATGGTTGTCTGGAATGGGA -ACGGAATGGTTGTCTGGAGTGCAA -ACGGAATGGTTGTCTGGAGAGGAA -ACGGAATGGTTGTCTGGACAGGTA -ACGGAATGGTTGTCTGGAGACTCT -ACGGAATGGTTGTCTGGAAGTCCT -ACGGAATGGTTGTCTGGATAAGCC -ACGGAATGGTTGTCTGGAATAGCC -ACGGAATGGTTGTCTGGATAACCG -ACGGAATGGTTGTCTGGAATGCCA -ACGGAATGGTTGGCTAAGGGAAAC -ACGGAATGGTTGGCTAAGAACACC -ACGGAATGGTTGGCTAAGATCGAG -ACGGAATGGTTGGCTAAGCTCCTT -ACGGAATGGTTGGCTAAGCCTGTT -ACGGAATGGTTGGCTAAGCGGTTT -ACGGAATGGTTGGCTAAGGTGGTT -ACGGAATGGTTGGCTAAGGCCTTT -ACGGAATGGTTGGCTAAGGGTCTT -ACGGAATGGTTGGCTAAGACGCTT -ACGGAATGGTTGGCTAAGAGCGTT -ACGGAATGGTTGGCTAAGTTCGTC -ACGGAATGGTTGGCTAAGTCTCTC -ACGGAATGGTTGGCTAAGTGGATC -ACGGAATGGTTGGCTAAGCACTTC -ACGGAATGGTTGGCTAAGGTACTC -ACGGAATGGTTGGCTAAGGATGTC -ACGGAATGGTTGGCTAAGACAGTC -ACGGAATGGTTGGCTAAGTTGCTG -ACGGAATGGTTGGCTAAGTCCATG -ACGGAATGGTTGGCTAAGTGTGTG -ACGGAATGGTTGGCTAAGCTAGTG -ACGGAATGGTTGGCTAAGCATCTG -ACGGAATGGTTGGCTAAGGAGTTG -ACGGAATGGTTGGCTAAGAGACTG -ACGGAATGGTTGGCTAAGTCGGTA -ACGGAATGGTTGGCTAAGTGCCTA -ACGGAATGGTTGGCTAAGCCACTA -ACGGAATGGTTGGCTAAGGGAGTA -ACGGAATGGTTGGCTAAGTCGTCT -ACGGAATGGTTGGCTAAGTGCACT -ACGGAATGGTTGGCTAAGCTGACT -ACGGAATGGTTGGCTAAGCAACCT -ACGGAATGGTTGGCTAAGGCTACT -ACGGAATGGTTGGCTAAGGGATCT -ACGGAATGGTTGGCTAAGAAGGCT -ACGGAATGGTTGGCTAAGTCAACC -ACGGAATGGTTGGCTAAGTGTTCC -ACGGAATGGTTGGCTAAGATTCCC -ACGGAATGGTTGGCTAAGTTCTCG -ACGGAATGGTTGGCTAAGTAGACG -ACGGAATGGTTGGCTAAGGTAACG -ACGGAATGGTTGGCTAAGACTTCG -ACGGAATGGTTGGCTAAGTACGCA -ACGGAATGGTTGGCTAAGCTTGCA -ACGGAATGGTTGGCTAAGCGAACA -ACGGAATGGTTGGCTAAGCAGTCA -ACGGAATGGTTGGCTAAGGATCCA -ACGGAATGGTTGGCTAAGACGACA -ACGGAATGGTTGGCTAAGAGCTCA -ACGGAATGGTTGGCTAAGTCACGT -ACGGAATGGTTGGCTAAGCGTAGT -ACGGAATGGTTGGCTAAGGTCAGT -ACGGAATGGTTGGCTAAGGAAGGT -ACGGAATGGTTGGCTAAGAACCGT -ACGGAATGGTTGGCTAAGTTGTGC -ACGGAATGGTTGGCTAAGCTAAGC -ACGGAATGGTTGGCTAAGACTAGC -ACGGAATGGTTGGCTAAGAGATGC -ACGGAATGGTTGGCTAAGTGAAGG -ACGGAATGGTTGGCTAAGCAATGG -ACGGAATGGTTGGCTAAGATGAGG -ACGGAATGGTTGGCTAAGAATGGG -ACGGAATGGTTGGCTAAGTCCTGA -ACGGAATGGTTGGCTAAGTAGCGA -ACGGAATGGTTGGCTAAGCACAGA -ACGGAATGGTTGGCTAAGGCAAGA -ACGGAATGGTTGGCTAAGGGTTGA -ACGGAATGGTTGGCTAAGTCCGAT -ACGGAATGGTTGGCTAAGTGGCAT -ACGGAATGGTTGGCTAAGCGAGAT -ACGGAATGGTTGGCTAAGTACCAC -ACGGAATGGTTGGCTAAGCAGAAC -ACGGAATGGTTGGCTAAGGTCTAC -ACGGAATGGTTGGCTAAGACGTAC -ACGGAATGGTTGGCTAAGAGTGAC -ACGGAATGGTTGGCTAAGCTGTAG -ACGGAATGGTTGGCTAAGCCTAAG -ACGGAATGGTTGGCTAAGGTTCAG -ACGGAATGGTTGGCTAAGGCATAG -ACGGAATGGTTGGCTAAGGACAAG -ACGGAATGGTTGGCTAAGAAGCAG -ACGGAATGGTTGGCTAAGCGTCAA -ACGGAATGGTTGGCTAAGGCTGAA -ACGGAATGGTTGGCTAAGAGTACG -ACGGAATGGTTGGCTAAGATCCGA -ACGGAATGGTTGGCTAAGATGGGA -ACGGAATGGTTGGCTAAGGTGCAA -ACGGAATGGTTGGCTAAGGAGGAA -ACGGAATGGTTGGCTAAGCAGGTA -ACGGAATGGTTGGCTAAGGACTCT -ACGGAATGGTTGGCTAAGAGTCCT -ACGGAATGGTTGGCTAAGTAAGCC -ACGGAATGGTTGGCTAAGATAGCC -ACGGAATGGTTGGCTAAGTAACCG -ACGGAATGGTTGGCTAAGATGCCA -ACGGAATGGTTGACCTCAGGAAAC -ACGGAATGGTTGACCTCAAACACC -ACGGAATGGTTGACCTCAATCGAG -ACGGAATGGTTGACCTCACTCCTT -ACGGAATGGTTGACCTCACCTGTT -ACGGAATGGTTGACCTCACGGTTT -ACGGAATGGTTGACCTCAGTGGTT -ACGGAATGGTTGACCTCAGCCTTT -ACGGAATGGTTGACCTCAGGTCTT -ACGGAATGGTTGACCTCAACGCTT -ACGGAATGGTTGACCTCAAGCGTT -ACGGAATGGTTGACCTCATTCGTC -ACGGAATGGTTGACCTCATCTCTC -ACGGAATGGTTGACCTCATGGATC -ACGGAATGGTTGACCTCACACTTC -ACGGAATGGTTGACCTCAGTACTC -ACGGAATGGTTGACCTCAGATGTC -ACGGAATGGTTGACCTCAACAGTC -ACGGAATGGTTGACCTCATTGCTG -ACGGAATGGTTGACCTCATCCATG -ACGGAATGGTTGACCTCATGTGTG -ACGGAATGGTTGACCTCACTAGTG -ACGGAATGGTTGACCTCACATCTG -ACGGAATGGTTGACCTCAGAGTTG -ACGGAATGGTTGACCTCAAGACTG -ACGGAATGGTTGACCTCATCGGTA -ACGGAATGGTTGACCTCATGCCTA -ACGGAATGGTTGACCTCACCACTA -ACGGAATGGTTGACCTCAGGAGTA -ACGGAATGGTTGACCTCATCGTCT -ACGGAATGGTTGACCTCATGCACT -ACGGAATGGTTGACCTCACTGACT -ACGGAATGGTTGACCTCACAACCT -ACGGAATGGTTGACCTCAGCTACT -ACGGAATGGTTGACCTCAGGATCT -ACGGAATGGTTGACCTCAAAGGCT -ACGGAATGGTTGACCTCATCAACC -ACGGAATGGTTGACCTCATGTTCC -ACGGAATGGTTGACCTCAATTCCC -ACGGAATGGTTGACCTCATTCTCG -ACGGAATGGTTGACCTCATAGACG -ACGGAATGGTTGACCTCAGTAACG -ACGGAATGGTTGACCTCAACTTCG -ACGGAATGGTTGACCTCATACGCA -ACGGAATGGTTGACCTCACTTGCA -ACGGAATGGTTGACCTCACGAACA -ACGGAATGGTTGACCTCACAGTCA -ACGGAATGGTTGACCTCAGATCCA -ACGGAATGGTTGACCTCAACGACA -ACGGAATGGTTGACCTCAAGCTCA -ACGGAATGGTTGACCTCATCACGT -ACGGAATGGTTGACCTCACGTAGT -ACGGAATGGTTGACCTCAGTCAGT -ACGGAATGGTTGACCTCAGAAGGT -ACGGAATGGTTGACCTCAAACCGT -ACGGAATGGTTGACCTCATTGTGC -ACGGAATGGTTGACCTCACTAAGC -ACGGAATGGTTGACCTCAACTAGC -ACGGAATGGTTGACCTCAAGATGC -ACGGAATGGTTGACCTCATGAAGG -ACGGAATGGTTGACCTCACAATGG -ACGGAATGGTTGACCTCAATGAGG -ACGGAATGGTTGACCTCAAATGGG -ACGGAATGGTTGACCTCATCCTGA -ACGGAATGGTTGACCTCATAGCGA -ACGGAATGGTTGACCTCACACAGA -ACGGAATGGTTGACCTCAGCAAGA -ACGGAATGGTTGACCTCAGGTTGA -ACGGAATGGTTGACCTCATCCGAT -ACGGAATGGTTGACCTCATGGCAT -ACGGAATGGTTGACCTCACGAGAT -ACGGAATGGTTGACCTCATACCAC -ACGGAATGGTTGACCTCACAGAAC -ACGGAATGGTTGACCTCAGTCTAC -ACGGAATGGTTGACCTCAACGTAC -ACGGAATGGTTGACCTCAAGTGAC -ACGGAATGGTTGACCTCACTGTAG -ACGGAATGGTTGACCTCACCTAAG -ACGGAATGGTTGACCTCAGTTCAG -ACGGAATGGTTGACCTCAGCATAG -ACGGAATGGTTGACCTCAGACAAG -ACGGAATGGTTGACCTCAAAGCAG -ACGGAATGGTTGACCTCACGTCAA -ACGGAATGGTTGACCTCAGCTGAA -ACGGAATGGTTGACCTCAAGTACG -ACGGAATGGTTGACCTCAATCCGA -ACGGAATGGTTGACCTCAATGGGA -ACGGAATGGTTGACCTCAGTGCAA -ACGGAATGGTTGACCTCAGAGGAA -ACGGAATGGTTGACCTCACAGGTA -ACGGAATGGTTGACCTCAGACTCT -ACGGAATGGTTGACCTCAAGTCCT -ACGGAATGGTTGACCTCATAAGCC -ACGGAATGGTTGACCTCAATAGCC -ACGGAATGGTTGACCTCATAACCG -ACGGAATGGTTGACCTCAATGCCA -ACGGAATGGTTGTCCTGTGGAAAC -ACGGAATGGTTGTCCTGTAACACC -ACGGAATGGTTGTCCTGTATCGAG -ACGGAATGGTTGTCCTGTCTCCTT -ACGGAATGGTTGTCCTGTCCTGTT -ACGGAATGGTTGTCCTGTCGGTTT -ACGGAATGGTTGTCCTGTGTGGTT -ACGGAATGGTTGTCCTGTGCCTTT -ACGGAATGGTTGTCCTGTGGTCTT -ACGGAATGGTTGTCCTGTACGCTT -ACGGAATGGTTGTCCTGTAGCGTT -ACGGAATGGTTGTCCTGTTTCGTC -ACGGAATGGTTGTCCTGTTCTCTC -ACGGAATGGTTGTCCTGTTGGATC -ACGGAATGGTTGTCCTGTCACTTC -ACGGAATGGTTGTCCTGTGTACTC -ACGGAATGGTTGTCCTGTGATGTC -ACGGAATGGTTGTCCTGTACAGTC -ACGGAATGGTTGTCCTGTTTGCTG -ACGGAATGGTTGTCCTGTTCCATG -ACGGAATGGTTGTCCTGTTGTGTG -ACGGAATGGTTGTCCTGTCTAGTG -ACGGAATGGTTGTCCTGTCATCTG -ACGGAATGGTTGTCCTGTGAGTTG -ACGGAATGGTTGTCCTGTAGACTG -ACGGAATGGTTGTCCTGTTCGGTA -ACGGAATGGTTGTCCTGTTGCCTA -ACGGAATGGTTGTCCTGTCCACTA -ACGGAATGGTTGTCCTGTGGAGTA -ACGGAATGGTTGTCCTGTTCGTCT -ACGGAATGGTTGTCCTGTTGCACT -ACGGAATGGTTGTCCTGTCTGACT -ACGGAATGGTTGTCCTGTCAACCT -ACGGAATGGTTGTCCTGTGCTACT -ACGGAATGGTTGTCCTGTGGATCT -ACGGAATGGTTGTCCTGTAAGGCT -ACGGAATGGTTGTCCTGTTCAACC -ACGGAATGGTTGTCCTGTTGTTCC -ACGGAATGGTTGTCCTGTATTCCC -ACGGAATGGTTGTCCTGTTTCTCG -ACGGAATGGTTGTCCTGTTAGACG -ACGGAATGGTTGTCCTGTGTAACG -ACGGAATGGTTGTCCTGTACTTCG -ACGGAATGGTTGTCCTGTTACGCA -ACGGAATGGTTGTCCTGTCTTGCA -ACGGAATGGTTGTCCTGTCGAACA -ACGGAATGGTTGTCCTGTCAGTCA -ACGGAATGGTTGTCCTGTGATCCA -ACGGAATGGTTGTCCTGTACGACA -ACGGAATGGTTGTCCTGTAGCTCA -ACGGAATGGTTGTCCTGTTCACGT -ACGGAATGGTTGTCCTGTCGTAGT -ACGGAATGGTTGTCCTGTGTCAGT -ACGGAATGGTTGTCCTGTGAAGGT -ACGGAATGGTTGTCCTGTAACCGT -ACGGAATGGTTGTCCTGTTTGTGC -ACGGAATGGTTGTCCTGTCTAAGC -ACGGAATGGTTGTCCTGTACTAGC -ACGGAATGGTTGTCCTGTAGATGC -ACGGAATGGTTGTCCTGTTGAAGG -ACGGAATGGTTGTCCTGTCAATGG -ACGGAATGGTTGTCCTGTATGAGG -ACGGAATGGTTGTCCTGTAATGGG -ACGGAATGGTTGTCCTGTTCCTGA -ACGGAATGGTTGTCCTGTTAGCGA -ACGGAATGGTTGTCCTGTCACAGA -ACGGAATGGTTGTCCTGTGCAAGA -ACGGAATGGTTGTCCTGTGGTTGA -ACGGAATGGTTGTCCTGTTCCGAT -ACGGAATGGTTGTCCTGTTGGCAT -ACGGAATGGTTGTCCTGTCGAGAT -ACGGAATGGTTGTCCTGTTACCAC -ACGGAATGGTTGTCCTGTCAGAAC -ACGGAATGGTTGTCCTGTGTCTAC -ACGGAATGGTTGTCCTGTACGTAC -ACGGAATGGTTGTCCTGTAGTGAC -ACGGAATGGTTGTCCTGTCTGTAG -ACGGAATGGTTGTCCTGTCCTAAG -ACGGAATGGTTGTCCTGTGTTCAG -ACGGAATGGTTGTCCTGTGCATAG -ACGGAATGGTTGTCCTGTGACAAG -ACGGAATGGTTGTCCTGTAAGCAG -ACGGAATGGTTGTCCTGTCGTCAA -ACGGAATGGTTGTCCTGTGCTGAA -ACGGAATGGTTGTCCTGTAGTACG -ACGGAATGGTTGTCCTGTATCCGA -ACGGAATGGTTGTCCTGTATGGGA -ACGGAATGGTTGTCCTGTGTGCAA -ACGGAATGGTTGTCCTGTGAGGAA -ACGGAATGGTTGTCCTGTCAGGTA -ACGGAATGGTTGTCCTGTGACTCT -ACGGAATGGTTGTCCTGTAGTCCT -ACGGAATGGTTGTCCTGTTAAGCC -ACGGAATGGTTGTCCTGTATAGCC -ACGGAATGGTTGTCCTGTTAACCG -ACGGAATGGTTGTCCTGTATGCCA -ACGGAATGGTTGCCCATTGGAAAC -ACGGAATGGTTGCCCATTAACACC -ACGGAATGGTTGCCCATTATCGAG -ACGGAATGGTTGCCCATTCTCCTT -ACGGAATGGTTGCCCATTCCTGTT -ACGGAATGGTTGCCCATTCGGTTT -ACGGAATGGTTGCCCATTGTGGTT -ACGGAATGGTTGCCCATTGCCTTT -ACGGAATGGTTGCCCATTGGTCTT -ACGGAATGGTTGCCCATTACGCTT -ACGGAATGGTTGCCCATTAGCGTT -ACGGAATGGTTGCCCATTTTCGTC -ACGGAATGGTTGCCCATTTCTCTC -ACGGAATGGTTGCCCATTTGGATC -ACGGAATGGTTGCCCATTCACTTC -ACGGAATGGTTGCCCATTGTACTC -ACGGAATGGTTGCCCATTGATGTC -ACGGAATGGTTGCCCATTACAGTC -ACGGAATGGTTGCCCATTTTGCTG -ACGGAATGGTTGCCCATTTCCATG -ACGGAATGGTTGCCCATTTGTGTG -ACGGAATGGTTGCCCATTCTAGTG -ACGGAATGGTTGCCCATTCATCTG -ACGGAATGGTTGCCCATTGAGTTG -ACGGAATGGTTGCCCATTAGACTG -ACGGAATGGTTGCCCATTTCGGTA -ACGGAATGGTTGCCCATTTGCCTA -ACGGAATGGTTGCCCATTCCACTA -ACGGAATGGTTGCCCATTGGAGTA -ACGGAATGGTTGCCCATTTCGTCT -ACGGAATGGTTGCCCATTTGCACT -ACGGAATGGTTGCCCATTCTGACT -ACGGAATGGTTGCCCATTCAACCT -ACGGAATGGTTGCCCATTGCTACT -ACGGAATGGTTGCCCATTGGATCT -ACGGAATGGTTGCCCATTAAGGCT -ACGGAATGGTTGCCCATTTCAACC -ACGGAATGGTTGCCCATTTGTTCC -ACGGAATGGTTGCCCATTATTCCC -ACGGAATGGTTGCCCATTTTCTCG -ACGGAATGGTTGCCCATTTAGACG -ACGGAATGGTTGCCCATTGTAACG -ACGGAATGGTTGCCCATTACTTCG -ACGGAATGGTTGCCCATTTACGCA -ACGGAATGGTTGCCCATTCTTGCA -ACGGAATGGTTGCCCATTCGAACA -ACGGAATGGTTGCCCATTCAGTCA -ACGGAATGGTTGCCCATTGATCCA -ACGGAATGGTTGCCCATTACGACA -ACGGAATGGTTGCCCATTAGCTCA -ACGGAATGGTTGCCCATTTCACGT -ACGGAATGGTTGCCCATTCGTAGT -ACGGAATGGTTGCCCATTGTCAGT -ACGGAATGGTTGCCCATTGAAGGT -ACGGAATGGTTGCCCATTAACCGT -ACGGAATGGTTGCCCATTTTGTGC -ACGGAATGGTTGCCCATTCTAAGC -ACGGAATGGTTGCCCATTACTAGC -ACGGAATGGTTGCCCATTAGATGC -ACGGAATGGTTGCCCATTTGAAGG -ACGGAATGGTTGCCCATTCAATGG -ACGGAATGGTTGCCCATTATGAGG -ACGGAATGGTTGCCCATTAATGGG -ACGGAATGGTTGCCCATTTCCTGA -ACGGAATGGTTGCCCATTTAGCGA -ACGGAATGGTTGCCCATTCACAGA -ACGGAATGGTTGCCCATTGCAAGA -ACGGAATGGTTGCCCATTGGTTGA -ACGGAATGGTTGCCCATTTCCGAT -ACGGAATGGTTGCCCATTTGGCAT -ACGGAATGGTTGCCCATTCGAGAT -ACGGAATGGTTGCCCATTTACCAC -ACGGAATGGTTGCCCATTCAGAAC -ACGGAATGGTTGCCCATTGTCTAC -ACGGAATGGTTGCCCATTACGTAC -ACGGAATGGTTGCCCATTAGTGAC -ACGGAATGGTTGCCCATTCTGTAG -ACGGAATGGTTGCCCATTCCTAAG -ACGGAATGGTTGCCCATTGTTCAG -ACGGAATGGTTGCCCATTGCATAG -ACGGAATGGTTGCCCATTGACAAG -ACGGAATGGTTGCCCATTAAGCAG -ACGGAATGGTTGCCCATTCGTCAA -ACGGAATGGTTGCCCATTGCTGAA -ACGGAATGGTTGCCCATTAGTACG -ACGGAATGGTTGCCCATTATCCGA -ACGGAATGGTTGCCCATTATGGGA -ACGGAATGGTTGCCCATTGTGCAA -ACGGAATGGTTGCCCATTGAGGAA -ACGGAATGGTTGCCCATTCAGGTA -ACGGAATGGTTGCCCATTGACTCT -ACGGAATGGTTGCCCATTAGTCCT -ACGGAATGGTTGCCCATTTAAGCC -ACGGAATGGTTGCCCATTATAGCC -ACGGAATGGTTGCCCATTTAACCG -ACGGAATGGTTGCCCATTATGCCA -ACGGAATGGTTGTCGTTCGGAAAC -ACGGAATGGTTGTCGTTCAACACC -ACGGAATGGTTGTCGTTCATCGAG -ACGGAATGGTTGTCGTTCCTCCTT -ACGGAATGGTTGTCGTTCCCTGTT -ACGGAATGGTTGTCGTTCCGGTTT -ACGGAATGGTTGTCGTTCGTGGTT -ACGGAATGGTTGTCGTTCGCCTTT -ACGGAATGGTTGTCGTTCGGTCTT -ACGGAATGGTTGTCGTTCACGCTT -ACGGAATGGTTGTCGTTCAGCGTT -ACGGAATGGTTGTCGTTCTTCGTC -ACGGAATGGTTGTCGTTCTCTCTC -ACGGAATGGTTGTCGTTCTGGATC -ACGGAATGGTTGTCGTTCCACTTC -ACGGAATGGTTGTCGTTCGTACTC -ACGGAATGGTTGTCGTTCGATGTC -ACGGAATGGTTGTCGTTCACAGTC -ACGGAATGGTTGTCGTTCTTGCTG -ACGGAATGGTTGTCGTTCTCCATG -ACGGAATGGTTGTCGTTCTGTGTG -ACGGAATGGTTGTCGTTCCTAGTG -ACGGAATGGTTGTCGTTCCATCTG -ACGGAATGGTTGTCGTTCGAGTTG -ACGGAATGGTTGTCGTTCAGACTG -ACGGAATGGTTGTCGTTCTCGGTA -ACGGAATGGTTGTCGTTCTGCCTA -ACGGAATGGTTGTCGTTCCCACTA -ACGGAATGGTTGTCGTTCGGAGTA -ACGGAATGGTTGTCGTTCTCGTCT -ACGGAATGGTTGTCGTTCTGCACT -ACGGAATGGTTGTCGTTCCTGACT -ACGGAATGGTTGTCGTTCCAACCT -ACGGAATGGTTGTCGTTCGCTACT -ACGGAATGGTTGTCGTTCGGATCT -ACGGAATGGTTGTCGTTCAAGGCT -ACGGAATGGTTGTCGTTCTCAACC -ACGGAATGGTTGTCGTTCTGTTCC -ACGGAATGGTTGTCGTTCATTCCC -ACGGAATGGTTGTCGTTCTTCTCG -ACGGAATGGTTGTCGTTCTAGACG -ACGGAATGGTTGTCGTTCGTAACG -ACGGAATGGTTGTCGTTCACTTCG -ACGGAATGGTTGTCGTTCTACGCA -ACGGAATGGTTGTCGTTCCTTGCA -ACGGAATGGTTGTCGTTCCGAACA -ACGGAATGGTTGTCGTTCCAGTCA -ACGGAATGGTTGTCGTTCGATCCA -ACGGAATGGTTGTCGTTCACGACA -ACGGAATGGTTGTCGTTCAGCTCA -ACGGAATGGTTGTCGTTCTCACGT -ACGGAATGGTTGTCGTTCCGTAGT -ACGGAATGGTTGTCGTTCGTCAGT -ACGGAATGGTTGTCGTTCGAAGGT -ACGGAATGGTTGTCGTTCAACCGT -ACGGAATGGTTGTCGTTCTTGTGC -ACGGAATGGTTGTCGTTCCTAAGC -ACGGAATGGTTGTCGTTCACTAGC -ACGGAATGGTTGTCGTTCAGATGC -ACGGAATGGTTGTCGTTCTGAAGG -ACGGAATGGTTGTCGTTCCAATGG -ACGGAATGGTTGTCGTTCATGAGG -ACGGAATGGTTGTCGTTCAATGGG -ACGGAATGGTTGTCGTTCTCCTGA -ACGGAATGGTTGTCGTTCTAGCGA -ACGGAATGGTTGTCGTTCCACAGA -ACGGAATGGTTGTCGTTCGCAAGA -ACGGAATGGTTGTCGTTCGGTTGA -ACGGAATGGTTGTCGTTCTCCGAT -ACGGAATGGTTGTCGTTCTGGCAT -ACGGAATGGTTGTCGTTCCGAGAT -ACGGAATGGTTGTCGTTCTACCAC -ACGGAATGGTTGTCGTTCCAGAAC -ACGGAATGGTTGTCGTTCGTCTAC -ACGGAATGGTTGTCGTTCACGTAC -ACGGAATGGTTGTCGTTCAGTGAC -ACGGAATGGTTGTCGTTCCTGTAG -ACGGAATGGTTGTCGTTCCCTAAG -ACGGAATGGTTGTCGTTCGTTCAG -ACGGAATGGTTGTCGTTCGCATAG -ACGGAATGGTTGTCGTTCGACAAG -ACGGAATGGTTGTCGTTCAAGCAG -ACGGAATGGTTGTCGTTCCGTCAA -ACGGAATGGTTGTCGTTCGCTGAA -ACGGAATGGTTGTCGTTCAGTACG -ACGGAATGGTTGTCGTTCATCCGA -ACGGAATGGTTGTCGTTCATGGGA -ACGGAATGGTTGTCGTTCGTGCAA -ACGGAATGGTTGTCGTTCGAGGAA -ACGGAATGGTTGTCGTTCCAGGTA -ACGGAATGGTTGTCGTTCGACTCT -ACGGAATGGTTGTCGTTCAGTCCT -ACGGAATGGTTGTCGTTCTAAGCC -ACGGAATGGTTGTCGTTCATAGCC -ACGGAATGGTTGTCGTTCTAACCG -ACGGAATGGTTGTCGTTCATGCCA -ACGGAATGGTTGACGTAGGGAAAC -ACGGAATGGTTGACGTAGAACACC -ACGGAATGGTTGACGTAGATCGAG -ACGGAATGGTTGACGTAGCTCCTT -ACGGAATGGTTGACGTAGCCTGTT -ACGGAATGGTTGACGTAGCGGTTT -ACGGAATGGTTGACGTAGGTGGTT -ACGGAATGGTTGACGTAGGCCTTT -ACGGAATGGTTGACGTAGGGTCTT -ACGGAATGGTTGACGTAGACGCTT -ACGGAATGGTTGACGTAGAGCGTT -ACGGAATGGTTGACGTAGTTCGTC -ACGGAATGGTTGACGTAGTCTCTC -ACGGAATGGTTGACGTAGTGGATC -ACGGAATGGTTGACGTAGCACTTC -ACGGAATGGTTGACGTAGGTACTC -ACGGAATGGTTGACGTAGGATGTC -ACGGAATGGTTGACGTAGACAGTC -ACGGAATGGTTGACGTAGTTGCTG -ACGGAATGGTTGACGTAGTCCATG -ACGGAATGGTTGACGTAGTGTGTG -ACGGAATGGTTGACGTAGCTAGTG -ACGGAATGGTTGACGTAGCATCTG -ACGGAATGGTTGACGTAGGAGTTG -ACGGAATGGTTGACGTAGAGACTG -ACGGAATGGTTGACGTAGTCGGTA -ACGGAATGGTTGACGTAGTGCCTA -ACGGAATGGTTGACGTAGCCACTA -ACGGAATGGTTGACGTAGGGAGTA -ACGGAATGGTTGACGTAGTCGTCT -ACGGAATGGTTGACGTAGTGCACT -ACGGAATGGTTGACGTAGCTGACT -ACGGAATGGTTGACGTAGCAACCT -ACGGAATGGTTGACGTAGGCTACT -ACGGAATGGTTGACGTAGGGATCT -ACGGAATGGTTGACGTAGAAGGCT -ACGGAATGGTTGACGTAGTCAACC -ACGGAATGGTTGACGTAGTGTTCC -ACGGAATGGTTGACGTAGATTCCC -ACGGAATGGTTGACGTAGTTCTCG -ACGGAATGGTTGACGTAGTAGACG -ACGGAATGGTTGACGTAGGTAACG -ACGGAATGGTTGACGTAGACTTCG -ACGGAATGGTTGACGTAGTACGCA -ACGGAATGGTTGACGTAGCTTGCA -ACGGAATGGTTGACGTAGCGAACA -ACGGAATGGTTGACGTAGCAGTCA -ACGGAATGGTTGACGTAGGATCCA -ACGGAATGGTTGACGTAGACGACA -ACGGAATGGTTGACGTAGAGCTCA -ACGGAATGGTTGACGTAGTCACGT -ACGGAATGGTTGACGTAGCGTAGT -ACGGAATGGTTGACGTAGGTCAGT -ACGGAATGGTTGACGTAGGAAGGT -ACGGAATGGTTGACGTAGAACCGT -ACGGAATGGTTGACGTAGTTGTGC -ACGGAATGGTTGACGTAGCTAAGC -ACGGAATGGTTGACGTAGACTAGC -ACGGAATGGTTGACGTAGAGATGC -ACGGAATGGTTGACGTAGTGAAGG -ACGGAATGGTTGACGTAGCAATGG -ACGGAATGGTTGACGTAGATGAGG -ACGGAATGGTTGACGTAGAATGGG -ACGGAATGGTTGACGTAGTCCTGA -ACGGAATGGTTGACGTAGTAGCGA -ACGGAATGGTTGACGTAGCACAGA -ACGGAATGGTTGACGTAGGCAAGA -ACGGAATGGTTGACGTAGGGTTGA -ACGGAATGGTTGACGTAGTCCGAT -ACGGAATGGTTGACGTAGTGGCAT -ACGGAATGGTTGACGTAGCGAGAT -ACGGAATGGTTGACGTAGTACCAC -ACGGAATGGTTGACGTAGCAGAAC -ACGGAATGGTTGACGTAGGTCTAC -ACGGAATGGTTGACGTAGACGTAC -ACGGAATGGTTGACGTAGAGTGAC -ACGGAATGGTTGACGTAGCTGTAG -ACGGAATGGTTGACGTAGCCTAAG -ACGGAATGGTTGACGTAGGTTCAG -ACGGAATGGTTGACGTAGGCATAG -ACGGAATGGTTGACGTAGGACAAG -ACGGAATGGTTGACGTAGAAGCAG -ACGGAATGGTTGACGTAGCGTCAA -ACGGAATGGTTGACGTAGGCTGAA -ACGGAATGGTTGACGTAGAGTACG -ACGGAATGGTTGACGTAGATCCGA -ACGGAATGGTTGACGTAGATGGGA -ACGGAATGGTTGACGTAGGTGCAA -ACGGAATGGTTGACGTAGGAGGAA -ACGGAATGGTTGACGTAGCAGGTA -ACGGAATGGTTGACGTAGGACTCT -ACGGAATGGTTGACGTAGAGTCCT -ACGGAATGGTTGACGTAGTAAGCC -ACGGAATGGTTGACGTAGATAGCC -ACGGAATGGTTGACGTAGTAACCG -ACGGAATGGTTGACGTAGATGCCA -ACGGAATGGTTGACGGTAGGAAAC -ACGGAATGGTTGACGGTAAACACC -ACGGAATGGTTGACGGTAATCGAG -ACGGAATGGTTGACGGTACTCCTT -ACGGAATGGTTGACGGTACCTGTT -ACGGAATGGTTGACGGTACGGTTT -ACGGAATGGTTGACGGTAGTGGTT -ACGGAATGGTTGACGGTAGCCTTT -ACGGAATGGTTGACGGTAGGTCTT -ACGGAATGGTTGACGGTAACGCTT -ACGGAATGGTTGACGGTAAGCGTT -ACGGAATGGTTGACGGTATTCGTC -ACGGAATGGTTGACGGTATCTCTC -ACGGAATGGTTGACGGTATGGATC -ACGGAATGGTTGACGGTACACTTC -ACGGAATGGTTGACGGTAGTACTC -ACGGAATGGTTGACGGTAGATGTC -ACGGAATGGTTGACGGTAACAGTC -ACGGAATGGTTGACGGTATTGCTG -ACGGAATGGTTGACGGTATCCATG -ACGGAATGGTTGACGGTATGTGTG -ACGGAATGGTTGACGGTACTAGTG -ACGGAATGGTTGACGGTACATCTG -ACGGAATGGTTGACGGTAGAGTTG -ACGGAATGGTTGACGGTAAGACTG -ACGGAATGGTTGACGGTATCGGTA -ACGGAATGGTTGACGGTATGCCTA -ACGGAATGGTTGACGGTACCACTA -ACGGAATGGTTGACGGTAGGAGTA -ACGGAATGGTTGACGGTATCGTCT -ACGGAATGGTTGACGGTATGCACT -ACGGAATGGTTGACGGTACTGACT -ACGGAATGGTTGACGGTACAACCT -ACGGAATGGTTGACGGTAGCTACT -ACGGAATGGTTGACGGTAGGATCT -ACGGAATGGTTGACGGTAAAGGCT -ACGGAATGGTTGACGGTATCAACC -ACGGAATGGTTGACGGTATGTTCC -ACGGAATGGTTGACGGTAATTCCC -ACGGAATGGTTGACGGTATTCTCG -ACGGAATGGTTGACGGTATAGACG -ACGGAATGGTTGACGGTAGTAACG -ACGGAATGGTTGACGGTAACTTCG -ACGGAATGGTTGACGGTATACGCA -ACGGAATGGTTGACGGTACTTGCA -ACGGAATGGTTGACGGTACGAACA -ACGGAATGGTTGACGGTACAGTCA -ACGGAATGGTTGACGGTAGATCCA -ACGGAATGGTTGACGGTAACGACA -ACGGAATGGTTGACGGTAAGCTCA -ACGGAATGGTTGACGGTATCACGT -ACGGAATGGTTGACGGTACGTAGT -ACGGAATGGTTGACGGTAGTCAGT -ACGGAATGGTTGACGGTAGAAGGT -ACGGAATGGTTGACGGTAAACCGT -ACGGAATGGTTGACGGTATTGTGC -ACGGAATGGTTGACGGTACTAAGC -ACGGAATGGTTGACGGTAACTAGC -ACGGAATGGTTGACGGTAAGATGC -ACGGAATGGTTGACGGTATGAAGG -ACGGAATGGTTGACGGTACAATGG -ACGGAATGGTTGACGGTAATGAGG -ACGGAATGGTTGACGGTAAATGGG -ACGGAATGGTTGACGGTATCCTGA -ACGGAATGGTTGACGGTATAGCGA -ACGGAATGGTTGACGGTACACAGA -ACGGAATGGTTGACGGTAGCAAGA -ACGGAATGGTTGACGGTAGGTTGA -ACGGAATGGTTGACGGTATCCGAT -ACGGAATGGTTGACGGTATGGCAT -ACGGAATGGTTGACGGTACGAGAT -ACGGAATGGTTGACGGTATACCAC -ACGGAATGGTTGACGGTACAGAAC -ACGGAATGGTTGACGGTAGTCTAC -ACGGAATGGTTGACGGTAACGTAC -ACGGAATGGTTGACGGTAAGTGAC -ACGGAATGGTTGACGGTACTGTAG -ACGGAATGGTTGACGGTACCTAAG -ACGGAATGGTTGACGGTAGTTCAG -ACGGAATGGTTGACGGTAGCATAG -ACGGAATGGTTGACGGTAGACAAG -ACGGAATGGTTGACGGTAAAGCAG -ACGGAATGGTTGACGGTACGTCAA -ACGGAATGGTTGACGGTAGCTGAA -ACGGAATGGTTGACGGTAAGTACG -ACGGAATGGTTGACGGTAATCCGA -ACGGAATGGTTGACGGTAATGGGA -ACGGAATGGTTGACGGTAGTGCAA -ACGGAATGGTTGACGGTAGAGGAA -ACGGAATGGTTGACGGTACAGGTA -ACGGAATGGTTGACGGTAGACTCT -ACGGAATGGTTGACGGTAAGTCCT -ACGGAATGGTTGACGGTATAAGCC -ACGGAATGGTTGACGGTAATAGCC -ACGGAATGGTTGACGGTATAACCG -ACGGAATGGTTGACGGTAATGCCA -ACGGAATGGTTGTCGACTGGAAAC -ACGGAATGGTTGTCGACTAACACC -ACGGAATGGTTGTCGACTATCGAG -ACGGAATGGTTGTCGACTCTCCTT -ACGGAATGGTTGTCGACTCCTGTT -ACGGAATGGTTGTCGACTCGGTTT -ACGGAATGGTTGTCGACTGTGGTT -ACGGAATGGTTGTCGACTGCCTTT -ACGGAATGGTTGTCGACTGGTCTT -ACGGAATGGTTGTCGACTACGCTT -ACGGAATGGTTGTCGACTAGCGTT -ACGGAATGGTTGTCGACTTTCGTC -ACGGAATGGTTGTCGACTTCTCTC -ACGGAATGGTTGTCGACTTGGATC -ACGGAATGGTTGTCGACTCACTTC -ACGGAATGGTTGTCGACTGTACTC -ACGGAATGGTTGTCGACTGATGTC -ACGGAATGGTTGTCGACTACAGTC -ACGGAATGGTTGTCGACTTTGCTG -ACGGAATGGTTGTCGACTTCCATG -ACGGAATGGTTGTCGACTTGTGTG -ACGGAATGGTTGTCGACTCTAGTG -ACGGAATGGTTGTCGACTCATCTG -ACGGAATGGTTGTCGACTGAGTTG -ACGGAATGGTTGTCGACTAGACTG -ACGGAATGGTTGTCGACTTCGGTA -ACGGAATGGTTGTCGACTTGCCTA -ACGGAATGGTTGTCGACTCCACTA -ACGGAATGGTTGTCGACTGGAGTA -ACGGAATGGTTGTCGACTTCGTCT -ACGGAATGGTTGTCGACTTGCACT -ACGGAATGGTTGTCGACTCTGACT -ACGGAATGGTTGTCGACTCAACCT -ACGGAATGGTTGTCGACTGCTACT -ACGGAATGGTTGTCGACTGGATCT -ACGGAATGGTTGTCGACTAAGGCT -ACGGAATGGTTGTCGACTTCAACC -ACGGAATGGTTGTCGACTTGTTCC -ACGGAATGGTTGTCGACTATTCCC -ACGGAATGGTTGTCGACTTTCTCG -ACGGAATGGTTGTCGACTTAGACG -ACGGAATGGTTGTCGACTGTAACG -ACGGAATGGTTGTCGACTACTTCG -ACGGAATGGTTGTCGACTTACGCA -ACGGAATGGTTGTCGACTCTTGCA -ACGGAATGGTTGTCGACTCGAACA -ACGGAATGGTTGTCGACTCAGTCA -ACGGAATGGTTGTCGACTGATCCA -ACGGAATGGTTGTCGACTACGACA -ACGGAATGGTTGTCGACTAGCTCA -ACGGAATGGTTGTCGACTTCACGT -ACGGAATGGTTGTCGACTCGTAGT -ACGGAATGGTTGTCGACTGTCAGT -ACGGAATGGTTGTCGACTGAAGGT -ACGGAATGGTTGTCGACTAACCGT -ACGGAATGGTTGTCGACTTTGTGC -ACGGAATGGTTGTCGACTCTAAGC -ACGGAATGGTTGTCGACTACTAGC -ACGGAATGGTTGTCGACTAGATGC -ACGGAATGGTTGTCGACTTGAAGG -ACGGAATGGTTGTCGACTCAATGG -ACGGAATGGTTGTCGACTATGAGG -ACGGAATGGTTGTCGACTAATGGG -ACGGAATGGTTGTCGACTTCCTGA -ACGGAATGGTTGTCGACTTAGCGA -ACGGAATGGTTGTCGACTCACAGA -ACGGAATGGTTGTCGACTGCAAGA -ACGGAATGGTTGTCGACTGGTTGA -ACGGAATGGTTGTCGACTTCCGAT -ACGGAATGGTTGTCGACTTGGCAT -ACGGAATGGTTGTCGACTCGAGAT -ACGGAATGGTTGTCGACTTACCAC -ACGGAATGGTTGTCGACTCAGAAC -ACGGAATGGTTGTCGACTGTCTAC -ACGGAATGGTTGTCGACTACGTAC -ACGGAATGGTTGTCGACTAGTGAC -ACGGAATGGTTGTCGACTCTGTAG -ACGGAATGGTTGTCGACTCCTAAG -ACGGAATGGTTGTCGACTGTTCAG -ACGGAATGGTTGTCGACTGCATAG -ACGGAATGGTTGTCGACTGACAAG -ACGGAATGGTTGTCGACTAAGCAG -ACGGAATGGTTGTCGACTCGTCAA -ACGGAATGGTTGTCGACTGCTGAA -ACGGAATGGTTGTCGACTAGTACG -ACGGAATGGTTGTCGACTATCCGA -ACGGAATGGTTGTCGACTATGGGA -ACGGAATGGTTGTCGACTGTGCAA -ACGGAATGGTTGTCGACTGAGGAA -ACGGAATGGTTGTCGACTCAGGTA -ACGGAATGGTTGTCGACTGACTCT -ACGGAATGGTTGTCGACTAGTCCT -ACGGAATGGTTGTCGACTTAAGCC -ACGGAATGGTTGTCGACTATAGCC -ACGGAATGGTTGTCGACTTAACCG -ACGGAATGGTTGTCGACTATGCCA -ACGGAATGGTTGGCATACGGAAAC -ACGGAATGGTTGGCATACAACACC -ACGGAATGGTTGGCATACATCGAG -ACGGAATGGTTGGCATACCTCCTT -ACGGAATGGTTGGCATACCCTGTT -ACGGAATGGTTGGCATACCGGTTT -ACGGAATGGTTGGCATACGTGGTT -ACGGAATGGTTGGCATACGCCTTT -ACGGAATGGTTGGCATACGGTCTT -ACGGAATGGTTGGCATACACGCTT -ACGGAATGGTTGGCATACAGCGTT -ACGGAATGGTTGGCATACTTCGTC -ACGGAATGGTTGGCATACTCTCTC -ACGGAATGGTTGGCATACTGGATC -ACGGAATGGTTGGCATACCACTTC -ACGGAATGGTTGGCATACGTACTC -ACGGAATGGTTGGCATACGATGTC -ACGGAATGGTTGGCATACACAGTC -ACGGAATGGTTGGCATACTTGCTG -ACGGAATGGTTGGCATACTCCATG -ACGGAATGGTTGGCATACTGTGTG -ACGGAATGGTTGGCATACCTAGTG -ACGGAATGGTTGGCATACCATCTG -ACGGAATGGTTGGCATACGAGTTG -ACGGAATGGTTGGCATACAGACTG -ACGGAATGGTTGGCATACTCGGTA -ACGGAATGGTTGGCATACTGCCTA -ACGGAATGGTTGGCATACCCACTA -ACGGAATGGTTGGCATACGGAGTA -ACGGAATGGTTGGCATACTCGTCT -ACGGAATGGTTGGCATACTGCACT -ACGGAATGGTTGGCATACCTGACT -ACGGAATGGTTGGCATACCAACCT -ACGGAATGGTTGGCATACGCTACT -ACGGAATGGTTGGCATACGGATCT -ACGGAATGGTTGGCATACAAGGCT -ACGGAATGGTTGGCATACTCAACC -ACGGAATGGTTGGCATACTGTTCC -ACGGAATGGTTGGCATACATTCCC -ACGGAATGGTTGGCATACTTCTCG -ACGGAATGGTTGGCATACTAGACG -ACGGAATGGTTGGCATACGTAACG -ACGGAATGGTTGGCATACACTTCG -ACGGAATGGTTGGCATACTACGCA -ACGGAATGGTTGGCATACCTTGCA -ACGGAATGGTTGGCATACCGAACA -ACGGAATGGTTGGCATACCAGTCA -ACGGAATGGTTGGCATACGATCCA -ACGGAATGGTTGGCATACACGACA -ACGGAATGGTTGGCATACAGCTCA -ACGGAATGGTTGGCATACTCACGT -ACGGAATGGTTGGCATACCGTAGT -ACGGAATGGTTGGCATACGTCAGT -ACGGAATGGTTGGCATACGAAGGT -ACGGAATGGTTGGCATACAACCGT -ACGGAATGGTTGGCATACTTGTGC -ACGGAATGGTTGGCATACCTAAGC -ACGGAATGGTTGGCATACACTAGC -ACGGAATGGTTGGCATACAGATGC -ACGGAATGGTTGGCATACTGAAGG -ACGGAATGGTTGGCATACCAATGG -ACGGAATGGTTGGCATACATGAGG -ACGGAATGGTTGGCATACAATGGG -ACGGAATGGTTGGCATACTCCTGA -ACGGAATGGTTGGCATACTAGCGA -ACGGAATGGTTGGCATACCACAGA -ACGGAATGGTTGGCATACGCAAGA -ACGGAATGGTTGGCATACGGTTGA -ACGGAATGGTTGGCATACTCCGAT -ACGGAATGGTTGGCATACTGGCAT -ACGGAATGGTTGGCATACCGAGAT -ACGGAATGGTTGGCATACTACCAC -ACGGAATGGTTGGCATACCAGAAC -ACGGAATGGTTGGCATACGTCTAC -ACGGAATGGTTGGCATACACGTAC -ACGGAATGGTTGGCATACAGTGAC -ACGGAATGGTTGGCATACCTGTAG -ACGGAATGGTTGGCATACCCTAAG -ACGGAATGGTTGGCATACGTTCAG -ACGGAATGGTTGGCATACGCATAG -ACGGAATGGTTGGCATACGACAAG -ACGGAATGGTTGGCATACAAGCAG -ACGGAATGGTTGGCATACCGTCAA -ACGGAATGGTTGGCATACGCTGAA -ACGGAATGGTTGGCATACAGTACG -ACGGAATGGTTGGCATACATCCGA -ACGGAATGGTTGGCATACATGGGA -ACGGAATGGTTGGCATACGTGCAA -ACGGAATGGTTGGCATACGAGGAA -ACGGAATGGTTGGCATACCAGGTA -ACGGAATGGTTGGCATACGACTCT -ACGGAATGGTTGGCATACAGTCCT -ACGGAATGGTTGGCATACTAAGCC -ACGGAATGGTTGGCATACATAGCC -ACGGAATGGTTGGCATACTAACCG -ACGGAATGGTTGGCATACATGCCA -ACGGAATGGTTGGCACTTGGAAAC -ACGGAATGGTTGGCACTTAACACC -ACGGAATGGTTGGCACTTATCGAG -ACGGAATGGTTGGCACTTCTCCTT -ACGGAATGGTTGGCACTTCCTGTT -ACGGAATGGTTGGCACTTCGGTTT -ACGGAATGGTTGGCACTTGTGGTT -ACGGAATGGTTGGCACTTGCCTTT -ACGGAATGGTTGGCACTTGGTCTT -ACGGAATGGTTGGCACTTACGCTT -ACGGAATGGTTGGCACTTAGCGTT -ACGGAATGGTTGGCACTTTTCGTC -ACGGAATGGTTGGCACTTTCTCTC -ACGGAATGGTTGGCACTTTGGATC -ACGGAATGGTTGGCACTTCACTTC -ACGGAATGGTTGGCACTTGTACTC -ACGGAATGGTTGGCACTTGATGTC -ACGGAATGGTTGGCACTTACAGTC -ACGGAATGGTTGGCACTTTTGCTG -ACGGAATGGTTGGCACTTTCCATG -ACGGAATGGTTGGCACTTTGTGTG -ACGGAATGGTTGGCACTTCTAGTG -ACGGAATGGTTGGCACTTCATCTG -ACGGAATGGTTGGCACTTGAGTTG -ACGGAATGGTTGGCACTTAGACTG -ACGGAATGGTTGGCACTTTCGGTA -ACGGAATGGTTGGCACTTTGCCTA -ACGGAATGGTTGGCACTTCCACTA -ACGGAATGGTTGGCACTTGGAGTA -ACGGAATGGTTGGCACTTTCGTCT -ACGGAATGGTTGGCACTTTGCACT -ACGGAATGGTTGGCACTTCTGACT -ACGGAATGGTTGGCACTTCAACCT -ACGGAATGGTTGGCACTTGCTACT -ACGGAATGGTTGGCACTTGGATCT -ACGGAATGGTTGGCACTTAAGGCT -ACGGAATGGTTGGCACTTTCAACC -ACGGAATGGTTGGCACTTTGTTCC -ACGGAATGGTTGGCACTTATTCCC -ACGGAATGGTTGGCACTTTTCTCG -ACGGAATGGTTGGCACTTTAGACG -ACGGAATGGTTGGCACTTGTAACG -ACGGAATGGTTGGCACTTACTTCG -ACGGAATGGTTGGCACTTTACGCA -ACGGAATGGTTGGCACTTCTTGCA -ACGGAATGGTTGGCACTTCGAACA -ACGGAATGGTTGGCACTTCAGTCA -ACGGAATGGTTGGCACTTGATCCA -ACGGAATGGTTGGCACTTACGACA -ACGGAATGGTTGGCACTTAGCTCA -ACGGAATGGTTGGCACTTTCACGT -ACGGAATGGTTGGCACTTCGTAGT -ACGGAATGGTTGGCACTTGTCAGT -ACGGAATGGTTGGCACTTGAAGGT -ACGGAATGGTTGGCACTTAACCGT -ACGGAATGGTTGGCACTTTTGTGC -ACGGAATGGTTGGCACTTCTAAGC -ACGGAATGGTTGGCACTTACTAGC -ACGGAATGGTTGGCACTTAGATGC -ACGGAATGGTTGGCACTTTGAAGG -ACGGAATGGTTGGCACTTCAATGG -ACGGAATGGTTGGCACTTATGAGG -ACGGAATGGTTGGCACTTAATGGG -ACGGAATGGTTGGCACTTTCCTGA -ACGGAATGGTTGGCACTTTAGCGA -ACGGAATGGTTGGCACTTCACAGA -ACGGAATGGTTGGCACTTGCAAGA -ACGGAATGGTTGGCACTTGGTTGA -ACGGAATGGTTGGCACTTTCCGAT -ACGGAATGGTTGGCACTTTGGCAT -ACGGAATGGTTGGCACTTCGAGAT -ACGGAATGGTTGGCACTTTACCAC -ACGGAATGGTTGGCACTTCAGAAC -ACGGAATGGTTGGCACTTGTCTAC -ACGGAATGGTTGGCACTTACGTAC -ACGGAATGGTTGGCACTTAGTGAC -ACGGAATGGTTGGCACTTCTGTAG -ACGGAATGGTTGGCACTTCCTAAG -ACGGAATGGTTGGCACTTGTTCAG -ACGGAATGGTTGGCACTTGCATAG -ACGGAATGGTTGGCACTTGACAAG -ACGGAATGGTTGGCACTTAAGCAG -ACGGAATGGTTGGCACTTCGTCAA -ACGGAATGGTTGGCACTTGCTGAA -ACGGAATGGTTGGCACTTAGTACG -ACGGAATGGTTGGCACTTATCCGA -ACGGAATGGTTGGCACTTATGGGA -ACGGAATGGTTGGCACTTGTGCAA -ACGGAATGGTTGGCACTTGAGGAA -ACGGAATGGTTGGCACTTCAGGTA -ACGGAATGGTTGGCACTTGACTCT -ACGGAATGGTTGGCACTTAGTCCT -ACGGAATGGTTGGCACTTTAAGCC -ACGGAATGGTTGGCACTTATAGCC -ACGGAATGGTTGGCACTTTAACCG -ACGGAATGGTTGGCACTTATGCCA -ACGGAATGGTTGACACGAGGAAAC -ACGGAATGGTTGACACGAAACACC -ACGGAATGGTTGACACGAATCGAG -ACGGAATGGTTGACACGACTCCTT -ACGGAATGGTTGACACGACCTGTT -ACGGAATGGTTGACACGACGGTTT -ACGGAATGGTTGACACGAGTGGTT -ACGGAATGGTTGACACGAGCCTTT -ACGGAATGGTTGACACGAGGTCTT -ACGGAATGGTTGACACGAACGCTT -ACGGAATGGTTGACACGAAGCGTT -ACGGAATGGTTGACACGATTCGTC -ACGGAATGGTTGACACGATCTCTC -ACGGAATGGTTGACACGATGGATC -ACGGAATGGTTGACACGACACTTC -ACGGAATGGTTGACACGAGTACTC -ACGGAATGGTTGACACGAGATGTC -ACGGAATGGTTGACACGAACAGTC -ACGGAATGGTTGACACGATTGCTG -ACGGAATGGTTGACACGATCCATG -ACGGAATGGTTGACACGATGTGTG -ACGGAATGGTTGACACGACTAGTG -ACGGAATGGTTGACACGACATCTG -ACGGAATGGTTGACACGAGAGTTG -ACGGAATGGTTGACACGAAGACTG -ACGGAATGGTTGACACGATCGGTA -ACGGAATGGTTGACACGATGCCTA -ACGGAATGGTTGACACGACCACTA -ACGGAATGGTTGACACGAGGAGTA -ACGGAATGGTTGACACGATCGTCT -ACGGAATGGTTGACACGATGCACT -ACGGAATGGTTGACACGACTGACT -ACGGAATGGTTGACACGACAACCT -ACGGAATGGTTGACACGAGCTACT -ACGGAATGGTTGACACGAGGATCT -ACGGAATGGTTGACACGAAAGGCT -ACGGAATGGTTGACACGATCAACC -ACGGAATGGTTGACACGATGTTCC -ACGGAATGGTTGACACGAATTCCC -ACGGAATGGTTGACACGATTCTCG -ACGGAATGGTTGACACGATAGACG -ACGGAATGGTTGACACGAGTAACG -ACGGAATGGTTGACACGAACTTCG -ACGGAATGGTTGACACGATACGCA -ACGGAATGGTTGACACGACTTGCA -ACGGAATGGTTGACACGACGAACA -ACGGAATGGTTGACACGACAGTCA -ACGGAATGGTTGACACGAGATCCA -ACGGAATGGTTGACACGAACGACA -ACGGAATGGTTGACACGAAGCTCA -ACGGAATGGTTGACACGATCACGT -ACGGAATGGTTGACACGACGTAGT -ACGGAATGGTTGACACGAGTCAGT -ACGGAATGGTTGACACGAGAAGGT -ACGGAATGGTTGACACGAAACCGT -ACGGAATGGTTGACACGATTGTGC -ACGGAATGGTTGACACGACTAAGC -ACGGAATGGTTGACACGAACTAGC -ACGGAATGGTTGACACGAAGATGC -ACGGAATGGTTGACACGATGAAGG -ACGGAATGGTTGACACGACAATGG -ACGGAATGGTTGACACGAATGAGG -ACGGAATGGTTGACACGAAATGGG -ACGGAATGGTTGACACGATCCTGA -ACGGAATGGTTGACACGATAGCGA -ACGGAATGGTTGACACGACACAGA -ACGGAATGGTTGACACGAGCAAGA -ACGGAATGGTTGACACGAGGTTGA -ACGGAATGGTTGACACGATCCGAT -ACGGAATGGTTGACACGATGGCAT -ACGGAATGGTTGACACGACGAGAT -ACGGAATGGTTGACACGATACCAC -ACGGAATGGTTGACACGACAGAAC -ACGGAATGGTTGACACGAGTCTAC -ACGGAATGGTTGACACGAACGTAC -ACGGAATGGTTGACACGAAGTGAC -ACGGAATGGTTGACACGACTGTAG -ACGGAATGGTTGACACGACCTAAG -ACGGAATGGTTGACACGAGTTCAG -ACGGAATGGTTGACACGAGCATAG -ACGGAATGGTTGACACGAGACAAG -ACGGAATGGTTGACACGAAAGCAG -ACGGAATGGTTGACACGACGTCAA -ACGGAATGGTTGACACGAGCTGAA -ACGGAATGGTTGACACGAAGTACG -ACGGAATGGTTGACACGAATCCGA -ACGGAATGGTTGACACGAATGGGA -ACGGAATGGTTGACACGAGTGCAA -ACGGAATGGTTGACACGAGAGGAA -ACGGAATGGTTGACACGACAGGTA -ACGGAATGGTTGACACGAGACTCT -ACGGAATGGTTGACACGAAGTCCT -ACGGAATGGTTGACACGATAAGCC -ACGGAATGGTTGACACGAATAGCC -ACGGAATGGTTGACACGATAACCG -ACGGAATGGTTGACACGAATGCCA -ACGGAATGGTTGTCACAGGGAAAC -ACGGAATGGTTGTCACAGAACACC -ACGGAATGGTTGTCACAGATCGAG -ACGGAATGGTTGTCACAGCTCCTT -ACGGAATGGTTGTCACAGCCTGTT -ACGGAATGGTTGTCACAGCGGTTT -ACGGAATGGTTGTCACAGGTGGTT -ACGGAATGGTTGTCACAGGCCTTT -ACGGAATGGTTGTCACAGGGTCTT -ACGGAATGGTTGTCACAGACGCTT -ACGGAATGGTTGTCACAGAGCGTT -ACGGAATGGTTGTCACAGTTCGTC -ACGGAATGGTTGTCACAGTCTCTC -ACGGAATGGTTGTCACAGTGGATC -ACGGAATGGTTGTCACAGCACTTC -ACGGAATGGTTGTCACAGGTACTC -ACGGAATGGTTGTCACAGGATGTC -ACGGAATGGTTGTCACAGACAGTC -ACGGAATGGTTGTCACAGTTGCTG -ACGGAATGGTTGTCACAGTCCATG -ACGGAATGGTTGTCACAGTGTGTG -ACGGAATGGTTGTCACAGCTAGTG -ACGGAATGGTTGTCACAGCATCTG -ACGGAATGGTTGTCACAGGAGTTG -ACGGAATGGTTGTCACAGAGACTG -ACGGAATGGTTGTCACAGTCGGTA -ACGGAATGGTTGTCACAGTGCCTA -ACGGAATGGTTGTCACAGCCACTA -ACGGAATGGTTGTCACAGGGAGTA -ACGGAATGGTTGTCACAGTCGTCT -ACGGAATGGTTGTCACAGTGCACT -ACGGAATGGTTGTCACAGCTGACT -ACGGAATGGTTGTCACAGCAACCT -ACGGAATGGTTGTCACAGGCTACT -ACGGAATGGTTGTCACAGGGATCT -ACGGAATGGTTGTCACAGAAGGCT -ACGGAATGGTTGTCACAGTCAACC -ACGGAATGGTTGTCACAGTGTTCC -ACGGAATGGTTGTCACAGATTCCC -ACGGAATGGTTGTCACAGTTCTCG -ACGGAATGGTTGTCACAGTAGACG -ACGGAATGGTTGTCACAGGTAACG -ACGGAATGGTTGTCACAGACTTCG -ACGGAATGGTTGTCACAGTACGCA -ACGGAATGGTTGTCACAGCTTGCA -ACGGAATGGTTGTCACAGCGAACA -ACGGAATGGTTGTCACAGCAGTCA -ACGGAATGGTTGTCACAGGATCCA -ACGGAATGGTTGTCACAGACGACA -ACGGAATGGTTGTCACAGAGCTCA -ACGGAATGGTTGTCACAGTCACGT -ACGGAATGGTTGTCACAGCGTAGT -ACGGAATGGTTGTCACAGGTCAGT -ACGGAATGGTTGTCACAGGAAGGT -ACGGAATGGTTGTCACAGAACCGT -ACGGAATGGTTGTCACAGTTGTGC -ACGGAATGGTTGTCACAGCTAAGC -ACGGAATGGTTGTCACAGACTAGC -ACGGAATGGTTGTCACAGAGATGC -ACGGAATGGTTGTCACAGTGAAGG -ACGGAATGGTTGTCACAGCAATGG -ACGGAATGGTTGTCACAGATGAGG -ACGGAATGGTTGTCACAGAATGGG -ACGGAATGGTTGTCACAGTCCTGA -ACGGAATGGTTGTCACAGTAGCGA -ACGGAATGGTTGTCACAGCACAGA -ACGGAATGGTTGTCACAGGCAAGA -ACGGAATGGTTGTCACAGGGTTGA -ACGGAATGGTTGTCACAGTCCGAT -ACGGAATGGTTGTCACAGTGGCAT -ACGGAATGGTTGTCACAGCGAGAT -ACGGAATGGTTGTCACAGTACCAC -ACGGAATGGTTGTCACAGCAGAAC -ACGGAATGGTTGTCACAGGTCTAC -ACGGAATGGTTGTCACAGACGTAC -ACGGAATGGTTGTCACAGAGTGAC -ACGGAATGGTTGTCACAGCTGTAG -ACGGAATGGTTGTCACAGCCTAAG -ACGGAATGGTTGTCACAGGTTCAG -ACGGAATGGTTGTCACAGGCATAG -ACGGAATGGTTGTCACAGGACAAG -ACGGAATGGTTGTCACAGAAGCAG -ACGGAATGGTTGTCACAGCGTCAA -ACGGAATGGTTGTCACAGGCTGAA -ACGGAATGGTTGTCACAGAGTACG -ACGGAATGGTTGTCACAGATCCGA -ACGGAATGGTTGTCACAGATGGGA -ACGGAATGGTTGTCACAGGTGCAA -ACGGAATGGTTGTCACAGGAGGAA -ACGGAATGGTTGTCACAGCAGGTA -ACGGAATGGTTGTCACAGGACTCT -ACGGAATGGTTGTCACAGAGTCCT -ACGGAATGGTTGTCACAGTAAGCC -ACGGAATGGTTGTCACAGATAGCC -ACGGAATGGTTGTCACAGTAACCG -ACGGAATGGTTGTCACAGATGCCA -ACGGAATGGTTGCCAGATGGAAAC -ACGGAATGGTTGCCAGATAACACC -ACGGAATGGTTGCCAGATATCGAG -ACGGAATGGTTGCCAGATCTCCTT -ACGGAATGGTTGCCAGATCCTGTT -ACGGAATGGTTGCCAGATCGGTTT -ACGGAATGGTTGCCAGATGTGGTT -ACGGAATGGTTGCCAGATGCCTTT -ACGGAATGGTTGCCAGATGGTCTT -ACGGAATGGTTGCCAGATACGCTT -ACGGAATGGTTGCCAGATAGCGTT -ACGGAATGGTTGCCAGATTTCGTC -ACGGAATGGTTGCCAGATTCTCTC -ACGGAATGGTTGCCAGATTGGATC -ACGGAATGGTTGCCAGATCACTTC -ACGGAATGGTTGCCAGATGTACTC -ACGGAATGGTTGCCAGATGATGTC -ACGGAATGGTTGCCAGATACAGTC -ACGGAATGGTTGCCAGATTTGCTG -ACGGAATGGTTGCCAGATTCCATG -ACGGAATGGTTGCCAGATTGTGTG -ACGGAATGGTTGCCAGATCTAGTG -ACGGAATGGTTGCCAGATCATCTG -ACGGAATGGTTGCCAGATGAGTTG -ACGGAATGGTTGCCAGATAGACTG -ACGGAATGGTTGCCAGATTCGGTA -ACGGAATGGTTGCCAGATTGCCTA -ACGGAATGGTTGCCAGATCCACTA -ACGGAATGGTTGCCAGATGGAGTA -ACGGAATGGTTGCCAGATTCGTCT -ACGGAATGGTTGCCAGATTGCACT -ACGGAATGGTTGCCAGATCTGACT -ACGGAATGGTTGCCAGATCAACCT -ACGGAATGGTTGCCAGATGCTACT -ACGGAATGGTTGCCAGATGGATCT -ACGGAATGGTTGCCAGATAAGGCT -ACGGAATGGTTGCCAGATTCAACC -ACGGAATGGTTGCCAGATTGTTCC -ACGGAATGGTTGCCAGATATTCCC -ACGGAATGGTTGCCAGATTTCTCG -ACGGAATGGTTGCCAGATTAGACG -ACGGAATGGTTGCCAGATGTAACG -ACGGAATGGTTGCCAGATACTTCG -ACGGAATGGTTGCCAGATTACGCA -ACGGAATGGTTGCCAGATCTTGCA -ACGGAATGGTTGCCAGATCGAACA -ACGGAATGGTTGCCAGATCAGTCA -ACGGAATGGTTGCCAGATGATCCA -ACGGAATGGTTGCCAGATACGACA -ACGGAATGGTTGCCAGATAGCTCA -ACGGAATGGTTGCCAGATTCACGT -ACGGAATGGTTGCCAGATCGTAGT -ACGGAATGGTTGCCAGATGTCAGT -ACGGAATGGTTGCCAGATGAAGGT -ACGGAATGGTTGCCAGATAACCGT -ACGGAATGGTTGCCAGATTTGTGC -ACGGAATGGTTGCCAGATCTAAGC -ACGGAATGGTTGCCAGATACTAGC -ACGGAATGGTTGCCAGATAGATGC -ACGGAATGGTTGCCAGATTGAAGG -ACGGAATGGTTGCCAGATCAATGG -ACGGAATGGTTGCCAGATATGAGG -ACGGAATGGTTGCCAGATAATGGG -ACGGAATGGTTGCCAGATTCCTGA -ACGGAATGGTTGCCAGATTAGCGA -ACGGAATGGTTGCCAGATCACAGA -ACGGAATGGTTGCCAGATGCAAGA -ACGGAATGGTTGCCAGATGGTTGA -ACGGAATGGTTGCCAGATTCCGAT -ACGGAATGGTTGCCAGATTGGCAT -ACGGAATGGTTGCCAGATCGAGAT -ACGGAATGGTTGCCAGATTACCAC -ACGGAATGGTTGCCAGATCAGAAC -ACGGAATGGTTGCCAGATGTCTAC -ACGGAATGGTTGCCAGATACGTAC -ACGGAATGGTTGCCAGATAGTGAC -ACGGAATGGTTGCCAGATCTGTAG -ACGGAATGGTTGCCAGATCCTAAG -ACGGAATGGTTGCCAGATGTTCAG -ACGGAATGGTTGCCAGATGCATAG -ACGGAATGGTTGCCAGATGACAAG -ACGGAATGGTTGCCAGATAAGCAG -ACGGAATGGTTGCCAGATCGTCAA -ACGGAATGGTTGCCAGATGCTGAA -ACGGAATGGTTGCCAGATAGTACG -ACGGAATGGTTGCCAGATATCCGA -ACGGAATGGTTGCCAGATATGGGA -ACGGAATGGTTGCCAGATGTGCAA -ACGGAATGGTTGCCAGATGAGGAA -ACGGAATGGTTGCCAGATCAGGTA -ACGGAATGGTTGCCAGATGACTCT -ACGGAATGGTTGCCAGATAGTCCT -ACGGAATGGTTGCCAGATTAAGCC -ACGGAATGGTTGCCAGATATAGCC -ACGGAATGGTTGCCAGATTAACCG -ACGGAATGGTTGCCAGATATGCCA -ACGGAATGGTTGACAACGGGAAAC -ACGGAATGGTTGACAACGAACACC -ACGGAATGGTTGACAACGATCGAG -ACGGAATGGTTGACAACGCTCCTT -ACGGAATGGTTGACAACGCCTGTT -ACGGAATGGTTGACAACGCGGTTT -ACGGAATGGTTGACAACGGTGGTT -ACGGAATGGTTGACAACGGCCTTT -ACGGAATGGTTGACAACGGGTCTT -ACGGAATGGTTGACAACGACGCTT -ACGGAATGGTTGACAACGAGCGTT -ACGGAATGGTTGACAACGTTCGTC -ACGGAATGGTTGACAACGTCTCTC -ACGGAATGGTTGACAACGTGGATC -ACGGAATGGTTGACAACGCACTTC -ACGGAATGGTTGACAACGGTACTC -ACGGAATGGTTGACAACGGATGTC -ACGGAATGGTTGACAACGACAGTC -ACGGAATGGTTGACAACGTTGCTG -ACGGAATGGTTGACAACGTCCATG -ACGGAATGGTTGACAACGTGTGTG -ACGGAATGGTTGACAACGCTAGTG -ACGGAATGGTTGACAACGCATCTG -ACGGAATGGTTGACAACGGAGTTG -ACGGAATGGTTGACAACGAGACTG -ACGGAATGGTTGACAACGTCGGTA -ACGGAATGGTTGACAACGTGCCTA -ACGGAATGGTTGACAACGCCACTA -ACGGAATGGTTGACAACGGGAGTA -ACGGAATGGTTGACAACGTCGTCT -ACGGAATGGTTGACAACGTGCACT -ACGGAATGGTTGACAACGCTGACT -ACGGAATGGTTGACAACGCAACCT -ACGGAATGGTTGACAACGGCTACT -ACGGAATGGTTGACAACGGGATCT -ACGGAATGGTTGACAACGAAGGCT -ACGGAATGGTTGACAACGTCAACC -ACGGAATGGTTGACAACGTGTTCC -ACGGAATGGTTGACAACGATTCCC -ACGGAATGGTTGACAACGTTCTCG -ACGGAATGGTTGACAACGTAGACG -ACGGAATGGTTGACAACGGTAACG -ACGGAATGGTTGACAACGACTTCG -ACGGAATGGTTGACAACGTACGCA -ACGGAATGGTTGACAACGCTTGCA -ACGGAATGGTTGACAACGCGAACA -ACGGAATGGTTGACAACGCAGTCA -ACGGAATGGTTGACAACGGATCCA -ACGGAATGGTTGACAACGACGACA -ACGGAATGGTTGACAACGAGCTCA -ACGGAATGGTTGACAACGTCACGT -ACGGAATGGTTGACAACGCGTAGT -ACGGAATGGTTGACAACGGTCAGT -ACGGAATGGTTGACAACGGAAGGT -ACGGAATGGTTGACAACGAACCGT -ACGGAATGGTTGACAACGTTGTGC -ACGGAATGGTTGACAACGCTAAGC -ACGGAATGGTTGACAACGACTAGC -ACGGAATGGTTGACAACGAGATGC -ACGGAATGGTTGACAACGTGAAGG -ACGGAATGGTTGACAACGCAATGG -ACGGAATGGTTGACAACGATGAGG -ACGGAATGGTTGACAACGAATGGG -ACGGAATGGTTGACAACGTCCTGA -ACGGAATGGTTGACAACGTAGCGA -ACGGAATGGTTGACAACGCACAGA -ACGGAATGGTTGACAACGGCAAGA -ACGGAATGGTTGACAACGGGTTGA -ACGGAATGGTTGACAACGTCCGAT -ACGGAATGGTTGACAACGTGGCAT -ACGGAATGGTTGACAACGCGAGAT -ACGGAATGGTTGACAACGTACCAC -ACGGAATGGTTGACAACGCAGAAC -ACGGAATGGTTGACAACGGTCTAC -ACGGAATGGTTGACAACGACGTAC -ACGGAATGGTTGACAACGAGTGAC -ACGGAATGGTTGACAACGCTGTAG -ACGGAATGGTTGACAACGCCTAAG -ACGGAATGGTTGACAACGGTTCAG -ACGGAATGGTTGACAACGGCATAG -ACGGAATGGTTGACAACGGACAAG -ACGGAATGGTTGACAACGAAGCAG -ACGGAATGGTTGACAACGCGTCAA -ACGGAATGGTTGACAACGGCTGAA -ACGGAATGGTTGACAACGAGTACG -ACGGAATGGTTGACAACGATCCGA -ACGGAATGGTTGACAACGATGGGA -ACGGAATGGTTGACAACGGTGCAA -ACGGAATGGTTGACAACGGAGGAA -ACGGAATGGTTGACAACGCAGGTA -ACGGAATGGTTGACAACGGACTCT -ACGGAATGGTTGACAACGAGTCCT -ACGGAATGGTTGACAACGTAAGCC -ACGGAATGGTTGACAACGATAGCC -ACGGAATGGTTGACAACGTAACCG -ACGGAATGGTTGACAACGATGCCA -ACGGAATGGTTGTCAAGCGGAAAC -ACGGAATGGTTGTCAAGCAACACC -ACGGAATGGTTGTCAAGCATCGAG -ACGGAATGGTTGTCAAGCCTCCTT -ACGGAATGGTTGTCAAGCCCTGTT -ACGGAATGGTTGTCAAGCCGGTTT -ACGGAATGGTTGTCAAGCGTGGTT -ACGGAATGGTTGTCAAGCGCCTTT -ACGGAATGGTTGTCAAGCGGTCTT -ACGGAATGGTTGTCAAGCACGCTT -ACGGAATGGTTGTCAAGCAGCGTT -ACGGAATGGTTGTCAAGCTTCGTC -ACGGAATGGTTGTCAAGCTCTCTC -ACGGAATGGTTGTCAAGCTGGATC -ACGGAATGGTTGTCAAGCCACTTC -ACGGAATGGTTGTCAAGCGTACTC -ACGGAATGGTTGTCAAGCGATGTC -ACGGAATGGTTGTCAAGCACAGTC -ACGGAATGGTTGTCAAGCTTGCTG -ACGGAATGGTTGTCAAGCTCCATG -ACGGAATGGTTGTCAAGCTGTGTG -ACGGAATGGTTGTCAAGCCTAGTG -ACGGAATGGTTGTCAAGCCATCTG -ACGGAATGGTTGTCAAGCGAGTTG -ACGGAATGGTTGTCAAGCAGACTG -ACGGAATGGTTGTCAAGCTCGGTA -ACGGAATGGTTGTCAAGCTGCCTA -ACGGAATGGTTGTCAAGCCCACTA -ACGGAATGGTTGTCAAGCGGAGTA -ACGGAATGGTTGTCAAGCTCGTCT -ACGGAATGGTTGTCAAGCTGCACT -ACGGAATGGTTGTCAAGCCTGACT -ACGGAATGGTTGTCAAGCCAACCT -ACGGAATGGTTGTCAAGCGCTACT -ACGGAATGGTTGTCAAGCGGATCT -ACGGAATGGTTGTCAAGCAAGGCT -ACGGAATGGTTGTCAAGCTCAACC -ACGGAATGGTTGTCAAGCTGTTCC -ACGGAATGGTTGTCAAGCATTCCC -ACGGAATGGTTGTCAAGCTTCTCG -ACGGAATGGTTGTCAAGCTAGACG -ACGGAATGGTTGTCAAGCGTAACG -ACGGAATGGTTGTCAAGCACTTCG -ACGGAATGGTTGTCAAGCTACGCA -ACGGAATGGTTGTCAAGCCTTGCA -ACGGAATGGTTGTCAAGCCGAACA -ACGGAATGGTTGTCAAGCCAGTCA -ACGGAATGGTTGTCAAGCGATCCA -ACGGAATGGTTGTCAAGCACGACA -ACGGAATGGTTGTCAAGCAGCTCA -ACGGAATGGTTGTCAAGCTCACGT -ACGGAATGGTTGTCAAGCCGTAGT -ACGGAATGGTTGTCAAGCGTCAGT -ACGGAATGGTTGTCAAGCGAAGGT -ACGGAATGGTTGTCAAGCAACCGT -ACGGAATGGTTGTCAAGCTTGTGC -ACGGAATGGTTGTCAAGCCTAAGC -ACGGAATGGTTGTCAAGCACTAGC -ACGGAATGGTTGTCAAGCAGATGC -ACGGAATGGTTGTCAAGCTGAAGG -ACGGAATGGTTGTCAAGCCAATGG -ACGGAATGGTTGTCAAGCATGAGG -ACGGAATGGTTGTCAAGCAATGGG -ACGGAATGGTTGTCAAGCTCCTGA -ACGGAATGGTTGTCAAGCTAGCGA -ACGGAATGGTTGTCAAGCCACAGA -ACGGAATGGTTGTCAAGCGCAAGA -ACGGAATGGTTGTCAAGCGGTTGA -ACGGAATGGTTGTCAAGCTCCGAT -ACGGAATGGTTGTCAAGCTGGCAT -ACGGAATGGTTGTCAAGCCGAGAT -ACGGAATGGTTGTCAAGCTACCAC -ACGGAATGGTTGTCAAGCCAGAAC -ACGGAATGGTTGTCAAGCGTCTAC -ACGGAATGGTTGTCAAGCACGTAC -ACGGAATGGTTGTCAAGCAGTGAC -ACGGAATGGTTGTCAAGCCTGTAG -ACGGAATGGTTGTCAAGCCCTAAG -ACGGAATGGTTGTCAAGCGTTCAG -ACGGAATGGTTGTCAAGCGCATAG -ACGGAATGGTTGTCAAGCGACAAG -ACGGAATGGTTGTCAAGCAAGCAG -ACGGAATGGTTGTCAAGCCGTCAA -ACGGAATGGTTGTCAAGCGCTGAA -ACGGAATGGTTGTCAAGCAGTACG -ACGGAATGGTTGTCAAGCATCCGA -ACGGAATGGTTGTCAAGCATGGGA -ACGGAATGGTTGTCAAGCGTGCAA -ACGGAATGGTTGTCAAGCGAGGAA -ACGGAATGGTTGTCAAGCCAGGTA -ACGGAATGGTTGTCAAGCGACTCT -ACGGAATGGTTGTCAAGCAGTCCT -ACGGAATGGTTGTCAAGCTAAGCC -ACGGAATGGTTGTCAAGCATAGCC -ACGGAATGGTTGTCAAGCTAACCG -ACGGAATGGTTGTCAAGCATGCCA -ACGGAATGGTTGCGTTCAGGAAAC -ACGGAATGGTTGCGTTCAAACACC -ACGGAATGGTTGCGTTCAATCGAG -ACGGAATGGTTGCGTTCACTCCTT -ACGGAATGGTTGCGTTCACCTGTT -ACGGAATGGTTGCGTTCACGGTTT -ACGGAATGGTTGCGTTCAGTGGTT -ACGGAATGGTTGCGTTCAGCCTTT -ACGGAATGGTTGCGTTCAGGTCTT -ACGGAATGGTTGCGTTCAACGCTT -ACGGAATGGTTGCGTTCAAGCGTT -ACGGAATGGTTGCGTTCATTCGTC -ACGGAATGGTTGCGTTCATCTCTC -ACGGAATGGTTGCGTTCATGGATC -ACGGAATGGTTGCGTTCACACTTC -ACGGAATGGTTGCGTTCAGTACTC -ACGGAATGGTTGCGTTCAGATGTC -ACGGAATGGTTGCGTTCAACAGTC -ACGGAATGGTTGCGTTCATTGCTG -ACGGAATGGTTGCGTTCATCCATG -ACGGAATGGTTGCGTTCATGTGTG -ACGGAATGGTTGCGTTCACTAGTG -ACGGAATGGTTGCGTTCACATCTG -ACGGAATGGTTGCGTTCAGAGTTG -ACGGAATGGTTGCGTTCAAGACTG -ACGGAATGGTTGCGTTCATCGGTA -ACGGAATGGTTGCGTTCATGCCTA -ACGGAATGGTTGCGTTCACCACTA -ACGGAATGGTTGCGTTCAGGAGTA -ACGGAATGGTTGCGTTCATCGTCT -ACGGAATGGTTGCGTTCATGCACT -ACGGAATGGTTGCGTTCACTGACT -ACGGAATGGTTGCGTTCACAACCT -ACGGAATGGTTGCGTTCAGCTACT -ACGGAATGGTTGCGTTCAGGATCT -ACGGAATGGTTGCGTTCAAAGGCT -ACGGAATGGTTGCGTTCATCAACC -ACGGAATGGTTGCGTTCATGTTCC -ACGGAATGGTTGCGTTCAATTCCC -ACGGAATGGTTGCGTTCATTCTCG -ACGGAATGGTTGCGTTCATAGACG -ACGGAATGGTTGCGTTCAGTAACG -ACGGAATGGTTGCGTTCAACTTCG -ACGGAATGGTTGCGTTCATACGCA -ACGGAATGGTTGCGTTCACTTGCA -ACGGAATGGTTGCGTTCACGAACA -ACGGAATGGTTGCGTTCACAGTCA -ACGGAATGGTTGCGTTCAGATCCA -ACGGAATGGTTGCGTTCAACGACA -ACGGAATGGTTGCGTTCAAGCTCA -ACGGAATGGTTGCGTTCATCACGT -ACGGAATGGTTGCGTTCACGTAGT -ACGGAATGGTTGCGTTCAGTCAGT -ACGGAATGGTTGCGTTCAGAAGGT -ACGGAATGGTTGCGTTCAAACCGT -ACGGAATGGTTGCGTTCATTGTGC -ACGGAATGGTTGCGTTCACTAAGC -ACGGAATGGTTGCGTTCAACTAGC -ACGGAATGGTTGCGTTCAAGATGC -ACGGAATGGTTGCGTTCATGAAGG -ACGGAATGGTTGCGTTCACAATGG -ACGGAATGGTTGCGTTCAATGAGG -ACGGAATGGTTGCGTTCAAATGGG -ACGGAATGGTTGCGTTCATCCTGA -ACGGAATGGTTGCGTTCATAGCGA -ACGGAATGGTTGCGTTCACACAGA -ACGGAATGGTTGCGTTCAGCAAGA -ACGGAATGGTTGCGTTCAGGTTGA -ACGGAATGGTTGCGTTCATCCGAT -ACGGAATGGTTGCGTTCATGGCAT -ACGGAATGGTTGCGTTCACGAGAT -ACGGAATGGTTGCGTTCATACCAC -ACGGAATGGTTGCGTTCACAGAAC -ACGGAATGGTTGCGTTCAGTCTAC -ACGGAATGGTTGCGTTCAACGTAC -ACGGAATGGTTGCGTTCAAGTGAC -ACGGAATGGTTGCGTTCACTGTAG -ACGGAATGGTTGCGTTCACCTAAG -ACGGAATGGTTGCGTTCAGTTCAG -ACGGAATGGTTGCGTTCAGCATAG -ACGGAATGGTTGCGTTCAGACAAG -ACGGAATGGTTGCGTTCAAAGCAG -ACGGAATGGTTGCGTTCACGTCAA -ACGGAATGGTTGCGTTCAGCTGAA -ACGGAATGGTTGCGTTCAAGTACG -ACGGAATGGTTGCGTTCAATCCGA -ACGGAATGGTTGCGTTCAATGGGA -ACGGAATGGTTGCGTTCAGTGCAA -ACGGAATGGTTGCGTTCAGAGGAA -ACGGAATGGTTGCGTTCACAGGTA -ACGGAATGGTTGCGTTCAGACTCT -ACGGAATGGTTGCGTTCAAGTCCT -ACGGAATGGTTGCGTTCATAAGCC -ACGGAATGGTTGCGTTCAATAGCC -ACGGAATGGTTGCGTTCATAACCG -ACGGAATGGTTGCGTTCAATGCCA -ACGGAATGGTTGAGTCGTGGAAAC -ACGGAATGGTTGAGTCGTAACACC -ACGGAATGGTTGAGTCGTATCGAG -ACGGAATGGTTGAGTCGTCTCCTT -ACGGAATGGTTGAGTCGTCCTGTT -ACGGAATGGTTGAGTCGTCGGTTT -ACGGAATGGTTGAGTCGTGTGGTT -ACGGAATGGTTGAGTCGTGCCTTT -ACGGAATGGTTGAGTCGTGGTCTT -ACGGAATGGTTGAGTCGTACGCTT -ACGGAATGGTTGAGTCGTAGCGTT -ACGGAATGGTTGAGTCGTTTCGTC -ACGGAATGGTTGAGTCGTTCTCTC -ACGGAATGGTTGAGTCGTTGGATC -ACGGAATGGTTGAGTCGTCACTTC -ACGGAATGGTTGAGTCGTGTACTC -ACGGAATGGTTGAGTCGTGATGTC -ACGGAATGGTTGAGTCGTACAGTC -ACGGAATGGTTGAGTCGTTTGCTG -ACGGAATGGTTGAGTCGTTCCATG -ACGGAATGGTTGAGTCGTTGTGTG -ACGGAATGGTTGAGTCGTCTAGTG -ACGGAATGGTTGAGTCGTCATCTG -ACGGAATGGTTGAGTCGTGAGTTG -ACGGAATGGTTGAGTCGTAGACTG -ACGGAATGGTTGAGTCGTTCGGTA -ACGGAATGGTTGAGTCGTTGCCTA -ACGGAATGGTTGAGTCGTCCACTA -ACGGAATGGTTGAGTCGTGGAGTA -ACGGAATGGTTGAGTCGTTCGTCT -ACGGAATGGTTGAGTCGTTGCACT -ACGGAATGGTTGAGTCGTCTGACT -ACGGAATGGTTGAGTCGTCAACCT -ACGGAATGGTTGAGTCGTGCTACT -ACGGAATGGTTGAGTCGTGGATCT -ACGGAATGGTTGAGTCGTAAGGCT -ACGGAATGGTTGAGTCGTTCAACC -ACGGAATGGTTGAGTCGTTGTTCC -ACGGAATGGTTGAGTCGTATTCCC -ACGGAATGGTTGAGTCGTTTCTCG -ACGGAATGGTTGAGTCGTTAGACG -ACGGAATGGTTGAGTCGTGTAACG -ACGGAATGGTTGAGTCGTACTTCG -ACGGAATGGTTGAGTCGTTACGCA -ACGGAATGGTTGAGTCGTCTTGCA -ACGGAATGGTTGAGTCGTCGAACA -ACGGAATGGTTGAGTCGTCAGTCA -ACGGAATGGTTGAGTCGTGATCCA -ACGGAATGGTTGAGTCGTACGACA -ACGGAATGGTTGAGTCGTAGCTCA -ACGGAATGGTTGAGTCGTTCACGT -ACGGAATGGTTGAGTCGTCGTAGT -ACGGAATGGTTGAGTCGTGTCAGT -ACGGAATGGTTGAGTCGTGAAGGT -ACGGAATGGTTGAGTCGTAACCGT -ACGGAATGGTTGAGTCGTTTGTGC -ACGGAATGGTTGAGTCGTCTAAGC -ACGGAATGGTTGAGTCGTACTAGC -ACGGAATGGTTGAGTCGTAGATGC -ACGGAATGGTTGAGTCGTTGAAGG -ACGGAATGGTTGAGTCGTCAATGG -ACGGAATGGTTGAGTCGTATGAGG -ACGGAATGGTTGAGTCGTAATGGG -ACGGAATGGTTGAGTCGTTCCTGA -ACGGAATGGTTGAGTCGTTAGCGA -ACGGAATGGTTGAGTCGTCACAGA -ACGGAATGGTTGAGTCGTGCAAGA -ACGGAATGGTTGAGTCGTGGTTGA -ACGGAATGGTTGAGTCGTTCCGAT -ACGGAATGGTTGAGTCGTTGGCAT -ACGGAATGGTTGAGTCGTCGAGAT -ACGGAATGGTTGAGTCGTTACCAC -ACGGAATGGTTGAGTCGTCAGAAC -ACGGAATGGTTGAGTCGTGTCTAC -ACGGAATGGTTGAGTCGTACGTAC -ACGGAATGGTTGAGTCGTAGTGAC -ACGGAATGGTTGAGTCGTCTGTAG -ACGGAATGGTTGAGTCGTCCTAAG -ACGGAATGGTTGAGTCGTGTTCAG -ACGGAATGGTTGAGTCGTGCATAG -ACGGAATGGTTGAGTCGTGACAAG -ACGGAATGGTTGAGTCGTAAGCAG -ACGGAATGGTTGAGTCGTCGTCAA -ACGGAATGGTTGAGTCGTGCTGAA -ACGGAATGGTTGAGTCGTAGTACG -ACGGAATGGTTGAGTCGTATCCGA -ACGGAATGGTTGAGTCGTATGGGA -ACGGAATGGTTGAGTCGTGTGCAA -ACGGAATGGTTGAGTCGTGAGGAA -ACGGAATGGTTGAGTCGTCAGGTA -ACGGAATGGTTGAGTCGTGACTCT -ACGGAATGGTTGAGTCGTAGTCCT -ACGGAATGGTTGAGTCGTTAAGCC -ACGGAATGGTTGAGTCGTATAGCC -ACGGAATGGTTGAGTCGTTAACCG -ACGGAATGGTTGAGTCGTATGCCA -ACGGAATGGTTGAGTGTCGGAAAC -ACGGAATGGTTGAGTGTCAACACC -ACGGAATGGTTGAGTGTCATCGAG -ACGGAATGGTTGAGTGTCCTCCTT -ACGGAATGGTTGAGTGTCCCTGTT -ACGGAATGGTTGAGTGTCCGGTTT -ACGGAATGGTTGAGTGTCGTGGTT -ACGGAATGGTTGAGTGTCGCCTTT -ACGGAATGGTTGAGTGTCGGTCTT -ACGGAATGGTTGAGTGTCACGCTT -ACGGAATGGTTGAGTGTCAGCGTT -ACGGAATGGTTGAGTGTCTTCGTC -ACGGAATGGTTGAGTGTCTCTCTC -ACGGAATGGTTGAGTGTCTGGATC -ACGGAATGGTTGAGTGTCCACTTC -ACGGAATGGTTGAGTGTCGTACTC -ACGGAATGGTTGAGTGTCGATGTC -ACGGAATGGTTGAGTGTCACAGTC -ACGGAATGGTTGAGTGTCTTGCTG -ACGGAATGGTTGAGTGTCTCCATG -ACGGAATGGTTGAGTGTCTGTGTG -ACGGAATGGTTGAGTGTCCTAGTG -ACGGAATGGTTGAGTGTCCATCTG -ACGGAATGGTTGAGTGTCGAGTTG -ACGGAATGGTTGAGTGTCAGACTG -ACGGAATGGTTGAGTGTCTCGGTA -ACGGAATGGTTGAGTGTCTGCCTA -ACGGAATGGTTGAGTGTCCCACTA -ACGGAATGGTTGAGTGTCGGAGTA -ACGGAATGGTTGAGTGTCTCGTCT -ACGGAATGGTTGAGTGTCTGCACT -ACGGAATGGTTGAGTGTCCTGACT -ACGGAATGGTTGAGTGTCCAACCT -ACGGAATGGTTGAGTGTCGCTACT -ACGGAATGGTTGAGTGTCGGATCT -ACGGAATGGTTGAGTGTCAAGGCT -ACGGAATGGTTGAGTGTCTCAACC -ACGGAATGGTTGAGTGTCTGTTCC -ACGGAATGGTTGAGTGTCATTCCC -ACGGAATGGTTGAGTGTCTTCTCG -ACGGAATGGTTGAGTGTCTAGACG -ACGGAATGGTTGAGTGTCGTAACG -ACGGAATGGTTGAGTGTCACTTCG -ACGGAATGGTTGAGTGTCTACGCA -ACGGAATGGTTGAGTGTCCTTGCA -ACGGAATGGTTGAGTGTCCGAACA -ACGGAATGGTTGAGTGTCCAGTCA -ACGGAATGGTTGAGTGTCGATCCA -ACGGAATGGTTGAGTGTCACGACA -ACGGAATGGTTGAGTGTCAGCTCA -ACGGAATGGTTGAGTGTCTCACGT -ACGGAATGGTTGAGTGTCCGTAGT -ACGGAATGGTTGAGTGTCGTCAGT -ACGGAATGGTTGAGTGTCGAAGGT -ACGGAATGGTTGAGTGTCAACCGT -ACGGAATGGTTGAGTGTCTTGTGC -ACGGAATGGTTGAGTGTCCTAAGC -ACGGAATGGTTGAGTGTCACTAGC -ACGGAATGGTTGAGTGTCAGATGC -ACGGAATGGTTGAGTGTCTGAAGG -ACGGAATGGTTGAGTGTCCAATGG -ACGGAATGGTTGAGTGTCATGAGG -ACGGAATGGTTGAGTGTCAATGGG -ACGGAATGGTTGAGTGTCTCCTGA -ACGGAATGGTTGAGTGTCTAGCGA -ACGGAATGGTTGAGTGTCCACAGA -ACGGAATGGTTGAGTGTCGCAAGA -ACGGAATGGTTGAGTGTCGGTTGA -ACGGAATGGTTGAGTGTCTCCGAT -ACGGAATGGTTGAGTGTCTGGCAT -ACGGAATGGTTGAGTGTCCGAGAT -ACGGAATGGTTGAGTGTCTACCAC -ACGGAATGGTTGAGTGTCCAGAAC -ACGGAATGGTTGAGTGTCGTCTAC -ACGGAATGGTTGAGTGTCACGTAC -ACGGAATGGTTGAGTGTCAGTGAC -ACGGAATGGTTGAGTGTCCTGTAG -ACGGAATGGTTGAGTGTCCCTAAG -ACGGAATGGTTGAGTGTCGTTCAG -ACGGAATGGTTGAGTGTCGCATAG -ACGGAATGGTTGAGTGTCGACAAG -ACGGAATGGTTGAGTGTCAAGCAG -ACGGAATGGTTGAGTGTCCGTCAA -ACGGAATGGTTGAGTGTCGCTGAA -ACGGAATGGTTGAGTGTCAGTACG -ACGGAATGGTTGAGTGTCATCCGA -ACGGAATGGTTGAGTGTCATGGGA -ACGGAATGGTTGAGTGTCGTGCAA -ACGGAATGGTTGAGTGTCGAGGAA -ACGGAATGGTTGAGTGTCCAGGTA -ACGGAATGGTTGAGTGTCGACTCT -ACGGAATGGTTGAGTGTCAGTCCT -ACGGAATGGTTGAGTGTCTAAGCC -ACGGAATGGTTGAGTGTCATAGCC -ACGGAATGGTTGAGTGTCTAACCG -ACGGAATGGTTGAGTGTCATGCCA -ACGGAATGGTTGGGTGAAGGAAAC -ACGGAATGGTTGGGTGAAAACACC -ACGGAATGGTTGGGTGAAATCGAG -ACGGAATGGTTGGGTGAACTCCTT -ACGGAATGGTTGGGTGAACCTGTT -ACGGAATGGTTGGGTGAACGGTTT -ACGGAATGGTTGGGTGAAGTGGTT -ACGGAATGGTTGGGTGAAGCCTTT -ACGGAATGGTTGGGTGAAGGTCTT -ACGGAATGGTTGGGTGAAACGCTT -ACGGAATGGTTGGGTGAAAGCGTT -ACGGAATGGTTGGGTGAATTCGTC -ACGGAATGGTTGGGTGAATCTCTC -ACGGAATGGTTGGGTGAATGGATC -ACGGAATGGTTGGGTGAACACTTC -ACGGAATGGTTGGGTGAAGTACTC -ACGGAATGGTTGGGTGAAGATGTC -ACGGAATGGTTGGGTGAAACAGTC -ACGGAATGGTTGGGTGAATTGCTG -ACGGAATGGTTGGGTGAATCCATG -ACGGAATGGTTGGGTGAATGTGTG -ACGGAATGGTTGGGTGAACTAGTG -ACGGAATGGTTGGGTGAACATCTG -ACGGAATGGTTGGGTGAAGAGTTG -ACGGAATGGTTGGGTGAAAGACTG -ACGGAATGGTTGGGTGAATCGGTA -ACGGAATGGTTGGGTGAATGCCTA -ACGGAATGGTTGGGTGAACCACTA -ACGGAATGGTTGGGTGAAGGAGTA -ACGGAATGGTTGGGTGAATCGTCT -ACGGAATGGTTGGGTGAATGCACT -ACGGAATGGTTGGGTGAACTGACT -ACGGAATGGTTGGGTGAACAACCT -ACGGAATGGTTGGGTGAAGCTACT -ACGGAATGGTTGGGTGAAGGATCT -ACGGAATGGTTGGGTGAAAAGGCT -ACGGAATGGTTGGGTGAATCAACC -ACGGAATGGTTGGGTGAATGTTCC -ACGGAATGGTTGGGTGAAATTCCC -ACGGAATGGTTGGGTGAATTCTCG -ACGGAATGGTTGGGTGAATAGACG -ACGGAATGGTTGGGTGAAGTAACG -ACGGAATGGTTGGGTGAAACTTCG -ACGGAATGGTTGGGTGAATACGCA -ACGGAATGGTTGGGTGAACTTGCA -ACGGAATGGTTGGGTGAACGAACA -ACGGAATGGTTGGGTGAACAGTCA -ACGGAATGGTTGGGTGAAGATCCA -ACGGAATGGTTGGGTGAAACGACA -ACGGAATGGTTGGGTGAAAGCTCA -ACGGAATGGTTGGGTGAATCACGT -ACGGAATGGTTGGGTGAACGTAGT -ACGGAATGGTTGGGTGAAGTCAGT -ACGGAATGGTTGGGTGAAGAAGGT -ACGGAATGGTTGGGTGAAAACCGT -ACGGAATGGTTGGGTGAATTGTGC -ACGGAATGGTTGGGTGAACTAAGC -ACGGAATGGTTGGGTGAAACTAGC -ACGGAATGGTTGGGTGAAAGATGC -ACGGAATGGTTGGGTGAATGAAGG -ACGGAATGGTTGGGTGAACAATGG -ACGGAATGGTTGGGTGAAATGAGG -ACGGAATGGTTGGGTGAAAATGGG -ACGGAATGGTTGGGTGAATCCTGA -ACGGAATGGTTGGGTGAATAGCGA -ACGGAATGGTTGGGTGAACACAGA -ACGGAATGGTTGGGTGAAGCAAGA -ACGGAATGGTTGGGTGAAGGTTGA -ACGGAATGGTTGGGTGAATCCGAT -ACGGAATGGTTGGGTGAATGGCAT -ACGGAATGGTTGGGTGAACGAGAT -ACGGAATGGTTGGGTGAATACCAC -ACGGAATGGTTGGGTGAACAGAAC -ACGGAATGGTTGGGTGAAGTCTAC -ACGGAATGGTTGGGTGAAACGTAC -ACGGAATGGTTGGGTGAAAGTGAC -ACGGAATGGTTGGGTGAACTGTAG -ACGGAATGGTTGGGTGAACCTAAG -ACGGAATGGTTGGGTGAAGTTCAG -ACGGAATGGTTGGGTGAAGCATAG -ACGGAATGGTTGGGTGAAGACAAG -ACGGAATGGTTGGGTGAAAAGCAG -ACGGAATGGTTGGGTGAACGTCAA -ACGGAATGGTTGGGTGAAGCTGAA -ACGGAATGGTTGGGTGAAAGTACG -ACGGAATGGTTGGGTGAAATCCGA -ACGGAATGGTTGGGTGAAATGGGA -ACGGAATGGTTGGGTGAAGTGCAA -ACGGAATGGTTGGGTGAAGAGGAA -ACGGAATGGTTGGGTGAACAGGTA -ACGGAATGGTTGGGTGAAGACTCT -ACGGAATGGTTGGGTGAAAGTCCT -ACGGAATGGTTGGGTGAATAAGCC -ACGGAATGGTTGGGTGAAATAGCC -ACGGAATGGTTGGGTGAATAACCG -ACGGAATGGTTGGGTGAAATGCCA -ACGGAATGGTTGCGTAACGGAAAC -ACGGAATGGTTGCGTAACAACACC -ACGGAATGGTTGCGTAACATCGAG -ACGGAATGGTTGCGTAACCTCCTT -ACGGAATGGTTGCGTAACCCTGTT -ACGGAATGGTTGCGTAACCGGTTT -ACGGAATGGTTGCGTAACGTGGTT -ACGGAATGGTTGCGTAACGCCTTT -ACGGAATGGTTGCGTAACGGTCTT -ACGGAATGGTTGCGTAACACGCTT -ACGGAATGGTTGCGTAACAGCGTT -ACGGAATGGTTGCGTAACTTCGTC -ACGGAATGGTTGCGTAACTCTCTC -ACGGAATGGTTGCGTAACTGGATC -ACGGAATGGTTGCGTAACCACTTC -ACGGAATGGTTGCGTAACGTACTC -ACGGAATGGTTGCGTAACGATGTC -ACGGAATGGTTGCGTAACACAGTC -ACGGAATGGTTGCGTAACTTGCTG -ACGGAATGGTTGCGTAACTCCATG -ACGGAATGGTTGCGTAACTGTGTG -ACGGAATGGTTGCGTAACCTAGTG -ACGGAATGGTTGCGTAACCATCTG -ACGGAATGGTTGCGTAACGAGTTG -ACGGAATGGTTGCGTAACAGACTG -ACGGAATGGTTGCGTAACTCGGTA -ACGGAATGGTTGCGTAACTGCCTA -ACGGAATGGTTGCGTAACCCACTA -ACGGAATGGTTGCGTAACGGAGTA -ACGGAATGGTTGCGTAACTCGTCT -ACGGAATGGTTGCGTAACTGCACT -ACGGAATGGTTGCGTAACCTGACT -ACGGAATGGTTGCGTAACCAACCT -ACGGAATGGTTGCGTAACGCTACT -ACGGAATGGTTGCGTAACGGATCT -ACGGAATGGTTGCGTAACAAGGCT -ACGGAATGGTTGCGTAACTCAACC -ACGGAATGGTTGCGTAACTGTTCC -ACGGAATGGTTGCGTAACATTCCC -ACGGAATGGTTGCGTAACTTCTCG -ACGGAATGGTTGCGTAACTAGACG -ACGGAATGGTTGCGTAACGTAACG -ACGGAATGGTTGCGTAACACTTCG -ACGGAATGGTTGCGTAACTACGCA -ACGGAATGGTTGCGTAACCTTGCA -ACGGAATGGTTGCGTAACCGAACA -ACGGAATGGTTGCGTAACCAGTCA -ACGGAATGGTTGCGTAACGATCCA -ACGGAATGGTTGCGTAACACGACA -ACGGAATGGTTGCGTAACAGCTCA -ACGGAATGGTTGCGTAACTCACGT -ACGGAATGGTTGCGTAACCGTAGT -ACGGAATGGTTGCGTAACGTCAGT -ACGGAATGGTTGCGTAACGAAGGT -ACGGAATGGTTGCGTAACAACCGT -ACGGAATGGTTGCGTAACTTGTGC -ACGGAATGGTTGCGTAACCTAAGC -ACGGAATGGTTGCGTAACACTAGC -ACGGAATGGTTGCGTAACAGATGC -ACGGAATGGTTGCGTAACTGAAGG -ACGGAATGGTTGCGTAACCAATGG -ACGGAATGGTTGCGTAACATGAGG -ACGGAATGGTTGCGTAACAATGGG -ACGGAATGGTTGCGTAACTCCTGA -ACGGAATGGTTGCGTAACTAGCGA -ACGGAATGGTTGCGTAACCACAGA -ACGGAATGGTTGCGTAACGCAAGA -ACGGAATGGTTGCGTAACGGTTGA -ACGGAATGGTTGCGTAACTCCGAT -ACGGAATGGTTGCGTAACTGGCAT -ACGGAATGGTTGCGTAACCGAGAT -ACGGAATGGTTGCGTAACTACCAC -ACGGAATGGTTGCGTAACCAGAAC -ACGGAATGGTTGCGTAACGTCTAC -ACGGAATGGTTGCGTAACACGTAC -ACGGAATGGTTGCGTAACAGTGAC -ACGGAATGGTTGCGTAACCTGTAG -ACGGAATGGTTGCGTAACCCTAAG -ACGGAATGGTTGCGTAACGTTCAG -ACGGAATGGTTGCGTAACGCATAG -ACGGAATGGTTGCGTAACGACAAG -ACGGAATGGTTGCGTAACAAGCAG -ACGGAATGGTTGCGTAACCGTCAA -ACGGAATGGTTGCGTAACGCTGAA -ACGGAATGGTTGCGTAACAGTACG -ACGGAATGGTTGCGTAACATCCGA -ACGGAATGGTTGCGTAACATGGGA -ACGGAATGGTTGCGTAACGTGCAA -ACGGAATGGTTGCGTAACGAGGAA -ACGGAATGGTTGCGTAACCAGGTA -ACGGAATGGTTGCGTAACGACTCT -ACGGAATGGTTGCGTAACAGTCCT -ACGGAATGGTTGCGTAACTAAGCC -ACGGAATGGTTGCGTAACATAGCC -ACGGAATGGTTGCGTAACTAACCG -ACGGAATGGTTGCGTAACATGCCA -ACGGAATGGTTGTGCTTGGGAAAC -ACGGAATGGTTGTGCTTGAACACC -ACGGAATGGTTGTGCTTGATCGAG -ACGGAATGGTTGTGCTTGCTCCTT -ACGGAATGGTTGTGCTTGCCTGTT -ACGGAATGGTTGTGCTTGCGGTTT -ACGGAATGGTTGTGCTTGGTGGTT -ACGGAATGGTTGTGCTTGGCCTTT -ACGGAATGGTTGTGCTTGGGTCTT -ACGGAATGGTTGTGCTTGACGCTT -ACGGAATGGTTGTGCTTGAGCGTT -ACGGAATGGTTGTGCTTGTTCGTC -ACGGAATGGTTGTGCTTGTCTCTC -ACGGAATGGTTGTGCTTGTGGATC -ACGGAATGGTTGTGCTTGCACTTC -ACGGAATGGTTGTGCTTGGTACTC -ACGGAATGGTTGTGCTTGGATGTC -ACGGAATGGTTGTGCTTGACAGTC -ACGGAATGGTTGTGCTTGTTGCTG -ACGGAATGGTTGTGCTTGTCCATG -ACGGAATGGTTGTGCTTGTGTGTG -ACGGAATGGTTGTGCTTGCTAGTG -ACGGAATGGTTGTGCTTGCATCTG -ACGGAATGGTTGTGCTTGGAGTTG -ACGGAATGGTTGTGCTTGAGACTG -ACGGAATGGTTGTGCTTGTCGGTA -ACGGAATGGTTGTGCTTGTGCCTA -ACGGAATGGTTGTGCTTGCCACTA -ACGGAATGGTTGTGCTTGGGAGTA -ACGGAATGGTTGTGCTTGTCGTCT -ACGGAATGGTTGTGCTTGTGCACT -ACGGAATGGTTGTGCTTGCTGACT -ACGGAATGGTTGTGCTTGCAACCT -ACGGAATGGTTGTGCTTGGCTACT -ACGGAATGGTTGTGCTTGGGATCT -ACGGAATGGTTGTGCTTGAAGGCT -ACGGAATGGTTGTGCTTGTCAACC -ACGGAATGGTTGTGCTTGTGTTCC -ACGGAATGGTTGTGCTTGATTCCC -ACGGAATGGTTGTGCTTGTTCTCG -ACGGAATGGTTGTGCTTGTAGACG -ACGGAATGGTTGTGCTTGGTAACG -ACGGAATGGTTGTGCTTGACTTCG -ACGGAATGGTTGTGCTTGTACGCA -ACGGAATGGTTGTGCTTGCTTGCA -ACGGAATGGTTGTGCTTGCGAACA -ACGGAATGGTTGTGCTTGCAGTCA -ACGGAATGGTTGTGCTTGGATCCA -ACGGAATGGTTGTGCTTGACGACA -ACGGAATGGTTGTGCTTGAGCTCA -ACGGAATGGTTGTGCTTGTCACGT -ACGGAATGGTTGTGCTTGCGTAGT -ACGGAATGGTTGTGCTTGGTCAGT -ACGGAATGGTTGTGCTTGGAAGGT -ACGGAATGGTTGTGCTTGAACCGT -ACGGAATGGTTGTGCTTGTTGTGC -ACGGAATGGTTGTGCTTGCTAAGC -ACGGAATGGTTGTGCTTGACTAGC -ACGGAATGGTTGTGCTTGAGATGC -ACGGAATGGTTGTGCTTGTGAAGG -ACGGAATGGTTGTGCTTGCAATGG -ACGGAATGGTTGTGCTTGATGAGG -ACGGAATGGTTGTGCTTGAATGGG -ACGGAATGGTTGTGCTTGTCCTGA -ACGGAATGGTTGTGCTTGTAGCGA -ACGGAATGGTTGTGCTTGCACAGA -ACGGAATGGTTGTGCTTGGCAAGA -ACGGAATGGTTGTGCTTGGGTTGA -ACGGAATGGTTGTGCTTGTCCGAT -ACGGAATGGTTGTGCTTGTGGCAT -ACGGAATGGTTGTGCTTGCGAGAT -ACGGAATGGTTGTGCTTGTACCAC -ACGGAATGGTTGTGCTTGCAGAAC -ACGGAATGGTTGTGCTTGGTCTAC -ACGGAATGGTTGTGCTTGACGTAC -ACGGAATGGTTGTGCTTGAGTGAC -ACGGAATGGTTGTGCTTGCTGTAG -ACGGAATGGTTGTGCTTGCCTAAG -ACGGAATGGTTGTGCTTGGTTCAG -ACGGAATGGTTGTGCTTGGCATAG -ACGGAATGGTTGTGCTTGGACAAG -ACGGAATGGTTGTGCTTGAAGCAG -ACGGAATGGTTGTGCTTGCGTCAA -ACGGAATGGTTGTGCTTGGCTGAA -ACGGAATGGTTGTGCTTGAGTACG -ACGGAATGGTTGTGCTTGATCCGA -ACGGAATGGTTGTGCTTGATGGGA -ACGGAATGGTTGTGCTTGGTGCAA -ACGGAATGGTTGTGCTTGGAGGAA -ACGGAATGGTTGTGCTTGCAGGTA -ACGGAATGGTTGTGCTTGGACTCT -ACGGAATGGTTGTGCTTGAGTCCT -ACGGAATGGTTGTGCTTGTAAGCC -ACGGAATGGTTGTGCTTGATAGCC -ACGGAATGGTTGTGCTTGTAACCG -ACGGAATGGTTGTGCTTGATGCCA -ACGGAATGGTTGAGCCTAGGAAAC -ACGGAATGGTTGAGCCTAAACACC -ACGGAATGGTTGAGCCTAATCGAG -ACGGAATGGTTGAGCCTACTCCTT -ACGGAATGGTTGAGCCTACCTGTT -ACGGAATGGTTGAGCCTACGGTTT -ACGGAATGGTTGAGCCTAGTGGTT -ACGGAATGGTTGAGCCTAGCCTTT -ACGGAATGGTTGAGCCTAGGTCTT -ACGGAATGGTTGAGCCTAACGCTT -ACGGAATGGTTGAGCCTAAGCGTT -ACGGAATGGTTGAGCCTATTCGTC -ACGGAATGGTTGAGCCTATCTCTC -ACGGAATGGTTGAGCCTATGGATC -ACGGAATGGTTGAGCCTACACTTC -ACGGAATGGTTGAGCCTAGTACTC -ACGGAATGGTTGAGCCTAGATGTC -ACGGAATGGTTGAGCCTAACAGTC -ACGGAATGGTTGAGCCTATTGCTG -ACGGAATGGTTGAGCCTATCCATG -ACGGAATGGTTGAGCCTATGTGTG -ACGGAATGGTTGAGCCTACTAGTG -ACGGAATGGTTGAGCCTACATCTG -ACGGAATGGTTGAGCCTAGAGTTG -ACGGAATGGTTGAGCCTAAGACTG -ACGGAATGGTTGAGCCTATCGGTA -ACGGAATGGTTGAGCCTATGCCTA -ACGGAATGGTTGAGCCTACCACTA -ACGGAATGGTTGAGCCTAGGAGTA -ACGGAATGGTTGAGCCTATCGTCT -ACGGAATGGTTGAGCCTATGCACT -ACGGAATGGTTGAGCCTACTGACT -ACGGAATGGTTGAGCCTACAACCT -ACGGAATGGTTGAGCCTAGCTACT -ACGGAATGGTTGAGCCTAGGATCT -ACGGAATGGTTGAGCCTAAAGGCT -ACGGAATGGTTGAGCCTATCAACC -ACGGAATGGTTGAGCCTATGTTCC -ACGGAATGGTTGAGCCTAATTCCC -ACGGAATGGTTGAGCCTATTCTCG -ACGGAATGGTTGAGCCTATAGACG -ACGGAATGGTTGAGCCTAGTAACG -ACGGAATGGTTGAGCCTAACTTCG -ACGGAATGGTTGAGCCTATACGCA -ACGGAATGGTTGAGCCTACTTGCA -ACGGAATGGTTGAGCCTACGAACA -ACGGAATGGTTGAGCCTACAGTCA -ACGGAATGGTTGAGCCTAGATCCA -ACGGAATGGTTGAGCCTAACGACA -ACGGAATGGTTGAGCCTAAGCTCA -ACGGAATGGTTGAGCCTATCACGT -ACGGAATGGTTGAGCCTACGTAGT -ACGGAATGGTTGAGCCTAGTCAGT -ACGGAATGGTTGAGCCTAGAAGGT -ACGGAATGGTTGAGCCTAAACCGT -ACGGAATGGTTGAGCCTATTGTGC -ACGGAATGGTTGAGCCTACTAAGC -ACGGAATGGTTGAGCCTAACTAGC -ACGGAATGGTTGAGCCTAAGATGC -ACGGAATGGTTGAGCCTATGAAGG -ACGGAATGGTTGAGCCTACAATGG -ACGGAATGGTTGAGCCTAATGAGG -ACGGAATGGTTGAGCCTAAATGGG -ACGGAATGGTTGAGCCTATCCTGA -ACGGAATGGTTGAGCCTATAGCGA -ACGGAATGGTTGAGCCTACACAGA -ACGGAATGGTTGAGCCTAGCAAGA -ACGGAATGGTTGAGCCTAGGTTGA -ACGGAATGGTTGAGCCTATCCGAT -ACGGAATGGTTGAGCCTATGGCAT -ACGGAATGGTTGAGCCTACGAGAT -ACGGAATGGTTGAGCCTATACCAC -ACGGAATGGTTGAGCCTACAGAAC -ACGGAATGGTTGAGCCTAGTCTAC -ACGGAATGGTTGAGCCTAACGTAC -ACGGAATGGTTGAGCCTAAGTGAC -ACGGAATGGTTGAGCCTACTGTAG -ACGGAATGGTTGAGCCTACCTAAG -ACGGAATGGTTGAGCCTAGTTCAG -ACGGAATGGTTGAGCCTAGCATAG -ACGGAATGGTTGAGCCTAGACAAG -ACGGAATGGTTGAGCCTAAAGCAG -ACGGAATGGTTGAGCCTACGTCAA -ACGGAATGGTTGAGCCTAGCTGAA -ACGGAATGGTTGAGCCTAAGTACG -ACGGAATGGTTGAGCCTAATCCGA -ACGGAATGGTTGAGCCTAATGGGA -ACGGAATGGTTGAGCCTAGTGCAA -ACGGAATGGTTGAGCCTAGAGGAA -ACGGAATGGTTGAGCCTACAGGTA -ACGGAATGGTTGAGCCTAGACTCT -ACGGAATGGTTGAGCCTAAGTCCT -ACGGAATGGTTGAGCCTATAAGCC -ACGGAATGGTTGAGCCTAATAGCC -ACGGAATGGTTGAGCCTATAACCG -ACGGAATGGTTGAGCCTAATGCCA -ACGGAATGGTTGAGCACTGGAAAC -ACGGAATGGTTGAGCACTAACACC -ACGGAATGGTTGAGCACTATCGAG -ACGGAATGGTTGAGCACTCTCCTT -ACGGAATGGTTGAGCACTCCTGTT -ACGGAATGGTTGAGCACTCGGTTT -ACGGAATGGTTGAGCACTGTGGTT -ACGGAATGGTTGAGCACTGCCTTT -ACGGAATGGTTGAGCACTGGTCTT -ACGGAATGGTTGAGCACTACGCTT -ACGGAATGGTTGAGCACTAGCGTT -ACGGAATGGTTGAGCACTTTCGTC -ACGGAATGGTTGAGCACTTCTCTC -ACGGAATGGTTGAGCACTTGGATC -ACGGAATGGTTGAGCACTCACTTC -ACGGAATGGTTGAGCACTGTACTC -ACGGAATGGTTGAGCACTGATGTC -ACGGAATGGTTGAGCACTACAGTC -ACGGAATGGTTGAGCACTTTGCTG -ACGGAATGGTTGAGCACTTCCATG -ACGGAATGGTTGAGCACTTGTGTG -ACGGAATGGTTGAGCACTCTAGTG -ACGGAATGGTTGAGCACTCATCTG -ACGGAATGGTTGAGCACTGAGTTG -ACGGAATGGTTGAGCACTAGACTG -ACGGAATGGTTGAGCACTTCGGTA -ACGGAATGGTTGAGCACTTGCCTA -ACGGAATGGTTGAGCACTCCACTA -ACGGAATGGTTGAGCACTGGAGTA -ACGGAATGGTTGAGCACTTCGTCT -ACGGAATGGTTGAGCACTTGCACT -ACGGAATGGTTGAGCACTCTGACT -ACGGAATGGTTGAGCACTCAACCT -ACGGAATGGTTGAGCACTGCTACT -ACGGAATGGTTGAGCACTGGATCT -ACGGAATGGTTGAGCACTAAGGCT -ACGGAATGGTTGAGCACTTCAACC -ACGGAATGGTTGAGCACTTGTTCC -ACGGAATGGTTGAGCACTATTCCC -ACGGAATGGTTGAGCACTTTCTCG -ACGGAATGGTTGAGCACTTAGACG -ACGGAATGGTTGAGCACTGTAACG -ACGGAATGGTTGAGCACTACTTCG -ACGGAATGGTTGAGCACTTACGCA -ACGGAATGGTTGAGCACTCTTGCA -ACGGAATGGTTGAGCACTCGAACA -ACGGAATGGTTGAGCACTCAGTCA -ACGGAATGGTTGAGCACTGATCCA -ACGGAATGGTTGAGCACTACGACA -ACGGAATGGTTGAGCACTAGCTCA -ACGGAATGGTTGAGCACTTCACGT -ACGGAATGGTTGAGCACTCGTAGT -ACGGAATGGTTGAGCACTGTCAGT -ACGGAATGGTTGAGCACTGAAGGT -ACGGAATGGTTGAGCACTAACCGT -ACGGAATGGTTGAGCACTTTGTGC -ACGGAATGGTTGAGCACTCTAAGC -ACGGAATGGTTGAGCACTACTAGC -ACGGAATGGTTGAGCACTAGATGC -ACGGAATGGTTGAGCACTTGAAGG -ACGGAATGGTTGAGCACTCAATGG -ACGGAATGGTTGAGCACTATGAGG -ACGGAATGGTTGAGCACTAATGGG -ACGGAATGGTTGAGCACTTCCTGA -ACGGAATGGTTGAGCACTTAGCGA -ACGGAATGGTTGAGCACTCACAGA -ACGGAATGGTTGAGCACTGCAAGA -ACGGAATGGTTGAGCACTGGTTGA -ACGGAATGGTTGAGCACTTCCGAT -ACGGAATGGTTGAGCACTTGGCAT -ACGGAATGGTTGAGCACTCGAGAT -ACGGAATGGTTGAGCACTTACCAC -ACGGAATGGTTGAGCACTCAGAAC -ACGGAATGGTTGAGCACTGTCTAC -ACGGAATGGTTGAGCACTACGTAC -ACGGAATGGTTGAGCACTAGTGAC -ACGGAATGGTTGAGCACTCTGTAG -ACGGAATGGTTGAGCACTCCTAAG -ACGGAATGGTTGAGCACTGTTCAG -ACGGAATGGTTGAGCACTGCATAG -ACGGAATGGTTGAGCACTGACAAG -ACGGAATGGTTGAGCACTAAGCAG -ACGGAATGGTTGAGCACTCGTCAA -ACGGAATGGTTGAGCACTGCTGAA -ACGGAATGGTTGAGCACTAGTACG -ACGGAATGGTTGAGCACTATCCGA -ACGGAATGGTTGAGCACTATGGGA -ACGGAATGGTTGAGCACTGTGCAA -ACGGAATGGTTGAGCACTGAGGAA -ACGGAATGGTTGAGCACTCAGGTA -ACGGAATGGTTGAGCACTGACTCT -ACGGAATGGTTGAGCACTAGTCCT -ACGGAATGGTTGAGCACTTAAGCC -ACGGAATGGTTGAGCACTATAGCC -ACGGAATGGTTGAGCACTTAACCG -ACGGAATGGTTGAGCACTATGCCA -ACGGAATGGTTGTGCAGAGGAAAC -ACGGAATGGTTGTGCAGAAACACC -ACGGAATGGTTGTGCAGAATCGAG -ACGGAATGGTTGTGCAGACTCCTT -ACGGAATGGTTGTGCAGACCTGTT -ACGGAATGGTTGTGCAGACGGTTT -ACGGAATGGTTGTGCAGAGTGGTT -ACGGAATGGTTGTGCAGAGCCTTT -ACGGAATGGTTGTGCAGAGGTCTT -ACGGAATGGTTGTGCAGAACGCTT -ACGGAATGGTTGTGCAGAAGCGTT -ACGGAATGGTTGTGCAGATTCGTC -ACGGAATGGTTGTGCAGATCTCTC -ACGGAATGGTTGTGCAGATGGATC -ACGGAATGGTTGTGCAGACACTTC -ACGGAATGGTTGTGCAGAGTACTC -ACGGAATGGTTGTGCAGAGATGTC -ACGGAATGGTTGTGCAGAACAGTC -ACGGAATGGTTGTGCAGATTGCTG -ACGGAATGGTTGTGCAGATCCATG -ACGGAATGGTTGTGCAGATGTGTG -ACGGAATGGTTGTGCAGACTAGTG -ACGGAATGGTTGTGCAGACATCTG -ACGGAATGGTTGTGCAGAGAGTTG -ACGGAATGGTTGTGCAGAAGACTG -ACGGAATGGTTGTGCAGATCGGTA -ACGGAATGGTTGTGCAGATGCCTA -ACGGAATGGTTGTGCAGACCACTA -ACGGAATGGTTGTGCAGAGGAGTA -ACGGAATGGTTGTGCAGATCGTCT -ACGGAATGGTTGTGCAGATGCACT -ACGGAATGGTTGTGCAGACTGACT -ACGGAATGGTTGTGCAGACAACCT -ACGGAATGGTTGTGCAGAGCTACT -ACGGAATGGTTGTGCAGAGGATCT -ACGGAATGGTTGTGCAGAAAGGCT -ACGGAATGGTTGTGCAGATCAACC -ACGGAATGGTTGTGCAGATGTTCC -ACGGAATGGTTGTGCAGAATTCCC -ACGGAATGGTTGTGCAGATTCTCG -ACGGAATGGTTGTGCAGATAGACG -ACGGAATGGTTGTGCAGAGTAACG -ACGGAATGGTTGTGCAGAACTTCG -ACGGAATGGTTGTGCAGATACGCA -ACGGAATGGTTGTGCAGACTTGCA -ACGGAATGGTTGTGCAGACGAACA -ACGGAATGGTTGTGCAGACAGTCA -ACGGAATGGTTGTGCAGAGATCCA -ACGGAATGGTTGTGCAGAACGACA -ACGGAATGGTTGTGCAGAAGCTCA -ACGGAATGGTTGTGCAGATCACGT -ACGGAATGGTTGTGCAGACGTAGT -ACGGAATGGTTGTGCAGAGTCAGT -ACGGAATGGTTGTGCAGAGAAGGT -ACGGAATGGTTGTGCAGAAACCGT -ACGGAATGGTTGTGCAGATTGTGC -ACGGAATGGTTGTGCAGACTAAGC -ACGGAATGGTTGTGCAGAACTAGC -ACGGAATGGTTGTGCAGAAGATGC -ACGGAATGGTTGTGCAGATGAAGG -ACGGAATGGTTGTGCAGACAATGG -ACGGAATGGTTGTGCAGAATGAGG -ACGGAATGGTTGTGCAGAAATGGG -ACGGAATGGTTGTGCAGATCCTGA -ACGGAATGGTTGTGCAGATAGCGA -ACGGAATGGTTGTGCAGACACAGA -ACGGAATGGTTGTGCAGAGCAAGA -ACGGAATGGTTGTGCAGAGGTTGA -ACGGAATGGTTGTGCAGATCCGAT -ACGGAATGGTTGTGCAGATGGCAT -ACGGAATGGTTGTGCAGACGAGAT -ACGGAATGGTTGTGCAGATACCAC -ACGGAATGGTTGTGCAGACAGAAC -ACGGAATGGTTGTGCAGAGTCTAC -ACGGAATGGTTGTGCAGAACGTAC -ACGGAATGGTTGTGCAGAAGTGAC -ACGGAATGGTTGTGCAGACTGTAG -ACGGAATGGTTGTGCAGACCTAAG -ACGGAATGGTTGTGCAGAGTTCAG -ACGGAATGGTTGTGCAGAGCATAG -ACGGAATGGTTGTGCAGAGACAAG -ACGGAATGGTTGTGCAGAAAGCAG -ACGGAATGGTTGTGCAGACGTCAA -ACGGAATGGTTGTGCAGAGCTGAA -ACGGAATGGTTGTGCAGAAGTACG -ACGGAATGGTTGTGCAGAATCCGA -ACGGAATGGTTGTGCAGAATGGGA -ACGGAATGGTTGTGCAGAGTGCAA -ACGGAATGGTTGTGCAGAGAGGAA -ACGGAATGGTTGTGCAGACAGGTA -ACGGAATGGTTGTGCAGAGACTCT -ACGGAATGGTTGTGCAGAAGTCCT -ACGGAATGGTTGTGCAGATAAGCC -ACGGAATGGTTGTGCAGAATAGCC -ACGGAATGGTTGTGCAGATAACCG -ACGGAATGGTTGTGCAGAATGCCA -ACGGAATGGTTGAGGTGAGGAAAC -ACGGAATGGTTGAGGTGAAACACC -ACGGAATGGTTGAGGTGAATCGAG -ACGGAATGGTTGAGGTGACTCCTT -ACGGAATGGTTGAGGTGACCTGTT -ACGGAATGGTTGAGGTGACGGTTT -ACGGAATGGTTGAGGTGAGTGGTT -ACGGAATGGTTGAGGTGAGCCTTT -ACGGAATGGTTGAGGTGAGGTCTT -ACGGAATGGTTGAGGTGAACGCTT -ACGGAATGGTTGAGGTGAAGCGTT -ACGGAATGGTTGAGGTGATTCGTC -ACGGAATGGTTGAGGTGATCTCTC -ACGGAATGGTTGAGGTGATGGATC -ACGGAATGGTTGAGGTGACACTTC -ACGGAATGGTTGAGGTGAGTACTC -ACGGAATGGTTGAGGTGAGATGTC -ACGGAATGGTTGAGGTGAACAGTC -ACGGAATGGTTGAGGTGATTGCTG -ACGGAATGGTTGAGGTGATCCATG -ACGGAATGGTTGAGGTGATGTGTG -ACGGAATGGTTGAGGTGACTAGTG -ACGGAATGGTTGAGGTGACATCTG -ACGGAATGGTTGAGGTGAGAGTTG -ACGGAATGGTTGAGGTGAAGACTG -ACGGAATGGTTGAGGTGATCGGTA -ACGGAATGGTTGAGGTGATGCCTA -ACGGAATGGTTGAGGTGACCACTA -ACGGAATGGTTGAGGTGAGGAGTA -ACGGAATGGTTGAGGTGATCGTCT -ACGGAATGGTTGAGGTGATGCACT -ACGGAATGGTTGAGGTGACTGACT -ACGGAATGGTTGAGGTGACAACCT -ACGGAATGGTTGAGGTGAGCTACT -ACGGAATGGTTGAGGTGAGGATCT -ACGGAATGGTTGAGGTGAAAGGCT -ACGGAATGGTTGAGGTGATCAACC -ACGGAATGGTTGAGGTGATGTTCC -ACGGAATGGTTGAGGTGAATTCCC -ACGGAATGGTTGAGGTGATTCTCG -ACGGAATGGTTGAGGTGATAGACG -ACGGAATGGTTGAGGTGAGTAACG -ACGGAATGGTTGAGGTGAACTTCG -ACGGAATGGTTGAGGTGATACGCA -ACGGAATGGTTGAGGTGACTTGCA -ACGGAATGGTTGAGGTGACGAACA -ACGGAATGGTTGAGGTGACAGTCA -ACGGAATGGTTGAGGTGAGATCCA -ACGGAATGGTTGAGGTGAACGACA -ACGGAATGGTTGAGGTGAAGCTCA -ACGGAATGGTTGAGGTGATCACGT -ACGGAATGGTTGAGGTGACGTAGT -ACGGAATGGTTGAGGTGAGTCAGT -ACGGAATGGTTGAGGTGAGAAGGT -ACGGAATGGTTGAGGTGAAACCGT -ACGGAATGGTTGAGGTGATTGTGC -ACGGAATGGTTGAGGTGACTAAGC -ACGGAATGGTTGAGGTGAACTAGC -ACGGAATGGTTGAGGTGAAGATGC -ACGGAATGGTTGAGGTGATGAAGG -ACGGAATGGTTGAGGTGACAATGG -ACGGAATGGTTGAGGTGAATGAGG -ACGGAATGGTTGAGGTGAAATGGG -ACGGAATGGTTGAGGTGATCCTGA -ACGGAATGGTTGAGGTGATAGCGA -ACGGAATGGTTGAGGTGACACAGA -ACGGAATGGTTGAGGTGAGCAAGA -ACGGAATGGTTGAGGTGAGGTTGA -ACGGAATGGTTGAGGTGATCCGAT -ACGGAATGGTTGAGGTGATGGCAT -ACGGAATGGTTGAGGTGACGAGAT -ACGGAATGGTTGAGGTGATACCAC -ACGGAATGGTTGAGGTGACAGAAC -ACGGAATGGTTGAGGTGAGTCTAC -ACGGAATGGTTGAGGTGAACGTAC -ACGGAATGGTTGAGGTGAAGTGAC -ACGGAATGGTTGAGGTGACTGTAG -ACGGAATGGTTGAGGTGACCTAAG -ACGGAATGGTTGAGGTGAGTTCAG -ACGGAATGGTTGAGGTGAGCATAG -ACGGAATGGTTGAGGTGAGACAAG -ACGGAATGGTTGAGGTGAAAGCAG -ACGGAATGGTTGAGGTGACGTCAA -ACGGAATGGTTGAGGTGAGCTGAA -ACGGAATGGTTGAGGTGAAGTACG -ACGGAATGGTTGAGGTGAATCCGA -ACGGAATGGTTGAGGTGAATGGGA -ACGGAATGGTTGAGGTGAGTGCAA -ACGGAATGGTTGAGGTGAGAGGAA -ACGGAATGGTTGAGGTGACAGGTA -ACGGAATGGTTGAGGTGAGACTCT -ACGGAATGGTTGAGGTGAAGTCCT -ACGGAATGGTTGAGGTGATAAGCC -ACGGAATGGTTGAGGTGAATAGCC -ACGGAATGGTTGAGGTGATAACCG -ACGGAATGGTTGAGGTGAATGCCA -ACGGAATGGTTGTGGCAAGGAAAC -ACGGAATGGTTGTGGCAAAACACC -ACGGAATGGTTGTGGCAAATCGAG -ACGGAATGGTTGTGGCAACTCCTT -ACGGAATGGTTGTGGCAACCTGTT -ACGGAATGGTTGTGGCAACGGTTT -ACGGAATGGTTGTGGCAAGTGGTT -ACGGAATGGTTGTGGCAAGCCTTT -ACGGAATGGTTGTGGCAAGGTCTT -ACGGAATGGTTGTGGCAAACGCTT -ACGGAATGGTTGTGGCAAAGCGTT -ACGGAATGGTTGTGGCAATTCGTC -ACGGAATGGTTGTGGCAATCTCTC -ACGGAATGGTTGTGGCAATGGATC -ACGGAATGGTTGTGGCAACACTTC -ACGGAATGGTTGTGGCAAGTACTC -ACGGAATGGTTGTGGCAAGATGTC -ACGGAATGGTTGTGGCAAACAGTC -ACGGAATGGTTGTGGCAATTGCTG -ACGGAATGGTTGTGGCAATCCATG -ACGGAATGGTTGTGGCAATGTGTG -ACGGAATGGTTGTGGCAACTAGTG -ACGGAATGGTTGTGGCAACATCTG -ACGGAATGGTTGTGGCAAGAGTTG -ACGGAATGGTTGTGGCAAAGACTG -ACGGAATGGTTGTGGCAATCGGTA -ACGGAATGGTTGTGGCAATGCCTA -ACGGAATGGTTGTGGCAACCACTA -ACGGAATGGTTGTGGCAAGGAGTA -ACGGAATGGTTGTGGCAATCGTCT -ACGGAATGGTTGTGGCAATGCACT -ACGGAATGGTTGTGGCAACTGACT -ACGGAATGGTTGTGGCAACAACCT -ACGGAATGGTTGTGGCAAGCTACT -ACGGAATGGTTGTGGCAAGGATCT -ACGGAATGGTTGTGGCAAAAGGCT -ACGGAATGGTTGTGGCAATCAACC -ACGGAATGGTTGTGGCAATGTTCC -ACGGAATGGTTGTGGCAAATTCCC -ACGGAATGGTTGTGGCAATTCTCG -ACGGAATGGTTGTGGCAATAGACG -ACGGAATGGTTGTGGCAAGTAACG -ACGGAATGGTTGTGGCAAACTTCG -ACGGAATGGTTGTGGCAATACGCA -ACGGAATGGTTGTGGCAACTTGCA -ACGGAATGGTTGTGGCAACGAACA -ACGGAATGGTTGTGGCAACAGTCA -ACGGAATGGTTGTGGCAAGATCCA -ACGGAATGGTTGTGGCAAACGACA -ACGGAATGGTTGTGGCAAAGCTCA -ACGGAATGGTTGTGGCAATCACGT -ACGGAATGGTTGTGGCAACGTAGT -ACGGAATGGTTGTGGCAAGTCAGT -ACGGAATGGTTGTGGCAAGAAGGT -ACGGAATGGTTGTGGCAAAACCGT -ACGGAATGGTTGTGGCAATTGTGC -ACGGAATGGTTGTGGCAACTAAGC -ACGGAATGGTTGTGGCAAACTAGC -ACGGAATGGTTGTGGCAAAGATGC -ACGGAATGGTTGTGGCAATGAAGG -ACGGAATGGTTGTGGCAACAATGG -ACGGAATGGTTGTGGCAAATGAGG -ACGGAATGGTTGTGGCAAAATGGG -ACGGAATGGTTGTGGCAATCCTGA -ACGGAATGGTTGTGGCAATAGCGA -ACGGAATGGTTGTGGCAACACAGA -ACGGAATGGTTGTGGCAAGCAAGA -ACGGAATGGTTGTGGCAAGGTTGA -ACGGAATGGTTGTGGCAATCCGAT -ACGGAATGGTTGTGGCAATGGCAT -ACGGAATGGTTGTGGCAACGAGAT -ACGGAATGGTTGTGGCAATACCAC -ACGGAATGGTTGTGGCAACAGAAC -ACGGAATGGTTGTGGCAAGTCTAC -ACGGAATGGTTGTGGCAAACGTAC -ACGGAATGGTTGTGGCAAAGTGAC -ACGGAATGGTTGTGGCAACTGTAG -ACGGAATGGTTGTGGCAACCTAAG -ACGGAATGGTTGTGGCAAGTTCAG -ACGGAATGGTTGTGGCAAGCATAG -ACGGAATGGTTGTGGCAAGACAAG -ACGGAATGGTTGTGGCAAAAGCAG -ACGGAATGGTTGTGGCAACGTCAA -ACGGAATGGTTGTGGCAAGCTGAA -ACGGAATGGTTGTGGCAAAGTACG -ACGGAATGGTTGTGGCAAATCCGA -ACGGAATGGTTGTGGCAAATGGGA -ACGGAATGGTTGTGGCAAGTGCAA -ACGGAATGGTTGTGGCAAGAGGAA -ACGGAATGGTTGTGGCAACAGGTA -ACGGAATGGTTGTGGCAAGACTCT -ACGGAATGGTTGTGGCAAAGTCCT -ACGGAATGGTTGTGGCAATAAGCC -ACGGAATGGTTGTGGCAAATAGCC -ACGGAATGGTTGTGGCAATAACCG -ACGGAATGGTTGTGGCAAATGCCA -ACGGAATGGTTGAGGATGGGAAAC -ACGGAATGGTTGAGGATGAACACC -ACGGAATGGTTGAGGATGATCGAG -ACGGAATGGTTGAGGATGCTCCTT -ACGGAATGGTTGAGGATGCCTGTT -ACGGAATGGTTGAGGATGCGGTTT -ACGGAATGGTTGAGGATGGTGGTT -ACGGAATGGTTGAGGATGGCCTTT -ACGGAATGGTTGAGGATGGGTCTT -ACGGAATGGTTGAGGATGACGCTT -ACGGAATGGTTGAGGATGAGCGTT -ACGGAATGGTTGAGGATGTTCGTC -ACGGAATGGTTGAGGATGTCTCTC -ACGGAATGGTTGAGGATGTGGATC -ACGGAATGGTTGAGGATGCACTTC -ACGGAATGGTTGAGGATGGTACTC -ACGGAATGGTTGAGGATGGATGTC -ACGGAATGGTTGAGGATGACAGTC -ACGGAATGGTTGAGGATGTTGCTG -ACGGAATGGTTGAGGATGTCCATG -ACGGAATGGTTGAGGATGTGTGTG -ACGGAATGGTTGAGGATGCTAGTG -ACGGAATGGTTGAGGATGCATCTG -ACGGAATGGTTGAGGATGGAGTTG -ACGGAATGGTTGAGGATGAGACTG -ACGGAATGGTTGAGGATGTCGGTA -ACGGAATGGTTGAGGATGTGCCTA -ACGGAATGGTTGAGGATGCCACTA -ACGGAATGGTTGAGGATGGGAGTA -ACGGAATGGTTGAGGATGTCGTCT -ACGGAATGGTTGAGGATGTGCACT -ACGGAATGGTTGAGGATGCTGACT -ACGGAATGGTTGAGGATGCAACCT -ACGGAATGGTTGAGGATGGCTACT -ACGGAATGGTTGAGGATGGGATCT -ACGGAATGGTTGAGGATGAAGGCT -ACGGAATGGTTGAGGATGTCAACC -ACGGAATGGTTGAGGATGTGTTCC -ACGGAATGGTTGAGGATGATTCCC -ACGGAATGGTTGAGGATGTTCTCG -ACGGAATGGTTGAGGATGTAGACG -ACGGAATGGTTGAGGATGGTAACG -ACGGAATGGTTGAGGATGACTTCG -ACGGAATGGTTGAGGATGTACGCA -ACGGAATGGTTGAGGATGCTTGCA -ACGGAATGGTTGAGGATGCGAACA -ACGGAATGGTTGAGGATGCAGTCA -ACGGAATGGTTGAGGATGGATCCA -ACGGAATGGTTGAGGATGACGACA -ACGGAATGGTTGAGGATGAGCTCA -ACGGAATGGTTGAGGATGTCACGT -ACGGAATGGTTGAGGATGCGTAGT -ACGGAATGGTTGAGGATGGTCAGT -ACGGAATGGTTGAGGATGGAAGGT -ACGGAATGGTTGAGGATGAACCGT -ACGGAATGGTTGAGGATGTTGTGC -ACGGAATGGTTGAGGATGCTAAGC -ACGGAATGGTTGAGGATGACTAGC -ACGGAATGGTTGAGGATGAGATGC -ACGGAATGGTTGAGGATGTGAAGG -ACGGAATGGTTGAGGATGCAATGG -ACGGAATGGTTGAGGATGATGAGG -ACGGAATGGTTGAGGATGAATGGG -ACGGAATGGTTGAGGATGTCCTGA -ACGGAATGGTTGAGGATGTAGCGA -ACGGAATGGTTGAGGATGCACAGA -ACGGAATGGTTGAGGATGGCAAGA -ACGGAATGGTTGAGGATGGGTTGA -ACGGAATGGTTGAGGATGTCCGAT -ACGGAATGGTTGAGGATGTGGCAT -ACGGAATGGTTGAGGATGCGAGAT -ACGGAATGGTTGAGGATGTACCAC -ACGGAATGGTTGAGGATGCAGAAC -ACGGAATGGTTGAGGATGGTCTAC -ACGGAATGGTTGAGGATGACGTAC -ACGGAATGGTTGAGGATGAGTGAC -ACGGAATGGTTGAGGATGCTGTAG -ACGGAATGGTTGAGGATGCCTAAG -ACGGAATGGTTGAGGATGGTTCAG -ACGGAATGGTTGAGGATGGCATAG -ACGGAATGGTTGAGGATGGACAAG -ACGGAATGGTTGAGGATGAAGCAG -ACGGAATGGTTGAGGATGCGTCAA -ACGGAATGGTTGAGGATGGCTGAA -ACGGAATGGTTGAGGATGAGTACG -ACGGAATGGTTGAGGATGATCCGA -ACGGAATGGTTGAGGATGATGGGA -ACGGAATGGTTGAGGATGGTGCAA -ACGGAATGGTTGAGGATGGAGGAA -ACGGAATGGTTGAGGATGCAGGTA -ACGGAATGGTTGAGGATGGACTCT -ACGGAATGGTTGAGGATGAGTCCT -ACGGAATGGTTGAGGATGTAAGCC -ACGGAATGGTTGAGGATGATAGCC -ACGGAATGGTTGAGGATGTAACCG -ACGGAATGGTTGAGGATGATGCCA -ACGGAATGGTTGGGGAATGGAAAC -ACGGAATGGTTGGGGAATAACACC -ACGGAATGGTTGGGGAATATCGAG -ACGGAATGGTTGGGGAATCTCCTT -ACGGAATGGTTGGGGAATCCTGTT -ACGGAATGGTTGGGGAATCGGTTT -ACGGAATGGTTGGGGAATGTGGTT -ACGGAATGGTTGGGGAATGCCTTT -ACGGAATGGTTGGGGAATGGTCTT -ACGGAATGGTTGGGGAATACGCTT -ACGGAATGGTTGGGGAATAGCGTT -ACGGAATGGTTGGGGAATTTCGTC -ACGGAATGGTTGGGGAATTCTCTC -ACGGAATGGTTGGGGAATTGGATC -ACGGAATGGTTGGGGAATCACTTC -ACGGAATGGTTGGGGAATGTACTC -ACGGAATGGTTGGGGAATGATGTC -ACGGAATGGTTGGGGAATACAGTC -ACGGAATGGTTGGGGAATTTGCTG -ACGGAATGGTTGGGGAATTCCATG -ACGGAATGGTTGGGGAATTGTGTG -ACGGAATGGTTGGGGAATCTAGTG -ACGGAATGGTTGGGGAATCATCTG -ACGGAATGGTTGGGGAATGAGTTG -ACGGAATGGTTGGGGAATAGACTG -ACGGAATGGTTGGGGAATTCGGTA -ACGGAATGGTTGGGGAATTGCCTA -ACGGAATGGTTGGGGAATCCACTA -ACGGAATGGTTGGGGAATGGAGTA -ACGGAATGGTTGGGGAATTCGTCT -ACGGAATGGTTGGGGAATTGCACT -ACGGAATGGTTGGGGAATCTGACT -ACGGAATGGTTGGGGAATCAACCT -ACGGAATGGTTGGGGAATGCTACT -ACGGAATGGTTGGGGAATGGATCT -ACGGAATGGTTGGGGAATAAGGCT -ACGGAATGGTTGGGGAATTCAACC -ACGGAATGGTTGGGGAATTGTTCC -ACGGAATGGTTGGGGAATATTCCC -ACGGAATGGTTGGGGAATTTCTCG -ACGGAATGGTTGGGGAATTAGACG -ACGGAATGGTTGGGGAATGTAACG -ACGGAATGGTTGGGGAATACTTCG -ACGGAATGGTTGGGGAATTACGCA -ACGGAATGGTTGGGGAATCTTGCA -ACGGAATGGTTGGGGAATCGAACA -ACGGAATGGTTGGGGAATCAGTCA -ACGGAATGGTTGGGGAATGATCCA -ACGGAATGGTTGGGGAATACGACA -ACGGAATGGTTGGGGAATAGCTCA -ACGGAATGGTTGGGGAATTCACGT -ACGGAATGGTTGGGGAATCGTAGT -ACGGAATGGTTGGGGAATGTCAGT -ACGGAATGGTTGGGGAATGAAGGT -ACGGAATGGTTGGGGAATAACCGT -ACGGAATGGTTGGGGAATTTGTGC -ACGGAATGGTTGGGGAATCTAAGC -ACGGAATGGTTGGGGAATACTAGC -ACGGAATGGTTGGGGAATAGATGC -ACGGAATGGTTGGGGAATTGAAGG -ACGGAATGGTTGGGGAATCAATGG -ACGGAATGGTTGGGGAATATGAGG -ACGGAATGGTTGGGGAATAATGGG -ACGGAATGGTTGGGGAATTCCTGA -ACGGAATGGTTGGGGAATTAGCGA -ACGGAATGGTTGGGGAATCACAGA -ACGGAATGGTTGGGGAATGCAAGA -ACGGAATGGTTGGGGAATGGTTGA -ACGGAATGGTTGGGGAATTCCGAT -ACGGAATGGTTGGGGAATTGGCAT -ACGGAATGGTTGGGGAATCGAGAT -ACGGAATGGTTGGGGAATTACCAC -ACGGAATGGTTGGGGAATCAGAAC -ACGGAATGGTTGGGGAATGTCTAC -ACGGAATGGTTGGGGAATACGTAC -ACGGAATGGTTGGGGAATAGTGAC -ACGGAATGGTTGGGGAATCTGTAG -ACGGAATGGTTGGGGAATCCTAAG -ACGGAATGGTTGGGGAATGTTCAG -ACGGAATGGTTGGGGAATGCATAG -ACGGAATGGTTGGGGAATGACAAG -ACGGAATGGTTGGGGAATAAGCAG -ACGGAATGGTTGGGGAATCGTCAA -ACGGAATGGTTGGGGAATGCTGAA -ACGGAATGGTTGGGGAATAGTACG -ACGGAATGGTTGGGGAATATCCGA -ACGGAATGGTTGGGGAATATGGGA -ACGGAATGGTTGGGGAATGTGCAA -ACGGAATGGTTGGGGAATGAGGAA -ACGGAATGGTTGGGGAATCAGGTA -ACGGAATGGTTGGGGAATGACTCT -ACGGAATGGTTGGGGAATAGTCCT -ACGGAATGGTTGGGGAATTAAGCC -ACGGAATGGTTGGGGAATATAGCC -ACGGAATGGTTGGGGAATTAACCG -ACGGAATGGTTGGGGAATATGCCA -ACGGAATGGTTGTGATCCGGAAAC -ACGGAATGGTTGTGATCCAACACC -ACGGAATGGTTGTGATCCATCGAG -ACGGAATGGTTGTGATCCCTCCTT -ACGGAATGGTTGTGATCCCCTGTT -ACGGAATGGTTGTGATCCCGGTTT -ACGGAATGGTTGTGATCCGTGGTT -ACGGAATGGTTGTGATCCGCCTTT -ACGGAATGGTTGTGATCCGGTCTT -ACGGAATGGTTGTGATCCACGCTT -ACGGAATGGTTGTGATCCAGCGTT -ACGGAATGGTTGTGATCCTTCGTC -ACGGAATGGTTGTGATCCTCTCTC -ACGGAATGGTTGTGATCCTGGATC -ACGGAATGGTTGTGATCCCACTTC -ACGGAATGGTTGTGATCCGTACTC -ACGGAATGGTTGTGATCCGATGTC -ACGGAATGGTTGTGATCCACAGTC -ACGGAATGGTTGTGATCCTTGCTG -ACGGAATGGTTGTGATCCTCCATG -ACGGAATGGTTGTGATCCTGTGTG -ACGGAATGGTTGTGATCCCTAGTG -ACGGAATGGTTGTGATCCCATCTG -ACGGAATGGTTGTGATCCGAGTTG -ACGGAATGGTTGTGATCCAGACTG -ACGGAATGGTTGTGATCCTCGGTA -ACGGAATGGTTGTGATCCTGCCTA -ACGGAATGGTTGTGATCCCCACTA -ACGGAATGGTTGTGATCCGGAGTA -ACGGAATGGTTGTGATCCTCGTCT -ACGGAATGGTTGTGATCCTGCACT -ACGGAATGGTTGTGATCCCTGACT -ACGGAATGGTTGTGATCCCAACCT -ACGGAATGGTTGTGATCCGCTACT -ACGGAATGGTTGTGATCCGGATCT -ACGGAATGGTTGTGATCCAAGGCT -ACGGAATGGTTGTGATCCTCAACC -ACGGAATGGTTGTGATCCTGTTCC -ACGGAATGGTTGTGATCCATTCCC -ACGGAATGGTTGTGATCCTTCTCG -ACGGAATGGTTGTGATCCTAGACG -ACGGAATGGTTGTGATCCGTAACG -ACGGAATGGTTGTGATCCACTTCG -ACGGAATGGTTGTGATCCTACGCA -ACGGAATGGTTGTGATCCCTTGCA -ACGGAATGGTTGTGATCCCGAACA -ACGGAATGGTTGTGATCCCAGTCA -ACGGAATGGTTGTGATCCGATCCA -ACGGAATGGTTGTGATCCACGACA -ACGGAATGGTTGTGATCCAGCTCA -ACGGAATGGTTGTGATCCTCACGT -ACGGAATGGTTGTGATCCCGTAGT -ACGGAATGGTTGTGATCCGTCAGT -ACGGAATGGTTGTGATCCGAAGGT -ACGGAATGGTTGTGATCCAACCGT -ACGGAATGGTTGTGATCCTTGTGC -ACGGAATGGTTGTGATCCCTAAGC -ACGGAATGGTTGTGATCCACTAGC -ACGGAATGGTTGTGATCCAGATGC -ACGGAATGGTTGTGATCCTGAAGG -ACGGAATGGTTGTGATCCCAATGG -ACGGAATGGTTGTGATCCATGAGG -ACGGAATGGTTGTGATCCAATGGG -ACGGAATGGTTGTGATCCTCCTGA -ACGGAATGGTTGTGATCCTAGCGA -ACGGAATGGTTGTGATCCCACAGA -ACGGAATGGTTGTGATCCGCAAGA -ACGGAATGGTTGTGATCCGGTTGA -ACGGAATGGTTGTGATCCTCCGAT -ACGGAATGGTTGTGATCCTGGCAT -ACGGAATGGTTGTGATCCCGAGAT -ACGGAATGGTTGTGATCCTACCAC -ACGGAATGGTTGTGATCCCAGAAC -ACGGAATGGTTGTGATCCGTCTAC -ACGGAATGGTTGTGATCCACGTAC -ACGGAATGGTTGTGATCCAGTGAC -ACGGAATGGTTGTGATCCCTGTAG -ACGGAATGGTTGTGATCCCCTAAG -ACGGAATGGTTGTGATCCGTTCAG -ACGGAATGGTTGTGATCCGCATAG -ACGGAATGGTTGTGATCCGACAAG -ACGGAATGGTTGTGATCCAAGCAG -ACGGAATGGTTGTGATCCCGTCAA -ACGGAATGGTTGTGATCCGCTGAA -ACGGAATGGTTGTGATCCAGTACG -ACGGAATGGTTGTGATCCATCCGA -ACGGAATGGTTGTGATCCATGGGA -ACGGAATGGTTGTGATCCGTGCAA -ACGGAATGGTTGTGATCCGAGGAA -ACGGAATGGTTGTGATCCCAGGTA -ACGGAATGGTTGTGATCCGACTCT -ACGGAATGGTTGTGATCCAGTCCT -ACGGAATGGTTGTGATCCTAAGCC -ACGGAATGGTTGTGATCCATAGCC -ACGGAATGGTTGTGATCCTAACCG -ACGGAATGGTTGTGATCCATGCCA -ACGGAATGGTTGCGATAGGGAAAC -ACGGAATGGTTGCGATAGAACACC -ACGGAATGGTTGCGATAGATCGAG -ACGGAATGGTTGCGATAGCTCCTT -ACGGAATGGTTGCGATAGCCTGTT -ACGGAATGGTTGCGATAGCGGTTT -ACGGAATGGTTGCGATAGGTGGTT -ACGGAATGGTTGCGATAGGCCTTT -ACGGAATGGTTGCGATAGGGTCTT -ACGGAATGGTTGCGATAGACGCTT -ACGGAATGGTTGCGATAGAGCGTT -ACGGAATGGTTGCGATAGTTCGTC -ACGGAATGGTTGCGATAGTCTCTC -ACGGAATGGTTGCGATAGTGGATC -ACGGAATGGTTGCGATAGCACTTC -ACGGAATGGTTGCGATAGGTACTC -ACGGAATGGTTGCGATAGGATGTC -ACGGAATGGTTGCGATAGACAGTC -ACGGAATGGTTGCGATAGTTGCTG -ACGGAATGGTTGCGATAGTCCATG -ACGGAATGGTTGCGATAGTGTGTG -ACGGAATGGTTGCGATAGCTAGTG -ACGGAATGGTTGCGATAGCATCTG -ACGGAATGGTTGCGATAGGAGTTG -ACGGAATGGTTGCGATAGAGACTG -ACGGAATGGTTGCGATAGTCGGTA -ACGGAATGGTTGCGATAGTGCCTA -ACGGAATGGTTGCGATAGCCACTA -ACGGAATGGTTGCGATAGGGAGTA -ACGGAATGGTTGCGATAGTCGTCT -ACGGAATGGTTGCGATAGTGCACT -ACGGAATGGTTGCGATAGCTGACT -ACGGAATGGTTGCGATAGCAACCT -ACGGAATGGTTGCGATAGGCTACT -ACGGAATGGTTGCGATAGGGATCT -ACGGAATGGTTGCGATAGAAGGCT -ACGGAATGGTTGCGATAGTCAACC -ACGGAATGGTTGCGATAGTGTTCC -ACGGAATGGTTGCGATAGATTCCC -ACGGAATGGTTGCGATAGTTCTCG -ACGGAATGGTTGCGATAGTAGACG -ACGGAATGGTTGCGATAGGTAACG -ACGGAATGGTTGCGATAGACTTCG -ACGGAATGGTTGCGATAGTACGCA -ACGGAATGGTTGCGATAGCTTGCA -ACGGAATGGTTGCGATAGCGAACA -ACGGAATGGTTGCGATAGCAGTCA -ACGGAATGGTTGCGATAGGATCCA -ACGGAATGGTTGCGATAGACGACA -ACGGAATGGTTGCGATAGAGCTCA -ACGGAATGGTTGCGATAGTCACGT -ACGGAATGGTTGCGATAGCGTAGT -ACGGAATGGTTGCGATAGGTCAGT -ACGGAATGGTTGCGATAGGAAGGT -ACGGAATGGTTGCGATAGAACCGT -ACGGAATGGTTGCGATAGTTGTGC -ACGGAATGGTTGCGATAGCTAAGC -ACGGAATGGTTGCGATAGACTAGC -ACGGAATGGTTGCGATAGAGATGC -ACGGAATGGTTGCGATAGTGAAGG -ACGGAATGGTTGCGATAGCAATGG -ACGGAATGGTTGCGATAGATGAGG -ACGGAATGGTTGCGATAGAATGGG -ACGGAATGGTTGCGATAGTCCTGA -ACGGAATGGTTGCGATAGTAGCGA -ACGGAATGGTTGCGATAGCACAGA -ACGGAATGGTTGCGATAGGCAAGA -ACGGAATGGTTGCGATAGGGTTGA -ACGGAATGGTTGCGATAGTCCGAT -ACGGAATGGTTGCGATAGTGGCAT -ACGGAATGGTTGCGATAGCGAGAT -ACGGAATGGTTGCGATAGTACCAC -ACGGAATGGTTGCGATAGCAGAAC -ACGGAATGGTTGCGATAGGTCTAC -ACGGAATGGTTGCGATAGACGTAC -ACGGAATGGTTGCGATAGAGTGAC -ACGGAATGGTTGCGATAGCTGTAG -ACGGAATGGTTGCGATAGCCTAAG -ACGGAATGGTTGCGATAGGTTCAG -ACGGAATGGTTGCGATAGGCATAG -ACGGAATGGTTGCGATAGGACAAG -ACGGAATGGTTGCGATAGAAGCAG -ACGGAATGGTTGCGATAGCGTCAA -ACGGAATGGTTGCGATAGGCTGAA -ACGGAATGGTTGCGATAGAGTACG -ACGGAATGGTTGCGATAGATCCGA -ACGGAATGGTTGCGATAGATGGGA -ACGGAATGGTTGCGATAGGTGCAA -ACGGAATGGTTGCGATAGGAGGAA -ACGGAATGGTTGCGATAGCAGGTA -ACGGAATGGTTGCGATAGGACTCT -ACGGAATGGTTGCGATAGAGTCCT -ACGGAATGGTTGCGATAGTAAGCC -ACGGAATGGTTGCGATAGATAGCC -ACGGAATGGTTGCGATAGTAACCG -ACGGAATGGTTGCGATAGATGCCA -ACGGAATGGTTGAGACACGGAAAC -ACGGAATGGTTGAGACACAACACC -ACGGAATGGTTGAGACACATCGAG -ACGGAATGGTTGAGACACCTCCTT -ACGGAATGGTTGAGACACCCTGTT -ACGGAATGGTTGAGACACCGGTTT -ACGGAATGGTTGAGACACGTGGTT -ACGGAATGGTTGAGACACGCCTTT -ACGGAATGGTTGAGACACGGTCTT -ACGGAATGGTTGAGACACACGCTT -ACGGAATGGTTGAGACACAGCGTT -ACGGAATGGTTGAGACACTTCGTC -ACGGAATGGTTGAGACACTCTCTC -ACGGAATGGTTGAGACACTGGATC -ACGGAATGGTTGAGACACCACTTC -ACGGAATGGTTGAGACACGTACTC -ACGGAATGGTTGAGACACGATGTC -ACGGAATGGTTGAGACACACAGTC -ACGGAATGGTTGAGACACTTGCTG -ACGGAATGGTTGAGACACTCCATG -ACGGAATGGTTGAGACACTGTGTG -ACGGAATGGTTGAGACACCTAGTG -ACGGAATGGTTGAGACACCATCTG -ACGGAATGGTTGAGACACGAGTTG -ACGGAATGGTTGAGACACAGACTG -ACGGAATGGTTGAGACACTCGGTA -ACGGAATGGTTGAGACACTGCCTA -ACGGAATGGTTGAGACACCCACTA -ACGGAATGGTTGAGACACGGAGTA -ACGGAATGGTTGAGACACTCGTCT -ACGGAATGGTTGAGACACTGCACT -ACGGAATGGTTGAGACACCTGACT -ACGGAATGGTTGAGACACCAACCT -ACGGAATGGTTGAGACACGCTACT -ACGGAATGGTTGAGACACGGATCT -ACGGAATGGTTGAGACACAAGGCT -ACGGAATGGTTGAGACACTCAACC -ACGGAATGGTTGAGACACTGTTCC -ACGGAATGGTTGAGACACATTCCC -ACGGAATGGTTGAGACACTTCTCG -ACGGAATGGTTGAGACACTAGACG -ACGGAATGGTTGAGACACGTAACG -ACGGAATGGTTGAGACACACTTCG -ACGGAATGGTTGAGACACTACGCA -ACGGAATGGTTGAGACACCTTGCA -ACGGAATGGTTGAGACACCGAACA -ACGGAATGGTTGAGACACCAGTCA -ACGGAATGGTTGAGACACGATCCA -ACGGAATGGTTGAGACACACGACA -ACGGAATGGTTGAGACACAGCTCA -ACGGAATGGTTGAGACACTCACGT -ACGGAATGGTTGAGACACCGTAGT -ACGGAATGGTTGAGACACGTCAGT -ACGGAATGGTTGAGACACGAAGGT -ACGGAATGGTTGAGACACAACCGT -ACGGAATGGTTGAGACACTTGTGC -ACGGAATGGTTGAGACACCTAAGC -ACGGAATGGTTGAGACACACTAGC -ACGGAATGGTTGAGACACAGATGC -ACGGAATGGTTGAGACACTGAAGG -ACGGAATGGTTGAGACACCAATGG -ACGGAATGGTTGAGACACATGAGG -ACGGAATGGTTGAGACACAATGGG -ACGGAATGGTTGAGACACTCCTGA -ACGGAATGGTTGAGACACTAGCGA -ACGGAATGGTTGAGACACCACAGA -ACGGAATGGTTGAGACACGCAAGA -ACGGAATGGTTGAGACACGGTTGA -ACGGAATGGTTGAGACACTCCGAT -ACGGAATGGTTGAGACACTGGCAT -ACGGAATGGTTGAGACACCGAGAT -ACGGAATGGTTGAGACACTACCAC -ACGGAATGGTTGAGACACCAGAAC -ACGGAATGGTTGAGACACGTCTAC -ACGGAATGGTTGAGACACACGTAC -ACGGAATGGTTGAGACACAGTGAC -ACGGAATGGTTGAGACACCTGTAG -ACGGAATGGTTGAGACACCCTAAG -ACGGAATGGTTGAGACACGTTCAG -ACGGAATGGTTGAGACACGCATAG -ACGGAATGGTTGAGACACGACAAG -ACGGAATGGTTGAGACACAAGCAG -ACGGAATGGTTGAGACACCGTCAA -ACGGAATGGTTGAGACACGCTGAA -ACGGAATGGTTGAGACACAGTACG -ACGGAATGGTTGAGACACATCCGA -ACGGAATGGTTGAGACACATGGGA -ACGGAATGGTTGAGACACGTGCAA -ACGGAATGGTTGAGACACGAGGAA -ACGGAATGGTTGAGACACCAGGTA -ACGGAATGGTTGAGACACGACTCT -ACGGAATGGTTGAGACACAGTCCT -ACGGAATGGTTGAGACACTAAGCC -ACGGAATGGTTGAGACACATAGCC -ACGGAATGGTTGAGACACTAACCG -ACGGAATGGTTGAGACACATGCCA -ACGGAATGGTTGAGAGCAGGAAAC -ACGGAATGGTTGAGAGCAAACACC -ACGGAATGGTTGAGAGCAATCGAG -ACGGAATGGTTGAGAGCACTCCTT -ACGGAATGGTTGAGAGCACCTGTT -ACGGAATGGTTGAGAGCACGGTTT -ACGGAATGGTTGAGAGCAGTGGTT -ACGGAATGGTTGAGAGCAGCCTTT -ACGGAATGGTTGAGAGCAGGTCTT -ACGGAATGGTTGAGAGCAACGCTT -ACGGAATGGTTGAGAGCAAGCGTT -ACGGAATGGTTGAGAGCATTCGTC -ACGGAATGGTTGAGAGCATCTCTC -ACGGAATGGTTGAGAGCATGGATC -ACGGAATGGTTGAGAGCACACTTC -ACGGAATGGTTGAGAGCAGTACTC -ACGGAATGGTTGAGAGCAGATGTC -ACGGAATGGTTGAGAGCAACAGTC -ACGGAATGGTTGAGAGCATTGCTG -ACGGAATGGTTGAGAGCATCCATG -ACGGAATGGTTGAGAGCATGTGTG -ACGGAATGGTTGAGAGCACTAGTG -ACGGAATGGTTGAGAGCACATCTG -ACGGAATGGTTGAGAGCAGAGTTG -ACGGAATGGTTGAGAGCAAGACTG -ACGGAATGGTTGAGAGCATCGGTA -ACGGAATGGTTGAGAGCATGCCTA -ACGGAATGGTTGAGAGCACCACTA -ACGGAATGGTTGAGAGCAGGAGTA -ACGGAATGGTTGAGAGCATCGTCT -ACGGAATGGTTGAGAGCATGCACT -ACGGAATGGTTGAGAGCACTGACT -ACGGAATGGTTGAGAGCACAACCT -ACGGAATGGTTGAGAGCAGCTACT -ACGGAATGGTTGAGAGCAGGATCT -ACGGAATGGTTGAGAGCAAAGGCT -ACGGAATGGTTGAGAGCATCAACC -ACGGAATGGTTGAGAGCATGTTCC -ACGGAATGGTTGAGAGCAATTCCC -ACGGAATGGTTGAGAGCATTCTCG -ACGGAATGGTTGAGAGCATAGACG -ACGGAATGGTTGAGAGCAGTAACG -ACGGAATGGTTGAGAGCAACTTCG -ACGGAATGGTTGAGAGCATACGCA -ACGGAATGGTTGAGAGCACTTGCA -ACGGAATGGTTGAGAGCACGAACA -ACGGAATGGTTGAGAGCACAGTCA -ACGGAATGGTTGAGAGCAGATCCA -ACGGAATGGTTGAGAGCAACGACA -ACGGAATGGTTGAGAGCAAGCTCA -ACGGAATGGTTGAGAGCATCACGT -ACGGAATGGTTGAGAGCACGTAGT -ACGGAATGGTTGAGAGCAGTCAGT -ACGGAATGGTTGAGAGCAGAAGGT -ACGGAATGGTTGAGAGCAAACCGT -ACGGAATGGTTGAGAGCATTGTGC -ACGGAATGGTTGAGAGCACTAAGC -ACGGAATGGTTGAGAGCAACTAGC -ACGGAATGGTTGAGAGCAAGATGC -ACGGAATGGTTGAGAGCATGAAGG -ACGGAATGGTTGAGAGCACAATGG -ACGGAATGGTTGAGAGCAATGAGG -ACGGAATGGTTGAGAGCAAATGGG -ACGGAATGGTTGAGAGCATCCTGA -ACGGAATGGTTGAGAGCATAGCGA -ACGGAATGGTTGAGAGCACACAGA -ACGGAATGGTTGAGAGCAGCAAGA -ACGGAATGGTTGAGAGCAGGTTGA -ACGGAATGGTTGAGAGCATCCGAT -ACGGAATGGTTGAGAGCATGGCAT -ACGGAATGGTTGAGAGCACGAGAT -ACGGAATGGTTGAGAGCATACCAC -ACGGAATGGTTGAGAGCACAGAAC -ACGGAATGGTTGAGAGCAGTCTAC -ACGGAATGGTTGAGAGCAACGTAC -ACGGAATGGTTGAGAGCAAGTGAC -ACGGAATGGTTGAGAGCACTGTAG -ACGGAATGGTTGAGAGCACCTAAG -ACGGAATGGTTGAGAGCAGTTCAG -ACGGAATGGTTGAGAGCAGCATAG -ACGGAATGGTTGAGAGCAGACAAG -ACGGAATGGTTGAGAGCAAAGCAG -ACGGAATGGTTGAGAGCACGTCAA -ACGGAATGGTTGAGAGCAGCTGAA -ACGGAATGGTTGAGAGCAAGTACG -ACGGAATGGTTGAGAGCAATCCGA -ACGGAATGGTTGAGAGCAATGGGA -ACGGAATGGTTGAGAGCAGTGCAA -ACGGAATGGTTGAGAGCAGAGGAA -ACGGAATGGTTGAGAGCACAGGTA -ACGGAATGGTTGAGAGCAGACTCT -ACGGAATGGTTGAGAGCAAGTCCT -ACGGAATGGTTGAGAGCATAAGCC -ACGGAATGGTTGAGAGCAATAGCC -ACGGAATGGTTGAGAGCATAACCG -ACGGAATGGTTGAGAGCAATGCCA -ACGGAATGGTTGTGAGGTGGAAAC -ACGGAATGGTTGTGAGGTAACACC -ACGGAATGGTTGTGAGGTATCGAG -ACGGAATGGTTGTGAGGTCTCCTT -ACGGAATGGTTGTGAGGTCCTGTT -ACGGAATGGTTGTGAGGTCGGTTT -ACGGAATGGTTGTGAGGTGTGGTT -ACGGAATGGTTGTGAGGTGCCTTT -ACGGAATGGTTGTGAGGTGGTCTT -ACGGAATGGTTGTGAGGTACGCTT -ACGGAATGGTTGTGAGGTAGCGTT -ACGGAATGGTTGTGAGGTTTCGTC -ACGGAATGGTTGTGAGGTTCTCTC -ACGGAATGGTTGTGAGGTTGGATC -ACGGAATGGTTGTGAGGTCACTTC -ACGGAATGGTTGTGAGGTGTACTC -ACGGAATGGTTGTGAGGTGATGTC -ACGGAATGGTTGTGAGGTACAGTC -ACGGAATGGTTGTGAGGTTTGCTG -ACGGAATGGTTGTGAGGTTCCATG -ACGGAATGGTTGTGAGGTTGTGTG -ACGGAATGGTTGTGAGGTCTAGTG -ACGGAATGGTTGTGAGGTCATCTG -ACGGAATGGTTGTGAGGTGAGTTG -ACGGAATGGTTGTGAGGTAGACTG -ACGGAATGGTTGTGAGGTTCGGTA -ACGGAATGGTTGTGAGGTTGCCTA -ACGGAATGGTTGTGAGGTCCACTA -ACGGAATGGTTGTGAGGTGGAGTA -ACGGAATGGTTGTGAGGTTCGTCT -ACGGAATGGTTGTGAGGTTGCACT -ACGGAATGGTTGTGAGGTCTGACT -ACGGAATGGTTGTGAGGTCAACCT -ACGGAATGGTTGTGAGGTGCTACT -ACGGAATGGTTGTGAGGTGGATCT -ACGGAATGGTTGTGAGGTAAGGCT -ACGGAATGGTTGTGAGGTTCAACC -ACGGAATGGTTGTGAGGTTGTTCC -ACGGAATGGTTGTGAGGTATTCCC -ACGGAATGGTTGTGAGGTTTCTCG -ACGGAATGGTTGTGAGGTTAGACG -ACGGAATGGTTGTGAGGTGTAACG -ACGGAATGGTTGTGAGGTACTTCG -ACGGAATGGTTGTGAGGTTACGCA -ACGGAATGGTTGTGAGGTCTTGCA -ACGGAATGGTTGTGAGGTCGAACA -ACGGAATGGTTGTGAGGTCAGTCA -ACGGAATGGTTGTGAGGTGATCCA -ACGGAATGGTTGTGAGGTACGACA -ACGGAATGGTTGTGAGGTAGCTCA -ACGGAATGGTTGTGAGGTTCACGT -ACGGAATGGTTGTGAGGTCGTAGT -ACGGAATGGTTGTGAGGTGTCAGT -ACGGAATGGTTGTGAGGTGAAGGT -ACGGAATGGTTGTGAGGTAACCGT -ACGGAATGGTTGTGAGGTTTGTGC -ACGGAATGGTTGTGAGGTCTAAGC -ACGGAATGGTTGTGAGGTACTAGC -ACGGAATGGTTGTGAGGTAGATGC -ACGGAATGGTTGTGAGGTTGAAGG -ACGGAATGGTTGTGAGGTCAATGG -ACGGAATGGTTGTGAGGTATGAGG -ACGGAATGGTTGTGAGGTAATGGG -ACGGAATGGTTGTGAGGTTCCTGA -ACGGAATGGTTGTGAGGTTAGCGA -ACGGAATGGTTGTGAGGTCACAGA -ACGGAATGGTTGTGAGGTGCAAGA -ACGGAATGGTTGTGAGGTGGTTGA -ACGGAATGGTTGTGAGGTTCCGAT -ACGGAATGGTTGTGAGGTTGGCAT -ACGGAATGGTTGTGAGGTCGAGAT -ACGGAATGGTTGTGAGGTTACCAC -ACGGAATGGTTGTGAGGTCAGAAC -ACGGAATGGTTGTGAGGTGTCTAC -ACGGAATGGTTGTGAGGTACGTAC -ACGGAATGGTTGTGAGGTAGTGAC -ACGGAATGGTTGTGAGGTCTGTAG -ACGGAATGGTTGTGAGGTCCTAAG -ACGGAATGGTTGTGAGGTGTTCAG -ACGGAATGGTTGTGAGGTGCATAG -ACGGAATGGTTGTGAGGTGACAAG -ACGGAATGGTTGTGAGGTAAGCAG -ACGGAATGGTTGTGAGGTCGTCAA -ACGGAATGGTTGTGAGGTGCTGAA -ACGGAATGGTTGTGAGGTAGTACG -ACGGAATGGTTGTGAGGTATCCGA -ACGGAATGGTTGTGAGGTATGGGA -ACGGAATGGTTGTGAGGTGTGCAA -ACGGAATGGTTGTGAGGTGAGGAA -ACGGAATGGTTGTGAGGTCAGGTA -ACGGAATGGTTGTGAGGTGACTCT -ACGGAATGGTTGTGAGGTAGTCCT -ACGGAATGGTTGTGAGGTTAAGCC -ACGGAATGGTTGTGAGGTATAGCC -ACGGAATGGTTGTGAGGTTAACCG -ACGGAATGGTTGTGAGGTATGCCA -ACGGAATGGTTGGATTCCGGAAAC -ACGGAATGGTTGGATTCCAACACC -ACGGAATGGTTGGATTCCATCGAG -ACGGAATGGTTGGATTCCCTCCTT -ACGGAATGGTTGGATTCCCCTGTT -ACGGAATGGTTGGATTCCCGGTTT -ACGGAATGGTTGGATTCCGTGGTT -ACGGAATGGTTGGATTCCGCCTTT -ACGGAATGGTTGGATTCCGGTCTT -ACGGAATGGTTGGATTCCACGCTT -ACGGAATGGTTGGATTCCAGCGTT -ACGGAATGGTTGGATTCCTTCGTC -ACGGAATGGTTGGATTCCTCTCTC -ACGGAATGGTTGGATTCCTGGATC -ACGGAATGGTTGGATTCCCACTTC -ACGGAATGGTTGGATTCCGTACTC -ACGGAATGGTTGGATTCCGATGTC -ACGGAATGGTTGGATTCCACAGTC -ACGGAATGGTTGGATTCCTTGCTG -ACGGAATGGTTGGATTCCTCCATG -ACGGAATGGTTGGATTCCTGTGTG -ACGGAATGGTTGGATTCCCTAGTG -ACGGAATGGTTGGATTCCCATCTG -ACGGAATGGTTGGATTCCGAGTTG -ACGGAATGGTTGGATTCCAGACTG -ACGGAATGGTTGGATTCCTCGGTA -ACGGAATGGTTGGATTCCTGCCTA -ACGGAATGGTTGGATTCCCCACTA -ACGGAATGGTTGGATTCCGGAGTA -ACGGAATGGTTGGATTCCTCGTCT -ACGGAATGGTTGGATTCCTGCACT -ACGGAATGGTTGGATTCCCTGACT -ACGGAATGGTTGGATTCCCAACCT -ACGGAATGGTTGGATTCCGCTACT -ACGGAATGGTTGGATTCCGGATCT -ACGGAATGGTTGGATTCCAAGGCT -ACGGAATGGTTGGATTCCTCAACC -ACGGAATGGTTGGATTCCTGTTCC -ACGGAATGGTTGGATTCCATTCCC -ACGGAATGGTTGGATTCCTTCTCG -ACGGAATGGTTGGATTCCTAGACG -ACGGAATGGTTGGATTCCGTAACG -ACGGAATGGTTGGATTCCACTTCG -ACGGAATGGTTGGATTCCTACGCA -ACGGAATGGTTGGATTCCCTTGCA -ACGGAATGGTTGGATTCCCGAACA -ACGGAATGGTTGGATTCCCAGTCA -ACGGAATGGTTGGATTCCGATCCA -ACGGAATGGTTGGATTCCACGACA -ACGGAATGGTTGGATTCCAGCTCA -ACGGAATGGTTGGATTCCTCACGT -ACGGAATGGTTGGATTCCCGTAGT -ACGGAATGGTTGGATTCCGTCAGT -ACGGAATGGTTGGATTCCGAAGGT -ACGGAATGGTTGGATTCCAACCGT -ACGGAATGGTTGGATTCCTTGTGC -ACGGAATGGTTGGATTCCCTAAGC -ACGGAATGGTTGGATTCCACTAGC -ACGGAATGGTTGGATTCCAGATGC -ACGGAATGGTTGGATTCCTGAAGG -ACGGAATGGTTGGATTCCCAATGG -ACGGAATGGTTGGATTCCATGAGG -ACGGAATGGTTGGATTCCAATGGG -ACGGAATGGTTGGATTCCTCCTGA -ACGGAATGGTTGGATTCCTAGCGA -ACGGAATGGTTGGATTCCCACAGA -ACGGAATGGTTGGATTCCGCAAGA -ACGGAATGGTTGGATTCCGGTTGA -ACGGAATGGTTGGATTCCTCCGAT -ACGGAATGGTTGGATTCCTGGCAT -ACGGAATGGTTGGATTCCCGAGAT -ACGGAATGGTTGGATTCCTACCAC -ACGGAATGGTTGGATTCCCAGAAC -ACGGAATGGTTGGATTCCGTCTAC -ACGGAATGGTTGGATTCCACGTAC -ACGGAATGGTTGGATTCCAGTGAC -ACGGAATGGTTGGATTCCCTGTAG -ACGGAATGGTTGGATTCCCCTAAG -ACGGAATGGTTGGATTCCGTTCAG -ACGGAATGGTTGGATTCCGCATAG -ACGGAATGGTTGGATTCCGACAAG -ACGGAATGGTTGGATTCCAAGCAG -ACGGAATGGTTGGATTCCCGTCAA -ACGGAATGGTTGGATTCCGCTGAA -ACGGAATGGTTGGATTCCAGTACG -ACGGAATGGTTGGATTCCATCCGA -ACGGAATGGTTGGATTCCATGGGA -ACGGAATGGTTGGATTCCGTGCAA -ACGGAATGGTTGGATTCCGAGGAA -ACGGAATGGTTGGATTCCCAGGTA -ACGGAATGGTTGGATTCCGACTCT -ACGGAATGGTTGGATTCCAGTCCT -ACGGAATGGTTGGATTCCTAAGCC -ACGGAATGGTTGGATTCCATAGCC -ACGGAATGGTTGGATTCCTAACCG -ACGGAATGGTTGGATTCCATGCCA -ACGGAATGGTTGCATTGGGGAAAC -ACGGAATGGTTGCATTGGAACACC -ACGGAATGGTTGCATTGGATCGAG -ACGGAATGGTTGCATTGGCTCCTT -ACGGAATGGTTGCATTGGCCTGTT -ACGGAATGGTTGCATTGGCGGTTT -ACGGAATGGTTGCATTGGGTGGTT -ACGGAATGGTTGCATTGGGCCTTT -ACGGAATGGTTGCATTGGGGTCTT -ACGGAATGGTTGCATTGGACGCTT -ACGGAATGGTTGCATTGGAGCGTT -ACGGAATGGTTGCATTGGTTCGTC -ACGGAATGGTTGCATTGGTCTCTC -ACGGAATGGTTGCATTGGTGGATC -ACGGAATGGTTGCATTGGCACTTC -ACGGAATGGTTGCATTGGGTACTC -ACGGAATGGTTGCATTGGGATGTC -ACGGAATGGTTGCATTGGACAGTC -ACGGAATGGTTGCATTGGTTGCTG -ACGGAATGGTTGCATTGGTCCATG -ACGGAATGGTTGCATTGGTGTGTG -ACGGAATGGTTGCATTGGCTAGTG -ACGGAATGGTTGCATTGGCATCTG -ACGGAATGGTTGCATTGGGAGTTG -ACGGAATGGTTGCATTGGAGACTG -ACGGAATGGTTGCATTGGTCGGTA -ACGGAATGGTTGCATTGGTGCCTA -ACGGAATGGTTGCATTGGCCACTA -ACGGAATGGTTGCATTGGGGAGTA -ACGGAATGGTTGCATTGGTCGTCT -ACGGAATGGTTGCATTGGTGCACT -ACGGAATGGTTGCATTGGCTGACT -ACGGAATGGTTGCATTGGCAACCT -ACGGAATGGTTGCATTGGGCTACT -ACGGAATGGTTGCATTGGGGATCT -ACGGAATGGTTGCATTGGAAGGCT -ACGGAATGGTTGCATTGGTCAACC -ACGGAATGGTTGCATTGGTGTTCC -ACGGAATGGTTGCATTGGATTCCC -ACGGAATGGTTGCATTGGTTCTCG -ACGGAATGGTTGCATTGGTAGACG -ACGGAATGGTTGCATTGGGTAACG -ACGGAATGGTTGCATTGGACTTCG -ACGGAATGGTTGCATTGGTACGCA -ACGGAATGGTTGCATTGGCTTGCA -ACGGAATGGTTGCATTGGCGAACA -ACGGAATGGTTGCATTGGCAGTCA -ACGGAATGGTTGCATTGGGATCCA -ACGGAATGGTTGCATTGGACGACA -ACGGAATGGTTGCATTGGAGCTCA -ACGGAATGGTTGCATTGGTCACGT -ACGGAATGGTTGCATTGGCGTAGT -ACGGAATGGTTGCATTGGGTCAGT -ACGGAATGGTTGCATTGGGAAGGT -ACGGAATGGTTGCATTGGAACCGT -ACGGAATGGTTGCATTGGTTGTGC -ACGGAATGGTTGCATTGGCTAAGC -ACGGAATGGTTGCATTGGACTAGC -ACGGAATGGTTGCATTGGAGATGC -ACGGAATGGTTGCATTGGTGAAGG -ACGGAATGGTTGCATTGGCAATGG -ACGGAATGGTTGCATTGGATGAGG -ACGGAATGGTTGCATTGGAATGGG -ACGGAATGGTTGCATTGGTCCTGA -ACGGAATGGTTGCATTGGTAGCGA -ACGGAATGGTTGCATTGGCACAGA -ACGGAATGGTTGCATTGGGCAAGA -ACGGAATGGTTGCATTGGGGTTGA -ACGGAATGGTTGCATTGGTCCGAT -ACGGAATGGTTGCATTGGTGGCAT -ACGGAATGGTTGCATTGGCGAGAT -ACGGAATGGTTGCATTGGTACCAC -ACGGAATGGTTGCATTGGCAGAAC -ACGGAATGGTTGCATTGGGTCTAC -ACGGAATGGTTGCATTGGACGTAC -ACGGAATGGTTGCATTGGAGTGAC -ACGGAATGGTTGCATTGGCTGTAG -ACGGAATGGTTGCATTGGCCTAAG -ACGGAATGGTTGCATTGGGTTCAG -ACGGAATGGTTGCATTGGGCATAG -ACGGAATGGTTGCATTGGGACAAG -ACGGAATGGTTGCATTGGAAGCAG -ACGGAATGGTTGCATTGGCGTCAA -ACGGAATGGTTGCATTGGGCTGAA -ACGGAATGGTTGCATTGGAGTACG -ACGGAATGGTTGCATTGGATCCGA -ACGGAATGGTTGCATTGGATGGGA -ACGGAATGGTTGCATTGGGTGCAA -ACGGAATGGTTGCATTGGGAGGAA -ACGGAATGGTTGCATTGGCAGGTA -ACGGAATGGTTGCATTGGGACTCT -ACGGAATGGTTGCATTGGAGTCCT -ACGGAATGGTTGCATTGGTAAGCC -ACGGAATGGTTGCATTGGATAGCC -ACGGAATGGTTGCATTGGTAACCG -ACGGAATGGTTGCATTGGATGCCA -ACGGAATGGTTGGATCGAGGAAAC -ACGGAATGGTTGGATCGAAACACC -ACGGAATGGTTGGATCGAATCGAG -ACGGAATGGTTGGATCGACTCCTT -ACGGAATGGTTGGATCGACCTGTT -ACGGAATGGTTGGATCGACGGTTT -ACGGAATGGTTGGATCGAGTGGTT -ACGGAATGGTTGGATCGAGCCTTT -ACGGAATGGTTGGATCGAGGTCTT -ACGGAATGGTTGGATCGAACGCTT -ACGGAATGGTTGGATCGAAGCGTT -ACGGAATGGTTGGATCGATTCGTC -ACGGAATGGTTGGATCGATCTCTC -ACGGAATGGTTGGATCGATGGATC -ACGGAATGGTTGGATCGACACTTC -ACGGAATGGTTGGATCGAGTACTC -ACGGAATGGTTGGATCGAGATGTC -ACGGAATGGTTGGATCGAACAGTC -ACGGAATGGTTGGATCGATTGCTG -ACGGAATGGTTGGATCGATCCATG -ACGGAATGGTTGGATCGATGTGTG -ACGGAATGGTTGGATCGACTAGTG -ACGGAATGGTTGGATCGACATCTG -ACGGAATGGTTGGATCGAGAGTTG -ACGGAATGGTTGGATCGAAGACTG -ACGGAATGGTTGGATCGATCGGTA -ACGGAATGGTTGGATCGATGCCTA -ACGGAATGGTTGGATCGACCACTA -ACGGAATGGTTGGATCGAGGAGTA -ACGGAATGGTTGGATCGATCGTCT -ACGGAATGGTTGGATCGATGCACT -ACGGAATGGTTGGATCGACTGACT -ACGGAATGGTTGGATCGACAACCT -ACGGAATGGTTGGATCGAGCTACT -ACGGAATGGTTGGATCGAGGATCT -ACGGAATGGTTGGATCGAAAGGCT -ACGGAATGGTTGGATCGATCAACC -ACGGAATGGTTGGATCGATGTTCC -ACGGAATGGTTGGATCGAATTCCC -ACGGAATGGTTGGATCGATTCTCG -ACGGAATGGTTGGATCGATAGACG -ACGGAATGGTTGGATCGAGTAACG -ACGGAATGGTTGGATCGAACTTCG -ACGGAATGGTTGGATCGATACGCA -ACGGAATGGTTGGATCGACTTGCA -ACGGAATGGTTGGATCGACGAACA -ACGGAATGGTTGGATCGACAGTCA -ACGGAATGGTTGGATCGAGATCCA -ACGGAATGGTTGGATCGAACGACA -ACGGAATGGTTGGATCGAAGCTCA -ACGGAATGGTTGGATCGATCACGT -ACGGAATGGTTGGATCGACGTAGT -ACGGAATGGTTGGATCGAGTCAGT -ACGGAATGGTTGGATCGAGAAGGT -ACGGAATGGTTGGATCGAAACCGT -ACGGAATGGTTGGATCGATTGTGC -ACGGAATGGTTGGATCGACTAAGC -ACGGAATGGTTGGATCGAACTAGC -ACGGAATGGTTGGATCGAAGATGC -ACGGAATGGTTGGATCGATGAAGG -ACGGAATGGTTGGATCGACAATGG -ACGGAATGGTTGGATCGAATGAGG -ACGGAATGGTTGGATCGAAATGGG -ACGGAATGGTTGGATCGATCCTGA -ACGGAATGGTTGGATCGATAGCGA -ACGGAATGGTTGGATCGACACAGA -ACGGAATGGTTGGATCGAGCAAGA -ACGGAATGGTTGGATCGAGGTTGA -ACGGAATGGTTGGATCGATCCGAT -ACGGAATGGTTGGATCGATGGCAT -ACGGAATGGTTGGATCGACGAGAT -ACGGAATGGTTGGATCGATACCAC -ACGGAATGGTTGGATCGACAGAAC -ACGGAATGGTTGGATCGAGTCTAC -ACGGAATGGTTGGATCGAACGTAC -ACGGAATGGTTGGATCGAAGTGAC -ACGGAATGGTTGGATCGACTGTAG -ACGGAATGGTTGGATCGACCTAAG -ACGGAATGGTTGGATCGAGTTCAG -ACGGAATGGTTGGATCGAGCATAG -ACGGAATGGTTGGATCGAGACAAG -ACGGAATGGTTGGATCGAAAGCAG -ACGGAATGGTTGGATCGACGTCAA -ACGGAATGGTTGGATCGAGCTGAA -ACGGAATGGTTGGATCGAAGTACG -ACGGAATGGTTGGATCGAATCCGA -ACGGAATGGTTGGATCGAATGGGA -ACGGAATGGTTGGATCGAGTGCAA -ACGGAATGGTTGGATCGAGAGGAA -ACGGAATGGTTGGATCGACAGGTA -ACGGAATGGTTGGATCGAGACTCT -ACGGAATGGTTGGATCGAAGTCCT -ACGGAATGGTTGGATCGATAAGCC -ACGGAATGGTTGGATCGAATAGCC -ACGGAATGGTTGGATCGATAACCG -ACGGAATGGTTGGATCGAATGCCA -ACGGAATGGTTGCACTACGGAAAC -ACGGAATGGTTGCACTACAACACC -ACGGAATGGTTGCACTACATCGAG -ACGGAATGGTTGCACTACCTCCTT -ACGGAATGGTTGCACTACCCTGTT -ACGGAATGGTTGCACTACCGGTTT -ACGGAATGGTTGCACTACGTGGTT -ACGGAATGGTTGCACTACGCCTTT -ACGGAATGGTTGCACTACGGTCTT -ACGGAATGGTTGCACTACACGCTT -ACGGAATGGTTGCACTACAGCGTT -ACGGAATGGTTGCACTACTTCGTC -ACGGAATGGTTGCACTACTCTCTC -ACGGAATGGTTGCACTACTGGATC -ACGGAATGGTTGCACTACCACTTC -ACGGAATGGTTGCACTACGTACTC -ACGGAATGGTTGCACTACGATGTC -ACGGAATGGTTGCACTACACAGTC -ACGGAATGGTTGCACTACTTGCTG -ACGGAATGGTTGCACTACTCCATG -ACGGAATGGTTGCACTACTGTGTG -ACGGAATGGTTGCACTACCTAGTG -ACGGAATGGTTGCACTACCATCTG -ACGGAATGGTTGCACTACGAGTTG -ACGGAATGGTTGCACTACAGACTG -ACGGAATGGTTGCACTACTCGGTA -ACGGAATGGTTGCACTACTGCCTA -ACGGAATGGTTGCACTACCCACTA -ACGGAATGGTTGCACTACGGAGTA -ACGGAATGGTTGCACTACTCGTCT -ACGGAATGGTTGCACTACTGCACT -ACGGAATGGTTGCACTACCTGACT -ACGGAATGGTTGCACTACCAACCT -ACGGAATGGTTGCACTACGCTACT -ACGGAATGGTTGCACTACGGATCT -ACGGAATGGTTGCACTACAAGGCT -ACGGAATGGTTGCACTACTCAACC -ACGGAATGGTTGCACTACTGTTCC -ACGGAATGGTTGCACTACATTCCC -ACGGAATGGTTGCACTACTTCTCG -ACGGAATGGTTGCACTACTAGACG -ACGGAATGGTTGCACTACGTAACG -ACGGAATGGTTGCACTACACTTCG -ACGGAATGGTTGCACTACTACGCA -ACGGAATGGTTGCACTACCTTGCA -ACGGAATGGTTGCACTACCGAACA -ACGGAATGGTTGCACTACCAGTCA -ACGGAATGGTTGCACTACGATCCA -ACGGAATGGTTGCACTACACGACA -ACGGAATGGTTGCACTACAGCTCA -ACGGAATGGTTGCACTACTCACGT -ACGGAATGGTTGCACTACCGTAGT -ACGGAATGGTTGCACTACGTCAGT -ACGGAATGGTTGCACTACGAAGGT -ACGGAATGGTTGCACTACAACCGT -ACGGAATGGTTGCACTACTTGTGC -ACGGAATGGTTGCACTACCTAAGC -ACGGAATGGTTGCACTACACTAGC -ACGGAATGGTTGCACTACAGATGC -ACGGAATGGTTGCACTACTGAAGG -ACGGAATGGTTGCACTACCAATGG -ACGGAATGGTTGCACTACATGAGG -ACGGAATGGTTGCACTACAATGGG -ACGGAATGGTTGCACTACTCCTGA -ACGGAATGGTTGCACTACTAGCGA -ACGGAATGGTTGCACTACCACAGA -ACGGAATGGTTGCACTACGCAAGA -ACGGAATGGTTGCACTACGGTTGA -ACGGAATGGTTGCACTACTCCGAT -ACGGAATGGTTGCACTACTGGCAT -ACGGAATGGTTGCACTACCGAGAT -ACGGAATGGTTGCACTACTACCAC -ACGGAATGGTTGCACTACCAGAAC -ACGGAATGGTTGCACTACGTCTAC -ACGGAATGGTTGCACTACACGTAC -ACGGAATGGTTGCACTACAGTGAC -ACGGAATGGTTGCACTACCTGTAG -ACGGAATGGTTGCACTACCCTAAG -ACGGAATGGTTGCACTACGTTCAG -ACGGAATGGTTGCACTACGCATAG -ACGGAATGGTTGCACTACGACAAG -ACGGAATGGTTGCACTACAAGCAG -ACGGAATGGTTGCACTACCGTCAA -ACGGAATGGTTGCACTACGCTGAA -ACGGAATGGTTGCACTACAGTACG -ACGGAATGGTTGCACTACATCCGA -ACGGAATGGTTGCACTACATGGGA -ACGGAATGGTTGCACTACGTGCAA -ACGGAATGGTTGCACTACGAGGAA -ACGGAATGGTTGCACTACCAGGTA -ACGGAATGGTTGCACTACGACTCT -ACGGAATGGTTGCACTACAGTCCT -ACGGAATGGTTGCACTACTAAGCC -ACGGAATGGTTGCACTACATAGCC -ACGGAATGGTTGCACTACTAACCG -ACGGAATGGTTGCACTACATGCCA -ACGGAATGGTTGAACCAGGGAAAC -ACGGAATGGTTGAACCAGAACACC -ACGGAATGGTTGAACCAGATCGAG -ACGGAATGGTTGAACCAGCTCCTT -ACGGAATGGTTGAACCAGCCTGTT -ACGGAATGGTTGAACCAGCGGTTT -ACGGAATGGTTGAACCAGGTGGTT -ACGGAATGGTTGAACCAGGCCTTT -ACGGAATGGTTGAACCAGGGTCTT -ACGGAATGGTTGAACCAGACGCTT -ACGGAATGGTTGAACCAGAGCGTT -ACGGAATGGTTGAACCAGTTCGTC -ACGGAATGGTTGAACCAGTCTCTC -ACGGAATGGTTGAACCAGTGGATC -ACGGAATGGTTGAACCAGCACTTC -ACGGAATGGTTGAACCAGGTACTC -ACGGAATGGTTGAACCAGGATGTC -ACGGAATGGTTGAACCAGACAGTC -ACGGAATGGTTGAACCAGTTGCTG -ACGGAATGGTTGAACCAGTCCATG -ACGGAATGGTTGAACCAGTGTGTG -ACGGAATGGTTGAACCAGCTAGTG -ACGGAATGGTTGAACCAGCATCTG -ACGGAATGGTTGAACCAGGAGTTG -ACGGAATGGTTGAACCAGAGACTG -ACGGAATGGTTGAACCAGTCGGTA -ACGGAATGGTTGAACCAGTGCCTA -ACGGAATGGTTGAACCAGCCACTA -ACGGAATGGTTGAACCAGGGAGTA -ACGGAATGGTTGAACCAGTCGTCT -ACGGAATGGTTGAACCAGTGCACT -ACGGAATGGTTGAACCAGCTGACT -ACGGAATGGTTGAACCAGCAACCT -ACGGAATGGTTGAACCAGGCTACT -ACGGAATGGTTGAACCAGGGATCT -ACGGAATGGTTGAACCAGAAGGCT -ACGGAATGGTTGAACCAGTCAACC -ACGGAATGGTTGAACCAGTGTTCC -ACGGAATGGTTGAACCAGATTCCC -ACGGAATGGTTGAACCAGTTCTCG -ACGGAATGGTTGAACCAGTAGACG -ACGGAATGGTTGAACCAGGTAACG -ACGGAATGGTTGAACCAGACTTCG -ACGGAATGGTTGAACCAGTACGCA -ACGGAATGGTTGAACCAGCTTGCA -ACGGAATGGTTGAACCAGCGAACA -ACGGAATGGTTGAACCAGCAGTCA -ACGGAATGGTTGAACCAGGATCCA -ACGGAATGGTTGAACCAGACGACA -ACGGAATGGTTGAACCAGAGCTCA -ACGGAATGGTTGAACCAGTCACGT -ACGGAATGGTTGAACCAGCGTAGT -ACGGAATGGTTGAACCAGGTCAGT -ACGGAATGGTTGAACCAGGAAGGT -ACGGAATGGTTGAACCAGAACCGT -ACGGAATGGTTGAACCAGTTGTGC -ACGGAATGGTTGAACCAGCTAAGC -ACGGAATGGTTGAACCAGACTAGC -ACGGAATGGTTGAACCAGAGATGC -ACGGAATGGTTGAACCAGTGAAGG -ACGGAATGGTTGAACCAGCAATGG -ACGGAATGGTTGAACCAGATGAGG -ACGGAATGGTTGAACCAGAATGGG -ACGGAATGGTTGAACCAGTCCTGA -ACGGAATGGTTGAACCAGTAGCGA -ACGGAATGGTTGAACCAGCACAGA -ACGGAATGGTTGAACCAGGCAAGA -ACGGAATGGTTGAACCAGGGTTGA -ACGGAATGGTTGAACCAGTCCGAT -ACGGAATGGTTGAACCAGTGGCAT -ACGGAATGGTTGAACCAGCGAGAT -ACGGAATGGTTGAACCAGTACCAC -ACGGAATGGTTGAACCAGCAGAAC -ACGGAATGGTTGAACCAGGTCTAC -ACGGAATGGTTGAACCAGACGTAC -ACGGAATGGTTGAACCAGAGTGAC -ACGGAATGGTTGAACCAGCTGTAG -ACGGAATGGTTGAACCAGCCTAAG -ACGGAATGGTTGAACCAGGTTCAG -ACGGAATGGTTGAACCAGGCATAG -ACGGAATGGTTGAACCAGGACAAG -ACGGAATGGTTGAACCAGAAGCAG -ACGGAATGGTTGAACCAGCGTCAA -ACGGAATGGTTGAACCAGGCTGAA -ACGGAATGGTTGAACCAGAGTACG -ACGGAATGGTTGAACCAGATCCGA -ACGGAATGGTTGAACCAGATGGGA -ACGGAATGGTTGAACCAGGTGCAA -ACGGAATGGTTGAACCAGGAGGAA -ACGGAATGGTTGAACCAGCAGGTA -ACGGAATGGTTGAACCAGGACTCT -ACGGAATGGTTGAACCAGAGTCCT -ACGGAATGGTTGAACCAGTAAGCC -ACGGAATGGTTGAACCAGATAGCC -ACGGAATGGTTGAACCAGTAACCG -ACGGAATGGTTGAACCAGATGCCA -ACGGAATGGTTGTACGTCGGAAAC -ACGGAATGGTTGTACGTCAACACC -ACGGAATGGTTGTACGTCATCGAG -ACGGAATGGTTGTACGTCCTCCTT -ACGGAATGGTTGTACGTCCCTGTT -ACGGAATGGTTGTACGTCCGGTTT -ACGGAATGGTTGTACGTCGTGGTT -ACGGAATGGTTGTACGTCGCCTTT -ACGGAATGGTTGTACGTCGGTCTT -ACGGAATGGTTGTACGTCACGCTT -ACGGAATGGTTGTACGTCAGCGTT -ACGGAATGGTTGTACGTCTTCGTC -ACGGAATGGTTGTACGTCTCTCTC -ACGGAATGGTTGTACGTCTGGATC -ACGGAATGGTTGTACGTCCACTTC -ACGGAATGGTTGTACGTCGTACTC -ACGGAATGGTTGTACGTCGATGTC -ACGGAATGGTTGTACGTCACAGTC -ACGGAATGGTTGTACGTCTTGCTG -ACGGAATGGTTGTACGTCTCCATG -ACGGAATGGTTGTACGTCTGTGTG -ACGGAATGGTTGTACGTCCTAGTG -ACGGAATGGTTGTACGTCCATCTG -ACGGAATGGTTGTACGTCGAGTTG -ACGGAATGGTTGTACGTCAGACTG -ACGGAATGGTTGTACGTCTCGGTA -ACGGAATGGTTGTACGTCTGCCTA -ACGGAATGGTTGTACGTCCCACTA -ACGGAATGGTTGTACGTCGGAGTA -ACGGAATGGTTGTACGTCTCGTCT -ACGGAATGGTTGTACGTCTGCACT -ACGGAATGGTTGTACGTCCTGACT -ACGGAATGGTTGTACGTCCAACCT -ACGGAATGGTTGTACGTCGCTACT -ACGGAATGGTTGTACGTCGGATCT -ACGGAATGGTTGTACGTCAAGGCT -ACGGAATGGTTGTACGTCTCAACC -ACGGAATGGTTGTACGTCTGTTCC -ACGGAATGGTTGTACGTCATTCCC -ACGGAATGGTTGTACGTCTTCTCG -ACGGAATGGTTGTACGTCTAGACG -ACGGAATGGTTGTACGTCGTAACG -ACGGAATGGTTGTACGTCACTTCG -ACGGAATGGTTGTACGTCTACGCA -ACGGAATGGTTGTACGTCCTTGCA -ACGGAATGGTTGTACGTCCGAACA -ACGGAATGGTTGTACGTCCAGTCA -ACGGAATGGTTGTACGTCGATCCA -ACGGAATGGTTGTACGTCACGACA -ACGGAATGGTTGTACGTCAGCTCA -ACGGAATGGTTGTACGTCTCACGT -ACGGAATGGTTGTACGTCCGTAGT -ACGGAATGGTTGTACGTCGTCAGT -ACGGAATGGTTGTACGTCGAAGGT -ACGGAATGGTTGTACGTCAACCGT -ACGGAATGGTTGTACGTCTTGTGC -ACGGAATGGTTGTACGTCCTAAGC -ACGGAATGGTTGTACGTCACTAGC -ACGGAATGGTTGTACGTCAGATGC -ACGGAATGGTTGTACGTCTGAAGG -ACGGAATGGTTGTACGTCCAATGG -ACGGAATGGTTGTACGTCATGAGG -ACGGAATGGTTGTACGTCAATGGG -ACGGAATGGTTGTACGTCTCCTGA -ACGGAATGGTTGTACGTCTAGCGA -ACGGAATGGTTGTACGTCCACAGA -ACGGAATGGTTGTACGTCGCAAGA -ACGGAATGGTTGTACGTCGGTTGA -ACGGAATGGTTGTACGTCTCCGAT -ACGGAATGGTTGTACGTCTGGCAT -ACGGAATGGTTGTACGTCCGAGAT -ACGGAATGGTTGTACGTCTACCAC -ACGGAATGGTTGTACGTCCAGAAC -ACGGAATGGTTGTACGTCGTCTAC -ACGGAATGGTTGTACGTCACGTAC -ACGGAATGGTTGTACGTCAGTGAC -ACGGAATGGTTGTACGTCCTGTAG -ACGGAATGGTTGTACGTCCCTAAG -ACGGAATGGTTGTACGTCGTTCAG -ACGGAATGGTTGTACGTCGCATAG -ACGGAATGGTTGTACGTCGACAAG -ACGGAATGGTTGTACGTCAAGCAG -ACGGAATGGTTGTACGTCCGTCAA -ACGGAATGGTTGTACGTCGCTGAA -ACGGAATGGTTGTACGTCAGTACG -ACGGAATGGTTGTACGTCATCCGA -ACGGAATGGTTGTACGTCATGGGA -ACGGAATGGTTGTACGTCGTGCAA -ACGGAATGGTTGTACGTCGAGGAA -ACGGAATGGTTGTACGTCCAGGTA -ACGGAATGGTTGTACGTCGACTCT -ACGGAATGGTTGTACGTCAGTCCT -ACGGAATGGTTGTACGTCTAAGCC -ACGGAATGGTTGTACGTCATAGCC -ACGGAATGGTTGTACGTCTAACCG -ACGGAATGGTTGTACGTCATGCCA -ACGGAATGGTTGTACACGGGAAAC -ACGGAATGGTTGTACACGAACACC -ACGGAATGGTTGTACACGATCGAG -ACGGAATGGTTGTACACGCTCCTT -ACGGAATGGTTGTACACGCCTGTT -ACGGAATGGTTGTACACGCGGTTT -ACGGAATGGTTGTACACGGTGGTT -ACGGAATGGTTGTACACGGCCTTT -ACGGAATGGTTGTACACGGGTCTT -ACGGAATGGTTGTACACGACGCTT -ACGGAATGGTTGTACACGAGCGTT -ACGGAATGGTTGTACACGTTCGTC -ACGGAATGGTTGTACACGTCTCTC -ACGGAATGGTTGTACACGTGGATC -ACGGAATGGTTGTACACGCACTTC -ACGGAATGGTTGTACACGGTACTC -ACGGAATGGTTGTACACGGATGTC -ACGGAATGGTTGTACACGACAGTC -ACGGAATGGTTGTACACGTTGCTG -ACGGAATGGTTGTACACGTCCATG -ACGGAATGGTTGTACACGTGTGTG -ACGGAATGGTTGTACACGCTAGTG -ACGGAATGGTTGTACACGCATCTG -ACGGAATGGTTGTACACGGAGTTG -ACGGAATGGTTGTACACGAGACTG -ACGGAATGGTTGTACACGTCGGTA -ACGGAATGGTTGTACACGTGCCTA -ACGGAATGGTTGTACACGCCACTA -ACGGAATGGTTGTACACGGGAGTA -ACGGAATGGTTGTACACGTCGTCT -ACGGAATGGTTGTACACGTGCACT -ACGGAATGGTTGTACACGCTGACT -ACGGAATGGTTGTACACGCAACCT -ACGGAATGGTTGTACACGGCTACT -ACGGAATGGTTGTACACGGGATCT -ACGGAATGGTTGTACACGAAGGCT -ACGGAATGGTTGTACACGTCAACC -ACGGAATGGTTGTACACGTGTTCC -ACGGAATGGTTGTACACGATTCCC -ACGGAATGGTTGTACACGTTCTCG -ACGGAATGGTTGTACACGTAGACG -ACGGAATGGTTGTACACGGTAACG -ACGGAATGGTTGTACACGACTTCG -ACGGAATGGTTGTACACGTACGCA -ACGGAATGGTTGTACACGCTTGCA -ACGGAATGGTTGTACACGCGAACA -ACGGAATGGTTGTACACGCAGTCA -ACGGAATGGTTGTACACGGATCCA -ACGGAATGGTTGTACACGACGACA -ACGGAATGGTTGTACACGAGCTCA -ACGGAATGGTTGTACACGTCACGT -ACGGAATGGTTGTACACGCGTAGT -ACGGAATGGTTGTACACGGTCAGT -ACGGAATGGTTGTACACGGAAGGT -ACGGAATGGTTGTACACGAACCGT -ACGGAATGGTTGTACACGTTGTGC -ACGGAATGGTTGTACACGCTAAGC -ACGGAATGGTTGTACACGACTAGC -ACGGAATGGTTGTACACGAGATGC -ACGGAATGGTTGTACACGTGAAGG -ACGGAATGGTTGTACACGCAATGG -ACGGAATGGTTGTACACGATGAGG -ACGGAATGGTTGTACACGAATGGG -ACGGAATGGTTGTACACGTCCTGA -ACGGAATGGTTGTACACGTAGCGA -ACGGAATGGTTGTACACGCACAGA -ACGGAATGGTTGTACACGGCAAGA -ACGGAATGGTTGTACACGGGTTGA -ACGGAATGGTTGTACACGTCCGAT -ACGGAATGGTTGTACACGTGGCAT -ACGGAATGGTTGTACACGCGAGAT -ACGGAATGGTTGTACACGTACCAC -ACGGAATGGTTGTACACGCAGAAC -ACGGAATGGTTGTACACGGTCTAC -ACGGAATGGTTGTACACGACGTAC -ACGGAATGGTTGTACACGAGTGAC -ACGGAATGGTTGTACACGCTGTAG -ACGGAATGGTTGTACACGCCTAAG -ACGGAATGGTTGTACACGGTTCAG -ACGGAATGGTTGTACACGGCATAG -ACGGAATGGTTGTACACGGACAAG -ACGGAATGGTTGTACACGAAGCAG -ACGGAATGGTTGTACACGCGTCAA -ACGGAATGGTTGTACACGGCTGAA -ACGGAATGGTTGTACACGAGTACG -ACGGAATGGTTGTACACGATCCGA -ACGGAATGGTTGTACACGATGGGA -ACGGAATGGTTGTACACGGTGCAA -ACGGAATGGTTGTACACGGAGGAA -ACGGAATGGTTGTACACGCAGGTA -ACGGAATGGTTGTACACGGACTCT -ACGGAATGGTTGTACACGAGTCCT -ACGGAATGGTTGTACACGTAAGCC -ACGGAATGGTTGTACACGATAGCC -ACGGAATGGTTGTACACGTAACCG -ACGGAATGGTTGTACACGATGCCA -ACGGAATGGTTGGACAGTGGAAAC -ACGGAATGGTTGGACAGTAACACC -ACGGAATGGTTGGACAGTATCGAG -ACGGAATGGTTGGACAGTCTCCTT -ACGGAATGGTTGGACAGTCCTGTT -ACGGAATGGTTGGACAGTCGGTTT -ACGGAATGGTTGGACAGTGTGGTT -ACGGAATGGTTGGACAGTGCCTTT -ACGGAATGGTTGGACAGTGGTCTT -ACGGAATGGTTGGACAGTACGCTT -ACGGAATGGTTGGACAGTAGCGTT -ACGGAATGGTTGGACAGTTTCGTC -ACGGAATGGTTGGACAGTTCTCTC -ACGGAATGGTTGGACAGTTGGATC -ACGGAATGGTTGGACAGTCACTTC -ACGGAATGGTTGGACAGTGTACTC -ACGGAATGGTTGGACAGTGATGTC -ACGGAATGGTTGGACAGTACAGTC -ACGGAATGGTTGGACAGTTTGCTG -ACGGAATGGTTGGACAGTTCCATG -ACGGAATGGTTGGACAGTTGTGTG -ACGGAATGGTTGGACAGTCTAGTG -ACGGAATGGTTGGACAGTCATCTG -ACGGAATGGTTGGACAGTGAGTTG -ACGGAATGGTTGGACAGTAGACTG -ACGGAATGGTTGGACAGTTCGGTA -ACGGAATGGTTGGACAGTTGCCTA -ACGGAATGGTTGGACAGTCCACTA -ACGGAATGGTTGGACAGTGGAGTA -ACGGAATGGTTGGACAGTTCGTCT -ACGGAATGGTTGGACAGTTGCACT -ACGGAATGGTTGGACAGTCTGACT -ACGGAATGGTTGGACAGTCAACCT -ACGGAATGGTTGGACAGTGCTACT -ACGGAATGGTTGGACAGTGGATCT -ACGGAATGGTTGGACAGTAAGGCT -ACGGAATGGTTGGACAGTTCAACC -ACGGAATGGTTGGACAGTTGTTCC -ACGGAATGGTTGGACAGTATTCCC -ACGGAATGGTTGGACAGTTTCTCG -ACGGAATGGTTGGACAGTTAGACG -ACGGAATGGTTGGACAGTGTAACG -ACGGAATGGTTGGACAGTACTTCG -ACGGAATGGTTGGACAGTTACGCA -ACGGAATGGTTGGACAGTCTTGCA -ACGGAATGGTTGGACAGTCGAACA -ACGGAATGGTTGGACAGTCAGTCA -ACGGAATGGTTGGACAGTGATCCA -ACGGAATGGTTGGACAGTACGACA -ACGGAATGGTTGGACAGTAGCTCA -ACGGAATGGTTGGACAGTTCACGT -ACGGAATGGTTGGACAGTCGTAGT -ACGGAATGGTTGGACAGTGTCAGT -ACGGAATGGTTGGACAGTGAAGGT -ACGGAATGGTTGGACAGTAACCGT -ACGGAATGGTTGGACAGTTTGTGC -ACGGAATGGTTGGACAGTCTAAGC -ACGGAATGGTTGGACAGTACTAGC -ACGGAATGGTTGGACAGTAGATGC -ACGGAATGGTTGGACAGTTGAAGG -ACGGAATGGTTGGACAGTCAATGG -ACGGAATGGTTGGACAGTATGAGG -ACGGAATGGTTGGACAGTAATGGG -ACGGAATGGTTGGACAGTTCCTGA -ACGGAATGGTTGGACAGTTAGCGA -ACGGAATGGTTGGACAGTCACAGA -ACGGAATGGTTGGACAGTGCAAGA -ACGGAATGGTTGGACAGTGGTTGA -ACGGAATGGTTGGACAGTTCCGAT -ACGGAATGGTTGGACAGTTGGCAT -ACGGAATGGTTGGACAGTCGAGAT -ACGGAATGGTTGGACAGTTACCAC -ACGGAATGGTTGGACAGTCAGAAC -ACGGAATGGTTGGACAGTGTCTAC -ACGGAATGGTTGGACAGTACGTAC -ACGGAATGGTTGGACAGTAGTGAC -ACGGAATGGTTGGACAGTCTGTAG -ACGGAATGGTTGGACAGTCCTAAG -ACGGAATGGTTGGACAGTGTTCAG -ACGGAATGGTTGGACAGTGCATAG -ACGGAATGGTTGGACAGTGACAAG -ACGGAATGGTTGGACAGTAAGCAG -ACGGAATGGTTGGACAGTCGTCAA -ACGGAATGGTTGGACAGTGCTGAA -ACGGAATGGTTGGACAGTAGTACG -ACGGAATGGTTGGACAGTATCCGA -ACGGAATGGTTGGACAGTATGGGA -ACGGAATGGTTGGACAGTGTGCAA -ACGGAATGGTTGGACAGTGAGGAA -ACGGAATGGTTGGACAGTCAGGTA -ACGGAATGGTTGGACAGTGACTCT -ACGGAATGGTTGGACAGTAGTCCT -ACGGAATGGTTGGACAGTTAAGCC -ACGGAATGGTTGGACAGTATAGCC -ACGGAATGGTTGGACAGTTAACCG -ACGGAATGGTTGGACAGTATGCCA -ACGGAATGGTTGTAGCTGGGAAAC -ACGGAATGGTTGTAGCTGAACACC -ACGGAATGGTTGTAGCTGATCGAG -ACGGAATGGTTGTAGCTGCTCCTT -ACGGAATGGTTGTAGCTGCCTGTT -ACGGAATGGTTGTAGCTGCGGTTT -ACGGAATGGTTGTAGCTGGTGGTT -ACGGAATGGTTGTAGCTGGCCTTT -ACGGAATGGTTGTAGCTGGGTCTT -ACGGAATGGTTGTAGCTGACGCTT -ACGGAATGGTTGTAGCTGAGCGTT -ACGGAATGGTTGTAGCTGTTCGTC -ACGGAATGGTTGTAGCTGTCTCTC -ACGGAATGGTTGTAGCTGTGGATC -ACGGAATGGTTGTAGCTGCACTTC -ACGGAATGGTTGTAGCTGGTACTC -ACGGAATGGTTGTAGCTGGATGTC -ACGGAATGGTTGTAGCTGACAGTC -ACGGAATGGTTGTAGCTGTTGCTG -ACGGAATGGTTGTAGCTGTCCATG -ACGGAATGGTTGTAGCTGTGTGTG -ACGGAATGGTTGTAGCTGCTAGTG -ACGGAATGGTTGTAGCTGCATCTG -ACGGAATGGTTGTAGCTGGAGTTG -ACGGAATGGTTGTAGCTGAGACTG -ACGGAATGGTTGTAGCTGTCGGTA -ACGGAATGGTTGTAGCTGTGCCTA -ACGGAATGGTTGTAGCTGCCACTA -ACGGAATGGTTGTAGCTGGGAGTA -ACGGAATGGTTGTAGCTGTCGTCT -ACGGAATGGTTGTAGCTGTGCACT -ACGGAATGGTTGTAGCTGCTGACT -ACGGAATGGTTGTAGCTGCAACCT -ACGGAATGGTTGTAGCTGGCTACT -ACGGAATGGTTGTAGCTGGGATCT -ACGGAATGGTTGTAGCTGAAGGCT -ACGGAATGGTTGTAGCTGTCAACC -ACGGAATGGTTGTAGCTGTGTTCC -ACGGAATGGTTGTAGCTGATTCCC -ACGGAATGGTTGTAGCTGTTCTCG -ACGGAATGGTTGTAGCTGTAGACG -ACGGAATGGTTGTAGCTGGTAACG -ACGGAATGGTTGTAGCTGACTTCG -ACGGAATGGTTGTAGCTGTACGCA -ACGGAATGGTTGTAGCTGCTTGCA -ACGGAATGGTTGTAGCTGCGAACA -ACGGAATGGTTGTAGCTGCAGTCA -ACGGAATGGTTGTAGCTGGATCCA -ACGGAATGGTTGTAGCTGACGACA -ACGGAATGGTTGTAGCTGAGCTCA -ACGGAATGGTTGTAGCTGTCACGT -ACGGAATGGTTGTAGCTGCGTAGT -ACGGAATGGTTGTAGCTGGTCAGT -ACGGAATGGTTGTAGCTGGAAGGT -ACGGAATGGTTGTAGCTGAACCGT -ACGGAATGGTTGTAGCTGTTGTGC -ACGGAATGGTTGTAGCTGCTAAGC -ACGGAATGGTTGTAGCTGACTAGC -ACGGAATGGTTGTAGCTGAGATGC -ACGGAATGGTTGTAGCTGTGAAGG -ACGGAATGGTTGTAGCTGCAATGG -ACGGAATGGTTGTAGCTGATGAGG -ACGGAATGGTTGTAGCTGAATGGG -ACGGAATGGTTGTAGCTGTCCTGA -ACGGAATGGTTGTAGCTGTAGCGA -ACGGAATGGTTGTAGCTGCACAGA -ACGGAATGGTTGTAGCTGGCAAGA -ACGGAATGGTTGTAGCTGGGTTGA -ACGGAATGGTTGTAGCTGTCCGAT -ACGGAATGGTTGTAGCTGTGGCAT -ACGGAATGGTTGTAGCTGCGAGAT -ACGGAATGGTTGTAGCTGTACCAC -ACGGAATGGTTGTAGCTGCAGAAC -ACGGAATGGTTGTAGCTGGTCTAC -ACGGAATGGTTGTAGCTGACGTAC -ACGGAATGGTTGTAGCTGAGTGAC -ACGGAATGGTTGTAGCTGCTGTAG -ACGGAATGGTTGTAGCTGCCTAAG -ACGGAATGGTTGTAGCTGGTTCAG -ACGGAATGGTTGTAGCTGGCATAG -ACGGAATGGTTGTAGCTGGACAAG -ACGGAATGGTTGTAGCTGAAGCAG -ACGGAATGGTTGTAGCTGCGTCAA -ACGGAATGGTTGTAGCTGGCTGAA -ACGGAATGGTTGTAGCTGAGTACG -ACGGAATGGTTGTAGCTGATCCGA -ACGGAATGGTTGTAGCTGATGGGA -ACGGAATGGTTGTAGCTGGTGCAA -ACGGAATGGTTGTAGCTGGAGGAA -ACGGAATGGTTGTAGCTGCAGGTA -ACGGAATGGTTGTAGCTGGACTCT -ACGGAATGGTTGTAGCTGAGTCCT -ACGGAATGGTTGTAGCTGTAAGCC -ACGGAATGGTTGTAGCTGATAGCC -ACGGAATGGTTGTAGCTGTAACCG -ACGGAATGGTTGTAGCTGATGCCA -ACGGAATGGTTGAAGCCTGGAAAC -ACGGAATGGTTGAAGCCTAACACC -ACGGAATGGTTGAAGCCTATCGAG -ACGGAATGGTTGAAGCCTCTCCTT -ACGGAATGGTTGAAGCCTCCTGTT -ACGGAATGGTTGAAGCCTCGGTTT -ACGGAATGGTTGAAGCCTGTGGTT -ACGGAATGGTTGAAGCCTGCCTTT -ACGGAATGGTTGAAGCCTGGTCTT -ACGGAATGGTTGAAGCCTACGCTT -ACGGAATGGTTGAAGCCTAGCGTT -ACGGAATGGTTGAAGCCTTTCGTC -ACGGAATGGTTGAAGCCTTCTCTC -ACGGAATGGTTGAAGCCTTGGATC -ACGGAATGGTTGAAGCCTCACTTC -ACGGAATGGTTGAAGCCTGTACTC -ACGGAATGGTTGAAGCCTGATGTC -ACGGAATGGTTGAAGCCTACAGTC -ACGGAATGGTTGAAGCCTTTGCTG -ACGGAATGGTTGAAGCCTTCCATG -ACGGAATGGTTGAAGCCTTGTGTG -ACGGAATGGTTGAAGCCTCTAGTG -ACGGAATGGTTGAAGCCTCATCTG -ACGGAATGGTTGAAGCCTGAGTTG -ACGGAATGGTTGAAGCCTAGACTG -ACGGAATGGTTGAAGCCTTCGGTA -ACGGAATGGTTGAAGCCTTGCCTA -ACGGAATGGTTGAAGCCTCCACTA -ACGGAATGGTTGAAGCCTGGAGTA -ACGGAATGGTTGAAGCCTTCGTCT -ACGGAATGGTTGAAGCCTTGCACT -ACGGAATGGTTGAAGCCTCTGACT -ACGGAATGGTTGAAGCCTCAACCT -ACGGAATGGTTGAAGCCTGCTACT -ACGGAATGGTTGAAGCCTGGATCT -ACGGAATGGTTGAAGCCTAAGGCT -ACGGAATGGTTGAAGCCTTCAACC -ACGGAATGGTTGAAGCCTTGTTCC -ACGGAATGGTTGAAGCCTATTCCC -ACGGAATGGTTGAAGCCTTTCTCG -ACGGAATGGTTGAAGCCTTAGACG -ACGGAATGGTTGAAGCCTGTAACG -ACGGAATGGTTGAAGCCTACTTCG -ACGGAATGGTTGAAGCCTTACGCA -ACGGAATGGTTGAAGCCTCTTGCA -ACGGAATGGTTGAAGCCTCGAACA -ACGGAATGGTTGAAGCCTCAGTCA -ACGGAATGGTTGAAGCCTGATCCA -ACGGAATGGTTGAAGCCTACGACA -ACGGAATGGTTGAAGCCTAGCTCA -ACGGAATGGTTGAAGCCTTCACGT -ACGGAATGGTTGAAGCCTCGTAGT -ACGGAATGGTTGAAGCCTGTCAGT -ACGGAATGGTTGAAGCCTGAAGGT -ACGGAATGGTTGAAGCCTAACCGT -ACGGAATGGTTGAAGCCTTTGTGC -ACGGAATGGTTGAAGCCTCTAAGC -ACGGAATGGTTGAAGCCTACTAGC -ACGGAATGGTTGAAGCCTAGATGC -ACGGAATGGTTGAAGCCTTGAAGG -ACGGAATGGTTGAAGCCTCAATGG -ACGGAATGGTTGAAGCCTATGAGG -ACGGAATGGTTGAAGCCTAATGGG -ACGGAATGGTTGAAGCCTTCCTGA -ACGGAATGGTTGAAGCCTTAGCGA -ACGGAATGGTTGAAGCCTCACAGA -ACGGAATGGTTGAAGCCTGCAAGA -ACGGAATGGTTGAAGCCTGGTTGA -ACGGAATGGTTGAAGCCTTCCGAT -ACGGAATGGTTGAAGCCTTGGCAT -ACGGAATGGTTGAAGCCTCGAGAT -ACGGAATGGTTGAAGCCTTACCAC -ACGGAATGGTTGAAGCCTCAGAAC -ACGGAATGGTTGAAGCCTGTCTAC -ACGGAATGGTTGAAGCCTACGTAC -ACGGAATGGTTGAAGCCTAGTGAC -ACGGAATGGTTGAAGCCTCTGTAG -ACGGAATGGTTGAAGCCTCCTAAG -ACGGAATGGTTGAAGCCTGTTCAG -ACGGAATGGTTGAAGCCTGCATAG -ACGGAATGGTTGAAGCCTGACAAG -ACGGAATGGTTGAAGCCTAAGCAG -ACGGAATGGTTGAAGCCTCGTCAA -ACGGAATGGTTGAAGCCTGCTGAA -ACGGAATGGTTGAAGCCTAGTACG -ACGGAATGGTTGAAGCCTATCCGA -ACGGAATGGTTGAAGCCTATGGGA -ACGGAATGGTTGAAGCCTGTGCAA -ACGGAATGGTTGAAGCCTGAGGAA -ACGGAATGGTTGAAGCCTCAGGTA -ACGGAATGGTTGAAGCCTGACTCT -ACGGAATGGTTGAAGCCTAGTCCT -ACGGAATGGTTGAAGCCTTAAGCC -ACGGAATGGTTGAAGCCTATAGCC -ACGGAATGGTTGAAGCCTTAACCG -ACGGAATGGTTGAAGCCTATGCCA -ACGGAATGGTTGCAGGTTGGAAAC -ACGGAATGGTTGCAGGTTAACACC -ACGGAATGGTTGCAGGTTATCGAG -ACGGAATGGTTGCAGGTTCTCCTT -ACGGAATGGTTGCAGGTTCCTGTT -ACGGAATGGTTGCAGGTTCGGTTT -ACGGAATGGTTGCAGGTTGTGGTT -ACGGAATGGTTGCAGGTTGCCTTT -ACGGAATGGTTGCAGGTTGGTCTT -ACGGAATGGTTGCAGGTTACGCTT -ACGGAATGGTTGCAGGTTAGCGTT -ACGGAATGGTTGCAGGTTTTCGTC -ACGGAATGGTTGCAGGTTTCTCTC -ACGGAATGGTTGCAGGTTTGGATC -ACGGAATGGTTGCAGGTTCACTTC -ACGGAATGGTTGCAGGTTGTACTC -ACGGAATGGTTGCAGGTTGATGTC -ACGGAATGGTTGCAGGTTACAGTC -ACGGAATGGTTGCAGGTTTTGCTG -ACGGAATGGTTGCAGGTTTCCATG -ACGGAATGGTTGCAGGTTTGTGTG -ACGGAATGGTTGCAGGTTCTAGTG -ACGGAATGGTTGCAGGTTCATCTG -ACGGAATGGTTGCAGGTTGAGTTG -ACGGAATGGTTGCAGGTTAGACTG -ACGGAATGGTTGCAGGTTTCGGTA -ACGGAATGGTTGCAGGTTTGCCTA -ACGGAATGGTTGCAGGTTCCACTA -ACGGAATGGTTGCAGGTTGGAGTA -ACGGAATGGTTGCAGGTTTCGTCT -ACGGAATGGTTGCAGGTTTGCACT -ACGGAATGGTTGCAGGTTCTGACT -ACGGAATGGTTGCAGGTTCAACCT -ACGGAATGGTTGCAGGTTGCTACT -ACGGAATGGTTGCAGGTTGGATCT -ACGGAATGGTTGCAGGTTAAGGCT -ACGGAATGGTTGCAGGTTTCAACC -ACGGAATGGTTGCAGGTTTGTTCC -ACGGAATGGTTGCAGGTTATTCCC -ACGGAATGGTTGCAGGTTTTCTCG -ACGGAATGGTTGCAGGTTTAGACG -ACGGAATGGTTGCAGGTTGTAACG -ACGGAATGGTTGCAGGTTACTTCG -ACGGAATGGTTGCAGGTTTACGCA -ACGGAATGGTTGCAGGTTCTTGCA -ACGGAATGGTTGCAGGTTCGAACA -ACGGAATGGTTGCAGGTTCAGTCA -ACGGAATGGTTGCAGGTTGATCCA -ACGGAATGGTTGCAGGTTACGACA -ACGGAATGGTTGCAGGTTAGCTCA -ACGGAATGGTTGCAGGTTTCACGT -ACGGAATGGTTGCAGGTTCGTAGT -ACGGAATGGTTGCAGGTTGTCAGT -ACGGAATGGTTGCAGGTTGAAGGT -ACGGAATGGTTGCAGGTTAACCGT -ACGGAATGGTTGCAGGTTTTGTGC -ACGGAATGGTTGCAGGTTCTAAGC -ACGGAATGGTTGCAGGTTACTAGC -ACGGAATGGTTGCAGGTTAGATGC -ACGGAATGGTTGCAGGTTTGAAGG -ACGGAATGGTTGCAGGTTCAATGG -ACGGAATGGTTGCAGGTTATGAGG -ACGGAATGGTTGCAGGTTAATGGG -ACGGAATGGTTGCAGGTTTCCTGA -ACGGAATGGTTGCAGGTTTAGCGA -ACGGAATGGTTGCAGGTTCACAGA -ACGGAATGGTTGCAGGTTGCAAGA -ACGGAATGGTTGCAGGTTGGTTGA -ACGGAATGGTTGCAGGTTTCCGAT -ACGGAATGGTTGCAGGTTTGGCAT -ACGGAATGGTTGCAGGTTCGAGAT -ACGGAATGGTTGCAGGTTTACCAC -ACGGAATGGTTGCAGGTTCAGAAC -ACGGAATGGTTGCAGGTTGTCTAC -ACGGAATGGTTGCAGGTTACGTAC -ACGGAATGGTTGCAGGTTAGTGAC -ACGGAATGGTTGCAGGTTCTGTAG -ACGGAATGGTTGCAGGTTCCTAAG -ACGGAATGGTTGCAGGTTGTTCAG -ACGGAATGGTTGCAGGTTGCATAG -ACGGAATGGTTGCAGGTTGACAAG -ACGGAATGGTTGCAGGTTAAGCAG -ACGGAATGGTTGCAGGTTCGTCAA -ACGGAATGGTTGCAGGTTGCTGAA -ACGGAATGGTTGCAGGTTAGTACG -ACGGAATGGTTGCAGGTTATCCGA -ACGGAATGGTTGCAGGTTATGGGA -ACGGAATGGTTGCAGGTTGTGCAA -ACGGAATGGTTGCAGGTTGAGGAA -ACGGAATGGTTGCAGGTTCAGGTA -ACGGAATGGTTGCAGGTTGACTCT -ACGGAATGGTTGCAGGTTAGTCCT -ACGGAATGGTTGCAGGTTTAAGCC -ACGGAATGGTTGCAGGTTATAGCC -ACGGAATGGTTGCAGGTTTAACCG -ACGGAATGGTTGCAGGTTATGCCA -ACGGAATGGTTGTAGGCAGGAAAC -ACGGAATGGTTGTAGGCAAACACC -ACGGAATGGTTGTAGGCAATCGAG -ACGGAATGGTTGTAGGCACTCCTT -ACGGAATGGTTGTAGGCACCTGTT -ACGGAATGGTTGTAGGCACGGTTT -ACGGAATGGTTGTAGGCAGTGGTT -ACGGAATGGTTGTAGGCAGCCTTT -ACGGAATGGTTGTAGGCAGGTCTT -ACGGAATGGTTGTAGGCAACGCTT -ACGGAATGGTTGTAGGCAAGCGTT -ACGGAATGGTTGTAGGCATTCGTC -ACGGAATGGTTGTAGGCATCTCTC -ACGGAATGGTTGTAGGCATGGATC -ACGGAATGGTTGTAGGCACACTTC -ACGGAATGGTTGTAGGCAGTACTC -ACGGAATGGTTGTAGGCAGATGTC -ACGGAATGGTTGTAGGCAACAGTC -ACGGAATGGTTGTAGGCATTGCTG -ACGGAATGGTTGTAGGCATCCATG -ACGGAATGGTTGTAGGCATGTGTG -ACGGAATGGTTGTAGGCACTAGTG -ACGGAATGGTTGTAGGCACATCTG -ACGGAATGGTTGTAGGCAGAGTTG -ACGGAATGGTTGTAGGCAAGACTG -ACGGAATGGTTGTAGGCATCGGTA -ACGGAATGGTTGTAGGCATGCCTA -ACGGAATGGTTGTAGGCACCACTA -ACGGAATGGTTGTAGGCAGGAGTA -ACGGAATGGTTGTAGGCATCGTCT -ACGGAATGGTTGTAGGCATGCACT -ACGGAATGGTTGTAGGCACTGACT -ACGGAATGGTTGTAGGCACAACCT -ACGGAATGGTTGTAGGCAGCTACT -ACGGAATGGTTGTAGGCAGGATCT -ACGGAATGGTTGTAGGCAAAGGCT -ACGGAATGGTTGTAGGCATCAACC -ACGGAATGGTTGTAGGCATGTTCC -ACGGAATGGTTGTAGGCAATTCCC -ACGGAATGGTTGTAGGCATTCTCG -ACGGAATGGTTGTAGGCATAGACG -ACGGAATGGTTGTAGGCAGTAACG -ACGGAATGGTTGTAGGCAACTTCG -ACGGAATGGTTGTAGGCATACGCA -ACGGAATGGTTGTAGGCACTTGCA -ACGGAATGGTTGTAGGCACGAACA -ACGGAATGGTTGTAGGCACAGTCA -ACGGAATGGTTGTAGGCAGATCCA -ACGGAATGGTTGTAGGCAACGACA -ACGGAATGGTTGTAGGCAAGCTCA -ACGGAATGGTTGTAGGCATCACGT -ACGGAATGGTTGTAGGCACGTAGT -ACGGAATGGTTGTAGGCAGTCAGT -ACGGAATGGTTGTAGGCAGAAGGT -ACGGAATGGTTGTAGGCAAACCGT -ACGGAATGGTTGTAGGCATTGTGC -ACGGAATGGTTGTAGGCACTAAGC -ACGGAATGGTTGTAGGCAACTAGC -ACGGAATGGTTGTAGGCAAGATGC -ACGGAATGGTTGTAGGCATGAAGG -ACGGAATGGTTGTAGGCACAATGG -ACGGAATGGTTGTAGGCAATGAGG -ACGGAATGGTTGTAGGCAAATGGG -ACGGAATGGTTGTAGGCATCCTGA -ACGGAATGGTTGTAGGCATAGCGA -ACGGAATGGTTGTAGGCACACAGA -ACGGAATGGTTGTAGGCAGCAAGA -ACGGAATGGTTGTAGGCAGGTTGA -ACGGAATGGTTGTAGGCATCCGAT -ACGGAATGGTTGTAGGCATGGCAT -ACGGAATGGTTGTAGGCACGAGAT -ACGGAATGGTTGTAGGCATACCAC -ACGGAATGGTTGTAGGCACAGAAC -ACGGAATGGTTGTAGGCAGTCTAC -ACGGAATGGTTGTAGGCAACGTAC -ACGGAATGGTTGTAGGCAAGTGAC -ACGGAATGGTTGTAGGCACTGTAG -ACGGAATGGTTGTAGGCACCTAAG -ACGGAATGGTTGTAGGCAGTTCAG -ACGGAATGGTTGTAGGCAGCATAG -ACGGAATGGTTGTAGGCAGACAAG -ACGGAATGGTTGTAGGCAAAGCAG -ACGGAATGGTTGTAGGCACGTCAA -ACGGAATGGTTGTAGGCAGCTGAA -ACGGAATGGTTGTAGGCAAGTACG -ACGGAATGGTTGTAGGCAATCCGA -ACGGAATGGTTGTAGGCAATGGGA -ACGGAATGGTTGTAGGCAGTGCAA -ACGGAATGGTTGTAGGCAGAGGAA -ACGGAATGGTTGTAGGCACAGGTA -ACGGAATGGTTGTAGGCAGACTCT -ACGGAATGGTTGTAGGCAAGTCCT -ACGGAATGGTTGTAGGCATAAGCC -ACGGAATGGTTGTAGGCAATAGCC -ACGGAATGGTTGTAGGCATAACCG -ACGGAATGGTTGTAGGCAATGCCA -ACGGAATGGTTGAAGGACGGAAAC -ACGGAATGGTTGAAGGACAACACC -ACGGAATGGTTGAAGGACATCGAG -ACGGAATGGTTGAAGGACCTCCTT -ACGGAATGGTTGAAGGACCCTGTT -ACGGAATGGTTGAAGGACCGGTTT -ACGGAATGGTTGAAGGACGTGGTT -ACGGAATGGTTGAAGGACGCCTTT -ACGGAATGGTTGAAGGACGGTCTT -ACGGAATGGTTGAAGGACACGCTT -ACGGAATGGTTGAAGGACAGCGTT -ACGGAATGGTTGAAGGACTTCGTC -ACGGAATGGTTGAAGGACTCTCTC -ACGGAATGGTTGAAGGACTGGATC -ACGGAATGGTTGAAGGACCACTTC -ACGGAATGGTTGAAGGACGTACTC -ACGGAATGGTTGAAGGACGATGTC -ACGGAATGGTTGAAGGACACAGTC -ACGGAATGGTTGAAGGACTTGCTG -ACGGAATGGTTGAAGGACTCCATG -ACGGAATGGTTGAAGGACTGTGTG -ACGGAATGGTTGAAGGACCTAGTG -ACGGAATGGTTGAAGGACCATCTG -ACGGAATGGTTGAAGGACGAGTTG -ACGGAATGGTTGAAGGACAGACTG -ACGGAATGGTTGAAGGACTCGGTA -ACGGAATGGTTGAAGGACTGCCTA -ACGGAATGGTTGAAGGACCCACTA -ACGGAATGGTTGAAGGACGGAGTA -ACGGAATGGTTGAAGGACTCGTCT -ACGGAATGGTTGAAGGACTGCACT -ACGGAATGGTTGAAGGACCTGACT -ACGGAATGGTTGAAGGACCAACCT -ACGGAATGGTTGAAGGACGCTACT -ACGGAATGGTTGAAGGACGGATCT -ACGGAATGGTTGAAGGACAAGGCT -ACGGAATGGTTGAAGGACTCAACC -ACGGAATGGTTGAAGGACTGTTCC -ACGGAATGGTTGAAGGACATTCCC -ACGGAATGGTTGAAGGACTTCTCG -ACGGAATGGTTGAAGGACTAGACG -ACGGAATGGTTGAAGGACGTAACG -ACGGAATGGTTGAAGGACACTTCG -ACGGAATGGTTGAAGGACTACGCA -ACGGAATGGTTGAAGGACCTTGCA -ACGGAATGGTTGAAGGACCGAACA -ACGGAATGGTTGAAGGACCAGTCA -ACGGAATGGTTGAAGGACGATCCA -ACGGAATGGTTGAAGGACACGACA -ACGGAATGGTTGAAGGACAGCTCA -ACGGAATGGTTGAAGGACTCACGT -ACGGAATGGTTGAAGGACCGTAGT -ACGGAATGGTTGAAGGACGTCAGT -ACGGAATGGTTGAAGGACGAAGGT -ACGGAATGGTTGAAGGACAACCGT -ACGGAATGGTTGAAGGACTTGTGC -ACGGAATGGTTGAAGGACCTAAGC -ACGGAATGGTTGAAGGACACTAGC -ACGGAATGGTTGAAGGACAGATGC -ACGGAATGGTTGAAGGACTGAAGG -ACGGAATGGTTGAAGGACCAATGG -ACGGAATGGTTGAAGGACATGAGG -ACGGAATGGTTGAAGGACAATGGG -ACGGAATGGTTGAAGGACTCCTGA -ACGGAATGGTTGAAGGACTAGCGA -ACGGAATGGTTGAAGGACCACAGA -ACGGAATGGTTGAAGGACGCAAGA -ACGGAATGGTTGAAGGACGGTTGA -ACGGAATGGTTGAAGGACTCCGAT -ACGGAATGGTTGAAGGACTGGCAT -ACGGAATGGTTGAAGGACCGAGAT -ACGGAATGGTTGAAGGACTACCAC -ACGGAATGGTTGAAGGACCAGAAC -ACGGAATGGTTGAAGGACGTCTAC -ACGGAATGGTTGAAGGACACGTAC -ACGGAATGGTTGAAGGACAGTGAC -ACGGAATGGTTGAAGGACCTGTAG -ACGGAATGGTTGAAGGACCCTAAG -ACGGAATGGTTGAAGGACGTTCAG -ACGGAATGGTTGAAGGACGCATAG -ACGGAATGGTTGAAGGACGACAAG -ACGGAATGGTTGAAGGACAAGCAG -ACGGAATGGTTGAAGGACCGTCAA -ACGGAATGGTTGAAGGACGCTGAA -ACGGAATGGTTGAAGGACAGTACG -ACGGAATGGTTGAAGGACATCCGA -ACGGAATGGTTGAAGGACATGGGA -ACGGAATGGTTGAAGGACGTGCAA -ACGGAATGGTTGAAGGACGAGGAA -ACGGAATGGTTGAAGGACCAGGTA -ACGGAATGGTTGAAGGACGACTCT -ACGGAATGGTTGAAGGACAGTCCT -ACGGAATGGTTGAAGGACTAAGCC -ACGGAATGGTTGAAGGACATAGCC -ACGGAATGGTTGAAGGACTAACCG -ACGGAATGGTTGAAGGACATGCCA -ACGGAATGGTTGCAGAAGGGAAAC -ACGGAATGGTTGCAGAAGAACACC -ACGGAATGGTTGCAGAAGATCGAG -ACGGAATGGTTGCAGAAGCTCCTT -ACGGAATGGTTGCAGAAGCCTGTT -ACGGAATGGTTGCAGAAGCGGTTT -ACGGAATGGTTGCAGAAGGTGGTT -ACGGAATGGTTGCAGAAGGCCTTT -ACGGAATGGTTGCAGAAGGGTCTT -ACGGAATGGTTGCAGAAGACGCTT -ACGGAATGGTTGCAGAAGAGCGTT -ACGGAATGGTTGCAGAAGTTCGTC -ACGGAATGGTTGCAGAAGTCTCTC -ACGGAATGGTTGCAGAAGTGGATC -ACGGAATGGTTGCAGAAGCACTTC -ACGGAATGGTTGCAGAAGGTACTC -ACGGAATGGTTGCAGAAGGATGTC -ACGGAATGGTTGCAGAAGACAGTC -ACGGAATGGTTGCAGAAGTTGCTG -ACGGAATGGTTGCAGAAGTCCATG -ACGGAATGGTTGCAGAAGTGTGTG -ACGGAATGGTTGCAGAAGCTAGTG -ACGGAATGGTTGCAGAAGCATCTG -ACGGAATGGTTGCAGAAGGAGTTG -ACGGAATGGTTGCAGAAGAGACTG -ACGGAATGGTTGCAGAAGTCGGTA -ACGGAATGGTTGCAGAAGTGCCTA -ACGGAATGGTTGCAGAAGCCACTA -ACGGAATGGTTGCAGAAGGGAGTA -ACGGAATGGTTGCAGAAGTCGTCT -ACGGAATGGTTGCAGAAGTGCACT -ACGGAATGGTTGCAGAAGCTGACT -ACGGAATGGTTGCAGAAGCAACCT -ACGGAATGGTTGCAGAAGGCTACT -ACGGAATGGTTGCAGAAGGGATCT -ACGGAATGGTTGCAGAAGAAGGCT -ACGGAATGGTTGCAGAAGTCAACC -ACGGAATGGTTGCAGAAGTGTTCC -ACGGAATGGTTGCAGAAGATTCCC -ACGGAATGGTTGCAGAAGTTCTCG -ACGGAATGGTTGCAGAAGTAGACG -ACGGAATGGTTGCAGAAGGTAACG -ACGGAATGGTTGCAGAAGACTTCG -ACGGAATGGTTGCAGAAGTACGCA -ACGGAATGGTTGCAGAAGCTTGCA -ACGGAATGGTTGCAGAAGCGAACA -ACGGAATGGTTGCAGAAGCAGTCA -ACGGAATGGTTGCAGAAGGATCCA -ACGGAATGGTTGCAGAAGACGACA -ACGGAATGGTTGCAGAAGAGCTCA -ACGGAATGGTTGCAGAAGTCACGT -ACGGAATGGTTGCAGAAGCGTAGT -ACGGAATGGTTGCAGAAGGTCAGT -ACGGAATGGTTGCAGAAGGAAGGT -ACGGAATGGTTGCAGAAGAACCGT -ACGGAATGGTTGCAGAAGTTGTGC -ACGGAATGGTTGCAGAAGCTAAGC -ACGGAATGGTTGCAGAAGACTAGC -ACGGAATGGTTGCAGAAGAGATGC -ACGGAATGGTTGCAGAAGTGAAGG -ACGGAATGGTTGCAGAAGCAATGG -ACGGAATGGTTGCAGAAGATGAGG -ACGGAATGGTTGCAGAAGAATGGG -ACGGAATGGTTGCAGAAGTCCTGA -ACGGAATGGTTGCAGAAGTAGCGA -ACGGAATGGTTGCAGAAGCACAGA -ACGGAATGGTTGCAGAAGGCAAGA -ACGGAATGGTTGCAGAAGGGTTGA -ACGGAATGGTTGCAGAAGTCCGAT -ACGGAATGGTTGCAGAAGTGGCAT -ACGGAATGGTTGCAGAAGCGAGAT -ACGGAATGGTTGCAGAAGTACCAC -ACGGAATGGTTGCAGAAGCAGAAC -ACGGAATGGTTGCAGAAGGTCTAC -ACGGAATGGTTGCAGAAGACGTAC -ACGGAATGGTTGCAGAAGAGTGAC -ACGGAATGGTTGCAGAAGCTGTAG -ACGGAATGGTTGCAGAAGCCTAAG -ACGGAATGGTTGCAGAAGGTTCAG -ACGGAATGGTTGCAGAAGGCATAG -ACGGAATGGTTGCAGAAGGACAAG -ACGGAATGGTTGCAGAAGAAGCAG -ACGGAATGGTTGCAGAAGCGTCAA -ACGGAATGGTTGCAGAAGGCTGAA -ACGGAATGGTTGCAGAAGAGTACG -ACGGAATGGTTGCAGAAGATCCGA -ACGGAATGGTTGCAGAAGATGGGA -ACGGAATGGTTGCAGAAGGTGCAA -ACGGAATGGTTGCAGAAGGAGGAA -ACGGAATGGTTGCAGAAGCAGGTA -ACGGAATGGTTGCAGAAGGACTCT -ACGGAATGGTTGCAGAAGAGTCCT -ACGGAATGGTTGCAGAAGTAAGCC -ACGGAATGGTTGCAGAAGATAGCC -ACGGAATGGTTGCAGAAGTAACCG -ACGGAATGGTTGCAGAAGATGCCA -ACGGAATGGTTGCAACGTGGAAAC -ACGGAATGGTTGCAACGTAACACC -ACGGAATGGTTGCAACGTATCGAG -ACGGAATGGTTGCAACGTCTCCTT -ACGGAATGGTTGCAACGTCCTGTT -ACGGAATGGTTGCAACGTCGGTTT -ACGGAATGGTTGCAACGTGTGGTT -ACGGAATGGTTGCAACGTGCCTTT -ACGGAATGGTTGCAACGTGGTCTT -ACGGAATGGTTGCAACGTACGCTT -ACGGAATGGTTGCAACGTAGCGTT -ACGGAATGGTTGCAACGTTTCGTC -ACGGAATGGTTGCAACGTTCTCTC -ACGGAATGGTTGCAACGTTGGATC -ACGGAATGGTTGCAACGTCACTTC -ACGGAATGGTTGCAACGTGTACTC -ACGGAATGGTTGCAACGTGATGTC -ACGGAATGGTTGCAACGTACAGTC -ACGGAATGGTTGCAACGTTTGCTG -ACGGAATGGTTGCAACGTTCCATG -ACGGAATGGTTGCAACGTTGTGTG -ACGGAATGGTTGCAACGTCTAGTG -ACGGAATGGTTGCAACGTCATCTG -ACGGAATGGTTGCAACGTGAGTTG -ACGGAATGGTTGCAACGTAGACTG -ACGGAATGGTTGCAACGTTCGGTA -ACGGAATGGTTGCAACGTTGCCTA -ACGGAATGGTTGCAACGTCCACTA -ACGGAATGGTTGCAACGTGGAGTA -ACGGAATGGTTGCAACGTTCGTCT -ACGGAATGGTTGCAACGTTGCACT -ACGGAATGGTTGCAACGTCTGACT -ACGGAATGGTTGCAACGTCAACCT -ACGGAATGGTTGCAACGTGCTACT -ACGGAATGGTTGCAACGTGGATCT -ACGGAATGGTTGCAACGTAAGGCT -ACGGAATGGTTGCAACGTTCAACC -ACGGAATGGTTGCAACGTTGTTCC -ACGGAATGGTTGCAACGTATTCCC -ACGGAATGGTTGCAACGTTTCTCG -ACGGAATGGTTGCAACGTTAGACG -ACGGAATGGTTGCAACGTGTAACG -ACGGAATGGTTGCAACGTACTTCG -ACGGAATGGTTGCAACGTTACGCA -ACGGAATGGTTGCAACGTCTTGCA -ACGGAATGGTTGCAACGTCGAACA -ACGGAATGGTTGCAACGTCAGTCA -ACGGAATGGTTGCAACGTGATCCA -ACGGAATGGTTGCAACGTACGACA -ACGGAATGGTTGCAACGTAGCTCA -ACGGAATGGTTGCAACGTTCACGT -ACGGAATGGTTGCAACGTCGTAGT -ACGGAATGGTTGCAACGTGTCAGT -ACGGAATGGTTGCAACGTGAAGGT -ACGGAATGGTTGCAACGTAACCGT -ACGGAATGGTTGCAACGTTTGTGC -ACGGAATGGTTGCAACGTCTAAGC -ACGGAATGGTTGCAACGTACTAGC -ACGGAATGGTTGCAACGTAGATGC -ACGGAATGGTTGCAACGTTGAAGG -ACGGAATGGTTGCAACGTCAATGG -ACGGAATGGTTGCAACGTATGAGG -ACGGAATGGTTGCAACGTAATGGG -ACGGAATGGTTGCAACGTTCCTGA -ACGGAATGGTTGCAACGTTAGCGA -ACGGAATGGTTGCAACGTCACAGA -ACGGAATGGTTGCAACGTGCAAGA -ACGGAATGGTTGCAACGTGGTTGA -ACGGAATGGTTGCAACGTTCCGAT -ACGGAATGGTTGCAACGTTGGCAT -ACGGAATGGTTGCAACGTCGAGAT -ACGGAATGGTTGCAACGTTACCAC -ACGGAATGGTTGCAACGTCAGAAC -ACGGAATGGTTGCAACGTGTCTAC -ACGGAATGGTTGCAACGTACGTAC -ACGGAATGGTTGCAACGTAGTGAC -ACGGAATGGTTGCAACGTCTGTAG -ACGGAATGGTTGCAACGTCCTAAG -ACGGAATGGTTGCAACGTGTTCAG -ACGGAATGGTTGCAACGTGCATAG -ACGGAATGGTTGCAACGTGACAAG -ACGGAATGGTTGCAACGTAAGCAG -ACGGAATGGTTGCAACGTCGTCAA -ACGGAATGGTTGCAACGTGCTGAA -ACGGAATGGTTGCAACGTAGTACG -ACGGAATGGTTGCAACGTATCCGA -ACGGAATGGTTGCAACGTATGGGA -ACGGAATGGTTGCAACGTGTGCAA -ACGGAATGGTTGCAACGTGAGGAA -ACGGAATGGTTGCAACGTCAGGTA -ACGGAATGGTTGCAACGTGACTCT -ACGGAATGGTTGCAACGTAGTCCT -ACGGAATGGTTGCAACGTTAAGCC -ACGGAATGGTTGCAACGTATAGCC -ACGGAATGGTTGCAACGTTAACCG -ACGGAATGGTTGCAACGTATGCCA -ACGGAATGGTTGGAAGCTGGAAAC -ACGGAATGGTTGGAAGCTAACACC -ACGGAATGGTTGGAAGCTATCGAG -ACGGAATGGTTGGAAGCTCTCCTT -ACGGAATGGTTGGAAGCTCCTGTT -ACGGAATGGTTGGAAGCTCGGTTT -ACGGAATGGTTGGAAGCTGTGGTT -ACGGAATGGTTGGAAGCTGCCTTT -ACGGAATGGTTGGAAGCTGGTCTT -ACGGAATGGTTGGAAGCTACGCTT -ACGGAATGGTTGGAAGCTAGCGTT -ACGGAATGGTTGGAAGCTTTCGTC -ACGGAATGGTTGGAAGCTTCTCTC -ACGGAATGGTTGGAAGCTTGGATC -ACGGAATGGTTGGAAGCTCACTTC -ACGGAATGGTTGGAAGCTGTACTC -ACGGAATGGTTGGAAGCTGATGTC -ACGGAATGGTTGGAAGCTACAGTC -ACGGAATGGTTGGAAGCTTTGCTG -ACGGAATGGTTGGAAGCTTCCATG -ACGGAATGGTTGGAAGCTTGTGTG -ACGGAATGGTTGGAAGCTCTAGTG -ACGGAATGGTTGGAAGCTCATCTG -ACGGAATGGTTGGAAGCTGAGTTG -ACGGAATGGTTGGAAGCTAGACTG -ACGGAATGGTTGGAAGCTTCGGTA -ACGGAATGGTTGGAAGCTTGCCTA -ACGGAATGGTTGGAAGCTCCACTA -ACGGAATGGTTGGAAGCTGGAGTA -ACGGAATGGTTGGAAGCTTCGTCT -ACGGAATGGTTGGAAGCTTGCACT -ACGGAATGGTTGGAAGCTCTGACT -ACGGAATGGTTGGAAGCTCAACCT -ACGGAATGGTTGGAAGCTGCTACT -ACGGAATGGTTGGAAGCTGGATCT -ACGGAATGGTTGGAAGCTAAGGCT -ACGGAATGGTTGGAAGCTTCAACC -ACGGAATGGTTGGAAGCTTGTTCC -ACGGAATGGTTGGAAGCTATTCCC -ACGGAATGGTTGGAAGCTTTCTCG -ACGGAATGGTTGGAAGCTTAGACG -ACGGAATGGTTGGAAGCTGTAACG -ACGGAATGGTTGGAAGCTACTTCG -ACGGAATGGTTGGAAGCTTACGCA -ACGGAATGGTTGGAAGCTCTTGCA -ACGGAATGGTTGGAAGCTCGAACA -ACGGAATGGTTGGAAGCTCAGTCA -ACGGAATGGTTGGAAGCTGATCCA -ACGGAATGGTTGGAAGCTACGACA -ACGGAATGGTTGGAAGCTAGCTCA -ACGGAATGGTTGGAAGCTTCACGT -ACGGAATGGTTGGAAGCTCGTAGT -ACGGAATGGTTGGAAGCTGTCAGT -ACGGAATGGTTGGAAGCTGAAGGT -ACGGAATGGTTGGAAGCTAACCGT -ACGGAATGGTTGGAAGCTTTGTGC -ACGGAATGGTTGGAAGCTCTAAGC -ACGGAATGGTTGGAAGCTACTAGC -ACGGAATGGTTGGAAGCTAGATGC -ACGGAATGGTTGGAAGCTTGAAGG -ACGGAATGGTTGGAAGCTCAATGG -ACGGAATGGTTGGAAGCTATGAGG -ACGGAATGGTTGGAAGCTAATGGG -ACGGAATGGTTGGAAGCTTCCTGA -ACGGAATGGTTGGAAGCTTAGCGA -ACGGAATGGTTGGAAGCTCACAGA -ACGGAATGGTTGGAAGCTGCAAGA -ACGGAATGGTTGGAAGCTGGTTGA -ACGGAATGGTTGGAAGCTTCCGAT -ACGGAATGGTTGGAAGCTTGGCAT -ACGGAATGGTTGGAAGCTCGAGAT -ACGGAATGGTTGGAAGCTTACCAC -ACGGAATGGTTGGAAGCTCAGAAC -ACGGAATGGTTGGAAGCTGTCTAC -ACGGAATGGTTGGAAGCTACGTAC -ACGGAATGGTTGGAAGCTAGTGAC -ACGGAATGGTTGGAAGCTCTGTAG -ACGGAATGGTTGGAAGCTCCTAAG -ACGGAATGGTTGGAAGCTGTTCAG -ACGGAATGGTTGGAAGCTGCATAG -ACGGAATGGTTGGAAGCTGACAAG -ACGGAATGGTTGGAAGCTAAGCAG -ACGGAATGGTTGGAAGCTCGTCAA -ACGGAATGGTTGGAAGCTGCTGAA -ACGGAATGGTTGGAAGCTAGTACG -ACGGAATGGTTGGAAGCTATCCGA -ACGGAATGGTTGGAAGCTATGGGA -ACGGAATGGTTGGAAGCTGTGCAA -ACGGAATGGTTGGAAGCTGAGGAA -ACGGAATGGTTGGAAGCTCAGGTA -ACGGAATGGTTGGAAGCTGACTCT -ACGGAATGGTTGGAAGCTAGTCCT -ACGGAATGGTTGGAAGCTTAAGCC -ACGGAATGGTTGGAAGCTATAGCC -ACGGAATGGTTGGAAGCTTAACCG -ACGGAATGGTTGGAAGCTATGCCA -ACGGAATGGTTGACGAGTGGAAAC -ACGGAATGGTTGACGAGTAACACC -ACGGAATGGTTGACGAGTATCGAG -ACGGAATGGTTGACGAGTCTCCTT -ACGGAATGGTTGACGAGTCCTGTT -ACGGAATGGTTGACGAGTCGGTTT -ACGGAATGGTTGACGAGTGTGGTT -ACGGAATGGTTGACGAGTGCCTTT -ACGGAATGGTTGACGAGTGGTCTT -ACGGAATGGTTGACGAGTACGCTT -ACGGAATGGTTGACGAGTAGCGTT -ACGGAATGGTTGACGAGTTTCGTC -ACGGAATGGTTGACGAGTTCTCTC -ACGGAATGGTTGACGAGTTGGATC -ACGGAATGGTTGACGAGTCACTTC -ACGGAATGGTTGACGAGTGTACTC -ACGGAATGGTTGACGAGTGATGTC -ACGGAATGGTTGACGAGTACAGTC -ACGGAATGGTTGACGAGTTTGCTG -ACGGAATGGTTGACGAGTTCCATG -ACGGAATGGTTGACGAGTTGTGTG -ACGGAATGGTTGACGAGTCTAGTG -ACGGAATGGTTGACGAGTCATCTG -ACGGAATGGTTGACGAGTGAGTTG -ACGGAATGGTTGACGAGTAGACTG -ACGGAATGGTTGACGAGTTCGGTA -ACGGAATGGTTGACGAGTTGCCTA -ACGGAATGGTTGACGAGTCCACTA -ACGGAATGGTTGACGAGTGGAGTA -ACGGAATGGTTGACGAGTTCGTCT -ACGGAATGGTTGACGAGTTGCACT -ACGGAATGGTTGACGAGTCTGACT -ACGGAATGGTTGACGAGTCAACCT -ACGGAATGGTTGACGAGTGCTACT -ACGGAATGGTTGACGAGTGGATCT -ACGGAATGGTTGACGAGTAAGGCT -ACGGAATGGTTGACGAGTTCAACC -ACGGAATGGTTGACGAGTTGTTCC -ACGGAATGGTTGACGAGTATTCCC -ACGGAATGGTTGACGAGTTTCTCG -ACGGAATGGTTGACGAGTTAGACG -ACGGAATGGTTGACGAGTGTAACG -ACGGAATGGTTGACGAGTACTTCG -ACGGAATGGTTGACGAGTTACGCA -ACGGAATGGTTGACGAGTCTTGCA -ACGGAATGGTTGACGAGTCGAACA -ACGGAATGGTTGACGAGTCAGTCA -ACGGAATGGTTGACGAGTGATCCA -ACGGAATGGTTGACGAGTACGACA -ACGGAATGGTTGACGAGTAGCTCA -ACGGAATGGTTGACGAGTTCACGT -ACGGAATGGTTGACGAGTCGTAGT -ACGGAATGGTTGACGAGTGTCAGT -ACGGAATGGTTGACGAGTGAAGGT -ACGGAATGGTTGACGAGTAACCGT -ACGGAATGGTTGACGAGTTTGTGC -ACGGAATGGTTGACGAGTCTAAGC -ACGGAATGGTTGACGAGTACTAGC -ACGGAATGGTTGACGAGTAGATGC -ACGGAATGGTTGACGAGTTGAAGG -ACGGAATGGTTGACGAGTCAATGG -ACGGAATGGTTGACGAGTATGAGG -ACGGAATGGTTGACGAGTAATGGG -ACGGAATGGTTGACGAGTTCCTGA -ACGGAATGGTTGACGAGTTAGCGA -ACGGAATGGTTGACGAGTCACAGA -ACGGAATGGTTGACGAGTGCAAGA -ACGGAATGGTTGACGAGTGGTTGA -ACGGAATGGTTGACGAGTTCCGAT -ACGGAATGGTTGACGAGTTGGCAT -ACGGAATGGTTGACGAGTCGAGAT -ACGGAATGGTTGACGAGTTACCAC -ACGGAATGGTTGACGAGTCAGAAC -ACGGAATGGTTGACGAGTGTCTAC -ACGGAATGGTTGACGAGTACGTAC -ACGGAATGGTTGACGAGTAGTGAC -ACGGAATGGTTGACGAGTCTGTAG -ACGGAATGGTTGACGAGTCCTAAG -ACGGAATGGTTGACGAGTGTTCAG -ACGGAATGGTTGACGAGTGCATAG -ACGGAATGGTTGACGAGTGACAAG -ACGGAATGGTTGACGAGTAAGCAG -ACGGAATGGTTGACGAGTCGTCAA -ACGGAATGGTTGACGAGTGCTGAA -ACGGAATGGTTGACGAGTAGTACG -ACGGAATGGTTGACGAGTATCCGA -ACGGAATGGTTGACGAGTATGGGA -ACGGAATGGTTGACGAGTGTGCAA -ACGGAATGGTTGACGAGTGAGGAA -ACGGAATGGTTGACGAGTCAGGTA -ACGGAATGGTTGACGAGTGACTCT -ACGGAATGGTTGACGAGTAGTCCT -ACGGAATGGTTGACGAGTTAAGCC -ACGGAATGGTTGACGAGTATAGCC -ACGGAATGGTTGACGAGTTAACCG -ACGGAATGGTTGACGAGTATGCCA -ACGGAATGGTTGCGAATCGGAAAC -ACGGAATGGTTGCGAATCAACACC -ACGGAATGGTTGCGAATCATCGAG -ACGGAATGGTTGCGAATCCTCCTT -ACGGAATGGTTGCGAATCCCTGTT -ACGGAATGGTTGCGAATCCGGTTT -ACGGAATGGTTGCGAATCGTGGTT -ACGGAATGGTTGCGAATCGCCTTT -ACGGAATGGTTGCGAATCGGTCTT -ACGGAATGGTTGCGAATCACGCTT -ACGGAATGGTTGCGAATCAGCGTT -ACGGAATGGTTGCGAATCTTCGTC -ACGGAATGGTTGCGAATCTCTCTC -ACGGAATGGTTGCGAATCTGGATC -ACGGAATGGTTGCGAATCCACTTC -ACGGAATGGTTGCGAATCGTACTC -ACGGAATGGTTGCGAATCGATGTC -ACGGAATGGTTGCGAATCACAGTC -ACGGAATGGTTGCGAATCTTGCTG -ACGGAATGGTTGCGAATCTCCATG -ACGGAATGGTTGCGAATCTGTGTG -ACGGAATGGTTGCGAATCCTAGTG -ACGGAATGGTTGCGAATCCATCTG -ACGGAATGGTTGCGAATCGAGTTG -ACGGAATGGTTGCGAATCAGACTG -ACGGAATGGTTGCGAATCTCGGTA -ACGGAATGGTTGCGAATCTGCCTA -ACGGAATGGTTGCGAATCCCACTA -ACGGAATGGTTGCGAATCGGAGTA -ACGGAATGGTTGCGAATCTCGTCT -ACGGAATGGTTGCGAATCTGCACT -ACGGAATGGTTGCGAATCCTGACT -ACGGAATGGTTGCGAATCCAACCT -ACGGAATGGTTGCGAATCGCTACT -ACGGAATGGTTGCGAATCGGATCT -ACGGAATGGTTGCGAATCAAGGCT -ACGGAATGGTTGCGAATCTCAACC -ACGGAATGGTTGCGAATCTGTTCC -ACGGAATGGTTGCGAATCATTCCC -ACGGAATGGTTGCGAATCTTCTCG -ACGGAATGGTTGCGAATCTAGACG -ACGGAATGGTTGCGAATCGTAACG -ACGGAATGGTTGCGAATCACTTCG -ACGGAATGGTTGCGAATCTACGCA -ACGGAATGGTTGCGAATCCTTGCA -ACGGAATGGTTGCGAATCCGAACA -ACGGAATGGTTGCGAATCCAGTCA -ACGGAATGGTTGCGAATCGATCCA -ACGGAATGGTTGCGAATCACGACA -ACGGAATGGTTGCGAATCAGCTCA -ACGGAATGGTTGCGAATCTCACGT -ACGGAATGGTTGCGAATCCGTAGT -ACGGAATGGTTGCGAATCGTCAGT -ACGGAATGGTTGCGAATCGAAGGT -ACGGAATGGTTGCGAATCAACCGT -ACGGAATGGTTGCGAATCTTGTGC -ACGGAATGGTTGCGAATCCTAAGC -ACGGAATGGTTGCGAATCACTAGC -ACGGAATGGTTGCGAATCAGATGC -ACGGAATGGTTGCGAATCTGAAGG -ACGGAATGGTTGCGAATCCAATGG -ACGGAATGGTTGCGAATCATGAGG -ACGGAATGGTTGCGAATCAATGGG -ACGGAATGGTTGCGAATCTCCTGA -ACGGAATGGTTGCGAATCTAGCGA -ACGGAATGGTTGCGAATCCACAGA -ACGGAATGGTTGCGAATCGCAAGA -ACGGAATGGTTGCGAATCGGTTGA -ACGGAATGGTTGCGAATCTCCGAT -ACGGAATGGTTGCGAATCTGGCAT -ACGGAATGGTTGCGAATCCGAGAT -ACGGAATGGTTGCGAATCTACCAC -ACGGAATGGTTGCGAATCCAGAAC -ACGGAATGGTTGCGAATCGTCTAC -ACGGAATGGTTGCGAATCACGTAC -ACGGAATGGTTGCGAATCAGTGAC -ACGGAATGGTTGCGAATCCTGTAG -ACGGAATGGTTGCGAATCCCTAAG -ACGGAATGGTTGCGAATCGTTCAG -ACGGAATGGTTGCGAATCGCATAG -ACGGAATGGTTGCGAATCGACAAG -ACGGAATGGTTGCGAATCAAGCAG -ACGGAATGGTTGCGAATCCGTCAA -ACGGAATGGTTGCGAATCGCTGAA -ACGGAATGGTTGCGAATCAGTACG -ACGGAATGGTTGCGAATCATCCGA -ACGGAATGGTTGCGAATCATGGGA -ACGGAATGGTTGCGAATCGTGCAA -ACGGAATGGTTGCGAATCGAGGAA -ACGGAATGGTTGCGAATCCAGGTA -ACGGAATGGTTGCGAATCGACTCT -ACGGAATGGTTGCGAATCAGTCCT -ACGGAATGGTTGCGAATCTAAGCC -ACGGAATGGTTGCGAATCATAGCC -ACGGAATGGTTGCGAATCTAACCG -ACGGAATGGTTGCGAATCATGCCA -ACGGAATGGTTGGGAATGGGAAAC -ACGGAATGGTTGGGAATGAACACC -ACGGAATGGTTGGGAATGATCGAG -ACGGAATGGTTGGGAATGCTCCTT -ACGGAATGGTTGGGAATGCCTGTT -ACGGAATGGTTGGGAATGCGGTTT -ACGGAATGGTTGGGAATGGTGGTT -ACGGAATGGTTGGGAATGGCCTTT -ACGGAATGGTTGGGAATGGGTCTT -ACGGAATGGTTGGGAATGACGCTT -ACGGAATGGTTGGGAATGAGCGTT -ACGGAATGGTTGGGAATGTTCGTC -ACGGAATGGTTGGGAATGTCTCTC -ACGGAATGGTTGGGAATGTGGATC -ACGGAATGGTTGGGAATGCACTTC -ACGGAATGGTTGGGAATGGTACTC -ACGGAATGGTTGGGAATGGATGTC -ACGGAATGGTTGGGAATGACAGTC -ACGGAATGGTTGGGAATGTTGCTG -ACGGAATGGTTGGGAATGTCCATG -ACGGAATGGTTGGGAATGTGTGTG -ACGGAATGGTTGGGAATGCTAGTG -ACGGAATGGTTGGGAATGCATCTG -ACGGAATGGTTGGGAATGGAGTTG -ACGGAATGGTTGGGAATGAGACTG -ACGGAATGGTTGGGAATGTCGGTA -ACGGAATGGTTGGGAATGTGCCTA -ACGGAATGGTTGGGAATGCCACTA -ACGGAATGGTTGGGAATGGGAGTA -ACGGAATGGTTGGGAATGTCGTCT -ACGGAATGGTTGGGAATGTGCACT -ACGGAATGGTTGGGAATGCTGACT -ACGGAATGGTTGGGAATGCAACCT -ACGGAATGGTTGGGAATGGCTACT -ACGGAATGGTTGGGAATGGGATCT -ACGGAATGGTTGGGAATGAAGGCT -ACGGAATGGTTGGGAATGTCAACC -ACGGAATGGTTGGGAATGTGTTCC -ACGGAATGGTTGGGAATGATTCCC -ACGGAATGGTTGGGAATGTTCTCG -ACGGAATGGTTGGGAATGTAGACG -ACGGAATGGTTGGGAATGGTAACG -ACGGAATGGTTGGGAATGACTTCG -ACGGAATGGTTGGGAATGTACGCA -ACGGAATGGTTGGGAATGCTTGCA -ACGGAATGGTTGGGAATGCGAACA -ACGGAATGGTTGGGAATGCAGTCA -ACGGAATGGTTGGGAATGGATCCA -ACGGAATGGTTGGGAATGACGACA -ACGGAATGGTTGGGAATGAGCTCA -ACGGAATGGTTGGGAATGTCACGT -ACGGAATGGTTGGGAATGCGTAGT -ACGGAATGGTTGGGAATGGTCAGT -ACGGAATGGTTGGGAATGGAAGGT -ACGGAATGGTTGGGAATGAACCGT -ACGGAATGGTTGGGAATGTTGTGC -ACGGAATGGTTGGGAATGCTAAGC -ACGGAATGGTTGGGAATGACTAGC -ACGGAATGGTTGGGAATGAGATGC -ACGGAATGGTTGGGAATGTGAAGG -ACGGAATGGTTGGGAATGCAATGG -ACGGAATGGTTGGGAATGATGAGG -ACGGAATGGTTGGGAATGAATGGG -ACGGAATGGTTGGGAATGTCCTGA -ACGGAATGGTTGGGAATGTAGCGA -ACGGAATGGTTGGGAATGCACAGA -ACGGAATGGTTGGGAATGGCAAGA -ACGGAATGGTTGGGAATGGGTTGA -ACGGAATGGTTGGGAATGTCCGAT -ACGGAATGGTTGGGAATGTGGCAT -ACGGAATGGTTGGGAATGCGAGAT -ACGGAATGGTTGGGAATGTACCAC -ACGGAATGGTTGGGAATGCAGAAC -ACGGAATGGTTGGGAATGGTCTAC -ACGGAATGGTTGGGAATGACGTAC -ACGGAATGGTTGGGAATGAGTGAC -ACGGAATGGTTGGGAATGCTGTAG -ACGGAATGGTTGGGAATGCCTAAG -ACGGAATGGTTGGGAATGGTTCAG -ACGGAATGGTTGGGAATGGCATAG -ACGGAATGGTTGGGAATGGACAAG -ACGGAATGGTTGGGAATGAAGCAG -ACGGAATGGTTGGGAATGCGTCAA -ACGGAATGGTTGGGAATGGCTGAA -ACGGAATGGTTGGGAATGAGTACG -ACGGAATGGTTGGGAATGATCCGA -ACGGAATGGTTGGGAATGATGGGA -ACGGAATGGTTGGGAATGGTGCAA -ACGGAATGGTTGGGAATGGAGGAA -ACGGAATGGTTGGGAATGCAGGTA -ACGGAATGGTTGGGAATGGACTCT -ACGGAATGGTTGGGAATGAGTCCT -ACGGAATGGTTGGGAATGTAAGCC -ACGGAATGGTTGGGAATGATAGCC -ACGGAATGGTTGGGAATGTAACCG -ACGGAATGGTTGGGAATGATGCCA -ACGGAATGGTTGCAAGTGGGAAAC -ACGGAATGGTTGCAAGTGAACACC -ACGGAATGGTTGCAAGTGATCGAG -ACGGAATGGTTGCAAGTGCTCCTT -ACGGAATGGTTGCAAGTGCCTGTT -ACGGAATGGTTGCAAGTGCGGTTT -ACGGAATGGTTGCAAGTGGTGGTT -ACGGAATGGTTGCAAGTGGCCTTT -ACGGAATGGTTGCAAGTGGGTCTT -ACGGAATGGTTGCAAGTGACGCTT -ACGGAATGGTTGCAAGTGAGCGTT -ACGGAATGGTTGCAAGTGTTCGTC -ACGGAATGGTTGCAAGTGTCTCTC -ACGGAATGGTTGCAAGTGTGGATC -ACGGAATGGTTGCAAGTGCACTTC -ACGGAATGGTTGCAAGTGGTACTC -ACGGAATGGTTGCAAGTGGATGTC -ACGGAATGGTTGCAAGTGACAGTC -ACGGAATGGTTGCAAGTGTTGCTG -ACGGAATGGTTGCAAGTGTCCATG -ACGGAATGGTTGCAAGTGTGTGTG -ACGGAATGGTTGCAAGTGCTAGTG -ACGGAATGGTTGCAAGTGCATCTG -ACGGAATGGTTGCAAGTGGAGTTG -ACGGAATGGTTGCAAGTGAGACTG -ACGGAATGGTTGCAAGTGTCGGTA -ACGGAATGGTTGCAAGTGTGCCTA -ACGGAATGGTTGCAAGTGCCACTA -ACGGAATGGTTGCAAGTGGGAGTA -ACGGAATGGTTGCAAGTGTCGTCT -ACGGAATGGTTGCAAGTGTGCACT -ACGGAATGGTTGCAAGTGCTGACT -ACGGAATGGTTGCAAGTGCAACCT -ACGGAATGGTTGCAAGTGGCTACT -ACGGAATGGTTGCAAGTGGGATCT -ACGGAATGGTTGCAAGTGAAGGCT -ACGGAATGGTTGCAAGTGTCAACC -ACGGAATGGTTGCAAGTGTGTTCC -ACGGAATGGTTGCAAGTGATTCCC -ACGGAATGGTTGCAAGTGTTCTCG -ACGGAATGGTTGCAAGTGTAGACG -ACGGAATGGTTGCAAGTGGTAACG -ACGGAATGGTTGCAAGTGACTTCG -ACGGAATGGTTGCAAGTGTACGCA -ACGGAATGGTTGCAAGTGCTTGCA -ACGGAATGGTTGCAAGTGCGAACA -ACGGAATGGTTGCAAGTGCAGTCA -ACGGAATGGTTGCAAGTGGATCCA -ACGGAATGGTTGCAAGTGACGACA -ACGGAATGGTTGCAAGTGAGCTCA -ACGGAATGGTTGCAAGTGTCACGT -ACGGAATGGTTGCAAGTGCGTAGT -ACGGAATGGTTGCAAGTGGTCAGT -ACGGAATGGTTGCAAGTGGAAGGT -ACGGAATGGTTGCAAGTGAACCGT -ACGGAATGGTTGCAAGTGTTGTGC -ACGGAATGGTTGCAAGTGCTAAGC -ACGGAATGGTTGCAAGTGACTAGC -ACGGAATGGTTGCAAGTGAGATGC -ACGGAATGGTTGCAAGTGTGAAGG -ACGGAATGGTTGCAAGTGCAATGG -ACGGAATGGTTGCAAGTGATGAGG -ACGGAATGGTTGCAAGTGAATGGG -ACGGAATGGTTGCAAGTGTCCTGA -ACGGAATGGTTGCAAGTGTAGCGA -ACGGAATGGTTGCAAGTGCACAGA -ACGGAATGGTTGCAAGTGGCAAGA -ACGGAATGGTTGCAAGTGGGTTGA -ACGGAATGGTTGCAAGTGTCCGAT -ACGGAATGGTTGCAAGTGTGGCAT -ACGGAATGGTTGCAAGTGCGAGAT -ACGGAATGGTTGCAAGTGTACCAC -ACGGAATGGTTGCAAGTGCAGAAC -ACGGAATGGTTGCAAGTGGTCTAC -ACGGAATGGTTGCAAGTGACGTAC -ACGGAATGGTTGCAAGTGAGTGAC -ACGGAATGGTTGCAAGTGCTGTAG -ACGGAATGGTTGCAAGTGCCTAAG -ACGGAATGGTTGCAAGTGGTTCAG -ACGGAATGGTTGCAAGTGGCATAG -ACGGAATGGTTGCAAGTGGACAAG -ACGGAATGGTTGCAAGTGAAGCAG -ACGGAATGGTTGCAAGTGCGTCAA -ACGGAATGGTTGCAAGTGGCTGAA -ACGGAATGGTTGCAAGTGAGTACG -ACGGAATGGTTGCAAGTGATCCGA -ACGGAATGGTTGCAAGTGATGGGA -ACGGAATGGTTGCAAGTGGTGCAA -ACGGAATGGTTGCAAGTGGAGGAA -ACGGAATGGTTGCAAGTGCAGGTA -ACGGAATGGTTGCAAGTGGACTCT -ACGGAATGGTTGCAAGTGAGTCCT -ACGGAATGGTTGCAAGTGTAAGCC -ACGGAATGGTTGCAAGTGATAGCC -ACGGAATGGTTGCAAGTGTAACCG -ACGGAATGGTTGCAAGTGATGCCA -ACGGAATGGTTGGAAGAGGGAAAC -ACGGAATGGTTGGAAGAGAACACC -ACGGAATGGTTGGAAGAGATCGAG -ACGGAATGGTTGGAAGAGCTCCTT -ACGGAATGGTTGGAAGAGCCTGTT -ACGGAATGGTTGGAAGAGCGGTTT -ACGGAATGGTTGGAAGAGGTGGTT -ACGGAATGGTTGGAAGAGGCCTTT -ACGGAATGGTTGGAAGAGGGTCTT -ACGGAATGGTTGGAAGAGACGCTT -ACGGAATGGTTGGAAGAGAGCGTT -ACGGAATGGTTGGAAGAGTTCGTC -ACGGAATGGTTGGAAGAGTCTCTC -ACGGAATGGTTGGAAGAGTGGATC -ACGGAATGGTTGGAAGAGCACTTC -ACGGAATGGTTGGAAGAGGTACTC -ACGGAATGGTTGGAAGAGGATGTC -ACGGAATGGTTGGAAGAGACAGTC -ACGGAATGGTTGGAAGAGTTGCTG -ACGGAATGGTTGGAAGAGTCCATG -ACGGAATGGTTGGAAGAGTGTGTG -ACGGAATGGTTGGAAGAGCTAGTG -ACGGAATGGTTGGAAGAGCATCTG -ACGGAATGGTTGGAAGAGGAGTTG -ACGGAATGGTTGGAAGAGAGACTG -ACGGAATGGTTGGAAGAGTCGGTA -ACGGAATGGTTGGAAGAGTGCCTA -ACGGAATGGTTGGAAGAGCCACTA -ACGGAATGGTTGGAAGAGGGAGTA -ACGGAATGGTTGGAAGAGTCGTCT -ACGGAATGGTTGGAAGAGTGCACT -ACGGAATGGTTGGAAGAGCTGACT -ACGGAATGGTTGGAAGAGCAACCT -ACGGAATGGTTGGAAGAGGCTACT -ACGGAATGGTTGGAAGAGGGATCT -ACGGAATGGTTGGAAGAGAAGGCT -ACGGAATGGTTGGAAGAGTCAACC -ACGGAATGGTTGGAAGAGTGTTCC -ACGGAATGGTTGGAAGAGATTCCC -ACGGAATGGTTGGAAGAGTTCTCG -ACGGAATGGTTGGAAGAGTAGACG -ACGGAATGGTTGGAAGAGGTAACG -ACGGAATGGTTGGAAGAGACTTCG -ACGGAATGGTTGGAAGAGTACGCA -ACGGAATGGTTGGAAGAGCTTGCA -ACGGAATGGTTGGAAGAGCGAACA -ACGGAATGGTTGGAAGAGCAGTCA -ACGGAATGGTTGGAAGAGGATCCA -ACGGAATGGTTGGAAGAGACGACA -ACGGAATGGTTGGAAGAGAGCTCA -ACGGAATGGTTGGAAGAGTCACGT -ACGGAATGGTTGGAAGAGCGTAGT -ACGGAATGGTTGGAAGAGGTCAGT -ACGGAATGGTTGGAAGAGGAAGGT -ACGGAATGGTTGGAAGAGAACCGT -ACGGAATGGTTGGAAGAGTTGTGC -ACGGAATGGTTGGAAGAGCTAAGC -ACGGAATGGTTGGAAGAGACTAGC -ACGGAATGGTTGGAAGAGAGATGC -ACGGAATGGTTGGAAGAGTGAAGG -ACGGAATGGTTGGAAGAGCAATGG -ACGGAATGGTTGGAAGAGATGAGG -ACGGAATGGTTGGAAGAGAATGGG -ACGGAATGGTTGGAAGAGTCCTGA -ACGGAATGGTTGGAAGAGTAGCGA -ACGGAATGGTTGGAAGAGCACAGA -ACGGAATGGTTGGAAGAGGCAAGA -ACGGAATGGTTGGAAGAGGGTTGA -ACGGAATGGTTGGAAGAGTCCGAT -ACGGAATGGTTGGAAGAGTGGCAT -ACGGAATGGTTGGAAGAGCGAGAT -ACGGAATGGTTGGAAGAGTACCAC -ACGGAATGGTTGGAAGAGCAGAAC -ACGGAATGGTTGGAAGAGGTCTAC -ACGGAATGGTTGGAAGAGACGTAC -ACGGAATGGTTGGAAGAGAGTGAC -ACGGAATGGTTGGAAGAGCTGTAG -ACGGAATGGTTGGAAGAGCCTAAG -ACGGAATGGTTGGAAGAGGTTCAG -ACGGAATGGTTGGAAGAGGCATAG -ACGGAATGGTTGGAAGAGGACAAG -ACGGAATGGTTGGAAGAGAAGCAG -ACGGAATGGTTGGAAGAGCGTCAA -ACGGAATGGTTGGAAGAGGCTGAA -ACGGAATGGTTGGAAGAGAGTACG -ACGGAATGGTTGGAAGAGATCCGA -ACGGAATGGTTGGAAGAGATGGGA -ACGGAATGGTTGGAAGAGGTGCAA -ACGGAATGGTTGGAAGAGGAGGAA -ACGGAATGGTTGGAAGAGCAGGTA -ACGGAATGGTTGGAAGAGGACTCT -ACGGAATGGTTGGAAGAGAGTCCT -ACGGAATGGTTGGAAGAGTAAGCC -ACGGAATGGTTGGAAGAGATAGCC -ACGGAATGGTTGGAAGAGTAACCG -ACGGAATGGTTGGAAGAGATGCCA -ACGGAATGGTTGGTACAGGGAAAC -ACGGAATGGTTGGTACAGAACACC -ACGGAATGGTTGGTACAGATCGAG -ACGGAATGGTTGGTACAGCTCCTT -ACGGAATGGTTGGTACAGCCTGTT -ACGGAATGGTTGGTACAGCGGTTT -ACGGAATGGTTGGTACAGGTGGTT -ACGGAATGGTTGGTACAGGCCTTT -ACGGAATGGTTGGTACAGGGTCTT -ACGGAATGGTTGGTACAGACGCTT -ACGGAATGGTTGGTACAGAGCGTT -ACGGAATGGTTGGTACAGTTCGTC -ACGGAATGGTTGGTACAGTCTCTC -ACGGAATGGTTGGTACAGTGGATC -ACGGAATGGTTGGTACAGCACTTC -ACGGAATGGTTGGTACAGGTACTC -ACGGAATGGTTGGTACAGGATGTC -ACGGAATGGTTGGTACAGACAGTC -ACGGAATGGTTGGTACAGTTGCTG -ACGGAATGGTTGGTACAGTCCATG -ACGGAATGGTTGGTACAGTGTGTG -ACGGAATGGTTGGTACAGCTAGTG -ACGGAATGGTTGGTACAGCATCTG -ACGGAATGGTTGGTACAGGAGTTG -ACGGAATGGTTGGTACAGAGACTG -ACGGAATGGTTGGTACAGTCGGTA -ACGGAATGGTTGGTACAGTGCCTA -ACGGAATGGTTGGTACAGCCACTA -ACGGAATGGTTGGTACAGGGAGTA -ACGGAATGGTTGGTACAGTCGTCT -ACGGAATGGTTGGTACAGTGCACT -ACGGAATGGTTGGTACAGCTGACT -ACGGAATGGTTGGTACAGCAACCT -ACGGAATGGTTGGTACAGGCTACT -ACGGAATGGTTGGTACAGGGATCT -ACGGAATGGTTGGTACAGAAGGCT -ACGGAATGGTTGGTACAGTCAACC -ACGGAATGGTTGGTACAGTGTTCC -ACGGAATGGTTGGTACAGATTCCC -ACGGAATGGTTGGTACAGTTCTCG -ACGGAATGGTTGGTACAGTAGACG -ACGGAATGGTTGGTACAGGTAACG -ACGGAATGGTTGGTACAGACTTCG -ACGGAATGGTTGGTACAGTACGCA -ACGGAATGGTTGGTACAGCTTGCA -ACGGAATGGTTGGTACAGCGAACA -ACGGAATGGTTGGTACAGCAGTCA -ACGGAATGGTTGGTACAGGATCCA -ACGGAATGGTTGGTACAGACGACA -ACGGAATGGTTGGTACAGAGCTCA -ACGGAATGGTTGGTACAGTCACGT -ACGGAATGGTTGGTACAGCGTAGT -ACGGAATGGTTGGTACAGGTCAGT -ACGGAATGGTTGGTACAGGAAGGT -ACGGAATGGTTGGTACAGAACCGT -ACGGAATGGTTGGTACAGTTGTGC -ACGGAATGGTTGGTACAGCTAAGC -ACGGAATGGTTGGTACAGACTAGC -ACGGAATGGTTGGTACAGAGATGC -ACGGAATGGTTGGTACAGTGAAGG -ACGGAATGGTTGGTACAGCAATGG -ACGGAATGGTTGGTACAGATGAGG -ACGGAATGGTTGGTACAGAATGGG -ACGGAATGGTTGGTACAGTCCTGA -ACGGAATGGTTGGTACAGTAGCGA -ACGGAATGGTTGGTACAGCACAGA -ACGGAATGGTTGGTACAGGCAAGA -ACGGAATGGTTGGTACAGGGTTGA -ACGGAATGGTTGGTACAGTCCGAT -ACGGAATGGTTGGTACAGTGGCAT -ACGGAATGGTTGGTACAGCGAGAT -ACGGAATGGTTGGTACAGTACCAC -ACGGAATGGTTGGTACAGCAGAAC -ACGGAATGGTTGGTACAGGTCTAC -ACGGAATGGTTGGTACAGACGTAC -ACGGAATGGTTGGTACAGAGTGAC -ACGGAATGGTTGGTACAGCTGTAG -ACGGAATGGTTGGTACAGCCTAAG -ACGGAATGGTTGGTACAGGTTCAG -ACGGAATGGTTGGTACAGGCATAG -ACGGAATGGTTGGTACAGGACAAG -ACGGAATGGTTGGTACAGAAGCAG -ACGGAATGGTTGGTACAGCGTCAA -ACGGAATGGTTGGTACAGGCTGAA -ACGGAATGGTTGGTACAGAGTACG -ACGGAATGGTTGGTACAGATCCGA -ACGGAATGGTTGGTACAGATGGGA -ACGGAATGGTTGGTACAGGTGCAA -ACGGAATGGTTGGTACAGGAGGAA -ACGGAATGGTTGGTACAGCAGGTA -ACGGAATGGTTGGTACAGGACTCT -ACGGAATGGTTGGTACAGAGTCCT -ACGGAATGGTTGGTACAGTAAGCC -ACGGAATGGTTGGTACAGATAGCC -ACGGAATGGTTGGTACAGTAACCG -ACGGAATGGTTGGTACAGATGCCA -ACGGAATGGTTGTCTGACGGAAAC -ACGGAATGGTTGTCTGACAACACC -ACGGAATGGTTGTCTGACATCGAG -ACGGAATGGTTGTCTGACCTCCTT -ACGGAATGGTTGTCTGACCCTGTT -ACGGAATGGTTGTCTGACCGGTTT -ACGGAATGGTTGTCTGACGTGGTT -ACGGAATGGTTGTCTGACGCCTTT -ACGGAATGGTTGTCTGACGGTCTT -ACGGAATGGTTGTCTGACACGCTT -ACGGAATGGTTGTCTGACAGCGTT -ACGGAATGGTTGTCTGACTTCGTC -ACGGAATGGTTGTCTGACTCTCTC -ACGGAATGGTTGTCTGACTGGATC -ACGGAATGGTTGTCTGACCACTTC -ACGGAATGGTTGTCTGACGTACTC -ACGGAATGGTTGTCTGACGATGTC -ACGGAATGGTTGTCTGACACAGTC -ACGGAATGGTTGTCTGACTTGCTG -ACGGAATGGTTGTCTGACTCCATG -ACGGAATGGTTGTCTGACTGTGTG -ACGGAATGGTTGTCTGACCTAGTG -ACGGAATGGTTGTCTGACCATCTG -ACGGAATGGTTGTCTGACGAGTTG -ACGGAATGGTTGTCTGACAGACTG -ACGGAATGGTTGTCTGACTCGGTA -ACGGAATGGTTGTCTGACTGCCTA -ACGGAATGGTTGTCTGACCCACTA -ACGGAATGGTTGTCTGACGGAGTA -ACGGAATGGTTGTCTGACTCGTCT -ACGGAATGGTTGTCTGACTGCACT -ACGGAATGGTTGTCTGACCTGACT -ACGGAATGGTTGTCTGACCAACCT -ACGGAATGGTTGTCTGACGCTACT -ACGGAATGGTTGTCTGACGGATCT -ACGGAATGGTTGTCTGACAAGGCT -ACGGAATGGTTGTCTGACTCAACC -ACGGAATGGTTGTCTGACTGTTCC -ACGGAATGGTTGTCTGACATTCCC -ACGGAATGGTTGTCTGACTTCTCG -ACGGAATGGTTGTCTGACTAGACG -ACGGAATGGTTGTCTGACGTAACG -ACGGAATGGTTGTCTGACACTTCG -ACGGAATGGTTGTCTGACTACGCA -ACGGAATGGTTGTCTGACCTTGCA -ACGGAATGGTTGTCTGACCGAACA -ACGGAATGGTTGTCTGACCAGTCA -ACGGAATGGTTGTCTGACGATCCA -ACGGAATGGTTGTCTGACACGACA -ACGGAATGGTTGTCTGACAGCTCA -ACGGAATGGTTGTCTGACTCACGT -ACGGAATGGTTGTCTGACCGTAGT -ACGGAATGGTTGTCTGACGTCAGT -ACGGAATGGTTGTCTGACGAAGGT -ACGGAATGGTTGTCTGACAACCGT -ACGGAATGGTTGTCTGACTTGTGC -ACGGAATGGTTGTCTGACCTAAGC -ACGGAATGGTTGTCTGACACTAGC -ACGGAATGGTTGTCTGACAGATGC -ACGGAATGGTTGTCTGACTGAAGG -ACGGAATGGTTGTCTGACCAATGG -ACGGAATGGTTGTCTGACATGAGG -ACGGAATGGTTGTCTGACAATGGG -ACGGAATGGTTGTCTGACTCCTGA -ACGGAATGGTTGTCTGACTAGCGA -ACGGAATGGTTGTCTGACCACAGA -ACGGAATGGTTGTCTGACGCAAGA -ACGGAATGGTTGTCTGACGGTTGA -ACGGAATGGTTGTCTGACTCCGAT -ACGGAATGGTTGTCTGACTGGCAT -ACGGAATGGTTGTCTGACCGAGAT -ACGGAATGGTTGTCTGACTACCAC -ACGGAATGGTTGTCTGACCAGAAC -ACGGAATGGTTGTCTGACGTCTAC -ACGGAATGGTTGTCTGACACGTAC -ACGGAATGGTTGTCTGACAGTGAC -ACGGAATGGTTGTCTGACCTGTAG -ACGGAATGGTTGTCTGACCCTAAG -ACGGAATGGTTGTCTGACGTTCAG -ACGGAATGGTTGTCTGACGCATAG -ACGGAATGGTTGTCTGACGACAAG -ACGGAATGGTTGTCTGACAAGCAG -ACGGAATGGTTGTCTGACCGTCAA -ACGGAATGGTTGTCTGACGCTGAA -ACGGAATGGTTGTCTGACAGTACG -ACGGAATGGTTGTCTGACATCCGA -ACGGAATGGTTGTCTGACATGGGA -ACGGAATGGTTGTCTGACGTGCAA -ACGGAATGGTTGTCTGACGAGGAA -ACGGAATGGTTGTCTGACCAGGTA -ACGGAATGGTTGTCTGACGACTCT -ACGGAATGGTTGTCTGACAGTCCT -ACGGAATGGTTGTCTGACTAAGCC -ACGGAATGGTTGTCTGACATAGCC -ACGGAATGGTTGTCTGACTAACCG -ACGGAATGGTTGTCTGACATGCCA -ACGGAATGGTTGCCTAGTGGAAAC -ACGGAATGGTTGCCTAGTAACACC -ACGGAATGGTTGCCTAGTATCGAG -ACGGAATGGTTGCCTAGTCTCCTT -ACGGAATGGTTGCCTAGTCCTGTT -ACGGAATGGTTGCCTAGTCGGTTT -ACGGAATGGTTGCCTAGTGTGGTT -ACGGAATGGTTGCCTAGTGCCTTT -ACGGAATGGTTGCCTAGTGGTCTT -ACGGAATGGTTGCCTAGTACGCTT -ACGGAATGGTTGCCTAGTAGCGTT -ACGGAATGGTTGCCTAGTTTCGTC -ACGGAATGGTTGCCTAGTTCTCTC -ACGGAATGGTTGCCTAGTTGGATC -ACGGAATGGTTGCCTAGTCACTTC -ACGGAATGGTTGCCTAGTGTACTC -ACGGAATGGTTGCCTAGTGATGTC -ACGGAATGGTTGCCTAGTACAGTC -ACGGAATGGTTGCCTAGTTTGCTG -ACGGAATGGTTGCCTAGTTCCATG -ACGGAATGGTTGCCTAGTTGTGTG -ACGGAATGGTTGCCTAGTCTAGTG -ACGGAATGGTTGCCTAGTCATCTG -ACGGAATGGTTGCCTAGTGAGTTG -ACGGAATGGTTGCCTAGTAGACTG -ACGGAATGGTTGCCTAGTTCGGTA -ACGGAATGGTTGCCTAGTTGCCTA -ACGGAATGGTTGCCTAGTCCACTA -ACGGAATGGTTGCCTAGTGGAGTA -ACGGAATGGTTGCCTAGTTCGTCT -ACGGAATGGTTGCCTAGTTGCACT -ACGGAATGGTTGCCTAGTCTGACT -ACGGAATGGTTGCCTAGTCAACCT -ACGGAATGGTTGCCTAGTGCTACT -ACGGAATGGTTGCCTAGTGGATCT -ACGGAATGGTTGCCTAGTAAGGCT -ACGGAATGGTTGCCTAGTTCAACC -ACGGAATGGTTGCCTAGTTGTTCC -ACGGAATGGTTGCCTAGTATTCCC -ACGGAATGGTTGCCTAGTTTCTCG -ACGGAATGGTTGCCTAGTTAGACG -ACGGAATGGTTGCCTAGTGTAACG -ACGGAATGGTTGCCTAGTACTTCG -ACGGAATGGTTGCCTAGTTACGCA -ACGGAATGGTTGCCTAGTCTTGCA -ACGGAATGGTTGCCTAGTCGAACA -ACGGAATGGTTGCCTAGTCAGTCA -ACGGAATGGTTGCCTAGTGATCCA -ACGGAATGGTTGCCTAGTACGACA -ACGGAATGGTTGCCTAGTAGCTCA -ACGGAATGGTTGCCTAGTTCACGT -ACGGAATGGTTGCCTAGTCGTAGT -ACGGAATGGTTGCCTAGTGTCAGT -ACGGAATGGTTGCCTAGTGAAGGT -ACGGAATGGTTGCCTAGTAACCGT -ACGGAATGGTTGCCTAGTTTGTGC -ACGGAATGGTTGCCTAGTCTAAGC -ACGGAATGGTTGCCTAGTACTAGC -ACGGAATGGTTGCCTAGTAGATGC -ACGGAATGGTTGCCTAGTTGAAGG -ACGGAATGGTTGCCTAGTCAATGG -ACGGAATGGTTGCCTAGTATGAGG -ACGGAATGGTTGCCTAGTAATGGG -ACGGAATGGTTGCCTAGTTCCTGA -ACGGAATGGTTGCCTAGTTAGCGA -ACGGAATGGTTGCCTAGTCACAGA -ACGGAATGGTTGCCTAGTGCAAGA -ACGGAATGGTTGCCTAGTGGTTGA -ACGGAATGGTTGCCTAGTTCCGAT -ACGGAATGGTTGCCTAGTTGGCAT -ACGGAATGGTTGCCTAGTCGAGAT -ACGGAATGGTTGCCTAGTTACCAC -ACGGAATGGTTGCCTAGTCAGAAC -ACGGAATGGTTGCCTAGTGTCTAC -ACGGAATGGTTGCCTAGTACGTAC -ACGGAATGGTTGCCTAGTAGTGAC -ACGGAATGGTTGCCTAGTCTGTAG -ACGGAATGGTTGCCTAGTCCTAAG -ACGGAATGGTTGCCTAGTGTTCAG -ACGGAATGGTTGCCTAGTGCATAG -ACGGAATGGTTGCCTAGTGACAAG -ACGGAATGGTTGCCTAGTAAGCAG -ACGGAATGGTTGCCTAGTCGTCAA -ACGGAATGGTTGCCTAGTGCTGAA -ACGGAATGGTTGCCTAGTAGTACG -ACGGAATGGTTGCCTAGTATCCGA -ACGGAATGGTTGCCTAGTATGGGA -ACGGAATGGTTGCCTAGTGTGCAA -ACGGAATGGTTGCCTAGTGAGGAA -ACGGAATGGTTGCCTAGTCAGGTA -ACGGAATGGTTGCCTAGTGACTCT -ACGGAATGGTTGCCTAGTAGTCCT -ACGGAATGGTTGCCTAGTTAAGCC -ACGGAATGGTTGCCTAGTATAGCC -ACGGAATGGTTGCCTAGTTAACCG -ACGGAATGGTTGCCTAGTATGCCA -ACGGAATGGTTGGCCTAAGGAAAC -ACGGAATGGTTGGCCTAAAACACC -ACGGAATGGTTGGCCTAAATCGAG -ACGGAATGGTTGGCCTAACTCCTT -ACGGAATGGTTGGCCTAACCTGTT -ACGGAATGGTTGGCCTAACGGTTT -ACGGAATGGTTGGCCTAAGTGGTT -ACGGAATGGTTGGCCTAAGCCTTT -ACGGAATGGTTGGCCTAAGGTCTT -ACGGAATGGTTGGCCTAAACGCTT -ACGGAATGGTTGGCCTAAAGCGTT -ACGGAATGGTTGGCCTAATTCGTC -ACGGAATGGTTGGCCTAATCTCTC -ACGGAATGGTTGGCCTAATGGATC -ACGGAATGGTTGGCCTAACACTTC -ACGGAATGGTTGGCCTAAGTACTC -ACGGAATGGTTGGCCTAAGATGTC -ACGGAATGGTTGGCCTAAACAGTC -ACGGAATGGTTGGCCTAATTGCTG -ACGGAATGGTTGGCCTAATCCATG -ACGGAATGGTTGGCCTAATGTGTG -ACGGAATGGTTGGCCTAACTAGTG -ACGGAATGGTTGGCCTAACATCTG -ACGGAATGGTTGGCCTAAGAGTTG -ACGGAATGGTTGGCCTAAAGACTG -ACGGAATGGTTGGCCTAATCGGTA -ACGGAATGGTTGGCCTAATGCCTA -ACGGAATGGTTGGCCTAACCACTA -ACGGAATGGTTGGCCTAAGGAGTA -ACGGAATGGTTGGCCTAATCGTCT -ACGGAATGGTTGGCCTAATGCACT -ACGGAATGGTTGGCCTAACTGACT -ACGGAATGGTTGGCCTAACAACCT -ACGGAATGGTTGGCCTAAGCTACT -ACGGAATGGTTGGCCTAAGGATCT -ACGGAATGGTTGGCCTAAAAGGCT -ACGGAATGGTTGGCCTAATCAACC -ACGGAATGGTTGGCCTAATGTTCC -ACGGAATGGTTGGCCTAAATTCCC -ACGGAATGGTTGGCCTAATTCTCG -ACGGAATGGTTGGCCTAATAGACG -ACGGAATGGTTGGCCTAAGTAACG -ACGGAATGGTTGGCCTAAACTTCG -ACGGAATGGTTGGCCTAATACGCA -ACGGAATGGTTGGCCTAACTTGCA -ACGGAATGGTTGGCCTAACGAACA -ACGGAATGGTTGGCCTAACAGTCA -ACGGAATGGTTGGCCTAAGATCCA -ACGGAATGGTTGGCCTAAACGACA -ACGGAATGGTTGGCCTAAAGCTCA -ACGGAATGGTTGGCCTAATCACGT -ACGGAATGGTTGGCCTAACGTAGT -ACGGAATGGTTGGCCTAAGTCAGT -ACGGAATGGTTGGCCTAAGAAGGT -ACGGAATGGTTGGCCTAAAACCGT -ACGGAATGGTTGGCCTAATTGTGC -ACGGAATGGTTGGCCTAACTAAGC -ACGGAATGGTTGGCCTAAACTAGC -ACGGAATGGTTGGCCTAAAGATGC -ACGGAATGGTTGGCCTAATGAAGG -ACGGAATGGTTGGCCTAACAATGG -ACGGAATGGTTGGCCTAAATGAGG -ACGGAATGGTTGGCCTAAAATGGG -ACGGAATGGTTGGCCTAATCCTGA -ACGGAATGGTTGGCCTAATAGCGA -ACGGAATGGTTGGCCTAACACAGA -ACGGAATGGTTGGCCTAAGCAAGA -ACGGAATGGTTGGCCTAAGGTTGA -ACGGAATGGTTGGCCTAATCCGAT -ACGGAATGGTTGGCCTAATGGCAT -ACGGAATGGTTGGCCTAACGAGAT -ACGGAATGGTTGGCCTAATACCAC -ACGGAATGGTTGGCCTAACAGAAC -ACGGAATGGTTGGCCTAAGTCTAC -ACGGAATGGTTGGCCTAAACGTAC -ACGGAATGGTTGGCCTAAAGTGAC -ACGGAATGGTTGGCCTAACTGTAG -ACGGAATGGTTGGCCTAACCTAAG -ACGGAATGGTTGGCCTAAGTTCAG -ACGGAATGGTTGGCCTAAGCATAG -ACGGAATGGTTGGCCTAAGACAAG -ACGGAATGGTTGGCCTAAAAGCAG -ACGGAATGGTTGGCCTAACGTCAA -ACGGAATGGTTGGCCTAAGCTGAA -ACGGAATGGTTGGCCTAAAGTACG -ACGGAATGGTTGGCCTAAATCCGA -ACGGAATGGTTGGCCTAAATGGGA -ACGGAATGGTTGGCCTAAGTGCAA -ACGGAATGGTTGGCCTAAGAGGAA -ACGGAATGGTTGGCCTAACAGGTA -ACGGAATGGTTGGCCTAAGACTCT -ACGGAATGGTTGGCCTAAAGTCCT -ACGGAATGGTTGGCCTAATAAGCC -ACGGAATGGTTGGCCTAAATAGCC -ACGGAATGGTTGGCCTAATAACCG -ACGGAATGGTTGGCCTAAATGCCA -ACGGAATGGTTGGCCATAGGAAAC -ACGGAATGGTTGGCCATAAACACC -ACGGAATGGTTGGCCATAATCGAG -ACGGAATGGTTGGCCATACTCCTT -ACGGAATGGTTGGCCATACCTGTT -ACGGAATGGTTGGCCATACGGTTT -ACGGAATGGTTGGCCATAGTGGTT -ACGGAATGGTTGGCCATAGCCTTT -ACGGAATGGTTGGCCATAGGTCTT -ACGGAATGGTTGGCCATAACGCTT -ACGGAATGGTTGGCCATAAGCGTT -ACGGAATGGTTGGCCATATTCGTC -ACGGAATGGTTGGCCATATCTCTC -ACGGAATGGTTGGCCATATGGATC -ACGGAATGGTTGGCCATACACTTC -ACGGAATGGTTGGCCATAGTACTC -ACGGAATGGTTGGCCATAGATGTC -ACGGAATGGTTGGCCATAACAGTC -ACGGAATGGTTGGCCATATTGCTG -ACGGAATGGTTGGCCATATCCATG -ACGGAATGGTTGGCCATATGTGTG -ACGGAATGGTTGGCCATACTAGTG -ACGGAATGGTTGGCCATACATCTG -ACGGAATGGTTGGCCATAGAGTTG -ACGGAATGGTTGGCCATAAGACTG -ACGGAATGGTTGGCCATATCGGTA -ACGGAATGGTTGGCCATATGCCTA -ACGGAATGGTTGGCCATACCACTA -ACGGAATGGTTGGCCATAGGAGTA -ACGGAATGGTTGGCCATATCGTCT -ACGGAATGGTTGGCCATATGCACT -ACGGAATGGTTGGCCATACTGACT -ACGGAATGGTTGGCCATACAACCT -ACGGAATGGTTGGCCATAGCTACT -ACGGAATGGTTGGCCATAGGATCT -ACGGAATGGTTGGCCATAAAGGCT -ACGGAATGGTTGGCCATATCAACC -ACGGAATGGTTGGCCATATGTTCC -ACGGAATGGTTGGCCATAATTCCC -ACGGAATGGTTGGCCATATTCTCG -ACGGAATGGTTGGCCATATAGACG -ACGGAATGGTTGGCCATAGTAACG -ACGGAATGGTTGGCCATAACTTCG -ACGGAATGGTTGGCCATATACGCA -ACGGAATGGTTGGCCATACTTGCA -ACGGAATGGTTGGCCATACGAACA -ACGGAATGGTTGGCCATACAGTCA -ACGGAATGGTTGGCCATAGATCCA -ACGGAATGGTTGGCCATAACGACA -ACGGAATGGTTGGCCATAAGCTCA -ACGGAATGGTTGGCCATATCACGT -ACGGAATGGTTGGCCATACGTAGT -ACGGAATGGTTGGCCATAGTCAGT -ACGGAATGGTTGGCCATAGAAGGT -ACGGAATGGTTGGCCATAAACCGT -ACGGAATGGTTGGCCATATTGTGC -ACGGAATGGTTGGCCATACTAAGC -ACGGAATGGTTGGCCATAACTAGC -ACGGAATGGTTGGCCATAAGATGC -ACGGAATGGTTGGCCATATGAAGG -ACGGAATGGTTGGCCATACAATGG -ACGGAATGGTTGGCCATAATGAGG -ACGGAATGGTTGGCCATAAATGGG -ACGGAATGGTTGGCCATATCCTGA -ACGGAATGGTTGGCCATATAGCGA -ACGGAATGGTTGGCCATACACAGA -ACGGAATGGTTGGCCATAGCAAGA -ACGGAATGGTTGGCCATAGGTTGA -ACGGAATGGTTGGCCATATCCGAT -ACGGAATGGTTGGCCATATGGCAT -ACGGAATGGTTGGCCATACGAGAT -ACGGAATGGTTGGCCATATACCAC -ACGGAATGGTTGGCCATACAGAAC -ACGGAATGGTTGGCCATAGTCTAC -ACGGAATGGTTGGCCATAACGTAC -ACGGAATGGTTGGCCATAAGTGAC -ACGGAATGGTTGGCCATACTGTAG -ACGGAATGGTTGGCCATACCTAAG -ACGGAATGGTTGGCCATAGTTCAG -ACGGAATGGTTGGCCATAGCATAG -ACGGAATGGTTGGCCATAGACAAG -ACGGAATGGTTGGCCATAAAGCAG -ACGGAATGGTTGGCCATACGTCAA -ACGGAATGGTTGGCCATAGCTGAA -ACGGAATGGTTGGCCATAAGTACG -ACGGAATGGTTGGCCATAATCCGA -ACGGAATGGTTGGCCATAATGGGA -ACGGAATGGTTGGCCATAGTGCAA -ACGGAATGGTTGGCCATAGAGGAA -ACGGAATGGTTGGCCATACAGGTA -ACGGAATGGTTGGCCATAGACTCT -ACGGAATGGTTGGCCATAAGTCCT -ACGGAATGGTTGGCCATATAAGCC -ACGGAATGGTTGGCCATAATAGCC -ACGGAATGGTTGGCCATATAACCG -ACGGAATGGTTGGCCATAATGCCA -ACGGAATGGTTGCCGTAAGGAAAC -ACGGAATGGTTGCCGTAAAACACC -ACGGAATGGTTGCCGTAAATCGAG -ACGGAATGGTTGCCGTAACTCCTT -ACGGAATGGTTGCCGTAACCTGTT -ACGGAATGGTTGCCGTAACGGTTT -ACGGAATGGTTGCCGTAAGTGGTT -ACGGAATGGTTGCCGTAAGCCTTT -ACGGAATGGTTGCCGTAAGGTCTT -ACGGAATGGTTGCCGTAAACGCTT -ACGGAATGGTTGCCGTAAAGCGTT -ACGGAATGGTTGCCGTAATTCGTC -ACGGAATGGTTGCCGTAATCTCTC -ACGGAATGGTTGCCGTAATGGATC -ACGGAATGGTTGCCGTAACACTTC -ACGGAATGGTTGCCGTAAGTACTC -ACGGAATGGTTGCCGTAAGATGTC -ACGGAATGGTTGCCGTAAACAGTC -ACGGAATGGTTGCCGTAATTGCTG -ACGGAATGGTTGCCGTAATCCATG -ACGGAATGGTTGCCGTAATGTGTG -ACGGAATGGTTGCCGTAACTAGTG -ACGGAATGGTTGCCGTAACATCTG -ACGGAATGGTTGCCGTAAGAGTTG -ACGGAATGGTTGCCGTAAAGACTG -ACGGAATGGTTGCCGTAATCGGTA -ACGGAATGGTTGCCGTAATGCCTA -ACGGAATGGTTGCCGTAACCACTA -ACGGAATGGTTGCCGTAAGGAGTA -ACGGAATGGTTGCCGTAATCGTCT -ACGGAATGGTTGCCGTAATGCACT -ACGGAATGGTTGCCGTAACTGACT -ACGGAATGGTTGCCGTAACAACCT -ACGGAATGGTTGCCGTAAGCTACT -ACGGAATGGTTGCCGTAAGGATCT -ACGGAATGGTTGCCGTAAAAGGCT -ACGGAATGGTTGCCGTAATCAACC -ACGGAATGGTTGCCGTAATGTTCC -ACGGAATGGTTGCCGTAAATTCCC -ACGGAATGGTTGCCGTAATTCTCG -ACGGAATGGTTGCCGTAATAGACG -ACGGAATGGTTGCCGTAAGTAACG -ACGGAATGGTTGCCGTAAACTTCG -ACGGAATGGTTGCCGTAATACGCA -ACGGAATGGTTGCCGTAACTTGCA -ACGGAATGGTTGCCGTAACGAACA -ACGGAATGGTTGCCGTAACAGTCA -ACGGAATGGTTGCCGTAAGATCCA -ACGGAATGGTTGCCGTAAACGACA -ACGGAATGGTTGCCGTAAAGCTCA -ACGGAATGGTTGCCGTAATCACGT -ACGGAATGGTTGCCGTAACGTAGT -ACGGAATGGTTGCCGTAAGTCAGT -ACGGAATGGTTGCCGTAAGAAGGT -ACGGAATGGTTGCCGTAAAACCGT -ACGGAATGGTTGCCGTAATTGTGC -ACGGAATGGTTGCCGTAACTAAGC -ACGGAATGGTTGCCGTAAACTAGC -ACGGAATGGTTGCCGTAAAGATGC -ACGGAATGGTTGCCGTAATGAAGG -ACGGAATGGTTGCCGTAACAATGG -ACGGAATGGTTGCCGTAAATGAGG -ACGGAATGGTTGCCGTAAAATGGG -ACGGAATGGTTGCCGTAATCCTGA -ACGGAATGGTTGCCGTAATAGCGA -ACGGAATGGTTGCCGTAACACAGA -ACGGAATGGTTGCCGTAAGCAAGA -ACGGAATGGTTGCCGTAAGGTTGA -ACGGAATGGTTGCCGTAATCCGAT -ACGGAATGGTTGCCGTAATGGCAT -ACGGAATGGTTGCCGTAACGAGAT -ACGGAATGGTTGCCGTAATACCAC -ACGGAATGGTTGCCGTAACAGAAC -ACGGAATGGTTGCCGTAAGTCTAC -ACGGAATGGTTGCCGTAAACGTAC -ACGGAATGGTTGCCGTAAAGTGAC -ACGGAATGGTTGCCGTAACTGTAG -ACGGAATGGTTGCCGTAACCTAAG -ACGGAATGGTTGCCGTAAGTTCAG -ACGGAATGGTTGCCGTAAGCATAG -ACGGAATGGTTGCCGTAAGACAAG -ACGGAATGGTTGCCGTAAAAGCAG -ACGGAATGGTTGCCGTAACGTCAA -ACGGAATGGTTGCCGTAAGCTGAA -ACGGAATGGTTGCCGTAAAGTACG -ACGGAATGGTTGCCGTAAATCCGA -ACGGAATGGTTGCCGTAAATGGGA -ACGGAATGGTTGCCGTAAGTGCAA -ACGGAATGGTTGCCGTAAGAGGAA -ACGGAATGGTTGCCGTAACAGGTA -ACGGAATGGTTGCCGTAAGACTCT -ACGGAATGGTTGCCGTAAAGTCCT -ACGGAATGGTTGCCGTAATAAGCC -ACGGAATGGTTGCCGTAAATAGCC -ACGGAATGGTTGCCGTAATAACCG -ACGGAATGGTTGCCGTAAATGCCA -ACGGAATGGTTGCCAATGGGAAAC -ACGGAATGGTTGCCAATGAACACC -ACGGAATGGTTGCCAATGATCGAG -ACGGAATGGTTGCCAATGCTCCTT -ACGGAATGGTTGCCAATGCCTGTT -ACGGAATGGTTGCCAATGCGGTTT -ACGGAATGGTTGCCAATGGTGGTT -ACGGAATGGTTGCCAATGGCCTTT -ACGGAATGGTTGCCAATGGGTCTT -ACGGAATGGTTGCCAATGACGCTT -ACGGAATGGTTGCCAATGAGCGTT -ACGGAATGGTTGCCAATGTTCGTC -ACGGAATGGTTGCCAATGTCTCTC -ACGGAATGGTTGCCAATGTGGATC -ACGGAATGGTTGCCAATGCACTTC -ACGGAATGGTTGCCAATGGTACTC -ACGGAATGGTTGCCAATGGATGTC -ACGGAATGGTTGCCAATGACAGTC -ACGGAATGGTTGCCAATGTTGCTG -ACGGAATGGTTGCCAATGTCCATG -ACGGAATGGTTGCCAATGTGTGTG -ACGGAATGGTTGCCAATGCTAGTG -ACGGAATGGTTGCCAATGCATCTG -ACGGAATGGTTGCCAATGGAGTTG -ACGGAATGGTTGCCAATGAGACTG -ACGGAATGGTTGCCAATGTCGGTA -ACGGAATGGTTGCCAATGTGCCTA -ACGGAATGGTTGCCAATGCCACTA -ACGGAATGGTTGCCAATGGGAGTA -ACGGAATGGTTGCCAATGTCGTCT -ACGGAATGGTTGCCAATGTGCACT -ACGGAATGGTTGCCAATGCTGACT -ACGGAATGGTTGCCAATGCAACCT -ACGGAATGGTTGCCAATGGCTACT -ACGGAATGGTTGCCAATGGGATCT -ACGGAATGGTTGCCAATGAAGGCT -ACGGAATGGTTGCCAATGTCAACC -ACGGAATGGTTGCCAATGTGTTCC -ACGGAATGGTTGCCAATGATTCCC -ACGGAATGGTTGCCAATGTTCTCG -ACGGAATGGTTGCCAATGTAGACG -ACGGAATGGTTGCCAATGGTAACG -ACGGAATGGTTGCCAATGACTTCG -ACGGAATGGTTGCCAATGTACGCA -ACGGAATGGTTGCCAATGCTTGCA -ACGGAATGGTTGCCAATGCGAACA -ACGGAATGGTTGCCAATGCAGTCA -ACGGAATGGTTGCCAATGGATCCA -ACGGAATGGTTGCCAATGACGACA -ACGGAATGGTTGCCAATGAGCTCA -ACGGAATGGTTGCCAATGTCACGT -ACGGAATGGTTGCCAATGCGTAGT -ACGGAATGGTTGCCAATGGTCAGT -ACGGAATGGTTGCCAATGGAAGGT -ACGGAATGGTTGCCAATGAACCGT -ACGGAATGGTTGCCAATGTTGTGC -ACGGAATGGTTGCCAATGCTAAGC -ACGGAATGGTTGCCAATGACTAGC -ACGGAATGGTTGCCAATGAGATGC -ACGGAATGGTTGCCAATGTGAAGG -ACGGAATGGTTGCCAATGCAATGG -ACGGAATGGTTGCCAATGATGAGG -ACGGAATGGTTGCCAATGAATGGG -ACGGAATGGTTGCCAATGTCCTGA -ACGGAATGGTTGCCAATGTAGCGA -ACGGAATGGTTGCCAATGCACAGA -ACGGAATGGTTGCCAATGGCAAGA -ACGGAATGGTTGCCAATGGGTTGA -ACGGAATGGTTGCCAATGTCCGAT -ACGGAATGGTTGCCAATGTGGCAT -ACGGAATGGTTGCCAATGCGAGAT -ACGGAATGGTTGCCAATGTACCAC -ACGGAATGGTTGCCAATGCAGAAC -ACGGAATGGTTGCCAATGGTCTAC -ACGGAATGGTTGCCAATGACGTAC -ACGGAATGGTTGCCAATGAGTGAC -ACGGAATGGTTGCCAATGCTGTAG -ACGGAATGGTTGCCAATGCCTAAG -ACGGAATGGTTGCCAATGGTTCAG -ACGGAATGGTTGCCAATGGCATAG -ACGGAATGGTTGCCAATGGACAAG -ACGGAATGGTTGCCAATGAAGCAG -ACGGAATGGTTGCCAATGCGTCAA -ACGGAATGGTTGCCAATGGCTGAA -ACGGAATGGTTGCCAATGAGTACG -ACGGAATGGTTGCCAATGATCCGA -ACGGAATGGTTGCCAATGATGGGA -ACGGAATGGTTGCCAATGGTGCAA -ACGGAATGGTTGCCAATGGAGGAA -ACGGAATGGTTGCCAATGCAGGTA -ACGGAATGGTTGCCAATGGACTCT -ACGGAATGGTTGCCAATGAGTCCT -ACGGAATGGTTGCCAATGTAAGCC -ACGGAATGGTTGCCAATGATAGCC -ACGGAATGGTTGCCAATGTAACCG -ACGGAATGGTTGCCAATGATGCCA -ACGGAACCTTTGAACGGAGGAAAC -ACGGAACCTTTGAACGGAAACACC -ACGGAACCTTTGAACGGAATCGAG -ACGGAACCTTTGAACGGACTCCTT -ACGGAACCTTTGAACGGACCTGTT -ACGGAACCTTTGAACGGACGGTTT -ACGGAACCTTTGAACGGAGTGGTT -ACGGAACCTTTGAACGGAGCCTTT -ACGGAACCTTTGAACGGAGGTCTT -ACGGAACCTTTGAACGGAACGCTT -ACGGAACCTTTGAACGGAAGCGTT -ACGGAACCTTTGAACGGATTCGTC -ACGGAACCTTTGAACGGATCTCTC -ACGGAACCTTTGAACGGATGGATC -ACGGAACCTTTGAACGGACACTTC -ACGGAACCTTTGAACGGAGTACTC -ACGGAACCTTTGAACGGAGATGTC -ACGGAACCTTTGAACGGAACAGTC -ACGGAACCTTTGAACGGATTGCTG -ACGGAACCTTTGAACGGATCCATG -ACGGAACCTTTGAACGGATGTGTG -ACGGAACCTTTGAACGGACTAGTG -ACGGAACCTTTGAACGGACATCTG -ACGGAACCTTTGAACGGAGAGTTG -ACGGAACCTTTGAACGGAAGACTG -ACGGAACCTTTGAACGGATCGGTA -ACGGAACCTTTGAACGGATGCCTA -ACGGAACCTTTGAACGGACCACTA -ACGGAACCTTTGAACGGAGGAGTA -ACGGAACCTTTGAACGGATCGTCT -ACGGAACCTTTGAACGGATGCACT -ACGGAACCTTTGAACGGACTGACT -ACGGAACCTTTGAACGGACAACCT -ACGGAACCTTTGAACGGAGCTACT -ACGGAACCTTTGAACGGAGGATCT -ACGGAACCTTTGAACGGAAAGGCT -ACGGAACCTTTGAACGGATCAACC -ACGGAACCTTTGAACGGATGTTCC -ACGGAACCTTTGAACGGAATTCCC -ACGGAACCTTTGAACGGATTCTCG -ACGGAACCTTTGAACGGATAGACG -ACGGAACCTTTGAACGGAGTAACG -ACGGAACCTTTGAACGGAACTTCG -ACGGAACCTTTGAACGGATACGCA -ACGGAACCTTTGAACGGACTTGCA -ACGGAACCTTTGAACGGACGAACA -ACGGAACCTTTGAACGGACAGTCA -ACGGAACCTTTGAACGGAGATCCA -ACGGAACCTTTGAACGGAACGACA -ACGGAACCTTTGAACGGAAGCTCA -ACGGAACCTTTGAACGGATCACGT -ACGGAACCTTTGAACGGACGTAGT -ACGGAACCTTTGAACGGAGTCAGT -ACGGAACCTTTGAACGGAGAAGGT -ACGGAACCTTTGAACGGAAACCGT -ACGGAACCTTTGAACGGATTGTGC -ACGGAACCTTTGAACGGACTAAGC -ACGGAACCTTTGAACGGAACTAGC -ACGGAACCTTTGAACGGAAGATGC -ACGGAACCTTTGAACGGATGAAGG -ACGGAACCTTTGAACGGACAATGG -ACGGAACCTTTGAACGGAATGAGG -ACGGAACCTTTGAACGGAAATGGG -ACGGAACCTTTGAACGGATCCTGA -ACGGAACCTTTGAACGGATAGCGA -ACGGAACCTTTGAACGGACACAGA -ACGGAACCTTTGAACGGAGCAAGA -ACGGAACCTTTGAACGGAGGTTGA -ACGGAACCTTTGAACGGATCCGAT -ACGGAACCTTTGAACGGATGGCAT -ACGGAACCTTTGAACGGACGAGAT -ACGGAACCTTTGAACGGATACCAC -ACGGAACCTTTGAACGGACAGAAC -ACGGAACCTTTGAACGGAGTCTAC -ACGGAACCTTTGAACGGAACGTAC -ACGGAACCTTTGAACGGAAGTGAC -ACGGAACCTTTGAACGGACTGTAG -ACGGAACCTTTGAACGGACCTAAG -ACGGAACCTTTGAACGGAGTTCAG -ACGGAACCTTTGAACGGAGCATAG -ACGGAACCTTTGAACGGAGACAAG -ACGGAACCTTTGAACGGAAAGCAG -ACGGAACCTTTGAACGGACGTCAA -ACGGAACCTTTGAACGGAGCTGAA -ACGGAACCTTTGAACGGAAGTACG -ACGGAACCTTTGAACGGAATCCGA -ACGGAACCTTTGAACGGAATGGGA -ACGGAACCTTTGAACGGAGTGCAA -ACGGAACCTTTGAACGGAGAGGAA -ACGGAACCTTTGAACGGACAGGTA -ACGGAACCTTTGAACGGAGACTCT -ACGGAACCTTTGAACGGAAGTCCT -ACGGAACCTTTGAACGGATAAGCC -ACGGAACCTTTGAACGGAATAGCC -ACGGAACCTTTGAACGGATAACCG -ACGGAACCTTTGAACGGAATGCCA -ACGGAACCTTTGACCAACGGAAAC -ACGGAACCTTTGACCAACAACACC -ACGGAACCTTTGACCAACATCGAG -ACGGAACCTTTGACCAACCTCCTT -ACGGAACCTTTGACCAACCCTGTT -ACGGAACCTTTGACCAACCGGTTT -ACGGAACCTTTGACCAACGTGGTT -ACGGAACCTTTGACCAACGCCTTT -ACGGAACCTTTGACCAACGGTCTT -ACGGAACCTTTGACCAACACGCTT -ACGGAACCTTTGACCAACAGCGTT -ACGGAACCTTTGACCAACTTCGTC -ACGGAACCTTTGACCAACTCTCTC -ACGGAACCTTTGACCAACTGGATC -ACGGAACCTTTGACCAACCACTTC -ACGGAACCTTTGACCAACGTACTC -ACGGAACCTTTGACCAACGATGTC -ACGGAACCTTTGACCAACACAGTC -ACGGAACCTTTGACCAACTTGCTG -ACGGAACCTTTGACCAACTCCATG -ACGGAACCTTTGACCAACTGTGTG -ACGGAACCTTTGACCAACCTAGTG -ACGGAACCTTTGACCAACCATCTG -ACGGAACCTTTGACCAACGAGTTG -ACGGAACCTTTGACCAACAGACTG -ACGGAACCTTTGACCAACTCGGTA -ACGGAACCTTTGACCAACTGCCTA -ACGGAACCTTTGACCAACCCACTA -ACGGAACCTTTGACCAACGGAGTA -ACGGAACCTTTGACCAACTCGTCT -ACGGAACCTTTGACCAACTGCACT -ACGGAACCTTTGACCAACCTGACT -ACGGAACCTTTGACCAACCAACCT -ACGGAACCTTTGACCAACGCTACT -ACGGAACCTTTGACCAACGGATCT -ACGGAACCTTTGACCAACAAGGCT -ACGGAACCTTTGACCAACTCAACC -ACGGAACCTTTGACCAACTGTTCC -ACGGAACCTTTGACCAACATTCCC -ACGGAACCTTTGACCAACTTCTCG -ACGGAACCTTTGACCAACTAGACG -ACGGAACCTTTGACCAACGTAACG -ACGGAACCTTTGACCAACACTTCG -ACGGAACCTTTGACCAACTACGCA -ACGGAACCTTTGACCAACCTTGCA -ACGGAACCTTTGACCAACCGAACA -ACGGAACCTTTGACCAACCAGTCA -ACGGAACCTTTGACCAACGATCCA -ACGGAACCTTTGACCAACACGACA -ACGGAACCTTTGACCAACAGCTCA -ACGGAACCTTTGACCAACTCACGT -ACGGAACCTTTGACCAACCGTAGT -ACGGAACCTTTGACCAACGTCAGT -ACGGAACCTTTGACCAACGAAGGT -ACGGAACCTTTGACCAACAACCGT -ACGGAACCTTTGACCAACTTGTGC -ACGGAACCTTTGACCAACCTAAGC -ACGGAACCTTTGACCAACACTAGC -ACGGAACCTTTGACCAACAGATGC -ACGGAACCTTTGACCAACTGAAGG -ACGGAACCTTTGACCAACCAATGG -ACGGAACCTTTGACCAACATGAGG -ACGGAACCTTTGACCAACAATGGG -ACGGAACCTTTGACCAACTCCTGA -ACGGAACCTTTGACCAACTAGCGA -ACGGAACCTTTGACCAACCACAGA -ACGGAACCTTTGACCAACGCAAGA -ACGGAACCTTTGACCAACGGTTGA -ACGGAACCTTTGACCAACTCCGAT -ACGGAACCTTTGACCAACTGGCAT -ACGGAACCTTTGACCAACCGAGAT -ACGGAACCTTTGACCAACTACCAC -ACGGAACCTTTGACCAACCAGAAC -ACGGAACCTTTGACCAACGTCTAC -ACGGAACCTTTGACCAACACGTAC -ACGGAACCTTTGACCAACAGTGAC -ACGGAACCTTTGACCAACCTGTAG -ACGGAACCTTTGACCAACCCTAAG -ACGGAACCTTTGACCAACGTTCAG -ACGGAACCTTTGACCAACGCATAG -ACGGAACCTTTGACCAACGACAAG -ACGGAACCTTTGACCAACAAGCAG -ACGGAACCTTTGACCAACCGTCAA -ACGGAACCTTTGACCAACGCTGAA -ACGGAACCTTTGACCAACAGTACG -ACGGAACCTTTGACCAACATCCGA -ACGGAACCTTTGACCAACATGGGA -ACGGAACCTTTGACCAACGTGCAA -ACGGAACCTTTGACCAACGAGGAA -ACGGAACCTTTGACCAACCAGGTA -ACGGAACCTTTGACCAACGACTCT -ACGGAACCTTTGACCAACAGTCCT -ACGGAACCTTTGACCAACTAAGCC -ACGGAACCTTTGACCAACATAGCC -ACGGAACCTTTGACCAACTAACCG -ACGGAACCTTTGACCAACATGCCA -ACGGAACCTTTGGAGATCGGAAAC -ACGGAACCTTTGGAGATCAACACC -ACGGAACCTTTGGAGATCATCGAG -ACGGAACCTTTGGAGATCCTCCTT -ACGGAACCTTTGGAGATCCCTGTT -ACGGAACCTTTGGAGATCCGGTTT -ACGGAACCTTTGGAGATCGTGGTT -ACGGAACCTTTGGAGATCGCCTTT -ACGGAACCTTTGGAGATCGGTCTT -ACGGAACCTTTGGAGATCACGCTT -ACGGAACCTTTGGAGATCAGCGTT -ACGGAACCTTTGGAGATCTTCGTC -ACGGAACCTTTGGAGATCTCTCTC -ACGGAACCTTTGGAGATCTGGATC -ACGGAACCTTTGGAGATCCACTTC -ACGGAACCTTTGGAGATCGTACTC -ACGGAACCTTTGGAGATCGATGTC -ACGGAACCTTTGGAGATCACAGTC -ACGGAACCTTTGGAGATCTTGCTG -ACGGAACCTTTGGAGATCTCCATG -ACGGAACCTTTGGAGATCTGTGTG -ACGGAACCTTTGGAGATCCTAGTG -ACGGAACCTTTGGAGATCCATCTG -ACGGAACCTTTGGAGATCGAGTTG -ACGGAACCTTTGGAGATCAGACTG -ACGGAACCTTTGGAGATCTCGGTA -ACGGAACCTTTGGAGATCTGCCTA -ACGGAACCTTTGGAGATCCCACTA -ACGGAACCTTTGGAGATCGGAGTA -ACGGAACCTTTGGAGATCTCGTCT -ACGGAACCTTTGGAGATCTGCACT -ACGGAACCTTTGGAGATCCTGACT -ACGGAACCTTTGGAGATCCAACCT -ACGGAACCTTTGGAGATCGCTACT -ACGGAACCTTTGGAGATCGGATCT -ACGGAACCTTTGGAGATCAAGGCT -ACGGAACCTTTGGAGATCTCAACC -ACGGAACCTTTGGAGATCTGTTCC -ACGGAACCTTTGGAGATCATTCCC -ACGGAACCTTTGGAGATCTTCTCG -ACGGAACCTTTGGAGATCTAGACG -ACGGAACCTTTGGAGATCGTAACG -ACGGAACCTTTGGAGATCACTTCG -ACGGAACCTTTGGAGATCTACGCA -ACGGAACCTTTGGAGATCCTTGCA -ACGGAACCTTTGGAGATCCGAACA -ACGGAACCTTTGGAGATCCAGTCA -ACGGAACCTTTGGAGATCGATCCA -ACGGAACCTTTGGAGATCACGACA -ACGGAACCTTTGGAGATCAGCTCA -ACGGAACCTTTGGAGATCTCACGT -ACGGAACCTTTGGAGATCCGTAGT -ACGGAACCTTTGGAGATCGTCAGT -ACGGAACCTTTGGAGATCGAAGGT -ACGGAACCTTTGGAGATCAACCGT -ACGGAACCTTTGGAGATCTTGTGC -ACGGAACCTTTGGAGATCCTAAGC -ACGGAACCTTTGGAGATCACTAGC -ACGGAACCTTTGGAGATCAGATGC -ACGGAACCTTTGGAGATCTGAAGG -ACGGAACCTTTGGAGATCCAATGG -ACGGAACCTTTGGAGATCATGAGG -ACGGAACCTTTGGAGATCAATGGG -ACGGAACCTTTGGAGATCTCCTGA -ACGGAACCTTTGGAGATCTAGCGA -ACGGAACCTTTGGAGATCCACAGA -ACGGAACCTTTGGAGATCGCAAGA -ACGGAACCTTTGGAGATCGGTTGA -ACGGAACCTTTGGAGATCTCCGAT -ACGGAACCTTTGGAGATCTGGCAT -ACGGAACCTTTGGAGATCCGAGAT -ACGGAACCTTTGGAGATCTACCAC -ACGGAACCTTTGGAGATCCAGAAC -ACGGAACCTTTGGAGATCGTCTAC -ACGGAACCTTTGGAGATCACGTAC -ACGGAACCTTTGGAGATCAGTGAC -ACGGAACCTTTGGAGATCCTGTAG -ACGGAACCTTTGGAGATCCCTAAG -ACGGAACCTTTGGAGATCGTTCAG -ACGGAACCTTTGGAGATCGCATAG -ACGGAACCTTTGGAGATCGACAAG -ACGGAACCTTTGGAGATCAAGCAG -ACGGAACCTTTGGAGATCCGTCAA -ACGGAACCTTTGGAGATCGCTGAA -ACGGAACCTTTGGAGATCAGTACG -ACGGAACCTTTGGAGATCATCCGA -ACGGAACCTTTGGAGATCATGGGA -ACGGAACCTTTGGAGATCGTGCAA -ACGGAACCTTTGGAGATCGAGGAA -ACGGAACCTTTGGAGATCCAGGTA -ACGGAACCTTTGGAGATCGACTCT -ACGGAACCTTTGGAGATCAGTCCT -ACGGAACCTTTGGAGATCTAAGCC -ACGGAACCTTTGGAGATCATAGCC -ACGGAACCTTTGGAGATCTAACCG -ACGGAACCTTTGGAGATCATGCCA -ACGGAACCTTTGCTTCTCGGAAAC -ACGGAACCTTTGCTTCTCAACACC -ACGGAACCTTTGCTTCTCATCGAG -ACGGAACCTTTGCTTCTCCTCCTT -ACGGAACCTTTGCTTCTCCCTGTT -ACGGAACCTTTGCTTCTCCGGTTT -ACGGAACCTTTGCTTCTCGTGGTT -ACGGAACCTTTGCTTCTCGCCTTT -ACGGAACCTTTGCTTCTCGGTCTT -ACGGAACCTTTGCTTCTCACGCTT -ACGGAACCTTTGCTTCTCAGCGTT -ACGGAACCTTTGCTTCTCTTCGTC -ACGGAACCTTTGCTTCTCTCTCTC -ACGGAACCTTTGCTTCTCTGGATC -ACGGAACCTTTGCTTCTCCACTTC -ACGGAACCTTTGCTTCTCGTACTC -ACGGAACCTTTGCTTCTCGATGTC -ACGGAACCTTTGCTTCTCACAGTC -ACGGAACCTTTGCTTCTCTTGCTG -ACGGAACCTTTGCTTCTCTCCATG -ACGGAACCTTTGCTTCTCTGTGTG -ACGGAACCTTTGCTTCTCCTAGTG -ACGGAACCTTTGCTTCTCCATCTG -ACGGAACCTTTGCTTCTCGAGTTG -ACGGAACCTTTGCTTCTCAGACTG -ACGGAACCTTTGCTTCTCTCGGTA -ACGGAACCTTTGCTTCTCTGCCTA -ACGGAACCTTTGCTTCTCCCACTA -ACGGAACCTTTGCTTCTCGGAGTA -ACGGAACCTTTGCTTCTCTCGTCT -ACGGAACCTTTGCTTCTCTGCACT -ACGGAACCTTTGCTTCTCCTGACT -ACGGAACCTTTGCTTCTCCAACCT -ACGGAACCTTTGCTTCTCGCTACT -ACGGAACCTTTGCTTCTCGGATCT -ACGGAACCTTTGCTTCTCAAGGCT -ACGGAACCTTTGCTTCTCTCAACC -ACGGAACCTTTGCTTCTCTGTTCC -ACGGAACCTTTGCTTCTCATTCCC -ACGGAACCTTTGCTTCTCTTCTCG -ACGGAACCTTTGCTTCTCTAGACG -ACGGAACCTTTGCTTCTCGTAACG -ACGGAACCTTTGCTTCTCACTTCG -ACGGAACCTTTGCTTCTCTACGCA -ACGGAACCTTTGCTTCTCCTTGCA -ACGGAACCTTTGCTTCTCCGAACA -ACGGAACCTTTGCTTCTCCAGTCA -ACGGAACCTTTGCTTCTCGATCCA -ACGGAACCTTTGCTTCTCACGACA -ACGGAACCTTTGCTTCTCAGCTCA -ACGGAACCTTTGCTTCTCTCACGT -ACGGAACCTTTGCTTCTCCGTAGT -ACGGAACCTTTGCTTCTCGTCAGT -ACGGAACCTTTGCTTCTCGAAGGT -ACGGAACCTTTGCTTCTCAACCGT -ACGGAACCTTTGCTTCTCTTGTGC -ACGGAACCTTTGCTTCTCCTAAGC -ACGGAACCTTTGCTTCTCACTAGC -ACGGAACCTTTGCTTCTCAGATGC -ACGGAACCTTTGCTTCTCTGAAGG -ACGGAACCTTTGCTTCTCCAATGG -ACGGAACCTTTGCTTCTCATGAGG -ACGGAACCTTTGCTTCTCAATGGG -ACGGAACCTTTGCTTCTCTCCTGA -ACGGAACCTTTGCTTCTCTAGCGA -ACGGAACCTTTGCTTCTCCACAGA -ACGGAACCTTTGCTTCTCGCAAGA -ACGGAACCTTTGCTTCTCGGTTGA -ACGGAACCTTTGCTTCTCTCCGAT -ACGGAACCTTTGCTTCTCTGGCAT -ACGGAACCTTTGCTTCTCCGAGAT -ACGGAACCTTTGCTTCTCTACCAC -ACGGAACCTTTGCTTCTCCAGAAC -ACGGAACCTTTGCTTCTCGTCTAC -ACGGAACCTTTGCTTCTCACGTAC -ACGGAACCTTTGCTTCTCAGTGAC -ACGGAACCTTTGCTTCTCCTGTAG -ACGGAACCTTTGCTTCTCCCTAAG -ACGGAACCTTTGCTTCTCGTTCAG -ACGGAACCTTTGCTTCTCGCATAG -ACGGAACCTTTGCTTCTCGACAAG -ACGGAACCTTTGCTTCTCAAGCAG -ACGGAACCTTTGCTTCTCCGTCAA -ACGGAACCTTTGCTTCTCGCTGAA -ACGGAACCTTTGCTTCTCAGTACG -ACGGAACCTTTGCTTCTCATCCGA -ACGGAACCTTTGCTTCTCATGGGA -ACGGAACCTTTGCTTCTCGTGCAA -ACGGAACCTTTGCTTCTCGAGGAA -ACGGAACCTTTGCTTCTCCAGGTA -ACGGAACCTTTGCTTCTCGACTCT -ACGGAACCTTTGCTTCTCAGTCCT -ACGGAACCTTTGCTTCTCTAAGCC -ACGGAACCTTTGCTTCTCATAGCC -ACGGAACCTTTGCTTCTCTAACCG -ACGGAACCTTTGCTTCTCATGCCA -ACGGAACCTTTGGTTCCTGGAAAC -ACGGAACCTTTGGTTCCTAACACC -ACGGAACCTTTGGTTCCTATCGAG -ACGGAACCTTTGGTTCCTCTCCTT -ACGGAACCTTTGGTTCCTCCTGTT -ACGGAACCTTTGGTTCCTCGGTTT -ACGGAACCTTTGGTTCCTGTGGTT -ACGGAACCTTTGGTTCCTGCCTTT -ACGGAACCTTTGGTTCCTGGTCTT -ACGGAACCTTTGGTTCCTACGCTT -ACGGAACCTTTGGTTCCTAGCGTT -ACGGAACCTTTGGTTCCTTTCGTC -ACGGAACCTTTGGTTCCTTCTCTC -ACGGAACCTTTGGTTCCTTGGATC -ACGGAACCTTTGGTTCCTCACTTC -ACGGAACCTTTGGTTCCTGTACTC -ACGGAACCTTTGGTTCCTGATGTC -ACGGAACCTTTGGTTCCTACAGTC -ACGGAACCTTTGGTTCCTTTGCTG -ACGGAACCTTTGGTTCCTTCCATG -ACGGAACCTTTGGTTCCTTGTGTG -ACGGAACCTTTGGTTCCTCTAGTG -ACGGAACCTTTGGTTCCTCATCTG -ACGGAACCTTTGGTTCCTGAGTTG -ACGGAACCTTTGGTTCCTAGACTG -ACGGAACCTTTGGTTCCTTCGGTA -ACGGAACCTTTGGTTCCTTGCCTA -ACGGAACCTTTGGTTCCTCCACTA -ACGGAACCTTTGGTTCCTGGAGTA -ACGGAACCTTTGGTTCCTTCGTCT -ACGGAACCTTTGGTTCCTTGCACT -ACGGAACCTTTGGTTCCTCTGACT -ACGGAACCTTTGGTTCCTCAACCT -ACGGAACCTTTGGTTCCTGCTACT -ACGGAACCTTTGGTTCCTGGATCT -ACGGAACCTTTGGTTCCTAAGGCT -ACGGAACCTTTGGTTCCTTCAACC -ACGGAACCTTTGGTTCCTTGTTCC -ACGGAACCTTTGGTTCCTATTCCC -ACGGAACCTTTGGTTCCTTTCTCG -ACGGAACCTTTGGTTCCTTAGACG -ACGGAACCTTTGGTTCCTGTAACG -ACGGAACCTTTGGTTCCTACTTCG -ACGGAACCTTTGGTTCCTTACGCA -ACGGAACCTTTGGTTCCTCTTGCA -ACGGAACCTTTGGTTCCTCGAACA -ACGGAACCTTTGGTTCCTCAGTCA -ACGGAACCTTTGGTTCCTGATCCA -ACGGAACCTTTGGTTCCTACGACA -ACGGAACCTTTGGTTCCTAGCTCA -ACGGAACCTTTGGTTCCTTCACGT -ACGGAACCTTTGGTTCCTCGTAGT -ACGGAACCTTTGGTTCCTGTCAGT -ACGGAACCTTTGGTTCCTGAAGGT -ACGGAACCTTTGGTTCCTAACCGT -ACGGAACCTTTGGTTCCTTTGTGC -ACGGAACCTTTGGTTCCTCTAAGC -ACGGAACCTTTGGTTCCTACTAGC -ACGGAACCTTTGGTTCCTAGATGC -ACGGAACCTTTGGTTCCTTGAAGG -ACGGAACCTTTGGTTCCTCAATGG -ACGGAACCTTTGGTTCCTATGAGG -ACGGAACCTTTGGTTCCTAATGGG -ACGGAACCTTTGGTTCCTTCCTGA -ACGGAACCTTTGGTTCCTTAGCGA -ACGGAACCTTTGGTTCCTCACAGA -ACGGAACCTTTGGTTCCTGCAAGA -ACGGAACCTTTGGTTCCTGGTTGA -ACGGAACCTTTGGTTCCTTCCGAT -ACGGAACCTTTGGTTCCTTGGCAT -ACGGAACCTTTGGTTCCTCGAGAT -ACGGAACCTTTGGTTCCTTACCAC -ACGGAACCTTTGGTTCCTCAGAAC -ACGGAACCTTTGGTTCCTGTCTAC -ACGGAACCTTTGGTTCCTACGTAC -ACGGAACCTTTGGTTCCTAGTGAC -ACGGAACCTTTGGTTCCTCTGTAG -ACGGAACCTTTGGTTCCTCCTAAG -ACGGAACCTTTGGTTCCTGTTCAG -ACGGAACCTTTGGTTCCTGCATAG -ACGGAACCTTTGGTTCCTGACAAG -ACGGAACCTTTGGTTCCTAAGCAG -ACGGAACCTTTGGTTCCTCGTCAA -ACGGAACCTTTGGTTCCTGCTGAA -ACGGAACCTTTGGTTCCTAGTACG -ACGGAACCTTTGGTTCCTATCCGA -ACGGAACCTTTGGTTCCTATGGGA -ACGGAACCTTTGGTTCCTGTGCAA -ACGGAACCTTTGGTTCCTGAGGAA -ACGGAACCTTTGGTTCCTCAGGTA -ACGGAACCTTTGGTTCCTGACTCT -ACGGAACCTTTGGTTCCTAGTCCT -ACGGAACCTTTGGTTCCTTAAGCC -ACGGAACCTTTGGTTCCTATAGCC -ACGGAACCTTTGGTTCCTTAACCG -ACGGAACCTTTGGTTCCTATGCCA -ACGGAACCTTTGTTTCGGGGAAAC -ACGGAACCTTTGTTTCGGAACACC -ACGGAACCTTTGTTTCGGATCGAG -ACGGAACCTTTGTTTCGGCTCCTT -ACGGAACCTTTGTTTCGGCCTGTT -ACGGAACCTTTGTTTCGGCGGTTT -ACGGAACCTTTGTTTCGGGTGGTT -ACGGAACCTTTGTTTCGGGCCTTT -ACGGAACCTTTGTTTCGGGGTCTT -ACGGAACCTTTGTTTCGGACGCTT -ACGGAACCTTTGTTTCGGAGCGTT -ACGGAACCTTTGTTTCGGTTCGTC -ACGGAACCTTTGTTTCGGTCTCTC -ACGGAACCTTTGTTTCGGTGGATC -ACGGAACCTTTGTTTCGGCACTTC -ACGGAACCTTTGTTTCGGGTACTC -ACGGAACCTTTGTTTCGGGATGTC -ACGGAACCTTTGTTTCGGACAGTC -ACGGAACCTTTGTTTCGGTTGCTG -ACGGAACCTTTGTTTCGGTCCATG -ACGGAACCTTTGTTTCGGTGTGTG -ACGGAACCTTTGTTTCGGCTAGTG -ACGGAACCTTTGTTTCGGCATCTG -ACGGAACCTTTGTTTCGGGAGTTG -ACGGAACCTTTGTTTCGGAGACTG -ACGGAACCTTTGTTTCGGTCGGTA -ACGGAACCTTTGTTTCGGTGCCTA -ACGGAACCTTTGTTTCGGCCACTA -ACGGAACCTTTGTTTCGGGGAGTA -ACGGAACCTTTGTTTCGGTCGTCT -ACGGAACCTTTGTTTCGGTGCACT -ACGGAACCTTTGTTTCGGCTGACT -ACGGAACCTTTGTTTCGGCAACCT -ACGGAACCTTTGTTTCGGGCTACT -ACGGAACCTTTGTTTCGGGGATCT -ACGGAACCTTTGTTTCGGAAGGCT -ACGGAACCTTTGTTTCGGTCAACC -ACGGAACCTTTGTTTCGGTGTTCC -ACGGAACCTTTGTTTCGGATTCCC -ACGGAACCTTTGTTTCGGTTCTCG -ACGGAACCTTTGTTTCGGTAGACG -ACGGAACCTTTGTTTCGGGTAACG -ACGGAACCTTTGTTTCGGACTTCG -ACGGAACCTTTGTTTCGGTACGCA -ACGGAACCTTTGTTTCGGCTTGCA -ACGGAACCTTTGTTTCGGCGAACA -ACGGAACCTTTGTTTCGGCAGTCA -ACGGAACCTTTGTTTCGGGATCCA -ACGGAACCTTTGTTTCGGACGACA -ACGGAACCTTTGTTTCGGAGCTCA -ACGGAACCTTTGTTTCGGTCACGT -ACGGAACCTTTGTTTCGGCGTAGT -ACGGAACCTTTGTTTCGGGTCAGT -ACGGAACCTTTGTTTCGGGAAGGT -ACGGAACCTTTGTTTCGGAACCGT -ACGGAACCTTTGTTTCGGTTGTGC -ACGGAACCTTTGTTTCGGCTAAGC -ACGGAACCTTTGTTTCGGACTAGC -ACGGAACCTTTGTTTCGGAGATGC -ACGGAACCTTTGTTTCGGTGAAGG -ACGGAACCTTTGTTTCGGCAATGG -ACGGAACCTTTGTTTCGGATGAGG -ACGGAACCTTTGTTTCGGAATGGG -ACGGAACCTTTGTTTCGGTCCTGA -ACGGAACCTTTGTTTCGGTAGCGA -ACGGAACCTTTGTTTCGGCACAGA -ACGGAACCTTTGTTTCGGGCAAGA -ACGGAACCTTTGTTTCGGGGTTGA -ACGGAACCTTTGTTTCGGTCCGAT -ACGGAACCTTTGTTTCGGTGGCAT -ACGGAACCTTTGTTTCGGCGAGAT -ACGGAACCTTTGTTTCGGTACCAC -ACGGAACCTTTGTTTCGGCAGAAC -ACGGAACCTTTGTTTCGGGTCTAC -ACGGAACCTTTGTTTCGGACGTAC -ACGGAACCTTTGTTTCGGAGTGAC -ACGGAACCTTTGTTTCGGCTGTAG -ACGGAACCTTTGTTTCGGCCTAAG -ACGGAACCTTTGTTTCGGGTTCAG -ACGGAACCTTTGTTTCGGGCATAG -ACGGAACCTTTGTTTCGGGACAAG -ACGGAACCTTTGTTTCGGAAGCAG -ACGGAACCTTTGTTTCGGCGTCAA -ACGGAACCTTTGTTTCGGGCTGAA -ACGGAACCTTTGTTTCGGAGTACG -ACGGAACCTTTGTTTCGGATCCGA -ACGGAACCTTTGTTTCGGATGGGA -ACGGAACCTTTGTTTCGGGTGCAA -ACGGAACCTTTGTTTCGGGAGGAA -ACGGAACCTTTGTTTCGGCAGGTA -ACGGAACCTTTGTTTCGGGACTCT -ACGGAACCTTTGTTTCGGAGTCCT -ACGGAACCTTTGTTTCGGTAAGCC -ACGGAACCTTTGTTTCGGATAGCC -ACGGAACCTTTGTTTCGGTAACCG -ACGGAACCTTTGTTTCGGATGCCA -ACGGAACCTTTGGTTGTGGGAAAC -ACGGAACCTTTGGTTGTGAACACC -ACGGAACCTTTGGTTGTGATCGAG -ACGGAACCTTTGGTTGTGCTCCTT -ACGGAACCTTTGGTTGTGCCTGTT -ACGGAACCTTTGGTTGTGCGGTTT -ACGGAACCTTTGGTTGTGGTGGTT -ACGGAACCTTTGGTTGTGGCCTTT -ACGGAACCTTTGGTTGTGGGTCTT -ACGGAACCTTTGGTTGTGACGCTT -ACGGAACCTTTGGTTGTGAGCGTT -ACGGAACCTTTGGTTGTGTTCGTC -ACGGAACCTTTGGTTGTGTCTCTC -ACGGAACCTTTGGTTGTGTGGATC -ACGGAACCTTTGGTTGTGCACTTC -ACGGAACCTTTGGTTGTGGTACTC -ACGGAACCTTTGGTTGTGGATGTC -ACGGAACCTTTGGTTGTGACAGTC -ACGGAACCTTTGGTTGTGTTGCTG -ACGGAACCTTTGGTTGTGTCCATG -ACGGAACCTTTGGTTGTGTGTGTG -ACGGAACCTTTGGTTGTGCTAGTG -ACGGAACCTTTGGTTGTGCATCTG -ACGGAACCTTTGGTTGTGGAGTTG -ACGGAACCTTTGGTTGTGAGACTG -ACGGAACCTTTGGTTGTGTCGGTA -ACGGAACCTTTGGTTGTGTGCCTA -ACGGAACCTTTGGTTGTGCCACTA -ACGGAACCTTTGGTTGTGGGAGTA -ACGGAACCTTTGGTTGTGTCGTCT -ACGGAACCTTTGGTTGTGTGCACT -ACGGAACCTTTGGTTGTGCTGACT -ACGGAACCTTTGGTTGTGCAACCT -ACGGAACCTTTGGTTGTGGCTACT -ACGGAACCTTTGGTTGTGGGATCT -ACGGAACCTTTGGTTGTGAAGGCT -ACGGAACCTTTGGTTGTGTCAACC -ACGGAACCTTTGGTTGTGTGTTCC -ACGGAACCTTTGGTTGTGATTCCC -ACGGAACCTTTGGTTGTGTTCTCG -ACGGAACCTTTGGTTGTGTAGACG -ACGGAACCTTTGGTTGTGGTAACG -ACGGAACCTTTGGTTGTGACTTCG -ACGGAACCTTTGGTTGTGTACGCA -ACGGAACCTTTGGTTGTGCTTGCA -ACGGAACCTTTGGTTGTGCGAACA -ACGGAACCTTTGGTTGTGCAGTCA -ACGGAACCTTTGGTTGTGGATCCA -ACGGAACCTTTGGTTGTGACGACA -ACGGAACCTTTGGTTGTGAGCTCA -ACGGAACCTTTGGTTGTGTCACGT -ACGGAACCTTTGGTTGTGCGTAGT -ACGGAACCTTTGGTTGTGGTCAGT -ACGGAACCTTTGGTTGTGGAAGGT -ACGGAACCTTTGGTTGTGAACCGT -ACGGAACCTTTGGTTGTGTTGTGC -ACGGAACCTTTGGTTGTGCTAAGC -ACGGAACCTTTGGTTGTGACTAGC -ACGGAACCTTTGGTTGTGAGATGC -ACGGAACCTTTGGTTGTGTGAAGG -ACGGAACCTTTGGTTGTGCAATGG -ACGGAACCTTTGGTTGTGATGAGG -ACGGAACCTTTGGTTGTGAATGGG -ACGGAACCTTTGGTTGTGTCCTGA -ACGGAACCTTTGGTTGTGTAGCGA -ACGGAACCTTTGGTTGTGCACAGA -ACGGAACCTTTGGTTGTGGCAAGA -ACGGAACCTTTGGTTGTGGGTTGA -ACGGAACCTTTGGTTGTGTCCGAT -ACGGAACCTTTGGTTGTGTGGCAT -ACGGAACCTTTGGTTGTGCGAGAT -ACGGAACCTTTGGTTGTGTACCAC -ACGGAACCTTTGGTTGTGCAGAAC -ACGGAACCTTTGGTTGTGGTCTAC -ACGGAACCTTTGGTTGTGACGTAC -ACGGAACCTTTGGTTGTGAGTGAC -ACGGAACCTTTGGTTGTGCTGTAG -ACGGAACCTTTGGTTGTGCCTAAG -ACGGAACCTTTGGTTGTGGTTCAG -ACGGAACCTTTGGTTGTGGCATAG -ACGGAACCTTTGGTTGTGGACAAG -ACGGAACCTTTGGTTGTGAAGCAG -ACGGAACCTTTGGTTGTGCGTCAA -ACGGAACCTTTGGTTGTGGCTGAA -ACGGAACCTTTGGTTGTGAGTACG -ACGGAACCTTTGGTTGTGATCCGA -ACGGAACCTTTGGTTGTGATGGGA -ACGGAACCTTTGGTTGTGGTGCAA -ACGGAACCTTTGGTTGTGGAGGAA -ACGGAACCTTTGGTTGTGCAGGTA -ACGGAACCTTTGGTTGTGGACTCT -ACGGAACCTTTGGTTGTGAGTCCT -ACGGAACCTTTGGTTGTGTAAGCC -ACGGAACCTTTGGTTGTGATAGCC -ACGGAACCTTTGGTTGTGTAACCG -ACGGAACCTTTGGTTGTGATGCCA -ACGGAACCTTTGTTTGCCGGAAAC -ACGGAACCTTTGTTTGCCAACACC -ACGGAACCTTTGTTTGCCATCGAG -ACGGAACCTTTGTTTGCCCTCCTT -ACGGAACCTTTGTTTGCCCCTGTT -ACGGAACCTTTGTTTGCCCGGTTT -ACGGAACCTTTGTTTGCCGTGGTT -ACGGAACCTTTGTTTGCCGCCTTT -ACGGAACCTTTGTTTGCCGGTCTT -ACGGAACCTTTGTTTGCCACGCTT -ACGGAACCTTTGTTTGCCAGCGTT -ACGGAACCTTTGTTTGCCTTCGTC -ACGGAACCTTTGTTTGCCTCTCTC -ACGGAACCTTTGTTTGCCTGGATC -ACGGAACCTTTGTTTGCCCACTTC -ACGGAACCTTTGTTTGCCGTACTC -ACGGAACCTTTGTTTGCCGATGTC -ACGGAACCTTTGTTTGCCACAGTC -ACGGAACCTTTGTTTGCCTTGCTG -ACGGAACCTTTGTTTGCCTCCATG -ACGGAACCTTTGTTTGCCTGTGTG -ACGGAACCTTTGTTTGCCCTAGTG -ACGGAACCTTTGTTTGCCCATCTG -ACGGAACCTTTGTTTGCCGAGTTG -ACGGAACCTTTGTTTGCCAGACTG -ACGGAACCTTTGTTTGCCTCGGTA -ACGGAACCTTTGTTTGCCTGCCTA -ACGGAACCTTTGTTTGCCCCACTA -ACGGAACCTTTGTTTGCCGGAGTA -ACGGAACCTTTGTTTGCCTCGTCT -ACGGAACCTTTGTTTGCCTGCACT -ACGGAACCTTTGTTTGCCCTGACT -ACGGAACCTTTGTTTGCCCAACCT -ACGGAACCTTTGTTTGCCGCTACT -ACGGAACCTTTGTTTGCCGGATCT -ACGGAACCTTTGTTTGCCAAGGCT -ACGGAACCTTTGTTTGCCTCAACC -ACGGAACCTTTGTTTGCCTGTTCC -ACGGAACCTTTGTTTGCCATTCCC -ACGGAACCTTTGTTTGCCTTCTCG -ACGGAACCTTTGTTTGCCTAGACG -ACGGAACCTTTGTTTGCCGTAACG -ACGGAACCTTTGTTTGCCACTTCG -ACGGAACCTTTGTTTGCCTACGCA -ACGGAACCTTTGTTTGCCCTTGCA -ACGGAACCTTTGTTTGCCCGAACA -ACGGAACCTTTGTTTGCCCAGTCA -ACGGAACCTTTGTTTGCCGATCCA -ACGGAACCTTTGTTTGCCACGACA -ACGGAACCTTTGTTTGCCAGCTCA -ACGGAACCTTTGTTTGCCTCACGT -ACGGAACCTTTGTTTGCCCGTAGT -ACGGAACCTTTGTTTGCCGTCAGT -ACGGAACCTTTGTTTGCCGAAGGT -ACGGAACCTTTGTTTGCCAACCGT -ACGGAACCTTTGTTTGCCTTGTGC -ACGGAACCTTTGTTTGCCCTAAGC -ACGGAACCTTTGTTTGCCACTAGC -ACGGAACCTTTGTTTGCCAGATGC -ACGGAACCTTTGTTTGCCTGAAGG -ACGGAACCTTTGTTTGCCCAATGG -ACGGAACCTTTGTTTGCCATGAGG -ACGGAACCTTTGTTTGCCAATGGG -ACGGAACCTTTGTTTGCCTCCTGA -ACGGAACCTTTGTTTGCCTAGCGA -ACGGAACCTTTGTTTGCCCACAGA -ACGGAACCTTTGTTTGCCGCAAGA -ACGGAACCTTTGTTTGCCGGTTGA -ACGGAACCTTTGTTTGCCTCCGAT -ACGGAACCTTTGTTTGCCTGGCAT -ACGGAACCTTTGTTTGCCCGAGAT -ACGGAACCTTTGTTTGCCTACCAC -ACGGAACCTTTGTTTGCCCAGAAC -ACGGAACCTTTGTTTGCCGTCTAC -ACGGAACCTTTGTTTGCCACGTAC -ACGGAACCTTTGTTTGCCAGTGAC -ACGGAACCTTTGTTTGCCCTGTAG -ACGGAACCTTTGTTTGCCCCTAAG -ACGGAACCTTTGTTTGCCGTTCAG -ACGGAACCTTTGTTTGCCGCATAG -ACGGAACCTTTGTTTGCCGACAAG -ACGGAACCTTTGTTTGCCAAGCAG -ACGGAACCTTTGTTTGCCCGTCAA -ACGGAACCTTTGTTTGCCGCTGAA -ACGGAACCTTTGTTTGCCAGTACG -ACGGAACCTTTGTTTGCCATCCGA -ACGGAACCTTTGTTTGCCATGGGA -ACGGAACCTTTGTTTGCCGTGCAA -ACGGAACCTTTGTTTGCCGAGGAA -ACGGAACCTTTGTTTGCCCAGGTA -ACGGAACCTTTGTTTGCCGACTCT -ACGGAACCTTTGTTTGCCAGTCCT -ACGGAACCTTTGTTTGCCTAAGCC -ACGGAACCTTTGTTTGCCATAGCC -ACGGAACCTTTGTTTGCCTAACCG -ACGGAACCTTTGTTTGCCATGCCA -ACGGAACCTTTGCTTGGTGGAAAC -ACGGAACCTTTGCTTGGTAACACC -ACGGAACCTTTGCTTGGTATCGAG -ACGGAACCTTTGCTTGGTCTCCTT -ACGGAACCTTTGCTTGGTCCTGTT -ACGGAACCTTTGCTTGGTCGGTTT -ACGGAACCTTTGCTTGGTGTGGTT -ACGGAACCTTTGCTTGGTGCCTTT -ACGGAACCTTTGCTTGGTGGTCTT -ACGGAACCTTTGCTTGGTACGCTT -ACGGAACCTTTGCTTGGTAGCGTT -ACGGAACCTTTGCTTGGTTTCGTC -ACGGAACCTTTGCTTGGTTCTCTC -ACGGAACCTTTGCTTGGTTGGATC -ACGGAACCTTTGCTTGGTCACTTC -ACGGAACCTTTGCTTGGTGTACTC -ACGGAACCTTTGCTTGGTGATGTC -ACGGAACCTTTGCTTGGTACAGTC -ACGGAACCTTTGCTTGGTTTGCTG -ACGGAACCTTTGCTTGGTTCCATG -ACGGAACCTTTGCTTGGTTGTGTG -ACGGAACCTTTGCTTGGTCTAGTG -ACGGAACCTTTGCTTGGTCATCTG -ACGGAACCTTTGCTTGGTGAGTTG -ACGGAACCTTTGCTTGGTAGACTG -ACGGAACCTTTGCTTGGTTCGGTA -ACGGAACCTTTGCTTGGTTGCCTA -ACGGAACCTTTGCTTGGTCCACTA -ACGGAACCTTTGCTTGGTGGAGTA -ACGGAACCTTTGCTTGGTTCGTCT -ACGGAACCTTTGCTTGGTTGCACT -ACGGAACCTTTGCTTGGTCTGACT -ACGGAACCTTTGCTTGGTCAACCT -ACGGAACCTTTGCTTGGTGCTACT -ACGGAACCTTTGCTTGGTGGATCT -ACGGAACCTTTGCTTGGTAAGGCT -ACGGAACCTTTGCTTGGTTCAACC -ACGGAACCTTTGCTTGGTTGTTCC -ACGGAACCTTTGCTTGGTATTCCC -ACGGAACCTTTGCTTGGTTTCTCG -ACGGAACCTTTGCTTGGTTAGACG -ACGGAACCTTTGCTTGGTGTAACG -ACGGAACCTTTGCTTGGTACTTCG -ACGGAACCTTTGCTTGGTTACGCA -ACGGAACCTTTGCTTGGTCTTGCA -ACGGAACCTTTGCTTGGTCGAACA -ACGGAACCTTTGCTTGGTCAGTCA -ACGGAACCTTTGCTTGGTGATCCA -ACGGAACCTTTGCTTGGTACGACA -ACGGAACCTTTGCTTGGTAGCTCA -ACGGAACCTTTGCTTGGTTCACGT -ACGGAACCTTTGCTTGGTCGTAGT -ACGGAACCTTTGCTTGGTGTCAGT -ACGGAACCTTTGCTTGGTGAAGGT -ACGGAACCTTTGCTTGGTAACCGT -ACGGAACCTTTGCTTGGTTTGTGC -ACGGAACCTTTGCTTGGTCTAAGC -ACGGAACCTTTGCTTGGTACTAGC -ACGGAACCTTTGCTTGGTAGATGC -ACGGAACCTTTGCTTGGTTGAAGG -ACGGAACCTTTGCTTGGTCAATGG -ACGGAACCTTTGCTTGGTATGAGG -ACGGAACCTTTGCTTGGTAATGGG -ACGGAACCTTTGCTTGGTTCCTGA -ACGGAACCTTTGCTTGGTTAGCGA -ACGGAACCTTTGCTTGGTCACAGA -ACGGAACCTTTGCTTGGTGCAAGA -ACGGAACCTTTGCTTGGTGGTTGA -ACGGAACCTTTGCTTGGTTCCGAT -ACGGAACCTTTGCTTGGTTGGCAT -ACGGAACCTTTGCTTGGTCGAGAT -ACGGAACCTTTGCTTGGTTACCAC -ACGGAACCTTTGCTTGGTCAGAAC -ACGGAACCTTTGCTTGGTGTCTAC -ACGGAACCTTTGCTTGGTACGTAC -ACGGAACCTTTGCTTGGTAGTGAC -ACGGAACCTTTGCTTGGTCTGTAG -ACGGAACCTTTGCTTGGTCCTAAG -ACGGAACCTTTGCTTGGTGTTCAG -ACGGAACCTTTGCTTGGTGCATAG -ACGGAACCTTTGCTTGGTGACAAG -ACGGAACCTTTGCTTGGTAAGCAG -ACGGAACCTTTGCTTGGTCGTCAA -ACGGAACCTTTGCTTGGTGCTGAA -ACGGAACCTTTGCTTGGTAGTACG -ACGGAACCTTTGCTTGGTATCCGA -ACGGAACCTTTGCTTGGTATGGGA -ACGGAACCTTTGCTTGGTGTGCAA -ACGGAACCTTTGCTTGGTGAGGAA -ACGGAACCTTTGCTTGGTCAGGTA -ACGGAACCTTTGCTTGGTGACTCT -ACGGAACCTTTGCTTGGTAGTCCT -ACGGAACCTTTGCTTGGTTAAGCC -ACGGAACCTTTGCTTGGTATAGCC -ACGGAACCTTTGCTTGGTTAACCG -ACGGAACCTTTGCTTGGTATGCCA -ACGGAACCTTTGCTTACGGGAAAC -ACGGAACCTTTGCTTACGAACACC -ACGGAACCTTTGCTTACGATCGAG -ACGGAACCTTTGCTTACGCTCCTT -ACGGAACCTTTGCTTACGCCTGTT -ACGGAACCTTTGCTTACGCGGTTT -ACGGAACCTTTGCTTACGGTGGTT -ACGGAACCTTTGCTTACGGCCTTT -ACGGAACCTTTGCTTACGGGTCTT -ACGGAACCTTTGCTTACGACGCTT -ACGGAACCTTTGCTTACGAGCGTT -ACGGAACCTTTGCTTACGTTCGTC -ACGGAACCTTTGCTTACGTCTCTC -ACGGAACCTTTGCTTACGTGGATC -ACGGAACCTTTGCTTACGCACTTC -ACGGAACCTTTGCTTACGGTACTC -ACGGAACCTTTGCTTACGGATGTC -ACGGAACCTTTGCTTACGACAGTC -ACGGAACCTTTGCTTACGTTGCTG -ACGGAACCTTTGCTTACGTCCATG -ACGGAACCTTTGCTTACGTGTGTG -ACGGAACCTTTGCTTACGCTAGTG -ACGGAACCTTTGCTTACGCATCTG -ACGGAACCTTTGCTTACGGAGTTG -ACGGAACCTTTGCTTACGAGACTG -ACGGAACCTTTGCTTACGTCGGTA -ACGGAACCTTTGCTTACGTGCCTA -ACGGAACCTTTGCTTACGCCACTA -ACGGAACCTTTGCTTACGGGAGTA -ACGGAACCTTTGCTTACGTCGTCT -ACGGAACCTTTGCTTACGTGCACT -ACGGAACCTTTGCTTACGCTGACT -ACGGAACCTTTGCTTACGCAACCT -ACGGAACCTTTGCTTACGGCTACT -ACGGAACCTTTGCTTACGGGATCT -ACGGAACCTTTGCTTACGAAGGCT -ACGGAACCTTTGCTTACGTCAACC -ACGGAACCTTTGCTTACGTGTTCC -ACGGAACCTTTGCTTACGATTCCC -ACGGAACCTTTGCTTACGTTCTCG -ACGGAACCTTTGCTTACGTAGACG -ACGGAACCTTTGCTTACGGTAACG -ACGGAACCTTTGCTTACGACTTCG -ACGGAACCTTTGCTTACGTACGCA -ACGGAACCTTTGCTTACGCTTGCA -ACGGAACCTTTGCTTACGCGAACA -ACGGAACCTTTGCTTACGCAGTCA -ACGGAACCTTTGCTTACGGATCCA -ACGGAACCTTTGCTTACGACGACA -ACGGAACCTTTGCTTACGAGCTCA -ACGGAACCTTTGCTTACGTCACGT -ACGGAACCTTTGCTTACGCGTAGT -ACGGAACCTTTGCTTACGGTCAGT -ACGGAACCTTTGCTTACGGAAGGT -ACGGAACCTTTGCTTACGAACCGT -ACGGAACCTTTGCTTACGTTGTGC -ACGGAACCTTTGCTTACGCTAAGC -ACGGAACCTTTGCTTACGACTAGC -ACGGAACCTTTGCTTACGAGATGC -ACGGAACCTTTGCTTACGTGAAGG -ACGGAACCTTTGCTTACGCAATGG -ACGGAACCTTTGCTTACGATGAGG -ACGGAACCTTTGCTTACGAATGGG -ACGGAACCTTTGCTTACGTCCTGA -ACGGAACCTTTGCTTACGTAGCGA -ACGGAACCTTTGCTTACGCACAGA -ACGGAACCTTTGCTTACGGCAAGA -ACGGAACCTTTGCTTACGGGTTGA -ACGGAACCTTTGCTTACGTCCGAT -ACGGAACCTTTGCTTACGTGGCAT -ACGGAACCTTTGCTTACGCGAGAT -ACGGAACCTTTGCTTACGTACCAC -ACGGAACCTTTGCTTACGCAGAAC -ACGGAACCTTTGCTTACGGTCTAC -ACGGAACCTTTGCTTACGACGTAC -ACGGAACCTTTGCTTACGAGTGAC -ACGGAACCTTTGCTTACGCTGTAG -ACGGAACCTTTGCTTACGCCTAAG -ACGGAACCTTTGCTTACGGTTCAG -ACGGAACCTTTGCTTACGGCATAG -ACGGAACCTTTGCTTACGGACAAG -ACGGAACCTTTGCTTACGAAGCAG -ACGGAACCTTTGCTTACGCGTCAA -ACGGAACCTTTGCTTACGGCTGAA -ACGGAACCTTTGCTTACGAGTACG -ACGGAACCTTTGCTTACGATCCGA -ACGGAACCTTTGCTTACGATGGGA -ACGGAACCTTTGCTTACGGTGCAA -ACGGAACCTTTGCTTACGGAGGAA -ACGGAACCTTTGCTTACGCAGGTA -ACGGAACCTTTGCTTACGGACTCT -ACGGAACCTTTGCTTACGAGTCCT -ACGGAACCTTTGCTTACGTAAGCC -ACGGAACCTTTGCTTACGATAGCC -ACGGAACCTTTGCTTACGTAACCG -ACGGAACCTTTGCTTACGATGCCA -ACGGAACCTTTGGTTAGCGGAAAC -ACGGAACCTTTGGTTAGCAACACC -ACGGAACCTTTGGTTAGCATCGAG -ACGGAACCTTTGGTTAGCCTCCTT -ACGGAACCTTTGGTTAGCCCTGTT -ACGGAACCTTTGGTTAGCCGGTTT -ACGGAACCTTTGGTTAGCGTGGTT -ACGGAACCTTTGGTTAGCGCCTTT -ACGGAACCTTTGGTTAGCGGTCTT -ACGGAACCTTTGGTTAGCACGCTT -ACGGAACCTTTGGTTAGCAGCGTT -ACGGAACCTTTGGTTAGCTTCGTC -ACGGAACCTTTGGTTAGCTCTCTC -ACGGAACCTTTGGTTAGCTGGATC -ACGGAACCTTTGGTTAGCCACTTC -ACGGAACCTTTGGTTAGCGTACTC -ACGGAACCTTTGGTTAGCGATGTC -ACGGAACCTTTGGTTAGCACAGTC -ACGGAACCTTTGGTTAGCTTGCTG -ACGGAACCTTTGGTTAGCTCCATG -ACGGAACCTTTGGTTAGCTGTGTG -ACGGAACCTTTGGTTAGCCTAGTG -ACGGAACCTTTGGTTAGCCATCTG -ACGGAACCTTTGGTTAGCGAGTTG -ACGGAACCTTTGGTTAGCAGACTG -ACGGAACCTTTGGTTAGCTCGGTA -ACGGAACCTTTGGTTAGCTGCCTA -ACGGAACCTTTGGTTAGCCCACTA -ACGGAACCTTTGGTTAGCGGAGTA -ACGGAACCTTTGGTTAGCTCGTCT -ACGGAACCTTTGGTTAGCTGCACT -ACGGAACCTTTGGTTAGCCTGACT -ACGGAACCTTTGGTTAGCCAACCT -ACGGAACCTTTGGTTAGCGCTACT -ACGGAACCTTTGGTTAGCGGATCT -ACGGAACCTTTGGTTAGCAAGGCT -ACGGAACCTTTGGTTAGCTCAACC -ACGGAACCTTTGGTTAGCTGTTCC -ACGGAACCTTTGGTTAGCATTCCC -ACGGAACCTTTGGTTAGCTTCTCG -ACGGAACCTTTGGTTAGCTAGACG -ACGGAACCTTTGGTTAGCGTAACG -ACGGAACCTTTGGTTAGCACTTCG -ACGGAACCTTTGGTTAGCTACGCA -ACGGAACCTTTGGTTAGCCTTGCA -ACGGAACCTTTGGTTAGCCGAACA -ACGGAACCTTTGGTTAGCCAGTCA -ACGGAACCTTTGGTTAGCGATCCA -ACGGAACCTTTGGTTAGCACGACA -ACGGAACCTTTGGTTAGCAGCTCA -ACGGAACCTTTGGTTAGCTCACGT -ACGGAACCTTTGGTTAGCCGTAGT -ACGGAACCTTTGGTTAGCGTCAGT -ACGGAACCTTTGGTTAGCGAAGGT -ACGGAACCTTTGGTTAGCAACCGT -ACGGAACCTTTGGTTAGCTTGTGC -ACGGAACCTTTGGTTAGCCTAAGC -ACGGAACCTTTGGTTAGCACTAGC -ACGGAACCTTTGGTTAGCAGATGC -ACGGAACCTTTGGTTAGCTGAAGG -ACGGAACCTTTGGTTAGCCAATGG -ACGGAACCTTTGGTTAGCATGAGG -ACGGAACCTTTGGTTAGCAATGGG -ACGGAACCTTTGGTTAGCTCCTGA -ACGGAACCTTTGGTTAGCTAGCGA -ACGGAACCTTTGGTTAGCCACAGA -ACGGAACCTTTGGTTAGCGCAAGA -ACGGAACCTTTGGTTAGCGGTTGA -ACGGAACCTTTGGTTAGCTCCGAT -ACGGAACCTTTGGTTAGCTGGCAT -ACGGAACCTTTGGTTAGCCGAGAT -ACGGAACCTTTGGTTAGCTACCAC -ACGGAACCTTTGGTTAGCCAGAAC -ACGGAACCTTTGGTTAGCGTCTAC -ACGGAACCTTTGGTTAGCACGTAC -ACGGAACCTTTGGTTAGCAGTGAC -ACGGAACCTTTGGTTAGCCTGTAG -ACGGAACCTTTGGTTAGCCCTAAG -ACGGAACCTTTGGTTAGCGTTCAG -ACGGAACCTTTGGTTAGCGCATAG -ACGGAACCTTTGGTTAGCGACAAG -ACGGAACCTTTGGTTAGCAAGCAG -ACGGAACCTTTGGTTAGCCGTCAA -ACGGAACCTTTGGTTAGCGCTGAA -ACGGAACCTTTGGTTAGCAGTACG -ACGGAACCTTTGGTTAGCATCCGA -ACGGAACCTTTGGTTAGCATGGGA -ACGGAACCTTTGGTTAGCGTGCAA -ACGGAACCTTTGGTTAGCGAGGAA -ACGGAACCTTTGGTTAGCCAGGTA -ACGGAACCTTTGGTTAGCGACTCT -ACGGAACCTTTGGTTAGCAGTCCT -ACGGAACCTTTGGTTAGCTAAGCC -ACGGAACCTTTGGTTAGCATAGCC -ACGGAACCTTTGGTTAGCTAACCG -ACGGAACCTTTGGTTAGCATGCCA -ACGGAACCTTTGGTCTTCGGAAAC -ACGGAACCTTTGGTCTTCAACACC -ACGGAACCTTTGGTCTTCATCGAG -ACGGAACCTTTGGTCTTCCTCCTT -ACGGAACCTTTGGTCTTCCCTGTT -ACGGAACCTTTGGTCTTCCGGTTT -ACGGAACCTTTGGTCTTCGTGGTT -ACGGAACCTTTGGTCTTCGCCTTT -ACGGAACCTTTGGTCTTCGGTCTT -ACGGAACCTTTGGTCTTCACGCTT -ACGGAACCTTTGGTCTTCAGCGTT -ACGGAACCTTTGGTCTTCTTCGTC -ACGGAACCTTTGGTCTTCTCTCTC -ACGGAACCTTTGGTCTTCTGGATC -ACGGAACCTTTGGTCTTCCACTTC -ACGGAACCTTTGGTCTTCGTACTC -ACGGAACCTTTGGTCTTCGATGTC -ACGGAACCTTTGGTCTTCACAGTC -ACGGAACCTTTGGTCTTCTTGCTG -ACGGAACCTTTGGTCTTCTCCATG -ACGGAACCTTTGGTCTTCTGTGTG -ACGGAACCTTTGGTCTTCCTAGTG -ACGGAACCTTTGGTCTTCCATCTG -ACGGAACCTTTGGTCTTCGAGTTG -ACGGAACCTTTGGTCTTCAGACTG -ACGGAACCTTTGGTCTTCTCGGTA -ACGGAACCTTTGGTCTTCTGCCTA -ACGGAACCTTTGGTCTTCCCACTA -ACGGAACCTTTGGTCTTCGGAGTA -ACGGAACCTTTGGTCTTCTCGTCT -ACGGAACCTTTGGTCTTCTGCACT -ACGGAACCTTTGGTCTTCCTGACT -ACGGAACCTTTGGTCTTCCAACCT -ACGGAACCTTTGGTCTTCGCTACT -ACGGAACCTTTGGTCTTCGGATCT -ACGGAACCTTTGGTCTTCAAGGCT -ACGGAACCTTTGGTCTTCTCAACC -ACGGAACCTTTGGTCTTCTGTTCC -ACGGAACCTTTGGTCTTCATTCCC -ACGGAACCTTTGGTCTTCTTCTCG -ACGGAACCTTTGGTCTTCTAGACG -ACGGAACCTTTGGTCTTCGTAACG -ACGGAACCTTTGGTCTTCACTTCG -ACGGAACCTTTGGTCTTCTACGCA -ACGGAACCTTTGGTCTTCCTTGCA -ACGGAACCTTTGGTCTTCCGAACA -ACGGAACCTTTGGTCTTCCAGTCA -ACGGAACCTTTGGTCTTCGATCCA -ACGGAACCTTTGGTCTTCACGACA -ACGGAACCTTTGGTCTTCAGCTCA -ACGGAACCTTTGGTCTTCTCACGT -ACGGAACCTTTGGTCTTCCGTAGT -ACGGAACCTTTGGTCTTCGTCAGT -ACGGAACCTTTGGTCTTCGAAGGT -ACGGAACCTTTGGTCTTCAACCGT -ACGGAACCTTTGGTCTTCTTGTGC -ACGGAACCTTTGGTCTTCCTAAGC -ACGGAACCTTTGGTCTTCACTAGC -ACGGAACCTTTGGTCTTCAGATGC -ACGGAACCTTTGGTCTTCTGAAGG -ACGGAACCTTTGGTCTTCCAATGG -ACGGAACCTTTGGTCTTCATGAGG -ACGGAACCTTTGGTCTTCAATGGG -ACGGAACCTTTGGTCTTCTCCTGA -ACGGAACCTTTGGTCTTCTAGCGA -ACGGAACCTTTGGTCTTCCACAGA -ACGGAACCTTTGGTCTTCGCAAGA -ACGGAACCTTTGGTCTTCGGTTGA -ACGGAACCTTTGGTCTTCTCCGAT -ACGGAACCTTTGGTCTTCTGGCAT -ACGGAACCTTTGGTCTTCCGAGAT -ACGGAACCTTTGGTCTTCTACCAC -ACGGAACCTTTGGTCTTCCAGAAC -ACGGAACCTTTGGTCTTCGTCTAC -ACGGAACCTTTGGTCTTCACGTAC -ACGGAACCTTTGGTCTTCAGTGAC -ACGGAACCTTTGGTCTTCCTGTAG -ACGGAACCTTTGGTCTTCCCTAAG -ACGGAACCTTTGGTCTTCGTTCAG -ACGGAACCTTTGGTCTTCGCATAG -ACGGAACCTTTGGTCTTCGACAAG -ACGGAACCTTTGGTCTTCAAGCAG -ACGGAACCTTTGGTCTTCCGTCAA -ACGGAACCTTTGGTCTTCGCTGAA -ACGGAACCTTTGGTCTTCAGTACG -ACGGAACCTTTGGTCTTCATCCGA -ACGGAACCTTTGGTCTTCATGGGA -ACGGAACCTTTGGTCTTCGTGCAA -ACGGAACCTTTGGTCTTCGAGGAA -ACGGAACCTTTGGTCTTCCAGGTA -ACGGAACCTTTGGTCTTCGACTCT -ACGGAACCTTTGGTCTTCAGTCCT -ACGGAACCTTTGGTCTTCTAAGCC -ACGGAACCTTTGGTCTTCATAGCC -ACGGAACCTTTGGTCTTCTAACCG -ACGGAACCTTTGGTCTTCATGCCA -ACGGAACCTTTGCTCTCTGGAAAC -ACGGAACCTTTGCTCTCTAACACC -ACGGAACCTTTGCTCTCTATCGAG -ACGGAACCTTTGCTCTCTCTCCTT -ACGGAACCTTTGCTCTCTCCTGTT -ACGGAACCTTTGCTCTCTCGGTTT -ACGGAACCTTTGCTCTCTGTGGTT -ACGGAACCTTTGCTCTCTGCCTTT -ACGGAACCTTTGCTCTCTGGTCTT -ACGGAACCTTTGCTCTCTACGCTT -ACGGAACCTTTGCTCTCTAGCGTT -ACGGAACCTTTGCTCTCTTTCGTC -ACGGAACCTTTGCTCTCTTCTCTC -ACGGAACCTTTGCTCTCTTGGATC -ACGGAACCTTTGCTCTCTCACTTC -ACGGAACCTTTGCTCTCTGTACTC -ACGGAACCTTTGCTCTCTGATGTC -ACGGAACCTTTGCTCTCTACAGTC -ACGGAACCTTTGCTCTCTTTGCTG -ACGGAACCTTTGCTCTCTTCCATG -ACGGAACCTTTGCTCTCTTGTGTG -ACGGAACCTTTGCTCTCTCTAGTG -ACGGAACCTTTGCTCTCTCATCTG -ACGGAACCTTTGCTCTCTGAGTTG -ACGGAACCTTTGCTCTCTAGACTG -ACGGAACCTTTGCTCTCTTCGGTA -ACGGAACCTTTGCTCTCTTGCCTA -ACGGAACCTTTGCTCTCTCCACTA -ACGGAACCTTTGCTCTCTGGAGTA -ACGGAACCTTTGCTCTCTTCGTCT -ACGGAACCTTTGCTCTCTTGCACT -ACGGAACCTTTGCTCTCTCTGACT -ACGGAACCTTTGCTCTCTCAACCT -ACGGAACCTTTGCTCTCTGCTACT -ACGGAACCTTTGCTCTCTGGATCT -ACGGAACCTTTGCTCTCTAAGGCT -ACGGAACCTTTGCTCTCTTCAACC -ACGGAACCTTTGCTCTCTTGTTCC -ACGGAACCTTTGCTCTCTATTCCC -ACGGAACCTTTGCTCTCTTTCTCG -ACGGAACCTTTGCTCTCTTAGACG -ACGGAACCTTTGCTCTCTGTAACG -ACGGAACCTTTGCTCTCTACTTCG -ACGGAACCTTTGCTCTCTTACGCA -ACGGAACCTTTGCTCTCTCTTGCA -ACGGAACCTTTGCTCTCTCGAACA -ACGGAACCTTTGCTCTCTCAGTCA -ACGGAACCTTTGCTCTCTGATCCA -ACGGAACCTTTGCTCTCTACGACA -ACGGAACCTTTGCTCTCTAGCTCA -ACGGAACCTTTGCTCTCTTCACGT -ACGGAACCTTTGCTCTCTCGTAGT -ACGGAACCTTTGCTCTCTGTCAGT -ACGGAACCTTTGCTCTCTGAAGGT -ACGGAACCTTTGCTCTCTAACCGT -ACGGAACCTTTGCTCTCTTTGTGC -ACGGAACCTTTGCTCTCTCTAAGC -ACGGAACCTTTGCTCTCTACTAGC -ACGGAACCTTTGCTCTCTAGATGC -ACGGAACCTTTGCTCTCTTGAAGG -ACGGAACCTTTGCTCTCTCAATGG -ACGGAACCTTTGCTCTCTATGAGG -ACGGAACCTTTGCTCTCTAATGGG -ACGGAACCTTTGCTCTCTTCCTGA -ACGGAACCTTTGCTCTCTTAGCGA -ACGGAACCTTTGCTCTCTCACAGA -ACGGAACCTTTGCTCTCTGCAAGA -ACGGAACCTTTGCTCTCTGGTTGA -ACGGAACCTTTGCTCTCTTCCGAT -ACGGAACCTTTGCTCTCTTGGCAT -ACGGAACCTTTGCTCTCTCGAGAT -ACGGAACCTTTGCTCTCTTACCAC -ACGGAACCTTTGCTCTCTCAGAAC -ACGGAACCTTTGCTCTCTGTCTAC -ACGGAACCTTTGCTCTCTACGTAC -ACGGAACCTTTGCTCTCTAGTGAC -ACGGAACCTTTGCTCTCTCTGTAG -ACGGAACCTTTGCTCTCTCCTAAG -ACGGAACCTTTGCTCTCTGTTCAG -ACGGAACCTTTGCTCTCTGCATAG -ACGGAACCTTTGCTCTCTGACAAG -ACGGAACCTTTGCTCTCTAAGCAG -ACGGAACCTTTGCTCTCTCGTCAA -ACGGAACCTTTGCTCTCTGCTGAA -ACGGAACCTTTGCTCTCTAGTACG -ACGGAACCTTTGCTCTCTATCCGA -ACGGAACCTTTGCTCTCTATGGGA -ACGGAACCTTTGCTCTCTGTGCAA -ACGGAACCTTTGCTCTCTGAGGAA -ACGGAACCTTTGCTCTCTCAGGTA -ACGGAACCTTTGCTCTCTGACTCT -ACGGAACCTTTGCTCTCTAGTCCT -ACGGAACCTTTGCTCTCTTAAGCC -ACGGAACCTTTGCTCTCTATAGCC -ACGGAACCTTTGCTCTCTTAACCG -ACGGAACCTTTGCTCTCTATGCCA -ACGGAACCTTTGATCTGGGGAAAC -ACGGAACCTTTGATCTGGAACACC -ACGGAACCTTTGATCTGGATCGAG -ACGGAACCTTTGATCTGGCTCCTT -ACGGAACCTTTGATCTGGCCTGTT -ACGGAACCTTTGATCTGGCGGTTT -ACGGAACCTTTGATCTGGGTGGTT -ACGGAACCTTTGATCTGGGCCTTT -ACGGAACCTTTGATCTGGGGTCTT -ACGGAACCTTTGATCTGGACGCTT -ACGGAACCTTTGATCTGGAGCGTT -ACGGAACCTTTGATCTGGTTCGTC -ACGGAACCTTTGATCTGGTCTCTC -ACGGAACCTTTGATCTGGTGGATC -ACGGAACCTTTGATCTGGCACTTC -ACGGAACCTTTGATCTGGGTACTC -ACGGAACCTTTGATCTGGGATGTC -ACGGAACCTTTGATCTGGACAGTC -ACGGAACCTTTGATCTGGTTGCTG -ACGGAACCTTTGATCTGGTCCATG -ACGGAACCTTTGATCTGGTGTGTG -ACGGAACCTTTGATCTGGCTAGTG -ACGGAACCTTTGATCTGGCATCTG -ACGGAACCTTTGATCTGGGAGTTG -ACGGAACCTTTGATCTGGAGACTG -ACGGAACCTTTGATCTGGTCGGTA -ACGGAACCTTTGATCTGGTGCCTA -ACGGAACCTTTGATCTGGCCACTA -ACGGAACCTTTGATCTGGGGAGTA -ACGGAACCTTTGATCTGGTCGTCT -ACGGAACCTTTGATCTGGTGCACT -ACGGAACCTTTGATCTGGCTGACT -ACGGAACCTTTGATCTGGCAACCT -ACGGAACCTTTGATCTGGGCTACT -ACGGAACCTTTGATCTGGGGATCT -ACGGAACCTTTGATCTGGAAGGCT -ACGGAACCTTTGATCTGGTCAACC -ACGGAACCTTTGATCTGGTGTTCC -ACGGAACCTTTGATCTGGATTCCC -ACGGAACCTTTGATCTGGTTCTCG -ACGGAACCTTTGATCTGGTAGACG -ACGGAACCTTTGATCTGGGTAACG -ACGGAACCTTTGATCTGGACTTCG -ACGGAACCTTTGATCTGGTACGCA -ACGGAACCTTTGATCTGGCTTGCA -ACGGAACCTTTGATCTGGCGAACA -ACGGAACCTTTGATCTGGCAGTCA -ACGGAACCTTTGATCTGGGATCCA -ACGGAACCTTTGATCTGGACGACA -ACGGAACCTTTGATCTGGAGCTCA -ACGGAACCTTTGATCTGGTCACGT -ACGGAACCTTTGATCTGGCGTAGT -ACGGAACCTTTGATCTGGGTCAGT -ACGGAACCTTTGATCTGGGAAGGT -ACGGAACCTTTGATCTGGAACCGT -ACGGAACCTTTGATCTGGTTGTGC -ACGGAACCTTTGATCTGGCTAAGC -ACGGAACCTTTGATCTGGACTAGC -ACGGAACCTTTGATCTGGAGATGC -ACGGAACCTTTGATCTGGTGAAGG -ACGGAACCTTTGATCTGGCAATGG -ACGGAACCTTTGATCTGGATGAGG -ACGGAACCTTTGATCTGGAATGGG -ACGGAACCTTTGATCTGGTCCTGA -ACGGAACCTTTGATCTGGTAGCGA -ACGGAACCTTTGATCTGGCACAGA -ACGGAACCTTTGATCTGGGCAAGA -ACGGAACCTTTGATCTGGGGTTGA -ACGGAACCTTTGATCTGGTCCGAT -ACGGAACCTTTGATCTGGTGGCAT -ACGGAACCTTTGATCTGGCGAGAT -ACGGAACCTTTGATCTGGTACCAC -ACGGAACCTTTGATCTGGCAGAAC -ACGGAACCTTTGATCTGGGTCTAC -ACGGAACCTTTGATCTGGACGTAC -ACGGAACCTTTGATCTGGAGTGAC -ACGGAACCTTTGATCTGGCTGTAG -ACGGAACCTTTGATCTGGCCTAAG -ACGGAACCTTTGATCTGGGTTCAG -ACGGAACCTTTGATCTGGGCATAG -ACGGAACCTTTGATCTGGGACAAG -ACGGAACCTTTGATCTGGAAGCAG -ACGGAACCTTTGATCTGGCGTCAA -ACGGAACCTTTGATCTGGGCTGAA -ACGGAACCTTTGATCTGGAGTACG -ACGGAACCTTTGATCTGGATCCGA -ACGGAACCTTTGATCTGGATGGGA -ACGGAACCTTTGATCTGGGTGCAA -ACGGAACCTTTGATCTGGGAGGAA -ACGGAACCTTTGATCTGGCAGGTA -ACGGAACCTTTGATCTGGGACTCT -ACGGAACCTTTGATCTGGAGTCCT -ACGGAACCTTTGATCTGGTAAGCC -ACGGAACCTTTGATCTGGATAGCC -ACGGAACCTTTGATCTGGTAACCG -ACGGAACCTTTGATCTGGATGCCA -ACGGAACCTTTGTTCCACGGAAAC -ACGGAACCTTTGTTCCACAACACC -ACGGAACCTTTGTTCCACATCGAG -ACGGAACCTTTGTTCCACCTCCTT -ACGGAACCTTTGTTCCACCCTGTT -ACGGAACCTTTGTTCCACCGGTTT -ACGGAACCTTTGTTCCACGTGGTT -ACGGAACCTTTGTTCCACGCCTTT -ACGGAACCTTTGTTCCACGGTCTT -ACGGAACCTTTGTTCCACACGCTT -ACGGAACCTTTGTTCCACAGCGTT -ACGGAACCTTTGTTCCACTTCGTC -ACGGAACCTTTGTTCCACTCTCTC -ACGGAACCTTTGTTCCACTGGATC -ACGGAACCTTTGTTCCACCACTTC -ACGGAACCTTTGTTCCACGTACTC -ACGGAACCTTTGTTCCACGATGTC -ACGGAACCTTTGTTCCACACAGTC -ACGGAACCTTTGTTCCACTTGCTG -ACGGAACCTTTGTTCCACTCCATG -ACGGAACCTTTGTTCCACTGTGTG -ACGGAACCTTTGTTCCACCTAGTG -ACGGAACCTTTGTTCCACCATCTG -ACGGAACCTTTGTTCCACGAGTTG -ACGGAACCTTTGTTCCACAGACTG -ACGGAACCTTTGTTCCACTCGGTA -ACGGAACCTTTGTTCCACTGCCTA -ACGGAACCTTTGTTCCACCCACTA -ACGGAACCTTTGTTCCACGGAGTA -ACGGAACCTTTGTTCCACTCGTCT -ACGGAACCTTTGTTCCACTGCACT -ACGGAACCTTTGTTCCACCTGACT -ACGGAACCTTTGTTCCACCAACCT -ACGGAACCTTTGTTCCACGCTACT -ACGGAACCTTTGTTCCACGGATCT -ACGGAACCTTTGTTCCACAAGGCT -ACGGAACCTTTGTTCCACTCAACC -ACGGAACCTTTGTTCCACTGTTCC -ACGGAACCTTTGTTCCACATTCCC -ACGGAACCTTTGTTCCACTTCTCG -ACGGAACCTTTGTTCCACTAGACG -ACGGAACCTTTGTTCCACGTAACG -ACGGAACCTTTGTTCCACACTTCG -ACGGAACCTTTGTTCCACTACGCA -ACGGAACCTTTGTTCCACCTTGCA -ACGGAACCTTTGTTCCACCGAACA -ACGGAACCTTTGTTCCACCAGTCA -ACGGAACCTTTGTTCCACGATCCA -ACGGAACCTTTGTTCCACACGACA -ACGGAACCTTTGTTCCACAGCTCA -ACGGAACCTTTGTTCCACTCACGT -ACGGAACCTTTGTTCCACCGTAGT -ACGGAACCTTTGTTCCACGTCAGT -ACGGAACCTTTGTTCCACGAAGGT -ACGGAACCTTTGTTCCACAACCGT -ACGGAACCTTTGTTCCACTTGTGC -ACGGAACCTTTGTTCCACCTAAGC -ACGGAACCTTTGTTCCACACTAGC -ACGGAACCTTTGTTCCACAGATGC -ACGGAACCTTTGTTCCACTGAAGG -ACGGAACCTTTGTTCCACCAATGG -ACGGAACCTTTGTTCCACATGAGG -ACGGAACCTTTGTTCCACAATGGG -ACGGAACCTTTGTTCCACTCCTGA -ACGGAACCTTTGTTCCACTAGCGA -ACGGAACCTTTGTTCCACCACAGA -ACGGAACCTTTGTTCCACGCAAGA -ACGGAACCTTTGTTCCACGGTTGA -ACGGAACCTTTGTTCCACTCCGAT -ACGGAACCTTTGTTCCACTGGCAT -ACGGAACCTTTGTTCCACCGAGAT -ACGGAACCTTTGTTCCACTACCAC -ACGGAACCTTTGTTCCACCAGAAC -ACGGAACCTTTGTTCCACGTCTAC -ACGGAACCTTTGTTCCACACGTAC -ACGGAACCTTTGTTCCACAGTGAC -ACGGAACCTTTGTTCCACCTGTAG -ACGGAACCTTTGTTCCACCCTAAG -ACGGAACCTTTGTTCCACGTTCAG -ACGGAACCTTTGTTCCACGCATAG -ACGGAACCTTTGTTCCACGACAAG -ACGGAACCTTTGTTCCACAAGCAG -ACGGAACCTTTGTTCCACCGTCAA -ACGGAACCTTTGTTCCACGCTGAA -ACGGAACCTTTGTTCCACAGTACG -ACGGAACCTTTGTTCCACATCCGA -ACGGAACCTTTGTTCCACATGGGA -ACGGAACCTTTGTTCCACGTGCAA -ACGGAACCTTTGTTCCACGAGGAA -ACGGAACCTTTGTTCCACCAGGTA -ACGGAACCTTTGTTCCACGACTCT -ACGGAACCTTTGTTCCACAGTCCT -ACGGAACCTTTGTTCCACTAAGCC -ACGGAACCTTTGTTCCACATAGCC -ACGGAACCTTTGTTCCACTAACCG -ACGGAACCTTTGTTCCACATGCCA -ACGGAACCTTTGCTCGTAGGAAAC -ACGGAACCTTTGCTCGTAAACACC -ACGGAACCTTTGCTCGTAATCGAG -ACGGAACCTTTGCTCGTACTCCTT -ACGGAACCTTTGCTCGTACCTGTT -ACGGAACCTTTGCTCGTACGGTTT -ACGGAACCTTTGCTCGTAGTGGTT -ACGGAACCTTTGCTCGTAGCCTTT -ACGGAACCTTTGCTCGTAGGTCTT -ACGGAACCTTTGCTCGTAACGCTT -ACGGAACCTTTGCTCGTAAGCGTT -ACGGAACCTTTGCTCGTATTCGTC -ACGGAACCTTTGCTCGTATCTCTC -ACGGAACCTTTGCTCGTATGGATC -ACGGAACCTTTGCTCGTACACTTC -ACGGAACCTTTGCTCGTAGTACTC -ACGGAACCTTTGCTCGTAGATGTC -ACGGAACCTTTGCTCGTAACAGTC -ACGGAACCTTTGCTCGTATTGCTG -ACGGAACCTTTGCTCGTATCCATG -ACGGAACCTTTGCTCGTATGTGTG -ACGGAACCTTTGCTCGTACTAGTG -ACGGAACCTTTGCTCGTACATCTG -ACGGAACCTTTGCTCGTAGAGTTG -ACGGAACCTTTGCTCGTAAGACTG -ACGGAACCTTTGCTCGTATCGGTA -ACGGAACCTTTGCTCGTATGCCTA -ACGGAACCTTTGCTCGTACCACTA -ACGGAACCTTTGCTCGTAGGAGTA -ACGGAACCTTTGCTCGTATCGTCT -ACGGAACCTTTGCTCGTATGCACT -ACGGAACCTTTGCTCGTACTGACT -ACGGAACCTTTGCTCGTACAACCT -ACGGAACCTTTGCTCGTAGCTACT -ACGGAACCTTTGCTCGTAGGATCT -ACGGAACCTTTGCTCGTAAAGGCT -ACGGAACCTTTGCTCGTATCAACC -ACGGAACCTTTGCTCGTATGTTCC -ACGGAACCTTTGCTCGTAATTCCC -ACGGAACCTTTGCTCGTATTCTCG -ACGGAACCTTTGCTCGTATAGACG -ACGGAACCTTTGCTCGTAGTAACG -ACGGAACCTTTGCTCGTAACTTCG -ACGGAACCTTTGCTCGTATACGCA -ACGGAACCTTTGCTCGTACTTGCA -ACGGAACCTTTGCTCGTACGAACA -ACGGAACCTTTGCTCGTACAGTCA -ACGGAACCTTTGCTCGTAGATCCA -ACGGAACCTTTGCTCGTAACGACA -ACGGAACCTTTGCTCGTAAGCTCA -ACGGAACCTTTGCTCGTATCACGT -ACGGAACCTTTGCTCGTACGTAGT -ACGGAACCTTTGCTCGTAGTCAGT -ACGGAACCTTTGCTCGTAGAAGGT -ACGGAACCTTTGCTCGTAAACCGT -ACGGAACCTTTGCTCGTATTGTGC -ACGGAACCTTTGCTCGTACTAAGC -ACGGAACCTTTGCTCGTAACTAGC -ACGGAACCTTTGCTCGTAAGATGC -ACGGAACCTTTGCTCGTATGAAGG -ACGGAACCTTTGCTCGTACAATGG -ACGGAACCTTTGCTCGTAATGAGG -ACGGAACCTTTGCTCGTAAATGGG -ACGGAACCTTTGCTCGTATCCTGA -ACGGAACCTTTGCTCGTATAGCGA -ACGGAACCTTTGCTCGTACACAGA -ACGGAACCTTTGCTCGTAGCAAGA -ACGGAACCTTTGCTCGTAGGTTGA -ACGGAACCTTTGCTCGTATCCGAT -ACGGAACCTTTGCTCGTATGGCAT -ACGGAACCTTTGCTCGTACGAGAT -ACGGAACCTTTGCTCGTATACCAC -ACGGAACCTTTGCTCGTACAGAAC -ACGGAACCTTTGCTCGTAGTCTAC -ACGGAACCTTTGCTCGTAACGTAC -ACGGAACCTTTGCTCGTAAGTGAC -ACGGAACCTTTGCTCGTACTGTAG -ACGGAACCTTTGCTCGTACCTAAG -ACGGAACCTTTGCTCGTAGTTCAG -ACGGAACCTTTGCTCGTAGCATAG -ACGGAACCTTTGCTCGTAGACAAG -ACGGAACCTTTGCTCGTAAAGCAG -ACGGAACCTTTGCTCGTACGTCAA -ACGGAACCTTTGCTCGTAGCTGAA -ACGGAACCTTTGCTCGTAAGTACG -ACGGAACCTTTGCTCGTAATCCGA -ACGGAACCTTTGCTCGTAATGGGA -ACGGAACCTTTGCTCGTAGTGCAA -ACGGAACCTTTGCTCGTAGAGGAA -ACGGAACCTTTGCTCGTACAGGTA -ACGGAACCTTTGCTCGTAGACTCT -ACGGAACCTTTGCTCGTAAGTCCT -ACGGAACCTTTGCTCGTATAAGCC -ACGGAACCTTTGCTCGTAATAGCC -ACGGAACCTTTGCTCGTATAACCG -ACGGAACCTTTGCTCGTAATGCCA -ACGGAACCTTTGGTCGATGGAAAC -ACGGAACCTTTGGTCGATAACACC -ACGGAACCTTTGGTCGATATCGAG -ACGGAACCTTTGGTCGATCTCCTT -ACGGAACCTTTGGTCGATCCTGTT -ACGGAACCTTTGGTCGATCGGTTT -ACGGAACCTTTGGTCGATGTGGTT -ACGGAACCTTTGGTCGATGCCTTT -ACGGAACCTTTGGTCGATGGTCTT -ACGGAACCTTTGGTCGATACGCTT -ACGGAACCTTTGGTCGATAGCGTT -ACGGAACCTTTGGTCGATTTCGTC -ACGGAACCTTTGGTCGATTCTCTC -ACGGAACCTTTGGTCGATTGGATC -ACGGAACCTTTGGTCGATCACTTC -ACGGAACCTTTGGTCGATGTACTC -ACGGAACCTTTGGTCGATGATGTC -ACGGAACCTTTGGTCGATACAGTC -ACGGAACCTTTGGTCGATTTGCTG -ACGGAACCTTTGGTCGATTCCATG -ACGGAACCTTTGGTCGATTGTGTG -ACGGAACCTTTGGTCGATCTAGTG -ACGGAACCTTTGGTCGATCATCTG -ACGGAACCTTTGGTCGATGAGTTG -ACGGAACCTTTGGTCGATAGACTG -ACGGAACCTTTGGTCGATTCGGTA -ACGGAACCTTTGGTCGATTGCCTA -ACGGAACCTTTGGTCGATCCACTA -ACGGAACCTTTGGTCGATGGAGTA -ACGGAACCTTTGGTCGATTCGTCT -ACGGAACCTTTGGTCGATTGCACT -ACGGAACCTTTGGTCGATCTGACT -ACGGAACCTTTGGTCGATCAACCT -ACGGAACCTTTGGTCGATGCTACT -ACGGAACCTTTGGTCGATGGATCT -ACGGAACCTTTGGTCGATAAGGCT -ACGGAACCTTTGGTCGATTCAACC -ACGGAACCTTTGGTCGATTGTTCC -ACGGAACCTTTGGTCGATATTCCC -ACGGAACCTTTGGTCGATTTCTCG -ACGGAACCTTTGGTCGATTAGACG -ACGGAACCTTTGGTCGATGTAACG -ACGGAACCTTTGGTCGATACTTCG -ACGGAACCTTTGGTCGATTACGCA -ACGGAACCTTTGGTCGATCTTGCA -ACGGAACCTTTGGTCGATCGAACA -ACGGAACCTTTGGTCGATCAGTCA -ACGGAACCTTTGGTCGATGATCCA -ACGGAACCTTTGGTCGATACGACA -ACGGAACCTTTGGTCGATAGCTCA -ACGGAACCTTTGGTCGATTCACGT -ACGGAACCTTTGGTCGATCGTAGT -ACGGAACCTTTGGTCGATGTCAGT -ACGGAACCTTTGGTCGATGAAGGT -ACGGAACCTTTGGTCGATAACCGT -ACGGAACCTTTGGTCGATTTGTGC -ACGGAACCTTTGGTCGATCTAAGC -ACGGAACCTTTGGTCGATACTAGC -ACGGAACCTTTGGTCGATAGATGC -ACGGAACCTTTGGTCGATTGAAGG -ACGGAACCTTTGGTCGATCAATGG -ACGGAACCTTTGGTCGATATGAGG -ACGGAACCTTTGGTCGATAATGGG -ACGGAACCTTTGGTCGATTCCTGA -ACGGAACCTTTGGTCGATTAGCGA -ACGGAACCTTTGGTCGATCACAGA -ACGGAACCTTTGGTCGATGCAAGA -ACGGAACCTTTGGTCGATGGTTGA -ACGGAACCTTTGGTCGATTCCGAT -ACGGAACCTTTGGTCGATTGGCAT -ACGGAACCTTTGGTCGATCGAGAT -ACGGAACCTTTGGTCGATTACCAC -ACGGAACCTTTGGTCGATCAGAAC -ACGGAACCTTTGGTCGATGTCTAC -ACGGAACCTTTGGTCGATACGTAC -ACGGAACCTTTGGTCGATAGTGAC -ACGGAACCTTTGGTCGATCTGTAG -ACGGAACCTTTGGTCGATCCTAAG -ACGGAACCTTTGGTCGATGTTCAG -ACGGAACCTTTGGTCGATGCATAG -ACGGAACCTTTGGTCGATGACAAG -ACGGAACCTTTGGTCGATAAGCAG -ACGGAACCTTTGGTCGATCGTCAA -ACGGAACCTTTGGTCGATGCTGAA -ACGGAACCTTTGGTCGATAGTACG -ACGGAACCTTTGGTCGATATCCGA -ACGGAACCTTTGGTCGATATGGGA -ACGGAACCTTTGGTCGATGTGCAA -ACGGAACCTTTGGTCGATGAGGAA -ACGGAACCTTTGGTCGATCAGGTA -ACGGAACCTTTGGTCGATGACTCT -ACGGAACCTTTGGTCGATAGTCCT -ACGGAACCTTTGGTCGATTAAGCC -ACGGAACCTTTGGTCGATATAGCC -ACGGAACCTTTGGTCGATTAACCG -ACGGAACCTTTGGTCGATATGCCA -ACGGAACCTTTGGTCACAGGAAAC -ACGGAACCTTTGGTCACAAACACC -ACGGAACCTTTGGTCACAATCGAG -ACGGAACCTTTGGTCACACTCCTT -ACGGAACCTTTGGTCACACCTGTT -ACGGAACCTTTGGTCACACGGTTT -ACGGAACCTTTGGTCACAGTGGTT -ACGGAACCTTTGGTCACAGCCTTT -ACGGAACCTTTGGTCACAGGTCTT -ACGGAACCTTTGGTCACAACGCTT -ACGGAACCTTTGGTCACAAGCGTT -ACGGAACCTTTGGTCACATTCGTC -ACGGAACCTTTGGTCACATCTCTC -ACGGAACCTTTGGTCACATGGATC -ACGGAACCTTTGGTCACACACTTC -ACGGAACCTTTGGTCACAGTACTC -ACGGAACCTTTGGTCACAGATGTC -ACGGAACCTTTGGTCACAACAGTC -ACGGAACCTTTGGTCACATTGCTG -ACGGAACCTTTGGTCACATCCATG -ACGGAACCTTTGGTCACATGTGTG -ACGGAACCTTTGGTCACACTAGTG -ACGGAACCTTTGGTCACACATCTG -ACGGAACCTTTGGTCACAGAGTTG -ACGGAACCTTTGGTCACAAGACTG -ACGGAACCTTTGGTCACATCGGTA -ACGGAACCTTTGGTCACATGCCTA -ACGGAACCTTTGGTCACACCACTA -ACGGAACCTTTGGTCACAGGAGTA -ACGGAACCTTTGGTCACATCGTCT -ACGGAACCTTTGGTCACATGCACT -ACGGAACCTTTGGTCACACTGACT -ACGGAACCTTTGGTCACACAACCT -ACGGAACCTTTGGTCACAGCTACT -ACGGAACCTTTGGTCACAGGATCT -ACGGAACCTTTGGTCACAAAGGCT -ACGGAACCTTTGGTCACATCAACC -ACGGAACCTTTGGTCACATGTTCC -ACGGAACCTTTGGTCACAATTCCC -ACGGAACCTTTGGTCACATTCTCG -ACGGAACCTTTGGTCACATAGACG -ACGGAACCTTTGGTCACAGTAACG -ACGGAACCTTTGGTCACAACTTCG -ACGGAACCTTTGGTCACATACGCA -ACGGAACCTTTGGTCACACTTGCA -ACGGAACCTTTGGTCACACGAACA -ACGGAACCTTTGGTCACACAGTCA -ACGGAACCTTTGGTCACAGATCCA -ACGGAACCTTTGGTCACAACGACA -ACGGAACCTTTGGTCACAAGCTCA -ACGGAACCTTTGGTCACATCACGT -ACGGAACCTTTGGTCACACGTAGT -ACGGAACCTTTGGTCACAGTCAGT -ACGGAACCTTTGGTCACAGAAGGT -ACGGAACCTTTGGTCACAAACCGT -ACGGAACCTTTGGTCACATTGTGC -ACGGAACCTTTGGTCACACTAAGC -ACGGAACCTTTGGTCACAACTAGC -ACGGAACCTTTGGTCACAAGATGC -ACGGAACCTTTGGTCACATGAAGG -ACGGAACCTTTGGTCACACAATGG -ACGGAACCTTTGGTCACAATGAGG -ACGGAACCTTTGGTCACAAATGGG -ACGGAACCTTTGGTCACATCCTGA -ACGGAACCTTTGGTCACATAGCGA -ACGGAACCTTTGGTCACACACAGA -ACGGAACCTTTGGTCACAGCAAGA -ACGGAACCTTTGGTCACAGGTTGA -ACGGAACCTTTGGTCACATCCGAT -ACGGAACCTTTGGTCACATGGCAT -ACGGAACCTTTGGTCACACGAGAT -ACGGAACCTTTGGTCACATACCAC -ACGGAACCTTTGGTCACACAGAAC -ACGGAACCTTTGGTCACAGTCTAC -ACGGAACCTTTGGTCACAACGTAC -ACGGAACCTTTGGTCACAAGTGAC -ACGGAACCTTTGGTCACACTGTAG -ACGGAACCTTTGGTCACACCTAAG -ACGGAACCTTTGGTCACAGTTCAG -ACGGAACCTTTGGTCACAGCATAG -ACGGAACCTTTGGTCACAGACAAG -ACGGAACCTTTGGTCACAAAGCAG -ACGGAACCTTTGGTCACACGTCAA -ACGGAACCTTTGGTCACAGCTGAA -ACGGAACCTTTGGTCACAAGTACG -ACGGAACCTTTGGTCACAATCCGA -ACGGAACCTTTGGTCACAATGGGA -ACGGAACCTTTGGTCACAGTGCAA -ACGGAACCTTTGGTCACAGAGGAA -ACGGAACCTTTGGTCACACAGGTA -ACGGAACCTTTGGTCACAGACTCT -ACGGAACCTTTGGTCACAAGTCCT -ACGGAACCTTTGGTCACATAAGCC -ACGGAACCTTTGGTCACAATAGCC -ACGGAACCTTTGGTCACATAACCG -ACGGAACCTTTGGTCACAATGCCA -ACGGAACCTTTGCTGTTGGGAAAC -ACGGAACCTTTGCTGTTGAACACC -ACGGAACCTTTGCTGTTGATCGAG -ACGGAACCTTTGCTGTTGCTCCTT -ACGGAACCTTTGCTGTTGCCTGTT -ACGGAACCTTTGCTGTTGCGGTTT -ACGGAACCTTTGCTGTTGGTGGTT -ACGGAACCTTTGCTGTTGGCCTTT -ACGGAACCTTTGCTGTTGGGTCTT -ACGGAACCTTTGCTGTTGACGCTT -ACGGAACCTTTGCTGTTGAGCGTT -ACGGAACCTTTGCTGTTGTTCGTC -ACGGAACCTTTGCTGTTGTCTCTC -ACGGAACCTTTGCTGTTGTGGATC -ACGGAACCTTTGCTGTTGCACTTC -ACGGAACCTTTGCTGTTGGTACTC -ACGGAACCTTTGCTGTTGGATGTC -ACGGAACCTTTGCTGTTGACAGTC -ACGGAACCTTTGCTGTTGTTGCTG -ACGGAACCTTTGCTGTTGTCCATG -ACGGAACCTTTGCTGTTGTGTGTG -ACGGAACCTTTGCTGTTGCTAGTG -ACGGAACCTTTGCTGTTGCATCTG -ACGGAACCTTTGCTGTTGGAGTTG -ACGGAACCTTTGCTGTTGAGACTG -ACGGAACCTTTGCTGTTGTCGGTA -ACGGAACCTTTGCTGTTGTGCCTA -ACGGAACCTTTGCTGTTGCCACTA -ACGGAACCTTTGCTGTTGGGAGTA -ACGGAACCTTTGCTGTTGTCGTCT -ACGGAACCTTTGCTGTTGTGCACT -ACGGAACCTTTGCTGTTGCTGACT -ACGGAACCTTTGCTGTTGCAACCT -ACGGAACCTTTGCTGTTGGCTACT -ACGGAACCTTTGCTGTTGGGATCT -ACGGAACCTTTGCTGTTGAAGGCT -ACGGAACCTTTGCTGTTGTCAACC -ACGGAACCTTTGCTGTTGTGTTCC -ACGGAACCTTTGCTGTTGATTCCC -ACGGAACCTTTGCTGTTGTTCTCG -ACGGAACCTTTGCTGTTGTAGACG -ACGGAACCTTTGCTGTTGGTAACG -ACGGAACCTTTGCTGTTGACTTCG -ACGGAACCTTTGCTGTTGTACGCA -ACGGAACCTTTGCTGTTGCTTGCA -ACGGAACCTTTGCTGTTGCGAACA -ACGGAACCTTTGCTGTTGCAGTCA -ACGGAACCTTTGCTGTTGGATCCA -ACGGAACCTTTGCTGTTGACGACA -ACGGAACCTTTGCTGTTGAGCTCA -ACGGAACCTTTGCTGTTGTCACGT -ACGGAACCTTTGCTGTTGCGTAGT -ACGGAACCTTTGCTGTTGGTCAGT -ACGGAACCTTTGCTGTTGGAAGGT -ACGGAACCTTTGCTGTTGAACCGT -ACGGAACCTTTGCTGTTGTTGTGC -ACGGAACCTTTGCTGTTGCTAAGC -ACGGAACCTTTGCTGTTGACTAGC -ACGGAACCTTTGCTGTTGAGATGC -ACGGAACCTTTGCTGTTGTGAAGG -ACGGAACCTTTGCTGTTGCAATGG -ACGGAACCTTTGCTGTTGATGAGG -ACGGAACCTTTGCTGTTGAATGGG -ACGGAACCTTTGCTGTTGTCCTGA -ACGGAACCTTTGCTGTTGTAGCGA -ACGGAACCTTTGCTGTTGCACAGA -ACGGAACCTTTGCTGTTGGCAAGA -ACGGAACCTTTGCTGTTGGGTTGA -ACGGAACCTTTGCTGTTGTCCGAT -ACGGAACCTTTGCTGTTGTGGCAT -ACGGAACCTTTGCTGTTGCGAGAT -ACGGAACCTTTGCTGTTGTACCAC -ACGGAACCTTTGCTGTTGCAGAAC -ACGGAACCTTTGCTGTTGGTCTAC -ACGGAACCTTTGCTGTTGACGTAC -ACGGAACCTTTGCTGTTGAGTGAC -ACGGAACCTTTGCTGTTGCTGTAG -ACGGAACCTTTGCTGTTGCCTAAG -ACGGAACCTTTGCTGTTGGTTCAG -ACGGAACCTTTGCTGTTGGCATAG -ACGGAACCTTTGCTGTTGGACAAG -ACGGAACCTTTGCTGTTGAAGCAG -ACGGAACCTTTGCTGTTGCGTCAA -ACGGAACCTTTGCTGTTGGCTGAA -ACGGAACCTTTGCTGTTGAGTACG -ACGGAACCTTTGCTGTTGATCCGA -ACGGAACCTTTGCTGTTGATGGGA -ACGGAACCTTTGCTGTTGGTGCAA -ACGGAACCTTTGCTGTTGGAGGAA -ACGGAACCTTTGCTGTTGCAGGTA -ACGGAACCTTTGCTGTTGGACTCT -ACGGAACCTTTGCTGTTGAGTCCT -ACGGAACCTTTGCTGTTGTAAGCC -ACGGAACCTTTGCTGTTGATAGCC -ACGGAACCTTTGCTGTTGTAACCG -ACGGAACCTTTGCTGTTGATGCCA -ACGGAACCTTTGATGTCCGGAAAC -ACGGAACCTTTGATGTCCAACACC -ACGGAACCTTTGATGTCCATCGAG -ACGGAACCTTTGATGTCCCTCCTT -ACGGAACCTTTGATGTCCCCTGTT -ACGGAACCTTTGATGTCCCGGTTT -ACGGAACCTTTGATGTCCGTGGTT -ACGGAACCTTTGATGTCCGCCTTT -ACGGAACCTTTGATGTCCGGTCTT -ACGGAACCTTTGATGTCCACGCTT -ACGGAACCTTTGATGTCCAGCGTT -ACGGAACCTTTGATGTCCTTCGTC -ACGGAACCTTTGATGTCCTCTCTC -ACGGAACCTTTGATGTCCTGGATC -ACGGAACCTTTGATGTCCCACTTC -ACGGAACCTTTGATGTCCGTACTC -ACGGAACCTTTGATGTCCGATGTC -ACGGAACCTTTGATGTCCACAGTC -ACGGAACCTTTGATGTCCTTGCTG -ACGGAACCTTTGATGTCCTCCATG -ACGGAACCTTTGATGTCCTGTGTG -ACGGAACCTTTGATGTCCCTAGTG -ACGGAACCTTTGATGTCCCATCTG -ACGGAACCTTTGATGTCCGAGTTG -ACGGAACCTTTGATGTCCAGACTG -ACGGAACCTTTGATGTCCTCGGTA -ACGGAACCTTTGATGTCCTGCCTA -ACGGAACCTTTGATGTCCCCACTA -ACGGAACCTTTGATGTCCGGAGTA -ACGGAACCTTTGATGTCCTCGTCT -ACGGAACCTTTGATGTCCTGCACT -ACGGAACCTTTGATGTCCCTGACT -ACGGAACCTTTGATGTCCCAACCT -ACGGAACCTTTGATGTCCGCTACT -ACGGAACCTTTGATGTCCGGATCT -ACGGAACCTTTGATGTCCAAGGCT -ACGGAACCTTTGATGTCCTCAACC -ACGGAACCTTTGATGTCCTGTTCC -ACGGAACCTTTGATGTCCATTCCC -ACGGAACCTTTGATGTCCTTCTCG -ACGGAACCTTTGATGTCCTAGACG -ACGGAACCTTTGATGTCCGTAACG -ACGGAACCTTTGATGTCCACTTCG -ACGGAACCTTTGATGTCCTACGCA -ACGGAACCTTTGATGTCCCTTGCA -ACGGAACCTTTGATGTCCCGAACA -ACGGAACCTTTGATGTCCCAGTCA -ACGGAACCTTTGATGTCCGATCCA -ACGGAACCTTTGATGTCCACGACA -ACGGAACCTTTGATGTCCAGCTCA -ACGGAACCTTTGATGTCCTCACGT -ACGGAACCTTTGATGTCCCGTAGT -ACGGAACCTTTGATGTCCGTCAGT -ACGGAACCTTTGATGTCCGAAGGT -ACGGAACCTTTGATGTCCAACCGT -ACGGAACCTTTGATGTCCTTGTGC -ACGGAACCTTTGATGTCCCTAAGC -ACGGAACCTTTGATGTCCACTAGC -ACGGAACCTTTGATGTCCAGATGC -ACGGAACCTTTGATGTCCTGAAGG -ACGGAACCTTTGATGTCCCAATGG -ACGGAACCTTTGATGTCCATGAGG -ACGGAACCTTTGATGTCCAATGGG -ACGGAACCTTTGATGTCCTCCTGA -ACGGAACCTTTGATGTCCTAGCGA -ACGGAACCTTTGATGTCCCACAGA -ACGGAACCTTTGATGTCCGCAAGA -ACGGAACCTTTGATGTCCGGTTGA -ACGGAACCTTTGATGTCCTCCGAT -ACGGAACCTTTGATGTCCTGGCAT -ACGGAACCTTTGATGTCCCGAGAT -ACGGAACCTTTGATGTCCTACCAC -ACGGAACCTTTGATGTCCCAGAAC -ACGGAACCTTTGATGTCCGTCTAC -ACGGAACCTTTGATGTCCACGTAC -ACGGAACCTTTGATGTCCAGTGAC -ACGGAACCTTTGATGTCCCTGTAG -ACGGAACCTTTGATGTCCCCTAAG -ACGGAACCTTTGATGTCCGTTCAG -ACGGAACCTTTGATGTCCGCATAG -ACGGAACCTTTGATGTCCGACAAG -ACGGAACCTTTGATGTCCAAGCAG -ACGGAACCTTTGATGTCCCGTCAA -ACGGAACCTTTGATGTCCGCTGAA -ACGGAACCTTTGATGTCCAGTACG -ACGGAACCTTTGATGTCCATCCGA -ACGGAACCTTTGATGTCCATGGGA -ACGGAACCTTTGATGTCCGTGCAA -ACGGAACCTTTGATGTCCGAGGAA -ACGGAACCTTTGATGTCCCAGGTA -ACGGAACCTTTGATGTCCGACTCT -ACGGAACCTTTGATGTCCAGTCCT -ACGGAACCTTTGATGTCCTAAGCC -ACGGAACCTTTGATGTCCATAGCC -ACGGAACCTTTGATGTCCTAACCG -ACGGAACCTTTGATGTCCATGCCA -ACGGAACCTTTGGTGTGTGGAAAC -ACGGAACCTTTGGTGTGTAACACC -ACGGAACCTTTGGTGTGTATCGAG -ACGGAACCTTTGGTGTGTCTCCTT -ACGGAACCTTTGGTGTGTCCTGTT -ACGGAACCTTTGGTGTGTCGGTTT -ACGGAACCTTTGGTGTGTGTGGTT -ACGGAACCTTTGGTGTGTGCCTTT -ACGGAACCTTTGGTGTGTGGTCTT -ACGGAACCTTTGGTGTGTACGCTT -ACGGAACCTTTGGTGTGTAGCGTT -ACGGAACCTTTGGTGTGTTTCGTC -ACGGAACCTTTGGTGTGTTCTCTC -ACGGAACCTTTGGTGTGTTGGATC -ACGGAACCTTTGGTGTGTCACTTC -ACGGAACCTTTGGTGTGTGTACTC -ACGGAACCTTTGGTGTGTGATGTC -ACGGAACCTTTGGTGTGTACAGTC -ACGGAACCTTTGGTGTGTTTGCTG -ACGGAACCTTTGGTGTGTTCCATG -ACGGAACCTTTGGTGTGTTGTGTG -ACGGAACCTTTGGTGTGTCTAGTG -ACGGAACCTTTGGTGTGTCATCTG -ACGGAACCTTTGGTGTGTGAGTTG -ACGGAACCTTTGGTGTGTAGACTG -ACGGAACCTTTGGTGTGTTCGGTA -ACGGAACCTTTGGTGTGTTGCCTA -ACGGAACCTTTGGTGTGTCCACTA -ACGGAACCTTTGGTGTGTGGAGTA -ACGGAACCTTTGGTGTGTTCGTCT -ACGGAACCTTTGGTGTGTTGCACT -ACGGAACCTTTGGTGTGTCTGACT -ACGGAACCTTTGGTGTGTCAACCT -ACGGAACCTTTGGTGTGTGCTACT -ACGGAACCTTTGGTGTGTGGATCT -ACGGAACCTTTGGTGTGTAAGGCT -ACGGAACCTTTGGTGTGTTCAACC -ACGGAACCTTTGGTGTGTTGTTCC -ACGGAACCTTTGGTGTGTATTCCC -ACGGAACCTTTGGTGTGTTTCTCG -ACGGAACCTTTGGTGTGTTAGACG -ACGGAACCTTTGGTGTGTGTAACG -ACGGAACCTTTGGTGTGTACTTCG -ACGGAACCTTTGGTGTGTTACGCA -ACGGAACCTTTGGTGTGTCTTGCA -ACGGAACCTTTGGTGTGTCGAACA -ACGGAACCTTTGGTGTGTCAGTCA -ACGGAACCTTTGGTGTGTGATCCA -ACGGAACCTTTGGTGTGTACGACA -ACGGAACCTTTGGTGTGTAGCTCA -ACGGAACCTTTGGTGTGTTCACGT -ACGGAACCTTTGGTGTGTCGTAGT -ACGGAACCTTTGGTGTGTGTCAGT -ACGGAACCTTTGGTGTGTGAAGGT -ACGGAACCTTTGGTGTGTAACCGT -ACGGAACCTTTGGTGTGTTTGTGC -ACGGAACCTTTGGTGTGTCTAAGC -ACGGAACCTTTGGTGTGTACTAGC -ACGGAACCTTTGGTGTGTAGATGC -ACGGAACCTTTGGTGTGTTGAAGG -ACGGAACCTTTGGTGTGTCAATGG -ACGGAACCTTTGGTGTGTATGAGG -ACGGAACCTTTGGTGTGTAATGGG -ACGGAACCTTTGGTGTGTTCCTGA -ACGGAACCTTTGGTGTGTTAGCGA -ACGGAACCTTTGGTGTGTCACAGA -ACGGAACCTTTGGTGTGTGCAAGA -ACGGAACCTTTGGTGTGTGGTTGA -ACGGAACCTTTGGTGTGTTCCGAT -ACGGAACCTTTGGTGTGTTGGCAT -ACGGAACCTTTGGTGTGTCGAGAT -ACGGAACCTTTGGTGTGTTACCAC -ACGGAACCTTTGGTGTGTCAGAAC -ACGGAACCTTTGGTGTGTGTCTAC -ACGGAACCTTTGGTGTGTACGTAC -ACGGAACCTTTGGTGTGTAGTGAC -ACGGAACCTTTGGTGTGTCTGTAG -ACGGAACCTTTGGTGTGTCCTAAG -ACGGAACCTTTGGTGTGTGTTCAG -ACGGAACCTTTGGTGTGTGCATAG -ACGGAACCTTTGGTGTGTGACAAG -ACGGAACCTTTGGTGTGTAAGCAG -ACGGAACCTTTGGTGTGTCGTCAA -ACGGAACCTTTGGTGTGTGCTGAA -ACGGAACCTTTGGTGTGTAGTACG -ACGGAACCTTTGGTGTGTATCCGA -ACGGAACCTTTGGTGTGTATGGGA -ACGGAACCTTTGGTGTGTGTGCAA -ACGGAACCTTTGGTGTGTGAGGAA -ACGGAACCTTTGGTGTGTCAGGTA -ACGGAACCTTTGGTGTGTGACTCT -ACGGAACCTTTGGTGTGTAGTCCT -ACGGAACCTTTGGTGTGTTAAGCC -ACGGAACCTTTGGTGTGTATAGCC -ACGGAACCTTTGGTGTGTTAACCG -ACGGAACCTTTGGTGTGTATGCCA -ACGGAACCTTTGGTGCTAGGAAAC -ACGGAACCTTTGGTGCTAAACACC -ACGGAACCTTTGGTGCTAATCGAG -ACGGAACCTTTGGTGCTACTCCTT -ACGGAACCTTTGGTGCTACCTGTT -ACGGAACCTTTGGTGCTACGGTTT -ACGGAACCTTTGGTGCTAGTGGTT -ACGGAACCTTTGGTGCTAGCCTTT -ACGGAACCTTTGGTGCTAGGTCTT -ACGGAACCTTTGGTGCTAACGCTT -ACGGAACCTTTGGTGCTAAGCGTT -ACGGAACCTTTGGTGCTATTCGTC -ACGGAACCTTTGGTGCTATCTCTC -ACGGAACCTTTGGTGCTATGGATC -ACGGAACCTTTGGTGCTACACTTC -ACGGAACCTTTGGTGCTAGTACTC -ACGGAACCTTTGGTGCTAGATGTC -ACGGAACCTTTGGTGCTAACAGTC -ACGGAACCTTTGGTGCTATTGCTG -ACGGAACCTTTGGTGCTATCCATG -ACGGAACCTTTGGTGCTATGTGTG -ACGGAACCTTTGGTGCTACTAGTG -ACGGAACCTTTGGTGCTACATCTG -ACGGAACCTTTGGTGCTAGAGTTG -ACGGAACCTTTGGTGCTAAGACTG -ACGGAACCTTTGGTGCTATCGGTA -ACGGAACCTTTGGTGCTATGCCTA -ACGGAACCTTTGGTGCTACCACTA -ACGGAACCTTTGGTGCTAGGAGTA -ACGGAACCTTTGGTGCTATCGTCT -ACGGAACCTTTGGTGCTATGCACT -ACGGAACCTTTGGTGCTACTGACT -ACGGAACCTTTGGTGCTACAACCT -ACGGAACCTTTGGTGCTAGCTACT -ACGGAACCTTTGGTGCTAGGATCT -ACGGAACCTTTGGTGCTAAAGGCT -ACGGAACCTTTGGTGCTATCAACC -ACGGAACCTTTGGTGCTATGTTCC -ACGGAACCTTTGGTGCTAATTCCC -ACGGAACCTTTGGTGCTATTCTCG -ACGGAACCTTTGGTGCTATAGACG -ACGGAACCTTTGGTGCTAGTAACG -ACGGAACCTTTGGTGCTAACTTCG -ACGGAACCTTTGGTGCTATACGCA -ACGGAACCTTTGGTGCTACTTGCA -ACGGAACCTTTGGTGCTACGAACA -ACGGAACCTTTGGTGCTACAGTCA -ACGGAACCTTTGGTGCTAGATCCA -ACGGAACCTTTGGTGCTAACGACA -ACGGAACCTTTGGTGCTAAGCTCA -ACGGAACCTTTGGTGCTATCACGT -ACGGAACCTTTGGTGCTACGTAGT -ACGGAACCTTTGGTGCTAGTCAGT -ACGGAACCTTTGGTGCTAGAAGGT -ACGGAACCTTTGGTGCTAAACCGT -ACGGAACCTTTGGTGCTATTGTGC -ACGGAACCTTTGGTGCTACTAAGC -ACGGAACCTTTGGTGCTAACTAGC -ACGGAACCTTTGGTGCTAAGATGC -ACGGAACCTTTGGTGCTATGAAGG -ACGGAACCTTTGGTGCTACAATGG -ACGGAACCTTTGGTGCTAATGAGG -ACGGAACCTTTGGTGCTAAATGGG -ACGGAACCTTTGGTGCTATCCTGA -ACGGAACCTTTGGTGCTATAGCGA -ACGGAACCTTTGGTGCTACACAGA -ACGGAACCTTTGGTGCTAGCAAGA -ACGGAACCTTTGGTGCTAGGTTGA -ACGGAACCTTTGGTGCTATCCGAT -ACGGAACCTTTGGTGCTATGGCAT -ACGGAACCTTTGGTGCTACGAGAT -ACGGAACCTTTGGTGCTATACCAC -ACGGAACCTTTGGTGCTACAGAAC -ACGGAACCTTTGGTGCTAGTCTAC -ACGGAACCTTTGGTGCTAACGTAC -ACGGAACCTTTGGTGCTAAGTGAC -ACGGAACCTTTGGTGCTACTGTAG -ACGGAACCTTTGGTGCTACCTAAG -ACGGAACCTTTGGTGCTAGTTCAG -ACGGAACCTTTGGTGCTAGCATAG -ACGGAACCTTTGGTGCTAGACAAG -ACGGAACCTTTGGTGCTAAAGCAG -ACGGAACCTTTGGTGCTACGTCAA -ACGGAACCTTTGGTGCTAGCTGAA -ACGGAACCTTTGGTGCTAAGTACG -ACGGAACCTTTGGTGCTAATCCGA -ACGGAACCTTTGGTGCTAATGGGA -ACGGAACCTTTGGTGCTAGTGCAA -ACGGAACCTTTGGTGCTAGAGGAA -ACGGAACCTTTGGTGCTACAGGTA -ACGGAACCTTTGGTGCTAGACTCT -ACGGAACCTTTGGTGCTAAGTCCT -ACGGAACCTTTGGTGCTATAAGCC -ACGGAACCTTTGGTGCTAATAGCC -ACGGAACCTTTGGTGCTATAACCG -ACGGAACCTTTGGTGCTAATGCCA -ACGGAACCTTTGCTGCATGGAAAC -ACGGAACCTTTGCTGCATAACACC -ACGGAACCTTTGCTGCATATCGAG -ACGGAACCTTTGCTGCATCTCCTT -ACGGAACCTTTGCTGCATCCTGTT -ACGGAACCTTTGCTGCATCGGTTT -ACGGAACCTTTGCTGCATGTGGTT -ACGGAACCTTTGCTGCATGCCTTT -ACGGAACCTTTGCTGCATGGTCTT -ACGGAACCTTTGCTGCATACGCTT -ACGGAACCTTTGCTGCATAGCGTT -ACGGAACCTTTGCTGCATTTCGTC -ACGGAACCTTTGCTGCATTCTCTC -ACGGAACCTTTGCTGCATTGGATC -ACGGAACCTTTGCTGCATCACTTC -ACGGAACCTTTGCTGCATGTACTC -ACGGAACCTTTGCTGCATGATGTC -ACGGAACCTTTGCTGCATACAGTC -ACGGAACCTTTGCTGCATTTGCTG -ACGGAACCTTTGCTGCATTCCATG -ACGGAACCTTTGCTGCATTGTGTG -ACGGAACCTTTGCTGCATCTAGTG -ACGGAACCTTTGCTGCATCATCTG -ACGGAACCTTTGCTGCATGAGTTG -ACGGAACCTTTGCTGCATAGACTG -ACGGAACCTTTGCTGCATTCGGTA -ACGGAACCTTTGCTGCATTGCCTA -ACGGAACCTTTGCTGCATCCACTA -ACGGAACCTTTGCTGCATGGAGTA -ACGGAACCTTTGCTGCATTCGTCT -ACGGAACCTTTGCTGCATTGCACT -ACGGAACCTTTGCTGCATCTGACT -ACGGAACCTTTGCTGCATCAACCT -ACGGAACCTTTGCTGCATGCTACT -ACGGAACCTTTGCTGCATGGATCT -ACGGAACCTTTGCTGCATAAGGCT -ACGGAACCTTTGCTGCATTCAACC -ACGGAACCTTTGCTGCATTGTTCC -ACGGAACCTTTGCTGCATATTCCC -ACGGAACCTTTGCTGCATTTCTCG -ACGGAACCTTTGCTGCATTAGACG -ACGGAACCTTTGCTGCATGTAACG -ACGGAACCTTTGCTGCATACTTCG -ACGGAACCTTTGCTGCATTACGCA -ACGGAACCTTTGCTGCATCTTGCA -ACGGAACCTTTGCTGCATCGAACA -ACGGAACCTTTGCTGCATCAGTCA -ACGGAACCTTTGCTGCATGATCCA -ACGGAACCTTTGCTGCATACGACA -ACGGAACCTTTGCTGCATAGCTCA -ACGGAACCTTTGCTGCATTCACGT -ACGGAACCTTTGCTGCATCGTAGT -ACGGAACCTTTGCTGCATGTCAGT -ACGGAACCTTTGCTGCATGAAGGT -ACGGAACCTTTGCTGCATAACCGT -ACGGAACCTTTGCTGCATTTGTGC -ACGGAACCTTTGCTGCATCTAAGC -ACGGAACCTTTGCTGCATACTAGC -ACGGAACCTTTGCTGCATAGATGC -ACGGAACCTTTGCTGCATTGAAGG -ACGGAACCTTTGCTGCATCAATGG -ACGGAACCTTTGCTGCATATGAGG -ACGGAACCTTTGCTGCATAATGGG -ACGGAACCTTTGCTGCATTCCTGA -ACGGAACCTTTGCTGCATTAGCGA -ACGGAACCTTTGCTGCATCACAGA -ACGGAACCTTTGCTGCATGCAAGA -ACGGAACCTTTGCTGCATGGTTGA -ACGGAACCTTTGCTGCATTCCGAT -ACGGAACCTTTGCTGCATTGGCAT -ACGGAACCTTTGCTGCATCGAGAT -ACGGAACCTTTGCTGCATTACCAC -ACGGAACCTTTGCTGCATCAGAAC -ACGGAACCTTTGCTGCATGTCTAC -ACGGAACCTTTGCTGCATACGTAC -ACGGAACCTTTGCTGCATAGTGAC -ACGGAACCTTTGCTGCATCTGTAG -ACGGAACCTTTGCTGCATCCTAAG -ACGGAACCTTTGCTGCATGTTCAG -ACGGAACCTTTGCTGCATGCATAG -ACGGAACCTTTGCTGCATGACAAG -ACGGAACCTTTGCTGCATAAGCAG -ACGGAACCTTTGCTGCATCGTCAA -ACGGAACCTTTGCTGCATGCTGAA -ACGGAACCTTTGCTGCATAGTACG -ACGGAACCTTTGCTGCATATCCGA -ACGGAACCTTTGCTGCATATGGGA -ACGGAACCTTTGCTGCATGTGCAA -ACGGAACCTTTGCTGCATGAGGAA -ACGGAACCTTTGCTGCATCAGGTA -ACGGAACCTTTGCTGCATGACTCT -ACGGAACCTTTGCTGCATAGTCCT -ACGGAACCTTTGCTGCATTAAGCC -ACGGAACCTTTGCTGCATATAGCC -ACGGAACCTTTGCTGCATTAACCG -ACGGAACCTTTGCTGCATATGCCA -ACGGAACCTTTGTTGGAGGGAAAC -ACGGAACCTTTGTTGGAGAACACC -ACGGAACCTTTGTTGGAGATCGAG -ACGGAACCTTTGTTGGAGCTCCTT -ACGGAACCTTTGTTGGAGCCTGTT -ACGGAACCTTTGTTGGAGCGGTTT -ACGGAACCTTTGTTGGAGGTGGTT -ACGGAACCTTTGTTGGAGGCCTTT -ACGGAACCTTTGTTGGAGGGTCTT -ACGGAACCTTTGTTGGAGACGCTT -ACGGAACCTTTGTTGGAGAGCGTT -ACGGAACCTTTGTTGGAGTTCGTC -ACGGAACCTTTGTTGGAGTCTCTC -ACGGAACCTTTGTTGGAGTGGATC -ACGGAACCTTTGTTGGAGCACTTC -ACGGAACCTTTGTTGGAGGTACTC -ACGGAACCTTTGTTGGAGGATGTC -ACGGAACCTTTGTTGGAGACAGTC -ACGGAACCTTTGTTGGAGTTGCTG -ACGGAACCTTTGTTGGAGTCCATG -ACGGAACCTTTGTTGGAGTGTGTG -ACGGAACCTTTGTTGGAGCTAGTG -ACGGAACCTTTGTTGGAGCATCTG -ACGGAACCTTTGTTGGAGGAGTTG -ACGGAACCTTTGTTGGAGAGACTG -ACGGAACCTTTGTTGGAGTCGGTA -ACGGAACCTTTGTTGGAGTGCCTA -ACGGAACCTTTGTTGGAGCCACTA -ACGGAACCTTTGTTGGAGGGAGTA -ACGGAACCTTTGTTGGAGTCGTCT -ACGGAACCTTTGTTGGAGTGCACT -ACGGAACCTTTGTTGGAGCTGACT -ACGGAACCTTTGTTGGAGCAACCT -ACGGAACCTTTGTTGGAGGCTACT -ACGGAACCTTTGTTGGAGGGATCT -ACGGAACCTTTGTTGGAGAAGGCT -ACGGAACCTTTGTTGGAGTCAACC -ACGGAACCTTTGTTGGAGTGTTCC -ACGGAACCTTTGTTGGAGATTCCC -ACGGAACCTTTGTTGGAGTTCTCG -ACGGAACCTTTGTTGGAGTAGACG -ACGGAACCTTTGTTGGAGGTAACG -ACGGAACCTTTGTTGGAGACTTCG -ACGGAACCTTTGTTGGAGTACGCA -ACGGAACCTTTGTTGGAGCTTGCA -ACGGAACCTTTGTTGGAGCGAACA -ACGGAACCTTTGTTGGAGCAGTCA -ACGGAACCTTTGTTGGAGGATCCA -ACGGAACCTTTGTTGGAGACGACA -ACGGAACCTTTGTTGGAGAGCTCA -ACGGAACCTTTGTTGGAGTCACGT -ACGGAACCTTTGTTGGAGCGTAGT -ACGGAACCTTTGTTGGAGGTCAGT -ACGGAACCTTTGTTGGAGGAAGGT -ACGGAACCTTTGTTGGAGAACCGT -ACGGAACCTTTGTTGGAGTTGTGC -ACGGAACCTTTGTTGGAGCTAAGC -ACGGAACCTTTGTTGGAGACTAGC -ACGGAACCTTTGTTGGAGAGATGC -ACGGAACCTTTGTTGGAGTGAAGG -ACGGAACCTTTGTTGGAGCAATGG -ACGGAACCTTTGTTGGAGATGAGG -ACGGAACCTTTGTTGGAGAATGGG -ACGGAACCTTTGTTGGAGTCCTGA -ACGGAACCTTTGTTGGAGTAGCGA -ACGGAACCTTTGTTGGAGCACAGA -ACGGAACCTTTGTTGGAGGCAAGA -ACGGAACCTTTGTTGGAGGGTTGA -ACGGAACCTTTGTTGGAGTCCGAT -ACGGAACCTTTGTTGGAGTGGCAT -ACGGAACCTTTGTTGGAGCGAGAT -ACGGAACCTTTGTTGGAGTACCAC -ACGGAACCTTTGTTGGAGCAGAAC -ACGGAACCTTTGTTGGAGGTCTAC -ACGGAACCTTTGTTGGAGACGTAC -ACGGAACCTTTGTTGGAGAGTGAC -ACGGAACCTTTGTTGGAGCTGTAG -ACGGAACCTTTGTTGGAGCCTAAG -ACGGAACCTTTGTTGGAGGTTCAG -ACGGAACCTTTGTTGGAGGCATAG -ACGGAACCTTTGTTGGAGGACAAG -ACGGAACCTTTGTTGGAGAAGCAG -ACGGAACCTTTGTTGGAGCGTCAA -ACGGAACCTTTGTTGGAGGCTGAA -ACGGAACCTTTGTTGGAGAGTACG -ACGGAACCTTTGTTGGAGATCCGA -ACGGAACCTTTGTTGGAGATGGGA -ACGGAACCTTTGTTGGAGGTGCAA -ACGGAACCTTTGTTGGAGGAGGAA -ACGGAACCTTTGTTGGAGCAGGTA -ACGGAACCTTTGTTGGAGGACTCT -ACGGAACCTTTGTTGGAGAGTCCT -ACGGAACCTTTGTTGGAGTAAGCC -ACGGAACCTTTGTTGGAGATAGCC -ACGGAACCTTTGTTGGAGTAACCG -ACGGAACCTTTGTTGGAGATGCCA -ACGGAACCTTTGCTGAGAGGAAAC -ACGGAACCTTTGCTGAGAAACACC -ACGGAACCTTTGCTGAGAATCGAG -ACGGAACCTTTGCTGAGACTCCTT -ACGGAACCTTTGCTGAGACCTGTT -ACGGAACCTTTGCTGAGACGGTTT -ACGGAACCTTTGCTGAGAGTGGTT -ACGGAACCTTTGCTGAGAGCCTTT -ACGGAACCTTTGCTGAGAGGTCTT -ACGGAACCTTTGCTGAGAACGCTT -ACGGAACCTTTGCTGAGAAGCGTT -ACGGAACCTTTGCTGAGATTCGTC -ACGGAACCTTTGCTGAGATCTCTC -ACGGAACCTTTGCTGAGATGGATC -ACGGAACCTTTGCTGAGACACTTC -ACGGAACCTTTGCTGAGAGTACTC -ACGGAACCTTTGCTGAGAGATGTC -ACGGAACCTTTGCTGAGAACAGTC -ACGGAACCTTTGCTGAGATTGCTG -ACGGAACCTTTGCTGAGATCCATG -ACGGAACCTTTGCTGAGATGTGTG -ACGGAACCTTTGCTGAGACTAGTG -ACGGAACCTTTGCTGAGACATCTG -ACGGAACCTTTGCTGAGAGAGTTG -ACGGAACCTTTGCTGAGAAGACTG -ACGGAACCTTTGCTGAGATCGGTA -ACGGAACCTTTGCTGAGATGCCTA -ACGGAACCTTTGCTGAGACCACTA -ACGGAACCTTTGCTGAGAGGAGTA -ACGGAACCTTTGCTGAGATCGTCT -ACGGAACCTTTGCTGAGATGCACT -ACGGAACCTTTGCTGAGACTGACT -ACGGAACCTTTGCTGAGACAACCT -ACGGAACCTTTGCTGAGAGCTACT -ACGGAACCTTTGCTGAGAGGATCT -ACGGAACCTTTGCTGAGAAAGGCT -ACGGAACCTTTGCTGAGATCAACC -ACGGAACCTTTGCTGAGATGTTCC -ACGGAACCTTTGCTGAGAATTCCC -ACGGAACCTTTGCTGAGATTCTCG -ACGGAACCTTTGCTGAGATAGACG -ACGGAACCTTTGCTGAGAGTAACG -ACGGAACCTTTGCTGAGAACTTCG -ACGGAACCTTTGCTGAGATACGCA -ACGGAACCTTTGCTGAGACTTGCA -ACGGAACCTTTGCTGAGACGAACA -ACGGAACCTTTGCTGAGACAGTCA -ACGGAACCTTTGCTGAGAGATCCA -ACGGAACCTTTGCTGAGAACGACA -ACGGAACCTTTGCTGAGAAGCTCA -ACGGAACCTTTGCTGAGATCACGT -ACGGAACCTTTGCTGAGACGTAGT -ACGGAACCTTTGCTGAGAGTCAGT -ACGGAACCTTTGCTGAGAGAAGGT -ACGGAACCTTTGCTGAGAAACCGT -ACGGAACCTTTGCTGAGATTGTGC -ACGGAACCTTTGCTGAGACTAAGC -ACGGAACCTTTGCTGAGAACTAGC -ACGGAACCTTTGCTGAGAAGATGC -ACGGAACCTTTGCTGAGATGAAGG -ACGGAACCTTTGCTGAGACAATGG -ACGGAACCTTTGCTGAGAATGAGG -ACGGAACCTTTGCTGAGAAATGGG -ACGGAACCTTTGCTGAGATCCTGA -ACGGAACCTTTGCTGAGATAGCGA -ACGGAACCTTTGCTGAGACACAGA -ACGGAACCTTTGCTGAGAGCAAGA -ACGGAACCTTTGCTGAGAGGTTGA -ACGGAACCTTTGCTGAGATCCGAT -ACGGAACCTTTGCTGAGATGGCAT -ACGGAACCTTTGCTGAGACGAGAT -ACGGAACCTTTGCTGAGATACCAC -ACGGAACCTTTGCTGAGACAGAAC -ACGGAACCTTTGCTGAGAGTCTAC -ACGGAACCTTTGCTGAGAACGTAC -ACGGAACCTTTGCTGAGAAGTGAC -ACGGAACCTTTGCTGAGACTGTAG -ACGGAACCTTTGCTGAGACCTAAG -ACGGAACCTTTGCTGAGAGTTCAG -ACGGAACCTTTGCTGAGAGCATAG -ACGGAACCTTTGCTGAGAGACAAG -ACGGAACCTTTGCTGAGAAAGCAG -ACGGAACCTTTGCTGAGACGTCAA -ACGGAACCTTTGCTGAGAGCTGAA -ACGGAACCTTTGCTGAGAAGTACG -ACGGAACCTTTGCTGAGAATCCGA -ACGGAACCTTTGCTGAGAATGGGA -ACGGAACCTTTGCTGAGAGTGCAA -ACGGAACCTTTGCTGAGAGAGGAA -ACGGAACCTTTGCTGAGACAGGTA -ACGGAACCTTTGCTGAGAGACTCT -ACGGAACCTTTGCTGAGAAGTCCT -ACGGAACCTTTGCTGAGATAAGCC -ACGGAACCTTTGCTGAGAATAGCC -ACGGAACCTTTGCTGAGATAACCG -ACGGAACCTTTGCTGAGAATGCCA -ACGGAACCTTTGGTATCGGGAAAC -ACGGAACCTTTGGTATCGAACACC -ACGGAACCTTTGGTATCGATCGAG -ACGGAACCTTTGGTATCGCTCCTT -ACGGAACCTTTGGTATCGCCTGTT -ACGGAACCTTTGGTATCGCGGTTT -ACGGAACCTTTGGTATCGGTGGTT -ACGGAACCTTTGGTATCGGCCTTT -ACGGAACCTTTGGTATCGGGTCTT -ACGGAACCTTTGGTATCGACGCTT -ACGGAACCTTTGGTATCGAGCGTT -ACGGAACCTTTGGTATCGTTCGTC -ACGGAACCTTTGGTATCGTCTCTC -ACGGAACCTTTGGTATCGTGGATC -ACGGAACCTTTGGTATCGCACTTC -ACGGAACCTTTGGTATCGGTACTC -ACGGAACCTTTGGTATCGGATGTC -ACGGAACCTTTGGTATCGACAGTC -ACGGAACCTTTGGTATCGTTGCTG -ACGGAACCTTTGGTATCGTCCATG -ACGGAACCTTTGGTATCGTGTGTG -ACGGAACCTTTGGTATCGCTAGTG -ACGGAACCTTTGGTATCGCATCTG -ACGGAACCTTTGGTATCGGAGTTG -ACGGAACCTTTGGTATCGAGACTG -ACGGAACCTTTGGTATCGTCGGTA -ACGGAACCTTTGGTATCGTGCCTA -ACGGAACCTTTGGTATCGCCACTA -ACGGAACCTTTGGTATCGGGAGTA -ACGGAACCTTTGGTATCGTCGTCT -ACGGAACCTTTGGTATCGTGCACT -ACGGAACCTTTGGTATCGCTGACT -ACGGAACCTTTGGTATCGCAACCT -ACGGAACCTTTGGTATCGGCTACT -ACGGAACCTTTGGTATCGGGATCT -ACGGAACCTTTGGTATCGAAGGCT -ACGGAACCTTTGGTATCGTCAACC -ACGGAACCTTTGGTATCGTGTTCC -ACGGAACCTTTGGTATCGATTCCC -ACGGAACCTTTGGTATCGTTCTCG -ACGGAACCTTTGGTATCGTAGACG -ACGGAACCTTTGGTATCGGTAACG -ACGGAACCTTTGGTATCGACTTCG -ACGGAACCTTTGGTATCGTACGCA -ACGGAACCTTTGGTATCGCTTGCA -ACGGAACCTTTGGTATCGCGAACA -ACGGAACCTTTGGTATCGCAGTCA -ACGGAACCTTTGGTATCGGATCCA -ACGGAACCTTTGGTATCGACGACA -ACGGAACCTTTGGTATCGAGCTCA -ACGGAACCTTTGGTATCGTCACGT -ACGGAACCTTTGGTATCGCGTAGT -ACGGAACCTTTGGTATCGGTCAGT -ACGGAACCTTTGGTATCGGAAGGT -ACGGAACCTTTGGTATCGAACCGT -ACGGAACCTTTGGTATCGTTGTGC -ACGGAACCTTTGGTATCGCTAAGC -ACGGAACCTTTGGTATCGACTAGC -ACGGAACCTTTGGTATCGAGATGC -ACGGAACCTTTGGTATCGTGAAGG -ACGGAACCTTTGGTATCGCAATGG -ACGGAACCTTTGGTATCGATGAGG -ACGGAACCTTTGGTATCGAATGGG -ACGGAACCTTTGGTATCGTCCTGA -ACGGAACCTTTGGTATCGTAGCGA -ACGGAACCTTTGGTATCGCACAGA -ACGGAACCTTTGGTATCGGCAAGA -ACGGAACCTTTGGTATCGGGTTGA -ACGGAACCTTTGGTATCGTCCGAT -ACGGAACCTTTGGTATCGTGGCAT -ACGGAACCTTTGGTATCGCGAGAT -ACGGAACCTTTGGTATCGTACCAC -ACGGAACCTTTGGTATCGCAGAAC -ACGGAACCTTTGGTATCGGTCTAC -ACGGAACCTTTGGTATCGACGTAC -ACGGAACCTTTGGTATCGAGTGAC -ACGGAACCTTTGGTATCGCTGTAG -ACGGAACCTTTGGTATCGCCTAAG -ACGGAACCTTTGGTATCGGTTCAG -ACGGAACCTTTGGTATCGGCATAG -ACGGAACCTTTGGTATCGGACAAG -ACGGAACCTTTGGTATCGAAGCAG -ACGGAACCTTTGGTATCGCGTCAA -ACGGAACCTTTGGTATCGGCTGAA -ACGGAACCTTTGGTATCGAGTACG -ACGGAACCTTTGGTATCGATCCGA -ACGGAACCTTTGGTATCGATGGGA -ACGGAACCTTTGGTATCGGTGCAA -ACGGAACCTTTGGTATCGGAGGAA -ACGGAACCTTTGGTATCGCAGGTA -ACGGAACCTTTGGTATCGGACTCT -ACGGAACCTTTGGTATCGAGTCCT -ACGGAACCTTTGGTATCGTAAGCC -ACGGAACCTTTGGTATCGATAGCC -ACGGAACCTTTGGTATCGTAACCG -ACGGAACCTTTGGTATCGATGCCA -ACGGAACCTTTGCTATGCGGAAAC -ACGGAACCTTTGCTATGCAACACC -ACGGAACCTTTGCTATGCATCGAG -ACGGAACCTTTGCTATGCCTCCTT -ACGGAACCTTTGCTATGCCCTGTT -ACGGAACCTTTGCTATGCCGGTTT -ACGGAACCTTTGCTATGCGTGGTT -ACGGAACCTTTGCTATGCGCCTTT -ACGGAACCTTTGCTATGCGGTCTT -ACGGAACCTTTGCTATGCACGCTT -ACGGAACCTTTGCTATGCAGCGTT -ACGGAACCTTTGCTATGCTTCGTC -ACGGAACCTTTGCTATGCTCTCTC -ACGGAACCTTTGCTATGCTGGATC -ACGGAACCTTTGCTATGCCACTTC -ACGGAACCTTTGCTATGCGTACTC -ACGGAACCTTTGCTATGCGATGTC -ACGGAACCTTTGCTATGCACAGTC -ACGGAACCTTTGCTATGCTTGCTG -ACGGAACCTTTGCTATGCTCCATG -ACGGAACCTTTGCTATGCTGTGTG -ACGGAACCTTTGCTATGCCTAGTG -ACGGAACCTTTGCTATGCCATCTG -ACGGAACCTTTGCTATGCGAGTTG -ACGGAACCTTTGCTATGCAGACTG -ACGGAACCTTTGCTATGCTCGGTA -ACGGAACCTTTGCTATGCTGCCTA -ACGGAACCTTTGCTATGCCCACTA -ACGGAACCTTTGCTATGCGGAGTA -ACGGAACCTTTGCTATGCTCGTCT -ACGGAACCTTTGCTATGCTGCACT -ACGGAACCTTTGCTATGCCTGACT -ACGGAACCTTTGCTATGCCAACCT -ACGGAACCTTTGCTATGCGCTACT -ACGGAACCTTTGCTATGCGGATCT -ACGGAACCTTTGCTATGCAAGGCT -ACGGAACCTTTGCTATGCTCAACC -ACGGAACCTTTGCTATGCTGTTCC -ACGGAACCTTTGCTATGCATTCCC -ACGGAACCTTTGCTATGCTTCTCG -ACGGAACCTTTGCTATGCTAGACG -ACGGAACCTTTGCTATGCGTAACG -ACGGAACCTTTGCTATGCACTTCG -ACGGAACCTTTGCTATGCTACGCA -ACGGAACCTTTGCTATGCCTTGCA -ACGGAACCTTTGCTATGCCGAACA -ACGGAACCTTTGCTATGCCAGTCA -ACGGAACCTTTGCTATGCGATCCA -ACGGAACCTTTGCTATGCACGACA -ACGGAACCTTTGCTATGCAGCTCA -ACGGAACCTTTGCTATGCTCACGT -ACGGAACCTTTGCTATGCCGTAGT -ACGGAACCTTTGCTATGCGTCAGT -ACGGAACCTTTGCTATGCGAAGGT -ACGGAACCTTTGCTATGCAACCGT -ACGGAACCTTTGCTATGCTTGTGC -ACGGAACCTTTGCTATGCCTAAGC -ACGGAACCTTTGCTATGCACTAGC -ACGGAACCTTTGCTATGCAGATGC -ACGGAACCTTTGCTATGCTGAAGG -ACGGAACCTTTGCTATGCCAATGG -ACGGAACCTTTGCTATGCATGAGG -ACGGAACCTTTGCTATGCAATGGG -ACGGAACCTTTGCTATGCTCCTGA -ACGGAACCTTTGCTATGCTAGCGA -ACGGAACCTTTGCTATGCCACAGA -ACGGAACCTTTGCTATGCGCAAGA -ACGGAACCTTTGCTATGCGGTTGA -ACGGAACCTTTGCTATGCTCCGAT -ACGGAACCTTTGCTATGCTGGCAT -ACGGAACCTTTGCTATGCCGAGAT -ACGGAACCTTTGCTATGCTACCAC -ACGGAACCTTTGCTATGCCAGAAC -ACGGAACCTTTGCTATGCGTCTAC -ACGGAACCTTTGCTATGCACGTAC -ACGGAACCTTTGCTATGCAGTGAC -ACGGAACCTTTGCTATGCCTGTAG -ACGGAACCTTTGCTATGCCCTAAG -ACGGAACCTTTGCTATGCGTTCAG -ACGGAACCTTTGCTATGCGCATAG -ACGGAACCTTTGCTATGCGACAAG -ACGGAACCTTTGCTATGCAAGCAG -ACGGAACCTTTGCTATGCCGTCAA -ACGGAACCTTTGCTATGCGCTGAA -ACGGAACCTTTGCTATGCAGTACG -ACGGAACCTTTGCTATGCATCCGA -ACGGAACCTTTGCTATGCATGGGA -ACGGAACCTTTGCTATGCGTGCAA -ACGGAACCTTTGCTATGCGAGGAA -ACGGAACCTTTGCTATGCCAGGTA -ACGGAACCTTTGCTATGCGACTCT -ACGGAACCTTTGCTATGCAGTCCT -ACGGAACCTTTGCTATGCTAAGCC -ACGGAACCTTTGCTATGCATAGCC -ACGGAACCTTTGCTATGCTAACCG -ACGGAACCTTTGCTATGCATGCCA -ACGGAACCTTTGCTACCAGGAAAC -ACGGAACCTTTGCTACCAAACACC -ACGGAACCTTTGCTACCAATCGAG -ACGGAACCTTTGCTACCACTCCTT -ACGGAACCTTTGCTACCACCTGTT -ACGGAACCTTTGCTACCACGGTTT -ACGGAACCTTTGCTACCAGTGGTT -ACGGAACCTTTGCTACCAGCCTTT -ACGGAACCTTTGCTACCAGGTCTT -ACGGAACCTTTGCTACCAACGCTT -ACGGAACCTTTGCTACCAAGCGTT -ACGGAACCTTTGCTACCATTCGTC -ACGGAACCTTTGCTACCATCTCTC -ACGGAACCTTTGCTACCATGGATC -ACGGAACCTTTGCTACCACACTTC -ACGGAACCTTTGCTACCAGTACTC -ACGGAACCTTTGCTACCAGATGTC -ACGGAACCTTTGCTACCAACAGTC -ACGGAACCTTTGCTACCATTGCTG -ACGGAACCTTTGCTACCATCCATG -ACGGAACCTTTGCTACCATGTGTG -ACGGAACCTTTGCTACCACTAGTG -ACGGAACCTTTGCTACCACATCTG -ACGGAACCTTTGCTACCAGAGTTG -ACGGAACCTTTGCTACCAAGACTG -ACGGAACCTTTGCTACCATCGGTA -ACGGAACCTTTGCTACCATGCCTA -ACGGAACCTTTGCTACCACCACTA -ACGGAACCTTTGCTACCAGGAGTA -ACGGAACCTTTGCTACCATCGTCT -ACGGAACCTTTGCTACCATGCACT -ACGGAACCTTTGCTACCACTGACT -ACGGAACCTTTGCTACCACAACCT -ACGGAACCTTTGCTACCAGCTACT -ACGGAACCTTTGCTACCAGGATCT -ACGGAACCTTTGCTACCAAAGGCT -ACGGAACCTTTGCTACCATCAACC -ACGGAACCTTTGCTACCATGTTCC -ACGGAACCTTTGCTACCAATTCCC -ACGGAACCTTTGCTACCATTCTCG -ACGGAACCTTTGCTACCATAGACG -ACGGAACCTTTGCTACCAGTAACG -ACGGAACCTTTGCTACCAACTTCG -ACGGAACCTTTGCTACCATACGCA -ACGGAACCTTTGCTACCACTTGCA -ACGGAACCTTTGCTACCACGAACA -ACGGAACCTTTGCTACCACAGTCA -ACGGAACCTTTGCTACCAGATCCA -ACGGAACCTTTGCTACCAACGACA -ACGGAACCTTTGCTACCAAGCTCA -ACGGAACCTTTGCTACCATCACGT -ACGGAACCTTTGCTACCACGTAGT -ACGGAACCTTTGCTACCAGTCAGT -ACGGAACCTTTGCTACCAGAAGGT -ACGGAACCTTTGCTACCAAACCGT -ACGGAACCTTTGCTACCATTGTGC -ACGGAACCTTTGCTACCACTAAGC -ACGGAACCTTTGCTACCAACTAGC -ACGGAACCTTTGCTACCAAGATGC -ACGGAACCTTTGCTACCATGAAGG -ACGGAACCTTTGCTACCACAATGG -ACGGAACCTTTGCTACCAATGAGG -ACGGAACCTTTGCTACCAAATGGG -ACGGAACCTTTGCTACCATCCTGA -ACGGAACCTTTGCTACCATAGCGA -ACGGAACCTTTGCTACCACACAGA -ACGGAACCTTTGCTACCAGCAAGA -ACGGAACCTTTGCTACCAGGTTGA -ACGGAACCTTTGCTACCATCCGAT -ACGGAACCTTTGCTACCATGGCAT -ACGGAACCTTTGCTACCACGAGAT -ACGGAACCTTTGCTACCATACCAC -ACGGAACCTTTGCTACCACAGAAC -ACGGAACCTTTGCTACCAGTCTAC -ACGGAACCTTTGCTACCAACGTAC -ACGGAACCTTTGCTACCAAGTGAC -ACGGAACCTTTGCTACCACTGTAG -ACGGAACCTTTGCTACCACCTAAG -ACGGAACCTTTGCTACCAGTTCAG -ACGGAACCTTTGCTACCAGCATAG -ACGGAACCTTTGCTACCAGACAAG -ACGGAACCTTTGCTACCAAAGCAG -ACGGAACCTTTGCTACCACGTCAA -ACGGAACCTTTGCTACCAGCTGAA -ACGGAACCTTTGCTACCAAGTACG -ACGGAACCTTTGCTACCAATCCGA -ACGGAACCTTTGCTACCAATGGGA -ACGGAACCTTTGCTACCAGTGCAA -ACGGAACCTTTGCTACCAGAGGAA -ACGGAACCTTTGCTACCACAGGTA -ACGGAACCTTTGCTACCAGACTCT -ACGGAACCTTTGCTACCAAGTCCT -ACGGAACCTTTGCTACCATAAGCC -ACGGAACCTTTGCTACCAATAGCC -ACGGAACCTTTGCTACCATAACCG -ACGGAACCTTTGCTACCAATGCCA -ACGGAACCTTTGGTAGGAGGAAAC -ACGGAACCTTTGGTAGGAAACACC -ACGGAACCTTTGGTAGGAATCGAG -ACGGAACCTTTGGTAGGACTCCTT -ACGGAACCTTTGGTAGGACCTGTT -ACGGAACCTTTGGTAGGACGGTTT -ACGGAACCTTTGGTAGGAGTGGTT -ACGGAACCTTTGGTAGGAGCCTTT -ACGGAACCTTTGGTAGGAGGTCTT -ACGGAACCTTTGGTAGGAACGCTT -ACGGAACCTTTGGTAGGAAGCGTT -ACGGAACCTTTGGTAGGATTCGTC -ACGGAACCTTTGGTAGGATCTCTC -ACGGAACCTTTGGTAGGATGGATC -ACGGAACCTTTGGTAGGACACTTC -ACGGAACCTTTGGTAGGAGTACTC -ACGGAACCTTTGGTAGGAGATGTC -ACGGAACCTTTGGTAGGAACAGTC -ACGGAACCTTTGGTAGGATTGCTG -ACGGAACCTTTGGTAGGATCCATG -ACGGAACCTTTGGTAGGATGTGTG -ACGGAACCTTTGGTAGGACTAGTG -ACGGAACCTTTGGTAGGACATCTG -ACGGAACCTTTGGTAGGAGAGTTG -ACGGAACCTTTGGTAGGAAGACTG -ACGGAACCTTTGGTAGGATCGGTA -ACGGAACCTTTGGTAGGATGCCTA -ACGGAACCTTTGGTAGGACCACTA -ACGGAACCTTTGGTAGGAGGAGTA -ACGGAACCTTTGGTAGGATCGTCT -ACGGAACCTTTGGTAGGATGCACT -ACGGAACCTTTGGTAGGACTGACT -ACGGAACCTTTGGTAGGACAACCT -ACGGAACCTTTGGTAGGAGCTACT -ACGGAACCTTTGGTAGGAGGATCT -ACGGAACCTTTGGTAGGAAAGGCT -ACGGAACCTTTGGTAGGATCAACC -ACGGAACCTTTGGTAGGATGTTCC -ACGGAACCTTTGGTAGGAATTCCC -ACGGAACCTTTGGTAGGATTCTCG -ACGGAACCTTTGGTAGGATAGACG -ACGGAACCTTTGGTAGGAGTAACG -ACGGAACCTTTGGTAGGAACTTCG -ACGGAACCTTTGGTAGGATACGCA -ACGGAACCTTTGGTAGGACTTGCA -ACGGAACCTTTGGTAGGACGAACA -ACGGAACCTTTGGTAGGACAGTCA -ACGGAACCTTTGGTAGGAGATCCA -ACGGAACCTTTGGTAGGAACGACA -ACGGAACCTTTGGTAGGAAGCTCA -ACGGAACCTTTGGTAGGATCACGT -ACGGAACCTTTGGTAGGACGTAGT -ACGGAACCTTTGGTAGGAGTCAGT -ACGGAACCTTTGGTAGGAGAAGGT -ACGGAACCTTTGGTAGGAAACCGT -ACGGAACCTTTGGTAGGATTGTGC -ACGGAACCTTTGGTAGGACTAAGC -ACGGAACCTTTGGTAGGAACTAGC -ACGGAACCTTTGGTAGGAAGATGC -ACGGAACCTTTGGTAGGATGAAGG -ACGGAACCTTTGGTAGGACAATGG -ACGGAACCTTTGGTAGGAATGAGG -ACGGAACCTTTGGTAGGAAATGGG -ACGGAACCTTTGGTAGGATCCTGA -ACGGAACCTTTGGTAGGATAGCGA -ACGGAACCTTTGGTAGGACACAGA -ACGGAACCTTTGGTAGGAGCAAGA -ACGGAACCTTTGGTAGGAGGTTGA -ACGGAACCTTTGGTAGGATCCGAT -ACGGAACCTTTGGTAGGATGGCAT -ACGGAACCTTTGGTAGGACGAGAT -ACGGAACCTTTGGTAGGATACCAC -ACGGAACCTTTGGTAGGACAGAAC -ACGGAACCTTTGGTAGGAGTCTAC -ACGGAACCTTTGGTAGGAACGTAC -ACGGAACCTTTGGTAGGAAGTGAC -ACGGAACCTTTGGTAGGACTGTAG -ACGGAACCTTTGGTAGGACCTAAG -ACGGAACCTTTGGTAGGAGTTCAG -ACGGAACCTTTGGTAGGAGCATAG -ACGGAACCTTTGGTAGGAGACAAG -ACGGAACCTTTGGTAGGAAAGCAG -ACGGAACCTTTGGTAGGACGTCAA -ACGGAACCTTTGGTAGGAGCTGAA -ACGGAACCTTTGGTAGGAAGTACG -ACGGAACCTTTGGTAGGAATCCGA -ACGGAACCTTTGGTAGGAATGGGA -ACGGAACCTTTGGTAGGAGTGCAA -ACGGAACCTTTGGTAGGAGAGGAA -ACGGAACCTTTGGTAGGACAGGTA -ACGGAACCTTTGGTAGGAGACTCT -ACGGAACCTTTGGTAGGAAGTCCT -ACGGAACCTTTGGTAGGATAAGCC -ACGGAACCTTTGGTAGGAATAGCC -ACGGAACCTTTGGTAGGATAACCG -ACGGAACCTTTGGTAGGAATGCCA -ACGGAACCTTTGTCTTCGGGAAAC -ACGGAACCTTTGTCTTCGAACACC -ACGGAACCTTTGTCTTCGATCGAG -ACGGAACCTTTGTCTTCGCTCCTT -ACGGAACCTTTGTCTTCGCCTGTT -ACGGAACCTTTGTCTTCGCGGTTT -ACGGAACCTTTGTCTTCGGTGGTT -ACGGAACCTTTGTCTTCGGCCTTT -ACGGAACCTTTGTCTTCGGGTCTT -ACGGAACCTTTGTCTTCGACGCTT -ACGGAACCTTTGTCTTCGAGCGTT -ACGGAACCTTTGTCTTCGTTCGTC -ACGGAACCTTTGTCTTCGTCTCTC -ACGGAACCTTTGTCTTCGTGGATC -ACGGAACCTTTGTCTTCGCACTTC -ACGGAACCTTTGTCTTCGGTACTC -ACGGAACCTTTGTCTTCGGATGTC -ACGGAACCTTTGTCTTCGACAGTC -ACGGAACCTTTGTCTTCGTTGCTG -ACGGAACCTTTGTCTTCGTCCATG -ACGGAACCTTTGTCTTCGTGTGTG -ACGGAACCTTTGTCTTCGCTAGTG -ACGGAACCTTTGTCTTCGCATCTG -ACGGAACCTTTGTCTTCGGAGTTG -ACGGAACCTTTGTCTTCGAGACTG -ACGGAACCTTTGTCTTCGTCGGTA -ACGGAACCTTTGTCTTCGTGCCTA -ACGGAACCTTTGTCTTCGCCACTA -ACGGAACCTTTGTCTTCGGGAGTA -ACGGAACCTTTGTCTTCGTCGTCT -ACGGAACCTTTGTCTTCGTGCACT -ACGGAACCTTTGTCTTCGCTGACT -ACGGAACCTTTGTCTTCGCAACCT -ACGGAACCTTTGTCTTCGGCTACT -ACGGAACCTTTGTCTTCGGGATCT -ACGGAACCTTTGTCTTCGAAGGCT -ACGGAACCTTTGTCTTCGTCAACC -ACGGAACCTTTGTCTTCGTGTTCC -ACGGAACCTTTGTCTTCGATTCCC -ACGGAACCTTTGTCTTCGTTCTCG -ACGGAACCTTTGTCTTCGTAGACG -ACGGAACCTTTGTCTTCGGTAACG -ACGGAACCTTTGTCTTCGACTTCG -ACGGAACCTTTGTCTTCGTACGCA -ACGGAACCTTTGTCTTCGCTTGCA -ACGGAACCTTTGTCTTCGCGAACA -ACGGAACCTTTGTCTTCGCAGTCA -ACGGAACCTTTGTCTTCGGATCCA -ACGGAACCTTTGTCTTCGACGACA -ACGGAACCTTTGTCTTCGAGCTCA -ACGGAACCTTTGTCTTCGTCACGT -ACGGAACCTTTGTCTTCGCGTAGT -ACGGAACCTTTGTCTTCGGTCAGT -ACGGAACCTTTGTCTTCGGAAGGT -ACGGAACCTTTGTCTTCGAACCGT -ACGGAACCTTTGTCTTCGTTGTGC -ACGGAACCTTTGTCTTCGCTAAGC -ACGGAACCTTTGTCTTCGACTAGC -ACGGAACCTTTGTCTTCGAGATGC -ACGGAACCTTTGTCTTCGTGAAGG -ACGGAACCTTTGTCTTCGCAATGG -ACGGAACCTTTGTCTTCGATGAGG -ACGGAACCTTTGTCTTCGAATGGG -ACGGAACCTTTGTCTTCGTCCTGA -ACGGAACCTTTGTCTTCGTAGCGA -ACGGAACCTTTGTCTTCGCACAGA -ACGGAACCTTTGTCTTCGGCAAGA -ACGGAACCTTTGTCTTCGGGTTGA -ACGGAACCTTTGTCTTCGTCCGAT -ACGGAACCTTTGTCTTCGTGGCAT -ACGGAACCTTTGTCTTCGCGAGAT -ACGGAACCTTTGTCTTCGTACCAC -ACGGAACCTTTGTCTTCGCAGAAC -ACGGAACCTTTGTCTTCGGTCTAC -ACGGAACCTTTGTCTTCGACGTAC -ACGGAACCTTTGTCTTCGAGTGAC -ACGGAACCTTTGTCTTCGCTGTAG -ACGGAACCTTTGTCTTCGCCTAAG -ACGGAACCTTTGTCTTCGGTTCAG -ACGGAACCTTTGTCTTCGGCATAG -ACGGAACCTTTGTCTTCGGACAAG -ACGGAACCTTTGTCTTCGAAGCAG -ACGGAACCTTTGTCTTCGCGTCAA -ACGGAACCTTTGTCTTCGGCTGAA -ACGGAACCTTTGTCTTCGAGTACG -ACGGAACCTTTGTCTTCGATCCGA -ACGGAACCTTTGTCTTCGATGGGA -ACGGAACCTTTGTCTTCGGTGCAA -ACGGAACCTTTGTCTTCGGAGGAA -ACGGAACCTTTGTCTTCGCAGGTA -ACGGAACCTTTGTCTTCGGACTCT -ACGGAACCTTTGTCTTCGAGTCCT -ACGGAACCTTTGTCTTCGTAAGCC -ACGGAACCTTTGTCTTCGATAGCC -ACGGAACCTTTGTCTTCGTAACCG -ACGGAACCTTTGTCTTCGATGCCA -ACGGAACCTTTGACTTGCGGAAAC -ACGGAACCTTTGACTTGCAACACC -ACGGAACCTTTGACTTGCATCGAG -ACGGAACCTTTGACTTGCCTCCTT -ACGGAACCTTTGACTTGCCCTGTT -ACGGAACCTTTGACTTGCCGGTTT -ACGGAACCTTTGACTTGCGTGGTT -ACGGAACCTTTGACTTGCGCCTTT -ACGGAACCTTTGACTTGCGGTCTT -ACGGAACCTTTGACTTGCACGCTT -ACGGAACCTTTGACTTGCAGCGTT -ACGGAACCTTTGACTTGCTTCGTC -ACGGAACCTTTGACTTGCTCTCTC -ACGGAACCTTTGACTTGCTGGATC -ACGGAACCTTTGACTTGCCACTTC -ACGGAACCTTTGACTTGCGTACTC -ACGGAACCTTTGACTTGCGATGTC -ACGGAACCTTTGACTTGCACAGTC -ACGGAACCTTTGACTTGCTTGCTG -ACGGAACCTTTGACTTGCTCCATG -ACGGAACCTTTGACTTGCTGTGTG -ACGGAACCTTTGACTTGCCTAGTG -ACGGAACCTTTGACTTGCCATCTG -ACGGAACCTTTGACTTGCGAGTTG -ACGGAACCTTTGACTTGCAGACTG -ACGGAACCTTTGACTTGCTCGGTA -ACGGAACCTTTGACTTGCTGCCTA -ACGGAACCTTTGACTTGCCCACTA -ACGGAACCTTTGACTTGCGGAGTA -ACGGAACCTTTGACTTGCTCGTCT -ACGGAACCTTTGACTTGCTGCACT -ACGGAACCTTTGACTTGCCTGACT -ACGGAACCTTTGACTTGCCAACCT -ACGGAACCTTTGACTTGCGCTACT -ACGGAACCTTTGACTTGCGGATCT -ACGGAACCTTTGACTTGCAAGGCT -ACGGAACCTTTGACTTGCTCAACC -ACGGAACCTTTGACTTGCTGTTCC -ACGGAACCTTTGACTTGCATTCCC -ACGGAACCTTTGACTTGCTTCTCG -ACGGAACCTTTGACTTGCTAGACG -ACGGAACCTTTGACTTGCGTAACG -ACGGAACCTTTGACTTGCACTTCG -ACGGAACCTTTGACTTGCTACGCA -ACGGAACCTTTGACTTGCCTTGCA -ACGGAACCTTTGACTTGCCGAACA -ACGGAACCTTTGACTTGCCAGTCA -ACGGAACCTTTGACTTGCGATCCA -ACGGAACCTTTGACTTGCACGACA -ACGGAACCTTTGACTTGCAGCTCA -ACGGAACCTTTGACTTGCTCACGT -ACGGAACCTTTGACTTGCCGTAGT -ACGGAACCTTTGACTTGCGTCAGT -ACGGAACCTTTGACTTGCGAAGGT -ACGGAACCTTTGACTTGCAACCGT -ACGGAACCTTTGACTTGCTTGTGC -ACGGAACCTTTGACTTGCCTAAGC -ACGGAACCTTTGACTTGCACTAGC -ACGGAACCTTTGACTTGCAGATGC -ACGGAACCTTTGACTTGCTGAAGG -ACGGAACCTTTGACTTGCCAATGG -ACGGAACCTTTGACTTGCATGAGG -ACGGAACCTTTGACTTGCAATGGG -ACGGAACCTTTGACTTGCTCCTGA -ACGGAACCTTTGACTTGCTAGCGA -ACGGAACCTTTGACTTGCCACAGA -ACGGAACCTTTGACTTGCGCAAGA -ACGGAACCTTTGACTTGCGGTTGA -ACGGAACCTTTGACTTGCTCCGAT -ACGGAACCTTTGACTTGCTGGCAT -ACGGAACCTTTGACTTGCCGAGAT -ACGGAACCTTTGACTTGCTACCAC -ACGGAACCTTTGACTTGCCAGAAC -ACGGAACCTTTGACTTGCGTCTAC -ACGGAACCTTTGACTTGCACGTAC -ACGGAACCTTTGACTTGCAGTGAC -ACGGAACCTTTGACTTGCCTGTAG -ACGGAACCTTTGACTTGCCCTAAG -ACGGAACCTTTGACTTGCGTTCAG -ACGGAACCTTTGACTTGCGCATAG -ACGGAACCTTTGACTTGCGACAAG -ACGGAACCTTTGACTTGCAAGCAG -ACGGAACCTTTGACTTGCCGTCAA -ACGGAACCTTTGACTTGCGCTGAA -ACGGAACCTTTGACTTGCAGTACG -ACGGAACCTTTGACTTGCATCCGA -ACGGAACCTTTGACTTGCATGGGA -ACGGAACCTTTGACTTGCGTGCAA -ACGGAACCTTTGACTTGCGAGGAA -ACGGAACCTTTGACTTGCCAGGTA -ACGGAACCTTTGACTTGCGACTCT -ACGGAACCTTTGACTTGCAGTCCT -ACGGAACCTTTGACTTGCTAAGCC -ACGGAACCTTTGACTTGCATAGCC -ACGGAACCTTTGACTTGCTAACCG -ACGGAACCTTTGACTTGCATGCCA -ACGGAACCTTTGACTCTGGGAAAC -ACGGAACCTTTGACTCTGAACACC -ACGGAACCTTTGACTCTGATCGAG -ACGGAACCTTTGACTCTGCTCCTT -ACGGAACCTTTGACTCTGCCTGTT -ACGGAACCTTTGACTCTGCGGTTT -ACGGAACCTTTGACTCTGGTGGTT -ACGGAACCTTTGACTCTGGCCTTT -ACGGAACCTTTGACTCTGGGTCTT -ACGGAACCTTTGACTCTGACGCTT -ACGGAACCTTTGACTCTGAGCGTT -ACGGAACCTTTGACTCTGTTCGTC -ACGGAACCTTTGACTCTGTCTCTC -ACGGAACCTTTGACTCTGTGGATC -ACGGAACCTTTGACTCTGCACTTC -ACGGAACCTTTGACTCTGGTACTC -ACGGAACCTTTGACTCTGGATGTC -ACGGAACCTTTGACTCTGACAGTC -ACGGAACCTTTGACTCTGTTGCTG -ACGGAACCTTTGACTCTGTCCATG -ACGGAACCTTTGACTCTGTGTGTG -ACGGAACCTTTGACTCTGCTAGTG -ACGGAACCTTTGACTCTGCATCTG -ACGGAACCTTTGACTCTGGAGTTG -ACGGAACCTTTGACTCTGAGACTG -ACGGAACCTTTGACTCTGTCGGTA -ACGGAACCTTTGACTCTGTGCCTA -ACGGAACCTTTGACTCTGCCACTA -ACGGAACCTTTGACTCTGGGAGTA -ACGGAACCTTTGACTCTGTCGTCT -ACGGAACCTTTGACTCTGTGCACT -ACGGAACCTTTGACTCTGCTGACT -ACGGAACCTTTGACTCTGCAACCT -ACGGAACCTTTGACTCTGGCTACT -ACGGAACCTTTGACTCTGGGATCT -ACGGAACCTTTGACTCTGAAGGCT -ACGGAACCTTTGACTCTGTCAACC -ACGGAACCTTTGACTCTGTGTTCC -ACGGAACCTTTGACTCTGATTCCC -ACGGAACCTTTGACTCTGTTCTCG -ACGGAACCTTTGACTCTGTAGACG -ACGGAACCTTTGACTCTGGTAACG -ACGGAACCTTTGACTCTGACTTCG -ACGGAACCTTTGACTCTGTACGCA -ACGGAACCTTTGACTCTGCTTGCA -ACGGAACCTTTGACTCTGCGAACA -ACGGAACCTTTGACTCTGCAGTCA -ACGGAACCTTTGACTCTGGATCCA -ACGGAACCTTTGACTCTGACGACA -ACGGAACCTTTGACTCTGAGCTCA -ACGGAACCTTTGACTCTGTCACGT -ACGGAACCTTTGACTCTGCGTAGT -ACGGAACCTTTGACTCTGGTCAGT -ACGGAACCTTTGACTCTGGAAGGT -ACGGAACCTTTGACTCTGAACCGT -ACGGAACCTTTGACTCTGTTGTGC -ACGGAACCTTTGACTCTGCTAAGC -ACGGAACCTTTGACTCTGACTAGC -ACGGAACCTTTGACTCTGAGATGC -ACGGAACCTTTGACTCTGTGAAGG -ACGGAACCTTTGACTCTGCAATGG -ACGGAACCTTTGACTCTGATGAGG -ACGGAACCTTTGACTCTGAATGGG -ACGGAACCTTTGACTCTGTCCTGA -ACGGAACCTTTGACTCTGTAGCGA -ACGGAACCTTTGACTCTGCACAGA -ACGGAACCTTTGACTCTGGCAAGA -ACGGAACCTTTGACTCTGGGTTGA -ACGGAACCTTTGACTCTGTCCGAT -ACGGAACCTTTGACTCTGTGGCAT -ACGGAACCTTTGACTCTGCGAGAT -ACGGAACCTTTGACTCTGTACCAC -ACGGAACCTTTGACTCTGCAGAAC -ACGGAACCTTTGACTCTGGTCTAC -ACGGAACCTTTGACTCTGACGTAC -ACGGAACCTTTGACTCTGAGTGAC -ACGGAACCTTTGACTCTGCTGTAG -ACGGAACCTTTGACTCTGCCTAAG -ACGGAACCTTTGACTCTGGTTCAG -ACGGAACCTTTGACTCTGGCATAG -ACGGAACCTTTGACTCTGGACAAG -ACGGAACCTTTGACTCTGAAGCAG -ACGGAACCTTTGACTCTGCGTCAA -ACGGAACCTTTGACTCTGGCTGAA -ACGGAACCTTTGACTCTGAGTACG -ACGGAACCTTTGACTCTGATCCGA -ACGGAACCTTTGACTCTGATGGGA -ACGGAACCTTTGACTCTGGTGCAA -ACGGAACCTTTGACTCTGGAGGAA -ACGGAACCTTTGACTCTGCAGGTA -ACGGAACCTTTGACTCTGGACTCT -ACGGAACCTTTGACTCTGAGTCCT -ACGGAACCTTTGACTCTGTAAGCC -ACGGAACCTTTGACTCTGATAGCC -ACGGAACCTTTGACTCTGTAACCG -ACGGAACCTTTGACTCTGATGCCA -ACGGAACCTTTGCCTCAAGGAAAC -ACGGAACCTTTGCCTCAAAACACC -ACGGAACCTTTGCCTCAAATCGAG -ACGGAACCTTTGCCTCAACTCCTT -ACGGAACCTTTGCCTCAACCTGTT -ACGGAACCTTTGCCTCAACGGTTT -ACGGAACCTTTGCCTCAAGTGGTT -ACGGAACCTTTGCCTCAAGCCTTT -ACGGAACCTTTGCCTCAAGGTCTT -ACGGAACCTTTGCCTCAAACGCTT -ACGGAACCTTTGCCTCAAAGCGTT -ACGGAACCTTTGCCTCAATTCGTC -ACGGAACCTTTGCCTCAATCTCTC -ACGGAACCTTTGCCTCAATGGATC -ACGGAACCTTTGCCTCAACACTTC -ACGGAACCTTTGCCTCAAGTACTC -ACGGAACCTTTGCCTCAAGATGTC -ACGGAACCTTTGCCTCAAACAGTC -ACGGAACCTTTGCCTCAATTGCTG -ACGGAACCTTTGCCTCAATCCATG -ACGGAACCTTTGCCTCAATGTGTG -ACGGAACCTTTGCCTCAACTAGTG -ACGGAACCTTTGCCTCAACATCTG -ACGGAACCTTTGCCTCAAGAGTTG -ACGGAACCTTTGCCTCAAAGACTG -ACGGAACCTTTGCCTCAATCGGTA -ACGGAACCTTTGCCTCAATGCCTA -ACGGAACCTTTGCCTCAACCACTA -ACGGAACCTTTGCCTCAAGGAGTA -ACGGAACCTTTGCCTCAATCGTCT -ACGGAACCTTTGCCTCAATGCACT -ACGGAACCTTTGCCTCAACTGACT -ACGGAACCTTTGCCTCAACAACCT -ACGGAACCTTTGCCTCAAGCTACT -ACGGAACCTTTGCCTCAAGGATCT -ACGGAACCTTTGCCTCAAAAGGCT -ACGGAACCTTTGCCTCAATCAACC -ACGGAACCTTTGCCTCAATGTTCC -ACGGAACCTTTGCCTCAAATTCCC -ACGGAACCTTTGCCTCAATTCTCG -ACGGAACCTTTGCCTCAATAGACG -ACGGAACCTTTGCCTCAAGTAACG -ACGGAACCTTTGCCTCAAACTTCG -ACGGAACCTTTGCCTCAATACGCA -ACGGAACCTTTGCCTCAACTTGCA -ACGGAACCTTTGCCTCAACGAACA -ACGGAACCTTTGCCTCAACAGTCA -ACGGAACCTTTGCCTCAAGATCCA -ACGGAACCTTTGCCTCAAACGACA -ACGGAACCTTTGCCTCAAAGCTCA -ACGGAACCTTTGCCTCAATCACGT -ACGGAACCTTTGCCTCAACGTAGT -ACGGAACCTTTGCCTCAAGTCAGT -ACGGAACCTTTGCCTCAAGAAGGT -ACGGAACCTTTGCCTCAAAACCGT -ACGGAACCTTTGCCTCAATTGTGC -ACGGAACCTTTGCCTCAACTAAGC -ACGGAACCTTTGCCTCAAACTAGC -ACGGAACCTTTGCCTCAAAGATGC -ACGGAACCTTTGCCTCAATGAAGG -ACGGAACCTTTGCCTCAACAATGG -ACGGAACCTTTGCCTCAAATGAGG -ACGGAACCTTTGCCTCAAAATGGG -ACGGAACCTTTGCCTCAATCCTGA -ACGGAACCTTTGCCTCAATAGCGA -ACGGAACCTTTGCCTCAACACAGA -ACGGAACCTTTGCCTCAAGCAAGA -ACGGAACCTTTGCCTCAAGGTTGA -ACGGAACCTTTGCCTCAATCCGAT -ACGGAACCTTTGCCTCAATGGCAT -ACGGAACCTTTGCCTCAACGAGAT -ACGGAACCTTTGCCTCAATACCAC -ACGGAACCTTTGCCTCAACAGAAC -ACGGAACCTTTGCCTCAAGTCTAC -ACGGAACCTTTGCCTCAAACGTAC -ACGGAACCTTTGCCTCAAAGTGAC -ACGGAACCTTTGCCTCAACTGTAG -ACGGAACCTTTGCCTCAACCTAAG -ACGGAACCTTTGCCTCAAGTTCAG -ACGGAACCTTTGCCTCAAGCATAG -ACGGAACCTTTGCCTCAAGACAAG -ACGGAACCTTTGCCTCAAAAGCAG -ACGGAACCTTTGCCTCAACGTCAA -ACGGAACCTTTGCCTCAAGCTGAA -ACGGAACCTTTGCCTCAAAGTACG -ACGGAACCTTTGCCTCAAATCCGA -ACGGAACCTTTGCCTCAAATGGGA -ACGGAACCTTTGCCTCAAGTGCAA -ACGGAACCTTTGCCTCAAGAGGAA -ACGGAACCTTTGCCTCAACAGGTA -ACGGAACCTTTGCCTCAAGACTCT -ACGGAACCTTTGCCTCAAAGTCCT -ACGGAACCTTTGCCTCAATAAGCC -ACGGAACCTTTGCCTCAAATAGCC -ACGGAACCTTTGCCTCAATAACCG -ACGGAACCTTTGCCTCAAATGCCA -ACGGAACCTTTGACTGCTGGAAAC -ACGGAACCTTTGACTGCTAACACC -ACGGAACCTTTGACTGCTATCGAG -ACGGAACCTTTGACTGCTCTCCTT -ACGGAACCTTTGACTGCTCCTGTT -ACGGAACCTTTGACTGCTCGGTTT -ACGGAACCTTTGACTGCTGTGGTT -ACGGAACCTTTGACTGCTGCCTTT -ACGGAACCTTTGACTGCTGGTCTT -ACGGAACCTTTGACTGCTACGCTT -ACGGAACCTTTGACTGCTAGCGTT -ACGGAACCTTTGACTGCTTTCGTC -ACGGAACCTTTGACTGCTTCTCTC -ACGGAACCTTTGACTGCTTGGATC -ACGGAACCTTTGACTGCTCACTTC -ACGGAACCTTTGACTGCTGTACTC -ACGGAACCTTTGACTGCTGATGTC -ACGGAACCTTTGACTGCTACAGTC -ACGGAACCTTTGACTGCTTTGCTG -ACGGAACCTTTGACTGCTTCCATG -ACGGAACCTTTGACTGCTTGTGTG -ACGGAACCTTTGACTGCTCTAGTG -ACGGAACCTTTGACTGCTCATCTG -ACGGAACCTTTGACTGCTGAGTTG -ACGGAACCTTTGACTGCTAGACTG -ACGGAACCTTTGACTGCTTCGGTA -ACGGAACCTTTGACTGCTTGCCTA -ACGGAACCTTTGACTGCTCCACTA -ACGGAACCTTTGACTGCTGGAGTA -ACGGAACCTTTGACTGCTTCGTCT -ACGGAACCTTTGACTGCTTGCACT -ACGGAACCTTTGACTGCTCTGACT -ACGGAACCTTTGACTGCTCAACCT -ACGGAACCTTTGACTGCTGCTACT -ACGGAACCTTTGACTGCTGGATCT -ACGGAACCTTTGACTGCTAAGGCT -ACGGAACCTTTGACTGCTTCAACC -ACGGAACCTTTGACTGCTTGTTCC -ACGGAACCTTTGACTGCTATTCCC -ACGGAACCTTTGACTGCTTTCTCG -ACGGAACCTTTGACTGCTTAGACG -ACGGAACCTTTGACTGCTGTAACG -ACGGAACCTTTGACTGCTACTTCG -ACGGAACCTTTGACTGCTTACGCA -ACGGAACCTTTGACTGCTCTTGCA -ACGGAACCTTTGACTGCTCGAACA -ACGGAACCTTTGACTGCTCAGTCA -ACGGAACCTTTGACTGCTGATCCA -ACGGAACCTTTGACTGCTACGACA -ACGGAACCTTTGACTGCTAGCTCA -ACGGAACCTTTGACTGCTTCACGT -ACGGAACCTTTGACTGCTCGTAGT -ACGGAACCTTTGACTGCTGTCAGT -ACGGAACCTTTGACTGCTGAAGGT -ACGGAACCTTTGACTGCTAACCGT -ACGGAACCTTTGACTGCTTTGTGC -ACGGAACCTTTGACTGCTCTAAGC -ACGGAACCTTTGACTGCTACTAGC -ACGGAACCTTTGACTGCTAGATGC -ACGGAACCTTTGACTGCTTGAAGG -ACGGAACCTTTGACTGCTCAATGG -ACGGAACCTTTGACTGCTATGAGG -ACGGAACCTTTGACTGCTAATGGG -ACGGAACCTTTGACTGCTTCCTGA -ACGGAACCTTTGACTGCTTAGCGA -ACGGAACCTTTGACTGCTCACAGA -ACGGAACCTTTGACTGCTGCAAGA -ACGGAACCTTTGACTGCTGGTTGA -ACGGAACCTTTGACTGCTTCCGAT -ACGGAACCTTTGACTGCTTGGCAT -ACGGAACCTTTGACTGCTCGAGAT -ACGGAACCTTTGACTGCTTACCAC -ACGGAACCTTTGACTGCTCAGAAC -ACGGAACCTTTGACTGCTGTCTAC -ACGGAACCTTTGACTGCTACGTAC -ACGGAACCTTTGACTGCTAGTGAC -ACGGAACCTTTGACTGCTCTGTAG -ACGGAACCTTTGACTGCTCCTAAG -ACGGAACCTTTGACTGCTGTTCAG -ACGGAACCTTTGACTGCTGCATAG -ACGGAACCTTTGACTGCTGACAAG -ACGGAACCTTTGACTGCTAAGCAG -ACGGAACCTTTGACTGCTCGTCAA -ACGGAACCTTTGACTGCTGCTGAA -ACGGAACCTTTGACTGCTAGTACG -ACGGAACCTTTGACTGCTATCCGA -ACGGAACCTTTGACTGCTATGGGA -ACGGAACCTTTGACTGCTGTGCAA -ACGGAACCTTTGACTGCTGAGGAA -ACGGAACCTTTGACTGCTCAGGTA -ACGGAACCTTTGACTGCTGACTCT -ACGGAACCTTTGACTGCTAGTCCT -ACGGAACCTTTGACTGCTTAAGCC -ACGGAACCTTTGACTGCTATAGCC -ACGGAACCTTTGACTGCTTAACCG -ACGGAACCTTTGACTGCTATGCCA -ACGGAACCTTTGTCTGGAGGAAAC -ACGGAACCTTTGTCTGGAAACACC -ACGGAACCTTTGTCTGGAATCGAG -ACGGAACCTTTGTCTGGACTCCTT -ACGGAACCTTTGTCTGGACCTGTT -ACGGAACCTTTGTCTGGACGGTTT -ACGGAACCTTTGTCTGGAGTGGTT -ACGGAACCTTTGTCTGGAGCCTTT -ACGGAACCTTTGTCTGGAGGTCTT -ACGGAACCTTTGTCTGGAACGCTT -ACGGAACCTTTGTCTGGAAGCGTT -ACGGAACCTTTGTCTGGATTCGTC -ACGGAACCTTTGTCTGGATCTCTC -ACGGAACCTTTGTCTGGATGGATC -ACGGAACCTTTGTCTGGACACTTC -ACGGAACCTTTGTCTGGAGTACTC -ACGGAACCTTTGTCTGGAGATGTC -ACGGAACCTTTGTCTGGAACAGTC -ACGGAACCTTTGTCTGGATTGCTG -ACGGAACCTTTGTCTGGATCCATG -ACGGAACCTTTGTCTGGATGTGTG -ACGGAACCTTTGTCTGGACTAGTG -ACGGAACCTTTGTCTGGACATCTG -ACGGAACCTTTGTCTGGAGAGTTG -ACGGAACCTTTGTCTGGAAGACTG -ACGGAACCTTTGTCTGGATCGGTA -ACGGAACCTTTGTCTGGATGCCTA -ACGGAACCTTTGTCTGGACCACTA -ACGGAACCTTTGTCTGGAGGAGTA -ACGGAACCTTTGTCTGGATCGTCT -ACGGAACCTTTGTCTGGATGCACT -ACGGAACCTTTGTCTGGACTGACT -ACGGAACCTTTGTCTGGACAACCT -ACGGAACCTTTGTCTGGAGCTACT -ACGGAACCTTTGTCTGGAGGATCT -ACGGAACCTTTGTCTGGAAAGGCT -ACGGAACCTTTGTCTGGATCAACC -ACGGAACCTTTGTCTGGATGTTCC -ACGGAACCTTTGTCTGGAATTCCC -ACGGAACCTTTGTCTGGATTCTCG -ACGGAACCTTTGTCTGGATAGACG -ACGGAACCTTTGTCTGGAGTAACG -ACGGAACCTTTGTCTGGAACTTCG -ACGGAACCTTTGTCTGGATACGCA -ACGGAACCTTTGTCTGGACTTGCA -ACGGAACCTTTGTCTGGACGAACA -ACGGAACCTTTGTCTGGACAGTCA -ACGGAACCTTTGTCTGGAGATCCA -ACGGAACCTTTGTCTGGAACGACA -ACGGAACCTTTGTCTGGAAGCTCA -ACGGAACCTTTGTCTGGATCACGT -ACGGAACCTTTGTCTGGACGTAGT -ACGGAACCTTTGTCTGGAGTCAGT -ACGGAACCTTTGTCTGGAGAAGGT -ACGGAACCTTTGTCTGGAAACCGT -ACGGAACCTTTGTCTGGATTGTGC -ACGGAACCTTTGTCTGGACTAAGC -ACGGAACCTTTGTCTGGAACTAGC -ACGGAACCTTTGTCTGGAAGATGC -ACGGAACCTTTGTCTGGATGAAGG -ACGGAACCTTTGTCTGGACAATGG -ACGGAACCTTTGTCTGGAATGAGG -ACGGAACCTTTGTCTGGAAATGGG -ACGGAACCTTTGTCTGGATCCTGA -ACGGAACCTTTGTCTGGATAGCGA -ACGGAACCTTTGTCTGGACACAGA -ACGGAACCTTTGTCTGGAGCAAGA -ACGGAACCTTTGTCTGGAGGTTGA -ACGGAACCTTTGTCTGGATCCGAT -ACGGAACCTTTGTCTGGATGGCAT -ACGGAACCTTTGTCTGGACGAGAT -ACGGAACCTTTGTCTGGATACCAC -ACGGAACCTTTGTCTGGACAGAAC -ACGGAACCTTTGTCTGGAGTCTAC -ACGGAACCTTTGTCTGGAACGTAC -ACGGAACCTTTGTCTGGAAGTGAC -ACGGAACCTTTGTCTGGACTGTAG -ACGGAACCTTTGTCTGGACCTAAG -ACGGAACCTTTGTCTGGAGTTCAG -ACGGAACCTTTGTCTGGAGCATAG -ACGGAACCTTTGTCTGGAGACAAG -ACGGAACCTTTGTCTGGAAAGCAG -ACGGAACCTTTGTCTGGACGTCAA -ACGGAACCTTTGTCTGGAGCTGAA -ACGGAACCTTTGTCTGGAAGTACG -ACGGAACCTTTGTCTGGAATCCGA -ACGGAACCTTTGTCTGGAATGGGA -ACGGAACCTTTGTCTGGAGTGCAA -ACGGAACCTTTGTCTGGAGAGGAA -ACGGAACCTTTGTCTGGACAGGTA -ACGGAACCTTTGTCTGGAGACTCT -ACGGAACCTTTGTCTGGAAGTCCT -ACGGAACCTTTGTCTGGATAAGCC -ACGGAACCTTTGTCTGGAATAGCC -ACGGAACCTTTGTCTGGATAACCG -ACGGAACCTTTGTCTGGAATGCCA -ACGGAACCTTTGGCTAAGGGAAAC -ACGGAACCTTTGGCTAAGAACACC -ACGGAACCTTTGGCTAAGATCGAG -ACGGAACCTTTGGCTAAGCTCCTT -ACGGAACCTTTGGCTAAGCCTGTT -ACGGAACCTTTGGCTAAGCGGTTT -ACGGAACCTTTGGCTAAGGTGGTT -ACGGAACCTTTGGCTAAGGCCTTT -ACGGAACCTTTGGCTAAGGGTCTT -ACGGAACCTTTGGCTAAGACGCTT -ACGGAACCTTTGGCTAAGAGCGTT -ACGGAACCTTTGGCTAAGTTCGTC -ACGGAACCTTTGGCTAAGTCTCTC -ACGGAACCTTTGGCTAAGTGGATC -ACGGAACCTTTGGCTAAGCACTTC -ACGGAACCTTTGGCTAAGGTACTC -ACGGAACCTTTGGCTAAGGATGTC -ACGGAACCTTTGGCTAAGACAGTC -ACGGAACCTTTGGCTAAGTTGCTG -ACGGAACCTTTGGCTAAGTCCATG -ACGGAACCTTTGGCTAAGTGTGTG -ACGGAACCTTTGGCTAAGCTAGTG -ACGGAACCTTTGGCTAAGCATCTG -ACGGAACCTTTGGCTAAGGAGTTG -ACGGAACCTTTGGCTAAGAGACTG -ACGGAACCTTTGGCTAAGTCGGTA -ACGGAACCTTTGGCTAAGTGCCTA -ACGGAACCTTTGGCTAAGCCACTA -ACGGAACCTTTGGCTAAGGGAGTA -ACGGAACCTTTGGCTAAGTCGTCT -ACGGAACCTTTGGCTAAGTGCACT -ACGGAACCTTTGGCTAAGCTGACT -ACGGAACCTTTGGCTAAGCAACCT -ACGGAACCTTTGGCTAAGGCTACT -ACGGAACCTTTGGCTAAGGGATCT -ACGGAACCTTTGGCTAAGAAGGCT -ACGGAACCTTTGGCTAAGTCAACC -ACGGAACCTTTGGCTAAGTGTTCC -ACGGAACCTTTGGCTAAGATTCCC -ACGGAACCTTTGGCTAAGTTCTCG -ACGGAACCTTTGGCTAAGTAGACG -ACGGAACCTTTGGCTAAGGTAACG -ACGGAACCTTTGGCTAAGACTTCG -ACGGAACCTTTGGCTAAGTACGCA -ACGGAACCTTTGGCTAAGCTTGCA -ACGGAACCTTTGGCTAAGCGAACA -ACGGAACCTTTGGCTAAGCAGTCA -ACGGAACCTTTGGCTAAGGATCCA -ACGGAACCTTTGGCTAAGACGACA -ACGGAACCTTTGGCTAAGAGCTCA -ACGGAACCTTTGGCTAAGTCACGT -ACGGAACCTTTGGCTAAGCGTAGT -ACGGAACCTTTGGCTAAGGTCAGT -ACGGAACCTTTGGCTAAGGAAGGT -ACGGAACCTTTGGCTAAGAACCGT -ACGGAACCTTTGGCTAAGTTGTGC -ACGGAACCTTTGGCTAAGCTAAGC -ACGGAACCTTTGGCTAAGACTAGC -ACGGAACCTTTGGCTAAGAGATGC -ACGGAACCTTTGGCTAAGTGAAGG -ACGGAACCTTTGGCTAAGCAATGG -ACGGAACCTTTGGCTAAGATGAGG -ACGGAACCTTTGGCTAAGAATGGG -ACGGAACCTTTGGCTAAGTCCTGA -ACGGAACCTTTGGCTAAGTAGCGA -ACGGAACCTTTGGCTAAGCACAGA -ACGGAACCTTTGGCTAAGGCAAGA -ACGGAACCTTTGGCTAAGGGTTGA -ACGGAACCTTTGGCTAAGTCCGAT -ACGGAACCTTTGGCTAAGTGGCAT -ACGGAACCTTTGGCTAAGCGAGAT -ACGGAACCTTTGGCTAAGTACCAC -ACGGAACCTTTGGCTAAGCAGAAC -ACGGAACCTTTGGCTAAGGTCTAC -ACGGAACCTTTGGCTAAGACGTAC -ACGGAACCTTTGGCTAAGAGTGAC -ACGGAACCTTTGGCTAAGCTGTAG -ACGGAACCTTTGGCTAAGCCTAAG -ACGGAACCTTTGGCTAAGGTTCAG -ACGGAACCTTTGGCTAAGGCATAG -ACGGAACCTTTGGCTAAGGACAAG -ACGGAACCTTTGGCTAAGAAGCAG -ACGGAACCTTTGGCTAAGCGTCAA -ACGGAACCTTTGGCTAAGGCTGAA -ACGGAACCTTTGGCTAAGAGTACG -ACGGAACCTTTGGCTAAGATCCGA -ACGGAACCTTTGGCTAAGATGGGA -ACGGAACCTTTGGCTAAGGTGCAA -ACGGAACCTTTGGCTAAGGAGGAA -ACGGAACCTTTGGCTAAGCAGGTA -ACGGAACCTTTGGCTAAGGACTCT -ACGGAACCTTTGGCTAAGAGTCCT -ACGGAACCTTTGGCTAAGTAAGCC -ACGGAACCTTTGGCTAAGATAGCC -ACGGAACCTTTGGCTAAGTAACCG -ACGGAACCTTTGGCTAAGATGCCA -ACGGAACCTTTGACCTCAGGAAAC -ACGGAACCTTTGACCTCAAACACC -ACGGAACCTTTGACCTCAATCGAG -ACGGAACCTTTGACCTCACTCCTT -ACGGAACCTTTGACCTCACCTGTT -ACGGAACCTTTGACCTCACGGTTT -ACGGAACCTTTGACCTCAGTGGTT -ACGGAACCTTTGACCTCAGCCTTT -ACGGAACCTTTGACCTCAGGTCTT -ACGGAACCTTTGACCTCAACGCTT -ACGGAACCTTTGACCTCAAGCGTT -ACGGAACCTTTGACCTCATTCGTC -ACGGAACCTTTGACCTCATCTCTC -ACGGAACCTTTGACCTCATGGATC -ACGGAACCTTTGACCTCACACTTC -ACGGAACCTTTGACCTCAGTACTC -ACGGAACCTTTGACCTCAGATGTC -ACGGAACCTTTGACCTCAACAGTC -ACGGAACCTTTGACCTCATTGCTG -ACGGAACCTTTGACCTCATCCATG -ACGGAACCTTTGACCTCATGTGTG -ACGGAACCTTTGACCTCACTAGTG -ACGGAACCTTTGACCTCACATCTG -ACGGAACCTTTGACCTCAGAGTTG -ACGGAACCTTTGACCTCAAGACTG -ACGGAACCTTTGACCTCATCGGTA -ACGGAACCTTTGACCTCATGCCTA -ACGGAACCTTTGACCTCACCACTA -ACGGAACCTTTGACCTCAGGAGTA -ACGGAACCTTTGACCTCATCGTCT -ACGGAACCTTTGACCTCATGCACT -ACGGAACCTTTGACCTCACTGACT -ACGGAACCTTTGACCTCACAACCT -ACGGAACCTTTGACCTCAGCTACT -ACGGAACCTTTGACCTCAGGATCT -ACGGAACCTTTGACCTCAAAGGCT -ACGGAACCTTTGACCTCATCAACC -ACGGAACCTTTGACCTCATGTTCC -ACGGAACCTTTGACCTCAATTCCC -ACGGAACCTTTGACCTCATTCTCG -ACGGAACCTTTGACCTCATAGACG -ACGGAACCTTTGACCTCAGTAACG -ACGGAACCTTTGACCTCAACTTCG -ACGGAACCTTTGACCTCATACGCA -ACGGAACCTTTGACCTCACTTGCA -ACGGAACCTTTGACCTCACGAACA -ACGGAACCTTTGACCTCACAGTCA -ACGGAACCTTTGACCTCAGATCCA -ACGGAACCTTTGACCTCAACGACA -ACGGAACCTTTGACCTCAAGCTCA -ACGGAACCTTTGACCTCATCACGT -ACGGAACCTTTGACCTCACGTAGT -ACGGAACCTTTGACCTCAGTCAGT -ACGGAACCTTTGACCTCAGAAGGT -ACGGAACCTTTGACCTCAAACCGT -ACGGAACCTTTGACCTCATTGTGC -ACGGAACCTTTGACCTCACTAAGC -ACGGAACCTTTGACCTCAACTAGC -ACGGAACCTTTGACCTCAAGATGC -ACGGAACCTTTGACCTCATGAAGG -ACGGAACCTTTGACCTCACAATGG -ACGGAACCTTTGACCTCAATGAGG -ACGGAACCTTTGACCTCAAATGGG -ACGGAACCTTTGACCTCATCCTGA -ACGGAACCTTTGACCTCATAGCGA -ACGGAACCTTTGACCTCACACAGA -ACGGAACCTTTGACCTCAGCAAGA -ACGGAACCTTTGACCTCAGGTTGA -ACGGAACCTTTGACCTCATCCGAT -ACGGAACCTTTGACCTCATGGCAT -ACGGAACCTTTGACCTCACGAGAT -ACGGAACCTTTGACCTCATACCAC -ACGGAACCTTTGACCTCACAGAAC -ACGGAACCTTTGACCTCAGTCTAC -ACGGAACCTTTGACCTCAACGTAC -ACGGAACCTTTGACCTCAAGTGAC -ACGGAACCTTTGACCTCACTGTAG -ACGGAACCTTTGACCTCACCTAAG -ACGGAACCTTTGACCTCAGTTCAG -ACGGAACCTTTGACCTCAGCATAG -ACGGAACCTTTGACCTCAGACAAG -ACGGAACCTTTGACCTCAAAGCAG -ACGGAACCTTTGACCTCACGTCAA -ACGGAACCTTTGACCTCAGCTGAA -ACGGAACCTTTGACCTCAAGTACG -ACGGAACCTTTGACCTCAATCCGA -ACGGAACCTTTGACCTCAATGGGA -ACGGAACCTTTGACCTCAGTGCAA -ACGGAACCTTTGACCTCAGAGGAA -ACGGAACCTTTGACCTCACAGGTA -ACGGAACCTTTGACCTCAGACTCT -ACGGAACCTTTGACCTCAAGTCCT -ACGGAACCTTTGACCTCATAAGCC -ACGGAACCTTTGACCTCAATAGCC -ACGGAACCTTTGACCTCATAACCG -ACGGAACCTTTGACCTCAATGCCA -ACGGAACCTTTGTCCTGTGGAAAC -ACGGAACCTTTGTCCTGTAACACC -ACGGAACCTTTGTCCTGTATCGAG -ACGGAACCTTTGTCCTGTCTCCTT -ACGGAACCTTTGTCCTGTCCTGTT -ACGGAACCTTTGTCCTGTCGGTTT -ACGGAACCTTTGTCCTGTGTGGTT -ACGGAACCTTTGTCCTGTGCCTTT -ACGGAACCTTTGTCCTGTGGTCTT -ACGGAACCTTTGTCCTGTACGCTT -ACGGAACCTTTGTCCTGTAGCGTT -ACGGAACCTTTGTCCTGTTTCGTC -ACGGAACCTTTGTCCTGTTCTCTC -ACGGAACCTTTGTCCTGTTGGATC -ACGGAACCTTTGTCCTGTCACTTC -ACGGAACCTTTGTCCTGTGTACTC -ACGGAACCTTTGTCCTGTGATGTC -ACGGAACCTTTGTCCTGTACAGTC -ACGGAACCTTTGTCCTGTTTGCTG -ACGGAACCTTTGTCCTGTTCCATG -ACGGAACCTTTGTCCTGTTGTGTG -ACGGAACCTTTGTCCTGTCTAGTG -ACGGAACCTTTGTCCTGTCATCTG -ACGGAACCTTTGTCCTGTGAGTTG -ACGGAACCTTTGTCCTGTAGACTG -ACGGAACCTTTGTCCTGTTCGGTA -ACGGAACCTTTGTCCTGTTGCCTA -ACGGAACCTTTGTCCTGTCCACTA -ACGGAACCTTTGTCCTGTGGAGTA -ACGGAACCTTTGTCCTGTTCGTCT -ACGGAACCTTTGTCCTGTTGCACT -ACGGAACCTTTGTCCTGTCTGACT -ACGGAACCTTTGTCCTGTCAACCT -ACGGAACCTTTGTCCTGTGCTACT -ACGGAACCTTTGTCCTGTGGATCT -ACGGAACCTTTGTCCTGTAAGGCT -ACGGAACCTTTGTCCTGTTCAACC -ACGGAACCTTTGTCCTGTTGTTCC -ACGGAACCTTTGTCCTGTATTCCC -ACGGAACCTTTGTCCTGTTTCTCG -ACGGAACCTTTGTCCTGTTAGACG -ACGGAACCTTTGTCCTGTGTAACG -ACGGAACCTTTGTCCTGTACTTCG -ACGGAACCTTTGTCCTGTTACGCA -ACGGAACCTTTGTCCTGTCTTGCA -ACGGAACCTTTGTCCTGTCGAACA -ACGGAACCTTTGTCCTGTCAGTCA -ACGGAACCTTTGTCCTGTGATCCA -ACGGAACCTTTGTCCTGTACGACA -ACGGAACCTTTGTCCTGTAGCTCA -ACGGAACCTTTGTCCTGTTCACGT -ACGGAACCTTTGTCCTGTCGTAGT -ACGGAACCTTTGTCCTGTGTCAGT -ACGGAACCTTTGTCCTGTGAAGGT -ACGGAACCTTTGTCCTGTAACCGT -ACGGAACCTTTGTCCTGTTTGTGC -ACGGAACCTTTGTCCTGTCTAAGC -ACGGAACCTTTGTCCTGTACTAGC -ACGGAACCTTTGTCCTGTAGATGC -ACGGAACCTTTGTCCTGTTGAAGG -ACGGAACCTTTGTCCTGTCAATGG -ACGGAACCTTTGTCCTGTATGAGG -ACGGAACCTTTGTCCTGTAATGGG -ACGGAACCTTTGTCCTGTTCCTGA -ACGGAACCTTTGTCCTGTTAGCGA -ACGGAACCTTTGTCCTGTCACAGA -ACGGAACCTTTGTCCTGTGCAAGA -ACGGAACCTTTGTCCTGTGGTTGA -ACGGAACCTTTGTCCTGTTCCGAT -ACGGAACCTTTGTCCTGTTGGCAT -ACGGAACCTTTGTCCTGTCGAGAT -ACGGAACCTTTGTCCTGTTACCAC -ACGGAACCTTTGTCCTGTCAGAAC -ACGGAACCTTTGTCCTGTGTCTAC -ACGGAACCTTTGTCCTGTACGTAC -ACGGAACCTTTGTCCTGTAGTGAC -ACGGAACCTTTGTCCTGTCTGTAG -ACGGAACCTTTGTCCTGTCCTAAG -ACGGAACCTTTGTCCTGTGTTCAG -ACGGAACCTTTGTCCTGTGCATAG -ACGGAACCTTTGTCCTGTGACAAG -ACGGAACCTTTGTCCTGTAAGCAG -ACGGAACCTTTGTCCTGTCGTCAA -ACGGAACCTTTGTCCTGTGCTGAA -ACGGAACCTTTGTCCTGTAGTACG -ACGGAACCTTTGTCCTGTATCCGA -ACGGAACCTTTGTCCTGTATGGGA -ACGGAACCTTTGTCCTGTGTGCAA -ACGGAACCTTTGTCCTGTGAGGAA -ACGGAACCTTTGTCCTGTCAGGTA -ACGGAACCTTTGTCCTGTGACTCT -ACGGAACCTTTGTCCTGTAGTCCT -ACGGAACCTTTGTCCTGTTAAGCC -ACGGAACCTTTGTCCTGTATAGCC -ACGGAACCTTTGTCCTGTTAACCG -ACGGAACCTTTGTCCTGTATGCCA -ACGGAACCTTTGCCCATTGGAAAC -ACGGAACCTTTGCCCATTAACACC -ACGGAACCTTTGCCCATTATCGAG -ACGGAACCTTTGCCCATTCTCCTT -ACGGAACCTTTGCCCATTCCTGTT -ACGGAACCTTTGCCCATTCGGTTT -ACGGAACCTTTGCCCATTGTGGTT -ACGGAACCTTTGCCCATTGCCTTT -ACGGAACCTTTGCCCATTGGTCTT -ACGGAACCTTTGCCCATTACGCTT -ACGGAACCTTTGCCCATTAGCGTT -ACGGAACCTTTGCCCATTTTCGTC -ACGGAACCTTTGCCCATTTCTCTC -ACGGAACCTTTGCCCATTTGGATC -ACGGAACCTTTGCCCATTCACTTC -ACGGAACCTTTGCCCATTGTACTC -ACGGAACCTTTGCCCATTGATGTC -ACGGAACCTTTGCCCATTACAGTC -ACGGAACCTTTGCCCATTTTGCTG -ACGGAACCTTTGCCCATTTCCATG -ACGGAACCTTTGCCCATTTGTGTG -ACGGAACCTTTGCCCATTCTAGTG -ACGGAACCTTTGCCCATTCATCTG -ACGGAACCTTTGCCCATTGAGTTG -ACGGAACCTTTGCCCATTAGACTG -ACGGAACCTTTGCCCATTTCGGTA -ACGGAACCTTTGCCCATTTGCCTA -ACGGAACCTTTGCCCATTCCACTA -ACGGAACCTTTGCCCATTGGAGTA -ACGGAACCTTTGCCCATTTCGTCT -ACGGAACCTTTGCCCATTTGCACT -ACGGAACCTTTGCCCATTCTGACT -ACGGAACCTTTGCCCATTCAACCT -ACGGAACCTTTGCCCATTGCTACT -ACGGAACCTTTGCCCATTGGATCT -ACGGAACCTTTGCCCATTAAGGCT -ACGGAACCTTTGCCCATTTCAACC -ACGGAACCTTTGCCCATTTGTTCC -ACGGAACCTTTGCCCATTATTCCC -ACGGAACCTTTGCCCATTTTCTCG -ACGGAACCTTTGCCCATTTAGACG -ACGGAACCTTTGCCCATTGTAACG -ACGGAACCTTTGCCCATTACTTCG -ACGGAACCTTTGCCCATTTACGCA -ACGGAACCTTTGCCCATTCTTGCA -ACGGAACCTTTGCCCATTCGAACA -ACGGAACCTTTGCCCATTCAGTCA -ACGGAACCTTTGCCCATTGATCCA -ACGGAACCTTTGCCCATTACGACA -ACGGAACCTTTGCCCATTAGCTCA -ACGGAACCTTTGCCCATTTCACGT -ACGGAACCTTTGCCCATTCGTAGT -ACGGAACCTTTGCCCATTGTCAGT -ACGGAACCTTTGCCCATTGAAGGT -ACGGAACCTTTGCCCATTAACCGT -ACGGAACCTTTGCCCATTTTGTGC -ACGGAACCTTTGCCCATTCTAAGC -ACGGAACCTTTGCCCATTACTAGC -ACGGAACCTTTGCCCATTAGATGC -ACGGAACCTTTGCCCATTTGAAGG -ACGGAACCTTTGCCCATTCAATGG -ACGGAACCTTTGCCCATTATGAGG -ACGGAACCTTTGCCCATTAATGGG -ACGGAACCTTTGCCCATTTCCTGA -ACGGAACCTTTGCCCATTTAGCGA -ACGGAACCTTTGCCCATTCACAGA -ACGGAACCTTTGCCCATTGCAAGA -ACGGAACCTTTGCCCATTGGTTGA -ACGGAACCTTTGCCCATTTCCGAT -ACGGAACCTTTGCCCATTTGGCAT -ACGGAACCTTTGCCCATTCGAGAT -ACGGAACCTTTGCCCATTTACCAC -ACGGAACCTTTGCCCATTCAGAAC -ACGGAACCTTTGCCCATTGTCTAC -ACGGAACCTTTGCCCATTACGTAC -ACGGAACCTTTGCCCATTAGTGAC -ACGGAACCTTTGCCCATTCTGTAG -ACGGAACCTTTGCCCATTCCTAAG -ACGGAACCTTTGCCCATTGTTCAG -ACGGAACCTTTGCCCATTGCATAG -ACGGAACCTTTGCCCATTGACAAG -ACGGAACCTTTGCCCATTAAGCAG -ACGGAACCTTTGCCCATTCGTCAA -ACGGAACCTTTGCCCATTGCTGAA -ACGGAACCTTTGCCCATTAGTACG -ACGGAACCTTTGCCCATTATCCGA -ACGGAACCTTTGCCCATTATGGGA -ACGGAACCTTTGCCCATTGTGCAA -ACGGAACCTTTGCCCATTGAGGAA -ACGGAACCTTTGCCCATTCAGGTA -ACGGAACCTTTGCCCATTGACTCT -ACGGAACCTTTGCCCATTAGTCCT -ACGGAACCTTTGCCCATTTAAGCC -ACGGAACCTTTGCCCATTATAGCC -ACGGAACCTTTGCCCATTTAACCG -ACGGAACCTTTGCCCATTATGCCA -ACGGAACCTTTGTCGTTCGGAAAC -ACGGAACCTTTGTCGTTCAACACC -ACGGAACCTTTGTCGTTCATCGAG -ACGGAACCTTTGTCGTTCCTCCTT -ACGGAACCTTTGTCGTTCCCTGTT -ACGGAACCTTTGTCGTTCCGGTTT -ACGGAACCTTTGTCGTTCGTGGTT -ACGGAACCTTTGTCGTTCGCCTTT -ACGGAACCTTTGTCGTTCGGTCTT -ACGGAACCTTTGTCGTTCACGCTT -ACGGAACCTTTGTCGTTCAGCGTT -ACGGAACCTTTGTCGTTCTTCGTC -ACGGAACCTTTGTCGTTCTCTCTC -ACGGAACCTTTGTCGTTCTGGATC -ACGGAACCTTTGTCGTTCCACTTC -ACGGAACCTTTGTCGTTCGTACTC -ACGGAACCTTTGTCGTTCGATGTC -ACGGAACCTTTGTCGTTCACAGTC -ACGGAACCTTTGTCGTTCTTGCTG -ACGGAACCTTTGTCGTTCTCCATG -ACGGAACCTTTGTCGTTCTGTGTG -ACGGAACCTTTGTCGTTCCTAGTG -ACGGAACCTTTGTCGTTCCATCTG -ACGGAACCTTTGTCGTTCGAGTTG -ACGGAACCTTTGTCGTTCAGACTG -ACGGAACCTTTGTCGTTCTCGGTA -ACGGAACCTTTGTCGTTCTGCCTA -ACGGAACCTTTGTCGTTCCCACTA -ACGGAACCTTTGTCGTTCGGAGTA -ACGGAACCTTTGTCGTTCTCGTCT -ACGGAACCTTTGTCGTTCTGCACT -ACGGAACCTTTGTCGTTCCTGACT -ACGGAACCTTTGTCGTTCCAACCT -ACGGAACCTTTGTCGTTCGCTACT -ACGGAACCTTTGTCGTTCGGATCT -ACGGAACCTTTGTCGTTCAAGGCT -ACGGAACCTTTGTCGTTCTCAACC -ACGGAACCTTTGTCGTTCTGTTCC -ACGGAACCTTTGTCGTTCATTCCC -ACGGAACCTTTGTCGTTCTTCTCG -ACGGAACCTTTGTCGTTCTAGACG -ACGGAACCTTTGTCGTTCGTAACG -ACGGAACCTTTGTCGTTCACTTCG -ACGGAACCTTTGTCGTTCTACGCA -ACGGAACCTTTGTCGTTCCTTGCA -ACGGAACCTTTGTCGTTCCGAACA -ACGGAACCTTTGTCGTTCCAGTCA -ACGGAACCTTTGTCGTTCGATCCA -ACGGAACCTTTGTCGTTCACGACA -ACGGAACCTTTGTCGTTCAGCTCA -ACGGAACCTTTGTCGTTCTCACGT -ACGGAACCTTTGTCGTTCCGTAGT -ACGGAACCTTTGTCGTTCGTCAGT -ACGGAACCTTTGTCGTTCGAAGGT -ACGGAACCTTTGTCGTTCAACCGT -ACGGAACCTTTGTCGTTCTTGTGC -ACGGAACCTTTGTCGTTCCTAAGC -ACGGAACCTTTGTCGTTCACTAGC -ACGGAACCTTTGTCGTTCAGATGC -ACGGAACCTTTGTCGTTCTGAAGG -ACGGAACCTTTGTCGTTCCAATGG -ACGGAACCTTTGTCGTTCATGAGG -ACGGAACCTTTGTCGTTCAATGGG -ACGGAACCTTTGTCGTTCTCCTGA -ACGGAACCTTTGTCGTTCTAGCGA -ACGGAACCTTTGTCGTTCCACAGA -ACGGAACCTTTGTCGTTCGCAAGA -ACGGAACCTTTGTCGTTCGGTTGA -ACGGAACCTTTGTCGTTCTCCGAT -ACGGAACCTTTGTCGTTCTGGCAT -ACGGAACCTTTGTCGTTCCGAGAT -ACGGAACCTTTGTCGTTCTACCAC -ACGGAACCTTTGTCGTTCCAGAAC -ACGGAACCTTTGTCGTTCGTCTAC -ACGGAACCTTTGTCGTTCACGTAC -ACGGAACCTTTGTCGTTCAGTGAC -ACGGAACCTTTGTCGTTCCTGTAG -ACGGAACCTTTGTCGTTCCCTAAG -ACGGAACCTTTGTCGTTCGTTCAG -ACGGAACCTTTGTCGTTCGCATAG -ACGGAACCTTTGTCGTTCGACAAG -ACGGAACCTTTGTCGTTCAAGCAG -ACGGAACCTTTGTCGTTCCGTCAA -ACGGAACCTTTGTCGTTCGCTGAA -ACGGAACCTTTGTCGTTCAGTACG -ACGGAACCTTTGTCGTTCATCCGA -ACGGAACCTTTGTCGTTCATGGGA -ACGGAACCTTTGTCGTTCGTGCAA -ACGGAACCTTTGTCGTTCGAGGAA -ACGGAACCTTTGTCGTTCCAGGTA -ACGGAACCTTTGTCGTTCGACTCT -ACGGAACCTTTGTCGTTCAGTCCT -ACGGAACCTTTGTCGTTCTAAGCC -ACGGAACCTTTGTCGTTCATAGCC -ACGGAACCTTTGTCGTTCTAACCG -ACGGAACCTTTGTCGTTCATGCCA -ACGGAACCTTTGACGTAGGGAAAC -ACGGAACCTTTGACGTAGAACACC -ACGGAACCTTTGACGTAGATCGAG -ACGGAACCTTTGACGTAGCTCCTT -ACGGAACCTTTGACGTAGCCTGTT -ACGGAACCTTTGACGTAGCGGTTT -ACGGAACCTTTGACGTAGGTGGTT -ACGGAACCTTTGACGTAGGCCTTT -ACGGAACCTTTGACGTAGGGTCTT -ACGGAACCTTTGACGTAGACGCTT -ACGGAACCTTTGACGTAGAGCGTT -ACGGAACCTTTGACGTAGTTCGTC -ACGGAACCTTTGACGTAGTCTCTC -ACGGAACCTTTGACGTAGTGGATC -ACGGAACCTTTGACGTAGCACTTC -ACGGAACCTTTGACGTAGGTACTC -ACGGAACCTTTGACGTAGGATGTC -ACGGAACCTTTGACGTAGACAGTC -ACGGAACCTTTGACGTAGTTGCTG -ACGGAACCTTTGACGTAGTCCATG -ACGGAACCTTTGACGTAGTGTGTG -ACGGAACCTTTGACGTAGCTAGTG -ACGGAACCTTTGACGTAGCATCTG -ACGGAACCTTTGACGTAGGAGTTG -ACGGAACCTTTGACGTAGAGACTG -ACGGAACCTTTGACGTAGTCGGTA -ACGGAACCTTTGACGTAGTGCCTA -ACGGAACCTTTGACGTAGCCACTA -ACGGAACCTTTGACGTAGGGAGTA -ACGGAACCTTTGACGTAGTCGTCT -ACGGAACCTTTGACGTAGTGCACT -ACGGAACCTTTGACGTAGCTGACT -ACGGAACCTTTGACGTAGCAACCT -ACGGAACCTTTGACGTAGGCTACT -ACGGAACCTTTGACGTAGGGATCT -ACGGAACCTTTGACGTAGAAGGCT -ACGGAACCTTTGACGTAGTCAACC -ACGGAACCTTTGACGTAGTGTTCC -ACGGAACCTTTGACGTAGATTCCC -ACGGAACCTTTGACGTAGTTCTCG -ACGGAACCTTTGACGTAGTAGACG -ACGGAACCTTTGACGTAGGTAACG -ACGGAACCTTTGACGTAGACTTCG -ACGGAACCTTTGACGTAGTACGCA -ACGGAACCTTTGACGTAGCTTGCA -ACGGAACCTTTGACGTAGCGAACA -ACGGAACCTTTGACGTAGCAGTCA -ACGGAACCTTTGACGTAGGATCCA -ACGGAACCTTTGACGTAGACGACA -ACGGAACCTTTGACGTAGAGCTCA -ACGGAACCTTTGACGTAGTCACGT -ACGGAACCTTTGACGTAGCGTAGT -ACGGAACCTTTGACGTAGGTCAGT -ACGGAACCTTTGACGTAGGAAGGT -ACGGAACCTTTGACGTAGAACCGT -ACGGAACCTTTGACGTAGTTGTGC -ACGGAACCTTTGACGTAGCTAAGC -ACGGAACCTTTGACGTAGACTAGC -ACGGAACCTTTGACGTAGAGATGC -ACGGAACCTTTGACGTAGTGAAGG -ACGGAACCTTTGACGTAGCAATGG -ACGGAACCTTTGACGTAGATGAGG -ACGGAACCTTTGACGTAGAATGGG -ACGGAACCTTTGACGTAGTCCTGA -ACGGAACCTTTGACGTAGTAGCGA -ACGGAACCTTTGACGTAGCACAGA -ACGGAACCTTTGACGTAGGCAAGA -ACGGAACCTTTGACGTAGGGTTGA -ACGGAACCTTTGACGTAGTCCGAT -ACGGAACCTTTGACGTAGTGGCAT -ACGGAACCTTTGACGTAGCGAGAT -ACGGAACCTTTGACGTAGTACCAC -ACGGAACCTTTGACGTAGCAGAAC -ACGGAACCTTTGACGTAGGTCTAC -ACGGAACCTTTGACGTAGACGTAC -ACGGAACCTTTGACGTAGAGTGAC -ACGGAACCTTTGACGTAGCTGTAG -ACGGAACCTTTGACGTAGCCTAAG -ACGGAACCTTTGACGTAGGTTCAG -ACGGAACCTTTGACGTAGGCATAG -ACGGAACCTTTGACGTAGGACAAG -ACGGAACCTTTGACGTAGAAGCAG -ACGGAACCTTTGACGTAGCGTCAA -ACGGAACCTTTGACGTAGGCTGAA -ACGGAACCTTTGACGTAGAGTACG -ACGGAACCTTTGACGTAGATCCGA -ACGGAACCTTTGACGTAGATGGGA -ACGGAACCTTTGACGTAGGTGCAA -ACGGAACCTTTGACGTAGGAGGAA -ACGGAACCTTTGACGTAGCAGGTA -ACGGAACCTTTGACGTAGGACTCT -ACGGAACCTTTGACGTAGAGTCCT -ACGGAACCTTTGACGTAGTAAGCC -ACGGAACCTTTGACGTAGATAGCC -ACGGAACCTTTGACGTAGTAACCG -ACGGAACCTTTGACGTAGATGCCA -ACGGAACCTTTGACGGTAGGAAAC -ACGGAACCTTTGACGGTAAACACC -ACGGAACCTTTGACGGTAATCGAG -ACGGAACCTTTGACGGTACTCCTT -ACGGAACCTTTGACGGTACCTGTT -ACGGAACCTTTGACGGTACGGTTT -ACGGAACCTTTGACGGTAGTGGTT -ACGGAACCTTTGACGGTAGCCTTT -ACGGAACCTTTGACGGTAGGTCTT -ACGGAACCTTTGACGGTAACGCTT -ACGGAACCTTTGACGGTAAGCGTT -ACGGAACCTTTGACGGTATTCGTC -ACGGAACCTTTGACGGTATCTCTC -ACGGAACCTTTGACGGTATGGATC -ACGGAACCTTTGACGGTACACTTC -ACGGAACCTTTGACGGTAGTACTC -ACGGAACCTTTGACGGTAGATGTC -ACGGAACCTTTGACGGTAACAGTC -ACGGAACCTTTGACGGTATTGCTG -ACGGAACCTTTGACGGTATCCATG -ACGGAACCTTTGACGGTATGTGTG -ACGGAACCTTTGACGGTACTAGTG -ACGGAACCTTTGACGGTACATCTG -ACGGAACCTTTGACGGTAGAGTTG -ACGGAACCTTTGACGGTAAGACTG -ACGGAACCTTTGACGGTATCGGTA -ACGGAACCTTTGACGGTATGCCTA -ACGGAACCTTTGACGGTACCACTA -ACGGAACCTTTGACGGTAGGAGTA -ACGGAACCTTTGACGGTATCGTCT -ACGGAACCTTTGACGGTATGCACT -ACGGAACCTTTGACGGTACTGACT -ACGGAACCTTTGACGGTACAACCT -ACGGAACCTTTGACGGTAGCTACT -ACGGAACCTTTGACGGTAGGATCT -ACGGAACCTTTGACGGTAAAGGCT -ACGGAACCTTTGACGGTATCAACC -ACGGAACCTTTGACGGTATGTTCC -ACGGAACCTTTGACGGTAATTCCC -ACGGAACCTTTGACGGTATTCTCG -ACGGAACCTTTGACGGTATAGACG -ACGGAACCTTTGACGGTAGTAACG -ACGGAACCTTTGACGGTAACTTCG -ACGGAACCTTTGACGGTATACGCA -ACGGAACCTTTGACGGTACTTGCA -ACGGAACCTTTGACGGTACGAACA -ACGGAACCTTTGACGGTACAGTCA -ACGGAACCTTTGACGGTAGATCCA -ACGGAACCTTTGACGGTAACGACA -ACGGAACCTTTGACGGTAAGCTCA -ACGGAACCTTTGACGGTATCACGT -ACGGAACCTTTGACGGTACGTAGT -ACGGAACCTTTGACGGTAGTCAGT -ACGGAACCTTTGACGGTAGAAGGT -ACGGAACCTTTGACGGTAAACCGT -ACGGAACCTTTGACGGTATTGTGC -ACGGAACCTTTGACGGTACTAAGC -ACGGAACCTTTGACGGTAACTAGC -ACGGAACCTTTGACGGTAAGATGC -ACGGAACCTTTGACGGTATGAAGG -ACGGAACCTTTGACGGTACAATGG -ACGGAACCTTTGACGGTAATGAGG -ACGGAACCTTTGACGGTAAATGGG -ACGGAACCTTTGACGGTATCCTGA -ACGGAACCTTTGACGGTATAGCGA -ACGGAACCTTTGACGGTACACAGA -ACGGAACCTTTGACGGTAGCAAGA -ACGGAACCTTTGACGGTAGGTTGA -ACGGAACCTTTGACGGTATCCGAT -ACGGAACCTTTGACGGTATGGCAT -ACGGAACCTTTGACGGTACGAGAT -ACGGAACCTTTGACGGTATACCAC -ACGGAACCTTTGACGGTACAGAAC -ACGGAACCTTTGACGGTAGTCTAC -ACGGAACCTTTGACGGTAACGTAC -ACGGAACCTTTGACGGTAAGTGAC -ACGGAACCTTTGACGGTACTGTAG -ACGGAACCTTTGACGGTACCTAAG -ACGGAACCTTTGACGGTAGTTCAG -ACGGAACCTTTGACGGTAGCATAG -ACGGAACCTTTGACGGTAGACAAG -ACGGAACCTTTGACGGTAAAGCAG -ACGGAACCTTTGACGGTACGTCAA -ACGGAACCTTTGACGGTAGCTGAA -ACGGAACCTTTGACGGTAAGTACG -ACGGAACCTTTGACGGTAATCCGA -ACGGAACCTTTGACGGTAATGGGA -ACGGAACCTTTGACGGTAGTGCAA -ACGGAACCTTTGACGGTAGAGGAA -ACGGAACCTTTGACGGTACAGGTA -ACGGAACCTTTGACGGTAGACTCT -ACGGAACCTTTGACGGTAAGTCCT -ACGGAACCTTTGACGGTATAAGCC -ACGGAACCTTTGACGGTAATAGCC -ACGGAACCTTTGACGGTATAACCG -ACGGAACCTTTGACGGTAATGCCA -ACGGAACCTTTGTCGACTGGAAAC -ACGGAACCTTTGTCGACTAACACC -ACGGAACCTTTGTCGACTATCGAG -ACGGAACCTTTGTCGACTCTCCTT -ACGGAACCTTTGTCGACTCCTGTT -ACGGAACCTTTGTCGACTCGGTTT -ACGGAACCTTTGTCGACTGTGGTT -ACGGAACCTTTGTCGACTGCCTTT -ACGGAACCTTTGTCGACTGGTCTT -ACGGAACCTTTGTCGACTACGCTT -ACGGAACCTTTGTCGACTAGCGTT -ACGGAACCTTTGTCGACTTTCGTC -ACGGAACCTTTGTCGACTTCTCTC -ACGGAACCTTTGTCGACTTGGATC -ACGGAACCTTTGTCGACTCACTTC -ACGGAACCTTTGTCGACTGTACTC -ACGGAACCTTTGTCGACTGATGTC -ACGGAACCTTTGTCGACTACAGTC -ACGGAACCTTTGTCGACTTTGCTG -ACGGAACCTTTGTCGACTTCCATG -ACGGAACCTTTGTCGACTTGTGTG -ACGGAACCTTTGTCGACTCTAGTG -ACGGAACCTTTGTCGACTCATCTG -ACGGAACCTTTGTCGACTGAGTTG -ACGGAACCTTTGTCGACTAGACTG -ACGGAACCTTTGTCGACTTCGGTA -ACGGAACCTTTGTCGACTTGCCTA -ACGGAACCTTTGTCGACTCCACTA -ACGGAACCTTTGTCGACTGGAGTA -ACGGAACCTTTGTCGACTTCGTCT -ACGGAACCTTTGTCGACTTGCACT -ACGGAACCTTTGTCGACTCTGACT -ACGGAACCTTTGTCGACTCAACCT -ACGGAACCTTTGTCGACTGCTACT -ACGGAACCTTTGTCGACTGGATCT -ACGGAACCTTTGTCGACTAAGGCT -ACGGAACCTTTGTCGACTTCAACC -ACGGAACCTTTGTCGACTTGTTCC -ACGGAACCTTTGTCGACTATTCCC -ACGGAACCTTTGTCGACTTTCTCG -ACGGAACCTTTGTCGACTTAGACG -ACGGAACCTTTGTCGACTGTAACG -ACGGAACCTTTGTCGACTACTTCG -ACGGAACCTTTGTCGACTTACGCA -ACGGAACCTTTGTCGACTCTTGCA -ACGGAACCTTTGTCGACTCGAACA -ACGGAACCTTTGTCGACTCAGTCA -ACGGAACCTTTGTCGACTGATCCA -ACGGAACCTTTGTCGACTACGACA -ACGGAACCTTTGTCGACTAGCTCA -ACGGAACCTTTGTCGACTTCACGT -ACGGAACCTTTGTCGACTCGTAGT -ACGGAACCTTTGTCGACTGTCAGT -ACGGAACCTTTGTCGACTGAAGGT -ACGGAACCTTTGTCGACTAACCGT -ACGGAACCTTTGTCGACTTTGTGC -ACGGAACCTTTGTCGACTCTAAGC -ACGGAACCTTTGTCGACTACTAGC -ACGGAACCTTTGTCGACTAGATGC -ACGGAACCTTTGTCGACTTGAAGG -ACGGAACCTTTGTCGACTCAATGG -ACGGAACCTTTGTCGACTATGAGG -ACGGAACCTTTGTCGACTAATGGG -ACGGAACCTTTGTCGACTTCCTGA -ACGGAACCTTTGTCGACTTAGCGA -ACGGAACCTTTGTCGACTCACAGA -ACGGAACCTTTGTCGACTGCAAGA -ACGGAACCTTTGTCGACTGGTTGA -ACGGAACCTTTGTCGACTTCCGAT -ACGGAACCTTTGTCGACTTGGCAT -ACGGAACCTTTGTCGACTCGAGAT -ACGGAACCTTTGTCGACTTACCAC -ACGGAACCTTTGTCGACTCAGAAC -ACGGAACCTTTGTCGACTGTCTAC -ACGGAACCTTTGTCGACTACGTAC -ACGGAACCTTTGTCGACTAGTGAC -ACGGAACCTTTGTCGACTCTGTAG -ACGGAACCTTTGTCGACTCCTAAG -ACGGAACCTTTGTCGACTGTTCAG -ACGGAACCTTTGTCGACTGCATAG -ACGGAACCTTTGTCGACTGACAAG -ACGGAACCTTTGTCGACTAAGCAG -ACGGAACCTTTGTCGACTCGTCAA -ACGGAACCTTTGTCGACTGCTGAA -ACGGAACCTTTGTCGACTAGTACG -ACGGAACCTTTGTCGACTATCCGA -ACGGAACCTTTGTCGACTATGGGA -ACGGAACCTTTGTCGACTGTGCAA -ACGGAACCTTTGTCGACTGAGGAA -ACGGAACCTTTGTCGACTCAGGTA -ACGGAACCTTTGTCGACTGACTCT -ACGGAACCTTTGTCGACTAGTCCT -ACGGAACCTTTGTCGACTTAAGCC -ACGGAACCTTTGTCGACTATAGCC -ACGGAACCTTTGTCGACTTAACCG -ACGGAACCTTTGTCGACTATGCCA -ACGGAACCTTTGGCATACGGAAAC -ACGGAACCTTTGGCATACAACACC -ACGGAACCTTTGGCATACATCGAG -ACGGAACCTTTGGCATACCTCCTT -ACGGAACCTTTGGCATACCCTGTT -ACGGAACCTTTGGCATACCGGTTT -ACGGAACCTTTGGCATACGTGGTT -ACGGAACCTTTGGCATACGCCTTT -ACGGAACCTTTGGCATACGGTCTT -ACGGAACCTTTGGCATACACGCTT -ACGGAACCTTTGGCATACAGCGTT -ACGGAACCTTTGGCATACTTCGTC -ACGGAACCTTTGGCATACTCTCTC -ACGGAACCTTTGGCATACTGGATC -ACGGAACCTTTGGCATACCACTTC -ACGGAACCTTTGGCATACGTACTC -ACGGAACCTTTGGCATACGATGTC -ACGGAACCTTTGGCATACACAGTC -ACGGAACCTTTGGCATACTTGCTG -ACGGAACCTTTGGCATACTCCATG -ACGGAACCTTTGGCATACTGTGTG -ACGGAACCTTTGGCATACCTAGTG -ACGGAACCTTTGGCATACCATCTG -ACGGAACCTTTGGCATACGAGTTG -ACGGAACCTTTGGCATACAGACTG -ACGGAACCTTTGGCATACTCGGTA -ACGGAACCTTTGGCATACTGCCTA -ACGGAACCTTTGGCATACCCACTA -ACGGAACCTTTGGCATACGGAGTA -ACGGAACCTTTGGCATACTCGTCT -ACGGAACCTTTGGCATACTGCACT -ACGGAACCTTTGGCATACCTGACT -ACGGAACCTTTGGCATACCAACCT -ACGGAACCTTTGGCATACGCTACT -ACGGAACCTTTGGCATACGGATCT -ACGGAACCTTTGGCATACAAGGCT -ACGGAACCTTTGGCATACTCAACC -ACGGAACCTTTGGCATACTGTTCC -ACGGAACCTTTGGCATACATTCCC -ACGGAACCTTTGGCATACTTCTCG -ACGGAACCTTTGGCATACTAGACG -ACGGAACCTTTGGCATACGTAACG -ACGGAACCTTTGGCATACACTTCG -ACGGAACCTTTGGCATACTACGCA -ACGGAACCTTTGGCATACCTTGCA -ACGGAACCTTTGGCATACCGAACA -ACGGAACCTTTGGCATACCAGTCA -ACGGAACCTTTGGCATACGATCCA -ACGGAACCTTTGGCATACACGACA -ACGGAACCTTTGGCATACAGCTCA -ACGGAACCTTTGGCATACTCACGT -ACGGAACCTTTGGCATACCGTAGT -ACGGAACCTTTGGCATACGTCAGT -ACGGAACCTTTGGCATACGAAGGT -ACGGAACCTTTGGCATACAACCGT -ACGGAACCTTTGGCATACTTGTGC -ACGGAACCTTTGGCATACCTAAGC -ACGGAACCTTTGGCATACACTAGC -ACGGAACCTTTGGCATACAGATGC -ACGGAACCTTTGGCATACTGAAGG -ACGGAACCTTTGGCATACCAATGG -ACGGAACCTTTGGCATACATGAGG -ACGGAACCTTTGGCATACAATGGG -ACGGAACCTTTGGCATACTCCTGA -ACGGAACCTTTGGCATACTAGCGA -ACGGAACCTTTGGCATACCACAGA -ACGGAACCTTTGGCATACGCAAGA -ACGGAACCTTTGGCATACGGTTGA -ACGGAACCTTTGGCATACTCCGAT -ACGGAACCTTTGGCATACTGGCAT -ACGGAACCTTTGGCATACCGAGAT -ACGGAACCTTTGGCATACTACCAC -ACGGAACCTTTGGCATACCAGAAC -ACGGAACCTTTGGCATACGTCTAC -ACGGAACCTTTGGCATACACGTAC -ACGGAACCTTTGGCATACAGTGAC -ACGGAACCTTTGGCATACCTGTAG -ACGGAACCTTTGGCATACCCTAAG -ACGGAACCTTTGGCATACGTTCAG -ACGGAACCTTTGGCATACGCATAG -ACGGAACCTTTGGCATACGACAAG -ACGGAACCTTTGGCATACAAGCAG -ACGGAACCTTTGGCATACCGTCAA -ACGGAACCTTTGGCATACGCTGAA -ACGGAACCTTTGGCATACAGTACG -ACGGAACCTTTGGCATACATCCGA -ACGGAACCTTTGGCATACATGGGA -ACGGAACCTTTGGCATACGTGCAA -ACGGAACCTTTGGCATACGAGGAA -ACGGAACCTTTGGCATACCAGGTA -ACGGAACCTTTGGCATACGACTCT -ACGGAACCTTTGGCATACAGTCCT -ACGGAACCTTTGGCATACTAAGCC -ACGGAACCTTTGGCATACATAGCC -ACGGAACCTTTGGCATACTAACCG -ACGGAACCTTTGGCATACATGCCA -ACGGAACCTTTGGCACTTGGAAAC -ACGGAACCTTTGGCACTTAACACC -ACGGAACCTTTGGCACTTATCGAG -ACGGAACCTTTGGCACTTCTCCTT -ACGGAACCTTTGGCACTTCCTGTT -ACGGAACCTTTGGCACTTCGGTTT -ACGGAACCTTTGGCACTTGTGGTT -ACGGAACCTTTGGCACTTGCCTTT -ACGGAACCTTTGGCACTTGGTCTT -ACGGAACCTTTGGCACTTACGCTT -ACGGAACCTTTGGCACTTAGCGTT -ACGGAACCTTTGGCACTTTTCGTC -ACGGAACCTTTGGCACTTTCTCTC -ACGGAACCTTTGGCACTTTGGATC -ACGGAACCTTTGGCACTTCACTTC -ACGGAACCTTTGGCACTTGTACTC -ACGGAACCTTTGGCACTTGATGTC -ACGGAACCTTTGGCACTTACAGTC -ACGGAACCTTTGGCACTTTTGCTG -ACGGAACCTTTGGCACTTTCCATG -ACGGAACCTTTGGCACTTTGTGTG -ACGGAACCTTTGGCACTTCTAGTG -ACGGAACCTTTGGCACTTCATCTG -ACGGAACCTTTGGCACTTGAGTTG -ACGGAACCTTTGGCACTTAGACTG -ACGGAACCTTTGGCACTTTCGGTA -ACGGAACCTTTGGCACTTTGCCTA -ACGGAACCTTTGGCACTTCCACTA -ACGGAACCTTTGGCACTTGGAGTA -ACGGAACCTTTGGCACTTTCGTCT -ACGGAACCTTTGGCACTTTGCACT -ACGGAACCTTTGGCACTTCTGACT -ACGGAACCTTTGGCACTTCAACCT -ACGGAACCTTTGGCACTTGCTACT -ACGGAACCTTTGGCACTTGGATCT -ACGGAACCTTTGGCACTTAAGGCT -ACGGAACCTTTGGCACTTTCAACC -ACGGAACCTTTGGCACTTTGTTCC -ACGGAACCTTTGGCACTTATTCCC -ACGGAACCTTTGGCACTTTTCTCG -ACGGAACCTTTGGCACTTTAGACG -ACGGAACCTTTGGCACTTGTAACG -ACGGAACCTTTGGCACTTACTTCG -ACGGAACCTTTGGCACTTTACGCA -ACGGAACCTTTGGCACTTCTTGCA -ACGGAACCTTTGGCACTTCGAACA -ACGGAACCTTTGGCACTTCAGTCA -ACGGAACCTTTGGCACTTGATCCA -ACGGAACCTTTGGCACTTACGACA -ACGGAACCTTTGGCACTTAGCTCA -ACGGAACCTTTGGCACTTTCACGT -ACGGAACCTTTGGCACTTCGTAGT -ACGGAACCTTTGGCACTTGTCAGT -ACGGAACCTTTGGCACTTGAAGGT -ACGGAACCTTTGGCACTTAACCGT -ACGGAACCTTTGGCACTTTTGTGC -ACGGAACCTTTGGCACTTCTAAGC -ACGGAACCTTTGGCACTTACTAGC -ACGGAACCTTTGGCACTTAGATGC -ACGGAACCTTTGGCACTTTGAAGG -ACGGAACCTTTGGCACTTCAATGG -ACGGAACCTTTGGCACTTATGAGG -ACGGAACCTTTGGCACTTAATGGG -ACGGAACCTTTGGCACTTTCCTGA -ACGGAACCTTTGGCACTTTAGCGA -ACGGAACCTTTGGCACTTCACAGA -ACGGAACCTTTGGCACTTGCAAGA -ACGGAACCTTTGGCACTTGGTTGA -ACGGAACCTTTGGCACTTTCCGAT -ACGGAACCTTTGGCACTTTGGCAT -ACGGAACCTTTGGCACTTCGAGAT -ACGGAACCTTTGGCACTTTACCAC -ACGGAACCTTTGGCACTTCAGAAC -ACGGAACCTTTGGCACTTGTCTAC -ACGGAACCTTTGGCACTTACGTAC -ACGGAACCTTTGGCACTTAGTGAC -ACGGAACCTTTGGCACTTCTGTAG -ACGGAACCTTTGGCACTTCCTAAG -ACGGAACCTTTGGCACTTGTTCAG -ACGGAACCTTTGGCACTTGCATAG -ACGGAACCTTTGGCACTTGACAAG -ACGGAACCTTTGGCACTTAAGCAG -ACGGAACCTTTGGCACTTCGTCAA -ACGGAACCTTTGGCACTTGCTGAA -ACGGAACCTTTGGCACTTAGTACG -ACGGAACCTTTGGCACTTATCCGA -ACGGAACCTTTGGCACTTATGGGA -ACGGAACCTTTGGCACTTGTGCAA -ACGGAACCTTTGGCACTTGAGGAA -ACGGAACCTTTGGCACTTCAGGTA -ACGGAACCTTTGGCACTTGACTCT -ACGGAACCTTTGGCACTTAGTCCT -ACGGAACCTTTGGCACTTTAAGCC -ACGGAACCTTTGGCACTTATAGCC -ACGGAACCTTTGGCACTTTAACCG -ACGGAACCTTTGGCACTTATGCCA -ACGGAACCTTTGACACGAGGAAAC -ACGGAACCTTTGACACGAAACACC -ACGGAACCTTTGACACGAATCGAG -ACGGAACCTTTGACACGACTCCTT -ACGGAACCTTTGACACGACCTGTT -ACGGAACCTTTGACACGACGGTTT -ACGGAACCTTTGACACGAGTGGTT -ACGGAACCTTTGACACGAGCCTTT -ACGGAACCTTTGACACGAGGTCTT -ACGGAACCTTTGACACGAACGCTT -ACGGAACCTTTGACACGAAGCGTT -ACGGAACCTTTGACACGATTCGTC -ACGGAACCTTTGACACGATCTCTC -ACGGAACCTTTGACACGATGGATC -ACGGAACCTTTGACACGACACTTC -ACGGAACCTTTGACACGAGTACTC -ACGGAACCTTTGACACGAGATGTC -ACGGAACCTTTGACACGAACAGTC -ACGGAACCTTTGACACGATTGCTG -ACGGAACCTTTGACACGATCCATG -ACGGAACCTTTGACACGATGTGTG -ACGGAACCTTTGACACGACTAGTG -ACGGAACCTTTGACACGACATCTG -ACGGAACCTTTGACACGAGAGTTG -ACGGAACCTTTGACACGAAGACTG -ACGGAACCTTTGACACGATCGGTA -ACGGAACCTTTGACACGATGCCTA -ACGGAACCTTTGACACGACCACTA -ACGGAACCTTTGACACGAGGAGTA -ACGGAACCTTTGACACGATCGTCT -ACGGAACCTTTGACACGATGCACT -ACGGAACCTTTGACACGACTGACT -ACGGAACCTTTGACACGACAACCT -ACGGAACCTTTGACACGAGCTACT -ACGGAACCTTTGACACGAGGATCT -ACGGAACCTTTGACACGAAAGGCT -ACGGAACCTTTGACACGATCAACC -ACGGAACCTTTGACACGATGTTCC -ACGGAACCTTTGACACGAATTCCC -ACGGAACCTTTGACACGATTCTCG -ACGGAACCTTTGACACGATAGACG -ACGGAACCTTTGACACGAGTAACG -ACGGAACCTTTGACACGAACTTCG -ACGGAACCTTTGACACGATACGCA -ACGGAACCTTTGACACGACTTGCA -ACGGAACCTTTGACACGACGAACA -ACGGAACCTTTGACACGACAGTCA -ACGGAACCTTTGACACGAGATCCA -ACGGAACCTTTGACACGAACGACA -ACGGAACCTTTGACACGAAGCTCA -ACGGAACCTTTGACACGATCACGT -ACGGAACCTTTGACACGACGTAGT -ACGGAACCTTTGACACGAGTCAGT -ACGGAACCTTTGACACGAGAAGGT -ACGGAACCTTTGACACGAAACCGT -ACGGAACCTTTGACACGATTGTGC -ACGGAACCTTTGACACGACTAAGC -ACGGAACCTTTGACACGAACTAGC -ACGGAACCTTTGACACGAAGATGC -ACGGAACCTTTGACACGATGAAGG -ACGGAACCTTTGACACGACAATGG -ACGGAACCTTTGACACGAATGAGG -ACGGAACCTTTGACACGAAATGGG -ACGGAACCTTTGACACGATCCTGA -ACGGAACCTTTGACACGATAGCGA -ACGGAACCTTTGACACGACACAGA -ACGGAACCTTTGACACGAGCAAGA -ACGGAACCTTTGACACGAGGTTGA -ACGGAACCTTTGACACGATCCGAT -ACGGAACCTTTGACACGATGGCAT -ACGGAACCTTTGACACGACGAGAT -ACGGAACCTTTGACACGATACCAC -ACGGAACCTTTGACACGACAGAAC -ACGGAACCTTTGACACGAGTCTAC -ACGGAACCTTTGACACGAACGTAC -ACGGAACCTTTGACACGAAGTGAC -ACGGAACCTTTGACACGACTGTAG -ACGGAACCTTTGACACGACCTAAG -ACGGAACCTTTGACACGAGTTCAG -ACGGAACCTTTGACACGAGCATAG -ACGGAACCTTTGACACGAGACAAG -ACGGAACCTTTGACACGAAAGCAG -ACGGAACCTTTGACACGACGTCAA -ACGGAACCTTTGACACGAGCTGAA -ACGGAACCTTTGACACGAAGTACG -ACGGAACCTTTGACACGAATCCGA -ACGGAACCTTTGACACGAATGGGA -ACGGAACCTTTGACACGAGTGCAA -ACGGAACCTTTGACACGAGAGGAA -ACGGAACCTTTGACACGACAGGTA -ACGGAACCTTTGACACGAGACTCT -ACGGAACCTTTGACACGAAGTCCT -ACGGAACCTTTGACACGATAAGCC -ACGGAACCTTTGACACGAATAGCC -ACGGAACCTTTGACACGATAACCG -ACGGAACCTTTGACACGAATGCCA -ACGGAACCTTTGTCACAGGGAAAC -ACGGAACCTTTGTCACAGAACACC -ACGGAACCTTTGTCACAGATCGAG -ACGGAACCTTTGTCACAGCTCCTT -ACGGAACCTTTGTCACAGCCTGTT -ACGGAACCTTTGTCACAGCGGTTT -ACGGAACCTTTGTCACAGGTGGTT -ACGGAACCTTTGTCACAGGCCTTT -ACGGAACCTTTGTCACAGGGTCTT -ACGGAACCTTTGTCACAGACGCTT -ACGGAACCTTTGTCACAGAGCGTT -ACGGAACCTTTGTCACAGTTCGTC -ACGGAACCTTTGTCACAGTCTCTC -ACGGAACCTTTGTCACAGTGGATC -ACGGAACCTTTGTCACAGCACTTC -ACGGAACCTTTGTCACAGGTACTC -ACGGAACCTTTGTCACAGGATGTC -ACGGAACCTTTGTCACAGACAGTC -ACGGAACCTTTGTCACAGTTGCTG -ACGGAACCTTTGTCACAGTCCATG -ACGGAACCTTTGTCACAGTGTGTG -ACGGAACCTTTGTCACAGCTAGTG -ACGGAACCTTTGTCACAGCATCTG -ACGGAACCTTTGTCACAGGAGTTG -ACGGAACCTTTGTCACAGAGACTG -ACGGAACCTTTGTCACAGTCGGTA -ACGGAACCTTTGTCACAGTGCCTA -ACGGAACCTTTGTCACAGCCACTA -ACGGAACCTTTGTCACAGGGAGTA -ACGGAACCTTTGTCACAGTCGTCT -ACGGAACCTTTGTCACAGTGCACT -ACGGAACCTTTGTCACAGCTGACT -ACGGAACCTTTGTCACAGCAACCT -ACGGAACCTTTGTCACAGGCTACT -ACGGAACCTTTGTCACAGGGATCT -ACGGAACCTTTGTCACAGAAGGCT -ACGGAACCTTTGTCACAGTCAACC -ACGGAACCTTTGTCACAGTGTTCC -ACGGAACCTTTGTCACAGATTCCC -ACGGAACCTTTGTCACAGTTCTCG -ACGGAACCTTTGTCACAGTAGACG -ACGGAACCTTTGTCACAGGTAACG -ACGGAACCTTTGTCACAGACTTCG -ACGGAACCTTTGTCACAGTACGCA -ACGGAACCTTTGTCACAGCTTGCA -ACGGAACCTTTGTCACAGCGAACA -ACGGAACCTTTGTCACAGCAGTCA -ACGGAACCTTTGTCACAGGATCCA -ACGGAACCTTTGTCACAGACGACA -ACGGAACCTTTGTCACAGAGCTCA -ACGGAACCTTTGTCACAGTCACGT -ACGGAACCTTTGTCACAGCGTAGT -ACGGAACCTTTGTCACAGGTCAGT -ACGGAACCTTTGTCACAGGAAGGT -ACGGAACCTTTGTCACAGAACCGT -ACGGAACCTTTGTCACAGTTGTGC -ACGGAACCTTTGTCACAGCTAAGC -ACGGAACCTTTGTCACAGACTAGC -ACGGAACCTTTGTCACAGAGATGC -ACGGAACCTTTGTCACAGTGAAGG -ACGGAACCTTTGTCACAGCAATGG -ACGGAACCTTTGTCACAGATGAGG -ACGGAACCTTTGTCACAGAATGGG -ACGGAACCTTTGTCACAGTCCTGA -ACGGAACCTTTGTCACAGTAGCGA -ACGGAACCTTTGTCACAGCACAGA -ACGGAACCTTTGTCACAGGCAAGA -ACGGAACCTTTGTCACAGGGTTGA -ACGGAACCTTTGTCACAGTCCGAT -ACGGAACCTTTGTCACAGTGGCAT -ACGGAACCTTTGTCACAGCGAGAT -ACGGAACCTTTGTCACAGTACCAC -ACGGAACCTTTGTCACAGCAGAAC -ACGGAACCTTTGTCACAGGTCTAC -ACGGAACCTTTGTCACAGACGTAC -ACGGAACCTTTGTCACAGAGTGAC -ACGGAACCTTTGTCACAGCTGTAG -ACGGAACCTTTGTCACAGCCTAAG -ACGGAACCTTTGTCACAGGTTCAG -ACGGAACCTTTGTCACAGGCATAG -ACGGAACCTTTGTCACAGGACAAG -ACGGAACCTTTGTCACAGAAGCAG -ACGGAACCTTTGTCACAGCGTCAA -ACGGAACCTTTGTCACAGGCTGAA -ACGGAACCTTTGTCACAGAGTACG -ACGGAACCTTTGTCACAGATCCGA -ACGGAACCTTTGTCACAGATGGGA -ACGGAACCTTTGTCACAGGTGCAA -ACGGAACCTTTGTCACAGGAGGAA -ACGGAACCTTTGTCACAGCAGGTA -ACGGAACCTTTGTCACAGGACTCT -ACGGAACCTTTGTCACAGAGTCCT -ACGGAACCTTTGTCACAGTAAGCC -ACGGAACCTTTGTCACAGATAGCC -ACGGAACCTTTGTCACAGTAACCG -ACGGAACCTTTGTCACAGATGCCA -ACGGAACCTTTGCCAGATGGAAAC -ACGGAACCTTTGCCAGATAACACC -ACGGAACCTTTGCCAGATATCGAG -ACGGAACCTTTGCCAGATCTCCTT -ACGGAACCTTTGCCAGATCCTGTT -ACGGAACCTTTGCCAGATCGGTTT -ACGGAACCTTTGCCAGATGTGGTT -ACGGAACCTTTGCCAGATGCCTTT -ACGGAACCTTTGCCAGATGGTCTT -ACGGAACCTTTGCCAGATACGCTT -ACGGAACCTTTGCCAGATAGCGTT -ACGGAACCTTTGCCAGATTTCGTC -ACGGAACCTTTGCCAGATTCTCTC -ACGGAACCTTTGCCAGATTGGATC -ACGGAACCTTTGCCAGATCACTTC -ACGGAACCTTTGCCAGATGTACTC -ACGGAACCTTTGCCAGATGATGTC -ACGGAACCTTTGCCAGATACAGTC -ACGGAACCTTTGCCAGATTTGCTG -ACGGAACCTTTGCCAGATTCCATG -ACGGAACCTTTGCCAGATTGTGTG -ACGGAACCTTTGCCAGATCTAGTG -ACGGAACCTTTGCCAGATCATCTG -ACGGAACCTTTGCCAGATGAGTTG -ACGGAACCTTTGCCAGATAGACTG -ACGGAACCTTTGCCAGATTCGGTA -ACGGAACCTTTGCCAGATTGCCTA -ACGGAACCTTTGCCAGATCCACTA -ACGGAACCTTTGCCAGATGGAGTA -ACGGAACCTTTGCCAGATTCGTCT -ACGGAACCTTTGCCAGATTGCACT -ACGGAACCTTTGCCAGATCTGACT -ACGGAACCTTTGCCAGATCAACCT -ACGGAACCTTTGCCAGATGCTACT -ACGGAACCTTTGCCAGATGGATCT -ACGGAACCTTTGCCAGATAAGGCT -ACGGAACCTTTGCCAGATTCAACC -ACGGAACCTTTGCCAGATTGTTCC -ACGGAACCTTTGCCAGATATTCCC -ACGGAACCTTTGCCAGATTTCTCG -ACGGAACCTTTGCCAGATTAGACG -ACGGAACCTTTGCCAGATGTAACG -ACGGAACCTTTGCCAGATACTTCG -ACGGAACCTTTGCCAGATTACGCA -ACGGAACCTTTGCCAGATCTTGCA -ACGGAACCTTTGCCAGATCGAACA -ACGGAACCTTTGCCAGATCAGTCA -ACGGAACCTTTGCCAGATGATCCA -ACGGAACCTTTGCCAGATACGACA -ACGGAACCTTTGCCAGATAGCTCA -ACGGAACCTTTGCCAGATTCACGT -ACGGAACCTTTGCCAGATCGTAGT -ACGGAACCTTTGCCAGATGTCAGT -ACGGAACCTTTGCCAGATGAAGGT -ACGGAACCTTTGCCAGATAACCGT -ACGGAACCTTTGCCAGATTTGTGC -ACGGAACCTTTGCCAGATCTAAGC -ACGGAACCTTTGCCAGATACTAGC -ACGGAACCTTTGCCAGATAGATGC -ACGGAACCTTTGCCAGATTGAAGG -ACGGAACCTTTGCCAGATCAATGG -ACGGAACCTTTGCCAGATATGAGG -ACGGAACCTTTGCCAGATAATGGG -ACGGAACCTTTGCCAGATTCCTGA -ACGGAACCTTTGCCAGATTAGCGA -ACGGAACCTTTGCCAGATCACAGA -ACGGAACCTTTGCCAGATGCAAGA -ACGGAACCTTTGCCAGATGGTTGA -ACGGAACCTTTGCCAGATTCCGAT -ACGGAACCTTTGCCAGATTGGCAT -ACGGAACCTTTGCCAGATCGAGAT -ACGGAACCTTTGCCAGATTACCAC -ACGGAACCTTTGCCAGATCAGAAC -ACGGAACCTTTGCCAGATGTCTAC -ACGGAACCTTTGCCAGATACGTAC -ACGGAACCTTTGCCAGATAGTGAC -ACGGAACCTTTGCCAGATCTGTAG -ACGGAACCTTTGCCAGATCCTAAG -ACGGAACCTTTGCCAGATGTTCAG -ACGGAACCTTTGCCAGATGCATAG -ACGGAACCTTTGCCAGATGACAAG -ACGGAACCTTTGCCAGATAAGCAG -ACGGAACCTTTGCCAGATCGTCAA -ACGGAACCTTTGCCAGATGCTGAA -ACGGAACCTTTGCCAGATAGTACG -ACGGAACCTTTGCCAGATATCCGA -ACGGAACCTTTGCCAGATATGGGA -ACGGAACCTTTGCCAGATGTGCAA -ACGGAACCTTTGCCAGATGAGGAA -ACGGAACCTTTGCCAGATCAGGTA -ACGGAACCTTTGCCAGATGACTCT -ACGGAACCTTTGCCAGATAGTCCT -ACGGAACCTTTGCCAGATTAAGCC -ACGGAACCTTTGCCAGATATAGCC -ACGGAACCTTTGCCAGATTAACCG -ACGGAACCTTTGCCAGATATGCCA -ACGGAACCTTTGACAACGGGAAAC -ACGGAACCTTTGACAACGAACACC -ACGGAACCTTTGACAACGATCGAG -ACGGAACCTTTGACAACGCTCCTT -ACGGAACCTTTGACAACGCCTGTT -ACGGAACCTTTGACAACGCGGTTT -ACGGAACCTTTGACAACGGTGGTT -ACGGAACCTTTGACAACGGCCTTT -ACGGAACCTTTGACAACGGGTCTT -ACGGAACCTTTGACAACGACGCTT -ACGGAACCTTTGACAACGAGCGTT -ACGGAACCTTTGACAACGTTCGTC -ACGGAACCTTTGACAACGTCTCTC -ACGGAACCTTTGACAACGTGGATC -ACGGAACCTTTGACAACGCACTTC -ACGGAACCTTTGACAACGGTACTC -ACGGAACCTTTGACAACGGATGTC -ACGGAACCTTTGACAACGACAGTC -ACGGAACCTTTGACAACGTTGCTG -ACGGAACCTTTGACAACGTCCATG -ACGGAACCTTTGACAACGTGTGTG -ACGGAACCTTTGACAACGCTAGTG -ACGGAACCTTTGACAACGCATCTG -ACGGAACCTTTGACAACGGAGTTG -ACGGAACCTTTGACAACGAGACTG -ACGGAACCTTTGACAACGTCGGTA -ACGGAACCTTTGACAACGTGCCTA -ACGGAACCTTTGACAACGCCACTA -ACGGAACCTTTGACAACGGGAGTA -ACGGAACCTTTGACAACGTCGTCT -ACGGAACCTTTGACAACGTGCACT -ACGGAACCTTTGACAACGCTGACT -ACGGAACCTTTGACAACGCAACCT -ACGGAACCTTTGACAACGGCTACT -ACGGAACCTTTGACAACGGGATCT -ACGGAACCTTTGACAACGAAGGCT -ACGGAACCTTTGACAACGTCAACC -ACGGAACCTTTGACAACGTGTTCC -ACGGAACCTTTGACAACGATTCCC -ACGGAACCTTTGACAACGTTCTCG -ACGGAACCTTTGACAACGTAGACG -ACGGAACCTTTGACAACGGTAACG -ACGGAACCTTTGACAACGACTTCG -ACGGAACCTTTGACAACGTACGCA -ACGGAACCTTTGACAACGCTTGCA -ACGGAACCTTTGACAACGCGAACA -ACGGAACCTTTGACAACGCAGTCA -ACGGAACCTTTGACAACGGATCCA -ACGGAACCTTTGACAACGACGACA -ACGGAACCTTTGACAACGAGCTCA -ACGGAACCTTTGACAACGTCACGT -ACGGAACCTTTGACAACGCGTAGT -ACGGAACCTTTGACAACGGTCAGT -ACGGAACCTTTGACAACGGAAGGT -ACGGAACCTTTGACAACGAACCGT -ACGGAACCTTTGACAACGTTGTGC -ACGGAACCTTTGACAACGCTAAGC -ACGGAACCTTTGACAACGACTAGC -ACGGAACCTTTGACAACGAGATGC -ACGGAACCTTTGACAACGTGAAGG -ACGGAACCTTTGACAACGCAATGG -ACGGAACCTTTGACAACGATGAGG -ACGGAACCTTTGACAACGAATGGG -ACGGAACCTTTGACAACGTCCTGA -ACGGAACCTTTGACAACGTAGCGA -ACGGAACCTTTGACAACGCACAGA -ACGGAACCTTTGACAACGGCAAGA -ACGGAACCTTTGACAACGGGTTGA -ACGGAACCTTTGACAACGTCCGAT -ACGGAACCTTTGACAACGTGGCAT -ACGGAACCTTTGACAACGCGAGAT -ACGGAACCTTTGACAACGTACCAC -ACGGAACCTTTGACAACGCAGAAC -ACGGAACCTTTGACAACGGTCTAC -ACGGAACCTTTGACAACGACGTAC -ACGGAACCTTTGACAACGAGTGAC -ACGGAACCTTTGACAACGCTGTAG -ACGGAACCTTTGACAACGCCTAAG -ACGGAACCTTTGACAACGGTTCAG -ACGGAACCTTTGACAACGGCATAG -ACGGAACCTTTGACAACGGACAAG -ACGGAACCTTTGACAACGAAGCAG -ACGGAACCTTTGACAACGCGTCAA -ACGGAACCTTTGACAACGGCTGAA -ACGGAACCTTTGACAACGAGTACG -ACGGAACCTTTGACAACGATCCGA -ACGGAACCTTTGACAACGATGGGA -ACGGAACCTTTGACAACGGTGCAA -ACGGAACCTTTGACAACGGAGGAA -ACGGAACCTTTGACAACGCAGGTA -ACGGAACCTTTGACAACGGACTCT -ACGGAACCTTTGACAACGAGTCCT -ACGGAACCTTTGACAACGTAAGCC -ACGGAACCTTTGACAACGATAGCC -ACGGAACCTTTGACAACGTAACCG -ACGGAACCTTTGACAACGATGCCA -ACGGAACCTTTGTCAAGCGGAAAC -ACGGAACCTTTGTCAAGCAACACC -ACGGAACCTTTGTCAAGCATCGAG -ACGGAACCTTTGTCAAGCCTCCTT -ACGGAACCTTTGTCAAGCCCTGTT -ACGGAACCTTTGTCAAGCCGGTTT -ACGGAACCTTTGTCAAGCGTGGTT -ACGGAACCTTTGTCAAGCGCCTTT -ACGGAACCTTTGTCAAGCGGTCTT -ACGGAACCTTTGTCAAGCACGCTT -ACGGAACCTTTGTCAAGCAGCGTT -ACGGAACCTTTGTCAAGCTTCGTC -ACGGAACCTTTGTCAAGCTCTCTC -ACGGAACCTTTGTCAAGCTGGATC -ACGGAACCTTTGTCAAGCCACTTC -ACGGAACCTTTGTCAAGCGTACTC -ACGGAACCTTTGTCAAGCGATGTC -ACGGAACCTTTGTCAAGCACAGTC -ACGGAACCTTTGTCAAGCTTGCTG -ACGGAACCTTTGTCAAGCTCCATG -ACGGAACCTTTGTCAAGCTGTGTG -ACGGAACCTTTGTCAAGCCTAGTG -ACGGAACCTTTGTCAAGCCATCTG -ACGGAACCTTTGTCAAGCGAGTTG -ACGGAACCTTTGTCAAGCAGACTG -ACGGAACCTTTGTCAAGCTCGGTA -ACGGAACCTTTGTCAAGCTGCCTA -ACGGAACCTTTGTCAAGCCCACTA -ACGGAACCTTTGTCAAGCGGAGTA -ACGGAACCTTTGTCAAGCTCGTCT -ACGGAACCTTTGTCAAGCTGCACT -ACGGAACCTTTGTCAAGCCTGACT -ACGGAACCTTTGTCAAGCCAACCT -ACGGAACCTTTGTCAAGCGCTACT -ACGGAACCTTTGTCAAGCGGATCT -ACGGAACCTTTGTCAAGCAAGGCT -ACGGAACCTTTGTCAAGCTCAACC -ACGGAACCTTTGTCAAGCTGTTCC -ACGGAACCTTTGTCAAGCATTCCC -ACGGAACCTTTGTCAAGCTTCTCG -ACGGAACCTTTGTCAAGCTAGACG -ACGGAACCTTTGTCAAGCGTAACG -ACGGAACCTTTGTCAAGCACTTCG -ACGGAACCTTTGTCAAGCTACGCA -ACGGAACCTTTGTCAAGCCTTGCA -ACGGAACCTTTGTCAAGCCGAACA -ACGGAACCTTTGTCAAGCCAGTCA -ACGGAACCTTTGTCAAGCGATCCA -ACGGAACCTTTGTCAAGCACGACA -ACGGAACCTTTGTCAAGCAGCTCA -ACGGAACCTTTGTCAAGCTCACGT -ACGGAACCTTTGTCAAGCCGTAGT -ACGGAACCTTTGTCAAGCGTCAGT -ACGGAACCTTTGTCAAGCGAAGGT -ACGGAACCTTTGTCAAGCAACCGT -ACGGAACCTTTGTCAAGCTTGTGC -ACGGAACCTTTGTCAAGCCTAAGC -ACGGAACCTTTGTCAAGCACTAGC -ACGGAACCTTTGTCAAGCAGATGC -ACGGAACCTTTGTCAAGCTGAAGG -ACGGAACCTTTGTCAAGCCAATGG -ACGGAACCTTTGTCAAGCATGAGG -ACGGAACCTTTGTCAAGCAATGGG -ACGGAACCTTTGTCAAGCTCCTGA -ACGGAACCTTTGTCAAGCTAGCGA -ACGGAACCTTTGTCAAGCCACAGA -ACGGAACCTTTGTCAAGCGCAAGA -ACGGAACCTTTGTCAAGCGGTTGA -ACGGAACCTTTGTCAAGCTCCGAT -ACGGAACCTTTGTCAAGCTGGCAT -ACGGAACCTTTGTCAAGCCGAGAT -ACGGAACCTTTGTCAAGCTACCAC -ACGGAACCTTTGTCAAGCCAGAAC -ACGGAACCTTTGTCAAGCGTCTAC -ACGGAACCTTTGTCAAGCACGTAC -ACGGAACCTTTGTCAAGCAGTGAC -ACGGAACCTTTGTCAAGCCTGTAG -ACGGAACCTTTGTCAAGCCCTAAG -ACGGAACCTTTGTCAAGCGTTCAG -ACGGAACCTTTGTCAAGCGCATAG -ACGGAACCTTTGTCAAGCGACAAG -ACGGAACCTTTGTCAAGCAAGCAG -ACGGAACCTTTGTCAAGCCGTCAA -ACGGAACCTTTGTCAAGCGCTGAA -ACGGAACCTTTGTCAAGCAGTACG -ACGGAACCTTTGTCAAGCATCCGA -ACGGAACCTTTGTCAAGCATGGGA -ACGGAACCTTTGTCAAGCGTGCAA -ACGGAACCTTTGTCAAGCGAGGAA -ACGGAACCTTTGTCAAGCCAGGTA -ACGGAACCTTTGTCAAGCGACTCT -ACGGAACCTTTGTCAAGCAGTCCT -ACGGAACCTTTGTCAAGCTAAGCC -ACGGAACCTTTGTCAAGCATAGCC -ACGGAACCTTTGTCAAGCTAACCG -ACGGAACCTTTGTCAAGCATGCCA -ACGGAACCTTTGCGTTCAGGAAAC -ACGGAACCTTTGCGTTCAAACACC -ACGGAACCTTTGCGTTCAATCGAG -ACGGAACCTTTGCGTTCACTCCTT -ACGGAACCTTTGCGTTCACCTGTT -ACGGAACCTTTGCGTTCACGGTTT -ACGGAACCTTTGCGTTCAGTGGTT -ACGGAACCTTTGCGTTCAGCCTTT -ACGGAACCTTTGCGTTCAGGTCTT -ACGGAACCTTTGCGTTCAACGCTT -ACGGAACCTTTGCGTTCAAGCGTT -ACGGAACCTTTGCGTTCATTCGTC -ACGGAACCTTTGCGTTCATCTCTC -ACGGAACCTTTGCGTTCATGGATC -ACGGAACCTTTGCGTTCACACTTC -ACGGAACCTTTGCGTTCAGTACTC -ACGGAACCTTTGCGTTCAGATGTC -ACGGAACCTTTGCGTTCAACAGTC -ACGGAACCTTTGCGTTCATTGCTG -ACGGAACCTTTGCGTTCATCCATG -ACGGAACCTTTGCGTTCATGTGTG -ACGGAACCTTTGCGTTCACTAGTG -ACGGAACCTTTGCGTTCACATCTG -ACGGAACCTTTGCGTTCAGAGTTG -ACGGAACCTTTGCGTTCAAGACTG -ACGGAACCTTTGCGTTCATCGGTA -ACGGAACCTTTGCGTTCATGCCTA -ACGGAACCTTTGCGTTCACCACTA -ACGGAACCTTTGCGTTCAGGAGTA -ACGGAACCTTTGCGTTCATCGTCT -ACGGAACCTTTGCGTTCATGCACT -ACGGAACCTTTGCGTTCACTGACT -ACGGAACCTTTGCGTTCACAACCT -ACGGAACCTTTGCGTTCAGCTACT -ACGGAACCTTTGCGTTCAGGATCT -ACGGAACCTTTGCGTTCAAAGGCT -ACGGAACCTTTGCGTTCATCAACC -ACGGAACCTTTGCGTTCATGTTCC -ACGGAACCTTTGCGTTCAATTCCC -ACGGAACCTTTGCGTTCATTCTCG -ACGGAACCTTTGCGTTCATAGACG -ACGGAACCTTTGCGTTCAGTAACG -ACGGAACCTTTGCGTTCAACTTCG -ACGGAACCTTTGCGTTCATACGCA -ACGGAACCTTTGCGTTCACTTGCA -ACGGAACCTTTGCGTTCACGAACA -ACGGAACCTTTGCGTTCACAGTCA -ACGGAACCTTTGCGTTCAGATCCA -ACGGAACCTTTGCGTTCAACGACA -ACGGAACCTTTGCGTTCAAGCTCA -ACGGAACCTTTGCGTTCATCACGT -ACGGAACCTTTGCGTTCACGTAGT -ACGGAACCTTTGCGTTCAGTCAGT -ACGGAACCTTTGCGTTCAGAAGGT -ACGGAACCTTTGCGTTCAAACCGT -ACGGAACCTTTGCGTTCATTGTGC -ACGGAACCTTTGCGTTCACTAAGC -ACGGAACCTTTGCGTTCAACTAGC -ACGGAACCTTTGCGTTCAAGATGC -ACGGAACCTTTGCGTTCATGAAGG -ACGGAACCTTTGCGTTCACAATGG -ACGGAACCTTTGCGTTCAATGAGG -ACGGAACCTTTGCGTTCAAATGGG -ACGGAACCTTTGCGTTCATCCTGA -ACGGAACCTTTGCGTTCATAGCGA -ACGGAACCTTTGCGTTCACACAGA -ACGGAACCTTTGCGTTCAGCAAGA -ACGGAACCTTTGCGTTCAGGTTGA -ACGGAACCTTTGCGTTCATCCGAT -ACGGAACCTTTGCGTTCATGGCAT -ACGGAACCTTTGCGTTCACGAGAT -ACGGAACCTTTGCGTTCATACCAC -ACGGAACCTTTGCGTTCACAGAAC -ACGGAACCTTTGCGTTCAGTCTAC -ACGGAACCTTTGCGTTCAACGTAC -ACGGAACCTTTGCGTTCAAGTGAC -ACGGAACCTTTGCGTTCACTGTAG -ACGGAACCTTTGCGTTCACCTAAG -ACGGAACCTTTGCGTTCAGTTCAG -ACGGAACCTTTGCGTTCAGCATAG -ACGGAACCTTTGCGTTCAGACAAG -ACGGAACCTTTGCGTTCAAAGCAG -ACGGAACCTTTGCGTTCACGTCAA -ACGGAACCTTTGCGTTCAGCTGAA -ACGGAACCTTTGCGTTCAAGTACG -ACGGAACCTTTGCGTTCAATCCGA -ACGGAACCTTTGCGTTCAATGGGA -ACGGAACCTTTGCGTTCAGTGCAA -ACGGAACCTTTGCGTTCAGAGGAA -ACGGAACCTTTGCGTTCACAGGTA -ACGGAACCTTTGCGTTCAGACTCT -ACGGAACCTTTGCGTTCAAGTCCT -ACGGAACCTTTGCGTTCATAAGCC -ACGGAACCTTTGCGTTCAATAGCC -ACGGAACCTTTGCGTTCATAACCG -ACGGAACCTTTGCGTTCAATGCCA -ACGGAACCTTTGAGTCGTGGAAAC -ACGGAACCTTTGAGTCGTAACACC -ACGGAACCTTTGAGTCGTATCGAG -ACGGAACCTTTGAGTCGTCTCCTT -ACGGAACCTTTGAGTCGTCCTGTT -ACGGAACCTTTGAGTCGTCGGTTT -ACGGAACCTTTGAGTCGTGTGGTT -ACGGAACCTTTGAGTCGTGCCTTT -ACGGAACCTTTGAGTCGTGGTCTT -ACGGAACCTTTGAGTCGTACGCTT -ACGGAACCTTTGAGTCGTAGCGTT -ACGGAACCTTTGAGTCGTTTCGTC -ACGGAACCTTTGAGTCGTTCTCTC -ACGGAACCTTTGAGTCGTTGGATC -ACGGAACCTTTGAGTCGTCACTTC -ACGGAACCTTTGAGTCGTGTACTC -ACGGAACCTTTGAGTCGTGATGTC -ACGGAACCTTTGAGTCGTACAGTC -ACGGAACCTTTGAGTCGTTTGCTG -ACGGAACCTTTGAGTCGTTCCATG -ACGGAACCTTTGAGTCGTTGTGTG -ACGGAACCTTTGAGTCGTCTAGTG -ACGGAACCTTTGAGTCGTCATCTG -ACGGAACCTTTGAGTCGTGAGTTG -ACGGAACCTTTGAGTCGTAGACTG -ACGGAACCTTTGAGTCGTTCGGTA -ACGGAACCTTTGAGTCGTTGCCTA -ACGGAACCTTTGAGTCGTCCACTA -ACGGAACCTTTGAGTCGTGGAGTA -ACGGAACCTTTGAGTCGTTCGTCT -ACGGAACCTTTGAGTCGTTGCACT -ACGGAACCTTTGAGTCGTCTGACT -ACGGAACCTTTGAGTCGTCAACCT -ACGGAACCTTTGAGTCGTGCTACT -ACGGAACCTTTGAGTCGTGGATCT -ACGGAACCTTTGAGTCGTAAGGCT -ACGGAACCTTTGAGTCGTTCAACC -ACGGAACCTTTGAGTCGTTGTTCC -ACGGAACCTTTGAGTCGTATTCCC -ACGGAACCTTTGAGTCGTTTCTCG -ACGGAACCTTTGAGTCGTTAGACG -ACGGAACCTTTGAGTCGTGTAACG -ACGGAACCTTTGAGTCGTACTTCG -ACGGAACCTTTGAGTCGTTACGCA -ACGGAACCTTTGAGTCGTCTTGCA -ACGGAACCTTTGAGTCGTCGAACA -ACGGAACCTTTGAGTCGTCAGTCA -ACGGAACCTTTGAGTCGTGATCCA -ACGGAACCTTTGAGTCGTACGACA -ACGGAACCTTTGAGTCGTAGCTCA -ACGGAACCTTTGAGTCGTTCACGT -ACGGAACCTTTGAGTCGTCGTAGT -ACGGAACCTTTGAGTCGTGTCAGT -ACGGAACCTTTGAGTCGTGAAGGT -ACGGAACCTTTGAGTCGTAACCGT -ACGGAACCTTTGAGTCGTTTGTGC -ACGGAACCTTTGAGTCGTCTAAGC -ACGGAACCTTTGAGTCGTACTAGC -ACGGAACCTTTGAGTCGTAGATGC -ACGGAACCTTTGAGTCGTTGAAGG -ACGGAACCTTTGAGTCGTCAATGG -ACGGAACCTTTGAGTCGTATGAGG -ACGGAACCTTTGAGTCGTAATGGG -ACGGAACCTTTGAGTCGTTCCTGA -ACGGAACCTTTGAGTCGTTAGCGA -ACGGAACCTTTGAGTCGTCACAGA -ACGGAACCTTTGAGTCGTGCAAGA -ACGGAACCTTTGAGTCGTGGTTGA -ACGGAACCTTTGAGTCGTTCCGAT -ACGGAACCTTTGAGTCGTTGGCAT -ACGGAACCTTTGAGTCGTCGAGAT -ACGGAACCTTTGAGTCGTTACCAC -ACGGAACCTTTGAGTCGTCAGAAC -ACGGAACCTTTGAGTCGTGTCTAC -ACGGAACCTTTGAGTCGTACGTAC -ACGGAACCTTTGAGTCGTAGTGAC -ACGGAACCTTTGAGTCGTCTGTAG -ACGGAACCTTTGAGTCGTCCTAAG -ACGGAACCTTTGAGTCGTGTTCAG -ACGGAACCTTTGAGTCGTGCATAG -ACGGAACCTTTGAGTCGTGACAAG -ACGGAACCTTTGAGTCGTAAGCAG -ACGGAACCTTTGAGTCGTCGTCAA -ACGGAACCTTTGAGTCGTGCTGAA -ACGGAACCTTTGAGTCGTAGTACG -ACGGAACCTTTGAGTCGTATCCGA -ACGGAACCTTTGAGTCGTATGGGA -ACGGAACCTTTGAGTCGTGTGCAA -ACGGAACCTTTGAGTCGTGAGGAA -ACGGAACCTTTGAGTCGTCAGGTA -ACGGAACCTTTGAGTCGTGACTCT -ACGGAACCTTTGAGTCGTAGTCCT -ACGGAACCTTTGAGTCGTTAAGCC -ACGGAACCTTTGAGTCGTATAGCC -ACGGAACCTTTGAGTCGTTAACCG -ACGGAACCTTTGAGTCGTATGCCA -ACGGAACCTTTGAGTGTCGGAAAC -ACGGAACCTTTGAGTGTCAACACC -ACGGAACCTTTGAGTGTCATCGAG -ACGGAACCTTTGAGTGTCCTCCTT -ACGGAACCTTTGAGTGTCCCTGTT -ACGGAACCTTTGAGTGTCCGGTTT -ACGGAACCTTTGAGTGTCGTGGTT -ACGGAACCTTTGAGTGTCGCCTTT -ACGGAACCTTTGAGTGTCGGTCTT -ACGGAACCTTTGAGTGTCACGCTT -ACGGAACCTTTGAGTGTCAGCGTT -ACGGAACCTTTGAGTGTCTTCGTC -ACGGAACCTTTGAGTGTCTCTCTC -ACGGAACCTTTGAGTGTCTGGATC -ACGGAACCTTTGAGTGTCCACTTC -ACGGAACCTTTGAGTGTCGTACTC -ACGGAACCTTTGAGTGTCGATGTC -ACGGAACCTTTGAGTGTCACAGTC -ACGGAACCTTTGAGTGTCTTGCTG -ACGGAACCTTTGAGTGTCTCCATG -ACGGAACCTTTGAGTGTCTGTGTG -ACGGAACCTTTGAGTGTCCTAGTG -ACGGAACCTTTGAGTGTCCATCTG -ACGGAACCTTTGAGTGTCGAGTTG -ACGGAACCTTTGAGTGTCAGACTG -ACGGAACCTTTGAGTGTCTCGGTA -ACGGAACCTTTGAGTGTCTGCCTA -ACGGAACCTTTGAGTGTCCCACTA -ACGGAACCTTTGAGTGTCGGAGTA -ACGGAACCTTTGAGTGTCTCGTCT -ACGGAACCTTTGAGTGTCTGCACT -ACGGAACCTTTGAGTGTCCTGACT -ACGGAACCTTTGAGTGTCCAACCT -ACGGAACCTTTGAGTGTCGCTACT -ACGGAACCTTTGAGTGTCGGATCT -ACGGAACCTTTGAGTGTCAAGGCT -ACGGAACCTTTGAGTGTCTCAACC -ACGGAACCTTTGAGTGTCTGTTCC -ACGGAACCTTTGAGTGTCATTCCC -ACGGAACCTTTGAGTGTCTTCTCG -ACGGAACCTTTGAGTGTCTAGACG -ACGGAACCTTTGAGTGTCGTAACG -ACGGAACCTTTGAGTGTCACTTCG -ACGGAACCTTTGAGTGTCTACGCA -ACGGAACCTTTGAGTGTCCTTGCA -ACGGAACCTTTGAGTGTCCGAACA -ACGGAACCTTTGAGTGTCCAGTCA -ACGGAACCTTTGAGTGTCGATCCA -ACGGAACCTTTGAGTGTCACGACA -ACGGAACCTTTGAGTGTCAGCTCA -ACGGAACCTTTGAGTGTCTCACGT -ACGGAACCTTTGAGTGTCCGTAGT -ACGGAACCTTTGAGTGTCGTCAGT -ACGGAACCTTTGAGTGTCGAAGGT -ACGGAACCTTTGAGTGTCAACCGT -ACGGAACCTTTGAGTGTCTTGTGC -ACGGAACCTTTGAGTGTCCTAAGC -ACGGAACCTTTGAGTGTCACTAGC -ACGGAACCTTTGAGTGTCAGATGC -ACGGAACCTTTGAGTGTCTGAAGG -ACGGAACCTTTGAGTGTCCAATGG -ACGGAACCTTTGAGTGTCATGAGG -ACGGAACCTTTGAGTGTCAATGGG -ACGGAACCTTTGAGTGTCTCCTGA -ACGGAACCTTTGAGTGTCTAGCGA -ACGGAACCTTTGAGTGTCCACAGA -ACGGAACCTTTGAGTGTCGCAAGA -ACGGAACCTTTGAGTGTCGGTTGA -ACGGAACCTTTGAGTGTCTCCGAT -ACGGAACCTTTGAGTGTCTGGCAT -ACGGAACCTTTGAGTGTCCGAGAT -ACGGAACCTTTGAGTGTCTACCAC -ACGGAACCTTTGAGTGTCCAGAAC -ACGGAACCTTTGAGTGTCGTCTAC -ACGGAACCTTTGAGTGTCACGTAC -ACGGAACCTTTGAGTGTCAGTGAC -ACGGAACCTTTGAGTGTCCTGTAG -ACGGAACCTTTGAGTGTCCCTAAG -ACGGAACCTTTGAGTGTCGTTCAG -ACGGAACCTTTGAGTGTCGCATAG -ACGGAACCTTTGAGTGTCGACAAG -ACGGAACCTTTGAGTGTCAAGCAG -ACGGAACCTTTGAGTGTCCGTCAA -ACGGAACCTTTGAGTGTCGCTGAA -ACGGAACCTTTGAGTGTCAGTACG -ACGGAACCTTTGAGTGTCATCCGA -ACGGAACCTTTGAGTGTCATGGGA -ACGGAACCTTTGAGTGTCGTGCAA -ACGGAACCTTTGAGTGTCGAGGAA -ACGGAACCTTTGAGTGTCCAGGTA -ACGGAACCTTTGAGTGTCGACTCT -ACGGAACCTTTGAGTGTCAGTCCT -ACGGAACCTTTGAGTGTCTAAGCC -ACGGAACCTTTGAGTGTCATAGCC -ACGGAACCTTTGAGTGTCTAACCG -ACGGAACCTTTGAGTGTCATGCCA -ACGGAACCTTTGGGTGAAGGAAAC -ACGGAACCTTTGGGTGAAAACACC -ACGGAACCTTTGGGTGAAATCGAG -ACGGAACCTTTGGGTGAACTCCTT -ACGGAACCTTTGGGTGAACCTGTT -ACGGAACCTTTGGGTGAACGGTTT -ACGGAACCTTTGGGTGAAGTGGTT -ACGGAACCTTTGGGTGAAGCCTTT -ACGGAACCTTTGGGTGAAGGTCTT -ACGGAACCTTTGGGTGAAACGCTT -ACGGAACCTTTGGGTGAAAGCGTT -ACGGAACCTTTGGGTGAATTCGTC -ACGGAACCTTTGGGTGAATCTCTC -ACGGAACCTTTGGGTGAATGGATC -ACGGAACCTTTGGGTGAACACTTC -ACGGAACCTTTGGGTGAAGTACTC -ACGGAACCTTTGGGTGAAGATGTC -ACGGAACCTTTGGGTGAAACAGTC -ACGGAACCTTTGGGTGAATTGCTG -ACGGAACCTTTGGGTGAATCCATG -ACGGAACCTTTGGGTGAATGTGTG -ACGGAACCTTTGGGTGAACTAGTG -ACGGAACCTTTGGGTGAACATCTG -ACGGAACCTTTGGGTGAAGAGTTG -ACGGAACCTTTGGGTGAAAGACTG -ACGGAACCTTTGGGTGAATCGGTA -ACGGAACCTTTGGGTGAATGCCTA -ACGGAACCTTTGGGTGAACCACTA -ACGGAACCTTTGGGTGAAGGAGTA -ACGGAACCTTTGGGTGAATCGTCT -ACGGAACCTTTGGGTGAATGCACT -ACGGAACCTTTGGGTGAACTGACT -ACGGAACCTTTGGGTGAACAACCT -ACGGAACCTTTGGGTGAAGCTACT -ACGGAACCTTTGGGTGAAGGATCT -ACGGAACCTTTGGGTGAAAAGGCT -ACGGAACCTTTGGGTGAATCAACC -ACGGAACCTTTGGGTGAATGTTCC -ACGGAACCTTTGGGTGAAATTCCC -ACGGAACCTTTGGGTGAATTCTCG -ACGGAACCTTTGGGTGAATAGACG -ACGGAACCTTTGGGTGAAGTAACG -ACGGAACCTTTGGGTGAAACTTCG -ACGGAACCTTTGGGTGAATACGCA -ACGGAACCTTTGGGTGAACTTGCA -ACGGAACCTTTGGGTGAACGAACA -ACGGAACCTTTGGGTGAACAGTCA -ACGGAACCTTTGGGTGAAGATCCA -ACGGAACCTTTGGGTGAAACGACA -ACGGAACCTTTGGGTGAAAGCTCA -ACGGAACCTTTGGGTGAATCACGT -ACGGAACCTTTGGGTGAACGTAGT -ACGGAACCTTTGGGTGAAGTCAGT -ACGGAACCTTTGGGTGAAGAAGGT -ACGGAACCTTTGGGTGAAAACCGT -ACGGAACCTTTGGGTGAATTGTGC -ACGGAACCTTTGGGTGAACTAAGC -ACGGAACCTTTGGGTGAAACTAGC -ACGGAACCTTTGGGTGAAAGATGC -ACGGAACCTTTGGGTGAATGAAGG -ACGGAACCTTTGGGTGAACAATGG -ACGGAACCTTTGGGTGAAATGAGG -ACGGAACCTTTGGGTGAAAATGGG -ACGGAACCTTTGGGTGAATCCTGA -ACGGAACCTTTGGGTGAATAGCGA -ACGGAACCTTTGGGTGAACACAGA -ACGGAACCTTTGGGTGAAGCAAGA -ACGGAACCTTTGGGTGAAGGTTGA -ACGGAACCTTTGGGTGAATCCGAT -ACGGAACCTTTGGGTGAATGGCAT -ACGGAACCTTTGGGTGAACGAGAT -ACGGAACCTTTGGGTGAATACCAC -ACGGAACCTTTGGGTGAACAGAAC -ACGGAACCTTTGGGTGAAGTCTAC -ACGGAACCTTTGGGTGAAACGTAC -ACGGAACCTTTGGGTGAAAGTGAC -ACGGAACCTTTGGGTGAACTGTAG -ACGGAACCTTTGGGTGAACCTAAG -ACGGAACCTTTGGGTGAAGTTCAG -ACGGAACCTTTGGGTGAAGCATAG -ACGGAACCTTTGGGTGAAGACAAG -ACGGAACCTTTGGGTGAAAAGCAG -ACGGAACCTTTGGGTGAACGTCAA -ACGGAACCTTTGGGTGAAGCTGAA -ACGGAACCTTTGGGTGAAAGTACG -ACGGAACCTTTGGGTGAAATCCGA -ACGGAACCTTTGGGTGAAATGGGA -ACGGAACCTTTGGGTGAAGTGCAA -ACGGAACCTTTGGGTGAAGAGGAA -ACGGAACCTTTGGGTGAACAGGTA -ACGGAACCTTTGGGTGAAGACTCT -ACGGAACCTTTGGGTGAAAGTCCT -ACGGAACCTTTGGGTGAATAAGCC -ACGGAACCTTTGGGTGAAATAGCC -ACGGAACCTTTGGGTGAATAACCG -ACGGAACCTTTGGGTGAAATGCCA -ACGGAACCTTTGCGTAACGGAAAC -ACGGAACCTTTGCGTAACAACACC -ACGGAACCTTTGCGTAACATCGAG -ACGGAACCTTTGCGTAACCTCCTT -ACGGAACCTTTGCGTAACCCTGTT -ACGGAACCTTTGCGTAACCGGTTT -ACGGAACCTTTGCGTAACGTGGTT -ACGGAACCTTTGCGTAACGCCTTT -ACGGAACCTTTGCGTAACGGTCTT -ACGGAACCTTTGCGTAACACGCTT -ACGGAACCTTTGCGTAACAGCGTT -ACGGAACCTTTGCGTAACTTCGTC -ACGGAACCTTTGCGTAACTCTCTC -ACGGAACCTTTGCGTAACTGGATC -ACGGAACCTTTGCGTAACCACTTC -ACGGAACCTTTGCGTAACGTACTC -ACGGAACCTTTGCGTAACGATGTC -ACGGAACCTTTGCGTAACACAGTC -ACGGAACCTTTGCGTAACTTGCTG -ACGGAACCTTTGCGTAACTCCATG -ACGGAACCTTTGCGTAACTGTGTG -ACGGAACCTTTGCGTAACCTAGTG -ACGGAACCTTTGCGTAACCATCTG -ACGGAACCTTTGCGTAACGAGTTG -ACGGAACCTTTGCGTAACAGACTG -ACGGAACCTTTGCGTAACTCGGTA -ACGGAACCTTTGCGTAACTGCCTA -ACGGAACCTTTGCGTAACCCACTA -ACGGAACCTTTGCGTAACGGAGTA -ACGGAACCTTTGCGTAACTCGTCT -ACGGAACCTTTGCGTAACTGCACT -ACGGAACCTTTGCGTAACCTGACT -ACGGAACCTTTGCGTAACCAACCT -ACGGAACCTTTGCGTAACGCTACT -ACGGAACCTTTGCGTAACGGATCT -ACGGAACCTTTGCGTAACAAGGCT -ACGGAACCTTTGCGTAACTCAACC -ACGGAACCTTTGCGTAACTGTTCC -ACGGAACCTTTGCGTAACATTCCC -ACGGAACCTTTGCGTAACTTCTCG -ACGGAACCTTTGCGTAACTAGACG -ACGGAACCTTTGCGTAACGTAACG -ACGGAACCTTTGCGTAACACTTCG -ACGGAACCTTTGCGTAACTACGCA -ACGGAACCTTTGCGTAACCTTGCA -ACGGAACCTTTGCGTAACCGAACA -ACGGAACCTTTGCGTAACCAGTCA -ACGGAACCTTTGCGTAACGATCCA -ACGGAACCTTTGCGTAACACGACA -ACGGAACCTTTGCGTAACAGCTCA -ACGGAACCTTTGCGTAACTCACGT -ACGGAACCTTTGCGTAACCGTAGT -ACGGAACCTTTGCGTAACGTCAGT -ACGGAACCTTTGCGTAACGAAGGT -ACGGAACCTTTGCGTAACAACCGT -ACGGAACCTTTGCGTAACTTGTGC -ACGGAACCTTTGCGTAACCTAAGC -ACGGAACCTTTGCGTAACACTAGC -ACGGAACCTTTGCGTAACAGATGC -ACGGAACCTTTGCGTAACTGAAGG -ACGGAACCTTTGCGTAACCAATGG -ACGGAACCTTTGCGTAACATGAGG -ACGGAACCTTTGCGTAACAATGGG -ACGGAACCTTTGCGTAACTCCTGA -ACGGAACCTTTGCGTAACTAGCGA -ACGGAACCTTTGCGTAACCACAGA -ACGGAACCTTTGCGTAACGCAAGA -ACGGAACCTTTGCGTAACGGTTGA -ACGGAACCTTTGCGTAACTCCGAT -ACGGAACCTTTGCGTAACTGGCAT -ACGGAACCTTTGCGTAACCGAGAT -ACGGAACCTTTGCGTAACTACCAC -ACGGAACCTTTGCGTAACCAGAAC -ACGGAACCTTTGCGTAACGTCTAC -ACGGAACCTTTGCGTAACACGTAC -ACGGAACCTTTGCGTAACAGTGAC -ACGGAACCTTTGCGTAACCTGTAG -ACGGAACCTTTGCGTAACCCTAAG -ACGGAACCTTTGCGTAACGTTCAG -ACGGAACCTTTGCGTAACGCATAG -ACGGAACCTTTGCGTAACGACAAG -ACGGAACCTTTGCGTAACAAGCAG -ACGGAACCTTTGCGTAACCGTCAA -ACGGAACCTTTGCGTAACGCTGAA -ACGGAACCTTTGCGTAACAGTACG -ACGGAACCTTTGCGTAACATCCGA -ACGGAACCTTTGCGTAACATGGGA -ACGGAACCTTTGCGTAACGTGCAA -ACGGAACCTTTGCGTAACGAGGAA -ACGGAACCTTTGCGTAACCAGGTA -ACGGAACCTTTGCGTAACGACTCT -ACGGAACCTTTGCGTAACAGTCCT -ACGGAACCTTTGCGTAACTAAGCC -ACGGAACCTTTGCGTAACATAGCC -ACGGAACCTTTGCGTAACTAACCG -ACGGAACCTTTGCGTAACATGCCA -ACGGAACCTTTGTGCTTGGGAAAC -ACGGAACCTTTGTGCTTGAACACC -ACGGAACCTTTGTGCTTGATCGAG -ACGGAACCTTTGTGCTTGCTCCTT -ACGGAACCTTTGTGCTTGCCTGTT -ACGGAACCTTTGTGCTTGCGGTTT -ACGGAACCTTTGTGCTTGGTGGTT -ACGGAACCTTTGTGCTTGGCCTTT -ACGGAACCTTTGTGCTTGGGTCTT -ACGGAACCTTTGTGCTTGACGCTT -ACGGAACCTTTGTGCTTGAGCGTT -ACGGAACCTTTGTGCTTGTTCGTC -ACGGAACCTTTGTGCTTGTCTCTC -ACGGAACCTTTGTGCTTGTGGATC -ACGGAACCTTTGTGCTTGCACTTC -ACGGAACCTTTGTGCTTGGTACTC -ACGGAACCTTTGTGCTTGGATGTC -ACGGAACCTTTGTGCTTGACAGTC -ACGGAACCTTTGTGCTTGTTGCTG -ACGGAACCTTTGTGCTTGTCCATG -ACGGAACCTTTGTGCTTGTGTGTG -ACGGAACCTTTGTGCTTGCTAGTG -ACGGAACCTTTGTGCTTGCATCTG -ACGGAACCTTTGTGCTTGGAGTTG -ACGGAACCTTTGTGCTTGAGACTG -ACGGAACCTTTGTGCTTGTCGGTA -ACGGAACCTTTGTGCTTGTGCCTA -ACGGAACCTTTGTGCTTGCCACTA -ACGGAACCTTTGTGCTTGGGAGTA -ACGGAACCTTTGTGCTTGTCGTCT -ACGGAACCTTTGTGCTTGTGCACT -ACGGAACCTTTGTGCTTGCTGACT -ACGGAACCTTTGTGCTTGCAACCT -ACGGAACCTTTGTGCTTGGCTACT -ACGGAACCTTTGTGCTTGGGATCT -ACGGAACCTTTGTGCTTGAAGGCT -ACGGAACCTTTGTGCTTGTCAACC -ACGGAACCTTTGTGCTTGTGTTCC -ACGGAACCTTTGTGCTTGATTCCC -ACGGAACCTTTGTGCTTGTTCTCG -ACGGAACCTTTGTGCTTGTAGACG -ACGGAACCTTTGTGCTTGGTAACG -ACGGAACCTTTGTGCTTGACTTCG -ACGGAACCTTTGTGCTTGTACGCA -ACGGAACCTTTGTGCTTGCTTGCA -ACGGAACCTTTGTGCTTGCGAACA -ACGGAACCTTTGTGCTTGCAGTCA -ACGGAACCTTTGTGCTTGGATCCA -ACGGAACCTTTGTGCTTGACGACA -ACGGAACCTTTGTGCTTGAGCTCA -ACGGAACCTTTGTGCTTGTCACGT -ACGGAACCTTTGTGCTTGCGTAGT -ACGGAACCTTTGTGCTTGGTCAGT -ACGGAACCTTTGTGCTTGGAAGGT -ACGGAACCTTTGTGCTTGAACCGT -ACGGAACCTTTGTGCTTGTTGTGC -ACGGAACCTTTGTGCTTGCTAAGC -ACGGAACCTTTGTGCTTGACTAGC -ACGGAACCTTTGTGCTTGAGATGC -ACGGAACCTTTGTGCTTGTGAAGG -ACGGAACCTTTGTGCTTGCAATGG -ACGGAACCTTTGTGCTTGATGAGG -ACGGAACCTTTGTGCTTGAATGGG -ACGGAACCTTTGTGCTTGTCCTGA -ACGGAACCTTTGTGCTTGTAGCGA -ACGGAACCTTTGTGCTTGCACAGA -ACGGAACCTTTGTGCTTGGCAAGA -ACGGAACCTTTGTGCTTGGGTTGA -ACGGAACCTTTGTGCTTGTCCGAT -ACGGAACCTTTGTGCTTGTGGCAT -ACGGAACCTTTGTGCTTGCGAGAT -ACGGAACCTTTGTGCTTGTACCAC -ACGGAACCTTTGTGCTTGCAGAAC -ACGGAACCTTTGTGCTTGGTCTAC -ACGGAACCTTTGTGCTTGACGTAC -ACGGAACCTTTGTGCTTGAGTGAC -ACGGAACCTTTGTGCTTGCTGTAG -ACGGAACCTTTGTGCTTGCCTAAG -ACGGAACCTTTGTGCTTGGTTCAG -ACGGAACCTTTGTGCTTGGCATAG -ACGGAACCTTTGTGCTTGGACAAG -ACGGAACCTTTGTGCTTGAAGCAG -ACGGAACCTTTGTGCTTGCGTCAA -ACGGAACCTTTGTGCTTGGCTGAA -ACGGAACCTTTGTGCTTGAGTACG -ACGGAACCTTTGTGCTTGATCCGA -ACGGAACCTTTGTGCTTGATGGGA -ACGGAACCTTTGTGCTTGGTGCAA -ACGGAACCTTTGTGCTTGGAGGAA -ACGGAACCTTTGTGCTTGCAGGTA -ACGGAACCTTTGTGCTTGGACTCT -ACGGAACCTTTGTGCTTGAGTCCT -ACGGAACCTTTGTGCTTGTAAGCC -ACGGAACCTTTGTGCTTGATAGCC -ACGGAACCTTTGTGCTTGTAACCG -ACGGAACCTTTGTGCTTGATGCCA -ACGGAACCTTTGAGCCTAGGAAAC -ACGGAACCTTTGAGCCTAAACACC -ACGGAACCTTTGAGCCTAATCGAG -ACGGAACCTTTGAGCCTACTCCTT -ACGGAACCTTTGAGCCTACCTGTT -ACGGAACCTTTGAGCCTACGGTTT -ACGGAACCTTTGAGCCTAGTGGTT -ACGGAACCTTTGAGCCTAGCCTTT -ACGGAACCTTTGAGCCTAGGTCTT -ACGGAACCTTTGAGCCTAACGCTT -ACGGAACCTTTGAGCCTAAGCGTT -ACGGAACCTTTGAGCCTATTCGTC -ACGGAACCTTTGAGCCTATCTCTC -ACGGAACCTTTGAGCCTATGGATC -ACGGAACCTTTGAGCCTACACTTC -ACGGAACCTTTGAGCCTAGTACTC -ACGGAACCTTTGAGCCTAGATGTC -ACGGAACCTTTGAGCCTAACAGTC -ACGGAACCTTTGAGCCTATTGCTG -ACGGAACCTTTGAGCCTATCCATG -ACGGAACCTTTGAGCCTATGTGTG -ACGGAACCTTTGAGCCTACTAGTG -ACGGAACCTTTGAGCCTACATCTG -ACGGAACCTTTGAGCCTAGAGTTG -ACGGAACCTTTGAGCCTAAGACTG -ACGGAACCTTTGAGCCTATCGGTA -ACGGAACCTTTGAGCCTATGCCTA -ACGGAACCTTTGAGCCTACCACTA -ACGGAACCTTTGAGCCTAGGAGTA -ACGGAACCTTTGAGCCTATCGTCT -ACGGAACCTTTGAGCCTATGCACT -ACGGAACCTTTGAGCCTACTGACT -ACGGAACCTTTGAGCCTACAACCT -ACGGAACCTTTGAGCCTAGCTACT -ACGGAACCTTTGAGCCTAGGATCT -ACGGAACCTTTGAGCCTAAAGGCT -ACGGAACCTTTGAGCCTATCAACC -ACGGAACCTTTGAGCCTATGTTCC -ACGGAACCTTTGAGCCTAATTCCC -ACGGAACCTTTGAGCCTATTCTCG -ACGGAACCTTTGAGCCTATAGACG -ACGGAACCTTTGAGCCTAGTAACG -ACGGAACCTTTGAGCCTAACTTCG -ACGGAACCTTTGAGCCTATACGCA -ACGGAACCTTTGAGCCTACTTGCA -ACGGAACCTTTGAGCCTACGAACA -ACGGAACCTTTGAGCCTACAGTCA -ACGGAACCTTTGAGCCTAGATCCA -ACGGAACCTTTGAGCCTAACGACA -ACGGAACCTTTGAGCCTAAGCTCA -ACGGAACCTTTGAGCCTATCACGT -ACGGAACCTTTGAGCCTACGTAGT -ACGGAACCTTTGAGCCTAGTCAGT -ACGGAACCTTTGAGCCTAGAAGGT -ACGGAACCTTTGAGCCTAAACCGT -ACGGAACCTTTGAGCCTATTGTGC -ACGGAACCTTTGAGCCTACTAAGC -ACGGAACCTTTGAGCCTAACTAGC -ACGGAACCTTTGAGCCTAAGATGC -ACGGAACCTTTGAGCCTATGAAGG -ACGGAACCTTTGAGCCTACAATGG -ACGGAACCTTTGAGCCTAATGAGG -ACGGAACCTTTGAGCCTAAATGGG -ACGGAACCTTTGAGCCTATCCTGA -ACGGAACCTTTGAGCCTATAGCGA -ACGGAACCTTTGAGCCTACACAGA -ACGGAACCTTTGAGCCTAGCAAGA -ACGGAACCTTTGAGCCTAGGTTGA -ACGGAACCTTTGAGCCTATCCGAT -ACGGAACCTTTGAGCCTATGGCAT -ACGGAACCTTTGAGCCTACGAGAT -ACGGAACCTTTGAGCCTATACCAC -ACGGAACCTTTGAGCCTACAGAAC -ACGGAACCTTTGAGCCTAGTCTAC -ACGGAACCTTTGAGCCTAACGTAC -ACGGAACCTTTGAGCCTAAGTGAC -ACGGAACCTTTGAGCCTACTGTAG -ACGGAACCTTTGAGCCTACCTAAG -ACGGAACCTTTGAGCCTAGTTCAG -ACGGAACCTTTGAGCCTAGCATAG -ACGGAACCTTTGAGCCTAGACAAG -ACGGAACCTTTGAGCCTAAAGCAG -ACGGAACCTTTGAGCCTACGTCAA -ACGGAACCTTTGAGCCTAGCTGAA -ACGGAACCTTTGAGCCTAAGTACG -ACGGAACCTTTGAGCCTAATCCGA -ACGGAACCTTTGAGCCTAATGGGA -ACGGAACCTTTGAGCCTAGTGCAA -ACGGAACCTTTGAGCCTAGAGGAA -ACGGAACCTTTGAGCCTACAGGTA -ACGGAACCTTTGAGCCTAGACTCT -ACGGAACCTTTGAGCCTAAGTCCT -ACGGAACCTTTGAGCCTATAAGCC -ACGGAACCTTTGAGCCTAATAGCC -ACGGAACCTTTGAGCCTATAACCG -ACGGAACCTTTGAGCCTAATGCCA -ACGGAACCTTTGAGCACTGGAAAC -ACGGAACCTTTGAGCACTAACACC -ACGGAACCTTTGAGCACTATCGAG -ACGGAACCTTTGAGCACTCTCCTT -ACGGAACCTTTGAGCACTCCTGTT -ACGGAACCTTTGAGCACTCGGTTT -ACGGAACCTTTGAGCACTGTGGTT -ACGGAACCTTTGAGCACTGCCTTT -ACGGAACCTTTGAGCACTGGTCTT -ACGGAACCTTTGAGCACTACGCTT -ACGGAACCTTTGAGCACTAGCGTT -ACGGAACCTTTGAGCACTTTCGTC -ACGGAACCTTTGAGCACTTCTCTC -ACGGAACCTTTGAGCACTTGGATC -ACGGAACCTTTGAGCACTCACTTC -ACGGAACCTTTGAGCACTGTACTC -ACGGAACCTTTGAGCACTGATGTC -ACGGAACCTTTGAGCACTACAGTC -ACGGAACCTTTGAGCACTTTGCTG -ACGGAACCTTTGAGCACTTCCATG -ACGGAACCTTTGAGCACTTGTGTG -ACGGAACCTTTGAGCACTCTAGTG -ACGGAACCTTTGAGCACTCATCTG -ACGGAACCTTTGAGCACTGAGTTG -ACGGAACCTTTGAGCACTAGACTG -ACGGAACCTTTGAGCACTTCGGTA -ACGGAACCTTTGAGCACTTGCCTA -ACGGAACCTTTGAGCACTCCACTA -ACGGAACCTTTGAGCACTGGAGTA -ACGGAACCTTTGAGCACTTCGTCT -ACGGAACCTTTGAGCACTTGCACT -ACGGAACCTTTGAGCACTCTGACT -ACGGAACCTTTGAGCACTCAACCT -ACGGAACCTTTGAGCACTGCTACT -ACGGAACCTTTGAGCACTGGATCT -ACGGAACCTTTGAGCACTAAGGCT -ACGGAACCTTTGAGCACTTCAACC -ACGGAACCTTTGAGCACTTGTTCC -ACGGAACCTTTGAGCACTATTCCC -ACGGAACCTTTGAGCACTTTCTCG -ACGGAACCTTTGAGCACTTAGACG -ACGGAACCTTTGAGCACTGTAACG -ACGGAACCTTTGAGCACTACTTCG -ACGGAACCTTTGAGCACTTACGCA -ACGGAACCTTTGAGCACTCTTGCA -ACGGAACCTTTGAGCACTCGAACA -ACGGAACCTTTGAGCACTCAGTCA -ACGGAACCTTTGAGCACTGATCCA -ACGGAACCTTTGAGCACTACGACA -ACGGAACCTTTGAGCACTAGCTCA -ACGGAACCTTTGAGCACTTCACGT -ACGGAACCTTTGAGCACTCGTAGT -ACGGAACCTTTGAGCACTGTCAGT -ACGGAACCTTTGAGCACTGAAGGT -ACGGAACCTTTGAGCACTAACCGT -ACGGAACCTTTGAGCACTTTGTGC -ACGGAACCTTTGAGCACTCTAAGC -ACGGAACCTTTGAGCACTACTAGC -ACGGAACCTTTGAGCACTAGATGC -ACGGAACCTTTGAGCACTTGAAGG -ACGGAACCTTTGAGCACTCAATGG -ACGGAACCTTTGAGCACTATGAGG -ACGGAACCTTTGAGCACTAATGGG -ACGGAACCTTTGAGCACTTCCTGA -ACGGAACCTTTGAGCACTTAGCGA -ACGGAACCTTTGAGCACTCACAGA -ACGGAACCTTTGAGCACTGCAAGA -ACGGAACCTTTGAGCACTGGTTGA -ACGGAACCTTTGAGCACTTCCGAT -ACGGAACCTTTGAGCACTTGGCAT -ACGGAACCTTTGAGCACTCGAGAT -ACGGAACCTTTGAGCACTTACCAC -ACGGAACCTTTGAGCACTCAGAAC -ACGGAACCTTTGAGCACTGTCTAC -ACGGAACCTTTGAGCACTACGTAC -ACGGAACCTTTGAGCACTAGTGAC -ACGGAACCTTTGAGCACTCTGTAG -ACGGAACCTTTGAGCACTCCTAAG -ACGGAACCTTTGAGCACTGTTCAG -ACGGAACCTTTGAGCACTGCATAG -ACGGAACCTTTGAGCACTGACAAG -ACGGAACCTTTGAGCACTAAGCAG -ACGGAACCTTTGAGCACTCGTCAA -ACGGAACCTTTGAGCACTGCTGAA -ACGGAACCTTTGAGCACTAGTACG -ACGGAACCTTTGAGCACTATCCGA -ACGGAACCTTTGAGCACTATGGGA -ACGGAACCTTTGAGCACTGTGCAA -ACGGAACCTTTGAGCACTGAGGAA -ACGGAACCTTTGAGCACTCAGGTA -ACGGAACCTTTGAGCACTGACTCT -ACGGAACCTTTGAGCACTAGTCCT -ACGGAACCTTTGAGCACTTAAGCC -ACGGAACCTTTGAGCACTATAGCC -ACGGAACCTTTGAGCACTTAACCG -ACGGAACCTTTGAGCACTATGCCA -ACGGAACCTTTGTGCAGAGGAAAC -ACGGAACCTTTGTGCAGAAACACC -ACGGAACCTTTGTGCAGAATCGAG -ACGGAACCTTTGTGCAGACTCCTT -ACGGAACCTTTGTGCAGACCTGTT -ACGGAACCTTTGTGCAGACGGTTT -ACGGAACCTTTGTGCAGAGTGGTT -ACGGAACCTTTGTGCAGAGCCTTT -ACGGAACCTTTGTGCAGAGGTCTT -ACGGAACCTTTGTGCAGAACGCTT -ACGGAACCTTTGTGCAGAAGCGTT -ACGGAACCTTTGTGCAGATTCGTC -ACGGAACCTTTGTGCAGATCTCTC -ACGGAACCTTTGTGCAGATGGATC -ACGGAACCTTTGTGCAGACACTTC -ACGGAACCTTTGTGCAGAGTACTC -ACGGAACCTTTGTGCAGAGATGTC -ACGGAACCTTTGTGCAGAACAGTC -ACGGAACCTTTGTGCAGATTGCTG -ACGGAACCTTTGTGCAGATCCATG -ACGGAACCTTTGTGCAGATGTGTG -ACGGAACCTTTGTGCAGACTAGTG -ACGGAACCTTTGTGCAGACATCTG -ACGGAACCTTTGTGCAGAGAGTTG -ACGGAACCTTTGTGCAGAAGACTG -ACGGAACCTTTGTGCAGATCGGTA -ACGGAACCTTTGTGCAGATGCCTA -ACGGAACCTTTGTGCAGACCACTA -ACGGAACCTTTGTGCAGAGGAGTA -ACGGAACCTTTGTGCAGATCGTCT -ACGGAACCTTTGTGCAGATGCACT -ACGGAACCTTTGTGCAGACTGACT -ACGGAACCTTTGTGCAGACAACCT -ACGGAACCTTTGTGCAGAGCTACT -ACGGAACCTTTGTGCAGAGGATCT -ACGGAACCTTTGTGCAGAAAGGCT -ACGGAACCTTTGTGCAGATCAACC -ACGGAACCTTTGTGCAGATGTTCC -ACGGAACCTTTGTGCAGAATTCCC -ACGGAACCTTTGTGCAGATTCTCG -ACGGAACCTTTGTGCAGATAGACG -ACGGAACCTTTGTGCAGAGTAACG -ACGGAACCTTTGTGCAGAACTTCG -ACGGAACCTTTGTGCAGATACGCA -ACGGAACCTTTGTGCAGACTTGCA -ACGGAACCTTTGTGCAGACGAACA -ACGGAACCTTTGTGCAGACAGTCA -ACGGAACCTTTGTGCAGAGATCCA -ACGGAACCTTTGTGCAGAACGACA -ACGGAACCTTTGTGCAGAAGCTCA -ACGGAACCTTTGTGCAGATCACGT -ACGGAACCTTTGTGCAGACGTAGT -ACGGAACCTTTGTGCAGAGTCAGT -ACGGAACCTTTGTGCAGAGAAGGT -ACGGAACCTTTGTGCAGAAACCGT -ACGGAACCTTTGTGCAGATTGTGC -ACGGAACCTTTGTGCAGACTAAGC -ACGGAACCTTTGTGCAGAACTAGC -ACGGAACCTTTGTGCAGAAGATGC -ACGGAACCTTTGTGCAGATGAAGG -ACGGAACCTTTGTGCAGACAATGG -ACGGAACCTTTGTGCAGAATGAGG -ACGGAACCTTTGTGCAGAAATGGG -ACGGAACCTTTGTGCAGATCCTGA -ACGGAACCTTTGTGCAGATAGCGA -ACGGAACCTTTGTGCAGACACAGA -ACGGAACCTTTGTGCAGAGCAAGA -ACGGAACCTTTGTGCAGAGGTTGA -ACGGAACCTTTGTGCAGATCCGAT -ACGGAACCTTTGTGCAGATGGCAT -ACGGAACCTTTGTGCAGACGAGAT -ACGGAACCTTTGTGCAGATACCAC -ACGGAACCTTTGTGCAGACAGAAC -ACGGAACCTTTGTGCAGAGTCTAC -ACGGAACCTTTGTGCAGAACGTAC -ACGGAACCTTTGTGCAGAAGTGAC -ACGGAACCTTTGTGCAGACTGTAG -ACGGAACCTTTGTGCAGACCTAAG -ACGGAACCTTTGTGCAGAGTTCAG -ACGGAACCTTTGTGCAGAGCATAG -ACGGAACCTTTGTGCAGAGACAAG -ACGGAACCTTTGTGCAGAAAGCAG -ACGGAACCTTTGTGCAGACGTCAA -ACGGAACCTTTGTGCAGAGCTGAA -ACGGAACCTTTGTGCAGAAGTACG -ACGGAACCTTTGTGCAGAATCCGA -ACGGAACCTTTGTGCAGAATGGGA -ACGGAACCTTTGTGCAGAGTGCAA -ACGGAACCTTTGTGCAGAGAGGAA -ACGGAACCTTTGTGCAGACAGGTA -ACGGAACCTTTGTGCAGAGACTCT -ACGGAACCTTTGTGCAGAAGTCCT -ACGGAACCTTTGTGCAGATAAGCC -ACGGAACCTTTGTGCAGAATAGCC -ACGGAACCTTTGTGCAGATAACCG -ACGGAACCTTTGTGCAGAATGCCA -ACGGAACCTTTGAGGTGAGGAAAC -ACGGAACCTTTGAGGTGAAACACC -ACGGAACCTTTGAGGTGAATCGAG -ACGGAACCTTTGAGGTGACTCCTT -ACGGAACCTTTGAGGTGACCTGTT -ACGGAACCTTTGAGGTGACGGTTT -ACGGAACCTTTGAGGTGAGTGGTT -ACGGAACCTTTGAGGTGAGCCTTT -ACGGAACCTTTGAGGTGAGGTCTT -ACGGAACCTTTGAGGTGAACGCTT -ACGGAACCTTTGAGGTGAAGCGTT -ACGGAACCTTTGAGGTGATTCGTC -ACGGAACCTTTGAGGTGATCTCTC -ACGGAACCTTTGAGGTGATGGATC -ACGGAACCTTTGAGGTGACACTTC -ACGGAACCTTTGAGGTGAGTACTC -ACGGAACCTTTGAGGTGAGATGTC -ACGGAACCTTTGAGGTGAACAGTC -ACGGAACCTTTGAGGTGATTGCTG -ACGGAACCTTTGAGGTGATCCATG -ACGGAACCTTTGAGGTGATGTGTG -ACGGAACCTTTGAGGTGACTAGTG -ACGGAACCTTTGAGGTGACATCTG -ACGGAACCTTTGAGGTGAGAGTTG -ACGGAACCTTTGAGGTGAAGACTG -ACGGAACCTTTGAGGTGATCGGTA -ACGGAACCTTTGAGGTGATGCCTA -ACGGAACCTTTGAGGTGACCACTA -ACGGAACCTTTGAGGTGAGGAGTA -ACGGAACCTTTGAGGTGATCGTCT -ACGGAACCTTTGAGGTGATGCACT -ACGGAACCTTTGAGGTGACTGACT -ACGGAACCTTTGAGGTGACAACCT -ACGGAACCTTTGAGGTGAGCTACT -ACGGAACCTTTGAGGTGAGGATCT -ACGGAACCTTTGAGGTGAAAGGCT -ACGGAACCTTTGAGGTGATCAACC -ACGGAACCTTTGAGGTGATGTTCC -ACGGAACCTTTGAGGTGAATTCCC -ACGGAACCTTTGAGGTGATTCTCG -ACGGAACCTTTGAGGTGATAGACG -ACGGAACCTTTGAGGTGAGTAACG -ACGGAACCTTTGAGGTGAACTTCG -ACGGAACCTTTGAGGTGATACGCA -ACGGAACCTTTGAGGTGACTTGCA -ACGGAACCTTTGAGGTGACGAACA -ACGGAACCTTTGAGGTGACAGTCA -ACGGAACCTTTGAGGTGAGATCCA -ACGGAACCTTTGAGGTGAACGACA -ACGGAACCTTTGAGGTGAAGCTCA -ACGGAACCTTTGAGGTGATCACGT -ACGGAACCTTTGAGGTGACGTAGT -ACGGAACCTTTGAGGTGAGTCAGT -ACGGAACCTTTGAGGTGAGAAGGT -ACGGAACCTTTGAGGTGAAACCGT -ACGGAACCTTTGAGGTGATTGTGC -ACGGAACCTTTGAGGTGACTAAGC -ACGGAACCTTTGAGGTGAACTAGC -ACGGAACCTTTGAGGTGAAGATGC -ACGGAACCTTTGAGGTGATGAAGG -ACGGAACCTTTGAGGTGACAATGG -ACGGAACCTTTGAGGTGAATGAGG -ACGGAACCTTTGAGGTGAAATGGG -ACGGAACCTTTGAGGTGATCCTGA -ACGGAACCTTTGAGGTGATAGCGA -ACGGAACCTTTGAGGTGACACAGA -ACGGAACCTTTGAGGTGAGCAAGA -ACGGAACCTTTGAGGTGAGGTTGA -ACGGAACCTTTGAGGTGATCCGAT -ACGGAACCTTTGAGGTGATGGCAT -ACGGAACCTTTGAGGTGACGAGAT -ACGGAACCTTTGAGGTGATACCAC -ACGGAACCTTTGAGGTGACAGAAC -ACGGAACCTTTGAGGTGAGTCTAC -ACGGAACCTTTGAGGTGAACGTAC -ACGGAACCTTTGAGGTGAAGTGAC -ACGGAACCTTTGAGGTGACTGTAG -ACGGAACCTTTGAGGTGACCTAAG -ACGGAACCTTTGAGGTGAGTTCAG -ACGGAACCTTTGAGGTGAGCATAG -ACGGAACCTTTGAGGTGAGACAAG -ACGGAACCTTTGAGGTGAAAGCAG -ACGGAACCTTTGAGGTGACGTCAA -ACGGAACCTTTGAGGTGAGCTGAA -ACGGAACCTTTGAGGTGAAGTACG -ACGGAACCTTTGAGGTGAATCCGA -ACGGAACCTTTGAGGTGAATGGGA -ACGGAACCTTTGAGGTGAGTGCAA -ACGGAACCTTTGAGGTGAGAGGAA -ACGGAACCTTTGAGGTGACAGGTA -ACGGAACCTTTGAGGTGAGACTCT -ACGGAACCTTTGAGGTGAAGTCCT -ACGGAACCTTTGAGGTGATAAGCC -ACGGAACCTTTGAGGTGAATAGCC -ACGGAACCTTTGAGGTGATAACCG -ACGGAACCTTTGAGGTGAATGCCA -ACGGAACCTTTGTGGCAAGGAAAC -ACGGAACCTTTGTGGCAAAACACC -ACGGAACCTTTGTGGCAAATCGAG -ACGGAACCTTTGTGGCAACTCCTT -ACGGAACCTTTGTGGCAACCTGTT -ACGGAACCTTTGTGGCAACGGTTT -ACGGAACCTTTGTGGCAAGTGGTT -ACGGAACCTTTGTGGCAAGCCTTT -ACGGAACCTTTGTGGCAAGGTCTT -ACGGAACCTTTGTGGCAAACGCTT -ACGGAACCTTTGTGGCAAAGCGTT -ACGGAACCTTTGTGGCAATTCGTC -ACGGAACCTTTGTGGCAATCTCTC -ACGGAACCTTTGTGGCAATGGATC -ACGGAACCTTTGTGGCAACACTTC -ACGGAACCTTTGTGGCAAGTACTC -ACGGAACCTTTGTGGCAAGATGTC -ACGGAACCTTTGTGGCAAACAGTC -ACGGAACCTTTGTGGCAATTGCTG -ACGGAACCTTTGTGGCAATCCATG -ACGGAACCTTTGTGGCAATGTGTG -ACGGAACCTTTGTGGCAACTAGTG -ACGGAACCTTTGTGGCAACATCTG -ACGGAACCTTTGTGGCAAGAGTTG -ACGGAACCTTTGTGGCAAAGACTG -ACGGAACCTTTGTGGCAATCGGTA -ACGGAACCTTTGTGGCAATGCCTA -ACGGAACCTTTGTGGCAACCACTA -ACGGAACCTTTGTGGCAAGGAGTA -ACGGAACCTTTGTGGCAATCGTCT -ACGGAACCTTTGTGGCAATGCACT -ACGGAACCTTTGTGGCAACTGACT -ACGGAACCTTTGTGGCAACAACCT -ACGGAACCTTTGTGGCAAGCTACT -ACGGAACCTTTGTGGCAAGGATCT -ACGGAACCTTTGTGGCAAAAGGCT -ACGGAACCTTTGTGGCAATCAACC -ACGGAACCTTTGTGGCAATGTTCC -ACGGAACCTTTGTGGCAAATTCCC -ACGGAACCTTTGTGGCAATTCTCG -ACGGAACCTTTGTGGCAATAGACG -ACGGAACCTTTGTGGCAAGTAACG -ACGGAACCTTTGTGGCAAACTTCG -ACGGAACCTTTGTGGCAATACGCA -ACGGAACCTTTGTGGCAACTTGCA -ACGGAACCTTTGTGGCAACGAACA -ACGGAACCTTTGTGGCAACAGTCA -ACGGAACCTTTGTGGCAAGATCCA -ACGGAACCTTTGTGGCAAACGACA -ACGGAACCTTTGTGGCAAAGCTCA -ACGGAACCTTTGTGGCAATCACGT -ACGGAACCTTTGTGGCAACGTAGT -ACGGAACCTTTGTGGCAAGTCAGT -ACGGAACCTTTGTGGCAAGAAGGT -ACGGAACCTTTGTGGCAAAACCGT -ACGGAACCTTTGTGGCAATTGTGC -ACGGAACCTTTGTGGCAACTAAGC -ACGGAACCTTTGTGGCAAACTAGC -ACGGAACCTTTGTGGCAAAGATGC -ACGGAACCTTTGTGGCAATGAAGG -ACGGAACCTTTGTGGCAACAATGG -ACGGAACCTTTGTGGCAAATGAGG -ACGGAACCTTTGTGGCAAAATGGG -ACGGAACCTTTGTGGCAATCCTGA -ACGGAACCTTTGTGGCAATAGCGA -ACGGAACCTTTGTGGCAACACAGA -ACGGAACCTTTGTGGCAAGCAAGA -ACGGAACCTTTGTGGCAAGGTTGA -ACGGAACCTTTGTGGCAATCCGAT -ACGGAACCTTTGTGGCAATGGCAT -ACGGAACCTTTGTGGCAACGAGAT -ACGGAACCTTTGTGGCAATACCAC -ACGGAACCTTTGTGGCAACAGAAC -ACGGAACCTTTGTGGCAAGTCTAC -ACGGAACCTTTGTGGCAAACGTAC -ACGGAACCTTTGTGGCAAAGTGAC -ACGGAACCTTTGTGGCAACTGTAG -ACGGAACCTTTGTGGCAACCTAAG -ACGGAACCTTTGTGGCAAGTTCAG -ACGGAACCTTTGTGGCAAGCATAG -ACGGAACCTTTGTGGCAAGACAAG -ACGGAACCTTTGTGGCAAAAGCAG -ACGGAACCTTTGTGGCAACGTCAA -ACGGAACCTTTGTGGCAAGCTGAA -ACGGAACCTTTGTGGCAAAGTACG -ACGGAACCTTTGTGGCAAATCCGA -ACGGAACCTTTGTGGCAAATGGGA -ACGGAACCTTTGTGGCAAGTGCAA -ACGGAACCTTTGTGGCAAGAGGAA -ACGGAACCTTTGTGGCAACAGGTA -ACGGAACCTTTGTGGCAAGACTCT -ACGGAACCTTTGTGGCAAAGTCCT -ACGGAACCTTTGTGGCAATAAGCC -ACGGAACCTTTGTGGCAAATAGCC -ACGGAACCTTTGTGGCAATAACCG -ACGGAACCTTTGTGGCAAATGCCA -ACGGAACCTTTGAGGATGGGAAAC -ACGGAACCTTTGAGGATGAACACC -ACGGAACCTTTGAGGATGATCGAG -ACGGAACCTTTGAGGATGCTCCTT -ACGGAACCTTTGAGGATGCCTGTT -ACGGAACCTTTGAGGATGCGGTTT -ACGGAACCTTTGAGGATGGTGGTT -ACGGAACCTTTGAGGATGGCCTTT -ACGGAACCTTTGAGGATGGGTCTT -ACGGAACCTTTGAGGATGACGCTT -ACGGAACCTTTGAGGATGAGCGTT -ACGGAACCTTTGAGGATGTTCGTC -ACGGAACCTTTGAGGATGTCTCTC -ACGGAACCTTTGAGGATGTGGATC -ACGGAACCTTTGAGGATGCACTTC -ACGGAACCTTTGAGGATGGTACTC -ACGGAACCTTTGAGGATGGATGTC -ACGGAACCTTTGAGGATGACAGTC -ACGGAACCTTTGAGGATGTTGCTG -ACGGAACCTTTGAGGATGTCCATG -ACGGAACCTTTGAGGATGTGTGTG -ACGGAACCTTTGAGGATGCTAGTG -ACGGAACCTTTGAGGATGCATCTG -ACGGAACCTTTGAGGATGGAGTTG -ACGGAACCTTTGAGGATGAGACTG -ACGGAACCTTTGAGGATGTCGGTA -ACGGAACCTTTGAGGATGTGCCTA -ACGGAACCTTTGAGGATGCCACTA -ACGGAACCTTTGAGGATGGGAGTA -ACGGAACCTTTGAGGATGTCGTCT -ACGGAACCTTTGAGGATGTGCACT -ACGGAACCTTTGAGGATGCTGACT -ACGGAACCTTTGAGGATGCAACCT -ACGGAACCTTTGAGGATGGCTACT -ACGGAACCTTTGAGGATGGGATCT -ACGGAACCTTTGAGGATGAAGGCT -ACGGAACCTTTGAGGATGTCAACC -ACGGAACCTTTGAGGATGTGTTCC -ACGGAACCTTTGAGGATGATTCCC -ACGGAACCTTTGAGGATGTTCTCG -ACGGAACCTTTGAGGATGTAGACG -ACGGAACCTTTGAGGATGGTAACG -ACGGAACCTTTGAGGATGACTTCG -ACGGAACCTTTGAGGATGTACGCA -ACGGAACCTTTGAGGATGCTTGCA -ACGGAACCTTTGAGGATGCGAACA -ACGGAACCTTTGAGGATGCAGTCA -ACGGAACCTTTGAGGATGGATCCA -ACGGAACCTTTGAGGATGACGACA -ACGGAACCTTTGAGGATGAGCTCA -ACGGAACCTTTGAGGATGTCACGT -ACGGAACCTTTGAGGATGCGTAGT -ACGGAACCTTTGAGGATGGTCAGT -ACGGAACCTTTGAGGATGGAAGGT -ACGGAACCTTTGAGGATGAACCGT -ACGGAACCTTTGAGGATGTTGTGC -ACGGAACCTTTGAGGATGCTAAGC -ACGGAACCTTTGAGGATGACTAGC -ACGGAACCTTTGAGGATGAGATGC -ACGGAACCTTTGAGGATGTGAAGG -ACGGAACCTTTGAGGATGCAATGG -ACGGAACCTTTGAGGATGATGAGG -ACGGAACCTTTGAGGATGAATGGG -ACGGAACCTTTGAGGATGTCCTGA -ACGGAACCTTTGAGGATGTAGCGA -ACGGAACCTTTGAGGATGCACAGA -ACGGAACCTTTGAGGATGGCAAGA -ACGGAACCTTTGAGGATGGGTTGA -ACGGAACCTTTGAGGATGTCCGAT -ACGGAACCTTTGAGGATGTGGCAT -ACGGAACCTTTGAGGATGCGAGAT -ACGGAACCTTTGAGGATGTACCAC -ACGGAACCTTTGAGGATGCAGAAC -ACGGAACCTTTGAGGATGGTCTAC -ACGGAACCTTTGAGGATGACGTAC -ACGGAACCTTTGAGGATGAGTGAC -ACGGAACCTTTGAGGATGCTGTAG -ACGGAACCTTTGAGGATGCCTAAG -ACGGAACCTTTGAGGATGGTTCAG -ACGGAACCTTTGAGGATGGCATAG -ACGGAACCTTTGAGGATGGACAAG -ACGGAACCTTTGAGGATGAAGCAG -ACGGAACCTTTGAGGATGCGTCAA -ACGGAACCTTTGAGGATGGCTGAA -ACGGAACCTTTGAGGATGAGTACG -ACGGAACCTTTGAGGATGATCCGA -ACGGAACCTTTGAGGATGATGGGA -ACGGAACCTTTGAGGATGGTGCAA -ACGGAACCTTTGAGGATGGAGGAA -ACGGAACCTTTGAGGATGCAGGTA -ACGGAACCTTTGAGGATGGACTCT -ACGGAACCTTTGAGGATGAGTCCT -ACGGAACCTTTGAGGATGTAAGCC -ACGGAACCTTTGAGGATGATAGCC -ACGGAACCTTTGAGGATGTAACCG -ACGGAACCTTTGAGGATGATGCCA -ACGGAACCTTTGGGGAATGGAAAC -ACGGAACCTTTGGGGAATAACACC -ACGGAACCTTTGGGGAATATCGAG -ACGGAACCTTTGGGGAATCTCCTT -ACGGAACCTTTGGGGAATCCTGTT -ACGGAACCTTTGGGGAATCGGTTT -ACGGAACCTTTGGGGAATGTGGTT -ACGGAACCTTTGGGGAATGCCTTT -ACGGAACCTTTGGGGAATGGTCTT -ACGGAACCTTTGGGGAATACGCTT -ACGGAACCTTTGGGGAATAGCGTT -ACGGAACCTTTGGGGAATTTCGTC -ACGGAACCTTTGGGGAATTCTCTC -ACGGAACCTTTGGGGAATTGGATC -ACGGAACCTTTGGGGAATCACTTC -ACGGAACCTTTGGGGAATGTACTC -ACGGAACCTTTGGGGAATGATGTC -ACGGAACCTTTGGGGAATACAGTC -ACGGAACCTTTGGGGAATTTGCTG -ACGGAACCTTTGGGGAATTCCATG -ACGGAACCTTTGGGGAATTGTGTG -ACGGAACCTTTGGGGAATCTAGTG -ACGGAACCTTTGGGGAATCATCTG -ACGGAACCTTTGGGGAATGAGTTG -ACGGAACCTTTGGGGAATAGACTG -ACGGAACCTTTGGGGAATTCGGTA -ACGGAACCTTTGGGGAATTGCCTA -ACGGAACCTTTGGGGAATCCACTA -ACGGAACCTTTGGGGAATGGAGTA -ACGGAACCTTTGGGGAATTCGTCT -ACGGAACCTTTGGGGAATTGCACT -ACGGAACCTTTGGGGAATCTGACT -ACGGAACCTTTGGGGAATCAACCT -ACGGAACCTTTGGGGAATGCTACT -ACGGAACCTTTGGGGAATGGATCT -ACGGAACCTTTGGGGAATAAGGCT -ACGGAACCTTTGGGGAATTCAACC -ACGGAACCTTTGGGGAATTGTTCC -ACGGAACCTTTGGGGAATATTCCC -ACGGAACCTTTGGGGAATTTCTCG -ACGGAACCTTTGGGGAATTAGACG -ACGGAACCTTTGGGGAATGTAACG -ACGGAACCTTTGGGGAATACTTCG -ACGGAACCTTTGGGGAATTACGCA -ACGGAACCTTTGGGGAATCTTGCA -ACGGAACCTTTGGGGAATCGAACA -ACGGAACCTTTGGGGAATCAGTCA -ACGGAACCTTTGGGGAATGATCCA -ACGGAACCTTTGGGGAATACGACA -ACGGAACCTTTGGGGAATAGCTCA -ACGGAACCTTTGGGGAATTCACGT -ACGGAACCTTTGGGGAATCGTAGT -ACGGAACCTTTGGGGAATGTCAGT -ACGGAACCTTTGGGGAATGAAGGT -ACGGAACCTTTGGGGAATAACCGT -ACGGAACCTTTGGGGAATTTGTGC -ACGGAACCTTTGGGGAATCTAAGC -ACGGAACCTTTGGGGAATACTAGC -ACGGAACCTTTGGGGAATAGATGC -ACGGAACCTTTGGGGAATTGAAGG -ACGGAACCTTTGGGGAATCAATGG -ACGGAACCTTTGGGGAATATGAGG -ACGGAACCTTTGGGGAATAATGGG -ACGGAACCTTTGGGGAATTCCTGA -ACGGAACCTTTGGGGAATTAGCGA -ACGGAACCTTTGGGGAATCACAGA -ACGGAACCTTTGGGGAATGCAAGA -ACGGAACCTTTGGGGAATGGTTGA -ACGGAACCTTTGGGGAATTCCGAT -ACGGAACCTTTGGGGAATTGGCAT -ACGGAACCTTTGGGGAATCGAGAT -ACGGAACCTTTGGGGAATTACCAC -ACGGAACCTTTGGGGAATCAGAAC -ACGGAACCTTTGGGGAATGTCTAC -ACGGAACCTTTGGGGAATACGTAC -ACGGAACCTTTGGGGAATAGTGAC -ACGGAACCTTTGGGGAATCTGTAG -ACGGAACCTTTGGGGAATCCTAAG -ACGGAACCTTTGGGGAATGTTCAG -ACGGAACCTTTGGGGAATGCATAG -ACGGAACCTTTGGGGAATGACAAG -ACGGAACCTTTGGGGAATAAGCAG -ACGGAACCTTTGGGGAATCGTCAA -ACGGAACCTTTGGGGAATGCTGAA -ACGGAACCTTTGGGGAATAGTACG -ACGGAACCTTTGGGGAATATCCGA -ACGGAACCTTTGGGGAATATGGGA -ACGGAACCTTTGGGGAATGTGCAA -ACGGAACCTTTGGGGAATGAGGAA -ACGGAACCTTTGGGGAATCAGGTA -ACGGAACCTTTGGGGAATGACTCT -ACGGAACCTTTGGGGAATAGTCCT -ACGGAACCTTTGGGGAATTAAGCC -ACGGAACCTTTGGGGAATATAGCC -ACGGAACCTTTGGGGAATTAACCG -ACGGAACCTTTGGGGAATATGCCA -ACGGAACCTTTGTGATCCGGAAAC -ACGGAACCTTTGTGATCCAACACC -ACGGAACCTTTGTGATCCATCGAG -ACGGAACCTTTGTGATCCCTCCTT -ACGGAACCTTTGTGATCCCCTGTT -ACGGAACCTTTGTGATCCCGGTTT -ACGGAACCTTTGTGATCCGTGGTT -ACGGAACCTTTGTGATCCGCCTTT -ACGGAACCTTTGTGATCCGGTCTT -ACGGAACCTTTGTGATCCACGCTT -ACGGAACCTTTGTGATCCAGCGTT -ACGGAACCTTTGTGATCCTTCGTC -ACGGAACCTTTGTGATCCTCTCTC -ACGGAACCTTTGTGATCCTGGATC -ACGGAACCTTTGTGATCCCACTTC -ACGGAACCTTTGTGATCCGTACTC -ACGGAACCTTTGTGATCCGATGTC -ACGGAACCTTTGTGATCCACAGTC -ACGGAACCTTTGTGATCCTTGCTG -ACGGAACCTTTGTGATCCTCCATG -ACGGAACCTTTGTGATCCTGTGTG -ACGGAACCTTTGTGATCCCTAGTG -ACGGAACCTTTGTGATCCCATCTG -ACGGAACCTTTGTGATCCGAGTTG -ACGGAACCTTTGTGATCCAGACTG -ACGGAACCTTTGTGATCCTCGGTA -ACGGAACCTTTGTGATCCTGCCTA -ACGGAACCTTTGTGATCCCCACTA -ACGGAACCTTTGTGATCCGGAGTA -ACGGAACCTTTGTGATCCTCGTCT -ACGGAACCTTTGTGATCCTGCACT -ACGGAACCTTTGTGATCCCTGACT -ACGGAACCTTTGTGATCCCAACCT -ACGGAACCTTTGTGATCCGCTACT -ACGGAACCTTTGTGATCCGGATCT -ACGGAACCTTTGTGATCCAAGGCT -ACGGAACCTTTGTGATCCTCAACC -ACGGAACCTTTGTGATCCTGTTCC -ACGGAACCTTTGTGATCCATTCCC -ACGGAACCTTTGTGATCCTTCTCG -ACGGAACCTTTGTGATCCTAGACG -ACGGAACCTTTGTGATCCGTAACG -ACGGAACCTTTGTGATCCACTTCG -ACGGAACCTTTGTGATCCTACGCA -ACGGAACCTTTGTGATCCCTTGCA -ACGGAACCTTTGTGATCCCGAACA -ACGGAACCTTTGTGATCCCAGTCA -ACGGAACCTTTGTGATCCGATCCA -ACGGAACCTTTGTGATCCACGACA -ACGGAACCTTTGTGATCCAGCTCA -ACGGAACCTTTGTGATCCTCACGT -ACGGAACCTTTGTGATCCCGTAGT -ACGGAACCTTTGTGATCCGTCAGT -ACGGAACCTTTGTGATCCGAAGGT -ACGGAACCTTTGTGATCCAACCGT -ACGGAACCTTTGTGATCCTTGTGC -ACGGAACCTTTGTGATCCCTAAGC -ACGGAACCTTTGTGATCCACTAGC -ACGGAACCTTTGTGATCCAGATGC -ACGGAACCTTTGTGATCCTGAAGG -ACGGAACCTTTGTGATCCCAATGG -ACGGAACCTTTGTGATCCATGAGG -ACGGAACCTTTGTGATCCAATGGG -ACGGAACCTTTGTGATCCTCCTGA -ACGGAACCTTTGTGATCCTAGCGA -ACGGAACCTTTGTGATCCCACAGA -ACGGAACCTTTGTGATCCGCAAGA -ACGGAACCTTTGTGATCCGGTTGA -ACGGAACCTTTGTGATCCTCCGAT -ACGGAACCTTTGTGATCCTGGCAT -ACGGAACCTTTGTGATCCCGAGAT -ACGGAACCTTTGTGATCCTACCAC -ACGGAACCTTTGTGATCCCAGAAC -ACGGAACCTTTGTGATCCGTCTAC -ACGGAACCTTTGTGATCCACGTAC -ACGGAACCTTTGTGATCCAGTGAC -ACGGAACCTTTGTGATCCCTGTAG -ACGGAACCTTTGTGATCCCCTAAG -ACGGAACCTTTGTGATCCGTTCAG -ACGGAACCTTTGTGATCCGCATAG -ACGGAACCTTTGTGATCCGACAAG -ACGGAACCTTTGTGATCCAAGCAG -ACGGAACCTTTGTGATCCCGTCAA -ACGGAACCTTTGTGATCCGCTGAA -ACGGAACCTTTGTGATCCAGTACG -ACGGAACCTTTGTGATCCATCCGA -ACGGAACCTTTGTGATCCATGGGA -ACGGAACCTTTGTGATCCGTGCAA -ACGGAACCTTTGTGATCCGAGGAA -ACGGAACCTTTGTGATCCCAGGTA -ACGGAACCTTTGTGATCCGACTCT -ACGGAACCTTTGTGATCCAGTCCT -ACGGAACCTTTGTGATCCTAAGCC -ACGGAACCTTTGTGATCCATAGCC -ACGGAACCTTTGTGATCCTAACCG -ACGGAACCTTTGTGATCCATGCCA -ACGGAACCTTTGCGATAGGGAAAC -ACGGAACCTTTGCGATAGAACACC -ACGGAACCTTTGCGATAGATCGAG -ACGGAACCTTTGCGATAGCTCCTT -ACGGAACCTTTGCGATAGCCTGTT -ACGGAACCTTTGCGATAGCGGTTT -ACGGAACCTTTGCGATAGGTGGTT -ACGGAACCTTTGCGATAGGCCTTT -ACGGAACCTTTGCGATAGGGTCTT -ACGGAACCTTTGCGATAGACGCTT -ACGGAACCTTTGCGATAGAGCGTT -ACGGAACCTTTGCGATAGTTCGTC -ACGGAACCTTTGCGATAGTCTCTC -ACGGAACCTTTGCGATAGTGGATC -ACGGAACCTTTGCGATAGCACTTC -ACGGAACCTTTGCGATAGGTACTC -ACGGAACCTTTGCGATAGGATGTC -ACGGAACCTTTGCGATAGACAGTC -ACGGAACCTTTGCGATAGTTGCTG -ACGGAACCTTTGCGATAGTCCATG -ACGGAACCTTTGCGATAGTGTGTG -ACGGAACCTTTGCGATAGCTAGTG -ACGGAACCTTTGCGATAGCATCTG -ACGGAACCTTTGCGATAGGAGTTG -ACGGAACCTTTGCGATAGAGACTG -ACGGAACCTTTGCGATAGTCGGTA -ACGGAACCTTTGCGATAGTGCCTA -ACGGAACCTTTGCGATAGCCACTA -ACGGAACCTTTGCGATAGGGAGTA -ACGGAACCTTTGCGATAGTCGTCT -ACGGAACCTTTGCGATAGTGCACT -ACGGAACCTTTGCGATAGCTGACT -ACGGAACCTTTGCGATAGCAACCT -ACGGAACCTTTGCGATAGGCTACT -ACGGAACCTTTGCGATAGGGATCT -ACGGAACCTTTGCGATAGAAGGCT -ACGGAACCTTTGCGATAGTCAACC -ACGGAACCTTTGCGATAGTGTTCC -ACGGAACCTTTGCGATAGATTCCC -ACGGAACCTTTGCGATAGTTCTCG -ACGGAACCTTTGCGATAGTAGACG -ACGGAACCTTTGCGATAGGTAACG -ACGGAACCTTTGCGATAGACTTCG -ACGGAACCTTTGCGATAGTACGCA -ACGGAACCTTTGCGATAGCTTGCA -ACGGAACCTTTGCGATAGCGAACA -ACGGAACCTTTGCGATAGCAGTCA -ACGGAACCTTTGCGATAGGATCCA -ACGGAACCTTTGCGATAGACGACA -ACGGAACCTTTGCGATAGAGCTCA -ACGGAACCTTTGCGATAGTCACGT -ACGGAACCTTTGCGATAGCGTAGT -ACGGAACCTTTGCGATAGGTCAGT -ACGGAACCTTTGCGATAGGAAGGT -ACGGAACCTTTGCGATAGAACCGT -ACGGAACCTTTGCGATAGTTGTGC -ACGGAACCTTTGCGATAGCTAAGC -ACGGAACCTTTGCGATAGACTAGC -ACGGAACCTTTGCGATAGAGATGC -ACGGAACCTTTGCGATAGTGAAGG -ACGGAACCTTTGCGATAGCAATGG -ACGGAACCTTTGCGATAGATGAGG -ACGGAACCTTTGCGATAGAATGGG -ACGGAACCTTTGCGATAGTCCTGA -ACGGAACCTTTGCGATAGTAGCGA -ACGGAACCTTTGCGATAGCACAGA -ACGGAACCTTTGCGATAGGCAAGA -ACGGAACCTTTGCGATAGGGTTGA -ACGGAACCTTTGCGATAGTCCGAT -ACGGAACCTTTGCGATAGTGGCAT -ACGGAACCTTTGCGATAGCGAGAT -ACGGAACCTTTGCGATAGTACCAC -ACGGAACCTTTGCGATAGCAGAAC -ACGGAACCTTTGCGATAGGTCTAC -ACGGAACCTTTGCGATAGACGTAC -ACGGAACCTTTGCGATAGAGTGAC -ACGGAACCTTTGCGATAGCTGTAG -ACGGAACCTTTGCGATAGCCTAAG -ACGGAACCTTTGCGATAGGTTCAG -ACGGAACCTTTGCGATAGGCATAG -ACGGAACCTTTGCGATAGGACAAG -ACGGAACCTTTGCGATAGAAGCAG -ACGGAACCTTTGCGATAGCGTCAA -ACGGAACCTTTGCGATAGGCTGAA -ACGGAACCTTTGCGATAGAGTACG -ACGGAACCTTTGCGATAGATCCGA -ACGGAACCTTTGCGATAGATGGGA -ACGGAACCTTTGCGATAGGTGCAA -ACGGAACCTTTGCGATAGGAGGAA -ACGGAACCTTTGCGATAGCAGGTA -ACGGAACCTTTGCGATAGGACTCT -ACGGAACCTTTGCGATAGAGTCCT -ACGGAACCTTTGCGATAGTAAGCC -ACGGAACCTTTGCGATAGATAGCC -ACGGAACCTTTGCGATAGTAACCG -ACGGAACCTTTGCGATAGATGCCA -ACGGAACCTTTGAGACACGGAAAC -ACGGAACCTTTGAGACACAACACC -ACGGAACCTTTGAGACACATCGAG -ACGGAACCTTTGAGACACCTCCTT -ACGGAACCTTTGAGACACCCTGTT -ACGGAACCTTTGAGACACCGGTTT -ACGGAACCTTTGAGACACGTGGTT -ACGGAACCTTTGAGACACGCCTTT -ACGGAACCTTTGAGACACGGTCTT -ACGGAACCTTTGAGACACACGCTT -ACGGAACCTTTGAGACACAGCGTT -ACGGAACCTTTGAGACACTTCGTC -ACGGAACCTTTGAGACACTCTCTC -ACGGAACCTTTGAGACACTGGATC -ACGGAACCTTTGAGACACCACTTC -ACGGAACCTTTGAGACACGTACTC -ACGGAACCTTTGAGACACGATGTC -ACGGAACCTTTGAGACACACAGTC -ACGGAACCTTTGAGACACTTGCTG -ACGGAACCTTTGAGACACTCCATG -ACGGAACCTTTGAGACACTGTGTG -ACGGAACCTTTGAGACACCTAGTG -ACGGAACCTTTGAGACACCATCTG -ACGGAACCTTTGAGACACGAGTTG -ACGGAACCTTTGAGACACAGACTG -ACGGAACCTTTGAGACACTCGGTA -ACGGAACCTTTGAGACACTGCCTA -ACGGAACCTTTGAGACACCCACTA -ACGGAACCTTTGAGACACGGAGTA -ACGGAACCTTTGAGACACTCGTCT -ACGGAACCTTTGAGACACTGCACT -ACGGAACCTTTGAGACACCTGACT -ACGGAACCTTTGAGACACCAACCT -ACGGAACCTTTGAGACACGCTACT -ACGGAACCTTTGAGACACGGATCT -ACGGAACCTTTGAGACACAAGGCT -ACGGAACCTTTGAGACACTCAACC -ACGGAACCTTTGAGACACTGTTCC -ACGGAACCTTTGAGACACATTCCC -ACGGAACCTTTGAGACACTTCTCG -ACGGAACCTTTGAGACACTAGACG -ACGGAACCTTTGAGACACGTAACG -ACGGAACCTTTGAGACACACTTCG -ACGGAACCTTTGAGACACTACGCA -ACGGAACCTTTGAGACACCTTGCA -ACGGAACCTTTGAGACACCGAACA -ACGGAACCTTTGAGACACCAGTCA -ACGGAACCTTTGAGACACGATCCA -ACGGAACCTTTGAGACACACGACA -ACGGAACCTTTGAGACACAGCTCA -ACGGAACCTTTGAGACACTCACGT -ACGGAACCTTTGAGACACCGTAGT -ACGGAACCTTTGAGACACGTCAGT -ACGGAACCTTTGAGACACGAAGGT -ACGGAACCTTTGAGACACAACCGT -ACGGAACCTTTGAGACACTTGTGC -ACGGAACCTTTGAGACACCTAAGC -ACGGAACCTTTGAGACACACTAGC -ACGGAACCTTTGAGACACAGATGC -ACGGAACCTTTGAGACACTGAAGG -ACGGAACCTTTGAGACACCAATGG -ACGGAACCTTTGAGACACATGAGG -ACGGAACCTTTGAGACACAATGGG -ACGGAACCTTTGAGACACTCCTGA -ACGGAACCTTTGAGACACTAGCGA -ACGGAACCTTTGAGACACCACAGA -ACGGAACCTTTGAGACACGCAAGA -ACGGAACCTTTGAGACACGGTTGA -ACGGAACCTTTGAGACACTCCGAT -ACGGAACCTTTGAGACACTGGCAT -ACGGAACCTTTGAGACACCGAGAT -ACGGAACCTTTGAGACACTACCAC -ACGGAACCTTTGAGACACCAGAAC -ACGGAACCTTTGAGACACGTCTAC -ACGGAACCTTTGAGACACACGTAC -ACGGAACCTTTGAGACACAGTGAC -ACGGAACCTTTGAGACACCTGTAG -ACGGAACCTTTGAGACACCCTAAG -ACGGAACCTTTGAGACACGTTCAG -ACGGAACCTTTGAGACACGCATAG -ACGGAACCTTTGAGACACGACAAG -ACGGAACCTTTGAGACACAAGCAG -ACGGAACCTTTGAGACACCGTCAA -ACGGAACCTTTGAGACACGCTGAA -ACGGAACCTTTGAGACACAGTACG -ACGGAACCTTTGAGACACATCCGA -ACGGAACCTTTGAGACACATGGGA -ACGGAACCTTTGAGACACGTGCAA -ACGGAACCTTTGAGACACGAGGAA -ACGGAACCTTTGAGACACCAGGTA -ACGGAACCTTTGAGACACGACTCT -ACGGAACCTTTGAGACACAGTCCT -ACGGAACCTTTGAGACACTAAGCC -ACGGAACCTTTGAGACACATAGCC -ACGGAACCTTTGAGACACTAACCG -ACGGAACCTTTGAGACACATGCCA -ACGGAACCTTTGAGAGCAGGAAAC -ACGGAACCTTTGAGAGCAAACACC -ACGGAACCTTTGAGAGCAATCGAG -ACGGAACCTTTGAGAGCACTCCTT -ACGGAACCTTTGAGAGCACCTGTT -ACGGAACCTTTGAGAGCACGGTTT -ACGGAACCTTTGAGAGCAGTGGTT -ACGGAACCTTTGAGAGCAGCCTTT -ACGGAACCTTTGAGAGCAGGTCTT -ACGGAACCTTTGAGAGCAACGCTT -ACGGAACCTTTGAGAGCAAGCGTT -ACGGAACCTTTGAGAGCATTCGTC -ACGGAACCTTTGAGAGCATCTCTC -ACGGAACCTTTGAGAGCATGGATC -ACGGAACCTTTGAGAGCACACTTC -ACGGAACCTTTGAGAGCAGTACTC -ACGGAACCTTTGAGAGCAGATGTC -ACGGAACCTTTGAGAGCAACAGTC -ACGGAACCTTTGAGAGCATTGCTG -ACGGAACCTTTGAGAGCATCCATG -ACGGAACCTTTGAGAGCATGTGTG -ACGGAACCTTTGAGAGCACTAGTG -ACGGAACCTTTGAGAGCACATCTG -ACGGAACCTTTGAGAGCAGAGTTG -ACGGAACCTTTGAGAGCAAGACTG -ACGGAACCTTTGAGAGCATCGGTA -ACGGAACCTTTGAGAGCATGCCTA -ACGGAACCTTTGAGAGCACCACTA -ACGGAACCTTTGAGAGCAGGAGTA -ACGGAACCTTTGAGAGCATCGTCT -ACGGAACCTTTGAGAGCATGCACT -ACGGAACCTTTGAGAGCACTGACT -ACGGAACCTTTGAGAGCACAACCT -ACGGAACCTTTGAGAGCAGCTACT -ACGGAACCTTTGAGAGCAGGATCT -ACGGAACCTTTGAGAGCAAAGGCT -ACGGAACCTTTGAGAGCATCAACC -ACGGAACCTTTGAGAGCATGTTCC -ACGGAACCTTTGAGAGCAATTCCC -ACGGAACCTTTGAGAGCATTCTCG -ACGGAACCTTTGAGAGCATAGACG -ACGGAACCTTTGAGAGCAGTAACG -ACGGAACCTTTGAGAGCAACTTCG -ACGGAACCTTTGAGAGCATACGCA -ACGGAACCTTTGAGAGCACTTGCA -ACGGAACCTTTGAGAGCACGAACA -ACGGAACCTTTGAGAGCACAGTCA -ACGGAACCTTTGAGAGCAGATCCA -ACGGAACCTTTGAGAGCAACGACA -ACGGAACCTTTGAGAGCAAGCTCA -ACGGAACCTTTGAGAGCATCACGT -ACGGAACCTTTGAGAGCACGTAGT -ACGGAACCTTTGAGAGCAGTCAGT -ACGGAACCTTTGAGAGCAGAAGGT -ACGGAACCTTTGAGAGCAAACCGT -ACGGAACCTTTGAGAGCATTGTGC -ACGGAACCTTTGAGAGCACTAAGC -ACGGAACCTTTGAGAGCAACTAGC -ACGGAACCTTTGAGAGCAAGATGC -ACGGAACCTTTGAGAGCATGAAGG -ACGGAACCTTTGAGAGCACAATGG -ACGGAACCTTTGAGAGCAATGAGG -ACGGAACCTTTGAGAGCAAATGGG -ACGGAACCTTTGAGAGCATCCTGA -ACGGAACCTTTGAGAGCATAGCGA -ACGGAACCTTTGAGAGCACACAGA -ACGGAACCTTTGAGAGCAGCAAGA -ACGGAACCTTTGAGAGCAGGTTGA -ACGGAACCTTTGAGAGCATCCGAT -ACGGAACCTTTGAGAGCATGGCAT -ACGGAACCTTTGAGAGCACGAGAT -ACGGAACCTTTGAGAGCATACCAC -ACGGAACCTTTGAGAGCACAGAAC -ACGGAACCTTTGAGAGCAGTCTAC -ACGGAACCTTTGAGAGCAACGTAC -ACGGAACCTTTGAGAGCAAGTGAC -ACGGAACCTTTGAGAGCACTGTAG -ACGGAACCTTTGAGAGCACCTAAG -ACGGAACCTTTGAGAGCAGTTCAG -ACGGAACCTTTGAGAGCAGCATAG -ACGGAACCTTTGAGAGCAGACAAG -ACGGAACCTTTGAGAGCAAAGCAG -ACGGAACCTTTGAGAGCACGTCAA -ACGGAACCTTTGAGAGCAGCTGAA -ACGGAACCTTTGAGAGCAAGTACG -ACGGAACCTTTGAGAGCAATCCGA -ACGGAACCTTTGAGAGCAATGGGA -ACGGAACCTTTGAGAGCAGTGCAA -ACGGAACCTTTGAGAGCAGAGGAA -ACGGAACCTTTGAGAGCACAGGTA -ACGGAACCTTTGAGAGCAGACTCT -ACGGAACCTTTGAGAGCAAGTCCT -ACGGAACCTTTGAGAGCATAAGCC -ACGGAACCTTTGAGAGCAATAGCC -ACGGAACCTTTGAGAGCATAACCG -ACGGAACCTTTGAGAGCAATGCCA -ACGGAACCTTTGTGAGGTGGAAAC -ACGGAACCTTTGTGAGGTAACACC -ACGGAACCTTTGTGAGGTATCGAG -ACGGAACCTTTGTGAGGTCTCCTT -ACGGAACCTTTGTGAGGTCCTGTT -ACGGAACCTTTGTGAGGTCGGTTT -ACGGAACCTTTGTGAGGTGTGGTT -ACGGAACCTTTGTGAGGTGCCTTT -ACGGAACCTTTGTGAGGTGGTCTT -ACGGAACCTTTGTGAGGTACGCTT -ACGGAACCTTTGTGAGGTAGCGTT -ACGGAACCTTTGTGAGGTTTCGTC -ACGGAACCTTTGTGAGGTTCTCTC -ACGGAACCTTTGTGAGGTTGGATC -ACGGAACCTTTGTGAGGTCACTTC -ACGGAACCTTTGTGAGGTGTACTC -ACGGAACCTTTGTGAGGTGATGTC -ACGGAACCTTTGTGAGGTACAGTC -ACGGAACCTTTGTGAGGTTTGCTG -ACGGAACCTTTGTGAGGTTCCATG -ACGGAACCTTTGTGAGGTTGTGTG -ACGGAACCTTTGTGAGGTCTAGTG -ACGGAACCTTTGTGAGGTCATCTG -ACGGAACCTTTGTGAGGTGAGTTG -ACGGAACCTTTGTGAGGTAGACTG -ACGGAACCTTTGTGAGGTTCGGTA -ACGGAACCTTTGTGAGGTTGCCTA -ACGGAACCTTTGTGAGGTCCACTA -ACGGAACCTTTGTGAGGTGGAGTA -ACGGAACCTTTGTGAGGTTCGTCT -ACGGAACCTTTGTGAGGTTGCACT -ACGGAACCTTTGTGAGGTCTGACT -ACGGAACCTTTGTGAGGTCAACCT -ACGGAACCTTTGTGAGGTGCTACT -ACGGAACCTTTGTGAGGTGGATCT -ACGGAACCTTTGTGAGGTAAGGCT -ACGGAACCTTTGTGAGGTTCAACC -ACGGAACCTTTGTGAGGTTGTTCC -ACGGAACCTTTGTGAGGTATTCCC -ACGGAACCTTTGTGAGGTTTCTCG -ACGGAACCTTTGTGAGGTTAGACG -ACGGAACCTTTGTGAGGTGTAACG -ACGGAACCTTTGTGAGGTACTTCG -ACGGAACCTTTGTGAGGTTACGCA -ACGGAACCTTTGTGAGGTCTTGCA -ACGGAACCTTTGTGAGGTCGAACA -ACGGAACCTTTGTGAGGTCAGTCA -ACGGAACCTTTGTGAGGTGATCCA -ACGGAACCTTTGTGAGGTACGACA -ACGGAACCTTTGTGAGGTAGCTCA -ACGGAACCTTTGTGAGGTTCACGT -ACGGAACCTTTGTGAGGTCGTAGT -ACGGAACCTTTGTGAGGTGTCAGT -ACGGAACCTTTGTGAGGTGAAGGT -ACGGAACCTTTGTGAGGTAACCGT -ACGGAACCTTTGTGAGGTTTGTGC -ACGGAACCTTTGTGAGGTCTAAGC -ACGGAACCTTTGTGAGGTACTAGC -ACGGAACCTTTGTGAGGTAGATGC -ACGGAACCTTTGTGAGGTTGAAGG -ACGGAACCTTTGTGAGGTCAATGG -ACGGAACCTTTGTGAGGTATGAGG -ACGGAACCTTTGTGAGGTAATGGG -ACGGAACCTTTGTGAGGTTCCTGA -ACGGAACCTTTGTGAGGTTAGCGA -ACGGAACCTTTGTGAGGTCACAGA -ACGGAACCTTTGTGAGGTGCAAGA -ACGGAACCTTTGTGAGGTGGTTGA -ACGGAACCTTTGTGAGGTTCCGAT -ACGGAACCTTTGTGAGGTTGGCAT -ACGGAACCTTTGTGAGGTCGAGAT -ACGGAACCTTTGTGAGGTTACCAC -ACGGAACCTTTGTGAGGTCAGAAC -ACGGAACCTTTGTGAGGTGTCTAC -ACGGAACCTTTGTGAGGTACGTAC -ACGGAACCTTTGTGAGGTAGTGAC -ACGGAACCTTTGTGAGGTCTGTAG -ACGGAACCTTTGTGAGGTCCTAAG -ACGGAACCTTTGTGAGGTGTTCAG -ACGGAACCTTTGTGAGGTGCATAG -ACGGAACCTTTGTGAGGTGACAAG -ACGGAACCTTTGTGAGGTAAGCAG -ACGGAACCTTTGTGAGGTCGTCAA -ACGGAACCTTTGTGAGGTGCTGAA -ACGGAACCTTTGTGAGGTAGTACG -ACGGAACCTTTGTGAGGTATCCGA -ACGGAACCTTTGTGAGGTATGGGA -ACGGAACCTTTGTGAGGTGTGCAA -ACGGAACCTTTGTGAGGTGAGGAA -ACGGAACCTTTGTGAGGTCAGGTA -ACGGAACCTTTGTGAGGTGACTCT -ACGGAACCTTTGTGAGGTAGTCCT -ACGGAACCTTTGTGAGGTTAAGCC -ACGGAACCTTTGTGAGGTATAGCC -ACGGAACCTTTGTGAGGTTAACCG -ACGGAACCTTTGTGAGGTATGCCA -ACGGAACCTTTGGATTCCGGAAAC -ACGGAACCTTTGGATTCCAACACC -ACGGAACCTTTGGATTCCATCGAG -ACGGAACCTTTGGATTCCCTCCTT -ACGGAACCTTTGGATTCCCCTGTT -ACGGAACCTTTGGATTCCCGGTTT -ACGGAACCTTTGGATTCCGTGGTT -ACGGAACCTTTGGATTCCGCCTTT -ACGGAACCTTTGGATTCCGGTCTT -ACGGAACCTTTGGATTCCACGCTT -ACGGAACCTTTGGATTCCAGCGTT -ACGGAACCTTTGGATTCCTTCGTC -ACGGAACCTTTGGATTCCTCTCTC -ACGGAACCTTTGGATTCCTGGATC -ACGGAACCTTTGGATTCCCACTTC -ACGGAACCTTTGGATTCCGTACTC -ACGGAACCTTTGGATTCCGATGTC -ACGGAACCTTTGGATTCCACAGTC -ACGGAACCTTTGGATTCCTTGCTG -ACGGAACCTTTGGATTCCTCCATG -ACGGAACCTTTGGATTCCTGTGTG -ACGGAACCTTTGGATTCCCTAGTG -ACGGAACCTTTGGATTCCCATCTG -ACGGAACCTTTGGATTCCGAGTTG -ACGGAACCTTTGGATTCCAGACTG -ACGGAACCTTTGGATTCCTCGGTA -ACGGAACCTTTGGATTCCTGCCTA -ACGGAACCTTTGGATTCCCCACTA -ACGGAACCTTTGGATTCCGGAGTA -ACGGAACCTTTGGATTCCTCGTCT -ACGGAACCTTTGGATTCCTGCACT -ACGGAACCTTTGGATTCCCTGACT -ACGGAACCTTTGGATTCCCAACCT -ACGGAACCTTTGGATTCCGCTACT -ACGGAACCTTTGGATTCCGGATCT -ACGGAACCTTTGGATTCCAAGGCT -ACGGAACCTTTGGATTCCTCAACC -ACGGAACCTTTGGATTCCTGTTCC -ACGGAACCTTTGGATTCCATTCCC -ACGGAACCTTTGGATTCCTTCTCG -ACGGAACCTTTGGATTCCTAGACG -ACGGAACCTTTGGATTCCGTAACG -ACGGAACCTTTGGATTCCACTTCG -ACGGAACCTTTGGATTCCTACGCA -ACGGAACCTTTGGATTCCCTTGCA -ACGGAACCTTTGGATTCCCGAACA -ACGGAACCTTTGGATTCCCAGTCA -ACGGAACCTTTGGATTCCGATCCA -ACGGAACCTTTGGATTCCACGACA -ACGGAACCTTTGGATTCCAGCTCA -ACGGAACCTTTGGATTCCTCACGT -ACGGAACCTTTGGATTCCCGTAGT -ACGGAACCTTTGGATTCCGTCAGT -ACGGAACCTTTGGATTCCGAAGGT -ACGGAACCTTTGGATTCCAACCGT -ACGGAACCTTTGGATTCCTTGTGC -ACGGAACCTTTGGATTCCCTAAGC -ACGGAACCTTTGGATTCCACTAGC -ACGGAACCTTTGGATTCCAGATGC -ACGGAACCTTTGGATTCCTGAAGG -ACGGAACCTTTGGATTCCCAATGG -ACGGAACCTTTGGATTCCATGAGG -ACGGAACCTTTGGATTCCAATGGG -ACGGAACCTTTGGATTCCTCCTGA -ACGGAACCTTTGGATTCCTAGCGA -ACGGAACCTTTGGATTCCCACAGA -ACGGAACCTTTGGATTCCGCAAGA -ACGGAACCTTTGGATTCCGGTTGA -ACGGAACCTTTGGATTCCTCCGAT -ACGGAACCTTTGGATTCCTGGCAT -ACGGAACCTTTGGATTCCCGAGAT -ACGGAACCTTTGGATTCCTACCAC -ACGGAACCTTTGGATTCCCAGAAC -ACGGAACCTTTGGATTCCGTCTAC -ACGGAACCTTTGGATTCCACGTAC -ACGGAACCTTTGGATTCCAGTGAC -ACGGAACCTTTGGATTCCCTGTAG -ACGGAACCTTTGGATTCCCCTAAG -ACGGAACCTTTGGATTCCGTTCAG -ACGGAACCTTTGGATTCCGCATAG -ACGGAACCTTTGGATTCCGACAAG -ACGGAACCTTTGGATTCCAAGCAG -ACGGAACCTTTGGATTCCCGTCAA -ACGGAACCTTTGGATTCCGCTGAA -ACGGAACCTTTGGATTCCAGTACG -ACGGAACCTTTGGATTCCATCCGA -ACGGAACCTTTGGATTCCATGGGA -ACGGAACCTTTGGATTCCGTGCAA -ACGGAACCTTTGGATTCCGAGGAA -ACGGAACCTTTGGATTCCCAGGTA -ACGGAACCTTTGGATTCCGACTCT -ACGGAACCTTTGGATTCCAGTCCT -ACGGAACCTTTGGATTCCTAAGCC -ACGGAACCTTTGGATTCCATAGCC -ACGGAACCTTTGGATTCCTAACCG -ACGGAACCTTTGGATTCCATGCCA -ACGGAACCTTTGCATTGGGGAAAC -ACGGAACCTTTGCATTGGAACACC -ACGGAACCTTTGCATTGGATCGAG -ACGGAACCTTTGCATTGGCTCCTT -ACGGAACCTTTGCATTGGCCTGTT -ACGGAACCTTTGCATTGGCGGTTT -ACGGAACCTTTGCATTGGGTGGTT -ACGGAACCTTTGCATTGGGCCTTT -ACGGAACCTTTGCATTGGGGTCTT -ACGGAACCTTTGCATTGGACGCTT -ACGGAACCTTTGCATTGGAGCGTT -ACGGAACCTTTGCATTGGTTCGTC -ACGGAACCTTTGCATTGGTCTCTC -ACGGAACCTTTGCATTGGTGGATC -ACGGAACCTTTGCATTGGCACTTC -ACGGAACCTTTGCATTGGGTACTC -ACGGAACCTTTGCATTGGGATGTC -ACGGAACCTTTGCATTGGACAGTC -ACGGAACCTTTGCATTGGTTGCTG -ACGGAACCTTTGCATTGGTCCATG -ACGGAACCTTTGCATTGGTGTGTG -ACGGAACCTTTGCATTGGCTAGTG -ACGGAACCTTTGCATTGGCATCTG -ACGGAACCTTTGCATTGGGAGTTG -ACGGAACCTTTGCATTGGAGACTG -ACGGAACCTTTGCATTGGTCGGTA -ACGGAACCTTTGCATTGGTGCCTA -ACGGAACCTTTGCATTGGCCACTA -ACGGAACCTTTGCATTGGGGAGTA -ACGGAACCTTTGCATTGGTCGTCT -ACGGAACCTTTGCATTGGTGCACT -ACGGAACCTTTGCATTGGCTGACT -ACGGAACCTTTGCATTGGCAACCT -ACGGAACCTTTGCATTGGGCTACT -ACGGAACCTTTGCATTGGGGATCT -ACGGAACCTTTGCATTGGAAGGCT -ACGGAACCTTTGCATTGGTCAACC -ACGGAACCTTTGCATTGGTGTTCC -ACGGAACCTTTGCATTGGATTCCC -ACGGAACCTTTGCATTGGTTCTCG -ACGGAACCTTTGCATTGGTAGACG -ACGGAACCTTTGCATTGGGTAACG -ACGGAACCTTTGCATTGGACTTCG -ACGGAACCTTTGCATTGGTACGCA -ACGGAACCTTTGCATTGGCTTGCA -ACGGAACCTTTGCATTGGCGAACA -ACGGAACCTTTGCATTGGCAGTCA -ACGGAACCTTTGCATTGGGATCCA -ACGGAACCTTTGCATTGGACGACA -ACGGAACCTTTGCATTGGAGCTCA -ACGGAACCTTTGCATTGGTCACGT -ACGGAACCTTTGCATTGGCGTAGT -ACGGAACCTTTGCATTGGGTCAGT -ACGGAACCTTTGCATTGGGAAGGT -ACGGAACCTTTGCATTGGAACCGT -ACGGAACCTTTGCATTGGTTGTGC -ACGGAACCTTTGCATTGGCTAAGC -ACGGAACCTTTGCATTGGACTAGC -ACGGAACCTTTGCATTGGAGATGC -ACGGAACCTTTGCATTGGTGAAGG -ACGGAACCTTTGCATTGGCAATGG -ACGGAACCTTTGCATTGGATGAGG -ACGGAACCTTTGCATTGGAATGGG -ACGGAACCTTTGCATTGGTCCTGA -ACGGAACCTTTGCATTGGTAGCGA -ACGGAACCTTTGCATTGGCACAGA -ACGGAACCTTTGCATTGGGCAAGA -ACGGAACCTTTGCATTGGGGTTGA -ACGGAACCTTTGCATTGGTCCGAT -ACGGAACCTTTGCATTGGTGGCAT -ACGGAACCTTTGCATTGGCGAGAT -ACGGAACCTTTGCATTGGTACCAC -ACGGAACCTTTGCATTGGCAGAAC -ACGGAACCTTTGCATTGGGTCTAC -ACGGAACCTTTGCATTGGACGTAC -ACGGAACCTTTGCATTGGAGTGAC -ACGGAACCTTTGCATTGGCTGTAG -ACGGAACCTTTGCATTGGCCTAAG -ACGGAACCTTTGCATTGGGTTCAG -ACGGAACCTTTGCATTGGGCATAG -ACGGAACCTTTGCATTGGGACAAG -ACGGAACCTTTGCATTGGAAGCAG -ACGGAACCTTTGCATTGGCGTCAA -ACGGAACCTTTGCATTGGGCTGAA -ACGGAACCTTTGCATTGGAGTACG -ACGGAACCTTTGCATTGGATCCGA -ACGGAACCTTTGCATTGGATGGGA -ACGGAACCTTTGCATTGGGTGCAA -ACGGAACCTTTGCATTGGGAGGAA -ACGGAACCTTTGCATTGGCAGGTA -ACGGAACCTTTGCATTGGGACTCT -ACGGAACCTTTGCATTGGAGTCCT -ACGGAACCTTTGCATTGGTAAGCC -ACGGAACCTTTGCATTGGATAGCC -ACGGAACCTTTGCATTGGTAACCG -ACGGAACCTTTGCATTGGATGCCA -ACGGAACCTTTGGATCGAGGAAAC -ACGGAACCTTTGGATCGAAACACC -ACGGAACCTTTGGATCGAATCGAG -ACGGAACCTTTGGATCGACTCCTT -ACGGAACCTTTGGATCGACCTGTT -ACGGAACCTTTGGATCGACGGTTT -ACGGAACCTTTGGATCGAGTGGTT -ACGGAACCTTTGGATCGAGCCTTT -ACGGAACCTTTGGATCGAGGTCTT -ACGGAACCTTTGGATCGAACGCTT -ACGGAACCTTTGGATCGAAGCGTT -ACGGAACCTTTGGATCGATTCGTC -ACGGAACCTTTGGATCGATCTCTC -ACGGAACCTTTGGATCGATGGATC -ACGGAACCTTTGGATCGACACTTC -ACGGAACCTTTGGATCGAGTACTC -ACGGAACCTTTGGATCGAGATGTC -ACGGAACCTTTGGATCGAACAGTC -ACGGAACCTTTGGATCGATTGCTG -ACGGAACCTTTGGATCGATCCATG -ACGGAACCTTTGGATCGATGTGTG -ACGGAACCTTTGGATCGACTAGTG -ACGGAACCTTTGGATCGACATCTG -ACGGAACCTTTGGATCGAGAGTTG -ACGGAACCTTTGGATCGAAGACTG -ACGGAACCTTTGGATCGATCGGTA -ACGGAACCTTTGGATCGATGCCTA -ACGGAACCTTTGGATCGACCACTA -ACGGAACCTTTGGATCGAGGAGTA -ACGGAACCTTTGGATCGATCGTCT -ACGGAACCTTTGGATCGATGCACT -ACGGAACCTTTGGATCGACTGACT -ACGGAACCTTTGGATCGACAACCT -ACGGAACCTTTGGATCGAGCTACT -ACGGAACCTTTGGATCGAGGATCT -ACGGAACCTTTGGATCGAAAGGCT -ACGGAACCTTTGGATCGATCAACC -ACGGAACCTTTGGATCGATGTTCC -ACGGAACCTTTGGATCGAATTCCC -ACGGAACCTTTGGATCGATTCTCG -ACGGAACCTTTGGATCGATAGACG -ACGGAACCTTTGGATCGAGTAACG -ACGGAACCTTTGGATCGAACTTCG -ACGGAACCTTTGGATCGATACGCA -ACGGAACCTTTGGATCGACTTGCA -ACGGAACCTTTGGATCGACGAACA -ACGGAACCTTTGGATCGACAGTCA -ACGGAACCTTTGGATCGAGATCCA -ACGGAACCTTTGGATCGAACGACA -ACGGAACCTTTGGATCGAAGCTCA -ACGGAACCTTTGGATCGATCACGT -ACGGAACCTTTGGATCGACGTAGT -ACGGAACCTTTGGATCGAGTCAGT -ACGGAACCTTTGGATCGAGAAGGT -ACGGAACCTTTGGATCGAAACCGT -ACGGAACCTTTGGATCGATTGTGC -ACGGAACCTTTGGATCGACTAAGC -ACGGAACCTTTGGATCGAACTAGC -ACGGAACCTTTGGATCGAAGATGC -ACGGAACCTTTGGATCGATGAAGG -ACGGAACCTTTGGATCGACAATGG -ACGGAACCTTTGGATCGAATGAGG -ACGGAACCTTTGGATCGAAATGGG -ACGGAACCTTTGGATCGATCCTGA -ACGGAACCTTTGGATCGATAGCGA -ACGGAACCTTTGGATCGACACAGA -ACGGAACCTTTGGATCGAGCAAGA -ACGGAACCTTTGGATCGAGGTTGA -ACGGAACCTTTGGATCGATCCGAT -ACGGAACCTTTGGATCGATGGCAT -ACGGAACCTTTGGATCGACGAGAT -ACGGAACCTTTGGATCGATACCAC -ACGGAACCTTTGGATCGACAGAAC -ACGGAACCTTTGGATCGAGTCTAC -ACGGAACCTTTGGATCGAACGTAC -ACGGAACCTTTGGATCGAAGTGAC -ACGGAACCTTTGGATCGACTGTAG -ACGGAACCTTTGGATCGACCTAAG -ACGGAACCTTTGGATCGAGTTCAG -ACGGAACCTTTGGATCGAGCATAG -ACGGAACCTTTGGATCGAGACAAG -ACGGAACCTTTGGATCGAAAGCAG -ACGGAACCTTTGGATCGACGTCAA -ACGGAACCTTTGGATCGAGCTGAA -ACGGAACCTTTGGATCGAAGTACG -ACGGAACCTTTGGATCGAATCCGA -ACGGAACCTTTGGATCGAATGGGA -ACGGAACCTTTGGATCGAGTGCAA -ACGGAACCTTTGGATCGAGAGGAA -ACGGAACCTTTGGATCGACAGGTA -ACGGAACCTTTGGATCGAGACTCT -ACGGAACCTTTGGATCGAAGTCCT -ACGGAACCTTTGGATCGATAAGCC -ACGGAACCTTTGGATCGAATAGCC -ACGGAACCTTTGGATCGATAACCG -ACGGAACCTTTGGATCGAATGCCA -ACGGAACCTTTGCACTACGGAAAC -ACGGAACCTTTGCACTACAACACC -ACGGAACCTTTGCACTACATCGAG -ACGGAACCTTTGCACTACCTCCTT -ACGGAACCTTTGCACTACCCTGTT -ACGGAACCTTTGCACTACCGGTTT -ACGGAACCTTTGCACTACGTGGTT -ACGGAACCTTTGCACTACGCCTTT -ACGGAACCTTTGCACTACGGTCTT -ACGGAACCTTTGCACTACACGCTT -ACGGAACCTTTGCACTACAGCGTT -ACGGAACCTTTGCACTACTTCGTC -ACGGAACCTTTGCACTACTCTCTC -ACGGAACCTTTGCACTACTGGATC -ACGGAACCTTTGCACTACCACTTC -ACGGAACCTTTGCACTACGTACTC -ACGGAACCTTTGCACTACGATGTC -ACGGAACCTTTGCACTACACAGTC -ACGGAACCTTTGCACTACTTGCTG -ACGGAACCTTTGCACTACTCCATG -ACGGAACCTTTGCACTACTGTGTG -ACGGAACCTTTGCACTACCTAGTG -ACGGAACCTTTGCACTACCATCTG -ACGGAACCTTTGCACTACGAGTTG -ACGGAACCTTTGCACTACAGACTG -ACGGAACCTTTGCACTACTCGGTA -ACGGAACCTTTGCACTACTGCCTA -ACGGAACCTTTGCACTACCCACTA -ACGGAACCTTTGCACTACGGAGTA -ACGGAACCTTTGCACTACTCGTCT -ACGGAACCTTTGCACTACTGCACT -ACGGAACCTTTGCACTACCTGACT -ACGGAACCTTTGCACTACCAACCT -ACGGAACCTTTGCACTACGCTACT -ACGGAACCTTTGCACTACGGATCT -ACGGAACCTTTGCACTACAAGGCT -ACGGAACCTTTGCACTACTCAACC -ACGGAACCTTTGCACTACTGTTCC -ACGGAACCTTTGCACTACATTCCC -ACGGAACCTTTGCACTACTTCTCG -ACGGAACCTTTGCACTACTAGACG -ACGGAACCTTTGCACTACGTAACG -ACGGAACCTTTGCACTACACTTCG -ACGGAACCTTTGCACTACTACGCA -ACGGAACCTTTGCACTACCTTGCA -ACGGAACCTTTGCACTACCGAACA -ACGGAACCTTTGCACTACCAGTCA -ACGGAACCTTTGCACTACGATCCA -ACGGAACCTTTGCACTACACGACA -ACGGAACCTTTGCACTACAGCTCA -ACGGAACCTTTGCACTACTCACGT -ACGGAACCTTTGCACTACCGTAGT -ACGGAACCTTTGCACTACGTCAGT -ACGGAACCTTTGCACTACGAAGGT -ACGGAACCTTTGCACTACAACCGT -ACGGAACCTTTGCACTACTTGTGC -ACGGAACCTTTGCACTACCTAAGC -ACGGAACCTTTGCACTACACTAGC -ACGGAACCTTTGCACTACAGATGC -ACGGAACCTTTGCACTACTGAAGG -ACGGAACCTTTGCACTACCAATGG -ACGGAACCTTTGCACTACATGAGG -ACGGAACCTTTGCACTACAATGGG -ACGGAACCTTTGCACTACTCCTGA -ACGGAACCTTTGCACTACTAGCGA -ACGGAACCTTTGCACTACCACAGA -ACGGAACCTTTGCACTACGCAAGA -ACGGAACCTTTGCACTACGGTTGA -ACGGAACCTTTGCACTACTCCGAT -ACGGAACCTTTGCACTACTGGCAT -ACGGAACCTTTGCACTACCGAGAT -ACGGAACCTTTGCACTACTACCAC -ACGGAACCTTTGCACTACCAGAAC -ACGGAACCTTTGCACTACGTCTAC -ACGGAACCTTTGCACTACACGTAC -ACGGAACCTTTGCACTACAGTGAC -ACGGAACCTTTGCACTACCTGTAG -ACGGAACCTTTGCACTACCCTAAG -ACGGAACCTTTGCACTACGTTCAG -ACGGAACCTTTGCACTACGCATAG -ACGGAACCTTTGCACTACGACAAG -ACGGAACCTTTGCACTACAAGCAG -ACGGAACCTTTGCACTACCGTCAA -ACGGAACCTTTGCACTACGCTGAA -ACGGAACCTTTGCACTACAGTACG -ACGGAACCTTTGCACTACATCCGA -ACGGAACCTTTGCACTACATGGGA -ACGGAACCTTTGCACTACGTGCAA -ACGGAACCTTTGCACTACGAGGAA -ACGGAACCTTTGCACTACCAGGTA -ACGGAACCTTTGCACTACGACTCT -ACGGAACCTTTGCACTACAGTCCT -ACGGAACCTTTGCACTACTAAGCC -ACGGAACCTTTGCACTACATAGCC -ACGGAACCTTTGCACTACTAACCG -ACGGAACCTTTGCACTACATGCCA -ACGGAACCTTTGAACCAGGGAAAC -ACGGAACCTTTGAACCAGAACACC -ACGGAACCTTTGAACCAGATCGAG -ACGGAACCTTTGAACCAGCTCCTT -ACGGAACCTTTGAACCAGCCTGTT -ACGGAACCTTTGAACCAGCGGTTT -ACGGAACCTTTGAACCAGGTGGTT -ACGGAACCTTTGAACCAGGCCTTT -ACGGAACCTTTGAACCAGGGTCTT -ACGGAACCTTTGAACCAGACGCTT -ACGGAACCTTTGAACCAGAGCGTT -ACGGAACCTTTGAACCAGTTCGTC -ACGGAACCTTTGAACCAGTCTCTC -ACGGAACCTTTGAACCAGTGGATC -ACGGAACCTTTGAACCAGCACTTC -ACGGAACCTTTGAACCAGGTACTC -ACGGAACCTTTGAACCAGGATGTC -ACGGAACCTTTGAACCAGACAGTC -ACGGAACCTTTGAACCAGTTGCTG -ACGGAACCTTTGAACCAGTCCATG -ACGGAACCTTTGAACCAGTGTGTG -ACGGAACCTTTGAACCAGCTAGTG -ACGGAACCTTTGAACCAGCATCTG -ACGGAACCTTTGAACCAGGAGTTG -ACGGAACCTTTGAACCAGAGACTG -ACGGAACCTTTGAACCAGTCGGTA -ACGGAACCTTTGAACCAGTGCCTA -ACGGAACCTTTGAACCAGCCACTA -ACGGAACCTTTGAACCAGGGAGTA -ACGGAACCTTTGAACCAGTCGTCT -ACGGAACCTTTGAACCAGTGCACT -ACGGAACCTTTGAACCAGCTGACT -ACGGAACCTTTGAACCAGCAACCT -ACGGAACCTTTGAACCAGGCTACT -ACGGAACCTTTGAACCAGGGATCT -ACGGAACCTTTGAACCAGAAGGCT -ACGGAACCTTTGAACCAGTCAACC -ACGGAACCTTTGAACCAGTGTTCC -ACGGAACCTTTGAACCAGATTCCC -ACGGAACCTTTGAACCAGTTCTCG -ACGGAACCTTTGAACCAGTAGACG -ACGGAACCTTTGAACCAGGTAACG -ACGGAACCTTTGAACCAGACTTCG -ACGGAACCTTTGAACCAGTACGCA -ACGGAACCTTTGAACCAGCTTGCA -ACGGAACCTTTGAACCAGCGAACA -ACGGAACCTTTGAACCAGCAGTCA -ACGGAACCTTTGAACCAGGATCCA -ACGGAACCTTTGAACCAGACGACA -ACGGAACCTTTGAACCAGAGCTCA -ACGGAACCTTTGAACCAGTCACGT -ACGGAACCTTTGAACCAGCGTAGT -ACGGAACCTTTGAACCAGGTCAGT -ACGGAACCTTTGAACCAGGAAGGT -ACGGAACCTTTGAACCAGAACCGT -ACGGAACCTTTGAACCAGTTGTGC -ACGGAACCTTTGAACCAGCTAAGC -ACGGAACCTTTGAACCAGACTAGC -ACGGAACCTTTGAACCAGAGATGC -ACGGAACCTTTGAACCAGTGAAGG -ACGGAACCTTTGAACCAGCAATGG -ACGGAACCTTTGAACCAGATGAGG -ACGGAACCTTTGAACCAGAATGGG -ACGGAACCTTTGAACCAGTCCTGA -ACGGAACCTTTGAACCAGTAGCGA -ACGGAACCTTTGAACCAGCACAGA -ACGGAACCTTTGAACCAGGCAAGA -ACGGAACCTTTGAACCAGGGTTGA -ACGGAACCTTTGAACCAGTCCGAT -ACGGAACCTTTGAACCAGTGGCAT -ACGGAACCTTTGAACCAGCGAGAT -ACGGAACCTTTGAACCAGTACCAC -ACGGAACCTTTGAACCAGCAGAAC -ACGGAACCTTTGAACCAGGTCTAC -ACGGAACCTTTGAACCAGACGTAC -ACGGAACCTTTGAACCAGAGTGAC -ACGGAACCTTTGAACCAGCTGTAG -ACGGAACCTTTGAACCAGCCTAAG -ACGGAACCTTTGAACCAGGTTCAG -ACGGAACCTTTGAACCAGGCATAG -ACGGAACCTTTGAACCAGGACAAG -ACGGAACCTTTGAACCAGAAGCAG -ACGGAACCTTTGAACCAGCGTCAA -ACGGAACCTTTGAACCAGGCTGAA -ACGGAACCTTTGAACCAGAGTACG -ACGGAACCTTTGAACCAGATCCGA -ACGGAACCTTTGAACCAGATGGGA -ACGGAACCTTTGAACCAGGTGCAA -ACGGAACCTTTGAACCAGGAGGAA -ACGGAACCTTTGAACCAGCAGGTA -ACGGAACCTTTGAACCAGGACTCT -ACGGAACCTTTGAACCAGAGTCCT -ACGGAACCTTTGAACCAGTAAGCC -ACGGAACCTTTGAACCAGATAGCC -ACGGAACCTTTGAACCAGTAACCG -ACGGAACCTTTGAACCAGATGCCA -ACGGAACCTTTGTACGTCGGAAAC -ACGGAACCTTTGTACGTCAACACC -ACGGAACCTTTGTACGTCATCGAG -ACGGAACCTTTGTACGTCCTCCTT -ACGGAACCTTTGTACGTCCCTGTT -ACGGAACCTTTGTACGTCCGGTTT -ACGGAACCTTTGTACGTCGTGGTT -ACGGAACCTTTGTACGTCGCCTTT -ACGGAACCTTTGTACGTCGGTCTT -ACGGAACCTTTGTACGTCACGCTT -ACGGAACCTTTGTACGTCAGCGTT -ACGGAACCTTTGTACGTCTTCGTC -ACGGAACCTTTGTACGTCTCTCTC -ACGGAACCTTTGTACGTCTGGATC -ACGGAACCTTTGTACGTCCACTTC -ACGGAACCTTTGTACGTCGTACTC -ACGGAACCTTTGTACGTCGATGTC -ACGGAACCTTTGTACGTCACAGTC -ACGGAACCTTTGTACGTCTTGCTG -ACGGAACCTTTGTACGTCTCCATG -ACGGAACCTTTGTACGTCTGTGTG -ACGGAACCTTTGTACGTCCTAGTG -ACGGAACCTTTGTACGTCCATCTG -ACGGAACCTTTGTACGTCGAGTTG -ACGGAACCTTTGTACGTCAGACTG -ACGGAACCTTTGTACGTCTCGGTA -ACGGAACCTTTGTACGTCTGCCTA -ACGGAACCTTTGTACGTCCCACTA -ACGGAACCTTTGTACGTCGGAGTA -ACGGAACCTTTGTACGTCTCGTCT -ACGGAACCTTTGTACGTCTGCACT -ACGGAACCTTTGTACGTCCTGACT -ACGGAACCTTTGTACGTCCAACCT -ACGGAACCTTTGTACGTCGCTACT -ACGGAACCTTTGTACGTCGGATCT -ACGGAACCTTTGTACGTCAAGGCT -ACGGAACCTTTGTACGTCTCAACC -ACGGAACCTTTGTACGTCTGTTCC -ACGGAACCTTTGTACGTCATTCCC -ACGGAACCTTTGTACGTCTTCTCG -ACGGAACCTTTGTACGTCTAGACG -ACGGAACCTTTGTACGTCGTAACG -ACGGAACCTTTGTACGTCACTTCG -ACGGAACCTTTGTACGTCTACGCA -ACGGAACCTTTGTACGTCCTTGCA -ACGGAACCTTTGTACGTCCGAACA -ACGGAACCTTTGTACGTCCAGTCA -ACGGAACCTTTGTACGTCGATCCA -ACGGAACCTTTGTACGTCACGACA -ACGGAACCTTTGTACGTCAGCTCA -ACGGAACCTTTGTACGTCTCACGT -ACGGAACCTTTGTACGTCCGTAGT -ACGGAACCTTTGTACGTCGTCAGT -ACGGAACCTTTGTACGTCGAAGGT -ACGGAACCTTTGTACGTCAACCGT -ACGGAACCTTTGTACGTCTTGTGC -ACGGAACCTTTGTACGTCCTAAGC -ACGGAACCTTTGTACGTCACTAGC -ACGGAACCTTTGTACGTCAGATGC -ACGGAACCTTTGTACGTCTGAAGG -ACGGAACCTTTGTACGTCCAATGG -ACGGAACCTTTGTACGTCATGAGG -ACGGAACCTTTGTACGTCAATGGG -ACGGAACCTTTGTACGTCTCCTGA -ACGGAACCTTTGTACGTCTAGCGA -ACGGAACCTTTGTACGTCCACAGA -ACGGAACCTTTGTACGTCGCAAGA -ACGGAACCTTTGTACGTCGGTTGA -ACGGAACCTTTGTACGTCTCCGAT -ACGGAACCTTTGTACGTCTGGCAT -ACGGAACCTTTGTACGTCCGAGAT -ACGGAACCTTTGTACGTCTACCAC -ACGGAACCTTTGTACGTCCAGAAC -ACGGAACCTTTGTACGTCGTCTAC -ACGGAACCTTTGTACGTCACGTAC -ACGGAACCTTTGTACGTCAGTGAC -ACGGAACCTTTGTACGTCCTGTAG -ACGGAACCTTTGTACGTCCCTAAG -ACGGAACCTTTGTACGTCGTTCAG -ACGGAACCTTTGTACGTCGCATAG -ACGGAACCTTTGTACGTCGACAAG -ACGGAACCTTTGTACGTCAAGCAG -ACGGAACCTTTGTACGTCCGTCAA -ACGGAACCTTTGTACGTCGCTGAA -ACGGAACCTTTGTACGTCAGTACG -ACGGAACCTTTGTACGTCATCCGA -ACGGAACCTTTGTACGTCATGGGA -ACGGAACCTTTGTACGTCGTGCAA -ACGGAACCTTTGTACGTCGAGGAA -ACGGAACCTTTGTACGTCCAGGTA -ACGGAACCTTTGTACGTCGACTCT -ACGGAACCTTTGTACGTCAGTCCT -ACGGAACCTTTGTACGTCTAAGCC -ACGGAACCTTTGTACGTCATAGCC -ACGGAACCTTTGTACGTCTAACCG -ACGGAACCTTTGTACGTCATGCCA -ACGGAACCTTTGTACACGGGAAAC -ACGGAACCTTTGTACACGAACACC -ACGGAACCTTTGTACACGATCGAG -ACGGAACCTTTGTACACGCTCCTT -ACGGAACCTTTGTACACGCCTGTT -ACGGAACCTTTGTACACGCGGTTT -ACGGAACCTTTGTACACGGTGGTT -ACGGAACCTTTGTACACGGCCTTT -ACGGAACCTTTGTACACGGGTCTT -ACGGAACCTTTGTACACGACGCTT -ACGGAACCTTTGTACACGAGCGTT -ACGGAACCTTTGTACACGTTCGTC -ACGGAACCTTTGTACACGTCTCTC -ACGGAACCTTTGTACACGTGGATC -ACGGAACCTTTGTACACGCACTTC -ACGGAACCTTTGTACACGGTACTC -ACGGAACCTTTGTACACGGATGTC -ACGGAACCTTTGTACACGACAGTC -ACGGAACCTTTGTACACGTTGCTG -ACGGAACCTTTGTACACGTCCATG -ACGGAACCTTTGTACACGTGTGTG -ACGGAACCTTTGTACACGCTAGTG -ACGGAACCTTTGTACACGCATCTG -ACGGAACCTTTGTACACGGAGTTG -ACGGAACCTTTGTACACGAGACTG -ACGGAACCTTTGTACACGTCGGTA -ACGGAACCTTTGTACACGTGCCTA -ACGGAACCTTTGTACACGCCACTA -ACGGAACCTTTGTACACGGGAGTA -ACGGAACCTTTGTACACGTCGTCT -ACGGAACCTTTGTACACGTGCACT -ACGGAACCTTTGTACACGCTGACT -ACGGAACCTTTGTACACGCAACCT -ACGGAACCTTTGTACACGGCTACT -ACGGAACCTTTGTACACGGGATCT -ACGGAACCTTTGTACACGAAGGCT -ACGGAACCTTTGTACACGTCAACC -ACGGAACCTTTGTACACGTGTTCC -ACGGAACCTTTGTACACGATTCCC -ACGGAACCTTTGTACACGTTCTCG -ACGGAACCTTTGTACACGTAGACG -ACGGAACCTTTGTACACGGTAACG -ACGGAACCTTTGTACACGACTTCG -ACGGAACCTTTGTACACGTACGCA -ACGGAACCTTTGTACACGCTTGCA -ACGGAACCTTTGTACACGCGAACA -ACGGAACCTTTGTACACGCAGTCA -ACGGAACCTTTGTACACGGATCCA -ACGGAACCTTTGTACACGACGACA -ACGGAACCTTTGTACACGAGCTCA -ACGGAACCTTTGTACACGTCACGT -ACGGAACCTTTGTACACGCGTAGT -ACGGAACCTTTGTACACGGTCAGT -ACGGAACCTTTGTACACGGAAGGT -ACGGAACCTTTGTACACGAACCGT -ACGGAACCTTTGTACACGTTGTGC -ACGGAACCTTTGTACACGCTAAGC -ACGGAACCTTTGTACACGACTAGC -ACGGAACCTTTGTACACGAGATGC -ACGGAACCTTTGTACACGTGAAGG -ACGGAACCTTTGTACACGCAATGG -ACGGAACCTTTGTACACGATGAGG -ACGGAACCTTTGTACACGAATGGG -ACGGAACCTTTGTACACGTCCTGA -ACGGAACCTTTGTACACGTAGCGA -ACGGAACCTTTGTACACGCACAGA -ACGGAACCTTTGTACACGGCAAGA -ACGGAACCTTTGTACACGGGTTGA -ACGGAACCTTTGTACACGTCCGAT -ACGGAACCTTTGTACACGTGGCAT -ACGGAACCTTTGTACACGCGAGAT -ACGGAACCTTTGTACACGTACCAC -ACGGAACCTTTGTACACGCAGAAC -ACGGAACCTTTGTACACGGTCTAC -ACGGAACCTTTGTACACGACGTAC -ACGGAACCTTTGTACACGAGTGAC -ACGGAACCTTTGTACACGCTGTAG -ACGGAACCTTTGTACACGCCTAAG -ACGGAACCTTTGTACACGGTTCAG -ACGGAACCTTTGTACACGGCATAG -ACGGAACCTTTGTACACGGACAAG -ACGGAACCTTTGTACACGAAGCAG -ACGGAACCTTTGTACACGCGTCAA -ACGGAACCTTTGTACACGGCTGAA -ACGGAACCTTTGTACACGAGTACG -ACGGAACCTTTGTACACGATCCGA -ACGGAACCTTTGTACACGATGGGA -ACGGAACCTTTGTACACGGTGCAA -ACGGAACCTTTGTACACGGAGGAA -ACGGAACCTTTGTACACGCAGGTA -ACGGAACCTTTGTACACGGACTCT -ACGGAACCTTTGTACACGAGTCCT -ACGGAACCTTTGTACACGTAAGCC -ACGGAACCTTTGTACACGATAGCC -ACGGAACCTTTGTACACGTAACCG -ACGGAACCTTTGTACACGATGCCA -ACGGAACCTTTGGACAGTGGAAAC -ACGGAACCTTTGGACAGTAACACC -ACGGAACCTTTGGACAGTATCGAG -ACGGAACCTTTGGACAGTCTCCTT -ACGGAACCTTTGGACAGTCCTGTT -ACGGAACCTTTGGACAGTCGGTTT -ACGGAACCTTTGGACAGTGTGGTT -ACGGAACCTTTGGACAGTGCCTTT -ACGGAACCTTTGGACAGTGGTCTT -ACGGAACCTTTGGACAGTACGCTT -ACGGAACCTTTGGACAGTAGCGTT -ACGGAACCTTTGGACAGTTTCGTC -ACGGAACCTTTGGACAGTTCTCTC -ACGGAACCTTTGGACAGTTGGATC -ACGGAACCTTTGGACAGTCACTTC -ACGGAACCTTTGGACAGTGTACTC -ACGGAACCTTTGGACAGTGATGTC -ACGGAACCTTTGGACAGTACAGTC -ACGGAACCTTTGGACAGTTTGCTG -ACGGAACCTTTGGACAGTTCCATG -ACGGAACCTTTGGACAGTTGTGTG -ACGGAACCTTTGGACAGTCTAGTG -ACGGAACCTTTGGACAGTCATCTG -ACGGAACCTTTGGACAGTGAGTTG -ACGGAACCTTTGGACAGTAGACTG -ACGGAACCTTTGGACAGTTCGGTA -ACGGAACCTTTGGACAGTTGCCTA -ACGGAACCTTTGGACAGTCCACTA -ACGGAACCTTTGGACAGTGGAGTA -ACGGAACCTTTGGACAGTTCGTCT -ACGGAACCTTTGGACAGTTGCACT -ACGGAACCTTTGGACAGTCTGACT -ACGGAACCTTTGGACAGTCAACCT -ACGGAACCTTTGGACAGTGCTACT -ACGGAACCTTTGGACAGTGGATCT -ACGGAACCTTTGGACAGTAAGGCT -ACGGAACCTTTGGACAGTTCAACC -ACGGAACCTTTGGACAGTTGTTCC -ACGGAACCTTTGGACAGTATTCCC -ACGGAACCTTTGGACAGTTTCTCG -ACGGAACCTTTGGACAGTTAGACG -ACGGAACCTTTGGACAGTGTAACG -ACGGAACCTTTGGACAGTACTTCG -ACGGAACCTTTGGACAGTTACGCA -ACGGAACCTTTGGACAGTCTTGCA -ACGGAACCTTTGGACAGTCGAACA -ACGGAACCTTTGGACAGTCAGTCA -ACGGAACCTTTGGACAGTGATCCA -ACGGAACCTTTGGACAGTACGACA -ACGGAACCTTTGGACAGTAGCTCA -ACGGAACCTTTGGACAGTTCACGT -ACGGAACCTTTGGACAGTCGTAGT -ACGGAACCTTTGGACAGTGTCAGT -ACGGAACCTTTGGACAGTGAAGGT -ACGGAACCTTTGGACAGTAACCGT -ACGGAACCTTTGGACAGTTTGTGC -ACGGAACCTTTGGACAGTCTAAGC -ACGGAACCTTTGGACAGTACTAGC -ACGGAACCTTTGGACAGTAGATGC -ACGGAACCTTTGGACAGTTGAAGG -ACGGAACCTTTGGACAGTCAATGG -ACGGAACCTTTGGACAGTATGAGG -ACGGAACCTTTGGACAGTAATGGG -ACGGAACCTTTGGACAGTTCCTGA -ACGGAACCTTTGGACAGTTAGCGA -ACGGAACCTTTGGACAGTCACAGA -ACGGAACCTTTGGACAGTGCAAGA -ACGGAACCTTTGGACAGTGGTTGA -ACGGAACCTTTGGACAGTTCCGAT -ACGGAACCTTTGGACAGTTGGCAT -ACGGAACCTTTGGACAGTCGAGAT -ACGGAACCTTTGGACAGTTACCAC -ACGGAACCTTTGGACAGTCAGAAC -ACGGAACCTTTGGACAGTGTCTAC -ACGGAACCTTTGGACAGTACGTAC -ACGGAACCTTTGGACAGTAGTGAC -ACGGAACCTTTGGACAGTCTGTAG -ACGGAACCTTTGGACAGTCCTAAG -ACGGAACCTTTGGACAGTGTTCAG -ACGGAACCTTTGGACAGTGCATAG -ACGGAACCTTTGGACAGTGACAAG -ACGGAACCTTTGGACAGTAAGCAG -ACGGAACCTTTGGACAGTCGTCAA -ACGGAACCTTTGGACAGTGCTGAA -ACGGAACCTTTGGACAGTAGTACG -ACGGAACCTTTGGACAGTATCCGA -ACGGAACCTTTGGACAGTATGGGA -ACGGAACCTTTGGACAGTGTGCAA -ACGGAACCTTTGGACAGTGAGGAA -ACGGAACCTTTGGACAGTCAGGTA -ACGGAACCTTTGGACAGTGACTCT -ACGGAACCTTTGGACAGTAGTCCT -ACGGAACCTTTGGACAGTTAAGCC -ACGGAACCTTTGGACAGTATAGCC -ACGGAACCTTTGGACAGTTAACCG -ACGGAACCTTTGGACAGTATGCCA -ACGGAACCTTTGTAGCTGGGAAAC -ACGGAACCTTTGTAGCTGAACACC -ACGGAACCTTTGTAGCTGATCGAG -ACGGAACCTTTGTAGCTGCTCCTT -ACGGAACCTTTGTAGCTGCCTGTT -ACGGAACCTTTGTAGCTGCGGTTT -ACGGAACCTTTGTAGCTGGTGGTT -ACGGAACCTTTGTAGCTGGCCTTT -ACGGAACCTTTGTAGCTGGGTCTT -ACGGAACCTTTGTAGCTGACGCTT -ACGGAACCTTTGTAGCTGAGCGTT -ACGGAACCTTTGTAGCTGTTCGTC -ACGGAACCTTTGTAGCTGTCTCTC -ACGGAACCTTTGTAGCTGTGGATC -ACGGAACCTTTGTAGCTGCACTTC -ACGGAACCTTTGTAGCTGGTACTC -ACGGAACCTTTGTAGCTGGATGTC -ACGGAACCTTTGTAGCTGACAGTC -ACGGAACCTTTGTAGCTGTTGCTG -ACGGAACCTTTGTAGCTGTCCATG -ACGGAACCTTTGTAGCTGTGTGTG -ACGGAACCTTTGTAGCTGCTAGTG -ACGGAACCTTTGTAGCTGCATCTG -ACGGAACCTTTGTAGCTGGAGTTG -ACGGAACCTTTGTAGCTGAGACTG -ACGGAACCTTTGTAGCTGTCGGTA -ACGGAACCTTTGTAGCTGTGCCTA -ACGGAACCTTTGTAGCTGCCACTA -ACGGAACCTTTGTAGCTGGGAGTA -ACGGAACCTTTGTAGCTGTCGTCT -ACGGAACCTTTGTAGCTGTGCACT -ACGGAACCTTTGTAGCTGCTGACT -ACGGAACCTTTGTAGCTGCAACCT -ACGGAACCTTTGTAGCTGGCTACT -ACGGAACCTTTGTAGCTGGGATCT -ACGGAACCTTTGTAGCTGAAGGCT -ACGGAACCTTTGTAGCTGTCAACC -ACGGAACCTTTGTAGCTGTGTTCC -ACGGAACCTTTGTAGCTGATTCCC -ACGGAACCTTTGTAGCTGTTCTCG -ACGGAACCTTTGTAGCTGTAGACG -ACGGAACCTTTGTAGCTGGTAACG -ACGGAACCTTTGTAGCTGACTTCG -ACGGAACCTTTGTAGCTGTACGCA -ACGGAACCTTTGTAGCTGCTTGCA -ACGGAACCTTTGTAGCTGCGAACA -ACGGAACCTTTGTAGCTGCAGTCA -ACGGAACCTTTGTAGCTGGATCCA -ACGGAACCTTTGTAGCTGACGACA -ACGGAACCTTTGTAGCTGAGCTCA -ACGGAACCTTTGTAGCTGTCACGT -ACGGAACCTTTGTAGCTGCGTAGT -ACGGAACCTTTGTAGCTGGTCAGT -ACGGAACCTTTGTAGCTGGAAGGT -ACGGAACCTTTGTAGCTGAACCGT -ACGGAACCTTTGTAGCTGTTGTGC -ACGGAACCTTTGTAGCTGCTAAGC -ACGGAACCTTTGTAGCTGACTAGC -ACGGAACCTTTGTAGCTGAGATGC -ACGGAACCTTTGTAGCTGTGAAGG -ACGGAACCTTTGTAGCTGCAATGG -ACGGAACCTTTGTAGCTGATGAGG -ACGGAACCTTTGTAGCTGAATGGG -ACGGAACCTTTGTAGCTGTCCTGA -ACGGAACCTTTGTAGCTGTAGCGA -ACGGAACCTTTGTAGCTGCACAGA -ACGGAACCTTTGTAGCTGGCAAGA -ACGGAACCTTTGTAGCTGGGTTGA -ACGGAACCTTTGTAGCTGTCCGAT -ACGGAACCTTTGTAGCTGTGGCAT -ACGGAACCTTTGTAGCTGCGAGAT -ACGGAACCTTTGTAGCTGTACCAC -ACGGAACCTTTGTAGCTGCAGAAC -ACGGAACCTTTGTAGCTGGTCTAC -ACGGAACCTTTGTAGCTGACGTAC -ACGGAACCTTTGTAGCTGAGTGAC -ACGGAACCTTTGTAGCTGCTGTAG -ACGGAACCTTTGTAGCTGCCTAAG -ACGGAACCTTTGTAGCTGGTTCAG -ACGGAACCTTTGTAGCTGGCATAG -ACGGAACCTTTGTAGCTGGACAAG -ACGGAACCTTTGTAGCTGAAGCAG -ACGGAACCTTTGTAGCTGCGTCAA -ACGGAACCTTTGTAGCTGGCTGAA -ACGGAACCTTTGTAGCTGAGTACG -ACGGAACCTTTGTAGCTGATCCGA -ACGGAACCTTTGTAGCTGATGGGA -ACGGAACCTTTGTAGCTGGTGCAA -ACGGAACCTTTGTAGCTGGAGGAA -ACGGAACCTTTGTAGCTGCAGGTA -ACGGAACCTTTGTAGCTGGACTCT -ACGGAACCTTTGTAGCTGAGTCCT -ACGGAACCTTTGTAGCTGTAAGCC -ACGGAACCTTTGTAGCTGATAGCC -ACGGAACCTTTGTAGCTGTAACCG -ACGGAACCTTTGTAGCTGATGCCA -ACGGAACCTTTGAAGCCTGGAAAC -ACGGAACCTTTGAAGCCTAACACC -ACGGAACCTTTGAAGCCTATCGAG -ACGGAACCTTTGAAGCCTCTCCTT -ACGGAACCTTTGAAGCCTCCTGTT -ACGGAACCTTTGAAGCCTCGGTTT -ACGGAACCTTTGAAGCCTGTGGTT -ACGGAACCTTTGAAGCCTGCCTTT -ACGGAACCTTTGAAGCCTGGTCTT -ACGGAACCTTTGAAGCCTACGCTT -ACGGAACCTTTGAAGCCTAGCGTT -ACGGAACCTTTGAAGCCTTTCGTC -ACGGAACCTTTGAAGCCTTCTCTC -ACGGAACCTTTGAAGCCTTGGATC -ACGGAACCTTTGAAGCCTCACTTC -ACGGAACCTTTGAAGCCTGTACTC -ACGGAACCTTTGAAGCCTGATGTC -ACGGAACCTTTGAAGCCTACAGTC -ACGGAACCTTTGAAGCCTTTGCTG -ACGGAACCTTTGAAGCCTTCCATG -ACGGAACCTTTGAAGCCTTGTGTG -ACGGAACCTTTGAAGCCTCTAGTG -ACGGAACCTTTGAAGCCTCATCTG -ACGGAACCTTTGAAGCCTGAGTTG -ACGGAACCTTTGAAGCCTAGACTG -ACGGAACCTTTGAAGCCTTCGGTA -ACGGAACCTTTGAAGCCTTGCCTA -ACGGAACCTTTGAAGCCTCCACTA -ACGGAACCTTTGAAGCCTGGAGTA -ACGGAACCTTTGAAGCCTTCGTCT -ACGGAACCTTTGAAGCCTTGCACT -ACGGAACCTTTGAAGCCTCTGACT -ACGGAACCTTTGAAGCCTCAACCT -ACGGAACCTTTGAAGCCTGCTACT -ACGGAACCTTTGAAGCCTGGATCT -ACGGAACCTTTGAAGCCTAAGGCT -ACGGAACCTTTGAAGCCTTCAACC -ACGGAACCTTTGAAGCCTTGTTCC -ACGGAACCTTTGAAGCCTATTCCC -ACGGAACCTTTGAAGCCTTTCTCG -ACGGAACCTTTGAAGCCTTAGACG -ACGGAACCTTTGAAGCCTGTAACG -ACGGAACCTTTGAAGCCTACTTCG -ACGGAACCTTTGAAGCCTTACGCA -ACGGAACCTTTGAAGCCTCTTGCA -ACGGAACCTTTGAAGCCTCGAACA -ACGGAACCTTTGAAGCCTCAGTCA -ACGGAACCTTTGAAGCCTGATCCA -ACGGAACCTTTGAAGCCTACGACA -ACGGAACCTTTGAAGCCTAGCTCA -ACGGAACCTTTGAAGCCTTCACGT -ACGGAACCTTTGAAGCCTCGTAGT -ACGGAACCTTTGAAGCCTGTCAGT -ACGGAACCTTTGAAGCCTGAAGGT -ACGGAACCTTTGAAGCCTAACCGT -ACGGAACCTTTGAAGCCTTTGTGC -ACGGAACCTTTGAAGCCTCTAAGC -ACGGAACCTTTGAAGCCTACTAGC -ACGGAACCTTTGAAGCCTAGATGC -ACGGAACCTTTGAAGCCTTGAAGG -ACGGAACCTTTGAAGCCTCAATGG -ACGGAACCTTTGAAGCCTATGAGG -ACGGAACCTTTGAAGCCTAATGGG -ACGGAACCTTTGAAGCCTTCCTGA -ACGGAACCTTTGAAGCCTTAGCGA -ACGGAACCTTTGAAGCCTCACAGA -ACGGAACCTTTGAAGCCTGCAAGA -ACGGAACCTTTGAAGCCTGGTTGA -ACGGAACCTTTGAAGCCTTCCGAT -ACGGAACCTTTGAAGCCTTGGCAT -ACGGAACCTTTGAAGCCTCGAGAT -ACGGAACCTTTGAAGCCTTACCAC -ACGGAACCTTTGAAGCCTCAGAAC -ACGGAACCTTTGAAGCCTGTCTAC -ACGGAACCTTTGAAGCCTACGTAC -ACGGAACCTTTGAAGCCTAGTGAC -ACGGAACCTTTGAAGCCTCTGTAG -ACGGAACCTTTGAAGCCTCCTAAG -ACGGAACCTTTGAAGCCTGTTCAG -ACGGAACCTTTGAAGCCTGCATAG -ACGGAACCTTTGAAGCCTGACAAG -ACGGAACCTTTGAAGCCTAAGCAG -ACGGAACCTTTGAAGCCTCGTCAA -ACGGAACCTTTGAAGCCTGCTGAA -ACGGAACCTTTGAAGCCTAGTACG -ACGGAACCTTTGAAGCCTATCCGA -ACGGAACCTTTGAAGCCTATGGGA -ACGGAACCTTTGAAGCCTGTGCAA -ACGGAACCTTTGAAGCCTGAGGAA -ACGGAACCTTTGAAGCCTCAGGTA -ACGGAACCTTTGAAGCCTGACTCT -ACGGAACCTTTGAAGCCTAGTCCT -ACGGAACCTTTGAAGCCTTAAGCC -ACGGAACCTTTGAAGCCTATAGCC -ACGGAACCTTTGAAGCCTTAACCG -ACGGAACCTTTGAAGCCTATGCCA -ACGGAACCTTTGCAGGTTGGAAAC -ACGGAACCTTTGCAGGTTAACACC -ACGGAACCTTTGCAGGTTATCGAG -ACGGAACCTTTGCAGGTTCTCCTT -ACGGAACCTTTGCAGGTTCCTGTT -ACGGAACCTTTGCAGGTTCGGTTT -ACGGAACCTTTGCAGGTTGTGGTT -ACGGAACCTTTGCAGGTTGCCTTT -ACGGAACCTTTGCAGGTTGGTCTT -ACGGAACCTTTGCAGGTTACGCTT -ACGGAACCTTTGCAGGTTAGCGTT -ACGGAACCTTTGCAGGTTTTCGTC -ACGGAACCTTTGCAGGTTTCTCTC -ACGGAACCTTTGCAGGTTTGGATC -ACGGAACCTTTGCAGGTTCACTTC -ACGGAACCTTTGCAGGTTGTACTC -ACGGAACCTTTGCAGGTTGATGTC -ACGGAACCTTTGCAGGTTACAGTC -ACGGAACCTTTGCAGGTTTTGCTG -ACGGAACCTTTGCAGGTTTCCATG -ACGGAACCTTTGCAGGTTTGTGTG -ACGGAACCTTTGCAGGTTCTAGTG -ACGGAACCTTTGCAGGTTCATCTG -ACGGAACCTTTGCAGGTTGAGTTG -ACGGAACCTTTGCAGGTTAGACTG -ACGGAACCTTTGCAGGTTTCGGTA -ACGGAACCTTTGCAGGTTTGCCTA -ACGGAACCTTTGCAGGTTCCACTA -ACGGAACCTTTGCAGGTTGGAGTA -ACGGAACCTTTGCAGGTTTCGTCT -ACGGAACCTTTGCAGGTTTGCACT -ACGGAACCTTTGCAGGTTCTGACT -ACGGAACCTTTGCAGGTTCAACCT -ACGGAACCTTTGCAGGTTGCTACT -ACGGAACCTTTGCAGGTTGGATCT -ACGGAACCTTTGCAGGTTAAGGCT -ACGGAACCTTTGCAGGTTTCAACC -ACGGAACCTTTGCAGGTTTGTTCC -ACGGAACCTTTGCAGGTTATTCCC -ACGGAACCTTTGCAGGTTTTCTCG -ACGGAACCTTTGCAGGTTTAGACG -ACGGAACCTTTGCAGGTTGTAACG -ACGGAACCTTTGCAGGTTACTTCG -ACGGAACCTTTGCAGGTTTACGCA -ACGGAACCTTTGCAGGTTCTTGCA -ACGGAACCTTTGCAGGTTCGAACA -ACGGAACCTTTGCAGGTTCAGTCA -ACGGAACCTTTGCAGGTTGATCCA -ACGGAACCTTTGCAGGTTACGACA -ACGGAACCTTTGCAGGTTAGCTCA -ACGGAACCTTTGCAGGTTTCACGT -ACGGAACCTTTGCAGGTTCGTAGT -ACGGAACCTTTGCAGGTTGTCAGT -ACGGAACCTTTGCAGGTTGAAGGT -ACGGAACCTTTGCAGGTTAACCGT -ACGGAACCTTTGCAGGTTTTGTGC -ACGGAACCTTTGCAGGTTCTAAGC -ACGGAACCTTTGCAGGTTACTAGC -ACGGAACCTTTGCAGGTTAGATGC -ACGGAACCTTTGCAGGTTTGAAGG -ACGGAACCTTTGCAGGTTCAATGG -ACGGAACCTTTGCAGGTTATGAGG -ACGGAACCTTTGCAGGTTAATGGG -ACGGAACCTTTGCAGGTTTCCTGA -ACGGAACCTTTGCAGGTTTAGCGA -ACGGAACCTTTGCAGGTTCACAGA -ACGGAACCTTTGCAGGTTGCAAGA -ACGGAACCTTTGCAGGTTGGTTGA -ACGGAACCTTTGCAGGTTTCCGAT -ACGGAACCTTTGCAGGTTTGGCAT -ACGGAACCTTTGCAGGTTCGAGAT -ACGGAACCTTTGCAGGTTTACCAC -ACGGAACCTTTGCAGGTTCAGAAC -ACGGAACCTTTGCAGGTTGTCTAC -ACGGAACCTTTGCAGGTTACGTAC -ACGGAACCTTTGCAGGTTAGTGAC -ACGGAACCTTTGCAGGTTCTGTAG -ACGGAACCTTTGCAGGTTCCTAAG -ACGGAACCTTTGCAGGTTGTTCAG -ACGGAACCTTTGCAGGTTGCATAG -ACGGAACCTTTGCAGGTTGACAAG -ACGGAACCTTTGCAGGTTAAGCAG -ACGGAACCTTTGCAGGTTCGTCAA -ACGGAACCTTTGCAGGTTGCTGAA -ACGGAACCTTTGCAGGTTAGTACG -ACGGAACCTTTGCAGGTTATCCGA -ACGGAACCTTTGCAGGTTATGGGA -ACGGAACCTTTGCAGGTTGTGCAA -ACGGAACCTTTGCAGGTTGAGGAA -ACGGAACCTTTGCAGGTTCAGGTA -ACGGAACCTTTGCAGGTTGACTCT -ACGGAACCTTTGCAGGTTAGTCCT -ACGGAACCTTTGCAGGTTTAAGCC -ACGGAACCTTTGCAGGTTATAGCC -ACGGAACCTTTGCAGGTTTAACCG -ACGGAACCTTTGCAGGTTATGCCA -ACGGAACCTTTGTAGGCAGGAAAC -ACGGAACCTTTGTAGGCAAACACC -ACGGAACCTTTGTAGGCAATCGAG -ACGGAACCTTTGTAGGCACTCCTT -ACGGAACCTTTGTAGGCACCTGTT -ACGGAACCTTTGTAGGCACGGTTT -ACGGAACCTTTGTAGGCAGTGGTT -ACGGAACCTTTGTAGGCAGCCTTT -ACGGAACCTTTGTAGGCAGGTCTT -ACGGAACCTTTGTAGGCAACGCTT -ACGGAACCTTTGTAGGCAAGCGTT -ACGGAACCTTTGTAGGCATTCGTC -ACGGAACCTTTGTAGGCATCTCTC -ACGGAACCTTTGTAGGCATGGATC -ACGGAACCTTTGTAGGCACACTTC -ACGGAACCTTTGTAGGCAGTACTC -ACGGAACCTTTGTAGGCAGATGTC -ACGGAACCTTTGTAGGCAACAGTC -ACGGAACCTTTGTAGGCATTGCTG -ACGGAACCTTTGTAGGCATCCATG -ACGGAACCTTTGTAGGCATGTGTG -ACGGAACCTTTGTAGGCACTAGTG -ACGGAACCTTTGTAGGCACATCTG -ACGGAACCTTTGTAGGCAGAGTTG -ACGGAACCTTTGTAGGCAAGACTG -ACGGAACCTTTGTAGGCATCGGTA -ACGGAACCTTTGTAGGCATGCCTA -ACGGAACCTTTGTAGGCACCACTA -ACGGAACCTTTGTAGGCAGGAGTA -ACGGAACCTTTGTAGGCATCGTCT -ACGGAACCTTTGTAGGCATGCACT -ACGGAACCTTTGTAGGCACTGACT -ACGGAACCTTTGTAGGCACAACCT -ACGGAACCTTTGTAGGCAGCTACT -ACGGAACCTTTGTAGGCAGGATCT -ACGGAACCTTTGTAGGCAAAGGCT -ACGGAACCTTTGTAGGCATCAACC -ACGGAACCTTTGTAGGCATGTTCC -ACGGAACCTTTGTAGGCAATTCCC -ACGGAACCTTTGTAGGCATTCTCG -ACGGAACCTTTGTAGGCATAGACG -ACGGAACCTTTGTAGGCAGTAACG -ACGGAACCTTTGTAGGCAACTTCG -ACGGAACCTTTGTAGGCATACGCA -ACGGAACCTTTGTAGGCACTTGCA -ACGGAACCTTTGTAGGCACGAACA -ACGGAACCTTTGTAGGCACAGTCA -ACGGAACCTTTGTAGGCAGATCCA -ACGGAACCTTTGTAGGCAACGACA -ACGGAACCTTTGTAGGCAAGCTCA -ACGGAACCTTTGTAGGCATCACGT -ACGGAACCTTTGTAGGCACGTAGT -ACGGAACCTTTGTAGGCAGTCAGT -ACGGAACCTTTGTAGGCAGAAGGT -ACGGAACCTTTGTAGGCAAACCGT -ACGGAACCTTTGTAGGCATTGTGC -ACGGAACCTTTGTAGGCACTAAGC -ACGGAACCTTTGTAGGCAACTAGC -ACGGAACCTTTGTAGGCAAGATGC -ACGGAACCTTTGTAGGCATGAAGG -ACGGAACCTTTGTAGGCACAATGG -ACGGAACCTTTGTAGGCAATGAGG -ACGGAACCTTTGTAGGCAAATGGG -ACGGAACCTTTGTAGGCATCCTGA -ACGGAACCTTTGTAGGCATAGCGA -ACGGAACCTTTGTAGGCACACAGA -ACGGAACCTTTGTAGGCAGCAAGA -ACGGAACCTTTGTAGGCAGGTTGA -ACGGAACCTTTGTAGGCATCCGAT -ACGGAACCTTTGTAGGCATGGCAT -ACGGAACCTTTGTAGGCACGAGAT -ACGGAACCTTTGTAGGCATACCAC -ACGGAACCTTTGTAGGCACAGAAC -ACGGAACCTTTGTAGGCAGTCTAC -ACGGAACCTTTGTAGGCAACGTAC -ACGGAACCTTTGTAGGCAAGTGAC -ACGGAACCTTTGTAGGCACTGTAG -ACGGAACCTTTGTAGGCACCTAAG -ACGGAACCTTTGTAGGCAGTTCAG -ACGGAACCTTTGTAGGCAGCATAG -ACGGAACCTTTGTAGGCAGACAAG -ACGGAACCTTTGTAGGCAAAGCAG -ACGGAACCTTTGTAGGCACGTCAA -ACGGAACCTTTGTAGGCAGCTGAA -ACGGAACCTTTGTAGGCAAGTACG -ACGGAACCTTTGTAGGCAATCCGA -ACGGAACCTTTGTAGGCAATGGGA -ACGGAACCTTTGTAGGCAGTGCAA -ACGGAACCTTTGTAGGCAGAGGAA -ACGGAACCTTTGTAGGCACAGGTA -ACGGAACCTTTGTAGGCAGACTCT -ACGGAACCTTTGTAGGCAAGTCCT -ACGGAACCTTTGTAGGCATAAGCC -ACGGAACCTTTGTAGGCAATAGCC -ACGGAACCTTTGTAGGCATAACCG -ACGGAACCTTTGTAGGCAATGCCA -ACGGAACCTTTGAAGGACGGAAAC -ACGGAACCTTTGAAGGACAACACC -ACGGAACCTTTGAAGGACATCGAG -ACGGAACCTTTGAAGGACCTCCTT -ACGGAACCTTTGAAGGACCCTGTT -ACGGAACCTTTGAAGGACCGGTTT -ACGGAACCTTTGAAGGACGTGGTT -ACGGAACCTTTGAAGGACGCCTTT -ACGGAACCTTTGAAGGACGGTCTT -ACGGAACCTTTGAAGGACACGCTT -ACGGAACCTTTGAAGGACAGCGTT -ACGGAACCTTTGAAGGACTTCGTC -ACGGAACCTTTGAAGGACTCTCTC -ACGGAACCTTTGAAGGACTGGATC -ACGGAACCTTTGAAGGACCACTTC -ACGGAACCTTTGAAGGACGTACTC -ACGGAACCTTTGAAGGACGATGTC -ACGGAACCTTTGAAGGACACAGTC -ACGGAACCTTTGAAGGACTTGCTG -ACGGAACCTTTGAAGGACTCCATG -ACGGAACCTTTGAAGGACTGTGTG -ACGGAACCTTTGAAGGACCTAGTG -ACGGAACCTTTGAAGGACCATCTG -ACGGAACCTTTGAAGGACGAGTTG -ACGGAACCTTTGAAGGACAGACTG -ACGGAACCTTTGAAGGACTCGGTA -ACGGAACCTTTGAAGGACTGCCTA -ACGGAACCTTTGAAGGACCCACTA -ACGGAACCTTTGAAGGACGGAGTA -ACGGAACCTTTGAAGGACTCGTCT -ACGGAACCTTTGAAGGACTGCACT -ACGGAACCTTTGAAGGACCTGACT -ACGGAACCTTTGAAGGACCAACCT -ACGGAACCTTTGAAGGACGCTACT -ACGGAACCTTTGAAGGACGGATCT -ACGGAACCTTTGAAGGACAAGGCT -ACGGAACCTTTGAAGGACTCAACC -ACGGAACCTTTGAAGGACTGTTCC -ACGGAACCTTTGAAGGACATTCCC -ACGGAACCTTTGAAGGACTTCTCG -ACGGAACCTTTGAAGGACTAGACG -ACGGAACCTTTGAAGGACGTAACG -ACGGAACCTTTGAAGGACACTTCG -ACGGAACCTTTGAAGGACTACGCA -ACGGAACCTTTGAAGGACCTTGCA -ACGGAACCTTTGAAGGACCGAACA -ACGGAACCTTTGAAGGACCAGTCA -ACGGAACCTTTGAAGGACGATCCA -ACGGAACCTTTGAAGGACACGACA -ACGGAACCTTTGAAGGACAGCTCA -ACGGAACCTTTGAAGGACTCACGT -ACGGAACCTTTGAAGGACCGTAGT -ACGGAACCTTTGAAGGACGTCAGT -ACGGAACCTTTGAAGGACGAAGGT -ACGGAACCTTTGAAGGACAACCGT -ACGGAACCTTTGAAGGACTTGTGC -ACGGAACCTTTGAAGGACCTAAGC -ACGGAACCTTTGAAGGACACTAGC -ACGGAACCTTTGAAGGACAGATGC -ACGGAACCTTTGAAGGACTGAAGG -ACGGAACCTTTGAAGGACCAATGG -ACGGAACCTTTGAAGGACATGAGG -ACGGAACCTTTGAAGGACAATGGG -ACGGAACCTTTGAAGGACTCCTGA -ACGGAACCTTTGAAGGACTAGCGA -ACGGAACCTTTGAAGGACCACAGA -ACGGAACCTTTGAAGGACGCAAGA -ACGGAACCTTTGAAGGACGGTTGA -ACGGAACCTTTGAAGGACTCCGAT -ACGGAACCTTTGAAGGACTGGCAT -ACGGAACCTTTGAAGGACCGAGAT -ACGGAACCTTTGAAGGACTACCAC -ACGGAACCTTTGAAGGACCAGAAC -ACGGAACCTTTGAAGGACGTCTAC -ACGGAACCTTTGAAGGACACGTAC -ACGGAACCTTTGAAGGACAGTGAC -ACGGAACCTTTGAAGGACCTGTAG -ACGGAACCTTTGAAGGACCCTAAG -ACGGAACCTTTGAAGGACGTTCAG -ACGGAACCTTTGAAGGACGCATAG -ACGGAACCTTTGAAGGACGACAAG -ACGGAACCTTTGAAGGACAAGCAG -ACGGAACCTTTGAAGGACCGTCAA -ACGGAACCTTTGAAGGACGCTGAA -ACGGAACCTTTGAAGGACAGTACG -ACGGAACCTTTGAAGGACATCCGA -ACGGAACCTTTGAAGGACATGGGA -ACGGAACCTTTGAAGGACGTGCAA -ACGGAACCTTTGAAGGACGAGGAA -ACGGAACCTTTGAAGGACCAGGTA -ACGGAACCTTTGAAGGACGACTCT -ACGGAACCTTTGAAGGACAGTCCT -ACGGAACCTTTGAAGGACTAAGCC -ACGGAACCTTTGAAGGACATAGCC -ACGGAACCTTTGAAGGACTAACCG -ACGGAACCTTTGAAGGACATGCCA -ACGGAACCTTTGCAGAAGGGAAAC -ACGGAACCTTTGCAGAAGAACACC -ACGGAACCTTTGCAGAAGATCGAG -ACGGAACCTTTGCAGAAGCTCCTT -ACGGAACCTTTGCAGAAGCCTGTT -ACGGAACCTTTGCAGAAGCGGTTT -ACGGAACCTTTGCAGAAGGTGGTT -ACGGAACCTTTGCAGAAGGCCTTT -ACGGAACCTTTGCAGAAGGGTCTT -ACGGAACCTTTGCAGAAGACGCTT -ACGGAACCTTTGCAGAAGAGCGTT -ACGGAACCTTTGCAGAAGTTCGTC -ACGGAACCTTTGCAGAAGTCTCTC -ACGGAACCTTTGCAGAAGTGGATC -ACGGAACCTTTGCAGAAGCACTTC -ACGGAACCTTTGCAGAAGGTACTC -ACGGAACCTTTGCAGAAGGATGTC -ACGGAACCTTTGCAGAAGACAGTC -ACGGAACCTTTGCAGAAGTTGCTG -ACGGAACCTTTGCAGAAGTCCATG -ACGGAACCTTTGCAGAAGTGTGTG -ACGGAACCTTTGCAGAAGCTAGTG -ACGGAACCTTTGCAGAAGCATCTG -ACGGAACCTTTGCAGAAGGAGTTG -ACGGAACCTTTGCAGAAGAGACTG -ACGGAACCTTTGCAGAAGTCGGTA -ACGGAACCTTTGCAGAAGTGCCTA -ACGGAACCTTTGCAGAAGCCACTA -ACGGAACCTTTGCAGAAGGGAGTA -ACGGAACCTTTGCAGAAGTCGTCT -ACGGAACCTTTGCAGAAGTGCACT -ACGGAACCTTTGCAGAAGCTGACT -ACGGAACCTTTGCAGAAGCAACCT -ACGGAACCTTTGCAGAAGGCTACT -ACGGAACCTTTGCAGAAGGGATCT -ACGGAACCTTTGCAGAAGAAGGCT -ACGGAACCTTTGCAGAAGTCAACC -ACGGAACCTTTGCAGAAGTGTTCC -ACGGAACCTTTGCAGAAGATTCCC -ACGGAACCTTTGCAGAAGTTCTCG -ACGGAACCTTTGCAGAAGTAGACG -ACGGAACCTTTGCAGAAGGTAACG -ACGGAACCTTTGCAGAAGACTTCG -ACGGAACCTTTGCAGAAGTACGCA -ACGGAACCTTTGCAGAAGCTTGCA -ACGGAACCTTTGCAGAAGCGAACA -ACGGAACCTTTGCAGAAGCAGTCA -ACGGAACCTTTGCAGAAGGATCCA -ACGGAACCTTTGCAGAAGACGACA -ACGGAACCTTTGCAGAAGAGCTCA -ACGGAACCTTTGCAGAAGTCACGT -ACGGAACCTTTGCAGAAGCGTAGT -ACGGAACCTTTGCAGAAGGTCAGT -ACGGAACCTTTGCAGAAGGAAGGT -ACGGAACCTTTGCAGAAGAACCGT -ACGGAACCTTTGCAGAAGTTGTGC -ACGGAACCTTTGCAGAAGCTAAGC -ACGGAACCTTTGCAGAAGACTAGC -ACGGAACCTTTGCAGAAGAGATGC -ACGGAACCTTTGCAGAAGTGAAGG -ACGGAACCTTTGCAGAAGCAATGG -ACGGAACCTTTGCAGAAGATGAGG -ACGGAACCTTTGCAGAAGAATGGG -ACGGAACCTTTGCAGAAGTCCTGA -ACGGAACCTTTGCAGAAGTAGCGA -ACGGAACCTTTGCAGAAGCACAGA -ACGGAACCTTTGCAGAAGGCAAGA -ACGGAACCTTTGCAGAAGGGTTGA -ACGGAACCTTTGCAGAAGTCCGAT -ACGGAACCTTTGCAGAAGTGGCAT -ACGGAACCTTTGCAGAAGCGAGAT -ACGGAACCTTTGCAGAAGTACCAC -ACGGAACCTTTGCAGAAGCAGAAC -ACGGAACCTTTGCAGAAGGTCTAC -ACGGAACCTTTGCAGAAGACGTAC -ACGGAACCTTTGCAGAAGAGTGAC -ACGGAACCTTTGCAGAAGCTGTAG -ACGGAACCTTTGCAGAAGCCTAAG -ACGGAACCTTTGCAGAAGGTTCAG -ACGGAACCTTTGCAGAAGGCATAG -ACGGAACCTTTGCAGAAGGACAAG -ACGGAACCTTTGCAGAAGAAGCAG -ACGGAACCTTTGCAGAAGCGTCAA -ACGGAACCTTTGCAGAAGGCTGAA -ACGGAACCTTTGCAGAAGAGTACG -ACGGAACCTTTGCAGAAGATCCGA -ACGGAACCTTTGCAGAAGATGGGA -ACGGAACCTTTGCAGAAGGTGCAA -ACGGAACCTTTGCAGAAGGAGGAA -ACGGAACCTTTGCAGAAGCAGGTA -ACGGAACCTTTGCAGAAGGACTCT -ACGGAACCTTTGCAGAAGAGTCCT -ACGGAACCTTTGCAGAAGTAAGCC -ACGGAACCTTTGCAGAAGATAGCC -ACGGAACCTTTGCAGAAGTAACCG -ACGGAACCTTTGCAGAAGATGCCA -ACGGAACCTTTGCAACGTGGAAAC -ACGGAACCTTTGCAACGTAACACC -ACGGAACCTTTGCAACGTATCGAG -ACGGAACCTTTGCAACGTCTCCTT -ACGGAACCTTTGCAACGTCCTGTT -ACGGAACCTTTGCAACGTCGGTTT -ACGGAACCTTTGCAACGTGTGGTT -ACGGAACCTTTGCAACGTGCCTTT -ACGGAACCTTTGCAACGTGGTCTT -ACGGAACCTTTGCAACGTACGCTT -ACGGAACCTTTGCAACGTAGCGTT -ACGGAACCTTTGCAACGTTTCGTC -ACGGAACCTTTGCAACGTTCTCTC -ACGGAACCTTTGCAACGTTGGATC -ACGGAACCTTTGCAACGTCACTTC -ACGGAACCTTTGCAACGTGTACTC -ACGGAACCTTTGCAACGTGATGTC -ACGGAACCTTTGCAACGTACAGTC -ACGGAACCTTTGCAACGTTTGCTG -ACGGAACCTTTGCAACGTTCCATG -ACGGAACCTTTGCAACGTTGTGTG -ACGGAACCTTTGCAACGTCTAGTG -ACGGAACCTTTGCAACGTCATCTG -ACGGAACCTTTGCAACGTGAGTTG -ACGGAACCTTTGCAACGTAGACTG -ACGGAACCTTTGCAACGTTCGGTA -ACGGAACCTTTGCAACGTTGCCTA -ACGGAACCTTTGCAACGTCCACTA -ACGGAACCTTTGCAACGTGGAGTA -ACGGAACCTTTGCAACGTTCGTCT -ACGGAACCTTTGCAACGTTGCACT -ACGGAACCTTTGCAACGTCTGACT -ACGGAACCTTTGCAACGTCAACCT -ACGGAACCTTTGCAACGTGCTACT -ACGGAACCTTTGCAACGTGGATCT -ACGGAACCTTTGCAACGTAAGGCT -ACGGAACCTTTGCAACGTTCAACC -ACGGAACCTTTGCAACGTTGTTCC -ACGGAACCTTTGCAACGTATTCCC -ACGGAACCTTTGCAACGTTTCTCG -ACGGAACCTTTGCAACGTTAGACG -ACGGAACCTTTGCAACGTGTAACG -ACGGAACCTTTGCAACGTACTTCG -ACGGAACCTTTGCAACGTTACGCA -ACGGAACCTTTGCAACGTCTTGCA -ACGGAACCTTTGCAACGTCGAACA -ACGGAACCTTTGCAACGTCAGTCA -ACGGAACCTTTGCAACGTGATCCA -ACGGAACCTTTGCAACGTACGACA -ACGGAACCTTTGCAACGTAGCTCA -ACGGAACCTTTGCAACGTTCACGT -ACGGAACCTTTGCAACGTCGTAGT -ACGGAACCTTTGCAACGTGTCAGT -ACGGAACCTTTGCAACGTGAAGGT -ACGGAACCTTTGCAACGTAACCGT -ACGGAACCTTTGCAACGTTTGTGC -ACGGAACCTTTGCAACGTCTAAGC -ACGGAACCTTTGCAACGTACTAGC -ACGGAACCTTTGCAACGTAGATGC -ACGGAACCTTTGCAACGTTGAAGG -ACGGAACCTTTGCAACGTCAATGG -ACGGAACCTTTGCAACGTATGAGG -ACGGAACCTTTGCAACGTAATGGG -ACGGAACCTTTGCAACGTTCCTGA -ACGGAACCTTTGCAACGTTAGCGA -ACGGAACCTTTGCAACGTCACAGA -ACGGAACCTTTGCAACGTGCAAGA -ACGGAACCTTTGCAACGTGGTTGA -ACGGAACCTTTGCAACGTTCCGAT -ACGGAACCTTTGCAACGTTGGCAT -ACGGAACCTTTGCAACGTCGAGAT -ACGGAACCTTTGCAACGTTACCAC -ACGGAACCTTTGCAACGTCAGAAC -ACGGAACCTTTGCAACGTGTCTAC -ACGGAACCTTTGCAACGTACGTAC -ACGGAACCTTTGCAACGTAGTGAC -ACGGAACCTTTGCAACGTCTGTAG -ACGGAACCTTTGCAACGTCCTAAG -ACGGAACCTTTGCAACGTGTTCAG -ACGGAACCTTTGCAACGTGCATAG -ACGGAACCTTTGCAACGTGACAAG -ACGGAACCTTTGCAACGTAAGCAG -ACGGAACCTTTGCAACGTCGTCAA -ACGGAACCTTTGCAACGTGCTGAA -ACGGAACCTTTGCAACGTAGTACG -ACGGAACCTTTGCAACGTATCCGA -ACGGAACCTTTGCAACGTATGGGA -ACGGAACCTTTGCAACGTGTGCAA -ACGGAACCTTTGCAACGTGAGGAA -ACGGAACCTTTGCAACGTCAGGTA -ACGGAACCTTTGCAACGTGACTCT -ACGGAACCTTTGCAACGTAGTCCT -ACGGAACCTTTGCAACGTTAAGCC -ACGGAACCTTTGCAACGTATAGCC -ACGGAACCTTTGCAACGTTAACCG -ACGGAACCTTTGCAACGTATGCCA -ACGGAACCTTTGGAAGCTGGAAAC -ACGGAACCTTTGGAAGCTAACACC -ACGGAACCTTTGGAAGCTATCGAG -ACGGAACCTTTGGAAGCTCTCCTT -ACGGAACCTTTGGAAGCTCCTGTT -ACGGAACCTTTGGAAGCTCGGTTT -ACGGAACCTTTGGAAGCTGTGGTT -ACGGAACCTTTGGAAGCTGCCTTT -ACGGAACCTTTGGAAGCTGGTCTT -ACGGAACCTTTGGAAGCTACGCTT -ACGGAACCTTTGGAAGCTAGCGTT -ACGGAACCTTTGGAAGCTTTCGTC -ACGGAACCTTTGGAAGCTTCTCTC -ACGGAACCTTTGGAAGCTTGGATC -ACGGAACCTTTGGAAGCTCACTTC -ACGGAACCTTTGGAAGCTGTACTC -ACGGAACCTTTGGAAGCTGATGTC -ACGGAACCTTTGGAAGCTACAGTC -ACGGAACCTTTGGAAGCTTTGCTG -ACGGAACCTTTGGAAGCTTCCATG -ACGGAACCTTTGGAAGCTTGTGTG -ACGGAACCTTTGGAAGCTCTAGTG -ACGGAACCTTTGGAAGCTCATCTG -ACGGAACCTTTGGAAGCTGAGTTG -ACGGAACCTTTGGAAGCTAGACTG -ACGGAACCTTTGGAAGCTTCGGTA -ACGGAACCTTTGGAAGCTTGCCTA -ACGGAACCTTTGGAAGCTCCACTA -ACGGAACCTTTGGAAGCTGGAGTA -ACGGAACCTTTGGAAGCTTCGTCT -ACGGAACCTTTGGAAGCTTGCACT -ACGGAACCTTTGGAAGCTCTGACT -ACGGAACCTTTGGAAGCTCAACCT -ACGGAACCTTTGGAAGCTGCTACT -ACGGAACCTTTGGAAGCTGGATCT -ACGGAACCTTTGGAAGCTAAGGCT -ACGGAACCTTTGGAAGCTTCAACC -ACGGAACCTTTGGAAGCTTGTTCC -ACGGAACCTTTGGAAGCTATTCCC -ACGGAACCTTTGGAAGCTTTCTCG -ACGGAACCTTTGGAAGCTTAGACG -ACGGAACCTTTGGAAGCTGTAACG -ACGGAACCTTTGGAAGCTACTTCG -ACGGAACCTTTGGAAGCTTACGCA -ACGGAACCTTTGGAAGCTCTTGCA -ACGGAACCTTTGGAAGCTCGAACA -ACGGAACCTTTGGAAGCTCAGTCA -ACGGAACCTTTGGAAGCTGATCCA -ACGGAACCTTTGGAAGCTACGACA -ACGGAACCTTTGGAAGCTAGCTCA -ACGGAACCTTTGGAAGCTTCACGT -ACGGAACCTTTGGAAGCTCGTAGT -ACGGAACCTTTGGAAGCTGTCAGT -ACGGAACCTTTGGAAGCTGAAGGT -ACGGAACCTTTGGAAGCTAACCGT -ACGGAACCTTTGGAAGCTTTGTGC -ACGGAACCTTTGGAAGCTCTAAGC -ACGGAACCTTTGGAAGCTACTAGC -ACGGAACCTTTGGAAGCTAGATGC -ACGGAACCTTTGGAAGCTTGAAGG -ACGGAACCTTTGGAAGCTCAATGG -ACGGAACCTTTGGAAGCTATGAGG -ACGGAACCTTTGGAAGCTAATGGG -ACGGAACCTTTGGAAGCTTCCTGA -ACGGAACCTTTGGAAGCTTAGCGA -ACGGAACCTTTGGAAGCTCACAGA -ACGGAACCTTTGGAAGCTGCAAGA -ACGGAACCTTTGGAAGCTGGTTGA -ACGGAACCTTTGGAAGCTTCCGAT -ACGGAACCTTTGGAAGCTTGGCAT -ACGGAACCTTTGGAAGCTCGAGAT -ACGGAACCTTTGGAAGCTTACCAC -ACGGAACCTTTGGAAGCTCAGAAC -ACGGAACCTTTGGAAGCTGTCTAC -ACGGAACCTTTGGAAGCTACGTAC -ACGGAACCTTTGGAAGCTAGTGAC -ACGGAACCTTTGGAAGCTCTGTAG -ACGGAACCTTTGGAAGCTCCTAAG -ACGGAACCTTTGGAAGCTGTTCAG -ACGGAACCTTTGGAAGCTGCATAG -ACGGAACCTTTGGAAGCTGACAAG -ACGGAACCTTTGGAAGCTAAGCAG -ACGGAACCTTTGGAAGCTCGTCAA -ACGGAACCTTTGGAAGCTGCTGAA -ACGGAACCTTTGGAAGCTAGTACG -ACGGAACCTTTGGAAGCTATCCGA -ACGGAACCTTTGGAAGCTATGGGA -ACGGAACCTTTGGAAGCTGTGCAA -ACGGAACCTTTGGAAGCTGAGGAA -ACGGAACCTTTGGAAGCTCAGGTA -ACGGAACCTTTGGAAGCTGACTCT -ACGGAACCTTTGGAAGCTAGTCCT -ACGGAACCTTTGGAAGCTTAAGCC -ACGGAACCTTTGGAAGCTATAGCC -ACGGAACCTTTGGAAGCTTAACCG -ACGGAACCTTTGGAAGCTATGCCA -ACGGAACCTTTGACGAGTGGAAAC -ACGGAACCTTTGACGAGTAACACC -ACGGAACCTTTGACGAGTATCGAG -ACGGAACCTTTGACGAGTCTCCTT -ACGGAACCTTTGACGAGTCCTGTT -ACGGAACCTTTGACGAGTCGGTTT -ACGGAACCTTTGACGAGTGTGGTT -ACGGAACCTTTGACGAGTGCCTTT -ACGGAACCTTTGACGAGTGGTCTT -ACGGAACCTTTGACGAGTACGCTT -ACGGAACCTTTGACGAGTAGCGTT -ACGGAACCTTTGACGAGTTTCGTC -ACGGAACCTTTGACGAGTTCTCTC -ACGGAACCTTTGACGAGTTGGATC -ACGGAACCTTTGACGAGTCACTTC -ACGGAACCTTTGACGAGTGTACTC -ACGGAACCTTTGACGAGTGATGTC -ACGGAACCTTTGACGAGTACAGTC -ACGGAACCTTTGACGAGTTTGCTG -ACGGAACCTTTGACGAGTTCCATG -ACGGAACCTTTGACGAGTTGTGTG -ACGGAACCTTTGACGAGTCTAGTG -ACGGAACCTTTGACGAGTCATCTG -ACGGAACCTTTGACGAGTGAGTTG -ACGGAACCTTTGACGAGTAGACTG -ACGGAACCTTTGACGAGTTCGGTA -ACGGAACCTTTGACGAGTTGCCTA -ACGGAACCTTTGACGAGTCCACTA -ACGGAACCTTTGACGAGTGGAGTA -ACGGAACCTTTGACGAGTTCGTCT -ACGGAACCTTTGACGAGTTGCACT -ACGGAACCTTTGACGAGTCTGACT -ACGGAACCTTTGACGAGTCAACCT -ACGGAACCTTTGACGAGTGCTACT -ACGGAACCTTTGACGAGTGGATCT -ACGGAACCTTTGACGAGTAAGGCT -ACGGAACCTTTGACGAGTTCAACC -ACGGAACCTTTGACGAGTTGTTCC -ACGGAACCTTTGACGAGTATTCCC -ACGGAACCTTTGACGAGTTTCTCG -ACGGAACCTTTGACGAGTTAGACG -ACGGAACCTTTGACGAGTGTAACG -ACGGAACCTTTGACGAGTACTTCG -ACGGAACCTTTGACGAGTTACGCA -ACGGAACCTTTGACGAGTCTTGCA -ACGGAACCTTTGACGAGTCGAACA -ACGGAACCTTTGACGAGTCAGTCA -ACGGAACCTTTGACGAGTGATCCA -ACGGAACCTTTGACGAGTACGACA -ACGGAACCTTTGACGAGTAGCTCA -ACGGAACCTTTGACGAGTTCACGT -ACGGAACCTTTGACGAGTCGTAGT -ACGGAACCTTTGACGAGTGTCAGT -ACGGAACCTTTGACGAGTGAAGGT -ACGGAACCTTTGACGAGTAACCGT -ACGGAACCTTTGACGAGTTTGTGC -ACGGAACCTTTGACGAGTCTAAGC -ACGGAACCTTTGACGAGTACTAGC -ACGGAACCTTTGACGAGTAGATGC -ACGGAACCTTTGACGAGTTGAAGG -ACGGAACCTTTGACGAGTCAATGG -ACGGAACCTTTGACGAGTATGAGG -ACGGAACCTTTGACGAGTAATGGG -ACGGAACCTTTGACGAGTTCCTGA -ACGGAACCTTTGACGAGTTAGCGA -ACGGAACCTTTGACGAGTCACAGA -ACGGAACCTTTGACGAGTGCAAGA -ACGGAACCTTTGACGAGTGGTTGA -ACGGAACCTTTGACGAGTTCCGAT -ACGGAACCTTTGACGAGTTGGCAT -ACGGAACCTTTGACGAGTCGAGAT -ACGGAACCTTTGACGAGTTACCAC -ACGGAACCTTTGACGAGTCAGAAC -ACGGAACCTTTGACGAGTGTCTAC -ACGGAACCTTTGACGAGTACGTAC -ACGGAACCTTTGACGAGTAGTGAC -ACGGAACCTTTGACGAGTCTGTAG -ACGGAACCTTTGACGAGTCCTAAG -ACGGAACCTTTGACGAGTGTTCAG -ACGGAACCTTTGACGAGTGCATAG -ACGGAACCTTTGACGAGTGACAAG -ACGGAACCTTTGACGAGTAAGCAG -ACGGAACCTTTGACGAGTCGTCAA -ACGGAACCTTTGACGAGTGCTGAA -ACGGAACCTTTGACGAGTAGTACG -ACGGAACCTTTGACGAGTATCCGA -ACGGAACCTTTGACGAGTATGGGA -ACGGAACCTTTGACGAGTGTGCAA -ACGGAACCTTTGACGAGTGAGGAA -ACGGAACCTTTGACGAGTCAGGTA -ACGGAACCTTTGACGAGTGACTCT -ACGGAACCTTTGACGAGTAGTCCT -ACGGAACCTTTGACGAGTTAAGCC -ACGGAACCTTTGACGAGTATAGCC -ACGGAACCTTTGACGAGTTAACCG -ACGGAACCTTTGACGAGTATGCCA -ACGGAACCTTTGCGAATCGGAAAC -ACGGAACCTTTGCGAATCAACACC -ACGGAACCTTTGCGAATCATCGAG -ACGGAACCTTTGCGAATCCTCCTT -ACGGAACCTTTGCGAATCCCTGTT -ACGGAACCTTTGCGAATCCGGTTT -ACGGAACCTTTGCGAATCGTGGTT -ACGGAACCTTTGCGAATCGCCTTT -ACGGAACCTTTGCGAATCGGTCTT -ACGGAACCTTTGCGAATCACGCTT -ACGGAACCTTTGCGAATCAGCGTT -ACGGAACCTTTGCGAATCTTCGTC -ACGGAACCTTTGCGAATCTCTCTC -ACGGAACCTTTGCGAATCTGGATC -ACGGAACCTTTGCGAATCCACTTC -ACGGAACCTTTGCGAATCGTACTC -ACGGAACCTTTGCGAATCGATGTC -ACGGAACCTTTGCGAATCACAGTC -ACGGAACCTTTGCGAATCTTGCTG -ACGGAACCTTTGCGAATCTCCATG -ACGGAACCTTTGCGAATCTGTGTG -ACGGAACCTTTGCGAATCCTAGTG -ACGGAACCTTTGCGAATCCATCTG -ACGGAACCTTTGCGAATCGAGTTG -ACGGAACCTTTGCGAATCAGACTG -ACGGAACCTTTGCGAATCTCGGTA -ACGGAACCTTTGCGAATCTGCCTA -ACGGAACCTTTGCGAATCCCACTA -ACGGAACCTTTGCGAATCGGAGTA -ACGGAACCTTTGCGAATCTCGTCT -ACGGAACCTTTGCGAATCTGCACT -ACGGAACCTTTGCGAATCCTGACT -ACGGAACCTTTGCGAATCCAACCT -ACGGAACCTTTGCGAATCGCTACT -ACGGAACCTTTGCGAATCGGATCT -ACGGAACCTTTGCGAATCAAGGCT -ACGGAACCTTTGCGAATCTCAACC -ACGGAACCTTTGCGAATCTGTTCC -ACGGAACCTTTGCGAATCATTCCC -ACGGAACCTTTGCGAATCTTCTCG -ACGGAACCTTTGCGAATCTAGACG -ACGGAACCTTTGCGAATCGTAACG -ACGGAACCTTTGCGAATCACTTCG -ACGGAACCTTTGCGAATCTACGCA -ACGGAACCTTTGCGAATCCTTGCA -ACGGAACCTTTGCGAATCCGAACA -ACGGAACCTTTGCGAATCCAGTCA -ACGGAACCTTTGCGAATCGATCCA -ACGGAACCTTTGCGAATCACGACA -ACGGAACCTTTGCGAATCAGCTCA -ACGGAACCTTTGCGAATCTCACGT -ACGGAACCTTTGCGAATCCGTAGT -ACGGAACCTTTGCGAATCGTCAGT -ACGGAACCTTTGCGAATCGAAGGT -ACGGAACCTTTGCGAATCAACCGT -ACGGAACCTTTGCGAATCTTGTGC -ACGGAACCTTTGCGAATCCTAAGC -ACGGAACCTTTGCGAATCACTAGC -ACGGAACCTTTGCGAATCAGATGC -ACGGAACCTTTGCGAATCTGAAGG -ACGGAACCTTTGCGAATCCAATGG -ACGGAACCTTTGCGAATCATGAGG -ACGGAACCTTTGCGAATCAATGGG -ACGGAACCTTTGCGAATCTCCTGA -ACGGAACCTTTGCGAATCTAGCGA -ACGGAACCTTTGCGAATCCACAGA -ACGGAACCTTTGCGAATCGCAAGA -ACGGAACCTTTGCGAATCGGTTGA -ACGGAACCTTTGCGAATCTCCGAT -ACGGAACCTTTGCGAATCTGGCAT -ACGGAACCTTTGCGAATCCGAGAT -ACGGAACCTTTGCGAATCTACCAC -ACGGAACCTTTGCGAATCCAGAAC -ACGGAACCTTTGCGAATCGTCTAC -ACGGAACCTTTGCGAATCACGTAC -ACGGAACCTTTGCGAATCAGTGAC -ACGGAACCTTTGCGAATCCTGTAG -ACGGAACCTTTGCGAATCCCTAAG -ACGGAACCTTTGCGAATCGTTCAG -ACGGAACCTTTGCGAATCGCATAG -ACGGAACCTTTGCGAATCGACAAG -ACGGAACCTTTGCGAATCAAGCAG -ACGGAACCTTTGCGAATCCGTCAA -ACGGAACCTTTGCGAATCGCTGAA -ACGGAACCTTTGCGAATCAGTACG -ACGGAACCTTTGCGAATCATCCGA -ACGGAACCTTTGCGAATCATGGGA -ACGGAACCTTTGCGAATCGTGCAA -ACGGAACCTTTGCGAATCGAGGAA -ACGGAACCTTTGCGAATCCAGGTA -ACGGAACCTTTGCGAATCGACTCT -ACGGAACCTTTGCGAATCAGTCCT -ACGGAACCTTTGCGAATCTAAGCC -ACGGAACCTTTGCGAATCATAGCC -ACGGAACCTTTGCGAATCTAACCG -ACGGAACCTTTGCGAATCATGCCA -ACGGAACCTTTGGGAATGGGAAAC -ACGGAACCTTTGGGAATGAACACC -ACGGAACCTTTGGGAATGATCGAG -ACGGAACCTTTGGGAATGCTCCTT -ACGGAACCTTTGGGAATGCCTGTT -ACGGAACCTTTGGGAATGCGGTTT -ACGGAACCTTTGGGAATGGTGGTT -ACGGAACCTTTGGGAATGGCCTTT -ACGGAACCTTTGGGAATGGGTCTT -ACGGAACCTTTGGGAATGACGCTT -ACGGAACCTTTGGGAATGAGCGTT -ACGGAACCTTTGGGAATGTTCGTC -ACGGAACCTTTGGGAATGTCTCTC -ACGGAACCTTTGGGAATGTGGATC -ACGGAACCTTTGGGAATGCACTTC -ACGGAACCTTTGGGAATGGTACTC -ACGGAACCTTTGGGAATGGATGTC -ACGGAACCTTTGGGAATGACAGTC -ACGGAACCTTTGGGAATGTTGCTG -ACGGAACCTTTGGGAATGTCCATG -ACGGAACCTTTGGGAATGTGTGTG -ACGGAACCTTTGGGAATGCTAGTG -ACGGAACCTTTGGGAATGCATCTG -ACGGAACCTTTGGGAATGGAGTTG -ACGGAACCTTTGGGAATGAGACTG -ACGGAACCTTTGGGAATGTCGGTA -ACGGAACCTTTGGGAATGTGCCTA -ACGGAACCTTTGGGAATGCCACTA -ACGGAACCTTTGGGAATGGGAGTA -ACGGAACCTTTGGGAATGTCGTCT -ACGGAACCTTTGGGAATGTGCACT -ACGGAACCTTTGGGAATGCTGACT -ACGGAACCTTTGGGAATGCAACCT -ACGGAACCTTTGGGAATGGCTACT -ACGGAACCTTTGGGAATGGGATCT -ACGGAACCTTTGGGAATGAAGGCT -ACGGAACCTTTGGGAATGTCAACC -ACGGAACCTTTGGGAATGTGTTCC -ACGGAACCTTTGGGAATGATTCCC -ACGGAACCTTTGGGAATGTTCTCG -ACGGAACCTTTGGGAATGTAGACG -ACGGAACCTTTGGGAATGGTAACG -ACGGAACCTTTGGGAATGACTTCG -ACGGAACCTTTGGGAATGTACGCA -ACGGAACCTTTGGGAATGCTTGCA -ACGGAACCTTTGGGAATGCGAACA -ACGGAACCTTTGGGAATGCAGTCA -ACGGAACCTTTGGGAATGGATCCA -ACGGAACCTTTGGGAATGACGACA -ACGGAACCTTTGGGAATGAGCTCA -ACGGAACCTTTGGGAATGTCACGT -ACGGAACCTTTGGGAATGCGTAGT -ACGGAACCTTTGGGAATGGTCAGT -ACGGAACCTTTGGGAATGGAAGGT -ACGGAACCTTTGGGAATGAACCGT -ACGGAACCTTTGGGAATGTTGTGC -ACGGAACCTTTGGGAATGCTAAGC -ACGGAACCTTTGGGAATGACTAGC -ACGGAACCTTTGGGAATGAGATGC -ACGGAACCTTTGGGAATGTGAAGG -ACGGAACCTTTGGGAATGCAATGG -ACGGAACCTTTGGGAATGATGAGG -ACGGAACCTTTGGGAATGAATGGG -ACGGAACCTTTGGGAATGTCCTGA -ACGGAACCTTTGGGAATGTAGCGA -ACGGAACCTTTGGGAATGCACAGA -ACGGAACCTTTGGGAATGGCAAGA -ACGGAACCTTTGGGAATGGGTTGA -ACGGAACCTTTGGGAATGTCCGAT -ACGGAACCTTTGGGAATGTGGCAT -ACGGAACCTTTGGGAATGCGAGAT -ACGGAACCTTTGGGAATGTACCAC -ACGGAACCTTTGGGAATGCAGAAC -ACGGAACCTTTGGGAATGGTCTAC -ACGGAACCTTTGGGAATGACGTAC -ACGGAACCTTTGGGAATGAGTGAC -ACGGAACCTTTGGGAATGCTGTAG -ACGGAACCTTTGGGAATGCCTAAG -ACGGAACCTTTGGGAATGGTTCAG -ACGGAACCTTTGGGAATGGCATAG -ACGGAACCTTTGGGAATGGACAAG -ACGGAACCTTTGGGAATGAAGCAG -ACGGAACCTTTGGGAATGCGTCAA -ACGGAACCTTTGGGAATGGCTGAA -ACGGAACCTTTGGGAATGAGTACG -ACGGAACCTTTGGGAATGATCCGA -ACGGAACCTTTGGGAATGATGGGA -ACGGAACCTTTGGGAATGGTGCAA -ACGGAACCTTTGGGAATGGAGGAA -ACGGAACCTTTGGGAATGCAGGTA -ACGGAACCTTTGGGAATGGACTCT -ACGGAACCTTTGGGAATGAGTCCT -ACGGAACCTTTGGGAATGTAAGCC -ACGGAACCTTTGGGAATGATAGCC -ACGGAACCTTTGGGAATGTAACCG -ACGGAACCTTTGGGAATGATGCCA -ACGGAACCTTTGCAAGTGGGAAAC -ACGGAACCTTTGCAAGTGAACACC -ACGGAACCTTTGCAAGTGATCGAG -ACGGAACCTTTGCAAGTGCTCCTT -ACGGAACCTTTGCAAGTGCCTGTT -ACGGAACCTTTGCAAGTGCGGTTT -ACGGAACCTTTGCAAGTGGTGGTT -ACGGAACCTTTGCAAGTGGCCTTT -ACGGAACCTTTGCAAGTGGGTCTT -ACGGAACCTTTGCAAGTGACGCTT -ACGGAACCTTTGCAAGTGAGCGTT -ACGGAACCTTTGCAAGTGTTCGTC -ACGGAACCTTTGCAAGTGTCTCTC -ACGGAACCTTTGCAAGTGTGGATC -ACGGAACCTTTGCAAGTGCACTTC -ACGGAACCTTTGCAAGTGGTACTC -ACGGAACCTTTGCAAGTGGATGTC -ACGGAACCTTTGCAAGTGACAGTC -ACGGAACCTTTGCAAGTGTTGCTG -ACGGAACCTTTGCAAGTGTCCATG -ACGGAACCTTTGCAAGTGTGTGTG -ACGGAACCTTTGCAAGTGCTAGTG -ACGGAACCTTTGCAAGTGCATCTG -ACGGAACCTTTGCAAGTGGAGTTG -ACGGAACCTTTGCAAGTGAGACTG -ACGGAACCTTTGCAAGTGTCGGTA -ACGGAACCTTTGCAAGTGTGCCTA -ACGGAACCTTTGCAAGTGCCACTA -ACGGAACCTTTGCAAGTGGGAGTA -ACGGAACCTTTGCAAGTGTCGTCT -ACGGAACCTTTGCAAGTGTGCACT -ACGGAACCTTTGCAAGTGCTGACT -ACGGAACCTTTGCAAGTGCAACCT -ACGGAACCTTTGCAAGTGGCTACT -ACGGAACCTTTGCAAGTGGGATCT -ACGGAACCTTTGCAAGTGAAGGCT -ACGGAACCTTTGCAAGTGTCAACC -ACGGAACCTTTGCAAGTGTGTTCC -ACGGAACCTTTGCAAGTGATTCCC -ACGGAACCTTTGCAAGTGTTCTCG -ACGGAACCTTTGCAAGTGTAGACG -ACGGAACCTTTGCAAGTGGTAACG -ACGGAACCTTTGCAAGTGACTTCG -ACGGAACCTTTGCAAGTGTACGCA -ACGGAACCTTTGCAAGTGCTTGCA -ACGGAACCTTTGCAAGTGCGAACA -ACGGAACCTTTGCAAGTGCAGTCA -ACGGAACCTTTGCAAGTGGATCCA -ACGGAACCTTTGCAAGTGACGACA -ACGGAACCTTTGCAAGTGAGCTCA -ACGGAACCTTTGCAAGTGTCACGT -ACGGAACCTTTGCAAGTGCGTAGT -ACGGAACCTTTGCAAGTGGTCAGT -ACGGAACCTTTGCAAGTGGAAGGT -ACGGAACCTTTGCAAGTGAACCGT -ACGGAACCTTTGCAAGTGTTGTGC -ACGGAACCTTTGCAAGTGCTAAGC -ACGGAACCTTTGCAAGTGACTAGC -ACGGAACCTTTGCAAGTGAGATGC -ACGGAACCTTTGCAAGTGTGAAGG -ACGGAACCTTTGCAAGTGCAATGG -ACGGAACCTTTGCAAGTGATGAGG -ACGGAACCTTTGCAAGTGAATGGG -ACGGAACCTTTGCAAGTGTCCTGA -ACGGAACCTTTGCAAGTGTAGCGA -ACGGAACCTTTGCAAGTGCACAGA -ACGGAACCTTTGCAAGTGGCAAGA -ACGGAACCTTTGCAAGTGGGTTGA -ACGGAACCTTTGCAAGTGTCCGAT -ACGGAACCTTTGCAAGTGTGGCAT -ACGGAACCTTTGCAAGTGCGAGAT -ACGGAACCTTTGCAAGTGTACCAC -ACGGAACCTTTGCAAGTGCAGAAC -ACGGAACCTTTGCAAGTGGTCTAC -ACGGAACCTTTGCAAGTGACGTAC -ACGGAACCTTTGCAAGTGAGTGAC -ACGGAACCTTTGCAAGTGCTGTAG -ACGGAACCTTTGCAAGTGCCTAAG -ACGGAACCTTTGCAAGTGGTTCAG -ACGGAACCTTTGCAAGTGGCATAG -ACGGAACCTTTGCAAGTGGACAAG -ACGGAACCTTTGCAAGTGAAGCAG -ACGGAACCTTTGCAAGTGCGTCAA -ACGGAACCTTTGCAAGTGGCTGAA -ACGGAACCTTTGCAAGTGAGTACG -ACGGAACCTTTGCAAGTGATCCGA -ACGGAACCTTTGCAAGTGATGGGA -ACGGAACCTTTGCAAGTGGTGCAA -ACGGAACCTTTGCAAGTGGAGGAA -ACGGAACCTTTGCAAGTGCAGGTA -ACGGAACCTTTGCAAGTGGACTCT -ACGGAACCTTTGCAAGTGAGTCCT -ACGGAACCTTTGCAAGTGTAAGCC -ACGGAACCTTTGCAAGTGATAGCC -ACGGAACCTTTGCAAGTGTAACCG -ACGGAACCTTTGCAAGTGATGCCA -ACGGAACCTTTGGAAGAGGGAAAC -ACGGAACCTTTGGAAGAGAACACC -ACGGAACCTTTGGAAGAGATCGAG -ACGGAACCTTTGGAAGAGCTCCTT -ACGGAACCTTTGGAAGAGCCTGTT -ACGGAACCTTTGGAAGAGCGGTTT -ACGGAACCTTTGGAAGAGGTGGTT -ACGGAACCTTTGGAAGAGGCCTTT -ACGGAACCTTTGGAAGAGGGTCTT -ACGGAACCTTTGGAAGAGACGCTT -ACGGAACCTTTGGAAGAGAGCGTT -ACGGAACCTTTGGAAGAGTTCGTC -ACGGAACCTTTGGAAGAGTCTCTC -ACGGAACCTTTGGAAGAGTGGATC -ACGGAACCTTTGGAAGAGCACTTC -ACGGAACCTTTGGAAGAGGTACTC -ACGGAACCTTTGGAAGAGGATGTC -ACGGAACCTTTGGAAGAGACAGTC -ACGGAACCTTTGGAAGAGTTGCTG -ACGGAACCTTTGGAAGAGTCCATG -ACGGAACCTTTGGAAGAGTGTGTG -ACGGAACCTTTGGAAGAGCTAGTG -ACGGAACCTTTGGAAGAGCATCTG -ACGGAACCTTTGGAAGAGGAGTTG -ACGGAACCTTTGGAAGAGAGACTG -ACGGAACCTTTGGAAGAGTCGGTA -ACGGAACCTTTGGAAGAGTGCCTA -ACGGAACCTTTGGAAGAGCCACTA -ACGGAACCTTTGGAAGAGGGAGTA -ACGGAACCTTTGGAAGAGTCGTCT -ACGGAACCTTTGGAAGAGTGCACT -ACGGAACCTTTGGAAGAGCTGACT -ACGGAACCTTTGGAAGAGCAACCT -ACGGAACCTTTGGAAGAGGCTACT -ACGGAACCTTTGGAAGAGGGATCT -ACGGAACCTTTGGAAGAGAAGGCT -ACGGAACCTTTGGAAGAGTCAACC -ACGGAACCTTTGGAAGAGTGTTCC -ACGGAACCTTTGGAAGAGATTCCC -ACGGAACCTTTGGAAGAGTTCTCG -ACGGAACCTTTGGAAGAGTAGACG -ACGGAACCTTTGGAAGAGGTAACG -ACGGAACCTTTGGAAGAGACTTCG -ACGGAACCTTTGGAAGAGTACGCA -ACGGAACCTTTGGAAGAGCTTGCA -ACGGAACCTTTGGAAGAGCGAACA -ACGGAACCTTTGGAAGAGCAGTCA -ACGGAACCTTTGGAAGAGGATCCA -ACGGAACCTTTGGAAGAGACGACA -ACGGAACCTTTGGAAGAGAGCTCA -ACGGAACCTTTGGAAGAGTCACGT -ACGGAACCTTTGGAAGAGCGTAGT -ACGGAACCTTTGGAAGAGGTCAGT -ACGGAACCTTTGGAAGAGGAAGGT -ACGGAACCTTTGGAAGAGAACCGT -ACGGAACCTTTGGAAGAGTTGTGC -ACGGAACCTTTGGAAGAGCTAAGC -ACGGAACCTTTGGAAGAGACTAGC -ACGGAACCTTTGGAAGAGAGATGC -ACGGAACCTTTGGAAGAGTGAAGG -ACGGAACCTTTGGAAGAGCAATGG -ACGGAACCTTTGGAAGAGATGAGG -ACGGAACCTTTGGAAGAGAATGGG -ACGGAACCTTTGGAAGAGTCCTGA -ACGGAACCTTTGGAAGAGTAGCGA -ACGGAACCTTTGGAAGAGCACAGA -ACGGAACCTTTGGAAGAGGCAAGA -ACGGAACCTTTGGAAGAGGGTTGA -ACGGAACCTTTGGAAGAGTCCGAT -ACGGAACCTTTGGAAGAGTGGCAT -ACGGAACCTTTGGAAGAGCGAGAT -ACGGAACCTTTGGAAGAGTACCAC -ACGGAACCTTTGGAAGAGCAGAAC -ACGGAACCTTTGGAAGAGGTCTAC -ACGGAACCTTTGGAAGAGACGTAC -ACGGAACCTTTGGAAGAGAGTGAC -ACGGAACCTTTGGAAGAGCTGTAG -ACGGAACCTTTGGAAGAGCCTAAG -ACGGAACCTTTGGAAGAGGTTCAG -ACGGAACCTTTGGAAGAGGCATAG -ACGGAACCTTTGGAAGAGGACAAG -ACGGAACCTTTGGAAGAGAAGCAG -ACGGAACCTTTGGAAGAGCGTCAA -ACGGAACCTTTGGAAGAGGCTGAA -ACGGAACCTTTGGAAGAGAGTACG -ACGGAACCTTTGGAAGAGATCCGA -ACGGAACCTTTGGAAGAGATGGGA -ACGGAACCTTTGGAAGAGGTGCAA -ACGGAACCTTTGGAAGAGGAGGAA -ACGGAACCTTTGGAAGAGCAGGTA -ACGGAACCTTTGGAAGAGGACTCT -ACGGAACCTTTGGAAGAGAGTCCT -ACGGAACCTTTGGAAGAGTAAGCC -ACGGAACCTTTGGAAGAGATAGCC -ACGGAACCTTTGGAAGAGTAACCG -ACGGAACCTTTGGAAGAGATGCCA -ACGGAACCTTTGGTACAGGGAAAC -ACGGAACCTTTGGTACAGAACACC -ACGGAACCTTTGGTACAGATCGAG -ACGGAACCTTTGGTACAGCTCCTT -ACGGAACCTTTGGTACAGCCTGTT -ACGGAACCTTTGGTACAGCGGTTT -ACGGAACCTTTGGTACAGGTGGTT -ACGGAACCTTTGGTACAGGCCTTT -ACGGAACCTTTGGTACAGGGTCTT -ACGGAACCTTTGGTACAGACGCTT -ACGGAACCTTTGGTACAGAGCGTT -ACGGAACCTTTGGTACAGTTCGTC -ACGGAACCTTTGGTACAGTCTCTC -ACGGAACCTTTGGTACAGTGGATC -ACGGAACCTTTGGTACAGCACTTC -ACGGAACCTTTGGTACAGGTACTC -ACGGAACCTTTGGTACAGGATGTC -ACGGAACCTTTGGTACAGACAGTC -ACGGAACCTTTGGTACAGTTGCTG -ACGGAACCTTTGGTACAGTCCATG -ACGGAACCTTTGGTACAGTGTGTG -ACGGAACCTTTGGTACAGCTAGTG -ACGGAACCTTTGGTACAGCATCTG -ACGGAACCTTTGGTACAGGAGTTG -ACGGAACCTTTGGTACAGAGACTG -ACGGAACCTTTGGTACAGTCGGTA -ACGGAACCTTTGGTACAGTGCCTA -ACGGAACCTTTGGTACAGCCACTA -ACGGAACCTTTGGTACAGGGAGTA -ACGGAACCTTTGGTACAGTCGTCT -ACGGAACCTTTGGTACAGTGCACT -ACGGAACCTTTGGTACAGCTGACT -ACGGAACCTTTGGTACAGCAACCT -ACGGAACCTTTGGTACAGGCTACT -ACGGAACCTTTGGTACAGGGATCT -ACGGAACCTTTGGTACAGAAGGCT -ACGGAACCTTTGGTACAGTCAACC -ACGGAACCTTTGGTACAGTGTTCC -ACGGAACCTTTGGTACAGATTCCC -ACGGAACCTTTGGTACAGTTCTCG -ACGGAACCTTTGGTACAGTAGACG -ACGGAACCTTTGGTACAGGTAACG -ACGGAACCTTTGGTACAGACTTCG -ACGGAACCTTTGGTACAGTACGCA -ACGGAACCTTTGGTACAGCTTGCA -ACGGAACCTTTGGTACAGCGAACA -ACGGAACCTTTGGTACAGCAGTCA -ACGGAACCTTTGGTACAGGATCCA -ACGGAACCTTTGGTACAGACGACA -ACGGAACCTTTGGTACAGAGCTCA -ACGGAACCTTTGGTACAGTCACGT -ACGGAACCTTTGGTACAGCGTAGT -ACGGAACCTTTGGTACAGGTCAGT -ACGGAACCTTTGGTACAGGAAGGT -ACGGAACCTTTGGTACAGAACCGT -ACGGAACCTTTGGTACAGTTGTGC -ACGGAACCTTTGGTACAGCTAAGC -ACGGAACCTTTGGTACAGACTAGC -ACGGAACCTTTGGTACAGAGATGC -ACGGAACCTTTGGTACAGTGAAGG -ACGGAACCTTTGGTACAGCAATGG -ACGGAACCTTTGGTACAGATGAGG -ACGGAACCTTTGGTACAGAATGGG -ACGGAACCTTTGGTACAGTCCTGA -ACGGAACCTTTGGTACAGTAGCGA -ACGGAACCTTTGGTACAGCACAGA -ACGGAACCTTTGGTACAGGCAAGA -ACGGAACCTTTGGTACAGGGTTGA -ACGGAACCTTTGGTACAGTCCGAT -ACGGAACCTTTGGTACAGTGGCAT -ACGGAACCTTTGGTACAGCGAGAT -ACGGAACCTTTGGTACAGTACCAC -ACGGAACCTTTGGTACAGCAGAAC -ACGGAACCTTTGGTACAGGTCTAC -ACGGAACCTTTGGTACAGACGTAC -ACGGAACCTTTGGTACAGAGTGAC -ACGGAACCTTTGGTACAGCTGTAG -ACGGAACCTTTGGTACAGCCTAAG -ACGGAACCTTTGGTACAGGTTCAG -ACGGAACCTTTGGTACAGGCATAG -ACGGAACCTTTGGTACAGGACAAG -ACGGAACCTTTGGTACAGAAGCAG -ACGGAACCTTTGGTACAGCGTCAA -ACGGAACCTTTGGTACAGGCTGAA -ACGGAACCTTTGGTACAGAGTACG -ACGGAACCTTTGGTACAGATCCGA -ACGGAACCTTTGGTACAGATGGGA -ACGGAACCTTTGGTACAGGTGCAA -ACGGAACCTTTGGTACAGGAGGAA -ACGGAACCTTTGGTACAGCAGGTA -ACGGAACCTTTGGTACAGGACTCT -ACGGAACCTTTGGTACAGAGTCCT -ACGGAACCTTTGGTACAGTAAGCC -ACGGAACCTTTGGTACAGATAGCC -ACGGAACCTTTGGTACAGTAACCG -ACGGAACCTTTGGTACAGATGCCA -ACGGAACCTTTGTCTGACGGAAAC -ACGGAACCTTTGTCTGACAACACC -ACGGAACCTTTGTCTGACATCGAG -ACGGAACCTTTGTCTGACCTCCTT -ACGGAACCTTTGTCTGACCCTGTT -ACGGAACCTTTGTCTGACCGGTTT -ACGGAACCTTTGTCTGACGTGGTT -ACGGAACCTTTGTCTGACGCCTTT -ACGGAACCTTTGTCTGACGGTCTT -ACGGAACCTTTGTCTGACACGCTT -ACGGAACCTTTGTCTGACAGCGTT -ACGGAACCTTTGTCTGACTTCGTC -ACGGAACCTTTGTCTGACTCTCTC -ACGGAACCTTTGTCTGACTGGATC -ACGGAACCTTTGTCTGACCACTTC -ACGGAACCTTTGTCTGACGTACTC -ACGGAACCTTTGTCTGACGATGTC -ACGGAACCTTTGTCTGACACAGTC -ACGGAACCTTTGTCTGACTTGCTG -ACGGAACCTTTGTCTGACTCCATG -ACGGAACCTTTGTCTGACTGTGTG -ACGGAACCTTTGTCTGACCTAGTG -ACGGAACCTTTGTCTGACCATCTG -ACGGAACCTTTGTCTGACGAGTTG -ACGGAACCTTTGTCTGACAGACTG -ACGGAACCTTTGTCTGACTCGGTA -ACGGAACCTTTGTCTGACTGCCTA -ACGGAACCTTTGTCTGACCCACTA -ACGGAACCTTTGTCTGACGGAGTA -ACGGAACCTTTGTCTGACTCGTCT -ACGGAACCTTTGTCTGACTGCACT -ACGGAACCTTTGTCTGACCTGACT -ACGGAACCTTTGTCTGACCAACCT -ACGGAACCTTTGTCTGACGCTACT -ACGGAACCTTTGTCTGACGGATCT -ACGGAACCTTTGTCTGACAAGGCT -ACGGAACCTTTGTCTGACTCAACC -ACGGAACCTTTGTCTGACTGTTCC -ACGGAACCTTTGTCTGACATTCCC -ACGGAACCTTTGTCTGACTTCTCG -ACGGAACCTTTGTCTGACTAGACG -ACGGAACCTTTGTCTGACGTAACG -ACGGAACCTTTGTCTGACACTTCG -ACGGAACCTTTGTCTGACTACGCA -ACGGAACCTTTGTCTGACCTTGCA -ACGGAACCTTTGTCTGACCGAACA -ACGGAACCTTTGTCTGACCAGTCA -ACGGAACCTTTGTCTGACGATCCA -ACGGAACCTTTGTCTGACACGACA -ACGGAACCTTTGTCTGACAGCTCA -ACGGAACCTTTGTCTGACTCACGT -ACGGAACCTTTGTCTGACCGTAGT -ACGGAACCTTTGTCTGACGTCAGT -ACGGAACCTTTGTCTGACGAAGGT -ACGGAACCTTTGTCTGACAACCGT -ACGGAACCTTTGTCTGACTTGTGC -ACGGAACCTTTGTCTGACCTAAGC -ACGGAACCTTTGTCTGACACTAGC -ACGGAACCTTTGTCTGACAGATGC -ACGGAACCTTTGTCTGACTGAAGG -ACGGAACCTTTGTCTGACCAATGG -ACGGAACCTTTGTCTGACATGAGG -ACGGAACCTTTGTCTGACAATGGG -ACGGAACCTTTGTCTGACTCCTGA -ACGGAACCTTTGTCTGACTAGCGA -ACGGAACCTTTGTCTGACCACAGA -ACGGAACCTTTGTCTGACGCAAGA -ACGGAACCTTTGTCTGACGGTTGA -ACGGAACCTTTGTCTGACTCCGAT -ACGGAACCTTTGTCTGACTGGCAT -ACGGAACCTTTGTCTGACCGAGAT -ACGGAACCTTTGTCTGACTACCAC -ACGGAACCTTTGTCTGACCAGAAC -ACGGAACCTTTGTCTGACGTCTAC -ACGGAACCTTTGTCTGACACGTAC -ACGGAACCTTTGTCTGACAGTGAC -ACGGAACCTTTGTCTGACCTGTAG -ACGGAACCTTTGTCTGACCCTAAG -ACGGAACCTTTGTCTGACGTTCAG -ACGGAACCTTTGTCTGACGCATAG -ACGGAACCTTTGTCTGACGACAAG -ACGGAACCTTTGTCTGACAAGCAG -ACGGAACCTTTGTCTGACCGTCAA -ACGGAACCTTTGTCTGACGCTGAA -ACGGAACCTTTGTCTGACAGTACG -ACGGAACCTTTGTCTGACATCCGA -ACGGAACCTTTGTCTGACATGGGA -ACGGAACCTTTGTCTGACGTGCAA -ACGGAACCTTTGTCTGACGAGGAA -ACGGAACCTTTGTCTGACCAGGTA -ACGGAACCTTTGTCTGACGACTCT -ACGGAACCTTTGTCTGACAGTCCT -ACGGAACCTTTGTCTGACTAAGCC -ACGGAACCTTTGTCTGACATAGCC -ACGGAACCTTTGTCTGACTAACCG -ACGGAACCTTTGTCTGACATGCCA -ACGGAACCTTTGCCTAGTGGAAAC -ACGGAACCTTTGCCTAGTAACACC -ACGGAACCTTTGCCTAGTATCGAG -ACGGAACCTTTGCCTAGTCTCCTT -ACGGAACCTTTGCCTAGTCCTGTT -ACGGAACCTTTGCCTAGTCGGTTT -ACGGAACCTTTGCCTAGTGTGGTT -ACGGAACCTTTGCCTAGTGCCTTT -ACGGAACCTTTGCCTAGTGGTCTT -ACGGAACCTTTGCCTAGTACGCTT -ACGGAACCTTTGCCTAGTAGCGTT -ACGGAACCTTTGCCTAGTTTCGTC -ACGGAACCTTTGCCTAGTTCTCTC -ACGGAACCTTTGCCTAGTTGGATC -ACGGAACCTTTGCCTAGTCACTTC -ACGGAACCTTTGCCTAGTGTACTC -ACGGAACCTTTGCCTAGTGATGTC -ACGGAACCTTTGCCTAGTACAGTC -ACGGAACCTTTGCCTAGTTTGCTG -ACGGAACCTTTGCCTAGTTCCATG -ACGGAACCTTTGCCTAGTTGTGTG -ACGGAACCTTTGCCTAGTCTAGTG -ACGGAACCTTTGCCTAGTCATCTG -ACGGAACCTTTGCCTAGTGAGTTG -ACGGAACCTTTGCCTAGTAGACTG -ACGGAACCTTTGCCTAGTTCGGTA -ACGGAACCTTTGCCTAGTTGCCTA -ACGGAACCTTTGCCTAGTCCACTA -ACGGAACCTTTGCCTAGTGGAGTA -ACGGAACCTTTGCCTAGTTCGTCT -ACGGAACCTTTGCCTAGTTGCACT -ACGGAACCTTTGCCTAGTCTGACT -ACGGAACCTTTGCCTAGTCAACCT -ACGGAACCTTTGCCTAGTGCTACT -ACGGAACCTTTGCCTAGTGGATCT -ACGGAACCTTTGCCTAGTAAGGCT -ACGGAACCTTTGCCTAGTTCAACC -ACGGAACCTTTGCCTAGTTGTTCC -ACGGAACCTTTGCCTAGTATTCCC -ACGGAACCTTTGCCTAGTTTCTCG -ACGGAACCTTTGCCTAGTTAGACG -ACGGAACCTTTGCCTAGTGTAACG -ACGGAACCTTTGCCTAGTACTTCG -ACGGAACCTTTGCCTAGTTACGCA -ACGGAACCTTTGCCTAGTCTTGCA -ACGGAACCTTTGCCTAGTCGAACA -ACGGAACCTTTGCCTAGTCAGTCA -ACGGAACCTTTGCCTAGTGATCCA -ACGGAACCTTTGCCTAGTACGACA -ACGGAACCTTTGCCTAGTAGCTCA -ACGGAACCTTTGCCTAGTTCACGT -ACGGAACCTTTGCCTAGTCGTAGT -ACGGAACCTTTGCCTAGTGTCAGT -ACGGAACCTTTGCCTAGTGAAGGT -ACGGAACCTTTGCCTAGTAACCGT -ACGGAACCTTTGCCTAGTTTGTGC -ACGGAACCTTTGCCTAGTCTAAGC -ACGGAACCTTTGCCTAGTACTAGC -ACGGAACCTTTGCCTAGTAGATGC -ACGGAACCTTTGCCTAGTTGAAGG -ACGGAACCTTTGCCTAGTCAATGG -ACGGAACCTTTGCCTAGTATGAGG -ACGGAACCTTTGCCTAGTAATGGG -ACGGAACCTTTGCCTAGTTCCTGA -ACGGAACCTTTGCCTAGTTAGCGA -ACGGAACCTTTGCCTAGTCACAGA -ACGGAACCTTTGCCTAGTGCAAGA -ACGGAACCTTTGCCTAGTGGTTGA -ACGGAACCTTTGCCTAGTTCCGAT -ACGGAACCTTTGCCTAGTTGGCAT -ACGGAACCTTTGCCTAGTCGAGAT -ACGGAACCTTTGCCTAGTTACCAC -ACGGAACCTTTGCCTAGTCAGAAC -ACGGAACCTTTGCCTAGTGTCTAC -ACGGAACCTTTGCCTAGTACGTAC -ACGGAACCTTTGCCTAGTAGTGAC -ACGGAACCTTTGCCTAGTCTGTAG -ACGGAACCTTTGCCTAGTCCTAAG -ACGGAACCTTTGCCTAGTGTTCAG -ACGGAACCTTTGCCTAGTGCATAG -ACGGAACCTTTGCCTAGTGACAAG -ACGGAACCTTTGCCTAGTAAGCAG -ACGGAACCTTTGCCTAGTCGTCAA -ACGGAACCTTTGCCTAGTGCTGAA -ACGGAACCTTTGCCTAGTAGTACG -ACGGAACCTTTGCCTAGTATCCGA -ACGGAACCTTTGCCTAGTATGGGA -ACGGAACCTTTGCCTAGTGTGCAA -ACGGAACCTTTGCCTAGTGAGGAA -ACGGAACCTTTGCCTAGTCAGGTA -ACGGAACCTTTGCCTAGTGACTCT -ACGGAACCTTTGCCTAGTAGTCCT -ACGGAACCTTTGCCTAGTTAAGCC -ACGGAACCTTTGCCTAGTATAGCC -ACGGAACCTTTGCCTAGTTAACCG -ACGGAACCTTTGCCTAGTATGCCA -ACGGAACCTTTGGCCTAAGGAAAC -ACGGAACCTTTGGCCTAAAACACC -ACGGAACCTTTGGCCTAAATCGAG -ACGGAACCTTTGGCCTAACTCCTT -ACGGAACCTTTGGCCTAACCTGTT -ACGGAACCTTTGGCCTAACGGTTT -ACGGAACCTTTGGCCTAAGTGGTT -ACGGAACCTTTGGCCTAAGCCTTT -ACGGAACCTTTGGCCTAAGGTCTT -ACGGAACCTTTGGCCTAAACGCTT -ACGGAACCTTTGGCCTAAAGCGTT -ACGGAACCTTTGGCCTAATTCGTC -ACGGAACCTTTGGCCTAATCTCTC -ACGGAACCTTTGGCCTAATGGATC -ACGGAACCTTTGGCCTAACACTTC -ACGGAACCTTTGGCCTAAGTACTC -ACGGAACCTTTGGCCTAAGATGTC -ACGGAACCTTTGGCCTAAACAGTC -ACGGAACCTTTGGCCTAATTGCTG -ACGGAACCTTTGGCCTAATCCATG -ACGGAACCTTTGGCCTAATGTGTG -ACGGAACCTTTGGCCTAACTAGTG -ACGGAACCTTTGGCCTAACATCTG -ACGGAACCTTTGGCCTAAGAGTTG -ACGGAACCTTTGGCCTAAAGACTG -ACGGAACCTTTGGCCTAATCGGTA -ACGGAACCTTTGGCCTAATGCCTA -ACGGAACCTTTGGCCTAACCACTA -ACGGAACCTTTGGCCTAAGGAGTA -ACGGAACCTTTGGCCTAATCGTCT -ACGGAACCTTTGGCCTAATGCACT -ACGGAACCTTTGGCCTAACTGACT -ACGGAACCTTTGGCCTAACAACCT -ACGGAACCTTTGGCCTAAGCTACT -ACGGAACCTTTGGCCTAAGGATCT -ACGGAACCTTTGGCCTAAAAGGCT -ACGGAACCTTTGGCCTAATCAACC -ACGGAACCTTTGGCCTAATGTTCC -ACGGAACCTTTGGCCTAAATTCCC -ACGGAACCTTTGGCCTAATTCTCG -ACGGAACCTTTGGCCTAATAGACG -ACGGAACCTTTGGCCTAAGTAACG -ACGGAACCTTTGGCCTAAACTTCG -ACGGAACCTTTGGCCTAATACGCA -ACGGAACCTTTGGCCTAACTTGCA -ACGGAACCTTTGGCCTAACGAACA -ACGGAACCTTTGGCCTAACAGTCA -ACGGAACCTTTGGCCTAAGATCCA -ACGGAACCTTTGGCCTAAACGACA -ACGGAACCTTTGGCCTAAAGCTCA -ACGGAACCTTTGGCCTAATCACGT -ACGGAACCTTTGGCCTAACGTAGT -ACGGAACCTTTGGCCTAAGTCAGT -ACGGAACCTTTGGCCTAAGAAGGT -ACGGAACCTTTGGCCTAAAACCGT -ACGGAACCTTTGGCCTAATTGTGC -ACGGAACCTTTGGCCTAACTAAGC -ACGGAACCTTTGGCCTAAACTAGC -ACGGAACCTTTGGCCTAAAGATGC -ACGGAACCTTTGGCCTAATGAAGG -ACGGAACCTTTGGCCTAACAATGG -ACGGAACCTTTGGCCTAAATGAGG -ACGGAACCTTTGGCCTAAAATGGG -ACGGAACCTTTGGCCTAATCCTGA -ACGGAACCTTTGGCCTAATAGCGA -ACGGAACCTTTGGCCTAACACAGA -ACGGAACCTTTGGCCTAAGCAAGA -ACGGAACCTTTGGCCTAAGGTTGA -ACGGAACCTTTGGCCTAATCCGAT -ACGGAACCTTTGGCCTAATGGCAT -ACGGAACCTTTGGCCTAACGAGAT -ACGGAACCTTTGGCCTAATACCAC -ACGGAACCTTTGGCCTAACAGAAC -ACGGAACCTTTGGCCTAAGTCTAC -ACGGAACCTTTGGCCTAAACGTAC -ACGGAACCTTTGGCCTAAAGTGAC -ACGGAACCTTTGGCCTAACTGTAG -ACGGAACCTTTGGCCTAACCTAAG -ACGGAACCTTTGGCCTAAGTTCAG -ACGGAACCTTTGGCCTAAGCATAG -ACGGAACCTTTGGCCTAAGACAAG -ACGGAACCTTTGGCCTAAAAGCAG -ACGGAACCTTTGGCCTAACGTCAA -ACGGAACCTTTGGCCTAAGCTGAA -ACGGAACCTTTGGCCTAAAGTACG -ACGGAACCTTTGGCCTAAATCCGA -ACGGAACCTTTGGCCTAAATGGGA -ACGGAACCTTTGGCCTAAGTGCAA -ACGGAACCTTTGGCCTAAGAGGAA -ACGGAACCTTTGGCCTAACAGGTA -ACGGAACCTTTGGCCTAAGACTCT -ACGGAACCTTTGGCCTAAAGTCCT -ACGGAACCTTTGGCCTAATAAGCC -ACGGAACCTTTGGCCTAAATAGCC -ACGGAACCTTTGGCCTAATAACCG -ACGGAACCTTTGGCCTAAATGCCA -ACGGAACCTTTGGCCATAGGAAAC -ACGGAACCTTTGGCCATAAACACC -ACGGAACCTTTGGCCATAATCGAG -ACGGAACCTTTGGCCATACTCCTT -ACGGAACCTTTGGCCATACCTGTT -ACGGAACCTTTGGCCATACGGTTT -ACGGAACCTTTGGCCATAGTGGTT -ACGGAACCTTTGGCCATAGCCTTT -ACGGAACCTTTGGCCATAGGTCTT -ACGGAACCTTTGGCCATAACGCTT -ACGGAACCTTTGGCCATAAGCGTT -ACGGAACCTTTGGCCATATTCGTC -ACGGAACCTTTGGCCATATCTCTC -ACGGAACCTTTGGCCATATGGATC -ACGGAACCTTTGGCCATACACTTC -ACGGAACCTTTGGCCATAGTACTC -ACGGAACCTTTGGCCATAGATGTC -ACGGAACCTTTGGCCATAACAGTC -ACGGAACCTTTGGCCATATTGCTG -ACGGAACCTTTGGCCATATCCATG -ACGGAACCTTTGGCCATATGTGTG -ACGGAACCTTTGGCCATACTAGTG -ACGGAACCTTTGGCCATACATCTG -ACGGAACCTTTGGCCATAGAGTTG -ACGGAACCTTTGGCCATAAGACTG -ACGGAACCTTTGGCCATATCGGTA -ACGGAACCTTTGGCCATATGCCTA -ACGGAACCTTTGGCCATACCACTA -ACGGAACCTTTGGCCATAGGAGTA -ACGGAACCTTTGGCCATATCGTCT -ACGGAACCTTTGGCCATATGCACT -ACGGAACCTTTGGCCATACTGACT -ACGGAACCTTTGGCCATACAACCT -ACGGAACCTTTGGCCATAGCTACT -ACGGAACCTTTGGCCATAGGATCT -ACGGAACCTTTGGCCATAAAGGCT -ACGGAACCTTTGGCCATATCAACC -ACGGAACCTTTGGCCATATGTTCC -ACGGAACCTTTGGCCATAATTCCC -ACGGAACCTTTGGCCATATTCTCG -ACGGAACCTTTGGCCATATAGACG -ACGGAACCTTTGGCCATAGTAACG -ACGGAACCTTTGGCCATAACTTCG -ACGGAACCTTTGGCCATATACGCA -ACGGAACCTTTGGCCATACTTGCA -ACGGAACCTTTGGCCATACGAACA -ACGGAACCTTTGGCCATACAGTCA -ACGGAACCTTTGGCCATAGATCCA -ACGGAACCTTTGGCCATAACGACA -ACGGAACCTTTGGCCATAAGCTCA -ACGGAACCTTTGGCCATATCACGT -ACGGAACCTTTGGCCATACGTAGT -ACGGAACCTTTGGCCATAGTCAGT -ACGGAACCTTTGGCCATAGAAGGT -ACGGAACCTTTGGCCATAAACCGT -ACGGAACCTTTGGCCATATTGTGC -ACGGAACCTTTGGCCATACTAAGC -ACGGAACCTTTGGCCATAACTAGC -ACGGAACCTTTGGCCATAAGATGC -ACGGAACCTTTGGCCATATGAAGG -ACGGAACCTTTGGCCATACAATGG -ACGGAACCTTTGGCCATAATGAGG -ACGGAACCTTTGGCCATAAATGGG -ACGGAACCTTTGGCCATATCCTGA -ACGGAACCTTTGGCCATATAGCGA -ACGGAACCTTTGGCCATACACAGA -ACGGAACCTTTGGCCATAGCAAGA -ACGGAACCTTTGGCCATAGGTTGA -ACGGAACCTTTGGCCATATCCGAT -ACGGAACCTTTGGCCATATGGCAT -ACGGAACCTTTGGCCATACGAGAT -ACGGAACCTTTGGCCATATACCAC -ACGGAACCTTTGGCCATACAGAAC -ACGGAACCTTTGGCCATAGTCTAC -ACGGAACCTTTGGCCATAACGTAC -ACGGAACCTTTGGCCATAAGTGAC -ACGGAACCTTTGGCCATACTGTAG -ACGGAACCTTTGGCCATACCTAAG -ACGGAACCTTTGGCCATAGTTCAG -ACGGAACCTTTGGCCATAGCATAG -ACGGAACCTTTGGCCATAGACAAG -ACGGAACCTTTGGCCATAAAGCAG -ACGGAACCTTTGGCCATACGTCAA -ACGGAACCTTTGGCCATAGCTGAA -ACGGAACCTTTGGCCATAAGTACG -ACGGAACCTTTGGCCATAATCCGA -ACGGAACCTTTGGCCATAATGGGA -ACGGAACCTTTGGCCATAGTGCAA -ACGGAACCTTTGGCCATAGAGGAA -ACGGAACCTTTGGCCATACAGGTA -ACGGAACCTTTGGCCATAGACTCT -ACGGAACCTTTGGCCATAAGTCCT -ACGGAACCTTTGGCCATATAAGCC -ACGGAACCTTTGGCCATAATAGCC -ACGGAACCTTTGGCCATATAACCG -ACGGAACCTTTGGCCATAATGCCA -ACGGAACCTTTGCCGTAAGGAAAC -ACGGAACCTTTGCCGTAAAACACC -ACGGAACCTTTGCCGTAAATCGAG -ACGGAACCTTTGCCGTAACTCCTT -ACGGAACCTTTGCCGTAACCTGTT -ACGGAACCTTTGCCGTAACGGTTT -ACGGAACCTTTGCCGTAAGTGGTT -ACGGAACCTTTGCCGTAAGCCTTT -ACGGAACCTTTGCCGTAAGGTCTT -ACGGAACCTTTGCCGTAAACGCTT -ACGGAACCTTTGCCGTAAAGCGTT -ACGGAACCTTTGCCGTAATTCGTC -ACGGAACCTTTGCCGTAATCTCTC -ACGGAACCTTTGCCGTAATGGATC -ACGGAACCTTTGCCGTAACACTTC -ACGGAACCTTTGCCGTAAGTACTC -ACGGAACCTTTGCCGTAAGATGTC -ACGGAACCTTTGCCGTAAACAGTC -ACGGAACCTTTGCCGTAATTGCTG -ACGGAACCTTTGCCGTAATCCATG -ACGGAACCTTTGCCGTAATGTGTG -ACGGAACCTTTGCCGTAACTAGTG -ACGGAACCTTTGCCGTAACATCTG -ACGGAACCTTTGCCGTAAGAGTTG -ACGGAACCTTTGCCGTAAAGACTG -ACGGAACCTTTGCCGTAATCGGTA -ACGGAACCTTTGCCGTAATGCCTA -ACGGAACCTTTGCCGTAACCACTA -ACGGAACCTTTGCCGTAAGGAGTA -ACGGAACCTTTGCCGTAATCGTCT -ACGGAACCTTTGCCGTAATGCACT -ACGGAACCTTTGCCGTAACTGACT -ACGGAACCTTTGCCGTAACAACCT -ACGGAACCTTTGCCGTAAGCTACT -ACGGAACCTTTGCCGTAAGGATCT -ACGGAACCTTTGCCGTAAAAGGCT -ACGGAACCTTTGCCGTAATCAACC -ACGGAACCTTTGCCGTAATGTTCC -ACGGAACCTTTGCCGTAAATTCCC -ACGGAACCTTTGCCGTAATTCTCG -ACGGAACCTTTGCCGTAATAGACG -ACGGAACCTTTGCCGTAAGTAACG -ACGGAACCTTTGCCGTAAACTTCG -ACGGAACCTTTGCCGTAATACGCA -ACGGAACCTTTGCCGTAACTTGCA -ACGGAACCTTTGCCGTAACGAACA -ACGGAACCTTTGCCGTAACAGTCA -ACGGAACCTTTGCCGTAAGATCCA -ACGGAACCTTTGCCGTAAACGACA -ACGGAACCTTTGCCGTAAAGCTCA -ACGGAACCTTTGCCGTAATCACGT -ACGGAACCTTTGCCGTAACGTAGT -ACGGAACCTTTGCCGTAAGTCAGT -ACGGAACCTTTGCCGTAAGAAGGT -ACGGAACCTTTGCCGTAAAACCGT -ACGGAACCTTTGCCGTAATTGTGC -ACGGAACCTTTGCCGTAACTAAGC -ACGGAACCTTTGCCGTAAACTAGC -ACGGAACCTTTGCCGTAAAGATGC -ACGGAACCTTTGCCGTAATGAAGG -ACGGAACCTTTGCCGTAACAATGG -ACGGAACCTTTGCCGTAAATGAGG -ACGGAACCTTTGCCGTAAAATGGG -ACGGAACCTTTGCCGTAATCCTGA -ACGGAACCTTTGCCGTAATAGCGA -ACGGAACCTTTGCCGTAACACAGA -ACGGAACCTTTGCCGTAAGCAAGA -ACGGAACCTTTGCCGTAAGGTTGA -ACGGAACCTTTGCCGTAATCCGAT -ACGGAACCTTTGCCGTAATGGCAT -ACGGAACCTTTGCCGTAACGAGAT -ACGGAACCTTTGCCGTAATACCAC -ACGGAACCTTTGCCGTAACAGAAC -ACGGAACCTTTGCCGTAAGTCTAC -ACGGAACCTTTGCCGTAAACGTAC -ACGGAACCTTTGCCGTAAAGTGAC -ACGGAACCTTTGCCGTAACTGTAG -ACGGAACCTTTGCCGTAACCTAAG -ACGGAACCTTTGCCGTAAGTTCAG -ACGGAACCTTTGCCGTAAGCATAG -ACGGAACCTTTGCCGTAAGACAAG -ACGGAACCTTTGCCGTAAAAGCAG -ACGGAACCTTTGCCGTAACGTCAA -ACGGAACCTTTGCCGTAAGCTGAA -ACGGAACCTTTGCCGTAAAGTACG -ACGGAACCTTTGCCGTAAATCCGA -ACGGAACCTTTGCCGTAAATGGGA -ACGGAACCTTTGCCGTAAGTGCAA -ACGGAACCTTTGCCGTAAGAGGAA -ACGGAACCTTTGCCGTAACAGGTA -ACGGAACCTTTGCCGTAAGACTCT -ACGGAACCTTTGCCGTAAAGTCCT -ACGGAACCTTTGCCGTAATAAGCC -ACGGAACCTTTGCCGTAAATAGCC -ACGGAACCTTTGCCGTAATAACCG -ACGGAACCTTTGCCGTAAATGCCA -ACGGAACCTTTGCCAATGGGAAAC -ACGGAACCTTTGCCAATGAACACC -ACGGAACCTTTGCCAATGATCGAG -ACGGAACCTTTGCCAATGCTCCTT -ACGGAACCTTTGCCAATGCCTGTT -ACGGAACCTTTGCCAATGCGGTTT -ACGGAACCTTTGCCAATGGTGGTT -ACGGAACCTTTGCCAATGGCCTTT -ACGGAACCTTTGCCAATGGGTCTT -ACGGAACCTTTGCCAATGACGCTT -ACGGAACCTTTGCCAATGAGCGTT -ACGGAACCTTTGCCAATGTTCGTC -ACGGAACCTTTGCCAATGTCTCTC -ACGGAACCTTTGCCAATGTGGATC -ACGGAACCTTTGCCAATGCACTTC -ACGGAACCTTTGCCAATGGTACTC -ACGGAACCTTTGCCAATGGATGTC -ACGGAACCTTTGCCAATGACAGTC -ACGGAACCTTTGCCAATGTTGCTG -ACGGAACCTTTGCCAATGTCCATG -ACGGAACCTTTGCCAATGTGTGTG -ACGGAACCTTTGCCAATGCTAGTG -ACGGAACCTTTGCCAATGCATCTG -ACGGAACCTTTGCCAATGGAGTTG -ACGGAACCTTTGCCAATGAGACTG -ACGGAACCTTTGCCAATGTCGGTA -ACGGAACCTTTGCCAATGTGCCTA -ACGGAACCTTTGCCAATGCCACTA -ACGGAACCTTTGCCAATGGGAGTA -ACGGAACCTTTGCCAATGTCGTCT -ACGGAACCTTTGCCAATGTGCACT -ACGGAACCTTTGCCAATGCTGACT -ACGGAACCTTTGCCAATGCAACCT -ACGGAACCTTTGCCAATGGCTACT -ACGGAACCTTTGCCAATGGGATCT -ACGGAACCTTTGCCAATGAAGGCT -ACGGAACCTTTGCCAATGTCAACC -ACGGAACCTTTGCCAATGTGTTCC -ACGGAACCTTTGCCAATGATTCCC -ACGGAACCTTTGCCAATGTTCTCG -ACGGAACCTTTGCCAATGTAGACG -ACGGAACCTTTGCCAATGGTAACG -ACGGAACCTTTGCCAATGACTTCG -ACGGAACCTTTGCCAATGTACGCA -ACGGAACCTTTGCCAATGCTTGCA -ACGGAACCTTTGCCAATGCGAACA -ACGGAACCTTTGCCAATGCAGTCA -ACGGAACCTTTGCCAATGGATCCA -ACGGAACCTTTGCCAATGACGACA -ACGGAACCTTTGCCAATGAGCTCA -ACGGAACCTTTGCCAATGTCACGT -ACGGAACCTTTGCCAATGCGTAGT -ACGGAACCTTTGCCAATGGTCAGT -ACGGAACCTTTGCCAATGGAAGGT -ACGGAACCTTTGCCAATGAACCGT -ACGGAACCTTTGCCAATGTTGTGC -ACGGAACCTTTGCCAATGCTAAGC -ACGGAACCTTTGCCAATGACTAGC -ACGGAACCTTTGCCAATGAGATGC -ACGGAACCTTTGCCAATGTGAAGG -ACGGAACCTTTGCCAATGCAATGG -ACGGAACCTTTGCCAATGATGAGG -ACGGAACCTTTGCCAATGAATGGG -ACGGAACCTTTGCCAATGTCCTGA -ACGGAACCTTTGCCAATGTAGCGA -ACGGAACCTTTGCCAATGCACAGA -ACGGAACCTTTGCCAATGGCAAGA -ACGGAACCTTTGCCAATGGGTTGA -ACGGAACCTTTGCCAATGTCCGAT -ACGGAACCTTTGCCAATGTGGCAT -ACGGAACCTTTGCCAATGCGAGAT -ACGGAACCTTTGCCAATGTACCAC -ACGGAACCTTTGCCAATGCAGAAC -ACGGAACCTTTGCCAATGGTCTAC -ACGGAACCTTTGCCAATGACGTAC -ACGGAACCTTTGCCAATGAGTGAC -ACGGAACCTTTGCCAATGCTGTAG -ACGGAACCTTTGCCAATGCCTAAG -ACGGAACCTTTGCCAATGGTTCAG -ACGGAACCTTTGCCAATGGCATAG -ACGGAACCTTTGCCAATGGACAAG -ACGGAACCTTTGCCAATGAAGCAG -ACGGAACCTTTGCCAATGCGTCAA -ACGGAACCTTTGCCAATGGCTGAA -ACGGAACCTTTGCCAATGAGTACG -ACGGAACCTTTGCCAATGATCCGA -ACGGAACCTTTGCCAATGATGGGA -ACGGAACCTTTGCCAATGGTGCAA -ACGGAACCTTTGCCAATGGAGGAA -ACGGAACCTTTGCCAATGCAGGTA -ACGGAACCTTTGCCAATGGACTCT -ACGGAACCTTTGCCAATGAGTCCT -ACGGAACCTTTGCCAATGTAAGCC -ACGGAACCTTTGCCAATGATAGCC -ACGGAACCTTTGCCAATGTAACCG -ACGGAACCTTTGCCAATGATGCCA -ACGGAAGTCTTGAACGGAGGAAAC -ACGGAAGTCTTGAACGGAAACACC -ACGGAAGTCTTGAACGGAATCGAG -ACGGAAGTCTTGAACGGACTCCTT -ACGGAAGTCTTGAACGGACCTGTT -ACGGAAGTCTTGAACGGACGGTTT -ACGGAAGTCTTGAACGGAGTGGTT -ACGGAAGTCTTGAACGGAGCCTTT -ACGGAAGTCTTGAACGGAGGTCTT -ACGGAAGTCTTGAACGGAACGCTT -ACGGAAGTCTTGAACGGAAGCGTT -ACGGAAGTCTTGAACGGATTCGTC -ACGGAAGTCTTGAACGGATCTCTC -ACGGAAGTCTTGAACGGATGGATC -ACGGAAGTCTTGAACGGACACTTC -ACGGAAGTCTTGAACGGAGTACTC -ACGGAAGTCTTGAACGGAGATGTC -ACGGAAGTCTTGAACGGAACAGTC -ACGGAAGTCTTGAACGGATTGCTG -ACGGAAGTCTTGAACGGATCCATG -ACGGAAGTCTTGAACGGATGTGTG -ACGGAAGTCTTGAACGGACTAGTG -ACGGAAGTCTTGAACGGACATCTG -ACGGAAGTCTTGAACGGAGAGTTG -ACGGAAGTCTTGAACGGAAGACTG -ACGGAAGTCTTGAACGGATCGGTA -ACGGAAGTCTTGAACGGATGCCTA -ACGGAAGTCTTGAACGGACCACTA -ACGGAAGTCTTGAACGGAGGAGTA -ACGGAAGTCTTGAACGGATCGTCT -ACGGAAGTCTTGAACGGATGCACT -ACGGAAGTCTTGAACGGACTGACT -ACGGAAGTCTTGAACGGACAACCT -ACGGAAGTCTTGAACGGAGCTACT -ACGGAAGTCTTGAACGGAGGATCT -ACGGAAGTCTTGAACGGAAAGGCT -ACGGAAGTCTTGAACGGATCAACC -ACGGAAGTCTTGAACGGATGTTCC -ACGGAAGTCTTGAACGGAATTCCC -ACGGAAGTCTTGAACGGATTCTCG -ACGGAAGTCTTGAACGGATAGACG -ACGGAAGTCTTGAACGGAGTAACG -ACGGAAGTCTTGAACGGAACTTCG -ACGGAAGTCTTGAACGGATACGCA -ACGGAAGTCTTGAACGGACTTGCA -ACGGAAGTCTTGAACGGACGAACA -ACGGAAGTCTTGAACGGACAGTCA -ACGGAAGTCTTGAACGGAGATCCA -ACGGAAGTCTTGAACGGAACGACA -ACGGAAGTCTTGAACGGAAGCTCA -ACGGAAGTCTTGAACGGATCACGT -ACGGAAGTCTTGAACGGACGTAGT -ACGGAAGTCTTGAACGGAGTCAGT -ACGGAAGTCTTGAACGGAGAAGGT -ACGGAAGTCTTGAACGGAAACCGT -ACGGAAGTCTTGAACGGATTGTGC -ACGGAAGTCTTGAACGGACTAAGC -ACGGAAGTCTTGAACGGAACTAGC -ACGGAAGTCTTGAACGGAAGATGC -ACGGAAGTCTTGAACGGATGAAGG -ACGGAAGTCTTGAACGGACAATGG -ACGGAAGTCTTGAACGGAATGAGG -ACGGAAGTCTTGAACGGAAATGGG -ACGGAAGTCTTGAACGGATCCTGA -ACGGAAGTCTTGAACGGATAGCGA -ACGGAAGTCTTGAACGGACACAGA -ACGGAAGTCTTGAACGGAGCAAGA -ACGGAAGTCTTGAACGGAGGTTGA -ACGGAAGTCTTGAACGGATCCGAT -ACGGAAGTCTTGAACGGATGGCAT -ACGGAAGTCTTGAACGGACGAGAT -ACGGAAGTCTTGAACGGATACCAC -ACGGAAGTCTTGAACGGACAGAAC -ACGGAAGTCTTGAACGGAGTCTAC -ACGGAAGTCTTGAACGGAACGTAC -ACGGAAGTCTTGAACGGAAGTGAC -ACGGAAGTCTTGAACGGACTGTAG -ACGGAAGTCTTGAACGGACCTAAG -ACGGAAGTCTTGAACGGAGTTCAG -ACGGAAGTCTTGAACGGAGCATAG -ACGGAAGTCTTGAACGGAGACAAG -ACGGAAGTCTTGAACGGAAAGCAG -ACGGAAGTCTTGAACGGACGTCAA -ACGGAAGTCTTGAACGGAGCTGAA -ACGGAAGTCTTGAACGGAAGTACG -ACGGAAGTCTTGAACGGAATCCGA -ACGGAAGTCTTGAACGGAATGGGA -ACGGAAGTCTTGAACGGAGTGCAA -ACGGAAGTCTTGAACGGAGAGGAA -ACGGAAGTCTTGAACGGACAGGTA -ACGGAAGTCTTGAACGGAGACTCT -ACGGAAGTCTTGAACGGAAGTCCT -ACGGAAGTCTTGAACGGATAAGCC -ACGGAAGTCTTGAACGGAATAGCC -ACGGAAGTCTTGAACGGATAACCG -ACGGAAGTCTTGAACGGAATGCCA -ACGGAAGTCTTGACCAACGGAAAC -ACGGAAGTCTTGACCAACAACACC -ACGGAAGTCTTGACCAACATCGAG -ACGGAAGTCTTGACCAACCTCCTT -ACGGAAGTCTTGACCAACCCTGTT -ACGGAAGTCTTGACCAACCGGTTT -ACGGAAGTCTTGACCAACGTGGTT -ACGGAAGTCTTGACCAACGCCTTT -ACGGAAGTCTTGACCAACGGTCTT -ACGGAAGTCTTGACCAACACGCTT -ACGGAAGTCTTGACCAACAGCGTT -ACGGAAGTCTTGACCAACTTCGTC -ACGGAAGTCTTGACCAACTCTCTC -ACGGAAGTCTTGACCAACTGGATC -ACGGAAGTCTTGACCAACCACTTC -ACGGAAGTCTTGACCAACGTACTC -ACGGAAGTCTTGACCAACGATGTC -ACGGAAGTCTTGACCAACACAGTC -ACGGAAGTCTTGACCAACTTGCTG -ACGGAAGTCTTGACCAACTCCATG -ACGGAAGTCTTGACCAACTGTGTG -ACGGAAGTCTTGACCAACCTAGTG -ACGGAAGTCTTGACCAACCATCTG -ACGGAAGTCTTGACCAACGAGTTG -ACGGAAGTCTTGACCAACAGACTG -ACGGAAGTCTTGACCAACTCGGTA -ACGGAAGTCTTGACCAACTGCCTA -ACGGAAGTCTTGACCAACCCACTA -ACGGAAGTCTTGACCAACGGAGTA -ACGGAAGTCTTGACCAACTCGTCT -ACGGAAGTCTTGACCAACTGCACT -ACGGAAGTCTTGACCAACCTGACT -ACGGAAGTCTTGACCAACCAACCT -ACGGAAGTCTTGACCAACGCTACT -ACGGAAGTCTTGACCAACGGATCT -ACGGAAGTCTTGACCAACAAGGCT -ACGGAAGTCTTGACCAACTCAACC -ACGGAAGTCTTGACCAACTGTTCC -ACGGAAGTCTTGACCAACATTCCC -ACGGAAGTCTTGACCAACTTCTCG -ACGGAAGTCTTGACCAACTAGACG -ACGGAAGTCTTGACCAACGTAACG -ACGGAAGTCTTGACCAACACTTCG -ACGGAAGTCTTGACCAACTACGCA -ACGGAAGTCTTGACCAACCTTGCA -ACGGAAGTCTTGACCAACCGAACA -ACGGAAGTCTTGACCAACCAGTCA -ACGGAAGTCTTGACCAACGATCCA -ACGGAAGTCTTGACCAACACGACA -ACGGAAGTCTTGACCAACAGCTCA -ACGGAAGTCTTGACCAACTCACGT -ACGGAAGTCTTGACCAACCGTAGT -ACGGAAGTCTTGACCAACGTCAGT -ACGGAAGTCTTGACCAACGAAGGT -ACGGAAGTCTTGACCAACAACCGT -ACGGAAGTCTTGACCAACTTGTGC -ACGGAAGTCTTGACCAACCTAAGC -ACGGAAGTCTTGACCAACACTAGC -ACGGAAGTCTTGACCAACAGATGC -ACGGAAGTCTTGACCAACTGAAGG -ACGGAAGTCTTGACCAACCAATGG -ACGGAAGTCTTGACCAACATGAGG -ACGGAAGTCTTGACCAACAATGGG -ACGGAAGTCTTGACCAACTCCTGA -ACGGAAGTCTTGACCAACTAGCGA -ACGGAAGTCTTGACCAACCACAGA -ACGGAAGTCTTGACCAACGCAAGA -ACGGAAGTCTTGACCAACGGTTGA -ACGGAAGTCTTGACCAACTCCGAT -ACGGAAGTCTTGACCAACTGGCAT -ACGGAAGTCTTGACCAACCGAGAT -ACGGAAGTCTTGACCAACTACCAC -ACGGAAGTCTTGACCAACCAGAAC -ACGGAAGTCTTGACCAACGTCTAC -ACGGAAGTCTTGACCAACACGTAC -ACGGAAGTCTTGACCAACAGTGAC -ACGGAAGTCTTGACCAACCTGTAG -ACGGAAGTCTTGACCAACCCTAAG -ACGGAAGTCTTGACCAACGTTCAG -ACGGAAGTCTTGACCAACGCATAG -ACGGAAGTCTTGACCAACGACAAG -ACGGAAGTCTTGACCAACAAGCAG -ACGGAAGTCTTGACCAACCGTCAA -ACGGAAGTCTTGACCAACGCTGAA -ACGGAAGTCTTGACCAACAGTACG -ACGGAAGTCTTGACCAACATCCGA -ACGGAAGTCTTGACCAACATGGGA -ACGGAAGTCTTGACCAACGTGCAA -ACGGAAGTCTTGACCAACGAGGAA -ACGGAAGTCTTGACCAACCAGGTA -ACGGAAGTCTTGACCAACGACTCT -ACGGAAGTCTTGACCAACAGTCCT -ACGGAAGTCTTGACCAACTAAGCC -ACGGAAGTCTTGACCAACATAGCC -ACGGAAGTCTTGACCAACTAACCG -ACGGAAGTCTTGACCAACATGCCA -ACGGAAGTCTTGGAGATCGGAAAC -ACGGAAGTCTTGGAGATCAACACC -ACGGAAGTCTTGGAGATCATCGAG -ACGGAAGTCTTGGAGATCCTCCTT -ACGGAAGTCTTGGAGATCCCTGTT -ACGGAAGTCTTGGAGATCCGGTTT -ACGGAAGTCTTGGAGATCGTGGTT -ACGGAAGTCTTGGAGATCGCCTTT -ACGGAAGTCTTGGAGATCGGTCTT -ACGGAAGTCTTGGAGATCACGCTT -ACGGAAGTCTTGGAGATCAGCGTT -ACGGAAGTCTTGGAGATCTTCGTC -ACGGAAGTCTTGGAGATCTCTCTC -ACGGAAGTCTTGGAGATCTGGATC -ACGGAAGTCTTGGAGATCCACTTC -ACGGAAGTCTTGGAGATCGTACTC -ACGGAAGTCTTGGAGATCGATGTC -ACGGAAGTCTTGGAGATCACAGTC -ACGGAAGTCTTGGAGATCTTGCTG -ACGGAAGTCTTGGAGATCTCCATG -ACGGAAGTCTTGGAGATCTGTGTG -ACGGAAGTCTTGGAGATCCTAGTG -ACGGAAGTCTTGGAGATCCATCTG -ACGGAAGTCTTGGAGATCGAGTTG -ACGGAAGTCTTGGAGATCAGACTG -ACGGAAGTCTTGGAGATCTCGGTA -ACGGAAGTCTTGGAGATCTGCCTA -ACGGAAGTCTTGGAGATCCCACTA -ACGGAAGTCTTGGAGATCGGAGTA -ACGGAAGTCTTGGAGATCTCGTCT -ACGGAAGTCTTGGAGATCTGCACT -ACGGAAGTCTTGGAGATCCTGACT -ACGGAAGTCTTGGAGATCCAACCT -ACGGAAGTCTTGGAGATCGCTACT -ACGGAAGTCTTGGAGATCGGATCT -ACGGAAGTCTTGGAGATCAAGGCT -ACGGAAGTCTTGGAGATCTCAACC -ACGGAAGTCTTGGAGATCTGTTCC -ACGGAAGTCTTGGAGATCATTCCC -ACGGAAGTCTTGGAGATCTTCTCG -ACGGAAGTCTTGGAGATCTAGACG -ACGGAAGTCTTGGAGATCGTAACG -ACGGAAGTCTTGGAGATCACTTCG -ACGGAAGTCTTGGAGATCTACGCA -ACGGAAGTCTTGGAGATCCTTGCA -ACGGAAGTCTTGGAGATCCGAACA -ACGGAAGTCTTGGAGATCCAGTCA -ACGGAAGTCTTGGAGATCGATCCA -ACGGAAGTCTTGGAGATCACGACA -ACGGAAGTCTTGGAGATCAGCTCA -ACGGAAGTCTTGGAGATCTCACGT -ACGGAAGTCTTGGAGATCCGTAGT -ACGGAAGTCTTGGAGATCGTCAGT -ACGGAAGTCTTGGAGATCGAAGGT -ACGGAAGTCTTGGAGATCAACCGT -ACGGAAGTCTTGGAGATCTTGTGC -ACGGAAGTCTTGGAGATCCTAAGC -ACGGAAGTCTTGGAGATCACTAGC -ACGGAAGTCTTGGAGATCAGATGC -ACGGAAGTCTTGGAGATCTGAAGG -ACGGAAGTCTTGGAGATCCAATGG -ACGGAAGTCTTGGAGATCATGAGG -ACGGAAGTCTTGGAGATCAATGGG -ACGGAAGTCTTGGAGATCTCCTGA -ACGGAAGTCTTGGAGATCTAGCGA -ACGGAAGTCTTGGAGATCCACAGA -ACGGAAGTCTTGGAGATCGCAAGA -ACGGAAGTCTTGGAGATCGGTTGA -ACGGAAGTCTTGGAGATCTCCGAT -ACGGAAGTCTTGGAGATCTGGCAT -ACGGAAGTCTTGGAGATCCGAGAT -ACGGAAGTCTTGGAGATCTACCAC -ACGGAAGTCTTGGAGATCCAGAAC -ACGGAAGTCTTGGAGATCGTCTAC -ACGGAAGTCTTGGAGATCACGTAC -ACGGAAGTCTTGGAGATCAGTGAC -ACGGAAGTCTTGGAGATCCTGTAG -ACGGAAGTCTTGGAGATCCCTAAG -ACGGAAGTCTTGGAGATCGTTCAG -ACGGAAGTCTTGGAGATCGCATAG -ACGGAAGTCTTGGAGATCGACAAG -ACGGAAGTCTTGGAGATCAAGCAG -ACGGAAGTCTTGGAGATCCGTCAA -ACGGAAGTCTTGGAGATCGCTGAA -ACGGAAGTCTTGGAGATCAGTACG -ACGGAAGTCTTGGAGATCATCCGA -ACGGAAGTCTTGGAGATCATGGGA -ACGGAAGTCTTGGAGATCGTGCAA -ACGGAAGTCTTGGAGATCGAGGAA -ACGGAAGTCTTGGAGATCCAGGTA -ACGGAAGTCTTGGAGATCGACTCT -ACGGAAGTCTTGGAGATCAGTCCT -ACGGAAGTCTTGGAGATCTAAGCC -ACGGAAGTCTTGGAGATCATAGCC -ACGGAAGTCTTGGAGATCTAACCG -ACGGAAGTCTTGGAGATCATGCCA -ACGGAAGTCTTGCTTCTCGGAAAC -ACGGAAGTCTTGCTTCTCAACACC -ACGGAAGTCTTGCTTCTCATCGAG -ACGGAAGTCTTGCTTCTCCTCCTT -ACGGAAGTCTTGCTTCTCCCTGTT -ACGGAAGTCTTGCTTCTCCGGTTT -ACGGAAGTCTTGCTTCTCGTGGTT -ACGGAAGTCTTGCTTCTCGCCTTT -ACGGAAGTCTTGCTTCTCGGTCTT -ACGGAAGTCTTGCTTCTCACGCTT -ACGGAAGTCTTGCTTCTCAGCGTT -ACGGAAGTCTTGCTTCTCTTCGTC -ACGGAAGTCTTGCTTCTCTCTCTC -ACGGAAGTCTTGCTTCTCTGGATC -ACGGAAGTCTTGCTTCTCCACTTC -ACGGAAGTCTTGCTTCTCGTACTC -ACGGAAGTCTTGCTTCTCGATGTC -ACGGAAGTCTTGCTTCTCACAGTC -ACGGAAGTCTTGCTTCTCTTGCTG -ACGGAAGTCTTGCTTCTCTCCATG -ACGGAAGTCTTGCTTCTCTGTGTG -ACGGAAGTCTTGCTTCTCCTAGTG -ACGGAAGTCTTGCTTCTCCATCTG -ACGGAAGTCTTGCTTCTCGAGTTG -ACGGAAGTCTTGCTTCTCAGACTG -ACGGAAGTCTTGCTTCTCTCGGTA -ACGGAAGTCTTGCTTCTCTGCCTA -ACGGAAGTCTTGCTTCTCCCACTA -ACGGAAGTCTTGCTTCTCGGAGTA -ACGGAAGTCTTGCTTCTCTCGTCT -ACGGAAGTCTTGCTTCTCTGCACT -ACGGAAGTCTTGCTTCTCCTGACT -ACGGAAGTCTTGCTTCTCCAACCT -ACGGAAGTCTTGCTTCTCGCTACT -ACGGAAGTCTTGCTTCTCGGATCT -ACGGAAGTCTTGCTTCTCAAGGCT -ACGGAAGTCTTGCTTCTCTCAACC -ACGGAAGTCTTGCTTCTCTGTTCC -ACGGAAGTCTTGCTTCTCATTCCC -ACGGAAGTCTTGCTTCTCTTCTCG -ACGGAAGTCTTGCTTCTCTAGACG -ACGGAAGTCTTGCTTCTCGTAACG -ACGGAAGTCTTGCTTCTCACTTCG -ACGGAAGTCTTGCTTCTCTACGCA -ACGGAAGTCTTGCTTCTCCTTGCA -ACGGAAGTCTTGCTTCTCCGAACA -ACGGAAGTCTTGCTTCTCCAGTCA -ACGGAAGTCTTGCTTCTCGATCCA -ACGGAAGTCTTGCTTCTCACGACA -ACGGAAGTCTTGCTTCTCAGCTCA -ACGGAAGTCTTGCTTCTCTCACGT -ACGGAAGTCTTGCTTCTCCGTAGT -ACGGAAGTCTTGCTTCTCGTCAGT -ACGGAAGTCTTGCTTCTCGAAGGT -ACGGAAGTCTTGCTTCTCAACCGT -ACGGAAGTCTTGCTTCTCTTGTGC -ACGGAAGTCTTGCTTCTCCTAAGC -ACGGAAGTCTTGCTTCTCACTAGC -ACGGAAGTCTTGCTTCTCAGATGC -ACGGAAGTCTTGCTTCTCTGAAGG -ACGGAAGTCTTGCTTCTCCAATGG -ACGGAAGTCTTGCTTCTCATGAGG -ACGGAAGTCTTGCTTCTCAATGGG -ACGGAAGTCTTGCTTCTCTCCTGA -ACGGAAGTCTTGCTTCTCTAGCGA -ACGGAAGTCTTGCTTCTCCACAGA -ACGGAAGTCTTGCTTCTCGCAAGA -ACGGAAGTCTTGCTTCTCGGTTGA -ACGGAAGTCTTGCTTCTCTCCGAT -ACGGAAGTCTTGCTTCTCTGGCAT -ACGGAAGTCTTGCTTCTCCGAGAT -ACGGAAGTCTTGCTTCTCTACCAC -ACGGAAGTCTTGCTTCTCCAGAAC -ACGGAAGTCTTGCTTCTCGTCTAC -ACGGAAGTCTTGCTTCTCACGTAC -ACGGAAGTCTTGCTTCTCAGTGAC -ACGGAAGTCTTGCTTCTCCTGTAG -ACGGAAGTCTTGCTTCTCCCTAAG -ACGGAAGTCTTGCTTCTCGTTCAG -ACGGAAGTCTTGCTTCTCGCATAG -ACGGAAGTCTTGCTTCTCGACAAG -ACGGAAGTCTTGCTTCTCAAGCAG -ACGGAAGTCTTGCTTCTCCGTCAA -ACGGAAGTCTTGCTTCTCGCTGAA -ACGGAAGTCTTGCTTCTCAGTACG -ACGGAAGTCTTGCTTCTCATCCGA -ACGGAAGTCTTGCTTCTCATGGGA -ACGGAAGTCTTGCTTCTCGTGCAA -ACGGAAGTCTTGCTTCTCGAGGAA -ACGGAAGTCTTGCTTCTCCAGGTA -ACGGAAGTCTTGCTTCTCGACTCT -ACGGAAGTCTTGCTTCTCAGTCCT -ACGGAAGTCTTGCTTCTCTAAGCC -ACGGAAGTCTTGCTTCTCATAGCC -ACGGAAGTCTTGCTTCTCTAACCG -ACGGAAGTCTTGCTTCTCATGCCA -ACGGAAGTCTTGGTTCCTGGAAAC -ACGGAAGTCTTGGTTCCTAACACC -ACGGAAGTCTTGGTTCCTATCGAG -ACGGAAGTCTTGGTTCCTCTCCTT -ACGGAAGTCTTGGTTCCTCCTGTT -ACGGAAGTCTTGGTTCCTCGGTTT -ACGGAAGTCTTGGTTCCTGTGGTT -ACGGAAGTCTTGGTTCCTGCCTTT -ACGGAAGTCTTGGTTCCTGGTCTT -ACGGAAGTCTTGGTTCCTACGCTT -ACGGAAGTCTTGGTTCCTAGCGTT -ACGGAAGTCTTGGTTCCTTTCGTC -ACGGAAGTCTTGGTTCCTTCTCTC -ACGGAAGTCTTGGTTCCTTGGATC -ACGGAAGTCTTGGTTCCTCACTTC -ACGGAAGTCTTGGTTCCTGTACTC -ACGGAAGTCTTGGTTCCTGATGTC -ACGGAAGTCTTGGTTCCTACAGTC -ACGGAAGTCTTGGTTCCTTTGCTG -ACGGAAGTCTTGGTTCCTTCCATG -ACGGAAGTCTTGGTTCCTTGTGTG -ACGGAAGTCTTGGTTCCTCTAGTG -ACGGAAGTCTTGGTTCCTCATCTG -ACGGAAGTCTTGGTTCCTGAGTTG -ACGGAAGTCTTGGTTCCTAGACTG -ACGGAAGTCTTGGTTCCTTCGGTA -ACGGAAGTCTTGGTTCCTTGCCTA -ACGGAAGTCTTGGTTCCTCCACTA -ACGGAAGTCTTGGTTCCTGGAGTA -ACGGAAGTCTTGGTTCCTTCGTCT -ACGGAAGTCTTGGTTCCTTGCACT -ACGGAAGTCTTGGTTCCTCTGACT -ACGGAAGTCTTGGTTCCTCAACCT -ACGGAAGTCTTGGTTCCTGCTACT -ACGGAAGTCTTGGTTCCTGGATCT -ACGGAAGTCTTGGTTCCTAAGGCT -ACGGAAGTCTTGGTTCCTTCAACC -ACGGAAGTCTTGGTTCCTTGTTCC -ACGGAAGTCTTGGTTCCTATTCCC -ACGGAAGTCTTGGTTCCTTTCTCG -ACGGAAGTCTTGGTTCCTTAGACG -ACGGAAGTCTTGGTTCCTGTAACG -ACGGAAGTCTTGGTTCCTACTTCG -ACGGAAGTCTTGGTTCCTTACGCA -ACGGAAGTCTTGGTTCCTCTTGCA -ACGGAAGTCTTGGTTCCTCGAACA -ACGGAAGTCTTGGTTCCTCAGTCA -ACGGAAGTCTTGGTTCCTGATCCA -ACGGAAGTCTTGGTTCCTACGACA -ACGGAAGTCTTGGTTCCTAGCTCA -ACGGAAGTCTTGGTTCCTTCACGT -ACGGAAGTCTTGGTTCCTCGTAGT -ACGGAAGTCTTGGTTCCTGTCAGT -ACGGAAGTCTTGGTTCCTGAAGGT -ACGGAAGTCTTGGTTCCTAACCGT -ACGGAAGTCTTGGTTCCTTTGTGC -ACGGAAGTCTTGGTTCCTCTAAGC -ACGGAAGTCTTGGTTCCTACTAGC -ACGGAAGTCTTGGTTCCTAGATGC -ACGGAAGTCTTGGTTCCTTGAAGG -ACGGAAGTCTTGGTTCCTCAATGG -ACGGAAGTCTTGGTTCCTATGAGG -ACGGAAGTCTTGGTTCCTAATGGG -ACGGAAGTCTTGGTTCCTTCCTGA -ACGGAAGTCTTGGTTCCTTAGCGA -ACGGAAGTCTTGGTTCCTCACAGA -ACGGAAGTCTTGGTTCCTGCAAGA -ACGGAAGTCTTGGTTCCTGGTTGA -ACGGAAGTCTTGGTTCCTTCCGAT -ACGGAAGTCTTGGTTCCTTGGCAT -ACGGAAGTCTTGGTTCCTCGAGAT -ACGGAAGTCTTGGTTCCTTACCAC -ACGGAAGTCTTGGTTCCTCAGAAC -ACGGAAGTCTTGGTTCCTGTCTAC -ACGGAAGTCTTGGTTCCTACGTAC -ACGGAAGTCTTGGTTCCTAGTGAC -ACGGAAGTCTTGGTTCCTCTGTAG -ACGGAAGTCTTGGTTCCTCCTAAG -ACGGAAGTCTTGGTTCCTGTTCAG -ACGGAAGTCTTGGTTCCTGCATAG -ACGGAAGTCTTGGTTCCTGACAAG -ACGGAAGTCTTGGTTCCTAAGCAG -ACGGAAGTCTTGGTTCCTCGTCAA -ACGGAAGTCTTGGTTCCTGCTGAA -ACGGAAGTCTTGGTTCCTAGTACG -ACGGAAGTCTTGGTTCCTATCCGA -ACGGAAGTCTTGGTTCCTATGGGA -ACGGAAGTCTTGGTTCCTGTGCAA -ACGGAAGTCTTGGTTCCTGAGGAA -ACGGAAGTCTTGGTTCCTCAGGTA -ACGGAAGTCTTGGTTCCTGACTCT -ACGGAAGTCTTGGTTCCTAGTCCT -ACGGAAGTCTTGGTTCCTTAAGCC -ACGGAAGTCTTGGTTCCTATAGCC -ACGGAAGTCTTGGTTCCTTAACCG -ACGGAAGTCTTGGTTCCTATGCCA -ACGGAAGTCTTGTTTCGGGGAAAC -ACGGAAGTCTTGTTTCGGAACACC -ACGGAAGTCTTGTTTCGGATCGAG -ACGGAAGTCTTGTTTCGGCTCCTT -ACGGAAGTCTTGTTTCGGCCTGTT -ACGGAAGTCTTGTTTCGGCGGTTT -ACGGAAGTCTTGTTTCGGGTGGTT -ACGGAAGTCTTGTTTCGGGCCTTT -ACGGAAGTCTTGTTTCGGGGTCTT -ACGGAAGTCTTGTTTCGGACGCTT -ACGGAAGTCTTGTTTCGGAGCGTT -ACGGAAGTCTTGTTTCGGTTCGTC -ACGGAAGTCTTGTTTCGGTCTCTC -ACGGAAGTCTTGTTTCGGTGGATC -ACGGAAGTCTTGTTTCGGCACTTC -ACGGAAGTCTTGTTTCGGGTACTC -ACGGAAGTCTTGTTTCGGGATGTC -ACGGAAGTCTTGTTTCGGACAGTC -ACGGAAGTCTTGTTTCGGTTGCTG -ACGGAAGTCTTGTTTCGGTCCATG -ACGGAAGTCTTGTTTCGGTGTGTG -ACGGAAGTCTTGTTTCGGCTAGTG -ACGGAAGTCTTGTTTCGGCATCTG -ACGGAAGTCTTGTTTCGGGAGTTG -ACGGAAGTCTTGTTTCGGAGACTG -ACGGAAGTCTTGTTTCGGTCGGTA -ACGGAAGTCTTGTTTCGGTGCCTA -ACGGAAGTCTTGTTTCGGCCACTA -ACGGAAGTCTTGTTTCGGGGAGTA -ACGGAAGTCTTGTTTCGGTCGTCT -ACGGAAGTCTTGTTTCGGTGCACT -ACGGAAGTCTTGTTTCGGCTGACT -ACGGAAGTCTTGTTTCGGCAACCT -ACGGAAGTCTTGTTTCGGGCTACT -ACGGAAGTCTTGTTTCGGGGATCT -ACGGAAGTCTTGTTTCGGAAGGCT -ACGGAAGTCTTGTTTCGGTCAACC -ACGGAAGTCTTGTTTCGGTGTTCC -ACGGAAGTCTTGTTTCGGATTCCC -ACGGAAGTCTTGTTTCGGTTCTCG -ACGGAAGTCTTGTTTCGGTAGACG -ACGGAAGTCTTGTTTCGGGTAACG -ACGGAAGTCTTGTTTCGGACTTCG -ACGGAAGTCTTGTTTCGGTACGCA -ACGGAAGTCTTGTTTCGGCTTGCA -ACGGAAGTCTTGTTTCGGCGAACA -ACGGAAGTCTTGTTTCGGCAGTCA -ACGGAAGTCTTGTTTCGGGATCCA -ACGGAAGTCTTGTTTCGGACGACA -ACGGAAGTCTTGTTTCGGAGCTCA -ACGGAAGTCTTGTTTCGGTCACGT -ACGGAAGTCTTGTTTCGGCGTAGT -ACGGAAGTCTTGTTTCGGGTCAGT -ACGGAAGTCTTGTTTCGGGAAGGT -ACGGAAGTCTTGTTTCGGAACCGT -ACGGAAGTCTTGTTTCGGTTGTGC -ACGGAAGTCTTGTTTCGGCTAAGC -ACGGAAGTCTTGTTTCGGACTAGC -ACGGAAGTCTTGTTTCGGAGATGC -ACGGAAGTCTTGTTTCGGTGAAGG -ACGGAAGTCTTGTTTCGGCAATGG -ACGGAAGTCTTGTTTCGGATGAGG -ACGGAAGTCTTGTTTCGGAATGGG -ACGGAAGTCTTGTTTCGGTCCTGA -ACGGAAGTCTTGTTTCGGTAGCGA -ACGGAAGTCTTGTTTCGGCACAGA -ACGGAAGTCTTGTTTCGGGCAAGA -ACGGAAGTCTTGTTTCGGGGTTGA -ACGGAAGTCTTGTTTCGGTCCGAT -ACGGAAGTCTTGTTTCGGTGGCAT -ACGGAAGTCTTGTTTCGGCGAGAT -ACGGAAGTCTTGTTTCGGTACCAC -ACGGAAGTCTTGTTTCGGCAGAAC -ACGGAAGTCTTGTTTCGGGTCTAC -ACGGAAGTCTTGTTTCGGACGTAC -ACGGAAGTCTTGTTTCGGAGTGAC -ACGGAAGTCTTGTTTCGGCTGTAG -ACGGAAGTCTTGTTTCGGCCTAAG -ACGGAAGTCTTGTTTCGGGTTCAG -ACGGAAGTCTTGTTTCGGGCATAG -ACGGAAGTCTTGTTTCGGGACAAG -ACGGAAGTCTTGTTTCGGAAGCAG -ACGGAAGTCTTGTTTCGGCGTCAA -ACGGAAGTCTTGTTTCGGGCTGAA -ACGGAAGTCTTGTTTCGGAGTACG -ACGGAAGTCTTGTTTCGGATCCGA -ACGGAAGTCTTGTTTCGGATGGGA -ACGGAAGTCTTGTTTCGGGTGCAA -ACGGAAGTCTTGTTTCGGGAGGAA -ACGGAAGTCTTGTTTCGGCAGGTA -ACGGAAGTCTTGTTTCGGGACTCT -ACGGAAGTCTTGTTTCGGAGTCCT -ACGGAAGTCTTGTTTCGGTAAGCC -ACGGAAGTCTTGTTTCGGATAGCC -ACGGAAGTCTTGTTTCGGTAACCG -ACGGAAGTCTTGTTTCGGATGCCA -ACGGAAGTCTTGGTTGTGGGAAAC -ACGGAAGTCTTGGTTGTGAACACC -ACGGAAGTCTTGGTTGTGATCGAG -ACGGAAGTCTTGGTTGTGCTCCTT -ACGGAAGTCTTGGTTGTGCCTGTT -ACGGAAGTCTTGGTTGTGCGGTTT -ACGGAAGTCTTGGTTGTGGTGGTT -ACGGAAGTCTTGGTTGTGGCCTTT -ACGGAAGTCTTGGTTGTGGGTCTT -ACGGAAGTCTTGGTTGTGACGCTT -ACGGAAGTCTTGGTTGTGAGCGTT -ACGGAAGTCTTGGTTGTGTTCGTC -ACGGAAGTCTTGGTTGTGTCTCTC -ACGGAAGTCTTGGTTGTGTGGATC -ACGGAAGTCTTGGTTGTGCACTTC -ACGGAAGTCTTGGTTGTGGTACTC -ACGGAAGTCTTGGTTGTGGATGTC -ACGGAAGTCTTGGTTGTGACAGTC -ACGGAAGTCTTGGTTGTGTTGCTG -ACGGAAGTCTTGGTTGTGTCCATG -ACGGAAGTCTTGGTTGTGTGTGTG -ACGGAAGTCTTGGTTGTGCTAGTG -ACGGAAGTCTTGGTTGTGCATCTG -ACGGAAGTCTTGGTTGTGGAGTTG -ACGGAAGTCTTGGTTGTGAGACTG -ACGGAAGTCTTGGTTGTGTCGGTA -ACGGAAGTCTTGGTTGTGTGCCTA -ACGGAAGTCTTGGTTGTGCCACTA -ACGGAAGTCTTGGTTGTGGGAGTA -ACGGAAGTCTTGGTTGTGTCGTCT -ACGGAAGTCTTGGTTGTGTGCACT -ACGGAAGTCTTGGTTGTGCTGACT -ACGGAAGTCTTGGTTGTGCAACCT -ACGGAAGTCTTGGTTGTGGCTACT -ACGGAAGTCTTGGTTGTGGGATCT -ACGGAAGTCTTGGTTGTGAAGGCT -ACGGAAGTCTTGGTTGTGTCAACC -ACGGAAGTCTTGGTTGTGTGTTCC -ACGGAAGTCTTGGTTGTGATTCCC -ACGGAAGTCTTGGTTGTGTTCTCG -ACGGAAGTCTTGGTTGTGTAGACG -ACGGAAGTCTTGGTTGTGGTAACG -ACGGAAGTCTTGGTTGTGACTTCG -ACGGAAGTCTTGGTTGTGTACGCA -ACGGAAGTCTTGGTTGTGCTTGCA -ACGGAAGTCTTGGTTGTGCGAACA -ACGGAAGTCTTGGTTGTGCAGTCA -ACGGAAGTCTTGGTTGTGGATCCA -ACGGAAGTCTTGGTTGTGACGACA -ACGGAAGTCTTGGTTGTGAGCTCA -ACGGAAGTCTTGGTTGTGTCACGT -ACGGAAGTCTTGGTTGTGCGTAGT -ACGGAAGTCTTGGTTGTGGTCAGT -ACGGAAGTCTTGGTTGTGGAAGGT -ACGGAAGTCTTGGTTGTGAACCGT -ACGGAAGTCTTGGTTGTGTTGTGC -ACGGAAGTCTTGGTTGTGCTAAGC -ACGGAAGTCTTGGTTGTGACTAGC -ACGGAAGTCTTGGTTGTGAGATGC -ACGGAAGTCTTGGTTGTGTGAAGG -ACGGAAGTCTTGGTTGTGCAATGG -ACGGAAGTCTTGGTTGTGATGAGG -ACGGAAGTCTTGGTTGTGAATGGG -ACGGAAGTCTTGGTTGTGTCCTGA -ACGGAAGTCTTGGTTGTGTAGCGA -ACGGAAGTCTTGGTTGTGCACAGA -ACGGAAGTCTTGGTTGTGGCAAGA -ACGGAAGTCTTGGTTGTGGGTTGA -ACGGAAGTCTTGGTTGTGTCCGAT -ACGGAAGTCTTGGTTGTGTGGCAT -ACGGAAGTCTTGGTTGTGCGAGAT -ACGGAAGTCTTGGTTGTGTACCAC -ACGGAAGTCTTGGTTGTGCAGAAC -ACGGAAGTCTTGGTTGTGGTCTAC -ACGGAAGTCTTGGTTGTGACGTAC -ACGGAAGTCTTGGTTGTGAGTGAC -ACGGAAGTCTTGGTTGTGCTGTAG -ACGGAAGTCTTGGTTGTGCCTAAG -ACGGAAGTCTTGGTTGTGGTTCAG -ACGGAAGTCTTGGTTGTGGCATAG -ACGGAAGTCTTGGTTGTGGACAAG -ACGGAAGTCTTGGTTGTGAAGCAG -ACGGAAGTCTTGGTTGTGCGTCAA -ACGGAAGTCTTGGTTGTGGCTGAA -ACGGAAGTCTTGGTTGTGAGTACG -ACGGAAGTCTTGGTTGTGATCCGA -ACGGAAGTCTTGGTTGTGATGGGA -ACGGAAGTCTTGGTTGTGGTGCAA -ACGGAAGTCTTGGTTGTGGAGGAA -ACGGAAGTCTTGGTTGTGCAGGTA -ACGGAAGTCTTGGTTGTGGACTCT -ACGGAAGTCTTGGTTGTGAGTCCT -ACGGAAGTCTTGGTTGTGTAAGCC -ACGGAAGTCTTGGTTGTGATAGCC -ACGGAAGTCTTGGTTGTGTAACCG -ACGGAAGTCTTGGTTGTGATGCCA -ACGGAAGTCTTGTTTGCCGGAAAC -ACGGAAGTCTTGTTTGCCAACACC -ACGGAAGTCTTGTTTGCCATCGAG -ACGGAAGTCTTGTTTGCCCTCCTT -ACGGAAGTCTTGTTTGCCCCTGTT -ACGGAAGTCTTGTTTGCCCGGTTT -ACGGAAGTCTTGTTTGCCGTGGTT -ACGGAAGTCTTGTTTGCCGCCTTT -ACGGAAGTCTTGTTTGCCGGTCTT -ACGGAAGTCTTGTTTGCCACGCTT -ACGGAAGTCTTGTTTGCCAGCGTT -ACGGAAGTCTTGTTTGCCTTCGTC -ACGGAAGTCTTGTTTGCCTCTCTC -ACGGAAGTCTTGTTTGCCTGGATC -ACGGAAGTCTTGTTTGCCCACTTC -ACGGAAGTCTTGTTTGCCGTACTC -ACGGAAGTCTTGTTTGCCGATGTC -ACGGAAGTCTTGTTTGCCACAGTC -ACGGAAGTCTTGTTTGCCTTGCTG -ACGGAAGTCTTGTTTGCCTCCATG -ACGGAAGTCTTGTTTGCCTGTGTG -ACGGAAGTCTTGTTTGCCCTAGTG -ACGGAAGTCTTGTTTGCCCATCTG -ACGGAAGTCTTGTTTGCCGAGTTG -ACGGAAGTCTTGTTTGCCAGACTG -ACGGAAGTCTTGTTTGCCTCGGTA -ACGGAAGTCTTGTTTGCCTGCCTA -ACGGAAGTCTTGTTTGCCCCACTA -ACGGAAGTCTTGTTTGCCGGAGTA -ACGGAAGTCTTGTTTGCCTCGTCT -ACGGAAGTCTTGTTTGCCTGCACT -ACGGAAGTCTTGTTTGCCCTGACT -ACGGAAGTCTTGTTTGCCCAACCT -ACGGAAGTCTTGTTTGCCGCTACT -ACGGAAGTCTTGTTTGCCGGATCT -ACGGAAGTCTTGTTTGCCAAGGCT -ACGGAAGTCTTGTTTGCCTCAACC -ACGGAAGTCTTGTTTGCCTGTTCC -ACGGAAGTCTTGTTTGCCATTCCC -ACGGAAGTCTTGTTTGCCTTCTCG -ACGGAAGTCTTGTTTGCCTAGACG -ACGGAAGTCTTGTTTGCCGTAACG -ACGGAAGTCTTGTTTGCCACTTCG -ACGGAAGTCTTGTTTGCCTACGCA -ACGGAAGTCTTGTTTGCCCTTGCA -ACGGAAGTCTTGTTTGCCCGAACA -ACGGAAGTCTTGTTTGCCCAGTCA -ACGGAAGTCTTGTTTGCCGATCCA -ACGGAAGTCTTGTTTGCCACGACA -ACGGAAGTCTTGTTTGCCAGCTCA -ACGGAAGTCTTGTTTGCCTCACGT -ACGGAAGTCTTGTTTGCCCGTAGT -ACGGAAGTCTTGTTTGCCGTCAGT -ACGGAAGTCTTGTTTGCCGAAGGT -ACGGAAGTCTTGTTTGCCAACCGT -ACGGAAGTCTTGTTTGCCTTGTGC -ACGGAAGTCTTGTTTGCCCTAAGC -ACGGAAGTCTTGTTTGCCACTAGC -ACGGAAGTCTTGTTTGCCAGATGC -ACGGAAGTCTTGTTTGCCTGAAGG -ACGGAAGTCTTGTTTGCCCAATGG -ACGGAAGTCTTGTTTGCCATGAGG -ACGGAAGTCTTGTTTGCCAATGGG -ACGGAAGTCTTGTTTGCCTCCTGA -ACGGAAGTCTTGTTTGCCTAGCGA -ACGGAAGTCTTGTTTGCCCACAGA -ACGGAAGTCTTGTTTGCCGCAAGA -ACGGAAGTCTTGTTTGCCGGTTGA -ACGGAAGTCTTGTTTGCCTCCGAT -ACGGAAGTCTTGTTTGCCTGGCAT -ACGGAAGTCTTGTTTGCCCGAGAT -ACGGAAGTCTTGTTTGCCTACCAC -ACGGAAGTCTTGTTTGCCCAGAAC -ACGGAAGTCTTGTTTGCCGTCTAC -ACGGAAGTCTTGTTTGCCACGTAC -ACGGAAGTCTTGTTTGCCAGTGAC -ACGGAAGTCTTGTTTGCCCTGTAG -ACGGAAGTCTTGTTTGCCCCTAAG -ACGGAAGTCTTGTTTGCCGTTCAG -ACGGAAGTCTTGTTTGCCGCATAG -ACGGAAGTCTTGTTTGCCGACAAG -ACGGAAGTCTTGTTTGCCAAGCAG -ACGGAAGTCTTGTTTGCCCGTCAA -ACGGAAGTCTTGTTTGCCGCTGAA -ACGGAAGTCTTGTTTGCCAGTACG -ACGGAAGTCTTGTTTGCCATCCGA -ACGGAAGTCTTGTTTGCCATGGGA -ACGGAAGTCTTGTTTGCCGTGCAA -ACGGAAGTCTTGTTTGCCGAGGAA -ACGGAAGTCTTGTTTGCCCAGGTA -ACGGAAGTCTTGTTTGCCGACTCT -ACGGAAGTCTTGTTTGCCAGTCCT -ACGGAAGTCTTGTTTGCCTAAGCC -ACGGAAGTCTTGTTTGCCATAGCC -ACGGAAGTCTTGTTTGCCTAACCG -ACGGAAGTCTTGTTTGCCATGCCA -ACGGAAGTCTTGCTTGGTGGAAAC -ACGGAAGTCTTGCTTGGTAACACC -ACGGAAGTCTTGCTTGGTATCGAG -ACGGAAGTCTTGCTTGGTCTCCTT -ACGGAAGTCTTGCTTGGTCCTGTT -ACGGAAGTCTTGCTTGGTCGGTTT -ACGGAAGTCTTGCTTGGTGTGGTT -ACGGAAGTCTTGCTTGGTGCCTTT -ACGGAAGTCTTGCTTGGTGGTCTT -ACGGAAGTCTTGCTTGGTACGCTT -ACGGAAGTCTTGCTTGGTAGCGTT -ACGGAAGTCTTGCTTGGTTTCGTC -ACGGAAGTCTTGCTTGGTTCTCTC -ACGGAAGTCTTGCTTGGTTGGATC -ACGGAAGTCTTGCTTGGTCACTTC -ACGGAAGTCTTGCTTGGTGTACTC -ACGGAAGTCTTGCTTGGTGATGTC -ACGGAAGTCTTGCTTGGTACAGTC -ACGGAAGTCTTGCTTGGTTTGCTG -ACGGAAGTCTTGCTTGGTTCCATG -ACGGAAGTCTTGCTTGGTTGTGTG -ACGGAAGTCTTGCTTGGTCTAGTG -ACGGAAGTCTTGCTTGGTCATCTG -ACGGAAGTCTTGCTTGGTGAGTTG -ACGGAAGTCTTGCTTGGTAGACTG -ACGGAAGTCTTGCTTGGTTCGGTA -ACGGAAGTCTTGCTTGGTTGCCTA -ACGGAAGTCTTGCTTGGTCCACTA -ACGGAAGTCTTGCTTGGTGGAGTA -ACGGAAGTCTTGCTTGGTTCGTCT -ACGGAAGTCTTGCTTGGTTGCACT -ACGGAAGTCTTGCTTGGTCTGACT -ACGGAAGTCTTGCTTGGTCAACCT -ACGGAAGTCTTGCTTGGTGCTACT -ACGGAAGTCTTGCTTGGTGGATCT -ACGGAAGTCTTGCTTGGTAAGGCT -ACGGAAGTCTTGCTTGGTTCAACC -ACGGAAGTCTTGCTTGGTTGTTCC -ACGGAAGTCTTGCTTGGTATTCCC -ACGGAAGTCTTGCTTGGTTTCTCG -ACGGAAGTCTTGCTTGGTTAGACG -ACGGAAGTCTTGCTTGGTGTAACG -ACGGAAGTCTTGCTTGGTACTTCG -ACGGAAGTCTTGCTTGGTTACGCA -ACGGAAGTCTTGCTTGGTCTTGCA -ACGGAAGTCTTGCTTGGTCGAACA -ACGGAAGTCTTGCTTGGTCAGTCA -ACGGAAGTCTTGCTTGGTGATCCA -ACGGAAGTCTTGCTTGGTACGACA -ACGGAAGTCTTGCTTGGTAGCTCA -ACGGAAGTCTTGCTTGGTTCACGT -ACGGAAGTCTTGCTTGGTCGTAGT -ACGGAAGTCTTGCTTGGTGTCAGT -ACGGAAGTCTTGCTTGGTGAAGGT -ACGGAAGTCTTGCTTGGTAACCGT -ACGGAAGTCTTGCTTGGTTTGTGC -ACGGAAGTCTTGCTTGGTCTAAGC -ACGGAAGTCTTGCTTGGTACTAGC -ACGGAAGTCTTGCTTGGTAGATGC -ACGGAAGTCTTGCTTGGTTGAAGG -ACGGAAGTCTTGCTTGGTCAATGG -ACGGAAGTCTTGCTTGGTATGAGG -ACGGAAGTCTTGCTTGGTAATGGG -ACGGAAGTCTTGCTTGGTTCCTGA -ACGGAAGTCTTGCTTGGTTAGCGA -ACGGAAGTCTTGCTTGGTCACAGA -ACGGAAGTCTTGCTTGGTGCAAGA -ACGGAAGTCTTGCTTGGTGGTTGA -ACGGAAGTCTTGCTTGGTTCCGAT -ACGGAAGTCTTGCTTGGTTGGCAT -ACGGAAGTCTTGCTTGGTCGAGAT -ACGGAAGTCTTGCTTGGTTACCAC -ACGGAAGTCTTGCTTGGTCAGAAC -ACGGAAGTCTTGCTTGGTGTCTAC -ACGGAAGTCTTGCTTGGTACGTAC -ACGGAAGTCTTGCTTGGTAGTGAC -ACGGAAGTCTTGCTTGGTCTGTAG -ACGGAAGTCTTGCTTGGTCCTAAG -ACGGAAGTCTTGCTTGGTGTTCAG -ACGGAAGTCTTGCTTGGTGCATAG -ACGGAAGTCTTGCTTGGTGACAAG -ACGGAAGTCTTGCTTGGTAAGCAG -ACGGAAGTCTTGCTTGGTCGTCAA -ACGGAAGTCTTGCTTGGTGCTGAA -ACGGAAGTCTTGCTTGGTAGTACG -ACGGAAGTCTTGCTTGGTATCCGA -ACGGAAGTCTTGCTTGGTATGGGA -ACGGAAGTCTTGCTTGGTGTGCAA -ACGGAAGTCTTGCTTGGTGAGGAA -ACGGAAGTCTTGCTTGGTCAGGTA -ACGGAAGTCTTGCTTGGTGACTCT -ACGGAAGTCTTGCTTGGTAGTCCT -ACGGAAGTCTTGCTTGGTTAAGCC -ACGGAAGTCTTGCTTGGTATAGCC -ACGGAAGTCTTGCTTGGTTAACCG -ACGGAAGTCTTGCTTGGTATGCCA -ACGGAAGTCTTGCTTACGGGAAAC -ACGGAAGTCTTGCTTACGAACACC -ACGGAAGTCTTGCTTACGATCGAG -ACGGAAGTCTTGCTTACGCTCCTT -ACGGAAGTCTTGCTTACGCCTGTT -ACGGAAGTCTTGCTTACGCGGTTT -ACGGAAGTCTTGCTTACGGTGGTT -ACGGAAGTCTTGCTTACGGCCTTT -ACGGAAGTCTTGCTTACGGGTCTT -ACGGAAGTCTTGCTTACGACGCTT -ACGGAAGTCTTGCTTACGAGCGTT -ACGGAAGTCTTGCTTACGTTCGTC -ACGGAAGTCTTGCTTACGTCTCTC -ACGGAAGTCTTGCTTACGTGGATC -ACGGAAGTCTTGCTTACGCACTTC -ACGGAAGTCTTGCTTACGGTACTC -ACGGAAGTCTTGCTTACGGATGTC -ACGGAAGTCTTGCTTACGACAGTC -ACGGAAGTCTTGCTTACGTTGCTG -ACGGAAGTCTTGCTTACGTCCATG -ACGGAAGTCTTGCTTACGTGTGTG -ACGGAAGTCTTGCTTACGCTAGTG -ACGGAAGTCTTGCTTACGCATCTG -ACGGAAGTCTTGCTTACGGAGTTG -ACGGAAGTCTTGCTTACGAGACTG -ACGGAAGTCTTGCTTACGTCGGTA -ACGGAAGTCTTGCTTACGTGCCTA -ACGGAAGTCTTGCTTACGCCACTA -ACGGAAGTCTTGCTTACGGGAGTA -ACGGAAGTCTTGCTTACGTCGTCT -ACGGAAGTCTTGCTTACGTGCACT -ACGGAAGTCTTGCTTACGCTGACT -ACGGAAGTCTTGCTTACGCAACCT -ACGGAAGTCTTGCTTACGGCTACT -ACGGAAGTCTTGCTTACGGGATCT -ACGGAAGTCTTGCTTACGAAGGCT -ACGGAAGTCTTGCTTACGTCAACC -ACGGAAGTCTTGCTTACGTGTTCC -ACGGAAGTCTTGCTTACGATTCCC -ACGGAAGTCTTGCTTACGTTCTCG -ACGGAAGTCTTGCTTACGTAGACG -ACGGAAGTCTTGCTTACGGTAACG -ACGGAAGTCTTGCTTACGACTTCG -ACGGAAGTCTTGCTTACGTACGCA -ACGGAAGTCTTGCTTACGCTTGCA -ACGGAAGTCTTGCTTACGCGAACA -ACGGAAGTCTTGCTTACGCAGTCA -ACGGAAGTCTTGCTTACGGATCCA -ACGGAAGTCTTGCTTACGACGACA -ACGGAAGTCTTGCTTACGAGCTCA -ACGGAAGTCTTGCTTACGTCACGT -ACGGAAGTCTTGCTTACGCGTAGT -ACGGAAGTCTTGCTTACGGTCAGT -ACGGAAGTCTTGCTTACGGAAGGT -ACGGAAGTCTTGCTTACGAACCGT -ACGGAAGTCTTGCTTACGTTGTGC -ACGGAAGTCTTGCTTACGCTAAGC -ACGGAAGTCTTGCTTACGACTAGC -ACGGAAGTCTTGCTTACGAGATGC -ACGGAAGTCTTGCTTACGTGAAGG -ACGGAAGTCTTGCTTACGCAATGG -ACGGAAGTCTTGCTTACGATGAGG -ACGGAAGTCTTGCTTACGAATGGG -ACGGAAGTCTTGCTTACGTCCTGA -ACGGAAGTCTTGCTTACGTAGCGA -ACGGAAGTCTTGCTTACGCACAGA -ACGGAAGTCTTGCTTACGGCAAGA -ACGGAAGTCTTGCTTACGGGTTGA -ACGGAAGTCTTGCTTACGTCCGAT -ACGGAAGTCTTGCTTACGTGGCAT -ACGGAAGTCTTGCTTACGCGAGAT -ACGGAAGTCTTGCTTACGTACCAC -ACGGAAGTCTTGCTTACGCAGAAC -ACGGAAGTCTTGCTTACGGTCTAC -ACGGAAGTCTTGCTTACGACGTAC -ACGGAAGTCTTGCTTACGAGTGAC -ACGGAAGTCTTGCTTACGCTGTAG -ACGGAAGTCTTGCTTACGCCTAAG -ACGGAAGTCTTGCTTACGGTTCAG -ACGGAAGTCTTGCTTACGGCATAG -ACGGAAGTCTTGCTTACGGACAAG -ACGGAAGTCTTGCTTACGAAGCAG -ACGGAAGTCTTGCTTACGCGTCAA -ACGGAAGTCTTGCTTACGGCTGAA -ACGGAAGTCTTGCTTACGAGTACG -ACGGAAGTCTTGCTTACGATCCGA -ACGGAAGTCTTGCTTACGATGGGA -ACGGAAGTCTTGCTTACGGTGCAA -ACGGAAGTCTTGCTTACGGAGGAA -ACGGAAGTCTTGCTTACGCAGGTA -ACGGAAGTCTTGCTTACGGACTCT -ACGGAAGTCTTGCTTACGAGTCCT -ACGGAAGTCTTGCTTACGTAAGCC -ACGGAAGTCTTGCTTACGATAGCC -ACGGAAGTCTTGCTTACGTAACCG -ACGGAAGTCTTGCTTACGATGCCA -ACGGAAGTCTTGGTTAGCGGAAAC -ACGGAAGTCTTGGTTAGCAACACC -ACGGAAGTCTTGGTTAGCATCGAG -ACGGAAGTCTTGGTTAGCCTCCTT -ACGGAAGTCTTGGTTAGCCCTGTT -ACGGAAGTCTTGGTTAGCCGGTTT -ACGGAAGTCTTGGTTAGCGTGGTT -ACGGAAGTCTTGGTTAGCGCCTTT -ACGGAAGTCTTGGTTAGCGGTCTT -ACGGAAGTCTTGGTTAGCACGCTT -ACGGAAGTCTTGGTTAGCAGCGTT -ACGGAAGTCTTGGTTAGCTTCGTC -ACGGAAGTCTTGGTTAGCTCTCTC -ACGGAAGTCTTGGTTAGCTGGATC -ACGGAAGTCTTGGTTAGCCACTTC -ACGGAAGTCTTGGTTAGCGTACTC -ACGGAAGTCTTGGTTAGCGATGTC -ACGGAAGTCTTGGTTAGCACAGTC -ACGGAAGTCTTGGTTAGCTTGCTG -ACGGAAGTCTTGGTTAGCTCCATG -ACGGAAGTCTTGGTTAGCTGTGTG -ACGGAAGTCTTGGTTAGCCTAGTG -ACGGAAGTCTTGGTTAGCCATCTG -ACGGAAGTCTTGGTTAGCGAGTTG -ACGGAAGTCTTGGTTAGCAGACTG -ACGGAAGTCTTGGTTAGCTCGGTA -ACGGAAGTCTTGGTTAGCTGCCTA -ACGGAAGTCTTGGTTAGCCCACTA -ACGGAAGTCTTGGTTAGCGGAGTA -ACGGAAGTCTTGGTTAGCTCGTCT -ACGGAAGTCTTGGTTAGCTGCACT -ACGGAAGTCTTGGTTAGCCTGACT -ACGGAAGTCTTGGTTAGCCAACCT -ACGGAAGTCTTGGTTAGCGCTACT -ACGGAAGTCTTGGTTAGCGGATCT -ACGGAAGTCTTGGTTAGCAAGGCT -ACGGAAGTCTTGGTTAGCTCAACC -ACGGAAGTCTTGGTTAGCTGTTCC -ACGGAAGTCTTGGTTAGCATTCCC -ACGGAAGTCTTGGTTAGCTTCTCG -ACGGAAGTCTTGGTTAGCTAGACG -ACGGAAGTCTTGGTTAGCGTAACG -ACGGAAGTCTTGGTTAGCACTTCG -ACGGAAGTCTTGGTTAGCTACGCA -ACGGAAGTCTTGGTTAGCCTTGCA -ACGGAAGTCTTGGTTAGCCGAACA -ACGGAAGTCTTGGTTAGCCAGTCA -ACGGAAGTCTTGGTTAGCGATCCA -ACGGAAGTCTTGGTTAGCACGACA -ACGGAAGTCTTGGTTAGCAGCTCA -ACGGAAGTCTTGGTTAGCTCACGT -ACGGAAGTCTTGGTTAGCCGTAGT -ACGGAAGTCTTGGTTAGCGTCAGT -ACGGAAGTCTTGGTTAGCGAAGGT -ACGGAAGTCTTGGTTAGCAACCGT -ACGGAAGTCTTGGTTAGCTTGTGC -ACGGAAGTCTTGGTTAGCCTAAGC -ACGGAAGTCTTGGTTAGCACTAGC -ACGGAAGTCTTGGTTAGCAGATGC -ACGGAAGTCTTGGTTAGCTGAAGG -ACGGAAGTCTTGGTTAGCCAATGG -ACGGAAGTCTTGGTTAGCATGAGG -ACGGAAGTCTTGGTTAGCAATGGG -ACGGAAGTCTTGGTTAGCTCCTGA -ACGGAAGTCTTGGTTAGCTAGCGA -ACGGAAGTCTTGGTTAGCCACAGA -ACGGAAGTCTTGGTTAGCGCAAGA -ACGGAAGTCTTGGTTAGCGGTTGA -ACGGAAGTCTTGGTTAGCTCCGAT -ACGGAAGTCTTGGTTAGCTGGCAT -ACGGAAGTCTTGGTTAGCCGAGAT -ACGGAAGTCTTGGTTAGCTACCAC -ACGGAAGTCTTGGTTAGCCAGAAC -ACGGAAGTCTTGGTTAGCGTCTAC -ACGGAAGTCTTGGTTAGCACGTAC -ACGGAAGTCTTGGTTAGCAGTGAC -ACGGAAGTCTTGGTTAGCCTGTAG -ACGGAAGTCTTGGTTAGCCCTAAG -ACGGAAGTCTTGGTTAGCGTTCAG -ACGGAAGTCTTGGTTAGCGCATAG -ACGGAAGTCTTGGTTAGCGACAAG -ACGGAAGTCTTGGTTAGCAAGCAG -ACGGAAGTCTTGGTTAGCCGTCAA -ACGGAAGTCTTGGTTAGCGCTGAA -ACGGAAGTCTTGGTTAGCAGTACG -ACGGAAGTCTTGGTTAGCATCCGA -ACGGAAGTCTTGGTTAGCATGGGA -ACGGAAGTCTTGGTTAGCGTGCAA -ACGGAAGTCTTGGTTAGCGAGGAA -ACGGAAGTCTTGGTTAGCCAGGTA -ACGGAAGTCTTGGTTAGCGACTCT -ACGGAAGTCTTGGTTAGCAGTCCT -ACGGAAGTCTTGGTTAGCTAAGCC -ACGGAAGTCTTGGTTAGCATAGCC -ACGGAAGTCTTGGTTAGCTAACCG -ACGGAAGTCTTGGTTAGCATGCCA -ACGGAAGTCTTGGTCTTCGGAAAC -ACGGAAGTCTTGGTCTTCAACACC -ACGGAAGTCTTGGTCTTCATCGAG -ACGGAAGTCTTGGTCTTCCTCCTT -ACGGAAGTCTTGGTCTTCCCTGTT -ACGGAAGTCTTGGTCTTCCGGTTT -ACGGAAGTCTTGGTCTTCGTGGTT -ACGGAAGTCTTGGTCTTCGCCTTT -ACGGAAGTCTTGGTCTTCGGTCTT -ACGGAAGTCTTGGTCTTCACGCTT -ACGGAAGTCTTGGTCTTCAGCGTT -ACGGAAGTCTTGGTCTTCTTCGTC -ACGGAAGTCTTGGTCTTCTCTCTC -ACGGAAGTCTTGGTCTTCTGGATC -ACGGAAGTCTTGGTCTTCCACTTC -ACGGAAGTCTTGGTCTTCGTACTC -ACGGAAGTCTTGGTCTTCGATGTC -ACGGAAGTCTTGGTCTTCACAGTC -ACGGAAGTCTTGGTCTTCTTGCTG -ACGGAAGTCTTGGTCTTCTCCATG -ACGGAAGTCTTGGTCTTCTGTGTG -ACGGAAGTCTTGGTCTTCCTAGTG -ACGGAAGTCTTGGTCTTCCATCTG -ACGGAAGTCTTGGTCTTCGAGTTG -ACGGAAGTCTTGGTCTTCAGACTG -ACGGAAGTCTTGGTCTTCTCGGTA -ACGGAAGTCTTGGTCTTCTGCCTA -ACGGAAGTCTTGGTCTTCCCACTA -ACGGAAGTCTTGGTCTTCGGAGTA -ACGGAAGTCTTGGTCTTCTCGTCT -ACGGAAGTCTTGGTCTTCTGCACT -ACGGAAGTCTTGGTCTTCCTGACT -ACGGAAGTCTTGGTCTTCCAACCT -ACGGAAGTCTTGGTCTTCGCTACT -ACGGAAGTCTTGGTCTTCGGATCT -ACGGAAGTCTTGGTCTTCAAGGCT -ACGGAAGTCTTGGTCTTCTCAACC -ACGGAAGTCTTGGTCTTCTGTTCC -ACGGAAGTCTTGGTCTTCATTCCC -ACGGAAGTCTTGGTCTTCTTCTCG -ACGGAAGTCTTGGTCTTCTAGACG -ACGGAAGTCTTGGTCTTCGTAACG -ACGGAAGTCTTGGTCTTCACTTCG -ACGGAAGTCTTGGTCTTCTACGCA -ACGGAAGTCTTGGTCTTCCTTGCA -ACGGAAGTCTTGGTCTTCCGAACA -ACGGAAGTCTTGGTCTTCCAGTCA -ACGGAAGTCTTGGTCTTCGATCCA -ACGGAAGTCTTGGTCTTCACGACA -ACGGAAGTCTTGGTCTTCAGCTCA -ACGGAAGTCTTGGTCTTCTCACGT -ACGGAAGTCTTGGTCTTCCGTAGT -ACGGAAGTCTTGGTCTTCGTCAGT -ACGGAAGTCTTGGTCTTCGAAGGT -ACGGAAGTCTTGGTCTTCAACCGT -ACGGAAGTCTTGGTCTTCTTGTGC -ACGGAAGTCTTGGTCTTCCTAAGC -ACGGAAGTCTTGGTCTTCACTAGC -ACGGAAGTCTTGGTCTTCAGATGC -ACGGAAGTCTTGGTCTTCTGAAGG -ACGGAAGTCTTGGTCTTCCAATGG -ACGGAAGTCTTGGTCTTCATGAGG -ACGGAAGTCTTGGTCTTCAATGGG -ACGGAAGTCTTGGTCTTCTCCTGA -ACGGAAGTCTTGGTCTTCTAGCGA -ACGGAAGTCTTGGTCTTCCACAGA -ACGGAAGTCTTGGTCTTCGCAAGA -ACGGAAGTCTTGGTCTTCGGTTGA -ACGGAAGTCTTGGTCTTCTCCGAT -ACGGAAGTCTTGGTCTTCTGGCAT -ACGGAAGTCTTGGTCTTCCGAGAT -ACGGAAGTCTTGGTCTTCTACCAC -ACGGAAGTCTTGGTCTTCCAGAAC -ACGGAAGTCTTGGTCTTCGTCTAC -ACGGAAGTCTTGGTCTTCACGTAC -ACGGAAGTCTTGGTCTTCAGTGAC -ACGGAAGTCTTGGTCTTCCTGTAG -ACGGAAGTCTTGGTCTTCCCTAAG -ACGGAAGTCTTGGTCTTCGTTCAG -ACGGAAGTCTTGGTCTTCGCATAG -ACGGAAGTCTTGGTCTTCGACAAG -ACGGAAGTCTTGGTCTTCAAGCAG -ACGGAAGTCTTGGTCTTCCGTCAA -ACGGAAGTCTTGGTCTTCGCTGAA -ACGGAAGTCTTGGTCTTCAGTACG -ACGGAAGTCTTGGTCTTCATCCGA -ACGGAAGTCTTGGTCTTCATGGGA -ACGGAAGTCTTGGTCTTCGTGCAA -ACGGAAGTCTTGGTCTTCGAGGAA -ACGGAAGTCTTGGTCTTCCAGGTA -ACGGAAGTCTTGGTCTTCGACTCT -ACGGAAGTCTTGGTCTTCAGTCCT -ACGGAAGTCTTGGTCTTCTAAGCC -ACGGAAGTCTTGGTCTTCATAGCC -ACGGAAGTCTTGGTCTTCTAACCG -ACGGAAGTCTTGGTCTTCATGCCA -ACGGAAGTCTTGCTCTCTGGAAAC -ACGGAAGTCTTGCTCTCTAACACC -ACGGAAGTCTTGCTCTCTATCGAG -ACGGAAGTCTTGCTCTCTCTCCTT -ACGGAAGTCTTGCTCTCTCCTGTT -ACGGAAGTCTTGCTCTCTCGGTTT -ACGGAAGTCTTGCTCTCTGTGGTT -ACGGAAGTCTTGCTCTCTGCCTTT -ACGGAAGTCTTGCTCTCTGGTCTT -ACGGAAGTCTTGCTCTCTACGCTT -ACGGAAGTCTTGCTCTCTAGCGTT -ACGGAAGTCTTGCTCTCTTTCGTC -ACGGAAGTCTTGCTCTCTTCTCTC -ACGGAAGTCTTGCTCTCTTGGATC -ACGGAAGTCTTGCTCTCTCACTTC -ACGGAAGTCTTGCTCTCTGTACTC -ACGGAAGTCTTGCTCTCTGATGTC -ACGGAAGTCTTGCTCTCTACAGTC -ACGGAAGTCTTGCTCTCTTTGCTG -ACGGAAGTCTTGCTCTCTTCCATG -ACGGAAGTCTTGCTCTCTTGTGTG -ACGGAAGTCTTGCTCTCTCTAGTG -ACGGAAGTCTTGCTCTCTCATCTG -ACGGAAGTCTTGCTCTCTGAGTTG -ACGGAAGTCTTGCTCTCTAGACTG -ACGGAAGTCTTGCTCTCTTCGGTA -ACGGAAGTCTTGCTCTCTTGCCTA -ACGGAAGTCTTGCTCTCTCCACTA -ACGGAAGTCTTGCTCTCTGGAGTA -ACGGAAGTCTTGCTCTCTTCGTCT -ACGGAAGTCTTGCTCTCTTGCACT -ACGGAAGTCTTGCTCTCTCTGACT -ACGGAAGTCTTGCTCTCTCAACCT -ACGGAAGTCTTGCTCTCTGCTACT -ACGGAAGTCTTGCTCTCTGGATCT -ACGGAAGTCTTGCTCTCTAAGGCT -ACGGAAGTCTTGCTCTCTTCAACC -ACGGAAGTCTTGCTCTCTTGTTCC -ACGGAAGTCTTGCTCTCTATTCCC -ACGGAAGTCTTGCTCTCTTTCTCG -ACGGAAGTCTTGCTCTCTTAGACG -ACGGAAGTCTTGCTCTCTGTAACG -ACGGAAGTCTTGCTCTCTACTTCG -ACGGAAGTCTTGCTCTCTTACGCA -ACGGAAGTCTTGCTCTCTCTTGCA -ACGGAAGTCTTGCTCTCTCGAACA -ACGGAAGTCTTGCTCTCTCAGTCA -ACGGAAGTCTTGCTCTCTGATCCA -ACGGAAGTCTTGCTCTCTACGACA -ACGGAAGTCTTGCTCTCTAGCTCA -ACGGAAGTCTTGCTCTCTTCACGT -ACGGAAGTCTTGCTCTCTCGTAGT -ACGGAAGTCTTGCTCTCTGTCAGT -ACGGAAGTCTTGCTCTCTGAAGGT -ACGGAAGTCTTGCTCTCTAACCGT -ACGGAAGTCTTGCTCTCTTTGTGC -ACGGAAGTCTTGCTCTCTCTAAGC -ACGGAAGTCTTGCTCTCTACTAGC -ACGGAAGTCTTGCTCTCTAGATGC -ACGGAAGTCTTGCTCTCTTGAAGG -ACGGAAGTCTTGCTCTCTCAATGG -ACGGAAGTCTTGCTCTCTATGAGG -ACGGAAGTCTTGCTCTCTAATGGG -ACGGAAGTCTTGCTCTCTTCCTGA -ACGGAAGTCTTGCTCTCTTAGCGA -ACGGAAGTCTTGCTCTCTCACAGA -ACGGAAGTCTTGCTCTCTGCAAGA -ACGGAAGTCTTGCTCTCTGGTTGA -ACGGAAGTCTTGCTCTCTTCCGAT -ACGGAAGTCTTGCTCTCTTGGCAT -ACGGAAGTCTTGCTCTCTCGAGAT -ACGGAAGTCTTGCTCTCTTACCAC -ACGGAAGTCTTGCTCTCTCAGAAC -ACGGAAGTCTTGCTCTCTGTCTAC -ACGGAAGTCTTGCTCTCTACGTAC -ACGGAAGTCTTGCTCTCTAGTGAC -ACGGAAGTCTTGCTCTCTCTGTAG -ACGGAAGTCTTGCTCTCTCCTAAG -ACGGAAGTCTTGCTCTCTGTTCAG -ACGGAAGTCTTGCTCTCTGCATAG -ACGGAAGTCTTGCTCTCTGACAAG -ACGGAAGTCTTGCTCTCTAAGCAG -ACGGAAGTCTTGCTCTCTCGTCAA -ACGGAAGTCTTGCTCTCTGCTGAA -ACGGAAGTCTTGCTCTCTAGTACG -ACGGAAGTCTTGCTCTCTATCCGA -ACGGAAGTCTTGCTCTCTATGGGA -ACGGAAGTCTTGCTCTCTGTGCAA -ACGGAAGTCTTGCTCTCTGAGGAA -ACGGAAGTCTTGCTCTCTCAGGTA -ACGGAAGTCTTGCTCTCTGACTCT -ACGGAAGTCTTGCTCTCTAGTCCT -ACGGAAGTCTTGCTCTCTTAAGCC -ACGGAAGTCTTGCTCTCTATAGCC -ACGGAAGTCTTGCTCTCTTAACCG -ACGGAAGTCTTGCTCTCTATGCCA -ACGGAAGTCTTGATCTGGGGAAAC -ACGGAAGTCTTGATCTGGAACACC -ACGGAAGTCTTGATCTGGATCGAG -ACGGAAGTCTTGATCTGGCTCCTT -ACGGAAGTCTTGATCTGGCCTGTT -ACGGAAGTCTTGATCTGGCGGTTT -ACGGAAGTCTTGATCTGGGTGGTT -ACGGAAGTCTTGATCTGGGCCTTT -ACGGAAGTCTTGATCTGGGGTCTT -ACGGAAGTCTTGATCTGGACGCTT -ACGGAAGTCTTGATCTGGAGCGTT -ACGGAAGTCTTGATCTGGTTCGTC -ACGGAAGTCTTGATCTGGTCTCTC -ACGGAAGTCTTGATCTGGTGGATC -ACGGAAGTCTTGATCTGGCACTTC -ACGGAAGTCTTGATCTGGGTACTC -ACGGAAGTCTTGATCTGGGATGTC -ACGGAAGTCTTGATCTGGACAGTC -ACGGAAGTCTTGATCTGGTTGCTG -ACGGAAGTCTTGATCTGGTCCATG -ACGGAAGTCTTGATCTGGTGTGTG -ACGGAAGTCTTGATCTGGCTAGTG -ACGGAAGTCTTGATCTGGCATCTG -ACGGAAGTCTTGATCTGGGAGTTG -ACGGAAGTCTTGATCTGGAGACTG -ACGGAAGTCTTGATCTGGTCGGTA -ACGGAAGTCTTGATCTGGTGCCTA -ACGGAAGTCTTGATCTGGCCACTA -ACGGAAGTCTTGATCTGGGGAGTA -ACGGAAGTCTTGATCTGGTCGTCT -ACGGAAGTCTTGATCTGGTGCACT -ACGGAAGTCTTGATCTGGCTGACT -ACGGAAGTCTTGATCTGGCAACCT -ACGGAAGTCTTGATCTGGGCTACT -ACGGAAGTCTTGATCTGGGGATCT -ACGGAAGTCTTGATCTGGAAGGCT -ACGGAAGTCTTGATCTGGTCAACC -ACGGAAGTCTTGATCTGGTGTTCC -ACGGAAGTCTTGATCTGGATTCCC -ACGGAAGTCTTGATCTGGTTCTCG -ACGGAAGTCTTGATCTGGTAGACG -ACGGAAGTCTTGATCTGGGTAACG -ACGGAAGTCTTGATCTGGACTTCG -ACGGAAGTCTTGATCTGGTACGCA -ACGGAAGTCTTGATCTGGCTTGCA -ACGGAAGTCTTGATCTGGCGAACA -ACGGAAGTCTTGATCTGGCAGTCA -ACGGAAGTCTTGATCTGGGATCCA -ACGGAAGTCTTGATCTGGACGACA -ACGGAAGTCTTGATCTGGAGCTCA -ACGGAAGTCTTGATCTGGTCACGT -ACGGAAGTCTTGATCTGGCGTAGT -ACGGAAGTCTTGATCTGGGTCAGT -ACGGAAGTCTTGATCTGGGAAGGT -ACGGAAGTCTTGATCTGGAACCGT -ACGGAAGTCTTGATCTGGTTGTGC -ACGGAAGTCTTGATCTGGCTAAGC -ACGGAAGTCTTGATCTGGACTAGC -ACGGAAGTCTTGATCTGGAGATGC -ACGGAAGTCTTGATCTGGTGAAGG -ACGGAAGTCTTGATCTGGCAATGG -ACGGAAGTCTTGATCTGGATGAGG -ACGGAAGTCTTGATCTGGAATGGG -ACGGAAGTCTTGATCTGGTCCTGA -ACGGAAGTCTTGATCTGGTAGCGA -ACGGAAGTCTTGATCTGGCACAGA -ACGGAAGTCTTGATCTGGGCAAGA -ACGGAAGTCTTGATCTGGGGTTGA -ACGGAAGTCTTGATCTGGTCCGAT -ACGGAAGTCTTGATCTGGTGGCAT -ACGGAAGTCTTGATCTGGCGAGAT -ACGGAAGTCTTGATCTGGTACCAC -ACGGAAGTCTTGATCTGGCAGAAC -ACGGAAGTCTTGATCTGGGTCTAC -ACGGAAGTCTTGATCTGGACGTAC -ACGGAAGTCTTGATCTGGAGTGAC -ACGGAAGTCTTGATCTGGCTGTAG -ACGGAAGTCTTGATCTGGCCTAAG -ACGGAAGTCTTGATCTGGGTTCAG -ACGGAAGTCTTGATCTGGGCATAG -ACGGAAGTCTTGATCTGGGACAAG -ACGGAAGTCTTGATCTGGAAGCAG -ACGGAAGTCTTGATCTGGCGTCAA -ACGGAAGTCTTGATCTGGGCTGAA -ACGGAAGTCTTGATCTGGAGTACG -ACGGAAGTCTTGATCTGGATCCGA -ACGGAAGTCTTGATCTGGATGGGA -ACGGAAGTCTTGATCTGGGTGCAA -ACGGAAGTCTTGATCTGGGAGGAA -ACGGAAGTCTTGATCTGGCAGGTA -ACGGAAGTCTTGATCTGGGACTCT -ACGGAAGTCTTGATCTGGAGTCCT -ACGGAAGTCTTGATCTGGTAAGCC -ACGGAAGTCTTGATCTGGATAGCC -ACGGAAGTCTTGATCTGGTAACCG -ACGGAAGTCTTGATCTGGATGCCA -ACGGAAGTCTTGTTCCACGGAAAC -ACGGAAGTCTTGTTCCACAACACC -ACGGAAGTCTTGTTCCACATCGAG -ACGGAAGTCTTGTTCCACCTCCTT -ACGGAAGTCTTGTTCCACCCTGTT -ACGGAAGTCTTGTTCCACCGGTTT -ACGGAAGTCTTGTTCCACGTGGTT -ACGGAAGTCTTGTTCCACGCCTTT -ACGGAAGTCTTGTTCCACGGTCTT -ACGGAAGTCTTGTTCCACACGCTT -ACGGAAGTCTTGTTCCACAGCGTT -ACGGAAGTCTTGTTCCACTTCGTC -ACGGAAGTCTTGTTCCACTCTCTC -ACGGAAGTCTTGTTCCACTGGATC -ACGGAAGTCTTGTTCCACCACTTC -ACGGAAGTCTTGTTCCACGTACTC -ACGGAAGTCTTGTTCCACGATGTC -ACGGAAGTCTTGTTCCACACAGTC -ACGGAAGTCTTGTTCCACTTGCTG -ACGGAAGTCTTGTTCCACTCCATG -ACGGAAGTCTTGTTCCACTGTGTG -ACGGAAGTCTTGTTCCACCTAGTG -ACGGAAGTCTTGTTCCACCATCTG -ACGGAAGTCTTGTTCCACGAGTTG -ACGGAAGTCTTGTTCCACAGACTG -ACGGAAGTCTTGTTCCACTCGGTA -ACGGAAGTCTTGTTCCACTGCCTA -ACGGAAGTCTTGTTCCACCCACTA -ACGGAAGTCTTGTTCCACGGAGTA -ACGGAAGTCTTGTTCCACTCGTCT -ACGGAAGTCTTGTTCCACTGCACT -ACGGAAGTCTTGTTCCACCTGACT -ACGGAAGTCTTGTTCCACCAACCT -ACGGAAGTCTTGTTCCACGCTACT -ACGGAAGTCTTGTTCCACGGATCT -ACGGAAGTCTTGTTCCACAAGGCT -ACGGAAGTCTTGTTCCACTCAACC -ACGGAAGTCTTGTTCCACTGTTCC -ACGGAAGTCTTGTTCCACATTCCC -ACGGAAGTCTTGTTCCACTTCTCG -ACGGAAGTCTTGTTCCACTAGACG -ACGGAAGTCTTGTTCCACGTAACG -ACGGAAGTCTTGTTCCACACTTCG -ACGGAAGTCTTGTTCCACTACGCA -ACGGAAGTCTTGTTCCACCTTGCA -ACGGAAGTCTTGTTCCACCGAACA -ACGGAAGTCTTGTTCCACCAGTCA -ACGGAAGTCTTGTTCCACGATCCA -ACGGAAGTCTTGTTCCACACGACA -ACGGAAGTCTTGTTCCACAGCTCA -ACGGAAGTCTTGTTCCACTCACGT -ACGGAAGTCTTGTTCCACCGTAGT -ACGGAAGTCTTGTTCCACGTCAGT -ACGGAAGTCTTGTTCCACGAAGGT -ACGGAAGTCTTGTTCCACAACCGT -ACGGAAGTCTTGTTCCACTTGTGC -ACGGAAGTCTTGTTCCACCTAAGC -ACGGAAGTCTTGTTCCACACTAGC -ACGGAAGTCTTGTTCCACAGATGC -ACGGAAGTCTTGTTCCACTGAAGG -ACGGAAGTCTTGTTCCACCAATGG -ACGGAAGTCTTGTTCCACATGAGG -ACGGAAGTCTTGTTCCACAATGGG -ACGGAAGTCTTGTTCCACTCCTGA -ACGGAAGTCTTGTTCCACTAGCGA -ACGGAAGTCTTGTTCCACCACAGA -ACGGAAGTCTTGTTCCACGCAAGA -ACGGAAGTCTTGTTCCACGGTTGA -ACGGAAGTCTTGTTCCACTCCGAT -ACGGAAGTCTTGTTCCACTGGCAT -ACGGAAGTCTTGTTCCACCGAGAT -ACGGAAGTCTTGTTCCACTACCAC -ACGGAAGTCTTGTTCCACCAGAAC -ACGGAAGTCTTGTTCCACGTCTAC -ACGGAAGTCTTGTTCCACACGTAC -ACGGAAGTCTTGTTCCACAGTGAC -ACGGAAGTCTTGTTCCACCTGTAG -ACGGAAGTCTTGTTCCACCCTAAG -ACGGAAGTCTTGTTCCACGTTCAG -ACGGAAGTCTTGTTCCACGCATAG -ACGGAAGTCTTGTTCCACGACAAG -ACGGAAGTCTTGTTCCACAAGCAG -ACGGAAGTCTTGTTCCACCGTCAA -ACGGAAGTCTTGTTCCACGCTGAA -ACGGAAGTCTTGTTCCACAGTACG -ACGGAAGTCTTGTTCCACATCCGA -ACGGAAGTCTTGTTCCACATGGGA -ACGGAAGTCTTGTTCCACGTGCAA -ACGGAAGTCTTGTTCCACGAGGAA -ACGGAAGTCTTGTTCCACCAGGTA -ACGGAAGTCTTGTTCCACGACTCT -ACGGAAGTCTTGTTCCACAGTCCT -ACGGAAGTCTTGTTCCACTAAGCC -ACGGAAGTCTTGTTCCACATAGCC -ACGGAAGTCTTGTTCCACTAACCG -ACGGAAGTCTTGTTCCACATGCCA -ACGGAAGTCTTGCTCGTAGGAAAC -ACGGAAGTCTTGCTCGTAAACACC -ACGGAAGTCTTGCTCGTAATCGAG -ACGGAAGTCTTGCTCGTACTCCTT -ACGGAAGTCTTGCTCGTACCTGTT -ACGGAAGTCTTGCTCGTACGGTTT -ACGGAAGTCTTGCTCGTAGTGGTT -ACGGAAGTCTTGCTCGTAGCCTTT -ACGGAAGTCTTGCTCGTAGGTCTT -ACGGAAGTCTTGCTCGTAACGCTT -ACGGAAGTCTTGCTCGTAAGCGTT -ACGGAAGTCTTGCTCGTATTCGTC -ACGGAAGTCTTGCTCGTATCTCTC -ACGGAAGTCTTGCTCGTATGGATC -ACGGAAGTCTTGCTCGTACACTTC -ACGGAAGTCTTGCTCGTAGTACTC -ACGGAAGTCTTGCTCGTAGATGTC -ACGGAAGTCTTGCTCGTAACAGTC -ACGGAAGTCTTGCTCGTATTGCTG -ACGGAAGTCTTGCTCGTATCCATG -ACGGAAGTCTTGCTCGTATGTGTG -ACGGAAGTCTTGCTCGTACTAGTG -ACGGAAGTCTTGCTCGTACATCTG -ACGGAAGTCTTGCTCGTAGAGTTG -ACGGAAGTCTTGCTCGTAAGACTG -ACGGAAGTCTTGCTCGTATCGGTA -ACGGAAGTCTTGCTCGTATGCCTA -ACGGAAGTCTTGCTCGTACCACTA -ACGGAAGTCTTGCTCGTAGGAGTA -ACGGAAGTCTTGCTCGTATCGTCT -ACGGAAGTCTTGCTCGTATGCACT -ACGGAAGTCTTGCTCGTACTGACT -ACGGAAGTCTTGCTCGTACAACCT -ACGGAAGTCTTGCTCGTAGCTACT -ACGGAAGTCTTGCTCGTAGGATCT -ACGGAAGTCTTGCTCGTAAAGGCT -ACGGAAGTCTTGCTCGTATCAACC -ACGGAAGTCTTGCTCGTATGTTCC -ACGGAAGTCTTGCTCGTAATTCCC -ACGGAAGTCTTGCTCGTATTCTCG -ACGGAAGTCTTGCTCGTATAGACG -ACGGAAGTCTTGCTCGTAGTAACG -ACGGAAGTCTTGCTCGTAACTTCG -ACGGAAGTCTTGCTCGTATACGCA -ACGGAAGTCTTGCTCGTACTTGCA -ACGGAAGTCTTGCTCGTACGAACA -ACGGAAGTCTTGCTCGTACAGTCA -ACGGAAGTCTTGCTCGTAGATCCA -ACGGAAGTCTTGCTCGTAACGACA -ACGGAAGTCTTGCTCGTAAGCTCA -ACGGAAGTCTTGCTCGTATCACGT -ACGGAAGTCTTGCTCGTACGTAGT -ACGGAAGTCTTGCTCGTAGTCAGT -ACGGAAGTCTTGCTCGTAGAAGGT -ACGGAAGTCTTGCTCGTAAACCGT -ACGGAAGTCTTGCTCGTATTGTGC -ACGGAAGTCTTGCTCGTACTAAGC -ACGGAAGTCTTGCTCGTAACTAGC -ACGGAAGTCTTGCTCGTAAGATGC -ACGGAAGTCTTGCTCGTATGAAGG -ACGGAAGTCTTGCTCGTACAATGG -ACGGAAGTCTTGCTCGTAATGAGG -ACGGAAGTCTTGCTCGTAAATGGG -ACGGAAGTCTTGCTCGTATCCTGA -ACGGAAGTCTTGCTCGTATAGCGA -ACGGAAGTCTTGCTCGTACACAGA -ACGGAAGTCTTGCTCGTAGCAAGA -ACGGAAGTCTTGCTCGTAGGTTGA -ACGGAAGTCTTGCTCGTATCCGAT -ACGGAAGTCTTGCTCGTATGGCAT -ACGGAAGTCTTGCTCGTACGAGAT -ACGGAAGTCTTGCTCGTATACCAC -ACGGAAGTCTTGCTCGTACAGAAC -ACGGAAGTCTTGCTCGTAGTCTAC -ACGGAAGTCTTGCTCGTAACGTAC -ACGGAAGTCTTGCTCGTAAGTGAC -ACGGAAGTCTTGCTCGTACTGTAG -ACGGAAGTCTTGCTCGTACCTAAG -ACGGAAGTCTTGCTCGTAGTTCAG -ACGGAAGTCTTGCTCGTAGCATAG -ACGGAAGTCTTGCTCGTAGACAAG -ACGGAAGTCTTGCTCGTAAAGCAG -ACGGAAGTCTTGCTCGTACGTCAA -ACGGAAGTCTTGCTCGTAGCTGAA -ACGGAAGTCTTGCTCGTAAGTACG -ACGGAAGTCTTGCTCGTAATCCGA -ACGGAAGTCTTGCTCGTAATGGGA -ACGGAAGTCTTGCTCGTAGTGCAA -ACGGAAGTCTTGCTCGTAGAGGAA -ACGGAAGTCTTGCTCGTACAGGTA -ACGGAAGTCTTGCTCGTAGACTCT -ACGGAAGTCTTGCTCGTAAGTCCT -ACGGAAGTCTTGCTCGTATAAGCC -ACGGAAGTCTTGCTCGTAATAGCC -ACGGAAGTCTTGCTCGTATAACCG -ACGGAAGTCTTGCTCGTAATGCCA -ACGGAAGTCTTGGTCGATGGAAAC -ACGGAAGTCTTGGTCGATAACACC -ACGGAAGTCTTGGTCGATATCGAG -ACGGAAGTCTTGGTCGATCTCCTT -ACGGAAGTCTTGGTCGATCCTGTT -ACGGAAGTCTTGGTCGATCGGTTT -ACGGAAGTCTTGGTCGATGTGGTT -ACGGAAGTCTTGGTCGATGCCTTT -ACGGAAGTCTTGGTCGATGGTCTT -ACGGAAGTCTTGGTCGATACGCTT -ACGGAAGTCTTGGTCGATAGCGTT -ACGGAAGTCTTGGTCGATTTCGTC -ACGGAAGTCTTGGTCGATTCTCTC -ACGGAAGTCTTGGTCGATTGGATC -ACGGAAGTCTTGGTCGATCACTTC -ACGGAAGTCTTGGTCGATGTACTC -ACGGAAGTCTTGGTCGATGATGTC -ACGGAAGTCTTGGTCGATACAGTC -ACGGAAGTCTTGGTCGATTTGCTG -ACGGAAGTCTTGGTCGATTCCATG -ACGGAAGTCTTGGTCGATTGTGTG -ACGGAAGTCTTGGTCGATCTAGTG -ACGGAAGTCTTGGTCGATCATCTG -ACGGAAGTCTTGGTCGATGAGTTG -ACGGAAGTCTTGGTCGATAGACTG -ACGGAAGTCTTGGTCGATTCGGTA -ACGGAAGTCTTGGTCGATTGCCTA -ACGGAAGTCTTGGTCGATCCACTA -ACGGAAGTCTTGGTCGATGGAGTA -ACGGAAGTCTTGGTCGATTCGTCT -ACGGAAGTCTTGGTCGATTGCACT -ACGGAAGTCTTGGTCGATCTGACT -ACGGAAGTCTTGGTCGATCAACCT -ACGGAAGTCTTGGTCGATGCTACT -ACGGAAGTCTTGGTCGATGGATCT -ACGGAAGTCTTGGTCGATAAGGCT -ACGGAAGTCTTGGTCGATTCAACC -ACGGAAGTCTTGGTCGATTGTTCC -ACGGAAGTCTTGGTCGATATTCCC -ACGGAAGTCTTGGTCGATTTCTCG -ACGGAAGTCTTGGTCGATTAGACG -ACGGAAGTCTTGGTCGATGTAACG -ACGGAAGTCTTGGTCGATACTTCG -ACGGAAGTCTTGGTCGATTACGCA -ACGGAAGTCTTGGTCGATCTTGCA -ACGGAAGTCTTGGTCGATCGAACA -ACGGAAGTCTTGGTCGATCAGTCA -ACGGAAGTCTTGGTCGATGATCCA -ACGGAAGTCTTGGTCGATACGACA -ACGGAAGTCTTGGTCGATAGCTCA -ACGGAAGTCTTGGTCGATTCACGT -ACGGAAGTCTTGGTCGATCGTAGT -ACGGAAGTCTTGGTCGATGTCAGT -ACGGAAGTCTTGGTCGATGAAGGT -ACGGAAGTCTTGGTCGATAACCGT -ACGGAAGTCTTGGTCGATTTGTGC -ACGGAAGTCTTGGTCGATCTAAGC -ACGGAAGTCTTGGTCGATACTAGC -ACGGAAGTCTTGGTCGATAGATGC -ACGGAAGTCTTGGTCGATTGAAGG -ACGGAAGTCTTGGTCGATCAATGG -ACGGAAGTCTTGGTCGATATGAGG -ACGGAAGTCTTGGTCGATAATGGG -ACGGAAGTCTTGGTCGATTCCTGA -ACGGAAGTCTTGGTCGATTAGCGA -ACGGAAGTCTTGGTCGATCACAGA -ACGGAAGTCTTGGTCGATGCAAGA -ACGGAAGTCTTGGTCGATGGTTGA -ACGGAAGTCTTGGTCGATTCCGAT -ACGGAAGTCTTGGTCGATTGGCAT -ACGGAAGTCTTGGTCGATCGAGAT -ACGGAAGTCTTGGTCGATTACCAC -ACGGAAGTCTTGGTCGATCAGAAC -ACGGAAGTCTTGGTCGATGTCTAC -ACGGAAGTCTTGGTCGATACGTAC -ACGGAAGTCTTGGTCGATAGTGAC -ACGGAAGTCTTGGTCGATCTGTAG -ACGGAAGTCTTGGTCGATCCTAAG -ACGGAAGTCTTGGTCGATGTTCAG -ACGGAAGTCTTGGTCGATGCATAG -ACGGAAGTCTTGGTCGATGACAAG -ACGGAAGTCTTGGTCGATAAGCAG -ACGGAAGTCTTGGTCGATCGTCAA -ACGGAAGTCTTGGTCGATGCTGAA -ACGGAAGTCTTGGTCGATAGTACG -ACGGAAGTCTTGGTCGATATCCGA -ACGGAAGTCTTGGTCGATATGGGA -ACGGAAGTCTTGGTCGATGTGCAA -ACGGAAGTCTTGGTCGATGAGGAA -ACGGAAGTCTTGGTCGATCAGGTA -ACGGAAGTCTTGGTCGATGACTCT -ACGGAAGTCTTGGTCGATAGTCCT -ACGGAAGTCTTGGTCGATTAAGCC -ACGGAAGTCTTGGTCGATATAGCC -ACGGAAGTCTTGGTCGATTAACCG -ACGGAAGTCTTGGTCGATATGCCA -ACGGAAGTCTTGGTCACAGGAAAC -ACGGAAGTCTTGGTCACAAACACC -ACGGAAGTCTTGGTCACAATCGAG -ACGGAAGTCTTGGTCACACTCCTT -ACGGAAGTCTTGGTCACACCTGTT -ACGGAAGTCTTGGTCACACGGTTT -ACGGAAGTCTTGGTCACAGTGGTT -ACGGAAGTCTTGGTCACAGCCTTT -ACGGAAGTCTTGGTCACAGGTCTT -ACGGAAGTCTTGGTCACAACGCTT -ACGGAAGTCTTGGTCACAAGCGTT -ACGGAAGTCTTGGTCACATTCGTC -ACGGAAGTCTTGGTCACATCTCTC -ACGGAAGTCTTGGTCACATGGATC -ACGGAAGTCTTGGTCACACACTTC -ACGGAAGTCTTGGTCACAGTACTC -ACGGAAGTCTTGGTCACAGATGTC -ACGGAAGTCTTGGTCACAACAGTC -ACGGAAGTCTTGGTCACATTGCTG -ACGGAAGTCTTGGTCACATCCATG -ACGGAAGTCTTGGTCACATGTGTG -ACGGAAGTCTTGGTCACACTAGTG -ACGGAAGTCTTGGTCACACATCTG -ACGGAAGTCTTGGTCACAGAGTTG -ACGGAAGTCTTGGTCACAAGACTG -ACGGAAGTCTTGGTCACATCGGTA -ACGGAAGTCTTGGTCACATGCCTA -ACGGAAGTCTTGGTCACACCACTA -ACGGAAGTCTTGGTCACAGGAGTA -ACGGAAGTCTTGGTCACATCGTCT -ACGGAAGTCTTGGTCACATGCACT -ACGGAAGTCTTGGTCACACTGACT -ACGGAAGTCTTGGTCACACAACCT -ACGGAAGTCTTGGTCACAGCTACT -ACGGAAGTCTTGGTCACAGGATCT -ACGGAAGTCTTGGTCACAAAGGCT -ACGGAAGTCTTGGTCACATCAACC -ACGGAAGTCTTGGTCACATGTTCC -ACGGAAGTCTTGGTCACAATTCCC -ACGGAAGTCTTGGTCACATTCTCG -ACGGAAGTCTTGGTCACATAGACG -ACGGAAGTCTTGGTCACAGTAACG -ACGGAAGTCTTGGTCACAACTTCG -ACGGAAGTCTTGGTCACATACGCA -ACGGAAGTCTTGGTCACACTTGCA -ACGGAAGTCTTGGTCACACGAACA -ACGGAAGTCTTGGTCACACAGTCA -ACGGAAGTCTTGGTCACAGATCCA -ACGGAAGTCTTGGTCACAACGACA -ACGGAAGTCTTGGTCACAAGCTCA -ACGGAAGTCTTGGTCACATCACGT -ACGGAAGTCTTGGTCACACGTAGT -ACGGAAGTCTTGGTCACAGTCAGT -ACGGAAGTCTTGGTCACAGAAGGT -ACGGAAGTCTTGGTCACAAACCGT -ACGGAAGTCTTGGTCACATTGTGC -ACGGAAGTCTTGGTCACACTAAGC -ACGGAAGTCTTGGTCACAACTAGC -ACGGAAGTCTTGGTCACAAGATGC -ACGGAAGTCTTGGTCACATGAAGG -ACGGAAGTCTTGGTCACACAATGG -ACGGAAGTCTTGGTCACAATGAGG -ACGGAAGTCTTGGTCACAAATGGG -ACGGAAGTCTTGGTCACATCCTGA -ACGGAAGTCTTGGTCACATAGCGA -ACGGAAGTCTTGGTCACACACAGA -ACGGAAGTCTTGGTCACAGCAAGA -ACGGAAGTCTTGGTCACAGGTTGA -ACGGAAGTCTTGGTCACATCCGAT -ACGGAAGTCTTGGTCACATGGCAT -ACGGAAGTCTTGGTCACACGAGAT -ACGGAAGTCTTGGTCACATACCAC -ACGGAAGTCTTGGTCACACAGAAC -ACGGAAGTCTTGGTCACAGTCTAC -ACGGAAGTCTTGGTCACAACGTAC -ACGGAAGTCTTGGTCACAAGTGAC -ACGGAAGTCTTGGTCACACTGTAG -ACGGAAGTCTTGGTCACACCTAAG -ACGGAAGTCTTGGTCACAGTTCAG -ACGGAAGTCTTGGTCACAGCATAG -ACGGAAGTCTTGGTCACAGACAAG -ACGGAAGTCTTGGTCACAAAGCAG -ACGGAAGTCTTGGTCACACGTCAA -ACGGAAGTCTTGGTCACAGCTGAA -ACGGAAGTCTTGGTCACAAGTACG -ACGGAAGTCTTGGTCACAATCCGA -ACGGAAGTCTTGGTCACAATGGGA -ACGGAAGTCTTGGTCACAGTGCAA -ACGGAAGTCTTGGTCACAGAGGAA -ACGGAAGTCTTGGTCACACAGGTA -ACGGAAGTCTTGGTCACAGACTCT -ACGGAAGTCTTGGTCACAAGTCCT -ACGGAAGTCTTGGTCACATAAGCC -ACGGAAGTCTTGGTCACAATAGCC -ACGGAAGTCTTGGTCACATAACCG -ACGGAAGTCTTGGTCACAATGCCA -ACGGAAGTCTTGCTGTTGGGAAAC -ACGGAAGTCTTGCTGTTGAACACC -ACGGAAGTCTTGCTGTTGATCGAG -ACGGAAGTCTTGCTGTTGCTCCTT -ACGGAAGTCTTGCTGTTGCCTGTT -ACGGAAGTCTTGCTGTTGCGGTTT -ACGGAAGTCTTGCTGTTGGTGGTT -ACGGAAGTCTTGCTGTTGGCCTTT -ACGGAAGTCTTGCTGTTGGGTCTT -ACGGAAGTCTTGCTGTTGACGCTT -ACGGAAGTCTTGCTGTTGAGCGTT -ACGGAAGTCTTGCTGTTGTTCGTC -ACGGAAGTCTTGCTGTTGTCTCTC -ACGGAAGTCTTGCTGTTGTGGATC -ACGGAAGTCTTGCTGTTGCACTTC -ACGGAAGTCTTGCTGTTGGTACTC -ACGGAAGTCTTGCTGTTGGATGTC -ACGGAAGTCTTGCTGTTGACAGTC -ACGGAAGTCTTGCTGTTGTTGCTG -ACGGAAGTCTTGCTGTTGTCCATG -ACGGAAGTCTTGCTGTTGTGTGTG -ACGGAAGTCTTGCTGTTGCTAGTG -ACGGAAGTCTTGCTGTTGCATCTG -ACGGAAGTCTTGCTGTTGGAGTTG -ACGGAAGTCTTGCTGTTGAGACTG -ACGGAAGTCTTGCTGTTGTCGGTA -ACGGAAGTCTTGCTGTTGTGCCTA -ACGGAAGTCTTGCTGTTGCCACTA -ACGGAAGTCTTGCTGTTGGGAGTA -ACGGAAGTCTTGCTGTTGTCGTCT -ACGGAAGTCTTGCTGTTGTGCACT -ACGGAAGTCTTGCTGTTGCTGACT -ACGGAAGTCTTGCTGTTGCAACCT -ACGGAAGTCTTGCTGTTGGCTACT -ACGGAAGTCTTGCTGTTGGGATCT -ACGGAAGTCTTGCTGTTGAAGGCT -ACGGAAGTCTTGCTGTTGTCAACC -ACGGAAGTCTTGCTGTTGTGTTCC -ACGGAAGTCTTGCTGTTGATTCCC -ACGGAAGTCTTGCTGTTGTTCTCG -ACGGAAGTCTTGCTGTTGTAGACG -ACGGAAGTCTTGCTGTTGGTAACG -ACGGAAGTCTTGCTGTTGACTTCG -ACGGAAGTCTTGCTGTTGTACGCA -ACGGAAGTCTTGCTGTTGCTTGCA -ACGGAAGTCTTGCTGTTGCGAACA -ACGGAAGTCTTGCTGTTGCAGTCA -ACGGAAGTCTTGCTGTTGGATCCA -ACGGAAGTCTTGCTGTTGACGACA -ACGGAAGTCTTGCTGTTGAGCTCA -ACGGAAGTCTTGCTGTTGTCACGT -ACGGAAGTCTTGCTGTTGCGTAGT -ACGGAAGTCTTGCTGTTGGTCAGT -ACGGAAGTCTTGCTGTTGGAAGGT -ACGGAAGTCTTGCTGTTGAACCGT -ACGGAAGTCTTGCTGTTGTTGTGC -ACGGAAGTCTTGCTGTTGCTAAGC -ACGGAAGTCTTGCTGTTGACTAGC -ACGGAAGTCTTGCTGTTGAGATGC -ACGGAAGTCTTGCTGTTGTGAAGG -ACGGAAGTCTTGCTGTTGCAATGG -ACGGAAGTCTTGCTGTTGATGAGG -ACGGAAGTCTTGCTGTTGAATGGG -ACGGAAGTCTTGCTGTTGTCCTGA -ACGGAAGTCTTGCTGTTGTAGCGA -ACGGAAGTCTTGCTGTTGCACAGA -ACGGAAGTCTTGCTGTTGGCAAGA -ACGGAAGTCTTGCTGTTGGGTTGA -ACGGAAGTCTTGCTGTTGTCCGAT -ACGGAAGTCTTGCTGTTGTGGCAT -ACGGAAGTCTTGCTGTTGCGAGAT -ACGGAAGTCTTGCTGTTGTACCAC -ACGGAAGTCTTGCTGTTGCAGAAC -ACGGAAGTCTTGCTGTTGGTCTAC -ACGGAAGTCTTGCTGTTGACGTAC -ACGGAAGTCTTGCTGTTGAGTGAC -ACGGAAGTCTTGCTGTTGCTGTAG -ACGGAAGTCTTGCTGTTGCCTAAG -ACGGAAGTCTTGCTGTTGGTTCAG -ACGGAAGTCTTGCTGTTGGCATAG -ACGGAAGTCTTGCTGTTGGACAAG -ACGGAAGTCTTGCTGTTGAAGCAG -ACGGAAGTCTTGCTGTTGCGTCAA -ACGGAAGTCTTGCTGTTGGCTGAA -ACGGAAGTCTTGCTGTTGAGTACG -ACGGAAGTCTTGCTGTTGATCCGA -ACGGAAGTCTTGCTGTTGATGGGA -ACGGAAGTCTTGCTGTTGGTGCAA -ACGGAAGTCTTGCTGTTGGAGGAA -ACGGAAGTCTTGCTGTTGCAGGTA -ACGGAAGTCTTGCTGTTGGACTCT -ACGGAAGTCTTGCTGTTGAGTCCT -ACGGAAGTCTTGCTGTTGTAAGCC -ACGGAAGTCTTGCTGTTGATAGCC -ACGGAAGTCTTGCTGTTGTAACCG -ACGGAAGTCTTGCTGTTGATGCCA -ACGGAAGTCTTGATGTCCGGAAAC -ACGGAAGTCTTGATGTCCAACACC -ACGGAAGTCTTGATGTCCATCGAG -ACGGAAGTCTTGATGTCCCTCCTT -ACGGAAGTCTTGATGTCCCCTGTT -ACGGAAGTCTTGATGTCCCGGTTT -ACGGAAGTCTTGATGTCCGTGGTT -ACGGAAGTCTTGATGTCCGCCTTT -ACGGAAGTCTTGATGTCCGGTCTT -ACGGAAGTCTTGATGTCCACGCTT -ACGGAAGTCTTGATGTCCAGCGTT -ACGGAAGTCTTGATGTCCTTCGTC -ACGGAAGTCTTGATGTCCTCTCTC -ACGGAAGTCTTGATGTCCTGGATC -ACGGAAGTCTTGATGTCCCACTTC -ACGGAAGTCTTGATGTCCGTACTC -ACGGAAGTCTTGATGTCCGATGTC -ACGGAAGTCTTGATGTCCACAGTC -ACGGAAGTCTTGATGTCCTTGCTG -ACGGAAGTCTTGATGTCCTCCATG -ACGGAAGTCTTGATGTCCTGTGTG -ACGGAAGTCTTGATGTCCCTAGTG -ACGGAAGTCTTGATGTCCCATCTG -ACGGAAGTCTTGATGTCCGAGTTG -ACGGAAGTCTTGATGTCCAGACTG -ACGGAAGTCTTGATGTCCTCGGTA -ACGGAAGTCTTGATGTCCTGCCTA -ACGGAAGTCTTGATGTCCCCACTA -ACGGAAGTCTTGATGTCCGGAGTA -ACGGAAGTCTTGATGTCCTCGTCT -ACGGAAGTCTTGATGTCCTGCACT -ACGGAAGTCTTGATGTCCCTGACT -ACGGAAGTCTTGATGTCCCAACCT -ACGGAAGTCTTGATGTCCGCTACT -ACGGAAGTCTTGATGTCCGGATCT -ACGGAAGTCTTGATGTCCAAGGCT -ACGGAAGTCTTGATGTCCTCAACC -ACGGAAGTCTTGATGTCCTGTTCC -ACGGAAGTCTTGATGTCCATTCCC -ACGGAAGTCTTGATGTCCTTCTCG -ACGGAAGTCTTGATGTCCTAGACG -ACGGAAGTCTTGATGTCCGTAACG -ACGGAAGTCTTGATGTCCACTTCG -ACGGAAGTCTTGATGTCCTACGCA -ACGGAAGTCTTGATGTCCCTTGCA -ACGGAAGTCTTGATGTCCCGAACA -ACGGAAGTCTTGATGTCCCAGTCA -ACGGAAGTCTTGATGTCCGATCCA -ACGGAAGTCTTGATGTCCACGACA -ACGGAAGTCTTGATGTCCAGCTCA -ACGGAAGTCTTGATGTCCTCACGT -ACGGAAGTCTTGATGTCCCGTAGT -ACGGAAGTCTTGATGTCCGTCAGT -ACGGAAGTCTTGATGTCCGAAGGT -ACGGAAGTCTTGATGTCCAACCGT -ACGGAAGTCTTGATGTCCTTGTGC -ACGGAAGTCTTGATGTCCCTAAGC -ACGGAAGTCTTGATGTCCACTAGC -ACGGAAGTCTTGATGTCCAGATGC -ACGGAAGTCTTGATGTCCTGAAGG -ACGGAAGTCTTGATGTCCCAATGG -ACGGAAGTCTTGATGTCCATGAGG -ACGGAAGTCTTGATGTCCAATGGG -ACGGAAGTCTTGATGTCCTCCTGA -ACGGAAGTCTTGATGTCCTAGCGA -ACGGAAGTCTTGATGTCCCACAGA -ACGGAAGTCTTGATGTCCGCAAGA -ACGGAAGTCTTGATGTCCGGTTGA -ACGGAAGTCTTGATGTCCTCCGAT -ACGGAAGTCTTGATGTCCTGGCAT -ACGGAAGTCTTGATGTCCCGAGAT -ACGGAAGTCTTGATGTCCTACCAC -ACGGAAGTCTTGATGTCCCAGAAC -ACGGAAGTCTTGATGTCCGTCTAC -ACGGAAGTCTTGATGTCCACGTAC -ACGGAAGTCTTGATGTCCAGTGAC -ACGGAAGTCTTGATGTCCCTGTAG -ACGGAAGTCTTGATGTCCCCTAAG -ACGGAAGTCTTGATGTCCGTTCAG -ACGGAAGTCTTGATGTCCGCATAG -ACGGAAGTCTTGATGTCCGACAAG -ACGGAAGTCTTGATGTCCAAGCAG -ACGGAAGTCTTGATGTCCCGTCAA -ACGGAAGTCTTGATGTCCGCTGAA -ACGGAAGTCTTGATGTCCAGTACG -ACGGAAGTCTTGATGTCCATCCGA -ACGGAAGTCTTGATGTCCATGGGA -ACGGAAGTCTTGATGTCCGTGCAA -ACGGAAGTCTTGATGTCCGAGGAA -ACGGAAGTCTTGATGTCCCAGGTA -ACGGAAGTCTTGATGTCCGACTCT -ACGGAAGTCTTGATGTCCAGTCCT -ACGGAAGTCTTGATGTCCTAAGCC -ACGGAAGTCTTGATGTCCATAGCC -ACGGAAGTCTTGATGTCCTAACCG -ACGGAAGTCTTGATGTCCATGCCA -ACGGAAGTCTTGGTGTGTGGAAAC -ACGGAAGTCTTGGTGTGTAACACC -ACGGAAGTCTTGGTGTGTATCGAG -ACGGAAGTCTTGGTGTGTCTCCTT -ACGGAAGTCTTGGTGTGTCCTGTT -ACGGAAGTCTTGGTGTGTCGGTTT -ACGGAAGTCTTGGTGTGTGTGGTT -ACGGAAGTCTTGGTGTGTGCCTTT -ACGGAAGTCTTGGTGTGTGGTCTT -ACGGAAGTCTTGGTGTGTACGCTT -ACGGAAGTCTTGGTGTGTAGCGTT -ACGGAAGTCTTGGTGTGTTTCGTC -ACGGAAGTCTTGGTGTGTTCTCTC -ACGGAAGTCTTGGTGTGTTGGATC -ACGGAAGTCTTGGTGTGTCACTTC -ACGGAAGTCTTGGTGTGTGTACTC -ACGGAAGTCTTGGTGTGTGATGTC -ACGGAAGTCTTGGTGTGTACAGTC -ACGGAAGTCTTGGTGTGTTTGCTG -ACGGAAGTCTTGGTGTGTTCCATG -ACGGAAGTCTTGGTGTGTTGTGTG -ACGGAAGTCTTGGTGTGTCTAGTG -ACGGAAGTCTTGGTGTGTCATCTG -ACGGAAGTCTTGGTGTGTGAGTTG -ACGGAAGTCTTGGTGTGTAGACTG -ACGGAAGTCTTGGTGTGTTCGGTA -ACGGAAGTCTTGGTGTGTTGCCTA -ACGGAAGTCTTGGTGTGTCCACTA -ACGGAAGTCTTGGTGTGTGGAGTA -ACGGAAGTCTTGGTGTGTTCGTCT -ACGGAAGTCTTGGTGTGTTGCACT -ACGGAAGTCTTGGTGTGTCTGACT -ACGGAAGTCTTGGTGTGTCAACCT -ACGGAAGTCTTGGTGTGTGCTACT -ACGGAAGTCTTGGTGTGTGGATCT -ACGGAAGTCTTGGTGTGTAAGGCT -ACGGAAGTCTTGGTGTGTTCAACC -ACGGAAGTCTTGGTGTGTTGTTCC -ACGGAAGTCTTGGTGTGTATTCCC -ACGGAAGTCTTGGTGTGTTTCTCG -ACGGAAGTCTTGGTGTGTTAGACG -ACGGAAGTCTTGGTGTGTGTAACG -ACGGAAGTCTTGGTGTGTACTTCG -ACGGAAGTCTTGGTGTGTTACGCA -ACGGAAGTCTTGGTGTGTCTTGCA -ACGGAAGTCTTGGTGTGTCGAACA -ACGGAAGTCTTGGTGTGTCAGTCA -ACGGAAGTCTTGGTGTGTGATCCA -ACGGAAGTCTTGGTGTGTACGACA -ACGGAAGTCTTGGTGTGTAGCTCA -ACGGAAGTCTTGGTGTGTTCACGT -ACGGAAGTCTTGGTGTGTCGTAGT -ACGGAAGTCTTGGTGTGTGTCAGT -ACGGAAGTCTTGGTGTGTGAAGGT -ACGGAAGTCTTGGTGTGTAACCGT -ACGGAAGTCTTGGTGTGTTTGTGC -ACGGAAGTCTTGGTGTGTCTAAGC -ACGGAAGTCTTGGTGTGTACTAGC -ACGGAAGTCTTGGTGTGTAGATGC -ACGGAAGTCTTGGTGTGTTGAAGG -ACGGAAGTCTTGGTGTGTCAATGG -ACGGAAGTCTTGGTGTGTATGAGG -ACGGAAGTCTTGGTGTGTAATGGG -ACGGAAGTCTTGGTGTGTTCCTGA -ACGGAAGTCTTGGTGTGTTAGCGA -ACGGAAGTCTTGGTGTGTCACAGA -ACGGAAGTCTTGGTGTGTGCAAGA -ACGGAAGTCTTGGTGTGTGGTTGA -ACGGAAGTCTTGGTGTGTTCCGAT -ACGGAAGTCTTGGTGTGTTGGCAT -ACGGAAGTCTTGGTGTGTCGAGAT -ACGGAAGTCTTGGTGTGTTACCAC -ACGGAAGTCTTGGTGTGTCAGAAC -ACGGAAGTCTTGGTGTGTGTCTAC -ACGGAAGTCTTGGTGTGTACGTAC -ACGGAAGTCTTGGTGTGTAGTGAC -ACGGAAGTCTTGGTGTGTCTGTAG -ACGGAAGTCTTGGTGTGTCCTAAG -ACGGAAGTCTTGGTGTGTGTTCAG -ACGGAAGTCTTGGTGTGTGCATAG -ACGGAAGTCTTGGTGTGTGACAAG -ACGGAAGTCTTGGTGTGTAAGCAG -ACGGAAGTCTTGGTGTGTCGTCAA -ACGGAAGTCTTGGTGTGTGCTGAA -ACGGAAGTCTTGGTGTGTAGTACG -ACGGAAGTCTTGGTGTGTATCCGA -ACGGAAGTCTTGGTGTGTATGGGA -ACGGAAGTCTTGGTGTGTGTGCAA -ACGGAAGTCTTGGTGTGTGAGGAA -ACGGAAGTCTTGGTGTGTCAGGTA -ACGGAAGTCTTGGTGTGTGACTCT -ACGGAAGTCTTGGTGTGTAGTCCT -ACGGAAGTCTTGGTGTGTTAAGCC -ACGGAAGTCTTGGTGTGTATAGCC -ACGGAAGTCTTGGTGTGTTAACCG -ACGGAAGTCTTGGTGTGTATGCCA -ACGGAAGTCTTGGTGCTAGGAAAC -ACGGAAGTCTTGGTGCTAAACACC -ACGGAAGTCTTGGTGCTAATCGAG -ACGGAAGTCTTGGTGCTACTCCTT -ACGGAAGTCTTGGTGCTACCTGTT -ACGGAAGTCTTGGTGCTACGGTTT -ACGGAAGTCTTGGTGCTAGTGGTT -ACGGAAGTCTTGGTGCTAGCCTTT -ACGGAAGTCTTGGTGCTAGGTCTT -ACGGAAGTCTTGGTGCTAACGCTT -ACGGAAGTCTTGGTGCTAAGCGTT -ACGGAAGTCTTGGTGCTATTCGTC -ACGGAAGTCTTGGTGCTATCTCTC -ACGGAAGTCTTGGTGCTATGGATC -ACGGAAGTCTTGGTGCTACACTTC -ACGGAAGTCTTGGTGCTAGTACTC -ACGGAAGTCTTGGTGCTAGATGTC -ACGGAAGTCTTGGTGCTAACAGTC -ACGGAAGTCTTGGTGCTATTGCTG -ACGGAAGTCTTGGTGCTATCCATG -ACGGAAGTCTTGGTGCTATGTGTG -ACGGAAGTCTTGGTGCTACTAGTG -ACGGAAGTCTTGGTGCTACATCTG -ACGGAAGTCTTGGTGCTAGAGTTG -ACGGAAGTCTTGGTGCTAAGACTG -ACGGAAGTCTTGGTGCTATCGGTA -ACGGAAGTCTTGGTGCTATGCCTA -ACGGAAGTCTTGGTGCTACCACTA -ACGGAAGTCTTGGTGCTAGGAGTA -ACGGAAGTCTTGGTGCTATCGTCT -ACGGAAGTCTTGGTGCTATGCACT -ACGGAAGTCTTGGTGCTACTGACT -ACGGAAGTCTTGGTGCTACAACCT -ACGGAAGTCTTGGTGCTAGCTACT -ACGGAAGTCTTGGTGCTAGGATCT -ACGGAAGTCTTGGTGCTAAAGGCT -ACGGAAGTCTTGGTGCTATCAACC -ACGGAAGTCTTGGTGCTATGTTCC -ACGGAAGTCTTGGTGCTAATTCCC -ACGGAAGTCTTGGTGCTATTCTCG -ACGGAAGTCTTGGTGCTATAGACG -ACGGAAGTCTTGGTGCTAGTAACG -ACGGAAGTCTTGGTGCTAACTTCG -ACGGAAGTCTTGGTGCTATACGCA -ACGGAAGTCTTGGTGCTACTTGCA -ACGGAAGTCTTGGTGCTACGAACA -ACGGAAGTCTTGGTGCTACAGTCA -ACGGAAGTCTTGGTGCTAGATCCA -ACGGAAGTCTTGGTGCTAACGACA -ACGGAAGTCTTGGTGCTAAGCTCA -ACGGAAGTCTTGGTGCTATCACGT -ACGGAAGTCTTGGTGCTACGTAGT -ACGGAAGTCTTGGTGCTAGTCAGT -ACGGAAGTCTTGGTGCTAGAAGGT -ACGGAAGTCTTGGTGCTAAACCGT -ACGGAAGTCTTGGTGCTATTGTGC -ACGGAAGTCTTGGTGCTACTAAGC -ACGGAAGTCTTGGTGCTAACTAGC -ACGGAAGTCTTGGTGCTAAGATGC -ACGGAAGTCTTGGTGCTATGAAGG -ACGGAAGTCTTGGTGCTACAATGG -ACGGAAGTCTTGGTGCTAATGAGG -ACGGAAGTCTTGGTGCTAAATGGG -ACGGAAGTCTTGGTGCTATCCTGA -ACGGAAGTCTTGGTGCTATAGCGA -ACGGAAGTCTTGGTGCTACACAGA -ACGGAAGTCTTGGTGCTAGCAAGA -ACGGAAGTCTTGGTGCTAGGTTGA -ACGGAAGTCTTGGTGCTATCCGAT -ACGGAAGTCTTGGTGCTATGGCAT -ACGGAAGTCTTGGTGCTACGAGAT -ACGGAAGTCTTGGTGCTATACCAC -ACGGAAGTCTTGGTGCTACAGAAC -ACGGAAGTCTTGGTGCTAGTCTAC -ACGGAAGTCTTGGTGCTAACGTAC -ACGGAAGTCTTGGTGCTAAGTGAC -ACGGAAGTCTTGGTGCTACTGTAG -ACGGAAGTCTTGGTGCTACCTAAG -ACGGAAGTCTTGGTGCTAGTTCAG -ACGGAAGTCTTGGTGCTAGCATAG -ACGGAAGTCTTGGTGCTAGACAAG -ACGGAAGTCTTGGTGCTAAAGCAG -ACGGAAGTCTTGGTGCTACGTCAA -ACGGAAGTCTTGGTGCTAGCTGAA -ACGGAAGTCTTGGTGCTAAGTACG -ACGGAAGTCTTGGTGCTAATCCGA -ACGGAAGTCTTGGTGCTAATGGGA -ACGGAAGTCTTGGTGCTAGTGCAA -ACGGAAGTCTTGGTGCTAGAGGAA -ACGGAAGTCTTGGTGCTACAGGTA -ACGGAAGTCTTGGTGCTAGACTCT -ACGGAAGTCTTGGTGCTAAGTCCT -ACGGAAGTCTTGGTGCTATAAGCC -ACGGAAGTCTTGGTGCTAATAGCC -ACGGAAGTCTTGGTGCTATAACCG -ACGGAAGTCTTGGTGCTAATGCCA -ACGGAAGTCTTGCTGCATGGAAAC -ACGGAAGTCTTGCTGCATAACACC -ACGGAAGTCTTGCTGCATATCGAG -ACGGAAGTCTTGCTGCATCTCCTT -ACGGAAGTCTTGCTGCATCCTGTT -ACGGAAGTCTTGCTGCATCGGTTT -ACGGAAGTCTTGCTGCATGTGGTT -ACGGAAGTCTTGCTGCATGCCTTT -ACGGAAGTCTTGCTGCATGGTCTT -ACGGAAGTCTTGCTGCATACGCTT -ACGGAAGTCTTGCTGCATAGCGTT -ACGGAAGTCTTGCTGCATTTCGTC -ACGGAAGTCTTGCTGCATTCTCTC -ACGGAAGTCTTGCTGCATTGGATC -ACGGAAGTCTTGCTGCATCACTTC -ACGGAAGTCTTGCTGCATGTACTC -ACGGAAGTCTTGCTGCATGATGTC -ACGGAAGTCTTGCTGCATACAGTC -ACGGAAGTCTTGCTGCATTTGCTG -ACGGAAGTCTTGCTGCATTCCATG -ACGGAAGTCTTGCTGCATTGTGTG -ACGGAAGTCTTGCTGCATCTAGTG -ACGGAAGTCTTGCTGCATCATCTG -ACGGAAGTCTTGCTGCATGAGTTG -ACGGAAGTCTTGCTGCATAGACTG -ACGGAAGTCTTGCTGCATTCGGTA -ACGGAAGTCTTGCTGCATTGCCTA -ACGGAAGTCTTGCTGCATCCACTA -ACGGAAGTCTTGCTGCATGGAGTA -ACGGAAGTCTTGCTGCATTCGTCT -ACGGAAGTCTTGCTGCATTGCACT -ACGGAAGTCTTGCTGCATCTGACT -ACGGAAGTCTTGCTGCATCAACCT -ACGGAAGTCTTGCTGCATGCTACT -ACGGAAGTCTTGCTGCATGGATCT -ACGGAAGTCTTGCTGCATAAGGCT -ACGGAAGTCTTGCTGCATTCAACC -ACGGAAGTCTTGCTGCATTGTTCC -ACGGAAGTCTTGCTGCATATTCCC -ACGGAAGTCTTGCTGCATTTCTCG -ACGGAAGTCTTGCTGCATTAGACG -ACGGAAGTCTTGCTGCATGTAACG -ACGGAAGTCTTGCTGCATACTTCG -ACGGAAGTCTTGCTGCATTACGCA -ACGGAAGTCTTGCTGCATCTTGCA -ACGGAAGTCTTGCTGCATCGAACA -ACGGAAGTCTTGCTGCATCAGTCA -ACGGAAGTCTTGCTGCATGATCCA -ACGGAAGTCTTGCTGCATACGACA -ACGGAAGTCTTGCTGCATAGCTCA -ACGGAAGTCTTGCTGCATTCACGT -ACGGAAGTCTTGCTGCATCGTAGT -ACGGAAGTCTTGCTGCATGTCAGT -ACGGAAGTCTTGCTGCATGAAGGT -ACGGAAGTCTTGCTGCATAACCGT -ACGGAAGTCTTGCTGCATTTGTGC -ACGGAAGTCTTGCTGCATCTAAGC -ACGGAAGTCTTGCTGCATACTAGC -ACGGAAGTCTTGCTGCATAGATGC -ACGGAAGTCTTGCTGCATTGAAGG -ACGGAAGTCTTGCTGCATCAATGG -ACGGAAGTCTTGCTGCATATGAGG -ACGGAAGTCTTGCTGCATAATGGG -ACGGAAGTCTTGCTGCATTCCTGA -ACGGAAGTCTTGCTGCATTAGCGA -ACGGAAGTCTTGCTGCATCACAGA -ACGGAAGTCTTGCTGCATGCAAGA -ACGGAAGTCTTGCTGCATGGTTGA -ACGGAAGTCTTGCTGCATTCCGAT -ACGGAAGTCTTGCTGCATTGGCAT -ACGGAAGTCTTGCTGCATCGAGAT -ACGGAAGTCTTGCTGCATTACCAC -ACGGAAGTCTTGCTGCATCAGAAC -ACGGAAGTCTTGCTGCATGTCTAC -ACGGAAGTCTTGCTGCATACGTAC -ACGGAAGTCTTGCTGCATAGTGAC -ACGGAAGTCTTGCTGCATCTGTAG -ACGGAAGTCTTGCTGCATCCTAAG -ACGGAAGTCTTGCTGCATGTTCAG -ACGGAAGTCTTGCTGCATGCATAG -ACGGAAGTCTTGCTGCATGACAAG -ACGGAAGTCTTGCTGCATAAGCAG -ACGGAAGTCTTGCTGCATCGTCAA -ACGGAAGTCTTGCTGCATGCTGAA -ACGGAAGTCTTGCTGCATAGTACG -ACGGAAGTCTTGCTGCATATCCGA -ACGGAAGTCTTGCTGCATATGGGA -ACGGAAGTCTTGCTGCATGTGCAA -ACGGAAGTCTTGCTGCATGAGGAA -ACGGAAGTCTTGCTGCATCAGGTA -ACGGAAGTCTTGCTGCATGACTCT -ACGGAAGTCTTGCTGCATAGTCCT -ACGGAAGTCTTGCTGCATTAAGCC -ACGGAAGTCTTGCTGCATATAGCC -ACGGAAGTCTTGCTGCATTAACCG -ACGGAAGTCTTGCTGCATATGCCA -ACGGAAGTCTTGTTGGAGGGAAAC -ACGGAAGTCTTGTTGGAGAACACC -ACGGAAGTCTTGTTGGAGATCGAG -ACGGAAGTCTTGTTGGAGCTCCTT -ACGGAAGTCTTGTTGGAGCCTGTT -ACGGAAGTCTTGTTGGAGCGGTTT -ACGGAAGTCTTGTTGGAGGTGGTT -ACGGAAGTCTTGTTGGAGGCCTTT -ACGGAAGTCTTGTTGGAGGGTCTT -ACGGAAGTCTTGTTGGAGACGCTT -ACGGAAGTCTTGTTGGAGAGCGTT -ACGGAAGTCTTGTTGGAGTTCGTC -ACGGAAGTCTTGTTGGAGTCTCTC -ACGGAAGTCTTGTTGGAGTGGATC -ACGGAAGTCTTGTTGGAGCACTTC -ACGGAAGTCTTGTTGGAGGTACTC -ACGGAAGTCTTGTTGGAGGATGTC -ACGGAAGTCTTGTTGGAGACAGTC -ACGGAAGTCTTGTTGGAGTTGCTG -ACGGAAGTCTTGTTGGAGTCCATG -ACGGAAGTCTTGTTGGAGTGTGTG -ACGGAAGTCTTGTTGGAGCTAGTG -ACGGAAGTCTTGTTGGAGCATCTG -ACGGAAGTCTTGTTGGAGGAGTTG -ACGGAAGTCTTGTTGGAGAGACTG -ACGGAAGTCTTGTTGGAGTCGGTA -ACGGAAGTCTTGTTGGAGTGCCTA -ACGGAAGTCTTGTTGGAGCCACTA -ACGGAAGTCTTGTTGGAGGGAGTA -ACGGAAGTCTTGTTGGAGTCGTCT -ACGGAAGTCTTGTTGGAGTGCACT -ACGGAAGTCTTGTTGGAGCTGACT -ACGGAAGTCTTGTTGGAGCAACCT -ACGGAAGTCTTGTTGGAGGCTACT -ACGGAAGTCTTGTTGGAGGGATCT -ACGGAAGTCTTGTTGGAGAAGGCT -ACGGAAGTCTTGTTGGAGTCAACC -ACGGAAGTCTTGTTGGAGTGTTCC -ACGGAAGTCTTGTTGGAGATTCCC -ACGGAAGTCTTGTTGGAGTTCTCG -ACGGAAGTCTTGTTGGAGTAGACG -ACGGAAGTCTTGTTGGAGGTAACG -ACGGAAGTCTTGTTGGAGACTTCG -ACGGAAGTCTTGTTGGAGTACGCA -ACGGAAGTCTTGTTGGAGCTTGCA -ACGGAAGTCTTGTTGGAGCGAACA -ACGGAAGTCTTGTTGGAGCAGTCA -ACGGAAGTCTTGTTGGAGGATCCA -ACGGAAGTCTTGTTGGAGACGACA -ACGGAAGTCTTGTTGGAGAGCTCA -ACGGAAGTCTTGTTGGAGTCACGT -ACGGAAGTCTTGTTGGAGCGTAGT -ACGGAAGTCTTGTTGGAGGTCAGT -ACGGAAGTCTTGTTGGAGGAAGGT -ACGGAAGTCTTGTTGGAGAACCGT -ACGGAAGTCTTGTTGGAGTTGTGC -ACGGAAGTCTTGTTGGAGCTAAGC -ACGGAAGTCTTGTTGGAGACTAGC -ACGGAAGTCTTGTTGGAGAGATGC -ACGGAAGTCTTGTTGGAGTGAAGG -ACGGAAGTCTTGTTGGAGCAATGG -ACGGAAGTCTTGTTGGAGATGAGG -ACGGAAGTCTTGTTGGAGAATGGG -ACGGAAGTCTTGTTGGAGTCCTGA -ACGGAAGTCTTGTTGGAGTAGCGA -ACGGAAGTCTTGTTGGAGCACAGA -ACGGAAGTCTTGTTGGAGGCAAGA -ACGGAAGTCTTGTTGGAGGGTTGA -ACGGAAGTCTTGTTGGAGTCCGAT -ACGGAAGTCTTGTTGGAGTGGCAT -ACGGAAGTCTTGTTGGAGCGAGAT -ACGGAAGTCTTGTTGGAGTACCAC -ACGGAAGTCTTGTTGGAGCAGAAC -ACGGAAGTCTTGTTGGAGGTCTAC -ACGGAAGTCTTGTTGGAGACGTAC -ACGGAAGTCTTGTTGGAGAGTGAC -ACGGAAGTCTTGTTGGAGCTGTAG -ACGGAAGTCTTGTTGGAGCCTAAG -ACGGAAGTCTTGTTGGAGGTTCAG -ACGGAAGTCTTGTTGGAGGCATAG -ACGGAAGTCTTGTTGGAGGACAAG -ACGGAAGTCTTGTTGGAGAAGCAG -ACGGAAGTCTTGTTGGAGCGTCAA -ACGGAAGTCTTGTTGGAGGCTGAA -ACGGAAGTCTTGTTGGAGAGTACG -ACGGAAGTCTTGTTGGAGATCCGA -ACGGAAGTCTTGTTGGAGATGGGA -ACGGAAGTCTTGTTGGAGGTGCAA -ACGGAAGTCTTGTTGGAGGAGGAA -ACGGAAGTCTTGTTGGAGCAGGTA -ACGGAAGTCTTGTTGGAGGACTCT -ACGGAAGTCTTGTTGGAGAGTCCT -ACGGAAGTCTTGTTGGAGTAAGCC -ACGGAAGTCTTGTTGGAGATAGCC -ACGGAAGTCTTGTTGGAGTAACCG -ACGGAAGTCTTGTTGGAGATGCCA -ACGGAAGTCTTGCTGAGAGGAAAC -ACGGAAGTCTTGCTGAGAAACACC -ACGGAAGTCTTGCTGAGAATCGAG -ACGGAAGTCTTGCTGAGACTCCTT -ACGGAAGTCTTGCTGAGACCTGTT -ACGGAAGTCTTGCTGAGACGGTTT -ACGGAAGTCTTGCTGAGAGTGGTT -ACGGAAGTCTTGCTGAGAGCCTTT -ACGGAAGTCTTGCTGAGAGGTCTT -ACGGAAGTCTTGCTGAGAACGCTT -ACGGAAGTCTTGCTGAGAAGCGTT -ACGGAAGTCTTGCTGAGATTCGTC -ACGGAAGTCTTGCTGAGATCTCTC -ACGGAAGTCTTGCTGAGATGGATC -ACGGAAGTCTTGCTGAGACACTTC -ACGGAAGTCTTGCTGAGAGTACTC -ACGGAAGTCTTGCTGAGAGATGTC -ACGGAAGTCTTGCTGAGAACAGTC -ACGGAAGTCTTGCTGAGATTGCTG -ACGGAAGTCTTGCTGAGATCCATG -ACGGAAGTCTTGCTGAGATGTGTG -ACGGAAGTCTTGCTGAGACTAGTG -ACGGAAGTCTTGCTGAGACATCTG -ACGGAAGTCTTGCTGAGAGAGTTG -ACGGAAGTCTTGCTGAGAAGACTG -ACGGAAGTCTTGCTGAGATCGGTA -ACGGAAGTCTTGCTGAGATGCCTA -ACGGAAGTCTTGCTGAGACCACTA -ACGGAAGTCTTGCTGAGAGGAGTA -ACGGAAGTCTTGCTGAGATCGTCT -ACGGAAGTCTTGCTGAGATGCACT -ACGGAAGTCTTGCTGAGACTGACT -ACGGAAGTCTTGCTGAGACAACCT -ACGGAAGTCTTGCTGAGAGCTACT -ACGGAAGTCTTGCTGAGAGGATCT -ACGGAAGTCTTGCTGAGAAAGGCT -ACGGAAGTCTTGCTGAGATCAACC -ACGGAAGTCTTGCTGAGATGTTCC -ACGGAAGTCTTGCTGAGAATTCCC -ACGGAAGTCTTGCTGAGATTCTCG -ACGGAAGTCTTGCTGAGATAGACG -ACGGAAGTCTTGCTGAGAGTAACG -ACGGAAGTCTTGCTGAGAACTTCG -ACGGAAGTCTTGCTGAGATACGCA -ACGGAAGTCTTGCTGAGACTTGCA -ACGGAAGTCTTGCTGAGACGAACA -ACGGAAGTCTTGCTGAGACAGTCA -ACGGAAGTCTTGCTGAGAGATCCA -ACGGAAGTCTTGCTGAGAACGACA -ACGGAAGTCTTGCTGAGAAGCTCA -ACGGAAGTCTTGCTGAGATCACGT -ACGGAAGTCTTGCTGAGACGTAGT -ACGGAAGTCTTGCTGAGAGTCAGT -ACGGAAGTCTTGCTGAGAGAAGGT -ACGGAAGTCTTGCTGAGAAACCGT -ACGGAAGTCTTGCTGAGATTGTGC -ACGGAAGTCTTGCTGAGACTAAGC -ACGGAAGTCTTGCTGAGAACTAGC -ACGGAAGTCTTGCTGAGAAGATGC -ACGGAAGTCTTGCTGAGATGAAGG -ACGGAAGTCTTGCTGAGACAATGG -ACGGAAGTCTTGCTGAGAATGAGG -ACGGAAGTCTTGCTGAGAAATGGG -ACGGAAGTCTTGCTGAGATCCTGA -ACGGAAGTCTTGCTGAGATAGCGA -ACGGAAGTCTTGCTGAGACACAGA -ACGGAAGTCTTGCTGAGAGCAAGA -ACGGAAGTCTTGCTGAGAGGTTGA -ACGGAAGTCTTGCTGAGATCCGAT -ACGGAAGTCTTGCTGAGATGGCAT -ACGGAAGTCTTGCTGAGACGAGAT -ACGGAAGTCTTGCTGAGATACCAC -ACGGAAGTCTTGCTGAGACAGAAC -ACGGAAGTCTTGCTGAGAGTCTAC -ACGGAAGTCTTGCTGAGAACGTAC -ACGGAAGTCTTGCTGAGAAGTGAC -ACGGAAGTCTTGCTGAGACTGTAG -ACGGAAGTCTTGCTGAGACCTAAG -ACGGAAGTCTTGCTGAGAGTTCAG -ACGGAAGTCTTGCTGAGAGCATAG -ACGGAAGTCTTGCTGAGAGACAAG -ACGGAAGTCTTGCTGAGAAAGCAG -ACGGAAGTCTTGCTGAGACGTCAA -ACGGAAGTCTTGCTGAGAGCTGAA -ACGGAAGTCTTGCTGAGAAGTACG -ACGGAAGTCTTGCTGAGAATCCGA -ACGGAAGTCTTGCTGAGAATGGGA -ACGGAAGTCTTGCTGAGAGTGCAA -ACGGAAGTCTTGCTGAGAGAGGAA -ACGGAAGTCTTGCTGAGACAGGTA -ACGGAAGTCTTGCTGAGAGACTCT -ACGGAAGTCTTGCTGAGAAGTCCT -ACGGAAGTCTTGCTGAGATAAGCC -ACGGAAGTCTTGCTGAGAATAGCC -ACGGAAGTCTTGCTGAGATAACCG -ACGGAAGTCTTGCTGAGAATGCCA -ACGGAAGTCTTGGTATCGGGAAAC -ACGGAAGTCTTGGTATCGAACACC -ACGGAAGTCTTGGTATCGATCGAG -ACGGAAGTCTTGGTATCGCTCCTT -ACGGAAGTCTTGGTATCGCCTGTT -ACGGAAGTCTTGGTATCGCGGTTT -ACGGAAGTCTTGGTATCGGTGGTT -ACGGAAGTCTTGGTATCGGCCTTT -ACGGAAGTCTTGGTATCGGGTCTT -ACGGAAGTCTTGGTATCGACGCTT -ACGGAAGTCTTGGTATCGAGCGTT -ACGGAAGTCTTGGTATCGTTCGTC -ACGGAAGTCTTGGTATCGTCTCTC -ACGGAAGTCTTGGTATCGTGGATC -ACGGAAGTCTTGGTATCGCACTTC -ACGGAAGTCTTGGTATCGGTACTC -ACGGAAGTCTTGGTATCGGATGTC -ACGGAAGTCTTGGTATCGACAGTC -ACGGAAGTCTTGGTATCGTTGCTG -ACGGAAGTCTTGGTATCGTCCATG -ACGGAAGTCTTGGTATCGTGTGTG -ACGGAAGTCTTGGTATCGCTAGTG -ACGGAAGTCTTGGTATCGCATCTG -ACGGAAGTCTTGGTATCGGAGTTG -ACGGAAGTCTTGGTATCGAGACTG -ACGGAAGTCTTGGTATCGTCGGTA -ACGGAAGTCTTGGTATCGTGCCTA -ACGGAAGTCTTGGTATCGCCACTA -ACGGAAGTCTTGGTATCGGGAGTA -ACGGAAGTCTTGGTATCGTCGTCT -ACGGAAGTCTTGGTATCGTGCACT -ACGGAAGTCTTGGTATCGCTGACT -ACGGAAGTCTTGGTATCGCAACCT -ACGGAAGTCTTGGTATCGGCTACT -ACGGAAGTCTTGGTATCGGGATCT -ACGGAAGTCTTGGTATCGAAGGCT -ACGGAAGTCTTGGTATCGTCAACC -ACGGAAGTCTTGGTATCGTGTTCC -ACGGAAGTCTTGGTATCGATTCCC -ACGGAAGTCTTGGTATCGTTCTCG -ACGGAAGTCTTGGTATCGTAGACG -ACGGAAGTCTTGGTATCGGTAACG -ACGGAAGTCTTGGTATCGACTTCG -ACGGAAGTCTTGGTATCGTACGCA -ACGGAAGTCTTGGTATCGCTTGCA -ACGGAAGTCTTGGTATCGCGAACA -ACGGAAGTCTTGGTATCGCAGTCA -ACGGAAGTCTTGGTATCGGATCCA -ACGGAAGTCTTGGTATCGACGACA -ACGGAAGTCTTGGTATCGAGCTCA -ACGGAAGTCTTGGTATCGTCACGT -ACGGAAGTCTTGGTATCGCGTAGT -ACGGAAGTCTTGGTATCGGTCAGT -ACGGAAGTCTTGGTATCGGAAGGT -ACGGAAGTCTTGGTATCGAACCGT -ACGGAAGTCTTGGTATCGTTGTGC -ACGGAAGTCTTGGTATCGCTAAGC -ACGGAAGTCTTGGTATCGACTAGC -ACGGAAGTCTTGGTATCGAGATGC -ACGGAAGTCTTGGTATCGTGAAGG -ACGGAAGTCTTGGTATCGCAATGG -ACGGAAGTCTTGGTATCGATGAGG -ACGGAAGTCTTGGTATCGAATGGG -ACGGAAGTCTTGGTATCGTCCTGA -ACGGAAGTCTTGGTATCGTAGCGA -ACGGAAGTCTTGGTATCGCACAGA -ACGGAAGTCTTGGTATCGGCAAGA -ACGGAAGTCTTGGTATCGGGTTGA -ACGGAAGTCTTGGTATCGTCCGAT -ACGGAAGTCTTGGTATCGTGGCAT -ACGGAAGTCTTGGTATCGCGAGAT -ACGGAAGTCTTGGTATCGTACCAC -ACGGAAGTCTTGGTATCGCAGAAC -ACGGAAGTCTTGGTATCGGTCTAC -ACGGAAGTCTTGGTATCGACGTAC -ACGGAAGTCTTGGTATCGAGTGAC -ACGGAAGTCTTGGTATCGCTGTAG -ACGGAAGTCTTGGTATCGCCTAAG -ACGGAAGTCTTGGTATCGGTTCAG -ACGGAAGTCTTGGTATCGGCATAG -ACGGAAGTCTTGGTATCGGACAAG -ACGGAAGTCTTGGTATCGAAGCAG -ACGGAAGTCTTGGTATCGCGTCAA -ACGGAAGTCTTGGTATCGGCTGAA -ACGGAAGTCTTGGTATCGAGTACG -ACGGAAGTCTTGGTATCGATCCGA -ACGGAAGTCTTGGTATCGATGGGA -ACGGAAGTCTTGGTATCGGTGCAA -ACGGAAGTCTTGGTATCGGAGGAA -ACGGAAGTCTTGGTATCGCAGGTA -ACGGAAGTCTTGGTATCGGACTCT -ACGGAAGTCTTGGTATCGAGTCCT -ACGGAAGTCTTGGTATCGTAAGCC -ACGGAAGTCTTGGTATCGATAGCC -ACGGAAGTCTTGGTATCGTAACCG -ACGGAAGTCTTGGTATCGATGCCA -ACGGAAGTCTTGCTATGCGGAAAC -ACGGAAGTCTTGCTATGCAACACC -ACGGAAGTCTTGCTATGCATCGAG -ACGGAAGTCTTGCTATGCCTCCTT -ACGGAAGTCTTGCTATGCCCTGTT -ACGGAAGTCTTGCTATGCCGGTTT -ACGGAAGTCTTGCTATGCGTGGTT -ACGGAAGTCTTGCTATGCGCCTTT -ACGGAAGTCTTGCTATGCGGTCTT -ACGGAAGTCTTGCTATGCACGCTT -ACGGAAGTCTTGCTATGCAGCGTT -ACGGAAGTCTTGCTATGCTTCGTC -ACGGAAGTCTTGCTATGCTCTCTC -ACGGAAGTCTTGCTATGCTGGATC -ACGGAAGTCTTGCTATGCCACTTC -ACGGAAGTCTTGCTATGCGTACTC -ACGGAAGTCTTGCTATGCGATGTC -ACGGAAGTCTTGCTATGCACAGTC -ACGGAAGTCTTGCTATGCTTGCTG -ACGGAAGTCTTGCTATGCTCCATG -ACGGAAGTCTTGCTATGCTGTGTG -ACGGAAGTCTTGCTATGCCTAGTG -ACGGAAGTCTTGCTATGCCATCTG -ACGGAAGTCTTGCTATGCGAGTTG -ACGGAAGTCTTGCTATGCAGACTG -ACGGAAGTCTTGCTATGCTCGGTA -ACGGAAGTCTTGCTATGCTGCCTA -ACGGAAGTCTTGCTATGCCCACTA -ACGGAAGTCTTGCTATGCGGAGTA -ACGGAAGTCTTGCTATGCTCGTCT -ACGGAAGTCTTGCTATGCTGCACT -ACGGAAGTCTTGCTATGCCTGACT -ACGGAAGTCTTGCTATGCCAACCT -ACGGAAGTCTTGCTATGCGCTACT -ACGGAAGTCTTGCTATGCGGATCT -ACGGAAGTCTTGCTATGCAAGGCT -ACGGAAGTCTTGCTATGCTCAACC -ACGGAAGTCTTGCTATGCTGTTCC -ACGGAAGTCTTGCTATGCATTCCC -ACGGAAGTCTTGCTATGCTTCTCG -ACGGAAGTCTTGCTATGCTAGACG -ACGGAAGTCTTGCTATGCGTAACG -ACGGAAGTCTTGCTATGCACTTCG -ACGGAAGTCTTGCTATGCTACGCA -ACGGAAGTCTTGCTATGCCTTGCA -ACGGAAGTCTTGCTATGCCGAACA -ACGGAAGTCTTGCTATGCCAGTCA -ACGGAAGTCTTGCTATGCGATCCA -ACGGAAGTCTTGCTATGCACGACA -ACGGAAGTCTTGCTATGCAGCTCA -ACGGAAGTCTTGCTATGCTCACGT -ACGGAAGTCTTGCTATGCCGTAGT -ACGGAAGTCTTGCTATGCGTCAGT -ACGGAAGTCTTGCTATGCGAAGGT -ACGGAAGTCTTGCTATGCAACCGT -ACGGAAGTCTTGCTATGCTTGTGC -ACGGAAGTCTTGCTATGCCTAAGC -ACGGAAGTCTTGCTATGCACTAGC -ACGGAAGTCTTGCTATGCAGATGC -ACGGAAGTCTTGCTATGCTGAAGG -ACGGAAGTCTTGCTATGCCAATGG -ACGGAAGTCTTGCTATGCATGAGG -ACGGAAGTCTTGCTATGCAATGGG -ACGGAAGTCTTGCTATGCTCCTGA -ACGGAAGTCTTGCTATGCTAGCGA -ACGGAAGTCTTGCTATGCCACAGA -ACGGAAGTCTTGCTATGCGCAAGA -ACGGAAGTCTTGCTATGCGGTTGA -ACGGAAGTCTTGCTATGCTCCGAT -ACGGAAGTCTTGCTATGCTGGCAT -ACGGAAGTCTTGCTATGCCGAGAT -ACGGAAGTCTTGCTATGCTACCAC -ACGGAAGTCTTGCTATGCCAGAAC -ACGGAAGTCTTGCTATGCGTCTAC -ACGGAAGTCTTGCTATGCACGTAC -ACGGAAGTCTTGCTATGCAGTGAC -ACGGAAGTCTTGCTATGCCTGTAG -ACGGAAGTCTTGCTATGCCCTAAG -ACGGAAGTCTTGCTATGCGTTCAG -ACGGAAGTCTTGCTATGCGCATAG -ACGGAAGTCTTGCTATGCGACAAG -ACGGAAGTCTTGCTATGCAAGCAG -ACGGAAGTCTTGCTATGCCGTCAA -ACGGAAGTCTTGCTATGCGCTGAA -ACGGAAGTCTTGCTATGCAGTACG -ACGGAAGTCTTGCTATGCATCCGA -ACGGAAGTCTTGCTATGCATGGGA -ACGGAAGTCTTGCTATGCGTGCAA -ACGGAAGTCTTGCTATGCGAGGAA -ACGGAAGTCTTGCTATGCCAGGTA -ACGGAAGTCTTGCTATGCGACTCT -ACGGAAGTCTTGCTATGCAGTCCT -ACGGAAGTCTTGCTATGCTAAGCC -ACGGAAGTCTTGCTATGCATAGCC -ACGGAAGTCTTGCTATGCTAACCG -ACGGAAGTCTTGCTATGCATGCCA -ACGGAAGTCTTGCTACCAGGAAAC -ACGGAAGTCTTGCTACCAAACACC -ACGGAAGTCTTGCTACCAATCGAG -ACGGAAGTCTTGCTACCACTCCTT -ACGGAAGTCTTGCTACCACCTGTT -ACGGAAGTCTTGCTACCACGGTTT -ACGGAAGTCTTGCTACCAGTGGTT -ACGGAAGTCTTGCTACCAGCCTTT -ACGGAAGTCTTGCTACCAGGTCTT -ACGGAAGTCTTGCTACCAACGCTT -ACGGAAGTCTTGCTACCAAGCGTT -ACGGAAGTCTTGCTACCATTCGTC -ACGGAAGTCTTGCTACCATCTCTC -ACGGAAGTCTTGCTACCATGGATC -ACGGAAGTCTTGCTACCACACTTC -ACGGAAGTCTTGCTACCAGTACTC -ACGGAAGTCTTGCTACCAGATGTC -ACGGAAGTCTTGCTACCAACAGTC -ACGGAAGTCTTGCTACCATTGCTG -ACGGAAGTCTTGCTACCATCCATG -ACGGAAGTCTTGCTACCATGTGTG -ACGGAAGTCTTGCTACCACTAGTG -ACGGAAGTCTTGCTACCACATCTG -ACGGAAGTCTTGCTACCAGAGTTG -ACGGAAGTCTTGCTACCAAGACTG -ACGGAAGTCTTGCTACCATCGGTA -ACGGAAGTCTTGCTACCATGCCTA -ACGGAAGTCTTGCTACCACCACTA -ACGGAAGTCTTGCTACCAGGAGTA -ACGGAAGTCTTGCTACCATCGTCT -ACGGAAGTCTTGCTACCATGCACT -ACGGAAGTCTTGCTACCACTGACT -ACGGAAGTCTTGCTACCACAACCT -ACGGAAGTCTTGCTACCAGCTACT -ACGGAAGTCTTGCTACCAGGATCT -ACGGAAGTCTTGCTACCAAAGGCT -ACGGAAGTCTTGCTACCATCAACC -ACGGAAGTCTTGCTACCATGTTCC -ACGGAAGTCTTGCTACCAATTCCC -ACGGAAGTCTTGCTACCATTCTCG -ACGGAAGTCTTGCTACCATAGACG -ACGGAAGTCTTGCTACCAGTAACG -ACGGAAGTCTTGCTACCAACTTCG -ACGGAAGTCTTGCTACCATACGCA -ACGGAAGTCTTGCTACCACTTGCA -ACGGAAGTCTTGCTACCACGAACA -ACGGAAGTCTTGCTACCACAGTCA -ACGGAAGTCTTGCTACCAGATCCA -ACGGAAGTCTTGCTACCAACGACA -ACGGAAGTCTTGCTACCAAGCTCA -ACGGAAGTCTTGCTACCATCACGT -ACGGAAGTCTTGCTACCACGTAGT -ACGGAAGTCTTGCTACCAGTCAGT -ACGGAAGTCTTGCTACCAGAAGGT -ACGGAAGTCTTGCTACCAAACCGT -ACGGAAGTCTTGCTACCATTGTGC -ACGGAAGTCTTGCTACCACTAAGC -ACGGAAGTCTTGCTACCAACTAGC -ACGGAAGTCTTGCTACCAAGATGC -ACGGAAGTCTTGCTACCATGAAGG -ACGGAAGTCTTGCTACCACAATGG -ACGGAAGTCTTGCTACCAATGAGG -ACGGAAGTCTTGCTACCAAATGGG -ACGGAAGTCTTGCTACCATCCTGA -ACGGAAGTCTTGCTACCATAGCGA -ACGGAAGTCTTGCTACCACACAGA -ACGGAAGTCTTGCTACCAGCAAGA -ACGGAAGTCTTGCTACCAGGTTGA -ACGGAAGTCTTGCTACCATCCGAT -ACGGAAGTCTTGCTACCATGGCAT -ACGGAAGTCTTGCTACCACGAGAT -ACGGAAGTCTTGCTACCATACCAC -ACGGAAGTCTTGCTACCACAGAAC -ACGGAAGTCTTGCTACCAGTCTAC -ACGGAAGTCTTGCTACCAACGTAC -ACGGAAGTCTTGCTACCAAGTGAC -ACGGAAGTCTTGCTACCACTGTAG -ACGGAAGTCTTGCTACCACCTAAG -ACGGAAGTCTTGCTACCAGTTCAG -ACGGAAGTCTTGCTACCAGCATAG -ACGGAAGTCTTGCTACCAGACAAG -ACGGAAGTCTTGCTACCAAAGCAG -ACGGAAGTCTTGCTACCACGTCAA -ACGGAAGTCTTGCTACCAGCTGAA -ACGGAAGTCTTGCTACCAAGTACG -ACGGAAGTCTTGCTACCAATCCGA -ACGGAAGTCTTGCTACCAATGGGA -ACGGAAGTCTTGCTACCAGTGCAA -ACGGAAGTCTTGCTACCAGAGGAA -ACGGAAGTCTTGCTACCACAGGTA -ACGGAAGTCTTGCTACCAGACTCT -ACGGAAGTCTTGCTACCAAGTCCT -ACGGAAGTCTTGCTACCATAAGCC -ACGGAAGTCTTGCTACCAATAGCC -ACGGAAGTCTTGCTACCATAACCG -ACGGAAGTCTTGCTACCAATGCCA -ACGGAAGTCTTGGTAGGAGGAAAC -ACGGAAGTCTTGGTAGGAAACACC -ACGGAAGTCTTGGTAGGAATCGAG -ACGGAAGTCTTGGTAGGACTCCTT -ACGGAAGTCTTGGTAGGACCTGTT -ACGGAAGTCTTGGTAGGACGGTTT -ACGGAAGTCTTGGTAGGAGTGGTT -ACGGAAGTCTTGGTAGGAGCCTTT -ACGGAAGTCTTGGTAGGAGGTCTT -ACGGAAGTCTTGGTAGGAACGCTT -ACGGAAGTCTTGGTAGGAAGCGTT -ACGGAAGTCTTGGTAGGATTCGTC -ACGGAAGTCTTGGTAGGATCTCTC -ACGGAAGTCTTGGTAGGATGGATC -ACGGAAGTCTTGGTAGGACACTTC -ACGGAAGTCTTGGTAGGAGTACTC -ACGGAAGTCTTGGTAGGAGATGTC -ACGGAAGTCTTGGTAGGAACAGTC -ACGGAAGTCTTGGTAGGATTGCTG -ACGGAAGTCTTGGTAGGATCCATG -ACGGAAGTCTTGGTAGGATGTGTG -ACGGAAGTCTTGGTAGGACTAGTG -ACGGAAGTCTTGGTAGGACATCTG -ACGGAAGTCTTGGTAGGAGAGTTG -ACGGAAGTCTTGGTAGGAAGACTG -ACGGAAGTCTTGGTAGGATCGGTA -ACGGAAGTCTTGGTAGGATGCCTA -ACGGAAGTCTTGGTAGGACCACTA -ACGGAAGTCTTGGTAGGAGGAGTA -ACGGAAGTCTTGGTAGGATCGTCT -ACGGAAGTCTTGGTAGGATGCACT -ACGGAAGTCTTGGTAGGACTGACT -ACGGAAGTCTTGGTAGGACAACCT -ACGGAAGTCTTGGTAGGAGCTACT -ACGGAAGTCTTGGTAGGAGGATCT -ACGGAAGTCTTGGTAGGAAAGGCT -ACGGAAGTCTTGGTAGGATCAACC -ACGGAAGTCTTGGTAGGATGTTCC -ACGGAAGTCTTGGTAGGAATTCCC -ACGGAAGTCTTGGTAGGATTCTCG -ACGGAAGTCTTGGTAGGATAGACG -ACGGAAGTCTTGGTAGGAGTAACG -ACGGAAGTCTTGGTAGGAACTTCG -ACGGAAGTCTTGGTAGGATACGCA -ACGGAAGTCTTGGTAGGACTTGCA -ACGGAAGTCTTGGTAGGACGAACA -ACGGAAGTCTTGGTAGGACAGTCA -ACGGAAGTCTTGGTAGGAGATCCA -ACGGAAGTCTTGGTAGGAACGACA -ACGGAAGTCTTGGTAGGAAGCTCA -ACGGAAGTCTTGGTAGGATCACGT -ACGGAAGTCTTGGTAGGACGTAGT -ACGGAAGTCTTGGTAGGAGTCAGT -ACGGAAGTCTTGGTAGGAGAAGGT -ACGGAAGTCTTGGTAGGAAACCGT -ACGGAAGTCTTGGTAGGATTGTGC -ACGGAAGTCTTGGTAGGACTAAGC -ACGGAAGTCTTGGTAGGAACTAGC -ACGGAAGTCTTGGTAGGAAGATGC -ACGGAAGTCTTGGTAGGATGAAGG -ACGGAAGTCTTGGTAGGACAATGG -ACGGAAGTCTTGGTAGGAATGAGG -ACGGAAGTCTTGGTAGGAAATGGG -ACGGAAGTCTTGGTAGGATCCTGA -ACGGAAGTCTTGGTAGGATAGCGA -ACGGAAGTCTTGGTAGGACACAGA -ACGGAAGTCTTGGTAGGAGCAAGA -ACGGAAGTCTTGGTAGGAGGTTGA -ACGGAAGTCTTGGTAGGATCCGAT -ACGGAAGTCTTGGTAGGATGGCAT -ACGGAAGTCTTGGTAGGACGAGAT -ACGGAAGTCTTGGTAGGATACCAC -ACGGAAGTCTTGGTAGGACAGAAC -ACGGAAGTCTTGGTAGGAGTCTAC -ACGGAAGTCTTGGTAGGAACGTAC -ACGGAAGTCTTGGTAGGAAGTGAC -ACGGAAGTCTTGGTAGGACTGTAG -ACGGAAGTCTTGGTAGGACCTAAG -ACGGAAGTCTTGGTAGGAGTTCAG -ACGGAAGTCTTGGTAGGAGCATAG -ACGGAAGTCTTGGTAGGAGACAAG -ACGGAAGTCTTGGTAGGAAAGCAG -ACGGAAGTCTTGGTAGGACGTCAA -ACGGAAGTCTTGGTAGGAGCTGAA -ACGGAAGTCTTGGTAGGAAGTACG -ACGGAAGTCTTGGTAGGAATCCGA -ACGGAAGTCTTGGTAGGAATGGGA -ACGGAAGTCTTGGTAGGAGTGCAA -ACGGAAGTCTTGGTAGGAGAGGAA -ACGGAAGTCTTGGTAGGACAGGTA -ACGGAAGTCTTGGTAGGAGACTCT -ACGGAAGTCTTGGTAGGAAGTCCT -ACGGAAGTCTTGGTAGGATAAGCC -ACGGAAGTCTTGGTAGGAATAGCC -ACGGAAGTCTTGGTAGGATAACCG -ACGGAAGTCTTGGTAGGAATGCCA -ACGGAAGTCTTGTCTTCGGGAAAC -ACGGAAGTCTTGTCTTCGAACACC -ACGGAAGTCTTGTCTTCGATCGAG -ACGGAAGTCTTGTCTTCGCTCCTT -ACGGAAGTCTTGTCTTCGCCTGTT -ACGGAAGTCTTGTCTTCGCGGTTT -ACGGAAGTCTTGTCTTCGGTGGTT -ACGGAAGTCTTGTCTTCGGCCTTT -ACGGAAGTCTTGTCTTCGGGTCTT -ACGGAAGTCTTGTCTTCGACGCTT -ACGGAAGTCTTGTCTTCGAGCGTT -ACGGAAGTCTTGTCTTCGTTCGTC -ACGGAAGTCTTGTCTTCGTCTCTC -ACGGAAGTCTTGTCTTCGTGGATC -ACGGAAGTCTTGTCTTCGCACTTC -ACGGAAGTCTTGTCTTCGGTACTC -ACGGAAGTCTTGTCTTCGGATGTC -ACGGAAGTCTTGTCTTCGACAGTC -ACGGAAGTCTTGTCTTCGTTGCTG -ACGGAAGTCTTGTCTTCGTCCATG -ACGGAAGTCTTGTCTTCGTGTGTG -ACGGAAGTCTTGTCTTCGCTAGTG -ACGGAAGTCTTGTCTTCGCATCTG -ACGGAAGTCTTGTCTTCGGAGTTG -ACGGAAGTCTTGTCTTCGAGACTG -ACGGAAGTCTTGTCTTCGTCGGTA -ACGGAAGTCTTGTCTTCGTGCCTA -ACGGAAGTCTTGTCTTCGCCACTA -ACGGAAGTCTTGTCTTCGGGAGTA -ACGGAAGTCTTGTCTTCGTCGTCT -ACGGAAGTCTTGTCTTCGTGCACT -ACGGAAGTCTTGTCTTCGCTGACT -ACGGAAGTCTTGTCTTCGCAACCT -ACGGAAGTCTTGTCTTCGGCTACT -ACGGAAGTCTTGTCTTCGGGATCT -ACGGAAGTCTTGTCTTCGAAGGCT -ACGGAAGTCTTGTCTTCGTCAACC -ACGGAAGTCTTGTCTTCGTGTTCC -ACGGAAGTCTTGTCTTCGATTCCC -ACGGAAGTCTTGTCTTCGTTCTCG -ACGGAAGTCTTGTCTTCGTAGACG -ACGGAAGTCTTGTCTTCGGTAACG -ACGGAAGTCTTGTCTTCGACTTCG -ACGGAAGTCTTGTCTTCGTACGCA -ACGGAAGTCTTGTCTTCGCTTGCA -ACGGAAGTCTTGTCTTCGCGAACA -ACGGAAGTCTTGTCTTCGCAGTCA -ACGGAAGTCTTGTCTTCGGATCCA -ACGGAAGTCTTGTCTTCGACGACA -ACGGAAGTCTTGTCTTCGAGCTCA -ACGGAAGTCTTGTCTTCGTCACGT -ACGGAAGTCTTGTCTTCGCGTAGT -ACGGAAGTCTTGTCTTCGGTCAGT -ACGGAAGTCTTGTCTTCGGAAGGT -ACGGAAGTCTTGTCTTCGAACCGT -ACGGAAGTCTTGTCTTCGTTGTGC -ACGGAAGTCTTGTCTTCGCTAAGC -ACGGAAGTCTTGTCTTCGACTAGC -ACGGAAGTCTTGTCTTCGAGATGC -ACGGAAGTCTTGTCTTCGTGAAGG -ACGGAAGTCTTGTCTTCGCAATGG -ACGGAAGTCTTGTCTTCGATGAGG -ACGGAAGTCTTGTCTTCGAATGGG -ACGGAAGTCTTGTCTTCGTCCTGA -ACGGAAGTCTTGTCTTCGTAGCGA -ACGGAAGTCTTGTCTTCGCACAGA -ACGGAAGTCTTGTCTTCGGCAAGA -ACGGAAGTCTTGTCTTCGGGTTGA -ACGGAAGTCTTGTCTTCGTCCGAT -ACGGAAGTCTTGTCTTCGTGGCAT -ACGGAAGTCTTGTCTTCGCGAGAT -ACGGAAGTCTTGTCTTCGTACCAC -ACGGAAGTCTTGTCTTCGCAGAAC -ACGGAAGTCTTGTCTTCGGTCTAC -ACGGAAGTCTTGTCTTCGACGTAC -ACGGAAGTCTTGTCTTCGAGTGAC -ACGGAAGTCTTGTCTTCGCTGTAG -ACGGAAGTCTTGTCTTCGCCTAAG -ACGGAAGTCTTGTCTTCGGTTCAG -ACGGAAGTCTTGTCTTCGGCATAG -ACGGAAGTCTTGTCTTCGGACAAG -ACGGAAGTCTTGTCTTCGAAGCAG -ACGGAAGTCTTGTCTTCGCGTCAA -ACGGAAGTCTTGTCTTCGGCTGAA -ACGGAAGTCTTGTCTTCGAGTACG -ACGGAAGTCTTGTCTTCGATCCGA -ACGGAAGTCTTGTCTTCGATGGGA -ACGGAAGTCTTGTCTTCGGTGCAA -ACGGAAGTCTTGTCTTCGGAGGAA -ACGGAAGTCTTGTCTTCGCAGGTA -ACGGAAGTCTTGTCTTCGGACTCT -ACGGAAGTCTTGTCTTCGAGTCCT -ACGGAAGTCTTGTCTTCGTAAGCC -ACGGAAGTCTTGTCTTCGATAGCC -ACGGAAGTCTTGTCTTCGTAACCG -ACGGAAGTCTTGTCTTCGATGCCA -ACGGAAGTCTTGACTTGCGGAAAC -ACGGAAGTCTTGACTTGCAACACC -ACGGAAGTCTTGACTTGCATCGAG -ACGGAAGTCTTGACTTGCCTCCTT -ACGGAAGTCTTGACTTGCCCTGTT -ACGGAAGTCTTGACTTGCCGGTTT -ACGGAAGTCTTGACTTGCGTGGTT -ACGGAAGTCTTGACTTGCGCCTTT -ACGGAAGTCTTGACTTGCGGTCTT -ACGGAAGTCTTGACTTGCACGCTT -ACGGAAGTCTTGACTTGCAGCGTT -ACGGAAGTCTTGACTTGCTTCGTC -ACGGAAGTCTTGACTTGCTCTCTC -ACGGAAGTCTTGACTTGCTGGATC -ACGGAAGTCTTGACTTGCCACTTC -ACGGAAGTCTTGACTTGCGTACTC -ACGGAAGTCTTGACTTGCGATGTC -ACGGAAGTCTTGACTTGCACAGTC -ACGGAAGTCTTGACTTGCTTGCTG -ACGGAAGTCTTGACTTGCTCCATG -ACGGAAGTCTTGACTTGCTGTGTG -ACGGAAGTCTTGACTTGCCTAGTG -ACGGAAGTCTTGACTTGCCATCTG -ACGGAAGTCTTGACTTGCGAGTTG -ACGGAAGTCTTGACTTGCAGACTG -ACGGAAGTCTTGACTTGCTCGGTA -ACGGAAGTCTTGACTTGCTGCCTA -ACGGAAGTCTTGACTTGCCCACTA -ACGGAAGTCTTGACTTGCGGAGTA -ACGGAAGTCTTGACTTGCTCGTCT -ACGGAAGTCTTGACTTGCTGCACT -ACGGAAGTCTTGACTTGCCTGACT -ACGGAAGTCTTGACTTGCCAACCT -ACGGAAGTCTTGACTTGCGCTACT -ACGGAAGTCTTGACTTGCGGATCT -ACGGAAGTCTTGACTTGCAAGGCT -ACGGAAGTCTTGACTTGCTCAACC -ACGGAAGTCTTGACTTGCTGTTCC -ACGGAAGTCTTGACTTGCATTCCC -ACGGAAGTCTTGACTTGCTTCTCG -ACGGAAGTCTTGACTTGCTAGACG -ACGGAAGTCTTGACTTGCGTAACG -ACGGAAGTCTTGACTTGCACTTCG -ACGGAAGTCTTGACTTGCTACGCA -ACGGAAGTCTTGACTTGCCTTGCA -ACGGAAGTCTTGACTTGCCGAACA -ACGGAAGTCTTGACTTGCCAGTCA -ACGGAAGTCTTGACTTGCGATCCA -ACGGAAGTCTTGACTTGCACGACA -ACGGAAGTCTTGACTTGCAGCTCA -ACGGAAGTCTTGACTTGCTCACGT -ACGGAAGTCTTGACTTGCCGTAGT -ACGGAAGTCTTGACTTGCGTCAGT -ACGGAAGTCTTGACTTGCGAAGGT -ACGGAAGTCTTGACTTGCAACCGT -ACGGAAGTCTTGACTTGCTTGTGC -ACGGAAGTCTTGACTTGCCTAAGC -ACGGAAGTCTTGACTTGCACTAGC -ACGGAAGTCTTGACTTGCAGATGC -ACGGAAGTCTTGACTTGCTGAAGG -ACGGAAGTCTTGACTTGCCAATGG -ACGGAAGTCTTGACTTGCATGAGG -ACGGAAGTCTTGACTTGCAATGGG -ACGGAAGTCTTGACTTGCTCCTGA -ACGGAAGTCTTGACTTGCTAGCGA -ACGGAAGTCTTGACTTGCCACAGA -ACGGAAGTCTTGACTTGCGCAAGA -ACGGAAGTCTTGACTTGCGGTTGA -ACGGAAGTCTTGACTTGCTCCGAT -ACGGAAGTCTTGACTTGCTGGCAT -ACGGAAGTCTTGACTTGCCGAGAT -ACGGAAGTCTTGACTTGCTACCAC -ACGGAAGTCTTGACTTGCCAGAAC -ACGGAAGTCTTGACTTGCGTCTAC -ACGGAAGTCTTGACTTGCACGTAC -ACGGAAGTCTTGACTTGCAGTGAC -ACGGAAGTCTTGACTTGCCTGTAG -ACGGAAGTCTTGACTTGCCCTAAG -ACGGAAGTCTTGACTTGCGTTCAG -ACGGAAGTCTTGACTTGCGCATAG -ACGGAAGTCTTGACTTGCGACAAG -ACGGAAGTCTTGACTTGCAAGCAG -ACGGAAGTCTTGACTTGCCGTCAA -ACGGAAGTCTTGACTTGCGCTGAA -ACGGAAGTCTTGACTTGCAGTACG -ACGGAAGTCTTGACTTGCATCCGA -ACGGAAGTCTTGACTTGCATGGGA -ACGGAAGTCTTGACTTGCGTGCAA -ACGGAAGTCTTGACTTGCGAGGAA -ACGGAAGTCTTGACTTGCCAGGTA -ACGGAAGTCTTGACTTGCGACTCT -ACGGAAGTCTTGACTTGCAGTCCT -ACGGAAGTCTTGACTTGCTAAGCC -ACGGAAGTCTTGACTTGCATAGCC -ACGGAAGTCTTGACTTGCTAACCG -ACGGAAGTCTTGACTTGCATGCCA -ACGGAAGTCTTGACTCTGGGAAAC -ACGGAAGTCTTGACTCTGAACACC -ACGGAAGTCTTGACTCTGATCGAG -ACGGAAGTCTTGACTCTGCTCCTT -ACGGAAGTCTTGACTCTGCCTGTT -ACGGAAGTCTTGACTCTGCGGTTT -ACGGAAGTCTTGACTCTGGTGGTT -ACGGAAGTCTTGACTCTGGCCTTT -ACGGAAGTCTTGACTCTGGGTCTT -ACGGAAGTCTTGACTCTGACGCTT -ACGGAAGTCTTGACTCTGAGCGTT -ACGGAAGTCTTGACTCTGTTCGTC -ACGGAAGTCTTGACTCTGTCTCTC -ACGGAAGTCTTGACTCTGTGGATC -ACGGAAGTCTTGACTCTGCACTTC -ACGGAAGTCTTGACTCTGGTACTC -ACGGAAGTCTTGACTCTGGATGTC -ACGGAAGTCTTGACTCTGACAGTC -ACGGAAGTCTTGACTCTGTTGCTG -ACGGAAGTCTTGACTCTGTCCATG -ACGGAAGTCTTGACTCTGTGTGTG -ACGGAAGTCTTGACTCTGCTAGTG -ACGGAAGTCTTGACTCTGCATCTG -ACGGAAGTCTTGACTCTGGAGTTG -ACGGAAGTCTTGACTCTGAGACTG -ACGGAAGTCTTGACTCTGTCGGTA -ACGGAAGTCTTGACTCTGTGCCTA -ACGGAAGTCTTGACTCTGCCACTA -ACGGAAGTCTTGACTCTGGGAGTA -ACGGAAGTCTTGACTCTGTCGTCT -ACGGAAGTCTTGACTCTGTGCACT -ACGGAAGTCTTGACTCTGCTGACT -ACGGAAGTCTTGACTCTGCAACCT -ACGGAAGTCTTGACTCTGGCTACT -ACGGAAGTCTTGACTCTGGGATCT -ACGGAAGTCTTGACTCTGAAGGCT -ACGGAAGTCTTGACTCTGTCAACC -ACGGAAGTCTTGACTCTGTGTTCC -ACGGAAGTCTTGACTCTGATTCCC -ACGGAAGTCTTGACTCTGTTCTCG -ACGGAAGTCTTGACTCTGTAGACG -ACGGAAGTCTTGACTCTGGTAACG -ACGGAAGTCTTGACTCTGACTTCG -ACGGAAGTCTTGACTCTGTACGCA -ACGGAAGTCTTGACTCTGCTTGCA -ACGGAAGTCTTGACTCTGCGAACA -ACGGAAGTCTTGACTCTGCAGTCA -ACGGAAGTCTTGACTCTGGATCCA -ACGGAAGTCTTGACTCTGACGACA -ACGGAAGTCTTGACTCTGAGCTCA -ACGGAAGTCTTGACTCTGTCACGT -ACGGAAGTCTTGACTCTGCGTAGT -ACGGAAGTCTTGACTCTGGTCAGT -ACGGAAGTCTTGACTCTGGAAGGT -ACGGAAGTCTTGACTCTGAACCGT -ACGGAAGTCTTGACTCTGTTGTGC -ACGGAAGTCTTGACTCTGCTAAGC -ACGGAAGTCTTGACTCTGACTAGC -ACGGAAGTCTTGACTCTGAGATGC -ACGGAAGTCTTGACTCTGTGAAGG -ACGGAAGTCTTGACTCTGCAATGG -ACGGAAGTCTTGACTCTGATGAGG -ACGGAAGTCTTGACTCTGAATGGG -ACGGAAGTCTTGACTCTGTCCTGA -ACGGAAGTCTTGACTCTGTAGCGA -ACGGAAGTCTTGACTCTGCACAGA -ACGGAAGTCTTGACTCTGGCAAGA -ACGGAAGTCTTGACTCTGGGTTGA -ACGGAAGTCTTGACTCTGTCCGAT -ACGGAAGTCTTGACTCTGTGGCAT -ACGGAAGTCTTGACTCTGCGAGAT -ACGGAAGTCTTGACTCTGTACCAC -ACGGAAGTCTTGACTCTGCAGAAC -ACGGAAGTCTTGACTCTGGTCTAC -ACGGAAGTCTTGACTCTGACGTAC -ACGGAAGTCTTGACTCTGAGTGAC -ACGGAAGTCTTGACTCTGCTGTAG -ACGGAAGTCTTGACTCTGCCTAAG -ACGGAAGTCTTGACTCTGGTTCAG -ACGGAAGTCTTGACTCTGGCATAG -ACGGAAGTCTTGACTCTGGACAAG -ACGGAAGTCTTGACTCTGAAGCAG -ACGGAAGTCTTGACTCTGCGTCAA -ACGGAAGTCTTGACTCTGGCTGAA -ACGGAAGTCTTGACTCTGAGTACG -ACGGAAGTCTTGACTCTGATCCGA -ACGGAAGTCTTGACTCTGATGGGA -ACGGAAGTCTTGACTCTGGTGCAA -ACGGAAGTCTTGACTCTGGAGGAA -ACGGAAGTCTTGACTCTGCAGGTA -ACGGAAGTCTTGACTCTGGACTCT -ACGGAAGTCTTGACTCTGAGTCCT -ACGGAAGTCTTGACTCTGTAAGCC -ACGGAAGTCTTGACTCTGATAGCC -ACGGAAGTCTTGACTCTGTAACCG -ACGGAAGTCTTGACTCTGATGCCA -ACGGAAGTCTTGCCTCAAGGAAAC -ACGGAAGTCTTGCCTCAAAACACC -ACGGAAGTCTTGCCTCAAATCGAG -ACGGAAGTCTTGCCTCAACTCCTT -ACGGAAGTCTTGCCTCAACCTGTT -ACGGAAGTCTTGCCTCAACGGTTT -ACGGAAGTCTTGCCTCAAGTGGTT -ACGGAAGTCTTGCCTCAAGCCTTT -ACGGAAGTCTTGCCTCAAGGTCTT -ACGGAAGTCTTGCCTCAAACGCTT -ACGGAAGTCTTGCCTCAAAGCGTT -ACGGAAGTCTTGCCTCAATTCGTC -ACGGAAGTCTTGCCTCAATCTCTC -ACGGAAGTCTTGCCTCAATGGATC -ACGGAAGTCTTGCCTCAACACTTC -ACGGAAGTCTTGCCTCAAGTACTC -ACGGAAGTCTTGCCTCAAGATGTC -ACGGAAGTCTTGCCTCAAACAGTC -ACGGAAGTCTTGCCTCAATTGCTG -ACGGAAGTCTTGCCTCAATCCATG -ACGGAAGTCTTGCCTCAATGTGTG -ACGGAAGTCTTGCCTCAACTAGTG -ACGGAAGTCTTGCCTCAACATCTG -ACGGAAGTCTTGCCTCAAGAGTTG -ACGGAAGTCTTGCCTCAAAGACTG -ACGGAAGTCTTGCCTCAATCGGTA -ACGGAAGTCTTGCCTCAATGCCTA -ACGGAAGTCTTGCCTCAACCACTA -ACGGAAGTCTTGCCTCAAGGAGTA -ACGGAAGTCTTGCCTCAATCGTCT -ACGGAAGTCTTGCCTCAATGCACT -ACGGAAGTCTTGCCTCAACTGACT -ACGGAAGTCTTGCCTCAACAACCT -ACGGAAGTCTTGCCTCAAGCTACT -ACGGAAGTCTTGCCTCAAGGATCT -ACGGAAGTCTTGCCTCAAAAGGCT -ACGGAAGTCTTGCCTCAATCAACC -ACGGAAGTCTTGCCTCAATGTTCC -ACGGAAGTCTTGCCTCAAATTCCC -ACGGAAGTCTTGCCTCAATTCTCG -ACGGAAGTCTTGCCTCAATAGACG -ACGGAAGTCTTGCCTCAAGTAACG -ACGGAAGTCTTGCCTCAAACTTCG -ACGGAAGTCTTGCCTCAATACGCA -ACGGAAGTCTTGCCTCAACTTGCA -ACGGAAGTCTTGCCTCAACGAACA -ACGGAAGTCTTGCCTCAACAGTCA -ACGGAAGTCTTGCCTCAAGATCCA -ACGGAAGTCTTGCCTCAAACGACA -ACGGAAGTCTTGCCTCAAAGCTCA -ACGGAAGTCTTGCCTCAATCACGT -ACGGAAGTCTTGCCTCAACGTAGT -ACGGAAGTCTTGCCTCAAGTCAGT -ACGGAAGTCTTGCCTCAAGAAGGT -ACGGAAGTCTTGCCTCAAAACCGT -ACGGAAGTCTTGCCTCAATTGTGC -ACGGAAGTCTTGCCTCAACTAAGC -ACGGAAGTCTTGCCTCAAACTAGC -ACGGAAGTCTTGCCTCAAAGATGC -ACGGAAGTCTTGCCTCAATGAAGG -ACGGAAGTCTTGCCTCAACAATGG -ACGGAAGTCTTGCCTCAAATGAGG -ACGGAAGTCTTGCCTCAAAATGGG -ACGGAAGTCTTGCCTCAATCCTGA -ACGGAAGTCTTGCCTCAATAGCGA -ACGGAAGTCTTGCCTCAACACAGA -ACGGAAGTCTTGCCTCAAGCAAGA -ACGGAAGTCTTGCCTCAAGGTTGA -ACGGAAGTCTTGCCTCAATCCGAT -ACGGAAGTCTTGCCTCAATGGCAT -ACGGAAGTCTTGCCTCAACGAGAT -ACGGAAGTCTTGCCTCAATACCAC -ACGGAAGTCTTGCCTCAACAGAAC -ACGGAAGTCTTGCCTCAAGTCTAC -ACGGAAGTCTTGCCTCAAACGTAC -ACGGAAGTCTTGCCTCAAAGTGAC -ACGGAAGTCTTGCCTCAACTGTAG -ACGGAAGTCTTGCCTCAACCTAAG -ACGGAAGTCTTGCCTCAAGTTCAG -ACGGAAGTCTTGCCTCAAGCATAG -ACGGAAGTCTTGCCTCAAGACAAG -ACGGAAGTCTTGCCTCAAAAGCAG -ACGGAAGTCTTGCCTCAACGTCAA -ACGGAAGTCTTGCCTCAAGCTGAA -ACGGAAGTCTTGCCTCAAAGTACG -ACGGAAGTCTTGCCTCAAATCCGA -ACGGAAGTCTTGCCTCAAATGGGA -ACGGAAGTCTTGCCTCAAGTGCAA -ACGGAAGTCTTGCCTCAAGAGGAA -ACGGAAGTCTTGCCTCAACAGGTA -ACGGAAGTCTTGCCTCAAGACTCT -ACGGAAGTCTTGCCTCAAAGTCCT -ACGGAAGTCTTGCCTCAATAAGCC -ACGGAAGTCTTGCCTCAAATAGCC -ACGGAAGTCTTGCCTCAATAACCG -ACGGAAGTCTTGCCTCAAATGCCA -ACGGAAGTCTTGACTGCTGGAAAC -ACGGAAGTCTTGACTGCTAACACC -ACGGAAGTCTTGACTGCTATCGAG -ACGGAAGTCTTGACTGCTCTCCTT -ACGGAAGTCTTGACTGCTCCTGTT -ACGGAAGTCTTGACTGCTCGGTTT -ACGGAAGTCTTGACTGCTGTGGTT -ACGGAAGTCTTGACTGCTGCCTTT -ACGGAAGTCTTGACTGCTGGTCTT -ACGGAAGTCTTGACTGCTACGCTT -ACGGAAGTCTTGACTGCTAGCGTT -ACGGAAGTCTTGACTGCTTTCGTC -ACGGAAGTCTTGACTGCTTCTCTC -ACGGAAGTCTTGACTGCTTGGATC -ACGGAAGTCTTGACTGCTCACTTC -ACGGAAGTCTTGACTGCTGTACTC -ACGGAAGTCTTGACTGCTGATGTC -ACGGAAGTCTTGACTGCTACAGTC -ACGGAAGTCTTGACTGCTTTGCTG -ACGGAAGTCTTGACTGCTTCCATG -ACGGAAGTCTTGACTGCTTGTGTG -ACGGAAGTCTTGACTGCTCTAGTG -ACGGAAGTCTTGACTGCTCATCTG -ACGGAAGTCTTGACTGCTGAGTTG -ACGGAAGTCTTGACTGCTAGACTG -ACGGAAGTCTTGACTGCTTCGGTA -ACGGAAGTCTTGACTGCTTGCCTA -ACGGAAGTCTTGACTGCTCCACTA -ACGGAAGTCTTGACTGCTGGAGTA -ACGGAAGTCTTGACTGCTTCGTCT -ACGGAAGTCTTGACTGCTTGCACT -ACGGAAGTCTTGACTGCTCTGACT -ACGGAAGTCTTGACTGCTCAACCT -ACGGAAGTCTTGACTGCTGCTACT -ACGGAAGTCTTGACTGCTGGATCT -ACGGAAGTCTTGACTGCTAAGGCT -ACGGAAGTCTTGACTGCTTCAACC -ACGGAAGTCTTGACTGCTTGTTCC -ACGGAAGTCTTGACTGCTATTCCC -ACGGAAGTCTTGACTGCTTTCTCG -ACGGAAGTCTTGACTGCTTAGACG -ACGGAAGTCTTGACTGCTGTAACG -ACGGAAGTCTTGACTGCTACTTCG -ACGGAAGTCTTGACTGCTTACGCA -ACGGAAGTCTTGACTGCTCTTGCA -ACGGAAGTCTTGACTGCTCGAACA -ACGGAAGTCTTGACTGCTCAGTCA -ACGGAAGTCTTGACTGCTGATCCA -ACGGAAGTCTTGACTGCTACGACA -ACGGAAGTCTTGACTGCTAGCTCA -ACGGAAGTCTTGACTGCTTCACGT -ACGGAAGTCTTGACTGCTCGTAGT -ACGGAAGTCTTGACTGCTGTCAGT -ACGGAAGTCTTGACTGCTGAAGGT -ACGGAAGTCTTGACTGCTAACCGT -ACGGAAGTCTTGACTGCTTTGTGC -ACGGAAGTCTTGACTGCTCTAAGC -ACGGAAGTCTTGACTGCTACTAGC -ACGGAAGTCTTGACTGCTAGATGC -ACGGAAGTCTTGACTGCTTGAAGG -ACGGAAGTCTTGACTGCTCAATGG -ACGGAAGTCTTGACTGCTATGAGG -ACGGAAGTCTTGACTGCTAATGGG -ACGGAAGTCTTGACTGCTTCCTGA -ACGGAAGTCTTGACTGCTTAGCGA -ACGGAAGTCTTGACTGCTCACAGA -ACGGAAGTCTTGACTGCTGCAAGA -ACGGAAGTCTTGACTGCTGGTTGA -ACGGAAGTCTTGACTGCTTCCGAT -ACGGAAGTCTTGACTGCTTGGCAT -ACGGAAGTCTTGACTGCTCGAGAT -ACGGAAGTCTTGACTGCTTACCAC -ACGGAAGTCTTGACTGCTCAGAAC -ACGGAAGTCTTGACTGCTGTCTAC -ACGGAAGTCTTGACTGCTACGTAC -ACGGAAGTCTTGACTGCTAGTGAC -ACGGAAGTCTTGACTGCTCTGTAG -ACGGAAGTCTTGACTGCTCCTAAG -ACGGAAGTCTTGACTGCTGTTCAG -ACGGAAGTCTTGACTGCTGCATAG -ACGGAAGTCTTGACTGCTGACAAG -ACGGAAGTCTTGACTGCTAAGCAG -ACGGAAGTCTTGACTGCTCGTCAA -ACGGAAGTCTTGACTGCTGCTGAA -ACGGAAGTCTTGACTGCTAGTACG -ACGGAAGTCTTGACTGCTATCCGA -ACGGAAGTCTTGACTGCTATGGGA -ACGGAAGTCTTGACTGCTGTGCAA -ACGGAAGTCTTGACTGCTGAGGAA -ACGGAAGTCTTGACTGCTCAGGTA -ACGGAAGTCTTGACTGCTGACTCT -ACGGAAGTCTTGACTGCTAGTCCT -ACGGAAGTCTTGACTGCTTAAGCC -ACGGAAGTCTTGACTGCTATAGCC -ACGGAAGTCTTGACTGCTTAACCG -ACGGAAGTCTTGACTGCTATGCCA -ACGGAAGTCTTGTCTGGAGGAAAC -ACGGAAGTCTTGTCTGGAAACACC -ACGGAAGTCTTGTCTGGAATCGAG -ACGGAAGTCTTGTCTGGACTCCTT -ACGGAAGTCTTGTCTGGACCTGTT -ACGGAAGTCTTGTCTGGACGGTTT -ACGGAAGTCTTGTCTGGAGTGGTT -ACGGAAGTCTTGTCTGGAGCCTTT -ACGGAAGTCTTGTCTGGAGGTCTT -ACGGAAGTCTTGTCTGGAACGCTT -ACGGAAGTCTTGTCTGGAAGCGTT -ACGGAAGTCTTGTCTGGATTCGTC -ACGGAAGTCTTGTCTGGATCTCTC -ACGGAAGTCTTGTCTGGATGGATC -ACGGAAGTCTTGTCTGGACACTTC -ACGGAAGTCTTGTCTGGAGTACTC -ACGGAAGTCTTGTCTGGAGATGTC -ACGGAAGTCTTGTCTGGAACAGTC -ACGGAAGTCTTGTCTGGATTGCTG -ACGGAAGTCTTGTCTGGATCCATG -ACGGAAGTCTTGTCTGGATGTGTG -ACGGAAGTCTTGTCTGGACTAGTG -ACGGAAGTCTTGTCTGGACATCTG -ACGGAAGTCTTGTCTGGAGAGTTG -ACGGAAGTCTTGTCTGGAAGACTG -ACGGAAGTCTTGTCTGGATCGGTA -ACGGAAGTCTTGTCTGGATGCCTA -ACGGAAGTCTTGTCTGGACCACTA -ACGGAAGTCTTGTCTGGAGGAGTA -ACGGAAGTCTTGTCTGGATCGTCT -ACGGAAGTCTTGTCTGGATGCACT -ACGGAAGTCTTGTCTGGACTGACT -ACGGAAGTCTTGTCTGGACAACCT -ACGGAAGTCTTGTCTGGAGCTACT -ACGGAAGTCTTGTCTGGAGGATCT -ACGGAAGTCTTGTCTGGAAAGGCT -ACGGAAGTCTTGTCTGGATCAACC -ACGGAAGTCTTGTCTGGATGTTCC -ACGGAAGTCTTGTCTGGAATTCCC -ACGGAAGTCTTGTCTGGATTCTCG -ACGGAAGTCTTGTCTGGATAGACG -ACGGAAGTCTTGTCTGGAGTAACG -ACGGAAGTCTTGTCTGGAACTTCG -ACGGAAGTCTTGTCTGGATACGCA -ACGGAAGTCTTGTCTGGACTTGCA -ACGGAAGTCTTGTCTGGACGAACA -ACGGAAGTCTTGTCTGGACAGTCA -ACGGAAGTCTTGTCTGGAGATCCA -ACGGAAGTCTTGTCTGGAACGACA -ACGGAAGTCTTGTCTGGAAGCTCA -ACGGAAGTCTTGTCTGGATCACGT -ACGGAAGTCTTGTCTGGACGTAGT -ACGGAAGTCTTGTCTGGAGTCAGT -ACGGAAGTCTTGTCTGGAGAAGGT -ACGGAAGTCTTGTCTGGAAACCGT -ACGGAAGTCTTGTCTGGATTGTGC -ACGGAAGTCTTGTCTGGACTAAGC -ACGGAAGTCTTGTCTGGAACTAGC -ACGGAAGTCTTGTCTGGAAGATGC -ACGGAAGTCTTGTCTGGATGAAGG -ACGGAAGTCTTGTCTGGACAATGG -ACGGAAGTCTTGTCTGGAATGAGG -ACGGAAGTCTTGTCTGGAAATGGG -ACGGAAGTCTTGTCTGGATCCTGA -ACGGAAGTCTTGTCTGGATAGCGA -ACGGAAGTCTTGTCTGGACACAGA -ACGGAAGTCTTGTCTGGAGCAAGA -ACGGAAGTCTTGTCTGGAGGTTGA -ACGGAAGTCTTGTCTGGATCCGAT -ACGGAAGTCTTGTCTGGATGGCAT -ACGGAAGTCTTGTCTGGACGAGAT -ACGGAAGTCTTGTCTGGATACCAC -ACGGAAGTCTTGTCTGGACAGAAC -ACGGAAGTCTTGTCTGGAGTCTAC -ACGGAAGTCTTGTCTGGAACGTAC -ACGGAAGTCTTGTCTGGAAGTGAC -ACGGAAGTCTTGTCTGGACTGTAG -ACGGAAGTCTTGTCTGGACCTAAG -ACGGAAGTCTTGTCTGGAGTTCAG -ACGGAAGTCTTGTCTGGAGCATAG -ACGGAAGTCTTGTCTGGAGACAAG -ACGGAAGTCTTGTCTGGAAAGCAG -ACGGAAGTCTTGTCTGGACGTCAA -ACGGAAGTCTTGTCTGGAGCTGAA -ACGGAAGTCTTGTCTGGAAGTACG -ACGGAAGTCTTGTCTGGAATCCGA -ACGGAAGTCTTGTCTGGAATGGGA -ACGGAAGTCTTGTCTGGAGTGCAA -ACGGAAGTCTTGTCTGGAGAGGAA -ACGGAAGTCTTGTCTGGACAGGTA -ACGGAAGTCTTGTCTGGAGACTCT -ACGGAAGTCTTGTCTGGAAGTCCT -ACGGAAGTCTTGTCTGGATAAGCC -ACGGAAGTCTTGTCTGGAATAGCC -ACGGAAGTCTTGTCTGGATAACCG -ACGGAAGTCTTGTCTGGAATGCCA -ACGGAAGTCTTGGCTAAGGGAAAC -ACGGAAGTCTTGGCTAAGAACACC -ACGGAAGTCTTGGCTAAGATCGAG -ACGGAAGTCTTGGCTAAGCTCCTT -ACGGAAGTCTTGGCTAAGCCTGTT -ACGGAAGTCTTGGCTAAGCGGTTT -ACGGAAGTCTTGGCTAAGGTGGTT -ACGGAAGTCTTGGCTAAGGCCTTT -ACGGAAGTCTTGGCTAAGGGTCTT -ACGGAAGTCTTGGCTAAGACGCTT -ACGGAAGTCTTGGCTAAGAGCGTT -ACGGAAGTCTTGGCTAAGTTCGTC -ACGGAAGTCTTGGCTAAGTCTCTC -ACGGAAGTCTTGGCTAAGTGGATC -ACGGAAGTCTTGGCTAAGCACTTC -ACGGAAGTCTTGGCTAAGGTACTC -ACGGAAGTCTTGGCTAAGGATGTC -ACGGAAGTCTTGGCTAAGACAGTC -ACGGAAGTCTTGGCTAAGTTGCTG -ACGGAAGTCTTGGCTAAGTCCATG -ACGGAAGTCTTGGCTAAGTGTGTG -ACGGAAGTCTTGGCTAAGCTAGTG -ACGGAAGTCTTGGCTAAGCATCTG -ACGGAAGTCTTGGCTAAGGAGTTG -ACGGAAGTCTTGGCTAAGAGACTG -ACGGAAGTCTTGGCTAAGTCGGTA -ACGGAAGTCTTGGCTAAGTGCCTA -ACGGAAGTCTTGGCTAAGCCACTA -ACGGAAGTCTTGGCTAAGGGAGTA -ACGGAAGTCTTGGCTAAGTCGTCT -ACGGAAGTCTTGGCTAAGTGCACT -ACGGAAGTCTTGGCTAAGCTGACT -ACGGAAGTCTTGGCTAAGCAACCT -ACGGAAGTCTTGGCTAAGGCTACT -ACGGAAGTCTTGGCTAAGGGATCT -ACGGAAGTCTTGGCTAAGAAGGCT -ACGGAAGTCTTGGCTAAGTCAACC -ACGGAAGTCTTGGCTAAGTGTTCC -ACGGAAGTCTTGGCTAAGATTCCC -ACGGAAGTCTTGGCTAAGTTCTCG -ACGGAAGTCTTGGCTAAGTAGACG -ACGGAAGTCTTGGCTAAGGTAACG -ACGGAAGTCTTGGCTAAGACTTCG -ACGGAAGTCTTGGCTAAGTACGCA -ACGGAAGTCTTGGCTAAGCTTGCA -ACGGAAGTCTTGGCTAAGCGAACA -ACGGAAGTCTTGGCTAAGCAGTCA -ACGGAAGTCTTGGCTAAGGATCCA -ACGGAAGTCTTGGCTAAGACGACA -ACGGAAGTCTTGGCTAAGAGCTCA -ACGGAAGTCTTGGCTAAGTCACGT -ACGGAAGTCTTGGCTAAGCGTAGT -ACGGAAGTCTTGGCTAAGGTCAGT -ACGGAAGTCTTGGCTAAGGAAGGT -ACGGAAGTCTTGGCTAAGAACCGT -ACGGAAGTCTTGGCTAAGTTGTGC -ACGGAAGTCTTGGCTAAGCTAAGC -ACGGAAGTCTTGGCTAAGACTAGC -ACGGAAGTCTTGGCTAAGAGATGC -ACGGAAGTCTTGGCTAAGTGAAGG -ACGGAAGTCTTGGCTAAGCAATGG -ACGGAAGTCTTGGCTAAGATGAGG -ACGGAAGTCTTGGCTAAGAATGGG -ACGGAAGTCTTGGCTAAGTCCTGA -ACGGAAGTCTTGGCTAAGTAGCGA -ACGGAAGTCTTGGCTAAGCACAGA -ACGGAAGTCTTGGCTAAGGCAAGA -ACGGAAGTCTTGGCTAAGGGTTGA -ACGGAAGTCTTGGCTAAGTCCGAT -ACGGAAGTCTTGGCTAAGTGGCAT -ACGGAAGTCTTGGCTAAGCGAGAT -ACGGAAGTCTTGGCTAAGTACCAC -ACGGAAGTCTTGGCTAAGCAGAAC -ACGGAAGTCTTGGCTAAGGTCTAC -ACGGAAGTCTTGGCTAAGACGTAC -ACGGAAGTCTTGGCTAAGAGTGAC -ACGGAAGTCTTGGCTAAGCTGTAG -ACGGAAGTCTTGGCTAAGCCTAAG -ACGGAAGTCTTGGCTAAGGTTCAG -ACGGAAGTCTTGGCTAAGGCATAG -ACGGAAGTCTTGGCTAAGGACAAG -ACGGAAGTCTTGGCTAAGAAGCAG -ACGGAAGTCTTGGCTAAGCGTCAA -ACGGAAGTCTTGGCTAAGGCTGAA -ACGGAAGTCTTGGCTAAGAGTACG -ACGGAAGTCTTGGCTAAGATCCGA -ACGGAAGTCTTGGCTAAGATGGGA -ACGGAAGTCTTGGCTAAGGTGCAA -ACGGAAGTCTTGGCTAAGGAGGAA -ACGGAAGTCTTGGCTAAGCAGGTA -ACGGAAGTCTTGGCTAAGGACTCT -ACGGAAGTCTTGGCTAAGAGTCCT -ACGGAAGTCTTGGCTAAGTAAGCC -ACGGAAGTCTTGGCTAAGATAGCC -ACGGAAGTCTTGGCTAAGTAACCG -ACGGAAGTCTTGGCTAAGATGCCA -ACGGAAGTCTTGACCTCAGGAAAC -ACGGAAGTCTTGACCTCAAACACC -ACGGAAGTCTTGACCTCAATCGAG -ACGGAAGTCTTGACCTCACTCCTT -ACGGAAGTCTTGACCTCACCTGTT -ACGGAAGTCTTGACCTCACGGTTT -ACGGAAGTCTTGACCTCAGTGGTT -ACGGAAGTCTTGACCTCAGCCTTT -ACGGAAGTCTTGACCTCAGGTCTT -ACGGAAGTCTTGACCTCAACGCTT -ACGGAAGTCTTGACCTCAAGCGTT -ACGGAAGTCTTGACCTCATTCGTC -ACGGAAGTCTTGACCTCATCTCTC -ACGGAAGTCTTGACCTCATGGATC -ACGGAAGTCTTGACCTCACACTTC -ACGGAAGTCTTGACCTCAGTACTC -ACGGAAGTCTTGACCTCAGATGTC -ACGGAAGTCTTGACCTCAACAGTC -ACGGAAGTCTTGACCTCATTGCTG -ACGGAAGTCTTGACCTCATCCATG -ACGGAAGTCTTGACCTCATGTGTG -ACGGAAGTCTTGACCTCACTAGTG -ACGGAAGTCTTGACCTCACATCTG -ACGGAAGTCTTGACCTCAGAGTTG -ACGGAAGTCTTGACCTCAAGACTG -ACGGAAGTCTTGACCTCATCGGTA -ACGGAAGTCTTGACCTCATGCCTA -ACGGAAGTCTTGACCTCACCACTA -ACGGAAGTCTTGACCTCAGGAGTA -ACGGAAGTCTTGACCTCATCGTCT -ACGGAAGTCTTGACCTCATGCACT -ACGGAAGTCTTGACCTCACTGACT -ACGGAAGTCTTGACCTCACAACCT -ACGGAAGTCTTGACCTCAGCTACT -ACGGAAGTCTTGACCTCAGGATCT -ACGGAAGTCTTGACCTCAAAGGCT -ACGGAAGTCTTGACCTCATCAACC -ACGGAAGTCTTGACCTCATGTTCC -ACGGAAGTCTTGACCTCAATTCCC -ACGGAAGTCTTGACCTCATTCTCG -ACGGAAGTCTTGACCTCATAGACG -ACGGAAGTCTTGACCTCAGTAACG -ACGGAAGTCTTGACCTCAACTTCG -ACGGAAGTCTTGACCTCATACGCA -ACGGAAGTCTTGACCTCACTTGCA -ACGGAAGTCTTGACCTCACGAACA -ACGGAAGTCTTGACCTCACAGTCA -ACGGAAGTCTTGACCTCAGATCCA -ACGGAAGTCTTGACCTCAACGACA -ACGGAAGTCTTGACCTCAAGCTCA -ACGGAAGTCTTGACCTCATCACGT -ACGGAAGTCTTGACCTCACGTAGT -ACGGAAGTCTTGACCTCAGTCAGT -ACGGAAGTCTTGACCTCAGAAGGT -ACGGAAGTCTTGACCTCAAACCGT -ACGGAAGTCTTGACCTCATTGTGC -ACGGAAGTCTTGACCTCACTAAGC -ACGGAAGTCTTGACCTCAACTAGC -ACGGAAGTCTTGACCTCAAGATGC -ACGGAAGTCTTGACCTCATGAAGG -ACGGAAGTCTTGACCTCACAATGG -ACGGAAGTCTTGACCTCAATGAGG -ACGGAAGTCTTGACCTCAAATGGG -ACGGAAGTCTTGACCTCATCCTGA -ACGGAAGTCTTGACCTCATAGCGA -ACGGAAGTCTTGACCTCACACAGA -ACGGAAGTCTTGACCTCAGCAAGA -ACGGAAGTCTTGACCTCAGGTTGA -ACGGAAGTCTTGACCTCATCCGAT -ACGGAAGTCTTGACCTCATGGCAT -ACGGAAGTCTTGACCTCACGAGAT -ACGGAAGTCTTGACCTCATACCAC -ACGGAAGTCTTGACCTCACAGAAC -ACGGAAGTCTTGACCTCAGTCTAC -ACGGAAGTCTTGACCTCAACGTAC -ACGGAAGTCTTGACCTCAAGTGAC -ACGGAAGTCTTGACCTCACTGTAG -ACGGAAGTCTTGACCTCACCTAAG -ACGGAAGTCTTGACCTCAGTTCAG -ACGGAAGTCTTGACCTCAGCATAG -ACGGAAGTCTTGACCTCAGACAAG -ACGGAAGTCTTGACCTCAAAGCAG -ACGGAAGTCTTGACCTCACGTCAA -ACGGAAGTCTTGACCTCAGCTGAA -ACGGAAGTCTTGACCTCAAGTACG -ACGGAAGTCTTGACCTCAATCCGA -ACGGAAGTCTTGACCTCAATGGGA -ACGGAAGTCTTGACCTCAGTGCAA -ACGGAAGTCTTGACCTCAGAGGAA -ACGGAAGTCTTGACCTCACAGGTA -ACGGAAGTCTTGACCTCAGACTCT -ACGGAAGTCTTGACCTCAAGTCCT -ACGGAAGTCTTGACCTCATAAGCC -ACGGAAGTCTTGACCTCAATAGCC -ACGGAAGTCTTGACCTCATAACCG -ACGGAAGTCTTGACCTCAATGCCA -ACGGAAGTCTTGTCCTGTGGAAAC -ACGGAAGTCTTGTCCTGTAACACC -ACGGAAGTCTTGTCCTGTATCGAG -ACGGAAGTCTTGTCCTGTCTCCTT -ACGGAAGTCTTGTCCTGTCCTGTT -ACGGAAGTCTTGTCCTGTCGGTTT -ACGGAAGTCTTGTCCTGTGTGGTT -ACGGAAGTCTTGTCCTGTGCCTTT -ACGGAAGTCTTGTCCTGTGGTCTT -ACGGAAGTCTTGTCCTGTACGCTT -ACGGAAGTCTTGTCCTGTAGCGTT -ACGGAAGTCTTGTCCTGTTTCGTC -ACGGAAGTCTTGTCCTGTTCTCTC -ACGGAAGTCTTGTCCTGTTGGATC -ACGGAAGTCTTGTCCTGTCACTTC -ACGGAAGTCTTGTCCTGTGTACTC -ACGGAAGTCTTGTCCTGTGATGTC -ACGGAAGTCTTGTCCTGTACAGTC -ACGGAAGTCTTGTCCTGTTTGCTG -ACGGAAGTCTTGTCCTGTTCCATG -ACGGAAGTCTTGTCCTGTTGTGTG -ACGGAAGTCTTGTCCTGTCTAGTG -ACGGAAGTCTTGTCCTGTCATCTG -ACGGAAGTCTTGTCCTGTGAGTTG -ACGGAAGTCTTGTCCTGTAGACTG -ACGGAAGTCTTGTCCTGTTCGGTA -ACGGAAGTCTTGTCCTGTTGCCTA -ACGGAAGTCTTGTCCTGTCCACTA -ACGGAAGTCTTGTCCTGTGGAGTA -ACGGAAGTCTTGTCCTGTTCGTCT -ACGGAAGTCTTGTCCTGTTGCACT -ACGGAAGTCTTGTCCTGTCTGACT -ACGGAAGTCTTGTCCTGTCAACCT -ACGGAAGTCTTGTCCTGTGCTACT -ACGGAAGTCTTGTCCTGTGGATCT -ACGGAAGTCTTGTCCTGTAAGGCT -ACGGAAGTCTTGTCCTGTTCAACC -ACGGAAGTCTTGTCCTGTTGTTCC -ACGGAAGTCTTGTCCTGTATTCCC -ACGGAAGTCTTGTCCTGTTTCTCG -ACGGAAGTCTTGTCCTGTTAGACG -ACGGAAGTCTTGTCCTGTGTAACG -ACGGAAGTCTTGTCCTGTACTTCG -ACGGAAGTCTTGTCCTGTTACGCA -ACGGAAGTCTTGTCCTGTCTTGCA -ACGGAAGTCTTGTCCTGTCGAACA -ACGGAAGTCTTGTCCTGTCAGTCA -ACGGAAGTCTTGTCCTGTGATCCA -ACGGAAGTCTTGTCCTGTACGACA -ACGGAAGTCTTGTCCTGTAGCTCA -ACGGAAGTCTTGTCCTGTTCACGT -ACGGAAGTCTTGTCCTGTCGTAGT -ACGGAAGTCTTGTCCTGTGTCAGT -ACGGAAGTCTTGTCCTGTGAAGGT -ACGGAAGTCTTGTCCTGTAACCGT -ACGGAAGTCTTGTCCTGTTTGTGC -ACGGAAGTCTTGTCCTGTCTAAGC -ACGGAAGTCTTGTCCTGTACTAGC -ACGGAAGTCTTGTCCTGTAGATGC -ACGGAAGTCTTGTCCTGTTGAAGG -ACGGAAGTCTTGTCCTGTCAATGG -ACGGAAGTCTTGTCCTGTATGAGG -ACGGAAGTCTTGTCCTGTAATGGG -ACGGAAGTCTTGTCCTGTTCCTGA -ACGGAAGTCTTGTCCTGTTAGCGA -ACGGAAGTCTTGTCCTGTCACAGA -ACGGAAGTCTTGTCCTGTGCAAGA -ACGGAAGTCTTGTCCTGTGGTTGA -ACGGAAGTCTTGTCCTGTTCCGAT -ACGGAAGTCTTGTCCTGTTGGCAT -ACGGAAGTCTTGTCCTGTCGAGAT -ACGGAAGTCTTGTCCTGTTACCAC -ACGGAAGTCTTGTCCTGTCAGAAC -ACGGAAGTCTTGTCCTGTGTCTAC -ACGGAAGTCTTGTCCTGTACGTAC -ACGGAAGTCTTGTCCTGTAGTGAC -ACGGAAGTCTTGTCCTGTCTGTAG -ACGGAAGTCTTGTCCTGTCCTAAG -ACGGAAGTCTTGTCCTGTGTTCAG -ACGGAAGTCTTGTCCTGTGCATAG -ACGGAAGTCTTGTCCTGTGACAAG -ACGGAAGTCTTGTCCTGTAAGCAG -ACGGAAGTCTTGTCCTGTCGTCAA -ACGGAAGTCTTGTCCTGTGCTGAA -ACGGAAGTCTTGTCCTGTAGTACG -ACGGAAGTCTTGTCCTGTATCCGA -ACGGAAGTCTTGTCCTGTATGGGA -ACGGAAGTCTTGTCCTGTGTGCAA -ACGGAAGTCTTGTCCTGTGAGGAA -ACGGAAGTCTTGTCCTGTCAGGTA -ACGGAAGTCTTGTCCTGTGACTCT -ACGGAAGTCTTGTCCTGTAGTCCT -ACGGAAGTCTTGTCCTGTTAAGCC -ACGGAAGTCTTGTCCTGTATAGCC -ACGGAAGTCTTGTCCTGTTAACCG -ACGGAAGTCTTGTCCTGTATGCCA -ACGGAAGTCTTGCCCATTGGAAAC -ACGGAAGTCTTGCCCATTAACACC -ACGGAAGTCTTGCCCATTATCGAG -ACGGAAGTCTTGCCCATTCTCCTT -ACGGAAGTCTTGCCCATTCCTGTT -ACGGAAGTCTTGCCCATTCGGTTT -ACGGAAGTCTTGCCCATTGTGGTT -ACGGAAGTCTTGCCCATTGCCTTT -ACGGAAGTCTTGCCCATTGGTCTT -ACGGAAGTCTTGCCCATTACGCTT -ACGGAAGTCTTGCCCATTAGCGTT -ACGGAAGTCTTGCCCATTTTCGTC -ACGGAAGTCTTGCCCATTTCTCTC -ACGGAAGTCTTGCCCATTTGGATC -ACGGAAGTCTTGCCCATTCACTTC -ACGGAAGTCTTGCCCATTGTACTC -ACGGAAGTCTTGCCCATTGATGTC -ACGGAAGTCTTGCCCATTACAGTC -ACGGAAGTCTTGCCCATTTTGCTG -ACGGAAGTCTTGCCCATTTCCATG -ACGGAAGTCTTGCCCATTTGTGTG -ACGGAAGTCTTGCCCATTCTAGTG -ACGGAAGTCTTGCCCATTCATCTG -ACGGAAGTCTTGCCCATTGAGTTG -ACGGAAGTCTTGCCCATTAGACTG -ACGGAAGTCTTGCCCATTTCGGTA -ACGGAAGTCTTGCCCATTTGCCTA -ACGGAAGTCTTGCCCATTCCACTA -ACGGAAGTCTTGCCCATTGGAGTA -ACGGAAGTCTTGCCCATTTCGTCT -ACGGAAGTCTTGCCCATTTGCACT -ACGGAAGTCTTGCCCATTCTGACT -ACGGAAGTCTTGCCCATTCAACCT -ACGGAAGTCTTGCCCATTGCTACT -ACGGAAGTCTTGCCCATTGGATCT -ACGGAAGTCTTGCCCATTAAGGCT -ACGGAAGTCTTGCCCATTTCAACC -ACGGAAGTCTTGCCCATTTGTTCC -ACGGAAGTCTTGCCCATTATTCCC -ACGGAAGTCTTGCCCATTTTCTCG -ACGGAAGTCTTGCCCATTTAGACG -ACGGAAGTCTTGCCCATTGTAACG -ACGGAAGTCTTGCCCATTACTTCG -ACGGAAGTCTTGCCCATTTACGCA -ACGGAAGTCTTGCCCATTCTTGCA -ACGGAAGTCTTGCCCATTCGAACA -ACGGAAGTCTTGCCCATTCAGTCA -ACGGAAGTCTTGCCCATTGATCCA -ACGGAAGTCTTGCCCATTACGACA -ACGGAAGTCTTGCCCATTAGCTCA -ACGGAAGTCTTGCCCATTTCACGT -ACGGAAGTCTTGCCCATTCGTAGT -ACGGAAGTCTTGCCCATTGTCAGT -ACGGAAGTCTTGCCCATTGAAGGT -ACGGAAGTCTTGCCCATTAACCGT -ACGGAAGTCTTGCCCATTTTGTGC -ACGGAAGTCTTGCCCATTCTAAGC -ACGGAAGTCTTGCCCATTACTAGC -ACGGAAGTCTTGCCCATTAGATGC -ACGGAAGTCTTGCCCATTTGAAGG -ACGGAAGTCTTGCCCATTCAATGG -ACGGAAGTCTTGCCCATTATGAGG -ACGGAAGTCTTGCCCATTAATGGG -ACGGAAGTCTTGCCCATTTCCTGA -ACGGAAGTCTTGCCCATTTAGCGA -ACGGAAGTCTTGCCCATTCACAGA -ACGGAAGTCTTGCCCATTGCAAGA -ACGGAAGTCTTGCCCATTGGTTGA -ACGGAAGTCTTGCCCATTTCCGAT -ACGGAAGTCTTGCCCATTTGGCAT -ACGGAAGTCTTGCCCATTCGAGAT -ACGGAAGTCTTGCCCATTTACCAC -ACGGAAGTCTTGCCCATTCAGAAC -ACGGAAGTCTTGCCCATTGTCTAC -ACGGAAGTCTTGCCCATTACGTAC -ACGGAAGTCTTGCCCATTAGTGAC -ACGGAAGTCTTGCCCATTCTGTAG -ACGGAAGTCTTGCCCATTCCTAAG -ACGGAAGTCTTGCCCATTGTTCAG -ACGGAAGTCTTGCCCATTGCATAG -ACGGAAGTCTTGCCCATTGACAAG -ACGGAAGTCTTGCCCATTAAGCAG -ACGGAAGTCTTGCCCATTCGTCAA -ACGGAAGTCTTGCCCATTGCTGAA -ACGGAAGTCTTGCCCATTAGTACG -ACGGAAGTCTTGCCCATTATCCGA -ACGGAAGTCTTGCCCATTATGGGA -ACGGAAGTCTTGCCCATTGTGCAA -ACGGAAGTCTTGCCCATTGAGGAA -ACGGAAGTCTTGCCCATTCAGGTA -ACGGAAGTCTTGCCCATTGACTCT -ACGGAAGTCTTGCCCATTAGTCCT -ACGGAAGTCTTGCCCATTTAAGCC -ACGGAAGTCTTGCCCATTATAGCC -ACGGAAGTCTTGCCCATTTAACCG -ACGGAAGTCTTGCCCATTATGCCA -ACGGAAGTCTTGTCGTTCGGAAAC -ACGGAAGTCTTGTCGTTCAACACC -ACGGAAGTCTTGTCGTTCATCGAG -ACGGAAGTCTTGTCGTTCCTCCTT -ACGGAAGTCTTGTCGTTCCCTGTT -ACGGAAGTCTTGTCGTTCCGGTTT -ACGGAAGTCTTGTCGTTCGTGGTT -ACGGAAGTCTTGTCGTTCGCCTTT -ACGGAAGTCTTGTCGTTCGGTCTT -ACGGAAGTCTTGTCGTTCACGCTT -ACGGAAGTCTTGTCGTTCAGCGTT -ACGGAAGTCTTGTCGTTCTTCGTC -ACGGAAGTCTTGTCGTTCTCTCTC -ACGGAAGTCTTGTCGTTCTGGATC -ACGGAAGTCTTGTCGTTCCACTTC -ACGGAAGTCTTGTCGTTCGTACTC -ACGGAAGTCTTGTCGTTCGATGTC -ACGGAAGTCTTGTCGTTCACAGTC -ACGGAAGTCTTGTCGTTCTTGCTG -ACGGAAGTCTTGTCGTTCTCCATG -ACGGAAGTCTTGTCGTTCTGTGTG -ACGGAAGTCTTGTCGTTCCTAGTG -ACGGAAGTCTTGTCGTTCCATCTG -ACGGAAGTCTTGTCGTTCGAGTTG -ACGGAAGTCTTGTCGTTCAGACTG -ACGGAAGTCTTGTCGTTCTCGGTA -ACGGAAGTCTTGTCGTTCTGCCTA -ACGGAAGTCTTGTCGTTCCCACTA -ACGGAAGTCTTGTCGTTCGGAGTA -ACGGAAGTCTTGTCGTTCTCGTCT -ACGGAAGTCTTGTCGTTCTGCACT -ACGGAAGTCTTGTCGTTCCTGACT -ACGGAAGTCTTGTCGTTCCAACCT -ACGGAAGTCTTGTCGTTCGCTACT -ACGGAAGTCTTGTCGTTCGGATCT -ACGGAAGTCTTGTCGTTCAAGGCT -ACGGAAGTCTTGTCGTTCTCAACC -ACGGAAGTCTTGTCGTTCTGTTCC -ACGGAAGTCTTGTCGTTCATTCCC -ACGGAAGTCTTGTCGTTCTTCTCG -ACGGAAGTCTTGTCGTTCTAGACG -ACGGAAGTCTTGTCGTTCGTAACG -ACGGAAGTCTTGTCGTTCACTTCG -ACGGAAGTCTTGTCGTTCTACGCA -ACGGAAGTCTTGTCGTTCCTTGCA -ACGGAAGTCTTGTCGTTCCGAACA -ACGGAAGTCTTGTCGTTCCAGTCA -ACGGAAGTCTTGTCGTTCGATCCA -ACGGAAGTCTTGTCGTTCACGACA -ACGGAAGTCTTGTCGTTCAGCTCA -ACGGAAGTCTTGTCGTTCTCACGT -ACGGAAGTCTTGTCGTTCCGTAGT -ACGGAAGTCTTGTCGTTCGTCAGT -ACGGAAGTCTTGTCGTTCGAAGGT -ACGGAAGTCTTGTCGTTCAACCGT -ACGGAAGTCTTGTCGTTCTTGTGC -ACGGAAGTCTTGTCGTTCCTAAGC -ACGGAAGTCTTGTCGTTCACTAGC -ACGGAAGTCTTGTCGTTCAGATGC -ACGGAAGTCTTGTCGTTCTGAAGG -ACGGAAGTCTTGTCGTTCCAATGG -ACGGAAGTCTTGTCGTTCATGAGG -ACGGAAGTCTTGTCGTTCAATGGG -ACGGAAGTCTTGTCGTTCTCCTGA -ACGGAAGTCTTGTCGTTCTAGCGA -ACGGAAGTCTTGTCGTTCCACAGA -ACGGAAGTCTTGTCGTTCGCAAGA -ACGGAAGTCTTGTCGTTCGGTTGA -ACGGAAGTCTTGTCGTTCTCCGAT -ACGGAAGTCTTGTCGTTCTGGCAT -ACGGAAGTCTTGTCGTTCCGAGAT -ACGGAAGTCTTGTCGTTCTACCAC -ACGGAAGTCTTGTCGTTCCAGAAC -ACGGAAGTCTTGTCGTTCGTCTAC -ACGGAAGTCTTGTCGTTCACGTAC -ACGGAAGTCTTGTCGTTCAGTGAC -ACGGAAGTCTTGTCGTTCCTGTAG -ACGGAAGTCTTGTCGTTCCCTAAG -ACGGAAGTCTTGTCGTTCGTTCAG -ACGGAAGTCTTGTCGTTCGCATAG -ACGGAAGTCTTGTCGTTCGACAAG -ACGGAAGTCTTGTCGTTCAAGCAG -ACGGAAGTCTTGTCGTTCCGTCAA -ACGGAAGTCTTGTCGTTCGCTGAA -ACGGAAGTCTTGTCGTTCAGTACG -ACGGAAGTCTTGTCGTTCATCCGA -ACGGAAGTCTTGTCGTTCATGGGA -ACGGAAGTCTTGTCGTTCGTGCAA -ACGGAAGTCTTGTCGTTCGAGGAA -ACGGAAGTCTTGTCGTTCCAGGTA -ACGGAAGTCTTGTCGTTCGACTCT -ACGGAAGTCTTGTCGTTCAGTCCT -ACGGAAGTCTTGTCGTTCTAAGCC -ACGGAAGTCTTGTCGTTCATAGCC -ACGGAAGTCTTGTCGTTCTAACCG -ACGGAAGTCTTGTCGTTCATGCCA -ACGGAAGTCTTGACGTAGGGAAAC -ACGGAAGTCTTGACGTAGAACACC -ACGGAAGTCTTGACGTAGATCGAG -ACGGAAGTCTTGACGTAGCTCCTT -ACGGAAGTCTTGACGTAGCCTGTT -ACGGAAGTCTTGACGTAGCGGTTT -ACGGAAGTCTTGACGTAGGTGGTT -ACGGAAGTCTTGACGTAGGCCTTT -ACGGAAGTCTTGACGTAGGGTCTT -ACGGAAGTCTTGACGTAGACGCTT -ACGGAAGTCTTGACGTAGAGCGTT -ACGGAAGTCTTGACGTAGTTCGTC -ACGGAAGTCTTGACGTAGTCTCTC -ACGGAAGTCTTGACGTAGTGGATC -ACGGAAGTCTTGACGTAGCACTTC -ACGGAAGTCTTGACGTAGGTACTC -ACGGAAGTCTTGACGTAGGATGTC -ACGGAAGTCTTGACGTAGACAGTC -ACGGAAGTCTTGACGTAGTTGCTG -ACGGAAGTCTTGACGTAGTCCATG -ACGGAAGTCTTGACGTAGTGTGTG -ACGGAAGTCTTGACGTAGCTAGTG -ACGGAAGTCTTGACGTAGCATCTG -ACGGAAGTCTTGACGTAGGAGTTG -ACGGAAGTCTTGACGTAGAGACTG -ACGGAAGTCTTGACGTAGTCGGTA -ACGGAAGTCTTGACGTAGTGCCTA -ACGGAAGTCTTGACGTAGCCACTA -ACGGAAGTCTTGACGTAGGGAGTA -ACGGAAGTCTTGACGTAGTCGTCT -ACGGAAGTCTTGACGTAGTGCACT -ACGGAAGTCTTGACGTAGCTGACT -ACGGAAGTCTTGACGTAGCAACCT -ACGGAAGTCTTGACGTAGGCTACT -ACGGAAGTCTTGACGTAGGGATCT -ACGGAAGTCTTGACGTAGAAGGCT -ACGGAAGTCTTGACGTAGTCAACC -ACGGAAGTCTTGACGTAGTGTTCC -ACGGAAGTCTTGACGTAGATTCCC -ACGGAAGTCTTGACGTAGTTCTCG -ACGGAAGTCTTGACGTAGTAGACG -ACGGAAGTCTTGACGTAGGTAACG -ACGGAAGTCTTGACGTAGACTTCG -ACGGAAGTCTTGACGTAGTACGCA -ACGGAAGTCTTGACGTAGCTTGCA -ACGGAAGTCTTGACGTAGCGAACA -ACGGAAGTCTTGACGTAGCAGTCA -ACGGAAGTCTTGACGTAGGATCCA -ACGGAAGTCTTGACGTAGACGACA -ACGGAAGTCTTGACGTAGAGCTCA -ACGGAAGTCTTGACGTAGTCACGT -ACGGAAGTCTTGACGTAGCGTAGT -ACGGAAGTCTTGACGTAGGTCAGT -ACGGAAGTCTTGACGTAGGAAGGT -ACGGAAGTCTTGACGTAGAACCGT -ACGGAAGTCTTGACGTAGTTGTGC -ACGGAAGTCTTGACGTAGCTAAGC -ACGGAAGTCTTGACGTAGACTAGC -ACGGAAGTCTTGACGTAGAGATGC -ACGGAAGTCTTGACGTAGTGAAGG -ACGGAAGTCTTGACGTAGCAATGG -ACGGAAGTCTTGACGTAGATGAGG -ACGGAAGTCTTGACGTAGAATGGG -ACGGAAGTCTTGACGTAGTCCTGA -ACGGAAGTCTTGACGTAGTAGCGA -ACGGAAGTCTTGACGTAGCACAGA -ACGGAAGTCTTGACGTAGGCAAGA -ACGGAAGTCTTGACGTAGGGTTGA -ACGGAAGTCTTGACGTAGTCCGAT -ACGGAAGTCTTGACGTAGTGGCAT -ACGGAAGTCTTGACGTAGCGAGAT -ACGGAAGTCTTGACGTAGTACCAC -ACGGAAGTCTTGACGTAGCAGAAC -ACGGAAGTCTTGACGTAGGTCTAC -ACGGAAGTCTTGACGTAGACGTAC -ACGGAAGTCTTGACGTAGAGTGAC -ACGGAAGTCTTGACGTAGCTGTAG -ACGGAAGTCTTGACGTAGCCTAAG -ACGGAAGTCTTGACGTAGGTTCAG -ACGGAAGTCTTGACGTAGGCATAG -ACGGAAGTCTTGACGTAGGACAAG -ACGGAAGTCTTGACGTAGAAGCAG -ACGGAAGTCTTGACGTAGCGTCAA -ACGGAAGTCTTGACGTAGGCTGAA -ACGGAAGTCTTGACGTAGAGTACG -ACGGAAGTCTTGACGTAGATCCGA -ACGGAAGTCTTGACGTAGATGGGA -ACGGAAGTCTTGACGTAGGTGCAA -ACGGAAGTCTTGACGTAGGAGGAA -ACGGAAGTCTTGACGTAGCAGGTA -ACGGAAGTCTTGACGTAGGACTCT -ACGGAAGTCTTGACGTAGAGTCCT -ACGGAAGTCTTGACGTAGTAAGCC -ACGGAAGTCTTGACGTAGATAGCC -ACGGAAGTCTTGACGTAGTAACCG -ACGGAAGTCTTGACGTAGATGCCA -ACGGAAGTCTTGACGGTAGGAAAC -ACGGAAGTCTTGACGGTAAACACC -ACGGAAGTCTTGACGGTAATCGAG -ACGGAAGTCTTGACGGTACTCCTT -ACGGAAGTCTTGACGGTACCTGTT -ACGGAAGTCTTGACGGTACGGTTT -ACGGAAGTCTTGACGGTAGTGGTT -ACGGAAGTCTTGACGGTAGCCTTT -ACGGAAGTCTTGACGGTAGGTCTT -ACGGAAGTCTTGACGGTAACGCTT -ACGGAAGTCTTGACGGTAAGCGTT -ACGGAAGTCTTGACGGTATTCGTC -ACGGAAGTCTTGACGGTATCTCTC -ACGGAAGTCTTGACGGTATGGATC -ACGGAAGTCTTGACGGTACACTTC -ACGGAAGTCTTGACGGTAGTACTC -ACGGAAGTCTTGACGGTAGATGTC -ACGGAAGTCTTGACGGTAACAGTC -ACGGAAGTCTTGACGGTATTGCTG -ACGGAAGTCTTGACGGTATCCATG -ACGGAAGTCTTGACGGTATGTGTG -ACGGAAGTCTTGACGGTACTAGTG -ACGGAAGTCTTGACGGTACATCTG -ACGGAAGTCTTGACGGTAGAGTTG -ACGGAAGTCTTGACGGTAAGACTG -ACGGAAGTCTTGACGGTATCGGTA -ACGGAAGTCTTGACGGTATGCCTA -ACGGAAGTCTTGACGGTACCACTA -ACGGAAGTCTTGACGGTAGGAGTA -ACGGAAGTCTTGACGGTATCGTCT -ACGGAAGTCTTGACGGTATGCACT -ACGGAAGTCTTGACGGTACTGACT -ACGGAAGTCTTGACGGTACAACCT -ACGGAAGTCTTGACGGTAGCTACT -ACGGAAGTCTTGACGGTAGGATCT -ACGGAAGTCTTGACGGTAAAGGCT -ACGGAAGTCTTGACGGTATCAACC -ACGGAAGTCTTGACGGTATGTTCC -ACGGAAGTCTTGACGGTAATTCCC -ACGGAAGTCTTGACGGTATTCTCG -ACGGAAGTCTTGACGGTATAGACG -ACGGAAGTCTTGACGGTAGTAACG -ACGGAAGTCTTGACGGTAACTTCG -ACGGAAGTCTTGACGGTATACGCA -ACGGAAGTCTTGACGGTACTTGCA -ACGGAAGTCTTGACGGTACGAACA -ACGGAAGTCTTGACGGTACAGTCA -ACGGAAGTCTTGACGGTAGATCCA -ACGGAAGTCTTGACGGTAACGACA -ACGGAAGTCTTGACGGTAAGCTCA -ACGGAAGTCTTGACGGTATCACGT -ACGGAAGTCTTGACGGTACGTAGT -ACGGAAGTCTTGACGGTAGTCAGT -ACGGAAGTCTTGACGGTAGAAGGT -ACGGAAGTCTTGACGGTAAACCGT -ACGGAAGTCTTGACGGTATTGTGC -ACGGAAGTCTTGACGGTACTAAGC -ACGGAAGTCTTGACGGTAACTAGC -ACGGAAGTCTTGACGGTAAGATGC -ACGGAAGTCTTGACGGTATGAAGG -ACGGAAGTCTTGACGGTACAATGG -ACGGAAGTCTTGACGGTAATGAGG -ACGGAAGTCTTGACGGTAAATGGG -ACGGAAGTCTTGACGGTATCCTGA -ACGGAAGTCTTGACGGTATAGCGA -ACGGAAGTCTTGACGGTACACAGA -ACGGAAGTCTTGACGGTAGCAAGA -ACGGAAGTCTTGACGGTAGGTTGA -ACGGAAGTCTTGACGGTATCCGAT -ACGGAAGTCTTGACGGTATGGCAT -ACGGAAGTCTTGACGGTACGAGAT -ACGGAAGTCTTGACGGTATACCAC -ACGGAAGTCTTGACGGTACAGAAC -ACGGAAGTCTTGACGGTAGTCTAC -ACGGAAGTCTTGACGGTAACGTAC -ACGGAAGTCTTGACGGTAAGTGAC -ACGGAAGTCTTGACGGTACTGTAG -ACGGAAGTCTTGACGGTACCTAAG -ACGGAAGTCTTGACGGTAGTTCAG -ACGGAAGTCTTGACGGTAGCATAG -ACGGAAGTCTTGACGGTAGACAAG -ACGGAAGTCTTGACGGTAAAGCAG -ACGGAAGTCTTGACGGTACGTCAA -ACGGAAGTCTTGACGGTAGCTGAA -ACGGAAGTCTTGACGGTAAGTACG -ACGGAAGTCTTGACGGTAATCCGA -ACGGAAGTCTTGACGGTAATGGGA -ACGGAAGTCTTGACGGTAGTGCAA -ACGGAAGTCTTGACGGTAGAGGAA -ACGGAAGTCTTGACGGTACAGGTA -ACGGAAGTCTTGACGGTAGACTCT -ACGGAAGTCTTGACGGTAAGTCCT -ACGGAAGTCTTGACGGTATAAGCC -ACGGAAGTCTTGACGGTAATAGCC -ACGGAAGTCTTGACGGTATAACCG -ACGGAAGTCTTGACGGTAATGCCA -ACGGAAGTCTTGTCGACTGGAAAC -ACGGAAGTCTTGTCGACTAACACC -ACGGAAGTCTTGTCGACTATCGAG -ACGGAAGTCTTGTCGACTCTCCTT -ACGGAAGTCTTGTCGACTCCTGTT -ACGGAAGTCTTGTCGACTCGGTTT -ACGGAAGTCTTGTCGACTGTGGTT -ACGGAAGTCTTGTCGACTGCCTTT -ACGGAAGTCTTGTCGACTGGTCTT -ACGGAAGTCTTGTCGACTACGCTT -ACGGAAGTCTTGTCGACTAGCGTT -ACGGAAGTCTTGTCGACTTTCGTC -ACGGAAGTCTTGTCGACTTCTCTC -ACGGAAGTCTTGTCGACTTGGATC -ACGGAAGTCTTGTCGACTCACTTC -ACGGAAGTCTTGTCGACTGTACTC -ACGGAAGTCTTGTCGACTGATGTC -ACGGAAGTCTTGTCGACTACAGTC -ACGGAAGTCTTGTCGACTTTGCTG -ACGGAAGTCTTGTCGACTTCCATG -ACGGAAGTCTTGTCGACTTGTGTG -ACGGAAGTCTTGTCGACTCTAGTG -ACGGAAGTCTTGTCGACTCATCTG -ACGGAAGTCTTGTCGACTGAGTTG -ACGGAAGTCTTGTCGACTAGACTG -ACGGAAGTCTTGTCGACTTCGGTA -ACGGAAGTCTTGTCGACTTGCCTA -ACGGAAGTCTTGTCGACTCCACTA -ACGGAAGTCTTGTCGACTGGAGTA -ACGGAAGTCTTGTCGACTTCGTCT -ACGGAAGTCTTGTCGACTTGCACT -ACGGAAGTCTTGTCGACTCTGACT -ACGGAAGTCTTGTCGACTCAACCT -ACGGAAGTCTTGTCGACTGCTACT -ACGGAAGTCTTGTCGACTGGATCT -ACGGAAGTCTTGTCGACTAAGGCT -ACGGAAGTCTTGTCGACTTCAACC -ACGGAAGTCTTGTCGACTTGTTCC -ACGGAAGTCTTGTCGACTATTCCC -ACGGAAGTCTTGTCGACTTTCTCG -ACGGAAGTCTTGTCGACTTAGACG -ACGGAAGTCTTGTCGACTGTAACG -ACGGAAGTCTTGTCGACTACTTCG -ACGGAAGTCTTGTCGACTTACGCA -ACGGAAGTCTTGTCGACTCTTGCA -ACGGAAGTCTTGTCGACTCGAACA -ACGGAAGTCTTGTCGACTCAGTCA -ACGGAAGTCTTGTCGACTGATCCA -ACGGAAGTCTTGTCGACTACGACA -ACGGAAGTCTTGTCGACTAGCTCA -ACGGAAGTCTTGTCGACTTCACGT -ACGGAAGTCTTGTCGACTCGTAGT -ACGGAAGTCTTGTCGACTGTCAGT -ACGGAAGTCTTGTCGACTGAAGGT -ACGGAAGTCTTGTCGACTAACCGT -ACGGAAGTCTTGTCGACTTTGTGC -ACGGAAGTCTTGTCGACTCTAAGC -ACGGAAGTCTTGTCGACTACTAGC -ACGGAAGTCTTGTCGACTAGATGC -ACGGAAGTCTTGTCGACTTGAAGG -ACGGAAGTCTTGTCGACTCAATGG -ACGGAAGTCTTGTCGACTATGAGG -ACGGAAGTCTTGTCGACTAATGGG -ACGGAAGTCTTGTCGACTTCCTGA -ACGGAAGTCTTGTCGACTTAGCGA -ACGGAAGTCTTGTCGACTCACAGA -ACGGAAGTCTTGTCGACTGCAAGA -ACGGAAGTCTTGTCGACTGGTTGA -ACGGAAGTCTTGTCGACTTCCGAT -ACGGAAGTCTTGTCGACTTGGCAT -ACGGAAGTCTTGTCGACTCGAGAT -ACGGAAGTCTTGTCGACTTACCAC -ACGGAAGTCTTGTCGACTCAGAAC -ACGGAAGTCTTGTCGACTGTCTAC -ACGGAAGTCTTGTCGACTACGTAC -ACGGAAGTCTTGTCGACTAGTGAC -ACGGAAGTCTTGTCGACTCTGTAG -ACGGAAGTCTTGTCGACTCCTAAG -ACGGAAGTCTTGTCGACTGTTCAG -ACGGAAGTCTTGTCGACTGCATAG -ACGGAAGTCTTGTCGACTGACAAG -ACGGAAGTCTTGTCGACTAAGCAG -ACGGAAGTCTTGTCGACTCGTCAA -ACGGAAGTCTTGTCGACTGCTGAA -ACGGAAGTCTTGTCGACTAGTACG -ACGGAAGTCTTGTCGACTATCCGA -ACGGAAGTCTTGTCGACTATGGGA -ACGGAAGTCTTGTCGACTGTGCAA -ACGGAAGTCTTGTCGACTGAGGAA -ACGGAAGTCTTGTCGACTCAGGTA -ACGGAAGTCTTGTCGACTGACTCT -ACGGAAGTCTTGTCGACTAGTCCT -ACGGAAGTCTTGTCGACTTAAGCC -ACGGAAGTCTTGTCGACTATAGCC -ACGGAAGTCTTGTCGACTTAACCG -ACGGAAGTCTTGTCGACTATGCCA -ACGGAAGTCTTGGCATACGGAAAC -ACGGAAGTCTTGGCATACAACACC -ACGGAAGTCTTGGCATACATCGAG -ACGGAAGTCTTGGCATACCTCCTT -ACGGAAGTCTTGGCATACCCTGTT -ACGGAAGTCTTGGCATACCGGTTT -ACGGAAGTCTTGGCATACGTGGTT -ACGGAAGTCTTGGCATACGCCTTT -ACGGAAGTCTTGGCATACGGTCTT -ACGGAAGTCTTGGCATACACGCTT -ACGGAAGTCTTGGCATACAGCGTT -ACGGAAGTCTTGGCATACTTCGTC -ACGGAAGTCTTGGCATACTCTCTC -ACGGAAGTCTTGGCATACTGGATC -ACGGAAGTCTTGGCATACCACTTC -ACGGAAGTCTTGGCATACGTACTC -ACGGAAGTCTTGGCATACGATGTC -ACGGAAGTCTTGGCATACACAGTC -ACGGAAGTCTTGGCATACTTGCTG -ACGGAAGTCTTGGCATACTCCATG -ACGGAAGTCTTGGCATACTGTGTG -ACGGAAGTCTTGGCATACCTAGTG -ACGGAAGTCTTGGCATACCATCTG -ACGGAAGTCTTGGCATACGAGTTG -ACGGAAGTCTTGGCATACAGACTG -ACGGAAGTCTTGGCATACTCGGTA -ACGGAAGTCTTGGCATACTGCCTA -ACGGAAGTCTTGGCATACCCACTA -ACGGAAGTCTTGGCATACGGAGTA -ACGGAAGTCTTGGCATACTCGTCT -ACGGAAGTCTTGGCATACTGCACT -ACGGAAGTCTTGGCATACCTGACT -ACGGAAGTCTTGGCATACCAACCT -ACGGAAGTCTTGGCATACGCTACT -ACGGAAGTCTTGGCATACGGATCT -ACGGAAGTCTTGGCATACAAGGCT -ACGGAAGTCTTGGCATACTCAACC -ACGGAAGTCTTGGCATACTGTTCC -ACGGAAGTCTTGGCATACATTCCC -ACGGAAGTCTTGGCATACTTCTCG -ACGGAAGTCTTGGCATACTAGACG -ACGGAAGTCTTGGCATACGTAACG -ACGGAAGTCTTGGCATACACTTCG -ACGGAAGTCTTGGCATACTACGCA -ACGGAAGTCTTGGCATACCTTGCA -ACGGAAGTCTTGGCATACCGAACA -ACGGAAGTCTTGGCATACCAGTCA -ACGGAAGTCTTGGCATACGATCCA -ACGGAAGTCTTGGCATACACGACA -ACGGAAGTCTTGGCATACAGCTCA -ACGGAAGTCTTGGCATACTCACGT -ACGGAAGTCTTGGCATACCGTAGT -ACGGAAGTCTTGGCATACGTCAGT -ACGGAAGTCTTGGCATACGAAGGT -ACGGAAGTCTTGGCATACAACCGT -ACGGAAGTCTTGGCATACTTGTGC -ACGGAAGTCTTGGCATACCTAAGC -ACGGAAGTCTTGGCATACACTAGC -ACGGAAGTCTTGGCATACAGATGC -ACGGAAGTCTTGGCATACTGAAGG -ACGGAAGTCTTGGCATACCAATGG -ACGGAAGTCTTGGCATACATGAGG -ACGGAAGTCTTGGCATACAATGGG -ACGGAAGTCTTGGCATACTCCTGA -ACGGAAGTCTTGGCATACTAGCGA -ACGGAAGTCTTGGCATACCACAGA -ACGGAAGTCTTGGCATACGCAAGA -ACGGAAGTCTTGGCATACGGTTGA -ACGGAAGTCTTGGCATACTCCGAT -ACGGAAGTCTTGGCATACTGGCAT -ACGGAAGTCTTGGCATACCGAGAT -ACGGAAGTCTTGGCATACTACCAC -ACGGAAGTCTTGGCATACCAGAAC -ACGGAAGTCTTGGCATACGTCTAC -ACGGAAGTCTTGGCATACACGTAC -ACGGAAGTCTTGGCATACAGTGAC -ACGGAAGTCTTGGCATACCTGTAG -ACGGAAGTCTTGGCATACCCTAAG -ACGGAAGTCTTGGCATACGTTCAG -ACGGAAGTCTTGGCATACGCATAG -ACGGAAGTCTTGGCATACGACAAG -ACGGAAGTCTTGGCATACAAGCAG -ACGGAAGTCTTGGCATACCGTCAA -ACGGAAGTCTTGGCATACGCTGAA -ACGGAAGTCTTGGCATACAGTACG -ACGGAAGTCTTGGCATACATCCGA -ACGGAAGTCTTGGCATACATGGGA -ACGGAAGTCTTGGCATACGTGCAA -ACGGAAGTCTTGGCATACGAGGAA -ACGGAAGTCTTGGCATACCAGGTA -ACGGAAGTCTTGGCATACGACTCT -ACGGAAGTCTTGGCATACAGTCCT -ACGGAAGTCTTGGCATACTAAGCC -ACGGAAGTCTTGGCATACATAGCC -ACGGAAGTCTTGGCATACTAACCG -ACGGAAGTCTTGGCATACATGCCA -ACGGAAGTCTTGGCACTTGGAAAC -ACGGAAGTCTTGGCACTTAACACC -ACGGAAGTCTTGGCACTTATCGAG -ACGGAAGTCTTGGCACTTCTCCTT -ACGGAAGTCTTGGCACTTCCTGTT -ACGGAAGTCTTGGCACTTCGGTTT -ACGGAAGTCTTGGCACTTGTGGTT -ACGGAAGTCTTGGCACTTGCCTTT -ACGGAAGTCTTGGCACTTGGTCTT -ACGGAAGTCTTGGCACTTACGCTT -ACGGAAGTCTTGGCACTTAGCGTT -ACGGAAGTCTTGGCACTTTTCGTC -ACGGAAGTCTTGGCACTTTCTCTC -ACGGAAGTCTTGGCACTTTGGATC -ACGGAAGTCTTGGCACTTCACTTC -ACGGAAGTCTTGGCACTTGTACTC -ACGGAAGTCTTGGCACTTGATGTC -ACGGAAGTCTTGGCACTTACAGTC -ACGGAAGTCTTGGCACTTTTGCTG -ACGGAAGTCTTGGCACTTTCCATG -ACGGAAGTCTTGGCACTTTGTGTG -ACGGAAGTCTTGGCACTTCTAGTG -ACGGAAGTCTTGGCACTTCATCTG -ACGGAAGTCTTGGCACTTGAGTTG -ACGGAAGTCTTGGCACTTAGACTG -ACGGAAGTCTTGGCACTTTCGGTA -ACGGAAGTCTTGGCACTTTGCCTA -ACGGAAGTCTTGGCACTTCCACTA -ACGGAAGTCTTGGCACTTGGAGTA -ACGGAAGTCTTGGCACTTTCGTCT -ACGGAAGTCTTGGCACTTTGCACT -ACGGAAGTCTTGGCACTTCTGACT -ACGGAAGTCTTGGCACTTCAACCT -ACGGAAGTCTTGGCACTTGCTACT -ACGGAAGTCTTGGCACTTGGATCT -ACGGAAGTCTTGGCACTTAAGGCT -ACGGAAGTCTTGGCACTTTCAACC -ACGGAAGTCTTGGCACTTTGTTCC -ACGGAAGTCTTGGCACTTATTCCC -ACGGAAGTCTTGGCACTTTTCTCG -ACGGAAGTCTTGGCACTTTAGACG -ACGGAAGTCTTGGCACTTGTAACG -ACGGAAGTCTTGGCACTTACTTCG -ACGGAAGTCTTGGCACTTTACGCA -ACGGAAGTCTTGGCACTTCTTGCA -ACGGAAGTCTTGGCACTTCGAACA -ACGGAAGTCTTGGCACTTCAGTCA -ACGGAAGTCTTGGCACTTGATCCA -ACGGAAGTCTTGGCACTTACGACA -ACGGAAGTCTTGGCACTTAGCTCA -ACGGAAGTCTTGGCACTTTCACGT -ACGGAAGTCTTGGCACTTCGTAGT -ACGGAAGTCTTGGCACTTGTCAGT -ACGGAAGTCTTGGCACTTGAAGGT -ACGGAAGTCTTGGCACTTAACCGT -ACGGAAGTCTTGGCACTTTTGTGC -ACGGAAGTCTTGGCACTTCTAAGC -ACGGAAGTCTTGGCACTTACTAGC -ACGGAAGTCTTGGCACTTAGATGC -ACGGAAGTCTTGGCACTTTGAAGG -ACGGAAGTCTTGGCACTTCAATGG -ACGGAAGTCTTGGCACTTATGAGG -ACGGAAGTCTTGGCACTTAATGGG -ACGGAAGTCTTGGCACTTTCCTGA -ACGGAAGTCTTGGCACTTTAGCGA -ACGGAAGTCTTGGCACTTCACAGA -ACGGAAGTCTTGGCACTTGCAAGA -ACGGAAGTCTTGGCACTTGGTTGA -ACGGAAGTCTTGGCACTTTCCGAT -ACGGAAGTCTTGGCACTTTGGCAT -ACGGAAGTCTTGGCACTTCGAGAT -ACGGAAGTCTTGGCACTTTACCAC -ACGGAAGTCTTGGCACTTCAGAAC -ACGGAAGTCTTGGCACTTGTCTAC -ACGGAAGTCTTGGCACTTACGTAC -ACGGAAGTCTTGGCACTTAGTGAC -ACGGAAGTCTTGGCACTTCTGTAG -ACGGAAGTCTTGGCACTTCCTAAG -ACGGAAGTCTTGGCACTTGTTCAG -ACGGAAGTCTTGGCACTTGCATAG -ACGGAAGTCTTGGCACTTGACAAG -ACGGAAGTCTTGGCACTTAAGCAG -ACGGAAGTCTTGGCACTTCGTCAA -ACGGAAGTCTTGGCACTTGCTGAA -ACGGAAGTCTTGGCACTTAGTACG -ACGGAAGTCTTGGCACTTATCCGA -ACGGAAGTCTTGGCACTTATGGGA -ACGGAAGTCTTGGCACTTGTGCAA -ACGGAAGTCTTGGCACTTGAGGAA -ACGGAAGTCTTGGCACTTCAGGTA -ACGGAAGTCTTGGCACTTGACTCT -ACGGAAGTCTTGGCACTTAGTCCT -ACGGAAGTCTTGGCACTTTAAGCC -ACGGAAGTCTTGGCACTTATAGCC -ACGGAAGTCTTGGCACTTTAACCG -ACGGAAGTCTTGGCACTTATGCCA -ACGGAAGTCTTGACACGAGGAAAC -ACGGAAGTCTTGACACGAAACACC -ACGGAAGTCTTGACACGAATCGAG -ACGGAAGTCTTGACACGACTCCTT -ACGGAAGTCTTGACACGACCTGTT -ACGGAAGTCTTGACACGACGGTTT -ACGGAAGTCTTGACACGAGTGGTT -ACGGAAGTCTTGACACGAGCCTTT -ACGGAAGTCTTGACACGAGGTCTT -ACGGAAGTCTTGACACGAACGCTT -ACGGAAGTCTTGACACGAAGCGTT -ACGGAAGTCTTGACACGATTCGTC -ACGGAAGTCTTGACACGATCTCTC -ACGGAAGTCTTGACACGATGGATC -ACGGAAGTCTTGACACGACACTTC -ACGGAAGTCTTGACACGAGTACTC -ACGGAAGTCTTGACACGAGATGTC -ACGGAAGTCTTGACACGAACAGTC -ACGGAAGTCTTGACACGATTGCTG -ACGGAAGTCTTGACACGATCCATG -ACGGAAGTCTTGACACGATGTGTG -ACGGAAGTCTTGACACGACTAGTG -ACGGAAGTCTTGACACGACATCTG -ACGGAAGTCTTGACACGAGAGTTG -ACGGAAGTCTTGACACGAAGACTG -ACGGAAGTCTTGACACGATCGGTA -ACGGAAGTCTTGACACGATGCCTA -ACGGAAGTCTTGACACGACCACTA -ACGGAAGTCTTGACACGAGGAGTA -ACGGAAGTCTTGACACGATCGTCT -ACGGAAGTCTTGACACGATGCACT -ACGGAAGTCTTGACACGACTGACT -ACGGAAGTCTTGACACGACAACCT -ACGGAAGTCTTGACACGAGCTACT -ACGGAAGTCTTGACACGAGGATCT -ACGGAAGTCTTGACACGAAAGGCT -ACGGAAGTCTTGACACGATCAACC -ACGGAAGTCTTGACACGATGTTCC -ACGGAAGTCTTGACACGAATTCCC -ACGGAAGTCTTGACACGATTCTCG -ACGGAAGTCTTGACACGATAGACG -ACGGAAGTCTTGACACGAGTAACG -ACGGAAGTCTTGACACGAACTTCG -ACGGAAGTCTTGACACGATACGCA -ACGGAAGTCTTGACACGACTTGCA -ACGGAAGTCTTGACACGACGAACA -ACGGAAGTCTTGACACGACAGTCA -ACGGAAGTCTTGACACGAGATCCA -ACGGAAGTCTTGACACGAACGACA -ACGGAAGTCTTGACACGAAGCTCA -ACGGAAGTCTTGACACGATCACGT -ACGGAAGTCTTGACACGACGTAGT -ACGGAAGTCTTGACACGAGTCAGT -ACGGAAGTCTTGACACGAGAAGGT -ACGGAAGTCTTGACACGAAACCGT -ACGGAAGTCTTGACACGATTGTGC -ACGGAAGTCTTGACACGACTAAGC -ACGGAAGTCTTGACACGAACTAGC -ACGGAAGTCTTGACACGAAGATGC -ACGGAAGTCTTGACACGATGAAGG -ACGGAAGTCTTGACACGACAATGG -ACGGAAGTCTTGACACGAATGAGG -ACGGAAGTCTTGACACGAAATGGG -ACGGAAGTCTTGACACGATCCTGA -ACGGAAGTCTTGACACGATAGCGA -ACGGAAGTCTTGACACGACACAGA -ACGGAAGTCTTGACACGAGCAAGA -ACGGAAGTCTTGACACGAGGTTGA -ACGGAAGTCTTGACACGATCCGAT -ACGGAAGTCTTGACACGATGGCAT -ACGGAAGTCTTGACACGACGAGAT -ACGGAAGTCTTGACACGATACCAC -ACGGAAGTCTTGACACGACAGAAC -ACGGAAGTCTTGACACGAGTCTAC -ACGGAAGTCTTGACACGAACGTAC -ACGGAAGTCTTGACACGAAGTGAC -ACGGAAGTCTTGACACGACTGTAG -ACGGAAGTCTTGACACGACCTAAG -ACGGAAGTCTTGACACGAGTTCAG -ACGGAAGTCTTGACACGAGCATAG -ACGGAAGTCTTGACACGAGACAAG -ACGGAAGTCTTGACACGAAAGCAG -ACGGAAGTCTTGACACGACGTCAA -ACGGAAGTCTTGACACGAGCTGAA -ACGGAAGTCTTGACACGAAGTACG -ACGGAAGTCTTGACACGAATCCGA -ACGGAAGTCTTGACACGAATGGGA -ACGGAAGTCTTGACACGAGTGCAA -ACGGAAGTCTTGACACGAGAGGAA -ACGGAAGTCTTGACACGACAGGTA -ACGGAAGTCTTGACACGAGACTCT -ACGGAAGTCTTGACACGAAGTCCT -ACGGAAGTCTTGACACGATAAGCC -ACGGAAGTCTTGACACGAATAGCC -ACGGAAGTCTTGACACGATAACCG -ACGGAAGTCTTGACACGAATGCCA -ACGGAAGTCTTGTCACAGGGAAAC -ACGGAAGTCTTGTCACAGAACACC -ACGGAAGTCTTGTCACAGATCGAG -ACGGAAGTCTTGTCACAGCTCCTT -ACGGAAGTCTTGTCACAGCCTGTT -ACGGAAGTCTTGTCACAGCGGTTT -ACGGAAGTCTTGTCACAGGTGGTT -ACGGAAGTCTTGTCACAGGCCTTT -ACGGAAGTCTTGTCACAGGGTCTT -ACGGAAGTCTTGTCACAGACGCTT -ACGGAAGTCTTGTCACAGAGCGTT -ACGGAAGTCTTGTCACAGTTCGTC -ACGGAAGTCTTGTCACAGTCTCTC -ACGGAAGTCTTGTCACAGTGGATC -ACGGAAGTCTTGTCACAGCACTTC -ACGGAAGTCTTGTCACAGGTACTC -ACGGAAGTCTTGTCACAGGATGTC -ACGGAAGTCTTGTCACAGACAGTC -ACGGAAGTCTTGTCACAGTTGCTG -ACGGAAGTCTTGTCACAGTCCATG -ACGGAAGTCTTGTCACAGTGTGTG -ACGGAAGTCTTGTCACAGCTAGTG -ACGGAAGTCTTGTCACAGCATCTG -ACGGAAGTCTTGTCACAGGAGTTG -ACGGAAGTCTTGTCACAGAGACTG -ACGGAAGTCTTGTCACAGTCGGTA -ACGGAAGTCTTGTCACAGTGCCTA -ACGGAAGTCTTGTCACAGCCACTA -ACGGAAGTCTTGTCACAGGGAGTA -ACGGAAGTCTTGTCACAGTCGTCT -ACGGAAGTCTTGTCACAGTGCACT -ACGGAAGTCTTGTCACAGCTGACT -ACGGAAGTCTTGTCACAGCAACCT -ACGGAAGTCTTGTCACAGGCTACT -ACGGAAGTCTTGTCACAGGGATCT -ACGGAAGTCTTGTCACAGAAGGCT -ACGGAAGTCTTGTCACAGTCAACC -ACGGAAGTCTTGTCACAGTGTTCC -ACGGAAGTCTTGTCACAGATTCCC -ACGGAAGTCTTGTCACAGTTCTCG -ACGGAAGTCTTGTCACAGTAGACG -ACGGAAGTCTTGTCACAGGTAACG -ACGGAAGTCTTGTCACAGACTTCG -ACGGAAGTCTTGTCACAGTACGCA -ACGGAAGTCTTGTCACAGCTTGCA -ACGGAAGTCTTGTCACAGCGAACA -ACGGAAGTCTTGTCACAGCAGTCA -ACGGAAGTCTTGTCACAGGATCCA -ACGGAAGTCTTGTCACAGACGACA -ACGGAAGTCTTGTCACAGAGCTCA -ACGGAAGTCTTGTCACAGTCACGT -ACGGAAGTCTTGTCACAGCGTAGT -ACGGAAGTCTTGTCACAGGTCAGT -ACGGAAGTCTTGTCACAGGAAGGT -ACGGAAGTCTTGTCACAGAACCGT -ACGGAAGTCTTGTCACAGTTGTGC -ACGGAAGTCTTGTCACAGCTAAGC -ACGGAAGTCTTGTCACAGACTAGC -ACGGAAGTCTTGTCACAGAGATGC -ACGGAAGTCTTGTCACAGTGAAGG -ACGGAAGTCTTGTCACAGCAATGG -ACGGAAGTCTTGTCACAGATGAGG -ACGGAAGTCTTGTCACAGAATGGG -ACGGAAGTCTTGTCACAGTCCTGA -ACGGAAGTCTTGTCACAGTAGCGA -ACGGAAGTCTTGTCACAGCACAGA -ACGGAAGTCTTGTCACAGGCAAGA -ACGGAAGTCTTGTCACAGGGTTGA -ACGGAAGTCTTGTCACAGTCCGAT -ACGGAAGTCTTGTCACAGTGGCAT -ACGGAAGTCTTGTCACAGCGAGAT -ACGGAAGTCTTGTCACAGTACCAC -ACGGAAGTCTTGTCACAGCAGAAC -ACGGAAGTCTTGTCACAGGTCTAC -ACGGAAGTCTTGTCACAGACGTAC -ACGGAAGTCTTGTCACAGAGTGAC -ACGGAAGTCTTGTCACAGCTGTAG -ACGGAAGTCTTGTCACAGCCTAAG -ACGGAAGTCTTGTCACAGGTTCAG -ACGGAAGTCTTGTCACAGGCATAG -ACGGAAGTCTTGTCACAGGACAAG -ACGGAAGTCTTGTCACAGAAGCAG -ACGGAAGTCTTGTCACAGCGTCAA -ACGGAAGTCTTGTCACAGGCTGAA -ACGGAAGTCTTGTCACAGAGTACG -ACGGAAGTCTTGTCACAGATCCGA -ACGGAAGTCTTGTCACAGATGGGA -ACGGAAGTCTTGTCACAGGTGCAA -ACGGAAGTCTTGTCACAGGAGGAA -ACGGAAGTCTTGTCACAGCAGGTA -ACGGAAGTCTTGTCACAGGACTCT -ACGGAAGTCTTGTCACAGAGTCCT -ACGGAAGTCTTGTCACAGTAAGCC -ACGGAAGTCTTGTCACAGATAGCC -ACGGAAGTCTTGTCACAGTAACCG -ACGGAAGTCTTGTCACAGATGCCA -ACGGAAGTCTTGCCAGATGGAAAC -ACGGAAGTCTTGCCAGATAACACC -ACGGAAGTCTTGCCAGATATCGAG -ACGGAAGTCTTGCCAGATCTCCTT -ACGGAAGTCTTGCCAGATCCTGTT -ACGGAAGTCTTGCCAGATCGGTTT -ACGGAAGTCTTGCCAGATGTGGTT -ACGGAAGTCTTGCCAGATGCCTTT -ACGGAAGTCTTGCCAGATGGTCTT -ACGGAAGTCTTGCCAGATACGCTT -ACGGAAGTCTTGCCAGATAGCGTT -ACGGAAGTCTTGCCAGATTTCGTC -ACGGAAGTCTTGCCAGATTCTCTC -ACGGAAGTCTTGCCAGATTGGATC -ACGGAAGTCTTGCCAGATCACTTC -ACGGAAGTCTTGCCAGATGTACTC -ACGGAAGTCTTGCCAGATGATGTC -ACGGAAGTCTTGCCAGATACAGTC -ACGGAAGTCTTGCCAGATTTGCTG -ACGGAAGTCTTGCCAGATTCCATG -ACGGAAGTCTTGCCAGATTGTGTG -ACGGAAGTCTTGCCAGATCTAGTG -ACGGAAGTCTTGCCAGATCATCTG -ACGGAAGTCTTGCCAGATGAGTTG -ACGGAAGTCTTGCCAGATAGACTG -ACGGAAGTCTTGCCAGATTCGGTA -ACGGAAGTCTTGCCAGATTGCCTA -ACGGAAGTCTTGCCAGATCCACTA -ACGGAAGTCTTGCCAGATGGAGTA -ACGGAAGTCTTGCCAGATTCGTCT -ACGGAAGTCTTGCCAGATTGCACT -ACGGAAGTCTTGCCAGATCTGACT -ACGGAAGTCTTGCCAGATCAACCT -ACGGAAGTCTTGCCAGATGCTACT -ACGGAAGTCTTGCCAGATGGATCT -ACGGAAGTCTTGCCAGATAAGGCT -ACGGAAGTCTTGCCAGATTCAACC -ACGGAAGTCTTGCCAGATTGTTCC -ACGGAAGTCTTGCCAGATATTCCC -ACGGAAGTCTTGCCAGATTTCTCG -ACGGAAGTCTTGCCAGATTAGACG -ACGGAAGTCTTGCCAGATGTAACG -ACGGAAGTCTTGCCAGATACTTCG -ACGGAAGTCTTGCCAGATTACGCA -ACGGAAGTCTTGCCAGATCTTGCA -ACGGAAGTCTTGCCAGATCGAACA -ACGGAAGTCTTGCCAGATCAGTCA -ACGGAAGTCTTGCCAGATGATCCA -ACGGAAGTCTTGCCAGATACGACA -ACGGAAGTCTTGCCAGATAGCTCA -ACGGAAGTCTTGCCAGATTCACGT -ACGGAAGTCTTGCCAGATCGTAGT -ACGGAAGTCTTGCCAGATGTCAGT -ACGGAAGTCTTGCCAGATGAAGGT -ACGGAAGTCTTGCCAGATAACCGT -ACGGAAGTCTTGCCAGATTTGTGC -ACGGAAGTCTTGCCAGATCTAAGC -ACGGAAGTCTTGCCAGATACTAGC -ACGGAAGTCTTGCCAGATAGATGC -ACGGAAGTCTTGCCAGATTGAAGG -ACGGAAGTCTTGCCAGATCAATGG -ACGGAAGTCTTGCCAGATATGAGG -ACGGAAGTCTTGCCAGATAATGGG -ACGGAAGTCTTGCCAGATTCCTGA -ACGGAAGTCTTGCCAGATTAGCGA -ACGGAAGTCTTGCCAGATCACAGA -ACGGAAGTCTTGCCAGATGCAAGA -ACGGAAGTCTTGCCAGATGGTTGA -ACGGAAGTCTTGCCAGATTCCGAT -ACGGAAGTCTTGCCAGATTGGCAT -ACGGAAGTCTTGCCAGATCGAGAT -ACGGAAGTCTTGCCAGATTACCAC -ACGGAAGTCTTGCCAGATCAGAAC -ACGGAAGTCTTGCCAGATGTCTAC -ACGGAAGTCTTGCCAGATACGTAC -ACGGAAGTCTTGCCAGATAGTGAC -ACGGAAGTCTTGCCAGATCTGTAG -ACGGAAGTCTTGCCAGATCCTAAG -ACGGAAGTCTTGCCAGATGTTCAG -ACGGAAGTCTTGCCAGATGCATAG -ACGGAAGTCTTGCCAGATGACAAG -ACGGAAGTCTTGCCAGATAAGCAG -ACGGAAGTCTTGCCAGATCGTCAA -ACGGAAGTCTTGCCAGATGCTGAA -ACGGAAGTCTTGCCAGATAGTACG -ACGGAAGTCTTGCCAGATATCCGA -ACGGAAGTCTTGCCAGATATGGGA -ACGGAAGTCTTGCCAGATGTGCAA -ACGGAAGTCTTGCCAGATGAGGAA -ACGGAAGTCTTGCCAGATCAGGTA -ACGGAAGTCTTGCCAGATGACTCT -ACGGAAGTCTTGCCAGATAGTCCT -ACGGAAGTCTTGCCAGATTAAGCC -ACGGAAGTCTTGCCAGATATAGCC -ACGGAAGTCTTGCCAGATTAACCG -ACGGAAGTCTTGCCAGATATGCCA -ACGGAAGTCTTGACAACGGGAAAC -ACGGAAGTCTTGACAACGAACACC -ACGGAAGTCTTGACAACGATCGAG -ACGGAAGTCTTGACAACGCTCCTT -ACGGAAGTCTTGACAACGCCTGTT -ACGGAAGTCTTGACAACGCGGTTT -ACGGAAGTCTTGACAACGGTGGTT -ACGGAAGTCTTGACAACGGCCTTT -ACGGAAGTCTTGACAACGGGTCTT -ACGGAAGTCTTGACAACGACGCTT -ACGGAAGTCTTGACAACGAGCGTT -ACGGAAGTCTTGACAACGTTCGTC -ACGGAAGTCTTGACAACGTCTCTC -ACGGAAGTCTTGACAACGTGGATC -ACGGAAGTCTTGACAACGCACTTC -ACGGAAGTCTTGACAACGGTACTC -ACGGAAGTCTTGACAACGGATGTC -ACGGAAGTCTTGACAACGACAGTC -ACGGAAGTCTTGACAACGTTGCTG -ACGGAAGTCTTGACAACGTCCATG -ACGGAAGTCTTGACAACGTGTGTG -ACGGAAGTCTTGACAACGCTAGTG -ACGGAAGTCTTGACAACGCATCTG -ACGGAAGTCTTGACAACGGAGTTG -ACGGAAGTCTTGACAACGAGACTG -ACGGAAGTCTTGACAACGTCGGTA -ACGGAAGTCTTGACAACGTGCCTA -ACGGAAGTCTTGACAACGCCACTA -ACGGAAGTCTTGACAACGGGAGTA -ACGGAAGTCTTGACAACGTCGTCT -ACGGAAGTCTTGACAACGTGCACT -ACGGAAGTCTTGACAACGCTGACT -ACGGAAGTCTTGACAACGCAACCT -ACGGAAGTCTTGACAACGGCTACT -ACGGAAGTCTTGACAACGGGATCT -ACGGAAGTCTTGACAACGAAGGCT -ACGGAAGTCTTGACAACGTCAACC -ACGGAAGTCTTGACAACGTGTTCC -ACGGAAGTCTTGACAACGATTCCC -ACGGAAGTCTTGACAACGTTCTCG -ACGGAAGTCTTGACAACGTAGACG -ACGGAAGTCTTGACAACGGTAACG -ACGGAAGTCTTGACAACGACTTCG -ACGGAAGTCTTGACAACGTACGCA -ACGGAAGTCTTGACAACGCTTGCA -ACGGAAGTCTTGACAACGCGAACA -ACGGAAGTCTTGACAACGCAGTCA -ACGGAAGTCTTGACAACGGATCCA -ACGGAAGTCTTGACAACGACGACA -ACGGAAGTCTTGACAACGAGCTCA -ACGGAAGTCTTGACAACGTCACGT -ACGGAAGTCTTGACAACGCGTAGT -ACGGAAGTCTTGACAACGGTCAGT -ACGGAAGTCTTGACAACGGAAGGT -ACGGAAGTCTTGACAACGAACCGT -ACGGAAGTCTTGACAACGTTGTGC -ACGGAAGTCTTGACAACGCTAAGC -ACGGAAGTCTTGACAACGACTAGC -ACGGAAGTCTTGACAACGAGATGC -ACGGAAGTCTTGACAACGTGAAGG -ACGGAAGTCTTGACAACGCAATGG -ACGGAAGTCTTGACAACGATGAGG -ACGGAAGTCTTGACAACGAATGGG -ACGGAAGTCTTGACAACGTCCTGA -ACGGAAGTCTTGACAACGTAGCGA -ACGGAAGTCTTGACAACGCACAGA -ACGGAAGTCTTGACAACGGCAAGA -ACGGAAGTCTTGACAACGGGTTGA -ACGGAAGTCTTGACAACGTCCGAT -ACGGAAGTCTTGACAACGTGGCAT -ACGGAAGTCTTGACAACGCGAGAT -ACGGAAGTCTTGACAACGTACCAC -ACGGAAGTCTTGACAACGCAGAAC -ACGGAAGTCTTGACAACGGTCTAC -ACGGAAGTCTTGACAACGACGTAC -ACGGAAGTCTTGACAACGAGTGAC -ACGGAAGTCTTGACAACGCTGTAG -ACGGAAGTCTTGACAACGCCTAAG -ACGGAAGTCTTGACAACGGTTCAG -ACGGAAGTCTTGACAACGGCATAG -ACGGAAGTCTTGACAACGGACAAG -ACGGAAGTCTTGACAACGAAGCAG -ACGGAAGTCTTGACAACGCGTCAA -ACGGAAGTCTTGACAACGGCTGAA -ACGGAAGTCTTGACAACGAGTACG -ACGGAAGTCTTGACAACGATCCGA -ACGGAAGTCTTGACAACGATGGGA -ACGGAAGTCTTGACAACGGTGCAA -ACGGAAGTCTTGACAACGGAGGAA -ACGGAAGTCTTGACAACGCAGGTA -ACGGAAGTCTTGACAACGGACTCT -ACGGAAGTCTTGACAACGAGTCCT -ACGGAAGTCTTGACAACGTAAGCC -ACGGAAGTCTTGACAACGATAGCC -ACGGAAGTCTTGACAACGTAACCG -ACGGAAGTCTTGACAACGATGCCA -ACGGAAGTCTTGTCAAGCGGAAAC -ACGGAAGTCTTGTCAAGCAACACC -ACGGAAGTCTTGTCAAGCATCGAG -ACGGAAGTCTTGTCAAGCCTCCTT -ACGGAAGTCTTGTCAAGCCCTGTT -ACGGAAGTCTTGTCAAGCCGGTTT -ACGGAAGTCTTGTCAAGCGTGGTT -ACGGAAGTCTTGTCAAGCGCCTTT -ACGGAAGTCTTGTCAAGCGGTCTT -ACGGAAGTCTTGTCAAGCACGCTT -ACGGAAGTCTTGTCAAGCAGCGTT -ACGGAAGTCTTGTCAAGCTTCGTC -ACGGAAGTCTTGTCAAGCTCTCTC -ACGGAAGTCTTGTCAAGCTGGATC -ACGGAAGTCTTGTCAAGCCACTTC -ACGGAAGTCTTGTCAAGCGTACTC -ACGGAAGTCTTGTCAAGCGATGTC -ACGGAAGTCTTGTCAAGCACAGTC -ACGGAAGTCTTGTCAAGCTTGCTG -ACGGAAGTCTTGTCAAGCTCCATG -ACGGAAGTCTTGTCAAGCTGTGTG -ACGGAAGTCTTGTCAAGCCTAGTG -ACGGAAGTCTTGTCAAGCCATCTG -ACGGAAGTCTTGTCAAGCGAGTTG -ACGGAAGTCTTGTCAAGCAGACTG -ACGGAAGTCTTGTCAAGCTCGGTA -ACGGAAGTCTTGTCAAGCTGCCTA -ACGGAAGTCTTGTCAAGCCCACTA -ACGGAAGTCTTGTCAAGCGGAGTA -ACGGAAGTCTTGTCAAGCTCGTCT -ACGGAAGTCTTGTCAAGCTGCACT -ACGGAAGTCTTGTCAAGCCTGACT -ACGGAAGTCTTGTCAAGCCAACCT -ACGGAAGTCTTGTCAAGCGCTACT -ACGGAAGTCTTGTCAAGCGGATCT -ACGGAAGTCTTGTCAAGCAAGGCT -ACGGAAGTCTTGTCAAGCTCAACC -ACGGAAGTCTTGTCAAGCTGTTCC -ACGGAAGTCTTGTCAAGCATTCCC -ACGGAAGTCTTGTCAAGCTTCTCG -ACGGAAGTCTTGTCAAGCTAGACG -ACGGAAGTCTTGTCAAGCGTAACG -ACGGAAGTCTTGTCAAGCACTTCG -ACGGAAGTCTTGTCAAGCTACGCA -ACGGAAGTCTTGTCAAGCCTTGCA -ACGGAAGTCTTGTCAAGCCGAACA -ACGGAAGTCTTGTCAAGCCAGTCA -ACGGAAGTCTTGTCAAGCGATCCA -ACGGAAGTCTTGTCAAGCACGACA -ACGGAAGTCTTGTCAAGCAGCTCA -ACGGAAGTCTTGTCAAGCTCACGT -ACGGAAGTCTTGTCAAGCCGTAGT -ACGGAAGTCTTGTCAAGCGTCAGT -ACGGAAGTCTTGTCAAGCGAAGGT -ACGGAAGTCTTGTCAAGCAACCGT -ACGGAAGTCTTGTCAAGCTTGTGC -ACGGAAGTCTTGTCAAGCCTAAGC -ACGGAAGTCTTGTCAAGCACTAGC -ACGGAAGTCTTGTCAAGCAGATGC -ACGGAAGTCTTGTCAAGCTGAAGG -ACGGAAGTCTTGTCAAGCCAATGG -ACGGAAGTCTTGTCAAGCATGAGG -ACGGAAGTCTTGTCAAGCAATGGG -ACGGAAGTCTTGTCAAGCTCCTGA -ACGGAAGTCTTGTCAAGCTAGCGA -ACGGAAGTCTTGTCAAGCCACAGA -ACGGAAGTCTTGTCAAGCGCAAGA -ACGGAAGTCTTGTCAAGCGGTTGA -ACGGAAGTCTTGTCAAGCTCCGAT -ACGGAAGTCTTGTCAAGCTGGCAT -ACGGAAGTCTTGTCAAGCCGAGAT -ACGGAAGTCTTGTCAAGCTACCAC -ACGGAAGTCTTGTCAAGCCAGAAC -ACGGAAGTCTTGTCAAGCGTCTAC -ACGGAAGTCTTGTCAAGCACGTAC -ACGGAAGTCTTGTCAAGCAGTGAC -ACGGAAGTCTTGTCAAGCCTGTAG -ACGGAAGTCTTGTCAAGCCCTAAG -ACGGAAGTCTTGTCAAGCGTTCAG -ACGGAAGTCTTGTCAAGCGCATAG -ACGGAAGTCTTGTCAAGCGACAAG -ACGGAAGTCTTGTCAAGCAAGCAG -ACGGAAGTCTTGTCAAGCCGTCAA -ACGGAAGTCTTGTCAAGCGCTGAA -ACGGAAGTCTTGTCAAGCAGTACG -ACGGAAGTCTTGTCAAGCATCCGA -ACGGAAGTCTTGTCAAGCATGGGA -ACGGAAGTCTTGTCAAGCGTGCAA -ACGGAAGTCTTGTCAAGCGAGGAA -ACGGAAGTCTTGTCAAGCCAGGTA -ACGGAAGTCTTGTCAAGCGACTCT -ACGGAAGTCTTGTCAAGCAGTCCT -ACGGAAGTCTTGTCAAGCTAAGCC -ACGGAAGTCTTGTCAAGCATAGCC -ACGGAAGTCTTGTCAAGCTAACCG -ACGGAAGTCTTGTCAAGCATGCCA -ACGGAAGTCTTGCGTTCAGGAAAC -ACGGAAGTCTTGCGTTCAAACACC -ACGGAAGTCTTGCGTTCAATCGAG -ACGGAAGTCTTGCGTTCACTCCTT -ACGGAAGTCTTGCGTTCACCTGTT -ACGGAAGTCTTGCGTTCACGGTTT -ACGGAAGTCTTGCGTTCAGTGGTT -ACGGAAGTCTTGCGTTCAGCCTTT -ACGGAAGTCTTGCGTTCAGGTCTT -ACGGAAGTCTTGCGTTCAACGCTT -ACGGAAGTCTTGCGTTCAAGCGTT -ACGGAAGTCTTGCGTTCATTCGTC -ACGGAAGTCTTGCGTTCATCTCTC -ACGGAAGTCTTGCGTTCATGGATC -ACGGAAGTCTTGCGTTCACACTTC -ACGGAAGTCTTGCGTTCAGTACTC -ACGGAAGTCTTGCGTTCAGATGTC -ACGGAAGTCTTGCGTTCAACAGTC -ACGGAAGTCTTGCGTTCATTGCTG -ACGGAAGTCTTGCGTTCATCCATG -ACGGAAGTCTTGCGTTCATGTGTG -ACGGAAGTCTTGCGTTCACTAGTG -ACGGAAGTCTTGCGTTCACATCTG -ACGGAAGTCTTGCGTTCAGAGTTG -ACGGAAGTCTTGCGTTCAAGACTG -ACGGAAGTCTTGCGTTCATCGGTA -ACGGAAGTCTTGCGTTCATGCCTA -ACGGAAGTCTTGCGTTCACCACTA -ACGGAAGTCTTGCGTTCAGGAGTA -ACGGAAGTCTTGCGTTCATCGTCT -ACGGAAGTCTTGCGTTCATGCACT -ACGGAAGTCTTGCGTTCACTGACT -ACGGAAGTCTTGCGTTCACAACCT -ACGGAAGTCTTGCGTTCAGCTACT -ACGGAAGTCTTGCGTTCAGGATCT -ACGGAAGTCTTGCGTTCAAAGGCT -ACGGAAGTCTTGCGTTCATCAACC -ACGGAAGTCTTGCGTTCATGTTCC -ACGGAAGTCTTGCGTTCAATTCCC -ACGGAAGTCTTGCGTTCATTCTCG -ACGGAAGTCTTGCGTTCATAGACG -ACGGAAGTCTTGCGTTCAGTAACG -ACGGAAGTCTTGCGTTCAACTTCG -ACGGAAGTCTTGCGTTCATACGCA -ACGGAAGTCTTGCGTTCACTTGCA -ACGGAAGTCTTGCGTTCACGAACA -ACGGAAGTCTTGCGTTCACAGTCA -ACGGAAGTCTTGCGTTCAGATCCA -ACGGAAGTCTTGCGTTCAACGACA -ACGGAAGTCTTGCGTTCAAGCTCA -ACGGAAGTCTTGCGTTCATCACGT -ACGGAAGTCTTGCGTTCACGTAGT -ACGGAAGTCTTGCGTTCAGTCAGT -ACGGAAGTCTTGCGTTCAGAAGGT -ACGGAAGTCTTGCGTTCAAACCGT -ACGGAAGTCTTGCGTTCATTGTGC -ACGGAAGTCTTGCGTTCACTAAGC -ACGGAAGTCTTGCGTTCAACTAGC -ACGGAAGTCTTGCGTTCAAGATGC -ACGGAAGTCTTGCGTTCATGAAGG -ACGGAAGTCTTGCGTTCACAATGG -ACGGAAGTCTTGCGTTCAATGAGG -ACGGAAGTCTTGCGTTCAAATGGG -ACGGAAGTCTTGCGTTCATCCTGA -ACGGAAGTCTTGCGTTCATAGCGA -ACGGAAGTCTTGCGTTCACACAGA -ACGGAAGTCTTGCGTTCAGCAAGA -ACGGAAGTCTTGCGTTCAGGTTGA -ACGGAAGTCTTGCGTTCATCCGAT -ACGGAAGTCTTGCGTTCATGGCAT -ACGGAAGTCTTGCGTTCACGAGAT -ACGGAAGTCTTGCGTTCATACCAC -ACGGAAGTCTTGCGTTCACAGAAC -ACGGAAGTCTTGCGTTCAGTCTAC -ACGGAAGTCTTGCGTTCAACGTAC -ACGGAAGTCTTGCGTTCAAGTGAC -ACGGAAGTCTTGCGTTCACTGTAG -ACGGAAGTCTTGCGTTCACCTAAG -ACGGAAGTCTTGCGTTCAGTTCAG -ACGGAAGTCTTGCGTTCAGCATAG -ACGGAAGTCTTGCGTTCAGACAAG -ACGGAAGTCTTGCGTTCAAAGCAG -ACGGAAGTCTTGCGTTCACGTCAA -ACGGAAGTCTTGCGTTCAGCTGAA -ACGGAAGTCTTGCGTTCAAGTACG -ACGGAAGTCTTGCGTTCAATCCGA -ACGGAAGTCTTGCGTTCAATGGGA -ACGGAAGTCTTGCGTTCAGTGCAA -ACGGAAGTCTTGCGTTCAGAGGAA -ACGGAAGTCTTGCGTTCACAGGTA -ACGGAAGTCTTGCGTTCAGACTCT -ACGGAAGTCTTGCGTTCAAGTCCT -ACGGAAGTCTTGCGTTCATAAGCC -ACGGAAGTCTTGCGTTCAATAGCC -ACGGAAGTCTTGCGTTCATAACCG -ACGGAAGTCTTGCGTTCAATGCCA -ACGGAAGTCTTGAGTCGTGGAAAC -ACGGAAGTCTTGAGTCGTAACACC -ACGGAAGTCTTGAGTCGTATCGAG -ACGGAAGTCTTGAGTCGTCTCCTT -ACGGAAGTCTTGAGTCGTCCTGTT -ACGGAAGTCTTGAGTCGTCGGTTT -ACGGAAGTCTTGAGTCGTGTGGTT -ACGGAAGTCTTGAGTCGTGCCTTT -ACGGAAGTCTTGAGTCGTGGTCTT -ACGGAAGTCTTGAGTCGTACGCTT -ACGGAAGTCTTGAGTCGTAGCGTT -ACGGAAGTCTTGAGTCGTTTCGTC -ACGGAAGTCTTGAGTCGTTCTCTC -ACGGAAGTCTTGAGTCGTTGGATC -ACGGAAGTCTTGAGTCGTCACTTC -ACGGAAGTCTTGAGTCGTGTACTC -ACGGAAGTCTTGAGTCGTGATGTC -ACGGAAGTCTTGAGTCGTACAGTC -ACGGAAGTCTTGAGTCGTTTGCTG -ACGGAAGTCTTGAGTCGTTCCATG -ACGGAAGTCTTGAGTCGTTGTGTG -ACGGAAGTCTTGAGTCGTCTAGTG -ACGGAAGTCTTGAGTCGTCATCTG -ACGGAAGTCTTGAGTCGTGAGTTG -ACGGAAGTCTTGAGTCGTAGACTG -ACGGAAGTCTTGAGTCGTTCGGTA -ACGGAAGTCTTGAGTCGTTGCCTA -ACGGAAGTCTTGAGTCGTCCACTA -ACGGAAGTCTTGAGTCGTGGAGTA -ACGGAAGTCTTGAGTCGTTCGTCT -ACGGAAGTCTTGAGTCGTTGCACT -ACGGAAGTCTTGAGTCGTCTGACT -ACGGAAGTCTTGAGTCGTCAACCT -ACGGAAGTCTTGAGTCGTGCTACT -ACGGAAGTCTTGAGTCGTGGATCT -ACGGAAGTCTTGAGTCGTAAGGCT -ACGGAAGTCTTGAGTCGTTCAACC -ACGGAAGTCTTGAGTCGTTGTTCC -ACGGAAGTCTTGAGTCGTATTCCC -ACGGAAGTCTTGAGTCGTTTCTCG -ACGGAAGTCTTGAGTCGTTAGACG -ACGGAAGTCTTGAGTCGTGTAACG -ACGGAAGTCTTGAGTCGTACTTCG -ACGGAAGTCTTGAGTCGTTACGCA -ACGGAAGTCTTGAGTCGTCTTGCA -ACGGAAGTCTTGAGTCGTCGAACA -ACGGAAGTCTTGAGTCGTCAGTCA -ACGGAAGTCTTGAGTCGTGATCCA -ACGGAAGTCTTGAGTCGTACGACA -ACGGAAGTCTTGAGTCGTAGCTCA -ACGGAAGTCTTGAGTCGTTCACGT -ACGGAAGTCTTGAGTCGTCGTAGT -ACGGAAGTCTTGAGTCGTGTCAGT -ACGGAAGTCTTGAGTCGTGAAGGT -ACGGAAGTCTTGAGTCGTAACCGT -ACGGAAGTCTTGAGTCGTTTGTGC -ACGGAAGTCTTGAGTCGTCTAAGC -ACGGAAGTCTTGAGTCGTACTAGC -ACGGAAGTCTTGAGTCGTAGATGC -ACGGAAGTCTTGAGTCGTTGAAGG -ACGGAAGTCTTGAGTCGTCAATGG -ACGGAAGTCTTGAGTCGTATGAGG -ACGGAAGTCTTGAGTCGTAATGGG -ACGGAAGTCTTGAGTCGTTCCTGA -ACGGAAGTCTTGAGTCGTTAGCGA -ACGGAAGTCTTGAGTCGTCACAGA -ACGGAAGTCTTGAGTCGTGCAAGA -ACGGAAGTCTTGAGTCGTGGTTGA -ACGGAAGTCTTGAGTCGTTCCGAT -ACGGAAGTCTTGAGTCGTTGGCAT -ACGGAAGTCTTGAGTCGTCGAGAT -ACGGAAGTCTTGAGTCGTTACCAC -ACGGAAGTCTTGAGTCGTCAGAAC -ACGGAAGTCTTGAGTCGTGTCTAC -ACGGAAGTCTTGAGTCGTACGTAC -ACGGAAGTCTTGAGTCGTAGTGAC -ACGGAAGTCTTGAGTCGTCTGTAG -ACGGAAGTCTTGAGTCGTCCTAAG -ACGGAAGTCTTGAGTCGTGTTCAG -ACGGAAGTCTTGAGTCGTGCATAG -ACGGAAGTCTTGAGTCGTGACAAG -ACGGAAGTCTTGAGTCGTAAGCAG -ACGGAAGTCTTGAGTCGTCGTCAA -ACGGAAGTCTTGAGTCGTGCTGAA -ACGGAAGTCTTGAGTCGTAGTACG -ACGGAAGTCTTGAGTCGTATCCGA -ACGGAAGTCTTGAGTCGTATGGGA -ACGGAAGTCTTGAGTCGTGTGCAA -ACGGAAGTCTTGAGTCGTGAGGAA -ACGGAAGTCTTGAGTCGTCAGGTA -ACGGAAGTCTTGAGTCGTGACTCT -ACGGAAGTCTTGAGTCGTAGTCCT -ACGGAAGTCTTGAGTCGTTAAGCC -ACGGAAGTCTTGAGTCGTATAGCC -ACGGAAGTCTTGAGTCGTTAACCG -ACGGAAGTCTTGAGTCGTATGCCA -ACGGAAGTCTTGAGTGTCGGAAAC -ACGGAAGTCTTGAGTGTCAACACC -ACGGAAGTCTTGAGTGTCATCGAG -ACGGAAGTCTTGAGTGTCCTCCTT -ACGGAAGTCTTGAGTGTCCCTGTT -ACGGAAGTCTTGAGTGTCCGGTTT -ACGGAAGTCTTGAGTGTCGTGGTT -ACGGAAGTCTTGAGTGTCGCCTTT -ACGGAAGTCTTGAGTGTCGGTCTT -ACGGAAGTCTTGAGTGTCACGCTT -ACGGAAGTCTTGAGTGTCAGCGTT -ACGGAAGTCTTGAGTGTCTTCGTC -ACGGAAGTCTTGAGTGTCTCTCTC -ACGGAAGTCTTGAGTGTCTGGATC -ACGGAAGTCTTGAGTGTCCACTTC -ACGGAAGTCTTGAGTGTCGTACTC -ACGGAAGTCTTGAGTGTCGATGTC -ACGGAAGTCTTGAGTGTCACAGTC -ACGGAAGTCTTGAGTGTCTTGCTG -ACGGAAGTCTTGAGTGTCTCCATG -ACGGAAGTCTTGAGTGTCTGTGTG -ACGGAAGTCTTGAGTGTCCTAGTG -ACGGAAGTCTTGAGTGTCCATCTG -ACGGAAGTCTTGAGTGTCGAGTTG -ACGGAAGTCTTGAGTGTCAGACTG -ACGGAAGTCTTGAGTGTCTCGGTA -ACGGAAGTCTTGAGTGTCTGCCTA -ACGGAAGTCTTGAGTGTCCCACTA -ACGGAAGTCTTGAGTGTCGGAGTA -ACGGAAGTCTTGAGTGTCTCGTCT -ACGGAAGTCTTGAGTGTCTGCACT -ACGGAAGTCTTGAGTGTCCTGACT -ACGGAAGTCTTGAGTGTCCAACCT -ACGGAAGTCTTGAGTGTCGCTACT -ACGGAAGTCTTGAGTGTCGGATCT -ACGGAAGTCTTGAGTGTCAAGGCT -ACGGAAGTCTTGAGTGTCTCAACC -ACGGAAGTCTTGAGTGTCTGTTCC -ACGGAAGTCTTGAGTGTCATTCCC -ACGGAAGTCTTGAGTGTCTTCTCG -ACGGAAGTCTTGAGTGTCTAGACG -ACGGAAGTCTTGAGTGTCGTAACG -ACGGAAGTCTTGAGTGTCACTTCG -ACGGAAGTCTTGAGTGTCTACGCA -ACGGAAGTCTTGAGTGTCCTTGCA -ACGGAAGTCTTGAGTGTCCGAACA -ACGGAAGTCTTGAGTGTCCAGTCA -ACGGAAGTCTTGAGTGTCGATCCA -ACGGAAGTCTTGAGTGTCACGACA -ACGGAAGTCTTGAGTGTCAGCTCA -ACGGAAGTCTTGAGTGTCTCACGT -ACGGAAGTCTTGAGTGTCCGTAGT -ACGGAAGTCTTGAGTGTCGTCAGT -ACGGAAGTCTTGAGTGTCGAAGGT -ACGGAAGTCTTGAGTGTCAACCGT -ACGGAAGTCTTGAGTGTCTTGTGC -ACGGAAGTCTTGAGTGTCCTAAGC -ACGGAAGTCTTGAGTGTCACTAGC -ACGGAAGTCTTGAGTGTCAGATGC -ACGGAAGTCTTGAGTGTCTGAAGG -ACGGAAGTCTTGAGTGTCCAATGG -ACGGAAGTCTTGAGTGTCATGAGG -ACGGAAGTCTTGAGTGTCAATGGG -ACGGAAGTCTTGAGTGTCTCCTGA -ACGGAAGTCTTGAGTGTCTAGCGA -ACGGAAGTCTTGAGTGTCCACAGA -ACGGAAGTCTTGAGTGTCGCAAGA -ACGGAAGTCTTGAGTGTCGGTTGA -ACGGAAGTCTTGAGTGTCTCCGAT -ACGGAAGTCTTGAGTGTCTGGCAT -ACGGAAGTCTTGAGTGTCCGAGAT -ACGGAAGTCTTGAGTGTCTACCAC -ACGGAAGTCTTGAGTGTCCAGAAC -ACGGAAGTCTTGAGTGTCGTCTAC -ACGGAAGTCTTGAGTGTCACGTAC -ACGGAAGTCTTGAGTGTCAGTGAC -ACGGAAGTCTTGAGTGTCCTGTAG -ACGGAAGTCTTGAGTGTCCCTAAG -ACGGAAGTCTTGAGTGTCGTTCAG -ACGGAAGTCTTGAGTGTCGCATAG -ACGGAAGTCTTGAGTGTCGACAAG -ACGGAAGTCTTGAGTGTCAAGCAG -ACGGAAGTCTTGAGTGTCCGTCAA -ACGGAAGTCTTGAGTGTCGCTGAA -ACGGAAGTCTTGAGTGTCAGTACG -ACGGAAGTCTTGAGTGTCATCCGA -ACGGAAGTCTTGAGTGTCATGGGA -ACGGAAGTCTTGAGTGTCGTGCAA -ACGGAAGTCTTGAGTGTCGAGGAA -ACGGAAGTCTTGAGTGTCCAGGTA -ACGGAAGTCTTGAGTGTCGACTCT -ACGGAAGTCTTGAGTGTCAGTCCT -ACGGAAGTCTTGAGTGTCTAAGCC -ACGGAAGTCTTGAGTGTCATAGCC -ACGGAAGTCTTGAGTGTCTAACCG -ACGGAAGTCTTGAGTGTCATGCCA -ACGGAAGTCTTGGGTGAAGGAAAC -ACGGAAGTCTTGGGTGAAAACACC -ACGGAAGTCTTGGGTGAAATCGAG -ACGGAAGTCTTGGGTGAACTCCTT -ACGGAAGTCTTGGGTGAACCTGTT -ACGGAAGTCTTGGGTGAACGGTTT -ACGGAAGTCTTGGGTGAAGTGGTT -ACGGAAGTCTTGGGTGAAGCCTTT -ACGGAAGTCTTGGGTGAAGGTCTT -ACGGAAGTCTTGGGTGAAACGCTT -ACGGAAGTCTTGGGTGAAAGCGTT -ACGGAAGTCTTGGGTGAATTCGTC -ACGGAAGTCTTGGGTGAATCTCTC -ACGGAAGTCTTGGGTGAATGGATC -ACGGAAGTCTTGGGTGAACACTTC -ACGGAAGTCTTGGGTGAAGTACTC -ACGGAAGTCTTGGGTGAAGATGTC -ACGGAAGTCTTGGGTGAAACAGTC -ACGGAAGTCTTGGGTGAATTGCTG -ACGGAAGTCTTGGGTGAATCCATG -ACGGAAGTCTTGGGTGAATGTGTG -ACGGAAGTCTTGGGTGAACTAGTG -ACGGAAGTCTTGGGTGAACATCTG -ACGGAAGTCTTGGGTGAAGAGTTG -ACGGAAGTCTTGGGTGAAAGACTG -ACGGAAGTCTTGGGTGAATCGGTA -ACGGAAGTCTTGGGTGAATGCCTA -ACGGAAGTCTTGGGTGAACCACTA -ACGGAAGTCTTGGGTGAAGGAGTA -ACGGAAGTCTTGGGTGAATCGTCT -ACGGAAGTCTTGGGTGAATGCACT -ACGGAAGTCTTGGGTGAACTGACT -ACGGAAGTCTTGGGTGAACAACCT -ACGGAAGTCTTGGGTGAAGCTACT -ACGGAAGTCTTGGGTGAAGGATCT -ACGGAAGTCTTGGGTGAAAAGGCT -ACGGAAGTCTTGGGTGAATCAACC -ACGGAAGTCTTGGGTGAATGTTCC -ACGGAAGTCTTGGGTGAAATTCCC -ACGGAAGTCTTGGGTGAATTCTCG -ACGGAAGTCTTGGGTGAATAGACG -ACGGAAGTCTTGGGTGAAGTAACG -ACGGAAGTCTTGGGTGAAACTTCG -ACGGAAGTCTTGGGTGAATACGCA -ACGGAAGTCTTGGGTGAACTTGCA -ACGGAAGTCTTGGGTGAACGAACA -ACGGAAGTCTTGGGTGAACAGTCA -ACGGAAGTCTTGGGTGAAGATCCA -ACGGAAGTCTTGGGTGAAACGACA -ACGGAAGTCTTGGGTGAAAGCTCA -ACGGAAGTCTTGGGTGAATCACGT -ACGGAAGTCTTGGGTGAACGTAGT -ACGGAAGTCTTGGGTGAAGTCAGT -ACGGAAGTCTTGGGTGAAGAAGGT -ACGGAAGTCTTGGGTGAAAACCGT -ACGGAAGTCTTGGGTGAATTGTGC -ACGGAAGTCTTGGGTGAACTAAGC -ACGGAAGTCTTGGGTGAAACTAGC -ACGGAAGTCTTGGGTGAAAGATGC -ACGGAAGTCTTGGGTGAATGAAGG -ACGGAAGTCTTGGGTGAACAATGG -ACGGAAGTCTTGGGTGAAATGAGG -ACGGAAGTCTTGGGTGAAAATGGG -ACGGAAGTCTTGGGTGAATCCTGA -ACGGAAGTCTTGGGTGAATAGCGA -ACGGAAGTCTTGGGTGAACACAGA -ACGGAAGTCTTGGGTGAAGCAAGA -ACGGAAGTCTTGGGTGAAGGTTGA -ACGGAAGTCTTGGGTGAATCCGAT -ACGGAAGTCTTGGGTGAATGGCAT -ACGGAAGTCTTGGGTGAACGAGAT -ACGGAAGTCTTGGGTGAATACCAC -ACGGAAGTCTTGGGTGAACAGAAC -ACGGAAGTCTTGGGTGAAGTCTAC -ACGGAAGTCTTGGGTGAAACGTAC -ACGGAAGTCTTGGGTGAAAGTGAC -ACGGAAGTCTTGGGTGAACTGTAG -ACGGAAGTCTTGGGTGAACCTAAG -ACGGAAGTCTTGGGTGAAGTTCAG -ACGGAAGTCTTGGGTGAAGCATAG -ACGGAAGTCTTGGGTGAAGACAAG -ACGGAAGTCTTGGGTGAAAAGCAG -ACGGAAGTCTTGGGTGAACGTCAA -ACGGAAGTCTTGGGTGAAGCTGAA -ACGGAAGTCTTGGGTGAAAGTACG -ACGGAAGTCTTGGGTGAAATCCGA -ACGGAAGTCTTGGGTGAAATGGGA -ACGGAAGTCTTGGGTGAAGTGCAA -ACGGAAGTCTTGGGTGAAGAGGAA -ACGGAAGTCTTGGGTGAACAGGTA -ACGGAAGTCTTGGGTGAAGACTCT -ACGGAAGTCTTGGGTGAAAGTCCT -ACGGAAGTCTTGGGTGAATAAGCC -ACGGAAGTCTTGGGTGAAATAGCC -ACGGAAGTCTTGGGTGAATAACCG -ACGGAAGTCTTGGGTGAAATGCCA -ACGGAAGTCTTGCGTAACGGAAAC -ACGGAAGTCTTGCGTAACAACACC -ACGGAAGTCTTGCGTAACATCGAG -ACGGAAGTCTTGCGTAACCTCCTT -ACGGAAGTCTTGCGTAACCCTGTT -ACGGAAGTCTTGCGTAACCGGTTT -ACGGAAGTCTTGCGTAACGTGGTT -ACGGAAGTCTTGCGTAACGCCTTT -ACGGAAGTCTTGCGTAACGGTCTT -ACGGAAGTCTTGCGTAACACGCTT -ACGGAAGTCTTGCGTAACAGCGTT -ACGGAAGTCTTGCGTAACTTCGTC -ACGGAAGTCTTGCGTAACTCTCTC -ACGGAAGTCTTGCGTAACTGGATC -ACGGAAGTCTTGCGTAACCACTTC -ACGGAAGTCTTGCGTAACGTACTC -ACGGAAGTCTTGCGTAACGATGTC -ACGGAAGTCTTGCGTAACACAGTC -ACGGAAGTCTTGCGTAACTTGCTG -ACGGAAGTCTTGCGTAACTCCATG -ACGGAAGTCTTGCGTAACTGTGTG -ACGGAAGTCTTGCGTAACCTAGTG -ACGGAAGTCTTGCGTAACCATCTG -ACGGAAGTCTTGCGTAACGAGTTG -ACGGAAGTCTTGCGTAACAGACTG -ACGGAAGTCTTGCGTAACTCGGTA -ACGGAAGTCTTGCGTAACTGCCTA -ACGGAAGTCTTGCGTAACCCACTA -ACGGAAGTCTTGCGTAACGGAGTA -ACGGAAGTCTTGCGTAACTCGTCT -ACGGAAGTCTTGCGTAACTGCACT -ACGGAAGTCTTGCGTAACCTGACT -ACGGAAGTCTTGCGTAACCAACCT -ACGGAAGTCTTGCGTAACGCTACT -ACGGAAGTCTTGCGTAACGGATCT -ACGGAAGTCTTGCGTAACAAGGCT -ACGGAAGTCTTGCGTAACTCAACC -ACGGAAGTCTTGCGTAACTGTTCC -ACGGAAGTCTTGCGTAACATTCCC -ACGGAAGTCTTGCGTAACTTCTCG -ACGGAAGTCTTGCGTAACTAGACG -ACGGAAGTCTTGCGTAACGTAACG -ACGGAAGTCTTGCGTAACACTTCG -ACGGAAGTCTTGCGTAACTACGCA -ACGGAAGTCTTGCGTAACCTTGCA -ACGGAAGTCTTGCGTAACCGAACA -ACGGAAGTCTTGCGTAACCAGTCA -ACGGAAGTCTTGCGTAACGATCCA -ACGGAAGTCTTGCGTAACACGACA -ACGGAAGTCTTGCGTAACAGCTCA -ACGGAAGTCTTGCGTAACTCACGT -ACGGAAGTCTTGCGTAACCGTAGT -ACGGAAGTCTTGCGTAACGTCAGT -ACGGAAGTCTTGCGTAACGAAGGT -ACGGAAGTCTTGCGTAACAACCGT -ACGGAAGTCTTGCGTAACTTGTGC -ACGGAAGTCTTGCGTAACCTAAGC -ACGGAAGTCTTGCGTAACACTAGC -ACGGAAGTCTTGCGTAACAGATGC -ACGGAAGTCTTGCGTAACTGAAGG -ACGGAAGTCTTGCGTAACCAATGG -ACGGAAGTCTTGCGTAACATGAGG -ACGGAAGTCTTGCGTAACAATGGG -ACGGAAGTCTTGCGTAACTCCTGA -ACGGAAGTCTTGCGTAACTAGCGA -ACGGAAGTCTTGCGTAACCACAGA -ACGGAAGTCTTGCGTAACGCAAGA -ACGGAAGTCTTGCGTAACGGTTGA -ACGGAAGTCTTGCGTAACTCCGAT -ACGGAAGTCTTGCGTAACTGGCAT -ACGGAAGTCTTGCGTAACCGAGAT -ACGGAAGTCTTGCGTAACTACCAC -ACGGAAGTCTTGCGTAACCAGAAC -ACGGAAGTCTTGCGTAACGTCTAC -ACGGAAGTCTTGCGTAACACGTAC -ACGGAAGTCTTGCGTAACAGTGAC -ACGGAAGTCTTGCGTAACCTGTAG -ACGGAAGTCTTGCGTAACCCTAAG -ACGGAAGTCTTGCGTAACGTTCAG -ACGGAAGTCTTGCGTAACGCATAG -ACGGAAGTCTTGCGTAACGACAAG -ACGGAAGTCTTGCGTAACAAGCAG -ACGGAAGTCTTGCGTAACCGTCAA -ACGGAAGTCTTGCGTAACGCTGAA -ACGGAAGTCTTGCGTAACAGTACG -ACGGAAGTCTTGCGTAACATCCGA -ACGGAAGTCTTGCGTAACATGGGA -ACGGAAGTCTTGCGTAACGTGCAA -ACGGAAGTCTTGCGTAACGAGGAA -ACGGAAGTCTTGCGTAACCAGGTA -ACGGAAGTCTTGCGTAACGACTCT -ACGGAAGTCTTGCGTAACAGTCCT -ACGGAAGTCTTGCGTAACTAAGCC -ACGGAAGTCTTGCGTAACATAGCC -ACGGAAGTCTTGCGTAACTAACCG -ACGGAAGTCTTGCGTAACATGCCA -ACGGAAGTCTTGTGCTTGGGAAAC -ACGGAAGTCTTGTGCTTGAACACC -ACGGAAGTCTTGTGCTTGATCGAG -ACGGAAGTCTTGTGCTTGCTCCTT -ACGGAAGTCTTGTGCTTGCCTGTT -ACGGAAGTCTTGTGCTTGCGGTTT -ACGGAAGTCTTGTGCTTGGTGGTT -ACGGAAGTCTTGTGCTTGGCCTTT -ACGGAAGTCTTGTGCTTGGGTCTT -ACGGAAGTCTTGTGCTTGACGCTT -ACGGAAGTCTTGTGCTTGAGCGTT -ACGGAAGTCTTGTGCTTGTTCGTC -ACGGAAGTCTTGTGCTTGTCTCTC -ACGGAAGTCTTGTGCTTGTGGATC -ACGGAAGTCTTGTGCTTGCACTTC -ACGGAAGTCTTGTGCTTGGTACTC -ACGGAAGTCTTGTGCTTGGATGTC -ACGGAAGTCTTGTGCTTGACAGTC -ACGGAAGTCTTGTGCTTGTTGCTG -ACGGAAGTCTTGTGCTTGTCCATG -ACGGAAGTCTTGTGCTTGTGTGTG -ACGGAAGTCTTGTGCTTGCTAGTG -ACGGAAGTCTTGTGCTTGCATCTG -ACGGAAGTCTTGTGCTTGGAGTTG -ACGGAAGTCTTGTGCTTGAGACTG -ACGGAAGTCTTGTGCTTGTCGGTA -ACGGAAGTCTTGTGCTTGTGCCTA -ACGGAAGTCTTGTGCTTGCCACTA -ACGGAAGTCTTGTGCTTGGGAGTA -ACGGAAGTCTTGTGCTTGTCGTCT -ACGGAAGTCTTGTGCTTGTGCACT -ACGGAAGTCTTGTGCTTGCTGACT -ACGGAAGTCTTGTGCTTGCAACCT -ACGGAAGTCTTGTGCTTGGCTACT -ACGGAAGTCTTGTGCTTGGGATCT -ACGGAAGTCTTGTGCTTGAAGGCT -ACGGAAGTCTTGTGCTTGTCAACC -ACGGAAGTCTTGTGCTTGTGTTCC -ACGGAAGTCTTGTGCTTGATTCCC -ACGGAAGTCTTGTGCTTGTTCTCG -ACGGAAGTCTTGTGCTTGTAGACG -ACGGAAGTCTTGTGCTTGGTAACG -ACGGAAGTCTTGTGCTTGACTTCG -ACGGAAGTCTTGTGCTTGTACGCA -ACGGAAGTCTTGTGCTTGCTTGCA -ACGGAAGTCTTGTGCTTGCGAACA -ACGGAAGTCTTGTGCTTGCAGTCA -ACGGAAGTCTTGTGCTTGGATCCA -ACGGAAGTCTTGTGCTTGACGACA -ACGGAAGTCTTGTGCTTGAGCTCA -ACGGAAGTCTTGTGCTTGTCACGT -ACGGAAGTCTTGTGCTTGCGTAGT -ACGGAAGTCTTGTGCTTGGTCAGT -ACGGAAGTCTTGTGCTTGGAAGGT -ACGGAAGTCTTGTGCTTGAACCGT -ACGGAAGTCTTGTGCTTGTTGTGC -ACGGAAGTCTTGTGCTTGCTAAGC -ACGGAAGTCTTGTGCTTGACTAGC -ACGGAAGTCTTGTGCTTGAGATGC -ACGGAAGTCTTGTGCTTGTGAAGG -ACGGAAGTCTTGTGCTTGCAATGG -ACGGAAGTCTTGTGCTTGATGAGG -ACGGAAGTCTTGTGCTTGAATGGG -ACGGAAGTCTTGTGCTTGTCCTGA -ACGGAAGTCTTGTGCTTGTAGCGA -ACGGAAGTCTTGTGCTTGCACAGA -ACGGAAGTCTTGTGCTTGGCAAGA -ACGGAAGTCTTGTGCTTGGGTTGA -ACGGAAGTCTTGTGCTTGTCCGAT -ACGGAAGTCTTGTGCTTGTGGCAT -ACGGAAGTCTTGTGCTTGCGAGAT -ACGGAAGTCTTGTGCTTGTACCAC -ACGGAAGTCTTGTGCTTGCAGAAC -ACGGAAGTCTTGTGCTTGGTCTAC -ACGGAAGTCTTGTGCTTGACGTAC -ACGGAAGTCTTGTGCTTGAGTGAC -ACGGAAGTCTTGTGCTTGCTGTAG -ACGGAAGTCTTGTGCTTGCCTAAG -ACGGAAGTCTTGTGCTTGGTTCAG -ACGGAAGTCTTGTGCTTGGCATAG -ACGGAAGTCTTGTGCTTGGACAAG -ACGGAAGTCTTGTGCTTGAAGCAG -ACGGAAGTCTTGTGCTTGCGTCAA -ACGGAAGTCTTGTGCTTGGCTGAA -ACGGAAGTCTTGTGCTTGAGTACG -ACGGAAGTCTTGTGCTTGATCCGA -ACGGAAGTCTTGTGCTTGATGGGA -ACGGAAGTCTTGTGCTTGGTGCAA -ACGGAAGTCTTGTGCTTGGAGGAA -ACGGAAGTCTTGTGCTTGCAGGTA -ACGGAAGTCTTGTGCTTGGACTCT -ACGGAAGTCTTGTGCTTGAGTCCT -ACGGAAGTCTTGTGCTTGTAAGCC -ACGGAAGTCTTGTGCTTGATAGCC -ACGGAAGTCTTGTGCTTGTAACCG -ACGGAAGTCTTGTGCTTGATGCCA -ACGGAAGTCTTGAGCCTAGGAAAC -ACGGAAGTCTTGAGCCTAAACACC -ACGGAAGTCTTGAGCCTAATCGAG -ACGGAAGTCTTGAGCCTACTCCTT -ACGGAAGTCTTGAGCCTACCTGTT -ACGGAAGTCTTGAGCCTACGGTTT -ACGGAAGTCTTGAGCCTAGTGGTT -ACGGAAGTCTTGAGCCTAGCCTTT -ACGGAAGTCTTGAGCCTAGGTCTT -ACGGAAGTCTTGAGCCTAACGCTT -ACGGAAGTCTTGAGCCTAAGCGTT -ACGGAAGTCTTGAGCCTATTCGTC -ACGGAAGTCTTGAGCCTATCTCTC -ACGGAAGTCTTGAGCCTATGGATC -ACGGAAGTCTTGAGCCTACACTTC -ACGGAAGTCTTGAGCCTAGTACTC -ACGGAAGTCTTGAGCCTAGATGTC -ACGGAAGTCTTGAGCCTAACAGTC -ACGGAAGTCTTGAGCCTATTGCTG -ACGGAAGTCTTGAGCCTATCCATG -ACGGAAGTCTTGAGCCTATGTGTG -ACGGAAGTCTTGAGCCTACTAGTG -ACGGAAGTCTTGAGCCTACATCTG -ACGGAAGTCTTGAGCCTAGAGTTG -ACGGAAGTCTTGAGCCTAAGACTG -ACGGAAGTCTTGAGCCTATCGGTA -ACGGAAGTCTTGAGCCTATGCCTA -ACGGAAGTCTTGAGCCTACCACTA -ACGGAAGTCTTGAGCCTAGGAGTA -ACGGAAGTCTTGAGCCTATCGTCT -ACGGAAGTCTTGAGCCTATGCACT -ACGGAAGTCTTGAGCCTACTGACT -ACGGAAGTCTTGAGCCTACAACCT -ACGGAAGTCTTGAGCCTAGCTACT -ACGGAAGTCTTGAGCCTAGGATCT -ACGGAAGTCTTGAGCCTAAAGGCT -ACGGAAGTCTTGAGCCTATCAACC -ACGGAAGTCTTGAGCCTATGTTCC -ACGGAAGTCTTGAGCCTAATTCCC -ACGGAAGTCTTGAGCCTATTCTCG -ACGGAAGTCTTGAGCCTATAGACG -ACGGAAGTCTTGAGCCTAGTAACG -ACGGAAGTCTTGAGCCTAACTTCG -ACGGAAGTCTTGAGCCTATACGCA -ACGGAAGTCTTGAGCCTACTTGCA -ACGGAAGTCTTGAGCCTACGAACA -ACGGAAGTCTTGAGCCTACAGTCA -ACGGAAGTCTTGAGCCTAGATCCA -ACGGAAGTCTTGAGCCTAACGACA -ACGGAAGTCTTGAGCCTAAGCTCA -ACGGAAGTCTTGAGCCTATCACGT -ACGGAAGTCTTGAGCCTACGTAGT -ACGGAAGTCTTGAGCCTAGTCAGT -ACGGAAGTCTTGAGCCTAGAAGGT -ACGGAAGTCTTGAGCCTAAACCGT -ACGGAAGTCTTGAGCCTATTGTGC -ACGGAAGTCTTGAGCCTACTAAGC -ACGGAAGTCTTGAGCCTAACTAGC -ACGGAAGTCTTGAGCCTAAGATGC -ACGGAAGTCTTGAGCCTATGAAGG -ACGGAAGTCTTGAGCCTACAATGG -ACGGAAGTCTTGAGCCTAATGAGG -ACGGAAGTCTTGAGCCTAAATGGG -ACGGAAGTCTTGAGCCTATCCTGA -ACGGAAGTCTTGAGCCTATAGCGA -ACGGAAGTCTTGAGCCTACACAGA -ACGGAAGTCTTGAGCCTAGCAAGA -ACGGAAGTCTTGAGCCTAGGTTGA -ACGGAAGTCTTGAGCCTATCCGAT -ACGGAAGTCTTGAGCCTATGGCAT -ACGGAAGTCTTGAGCCTACGAGAT -ACGGAAGTCTTGAGCCTATACCAC -ACGGAAGTCTTGAGCCTACAGAAC -ACGGAAGTCTTGAGCCTAGTCTAC -ACGGAAGTCTTGAGCCTAACGTAC -ACGGAAGTCTTGAGCCTAAGTGAC -ACGGAAGTCTTGAGCCTACTGTAG -ACGGAAGTCTTGAGCCTACCTAAG -ACGGAAGTCTTGAGCCTAGTTCAG -ACGGAAGTCTTGAGCCTAGCATAG -ACGGAAGTCTTGAGCCTAGACAAG -ACGGAAGTCTTGAGCCTAAAGCAG -ACGGAAGTCTTGAGCCTACGTCAA -ACGGAAGTCTTGAGCCTAGCTGAA -ACGGAAGTCTTGAGCCTAAGTACG -ACGGAAGTCTTGAGCCTAATCCGA -ACGGAAGTCTTGAGCCTAATGGGA -ACGGAAGTCTTGAGCCTAGTGCAA -ACGGAAGTCTTGAGCCTAGAGGAA -ACGGAAGTCTTGAGCCTACAGGTA -ACGGAAGTCTTGAGCCTAGACTCT -ACGGAAGTCTTGAGCCTAAGTCCT -ACGGAAGTCTTGAGCCTATAAGCC -ACGGAAGTCTTGAGCCTAATAGCC -ACGGAAGTCTTGAGCCTATAACCG -ACGGAAGTCTTGAGCCTAATGCCA -ACGGAAGTCTTGAGCACTGGAAAC -ACGGAAGTCTTGAGCACTAACACC -ACGGAAGTCTTGAGCACTATCGAG -ACGGAAGTCTTGAGCACTCTCCTT -ACGGAAGTCTTGAGCACTCCTGTT -ACGGAAGTCTTGAGCACTCGGTTT -ACGGAAGTCTTGAGCACTGTGGTT -ACGGAAGTCTTGAGCACTGCCTTT -ACGGAAGTCTTGAGCACTGGTCTT -ACGGAAGTCTTGAGCACTACGCTT -ACGGAAGTCTTGAGCACTAGCGTT -ACGGAAGTCTTGAGCACTTTCGTC -ACGGAAGTCTTGAGCACTTCTCTC -ACGGAAGTCTTGAGCACTTGGATC -ACGGAAGTCTTGAGCACTCACTTC -ACGGAAGTCTTGAGCACTGTACTC -ACGGAAGTCTTGAGCACTGATGTC -ACGGAAGTCTTGAGCACTACAGTC -ACGGAAGTCTTGAGCACTTTGCTG -ACGGAAGTCTTGAGCACTTCCATG -ACGGAAGTCTTGAGCACTTGTGTG -ACGGAAGTCTTGAGCACTCTAGTG -ACGGAAGTCTTGAGCACTCATCTG -ACGGAAGTCTTGAGCACTGAGTTG -ACGGAAGTCTTGAGCACTAGACTG -ACGGAAGTCTTGAGCACTTCGGTA -ACGGAAGTCTTGAGCACTTGCCTA -ACGGAAGTCTTGAGCACTCCACTA -ACGGAAGTCTTGAGCACTGGAGTA -ACGGAAGTCTTGAGCACTTCGTCT -ACGGAAGTCTTGAGCACTTGCACT -ACGGAAGTCTTGAGCACTCTGACT -ACGGAAGTCTTGAGCACTCAACCT -ACGGAAGTCTTGAGCACTGCTACT -ACGGAAGTCTTGAGCACTGGATCT -ACGGAAGTCTTGAGCACTAAGGCT -ACGGAAGTCTTGAGCACTTCAACC -ACGGAAGTCTTGAGCACTTGTTCC -ACGGAAGTCTTGAGCACTATTCCC -ACGGAAGTCTTGAGCACTTTCTCG -ACGGAAGTCTTGAGCACTTAGACG -ACGGAAGTCTTGAGCACTGTAACG -ACGGAAGTCTTGAGCACTACTTCG -ACGGAAGTCTTGAGCACTTACGCA -ACGGAAGTCTTGAGCACTCTTGCA -ACGGAAGTCTTGAGCACTCGAACA -ACGGAAGTCTTGAGCACTCAGTCA -ACGGAAGTCTTGAGCACTGATCCA -ACGGAAGTCTTGAGCACTACGACA -ACGGAAGTCTTGAGCACTAGCTCA -ACGGAAGTCTTGAGCACTTCACGT -ACGGAAGTCTTGAGCACTCGTAGT -ACGGAAGTCTTGAGCACTGTCAGT -ACGGAAGTCTTGAGCACTGAAGGT -ACGGAAGTCTTGAGCACTAACCGT -ACGGAAGTCTTGAGCACTTTGTGC -ACGGAAGTCTTGAGCACTCTAAGC -ACGGAAGTCTTGAGCACTACTAGC -ACGGAAGTCTTGAGCACTAGATGC -ACGGAAGTCTTGAGCACTTGAAGG -ACGGAAGTCTTGAGCACTCAATGG -ACGGAAGTCTTGAGCACTATGAGG -ACGGAAGTCTTGAGCACTAATGGG -ACGGAAGTCTTGAGCACTTCCTGA -ACGGAAGTCTTGAGCACTTAGCGA -ACGGAAGTCTTGAGCACTCACAGA -ACGGAAGTCTTGAGCACTGCAAGA -ACGGAAGTCTTGAGCACTGGTTGA -ACGGAAGTCTTGAGCACTTCCGAT -ACGGAAGTCTTGAGCACTTGGCAT -ACGGAAGTCTTGAGCACTCGAGAT -ACGGAAGTCTTGAGCACTTACCAC -ACGGAAGTCTTGAGCACTCAGAAC -ACGGAAGTCTTGAGCACTGTCTAC -ACGGAAGTCTTGAGCACTACGTAC -ACGGAAGTCTTGAGCACTAGTGAC -ACGGAAGTCTTGAGCACTCTGTAG -ACGGAAGTCTTGAGCACTCCTAAG -ACGGAAGTCTTGAGCACTGTTCAG -ACGGAAGTCTTGAGCACTGCATAG -ACGGAAGTCTTGAGCACTGACAAG -ACGGAAGTCTTGAGCACTAAGCAG -ACGGAAGTCTTGAGCACTCGTCAA -ACGGAAGTCTTGAGCACTGCTGAA -ACGGAAGTCTTGAGCACTAGTACG -ACGGAAGTCTTGAGCACTATCCGA -ACGGAAGTCTTGAGCACTATGGGA -ACGGAAGTCTTGAGCACTGTGCAA -ACGGAAGTCTTGAGCACTGAGGAA -ACGGAAGTCTTGAGCACTCAGGTA -ACGGAAGTCTTGAGCACTGACTCT -ACGGAAGTCTTGAGCACTAGTCCT -ACGGAAGTCTTGAGCACTTAAGCC -ACGGAAGTCTTGAGCACTATAGCC -ACGGAAGTCTTGAGCACTTAACCG -ACGGAAGTCTTGAGCACTATGCCA -ACGGAAGTCTTGTGCAGAGGAAAC -ACGGAAGTCTTGTGCAGAAACACC -ACGGAAGTCTTGTGCAGAATCGAG -ACGGAAGTCTTGTGCAGACTCCTT -ACGGAAGTCTTGTGCAGACCTGTT -ACGGAAGTCTTGTGCAGACGGTTT -ACGGAAGTCTTGTGCAGAGTGGTT -ACGGAAGTCTTGTGCAGAGCCTTT -ACGGAAGTCTTGTGCAGAGGTCTT -ACGGAAGTCTTGTGCAGAACGCTT -ACGGAAGTCTTGTGCAGAAGCGTT -ACGGAAGTCTTGTGCAGATTCGTC -ACGGAAGTCTTGTGCAGATCTCTC -ACGGAAGTCTTGTGCAGATGGATC -ACGGAAGTCTTGTGCAGACACTTC -ACGGAAGTCTTGTGCAGAGTACTC -ACGGAAGTCTTGTGCAGAGATGTC -ACGGAAGTCTTGTGCAGAACAGTC -ACGGAAGTCTTGTGCAGATTGCTG -ACGGAAGTCTTGTGCAGATCCATG -ACGGAAGTCTTGTGCAGATGTGTG -ACGGAAGTCTTGTGCAGACTAGTG -ACGGAAGTCTTGTGCAGACATCTG -ACGGAAGTCTTGTGCAGAGAGTTG -ACGGAAGTCTTGTGCAGAAGACTG -ACGGAAGTCTTGTGCAGATCGGTA -ACGGAAGTCTTGTGCAGATGCCTA -ACGGAAGTCTTGTGCAGACCACTA -ACGGAAGTCTTGTGCAGAGGAGTA -ACGGAAGTCTTGTGCAGATCGTCT -ACGGAAGTCTTGTGCAGATGCACT -ACGGAAGTCTTGTGCAGACTGACT -ACGGAAGTCTTGTGCAGACAACCT -ACGGAAGTCTTGTGCAGAGCTACT -ACGGAAGTCTTGTGCAGAGGATCT -ACGGAAGTCTTGTGCAGAAAGGCT -ACGGAAGTCTTGTGCAGATCAACC -ACGGAAGTCTTGTGCAGATGTTCC -ACGGAAGTCTTGTGCAGAATTCCC -ACGGAAGTCTTGTGCAGATTCTCG -ACGGAAGTCTTGTGCAGATAGACG -ACGGAAGTCTTGTGCAGAGTAACG -ACGGAAGTCTTGTGCAGAACTTCG -ACGGAAGTCTTGTGCAGATACGCA -ACGGAAGTCTTGTGCAGACTTGCA -ACGGAAGTCTTGTGCAGACGAACA -ACGGAAGTCTTGTGCAGACAGTCA -ACGGAAGTCTTGTGCAGAGATCCA -ACGGAAGTCTTGTGCAGAACGACA -ACGGAAGTCTTGTGCAGAAGCTCA -ACGGAAGTCTTGTGCAGATCACGT -ACGGAAGTCTTGTGCAGACGTAGT -ACGGAAGTCTTGTGCAGAGTCAGT -ACGGAAGTCTTGTGCAGAGAAGGT -ACGGAAGTCTTGTGCAGAAACCGT -ACGGAAGTCTTGTGCAGATTGTGC -ACGGAAGTCTTGTGCAGACTAAGC -ACGGAAGTCTTGTGCAGAACTAGC -ACGGAAGTCTTGTGCAGAAGATGC -ACGGAAGTCTTGTGCAGATGAAGG -ACGGAAGTCTTGTGCAGACAATGG -ACGGAAGTCTTGTGCAGAATGAGG -ACGGAAGTCTTGTGCAGAAATGGG -ACGGAAGTCTTGTGCAGATCCTGA -ACGGAAGTCTTGTGCAGATAGCGA -ACGGAAGTCTTGTGCAGACACAGA -ACGGAAGTCTTGTGCAGAGCAAGA -ACGGAAGTCTTGTGCAGAGGTTGA -ACGGAAGTCTTGTGCAGATCCGAT -ACGGAAGTCTTGTGCAGATGGCAT -ACGGAAGTCTTGTGCAGACGAGAT -ACGGAAGTCTTGTGCAGATACCAC -ACGGAAGTCTTGTGCAGACAGAAC -ACGGAAGTCTTGTGCAGAGTCTAC -ACGGAAGTCTTGTGCAGAACGTAC -ACGGAAGTCTTGTGCAGAAGTGAC -ACGGAAGTCTTGTGCAGACTGTAG -ACGGAAGTCTTGTGCAGACCTAAG -ACGGAAGTCTTGTGCAGAGTTCAG -ACGGAAGTCTTGTGCAGAGCATAG -ACGGAAGTCTTGTGCAGAGACAAG -ACGGAAGTCTTGTGCAGAAAGCAG -ACGGAAGTCTTGTGCAGACGTCAA -ACGGAAGTCTTGTGCAGAGCTGAA -ACGGAAGTCTTGTGCAGAAGTACG -ACGGAAGTCTTGTGCAGAATCCGA -ACGGAAGTCTTGTGCAGAATGGGA -ACGGAAGTCTTGTGCAGAGTGCAA -ACGGAAGTCTTGTGCAGAGAGGAA -ACGGAAGTCTTGTGCAGACAGGTA -ACGGAAGTCTTGTGCAGAGACTCT -ACGGAAGTCTTGTGCAGAAGTCCT -ACGGAAGTCTTGTGCAGATAAGCC -ACGGAAGTCTTGTGCAGAATAGCC -ACGGAAGTCTTGTGCAGATAACCG -ACGGAAGTCTTGTGCAGAATGCCA -ACGGAAGTCTTGAGGTGAGGAAAC -ACGGAAGTCTTGAGGTGAAACACC -ACGGAAGTCTTGAGGTGAATCGAG -ACGGAAGTCTTGAGGTGACTCCTT -ACGGAAGTCTTGAGGTGACCTGTT -ACGGAAGTCTTGAGGTGACGGTTT -ACGGAAGTCTTGAGGTGAGTGGTT -ACGGAAGTCTTGAGGTGAGCCTTT -ACGGAAGTCTTGAGGTGAGGTCTT -ACGGAAGTCTTGAGGTGAACGCTT -ACGGAAGTCTTGAGGTGAAGCGTT -ACGGAAGTCTTGAGGTGATTCGTC -ACGGAAGTCTTGAGGTGATCTCTC -ACGGAAGTCTTGAGGTGATGGATC -ACGGAAGTCTTGAGGTGACACTTC -ACGGAAGTCTTGAGGTGAGTACTC -ACGGAAGTCTTGAGGTGAGATGTC -ACGGAAGTCTTGAGGTGAACAGTC -ACGGAAGTCTTGAGGTGATTGCTG -ACGGAAGTCTTGAGGTGATCCATG -ACGGAAGTCTTGAGGTGATGTGTG -ACGGAAGTCTTGAGGTGACTAGTG -ACGGAAGTCTTGAGGTGACATCTG -ACGGAAGTCTTGAGGTGAGAGTTG -ACGGAAGTCTTGAGGTGAAGACTG -ACGGAAGTCTTGAGGTGATCGGTA -ACGGAAGTCTTGAGGTGATGCCTA -ACGGAAGTCTTGAGGTGACCACTA -ACGGAAGTCTTGAGGTGAGGAGTA -ACGGAAGTCTTGAGGTGATCGTCT -ACGGAAGTCTTGAGGTGATGCACT -ACGGAAGTCTTGAGGTGACTGACT -ACGGAAGTCTTGAGGTGACAACCT -ACGGAAGTCTTGAGGTGAGCTACT -ACGGAAGTCTTGAGGTGAGGATCT -ACGGAAGTCTTGAGGTGAAAGGCT -ACGGAAGTCTTGAGGTGATCAACC -ACGGAAGTCTTGAGGTGATGTTCC -ACGGAAGTCTTGAGGTGAATTCCC -ACGGAAGTCTTGAGGTGATTCTCG -ACGGAAGTCTTGAGGTGATAGACG -ACGGAAGTCTTGAGGTGAGTAACG -ACGGAAGTCTTGAGGTGAACTTCG -ACGGAAGTCTTGAGGTGATACGCA -ACGGAAGTCTTGAGGTGACTTGCA -ACGGAAGTCTTGAGGTGACGAACA -ACGGAAGTCTTGAGGTGACAGTCA -ACGGAAGTCTTGAGGTGAGATCCA -ACGGAAGTCTTGAGGTGAACGACA -ACGGAAGTCTTGAGGTGAAGCTCA -ACGGAAGTCTTGAGGTGATCACGT -ACGGAAGTCTTGAGGTGACGTAGT -ACGGAAGTCTTGAGGTGAGTCAGT -ACGGAAGTCTTGAGGTGAGAAGGT -ACGGAAGTCTTGAGGTGAAACCGT -ACGGAAGTCTTGAGGTGATTGTGC -ACGGAAGTCTTGAGGTGACTAAGC -ACGGAAGTCTTGAGGTGAACTAGC -ACGGAAGTCTTGAGGTGAAGATGC -ACGGAAGTCTTGAGGTGATGAAGG -ACGGAAGTCTTGAGGTGACAATGG -ACGGAAGTCTTGAGGTGAATGAGG -ACGGAAGTCTTGAGGTGAAATGGG -ACGGAAGTCTTGAGGTGATCCTGA -ACGGAAGTCTTGAGGTGATAGCGA -ACGGAAGTCTTGAGGTGACACAGA -ACGGAAGTCTTGAGGTGAGCAAGA -ACGGAAGTCTTGAGGTGAGGTTGA -ACGGAAGTCTTGAGGTGATCCGAT -ACGGAAGTCTTGAGGTGATGGCAT -ACGGAAGTCTTGAGGTGACGAGAT -ACGGAAGTCTTGAGGTGATACCAC -ACGGAAGTCTTGAGGTGACAGAAC -ACGGAAGTCTTGAGGTGAGTCTAC -ACGGAAGTCTTGAGGTGAACGTAC -ACGGAAGTCTTGAGGTGAAGTGAC -ACGGAAGTCTTGAGGTGACTGTAG -ACGGAAGTCTTGAGGTGACCTAAG -ACGGAAGTCTTGAGGTGAGTTCAG -ACGGAAGTCTTGAGGTGAGCATAG -ACGGAAGTCTTGAGGTGAGACAAG -ACGGAAGTCTTGAGGTGAAAGCAG -ACGGAAGTCTTGAGGTGACGTCAA -ACGGAAGTCTTGAGGTGAGCTGAA -ACGGAAGTCTTGAGGTGAAGTACG -ACGGAAGTCTTGAGGTGAATCCGA -ACGGAAGTCTTGAGGTGAATGGGA -ACGGAAGTCTTGAGGTGAGTGCAA -ACGGAAGTCTTGAGGTGAGAGGAA -ACGGAAGTCTTGAGGTGACAGGTA -ACGGAAGTCTTGAGGTGAGACTCT -ACGGAAGTCTTGAGGTGAAGTCCT -ACGGAAGTCTTGAGGTGATAAGCC -ACGGAAGTCTTGAGGTGAATAGCC -ACGGAAGTCTTGAGGTGATAACCG -ACGGAAGTCTTGAGGTGAATGCCA -ACGGAAGTCTTGTGGCAAGGAAAC -ACGGAAGTCTTGTGGCAAAACACC -ACGGAAGTCTTGTGGCAAATCGAG -ACGGAAGTCTTGTGGCAACTCCTT -ACGGAAGTCTTGTGGCAACCTGTT -ACGGAAGTCTTGTGGCAACGGTTT -ACGGAAGTCTTGTGGCAAGTGGTT -ACGGAAGTCTTGTGGCAAGCCTTT -ACGGAAGTCTTGTGGCAAGGTCTT -ACGGAAGTCTTGTGGCAAACGCTT -ACGGAAGTCTTGTGGCAAAGCGTT -ACGGAAGTCTTGTGGCAATTCGTC -ACGGAAGTCTTGTGGCAATCTCTC -ACGGAAGTCTTGTGGCAATGGATC -ACGGAAGTCTTGTGGCAACACTTC -ACGGAAGTCTTGTGGCAAGTACTC -ACGGAAGTCTTGTGGCAAGATGTC -ACGGAAGTCTTGTGGCAAACAGTC -ACGGAAGTCTTGTGGCAATTGCTG -ACGGAAGTCTTGTGGCAATCCATG -ACGGAAGTCTTGTGGCAATGTGTG -ACGGAAGTCTTGTGGCAACTAGTG -ACGGAAGTCTTGTGGCAACATCTG -ACGGAAGTCTTGTGGCAAGAGTTG -ACGGAAGTCTTGTGGCAAAGACTG -ACGGAAGTCTTGTGGCAATCGGTA -ACGGAAGTCTTGTGGCAATGCCTA -ACGGAAGTCTTGTGGCAACCACTA -ACGGAAGTCTTGTGGCAAGGAGTA -ACGGAAGTCTTGTGGCAATCGTCT -ACGGAAGTCTTGTGGCAATGCACT -ACGGAAGTCTTGTGGCAACTGACT -ACGGAAGTCTTGTGGCAACAACCT -ACGGAAGTCTTGTGGCAAGCTACT -ACGGAAGTCTTGTGGCAAGGATCT -ACGGAAGTCTTGTGGCAAAAGGCT -ACGGAAGTCTTGTGGCAATCAACC -ACGGAAGTCTTGTGGCAATGTTCC -ACGGAAGTCTTGTGGCAAATTCCC -ACGGAAGTCTTGTGGCAATTCTCG -ACGGAAGTCTTGTGGCAATAGACG -ACGGAAGTCTTGTGGCAAGTAACG -ACGGAAGTCTTGTGGCAAACTTCG -ACGGAAGTCTTGTGGCAATACGCA -ACGGAAGTCTTGTGGCAACTTGCA -ACGGAAGTCTTGTGGCAACGAACA -ACGGAAGTCTTGTGGCAACAGTCA -ACGGAAGTCTTGTGGCAAGATCCA -ACGGAAGTCTTGTGGCAAACGACA -ACGGAAGTCTTGTGGCAAAGCTCA -ACGGAAGTCTTGTGGCAATCACGT -ACGGAAGTCTTGTGGCAACGTAGT -ACGGAAGTCTTGTGGCAAGTCAGT -ACGGAAGTCTTGTGGCAAGAAGGT -ACGGAAGTCTTGTGGCAAAACCGT -ACGGAAGTCTTGTGGCAATTGTGC -ACGGAAGTCTTGTGGCAACTAAGC -ACGGAAGTCTTGTGGCAAACTAGC -ACGGAAGTCTTGTGGCAAAGATGC -ACGGAAGTCTTGTGGCAATGAAGG -ACGGAAGTCTTGTGGCAACAATGG -ACGGAAGTCTTGTGGCAAATGAGG -ACGGAAGTCTTGTGGCAAAATGGG -ACGGAAGTCTTGTGGCAATCCTGA -ACGGAAGTCTTGTGGCAATAGCGA -ACGGAAGTCTTGTGGCAACACAGA -ACGGAAGTCTTGTGGCAAGCAAGA -ACGGAAGTCTTGTGGCAAGGTTGA -ACGGAAGTCTTGTGGCAATCCGAT -ACGGAAGTCTTGTGGCAATGGCAT -ACGGAAGTCTTGTGGCAACGAGAT -ACGGAAGTCTTGTGGCAATACCAC -ACGGAAGTCTTGTGGCAACAGAAC -ACGGAAGTCTTGTGGCAAGTCTAC -ACGGAAGTCTTGTGGCAAACGTAC -ACGGAAGTCTTGTGGCAAAGTGAC -ACGGAAGTCTTGTGGCAACTGTAG -ACGGAAGTCTTGTGGCAACCTAAG -ACGGAAGTCTTGTGGCAAGTTCAG -ACGGAAGTCTTGTGGCAAGCATAG -ACGGAAGTCTTGTGGCAAGACAAG -ACGGAAGTCTTGTGGCAAAAGCAG -ACGGAAGTCTTGTGGCAACGTCAA -ACGGAAGTCTTGTGGCAAGCTGAA -ACGGAAGTCTTGTGGCAAAGTACG -ACGGAAGTCTTGTGGCAAATCCGA -ACGGAAGTCTTGTGGCAAATGGGA -ACGGAAGTCTTGTGGCAAGTGCAA -ACGGAAGTCTTGTGGCAAGAGGAA -ACGGAAGTCTTGTGGCAACAGGTA -ACGGAAGTCTTGTGGCAAGACTCT -ACGGAAGTCTTGTGGCAAAGTCCT -ACGGAAGTCTTGTGGCAATAAGCC -ACGGAAGTCTTGTGGCAAATAGCC -ACGGAAGTCTTGTGGCAATAACCG -ACGGAAGTCTTGTGGCAAATGCCA -ACGGAAGTCTTGAGGATGGGAAAC -ACGGAAGTCTTGAGGATGAACACC -ACGGAAGTCTTGAGGATGATCGAG -ACGGAAGTCTTGAGGATGCTCCTT -ACGGAAGTCTTGAGGATGCCTGTT -ACGGAAGTCTTGAGGATGCGGTTT -ACGGAAGTCTTGAGGATGGTGGTT -ACGGAAGTCTTGAGGATGGCCTTT -ACGGAAGTCTTGAGGATGGGTCTT -ACGGAAGTCTTGAGGATGACGCTT -ACGGAAGTCTTGAGGATGAGCGTT -ACGGAAGTCTTGAGGATGTTCGTC -ACGGAAGTCTTGAGGATGTCTCTC -ACGGAAGTCTTGAGGATGTGGATC -ACGGAAGTCTTGAGGATGCACTTC -ACGGAAGTCTTGAGGATGGTACTC -ACGGAAGTCTTGAGGATGGATGTC -ACGGAAGTCTTGAGGATGACAGTC -ACGGAAGTCTTGAGGATGTTGCTG -ACGGAAGTCTTGAGGATGTCCATG -ACGGAAGTCTTGAGGATGTGTGTG -ACGGAAGTCTTGAGGATGCTAGTG -ACGGAAGTCTTGAGGATGCATCTG -ACGGAAGTCTTGAGGATGGAGTTG -ACGGAAGTCTTGAGGATGAGACTG -ACGGAAGTCTTGAGGATGTCGGTA -ACGGAAGTCTTGAGGATGTGCCTA -ACGGAAGTCTTGAGGATGCCACTA -ACGGAAGTCTTGAGGATGGGAGTA -ACGGAAGTCTTGAGGATGTCGTCT -ACGGAAGTCTTGAGGATGTGCACT -ACGGAAGTCTTGAGGATGCTGACT -ACGGAAGTCTTGAGGATGCAACCT -ACGGAAGTCTTGAGGATGGCTACT -ACGGAAGTCTTGAGGATGGGATCT -ACGGAAGTCTTGAGGATGAAGGCT -ACGGAAGTCTTGAGGATGTCAACC -ACGGAAGTCTTGAGGATGTGTTCC -ACGGAAGTCTTGAGGATGATTCCC -ACGGAAGTCTTGAGGATGTTCTCG -ACGGAAGTCTTGAGGATGTAGACG -ACGGAAGTCTTGAGGATGGTAACG -ACGGAAGTCTTGAGGATGACTTCG -ACGGAAGTCTTGAGGATGTACGCA -ACGGAAGTCTTGAGGATGCTTGCA -ACGGAAGTCTTGAGGATGCGAACA -ACGGAAGTCTTGAGGATGCAGTCA -ACGGAAGTCTTGAGGATGGATCCA -ACGGAAGTCTTGAGGATGACGACA -ACGGAAGTCTTGAGGATGAGCTCA -ACGGAAGTCTTGAGGATGTCACGT -ACGGAAGTCTTGAGGATGCGTAGT -ACGGAAGTCTTGAGGATGGTCAGT -ACGGAAGTCTTGAGGATGGAAGGT -ACGGAAGTCTTGAGGATGAACCGT -ACGGAAGTCTTGAGGATGTTGTGC -ACGGAAGTCTTGAGGATGCTAAGC -ACGGAAGTCTTGAGGATGACTAGC -ACGGAAGTCTTGAGGATGAGATGC -ACGGAAGTCTTGAGGATGTGAAGG -ACGGAAGTCTTGAGGATGCAATGG -ACGGAAGTCTTGAGGATGATGAGG -ACGGAAGTCTTGAGGATGAATGGG -ACGGAAGTCTTGAGGATGTCCTGA -ACGGAAGTCTTGAGGATGTAGCGA -ACGGAAGTCTTGAGGATGCACAGA -ACGGAAGTCTTGAGGATGGCAAGA -ACGGAAGTCTTGAGGATGGGTTGA -ACGGAAGTCTTGAGGATGTCCGAT -ACGGAAGTCTTGAGGATGTGGCAT -ACGGAAGTCTTGAGGATGCGAGAT -ACGGAAGTCTTGAGGATGTACCAC -ACGGAAGTCTTGAGGATGCAGAAC -ACGGAAGTCTTGAGGATGGTCTAC -ACGGAAGTCTTGAGGATGACGTAC -ACGGAAGTCTTGAGGATGAGTGAC -ACGGAAGTCTTGAGGATGCTGTAG -ACGGAAGTCTTGAGGATGCCTAAG -ACGGAAGTCTTGAGGATGGTTCAG -ACGGAAGTCTTGAGGATGGCATAG -ACGGAAGTCTTGAGGATGGACAAG -ACGGAAGTCTTGAGGATGAAGCAG -ACGGAAGTCTTGAGGATGCGTCAA -ACGGAAGTCTTGAGGATGGCTGAA -ACGGAAGTCTTGAGGATGAGTACG -ACGGAAGTCTTGAGGATGATCCGA -ACGGAAGTCTTGAGGATGATGGGA -ACGGAAGTCTTGAGGATGGTGCAA -ACGGAAGTCTTGAGGATGGAGGAA -ACGGAAGTCTTGAGGATGCAGGTA -ACGGAAGTCTTGAGGATGGACTCT -ACGGAAGTCTTGAGGATGAGTCCT -ACGGAAGTCTTGAGGATGTAAGCC -ACGGAAGTCTTGAGGATGATAGCC -ACGGAAGTCTTGAGGATGTAACCG -ACGGAAGTCTTGAGGATGATGCCA -ACGGAAGTCTTGGGGAATGGAAAC -ACGGAAGTCTTGGGGAATAACACC -ACGGAAGTCTTGGGGAATATCGAG -ACGGAAGTCTTGGGGAATCTCCTT -ACGGAAGTCTTGGGGAATCCTGTT -ACGGAAGTCTTGGGGAATCGGTTT -ACGGAAGTCTTGGGGAATGTGGTT -ACGGAAGTCTTGGGGAATGCCTTT -ACGGAAGTCTTGGGGAATGGTCTT -ACGGAAGTCTTGGGGAATACGCTT -ACGGAAGTCTTGGGGAATAGCGTT -ACGGAAGTCTTGGGGAATTTCGTC -ACGGAAGTCTTGGGGAATTCTCTC -ACGGAAGTCTTGGGGAATTGGATC -ACGGAAGTCTTGGGGAATCACTTC -ACGGAAGTCTTGGGGAATGTACTC -ACGGAAGTCTTGGGGAATGATGTC -ACGGAAGTCTTGGGGAATACAGTC -ACGGAAGTCTTGGGGAATTTGCTG -ACGGAAGTCTTGGGGAATTCCATG -ACGGAAGTCTTGGGGAATTGTGTG -ACGGAAGTCTTGGGGAATCTAGTG -ACGGAAGTCTTGGGGAATCATCTG -ACGGAAGTCTTGGGGAATGAGTTG -ACGGAAGTCTTGGGGAATAGACTG -ACGGAAGTCTTGGGGAATTCGGTA -ACGGAAGTCTTGGGGAATTGCCTA -ACGGAAGTCTTGGGGAATCCACTA -ACGGAAGTCTTGGGGAATGGAGTA -ACGGAAGTCTTGGGGAATTCGTCT -ACGGAAGTCTTGGGGAATTGCACT -ACGGAAGTCTTGGGGAATCTGACT -ACGGAAGTCTTGGGGAATCAACCT -ACGGAAGTCTTGGGGAATGCTACT -ACGGAAGTCTTGGGGAATGGATCT -ACGGAAGTCTTGGGGAATAAGGCT -ACGGAAGTCTTGGGGAATTCAACC -ACGGAAGTCTTGGGGAATTGTTCC -ACGGAAGTCTTGGGGAATATTCCC -ACGGAAGTCTTGGGGAATTTCTCG -ACGGAAGTCTTGGGGAATTAGACG -ACGGAAGTCTTGGGGAATGTAACG -ACGGAAGTCTTGGGGAATACTTCG -ACGGAAGTCTTGGGGAATTACGCA -ACGGAAGTCTTGGGGAATCTTGCA -ACGGAAGTCTTGGGGAATCGAACA -ACGGAAGTCTTGGGGAATCAGTCA -ACGGAAGTCTTGGGGAATGATCCA -ACGGAAGTCTTGGGGAATACGACA -ACGGAAGTCTTGGGGAATAGCTCA -ACGGAAGTCTTGGGGAATTCACGT -ACGGAAGTCTTGGGGAATCGTAGT -ACGGAAGTCTTGGGGAATGTCAGT -ACGGAAGTCTTGGGGAATGAAGGT -ACGGAAGTCTTGGGGAATAACCGT -ACGGAAGTCTTGGGGAATTTGTGC -ACGGAAGTCTTGGGGAATCTAAGC -ACGGAAGTCTTGGGGAATACTAGC -ACGGAAGTCTTGGGGAATAGATGC -ACGGAAGTCTTGGGGAATTGAAGG -ACGGAAGTCTTGGGGAATCAATGG -ACGGAAGTCTTGGGGAATATGAGG -ACGGAAGTCTTGGGGAATAATGGG -ACGGAAGTCTTGGGGAATTCCTGA -ACGGAAGTCTTGGGGAATTAGCGA -ACGGAAGTCTTGGGGAATCACAGA -ACGGAAGTCTTGGGGAATGCAAGA -ACGGAAGTCTTGGGGAATGGTTGA -ACGGAAGTCTTGGGGAATTCCGAT -ACGGAAGTCTTGGGGAATTGGCAT -ACGGAAGTCTTGGGGAATCGAGAT -ACGGAAGTCTTGGGGAATTACCAC -ACGGAAGTCTTGGGGAATCAGAAC -ACGGAAGTCTTGGGGAATGTCTAC -ACGGAAGTCTTGGGGAATACGTAC -ACGGAAGTCTTGGGGAATAGTGAC -ACGGAAGTCTTGGGGAATCTGTAG -ACGGAAGTCTTGGGGAATCCTAAG -ACGGAAGTCTTGGGGAATGTTCAG -ACGGAAGTCTTGGGGAATGCATAG -ACGGAAGTCTTGGGGAATGACAAG -ACGGAAGTCTTGGGGAATAAGCAG -ACGGAAGTCTTGGGGAATCGTCAA -ACGGAAGTCTTGGGGAATGCTGAA -ACGGAAGTCTTGGGGAATAGTACG -ACGGAAGTCTTGGGGAATATCCGA -ACGGAAGTCTTGGGGAATATGGGA -ACGGAAGTCTTGGGGAATGTGCAA -ACGGAAGTCTTGGGGAATGAGGAA -ACGGAAGTCTTGGGGAATCAGGTA -ACGGAAGTCTTGGGGAATGACTCT -ACGGAAGTCTTGGGGAATAGTCCT -ACGGAAGTCTTGGGGAATTAAGCC -ACGGAAGTCTTGGGGAATATAGCC -ACGGAAGTCTTGGGGAATTAACCG -ACGGAAGTCTTGGGGAATATGCCA -ACGGAAGTCTTGTGATCCGGAAAC -ACGGAAGTCTTGTGATCCAACACC -ACGGAAGTCTTGTGATCCATCGAG -ACGGAAGTCTTGTGATCCCTCCTT -ACGGAAGTCTTGTGATCCCCTGTT -ACGGAAGTCTTGTGATCCCGGTTT -ACGGAAGTCTTGTGATCCGTGGTT -ACGGAAGTCTTGTGATCCGCCTTT -ACGGAAGTCTTGTGATCCGGTCTT -ACGGAAGTCTTGTGATCCACGCTT -ACGGAAGTCTTGTGATCCAGCGTT -ACGGAAGTCTTGTGATCCTTCGTC -ACGGAAGTCTTGTGATCCTCTCTC -ACGGAAGTCTTGTGATCCTGGATC -ACGGAAGTCTTGTGATCCCACTTC -ACGGAAGTCTTGTGATCCGTACTC -ACGGAAGTCTTGTGATCCGATGTC -ACGGAAGTCTTGTGATCCACAGTC -ACGGAAGTCTTGTGATCCTTGCTG -ACGGAAGTCTTGTGATCCTCCATG -ACGGAAGTCTTGTGATCCTGTGTG -ACGGAAGTCTTGTGATCCCTAGTG -ACGGAAGTCTTGTGATCCCATCTG -ACGGAAGTCTTGTGATCCGAGTTG -ACGGAAGTCTTGTGATCCAGACTG -ACGGAAGTCTTGTGATCCTCGGTA -ACGGAAGTCTTGTGATCCTGCCTA -ACGGAAGTCTTGTGATCCCCACTA -ACGGAAGTCTTGTGATCCGGAGTA -ACGGAAGTCTTGTGATCCTCGTCT -ACGGAAGTCTTGTGATCCTGCACT -ACGGAAGTCTTGTGATCCCTGACT -ACGGAAGTCTTGTGATCCCAACCT -ACGGAAGTCTTGTGATCCGCTACT -ACGGAAGTCTTGTGATCCGGATCT -ACGGAAGTCTTGTGATCCAAGGCT -ACGGAAGTCTTGTGATCCTCAACC -ACGGAAGTCTTGTGATCCTGTTCC -ACGGAAGTCTTGTGATCCATTCCC -ACGGAAGTCTTGTGATCCTTCTCG -ACGGAAGTCTTGTGATCCTAGACG -ACGGAAGTCTTGTGATCCGTAACG -ACGGAAGTCTTGTGATCCACTTCG -ACGGAAGTCTTGTGATCCTACGCA -ACGGAAGTCTTGTGATCCCTTGCA -ACGGAAGTCTTGTGATCCCGAACA -ACGGAAGTCTTGTGATCCCAGTCA -ACGGAAGTCTTGTGATCCGATCCA -ACGGAAGTCTTGTGATCCACGACA -ACGGAAGTCTTGTGATCCAGCTCA -ACGGAAGTCTTGTGATCCTCACGT -ACGGAAGTCTTGTGATCCCGTAGT -ACGGAAGTCTTGTGATCCGTCAGT -ACGGAAGTCTTGTGATCCGAAGGT -ACGGAAGTCTTGTGATCCAACCGT -ACGGAAGTCTTGTGATCCTTGTGC -ACGGAAGTCTTGTGATCCCTAAGC -ACGGAAGTCTTGTGATCCACTAGC -ACGGAAGTCTTGTGATCCAGATGC -ACGGAAGTCTTGTGATCCTGAAGG -ACGGAAGTCTTGTGATCCCAATGG -ACGGAAGTCTTGTGATCCATGAGG -ACGGAAGTCTTGTGATCCAATGGG -ACGGAAGTCTTGTGATCCTCCTGA -ACGGAAGTCTTGTGATCCTAGCGA -ACGGAAGTCTTGTGATCCCACAGA -ACGGAAGTCTTGTGATCCGCAAGA -ACGGAAGTCTTGTGATCCGGTTGA -ACGGAAGTCTTGTGATCCTCCGAT -ACGGAAGTCTTGTGATCCTGGCAT -ACGGAAGTCTTGTGATCCCGAGAT -ACGGAAGTCTTGTGATCCTACCAC -ACGGAAGTCTTGTGATCCCAGAAC -ACGGAAGTCTTGTGATCCGTCTAC -ACGGAAGTCTTGTGATCCACGTAC -ACGGAAGTCTTGTGATCCAGTGAC -ACGGAAGTCTTGTGATCCCTGTAG -ACGGAAGTCTTGTGATCCCCTAAG -ACGGAAGTCTTGTGATCCGTTCAG -ACGGAAGTCTTGTGATCCGCATAG -ACGGAAGTCTTGTGATCCGACAAG -ACGGAAGTCTTGTGATCCAAGCAG -ACGGAAGTCTTGTGATCCCGTCAA -ACGGAAGTCTTGTGATCCGCTGAA -ACGGAAGTCTTGTGATCCAGTACG -ACGGAAGTCTTGTGATCCATCCGA -ACGGAAGTCTTGTGATCCATGGGA -ACGGAAGTCTTGTGATCCGTGCAA -ACGGAAGTCTTGTGATCCGAGGAA -ACGGAAGTCTTGTGATCCCAGGTA -ACGGAAGTCTTGTGATCCGACTCT -ACGGAAGTCTTGTGATCCAGTCCT -ACGGAAGTCTTGTGATCCTAAGCC -ACGGAAGTCTTGTGATCCATAGCC -ACGGAAGTCTTGTGATCCTAACCG -ACGGAAGTCTTGTGATCCATGCCA -ACGGAAGTCTTGCGATAGGGAAAC -ACGGAAGTCTTGCGATAGAACACC -ACGGAAGTCTTGCGATAGATCGAG -ACGGAAGTCTTGCGATAGCTCCTT -ACGGAAGTCTTGCGATAGCCTGTT -ACGGAAGTCTTGCGATAGCGGTTT -ACGGAAGTCTTGCGATAGGTGGTT -ACGGAAGTCTTGCGATAGGCCTTT -ACGGAAGTCTTGCGATAGGGTCTT -ACGGAAGTCTTGCGATAGACGCTT -ACGGAAGTCTTGCGATAGAGCGTT -ACGGAAGTCTTGCGATAGTTCGTC -ACGGAAGTCTTGCGATAGTCTCTC -ACGGAAGTCTTGCGATAGTGGATC -ACGGAAGTCTTGCGATAGCACTTC -ACGGAAGTCTTGCGATAGGTACTC -ACGGAAGTCTTGCGATAGGATGTC -ACGGAAGTCTTGCGATAGACAGTC -ACGGAAGTCTTGCGATAGTTGCTG -ACGGAAGTCTTGCGATAGTCCATG -ACGGAAGTCTTGCGATAGTGTGTG -ACGGAAGTCTTGCGATAGCTAGTG -ACGGAAGTCTTGCGATAGCATCTG -ACGGAAGTCTTGCGATAGGAGTTG -ACGGAAGTCTTGCGATAGAGACTG -ACGGAAGTCTTGCGATAGTCGGTA -ACGGAAGTCTTGCGATAGTGCCTA -ACGGAAGTCTTGCGATAGCCACTA -ACGGAAGTCTTGCGATAGGGAGTA -ACGGAAGTCTTGCGATAGTCGTCT -ACGGAAGTCTTGCGATAGTGCACT -ACGGAAGTCTTGCGATAGCTGACT -ACGGAAGTCTTGCGATAGCAACCT -ACGGAAGTCTTGCGATAGGCTACT -ACGGAAGTCTTGCGATAGGGATCT -ACGGAAGTCTTGCGATAGAAGGCT -ACGGAAGTCTTGCGATAGTCAACC -ACGGAAGTCTTGCGATAGTGTTCC -ACGGAAGTCTTGCGATAGATTCCC -ACGGAAGTCTTGCGATAGTTCTCG -ACGGAAGTCTTGCGATAGTAGACG -ACGGAAGTCTTGCGATAGGTAACG -ACGGAAGTCTTGCGATAGACTTCG -ACGGAAGTCTTGCGATAGTACGCA -ACGGAAGTCTTGCGATAGCTTGCA -ACGGAAGTCTTGCGATAGCGAACA -ACGGAAGTCTTGCGATAGCAGTCA -ACGGAAGTCTTGCGATAGGATCCA -ACGGAAGTCTTGCGATAGACGACA -ACGGAAGTCTTGCGATAGAGCTCA -ACGGAAGTCTTGCGATAGTCACGT -ACGGAAGTCTTGCGATAGCGTAGT -ACGGAAGTCTTGCGATAGGTCAGT -ACGGAAGTCTTGCGATAGGAAGGT -ACGGAAGTCTTGCGATAGAACCGT -ACGGAAGTCTTGCGATAGTTGTGC -ACGGAAGTCTTGCGATAGCTAAGC -ACGGAAGTCTTGCGATAGACTAGC -ACGGAAGTCTTGCGATAGAGATGC -ACGGAAGTCTTGCGATAGTGAAGG -ACGGAAGTCTTGCGATAGCAATGG -ACGGAAGTCTTGCGATAGATGAGG -ACGGAAGTCTTGCGATAGAATGGG -ACGGAAGTCTTGCGATAGTCCTGA -ACGGAAGTCTTGCGATAGTAGCGA -ACGGAAGTCTTGCGATAGCACAGA -ACGGAAGTCTTGCGATAGGCAAGA -ACGGAAGTCTTGCGATAGGGTTGA -ACGGAAGTCTTGCGATAGTCCGAT -ACGGAAGTCTTGCGATAGTGGCAT -ACGGAAGTCTTGCGATAGCGAGAT -ACGGAAGTCTTGCGATAGTACCAC -ACGGAAGTCTTGCGATAGCAGAAC -ACGGAAGTCTTGCGATAGGTCTAC -ACGGAAGTCTTGCGATAGACGTAC -ACGGAAGTCTTGCGATAGAGTGAC -ACGGAAGTCTTGCGATAGCTGTAG -ACGGAAGTCTTGCGATAGCCTAAG -ACGGAAGTCTTGCGATAGGTTCAG -ACGGAAGTCTTGCGATAGGCATAG -ACGGAAGTCTTGCGATAGGACAAG -ACGGAAGTCTTGCGATAGAAGCAG -ACGGAAGTCTTGCGATAGCGTCAA -ACGGAAGTCTTGCGATAGGCTGAA -ACGGAAGTCTTGCGATAGAGTACG -ACGGAAGTCTTGCGATAGATCCGA -ACGGAAGTCTTGCGATAGATGGGA -ACGGAAGTCTTGCGATAGGTGCAA -ACGGAAGTCTTGCGATAGGAGGAA -ACGGAAGTCTTGCGATAGCAGGTA -ACGGAAGTCTTGCGATAGGACTCT -ACGGAAGTCTTGCGATAGAGTCCT -ACGGAAGTCTTGCGATAGTAAGCC -ACGGAAGTCTTGCGATAGATAGCC -ACGGAAGTCTTGCGATAGTAACCG -ACGGAAGTCTTGCGATAGATGCCA -ACGGAAGTCTTGAGACACGGAAAC -ACGGAAGTCTTGAGACACAACACC -ACGGAAGTCTTGAGACACATCGAG -ACGGAAGTCTTGAGACACCTCCTT -ACGGAAGTCTTGAGACACCCTGTT -ACGGAAGTCTTGAGACACCGGTTT -ACGGAAGTCTTGAGACACGTGGTT -ACGGAAGTCTTGAGACACGCCTTT -ACGGAAGTCTTGAGACACGGTCTT -ACGGAAGTCTTGAGACACACGCTT -ACGGAAGTCTTGAGACACAGCGTT -ACGGAAGTCTTGAGACACTTCGTC -ACGGAAGTCTTGAGACACTCTCTC -ACGGAAGTCTTGAGACACTGGATC -ACGGAAGTCTTGAGACACCACTTC -ACGGAAGTCTTGAGACACGTACTC -ACGGAAGTCTTGAGACACGATGTC -ACGGAAGTCTTGAGACACACAGTC -ACGGAAGTCTTGAGACACTTGCTG -ACGGAAGTCTTGAGACACTCCATG -ACGGAAGTCTTGAGACACTGTGTG -ACGGAAGTCTTGAGACACCTAGTG -ACGGAAGTCTTGAGACACCATCTG -ACGGAAGTCTTGAGACACGAGTTG -ACGGAAGTCTTGAGACACAGACTG -ACGGAAGTCTTGAGACACTCGGTA -ACGGAAGTCTTGAGACACTGCCTA -ACGGAAGTCTTGAGACACCCACTA -ACGGAAGTCTTGAGACACGGAGTA -ACGGAAGTCTTGAGACACTCGTCT -ACGGAAGTCTTGAGACACTGCACT -ACGGAAGTCTTGAGACACCTGACT -ACGGAAGTCTTGAGACACCAACCT -ACGGAAGTCTTGAGACACGCTACT -ACGGAAGTCTTGAGACACGGATCT -ACGGAAGTCTTGAGACACAAGGCT -ACGGAAGTCTTGAGACACTCAACC -ACGGAAGTCTTGAGACACTGTTCC -ACGGAAGTCTTGAGACACATTCCC -ACGGAAGTCTTGAGACACTTCTCG -ACGGAAGTCTTGAGACACTAGACG -ACGGAAGTCTTGAGACACGTAACG -ACGGAAGTCTTGAGACACACTTCG -ACGGAAGTCTTGAGACACTACGCA -ACGGAAGTCTTGAGACACCTTGCA -ACGGAAGTCTTGAGACACCGAACA -ACGGAAGTCTTGAGACACCAGTCA -ACGGAAGTCTTGAGACACGATCCA -ACGGAAGTCTTGAGACACACGACA -ACGGAAGTCTTGAGACACAGCTCA -ACGGAAGTCTTGAGACACTCACGT -ACGGAAGTCTTGAGACACCGTAGT -ACGGAAGTCTTGAGACACGTCAGT -ACGGAAGTCTTGAGACACGAAGGT -ACGGAAGTCTTGAGACACAACCGT -ACGGAAGTCTTGAGACACTTGTGC -ACGGAAGTCTTGAGACACCTAAGC -ACGGAAGTCTTGAGACACACTAGC -ACGGAAGTCTTGAGACACAGATGC -ACGGAAGTCTTGAGACACTGAAGG -ACGGAAGTCTTGAGACACCAATGG -ACGGAAGTCTTGAGACACATGAGG -ACGGAAGTCTTGAGACACAATGGG -ACGGAAGTCTTGAGACACTCCTGA -ACGGAAGTCTTGAGACACTAGCGA -ACGGAAGTCTTGAGACACCACAGA -ACGGAAGTCTTGAGACACGCAAGA -ACGGAAGTCTTGAGACACGGTTGA -ACGGAAGTCTTGAGACACTCCGAT -ACGGAAGTCTTGAGACACTGGCAT -ACGGAAGTCTTGAGACACCGAGAT -ACGGAAGTCTTGAGACACTACCAC -ACGGAAGTCTTGAGACACCAGAAC -ACGGAAGTCTTGAGACACGTCTAC -ACGGAAGTCTTGAGACACACGTAC -ACGGAAGTCTTGAGACACAGTGAC -ACGGAAGTCTTGAGACACCTGTAG -ACGGAAGTCTTGAGACACCCTAAG -ACGGAAGTCTTGAGACACGTTCAG -ACGGAAGTCTTGAGACACGCATAG -ACGGAAGTCTTGAGACACGACAAG -ACGGAAGTCTTGAGACACAAGCAG -ACGGAAGTCTTGAGACACCGTCAA -ACGGAAGTCTTGAGACACGCTGAA -ACGGAAGTCTTGAGACACAGTACG -ACGGAAGTCTTGAGACACATCCGA -ACGGAAGTCTTGAGACACATGGGA -ACGGAAGTCTTGAGACACGTGCAA -ACGGAAGTCTTGAGACACGAGGAA -ACGGAAGTCTTGAGACACCAGGTA -ACGGAAGTCTTGAGACACGACTCT -ACGGAAGTCTTGAGACACAGTCCT -ACGGAAGTCTTGAGACACTAAGCC -ACGGAAGTCTTGAGACACATAGCC -ACGGAAGTCTTGAGACACTAACCG -ACGGAAGTCTTGAGACACATGCCA -ACGGAAGTCTTGAGAGCAGGAAAC -ACGGAAGTCTTGAGAGCAAACACC -ACGGAAGTCTTGAGAGCAATCGAG -ACGGAAGTCTTGAGAGCACTCCTT -ACGGAAGTCTTGAGAGCACCTGTT -ACGGAAGTCTTGAGAGCACGGTTT -ACGGAAGTCTTGAGAGCAGTGGTT -ACGGAAGTCTTGAGAGCAGCCTTT -ACGGAAGTCTTGAGAGCAGGTCTT -ACGGAAGTCTTGAGAGCAACGCTT -ACGGAAGTCTTGAGAGCAAGCGTT -ACGGAAGTCTTGAGAGCATTCGTC -ACGGAAGTCTTGAGAGCATCTCTC -ACGGAAGTCTTGAGAGCATGGATC -ACGGAAGTCTTGAGAGCACACTTC -ACGGAAGTCTTGAGAGCAGTACTC -ACGGAAGTCTTGAGAGCAGATGTC -ACGGAAGTCTTGAGAGCAACAGTC -ACGGAAGTCTTGAGAGCATTGCTG -ACGGAAGTCTTGAGAGCATCCATG -ACGGAAGTCTTGAGAGCATGTGTG -ACGGAAGTCTTGAGAGCACTAGTG -ACGGAAGTCTTGAGAGCACATCTG -ACGGAAGTCTTGAGAGCAGAGTTG -ACGGAAGTCTTGAGAGCAAGACTG -ACGGAAGTCTTGAGAGCATCGGTA -ACGGAAGTCTTGAGAGCATGCCTA -ACGGAAGTCTTGAGAGCACCACTA -ACGGAAGTCTTGAGAGCAGGAGTA -ACGGAAGTCTTGAGAGCATCGTCT -ACGGAAGTCTTGAGAGCATGCACT -ACGGAAGTCTTGAGAGCACTGACT -ACGGAAGTCTTGAGAGCACAACCT -ACGGAAGTCTTGAGAGCAGCTACT -ACGGAAGTCTTGAGAGCAGGATCT -ACGGAAGTCTTGAGAGCAAAGGCT -ACGGAAGTCTTGAGAGCATCAACC -ACGGAAGTCTTGAGAGCATGTTCC -ACGGAAGTCTTGAGAGCAATTCCC -ACGGAAGTCTTGAGAGCATTCTCG -ACGGAAGTCTTGAGAGCATAGACG -ACGGAAGTCTTGAGAGCAGTAACG -ACGGAAGTCTTGAGAGCAACTTCG -ACGGAAGTCTTGAGAGCATACGCA -ACGGAAGTCTTGAGAGCACTTGCA -ACGGAAGTCTTGAGAGCACGAACA -ACGGAAGTCTTGAGAGCACAGTCA -ACGGAAGTCTTGAGAGCAGATCCA -ACGGAAGTCTTGAGAGCAACGACA -ACGGAAGTCTTGAGAGCAAGCTCA -ACGGAAGTCTTGAGAGCATCACGT -ACGGAAGTCTTGAGAGCACGTAGT -ACGGAAGTCTTGAGAGCAGTCAGT -ACGGAAGTCTTGAGAGCAGAAGGT -ACGGAAGTCTTGAGAGCAAACCGT -ACGGAAGTCTTGAGAGCATTGTGC -ACGGAAGTCTTGAGAGCACTAAGC -ACGGAAGTCTTGAGAGCAACTAGC -ACGGAAGTCTTGAGAGCAAGATGC -ACGGAAGTCTTGAGAGCATGAAGG -ACGGAAGTCTTGAGAGCACAATGG -ACGGAAGTCTTGAGAGCAATGAGG -ACGGAAGTCTTGAGAGCAAATGGG -ACGGAAGTCTTGAGAGCATCCTGA -ACGGAAGTCTTGAGAGCATAGCGA -ACGGAAGTCTTGAGAGCACACAGA -ACGGAAGTCTTGAGAGCAGCAAGA -ACGGAAGTCTTGAGAGCAGGTTGA -ACGGAAGTCTTGAGAGCATCCGAT -ACGGAAGTCTTGAGAGCATGGCAT -ACGGAAGTCTTGAGAGCACGAGAT -ACGGAAGTCTTGAGAGCATACCAC -ACGGAAGTCTTGAGAGCACAGAAC -ACGGAAGTCTTGAGAGCAGTCTAC -ACGGAAGTCTTGAGAGCAACGTAC -ACGGAAGTCTTGAGAGCAAGTGAC -ACGGAAGTCTTGAGAGCACTGTAG -ACGGAAGTCTTGAGAGCACCTAAG -ACGGAAGTCTTGAGAGCAGTTCAG -ACGGAAGTCTTGAGAGCAGCATAG -ACGGAAGTCTTGAGAGCAGACAAG -ACGGAAGTCTTGAGAGCAAAGCAG -ACGGAAGTCTTGAGAGCACGTCAA -ACGGAAGTCTTGAGAGCAGCTGAA -ACGGAAGTCTTGAGAGCAAGTACG -ACGGAAGTCTTGAGAGCAATCCGA -ACGGAAGTCTTGAGAGCAATGGGA -ACGGAAGTCTTGAGAGCAGTGCAA -ACGGAAGTCTTGAGAGCAGAGGAA -ACGGAAGTCTTGAGAGCACAGGTA -ACGGAAGTCTTGAGAGCAGACTCT -ACGGAAGTCTTGAGAGCAAGTCCT -ACGGAAGTCTTGAGAGCATAAGCC -ACGGAAGTCTTGAGAGCAATAGCC -ACGGAAGTCTTGAGAGCATAACCG -ACGGAAGTCTTGAGAGCAATGCCA -ACGGAAGTCTTGTGAGGTGGAAAC -ACGGAAGTCTTGTGAGGTAACACC -ACGGAAGTCTTGTGAGGTATCGAG -ACGGAAGTCTTGTGAGGTCTCCTT -ACGGAAGTCTTGTGAGGTCCTGTT -ACGGAAGTCTTGTGAGGTCGGTTT -ACGGAAGTCTTGTGAGGTGTGGTT -ACGGAAGTCTTGTGAGGTGCCTTT -ACGGAAGTCTTGTGAGGTGGTCTT -ACGGAAGTCTTGTGAGGTACGCTT -ACGGAAGTCTTGTGAGGTAGCGTT -ACGGAAGTCTTGTGAGGTTTCGTC -ACGGAAGTCTTGTGAGGTTCTCTC -ACGGAAGTCTTGTGAGGTTGGATC -ACGGAAGTCTTGTGAGGTCACTTC -ACGGAAGTCTTGTGAGGTGTACTC -ACGGAAGTCTTGTGAGGTGATGTC -ACGGAAGTCTTGTGAGGTACAGTC -ACGGAAGTCTTGTGAGGTTTGCTG -ACGGAAGTCTTGTGAGGTTCCATG -ACGGAAGTCTTGTGAGGTTGTGTG -ACGGAAGTCTTGTGAGGTCTAGTG -ACGGAAGTCTTGTGAGGTCATCTG -ACGGAAGTCTTGTGAGGTGAGTTG -ACGGAAGTCTTGTGAGGTAGACTG -ACGGAAGTCTTGTGAGGTTCGGTA -ACGGAAGTCTTGTGAGGTTGCCTA -ACGGAAGTCTTGTGAGGTCCACTA -ACGGAAGTCTTGTGAGGTGGAGTA -ACGGAAGTCTTGTGAGGTTCGTCT -ACGGAAGTCTTGTGAGGTTGCACT -ACGGAAGTCTTGTGAGGTCTGACT -ACGGAAGTCTTGTGAGGTCAACCT -ACGGAAGTCTTGTGAGGTGCTACT -ACGGAAGTCTTGTGAGGTGGATCT -ACGGAAGTCTTGTGAGGTAAGGCT -ACGGAAGTCTTGTGAGGTTCAACC -ACGGAAGTCTTGTGAGGTTGTTCC -ACGGAAGTCTTGTGAGGTATTCCC -ACGGAAGTCTTGTGAGGTTTCTCG -ACGGAAGTCTTGTGAGGTTAGACG -ACGGAAGTCTTGTGAGGTGTAACG -ACGGAAGTCTTGTGAGGTACTTCG -ACGGAAGTCTTGTGAGGTTACGCA -ACGGAAGTCTTGTGAGGTCTTGCA -ACGGAAGTCTTGTGAGGTCGAACA -ACGGAAGTCTTGTGAGGTCAGTCA -ACGGAAGTCTTGTGAGGTGATCCA -ACGGAAGTCTTGTGAGGTACGACA -ACGGAAGTCTTGTGAGGTAGCTCA -ACGGAAGTCTTGTGAGGTTCACGT -ACGGAAGTCTTGTGAGGTCGTAGT -ACGGAAGTCTTGTGAGGTGTCAGT -ACGGAAGTCTTGTGAGGTGAAGGT -ACGGAAGTCTTGTGAGGTAACCGT -ACGGAAGTCTTGTGAGGTTTGTGC -ACGGAAGTCTTGTGAGGTCTAAGC -ACGGAAGTCTTGTGAGGTACTAGC -ACGGAAGTCTTGTGAGGTAGATGC -ACGGAAGTCTTGTGAGGTTGAAGG -ACGGAAGTCTTGTGAGGTCAATGG -ACGGAAGTCTTGTGAGGTATGAGG -ACGGAAGTCTTGTGAGGTAATGGG -ACGGAAGTCTTGTGAGGTTCCTGA -ACGGAAGTCTTGTGAGGTTAGCGA -ACGGAAGTCTTGTGAGGTCACAGA -ACGGAAGTCTTGTGAGGTGCAAGA -ACGGAAGTCTTGTGAGGTGGTTGA -ACGGAAGTCTTGTGAGGTTCCGAT -ACGGAAGTCTTGTGAGGTTGGCAT -ACGGAAGTCTTGTGAGGTCGAGAT -ACGGAAGTCTTGTGAGGTTACCAC -ACGGAAGTCTTGTGAGGTCAGAAC -ACGGAAGTCTTGTGAGGTGTCTAC -ACGGAAGTCTTGTGAGGTACGTAC -ACGGAAGTCTTGTGAGGTAGTGAC -ACGGAAGTCTTGTGAGGTCTGTAG -ACGGAAGTCTTGTGAGGTCCTAAG -ACGGAAGTCTTGTGAGGTGTTCAG -ACGGAAGTCTTGTGAGGTGCATAG -ACGGAAGTCTTGTGAGGTGACAAG -ACGGAAGTCTTGTGAGGTAAGCAG -ACGGAAGTCTTGTGAGGTCGTCAA -ACGGAAGTCTTGTGAGGTGCTGAA -ACGGAAGTCTTGTGAGGTAGTACG -ACGGAAGTCTTGTGAGGTATCCGA -ACGGAAGTCTTGTGAGGTATGGGA -ACGGAAGTCTTGTGAGGTGTGCAA -ACGGAAGTCTTGTGAGGTGAGGAA -ACGGAAGTCTTGTGAGGTCAGGTA -ACGGAAGTCTTGTGAGGTGACTCT -ACGGAAGTCTTGTGAGGTAGTCCT -ACGGAAGTCTTGTGAGGTTAAGCC -ACGGAAGTCTTGTGAGGTATAGCC -ACGGAAGTCTTGTGAGGTTAACCG -ACGGAAGTCTTGTGAGGTATGCCA -ACGGAAGTCTTGGATTCCGGAAAC -ACGGAAGTCTTGGATTCCAACACC -ACGGAAGTCTTGGATTCCATCGAG -ACGGAAGTCTTGGATTCCCTCCTT -ACGGAAGTCTTGGATTCCCCTGTT -ACGGAAGTCTTGGATTCCCGGTTT -ACGGAAGTCTTGGATTCCGTGGTT -ACGGAAGTCTTGGATTCCGCCTTT -ACGGAAGTCTTGGATTCCGGTCTT -ACGGAAGTCTTGGATTCCACGCTT -ACGGAAGTCTTGGATTCCAGCGTT -ACGGAAGTCTTGGATTCCTTCGTC -ACGGAAGTCTTGGATTCCTCTCTC -ACGGAAGTCTTGGATTCCTGGATC -ACGGAAGTCTTGGATTCCCACTTC -ACGGAAGTCTTGGATTCCGTACTC -ACGGAAGTCTTGGATTCCGATGTC -ACGGAAGTCTTGGATTCCACAGTC -ACGGAAGTCTTGGATTCCTTGCTG -ACGGAAGTCTTGGATTCCTCCATG -ACGGAAGTCTTGGATTCCTGTGTG -ACGGAAGTCTTGGATTCCCTAGTG -ACGGAAGTCTTGGATTCCCATCTG -ACGGAAGTCTTGGATTCCGAGTTG -ACGGAAGTCTTGGATTCCAGACTG -ACGGAAGTCTTGGATTCCTCGGTA -ACGGAAGTCTTGGATTCCTGCCTA -ACGGAAGTCTTGGATTCCCCACTA -ACGGAAGTCTTGGATTCCGGAGTA -ACGGAAGTCTTGGATTCCTCGTCT -ACGGAAGTCTTGGATTCCTGCACT -ACGGAAGTCTTGGATTCCCTGACT -ACGGAAGTCTTGGATTCCCAACCT -ACGGAAGTCTTGGATTCCGCTACT -ACGGAAGTCTTGGATTCCGGATCT -ACGGAAGTCTTGGATTCCAAGGCT -ACGGAAGTCTTGGATTCCTCAACC -ACGGAAGTCTTGGATTCCTGTTCC -ACGGAAGTCTTGGATTCCATTCCC -ACGGAAGTCTTGGATTCCTTCTCG -ACGGAAGTCTTGGATTCCTAGACG -ACGGAAGTCTTGGATTCCGTAACG -ACGGAAGTCTTGGATTCCACTTCG -ACGGAAGTCTTGGATTCCTACGCA -ACGGAAGTCTTGGATTCCCTTGCA -ACGGAAGTCTTGGATTCCCGAACA -ACGGAAGTCTTGGATTCCCAGTCA -ACGGAAGTCTTGGATTCCGATCCA -ACGGAAGTCTTGGATTCCACGACA -ACGGAAGTCTTGGATTCCAGCTCA -ACGGAAGTCTTGGATTCCTCACGT -ACGGAAGTCTTGGATTCCCGTAGT -ACGGAAGTCTTGGATTCCGTCAGT -ACGGAAGTCTTGGATTCCGAAGGT -ACGGAAGTCTTGGATTCCAACCGT -ACGGAAGTCTTGGATTCCTTGTGC -ACGGAAGTCTTGGATTCCCTAAGC -ACGGAAGTCTTGGATTCCACTAGC -ACGGAAGTCTTGGATTCCAGATGC -ACGGAAGTCTTGGATTCCTGAAGG -ACGGAAGTCTTGGATTCCCAATGG -ACGGAAGTCTTGGATTCCATGAGG -ACGGAAGTCTTGGATTCCAATGGG -ACGGAAGTCTTGGATTCCTCCTGA -ACGGAAGTCTTGGATTCCTAGCGA -ACGGAAGTCTTGGATTCCCACAGA -ACGGAAGTCTTGGATTCCGCAAGA -ACGGAAGTCTTGGATTCCGGTTGA -ACGGAAGTCTTGGATTCCTCCGAT -ACGGAAGTCTTGGATTCCTGGCAT -ACGGAAGTCTTGGATTCCCGAGAT -ACGGAAGTCTTGGATTCCTACCAC -ACGGAAGTCTTGGATTCCCAGAAC -ACGGAAGTCTTGGATTCCGTCTAC -ACGGAAGTCTTGGATTCCACGTAC -ACGGAAGTCTTGGATTCCAGTGAC -ACGGAAGTCTTGGATTCCCTGTAG -ACGGAAGTCTTGGATTCCCCTAAG -ACGGAAGTCTTGGATTCCGTTCAG -ACGGAAGTCTTGGATTCCGCATAG -ACGGAAGTCTTGGATTCCGACAAG -ACGGAAGTCTTGGATTCCAAGCAG -ACGGAAGTCTTGGATTCCCGTCAA -ACGGAAGTCTTGGATTCCGCTGAA -ACGGAAGTCTTGGATTCCAGTACG -ACGGAAGTCTTGGATTCCATCCGA -ACGGAAGTCTTGGATTCCATGGGA -ACGGAAGTCTTGGATTCCGTGCAA -ACGGAAGTCTTGGATTCCGAGGAA -ACGGAAGTCTTGGATTCCCAGGTA -ACGGAAGTCTTGGATTCCGACTCT -ACGGAAGTCTTGGATTCCAGTCCT -ACGGAAGTCTTGGATTCCTAAGCC -ACGGAAGTCTTGGATTCCATAGCC -ACGGAAGTCTTGGATTCCTAACCG -ACGGAAGTCTTGGATTCCATGCCA -ACGGAAGTCTTGCATTGGGGAAAC -ACGGAAGTCTTGCATTGGAACACC -ACGGAAGTCTTGCATTGGATCGAG -ACGGAAGTCTTGCATTGGCTCCTT -ACGGAAGTCTTGCATTGGCCTGTT -ACGGAAGTCTTGCATTGGCGGTTT -ACGGAAGTCTTGCATTGGGTGGTT -ACGGAAGTCTTGCATTGGGCCTTT -ACGGAAGTCTTGCATTGGGGTCTT -ACGGAAGTCTTGCATTGGACGCTT -ACGGAAGTCTTGCATTGGAGCGTT -ACGGAAGTCTTGCATTGGTTCGTC -ACGGAAGTCTTGCATTGGTCTCTC -ACGGAAGTCTTGCATTGGTGGATC -ACGGAAGTCTTGCATTGGCACTTC -ACGGAAGTCTTGCATTGGGTACTC -ACGGAAGTCTTGCATTGGGATGTC -ACGGAAGTCTTGCATTGGACAGTC -ACGGAAGTCTTGCATTGGTTGCTG -ACGGAAGTCTTGCATTGGTCCATG -ACGGAAGTCTTGCATTGGTGTGTG -ACGGAAGTCTTGCATTGGCTAGTG -ACGGAAGTCTTGCATTGGCATCTG -ACGGAAGTCTTGCATTGGGAGTTG -ACGGAAGTCTTGCATTGGAGACTG -ACGGAAGTCTTGCATTGGTCGGTA -ACGGAAGTCTTGCATTGGTGCCTA -ACGGAAGTCTTGCATTGGCCACTA -ACGGAAGTCTTGCATTGGGGAGTA -ACGGAAGTCTTGCATTGGTCGTCT -ACGGAAGTCTTGCATTGGTGCACT -ACGGAAGTCTTGCATTGGCTGACT -ACGGAAGTCTTGCATTGGCAACCT -ACGGAAGTCTTGCATTGGGCTACT -ACGGAAGTCTTGCATTGGGGATCT -ACGGAAGTCTTGCATTGGAAGGCT -ACGGAAGTCTTGCATTGGTCAACC -ACGGAAGTCTTGCATTGGTGTTCC -ACGGAAGTCTTGCATTGGATTCCC -ACGGAAGTCTTGCATTGGTTCTCG -ACGGAAGTCTTGCATTGGTAGACG -ACGGAAGTCTTGCATTGGGTAACG -ACGGAAGTCTTGCATTGGACTTCG -ACGGAAGTCTTGCATTGGTACGCA -ACGGAAGTCTTGCATTGGCTTGCA -ACGGAAGTCTTGCATTGGCGAACA -ACGGAAGTCTTGCATTGGCAGTCA -ACGGAAGTCTTGCATTGGGATCCA -ACGGAAGTCTTGCATTGGACGACA -ACGGAAGTCTTGCATTGGAGCTCA -ACGGAAGTCTTGCATTGGTCACGT -ACGGAAGTCTTGCATTGGCGTAGT -ACGGAAGTCTTGCATTGGGTCAGT -ACGGAAGTCTTGCATTGGGAAGGT -ACGGAAGTCTTGCATTGGAACCGT -ACGGAAGTCTTGCATTGGTTGTGC -ACGGAAGTCTTGCATTGGCTAAGC -ACGGAAGTCTTGCATTGGACTAGC -ACGGAAGTCTTGCATTGGAGATGC -ACGGAAGTCTTGCATTGGTGAAGG -ACGGAAGTCTTGCATTGGCAATGG -ACGGAAGTCTTGCATTGGATGAGG -ACGGAAGTCTTGCATTGGAATGGG -ACGGAAGTCTTGCATTGGTCCTGA -ACGGAAGTCTTGCATTGGTAGCGA -ACGGAAGTCTTGCATTGGCACAGA -ACGGAAGTCTTGCATTGGGCAAGA -ACGGAAGTCTTGCATTGGGGTTGA -ACGGAAGTCTTGCATTGGTCCGAT -ACGGAAGTCTTGCATTGGTGGCAT -ACGGAAGTCTTGCATTGGCGAGAT -ACGGAAGTCTTGCATTGGTACCAC -ACGGAAGTCTTGCATTGGCAGAAC -ACGGAAGTCTTGCATTGGGTCTAC -ACGGAAGTCTTGCATTGGACGTAC -ACGGAAGTCTTGCATTGGAGTGAC -ACGGAAGTCTTGCATTGGCTGTAG -ACGGAAGTCTTGCATTGGCCTAAG -ACGGAAGTCTTGCATTGGGTTCAG -ACGGAAGTCTTGCATTGGGCATAG -ACGGAAGTCTTGCATTGGGACAAG -ACGGAAGTCTTGCATTGGAAGCAG -ACGGAAGTCTTGCATTGGCGTCAA -ACGGAAGTCTTGCATTGGGCTGAA -ACGGAAGTCTTGCATTGGAGTACG -ACGGAAGTCTTGCATTGGATCCGA -ACGGAAGTCTTGCATTGGATGGGA -ACGGAAGTCTTGCATTGGGTGCAA -ACGGAAGTCTTGCATTGGGAGGAA -ACGGAAGTCTTGCATTGGCAGGTA -ACGGAAGTCTTGCATTGGGACTCT -ACGGAAGTCTTGCATTGGAGTCCT -ACGGAAGTCTTGCATTGGTAAGCC -ACGGAAGTCTTGCATTGGATAGCC -ACGGAAGTCTTGCATTGGTAACCG -ACGGAAGTCTTGCATTGGATGCCA -ACGGAAGTCTTGGATCGAGGAAAC -ACGGAAGTCTTGGATCGAAACACC -ACGGAAGTCTTGGATCGAATCGAG -ACGGAAGTCTTGGATCGACTCCTT -ACGGAAGTCTTGGATCGACCTGTT -ACGGAAGTCTTGGATCGACGGTTT -ACGGAAGTCTTGGATCGAGTGGTT -ACGGAAGTCTTGGATCGAGCCTTT -ACGGAAGTCTTGGATCGAGGTCTT -ACGGAAGTCTTGGATCGAACGCTT -ACGGAAGTCTTGGATCGAAGCGTT -ACGGAAGTCTTGGATCGATTCGTC -ACGGAAGTCTTGGATCGATCTCTC -ACGGAAGTCTTGGATCGATGGATC -ACGGAAGTCTTGGATCGACACTTC -ACGGAAGTCTTGGATCGAGTACTC -ACGGAAGTCTTGGATCGAGATGTC -ACGGAAGTCTTGGATCGAACAGTC -ACGGAAGTCTTGGATCGATTGCTG -ACGGAAGTCTTGGATCGATCCATG -ACGGAAGTCTTGGATCGATGTGTG -ACGGAAGTCTTGGATCGACTAGTG -ACGGAAGTCTTGGATCGACATCTG -ACGGAAGTCTTGGATCGAGAGTTG -ACGGAAGTCTTGGATCGAAGACTG -ACGGAAGTCTTGGATCGATCGGTA -ACGGAAGTCTTGGATCGATGCCTA -ACGGAAGTCTTGGATCGACCACTA -ACGGAAGTCTTGGATCGAGGAGTA -ACGGAAGTCTTGGATCGATCGTCT -ACGGAAGTCTTGGATCGATGCACT -ACGGAAGTCTTGGATCGACTGACT -ACGGAAGTCTTGGATCGACAACCT -ACGGAAGTCTTGGATCGAGCTACT -ACGGAAGTCTTGGATCGAGGATCT -ACGGAAGTCTTGGATCGAAAGGCT -ACGGAAGTCTTGGATCGATCAACC -ACGGAAGTCTTGGATCGATGTTCC -ACGGAAGTCTTGGATCGAATTCCC -ACGGAAGTCTTGGATCGATTCTCG -ACGGAAGTCTTGGATCGATAGACG -ACGGAAGTCTTGGATCGAGTAACG -ACGGAAGTCTTGGATCGAACTTCG -ACGGAAGTCTTGGATCGATACGCA -ACGGAAGTCTTGGATCGACTTGCA -ACGGAAGTCTTGGATCGACGAACA -ACGGAAGTCTTGGATCGACAGTCA -ACGGAAGTCTTGGATCGAGATCCA -ACGGAAGTCTTGGATCGAACGACA -ACGGAAGTCTTGGATCGAAGCTCA -ACGGAAGTCTTGGATCGATCACGT -ACGGAAGTCTTGGATCGACGTAGT -ACGGAAGTCTTGGATCGAGTCAGT -ACGGAAGTCTTGGATCGAGAAGGT -ACGGAAGTCTTGGATCGAAACCGT -ACGGAAGTCTTGGATCGATTGTGC -ACGGAAGTCTTGGATCGACTAAGC -ACGGAAGTCTTGGATCGAACTAGC -ACGGAAGTCTTGGATCGAAGATGC -ACGGAAGTCTTGGATCGATGAAGG -ACGGAAGTCTTGGATCGACAATGG -ACGGAAGTCTTGGATCGAATGAGG -ACGGAAGTCTTGGATCGAAATGGG -ACGGAAGTCTTGGATCGATCCTGA -ACGGAAGTCTTGGATCGATAGCGA -ACGGAAGTCTTGGATCGACACAGA -ACGGAAGTCTTGGATCGAGCAAGA -ACGGAAGTCTTGGATCGAGGTTGA -ACGGAAGTCTTGGATCGATCCGAT -ACGGAAGTCTTGGATCGATGGCAT -ACGGAAGTCTTGGATCGACGAGAT -ACGGAAGTCTTGGATCGATACCAC -ACGGAAGTCTTGGATCGACAGAAC -ACGGAAGTCTTGGATCGAGTCTAC -ACGGAAGTCTTGGATCGAACGTAC -ACGGAAGTCTTGGATCGAAGTGAC -ACGGAAGTCTTGGATCGACTGTAG -ACGGAAGTCTTGGATCGACCTAAG -ACGGAAGTCTTGGATCGAGTTCAG -ACGGAAGTCTTGGATCGAGCATAG -ACGGAAGTCTTGGATCGAGACAAG -ACGGAAGTCTTGGATCGAAAGCAG -ACGGAAGTCTTGGATCGACGTCAA -ACGGAAGTCTTGGATCGAGCTGAA -ACGGAAGTCTTGGATCGAAGTACG -ACGGAAGTCTTGGATCGAATCCGA -ACGGAAGTCTTGGATCGAATGGGA -ACGGAAGTCTTGGATCGAGTGCAA -ACGGAAGTCTTGGATCGAGAGGAA -ACGGAAGTCTTGGATCGACAGGTA -ACGGAAGTCTTGGATCGAGACTCT -ACGGAAGTCTTGGATCGAAGTCCT -ACGGAAGTCTTGGATCGATAAGCC -ACGGAAGTCTTGGATCGAATAGCC -ACGGAAGTCTTGGATCGATAACCG -ACGGAAGTCTTGGATCGAATGCCA -ACGGAAGTCTTGCACTACGGAAAC -ACGGAAGTCTTGCACTACAACACC -ACGGAAGTCTTGCACTACATCGAG -ACGGAAGTCTTGCACTACCTCCTT -ACGGAAGTCTTGCACTACCCTGTT -ACGGAAGTCTTGCACTACCGGTTT -ACGGAAGTCTTGCACTACGTGGTT -ACGGAAGTCTTGCACTACGCCTTT -ACGGAAGTCTTGCACTACGGTCTT -ACGGAAGTCTTGCACTACACGCTT -ACGGAAGTCTTGCACTACAGCGTT -ACGGAAGTCTTGCACTACTTCGTC -ACGGAAGTCTTGCACTACTCTCTC -ACGGAAGTCTTGCACTACTGGATC -ACGGAAGTCTTGCACTACCACTTC -ACGGAAGTCTTGCACTACGTACTC -ACGGAAGTCTTGCACTACGATGTC -ACGGAAGTCTTGCACTACACAGTC -ACGGAAGTCTTGCACTACTTGCTG -ACGGAAGTCTTGCACTACTCCATG -ACGGAAGTCTTGCACTACTGTGTG -ACGGAAGTCTTGCACTACCTAGTG -ACGGAAGTCTTGCACTACCATCTG -ACGGAAGTCTTGCACTACGAGTTG -ACGGAAGTCTTGCACTACAGACTG -ACGGAAGTCTTGCACTACTCGGTA -ACGGAAGTCTTGCACTACTGCCTA -ACGGAAGTCTTGCACTACCCACTA -ACGGAAGTCTTGCACTACGGAGTA -ACGGAAGTCTTGCACTACTCGTCT -ACGGAAGTCTTGCACTACTGCACT -ACGGAAGTCTTGCACTACCTGACT -ACGGAAGTCTTGCACTACCAACCT -ACGGAAGTCTTGCACTACGCTACT -ACGGAAGTCTTGCACTACGGATCT -ACGGAAGTCTTGCACTACAAGGCT -ACGGAAGTCTTGCACTACTCAACC -ACGGAAGTCTTGCACTACTGTTCC -ACGGAAGTCTTGCACTACATTCCC -ACGGAAGTCTTGCACTACTTCTCG -ACGGAAGTCTTGCACTACTAGACG -ACGGAAGTCTTGCACTACGTAACG -ACGGAAGTCTTGCACTACACTTCG -ACGGAAGTCTTGCACTACTACGCA -ACGGAAGTCTTGCACTACCTTGCA -ACGGAAGTCTTGCACTACCGAACA -ACGGAAGTCTTGCACTACCAGTCA -ACGGAAGTCTTGCACTACGATCCA -ACGGAAGTCTTGCACTACACGACA -ACGGAAGTCTTGCACTACAGCTCA -ACGGAAGTCTTGCACTACTCACGT -ACGGAAGTCTTGCACTACCGTAGT -ACGGAAGTCTTGCACTACGTCAGT -ACGGAAGTCTTGCACTACGAAGGT -ACGGAAGTCTTGCACTACAACCGT -ACGGAAGTCTTGCACTACTTGTGC -ACGGAAGTCTTGCACTACCTAAGC -ACGGAAGTCTTGCACTACACTAGC -ACGGAAGTCTTGCACTACAGATGC -ACGGAAGTCTTGCACTACTGAAGG -ACGGAAGTCTTGCACTACCAATGG -ACGGAAGTCTTGCACTACATGAGG -ACGGAAGTCTTGCACTACAATGGG -ACGGAAGTCTTGCACTACTCCTGA -ACGGAAGTCTTGCACTACTAGCGA -ACGGAAGTCTTGCACTACCACAGA -ACGGAAGTCTTGCACTACGCAAGA -ACGGAAGTCTTGCACTACGGTTGA -ACGGAAGTCTTGCACTACTCCGAT -ACGGAAGTCTTGCACTACTGGCAT -ACGGAAGTCTTGCACTACCGAGAT -ACGGAAGTCTTGCACTACTACCAC -ACGGAAGTCTTGCACTACCAGAAC -ACGGAAGTCTTGCACTACGTCTAC -ACGGAAGTCTTGCACTACACGTAC -ACGGAAGTCTTGCACTACAGTGAC -ACGGAAGTCTTGCACTACCTGTAG -ACGGAAGTCTTGCACTACCCTAAG -ACGGAAGTCTTGCACTACGTTCAG -ACGGAAGTCTTGCACTACGCATAG -ACGGAAGTCTTGCACTACGACAAG -ACGGAAGTCTTGCACTACAAGCAG -ACGGAAGTCTTGCACTACCGTCAA -ACGGAAGTCTTGCACTACGCTGAA -ACGGAAGTCTTGCACTACAGTACG -ACGGAAGTCTTGCACTACATCCGA -ACGGAAGTCTTGCACTACATGGGA -ACGGAAGTCTTGCACTACGTGCAA -ACGGAAGTCTTGCACTACGAGGAA -ACGGAAGTCTTGCACTACCAGGTA -ACGGAAGTCTTGCACTACGACTCT -ACGGAAGTCTTGCACTACAGTCCT -ACGGAAGTCTTGCACTACTAAGCC -ACGGAAGTCTTGCACTACATAGCC -ACGGAAGTCTTGCACTACTAACCG -ACGGAAGTCTTGCACTACATGCCA -ACGGAAGTCTTGAACCAGGGAAAC -ACGGAAGTCTTGAACCAGAACACC -ACGGAAGTCTTGAACCAGATCGAG -ACGGAAGTCTTGAACCAGCTCCTT -ACGGAAGTCTTGAACCAGCCTGTT -ACGGAAGTCTTGAACCAGCGGTTT -ACGGAAGTCTTGAACCAGGTGGTT -ACGGAAGTCTTGAACCAGGCCTTT -ACGGAAGTCTTGAACCAGGGTCTT -ACGGAAGTCTTGAACCAGACGCTT -ACGGAAGTCTTGAACCAGAGCGTT -ACGGAAGTCTTGAACCAGTTCGTC -ACGGAAGTCTTGAACCAGTCTCTC -ACGGAAGTCTTGAACCAGTGGATC -ACGGAAGTCTTGAACCAGCACTTC -ACGGAAGTCTTGAACCAGGTACTC -ACGGAAGTCTTGAACCAGGATGTC -ACGGAAGTCTTGAACCAGACAGTC -ACGGAAGTCTTGAACCAGTTGCTG -ACGGAAGTCTTGAACCAGTCCATG -ACGGAAGTCTTGAACCAGTGTGTG -ACGGAAGTCTTGAACCAGCTAGTG -ACGGAAGTCTTGAACCAGCATCTG -ACGGAAGTCTTGAACCAGGAGTTG -ACGGAAGTCTTGAACCAGAGACTG -ACGGAAGTCTTGAACCAGTCGGTA -ACGGAAGTCTTGAACCAGTGCCTA -ACGGAAGTCTTGAACCAGCCACTA -ACGGAAGTCTTGAACCAGGGAGTA -ACGGAAGTCTTGAACCAGTCGTCT -ACGGAAGTCTTGAACCAGTGCACT -ACGGAAGTCTTGAACCAGCTGACT -ACGGAAGTCTTGAACCAGCAACCT -ACGGAAGTCTTGAACCAGGCTACT -ACGGAAGTCTTGAACCAGGGATCT -ACGGAAGTCTTGAACCAGAAGGCT -ACGGAAGTCTTGAACCAGTCAACC -ACGGAAGTCTTGAACCAGTGTTCC -ACGGAAGTCTTGAACCAGATTCCC -ACGGAAGTCTTGAACCAGTTCTCG -ACGGAAGTCTTGAACCAGTAGACG -ACGGAAGTCTTGAACCAGGTAACG -ACGGAAGTCTTGAACCAGACTTCG -ACGGAAGTCTTGAACCAGTACGCA -ACGGAAGTCTTGAACCAGCTTGCA -ACGGAAGTCTTGAACCAGCGAACA -ACGGAAGTCTTGAACCAGCAGTCA -ACGGAAGTCTTGAACCAGGATCCA -ACGGAAGTCTTGAACCAGACGACA -ACGGAAGTCTTGAACCAGAGCTCA -ACGGAAGTCTTGAACCAGTCACGT -ACGGAAGTCTTGAACCAGCGTAGT -ACGGAAGTCTTGAACCAGGTCAGT -ACGGAAGTCTTGAACCAGGAAGGT -ACGGAAGTCTTGAACCAGAACCGT -ACGGAAGTCTTGAACCAGTTGTGC -ACGGAAGTCTTGAACCAGCTAAGC -ACGGAAGTCTTGAACCAGACTAGC -ACGGAAGTCTTGAACCAGAGATGC -ACGGAAGTCTTGAACCAGTGAAGG -ACGGAAGTCTTGAACCAGCAATGG -ACGGAAGTCTTGAACCAGATGAGG -ACGGAAGTCTTGAACCAGAATGGG -ACGGAAGTCTTGAACCAGTCCTGA -ACGGAAGTCTTGAACCAGTAGCGA -ACGGAAGTCTTGAACCAGCACAGA -ACGGAAGTCTTGAACCAGGCAAGA -ACGGAAGTCTTGAACCAGGGTTGA -ACGGAAGTCTTGAACCAGTCCGAT -ACGGAAGTCTTGAACCAGTGGCAT -ACGGAAGTCTTGAACCAGCGAGAT -ACGGAAGTCTTGAACCAGTACCAC -ACGGAAGTCTTGAACCAGCAGAAC -ACGGAAGTCTTGAACCAGGTCTAC -ACGGAAGTCTTGAACCAGACGTAC -ACGGAAGTCTTGAACCAGAGTGAC -ACGGAAGTCTTGAACCAGCTGTAG -ACGGAAGTCTTGAACCAGCCTAAG -ACGGAAGTCTTGAACCAGGTTCAG -ACGGAAGTCTTGAACCAGGCATAG -ACGGAAGTCTTGAACCAGGACAAG -ACGGAAGTCTTGAACCAGAAGCAG -ACGGAAGTCTTGAACCAGCGTCAA -ACGGAAGTCTTGAACCAGGCTGAA -ACGGAAGTCTTGAACCAGAGTACG -ACGGAAGTCTTGAACCAGATCCGA -ACGGAAGTCTTGAACCAGATGGGA -ACGGAAGTCTTGAACCAGGTGCAA -ACGGAAGTCTTGAACCAGGAGGAA -ACGGAAGTCTTGAACCAGCAGGTA -ACGGAAGTCTTGAACCAGGACTCT -ACGGAAGTCTTGAACCAGAGTCCT -ACGGAAGTCTTGAACCAGTAAGCC -ACGGAAGTCTTGAACCAGATAGCC -ACGGAAGTCTTGAACCAGTAACCG -ACGGAAGTCTTGAACCAGATGCCA -ACGGAAGTCTTGTACGTCGGAAAC -ACGGAAGTCTTGTACGTCAACACC -ACGGAAGTCTTGTACGTCATCGAG -ACGGAAGTCTTGTACGTCCTCCTT -ACGGAAGTCTTGTACGTCCCTGTT -ACGGAAGTCTTGTACGTCCGGTTT -ACGGAAGTCTTGTACGTCGTGGTT -ACGGAAGTCTTGTACGTCGCCTTT -ACGGAAGTCTTGTACGTCGGTCTT -ACGGAAGTCTTGTACGTCACGCTT -ACGGAAGTCTTGTACGTCAGCGTT -ACGGAAGTCTTGTACGTCTTCGTC -ACGGAAGTCTTGTACGTCTCTCTC -ACGGAAGTCTTGTACGTCTGGATC -ACGGAAGTCTTGTACGTCCACTTC -ACGGAAGTCTTGTACGTCGTACTC -ACGGAAGTCTTGTACGTCGATGTC -ACGGAAGTCTTGTACGTCACAGTC -ACGGAAGTCTTGTACGTCTTGCTG -ACGGAAGTCTTGTACGTCTCCATG -ACGGAAGTCTTGTACGTCTGTGTG -ACGGAAGTCTTGTACGTCCTAGTG -ACGGAAGTCTTGTACGTCCATCTG -ACGGAAGTCTTGTACGTCGAGTTG -ACGGAAGTCTTGTACGTCAGACTG -ACGGAAGTCTTGTACGTCTCGGTA -ACGGAAGTCTTGTACGTCTGCCTA -ACGGAAGTCTTGTACGTCCCACTA -ACGGAAGTCTTGTACGTCGGAGTA -ACGGAAGTCTTGTACGTCTCGTCT -ACGGAAGTCTTGTACGTCTGCACT -ACGGAAGTCTTGTACGTCCTGACT -ACGGAAGTCTTGTACGTCCAACCT -ACGGAAGTCTTGTACGTCGCTACT -ACGGAAGTCTTGTACGTCGGATCT -ACGGAAGTCTTGTACGTCAAGGCT -ACGGAAGTCTTGTACGTCTCAACC -ACGGAAGTCTTGTACGTCTGTTCC -ACGGAAGTCTTGTACGTCATTCCC -ACGGAAGTCTTGTACGTCTTCTCG -ACGGAAGTCTTGTACGTCTAGACG -ACGGAAGTCTTGTACGTCGTAACG -ACGGAAGTCTTGTACGTCACTTCG -ACGGAAGTCTTGTACGTCTACGCA -ACGGAAGTCTTGTACGTCCTTGCA -ACGGAAGTCTTGTACGTCCGAACA -ACGGAAGTCTTGTACGTCCAGTCA -ACGGAAGTCTTGTACGTCGATCCA -ACGGAAGTCTTGTACGTCACGACA -ACGGAAGTCTTGTACGTCAGCTCA -ACGGAAGTCTTGTACGTCTCACGT -ACGGAAGTCTTGTACGTCCGTAGT -ACGGAAGTCTTGTACGTCGTCAGT -ACGGAAGTCTTGTACGTCGAAGGT -ACGGAAGTCTTGTACGTCAACCGT -ACGGAAGTCTTGTACGTCTTGTGC -ACGGAAGTCTTGTACGTCCTAAGC -ACGGAAGTCTTGTACGTCACTAGC -ACGGAAGTCTTGTACGTCAGATGC -ACGGAAGTCTTGTACGTCTGAAGG -ACGGAAGTCTTGTACGTCCAATGG -ACGGAAGTCTTGTACGTCATGAGG -ACGGAAGTCTTGTACGTCAATGGG -ACGGAAGTCTTGTACGTCTCCTGA -ACGGAAGTCTTGTACGTCTAGCGA -ACGGAAGTCTTGTACGTCCACAGA -ACGGAAGTCTTGTACGTCGCAAGA -ACGGAAGTCTTGTACGTCGGTTGA -ACGGAAGTCTTGTACGTCTCCGAT -ACGGAAGTCTTGTACGTCTGGCAT -ACGGAAGTCTTGTACGTCCGAGAT -ACGGAAGTCTTGTACGTCTACCAC -ACGGAAGTCTTGTACGTCCAGAAC -ACGGAAGTCTTGTACGTCGTCTAC -ACGGAAGTCTTGTACGTCACGTAC -ACGGAAGTCTTGTACGTCAGTGAC -ACGGAAGTCTTGTACGTCCTGTAG -ACGGAAGTCTTGTACGTCCCTAAG -ACGGAAGTCTTGTACGTCGTTCAG -ACGGAAGTCTTGTACGTCGCATAG -ACGGAAGTCTTGTACGTCGACAAG -ACGGAAGTCTTGTACGTCAAGCAG -ACGGAAGTCTTGTACGTCCGTCAA -ACGGAAGTCTTGTACGTCGCTGAA -ACGGAAGTCTTGTACGTCAGTACG -ACGGAAGTCTTGTACGTCATCCGA -ACGGAAGTCTTGTACGTCATGGGA -ACGGAAGTCTTGTACGTCGTGCAA -ACGGAAGTCTTGTACGTCGAGGAA -ACGGAAGTCTTGTACGTCCAGGTA -ACGGAAGTCTTGTACGTCGACTCT -ACGGAAGTCTTGTACGTCAGTCCT -ACGGAAGTCTTGTACGTCTAAGCC -ACGGAAGTCTTGTACGTCATAGCC -ACGGAAGTCTTGTACGTCTAACCG -ACGGAAGTCTTGTACGTCATGCCA -ACGGAAGTCTTGTACACGGGAAAC -ACGGAAGTCTTGTACACGAACACC -ACGGAAGTCTTGTACACGATCGAG -ACGGAAGTCTTGTACACGCTCCTT -ACGGAAGTCTTGTACACGCCTGTT -ACGGAAGTCTTGTACACGCGGTTT -ACGGAAGTCTTGTACACGGTGGTT -ACGGAAGTCTTGTACACGGCCTTT -ACGGAAGTCTTGTACACGGGTCTT -ACGGAAGTCTTGTACACGACGCTT -ACGGAAGTCTTGTACACGAGCGTT -ACGGAAGTCTTGTACACGTTCGTC -ACGGAAGTCTTGTACACGTCTCTC -ACGGAAGTCTTGTACACGTGGATC -ACGGAAGTCTTGTACACGCACTTC -ACGGAAGTCTTGTACACGGTACTC -ACGGAAGTCTTGTACACGGATGTC -ACGGAAGTCTTGTACACGACAGTC -ACGGAAGTCTTGTACACGTTGCTG -ACGGAAGTCTTGTACACGTCCATG -ACGGAAGTCTTGTACACGTGTGTG -ACGGAAGTCTTGTACACGCTAGTG -ACGGAAGTCTTGTACACGCATCTG -ACGGAAGTCTTGTACACGGAGTTG -ACGGAAGTCTTGTACACGAGACTG -ACGGAAGTCTTGTACACGTCGGTA -ACGGAAGTCTTGTACACGTGCCTA -ACGGAAGTCTTGTACACGCCACTA -ACGGAAGTCTTGTACACGGGAGTA -ACGGAAGTCTTGTACACGTCGTCT -ACGGAAGTCTTGTACACGTGCACT -ACGGAAGTCTTGTACACGCTGACT -ACGGAAGTCTTGTACACGCAACCT -ACGGAAGTCTTGTACACGGCTACT -ACGGAAGTCTTGTACACGGGATCT -ACGGAAGTCTTGTACACGAAGGCT -ACGGAAGTCTTGTACACGTCAACC -ACGGAAGTCTTGTACACGTGTTCC -ACGGAAGTCTTGTACACGATTCCC -ACGGAAGTCTTGTACACGTTCTCG -ACGGAAGTCTTGTACACGTAGACG -ACGGAAGTCTTGTACACGGTAACG -ACGGAAGTCTTGTACACGACTTCG -ACGGAAGTCTTGTACACGTACGCA -ACGGAAGTCTTGTACACGCTTGCA -ACGGAAGTCTTGTACACGCGAACA -ACGGAAGTCTTGTACACGCAGTCA -ACGGAAGTCTTGTACACGGATCCA -ACGGAAGTCTTGTACACGACGACA -ACGGAAGTCTTGTACACGAGCTCA -ACGGAAGTCTTGTACACGTCACGT -ACGGAAGTCTTGTACACGCGTAGT -ACGGAAGTCTTGTACACGGTCAGT -ACGGAAGTCTTGTACACGGAAGGT -ACGGAAGTCTTGTACACGAACCGT -ACGGAAGTCTTGTACACGTTGTGC -ACGGAAGTCTTGTACACGCTAAGC -ACGGAAGTCTTGTACACGACTAGC -ACGGAAGTCTTGTACACGAGATGC -ACGGAAGTCTTGTACACGTGAAGG -ACGGAAGTCTTGTACACGCAATGG -ACGGAAGTCTTGTACACGATGAGG -ACGGAAGTCTTGTACACGAATGGG -ACGGAAGTCTTGTACACGTCCTGA -ACGGAAGTCTTGTACACGTAGCGA -ACGGAAGTCTTGTACACGCACAGA -ACGGAAGTCTTGTACACGGCAAGA -ACGGAAGTCTTGTACACGGGTTGA -ACGGAAGTCTTGTACACGTCCGAT -ACGGAAGTCTTGTACACGTGGCAT -ACGGAAGTCTTGTACACGCGAGAT -ACGGAAGTCTTGTACACGTACCAC -ACGGAAGTCTTGTACACGCAGAAC -ACGGAAGTCTTGTACACGGTCTAC -ACGGAAGTCTTGTACACGACGTAC -ACGGAAGTCTTGTACACGAGTGAC -ACGGAAGTCTTGTACACGCTGTAG -ACGGAAGTCTTGTACACGCCTAAG -ACGGAAGTCTTGTACACGGTTCAG -ACGGAAGTCTTGTACACGGCATAG -ACGGAAGTCTTGTACACGGACAAG -ACGGAAGTCTTGTACACGAAGCAG -ACGGAAGTCTTGTACACGCGTCAA -ACGGAAGTCTTGTACACGGCTGAA -ACGGAAGTCTTGTACACGAGTACG -ACGGAAGTCTTGTACACGATCCGA -ACGGAAGTCTTGTACACGATGGGA -ACGGAAGTCTTGTACACGGTGCAA -ACGGAAGTCTTGTACACGGAGGAA -ACGGAAGTCTTGTACACGCAGGTA -ACGGAAGTCTTGTACACGGACTCT -ACGGAAGTCTTGTACACGAGTCCT -ACGGAAGTCTTGTACACGTAAGCC -ACGGAAGTCTTGTACACGATAGCC -ACGGAAGTCTTGTACACGTAACCG -ACGGAAGTCTTGTACACGATGCCA -ACGGAAGTCTTGGACAGTGGAAAC -ACGGAAGTCTTGGACAGTAACACC -ACGGAAGTCTTGGACAGTATCGAG -ACGGAAGTCTTGGACAGTCTCCTT -ACGGAAGTCTTGGACAGTCCTGTT -ACGGAAGTCTTGGACAGTCGGTTT -ACGGAAGTCTTGGACAGTGTGGTT -ACGGAAGTCTTGGACAGTGCCTTT -ACGGAAGTCTTGGACAGTGGTCTT -ACGGAAGTCTTGGACAGTACGCTT -ACGGAAGTCTTGGACAGTAGCGTT -ACGGAAGTCTTGGACAGTTTCGTC -ACGGAAGTCTTGGACAGTTCTCTC -ACGGAAGTCTTGGACAGTTGGATC -ACGGAAGTCTTGGACAGTCACTTC -ACGGAAGTCTTGGACAGTGTACTC -ACGGAAGTCTTGGACAGTGATGTC -ACGGAAGTCTTGGACAGTACAGTC -ACGGAAGTCTTGGACAGTTTGCTG -ACGGAAGTCTTGGACAGTTCCATG -ACGGAAGTCTTGGACAGTTGTGTG -ACGGAAGTCTTGGACAGTCTAGTG -ACGGAAGTCTTGGACAGTCATCTG -ACGGAAGTCTTGGACAGTGAGTTG -ACGGAAGTCTTGGACAGTAGACTG -ACGGAAGTCTTGGACAGTTCGGTA -ACGGAAGTCTTGGACAGTTGCCTA -ACGGAAGTCTTGGACAGTCCACTA -ACGGAAGTCTTGGACAGTGGAGTA -ACGGAAGTCTTGGACAGTTCGTCT -ACGGAAGTCTTGGACAGTTGCACT -ACGGAAGTCTTGGACAGTCTGACT -ACGGAAGTCTTGGACAGTCAACCT -ACGGAAGTCTTGGACAGTGCTACT -ACGGAAGTCTTGGACAGTGGATCT -ACGGAAGTCTTGGACAGTAAGGCT -ACGGAAGTCTTGGACAGTTCAACC -ACGGAAGTCTTGGACAGTTGTTCC -ACGGAAGTCTTGGACAGTATTCCC -ACGGAAGTCTTGGACAGTTTCTCG -ACGGAAGTCTTGGACAGTTAGACG -ACGGAAGTCTTGGACAGTGTAACG -ACGGAAGTCTTGGACAGTACTTCG -ACGGAAGTCTTGGACAGTTACGCA -ACGGAAGTCTTGGACAGTCTTGCA -ACGGAAGTCTTGGACAGTCGAACA -ACGGAAGTCTTGGACAGTCAGTCA -ACGGAAGTCTTGGACAGTGATCCA -ACGGAAGTCTTGGACAGTACGACA -ACGGAAGTCTTGGACAGTAGCTCA -ACGGAAGTCTTGGACAGTTCACGT -ACGGAAGTCTTGGACAGTCGTAGT -ACGGAAGTCTTGGACAGTGTCAGT -ACGGAAGTCTTGGACAGTGAAGGT -ACGGAAGTCTTGGACAGTAACCGT -ACGGAAGTCTTGGACAGTTTGTGC -ACGGAAGTCTTGGACAGTCTAAGC -ACGGAAGTCTTGGACAGTACTAGC -ACGGAAGTCTTGGACAGTAGATGC -ACGGAAGTCTTGGACAGTTGAAGG -ACGGAAGTCTTGGACAGTCAATGG -ACGGAAGTCTTGGACAGTATGAGG -ACGGAAGTCTTGGACAGTAATGGG -ACGGAAGTCTTGGACAGTTCCTGA -ACGGAAGTCTTGGACAGTTAGCGA -ACGGAAGTCTTGGACAGTCACAGA -ACGGAAGTCTTGGACAGTGCAAGA -ACGGAAGTCTTGGACAGTGGTTGA -ACGGAAGTCTTGGACAGTTCCGAT -ACGGAAGTCTTGGACAGTTGGCAT -ACGGAAGTCTTGGACAGTCGAGAT -ACGGAAGTCTTGGACAGTTACCAC -ACGGAAGTCTTGGACAGTCAGAAC -ACGGAAGTCTTGGACAGTGTCTAC -ACGGAAGTCTTGGACAGTACGTAC -ACGGAAGTCTTGGACAGTAGTGAC -ACGGAAGTCTTGGACAGTCTGTAG -ACGGAAGTCTTGGACAGTCCTAAG -ACGGAAGTCTTGGACAGTGTTCAG -ACGGAAGTCTTGGACAGTGCATAG -ACGGAAGTCTTGGACAGTGACAAG -ACGGAAGTCTTGGACAGTAAGCAG -ACGGAAGTCTTGGACAGTCGTCAA -ACGGAAGTCTTGGACAGTGCTGAA -ACGGAAGTCTTGGACAGTAGTACG -ACGGAAGTCTTGGACAGTATCCGA -ACGGAAGTCTTGGACAGTATGGGA -ACGGAAGTCTTGGACAGTGTGCAA -ACGGAAGTCTTGGACAGTGAGGAA -ACGGAAGTCTTGGACAGTCAGGTA -ACGGAAGTCTTGGACAGTGACTCT -ACGGAAGTCTTGGACAGTAGTCCT -ACGGAAGTCTTGGACAGTTAAGCC -ACGGAAGTCTTGGACAGTATAGCC -ACGGAAGTCTTGGACAGTTAACCG -ACGGAAGTCTTGGACAGTATGCCA -ACGGAAGTCTTGTAGCTGGGAAAC -ACGGAAGTCTTGTAGCTGAACACC -ACGGAAGTCTTGTAGCTGATCGAG -ACGGAAGTCTTGTAGCTGCTCCTT -ACGGAAGTCTTGTAGCTGCCTGTT -ACGGAAGTCTTGTAGCTGCGGTTT -ACGGAAGTCTTGTAGCTGGTGGTT -ACGGAAGTCTTGTAGCTGGCCTTT -ACGGAAGTCTTGTAGCTGGGTCTT -ACGGAAGTCTTGTAGCTGACGCTT -ACGGAAGTCTTGTAGCTGAGCGTT -ACGGAAGTCTTGTAGCTGTTCGTC -ACGGAAGTCTTGTAGCTGTCTCTC -ACGGAAGTCTTGTAGCTGTGGATC -ACGGAAGTCTTGTAGCTGCACTTC -ACGGAAGTCTTGTAGCTGGTACTC -ACGGAAGTCTTGTAGCTGGATGTC -ACGGAAGTCTTGTAGCTGACAGTC -ACGGAAGTCTTGTAGCTGTTGCTG -ACGGAAGTCTTGTAGCTGTCCATG -ACGGAAGTCTTGTAGCTGTGTGTG -ACGGAAGTCTTGTAGCTGCTAGTG -ACGGAAGTCTTGTAGCTGCATCTG -ACGGAAGTCTTGTAGCTGGAGTTG -ACGGAAGTCTTGTAGCTGAGACTG -ACGGAAGTCTTGTAGCTGTCGGTA -ACGGAAGTCTTGTAGCTGTGCCTA -ACGGAAGTCTTGTAGCTGCCACTA -ACGGAAGTCTTGTAGCTGGGAGTA -ACGGAAGTCTTGTAGCTGTCGTCT -ACGGAAGTCTTGTAGCTGTGCACT -ACGGAAGTCTTGTAGCTGCTGACT -ACGGAAGTCTTGTAGCTGCAACCT -ACGGAAGTCTTGTAGCTGGCTACT -ACGGAAGTCTTGTAGCTGGGATCT -ACGGAAGTCTTGTAGCTGAAGGCT -ACGGAAGTCTTGTAGCTGTCAACC -ACGGAAGTCTTGTAGCTGTGTTCC -ACGGAAGTCTTGTAGCTGATTCCC -ACGGAAGTCTTGTAGCTGTTCTCG -ACGGAAGTCTTGTAGCTGTAGACG -ACGGAAGTCTTGTAGCTGGTAACG -ACGGAAGTCTTGTAGCTGACTTCG -ACGGAAGTCTTGTAGCTGTACGCA -ACGGAAGTCTTGTAGCTGCTTGCA -ACGGAAGTCTTGTAGCTGCGAACA -ACGGAAGTCTTGTAGCTGCAGTCA -ACGGAAGTCTTGTAGCTGGATCCA -ACGGAAGTCTTGTAGCTGACGACA -ACGGAAGTCTTGTAGCTGAGCTCA -ACGGAAGTCTTGTAGCTGTCACGT -ACGGAAGTCTTGTAGCTGCGTAGT -ACGGAAGTCTTGTAGCTGGTCAGT -ACGGAAGTCTTGTAGCTGGAAGGT -ACGGAAGTCTTGTAGCTGAACCGT -ACGGAAGTCTTGTAGCTGTTGTGC -ACGGAAGTCTTGTAGCTGCTAAGC -ACGGAAGTCTTGTAGCTGACTAGC -ACGGAAGTCTTGTAGCTGAGATGC -ACGGAAGTCTTGTAGCTGTGAAGG -ACGGAAGTCTTGTAGCTGCAATGG -ACGGAAGTCTTGTAGCTGATGAGG -ACGGAAGTCTTGTAGCTGAATGGG -ACGGAAGTCTTGTAGCTGTCCTGA -ACGGAAGTCTTGTAGCTGTAGCGA -ACGGAAGTCTTGTAGCTGCACAGA -ACGGAAGTCTTGTAGCTGGCAAGA -ACGGAAGTCTTGTAGCTGGGTTGA -ACGGAAGTCTTGTAGCTGTCCGAT -ACGGAAGTCTTGTAGCTGTGGCAT -ACGGAAGTCTTGTAGCTGCGAGAT -ACGGAAGTCTTGTAGCTGTACCAC -ACGGAAGTCTTGTAGCTGCAGAAC -ACGGAAGTCTTGTAGCTGGTCTAC -ACGGAAGTCTTGTAGCTGACGTAC -ACGGAAGTCTTGTAGCTGAGTGAC -ACGGAAGTCTTGTAGCTGCTGTAG -ACGGAAGTCTTGTAGCTGCCTAAG -ACGGAAGTCTTGTAGCTGGTTCAG -ACGGAAGTCTTGTAGCTGGCATAG -ACGGAAGTCTTGTAGCTGGACAAG -ACGGAAGTCTTGTAGCTGAAGCAG -ACGGAAGTCTTGTAGCTGCGTCAA -ACGGAAGTCTTGTAGCTGGCTGAA -ACGGAAGTCTTGTAGCTGAGTACG -ACGGAAGTCTTGTAGCTGATCCGA -ACGGAAGTCTTGTAGCTGATGGGA -ACGGAAGTCTTGTAGCTGGTGCAA -ACGGAAGTCTTGTAGCTGGAGGAA -ACGGAAGTCTTGTAGCTGCAGGTA -ACGGAAGTCTTGTAGCTGGACTCT -ACGGAAGTCTTGTAGCTGAGTCCT -ACGGAAGTCTTGTAGCTGTAAGCC -ACGGAAGTCTTGTAGCTGATAGCC -ACGGAAGTCTTGTAGCTGTAACCG -ACGGAAGTCTTGTAGCTGATGCCA -ACGGAAGTCTTGAAGCCTGGAAAC -ACGGAAGTCTTGAAGCCTAACACC -ACGGAAGTCTTGAAGCCTATCGAG -ACGGAAGTCTTGAAGCCTCTCCTT -ACGGAAGTCTTGAAGCCTCCTGTT -ACGGAAGTCTTGAAGCCTCGGTTT -ACGGAAGTCTTGAAGCCTGTGGTT -ACGGAAGTCTTGAAGCCTGCCTTT -ACGGAAGTCTTGAAGCCTGGTCTT -ACGGAAGTCTTGAAGCCTACGCTT -ACGGAAGTCTTGAAGCCTAGCGTT -ACGGAAGTCTTGAAGCCTTTCGTC -ACGGAAGTCTTGAAGCCTTCTCTC -ACGGAAGTCTTGAAGCCTTGGATC -ACGGAAGTCTTGAAGCCTCACTTC -ACGGAAGTCTTGAAGCCTGTACTC -ACGGAAGTCTTGAAGCCTGATGTC -ACGGAAGTCTTGAAGCCTACAGTC -ACGGAAGTCTTGAAGCCTTTGCTG -ACGGAAGTCTTGAAGCCTTCCATG -ACGGAAGTCTTGAAGCCTTGTGTG -ACGGAAGTCTTGAAGCCTCTAGTG -ACGGAAGTCTTGAAGCCTCATCTG -ACGGAAGTCTTGAAGCCTGAGTTG -ACGGAAGTCTTGAAGCCTAGACTG -ACGGAAGTCTTGAAGCCTTCGGTA -ACGGAAGTCTTGAAGCCTTGCCTA -ACGGAAGTCTTGAAGCCTCCACTA -ACGGAAGTCTTGAAGCCTGGAGTA -ACGGAAGTCTTGAAGCCTTCGTCT -ACGGAAGTCTTGAAGCCTTGCACT -ACGGAAGTCTTGAAGCCTCTGACT -ACGGAAGTCTTGAAGCCTCAACCT -ACGGAAGTCTTGAAGCCTGCTACT -ACGGAAGTCTTGAAGCCTGGATCT -ACGGAAGTCTTGAAGCCTAAGGCT -ACGGAAGTCTTGAAGCCTTCAACC -ACGGAAGTCTTGAAGCCTTGTTCC -ACGGAAGTCTTGAAGCCTATTCCC -ACGGAAGTCTTGAAGCCTTTCTCG -ACGGAAGTCTTGAAGCCTTAGACG -ACGGAAGTCTTGAAGCCTGTAACG -ACGGAAGTCTTGAAGCCTACTTCG -ACGGAAGTCTTGAAGCCTTACGCA -ACGGAAGTCTTGAAGCCTCTTGCA -ACGGAAGTCTTGAAGCCTCGAACA -ACGGAAGTCTTGAAGCCTCAGTCA -ACGGAAGTCTTGAAGCCTGATCCA -ACGGAAGTCTTGAAGCCTACGACA -ACGGAAGTCTTGAAGCCTAGCTCA -ACGGAAGTCTTGAAGCCTTCACGT -ACGGAAGTCTTGAAGCCTCGTAGT -ACGGAAGTCTTGAAGCCTGTCAGT -ACGGAAGTCTTGAAGCCTGAAGGT -ACGGAAGTCTTGAAGCCTAACCGT -ACGGAAGTCTTGAAGCCTTTGTGC -ACGGAAGTCTTGAAGCCTCTAAGC -ACGGAAGTCTTGAAGCCTACTAGC -ACGGAAGTCTTGAAGCCTAGATGC -ACGGAAGTCTTGAAGCCTTGAAGG -ACGGAAGTCTTGAAGCCTCAATGG -ACGGAAGTCTTGAAGCCTATGAGG -ACGGAAGTCTTGAAGCCTAATGGG -ACGGAAGTCTTGAAGCCTTCCTGA -ACGGAAGTCTTGAAGCCTTAGCGA -ACGGAAGTCTTGAAGCCTCACAGA -ACGGAAGTCTTGAAGCCTGCAAGA -ACGGAAGTCTTGAAGCCTGGTTGA -ACGGAAGTCTTGAAGCCTTCCGAT -ACGGAAGTCTTGAAGCCTTGGCAT -ACGGAAGTCTTGAAGCCTCGAGAT -ACGGAAGTCTTGAAGCCTTACCAC -ACGGAAGTCTTGAAGCCTCAGAAC -ACGGAAGTCTTGAAGCCTGTCTAC -ACGGAAGTCTTGAAGCCTACGTAC -ACGGAAGTCTTGAAGCCTAGTGAC -ACGGAAGTCTTGAAGCCTCTGTAG -ACGGAAGTCTTGAAGCCTCCTAAG -ACGGAAGTCTTGAAGCCTGTTCAG -ACGGAAGTCTTGAAGCCTGCATAG -ACGGAAGTCTTGAAGCCTGACAAG -ACGGAAGTCTTGAAGCCTAAGCAG -ACGGAAGTCTTGAAGCCTCGTCAA -ACGGAAGTCTTGAAGCCTGCTGAA -ACGGAAGTCTTGAAGCCTAGTACG -ACGGAAGTCTTGAAGCCTATCCGA -ACGGAAGTCTTGAAGCCTATGGGA -ACGGAAGTCTTGAAGCCTGTGCAA -ACGGAAGTCTTGAAGCCTGAGGAA -ACGGAAGTCTTGAAGCCTCAGGTA -ACGGAAGTCTTGAAGCCTGACTCT -ACGGAAGTCTTGAAGCCTAGTCCT -ACGGAAGTCTTGAAGCCTTAAGCC -ACGGAAGTCTTGAAGCCTATAGCC -ACGGAAGTCTTGAAGCCTTAACCG -ACGGAAGTCTTGAAGCCTATGCCA -ACGGAAGTCTTGCAGGTTGGAAAC -ACGGAAGTCTTGCAGGTTAACACC -ACGGAAGTCTTGCAGGTTATCGAG -ACGGAAGTCTTGCAGGTTCTCCTT -ACGGAAGTCTTGCAGGTTCCTGTT -ACGGAAGTCTTGCAGGTTCGGTTT -ACGGAAGTCTTGCAGGTTGTGGTT -ACGGAAGTCTTGCAGGTTGCCTTT -ACGGAAGTCTTGCAGGTTGGTCTT -ACGGAAGTCTTGCAGGTTACGCTT -ACGGAAGTCTTGCAGGTTAGCGTT -ACGGAAGTCTTGCAGGTTTTCGTC -ACGGAAGTCTTGCAGGTTTCTCTC -ACGGAAGTCTTGCAGGTTTGGATC -ACGGAAGTCTTGCAGGTTCACTTC -ACGGAAGTCTTGCAGGTTGTACTC -ACGGAAGTCTTGCAGGTTGATGTC -ACGGAAGTCTTGCAGGTTACAGTC -ACGGAAGTCTTGCAGGTTTTGCTG -ACGGAAGTCTTGCAGGTTTCCATG -ACGGAAGTCTTGCAGGTTTGTGTG -ACGGAAGTCTTGCAGGTTCTAGTG -ACGGAAGTCTTGCAGGTTCATCTG -ACGGAAGTCTTGCAGGTTGAGTTG -ACGGAAGTCTTGCAGGTTAGACTG -ACGGAAGTCTTGCAGGTTTCGGTA -ACGGAAGTCTTGCAGGTTTGCCTA -ACGGAAGTCTTGCAGGTTCCACTA -ACGGAAGTCTTGCAGGTTGGAGTA -ACGGAAGTCTTGCAGGTTTCGTCT -ACGGAAGTCTTGCAGGTTTGCACT -ACGGAAGTCTTGCAGGTTCTGACT -ACGGAAGTCTTGCAGGTTCAACCT -ACGGAAGTCTTGCAGGTTGCTACT -ACGGAAGTCTTGCAGGTTGGATCT -ACGGAAGTCTTGCAGGTTAAGGCT -ACGGAAGTCTTGCAGGTTTCAACC -ACGGAAGTCTTGCAGGTTTGTTCC -ACGGAAGTCTTGCAGGTTATTCCC -ACGGAAGTCTTGCAGGTTTTCTCG -ACGGAAGTCTTGCAGGTTTAGACG -ACGGAAGTCTTGCAGGTTGTAACG -ACGGAAGTCTTGCAGGTTACTTCG -ACGGAAGTCTTGCAGGTTTACGCA -ACGGAAGTCTTGCAGGTTCTTGCA -ACGGAAGTCTTGCAGGTTCGAACA -ACGGAAGTCTTGCAGGTTCAGTCA -ACGGAAGTCTTGCAGGTTGATCCA -ACGGAAGTCTTGCAGGTTACGACA -ACGGAAGTCTTGCAGGTTAGCTCA -ACGGAAGTCTTGCAGGTTTCACGT -ACGGAAGTCTTGCAGGTTCGTAGT -ACGGAAGTCTTGCAGGTTGTCAGT -ACGGAAGTCTTGCAGGTTGAAGGT -ACGGAAGTCTTGCAGGTTAACCGT -ACGGAAGTCTTGCAGGTTTTGTGC -ACGGAAGTCTTGCAGGTTCTAAGC -ACGGAAGTCTTGCAGGTTACTAGC -ACGGAAGTCTTGCAGGTTAGATGC -ACGGAAGTCTTGCAGGTTTGAAGG -ACGGAAGTCTTGCAGGTTCAATGG -ACGGAAGTCTTGCAGGTTATGAGG -ACGGAAGTCTTGCAGGTTAATGGG -ACGGAAGTCTTGCAGGTTTCCTGA -ACGGAAGTCTTGCAGGTTTAGCGA -ACGGAAGTCTTGCAGGTTCACAGA -ACGGAAGTCTTGCAGGTTGCAAGA -ACGGAAGTCTTGCAGGTTGGTTGA -ACGGAAGTCTTGCAGGTTTCCGAT -ACGGAAGTCTTGCAGGTTTGGCAT -ACGGAAGTCTTGCAGGTTCGAGAT -ACGGAAGTCTTGCAGGTTTACCAC -ACGGAAGTCTTGCAGGTTCAGAAC -ACGGAAGTCTTGCAGGTTGTCTAC -ACGGAAGTCTTGCAGGTTACGTAC -ACGGAAGTCTTGCAGGTTAGTGAC -ACGGAAGTCTTGCAGGTTCTGTAG -ACGGAAGTCTTGCAGGTTCCTAAG -ACGGAAGTCTTGCAGGTTGTTCAG -ACGGAAGTCTTGCAGGTTGCATAG -ACGGAAGTCTTGCAGGTTGACAAG -ACGGAAGTCTTGCAGGTTAAGCAG -ACGGAAGTCTTGCAGGTTCGTCAA -ACGGAAGTCTTGCAGGTTGCTGAA -ACGGAAGTCTTGCAGGTTAGTACG -ACGGAAGTCTTGCAGGTTATCCGA -ACGGAAGTCTTGCAGGTTATGGGA -ACGGAAGTCTTGCAGGTTGTGCAA -ACGGAAGTCTTGCAGGTTGAGGAA -ACGGAAGTCTTGCAGGTTCAGGTA -ACGGAAGTCTTGCAGGTTGACTCT -ACGGAAGTCTTGCAGGTTAGTCCT -ACGGAAGTCTTGCAGGTTTAAGCC -ACGGAAGTCTTGCAGGTTATAGCC -ACGGAAGTCTTGCAGGTTTAACCG -ACGGAAGTCTTGCAGGTTATGCCA -ACGGAAGTCTTGTAGGCAGGAAAC -ACGGAAGTCTTGTAGGCAAACACC -ACGGAAGTCTTGTAGGCAATCGAG -ACGGAAGTCTTGTAGGCACTCCTT -ACGGAAGTCTTGTAGGCACCTGTT -ACGGAAGTCTTGTAGGCACGGTTT -ACGGAAGTCTTGTAGGCAGTGGTT -ACGGAAGTCTTGTAGGCAGCCTTT -ACGGAAGTCTTGTAGGCAGGTCTT -ACGGAAGTCTTGTAGGCAACGCTT -ACGGAAGTCTTGTAGGCAAGCGTT -ACGGAAGTCTTGTAGGCATTCGTC -ACGGAAGTCTTGTAGGCATCTCTC -ACGGAAGTCTTGTAGGCATGGATC -ACGGAAGTCTTGTAGGCACACTTC -ACGGAAGTCTTGTAGGCAGTACTC -ACGGAAGTCTTGTAGGCAGATGTC -ACGGAAGTCTTGTAGGCAACAGTC -ACGGAAGTCTTGTAGGCATTGCTG -ACGGAAGTCTTGTAGGCATCCATG -ACGGAAGTCTTGTAGGCATGTGTG -ACGGAAGTCTTGTAGGCACTAGTG -ACGGAAGTCTTGTAGGCACATCTG -ACGGAAGTCTTGTAGGCAGAGTTG -ACGGAAGTCTTGTAGGCAAGACTG -ACGGAAGTCTTGTAGGCATCGGTA -ACGGAAGTCTTGTAGGCATGCCTA -ACGGAAGTCTTGTAGGCACCACTA -ACGGAAGTCTTGTAGGCAGGAGTA -ACGGAAGTCTTGTAGGCATCGTCT -ACGGAAGTCTTGTAGGCATGCACT -ACGGAAGTCTTGTAGGCACTGACT -ACGGAAGTCTTGTAGGCACAACCT -ACGGAAGTCTTGTAGGCAGCTACT -ACGGAAGTCTTGTAGGCAGGATCT -ACGGAAGTCTTGTAGGCAAAGGCT -ACGGAAGTCTTGTAGGCATCAACC -ACGGAAGTCTTGTAGGCATGTTCC -ACGGAAGTCTTGTAGGCAATTCCC -ACGGAAGTCTTGTAGGCATTCTCG -ACGGAAGTCTTGTAGGCATAGACG -ACGGAAGTCTTGTAGGCAGTAACG -ACGGAAGTCTTGTAGGCAACTTCG -ACGGAAGTCTTGTAGGCATACGCA -ACGGAAGTCTTGTAGGCACTTGCA -ACGGAAGTCTTGTAGGCACGAACA -ACGGAAGTCTTGTAGGCACAGTCA -ACGGAAGTCTTGTAGGCAGATCCA -ACGGAAGTCTTGTAGGCAACGACA -ACGGAAGTCTTGTAGGCAAGCTCA -ACGGAAGTCTTGTAGGCATCACGT -ACGGAAGTCTTGTAGGCACGTAGT -ACGGAAGTCTTGTAGGCAGTCAGT -ACGGAAGTCTTGTAGGCAGAAGGT -ACGGAAGTCTTGTAGGCAAACCGT -ACGGAAGTCTTGTAGGCATTGTGC -ACGGAAGTCTTGTAGGCACTAAGC -ACGGAAGTCTTGTAGGCAACTAGC -ACGGAAGTCTTGTAGGCAAGATGC -ACGGAAGTCTTGTAGGCATGAAGG -ACGGAAGTCTTGTAGGCACAATGG -ACGGAAGTCTTGTAGGCAATGAGG -ACGGAAGTCTTGTAGGCAAATGGG -ACGGAAGTCTTGTAGGCATCCTGA -ACGGAAGTCTTGTAGGCATAGCGA -ACGGAAGTCTTGTAGGCACACAGA -ACGGAAGTCTTGTAGGCAGCAAGA -ACGGAAGTCTTGTAGGCAGGTTGA -ACGGAAGTCTTGTAGGCATCCGAT -ACGGAAGTCTTGTAGGCATGGCAT -ACGGAAGTCTTGTAGGCACGAGAT -ACGGAAGTCTTGTAGGCATACCAC -ACGGAAGTCTTGTAGGCACAGAAC -ACGGAAGTCTTGTAGGCAGTCTAC -ACGGAAGTCTTGTAGGCAACGTAC -ACGGAAGTCTTGTAGGCAAGTGAC -ACGGAAGTCTTGTAGGCACTGTAG -ACGGAAGTCTTGTAGGCACCTAAG -ACGGAAGTCTTGTAGGCAGTTCAG -ACGGAAGTCTTGTAGGCAGCATAG -ACGGAAGTCTTGTAGGCAGACAAG -ACGGAAGTCTTGTAGGCAAAGCAG -ACGGAAGTCTTGTAGGCACGTCAA -ACGGAAGTCTTGTAGGCAGCTGAA -ACGGAAGTCTTGTAGGCAAGTACG -ACGGAAGTCTTGTAGGCAATCCGA -ACGGAAGTCTTGTAGGCAATGGGA -ACGGAAGTCTTGTAGGCAGTGCAA -ACGGAAGTCTTGTAGGCAGAGGAA -ACGGAAGTCTTGTAGGCACAGGTA -ACGGAAGTCTTGTAGGCAGACTCT -ACGGAAGTCTTGTAGGCAAGTCCT -ACGGAAGTCTTGTAGGCATAAGCC -ACGGAAGTCTTGTAGGCAATAGCC -ACGGAAGTCTTGTAGGCATAACCG -ACGGAAGTCTTGTAGGCAATGCCA -ACGGAAGTCTTGAAGGACGGAAAC -ACGGAAGTCTTGAAGGACAACACC -ACGGAAGTCTTGAAGGACATCGAG -ACGGAAGTCTTGAAGGACCTCCTT -ACGGAAGTCTTGAAGGACCCTGTT -ACGGAAGTCTTGAAGGACCGGTTT -ACGGAAGTCTTGAAGGACGTGGTT -ACGGAAGTCTTGAAGGACGCCTTT -ACGGAAGTCTTGAAGGACGGTCTT -ACGGAAGTCTTGAAGGACACGCTT -ACGGAAGTCTTGAAGGACAGCGTT -ACGGAAGTCTTGAAGGACTTCGTC -ACGGAAGTCTTGAAGGACTCTCTC -ACGGAAGTCTTGAAGGACTGGATC -ACGGAAGTCTTGAAGGACCACTTC -ACGGAAGTCTTGAAGGACGTACTC -ACGGAAGTCTTGAAGGACGATGTC -ACGGAAGTCTTGAAGGACACAGTC -ACGGAAGTCTTGAAGGACTTGCTG -ACGGAAGTCTTGAAGGACTCCATG -ACGGAAGTCTTGAAGGACTGTGTG -ACGGAAGTCTTGAAGGACCTAGTG -ACGGAAGTCTTGAAGGACCATCTG -ACGGAAGTCTTGAAGGACGAGTTG -ACGGAAGTCTTGAAGGACAGACTG -ACGGAAGTCTTGAAGGACTCGGTA -ACGGAAGTCTTGAAGGACTGCCTA -ACGGAAGTCTTGAAGGACCCACTA -ACGGAAGTCTTGAAGGACGGAGTA -ACGGAAGTCTTGAAGGACTCGTCT -ACGGAAGTCTTGAAGGACTGCACT -ACGGAAGTCTTGAAGGACCTGACT -ACGGAAGTCTTGAAGGACCAACCT -ACGGAAGTCTTGAAGGACGCTACT -ACGGAAGTCTTGAAGGACGGATCT -ACGGAAGTCTTGAAGGACAAGGCT -ACGGAAGTCTTGAAGGACTCAACC -ACGGAAGTCTTGAAGGACTGTTCC -ACGGAAGTCTTGAAGGACATTCCC -ACGGAAGTCTTGAAGGACTTCTCG -ACGGAAGTCTTGAAGGACTAGACG -ACGGAAGTCTTGAAGGACGTAACG -ACGGAAGTCTTGAAGGACACTTCG -ACGGAAGTCTTGAAGGACTACGCA -ACGGAAGTCTTGAAGGACCTTGCA -ACGGAAGTCTTGAAGGACCGAACA -ACGGAAGTCTTGAAGGACCAGTCA -ACGGAAGTCTTGAAGGACGATCCA -ACGGAAGTCTTGAAGGACACGACA -ACGGAAGTCTTGAAGGACAGCTCA -ACGGAAGTCTTGAAGGACTCACGT -ACGGAAGTCTTGAAGGACCGTAGT -ACGGAAGTCTTGAAGGACGTCAGT -ACGGAAGTCTTGAAGGACGAAGGT -ACGGAAGTCTTGAAGGACAACCGT -ACGGAAGTCTTGAAGGACTTGTGC -ACGGAAGTCTTGAAGGACCTAAGC -ACGGAAGTCTTGAAGGACACTAGC -ACGGAAGTCTTGAAGGACAGATGC -ACGGAAGTCTTGAAGGACTGAAGG -ACGGAAGTCTTGAAGGACCAATGG -ACGGAAGTCTTGAAGGACATGAGG -ACGGAAGTCTTGAAGGACAATGGG -ACGGAAGTCTTGAAGGACTCCTGA -ACGGAAGTCTTGAAGGACTAGCGA -ACGGAAGTCTTGAAGGACCACAGA -ACGGAAGTCTTGAAGGACGCAAGA -ACGGAAGTCTTGAAGGACGGTTGA -ACGGAAGTCTTGAAGGACTCCGAT -ACGGAAGTCTTGAAGGACTGGCAT -ACGGAAGTCTTGAAGGACCGAGAT -ACGGAAGTCTTGAAGGACTACCAC -ACGGAAGTCTTGAAGGACCAGAAC -ACGGAAGTCTTGAAGGACGTCTAC -ACGGAAGTCTTGAAGGACACGTAC -ACGGAAGTCTTGAAGGACAGTGAC -ACGGAAGTCTTGAAGGACCTGTAG -ACGGAAGTCTTGAAGGACCCTAAG -ACGGAAGTCTTGAAGGACGTTCAG -ACGGAAGTCTTGAAGGACGCATAG -ACGGAAGTCTTGAAGGACGACAAG -ACGGAAGTCTTGAAGGACAAGCAG -ACGGAAGTCTTGAAGGACCGTCAA -ACGGAAGTCTTGAAGGACGCTGAA -ACGGAAGTCTTGAAGGACAGTACG -ACGGAAGTCTTGAAGGACATCCGA -ACGGAAGTCTTGAAGGACATGGGA -ACGGAAGTCTTGAAGGACGTGCAA -ACGGAAGTCTTGAAGGACGAGGAA -ACGGAAGTCTTGAAGGACCAGGTA -ACGGAAGTCTTGAAGGACGACTCT -ACGGAAGTCTTGAAGGACAGTCCT -ACGGAAGTCTTGAAGGACTAAGCC -ACGGAAGTCTTGAAGGACATAGCC -ACGGAAGTCTTGAAGGACTAACCG -ACGGAAGTCTTGAAGGACATGCCA -ACGGAAGTCTTGCAGAAGGGAAAC -ACGGAAGTCTTGCAGAAGAACACC -ACGGAAGTCTTGCAGAAGATCGAG -ACGGAAGTCTTGCAGAAGCTCCTT -ACGGAAGTCTTGCAGAAGCCTGTT -ACGGAAGTCTTGCAGAAGCGGTTT -ACGGAAGTCTTGCAGAAGGTGGTT -ACGGAAGTCTTGCAGAAGGCCTTT -ACGGAAGTCTTGCAGAAGGGTCTT -ACGGAAGTCTTGCAGAAGACGCTT -ACGGAAGTCTTGCAGAAGAGCGTT -ACGGAAGTCTTGCAGAAGTTCGTC -ACGGAAGTCTTGCAGAAGTCTCTC -ACGGAAGTCTTGCAGAAGTGGATC -ACGGAAGTCTTGCAGAAGCACTTC -ACGGAAGTCTTGCAGAAGGTACTC -ACGGAAGTCTTGCAGAAGGATGTC -ACGGAAGTCTTGCAGAAGACAGTC -ACGGAAGTCTTGCAGAAGTTGCTG -ACGGAAGTCTTGCAGAAGTCCATG -ACGGAAGTCTTGCAGAAGTGTGTG -ACGGAAGTCTTGCAGAAGCTAGTG -ACGGAAGTCTTGCAGAAGCATCTG -ACGGAAGTCTTGCAGAAGGAGTTG -ACGGAAGTCTTGCAGAAGAGACTG -ACGGAAGTCTTGCAGAAGTCGGTA -ACGGAAGTCTTGCAGAAGTGCCTA -ACGGAAGTCTTGCAGAAGCCACTA -ACGGAAGTCTTGCAGAAGGGAGTA -ACGGAAGTCTTGCAGAAGTCGTCT -ACGGAAGTCTTGCAGAAGTGCACT -ACGGAAGTCTTGCAGAAGCTGACT -ACGGAAGTCTTGCAGAAGCAACCT -ACGGAAGTCTTGCAGAAGGCTACT -ACGGAAGTCTTGCAGAAGGGATCT -ACGGAAGTCTTGCAGAAGAAGGCT -ACGGAAGTCTTGCAGAAGTCAACC -ACGGAAGTCTTGCAGAAGTGTTCC -ACGGAAGTCTTGCAGAAGATTCCC -ACGGAAGTCTTGCAGAAGTTCTCG -ACGGAAGTCTTGCAGAAGTAGACG -ACGGAAGTCTTGCAGAAGGTAACG -ACGGAAGTCTTGCAGAAGACTTCG -ACGGAAGTCTTGCAGAAGTACGCA -ACGGAAGTCTTGCAGAAGCTTGCA -ACGGAAGTCTTGCAGAAGCGAACA -ACGGAAGTCTTGCAGAAGCAGTCA -ACGGAAGTCTTGCAGAAGGATCCA -ACGGAAGTCTTGCAGAAGACGACA -ACGGAAGTCTTGCAGAAGAGCTCA -ACGGAAGTCTTGCAGAAGTCACGT -ACGGAAGTCTTGCAGAAGCGTAGT -ACGGAAGTCTTGCAGAAGGTCAGT -ACGGAAGTCTTGCAGAAGGAAGGT -ACGGAAGTCTTGCAGAAGAACCGT -ACGGAAGTCTTGCAGAAGTTGTGC -ACGGAAGTCTTGCAGAAGCTAAGC -ACGGAAGTCTTGCAGAAGACTAGC -ACGGAAGTCTTGCAGAAGAGATGC -ACGGAAGTCTTGCAGAAGTGAAGG -ACGGAAGTCTTGCAGAAGCAATGG -ACGGAAGTCTTGCAGAAGATGAGG -ACGGAAGTCTTGCAGAAGAATGGG -ACGGAAGTCTTGCAGAAGTCCTGA -ACGGAAGTCTTGCAGAAGTAGCGA -ACGGAAGTCTTGCAGAAGCACAGA -ACGGAAGTCTTGCAGAAGGCAAGA -ACGGAAGTCTTGCAGAAGGGTTGA -ACGGAAGTCTTGCAGAAGTCCGAT -ACGGAAGTCTTGCAGAAGTGGCAT -ACGGAAGTCTTGCAGAAGCGAGAT -ACGGAAGTCTTGCAGAAGTACCAC -ACGGAAGTCTTGCAGAAGCAGAAC -ACGGAAGTCTTGCAGAAGGTCTAC -ACGGAAGTCTTGCAGAAGACGTAC -ACGGAAGTCTTGCAGAAGAGTGAC -ACGGAAGTCTTGCAGAAGCTGTAG -ACGGAAGTCTTGCAGAAGCCTAAG -ACGGAAGTCTTGCAGAAGGTTCAG -ACGGAAGTCTTGCAGAAGGCATAG -ACGGAAGTCTTGCAGAAGGACAAG -ACGGAAGTCTTGCAGAAGAAGCAG -ACGGAAGTCTTGCAGAAGCGTCAA -ACGGAAGTCTTGCAGAAGGCTGAA -ACGGAAGTCTTGCAGAAGAGTACG -ACGGAAGTCTTGCAGAAGATCCGA -ACGGAAGTCTTGCAGAAGATGGGA -ACGGAAGTCTTGCAGAAGGTGCAA -ACGGAAGTCTTGCAGAAGGAGGAA -ACGGAAGTCTTGCAGAAGCAGGTA -ACGGAAGTCTTGCAGAAGGACTCT -ACGGAAGTCTTGCAGAAGAGTCCT -ACGGAAGTCTTGCAGAAGTAAGCC -ACGGAAGTCTTGCAGAAGATAGCC -ACGGAAGTCTTGCAGAAGTAACCG -ACGGAAGTCTTGCAGAAGATGCCA -ACGGAAGTCTTGCAACGTGGAAAC -ACGGAAGTCTTGCAACGTAACACC -ACGGAAGTCTTGCAACGTATCGAG -ACGGAAGTCTTGCAACGTCTCCTT -ACGGAAGTCTTGCAACGTCCTGTT -ACGGAAGTCTTGCAACGTCGGTTT -ACGGAAGTCTTGCAACGTGTGGTT -ACGGAAGTCTTGCAACGTGCCTTT -ACGGAAGTCTTGCAACGTGGTCTT -ACGGAAGTCTTGCAACGTACGCTT -ACGGAAGTCTTGCAACGTAGCGTT -ACGGAAGTCTTGCAACGTTTCGTC -ACGGAAGTCTTGCAACGTTCTCTC -ACGGAAGTCTTGCAACGTTGGATC -ACGGAAGTCTTGCAACGTCACTTC -ACGGAAGTCTTGCAACGTGTACTC -ACGGAAGTCTTGCAACGTGATGTC -ACGGAAGTCTTGCAACGTACAGTC -ACGGAAGTCTTGCAACGTTTGCTG -ACGGAAGTCTTGCAACGTTCCATG -ACGGAAGTCTTGCAACGTTGTGTG -ACGGAAGTCTTGCAACGTCTAGTG -ACGGAAGTCTTGCAACGTCATCTG -ACGGAAGTCTTGCAACGTGAGTTG -ACGGAAGTCTTGCAACGTAGACTG -ACGGAAGTCTTGCAACGTTCGGTA -ACGGAAGTCTTGCAACGTTGCCTA -ACGGAAGTCTTGCAACGTCCACTA -ACGGAAGTCTTGCAACGTGGAGTA -ACGGAAGTCTTGCAACGTTCGTCT -ACGGAAGTCTTGCAACGTTGCACT -ACGGAAGTCTTGCAACGTCTGACT -ACGGAAGTCTTGCAACGTCAACCT -ACGGAAGTCTTGCAACGTGCTACT -ACGGAAGTCTTGCAACGTGGATCT -ACGGAAGTCTTGCAACGTAAGGCT -ACGGAAGTCTTGCAACGTTCAACC -ACGGAAGTCTTGCAACGTTGTTCC -ACGGAAGTCTTGCAACGTATTCCC -ACGGAAGTCTTGCAACGTTTCTCG -ACGGAAGTCTTGCAACGTTAGACG -ACGGAAGTCTTGCAACGTGTAACG -ACGGAAGTCTTGCAACGTACTTCG -ACGGAAGTCTTGCAACGTTACGCA -ACGGAAGTCTTGCAACGTCTTGCA -ACGGAAGTCTTGCAACGTCGAACA -ACGGAAGTCTTGCAACGTCAGTCA -ACGGAAGTCTTGCAACGTGATCCA -ACGGAAGTCTTGCAACGTACGACA -ACGGAAGTCTTGCAACGTAGCTCA -ACGGAAGTCTTGCAACGTTCACGT -ACGGAAGTCTTGCAACGTCGTAGT -ACGGAAGTCTTGCAACGTGTCAGT -ACGGAAGTCTTGCAACGTGAAGGT -ACGGAAGTCTTGCAACGTAACCGT -ACGGAAGTCTTGCAACGTTTGTGC -ACGGAAGTCTTGCAACGTCTAAGC -ACGGAAGTCTTGCAACGTACTAGC -ACGGAAGTCTTGCAACGTAGATGC -ACGGAAGTCTTGCAACGTTGAAGG -ACGGAAGTCTTGCAACGTCAATGG -ACGGAAGTCTTGCAACGTATGAGG -ACGGAAGTCTTGCAACGTAATGGG -ACGGAAGTCTTGCAACGTTCCTGA -ACGGAAGTCTTGCAACGTTAGCGA -ACGGAAGTCTTGCAACGTCACAGA -ACGGAAGTCTTGCAACGTGCAAGA -ACGGAAGTCTTGCAACGTGGTTGA -ACGGAAGTCTTGCAACGTTCCGAT -ACGGAAGTCTTGCAACGTTGGCAT -ACGGAAGTCTTGCAACGTCGAGAT -ACGGAAGTCTTGCAACGTTACCAC -ACGGAAGTCTTGCAACGTCAGAAC -ACGGAAGTCTTGCAACGTGTCTAC -ACGGAAGTCTTGCAACGTACGTAC -ACGGAAGTCTTGCAACGTAGTGAC -ACGGAAGTCTTGCAACGTCTGTAG -ACGGAAGTCTTGCAACGTCCTAAG -ACGGAAGTCTTGCAACGTGTTCAG -ACGGAAGTCTTGCAACGTGCATAG -ACGGAAGTCTTGCAACGTGACAAG -ACGGAAGTCTTGCAACGTAAGCAG -ACGGAAGTCTTGCAACGTCGTCAA -ACGGAAGTCTTGCAACGTGCTGAA -ACGGAAGTCTTGCAACGTAGTACG -ACGGAAGTCTTGCAACGTATCCGA -ACGGAAGTCTTGCAACGTATGGGA -ACGGAAGTCTTGCAACGTGTGCAA -ACGGAAGTCTTGCAACGTGAGGAA -ACGGAAGTCTTGCAACGTCAGGTA -ACGGAAGTCTTGCAACGTGACTCT -ACGGAAGTCTTGCAACGTAGTCCT -ACGGAAGTCTTGCAACGTTAAGCC -ACGGAAGTCTTGCAACGTATAGCC -ACGGAAGTCTTGCAACGTTAACCG -ACGGAAGTCTTGCAACGTATGCCA -ACGGAAGTCTTGGAAGCTGGAAAC -ACGGAAGTCTTGGAAGCTAACACC -ACGGAAGTCTTGGAAGCTATCGAG -ACGGAAGTCTTGGAAGCTCTCCTT -ACGGAAGTCTTGGAAGCTCCTGTT -ACGGAAGTCTTGGAAGCTCGGTTT -ACGGAAGTCTTGGAAGCTGTGGTT -ACGGAAGTCTTGGAAGCTGCCTTT -ACGGAAGTCTTGGAAGCTGGTCTT -ACGGAAGTCTTGGAAGCTACGCTT -ACGGAAGTCTTGGAAGCTAGCGTT -ACGGAAGTCTTGGAAGCTTTCGTC -ACGGAAGTCTTGGAAGCTTCTCTC -ACGGAAGTCTTGGAAGCTTGGATC -ACGGAAGTCTTGGAAGCTCACTTC -ACGGAAGTCTTGGAAGCTGTACTC -ACGGAAGTCTTGGAAGCTGATGTC -ACGGAAGTCTTGGAAGCTACAGTC -ACGGAAGTCTTGGAAGCTTTGCTG -ACGGAAGTCTTGGAAGCTTCCATG -ACGGAAGTCTTGGAAGCTTGTGTG -ACGGAAGTCTTGGAAGCTCTAGTG -ACGGAAGTCTTGGAAGCTCATCTG -ACGGAAGTCTTGGAAGCTGAGTTG -ACGGAAGTCTTGGAAGCTAGACTG -ACGGAAGTCTTGGAAGCTTCGGTA -ACGGAAGTCTTGGAAGCTTGCCTA -ACGGAAGTCTTGGAAGCTCCACTA -ACGGAAGTCTTGGAAGCTGGAGTA -ACGGAAGTCTTGGAAGCTTCGTCT -ACGGAAGTCTTGGAAGCTTGCACT -ACGGAAGTCTTGGAAGCTCTGACT -ACGGAAGTCTTGGAAGCTCAACCT -ACGGAAGTCTTGGAAGCTGCTACT -ACGGAAGTCTTGGAAGCTGGATCT -ACGGAAGTCTTGGAAGCTAAGGCT -ACGGAAGTCTTGGAAGCTTCAACC -ACGGAAGTCTTGGAAGCTTGTTCC -ACGGAAGTCTTGGAAGCTATTCCC -ACGGAAGTCTTGGAAGCTTTCTCG -ACGGAAGTCTTGGAAGCTTAGACG -ACGGAAGTCTTGGAAGCTGTAACG -ACGGAAGTCTTGGAAGCTACTTCG -ACGGAAGTCTTGGAAGCTTACGCA -ACGGAAGTCTTGGAAGCTCTTGCA -ACGGAAGTCTTGGAAGCTCGAACA -ACGGAAGTCTTGGAAGCTCAGTCA -ACGGAAGTCTTGGAAGCTGATCCA -ACGGAAGTCTTGGAAGCTACGACA -ACGGAAGTCTTGGAAGCTAGCTCA -ACGGAAGTCTTGGAAGCTTCACGT -ACGGAAGTCTTGGAAGCTCGTAGT -ACGGAAGTCTTGGAAGCTGTCAGT -ACGGAAGTCTTGGAAGCTGAAGGT -ACGGAAGTCTTGGAAGCTAACCGT -ACGGAAGTCTTGGAAGCTTTGTGC -ACGGAAGTCTTGGAAGCTCTAAGC -ACGGAAGTCTTGGAAGCTACTAGC -ACGGAAGTCTTGGAAGCTAGATGC -ACGGAAGTCTTGGAAGCTTGAAGG -ACGGAAGTCTTGGAAGCTCAATGG -ACGGAAGTCTTGGAAGCTATGAGG -ACGGAAGTCTTGGAAGCTAATGGG -ACGGAAGTCTTGGAAGCTTCCTGA -ACGGAAGTCTTGGAAGCTTAGCGA -ACGGAAGTCTTGGAAGCTCACAGA -ACGGAAGTCTTGGAAGCTGCAAGA -ACGGAAGTCTTGGAAGCTGGTTGA -ACGGAAGTCTTGGAAGCTTCCGAT -ACGGAAGTCTTGGAAGCTTGGCAT -ACGGAAGTCTTGGAAGCTCGAGAT -ACGGAAGTCTTGGAAGCTTACCAC -ACGGAAGTCTTGGAAGCTCAGAAC -ACGGAAGTCTTGGAAGCTGTCTAC -ACGGAAGTCTTGGAAGCTACGTAC -ACGGAAGTCTTGGAAGCTAGTGAC -ACGGAAGTCTTGGAAGCTCTGTAG -ACGGAAGTCTTGGAAGCTCCTAAG -ACGGAAGTCTTGGAAGCTGTTCAG -ACGGAAGTCTTGGAAGCTGCATAG -ACGGAAGTCTTGGAAGCTGACAAG -ACGGAAGTCTTGGAAGCTAAGCAG -ACGGAAGTCTTGGAAGCTCGTCAA -ACGGAAGTCTTGGAAGCTGCTGAA -ACGGAAGTCTTGGAAGCTAGTACG -ACGGAAGTCTTGGAAGCTATCCGA -ACGGAAGTCTTGGAAGCTATGGGA -ACGGAAGTCTTGGAAGCTGTGCAA -ACGGAAGTCTTGGAAGCTGAGGAA -ACGGAAGTCTTGGAAGCTCAGGTA -ACGGAAGTCTTGGAAGCTGACTCT -ACGGAAGTCTTGGAAGCTAGTCCT -ACGGAAGTCTTGGAAGCTTAAGCC -ACGGAAGTCTTGGAAGCTATAGCC -ACGGAAGTCTTGGAAGCTTAACCG -ACGGAAGTCTTGGAAGCTATGCCA -ACGGAAGTCTTGACGAGTGGAAAC -ACGGAAGTCTTGACGAGTAACACC -ACGGAAGTCTTGACGAGTATCGAG -ACGGAAGTCTTGACGAGTCTCCTT -ACGGAAGTCTTGACGAGTCCTGTT -ACGGAAGTCTTGACGAGTCGGTTT -ACGGAAGTCTTGACGAGTGTGGTT -ACGGAAGTCTTGACGAGTGCCTTT -ACGGAAGTCTTGACGAGTGGTCTT -ACGGAAGTCTTGACGAGTACGCTT -ACGGAAGTCTTGACGAGTAGCGTT -ACGGAAGTCTTGACGAGTTTCGTC -ACGGAAGTCTTGACGAGTTCTCTC -ACGGAAGTCTTGACGAGTTGGATC -ACGGAAGTCTTGACGAGTCACTTC -ACGGAAGTCTTGACGAGTGTACTC -ACGGAAGTCTTGACGAGTGATGTC -ACGGAAGTCTTGACGAGTACAGTC -ACGGAAGTCTTGACGAGTTTGCTG -ACGGAAGTCTTGACGAGTTCCATG -ACGGAAGTCTTGACGAGTTGTGTG -ACGGAAGTCTTGACGAGTCTAGTG -ACGGAAGTCTTGACGAGTCATCTG -ACGGAAGTCTTGACGAGTGAGTTG -ACGGAAGTCTTGACGAGTAGACTG -ACGGAAGTCTTGACGAGTTCGGTA -ACGGAAGTCTTGACGAGTTGCCTA -ACGGAAGTCTTGACGAGTCCACTA -ACGGAAGTCTTGACGAGTGGAGTA -ACGGAAGTCTTGACGAGTTCGTCT -ACGGAAGTCTTGACGAGTTGCACT -ACGGAAGTCTTGACGAGTCTGACT -ACGGAAGTCTTGACGAGTCAACCT -ACGGAAGTCTTGACGAGTGCTACT -ACGGAAGTCTTGACGAGTGGATCT -ACGGAAGTCTTGACGAGTAAGGCT -ACGGAAGTCTTGACGAGTTCAACC -ACGGAAGTCTTGACGAGTTGTTCC -ACGGAAGTCTTGACGAGTATTCCC -ACGGAAGTCTTGACGAGTTTCTCG -ACGGAAGTCTTGACGAGTTAGACG -ACGGAAGTCTTGACGAGTGTAACG -ACGGAAGTCTTGACGAGTACTTCG -ACGGAAGTCTTGACGAGTTACGCA -ACGGAAGTCTTGACGAGTCTTGCA -ACGGAAGTCTTGACGAGTCGAACA -ACGGAAGTCTTGACGAGTCAGTCA -ACGGAAGTCTTGACGAGTGATCCA -ACGGAAGTCTTGACGAGTACGACA -ACGGAAGTCTTGACGAGTAGCTCA -ACGGAAGTCTTGACGAGTTCACGT -ACGGAAGTCTTGACGAGTCGTAGT -ACGGAAGTCTTGACGAGTGTCAGT -ACGGAAGTCTTGACGAGTGAAGGT -ACGGAAGTCTTGACGAGTAACCGT -ACGGAAGTCTTGACGAGTTTGTGC -ACGGAAGTCTTGACGAGTCTAAGC -ACGGAAGTCTTGACGAGTACTAGC -ACGGAAGTCTTGACGAGTAGATGC -ACGGAAGTCTTGACGAGTTGAAGG -ACGGAAGTCTTGACGAGTCAATGG -ACGGAAGTCTTGACGAGTATGAGG -ACGGAAGTCTTGACGAGTAATGGG -ACGGAAGTCTTGACGAGTTCCTGA -ACGGAAGTCTTGACGAGTTAGCGA -ACGGAAGTCTTGACGAGTCACAGA -ACGGAAGTCTTGACGAGTGCAAGA -ACGGAAGTCTTGACGAGTGGTTGA -ACGGAAGTCTTGACGAGTTCCGAT -ACGGAAGTCTTGACGAGTTGGCAT -ACGGAAGTCTTGACGAGTCGAGAT -ACGGAAGTCTTGACGAGTTACCAC -ACGGAAGTCTTGACGAGTCAGAAC -ACGGAAGTCTTGACGAGTGTCTAC -ACGGAAGTCTTGACGAGTACGTAC -ACGGAAGTCTTGACGAGTAGTGAC -ACGGAAGTCTTGACGAGTCTGTAG -ACGGAAGTCTTGACGAGTCCTAAG -ACGGAAGTCTTGACGAGTGTTCAG -ACGGAAGTCTTGACGAGTGCATAG -ACGGAAGTCTTGACGAGTGACAAG -ACGGAAGTCTTGACGAGTAAGCAG -ACGGAAGTCTTGACGAGTCGTCAA -ACGGAAGTCTTGACGAGTGCTGAA -ACGGAAGTCTTGACGAGTAGTACG -ACGGAAGTCTTGACGAGTATCCGA -ACGGAAGTCTTGACGAGTATGGGA -ACGGAAGTCTTGACGAGTGTGCAA -ACGGAAGTCTTGACGAGTGAGGAA -ACGGAAGTCTTGACGAGTCAGGTA -ACGGAAGTCTTGACGAGTGACTCT -ACGGAAGTCTTGACGAGTAGTCCT -ACGGAAGTCTTGACGAGTTAAGCC -ACGGAAGTCTTGACGAGTATAGCC -ACGGAAGTCTTGACGAGTTAACCG -ACGGAAGTCTTGACGAGTATGCCA -ACGGAAGTCTTGCGAATCGGAAAC -ACGGAAGTCTTGCGAATCAACACC -ACGGAAGTCTTGCGAATCATCGAG -ACGGAAGTCTTGCGAATCCTCCTT -ACGGAAGTCTTGCGAATCCCTGTT -ACGGAAGTCTTGCGAATCCGGTTT -ACGGAAGTCTTGCGAATCGTGGTT -ACGGAAGTCTTGCGAATCGCCTTT -ACGGAAGTCTTGCGAATCGGTCTT -ACGGAAGTCTTGCGAATCACGCTT -ACGGAAGTCTTGCGAATCAGCGTT -ACGGAAGTCTTGCGAATCTTCGTC -ACGGAAGTCTTGCGAATCTCTCTC -ACGGAAGTCTTGCGAATCTGGATC -ACGGAAGTCTTGCGAATCCACTTC -ACGGAAGTCTTGCGAATCGTACTC -ACGGAAGTCTTGCGAATCGATGTC -ACGGAAGTCTTGCGAATCACAGTC -ACGGAAGTCTTGCGAATCTTGCTG -ACGGAAGTCTTGCGAATCTCCATG -ACGGAAGTCTTGCGAATCTGTGTG -ACGGAAGTCTTGCGAATCCTAGTG -ACGGAAGTCTTGCGAATCCATCTG -ACGGAAGTCTTGCGAATCGAGTTG -ACGGAAGTCTTGCGAATCAGACTG -ACGGAAGTCTTGCGAATCTCGGTA -ACGGAAGTCTTGCGAATCTGCCTA -ACGGAAGTCTTGCGAATCCCACTA -ACGGAAGTCTTGCGAATCGGAGTA -ACGGAAGTCTTGCGAATCTCGTCT -ACGGAAGTCTTGCGAATCTGCACT -ACGGAAGTCTTGCGAATCCTGACT -ACGGAAGTCTTGCGAATCCAACCT -ACGGAAGTCTTGCGAATCGCTACT -ACGGAAGTCTTGCGAATCGGATCT -ACGGAAGTCTTGCGAATCAAGGCT -ACGGAAGTCTTGCGAATCTCAACC -ACGGAAGTCTTGCGAATCTGTTCC -ACGGAAGTCTTGCGAATCATTCCC -ACGGAAGTCTTGCGAATCTTCTCG -ACGGAAGTCTTGCGAATCTAGACG -ACGGAAGTCTTGCGAATCGTAACG -ACGGAAGTCTTGCGAATCACTTCG -ACGGAAGTCTTGCGAATCTACGCA -ACGGAAGTCTTGCGAATCCTTGCA -ACGGAAGTCTTGCGAATCCGAACA -ACGGAAGTCTTGCGAATCCAGTCA -ACGGAAGTCTTGCGAATCGATCCA -ACGGAAGTCTTGCGAATCACGACA -ACGGAAGTCTTGCGAATCAGCTCA -ACGGAAGTCTTGCGAATCTCACGT -ACGGAAGTCTTGCGAATCCGTAGT -ACGGAAGTCTTGCGAATCGTCAGT -ACGGAAGTCTTGCGAATCGAAGGT -ACGGAAGTCTTGCGAATCAACCGT -ACGGAAGTCTTGCGAATCTTGTGC -ACGGAAGTCTTGCGAATCCTAAGC -ACGGAAGTCTTGCGAATCACTAGC -ACGGAAGTCTTGCGAATCAGATGC -ACGGAAGTCTTGCGAATCTGAAGG -ACGGAAGTCTTGCGAATCCAATGG -ACGGAAGTCTTGCGAATCATGAGG -ACGGAAGTCTTGCGAATCAATGGG -ACGGAAGTCTTGCGAATCTCCTGA -ACGGAAGTCTTGCGAATCTAGCGA -ACGGAAGTCTTGCGAATCCACAGA -ACGGAAGTCTTGCGAATCGCAAGA -ACGGAAGTCTTGCGAATCGGTTGA -ACGGAAGTCTTGCGAATCTCCGAT -ACGGAAGTCTTGCGAATCTGGCAT -ACGGAAGTCTTGCGAATCCGAGAT -ACGGAAGTCTTGCGAATCTACCAC -ACGGAAGTCTTGCGAATCCAGAAC -ACGGAAGTCTTGCGAATCGTCTAC -ACGGAAGTCTTGCGAATCACGTAC -ACGGAAGTCTTGCGAATCAGTGAC -ACGGAAGTCTTGCGAATCCTGTAG -ACGGAAGTCTTGCGAATCCCTAAG -ACGGAAGTCTTGCGAATCGTTCAG -ACGGAAGTCTTGCGAATCGCATAG -ACGGAAGTCTTGCGAATCGACAAG -ACGGAAGTCTTGCGAATCAAGCAG -ACGGAAGTCTTGCGAATCCGTCAA -ACGGAAGTCTTGCGAATCGCTGAA -ACGGAAGTCTTGCGAATCAGTACG -ACGGAAGTCTTGCGAATCATCCGA -ACGGAAGTCTTGCGAATCATGGGA -ACGGAAGTCTTGCGAATCGTGCAA -ACGGAAGTCTTGCGAATCGAGGAA -ACGGAAGTCTTGCGAATCCAGGTA -ACGGAAGTCTTGCGAATCGACTCT -ACGGAAGTCTTGCGAATCAGTCCT -ACGGAAGTCTTGCGAATCTAAGCC -ACGGAAGTCTTGCGAATCATAGCC -ACGGAAGTCTTGCGAATCTAACCG -ACGGAAGTCTTGCGAATCATGCCA -ACGGAAGTCTTGGGAATGGGAAAC -ACGGAAGTCTTGGGAATGAACACC -ACGGAAGTCTTGGGAATGATCGAG -ACGGAAGTCTTGGGAATGCTCCTT -ACGGAAGTCTTGGGAATGCCTGTT -ACGGAAGTCTTGGGAATGCGGTTT -ACGGAAGTCTTGGGAATGGTGGTT -ACGGAAGTCTTGGGAATGGCCTTT -ACGGAAGTCTTGGGAATGGGTCTT -ACGGAAGTCTTGGGAATGACGCTT -ACGGAAGTCTTGGGAATGAGCGTT -ACGGAAGTCTTGGGAATGTTCGTC -ACGGAAGTCTTGGGAATGTCTCTC -ACGGAAGTCTTGGGAATGTGGATC -ACGGAAGTCTTGGGAATGCACTTC -ACGGAAGTCTTGGGAATGGTACTC -ACGGAAGTCTTGGGAATGGATGTC -ACGGAAGTCTTGGGAATGACAGTC -ACGGAAGTCTTGGGAATGTTGCTG -ACGGAAGTCTTGGGAATGTCCATG -ACGGAAGTCTTGGGAATGTGTGTG -ACGGAAGTCTTGGGAATGCTAGTG -ACGGAAGTCTTGGGAATGCATCTG -ACGGAAGTCTTGGGAATGGAGTTG -ACGGAAGTCTTGGGAATGAGACTG -ACGGAAGTCTTGGGAATGTCGGTA -ACGGAAGTCTTGGGAATGTGCCTA -ACGGAAGTCTTGGGAATGCCACTA -ACGGAAGTCTTGGGAATGGGAGTA -ACGGAAGTCTTGGGAATGTCGTCT -ACGGAAGTCTTGGGAATGTGCACT -ACGGAAGTCTTGGGAATGCTGACT -ACGGAAGTCTTGGGAATGCAACCT -ACGGAAGTCTTGGGAATGGCTACT -ACGGAAGTCTTGGGAATGGGATCT -ACGGAAGTCTTGGGAATGAAGGCT -ACGGAAGTCTTGGGAATGTCAACC -ACGGAAGTCTTGGGAATGTGTTCC -ACGGAAGTCTTGGGAATGATTCCC -ACGGAAGTCTTGGGAATGTTCTCG -ACGGAAGTCTTGGGAATGTAGACG -ACGGAAGTCTTGGGAATGGTAACG -ACGGAAGTCTTGGGAATGACTTCG -ACGGAAGTCTTGGGAATGTACGCA -ACGGAAGTCTTGGGAATGCTTGCA -ACGGAAGTCTTGGGAATGCGAACA -ACGGAAGTCTTGGGAATGCAGTCA -ACGGAAGTCTTGGGAATGGATCCA -ACGGAAGTCTTGGGAATGACGACA -ACGGAAGTCTTGGGAATGAGCTCA -ACGGAAGTCTTGGGAATGTCACGT -ACGGAAGTCTTGGGAATGCGTAGT -ACGGAAGTCTTGGGAATGGTCAGT -ACGGAAGTCTTGGGAATGGAAGGT -ACGGAAGTCTTGGGAATGAACCGT -ACGGAAGTCTTGGGAATGTTGTGC -ACGGAAGTCTTGGGAATGCTAAGC -ACGGAAGTCTTGGGAATGACTAGC -ACGGAAGTCTTGGGAATGAGATGC -ACGGAAGTCTTGGGAATGTGAAGG -ACGGAAGTCTTGGGAATGCAATGG -ACGGAAGTCTTGGGAATGATGAGG -ACGGAAGTCTTGGGAATGAATGGG -ACGGAAGTCTTGGGAATGTCCTGA -ACGGAAGTCTTGGGAATGTAGCGA -ACGGAAGTCTTGGGAATGCACAGA -ACGGAAGTCTTGGGAATGGCAAGA -ACGGAAGTCTTGGGAATGGGTTGA -ACGGAAGTCTTGGGAATGTCCGAT -ACGGAAGTCTTGGGAATGTGGCAT -ACGGAAGTCTTGGGAATGCGAGAT -ACGGAAGTCTTGGGAATGTACCAC -ACGGAAGTCTTGGGAATGCAGAAC -ACGGAAGTCTTGGGAATGGTCTAC -ACGGAAGTCTTGGGAATGACGTAC -ACGGAAGTCTTGGGAATGAGTGAC -ACGGAAGTCTTGGGAATGCTGTAG -ACGGAAGTCTTGGGAATGCCTAAG -ACGGAAGTCTTGGGAATGGTTCAG -ACGGAAGTCTTGGGAATGGCATAG -ACGGAAGTCTTGGGAATGGACAAG -ACGGAAGTCTTGGGAATGAAGCAG -ACGGAAGTCTTGGGAATGCGTCAA -ACGGAAGTCTTGGGAATGGCTGAA -ACGGAAGTCTTGGGAATGAGTACG -ACGGAAGTCTTGGGAATGATCCGA -ACGGAAGTCTTGGGAATGATGGGA -ACGGAAGTCTTGGGAATGGTGCAA -ACGGAAGTCTTGGGAATGGAGGAA -ACGGAAGTCTTGGGAATGCAGGTA -ACGGAAGTCTTGGGAATGGACTCT -ACGGAAGTCTTGGGAATGAGTCCT -ACGGAAGTCTTGGGAATGTAAGCC -ACGGAAGTCTTGGGAATGATAGCC -ACGGAAGTCTTGGGAATGTAACCG -ACGGAAGTCTTGGGAATGATGCCA -ACGGAAGTCTTGCAAGTGGGAAAC -ACGGAAGTCTTGCAAGTGAACACC -ACGGAAGTCTTGCAAGTGATCGAG -ACGGAAGTCTTGCAAGTGCTCCTT -ACGGAAGTCTTGCAAGTGCCTGTT -ACGGAAGTCTTGCAAGTGCGGTTT -ACGGAAGTCTTGCAAGTGGTGGTT -ACGGAAGTCTTGCAAGTGGCCTTT -ACGGAAGTCTTGCAAGTGGGTCTT -ACGGAAGTCTTGCAAGTGACGCTT -ACGGAAGTCTTGCAAGTGAGCGTT -ACGGAAGTCTTGCAAGTGTTCGTC -ACGGAAGTCTTGCAAGTGTCTCTC -ACGGAAGTCTTGCAAGTGTGGATC -ACGGAAGTCTTGCAAGTGCACTTC -ACGGAAGTCTTGCAAGTGGTACTC -ACGGAAGTCTTGCAAGTGGATGTC -ACGGAAGTCTTGCAAGTGACAGTC -ACGGAAGTCTTGCAAGTGTTGCTG -ACGGAAGTCTTGCAAGTGTCCATG -ACGGAAGTCTTGCAAGTGTGTGTG -ACGGAAGTCTTGCAAGTGCTAGTG -ACGGAAGTCTTGCAAGTGCATCTG -ACGGAAGTCTTGCAAGTGGAGTTG -ACGGAAGTCTTGCAAGTGAGACTG -ACGGAAGTCTTGCAAGTGTCGGTA -ACGGAAGTCTTGCAAGTGTGCCTA -ACGGAAGTCTTGCAAGTGCCACTA -ACGGAAGTCTTGCAAGTGGGAGTA -ACGGAAGTCTTGCAAGTGTCGTCT -ACGGAAGTCTTGCAAGTGTGCACT -ACGGAAGTCTTGCAAGTGCTGACT -ACGGAAGTCTTGCAAGTGCAACCT -ACGGAAGTCTTGCAAGTGGCTACT -ACGGAAGTCTTGCAAGTGGGATCT -ACGGAAGTCTTGCAAGTGAAGGCT -ACGGAAGTCTTGCAAGTGTCAACC -ACGGAAGTCTTGCAAGTGTGTTCC -ACGGAAGTCTTGCAAGTGATTCCC -ACGGAAGTCTTGCAAGTGTTCTCG -ACGGAAGTCTTGCAAGTGTAGACG -ACGGAAGTCTTGCAAGTGGTAACG -ACGGAAGTCTTGCAAGTGACTTCG -ACGGAAGTCTTGCAAGTGTACGCA -ACGGAAGTCTTGCAAGTGCTTGCA -ACGGAAGTCTTGCAAGTGCGAACA -ACGGAAGTCTTGCAAGTGCAGTCA -ACGGAAGTCTTGCAAGTGGATCCA -ACGGAAGTCTTGCAAGTGACGACA -ACGGAAGTCTTGCAAGTGAGCTCA -ACGGAAGTCTTGCAAGTGTCACGT -ACGGAAGTCTTGCAAGTGCGTAGT -ACGGAAGTCTTGCAAGTGGTCAGT -ACGGAAGTCTTGCAAGTGGAAGGT -ACGGAAGTCTTGCAAGTGAACCGT -ACGGAAGTCTTGCAAGTGTTGTGC -ACGGAAGTCTTGCAAGTGCTAAGC -ACGGAAGTCTTGCAAGTGACTAGC -ACGGAAGTCTTGCAAGTGAGATGC -ACGGAAGTCTTGCAAGTGTGAAGG -ACGGAAGTCTTGCAAGTGCAATGG -ACGGAAGTCTTGCAAGTGATGAGG -ACGGAAGTCTTGCAAGTGAATGGG -ACGGAAGTCTTGCAAGTGTCCTGA -ACGGAAGTCTTGCAAGTGTAGCGA -ACGGAAGTCTTGCAAGTGCACAGA -ACGGAAGTCTTGCAAGTGGCAAGA -ACGGAAGTCTTGCAAGTGGGTTGA -ACGGAAGTCTTGCAAGTGTCCGAT -ACGGAAGTCTTGCAAGTGTGGCAT -ACGGAAGTCTTGCAAGTGCGAGAT -ACGGAAGTCTTGCAAGTGTACCAC -ACGGAAGTCTTGCAAGTGCAGAAC -ACGGAAGTCTTGCAAGTGGTCTAC -ACGGAAGTCTTGCAAGTGACGTAC -ACGGAAGTCTTGCAAGTGAGTGAC -ACGGAAGTCTTGCAAGTGCTGTAG -ACGGAAGTCTTGCAAGTGCCTAAG -ACGGAAGTCTTGCAAGTGGTTCAG -ACGGAAGTCTTGCAAGTGGCATAG -ACGGAAGTCTTGCAAGTGGACAAG -ACGGAAGTCTTGCAAGTGAAGCAG -ACGGAAGTCTTGCAAGTGCGTCAA -ACGGAAGTCTTGCAAGTGGCTGAA -ACGGAAGTCTTGCAAGTGAGTACG -ACGGAAGTCTTGCAAGTGATCCGA -ACGGAAGTCTTGCAAGTGATGGGA -ACGGAAGTCTTGCAAGTGGTGCAA -ACGGAAGTCTTGCAAGTGGAGGAA -ACGGAAGTCTTGCAAGTGCAGGTA -ACGGAAGTCTTGCAAGTGGACTCT -ACGGAAGTCTTGCAAGTGAGTCCT -ACGGAAGTCTTGCAAGTGTAAGCC -ACGGAAGTCTTGCAAGTGATAGCC -ACGGAAGTCTTGCAAGTGTAACCG -ACGGAAGTCTTGCAAGTGATGCCA -ACGGAAGTCTTGGAAGAGGGAAAC -ACGGAAGTCTTGGAAGAGAACACC -ACGGAAGTCTTGGAAGAGATCGAG -ACGGAAGTCTTGGAAGAGCTCCTT -ACGGAAGTCTTGGAAGAGCCTGTT -ACGGAAGTCTTGGAAGAGCGGTTT -ACGGAAGTCTTGGAAGAGGTGGTT -ACGGAAGTCTTGGAAGAGGCCTTT -ACGGAAGTCTTGGAAGAGGGTCTT -ACGGAAGTCTTGGAAGAGACGCTT -ACGGAAGTCTTGGAAGAGAGCGTT -ACGGAAGTCTTGGAAGAGTTCGTC -ACGGAAGTCTTGGAAGAGTCTCTC -ACGGAAGTCTTGGAAGAGTGGATC -ACGGAAGTCTTGGAAGAGCACTTC -ACGGAAGTCTTGGAAGAGGTACTC -ACGGAAGTCTTGGAAGAGGATGTC -ACGGAAGTCTTGGAAGAGACAGTC -ACGGAAGTCTTGGAAGAGTTGCTG -ACGGAAGTCTTGGAAGAGTCCATG -ACGGAAGTCTTGGAAGAGTGTGTG -ACGGAAGTCTTGGAAGAGCTAGTG -ACGGAAGTCTTGGAAGAGCATCTG -ACGGAAGTCTTGGAAGAGGAGTTG -ACGGAAGTCTTGGAAGAGAGACTG -ACGGAAGTCTTGGAAGAGTCGGTA -ACGGAAGTCTTGGAAGAGTGCCTA -ACGGAAGTCTTGGAAGAGCCACTA -ACGGAAGTCTTGGAAGAGGGAGTA -ACGGAAGTCTTGGAAGAGTCGTCT -ACGGAAGTCTTGGAAGAGTGCACT -ACGGAAGTCTTGGAAGAGCTGACT -ACGGAAGTCTTGGAAGAGCAACCT -ACGGAAGTCTTGGAAGAGGCTACT -ACGGAAGTCTTGGAAGAGGGATCT -ACGGAAGTCTTGGAAGAGAAGGCT -ACGGAAGTCTTGGAAGAGTCAACC -ACGGAAGTCTTGGAAGAGTGTTCC -ACGGAAGTCTTGGAAGAGATTCCC -ACGGAAGTCTTGGAAGAGTTCTCG -ACGGAAGTCTTGGAAGAGTAGACG -ACGGAAGTCTTGGAAGAGGTAACG -ACGGAAGTCTTGGAAGAGACTTCG -ACGGAAGTCTTGGAAGAGTACGCA -ACGGAAGTCTTGGAAGAGCTTGCA -ACGGAAGTCTTGGAAGAGCGAACA -ACGGAAGTCTTGGAAGAGCAGTCA -ACGGAAGTCTTGGAAGAGGATCCA -ACGGAAGTCTTGGAAGAGACGACA -ACGGAAGTCTTGGAAGAGAGCTCA -ACGGAAGTCTTGGAAGAGTCACGT -ACGGAAGTCTTGGAAGAGCGTAGT -ACGGAAGTCTTGGAAGAGGTCAGT -ACGGAAGTCTTGGAAGAGGAAGGT -ACGGAAGTCTTGGAAGAGAACCGT -ACGGAAGTCTTGGAAGAGTTGTGC -ACGGAAGTCTTGGAAGAGCTAAGC -ACGGAAGTCTTGGAAGAGACTAGC -ACGGAAGTCTTGGAAGAGAGATGC -ACGGAAGTCTTGGAAGAGTGAAGG -ACGGAAGTCTTGGAAGAGCAATGG -ACGGAAGTCTTGGAAGAGATGAGG -ACGGAAGTCTTGGAAGAGAATGGG -ACGGAAGTCTTGGAAGAGTCCTGA -ACGGAAGTCTTGGAAGAGTAGCGA -ACGGAAGTCTTGGAAGAGCACAGA -ACGGAAGTCTTGGAAGAGGCAAGA -ACGGAAGTCTTGGAAGAGGGTTGA -ACGGAAGTCTTGGAAGAGTCCGAT -ACGGAAGTCTTGGAAGAGTGGCAT -ACGGAAGTCTTGGAAGAGCGAGAT -ACGGAAGTCTTGGAAGAGTACCAC -ACGGAAGTCTTGGAAGAGCAGAAC -ACGGAAGTCTTGGAAGAGGTCTAC -ACGGAAGTCTTGGAAGAGACGTAC -ACGGAAGTCTTGGAAGAGAGTGAC -ACGGAAGTCTTGGAAGAGCTGTAG -ACGGAAGTCTTGGAAGAGCCTAAG -ACGGAAGTCTTGGAAGAGGTTCAG -ACGGAAGTCTTGGAAGAGGCATAG -ACGGAAGTCTTGGAAGAGGACAAG -ACGGAAGTCTTGGAAGAGAAGCAG -ACGGAAGTCTTGGAAGAGCGTCAA -ACGGAAGTCTTGGAAGAGGCTGAA -ACGGAAGTCTTGGAAGAGAGTACG -ACGGAAGTCTTGGAAGAGATCCGA -ACGGAAGTCTTGGAAGAGATGGGA -ACGGAAGTCTTGGAAGAGGTGCAA -ACGGAAGTCTTGGAAGAGGAGGAA -ACGGAAGTCTTGGAAGAGCAGGTA -ACGGAAGTCTTGGAAGAGGACTCT -ACGGAAGTCTTGGAAGAGAGTCCT -ACGGAAGTCTTGGAAGAGTAAGCC -ACGGAAGTCTTGGAAGAGATAGCC -ACGGAAGTCTTGGAAGAGTAACCG -ACGGAAGTCTTGGAAGAGATGCCA -ACGGAAGTCTTGGTACAGGGAAAC -ACGGAAGTCTTGGTACAGAACACC -ACGGAAGTCTTGGTACAGATCGAG -ACGGAAGTCTTGGTACAGCTCCTT -ACGGAAGTCTTGGTACAGCCTGTT -ACGGAAGTCTTGGTACAGCGGTTT -ACGGAAGTCTTGGTACAGGTGGTT -ACGGAAGTCTTGGTACAGGCCTTT -ACGGAAGTCTTGGTACAGGGTCTT -ACGGAAGTCTTGGTACAGACGCTT -ACGGAAGTCTTGGTACAGAGCGTT -ACGGAAGTCTTGGTACAGTTCGTC -ACGGAAGTCTTGGTACAGTCTCTC -ACGGAAGTCTTGGTACAGTGGATC -ACGGAAGTCTTGGTACAGCACTTC -ACGGAAGTCTTGGTACAGGTACTC -ACGGAAGTCTTGGTACAGGATGTC -ACGGAAGTCTTGGTACAGACAGTC -ACGGAAGTCTTGGTACAGTTGCTG -ACGGAAGTCTTGGTACAGTCCATG -ACGGAAGTCTTGGTACAGTGTGTG -ACGGAAGTCTTGGTACAGCTAGTG -ACGGAAGTCTTGGTACAGCATCTG -ACGGAAGTCTTGGTACAGGAGTTG -ACGGAAGTCTTGGTACAGAGACTG -ACGGAAGTCTTGGTACAGTCGGTA -ACGGAAGTCTTGGTACAGTGCCTA -ACGGAAGTCTTGGTACAGCCACTA -ACGGAAGTCTTGGTACAGGGAGTA -ACGGAAGTCTTGGTACAGTCGTCT -ACGGAAGTCTTGGTACAGTGCACT -ACGGAAGTCTTGGTACAGCTGACT -ACGGAAGTCTTGGTACAGCAACCT -ACGGAAGTCTTGGTACAGGCTACT -ACGGAAGTCTTGGTACAGGGATCT -ACGGAAGTCTTGGTACAGAAGGCT -ACGGAAGTCTTGGTACAGTCAACC -ACGGAAGTCTTGGTACAGTGTTCC -ACGGAAGTCTTGGTACAGATTCCC -ACGGAAGTCTTGGTACAGTTCTCG -ACGGAAGTCTTGGTACAGTAGACG -ACGGAAGTCTTGGTACAGGTAACG -ACGGAAGTCTTGGTACAGACTTCG -ACGGAAGTCTTGGTACAGTACGCA -ACGGAAGTCTTGGTACAGCTTGCA -ACGGAAGTCTTGGTACAGCGAACA -ACGGAAGTCTTGGTACAGCAGTCA -ACGGAAGTCTTGGTACAGGATCCA -ACGGAAGTCTTGGTACAGACGACA -ACGGAAGTCTTGGTACAGAGCTCA -ACGGAAGTCTTGGTACAGTCACGT -ACGGAAGTCTTGGTACAGCGTAGT -ACGGAAGTCTTGGTACAGGTCAGT -ACGGAAGTCTTGGTACAGGAAGGT -ACGGAAGTCTTGGTACAGAACCGT -ACGGAAGTCTTGGTACAGTTGTGC -ACGGAAGTCTTGGTACAGCTAAGC -ACGGAAGTCTTGGTACAGACTAGC -ACGGAAGTCTTGGTACAGAGATGC -ACGGAAGTCTTGGTACAGTGAAGG -ACGGAAGTCTTGGTACAGCAATGG -ACGGAAGTCTTGGTACAGATGAGG -ACGGAAGTCTTGGTACAGAATGGG -ACGGAAGTCTTGGTACAGTCCTGA -ACGGAAGTCTTGGTACAGTAGCGA -ACGGAAGTCTTGGTACAGCACAGA -ACGGAAGTCTTGGTACAGGCAAGA -ACGGAAGTCTTGGTACAGGGTTGA -ACGGAAGTCTTGGTACAGTCCGAT -ACGGAAGTCTTGGTACAGTGGCAT -ACGGAAGTCTTGGTACAGCGAGAT -ACGGAAGTCTTGGTACAGTACCAC -ACGGAAGTCTTGGTACAGCAGAAC -ACGGAAGTCTTGGTACAGGTCTAC -ACGGAAGTCTTGGTACAGACGTAC -ACGGAAGTCTTGGTACAGAGTGAC -ACGGAAGTCTTGGTACAGCTGTAG -ACGGAAGTCTTGGTACAGCCTAAG -ACGGAAGTCTTGGTACAGGTTCAG -ACGGAAGTCTTGGTACAGGCATAG -ACGGAAGTCTTGGTACAGGACAAG -ACGGAAGTCTTGGTACAGAAGCAG -ACGGAAGTCTTGGTACAGCGTCAA -ACGGAAGTCTTGGTACAGGCTGAA -ACGGAAGTCTTGGTACAGAGTACG -ACGGAAGTCTTGGTACAGATCCGA -ACGGAAGTCTTGGTACAGATGGGA -ACGGAAGTCTTGGTACAGGTGCAA -ACGGAAGTCTTGGTACAGGAGGAA -ACGGAAGTCTTGGTACAGCAGGTA -ACGGAAGTCTTGGTACAGGACTCT -ACGGAAGTCTTGGTACAGAGTCCT -ACGGAAGTCTTGGTACAGTAAGCC -ACGGAAGTCTTGGTACAGATAGCC -ACGGAAGTCTTGGTACAGTAACCG -ACGGAAGTCTTGGTACAGATGCCA -ACGGAAGTCTTGTCTGACGGAAAC -ACGGAAGTCTTGTCTGACAACACC -ACGGAAGTCTTGTCTGACATCGAG -ACGGAAGTCTTGTCTGACCTCCTT -ACGGAAGTCTTGTCTGACCCTGTT -ACGGAAGTCTTGTCTGACCGGTTT -ACGGAAGTCTTGTCTGACGTGGTT -ACGGAAGTCTTGTCTGACGCCTTT -ACGGAAGTCTTGTCTGACGGTCTT -ACGGAAGTCTTGTCTGACACGCTT -ACGGAAGTCTTGTCTGACAGCGTT -ACGGAAGTCTTGTCTGACTTCGTC -ACGGAAGTCTTGTCTGACTCTCTC -ACGGAAGTCTTGTCTGACTGGATC -ACGGAAGTCTTGTCTGACCACTTC -ACGGAAGTCTTGTCTGACGTACTC -ACGGAAGTCTTGTCTGACGATGTC -ACGGAAGTCTTGTCTGACACAGTC -ACGGAAGTCTTGTCTGACTTGCTG -ACGGAAGTCTTGTCTGACTCCATG -ACGGAAGTCTTGTCTGACTGTGTG -ACGGAAGTCTTGTCTGACCTAGTG -ACGGAAGTCTTGTCTGACCATCTG -ACGGAAGTCTTGTCTGACGAGTTG -ACGGAAGTCTTGTCTGACAGACTG -ACGGAAGTCTTGTCTGACTCGGTA -ACGGAAGTCTTGTCTGACTGCCTA -ACGGAAGTCTTGTCTGACCCACTA -ACGGAAGTCTTGTCTGACGGAGTA -ACGGAAGTCTTGTCTGACTCGTCT -ACGGAAGTCTTGTCTGACTGCACT -ACGGAAGTCTTGTCTGACCTGACT -ACGGAAGTCTTGTCTGACCAACCT -ACGGAAGTCTTGTCTGACGCTACT -ACGGAAGTCTTGTCTGACGGATCT -ACGGAAGTCTTGTCTGACAAGGCT -ACGGAAGTCTTGTCTGACTCAACC -ACGGAAGTCTTGTCTGACTGTTCC -ACGGAAGTCTTGTCTGACATTCCC -ACGGAAGTCTTGTCTGACTTCTCG -ACGGAAGTCTTGTCTGACTAGACG -ACGGAAGTCTTGTCTGACGTAACG -ACGGAAGTCTTGTCTGACACTTCG -ACGGAAGTCTTGTCTGACTACGCA -ACGGAAGTCTTGTCTGACCTTGCA -ACGGAAGTCTTGTCTGACCGAACA -ACGGAAGTCTTGTCTGACCAGTCA -ACGGAAGTCTTGTCTGACGATCCA -ACGGAAGTCTTGTCTGACACGACA -ACGGAAGTCTTGTCTGACAGCTCA -ACGGAAGTCTTGTCTGACTCACGT -ACGGAAGTCTTGTCTGACCGTAGT -ACGGAAGTCTTGTCTGACGTCAGT -ACGGAAGTCTTGTCTGACGAAGGT -ACGGAAGTCTTGTCTGACAACCGT -ACGGAAGTCTTGTCTGACTTGTGC -ACGGAAGTCTTGTCTGACCTAAGC -ACGGAAGTCTTGTCTGACACTAGC -ACGGAAGTCTTGTCTGACAGATGC -ACGGAAGTCTTGTCTGACTGAAGG -ACGGAAGTCTTGTCTGACCAATGG -ACGGAAGTCTTGTCTGACATGAGG -ACGGAAGTCTTGTCTGACAATGGG -ACGGAAGTCTTGTCTGACTCCTGA -ACGGAAGTCTTGTCTGACTAGCGA -ACGGAAGTCTTGTCTGACCACAGA -ACGGAAGTCTTGTCTGACGCAAGA -ACGGAAGTCTTGTCTGACGGTTGA -ACGGAAGTCTTGTCTGACTCCGAT -ACGGAAGTCTTGTCTGACTGGCAT -ACGGAAGTCTTGTCTGACCGAGAT -ACGGAAGTCTTGTCTGACTACCAC -ACGGAAGTCTTGTCTGACCAGAAC -ACGGAAGTCTTGTCTGACGTCTAC -ACGGAAGTCTTGTCTGACACGTAC -ACGGAAGTCTTGTCTGACAGTGAC -ACGGAAGTCTTGTCTGACCTGTAG -ACGGAAGTCTTGTCTGACCCTAAG -ACGGAAGTCTTGTCTGACGTTCAG -ACGGAAGTCTTGTCTGACGCATAG -ACGGAAGTCTTGTCTGACGACAAG -ACGGAAGTCTTGTCTGACAAGCAG -ACGGAAGTCTTGTCTGACCGTCAA -ACGGAAGTCTTGTCTGACGCTGAA -ACGGAAGTCTTGTCTGACAGTACG -ACGGAAGTCTTGTCTGACATCCGA -ACGGAAGTCTTGTCTGACATGGGA -ACGGAAGTCTTGTCTGACGTGCAA -ACGGAAGTCTTGTCTGACGAGGAA -ACGGAAGTCTTGTCTGACCAGGTA -ACGGAAGTCTTGTCTGACGACTCT -ACGGAAGTCTTGTCTGACAGTCCT -ACGGAAGTCTTGTCTGACTAAGCC -ACGGAAGTCTTGTCTGACATAGCC -ACGGAAGTCTTGTCTGACTAACCG -ACGGAAGTCTTGTCTGACATGCCA -ACGGAAGTCTTGCCTAGTGGAAAC -ACGGAAGTCTTGCCTAGTAACACC -ACGGAAGTCTTGCCTAGTATCGAG -ACGGAAGTCTTGCCTAGTCTCCTT -ACGGAAGTCTTGCCTAGTCCTGTT -ACGGAAGTCTTGCCTAGTCGGTTT -ACGGAAGTCTTGCCTAGTGTGGTT -ACGGAAGTCTTGCCTAGTGCCTTT -ACGGAAGTCTTGCCTAGTGGTCTT -ACGGAAGTCTTGCCTAGTACGCTT -ACGGAAGTCTTGCCTAGTAGCGTT -ACGGAAGTCTTGCCTAGTTTCGTC -ACGGAAGTCTTGCCTAGTTCTCTC -ACGGAAGTCTTGCCTAGTTGGATC -ACGGAAGTCTTGCCTAGTCACTTC -ACGGAAGTCTTGCCTAGTGTACTC -ACGGAAGTCTTGCCTAGTGATGTC -ACGGAAGTCTTGCCTAGTACAGTC -ACGGAAGTCTTGCCTAGTTTGCTG -ACGGAAGTCTTGCCTAGTTCCATG -ACGGAAGTCTTGCCTAGTTGTGTG -ACGGAAGTCTTGCCTAGTCTAGTG -ACGGAAGTCTTGCCTAGTCATCTG -ACGGAAGTCTTGCCTAGTGAGTTG -ACGGAAGTCTTGCCTAGTAGACTG -ACGGAAGTCTTGCCTAGTTCGGTA -ACGGAAGTCTTGCCTAGTTGCCTA -ACGGAAGTCTTGCCTAGTCCACTA -ACGGAAGTCTTGCCTAGTGGAGTA -ACGGAAGTCTTGCCTAGTTCGTCT -ACGGAAGTCTTGCCTAGTTGCACT -ACGGAAGTCTTGCCTAGTCTGACT -ACGGAAGTCTTGCCTAGTCAACCT -ACGGAAGTCTTGCCTAGTGCTACT -ACGGAAGTCTTGCCTAGTGGATCT -ACGGAAGTCTTGCCTAGTAAGGCT -ACGGAAGTCTTGCCTAGTTCAACC -ACGGAAGTCTTGCCTAGTTGTTCC -ACGGAAGTCTTGCCTAGTATTCCC -ACGGAAGTCTTGCCTAGTTTCTCG -ACGGAAGTCTTGCCTAGTTAGACG -ACGGAAGTCTTGCCTAGTGTAACG -ACGGAAGTCTTGCCTAGTACTTCG -ACGGAAGTCTTGCCTAGTTACGCA -ACGGAAGTCTTGCCTAGTCTTGCA -ACGGAAGTCTTGCCTAGTCGAACA -ACGGAAGTCTTGCCTAGTCAGTCA -ACGGAAGTCTTGCCTAGTGATCCA -ACGGAAGTCTTGCCTAGTACGACA -ACGGAAGTCTTGCCTAGTAGCTCA -ACGGAAGTCTTGCCTAGTTCACGT -ACGGAAGTCTTGCCTAGTCGTAGT -ACGGAAGTCTTGCCTAGTGTCAGT -ACGGAAGTCTTGCCTAGTGAAGGT -ACGGAAGTCTTGCCTAGTAACCGT -ACGGAAGTCTTGCCTAGTTTGTGC -ACGGAAGTCTTGCCTAGTCTAAGC -ACGGAAGTCTTGCCTAGTACTAGC -ACGGAAGTCTTGCCTAGTAGATGC -ACGGAAGTCTTGCCTAGTTGAAGG -ACGGAAGTCTTGCCTAGTCAATGG -ACGGAAGTCTTGCCTAGTATGAGG -ACGGAAGTCTTGCCTAGTAATGGG -ACGGAAGTCTTGCCTAGTTCCTGA -ACGGAAGTCTTGCCTAGTTAGCGA -ACGGAAGTCTTGCCTAGTCACAGA -ACGGAAGTCTTGCCTAGTGCAAGA -ACGGAAGTCTTGCCTAGTGGTTGA -ACGGAAGTCTTGCCTAGTTCCGAT -ACGGAAGTCTTGCCTAGTTGGCAT -ACGGAAGTCTTGCCTAGTCGAGAT -ACGGAAGTCTTGCCTAGTTACCAC -ACGGAAGTCTTGCCTAGTCAGAAC -ACGGAAGTCTTGCCTAGTGTCTAC -ACGGAAGTCTTGCCTAGTACGTAC -ACGGAAGTCTTGCCTAGTAGTGAC -ACGGAAGTCTTGCCTAGTCTGTAG -ACGGAAGTCTTGCCTAGTCCTAAG -ACGGAAGTCTTGCCTAGTGTTCAG -ACGGAAGTCTTGCCTAGTGCATAG -ACGGAAGTCTTGCCTAGTGACAAG -ACGGAAGTCTTGCCTAGTAAGCAG -ACGGAAGTCTTGCCTAGTCGTCAA -ACGGAAGTCTTGCCTAGTGCTGAA -ACGGAAGTCTTGCCTAGTAGTACG -ACGGAAGTCTTGCCTAGTATCCGA -ACGGAAGTCTTGCCTAGTATGGGA -ACGGAAGTCTTGCCTAGTGTGCAA -ACGGAAGTCTTGCCTAGTGAGGAA -ACGGAAGTCTTGCCTAGTCAGGTA -ACGGAAGTCTTGCCTAGTGACTCT -ACGGAAGTCTTGCCTAGTAGTCCT -ACGGAAGTCTTGCCTAGTTAAGCC -ACGGAAGTCTTGCCTAGTATAGCC -ACGGAAGTCTTGCCTAGTTAACCG -ACGGAAGTCTTGCCTAGTATGCCA -ACGGAAGTCTTGGCCTAAGGAAAC -ACGGAAGTCTTGGCCTAAAACACC -ACGGAAGTCTTGGCCTAAATCGAG -ACGGAAGTCTTGGCCTAACTCCTT -ACGGAAGTCTTGGCCTAACCTGTT -ACGGAAGTCTTGGCCTAACGGTTT -ACGGAAGTCTTGGCCTAAGTGGTT -ACGGAAGTCTTGGCCTAAGCCTTT -ACGGAAGTCTTGGCCTAAGGTCTT -ACGGAAGTCTTGGCCTAAACGCTT -ACGGAAGTCTTGGCCTAAAGCGTT -ACGGAAGTCTTGGCCTAATTCGTC -ACGGAAGTCTTGGCCTAATCTCTC -ACGGAAGTCTTGGCCTAATGGATC -ACGGAAGTCTTGGCCTAACACTTC -ACGGAAGTCTTGGCCTAAGTACTC -ACGGAAGTCTTGGCCTAAGATGTC -ACGGAAGTCTTGGCCTAAACAGTC -ACGGAAGTCTTGGCCTAATTGCTG -ACGGAAGTCTTGGCCTAATCCATG -ACGGAAGTCTTGGCCTAATGTGTG -ACGGAAGTCTTGGCCTAACTAGTG -ACGGAAGTCTTGGCCTAACATCTG -ACGGAAGTCTTGGCCTAAGAGTTG -ACGGAAGTCTTGGCCTAAAGACTG -ACGGAAGTCTTGGCCTAATCGGTA -ACGGAAGTCTTGGCCTAATGCCTA -ACGGAAGTCTTGGCCTAACCACTA -ACGGAAGTCTTGGCCTAAGGAGTA -ACGGAAGTCTTGGCCTAATCGTCT -ACGGAAGTCTTGGCCTAATGCACT -ACGGAAGTCTTGGCCTAACTGACT -ACGGAAGTCTTGGCCTAACAACCT -ACGGAAGTCTTGGCCTAAGCTACT -ACGGAAGTCTTGGCCTAAGGATCT -ACGGAAGTCTTGGCCTAAAAGGCT -ACGGAAGTCTTGGCCTAATCAACC -ACGGAAGTCTTGGCCTAATGTTCC -ACGGAAGTCTTGGCCTAAATTCCC -ACGGAAGTCTTGGCCTAATTCTCG -ACGGAAGTCTTGGCCTAATAGACG -ACGGAAGTCTTGGCCTAAGTAACG -ACGGAAGTCTTGGCCTAAACTTCG -ACGGAAGTCTTGGCCTAATACGCA -ACGGAAGTCTTGGCCTAACTTGCA -ACGGAAGTCTTGGCCTAACGAACA -ACGGAAGTCTTGGCCTAACAGTCA -ACGGAAGTCTTGGCCTAAGATCCA -ACGGAAGTCTTGGCCTAAACGACA -ACGGAAGTCTTGGCCTAAAGCTCA -ACGGAAGTCTTGGCCTAATCACGT -ACGGAAGTCTTGGCCTAACGTAGT -ACGGAAGTCTTGGCCTAAGTCAGT -ACGGAAGTCTTGGCCTAAGAAGGT -ACGGAAGTCTTGGCCTAAAACCGT -ACGGAAGTCTTGGCCTAATTGTGC -ACGGAAGTCTTGGCCTAACTAAGC -ACGGAAGTCTTGGCCTAAACTAGC -ACGGAAGTCTTGGCCTAAAGATGC -ACGGAAGTCTTGGCCTAATGAAGG -ACGGAAGTCTTGGCCTAACAATGG -ACGGAAGTCTTGGCCTAAATGAGG -ACGGAAGTCTTGGCCTAAAATGGG -ACGGAAGTCTTGGCCTAATCCTGA -ACGGAAGTCTTGGCCTAATAGCGA -ACGGAAGTCTTGGCCTAACACAGA -ACGGAAGTCTTGGCCTAAGCAAGA -ACGGAAGTCTTGGCCTAAGGTTGA -ACGGAAGTCTTGGCCTAATCCGAT -ACGGAAGTCTTGGCCTAATGGCAT -ACGGAAGTCTTGGCCTAACGAGAT -ACGGAAGTCTTGGCCTAATACCAC -ACGGAAGTCTTGGCCTAACAGAAC -ACGGAAGTCTTGGCCTAAGTCTAC -ACGGAAGTCTTGGCCTAAACGTAC -ACGGAAGTCTTGGCCTAAAGTGAC -ACGGAAGTCTTGGCCTAACTGTAG -ACGGAAGTCTTGGCCTAACCTAAG -ACGGAAGTCTTGGCCTAAGTTCAG -ACGGAAGTCTTGGCCTAAGCATAG -ACGGAAGTCTTGGCCTAAGACAAG -ACGGAAGTCTTGGCCTAAAAGCAG -ACGGAAGTCTTGGCCTAACGTCAA -ACGGAAGTCTTGGCCTAAGCTGAA -ACGGAAGTCTTGGCCTAAAGTACG -ACGGAAGTCTTGGCCTAAATCCGA -ACGGAAGTCTTGGCCTAAATGGGA -ACGGAAGTCTTGGCCTAAGTGCAA -ACGGAAGTCTTGGCCTAAGAGGAA -ACGGAAGTCTTGGCCTAACAGGTA -ACGGAAGTCTTGGCCTAAGACTCT -ACGGAAGTCTTGGCCTAAAGTCCT -ACGGAAGTCTTGGCCTAATAAGCC -ACGGAAGTCTTGGCCTAAATAGCC -ACGGAAGTCTTGGCCTAATAACCG -ACGGAAGTCTTGGCCTAAATGCCA -ACGGAAGTCTTGGCCATAGGAAAC -ACGGAAGTCTTGGCCATAAACACC -ACGGAAGTCTTGGCCATAATCGAG -ACGGAAGTCTTGGCCATACTCCTT -ACGGAAGTCTTGGCCATACCTGTT -ACGGAAGTCTTGGCCATACGGTTT -ACGGAAGTCTTGGCCATAGTGGTT -ACGGAAGTCTTGGCCATAGCCTTT -ACGGAAGTCTTGGCCATAGGTCTT -ACGGAAGTCTTGGCCATAACGCTT -ACGGAAGTCTTGGCCATAAGCGTT -ACGGAAGTCTTGGCCATATTCGTC -ACGGAAGTCTTGGCCATATCTCTC -ACGGAAGTCTTGGCCATATGGATC -ACGGAAGTCTTGGCCATACACTTC -ACGGAAGTCTTGGCCATAGTACTC -ACGGAAGTCTTGGCCATAGATGTC -ACGGAAGTCTTGGCCATAACAGTC -ACGGAAGTCTTGGCCATATTGCTG -ACGGAAGTCTTGGCCATATCCATG -ACGGAAGTCTTGGCCATATGTGTG -ACGGAAGTCTTGGCCATACTAGTG -ACGGAAGTCTTGGCCATACATCTG -ACGGAAGTCTTGGCCATAGAGTTG -ACGGAAGTCTTGGCCATAAGACTG -ACGGAAGTCTTGGCCATATCGGTA -ACGGAAGTCTTGGCCATATGCCTA -ACGGAAGTCTTGGCCATACCACTA -ACGGAAGTCTTGGCCATAGGAGTA -ACGGAAGTCTTGGCCATATCGTCT -ACGGAAGTCTTGGCCATATGCACT -ACGGAAGTCTTGGCCATACTGACT -ACGGAAGTCTTGGCCATACAACCT -ACGGAAGTCTTGGCCATAGCTACT -ACGGAAGTCTTGGCCATAGGATCT -ACGGAAGTCTTGGCCATAAAGGCT -ACGGAAGTCTTGGCCATATCAACC -ACGGAAGTCTTGGCCATATGTTCC -ACGGAAGTCTTGGCCATAATTCCC -ACGGAAGTCTTGGCCATATTCTCG -ACGGAAGTCTTGGCCATATAGACG -ACGGAAGTCTTGGCCATAGTAACG -ACGGAAGTCTTGGCCATAACTTCG -ACGGAAGTCTTGGCCATATACGCA -ACGGAAGTCTTGGCCATACTTGCA -ACGGAAGTCTTGGCCATACGAACA -ACGGAAGTCTTGGCCATACAGTCA -ACGGAAGTCTTGGCCATAGATCCA -ACGGAAGTCTTGGCCATAACGACA -ACGGAAGTCTTGGCCATAAGCTCA -ACGGAAGTCTTGGCCATATCACGT -ACGGAAGTCTTGGCCATACGTAGT -ACGGAAGTCTTGGCCATAGTCAGT -ACGGAAGTCTTGGCCATAGAAGGT -ACGGAAGTCTTGGCCATAAACCGT -ACGGAAGTCTTGGCCATATTGTGC -ACGGAAGTCTTGGCCATACTAAGC -ACGGAAGTCTTGGCCATAACTAGC -ACGGAAGTCTTGGCCATAAGATGC -ACGGAAGTCTTGGCCATATGAAGG -ACGGAAGTCTTGGCCATACAATGG -ACGGAAGTCTTGGCCATAATGAGG -ACGGAAGTCTTGGCCATAAATGGG -ACGGAAGTCTTGGCCATATCCTGA -ACGGAAGTCTTGGCCATATAGCGA -ACGGAAGTCTTGGCCATACACAGA -ACGGAAGTCTTGGCCATAGCAAGA -ACGGAAGTCTTGGCCATAGGTTGA -ACGGAAGTCTTGGCCATATCCGAT -ACGGAAGTCTTGGCCATATGGCAT -ACGGAAGTCTTGGCCATACGAGAT -ACGGAAGTCTTGGCCATATACCAC -ACGGAAGTCTTGGCCATACAGAAC -ACGGAAGTCTTGGCCATAGTCTAC -ACGGAAGTCTTGGCCATAACGTAC -ACGGAAGTCTTGGCCATAAGTGAC -ACGGAAGTCTTGGCCATACTGTAG -ACGGAAGTCTTGGCCATACCTAAG -ACGGAAGTCTTGGCCATAGTTCAG -ACGGAAGTCTTGGCCATAGCATAG -ACGGAAGTCTTGGCCATAGACAAG -ACGGAAGTCTTGGCCATAAAGCAG -ACGGAAGTCTTGGCCATACGTCAA -ACGGAAGTCTTGGCCATAGCTGAA -ACGGAAGTCTTGGCCATAAGTACG -ACGGAAGTCTTGGCCATAATCCGA -ACGGAAGTCTTGGCCATAATGGGA -ACGGAAGTCTTGGCCATAGTGCAA -ACGGAAGTCTTGGCCATAGAGGAA -ACGGAAGTCTTGGCCATACAGGTA -ACGGAAGTCTTGGCCATAGACTCT -ACGGAAGTCTTGGCCATAAGTCCT -ACGGAAGTCTTGGCCATATAAGCC -ACGGAAGTCTTGGCCATAATAGCC -ACGGAAGTCTTGGCCATATAACCG -ACGGAAGTCTTGGCCATAATGCCA -ACGGAAGTCTTGCCGTAAGGAAAC -ACGGAAGTCTTGCCGTAAAACACC -ACGGAAGTCTTGCCGTAAATCGAG -ACGGAAGTCTTGCCGTAACTCCTT -ACGGAAGTCTTGCCGTAACCTGTT -ACGGAAGTCTTGCCGTAACGGTTT -ACGGAAGTCTTGCCGTAAGTGGTT -ACGGAAGTCTTGCCGTAAGCCTTT -ACGGAAGTCTTGCCGTAAGGTCTT -ACGGAAGTCTTGCCGTAAACGCTT -ACGGAAGTCTTGCCGTAAAGCGTT -ACGGAAGTCTTGCCGTAATTCGTC -ACGGAAGTCTTGCCGTAATCTCTC -ACGGAAGTCTTGCCGTAATGGATC -ACGGAAGTCTTGCCGTAACACTTC -ACGGAAGTCTTGCCGTAAGTACTC -ACGGAAGTCTTGCCGTAAGATGTC -ACGGAAGTCTTGCCGTAAACAGTC -ACGGAAGTCTTGCCGTAATTGCTG -ACGGAAGTCTTGCCGTAATCCATG -ACGGAAGTCTTGCCGTAATGTGTG -ACGGAAGTCTTGCCGTAACTAGTG -ACGGAAGTCTTGCCGTAACATCTG -ACGGAAGTCTTGCCGTAAGAGTTG -ACGGAAGTCTTGCCGTAAAGACTG -ACGGAAGTCTTGCCGTAATCGGTA -ACGGAAGTCTTGCCGTAATGCCTA -ACGGAAGTCTTGCCGTAACCACTA -ACGGAAGTCTTGCCGTAAGGAGTA -ACGGAAGTCTTGCCGTAATCGTCT -ACGGAAGTCTTGCCGTAATGCACT -ACGGAAGTCTTGCCGTAACTGACT -ACGGAAGTCTTGCCGTAACAACCT -ACGGAAGTCTTGCCGTAAGCTACT -ACGGAAGTCTTGCCGTAAGGATCT -ACGGAAGTCTTGCCGTAAAAGGCT -ACGGAAGTCTTGCCGTAATCAACC -ACGGAAGTCTTGCCGTAATGTTCC -ACGGAAGTCTTGCCGTAAATTCCC -ACGGAAGTCTTGCCGTAATTCTCG -ACGGAAGTCTTGCCGTAATAGACG -ACGGAAGTCTTGCCGTAAGTAACG -ACGGAAGTCTTGCCGTAAACTTCG -ACGGAAGTCTTGCCGTAATACGCA -ACGGAAGTCTTGCCGTAACTTGCA -ACGGAAGTCTTGCCGTAACGAACA -ACGGAAGTCTTGCCGTAACAGTCA -ACGGAAGTCTTGCCGTAAGATCCA -ACGGAAGTCTTGCCGTAAACGACA -ACGGAAGTCTTGCCGTAAAGCTCA -ACGGAAGTCTTGCCGTAATCACGT -ACGGAAGTCTTGCCGTAACGTAGT -ACGGAAGTCTTGCCGTAAGTCAGT -ACGGAAGTCTTGCCGTAAGAAGGT -ACGGAAGTCTTGCCGTAAAACCGT -ACGGAAGTCTTGCCGTAATTGTGC -ACGGAAGTCTTGCCGTAACTAAGC -ACGGAAGTCTTGCCGTAAACTAGC -ACGGAAGTCTTGCCGTAAAGATGC -ACGGAAGTCTTGCCGTAATGAAGG -ACGGAAGTCTTGCCGTAACAATGG -ACGGAAGTCTTGCCGTAAATGAGG -ACGGAAGTCTTGCCGTAAAATGGG -ACGGAAGTCTTGCCGTAATCCTGA -ACGGAAGTCTTGCCGTAATAGCGA -ACGGAAGTCTTGCCGTAACACAGA -ACGGAAGTCTTGCCGTAAGCAAGA -ACGGAAGTCTTGCCGTAAGGTTGA -ACGGAAGTCTTGCCGTAATCCGAT -ACGGAAGTCTTGCCGTAATGGCAT -ACGGAAGTCTTGCCGTAACGAGAT -ACGGAAGTCTTGCCGTAATACCAC -ACGGAAGTCTTGCCGTAACAGAAC -ACGGAAGTCTTGCCGTAAGTCTAC -ACGGAAGTCTTGCCGTAAACGTAC -ACGGAAGTCTTGCCGTAAAGTGAC -ACGGAAGTCTTGCCGTAACTGTAG -ACGGAAGTCTTGCCGTAACCTAAG -ACGGAAGTCTTGCCGTAAGTTCAG -ACGGAAGTCTTGCCGTAAGCATAG -ACGGAAGTCTTGCCGTAAGACAAG -ACGGAAGTCTTGCCGTAAAAGCAG -ACGGAAGTCTTGCCGTAACGTCAA -ACGGAAGTCTTGCCGTAAGCTGAA -ACGGAAGTCTTGCCGTAAAGTACG -ACGGAAGTCTTGCCGTAAATCCGA -ACGGAAGTCTTGCCGTAAATGGGA -ACGGAAGTCTTGCCGTAAGTGCAA -ACGGAAGTCTTGCCGTAAGAGGAA -ACGGAAGTCTTGCCGTAACAGGTA -ACGGAAGTCTTGCCGTAAGACTCT -ACGGAAGTCTTGCCGTAAAGTCCT -ACGGAAGTCTTGCCGTAATAAGCC -ACGGAAGTCTTGCCGTAAATAGCC -ACGGAAGTCTTGCCGTAATAACCG -ACGGAAGTCTTGCCGTAAATGCCA -ACGGAAGTCTTGCCAATGGGAAAC -ACGGAAGTCTTGCCAATGAACACC -ACGGAAGTCTTGCCAATGATCGAG -ACGGAAGTCTTGCCAATGCTCCTT -ACGGAAGTCTTGCCAATGCCTGTT -ACGGAAGTCTTGCCAATGCGGTTT -ACGGAAGTCTTGCCAATGGTGGTT -ACGGAAGTCTTGCCAATGGCCTTT -ACGGAAGTCTTGCCAATGGGTCTT -ACGGAAGTCTTGCCAATGACGCTT -ACGGAAGTCTTGCCAATGAGCGTT -ACGGAAGTCTTGCCAATGTTCGTC -ACGGAAGTCTTGCCAATGTCTCTC -ACGGAAGTCTTGCCAATGTGGATC -ACGGAAGTCTTGCCAATGCACTTC -ACGGAAGTCTTGCCAATGGTACTC -ACGGAAGTCTTGCCAATGGATGTC -ACGGAAGTCTTGCCAATGACAGTC -ACGGAAGTCTTGCCAATGTTGCTG -ACGGAAGTCTTGCCAATGTCCATG -ACGGAAGTCTTGCCAATGTGTGTG -ACGGAAGTCTTGCCAATGCTAGTG -ACGGAAGTCTTGCCAATGCATCTG -ACGGAAGTCTTGCCAATGGAGTTG -ACGGAAGTCTTGCCAATGAGACTG -ACGGAAGTCTTGCCAATGTCGGTA -ACGGAAGTCTTGCCAATGTGCCTA -ACGGAAGTCTTGCCAATGCCACTA -ACGGAAGTCTTGCCAATGGGAGTA -ACGGAAGTCTTGCCAATGTCGTCT -ACGGAAGTCTTGCCAATGTGCACT -ACGGAAGTCTTGCCAATGCTGACT -ACGGAAGTCTTGCCAATGCAACCT -ACGGAAGTCTTGCCAATGGCTACT -ACGGAAGTCTTGCCAATGGGATCT -ACGGAAGTCTTGCCAATGAAGGCT -ACGGAAGTCTTGCCAATGTCAACC -ACGGAAGTCTTGCCAATGTGTTCC -ACGGAAGTCTTGCCAATGATTCCC -ACGGAAGTCTTGCCAATGTTCTCG -ACGGAAGTCTTGCCAATGTAGACG -ACGGAAGTCTTGCCAATGGTAACG -ACGGAAGTCTTGCCAATGACTTCG -ACGGAAGTCTTGCCAATGTACGCA -ACGGAAGTCTTGCCAATGCTTGCA -ACGGAAGTCTTGCCAATGCGAACA -ACGGAAGTCTTGCCAATGCAGTCA -ACGGAAGTCTTGCCAATGGATCCA -ACGGAAGTCTTGCCAATGACGACA -ACGGAAGTCTTGCCAATGAGCTCA -ACGGAAGTCTTGCCAATGTCACGT -ACGGAAGTCTTGCCAATGCGTAGT -ACGGAAGTCTTGCCAATGGTCAGT -ACGGAAGTCTTGCCAATGGAAGGT -ACGGAAGTCTTGCCAATGAACCGT -ACGGAAGTCTTGCCAATGTTGTGC -ACGGAAGTCTTGCCAATGCTAAGC -ACGGAAGTCTTGCCAATGACTAGC -ACGGAAGTCTTGCCAATGAGATGC -ACGGAAGTCTTGCCAATGTGAAGG -ACGGAAGTCTTGCCAATGCAATGG -ACGGAAGTCTTGCCAATGATGAGG -ACGGAAGTCTTGCCAATGAATGGG -ACGGAAGTCTTGCCAATGTCCTGA -ACGGAAGTCTTGCCAATGTAGCGA -ACGGAAGTCTTGCCAATGCACAGA -ACGGAAGTCTTGCCAATGGCAAGA -ACGGAAGTCTTGCCAATGGGTTGA -ACGGAAGTCTTGCCAATGTCCGAT -ACGGAAGTCTTGCCAATGTGGCAT -ACGGAAGTCTTGCCAATGCGAGAT -ACGGAAGTCTTGCCAATGTACCAC -ACGGAAGTCTTGCCAATGCAGAAC -ACGGAAGTCTTGCCAATGGTCTAC -ACGGAAGTCTTGCCAATGACGTAC -ACGGAAGTCTTGCCAATGAGTGAC -ACGGAAGTCTTGCCAATGCTGTAG -ACGGAAGTCTTGCCAATGCCTAAG -ACGGAAGTCTTGCCAATGGTTCAG -ACGGAAGTCTTGCCAATGGCATAG -ACGGAAGTCTTGCCAATGGACAAG -ACGGAAGTCTTGCCAATGAAGCAG -ACGGAAGTCTTGCCAATGCGTCAA -ACGGAAGTCTTGCCAATGGCTGAA -ACGGAAGTCTTGCCAATGAGTACG -ACGGAAGTCTTGCCAATGATCCGA -ACGGAAGTCTTGCCAATGATGGGA -ACGGAAGTCTTGCCAATGGTGCAA -ACGGAAGTCTTGCCAATGGAGGAA -ACGGAAGTCTTGCCAATGCAGGTA -ACGGAAGTCTTGCCAATGGACTCT -ACGGAAGTCTTGCCAATGAGTCCT -ACGGAAGTCTTGCCAATGTAAGCC -ACGGAAGTCTTGCCAATGATAGCC -ACGGAAGTCTTGCCAATGTAACCG -ACGGAAGTCTTGCCAATGATGCCA -ACGGAACGCTTAAACGGAGGAAAC -ACGGAACGCTTAAACGGAAACACC -ACGGAACGCTTAAACGGAATCGAG -ACGGAACGCTTAAACGGACTCCTT -ACGGAACGCTTAAACGGACCTGTT -ACGGAACGCTTAAACGGACGGTTT -ACGGAACGCTTAAACGGAGTGGTT -ACGGAACGCTTAAACGGAGCCTTT -ACGGAACGCTTAAACGGAGGTCTT -ACGGAACGCTTAAACGGAACGCTT -ACGGAACGCTTAAACGGAAGCGTT -ACGGAACGCTTAAACGGATTCGTC -ACGGAACGCTTAAACGGATCTCTC -ACGGAACGCTTAAACGGATGGATC -ACGGAACGCTTAAACGGACACTTC -ACGGAACGCTTAAACGGAGTACTC -ACGGAACGCTTAAACGGAGATGTC -ACGGAACGCTTAAACGGAACAGTC -ACGGAACGCTTAAACGGATTGCTG -ACGGAACGCTTAAACGGATCCATG -ACGGAACGCTTAAACGGATGTGTG -ACGGAACGCTTAAACGGACTAGTG -ACGGAACGCTTAAACGGACATCTG -ACGGAACGCTTAAACGGAGAGTTG -ACGGAACGCTTAAACGGAAGACTG -ACGGAACGCTTAAACGGATCGGTA -ACGGAACGCTTAAACGGATGCCTA -ACGGAACGCTTAAACGGACCACTA -ACGGAACGCTTAAACGGAGGAGTA -ACGGAACGCTTAAACGGATCGTCT -ACGGAACGCTTAAACGGATGCACT -ACGGAACGCTTAAACGGACTGACT -ACGGAACGCTTAAACGGACAACCT -ACGGAACGCTTAAACGGAGCTACT -ACGGAACGCTTAAACGGAGGATCT -ACGGAACGCTTAAACGGAAAGGCT -ACGGAACGCTTAAACGGATCAACC -ACGGAACGCTTAAACGGATGTTCC -ACGGAACGCTTAAACGGAATTCCC -ACGGAACGCTTAAACGGATTCTCG -ACGGAACGCTTAAACGGATAGACG -ACGGAACGCTTAAACGGAGTAACG -ACGGAACGCTTAAACGGAACTTCG -ACGGAACGCTTAAACGGATACGCA -ACGGAACGCTTAAACGGACTTGCA -ACGGAACGCTTAAACGGACGAACA -ACGGAACGCTTAAACGGACAGTCA -ACGGAACGCTTAAACGGAGATCCA -ACGGAACGCTTAAACGGAACGACA -ACGGAACGCTTAAACGGAAGCTCA -ACGGAACGCTTAAACGGATCACGT -ACGGAACGCTTAAACGGACGTAGT -ACGGAACGCTTAAACGGAGTCAGT -ACGGAACGCTTAAACGGAGAAGGT -ACGGAACGCTTAAACGGAAACCGT -ACGGAACGCTTAAACGGATTGTGC -ACGGAACGCTTAAACGGACTAAGC -ACGGAACGCTTAAACGGAACTAGC -ACGGAACGCTTAAACGGAAGATGC -ACGGAACGCTTAAACGGATGAAGG -ACGGAACGCTTAAACGGACAATGG -ACGGAACGCTTAAACGGAATGAGG -ACGGAACGCTTAAACGGAAATGGG -ACGGAACGCTTAAACGGATCCTGA -ACGGAACGCTTAAACGGATAGCGA -ACGGAACGCTTAAACGGACACAGA -ACGGAACGCTTAAACGGAGCAAGA -ACGGAACGCTTAAACGGAGGTTGA -ACGGAACGCTTAAACGGATCCGAT -ACGGAACGCTTAAACGGATGGCAT -ACGGAACGCTTAAACGGACGAGAT -ACGGAACGCTTAAACGGATACCAC -ACGGAACGCTTAAACGGACAGAAC -ACGGAACGCTTAAACGGAGTCTAC -ACGGAACGCTTAAACGGAACGTAC -ACGGAACGCTTAAACGGAAGTGAC -ACGGAACGCTTAAACGGACTGTAG -ACGGAACGCTTAAACGGACCTAAG -ACGGAACGCTTAAACGGAGTTCAG -ACGGAACGCTTAAACGGAGCATAG -ACGGAACGCTTAAACGGAGACAAG -ACGGAACGCTTAAACGGAAAGCAG -ACGGAACGCTTAAACGGACGTCAA -ACGGAACGCTTAAACGGAGCTGAA -ACGGAACGCTTAAACGGAAGTACG -ACGGAACGCTTAAACGGAATCCGA -ACGGAACGCTTAAACGGAATGGGA -ACGGAACGCTTAAACGGAGTGCAA -ACGGAACGCTTAAACGGAGAGGAA -ACGGAACGCTTAAACGGACAGGTA -ACGGAACGCTTAAACGGAGACTCT -ACGGAACGCTTAAACGGAAGTCCT -ACGGAACGCTTAAACGGATAAGCC -ACGGAACGCTTAAACGGAATAGCC -ACGGAACGCTTAAACGGATAACCG -ACGGAACGCTTAAACGGAATGCCA -ACGGAACGCTTAACCAACGGAAAC -ACGGAACGCTTAACCAACAACACC -ACGGAACGCTTAACCAACATCGAG -ACGGAACGCTTAACCAACCTCCTT -ACGGAACGCTTAACCAACCCTGTT -ACGGAACGCTTAACCAACCGGTTT -ACGGAACGCTTAACCAACGTGGTT -ACGGAACGCTTAACCAACGCCTTT -ACGGAACGCTTAACCAACGGTCTT -ACGGAACGCTTAACCAACACGCTT -ACGGAACGCTTAACCAACAGCGTT -ACGGAACGCTTAACCAACTTCGTC -ACGGAACGCTTAACCAACTCTCTC -ACGGAACGCTTAACCAACTGGATC -ACGGAACGCTTAACCAACCACTTC -ACGGAACGCTTAACCAACGTACTC -ACGGAACGCTTAACCAACGATGTC -ACGGAACGCTTAACCAACACAGTC -ACGGAACGCTTAACCAACTTGCTG -ACGGAACGCTTAACCAACTCCATG -ACGGAACGCTTAACCAACTGTGTG -ACGGAACGCTTAACCAACCTAGTG -ACGGAACGCTTAACCAACCATCTG -ACGGAACGCTTAACCAACGAGTTG -ACGGAACGCTTAACCAACAGACTG -ACGGAACGCTTAACCAACTCGGTA -ACGGAACGCTTAACCAACTGCCTA -ACGGAACGCTTAACCAACCCACTA -ACGGAACGCTTAACCAACGGAGTA -ACGGAACGCTTAACCAACTCGTCT -ACGGAACGCTTAACCAACTGCACT -ACGGAACGCTTAACCAACCTGACT -ACGGAACGCTTAACCAACCAACCT -ACGGAACGCTTAACCAACGCTACT -ACGGAACGCTTAACCAACGGATCT -ACGGAACGCTTAACCAACAAGGCT -ACGGAACGCTTAACCAACTCAACC -ACGGAACGCTTAACCAACTGTTCC -ACGGAACGCTTAACCAACATTCCC -ACGGAACGCTTAACCAACTTCTCG -ACGGAACGCTTAACCAACTAGACG -ACGGAACGCTTAACCAACGTAACG -ACGGAACGCTTAACCAACACTTCG -ACGGAACGCTTAACCAACTACGCA -ACGGAACGCTTAACCAACCTTGCA -ACGGAACGCTTAACCAACCGAACA -ACGGAACGCTTAACCAACCAGTCA -ACGGAACGCTTAACCAACGATCCA -ACGGAACGCTTAACCAACACGACA -ACGGAACGCTTAACCAACAGCTCA -ACGGAACGCTTAACCAACTCACGT -ACGGAACGCTTAACCAACCGTAGT -ACGGAACGCTTAACCAACGTCAGT -ACGGAACGCTTAACCAACGAAGGT -ACGGAACGCTTAACCAACAACCGT -ACGGAACGCTTAACCAACTTGTGC -ACGGAACGCTTAACCAACCTAAGC -ACGGAACGCTTAACCAACACTAGC -ACGGAACGCTTAACCAACAGATGC -ACGGAACGCTTAACCAACTGAAGG -ACGGAACGCTTAACCAACCAATGG -ACGGAACGCTTAACCAACATGAGG -ACGGAACGCTTAACCAACAATGGG -ACGGAACGCTTAACCAACTCCTGA -ACGGAACGCTTAACCAACTAGCGA -ACGGAACGCTTAACCAACCACAGA -ACGGAACGCTTAACCAACGCAAGA -ACGGAACGCTTAACCAACGGTTGA -ACGGAACGCTTAACCAACTCCGAT -ACGGAACGCTTAACCAACTGGCAT -ACGGAACGCTTAACCAACCGAGAT -ACGGAACGCTTAACCAACTACCAC -ACGGAACGCTTAACCAACCAGAAC -ACGGAACGCTTAACCAACGTCTAC -ACGGAACGCTTAACCAACACGTAC -ACGGAACGCTTAACCAACAGTGAC -ACGGAACGCTTAACCAACCTGTAG -ACGGAACGCTTAACCAACCCTAAG -ACGGAACGCTTAACCAACGTTCAG -ACGGAACGCTTAACCAACGCATAG -ACGGAACGCTTAACCAACGACAAG -ACGGAACGCTTAACCAACAAGCAG -ACGGAACGCTTAACCAACCGTCAA -ACGGAACGCTTAACCAACGCTGAA -ACGGAACGCTTAACCAACAGTACG -ACGGAACGCTTAACCAACATCCGA -ACGGAACGCTTAACCAACATGGGA -ACGGAACGCTTAACCAACGTGCAA -ACGGAACGCTTAACCAACGAGGAA -ACGGAACGCTTAACCAACCAGGTA -ACGGAACGCTTAACCAACGACTCT -ACGGAACGCTTAACCAACAGTCCT -ACGGAACGCTTAACCAACTAAGCC -ACGGAACGCTTAACCAACATAGCC -ACGGAACGCTTAACCAACTAACCG -ACGGAACGCTTAACCAACATGCCA -ACGGAACGCTTAGAGATCGGAAAC -ACGGAACGCTTAGAGATCAACACC -ACGGAACGCTTAGAGATCATCGAG -ACGGAACGCTTAGAGATCCTCCTT -ACGGAACGCTTAGAGATCCCTGTT -ACGGAACGCTTAGAGATCCGGTTT -ACGGAACGCTTAGAGATCGTGGTT -ACGGAACGCTTAGAGATCGCCTTT -ACGGAACGCTTAGAGATCGGTCTT -ACGGAACGCTTAGAGATCACGCTT -ACGGAACGCTTAGAGATCAGCGTT -ACGGAACGCTTAGAGATCTTCGTC -ACGGAACGCTTAGAGATCTCTCTC -ACGGAACGCTTAGAGATCTGGATC -ACGGAACGCTTAGAGATCCACTTC -ACGGAACGCTTAGAGATCGTACTC -ACGGAACGCTTAGAGATCGATGTC -ACGGAACGCTTAGAGATCACAGTC -ACGGAACGCTTAGAGATCTTGCTG -ACGGAACGCTTAGAGATCTCCATG -ACGGAACGCTTAGAGATCTGTGTG -ACGGAACGCTTAGAGATCCTAGTG -ACGGAACGCTTAGAGATCCATCTG -ACGGAACGCTTAGAGATCGAGTTG -ACGGAACGCTTAGAGATCAGACTG -ACGGAACGCTTAGAGATCTCGGTA -ACGGAACGCTTAGAGATCTGCCTA -ACGGAACGCTTAGAGATCCCACTA -ACGGAACGCTTAGAGATCGGAGTA -ACGGAACGCTTAGAGATCTCGTCT -ACGGAACGCTTAGAGATCTGCACT -ACGGAACGCTTAGAGATCCTGACT -ACGGAACGCTTAGAGATCCAACCT -ACGGAACGCTTAGAGATCGCTACT -ACGGAACGCTTAGAGATCGGATCT -ACGGAACGCTTAGAGATCAAGGCT -ACGGAACGCTTAGAGATCTCAACC -ACGGAACGCTTAGAGATCTGTTCC -ACGGAACGCTTAGAGATCATTCCC -ACGGAACGCTTAGAGATCTTCTCG -ACGGAACGCTTAGAGATCTAGACG -ACGGAACGCTTAGAGATCGTAACG -ACGGAACGCTTAGAGATCACTTCG -ACGGAACGCTTAGAGATCTACGCA -ACGGAACGCTTAGAGATCCTTGCA -ACGGAACGCTTAGAGATCCGAACA -ACGGAACGCTTAGAGATCCAGTCA -ACGGAACGCTTAGAGATCGATCCA -ACGGAACGCTTAGAGATCACGACA -ACGGAACGCTTAGAGATCAGCTCA -ACGGAACGCTTAGAGATCTCACGT -ACGGAACGCTTAGAGATCCGTAGT -ACGGAACGCTTAGAGATCGTCAGT -ACGGAACGCTTAGAGATCGAAGGT -ACGGAACGCTTAGAGATCAACCGT -ACGGAACGCTTAGAGATCTTGTGC -ACGGAACGCTTAGAGATCCTAAGC -ACGGAACGCTTAGAGATCACTAGC -ACGGAACGCTTAGAGATCAGATGC -ACGGAACGCTTAGAGATCTGAAGG -ACGGAACGCTTAGAGATCCAATGG -ACGGAACGCTTAGAGATCATGAGG -ACGGAACGCTTAGAGATCAATGGG -ACGGAACGCTTAGAGATCTCCTGA -ACGGAACGCTTAGAGATCTAGCGA -ACGGAACGCTTAGAGATCCACAGA -ACGGAACGCTTAGAGATCGCAAGA -ACGGAACGCTTAGAGATCGGTTGA -ACGGAACGCTTAGAGATCTCCGAT -ACGGAACGCTTAGAGATCTGGCAT -ACGGAACGCTTAGAGATCCGAGAT -ACGGAACGCTTAGAGATCTACCAC -ACGGAACGCTTAGAGATCCAGAAC -ACGGAACGCTTAGAGATCGTCTAC -ACGGAACGCTTAGAGATCACGTAC -ACGGAACGCTTAGAGATCAGTGAC -ACGGAACGCTTAGAGATCCTGTAG -ACGGAACGCTTAGAGATCCCTAAG -ACGGAACGCTTAGAGATCGTTCAG -ACGGAACGCTTAGAGATCGCATAG -ACGGAACGCTTAGAGATCGACAAG -ACGGAACGCTTAGAGATCAAGCAG -ACGGAACGCTTAGAGATCCGTCAA -ACGGAACGCTTAGAGATCGCTGAA -ACGGAACGCTTAGAGATCAGTACG -ACGGAACGCTTAGAGATCATCCGA -ACGGAACGCTTAGAGATCATGGGA -ACGGAACGCTTAGAGATCGTGCAA -ACGGAACGCTTAGAGATCGAGGAA -ACGGAACGCTTAGAGATCCAGGTA -ACGGAACGCTTAGAGATCGACTCT -ACGGAACGCTTAGAGATCAGTCCT -ACGGAACGCTTAGAGATCTAAGCC -ACGGAACGCTTAGAGATCATAGCC -ACGGAACGCTTAGAGATCTAACCG -ACGGAACGCTTAGAGATCATGCCA -ACGGAACGCTTACTTCTCGGAAAC -ACGGAACGCTTACTTCTCAACACC -ACGGAACGCTTACTTCTCATCGAG -ACGGAACGCTTACTTCTCCTCCTT -ACGGAACGCTTACTTCTCCCTGTT -ACGGAACGCTTACTTCTCCGGTTT -ACGGAACGCTTACTTCTCGTGGTT -ACGGAACGCTTACTTCTCGCCTTT -ACGGAACGCTTACTTCTCGGTCTT -ACGGAACGCTTACTTCTCACGCTT -ACGGAACGCTTACTTCTCAGCGTT -ACGGAACGCTTACTTCTCTTCGTC -ACGGAACGCTTACTTCTCTCTCTC -ACGGAACGCTTACTTCTCTGGATC -ACGGAACGCTTACTTCTCCACTTC -ACGGAACGCTTACTTCTCGTACTC -ACGGAACGCTTACTTCTCGATGTC -ACGGAACGCTTACTTCTCACAGTC -ACGGAACGCTTACTTCTCTTGCTG -ACGGAACGCTTACTTCTCTCCATG -ACGGAACGCTTACTTCTCTGTGTG -ACGGAACGCTTACTTCTCCTAGTG -ACGGAACGCTTACTTCTCCATCTG -ACGGAACGCTTACTTCTCGAGTTG -ACGGAACGCTTACTTCTCAGACTG -ACGGAACGCTTACTTCTCTCGGTA -ACGGAACGCTTACTTCTCTGCCTA -ACGGAACGCTTACTTCTCCCACTA -ACGGAACGCTTACTTCTCGGAGTA -ACGGAACGCTTACTTCTCTCGTCT -ACGGAACGCTTACTTCTCTGCACT -ACGGAACGCTTACTTCTCCTGACT -ACGGAACGCTTACTTCTCCAACCT -ACGGAACGCTTACTTCTCGCTACT -ACGGAACGCTTACTTCTCGGATCT -ACGGAACGCTTACTTCTCAAGGCT -ACGGAACGCTTACTTCTCTCAACC -ACGGAACGCTTACTTCTCTGTTCC -ACGGAACGCTTACTTCTCATTCCC -ACGGAACGCTTACTTCTCTTCTCG -ACGGAACGCTTACTTCTCTAGACG -ACGGAACGCTTACTTCTCGTAACG -ACGGAACGCTTACTTCTCACTTCG -ACGGAACGCTTACTTCTCTACGCA -ACGGAACGCTTACTTCTCCTTGCA -ACGGAACGCTTACTTCTCCGAACA -ACGGAACGCTTACTTCTCCAGTCA -ACGGAACGCTTACTTCTCGATCCA -ACGGAACGCTTACTTCTCACGACA -ACGGAACGCTTACTTCTCAGCTCA -ACGGAACGCTTACTTCTCTCACGT -ACGGAACGCTTACTTCTCCGTAGT -ACGGAACGCTTACTTCTCGTCAGT -ACGGAACGCTTACTTCTCGAAGGT -ACGGAACGCTTACTTCTCAACCGT -ACGGAACGCTTACTTCTCTTGTGC -ACGGAACGCTTACTTCTCCTAAGC -ACGGAACGCTTACTTCTCACTAGC -ACGGAACGCTTACTTCTCAGATGC -ACGGAACGCTTACTTCTCTGAAGG -ACGGAACGCTTACTTCTCCAATGG -ACGGAACGCTTACTTCTCATGAGG -ACGGAACGCTTACTTCTCAATGGG -ACGGAACGCTTACTTCTCTCCTGA -ACGGAACGCTTACTTCTCTAGCGA -ACGGAACGCTTACTTCTCCACAGA -ACGGAACGCTTACTTCTCGCAAGA -ACGGAACGCTTACTTCTCGGTTGA -ACGGAACGCTTACTTCTCTCCGAT -ACGGAACGCTTACTTCTCTGGCAT -ACGGAACGCTTACTTCTCCGAGAT -ACGGAACGCTTACTTCTCTACCAC -ACGGAACGCTTACTTCTCCAGAAC -ACGGAACGCTTACTTCTCGTCTAC -ACGGAACGCTTACTTCTCACGTAC -ACGGAACGCTTACTTCTCAGTGAC -ACGGAACGCTTACTTCTCCTGTAG -ACGGAACGCTTACTTCTCCCTAAG -ACGGAACGCTTACTTCTCGTTCAG -ACGGAACGCTTACTTCTCGCATAG -ACGGAACGCTTACTTCTCGACAAG -ACGGAACGCTTACTTCTCAAGCAG -ACGGAACGCTTACTTCTCCGTCAA -ACGGAACGCTTACTTCTCGCTGAA -ACGGAACGCTTACTTCTCAGTACG -ACGGAACGCTTACTTCTCATCCGA -ACGGAACGCTTACTTCTCATGGGA -ACGGAACGCTTACTTCTCGTGCAA -ACGGAACGCTTACTTCTCGAGGAA -ACGGAACGCTTACTTCTCCAGGTA -ACGGAACGCTTACTTCTCGACTCT -ACGGAACGCTTACTTCTCAGTCCT -ACGGAACGCTTACTTCTCTAAGCC -ACGGAACGCTTACTTCTCATAGCC -ACGGAACGCTTACTTCTCTAACCG -ACGGAACGCTTACTTCTCATGCCA -ACGGAACGCTTAGTTCCTGGAAAC -ACGGAACGCTTAGTTCCTAACACC -ACGGAACGCTTAGTTCCTATCGAG -ACGGAACGCTTAGTTCCTCTCCTT -ACGGAACGCTTAGTTCCTCCTGTT -ACGGAACGCTTAGTTCCTCGGTTT -ACGGAACGCTTAGTTCCTGTGGTT -ACGGAACGCTTAGTTCCTGCCTTT -ACGGAACGCTTAGTTCCTGGTCTT -ACGGAACGCTTAGTTCCTACGCTT -ACGGAACGCTTAGTTCCTAGCGTT -ACGGAACGCTTAGTTCCTTTCGTC -ACGGAACGCTTAGTTCCTTCTCTC -ACGGAACGCTTAGTTCCTTGGATC -ACGGAACGCTTAGTTCCTCACTTC -ACGGAACGCTTAGTTCCTGTACTC -ACGGAACGCTTAGTTCCTGATGTC -ACGGAACGCTTAGTTCCTACAGTC -ACGGAACGCTTAGTTCCTTTGCTG -ACGGAACGCTTAGTTCCTTCCATG -ACGGAACGCTTAGTTCCTTGTGTG -ACGGAACGCTTAGTTCCTCTAGTG -ACGGAACGCTTAGTTCCTCATCTG -ACGGAACGCTTAGTTCCTGAGTTG -ACGGAACGCTTAGTTCCTAGACTG -ACGGAACGCTTAGTTCCTTCGGTA -ACGGAACGCTTAGTTCCTTGCCTA -ACGGAACGCTTAGTTCCTCCACTA -ACGGAACGCTTAGTTCCTGGAGTA -ACGGAACGCTTAGTTCCTTCGTCT -ACGGAACGCTTAGTTCCTTGCACT -ACGGAACGCTTAGTTCCTCTGACT -ACGGAACGCTTAGTTCCTCAACCT -ACGGAACGCTTAGTTCCTGCTACT -ACGGAACGCTTAGTTCCTGGATCT -ACGGAACGCTTAGTTCCTAAGGCT -ACGGAACGCTTAGTTCCTTCAACC -ACGGAACGCTTAGTTCCTTGTTCC -ACGGAACGCTTAGTTCCTATTCCC -ACGGAACGCTTAGTTCCTTTCTCG -ACGGAACGCTTAGTTCCTTAGACG -ACGGAACGCTTAGTTCCTGTAACG -ACGGAACGCTTAGTTCCTACTTCG -ACGGAACGCTTAGTTCCTTACGCA -ACGGAACGCTTAGTTCCTCTTGCA -ACGGAACGCTTAGTTCCTCGAACA -ACGGAACGCTTAGTTCCTCAGTCA -ACGGAACGCTTAGTTCCTGATCCA -ACGGAACGCTTAGTTCCTACGACA -ACGGAACGCTTAGTTCCTAGCTCA -ACGGAACGCTTAGTTCCTTCACGT -ACGGAACGCTTAGTTCCTCGTAGT -ACGGAACGCTTAGTTCCTGTCAGT -ACGGAACGCTTAGTTCCTGAAGGT -ACGGAACGCTTAGTTCCTAACCGT -ACGGAACGCTTAGTTCCTTTGTGC -ACGGAACGCTTAGTTCCTCTAAGC -ACGGAACGCTTAGTTCCTACTAGC -ACGGAACGCTTAGTTCCTAGATGC -ACGGAACGCTTAGTTCCTTGAAGG -ACGGAACGCTTAGTTCCTCAATGG -ACGGAACGCTTAGTTCCTATGAGG -ACGGAACGCTTAGTTCCTAATGGG -ACGGAACGCTTAGTTCCTTCCTGA -ACGGAACGCTTAGTTCCTTAGCGA -ACGGAACGCTTAGTTCCTCACAGA -ACGGAACGCTTAGTTCCTGCAAGA -ACGGAACGCTTAGTTCCTGGTTGA -ACGGAACGCTTAGTTCCTTCCGAT -ACGGAACGCTTAGTTCCTTGGCAT -ACGGAACGCTTAGTTCCTCGAGAT -ACGGAACGCTTAGTTCCTTACCAC -ACGGAACGCTTAGTTCCTCAGAAC -ACGGAACGCTTAGTTCCTGTCTAC -ACGGAACGCTTAGTTCCTACGTAC -ACGGAACGCTTAGTTCCTAGTGAC -ACGGAACGCTTAGTTCCTCTGTAG -ACGGAACGCTTAGTTCCTCCTAAG -ACGGAACGCTTAGTTCCTGTTCAG -ACGGAACGCTTAGTTCCTGCATAG -ACGGAACGCTTAGTTCCTGACAAG -ACGGAACGCTTAGTTCCTAAGCAG -ACGGAACGCTTAGTTCCTCGTCAA -ACGGAACGCTTAGTTCCTGCTGAA -ACGGAACGCTTAGTTCCTAGTACG -ACGGAACGCTTAGTTCCTATCCGA -ACGGAACGCTTAGTTCCTATGGGA -ACGGAACGCTTAGTTCCTGTGCAA -ACGGAACGCTTAGTTCCTGAGGAA -ACGGAACGCTTAGTTCCTCAGGTA -ACGGAACGCTTAGTTCCTGACTCT -ACGGAACGCTTAGTTCCTAGTCCT -ACGGAACGCTTAGTTCCTTAAGCC -ACGGAACGCTTAGTTCCTATAGCC -ACGGAACGCTTAGTTCCTTAACCG -ACGGAACGCTTAGTTCCTATGCCA -ACGGAACGCTTATTTCGGGGAAAC -ACGGAACGCTTATTTCGGAACACC -ACGGAACGCTTATTTCGGATCGAG -ACGGAACGCTTATTTCGGCTCCTT -ACGGAACGCTTATTTCGGCCTGTT -ACGGAACGCTTATTTCGGCGGTTT -ACGGAACGCTTATTTCGGGTGGTT -ACGGAACGCTTATTTCGGGCCTTT -ACGGAACGCTTATTTCGGGGTCTT -ACGGAACGCTTATTTCGGACGCTT -ACGGAACGCTTATTTCGGAGCGTT -ACGGAACGCTTATTTCGGTTCGTC -ACGGAACGCTTATTTCGGTCTCTC -ACGGAACGCTTATTTCGGTGGATC -ACGGAACGCTTATTTCGGCACTTC -ACGGAACGCTTATTTCGGGTACTC -ACGGAACGCTTATTTCGGGATGTC -ACGGAACGCTTATTTCGGACAGTC -ACGGAACGCTTATTTCGGTTGCTG -ACGGAACGCTTATTTCGGTCCATG -ACGGAACGCTTATTTCGGTGTGTG -ACGGAACGCTTATTTCGGCTAGTG -ACGGAACGCTTATTTCGGCATCTG -ACGGAACGCTTATTTCGGGAGTTG -ACGGAACGCTTATTTCGGAGACTG -ACGGAACGCTTATTTCGGTCGGTA -ACGGAACGCTTATTTCGGTGCCTA -ACGGAACGCTTATTTCGGCCACTA -ACGGAACGCTTATTTCGGGGAGTA -ACGGAACGCTTATTTCGGTCGTCT -ACGGAACGCTTATTTCGGTGCACT -ACGGAACGCTTATTTCGGCTGACT -ACGGAACGCTTATTTCGGCAACCT -ACGGAACGCTTATTTCGGGCTACT -ACGGAACGCTTATTTCGGGGATCT -ACGGAACGCTTATTTCGGAAGGCT -ACGGAACGCTTATTTCGGTCAACC -ACGGAACGCTTATTTCGGTGTTCC -ACGGAACGCTTATTTCGGATTCCC -ACGGAACGCTTATTTCGGTTCTCG -ACGGAACGCTTATTTCGGTAGACG -ACGGAACGCTTATTTCGGGTAACG -ACGGAACGCTTATTTCGGACTTCG -ACGGAACGCTTATTTCGGTACGCA -ACGGAACGCTTATTTCGGCTTGCA -ACGGAACGCTTATTTCGGCGAACA -ACGGAACGCTTATTTCGGCAGTCA -ACGGAACGCTTATTTCGGGATCCA -ACGGAACGCTTATTTCGGACGACA -ACGGAACGCTTATTTCGGAGCTCA -ACGGAACGCTTATTTCGGTCACGT -ACGGAACGCTTATTTCGGCGTAGT -ACGGAACGCTTATTTCGGGTCAGT -ACGGAACGCTTATTTCGGGAAGGT -ACGGAACGCTTATTTCGGAACCGT -ACGGAACGCTTATTTCGGTTGTGC -ACGGAACGCTTATTTCGGCTAAGC -ACGGAACGCTTATTTCGGACTAGC -ACGGAACGCTTATTTCGGAGATGC -ACGGAACGCTTATTTCGGTGAAGG -ACGGAACGCTTATTTCGGCAATGG -ACGGAACGCTTATTTCGGATGAGG -ACGGAACGCTTATTTCGGAATGGG -ACGGAACGCTTATTTCGGTCCTGA -ACGGAACGCTTATTTCGGTAGCGA -ACGGAACGCTTATTTCGGCACAGA -ACGGAACGCTTATTTCGGGCAAGA -ACGGAACGCTTATTTCGGGGTTGA -ACGGAACGCTTATTTCGGTCCGAT -ACGGAACGCTTATTTCGGTGGCAT -ACGGAACGCTTATTTCGGCGAGAT -ACGGAACGCTTATTTCGGTACCAC -ACGGAACGCTTATTTCGGCAGAAC -ACGGAACGCTTATTTCGGGTCTAC -ACGGAACGCTTATTTCGGACGTAC -ACGGAACGCTTATTTCGGAGTGAC -ACGGAACGCTTATTTCGGCTGTAG -ACGGAACGCTTATTTCGGCCTAAG -ACGGAACGCTTATTTCGGGTTCAG -ACGGAACGCTTATTTCGGGCATAG -ACGGAACGCTTATTTCGGGACAAG -ACGGAACGCTTATTTCGGAAGCAG -ACGGAACGCTTATTTCGGCGTCAA -ACGGAACGCTTATTTCGGGCTGAA -ACGGAACGCTTATTTCGGAGTACG -ACGGAACGCTTATTTCGGATCCGA -ACGGAACGCTTATTTCGGATGGGA -ACGGAACGCTTATTTCGGGTGCAA -ACGGAACGCTTATTTCGGGAGGAA -ACGGAACGCTTATTTCGGCAGGTA -ACGGAACGCTTATTTCGGGACTCT -ACGGAACGCTTATTTCGGAGTCCT -ACGGAACGCTTATTTCGGTAAGCC -ACGGAACGCTTATTTCGGATAGCC -ACGGAACGCTTATTTCGGTAACCG -ACGGAACGCTTATTTCGGATGCCA -ACGGAACGCTTAGTTGTGGGAAAC -ACGGAACGCTTAGTTGTGAACACC -ACGGAACGCTTAGTTGTGATCGAG -ACGGAACGCTTAGTTGTGCTCCTT -ACGGAACGCTTAGTTGTGCCTGTT -ACGGAACGCTTAGTTGTGCGGTTT -ACGGAACGCTTAGTTGTGGTGGTT -ACGGAACGCTTAGTTGTGGCCTTT -ACGGAACGCTTAGTTGTGGGTCTT -ACGGAACGCTTAGTTGTGACGCTT -ACGGAACGCTTAGTTGTGAGCGTT -ACGGAACGCTTAGTTGTGTTCGTC -ACGGAACGCTTAGTTGTGTCTCTC -ACGGAACGCTTAGTTGTGTGGATC -ACGGAACGCTTAGTTGTGCACTTC -ACGGAACGCTTAGTTGTGGTACTC -ACGGAACGCTTAGTTGTGGATGTC -ACGGAACGCTTAGTTGTGACAGTC -ACGGAACGCTTAGTTGTGTTGCTG -ACGGAACGCTTAGTTGTGTCCATG -ACGGAACGCTTAGTTGTGTGTGTG -ACGGAACGCTTAGTTGTGCTAGTG -ACGGAACGCTTAGTTGTGCATCTG -ACGGAACGCTTAGTTGTGGAGTTG -ACGGAACGCTTAGTTGTGAGACTG -ACGGAACGCTTAGTTGTGTCGGTA -ACGGAACGCTTAGTTGTGTGCCTA -ACGGAACGCTTAGTTGTGCCACTA -ACGGAACGCTTAGTTGTGGGAGTA -ACGGAACGCTTAGTTGTGTCGTCT -ACGGAACGCTTAGTTGTGTGCACT -ACGGAACGCTTAGTTGTGCTGACT -ACGGAACGCTTAGTTGTGCAACCT -ACGGAACGCTTAGTTGTGGCTACT -ACGGAACGCTTAGTTGTGGGATCT -ACGGAACGCTTAGTTGTGAAGGCT -ACGGAACGCTTAGTTGTGTCAACC -ACGGAACGCTTAGTTGTGTGTTCC -ACGGAACGCTTAGTTGTGATTCCC -ACGGAACGCTTAGTTGTGTTCTCG -ACGGAACGCTTAGTTGTGTAGACG -ACGGAACGCTTAGTTGTGGTAACG -ACGGAACGCTTAGTTGTGACTTCG -ACGGAACGCTTAGTTGTGTACGCA -ACGGAACGCTTAGTTGTGCTTGCA -ACGGAACGCTTAGTTGTGCGAACA -ACGGAACGCTTAGTTGTGCAGTCA -ACGGAACGCTTAGTTGTGGATCCA -ACGGAACGCTTAGTTGTGACGACA -ACGGAACGCTTAGTTGTGAGCTCA -ACGGAACGCTTAGTTGTGTCACGT -ACGGAACGCTTAGTTGTGCGTAGT -ACGGAACGCTTAGTTGTGGTCAGT -ACGGAACGCTTAGTTGTGGAAGGT -ACGGAACGCTTAGTTGTGAACCGT -ACGGAACGCTTAGTTGTGTTGTGC -ACGGAACGCTTAGTTGTGCTAAGC -ACGGAACGCTTAGTTGTGACTAGC -ACGGAACGCTTAGTTGTGAGATGC -ACGGAACGCTTAGTTGTGTGAAGG -ACGGAACGCTTAGTTGTGCAATGG -ACGGAACGCTTAGTTGTGATGAGG -ACGGAACGCTTAGTTGTGAATGGG -ACGGAACGCTTAGTTGTGTCCTGA -ACGGAACGCTTAGTTGTGTAGCGA -ACGGAACGCTTAGTTGTGCACAGA -ACGGAACGCTTAGTTGTGGCAAGA -ACGGAACGCTTAGTTGTGGGTTGA -ACGGAACGCTTAGTTGTGTCCGAT -ACGGAACGCTTAGTTGTGTGGCAT -ACGGAACGCTTAGTTGTGCGAGAT -ACGGAACGCTTAGTTGTGTACCAC -ACGGAACGCTTAGTTGTGCAGAAC -ACGGAACGCTTAGTTGTGGTCTAC -ACGGAACGCTTAGTTGTGACGTAC -ACGGAACGCTTAGTTGTGAGTGAC -ACGGAACGCTTAGTTGTGCTGTAG -ACGGAACGCTTAGTTGTGCCTAAG -ACGGAACGCTTAGTTGTGGTTCAG -ACGGAACGCTTAGTTGTGGCATAG -ACGGAACGCTTAGTTGTGGACAAG -ACGGAACGCTTAGTTGTGAAGCAG -ACGGAACGCTTAGTTGTGCGTCAA -ACGGAACGCTTAGTTGTGGCTGAA -ACGGAACGCTTAGTTGTGAGTACG -ACGGAACGCTTAGTTGTGATCCGA -ACGGAACGCTTAGTTGTGATGGGA -ACGGAACGCTTAGTTGTGGTGCAA -ACGGAACGCTTAGTTGTGGAGGAA -ACGGAACGCTTAGTTGTGCAGGTA -ACGGAACGCTTAGTTGTGGACTCT -ACGGAACGCTTAGTTGTGAGTCCT -ACGGAACGCTTAGTTGTGTAAGCC -ACGGAACGCTTAGTTGTGATAGCC -ACGGAACGCTTAGTTGTGTAACCG -ACGGAACGCTTAGTTGTGATGCCA -ACGGAACGCTTATTTGCCGGAAAC -ACGGAACGCTTATTTGCCAACACC -ACGGAACGCTTATTTGCCATCGAG -ACGGAACGCTTATTTGCCCTCCTT -ACGGAACGCTTATTTGCCCCTGTT -ACGGAACGCTTATTTGCCCGGTTT -ACGGAACGCTTATTTGCCGTGGTT -ACGGAACGCTTATTTGCCGCCTTT -ACGGAACGCTTATTTGCCGGTCTT -ACGGAACGCTTATTTGCCACGCTT -ACGGAACGCTTATTTGCCAGCGTT -ACGGAACGCTTATTTGCCTTCGTC -ACGGAACGCTTATTTGCCTCTCTC -ACGGAACGCTTATTTGCCTGGATC -ACGGAACGCTTATTTGCCCACTTC -ACGGAACGCTTATTTGCCGTACTC -ACGGAACGCTTATTTGCCGATGTC -ACGGAACGCTTATTTGCCACAGTC -ACGGAACGCTTATTTGCCTTGCTG -ACGGAACGCTTATTTGCCTCCATG -ACGGAACGCTTATTTGCCTGTGTG -ACGGAACGCTTATTTGCCCTAGTG -ACGGAACGCTTATTTGCCCATCTG -ACGGAACGCTTATTTGCCGAGTTG -ACGGAACGCTTATTTGCCAGACTG -ACGGAACGCTTATTTGCCTCGGTA -ACGGAACGCTTATTTGCCTGCCTA -ACGGAACGCTTATTTGCCCCACTA -ACGGAACGCTTATTTGCCGGAGTA -ACGGAACGCTTATTTGCCTCGTCT -ACGGAACGCTTATTTGCCTGCACT -ACGGAACGCTTATTTGCCCTGACT -ACGGAACGCTTATTTGCCCAACCT -ACGGAACGCTTATTTGCCGCTACT -ACGGAACGCTTATTTGCCGGATCT -ACGGAACGCTTATTTGCCAAGGCT -ACGGAACGCTTATTTGCCTCAACC -ACGGAACGCTTATTTGCCTGTTCC -ACGGAACGCTTATTTGCCATTCCC -ACGGAACGCTTATTTGCCTTCTCG -ACGGAACGCTTATTTGCCTAGACG -ACGGAACGCTTATTTGCCGTAACG -ACGGAACGCTTATTTGCCACTTCG -ACGGAACGCTTATTTGCCTACGCA -ACGGAACGCTTATTTGCCCTTGCA -ACGGAACGCTTATTTGCCCGAACA -ACGGAACGCTTATTTGCCCAGTCA -ACGGAACGCTTATTTGCCGATCCA -ACGGAACGCTTATTTGCCACGACA -ACGGAACGCTTATTTGCCAGCTCA -ACGGAACGCTTATTTGCCTCACGT -ACGGAACGCTTATTTGCCCGTAGT -ACGGAACGCTTATTTGCCGTCAGT -ACGGAACGCTTATTTGCCGAAGGT -ACGGAACGCTTATTTGCCAACCGT -ACGGAACGCTTATTTGCCTTGTGC -ACGGAACGCTTATTTGCCCTAAGC -ACGGAACGCTTATTTGCCACTAGC -ACGGAACGCTTATTTGCCAGATGC -ACGGAACGCTTATTTGCCTGAAGG -ACGGAACGCTTATTTGCCCAATGG -ACGGAACGCTTATTTGCCATGAGG -ACGGAACGCTTATTTGCCAATGGG -ACGGAACGCTTATTTGCCTCCTGA -ACGGAACGCTTATTTGCCTAGCGA -ACGGAACGCTTATTTGCCCACAGA -ACGGAACGCTTATTTGCCGCAAGA -ACGGAACGCTTATTTGCCGGTTGA -ACGGAACGCTTATTTGCCTCCGAT -ACGGAACGCTTATTTGCCTGGCAT -ACGGAACGCTTATTTGCCCGAGAT -ACGGAACGCTTATTTGCCTACCAC -ACGGAACGCTTATTTGCCCAGAAC -ACGGAACGCTTATTTGCCGTCTAC -ACGGAACGCTTATTTGCCACGTAC -ACGGAACGCTTATTTGCCAGTGAC -ACGGAACGCTTATTTGCCCTGTAG -ACGGAACGCTTATTTGCCCCTAAG -ACGGAACGCTTATTTGCCGTTCAG -ACGGAACGCTTATTTGCCGCATAG -ACGGAACGCTTATTTGCCGACAAG -ACGGAACGCTTATTTGCCAAGCAG -ACGGAACGCTTATTTGCCCGTCAA -ACGGAACGCTTATTTGCCGCTGAA -ACGGAACGCTTATTTGCCAGTACG -ACGGAACGCTTATTTGCCATCCGA -ACGGAACGCTTATTTGCCATGGGA -ACGGAACGCTTATTTGCCGTGCAA -ACGGAACGCTTATTTGCCGAGGAA -ACGGAACGCTTATTTGCCCAGGTA -ACGGAACGCTTATTTGCCGACTCT -ACGGAACGCTTATTTGCCAGTCCT -ACGGAACGCTTATTTGCCTAAGCC -ACGGAACGCTTATTTGCCATAGCC -ACGGAACGCTTATTTGCCTAACCG -ACGGAACGCTTATTTGCCATGCCA -ACGGAACGCTTACTTGGTGGAAAC -ACGGAACGCTTACTTGGTAACACC -ACGGAACGCTTACTTGGTATCGAG -ACGGAACGCTTACTTGGTCTCCTT -ACGGAACGCTTACTTGGTCCTGTT -ACGGAACGCTTACTTGGTCGGTTT -ACGGAACGCTTACTTGGTGTGGTT -ACGGAACGCTTACTTGGTGCCTTT -ACGGAACGCTTACTTGGTGGTCTT -ACGGAACGCTTACTTGGTACGCTT -ACGGAACGCTTACTTGGTAGCGTT -ACGGAACGCTTACTTGGTTTCGTC -ACGGAACGCTTACTTGGTTCTCTC -ACGGAACGCTTACTTGGTTGGATC -ACGGAACGCTTACTTGGTCACTTC -ACGGAACGCTTACTTGGTGTACTC -ACGGAACGCTTACTTGGTGATGTC -ACGGAACGCTTACTTGGTACAGTC -ACGGAACGCTTACTTGGTTTGCTG -ACGGAACGCTTACTTGGTTCCATG -ACGGAACGCTTACTTGGTTGTGTG -ACGGAACGCTTACTTGGTCTAGTG -ACGGAACGCTTACTTGGTCATCTG -ACGGAACGCTTACTTGGTGAGTTG -ACGGAACGCTTACTTGGTAGACTG -ACGGAACGCTTACTTGGTTCGGTA -ACGGAACGCTTACTTGGTTGCCTA -ACGGAACGCTTACTTGGTCCACTA -ACGGAACGCTTACTTGGTGGAGTA -ACGGAACGCTTACTTGGTTCGTCT -ACGGAACGCTTACTTGGTTGCACT -ACGGAACGCTTACTTGGTCTGACT -ACGGAACGCTTACTTGGTCAACCT -ACGGAACGCTTACTTGGTGCTACT -ACGGAACGCTTACTTGGTGGATCT -ACGGAACGCTTACTTGGTAAGGCT -ACGGAACGCTTACTTGGTTCAACC -ACGGAACGCTTACTTGGTTGTTCC -ACGGAACGCTTACTTGGTATTCCC -ACGGAACGCTTACTTGGTTTCTCG -ACGGAACGCTTACTTGGTTAGACG -ACGGAACGCTTACTTGGTGTAACG -ACGGAACGCTTACTTGGTACTTCG -ACGGAACGCTTACTTGGTTACGCA -ACGGAACGCTTACTTGGTCTTGCA -ACGGAACGCTTACTTGGTCGAACA -ACGGAACGCTTACTTGGTCAGTCA -ACGGAACGCTTACTTGGTGATCCA -ACGGAACGCTTACTTGGTACGACA -ACGGAACGCTTACTTGGTAGCTCA -ACGGAACGCTTACTTGGTTCACGT -ACGGAACGCTTACTTGGTCGTAGT -ACGGAACGCTTACTTGGTGTCAGT -ACGGAACGCTTACTTGGTGAAGGT -ACGGAACGCTTACTTGGTAACCGT -ACGGAACGCTTACTTGGTTTGTGC -ACGGAACGCTTACTTGGTCTAAGC -ACGGAACGCTTACTTGGTACTAGC -ACGGAACGCTTACTTGGTAGATGC -ACGGAACGCTTACTTGGTTGAAGG -ACGGAACGCTTACTTGGTCAATGG -ACGGAACGCTTACTTGGTATGAGG -ACGGAACGCTTACTTGGTAATGGG -ACGGAACGCTTACTTGGTTCCTGA -ACGGAACGCTTACTTGGTTAGCGA -ACGGAACGCTTACTTGGTCACAGA -ACGGAACGCTTACTTGGTGCAAGA -ACGGAACGCTTACTTGGTGGTTGA -ACGGAACGCTTACTTGGTTCCGAT -ACGGAACGCTTACTTGGTTGGCAT -ACGGAACGCTTACTTGGTCGAGAT -ACGGAACGCTTACTTGGTTACCAC -ACGGAACGCTTACTTGGTCAGAAC -ACGGAACGCTTACTTGGTGTCTAC -ACGGAACGCTTACTTGGTACGTAC -ACGGAACGCTTACTTGGTAGTGAC -ACGGAACGCTTACTTGGTCTGTAG -ACGGAACGCTTACTTGGTCCTAAG -ACGGAACGCTTACTTGGTGTTCAG -ACGGAACGCTTACTTGGTGCATAG -ACGGAACGCTTACTTGGTGACAAG -ACGGAACGCTTACTTGGTAAGCAG -ACGGAACGCTTACTTGGTCGTCAA -ACGGAACGCTTACTTGGTGCTGAA -ACGGAACGCTTACTTGGTAGTACG -ACGGAACGCTTACTTGGTATCCGA -ACGGAACGCTTACTTGGTATGGGA -ACGGAACGCTTACTTGGTGTGCAA -ACGGAACGCTTACTTGGTGAGGAA -ACGGAACGCTTACTTGGTCAGGTA -ACGGAACGCTTACTTGGTGACTCT -ACGGAACGCTTACTTGGTAGTCCT -ACGGAACGCTTACTTGGTTAAGCC -ACGGAACGCTTACTTGGTATAGCC -ACGGAACGCTTACTTGGTTAACCG -ACGGAACGCTTACTTGGTATGCCA -ACGGAACGCTTACTTACGGGAAAC -ACGGAACGCTTACTTACGAACACC -ACGGAACGCTTACTTACGATCGAG -ACGGAACGCTTACTTACGCTCCTT -ACGGAACGCTTACTTACGCCTGTT -ACGGAACGCTTACTTACGCGGTTT -ACGGAACGCTTACTTACGGTGGTT -ACGGAACGCTTACTTACGGCCTTT -ACGGAACGCTTACTTACGGGTCTT -ACGGAACGCTTACTTACGACGCTT -ACGGAACGCTTACTTACGAGCGTT -ACGGAACGCTTACTTACGTTCGTC -ACGGAACGCTTACTTACGTCTCTC -ACGGAACGCTTACTTACGTGGATC -ACGGAACGCTTACTTACGCACTTC -ACGGAACGCTTACTTACGGTACTC -ACGGAACGCTTACTTACGGATGTC -ACGGAACGCTTACTTACGACAGTC -ACGGAACGCTTACTTACGTTGCTG -ACGGAACGCTTACTTACGTCCATG -ACGGAACGCTTACTTACGTGTGTG -ACGGAACGCTTACTTACGCTAGTG -ACGGAACGCTTACTTACGCATCTG -ACGGAACGCTTACTTACGGAGTTG -ACGGAACGCTTACTTACGAGACTG -ACGGAACGCTTACTTACGTCGGTA -ACGGAACGCTTACTTACGTGCCTA -ACGGAACGCTTACTTACGCCACTA -ACGGAACGCTTACTTACGGGAGTA -ACGGAACGCTTACTTACGTCGTCT -ACGGAACGCTTACTTACGTGCACT -ACGGAACGCTTACTTACGCTGACT -ACGGAACGCTTACTTACGCAACCT -ACGGAACGCTTACTTACGGCTACT -ACGGAACGCTTACTTACGGGATCT -ACGGAACGCTTACTTACGAAGGCT -ACGGAACGCTTACTTACGTCAACC -ACGGAACGCTTACTTACGTGTTCC -ACGGAACGCTTACTTACGATTCCC -ACGGAACGCTTACTTACGTTCTCG -ACGGAACGCTTACTTACGTAGACG -ACGGAACGCTTACTTACGGTAACG -ACGGAACGCTTACTTACGACTTCG -ACGGAACGCTTACTTACGTACGCA -ACGGAACGCTTACTTACGCTTGCA -ACGGAACGCTTACTTACGCGAACA -ACGGAACGCTTACTTACGCAGTCA -ACGGAACGCTTACTTACGGATCCA -ACGGAACGCTTACTTACGACGACA -ACGGAACGCTTACTTACGAGCTCA -ACGGAACGCTTACTTACGTCACGT -ACGGAACGCTTACTTACGCGTAGT -ACGGAACGCTTACTTACGGTCAGT -ACGGAACGCTTACTTACGGAAGGT -ACGGAACGCTTACTTACGAACCGT -ACGGAACGCTTACTTACGTTGTGC -ACGGAACGCTTACTTACGCTAAGC -ACGGAACGCTTACTTACGACTAGC -ACGGAACGCTTACTTACGAGATGC -ACGGAACGCTTACTTACGTGAAGG -ACGGAACGCTTACTTACGCAATGG -ACGGAACGCTTACTTACGATGAGG -ACGGAACGCTTACTTACGAATGGG -ACGGAACGCTTACTTACGTCCTGA -ACGGAACGCTTACTTACGTAGCGA -ACGGAACGCTTACTTACGCACAGA -ACGGAACGCTTACTTACGGCAAGA -ACGGAACGCTTACTTACGGGTTGA -ACGGAACGCTTACTTACGTCCGAT -ACGGAACGCTTACTTACGTGGCAT -ACGGAACGCTTACTTACGCGAGAT -ACGGAACGCTTACTTACGTACCAC -ACGGAACGCTTACTTACGCAGAAC -ACGGAACGCTTACTTACGGTCTAC -ACGGAACGCTTACTTACGACGTAC -ACGGAACGCTTACTTACGAGTGAC -ACGGAACGCTTACTTACGCTGTAG -ACGGAACGCTTACTTACGCCTAAG -ACGGAACGCTTACTTACGGTTCAG -ACGGAACGCTTACTTACGGCATAG -ACGGAACGCTTACTTACGGACAAG -ACGGAACGCTTACTTACGAAGCAG -ACGGAACGCTTACTTACGCGTCAA -ACGGAACGCTTACTTACGGCTGAA -ACGGAACGCTTACTTACGAGTACG -ACGGAACGCTTACTTACGATCCGA -ACGGAACGCTTACTTACGATGGGA -ACGGAACGCTTACTTACGGTGCAA -ACGGAACGCTTACTTACGGAGGAA -ACGGAACGCTTACTTACGCAGGTA -ACGGAACGCTTACTTACGGACTCT -ACGGAACGCTTACTTACGAGTCCT -ACGGAACGCTTACTTACGTAAGCC -ACGGAACGCTTACTTACGATAGCC -ACGGAACGCTTACTTACGTAACCG -ACGGAACGCTTACTTACGATGCCA -ACGGAACGCTTAGTTAGCGGAAAC -ACGGAACGCTTAGTTAGCAACACC -ACGGAACGCTTAGTTAGCATCGAG -ACGGAACGCTTAGTTAGCCTCCTT -ACGGAACGCTTAGTTAGCCCTGTT -ACGGAACGCTTAGTTAGCCGGTTT -ACGGAACGCTTAGTTAGCGTGGTT -ACGGAACGCTTAGTTAGCGCCTTT -ACGGAACGCTTAGTTAGCGGTCTT -ACGGAACGCTTAGTTAGCACGCTT -ACGGAACGCTTAGTTAGCAGCGTT -ACGGAACGCTTAGTTAGCTTCGTC -ACGGAACGCTTAGTTAGCTCTCTC -ACGGAACGCTTAGTTAGCTGGATC -ACGGAACGCTTAGTTAGCCACTTC -ACGGAACGCTTAGTTAGCGTACTC -ACGGAACGCTTAGTTAGCGATGTC -ACGGAACGCTTAGTTAGCACAGTC -ACGGAACGCTTAGTTAGCTTGCTG -ACGGAACGCTTAGTTAGCTCCATG -ACGGAACGCTTAGTTAGCTGTGTG -ACGGAACGCTTAGTTAGCCTAGTG -ACGGAACGCTTAGTTAGCCATCTG -ACGGAACGCTTAGTTAGCGAGTTG -ACGGAACGCTTAGTTAGCAGACTG -ACGGAACGCTTAGTTAGCTCGGTA -ACGGAACGCTTAGTTAGCTGCCTA -ACGGAACGCTTAGTTAGCCCACTA -ACGGAACGCTTAGTTAGCGGAGTA -ACGGAACGCTTAGTTAGCTCGTCT -ACGGAACGCTTAGTTAGCTGCACT -ACGGAACGCTTAGTTAGCCTGACT -ACGGAACGCTTAGTTAGCCAACCT -ACGGAACGCTTAGTTAGCGCTACT -ACGGAACGCTTAGTTAGCGGATCT -ACGGAACGCTTAGTTAGCAAGGCT -ACGGAACGCTTAGTTAGCTCAACC -ACGGAACGCTTAGTTAGCTGTTCC -ACGGAACGCTTAGTTAGCATTCCC -ACGGAACGCTTAGTTAGCTTCTCG -ACGGAACGCTTAGTTAGCTAGACG -ACGGAACGCTTAGTTAGCGTAACG -ACGGAACGCTTAGTTAGCACTTCG -ACGGAACGCTTAGTTAGCTACGCA -ACGGAACGCTTAGTTAGCCTTGCA -ACGGAACGCTTAGTTAGCCGAACA -ACGGAACGCTTAGTTAGCCAGTCA -ACGGAACGCTTAGTTAGCGATCCA -ACGGAACGCTTAGTTAGCACGACA -ACGGAACGCTTAGTTAGCAGCTCA -ACGGAACGCTTAGTTAGCTCACGT -ACGGAACGCTTAGTTAGCCGTAGT -ACGGAACGCTTAGTTAGCGTCAGT -ACGGAACGCTTAGTTAGCGAAGGT -ACGGAACGCTTAGTTAGCAACCGT -ACGGAACGCTTAGTTAGCTTGTGC -ACGGAACGCTTAGTTAGCCTAAGC -ACGGAACGCTTAGTTAGCACTAGC -ACGGAACGCTTAGTTAGCAGATGC -ACGGAACGCTTAGTTAGCTGAAGG -ACGGAACGCTTAGTTAGCCAATGG -ACGGAACGCTTAGTTAGCATGAGG -ACGGAACGCTTAGTTAGCAATGGG -ACGGAACGCTTAGTTAGCTCCTGA -ACGGAACGCTTAGTTAGCTAGCGA -ACGGAACGCTTAGTTAGCCACAGA -ACGGAACGCTTAGTTAGCGCAAGA -ACGGAACGCTTAGTTAGCGGTTGA -ACGGAACGCTTAGTTAGCTCCGAT -ACGGAACGCTTAGTTAGCTGGCAT -ACGGAACGCTTAGTTAGCCGAGAT -ACGGAACGCTTAGTTAGCTACCAC -ACGGAACGCTTAGTTAGCCAGAAC -ACGGAACGCTTAGTTAGCGTCTAC -ACGGAACGCTTAGTTAGCACGTAC -ACGGAACGCTTAGTTAGCAGTGAC -ACGGAACGCTTAGTTAGCCTGTAG -ACGGAACGCTTAGTTAGCCCTAAG -ACGGAACGCTTAGTTAGCGTTCAG -ACGGAACGCTTAGTTAGCGCATAG -ACGGAACGCTTAGTTAGCGACAAG -ACGGAACGCTTAGTTAGCAAGCAG -ACGGAACGCTTAGTTAGCCGTCAA -ACGGAACGCTTAGTTAGCGCTGAA -ACGGAACGCTTAGTTAGCAGTACG -ACGGAACGCTTAGTTAGCATCCGA -ACGGAACGCTTAGTTAGCATGGGA -ACGGAACGCTTAGTTAGCGTGCAA -ACGGAACGCTTAGTTAGCGAGGAA -ACGGAACGCTTAGTTAGCCAGGTA -ACGGAACGCTTAGTTAGCGACTCT -ACGGAACGCTTAGTTAGCAGTCCT -ACGGAACGCTTAGTTAGCTAAGCC -ACGGAACGCTTAGTTAGCATAGCC -ACGGAACGCTTAGTTAGCTAACCG -ACGGAACGCTTAGTTAGCATGCCA -ACGGAACGCTTAGTCTTCGGAAAC -ACGGAACGCTTAGTCTTCAACACC -ACGGAACGCTTAGTCTTCATCGAG -ACGGAACGCTTAGTCTTCCTCCTT -ACGGAACGCTTAGTCTTCCCTGTT -ACGGAACGCTTAGTCTTCCGGTTT -ACGGAACGCTTAGTCTTCGTGGTT -ACGGAACGCTTAGTCTTCGCCTTT -ACGGAACGCTTAGTCTTCGGTCTT -ACGGAACGCTTAGTCTTCACGCTT -ACGGAACGCTTAGTCTTCAGCGTT -ACGGAACGCTTAGTCTTCTTCGTC -ACGGAACGCTTAGTCTTCTCTCTC -ACGGAACGCTTAGTCTTCTGGATC -ACGGAACGCTTAGTCTTCCACTTC -ACGGAACGCTTAGTCTTCGTACTC -ACGGAACGCTTAGTCTTCGATGTC -ACGGAACGCTTAGTCTTCACAGTC -ACGGAACGCTTAGTCTTCTTGCTG -ACGGAACGCTTAGTCTTCTCCATG -ACGGAACGCTTAGTCTTCTGTGTG -ACGGAACGCTTAGTCTTCCTAGTG -ACGGAACGCTTAGTCTTCCATCTG -ACGGAACGCTTAGTCTTCGAGTTG -ACGGAACGCTTAGTCTTCAGACTG -ACGGAACGCTTAGTCTTCTCGGTA -ACGGAACGCTTAGTCTTCTGCCTA -ACGGAACGCTTAGTCTTCCCACTA -ACGGAACGCTTAGTCTTCGGAGTA -ACGGAACGCTTAGTCTTCTCGTCT -ACGGAACGCTTAGTCTTCTGCACT -ACGGAACGCTTAGTCTTCCTGACT -ACGGAACGCTTAGTCTTCCAACCT -ACGGAACGCTTAGTCTTCGCTACT -ACGGAACGCTTAGTCTTCGGATCT -ACGGAACGCTTAGTCTTCAAGGCT -ACGGAACGCTTAGTCTTCTCAACC -ACGGAACGCTTAGTCTTCTGTTCC -ACGGAACGCTTAGTCTTCATTCCC -ACGGAACGCTTAGTCTTCTTCTCG -ACGGAACGCTTAGTCTTCTAGACG -ACGGAACGCTTAGTCTTCGTAACG -ACGGAACGCTTAGTCTTCACTTCG -ACGGAACGCTTAGTCTTCTACGCA -ACGGAACGCTTAGTCTTCCTTGCA -ACGGAACGCTTAGTCTTCCGAACA -ACGGAACGCTTAGTCTTCCAGTCA -ACGGAACGCTTAGTCTTCGATCCA -ACGGAACGCTTAGTCTTCACGACA -ACGGAACGCTTAGTCTTCAGCTCA -ACGGAACGCTTAGTCTTCTCACGT -ACGGAACGCTTAGTCTTCCGTAGT -ACGGAACGCTTAGTCTTCGTCAGT -ACGGAACGCTTAGTCTTCGAAGGT -ACGGAACGCTTAGTCTTCAACCGT -ACGGAACGCTTAGTCTTCTTGTGC -ACGGAACGCTTAGTCTTCCTAAGC -ACGGAACGCTTAGTCTTCACTAGC -ACGGAACGCTTAGTCTTCAGATGC -ACGGAACGCTTAGTCTTCTGAAGG -ACGGAACGCTTAGTCTTCCAATGG -ACGGAACGCTTAGTCTTCATGAGG -ACGGAACGCTTAGTCTTCAATGGG -ACGGAACGCTTAGTCTTCTCCTGA -ACGGAACGCTTAGTCTTCTAGCGA -ACGGAACGCTTAGTCTTCCACAGA -ACGGAACGCTTAGTCTTCGCAAGA -ACGGAACGCTTAGTCTTCGGTTGA -ACGGAACGCTTAGTCTTCTCCGAT -ACGGAACGCTTAGTCTTCTGGCAT -ACGGAACGCTTAGTCTTCCGAGAT -ACGGAACGCTTAGTCTTCTACCAC -ACGGAACGCTTAGTCTTCCAGAAC -ACGGAACGCTTAGTCTTCGTCTAC -ACGGAACGCTTAGTCTTCACGTAC -ACGGAACGCTTAGTCTTCAGTGAC -ACGGAACGCTTAGTCTTCCTGTAG -ACGGAACGCTTAGTCTTCCCTAAG -ACGGAACGCTTAGTCTTCGTTCAG -ACGGAACGCTTAGTCTTCGCATAG -ACGGAACGCTTAGTCTTCGACAAG -ACGGAACGCTTAGTCTTCAAGCAG -ACGGAACGCTTAGTCTTCCGTCAA -ACGGAACGCTTAGTCTTCGCTGAA -ACGGAACGCTTAGTCTTCAGTACG -ACGGAACGCTTAGTCTTCATCCGA -ACGGAACGCTTAGTCTTCATGGGA -ACGGAACGCTTAGTCTTCGTGCAA -ACGGAACGCTTAGTCTTCGAGGAA -ACGGAACGCTTAGTCTTCCAGGTA -ACGGAACGCTTAGTCTTCGACTCT -ACGGAACGCTTAGTCTTCAGTCCT -ACGGAACGCTTAGTCTTCTAAGCC -ACGGAACGCTTAGTCTTCATAGCC -ACGGAACGCTTAGTCTTCTAACCG -ACGGAACGCTTAGTCTTCATGCCA -ACGGAACGCTTACTCTCTGGAAAC -ACGGAACGCTTACTCTCTAACACC -ACGGAACGCTTACTCTCTATCGAG -ACGGAACGCTTACTCTCTCTCCTT -ACGGAACGCTTACTCTCTCCTGTT -ACGGAACGCTTACTCTCTCGGTTT -ACGGAACGCTTACTCTCTGTGGTT -ACGGAACGCTTACTCTCTGCCTTT -ACGGAACGCTTACTCTCTGGTCTT -ACGGAACGCTTACTCTCTACGCTT -ACGGAACGCTTACTCTCTAGCGTT -ACGGAACGCTTACTCTCTTTCGTC -ACGGAACGCTTACTCTCTTCTCTC -ACGGAACGCTTACTCTCTTGGATC -ACGGAACGCTTACTCTCTCACTTC -ACGGAACGCTTACTCTCTGTACTC -ACGGAACGCTTACTCTCTGATGTC -ACGGAACGCTTACTCTCTACAGTC -ACGGAACGCTTACTCTCTTTGCTG -ACGGAACGCTTACTCTCTTCCATG -ACGGAACGCTTACTCTCTTGTGTG -ACGGAACGCTTACTCTCTCTAGTG -ACGGAACGCTTACTCTCTCATCTG -ACGGAACGCTTACTCTCTGAGTTG -ACGGAACGCTTACTCTCTAGACTG -ACGGAACGCTTACTCTCTTCGGTA -ACGGAACGCTTACTCTCTTGCCTA -ACGGAACGCTTACTCTCTCCACTA -ACGGAACGCTTACTCTCTGGAGTA -ACGGAACGCTTACTCTCTTCGTCT -ACGGAACGCTTACTCTCTTGCACT -ACGGAACGCTTACTCTCTCTGACT -ACGGAACGCTTACTCTCTCAACCT -ACGGAACGCTTACTCTCTGCTACT -ACGGAACGCTTACTCTCTGGATCT -ACGGAACGCTTACTCTCTAAGGCT -ACGGAACGCTTACTCTCTTCAACC -ACGGAACGCTTACTCTCTTGTTCC -ACGGAACGCTTACTCTCTATTCCC -ACGGAACGCTTACTCTCTTTCTCG -ACGGAACGCTTACTCTCTTAGACG -ACGGAACGCTTACTCTCTGTAACG -ACGGAACGCTTACTCTCTACTTCG -ACGGAACGCTTACTCTCTTACGCA -ACGGAACGCTTACTCTCTCTTGCA -ACGGAACGCTTACTCTCTCGAACA -ACGGAACGCTTACTCTCTCAGTCA -ACGGAACGCTTACTCTCTGATCCA -ACGGAACGCTTACTCTCTACGACA -ACGGAACGCTTACTCTCTAGCTCA -ACGGAACGCTTACTCTCTTCACGT -ACGGAACGCTTACTCTCTCGTAGT -ACGGAACGCTTACTCTCTGTCAGT -ACGGAACGCTTACTCTCTGAAGGT -ACGGAACGCTTACTCTCTAACCGT -ACGGAACGCTTACTCTCTTTGTGC -ACGGAACGCTTACTCTCTCTAAGC -ACGGAACGCTTACTCTCTACTAGC -ACGGAACGCTTACTCTCTAGATGC -ACGGAACGCTTACTCTCTTGAAGG -ACGGAACGCTTACTCTCTCAATGG -ACGGAACGCTTACTCTCTATGAGG -ACGGAACGCTTACTCTCTAATGGG -ACGGAACGCTTACTCTCTTCCTGA -ACGGAACGCTTACTCTCTTAGCGA -ACGGAACGCTTACTCTCTCACAGA -ACGGAACGCTTACTCTCTGCAAGA -ACGGAACGCTTACTCTCTGGTTGA -ACGGAACGCTTACTCTCTTCCGAT -ACGGAACGCTTACTCTCTTGGCAT -ACGGAACGCTTACTCTCTCGAGAT -ACGGAACGCTTACTCTCTTACCAC -ACGGAACGCTTACTCTCTCAGAAC -ACGGAACGCTTACTCTCTGTCTAC -ACGGAACGCTTACTCTCTACGTAC -ACGGAACGCTTACTCTCTAGTGAC -ACGGAACGCTTACTCTCTCTGTAG -ACGGAACGCTTACTCTCTCCTAAG -ACGGAACGCTTACTCTCTGTTCAG -ACGGAACGCTTACTCTCTGCATAG -ACGGAACGCTTACTCTCTGACAAG -ACGGAACGCTTACTCTCTAAGCAG -ACGGAACGCTTACTCTCTCGTCAA -ACGGAACGCTTACTCTCTGCTGAA -ACGGAACGCTTACTCTCTAGTACG -ACGGAACGCTTACTCTCTATCCGA -ACGGAACGCTTACTCTCTATGGGA -ACGGAACGCTTACTCTCTGTGCAA -ACGGAACGCTTACTCTCTGAGGAA -ACGGAACGCTTACTCTCTCAGGTA -ACGGAACGCTTACTCTCTGACTCT -ACGGAACGCTTACTCTCTAGTCCT -ACGGAACGCTTACTCTCTTAAGCC -ACGGAACGCTTACTCTCTATAGCC -ACGGAACGCTTACTCTCTTAACCG -ACGGAACGCTTACTCTCTATGCCA -ACGGAACGCTTAATCTGGGGAAAC -ACGGAACGCTTAATCTGGAACACC -ACGGAACGCTTAATCTGGATCGAG -ACGGAACGCTTAATCTGGCTCCTT -ACGGAACGCTTAATCTGGCCTGTT -ACGGAACGCTTAATCTGGCGGTTT -ACGGAACGCTTAATCTGGGTGGTT -ACGGAACGCTTAATCTGGGCCTTT -ACGGAACGCTTAATCTGGGGTCTT -ACGGAACGCTTAATCTGGACGCTT -ACGGAACGCTTAATCTGGAGCGTT -ACGGAACGCTTAATCTGGTTCGTC -ACGGAACGCTTAATCTGGTCTCTC -ACGGAACGCTTAATCTGGTGGATC -ACGGAACGCTTAATCTGGCACTTC -ACGGAACGCTTAATCTGGGTACTC -ACGGAACGCTTAATCTGGGATGTC -ACGGAACGCTTAATCTGGACAGTC -ACGGAACGCTTAATCTGGTTGCTG -ACGGAACGCTTAATCTGGTCCATG -ACGGAACGCTTAATCTGGTGTGTG -ACGGAACGCTTAATCTGGCTAGTG -ACGGAACGCTTAATCTGGCATCTG -ACGGAACGCTTAATCTGGGAGTTG -ACGGAACGCTTAATCTGGAGACTG -ACGGAACGCTTAATCTGGTCGGTA -ACGGAACGCTTAATCTGGTGCCTA -ACGGAACGCTTAATCTGGCCACTA -ACGGAACGCTTAATCTGGGGAGTA -ACGGAACGCTTAATCTGGTCGTCT -ACGGAACGCTTAATCTGGTGCACT -ACGGAACGCTTAATCTGGCTGACT -ACGGAACGCTTAATCTGGCAACCT -ACGGAACGCTTAATCTGGGCTACT -ACGGAACGCTTAATCTGGGGATCT -ACGGAACGCTTAATCTGGAAGGCT -ACGGAACGCTTAATCTGGTCAACC -ACGGAACGCTTAATCTGGTGTTCC -ACGGAACGCTTAATCTGGATTCCC -ACGGAACGCTTAATCTGGTTCTCG -ACGGAACGCTTAATCTGGTAGACG -ACGGAACGCTTAATCTGGGTAACG -ACGGAACGCTTAATCTGGACTTCG -ACGGAACGCTTAATCTGGTACGCA -ACGGAACGCTTAATCTGGCTTGCA -ACGGAACGCTTAATCTGGCGAACA -ACGGAACGCTTAATCTGGCAGTCA -ACGGAACGCTTAATCTGGGATCCA -ACGGAACGCTTAATCTGGACGACA -ACGGAACGCTTAATCTGGAGCTCA -ACGGAACGCTTAATCTGGTCACGT -ACGGAACGCTTAATCTGGCGTAGT -ACGGAACGCTTAATCTGGGTCAGT -ACGGAACGCTTAATCTGGGAAGGT -ACGGAACGCTTAATCTGGAACCGT -ACGGAACGCTTAATCTGGTTGTGC -ACGGAACGCTTAATCTGGCTAAGC -ACGGAACGCTTAATCTGGACTAGC -ACGGAACGCTTAATCTGGAGATGC -ACGGAACGCTTAATCTGGTGAAGG -ACGGAACGCTTAATCTGGCAATGG -ACGGAACGCTTAATCTGGATGAGG -ACGGAACGCTTAATCTGGAATGGG -ACGGAACGCTTAATCTGGTCCTGA -ACGGAACGCTTAATCTGGTAGCGA -ACGGAACGCTTAATCTGGCACAGA -ACGGAACGCTTAATCTGGGCAAGA -ACGGAACGCTTAATCTGGGGTTGA -ACGGAACGCTTAATCTGGTCCGAT -ACGGAACGCTTAATCTGGTGGCAT -ACGGAACGCTTAATCTGGCGAGAT -ACGGAACGCTTAATCTGGTACCAC -ACGGAACGCTTAATCTGGCAGAAC -ACGGAACGCTTAATCTGGGTCTAC -ACGGAACGCTTAATCTGGACGTAC -ACGGAACGCTTAATCTGGAGTGAC -ACGGAACGCTTAATCTGGCTGTAG -ACGGAACGCTTAATCTGGCCTAAG -ACGGAACGCTTAATCTGGGTTCAG -ACGGAACGCTTAATCTGGGCATAG -ACGGAACGCTTAATCTGGGACAAG -ACGGAACGCTTAATCTGGAAGCAG -ACGGAACGCTTAATCTGGCGTCAA -ACGGAACGCTTAATCTGGGCTGAA -ACGGAACGCTTAATCTGGAGTACG -ACGGAACGCTTAATCTGGATCCGA -ACGGAACGCTTAATCTGGATGGGA -ACGGAACGCTTAATCTGGGTGCAA -ACGGAACGCTTAATCTGGGAGGAA -ACGGAACGCTTAATCTGGCAGGTA -ACGGAACGCTTAATCTGGGACTCT -ACGGAACGCTTAATCTGGAGTCCT -ACGGAACGCTTAATCTGGTAAGCC -ACGGAACGCTTAATCTGGATAGCC -ACGGAACGCTTAATCTGGTAACCG -ACGGAACGCTTAATCTGGATGCCA -ACGGAACGCTTATTCCACGGAAAC -ACGGAACGCTTATTCCACAACACC -ACGGAACGCTTATTCCACATCGAG -ACGGAACGCTTATTCCACCTCCTT -ACGGAACGCTTATTCCACCCTGTT -ACGGAACGCTTATTCCACCGGTTT -ACGGAACGCTTATTCCACGTGGTT -ACGGAACGCTTATTCCACGCCTTT -ACGGAACGCTTATTCCACGGTCTT -ACGGAACGCTTATTCCACACGCTT -ACGGAACGCTTATTCCACAGCGTT -ACGGAACGCTTATTCCACTTCGTC -ACGGAACGCTTATTCCACTCTCTC -ACGGAACGCTTATTCCACTGGATC -ACGGAACGCTTATTCCACCACTTC -ACGGAACGCTTATTCCACGTACTC -ACGGAACGCTTATTCCACGATGTC -ACGGAACGCTTATTCCACACAGTC -ACGGAACGCTTATTCCACTTGCTG -ACGGAACGCTTATTCCACTCCATG -ACGGAACGCTTATTCCACTGTGTG -ACGGAACGCTTATTCCACCTAGTG -ACGGAACGCTTATTCCACCATCTG -ACGGAACGCTTATTCCACGAGTTG -ACGGAACGCTTATTCCACAGACTG -ACGGAACGCTTATTCCACTCGGTA -ACGGAACGCTTATTCCACTGCCTA -ACGGAACGCTTATTCCACCCACTA -ACGGAACGCTTATTCCACGGAGTA -ACGGAACGCTTATTCCACTCGTCT -ACGGAACGCTTATTCCACTGCACT -ACGGAACGCTTATTCCACCTGACT -ACGGAACGCTTATTCCACCAACCT -ACGGAACGCTTATTCCACGCTACT -ACGGAACGCTTATTCCACGGATCT -ACGGAACGCTTATTCCACAAGGCT -ACGGAACGCTTATTCCACTCAACC -ACGGAACGCTTATTCCACTGTTCC -ACGGAACGCTTATTCCACATTCCC -ACGGAACGCTTATTCCACTTCTCG -ACGGAACGCTTATTCCACTAGACG -ACGGAACGCTTATTCCACGTAACG -ACGGAACGCTTATTCCACACTTCG -ACGGAACGCTTATTCCACTACGCA -ACGGAACGCTTATTCCACCTTGCA -ACGGAACGCTTATTCCACCGAACA -ACGGAACGCTTATTCCACCAGTCA -ACGGAACGCTTATTCCACGATCCA -ACGGAACGCTTATTCCACACGACA -ACGGAACGCTTATTCCACAGCTCA -ACGGAACGCTTATTCCACTCACGT -ACGGAACGCTTATTCCACCGTAGT -ACGGAACGCTTATTCCACGTCAGT -ACGGAACGCTTATTCCACGAAGGT -ACGGAACGCTTATTCCACAACCGT -ACGGAACGCTTATTCCACTTGTGC -ACGGAACGCTTATTCCACCTAAGC -ACGGAACGCTTATTCCACACTAGC -ACGGAACGCTTATTCCACAGATGC -ACGGAACGCTTATTCCACTGAAGG -ACGGAACGCTTATTCCACCAATGG -ACGGAACGCTTATTCCACATGAGG -ACGGAACGCTTATTCCACAATGGG -ACGGAACGCTTATTCCACTCCTGA -ACGGAACGCTTATTCCACTAGCGA -ACGGAACGCTTATTCCACCACAGA -ACGGAACGCTTATTCCACGCAAGA -ACGGAACGCTTATTCCACGGTTGA -ACGGAACGCTTATTCCACTCCGAT -ACGGAACGCTTATTCCACTGGCAT -ACGGAACGCTTATTCCACCGAGAT -ACGGAACGCTTATTCCACTACCAC -ACGGAACGCTTATTCCACCAGAAC -ACGGAACGCTTATTCCACGTCTAC -ACGGAACGCTTATTCCACACGTAC -ACGGAACGCTTATTCCACAGTGAC -ACGGAACGCTTATTCCACCTGTAG -ACGGAACGCTTATTCCACCCTAAG -ACGGAACGCTTATTCCACGTTCAG -ACGGAACGCTTATTCCACGCATAG -ACGGAACGCTTATTCCACGACAAG -ACGGAACGCTTATTCCACAAGCAG -ACGGAACGCTTATTCCACCGTCAA -ACGGAACGCTTATTCCACGCTGAA -ACGGAACGCTTATTCCACAGTACG -ACGGAACGCTTATTCCACATCCGA -ACGGAACGCTTATTCCACATGGGA -ACGGAACGCTTATTCCACGTGCAA -ACGGAACGCTTATTCCACGAGGAA -ACGGAACGCTTATTCCACCAGGTA -ACGGAACGCTTATTCCACGACTCT -ACGGAACGCTTATTCCACAGTCCT -ACGGAACGCTTATTCCACTAAGCC -ACGGAACGCTTATTCCACATAGCC -ACGGAACGCTTATTCCACTAACCG -ACGGAACGCTTATTCCACATGCCA -ACGGAACGCTTACTCGTAGGAAAC -ACGGAACGCTTACTCGTAAACACC -ACGGAACGCTTACTCGTAATCGAG -ACGGAACGCTTACTCGTACTCCTT -ACGGAACGCTTACTCGTACCTGTT -ACGGAACGCTTACTCGTACGGTTT -ACGGAACGCTTACTCGTAGTGGTT -ACGGAACGCTTACTCGTAGCCTTT -ACGGAACGCTTACTCGTAGGTCTT -ACGGAACGCTTACTCGTAACGCTT -ACGGAACGCTTACTCGTAAGCGTT -ACGGAACGCTTACTCGTATTCGTC -ACGGAACGCTTACTCGTATCTCTC -ACGGAACGCTTACTCGTATGGATC -ACGGAACGCTTACTCGTACACTTC -ACGGAACGCTTACTCGTAGTACTC -ACGGAACGCTTACTCGTAGATGTC -ACGGAACGCTTACTCGTAACAGTC -ACGGAACGCTTACTCGTATTGCTG -ACGGAACGCTTACTCGTATCCATG -ACGGAACGCTTACTCGTATGTGTG -ACGGAACGCTTACTCGTACTAGTG -ACGGAACGCTTACTCGTACATCTG -ACGGAACGCTTACTCGTAGAGTTG -ACGGAACGCTTACTCGTAAGACTG -ACGGAACGCTTACTCGTATCGGTA -ACGGAACGCTTACTCGTATGCCTA -ACGGAACGCTTACTCGTACCACTA -ACGGAACGCTTACTCGTAGGAGTA -ACGGAACGCTTACTCGTATCGTCT -ACGGAACGCTTACTCGTATGCACT -ACGGAACGCTTACTCGTACTGACT -ACGGAACGCTTACTCGTACAACCT -ACGGAACGCTTACTCGTAGCTACT -ACGGAACGCTTACTCGTAGGATCT -ACGGAACGCTTACTCGTAAAGGCT -ACGGAACGCTTACTCGTATCAACC -ACGGAACGCTTACTCGTATGTTCC -ACGGAACGCTTACTCGTAATTCCC -ACGGAACGCTTACTCGTATTCTCG -ACGGAACGCTTACTCGTATAGACG -ACGGAACGCTTACTCGTAGTAACG -ACGGAACGCTTACTCGTAACTTCG -ACGGAACGCTTACTCGTATACGCA -ACGGAACGCTTACTCGTACTTGCA -ACGGAACGCTTACTCGTACGAACA -ACGGAACGCTTACTCGTACAGTCA -ACGGAACGCTTACTCGTAGATCCA -ACGGAACGCTTACTCGTAACGACA -ACGGAACGCTTACTCGTAAGCTCA -ACGGAACGCTTACTCGTATCACGT -ACGGAACGCTTACTCGTACGTAGT -ACGGAACGCTTACTCGTAGTCAGT -ACGGAACGCTTACTCGTAGAAGGT -ACGGAACGCTTACTCGTAAACCGT -ACGGAACGCTTACTCGTATTGTGC -ACGGAACGCTTACTCGTACTAAGC -ACGGAACGCTTACTCGTAACTAGC -ACGGAACGCTTACTCGTAAGATGC -ACGGAACGCTTACTCGTATGAAGG -ACGGAACGCTTACTCGTACAATGG -ACGGAACGCTTACTCGTAATGAGG -ACGGAACGCTTACTCGTAAATGGG -ACGGAACGCTTACTCGTATCCTGA -ACGGAACGCTTACTCGTATAGCGA -ACGGAACGCTTACTCGTACACAGA -ACGGAACGCTTACTCGTAGCAAGA -ACGGAACGCTTACTCGTAGGTTGA -ACGGAACGCTTACTCGTATCCGAT -ACGGAACGCTTACTCGTATGGCAT -ACGGAACGCTTACTCGTACGAGAT -ACGGAACGCTTACTCGTATACCAC -ACGGAACGCTTACTCGTACAGAAC -ACGGAACGCTTACTCGTAGTCTAC -ACGGAACGCTTACTCGTAACGTAC -ACGGAACGCTTACTCGTAAGTGAC -ACGGAACGCTTACTCGTACTGTAG -ACGGAACGCTTACTCGTACCTAAG -ACGGAACGCTTACTCGTAGTTCAG -ACGGAACGCTTACTCGTAGCATAG -ACGGAACGCTTACTCGTAGACAAG -ACGGAACGCTTACTCGTAAAGCAG -ACGGAACGCTTACTCGTACGTCAA -ACGGAACGCTTACTCGTAGCTGAA -ACGGAACGCTTACTCGTAAGTACG -ACGGAACGCTTACTCGTAATCCGA -ACGGAACGCTTACTCGTAATGGGA -ACGGAACGCTTACTCGTAGTGCAA -ACGGAACGCTTACTCGTAGAGGAA -ACGGAACGCTTACTCGTACAGGTA -ACGGAACGCTTACTCGTAGACTCT -ACGGAACGCTTACTCGTAAGTCCT -ACGGAACGCTTACTCGTATAAGCC -ACGGAACGCTTACTCGTAATAGCC -ACGGAACGCTTACTCGTATAACCG -ACGGAACGCTTACTCGTAATGCCA -ACGGAACGCTTAGTCGATGGAAAC -ACGGAACGCTTAGTCGATAACACC -ACGGAACGCTTAGTCGATATCGAG -ACGGAACGCTTAGTCGATCTCCTT -ACGGAACGCTTAGTCGATCCTGTT -ACGGAACGCTTAGTCGATCGGTTT -ACGGAACGCTTAGTCGATGTGGTT -ACGGAACGCTTAGTCGATGCCTTT -ACGGAACGCTTAGTCGATGGTCTT -ACGGAACGCTTAGTCGATACGCTT -ACGGAACGCTTAGTCGATAGCGTT -ACGGAACGCTTAGTCGATTTCGTC -ACGGAACGCTTAGTCGATTCTCTC -ACGGAACGCTTAGTCGATTGGATC -ACGGAACGCTTAGTCGATCACTTC -ACGGAACGCTTAGTCGATGTACTC -ACGGAACGCTTAGTCGATGATGTC -ACGGAACGCTTAGTCGATACAGTC -ACGGAACGCTTAGTCGATTTGCTG -ACGGAACGCTTAGTCGATTCCATG -ACGGAACGCTTAGTCGATTGTGTG -ACGGAACGCTTAGTCGATCTAGTG -ACGGAACGCTTAGTCGATCATCTG -ACGGAACGCTTAGTCGATGAGTTG -ACGGAACGCTTAGTCGATAGACTG -ACGGAACGCTTAGTCGATTCGGTA -ACGGAACGCTTAGTCGATTGCCTA -ACGGAACGCTTAGTCGATCCACTA -ACGGAACGCTTAGTCGATGGAGTA -ACGGAACGCTTAGTCGATTCGTCT -ACGGAACGCTTAGTCGATTGCACT -ACGGAACGCTTAGTCGATCTGACT -ACGGAACGCTTAGTCGATCAACCT -ACGGAACGCTTAGTCGATGCTACT -ACGGAACGCTTAGTCGATGGATCT -ACGGAACGCTTAGTCGATAAGGCT -ACGGAACGCTTAGTCGATTCAACC -ACGGAACGCTTAGTCGATTGTTCC -ACGGAACGCTTAGTCGATATTCCC -ACGGAACGCTTAGTCGATTTCTCG -ACGGAACGCTTAGTCGATTAGACG -ACGGAACGCTTAGTCGATGTAACG -ACGGAACGCTTAGTCGATACTTCG -ACGGAACGCTTAGTCGATTACGCA -ACGGAACGCTTAGTCGATCTTGCA -ACGGAACGCTTAGTCGATCGAACA -ACGGAACGCTTAGTCGATCAGTCA -ACGGAACGCTTAGTCGATGATCCA -ACGGAACGCTTAGTCGATACGACA -ACGGAACGCTTAGTCGATAGCTCA -ACGGAACGCTTAGTCGATTCACGT -ACGGAACGCTTAGTCGATCGTAGT -ACGGAACGCTTAGTCGATGTCAGT -ACGGAACGCTTAGTCGATGAAGGT -ACGGAACGCTTAGTCGATAACCGT -ACGGAACGCTTAGTCGATTTGTGC -ACGGAACGCTTAGTCGATCTAAGC -ACGGAACGCTTAGTCGATACTAGC -ACGGAACGCTTAGTCGATAGATGC -ACGGAACGCTTAGTCGATTGAAGG -ACGGAACGCTTAGTCGATCAATGG -ACGGAACGCTTAGTCGATATGAGG -ACGGAACGCTTAGTCGATAATGGG -ACGGAACGCTTAGTCGATTCCTGA -ACGGAACGCTTAGTCGATTAGCGA -ACGGAACGCTTAGTCGATCACAGA -ACGGAACGCTTAGTCGATGCAAGA -ACGGAACGCTTAGTCGATGGTTGA -ACGGAACGCTTAGTCGATTCCGAT -ACGGAACGCTTAGTCGATTGGCAT -ACGGAACGCTTAGTCGATCGAGAT -ACGGAACGCTTAGTCGATTACCAC -ACGGAACGCTTAGTCGATCAGAAC -ACGGAACGCTTAGTCGATGTCTAC -ACGGAACGCTTAGTCGATACGTAC -ACGGAACGCTTAGTCGATAGTGAC -ACGGAACGCTTAGTCGATCTGTAG -ACGGAACGCTTAGTCGATCCTAAG -ACGGAACGCTTAGTCGATGTTCAG -ACGGAACGCTTAGTCGATGCATAG -ACGGAACGCTTAGTCGATGACAAG -ACGGAACGCTTAGTCGATAAGCAG -ACGGAACGCTTAGTCGATCGTCAA -ACGGAACGCTTAGTCGATGCTGAA -ACGGAACGCTTAGTCGATAGTACG -ACGGAACGCTTAGTCGATATCCGA -ACGGAACGCTTAGTCGATATGGGA -ACGGAACGCTTAGTCGATGTGCAA -ACGGAACGCTTAGTCGATGAGGAA -ACGGAACGCTTAGTCGATCAGGTA -ACGGAACGCTTAGTCGATGACTCT -ACGGAACGCTTAGTCGATAGTCCT -ACGGAACGCTTAGTCGATTAAGCC -ACGGAACGCTTAGTCGATATAGCC -ACGGAACGCTTAGTCGATTAACCG -ACGGAACGCTTAGTCGATATGCCA -ACGGAACGCTTAGTCACAGGAAAC -ACGGAACGCTTAGTCACAAACACC -ACGGAACGCTTAGTCACAATCGAG -ACGGAACGCTTAGTCACACTCCTT -ACGGAACGCTTAGTCACACCTGTT -ACGGAACGCTTAGTCACACGGTTT -ACGGAACGCTTAGTCACAGTGGTT -ACGGAACGCTTAGTCACAGCCTTT -ACGGAACGCTTAGTCACAGGTCTT -ACGGAACGCTTAGTCACAACGCTT -ACGGAACGCTTAGTCACAAGCGTT -ACGGAACGCTTAGTCACATTCGTC -ACGGAACGCTTAGTCACATCTCTC -ACGGAACGCTTAGTCACATGGATC -ACGGAACGCTTAGTCACACACTTC -ACGGAACGCTTAGTCACAGTACTC -ACGGAACGCTTAGTCACAGATGTC -ACGGAACGCTTAGTCACAACAGTC -ACGGAACGCTTAGTCACATTGCTG -ACGGAACGCTTAGTCACATCCATG -ACGGAACGCTTAGTCACATGTGTG -ACGGAACGCTTAGTCACACTAGTG -ACGGAACGCTTAGTCACACATCTG -ACGGAACGCTTAGTCACAGAGTTG -ACGGAACGCTTAGTCACAAGACTG -ACGGAACGCTTAGTCACATCGGTA -ACGGAACGCTTAGTCACATGCCTA -ACGGAACGCTTAGTCACACCACTA -ACGGAACGCTTAGTCACAGGAGTA -ACGGAACGCTTAGTCACATCGTCT -ACGGAACGCTTAGTCACATGCACT -ACGGAACGCTTAGTCACACTGACT -ACGGAACGCTTAGTCACACAACCT -ACGGAACGCTTAGTCACAGCTACT -ACGGAACGCTTAGTCACAGGATCT -ACGGAACGCTTAGTCACAAAGGCT -ACGGAACGCTTAGTCACATCAACC -ACGGAACGCTTAGTCACATGTTCC -ACGGAACGCTTAGTCACAATTCCC -ACGGAACGCTTAGTCACATTCTCG -ACGGAACGCTTAGTCACATAGACG -ACGGAACGCTTAGTCACAGTAACG -ACGGAACGCTTAGTCACAACTTCG -ACGGAACGCTTAGTCACATACGCA -ACGGAACGCTTAGTCACACTTGCA -ACGGAACGCTTAGTCACACGAACA -ACGGAACGCTTAGTCACACAGTCA -ACGGAACGCTTAGTCACAGATCCA -ACGGAACGCTTAGTCACAACGACA -ACGGAACGCTTAGTCACAAGCTCA -ACGGAACGCTTAGTCACATCACGT -ACGGAACGCTTAGTCACACGTAGT -ACGGAACGCTTAGTCACAGTCAGT -ACGGAACGCTTAGTCACAGAAGGT -ACGGAACGCTTAGTCACAAACCGT -ACGGAACGCTTAGTCACATTGTGC -ACGGAACGCTTAGTCACACTAAGC -ACGGAACGCTTAGTCACAACTAGC -ACGGAACGCTTAGTCACAAGATGC -ACGGAACGCTTAGTCACATGAAGG -ACGGAACGCTTAGTCACACAATGG -ACGGAACGCTTAGTCACAATGAGG -ACGGAACGCTTAGTCACAAATGGG -ACGGAACGCTTAGTCACATCCTGA -ACGGAACGCTTAGTCACATAGCGA -ACGGAACGCTTAGTCACACACAGA -ACGGAACGCTTAGTCACAGCAAGA -ACGGAACGCTTAGTCACAGGTTGA -ACGGAACGCTTAGTCACATCCGAT -ACGGAACGCTTAGTCACATGGCAT -ACGGAACGCTTAGTCACACGAGAT -ACGGAACGCTTAGTCACATACCAC -ACGGAACGCTTAGTCACACAGAAC -ACGGAACGCTTAGTCACAGTCTAC -ACGGAACGCTTAGTCACAACGTAC -ACGGAACGCTTAGTCACAAGTGAC -ACGGAACGCTTAGTCACACTGTAG -ACGGAACGCTTAGTCACACCTAAG -ACGGAACGCTTAGTCACAGTTCAG -ACGGAACGCTTAGTCACAGCATAG -ACGGAACGCTTAGTCACAGACAAG -ACGGAACGCTTAGTCACAAAGCAG -ACGGAACGCTTAGTCACACGTCAA -ACGGAACGCTTAGTCACAGCTGAA -ACGGAACGCTTAGTCACAAGTACG -ACGGAACGCTTAGTCACAATCCGA -ACGGAACGCTTAGTCACAATGGGA -ACGGAACGCTTAGTCACAGTGCAA -ACGGAACGCTTAGTCACAGAGGAA -ACGGAACGCTTAGTCACACAGGTA -ACGGAACGCTTAGTCACAGACTCT -ACGGAACGCTTAGTCACAAGTCCT -ACGGAACGCTTAGTCACATAAGCC -ACGGAACGCTTAGTCACAATAGCC -ACGGAACGCTTAGTCACATAACCG -ACGGAACGCTTAGTCACAATGCCA -ACGGAACGCTTACTGTTGGGAAAC -ACGGAACGCTTACTGTTGAACACC -ACGGAACGCTTACTGTTGATCGAG -ACGGAACGCTTACTGTTGCTCCTT -ACGGAACGCTTACTGTTGCCTGTT -ACGGAACGCTTACTGTTGCGGTTT -ACGGAACGCTTACTGTTGGTGGTT -ACGGAACGCTTACTGTTGGCCTTT -ACGGAACGCTTACTGTTGGGTCTT -ACGGAACGCTTACTGTTGACGCTT -ACGGAACGCTTACTGTTGAGCGTT -ACGGAACGCTTACTGTTGTTCGTC -ACGGAACGCTTACTGTTGTCTCTC -ACGGAACGCTTACTGTTGTGGATC -ACGGAACGCTTACTGTTGCACTTC -ACGGAACGCTTACTGTTGGTACTC -ACGGAACGCTTACTGTTGGATGTC -ACGGAACGCTTACTGTTGACAGTC -ACGGAACGCTTACTGTTGTTGCTG -ACGGAACGCTTACTGTTGTCCATG -ACGGAACGCTTACTGTTGTGTGTG -ACGGAACGCTTACTGTTGCTAGTG -ACGGAACGCTTACTGTTGCATCTG -ACGGAACGCTTACTGTTGGAGTTG -ACGGAACGCTTACTGTTGAGACTG -ACGGAACGCTTACTGTTGTCGGTA -ACGGAACGCTTACTGTTGTGCCTA -ACGGAACGCTTACTGTTGCCACTA -ACGGAACGCTTACTGTTGGGAGTA -ACGGAACGCTTACTGTTGTCGTCT -ACGGAACGCTTACTGTTGTGCACT -ACGGAACGCTTACTGTTGCTGACT -ACGGAACGCTTACTGTTGCAACCT -ACGGAACGCTTACTGTTGGCTACT -ACGGAACGCTTACTGTTGGGATCT -ACGGAACGCTTACTGTTGAAGGCT -ACGGAACGCTTACTGTTGTCAACC -ACGGAACGCTTACTGTTGTGTTCC -ACGGAACGCTTACTGTTGATTCCC -ACGGAACGCTTACTGTTGTTCTCG -ACGGAACGCTTACTGTTGTAGACG -ACGGAACGCTTACTGTTGGTAACG -ACGGAACGCTTACTGTTGACTTCG -ACGGAACGCTTACTGTTGTACGCA -ACGGAACGCTTACTGTTGCTTGCA -ACGGAACGCTTACTGTTGCGAACA -ACGGAACGCTTACTGTTGCAGTCA -ACGGAACGCTTACTGTTGGATCCA -ACGGAACGCTTACTGTTGACGACA -ACGGAACGCTTACTGTTGAGCTCA -ACGGAACGCTTACTGTTGTCACGT -ACGGAACGCTTACTGTTGCGTAGT -ACGGAACGCTTACTGTTGGTCAGT -ACGGAACGCTTACTGTTGGAAGGT -ACGGAACGCTTACTGTTGAACCGT -ACGGAACGCTTACTGTTGTTGTGC -ACGGAACGCTTACTGTTGCTAAGC -ACGGAACGCTTACTGTTGACTAGC -ACGGAACGCTTACTGTTGAGATGC -ACGGAACGCTTACTGTTGTGAAGG -ACGGAACGCTTACTGTTGCAATGG -ACGGAACGCTTACTGTTGATGAGG -ACGGAACGCTTACTGTTGAATGGG -ACGGAACGCTTACTGTTGTCCTGA -ACGGAACGCTTACTGTTGTAGCGA -ACGGAACGCTTACTGTTGCACAGA -ACGGAACGCTTACTGTTGGCAAGA -ACGGAACGCTTACTGTTGGGTTGA -ACGGAACGCTTACTGTTGTCCGAT -ACGGAACGCTTACTGTTGTGGCAT -ACGGAACGCTTACTGTTGCGAGAT -ACGGAACGCTTACTGTTGTACCAC -ACGGAACGCTTACTGTTGCAGAAC -ACGGAACGCTTACTGTTGGTCTAC -ACGGAACGCTTACTGTTGACGTAC -ACGGAACGCTTACTGTTGAGTGAC -ACGGAACGCTTACTGTTGCTGTAG -ACGGAACGCTTACTGTTGCCTAAG -ACGGAACGCTTACTGTTGGTTCAG -ACGGAACGCTTACTGTTGGCATAG -ACGGAACGCTTACTGTTGGACAAG -ACGGAACGCTTACTGTTGAAGCAG -ACGGAACGCTTACTGTTGCGTCAA -ACGGAACGCTTACTGTTGGCTGAA -ACGGAACGCTTACTGTTGAGTACG -ACGGAACGCTTACTGTTGATCCGA -ACGGAACGCTTACTGTTGATGGGA -ACGGAACGCTTACTGTTGGTGCAA -ACGGAACGCTTACTGTTGGAGGAA -ACGGAACGCTTACTGTTGCAGGTA -ACGGAACGCTTACTGTTGGACTCT -ACGGAACGCTTACTGTTGAGTCCT -ACGGAACGCTTACTGTTGTAAGCC -ACGGAACGCTTACTGTTGATAGCC -ACGGAACGCTTACTGTTGTAACCG -ACGGAACGCTTACTGTTGATGCCA -ACGGAACGCTTAATGTCCGGAAAC -ACGGAACGCTTAATGTCCAACACC -ACGGAACGCTTAATGTCCATCGAG -ACGGAACGCTTAATGTCCCTCCTT -ACGGAACGCTTAATGTCCCCTGTT -ACGGAACGCTTAATGTCCCGGTTT -ACGGAACGCTTAATGTCCGTGGTT -ACGGAACGCTTAATGTCCGCCTTT -ACGGAACGCTTAATGTCCGGTCTT -ACGGAACGCTTAATGTCCACGCTT -ACGGAACGCTTAATGTCCAGCGTT -ACGGAACGCTTAATGTCCTTCGTC -ACGGAACGCTTAATGTCCTCTCTC -ACGGAACGCTTAATGTCCTGGATC -ACGGAACGCTTAATGTCCCACTTC -ACGGAACGCTTAATGTCCGTACTC -ACGGAACGCTTAATGTCCGATGTC -ACGGAACGCTTAATGTCCACAGTC -ACGGAACGCTTAATGTCCTTGCTG -ACGGAACGCTTAATGTCCTCCATG -ACGGAACGCTTAATGTCCTGTGTG -ACGGAACGCTTAATGTCCCTAGTG -ACGGAACGCTTAATGTCCCATCTG -ACGGAACGCTTAATGTCCGAGTTG -ACGGAACGCTTAATGTCCAGACTG -ACGGAACGCTTAATGTCCTCGGTA -ACGGAACGCTTAATGTCCTGCCTA -ACGGAACGCTTAATGTCCCCACTA -ACGGAACGCTTAATGTCCGGAGTA -ACGGAACGCTTAATGTCCTCGTCT -ACGGAACGCTTAATGTCCTGCACT -ACGGAACGCTTAATGTCCCTGACT -ACGGAACGCTTAATGTCCCAACCT -ACGGAACGCTTAATGTCCGCTACT -ACGGAACGCTTAATGTCCGGATCT -ACGGAACGCTTAATGTCCAAGGCT -ACGGAACGCTTAATGTCCTCAACC -ACGGAACGCTTAATGTCCTGTTCC -ACGGAACGCTTAATGTCCATTCCC -ACGGAACGCTTAATGTCCTTCTCG -ACGGAACGCTTAATGTCCTAGACG -ACGGAACGCTTAATGTCCGTAACG -ACGGAACGCTTAATGTCCACTTCG -ACGGAACGCTTAATGTCCTACGCA -ACGGAACGCTTAATGTCCCTTGCA -ACGGAACGCTTAATGTCCCGAACA -ACGGAACGCTTAATGTCCCAGTCA -ACGGAACGCTTAATGTCCGATCCA -ACGGAACGCTTAATGTCCACGACA -ACGGAACGCTTAATGTCCAGCTCA -ACGGAACGCTTAATGTCCTCACGT -ACGGAACGCTTAATGTCCCGTAGT -ACGGAACGCTTAATGTCCGTCAGT -ACGGAACGCTTAATGTCCGAAGGT -ACGGAACGCTTAATGTCCAACCGT -ACGGAACGCTTAATGTCCTTGTGC -ACGGAACGCTTAATGTCCCTAAGC -ACGGAACGCTTAATGTCCACTAGC -ACGGAACGCTTAATGTCCAGATGC -ACGGAACGCTTAATGTCCTGAAGG -ACGGAACGCTTAATGTCCCAATGG -ACGGAACGCTTAATGTCCATGAGG -ACGGAACGCTTAATGTCCAATGGG -ACGGAACGCTTAATGTCCTCCTGA -ACGGAACGCTTAATGTCCTAGCGA -ACGGAACGCTTAATGTCCCACAGA -ACGGAACGCTTAATGTCCGCAAGA -ACGGAACGCTTAATGTCCGGTTGA -ACGGAACGCTTAATGTCCTCCGAT -ACGGAACGCTTAATGTCCTGGCAT -ACGGAACGCTTAATGTCCCGAGAT -ACGGAACGCTTAATGTCCTACCAC -ACGGAACGCTTAATGTCCCAGAAC -ACGGAACGCTTAATGTCCGTCTAC -ACGGAACGCTTAATGTCCACGTAC -ACGGAACGCTTAATGTCCAGTGAC -ACGGAACGCTTAATGTCCCTGTAG -ACGGAACGCTTAATGTCCCCTAAG -ACGGAACGCTTAATGTCCGTTCAG -ACGGAACGCTTAATGTCCGCATAG -ACGGAACGCTTAATGTCCGACAAG -ACGGAACGCTTAATGTCCAAGCAG -ACGGAACGCTTAATGTCCCGTCAA -ACGGAACGCTTAATGTCCGCTGAA -ACGGAACGCTTAATGTCCAGTACG -ACGGAACGCTTAATGTCCATCCGA -ACGGAACGCTTAATGTCCATGGGA -ACGGAACGCTTAATGTCCGTGCAA -ACGGAACGCTTAATGTCCGAGGAA -ACGGAACGCTTAATGTCCCAGGTA -ACGGAACGCTTAATGTCCGACTCT -ACGGAACGCTTAATGTCCAGTCCT -ACGGAACGCTTAATGTCCTAAGCC -ACGGAACGCTTAATGTCCATAGCC -ACGGAACGCTTAATGTCCTAACCG -ACGGAACGCTTAATGTCCATGCCA -ACGGAACGCTTAGTGTGTGGAAAC -ACGGAACGCTTAGTGTGTAACACC -ACGGAACGCTTAGTGTGTATCGAG -ACGGAACGCTTAGTGTGTCTCCTT -ACGGAACGCTTAGTGTGTCCTGTT -ACGGAACGCTTAGTGTGTCGGTTT -ACGGAACGCTTAGTGTGTGTGGTT -ACGGAACGCTTAGTGTGTGCCTTT -ACGGAACGCTTAGTGTGTGGTCTT -ACGGAACGCTTAGTGTGTACGCTT -ACGGAACGCTTAGTGTGTAGCGTT -ACGGAACGCTTAGTGTGTTTCGTC -ACGGAACGCTTAGTGTGTTCTCTC -ACGGAACGCTTAGTGTGTTGGATC -ACGGAACGCTTAGTGTGTCACTTC -ACGGAACGCTTAGTGTGTGTACTC -ACGGAACGCTTAGTGTGTGATGTC -ACGGAACGCTTAGTGTGTACAGTC -ACGGAACGCTTAGTGTGTTTGCTG -ACGGAACGCTTAGTGTGTTCCATG -ACGGAACGCTTAGTGTGTTGTGTG -ACGGAACGCTTAGTGTGTCTAGTG -ACGGAACGCTTAGTGTGTCATCTG -ACGGAACGCTTAGTGTGTGAGTTG -ACGGAACGCTTAGTGTGTAGACTG -ACGGAACGCTTAGTGTGTTCGGTA -ACGGAACGCTTAGTGTGTTGCCTA -ACGGAACGCTTAGTGTGTCCACTA -ACGGAACGCTTAGTGTGTGGAGTA -ACGGAACGCTTAGTGTGTTCGTCT -ACGGAACGCTTAGTGTGTTGCACT -ACGGAACGCTTAGTGTGTCTGACT -ACGGAACGCTTAGTGTGTCAACCT -ACGGAACGCTTAGTGTGTGCTACT -ACGGAACGCTTAGTGTGTGGATCT -ACGGAACGCTTAGTGTGTAAGGCT -ACGGAACGCTTAGTGTGTTCAACC -ACGGAACGCTTAGTGTGTTGTTCC -ACGGAACGCTTAGTGTGTATTCCC -ACGGAACGCTTAGTGTGTTTCTCG -ACGGAACGCTTAGTGTGTTAGACG -ACGGAACGCTTAGTGTGTGTAACG -ACGGAACGCTTAGTGTGTACTTCG -ACGGAACGCTTAGTGTGTTACGCA -ACGGAACGCTTAGTGTGTCTTGCA -ACGGAACGCTTAGTGTGTCGAACA -ACGGAACGCTTAGTGTGTCAGTCA -ACGGAACGCTTAGTGTGTGATCCA -ACGGAACGCTTAGTGTGTACGACA -ACGGAACGCTTAGTGTGTAGCTCA -ACGGAACGCTTAGTGTGTTCACGT -ACGGAACGCTTAGTGTGTCGTAGT -ACGGAACGCTTAGTGTGTGTCAGT -ACGGAACGCTTAGTGTGTGAAGGT -ACGGAACGCTTAGTGTGTAACCGT -ACGGAACGCTTAGTGTGTTTGTGC -ACGGAACGCTTAGTGTGTCTAAGC -ACGGAACGCTTAGTGTGTACTAGC -ACGGAACGCTTAGTGTGTAGATGC -ACGGAACGCTTAGTGTGTTGAAGG -ACGGAACGCTTAGTGTGTCAATGG -ACGGAACGCTTAGTGTGTATGAGG -ACGGAACGCTTAGTGTGTAATGGG -ACGGAACGCTTAGTGTGTTCCTGA -ACGGAACGCTTAGTGTGTTAGCGA -ACGGAACGCTTAGTGTGTCACAGA -ACGGAACGCTTAGTGTGTGCAAGA -ACGGAACGCTTAGTGTGTGGTTGA -ACGGAACGCTTAGTGTGTTCCGAT -ACGGAACGCTTAGTGTGTTGGCAT -ACGGAACGCTTAGTGTGTCGAGAT -ACGGAACGCTTAGTGTGTTACCAC -ACGGAACGCTTAGTGTGTCAGAAC -ACGGAACGCTTAGTGTGTGTCTAC -ACGGAACGCTTAGTGTGTACGTAC -ACGGAACGCTTAGTGTGTAGTGAC -ACGGAACGCTTAGTGTGTCTGTAG -ACGGAACGCTTAGTGTGTCCTAAG -ACGGAACGCTTAGTGTGTGTTCAG -ACGGAACGCTTAGTGTGTGCATAG -ACGGAACGCTTAGTGTGTGACAAG -ACGGAACGCTTAGTGTGTAAGCAG -ACGGAACGCTTAGTGTGTCGTCAA -ACGGAACGCTTAGTGTGTGCTGAA -ACGGAACGCTTAGTGTGTAGTACG -ACGGAACGCTTAGTGTGTATCCGA -ACGGAACGCTTAGTGTGTATGGGA -ACGGAACGCTTAGTGTGTGTGCAA -ACGGAACGCTTAGTGTGTGAGGAA -ACGGAACGCTTAGTGTGTCAGGTA -ACGGAACGCTTAGTGTGTGACTCT -ACGGAACGCTTAGTGTGTAGTCCT -ACGGAACGCTTAGTGTGTTAAGCC -ACGGAACGCTTAGTGTGTATAGCC -ACGGAACGCTTAGTGTGTTAACCG -ACGGAACGCTTAGTGTGTATGCCA -ACGGAACGCTTAGTGCTAGGAAAC -ACGGAACGCTTAGTGCTAAACACC -ACGGAACGCTTAGTGCTAATCGAG -ACGGAACGCTTAGTGCTACTCCTT -ACGGAACGCTTAGTGCTACCTGTT -ACGGAACGCTTAGTGCTACGGTTT -ACGGAACGCTTAGTGCTAGTGGTT -ACGGAACGCTTAGTGCTAGCCTTT -ACGGAACGCTTAGTGCTAGGTCTT -ACGGAACGCTTAGTGCTAACGCTT -ACGGAACGCTTAGTGCTAAGCGTT -ACGGAACGCTTAGTGCTATTCGTC -ACGGAACGCTTAGTGCTATCTCTC -ACGGAACGCTTAGTGCTATGGATC -ACGGAACGCTTAGTGCTACACTTC -ACGGAACGCTTAGTGCTAGTACTC -ACGGAACGCTTAGTGCTAGATGTC -ACGGAACGCTTAGTGCTAACAGTC -ACGGAACGCTTAGTGCTATTGCTG -ACGGAACGCTTAGTGCTATCCATG -ACGGAACGCTTAGTGCTATGTGTG -ACGGAACGCTTAGTGCTACTAGTG -ACGGAACGCTTAGTGCTACATCTG -ACGGAACGCTTAGTGCTAGAGTTG -ACGGAACGCTTAGTGCTAAGACTG -ACGGAACGCTTAGTGCTATCGGTA -ACGGAACGCTTAGTGCTATGCCTA -ACGGAACGCTTAGTGCTACCACTA -ACGGAACGCTTAGTGCTAGGAGTA -ACGGAACGCTTAGTGCTATCGTCT -ACGGAACGCTTAGTGCTATGCACT -ACGGAACGCTTAGTGCTACTGACT -ACGGAACGCTTAGTGCTACAACCT -ACGGAACGCTTAGTGCTAGCTACT -ACGGAACGCTTAGTGCTAGGATCT -ACGGAACGCTTAGTGCTAAAGGCT -ACGGAACGCTTAGTGCTATCAACC -ACGGAACGCTTAGTGCTATGTTCC -ACGGAACGCTTAGTGCTAATTCCC -ACGGAACGCTTAGTGCTATTCTCG -ACGGAACGCTTAGTGCTATAGACG -ACGGAACGCTTAGTGCTAGTAACG -ACGGAACGCTTAGTGCTAACTTCG -ACGGAACGCTTAGTGCTATACGCA -ACGGAACGCTTAGTGCTACTTGCA -ACGGAACGCTTAGTGCTACGAACA -ACGGAACGCTTAGTGCTACAGTCA -ACGGAACGCTTAGTGCTAGATCCA -ACGGAACGCTTAGTGCTAACGACA -ACGGAACGCTTAGTGCTAAGCTCA -ACGGAACGCTTAGTGCTATCACGT -ACGGAACGCTTAGTGCTACGTAGT -ACGGAACGCTTAGTGCTAGTCAGT -ACGGAACGCTTAGTGCTAGAAGGT -ACGGAACGCTTAGTGCTAAACCGT -ACGGAACGCTTAGTGCTATTGTGC -ACGGAACGCTTAGTGCTACTAAGC -ACGGAACGCTTAGTGCTAACTAGC -ACGGAACGCTTAGTGCTAAGATGC -ACGGAACGCTTAGTGCTATGAAGG -ACGGAACGCTTAGTGCTACAATGG -ACGGAACGCTTAGTGCTAATGAGG -ACGGAACGCTTAGTGCTAAATGGG -ACGGAACGCTTAGTGCTATCCTGA -ACGGAACGCTTAGTGCTATAGCGA -ACGGAACGCTTAGTGCTACACAGA -ACGGAACGCTTAGTGCTAGCAAGA -ACGGAACGCTTAGTGCTAGGTTGA -ACGGAACGCTTAGTGCTATCCGAT -ACGGAACGCTTAGTGCTATGGCAT -ACGGAACGCTTAGTGCTACGAGAT -ACGGAACGCTTAGTGCTATACCAC -ACGGAACGCTTAGTGCTACAGAAC -ACGGAACGCTTAGTGCTAGTCTAC -ACGGAACGCTTAGTGCTAACGTAC -ACGGAACGCTTAGTGCTAAGTGAC -ACGGAACGCTTAGTGCTACTGTAG -ACGGAACGCTTAGTGCTACCTAAG -ACGGAACGCTTAGTGCTAGTTCAG -ACGGAACGCTTAGTGCTAGCATAG -ACGGAACGCTTAGTGCTAGACAAG -ACGGAACGCTTAGTGCTAAAGCAG -ACGGAACGCTTAGTGCTACGTCAA -ACGGAACGCTTAGTGCTAGCTGAA -ACGGAACGCTTAGTGCTAAGTACG -ACGGAACGCTTAGTGCTAATCCGA -ACGGAACGCTTAGTGCTAATGGGA -ACGGAACGCTTAGTGCTAGTGCAA -ACGGAACGCTTAGTGCTAGAGGAA -ACGGAACGCTTAGTGCTACAGGTA -ACGGAACGCTTAGTGCTAGACTCT -ACGGAACGCTTAGTGCTAAGTCCT -ACGGAACGCTTAGTGCTATAAGCC -ACGGAACGCTTAGTGCTAATAGCC -ACGGAACGCTTAGTGCTATAACCG -ACGGAACGCTTAGTGCTAATGCCA -ACGGAACGCTTACTGCATGGAAAC -ACGGAACGCTTACTGCATAACACC -ACGGAACGCTTACTGCATATCGAG -ACGGAACGCTTACTGCATCTCCTT -ACGGAACGCTTACTGCATCCTGTT -ACGGAACGCTTACTGCATCGGTTT -ACGGAACGCTTACTGCATGTGGTT -ACGGAACGCTTACTGCATGCCTTT -ACGGAACGCTTACTGCATGGTCTT -ACGGAACGCTTACTGCATACGCTT -ACGGAACGCTTACTGCATAGCGTT -ACGGAACGCTTACTGCATTTCGTC -ACGGAACGCTTACTGCATTCTCTC -ACGGAACGCTTACTGCATTGGATC -ACGGAACGCTTACTGCATCACTTC -ACGGAACGCTTACTGCATGTACTC -ACGGAACGCTTACTGCATGATGTC -ACGGAACGCTTACTGCATACAGTC -ACGGAACGCTTACTGCATTTGCTG -ACGGAACGCTTACTGCATTCCATG -ACGGAACGCTTACTGCATTGTGTG -ACGGAACGCTTACTGCATCTAGTG -ACGGAACGCTTACTGCATCATCTG -ACGGAACGCTTACTGCATGAGTTG -ACGGAACGCTTACTGCATAGACTG -ACGGAACGCTTACTGCATTCGGTA -ACGGAACGCTTACTGCATTGCCTA -ACGGAACGCTTACTGCATCCACTA -ACGGAACGCTTACTGCATGGAGTA -ACGGAACGCTTACTGCATTCGTCT -ACGGAACGCTTACTGCATTGCACT -ACGGAACGCTTACTGCATCTGACT -ACGGAACGCTTACTGCATCAACCT -ACGGAACGCTTACTGCATGCTACT -ACGGAACGCTTACTGCATGGATCT -ACGGAACGCTTACTGCATAAGGCT -ACGGAACGCTTACTGCATTCAACC -ACGGAACGCTTACTGCATTGTTCC -ACGGAACGCTTACTGCATATTCCC -ACGGAACGCTTACTGCATTTCTCG -ACGGAACGCTTACTGCATTAGACG -ACGGAACGCTTACTGCATGTAACG -ACGGAACGCTTACTGCATACTTCG -ACGGAACGCTTACTGCATTACGCA -ACGGAACGCTTACTGCATCTTGCA -ACGGAACGCTTACTGCATCGAACA -ACGGAACGCTTACTGCATCAGTCA -ACGGAACGCTTACTGCATGATCCA -ACGGAACGCTTACTGCATACGACA -ACGGAACGCTTACTGCATAGCTCA -ACGGAACGCTTACTGCATTCACGT -ACGGAACGCTTACTGCATCGTAGT -ACGGAACGCTTACTGCATGTCAGT -ACGGAACGCTTACTGCATGAAGGT -ACGGAACGCTTACTGCATAACCGT -ACGGAACGCTTACTGCATTTGTGC -ACGGAACGCTTACTGCATCTAAGC -ACGGAACGCTTACTGCATACTAGC -ACGGAACGCTTACTGCATAGATGC -ACGGAACGCTTACTGCATTGAAGG -ACGGAACGCTTACTGCATCAATGG -ACGGAACGCTTACTGCATATGAGG -ACGGAACGCTTACTGCATAATGGG -ACGGAACGCTTACTGCATTCCTGA -ACGGAACGCTTACTGCATTAGCGA -ACGGAACGCTTACTGCATCACAGA -ACGGAACGCTTACTGCATGCAAGA -ACGGAACGCTTACTGCATGGTTGA -ACGGAACGCTTACTGCATTCCGAT -ACGGAACGCTTACTGCATTGGCAT -ACGGAACGCTTACTGCATCGAGAT -ACGGAACGCTTACTGCATTACCAC -ACGGAACGCTTACTGCATCAGAAC -ACGGAACGCTTACTGCATGTCTAC -ACGGAACGCTTACTGCATACGTAC -ACGGAACGCTTACTGCATAGTGAC -ACGGAACGCTTACTGCATCTGTAG -ACGGAACGCTTACTGCATCCTAAG -ACGGAACGCTTACTGCATGTTCAG -ACGGAACGCTTACTGCATGCATAG -ACGGAACGCTTACTGCATGACAAG -ACGGAACGCTTACTGCATAAGCAG -ACGGAACGCTTACTGCATCGTCAA -ACGGAACGCTTACTGCATGCTGAA -ACGGAACGCTTACTGCATAGTACG -ACGGAACGCTTACTGCATATCCGA -ACGGAACGCTTACTGCATATGGGA -ACGGAACGCTTACTGCATGTGCAA -ACGGAACGCTTACTGCATGAGGAA -ACGGAACGCTTACTGCATCAGGTA -ACGGAACGCTTACTGCATGACTCT -ACGGAACGCTTACTGCATAGTCCT -ACGGAACGCTTACTGCATTAAGCC -ACGGAACGCTTACTGCATATAGCC -ACGGAACGCTTACTGCATTAACCG -ACGGAACGCTTACTGCATATGCCA -ACGGAACGCTTATTGGAGGGAAAC -ACGGAACGCTTATTGGAGAACACC -ACGGAACGCTTATTGGAGATCGAG -ACGGAACGCTTATTGGAGCTCCTT -ACGGAACGCTTATTGGAGCCTGTT -ACGGAACGCTTATTGGAGCGGTTT -ACGGAACGCTTATTGGAGGTGGTT -ACGGAACGCTTATTGGAGGCCTTT -ACGGAACGCTTATTGGAGGGTCTT -ACGGAACGCTTATTGGAGACGCTT -ACGGAACGCTTATTGGAGAGCGTT -ACGGAACGCTTATTGGAGTTCGTC -ACGGAACGCTTATTGGAGTCTCTC -ACGGAACGCTTATTGGAGTGGATC -ACGGAACGCTTATTGGAGCACTTC -ACGGAACGCTTATTGGAGGTACTC -ACGGAACGCTTATTGGAGGATGTC -ACGGAACGCTTATTGGAGACAGTC -ACGGAACGCTTATTGGAGTTGCTG -ACGGAACGCTTATTGGAGTCCATG -ACGGAACGCTTATTGGAGTGTGTG -ACGGAACGCTTATTGGAGCTAGTG -ACGGAACGCTTATTGGAGCATCTG -ACGGAACGCTTATTGGAGGAGTTG -ACGGAACGCTTATTGGAGAGACTG -ACGGAACGCTTATTGGAGTCGGTA -ACGGAACGCTTATTGGAGTGCCTA -ACGGAACGCTTATTGGAGCCACTA -ACGGAACGCTTATTGGAGGGAGTA -ACGGAACGCTTATTGGAGTCGTCT -ACGGAACGCTTATTGGAGTGCACT -ACGGAACGCTTATTGGAGCTGACT -ACGGAACGCTTATTGGAGCAACCT -ACGGAACGCTTATTGGAGGCTACT -ACGGAACGCTTATTGGAGGGATCT -ACGGAACGCTTATTGGAGAAGGCT -ACGGAACGCTTATTGGAGTCAACC -ACGGAACGCTTATTGGAGTGTTCC -ACGGAACGCTTATTGGAGATTCCC -ACGGAACGCTTATTGGAGTTCTCG -ACGGAACGCTTATTGGAGTAGACG -ACGGAACGCTTATTGGAGGTAACG -ACGGAACGCTTATTGGAGACTTCG -ACGGAACGCTTATTGGAGTACGCA -ACGGAACGCTTATTGGAGCTTGCA -ACGGAACGCTTATTGGAGCGAACA -ACGGAACGCTTATTGGAGCAGTCA -ACGGAACGCTTATTGGAGGATCCA -ACGGAACGCTTATTGGAGACGACA -ACGGAACGCTTATTGGAGAGCTCA -ACGGAACGCTTATTGGAGTCACGT -ACGGAACGCTTATTGGAGCGTAGT -ACGGAACGCTTATTGGAGGTCAGT -ACGGAACGCTTATTGGAGGAAGGT -ACGGAACGCTTATTGGAGAACCGT -ACGGAACGCTTATTGGAGTTGTGC -ACGGAACGCTTATTGGAGCTAAGC -ACGGAACGCTTATTGGAGACTAGC -ACGGAACGCTTATTGGAGAGATGC -ACGGAACGCTTATTGGAGTGAAGG -ACGGAACGCTTATTGGAGCAATGG -ACGGAACGCTTATTGGAGATGAGG -ACGGAACGCTTATTGGAGAATGGG -ACGGAACGCTTATTGGAGTCCTGA -ACGGAACGCTTATTGGAGTAGCGA -ACGGAACGCTTATTGGAGCACAGA -ACGGAACGCTTATTGGAGGCAAGA -ACGGAACGCTTATTGGAGGGTTGA -ACGGAACGCTTATTGGAGTCCGAT -ACGGAACGCTTATTGGAGTGGCAT -ACGGAACGCTTATTGGAGCGAGAT -ACGGAACGCTTATTGGAGTACCAC -ACGGAACGCTTATTGGAGCAGAAC -ACGGAACGCTTATTGGAGGTCTAC -ACGGAACGCTTATTGGAGACGTAC -ACGGAACGCTTATTGGAGAGTGAC -ACGGAACGCTTATTGGAGCTGTAG -ACGGAACGCTTATTGGAGCCTAAG -ACGGAACGCTTATTGGAGGTTCAG -ACGGAACGCTTATTGGAGGCATAG -ACGGAACGCTTATTGGAGGACAAG -ACGGAACGCTTATTGGAGAAGCAG -ACGGAACGCTTATTGGAGCGTCAA -ACGGAACGCTTATTGGAGGCTGAA -ACGGAACGCTTATTGGAGAGTACG -ACGGAACGCTTATTGGAGATCCGA -ACGGAACGCTTATTGGAGATGGGA -ACGGAACGCTTATTGGAGGTGCAA -ACGGAACGCTTATTGGAGGAGGAA -ACGGAACGCTTATTGGAGCAGGTA -ACGGAACGCTTATTGGAGGACTCT -ACGGAACGCTTATTGGAGAGTCCT -ACGGAACGCTTATTGGAGTAAGCC -ACGGAACGCTTATTGGAGATAGCC -ACGGAACGCTTATTGGAGTAACCG -ACGGAACGCTTATTGGAGATGCCA -ACGGAACGCTTACTGAGAGGAAAC -ACGGAACGCTTACTGAGAAACACC -ACGGAACGCTTACTGAGAATCGAG -ACGGAACGCTTACTGAGACTCCTT -ACGGAACGCTTACTGAGACCTGTT -ACGGAACGCTTACTGAGACGGTTT -ACGGAACGCTTACTGAGAGTGGTT -ACGGAACGCTTACTGAGAGCCTTT -ACGGAACGCTTACTGAGAGGTCTT -ACGGAACGCTTACTGAGAACGCTT -ACGGAACGCTTACTGAGAAGCGTT -ACGGAACGCTTACTGAGATTCGTC -ACGGAACGCTTACTGAGATCTCTC -ACGGAACGCTTACTGAGATGGATC -ACGGAACGCTTACTGAGACACTTC -ACGGAACGCTTACTGAGAGTACTC -ACGGAACGCTTACTGAGAGATGTC -ACGGAACGCTTACTGAGAACAGTC -ACGGAACGCTTACTGAGATTGCTG -ACGGAACGCTTACTGAGATCCATG -ACGGAACGCTTACTGAGATGTGTG -ACGGAACGCTTACTGAGACTAGTG -ACGGAACGCTTACTGAGACATCTG -ACGGAACGCTTACTGAGAGAGTTG -ACGGAACGCTTACTGAGAAGACTG -ACGGAACGCTTACTGAGATCGGTA -ACGGAACGCTTACTGAGATGCCTA -ACGGAACGCTTACTGAGACCACTA -ACGGAACGCTTACTGAGAGGAGTA -ACGGAACGCTTACTGAGATCGTCT -ACGGAACGCTTACTGAGATGCACT -ACGGAACGCTTACTGAGACTGACT -ACGGAACGCTTACTGAGACAACCT -ACGGAACGCTTACTGAGAGCTACT -ACGGAACGCTTACTGAGAGGATCT -ACGGAACGCTTACTGAGAAAGGCT -ACGGAACGCTTACTGAGATCAACC -ACGGAACGCTTACTGAGATGTTCC -ACGGAACGCTTACTGAGAATTCCC -ACGGAACGCTTACTGAGATTCTCG -ACGGAACGCTTACTGAGATAGACG -ACGGAACGCTTACTGAGAGTAACG -ACGGAACGCTTACTGAGAACTTCG -ACGGAACGCTTACTGAGATACGCA -ACGGAACGCTTACTGAGACTTGCA -ACGGAACGCTTACTGAGACGAACA -ACGGAACGCTTACTGAGACAGTCA -ACGGAACGCTTACTGAGAGATCCA -ACGGAACGCTTACTGAGAACGACA -ACGGAACGCTTACTGAGAAGCTCA -ACGGAACGCTTACTGAGATCACGT -ACGGAACGCTTACTGAGACGTAGT -ACGGAACGCTTACTGAGAGTCAGT -ACGGAACGCTTACTGAGAGAAGGT -ACGGAACGCTTACTGAGAAACCGT -ACGGAACGCTTACTGAGATTGTGC -ACGGAACGCTTACTGAGACTAAGC -ACGGAACGCTTACTGAGAACTAGC -ACGGAACGCTTACTGAGAAGATGC -ACGGAACGCTTACTGAGATGAAGG -ACGGAACGCTTACTGAGACAATGG -ACGGAACGCTTACTGAGAATGAGG -ACGGAACGCTTACTGAGAAATGGG -ACGGAACGCTTACTGAGATCCTGA -ACGGAACGCTTACTGAGATAGCGA -ACGGAACGCTTACTGAGACACAGA -ACGGAACGCTTACTGAGAGCAAGA -ACGGAACGCTTACTGAGAGGTTGA -ACGGAACGCTTACTGAGATCCGAT -ACGGAACGCTTACTGAGATGGCAT -ACGGAACGCTTACTGAGACGAGAT -ACGGAACGCTTACTGAGATACCAC -ACGGAACGCTTACTGAGACAGAAC -ACGGAACGCTTACTGAGAGTCTAC -ACGGAACGCTTACTGAGAACGTAC -ACGGAACGCTTACTGAGAAGTGAC -ACGGAACGCTTACTGAGACTGTAG -ACGGAACGCTTACTGAGACCTAAG -ACGGAACGCTTACTGAGAGTTCAG -ACGGAACGCTTACTGAGAGCATAG -ACGGAACGCTTACTGAGAGACAAG -ACGGAACGCTTACTGAGAAAGCAG -ACGGAACGCTTACTGAGACGTCAA -ACGGAACGCTTACTGAGAGCTGAA -ACGGAACGCTTACTGAGAAGTACG -ACGGAACGCTTACTGAGAATCCGA -ACGGAACGCTTACTGAGAATGGGA -ACGGAACGCTTACTGAGAGTGCAA -ACGGAACGCTTACTGAGAGAGGAA -ACGGAACGCTTACTGAGACAGGTA -ACGGAACGCTTACTGAGAGACTCT -ACGGAACGCTTACTGAGAAGTCCT -ACGGAACGCTTACTGAGATAAGCC -ACGGAACGCTTACTGAGAATAGCC -ACGGAACGCTTACTGAGATAACCG -ACGGAACGCTTACTGAGAATGCCA -ACGGAACGCTTAGTATCGGGAAAC -ACGGAACGCTTAGTATCGAACACC -ACGGAACGCTTAGTATCGATCGAG -ACGGAACGCTTAGTATCGCTCCTT -ACGGAACGCTTAGTATCGCCTGTT -ACGGAACGCTTAGTATCGCGGTTT -ACGGAACGCTTAGTATCGGTGGTT -ACGGAACGCTTAGTATCGGCCTTT -ACGGAACGCTTAGTATCGGGTCTT -ACGGAACGCTTAGTATCGACGCTT -ACGGAACGCTTAGTATCGAGCGTT -ACGGAACGCTTAGTATCGTTCGTC -ACGGAACGCTTAGTATCGTCTCTC -ACGGAACGCTTAGTATCGTGGATC -ACGGAACGCTTAGTATCGCACTTC -ACGGAACGCTTAGTATCGGTACTC -ACGGAACGCTTAGTATCGGATGTC -ACGGAACGCTTAGTATCGACAGTC -ACGGAACGCTTAGTATCGTTGCTG -ACGGAACGCTTAGTATCGTCCATG -ACGGAACGCTTAGTATCGTGTGTG -ACGGAACGCTTAGTATCGCTAGTG -ACGGAACGCTTAGTATCGCATCTG -ACGGAACGCTTAGTATCGGAGTTG -ACGGAACGCTTAGTATCGAGACTG -ACGGAACGCTTAGTATCGTCGGTA -ACGGAACGCTTAGTATCGTGCCTA -ACGGAACGCTTAGTATCGCCACTA -ACGGAACGCTTAGTATCGGGAGTA -ACGGAACGCTTAGTATCGTCGTCT -ACGGAACGCTTAGTATCGTGCACT -ACGGAACGCTTAGTATCGCTGACT -ACGGAACGCTTAGTATCGCAACCT -ACGGAACGCTTAGTATCGGCTACT -ACGGAACGCTTAGTATCGGGATCT -ACGGAACGCTTAGTATCGAAGGCT -ACGGAACGCTTAGTATCGTCAACC -ACGGAACGCTTAGTATCGTGTTCC -ACGGAACGCTTAGTATCGATTCCC -ACGGAACGCTTAGTATCGTTCTCG -ACGGAACGCTTAGTATCGTAGACG -ACGGAACGCTTAGTATCGGTAACG -ACGGAACGCTTAGTATCGACTTCG -ACGGAACGCTTAGTATCGTACGCA -ACGGAACGCTTAGTATCGCTTGCA -ACGGAACGCTTAGTATCGCGAACA -ACGGAACGCTTAGTATCGCAGTCA -ACGGAACGCTTAGTATCGGATCCA -ACGGAACGCTTAGTATCGACGACA -ACGGAACGCTTAGTATCGAGCTCA -ACGGAACGCTTAGTATCGTCACGT -ACGGAACGCTTAGTATCGCGTAGT -ACGGAACGCTTAGTATCGGTCAGT -ACGGAACGCTTAGTATCGGAAGGT -ACGGAACGCTTAGTATCGAACCGT -ACGGAACGCTTAGTATCGTTGTGC -ACGGAACGCTTAGTATCGCTAAGC -ACGGAACGCTTAGTATCGACTAGC -ACGGAACGCTTAGTATCGAGATGC -ACGGAACGCTTAGTATCGTGAAGG -ACGGAACGCTTAGTATCGCAATGG -ACGGAACGCTTAGTATCGATGAGG -ACGGAACGCTTAGTATCGAATGGG -ACGGAACGCTTAGTATCGTCCTGA -ACGGAACGCTTAGTATCGTAGCGA -ACGGAACGCTTAGTATCGCACAGA -ACGGAACGCTTAGTATCGGCAAGA -ACGGAACGCTTAGTATCGGGTTGA -ACGGAACGCTTAGTATCGTCCGAT -ACGGAACGCTTAGTATCGTGGCAT -ACGGAACGCTTAGTATCGCGAGAT -ACGGAACGCTTAGTATCGTACCAC -ACGGAACGCTTAGTATCGCAGAAC -ACGGAACGCTTAGTATCGGTCTAC -ACGGAACGCTTAGTATCGACGTAC -ACGGAACGCTTAGTATCGAGTGAC -ACGGAACGCTTAGTATCGCTGTAG -ACGGAACGCTTAGTATCGCCTAAG -ACGGAACGCTTAGTATCGGTTCAG -ACGGAACGCTTAGTATCGGCATAG -ACGGAACGCTTAGTATCGGACAAG -ACGGAACGCTTAGTATCGAAGCAG -ACGGAACGCTTAGTATCGCGTCAA -ACGGAACGCTTAGTATCGGCTGAA -ACGGAACGCTTAGTATCGAGTACG -ACGGAACGCTTAGTATCGATCCGA -ACGGAACGCTTAGTATCGATGGGA -ACGGAACGCTTAGTATCGGTGCAA -ACGGAACGCTTAGTATCGGAGGAA -ACGGAACGCTTAGTATCGCAGGTA -ACGGAACGCTTAGTATCGGACTCT -ACGGAACGCTTAGTATCGAGTCCT -ACGGAACGCTTAGTATCGTAAGCC -ACGGAACGCTTAGTATCGATAGCC -ACGGAACGCTTAGTATCGTAACCG -ACGGAACGCTTAGTATCGATGCCA -ACGGAACGCTTACTATGCGGAAAC -ACGGAACGCTTACTATGCAACACC -ACGGAACGCTTACTATGCATCGAG -ACGGAACGCTTACTATGCCTCCTT -ACGGAACGCTTACTATGCCCTGTT -ACGGAACGCTTACTATGCCGGTTT -ACGGAACGCTTACTATGCGTGGTT -ACGGAACGCTTACTATGCGCCTTT -ACGGAACGCTTACTATGCGGTCTT -ACGGAACGCTTACTATGCACGCTT -ACGGAACGCTTACTATGCAGCGTT -ACGGAACGCTTACTATGCTTCGTC -ACGGAACGCTTACTATGCTCTCTC -ACGGAACGCTTACTATGCTGGATC -ACGGAACGCTTACTATGCCACTTC -ACGGAACGCTTACTATGCGTACTC -ACGGAACGCTTACTATGCGATGTC -ACGGAACGCTTACTATGCACAGTC -ACGGAACGCTTACTATGCTTGCTG -ACGGAACGCTTACTATGCTCCATG -ACGGAACGCTTACTATGCTGTGTG -ACGGAACGCTTACTATGCCTAGTG -ACGGAACGCTTACTATGCCATCTG -ACGGAACGCTTACTATGCGAGTTG -ACGGAACGCTTACTATGCAGACTG -ACGGAACGCTTACTATGCTCGGTA -ACGGAACGCTTACTATGCTGCCTA -ACGGAACGCTTACTATGCCCACTA -ACGGAACGCTTACTATGCGGAGTA -ACGGAACGCTTACTATGCTCGTCT -ACGGAACGCTTACTATGCTGCACT -ACGGAACGCTTACTATGCCTGACT -ACGGAACGCTTACTATGCCAACCT -ACGGAACGCTTACTATGCGCTACT -ACGGAACGCTTACTATGCGGATCT -ACGGAACGCTTACTATGCAAGGCT -ACGGAACGCTTACTATGCTCAACC -ACGGAACGCTTACTATGCTGTTCC -ACGGAACGCTTACTATGCATTCCC -ACGGAACGCTTACTATGCTTCTCG -ACGGAACGCTTACTATGCTAGACG -ACGGAACGCTTACTATGCGTAACG -ACGGAACGCTTACTATGCACTTCG -ACGGAACGCTTACTATGCTACGCA -ACGGAACGCTTACTATGCCTTGCA -ACGGAACGCTTACTATGCCGAACA -ACGGAACGCTTACTATGCCAGTCA -ACGGAACGCTTACTATGCGATCCA -ACGGAACGCTTACTATGCACGACA -ACGGAACGCTTACTATGCAGCTCA -ACGGAACGCTTACTATGCTCACGT -ACGGAACGCTTACTATGCCGTAGT -ACGGAACGCTTACTATGCGTCAGT -ACGGAACGCTTACTATGCGAAGGT -ACGGAACGCTTACTATGCAACCGT -ACGGAACGCTTACTATGCTTGTGC -ACGGAACGCTTACTATGCCTAAGC -ACGGAACGCTTACTATGCACTAGC -ACGGAACGCTTACTATGCAGATGC -ACGGAACGCTTACTATGCTGAAGG -ACGGAACGCTTACTATGCCAATGG -ACGGAACGCTTACTATGCATGAGG -ACGGAACGCTTACTATGCAATGGG -ACGGAACGCTTACTATGCTCCTGA -ACGGAACGCTTACTATGCTAGCGA -ACGGAACGCTTACTATGCCACAGA -ACGGAACGCTTACTATGCGCAAGA -ACGGAACGCTTACTATGCGGTTGA -ACGGAACGCTTACTATGCTCCGAT -ACGGAACGCTTACTATGCTGGCAT -ACGGAACGCTTACTATGCCGAGAT -ACGGAACGCTTACTATGCTACCAC -ACGGAACGCTTACTATGCCAGAAC -ACGGAACGCTTACTATGCGTCTAC -ACGGAACGCTTACTATGCACGTAC -ACGGAACGCTTACTATGCAGTGAC -ACGGAACGCTTACTATGCCTGTAG -ACGGAACGCTTACTATGCCCTAAG -ACGGAACGCTTACTATGCGTTCAG -ACGGAACGCTTACTATGCGCATAG -ACGGAACGCTTACTATGCGACAAG -ACGGAACGCTTACTATGCAAGCAG -ACGGAACGCTTACTATGCCGTCAA -ACGGAACGCTTACTATGCGCTGAA -ACGGAACGCTTACTATGCAGTACG -ACGGAACGCTTACTATGCATCCGA -ACGGAACGCTTACTATGCATGGGA -ACGGAACGCTTACTATGCGTGCAA -ACGGAACGCTTACTATGCGAGGAA -ACGGAACGCTTACTATGCCAGGTA -ACGGAACGCTTACTATGCGACTCT -ACGGAACGCTTACTATGCAGTCCT -ACGGAACGCTTACTATGCTAAGCC -ACGGAACGCTTACTATGCATAGCC -ACGGAACGCTTACTATGCTAACCG -ACGGAACGCTTACTATGCATGCCA -ACGGAACGCTTACTACCAGGAAAC -ACGGAACGCTTACTACCAAACACC -ACGGAACGCTTACTACCAATCGAG -ACGGAACGCTTACTACCACTCCTT -ACGGAACGCTTACTACCACCTGTT -ACGGAACGCTTACTACCACGGTTT -ACGGAACGCTTACTACCAGTGGTT -ACGGAACGCTTACTACCAGCCTTT -ACGGAACGCTTACTACCAGGTCTT -ACGGAACGCTTACTACCAACGCTT -ACGGAACGCTTACTACCAAGCGTT -ACGGAACGCTTACTACCATTCGTC -ACGGAACGCTTACTACCATCTCTC -ACGGAACGCTTACTACCATGGATC -ACGGAACGCTTACTACCACACTTC -ACGGAACGCTTACTACCAGTACTC -ACGGAACGCTTACTACCAGATGTC -ACGGAACGCTTACTACCAACAGTC -ACGGAACGCTTACTACCATTGCTG -ACGGAACGCTTACTACCATCCATG -ACGGAACGCTTACTACCATGTGTG -ACGGAACGCTTACTACCACTAGTG -ACGGAACGCTTACTACCACATCTG -ACGGAACGCTTACTACCAGAGTTG -ACGGAACGCTTACTACCAAGACTG -ACGGAACGCTTACTACCATCGGTA -ACGGAACGCTTACTACCATGCCTA -ACGGAACGCTTACTACCACCACTA -ACGGAACGCTTACTACCAGGAGTA -ACGGAACGCTTACTACCATCGTCT -ACGGAACGCTTACTACCATGCACT -ACGGAACGCTTACTACCACTGACT -ACGGAACGCTTACTACCACAACCT -ACGGAACGCTTACTACCAGCTACT -ACGGAACGCTTACTACCAGGATCT -ACGGAACGCTTACTACCAAAGGCT -ACGGAACGCTTACTACCATCAACC -ACGGAACGCTTACTACCATGTTCC -ACGGAACGCTTACTACCAATTCCC -ACGGAACGCTTACTACCATTCTCG -ACGGAACGCTTACTACCATAGACG -ACGGAACGCTTACTACCAGTAACG -ACGGAACGCTTACTACCAACTTCG -ACGGAACGCTTACTACCATACGCA -ACGGAACGCTTACTACCACTTGCA -ACGGAACGCTTACTACCACGAACA -ACGGAACGCTTACTACCACAGTCA -ACGGAACGCTTACTACCAGATCCA -ACGGAACGCTTACTACCAACGACA -ACGGAACGCTTACTACCAAGCTCA -ACGGAACGCTTACTACCATCACGT -ACGGAACGCTTACTACCACGTAGT -ACGGAACGCTTACTACCAGTCAGT -ACGGAACGCTTACTACCAGAAGGT -ACGGAACGCTTACTACCAAACCGT -ACGGAACGCTTACTACCATTGTGC -ACGGAACGCTTACTACCACTAAGC -ACGGAACGCTTACTACCAACTAGC -ACGGAACGCTTACTACCAAGATGC -ACGGAACGCTTACTACCATGAAGG -ACGGAACGCTTACTACCACAATGG -ACGGAACGCTTACTACCAATGAGG -ACGGAACGCTTACTACCAAATGGG -ACGGAACGCTTACTACCATCCTGA -ACGGAACGCTTACTACCATAGCGA -ACGGAACGCTTACTACCACACAGA -ACGGAACGCTTACTACCAGCAAGA -ACGGAACGCTTACTACCAGGTTGA -ACGGAACGCTTACTACCATCCGAT -ACGGAACGCTTACTACCATGGCAT -ACGGAACGCTTACTACCACGAGAT -ACGGAACGCTTACTACCATACCAC -ACGGAACGCTTACTACCACAGAAC -ACGGAACGCTTACTACCAGTCTAC -ACGGAACGCTTACTACCAACGTAC -ACGGAACGCTTACTACCAAGTGAC -ACGGAACGCTTACTACCACTGTAG -ACGGAACGCTTACTACCACCTAAG -ACGGAACGCTTACTACCAGTTCAG -ACGGAACGCTTACTACCAGCATAG -ACGGAACGCTTACTACCAGACAAG -ACGGAACGCTTACTACCAAAGCAG -ACGGAACGCTTACTACCACGTCAA -ACGGAACGCTTACTACCAGCTGAA -ACGGAACGCTTACTACCAAGTACG -ACGGAACGCTTACTACCAATCCGA -ACGGAACGCTTACTACCAATGGGA -ACGGAACGCTTACTACCAGTGCAA -ACGGAACGCTTACTACCAGAGGAA -ACGGAACGCTTACTACCACAGGTA -ACGGAACGCTTACTACCAGACTCT -ACGGAACGCTTACTACCAAGTCCT -ACGGAACGCTTACTACCATAAGCC -ACGGAACGCTTACTACCAATAGCC -ACGGAACGCTTACTACCATAACCG -ACGGAACGCTTACTACCAATGCCA -ACGGAACGCTTAGTAGGAGGAAAC -ACGGAACGCTTAGTAGGAAACACC -ACGGAACGCTTAGTAGGAATCGAG -ACGGAACGCTTAGTAGGACTCCTT -ACGGAACGCTTAGTAGGACCTGTT -ACGGAACGCTTAGTAGGACGGTTT -ACGGAACGCTTAGTAGGAGTGGTT -ACGGAACGCTTAGTAGGAGCCTTT -ACGGAACGCTTAGTAGGAGGTCTT -ACGGAACGCTTAGTAGGAACGCTT -ACGGAACGCTTAGTAGGAAGCGTT -ACGGAACGCTTAGTAGGATTCGTC -ACGGAACGCTTAGTAGGATCTCTC -ACGGAACGCTTAGTAGGATGGATC -ACGGAACGCTTAGTAGGACACTTC -ACGGAACGCTTAGTAGGAGTACTC -ACGGAACGCTTAGTAGGAGATGTC -ACGGAACGCTTAGTAGGAACAGTC -ACGGAACGCTTAGTAGGATTGCTG -ACGGAACGCTTAGTAGGATCCATG -ACGGAACGCTTAGTAGGATGTGTG -ACGGAACGCTTAGTAGGACTAGTG -ACGGAACGCTTAGTAGGACATCTG -ACGGAACGCTTAGTAGGAGAGTTG -ACGGAACGCTTAGTAGGAAGACTG -ACGGAACGCTTAGTAGGATCGGTA -ACGGAACGCTTAGTAGGATGCCTA -ACGGAACGCTTAGTAGGACCACTA -ACGGAACGCTTAGTAGGAGGAGTA -ACGGAACGCTTAGTAGGATCGTCT -ACGGAACGCTTAGTAGGATGCACT -ACGGAACGCTTAGTAGGACTGACT -ACGGAACGCTTAGTAGGACAACCT -ACGGAACGCTTAGTAGGAGCTACT -ACGGAACGCTTAGTAGGAGGATCT -ACGGAACGCTTAGTAGGAAAGGCT -ACGGAACGCTTAGTAGGATCAACC -ACGGAACGCTTAGTAGGATGTTCC -ACGGAACGCTTAGTAGGAATTCCC -ACGGAACGCTTAGTAGGATTCTCG -ACGGAACGCTTAGTAGGATAGACG -ACGGAACGCTTAGTAGGAGTAACG -ACGGAACGCTTAGTAGGAACTTCG -ACGGAACGCTTAGTAGGATACGCA -ACGGAACGCTTAGTAGGACTTGCA -ACGGAACGCTTAGTAGGACGAACA -ACGGAACGCTTAGTAGGACAGTCA -ACGGAACGCTTAGTAGGAGATCCA -ACGGAACGCTTAGTAGGAACGACA -ACGGAACGCTTAGTAGGAAGCTCA -ACGGAACGCTTAGTAGGATCACGT -ACGGAACGCTTAGTAGGACGTAGT -ACGGAACGCTTAGTAGGAGTCAGT -ACGGAACGCTTAGTAGGAGAAGGT -ACGGAACGCTTAGTAGGAAACCGT -ACGGAACGCTTAGTAGGATTGTGC -ACGGAACGCTTAGTAGGACTAAGC -ACGGAACGCTTAGTAGGAACTAGC -ACGGAACGCTTAGTAGGAAGATGC -ACGGAACGCTTAGTAGGATGAAGG -ACGGAACGCTTAGTAGGACAATGG -ACGGAACGCTTAGTAGGAATGAGG -ACGGAACGCTTAGTAGGAAATGGG -ACGGAACGCTTAGTAGGATCCTGA -ACGGAACGCTTAGTAGGATAGCGA -ACGGAACGCTTAGTAGGACACAGA -ACGGAACGCTTAGTAGGAGCAAGA -ACGGAACGCTTAGTAGGAGGTTGA -ACGGAACGCTTAGTAGGATCCGAT -ACGGAACGCTTAGTAGGATGGCAT -ACGGAACGCTTAGTAGGACGAGAT -ACGGAACGCTTAGTAGGATACCAC -ACGGAACGCTTAGTAGGACAGAAC -ACGGAACGCTTAGTAGGAGTCTAC -ACGGAACGCTTAGTAGGAACGTAC -ACGGAACGCTTAGTAGGAAGTGAC -ACGGAACGCTTAGTAGGACTGTAG -ACGGAACGCTTAGTAGGACCTAAG -ACGGAACGCTTAGTAGGAGTTCAG -ACGGAACGCTTAGTAGGAGCATAG -ACGGAACGCTTAGTAGGAGACAAG -ACGGAACGCTTAGTAGGAAAGCAG -ACGGAACGCTTAGTAGGACGTCAA -ACGGAACGCTTAGTAGGAGCTGAA -ACGGAACGCTTAGTAGGAAGTACG -ACGGAACGCTTAGTAGGAATCCGA -ACGGAACGCTTAGTAGGAATGGGA -ACGGAACGCTTAGTAGGAGTGCAA -ACGGAACGCTTAGTAGGAGAGGAA -ACGGAACGCTTAGTAGGACAGGTA -ACGGAACGCTTAGTAGGAGACTCT -ACGGAACGCTTAGTAGGAAGTCCT -ACGGAACGCTTAGTAGGATAAGCC -ACGGAACGCTTAGTAGGAATAGCC -ACGGAACGCTTAGTAGGATAACCG -ACGGAACGCTTAGTAGGAATGCCA -ACGGAACGCTTATCTTCGGGAAAC -ACGGAACGCTTATCTTCGAACACC -ACGGAACGCTTATCTTCGATCGAG -ACGGAACGCTTATCTTCGCTCCTT -ACGGAACGCTTATCTTCGCCTGTT -ACGGAACGCTTATCTTCGCGGTTT -ACGGAACGCTTATCTTCGGTGGTT -ACGGAACGCTTATCTTCGGCCTTT -ACGGAACGCTTATCTTCGGGTCTT -ACGGAACGCTTATCTTCGACGCTT -ACGGAACGCTTATCTTCGAGCGTT -ACGGAACGCTTATCTTCGTTCGTC -ACGGAACGCTTATCTTCGTCTCTC -ACGGAACGCTTATCTTCGTGGATC -ACGGAACGCTTATCTTCGCACTTC -ACGGAACGCTTATCTTCGGTACTC -ACGGAACGCTTATCTTCGGATGTC -ACGGAACGCTTATCTTCGACAGTC -ACGGAACGCTTATCTTCGTTGCTG -ACGGAACGCTTATCTTCGTCCATG -ACGGAACGCTTATCTTCGTGTGTG -ACGGAACGCTTATCTTCGCTAGTG -ACGGAACGCTTATCTTCGCATCTG -ACGGAACGCTTATCTTCGGAGTTG -ACGGAACGCTTATCTTCGAGACTG -ACGGAACGCTTATCTTCGTCGGTA -ACGGAACGCTTATCTTCGTGCCTA -ACGGAACGCTTATCTTCGCCACTA -ACGGAACGCTTATCTTCGGGAGTA -ACGGAACGCTTATCTTCGTCGTCT -ACGGAACGCTTATCTTCGTGCACT -ACGGAACGCTTATCTTCGCTGACT -ACGGAACGCTTATCTTCGCAACCT -ACGGAACGCTTATCTTCGGCTACT -ACGGAACGCTTATCTTCGGGATCT -ACGGAACGCTTATCTTCGAAGGCT -ACGGAACGCTTATCTTCGTCAACC -ACGGAACGCTTATCTTCGTGTTCC -ACGGAACGCTTATCTTCGATTCCC -ACGGAACGCTTATCTTCGTTCTCG -ACGGAACGCTTATCTTCGTAGACG -ACGGAACGCTTATCTTCGGTAACG -ACGGAACGCTTATCTTCGACTTCG -ACGGAACGCTTATCTTCGTACGCA -ACGGAACGCTTATCTTCGCTTGCA -ACGGAACGCTTATCTTCGCGAACA -ACGGAACGCTTATCTTCGCAGTCA -ACGGAACGCTTATCTTCGGATCCA -ACGGAACGCTTATCTTCGACGACA -ACGGAACGCTTATCTTCGAGCTCA -ACGGAACGCTTATCTTCGTCACGT -ACGGAACGCTTATCTTCGCGTAGT -ACGGAACGCTTATCTTCGGTCAGT -ACGGAACGCTTATCTTCGGAAGGT -ACGGAACGCTTATCTTCGAACCGT -ACGGAACGCTTATCTTCGTTGTGC -ACGGAACGCTTATCTTCGCTAAGC -ACGGAACGCTTATCTTCGACTAGC -ACGGAACGCTTATCTTCGAGATGC -ACGGAACGCTTATCTTCGTGAAGG -ACGGAACGCTTATCTTCGCAATGG -ACGGAACGCTTATCTTCGATGAGG -ACGGAACGCTTATCTTCGAATGGG -ACGGAACGCTTATCTTCGTCCTGA -ACGGAACGCTTATCTTCGTAGCGA -ACGGAACGCTTATCTTCGCACAGA -ACGGAACGCTTATCTTCGGCAAGA -ACGGAACGCTTATCTTCGGGTTGA -ACGGAACGCTTATCTTCGTCCGAT -ACGGAACGCTTATCTTCGTGGCAT -ACGGAACGCTTATCTTCGCGAGAT -ACGGAACGCTTATCTTCGTACCAC -ACGGAACGCTTATCTTCGCAGAAC -ACGGAACGCTTATCTTCGGTCTAC -ACGGAACGCTTATCTTCGACGTAC -ACGGAACGCTTATCTTCGAGTGAC -ACGGAACGCTTATCTTCGCTGTAG -ACGGAACGCTTATCTTCGCCTAAG -ACGGAACGCTTATCTTCGGTTCAG -ACGGAACGCTTATCTTCGGCATAG -ACGGAACGCTTATCTTCGGACAAG -ACGGAACGCTTATCTTCGAAGCAG -ACGGAACGCTTATCTTCGCGTCAA -ACGGAACGCTTATCTTCGGCTGAA -ACGGAACGCTTATCTTCGAGTACG -ACGGAACGCTTATCTTCGATCCGA -ACGGAACGCTTATCTTCGATGGGA -ACGGAACGCTTATCTTCGGTGCAA -ACGGAACGCTTATCTTCGGAGGAA -ACGGAACGCTTATCTTCGCAGGTA -ACGGAACGCTTATCTTCGGACTCT -ACGGAACGCTTATCTTCGAGTCCT -ACGGAACGCTTATCTTCGTAAGCC -ACGGAACGCTTATCTTCGATAGCC -ACGGAACGCTTATCTTCGTAACCG -ACGGAACGCTTATCTTCGATGCCA -ACGGAACGCTTAACTTGCGGAAAC -ACGGAACGCTTAACTTGCAACACC -ACGGAACGCTTAACTTGCATCGAG -ACGGAACGCTTAACTTGCCTCCTT -ACGGAACGCTTAACTTGCCCTGTT -ACGGAACGCTTAACTTGCCGGTTT -ACGGAACGCTTAACTTGCGTGGTT -ACGGAACGCTTAACTTGCGCCTTT -ACGGAACGCTTAACTTGCGGTCTT -ACGGAACGCTTAACTTGCACGCTT -ACGGAACGCTTAACTTGCAGCGTT -ACGGAACGCTTAACTTGCTTCGTC -ACGGAACGCTTAACTTGCTCTCTC -ACGGAACGCTTAACTTGCTGGATC -ACGGAACGCTTAACTTGCCACTTC -ACGGAACGCTTAACTTGCGTACTC -ACGGAACGCTTAACTTGCGATGTC -ACGGAACGCTTAACTTGCACAGTC -ACGGAACGCTTAACTTGCTTGCTG -ACGGAACGCTTAACTTGCTCCATG -ACGGAACGCTTAACTTGCTGTGTG -ACGGAACGCTTAACTTGCCTAGTG -ACGGAACGCTTAACTTGCCATCTG -ACGGAACGCTTAACTTGCGAGTTG -ACGGAACGCTTAACTTGCAGACTG -ACGGAACGCTTAACTTGCTCGGTA -ACGGAACGCTTAACTTGCTGCCTA -ACGGAACGCTTAACTTGCCCACTA -ACGGAACGCTTAACTTGCGGAGTA -ACGGAACGCTTAACTTGCTCGTCT -ACGGAACGCTTAACTTGCTGCACT -ACGGAACGCTTAACTTGCCTGACT -ACGGAACGCTTAACTTGCCAACCT -ACGGAACGCTTAACTTGCGCTACT -ACGGAACGCTTAACTTGCGGATCT -ACGGAACGCTTAACTTGCAAGGCT -ACGGAACGCTTAACTTGCTCAACC -ACGGAACGCTTAACTTGCTGTTCC -ACGGAACGCTTAACTTGCATTCCC -ACGGAACGCTTAACTTGCTTCTCG -ACGGAACGCTTAACTTGCTAGACG -ACGGAACGCTTAACTTGCGTAACG -ACGGAACGCTTAACTTGCACTTCG -ACGGAACGCTTAACTTGCTACGCA -ACGGAACGCTTAACTTGCCTTGCA -ACGGAACGCTTAACTTGCCGAACA -ACGGAACGCTTAACTTGCCAGTCA -ACGGAACGCTTAACTTGCGATCCA -ACGGAACGCTTAACTTGCACGACA -ACGGAACGCTTAACTTGCAGCTCA -ACGGAACGCTTAACTTGCTCACGT -ACGGAACGCTTAACTTGCCGTAGT -ACGGAACGCTTAACTTGCGTCAGT -ACGGAACGCTTAACTTGCGAAGGT -ACGGAACGCTTAACTTGCAACCGT -ACGGAACGCTTAACTTGCTTGTGC -ACGGAACGCTTAACTTGCCTAAGC -ACGGAACGCTTAACTTGCACTAGC -ACGGAACGCTTAACTTGCAGATGC -ACGGAACGCTTAACTTGCTGAAGG -ACGGAACGCTTAACTTGCCAATGG -ACGGAACGCTTAACTTGCATGAGG -ACGGAACGCTTAACTTGCAATGGG -ACGGAACGCTTAACTTGCTCCTGA -ACGGAACGCTTAACTTGCTAGCGA -ACGGAACGCTTAACTTGCCACAGA -ACGGAACGCTTAACTTGCGCAAGA -ACGGAACGCTTAACTTGCGGTTGA -ACGGAACGCTTAACTTGCTCCGAT -ACGGAACGCTTAACTTGCTGGCAT -ACGGAACGCTTAACTTGCCGAGAT -ACGGAACGCTTAACTTGCTACCAC -ACGGAACGCTTAACTTGCCAGAAC -ACGGAACGCTTAACTTGCGTCTAC -ACGGAACGCTTAACTTGCACGTAC -ACGGAACGCTTAACTTGCAGTGAC -ACGGAACGCTTAACTTGCCTGTAG -ACGGAACGCTTAACTTGCCCTAAG -ACGGAACGCTTAACTTGCGTTCAG -ACGGAACGCTTAACTTGCGCATAG -ACGGAACGCTTAACTTGCGACAAG -ACGGAACGCTTAACTTGCAAGCAG -ACGGAACGCTTAACTTGCCGTCAA -ACGGAACGCTTAACTTGCGCTGAA -ACGGAACGCTTAACTTGCAGTACG -ACGGAACGCTTAACTTGCATCCGA -ACGGAACGCTTAACTTGCATGGGA -ACGGAACGCTTAACTTGCGTGCAA -ACGGAACGCTTAACTTGCGAGGAA -ACGGAACGCTTAACTTGCCAGGTA -ACGGAACGCTTAACTTGCGACTCT -ACGGAACGCTTAACTTGCAGTCCT -ACGGAACGCTTAACTTGCTAAGCC -ACGGAACGCTTAACTTGCATAGCC -ACGGAACGCTTAACTTGCTAACCG -ACGGAACGCTTAACTTGCATGCCA -ACGGAACGCTTAACTCTGGGAAAC -ACGGAACGCTTAACTCTGAACACC -ACGGAACGCTTAACTCTGATCGAG -ACGGAACGCTTAACTCTGCTCCTT -ACGGAACGCTTAACTCTGCCTGTT -ACGGAACGCTTAACTCTGCGGTTT -ACGGAACGCTTAACTCTGGTGGTT -ACGGAACGCTTAACTCTGGCCTTT -ACGGAACGCTTAACTCTGGGTCTT -ACGGAACGCTTAACTCTGACGCTT -ACGGAACGCTTAACTCTGAGCGTT -ACGGAACGCTTAACTCTGTTCGTC -ACGGAACGCTTAACTCTGTCTCTC -ACGGAACGCTTAACTCTGTGGATC -ACGGAACGCTTAACTCTGCACTTC -ACGGAACGCTTAACTCTGGTACTC -ACGGAACGCTTAACTCTGGATGTC -ACGGAACGCTTAACTCTGACAGTC -ACGGAACGCTTAACTCTGTTGCTG -ACGGAACGCTTAACTCTGTCCATG -ACGGAACGCTTAACTCTGTGTGTG -ACGGAACGCTTAACTCTGCTAGTG -ACGGAACGCTTAACTCTGCATCTG -ACGGAACGCTTAACTCTGGAGTTG -ACGGAACGCTTAACTCTGAGACTG -ACGGAACGCTTAACTCTGTCGGTA -ACGGAACGCTTAACTCTGTGCCTA -ACGGAACGCTTAACTCTGCCACTA -ACGGAACGCTTAACTCTGGGAGTA -ACGGAACGCTTAACTCTGTCGTCT -ACGGAACGCTTAACTCTGTGCACT -ACGGAACGCTTAACTCTGCTGACT -ACGGAACGCTTAACTCTGCAACCT -ACGGAACGCTTAACTCTGGCTACT -ACGGAACGCTTAACTCTGGGATCT -ACGGAACGCTTAACTCTGAAGGCT -ACGGAACGCTTAACTCTGTCAACC -ACGGAACGCTTAACTCTGTGTTCC -ACGGAACGCTTAACTCTGATTCCC -ACGGAACGCTTAACTCTGTTCTCG -ACGGAACGCTTAACTCTGTAGACG -ACGGAACGCTTAACTCTGGTAACG -ACGGAACGCTTAACTCTGACTTCG -ACGGAACGCTTAACTCTGTACGCA -ACGGAACGCTTAACTCTGCTTGCA -ACGGAACGCTTAACTCTGCGAACA -ACGGAACGCTTAACTCTGCAGTCA -ACGGAACGCTTAACTCTGGATCCA -ACGGAACGCTTAACTCTGACGACA -ACGGAACGCTTAACTCTGAGCTCA -ACGGAACGCTTAACTCTGTCACGT -ACGGAACGCTTAACTCTGCGTAGT -ACGGAACGCTTAACTCTGGTCAGT -ACGGAACGCTTAACTCTGGAAGGT -ACGGAACGCTTAACTCTGAACCGT -ACGGAACGCTTAACTCTGTTGTGC -ACGGAACGCTTAACTCTGCTAAGC -ACGGAACGCTTAACTCTGACTAGC -ACGGAACGCTTAACTCTGAGATGC -ACGGAACGCTTAACTCTGTGAAGG -ACGGAACGCTTAACTCTGCAATGG -ACGGAACGCTTAACTCTGATGAGG -ACGGAACGCTTAACTCTGAATGGG -ACGGAACGCTTAACTCTGTCCTGA -ACGGAACGCTTAACTCTGTAGCGA -ACGGAACGCTTAACTCTGCACAGA -ACGGAACGCTTAACTCTGGCAAGA -ACGGAACGCTTAACTCTGGGTTGA -ACGGAACGCTTAACTCTGTCCGAT -ACGGAACGCTTAACTCTGTGGCAT -ACGGAACGCTTAACTCTGCGAGAT -ACGGAACGCTTAACTCTGTACCAC -ACGGAACGCTTAACTCTGCAGAAC -ACGGAACGCTTAACTCTGGTCTAC -ACGGAACGCTTAACTCTGACGTAC -ACGGAACGCTTAACTCTGAGTGAC -ACGGAACGCTTAACTCTGCTGTAG -ACGGAACGCTTAACTCTGCCTAAG -ACGGAACGCTTAACTCTGGTTCAG -ACGGAACGCTTAACTCTGGCATAG -ACGGAACGCTTAACTCTGGACAAG -ACGGAACGCTTAACTCTGAAGCAG -ACGGAACGCTTAACTCTGCGTCAA -ACGGAACGCTTAACTCTGGCTGAA -ACGGAACGCTTAACTCTGAGTACG -ACGGAACGCTTAACTCTGATCCGA -ACGGAACGCTTAACTCTGATGGGA -ACGGAACGCTTAACTCTGGTGCAA -ACGGAACGCTTAACTCTGGAGGAA -ACGGAACGCTTAACTCTGCAGGTA -ACGGAACGCTTAACTCTGGACTCT -ACGGAACGCTTAACTCTGAGTCCT -ACGGAACGCTTAACTCTGTAAGCC -ACGGAACGCTTAACTCTGATAGCC -ACGGAACGCTTAACTCTGTAACCG -ACGGAACGCTTAACTCTGATGCCA -ACGGAACGCTTACCTCAAGGAAAC -ACGGAACGCTTACCTCAAAACACC -ACGGAACGCTTACCTCAAATCGAG -ACGGAACGCTTACCTCAACTCCTT -ACGGAACGCTTACCTCAACCTGTT -ACGGAACGCTTACCTCAACGGTTT -ACGGAACGCTTACCTCAAGTGGTT -ACGGAACGCTTACCTCAAGCCTTT -ACGGAACGCTTACCTCAAGGTCTT -ACGGAACGCTTACCTCAAACGCTT -ACGGAACGCTTACCTCAAAGCGTT -ACGGAACGCTTACCTCAATTCGTC -ACGGAACGCTTACCTCAATCTCTC -ACGGAACGCTTACCTCAATGGATC -ACGGAACGCTTACCTCAACACTTC -ACGGAACGCTTACCTCAAGTACTC -ACGGAACGCTTACCTCAAGATGTC -ACGGAACGCTTACCTCAAACAGTC -ACGGAACGCTTACCTCAATTGCTG -ACGGAACGCTTACCTCAATCCATG -ACGGAACGCTTACCTCAATGTGTG -ACGGAACGCTTACCTCAACTAGTG -ACGGAACGCTTACCTCAACATCTG -ACGGAACGCTTACCTCAAGAGTTG -ACGGAACGCTTACCTCAAAGACTG -ACGGAACGCTTACCTCAATCGGTA -ACGGAACGCTTACCTCAATGCCTA -ACGGAACGCTTACCTCAACCACTA -ACGGAACGCTTACCTCAAGGAGTA -ACGGAACGCTTACCTCAATCGTCT -ACGGAACGCTTACCTCAATGCACT -ACGGAACGCTTACCTCAACTGACT -ACGGAACGCTTACCTCAACAACCT -ACGGAACGCTTACCTCAAGCTACT -ACGGAACGCTTACCTCAAGGATCT -ACGGAACGCTTACCTCAAAAGGCT -ACGGAACGCTTACCTCAATCAACC -ACGGAACGCTTACCTCAATGTTCC -ACGGAACGCTTACCTCAAATTCCC -ACGGAACGCTTACCTCAATTCTCG -ACGGAACGCTTACCTCAATAGACG -ACGGAACGCTTACCTCAAGTAACG -ACGGAACGCTTACCTCAAACTTCG -ACGGAACGCTTACCTCAATACGCA -ACGGAACGCTTACCTCAACTTGCA -ACGGAACGCTTACCTCAACGAACA -ACGGAACGCTTACCTCAACAGTCA -ACGGAACGCTTACCTCAAGATCCA -ACGGAACGCTTACCTCAAACGACA -ACGGAACGCTTACCTCAAAGCTCA -ACGGAACGCTTACCTCAATCACGT -ACGGAACGCTTACCTCAACGTAGT -ACGGAACGCTTACCTCAAGTCAGT -ACGGAACGCTTACCTCAAGAAGGT -ACGGAACGCTTACCTCAAAACCGT -ACGGAACGCTTACCTCAATTGTGC -ACGGAACGCTTACCTCAACTAAGC -ACGGAACGCTTACCTCAAACTAGC -ACGGAACGCTTACCTCAAAGATGC -ACGGAACGCTTACCTCAATGAAGG -ACGGAACGCTTACCTCAACAATGG -ACGGAACGCTTACCTCAAATGAGG -ACGGAACGCTTACCTCAAAATGGG -ACGGAACGCTTACCTCAATCCTGA -ACGGAACGCTTACCTCAATAGCGA -ACGGAACGCTTACCTCAACACAGA -ACGGAACGCTTACCTCAAGCAAGA -ACGGAACGCTTACCTCAAGGTTGA -ACGGAACGCTTACCTCAATCCGAT -ACGGAACGCTTACCTCAATGGCAT -ACGGAACGCTTACCTCAACGAGAT -ACGGAACGCTTACCTCAATACCAC -ACGGAACGCTTACCTCAACAGAAC -ACGGAACGCTTACCTCAAGTCTAC -ACGGAACGCTTACCTCAAACGTAC -ACGGAACGCTTACCTCAAAGTGAC -ACGGAACGCTTACCTCAACTGTAG -ACGGAACGCTTACCTCAACCTAAG -ACGGAACGCTTACCTCAAGTTCAG -ACGGAACGCTTACCTCAAGCATAG -ACGGAACGCTTACCTCAAGACAAG -ACGGAACGCTTACCTCAAAAGCAG -ACGGAACGCTTACCTCAACGTCAA -ACGGAACGCTTACCTCAAGCTGAA -ACGGAACGCTTACCTCAAAGTACG -ACGGAACGCTTACCTCAAATCCGA -ACGGAACGCTTACCTCAAATGGGA -ACGGAACGCTTACCTCAAGTGCAA -ACGGAACGCTTACCTCAAGAGGAA -ACGGAACGCTTACCTCAACAGGTA -ACGGAACGCTTACCTCAAGACTCT -ACGGAACGCTTACCTCAAAGTCCT -ACGGAACGCTTACCTCAATAAGCC -ACGGAACGCTTACCTCAAATAGCC -ACGGAACGCTTACCTCAATAACCG -ACGGAACGCTTACCTCAAATGCCA -ACGGAACGCTTAACTGCTGGAAAC -ACGGAACGCTTAACTGCTAACACC -ACGGAACGCTTAACTGCTATCGAG -ACGGAACGCTTAACTGCTCTCCTT -ACGGAACGCTTAACTGCTCCTGTT -ACGGAACGCTTAACTGCTCGGTTT -ACGGAACGCTTAACTGCTGTGGTT -ACGGAACGCTTAACTGCTGCCTTT -ACGGAACGCTTAACTGCTGGTCTT -ACGGAACGCTTAACTGCTACGCTT -ACGGAACGCTTAACTGCTAGCGTT -ACGGAACGCTTAACTGCTTTCGTC -ACGGAACGCTTAACTGCTTCTCTC -ACGGAACGCTTAACTGCTTGGATC -ACGGAACGCTTAACTGCTCACTTC -ACGGAACGCTTAACTGCTGTACTC -ACGGAACGCTTAACTGCTGATGTC -ACGGAACGCTTAACTGCTACAGTC -ACGGAACGCTTAACTGCTTTGCTG -ACGGAACGCTTAACTGCTTCCATG -ACGGAACGCTTAACTGCTTGTGTG -ACGGAACGCTTAACTGCTCTAGTG -ACGGAACGCTTAACTGCTCATCTG -ACGGAACGCTTAACTGCTGAGTTG -ACGGAACGCTTAACTGCTAGACTG -ACGGAACGCTTAACTGCTTCGGTA -ACGGAACGCTTAACTGCTTGCCTA -ACGGAACGCTTAACTGCTCCACTA -ACGGAACGCTTAACTGCTGGAGTA -ACGGAACGCTTAACTGCTTCGTCT -ACGGAACGCTTAACTGCTTGCACT -ACGGAACGCTTAACTGCTCTGACT -ACGGAACGCTTAACTGCTCAACCT -ACGGAACGCTTAACTGCTGCTACT -ACGGAACGCTTAACTGCTGGATCT -ACGGAACGCTTAACTGCTAAGGCT -ACGGAACGCTTAACTGCTTCAACC -ACGGAACGCTTAACTGCTTGTTCC -ACGGAACGCTTAACTGCTATTCCC -ACGGAACGCTTAACTGCTTTCTCG -ACGGAACGCTTAACTGCTTAGACG -ACGGAACGCTTAACTGCTGTAACG -ACGGAACGCTTAACTGCTACTTCG -ACGGAACGCTTAACTGCTTACGCA -ACGGAACGCTTAACTGCTCTTGCA -ACGGAACGCTTAACTGCTCGAACA -ACGGAACGCTTAACTGCTCAGTCA -ACGGAACGCTTAACTGCTGATCCA -ACGGAACGCTTAACTGCTACGACA -ACGGAACGCTTAACTGCTAGCTCA -ACGGAACGCTTAACTGCTTCACGT -ACGGAACGCTTAACTGCTCGTAGT -ACGGAACGCTTAACTGCTGTCAGT -ACGGAACGCTTAACTGCTGAAGGT -ACGGAACGCTTAACTGCTAACCGT -ACGGAACGCTTAACTGCTTTGTGC -ACGGAACGCTTAACTGCTCTAAGC -ACGGAACGCTTAACTGCTACTAGC -ACGGAACGCTTAACTGCTAGATGC -ACGGAACGCTTAACTGCTTGAAGG -ACGGAACGCTTAACTGCTCAATGG -ACGGAACGCTTAACTGCTATGAGG -ACGGAACGCTTAACTGCTAATGGG -ACGGAACGCTTAACTGCTTCCTGA -ACGGAACGCTTAACTGCTTAGCGA -ACGGAACGCTTAACTGCTCACAGA -ACGGAACGCTTAACTGCTGCAAGA -ACGGAACGCTTAACTGCTGGTTGA -ACGGAACGCTTAACTGCTTCCGAT -ACGGAACGCTTAACTGCTTGGCAT -ACGGAACGCTTAACTGCTCGAGAT -ACGGAACGCTTAACTGCTTACCAC -ACGGAACGCTTAACTGCTCAGAAC -ACGGAACGCTTAACTGCTGTCTAC -ACGGAACGCTTAACTGCTACGTAC -ACGGAACGCTTAACTGCTAGTGAC -ACGGAACGCTTAACTGCTCTGTAG -ACGGAACGCTTAACTGCTCCTAAG -ACGGAACGCTTAACTGCTGTTCAG -ACGGAACGCTTAACTGCTGCATAG -ACGGAACGCTTAACTGCTGACAAG -ACGGAACGCTTAACTGCTAAGCAG -ACGGAACGCTTAACTGCTCGTCAA -ACGGAACGCTTAACTGCTGCTGAA -ACGGAACGCTTAACTGCTAGTACG -ACGGAACGCTTAACTGCTATCCGA -ACGGAACGCTTAACTGCTATGGGA -ACGGAACGCTTAACTGCTGTGCAA -ACGGAACGCTTAACTGCTGAGGAA -ACGGAACGCTTAACTGCTCAGGTA -ACGGAACGCTTAACTGCTGACTCT -ACGGAACGCTTAACTGCTAGTCCT -ACGGAACGCTTAACTGCTTAAGCC -ACGGAACGCTTAACTGCTATAGCC -ACGGAACGCTTAACTGCTTAACCG -ACGGAACGCTTAACTGCTATGCCA -ACGGAACGCTTATCTGGAGGAAAC -ACGGAACGCTTATCTGGAAACACC -ACGGAACGCTTATCTGGAATCGAG -ACGGAACGCTTATCTGGACTCCTT -ACGGAACGCTTATCTGGACCTGTT -ACGGAACGCTTATCTGGACGGTTT -ACGGAACGCTTATCTGGAGTGGTT -ACGGAACGCTTATCTGGAGCCTTT -ACGGAACGCTTATCTGGAGGTCTT -ACGGAACGCTTATCTGGAACGCTT -ACGGAACGCTTATCTGGAAGCGTT -ACGGAACGCTTATCTGGATTCGTC -ACGGAACGCTTATCTGGATCTCTC -ACGGAACGCTTATCTGGATGGATC -ACGGAACGCTTATCTGGACACTTC -ACGGAACGCTTATCTGGAGTACTC -ACGGAACGCTTATCTGGAGATGTC -ACGGAACGCTTATCTGGAACAGTC -ACGGAACGCTTATCTGGATTGCTG -ACGGAACGCTTATCTGGATCCATG -ACGGAACGCTTATCTGGATGTGTG -ACGGAACGCTTATCTGGACTAGTG -ACGGAACGCTTATCTGGACATCTG -ACGGAACGCTTATCTGGAGAGTTG -ACGGAACGCTTATCTGGAAGACTG -ACGGAACGCTTATCTGGATCGGTA -ACGGAACGCTTATCTGGATGCCTA -ACGGAACGCTTATCTGGACCACTA -ACGGAACGCTTATCTGGAGGAGTA -ACGGAACGCTTATCTGGATCGTCT -ACGGAACGCTTATCTGGATGCACT -ACGGAACGCTTATCTGGACTGACT -ACGGAACGCTTATCTGGACAACCT -ACGGAACGCTTATCTGGAGCTACT -ACGGAACGCTTATCTGGAGGATCT -ACGGAACGCTTATCTGGAAAGGCT -ACGGAACGCTTATCTGGATCAACC -ACGGAACGCTTATCTGGATGTTCC -ACGGAACGCTTATCTGGAATTCCC -ACGGAACGCTTATCTGGATTCTCG -ACGGAACGCTTATCTGGATAGACG -ACGGAACGCTTATCTGGAGTAACG -ACGGAACGCTTATCTGGAACTTCG -ACGGAACGCTTATCTGGATACGCA -ACGGAACGCTTATCTGGACTTGCA -ACGGAACGCTTATCTGGACGAACA -ACGGAACGCTTATCTGGACAGTCA -ACGGAACGCTTATCTGGAGATCCA -ACGGAACGCTTATCTGGAACGACA -ACGGAACGCTTATCTGGAAGCTCA -ACGGAACGCTTATCTGGATCACGT -ACGGAACGCTTATCTGGACGTAGT -ACGGAACGCTTATCTGGAGTCAGT -ACGGAACGCTTATCTGGAGAAGGT -ACGGAACGCTTATCTGGAAACCGT -ACGGAACGCTTATCTGGATTGTGC -ACGGAACGCTTATCTGGACTAAGC -ACGGAACGCTTATCTGGAACTAGC -ACGGAACGCTTATCTGGAAGATGC -ACGGAACGCTTATCTGGATGAAGG -ACGGAACGCTTATCTGGACAATGG -ACGGAACGCTTATCTGGAATGAGG -ACGGAACGCTTATCTGGAAATGGG -ACGGAACGCTTATCTGGATCCTGA -ACGGAACGCTTATCTGGATAGCGA -ACGGAACGCTTATCTGGACACAGA -ACGGAACGCTTATCTGGAGCAAGA -ACGGAACGCTTATCTGGAGGTTGA -ACGGAACGCTTATCTGGATCCGAT -ACGGAACGCTTATCTGGATGGCAT -ACGGAACGCTTATCTGGACGAGAT -ACGGAACGCTTATCTGGATACCAC -ACGGAACGCTTATCTGGACAGAAC -ACGGAACGCTTATCTGGAGTCTAC -ACGGAACGCTTATCTGGAACGTAC -ACGGAACGCTTATCTGGAAGTGAC -ACGGAACGCTTATCTGGACTGTAG -ACGGAACGCTTATCTGGACCTAAG -ACGGAACGCTTATCTGGAGTTCAG -ACGGAACGCTTATCTGGAGCATAG -ACGGAACGCTTATCTGGAGACAAG -ACGGAACGCTTATCTGGAAAGCAG -ACGGAACGCTTATCTGGACGTCAA -ACGGAACGCTTATCTGGAGCTGAA -ACGGAACGCTTATCTGGAAGTACG -ACGGAACGCTTATCTGGAATCCGA -ACGGAACGCTTATCTGGAATGGGA -ACGGAACGCTTATCTGGAGTGCAA -ACGGAACGCTTATCTGGAGAGGAA -ACGGAACGCTTATCTGGACAGGTA -ACGGAACGCTTATCTGGAGACTCT -ACGGAACGCTTATCTGGAAGTCCT -ACGGAACGCTTATCTGGATAAGCC -ACGGAACGCTTATCTGGAATAGCC -ACGGAACGCTTATCTGGATAACCG -ACGGAACGCTTATCTGGAATGCCA -ACGGAACGCTTAGCTAAGGGAAAC -ACGGAACGCTTAGCTAAGAACACC -ACGGAACGCTTAGCTAAGATCGAG -ACGGAACGCTTAGCTAAGCTCCTT -ACGGAACGCTTAGCTAAGCCTGTT -ACGGAACGCTTAGCTAAGCGGTTT -ACGGAACGCTTAGCTAAGGTGGTT -ACGGAACGCTTAGCTAAGGCCTTT -ACGGAACGCTTAGCTAAGGGTCTT -ACGGAACGCTTAGCTAAGACGCTT -ACGGAACGCTTAGCTAAGAGCGTT -ACGGAACGCTTAGCTAAGTTCGTC -ACGGAACGCTTAGCTAAGTCTCTC -ACGGAACGCTTAGCTAAGTGGATC -ACGGAACGCTTAGCTAAGCACTTC -ACGGAACGCTTAGCTAAGGTACTC -ACGGAACGCTTAGCTAAGGATGTC -ACGGAACGCTTAGCTAAGACAGTC -ACGGAACGCTTAGCTAAGTTGCTG -ACGGAACGCTTAGCTAAGTCCATG -ACGGAACGCTTAGCTAAGTGTGTG -ACGGAACGCTTAGCTAAGCTAGTG -ACGGAACGCTTAGCTAAGCATCTG -ACGGAACGCTTAGCTAAGGAGTTG -ACGGAACGCTTAGCTAAGAGACTG -ACGGAACGCTTAGCTAAGTCGGTA -ACGGAACGCTTAGCTAAGTGCCTA -ACGGAACGCTTAGCTAAGCCACTA -ACGGAACGCTTAGCTAAGGGAGTA -ACGGAACGCTTAGCTAAGTCGTCT -ACGGAACGCTTAGCTAAGTGCACT -ACGGAACGCTTAGCTAAGCTGACT -ACGGAACGCTTAGCTAAGCAACCT -ACGGAACGCTTAGCTAAGGCTACT -ACGGAACGCTTAGCTAAGGGATCT -ACGGAACGCTTAGCTAAGAAGGCT -ACGGAACGCTTAGCTAAGTCAACC -ACGGAACGCTTAGCTAAGTGTTCC -ACGGAACGCTTAGCTAAGATTCCC -ACGGAACGCTTAGCTAAGTTCTCG -ACGGAACGCTTAGCTAAGTAGACG -ACGGAACGCTTAGCTAAGGTAACG -ACGGAACGCTTAGCTAAGACTTCG -ACGGAACGCTTAGCTAAGTACGCA -ACGGAACGCTTAGCTAAGCTTGCA -ACGGAACGCTTAGCTAAGCGAACA -ACGGAACGCTTAGCTAAGCAGTCA -ACGGAACGCTTAGCTAAGGATCCA -ACGGAACGCTTAGCTAAGACGACA -ACGGAACGCTTAGCTAAGAGCTCA -ACGGAACGCTTAGCTAAGTCACGT -ACGGAACGCTTAGCTAAGCGTAGT -ACGGAACGCTTAGCTAAGGTCAGT -ACGGAACGCTTAGCTAAGGAAGGT -ACGGAACGCTTAGCTAAGAACCGT -ACGGAACGCTTAGCTAAGTTGTGC -ACGGAACGCTTAGCTAAGCTAAGC -ACGGAACGCTTAGCTAAGACTAGC -ACGGAACGCTTAGCTAAGAGATGC -ACGGAACGCTTAGCTAAGTGAAGG -ACGGAACGCTTAGCTAAGCAATGG -ACGGAACGCTTAGCTAAGATGAGG -ACGGAACGCTTAGCTAAGAATGGG -ACGGAACGCTTAGCTAAGTCCTGA -ACGGAACGCTTAGCTAAGTAGCGA -ACGGAACGCTTAGCTAAGCACAGA -ACGGAACGCTTAGCTAAGGCAAGA -ACGGAACGCTTAGCTAAGGGTTGA -ACGGAACGCTTAGCTAAGTCCGAT -ACGGAACGCTTAGCTAAGTGGCAT -ACGGAACGCTTAGCTAAGCGAGAT -ACGGAACGCTTAGCTAAGTACCAC -ACGGAACGCTTAGCTAAGCAGAAC -ACGGAACGCTTAGCTAAGGTCTAC -ACGGAACGCTTAGCTAAGACGTAC -ACGGAACGCTTAGCTAAGAGTGAC -ACGGAACGCTTAGCTAAGCTGTAG -ACGGAACGCTTAGCTAAGCCTAAG -ACGGAACGCTTAGCTAAGGTTCAG -ACGGAACGCTTAGCTAAGGCATAG -ACGGAACGCTTAGCTAAGGACAAG -ACGGAACGCTTAGCTAAGAAGCAG -ACGGAACGCTTAGCTAAGCGTCAA -ACGGAACGCTTAGCTAAGGCTGAA -ACGGAACGCTTAGCTAAGAGTACG -ACGGAACGCTTAGCTAAGATCCGA -ACGGAACGCTTAGCTAAGATGGGA -ACGGAACGCTTAGCTAAGGTGCAA -ACGGAACGCTTAGCTAAGGAGGAA -ACGGAACGCTTAGCTAAGCAGGTA -ACGGAACGCTTAGCTAAGGACTCT -ACGGAACGCTTAGCTAAGAGTCCT -ACGGAACGCTTAGCTAAGTAAGCC -ACGGAACGCTTAGCTAAGATAGCC -ACGGAACGCTTAGCTAAGTAACCG -ACGGAACGCTTAGCTAAGATGCCA -ACGGAACGCTTAACCTCAGGAAAC -ACGGAACGCTTAACCTCAAACACC -ACGGAACGCTTAACCTCAATCGAG -ACGGAACGCTTAACCTCACTCCTT -ACGGAACGCTTAACCTCACCTGTT -ACGGAACGCTTAACCTCACGGTTT -ACGGAACGCTTAACCTCAGTGGTT -ACGGAACGCTTAACCTCAGCCTTT -ACGGAACGCTTAACCTCAGGTCTT -ACGGAACGCTTAACCTCAACGCTT -ACGGAACGCTTAACCTCAAGCGTT -ACGGAACGCTTAACCTCATTCGTC -ACGGAACGCTTAACCTCATCTCTC -ACGGAACGCTTAACCTCATGGATC -ACGGAACGCTTAACCTCACACTTC -ACGGAACGCTTAACCTCAGTACTC -ACGGAACGCTTAACCTCAGATGTC -ACGGAACGCTTAACCTCAACAGTC -ACGGAACGCTTAACCTCATTGCTG -ACGGAACGCTTAACCTCATCCATG -ACGGAACGCTTAACCTCATGTGTG -ACGGAACGCTTAACCTCACTAGTG -ACGGAACGCTTAACCTCACATCTG -ACGGAACGCTTAACCTCAGAGTTG -ACGGAACGCTTAACCTCAAGACTG -ACGGAACGCTTAACCTCATCGGTA -ACGGAACGCTTAACCTCATGCCTA -ACGGAACGCTTAACCTCACCACTA -ACGGAACGCTTAACCTCAGGAGTA -ACGGAACGCTTAACCTCATCGTCT -ACGGAACGCTTAACCTCATGCACT -ACGGAACGCTTAACCTCACTGACT -ACGGAACGCTTAACCTCACAACCT -ACGGAACGCTTAACCTCAGCTACT -ACGGAACGCTTAACCTCAGGATCT -ACGGAACGCTTAACCTCAAAGGCT -ACGGAACGCTTAACCTCATCAACC -ACGGAACGCTTAACCTCATGTTCC -ACGGAACGCTTAACCTCAATTCCC -ACGGAACGCTTAACCTCATTCTCG -ACGGAACGCTTAACCTCATAGACG -ACGGAACGCTTAACCTCAGTAACG -ACGGAACGCTTAACCTCAACTTCG -ACGGAACGCTTAACCTCATACGCA -ACGGAACGCTTAACCTCACTTGCA -ACGGAACGCTTAACCTCACGAACA -ACGGAACGCTTAACCTCACAGTCA -ACGGAACGCTTAACCTCAGATCCA -ACGGAACGCTTAACCTCAACGACA -ACGGAACGCTTAACCTCAAGCTCA -ACGGAACGCTTAACCTCATCACGT -ACGGAACGCTTAACCTCACGTAGT -ACGGAACGCTTAACCTCAGTCAGT -ACGGAACGCTTAACCTCAGAAGGT -ACGGAACGCTTAACCTCAAACCGT -ACGGAACGCTTAACCTCATTGTGC -ACGGAACGCTTAACCTCACTAAGC -ACGGAACGCTTAACCTCAACTAGC -ACGGAACGCTTAACCTCAAGATGC -ACGGAACGCTTAACCTCATGAAGG -ACGGAACGCTTAACCTCACAATGG -ACGGAACGCTTAACCTCAATGAGG -ACGGAACGCTTAACCTCAAATGGG -ACGGAACGCTTAACCTCATCCTGA -ACGGAACGCTTAACCTCATAGCGA -ACGGAACGCTTAACCTCACACAGA -ACGGAACGCTTAACCTCAGCAAGA -ACGGAACGCTTAACCTCAGGTTGA -ACGGAACGCTTAACCTCATCCGAT -ACGGAACGCTTAACCTCATGGCAT -ACGGAACGCTTAACCTCACGAGAT -ACGGAACGCTTAACCTCATACCAC -ACGGAACGCTTAACCTCACAGAAC -ACGGAACGCTTAACCTCAGTCTAC -ACGGAACGCTTAACCTCAACGTAC -ACGGAACGCTTAACCTCAAGTGAC -ACGGAACGCTTAACCTCACTGTAG -ACGGAACGCTTAACCTCACCTAAG -ACGGAACGCTTAACCTCAGTTCAG -ACGGAACGCTTAACCTCAGCATAG -ACGGAACGCTTAACCTCAGACAAG -ACGGAACGCTTAACCTCAAAGCAG -ACGGAACGCTTAACCTCACGTCAA -ACGGAACGCTTAACCTCAGCTGAA -ACGGAACGCTTAACCTCAAGTACG -ACGGAACGCTTAACCTCAATCCGA -ACGGAACGCTTAACCTCAATGGGA -ACGGAACGCTTAACCTCAGTGCAA -ACGGAACGCTTAACCTCAGAGGAA -ACGGAACGCTTAACCTCACAGGTA -ACGGAACGCTTAACCTCAGACTCT -ACGGAACGCTTAACCTCAAGTCCT -ACGGAACGCTTAACCTCATAAGCC -ACGGAACGCTTAACCTCAATAGCC -ACGGAACGCTTAACCTCATAACCG -ACGGAACGCTTAACCTCAATGCCA -ACGGAACGCTTATCCTGTGGAAAC -ACGGAACGCTTATCCTGTAACACC -ACGGAACGCTTATCCTGTATCGAG -ACGGAACGCTTATCCTGTCTCCTT -ACGGAACGCTTATCCTGTCCTGTT -ACGGAACGCTTATCCTGTCGGTTT -ACGGAACGCTTATCCTGTGTGGTT -ACGGAACGCTTATCCTGTGCCTTT -ACGGAACGCTTATCCTGTGGTCTT -ACGGAACGCTTATCCTGTACGCTT -ACGGAACGCTTATCCTGTAGCGTT -ACGGAACGCTTATCCTGTTTCGTC -ACGGAACGCTTATCCTGTTCTCTC -ACGGAACGCTTATCCTGTTGGATC -ACGGAACGCTTATCCTGTCACTTC -ACGGAACGCTTATCCTGTGTACTC -ACGGAACGCTTATCCTGTGATGTC -ACGGAACGCTTATCCTGTACAGTC -ACGGAACGCTTATCCTGTTTGCTG -ACGGAACGCTTATCCTGTTCCATG -ACGGAACGCTTATCCTGTTGTGTG -ACGGAACGCTTATCCTGTCTAGTG -ACGGAACGCTTATCCTGTCATCTG -ACGGAACGCTTATCCTGTGAGTTG -ACGGAACGCTTATCCTGTAGACTG -ACGGAACGCTTATCCTGTTCGGTA -ACGGAACGCTTATCCTGTTGCCTA -ACGGAACGCTTATCCTGTCCACTA -ACGGAACGCTTATCCTGTGGAGTA -ACGGAACGCTTATCCTGTTCGTCT -ACGGAACGCTTATCCTGTTGCACT -ACGGAACGCTTATCCTGTCTGACT -ACGGAACGCTTATCCTGTCAACCT -ACGGAACGCTTATCCTGTGCTACT -ACGGAACGCTTATCCTGTGGATCT -ACGGAACGCTTATCCTGTAAGGCT -ACGGAACGCTTATCCTGTTCAACC -ACGGAACGCTTATCCTGTTGTTCC -ACGGAACGCTTATCCTGTATTCCC -ACGGAACGCTTATCCTGTTTCTCG -ACGGAACGCTTATCCTGTTAGACG -ACGGAACGCTTATCCTGTGTAACG -ACGGAACGCTTATCCTGTACTTCG -ACGGAACGCTTATCCTGTTACGCA -ACGGAACGCTTATCCTGTCTTGCA -ACGGAACGCTTATCCTGTCGAACA -ACGGAACGCTTATCCTGTCAGTCA -ACGGAACGCTTATCCTGTGATCCA -ACGGAACGCTTATCCTGTACGACA -ACGGAACGCTTATCCTGTAGCTCA -ACGGAACGCTTATCCTGTTCACGT -ACGGAACGCTTATCCTGTCGTAGT -ACGGAACGCTTATCCTGTGTCAGT -ACGGAACGCTTATCCTGTGAAGGT -ACGGAACGCTTATCCTGTAACCGT -ACGGAACGCTTATCCTGTTTGTGC -ACGGAACGCTTATCCTGTCTAAGC -ACGGAACGCTTATCCTGTACTAGC -ACGGAACGCTTATCCTGTAGATGC -ACGGAACGCTTATCCTGTTGAAGG -ACGGAACGCTTATCCTGTCAATGG -ACGGAACGCTTATCCTGTATGAGG -ACGGAACGCTTATCCTGTAATGGG -ACGGAACGCTTATCCTGTTCCTGA -ACGGAACGCTTATCCTGTTAGCGA -ACGGAACGCTTATCCTGTCACAGA -ACGGAACGCTTATCCTGTGCAAGA -ACGGAACGCTTATCCTGTGGTTGA -ACGGAACGCTTATCCTGTTCCGAT -ACGGAACGCTTATCCTGTTGGCAT -ACGGAACGCTTATCCTGTCGAGAT -ACGGAACGCTTATCCTGTTACCAC -ACGGAACGCTTATCCTGTCAGAAC -ACGGAACGCTTATCCTGTGTCTAC -ACGGAACGCTTATCCTGTACGTAC -ACGGAACGCTTATCCTGTAGTGAC -ACGGAACGCTTATCCTGTCTGTAG -ACGGAACGCTTATCCTGTCCTAAG -ACGGAACGCTTATCCTGTGTTCAG -ACGGAACGCTTATCCTGTGCATAG -ACGGAACGCTTATCCTGTGACAAG -ACGGAACGCTTATCCTGTAAGCAG -ACGGAACGCTTATCCTGTCGTCAA -ACGGAACGCTTATCCTGTGCTGAA -ACGGAACGCTTATCCTGTAGTACG -ACGGAACGCTTATCCTGTATCCGA -ACGGAACGCTTATCCTGTATGGGA -ACGGAACGCTTATCCTGTGTGCAA -ACGGAACGCTTATCCTGTGAGGAA -ACGGAACGCTTATCCTGTCAGGTA -ACGGAACGCTTATCCTGTGACTCT -ACGGAACGCTTATCCTGTAGTCCT -ACGGAACGCTTATCCTGTTAAGCC -ACGGAACGCTTATCCTGTATAGCC -ACGGAACGCTTATCCTGTTAACCG -ACGGAACGCTTATCCTGTATGCCA -ACGGAACGCTTACCCATTGGAAAC -ACGGAACGCTTACCCATTAACACC -ACGGAACGCTTACCCATTATCGAG -ACGGAACGCTTACCCATTCTCCTT -ACGGAACGCTTACCCATTCCTGTT -ACGGAACGCTTACCCATTCGGTTT -ACGGAACGCTTACCCATTGTGGTT -ACGGAACGCTTACCCATTGCCTTT -ACGGAACGCTTACCCATTGGTCTT -ACGGAACGCTTACCCATTACGCTT -ACGGAACGCTTACCCATTAGCGTT -ACGGAACGCTTACCCATTTTCGTC -ACGGAACGCTTACCCATTTCTCTC -ACGGAACGCTTACCCATTTGGATC -ACGGAACGCTTACCCATTCACTTC -ACGGAACGCTTACCCATTGTACTC -ACGGAACGCTTACCCATTGATGTC -ACGGAACGCTTACCCATTACAGTC -ACGGAACGCTTACCCATTTTGCTG -ACGGAACGCTTACCCATTTCCATG -ACGGAACGCTTACCCATTTGTGTG -ACGGAACGCTTACCCATTCTAGTG -ACGGAACGCTTACCCATTCATCTG -ACGGAACGCTTACCCATTGAGTTG -ACGGAACGCTTACCCATTAGACTG -ACGGAACGCTTACCCATTTCGGTA -ACGGAACGCTTACCCATTTGCCTA -ACGGAACGCTTACCCATTCCACTA -ACGGAACGCTTACCCATTGGAGTA -ACGGAACGCTTACCCATTTCGTCT -ACGGAACGCTTACCCATTTGCACT -ACGGAACGCTTACCCATTCTGACT -ACGGAACGCTTACCCATTCAACCT -ACGGAACGCTTACCCATTGCTACT -ACGGAACGCTTACCCATTGGATCT -ACGGAACGCTTACCCATTAAGGCT -ACGGAACGCTTACCCATTTCAACC -ACGGAACGCTTACCCATTTGTTCC -ACGGAACGCTTACCCATTATTCCC -ACGGAACGCTTACCCATTTTCTCG -ACGGAACGCTTACCCATTTAGACG -ACGGAACGCTTACCCATTGTAACG -ACGGAACGCTTACCCATTACTTCG -ACGGAACGCTTACCCATTTACGCA -ACGGAACGCTTACCCATTCTTGCA -ACGGAACGCTTACCCATTCGAACA -ACGGAACGCTTACCCATTCAGTCA -ACGGAACGCTTACCCATTGATCCA -ACGGAACGCTTACCCATTACGACA -ACGGAACGCTTACCCATTAGCTCA -ACGGAACGCTTACCCATTTCACGT -ACGGAACGCTTACCCATTCGTAGT -ACGGAACGCTTACCCATTGTCAGT -ACGGAACGCTTACCCATTGAAGGT -ACGGAACGCTTACCCATTAACCGT -ACGGAACGCTTACCCATTTTGTGC -ACGGAACGCTTACCCATTCTAAGC -ACGGAACGCTTACCCATTACTAGC -ACGGAACGCTTACCCATTAGATGC -ACGGAACGCTTACCCATTTGAAGG -ACGGAACGCTTACCCATTCAATGG -ACGGAACGCTTACCCATTATGAGG -ACGGAACGCTTACCCATTAATGGG -ACGGAACGCTTACCCATTTCCTGA -ACGGAACGCTTACCCATTTAGCGA -ACGGAACGCTTACCCATTCACAGA -ACGGAACGCTTACCCATTGCAAGA -ACGGAACGCTTACCCATTGGTTGA -ACGGAACGCTTACCCATTTCCGAT -ACGGAACGCTTACCCATTTGGCAT -ACGGAACGCTTACCCATTCGAGAT -ACGGAACGCTTACCCATTTACCAC -ACGGAACGCTTACCCATTCAGAAC -ACGGAACGCTTACCCATTGTCTAC -ACGGAACGCTTACCCATTACGTAC -ACGGAACGCTTACCCATTAGTGAC -ACGGAACGCTTACCCATTCTGTAG -ACGGAACGCTTACCCATTCCTAAG -ACGGAACGCTTACCCATTGTTCAG -ACGGAACGCTTACCCATTGCATAG -ACGGAACGCTTACCCATTGACAAG -ACGGAACGCTTACCCATTAAGCAG -ACGGAACGCTTACCCATTCGTCAA -ACGGAACGCTTACCCATTGCTGAA -ACGGAACGCTTACCCATTAGTACG -ACGGAACGCTTACCCATTATCCGA -ACGGAACGCTTACCCATTATGGGA -ACGGAACGCTTACCCATTGTGCAA -ACGGAACGCTTACCCATTGAGGAA -ACGGAACGCTTACCCATTCAGGTA -ACGGAACGCTTACCCATTGACTCT -ACGGAACGCTTACCCATTAGTCCT -ACGGAACGCTTACCCATTTAAGCC -ACGGAACGCTTACCCATTATAGCC -ACGGAACGCTTACCCATTTAACCG -ACGGAACGCTTACCCATTATGCCA -ACGGAACGCTTATCGTTCGGAAAC -ACGGAACGCTTATCGTTCAACACC -ACGGAACGCTTATCGTTCATCGAG -ACGGAACGCTTATCGTTCCTCCTT -ACGGAACGCTTATCGTTCCCTGTT -ACGGAACGCTTATCGTTCCGGTTT -ACGGAACGCTTATCGTTCGTGGTT -ACGGAACGCTTATCGTTCGCCTTT -ACGGAACGCTTATCGTTCGGTCTT -ACGGAACGCTTATCGTTCACGCTT -ACGGAACGCTTATCGTTCAGCGTT -ACGGAACGCTTATCGTTCTTCGTC -ACGGAACGCTTATCGTTCTCTCTC -ACGGAACGCTTATCGTTCTGGATC -ACGGAACGCTTATCGTTCCACTTC -ACGGAACGCTTATCGTTCGTACTC -ACGGAACGCTTATCGTTCGATGTC -ACGGAACGCTTATCGTTCACAGTC -ACGGAACGCTTATCGTTCTTGCTG -ACGGAACGCTTATCGTTCTCCATG -ACGGAACGCTTATCGTTCTGTGTG -ACGGAACGCTTATCGTTCCTAGTG -ACGGAACGCTTATCGTTCCATCTG -ACGGAACGCTTATCGTTCGAGTTG -ACGGAACGCTTATCGTTCAGACTG -ACGGAACGCTTATCGTTCTCGGTA -ACGGAACGCTTATCGTTCTGCCTA -ACGGAACGCTTATCGTTCCCACTA -ACGGAACGCTTATCGTTCGGAGTA -ACGGAACGCTTATCGTTCTCGTCT -ACGGAACGCTTATCGTTCTGCACT -ACGGAACGCTTATCGTTCCTGACT -ACGGAACGCTTATCGTTCCAACCT -ACGGAACGCTTATCGTTCGCTACT -ACGGAACGCTTATCGTTCGGATCT -ACGGAACGCTTATCGTTCAAGGCT -ACGGAACGCTTATCGTTCTCAACC -ACGGAACGCTTATCGTTCTGTTCC -ACGGAACGCTTATCGTTCATTCCC -ACGGAACGCTTATCGTTCTTCTCG -ACGGAACGCTTATCGTTCTAGACG -ACGGAACGCTTATCGTTCGTAACG -ACGGAACGCTTATCGTTCACTTCG -ACGGAACGCTTATCGTTCTACGCA -ACGGAACGCTTATCGTTCCTTGCA -ACGGAACGCTTATCGTTCCGAACA -ACGGAACGCTTATCGTTCCAGTCA -ACGGAACGCTTATCGTTCGATCCA -ACGGAACGCTTATCGTTCACGACA -ACGGAACGCTTATCGTTCAGCTCA -ACGGAACGCTTATCGTTCTCACGT -ACGGAACGCTTATCGTTCCGTAGT -ACGGAACGCTTATCGTTCGTCAGT -ACGGAACGCTTATCGTTCGAAGGT -ACGGAACGCTTATCGTTCAACCGT -ACGGAACGCTTATCGTTCTTGTGC -ACGGAACGCTTATCGTTCCTAAGC -ACGGAACGCTTATCGTTCACTAGC -ACGGAACGCTTATCGTTCAGATGC -ACGGAACGCTTATCGTTCTGAAGG -ACGGAACGCTTATCGTTCCAATGG -ACGGAACGCTTATCGTTCATGAGG -ACGGAACGCTTATCGTTCAATGGG -ACGGAACGCTTATCGTTCTCCTGA -ACGGAACGCTTATCGTTCTAGCGA -ACGGAACGCTTATCGTTCCACAGA -ACGGAACGCTTATCGTTCGCAAGA -ACGGAACGCTTATCGTTCGGTTGA -ACGGAACGCTTATCGTTCTCCGAT -ACGGAACGCTTATCGTTCTGGCAT -ACGGAACGCTTATCGTTCCGAGAT -ACGGAACGCTTATCGTTCTACCAC -ACGGAACGCTTATCGTTCCAGAAC -ACGGAACGCTTATCGTTCGTCTAC -ACGGAACGCTTATCGTTCACGTAC -ACGGAACGCTTATCGTTCAGTGAC -ACGGAACGCTTATCGTTCCTGTAG -ACGGAACGCTTATCGTTCCCTAAG -ACGGAACGCTTATCGTTCGTTCAG -ACGGAACGCTTATCGTTCGCATAG -ACGGAACGCTTATCGTTCGACAAG -ACGGAACGCTTATCGTTCAAGCAG -ACGGAACGCTTATCGTTCCGTCAA -ACGGAACGCTTATCGTTCGCTGAA -ACGGAACGCTTATCGTTCAGTACG -ACGGAACGCTTATCGTTCATCCGA -ACGGAACGCTTATCGTTCATGGGA -ACGGAACGCTTATCGTTCGTGCAA -ACGGAACGCTTATCGTTCGAGGAA -ACGGAACGCTTATCGTTCCAGGTA -ACGGAACGCTTATCGTTCGACTCT -ACGGAACGCTTATCGTTCAGTCCT -ACGGAACGCTTATCGTTCTAAGCC -ACGGAACGCTTATCGTTCATAGCC -ACGGAACGCTTATCGTTCTAACCG -ACGGAACGCTTATCGTTCATGCCA -ACGGAACGCTTAACGTAGGGAAAC -ACGGAACGCTTAACGTAGAACACC -ACGGAACGCTTAACGTAGATCGAG -ACGGAACGCTTAACGTAGCTCCTT -ACGGAACGCTTAACGTAGCCTGTT -ACGGAACGCTTAACGTAGCGGTTT -ACGGAACGCTTAACGTAGGTGGTT -ACGGAACGCTTAACGTAGGCCTTT -ACGGAACGCTTAACGTAGGGTCTT -ACGGAACGCTTAACGTAGACGCTT -ACGGAACGCTTAACGTAGAGCGTT -ACGGAACGCTTAACGTAGTTCGTC -ACGGAACGCTTAACGTAGTCTCTC -ACGGAACGCTTAACGTAGTGGATC -ACGGAACGCTTAACGTAGCACTTC -ACGGAACGCTTAACGTAGGTACTC -ACGGAACGCTTAACGTAGGATGTC -ACGGAACGCTTAACGTAGACAGTC -ACGGAACGCTTAACGTAGTTGCTG -ACGGAACGCTTAACGTAGTCCATG -ACGGAACGCTTAACGTAGTGTGTG -ACGGAACGCTTAACGTAGCTAGTG -ACGGAACGCTTAACGTAGCATCTG -ACGGAACGCTTAACGTAGGAGTTG -ACGGAACGCTTAACGTAGAGACTG -ACGGAACGCTTAACGTAGTCGGTA -ACGGAACGCTTAACGTAGTGCCTA -ACGGAACGCTTAACGTAGCCACTA -ACGGAACGCTTAACGTAGGGAGTA -ACGGAACGCTTAACGTAGTCGTCT -ACGGAACGCTTAACGTAGTGCACT -ACGGAACGCTTAACGTAGCTGACT -ACGGAACGCTTAACGTAGCAACCT -ACGGAACGCTTAACGTAGGCTACT -ACGGAACGCTTAACGTAGGGATCT -ACGGAACGCTTAACGTAGAAGGCT -ACGGAACGCTTAACGTAGTCAACC -ACGGAACGCTTAACGTAGTGTTCC -ACGGAACGCTTAACGTAGATTCCC -ACGGAACGCTTAACGTAGTTCTCG -ACGGAACGCTTAACGTAGTAGACG -ACGGAACGCTTAACGTAGGTAACG -ACGGAACGCTTAACGTAGACTTCG -ACGGAACGCTTAACGTAGTACGCA -ACGGAACGCTTAACGTAGCTTGCA -ACGGAACGCTTAACGTAGCGAACA -ACGGAACGCTTAACGTAGCAGTCA -ACGGAACGCTTAACGTAGGATCCA -ACGGAACGCTTAACGTAGACGACA -ACGGAACGCTTAACGTAGAGCTCA -ACGGAACGCTTAACGTAGTCACGT -ACGGAACGCTTAACGTAGCGTAGT -ACGGAACGCTTAACGTAGGTCAGT -ACGGAACGCTTAACGTAGGAAGGT -ACGGAACGCTTAACGTAGAACCGT -ACGGAACGCTTAACGTAGTTGTGC -ACGGAACGCTTAACGTAGCTAAGC -ACGGAACGCTTAACGTAGACTAGC -ACGGAACGCTTAACGTAGAGATGC -ACGGAACGCTTAACGTAGTGAAGG -ACGGAACGCTTAACGTAGCAATGG -ACGGAACGCTTAACGTAGATGAGG -ACGGAACGCTTAACGTAGAATGGG -ACGGAACGCTTAACGTAGTCCTGA -ACGGAACGCTTAACGTAGTAGCGA -ACGGAACGCTTAACGTAGCACAGA -ACGGAACGCTTAACGTAGGCAAGA -ACGGAACGCTTAACGTAGGGTTGA -ACGGAACGCTTAACGTAGTCCGAT -ACGGAACGCTTAACGTAGTGGCAT -ACGGAACGCTTAACGTAGCGAGAT -ACGGAACGCTTAACGTAGTACCAC -ACGGAACGCTTAACGTAGCAGAAC -ACGGAACGCTTAACGTAGGTCTAC -ACGGAACGCTTAACGTAGACGTAC -ACGGAACGCTTAACGTAGAGTGAC -ACGGAACGCTTAACGTAGCTGTAG -ACGGAACGCTTAACGTAGCCTAAG -ACGGAACGCTTAACGTAGGTTCAG -ACGGAACGCTTAACGTAGGCATAG -ACGGAACGCTTAACGTAGGACAAG -ACGGAACGCTTAACGTAGAAGCAG -ACGGAACGCTTAACGTAGCGTCAA -ACGGAACGCTTAACGTAGGCTGAA -ACGGAACGCTTAACGTAGAGTACG -ACGGAACGCTTAACGTAGATCCGA -ACGGAACGCTTAACGTAGATGGGA -ACGGAACGCTTAACGTAGGTGCAA -ACGGAACGCTTAACGTAGGAGGAA -ACGGAACGCTTAACGTAGCAGGTA -ACGGAACGCTTAACGTAGGACTCT -ACGGAACGCTTAACGTAGAGTCCT -ACGGAACGCTTAACGTAGTAAGCC -ACGGAACGCTTAACGTAGATAGCC -ACGGAACGCTTAACGTAGTAACCG -ACGGAACGCTTAACGTAGATGCCA -ACGGAACGCTTAACGGTAGGAAAC -ACGGAACGCTTAACGGTAAACACC -ACGGAACGCTTAACGGTAATCGAG -ACGGAACGCTTAACGGTACTCCTT -ACGGAACGCTTAACGGTACCTGTT -ACGGAACGCTTAACGGTACGGTTT -ACGGAACGCTTAACGGTAGTGGTT -ACGGAACGCTTAACGGTAGCCTTT -ACGGAACGCTTAACGGTAGGTCTT -ACGGAACGCTTAACGGTAACGCTT -ACGGAACGCTTAACGGTAAGCGTT -ACGGAACGCTTAACGGTATTCGTC -ACGGAACGCTTAACGGTATCTCTC -ACGGAACGCTTAACGGTATGGATC -ACGGAACGCTTAACGGTACACTTC -ACGGAACGCTTAACGGTAGTACTC -ACGGAACGCTTAACGGTAGATGTC -ACGGAACGCTTAACGGTAACAGTC -ACGGAACGCTTAACGGTATTGCTG -ACGGAACGCTTAACGGTATCCATG -ACGGAACGCTTAACGGTATGTGTG -ACGGAACGCTTAACGGTACTAGTG -ACGGAACGCTTAACGGTACATCTG -ACGGAACGCTTAACGGTAGAGTTG -ACGGAACGCTTAACGGTAAGACTG -ACGGAACGCTTAACGGTATCGGTA -ACGGAACGCTTAACGGTATGCCTA -ACGGAACGCTTAACGGTACCACTA -ACGGAACGCTTAACGGTAGGAGTA -ACGGAACGCTTAACGGTATCGTCT -ACGGAACGCTTAACGGTATGCACT -ACGGAACGCTTAACGGTACTGACT -ACGGAACGCTTAACGGTACAACCT -ACGGAACGCTTAACGGTAGCTACT -ACGGAACGCTTAACGGTAGGATCT -ACGGAACGCTTAACGGTAAAGGCT -ACGGAACGCTTAACGGTATCAACC -ACGGAACGCTTAACGGTATGTTCC -ACGGAACGCTTAACGGTAATTCCC -ACGGAACGCTTAACGGTATTCTCG -ACGGAACGCTTAACGGTATAGACG -ACGGAACGCTTAACGGTAGTAACG -ACGGAACGCTTAACGGTAACTTCG -ACGGAACGCTTAACGGTATACGCA -ACGGAACGCTTAACGGTACTTGCA -ACGGAACGCTTAACGGTACGAACA -ACGGAACGCTTAACGGTACAGTCA -ACGGAACGCTTAACGGTAGATCCA -ACGGAACGCTTAACGGTAACGACA -ACGGAACGCTTAACGGTAAGCTCA -ACGGAACGCTTAACGGTATCACGT -ACGGAACGCTTAACGGTACGTAGT -ACGGAACGCTTAACGGTAGTCAGT -ACGGAACGCTTAACGGTAGAAGGT -ACGGAACGCTTAACGGTAAACCGT -ACGGAACGCTTAACGGTATTGTGC -ACGGAACGCTTAACGGTACTAAGC -ACGGAACGCTTAACGGTAACTAGC -ACGGAACGCTTAACGGTAAGATGC -ACGGAACGCTTAACGGTATGAAGG -ACGGAACGCTTAACGGTACAATGG -ACGGAACGCTTAACGGTAATGAGG -ACGGAACGCTTAACGGTAAATGGG -ACGGAACGCTTAACGGTATCCTGA -ACGGAACGCTTAACGGTATAGCGA -ACGGAACGCTTAACGGTACACAGA -ACGGAACGCTTAACGGTAGCAAGA -ACGGAACGCTTAACGGTAGGTTGA -ACGGAACGCTTAACGGTATCCGAT -ACGGAACGCTTAACGGTATGGCAT -ACGGAACGCTTAACGGTACGAGAT -ACGGAACGCTTAACGGTATACCAC -ACGGAACGCTTAACGGTACAGAAC -ACGGAACGCTTAACGGTAGTCTAC -ACGGAACGCTTAACGGTAACGTAC -ACGGAACGCTTAACGGTAAGTGAC -ACGGAACGCTTAACGGTACTGTAG -ACGGAACGCTTAACGGTACCTAAG -ACGGAACGCTTAACGGTAGTTCAG -ACGGAACGCTTAACGGTAGCATAG -ACGGAACGCTTAACGGTAGACAAG -ACGGAACGCTTAACGGTAAAGCAG -ACGGAACGCTTAACGGTACGTCAA -ACGGAACGCTTAACGGTAGCTGAA -ACGGAACGCTTAACGGTAAGTACG -ACGGAACGCTTAACGGTAATCCGA -ACGGAACGCTTAACGGTAATGGGA -ACGGAACGCTTAACGGTAGTGCAA -ACGGAACGCTTAACGGTAGAGGAA -ACGGAACGCTTAACGGTACAGGTA -ACGGAACGCTTAACGGTAGACTCT -ACGGAACGCTTAACGGTAAGTCCT -ACGGAACGCTTAACGGTATAAGCC -ACGGAACGCTTAACGGTAATAGCC -ACGGAACGCTTAACGGTATAACCG -ACGGAACGCTTAACGGTAATGCCA -ACGGAACGCTTATCGACTGGAAAC -ACGGAACGCTTATCGACTAACACC -ACGGAACGCTTATCGACTATCGAG -ACGGAACGCTTATCGACTCTCCTT -ACGGAACGCTTATCGACTCCTGTT -ACGGAACGCTTATCGACTCGGTTT -ACGGAACGCTTATCGACTGTGGTT -ACGGAACGCTTATCGACTGCCTTT -ACGGAACGCTTATCGACTGGTCTT -ACGGAACGCTTATCGACTACGCTT -ACGGAACGCTTATCGACTAGCGTT -ACGGAACGCTTATCGACTTTCGTC -ACGGAACGCTTATCGACTTCTCTC -ACGGAACGCTTATCGACTTGGATC -ACGGAACGCTTATCGACTCACTTC -ACGGAACGCTTATCGACTGTACTC -ACGGAACGCTTATCGACTGATGTC -ACGGAACGCTTATCGACTACAGTC -ACGGAACGCTTATCGACTTTGCTG -ACGGAACGCTTATCGACTTCCATG -ACGGAACGCTTATCGACTTGTGTG -ACGGAACGCTTATCGACTCTAGTG -ACGGAACGCTTATCGACTCATCTG -ACGGAACGCTTATCGACTGAGTTG -ACGGAACGCTTATCGACTAGACTG -ACGGAACGCTTATCGACTTCGGTA -ACGGAACGCTTATCGACTTGCCTA -ACGGAACGCTTATCGACTCCACTA -ACGGAACGCTTATCGACTGGAGTA -ACGGAACGCTTATCGACTTCGTCT -ACGGAACGCTTATCGACTTGCACT -ACGGAACGCTTATCGACTCTGACT -ACGGAACGCTTATCGACTCAACCT -ACGGAACGCTTATCGACTGCTACT -ACGGAACGCTTATCGACTGGATCT -ACGGAACGCTTATCGACTAAGGCT -ACGGAACGCTTATCGACTTCAACC -ACGGAACGCTTATCGACTTGTTCC -ACGGAACGCTTATCGACTATTCCC -ACGGAACGCTTATCGACTTTCTCG -ACGGAACGCTTATCGACTTAGACG -ACGGAACGCTTATCGACTGTAACG -ACGGAACGCTTATCGACTACTTCG -ACGGAACGCTTATCGACTTACGCA -ACGGAACGCTTATCGACTCTTGCA -ACGGAACGCTTATCGACTCGAACA -ACGGAACGCTTATCGACTCAGTCA -ACGGAACGCTTATCGACTGATCCA -ACGGAACGCTTATCGACTACGACA -ACGGAACGCTTATCGACTAGCTCA -ACGGAACGCTTATCGACTTCACGT -ACGGAACGCTTATCGACTCGTAGT -ACGGAACGCTTATCGACTGTCAGT -ACGGAACGCTTATCGACTGAAGGT -ACGGAACGCTTATCGACTAACCGT -ACGGAACGCTTATCGACTTTGTGC -ACGGAACGCTTATCGACTCTAAGC -ACGGAACGCTTATCGACTACTAGC -ACGGAACGCTTATCGACTAGATGC -ACGGAACGCTTATCGACTTGAAGG -ACGGAACGCTTATCGACTCAATGG -ACGGAACGCTTATCGACTATGAGG -ACGGAACGCTTATCGACTAATGGG -ACGGAACGCTTATCGACTTCCTGA -ACGGAACGCTTATCGACTTAGCGA -ACGGAACGCTTATCGACTCACAGA -ACGGAACGCTTATCGACTGCAAGA -ACGGAACGCTTATCGACTGGTTGA -ACGGAACGCTTATCGACTTCCGAT -ACGGAACGCTTATCGACTTGGCAT -ACGGAACGCTTATCGACTCGAGAT -ACGGAACGCTTATCGACTTACCAC -ACGGAACGCTTATCGACTCAGAAC -ACGGAACGCTTATCGACTGTCTAC -ACGGAACGCTTATCGACTACGTAC -ACGGAACGCTTATCGACTAGTGAC -ACGGAACGCTTATCGACTCTGTAG -ACGGAACGCTTATCGACTCCTAAG -ACGGAACGCTTATCGACTGTTCAG -ACGGAACGCTTATCGACTGCATAG -ACGGAACGCTTATCGACTGACAAG -ACGGAACGCTTATCGACTAAGCAG -ACGGAACGCTTATCGACTCGTCAA -ACGGAACGCTTATCGACTGCTGAA -ACGGAACGCTTATCGACTAGTACG -ACGGAACGCTTATCGACTATCCGA -ACGGAACGCTTATCGACTATGGGA -ACGGAACGCTTATCGACTGTGCAA -ACGGAACGCTTATCGACTGAGGAA -ACGGAACGCTTATCGACTCAGGTA -ACGGAACGCTTATCGACTGACTCT -ACGGAACGCTTATCGACTAGTCCT -ACGGAACGCTTATCGACTTAAGCC -ACGGAACGCTTATCGACTATAGCC -ACGGAACGCTTATCGACTTAACCG -ACGGAACGCTTATCGACTATGCCA -ACGGAACGCTTAGCATACGGAAAC -ACGGAACGCTTAGCATACAACACC -ACGGAACGCTTAGCATACATCGAG -ACGGAACGCTTAGCATACCTCCTT -ACGGAACGCTTAGCATACCCTGTT -ACGGAACGCTTAGCATACCGGTTT -ACGGAACGCTTAGCATACGTGGTT -ACGGAACGCTTAGCATACGCCTTT -ACGGAACGCTTAGCATACGGTCTT -ACGGAACGCTTAGCATACACGCTT -ACGGAACGCTTAGCATACAGCGTT -ACGGAACGCTTAGCATACTTCGTC -ACGGAACGCTTAGCATACTCTCTC -ACGGAACGCTTAGCATACTGGATC -ACGGAACGCTTAGCATACCACTTC -ACGGAACGCTTAGCATACGTACTC -ACGGAACGCTTAGCATACGATGTC -ACGGAACGCTTAGCATACACAGTC -ACGGAACGCTTAGCATACTTGCTG -ACGGAACGCTTAGCATACTCCATG -ACGGAACGCTTAGCATACTGTGTG -ACGGAACGCTTAGCATACCTAGTG -ACGGAACGCTTAGCATACCATCTG -ACGGAACGCTTAGCATACGAGTTG -ACGGAACGCTTAGCATACAGACTG -ACGGAACGCTTAGCATACTCGGTA -ACGGAACGCTTAGCATACTGCCTA -ACGGAACGCTTAGCATACCCACTA -ACGGAACGCTTAGCATACGGAGTA -ACGGAACGCTTAGCATACTCGTCT -ACGGAACGCTTAGCATACTGCACT -ACGGAACGCTTAGCATACCTGACT -ACGGAACGCTTAGCATACCAACCT -ACGGAACGCTTAGCATACGCTACT -ACGGAACGCTTAGCATACGGATCT -ACGGAACGCTTAGCATACAAGGCT -ACGGAACGCTTAGCATACTCAACC -ACGGAACGCTTAGCATACTGTTCC -ACGGAACGCTTAGCATACATTCCC -ACGGAACGCTTAGCATACTTCTCG -ACGGAACGCTTAGCATACTAGACG -ACGGAACGCTTAGCATACGTAACG -ACGGAACGCTTAGCATACACTTCG -ACGGAACGCTTAGCATACTACGCA -ACGGAACGCTTAGCATACCTTGCA -ACGGAACGCTTAGCATACCGAACA -ACGGAACGCTTAGCATACCAGTCA -ACGGAACGCTTAGCATACGATCCA -ACGGAACGCTTAGCATACACGACA -ACGGAACGCTTAGCATACAGCTCA -ACGGAACGCTTAGCATACTCACGT -ACGGAACGCTTAGCATACCGTAGT -ACGGAACGCTTAGCATACGTCAGT -ACGGAACGCTTAGCATACGAAGGT -ACGGAACGCTTAGCATACAACCGT -ACGGAACGCTTAGCATACTTGTGC -ACGGAACGCTTAGCATACCTAAGC -ACGGAACGCTTAGCATACACTAGC -ACGGAACGCTTAGCATACAGATGC -ACGGAACGCTTAGCATACTGAAGG -ACGGAACGCTTAGCATACCAATGG -ACGGAACGCTTAGCATACATGAGG -ACGGAACGCTTAGCATACAATGGG -ACGGAACGCTTAGCATACTCCTGA -ACGGAACGCTTAGCATACTAGCGA -ACGGAACGCTTAGCATACCACAGA -ACGGAACGCTTAGCATACGCAAGA -ACGGAACGCTTAGCATACGGTTGA -ACGGAACGCTTAGCATACTCCGAT -ACGGAACGCTTAGCATACTGGCAT -ACGGAACGCTTAGCATACCGAGAT -ACGGAACGCTTAGCATACTACCAC -ACGGAACGCTTAGCATACCAGAAC -ACGGAACGCTTAGCATACGTCTAC -ACGGAACGCTTAGCATACACGTAC -ACGGAACGCTTAGCATACAGTGAC -ACGGAACGCTTAGCATACCTGTAG -ACGGAACGCTTAGCATACCCTAAG -ACGGAACGCTTAGCATACGTTCAG -ACGGAACGCTTAGCATACGCATAG -ACGGAACGCTTAGCATACGACAAG -ACGGAACGCTTAGCATACAAGCAG -ACGGAACGCTTAGCATACCGTCAA -ACGGAACGCTTAGCATACGCTGAA -ACGGAACGCTTAGCATACAGTACG -ACGGAACGCTTAGCATACATCCGA -ACGGAACGCTTAGCATACATGGGA -ACGGAACGCTTAGCATACGTGCAA -ACGGAACGCTTAGCATACGAGGAA -ACGGAACGCTTAGCATACCAGGTA -ACGGAACGCTTAGCATACGACTCT -ACGGAACGCTTAGCATACAGTCCT -ACGGAACGCTTAGCATACTAAGCC -ACGGAACGCTTAGCATACATAGCC -ACGGAACGCTTAGCATACTAACCG -ACGGAACGCTTAGCATACATGCCA -ACGGAACGCTTAGCACTTGGAAAC -ACGGAACGCTTAGCACTTAACACC -ACGGAACGCTTAGCACTTATCGAG -ACGGAACGCTTAGCACTTCTCCTT -ACGGAACGCTTAGCACTTCCTGTT -ACGGAACGCTTAGCACTTCGGTTT -ACGGAACGCTTAGCACTTGTGGTT -ACGGAACGCTTAGCACTTGCCTTT -ACGGAACGCTTAGCACTTGGTCTT -ACGGAACGCTTAGCACTTACGCTT -ACGGAACGCTTAGCACTTAGCGTT -ACGGAACGCTTAGCACTTTTCGTC -ACGGAACGCTTAGCACTTTCTCTC -ACGGAACGCTTAGCACTTTGGATC -ACGGAACGCTTAGCACTTCACTTC -ACGGAACGCTTAGCACTTGTACTC -ACGGAACGCTTAGCACTTGATGTC -ACGGAACGCTTAGCACTTACAGTC -ACGGAACGCTTAGCACTTTTGCTG -ACGGAACGCTTAGCACTTTCCATG -ACGGAACGCTTAGCACTTTGTGTG -ACGGAACGCTTAGCACTTCTAGTG -ACGGAACGCTTAGCACTTCATCTG -ACGGAACGCTTAGCACTTGAGTTG -ACGGAACGCTTAGCACTTAGACTG -ACGGAACGCTTAGCACTTTCGGTA -ACGGAACGCTTAGCACTTTGCCTA -ACGGAACGCTTAGCACTTCCACTA -ACGGAACGCTTAGCACTTGGAGTA -ACGGAACGCTTAGCACTTTCGTCT -ACGGAACGCTTAGCACTTTGCACT -ACGGAACGCTTAGCACTTCTGACT -ACGGAACGCTTAGCACTTCAACCT -ACGGAACGCTTAGCACTTGCTACT -ACGGAACGCTTAGCACTTGGATCT -ACGGAACGCTTAGCACTTAAGGCT -ACGGAACGCTTAGCACTTTCAACC -ACGGAACGCTTAGCACTTTGTTCC -ACGGAACGCTTAGCACTTATTCCC -ACGGAACGCTTAGCACTTTTCTCG -ACGGAACGCTTAGCACTTTAGACG -ACGGAACGCTTAGCACTTGTAACG -ACGGAACGCTTAGCACTTACTTCG -ACGGAACGCTTAGCACTTTACGCA -ACGGAACGCTTAGCACTTCTTGCA -ACGGAACGCTTAGCACTTCGAACA -ACGGAACGCTTAGCACTTCAGTCA -ACGGAACGCTTAGCACTTGATCCA -ACGGAACGCTTAGCACTTACGACA -ACGGAACGCTTAGCACTTAGCTCA -ACGGAACGCTTAGCACTTTCACGT -ACGGAACGCTTAGCACTTCGTAGT -ACGGAACGCTTAGCACTTGTCAGT -ACGGAACGCTTAGCACTTGAAGGT -ACGGAACGCTTAGCACTTAACCGT -ACGGAACGCTTAGCACTTTTGTGC -ACGGAACGCTTAGCACTTCTAAGC -ACGGAACGCTTAGCACTTACTAGC -ACGGAACGCTTAGCACTTAGATGC -ACGGAACGCTTAGCACTTTGAAGG -ACGGAACGCTTAGCACTTCAATGG -ACGGAACGCTTAGCACTTATGAGG -ACGGAACGCTTAGCACTTAATGGG -ACGGAACGCTTAGCACTTTCCTGA -ACGGAACGCTTAGCACTTTAGCGA -ACGGAACGCTTAGCACTTCACAGA -ACGGAACGCTTAGCACTTGCAAGA -ACGGAACGCTTAGCACTTGGTTGA -ACGGAACGCTTAGCACTTTCCGAT -ACGGAACGCTTAGCACTTTGGCAT -ACGGAACGCTTAGCACTTCGAGAT -ACGGAACGCTTAGCACTTTACCAC -ACGGAACGCTTAGCACTTCAGAAC -ACGGAACGCTTAGCACTTGTCTAC -ACGGAACGCTTAGCACTTACGTAC -ACGGAACGCTTAGCACTTAGTGAC -ACGGAACGCTTAGCACTTCTGTAG -ACGGAACGCTTAGCACTTCCTAAG -ACGGAACGCTTAGCACTTGTTCAG -ACGGAACGCTTAGCACTTGCATAG -ACGGAACGCTTAGCACTTGACAAG -ACGGAACGCTTAGCACTTAAGCAG -ACGGAACGCTTAGCACTTCGTCAA -ACGGAACGCTTAGCACTTGCTGAA -ACGGAACGCTTAGCACTTAGTACG -ACGGAACGCTTAGCACTTATCCGA -ACGGAACGCTTAGCACTTATGGGA -ACGGAACGCTTAGCACTTGTGCAA -ACGGAACGCTTAGCACTTGAGGAA -ACGGAACGCTTAGCACTTCAGGTA -ACGGAACGCTTAGCACTTGACTCT -ACGGAACGCTTAGCACTTAGTCCT -ACGGAACGCTTAGCACTTTAAGCC -ACGGAACGCTTAGCACTTATAGCC -ACGGAACGCTTAGCACTTTAACCG -ACGGAACGCTTAGCACTTATGCCA -ACGGAACGCTTAACACGAGGAAAC -ACGGAACGCTTAACACGAAACACC -ACGGAACGCTTAACACGAATCGAG -ACGGAACGCTTAACACGACTCCTT -ACGGAACGCTTAACACGACCTGTT -ACGGAACGCTTAACACGACGGTTT -ACGGAACGCTTAACACGAGTGGTT -ACGGAACGCTTAACACGAGCCTTT -ACGGAACGCTTAACACGAGGTCTT -ACGGAACGCTTAACACGAACGCTT -ACGGAACGCTTAACACGAAGCGTT -ACGGAACGCTTAACACGATTCGTC -ACGGAACGCTTAACACGATCTCTC -ACGGAACGCTTAACACGATGGATC -ACGGAACGCTTAACACGACACTTC -ACGGAACGCTTAACACGAGTACTC -ACGGAACGCTTAACACGAGATGTC -ACGGAACGCTTAACACGAACAGTC -ACGGAACGCTTAACACGATTGCTG -ACGGAACGCTTAACACGATCCATG -ACGGAACGCTTAACACGATGTGTG -ACGGAACGCTTAACACGACTAGTG -ACGGAACGCTTAACACGACATCTG -ACGGAACGCTTAACACGAGAGTTG -ACGGAACGCTTAACACGAAGACTG -ACGGAACGCTTAACACGATCGGTA -ACGGAACGCTTAACACGATGCCTA -ACGGAACGCTTAACACGACCACTA -ACGGAACGCTTAACACGAGGAGTA -ACGGAACGCTTAACACGATCGTCT -ACGGAACGCTTAACACGATGCACT -ACGGAACGCTTAACACGACTGACT -ACGGAACGCTTAACACGACAACCT -ACGGAACGCTTAACACGAGCTACT -ACGGAACGCTTAACACGAGGATCT -ACGGAACGCTTAACACGAAAGGCT -ACGGAACGCTTAACACGATCAACC -ACGGAACGCTTAACACGATGTTCC -ACGGAACGCTTAACACGAATTCCC -ACGGAACGCTTAACACGATTCTCG -ACGGAACGCTTAACACGATAGACG -ACGGAACGCTTAACACGAGTAACG -ACGGAACGCTTAACACGAACTTCG -ACGGAACGCTTAACACGATACGCA -ACGGAACGCTTAACACGACTTGCA -ACGGAACGCTTAACACGACGAACA -ACGGAACGCTTAACACGACAGTCA -ACGGAACGCTTAACACGAGATCCA -ACGGAACGCTTAACACGAACGACA -ACGGAACGCTTAACACGAAGCTCA -ACGGAACGCTTAACACGATCACGT -ACGGAACGCTTAACACGACGTAGT -ACGGAACGCTTAACACGAGTCAGT -ACGGAACGCTTAACACGAGAAGGT -ACGGAACGCTTAACACGAAACCGT -ACGGAACGCTTAACACGATTGTGC -ACGGAACGCTTAACACGACTAAGC -ACGGAACGCTTAACACGAACTAGC -ACGGAACGCTTAACACGAAGATGC -ACGGAACGCTTAACACGATGAAGG -ACGGAACGCTTAACACGACAATGG -ACGGAACGCTTAACACGAATGAGG -ACGGAACGCTTAACACGAAATGGG -ACGGAACGCTTAACACGATCCTGA -ACGGAACGCTTAACACGATAGCGA -ACGGAACGCTTAACACGACACAGA -ACGGAACGCTTAACACGAGCAAGA -ACGGAACGCTTAACACGAGGTTGA -ACGGAACGCTTAACACGATCCGAT -ACGGAACGCTTAACACGATGGCAT -ACGGAACGCTTAACACGACGAGAT -ACGGAACGCTTAACACGATACCAC -ACGGAACGCTTAACACGACAGAAC -ACGGAACGCTTAACACGAGTCTAC -ACGGAACGCTTAACACGAACGTAC -ACGGAACGCTTAACACGAAGTGAC -ACGGAACGCTTAACACGACTGTAG -ACGGAACGCTTAACACGACCTAAG -ACGGAACGCTTAACACGAGTTCAG -ACGGAACGCTTAACACGAGCATAG -ACGGAACGCTTAACACGAGACAAG -ACGGAACGCTTAACACGAAAGCAG -ACGGAACGCTTAACACGACGTCAA -ACGGAACGCTTAACACGAGCTGAA -ACGGAACGCTTAACACGAAGTACG -ACGGAACGCTTAACACGAATCCGA -ACGGAACGCTTAACACGAATGGGA -ACGGAACGCTTAACACGAGTGCAA -ACGGAACGCTTAACACGAGAGGAA -ACGGAACGCTTAACACGACAGGTA -ACGGAACGCTTAACACGAGACTCT -ACGGAACGCTTAACACGAAGTCCT -ACGGAACGCTTAACACGATAAGCC -ACGGAACGCTTAACACGAATAGCC -ACGGAACGCTTAACACGATAACCG -ACGGAACGCTTAACACGAATGCCA -ACGGAACGCTTATCACAGGGAAAC -ACGGAACGCTTATCACAGAACACC -ACGGAACGCTTATCACAGATCGAG -ACGGAACGCTTATCACAGCTCCTT -ACGGAACGCTTATCACAGCCTGTT -ACGGAACGCTTATCACAGCGGTTT -ACGGAACGCTTATCACAGGTGGTT -ACGGAACGCTTATCACAGGCCTTT -ACGGAACGCTTATCACAGGGTCTT -ACGGAACGCTTATCACAGACGCTT -ACGGAACGCTTATCACAGAGCGTT -ACGGAACGCTTATCACAGTTCGTC -ACGGAACGCTTATCACAGTCTCTC -ACGGAACGCTTATCACAGTGGATC -ACGGAACGCTTATCACAGCACTTC -ACGGAACGCTTATCACAGGTACTC -ACGGAACGCTTATCACAGGATGTC -ACGGAACGCTTATCACAGACAGTC -ACGGAACGCTTATCACAGTTGCTG -ACGGAACGCTTATCACAGTCCATG -ACGGAACGCTTATCACAGTGTGTG -ACGGAACGCTTATCACAGCTAGTG -ACGGAACGCTTATCACAGCATCTG -ACGGAACGCTTATCACAGGAGTTG -ACGGAACGCTTATCACAGAGACTG -ACGGAACGCTTATCACAGTCGGTA -ACGGAACGCTTATCACAGTGCCTA -ACGGAACGCTTATCACAGCCACTA -ACGGAACGCTTATCACAGGGAGTA -ACGGAACGCTTATCACAGTCGTCT -ACGGAACGCTTATCACAGTGCACT -ACGGAACGCTTATCACAGCTGACT -ACGGAACGCTTATCACAGCAACCT -ACGGAACGCTTATCACAGGCTACT -ACGGAACGCTTATCACAGGGATCT -ACGGAACGCTTATCACAGAAGGCT -ACGGAACGCTTATCACAGTCAACC -ACGGAACGCTTATCACAGTGTTCC -ACGGAACGCTTATCACAGATTCCC -ACGGAACGCTTATCACAGTTCTCG -ACGGAACGCTTATCACAGTAGACG -ACGGAACGCTTATCACAGGTAACG -ACGGAACGCTTATCACAGACTTCG -ACGGAACGCTTATCACAGTACGCA -ACGGAACGCTTATCACAGCTTGCA -ACGGAACGCTTATCACAGCGAACA -ACGGAACGCTTATCACAGCAGTCA -ACGGAACGCTTATCACAGGATCCA -ACGGAACGCTTATCACAGACGACA -ACGGAACGCTTATCACAGAGCTCA -ACGGAACGCTTATCACAGTCACGT -ACGGAACGCTTATCACAGCGTAGT -ACGGAACGCTTATCACAGGTCAGT -ACGGAACGCTTATCACAGGAAGGT -ACGGAACGCTTATCACAGAACCGT -ACGGAACGCTTATCACAGTTGTGC -ACGGAACGCTTATCACAGCTAAGC -ACGGAACGCTTATCACAGACTAGC -ACGGAACGCTTATCACAGAGATGC -ACGGAACGCTTATCACAGTGAAGG -ACGGAACGCTTATCACAGCAATGG -ACGGAACGCTTATCACAGATGAGG -ACGGAACGCTTATCACAGAATGGG -ACGGAACGCTTATCACAGTCCTGA -ACGGAACGCTTATCACAGTAGCGA -ACGGAACGCTTATCACAGCACAGA -ACGGAACGCTTATCACAGGCAAGA -ACGGAACGCTTATCACAGGGTTGA -ACGGAACGCTTATCACAGTCCGAT -ACGGAACGCTTATCACAGTGGCAT -ACGGAACGCTTATCACAGCGAGAT -ACGGAACGCTTATCACAGTACCAC -ACGGAACGCTTATCACAGCAGAAC -ACGGAACGCTTATCACAGGTCTAC -ACGGAACGCTTATCACAGACGTAC -ACGGAACGCTTATCACAGAGTGAC -ACGGAACGCTTATCACAGCTGTAG -ACGGAACGCTTATCACAGCCTAAG -ACGGAACGCTTATCACAGGTTCAG -ACGGAACGCTTATCACAGGCATAG -ACGGAACGCTTATCACAGGACAAG -ACGGAACGCTTATCACAGAAGCAG -ACGGAACGCTTATCACAGCGTCAA -ACGGAACGCTTATCACAGGCTGAA -ACGGAACGCTTATCACAGAGTACG -ACGGAACGCTTATCACAGATCCGA -ACGGAACGCTTATCACAGATGGGA -ACGGAACGCTTATCACAGGTGCAA -ACGGAACGCTTATCACAGGAGGAA -ACGGAACGCTTATCACAGCAGGTA -ACGGAACGCTTATCACAGGACTCT -ACGGAACGCTTATCACAGAGTCCT -ACGGAACGCTTATCACAGTAAGCC -ACGGAACGCTTATCACAGATAGCC -ACGGAACGCTTATCACAGTAACCG -ACGGAACGCTTATCACAGATGCCA -ACGGAACGCTTACCAGATGGAAAC -ACGGAACGCTTACCAGATAACACC -ACGGAACGCTTACCAGATATCGAG -ACGGAACGCTTACCAGATCTCCTT -ACGGAACGCTTACCAGATCCTGTT -ACGGAACGCTTACCAGATCGGTTT -ACGGAACGCTTACCAGATGTGGTT -ACGGAACGCTTACCAGATGCCTTT -ACGGAACGCTTACCAGATGGTCTT -ACGGAACGCTTACCAGATACGCTT -ACGGAACGCTTACCAGATAGCGTT -ACGGAACGCTTACCAGATTTCGTC -ACGGAACGCTTACCAGATTCTCTC -ACGGAACGCTTACCAGATTGGATC -ACGGAACGCTTACCAGATCACTTC -ACGGAACGCTTACCAGATGTACTC -ACGGAACGCTTACCAGATGATGTC -ACGGAACGCTTACCAGATACAGTC -ACGGAACGCTTACCAGATTTGCTG -ACGGAACGCTTACCAGATTCCATG -ACGGAACGCTTACCAGATTGTGTG -ACGGAACGCTTACCAGATCTAGTG -ACGGAACGCTTACCAGATCATCTG -ACGGAACGCTTACCAGATGAGTTG -ACGGAACGCTTACCAGATAGACTG -ACGGAACGCTTACCAGATTCGGTA -ACGGAACGCTTACCAGATTGCCTA -ACGGAACGCTTACCAGATCCACTA -ACGGAACGCTTACCAGATGGAGTA -ACGGAACGCTTACCAGATTCGTCT -ACGGAACGCTTACCAGATTGCACT -ACGGAACGCTTACCAGATCTGACT -ACGGAACGCTTACCAGATCAACCT -ACGGAACGCTTACCAGATGCTACT -ACGGAACGCTTACCAGATGGATCT -ACGGAACGCTTACCAGATAAGGCT -ACGGAACGCTTACCAGATTCAACC -ACGGAACGCTTACCAGATTGTTCC -ACGGAACGCTTACCAGATATTCCC -ACGGAACGCTTACCAGATTTCTCG -ACGGAACGCTTACCAGATTAGACG -ACGGAACGCTTACCAGATGTAACG -ACGGAACGCTTACCAGATACTTCG -ACGGAACGCTTACCAGATTACGCA -ACGGAACGCTTACCAGATCTTGCA -ACGGAACGCTTACCAGATCGAACA -ACGGAACGCTTACCAGATCAGTCA -ACGGAACGCTTACCAGATGATCCA -ACGGAACGCTTACCAGATACGACA -ACGGAACGCTTACCAGATAGCTCA -ACGGAACGCTTACCAGATTCACGT -ACGGAACGCTTACCAGATCGTAGT -ACGGAACGCTTACCAGATGTCAGT -ACGGAACGCTTACCAGATGAAGGT -ACGGAACGCTTACCAGATAACCGT -ACGGAACGCTTACCAGATTTGTGC -ACGGAACGCTTACCAGATCTAAGC -ACGGAACGCTTACCAGATACTAGC -ACGGAACGCTTACCAGATAGATGC -ACGGAACGCTTACCAGATTGAAGG -ACGGAACGCTTACCAGATCAATGG -ACGGAACGCTTACCAGATATGAGG -ACGGAACGCTTACCAGATAATGGG -ACGGAACGCTTACCAGATTCCTGA -ACGGAACGCTTACCAGATTAGCGA -ACGGAACGCTTACCAGATCACAGA -ACGGAACGCTTACCAGATGCAAGA -ACGGAACGCTTACCAGATGGTTGA -ACGGAACGCTTACCAGATTCCGAT -ACGGAACGCTTACCAGATTGGCAT -ACGGAACGCTTACCAGATCGAGAT -ACGGAACGCTTACCAGATTACCAC -ACGGAACGCTTACCAGATCAGAAC -ACGGAACGCTTACCAGATGTCTAC -ACGGAACGCTTACCAGATACGTAC -ACGGAACGCTTACCAGATAGTGAC -ACGGAACGCTTACCAGATCTGTAG -ACGGAACGCTTACCAGATCCTAAG -ACGGAACGCTTACCAGATGTTCAG -ACGGAACGCTTACCAGATGCATAG -ACGGAACGCTTACCAGATGACAAG -ACGGAACGCTTACCAGATAAGCAG -ACGGAACGCTTACCAGATCGTCAA -ACGGAACGCTTACCAGATGCTGAA -ACGGAACGCTTACCAGATAGTACG -ACGGAACGCTTACCAGATATCCGA -ACGGAACGCTTACCAGATATGGGA -ACGGAACGCTTACCAGATGTGCAA -ACGGAACGCTTACCAGATGAGGAA -ACGGAACGCTTACCAGATCAGGTA -ACGGAACGCTTACCAGATGACTCT -ACGGAACGCTTACCAGATAGTCCT -ACGGAACGCTTACCAGATTAAGCC -ACGGAACGCTTACCAGATATAGCC -ACGGAACGCTTACCAGATTAACCG -ACGGAACGCTTACCAGATATGCCA -ACGGAACGCTTAACAACGGGAAAC -ACGGAACGCTTAACAACGAACACC -ACGGAACGCTTAACAACGATCGAG -ACGGAACGCTTAACAACGCTCCTT -ACGGAACGCTTAACAACGCCTGTT -ACGGAACGCTTAACAACGCGGTTT -ACGGAACGCTTAACAACGGTGGTT -ACGGAACGCTTAACAACGGCCTTT -ACGGAACGCTTAACAACGGGTCTT -ACGGAACGCTTAACAACGACGCTT -ACGGAACGCTTAACAACGAGCGTT -ACGGAACGCTTAACAACGTTCGTC -ACGGAACGCTTAACAACGTCTCTC -ACGGAACGCTTAACAACGTGGATC -ACGGAACGCTTAACAACGCACTTC -ACGGAACGCTTAACAACGGTACTC -ACGGAACGCTTAACAACGGATGTC -ACGGAACGCTTAACAACGACAGTC -ACGGAACGCTTAACAACGTTGCTG -ACGGAACGCTTAACAACGTCCATG -ACGGAACGCTTAACAACGTGTGTG -ACGGAACGCTTAACAACGCTAGTG -ACGGAACGCTTAACAACGCATCTG -ACGGAACGCTTAACAACGGAGTTG -ACGGAACGCTTAACAACGAGACTG -ACGGAACGCTTAACAACGTCGGTA -ACGGAACGCTTAACAACGTGCCTA -ACGGAACGCTTAACAACGCCACTA -ACGGAACGCTTAACAACGGGAGTA -ACGGAACGCTTAACAACGTCGTCT -ACGGAACGCTTAACAACGTGCACT -ACGGAACGCTTAACAACGCTGACT -ACGGAACGCTTAACAACGCAACCT -ACGGAACGCTTAACAACGGCTACT -ACGGAACGCTTAACAACGGGATCT -ACGGAACGCTTAACAACGAAGGCT -ACGGAACGCTTAACAACGTCAACC -ACGGAACGCTTAACAACGTGTTCC -ACGGAACGCTTAACAACGATTCCC -ACGGAACGCTTAACAACGTTCTCG -ACGGAACGCTTAACAACGTAGACG -ACGGAACGCTTAACAACGGTAACG -ACGGAACGCTTAACAACGACTTCG -ACGGAACGCTTAACAACGTACGCA -ACGGAACGCTTAACAACGCTTGCA -ACGGAACGCTTAACAACGCGAACA -ACGGAACGCTTAACAACGCAGTCA -ACGGAACGCTTAACAACGGATCCA -ACGGAACGCTTAACAACGACGACA -ACGGAACGCTTAACAACGAGCTCA -ACGGAACGCTTAACAACGTCACGT -ACGGAACGCTTAACAACGCGTAGT -ACGGAACGCTTAACAACGGTCAGT -ACGGAACGCTTAACAACGGAAGGT -ACGGAACGCTTAACAACGAACCGT -ACGGAACGCTTAACAACGTTGTGC -ACGGAACGCTTAACAACGCTAAGC -ACGGAACGCTTAACAACGACTAGC -ACGGAACGCTTAACAACGAGATGC -ACGGAACGCTTAACAACGTGAAGG -ACGGAACGCTTAACAACGCAATGG -ACGGAACGCTTAACAACGATGAGG -ACGGAACGCTTAACAACGAATGGG -ACGGAACGCTTAACAACGTCCTGA -ACGGAACGCTTAACAACGTAGCGA -ACGGAACGCTTAACAACGCACAGA -ACGGAACGCTTAACAACGGCAAGA -ACGGAACGCTTAACAACGGGTTGA -ACGGAACGCTTAACAACGTCCGAT -ACGGAACGCTTAACAACGTGGCAT -ACGGAACGCTTAACAACGCGAGAT -ACGGAACGCTTAACAACGTACCAC -ACGGAACGCTTAACAACGCAGAAC -ACGGAACGCTTAACAACGGTCTAC -ACGGAACGCTTAACAACGACGTAC -ACGGAACGCTTAACAACGAGTGAC -ACGGAACGCTTAACAACGCTGTAG -ACGGAACGCTTAACAACGCCTAAG -ACGGAACGCTTAACAACGGTTCAG -ACGGAACGCTTAACAACGGCATAG -ACGGAACGCTTAACAACGGACAAG -ACGGAACGCTTAACAACGAAGCAG -ACGGAACGCTTAACAACGCGTCAA -ACGGAACGCTTAACAACGGCTGAA -ACGGAACGCTTAACAACGAGTACG -ACGGAACGCTTAACAACGATCCGA -ACGGAACGCTTAACAACGATGGGA -ACGGAACGCTTAACAACGGTGCAA -ACGGAACGCTTAACAACGGAGGAA -ACGGAACGCTTAACAACGCAGGTA -ACGGAACGCTTAACAACGGACTCT -ACGGAACGCTTAACAACGAGTCCT -ACGGAACGCTTAACAACGTAAGCC -ACGGAACGCTTAACAACGATAGCC -ACGGAACGCTTAACAACGTAACCG -ACGGAACGCTTAACAACGATGCCA -ACGGAACGCTTATCAAGCGGAAAC -ACGGAACGCTTATCAAGCAACACC -ACGGAACGCTTATCAAGCATCGAG -ACGGAACGCTTATCAAGCCTCCTT -ACGGAACGCTTATCAAGCCCTGTT -ACGGAACGCTTATCAAGCCGGTTT -ACGGAACGCTTATCAAGCGTGGTT -ACGGAACGCTTATCAAGCGCCTTT -ACGGAACGCTTATCAAGCGGTCTT -ACGGAACGCTTATCAAGCACGCTT -ACGGAACGCTTATCAAGCAGCGTT -ACGGAACGCTTATCAAGCTTCGTC -ACGGAACGCTTATCAAGCTCTCTC -ACGGAACGCTTATCAAGCTGGATC -ACGGAACGCTTATCAAGCCACTTC -ACGGAACGCTTATCAAGCGTACTC -ACGGAACGCTTATCAAGCGATGTC -ACGGAACGCTTATCAAGCACAGTC -ACGGAACGCTTATCAAGCTTGCTG -ACGGAACGCTTATCAAGCTCCATG -ACGGAACGCTTATCAAGCTGTGTG -ACGGAACGCTTATCAAGCCTAGTG -ACGGAACGCTTATCAAGCCATCTG -ACGGAACGCTTATCAAGCGAGTTG -ACGGAACGCTTATCAAGCAGACTG -ACGGAACGCTTATCAAGCTCGGTA -ACGGAACGCTTATCAAGCTGCCTA -ACGGAACGCTTATCAAGCCCACTA -ACGGAACGCTTATCAAGCGGAGTA -ACGGAACGCTTATCAAGCTCGTCT -ACGGAACGCTTATCAAGCTGCACT -ACGGAACGCTTATCAAGCCTGACT -ACGGAACGCTTATCAAGCCAACCT -ACGGAACGCTTATCAAGCGCTACT -ACGGAACGCTTATCAAGCGGATCT -ACGGAACGCTTATCAAGCAAGGCT -ACGGAACGCTTATCAAGCTCAACC -ACGGAACGCTTATCAAGCTGTTCC -ACGGAACGCTTATCAAGCATTCCC -ACGGAACGCTTATCAAGCTTCTCG -ACGGAACGCTTATCAAGCTAGACG -ACGGAACGCTTATCAAGCGTAACG -ACGGAACGCTTATCAAGCACTTCG -ACGGAACGCTTATCAAGCTACGCA -ACGGAACGCTTATCAAGCCTTGCA -ACGGAACGCTTATCAAGCCGAACA -ACGGAACGCTTATCAAGCCAGTCA -ACGGAACGCTTATCAAGCGATCCA -ACGGAACGCTTATCAAGCACGACA -ACGGAACGCTTATCAAGCAGCTCA -ACGGAACGCTTATCAAGCTCACGT -ACGGAACGCTTATCAAGCCGTAGT -ACGGAACGCTTATCAAGCGTCAGT -ACGGAACGCTTATCAAGCGAAGGT -ACGGAACGCTTATCAAGCAACCGT -ACGGAACGCTTATCAAGCTTGTGC -ACGGAACGCTTATCAAGCCTAAGC -ACGGAACGCTTATCAAGCACTAGC -ACGGAACGCTTATCAAGCAGATGC -ACGGAACGCTTATCAAGCTGAAGG -ACGGAACGCTTATCAAGCCAATGG -ACGGAACGCTTATCAAGCATGAGG -ACGGAACGCTTATCAAGCAATGGG -ACGGAACGCTTATCAAGCTCCTGA -ACGGAACGCTTATCAAGCTAGCGA -ACGGAACGCTTATCAAGCCACAGA -ACGGAACGCTTATCAAGCGCAAGA -ACGGAACGCTTATCAAGCGGTTGA -ACGGAACGCTTATCAAGCTCCGAT -ACGGAACGCTTATCAAGCTGGCAT -ACGGAACGCTTATCAAGCCGAGAT -ACGGAACGCTTATCAAGCTACCAC -ACGGAACGCTTATCAAGCCAGAAC -ACGGAACGCTTATCAAGCGTCTAC -ACGGAACGCTTATCAAGCACGTAC -ACGGAACGCTTATCAAGCAGTGAC -ACGGAACGCTTATCAAGCCTGTAG -ACGGAACGCTTATCAAGCCCTAAG -ACGGAACGCTTATCAAGCGTTCAG -ACGGAACGCTTATCAAGCGCATAG -ACGGAACGCTTATCAAGCGACAAG -ACGGAACGCTTATCAAGCAAGCAG -ACGGAACGCTTATCAAGCCGTCAA -ACGGAACGCTTATCAAGCGCTGAA -ACGGAACGCTTATCAAGCAGTACG -ACGGAACGCTTATCAAGCATCCGA -ACGGAACGCTTATCAAGCATGGGA -ACGGAACGCTTATCAAGCGTGCAA -ACGGAACGCTTATCAAGCGAGGAA -ACGGAACGCTTATCAAGCCAGGTA -ACGGAACGCTTATCAAGCGACTCT -ACGGAACGCTTATCAAGCAGTCCT -ACGGAACGCTTATCAAGCTAAGCC -ACGGAACGCTTATCAAGCATAGCC -ACGGAACGCTTATCAAGCTAACCG -ACGGAACGCTTATCAAGCATGCCA -ACGGAACGCTTACGTTCAGGAAAC -ACGGAACGCTTACGTTCAAACACC -ACGGAACGCTTACGTTCAATCGAG -ACGGAACGCTTACGTTCACTCCTT -ACGGAACGCTTACGTTCACCTGTT -ACGGAACGCTTACGTTCACGGTTT -ACGGAACGCTTACGTTCAGTGGTT -ACGGAACGCTTACGTTCAGCCTTT -ACGGAACGCTTACGTTCAGGTCTT -ACGGAACGCTTACGTTCAACGCTT -ACGGAACGCTTACGTTCAAGCGTT -ACGGAACGCTTACGTTCATTCGTC -ACGGAACGCTTACGTTCATCTCTC -ACGGAACGCTTACGTTCATGGATC -ACGGAACGCTTACGTTCACACTTC -ACGGAACGCTTACGTTCAGTACTC -ACGGAACGCTTACGTTCAGATGTC -ACGGAACGCTTACGTTCAACAGTC -ACGGAACGCTTACGTTCATTGCTG -ACGGAACGCTTACGTTCATCCATG -ACGGAACGCTTACGTTCATGTGTG -ACGGAACGCTTACGTTCACTAGTG -ACGGAACGCTTACGTTCACATCTG -ACGGAACGCTTACGTTCAGAGTTG -ACGGAACGCTTACGTTCAAGACTG -ACGGAACGCTTACGTTCATCGGTA -ACGGAACGCTTACGTTCATGCCTA -ACGGAACGCTTACGTTCACCACTA -ACGGAACGCTTACGTTCAGGAGTA -ACGGAACGCTTACGTTCATCGTCT -ACGGAACGCTTACGTTCATGCACT -ACGGAACGCTTACGTTCACTGACT -ACGGAACGCTTACGTTCACAACCT -ACGGAACGCTTACGTTCAGCTACT -ACGGAACGCTTACGTTCAGGATCT -ACGGAACGCTTACGTTCAAAGGCT -ACGGAACGCTTACGTTCATCAACC -ACGGAACGCTTACGTTCATGTTCC -ACGGAACGCTTACGTTCAATTCCC -ACGGAACGCTTACGTTCATTCTCG -ACGGAACGCTTACGTTCATAGACG -ACGGAACGCTTACGTTCAGTAACG -ACGGAACGCTTACGTTCAACTTCG -ACGGAACGCTTACGTTCATACGCA -ACGGAACGCTTACGTTCACTTGCA -ACGGAACGCTTACGTTCACGAACA -ACGGAACGCTTACGTTCACAGTCA -ACGGAACGCTTACGTTCAGATCCA -ACGGAACGCTTACGTTCAACGACA -ACGGAACGCTTACGTTCAAGCTCA -ACGGAACGCTTACGTTCATCACGT -ACGGAACGCTTACGTTCACGTAGT -ACGGAACGCTTACGTTCAGTCAGT -ACGGAACGCTTACGTTCAGAAGGT -ACGGAACGCTTACGTTCAAACCGT -ACGGAACGCTTACGTTCATTGTGC -ACGGAACGCTTACGTTCACTAAGC -ACGGAACGCTTACGTTCAACTAGC -ACGGAACGCTTACGTTCAAGATGC -ACGGAACGCTTACGTTCATGAAGG -ACGGAACGCTTACGTTCACAATGG -ACGGAACGCTTACGTTCAATGAGG -ACGGAACGCTTACGTTCAAATGGG -ACGGAACGCTTACGTTCATCCTGA -ACGGAACGCTTACGTTCATAGCGA -ACGGAACGCTTACGTTCACACAGA -ACGGAACGCTTACGTTCAGCAAGA -ACGGAACGCTTACGTTCAGGTTGA -ACGGAACGCTTACGTTCATCCGAT -ACGGAACGCTTACGTTCATGGCAT -ACGGAACGCTTACGTTCACGAGAT -ACGGAACGCTTACGTTCATACCAC -ACGGAACGCTTACGTTCACAGAAC -ACGGAACGCTTACGTTCAGTCTAC -ACGGAACGCTTACGTTCAACGTAC -ACGGAACGCTTACGTTCAAGTGAC -ACGGAACGCTTACGTTCACTGTAG -ACGGAACGCTTACGTTCACCTAAG -ACGGAACGCTTACGTTCAGTTCAG -ACGGAACGCTTACGTTCAGCATAG -ACGGAACGCTTACGTTCAGACAAG -ACGGAACGCTTACGTTCAAAGCAG -ACGGAACGCTTACGTTCACGTCAA -ACGGAACGCTTACGTTCAGCTGAA -ACGGAACGCTTACGTTCAAGTACG -ACGGAACGCTTACGTTCAATCCGA -ACGGAACGCTTACGTTCAATGGGA -ACGGAACGCTTACGTTCAGTGCAA -ACGGAACGCTTACGTTCAGAGGAA -ACGGAACGCTTACGTTCACAGGTA -ACGGAACGCTTACGTTCAGACTCT -ACGGAACGCTTACGTTCAAGTCCT -ACGGAACGCTTACGTTCATAAGCC -ACGGAACGCTTACGTTCAATAGCC -ACGGAACGCTTACGTTCATAACCG -ACGGAACGCTTACGTTCAATGCCA -ACGGAACGCTTAAGTCGTGGAAAC -ACGGAACGCTTAAGTCGTAACACC -ACGGAACGCTTAAGTCGTATCGAG -ACGGAACGCTTAAGTCGTCTCCTT -ACGGAACGCTTAAGTCGTCCTGTT -ACGGAACGCTTAAGTCGTCGGTTT -ACGGAACGCTTAAGTCGTGTGGTT -ACGGAACGCTTAAGTCGTGCCTTT -ACGGAACGCTTAAGTCGTGGTCTT -ACGGAACGCTTAAGTCGTACGCTT -ACGGAACGCTTAAGTCGTAGCGTT -ACGGAACGCTTAAGTCGTTTCGTC -ACGGAACGCTTAAGTCGTTCTCTC -ACGGAACGCTTAAGTCGTTGGATC -ACGGAACGCTTAAGTCGTCACTTC -ACGGAACGCTTAAGTCGTGTACTC -ACGGAACGCTTAAGTCGTGATGTC -ACGGAACGCTTAAGTCGTACAGTC -ACGGAACGCTTAAGTCGTTTGCTG -ACGGAACGCTTAAGTCGTTCCATG -ACGGAACGCTTAAGTCGTTGTGTG -ACGGAACGCTTAAGTCGTCTAGTG -ACGGAACGCTTAAGTCGTCATCTG -ACGGAACGCTTAAGTCGTGAGTTG -ACGGAACGCTTAAGTCGTAGACTG -ACGGAACGCTTAAGTCGTTCGGTA -ACGGAACGCTTAAGTCGTTGCCTA -ACGGAACGCTTAAGTCGTCCACTA -ACGGAACGCTTAAGTCGTGGAGTA -ACGGAACGCTTAAGTCGTTCGTCT -ACGGAACGCTTAAGTCGTTGCACT -ACGGAACGCTTAAGTCGTCTGACT -ACGGAACGCTTAAGTCGTCAACCT -ACGGAACGCTTAAGTCGTGCTACT -ACGGAACGCTTAAGTCGTGGATCT -ACGGAACGCTTAAGTCGTAAGGCT -ACGGAACGCTTAAGTCGTTCAACC -ACGGAACGCTTAAGTCGTTGTTCC -ACGGAACGCTTAAGTCGTATTCCC -ACGGAACGCTTAAGTCGTTTCTCG -ACGGAACGCTTAAGTCGTTAGACG -ACGGAACGCTTAAGTCGTGTAACG -ACGGAACGCTTAAGTCGTACTTCG -ACGGAACGCTTAAGTCGTTACGCA -ACGGAACGCTTAAGTCGTCTTGCA -ACGGAACGCTTAAGTCGTCGAACA -ACGGAACGCTTAAGTCGTCAGTCA -ACGGAACGCTTAAGTCGTGATCCA -ACGGAACGCTTAAGTCGTACGACA -ACGGAACGCTTAAGTCGTAGCTCA -ACGGAACGCTTAAGTCGTTCACGT -ACGGAACGCTTAAGTCGTCGTAGT -ACGGAACGCTTAAGTCGTGTCAGT -ACGGAACGCTTAAGTCGTGAAGGT -ACGGAACGCTTAAGTCGTAACCGT -ACGGAACGCTTAAGTCGTTTGTGC -ACGGAACGCTTAAGTCGTCTAAGC -ACGGAACGCTTAAGTCGTACTAGC -ACGGAACGCTTAAGTCGTAGATGC -ACGGAACGCTTAAGTCGTTGAAGG -ACGGAACGCTTAAGTCGTCAATGG -ACGGAACGCTTAAGTCGTATGAGG -ACGGAACGCTTAAGTCGTAATGGG -ACGGAACGCTTAAGTCGTTCCTGA -ACGGAACGCTTAAGTCGTTAGCGA -ACGGAACGCTTAAGTCGTCACAGA -ACGGAACGCTTAAGTCGTGCAAGA -ACGGAACGCTTAAGTCGTGGTTGA -ACGGAACGCTTAAGTCGTTCCGAT -ACGGAACGCTTAAGTCGTTGGCAT -ACGGAACGCTTAAGTCGTCGAGAT -ACGGAACGCTTAAGTCGTTACCAC -ACGGAACGCTTAAGTCGTCAGAAC -ACGGAACGCTTAAGTCGTGTCTAC -ACGGAACGCTTAAGTCGTACGTAC -ACGGAACGCTTAAGTCGTAGTGAC -ACGGAACGCTTAAGTCGTCTGTAG -ACGGAACGCTTAAGTCGTCCTAAG -ACGGAACGCTTAAGTCGTGTTCAG -ACGGAACGCTTAAGTCGTGCATAG -ACGGAACGCTTAAGTCGTGACAAG -ACGGAACGCTTAAGTCGTAAGCAG -ACGGAACGCTTAAGTCGTCGTCAA -ACGGAACGCTTAAGTCGTGCTGAA -ACGGAACGCTTAAGTCGTAGTACG -ACGGAACGCTTAAGTCGTATCCGA -ACGGAACGCTTAAGTCGTATGGGA -ACGGAACGCTTAAGTCGTGTGCAA -ACGGAACGCTTAAGTCGTGAGGAA -ACGGAACGCTTAAGTCGTCAGGTA -ACGGAACGCTTAAGTCGTGACTCT -ACGGAACGCTTAAGTCGTAGTCCT -ACGGAACGCTTAAGTCGTTAAGCC -ACGGAACGCTTAAGTCGTATAGCC -ACGGAACGCTTAAGTCGTTAACCG -ACGGAACGCTTAAGTCGTATGCCA -ACGGAACGCTTAAGTGTCGGAAAC -ACGGAACGCTTAAGTGTCAACACC -ACGGAACGCTTAAGTGTCATCGAG -ACGGAACGCTTAAGTGTCCTCCTT -ACGGAACGCTTAAGTGTCCCTGTT -ACGGAACGCTTAAGTGTCCGGTTT -ACGGAACGCTTAAGTGTCGTGGTT -ACGGAACGCTTAAGTGTCGCCTTT -ACGGAACGCTTAAGTGTCGGTCTT -ACGGAACGCTTAAGTGTCACGCTT -ACGGAACGCTTAAGTGTCAGCGTT -ACGGAACGCTTAAGTGTCTTCGTC -ACGGAACGCTTAAGTGTCTCTCTC -ACGGAACGCTTAAGTGTCTGGATC -ACGGAACGCTTAAGTGTCCACTTC -ACGGAACGCTTAAGTGTCGTACTC -ACGGAACGCTTAAGTGTCGATGTC -ACGGAACGCTTAAGTGTCACAGTC -ACGGAACGCTTAAGTGTCTTGCTG -ACGGAACGCTTAAGTGTCTCCATG -ACGGAACGCTTAAGTGTCTGTGTG -ACGGAACGCTTAAGTGTCCTAGTG -ACGGAACGCTTAAGTGTCCATCTG -ACGGAACGCTTAAGTGTCGAGTTG -ACGGAACGCTTAAGTGTCAGACTG -ACGGAACGCTTAAGTGTCTCGGTA -ACGGAACGCTTAAGTGTCTGCCTA -ACGGAACGCTTAAGTGTCCCACTA -ACGGAACGCTTAAGTGTCGGAGTA -ACGGAACGCTTAAGTGTCTCGTCT -ACGGAACGCTTAAGTGTCTGCACT -ACGGAACGCTTAAGTGTCCTGACT -ACGGAACGCTTAAGTGTCCAACCT -ACGGAACGCTTAAGTGTCGCTACT -ACGGAACGCTTAAGTGTCGGATCT -ACGGAACGCTTAAGTGTCAAGGCT -ACGGAACGCTTAAGTGTCTCAACC -ACGGAACGCTTAAGTGTCTGTTCC -ACGGAACGCTTAAGTGTCATTCCC -ACGGAACGCTTAAGTGTCTTCTCG -ACGGAACGCTTAAGTGTCTAGACG -ACGGAACGCTTAAGTGTCGTAACG -ACGGAACGCTTAAGTGTCACTTCG -ACGGAACGCTTAAGTGTCTACGCA -ACGGAACGCTTAAGTGTCCTTGCA -ACGGAACGCTTAAGTGTCCGAACA -ACGGAACGCTTAAGTGTCCAGTCA -ACGGAACGCTTAAGTGTCGATCCA -ACGGAACGCTTAAGTGTCACGACA -ACGGAACGCTTAAGTGTCAGCTCA -ACGGAACGCTTAAGTGTCTCACGT -ACGGAACGCTTAAGTGTCCGTAGT -ACGGAACGCTTAAGTGTCGTCAGT -ACGGAACGCTTAAGTGTCGAAGGT -ACGGAACGCTTAAGTGTCAACCGT -ACGGAACGCTTAAGTGTCTTGTGC -ACGGAACGCTTAAGTGTCCTAAGC -ACGGAACGCTTAAGTGTCACTAGC -ACGGAACGCTTAAGTGTCAGATGC -ACGGAACGCTTAAGTGTCTGAAGG -ACGGAACGCTTAAGTGTCCAATGG -ACGGAACGCTTAAGTGTCATGAGG -ACGGAACGCTTAAGTGTCAATGGG -ACGGAACGCTTAAGTGTCTCCTGA -ACGGAACGCTTAAGTGTCTAGCGA -ACGGAACGCTTAAGTGTCCACAGA -ACGGAACGCTTAAGTGTCGCAAGA -ACGGAACGCTTAAGTGTCGGTTGA -ACGGAACGCTTAAGTGTCTCCGAT -ACGGAACGCTTAAGTGTCTGGCAT -ACGGAACGCTTAAGTGTCCGAGAT -ACGGAACGCTTAAGTGTCTACCAC -ACGGAACGCTTAAGTGTCCAGAAC -ACGGAACGCTTAAGTGTCGTCTAC -ACGGAACGCTTAAGTGTCACGTAC -ACGGAACGCTTAAGTGTCAGTGAC -ACGGAACGCTTAAGTGTCCTGTAG -ACGGAACGCTTAAGTGTCCCTAAG -ACGGAACGCTTAAGTGTCGTTCAG -ACGGAACGCTTAAGTGTCGCATAG -ACGGAACGCTTAAGTGTCGACAAG -ACGGAACGCTTAAGTGTCAAGCAG -ACGGAACGCTTAAGTGTCCGTCAA -ACGGAACGCTTAAGTGTCGCTGAA -ACGGAACGCTTAAGTGTCAGTACG -ACGGAACGCTTAAGTGTCATCCGA -ACGGAACGCTTAAGTGTCATGGGA -ACGGAACGCTTAAGTGTCGTGCAA -ACGGAACGCTTAAGTGTCGAGGAA -ACGGAACGCTTAAGTGTCCAGGTA -ACGGAACGCTTAAGTGTCGACTCT -ACGGAACGCTTAAGTGTCAGTCCT -ACGGAACGCTTAAGTGTCTAAGCC -ACGGAACGCTTAAGTGTCATAGCC -ACGGAACGCTTAAGTGTCTAACCG -ACGGAACGCTTAAGTGTCATGCCA -ACGGAACGCTTAGGTGAAGGAAAC -ACGGAACGCTTAGGTGAAAACACC -ACGGAACGCTTAGGTGAAATCGAG -ACGGAACGCTTAGGTGAACTCCTT -ACGGAACGCTTAGGTGAACCTGTT -ACGGAACGCTTAGGTGAACGGTTT -ACGGAACGCTTAGGTGAAGTGGTT -ACGGAACGCTTAGGTGAAGCCTTT -ACGGAACGCTTAGGTGAAGGTCTT -ACGGAACGCTTAGGTGAAACGCTT -ACGGAACGCTTAGGTGAAAGCGTT -ACGGAACGCTTAGGTGAATTCGTC -ACGGAACGCTTAGGTGAATCTCTC -ACGGAACGCTTAGGTGAATGGATC -ACGGAACGCTTAGGTGAACACTTC -ACGGAACGCTTAGGTGAAGTACTC -ACGGAACGCTTAGGTGAAGATGTC -ACGGAACGCTTAGGTGAAACAGTC -ACGGAACGCTTAGGTGAATTGCTG -ACGGAACGCTTAGGTGAATCCATG -ACGGAACGCTTAGGTGAATGTGTG -ACGGAACGCTTAGGTGAACTAGTG -ACGGAACGCTTAGGTGAACATCTG -ACGGAACGCTTAGGTGAAGAGTTG -ACGGAACGCTTAGGTGAAAGACTG -ACGGAACGCTTAGGTGAATCGGTA -ACGGAACGCTTAGGTGAATGCCTA -ACGGAACGCTTAGGTGAACCACTA -ACGGAACGCTTAGGTGAAGGAGTA -ACGGAACGCTTAGGTGAATCGTCT -ACGGAACGCTTAGGTGAATGCACT -ACGGAACGCTTAGGTGAACTGACT -ACGGAACGCTTAGGTGAACAACCT -ACGGAACGCTTAGGTGAAGCTACT -ACGGAACGCTTAGGTGAAGGATCT -ACGGAACGCTTAGGTGAAAAGGCT -ACGGAACGCTTAGGTGAATCAACC -ACGGAACGCTTAGGTGAATGTTCC -ACGGAACGCTTAGGTGAAATTCCC -ACGGAACGCTTAGGTGAATTCTCG -ACGGAACGCTTAGGTGAATAGACG -ACGGAACGCTTAGGTGAAGTAACG -ACGGAACGCTTAGGTGAAACTTCG -ACGGAACGCTTAGGTGAATACGCA -ACGGAACGCTTAGGTGAACTTGCA -ACGGAACGCTTAGGTGAACGAACA -ACGGAACGCTTAGGTGAACAGTCA -ACGGAACGCTTAGGTGAAGATCCA -ACGGAACGCTTAGGTGAAACGACA -ACGGAACGCTTAGGTGAAAGCTCA -ACGGAACGCTTAGGTGAATCACGT -ACGGAACGCTTAGGTGAACGTAGT -ACGGAACGCTTAGGTGAAGTCAGT -ACGGAACGCTTAGGTGAAGAAGGT -ACGGAACGCTTAGGTGAAAACCGT -ACGGAACGCTTAGGTGAATTGTGC -ACGGAACGCTTAGGTGAACTAAGC -ACGGAACGCTTAGGTGAAACTAGC -ACGGAACGCTTAGGTGAAAGATGC -ACGGAACGCTTAGGTGAATGAAGG -ACGGAACGCTTAGGTGAACAATGG -ACGGAACGCTTAGGTGAAATGAGG -ACGGAACGCTTAGGTGAAAATGGG -ACGGAACGCTTAGGTGAATCCTGA -ACGGAACGCTTAGGTGAATAGCGA -ACGGAACGCTTAGGTGAACACAGA -ACGGAACGCTTAGGTGAAGCAAGA -ACGGAACGCTTAGGTGAAGGTTGA -ACGGAACGCTTAGGTGAATCCGAT -ACGGAACGCTTAGGTGAATGGCAT -ACGGAACGCTTAGGTGAACGAGAT -ACGGAACGCTTAGGTGAATACCAC -ACGGAACGCTTAGGTGAACAGAAC -ACGGAACGCTTAGGTGAAGTCTAC -ACGGAACGCTTAGGTGAAACGTAC -ACGGAACGCTTAGGTGAAAGTGAC -ACGGAACGCTTAGGTGAACTGTAG -ACGGAACGCTTAGGTGAACCTAAG -ACGGAACGCTTAGGTGAAGTTCAG -ACGGAACGCTTAGGTGAAGCATAG -ACGGAACGCTTAGGTGAAGACAAG -ACGGAACGCTTAGGTGAAAAGCAG -ACGGAACGCTTAGGTGAACGTCAA -ACGGAACGCTTAGGTGAAGCTGAA -ACGGAACGCTTAGGTGAAAGTACG -ACGGAACGCTTAGGTGAAATCCGA -ACGGAACGCTTAGGTGAAATGGGA -ACGGAACGCTTAGGTGAAGTGCAA -ACGGAACGCTTAGGTGAAGAGGAA -ACGGAACGCTTAGGTGAACAGGTA -ACGGAACGCTTAGGTGAAGACTCT -ACGGAACGCTTAGGTGAAAGTCCT -ACGGAACGCTTAGGTGAATAAGCC -ACGGAACGCTTAGGTGAAATAGCC -ACGGAACGCTTAGGTGAATAACCG -ACGGAACGCTTAGGTGAAATGCCA -ACGGAACGCTTACGTAACGGAAAC -ACGGAACGCTTACGTAACAACACC -ACGGAACGCTTACGTAACATCGAG -ACGGAACGCTTACGTAACCTCCTT -ACGGAACGCTTACGTAACCCTGTT -ACGGAACGCTTACGTAACCGGTTT -ACGGAACGCTTACGTAACGTGGTT -ACGGAACGCTTACGTAACGCCTTT -ACGGAACGCTTACGTAACGGTCTT -ACGGAACGCTTACGTAACACGCTT -ACGGAACGCTTACGTAACAGCGTT -ACGGAACGCTTACGTAACTTCGTC -ACGGAACGCTTACGTAACTCTCTC -ACGGAACGCTTACGTAACTGGATC -ACGGAACGCTTACGTAACCACTTC -ACGGAACGCTTACGTAACGTACTC -ACGGAACGCTTACGTAACGATGTC -ACGGAACGCTTACGTAACACAGTC -ACGGAACGCTTACGTAACTTGCTG -ACGGAACGCTTACGTAACTCCATG -ACGGAACGCTTACGTAACTGTGTG -ACGGAACGCTTACGTAACCTAGTG -ACGGAACGCTTACGTAACCATCTG -ACGGAACGCTTACGTAACGAGTTG -ACGGAACGCTTACGTAACAGACTG -ACGGAACGCTTACGTAACTCGGTA -ACGGAACGCTTACGTAACTGCCTA -ACGGAACGCTTACGTAACCCACTA -ACGGAACGCTTACGTAACGGAGTA -ACGGAACGCTTACGTAACTCGTCT -ACGGAACGCTTACGTAACTGCACT -ACGGAACGCTTACGTAACCTGACT -ACGGAACGCTTACGTAACCAACCT -ACGGAACGCTTACGTAACGCTACT -ACGGAACGCTTACGTAACGGATCT -ACGGAACGCTTACGTAACAAGGCT -ACGGAACGCTTACGTAACTCAACC -ACGGAACGCTTACGTAACTGTTCC -ACGGAACGCTTACGTAACATTCCC -ACGGAACGCTTACGTAACTTCTCG -ACGGAACGCTTACGTAACTAGACG -ACGGAACGCTTACGTAACGTAACG -ACGGAACGCTTACGTAACACTTCG -ACGGAACGCTTACGTAACTACGCA -ACGGAACGCTTACGTAACCTTGCA -ACGGAACGCTTACGTAACCGAACA -ACGGAACGCTTACGTAACCAGTCA -ACGGAACGCTTACGTAACGATCCA -ACGGAACGCTTACGTAACACGACA -ACGGAACGCTTACGTAACAGCTCA -ACGGAACGCTTACGTAACTCACGT -ACGGAACGCTTACGTAACCGTAGT -ACGGAACGCTTACGTAACGTCAGT -ACGGAACGCTTACGTAACGAAGGT -ACGGAACGCTTACGTAACAACCGT -ACGGAACGCTTACGTAACTTGTGC -ACGGAACGCTTACGTAACCTAAGC -ACGGAACGCTTACGTAACACTAGC -ACGGAACGCTTACGTAACAGATGC -ACGGAACGCTTACGTAACTGAAGG -ACGGAACGCTTACGTAACCAATGG -ACGGAACGCTTACGTAACATGAGG -ACGGAACGCTTACGTAACAATGGG -ACGGAACGCTTACGTAACTCCTGA -ACGGAACGCTTACGTAACTAGCGA -ACGGAACGCTTACGTAACCACAGA -ACGGAACGCTTACGTAACGCAAGA -ACGGAACGCTTACGTAACGGTTGA -ACGGAACGCTTACGTAACTCCGAT -ACGGAACGCTTACGTAACTGGCAT -ACGGAACGCTTACGTAACCGAGAT -ACGGAACGCTTACGTAACTACCAC -ACGGAACGCTTACGTAACCAGAAC -ACGGAACGCTTACGTAACGTCTAC -ACGGAACGCTTACGTAACACGTAC -ACGGAACGCTTACGTAACAGTGAC -ACGGAACGCTTACGTAACCTGTAG -ACGGAACGCTTACGTAACCCTAAG -ACGGAACGCTTACGTAACGTTCAG -ACGGAACGCTTACGTAACGCATAG -ACGGAACGCTTACGTAACGACAAG -ACGGAACGCTTACGTAACAAGCAG -ACGGAACGCTTACGTAACCGTCAA -ACGGAACGCTTACGTAACGCTGAA -ACGGAACGCTTACGTAACAGTACG -ACGGAACGCTTACGTAACATCCGA -ACGGAACGCTTACGTAACATGGGA -ACGGAACGCTTACGTAACGTGCAA -ACGGAACGCTTACGTAACGAGGAA -ACGGAACGCTTACGTAACCAGGTA -ACGGAACGCTTACGTAACGACTCT -ACGGAACGCTTACGTAACAGTCCT -ACGGAACGCTTACGTAACTAAGCC -ACGGAACGCTTACGTAACATAGCC -ACGGAACGCTTACGTAACTAACCG -ACGGAACGCTTACGTAACATGCCA -ACGGAACGCTTATGCTTGGGAAAC -ACGGAACGCTTATGCTTGAACACC -ACGGAACGCTTATGCTTGATCGAG -ACGGAACGCTTATGCTTGCTCCTT -ACGGAACGCTTATGCTTGCCTGTT -ACGGAACGCTTATGCTTGCGGTTT -ACGGAACGCTTATGCTTGGTGGTT -ACGGAACGCTTATGCTTGGCCTTT -ACGGAACGCTTATGCTTGGGTCTT -ACGGAACGCTTATGCTTGACGCTT -ACGGAACGCTTATGCTTGAGCGTT -ACGGAACGCTTATGCTTGTTCGTC -ACGGAACGCTTATGCTTGTCTCTC -ACGGAACGCTTATGCTTGTGGATC -ACGGAACGCTTATGCTTGCACTTC -ACGGAACGCTTATGCTTGGTACTC -ACGGAACGCTTATGCTTGGATGTC -ACGGAACGCTTATGCTTGACAGTC -ACGGAACGCTTATGCTTGTTGCTG -ACGGAACGCTTATGCTTGTCCATG -ACGGAACGCTTATGCTTGTGTGTG -ACGGAACGCTTATGCTTGCTAGTG -ACGGAACGCTTATGCTTGCATCTG -ACGGAACGCTTATGCTTGGAGTTG -ACGGAACGCTTATGCTTGAGACTG -ACGGAACGCTTATGCTTGTCGGTA -ACGGAACGCTTATGCTTGTGCCTA -ACGGAACGCTTATGCTTGCCACTA -ACGGAACGCTTATGCTTGGGAGTA -ACGGAACGCTTATGCTTGTCGTCT -ACGGAACGCTTATGCTTGTGCACT -ACGGAACGCTTATGCTTGCTGACT -ACGGAACGCTTATGCTTGCAACCT -ACGGAACGCTTATGCTTGGCTACT -ACGGAACGCTTATGCTTGGGATCT -ACGGAACGCTTATGCTTGAAGGCT -ACGGAACGCTTATGCTTGTCAACC -ACGGAACGCTTATGCTTGTGTTCC -ACGGAACGCTTATGCTTGATTCCC -ACGGAACGCTTATGCTTGTTCTCG -ACGGAACGCTTATGCTTGTAGACG -ACGGAACGCTTATGCTTGGTAACG -ACGGAACGCTTATGCTTGACTTCG -ACGGAACGCTTATGCTTGTACGCA -ACGGAACGCTTATGCTTGCTTGCA -ACGGAACGCTTATGCTTGCGAACA -ACGGAACGCTTATGCTTGCAGTCA -ACGGAACGCTTATGCTTGGATCCA -ACGGAACGCTTATGCTTGACGACA -ACGGAACGCTTATGCTTGAGCTCA -ACGGAACGCTTATGCTTGTCACGT -ACGGAACGCTTATGCTTGCGTAGT -ACGGAACGCTTATGCTTGGTCAGT -ACGGAACGCTTATGCTTGGAAGGT -ACGGAACGCTTATGCTTGAACCGT -ACGGAACGCTTATGCTTGTTGTGC -ACGGAACGCTTATGCTTGCTAAGC -ACGGAACGCTTATGCTTGACTAGC -ACGGAACGCTTATGCTTGAGATGC -ACGGAACGCTTATGCTTGTGAAGG -ACGGAACGCTTATGCTTGCAATGG -ACGGAACGCTTATGCTTGATGAGG -ACGGAACGCTTATGCTTGAATGGG -ACGGAACGCTTATGCTTGTCCTGA -ACGGAACGCTTATGCTTGTAGCGA -ACGGAACGCTTATGCTTGCACAGA -ACGGAACGCTTATGCTTGGCAAGA -ACGGAACGCTTATGCTTGGGTTGA -ACGGAACGCTTATGCTTGTCCGAT -ACGGAACGCTTATGCTTGTGGCAT -ACGGAACGCTTATGCTTGCGAGAT -ACGGAACGCTTATGCTTGTACCAC -ACGGAACGCTTATGCTTGCAGAAC -ACGGAACGCTTATGCTTGGTCTAC -ACGGAACGCTTATGCTTGACGTAC -ACGGAACGCTTATGCTTGAGTGAC -ACGGAACGCTTATGCTTGCTGTAG -ACGGAACGCTTATGCTTGCCTAAG -ACGGAACGCTTATGCTTGGTTCAG -ACGGAACGCTTATGCTTGGCATAG -ACGGAACGCTTATGCTTGGACAAG -ACGGAACGCTTATGCTTGAAGCAG -ACGGAACGCTTATGCTTGCGTCAA -ACGGAACGCTTATGCTTGGCTGAA -ACGGAACGCTTATGCTTGAGTACG -ACGGAACGCTTATGCTTGATCCGA -ACGGAACGCTTATGCTTGATGGGA -ACGGAACGCTTATGCTTGGTGCAA -ACGGAACGCTTATGCTTGGAGGAA -ACGGAACGCTTATGCTTGCAGGTA -ACGGAACGCTTATGCTTGGACTCT -ACGGAACGCTTATGCTTGAGTCCT -ACGGAACGCTTATGCTTGTAAGCC -ACGGAACGCTTATGCTTGATAGCC -ACGGAACGCTTATGCTTGTAACCG -ACGGAACGCTTATGCTTGATGCCA -ACGGAACGCTTAAGCCTAGGAAAC -ACGGAACGCTTAAGCCTAAACACC -ACGGAACGCTTAAGCCTAATCGAG -ACGGAACGCTTAAGCCTACTCCTT -ACGGAACGCTTAAGCCTACCTGTT -ACGGAACGCTTAAGCCTACGGTTT -ACGGAACGCTTAAGCCTAGTGGTT -ACGGAACGCTTAAGCCTAGCCTTT -ACGGAACGCTTAAGCCTAGGTCTT -ACGGAACGCTTAAGCCTAACGCTT -ACGGAACGCTTAAGCCTAAGCGTT -ACGGAACGCTTAAGCCTATTCGTC -ACGGAACGCTTAAGCCTATCTCTC -ACGGAACGCTTAAGCCTATGGATC -ACGGAACGCTTAAGCCTACACTTC -ACGGAACGCTTAAGCCTAGTACTC -ACGGAACGCTTAAGCCTAGATGTC -ACGGAACGCTTAAGCCTAACAGTC -ACGGAACGCTTAAGCCTATTGCTG -ACGGAACGCTTAAGCCTATCCATG -ACGGAACGCTTAAGCCTATGTGTG -ACGGAACGCTTAAGCCTACTAGTG -ACGGAACGCTTAAGCCTACATCTG -ACGGAACGCTTAAGCCTAGAGTTG -ACGGAACGCTTAAGCCTAAGACTG -ACGGAACGCTTAAGCCTATCGGTA -ACGGAACGCTTAAGCCTATGCCTA -ACGGAACGCTTAAGCCTACCACTA -ACGGAACGCTTAAGCCTAGGAGTA -ACGGAACGCTTAAGCCTATCGTCT -ACGGAACGCTTAAGCCTATGCACT -ACGGAACGCTTAAGCCTACTGACT -ACGGAACGCTTAAGCCTACAACCT -ACGGAACGCTTAAGCCTAGCTACT -ACGGAACGCTTAAGCCTAGGATCT -ACGGAACGCTTAAGCCTAAAGGCT -ACGGAACGCTTAAGCCTATCAACC -ACGGAACGCTTAAGCCTATGTTCC -ACGGAACGCTTAAGCCTAATTCCC -ACGGAACGCTTAAGCCTATTCTCG -ACGGAACGCTTAAGCCTATAGACG -ACGGAACGCTTAAGCCTAGTAACG -ACGGAACGCTTAAGCCTAACTTCG -ACGGAACGCTTAAGCCTATACGCA -ACGGAACGCTTAAGCCTACTTGCA -ACGGAACGCTTAAGCCTACGAACA -ACGGAACGCTTAAGCCTACAGTCA -ACGGAACGCTTAAGCCTAGATCCA -ACGGAACGCTTAAGCCTAACGACA -ACGGAACGCTTAAGCCTAAGCTCA -ACGGAACGCTTAAGCCTATCACGT -ACGGAACGCTTAAGCCTACGTAGT -ACGGAACGCTTAAGCCTAGTCAGT -ACGGAACGCTTAAGCCTAGAAGGT -ACGGAACGCTTAAGCCTAAACCGT -ACGGAACGCTTAAGCCTATTGTGC -ACGGAACGCTTAAGCCTACTAAGC -ACGGAACGCTTAAGCCTAACTAGC -ACGGAACGCTTAAGCCTAAGATGC -ACGGAACGCTTAAGCCTATGAAGG -ACGGAACGCTTAAGCCTACAATGG -ACGGAACGCTTAAGCCTAATGAGG -ACGGAACGCTTAAGCCTAAATGGG -ACGGAACGCTTAAGCCTATCCTGA -ACGGAACGCTTAAGCCTATAGCGA -ACGGAACGCTTAAGCCTACACAGA -ACGGAACGCTTAAGCCTAGCAAGA -ACGGAACGCTTAAGCCTAGGTTGA -ACGGAACGCTTAAGCCTATCCGAT -ACGGAACGCTTAAGCCTATGGCAT -ACGGAACGCTTAAGCCTACGAGAT -ACGGAACGCTTAAGCCTATACCAC -ACGGAACGCTTAAGCCTACAGAAC -ACGGAACGCTTAAGCCTAGTCTAC -ACGGAACGCTTAAGCCTAACGTAC -ACGGAACGCTTAAGCCTAAGTGAC -ACGGAACGCTTAAGCCTACTGTAG -ACGGAACGCTTAAGCCTACCTAAG -ACGGAACGCTTAAGCCTAGTTCAG -ACGGAACGCTTAAGCCTAGCATAG -ACGGAACGCTTAAGCCTAGACAAG -ACGGAACGCTTAAGCCTAAAGCAG -ACGGAACGCTTAAGCCTACGTCAA -ACGGAACGCTTAAGCCTAGCTGAA -ACGGAACGCTTAAGCCTAAGTACG -ACGGAACGCTTAAGCCTAATCCGA -ACGGAACGCTTAAGCCTAATGGGA -ACGGAACGCTTAAGCCTAGTGCAA -ACGGAACGCTTAAGCCTAGAGGAA -ACGGAACGCTTAAGCCTACAGGTA -ACGGAACGCTTAAGCCTAGACTCT -ACGGAACGCTTAAGCCTAAGTCCT -ACGGAACGCTTAAGCCTATAAGCC -ACGGAACGCTTAAGCCTAATAGCC -ACGGAACGCTTAAGCCTATAACCG -ACGGAACGCTTAAGCCTAATGCCA -ACGGAACGCTTAAGCACTGGAAAC -ACGGAACGCTTAAGCACTAACACC -ACGGAACGCTTAAGCACTATCGAG -ACGGAACGCTTAAGCACTCTCCTT -ACGGAACGCTTAAGCACTCCTGTT -ACGGAACGCTTAAGCACTCGGTTT -ACGGAACGCTTAAGCACTGTGGTT -ACGGAACGCTTAAGCACTGCCTTT -ACGGAACGCTTAAGCACTGGTCTT -ACGGAACGCTTAAGCACTACGCTT -ACGGAACGCTTAAGCACTAGCGTT -ACGGAACGCTTAAGCACTTTCGTC -ACGGAACGCTTAAGCACTTCTCTC -ACGGAACGCTTAAGCACTTGGATC -ACGGAACGCTTAAGCACTCACTTC -ACGGAACGCTTAAGCACTGTACTC -ACGGAACGCTTAAGCACTGATGTC -ACGGAACGCTTAAGCACTACAGTC -ACGGAACGCTTAAGCACTTTGCTG -ACGGAACGCTTAAGCACTTCCATG -ACGGAACGCTTAAGCACTTGTGTG -ACGGAACGCTTAAGCACTCTAGTG -ACGGAACGCTTAAGCACTCATCTG -ACGGAACGCTTAAGCACTGAGTTG -ACGGAACGCTTAAGCACTAGACTG -ACGGAACGCTTAAGCACTTCGGTA -ACGGAACGCTTAAGCACTTGCCTA -ACGGAACGCTTAAGCACTCCACTA -ACGGAACGCTTAAGCACTGGAGTA -ACGGAACGCTTAAGCACTTCGTCT -ACGGAACGCTTAAGCACTTGCACT -ACGGAACGCTTAAGCACTCTGACT -ACGGAACGCTTAAGCACTCAACCT -ACGGAACGCTTAAGCACTGCTACT -ACGGAACGCTTAAGCACTGGATCT -ACGGAACGCTTAAGCACTAAGGCT -ACGGAACGCTTAAGCACTTCAACC -ACGGAACGCTTAAGCACTTGTTCC -ACGGAACGCTTAAGCACTATTCCC -ACGGAACGCTTAAGCACTTTCTCG -ACGGAACGCTTAAGCACTTAGACG -ACGGAACGCTTAAGCACTGTAACG -ACGGAACGCTTAAGCACTACTTCG -ACGGAACGCTTAAGCACTTACGCA -ACGGAACGCTTAAGCACTCTTGCA -ACGGAACGCTTAAGCACTCGAACA -ACGGAACGCTTAAGCACTCAGTCA -ACGGAACGCTTAAGCACTGATCCA -ACGGAACGCTTAAGCACTACGACA -ACGGAACGCTTAAGCACTAGCTCA -ACGGAACGCTTAAGCACTTCACGT -ACGGAACGCTTAAGCACTCGTAGT -ACGGAACGCTTAAGCACTGTCAGT -ACGGAACGCTTAAGCACTGAAGGT -ACGGAACGCTTAAGCACTAACCGT -ACGGAACGCTTAAGCACTTTGTGC -ACGGAACGCTTAAGCACTCTAAGC -ACGGAACGCTTAAGCACTACTAGC -ACGGAACGCTTAAGCACTAGATGC -ACGGAACGCTTAAGCACTTGAAGG -ACGGAACGCTTAAGCACTCAATGG -ACGGAACGCTTAAGCACTATGAGG -ACGGAACGCTTAAGCACTAATGGG -ACGGAACGCTTAAGCACTTCCTGA -ACGGAACGCTTAAGCACTTAGCGA -ACGGAACGCTTAAGCACTCACAGA -ACGGAACGCTTAAGCACTGCAAGA -ACGGAACGCTTAAGCACTGGTTGA -ACGGAACGCTTAAGCACTTCCGAT -ACGGAACGCTTAAGCACTTGGCAT -ACGGAACGCTTAAGCACTCGAGAT -ACGGAACGCTTAAGCACTTACCAC -ACGGAACGCTTAAGCACTCAGAAC -ACGGAACGCTTAAGCACTGTCTAC -ACGGAACGCTTAAGCACTACGTAC -ACGGAACGCTTAAGCACTAGTGAC -ACGGAACGCTTAAGCACTCTGTAG -ACGGAACGCTTAAGCACTCCTAAG -ACGGAACGCTTAAGCACTGTTCAG -ACGGAACGCTTAAGCACTGCATAG -ACGGAACGCTTAAGCACTGACAAG -ACGGAACGCTTAAGCACTAAGCAG -ACGGAACGCTTAAGCACTCGTCAA -ACGGAACGCTTAAGCACTGCTGAA -ACGGAACGCTTAAGCACTAGTACG -ACGGAACGCTTAAGCACTATCCGA -ACGGAACGCTTAAGCACTATGGGA -ACGGAACGCTTAAGCACTGTGCAA -ACGGAACGCTTAAGCACTGAGGAA -ACGGAACGCTTAAGCACTCAGGTA -ACGGAACGCTTAAGCACTGACTCT -ACGGAACGCTTAAGCACTAGTCCT -ACGGAACGCTTAAGCACTTAAGCC -ACGGAACGCTTAAGCACTATAGCC -ACGGAACGCTTAAGCACTTAACCG -ACGGAACGCTTAAGCACTATGCCA -ACGGAACGCTTATGCAGAGGAAAC -ACGGAACGCTTATGCAGAAACACC -ACGGAACGCTTATGCAGAATCGAG -ACGGAACGCTTATGCAGACTCCTT -ACGGAACGCTTATGCAGACCTGTT -ACGGAACGCTTATGCAGACGGTTT -ACGGAACGCTTATGCAGAGTGGTT -ACGGAACGCTTATGCAGAGCCTTT -ACGGAACGCTTATGCAGAGGTCTT -ACGGAACGCTTATGCAGAACGCTT -ACGGAACGCTTATGCAGAAGCGTT -ACGGAACGCTTATGCAGATTCGTC -ACGGAACGCTTATGCAGATCTCTC -ACGGAACGCTTATGCAGATGGATC -ACGGAACGCTTATGCAGACACTTC -ACGGAACGCTTATGCAGAGTACTC -ACGGAACGCTTATGCAGAGATGTC -ACGGAACGCTTATGCAGAACAGTC -ACGGAACGCTTATGCAGATTGCTG -ACGGAACGCTTATGCAGATCCATG -ACGGAACGCTTATGCAGATGTGTG -ACGGAACGCTTATGCAGACTAGTG -ACGGAACGCTTATGCAGACATCTG -ACGGAACGCTTATGCAGAGAGTTG -ACGGAACGCTTATGCAGAAGACTG -ACGGAACGCTTATGCAGATCGGTA -ACGGAACGCTTATGCAGATGCCTA -ACGGAACGCTTATGCAGACCACTA -ACGGAACGCTTATGCAGAGGAGTA -ACGGAACGCTTATGCAGATCGTCT -ACGGAACGCTTATGCAGATGCACT -ACGGAACGCTTATGCAGACTGACT -ACGGAACGCTTATGCAGACAACCT -ACGGAACGCTTATGCAGAGCTACT -ACGGAACGCTTATGCAGAGGATCT -ACGGAACGCTTATGCAGAAAGGCT -ACGGAACGCTTATGCAGATCAACC -ACGGAACGCTTATGCAGATGTTCC -ACGGAACGCTTATGCAGAATTCCC -ACGGAACGCTTATGCAGATTCTCG -ACGGAACGCTTATGCAGATAGACG -ACGGAACGCTTATGCAGAGTAACG -ACGGAACGCTTATGCAGAACTTCG -ACGGAACGCTTATGCAGATACGCA -ACGGAACGCTTATGCAGACTTGCA -ACGGAACGCTTATGCAGACGAACA -ACGGAACGCTTATGCAGACAGTCA -ACGGAACGCTTATGCAGAGATCCA -ACGGAACGCTTATGCAGAACGACA -ACGGAACGCTTATGCAGAAGCTCA -ACGGAACGCTTATGCAGATCACGT -ACGGAACGCTTATGCAGACGTAGT -ACGGAACGCTTATGCAGAGTCAGT -ACGGAACGCTTATGCAGAGAAGGT -ACGGAACGCTTATGCAGAAACCGT -ACGGAACGCTTATGCAGATTGTGC -ACGGAACGCTTATGCAGACTAAGC -ACGGAACGCTTATGCAGAACTAGC -ACGGAACGCTTATGCAGAAGATGC -ACGGAACGCTTATGCAGATGAAGG -ACGGAACGCTTATGCAGACAATGG -ACGGAACGCTTATGCAGAATGAGG -ACGGAACGCTTATGCAGAAATGGG -ACGGAACGCTTATGCAGATCCTGA -ACGGAACGCTTATGCAGATAGCGA -ACGGAACGCTTATGCAGACACAGA -ACGGAACGCTTATGCAGAGCAAGA -ACGGAACGCTTATGCAGAGGTTGA -ACGGAACGCTTATGCAGATCCGAT -ACGGAACGCTTATGCAGATGGCAT -ACGGAACGCTTATGCAGACGAGAT -ACGGAACGCTTATGCAGATACCAC -ACGGAACGCTTATGCAGACAGAAC -ACGGAACGCTTATGCAGAGTCTAC -ACGGAACGCTTATGCAGAACGTAC -ACGGAACGCTTATGCAGAAGTGAC -ACGGAACGCTTATGCAGACTGTAG -ACGGAACGCTTATGCAGACCTAAG -ACGGAACGCTTATGCAGAGTTCAG -ACGGAACGCTTATGCAGAGCATAG -ACGGAACGCTTATGCAGAGACAAG -ACGGAACGCTTATGCAGAAAGCAG -ACGGAACGCTTATGCAGACGTCAA -ACGGAACGCTTATGCAGAGCTGAA -ACGGAACGCTTATGCAGAAGTACG -ACGGAACGCTTATGCAGAATCCGA -ACGGAACGCTTATGCAGAATGGGA -ACGGAACGCTTATGCAGAGTGCAA -ACGGAACGCTTATGCAGAGAGGAA -ACGGAACGCTTATGCAGACAGGTA -ACGGAACGCTTATGCAGAGACTCT -ACGGAACGCTTATGCAGAAGTCCT -ACGGAACGCTTATGCAGATAAGCC -ACGGAACGCTTATGCAGAATAGCC -ACGGAACGCTTATGCAGATAACCG -ACGGAACGCTTATGCAGAATGCCA -ACGGAACGCTTAAGGTGAGGAAAC -ACGGAACGCTTAAGGTGAAACACC -ACGGAACGCTTAAGGTGAATCGAG -ACGGAACGCTTAAGGTGACTCCTT -ACGGAACGCTTAAGGTGACCTGTT -ACGGAACGCTTAAGGTGACGGTTT -ACGGAACGCTTAAGGTGAGTGGTT -ACGGAACGCTTAAGGTGAGCCTTT -ACGGAACGCTTAAGGTGAGGTCTT -ACGGAACGCTTAAGGTGAACGCTT -ACGGAACGCTTAAGGTGAAGCGTT -ACGGAACGCTTAAGGTGATTCGTC -ACGGAACGCTTAAGGTGATCTCTC -ACGGAACGCTTAAGGTGATGGATC -ACGGAACGCTTAAGGTGACACTTC -ACGGAACGCTTAAGGTGAGTACTC -ACGGAACGCTTAAGGTGAGATGTC -ACGGAACGCTTAAGGTGAACAGTC -ACGGAACGCTTAAGGTGATTGCTG -ACGGAACGCTTAAGGTGATCCATG -ACGGAACGCTTAAGGTGATGTGTG -ACGGAACGCTTAAGGTGACTAGTG -ACGGAACGCTTAAGGTGACATCTG -ACGGAACGCTTAAGGTGAGAGTTG -ACGGAACGCTTAAGGTGAAGACTG -ACGGAACGCTTAAGGTGATCGGTA -ACGGAACGCTTAAGGTGATGCCTA -ACGGAACGCTTAAGGTGACCACTA -ACGGAACGCTTAAGGTGAGGAGTA -ACGGAACGCTTAAGGTGATCGTCT -ACGGAACGCTTAAGGTGATGCACT -ACGGAACGCTTAAGGTGACTGACT -ACGGAACGCTTAAGGTGACAACCT -ACGGAACGCTTAAGGTGAGCTACT -ACGGAACGCTTAAGGTGAGGATCT -ACGGAACGCTTAAGGTGAAAGGCT -ACGGAACGCTTAAGGTGATCAACC -ACGGAACGCTTAAGGTGATGTTCC -ACGGAACGCTTAAGGTGAATTCCC -ACGGAACGCTTAAGGTGATTCTCG -ACGGAACGCTTAAGGTGATAGACG -ACGGAACGCTTAAGGTGAGTAACG -ACGGAACGCTTAAGGTGAACTTCG -ACGGAACGCTTAAGGTGATACGCA -ACGGAACGCTTAAGGTGACTTGCA -ACGGAACGCTTAAGGTGACGAACA -ACGGAACGCTTAAGGTGACAGTCA -ACGGAACGCTTAAGGTGAGATCCA -ACGGAACGCTTAAGGTGAACGACA -ACGGAACGCTTAAGGTGAAGCTCA -ACGGAACGCTTAAGGTGATCACGT -ACGGAACGCTTAAGGTGACGTAGT -ACGGAACGCTTAAGGTGAGTCAGT -ACGGAACGCTTAAGGTGAGAAGGT -ACGGAACGCTTAAGGTGAAACCGT -ACGGAACGCTTAAGGTGATTGTGC -ACGGAACGCTTAAGGTGACTAAGC -ACGGAACGCTTAAGGTGAACTAGC -ACGGAACGCTTAAGGTGAAGATGC -ACGGAACGCTTAAGGTGATGAAGG -ACGGAACGCTTAAGGTGACAATGG -ACGGAACGCTTAAGGTGAATGAGG -ACGGAACGCTTAAGGTGAAATGGG -ACGGAACGCTTAAGGTGATCCTGA -ACGGAACGCTTAAGGTGATAGCGA -ACGGAACGCTTAAGGTGACACAGA -ACGGAACGCTTAAGGTGAGCAAGA -ACGGAACGCTTAAGGTGAGGTTGA -ACGGAACGCTTAAGGTGATCCGAT -ACGGAACGCTTAAGGTGATGGCAT -ACGGAACGCTTAAGGTGACGAGAT -ACGGAACGCTTAAGGTGATACCAC -ACGGAACGCTTAAGGTGACAGAAC -ACGGAACGCTTAAGGTGAGTCTAC -ACGGAACGCTTAAGGTGAACGTAC -ACGGAACGCTTAAGGTGAAGTGAC -ACGGAACGCTTAAGGTGACTGTAG -ACGGAACGCTTAAGGTGACCTAAG -ACGGAACGCTTAAGGTGAGTTCAG -ACGGAACGCTTAAGGTGAGCATAG -ACGGAACGCTTAAGGTGAGACAAG -ACGGAACGCTTAAGGTGAAAGCAG -ACGGAACGCTTAAGGTGACGTCAA -ACGGAACGCTTAAGGTGAGCTGAA -ACGGAACGCTTAAGGTGAAGTACG -ACGGAACGCTTAAGGTGAATCCGA -ACGGAACGCTTAAGGTGAATGGGA -ACGGAACGCTTAAGGTGAGTGCAA -ACGGAACGCTTAAGGTGAGAGGAA -ACGGAACGCTTAAGGTGACAGGTA -ACGGAACGCTTAAGGTGAGACTCT -ACGGAACGCTTAAGGTGAAGTCCT -ACGGAACGCTTAAGGTGATAAGCC -ACGGAACGCTTAAGGTGAATAGCC -ACGGAACGCTTAAGGTGATAACCG -ACGGAACGCTTAAGGTGAATGCCA -ACGGAACGCTTATGGCAAGGAAAC -ACGGAACGCTTATGGCAAAACACC -ACGGAACGCTTATGGCAAATCGAG -ACGGAACGCTTATGGCAACTCCTT -ACGGAACGCTTATGGCAACCTGTT -ACGGAACGCTTATGGCAACGGTTT -ACGGAACGCTTATGGCAAGTGGTT -ACGGAACGCTTATGGCAAGCCTTT -ACGGAACGCTTATGGCAAGGTCTT -ACGGAACGCTTATGGCAAACGCTT -ACGGAACGCTTATGGCAAAGCGTT -ACGGAACGCTTATGGCAATTCGTC -ACGGAACGCTTATGGCAATCTCTC -ACGGAACGCTTATGGCAATGGATC -ACGGAACGCTTATGGCAACACTTC -ACGGAACGCTTATGGCAAGTACTC -ACGGAACGCTTATGGCAAGATGTC -ACGGAACGCTTATGGCAAACAGTC -ACGGAACGCTTATGGCAATTGCTG -ACGGAACGCTTATGGCAATCCATG -ACGGAACGCTTATGGCAATGTGTG -ACGGAACGCTTATGGCAACTAGTG -ACGGAACGCTTATGGCAACATCTG -ACGGAACGCTTATGGCAAGAGTTG -ACGGAACGCTTATGGCAAAGACTG -ACGGAACGCTTATGGCAATCGGTA -ACGGAACGCTTATGGCAATGCCTA -ACGGAACGCTTATGGCAACCACTA -ACGGAACGCTTATGGCAAGGAGTA -ACGGAACGCTTATGGCAATCGTCT -ACGGAACGCTTATGGCAATGCACT -ACGGAACGCTTATGGCAACTGACT -ACGGAACGCTTATGGCAACAACCT -ACGGAACGCTTATGGCAAGCTACT -ACGGAACGCTTATGGCAAGGATCT -ACGGAACGCTTATGGCAAAAGGCT -ACGGAACGCTTATGGCAATCAACC -ACGGAACGCTTATGGCAATGTTCC -ACGGAACGCTTATGGCAAATTCCC -ACGGAACGCTTATGGCAATTCTCG -ACGGAACGCTTATGGCAATAGACG -ACGGAACGCTTATGGCAAGTAACG -ACGGAACGCTTATGGCAAACTTCG -ACGGAACGCTTATGGCAATACGCA -ACGGAACGCTTATGGCAACTTGCA -ACGGAACGCTTATGGCAACGAACA -ACGGAACGCTTATGGCAACAGTCA -ACGGAACGCTTATGGCAAGATCCA -ACGGAACGCTTATGGCAAACGACA -ACGGAACGCTTATGGCAAAGCTCA -ACGGAACGCTTATGGCAATCACGT -ACGGAACGCTTATGGCAACGTAGT -ACGGAACGCTTATGGCAAGTCAGT -ACGGAACGCTTATGGCAAGAAGGT -ACGGAACGCTTATGGCAAAACCGT -ACGGAACGCTTATGGCAATTGTGC -ACGGAACGCTTATGGCAACTAAGC -ACGGAACGCTTATGGCAAACTAGC -ACGGAACGCTTATGGCAAAGATGC -ACGGAACGCTTATGGCAATGAAGG -ACGGAACGCTTATGGCAACAATGG -ACGGAACGCTTATGGCAAATGAGG -ACGGAACGCTTATGGCAAAATGGG -ACGGAACGCTTATGGCAATCCTGA -ACGGAACGCTTATGGCAATAGCGA -ACGGAACGCTTATGGCAACACAGA -ACGGAACGCTTATGGCAAGCAAGA -ACGGAACGCTTATGGCAAGGTTGA -ACGGAACGCTTATGGCAATCCGAT -ACGGAACGCTTATGGCAATGGCAT -ACGGAACGCTTATGGCAACGAGAT -ACGGAACGCTTATGGCAATACCAC -ACGGAACGCTTATGGCAACAGAAC -ACGGAACGCTTATGGCAAGTCTAC -ACGGAACGCTTATGGCAAACGTAC -ACGGAACGCTTATGGCAAAGTGAC -ACGGAACGCTTATGGCAACTGTAG -ACGGAACGCTTATGGCAACCTAAG -ACGGAACGCTTATGGCAAGTTCAG -ACGGAACGCTTATGGCAAGCATAG -ACGGAACGCTTATGGCAAGACAAG -ACGGAACGCTTATGGCAAAAGCAG -ACGGAACGCTTATGGCAACGTCAA -ACGGAACGCTTATGGCAAGCTGAA -ACGGAACGCTTATGGCAAAGTACG -ACGGAACGCTTATGGCAAATCCGA -ACGGAACGCTTATGGCAAATGGGA -ACGGAACGCTTATGGCAAGTGCAA -ACGGAACGCTTATGGCAAGAGGAA -ACGGAACGCTTATGGCAACAGGTA -ACGGAACGCTTATGGCAAGACTCT -ACGGAACGCTTATGGCAAAGTCCT -ACGGAACGCTTATGGCAATAAGCC -ACGGAACGCTTATGGCAAATAGCC -ACGGAACGCTTATGGCAATAACCG -ACGGAACGCTTATGGCAAATGCCA -ACGGAACGCTTAAGGATGGGAAAC -ACGGAACGCTTAAGGATGAACACC -ACGGAACGCTTAAGGATGATCGAG -ACGGAACGCTTAAGGATGCTCCTT -ACGGAACGCTTAAGGATGCCTGTT -ACGGAACGCTTAAGGATGCGGTTT -ACGGAACGCTTAAGGATGGTGGTT -ACGGAACGCTTAAGGATGGCCTTT -ACGGAACGCTTAAGGATGGGTCTT -ACGGAACGCTTAAGGATGACGCTT -ACGGAACGCTTAAGGATGAGCGTT -ACGGAACGCTTAAGGATGTTCGTC -ACGGAACGCTTAAGGATGTCTCTC -ACGGAACGCTTAAGGATGTGGATC -ACGGAACGCTTAAGGATGCACTTC -ACGGAACGCTTAAGGATGGTACTC -ACGGAACGCTTAAGGATGGATGTC -ACGGAACGCTTAAGGATGACAGTC -ACGGAACGCTTAAGGATGTTGCTG -ACGGAACGCTTAAGGATGTCCATG -ACGGAACGCTTAAGGATGTGTGTG -ACGGAACGCTTAAGGATGCTAGTG -ACGGAACGCTTAAGGATGCATCTG -ACGGAACGCTTAAGGATGGAGTTG -ACGGAACGCTTAAGGATGAGACTG -ACGGAACGCTTAAGGATGTCGGTA -ACGGAACGCTTAAGGATGTGCCTA -ACGGAACGCTTAAGGATGCCACTA -ACGGAACGCTTAAGGATGGGAGTA -ACGGAACGCTTAAGGATGTCGTCT -ACGGAACGCTTAAGGATGTGCACT -ACGGAACGCTTAAGGATGCTGACT -ACGGAACGCTTAAGGATGCAACCT -ACGGAACGCTTAAGGATGGCTACT -ACGGAACGCTTAAGGATGGGATCT -ACGGAACGCTTAAGGATGAAGGCT -ACGGAACGCTTAAGGATGTCAACC -ACGGAACGCTTAAGGATGTGTTCC -ACGGAACGCTTAAGGATGATTCCC -ACGGAACGCTTAAGGATGTTCTCG -ACGGAACGCTTAAGGATGTAGACG -ACGGAACGCTTAAGGATGGTAACG -ACGGAACGCTTAAGGATGACTTCG -ACGGAACGCTTAAGGATGTACGCA -ACGGAACGCTTAAGGATGCTTGCA -ACGGAACGCTTAAGGATGCGAACA -ACGGAACGCTTAAGGATGCAGTCA -ACGGAACGCTTAAGGATGGATCCA -ACGGAACGCTTAAGGATGACGACA -ACGGAACGCTTAAGGATGAGCTCA -ACGGAACGCTTAAGGATGTCACGT -ACGGAACGCTTAAGGATGCGTAGT -ACGGAACGCTTAAGGATGGTCAGT -ACGGAACGCTTAAGGATGGAAGGT -ACGGAACGCTTAAGGATGAACCGT -ACGGAACGCTTAAGGATGTTGTGC -ACGGAACGCTTAAGGATGCTAAGC -ACGGAACGCTTAAGGATGACTAGC -ACGGAACGCTTAAGGATGAGATGC -ACGGAACGCTTAAGGATGTGAAGG -ACGGAACGCTTAAGGATGCAATGG -ACGGAACGCTTAAGGATGATGAGG -ACGGAACGCTTAAGGATGAATGGG -ACGGAACGCTTAAGGATGTCCTGA -ACGGAACGCTTAAGGATGTAGCGA -ACGGAACGCTTAAGGATGCACAGA -ACGGAACGCTTAAGGATGGCAAGA -ACGGAACGCTTAAGGATGGGTTGA -ACGGAACGCTTAAGGATGTCCGAT -ACGGAACGCTTAAGGATGTGGCAT -ACGGAACGCTTAAGGATGCGAGAT -ACGGAACGCTTAAGGATGTACCAC -ACGGAACGCTTAAGGATGCAGAAC -ACGGAACGCTTAAGGATGGTCTAC -ACGGAACGCTTAAGGATGACGTAC -ACGGAACGCTTAAGGATGAGTGAC -ACGGAACGCTTAAGGATGCTGTAG -ACGGAACGCTTAAGGATGCCTAAG -ACGGAACGCTTAAGGATGGTTCAG -ACGGAACGCTTAAGGATGGCATAG -ACGGAACGCTTAAGGATGGACAAG -ACGGAACGCTTAAGGATGAAGCAG -ACGGAACGCTTAAGGATGCGTCAA -ACGGAACGCTTAAGGATGGCTGAA -ACGGAACGCTTAAGGATGAGTACG -ACGGAACGCTTAAGGATGATCCGA -ACGGAACGCTTAAGGATGATGGGA -ACGGAACGCTTAAGGATGGTGCAA -ACGGAACGCTTAAGGATGGAGGAA -ACGGAACGCTTAAGGATGCAGGTA -ACGGAACGCTTAAGGATGGACTCT -ACGGAACGCTTAAGGATGAGTCCT -ACGGAACGCTTAAGGATGTAAGCC -ACGGAACGCTTAAGGATGATAGCC -ACGGAACGCTTAAGGATGTAACCG -ACGGAACGCTTAAGGATGATGCCA -ACGGAACGCTTAGGGAATGGAAAC -ACGGAACGCTTAGGGAATAACACC -ACGGAACGCTTAGGGAATATCGAG -ACGGAACGCTTAGGGAATCTCCTT -ACGGAACGCTTAGGGAATCCTGTT -ACGGAACGCTTAGGGAATCGGTTT -ACGGAACGCTTAGGGAATGTGGTT -ACGGAACGCTTAGGGAATGCCTTT -ACGGAACGCTTAGGGAATGGTCTT -ACGGAACGCTTAGGGAATACGCTT -ACGGAACGCTTAGGGAATAGCGTT -ACGGAACGCTTAGGGAATTTCGTC -ACGGAACGCTTAGGGAATTCTCTC -ACGGAACGCTTAGGGAATTGGATC -ACGGAACGCTTAGGGAATCACTTC -ACGGAACGCTTAGGGAATGTACTC -ACGGAACGCTTAGGGAATGATGTC -ACGGAACGCTTAGGGAATACAGTC -ACGGAACGCTTAGGGAATTTGCTG -ACGGAACGCTTAGGGAATTCCATG -ACGGAACGCTTAGGGAATTGTGTG -ACGGAACGCTTAGGGAATCTAGTG -ACGGAACGCTTAGGGAATCATCTG -ACGGAACGCTTAGGGAATGAGTTG -ACGGAACGCTTAGGGAATAGACTG -ACGGAACGCTTAGGGAATTCGGTA -ACGGAACGCTTAGGGAATTGCCTA -ACGGAACGCTTAGGGAATCCACTA -ACGGAACGCTTAGGGAATGGAGTA -ACGGAACGCTTAGGGAATTCGTCT -ACGGAACGCTTAGGGAATTGCACT -ACGGAACGCTTAGGGAATCTGACT -ACGGAACGCTTAGGGAATCAACCT -ACGGAACGCTTAGGGAATGCTACT -ACGGAACGCTTAGGGAATGGATCT -ACGGAACGCTTAGGGAATAAGGCT -ACGGAACGCTTAGGGAATTCAACC -ACGGAACGCTTAGGGAATTGTTCC -ACGGAACGCTTAGGGAATATTCCC -ACGGAACGCTTAGGGAATTTCTCG -ACGGAACGCTTAGGGAATTAGACG -ACGGAACGCTTAGGGAATGTAACG -ACGGAACGCTTAGGGAATACTTCG -ACGGAACGCTTAGGGAATTACGCA -ACGGAACGCTTAGGGAATCTTGCA -ACGGAACGCTTAGGGAATCGAACA -ACGGAACGCTTAGGGAATCAGTCA -ACGGAACGCTTAGGGAATGATCCA -ACGGAACGCTTAGGGAATACGACA -ACGGAACGCTTAGGGAATAGCTCA -ACGGAACGCTTAGGGAATTCACGT -ACGGAACGCTTAGGGAATCGTAGT -ACGGAACGCTTAGGGAATGTCAGT -ACGGAACGCTTAGGGAATGAAGGT -ACGGAACGCTTAGGGAATAACCGT -ACGGAACGCTTAGGGAATTTGTGC -ACGGAACGCTTAGGGAATCTAAGC -ACGGAACGCTTAGGGAATACTAGC -ACGGAACGCTTAGGGAATAGATGC -ACGGAACGCTTAGGGAATTGAAGG -ACGGAACGCTTAGGGAATCAATGG -ACGGAACGCTTAGGGAATATGAGG -ACGGAACGCTTAGGGAATAATGGG -ACGGAACGCTTAGGGAATTCCTGA -ACGGAACGCTTAGGGAATTAGCGA -ACGGAACGCTTAGGGAATCACAGA -ACGGAACGCTTAGGGAATGCAAGA -ACGGAACGCTTAGGGAATGGTTGA -ACGGAACGCTTAGGGAATTCCGAT -ACGGAACGCTTAGGGAATTGGCAT -ACGGAACGCTTAGGGAATCGAGAT -ACGGAACGCTTAGGGAATTACCAC -ACGGAACGCTTAGGGAATCAGAAC -ACGGAACGCTTAGGGAATGTCTAC -ACGGAACGCTTAGGGAATACGTAC -ACGGAACGCTTAGGGAATAGTGAC -ACGGAACGCTTAGGGAATCTGTAG -ACGGAACGCTTAGGGAATCCTAAG -ACGGAACGCTTAGGGAATGTTCAG -ACGGAACGCTTAGGGAATGCATAG -ACGGAACGCTTAGGGAATGACAAG -ACGGAACGCTTAGGGAATAAGCAG -ACGGAACGCTTAGGGAATCGTCAA -ACGGAACGCTTAGGGAATGCTGAA -ACGGAACGCTTAGGGAATAGTACG -ACGGAACGCTTAGGGAATATCCGA -ACGGAACGCTTAGGGAATATGGGA -ACGGAACGCTTAGGGAATGTGCAA -ACGGAACGCTTAGGGAATGAGGAA -ACGGAACGCTTAGGGAATCAGGTA -ACGGAACGCTTAGGGAATGACTCT -ACGGAACGCTTAGGGAATAGTCCT -ACGGAACGCTTAGGGAATTAAGCC -ACGGAACGCTTAGGGAATATAGCC -ACGGAACGCTTAGGGAATTAACCG -ACGGAACGCTTAGGGAATATGCCA -ACGGAACGCTTATGATCCGGAAAC -ACGGAACGCTTATGATCCAACACC -ACGGAACGCTTATGATCCATCGAG -ACGGAACGCTTATGATCCCTCCTT -ACGGAACGCTTATGATCCCCTGTT -ACGGAACGCTTATGATCCCGGTTT -ACGGAACGCTTATGATCCGTGGTT -ACGGAACGCTTATGATCCGCCTTT -ACGGAACGCTTATGATCCGGTCTT -ACGGAACGCTTATGATCCACGCTT -ACGGAACGCTTATGATCCAGCGTT -ACGGAACGCTTATGATCCTTCGTC -ACGGAACGCTTATGATCCTCTCTC -ACGGAACGCTTATGATCCTGGATC -ACGGAACGCTTATGATCCCACTTC -ACGGAACGCTTATGATCCGTACTC -ACGGAACGCTTATGATCCGATGTC -ACGGAACGCTTATGATCCACAGTC -ACGGAACGCTTATGATCCTTGCTG -ACGGAACGCTTATGATCCTCCATG -ACGGAACGCTTATGATCCTGTGTG -ACGGAACGCTTATGATCCCTAGTG -ACGGAACGCTTATGATCCCATCTG -ACGGAACGCTTATGATCCGAGTTG -ACGGAACGCTTATGATCCAGACTG -ACGGAACGCTTATGATCCTCGGTA -ACGGAACGCTTATGATCCTGCCTA -ACGGAACGCTTATGATCCCCACTA -ACGGAACGCTTATGATCCGGAGTA -ACGGAACGCTTATGATCCTCGTCT -ACGGAACGCTTATGATCCTGCACT -ACGGAACGCTTATGATCCCTGACT -ACGGAACGCTTATGATCCCAACCT -ACGGAACGCTTATGATCCGCTACT -ACGGAACGCTTATGATCCGGATCT -ACGGAACGCTTATGATCCAAGGCT -ACGGAACGCTTATGATCCTCAACC -ACGGAACGCTTATGATCCTGTTCC -ACGGAACGCTTATGATCCATTCCC -ACGGAACGCTTATGATCCTTCTCG -ACGGAACGCTTATGATCCTAGACG -ACGGAACGCTTATGATCCGTAACG -ACGGAACGCTTATGATCCACTTCG -ACGGAACGCTTATGATCCTACGCA -ACGGAACGCTTATGATCCCTTGCA -ACGGAACGCTTATGATCCCGAACA -ACGGAACGCTTATGATCCCAGTCA -ACGGAACGCTTATGATCCGATCCA -ACGGAACGCTTATGATCCACGACA -ACGGAACGCTTATGATCCAGCTCA -ACGGAACGCTTATGATCCTCACGT -ACGGAACGCTTATGATCCCGTAGT -ACGGAACGCTTATGATCCGTCAGT -ACGGAACGCTTATGATCCGAAGGT -ACGGAACGCTTATGATCCAACCGT -ACGGAACGCTTATGATCCTTGTGC -ACGGAACGCTTATGATCCCTAAGC -ACGGAACGCTTATGATCCACTAGC -ACGGAACGCTTATGATCCAGATGC -ACGGAACGCTTATGATCCTGAAGG -ACGGAACGCTTATGATCCCAATGG -ACGGAACGCTTATGATCCATGAGG -ACGGAACGCTTATGATCCAATGGG -ACGGAACGCTTATGATCCTCCTGA -ACGGAACGCTTATGATCCTAGCGA -ACGGAACGCTTATGATCCCACAGA -ACGGAACGCTTATGATCCGCAAGA -ACGGAACGCTTATGATCCGGTTGA -ACGGAACGCTTATGATCCTCCGAT -ACGGAACGCTTATGATCCTGGCAT -ACGGAACGCTTATGATCCCGAGAT -ACGGAACGCTTATGATCCTACCAC -ACGGAACGCTTATGATCCCAGAAC -ACGGAACGCTTATGATCCGTCTAC -ACGGAACGCTTATGATCCACGTAC -ACGGAACGCTTATGATCCAGTGAC -ACGGAACGCTTATGATCCCTGTAG -ACGGAACGCTTATGATCCCCTAAG -ACGGAACGCTTATGATCCGTTCAG -ACGGAACGCTTATGATCCGCATAG -ACGGAACGCTTATGATCCGACAAG -ACGGAACGCTTATGATCCAAGCAG -ACGGAACGCTTATGATCCCGTCAA -ACGGAACGCTTATGATCCGCTGAA -ACGGAACGCTTATGATCCAGTACG -ACGGAACGCTTATGATCCATCCGA -ACGGAACGCTTATGATCCATGGGA -ACGGAACGCTTATGATCCGTGCAA -ACGGAACGCTTATGATCCGAGGAA -ACGGAACGCTTATGATCCCAGGTA -ACGGAACGCTTATGATCCGACTCT -ACGGAACGCTTATGATCCAGTCCT -ACGGAACGCTTATGATCCTAAGCC -ACGGAACGCTTATGATCCATAGCC -ACGGAACGCTTATGATCCTAACCG -ACGGAACGCTTATGATCCATGCCA -ACGGAACGCTTACGATAGGGAAAC -ACGGAACGCTTACGATAGAACACC -ACGGAACGCTTACGATAGATCGAG -ACGGAACGCTTACGATAGCTCCTT -ACGGAACGCTTACGATAGCCTGTT -ACGGAACGCTTACGATAGCGGTTT -ACGGAACGCTTACGATAGGTGGTT -ACGGAACGCTTACGATAGGCCTTT -ACGGAACGCTTACGATAGGGTCTT -ACGGAACGCTTACGATAGACGCTT -ACGGAACGCTTACGATAGAGCGTT -ACGGAACGCTTACGATAGTTCGTC -ACGGAACGCTTACGATAGTCTCTC -ACGGAACGCTTACGATAGTGGATC -ACGGAACGCTTACGATAGCACTTC -ACGGAACGCTTACGATAGGTACTC -ACGGAACGCTTACGATAGGATGTC -ACGGAACGCTTACGATAGACAGTC -ACGGAACGCTTACGATAGTTGCTG -ACGGAACGCTTACGATAGTCCATG -ACGGAACGCTTACGATAGTGTGTG -ACGGAACGCTTACGATAGCTAGTG -ACGGAACGCTTACGATAGCATCTG -ACGGAACGCTTACGATAGGAGTTG -ACGGAACGCTTACGATAGAGACTG -ACGGAACGCTTACGATAGTCGGTA -ACGGAACGCTTACGATAGTGCCTA -ACGGAACGCTTACGATAGCCACTA -ACGGAACGCTTACGATAGGGAGTA -ACGGAACGCTTACGATAGTCGTCT -ACGGAACGCTTACGATAGTGCACT -ACGGAACGCTTACGATAGCTGACT -ACGGAACGCTTACGATAGCAACCT -ACGGAACGCTTACGATAGGCTACT -ACGGAACGCTTACGATAGGGATCT -ACGGAACGCTTACGATAGAAGGCT -ACGGAACGCTTACGATAGTCAACC -ACGGAACGCTTACGATAGTGTTCC -ACGGAACGCTTACGATAGATTCCC -ACGGAACGCTTACGATAGTTCTCG -ACGGAACGCTTACGATAGTAGACG -ACGGAACGCTTACGATAGGTAACG -ACGGAACGCTTACGATAGACTTCG -ACGGAACGCTTACGATAGTACGCA -ACGGAACGCTTACGATAGCTTGCA -ACGGAACGCTTACGATAGCGAACA -ACGGAACGCTTACGATAGCAGTCA -ACGGAACGCTTACGATAGGATCCA -ACGGAACGCTTACGATAGACGACA -ACGGAACGCTTACGATAGAGCTCA -ACGGAACGCTTACGATAGTCACGT -ACGGAACGCTTACGATAGCGTAGT -ACGGAACGCTTACGATAGGTCAGT -ACGGAACGCTTACGATAGGAAGGT -ACGGAACGCTTACGATAGAACCGT -ACGGAACGCTTACGATAGTTGTGC -ACGGAACGCTTACGATAGCTAAGC -ACGGAACGCTTACGATAGACTAGC -ACGGAACGCTTACGATAGAGATGC -ACGGAACGCTTACGATAGTGAAGG -ACGGAACGCTTACGATAGCAATGG -ACGGAACGCTTACGATAGATGAGG -ACGGAACGCTTACGATAGAATGGG -ACGGAACGCTTACGATAGTCCTGA -ACGGAACGCTTACGATAGTAGCGA -ACGGAACGCTTACGATAGCACAGA -ACGGAACGCTTACGATAGGCAAGA -ACGGAACGCTTACGATAGGGTTGA -ACGGAACGCTTACGATAGTCCGAT -ACGGAACGCTTACGATAGTGGCAT -ACGGAACGCTTACGATAGCGAGAT -ACGGAACGCTTACGATAGTACCAC -ACGGAACGCTTACGATAGCAGAAC -ACGGAACGCTTACGATAGGTCTAC -ACGGAACGCTTACGATAGACGTAC -ACGGAACGCTTACGATAGAGTGAC -ACGGAACGCTTACGATAGCTGTAG -ACGGAACGCTTACGATAGCCTAAG -ACGGAACGCTTACGATAGGTTCAG -ACGGAACGCTTACGATAGGCATAG -ACGGAACGCTTACGATAGGACAAG -ACGGAACGCTTACGATAGAAGCAG -ACGGAACGCTTACGATAGCGTCAA -ACGGAACGCTTACGATAGGCTGAA -ACGGAACGCTTACGATAGAGTACG -ACGGAACGCTTACGATAGATCCGA -ACGGAACGCTTACGATAGATGGGA -ACGGAACGCTTACGATAGGTGCAA -ACGGAACGCTTACGATAGGAGGAA -ACGGAACGCTTACGATAGCAGGTA -ACGGAACGCTTACGATAGGACTCT -ACGGAACGCTTACGATAGAGTCCT -ACGGAACGCTTACGATAGTAAGCC -ACGGAACGCTTACGATAGATAGCC -ACGGAACGCTTACGATAGTAACCG -ACGGAACGCTTACGATAGATGCCA -ACGGAACGCTTAAGACACGGAAAC -ACGGAACGCTTAAGACACAACACC -ACGGAACGCTTAAGACACATCGAG -ACGGAACGCTTAAGACACCTCCTT -ACGGAACGCTTAAGACACCCTGTT -ACGGAACGCTTAAGACACCGGTTT -ACGGAACGCTTAAGACACGTGGTT -ACGGAACGCTTAAGACACGCCTTT -ACGGAACGCTTAAGACACGGTCTT -ACGGAACGCTTAAGACACACGCTT -ACGGAACGCTTAAGACACAGCGTT -ACGGAACGCTTAAGACACTTCGTC -ACGGAACGCTTAAGACACTCTCTC -ACGGAACGCTTAAGACACTGGATC -ACGGAACGCTTAAGACACCACTTC -ACGGAACGCTTAAGACACGTACTC -ACGGAACGCTTAAGACACGATGTC -ACGGAACGCTTAAGACACACAGTC -ACGGAACGCTTAAGACACTTGCTG -ACGGAACGCTTAAGACACTCCATG -ACGGAACGCTTAAGACACTGTGTG -ACGGAACGCTTAAGACACCTAGTG -ACGGAACGCTTAAGACACCATCTG -ACGGAACGCTTAAGACACGAGTTG -ACGGAACGCTTAAGACACAGACTG -ACGGAACGCTTAAGACACTCGGTA -ACGGAACGCTTAAGACACTGCCTA -ACGGAACGCTTAAGACACCCACTA -ACGGAACGCTTAAGACACGGAGTA -ACGGAACGCTTAAGACACTCGTCT -ACGGAACGCTTAAGACACTGCACT -ACGGAACGCTTAAGACACCTGACT -ACGGAACGCTTAAGACACCAACCT -ACGGAACGCTTAAGACACGCTACT -ACGGAACGCTTAAGACACGGATCT -ACGGAACGCTTAAGACACAAGGCT -ACGGAACGCTTAAGACACTCAACC -ACGGAACGCTTAAGACACTGTTCC -ACGGAACGCTTAAGACACATTCCC -ACGGAACGCTTAAGACACTTCTCG -ACGGAACGCTTAAGACACTAGACG -ACGGAACGCTTAAGACACGTAACG -ACGGAACGCTTAAGACACACTTCG -ACGGAACGCTTAAGACACTACGCA -ACGGAACGCTTAAGACACCTTGCA -ACGGAACGCTTAAGACACCGAACA -ACGGAACGCTTAAGACACCAGTCA -ACGGAACGCTTAAGACACGATCCA -ACGGAACGCTTAAGACACACGACA -ACGGAACGCTTAAGACACAGCTCA -ACGGAACGCTTAAGACACTCACGT -ACGGAACGCTTAAGACACCGTAGT -ACGGAACGCTTAAGACACGTCAGT -ACGGAACGCTTAAGACACGAAGGT -ACGGAACGCTTAAGACACAACCGT -ACGGAACGCTTAAGACACTTGTGC -ACGGAACGCTTAAGACACCTAAGC -ACGGAACGCTTAAGACACACTAGC -ACGGAACGCTTAAGACACAGATGC -ACGGAACGCTTAAGACACTGAAGG -ACGGAACGCTTAAGACACCAATGG -ACGGAACGCTTAAGACACATGAGG -ACGGAACGCTTAAGACACAATGGG -ACGGAACGCTTAAGACACTCCTGA -ACGGAACGCTTAAGACACTAGCGA -ACGGAACGCTTAAGACACCACAGA -ACGGAACGCTTAAGACACGCAAGA -ACGGAACGCTTAAGACACGGTTGA -ACGGAACGCTTAAGACACTCCGAT -ACGGAACGCTTAAGACACTGGCAT -ACGGAACGCTTAAGACACCGAGAT -ACGGAACGCTTAAGACACTACCAC -ACGGAACGCTTAAGACACCAGAAC -ACGGAACGCTTAAGACACGTCTAC -ACGGAACGCTTAAGACACACGTAC -ACGGAACGCTTAAGACACAGTGAC -ACGGAACGCTTAAGACACCTGTAG -ACGGAACGCTTAAGACACCCTAAG -ACGGAACGCTTAAGACACGTTCAG -ACGGAACGCTTAAGACACGCATAG -ACGGAACGCTTAAGACACGACAAG -ACGGAACGCTTAAGACACAAGCAG -ACGGAACGCTTAAGACACCGTCAA -ACGGAACGCTTAAGACACGCTGAA -ACGGAACGCTTAAGACACAGTACG -ACGGAACGCTTAAGACACATCCGA -ACGGAACGCTTAAGACACATGGGA -ACGGAACGCTTAAGACACGTGCAA -ACGGAACGCTTAAGACACGAGGAA -ACGGAACGCTTAAGACACCAGGTA -ACGGAACGCTTAAGACACGACTCT -ACGGAACGCTTAAGACACAGTCCT -ACGGAACGCTTAAGACACTAAGCC -ACGGAACGCTTAAGACACATAGCC -ACGGAACGCTTAAGACACTAACCG -ACGGAACGCTTAAGACACATGCCA -ACGGAACGCTTAAGAGCAGGAAAC -ACGGAACGCTTAAGAGCAAACACC -ACGGAACGCTTAAGAGCAATCGAG -ACGGAACGCTTAAGAGCACTCCTT -ACGGAACGCTTAAGAGCACCTGTT -ACGGAACGCTTAAGAGCACGGTTT -ACGGAACGCTTAAGAGCAGTGGTT -ACGGAACGCTTAAGAGCAGCCTTT -ACGGAACGCTTAAGAGCAGGTCTT -ACGGAACGCTTAAGAGCAACGCTT -ACGGAACGCTTAAGAGCAAGCGTT -ACGGAACGCTTAAGAGCATTCGTC -ACGGAACGCTTAAGAGCATCTCTC -ACGGAACGCTTAAGAGCATGGATC -ACGGAACGCTTAAGAGCACACTTC -ACGGAACGCTTAAGAGCAGTACTC -ACGGAACGCTTAAGAGCAGATGTC -ACGGAACGCTTAAGAGCAACAGTC -ACGGAACGCTTAAGAGCATTGCTG -ACGGAACGCTTAAGAGCATCCATG -ACGGAACGCTTAAGAGCATGTGTG -ACGGAACGCTTAAGAGCACTAGTG -ACGGAACGCTTAAGAGCACATCTG -ACGGAACGCTTAAGAGCAGAGTTG -ACGGAACGCTTAAGAGCAAGACTG -ACGGAACGCTTAAGAGCATCGGTA -ACGGAACGCTTAAGAGCATGCCTA -ACGGAACGCTTAAGAGCACCACTA -ACGGAACGCTTAAGAGCAGGAGTA -ACGGAACGCTTAAGAGCATCGTCT -ACGGAACGCTTAAGAGCATGCACT -ACGGAACGCTTAAGAGCACTGACT -ACGGAACGCTTAAGAGCACAACCT -ACGGAACGCTTAAGAGCAGCTACT -ACGGAACGCTTAAGAGCAGGATCT -ACGGAACGCTTAAGAGCAAAGGCT -ACGGAACGCTTAAGAGCATCAACC -ACGGAACGCTTAAGAGCATGTTCC -ACGGAACGCTTAAGAGCAATTCCC -ACGGAACGCTTAAGAGCATTCTCG -ACGGAACGCTTAAGAGCATAGACG -ACGGAACGCTTAAGAGCAGTAACG -ACGGAACGCTTAAGAGCAACTTCG -ACGGAACGCTTAAGAGCATACGCA -ACGGAACGCTTAAGAGCACTTGCA -ACGGAACGCTTAAGAGCACGAACA -ACGGAACGCTTAAGAGCACAGTCA -ACGGAACGCTTAAGAGCAGATCCA -ACGGAACGCTTAAGAGCAACGACA -ACGGAACGCTTAAGAGCAAGCTCA -ACGGAACGCTTAAGAGCATCACGT -ACGGAACGCTTAAGAGCACGTAGT -ACGGAACGCTTAAGAGCAGTCAGT -ACGGAACGCTTAAGAGCAGAAGGT -ACGGAACGCTTAAGAGCAAACCGT -ACGGAACGCTTAAGAGCATTGTGC -ACGGAACGCTTAAGAGCACTAAGC -ACGGAACGCTTAAGAGCAACTAGC -ACGGAACGCTTAAGAGCAAGATGC -ACGGAACGCTTAAGAGCATGAAGG -ACGGAACGCTTAAGAGCACAATGG -ACGGAACGCTTAAGAGCAATGAGG -ACGGAACGCTTAAGAGCAAATGGG -ACGGAACGCTTAAGAGCATCCTGA -ACGGAACGCTTAAGAGCATAGCGA -ACGGAACGCTTAAGAGCACACAGA -ACGGAACGCTTAAGAGCAGCAAGA -ACGGAACGCTTAAGAGCAGGTTGA -ACGGAACGCTTAAGAGCATCCGAT -ACGGAACGCTTAAGAGCATGGCAT -ACGGAACGCTTAAGAGCACGAGAT -ACGGAACGCTTAAGAGCATACCAC -ACGGAACGCTTAAGAGCACAGAAC -ACGGAACGCTTAAGAGCAGTCTAC -ACGGAACGCTTAAGAGCAACGTAC -ACGGAACGCTTAAGAGCAAGTGAC -ACGGAACGCTTAAGAGCACTGTAG -ACGGAACGCTTAAGAGCACCTAAG -ACGGAACGCTTAAGAGCAGTTCAG -ACGGAACGCTTAAGAGCAGCATAG -ACGGAACGCTTAAGAGCAGACAAG -ACGGAACGCTTAAGAGCAAAGCAG -ACGGAACGCTTAAGAGCACGTCAA -ACGGAACGCTTAAGAGCAGCTGAA -ACGGAACGCTTAAGAGCAAGTACG -ACGGAACGCTTAAGAGCAATCCGA -ACGGAACGCTTAAGAGCAATGGGA -ACGGAACGCTTAAGAGCAGTGCAA -ACGGAACGCTTAAGAGCAGAGGAA -ACGGAACGCTTAAGAGCACAGGTA -ACGGAACGCTTAAGAGCAGACTCT -ACGGAACGCTTAAGAGCAAGTCCT -ACGGAACGCTTAAGAGCATAAGCC -ACGGAACGCTTAAGAGCAATAGCC -ACGGAACGCTTAAGAGCATAACCG -ACGGAACGCTTAAGAGCAATGCCA -ACGGAACGCTTATGAGGTGGAAAC -ACGGAACGCTTATGAGGTAACACC -ACGGAACGCTTATGAGGTATCGAG -ACGGAACGCTTATGAGGTCTCCTT -ACGGAACGCTTATGAGGTCCTGTT -ACGGAACGCTTATGAGGTCGGTTT -ACGGAACGCTTATGAGGTGTGGTT -ACGGAACGCTTATGAGGTGCCTTT -ACGGAACGCTTATGAGGTGGTCTT -ACGGAACGCTTATGAGGTACGCTT -ACGGAACGCTTATGAGGTAGCGTT -ACGGAACGCTTATGAGGTTTCGTC -ACGGAACGCTTATGAGGTTCTCTC -ACGGAACGCTTATGAGGTTGGATC -ACGGAACGCTTATGAGGTCACTTC -ACGGAACGCTTATGAGGTGTACTC -ACGGAACGCTTATGAGGTGATGTC -ACGGAACGCTTATGAGGTACAGTC -ACGGAACGCTTATGAGGTTTGCTG -ACGGAACGCTTATGAGGTTCCATG -ACGGAACGCTTATGAGGTTGTGTG -ACGGAACGCTTATGAGGTCTAGTG -ACGGAACGCTTATGAGGTCATCTG -ACGGAACGCTTATGAGGTGAGTTG -ACGGAACGCTTATGAGGTAGACTG -ACGGAACGCTTATGAGGTTCGGTA -ACGGAACGCTTATGAGGTTGCCTA -ACGGAACGCTTATGAGGTCCACTA -ACGGAACGCTTATGAGGTGGAGTA -ACGGAACGCTTATGAGGTTCGTCT -ACGGAACGCTTATGAGGTTGCACT -ACGGAACGCTTATGAGGTCTGACT -ACGGAACGCTTATGAGGTCAACCT -ACGGAACGCTTATGAGGTGCTACT -ACGGAACGCTTATGAGGTGGATCT -ACGGAACGCTTATGAGGTAAGGCT -ACGGAACGCTTATGAGGTTCAACC -ACGGAACGCTTATGAGGTTGTTCC -ACGGAACGCTTATGAGGTATTCCC -ACGGAACGCTTATGAGGTTTCTCG -ACGGAACGCTTATGAGGTTAGACG -ACGGAACGCTTATGAGGTGTAACG -ACGGAACGCTTATGAGGTACTTCG -ACGGAACGCTTATGAGGTTACGCA -ACGGAACGCTTATGAGGTCTTGCA -ACGGAACGCTTATGAGGTCGAACA -ACGGAACGCTTATGAGGTCAGTCA -ACGGAACGCTTATGAGGTGATCCA -ACGGAACGCTTATGAGGTACGACA -ACGGAACGCTTATGAGGTAGCTCA -ACGGAACGCTTATGAGGTTCACGT -ACGGAACGCTTATGAGGTCGTAGT -ACGGAACGCTTATGAGGTGTCAGT -ACGGAACGCTTATGAGGTGAAGGT -ACGGAACGCTTATGAGGTAACCGT -ACGGAACGCTTATGAGGTTTGTGC -ACGGAACGCTTATGAGGTCTAAGC -ACGGAACGCTTATGAGGTACTAGC -ACGGAACGCTTATGAGGTAGATGC -ACGGAACGCTTATGAGGTTGAAGG -ACGGAACGCTTATGAGGTCAATGG -ACGGAACGCTTATGAGGTATGAGG -ACGGAACGCTTATGAGGTAATGGG -ACGGAACGCTTATGAGGTTCCTGA -ACGGAACGCTTATGAGGTTAGCGA -ACGGAACGCTTATGAGGTCACAGA -ACGGAACGCTTATGAGGTGCAAGA -ACGGAACGCTTATGAGGTGGTTGA -ACGGAACGCTTATGAGGTTCCGAT -ACGGAACGCTTATGAGGTTGGCAT -ACGGAACGCTTATGAGGTCGAGAT -ACGGAACGCTTATGAGGTTACCAC -ACGGAACGCTTATGAGGTCAGAAC -ACGGAACGCTTATGAGGTGTCTAC -ACGGAACGCTTATGAGGTACGTAC -ACGGAACGCTTATGAGGTAGTGAC -ACGGAACGCTTATGAGGTCTGTAG -ACGGAACGCTTATGAGGTCCTAAG -ACGGAACGCTTATGAGGTGTTCAG -ACGGAACGCTTATGAGGTGCATAG -ACGGAACGCTTATGAGGTGACAAG -ACGGAACGCTTATGAGGTAAGCAG -ACGGAACGCTTATGAGGTCGTCAA -ACGGAACGCTTATGAGGTGCTGAA -ACGGAACGCTTATGAGGTAGTACG -ACGGAACGCTTATGAGGTATCCGA -ACGGAACGCTTATGAGGTATGGGA -ACGGAACGCTTATGAGGTGTGCAA -ACGGAACGCTTATGAGGTGAGGAA -ACGGAACGCTTATGAGGTCAGGTA -ACGGAACGCTTATGAGGTGACTCT -ACGGAACGCTTATGAGGTAGTCCT -ACGGAACGCTTATGAGGTTAAGCC -ACGGAACGCTTATGAGGTATAGCC -ACGGAACGCTTATGAGGTTAACCG -ACGGAACGCTTATGAGGTATGCCA -ACGGAACGCTTAGATTCCGGAAAC -ACGGAACGCTTAGATTCCAACACC -ACGGAACGCTTAGATTCCATCGAG -ACGGAACGCTTAGATTCCCTCCTT -ACGGAACGCTTAGATTCCCCTGTT -ACGGAACGCTTAGATTCCCGGTTT -ACGGAACGCTTAGATTCCGTGGTT -ACGGAACGCTTAGATTCCGCCTTT -ACGGAACGCTTAGATTCCGGTCTT -ACGGAACGCTTAGATTCCACGCTT -ACGGAACGCTTAGATTCCAGCGTT -ACGGAACGCTTAGATTCCTTCGTC -ACGGAACGCTTAGATTCCTCTCTC -ACGGAACGCTTAGATTCCTGGATC -ACGGAACGCTTAGATTCCCACTTC -ACGGAACGCTTAGATTCCGTACTC -ACGGAACGCTTAGATTCCGATGTC -ACGGAACGCTTAGATTCCACAGTC -ACGGAACGCTTAGATTCCTTGCTG -ACGGAACGCTTAGATTCCTCCATG -ACGGAACGCTTAGATTCCTGTGTG -ACGGAACGCTTAGATTCCCTAGTG -ACGGAACGCTTAGATTCCCATCTG -ACGGAACGCTTAGATTCCGAGTTG -ACGGAACGCTTAGATTCCAGACTG -ACGGAACGCTTAGATTCCTCGGTA -ACGGAACGCTTAGATTCCTGCCTA -ACGGAACGCTTAGATTCCCCACTA -ACGGAACGCTTAGATTCCGGAGTA -ACGGAACGCTTAGATTCCTCGTCT -ACGGAACGCTTAGATTCCTGCACT -ACGGAACGCTTAGATTCCCTGACT -ACGGAACGCTTAGATTCCCAACCT -ACGGAACGCTTAGATTCCGCTACT -ACGGAACGCTTAGATTCCGGATCT -ACGGAACGCTTAGATTCCAAGGCT -ACGGAACGCTTAGATTCCTCAACC -ACGGAACGCTTAGATTCCTGTTCC -ACGGAACGCTTAGATTCCATTCCC -ACGGAACGCTTAGATTCCTTCTCG -ACGGAACGCTTAGATTCCTAGACG -ACGGAACGCTTAGATTCCGTAACG -ACGGAACGCTTAGATTCCACTTCG -ACGGAACGCTTAGATTCCTACGCA -ACGGAACGCTTAGATTCCCTTGCA -ACGGAACGCTTAGATTCCCGAACA -ACGGAACGCTTAGATTCCCAGTCA -ACGGAACGCTTAGATTCCGATCCA -ACGGAACGCTTAGATTCCACGACA -ACGGAACGCTTAGATTCCAGCTCA -ACGGAACGCTTAGATTCCTCACGT -ACGGAACGCTTAGATTCCCGTAGT -ACGGAACGCTTAGATTCCGTCAGT -ACGGAACGCTTAGATTCCGAAGGT -ACGGAACGCTTAGATTCCAACCGT -ACGGAACGCTTAGATTCCTTGTGC -ACGGAACGCTTAGATTCCCTAAGC -ACGGAACGCTTAGATTCCACTAGC -ACGGAACGCTTAGATTCCAGATGC -ACGGAACGCTTAGATTCCTGAAGG -ACGGAACGCTTAGATTCCCAATGG -ACGGAACGCTTAGATTCCATGAGG -ACGGAACGCTTAGATTCCAATGGG -ACGGAACGCTTAGATTCCTCCTGA -ACGGAACGCTTAGATTCCTAGCGA -ACGGAACGCTTAGATTCCCACAGA -ACGGAACGCTTAGATTCCGCAAGA -ACGGAACGCTTAGATTCCGGTTGA -ACGGAACGCTTAGATTCCTCCGAT -ACGGAACGCTTAGATTCCTGGCAT -ACGGAACGCTTAGATTCCCGAGAT -ACGGAACGCTTAGATTCCTACCAC -ACGGAACGCTTAGATTCCCAGAAC -ACGGAACGCTTAGATTCCGTCTAC -ACGGAACGCTTAGATTCCACGTAC -ACGGAACGCTTAGATTCCAGTGAC -ACGGAACGCTTAGATTCCCTGTAG -ACGGAACGCTTAGATTCCCCTAAG -ACGGAACGCTTAGATTCCGTTCAG -ACGGAACGCTTAGATTCCGCATAG -ACGGAACGCTTAGATTCCGACAAG -ACGGAACGCTTAGATTCCAAGCAG -ACGGAACGCTTAGATTCCCGTCAA -ACGGAACGCTTAGATTCCGCTGAA -ACGGAACGCTTAGATTCCAGTACG -ACGGAACGCTTAGATTCCATCCGA -ACGGAACGCTTAGATTCCATGGGA -ACGGAACGCTTAGATTCCGTGCAA -ACGGAACGCTTAGATTCCGAGGAA -ACGGAACGCTTAGATTCCCAGGTA -ACGGAACGCTTAGATTCCGACTCT -ACGGAACGCTTAGATTCCAGTCCT -ACGGAACGCTTAGATTCCTAAGCC -ACGGAACGCTTAGATTCCATAGCC -ACGGAACGCTTAGATTCCTAACCG -ACGGAACGCTTAGATTCCATGCCA -ACGGAACGCTTACATTGGGGAAAC -ACGGAACGCTTACATTGGAACACC -ACGGAACGCTTACATTGGATCGAG -ACGGAACGCTTACATTGGCTCCTT -ACGGAACGCTTACATTGGCCTGTT -ACGGAACGCTTACATTGGCGGTTT -ACGGAACGCTTACATTGGGTGGTT -ACGGAACGCTTACATTGGGCCTTT -ACGGAACGCTTACATTGGGGTCTT -ACGGAACGCTTACATTGGACGCTT -ACGGAACGCTTACATTGGAGCGTT -ACGGAACGCTTACATTGGTTCGTC -ACGGAACGCTTACATTGGTCTCTC -ACGGAACGCTTACATTGGTGGATC -ACGGAACGCTTACATTGGCACTTC -ACGGAACGCTTACATTGGGTACTC -ACGGAACGCTTACATTGGGATGTC -ACGGAACGCTTACATTGGACAGTC -ACGGAACGCTTACATTGGTTGCTG -ACGGAACGCTTACATTGGTCCATG -ACGGAACGCTTACATTGGTGTGTG -ACGGAACGCTTACATTGGCTAGTG -ACGGAACGCTTACATTGGCATCTG -ACGGAACGCTTACATTGGGAGTTG -ACGGAACGCTTACATTGGAGACTG -ACGGAACGCTTACATTGGTCGGTA -ACGGAACGCTTACATTGGTGCCTA -ACGGAACGCTTACATTGGCCACTA -ACGGAACGCTTACATTGGGGAGTA -ACGGAACGCTTACATTGGTCGTCT -ACGGAACGCTTACATTGGTGCACT -ACGGAACGCTTACATTGGCTGACT -ACGGAACGCTTACATTGGCAACCT -ACGGAACGCTTACATTGGGCTACT -ACGGAACGCTTACATTGGGGATCT -ACGGAACGCTTACATTGGAAGGCT -ACGGAACGCTTACATTGGTCAACC -ACGGAACGCTTACATTGGTGTTCC -ACGGAACGCTTACATTGGATTCCC -ACGGAACGCTTACATTGGTTCTCG -ACGGAACGCTTACATTGGTAGACG -ACGGAACGCTTACATTGGGTAACG -ACGGAACGCTTACATTGGACTTCG -ACGGAACGCTTACATTGGTACGCA -ACGGAACGCTTACATTGGCTTGCA -ACGGAACGCTTACATTGGCGAACA -ACGGAACGCTTACATTGGCAGTCA -ACGGAACGCTTACATTGGGATCCA -ACGGAACGCTTACATTGGACGACA -ACGGAACGCTTACATTGGAGCTCA -ACGGAACGCTTACATTGGTCACGT -ACGGAACGCTTACATTGGCGTAGT -ACGGAACGCTTACATTGGGTCAGT -ACGGAACGCTTACATTGGGAAGGT -ACGGAACGCTTACATTGGAACCGT -ACGGAACGCTTACATTGGTTGTGC -ACGGAACGCTTACATTGGCTAAGC -ACGGAACGCTTACATTGGACTAGC -ACGGAACGCTTACATTGGAGATGC -ACGGAACGCTTACATTGGTGAAGG -ACGGAACGCTTACATTGGCAATGG -ACGGAACGCTTACATTGGATGAGG -ACGGAACGCTTACATTGGAATGGG -ACGGAACGCTTACATTGGTCCTGA -ACGGAACGCTTACATTGGTAGCGA -ACGGAACGCTTACATTGGCACAGA -ACGGAACGCTTACATTGGGCAAGA -ACGGAACGCTTACATTGGGGTTGA -ACGGAACGCTTACATTGGTCCGAT -ACGGAACGCTTACATTGGTGGCAT -ACGGAACGCTTACATTGGCGAGAT -ACGGAACGCTTACATTGGTACCAC -ACGGAACGCTTACATTGGCAGAAC -ACGGAACGCTTACATTGGGTCTAC -ACGGAACGCTTACATTGGACGTAC -ACGGAACGCTTACATTGGAGTGAC -ACGGAACGCTTACATTGGCTGTAG -ACGGAACGCTTACATTGGCCTAAG -ACGGAACGCTTACATTGGGTTCAG -ACGGAACGCTTACATTGGGCATAG -ACGGAACGCTTACATTGGGACAAG -ACGGAACGCTTACATTGGAAGCAG -ACGGAACGCTTACATTGGCGTCAA -ACGGAACGCTTACATTGGGCTGAA -ACGGAACGCTTACATTGGAGTACG -ACGGAACGCTTACATTGGATCCGA -ACGGAACGCTTACATTGGATGGGA -ACGGAACGCTTACATTGGGTGCAA -ACGGAACGCTTACATTGGGAGGAA -ACGGAACGCTTACATTGGCAGGTA -ACGGAACGCTTACATTGGGACTCT -ACGGAACGCTTACATTGGAGTCCT -ACGGAACGCTTACATTGGTAAGCC -ACGGAACGCTTACATTGGATAGCC -ACGGAACGCTTACATTGGTAACCG -ACGGAACGCTTACATTGGATGCCA -ACGGAACGCTTAGATCGAGGAAAC -ACGGAACGCTTAGATCGAAACACC -ACGGAACGCTTAGATCGAATCGAG -ACGGAACGCTTAGATCGACTCCTT -ACGGAACGCTTAGATCGACCTGTT -ACGGAACGCTTAGATCGACGGTTT -ACGGAACGCTTAGATCGAGTGGTT -ACGGAACGCTTAGATCGAGCCTTT -ACGGAACGCTTAGATCGAGGTCTT -ACGGAACGCTTAGATCGAACGCTT -ACGGAACGCTTAGATCGAAGCGTT -ACGGAACGCTTAGATCGATTCGTC -ACGGAACGCTTAGATCGATCTCTC -ACGGAACGCTTAGATCGATGGATC -ACGGAACGCTTAGATCGACACTTC -ACGGAACGCTTAGATCGAGTACTC -ACGGAACGCTTAGATCGAGATGTC -ACGGAACGCTTAGATCGAACAGTC -ACGGAACGCTTAGATCGATTGCTG -ACGGAACGCTTAGATCGATCCATG -ACGGAACGCTTAGATCGATGTGTG -ACGGAACGCTTAGATCGACTAGTG -ACGGAACGCTTAGATCGACATCTG -ACGGAACGCTTAGATCGAGAGTTG -ACGGAACGCTTAGATCGAAGACTG -ACGGAACGCTTAGATCGATCGGTA -ACGGAACGCTTAGATCGATGCCTA -ACGGAACGCTTAGATCGACCACTA -ACGGAACGCTTAGATCGAGGAGTA -ACGGAACGCTTAGATCGATCGTCT -ACGGAACGCTTAGATCGATGCACT -ACGGAACGCTTAGATCGACTGACT -ACGGAACGCTTAGATCGACAACCT -ACGGAACGCTTAGATCGAGCTACT -ACGGAACGCTTAGATCGAGGATCT -ACGGAACGCTTAGATCGAAAGGCT -ACGGAACGCTTAGATCGATCAACC -ACGGAACGCTTAGATCGATGTTCC -ACGGAACGCTTAGATCGAATTCCC -ACGGAACGCTTAGATCGATTCTCG -ACGGAACGCTTAGATCGATAGACG -ACGGAACGCTTAGATCGAGTAACG -ACGGAACGCTTAGATCGAACTTCG -ACGGAACGCTTAGATCGATACGCA -ACGGAACGCTTAGATCGACTTGCA -ACGGAACGCTTAGATCGACGAACA -ACGGAACGCTTAGATCGACAGTCA -ACGGAACGCTTAGATCGAGATCCA -ACGGAACGCTTAGATCGAACGACA -ACGGAACGCTTAGATCGAAGCTCA -ACGGAACGCTTAGATCGATCACGT -ACGGAACGCTTAGATCGACGTAGT -ACGGAACGCTTAGATCGAGTCAGT -ACGGAACGCTTAGATCGAGAAGGT -ACGGAACGCTTAGATCGAAACCGT -ACGGAACGCTTAGATCGATTGTGC -ACGGAACGCTTAGATCGACTAAGC -ACGGAACGCTTAGATCGAACTAGC -ACGGAACGCTTAGATCGAAGATGC -ACGGAACGCTTAGATCGATGAAGG -ACGGAACGCTTAGATCGACAATGG -ACGGAACGCTTAGATCGAATGAGG -ACGGAACGCTTAGATCGAAATGGG -ACGGAACGCTTAGATCGATCCTGA -ACGGAACGCTTAGATCGATAGCGA -ACGGAACGCTTAGATCGACACAGA -ACGGAACGCTTAGATCGAGCAAGA -ACGGAACGCTTAGATCGAGGTTGA -ACGGAACGCTTAGATCGATCCGAT -ACGGAACGCTTAGATCGATGGCAT -ACGGAACGCTTAGATCGACGAGAT -ACGGAACGCTTAGATCGATACCAC -ACGGAACGCTTAGATCGACAGAAC -ACGGAACGCTTAGATCGAGTCTAC -ACGGAACGCTTAGATCGAACGTAC -ACGGAACGCTTAGATCGAAGTGAC -ACGGAACGCTTAGATCGACTGTAG -ACGGAACGCTTAGATCGACCTAAG -ACGGAACGCTTAGATCGAGTTCAG -ACGGAACGCTTAGATCGAGCATAG -ACGGAACGCTTAGATCGAGACAAG -ACGGAACGCTTAGATCGAAAGCAG -ACGGAACGCTTAGATCGACGTCAA -ACGGAACGCTTAGATCGAGCTGAA -ACGGAACGCTTAGATCGAAGTACG -ACGGAACGCTTAGATCGAATCCGA -ACGGAACGCTTAGATCGAATGGGA -ACGGAACGCTTAGATCGAGTGCAA -ACGGAACGCTTAGATCGAGAGGAA -ACGGAACGCTTAGATCGACAGGTA -ACGGAACGCTTAGATCGAGACTCT -ACGGAACGCTTAGATCGAAGTCCT -ACGGAACGCTTAGATCGATAAGCC -ACGGAACGCTTAGATCGAATAGCC -ACGGAACGCTTAGATCGATAACCG -ACGGAACGCTTAGATCGAATGCCA -ACGGAACGCTTACACTACGGAAAC -ACGGAACGCTTACACTACAACACC -ACGGAACGCTTACACTACATCGAG -ACGGAACGCTTACACTACCTCCTT -ACGGAACGCTTACACTACCCTGTT -ACGGAACGCTTACACTACCGGTTT -ACGGAACGCTTACACTACGTGGTT -ACGGAACGCTTACACTACGCCTTT -ACGGAACGCTTACACTACGGTCTT -ACGGAACGCTTACACTACACGCTT -ACGGAACGCTTACACTACAGCGTT -ACGGAACGCTTACACTACTTCGTC -ACGGAACGCTTACACTACTCTCTC -ACGGAACGCTTACACTACTGGATC -ACGGAACGCTTACACTACCACTTC -ACGGAACGCTTACACTACGTACTC -ACGGAACGCTTACACTACGATGTC -ACGGAACGCTTACACTACACAGTC -ACGGAACGCTTACACTACTTGCTG -ACGGAACGCTTACACTACTCCATG -ACGGAACGCTTACACTACTGTGTG -ACGGAACGCTTACACTACCTAGTG -ACGGAACGCTTACACTACCATCTG -ACGGAACGCTTACACTACGAGTTG -ACGGAACGCTTACACTACAGACTG -ACGGAACGCTTACACTACTCGGTA -ACGGAACGCTTACACTACTGCCTA -ACGGAACGCTTACACTACCCACTA -ACGGAACGCTTACACTACGGAGTA -ACGGAACGCTTACACTACTCGTCT -ACGGAACGCTTACACTACTGCACT -ACGGAACGCTTACACTACCTGACT -ACGGAACGCTTACACTACCAACCT -ACGGAACGCTTACACTACGCTACT -ACGGAACGCTTACACTACGGATCT -ACGGAACGCTTACACTACAAGGCT -ACGGAACGCTTACACTACTCAACC -ACGGAACGCTTACACTACTGTTCC -ACGGAACGCTTACACTACATTCCC -ACGGAACGCTTACACTACTTCTCG -ACGGAACGCTTACACTACTAGACG -ACGGAACGCTTACACTACGTAACG -ACGGAACGCTTACACTACACTTCG -ACGGAACGCTTACACTACTACGCA -ACGGAACGCTTACACTACCTTGCA -ACGGAACGCTTACACTACCGAACA -ACGGAACGCTTACACTACCAGTCA -ACGGAACGCTTACACTACGATCCA -ACGGAACGCTTACACTACACGACA -ACGGAACGCTTACACTACAGCTCA -ACGGAACGCTTACACTACTCACGT -ACGGAACGCTTACACTACCGTAGT -ACGGAACGCTTACACTACGTCAGT -ACGGAACGCTTACACTACGAAGGT -ACGGAACGCTTACACTACAACCGT -ACGGAACGCTTACACTACTTGTGC -ACGGAACGCTTACACTACCTAAGC -ACGGAACGCTTACACTACACTAGC -ACGGAACGCTTACACTACAGATGC -ACGGAACGCTTACACTACTGAAGG -ACGGAACGCTTACACTACCAATGG -ACGGAACGCTTACACTACATGAGG -ACGGAACGCTTACACTACAATGGG -ACGGAACGCTTACACTACTCCTGA -ACGGAACGCTTACACTACTAGCGA -ACGGAACGCTTACACTACCACAGA -ACGGAACGCTTACACTACGCAAGA -ACGGAACGCTTACACTACGGTTGA -ACGGAACGCTTACACTACTCCGAT -ACGGAACGCTTACACTACTGGCAT -ACGGAACGCTTACACTACCGAGAT -ACGGAACGCTTACACTACTACCAC -ACGGAACGCTTACACTACCAGAAC -ACGGAACGCTTACACTACGTCTAC -ACGGAACGCTTACACTACACGTAC -ACGGAACGCTTACACTACAGTGAC -ACGGAACGCTTACACTACCTGTAG -ACGGAACGCTTACACTACCCTAAG -ACGGAACGCTTACACTACGTTCAG -ACGGAACGCTTACACTACGCATAG -ACGGAACGCTTACACTACGACAAG -ACGGAACGCTTACACTACAAGCAG -ACGGAACGCTTACACTACCGTCAA -ACGGAACGCTTACACTACGCTGAA -ACGGAACGCTTACACTACAGTACG -ACGGAACGCTTACACTACATCCGA -ACGGAACGCTTACACTACATGGGA -ACGGAACGCTTACACTACGTGCAA -ACGGAACGCTTACACTACGAGGAA -ACGGAACGCTTACACTACCAGGTA -ACGGAACGCTTACACTACGACTCT -ACGGAACGCTTACACTACAGTCCT -ACGGAACGCTTACACTACTAAGCC -ACGGAACGCTTACACTACATAGCC -ACGGAACGCTTACACTACTAACCG -ACGGAACGCTTACACTACATGCCA -ACGGAACGCTTAAACCAGGGAAAC -ACGGAACGCTTAAACCAGAACACC -ACGGAACGCTTAAACCAGATCGAG -ACGGAACGCTTAAACCAGCTCCTT -ACGGAACGCTTAAACCAGCCTGTT -ACGGAACGCTTAAACCAGCGGTTT -ACGGAACGCTTAAACCAGGTGGTT -ACGGAACGCTTAAACCAGGCCTTT -ACGGAACGCTTAAACCAGGGTCTT -ACGGAACGCTTAAACCAGACGCTT -ACGGAACGCTTAAACCAGAGCGTT -ACGGAACGCTTAAACCAGTTCGTC -ACGGAACGCTTAAACCAGTCTCTC -ACGGAACGCTTAAACCAGTGGATC -ACGGAACGCTTAAACCAGCACTTC -ACGGAACGCTTAAACCAGGTACTC -ACGGAACGCTTAAACCAGGATGTC -ACGGAACGCTTAAACCAGACAGTC -ACGGAACGCTTAAACCAGTTGCTG -ACGGAACGCTTAAACCAGTCCATG -ACGGAACGCTTAAACCAGTGTGTG -ACGGAACGCTTAAACCAGCTAGTG -ACGGAACGCTTAAACCAGCATCTG -ACGGAACGCTTAAACCAGGAGTTG -ACGGAACGCTTAAACCAGAGACTG -ACGGAACGCTTAAACCAGTCGGTA -ACGGAACGCTTAAACCAGTGCCTA -ACGGAACGCTTAAACCAGCCACTA -ACGGAACGCTTAAACCAGGGAGTA -ACGGAACGCTTAAACCAGTCGTCT -ACGGAACGCTTAAACCAGTGCACT -ACGGAACGCTTAAACCAGCTGACT -ACGGAACGCTTAAACCAGCAACCT -ACGGAACGCTTAAACCAGGCTACT -ACGGAACGCTTAAACCAGGGATCT -ACGGAACGCTTAAACCAGAAGGCT -ACGGAACGCTTAAACCAGTCAACC -ACGGAACGCTTAAACCAGTGTTCC -ACGGAACGCTTAAACCAGATTCCC -ACGGAACGCTTAAACCAGTTCTCG -ACGGAACGCTTAAACCAGTAGACG -ACGGAACGCTTAAACCAGGTAACG -ACGGAACGCTTAAACCAGACTTCG -ACGGAACGCTTAAACCAGTACGCA -ACGGAACGCTTAAACCAGCTTGCA -ACGGAACGCTTAAACCAGCGAACA -ACGGAACGCTTAAACCAGCAGTCA -ACGGAACGCTTAAACCAGGATCCA -ACGGAACGCTTAAACCAGACGACA -ACGGAACGCTTAAACCAGAGCTCA -ACGGAACGCTTAAACCAGTCACGT -ACGGAACGCTTAAACCAGCGTAGT -ACGGAACGCTTAAACCAGGTCAGT -ACGGAACGCTTAAACCAGGAAGGT -ACGGAACGCTTAAACCAGAACCGT -ACGGAACGCTTAAACCAGTTGTGC -ACGGAACGCTTAAACCAGCTAAGC -ACGGAACGCTTAAACCAGACTAGC -ACGGAACGCTTAAACCAGAGATGC -ACGGAACGCTTAAACCAGTGAAGG -ACGGAACGCTTAAACCAGCAATGG -ACGGAACGCTTAAACCAGATGAGG -ACGGAACGCTTAAACCAGAATGGG -ACGGAACGCTTAAACCAGTCCTGA -ACGGAACGCTTAAACCAGTAGCGA -ACGGAACGCTTAAACCAGCACAGA -ACGGAACGCTTAAACCAGGCAAGA -ACGGAACGCTTAAACCAGGGTTGA -ACGGAACGCTTAAACCAGTCCGAT -ACGGAACGCTTAAACCAGTGGCAT -ACGGAACGCTTAAACCAGCGAGAT -ACGGAACGCTTAAACCAGTACCAC -ACGGAACGCTTAAACCAGCAGAAC -ACGGAACGCTTAAACCAGGTCTAC -ACGGAACGCTTAAACCAGACGTAC -ACGGAACGCTTAAACCAGAGTGAC -ACGGAACGCTTAAACCAGCTGTAG -ACGGAACGCTTAAACCAGCCTAAG -ACGGAACGCTTAAACCAGGTTCAG -ACGGAACGCTTAAACCAGGCATAG -ACGGAACGCTTAAACCAGGACAAG -ACGGAACGCTTAAACCAGAAGCAG -ACGGAACGCTTAAACCAGCGTCAA -ACGGAACGCTTAAACCAGGCTGAA -ACGGAACGCTTAAACCAGAGTACG -ACGGAACGCTTAAACCAGATCCGA -ACGGAACGCTTAAACCAGATGGGA -ACGGAACGCTTAAACCAGGTGCAA -ACGGAACGCTTAAACCAGGAGGAA -ACGGAACGCTTAAACCAGCAGGTA -ACGGAACGCTTAAACCAGGACTCT -ACGGAACGCTTAAACCAGAGTCCT -ACGGAACGCTTAAACCAGTAAGCC -ACGGAACGCTTAAACCAGATAGCC -ACGGAACGCTTAAACCAGTAACCG -ACGGAACGCTTAAACCAGATGCCA -ACGGAACGCTTATACGTCGGAAAC -ACGGAACGCTTATACGTCAACACC -ACGGAACGCTTATACGTCATCGAG -ACGGAACGCTTATACGTCCTCCTT -ACGGAACGCTTATACGTCCCTGTT -ACGGAACGCTTATACGTCCGGTTT -ACGGAACGCTTATACGTCGTGGTT -ACGGAACGCTTATACGTCGCCTTT -ACGGAACGCTTATACGTCGGTCTT -ACGGAACGCTTATACGTCACGCTT -ACGGAACGCTTATACGTCAGCGTT -ACGGAACGCTTATACGTCTTCGTC -ACGGAACGCTTATACGTCTCTCTC -ACGGAACGCTTATACGTCTGGATC -ACGGAACGCTTATACGTCCACTTC -ACGGAACGCTTATACGTCGTACTC -ACGGAACGCTTATACGTCGATGTC -ACGGAACGCTTATACGTCACAGTC -ACGGAACGCTTATACGTCTTGCTG -ACGGAACGCTTATACGTCTCCATG -ACGGAACGCTTATACGTCTGTGTG -ACGGAACGCTTATACGTCCTAGTG -ACGGAACGCTTATACGTCCATCTG -ACGGAACGCTTATACGTCGAGTTG -ACGGAACGCTTATACGTCAGACTG -ACGGAACGCTTATACGTCTCGGTA -ACGGAACGCTTATACGTCTGCCTA -ACGGAACGCTTATACGTCCCACTA -ACGGAACGCTTATACGTCGGAGTA -ACGGAACGCTTATACGTCTCGTCT -ACGGAACGCTTATACGTCTGCACT -ACGGAACGCTTATACGTCCTGACT -ACGGAACGCTTATACGTCCAACCT -ACGGAACGCTTATACGTCGCTACT -ACGGAACGCTTATACGTCGGATCT -ACGGAACGCTTATACGTCAAGGCT -ACGGAACGCTTATACGTCTCAACC -ACGGAACGCTTATACGTCTGTTCC -ACGGAACGCTTATACGTCATTCCC -ACGGAACGCTTATACGTCTTCTCG -ACGGAACGCTTATACGTCTAGACG -ACGGAACGCTTATACGTCGTAACG -ACGGAACGCTTATACGTCACTTCG -ACGGAACGCTTATACGTCTACGCA -ACGGAACGCTTATACGTCCTTGCA -ACGGAACGCTTATACGTCCGAACA -ACGGAACGCTTATACGTCCAGTCA -ACGGAACGCTTATACGTCGATCCA -ACGGAACGCTTATACGTCACGACA -ACGGAACGCTTATACGTCAGCTCA -ACGGAACGCTTATACGTCTCACGT -ACGGAACGCTTATACGTCCGTAGT -ACGGAACGCTTATACGTCGTCAGT -ACGGAACGCTTATACGTCGAAGGT -ACGGAACGCTTATACGTCAACCGT -ACGGAACGCTTATACGTCTTGTGC -ACGGAACGCTTATACGTCCTAAGC -ACGGAACGCTTATACGTCACTAGC -ACGGAACGCTTATACGTCAGATGC -ACGGAACGCTTATACGTCTGAAGG -ACGGAACGCTTATACGTCCAATGG -ACGGAACGCTTATACGTCATGAGG -ACGGAACGCTTATACGTCAATGGG -ACGGAACGCTTATACGTCTCCTGA -ACGGAACGCTTATACGTCTAGCGA -ACGGAACGCTTATACGTCCACAGA -ACGGAACGCTTATACGTCGCAAGA -ACGGAACGCTTATACGTCGGTTGA -ACGGAACGCTTATACGTCTCCGAT -ACGGAACGCTTATACGTCTGGCAT -ACGGAACGCTTATACGTCCGAGAT -ACGGAACGCTTATACGTCTACCAC -ACGGAACGCTTATACGTCCAGAAC -ACGGAACGCTTATACGTCGTCTAC -ACGGAACGCTTATACGTCACGTAC -ACGGAACGCTTATACGTCAGTGAC -ACGGAACGCTTATACGTCCTGTAG -ACGGAACGCTTATACGTCCCTAAG -ACGGAACGCTTATACGTCGTTCAG -ACGGAACGCTTATACGTCGCATAG -ACGGAACGCTTATACGTCGACAAG -ACGGAACGCTTATACGTCAAGCAG -ACGGAACGCTTATACGTCCGTCAA -ACGGAACGCTTATACGTCGCTGAA -ACGGAACGCTTATACGTCAGTACG -ACGGAACGCTTATACGTCATCCGA -ACGGAACGCTTATACGTCATGGGA -ACGGAACGCTTATACGTCGTGCAA -ACGGAACGCTTATACGTCGAGGAA -ACGGAACGCTTATACGTCCAGGTA -ACGGAACGCTTATACGTCGACTCT -ACGGAACGCTTATACGTCAGTCCT -ACGGAACGCTTATACGTCTAAGCC -ACGGAACGCTTATACGTCATAGCC -ACGGAACGCTTATACGTCTAACCG -ACGGAACGCTTATACGTCATGCCA -ACGGAACGCTTATACACGGGAAAC -ACGGAACGCTTATACACGAACACC -ACGGAACGCTTATACACGATCGAG -ACGGAACGCTTATACACGCTCCTT -ACGGAACGCTTATACACGCCTGTT -ACGGAACGCTTATACACGCGGTTT -ACGGAACGCTTATACACGGTGGTT -ACGGAACGCTTATACACGGCCTTT -ACGGAACGCTTATACACGGGTCTT -ACGGAACGCTTATACACGACGCTT -ACGGAACGCTTATACACGAGCGTT -ACGGAACGCTTATACACGTTCGTC -ACGGAACGCTTATACACGTCTCTC -ACGGAACGCTTATACACGTGGATC -ACGGAACGCTTATACACGCACTTC -ACGGAACGCTTATACACGGTACTC -ACGGAACGCTTATACACGGATGTC -ACGGAACGCTTATACACGACAGTC -ACGGAACGCTTATACACGTTGCTG -ACGGAACGCTTATACACGTCCATG -ACGGAACGCTTATACACGTGTGTG -ACGGAACGCTTATACACGCTAGTG -ACGGAACGCTTATACACGCATCTG -ACGGAACGCTTATACACGGAGTTG -ACGGAACGCTTATACACGAGACTG -ACGGAACGCTTATACACGTCGGTA -ACGGAACGCTTATACACGTGCCTA -ACGGAACGCTTATACACGCCACTA -ACGGAACGCTTATACACGGGAGTA -ACGGAACGCTTATACACGTCGTCT -ACGGAACGCTTATACACGTGCACT -ACGGAACGCTTATACACGCTGACT -ACGGAACGCTTATACACGCAACCT -ACGGAACGCTTATACACGGCTACT -ACGGAACGCTTATACACGGGATCT -ACGGAACGCTTATACACGAAGGCT -ACGGAACGCTTATACACGTCAACC -ACGGAACGCTTATACACGTGTTCC -ACGGAACGCTTATACACGATTCCC -ACGGAACGCTTATACACGTTCTCG -ACGGAACGCTTATACACGTAGACG -ACGGAACGCTTATACACGGTAACG -ACGGAACGCTTATACACGACTTCG -ACGGAACGCTTATACACGTACGCA -ACGGAACGCTTATACACGCTTGCA -ACGGAACGCTTATACACGCGAACA -ACGGAACGCTTATACACGCAGTCA -ACGGAACGCTTATACACGGATCCA -ACGGAACGCTTATACACGACGACA -ACGGAACGCTTATACACGAGCTCA -ACGGAACGCTTATACACGTCACGT -ACGGAACGCTTATACACGCGTAGT -ACGGAACGCTTATACACGGTCAGT -ACGGAACGCTTATACACGGAAGGT -ACGGAACGCTTATACACGAACCGT -ACGGAACGCTTATACACGTTGTGC -ACGGAACGCTTATACACGCTAAGC -ACGGAACGCTTATACACGACTAGC -ACGGAACGCTTATACACGAGATGC -ACGGAACGCTTATACACGTGAAGG -ACGGAACGCTTATACACGCAATGG -ACGGAACGCTTATACACGATGAGG -ACGGAACGCTTATACACGAATGGG -ACGGAACGCTTATACACGTCCTGA -ACGGAACGCTTATACACGTAGCGA -ACGGAACGCTTATACACGCACAGA -ACGGAACGCTTATACACGGCAAGA -ACGGAACGCTTATACACGGGTTGA -ACGGAACGCTTATACACGTCCGAT -ACGGAACGCTTATACACGTGGCAT -ACGGAACGCTTATACACGCGAGAT -ACGGAACGCTTATACACGTACCAC -ACGGAACGCTTATACACGCAGAAC -ACGGAACGCTTATACACGGTCTAC -ACGGAACGCTTATACACGACGTAC -ACGGAACGCTTATACACGAGTGAC -ACGGAACGCTTATACACGCTGTAG -ACGGAACGCTTATACACGCCTAAG -ACGGAACGCTTATACACGGTTCAG -ACGGAACGCTTATACACGGCATAG -ACGGAACGCTTATACACGGACAAG -ACGGAACGCTTATACACGAAGCAG -ACGGAACGCTTATACACGCGTCAA -ACGGAACGCTTATACACGGCTGAA -ACGGAACGCTTATACACGAGTACG -ACGGAACGCTTATACACGATCCGA -ACGGAACGCTTATACACGATGGGA -ACGGAACGCTTATACACGGTGCAA -ACGGAACGCTTATACACGGAGGAA -ACGGAACGCTTATACACGCAGGTA -ACGGAACGCTTATACACGGACTCT -ACGGAACGCTTATACACGAGTCCT -ACGGAACGCTTATACACGTAAGCC -ACGGAACGCTTATACACGATAGCC -ACGGAACGCTTATACACGTAACCG -ACGGAACGCTTATACACGATGCCA -ACGGAACGCTTAGACAGTGGAAAC -ACGGAACGCTTAGACAGTAACACC -ACGGAACGCTTAGACAGTATCGAG -ACGGAACGCTTAGACAGTCTCCTT -ACGGAACGCTTAGACAGTCCTGTT -ACGGAACGCTTAGACAGTCGGTTT -ACGGAACGCTTAGACAGTGTGGTT -ACGGAACGCTTAGACAGTGCCTTT -ACGGAACGCTTAGACAGTGGTCTT -ACGGAACGCTTAGACAGTACGCTT -ACGGAACGCTTAGACAGTAGCGTT -ACGGAACGCTTAGACAGTTTCGTC -ACGGAACGCTTAGACAGTTCTCTC -ACGGAACGCTTAGACAGTTGGATC -ACGGAACGCTTAGACAGTCACTTC -ACGGAACGCTTAGACAGTGTACTC -ACGGAACGCTTAGACAGTGATGTC -ACGGAACGCTTAGACAGTACAGTC -ACGGAACGCTTAGACAGTTTGCTG -ACGGAACGCTTAGACAGTTCCATG -ACGGAACGCTTAGACAGTTGTGTG -ACGGAACGCTTAGACAGTCTAGTG -ACGGAACGCTTAGACAGTCATCTG -ACGGAACGCTTAGACAGTGAGTTG -ACGGAACGCTTAGACAGTAGACTG -ACGGAACGCTTAGACAGTTCGGTA -ACGGAACGCTTAGACAGTTGCCTA -ACGGAACGCTTAGACAGTCCACTA -ACGGAACGCTTAGACAGTGGAGTA -ACGGAACGCTTAGACAGTTCGTCT -ACGGAACGCTTAGACAGTTGCACT -ACGGAACGCTTAGACAGTCTGACT -ACGGAACGCTTAGACAGTCAACCT -ACGGAACGCTTAGACAGTGCTACT -ACGGAACGCTTAGACAGTGGATCT -ACGGAACGCTTAGACAGTAAGGCT -ACGGAACGCTTAGACAGTTCAACC -ACGGAACGCTTAGACAGTTGTTCC -ACGGAACGCTTAGACAGTATTCCC -ACGGAACGCTTAGACAGTTTCTCG -ACGGAACGCTTAGACAGTTAGACG -ACGGAACGCTTAGACAGTGTAACG -ACGGAACGCTTAGACAGTACTTCG -ACGGAACGCTTAGACAGTTACGCA -ACGGAACGCTTAGACAGTCTTGCA -ACGGAACGCTTAGACAGTCGAACA -ACGGAACGCTTAGACAGTCAGTCA -ACGGAACGCTTAGACAGTGATCCA -ACGGAACGCTTAGACAGTACGACA -ACGGAACGCTTAGACAGTAGCTCA -ACGGAACGCTTAGACAGTTCACGT -ACGGAACGCTTAGACAGTCGTAGT -ACGGAACGCTTAGACAGTGTCAGT -ACGGAACGCTTAGACAGTGAAGGT -ACGGAACGCTTAGACAGTAACCGT -ACGGAACGCTTAGACAGTTTGTGC -ACGGAACGCTTAGACAGTCTAAGC -ACGGAACGCTTAGACAGTACTAGC -ACGGAACGCTTAGACAGTAGATGC -ACGGAACGCTTAGACAGTTGAAGG -ACGGAACGCTTAGACAGTCAATGG -ACGGAACGCTTAGACAGTATGAGG -ACGGAACGCTTAGACAGTAATGGG -ACGGAACGCTTAGACAGTTCCTGA -ACGGAACGCTTAGACAGTTAGCGA -ACGGAACGCTTAGACAGTCACAGA -ACGGAACGCTTAGACAGTGCAAGA -ACGGAACGCTTAGACAGTGGTTGA -ACGGAACGCTTAGACAGTTCCGAT -ACGGAACGCTTAGACAGTTGGCAT -ACGGAACGCTTAGACAGTCGAGAT -ACGGAACGCTTAGACAGTTACCAC -ACGGAACGCTTAGACAGTCAGAAC -ACGGAACGCTTAGACAGTGTCTAC -ACGGAACGCTTAGACAGTACGTAC -ACGGAACGCTTAGACAGTAGTGAC -ACGGAACGCTTAGACAGTCTGTAG -ACGGAACGCTTAGACAGTCCTAAG -ACGGAACGCTTAGACAGTGTTCAG -ACGGAACGCTTAGACAGTGCATAG -ACGGAACGCTTAGACAGTGACAAG -ACGGAACGCTTAGACAGTAAGCAG -ACGGAACGCTTAGACAGTCGTCAA -ACGGAACGCTTAGACAGTGCTGAA -ACGGAACGCTTAGACAGTAGTACG -ACGGAACGCTTAGACAGTATCCGA -ACGGAACGCTTAGACAGTATGGGA -ACGGAACGCTTAGACAGTGTGCAA -ACGGAACGCTTAGACAGTGAGGAA -ACGGAACGCTTAGACAGTCAGGTA -ACGGAACGCTTAGACAGTGACTCT -ACGGAACGCTTAGACAGTAGTCCT -ACGGAACGCTTAGACAGTTAAGCC -ACGGAACGCTTAGACAGTATAGCC -ACGGAACGCTTAGACAGTTAACCG -ACGGAACGCTTAGACAGTATGCCA -ACGGAACGCTTATAGCTGGGAAAC -ACGGAACGCTTATAGCTGAACACC -ACGGAACGCTTATAGCTGATCGAG -ACGGAACGCTTATAGCTGCTCCTT -ACGGAACGCTTATAGCTGCCTGTT -ACGGAACGCTTATAGCTGCGGTTT -ACGGAACGCTTATAGCTGGTGGTT -ACGGAACGCTTATAGCTGGCCTTT -ACGGAACGCTTATAGCTGGGTCTT -ACGGAACGCTTATAGCTGACGCTT -ACGGAACGCTTATAGCTGAGCGTT -ACGGAACGCTTATAGCTGTTCGTC -ACGGAACGCTTATAGCTGTCTCTC -ACGGAACGCTTATAGCTGTGGATC -ACGGAACGCTTATAGCTGCACTTC -ACGGAACGCTTATAGCTGGTACTC -ACGGAACGCTTATAGCTGGATGTC -ACGGAACGCTTATAGCTGACAGTC -ACGGAACGCTTATAGCTGTTGCTG -ACGGAACGCTTATAGCTGTCCATG -ACGGAACGCTTATAGCTGTGTGTG -ACGGAACGCTTATAGCTGCTAGTG -ACGGAACGCTTATAGCTGCATCTG -ACGGAACGCTTATAGCTGGAGTTG -ACGGAACGCTTATAGCTGAGACTG -ACGGAACGCTTATAGCTGTCGGTA -ACGGAACGCTTATAGCTGTGCCTA -ACGGAACGCTTATAGCTGCCACTA -ACGGAACGCTTATAGCTGGGAGTA -ACGGAACGCTTATAGCTGTCGTCT -ACGGAACGCTTATAGCTGTGCACT -ACGGAACGCTTATAGCTGCTGACT -ACGGAACGCTTATAGCTGCAACCT -ACGGAACGCTTATAGCTGGCTACT -ACGGAACGCTTATAGCTGGGATCT -ACGGAACGCTTATAGCTGAAGGCT -ACGGAACGCTTATAGCTGTCAACC -ACGGAACGCTTATAGCTGTGTTCC -ACGGAACGCTTATAGCTGATTCCC -ACGGAACGCTTATAGCTGTTCTCG -ACGGAACGCTTATAGCTGTAGACG -ACGGAACGCTTATAGCTGGTAACG -ACGGAACGCTTATAGCTGACTTCG -ACGGAACGCTTATAGCTGTACGCA -ACGGAACGCTTATAGCTGCTTGCA -ACGGAACGCTTATAGCTGCGAACA -ACGGAACGCTTATAGCTGCAGTCA -ACGGAACGCTTATAGCTGGATCCA -ACGGAACGCTTATAGCTGACGACA -ACGGAACGCTTATAGCTGAGCTCA -ACGGAACGCTTATAGCTGTCACGT -ACGGAACGCTTATAGCTGCGTAGT -ACGGAACGCTTATAGCTGGTCAGT -ACGGAACGCTTATAGCTGGAAGGT -ACGGAACGCTTATAGCTGAACCGT -ACGGAACGCTTATAGCTGTTGTGC -ACGGAACGCTTATAGCTGCTAAGC -ACGGAACGCTTATAGCTGACTAGC -ACGGAACGCTTATAGCTGAGATGC -ACGGAACGCTTATAGCTGTGAAGG -ACGGAACGCTTATAGCTGCAATGG -ACGGAACGCTTATAGCTGATGAGG -ACGGAACGCTTATAGCTGAATGGG -ACGGAACGCTTATAGCTGTCCTGA -ACGGAACGCTTATAGCTGTAGCGA -ACGGAACGCTTATAGCTGCACAGA -ACGGAACGCTTATAGCTGGCAAGA -ACGGAACGCTTATAGCTGGGTTGA -ACGGAACGCTTATAGCTGTCCGAT -ACGGAACGCTTATAGCTGTGGCAT -ACGGAACGCTTATAGCTGCGAGAT -ACGGAACGCTTATAGCTGTACCAC -ACGGAACGCTTATAGCTGCAGAAC -ACGGAACGCTTATAGCTGGTCTAC -ACGGAACGCTTATAGCTGACGTAC -ACGGAACGCTTATAGCTGAGTGAC -ACGGAACGCTTATAGCTGCTGTAG -ACGGAACGCTTATAGCTGCCTAAG -ACGGAACGCTTATAGCTGGTTCAG -ACGGAACGCTTATAGCTGGCATAG -ACGGAACGCTTATAGCTGGACAAG -ACGGAACGCTTATAGCTGAAGCAG -ACGGAACGCTTATAGCTGCGTCAA -ACGGAACGCTTATAGCTGGCTGAA -ACGGAACGCTTATAGCTGAGTACG -ACGGAACGCTTATAGCTGATCCGA -ACGGAACGCTTATAGCTGATGGGA -ACGGAACGCTTATAGCTGGTGCAA -ACGGAACGCTTATAGCTGGAGGAA -ACGGAACGCTTATAGCTGCAGGTA -ACGGAACGCTTATAGCTGGACTCT -ACGGAACGCTTATAGCTGAGTCCT -ACGGAACGCTTATAGCTGTAAGCC -ACGGAACGCTTATAGCTGATAGCC -ACGGAACGCTTATAGCTGTAACCG -ACGGAACGCTTATAGCTGATGCCA -ACGGAACGCTTAAAGCCTGGAAAC -ACGGAACGCTTAAAGCCTAACACC -ACGGAACGCTTAAAGCCTATCGAG -ACGGAACGCTTAAAGCCTCTCCTT -ACGGAACGCTTAAAGCCTCCTGTT -ACGGAACGCTTAAAGCCTCGGTTT -ACGGAACGCTTAAAGCCTGTGGTT -ACGGAACGCTTAAAGCCTGCCTTT -ACGGAACGCTTAAAGCCTGGTCTT -ACGGAACGCTTAAAGCCTACGCTT -ACGGAACGCTTAAAGCCTAGCGTT -ACGGAACGCTTAAAGCCTTTCGTC -ACGGAACGCTTAAAGCCTTCTCTC -ACGGAACGCTTAAAGCCTTGGATC -ACGGAACGCTTAAAGCCTCACTTC -ACGGAACGCTTAAAGCCTGTACTC -ACGGAACGCTTAAAGCCTGATGTC -ACGGAACGCTTAAAGCCTACAGTC -ACGGAACGCTTAAAGCCTTTGCTG -ACGGAACGCTTAAAGCCTTCCATG -ACGGAACGCTTAAAGCCTTGTGTG -ACGGAACGCTTAAAGCCTCTAGTG -ACGGAACGCTTAAAGCCTCATCTG -ACGGAACGCTTAAAGCCTGAGTTG -ACGGAACGCTTAAAGCCTAGACTG -ACGGAACGCTTAAAGCCTTCGGTA -ACGGAACGCTTAAAGCCTTGCCTA -ACGGAACGCTTAAAGCCTCCACTA -ACGGAACGCTTAAAGCCTGGAGTA -ACGGAACGCTTAAAGCCTTCGTCT -ACGGAACGCTTAAAGCCTTGCACT -ACGGAACGCTTAAAGCCTCTGACT -ACGGAACGCTTAAAGCCTCAACCT -ACGGAACGCTTAAAGCCTGCTACT -ACGGAACGCTTAAAGCCTGGATCT -ACGGAACGCTTAAAGCCTAAGGCT -ACGGAACGCTTAAAGCCTTCAACC -ACGGAACGCTTAAAGCCTTGTTCC -ACGGAACGCTTAAAGCCTATTCCC -ACGGAACGCTTAAAGCCTTTCTCG -ACGGAACGCTTAAAGCCTTAGACG -ACGGAACGCTTAAAGCCTGTAACG -ACGGAACGCTTAAAGCCTACTTCG -ACGGAACGCTTAAAGCCTTACGCA -ACGGAACGCTTAAAGCCTCTTGCA -ACGGAACGCTTAAAGCCTCGAACA -ACGGAACGCTTAAAGCCTCAGTCA -ACGGAACGCTTAAAGCCTGATCCA -ACGGAACGCTTAAAGCCTACGACA -ACGGAACGCTTAAAGCCTAGCTCA -ACGGAACGCTTAAAGCCTTCACGT -ACGGAACGCTTAAAGCCTCGTAGT -ACGGAACGCTTAAAGCCTGTCAGT -ACGGAACGCTTAAAGCCTGAAGGT -ACGGAACGCTTAAAGCCTAACCGT -ACGGAACGCTTAAAGCCTTTGTGC -ACGGAACGCTTAAAGCCTCTAAGC -ACGGAACGCTTAAAGCCTACTAGC -ACGGAACGCTTAAAGCCTAGATGC -ACGGAACGCTTAAAGCCTTGAAGG -ACGGAACGCTTAAAGCCTCAATGG -ACGGAACGCTTAAAGCCTATGAGG -ACGGAACGCTTAAAGCCTAATGGG -ACGGAACGCTTAAAGCCTTCCTGA -ACGGAACGCTTAAAGCCTTAGCGA -ACGGAACGCTTAAAGCCTCACAGA -ACGGAACGCTTAAAGCCTGCAAGA -ACGGAACGCTTAAAGCCTGGTTGA -ACGGAACGCTTAAAGCCTTCCGAT -ACGGAACGCTTAAAGCCTTGGCAT -ACGGAACGCTTAAAGCCTCGAGAT -ACGGAACGCTTAAAGCCTTACCAC -ACGGAACGCTTAAAGCCTCAGAAC -ACGGAACGCTTAAAGCCTGTCTAC -ACGGAACGCTTAAAGCCTACGTAC -ACGGAACGCTTAAAGCCTAGTGAC -ACGGAACGCTTAAAGCCTCTGTAG -ACGGAACGCTTAAAGCCTCCTAAG -ACGGAACGCTTAAAGCCTGTTCAG -ACGGAACGCTTAAAGCCTGCATAG -ACGGAACGCTTAAAGCCTGACAAG -ACGGAACGCTTAAAGCCTAAGCAG -ACGGAACGCTTAAAGCCTCGTCAA -ACGGAACGCTTAAAGCCTGCTGAA -ACGGAACGCTTAAAGCCTAGTACG -ACGGAACGCTTAAAGCCTATCCGA -ACGGAACGCTTAAAGCCTATGGGA -ACGGAACGCTTAAAGCCTGTGCAA -ACGGAACGCTTAAAGCCTGAGGAA -ACGGAACGCTTAAAGCCTCAGGTA -ACGGAACGCTTAAAGCCTGACTCT -ACGGAACGCTTAAAGCCTAGTCCT -ACGGAACGCTTAAAGCCTTAAGCC -ACGGAACGCTTAAAGCCTATAGCC -ACGGAACGCTTAAAGCCTTAACCG -ACGGAACGCTTAAAGCCTATGCCA -ACGGAACGCTTACAGGTTGGAAAC -ACGGAACGCTTACAGGTTAACACC -ACGGAACGCTTACAGGTTATCGAG -ACGGAACGCTTACAGGTTCTCCTT -ACGGAACGCTTACAGGTTCCTGTT -ACGGAACGCTTACAGGTTCGGTTT -ACGGAACGCTTACAGGTTGTGGTT -ACGGAACGCTTACAGGTTGCCTTT -ACGGAACGCTTACAGGTTGGTCTT -ACGGAACGCTTACAGGTTACGCTT -ACGGAACGCTTACAGGTTAGCGTT -ACGGAACGCTTACAGGTTTTCGTC -ACGGAACGCTTACAGGTTTCTCTC -ACGGAACGCTTACAGGTTTGGATC -ACGGAACGCTTACAGGTTCACTTC -ACGGAACGCTTACAGGTTGTACTC -ACGGAACGCTTACAGGTTGATGTC -ACGGAACGCTTACAGGTTACAGTC -ACGGAACGCTTACAGGTTTTGCTG -ACGGAACGCTTACAGGTTTCCATG -ACGGAACGCTTACAGGTTTGTGTG -ACGGAACGCTTACAGGTTCTAGTG -ACGGAACGCTTACAGGTTCATCTG -ACGGAACGCTTACAGGTTGAGTTG -ACGGAACGCTTACAGGTTAGACTG -ACGGAACGCTTACAGGTTTCGGTA -ACGGAACGCTTACAGGTTTGCCTA -ACGGAACGCTTACAGGTTCCACTA -ACGGAACGCTTACAGGTTGGAGTA -ACGGAACGCTTACAGGTTTCGTCT -ACGGAACGCTTACAGGTTTGCACT -ACGGAACGCTTACAGGTTCTGACT -ACGGAACGCTTACAGGTTCAACCT -ACGGAACGCTTACAGGTTGCTACT -ACGGAACGCTTACAGGTTGGATCT -ACGGAACGCTTACAGGTTAAGGCT -ACGGAACGCTTACAGGTTTCAACC -ACGGAACGCTTACAGGTTTGTTCC -ACGGAACGCTTACAGGTTATTCCC -ACGGAACGCTTACAGGTTTTCTCG -ACGGAACGCTTACAGGTTTAGACG -ACGGAACGCTTACAGGTTGTAACG -ACGGAACGCTTACAGGTTACTTCG -ACGGAACGCTTACAGGTTTACGCA -ACGGAACGCTTACAGGTTCTTGCA -ACGGAACGCTTACAGGTTCGAACA -ACGGAACGCTTACAGGTTCAGTCA -ACGGAACGCTTACAGGTTGATCCA -ACGGAACGCTTACAGGTTACGACA -ACGGAACGCTTACAGGTTAGCTCA -ACGGAACGCTTACAGGTTTCACGT -ACGGAACGCTTACAGGTTCGTAGT -ACGGAACGCTTACAGGTTGTCAGT -ACGGAACGCTTACAGGTTGAAGGT -ACGGAACGCTTACAGGTTAACCGT -ACGGAACGCTTACAGGTTTTGTGC -ACGGAACGCTTACAGGTTCTAAGC -ACGGAACGCTTACAGGTTACTAGC -ACGGAACGCTTACAGGTTAGATGC -ACGGAACGCTTACAGGTTTGAAGG -ACGGAACGCTTACAGGTTCAATGG -ACGGAACGCTTACAGGTTATGAGG -ACGGAACGCTTACAGGTTAATGGG -ACGGAACGCTTACAGGTTTCCTGA -ACGGAACGCTTACAGGTTTAGCGA -ACGGAACGCTTACAGGTTCACAGA -ACGGAACGCTTACAGGTTGCAAGA -ACGGAACGCTTACAGGTTGGTTGA -ACGGAACGCTTACAGGTTTCCGAT -ACGGAACGCTTACAGGTTTGGCAT -ACGGAACGCTTACAGGTTCGAGAT -ACGGAACGCTTACAGGTTTACCAC -ACGGAACGCTTACAGGTTCAGAAC -ACGGAACGCTTACAGGTTGTCTAC -ACGGAACGCTTACAGGTTACGTAC -ACGGAACGCTTACAGGTTAGTGAC -ACGGAACGCTTACAGGTTCTGTAG -ACGGAACGCTTACAGGTTCCTAAG -ACGGAACGCTTACAGGTTGTTCAG -ACGGAACGCTTACAGGTTGCATAG -ACGGAACGCTTACAGGTTGACAAG -ACGGAACGCTTACAGGTTAAGCAG -ACGGAACGCTTACAGGTTCGTCAA -ACGGAACGCTTACAGGTTGCTGAA -ACGGAACGCTTACAGGTTAGTACG -ACGGAACGCTTACAGGTTATCCGA -ACGGAACGCTTACAGGTTATGGGA -ACGGAACGCTTACAGGTTGTGCAA -ACGGAACGCTTACAGGTTGAGGAA -ACGGAACGCTTACAGGTTCAGGTA -ACGGAACGCTTACAGGTTGACTCT -ACGGAACGCTTACAGGTTAGTCCT -ACGGAACGCTTACAGGTTTAAGCC -ACGGAACGCTTACAGGTTATAGCC -ACGGAACGCTTACAGGTTTAACCG -ACGGAACGCTTACAGGTTATGCCA -ACGGAACGCTTATAGGCAGGAAAC -ACGGAACGCTTATAGGCAAACACC -ACGGAACGCTTATAGGCAATCGAG -ACGGAACGCTTATAGGCACTCCTT -ACGGAACGCTTATAGGCACCTGTT -ACGGAACGCTTATAGGCACGGTTT -ACGGAACGCTTATAGGCAGTGGTT -ACGGAACGCTTATAGGCAGCCTTT -ACGGAACGCTTATAGGCAGGTCTT -ACGGAACGCTTATAGGCAACGCTT -ACGGAACGCTTATAGGCAAGCGTT -ACGGAACGCTTATAGGCATTCGTC -ACGGAACGCTTATAGGCATCTCTC -ACGGAACGCTTATAGGCATGGATC -ACGGAACGCTTATAGGCACACTTC -ACGGAACGCTTATAGGCAGTACTC -ACGGAACGCTTATAGGCAGATGTC -ACGGAACGCTTATAGGCAACAGTC -ACGGAACGCTTATAGGCATTGCTG -ACGGAACGCTTATAGGCATCCATG -ACGGAACGCTTATAGGCATGTGTG -ACGGAACGCTTATAGGCACTAGTG -ACGGAACGCTTATAGGCACATCTG -ACGGAACGCTTATAGGCAGAGTTG -ACGGAACGCTTATAGGCAAGACTG -ACGGAACGCTTATAGGCATCGGTA -ACGGAACGCTTATAGGCATGCCTA -ACGGAACGCTTATAGGCACCACTA -ACGGAACGCTTATAGGCAGGAGTA -ACGGAACGCTTATAGGCATCGTCT -ACGGAACGCTTATAGGCATGCACT -ACGGAACGCTTATAGGCACTGACT -ACGGAACGCTTATAGGCACAACCT -ACGGAACGCTTATAGGCAGCTACT -ACGGAACGCTTATAGGCAGGATCT -ACGGAACGCTTATAGGCAAAGGCT -ACGGAACGCTTATAGGCATCAACC -ACGGAACGCTTATAGGCATGTTCC -ACGGAACGCTTATAGGCAATTCCC -ACGGAACGCTTATAGGCATTCTCG -ACGGAACGCTTATAGGCATAGACG -ACGGAACGCTTATAGGCAGTAACG -ACGGAACGCTTATAGGCAACTTCG -ACGGAACGCTTATAGGCATACGCA -ACGGAACGCTTATAGGCACTTGCA -ACGGAACGCTTATAGGCACGAACA -ACGGAACGCTTATAGGCACAGTCA -ACGGAACGCTTATAGGCAGATCCA -ACGGAACGCTTATAGGCAACGACA -ACGGAACGCTTATAGGCAAGCTCA -ACGGAACGCTTATAGGCATCACGT -ACGGAACGCTTATAGGCACGTAGT -ACGGAACGCTTATAGGCAGTCAGT -ACGGAACGCTTATAGGCAGAAGGT -ACGGAACGCTTATAGGCAAACCGT -ACGGAACGCTTATAGGCATTGTGC -ACGGAACGCTTATAGGCACTAAGC -ACGGAACGCTTATAGGCAACTAGC -ACGGAACGCTTATAGGCAAGATGC -ACGGAACGCTTATAGGCATGAAGG -ACGGAACGCTTATAGGCACAATGG -ACGGAACGCTTATAGGCAATGAGG -ACGGAACGCTTATAGGCAAATGGG -ACGGAACGCTTATAGGCATCCTGA -ACGGAACGCTTATAGGCATAGCGA -ACGGAACGCTTATAGGCACACAGA -ACGGAACGCTTATAGGCAGCAAGA -ACGGAACGCTTATAGGCAGGTTGA -ACGGAACGCTTATAGGCATCCGAT -ACGGAACGCTTATAGGCATGGCAT -ACGGAACGCTTATAGGCACGAGAT -ACGGAACGCTTATAGGCATACCAC -ACGGAACGCTTATAGGCACAGAAC -ACGGAACGCTTATAGGCAGTCTAC -ACGGAACGCTTATAGGCAACGTAC -ACGGAACGCTTATAGGCAAGTGAC -ACGGAACGCTTATAGGCACTGTAG -ACGGAACGCTTATAGGCACCTAAG -ACGGAACGCTTATAGGCAGTTCAG -ACGGAACGCTTATAGGCAGCATAG -ACGGAACGCTTATAGGCAGACAAG -ACGGAACGCTTATAGGCAAAGCAG -ACGGAACGCTTATAGGCACGTCAA -ACGGAACGCTTATAGGCAGCTGAA -ACGGAACGCTTATAGGCAAGTACG -ACGGAACGCTTATAGGCAATCCGA -ACGGAACGCTTATAGGCAATGGGA -ACGGAACGCTTATAGGCAGTGCAA -ACGGAACGCTTATAGGCAGAGGAA -ACGGAACGCTTATAGGCACAGGTA -ACGGAACGCTTATAGGCAGACTCT -ACGGAACGCTTATAGGCAAGTCCT -ACGGAACGCTTATAGGCATAAGCC -ACGGAACGCTTATAGGCAATAGCC -ACGGAACGCTTATAGGCATAACCG -ACGGAACGCTTATAGGCAATGCCA -ACGGAACGCTTAAAGGACGGAAAC -ACGGAACGCTTAAAGGACAACACC -ACGGAACGCTTAAAGGACATCGAG -ACGGAACGCTTAAAGGACCTCCTT -ACGGAACGCTTAAAGGACCCTGTT -ACGGAACGCTTAAAGGACCGGTTT -ACGGAACGCTTAAAGGACGTGGTT -ACGGAACGCTTAAAGGACGCCTTT -ACGGAACGCTTAAAGGACGGTCTT -ACGGAACGCTTAAAGGACACGCTT -ACGGAACGCTTAAAGGACAGCGTT -ACGGAACGCTTAAAGGACTTCGTC -ACGGAACGCTTAAAGGACTCTCTC -ACGGAACGCTTAAAGGACTGGATC -ACGGAACGCTTAAAGGACCACTTC -ACGGAACGCTTAAAGGACGTACTC -ACGGAACGCTTAAAGGACGATGTC -ACGGAACGCTTAAAGGACACAGTC -ACGGAACGCTTAAAGGACTTGCTG -ACGGAACGCTTAAAGGACTCCATG -ACGGAACGCTTAAAGGACTGTGTG -ACGGAACGCTTAAAGGACCTAGTG -ACGGAACGCTTAAAGGACCATCTG -ACGGAACGCTTAAAGGACGAGTTG -ACGGAACGCTTAAAGGACAGACTG -ACGGAACGCTTAAAGGACTCGGTA -ACGGAACGCTTAAAGGACTGCCTA -ACGGAACGCTTAAAGGACCCACTA -ACGGAACGCTTAAAGGACGGAGTA -ACGGAACGCTTAAAGGACTCGTCT -ACGGAACGCTTAAAGGACTGCACT -ACGGAACGCTTAAAGGACCTGACT -ACGGAACGCTTAAAGGACCAACCT -ACGGAACGCTTAAAGGACGCTACT -ACGGAACGCTTAAAGGACGGATCT -ACGGAACGCTTAAAGGACAAGGCT -ACGGAACGCTTAAAGGACTCAACC -ACGGAACGCTTAAAGGACTGTTCC -ACGGAACGCTTAAAGGACATTCCC -ACGGAACGCTTAAAGGACTTCTCG -ACGGAACGCTTAAAGGACTAGACG -ACGGAACGCTTAAAGGACGTAACG -ACGGAACGCTTAAAGGACACTTCG -ACGGAACGCTTAAAGGACTACGCA -ACGGAACGCTTAAAGGACCTTGCA -ACGGAACGCTTAAAGGACCGAACA -ACGGAACGCTTAAAGGACCAGTCA -ACGGAACGCTTAAAGGACGATCCA -ACGGAACGCTTAAAGGACACGACA -ACGGAACGCTTAAAGGACAGCTCA -ACGGAACGCTTAAAGGACTCACGT -ACGGAACGCTTAAAGGACCGTAGT -ACGGAACGCTTAAAGGACGTCAGT -ACGGAACGCTTAAAGGACGAAGGT -ACGGAACGCTTAAAGGACAACCGT -ACGGAACGCTTAAAGGACTTGTGC -ACGGAACGCTTAAAGGACCTAAGC -ACGGAACGCTTAAAGGACACTAGC -ACGGAACGCTTAAAGGACAGATGC -ACGGAACGCTTAAAGGACTGAAGG -ACGGAACGCTTAAAGGACCAATGG -ACGGAACGCTTAAAGGACATGAGG -ACGGAACGCTTAAAGGACAATGGG -ACGGAACGCTTAAAGGACTCCTGA -ACGGAACGCTTAAAGGACTAGCGA -ACGGAACGCTTAAAGGACCACAGA -ACGGAACGCTTAAAGGACGCAAGA -ACGGAACGCTTAAAGGACGGTTGA -ACGGAACGCTTAAAGGACTCCGAT -ACGGAACGCTTAAAGGACTGGCAT -ACGGAACGCTTAAAGGACCGAGAT -ACGGAACGCTTAAAGGACTACCAC -ACGGAACGCTTAAAGGACCAGAAC -ACGGAACGCTTAAAGGACGTCTAC -ACGGAACGCTTAAAGGACACGTAC -ACGGAACGCTTAAAGGACAGTGAC -ACGGAACGCTTAAAGGACCTGTAG -ACGGAACGCTTAAAGGACCCTAAG -ACGGAACGCTTAAAGGACGTTCAG -ACGGAACGCTTAAAGGACGCATAG -ACGGAACGCTTAAAGGACGACAAG -ACGGAACGCTTAAAGGACAAGCAG -ACGGAACGCTTAAAGGACCGTCAA -ACGGAACGCTTAAAGGACGCTGAA -ACGGAACGCTTAAAGGACAGTACG -ACGGAACGCTTAAAGGACATCCGA -ACGGAACGCTTAAAGGACATGGGA -ACGGAACGCTTAAAGGACGTGCAA -ACGGAACGCTTAAAGGACGAGGAA -ACGGAACGCTTAAAGGACCAGGTA -ACGGAACGCTTAAAGGACGACTCT -ACGGAACGCTTAAAGGACAGTCCT -ACGGAACGCTTAAAGGACTAAGCC -ACGGAACGCTTAAAGGACATAGCC -ACGGAACGCTTAAAGGACTAACCG -ACGGAACGCTTAAAGGACATGCCA -ACGGAACGCTTACAGAAGGGAAAC -ACGGAACGCTTACAGAAGAACACC -ACGGAACGCTTACAGAAGATCGAG -ACGGAACGCTTACAGAAGCTCCTT -ACGGAACGCTTACAGAAGCCTGTT -ACGGAACGCTTACAGAAGCGGTTT -ACGGAACGCTTACAGAAGGTGGTT -ACGGAACGCTTACAGAAGGCCTTT -ACGGAACGCTTACAGAAGGGTCTT -ACGGAACGCTTACAGAAGACGCTT -ACGGAACGCTTACAGAAGAGCGTT -ACGGAACGCTTACAGAAGTTCGTC -ACGGAACGCTTACAGAAGTCTCTC -ACGGAACGCTTACAGAAGTGGATC -ACGGAACGCTTACAGAAGCACTTC -ACGGAACGCTTACAGAAGGTACTC -ACGGAACGCTTACAGAAGGATGTC -ACGGAACGCTTACAGAAGACAGTC -ACGGAACGCTTACAGAAGTTGCTG -ACGGAACGCTTACAGAAGTCCATG -ACGGAACGCTTACAGAAGTGTGTG -ACGGAACGCTTACAGAAGCTAGTG -ACGGAACGCTTACAGAAGCATCTG -ACGGAACGCTTACAGAAGGAGTTG -ACGGAACGCTTACAGAAGAGACTG -ACGGAACGCTTACAGAAGTCGGTA -ACGGAACGCTTACAGAAGTGCCTA -ACGGAACGCTTACAGAAGCCACTA -ACGGAACGCTTACAGAAGGGAGTA -ACGGAACGCTTACAGAAGTCGTCT -ACGGAACGCTTACAGAAGTGCACT -ACGGAACGCTTACAGAAGCTGACT -ACGGAACGCTTACAGAAGCAACCT -ACGGAACGCTTACAGAAGGCTACT -ACGGAACGCTTACAGAAGGGATCT -ACGGAACGCTTACAGAAGAAGGCT -ACGGAACGCTTACAGAAGTCAACC -ACGGAACGCTTACAGAAGTGTTCC -ACGGAACGCTTACAGAAGATTCCC -ACGGAACGCTTACAGAAGTTCTCG -ACGGAACGCTTACAGAAGTAGACG -ACGGAACGCTTACAGAAGGTAACG -ACGGAACGCTTACAGAAGACTTCG -ACGGAACGCTTACAGAAGTACGCA -ACGGAACGCTTACAGAAGCTTGCA -ACGGAACGCTTACAGAAGCGAACA -ACGGAACGCTTACAGAAGCAGTCA -ACGGAACGCTTACAGAAGGATCCA -ACGGAACGCTTACAGAAGACGACA -ACGGAACGCTTACAGAAGAGCTCA -ACGGAACGCTTACAGAAGTCACGT -ACGGAACGCTTACAGAAGCGTAGT -ACGGAACGCTTACAGAAGGTCAGT -ACGGAACGCTTACAGAAGGAAGGT -ACGGAACGCTTACAGAAGAACCGT -ACGGAACGCTTACAGAAGTTGTGC -ACGGAACGCTTACAGAAGCTAAGC -ACGGAACGCTTACAGAAGACTAGC -ACGGAACGCTTACAGAAGAGATGC -ACGGAACGCTTACAGAAGTGAAGG -ACGGAACGCTTACAGAAGCAATGG -ACGGAACGCTTACAGAAGATGAGG -ACGGAACGCTTACAGAAGAATGGG -ACGGAACGCTTACAGAAGTCCTGA -ACGGAACGCTTACAGAAGTAGCGA -ACGGAACGCTTACAGAAGCACAGA -ACGGAACGCTTACAGAAGGCAAGA -ACGGAACGCTTACAGAAGGGTTGA -ACGGAACGCTTACAGAAGTCCGAT -ACGGAACGCTTACAGAAGTGGCAT -ACGGAACGCTTACAGAAGCGAGAT -ACGGAACGCTTACAGAAGTACCAC -ACGGAACGCTTACAGAAGCAGAAC -ACGGAACGCTTACAGAAGGTCTAC -ACGGAACGCTTACAGAAGACGTAC -ACGGAACGCTTACAGAAGAGTGAC -ACGGAACGCTTACAGAAGCTGTAG -ACGGAACGCTTACAGAAGCCTAAG -ACGGAACGCTTACAGAAGGTTCAG -ACGGAACGCTTACAGAAGGCATAG -ACGGAACGCTTACAGAAGGACAAG -ACGGAACGCTTACAGAAGAAGCAG -ACGGAACGCTTACAGAAGCGTCAA -ACGGAACGCTTACAGAAGGCTGAA -ACGGAACGCTTACAGAAGAGTACG -ACGGAACGCTTACAGAAGATCCGA -ACGGAACGCTTACAGAAGATGGGA -ACGGAACGCTTACAGAAGGTGCAA -ACGGAACGCTTACAGAAGGAGGAA -ACGGAACGCTTACAGAAGCAGGTA -ACGGAACGCTTACAGAAGGACTCT -ACGGAACGCTTACAGAAGAGTCCT -ACGGAACGCTTACAGAAGTAAGCC -ACGGAACGCTTACAGAAGATAGCC -ACGGAACGCTTACAGAAGTAACCG -ACGGAACGCTTACAGAAGATGCCA -ACGGAACGCTTACAACGTGGAAAC -ACGGAACGCTTACAACGTAACACC -ACGGAACGCTTACAACGTATCGAG -ACGGAACGCTTACAACGTCTCCTT -ACGGAACGCTTACAACGTCCTGTT -ACGGAACGCTTACAACGTCGGTTT -ACGGAACGCTTACAACGTGTGGTT -ACGGAACGCTTACAACGTGCCTTT -ACGGAACGCTTACAACGTGGTCTT -ACGGAACGCTTACAACGTACGCTT -ACGGAACGCTTACAACGTAGCGTT -ACGGAACGCTTACAACGTTTCGTC -ACGGAACGCTTACAACGTTCTCTC -ACGGAACGCTTACAACGTTGGATC -ACGGAACGCTTACAACGTCACTTC -ACGGAACGCTTACAACGTGTACTC -ACGGAACGCTTACAACGTGATGTC -ACGGAACGCTTACAACGTACAGTC -ACGGAACGCTTACAACGTTTGCTG -ACGGAACGCTTACAACGTTCCATG -ACGGAACGCTTACAACGTTGTGTG -ACGGAACGCTTACAACGTCTAGTG -ACGGAACGCTTACAACGTCATCTG -ACGGAACGCTTACAACGTGAGTTG -ACGGAACGCTTACAACGTAGACTG -ACGGAACGCTTACAACGTTCGGTA -ACGGAACGCTTACAACGTTGCCTA -ACGGAACGCTTACAACGTCCACTA -ACGGAACGCTTACAACGTGGAGTA -ACGGAACGCTTACAACGTTCGTCT -ACGGAACGCTTACAACGTTGCACT -ACGGAACGCTTACAACGTCTGACT -ACGGAACGCTTACAACGTCAACCT -ACGGAACGCTTACAACGTGCTACT -ACGGAACGCTTACAACGTGGATCT -ACGGAACGCTTACAACGTAAGGCT -ACGGAACGCTTACAACGTTCAACC -ACGGAACGCTTACAACGTTGTTCC -ACGGAACGCTTACAACGTATTCCC -ACGGAACGCTTACAACGTTTCTCG -ACGGAACGCTTACAACGTTAGACG -ACGGAACGCTTACAACGTGTAACG -ACGGAACGCTTACAACGTACTTCG -ACGGAACGCTTACAACGTTACGCA -ACGGAACGCTTACAACGTCTTGCA -ACGGAACGCTTACAACGTCGAACA -ACGGAACGCTTACAACGTCAGTCA -ACGGAACGCTTACAACGTGATCCA -ACGGAACGCTTACAACGTACGACA -ACGGAACGCTTACAACGTAGCTCA -ACGGAACGCTTACAACGTTCACGT -ACGGAACGCTTACAACGTCGTAGT -ACGGAACGCTTACAACGTGTCAGT -ACGGAACGCTTACAACGTGAAGGT -ACGGAACGCTTACAACGTAACCGT -ACGGAACGCTTACAACGTTTGTGC -ACGGAACGCTTACAACGTCTAAGC -ACGGAACGCTTACAACGTACTAGC -ACGGAACGCTTACAACGTAGATGC -ACGGAACGCTTACAACGTTGAAGG -ACGGAACGCTTACAACGTCAATGG -ACGGAACGCTTACAACGTATGAGG -ACGGAACGCTTACAACGTAATGGG -ACGGAACGCTTACAACGTTCCTGA -ACGGAACGCTTACAACGTTAGCGA -ACGGAACGCTTACAACGTCACAGA -ACGGAACGCTTACAACGTGCAAGA -ACGGAACGCTTACAACGTGGTTGA -ACGGAACGCTTACAACGTTCCGAT -ACGGAACGCTTACAACGTTGGCAT -ACGGAACGCTTACAACGTCGAGAT -ACGGAACGCTTACAACGTTACCAC -ACGGAACGCTTACAACGTCAGAAC -ACGGAACGCTTACAACGTGTCTAC -ACGGAACGCTTACAACGTACGTAC -ACGGAACGCTTACAACGTAGTGAC -ACGGAACGCTTACAACGTCTGTAG -ACGGAACGCTTACAACGTCCTAAG -ACGGAACGCTTACAACGTGTTCAG -ACGGAACGCTTACAACGTGCATAG -ACGGAACGCTTACAACGTGACAAG -ACGGAACGCTTACAACGTAAGCAG -ACGGAACGCTTACAACGTCGTCAA -ACGGAACGCTTACAACGTGCTGAA -ACGGAACGCTTACAACGTAGTACG -ACGGAACGCTTACAACGTATCCGA -ACGGAACGCTTACAACGTATGGGA -ACGGAACGCTTACAACGTGTGCAA -ACGGAACGCTTACAACGTGAGGAA -ACGGAACGCTTACAACGTCAGGTA -ACGGAACGCTTACAACGTGACTCT -ACGGAACGCTTACAACGTAGTCCT -ACGGAACGCTTACAACGTTAAGCC -ACGGAACGCTTACAACGTATAGCC -ACGGAACGCTTACAACGTTAACCG -ACGGAACGCTTACAACGTATGCCA -ACGGAACGCTTAGAAGCTGGAAAC -ACGGAACGCTTAGAAGCTAACACC -ACGGAACGCTTAGAAGCTATCGAG -ACGGAACGCTTAGAAGCTCTCCTT -ACGGAACGCTTAGAAGCTCCTGTT -ACGGAACGCTTAGAAGCTCGGTTT -ACGGAACGCTTAGAAGCTGTGGTT -ACGGAACGCTTAGAAGCTGCCTTT -ACGGAACGCTTAGAAGCTGGTCTT -ACGGAACGCTTAGAAGCTACGCTT -ACGGAACGCTTAGAAGCTAGCGTT -ACGGAACGCTTAGAAGCTTTCGTC -ACGGAACGCTTAGAAGCTTCTCTC -ACGGAACGCTTAGAAGCTTGGATC -ACGGAACGCTTAGAAGCTCACTTC -ACGGAACGCTTAGAAGCTGTACTC -ACGGAACGCTTAGAAGCTGATGTC -ACGGAACGCTTAGAAGCTACAGTC -ACGGAACGCTTAGAAGCTTTGCTG -ACGGAACGCTTAGAAGCTTCCATG -ACGGAACGCTTAGAAGCTTGTGTG -ACGGAACGCTTAGAAGCTCTAGTG -ACGGAACGCTTAGAAGCTCATCTG -ACGGAACGCTTAGAAGCTGAGTTG -ACGGAACGCTTAGAAGCTAGACTG -ACGGAACGCTTAGAAGCTTCGGTA -ACGGAACGCTTAGAAGCTTGCCTA -ACGGAACGCTTAGAAGCTCCACTA -ACGGAACGCTTAGAAGCTGGAGTA -ACGGAACGCTTAGAAGCTTCGTCT -ACGGAACGCTTAGAAGCTTGCACT -ACGGAACGCTTAGAAGCTCTGACT -ACGGAACGCTTAGAAGCTCAACCT -ACGGAACGCTTAGAAGCTGCTACT -ACGGAACGCTTAGAAGCTGGATCT -ACGGAACGCTTAGAAGCTAAGGCT -ACGGAACGCTTAGAAGCTTCAACC -ACGGAACGCTTAGAAGCTTGTTCC -ACGGAACGCTTAGAAGCTATTCCC -ACGGAACGCTTAGAAGCTTTCTCG -ACGGAACGCTTAGAAGCTTAGACG -ACGGAACGCTTAGAAGCTGTAACG -ACGGAACGCTTAGAAGCTACTTCG -ACGGAACGCTTAGAAGCTTACGCA -ACGGAACGCTTAGAAGCTCTTGCA -ACGGAACGCTTAGAAGCTCGAACA -ACGGAACGCTTAGAAGCTCAGTCA -ACGGAACGCTTAGAAGCTGATCCA -ACGGAACGCTTAGAAGCTACGACA -ACGGAACGCTTAGAAGCTAGCTCA -ACGGAACGCTTAGAAGCTTCACGT -ACGGAACGCTTAGAAGCTCGTAGT -ACGGAACGCTTAGAAGCTGTCAGT -ACGGAACGCTTAGAAGCTGAAGGT -ACGGAACGCTTAGAAGCTAACCGT -ACGGAACGCTTAGAAGCTTTGTGC -ACGGAACGCTTAGAAGCTCTAAGC -ACGGAACGCTTAGAAGCTACTAGC -ACGGAACGCTTAGAAGCTAGATGC -ACGGAACGCTTAGAAGCTTGAAGG -ACGGAACGCTTAGAAGCTCAATGG -ACGGAACGCTTAGAAGCTATGAGG -ACGGAACGCTTAGAAGCTAATGGG -ACGGAACGCTTAGAAGCTTCCTGA -ACGGAACGCTTAGAAGCTTAGCGA -ACGGAACGCTTAGAAGCTCACAGA -ACGGAACGCTTAGAAGCTGCAAGA -ACGGAACGCTTAGAAGCTGGTTGA -ACGGAACGCTTAGAAGCTTCCGAT -ACGGAACGCTTAGAAGCTTGGCAT -ACGGAACGCTTAGAAGCTCGAGAT -ACGGAACGCTTAGAAGCTTACCAC -ACGGAACGCTTAGAAGCTCAGAAC -ACGGAACGCTTAGAAGCTGTCTAC -ACGGAACGCTTAGAAGCTACGTAC -ACGGAACGCTTAGAAGCTAGTGAC -ACGGAACGCTTAGAAGCTCTGTAG -ACGGAACGCTTAGAAGCTCCTAAG -ACGGAACGCTTAGAAGCTGTTCAG -ACGGAACGCTTAGAAGCTGCATAG -ACGGAACGCTTAGAAGCTGACAAG -ACGGAACGCTTAGAAGCTAAGCAG -ACGGAACGCTTAGAAGCTCGTCAA -ACGGAACGCTTAGAAGCTGCTGAA -ACGGAACGCTTAGAAGCTAGTACG -ACGGAACGCTTAGAAGCTATCCGA -ACGGAACGCTTAGAAGCTATGGGA -ACGGAACGCTTAGAAGCTGTGCAA -ACGGAACGCTTAGAAGCTGAGGAA -ACGGAACGCTTAGAAGCTCAGGTA -ACGGAACGCTTAGAAGCTGACTCT -ACGGAACGCTTAGAAGCTAGTCCT -ACGGAACGCTTAGAAGCTTAAGCC -ACGGAACGCTTAGAAGCTATAGCC -ACGGAACGCTTAGAAGCTTAACCG -ACGGAACGCTTAGAAGCTATGCCA -ACGGAACGCTTAACGAGTGGAAAC -ACGGAACGCTTAACGAGTAACACC -ACGGAACGCTTAACGAGTATCGAG -ACGGAACGCTTAACGAGTCTCCTT -ACGGAACGCTTAACGAGTCCTGTT -ACGGAACGCTTAACGAGTCGGTTT -ACGGAACGCTTAACGAGTGTGGTT -ACGGAACGCTTAACGAGTGCCTTT -ACGGAACGCTTAACGAGTGGTCTT -ACGGAACGCTTAACGAGTACGCTT -ACGGAACGCTTAACGAGTAGCGTT -ACGGAACGCTTAACGAGTTTCGTC -ACGGAACGCTTAACGAGTTCTCTC -ACGGAACGCTTAACGAGTTGGATC -ACGGAACGCTTAACGAGTCACTTC -ACGGAACGCTTAACGAGTGTACTC -ACGGAACGCTTAACGAGTGATGTC -ACGGAACGCTTAACGAGTACAGTC -ACGGAACGCTTAACGAGTTTGCTG -ACGGAACGCTTAACGAGTTCCATG -ACGGAACGCTTAACGAGTTGTGTG -ACGGAACGCTTAACGAGTCTAGTG -ACGGAACGCTTAACGAGTCATCTG -ACGGAACGCTTAACGAGTGAGTTG -ACGGAACGCTTAACGAGTAGACTG -ACGGAACGCTTAACGAGTTCGGTA -ACGGAACGCTTAACGAGTTGCCTA -ACGGAACGCTTAACGAGTCCACTA -ACGGAACGCTTAACGAGTGGAGTA -ACGGAACGCTTAACGAGTTCGTCT -ACGGAACGCTTAACGAGTTGCACT -ACGGAACGCTTAACGAGTCTGACT -ACGGAACGCTTAACGAGTCAACCT -ACGGAACGCTTAACGAGTGCTACT -ACGGAACGCTTAACGAGTGGATCT -ACGGAACGCTTAACGAGTAAGGCT -ACGGAACGCTTAACGAGTTCAACC -ACGGAACGCTTAACGAGTTGTTCC -ACGGAACGCTTAACGAGTATTCCC -ACGGAACGCTTAACGAGTTTCTCG -ACGGAACGCTTAACGAGTTAGACG -ACGGAACGCTTAACGAGTGTAACG -ACGGAACGCTTAACGAGTACTTCG -ACGGAACGCTTAACGAGTTACGCA -ACGGAACGCTTAACGAGTCTTGCA -ACGGAACGCTTAACGAGTCGAACA -ACGGAACGCTTAACGAGTCAGTCA -ACGGAACGCTTAACGAGTGATCCA -ACGGAACGCTTAACGAGTACGACA -ACGGAACGCTTAACGAGTAGCTCA -ACGGAACGCTTAACGAGTTCACGT -ACGGAACGCTTAACGAGTCGTAGT -ACGGAACGCTTAACGAGTGTCAGT -ACGGAACGCTTAACGAGTGAAGGT -ACGGAACGCTTAACGAGTAACCGT -ACGGAACGCTTAACGAGTTTGTGC -ACGGAACGCTTAACGAGTCTAAGC -ACGGAACGCTTAACGAGTACTAGC -ACGGAACGCTTAACGAGTAGATGC -ACGGAACGCTTAACGAGTTGAAGG -ACGGAACGCTTAACGAGTCAATGG -ACGGAACGCTTAACGAGTATGAGG -ACGGAACGCTTAACGAGTAATGGG -ACGGAACGCTTAACGAGTTCCTGA -ACGGAACGCTTAACGAGTTAGCGA -ACGGAACGCTTAACGAGTCACAGA -ACGGAACGCTTAACGAGTGCAAGA -ACGGAACGCTTAACGAGTGGTTGA -ACGGAACGCTTAACGAGTTCCGAT -ACGGAACGCTTAACGAGTTGGCAT -ACGGAACGCTTAACGAGTCGAGAT -ACGGAACGCTTAACGAGTTACCAC -ACGGAACGCTTAACGAGTCAGAAC -ACGGAACGCTTAACGAGTGTCTAC -ACGGAACGCTTAACGAGTACGTAC -ACGGAACGCTTAACGAGTAGTGAC -ACGGAACGCTTAACGAGTCTGTAG -ACGGAACGCTTAACGAGTCCTAAG -ACGGAACGCTTAACGAGTGTTCAG -ACGGAACGCTTAACGAGTGCATAG -ACGGAACGCTTAACGAGTGACAAG -ACGGAACGCTTAACGAGTAAGCAG -ACGGAACGCTTAACGAGTCGTCAA -ACGGAACGCTTAACGAGTGCTGAA -ACGGAACGCTTAACGAGTAGTACG -ACGGAACGCTTAACGAGTATCCGA -ACGGAACGCTTAACGAGTATGGGA -ACGGAACGCTTAACGAGTGTGCAA -ACGGAACGCTTAACGAGTGAGGAA -ACGGAACGCTTAACGAGTCAGGTA -ACGGAACGCTTAACGAGTGACTCT -ACGGAACGCTTAACGAGTAGTCCT -ACGGAACGCTTAACGAGTTAAGCC -ACGGAACGCTTAACGAGTATAGCC -ACGGAACGCTTAACGAGTTAACCG -ACGGAACGCTTAACGAGTATGCCA -ACGGAACGCTTACGAATCGGAAAC -ACGGAACGCTTACGAATCAACACC -ACGGAACGCTTACGAATCATCGAG -ACGGAACGCTTACGAATCCTCCTT -ACGGAACGCTTACGAATCCCTGTT -ACGGAACGCTTACGAATCCGGTTT -ACGGAACGCTTACGAATCGTGGTT -ACGGAACGCTTACGAATCGCCTTT -ACGGAACGCTTACGAATCGGTCTT -ACGGAACGCTTACGAATCACGCTT -ACGGAACGCTTACGAATCAGCGTT -ACGGAACGCTTACGAATCTTCGTC -ACGGAACGCTTACGAATCTCTCTC -ACGGAACGCTTACGAATCTGGATC -ACGGAACGCTTACGAATCCACTTC -ACGGAACGCTTACGAATCGTACTC -ACGGAACGCTTACGAATCGATGTC -ACGGAACGCTTACGAATCACAGTC -ACGGAACGCTTACGAATCTTGCTG -ACGGAACGCTTACGAATCTCCATG -ACGGAACGCTTACGAATCTGTGTG -ACGGAACGCTTACGAATCCTAGTG -ACGGAACGCTTACGAATCCATCTG -ACGGAACGCTTACGAATCGAGTTG -ACGGAACGCTTACGAATCAGACTG -ACGGAACGCTTACGAATCTCGGTA -ACGGAACGCTTACGAATCTGCCTA -ACGGAACGCTTACGAATCCCACTA -ACGGAACGCTTACGAATCGGAGTA -ACGGAACGCTTACGAATCTCGTCT -ACGGAACGCTTACGAATCTGCACT -ACGGAACGCTTACGAATCCTGACT -ACGGAACGCTTACGAATCCAACCT -ACGGAACGCTTACGAATCGCTACT -ACGGAACGCTTACGAATCGGATCT -ACGGAACGCTTACGAATCAAGGCT -ACGGAACGCTTACGAATCTCAACC -ACGGAACGCTTACGAATCTGTTCC -ACGGAACGCTTACGAATCATTCCC -ACGGAACGCTTACGAATCTTCTCG -ACGGAACGCTTACGAATCTAGACG -ACGGAACGCTTACGAATCGTAACG -ACGGAACGCTTACGAATCACTTCG -ACGGAACGCTTACGAATCTACGCA -ACGGAACGCTTACGAATCCTTGCA -ACGGAACGCTTACGAATCCGAACA -ACGGAACGCTTACGAATCCAGTCA -ACGGAACGCTTACGAATCGATCCA -ACGGAACGCTTACGAATCACGACA -ACGGAACGCTTACGAATCAGCTCA -ACGGAACGCTTACGAATCTCACGT -ACGGAACGCTTACGAATCCGTAGT -ACGGAACGCTTACGAATCGTCAGT -ACGGAACGCTTACGAATCGAAGGT -ACGGAACGCTTACGAATCAACCGT -ACGGAACGCTTACGAATCTTGTGC -ACGGAACGCTTACGAATCCTAAGC -ACGGAACGCTTACGAATCACTAGC -ACGGAACGCTTACGAATCAGATGC -ACGGAACGCTTACGAATCTGAAGG -ACGGAACGCTTACGAATCCAATGG -ACGGAACGCTTACGAATCATGAGG -ACGGAACGCTTACGAATCAATGGG -ACGGAACGCTTACGAATCTCCTGA -ACGGAACGCTTACGAATCTAGCGA -ACGGAACGCTTACGAATCCACAGA -ACGGAACGCTTACGAATCGCAAGA -ACGGAACGCTTACGAATCGGTTGA -ACGGAACGCTTACGAATCTCCGAT -ACGGAACGCTTACGAATCTGGCAT -ACGGAACGCTTACGAATCCGAGAT -ACGGAACGCTTACGAATCTACCAC -ACGGAACGCTTACGAATCCAGAAC -ACGGAACGCTTACGAATCGTCTAC -ACGGAACGCTTACGAATCACGTAC -ACGGAACGCTTACGAATCAGTGAC -ACGGAACGCTTACGAATCCTGTAG -ACGGAACGCTTACGAATCCCTAAG -ACGGAACGCTTACGAATCGTTCAG -ACGGAACGCTTACGAATCGCATAG -ACGGAACGCTTACGAATCGACAAG -ACGGAACGCTTACGAATCAAGCAG -ACGGAACGCTTACGAATCCGTCAA -ACGGAACGCTTACGAATCGCTGAA -ACGGAACGCTTACGAATCAGTACG -ACGGAACGCTTACGAATCATCCGA -ACGGAACGCTTACGAATCATGGGA -ACGGAACGCTTACGAATCGTGCAA -ACGGAACGCTTACGAATCGAGGAA -ACGGAACGCTTACGAATCCAGGTA -ACGGAACGCTTACGAATCGACTCT -ACGGAACGCTTACGAATCAGTCCT -ACGGAACGCTTACGAATCTAAGCC -ACGGAACGCTTACGAATCATAGCC -ACGGAACGCTTACGAATCTAACCG -ACGGAACGCTTACGAATCATGCCA -ACGGAACGCTTAGGAATGGGAAAC -ACGGAACGCTTAGGAATGAACACC -ACGGAACGCTTAGGAATGATCGAG -ACGGAACGCTTAGGAATGCTCCTT -ACGGAACGCTTAGGAATGCCTGTT -ACGGAACGCTTAGGAATGCGGTTT -ACGGAACGCTTAGGAATGGTGGTT -ACGGAACGCTTAGGAATGGCCTTT -ACGGAACGCTTAGGAATGGGTCTT -ACGGAACGCTTAGGAATGACGCTT -ACGGAACGCTTAGGAATGAGCGTT -ACGGAACGCTTAGGAATGTTCGTC -ACGGAACGCTTAGGAATGTCTCTC -ACGGAACGCTTAGGAATGTGGATC -ACGGAACGCTTAGGAATGCACTTC -ACGGAACGCTTAGGAATGGTACTC -ACGGAACGCTTAGGAATGGATGTC -ACGGAACGCTTAGGAATGACAGTC -ACGGAACGCTTAGGAATGTTGCTG -ACGGAACGCTTAGGAATGTCCATG -ACGGAACGCTTAGGAATGTGTGTG -ACGGAACGCTTAGGAATGCTAGTG -ACGGAACGCTTAGGAATGCATCTG -ACGGAACGCTTAGGAATGGAGTTG -ACGGAACGCTTAGGAATGAGACTG -ACGGAACGCTTAGGAATGTCGGTA -ACGGAACGCTTAGGAATGTGCCTA -ACGGAACGCTTAGGAATGCCACTA -ACGGAACGCTTAGGAATGGGAGTA -ACGGAACGCTTAGGAATGTCGTCT -ACGGAACGCTTAGGAATGTGCACT -ACGGAACGCTTAGGAATGCTGACT -ACGGAACGCTTAGGAATGCAACCT -ACGGAACGCTTAGGAATGGCTACT -ACGGAACGCTTAGGAATGGGATCT -ACGGAACGCTTAGGAATGAAGGCT -ACGGAACGCTTAGGAATGTCAACC -ACGGAACGCTTAGGAATGTGTTCC -ACGGAACGCTTAGGAATGATTCCC -ACGGAACGCTTAGGAATGTTCTCG -ACGGAACGCTTAGGAATGTAGACG -ACGGAACGCTTAGGAATGGTAACG -ACGGAACGCTTAGGAATGACTTCG -ACGGAACGCTTAGGAATGTACGCA -ACGGAACGCTTAGGAATGCTTGCA -ACGGAACGCTTAGGAATGCGAACA -ACGGAACGCTTAGGAATGCAGTCA -ACGGAACGCTTAGGAATGGATCCA -ACGGAACGCTTAGGAATGACGACA -ACGGAACGCTTAGGAATGAGCTCA -ACGGAACGCTTAGGAATGTCACGT -ACGGAACGCTTAGGAATGCGTAGT -ACGGAACGCTTAGGAATGGTCAGT -ACGGAACGCTTAGGAATGGAAGGT -ACGGAACGCTTAGGAATGAACCGT -ACGGAACGCTTAGGAATGTTGTGC -ACGGAACGCTTAGGAATGCTAAGC -ACGGAACGCTTAGGAATGACTAGC -ACGGAACGCTTAGGAATGAGATGC -ACGGAACGCTTAGGAATGTGAAGG -ACGGAACGCTTAGGAATGCAATGG -ACGGAACGCTTAGGAATGATGAGG -ACGGAACGCTTAGGAATGAATGGG -ACGGAACGCTTAGGAATGTCCTGA -ACGGAACGCTTAGGAATGTAGCGA -ACGGAACGCTTAGGAATGCACAGA -ACGGAACGCTTAGGAATGGCAAGA -ACGGAACGCTTAGGAATGGGTTGA -ACGGAACGCTTAGGAATGTCCGAT -ACGGAACGCTTAGGAATGTGGCAT -ACGGAACGCTTAGGAATGCGAGAT -ACGGAACGCTTAGGAATGTACCAC -ACGGAACGCTTAGGAATGCAGAAC -ACGGAACGCTTAGGAATGGTCTAC -ACGGAACGCTTAGGAATGACGTAC -ACGGAACGCTTAGGAATGAGTGAC -ACGGAACGCTTAGGAATGCTGTAG -ACGGAACGCTTAGGAATGCCTAAG -ACGGAACGCTTAGGAATGGTTCAG -ACGGAACGCTTAGGAATGGCATAG -ACGGAACGCTTAGGAATGGACAAG -ACGGAACGCTTAGGAATGAAGCAG -ACGGAACGCTTAGGAATGCGTCAA -ACGGAACGCTTAGGAATGGCTGAA -ACGGAACGCTTAGGAATGAGTACG -ACGGAACGCTTAGGAATGATCCGA -ACGGAACGCTTAGGAATGATGGGA -ACGGAACGCTTAGGAATGGTGCAA -ACGGAACGCTTAGGAATGGAGGAA -ACGGAACGCTTAGGAATGCAGGTA -ACGGAACGCTTAGGAATGGACTCT -ACGGAACGCTTAGGAATGAGTCCT -ACGGAACGCTTAGGAATGTAAGCC -ACGGAACGCTTAGGAATGATAGCC -ACGGAACGCTTAGGAATGTAACCG -ACGGAACGCTTAGGAATGATGCCA -ACGGAACGCTTACAAGTGGGAAAC -ACGGAACGCTTACAAGTGAACACC -ACGGAACGCTTACAAGTGATCGAG -ACGGAACGCTTACAAGTGCTCCTT -ACGGAACGCTTACAAGTGCCTGTT -ACGGAACGCTTACAAGTGCGGTTT -ACGGAACGCTTACAAGTGGTGGTT -ACGGAACGCTTACAAGTGGCCTTT -ACGGAACGCTTACAAGTGGGTCTT -ACGGAACGCTTACAAGTGACGCTT -ACGGAACGCTTACAAGTGAGCGTT -ACGGAACGCTTACAAGTGTTCGTC -ACGGAACGCTTACAAGTGTCTCTC -ACGGAACGCTTACAAGTGTGGATC -ACGGAACGCTTACAAGTGCACTTC -ACGGAACGCTTACAAGTGGTACTC -ACGGAACGCTTACAAGTGGATGTC -ACGGAACGCTTACAAGTGACAGTC -ACGGAACGCTTACAAGTGTTGCTG -ACGGAACGCTTACAAGTGTCCATG -ACGGAACGCTTACAAGTGTGTGTG -ACGGAACGCTTACAAGTGCTAGTG -ACGGAACGCTTACAAGTGCATCTG -ACGGAACGCTTACAAGTGGAGTTG -ACGGAACGCTTACAAGTGAGACTG -ACGGAACGCTTACAAGTGTCGGTA -ACGGAACGCTTACAAGTGTGCCTA -ACGGAACGCTTACAAGTGCCACTA -ACGGAACGCTTACAAGTGGGAGTA -ACGGAACGCTTACAAGTGTCGTCT -ACGGAACGCTTACAAGTGTGCACT -ACGGAACGCTTACAAGTGCTGACT -ACGGAACGCTTACAAGTGCAACCT -ACGGAACGCTTACAAGTGGCTACT -ACGGAACGCTTACAAGTGGGATCT -ACGGAACGCTTACAAGTGAAGGCT -ACGGAACGCTTACAAGTGTCAACC -ACGGAACGCTTACAAGTGTGTTCC -ACGGAACGCTTACAAGTGATTCCC -ACGGAACGCTTACAAGTGTTCTCG -ACGGAACGCTTACAAGTGTAGACG -ACGGAACGCTTACAAGTGGTAACG -ACGGAACGCTTACAAGTGACTTCG -ACGGAACGCTTACAAGTGTACGCA -ACGGAACGCTTACAAGTGCTTGCA -ACGGAACGCTTACAAGTGCGAACA -ACGGAACGCTTACAAGTGCAGTCA -ACGGAACGCTTACAAGTGGATCCA -ACGGAACGCTTACAAGTGACGACA -ACGGAACGCTTACAAGTGAGCTCA -ACGGAACGCTTACAAGTGTCACGT -ACGGAACGCTTACAAGTGCGTAGT -ACGGAACGCTTACAAGTGGTCAGT -ACGGAACGCTTACAAGTGGAAGGT -ACGGAACGCTTACAAGTGAACCGT -ACGGAACGCTTACAAGTGTTGTGC -ACGGAACGCTTACAAGTGCTAAGC -ACGGAACGCTTACAAGTGACTAGC -ACGGAACGCTTACAAGTGAGATGC -ACGGAACGCTTACAAGTGTGAAGG -ACGGAACGCTTACAAGTGCAATGG -ACGGAACGCTTACAAGTGATGAGG -ACGGAACGCTTACAAGTGAATGGG -ACGGAACGCTTACAAGTGTCCTGA -ACGGAACGCTTACAAGTGTAGCGA -ACGGAACGCTTACAAGTGCACAGA -ACGGAACGCTTACAAGTGGCAAGA -ACGGAACGCTTACAAGTGGGTTGA -ACGGAACGCTTACAAGTGTCCGAT -ACGGAACGCTTACAAGTGTGGCAT -ACGGAACGCTTACAAGTGCGAGAT -ACGGAACGCTTACAAGTGTACCAC -ACGGAACGCTTACAAGTGCAGAAC -ACGGAACGCTTACAAGTGGTCTAC -ACGGAACGCTTACAAGTGACGTAC -ACGGAACGCTTACAAGTGAGTGAC -ACGGAACGCTTACAAGTGCTGTAG -ACGGAACGCTTACAAGTGCCTAAG -ACGGAACGCTTACAAGTGGTTCAG -ACGGAACGCTTACAAGTGGCATAG -ACGGAACGCTTACAAGTGGACAAG -ACGGAACGCTTACAAGTGAAGCAG -ACGGAACGCTTACAAGTGCGTCAA -ACGGAACGCTTACAAGTGGCTGAA -ACGGAACGCTTACAAGTGAGTACG -ACGGAACGCTTACAAGTGATCCGA -ACGGAACGCTTACAAGTGATGGGA -ACGGAACGCTTACAAGTGGTGCAA -ACGGAACGCTTACAAGTGGAGGAA -ACGGAACGCTTACAAGTGCAGGTA -ACGGAACGCTTACAAGTGGACTCT -ACGGAACGCTTACAAGTGAGTCCT -ACGGAACGCTTACAAGTGTAAGCC -ACGGAACGCTTACAAGTGATAGCC -ACGGAACGCTTACAAGTGTAACCG -ACGGAACGCTTACAAGTGATGCCA -ACGGAACGCTTAGAAGAGGGAAAC -ACGGAACGCTTAGAAGAGAACACC -ACGGAACGCTTAGAAGAGATCGAG -ACGGAACGCTTAGAAGAGCTCCTT -ACGGAACGCTTAGAAGAGCCTGTT -ACGGAACGCTTAGAAGAGCGGTTT -ACGGAACGCTTAGAAGAGGTGGTT -ACGGAACGCTTAGAAGAGGCCTTT -ACGGAACGCTTAGAAGAGGGTCTT -ACGGAACGCTTAGAAGAGACGCTT -ACGGAACGCTTAGAAGAGAGCGTT -ACGGAACGCTTAGAAGAGTTCGTC -ACGGAACGCTTAGAAGAGTCTCTC -ACGGAACGCTTAGAAGAGTGGATC -ACGGAACGCTTAGAAGAGCACTTC -ACGGAACGCTTAGAAGAGGTACTC -ACGGAACGCTTAGAAGAGGATGTC -ACGGAACGCTTAGAAGAGACAGTC -ACGGAACGCTTAGAAGAGTTGCTG -ACGGAACGCTTAGAAGAGTCCATG -ACGGAACGCTTAGAAGAGTGTGTG -ACGGAACGCTTAGAAGAGCTAGTG -ACGGAACGCTTAGAAGAGCATCTG -ACGGAACGCTTAGAAGAGGAGTTG -ACGGAACGCTTAGAAGAGAGACTG -ACGGAACGCTTAGAAGAGTCGGTA -ACGGAACGCTTAGAAGAGTGCCTA -ACGGAACGCTTAGAAGAGCCACTA -ACGGAACGCTTAGAAGAGGGAGTA -ACGGAACGCTTAGAAGAGTCGTCT -ACGGAACGCTTAGAAGAGTGCACT -ACGGAACGCTTAGAAGAGCTGACT -ACGGAACGCTTAGAAGAGCAACCT -ACGGAACGCTTAGAAGAGGCTACT -ACGGAACGCTTAGAAGAGGGATCT -ACGGAACGCTTAGAAGAGAAGGCT -ACGGAACGCTTAGAAGAGTCAACC -ACGGAACGCTTAGAAGAGTGTTCC -ACGGAACGCTTAGAAGAGATTCCC -ACGGAACGCTTAGAAGAGTTCTCG -ACGGAACGCTTAGAAGAGTAGACG -ACGGAACGCTTAGAAGAGGTAACG -ACGGAACGCTTAGAAGAGACTTCG -ACGGAACGCTTAGAAGAGTACGCA -ACGGAACGCTTAGAAGAGCTTGCA -ACGGAACGCTTAGAAGAGCGAACA -ACGGAACGCTTAGAAGAGCAGTCA -ACGGAACGCTTAGAAGAGGATCCA -ACGGAACGCTTAGAAGAGACGACA -ACGGAACGCTTAGAAGAGAGCTCA -ACGGAACGCTTAGAAGAGTCACGT -ACGGAACGCTTAGAAGAGCGTAGT -ACGGAACGCTTAGAAGAGGTCAGT -ACGGAACGCTTAGAAGAGGAAGGT -ACGGAACGCTTAGAAGAGAACCGT -ACGGAACGCTTAGAAGAGTTGTGC -ACGGAACGCTTAGAAGAGCTAAGC -ACGGAACGCTTAGAAGAGACTAGC -ACGGAACGCTTAGAAGAGAGATGC -ACGGAACGCTTAGAAGAGTGAAGG -ACGGAACGCTTAGAAGAGCAATGG -ACGGAACGCTTAGAAGAGATGAGG -ACGGAACGCTTAGAAGAGAATGGG -ACGGAACGCTTAGAAGAGTCCTGA -ACGGAACGCTTAGAAGAGTAGCGA -ACGGAACGCTTAGAAGAGCACAGA -ACGGAACGCTTAGAAGAGGCAAGA -ACGGAACGCTTAGAAGAGGGTTGA -ACGGAACGCTTAGAAGAGTCCGAT -ACGGAACGCTTAGAAGAGTGGCAT -ACGGAACGCTTAGAAGAGCGAGAT -ACGGAACGCTTAGAAGAGTACCAC -ACGGAACGCTTAGAAGAGCAGAAC -ACGGAACGCTTAGAAGAGGTCTAC -ACGGAACGCTTAGAAGAGACGTAC -ACGGAACGCTTAGAAGAGAGTGAC -ACGGAACGCTTAGAAGAGCTGTAG -ACGGAACGCTTAGAAGAGCCTAAG -ACGGAACGCTTAGAAGAGGTTCAG -ACGGAACGCTTAGAAGAGGCATAG -ACGGAACGCTTAGAAGAGGACAAG -ACGGAACGCTTAGAAGAGAAGCAG -ACGGAACGCTTAGAAGAGCGTCAA -ACGGAACGCTTAGAAGAGGCTGAA -ACGGAACGCTTAGAAGAGAGTACG -ACGGAACGCTTAGAAGAGATCCGA -ACGGAACGCTTAGAAGAGATGGGA -ACGGAACGCTTAGAAGAGGTGCAA -ACGGAACGCTTAGAAGAGGAGGAA -ACGGAACGCTTAGAAGAGCAGGTA -ACGGAACGCTTAGAAGAGGACTCT -ACGGAACGCTTAGAAGAGAGTCCT -ACGGAACGCTTAGAAGAGTAAGCC -ACGGAACGCTTAGAAGAGATAGCC -ACGGAACGCTTAGAAGAGTAACCG -ACGGAACGCTTAGAAGAGATGCCA -ACGGAACGCTTAGTACAGGGAAAC -ACGGAACGCTTAGTACAGAACACC -ACGGAACGCTTAGTACAGATCGAG -ACGGAACGCTTAGTACAGCTCCTT -ACGGAACGCTTAGTACAGCCTGTT -ACGGAACGCTTAGTACAGCGGTTT -ACGGAACGCTTAGTACAGGTGGTT -ACGGAACGCTTAGTACAGGCCTTT -ACGGAACGCTTAGTACAGGGTCTT -ACGGAACGCTTAGTACAGACGCTT -ACGGAACGCTTAGTACAGAGCGTT -ACGGAACGCTTAGTACAGTTCGTC -ACGGAACGCTTAGTACAGTCTCTC -ACGGAACGCTTAGTACAGTGGATC -ACGGAACGCTTAGTACAGCACTTC -ACGGAACGCTTAGTACAGGTACTC -ACGGAACGCTTAGTACAGGATGTC -ACGGAACGCTTAGTACAGACAGTC -ACGGAACGCTTAGTACAGTTGCTG -ACGGAACGCTTAGTACAGTCCATG -ACGGAACGCTTAGTACAGTGTGTG -ACGGAACGCTTAGTACAGCTAGTG -ACGGAACGCTTAGTACAGCATCTG -ACGGAACGCTTAGTACAGGAGTTG -ACGGAACGCTTAGTACAGAGACTG -ACGGAACGCTTAGTACAGTCGGTA -ACGGAACGCTTAGTACAGTGCCTA -ACGGAACGCTTAGTACAGCCACTA -ACGGAACGCTTAGTACAGGGAGTA -ACGGAACGCTTAGTACAGTCGTCT -ACGGAACGCTTAGTACAGTGCACT -ACGGAACGCTTAGTACAGCTGACT -ACGGAACGCTTAGTACAGCAACCT -ACGGAACGCTTAGTACAGGCTACT -ACGGAACGCTTAGTACAGGGATCT -ACGGAACGCTTAGTACAGAAGGCT -ACGGAACGCTTAGTACAGTCAACC -ACGGAACGCTTAGTACAGTGTTCC -ACGGAACGCTTAGTACAGATTCCC -ACGGAACGCTTAGTACAGTTCTCG -ACGGAACGCTTAGTACAGTAGACG -ACGGAACGCTTAGTACAGGTAACG -ACGGAACGCTTAGTACAGACTTCG -ACGGAACGCTTAGTACAGTACGCA -ACGGAACGCTTAGTACAGCTTGCA -ACGGAACGCTTAGTACAGCGAACA -ACGGAACGCTTAGTACAGCAGTCA -ACGGAACGCTTAGTACAGGATCCA -ACGGAACGCTTAGTACAGACGACA -ACGGAACGCTTAGTACAGAGCTCA -ACGGAACGCTTAGTACAGTCACGT -ACGGAACGCTTAGTACAGCGTAGT -ACGGAACGCTTAGTACAGGTCAGT -ACGGAACGCTTAGTACAGGAAGGT -ACGGAACGCTTAGTACAGAACCGT -ACGGAACGCTTAGTACAGTTGTGC -ACGGAACGCTTAGTACAGCTAAGC -ACGGAACGCTTAGTACAGACTAGC -ACGGAACGCTTAGTACAGAGATGC -ACGGAACGCTTAGTACAGTGAAGG -ACGGAACGCTTAGTACAGCAATGG -ACGGAACGCTTAGTACAGATGAGG -ACGGAACGCTTAGTACAGAATGGG -ACGGAACGCTTAGTACAGTCCTGA -ACGGAACGCTTAGTACAGTAGCGA -ACGGAACGCTTAGTACAGCACAGA -ACGGAACGCTTAGTACAGGCAAGA -ACGGAACGCTTAGTACAGGGTTGA -ACGGAACGCTTAGTACAGTCCGAT -ACGGAACGCTTAGTACAGTGGCAT -ACGGAACGCTTAGTACAGCGAGAT -ACGGAACGCTTAGTACAGTACCAC -ACGGAACGCTTAGTACAGCAGAAC -ACGGAACGCTTAGTACAGGTCTAC -ACGGAACGCTTAGTACAGACGTAC -ACGGAACGCTTAGTACAGAGTGAC -ACGGAACGCTTAGTACAGCTGTAG -ACGGAACGCTTAGTACAGCCTAAG -ACGGAACGCTTAGTACAGGTTCAG -ACGGAACGCTTAGTACAGGCATAG -ACGGAACGCTTAGTACAGGACAAG -ACGGAACGCTTAGTACAGAAGCAG -ACGGAACGCTTAGTACAGCGTCAA -ACGGAACGCTTAGTACAGGCTGAA -ACGGAACGCTTAGTACAGAGTACG -ACGGAACGCTTAGTACAGATCCGA -ACGGAACGCTTAGTACAGATGGGA -ACGGAACGCTTAGTACAGGTGCAA -ACGGAACGCTTAGTACAGGAGGAA -ACGGAACGCTTAGTACAGCAGGTA -ACGGAACGCTTAGTACAGGACTCT -ACGGAACGCTTAGTACAGAGTCCT -ACGGAACGCTTAGTACAGTAAGCC -ACGGAACGCTTAGTACAGATAGCC -ACGGAACGCTTAGTACAGTAACCG -ACGGAACGCTTAGTACAGATGCCA -ACGGAACGCTTATCTGACGGAAAC -ACGGAACGCTTATCTGACAACACC -ACGGAACGCTTATCTGACATCGAG -ACGGAACGCTTATCTGACCTCCTT -ACGGAACGCTTATCTGACCCTGTT -ACGGAACGCTTATCTGACCGGTTT -ACGGAACGCTTATCTGACGTGGTT -ACGGAACGCTTATCTGACGCCTTT -ACGGAACGCTTATCTGACGGTCTT -ACGGAACGCTTATCTGACACGCTT -ACGGAACGCTTATCTGACAGCGTT -ACGGAACGCTTATCTGACTTCGTC -ACGGAACGCTTATCTGACTCTCTC -ACGGAACGCTTATCTGACTGGATC -ACGGAACGCTTATCTGACCACTTC -ACGGAACGCTTATCTGACGTACTC -ACGGAACGCTTATCTGACGATGTC -ACGGAACGCTTATCTGACACAGTC -ACGGAACGCTTATCTGACTTGCTG -ACGGAACGCTTATCTGACTCCATG -ACGGAACGCTTATCTGACTGTGTG -ACGGAACGCTTATCTGACCTAGTG -ACGGAACGCTTATCTGACCATCTG -ACGGAACGCTTATCTGACGAGTTG -ACGGAACGCTTATCTGACAGACTG -ACGGAACGCTTATCTGACTCGGTA -ACGGAACGCTTATCTGACTGCCTA -ACGGAACGCTTATCTGACCCACTA -ACGGAACGCTTATCTGACGGAGTA -ACGGAACGCTTATCTGACTCGTCT -ACGGAACGCTTATCTGACTGCACT -ACGGAACGCTTATCTGACCTGACT -ACGGAACGCTTATCTGACCAACCT -ACGGAACGCTTATCTGACGCTACT -ACGGAACGCTTATCTGACGGATCT -ACGGAACGCTTATCTGACAAGGCT -ACGGAACGCTTATCTGACTCAACC -ACGGAACGCTTATCTGACTGTTCC -ACGGAACGCTTATCTGACATTCCC -ACGGAACGCTTATCTGACTTCTCG -ACGGAACGCTTATCTGACTAGACG -ACGGAACGCTTATCTGACGTAACG -ACGGAACGCTTATCTGACACTTCG -ACGGAACGCTTATCTGACTACGCA -ACGGAACGCTTATCTGACCTTGCA -ACGGAACGCTTATCTGACCGAACA -ACGGAACGCTTATCTGACCAGTCA -ACGGAACGCTTATCTGACGATCCA -ACGGAACGCTTATCTGACACGACA -ACGGAACGCTTATCTGACAGCTCA -ACGGAACGCTTATCTGACTCACGT -ACGGAACGCTTATCTGACCGTAGT -ACGGAACGCTTATCTGACGTCAGT -ACGGAACGCTTATCTGACGAAGGT -ACGGAACGCTTATCTGACAACCGT -ACGGAACGCTTATCTGACTTGTGC -ACGGAACGCTTATCTGACCTAAGC -ACGGAACGCTTATCTGACACTAGC -ACGGAACGCTTATCTGACAGATGC -ACGGAACGCTTATCTGACTGAAGG -ACGGAACGCTTATCTGACCAATGG -ACGGAACGCTTATCTGACATGAGG -ACGGAACGCTTATCTGACAATGGG -ACGGAACGCTTATCTGACTCCTGA -ACGGAACGCTTATCTGACTAGCGA -ACGGAACGCTTATCTGACCACAGA -ACGGAACGCTTATCTGACGCAAGA -ACGGAACGCTTATCTGACGGTTGA -ACGGAACGCTTATCTGACTCCGAT -ACGGAACGCTTATCTGACTGGCAT -ACGGAACGCTTATCTGACCGAGAT -ACGGAACGCTTATCTGACTACCAC -ACGGAACGCTTATCTGACCAGAAC -ACGGAACGCTTATCTGACGTCTAC -ACGGAACGCTTATCTGACACGTAC -ACGGAACGCTTATCTGACAGTGAC -ACGGAACGCTTATCTGACCTGTAG -ACGGAACGCTTATCTGACCCTAAG -ACGGAACGCTTATCTGACGTTCAG -ACGGAACGCTTATCTGACGCATAG -ACGGAACGCTTATCTGACGACAAG -ACGGAACGCTTATCTGACAAGCAG -ACGGAACGCTTATCTGACCGTCAA -ACGGAACGCTTATCTGACGCTGAA -ACGGAACGCTTATCTGACAGTACG -ACGGAACGCTTATCTGACATCCGA -ACGGAACGCTTATCTGACATGGGA -ACGGAACGCTTATCTGACGTGCAA -ACGGAACGCTTATCTGACGAGGAA -ACGGAACGCTTATCTGACCAGGTA -ACGGAACGCTTATCTGACGACTCT -ACGGAACGCTTATCTGACAGTCCT -ACGGAACGCTTATCTGACTAAGCC -ACGGAACGCTTATCTGACATAGCC -ACGGAACGCTTATCTGACTAACCG -ACGGAACGCTTATCTGACATGCCA -ACGGAACGCTTACCTAGTGGAAAC -ACGGAACGCTTACCTAGTAACACC -ACGGAACGCTTACCTAGTATCGAG -ACGGAACGCTTACCTAGTCTCCTT -ACGGAACGCTTACCTAGTCCTGTT -ACGGAACGCTTACCTAGTCGGTTT -ACGGAACGCTTACCTAGTGTGGTT -ACGGAACGCTTACCTAGTGCCTTT -ACGGAACGCTTACCTAGTGGTCTT -ACGGAACGCTTACCTAGTACGCTT -ACGGAACGCTTACCTAGTAGCGTT -ACGGAACGCTTACCTAGTTTCGTC -ACGGAACGCTTACCTAGTTCTCTC -ACGGAACGCTTACCTAGTTGGATC -ACGGAACGCTTACCTAGTCACTTC -ACGGAACGCTTACCTAGTGTACTC -ACGGAACGCTTACCTAGTGATGTC -ACGGAACGCTTACCTAGTACAGTC -ACGGAACGCTTACCTAGTTTGCTG -ACGGAACGCTTACCTAGTTCCATG -ACGGAACGCTTACCTAGTTGTGTG -ACGGAACGCTTACCTAGTCTAGTG -ACGGAACGCTTACCTAGTCATCTG -ACGGAACGCTTACCTAGTGAGTTG -ACGGAACGCTTACCTAGTAGACTG -ACGGAACGCTTACCTAGTTCGGTA -ACGGAACGCTTACCTAGTTGCCTA -ACGGAACGCTTACCTAGTCCACTA -ACGGAACGCTTACCTAGTGGAGTA -ACGGAACGCTTACCTAGTTCGTCT -ACGGAACGCTTACCTAGTTGCACT -ACGGAACGCTTACCTAGTCTGACT -ACGGAACGCTTACCTAGTCAACCT -ACGGAACGCTTACCTAGTGCTACT -ACGGAACGCTTACCTAGTGGATCT -ACGGAACGCTTACCTAGTAAGGCT -ACGGAACGCTTACCTAGTTCAACC -ACGGAACGCTTACCTAGTTGTTCC -ACGGAACGCTTACCTAGTATTCCC -ACGGAACGCTTACCTAGTTTCTCG -ACGGAACGCTTACCTAGTTAGACG -ACGGAACGCTTACCTAGTGTAACG -ACGGAACGCTTACCTAGTACTTCG -ACGGAACGCTTACCTAGTTACGCA -ACGGAACGCTTACCTAGTCTTGCA -ACGGAACGCTTACCTAGTCGAACA -ACGGAACGCTTACCTAGTCAGTCA -ACGGAACGCTTACCTAGTGATCCA -ACGGAACGCTTACCTAGTACGACA -ACGGAACGCTTACCTAGTAGCTCA -ACGGAACGCTTACCTAGTTCACGT -ACGGAACGCTTACCTAGTCGTAGT -ACGGAACGCTTACCTAGTGTCAGT -ACGGAACGCTTACCTAGTGAAGGT -ACGGAACGCTTACCTAGTAACCGT -ACGGAACGCTTACCTAGTTTGTGC -ACGGAACGCTTACCTAGTCTAAGC -ACGGAACGCTTACCTAGTACTAGC -ACGGAACGCTTACCTAGTAGATGC -ACGGAACGCTTACCTAGTTGAAGG -ACGGAACGCTTACCTAGTCAATGG -ACGGAACGCTTACCTAGTATGAGG -ACGGAACGCTTACCTAGTAATGGG -ACGGAACGCTTACCTAGTTCCTGA -ACGGAACGCTTACCTAGTTAGCGA -ACGGAACGCTTACCTAGTCACAGA -ACGGAACGCTTACCTAGTGCAAGA -ACGGAACGCTTACCTAGTGGTTGA -ACGGAACGCTTACCTAGTTCCGAT -ACGGAACGCTTACCTAGTTGGCAT -ACGGAACGCTTACCTAGTCGAGAT -ACGGAACGCTTACCTAGTTACCAC -ACGGAACGCTTACCTAGTCAGAAC -ACGGAACGCTTACCTAGTGTCTAC -ACGGAACGCTTACCTAGTACGTAC -ACGGAACGCTTACCTAGTAGTGAC -ACGGAACGCTTACCTAGTCTGTAG -ACGGAACGCTTACCTAGTCCTAAG -ACGGAACGCTTACCTAGTGTTCAG -ACGGAACGCTTACCTAGTGCATAG -ACGGAACGCTTACCTAGTGACAAG -ACGGAACGCTTACCTAGTAAGCAG -ACGGAACGCTTACCTAGTCGTCAA -ACGGAACGCTTACCTAGTGCTGAA -ACGGAACGCTTACCTAGTAGTACG -ACGGAACGCTTACCTAGTATCCGA -ACGGAACGCTTACCTAGTATGGGA -ACGGAACGCTTACCTAGTGTGCAA -ACGGAACGCTTACCTAGTGAGGAA -ACGGAACGCTTACCTAGTCAGGTA -ACGGAACGCTTACCTAGTGACTCT -ACGGAACGCTTACCTAGTAGTCCT -ACGGAACGCTTACCTAGTTAAGCC -ACGGAACGCTTACCTAGTATAGCC -ACGGAACGCTTACCTAGTTAACCG -ACGGAACGCTTACCTAGTATGCCA -ACGGAACGCTTAGCCTAAGGAAAC -ACGGAACGCTTAGCCTAAAACACC -ACGGAACGCTTAGCCTAAATCGAG -ACGGAACGCTTAGCCTAACTCCTT -ACGGAACGCTTAGCCTAACCTGTT -ACGGAACGCTTAGCCTAACGGTTT -ACGGAACGCTTAGCCTAAGTGGTT -ACGGAACGCTTAGCCTAAGCCTTT -ACGGAACGCTTAGCCTAAGGTCTT -ACGGAACGCTTAGCCTAAACGCTT -ACGGAACGCTTAGCCTAAAGCGTT -ACGGAACGCTTAGCCTAATTCGTC -ACGGAACGCTTAGCCTAATCTCTC -ACGGAACGCTTAGCCTAATGGATC -ACGGAACGCTTAGCCTAACACTTC -ACGGAACGCTTAGCCTAAGTACTC -ACGGAACGCTTAGCCTAAGATGTC -ACGGAACGCTTAGCCTAAACAGTC -ACGGAACGCTTAGCCTAATTGCTG -ACGGAACGCTTAGCCTAATCCATG -ACGGAACGCTTAGCCTAATGTGTG -ACGGAACGCTTAGCCTAACTAGTG -ACGGAACGCTTAGCCTAACATCTG -ACGGAACGCTTAGCCTAAGAGTTG -ACGGAACGCTTAGCCTAAAGACTG -ACGGAACGCTTAGCCTAATCGGTA -ACGGAACGCTTAGCCTAATGCCTA -ACGGAACGCTTAGCCTAACCACTA -ACGGAACGCTTAGCCTAAGGAGTA -ACGGAACGCTTAGCCTAATCGTCT -ACGGAACGCTTAGCCTAATGCACT -ACGGAACGCTTAGCCTAACTGACT -ACGGAACGCTTAGCCTAACAACCT -ACGGAACGCTTAGCCTAAGCTACT -ACGGAACGCTTAGCCTAAGGATCT -ACGGAACGCTTAGCCTAAAAGGCT -ACGGAACGCTTAGCCTAATCAACC -ACGGAACGCTTAGCCTAATGTTCC -ACGGAACGCTTAGCCTAAATTCCC -ACGGAACGCTTAGCCTAATTCTCG -ACGGAACGCTTAGCCTAATAGACG -ACGGAACGCTTAGCCTAAGTAACG -ACGGAACGCTTAGCCTAAACTTCG -ACGGAACGCTTAGCCTAATACGCA -ACGGAACGCTTAGCCTAACTTGCA -ACGGAACGCTTAGCCTAACGAACA -ACGGAACGCTTAGCCTAACAGTCA -ACGGAACGCTTAGCCTAAGATCCA -ACGGAACGCTTAGCCTAAACGACA -ACGGAACGCTTAGCCTAAAGCTCA -ACGGAACGCTTAGCCTAATCACGT -ACGGAACGCTTAGCCTAACGTAGT -ACGGAACGCTTAGCCTAAGTCAGT -ACGGAACGCTTAGCCTAAGAAGGT -ACGGAACGCTTAGCCTAAAACCGT -ACGGAACGCTTAGCCTAATTGTGC -ACGGAACGCTTAGCCTAACTAAGC -ACGGAACGCTTAGCCTAAACTAGC -ACGGAACGCTTAGCCTAAAGATGC -ACGGAACGCTTAGCCTAATGAAGG -ACGGAACGCTTAGCCTAACAATGG -ACGGAACGCTTAGCCTAAATGAGG -ACGGAACGCTTAGCCTAAAATGGG -ACGGAACGCTTAGCCTAATCCTGA -ACGGAACGCTTAGCCTAATAGCGA -ACGGAACGCTTAGCCTAACACAGA -ACGGAACGCTTAGCCTAAGCAAGA -ACGGAACGCTTAGCCTAAGGTTGA -ACGGAACGCTTAGCCTAATCCGAT -ACGGAACGCTTAGCCTAATGGCAT -ACGGAACGCTTAGCCTAACGAGAT -ACGGAACGCTTAGCCTAATACCAC -ACGGAACGCTTAGCCTAACAGAAC -ACGGAACGCTTAGCCTAAGTCTAC -ACGGAACGCTTAGCCTAAACGTAC -ACGGAACGCTTAGCCTAAAGTGAC -ACGGAACGCTTAGCCTAACTGTAG -ACGGAACGCTTAGCCTAACCTAAG -ACGGAACGCTTAGCCTAAGTTCAG -ACGGAACGCTTAGCCTAAGCATAG -ACGGAACGCTTAGCCTAAGACAAG -ACGGAACGCTTAGCCTAAAAGCAG -ACGGAACGCTTAGCCTAACGTCAA -ACGGAACGCTTAGCCTAAGCTGAA -ACGGAACGCTTAGCCTAAAGTACG -ACGGAACGCTTAGCCTAAATCCGA -ACGGAACGCTTAGCCTAAATGGGA -ACGGAACGCTTAGCCTAAGTGCAA -ACGGAACGCTTAGCCTAAGAGGAA -ACGGAACGCTTAGCCTAACAGGTA -ACGGAACGCTTAGCCTAAGACTCT -ACGGAACGCTTAGCCTAAAGTCCT -ACGGAACGCTTAGCCTAATAAGCC -ACGGAACGCTTAGCCTAAATAGCC -ACGGAACGCTTAGCCTAATAACCG -ACGGAACGCTTAGCCTAAATGCCA -ACGGAACGCTTAGCCATAGGAAAC -ACGGAACGCTTAGCCATAAACACC -ACGGAACGCTTAGCCATAATCGAG -ACGGAACGCTTAGCCATACTCCTT -ACGGAACGCTTAGCCATACCTGTT -ACGGAACGCTTAGCCATACGGTTT -ACGGAACGCTTAGCCATAGTGGTT -ACGGAACGCTTAGCCATAGCCTTT -ACGGAACGCTTAGCCATAGGTCTT -ACGGAACGCTTAGCCATAACGCTT -ACGGAACGCTTAGCCATAAGCGTT -ACGGAACGCTTAGCCATATTCGTC -ACGGAACGCTTAGCCATATCTCTC -ACGGAACGCTTAGCCATATGGATC -ACGGAACGCTTAGCCATACACTTC -ACGGAACGCTTAGCCATAGTACTC -ACGGAACGCTTAGCCATAGATGTC -ACGGAACGCTTAGCCATAACAGTC -ACGGAACGCTTAGCCATATTGCTG -ACGGAACGCTTAGCCATATCCATG -ACGGAACGCTTAGCCATATGTGTG -ACGGAACGCTTAGCCATACTAGTG -ACGGAACGCTTAGCCATACATCTG -ACGGAACGCTTAGCCATAGAGTTG -ACGGAACGCTTAGCCATAAGACTG -ACGGAACGCTTAGCCATATCGGTA -ACGGAACGCTTAGCCATATGCCTA -ACGGAACGCTTAGCCATACCACTA -ACGGAACGCTTAGCCATAGGAGTA -ACGGAACGCTTAGCCATATCGTCT -ACGGAACGCTTAGCCATATGCACT -ACGGAACGCTTAGCCATACTGACT -ACGGAACGCTTAGCCATACAACCT -ACGGAACGCTTAGCCATAGCTACT -ACGGAACGCTTAGCCATAGGATCT -ACGGAACGCTTAGCCATAAAGGCT -ACGGAACGCTTAGCCATATCAACC -ACGGAACGCTTAGCCATATGTTCC -ACGGAACGCTTAGCCATAATTCCC -ACGGAACGCTTAGCCATATTCTCG -ACGGAACGCTTAGCCATATAGACG -ACGGAACGCTTAGCCATAGTAACG -ACGGAACGCTTAGCCATAACTTCG -ACGGAACGCTTAGCCATATACGCA -ACGGAACGCTTAGCCATACTTGCA -ACGGAACGCTTAGCCATACGAACA -ACGGAACGCTTAGCCATACAGTCA -ACGGAACGCTTAGCCATAGATCCA -ACGGAACGCTTAGCCATAACGACA -ACGGAACGCTTAGCCATAAGCTCA -ACGGAACGCTTAGCCATATCACGT -ACGGAACGCTTAGCCATACGTAGT -ACGGAACGCTTAGCCATAGTCAGT -ACGGAACGCTTAGCCATAGAAGGT -ACGGAACGCTTAGCCATAAACCGT -ACGGAACGCTTAGCCATATTGTGC -ACGGAACGCTTAGCCATACTAAGC -ACGGAACGCTTAGCCATAACTAGC -ACGGAACGCTTAGCCATAAGATGC -ACGGAACGCTTAGCCATATGAAGG -ACGGAACGCTTAGCCATACAATGG -ACGGAACGCTTAGCCATAATGAGG -ACGGAACGCTTAGCCATAAATGGG -ACGGAACGCTTAGCCATATCCTGA -ACGGAACGCTTAGCCATATAGCGA -ACGGAACGCTTAGCCATACACAGA -ACGGAACGCTTAGCCATAGCAAGA -ACGGAACGCTTAGCCATAGGTTGA -ACGGAACGCTTAGCCATATCCGAT -ACGGAACGCTTAGCCATATGGCAT -ACGGAACGCTTAGCCATACGAGAT -ACGGAACGCTTAGCCATATACCAC -ACGGAACGCTTAGCCATACAGAAC -ACGGAACGCTTAGCCATAGTCTAC -ACGGAACGCTTAGCCATAACGTAC -ACGGAACGCTTAGCCATAAGTGAC -ACGGAACGCTTAGCCATACTGTAG -ACGGAACGCTTAGCCATACCTAAG -ACGGAACGCTTAGCCATAGTTCAG -ACGGAACGCTTAGCCATAGCATAG -ACGGAACGCTTAGCCATAGACAAG -ACGGAACGCTTAGCCATAAAGCAG -ACGGAACGCTTAGCCATACGTCAA -ACGGAACGCTTAGCCATAGCTGAA -ACGGAACGCTTAGCCATAAGTACG -ACGGAACGCTTAGCCATAATCCGA -ACGGAACGCTTAGCCATAATGGGA -ACGGAACGCTTAGCCATAGTGCAA -ACGGAACGCTTAGCCATAGAGGAA -ACGGAACGCTTAGCCATACAGGTA -ACGGAACGCTTAGCCATAGACTCT -ACGGAACGCTTAGCCATAAGTCCT -ACGGAACGCTTAGCCATATAAGCC -ACGGAACGCTTAGCCATAATAGCC -ACGGAACGCTTAGCCATATAACCG -ACGGAACGCTTAGCCATAATGCCA -ACGGAACGCTTACCGTAAGGAAAC -ACGGAACGCTTACCGTAAAACACC -ACGGAACGCTTACCGTAAATCGAG -ACGGAACGCTTACCGTAACTCCTT -ACGGAACGCTTACCGTAACCTGTT -ACGGAACGCTTACCGTAACGGTTT -ACGGAACGCTTACCGTAAGTGGTT -ACGGAACGCTTACCGTAAGCCTTT -ACGGAACGCTTACCGTAAGGTCTT -ACGGAACGCTTACCGTAAACGCTT -ACGGAACGCTTACCGTAAAGCGTT -ACGGAACGCTTACCGTAATTCGTC -ACGGAACGCTTACCGTAATCTCTC -ACGGAACGCTTACCGTAATGGATC -ACGGAACGCTTACCGTAACACTTC -ACGGAACGCTTACCGTAAGTACTC -ACGGAACGCTTACCGTAAGATGTC -ACGGAACGCTTACCGTAAACAGTC -ACGGAACGCTTACCGTAATTGCTG -ACGGAACGCTTACCGTAATCCATG -ACGGAACGCTTACCGTAATGTGTG -ACGGAACGCTTACCGTAACTAGTG -ACGGAACGCTTACCGTAACATCTG -ACGGAACGCTTACCGTAAGAGTTG -ACGGAACGCTTACCGTAAAGACTG -ACGGAACGCTTACCGTAATCGGTA -ACGGAACGCTTACCGTAATGCCTA -ACGGAACGCTTACCGTAACCACTA -ACGGAACGCTTACCGTAAGGAGTA -ACGGAACGCTTACCGTAATCGTCT -ACGGAACGCTTACCGTAATGCACT -ACGGAACGCTTACCGTAACTGACT -ACGGAACGCTTACCGTAACAACCT -ACGGAACGCTTACCGTAAGCTACT -ACGGAACGCTTACCGTAAGGATCT -ACGGAACGCTTACCGTAAAAGGCT -ACGGAACGCTTACCGTAATCAACC -ACGGAACGCTTACCGTAATGTTCC -ACGGAACGCTTACCGTAAATTCCC -ACGGAACGCTTACCGTAATTCTCG -ACGGAACGCTTACCGTAATAGACG -ACGGAACGCTTACCGTAAGTAACG -ACGGAACGCTTACCGTAAACTTCG -ACGGAACGCTTACCGTAATACGCA -ACGGAACGCTTACCGTAACTTGCA -ACGGAACGCTTACCGTAACGAACA -ACGGAACGCTTACCGTAACAGTCA -ACGGAACGCTTACCGTAAGATCCA -ACGGAACGCTTACCGTAAACGACA -ACGGAACGCTTACCGTAAAGCTCA -ACGGAACGCTTACCGTAATCACGT -ACGGAACGCTTACCGTAACGTAGT -ACGGAACGCTTACCGTAAGTCAGT -ACGGAACGCTTACCGTAAGAAGGT -ACGGAACGCTTACCGTAAAACCGT -ACGGAACGCTTACCGTAATTGTGC -ACGGAACGCTTACCGTAACTAAGC -ACGGAACGCTTACCGTAAACTAGC -ACGGAACGCTTACCGTAAAGATGC -ACGGAACGCTTACCGTAATGAAGG -ACGGAACGCTTACCGTAACAATGG -ACGGAACGCTTACCGTAAATGAGG -ACGGAACGCTTACCGTAAAATGGG -ACGGAACGCTTACCGTAATCCTGA -ACGGAACGCTTACCGTAATAGCGA -ACGGAACGCTTACCGTAACACAGA -ACGGAACGCTTACCGTAAGCAAGA -ACGGAACGCTTACCGTAAGGTTGA -ACGGAACGCTTACCGTAATCCGAT -ACGGAACGCTTACCGTAATGGCAT -ACGGAACGCTTACCGTAACGAGAT -ACGGAACGCTTACCGTAATACCAC -ACGGAACGCTTACCGTAACAGAAC -ACGGAACGCTTACCGTAAGTCTAC -ACGGAACGCTTACCGTAAACGTAC -ACGGAACGCTTACCGTAAAGTGAC -ACGGAACGCTTACCGTAACTGTAG -ACGGAACGCTTACCGTAACCTAAG -ACGGAACGCTTACCGTAAGTTCAG -ACGGAACGCTTACCGTAAGCATAG -ACGGAACGCTTACCGTAAGACAAG -ACGGAACGCTTACCGTAAAAGCAG -ACGGAACGCTTACCGTAACGTCAA -ACGGAACGCTTACCGTAAGCTGAA -ACGGAACGCTTACCGTAAAGTACG -ACGGAACGCTTACCGTAAATCCGA -ACGGAACGCTTACCGTAAATGGGA -ACGGAACGCTTACCGTAAGTGCAA -ACGGAACGCTTACCGTAAGAGGAA -ACGGAACGCTTACCGTAACAGGTA -ACGGAACGCTTACCGTAAGACTCT -ACGGAACGCTTACCGTAAAGTCCT -ACGGAACGCTTACCGTAATAAGCC -ACGGAACGCTTACCGTAAATAGCC -ACGGAACGCTTACCGTAATAACCG -ACGGAACGCTTACCGTAAATGCCA -ACGGAACGCTTACCAATGGGAAAC -ACGGAACGCTTACCAATGAACACC -ACGGAACGCTTACCAATGATCGAG -ACGGAACGCTTACCAATGCTCCTT -ACGGAACGCTTACCAATGCCTGTT -ACGGAACGCTTACCAATGCGGTTT -ACGGAACGCTTACCAATGGTGGTT -ACGGAACGCTTACCAATGGCCTTT -ACGGAACGCTTACCAATGGGTCTT -ACGGAACGCTTACCAATGACGCTT -ACGGAACGCTTACCAATGAGCGTT -ACGGAACGCTTACCAATGTTCGTC -ACGGAACGCTTACCAATGTCTCTC -ACGGAACGCTTACCAATGTGGATC -ACGGAACGCTTACCAATGCACTTC -ACGGAACGCTTACCAATGGTACTC -ACGGAACGCTTACCAATGGATGTC -ACGGAACGCTTACCAATGACAGTC -ACGGAACGCTTACCAATGTTGCTG -ACGGAACGCTTACCAATGTCCATG -ACGGAACGCTTACCAATGTGTGTG -ACGGAACGCTTACCAATGCTAGTG -ACGGAACGCTTACCAATGCATCTG -ACGGAACGCTTACCAATGGAGTTG -ACGGAACGCTTACCAATGAGACTG -ACGGAACGCTTACCAATGTCGGTA -ACGGAACGCTTACCAATGTGCCTA -ACGGAACGCTTACCAATGCCACTA -ACGGAACGCTTACCAATGGGAGTA -ACGGAACGCTTACCAATGTCGTCT -ACGGAACGCTTACCAATGTGCACT -ACGGAACGCTTACCAATGCTGACT -ACGGAACGCTTACCAATGCAACCT -ACGGAACGCTTACCAATGGCTACT -ACGGAACGCTTACCAATGGGATCT -ACGGAACGCTTACCAATGAAGGCT -ACGGAACGCTTACCAATGTCAACC -ACGGAACGCTTACCAATGTGTTCC -ACGGAACGCTTACCAATGATTCCC -ACGGAACGCTTACCAATGTTCTCG -ACGGAACGCTTACCAATGTAGACG -ACGGAACGCTTACCAATGGTAACG -ACGGAACGCTTACCAATGACTTCG -ACGGAACGCTTACCAATGTACGCA -ACGGAACGCTTACCAATGCTTGCA -ACGGAACGCTTACCAATGCGAACA -ACGGAACGCTTACCAATGCAGTCA -ACGGAACGCTTACCAATGGATCCA -ACGGAACGCTTACCAATGACGACA -ACGGAACGCTTACCAATGAGCTCA -ACGGAACGCTTACCAATGTCACGT -ACGGAACGCTTACCAATGCGTAGT -ACGGAACGCTTACCAATGGTCAGT -ACGGAACGCTTACCAATGGAAGGT -ACGGAACGCTTACCAATGAACCGT -ACGGAACGCTTACCAATGTTGTGC -ACGGAACGCTTACCAATGCTAAGC -ACGGAACGCTTACCAATGACTAGC -ACGGAACGCTTACCAATGAGATGC -ACGGAACGCTTACCAATGTGAAGG -ACGGAACGCTTACCAATGCAATGG -ACGGAACGCTTACCAATGATGAGG -ACGGAACGCTTACCAATGAATGGG -ACGGAACGCTTACCAATGTCCTGA -ACGGAACGCTTACCAATGTAGCGA -ACGGAACGCTTACCAATGCACAGA -ACGGAACGCTTACCAATGGCAAGA -ACGGAACGCTTACCAATGGGTTGA -ACGGAACGCTTACCAATGTCCGAT -ACGGAACGCTTACCAATGTGGCAT -ACGGAACGCTTACCAATGCGAGAT -ACGGAACGCTTACCAATGTACCAC -ACGGAACGCTTACCAATGCAGAAC -ACGGAACGCTTACCAATGGTCTAC -ACGGAACGCTTACCAATGACGTAC -ACGGAACGCTTACCAATGAGTGAC -ACGGAACGCTTACCAATGCTGTAG -ACGGAACGCTTACCAATGCCTAAG -ACGGAACGCTTACCAATGGTTCAG -ACGGAACGCTTACCAATGGCATAG -ACGGAACGCTTACCAATGGACAAG -ACGGAACGCTTACCAATGAAGCAG -ACGGAACGCTTACCAATGCGTCAA -ACGGAACGCTTACCAATGGCTGAA -ACGGAACGCTTACCAATGAGTACG -ACGGAACGCTTACCAATGATCCGA -ACGGAACGCTTACCAATGATGGGA -ACGGAACGCTTACCAATGGTGCAA -ACGGAACGCTTACCAATGGAGGAA -ACGGAACGCTTACCAATGCAGGTA -ACGGAACGCTTACCAATGGACTCT -ACGGAACGCTTACCAATGAGTCCT -ACGGAACGCTTACCAATGTAAGCC -ACGGAACGCTTACCAATGATAGCC -ACGGAACGCTTACCAATGTAACCG -ACGGAACGCTTACCAATGATGCCA -ACGGAAGCGTTAAACGGAGGAAAC -ACGGAAGCGTTAAACGGAAACACC -ACGGAAGCGTTAAACGGAATCGAG -ACGGAAGCGTTAAACGGACTCCTT -ACGGAAGCGTTAAACGGACCTGTT -ACGGAAGCGTTAAACGGACGGTTT -ACGGAAGCGTTAAACGGAGTGGTT -ACGGAAGCGTTAAACGGAGCCTTT -ACGGAAGCGTTAAACGGAGGTCTT -ACGGAAGCGTTAAACGGAACGCTT -ACGGAAGCGTTAAACGGAAGCGTT -ACGGAAGCGTTAAACGGATTCGTC -ACGGAAGCGTTAAACGGATCTCTC -ACGGAAGCGTTAAACGGATGGATC -ACGGAAGCGTTAAACGGACACTTC -ACGGAAGCGTTAAACGGAGTACTC -ACGGAAGCGTTAAACGGAGATGTC -ACGGAAGCGTTAAACGGAACAGTC -ACGGAAGCGTTAAACGGATTGCTG -ACGGAAGCGTTAAACGGATCCATG -ACGGAAGCGTTAAACGGATGTGTG -ACGGAAGCGTTAAACGGACTAGTG -ACGGAAGCGTTAAACGGACATCTG -ACGGAAGCGTTAAACGGAGAGTTG -ACGGAAGCGTTAAACGGAAGACTG -ACGGAAGCGTTAAACGGATCGGTA -ACGGAAGCGTTAAACGGATGCCTA -ACGGAAGCGTTAAACGGACCACTA -ACGGAAGCGTTAAACGGAGGAGTA -ACGGAAGCGTTAAACGGATCGTCT -ACGGAAGCGTTAAACGGATGCACT -ACGGAAGCGTTAAACGGACTGACT -ACGGAAGCGTTAAACGGACAACCT -ACGGAAGCGTTAAACGGAGCTACT -ACGGAAGCGTTAAACGGAGGATCT -ACGGAAGCGTTAAACGGAAAGGCT -ACGGAAGCGTTAAACGGATCAACC -ACGGAAGCGTTAAACGGATGTTCC -ACGGAAGCGTTAAACGGAATTCCC -ACGGAAGCGTTAAACGGATTCTCG -ACGGAAGCGTTAAACGGATAGACG -ACGGAAGCGTTAAACGGAGTAACG -ACGGAAGCGTTAAACGGAACTTCG -ACGGAAGCGTTAAACGGATACGCA -ACGGAAGCGTTAAACGGACTTGCA -ACGGAAGCGTTAAACGGACGAACA -ACGGAAGCGTTAAACGGACAGTCA -ACGGAAGCGTTAAACGGAGATCCA -ACGGAAGCGTTAAACGGAACGACA -ACGGAAGCGTTAAACGGAAGCTCA -ACGGAAGCGTTAAACGGATCACGT -ACGGAAGCGTTAAACGGACGTAGT -ACGGAAGCGTTAAACGGAGTCAGT -ACGGAAGCGTTAAACGGAGAAGGT -ACGGAAGCGTTAAACGGAAACCGT -ACGGAAGCGTTAAACGGATTGTGC -ACGGAAGCGTTAAACGGACTAAGC -ACGGAAGCGTTAAACGGAACTAGC -ACGGAAGCGTTAAACGGAAGATGC -ACGGAAGCGTTAAACGGATGAAGG -ACGGAAGCGTTAAACGGACAATGG -ACGGAAGCGTTAAACGGAATGAGG -ACGGAAGCGTTAAACGGAAATGGG -ACGGAAGCGTTAAACGGATCCTGA -ACGGAAGCGTTAAACGGATAGCGA -ACGGAAGCGTTAAACGGACACAGA -ACGGAAGCGTTAAACGGAGCAAGA -ACGGAAGCGTTAAACGGAGGTTGA -ACGGAAGCGTTAAACGGATCCGAT -ACGGAAGCGTTAAACGGATGGCAT -ACGGAAGCGTTAAACGGACGAGAT -ACGGAAGCGTTAAACGGATACCAC -ACGGAAGCGTTAAACGGACAGAAC -ACGGAAGCGTTAAACGGAGTCTAC -ACGGAAGCGTTAAACGGAACGTAC -ACGGAAGCGTTAAACGGAAGTGAC -ACGGAAGCGTTAAACGGACTGTAG -ACGGAAGCGTTAAACGGACCTAAG -ACGGAAGCGTTAAACGGAGTTCAG -ACGGAAGCGTTAAACGGAGCATAG -ACGGAAGCGTTAAACGGAGACAAG -ACGGAAGCGTTAAACGGAAAGCAG -ACGGAAGCGTTAAACGGACGTCAA -ACGGAAGCGTTAAACGGAGCTGAA -ACGGAAGCGTTAAACGGAAGTACG -ACGGAAGCGTTAAACGGAATCCGA -ACGGAAGCGTTAAACGGAATGGGA -ACGGAAGCGTTAAACGGAGTGCAA -ACGGAAGCGTTAAACGGAGAGGAA -ACGGAAGCGTTAAACGGACAGGTA -ACGGAAGCGTTAAACGGAGACTCT -ACGGAAGCGTTAAACGGAAGTCCT -ACGGAAGCGTTAAACGGATAAGCC -ACGGAAGCGTTAAACGGAATAGCC -ACGGAAGCGTTAAACGGATAACCG -ACGGAAGCGTTAAACGGAATGCCA -ACGGAAGCGTTAACCAACGGAAAC -ACGGAAGCGTTAACCAACAACACC -ACGGAAGCGTTAACCAACATCGAG -ACGGAAGCGTTAACCAACCTCCTT -ACGGAAGCGTTAACCAACCCTGTT -ACGGAAGCGTTAACCAACCGGTTT -ACGGAAGCGTTAACCAACGTGGTT -ACGGAAGCGTTAACCAACGCCTTT -ACGGAAGCGTTAACCAACGGTCTT -ACGGAAGCGTTAACCAACACGCTT -ACGGAAGCGTTAACCAACAGCGTT -ACGGAAGCGTTAACCAACTTCGTC -ACGGAAGCGTTAACCAACTCTCTC -ACGGAAGCGTTAACCAACTGGATC -ACGGAAGCGTTAACCAACCACTTC -ACGGAAGCGTTAACCAACGTACTC -ACGGAAGCGTTAACCAACGATGTC -ACGGAAGCGTTAACCAACACAGTC -ACGGAAGCGTTAACCAACTTGCTG -ACGGAAGCGTTAACCAACTCCATG -ACGGAAGCGTTAACCAACTGTGTG -ACGGAAGCGTTAACCAACCTAGTG -ACGGAAGCGTTAACCAACCATCTG -ACGGAAGCGTTAACCAACGAGTTG -ACGGAAGCGTTAACCAACAGACTG -ACGGAAGCGTTAACCAACTCGGTA -ACGGAAGCGTTAACCAACTGCCTA -ACGGAAGCGTTAACCAACCCACTA -ACGGAAGCGTTAACCAACGGAGTA -ACGGAAGCGTTAACCAACTCGTCT -ACGGAAGCGTTAACCAACTGCACT -ACGGAAGCGTTAACCAACCTGACT -ACGGAAGCGTTAACCAACCAACCT -ACGGAAGCGTTAACCAACGCTACT -ACGGAAGCGTTAACCAACGGATCT -ACGGAAGCGTTAACCAACAAGGCT -ACGGAAGCGTTAACCAACTCAACC -ACGGAAGCGTTAACCAACTGTTCC -ACGGAAGCGTTAACCAACATTCCC -ACGGAAGCGTTAACCAACTTCTCG -ACGGAAGCGTTAACCAACTAGACG -ACGGAAGCGTTAACCAACGTAACG -ACGGAAGCGTTAACCAACACTTCG -ACGGAAGCGTTAACCAACTACGCA -ACGGAAGCGTTAACCAACCTTGCA -ACGGAAGCGTTAACCAACCGAACA -ACGGAAGCGTTAACCAACCAGTCA -ACGGAAGCGTTAACCAACGATCCA -ACGGAAGCGTTAACCAACACGACA -ACGGAAGCGTTAACCAACAGCTCA -ACGGAAGCGTTAACCAACTCACGT -ACGGAAGCGTTAACCAACCGTAGT -ACGGAAGCGTTAACCAACGTCAGT -ACGGAAGCGTTAACCAACGAAGGT -ACGGAAGCGTTAACCAACAACCGT -ACGGAAGCGTTAACCAACTTGTGC -ACGGAAGCGTTAACCAACCTAAGC -ACGGAAGCGTTAACCAACACTAGC -ACGGAAGCGTTAACCAACAGATGC -ACGGAAGCGTTAACCAACTGAAGG -ACGGAAGCGTTAACCAACCAATGG -ACGGAAGCGTTAACCAACATGAGG -ACGGAAGCGTTAACCAACAATGGG -ACGGAAGCGTTAACCAACTCCTGA -ACGGAAGCGTTAACCAACTAGCGA -ACGGAAGCGTTAACCAACCACAGA -ACGGAAGCGTTAACCAACGCAAGA -ACGGAAGCGTTAACCAACGGTTGA -ACGGAAGCGTTAACCAACTCCGAT -ACGGAAGCGTTAACCAACTGGCAT -ACGGAAGCGTTAACCAACCGAGAT -ACGGAAGCGTTAACCAACTACCAC -ACGGAAGCGTTAACCAACCAGAAC -ACGGAAGCGTTAACCAACGTCTAC -ACGGAAGCGTTAACCAACACGTAC -ACGGAAGCGTTAACCAACAGTGAC -ACGGAAGCGTTAACCAACCTGTAG -ACGGAAGCGTTAACCAACCCTAAG -ACGGAAGCGTTAACCAACGTTCAG -ACGGAAGCGTTAACCAACGCATAG -ACGGAAGCGTTAACCAACGACAAG -ACGGAAGCGTTAACCAACAAGCAG -ACGGAAGCGTTAACCAACCGTCAA -ACGGAAGCGTTAACCAACGCTGAA -ACGGAAGCGTTAACCAACAGTACG -ACGGAAGCGTTAACCAACATCCGA -ACGGAAGCGTTAACCAACATGGGA -ACGGAAGCGTTAACCAACGTGCAA -ACGGAAGCGTTAACCAACGAGGAA -ACGGAAGCGTTAACCAACCAGGTA -ACGGAAGCGTTAACCAACGACTCT -ACGGAAGCGTTAACCAACAGTCCT -ACGGAAGCGTTAACCAACTAAGCC -ACGGAAGCGTTAACCAACATAGCC -ACGGAAGCGTTAACCAACTAACCG -ACGGAAGCGTTAACCAACATGCCA -ACGGAAGCGTTAGAGATCGGAAAC -ACGGAAGCGTTAGAGATCAACACC -ACGGAAGCGTTAGAGATCATCGAG -ACGGAAGCGTTAGAGATCCTCCTT -ACGGAAGCGTTAGAGATCCCTGTT -ACGGAAGCGTTAGAGATCCGGTTT -ACGGAAGCGTTAGAGATCGTGGTT -ACGGAAGCGTTAGAGATCGCCTTT -ACGGAAGCGTTAGAGATCGGTCTT -ACGGAAGCGTTAGAGATCACGCTT -ACGGAAGCGTTAGAGATCAGCGTT -ACGGAAGCGTTAGAGATCTTCGTC -ACGGAAGCGTTAGAGATCTCTCTC -ACGGAAGCGTTAGAGATCTGGATC -ACGGAAGCGTTAGAGATCCACTTC -ACGGAAGCGTTAGAGATCGTACTC -ACGGAAGCGTTAGAGATCGATGTC -ACGGAAGCGTTAGAGATCACAGTC -ACGGAAGCGTTAGAGATCTTGCTG -ACGGAAGCGTTAGAGATCTCCATG -ACGGAAGCGTTAGAGATCTGTGTG -ACGGAAGCGTTAGAGATCCTAGTG -ACGGAAGCGTTAGAGATCCATCTG -ACGGAAGCGTTAGAGATCGAGTTG -ACGGAAGCGTTAGAGATCAGACTG -ACGGAAGCGTTAGAGATCTCGGTA -ACGGAAGCGTTAGAGATCTGCCTA -ACGGAAGCGTTAGAGATCCCACTA -ACGGAAGCGTTAGAGATCGGAGTA -ACGGAAGCGTTAGAGATCTCGTCT -ACGGAAGCGTTAGAGATCTGCACT -ACGGAAGCGTTAGAGATCCTGACT -ACGGAAGCGTTAGAGATCCAACCT -ACGGAAGCGTTAGAGATCGCTACT -ACGGAAGCGTTAGAGATCGGATCT -ACGGAAGCGTTAGAGATCAAGGCT -ACGGAAGCGTTAGAGATCTCAACC -ACGGAAGCGTTAGAGATCTGTTCC -ACGGAAGCGTTAGAGATCATTCCC -ACGGAAGCGTTAGAGATCTTCTCG -ACGGAAGCGTTAGAGATCTAGACG -ACGGAAGCGTTAGAGATCGTAACG -ACGGAAGCGTTAGAGATCACTTCG -ACGGAAGCGTTAGAGATCTACGCA -ACGGAAGCGTTAGAGATCCTTGCA -ACGGAAGCGTTAGAGATCCGAACA -ACGGAAGCGTTAGAGATCCAGTCA -ACGGAAGCGTTAGAGATCGATCCA -ACGGAAGCGTTAGAGATCACGACA -ACGGAAGCGTTAGAGATCAGCTCA -ACGGAAGCGTTAGAGATCTCACGT -ACGGAAGCGTTAGAGATCCGTAGT -ACGGAAGCGTTAGAGATCGTCAGT -ACGGAAGCGTTAGAGATCGAAGGT -ACGGAAGCGTTAGAGATCAACCGT -ACGGAAGCGTTAGAGATCTTGTGC -ACGGAAGCGTTAGAGATCCTAAGC -ACGGAAGCGTTAGAGATCACTAGC -ACGGAAGCGTTAGAGATCAGATGC -ACGGAAGCGTTAGAGATCTGAAGG -ACGGAAGCGTTAGAGATCCAATGG -ACGGAAGCGTTAGAGATCATGAGG -ACGGAAGCGTTAGAGATCAATGGG -ACGGAAGCGTTAGAGATCTCCTGA -ACGGAAGCGTTAGAGATCTAGCGA -ACGGAAGCGTTAGAGATCCACAGA -ACGGAAGCGTTAGAGATCGCAAGA -ACGGAAGCGTTAGAGATCGGTTGA -ACGGAAGCGTTAGAGATCTCCGAT -ACGGAAGCGTTAGAGATCTGGCAT -ACGGAAGCGTTAGAGATCCGAGAT -ACGGAAGCGTTAGAGATCTACCAC -ACGGAAGCGTTAGAGATCCAGAAC -ACGGAAGCGTTAGAGATCGTCTAC -ACGGAAGCGTTAGAGATCACGTAC -ACGGAAGCGTTAGAGATCAGTGAC -ACGGAAGCGTTAGAGATCCTGTAG -ACGGAAGCGTTAGAGATCCCTAAG -ACGGAAGCGTTAGAGATCGTTCAG -ACGGAAGCGTTAGAGATCGCATAG -ACGGAAGCGTTAGAGATCGACAAG -ACGGAAGCGTTAGAGATCAAGCAG -ACGGAAGCGTTAGAGATCCGTCAA -ACGGAAGCGTTAGAGATCGCTGAA -ACGGAAGCGTTAGAGATCAGTACG -ACGGAAGCGTTAGAGATCATCCGA -ACGGAAGCGTTAGAGATCATGGGA -ACGGAAGCGTTAGAGATCGTGCAA -ACGGAAGCGTTAGAGATCGAGGAA -ACGGAAGCGTTAGAGATCCAGGTA -ACGGAAGCGTTAGAGATCGACTCT -ACGGAAGCGTTAGAGATCAGTCCT -ACGGAAGCGTTAGAGATCTAAGCC -ACGGAAGCGTTAGAGATCATAGCC -ACGGAAGCGTTAGAGATCTAACCG -ACGGAAGCGTTAGAGATCATGCCA -ACGGAAGCGTTACTTCTCGGAAAC -ACGGAAGCGTTACTTCTCAACACC -ACGGAAGCGTTACTTCTCATCGAG -ACGGAAGCGTTACTTCTCCTCCTT -ACGGAAGCGTTACTTCTCCCTGTT -ACGGAAGCGTTACTTCTCCGGTTT -ACGGAAGCGTTACTTCTCGTGGTT -ACGGAAGCGTTACTTCTCGCCTTT -ACGGAAGCGTTACTTCTCGGTCTT -ACGGAAGCGTTACTTCTCACGCTT -ACGGAAGCGTTACTTCTCAGCGTT -ACGGAAGCGTTACTTCTCTTCGTC -ACGGAAGCGTTACTTCTCTCTCTC -ACGGAAGCGTTACTTCTCTGGATC -ACGGAAGCGTTACTTCTCCACTTC -ACGGAAGCGTTACTTCTCGTACTC -ACGGAAGCGTTACTTCTCGATGTC -ACGGAAGCGTTACTTCTCACAGTC -ACGGAAGCGTTACTTCTCTTGCTG -ACGGAAGCGTTACTTCTCTCCATG -ACGGAAGCGTTACTTCTCTGTGTG -ACGGAAGCGTTACTTCTCCTAGTG -ACGGAAGCGTTACTTCTCCATCTG -ACGGAAGCGTTACTTCTCGAGTTG -ACGGAAGCGTTACTTCTCAGACTG -ACGGAAGCGTTACTTCTCTCGGTA -ACGGAAGCGTTACTTCTCTGCCTA -ACGGAAGCGTTACTTCTCCCACTA -ACGGAAGCGTTACTTCTCGGAGTA -ACGGAAGCGTTACTTCTCTCGTCT -ACGGAAGCGTTACTTCTCTGCACT -ACGGAAGCGTTACTTCTCCTGACT -ACGGAAGCGTTACTTCTCCAACCT -ACGGAAGCGTTACTTCTCGCTACT -ACGGAAGCGTTACTTCTCGGATCT -ACGGAAGCGTTACTTCTCAAGGCT -ACGGAAGCGTTACTTCTCTCAACC -ACGGAAGCGTTACTTCTCTGTTCC -ACGGAAGCGTTACTTCTCATTCCC -ACGGAAGCGTTACTTCTCTTCTCG -ACGGAAGCGTTACTTCTCTAGACG -ACGGAAGCGTTACTTCTCGTAACG -ACGGAAGCGTTACTTCTCACTTCG -ACGGAAGCGTTACTTCTCTACGCA -ACGGAAGCGTTACTTCTCCTTGCA -ACGGAAGCGTTACTTCTCCGAACA -ACGGAAGCGTTACTTCTCCAGTCA -ACGGAAGCGTTACTTCTCGATCCA -ACGGAAGCGTTACTTCTCACGACA -ACGGAAGCGTTACTTCTCAGCTCA -ACGGAAGCGTTACTTCTCTCACGT -ACGGAAGCGTTACTTCTCCGTAGT -ACGGAAGCGTTACTTCTCGTCAGT -ACGGAAGCGTTACTTCTCGAAGGT -ACGGAAGCGTTACTTCTCAACCGT -ACGGAAGCGTTACTTCTCTTGTGC -ACGGAAGCGTTACTTCTCCTAAGC -ACGGAAGCGTTACTTCTCACTAGC -ACGGAAGCGTTACTTCTCAGATGC -ACGGAAGCGTTACTTCTCTGAAGG -ACGGAAGCGTTACTTCTCCAATGG -ACGGAAGCGTTACTTCTCATGAGG -ACGGAAGCGTTACTTCTCAATGGG -ACGGAAGCGTTACTTCTCTCCTGA -ACGGAAGCGTTACTTCTCTAGCGA -ACGGAAGCGTTACTTCTCCACAGA -ACGGAAGCGTTACTTCTCGCAAGA -ACGGAAGCGTTACTTCTCGGTTGA -ACGGAAGCGTTACTTCTCTCCGAT -ACGGAAGCGTTACTTCTCTGGCAT -ACGGAAGCGTTACTTCTCCGAGAT -ACGGAAGCGTTACTTCTCTACCAC -ACGGAAGCGTTACTTCTCCAGAAC -ACGGAAGCGTTACTTCTCGTCTAC -ACGGAAGCGTTACTTCTCACGTAC -ACGGAAGCGTTACTTCTCAGTGAC -ACGGAAGCGTTACTTCTCCTGTAG -ACGGAAGCGTTACTTCTCCCTAAG -ACGGAAGCGTTACTTCTCGTTCAG -ACGGAAGCGTTACTTCTCGCATAG -ACGGAAGCGTTACTTCTCGACAAG -ACGGAAGCGTTACTTCTCAAGCAG -ACGGAAGCGTTACTTCTCCGTCAA -ACGGAAGCGTTACTTCTCGCTGAA -ACGGAAGCGTTACTTCTCAGTACG -ACGGAAGCGTTACTTCTCATCCGA -ACGGAAGCGTTACTTCTCATGGGA -ACGGAAGCGTTACTTCTCGTGCAA -ACGGAAGCGTTACTTCTCGAGGAA -ACGGAAGCGTTACTTCTCCAGGTA -ACGGAAGCGTTACTTCTCGACTCT -ACGGAAGCGTTACTTCTCAGTCCT -ACGGAAGCGTTACTTCTCTAAGCC -ACGGAAGCGTTACTTCTCATAGCC -ACGGAAGCGTTACTTCTCTAACCG -ACGGAAGCGTTACTTCTCATGCCA -ACGGAAGCGTTAGTTCCTGGAAAC -ACGGAAGCGTTAGTTCCTAACACC -ACGGAAGCGTTAGTTCCTATCGAG -ACGGAAGCGTTAGTTCCTCTCCTT -ACGGAAGCGTTAGTTCCTCCTGTT -ACGGAAGCGTTAGTTCCTCGGTTT -ACGGAAGCGTTAGTTCCTGTGGTT -ACGGAAGCGTTAGTTCCTGCCTTT -ACGGAAGCGTTAGTTCCTGGTCTT -ACGGAAGCGTTAGTTCCTACGCTT -ACGGAAGCGTTAGTTCCTAGCGTT -ACGGAAGCGTTAGTTCCTTTCGTC -ACGGAAGCGTTAGTTCCTTCTCTC -ACGGAAGCGTTAGTTCCTTGGATC -ACGGAAGCGTTAGTTCCTCACTTC -ACGGAAGCGTTAGTTCCTGTACTC -ACGGAAGCGTTAGTTCCTGATGTC -ACGGAAGCGTTAGTTCCTACAGTC -ACGGAAGCGTTAGTTCCTTTGCTG -ACGGAAGCGTTAGTTCCTTCCATG -ACGGAAGCGTTAGTTCCTTGTGTG -ACGGAAGCGTTAGTTCCTCTAGTG -ACGGAAGCGTTAGTTCCTCATCTG -ACGGAAGCGTTAGTTCCTGAGTTG -ACGGAAGCGTTAGTTCCTAGACTG -ACGGAAGCGTTAGTTCCTTCGGTA -ACGGAAGCGTTAGTTCCTTGCCTA -ACGGAAGCGTTAGTTCCTCCACTA -ACGGAAGCGTTAGTTCCTGGAGTA -ACGGAAGCGTTAGTTCCTTCGTCT -ACGGAAGCGTTAGTTCCTTGCACT -ACGGAAGCGTTAGTTCCTCTGACT -ACGGAAGCGTTAGTTCCTCAACCT -ACGGAAGCGTTAGTTCCTGCTACT -ACGGAAGCGTTAGTTCCTGGATCT -ACGGAAGCGTTAGTTCCTAAGGCT -ACGGAAGCGTTAGTTCCTTCAACC -ACGGAAGCGTTAGTTCCTTGTTCC -ACGGAAGCGTTAGTTCCTATTCCC -ACGGAAGCGTTAGTTCCTTTCTCG -ACGGAAGCGTTAGTTCCTTAGACG -ACGGAAGCGTTAGTTCCTGTAACG -ACGGAAGCGTTAGTTCCTACTTCG -ACGGAAGCGTTAGTTCCTTACGCA -ACGGAAGCGTTAGTTCCTCTTGCA -ACGGAAGCGTTAGTTCCTCGAACA -ACGGAAGCGTTAGTTCCTCAGTCA -ACGGAAGCGTTAGTTCCTGATCCA -ACGGAAGCGTTAGTTCCTACGACA -ACGGAAGCGTTAGTTCCTAGCTCA -ACGGAAGCGTTAGTTCCTTCACGT -ACGGAAGCGTTAGTTCCTCGTAGT -ACGGAAGCGTTAGTTCCTGTCAGT -ACGGAAGCGTTAGTTCCTGAAGGT -ACGGAAGCGTTAGTTCCTAACCGT -ACGGAAGCGTTAGTTCCTTTGTGC -ACGGAAGCGTTAGTTCCTCTAAGC -ACGGAAGCGTTAGTTCCTACTAGC -ACGGAAGCGTTAGTTCCTAGATGC -ACGGAAGCGTTAGTTCCTTGAAGG -ACGGAAGCGTTAGTTCCTCAATGG -ACGGAAGCGTTAGTTCCTATGAGG -ACGGAAGCGTTAGTTCCTAATGGG -ACGGAAGCGTTAGTTCCTTCCTGA -ACGGAAGCGTTAGTTCCTTAGCGA -ACGGAAGCGTTAGTTCCTCACAGA -ACGGAAGCGTTAGTTCCTGCAAGA -ACGGAAGCGTTAGTTCCTGGTTGA -ACGGAAGCGTTAGTTCCTTCCGAT -ACGGAAGCGTTAGTTCCTTGGCAT -ACGGAAGCGTTAGTTCCTCGAGAT -ACGGAAGCGTTAGTTCCTTACCAC -ACGGAAGCGTTAGTTCCTCAGAAC -ACGGAAGCGTTAGTTCCTGTCTAC -ACGGAAGCGTTAGTTCCTACGTAC -ACGGAAGCGTTAGTTCCTAGTGAC -ACGGAAGCGTTAGTTCCTCTGTAG -ACGGAAGCGTTAGTTCCTCCTAAG -ACGGAAGCGTTAGTTCCTGTTCAG -ACGGAAGCGTTAGTTCCTGCATAG -ACGGAAGCGTTAGTTCCTGACAAG -ACGGAAGCGTTAGTTCCTAAGCAG -ACGGAAGCGTTAGTTCCTCGTCAA -ACGGAAGCGTTAGTTCCTGCTGAA -ACGGAAGCGTTAGTTCCTAGTACG -ACGGAAGCGTTAGTTCCTATCCGA -ACGGAAGCGTTAGTTCCTATGGGA -ACGGAAGCGTTAGTTCCTGTGCAA -ACGGAAGCGTTAGTTCCTGAGGAA -ACGGAAGCGTTAGTTCCTCAGGTA -ACGGAAGCGTTAGTTCCTGACTCT -ACGGAAGCGTTAGTTCCTAGTCCT -ACGGAAGCGTTAGTTCCTTAAGCC -ACGGAAGCGTTAGTTCCTATAGCC -ACGGAAGCGTTAGTTCCTTAACCG -ACGGAAGCGTTAGTTCCTATGCCA -ACGGAAGCGTTATTTCGGGGAAAC -ACGGAAGCGTTATTTCGGAACACC -ACGGAAGCGTTATTTCGGATCGAG -ACGGAAGCGTTATTTCGGCTCCTT -ACGGAAGCGTTATTTCGGCCTGTT -ACGGAAGCGTTATTTCGGCGGTTT -ACGGAAGCGTTATTTCGGGTGGTT -ACGGAAGCGTTATTTCGGGCCTTT -ACGGAAGCGTTATTTCGGGGTCTT -ACGGAAGCGTTATTTCGGACGCTT -ACGGAAGCGTTATTTCGGAGCGTT -ACGGAAGCGTTATTTCGGTTCGTC -ACGGAAGCGTTATTTCGGTCTCTC -ACGGAAGCGTTATTTCGGTGGATC -ACGGAAGCGTTATTTCGGCACTTC -ACGGAAGCGTTATTTCGGGTACTC -ACGGAAGCGTTATTTCGGGATGTC -ACGGAAGCGTTATTTCGGACAGTC -ACGGAAGCGTTATTTCGGTTGCTG -ACGGAAGCGTTATTTCGGTCCATG -ACGGAAGCGTTATTTCGGTGTGTG -ACGGAAGCGTTATTTCGGCTAGTG -ACGGAAGCGTTATTTCGGCATCTG -ACGGAAGCGTTATTTCGGGAGTTG -ACGGAAGCGTTATTTCGGAGACTG -ACGGAAGCGTTATTTCGGTCGGTA -ACGGAAGCGTTATTTCGGTGCCTA -ACGGAAGCGTTATTTCGGCCACTA -ACGGAAGCGTTATTTCGGGGAGTA -ACGGAAGCGTTATTTCGGTCGTCT -ACGGAAGCGTTATTTCGGTGCACT -ACGGAAGCGTTATTTCGGCTGACT -ACGGAAGCGTTATTTCGGCAACCT -ACGGAAGCGTTATTTCGGGCTACT -ACGGAAGCGTTATTTCGGGGATCT -ACGGAAGCGTTATTTCGGAAGGCT -ACGGAAGCGTTATTTCGGTCAACC -ACGGAAGCGTTATTTCGGTGTTCC -ACGGAAGCGTTATTTCGGATTCCC -ACGGAAGCGTTATTTCGGTTCTCG -ACGGAAGCGTTATTTCGGTAGACG -ACGGAAGCGTTATTTCGGGTAACG -ACGGAAGCGTTATTTCGGACTTCG -ACGGAAGCGTTATTTCGGTACGCA -ACGGAAGCGTTATTTCGGCTTGCA -ACGGAAGCGTTATTTCGGCGAACA -ACGGAAGCGTTATTTCGGCAGTCA -ACGGAAGCGTTATTTCGGGATCCA -ACGGAAGCGTTATTTCGGACGACA -ACGGAAGCGTTATTTCGGAGCTCA -ACGGAAGCGTTATTTCGGTCACGT -ACGGAAGCGTTATTTCGGCGTAGT -ACGGAAGCGTTATTTCGGGTCAGT -ACGGAAGCGTTATTTCGGGAAGGT -ACGGAAGCGTTATTTCGGAACCGT -ACGGAAGCGTTATTTCGGTTGTGC -ACGGAAGCGTTATTTCGGCTAAGC -ACGGAAGCGTTATTTCGGACTAGC -ACGGAAGCGTTATTTCGGAGATGC -ACGGAAGCGTTATTTCGGTGAAGG -ACGGAAGCGTTATTTCGGCAATGG -ACGGAAGCGTTATTTCGGATGAGG -ACGGAAGCGTTATTTCGGAATGGG -ACGGAAGCGTTATTTCGGTCCTGA -ACGGAAGCGTTATTTCGGTAGCGA -ACGGAAGCGTTATTTCGGCACAGA -ACGGAAGCGTTATTTCGGGCAAGA -ACGGAAGCGTTATTTCGGGGTTGA -ACGGAAGCGTTATTTCGGTCCGAT -ACGGAAGCGTTATTTCGGTGGCAT -ACGGAAGCGTTATTTCGGCGAGAT -ACGGAAGCGTTATTTCGGTACCAC -ACGGAAGCGTTATTTCGGCAGAAC -ACGGAAGCGTTATTTCGGGTCTAC -ACGGAAGCGTTATTTCGGACGTAC -ACGGAAGCGTTATTTCGGAGTGAC -ACGGAAGCGTTATTTCGGCTGTAG -ACGGAAGCGTTATTTCGGCCTAAG -ACGGAAGCGTTATTTCGGGTTCAG -ACGGAAGCGTTATTTCGGGCATAG -ACGGAAGCGTTATTTCGGGACAAG -ACGGAAGCGTTATTTCGGAAGCAG -ACGGAAGCGTTATTTCGGCGTCAA -ACGGAAGCGTTATTTCGGGCTGAA -ACGGAAGCGTTATTTCGGAGTACG -ACGGAAGCGTTATTTCGGATCCGA -ACGGAAGCGTTATTTCGGATGGGA -ACGGAAGCGTTATTTCGGGTGCAA -ACGGAAGCGTTATTTCGGGAGGAA -ACGGAAGCGTTATTTCGGCAGGTA -ACGGAAGCGTTATTTCGGGACTCT -ACGGAAGCGTTATTTCGGAGTCCT -ACGGAAGCGTTATTTCGGTAAGCC -ACGGAAGCGTTATTTCGGATAGCC -ACGGAAGCGTTATTTCGGTAACCG -ACGGAAGCGTTATTTCGGATGCCA -ACGGAAGCGTTAGTTGTGGGAAAC -ACGGAAGCGTTAGTTGTGAACACC -ACGGAAGCGTTAGTTGTGATCGAG -ACGGAAGCGTTAGTTGTGCTCCTT -ACGGAAGCGTTAGTTGTGCCTGTT -ACGGAAGCGTTAGTTGTGCGGTTT -ACGGAAGCGTTAGTTGTGGTGGTT -ACGGAAGCGTTAGTTGTGGCCTTT -ACGGAAGCGTTAGTTGTGGGTCTT -ACGGAAGCGTTAGTTGTGACGCTT -ACGGAAGCGTTAGTTGTGAGCGTT -ACGGAAGCGTTAGTTGTGTTCGTC -ACGGAAGCGTTAGTTGTGTCTCTC -ACGGAAGCGTTAGTTGTGTGGATC -ACGGAAGCGTTAGTTGTGCACTTC -ACGGAAGCGTTAGTTGTGGTACTC -ACGGAAGCGTTAGTTGTGGATGTC -ACGGAAGCGTTAGTTGTGACAGTC -ACGGAAGCGTTAGTTGTGTTGCTG -ACGGAAGCGTTAGTTGTGTCCATG -ACGGAAGCGTTAGTTGTGTGTGTG -ACGGAAGCGTTAGTTGTGCTAGTG -ACGGAAGCGTTAGTTGTGCATCTG -ACGGAAGCGTTAGTTGTGGAGTTG -ACGGAAGCGTTAGTTGTGAGACTG -ACGGAAGCGTTAGTTGTGTCGGTA -ACGGAAGCGTTAGTTGTGTGCCTA -ACGGAAGCGTTAGTTGTGCCACTA -ACGGAAGCGTTAGTTGTGGGAGTA -ACGGAAGCGTTAGTTGTGTCGTCT -ACGGAAGCGTTAGTTGTGTGCACT -ACGGAAGCGTTAGTTGTGCTGACT -ACGGAAGCGTTAGTTGTGCAACCT -ACGGAAGCGTTAGTTGTGGCTACT -ACGGAAGCGTTAGTTGTGGGATCT -ACGGAAGCGTTAGTTGTGAAGGCT -ACGGAAGCGTTAGTTGTGTCAACC -ACGGAAGCGTTAGTTGTGTGTTCC -ACGGAAGCGTTAGTTGTGATTCCC -ACGGAAGCGTTAGTTGTGTTCTCG -ACGGAAGCGTTAGTTGTGTAGACG -ACGGAAGCGTTAGTTGTGGTAACG -ACGGAAGCGTTAGTTGTGACTTCG -ACGGAAGCGTTAGTTGTGTACGCA -ACGGAAGCGTTAGTTGTGCTTGCA -ACGGAAGCGTTAGTTGTGCGAACA -ACGGAAGCGTTAGTTGTGCAGTCA -ACGGAAGCGTTAGTTGTGGATCCA -ACGGAAGCGTTAGTTGTGACGACA -ACGGAAGCGTTAGTTGTGAGCTCA -ACGGAAGCGTTAGTTGTGTCACGT -ACGGAAGCGTTAGTTGTGCGTAGT -ACGGAAGCGTTAGTTGTGGTCAGT -ACGGAAGCGTTAGTTGTGGAAGGT -ACGGAAGCGTTAGTTGTGAACCGT -ACGGAAGCGTTAGTTGTGTTGTGC -ACGGAAGCGTTAGTTGTGCTAAGC -ACGGAAGCGTTAGTTGTGACTAGC -ACGGAAGCGTTAGTTGTGAGATGC -ACGGAAGCGTTAGTTGTGTGAAGG -ACGGAAGCGTTAGTTGTGCAATGG -ACGGAAGCGTTAGTTGTGATGAGG -ACGGAAGCGTTAGTTGTGAATGGG -ACGGAAGCGTTAGTTGTGTCCTGA -ACGGAAGCGTTAGTTGTGTAGCGA -ACGGAAGCGTTAGTTGTGCACAGA -ACGGAAGCGTTAGTTGTGGCAAGA -ACGGAAGCGTTAGTTGTGGGTTGA -ACGGAAGCGTTAGTTGTGTCCGAT -ACGGAAGCGTTAGTTGTGTGGCAT -ACGGAAGCGTTAGTTGTGCGAGAT -ACGGAAGCGTTAGTTGTGTACCAC -ACGGAAGCGTTAGTTGTGCAGAAC -ACGGAAGCGTTAGTTGTGGTCTAC -ACGGAAGCGTTAGTTGTGACGTAC -ACGGAAGCGTTAGTTGTGAGTGAC -ACGGAAGCGTTAGTTGTGCTGTAG -ACGGAAGCGTTAGTTGTGCCTAAG -ACGGAAGCGTTAGTTGTGGTTCAG -ACGGAAGCGTTAGTTGTGGCATAG -ACGGAAGCGTTAGTTGTGGACAAG -ACGGAAGCGTTAGTTGTGAAGCAG -ACGGAAGCGTTAGTTGTGCGTCAA -ACGGAAGCGTTAGTTGTGGCTGAA -ACGGAAGCGTTAGTTGTGAGTACG -ACGGAAGCGTTAGTTGTGATCCGA -ACGGAAGCGTTAGTTGTGATGGGA -ACGGAAGCGTTAGTTGTGGTGCAA -ACGGAAGCGTTAGTTGTGGAGGAA -ACGGAAGCGTTAGTTGTGCAGGTA -ACGGAAGCGTTAGTTGTGGACTCT -ACGGAAGCGTTAGTTGTGAGTCCT -ACGGAAGCGTTAGTTGTGTAAGCC -ACGGAAGCGTTAGTTGTGATAGCC -ACGGAAGCGTTAGTTGTGTAACCG -ACGGAAGCGTTAGTTGTGATGCCA -ACGGAAGCGTTATTTGCCGGAAAC -ACGGAAGCGTTATTTGCCAACACC -ACGGAAGCGTTATTTGCCATCGAG -ACGGAAGCGTTATTTGCCCTCCTT -ACGGAAGCGTTATTTGCCCCTGTT -ACGGAAGCGTTATTTGCCCGGTTT -ACGGAAGCGTTATTTGCCGTGGTT -ACGGAAGCGTTATTTGCCGCCTTT -ACGGAAGCGTTATTTGCCGGTCTT -ACGGAAGCGTTATTTGCCACGCTT -ACGGAAGCGTTATTTGCCAGCGTT -ACGGAAGCGTTATTTGCCTTCGTC -ACGGAAGCGTTATTTGCCTCTCTC -ACGGAAGCGTTATTTGCCTGGATC -ACGGAAGCGTTATTTGCCCACTTC -ACGGAAGCGTTATTTGCCGTACTC -ACGGAAGCGTTATTTGCCGATGTC -ACGGAAGCGTTATTTGCCACAGTC -ACGGAAGCGTTATTTGCCTTGCTG -ACGGAAGCGTTATTTGCCTCCATG -ACGGAAGCGTTATTTGCCTGTGTG -ACGGAAGCGTTATTTGCCCTAGTG -ACGGAAGCGTTATTTGCCCATCTG -ACGGAAGCGTTATTTGCCGAGTTG -ACGGAAGCGTTATTTGCCAGACTG -ACGGAAGCGTTATTTGCCTCGGTA -ACGGAAGCGTTATTTGCCTGCCTA -ACGGAAGCGTTATTTGCCCCACTA -ACGGAAGCGTTATTTGCCGGAGTA -ACGGAAGCGTTATTTGCCTCGTCT -ACGGAAGCGTTATTTGCCTGCACT -ACGGAAGCGTTATTTGCCCTGACT -ACGGAAGCGTTATTTGCCCAACCT -ACGGAAGCGTTATTTGCCGCTACT -ACGGAAGCGTTATTTGCCGGATCT -ACGGAAGCGTTATTTGCCAAGGCT -ACGGAAGCGTTATTTGCCTCAACC -ACGGAAGCGTTATTTGCCTGTTCC -ACGGAAGCGTTATTTGCCATTCCC -ACGGAAGCGTTATTTGCCTTCTCG -ACGGAAGCGTTATTTGCCTAGACG -ACGGAAGCGTTATTTGCCGTAACG -ACGGAAGCGTTATTTGCCACTTCG -ACGGAAGCGTTATTTGCCTACGCA -ACGGAAGCGTTATTTGCCCTTGCA -ACGGAAGCGTTATTTGCCCGAACA -ACGGAAGCGTTATTTGCCCAGTCA -ACGGAAGCGTTATTTGCCGATCCA -ACGGAAGCGTTATTTGCCACGACA -ACGGAAGCGTTATTTGCCAGCTCA -ACGGAAGCGTTATTTGCCTCACGT -ACGGAAGCGTTATTTGCCCGTAGT -ACGGAAGCGTTATTTGCCGTCAGT -ACGGAAGCGTTATTTGCCGAAGGT -ACGGAAGCGTTATTTGCCAACCGT -ACGGAAGCGTTATTTGCCTTGTGC -ACGGAAGCGTTATTTGCCCTAAGC -ACGGAAGCGTTATTTGCCACTAGC -ACGGAAGCGTTATTTGCCAGATGC -ACGGAAGCGTTATTTGCCTGAAGG -ACGGAAGCGTTATTTGCCCAATGG -ACGGAAGCGTTATTTGCCATGAGG -ACGGAAGCGTTATTTGCCAATGGG -ACGGAAGCGTTATTTGCCTCCTGA -ACGGAAGCGTTATTTGCCTAGCGA -ACGGAAGCGTTATTTGCCCACAGA -ACGGAAGCGTTATTTGCCGCAAGA -ACGGAAGCGTTATTTGCCGGTTGA -ACGGAAGCGTTATTTGCCTCCGAT -ACGGAAGCGTTATTTGCCTGGCAT -ACGGAAGCGTTATTTGCCCGAGAT -ACGGAAGCGTTATTTGCCTACCAC -ACGGAAGCGTTATTTGCCCAGAAC -ACGGAAGCGTTATTTGCCGTCTAC -ACGGAAGCGTTATTTGCCACGTAC -ACGGAAGCGTTATTTGCCAGTGAC -ACGGAAGCGTTATTTGCCCTGTAG -ACGGAAGCGTTATTTGCCCCTAAG -ACGGAAGCGTTATTTGCCGTTCAG -ACGGAAGCGTTATTTGCCGCATAG -ACGGAAGCGTTATTTGCCGACAAG -ACGGAAGCGTTATTTGCCAAGCAG -ACGGAAGCGTTATTTGCCCGTCAA -ACGGAAGCGTTATTTGCCGCTGAA -ACGGAAGCGTTATTTGCCAGTACG -ACGGAAGCGTTATTTGCCATCCGA -ACGGAAGCGTTATTTGCCATGGGA -ACGGAAGCGTTATTTGCCGTGCAA -ACGGAAGCGTTATTTGCCGAGGAA -ACGGAAGCGTTATTTGCCCAGGTA -ACGGAAGCGTTATTTGCCGACTCT -ACGGAAGCGTTATTTGCCAGTCCT -ACGGAAGCGTTATTTGCCTAAGCC -ACGGAAGCGTTATTTGCCATAGCC -ACGGAAGCGTTATTTGCCTAACCG -ACGGAAGCGTTATTTGCCATGCCA -ACGGAAGCGTTACTTGGTGGAAAC -ACGGAAGCGTTACTTGGTAACACC -ACGGAAGCGTTACTTGGTATCGAG -ACGGAAGCGTTACTTGGTCTCCTT -ACGGAAGCGTTACTTGGTCCTGTT -ACGGAAGCGTTACTTGGTCGGTTT -ACGGAAGCGTTACTTGGTGTGGTT -ACGGAAGCGTTACTTGGTGCCTTT -ACGGAAGCGTTACTTGGTGGTCTT -ACGGAAGCGTTACTTGGTACGCTT -ACGGAAGCGTTACTTGGTAGCGTT -ACGGAAGCGTTACTTGGTTTCGTC -ACGGAAGCGTTACTTGGTTCTCTC -ACGGAAGCGTTACTTGGTTGGATC -ACGGAAGCGTTACTTGGTCACTTC -ACGGAAGCGTTACTTGGTGTACTC -ACGGAAGCGTTACTTGGTGATGTC -ACGGAAGCGTTACTTGGTACAGTC -ACGGAAGCGTTACTTGGTTTGCTG -ACGGAAGCGTTACTTGGTTCCATG -ACGGAAGCGTTACTTGGTTGTGTG -ACGGAAGCGTTACTTGGTCTAGTG -ACGGAAGCGTTACTTGGTCATCTG -ACGGAAGCGTTACTTGGTGAGTTG -ACGGAAGCGTTACTTGGTAGACTG -ACGGAAGCGTTACTTGGTTCGGTA -ACGGAAGCGTTACTTGGTTGCCTA -ACGGAAGCGTTACTTGGTCCACTA -ACGGAAGCGTTACTTGGTGGAGTA -ACGGAAGCGTTACTTGGTTCGTCT -ACGGAAGCGTTACTTGGTTGCACT -ACGGAAGCGTTACTTGGTCTGACT -ACGGAAGCGTTACTTGGTCAACCT -ACGGAAGCGTTACTTGGTGCTACT -ACGGAAGCGTTACTTGGTGGATCT -ACGGAAGCGTTACTTGGTAAGGCT -ACGGAAGCGTTACTTGGTTCAACC -ACGGAAGCGTTACTTGGTTGTTCC -ACGGAAGCGTTACTTGGTATTCCC -ACGGAAGCGTTACTTGGTTTCTCG -ACGGAAGCGTTACTTGGTTAGACG -ACGGAAGCGTTACTTGGTGTAACG -ACGGAAGCGTTACTTGGTACTTCG -ACGGAAGCGTTACTTGGTTACGCA -ACGGAAGCGTTACTTGGTCTTGCA -ACGGAAGCGTTACTTGGTCGAACA -ACGGAAGCGTTACTTGGTCAGTCA -ACGGAAGCGTTACTTGGTGATCCA -ACGGAAGCGTTACTTGGTACGACA -ACGGAAGCGTTACTTGGTAGCTCA -ACGGAAGCGTTACTTGGTTCACGT -ACGGAAGCGTTACTTGGTCGTAGT -ACGGAAGCGTTACTTGGTGTCAGT -ACGGAAGCGTTACTTGGTGAAGGT -ACGGAAGCGTTACTTGGTAACCGT -ACGGAAGCGTTACTTGGTTTGTGC -ACGGAAGCGTTACTTGGTCTAAGC -ACGGAAGCGTTACTTGGTACTAGC -ACGGAAGCGTTACTTGGTAGATGC -ACGGAAGCGTTACTTGGTTGAAGG -ACGGAAGCGTTACTTGGTCAATGG -ACGGAAGCGTTACTTGGTATGAGG -ACGGAAGCGTTACTTGGTAATGGG -ACGGAAGCGTTACTTGGTTCCTGA -ACGGAAGCGTTACTTGGTTAGCGA -ACGGAAGCGTTACTTGGTCACAGA -ACGGAAGCGTTACTTGGTGCAAGA -ACGGAAGCGTTACTTGGTGGTTGA -ACGGAAGCGTTACTTGGTTCCGAT -ACGGAAGCGTTACTTGGTTGGCAT -ACGGAAGCGTTACTTGGTCGAGAT -ACGGAAGCGTTACTTGGTTACCAC -ACGGAAGCGTTACTTGGTCAGAAC -ACGGAAGCGTTACTTGGTGTCTAC -ACGGAAGCGTTACTTGGTACGTAC -ACGGAAGCGTTACTTGGTAGTGAC -ACGGAAGCGTTACTTGGTCTGTAG -ACGGAAGCGTTACTTGGTCCTAAG -ACGGAAGCGTTACTTGGTGTTCAG -ACGGAAGCGTTACTTGGTGCATAG -ACGGAAGCGTTACTTGGTGACAAG -ACGGAAGCGTTACTTGGTAAGCAG -ACGGAAGCGTTACTTGGTCGTCAA -ACGGAAGCGTTACTTGGTGCTGAA -ACGGAAGCGTTACTTGGTAGTACG -ACGGAAGCGTTACTTGGTATCCGA -ACGGAAGCGTTACTTGGTATGGGA -ACGGAAGCGTTACTTGGTGTGCAA -ACGGAAGCGTTACTTGGTGAGGAA -ACGGAAGCGTTACTTGGTCAGGTA -ACGGAAGCGTTACTTGGTGACTCT -ACGGAAGCGTTACTTGGTAGTCCT -ACGGAAGCGTTACTTGGTTAAGCC -ACGGAAGCGTTACTTGGTATAGCC -ACGGAAGCGTTACTTGGTTAACCG -ACGGAAGCGTTACTTGGTATGCCA -ACGGAAGCGTTACTTACGGGAAAC -ACGGAAGCGTTACTTACGAACACC -ACGGAAGCGTTACTTACGATCGAG -ACGGAAGCGTTACTTACGCTCCTT -ACGGAAGCGTTACTTACGCCTGTT -ACGGAAGCGTTACTTACGCGGTTT -ACGGAAGCGTTACTTACGGTGGTT -ACGGAAGCGTTACTTACGGCCTTT -ACGGAAGCGTTACTTACGGGTCTT -ACGGAAGCGTTACTTACGACGCTT -ACGGAAGCGTTACTTACGAGCGTT -ACGGAAGCGTTACTTACGTTCGTC -ACGGAAGCGTTACTTACGTCTCTC -ACGGAAGCGTTACTTACGTGGATC -ACGGAAGCGTTACTTACGCACTTC -ACGGAAGCGTTACTTACGGTACTC -ACGGAAGCGTTACTTACGGATGTC -ACGGAAGCGTTACTTACGACAGTC -ACGGAAGCGTTACTTACGTTGCTG -ACGGAAGCGTTACTTACGTCCATG -ACGGAAGCGTTACTTACGTGTGTG -ACGGAAGCGTTACTTACGCTAGTG -ACGGAAGCGTTACTTACGCATCTG -ACGGAAGCGTTACTTACGGAGTTG -ACGGAAGCGTTACTTACGAGACTG -ACGGAAGCGTTACTTACGTCGGTA -ACGGAAGCGTTACTTACGTGCCTA -ACGGAAGCGTTACTTACGCCACTA -ACGGAAGCGTTACTTACGGGAGTA -ACGGAAGCGTTACTTACGTCGTCT -ACGGAAGCGTTACTTACGTGCACT -ACGGAAGCGTTACTTACGCTGACT -ACGGAAGCGTTACTTACGCAACCT -ACGGAAGCGTTACTTACGGCTACT -ACGGAAGCGTTACTTACGGGATCT -ACGGAAGCGTTACTTACGAAGGCT -ACGGAAGCGTTACTTACGTCAACC -ACGGAAGCGTTACTTACGTGTTCC -ACGGAAGCGTTACTTACGATTCCC -ACGGAAGCGTTACTTACGTTCTCG -ACGGAAGCGTTACTTACGTAGACG -ACGGAAGCGTTACTTACGGTAACG -ACGGAAGCGTTACTTACGACTTCG -ACGGAAGCGTTACTTACGTACGCA -ACGGAAGCGTTACTTACGCTTGCA -ACGGAAGCGTTACTTACGCGAACA -ACGGAAGCGTTACTTACGCAGTCA -ACGGAAGCGTTACTTACGGATCCA -ACGGAAGCGTTACTTACGACGACA -ACGGAAGCGTTACTTACGAGCTCA -ACGGAAGCGTTACTTACGTCACGT -ACGGAAGCGTTACTTACGCGTAGT -ACGGAAGCGTTACTTACGGTCAGT -ACGGAAGCGTTACTTACGGAAGGT -ACGGAAGCGTTACTTACGAACCGT -ACGGAAGCGTTACTTACGTTGTGC -ACGGAAGCGTTACTTACGCTAAGC -ACGGAAGCGTTACTTACGACTAGC -ACGGAAGCGTTACTTACGAGATGC -ACGGAAGCGTTACTTACGTGAAGG -ACGGAAGCGTTACTTACGCAATGG -ACGGAAGCGTTACTTACGATGAGG -ACGGAAGCGTTACTTACGAATGGG -ACGGAAGCGTTACTTACGTCCTGA -ACGGAAGCGTTACTTACGTAGCGA -ACGGAAGCGTTACTTACGCACAGA -ACGGAAGCGTTACTTACGGCAAGA -ACGGAAGCGTTACTTACGGGTTGA -ACGGAAGCGTTACTTACGTCCGAT -ACGGAAGCGTTACTTACGTGGCAT -ACGGAAGCGTTACTTACGCGAGAT -ACGGAAGCGTTACTTACGTACCAC -ACGGAAGCGTTACTTACGCAGAAC -ACGGAAGCGTTACTTACGGTCTAC -ACGGAAGCGTTACTTACGACGTAC -ACGGAAGCGTTACTTACGAGTGAC -ACGGAAGCGTTACTTACGCTGTAG -ACGGAAGCGTTACTTACGCCTAAG -ACGGAAGCGTTACTTACGGTTCAG -ACGGAAGCGTTACTTACGGCATAG -ACGGAAGCGTTACTTACGGACAAG -ACGGAAGCGTTACTTACGAAGCAG -ACGGAAGCGTTACTTACGCGTCAA -ACGGAAGCGTTACTTACGGCTGAA -ACGGAAGCGTTACTTACGAGTACG -ACGGAAGCGTTACTTACGATCCGA -ACGGAAGCGTTACTTACGATGGGA -ACGGAAGCGTTACTTACGGTGCAA -ACGGAAGCGTTACTTACGGAGGAA -ACGGAAGCGTTACTTACGCAGGTA -ACGGAAGCGTTACTTACGGACTCT -ACGGAAGCGTTACTTACGAGTCCT -ACGGAAGCGTTACTTACGTAAGCC -ACGGAAGCGTTACTTACGATAGCC -ACGGAAGCGTTACTTACGTAACCG -ACGGAAGCGTTACTTACGATGCCA -ACGGAAGCGTTAGTTAGCGGAAAC -ACGGAAGCGTTAGTTAGCAACACC -ACGGAAGCGTTAGTTAGCATCGAG -ACGGAAGCGTTAGTTAGCCTCCTT -ACGGAAGCGTTAGTTAGCCCTGTT -ACGGAAGCGTTAGTTAGCCGGTTT -ACGGAAGCGTTAGTTAGCGTGGTT -ACGGAAGCGTTAGTTAGCGCCTTT -ACGGAAGCGTTAGTTAGCGGTCTT -ACGGAAGCGTTAGTTAGCACGCTT -ACGGAAGCGTTAGTTAGCAGCGTT -ACGGAAGCGTTAGTTAGCTTCGTC -ACGGAAGCGTTAGTTAGCTCTCTC -ACGGAAGCGTTAGTTAGCTGGATC -ACGGAAGCGTTAGTTAGCCACTTC -ACGGAAGCGTTAGTTAGCGTACTC -ACGGAAGCGTTAGTTAGCGATGTC -ACGGAAGCGTTAGTTAGCACAGTC -ACGGAAGCGTTAGTTAGCTTGCTG -ACGGAAGCGTTAGTTAGCTCCATG -ACGGAAGCGTTAGTTAGCTGTGTG -ACGGAAGCGTTAGTTAGCCTAGTG -ACGGAAGCGTTAGTTAGCCATCTG -ACGGAAGCGTTAGTTAGCGAGTTG -ACGGAAGCGTTAGTTAGCAGACTG -ACGGAAGCGTTAGTTAGCTCGGTA -ACGGAAGCGTTAGTTAGCTGCCTA -ACGGAAGCGTTAGTTAGCCCACTA -ACGGAAGCGTTAGTTAGCGGAGTA -ACGGAAGCGTTAGTTAGCTCGTCT -ACGGAAGCGTTAGTTAGCTGCACT -ACGGAAGCGTTAGTTAGCCTGACT -ACGGAAGCGTTAGTTAGCCAACCT -ACGGAAGCGTTAGTTAGCGCTACT -ACGGAAGCGTTAGTTAGCGGATCT -ACGGAAGCGTTAGTTAGCAAGGCT -ACGGAAGCGTTAGTTAGCTCAACC -ACGGAAGCGTTAGTTAGCTGTTCC -ACGGAAGCGTTAGTTAGCATTCCC -ACGGAAGCGTTAGTTAGCTTCTCG -ACGGAAGCGTTAGTTAGCTAGACG -ACGGAAGCGTTAGTTAGCGTAACG -ACGGAAGCGTTAGTTAGCACTTCG -ACGGAAGCGTTAGTTAGCTACGCA -ACGGAAGCGTTAGTTAGCCTTGCA -ACGGAAGCGTTAGTTAGCCGAACA -ACGGAAGCGTTAGTTAGCCAGTCA -ACGGAAGCGTTAGTTAGCGATCCA -ACGGAAGCGTTAGTTAGCACGACA -ACGGAAGCGTTAGTTAGCAGCTCA -ACGGAAGCGTTAGTTAGCTCACGT -ACGGAAGCGTTAGTTAGCCGTAGT -ACGGAAGCGTTAGTTAGCGTCAGT -ACGGAAGCGTTAGTTAGCGAAGGT -ACGGAAGCGTTAGTTAGCAACCGT -ACGGAAGCGTTAGTTAGCTTGTGC -ACGGAAGCGTTAGTTAGCCTAAGC -ACGGAAGCGTTAGTTAGCACTAGC -ACGGAAGCGTTAGTTAGCAGATGC -ACGGAAGCGTTAGTTAGCTGAAGG -ACGGAAGCGTTAGTTAGCCAATGG -ACGGAAGCGTTAGTTAGCATGAGG -ACGGAAGCGTTAGTTAGCAATGGG -ACGGAAGCGTTAGTTAGCTCCTGA -ACGGAAGCGTTAGTTAGCTAGCGA -ACGGAAGCGTTAGTTAGCCACAGA -ACGGAAGCGTTAGTTAGCGCAAGA -ACGGAAGCGTTAGTTAGCGGTTGA -ACGGAAGCGTTAGTTAGCTCCGAT -ACGGAAGCGTTAGTTAGCTGGCAT -ACGGAAGCGTTAGTTAGCCGAGAT -ACGGAAGCGTTAGTTAGCTACCAC -ACGGAAGCGTTAGTTAGCCAGAAC -ACGGAAGCGTTAGTTAGCGTCTAC -ACGGAAGCGTTAGTTAGCACGTAC -ACGGAAGCGTTAGTTAGCAGTGAC -ACGGAAGCGTTAGTTAGCCTGTAG -ACGGAAGCGTTAGTTAGCCCTAAG -ACGGAAGCGTTAGTTAGCGTTCAG -ACGGAAGCGTTAGTTAGCGCATAG -ACGGAAGCGTTAGTTAGCGACAAG -ACGGAAGCGTTAGTTAGCAAGCAG -ACGGAAGCGTTAGTTAGCCGTCAA -ACGGAAGCGTTAGTTAGCGCTGAA -ACGGAAGCGTTAGTTAGCAGTACG -ACGGAAGCGTTAGTTAGCATCCGA -ACGGAAGCGTTAGTTAGCATGGGA -ACGGAAGCGTTAGTTAGCGTGCAA -ACGGAAGCGTTAGTTAGCGAGGAA -ACGGAAGCGTTAGTTAGCCAGGTA -ACGGAAGCGTTAGTTAGCGACTCT -ACGGAAGCGTTAGTTAGCAGTCCT -ACGGAAGCGTTAGTTAGCTAAGCC -ACGGAAGCGTTAGTTAGCATAGCC -ACGGAAGCGTTAGTTAGCTAACCG -ACGGAAGCGTTAGTTAGCATGCCA -ACGGAAGCGTTAGTCTTCGGAAAC -ACGGAAGCGTTAGTCTTCAACACC -ACGGAAGCGTTAGTCTTCATCGAG -ACGGAAGCGTTAGTCTTCCTCCTT -ACGGAAGCGTTAGTCTTCCCTGTT -ACGGAAGCGTTAGTCTTCCGGTTT -ACGGAAGCGTTAGTCTTCGTGGTT -ACGGAAGCGTTAGTCTTCGCCTTT -ACGGAAGCGTTAGTCTTCGGTCTT -ACGGAAGCGTTAGTCTTCACGCTT -ACGGAAGCGTTAGTCTTCAGCGTT -ACGGAAGCGTTAGTCTTCTTCGTC -ACGGAAGCGTTAGTCTTCTCTCTC -ACGGAAGCGTTAGTCTTCTGGATC -ACGGAAGCGTTAGTCTTCCACTTC -ACGGAAGCGTTAGTCTTCGTACTC -ACGGAAGCGTTAGTCTTCGATGTC -ACGGAAGCGTTAGTCTTCACAGTC -ACGGAAGCGTTAGTCTTCTTGCTG -ACGGAAGCGTTAGTCTTCTCCATG -ACGGAAGCGTTAGTCTTCTGTGTG -ACGGAAGCGTTAGTCTTCCTAGTG -ACGGAAGCGTTAGTCTTCCATCTG -ACGGAAGCGTTAGTCTTCGAGTTG -ACGGAAGCGTTAGTCTTCAGACTG -ACGGAAGCGTTAGTCTTCTCGGTA -ACGGAAGCGTTAGTCTTCTGCCTA -ACGGAAGCGTTAGTCTTCCCACTA -ACGGAAGCGTTAGTCTTCGGAGTA -ACGGAAGCGTTAGTCTTCTCGTCT -ACGGAAGCGTTAGTCTTCTGCACT -ACGGAAGCGTTAGTCTTCCTGACT -ACGGAAGCGTTAGTCTTCCAACCT -ACGGAAGCGTTAGTCTTCGCTACT -ACGGAAGCGTTAGTCTTCGGATCT -ACGGAAGCGTTAGTCTTCAAGGCT -ACGGAAGCGTTAGTCTTCTCAACC -ACGGAAGCGTTAGTCTTCTGTTCC -ACGGAAGCGTTAGTCTTCATTCCC -ACGGAAGCGTTAGTCTTCTTCTCG -ACGGAAGCGTTAGTCTTCTAGACG -ACGGAAGCGTTAGTCTTCGTAACG -ACGGAAGCGTTAGTCTTCACTTCG -ACGGAAGCGTTAGTCTTCTACGCA -ACGGAAGCGTTAGTCTTCCTTGCA -ACGGAAGCGTTAGTCTTCCGAACA -ACGGAAGCGTTAGTCTTCCAGTCA -ACGGAAGCGTTAGTCTTCGATCCA -ACGGAAGCGTTAGTCTTCACGACA -ACGGAAGCGTTAGTCTTCAGCTCA -ACGGAAGCGTTAGTCTTCTCACGT -ACGGAAGCGTTAGTCTTCCGTAGT -ACGGAAGCGTTAGTCTTCGTCAGT -ACGGAAGCGTTAGTCTTCGAAGGT -ACGGAAGCGTTAGTCTTCAACCGT -ACGGAAGCGTTAGTCTTCTTGTGC -ACGGAAGCGTTAGTCTTCCTAAGC -ACGGAAGCGTTAGTCTTCACTAGC -ACGGAAGCGTTAGTCTTCAGATGC -ACGGAAGCGTTAGTCTTCTGAAGG -ACGGAAGCGTTAGTCTTCCAATGG -ACGGAAGCGTTAGTCTTCATGAGG -ACGGAAGCGTTAGTCTTCAATGGG -ACGGAAGCGTTAGTCTTCTCCTGA -ACGGAAGCGTTAGTCTTCTAGCGA -ACGGAAGCGTTAGTCTTCCACAGA -ACGGAAGCGTTAGTCTTCGCAAGA -ACGGAAGCGTTAGTCTTCGGTTGA -ACGGAAGCGTTAGTCTTCTCCGAT -ACGGAAGCGTTAGTCTTCTGGCAT -ACGGAAGCGTTAGTCTTCCGAGAT -ACGGAAGCGTTAGTCTTCTACCAC -ACGGAAGCGTTAGTCTTCCAGAAC -ACGGAAGCGTTAGTCTTCGTCTAC -ACGGAAGCGTTAGTCTTCACGTAC -ACGGAAGCGTTAGTCTTCAGTGAC -ACGGAAGCGTTAGTCTTCCTGTAG -ACGGAAGCGTTAGTCTTCCCTAAG -ACGGAAGCGTTAGTCTTCGTTCAG -ACGGAAGCGTTAGTCTTCGCATAG -ACGGAAGCGTTAGTCTTCGACAAG -ACGGAAGCGTTAGTCTTCAAGCAG -ACGGAAGCGTTAGTCTTCCGTCAA -ACGGAAGCGTTAGTCTTCGCTGAA -ACGGAAGCGTTAGTCTTCAGTACG -ACGGAAGCGTTAGTCTTCATCCGA -ACGGAAGCGTTAGTCTTCATGGGA -ACGGAAGCGTTAGTCTTCGTGCAA -ACGGAAGCGTTAGTCTTCGAGGAA -ACGGAAGCGTTAGTCTTCCAGGTA -ACGGAAGCGTTAGTCTTCGACTCT -ACGGAAGCGTTAGTCTTCAGTCCT -ACGGAAGCGTTAGTCTTCTAAGCC -ACGGAAGCGTTAGTCTTCATAGCC -ACGGAAGCGTTAGTCTTCTAACCG -ACGGAAGCGTTAGTCTTCATGCCA -ACGGAAGCGTTACTCTCTGGAAAC -ACGGAAGCGTTACTCTCTAACACC -ACGGAAGCGTTACTCTCTATCGAG -ACGGAAGCGTTACTCTCTCTCCTT -ACGGAAGCGTTACTCTCTCCTGTT -ACGGAAGCGTTACTCTCTCGGTTT -ACGGAAGCGTTACTCTCTGTGGTT -ACGGAAGCGTTACTCTCTGCCTTT -ACGGAAGCGTTACTCTCTGGTCTT -ACGGAAGCGTTACTCTCTACGCTT -ACGGAAGCGTTACTCTCTAGCGTT -ACGGAAGCGTTACTCTCTTTCGTC -ACGGAAGCGTTACTCTCTTCTCTC -ACGGAAGCGTTACTCTCTTGGATC -ACGGAAGCGTTACTCTCTCACTTC -ACGGAAGCGTTACTCTCTGTACTC -ACGGAAGCGTTACTCTCTGATGTC -ACGGAAGCGTTACTCTCTACAGTC -ACGGAAGCGTTACTCTCTTTGCTG -ACGGAAGCGTTACTCTCTTCCATG -ACGGAAGCGTTACTCTCTTGTGTG -ACGGAAGCGTTACTCTCTCTAGTG -ACGGAAGCGTTACTCTCTCATCTG -ACGGAAGCGTTACTCTCTGAGTTG -ACGGAAGCGTTACTCTCTAGACTG -ACGGAAGCGTTACTCTCTTCGGTA -ACGGAAGCGTTACTCTCTTGCCTA -ACGGAAGCGTTACTCTCTCCACTA -ACGGAAGCGTTACTCTCTGGAGTA -ACGGAAGCGTTACTCTCTTCGTCT -ACGGAAGCGTTACTCTCTTGCACT -ACGGAAGCGTTACTCTCTCTGACT -ACGGAAGCGTTACTCTCTCAACCT -ACGGAAGCGTTACTCTCTGCTACT -ACGGAAGCGTTACTCTCTGGATCT -ACGGAAGCGTTACTCTCTAAGGCT -ACGGAAGCGTTACTCTCTTCAACC -ACGGAAGCGTTACTCTCTTGTTCC -ACGGAAGCGTTACTCTCTATTCCC -ACGGAAGCGTTACTCTCTTTCTCG -ACGGAAGCGTTACTCTCTTAGACG -ACGGAAGCGTTACTCTCTGTAACG -ACGGAAGCGTTACTCTCTACTTCG -ACGGAAGCGTTACTCTCTTACGCA -ACGGAAGCGTTACTCTCTCTTGCA -ACGGAAGCGTTACTCTCTCGAACA -ACGGAAGCGTTACTCTCTCAGTCA -ACGGAAGCGTTACTCTCTGATCCA -ACGGAAGCGTTACTCTCTACGACA -ACGGAAGCGTTACTCTCTAGCTCA -ACGGAAGCGTTACTCTCTTCACGT -ACGGAAGCGTTACTCTCTCGTAGT -ACGGAAGCGTTACTCTCTGTCAGT -ACGGAAGCGTTACTCTCTGAAGGT -ACGGAAGCGTTACTCTCTAACCGT -ACGGAAGCGTTACTCTCTTTGTGC -ACGGAAGCGTTACTCTCTCTAAGC -ACGGAAGCGTTACTCTCTACTAGC -ACGGAAGCGTTACTCTCTAGATGC -ACGGAAGCGTTACTCTCTTGAAGG -ACGGAAGCGTTACTCTCTCAATGG -ACGGAAGCGTTACTCTCTATGAGG -ACGGAAGCGTTACTCTCTAATGGG -ACGGAAGCGTTACTCTCTTCCTGA -ACGGAAGCGTTACTCTCTTAGCGA -ACGGAAGCGTTACTCTCTCACAGA -ACGGAAGCGTTACTCTCTGCAAGA -ACGGAAGCGTTACTCTCTGGTTGA -ACGGAAGCGTTACTCTCTTCCGAT -ACGGAAGCGTTACTCTCTTGGCAT -ACGGAAGCGTTACTCTCTCGAGAT -ACGGAAGCGTTACTCTCTTACCAC -ACGGAAGCGTTACTCTCTCAGAAC -ACGGAAGCGTTACTCTCTGTCTAC -ACGGAAGCGTTACTCTCTACGTAC -ACGGAAGCGTTACTCTCTAGTGAC -ACGGAAGCGTTACTCTCTCTGTAG -ACGGAAGCGTTACTCTCTCCTAAG -ACGGAAGCGTTACTCTCTGTTCAG -ACGGAAGCGTTACTCTCTGCATAG -ACGGAAGCGTTACTCTCTGACAAG -ACGGAAGCGTTACTCTCTAAGCAG -ACGGAAGCGTTACTCTCTCGTCAA -ACGGAAGCGTTACTCTCTGCTGAA -ACGGAAGCGTTACTCTCTAGTACG -ACGGAAGCGTTACTCTCTATCCGA -ACGGAAGCGTTACTCTCTATGGGA -ACGGAAGCGTTACTCTCTGTGCAA -ACGGAAGCGTTACTCTCTGAGGAA -ACGGAAGCGTTACTCTCTCAGGTA -ACGGAAGCGTTACTCTCTGACTCT -ACGGAAGCGTTACTCTCTAGTCCT -ACGGAAGCGTTACTCTCTTAAGCC -ACGGAAGCGTTACTCTCTATAGCC -ACGGAAGCGTTACTCTCTTAACCG -ACGGAAGCGTTACTCTCTATGCCA -ACGGAAGCGTTAATCTGGGGAAAC -ACGGAAGCGTTAATCTGGAACACC -ACGGAAGCGTTAATCTGGATCGAG -ACGGAAGCGTTAATCTGGCTCCTT -ACGGAAGCGTTAATCTGGCCTGTT -ACGGAAGCGTTAATCTGGCGGTTT -ACGGAAGCGTTAATCTGGGTGGTT -ACGGAAGCGTTAATCTGGGCCTTT -ACGGAAGCGTTAATCTGGGGTCTT -ACGGAAGCGTTAATCTGGACGCTT -ACGGAAGCGTTAATCTGGAGCGTT -ACGGAAGCGTTAATCTGGTTCGTC -ACGGAAGCGTTAATCTGGTCTCTC -ACGGAAGCGTTAATCTGGTGGATC -ACGGAAGCGTTAATCTGGCACTTC -ACGGAAGCGTTAATCTGGGTACTC -ACGGAAGCGTTAATCTGGGATGTC -ACGGAAGCGTTAATCTGGACAGTC -ACGGAAGCGTTAATCTGGTTGCTG -ACGGAAGCGTTAATCTGGTCCATG -ACGGAAGCGTTAATCTGGTGTGTG -ACGGAAGCGTTAATCTGGCTAGTG -ACGGAAGCGTTAATCTGGCATCTG -ACGGAAGCGTTAATCTGGGAGTTG -ACGGAAGCGTTAATCTGGAGACTG -ACGGAAGCGTTAATCTGGTCGGTA -ACGGAAGCGTTAATCTGGTGCCTA -ACGGAAGCGTTAATCTGGCCACTA -ACGGAAGCGTTAATCTGGGGAGTA -ACGGAAGCGTTAATCTGGTCGTCT -ACGGAAGCGTTAATCTGGTGCACT -ACGGAAGCGTTAATCTGGCTGACT -ACGGAAGCGTTAATCTGGCAACCT -ACGGAAGCGTTAATCTGGGCTACT -ACGGAAGCGTTAATCTGGGGATCT -ACGGAAGCGTTAATCTGGAAGGCT -ACGGAAGCGTTAATCTGGTCAACC -ACGGAAGCGTTAATCTGGTGTTCC -ACGGAAGCGTTAATCTGGATTCCC -ACGGAAGCGTTAATCTGGTTCTCG -ACGGAAGCGTTAATCTGGTAGACG -ACGGAAGCGTTAATCTGGGTAACG -ACGGAAGCGTTAATCTGGACTTCG -ACGGAAGCGTTAATCTGGTACGCA -ACGGAAGCGTTAATCTGGCTTGCA -ACGGAAGCGTTAATCTGGCGAACA -ACGGAAGCGTTAATCTGGCAGTCA -ACGGAAGCGTTAATCTGGGATCCA -ACGGAAGCGTTAATCTGGACGACA -ACGGAAGCGTTAATCTGGAGCTCA -ACGGAAGCGTTAATCTGGTCACGT -ACGGAAGCGTTAATCTGGCGTAGT -ACGGAAGCGTTAATCTGGGTCAGT -ACGGAAGCGTTAATCTGGGAAGGT -ACGGAAGCGTTAATCTGGAACCGT -ACGGAAGCGTTAATCTGGTTGTGC -ACGGAAGCGTTAATCTGGCTAAGC -ACGGAAGCGTTAATCTGGACTAGC -ACGGAAGCGTTAATCTGGAGATGC -ACGGAAGCGTTAATCTGGTGAAGG -ACGGAAGCGTTAATCTGGCAATGG -ACGGAAGCGTTAATCTGGATGAGG -ACGGAAGCGTTAATCTGGAATGGG -ACGGAAGCGTTAATCTGGTCCTGA -ACGGAAGCGTTAATCTGGTAGCGA -ACGGAAGCGTTAATCTGGCACAGA -ACGGAAGCGTTAATCTGGGCAAGA -ACGGAAGCGTTAATCTGGGGTTGA -ACGGAAGCGTTAATCTGGTCCGAT -ACGGAAGCGTTAATCTGGTGGCAT -ACGGAAGCGTTAATCTGGCGAGAT -ACGGAAGCGTTAATCTGGTACCAC -ACGGAAGCGTTAATCTGGCAGAAC -ACGGAAGCGTTAATCTGGGTCTAC -ACGGAAGCGTTAATCTGGACGTAC -ACGGAAGCGTTAATCTGGAGTGAC -ACGGAAGCGTTAATCTGGCTGTAG -ACGGAAGCGTTAATCTGGCCTAAG -ACGGAAGCGTTAATCTGGGTTCAG -ACGGAAGCGTTAATCTGGGCATAG -ACGGAAGCGTTAATCTGGGACAAG -ACGGAAGCGTTAATCTGGAAGCAG -ACGGAAGCGTTAATCTGGCGTCAA -ACGGAAGCGTTAATCTGGGCTGAA -ACGGAAGCGTTAATCTGGAGTACG -ACGGAAGCGTTAATCTGGATCCGA -ACGGAAGCGTTAATCTGGATGGGA -ACGGAAGCGTTAATCTGGGTGCAA -ACGGAAGCGTTAATCTGGGAGGAA -ACGGAAGCGTTAATCTGGCAGGTA -ACGGAAGCGTTAATCTGGGACTCT -ACGGAAGCGTTAATCTGGAGTCCT -ACGGAAGCGTTAATCTGGTAAGCC -ACGGAAGCGTTAATCTGGATAGCC -ACGGAAGCGTTAATCTGGTAACCG -ACGGAAGCGTTAATCTGGATGCCA -ACGGAAGCGTTATTCCACGGAAAC -ACGGAAGCGTTATTCCACAACACC -ACGGAAGCGTTATTCCACATCGAG -ACGGAAGCGTTATTCCACCTCCTT -ACGGAAGCGTTATTCCACCCTGTT -ACGGAAGCGTTATTCCACCGGTTT -ACGGAAGCGTTATTCCACGTGGTT -ACGGAAGCGTTATTCCACGCCTTT -ACGGAAGCGTTATTCCACGGTCTT -ACGGAAGCGTTATTCCACACGCTT -ACGGAAGCGTTATTCCACAGCGTT -ACGGAAGCGTTATTCCACTTCGTC -ACGGAAGCGTTATTCCACTCTCTC -ACGGAAGCGTTATTCCACTGGATC -ACGGAAGCGTTATTCCACCACTTC -ACGGAAGCGTTATTCCACGTACTC -ACGGAAGCGTTATTCCACGATGTC -ACGGAAGCGTTATTCCACACAGTC -ACGGAAGCGTTATTCCACTTGCTG -ACGGAAGCGTTATTCCACTCCATG -ACGGAAGCGTTATTCCACTGTGTG -ACGGAAGCGTTATTCCACCTAGTG -ACGGAAGCGTTATTCCACCATCTG -ACGGAAGCGTTATTCCACGAGTTG -ACGGAAGCGTTATTCCACAGACTG -ACGGAAGCGTTATTCCACTCGGTA -ACGGAAGCGTTATTCCACTGCCTA -ACGGAAGCGTTATTCCACCCACTA -ACGGAAGCGTTATTCCACGGAGTA -ACGGAAGCGTTATTCCACTCGTCT -ACGGAAGCGTTATTCCACTGCACT -ACGGAAGCGTTATTCCACCTGACT -ACGGAAGCGTTATTCCACCAACCT -ACGGAAGCGTTATTCCACGCTACT -ACGGAAGCGTTATTCCACGGATCT -ACGGAAGCGTTATTCCACAAGGCT -ACGGAAGCGTTATTCCACTCAACC -ACGGAAGCGTTATTCCACTGTTCC -ACGGAAGCGTTATTCCACATTCCC -ACGGAAGCGTTATTCCACTTCTCG -ACGGAAGCGTTATTCCACTAGACG -ACGGAAGCGTTATTCCACGTAACG -ACGGAAGCGTTATTCCACACTTCG -ACGGAAGCGTTATTCCACTACGCA -ACGGAAGCGTTATTCCACCTTGCA -ACGGAAGCGTTATTCCACCGAACA -ACGGAAGCGTTATTCCACCAGTCA -ACGGAAGCGTTATTCCACGATCCA -ACGGAAGCGTTATTCCACACGACA -ACGGAAGCGTTATTCCACAGCTCA -ACGGAAGCGTTATTCCACTCACGT -ACGGAAGCGTTATTCCACCGTAGT -ACGGAAGCGTTATTCCACGTCAGT -ACGGAAGCGTTATTCCACGAAGGT -ACGGAAGCGTTATTCCACAACCGT -ACGGAAGCGTTATTCCACTTGTGC -ACGGAAGCGTTATTCCACCTAAGC -ACGGAAGCGTTATTCCACACTAGC -ACGGAAGCGTTATTCCACAGATGC -ACGGAAGCGTTATTCCACTGAAGG -ACGGAAGCGTTATTCCACCAATGG -ACGGAAGCGTTATTCCACATGAGG -ACGGAAGCGTTATTCCACAATGGG -ACGGAAGCGTTATTCCACTCCTGA -ACGGAAGCGTTATTCCACTAGCGA -ACGGAAGCGTTATTCCACCACAGA -ACGGAAGCGTTATTCCACGCAAGA -ACGGAAGCGTTATTCCACGGTTGA -ACGGAAGCGTTATTCCACTCCGAT -ACGGAAGCGTTATTCCACTGGCAT -ACGGAAGCGTTATTCCACCGAGAT -ACGGAAGCGTTATTCCACTACCAC -ACGGAAGCGTTATTCCACCAGAAC -ACGGAAGCGTTATTCCACGTCTAC -ACGGAAGCGTTATTCCACACGTAC -ACGGAAGCGTTATTCCACAGTGAC -ACGGAAGCGTTATTCCACCTGTAG -ACGGAAGCGTTATTCCACCCTAAG -ACGGAAGCGTTATTCCACGTTCAG -ACGGAAGCGTTATTCCACGCATAG -ACGGAAGCGTTATTCCACGACAAG -ACGGAAGCGTTATTCCACAAGCAG -ACGGAAGCGTTATTCCACCGTCAA -ACGGAAGCGTTATTCCACGCTGAA -ACGGAAGCGTTATTCCACAGTACG -ACGGAAGCGTTATTCCACATCCGA -ACGGAAGCGTTATTCCACATGGGA -ACGGAAGCGTTATTCCACGTGCAA -ACGGAAGCGTTATTCCACGAGGAA -ACGGAAGCGTTATTCCACCAGGTA -ACGGAAGCGTTATTCCACGACTCT -ACGGAAGCGTTATTCCACAGTCCT -ACGGAAGCGTTATTCCACTAAGCC -ACGGAAGCGTTATTCCACATAGCC -ACGGAAGCGTTATTCCACTAACCG -ACGGAAGCGTTATTCCACATGCCA -ACGGAAGCGTTACTCGTAGGAAAC -ACGGAAGCGTTACTCGTAAACACC -ACGGAAGCGTTACTCGTAATCGAG -ACGGAAGCGTTACTCGTACTCCTT -ACGGAAGCGTTACTCGTACCTGTT -ACGGAAGCGTTACTCGTACGGTTT -ACGGAAGCGTTACTCGTAGTGGTT -ACGGAAGCGTTACTCGTAGCCTTT -ACGGAAGCGTTACTCGTAGGTCTT -ACGGAAGCGTTACTCGTAACGCTT -ACGGAAGCGTTACTCGTAAGCGTT -ACGGAAGCGTTACTCGTATTCGTC -ACGGAAGCGTTACTCGTATCTCTC -ACGGAAGCGTTACTCGTATGGATC -ACGGAAGCGTTACTCGTACACTTC -ACGGAAGCGTTACTCGTAGTACTC -ACGGAAGCGTTACTCGTAGATGTC -ACGGAAGCGTTACTCGTAACAGTC -ACGGAAGCGTTACTCGTATTGCTG -ACGGAAGCGTTACTCGTATCCATG -ACGGAAGCGTTACTCGTATGTGTG -ACGGAAGCGTTACTCGTACTAGTG -ACGGAAGCGTTACTCGTACATCTG -ACGGAAGCGTTACTCGTAGAGTTG -ACGGAAGCGTTACTCGTAAGACTG -ACGGAAGCGTTACTCGTATCGGTA -ACGGAAGCGTTACTCGTATGCCTA -ACGGAAGCGTTACTCGTACCACTA -ACGGAAGCGTTACTCGTAGGAGTA -ACGGAAGCGTTACTCGTATCGTCT -ACGGAAGCGTTACTCGTATGCACT -ACGGAAGCGTTACTCGTACTGACT -ACGGAAGCGTTACTCGTACAACCT -ACGGAAGCGTTACTCGTAGCTACT -ACGGAAGCGTTACTCGTAGGATCT -ACGGAAGCGTTACTCGTAAAGGCT -ACGGAAGCGTTACTCGTATCAACC -ACGGAAGCGTTACTCGTATGTTCC -ACGGAAGCGTTACTCGTAATTCCC -ACGGAAGCGTTACTCGTATTCTCG -ACGGAAGCGTTACTCGTATAGACG -ACGGAAGCGTTACTCGTAGTAACG -ACGGAAGCGTTACTCGTAACTTCG -ACGGAAGCGTTACTCGTATACGCA -ACGGAAGCGTTACTCGTACTTGCA -ACGGAAGCGTTACTCGTACGAACA -ACGGAAGCGTTACTCGTACAGTCA -ACGGAAGCGTTACTCGTAGATCCA -ACGGAAGCGTTACTCGTAACGACA -ACGGAAGCGTTACTCGTAAGCTCA -ACGGAAGCGTTACTCGTATCACGT -ACGGAAGCGTTACTCGTACGTAGT -ACGGAAGCGTTACTCGTAGTCAGT -ACGGAAGCGTTACTCGTAGAAGGT -ACGGAAGCGTTACTCGTAAACCGT -ACGGAAGCGTTACTCGTATTGTGC -ACGGAAGCGTTACTCGTACTAAGC -ACGGAAGCGTTACTCGTAACTAGC -ACGGAAGCGTTACTCGTAAGATGC -ACGGAAGCGTTACTCGTATGAAGG -ACGGAAGCGTTACTCGTACAATGG -ACGGAAGCGTTACTCGTAATGAGG -ACGGAAGCGTTACTCGTAAATGGG -ACGGAAGCGTTACTCGTATCCTGA -ACGGAAGCGTTACTCGTATAGCGA -ACGGAAGCGTTACTCGTACACAGA -ACGGAAGCGTTACTCGTAGCAAGA -ACGGAAGCGTTACTCGTAGGTTGA -ACGGAAGCGTTACTCGTATCCGAT -ACGGAAGCGTTACTCGTATGGCAT -ACGGAAGCGTTACTCGTACGAGAT -ACGGAAGCGTTACTCGTATACCAC -ACGGAAGCGTTACTCGTACAGAAC -ACGGAAGCGTTACTCGTAGTCTAC -ACGGAAGCGTTACTCGTAACGTAC -ACGGAAGCGTTACTCGTAAGTGAC -ACGGAAGCGTTACTCGTACTGTAG -ACGGAAGCGTTACTCGTACCTAAG -ACGGAAGCGTTACTCGTAGTTCAG -ACGGAAGCGTTACTCGTAGCATAG -ACGGAAGCGTTACTCGTAGACAAG -ACGGAAGCGTTACTCGTAAAGCAG -ACGGAAGCGTTACTCGTACGTCAA -ACGGAAGCGTTACTCGTAGCTGAA -ACGGAAGCGTTACTCGTAAGTACG -ACGGAAGCGTTACTCGTAATCCGA -ACGGAAGCGTTACTCGTAATGGGA -ACGGAAGCGTTACTCGTAGTGCAA -ACGGAAGCGTTACTCGTAGAGGAA -ACGGAAGCGTTACTCGTACAGGTA -ACGGAAGCGTTACTCGTAGACTCT -ACGGAAGCGTTACTCGTAAGTCCT -ACGGAAGCGTTACTCGTATAAGCC -ACGGAAGCGTTACTCGTAATAGCC -ACGGAAGCGTTACTCGTATAACCG -ACGGAAGCGTTACTCGTAATGCCA -ACGGAAGCGTTAGTCGATGGAAAC -ACGGAAGCGTTAGTCGATAACACC -ACGGAAGCGTTAGTCGATATCGAG -ACGGAAGCGTTAGTCGATCTCCTT -ACGGAAGCGTTAGTCGATCCTGTT -ACGGAAGCGTTAGTCGATCGGTTT -ACGGAAGCGTTAGTCGATGTGGTT -ACGGAAGCGTTAGTCGATGCCTTT -ACGGAAGCGTTAGTCGATGGTCTT -ACGGAAGCGTTAGTCGATACGCTT -ACGGAAGCGTTAGTCGATAGCGTT -ACGGAAGCGTTAGTCGATTTCGTC -ACGGAAGCGTTAGTCGATTCTCTC -ACGGAAGCGTTAGTCGATTGGATC -ACGGAAGCGTTAGTCGATCACTTC -ACGGAAGCGTTAGTCGATGTACTC -ACGGAAGCGTTAGTCGATGATGTC -ACGGAAGCGTTAGTCGATACAGTC -ACGGAAGCGTTAGTCGATTTGCTG -ACGGAAGCGTTAGTCGATTCCATG -ACGGAAGCGTTAGTCGATTGTGTG -ACGGAAGCGTTAGTCGATCTAGTG -ACGGAAGCGTTAGTCGATCATCTG -ACGGAAGCGTTAGTCGATGAGTTG -ACGGAAGCGTTAGTCGATAGACTG -ACGGAAGCGTTAGTCGATTCGGTA -ACGGAAGCGTTAGTCGATTGCCTA -ACGGAAGCGTTAGTCGATCCACTA -ACGGAAGCGTTAGTCGATGGAGTA -ACGGAAGCGTTAGTCGATTCGTCT -ACGGAAGCGTTAGTCGATTGCACT -ACGGAAGCGTTAGTCGATCTGACT -ACGGAAGCGTTAGTCGATCAACCT -ACGGAAGCGTTAGTCGATGCTACT -ACGGAAGCGTTAGTCGATGGATCT -ACGGAAGCGTTAGTCGATAAGGCT -ACGGAAGCGTTAGTCGATTCAACC -ACGGAAGCGTTAGTCGATTGTTCC -ACGGAAGCGTTAGTCGATATTCCC -ACGGAAGCGTTAGTCGATTTCTCG -ACGGAAGCGTTAGTCGATTAGACG -ACGGAAGCGTTAGTCGATGTAACG -ACGGAAGCGTTAGTCGATACTTCG -ACGGAAGCGTTAGTCGATTACGCA -ACGGAAGCGTTAGTCGATCTTGCA -ACGGAAGCGTTAGTCGATCGAACA -ACGGAAGCGTTAGTCGATCAGTCA -ACGGAAGCGTTAGTCGATGATCCA -ACGGAAGCGTTAGTCGATACGACA -ACGGAAGCGTTAGTCGATAGCTCA -ACGGAAGCGTTAGTCGATTCACGT -ACGGAAGCGTTAGTCGATCGTAGT -ACGGAAGCGTTAGTCGATGTCAGT -ACGGAAGCGTTAGTCGATGAAGGT -ACGGAAGCGTTAGTCGATAACCGT -ACGGAAGCGTTAGTCGATTTGTGC -ACGGAAGCGTTAGTCGATCTAAGC -ACGGAAGCGTTAGTCGATACTAGC -ACGGAAGCGTTAGTCGATAGATGC -ACGGAAGCGTTAGTCGATTGAAGG -ACGGAAGCGTTAGTCGATCAATGG -ACGGAAGCGTTAGTCGATATGAGG -ACGGAAGCGTTAGTCGATAATGGG -ACGGAAGCGTTAGTCGATTCCTGA -ACGGAAGCGTTAGTCGATTAGCGA -ACGGAAGCGTTAGTCGATCACAGA -ACGGAAGCGTTAGTCGATGCAAGA -ACGGAAGCGTTAGTCGATGGTTGA -ACGGAAGCGTTAGTCGATTCCGAT -ACGGAAGCGTTAGTCGATTGGCAT -ACGGAAGCGTTAGTCGATCGAGAT -ACGGAAGCGTTAGTCGATTACCAC -ACGGAAGCGTTAGTCGATCAGAAC -ACGGAAGCGTTAGTCGATGTCTAC -ACGGAAGCGTTAGTCGATACGTAC -ACGGAAGCGTTAGTCGATAGTGAC -ACGGAAGCGTTAGTCGATCTGTAG -ACGGAAGCGTTAGTCGATCCTAAG -ACGGAAGCGTTAGTCGATGTTCAG -ACGGAAGCGTTAGTCGATGCATAG -ACGGAAGCGTTAGTCGATGACAAG -ACGGAAGCGTTAGTCGATAAGCAG -ACGGAAGCGTTAGTCGATCGTCAA -ACGGAAGCGTTAGTCGATGCTGAA -ACGGAAGCGTTAGTCGATAGTACG -ACGGAAGCGTTAGTCGATATCCGA -ACGGAAGCGTTAGTCGATATGGGA -ACGGAAGCGTTAGTCGATGTGCAA -ACGGAAGCGTTAGTCGATGAGGAA -ACGGAAGCGTTAGTCGATCAGGTA -ACGGAAGCGTTAGTCGATGACTCT -ACGGAAGCGTTAGTCGATAGTCCT -ACGGAAGCGTTAGTCGATTAAGCC -ACGGAAGCGTTAGTCGATATAGCC -ACGGAAGCGTTAGTCGATTAACCG -ACGGAAGCGTTAGTCGATATGCCA -ACGGAAGCGTTAGTCACAGGAAAC -ACGGAAGCGTTAGTCACAAACACC -ACGGAAGCGTTAGTCACAATCGAG -ACGGAAGCGTTAGTCACACTCCTT -ACGGAAGCGTTAGTCACACCTGTT -ACGGAAGCGTTAGTCACACGGTTT -ACGGAAGCGTTAGTCACAGTGGTT -ACGGAAGCGTTAGTCACAGCCTTT -ACGGAAGCGTTAGTCACAGGTCTT -ACGGAAGCGTTAGTCACAACGCTT -ACGGAAGCGTTAGTCACAAGCGTT -ACGGAAGCGTTAGTCACATTCGTC -ACGGAAGCGTTAGTCACATCTCTC -ACGGAAGCGTTAGTCACATGGATC -ACGGAAGCGTTAGTCACACACTTC -ACGGAAGCGTTAGTCACAGTACTC -ACGGAAGCGTTAGTCACAGATGTC -ACGGAAGCGTTAGTCACAACAGTC -ACGGAAGCGTTAGTCACATTGCTG -ACGGAAGCGTTAGTCACATCCATG -ACGGAAGCGTTAGTCACATGTGTG -ACGGAAGCGTTAGTCACACTAGTG -ACGGAAGCGTTAGTCACACATCTG -ACGGAAGCGTTAGTCACAGAGTTG -ACGGAAGCGTTAGTCACAAGACTG -ACGGAAGCGTTAGTCACATCGGTA -ACGGAAGCGTTAGTCACATGCCTA -ACGGAAGCGTTAGTCACACCACTA -ACGGAAGCGTTAGTCACAGGAGTA -ACGGAAGCGTTAGTCACATCGTCT -ACGGAAGCGTTAGTCACATGCACT -ACGGAAGCGTTAGTCACACTGACT -ACGGAAGCGTTAGTCACACAACCT -ACGGAAGCGTTAGTCACAGCTACT -ACGGAAGCGTTAGTCACAGGATCT -ACGGAAGCGTTAGTCACAAAGGCT -ACGGAAGCGTTAGTCACATCAACC -ACGGAAGCGTTAGTCACATGTTCC -ACGGAAGCGTTAGTCACAATTCCC -ACGGAAGCGTTAGTCACATTCTCG -ACGGAAGCGTTAGTCACATAGACG -ACGGAAGCGTTAGTCACAGTAACG -ACGGAAGCGTTAGTCACAACTTCG -ACGGAAGCGTTAGTCACATACGCA -ACGGAAGCGTTAGTCACACTTGCA -ACGGAAGCGTTAGTCACACGAACA -ACGGAAGCGTTAGTCACACAGTCA -ACGGAAGCGTTAGTCACAGATCCA -ACGGAAGCGTTAGTCACAACGACA -ACGGAAGCGTTAGTCACAAGCTCA -ACGGAAGCGTTAGTCACATCACGT -ACGGAAGCGTTAGTCACACGTAGT -ACGGAAGCGTTAGTCACAGTCAGT -ACGGAAGCGTTAGTCACAGAAGGT -ACGGAAGCGTTAGTCACAAACCGT -ACGGAAGCGTTAGTCACATTGTGC -ACGGAAGCGTTAGTCACACTAAGC -ACGGAAGCGTTAGTCACAACTAGC -ACGGAAGCGTTAGTCACAAGATGC -ACGGAAGCGTTAGTCACATGAAGG -ACGGAAGCGTTAGTCACACAATGG -ACGGAAGCGTTAGTCACAATGAGG -ACGGAAGCGTTAGTCACAAATGGG -ACGGAAGCGTTAGTCACATCCTGA -ACGGAAGCGTTAGTCACATAGCGA -ACGGAAGCGTTAGTCACACACAGA -ACGGAAGCGTTAGTCACAGCAAGA -ACGGAAGCGTTAGTCACAGGTTGA -ACGGAAGCGTTAGTCACATCCGAT -ACGGAAGCGTTAGTCACATGGCAT -ACGGAAGCGTTAGTCACACGAGAT -ACGGAAGCGTTAGTCACATACCAC -ACGGAAGCGTTAGTCACACAGAAC -ACGGAAGCGTTAGTCACAGTCTAC -ACGGAAGCGTTAGTCACAACGTAC -ACGGAAGCGTTAGTCACAAGTGAC -ACGGAAGCGTTAGTCACACTGTAG -ACGGAAGCGTTAGTCACACCTAAG -ACGGAAGCGTTAGTCACAGTTCAG -ACGGAAGCGTTAGTCACAGCATAG -ACGGAAGCGTTAGTCACAGACAAG -ACGGAAGCGTTAGTCACAAAGCAG -ACGGAAGCGTTAGTCACACGTCAA -ACGGAAGCGTTAGTCACAGCTGAA -ACGGAAGCGTTAGTCACAAGTACG -ACGGAAGCGTTAGTCACAATCCGA -ACGGAAGCGTTAGTCACAATGGGA -ACGGAAGCGTTAGTCACAGTGCAA -ACGGAAGCGTTAGTCACAGAGGAA -ACGGAAGCGTTAGTCACACAGGTA -ACGGAAGCGTTAGTCACAGACTCT -ACGGAAGCGTTAGTCACAAGTCCT -ACGGAAGCGTTAGTCACATAAGCC -ACGGAAGCGTTAGTCACAATAGCC -ACGGAAGCGTTAGTCACATAACCG -ACGGAAGCGTTAGTCACAATGCCA -ACGGAAGCGTTACTGTTGGGAAAC -ACGGAAGCGTTACTGTTGAACACC -ACGGAAGCGTTACTGTTGATCGAG -ACGGAAGCGTTACTGTTGCTCCTT -ACGGAAGCGTTACTGTTGCCTGTT -ACGGAAGCGTTACTGTTGCGGTTT -ACGGAAGCGTTACTGTTGGTGGTT -ACGGAAGCGTTACTGTTGGCCTTT -ACGGAAGCGTTACTGTTGGGTCTT -ACGGAAGCGTTACTGTTGACGCTT -ACGGAAGCGTTACTGTTGAGCGTT -ACGGAAGCGTTACTGTTGTTCGTC -ACGGAAGCGTTACTGTTGTCTCTC -ACGGAAGCGTTACTGTTGTGGATC -ACGGAAGCGTTACTGTTGCACTTC -ACGGAAGCGTTACTGTTGGTACTC -ACGGAAGCGTTACTGTTGGATGTC -ACGGAAGCGTTACTGTTGACAGTC -ACGGAAGCGTTACTGTTGTTGCTG -ACGGAAGCGTTACTGTTGTCCATG -ACGGAAGCGTTACTGTTGTGTGTG -ACGGAAGCGTTACTGTTGCTAGTG -ACGGAAGCGTTACTGTTGCATCTG -ACGGAAGCGTTACTGTTGGAGTTG -ACGGAAGCGTTACTGTTGAGACTG -ACGGAAGCGTTACTGTTGTCGGTA -ACGGAAGCGTTACTGTTGTGCCTA -ACGGAAGCGTTACTGTTGCCACTA -ACGGAAGCGTTACTGTTGGGAGTA -ACGGAAGCGTTACTGTTGTCGTCT -ACGGAAGCGTTACTGTTGTGCACT -ACGGAAGCGTTACTGTTGCTGACT -ACGGAAGCGTTACTGTTGCAACCT -ACGGAAGCGTTACTGTTGGCTACT -ACGGAAGCGTTACTGTTGGGATCT -ACGGAAGCGTTACTGTTGAAGGCT -ACGGAAGCGTTACTGTTGTCAACC -ACGGAAGCGTTACTGTTGTGTTCC -ACGGAAGCGTTACTGTTGATTCCC -ACGGAAGCGTTACTGTTGTTCTCG -ACGGAAGCGTTACTGTTGTAGACG -ACGGAAGCGTTACTGTTGGTAACG -ACGGAAGCGTTACTGTTGACTTCG -ACGGAAGCGTTACTGTTGTACGCA -ACGGAAGCGTTACTGTTGCTTGCA -ACGGAAGCGTTACTGTTGCGAACA -ACGGAAGCGTTACTGTTGCAGTCA -ACGGAAGCGTTACTGTTGGATCCA -ACGGAAGCGTTACTGTTGACGACA -ACGGAAGCGTTACTGTTGAGCTCA -ACGGAAGCGTTACTGTTGTCACGT -ACGGAAGCGTTACTGTTGCGTAGT -ACGGAAGCGTTACTGTTGGTCAGT -ACGGAAGCGTTACTGTTGGAAGGT -ACGGAAGCGTTACTGTTGAACCGT -ACGGAAGCGTTACTGTTGTTGTGC -ACGGAAGCGTTACTGTTGCTAAGC -ACGGAAGCGTTACTGTTGACTAGC -ACGGAAGCGTTACTGTTGAGATGC -ACGGAAGCGTTACTGTTGTGAAGG -ACGGAAGCGTTACTGTTGCAATGG -ACGGAAGCGTTACTGTTGATGAGG -ACGGAAGCGTTACTGTTGAATGGG -ACGGAAGCGTTACTGTTGTCCTGA -ACGGAAGCGTTACTGTTGTAGCGA -ACGGAAGCGTTACTGTTGCACAGA -ACGGAAGCGTTACTGTTGGCAAGA -ACGGAAGCGTTACTGTTGGGTTGA -ACGGAAGCGTTACTGTTGTCCGAT -ACGGAAGCGTTACTGTTGTGGCAT -ACGGAAGCGTTACTGTTGCGAGAT -ACGGAAGCGTTACTGTTGTACCAC -ACGGAAGCGTTACTGTTGCAGAAC -ACGGAAGCGTTACTGTTGGTCTAC -ACGGAAGCGTTACTGTTGACGTAC -ACGGAAGCGTTACTGTTGAGTGAC -ACGGAAGCGTTACTGTTGCTGTAG -ACGGAAGCGTTACTGTTGCCTAAG -ACGGAAGCGTTACTGTTGGTTCAG -ACGGAAGCGTTACTGTTGGCATAG -ACGGAAGCGTTACTGTTGGACAAG -ACGGAAGCGTTACTGTTGAAGCAG -ACGGAAGCGTTACTGTTGCGTCAA -ACGGAAGCGTTACTGTTGGCTGAA -ACGGAAGCGTTACTGTTGAGTACG -ACGGAAGCGTTACTGTTGATCCGA -ACGGAAGCGTTACTGTTGATGGGA -ACGGAAGCGTTACTGTTGGTGCAA -ACGGAAGCGTTACTGTTGGAGGAA -ACGGAAGCGTTACTGTTGCAGGTA -ACGGAAGCGTTACTGTTGGACTCT -ACGGAAGCGTTACTGTTGAGTCCT -ACGGAAGCGTTACTGTTGTAAGCC -ACGGAAGCGTTACTGTTGATAGCC -ACGGAAGCGTTACTGTTGTAACCG -ACGGAAGCGTTACTGTTGATGCCA -ACGGAAGCGTTAATGTCCGGAAAC -ACGGAAGCGTTAATGTCCAACACC -ACGGAAGCGTTAATGTCCATCGAG -ACGGAAGCGTTAATGTCCCTCCTT -ACGGAAGCGTTAATGTCCCCTGTT -ACGGAAGCGTTAATGTCCCGGTTT -ACGGAAGCGTTAATGTCCGTGGTT -ACGGAAGCGTTAATGTCCGCCTTT -ACGGAAGCGTTAATGTCCGGTCTT -ACGGAAGCGTTAATGTCCACGCTT -ACGGAAGCGTTAATGTCCAGCGTT -ACGGAAGCGTTAATGTCCTTCGTC -ACGGAAGCGTTAATGTCCTCTCTC -ACGGAAGCGTTAATGTCCTGGATC -ACGGAAGCGTTAATGTCCCACTTC -ACGGAAGCGTTAATGTCCGTACTC -ACGGAAGCGTTAATGTCCGATGTC -ACGGAAGCGTTAATGTCCACAGTC -ACGGAAGCGTTAATGTCCTTGCTG -ACGGAAGCGTTAATGTCCTCCATG -ACGGAAGCGTTAATGTCCTGTGTG -ACGGAAGCGTTAATGTCCCTAGTG -ACGGAAGCGTTAATGTCCCATCTG -ACGGAAGCGTTAATGTCCGAGTTG -ACGGAAGCGTTAATGTCCAGACTG -ACGGAAGCGTTAATGTCCTCGGTA -ACGGAAGCGTTAATGTCCTGCCTA -ACGGAAGCGTTAATGTCCCCACTA -ACGGAAGCGTTAATGTCCGGAGTA -ACGGAAGCGTTAATGTCCTCGTCT -ACGGAAGCGTTAATGTCCTGCACT -ACGGAAGCGTTAATGTCCCTGACT -ACGGAAGCGTTAATGTCCCAACCT -ACGGAAGCGTTAATGTCCGCTACT -ACGGAAGCGTTAATGTCCGGATCT -ACGGAAGCGTTAATGTCCAAGGCT -ACGGAAGCGTTAATGTCCTCAACC -ACGGAAGCGTTAATGTCCTGTTCC -ACGGAAGCGTTAATGTCCATTCCC -ACGGAAGCGTTAATGTCCTTCTCG -ACGGAAGCGTTAATGTCCTAGACG -ACGGAAGCGTTAATGTCCGTAACG -ACGGAAGCGTTAATGTCCACTTCG -ACGGAAGCGTTAATGTCCTACGCA -ACGGAAGCGTTAATGTCCCTTGCA -ACGGAAGCGTTAATGTCCCGAACA -ACGGAAGCGTTAATGTCCCAGTCA -ACGGAAGCGTTAATGTCCGATCCA -ACGGAAGCGTTAATGTCCACGACA -ACGGAAGCGTTAATGTCCAGCTCA -ACGGAAGCGTTAATGTCCTCACGT -ACGGAAGCGTTAATGTCCCGTAGT -ACGGAAGCGTTAATGTCCGTCAGT -ACGGAAGCGTTAATGTCCGAAGGT -ACGGAAGCGTTAATGTCCAACCGT -ACGGAAGCGTTAATGTCCTTGTGC -ACGGAAGCGTTAATGTCCCTAAGC -ACGGAAGCGTTAATGTCCACTAGC -ACGGAAGCGTTAATGTCCAGATGC -ACGGAAGCGTTAATGTCCTGAAGG -ACGGAAGCGTTAATGTCCCAATGG -ACGGAAGCGTTAATGTCCATGAGG -ACGGAAGCGTTAATGTCCAATGGG -ACGGAAGCGTTAATGTCCTCCTGA -ACGGAAGCGTTAATGTCCTAGCGA -ACGGAAGCGTTAATGTCCCACAGA -ACGGAAGCGTTAATGTCCGCAAGA -ACGGAAGCGTTAATGTCCGGTTGA -ACGGAAGCGTTAATGTCCTCCGAT -ACGGAAGCGTTAATGTCCTGGCAT -ACGGAAGCGTTAATGTCCCGAGAT -ACGGAAGCGTTAATGTCCTACCAC -ACGGAAGCGTTAATGTCCCAGAAC -ACGGAAGCGTTAATGTCCGTCTAC -ACGGAAGCGTTAATGTCCACGTAC -ACGGAAGCGTTAATGTCCAGTGAC -ACGGAAGCGTTAATGTCCCTGTAG -ACGGAAGCGTTAATGTCCCCTAAG -ACGGAAGCGTTAATGTCCGTTCAG -ACGGAAGCGTTAATGTCCGCATAG -ACGGAAGCGTTAATGTCCGACAAG -ACGGAAGCGTTAATGTCCAAGCAG -ACGGAAGCGTTAATGTCCCGTCAA -ACGGAAGCGTTAATGTCCGCTGAA -ACGGAAGCGTTAATGTCCAGTACG -ACGGAAGCGTTAATGTCCATCCGA -ACGGAAGCGTTAATGTCCATGGGA -ACGGAAGCGTTAATGTCCGTGCAA -ACGGAAGCGTTAATGTCCGAGGAA -ACGGAAGCGTTAATGTCCCAGGTA -ACGGAAGCGTTAATGTCCGACTCT -ACGGAAGCGTTAATGTCCAGTCCT -ACGGAAGCGTTAATGTCCTAAGCC -ACGGAAGCGTTAATGTCCATAGCC -ACGGAAGCGTTAATGTCCTAACCG -ACGGAAGCGTTAATGTCCATGCCA -ACGGAAGCGTTAGTGTGTGGAAAC -ACGGAAGCGTTAGTGTGTAACACC -ACGGAAGCGTTAGTGTGTATCGAG -ACGGAAGCGTTAGTGTGTCTCCTT -ACGGAAGCGTTAGTGTGTCCTGTT -ACGGAAGCGTTAGTGTGTCGGTTT -ACGGAAGCGTTAGTGTGTGTGGTT -ACGGAAGCGTTAGTGTGTGCCTTT -ACGGAAGCGTTAGTGTGTGGTCTT -ACGGAAGCGTTAGTGTGTACGCTT -ACGGAAGCGTTAGTGTGTAGCGTT -ACGGAAGCGTTAGTGTGTTTCGTC -ACGGAAGCGTTAGTGTGTTCTCTC -ACGGAAGCGTTAGTGTGTTGGATC -ACGGAAGCGTTAGTGTGTCACTTC -ACGGAAGCGTTAGTGTGTGTACTC -ACGGAAGCGTTAGTGTGTGATGTC -ACGGAAGCGTTAGTGTGTACAGTC -ACGGAAGCGTTAGTGTGTTTGCTG -ACGGAAGCGTTAGTGTGTTCCATG -ACGGAAGCGTTAGTGTGTTGTGTG -ACGGAAGCGTTAGTGTGTCTAGTG -ACGGAAGCGTTAGTGTGTCATCTG -ACGGAAGCGTTAGTGTGTGAGTTG -ACGGAAGCGTTAGTGTGTAGACTG -ACGGAAGCGTTAGTGTGTTCGGTA -ACGGAAGCGTTAGTGTGTTGCCTA -ACGGAAGCGTTAGTGTGTCCACTA -ACGGAAGCGTTAGTGTGTGGAGTA -ACGGAAGCGTTAGTGTGTTCGTCT -ACGGAAGCGTTAGTGTGTTGCACT -ACGGAAGCGTTAGTGTGTCTGACT -ACGGAAGCGTTAGTGTGTCAACCT -ACGGAAGCGTTAGTGTGTGCTACT -ACGGAAGCGTTAGTGTGTGGATCT -ACGGAAGCGTTAGTGTGTAAGGCT -ACGGAAGCGTTAGTGTGTTCAACC -ACGGAAGCGTTAGTGTGTTGTTCC -ACGGAAGCGTTAGTGTGTATTCCC -ACGGAAGCGTTAGTGTGTTTCTCG -ACGGAAGCGTTAGTGTGTTAGACG -ACGGAAGCGTTAGTGTGTGTAACG -ACGGAAGCGTTAGTGTGTACTTCG -ACGGAAGCGTTAGTGTGTTACGCA -ACGGAAGCGTTAGTGTGTCTTGCA -ACGGAAGCGTTAGTGTGTCGAACA -ACGGAAGCGTTAGTGTGTCAGTCA -ACGGAAGCGTTAGTGTGTGATCCA -ACGGAAGCGTTAGTGTGTACGACA -ACGGAAGCGTTAGTGTGTAGCTCA -ACGGAAGCGTTAGTGTGTTCACGT -ACGGAAGCGTTAGTGTGTCGTAGT -ACGGAAGCGTTAGTGTGTGTCAGT -ACGGAAGCGTTAGTGTGTGAAGGT -ACGGAAGCGTTAGTGTGTAACCGT -ACGGAAGCGTTAGTGTGTTTGTGC -ACGGAAGCGTTAGTGTGTCTAAGC -ACGGAAGCGTTAGTGTGTACTAGC -ACGGAAGCGTTAGTGTGTAGATGC -ACGGAAGCGTTAGTGTGTTGAAGG -ACGGAAGCGTTAGTGTGTCAATGG -ACGGAAGCGTTAGTGTGTATGAGG -ACGGAAGCGTTAGTGTGTAATGGG -ACGGAAGCGTTAGTGTGTTCCTGA -ACGGAAGCGTTAGTGTGTTAGCGA -ACGGAAGCGTTAGTGTGTCACAGA -ACGGAAGCGTTAGTGTGTGCAAGA -ACGGAAGCGTTAGTGTGTGGTTGA -ACGGAAGCGTTAGTGTGTTCCGAT -ACGGAAGCGTTAGTGTGTTGGCAT -ACGGAAGCGTTAGTGTGTCGAGAT -ACGGAAGCGTTAGTGTGTTACCAC -ACGGAAGCGTTAGTGTGTCAGAAC -ACGGAAGCGTTAGTGTGTGTCTAC -ACGGAAGCGTTAGTGTGTACGTAC -ACGGAAGCGTTAGTGTGTAGTGAC -ACGGAAGCGTTAGTGTGTCTGTAG -ACGGAAGCGTTAGTGTGTCCTAAG -ACGGAAGCGTTAGTGTGTGTTCAG -ACGGAAGCGTTAGTGTGTGCATAG -ACGGAAGCGTTAGTGTGTGACAAG -ACGGAAGCGTTAGTGTGTAAGCAG -ACGGAAGCGTTAGTGTGTCGTCAA -ACGGAAGCGTTAGTGTGTGCTGAA -ACGGAAGCGTTAGTGTGTAGTACG -ACGGAAGCGTTAGTGTGTATCCGA -ACGGAAGCGTTAGTGTGTATGGGA -ACGGAAGCGTTAGTGTGTGTGCAA -ACGGAAGCGTTAGTGTGTGAGGAA -ACGGAAGCGTTAGTGTGTCAGGTA -ACGGAAGCGTTAGTGTGTGACTCT -ACGGAAGCGTTAGTGTGTAGTCCT -ACGGAAGCGTTAGTGTGTTAAGCC -ACGGAAGCGTTAGTGTGTATAGCC -ACGGAAGCGTTAGTGTGTTAACCG -ACGGAAGCGTTAGTGTGTATGCCA -ACGGAAGCGTTAGTGCTAGGAAAC -ACGGAAGCGTTAGTGCTAAACACC -ACGGAAGCGTTAGTGCTAATCGAG -ACGGAAGCGTTAGTGCTACTCCTT -ACGGAAGCGTTAGTGCTACCTGTT -ACGGAAGCGTTAGTGCTACGGTTT -ACGGAAGCGTTAGTGCTAGTGGTT -ACGGAAGCGTTAGTGCTAGCCTTT -ACGGAAGCGTTAGTGCTAGGTCTT -ACGGAAGCGTTAGTGCTAACGCTT -ACGGAAGCGTTAGTGCTAAGCGTT -ACGGAAGCGTTAGTGCTATTCGTC -ACGGAAGCGTTAGTGCTATCTCTC -ACGGAAGCGTTAGTGCTATGGATC -ACGGAAGCGTTAGTGCTACACTTC -ACGGAAGCGTTAGTGCTAGTACTC -ACGGAAGCGTTAGTGCTAGATGTC -ACGGAAGCGTTAGTGCTAACAGTC -ACGGAAGCGTTAGTGCTATTGCTG -ACGGAAGCGTTAGTGCTATCCATG -ACGGAAGCGTTAGTGCTATGTGTG -ACGGAAGCGTTAGTGCTACTAGTG -ACGGAAGCGTTAGTGCTACATCTG -ACGGAAGCGTTAGTGCTAGAGTTG -ACGGAAGCGTTAGTGCTAAGACTG -ACGGAAGCGTTAGTGCTATCGGTA -ACGGAAGCGTTAGTGCTATGCCTA -ACGGAAGCGTTAGTGCTACCACTA -ACGGAAGCGTTAGTGCTAGGAGTA -ACGGAAGCGTTAGTGCTATCGTCT -ACGGAAGCGTTAGTGCTATGCACT -ACGGAAGCGTTAGTGCTACTGACT -ACGGAAGCGTTAGTGCTACAACCT -ACGGAAGCGTTAGTGCTAGCTACT -ACGGAAGCGTTAGTGCTAGGATCT -ACGGAAGCGTTAGTGCTAAAGGCT -ACGGAAGCGTTAGTGCTATCAACC -ACGGAAGCGTTAGTGCTATGTTCC -ACGGAAGCGTTAGTGCTAATTCCC -ACGGAAGCGTTAGTGCTATTCTCG -ACGGAAGCGTTAGTGCTATAGACG -ACGGAAGCGTTAGTGCTAGTAACG -ACGGAAGCGTTAGTGCTAACTTCG -ACGGAAGCGTTAGTGCTATACGCA -ACGGAAGCGTTAGTGCTACTTGCA -ACGGAAGCGTTAGTGCTACGAACA -ACGGAAGCGTTAGTGCTACAGTCA -ACGGAAGCGTTAGTGCTAGATCCA -ACGGAAGCGTTAGTGCTAACGACA -ACGGAAGCGTTAGTGCTAAGCTCA -ACGGAAGCGTTAGTGCTATCACGT -ACGGAAGCGTTAGTGCTACGTAGT -ACGGAAGCGTTAGTGCTAGTCAGT -ACGGAAGCGTTAGTGCTAGAAGGT -ACGGAAGCGTTAGTGCTAAACCGT -ACGGAAGCGTTAGTGCTATTGTGC -ACGGAAGCGTTAGTGCTACTAAGC -ACGGAAGCGTTAGTGCTAACTAGC -ACGGAAGCGTTAGTGCTAAGATGC -ACGGAAGCGTTAGTGCTATGAAGG -ACGGAAGCGTTAGTGCTACAATGG -ACGGAAGCGTTAGTGCTAATGAGG -ACGGAAGCGTTAGTGCTAAATGGG -ACGGAAGCGTTAGTGCTATCCTGA -ACGGAAGCGTTAGTGCTATAGCGA -ACGGAAGCGTTAGTGCTACACAGA -ACGGAAGCGTTAGTGCTAGCAAGA -ACGGAAGCGTTAGTGCTAGGTTGA -ACGGAAGCGTTAGTGCTATCCGAT -ACGGAAGCGTTAGTGCTATGGCAT -ACGGAAGCGTTAGTGCTACGAGAT -ACGGAAGCGTTAGTGCTATACCAC -ACGGAAGCGTTAGTGCTACAGAAC -ACGGAAGCGTTAGTGCTAGTCTAC -ACGGAAGCGTTAGTGCTAACGTAC -ACGGAAGCGTTAGTGCTAAGTGAC -ACGGAAGCGTTAGTGCTACTGTAG -ACGGAAGCGTTAGTGCTACCTAAG -ACGGAAGCGTTAGTGCTAGTTCAG -ACGGAAGCGTTAGTGCTAGCATAG -ACGGAAGCGTTAGTGCTAGACAAG -ACGGAAGCGTTAGTGCTAAAGCAG -ACGGAAGCGTTAGTGCTACGTCAA -ACGGAAGCGTTAGTGCTAGCTGAA -ACGGAAGCGTTAGTGCTAAGTACG -ACGGAAGCGTTAGTGCTAATCCGA -ACGGAAGCGTTAGTGCTAATGGGA -ACGGAAGCGTTAGTGCTAGTGCAA -ACGGAAGCGTTAGTGCTAGAGGAA -ACGGAAGCGTTAGTGCTACAGGTA -ACGGAAGCGTTAGTGCTAGACTCT -ACGGAAGCGTTAGTGCTAAGTCCT -ACGGAAGCGTTAGTGCTATAAGCC -ACGGAAGCGTTAGTGCTAATAGCC -ACGGAAGCGTTAGTGCTATAACCG -ACGGAAGCGTTAGTGCTAATGCCA -ACGGAAGCGTTACTGCATGGAAAC -ACGGAAGCGTTACTGCATAACACC -ACGGAAGCGTTACTGCATATCGAG -ACGGAAGCGTTACTGCATCTCCTT -ACGGAAGCGTTACTGCATCCTGTT -ACGGAAGCGTTACTGCATCGGTTT -ACGGAAGCGTTACTGCATGTGGTT -ACGGAAGCGTTACTGCATGCCTTT -ACGGAAGCGTTACTGCATGGTCTT -ACGGAAGCGTTACTGCATACGCTT -ACGGAAGCGTTACTGCATAGCGTT -ACGGAAGCGTTACTGCATTTCGTC -ACGGAAGCGTTACTGCATTCTCTC -ACGGAAGCGTTACTGCATTGGATC -ACGGAAGCGTTACTGCATCACTTC -ACGGAAGCGTTACTGCATGTACTC -ACGGAAGCGTTACTGCATGATGTC -ACGGAAGCGTTACTGCATACAGTC -ACGGAAGCGTTACTGCATTTGCTG -ACGGAAGCGTTACTGCATTCCATG -ACGGAAGCGTTACTGCATTGTGTG -ACGGAAGCGTTACTGCATCTAGTG -ACGGAAGCGTTACTGCATCATCTG -ACGGAAGCGTTACTGCATGAGTTG -ACGGAAGCGTTACTGCATAGACTG -ACGGAAGCGTTACTGCATTCGGTA -ACGGAAGCGTTACTGCATTGCCTA -ACGGAAGCGTTACTGCATCCACTA -ACGGAAGCGTTACTGCATGGAGTA -ACGGAAGCGTTACTGCATTCGTCT -ACGGAAGCGTTACTGCATTGCACT -ACGGAAGCGTTACTGCATCTGACT -ACGGAAGCGTTACTGCATCAACCT -ACGGAAGCGTTACTGCATGCTACT -ACGGAAGCGTTACTGCATGGATCT -ACGGAAGCGTTACTGCATAAGGCT -ACGGAAGCGTTACTGCATTCAACC -ACGGAAGCGTTACTGCATTGTTCC -ACGGAAGCGTTACTGCATATTCCC -ACGGAAGCGTTACTGCATTTCTCG -ACGGAAGCGTTACTGCATTAGACG -ACGGAAGCGTTACTGCATGTAACG -ACGGAAGCGTTACTGCATACTTCG -ACGGAAGCGTTACTGCATTACGCA -ACGGAAGCGTTACTGCATCTTGCA -ACGGAAGCGTTACTGCATCGAACA -ACGGAAGCGTTACTGCATCAGTCA -ACGGAAGCGTTACTGCATGATCCA -ACGGAAGCGTTACTGCATACGACA -ACGGAAGCGTTACTGCATAGCTCA -ACGGAAGCGTTACTGCATTCACGT -ACGGAAGCGTTACTGCATCGTAGT -ACGGAAGCGTTACTGCATGTCAGT -ACGGAAGCGTTACTGCATGAAGGT -ACGGAAGCGTTACTGCATAACCGT -ACGGAAGCGTTACTGCATTTGTGC -ACGGAAGCGTTACTGCATCTAAGC -ACGGAAGCGTTACTGCATACTAGC -ACGGAAGCGTTACTGCATAGATGC -ACGGAAGCGTTACTGCATTGAAGG -ACGGAAGCGTTACTGCATCAATGG -ACGGAAGCGTTACTGCATATGAGG -ACGGAAGCGTTACTGCATAATGGG -ACGGAAGCGTTACTGCATTCCTGA -ACGGAAGCGTTACTGCATTAGCGA -ACGGAAGCGTTACTGCATCACAGA -ACGGAAGCGTTACTGCATGCAAGA -ACGGAAGCGTTACTGCATGGTTGA -ACGGAAGCGTTACTGCATTCCGAT -ACGGAAGCGTTACTGCATTGGCAT -ACGGAAGCGTTACTGCATCGAGAT -ACGGAAGCGTTACTGCATTACCAC -ACGGAAGCGTTACTGCATCAGAAC -ACGGAAGCGTTACTGCATGTCTAC -ACGGAAGCGTTACTGCATACGTAC -ACGGAAGCGTTACTGCATAGTGAC -ACGGAAGCGTTACTGCATCTGTAG -ACGGAAGCGTTACTGCATCCTAAG -ACGGAAGCGTTACTGCATGTTCAG -ACGGAAGCGTTACTGCATGCATAG -ACGGAAGCGTTACTGCATGACAAG -ACGGAAGCGTTACTGCATAAGCAG -ACGGAAGCGTTACTGCATCGTCAA -ACGGAAGCGTTACTGCATGCTGAA -ACGGAAGCGTTACTGCATAGTACG -ACGGAAGCGTTACTGCATATCCGA -ACGGAAGCGTTACTGCATATGGGA -ACGGAAGCGTTACTGCATGTGCAA -ACGGAAGCGTTACTGCATGAGGAA -ACGGAAGCGTTACTGCATCAGGTA -ACGGAAGCGTTACTGCATGACTCT -ACGGAAGCGTTACTGCATAGTCCT -ACGGAAGCGTTACTGCATTAAGCC -ACGGAAGCGTTACTGCATATAGCC -ACGGAAGCGTTACTGCATTAACCG -ACGGAAGCGTTACTGCATATGCCA -ACGGAAGCGTTATTGGAGGGAAAC -ACGGAAGCGTTATTGGAGAACACC -ACGGAAGCGTTATTGGAGATCGAG -ACGGAAGCGTTATTGGAGCTCCTT -ACGGAAGCGTTATTGGAGCCTGTT -ACGGAAGCGTTATTGGAGCGGTTT -ACGGAAGCGTTATTGGAGGTGGTT -ACGGAAGCGTTATTGGAGGCCTTT -ACGGAAGCGTTATTGGAGGGTCTT -ACGGAAGCGTTATTGGAGACGCTT -ACGGAAGCGTTATTGGAGAGCGTT -ACGGAAGCGTTATTGGAGTTCGTC -ACGGAAGCGTTATTGGAGTCTCTC -ACGGAAGCGTTATTGGAGTGGATC -ACGGAAGCGTTATTGGAGCACTTC -ACGGAAGCGTTATTGGAGGTACTC -ACGGAAGCGTTATTGGAGGATGTC -ACGGAAGCGTTATTGGAGACAGTC -ACGGAAGCGTTATTGGAGTTGCTG -ACGGAAGCGTTATTGGAGTCCATG -ACGGAAGCGTTATTGGAGTGTGTG -ACGGAAGCGTTATTGGAGCTAGTG -ACGGAAGCGTTATTGGAGCATCTG -ACGGAAGCGTTATTGGAGGAGTTG -ACGGAAGCGTTATTGGAGAGACTG -ACGGAAGCGTTATTGGAGTCGGTA -ACGGAAGCGTTATTGGAGTGCCTA -ACGGAAGCGTTATTGGAGCCACTA -ACGGAAGCGTTATTGGAGGGAGTA -ACGGAAGCGTTATTGGAGTCGTCT -ACGGAAGCGTTATTGGAGTGCACT -ACGGAAGCGTTATTGGAGCTGACT -ACGGAAGCGTTATTGGAGCAACCT -ACGGAAGCGTTATTGGAGGCTACT -ACGGAAGCGTTATTGGAGGGATCT -ACGGAAGCGTTATTGGAGAAGGCT -ACGGAAGCGTTATTGGAGTCAACC -ACGGAAGCGTTATTGGAGTGTTCC -ACGGAAGCGTTATTGGAGATTCCC -ACGGAAGCGTTATTGGAGTTCTCG -ACGGAAGCGTTATTGGAGTAGACG -ACGGAAGCGTTATTGGAGGTAACG -ACGGAAGCGTTATTGGAGACTTCG -ACGGAAGCGTTATTGGAGTACGCA -ACGGAAGCGTTATTGGAGCTTGCA -ACGGAAGCGTTATTGGAGCGAACA -ACGGAAGCGTTATTGGAGCAGTCA -ACGGAAGCGTTATTGGAGGATCCA -ACGGAAGCGTTATTGGAGACGACA -ACGGAAGCGTTATTGGAGAGCTCA -ACGGAAGCGTTATTGGAGTCACGT -ACGGAAGCGTTATTGGAGCGTAGT -ACGGAAGCGTTATTGGAGGTCAGT -ACGGAAGCGTTATTGGAGGAAGGT -ACGGAAGCGTTATTGGAGAACCGT -ACGGAAGCGTTATTGGAGTTGTGC -ACGGAAGCGTTATTGGAGCTAAGC -ACGGAAGCGTTATTGGAGACTAGC -ACGGAAGCGTTATTGGAGAGATGC -ACGGAAGCGTTATTGGAGTGAAGG -ACGGAAGCGTTATTGGAGCAATGG -ACGGAAGCGTTATTGGAGATGAGG -ACGGAAGCGTTATTGGAGAATGGG -ACGGAAGCGTTATTGGAGTCCTGA -ACGGAAGCGTTATTGGAGTAGCGA -ACGGAAGCGTTATTGGAGCACAGA -ACGGAAGCGTTATTGGAGGCAAGA -ACGGAAGCGTTATTGGAGGGTTGA -ACGGAAGCGTTATTGGAGTCCGAT -ACGGAAGCGTTATTGGAGTGGCAT -ACGGAAGCGTTATTGGAGCGAGAT -ACGGAAGCGTTATTGGAGTACCAC -ACGGAAGCGTTATTGGAGCAGAAC -ACGGAAGCGTTATTGGAGGTCTAC -ACGGAAGCGTTATTGGAGACGTAC -ACGGAAGCGTTATTGGAGAGTGAC -ACGGAAGCGTTATTGGAGCTGTAG -ACGGAAGCGTTATTGGAGCCTAAG -ACGGAAGCGTTATTGGAGGTTCAG -ACGGAAGCGTTATTGGAGGCATAG -ACGGAAGCGTTATTGGAGGACAAG -ACGGAAGCGTTATTGGAGAAGCAG -ACGGAAGCGTTATTGGAGCGTCAA -ACGGAAGCGTTATTGGAGGCTGAA -ACGGAAGCGTTATTGGAGAGTACG -ACGGAAGCGTTATTGGAGATCCGA -ACGGAAGCGTTATTGGAGATGGGA -ACGGAAGCGTTATTGGAGGTGCAA -ACGGAAGCGTTATTGGAGGAGGAA -ACGGAAGCGTTATTGGAGCAGGTA -ACGGAAGCGTTATTGGAGGACTCT -ACGGAAGCGTTATTGGAGAGTCCT -ACGGAAGCGTTATTGGAGTAAGCC -ACGGAAGCGTTATTGGAGATAGCC -ACGGAAGCGTTATTGGAGTAACCG -ACGGAAGCGTTATTGGAGATGCCA -ACGGAAGCGTTACTGAGAGGAAAC -ACGGAAGCGTTACTGAGAAACACC -ACGGAAGCGTTACTGAGAATCGAG -ACGGAAGCGTTACTGAGACTCCTT -ACGGAAGCGTTACTGAGACCTGTT -ACGGAAGCGTTACTGAGACGGTTT -ACGGAAGCGTTACTGAGAGTGGTT -ACGGAAGCGTTACTGAGAGCCTTT -ACGGAAGCGTTACTGAGAGGTCTT -ACGGAAGCGTTACTGAGAACGCTT -ACGGAAGCGTTACTGAGAAGCGTT -ACGGAAGCGTTACTGAGATTCGTC -ACGGAAGCGTTACTGAGATCTCTC -ACGGAAGCGTTACTGAGATGGATC -ACGGAAGCGTTACTGAGACACTTC -ACGGAAGCGTTACTGAGAGTACTC -ACGGAAGCGTTACTGAGAGATGTC -ACGGAAGCGTTACTGAGAACAGTC -ACGGAAGCGTTACTGAGATTGCTG -ACGGAAGCGTTACTGAGATCCATG -ACGGAAGCGTTACTGAGATGTGTG -ACGGAAGCGTTACTGAGACTAGTG -ACGGAAGCGTTACTGAGACATCTG -ACGGAAGCGTTACTGAGAGAGTTG -ACGGAAGCGTTACTGAGAAGACTG -ACGGAAGCGTTACTGAGATCGGTA -ACGGAAGCGTTACTGAGATGCCTA -ACGGAAGCGTTACTGAGACCACTA -ACGGAAGCGTTACTGAGAGGAGTA -ACGGAAGCGTTACTGAGATCGTCT -ACGGAAGCGTTACTGAGATGCACT -ACGGAAGCGTTACTGAGACTGACT -ACGGAAGCGTTACTGAGACAACCT -ACGGAAGCGTTACTGAGAGCTACT -ACGGAAGCGTTACTGAGAGGATCT -ACGGAAGCGTTACTGAGAAAGGCT -ACGGAAGCGTTACTGAGATCAACC -ACGGAAGCGTTACTGAGATGTTCC -ACGGAAGCGTTACTGAGAATTCCC -ACGGAAGCGTTACTGAGATTCTCG -ACGGAAGCGTTACTGAGATAGACG -ACGGAAGCGTTACTGAGAGTAACG -ACGGAAGCGTTACTGAGAACTTCG -ACGGAAGCGTTACTGAGATACGCA -ACGGAAGCGTTACTGAGACTTGCA -ACGGAAGCGTTACTGAGACGAACA -ACGGAAGCGTTACTGAGACAGTCA -ACGGAAGCGTTACTGAGAGATCCA -ACGGAAGCGTTACTGAGAACGACA -ACGGAAGCGTTACTGAGAAGCTCA -ACGGAAGCGTTACTGAGATCACGT -ACGGAAGCGTTACTGAGACGTAGT -ACGGAAGCGTTACTGAGAGTCAGT -ACGGAAGCGTTACTGAGAGAAGGT -ACGGAAGCGTTACTGAGAAACCGT -ACGGAAGCGTTACTGAGATTGTGC -ACGGAAGCGTTACTGAGACTAAGC -ACGGAAGCGTTACTGAGAACTAGC -ACGGAAGCGTTACTGAGAAGATGC -ACGGAAGCGTTACTGAGATGAAGG -ACGGAAGCGTTACTGAGACAATGG -ACGGAAGCGTTACTGAGAATGAGG -ACGGAAGCGTTACTGAGAAATGGG -ACGGAAGCGTTACTGAGATCCTGA -ACGGAAGCGTTACTGAGATAGCGA -ACGGAAGCGTTACTGAGACACAGA -ACGGAAGCGTTACTGAGAGCAAGA -ACGGAAGCGTTACTGAGAGGTTGA -ACGGAAGCGTTACTGAGATCCGAT -ACGGAAGCGTTACTGAGATGGCAT -ACGGAAGCGTTACTGAGACGAGAT -ACGGAAGCGTTACTGAGATACCAC -ACGGAAGCGTTACTGAGACAGAAC -ACGGAAGCGTTACTGAGAGTCTAC -ACGGAAGCGTTACTGAGAACGTAC -ACGGAAGCGTTACTGAGAAGTGAC -ACGGAAGCGTTACTGAGACTGTAG -ACGGAAGCGTTACTGAGACCTAAG -ACGGAAGCGTTACTGAGAGTTCAG -ACGGAAGCGTTACTGAGAGCATAG -ACGGAAGCGTTACTGAGAGACAAG -ACGGAAGCGTTACTGAGAAAGCAG -ACGGAAGCGTTACTGAGACGTCAA -ACGGAAGCGTTACTGAGAGCTGAA -ACGGAAGCGTTACTGAGAAGTACG -ACGGAAGCGTTACTGAGAATCCGA -ACGGAAGCGTTACTGAGAATGGGA -ACGGAAGCGTTACTGAGAGTGCAA -ACGGAAGCGTTACTGAGAGAGGAA -ACGGAAGCGTTACTGAGACAGGTA -ACGGAAGCGTTACTGAGAGACTCT -ACGGAAGCGTTACTGAGAAGTCCT -ACGGAAGCGTTACTGAGATAAGCC -ACGGAAGCGTTACTGAGAATAGCC -ACGGAAGCGTTACTGAGATAACCG -ACGGAAGCGTTACTGAGAATGCCA -ACGGAAGCGTTAGTATCGGGAAAC -ACGGAAGCGTTAGTATCGAACACC -ACGGAAGCGTTAGTATCGATCGAG -ACGGAAGCGTTAGTATCGCTCCTT -ACGGAAGCGTTAGTATCGCCTGTT -ACGGAAGCGTTAGTATCGCGGTTT -ACGGAAGCGTTAGTATCGGTGGTT -ACGGAAGCGTTAGTATCGGCCTTT -ACGGAAGCGTTAGTATCGGGTCTT -ACGGAAGCGTTAGTATCGACGCTT -ACGGAAGCGTTAGTATCGAGCGTT -ACGGAAGCGTTAGTATCGTTCGTC -ACGGAAGCGTTAGTATCGTCTCTC -ACGGAAGCGTTAGTATCGTGGATC -ACGGAAGCGTTAGTATCGCACTTC -ACGGAAGCGTTAGTATCGGTACTC -ACGGAAGCGTTAGTATCGGATGTC -ACGGAAGCGTTAGTATCGACAGTC -ACGGAAGCGTTAGTATCGTTGCTG -ACGGAAGCGTTAGTATCGTCCATG -ACGGAAGCGTTAGTATCGTGTGTG -ACGGAAGCGTTAGTATCGCTAGTG -ACGGAAGCGTTAGTATCGCATCTG -ACGGAAGCGTTAGTATCGGAGTTG -ACGGAAGCGTTAGTATCGAGACTG -ACGGAAGCGTTAGTATCGTCGGTA -ACGGAAGCGTTAGTATCGTGCCTA -ACGGAAGCGTTAGTATCGCCACTA -ACGGAAGCGTTAGTATCGGGAGTA -ACGGAAGCGTTAGTATCGTCGTCT -ACGGAAGCGTTAGTATCGTGCACT -ACGGAAGCGTTAGTATCGCTGACT -ACGGAAGCGTTAGTATCGCAACCT -ACGGAAGCGTTAGTATCGGCTACT -ACGGAAGCGTTAGTATCGGGATCT -ACGGAAGCGTTAGTATCGAAGGCT -ACGGAAGCGTTAGTATCGTCAACC -ACGGAAGCGTTAGTATCGTGTTCC -ACGGAAGCGTTAGTATCGATTCCC -ACGGAAGCGTTAGTATCGTTCTCG -ACGGAAGCGTTAGTATCGTAGACG -ACGGAAGCGTTAGTATCGGTAACG -ACGGAAGCGTTAGTATCGACTTCG -ACGGAAGCGTTAGTATCGTACGCA -ACGGAAGCGTTAGTATCGCTTGCA -ACGGAAGCGTTAGTATCGCGAACA -ACGGAAGCGTTAGTATCGCAGTCA -ACGGAAGCGTTAGTATCGGATCCA -ACGGAAGCGTTAGTATCGACGACA -ACGGAAGCGTTAGTATCGAGCTCA -ACGGAAGCGTTAGTATCGTCACGT -ACGGAAGCGTTAGTATCGCGTAGT -ACGGAAGCGTTAGTATCGGTCAGT -ACGGAAGCGTTAGTATCGGAAGGT -ACGGAAGCGTTAGTATCGAACCGT -ACGGAAGCGTTAGTATCGTTGTGC -ACGGAAGCGTTAGTATCGCTAAGC -ACGGAAGCGTTAGTATCGACTAGC -ACGGAAGCGTTAGTATCGAGATGC -ACGGAAGCGTTAGTATCGTGAAGG -ACGGAAGCGTTAGTATCGCAATGG -ACGGAAGCGTTAGTATCGATGAGG -ACGGAAGCGTTAGTATCGAATGGG -ACGGAAGCGTTAGTATCGTCCTGA -ACGGAAGCGTTAGTATCGTAGCGA -ACGGAAGCGTTAGTATCGCACAGA -ACGGAAGCGTTAGTATCGGCAAGA -ACGGAAGCGTTAGTATCGGGTTGA -ACGGAAGCGTTAGTATCGTCCGAT -ACGGAAGCGTTAGTATCGTGGCAT -ACGGAAGCGTTAGTATCGCGAGAT -ACGGAAGCGTTAGTATCGTACCAC -ACGGAAGCGTTAGTATCGCAGAAC -ACGGAAGCGTTAGTATCGGTCTAC -ACGGAAGCGTTAGTATCGACGTAC -ACGGAAGCGTTAGTATCGAGTGAC -ACGGAAGCGTTAGTATCGCTGTAG -ACGGAAGCGTTAGTATCGCCTAAG -ACGGAAGCGTTAGTATCGGTTCAG -ACGGAAGCGTTAGTATCGGCATAG -ACGGAAGCGTTAGTATCGGACAAG -ACGGAAGCGTTAGTATCGAAGCAG -ACGGAAGCGTTAGTATCGCGTCAA -ACGGAAGCGTTAGTATCGGCTGAA -ACGGAAGCGTTAGTATCGAGTACG -ACGGAAGCGTTAGTATCGATCCGA -ACGGAAGCGTTAGTATCGATGGGA -ACGGAAGCGTTAGTATCGGTGCAA -ACGGAAGCGTTAGTATCGGAGGAA -ACGGAAGCGTTAGTATCGCAGGTA -ACGGAAGCGTTAGTATCGGACTCT -ACGGAAGCGTTAGTATCGAGTCCT -ACGGAAGCGTTAGTATCGTAAGCC -ACGGAAGCGTTAGTATCGATAGCC -ACGGAAGCGTTAGTATCGTAACCG -ACGGAAGCGTTAGTATCGATGCCA -ACGGAAGCGTTACTATGCGGAAAC -ACGGAAGCGTTACTATGCAACACC -ACGGAAGCGTTACTATGCATCGAG -ACGGAAGCGTTACTATGCCTCCTT -ACGGAAGCGTTACTATGCCCTGTT -ACGGAAGCGTTACTATGCCGGTTT -ACGGAAGCGTTACTATGCGTGGTT -ACGGAAGCGTTACTATGCGCCTTT -ACGGAAGCGTTACTATGCGGTCTT -ACGGAAGCGTTACTATGCACGCTT -ACGGAAGCGTTACTATGCAGCGTT -ACGGAAGCGTTACTATGCTTCGTC -ACGGAAGCGTTACTATGCTCTCTC -ACGGAAGCGTTACTATGCTGGATC -ACGGAAGCGTTACTATGCCACTTC -ACGGAAGCGTTACTATGCGTACTC -ACGGAAGCGTTACTATGCGATGTC -ACGGAAGCGTTACTATGCACAGTC -ACGGAAGCGTTACTATGCTTGCTG -ACGGAAGCGTTACTATGCTCCATG -ACGGAAGCGTTACTATGCTGTGTG -ACGGAAGCGTTACTATGCCTAGTG -ACGGAAGCGTTACTATGCCATCTG -ACGGAAGCGTTACTATGCGAGTTG -ACGGAAGCGTTACTATGCAGACTG -ACGGAAGCGTTACTATGCTCGGTA -ACGGAAGCGTTACTATGCTGCCTA -ACGGAAGCGTTACTATGCCCACTA -ACGGAAGCGTTACTATGCGGAGTA -ACGGAAGCGTTACTATGCTCGTCT -ACGGAAGCGTTACTATGCTGCACT -ACGGAAGCGTTACTATGCCTGACT -ACGGAAGCGTTACTATGCCAACCT -ACGGAAGCGTTACTATGCGCTACT -ACGGAAGCGTTACTATGCGGATCT -ACGGAAGCGTTACTATGCAAGGCT -ACGGAAGCGTTACTATGCTCAACC -ACGGAAGCGTTACTATGCTGTTCC -ACGGAAGCGTTACTATGCATTCCC -ACGGAAGCGTTACTATGCTTCTCG -ACGGAAGCGTTACTATGCTAGACG -ACGGAAGCGTTACTATGCGTAACG -ACGGAAGCGTTACTATGCACTTCG -ACGGAAGCGTTACTATGCTACGCA -ACGGAAGCGTTACTATGCCTTGCA -ACGGAAGCGTTACTATGCCGAACA -ACGGAAGCGTTACTATGCCAGTCA -ACGGAAGCGTTACTATGCGATCCA -ACGGAAGCGTTACTATGCACGACA -ACGGAAGCGTTACTATGCAGCTCA -ACGGAAGCGTTACTATGCTCACGT -ACGGAAGCGTTACTATGCCGTAGT -ACGGAAGCGTTACTATGCGTCAGT -ACGGAAGCGTTACTATGCGAAGGT -ACGGAAGCGTTACTATGCAACCGT -ACGGAAGCGTTACTATGCTTGTGC -ACGGAAGCGTTACTATGCCTAAGC -ACGGAAGCGTTACTATGCACTAGC -ACGGAAGCGTTACTATGCAGATGC -ACGGAAGCGTTACTATGCTGAAGG -ACGGAAGCGTTACTATGCCAATGG -ACGGAAGCGTTACTATGCATGAGG -ACGGAAGCGTTACTATGCAATGGG -ACGGAAGCGTTACTATGCTCCTGA -ACGGAAGCGTTACTATGCTAGCGA -ACGGAAGCGTTACTATGCCACAGA -ACGGAAGCGTTACTATGCGCAAGA -ACGGAAGCGTTACTATGCGGTTGA -ACGGAAGCGTTACTATGCTCCGAT -ACGGAAGCGTTACTATGCTGGCAT -ACGGAAGCGTTACTATGCCGAGAT -ACGGAAGCGTTACTATGCTACCAC -ACGGAAGCGTTACTATGCCAGAAC -ACGGAAGCGTTACTATGCGTCTAC -ACGGAAGCGTTACTATGCACGTAC -ACGGAAGCGTTACTATGCAGTGAC -ACGGAAGCGTTACTATGCCTGTAG -ACGGAAGCGTTACTATGCCCTAAG -ACGGAAGCGTTACTATGCGTTCAG -ACGGAAGCGTTACTATGCGCATAG -ACGGAAGCGTTACTATGCGACAAG -ACGGAAGCGTTACTATGCAAGCAG -ACGGAAGCGTTACTATGCCGTCAA -ACGGAAGCGTTACTATGCGCTGAA -ACGGAAGCGTTACTATGCAGTACG -ACGGAAGCGTTACTATGCATCCGA -ACGGAAGCGTTACTATGCATGGGA -ACGGAAGCGTTACTATGCGTGCAA -ACGGAAGCGTTACTATGCGAGGAA -ACGGAAGCGTTACTATGCCAGGTA -ACGGAAGCGTTACTATGCGACTCT -ACGGAAGCGTTACTATGCAGTCCT -ACGGAAGCGTTACTATGCTAAGCC -ACGGAAGCGTTACTATGCATAGCC -ACGGAAGCGTTACTATGCTAACCG -ACGGAAGCGTTACTATGCATGCCA -ACGGAAGCGTTACTACCAGGAAAC -ACGGAAGCGTTACTACCAAACACC -ACGGAAGCGTTACTACCAATCGAG -ACGGAAGCGTTACTACCACTCCTT -ACGGAAGCGTTACTACCACCTGTT -ACGGAAGCGTTACTACCACGGTTT -ACGGAAGCGTTACTACCAGTGGTT -ACGGAAGCGTTACTACCAGCCTTT -ACGGAAGCGTTACTACCAGGTCTT -ACGGAAGCGTTACTACCAACGCTT -ACGGAAGCGTTACTACCAAGCGTT -ACGGAAGCGTTACTACCATTCGTC -ACGGAAGCGTTACTACCATCTCTC -ACGGAAGCGTTACTACCATGGATC -ACGGAAGCGTTACTACCACACTTC -ACGGAAGCGTTACTACCAGTACTC -ACGGAAGCGTTACTACCAGATGTC -ACGGAAGCGTTACTACCAACAGTC -ACGGAAGCGTTACTACCATTGCTG -ACGGAAGCGTTACTACCATCCATG -ACGGAAGCGTTACTACCATGTGTG -ACGGAAGCGTTACTACCACTAGTG -ACGGAAGCGTTACTACCACATCTG -ACGGAAGCGTTACTACCAGAGTTG -ACGGAAGCGTTACTACCAAGACTG -ACGGAAGCGTTACTACCATCGGTA -ACGGAAGCGTTACTACCATGCCTA -ACGGAAGCGTTACTACCACCACTA -ACGGAAGCGTTACTACCAGGAGTA -ACGGAAGCGTTACTACCATCGTCT -ACGGAAGCGTTACTACCATGCACT -ACGGAAGCGTTACTACCACTGACT -ACGGAAGCGTTACTACCACAACCT -ACGGAAGCGTTACTACCAGCTACT -ACGGAAGCGTTACTACCAGGATCT -ACGGAAGCGTTACTACCAAAGGCT -ACGGAAGCGTTACTACCATCAACC -ACGGAAGCGTTACTACCATGTTCC -ACGGAAGCGTTACTACCAATTCCC -ACGGAAGCGTTACTACCATTCTCG -ACGGAAGCGTTACTACCATAGACG -ACGGAAGCGTTACTACCAGTAACG -ACGGAAGCGTTACTACCAACTTCG -ACGGAAGCGTTACTACCATACGCA -ACGGAAGCGTTACTACCACTTGCA -ACGGAAGCGTTACTACCACGAACA -ACGGAAGCGTTACTACCACAGTCA -ACGGAAGCGTTACTACCAGATCCA -ACGGAAGCGTTACTACCAACGACA -ACGGAAGCGTTACTACCAAGCTCA -ACGGAAGCGTTACTACCATCACGT -ACGGAAGCGTTACTACCACGTAGT -ACGGAAGCGTTACTACCAGTCAGT -ACGGAAGCGTTACTACCAGAAGGT -ACGGAAGCGTTACTACCAAACCGT -ACGGAAGCGTTACTACCATTGTGC -ACGGAAGCGTTACTACCACTAAGC -ACGGAAGCGTTACTACCAACTAGC -ACGGAAGCGTTACTACCAAGATGC -ACGGAAGCGTTACTACCATGAAGG -ACGGAAGCGTTACTACCACAATGG -ACGGAAGCGTTACTACCAATGAGG -ACGGAAGCGTTACTACCAAATGGG -ACGGAAGCGTTACTACCATCCTGA -ACGGAAGCGTTACTACCATAGCGA -ACGGAAGCGTTACTACCACACAGA -ACGGAAGCGTTACTACCAGCAAGA -ACGGAAGCGTTACTACCAGGTTGA -ACGGAAGCGTTACTACCATCCGAT -ACGGAAGCGTTACTACCATGGCAT -ACGGAAGCGTTACTACCACGAGAT -ACGGAAGCGTTACTACCATACCAC -ACGGAAGCGTTACTACCACAGAAC -ACGGAAGCGTTACTACCAGTCTAC -ACGGAAGCGTTACTACCAACGTAC -ACGGAAGCGTTACTACCAAGTGAC -ACGGAAGCGTTACTACCACTGTAG -ACGGAAGCGTTACTACCACCTAAG -ACGGAAGCGTTACTACCAGTTCAG -ACGGAAGCGTTACTACCAGCATAG -ACGGAAGCGTTACTACCAGACAAG -ACGGAAGCGTTACTACCAAAGCAG -ACGGAAGCGTTACTACCACGTCAA -ACGGAAGCGTTACTACCAGCTGAA -ACGGAAGCGTTACTACCAAGTACG -ACGGAAGCGTTACTACCAATCCGA -ACGGAAGCGTTACTACCAATGGGA -ACGGAAGCGTTACTACCAGTGCAA -ACGGAAGCGTTACTACCAGAGGAA -ACGGAAGCGTTACTACCACAGGTA -ACGGAAGCGTTACTACCAGACTCT -ACGGAAGCGTTACTACCAAGTCCT -ACGGAAGCGTTACTACCATAAGCC -ACGGAAGCGTTACTACCAATAGCC -ACGGAAGCGTTACTACCATAACCG -ACGGAAGCGTTACTACCAATGCCA -ACGGAAGCGTTAGTAGGAGGAAAC -ACGGAAGCGTTAGTAGGAAACACC -ACGGAAGCGTTAGTAGGAATCGAG -ACGGAAGCGTTAGTAGGACTCCTT -ACGGAAGCGTTAGTAGGACCTGTT -ACGGAAGCGTTAGTAGGACGGTTT -ACGGAAGCGTTAGTAGGAGTGGTT -ACGGAAGCGTTAGTAGGAGCCTTT -ACGGAAGCGTTAGTAGGAGGTCTT -ACGGAAGCGTTAGTAGGAACGCTT -ACGGAAGCGTTAGTAGGAAGCGTT -ACGGAAGCGTTAGTAGGATTCGTC -ACGGAAGCGTTAGTAGGATCTCTC -ACGGAAGCGTTAGTAGGATGGATC -ACGGAAGCGTTAGTAGGACACTTC -ACGGAAGCGTTAGTAGGAGTACTC -ACGGAAGCGTTAGTAGGAGATGTC -ACGGAAGCGTTAGTAGGAACAGTC -ACGGAAGCGTTAGTAGGATTGCTG -ACGGAAGCGTTAGTAGGATCCATG -ACGGAAGCGTTAGTAGGATGTGTG -ACGGAAGCGTTAGTAGGACTAGTG -ACGGAAGCGTTAGTAGGACATCTG -ACGGAAGCGTTAGTAGGAGAGTTG -ACGGAAGCGTTAGTAGGAAGACTG -ACGGAAGCGTTAGTAGGATCGGTA -ACGGAAGCGTTAGTAGGATGCCTA -ACGGAAGCGTTAGTAGGACCACTA -ACGGAAGCGTTAGTAGGAGGAGTA -ACGGAAGCGTTAGTAGGATCGTCT -ACGGAAGCGTTAGTAGGATGCACT -ACGGAAGCGTTAGTAGGACTGACT -ACGGAAGCGTTAGTAGGACAACCT -ACGGAAGCGTTAGTAGGAGCTACT -ACGGAAGCGTTAGTAGGAGGATCT -ACGGAAGCGTTAGTAGGAAAGGCT -ACGGAAGCGTTAGTAGGATCAACC -ACGGAAGCGTTAGTAGGATGTTCC -ACGGAAGCGTTAGTAGGAATTCCC -ACGGAAGCGTTAGTAGGATTCTCG -ACGGAAGCGTTAGTAGGATAGACG -ACGGAAGCGTTAGTAGGAGTAACG -ACGGAAGCGTTAGTAGGAACTTCG -ACGGAAGCGTTAGTAGGATACGCA -ACGGAAGCGTTAGTAGGACTTGCA -ACGGAAGCGTTAGTAGGACGAACA -ACGGAAGCGTTAGTAGGACAGTCA -ACGGAAGCGTTAGTAGGAGATCCA -ACGGAAGCGTTAGTAGGAACGACA -ACGGAAGCGTTAGTAGGAAGCTCA -ACGGAAGCGTTAGTAGGATCACGT -ACGGAAGCGTTAGTAGGACGTAGT -ACGGAAGCGTTAGTAGGAGTCAGT -ACGGAAGCGTTAGTAGGAGAAGGT -ACGGAAGCGTTAGTAGGAAACCGT -ACGGAAGCGTTAGTAGGATTGTGC -ACGGAAGCGTTAGTAGGACTAAGC -ACGGAAGCGTTAGTAGGAACTAGC -ACGGAAGCGTTAGTAGGAAGATGC -ACGGAAGCGTTAGTAGGATGAAGG -ACGGAAGCGTTAGTAGGACAATGG -ACGGAAGCGTTAGTAGGAATGAGG -ACGGAAGCGTTAGTAGGAAATGGG -ACGGAAGCGTTAGTAGGATCCTGA -ACGGAAGCGTTAGTAGGATAGCGA -ACGGAAGCGTTAGTAGGACACAGA -ACGGAAGCGTTAGTAGGAGCAAGA -ACGGAAGCGTTAGTAGGAGGTTGA -ACGGAAGCGTTAGTAGGATCCGAT -ACGGAAGCGTTAGTAGGATGGCAT -ACGGAAGCGTTAGTAGGACGAGAT -ACGGAAGCGTTAGTAGGATACCAC -ACGGAAGCGTTAGTAGGACAGAAC -ACGGAAGCGTTAGTAGGAGTCTAC -ACGGAAGCGTTAGTAGGAACGTAC -ACGGAAGCGTTAGTAGGAAGTGAC -ACGGAAGCGTTAGTAGGACTGTAG -ACGGAAGCGTTAGTAGGACCTAAG -ACGGAAGCGTTAGTAGGAGTTCAG -ACGGAAGCGTTAGTAGGAGCATAG -ACGGAAGCGTTAGTAGGAGACAAG -ACGGAAGCGTTAGTAGGAAAGCAG -ACGGAAGCGTTAGTAGGACGTCAA -ACGGAAGCGTTAGTAGGAGCTGAA -ACGGAAGCGTTAGTAGGAAGTACG -ACGGAAGCGTTAGTAGGAATCCGA -ACGGAAGCGTTAGTAGGAATGGGA -ACGGAAGCGTTAGTAGGAGTGCAA -ACGGAAGCGTTAGTAGGAGAGGAA -ACGGAAGCGTTAGTAGGACAGGTA -ACGGAAGCGTTAGTAGGAGACTCT -ACGGAAGCGTTAGTAGGAAGTCCT -ACGGAAGCGTTAGTAGGATAAGCC -ACGGAAGCGTTAGTAGGAATAGCC -ACGGAAGCGTTAGTAGGATAACCG -ACGGAAGCGTTAGTAGGAATGCCA -ACGGAAGCGTTATCTTCGGGAAAC -ACGGAAGCGTTATCTTCGAACACC -ACGGAAGCGTTATCTTCGATCGAG -ACGGAAGCGTTATCTTCGCTCCTT -ACGGAAGCGTTATCTTCGCCTGTT -ACGGAAGCGTTATCTTCGCGGTTT -ACGGAAGCGTTATCTTCGGTGGTT -ACGGAAGCGTTATCTTCGGCCTTT -ACGGAAGCGTTATCTTCGGGTCTT -ACGGAAGCGTTATCTTCGACGCTT -ACGGAAGCGTTATCTTCGAGCGTT -ACGGAAGCGTTATCTTCGTTCGTC -ACGGAAGCGTTATCTTCGTCTCTC -ACGGAAGCGTTATCTTCGTGGATC -ACGGAAGCGTTATCTTCGCACTTC -ACGGAAGCGTTATCTTCGGTACTC -ACGGAAGCGTTATCTTCGGATGTC -ACGGAAGCGTTATCTTCGACAGTC -ACGGAAGCGTTATCTTCGTTGCTG -ACGGAAGCGTTATCTTCGTCCATG -ACGGAAGCGTTATCTTCGTGTGTG -ACGGAAGCGTTATCTTCGCTAGTG -ACGGAAGCGTTATCTTCGCATCTG -ACGGAAGCGTTATCTTCGGAGTTG -ACGGAAGCGTTATCTTCGAGACTG -ACGGAAGCGTTATCTTCGTCGGTA -ACGGAAGCGTTATCTTCGTGCCTA -ACGGAAGCGTTATCTTCGCCACTA -ACGGAAGCGTTATCTTCGGGAGTA -ACGGAAGCGTTATCTTCGTCGTCT -ACGGAAGCGTTATCTTCGTGCACT -ACGGAAGCGTTATCTTCGCTGACT -ACGGAAGCGTTATCTTCGCAACCT -ACGGAAGCGTTATCTTCGGCTACT -ACGGAAGCGTTATCTTCGGGATCT -ACGGAAGCGTTATCTTCGAAGGCT -ACGGAAGCGTTATCTTCGTCAACC -ACGGAAGCGTTATCTTCGTGTTCC -ACGGAAGCGTTATCTTCGATTCCC -ACGGAAGCGTTATCTTCGTTCTCG -ACGGAAGCGTTATCTTCGTAGACG -ACGGAAGCGTTATCTTCGGTAACG -ACGGAAGCGTTATCTTCGACTTCG -ACGGAAGCGTTATCTTCGTACGCA -ACGGAAGCGTTATCTTCGCTTGCA -ACGGAAGCGTTATCTTCGCGAACA -ACGGAAGCGTTATCTTCGCAGTCA -ACGGAAGCGTTATCTTCGGATCCA -ACGGAAGCGTTATCTTCGACGACA -ACGGAAGCGTTATCTTCGAGCTCA -ACGGAAGCGTTATCTTCGTCACGT -ACGGAAGCGTTATCTTCGCGTAGT -ACGGAAGCGTTATCTTCGGTCAGT -ACGGAAGCGTTATCTTCGGAAGGT -ACGGAAGCGTTATCTTCGAACCGT -ACGGAAGCGTTATCTTCGTTGTGC -ACGGAAGCGTTATCTTCGCTAAGC -ACGGAAGCGTTATCTTCGACTAGC -ACGGAAGCGTTATCTTCGAGATGC -ACGGAAGCGTTATCTTCGTGAAGG -ACGGAAGCGTTATCTTCGCAATGG -ACGGAAGCGTTATCTTCGATGAGG -ACGGAAGCGTTATCTTCGAATGGG -ACGGAAGCGTTATCTTCGTCCTGA -ACGGAAGCGTTATCTTCGTAGCGA -ACGGAAGCGTTATCTTCGCACAGA -ACGGAAGCGTTATCTTCGGCAAGA -ACGGAAGCGTTATCTTCGGGTTGA -ACGGAAGCGTTATCTTCGTCCGAT -ACGGAAGCGTTATCTTCGTGGCAT -ACGGAAGCGTTATCTTCGCGAGAT -ACGGAAGCGTTATCTTCGTACCAC -ACGGAAGCGTTATCTTCGCAGAAC -ACGGAAGCGTTATCTTCGGTCTAC -ACGGAAGCGTTATCTTCGACGTAC -ACGGAAGCGTTATCTTCGAGTGAC -ACGGAAGCGTTATCTTCGCTGTAG -ACGGAAGCGTTATCTTCGCCTAAG -ACGGAAGCGTTATCTTCGGTTCAG -ACGGAAGCGTTATCTTCGGCATAG -ACGGAAGCGTTATCTTCGGACAAG -ACGGAAGCGTTATCTTCGAAGCAG -ACGGAAGCGTTATCTTCGCGTCAA -ACGGAAGCGTTATCTTCGGCTGAA -ACGGAAGCGTTATCTTCGAGTACG -ACGGAAGCGTTATCTTCGATCCGA -ACGGAAGCGTTATCTTCGATGGGA -ACGGAAGCGTTATCTTCGGTGCAA -ACGGAAGCGTTATCTTCGGAGGAA -ACGGAAGCGTTATCTTCGCAGGTA -ACGGAAGCGTTATCTTCGGACTCT -ACGGAAGCGTTATCTTCGAGTCCT -ACGGAAGCGTTATCTTCGTAAGCC -ACGGAAGCGTTATCTTCGATAGCC -ACGGAAGCGTTATCTTCGTAACCG -ACGGAAGCGTTATCTTCGATGCCA -ACGGAAGCGTTAACTTGCGGAAAC -ACGGAAGCGTTAACTTGCAACACC -ACGGAAGCGTTAACTTGCATCGAG -ACGGAAGCGTTAACTTGCCTCCTT -ACGGAAGCGTTAACTTGCCCTGTT -ACGGAAGCGTTAACTTGCCGGTTT -ACGGAAGCGTTAACTTGCGTGGTT -ACGGAAGCGTTAACTTGCGCCTTT -ACGGAAGCGTTAACTTGCGGTCTT -ACGGAAGCGTTAACTTGCACGCTT -ACGGAAGCGTTAACTTGCAGCGTT -ACGGAAGCGTTAACTTGCTTCGTC -ACGGAAGCGTTAACTTGCTCTCTC -ACGGAAGCGTTAACTTGCTGGATC -ACGGAAGCGTTAACTTGCCACTTC -ACGGAAGCGTTAACTTGCGTACTC -ACGGAAGCGTTAACTTGCGATGTC -ACGGAAGCGTTAACTTGCACAGTC -ACGGAAGCGTTAACTTGCTTGCTG -ACGGAAGCGTTAACTTGCTCCATG -ACGGAAGCGTTAACTTGCTGTGTG -ACGGAAGCGTTAACTTGCCTAGTG -ACGGAAGCGTTAACTTGCCATCTG -ACGGAAGCGTTAACTTGCGAGTTG -ACGGAAGCGTTAACTTGCAGACTG -ACGGAAGCGTTAACTTGCTCGGTA -ACGGAAGCGTTAACTTGCTGCCTA -ACGGAAGCGTTAACTTGCCCACTA -ACGGAAGCGTTAACTTGCGGAGTA -ACGGAAGCGTTAACTTGCTCGTCT -ACGGAAGCGTTAACTTGCTGCACT -ACGGAAGCGTTAACTTGCCTGACT -ACGGAAGCGTTAACTTGCCAACCT -ACGGAAGCGTTAACTTGCGCTACT -ACGGAAGCGTTAACTTGCGGATCT -ACGGAAGCGTTAACTTGCAAGGCT -ACGGAAGCGTTAACTTGCTCAACC -ACGGAAGCGTTAACTTGCTGTTCC -ACGGAAGCGTTAACTTGCATTCCC -ACGGAAGCGTTAACTTGCTTCTCG -ACGGAAGCGTTAACTTGCTAGACG -ACGGAAGCGTTAACTTGCGTAACG -ACGGAAGCGTTAACTTGCACTTCG -ACGGAAGCGTTAACTTGCTACGCA -ACGGAAGCGTTAACTTGCCTTGCA -ACGGAAGCGTTAACTTGCCGAACA -ACGGAAGCGTTAACTTGCCAGTCA -ACGGAAGCGTTAACTTGCGATCCA -ACGGAAGCGTTAACTTGCACGACA -ACGGAAGCGTTAACTTGCAGCTCA -ACGGAAGCGTTAACTTGCTCACGT -ACGGAAGCGTTAACTTGCCGTAGT -ACGGAAGCGTTAACTTGCGTCAGT -ACGGAAGCGTTAACTTGCGAAGGT -ACGGAAGCGTTAACTTGCAACCGT -ACGGAAGCGTTAACTTGCTTGTGC -ACGGAAGCGTTAACTTGCCTAAGC -ACGGAAGCGTTAACTTGCACTAGC -ACGGAAGCGTTAACTTGCAGATGC -ACGGAAGCGTTAACTTGCTGAAGG -ACGGAAGCGTTAACTTGCCAATGG -ACGGAAGCGTTAACTTGCATGAGG -ACGGAAGCGTTAACTTGCAATGGG -ACGGAAGCGTTAACTTGCTCCTGA -ACGGAAGCGTTAACTTGCTAGCGA -ACGGAAGCGTTAACTTGCCACAGA -ACGGAAGCGTTAACTTGCGCAAGA -ACGGAAGCGTTAACTTGCGGTTGA -ACGGAAGCGTTAACTTGCTCCGAT -ACGGAAGCGTTAACTTGCTGGCAT -ACGGAAGCGTTAACTTGCCGAGAT -ACGGAAGCGTTAACTTGCTACCAC -ACGGAAGCGTTAACTTGCCAGAAC -ACGGAAGCGTTAACTTGCGTCTAC -ACGGAAGCGTTAACTTGCACGTAC -ACGGAAGCGTTAACTTGCAGTGAC -ACGGAAGCGTTAACTTGCCTGTAG -ACGGAAGCGTTAACTTGCCCTAAG -ACGGAAGCGTTAACTTGCGTTCAG -ACGGAAGCGTTAACTTGCGCATAG -ACGGAAGCGTTAACTTGCGACAAG -ACGGAAGCGTTAACTTGCAAGCAG -ACGGAAGCGTTAACTTGCCGTCAA -ACGGAAGCGTTAACTTGCGCTGAA -ACGGAAGCGTTAACTTGCAGTACG -ACGGAAGCGTTAACTTGCATCCGA -ACGGAAGCGTTAACTTGCATGGGA -ACGGAAGCGTTAACTTGCGTGCAA -ACGGAAGCGTTAACTTGCGAGGAA -ACGGAAGCGTTAACTTGCCAGGTA -ACGGAAGCGTTAACTTGCGACTCT -ACGGAAGCGTTAACTTGCAGTCCT -ACGGAAGCGTTAACTTGCTAAGCC -ACGGAAGCGTTAACTTGCATAGCC -ACGGAAGCGTTAACTTGCTAACCG -ACGGAAGCGTTAACTTGCATGCCA -ACGGAAGCGTTAACTCTGGGAAAC -ACGGAAGCGTTAACTCTGAACACC -ACGGAAGCGTTAACTCTGATCGAG -ACGGAAGCGTTAACTCTGCTCCTT -ACGGAAGCGTTAACTCTGCCTGTT -ACGGAAGCGTTAACTCTGCGGTTT -ACGGAAGCGTTAACTCTGGTGGTT -ACGGAAGCGTTAACTCTGGCCTTT -ACGGAAGCGTTAACTCTGGGTCTT -ACGGAAGCGTTAACTCTGACGCTT -ACGGAAGCGTTAACTCTGAGCGTT -ACGGAAGCGTTAACTCTGTTCGTC -ACGGAAGCGTTAACTCTGTCTCTC -ACGGAAGCGTTAACTCTGTGGATC -ACGGAAGCGTTAACTCTGCACTTC -ACGGAAGCGTTAACTCTGGTACTC -ACGGAAGCGTTAACTCTGGATGTC -ACGGAAGCGTTAACTCTGACAGTC -ACGGAAGCGTTAACTCTGTTGCTG -ACGGAAGCGTTAACTCTGTCCATG -ACGGAAGCGTTAACTCTGTGTGTG -ACGGAAGCGTTAACTCTGCTAGTG -ACGGAAGCGTTAACTCTGCATCTG -ACGGAAGCGTTAACTCTGGAGTTG -ACGGAAGCGTTAACTCTGAGACTG -ACGGAAGCGTTAACTCTGTCGGTA -ACGGAAGCGTTAACTCTGTGCCTA -ACGGAAGCGTTAACTCTGCCACTA -ACGGAAGCGTTAACTCTGGGAGTA -ACGGAAGCGTTAACTCTGTCGTCT -ACGGAAGCGTTAACTCTGTGCACT -ACGGAAGCGTTAACTCTGCTGACT -ACGGAAGCGTTAACTCTGCAACCT -ACGGAAGCGTTAACTCTGGCTACT -ACGGAAGCGTTAACTCTGGGATCT -ACGGAAGCGTTAACTCTGAAGGCT -ACGGAAGCGTTAACTCTGTCAACC -ACGGAAGCGTTAACTCTGTGTTCC -ACGGAAGCGTTAACTCTGATTCCC -ACGGAAGCGTTAACTCTGTTCTCG -ACGGAAGCGTTAACTCTGTAGACG -ACGGAAGCGTTAACTCTGGTAACG -ACGGAAGCGTTAACTCTGACTTCG -ACGGAAGCGTTAACTCTGTACGCA -ACGGAAGCGTTAACTCTGCTTGCA -ACGGAAGCGTTAACTCTGCGAACA -ACGGAAGCGTTAACTCTGCAGTCA -ACGGAAGCGTTAACTCTGGATCCA -ACGGAAGCGTTAACTCTGACGACA -ACGGAAGCGTTAACTCTGAGCTCA -ACGGAAGCGTTAACTCTGTCACGT -ACGGAAGCGTTAACTCTGCGTAGT -ACGGAAGCGTTAACTCTGGTCAGT -ACGGAAGCGTTAACTCTGGAAGGT -ACGGAAGCGTTAACTCTGAACCGT -ACGGAAGCGTTAACTCTGTTGTGC -ACGGAAGCGTTAACTCTGCTAAGC -ACGGAAGCGTTAACTCTGACTAGC -ACGGAAGCGTTAACTCTGAGATGC -ACGGAAGCGTTAACTCTGTGAAGG -ACGGAAGCGTTAACTCTGCAATGG -ACGGAAGCGTTAACTCTGATGAGG -ACGGAAGCGTTAACTCTGAATGGG -ACGGAAGCGTTAACTCTGTCCTGA -ACGGAAGCGTTAACTCTGTAGCGA -ACGGAAGCGTTAACTCTGCACAGA -ACGGAAGCGTTAACTCTGGCAAGA -ACGGAAGCGTTAACTCTGGGTTGA -ACGGAAGCGTTAACTCTGTCCGAT -ACGGAAGCGTTAACTCTGTGGCAT -ACGGAAGCGTTAACTCTGCGAGAT -ACGGAAGCGTTAACTCTGTACCAC -ACGGAAGCGTTAACTCTGCAGAAC -ACGGAAGCGTTAACTCTGGTCTAC -ACGGAAGCGTTAACTCTGACGTAC -ACGGAAGCGTTAACTCTGAGTGAC -ACGGAAGCGTTAACTCTGCTGTAG -ACGGAAGCGTTAACTCTGCCTAAG -ACGGAAGCGTTAACTCTGGTTCAG -ACGGAAGCGTTAACTCTGGCATAG -ACGGAAGCGTTAACTCTGGACAAG -ACGGAAGCGTTAACTCTGAAGCAG -ACGGAAGCGTTAACTCTGCGTCAA -ACGGAAGCGTTAACTCTGGCTGAA -ACGGAAGCGTTAACTCTGAGTACG -ACGGAAGCGTTAACTCTGATCCGA -ACGGAAGCGTTAACTCTGATGGGA -ACGGAAGCGTTAACTCTGGTGCAA -ACGGAAGCGTTAACTCTGGAGGAA -ACGGAAGCGTTAACTCTGCAGGTA -ACGGAAGCGTTAACTCTGGACTCT -ACGGAAGCGTTAACTCTGAGTCCT -ACGGAAGCGTTAACTCTGTAAGCC -ACGGAAGCGTTAACTCTGATAGCC -ACGGAAGCGTTAACTCTGTAACCG -ACGGAAGCGTTAACTCTGATGCCA -ACGGAAGCGTTACCTCAAGGAAAC -ACGGAAGCGTTACCTCAAAACACC -ACGGAAGCGTTACCTCAAATCGAG -ACGGAAGCGTTACCTCAACTCCTT -ACGGAAGCGTTACCTCAACCTGTT -ACGGAAGCGTTACCTCAACGGTTT -ACGGAAGCGTTACCTCAAGTGGTT -ACGGAAGCGTTACCTCAAGCCTTT -ACGGAAGCGTTACCTCAAGGTCTT -ACGGAAGCGTTACCTCAAACGCTT -ACGGAAGCGTTACCTCAAAGCGTT -ACGGAAGCGTTACCTCAATTCGTC -ACGGAAGCGTTACCTCAATCTCTC -ACGGAAGCGTTACCTCAATGGATC -ACGGAAGCGTTACCTCAACACTTC -ACGGAAGCGTTACCTCAAGTACTC -ACGGAAGCGTTACCTCAAGATGTC -ACGGAAGCGTTACCTCAAACAGTC -ACGGAAGCGTTACCTCAATTGCTG -ACGGAAGCGTTACCTCAATCCATG -ACGGAAGCGTTACCTCAATGTGTG -ACGGAAGCGTTACCTCAACTAGTG -ACGGAAGCGTTACCTCAACATCTG -ACGGAAGCGTTACCTCAAGAGTTG -ACGGAAGCGTTACCTCAAAGACTG -ACGGAAGCGTTACCTCAATCGGTA -ACGGAAGCGTTACCTCAATGCCTA -ACGGAAGCGTTACCTCAACCACTA -ACGGAAGCGTTACCTCAAGGAGTA -ACGGAAGCGTTACCTCAATCGTCT -ACGGAAGCGTTACCTCAATGCACT -ACGGAAGCGTTACCTCAACTGACT -ACGGAAGCGTTACCTCAACAACCT -ACGGAAGCGTTACCTCAAGCTACT -ACGGAAGCGTTACCTCAAGGATCT -ACGGAAGCGTTACCTCAAAAGGCT -ACGGAAGCGTTACCTCAATCAACC -ACGGAAGCGTTACCTCAATGTTCC -ACGGAAGCGTTACCTCAAATTCCC -ACGGAAGCGTTACCTCAATTCTCG -ACGGAAGCGTTACCTCAATAGACG -ACGGAAGCGTTACCTCAAGTAACG -ACGGAAGCGTTACCTCAAACTTCG -ACGGAAGCGTTACCTCAATACGCA -ACGGAAGCGTTACCTCAACTTGCA -ACGGAAGCGTTACCTCAACGAACA -ACGGAAGCGTTACCTCAACAGTCA -ACGGAAGCGTTACCTCAAGATCCA -ACGGAAGCGTTACCTCAAACGACA -ACGGAAGCGTTACCTCAAAGCTCA -ACGGAAGCGTTACCTCAATCACGT -ACGGAAGCGTTACCTCAACGTAGT -ACGGAAGCGTTACCTCAAGTCAGT -ACGGAAGCGTTACCTCAAGAAGGT -ACGGAAGCGTTACCTCAAAACCGT -ACGGAAGCGTTACCTCAATTGTGC -ACGGAAGCGTTACCTCAACTAAGC -ACGGAAGCGTTACCTCAAACTAGC -ACGGAAGCGTTACCTCAAAGATGC -ACGGAAGCGTTACCTCAATGAAGG -ACGGAAGCGTTACCTCAACAATGG -ACGGAAGCGTTACCTCAAATGAGG -ACGGAAGCGTTACCTCAAAATGGG -ACGGAAGCGTTACCTCAATCCTGA -ACGGAAGCGTTACCTCAATAGCGA -ACGGAAGCGTTACCTCAACACAGA -ACGGAAGCGTTACCTCAAGCAAGA -ACGGAAGCGTTACCTCAAGGTTGA -ACGGAAGCGTTACCTCAATCCGAT -ACGGAAGCGTTACCTCAATGGCAT -ACGGAAGCGTTACCTCAACGAGAT -ACGGAAGCGTTACCTCAATACCAC -ACGGAAGCGTTACCTCAACAGAAC -ACGGAAGCGTTACCTCAAGTCTAC -ACGGAAGCGTTACCTCAAACGTAC -ACGGAAGCGTTACCTCAAAGTGAC -ACGGAAGCGTTACCTCAACTGTAG -ACGGAAGCGTTACCTCAACCTAAG -ACGGAAGCGTTACCTCAAGTTCAG -ACGGAAGCGTTACCTCAAGCATAG -ACGGAAGCGTTACCTCAAGACAAG -ACGGAAGCGTTACCTCAAAAGCAG -ACGGAAGCGTTACCTCAACGTCAA -ACGGAAGCGTTACCTCAAGCTGAA -ACGGAAGCGTTACCTCAAAGTACG -ACGGAAGCGTTACCTCAAATCCGA -ACGGAAGCGTTACCTCAAATGGGA -ACGGAAGCGTTACCTCAAGTGCAA -ACGGAAGCGTTACCTCAAGAGGAA -ACGGAAGCGTTACCTCAACAGGTA -ACGGAAGCGTTACCTCAAGACTCT -ACGGAAGCGTTACCTCAAAGTCCT -ACGGAAGCGTTACCTCAATAAGCC -ACGGAAGCGTTACCTCAAATAGCC -ACGGAAGCGTTACCTCAATAACCG -ACGGAAGCGTTACCTCAAATGCCA -ACGGAAGCGTTAACTGCTGGAAAC -ACGGAAGCGTTAACTGCTAACACC -ACGGAAGCGTTAACTGCTATCGAG -ACGGAAGCGTTAACTGCTCTCCTT -ACGGAAGCGTTAACTGCTCCTGTT -ACGGAAGCGTTAACTGCTCGGTTT -ACGGAAGCGTTAACTGCTGTGGTT -ACGGAAGCGTTAACTGCTGCCTTT -ACGGAAGCGTTAACTGCTGGTCTT -ACGGAAGCGTTAACTGCTACGCTT -ACGGAAGCGTTAACTGCTAGCGTT -ACGGAAGCGTTAACTGCTTTCGTC -ACGGAAGCGTTAACTGCTTCTCTC -ACGGAAGCGTTAACTGCTTGGATC -ACGGAAGCGTTAACTGCTCACTTC -ACGGAAGCGTTAACTGCTGTACTC -ACGGAAGCGTTAACTGCTGATGTC -ACGGAAGCGTTAACTGCTACAGTC -ACGGAAGCGTTAACTGCTTTGCTG -ACGGAAGCGTTAACTGCTTCCATG -ACGGAAGCGTTAACTGCTTGTGTG -ACGGAAGCGTTAACTGCTCTAGTG -ACGGAAGCGTTAACTGCTCATCTG -ACGGAAGCGTTAACTGCTGAGTTG -ACGGAAGCGTTAACTGCTAGACTG -ACGGAAGCGTTAACTGCTTCGGTA -ACGGAAGCGTTAACTGCTTGCCTA -ACGGAAGCGTTAACTGCTCCACTA -ACGGAAGCGTTAACTGCTGGAGTA -ACGGAAGCGTTAACTGCTTCGTCT -ACGGAAGCGTTAACTGCTTGCACT -ACGGAAGCGTTAACTGCTCTGACT -ACGGAAGCGTTAACTGCTCAACCT -ACGGAAGCGTTAACTGCTGCTACT -ACGGAAGCGTTAACTGCTGGATCT -ACGGAAGCGTTAACTGCTAAGGCT -ACGGAAGCGTTAACTGCTTCAACC -ACGGAAGCGTTAACTGCTTGTTCC -ACGGAAGCGTTAACTGCTATTCCC -ACGGAAGCGTTAACTGCTTTCTCG -ACGGAAGCGTTAACTGCTTAGACG -ACGGAAGCGTTAACTGCTGTAACG -ACGGAAGCGTTAACTGCTACTTCG -ACGGAAGCGTTAACTGCTTACGCA -ACGGAAGCGTTAACTGCTCTTGCA -ACGGAAGCGTTAACTGCTCGAACA -ACGGAAGCGTTAACTGCTCAGTCA -ACGGAAGCGTTAACTGCTGATCCA -ACGGAAGCGTTAACTGCTACGACA -ACGGAAGCGTTAACTGCTAGCTCA -ACGGAAGCGTTAACTGCTTCACGT -ACGGAAGCGTTAACTGCTCGTAGT -ACGGAAGCGTTAACTGCTGTCAGT -ACGGAAGCGTTAACTGCTGAAGGT -ACGGAAGCGTTAACTGCTAACCGT -ACGGAAGCGTTAACTGCTTTGTGC -ACGGAAGCGTTAACTGCTCTAAGC -ACGGAAGCGTTAACTGCTACTAGC -ACGGAAGCGTTAACTGCTAGATGC -ACGGAAGCGTTAACTGCTTGAAGG -ACGGAAGCGTTAACTGCTCAATGG -ACGGAAGCGTTAACTGCTATGAGG -ACGGAAGCGTTAACTGCTAATGGG -ACGGAAGCGTTAACTGCTTCCTGA -ACGGAAGCGTTAACTGCTTAGCGA -ACGGAAGCGTTAACTGCTCACAGA -ACGGAAGCGTTAACTGCTGCAAGA -ACGGAAGCGTTAACTGCTGGTTGA -ACGGAAGCGTTAACTGCTTCCGAT -ACGGAAGCGTTAACTGCTTGGCAT -ACGGAAGCGTTAACTGCTCGAGAT -ACGGAAGCGTTAACTGCTTACCAC -ACGGAAGCGTTAACTGCTCAGAAC -ACGGAAGCGTTAACTGCTGTCTAC -ACGGAAGCGTTAACTGCTACGTAC -ACGGAAGCGTTAACTGCTAGTGAC -ACGGAAGCGTTAACTGCTCTGTAG -ACGGAAGCGTTAACTGCTCCTAAG -ACGGAAGCGTTAACTGCTGTTCAG -ACGGAAGCGTTAACTGCTGCATAG -ACGGAAGCGTTAACTGCTGACAAG -ACGGAAGCGTTAACTGCTAAGCAG -ACGGAAGCGTTAACTGCTCGTCAA -ACGGAAGCGTTAACTGCTGCTGAA -ACGGAAGCGTTAACTGCTAGTACG -ACGGAAGCGTTAACTGCTATCCGA -ACGGAAGCGTTAACTGCTATGGGA -ACGGAAGCGTTAACTGCTGTGCAA -ACGGAAGCGTTAACTGCTGAGGAA -ACGGAAGCGTTAACTGCTCAGGTA -ACGGAAGCGTTAACTGCTGACTCT -ACGGAAGCGTTAACTGCTAGTCCT -ACGGAAGCGTTAACTGCTTAAGCC -ACGGAAGCGTTAACTGCTATAGCC -ACGGAAGCGTTAACTGCTTAACCG -ACGGAAGCGTTAACTGCTATGCCA -ACGGAAGCGTTATCTGGAGGAAAC -ACGGAAGCGTTATCTGGAAACACC -ACGGAAGCGTTATCTGGAATCGAG -ACGGAAGCGTTATCTGGACTCCTT -ACGGAAGCGTTATCTGGACCTGTT -ACGGAAGCGTTATCTGGACGGTTT -ACGGAAGCGTTATCTGGAGTGGTT -ACGGAAGCGTTATCTGGAGCCTTT -ACGGAAGCGTTATCTGGAGGTCTT -ACGGAAGCGTTATCTGGAACGCTT -ACGGAAGCGTTATCTGGAAGCGTT -ACGGAAGCGTTATCTGGATTCGTC -ACGGAAGCGTTATCTGGATCTCTC -ACGGAAGCGTTATCTGGATGGATC -ACGGAAGCGTTATCTGGACACTTC -ACGGAAGCGTTATCTGGAGTACTC -ACGGAAGCGTTATCTGGAGATGTC -ACGGAAGCGTTATCTGGAACAGTC -ACGGAAGCGTTATCTGGATTGCTG -ACGGAAGCGTTATCTGGATCCATG -ACGGAAGCGTTATCTGGATGTGTG -ACGGAAGCGTTATCTGGACTAGTG -ACGGAAGCGTTATCTGGACATCTG -ACGGAAGCGTTATCTGGAGAGTTG -ACGGAAGCGTTATCTGGAAGACTG -ACGGAAGCGTTATCTGGATCGGTA -ACGGAAGCGTTATCTGGATGCCTA -ACGGAAGCGTTATCTGGACCACTA -ACGGAAGCGTTATCTGGAGGAGTA -ACGGAAGCGTTATCTGGATCGTCT -ACGGAAGCGTTATCTGGATGCACT -ACGGAAGCGTTATCTGGACTGACT -ACGGAAGCGTTATCTGGACAACCT -ACGGAAGCGTTATCTGGAGCTACT -ACGGAAGCGTTATCTGGAGGATCT -ACGGAAGCGTTATCTGGAAAGGCT -ACGGAAGCGTTATCTGGATCAACC -ACGGAAGCGTTATCTGGATGTTCC -ACGGAAGCGTTATCTGGAATTCCC -ACGGAAGCGTTATCTGGATTCTCG -ACGGAAGCGTTATCTGGATAGACG -ACGGAAGCGTTATCTGGAGTAACG -ACGGAAGCGTTATCTGGAACTTCG -ACGGAAGCGTTATCTGGATACGCA -ACGGAAGCGTTATCTGGACTTGCA -ACGGAAGCGTTATCTGGACGAACA -ACGGAAGCGTTATCTGGACAGTCA -ACGGAAGCGTTATCTGGAGATCCA -ACGGAAGCGTTATCTGGAACGACA -ACGGAAGCGTTATCTGGAAGCTCA -ACGGAAGCGTTATCTGGATCACGT -ACGGAAGCGTTATCTGGACGTAGT -ACGGAAGCGTTATCTGGAGTCAGT -ACGGAAGCGTTATCTGGAGAAGGT -ACGGAAGCGTTATCTGGAAACCGT -ACGGAAGCGTTATCTGGATTGTGC -ACGGAAGCGTTATCTGGACTAAGC -ACGGAAGCGTTATCTGGAACTAGC -ACGGAAGCGTTATCTGGAAGATGC -ACGGAAGCGTTATCTGGATGAAGG -ACGGAAGCGTTATCTGGACAATGG -ACGGAAGCGTTATCTGGAATGAGG -ACGGAAGCGTTATCTGGAAATGGG -ACGGAAGCGTTATCTGGATCCTGA -ACGGAAGCGTTATCTGGATAGCGA -ACGGAAGCGTTATCTGGACACAGA -ACGGAAGCGTTATCTGGAGCAAGA -ACGGAAGCGTTATCTGGAGGTTGA -ACGGAAGCGTTATCTGGATCCGAT -ACGGAAGCGTTATCTGGATGGCAT -ACGGAAGCGTTATCTGGACGAGAT -ACGGAAGCGTTATCTGGATACCAC -ACGGAAGCGTTATCTGGACAGAAC -ACGGAAGCGTTATCTGGAGTCTAC -ACGGAAGCGTTATCTGGAACGTAC -ACGGAAGCGTTATCTGGAAGTGAC -ACGGAAGCGTTATCTGGACTGTAG -ACGGAAGCGTTATCTGGACCTAAG -ACGGAAGCGTTATCTGGAGTTCAG -ACGGAAGCGTTATCTGGAGCATAG -ACGGAAGCGTTATCTGGAGACAAG -ACGGAAGCGTTATCTGGAAAGCAG -ACGGAAGCGTTATCTGGACGTCAA -ACGGAAGCGTTATCTGGAGCTGAA -ACGGAAGCGTTATCTGGAAGTACG -ACGGAAGCGTTATCTGGAATCCGA -ACGGAAGCGTTATCTGGAATGGGA -ACGGAAGCGTTATCTGGAGTGCAA -ACGGAAGCGTTATCTGGAGAGGAA -ACGGAAGCGTTATCTGGACAGGTA -ACGGAAGCGTTATCTGGAGACTCT -ACGGAAGCGTTATCTGGAAGTCCT -ACGGAAGCGTTATCTGGATAAGCC -ACGGAAGCGTTATCTGGAATAGCC -ACGGAAGCGTTATCTGGATAACCG -ACGGAAGCGTTATCTGGAATGCCA -ACGGAAGCGTTAGCTAAGGGAAAC -ACGGAAGCGTTAGCTAAGAACACC -ACGGAAGCGTTAGCTAAGATCGAG -ACGGAAGCGTTAGCTAAGCTCCTT -ACGGAAGCGTTAGCTAAGCCTGTT -ACGGAAGCGTTAGCTAAGCGGTTT -ACGGAAGCGTTAGCTAAGGTGGTT -ACGGAAGCGTTAGCTAAGGCCTTT -ACGGAAGCGTTAGCTAAGGGTCTT -ACGGAAGCGTTAGCTAAGACGCTT -ACGGAAGCGTTAGCTAAGAGCGTT -ACGGAAGCGTTAGCTAAGTTCGTC -ACGGAAGCGTTAGCTAAGTCTCTC -ACGGAAGCGTTAGCTAAGTGGATC -ACGGAAGCGTTAGCTAAGCACTTC -ACGGAAGCGTTAGCTAAGGTACTC -ACGGAAGCGTTAGCTAAGGATGTC -ACGGAAGCGTTAGCTAAGACAGTC -ACGGAAGCGTTAGCTAAGTTGCTG -ACGGAAGCGTTAGCTAAGTCCATG -ACGGAAGCGTTAGCTAAGTGTGTG -ACGGAAGCGTTAGCTAAGCTAGTG -ACGGAAGCGTTAGCTAAGCATCTG -ACGGAAGCGTTAGCTAAGGAGTTG -ACGGAAGCGTTAGCTAAGAGACTG -ACGGAAGCGTTAGCTAAGTCGGTA -ACGGAAGCGTTAGCTAAGTGCCTA -ACGGAAGCGTTAGCTAAGCCACTA -ACGGAAGCGTTAGCTAAGGGAGTA -ACGGAAGCGTTAGCTAAGTCGTCT -ACGGAAGCGTTAGCTAAGTGCACT -ACGGAAGCGTTAGCTAAGCTGACT -ACGGAAGCGTTAGCTAAGCAACCT -ACGGAAGCGTTAGCTAAGGCTACT -ACGGAAGCGTTAGCTAAGGGATCT -ACGGAAGCGTTAGCTAAGAAGGCT -ACGGAAGCGTTAGCTAAGTCAACC -ACGGAAGCGTTAGCTAAGTGTTCC -ACGGAAGCGTTAGCTAAGATTCCC -ACGGAAGCGTTAGCTAAGTTCTCG -ACGGAAGCGTTAGCTAAGTAGACG -ACGGAAGCGTTAGCTAAGGTAACG -ACGGAAGCGTTAGCTAAGACTTCG -ACGGAAGCGTTAGCTAAGTACGCA -ACGGAAGCGTTAGCTAAGCTTGCA -ACGGAAGCGTTAGCTAAGCGAACA -ACGGAAGCGTTAGCTAAGCAGTCA -ACGGAAGCGTTAGCTAAGGATCCA -ACGGAAGCGTTAGCTAAGACGACA -ACGGAAGCGTTAGCTAAGAGCTCA -ACGGAAGCGTTAGCTAAGTCACGT -ACGGAAGCGTTAGCTAAGCGTAGT -ACGGAAGCGTTAGCTAAGGTCAGT -ACGGAAGCGTTAGCTAAGGAAGGT -ACGGAAGCGTTAGCTAAGAACCGT -ACGGAAGCGTTAGCTAAGTTGTGC -ACGGAAGCGTTAGCTAAGCTAAGC -ACGGAAGCGTTAGCTAAGACTAGC -ACGGAAGCGTTAGCTAAGAGATGC -ACGGAAGCGTTAGCTAAGTGAAGG -ACGGAAGCGTTAGCTAAGCAATGG -ACGGAAGCGTTAGCTAAGATGAGG -ACGGAAGCGTTAGCTAAGAATGGG -ACGGAAGCGTTAGCTAAGTCCTGA -ACGGAAGCGTTAGCTAAGTAGCGA -ACGGAAGCGTTAGCTAAGCACAGA -ACGGAAGCGTTAGCTAAGGCAAGA -ACGGAAGCGTTAGCTAAGGGTTGA -ACGGAAGCGTTAGCTAAGTCCGAT -ACGGAAGCGTTAGCTAAGTGGCAT -ACGGAAGCGTTAGCTAAGCGAGAT -ACGGAAGCGTTAGCTAAGTACCAC -ACGGAAGCGTTAGCTAAGCAGAAC -ACGGAAGCGTTAGCTAAGGTCTAC -ACGGAAGCGTTAGCTAAGACGTAC -ACGGAAGCGTTAGCTAAGAGTGAC -ACGGAAGCGTTAGCTAAGCTGTAG -ACGGAAGCGTTAGCTAAGCCTAAG -ACGGAAGCGTTAGCTAAGGTTCAG -ACGGAAGCGTTAGCTAAGGCATAG -ACGGAAGCGTTAGCTAAGGACAAG -ACGGAAGCGTTAGCTAAGAAGCAG -ACGGAAGCGTTAGCTAAGCGTCAA -ACGGAAGCGTTAGCTAAGGCTGAA -ACGGAAGCGTTAGCTAAGAGTACG -ACGGAAGCGTTAGCTAAGATCCGA -ACGGAAGCGTTAGCTAAGATGGGA -ACGGAAGCGTTAGCTAAGGTGCAA -ACGGAAGCGTTAGCTAAGGAGGAA -ACGGAAGCGTTAGCTAAGCAGGTA -ACGGAAGCGTTAGCTAAGGACTCT -ACGGAAGCGTTAGCTAAGAGTCCT -ACGGAAGCGTTAGCTAAGTAAGCC -ACGGAAGCGTTAGCTAAGATAGCC -ACGGAAGCGTTAGCTAAGTAACCG -ACGGAAGCGTTAGCTAAGATGCCA -ACGGAAGCGTTAACCTCAGGAAAC -ACGGAAGCGTTAACCTCAAACACC -ACGGAAGCGTTAACCTCAATCGAG -ACGGAAGCGTTAACCTCACTCCTT -ACGGAAGCGTTAACCTCACCTGTT -ACGGAAGCGTTAACCTCACGGTTT -ACGGAAGCGTTAACCTCAGTGGTT -ACGGAAGCGTTAACCTCAGCCTTT -ACGGAAGCGTTAACCTCAGGTCTT -ACGGAAGCGTTAACCTCAACGCTT -ACGGAAGCGTTAACCTCAAGCGTT -ACGGAAGCGTTAACCTCATTCGTC -ACGGAAGCGTTAACCTCATCTCTC -ACGGAAGCGTTAACCTCATGGATC -ACGGAAGCGTTAACCTCACACTTC -ACGGAAGCGTTAACCTCAGTACTC -ACGGAAGCGTTAACCTCAGATGTC -ACGGAAGCGTTAACCTCAACAGTC -ACGGAAGCGTTAACCTCATTGCTG -ACGGAAGCGTTAACCTCATCCATG -ACGGAAGCGTTAACCTCATGTGTG -ACGGAAGCGTTAACCTCACTAGTG -ACGGAAGCGTTAACCTCACATCTG -ACGGAAGCGTTAACCTCAGAGTTG -ACGGAAGCGTTAACCTCAAGACTG -ACGGAAGCGTTAACCTCATCGGTA -ACGGAAGCGTTAACCTCATGCCTA -ACGGAAGCGTTAACCTCACCACTA -ACGGAAGCGTTAACCTCAGGAGTA -ACGGAAGCGTTAACCTCATCGTCT -ACGGAAGCGTTAACCTCATGCACT -ACGGAAGCGTTAACCTCACTGACT -ACGGAAGCGTTAACCTCACAACCT -ACGGAAGCGTTAACCTCAGCTACT -ACGGAAGCGTTAACCTCAGGATCT -ACGGAAGCGTTAACCTCAAAGGCT -ACGGAAGCGTTAACCTCATCAACC -ACGGAAGCGTTAACCTCATGTTCC -ACGGAAGCGTTAACCTCAATTCCC -ACGGAAGCGTTAACCTCATTCTCG -ACGGAAGCGTTAACCTCATAGACG -ACGGAAGCGTTAACCTCAGTAACG -ACGGAAGCGTTAACCTCAACTTCG -ACGGAAGCGTTAACCTCATACGCA -ACGGAAGCGTTAACCTCACTTGCA -ACGGAAGCGTTAACCTCACGAACA -ACGGAAGCGTTAACCTCACAGTCA -ACGGAAGCGTTAACCTCAGATCCA -ACGGAAGCGTTAACCTCAACGACA -ACGGAAGCGTTAACCTCAAGCTCA -ACGGAAGCGTTAACCTCATCACGT -ACGGAAGCGTTAACCTCACGTAGT -ACGGAAGCGTTAACCTCAGTCAGT -ACGGAAGCGTTAACCTCAGAAGGT -ACGGAAGCGTTAACCTCAAACCGT -ACGGAAGCGTTAACCTCATTGTGC -ACGGAAGCGTTAACCTCACTAAGC -ACGGAAGCGTTAACCTCAACTAGC -ACGGAAGCGTTAACCTCAAGATGC -ACGGAAGCGTTAACCTCATGAAGG -ACGGAAGCGTTAACCTCACAATGG -ACGGAAGCGTTAACCTCAATGAGG -ACGGAAGCGTTAACCTCAAATGGG -ACGGAAGCGTTAACCTCATCCTGA -ACGGAAGCGTTAACCTCATAGCGA -ACGGAAGCGTTAACCTCACACAGA -ACGGAAGCGTTAACCTCAGCAAGA -ACGGAAGCGTTAACCTCAGGTTGA -ACGGAAGCGTTAACCTCATCCGAT -ACGGAAGCGTTAACCTCATGGCAT -ACGGAAGCGTTAACCTCACGAGAT -ACGGAAGCGTTAACCTCATACCAC -ACGGAAGCGTTAACCTCACAGAAC -ACGGAAGCGTTAACCTCAGTCTAC -ACGGAAGCGTTAACCTCAACGTAC -ACGGAAGCGTTAACCTCAAGTGAC -ACGGAAGCGTTAACCTCACTGTAG -ACGGAAGCGTTAACCTCACCTAAG -ACGGAAGCGTTAACCTCAGTTCAG -ACGGAAGCGTTAACCTCAGCATAG -ACGGAAGCGTTAACCTCAGACAAG -ACGGAAGCGTTAACCTCAAAGCAG -ACGGAAGCGTTAACCTCACGTCAA -ACGGAAGCGTTAACCTCAGCTGAA -ACGGAAGCGTTAACCTCAAGTACG -ACGGAAGCGTTAACCTCAATCCGA -ACGGAAGCGTTAACCTCAATGGGA -ACGGAAGCGTTAACCTCAGTGCAA -ACGGAAGCGTTAACCTCAGAGGAA -ACGGAAGCGTTAACCTCACAGGTA -ACGGAAGCGTTAACCTCAGACTCT -ACGGAAGCGTTAACCTCAAGTCCT -ACGGAAGCGTTAACCTCATAAGCC -ACGGAAGCGTTAACCTCAATAGCC -ACGGAAGCGTTAACCTCATAACCG -ACGGAAGCGTTAACCTCAATGCCA -ACGGAAGCGTTATCCTGTGGAAAC -ACGGAAGCGTTATCCTGTAACACC -ACGGAAGCGTTATCCTGTATCGAG -ACGGAAGCGTTATCCTGTCTCCTT -ACGGAAGCGTTATCCTGTCCTGTT -ACGGAAGCGTTATCCTGTCGGTTT -ACGGAAGCGTTATCCTGTGTGGTT -ACGGAAGCGTTATCCTGTGCCTTT -ACGGAAGCGTTATCCTGTGGTCTT -ACGGAAGCGTTATCCTGTACGCTT -ACGGAAGCGTTATCCTGTAGCGTT -ACGGAAGCGTTATCCTGTTTCGTC -ACGGAAGCGTTATCCTGTTCTCTC -ACGGAAGCGTTATCCTGTTGGATC -ACGGAAGCGTTATCCTGTCACTTC -ACGGAAGCGTTATCCTGTGTACTC -ACGGAAGCGTTATCCTGTGATGTC -ACGGAAGCGTTATCCTGTACAGTC -ACGGAAGCGTTATCCTGTTTGCTG -ACGGAAGCGTTATCCTGTTCCATG -ACGGAAGCGTTATCCTGTTGTGTG -ACGGAAGCGTTATCCTGTCTAGTG -ACGGAAGCGTTATCCTGTCATCTG -ACGGAAGCGTTATCCTGTGAGTTG -ACGGAAGCGTTATCCTGTAGACTG -ACGGAAGCGTTATCCTGTTCGGTA -ACGGAAGCGTTATCCTGTTGCCTA -ACGGAAGCGTTATCCTGTCCACTA -ACGGAAGCGTTATCCTGTGGAGTA -ACGGAAGCGTTATCCTGTTCGTCT -ACGGAAGCGTTATCCTGTTGCACT -ACGGAAGCGTTATCCTGTCTGACT -ACGGAAGCGTTATCCTGTCAACCT -ACGGAAGCGTTATCCTGTGCTACT -ACGGAAGCGTTATCCTGTGGATCT -ACGGAAGCGTTATCCTGTAAGGCT -ACGGAAGCGTTATCCTGTTCAACC -ACGGAAGCGTTATCCTGTTGTTCC -ACGGAAGCGTTATCCTGTATTCCC -ACGGAAGCGTTATCCTGTTTCTCG -ACGGAAGCGTTATCCTGTTAGACG -ACGGAAGCGTTATCCTGTGTAACG -ACGGAAGCGTTATCCTGTACTTCG -ACGGAAGCGTTATCCTGTTACGCA -ACGGAAGCGTTATCCTGTCTTGCA -ACGGAAGCGTTATCCTGTCGAACA -ACGGAAGCGTTATCCTGTCAGTCA -ACGGAAGCGTTATCCTGTGATCCA -ACGGAAGCGTTATCCTGTACGACA -ACGGAAGCGTTATCCTGTAGCTCA -ACGGAAGCGTTATCCTGTTCACGT -ACGGAAGCGTTATCCTGTCGTAGT -ACGGAAGCGTTATCCTGTGTCAGT -ACGGAAGCGTTATCCTGTGAAGGT -ACGGAAGCGTTATCCTGTAACCGT -ACGGAAGCGTTATCCTGTTTGTGC -ACGGAAGCGTTATCCTGTCTAAGC -ACGGAAGCGTTATCCTGTACTAGC -ACGGAAGCGTTATCCTGTAGATGC -ACGGAAGCGTTATCCTGTTGAAGG -ACGGAAGCGTTATCCTGTCAATGG -ACGGAAGCGTTATCCTGTATGAGG -ACGGAAGCGTTATCCTGTAATGGG -ACGGAAGCGTTATCCTGTTCCTGA -ACGGAAGCGTTATCCTGTTAGCGA -ACGGAAGCGTTATCCTGTCACAGA -ACGGAAGCGTTATCCTGTGCAAGA -ACGGAAGCGTTATCCTGTGGTTGA -ACGGAAGCGTTATCCTGTTCCGAT -ACGGAAGCGTTATCCTGTTGGCAT -ACGGAAGCGTTATCCTGTCGAGAT -ACGGAAGCGTTATCCTGTTACCAC -ACGGAAGCGTTATCCTGTCAGAAC -ACGGAAGCGTTATCCTGTGTCTAC -ACGGAAGCGTTATCCTGTACGTAC -ACGGAAGCGTTATCCTGTAGTGAC -ACGGAAGCGTTATCCTGTCTGTAG -ACGGAAGCGTTATCCTGTCCTAAG -ACGGAAGCGTTATCCTGTGTTCAG -ACGGAAGCGTTATCCTGTGCATAG -ACGGAAGCGTTATCCTGTGACAAG -ACGGAAGCGTTATCCTGTAAGCAG -ACGGAAGCGTTATCCTGTCGTCAA -ACGGAAGCGTTATCCTGTGCTGAA -ACGGAAGCGTTATCCTGTAGTACG -ACGGAAGCGTTATCCTGTATCCGA -ACGGAAGCGTTATCCTGTATGGGA -ACGGAAGCGTTATCCTGTGTGCAA -ACGGAAGCGTTATCCTGTGAGGAA -ACGGAAGCGTTATCCTGTCAGGTA -ACGGAAGCGTTATCCTGTGACTCT -ACGGAAGCGTTATCCTGTAGTCCT -ACGGAAGCGTTATCCTGTTAAGCC -ACGGAAGCGTTATCCTGTATAGCC -ACGGAAGCGTTATCCTGTTAACCG -ACGGAAGCGTTATCCTGTATGCCA -ACGGAAGCGTTACCCATTGGAAAC -ACGGAAGCGTTACCCATTAACACC -ACGGAAGCGTTACCCATTATCGAG -ACGGAAGCGTTACCCATTCTCCTT -ACGGAAGCGTTACCCATTCCTGTT -ACGGAAGCGTTACCCATTCGGTTT -ACGGAAGCGTTACCCATTGTGGTT -ACGGAAGCGTTACCCATTGCCTTT -ACGGAAGCGTTACCCATTGGTCTT -ACGGAAGCGTTACCCATTACGCTT -ACGGAAGCGTTACCCATTAGCGTT -ACGGAAGCGTTACCCATTTTCGTC -ACGGAAGCGTTACCCATTTCTCTC -ACGGAAGCGTTACCCATTTGGATC -ACGGAAGCGTTACCCATTCACTTC -ACGGAAGCGTTACCCATTGTACTC -ACGGAAGCGTTACCCATTGATGTC -ACGGAAGCGTTACCCATTACAGTC -ACGGAAGCGTTACCCATTTTGCTG -ACGGAAGCGTTACCCATTTCCATG -ACGGAAGCGTTACCCATTTGTGTG -ACGGAAGCGTTACCCATTCTAGTG -ACGGAAGCGTTACCCATTCATCTG -ACGGAAGCGTTACCCATTGAGTTG -ACGGAAGCGTTACCCATTAGACTG -ACGGAAGCGTTACCCATTTCGGTA -ACGGAAGCGTTACCCATTTGCCTA -ACGGAAGCGTTACCCATTCCACTA -ACGGAAGCGTTACCCATTGGAGTA -ACGGAAGCGTTACCCATTTCGTCT -ACGGAAGCGTTACCCATTTGCACT -ACGGAAGCGTTACCCATTCTGACT -ACGGAAGCGTTACCCATTCAACCT -ACGGAAGCGTTACCCATTGCTACT -ACGGAAGCGTTACCCATTGGATCT -ACGGAAGCGTTACCCATTAAGGCT -ACGGAAGCGTTACCCATTTCAACC -ACGGAAGCGTTACCCATTTGTTCC -ACGGAAGCGTTACCCATTATTCCC -ACGGAAGCGTTACCCATTTTCTCG -ACGGAAGCGTTACCCATTTAGACG -ACGGAAGCGTTACCCATTGTAACG -ACGGAAGCGTTACCCATTACTTCG -ACGGAAGCGTTACCCATTTACGCA -ACGGAAGCGTTACCCATTCTTGCA -ACGGAAGCGTTACCCATTCGAACA -ACGGAAGCGTTACCCATTCAGTCA -ACGGAAGCGTTACCCATTGATCCA -ACGGAAGCGTTACCCATTACGACA -ACGGAAGCGTTACCCATTAGCTCA -ACGGAAGCGTTACCCATTTCACGT -ACGGAAGCGTTACCCATTCGTAGT -ACGGAAGCGTTACCCATTGTCAGT -ACGGAAGCGTTACCCATTGAAGGT -ACGGAAGCGTTACCCATTAACCGT -ACGGAAGCGTTACCCATTTTGTGC -ACGGAAGCGTTACCCATTCTAAGC -ACGGAAGCGTTACCCATTACTAGC -ACGGAAGCGTTACCCATTAGATGC -ACGGAAGCGTTACCCATTTGAAGG -ACGGAAGCGTTACCCATTCAATGG -ACGGAAGCGTTACCCATTATGAGG -ACGGAAGCGTTACCCATTAATGGG -ACGGAAGCGTTACCCATTTCCTGA -ACGGAAGCGTTACCCATTTAGCGA -ACGGAAGCGTTACCCATTCACAGA -ACGGAAGCGTTACCCATTGCAAGA -ACGGAAGCGTTACCCATTGGTTGA -ACGGAAGCGTTACCCATTTCCGAT -ACGGAAGCGTTACCCATTTGGCAT -ACGGAAGCGTTACCCATTCGAGAT -ACGGAAGCGTTACCCATTTACCAC -ACGGAAGCGTTACCCATTCAGAAC -ACGGAAGCGTTACCCATTGTCTAC -ACGGAAGCGTTACCCATTACGTAC -ACGGAAGCGTTACCCATTAGTGAC -ACGGAAGCGTTACCCATTCTGTAG -ACGGAAGCGTTACCCATTCCTAAG -ACGGAAGCGTTACCCATTGTTCAG -ACGGAAGCGTTACCCATTGCATAG -ACGGAAGCGTTACCCATTGACAAG -ACGGAAGCGTTACCCATTAAGCAG -ACGGAAGCGTTACCCATTCGTCAA -ACGGAAGCGTTACCCATTGCTGAA -ACGGAAGCGTTACCCATTAGTACG -ACGGAAGCGTTACCCATTATCCGA -ACGGAAGCGTTACCCATTATGGGA -ACGGAAGCGTTACCCATTGTGCAA -ACGGAAGCGTTACCCATTGAGGAA -ACGGAAGCGTTACCCATTCAGGTA -ACGGAAGCGTTACCCATTGACTCT -ACGGAAGCGTTACCCATTAGTCCT -ACGGAAGCGTTACCCATTTAAGCC -ACGGAAGCGTTACCCATTATAGCC -ACGGAAGCGTTACCCATTTAACCG -ACGGAAGCGTTACCCATTATGCCA -ACGGAAGCGTTATCGTTCGGAAAC -ACGGAAGCGTTATCGTTCAACACC -ACGGAAGCGTTATCGTTCATCGAG -ACGGAAGCGTTATCGTTCCTCCTT -ACGGAAGCGTTATCGTTCCCTGTT -ACGGAAGCGTTATCGTTCCGGTTT -ACGGAAGCGTTATCGTTCGTGGTT -ACGGAAGCGTTATCGTTCGCCTTT -ACGGAAGCGTTATCGTTCGGTCTT -ACGGAAGCGTTATCGTTCACGCTT -ACGGAAGCGTTATCGTTCAGCGTT -ACGGAAGCGTTATCGTTCTTCGTC -ACGGAAGCGTTATCGTTCTCTCTC -ACGGAAGCGTTATCGTTCTGGATC -ACGGAAGCGTTATCGTTCCACTTC -ACGGAAGCGTTATCGTTCGTACTC -ACGGAAGCGTTATCGTTCGATGTC -ACGGAAGCGTTATCGTTCACAGTC -ACGGAAGCGTTATCGTTCTTGCTG -ACGGAAGCGTTATCGTTCTCCATG -ACGGAAGCGTTATCGTTCTGTGTG -ACGGAAGCGTTATCGTTCCTAGTG -ACGGAAGCGTTATCGTTCCATCTG -ACGGAAGCGTTATCGTTCGAGTTG -ACGGAAGCGTTATCGTTCAGACTG -ACGGAAGCGTTATCGTTCTCGGTA -ACGGAAGCGTTATCGTTCTGCCTA -ACGGAAGCGTTATCGTTCCCACTA -ACGGAAGCGTTATCGTTCGGAGTA -ACGGAAGCGTTATCGTTCTCGTCT -ACGGAAGCGTTATCGTTCTGCACT -ACGGAAGCGTTATCGTTCCTGACT -ACGGAAGCGTTATCGTTCCAACCT -ACGGAAGCGTTATCGTTCGCTACT -ACGGAAGCGTTATCGTTCGGATCT -ACGGAAGCGTTATCGTTCAAGGCT -ACGGAAGCGTTATCGTTCTCAACC -ACGGAAGCGTTATCGTTCTGTTCC -ACGGAAGCGTTATCGTTCATTCCC -ACGGAAGCGTTATCGTTCTTCTCG -ACGGAAGCGTTATCGTTCTAGACG -ACGGAAGCGTTATCGTTCGTAACG -ACGGAAGCGTTATCGTTCACTTCG -ACGGAAGCGTTATCGTTCTACGCA -ACGGAAGCGTTATCGTTCCTTGCA -ACGGAAGCGTTATCGTTCCGAACA -ACGGAAGCGTTATCGTTCCAGTCA -ACGGAAGCGTTATCGTTCGATCCA -ACGGAAGCGTTATCGTTCACGACA -ACGGAAGCGTTATCGTTCAGCTCA -ACGGAAGCGTTATCGTTCTCACGT -ACGGAAGCGTTATCGTTCCGTAGT -ACGGAAGCGTTATCGTTCGTCAGT -ACGGAAGCGTTATCGTTCGAAGGT -ACGGAAGCGTTATCGTTCAACCGT -ACGGAAGCGTTATCGTTCTTGTGC -ACGGAAGCGTTATCGTTCCTAAGC -ACGGAAGCGTTATCGTTCACTAGC -ACGGAAGCGTTATCGTTCAGATGC -ACGGAAGCGTTATCGTTCTGAAGG -ACGGAAGCGTTATCGTTCCAATGG -ACGGAAGCGTTATCGTTCATGAGG -ACGGAAGCGTTATCGTTCAATGGG -ACGGAAGCGTTATCGTTCTCCTGA -ACGGAAGCGTTATCGTTCTAGCGA -ACGGAAGCGTTATCGTTCCACAGA -ACGGAAGCGTTATCGTTCGCAAGA -ACGGAAGCGTTATCGTTCGGTTGA -ACGGAAGCGTTATCGTTCTCCGAT -ACGGAAGCGTTATCGTTCTGGCAT -ACGGAAGCGTTATCGTTCCGAGAT -ACGGAAGCGTTATCGTTCTACCAC -ACGGAAGCGTTATCGTTCCAGAAC -ACGGAAGCGTTATCGTTCGTCTAC -ACGGAAGCGTTATCGTTCACGTAC -ACGGAAGCGTTATCGTTCAGTGAC -ACGGAAGCGTTATCGTTCCTGTAG -ACGGAAGCGTTATCGTTCCCTAAG -ACGGAAGCGTTATCGTTCGTTCAG -ACGGAAGCGTTATCGTTCGCATAG -ACGGAAGCGTTATCGTTCGACAAG -ACGGAAGCGTTATCGTTCAAGCAG -ACGGAAGCGTTATCGTTCCGTCAA -ACGGAAGCGTTATCGTTCGCTGAA -ACGGAAGCGTTATCGTTCAGTACG -ACGGAAGCGTTATCGTTCATCCGA -ACGGAAGCGTTATCGTTCATGGGA -ACGGAAGCGTTATCGTTCGTGCAA -ACGGAAGCGTTATCGTTCGAGGAA -ACGGAAGCGTTATCGTTCCAGGTA -ACGGAAGCGTTATCGTTCGACTCT -ACGGAAGCGTTATCGTTCAGTCCT -ACGGAAGCGTTATCGTTCTAAGCC -ACGGAAGCGTTATCGTTCATAGCC -ACGGAAGCGTTATCGTTCTAACCG -ACGGAAGCGTTATCGTTCATGCCA -ACGGAAGCGTTAACGTAGGGAAAC -ACGGAAGCGTTAACGTAGAACACC -ACGGAAGCGTTAACGTAGATCGAG -ACGGAAGCGTTAACGTAGCTCCTT -ACGGAAGCGTTAACGTAGCCTGTT -ACGGAAGCGTTAACGTAGCGGTTT -ACGGAAGCGTTAACGTAGGTGGTT -ACGGAAGCGTTAACGTAGGCCTTT -ACGGAAGCGTTAACGTAGGGTCTT -ACGGAAGCGTTAACGTAGACGCTT -ACGGAAGCGTTAACGTAGAGCGTT -ACGGAAGCGTTAACGTAGTTCGTC -ACGGAAGCGTTAACGTAGTCTCTC -ACGGAAGCGTTAACGTAGTGGATC -ACGGAAGCGTTAACGTAGCACTTC -ACGGAAGCGTTAACGTAGGTACTC -ACGGAAGCGTTAACGTAGGATGTC -ACGGAAGCGTTAACGTAGACAGTC -ACGGAAGCGTTAACGTAGTTGCTG -ACGGAAGCGTTAACGTAGTCCATG -ACGGAAGCGTTAACGTAGTGTGTG -ACGGAAGCGTTAACGTAGCTAGTG -ACGGAAGCGTTAACGTAGCATCTG -ACGGAAGCGTTAACGTAGGAGTTG -ACGGAAGCGTTAACGTAGAGACTG -ACGGAAGCGTTAACGTAGTCGGTA -ACGGAAGCGTTAACGTAGTGCCTA -ACGGAAGCGTTAACGTAGCCACTA -ACGGAAGCGTTAACGTAGGGAGTA -ACGGAAGCGTTAACGTAGTCGTCT -ACGGAAGCGTTAACGTAGTGCACT -ACGGAAGCGTTAACGTAGCTGACT -ACGGAAGCGTTAACGTAGCAACCT -ACGGAAGCGTTAACGTAGGCTACT -ACGGAAGCGTTAACGTAGGGATCT -ACGGAAGCGTTAACGTAGAAGGCT -ACGGAAGCGTTAACGTAGTCAACC -ACGGAAGCGTTAACGTAGTGTTCC -ACGGAAGCGTTAACGTAGATTCCC -ACGGAAGCGTTAACGTAGTTCTCG -ACGGAAGCGTTAACGTAGTAGACG -ACGGAAGCGTTAACGTAGGTAACG -ACGGAAGCGTTAACGTAGACTTCG -ACGGAAGCGTTAACGTAGTACGCA -ACGGAAGCGTTAACGTAGCTTGCA -ACGGAAGCGTTAACGTAGCGAACA -ACGGAAGCGTTAACGTAGCAGTCA -ACGGAAGCGTTAACGTAGGATCCA -ACGGAAGCGTTAACGTAGACGACA -ACGGAAGCGTTAACGTAGAGCTCA -ACGGAAGCGTTAACGTAGTCACGT -ACGGAAGCGTTAACGTAGCGTAGT -ACGGAAGCGTTAACGTAGGTCAGT -ACGGAAGCGTTAACGTAGGAAGGT -ACGGAAGCGTTAACGTAGAACCGT -ACGGAAGCGTTAACGTAGTTGTGC -ACGGAAGCGTTAACGTAGCTAAGC -ACGGAAGCGTTAACGTAGACTAGC -ACGGAAGCGTTAACGTAGAGATGC -ACGGAAGCGTTAACGTAGTGAAGG -ACGGAAGCGTTAACGTAGCAATGG -ACGGAAGCGTTAACGTAGATGAGG -ACGGAAGCGTTAACGTAGAATGGG -ACGGAAGCGTTAACGTAGTCCTGA -ACGGAAGCGTTAACGTAGTAGCGA -ACGGAAGCGTTAACGTAGCACAGA -ACGGAAGCGTTAACGTAGGCAAGA -ACGGAAGCGTTAACGTAGGGTTGA -ACGGAAGCGTTAACGTAGTCCGAT -ACGGAAGCGTTAACGTAGTGGCAT -ACGGAAGCGTTAACGTAGCGAGAT -ACGGAAGCGTTAACGTAGTACCAC -ACGGAAGCGTTAACGTAGCAGAAC -ACGGAAGCGTTAACGTAGGTCTAC -ACGGAAGCGTTAACGTAGACGTAC -ACGGAAGCGTTAACGTAGAGTGAC -ACGGAAGCGTTAACGTAGCTGTAG -ACGGAAGCGTTAACGTAGCCTAAG -ACGGAAGCGTTAACGTAGGTTCAG -ACGGAAGCGTTAACGTAGGCATAG -ACGGAAGCGTTAACGTAGGACAAG -ACGGAAGCGTTAACGTAGAAGCAG -ACGGAAGCGTTAACGTAGCGTCAA -ACGGAAGCGTTAACGTAGGCTGAA -ACGGAAGCGTTAACGTAGAGTACG -ACGGAAGCGTTAACGTAGATCCGA -ACGGAAGCGTTAACGTAGATGGGA -ACGGAAGCGTTAACGTAGGTGCAA -ACGGAAGCGTTAACGTAGGAGGAA -ACGGAAGCGTTAACGTAGCAGGTA -ACGGAAGCGTTAACGTAGGACTCT -ACGGAAGCGTTAACGTAGAGTCCT -ACGGAAGCGTTAACGTAGTAAGCC -ACGGAAGCGTTAACGTAGATAGCC -ACGGAAGCGTTAACGTAGTAACCG -ACGGAAGCGTTAACGTAGATGCCA -ACGGAAGCGTTAACGGTAGGAAAC -ACGGAAGCGTTAACGGTAAACACC -ACGGAAGCGTTAACGGTAATCGAG -ACGGAAGCGTTAACGGTACTCCTT -ACGGAAGCGTTAACGGTACCTGTT -ACGGAAGCGTTAACGGTACGGTTT -ACGGAAGCGTTAACGGTAGTGGTT -ACGGAAGCGTTAACGGTAGCCTTT -ACGGAAGCGTTAACGGTAGGTCTT -ACGGAAGCGTTAACGGTAACGCTT -ACGGAAGCGTTAACGGTAAGCGTT -ACGGAAGCGTTAACGGTATTCGTC -ACGGAAGCGTTAACGGTATCTCTC -ACGGAAGCGTTAACGGTATGGATC -ACGGAAGCGTTAACGGTACACTTC -ACGGAAGCGTTAACGGTAGTACTC -ACGGAAGCGTTAACGGTAGATGTC -ACGGAAGCGTTAACGGTAACAGTC -ACGGAAGCGTTAACGGTATTGCTG -ACGGAAGCGTTAACGGTATCCATG -ACGGAAGCGTTAACGGTATGTGTG -ACGGAAGCGTTAACGGTACTAGTG -ACGGAAGCGTTAACGGTACATCTG -ACGGAAGCGTTAACGGTAGAGTTG -ACGGAAGCGTTAACGGTAAGACTG -ACGGAAGCGTTAACGGTATCGGTA -ACGGAAGCGTTAACGGTATGCCTA -ACGGAAGCGTTAACGGTACCACTA -ACGGAAGCGTTAACGGTAGGAGTA -ACGGAAGCGTTAACGGTATCGTCT -ACGGAAGCGTTAACGGTATGCACT -ACGGAAGCGTTAACGGTACTGACT -ACGGAAGCGTTAACGGTACAACCT -ACGGAAGCGTTAACGGTAGCTACT -ACGGAAGCGTTAACGGTAGGATCT -ACGGAAGCGTTAACGGTAAAGGCT -ACGGAAGCGTTAACGGTATCAACC -ACGGAAGCGTTAACGGTATGTTCC -ACGGAAGCGTTAACGGTAATTCCC -ACGGAAGCGTTAACGGTATTCTCG -ACGGAAGCGTTAACGGTATAGACG -ACGGAAGCGTTAACGGTAGTAACG -ACGGAAGCGTTAACGGTAACTTCG -ACGGAAGCGTTAACGGTATACGCA -ACGGAAGCGTTAACGGTACTTGCA -ACGGAAGCGTTAACGGTACGAACA -ACGGAAGCGTTAACGGTACAGTCA -ACGGAAGCGTTAACGGTAGATCCA -ACGGAAGCGTTAACGGTAACGACA -ACGGAAGCGTTAACGGTAAGCTCA -ACGGAAGCGTTAACGGTATCACGT -ACGGAAGCGTTAACGGTACGTAGT -ACGGAAGCGTTAACGGTAGTCAGT -ACGGAAGCGTTAACGGTAGAAGGT -ACGGAAGCGTTAACGGTAAACCGT -ACGGAAGCGTTAACGGTATTGTGC -ACGGAAGCGTTAACGGTACTAAGC -ACGGAAGCGTTAACGGTAACTAGC -ACGGAAGCGTTAACGGTAAGATGC -ACGGAAGCGTTAACGGTATGAAGG -ACGGAAGCGTTAACGGTACAATGG -ACGGAAGCGTTAACGGTAATGAGG -ACGGAAGCGTTAACGGTAAATGGG -ACGGAAGCGTTAACGGTATCCTGA -ACGGAAGCGTTAACGGTATAGCGA -ACGGAAGCGTTAACGGTACACAGA -ACGGAAGCGTTAACGGTAGCAAGA -ACGGAAGCGTTAACGGTAGGTTGA -ACGGAAGCGTTAACGGTATCCGAT -ACGGAAGCGTTAACGGTATGGCAT -ACGGAAGCGTTAACGGTACGAGAT -ACGGAAGCGTTAACGGTATACCAC -ACGGAAGCGTTAACGGTACAGAAC -ACGGAAGCGTTAACGGTAGTCTAC -ACGGAAGCGTTAACGGTAACGTAC -ACGGAAGCGTTAACGGTAAGTGAC -ACGGAAGCGTTAACGGTACTGTAG -ACGGAAGCGTTAACGGTACCTAAG -ACGGAAGCGTTAACGGTAGTTCAG -ACGGAAGCGTTAACGGTAGCATAG -ACGGAAGCGTTAACGGTAGACAAG -ACGGAAGCGTTAACGGTAAAGCAG -ACGGAAGCGTTAACGGTACGTCAA -ACGGAAGCGTTAACGGTAGCTGAA -ACGGAAGCGTTAACGGTAAGTACG -ACGGAAGCGTTAACGGTAATCCGA -ACGGAAGCGTTAACGGTAATGGGA -ACGGAAGCGTTAACGGTAGTGCAA -ACGGAAGCGTTAACGGTAGAGGAA -ACGGAAGCGTTAACGGTACAGGTA -ACGGAAGCGTTAACGGTAGACTCT -ACGGAAGCGTTAACGGTAAGTCCT -ACGGAAGCGTTAACGGTATAAGCC -ACGGAAGCGTTAACGGTAATAGCC -ACGGAAGCGTTAACGGTATAACCG -ACGGAAGCGTTAACGGTAATGCCA -ACGGAAGCGTTATCGACTGGAAAC -ACGGAAGCGTTATCGACTAACACC -ACGGAAGCGTTATCGACTATCGAG -ACGGAAGCGTTATCGACTCTCCTT -ACGGAAGCGTTATCGACTCCTGTT -ACGGAAGCGTTATCGACTCGGTTT -ACGGAAGCGTTATCGACTGTGGTT -ACGGAAGCGTTATCGACTGCCTTT -ACGGAAGCGTTATCGACTGGTCTT -ACGGAAGCGTTATCGACTACGCTT -ACGGAAGCGTTATCGACTAGCGTT -ACGGAAGCGTTATCGACTTTCGTC -ACGGAAGCGTTATCGACTTCTCTC -ACGGAAGCGTTATCGACTTGGATC -ACGGAAGCGTTATCGACTCACTTC -ACGGAAGCGTTATCGACTGTACTC -ACGGAAGCGTTATCGACTGATGTC -ACGGAAGCGTTATCGACTACAGTC -ACGGAAGCGTTATCGACTTTGCTG -ACGGAAGCGTTATCGACTTCCATG -ACGGAAGCGTTATCGACTTGTGTG -ACGGAAGCGTTATCGACTCTAGTG -ACGGAAGCGTTATCGACTCATCTG -ACGGAAGCGTTATCGACTGAGTTG -ACGGAAGCGTTATCGACTAGACTG -ACGGAAGCGTTATCGACTTCGGTA -ACGGAAGCGTTATCGACTTGCCTA -ACGGAAGCGTTATCGACTCCACTA -ACGGAAGCGTTATCGACTGGAGTA -ACGGAAGCGTTATCGACTTCGTCT -ACGGAAGCGTTATCGACTTGCACT -ACGGAAGCGTTATCGACTCTGACT -ACGGAAGCGTTATCGACTCAACCT -ACGGAAGCGTTATCGACTGCTACT -ACGGAAGCGTTATCGACTGGATCT -ACGGAAGCGTTATCGACTAAGGCT -ACGGAAGCGTTATCGACTTCAACC -ACGGAAGCGTTATCGACTTGTTCC -ACGGAAGCGTTATCGACTATTCCC -ACGGAAGCGTTATCGACTTTCTCG -ACGGAAGCGTTATCGACTTAGACG -ACGGAAGCGTTATCGACTGTAACG -ACGGAAGCGTTATCGACTACTTCG -ACGGAAGCGTTATCGACTTACGCA -ACGGAAGCGTTATCGACTCTTGCA -ACGGAAGCGTTATCGACTCGAACA -ACGGAAGCGTTATCGACTCAGTCA -ACGGAAGCGTTATCGACTGATCCA -ACGGAAGCGTTATCGACTACGACA -ACGGAAGCGTTATCGACTAGCTCA -ACGGAAGCGTTATCGACTTCACGT -ACGGAAGCGTTATCGACTCGTAGT -ACGGAAGCGTTATCGACTGTCAGT -ACGGAAGCGTTATCGACTGAAGGT -ACGGAAGCGTTATCGACTAACCGT -ACGGAAGCGTTATCGACTTTGTGC -ACGGAAGCGTTATCGACTCTAAGC -ACGGAAGCGTTATCGACTACTAGC -ACGGAAGCGTTATCGACTAGATGC -ACGGAAGCGTTATCGACTTGAAGG -ACGGAAGCGTTATCGACTCAATGG -ACGGAAGCGTTATCGACTATGAGG -ACGGAAGCGTTATCGACTAATGGG -ACGGAAGCGTTATCGACTTCCTGA -ACGGAAGCGTTATCGACTTAGCGA -ACGGAAGCGTTATCGACTCACAGA -ACGGAAGCGTTATCGACTGCAAGA -ACGGAAGCGTTATCGACTGGTTGA -ACGGAAGCGTTATCGACTTCCGAT -ACGGAAGCGTTATCGACTTGGCAT -ACGGAAGCGTTATCGACTCGAGAT -ACGGAAGCGTTATCGACTTACCAC -ACGGAAGCGTTATCGACTCAGAAC -ACGGAAGCGTTATCGACTGTCTAC -ACGGAAGCGTTATCGACTACGTAC -ACGGAAGCGTTATCGACTAGTGAC -ACGGAAGCGTTATCGACTCTGTAG -ACGGAAGCGTTATCGACTCCTAAG -ACGGAAGCGTTATCGACTGTTCAG -ACGGAAGCGTTATCGACTGCATAG -ACGGAAGCGTTATCGACTGACAAG -ACGGAAGCGTTATCGACTAAGCAG -ACGGAAGCGTTATCGACTCGTCAA -ACGGAAGCGTTATCGACTGCTGAA -ACGGAAGCGTTATCGACTAGTACG -ACGGAAGCGTTATCGACTATCCGA -ACGGAAGCGTTATCGACTATGGGA -ACGGAAGCGTTATCGACTGTGCAA -ACGGAAGCGTTATCGACTGAGGAA -ACGGAAGCGTTATCGACTCAGGTA -ACGGAAGCGTTATCGACTGACTCT -ACGGAAGCGTTATCGACTAGTCCT -ACGGAAGCGTTATCGACTTAAGCC -ACGGAAGCGTTATCGACTATAGCC -ACGGAAGCGTTATCGACTTAACCG -ACGGAAGCGTTATCGACTATGCCA -ACGGAAGCGTTAGCATACGGAAAC -ACGGAAGCGTTAGCATACAACACC -ACGGAAGCGTTAGCATACATCGAG -ACGGAAGCGTTAGCATACCTCCTT -ACGGAAGCGTTAGCATACCCTGTT -ACGGAAGCGTTAGCATACCGGTTT -ACGGAAGCGTTAGCATACGTGGTT -ACGGAAGCGTTAGCATACGCCTTT -ACGGAAGCGTTAGCATACGGTCTT -ACGGAAGCGTTAGCATACACGCTT -ACGGAAGCGTTAGCATACAGCGTT -ACGGAAGCGTTAGCATACTTCGTC -ACGGAAGCGTTAGCATACTCTCTC -ACGGAAGCGTTAGCATACTGGATC -ACGGAAGCGTTAGCATACCACTTC -ACGGAAGCGTTAGCATACGTACTC -ACGGAAGCGTTAGCATACGATGTC -ACGGAAGCGTTAGCATACACAGTC -ACGGAAGCGTTAGCATACTTGCTG -ACGGAAGCGTTAGCATACTCCATG -ACGGAAGCGTTAGCATACTGTGTG -ACGGAAGCGTTAGCATACCTAGTG -ACGGAAGCGTTAGCATACCATCTG -ACGGAAGCGTTAGCATACGAGTTG -ACGGAAGCGTTAGCATACAGACTG -ACGGAAGCGTTAGCATACTCGGTA -ACGGAAGCGTTAGCATACTGCCTA -ACGGAAGCGTTAGCATACCCACTA -ACGGAAGCGTTAGCATACGGAGTA -ACGGAAGCGTTAGCATACTCGTCT -ACGGAAGCGTTAGCATACTGCACT -ACGGAAGCGTTAGCATACCTGACT -ACGGAAGCGTTAGCATACCAACCT -ACGGAAGCGTTAGCATACGCTACT -ACGGAAGCGTTAGCATACGGATCT -ACGGAAGCGTTAGCATACAAGGCT -ACGGAAGCGTTAGCATACTCAACC -ACGGAAGCGTTAGCATACTGTTCC -ACGGAAGCGTTAGCATACATTCCC -ACGGAAGCGTTAGCATACTTCTCG -ACGGAAGCGTTAGCATACTAGACG -ACGGAAGCGTTAGCATACGTAACG -ACGGAAGCGTTAGCATACACTTCG -ACGGAAGCGTTAGCATACTACGCA -ACGGAAGCGTTAGCATACCTTGCA -ACGGAAGCGTTAGCATACCGAACA -ACGGAAGCGTTAGCATACCAGTCA -ACGGAAGCGTTAGCATACGATCCA -ACGGAAGCGTTAGCATACACGACA -ACGGAAGCGTTAGCATACAGCTCA -ACGGAAGCGTTAGCATACTCACGT -ACGGAAGCGTTAGCATACCGTAGT -ACGGAAGCGTTAGCATACGTCAGT -ACGGAAGCGTTAGCATACGAAGGT -ACGGAAGCGTTAGCATACAACCGT -ACGGAAGCGTTAGCATACTTGTGC -ACGGAAGCGTTAGCATACCTAAGC -ACGGAAGCGTTAGCATACACTAGC -ACGGAAGCGTTAGCATACAGATGC -ACGGAAGCGTTAGCATACTGAAGG -ACGGAAGCGTTAGCATACCAATGG -ACGGAAGCGTTAGCATACATGAGG -ACGGAAGCGTTAGCATACAATGGG -ACGGAAGCGTTAGCATACTCCTGA -ACGGAAGCGTTAGCATACTAGCGA -ACGGAAGCGTTAGCATACCACAGA -ACGGAAGCGTTAGCATACGCAAGA -ACGGAAGCGTTAGCATACGGTTGA -ACGGAAGCGTTAGCATACTCCGAT -ACGGAAGCGTTAGCATACTGGCAT -ACGGAAGCGTTAGCATACCGAGAT -ACGGAAGCGTTAGCATACTACCAC -ACGGAAGCGTTAGCATACCAGAAC -ACGGAAGCGTTAGCATACGTCTAC -ACGGAAGCGTTAGCATACACGTAC -ACGGAAGCGTTAGCATACAGTGAC -ACGGAAGCGTTAGCATACCTGTAG -ACGGAAGCGTTAGCATACCCTAAG -ACGGAAGCGTTAGCATACGTTCAG -ACGGAAGCGTTAGCATACGCATAG -ACGGAAGCGTTAGCATACGACAAG -ACGGAAGCGTTAGCATACAAGCAG -ACGGAAGCGTTAGCATACCGTCAA -ACGGAAGCGTTAGCATACGCTGAA -ACGGAAGCGTTAGCATACAGTACG -ACGGAAGCGTTAGCATACATCCGA -ACGGAAGCGTTAGCATACATGGGA -ACGGAAGCGTTAGCATACGTGCAA -ACGGAAGCGTTAGCATACGAGGAA -ACGGAAGCGTTAGCATACCAGGTA -ACGGAAGCGTTAGCATACGACTCT -ACGGAAGCGTTAGCATACAGTCCT -ACGGAAGCGTTAGCATACTAAGCC -ACGGAAGCGTTAGCATACATAGCC -ACGGAAGCGTTAGCATACTAACCG -ACGGAAGCGTTAGCATACATGCCA -ACGGAAGCGTTAGCACTTGGAAAC -ACGGAAGCGTTAGCACTTAACACC -ACGGAAGCGTTAGCACTTATCGAG -ACGGAAGCGTTAGCACTTCTCCTT -ACGGAAGCGTTAGCACTTCCTGTT -ACGGAAGCGTTAGCACTTCGGTTT -ACGGAAGCGTTAGCACTTGTGGTT -ACGGAAGCGTTAGCACTTGCCTTT -ACGGAAGCGTTAGCACTTGGTCTT -ACGGAAGCGTTAGCACTTACGCTT -ACGGAAGCGTTAGCACTTAGCGTT -ACGGAAGCGTTAGCACTTTTCGTC -ACGGAAGCGTTAGCACTTTCTCTC -ACGGAAGCGTTAGCACTTTGGATC -ACGGAAGCGTTAGCACTTCACTTC -ACGGAAGCGTTAGCACTTGTACTC -ACGGAAGCGTTAGCACTTGATGTC -ACGGAAGCGTTAGCACTTACAGTC -ACGGAAGCGTTAGCACTTTTGCTG -ACGGAAGCGTTAGCACTTTCCATG -ACGGAAGCGTTAGCACTTTGTGTG -ACGGAAGCGTTAGCACTTCTAGTG -ACGGAAGCGTTAGCACTTCATCTG -ACGGAAGCGTTAGCACTTGAGTTG -ACGGAAGCGTTAGCACTTAGACTG -ACGGAAGCGTTAGCACTTTCGGTA -ACGGAAGCGTTAGCACTTTGCCTA -ACGGAAGCGTTAGCACTTCCACTA -ACGGAAGCGTTAGCACTTGGAGTA -ACGGAAGCGTTAGCACTTTCGTCT -ACGGAAGCGTTAGCACTTTGCACT -ACGGAAGCGTTAGCACTTCTGACT -ACGGAAGCGTTAGCACTTCAACCT -ACGGAAGCGTTAGCACTTGCTACT -ACGGAAGCGTTAGCACTTGGATCT -ACGGAAGCGTTAGCACTTAAGGCT -ACGGAAGCGTTAGCACTTTCAACC -ACGGAAGCGTTAGCACTTTGTTCC -ACGGAAGCGTTAGCACTTATTCCC -ACGGAAGCGTTAGCACTTTTCTCG -ACGGAAGCGTTAGCACTTTAGACG -ACGGAAGCGTTAGCACTTGTAACG -ACGGAAGCGTTAGCACTTACTTCG -ACGGAAGCGTTAGCACTTTACGCA -ACGGAAGCGTTAGCACTTCTTGCA -ACGGAAGCGTTAGCACTTCGAACA -ACGGAAGCGTTAGCACTTCAGTCA -ACGGAAGCGTTAGCACTTGATCCA -ACGGAAGCGTTAGCACTTACGACA -ACGGAAGCGTTAGCACTTAGCTCA -ACGGAAGCGTTAGCACTTTCACGT -ACGGAAGCGTTAGCACTTCGTAGT -ACGGAAGCGTTAGCACTTGTCAGT -ACGGAAGCGTTAGCACTTGAAGGT -ACGGAAGCGTTAGCACTTAACCGT -ACGGAAGCGTTAGCACTTTTGTGC -ACGGAAGCGTTAGCACTTCTAAGC -ACGGAAGCGTTAGCACTTACTAGC -ACGGAAGCGTTAGCACTTAGATGC -ACGGAAGCGTTAGCACTTTGAAGG -ACGGAAGCGTTAGCACTTCAATGG -ACGGAAGCGTTAGCACTTATGAGG -ACGGAAGCGTTAGCACTTAATGGG -ACGGAAGCGTTAGCACTTTCCTGA -ACGGAAGCGTTAGCACTTTAGCGA -ACGGAAGCGTTAGCACTTCACAGA -ACGGAAGCGTTAGCACTTGCAAGA -ACGGAAGCGTTAGCACTTGGTTGA -ACGGAAGCGTTAGCACTTTCCGAT -ACGGAAGCGTTAGCACTTTGGCAT -ACGGAAGCGTTAGCACTTCGAGAT -ACGGAAGCGTTAGCACTTTACCAC -ACGGAAGCGTTAGCACTTCAGAAC -ACGGAAGCGTTAGCACTTGTCTAC -ACGGAAGCGTTAGCACTTACGTAC -ACGGAAGCGTTAGCACTTAGTGAC -ACGGAAGCGTTAGCACTTCTGTAG -ACGGAAGCGTTAGCACTTCCTAAG -ACGGAAGCGTTAGCACTTGTTCAG -ACGGAAGCGTTAGCACTTGCATAG -ACGGAAGCGTTAGCACTTGACAAG -ACGGAAGCGTTAGCACTTAAGCAG -ACGGAAGCGTTAGCACTTCGTCAA -ACGGAAGCGTTAGCACTTGCTGAA -ACGGAAGCGTTAGCACTTAGTACG -ACGGAAGCGTTAGCACTTATCCGA -ACGGAAGCGTTAGCACTTATGGGA -ACGGAAGCGTTAGCACTTGTGCAA -ACGGAAGCGTTAGCACTTGAGGAA -ACGGAAGCGTTAGCACTTCAGGTA -ACGGAAGCGTTAGCACTTGACTCT -ACGGAAGCGTTAGCACTTAGTCCT -ACGGAAGCGTTAGCACTTTAAGCC -ACGGAAGCGTTAGCACTTATAGCC -ACGGAAGCGTTAGCACTTTAACCG -ACGGAAGCGTTAGCACTTATGCCA -ACGGAAGCGTTAACACGAGGAAAC -ACGGAAGCGTTAACACGAAACACC -ACGGAAGCGTTAACACGAATCGAG -ACGGAAGCGTTAACACGACTCCTT -ACGGAAGCGTTAACACGACCTGTT -ACGGAAGCGTTAACACGACGGTTT -ACGGAAGCGTTAACACGAGTGGTT -ACGGAAGCGTTAACACGAGCCTTT -ACGGAAGCGTTAACACGAGGTCTT -ACGGAAGCGTTAACACGAACGCTT -ACGGAAGCGTTAACACGAAGCGTT -ACGGAAGCGTTAACACGATTCGTC -ACGGAAGCGTTAACACGATCTCTC -ACGGAAGCGTTAACACGATGGATC -ACGGAAGCGTTAACACGACACTTC -ACGGAAGCGTTAACACGAGTACTC -ACGGAAGCGTTAACACGAGATGTC -ACGGAAGCGTTAACACGAACAGTC -ACGGAAGCGTTAACACGATTGCTG -ACGGAAGCGTTAACACGATCCATG -ACGGAAGCGTTAACACGATGTGTG -ACGGAAGCGTTAACACGACTAGTG -ACGGAAGCGTTAACACGACATCTG -ACGGAAGCGTTAACACGAGAGTTG -ACGGAAGCGTTAACACGAAGACTG -ACGGAAGCGTTAACACGATCGGTA -ACGGAAGCGTTAACACGATGCCTA -ACGGAAGCGTTAACACGACCACTA -ACGGAAGCGTTAACACGAGGAGTA -ACGGAAGCGTTAACACGATCGTCT -ACGGAAGCGTTAACACGATGCACT -ACGGAAGCGTTAACACGACTGACT -ACGGAAGCGTTAACACGACAACCT -ACGGAAGCGTTAACACGAGCTACT -ACGGAAGCGTTAACACGAGGATCT -ACGGAAGCGTTAACACGAAAGGCT -ACGGAAGCGTTAACACGATCAACC -ACGGAAGCGTTAACACGATGTTCC -ACGGAAGCGTTAACACGAATTCCC -ACGGAAGCGTTAACACGATTCTCG -ACGGAAGCGTTAACACGATAGACG -ACGGAAGCGTTAACACGAGTAACG -ACGGAAGCGTTAACACGAACTTCG -ACGGAAGCGTTAACACGATACGCA -ACGGAAGCGTTAACACGACTTGCA -ACGGAAGCGTTAACACGACGAACA -ACGGAAGCGTTAACACGACAGTCA -ACGGAAGCGTTAACACGAGATCCA -ACGGAAGCGTTAACACGAACGACA -ACGGAAGCGTTAACACGAAGCTCA -ACGGAAGCGTTAACACGATCACGT -ACGGAAGCGTTAACACGACGTAGT -ACGGAAGCGTTAACACGAGTCAGT -ACGGAAGCGTTAACACGAGAAGGT -ACGGAAGCGTTAACACGAAACCGT -ACGGAAGCGTTAACACGATTGTGC -ACGGAAGCGTTAACACGACTAAGC -ACGGAAGCGTTAACACGAACTAGC -ACGGAAGCGTTAACACGAAGATGC -ACGGAAGCGTTAACACGATGAAGG -ACGGAAGCGTTAACACGACAATGG -ACGGAAGCGTTAACACGAATGAGG -ACGGAAGCGTTAACACGAAATGGG -ACGGAAGCGTTAACACGATCCTGA -ACGGAAGCGTTAACACGATAGCGA -ACGGAAGCGTTAACACGACACAGA -ACGGAAGCGTTAACACGAGCAAGA -ACGGAAGCGTTAACACGAGGTTGA -ACGGAAGCGTTAACACGATCCGAT -ACGGAAGCGTTAACACGATGGCAT -ACGGAAGCGTTAACACGACGAGAT -ACGGAAGCGTTAACACGATACCAC -ACGGAAGCGTTAACACGACAGAAC -ACGGAAGCGTTAACACGAGTCTAC -ACGGAAGCGTTAACACGAACGTAC -ACGGAAGCGTTAACACGAAGTGAC -ACGGAAGCGTTAACACGACTGTAG -ACGGAAGCGTTAACACGACCTAAG -ACGGAAGCGTTAACACGAGTTCAG -ACGGAAGCGTTAACACGAGCATAG -ACGGAAGCGTTAACACGAGACAAG -ACGGAAGCGTTAACACGAAAGCAG -ACGGAAGCGTTAACACGACGTCAA -ACGGAAGCGTTAACACGAGCTGAA -ACGGAAGCGTTAACACGAAGTACG -ACGGAAGCGTTAACACGAATCCGA -ACGGAAGCGTTAACACGAATGGGA -ACGGAAGCGTTAACACGAGTGCAA -ACGGAAGCGTTAACACGAGAGGAA -ACGGAAGCGTTAACACGACAGGTA -ACGGAAGCGTTAACACGAGACTCT -ACGGAAGCGTTAACACGAAGTCCT -ACGGAAGCGTTAACACGATAAGCC -ACGGAAGCGTTAACACGAATAGCC -ACGGAAGCGTTAACACGATAACCG -ACGGAAGCGTTAACACGAATGCCA -ACGGAAGCGTTATCACAGGGAAAC -ACGGAAGCGTTATCACAGAACACC -ACGGAAGCGTTATCACAGATCGAG -ACGGAAGCGTTATCACAGCTCCTT -ACGGAAGCGTTATCACAGCCTGTT -ACGGAAGCGTTATCACAGCGGTTT -ACGGAAGCGTTATCACAGGTGGTT -ACGGAAGCGTTATCACAGGCCTTT -ACGGAAGCGTTATCACAGGGTCTT -ACGGAAGCGTTATCACAGACGCTT -ACGGAAGCGTTATCACAGAGCGTT -ACGGAAGCGTTATCACAGTTCGTC -ACGGAAGCGTTATCACAGTCTCTC -ACGGAAGCGTTATCACAGTGGATC -ACGGAAGCGTTATCACAGCACTTC -ACGGAAGCGTTATCACAGGTACTC -ACGGAAGCGTTATCACAGGATGTC -ACGGAAGCGTTATCACAGACAGTC -ACGGAAGCGTTATCACAGTTGCTG -ACGGAAGCGTTATCACAGTCCATG -ACGGAAGCGTTATCACAGTGTGTG -ACGGAAGCGTTATCACAGCTAGTG -ACGGAAGCGTTATCACAGCATCTG -ACGGAAGCGTTATCACAGGAGTTG -ACGGAAGCGTTATCACAGAGACTG -ACGGAAGCGTTATCACAGTCGGTA -ACGGAAGCGTTATCACAGTGCCTA -ACGGAAGCGTTATCACAGCCACTA -ACGGAAGCGTTATCACAGGGAGTA -ACGGAAGCGTTATCACAGTCGTCT -ACGGAAGCGTTATCACAGTGCACT -ACGGAAGCGTTATCACAGCTGACT -ACGGAAGCGTTATCACAGCAACCT -ACGGAAGCGTTATCACAGGCTACT -ACGGAAGCGTTATCACAGGGATCT -ACGGAAGCGTTATCACAGAAGGCT -ACGGAAGCGTTATCACAGTCAACC -ACGGAAGCGTTATCACAGTGTTCC -ACGGAAGCGTTATCACAGATTCCC -ACGGAAGCGTTATCACAGTTCTCG -ACGGAAGCGTTATCACAGTAGACG -ACGGAAGCGTTATCACAGGTAACG -ACGGAAGCGTTATCACAGACTTCG -ACGGAAGCGTTATCACAGTACGCA -ACGGAAGCGTTATCACAGCTTGCA -ACGGAAGCGTTATCACAGCGAACA -ACGGAAGCGTTATCACAGCAGTCA -ACGGAAGCGTTATCACAGGATCCA -ACGGAAGCGTTATCACAGACGACA -ACGGAAGCGTTATCACAGAGCTCA -ACGGAAGCGTTATCACAGTCACGT -ACGGAAGCGTTATCACAGCGTAGT -ACGGAAGCGTTATCACAGGTCAGT -ACGGAAGCGTTATCACAGGAAGGT -ACGGAAGCGTTATCACAGAACCGT -ACGGAAGCGTTATCACAGTTGTGC -ACGGAAGCGTTATCACAGCTAAGC -ACGGAAGCGTTATCACAGACTAGC -ACGGAAGCGTTATCACAGAGATGC -ACGGAAGCGTTATCACAGTGAAGG -ACGGAAGCGTTATCACAGCAATGG -ACGGAAGCGTTATCACAGATGAGG -ACGGAAGCGTTATCACAGAATGGG -ACGGAAGCGTTATCACAGTCCTGA -ACGGAAGCGTTATCACAGTAGCGA -ACGGAAGCGTTATCACAGCACAGA -ACGGAAGCGTTATCACAGGCAAGA -ACGGAAGCGTTATCACAGGGTTGA -ACGGAAGCGTTATCACAGTCCGAT -ACGGAAGCGTTATCACAGTGGCAT -ACGGAAGCGTTATCACAGCGAGAT -ACGGAAGCGTTATCACAGTACCAC -ACGGAAGCGTTATCACAGCAGAAC -ACGGAAGCGTTATCACAGGTCTAC -ACGGAAGCGTTATCACAGACGTAC -ACGGAAGCGTTATCACAGAGTGAC -ACGGAAGCGTTATCACAGCTGTAG -ACGGAAGCGTTATCACAGCCTAAG -ACGGAAGCGTTATCACAGGTTCAG -ACGGAAGCGTTATCACAGGCATAG -ACGGAAGCGTTATCACAGGACAAG -ACGGAAGCGTTATCACAGAAGCAG -ACGGAAGCGTTATCACAGCGTCAA -ACGGAAGCGTTATCACAGGCTGAA -ACGGAAGCGTTATCACAGAGTACG -ACGGAAGCGTTATCACAGATCCGA -ACGGAAGCGTTATCACAGATGGGA -ACGGAAGCGTTATCACAGGTGCAA -ACGGAAGCGTTATCACAGGAGGAA -ACGGAAGCGTTATCACAGCAGGTA -ACGGAAGCGTTATCACAGGACTCT -ACGGAAGCGTTATCACAGAGTCCT -ACGGAAGCGTTATCACAGTAAGCC -ACGGAAGCGTTATCACAGATAGCC -ACGGAAGCGTTATCACAGTAACCG -ACGGAAGCGTTATCACAGATGCCA -ACGGAAGCGTTACCAGATGGAAAC -ACGGAAGCGTTACCAGATAACACC -ACGGAAGCGTTACCAGATATCGAG -ACGGAAGCGTTACCAGATCTCCTT -ACGGAAGCGTTACCAGATCCTGTT -ACGGAAGCGTTACCAGATCGGTTT -ACGGAAGCGTTACCAGATGTGGTT -ACGGAAGCGTTACCAGATGCCTTT -ACGGAAGCGTTACCAGATGGTCTT -ACGGAAGCGTTACCAGATACGCTT -ACGGAAGCGTTACCAGATAGCGTT -ACGGAAGCGTTACCAGATTTCGTC -ACGGAAGCGTTACCAGATTCTCTC -ACGGAAGCGTTACCAGATTGGATC -ACGGAAGCGTTACCAGATCACTTC -ACGGAAGCGTTACCAGATGTACTC -ACGGAAGCGTTACCAGATGATGTC -ACGGAAGCGTTACCAGATACAGTC -ACGGAAGCGTTACCAGATTTGCTG -ACGGAAGCGTTACCAGATTCCATG -ACGGAAGCGTTACCAGATTGTGTG -ACGGAAGCGTTACCAGATCTAGTG -ACGGAAGCGTTACCAGATCATCTG -ACGGAAGCGTTACCAGATGAGTTG -ACGGAAGCGTTACCAGATAGACTG -ACGGAAGCGTTACCAGATTCGGTA -ACGGAAGCGTTACCAGATTGCCTA -ACGGAAGCGTTACCAGATCCACTA -ACGGAAGCGTTACCAGATGGAGTA -ACGGAAGCGTTACCAGATTCGTCT -ACGGAAGCGTTACCAGATTGCACT -ACGGAAGCGTTACCAGATCTGACT -ACGGAAGCGTTACCAGATCAACCT -ACGGAAGCGTTACCAGATGCTACT -ACGGAAGCGTTACCAGATGGATCT -ACGGAAGCGTTACCAGATAAGGCT -ACGGAAGCGTTACCAGATTCAACC -ACGGAAGCGTTACCAGATTGTTCC -ACGGAAGCGTTACCAGATATTCCC -ACGGAAGCGTTACCAGATTTCTCG -ACGGAAGCGTTACCAGATTAGACG -ACGGAAGCGTTACCAGATGTAACG -ACGGAAGCGTTACCAGATACTTCG -ACGGAAGCGTTACCAGATTACGCA -ACGGAAGCGTTACCAGATCTTGCA -ACGGAAGCGTTACCAGATCGAACA -ACGGAAGCGTTACCAGATCAGTCA -ACGGAAGCGTTACCAGATGATCCA -ACGGAAGCGTTACCAGATACGACA -ACGGAAGCGTTACCAGATAGCTCA -ACGGAAGCGTTACCAGATTCACGT -ACGGAAGCGTTACCAGATCGTAGT -ACGGAAGCGTTACCAGATGTCAGT -ACGGAAGCGTTACCAGATGAAGGT -ACGGAAGCGTTACCAGATAACCGT -ACGGAAGCGTTACCAGATTTGTGC -ACGGAAGCGTTACCAGATCTAAGC -ACGGAAGCGTTACCAGATACTAGC -ACGGAAGCGTTACCAGATAGATGC -ACGGAAGCGTTACCAGATTGAAGG -ACGGAAGCGTTACCAGATCAATGG -ACGGAAGCGTTACCAGATATGAGG -ACGGAAGCGTTACCAGATAATGGG -ACGGAAGCGTTACCAGATTCCTGA -ACGGAAGCGTTACCAGATTAGCGA -ACGGAAGCGTTACCAGATCACAGA -ACGGAAGCGTTACCAGATGCAAGA -ACGGAAGCGTTACCAGATGGTTGA -ACGGAAGCGTTACCAGATTCCGAT -ACGGAAGCGTTACCAGATTGGCAT -ACGGAAGCGTTACCAGATCGAGAT -ACGGAAGCGTTACCAGATTACCAC -ACGGAAGCGTTACCAGATCAGAAC -ACGGAAGCGTTACCAGATGTCTAC -ACGGAAGCGTTACCAGATACGTAC -ACGGAAGCGTTACCAGATAGTGAC -ACGGAAGCGTTACCAGATCTGTAG -ACGGAAGCGTTACCAGATCCTAAG -ACGGAAGCGTTACCAGATGTTCAG -ACGGAAGCGTTACCAGATGCATAG -ACGGAAGCGTTACCAGATGACAAG -ACGGAAGCGTTACCAGATAAGCAG -ACGGAAGCGTTACCAGATCGTCAA -ACGGAAGCGTTACCAGATGCTGAA -ACGGAAGCGTTACCAGATAGTACG -ACGGAAGCGTTACCAGATATCCGA -ACGGAAGCGTTACCAGATATGGGA -ACGGAAGCGTTACCAGATGTGCAA -ACGGAAGCGTTACCAGATGAGGAA -ACGGAAGCGTTACCAGATCAGGTA -ACGGAAGCGTTACCAGATGACTCT -ACGGAAGCGTTACCAGATAGTCCT -ACGGAAGCGTTACCAGATTAAGCC -ACGGAAGCGTTACCAGATATAGCC -ACGGAAGCGTTACCAGATTAACCG -ACGGAAGCGTTACCAGATATGCCA -ACGGAAGCGTTAACAACGGGAAAC -ACGGAAGCGTTAACAACGAACACC -ACGGAAGCGTTAACAACGATCGAG -ACGGAAGCGTTAACAACGCTCCTT -ACGGAAGCGTTAACAACGCCTGTT -ACGGAAGCGTTAACAACGCGGTTT -ACGGAAGCGTTAACAACGGTGGTT -ACGGAAGCGTTAACAACGGCCTTT -ACGGAAGCGTTAACAACGGGTCTT -ACGGAAGCGTTAACAACGACGCTT -ACGGAAGCGTTAACAACGAGCGTT -ACGGAAGCGTTAACAACGTTCGTC -ACGGAAGCGTTAACAACGTCTCTC -ACGGAAGCGTTAACAACGTGGATC -ACGGAAGCGTTAACAACGCACTTC -ACGGAAGCGTTAACAACGGTACTC -ACGGAAGCGTTAACAACGGATGTC -ACGGAAGCGTTAACAACGACAGTC -ACGGAAGCGTTAACAACGTTGCTG -ACGGAAGCGTTAACAACGTCCATG -ACGGAAGCGTTAACAACGTGTGTG -ACGGAAGCGTTAACAACGCTAGTG -ACGGAAGCGTTAACAACGCATCTG -ACGGAAGCGTTAACAACGGAGTTG -ACGGAAGCGTTAACAACGAGACTG -ACGGAAGCGTTAACAACGTCGGTA -ACGGAAGCGTTAACAACGTGCCTA -ACGGAAGCGTTAACAACGCCACTA -ACGGAAGCGTTAACAACGGGAGTA -ACGGAAGCGTTAACAACGTCGTCT -ACGGAAGCGTTAACAACGTGCACT -ACGGAAGCGTTAACAACGCTGACT -ACGGAAGCGTTAACAACGCAACCT -ACGGAAGCGTTAACAACGGCTACT -ACGGAAGCGTTAACAACGGGATCT -ACGGAAGCGTTAACAACGAAGGCT -ACGGAAGCGTTAACAACGTCAACC -ACGGAAGCGTTAACAACGTGTTCC -ACGGAAGCGTTAACAACGATTCCC -ACGGAAGCGTTAACAACGTTCTCG -ACGGAAGCGTTAACAACGTAGACG -ACGGAAGCGTTAACAACGGTAACG -ACGGAAGCGTTAACAACGACTTCG -ACGGAAGCGTTAACAACGTACGCA -ACGGAAGCGTTAACAACGCTTGCA -ACGGAAGCGTTAACAACGCGAACA -ACGGAAGCGTTAACAACGCAGTCA -ACGGAAGCGTTAACAACGGATCCA -ACGGAAGCGTTAACAACGACGACA -ACGGAAGCGTTAACAACGAGCTCA -ACGGAAGCGTTAACAACGTCACGT -ACGGAAGCGTTAACAACGCGTAGT -ACGGAAGCGTTAACAACGGTCAGT -ACGGAAGCGTTAACAACGGAAGGT -ACGGAAGCGTTAACAACGAACCGT -ACGGAAGCGTTAACAACGTTGTGC -ACGGAAGCGTTAACAACGCTAAGC -ACGGAAGCGTTAACAACGACTAGC -ACGGAAGCGTTAACAACGAGATGC -ACGGAAGCGTTAACAACGTGAAGG -ACGGAAGCGTTAACAACGCAATGG -ACGGAAGCGTTAACAACGATGAGG -ACGGAAGCGTTAACAACGAATGGG -ACGGAAGCGTTAACAACGTCCTGA -ACGGAAGCGTTAACAACGTAGCGA -ACGGAAGCGTTAACAACGCACAGA -ACGGAAGCGTTAACAACGGCAAGA -ACGGAAGCGTTAACAACGGGTTGA -ACGGAAGCGTTAACAACGTCCGAT -ACGGAAGCGTTAACAACGTGGCAT -ACGGAAGCGTTAACAACGCGAGAT -ACGGAAGCGTTAACAACGTACCAC -ACGGAAGCGTTAACAACGCAGAAC -ACGGAAGCGTTAACAACGGTCTAC -ACGGAAGCGTTAACAACGACGTAC -ACGGAAGCGTTAACAACGAGTGAC -ACGGAAGCGTTAACAACGCTGTAG -ACGGAAGCGTTAACAACGCCTAAG -ACGGAAGCGTTAACAACGGTTCAG -ACGGAAGCGTTAACAACGGCATAG -ACGGAAGCGTTAACAACGGACAAG -ACGGAAGCGTTAACAACGAAGCAG -ACGGAAGCGTTAACAACGCGTCAA -ACGGAAGCGTTAACAACGGCTGAA -ACGGAAGCGTTAACAACGAGTACG -ACGGAAGCGTTAACAACGATCCGA -ACGGAAGCGTTAACAACGATGGGA -ACGGAAGCGTTAACAACGGTGCAA -ACGGAAGCGTTAACAACGGAGGAA -ACGGAAGCGTTAACAACGCAGGTA -ACGGAAGCGTTAACAACGGACTCT -ACGGAAGCGTTAACAACGAGTCCT -ACGGAAGCGTTAACAACGTAAGCC -ACGGAAGCGTTAACAACGATAGCC -ACGGAAGCGTTAACAACGTAACCG -ACGGAAGCGTTAACAACGATGCCA -ACGGAAGCGTTATCAAGCGGAAAC -ACGGAAGCGTTATCAAGCAACACC -ACGGAAGCGTTATCAAGCATCGAG -ACGGAAGCGTTATCAAGCCTCCTT -ACGGAAGCGTTATCAAGCCCTGTT -ACGGAAGCGTTATCAAGCCGGTTT -ACGGAAGCGTTATCAAGCGTGGTT -ACGGAAGCGTTATCAAGCGCCTTT -ACGGAAGCGTTATCAAGCGGTCTT -ACGGAAGCGTTATCAAGCACGCTT -ACGGAAGCGTTATCAAGCAGCGTT -ACGGAAGCGTTATCAAGCTTCGTC -ACGGAAGCGTTATCAAGCTCTCTC -ACGGAAGCGTTATCAAGCTGGATC -ACGGAAGCGTTATCAAGCCACTTC -ACGGAAGCGTTATCAAGCGTACTC -ACGGAAGCGTTATCAAGCGATGTC -ACGGAAGCGTTATCAAGCACAGTC -ACGGAAGCGTTATCAAGCTTGCTG -ACGGAAGCGTTATCAAGCTCCATG -ACGGAAGCGTTATCAAGCTGTGTG -ACGGAAGCGTTATCAAGCCTAGTG -ACGGAAGCGTTATCAAGCCATCTG -ACGGAAGCGTTATCAAGCGAGTTG -ACGGAAGCGTTATCAAGCAGACTG -ACGGAAGCGTTATCAAGCTCGGTA -ACGGAAGCGTTATCAAGCTGCCTA -ACGGAAGCGTTATCAAGCCCACTA -ACGGAAGCGTTATCAAGCGGAGTA -ACGGAAGCGTTATCAAGCTCGTCT -ACGGAAGCGTTATCAAGCTGCACT -ACGGAAGCGTTATCAAGCCTGACT -ACGGAAGCGTTATCAAGCCAACCT -ACGGAAGCGTTATCAAGCGCTACT -ACGGAAGCGTTATCAAGCGGATCT -ACGGAAGCGTTATCAAGCAAGGCT -ACGGAAGCGTTATCAAGCTCAACC -ACGGAAGCGTTATCAAGCTGTTCC -ACGGAAGCGTTATCAAGCATTCCC -ACGGAAGCGTTATCAAGCTTCTCG -ACGGAAGCGTTATCAAGCTAGACG -ACGGAAGCGTTATCAAGCGTAACG -ACGGAAGCGTTATCAAGCACTTCG -ACGGAAGCGTTATCAAGCTACGCA -ACGGAAGCGTTATCAAGCCTTGCA -ACGGAAGCGTTATCAAGCCGAACA -ACGGAAGCGTTATCAAGCCAGTCA -ACGGAAGCGTTATCAAGCGATCCA -ACGGAAGCGTTATCAAGCACGACA -ACGGAAGCGTTATCAAGCAGCTCA -ACGGAAGCGTTATCAAGCTCACGT -ACGGAAGCGTTATCAAGCCGTAGT -ACGGAAGCGTTATCAAGCGTCAGT -ACGGAAGCGTTATCAAGCGAAGGT -ACGGAAGCGTTATCAAGCAACCGT -ACGGAAGCGTTATCAAGCTTGTGC -ACGGAAGCGTTATCAAGCCTAAGC -ACGGAAGCGTTATCAAGCACTAGC -ACGGAAGCGTTATCAAGCAGATGC -ACGGAAGCGTTATCAAGCTGAAGG -ACGGAAGCGTTATCAAGCCAATGG -ACGGAAGCGTTATCAAGCATGAGG -ACGGAAGCGTTATCAAGCAATGGG -ACGGAAGCGTTATCAAGCTCCTGA -ACGGAAGCGTTATCAAGCTAGCGA -ACGGAAGCGTTATCAAGCCACAGA -ACGGAAGCGTTATCAAGCGCAAGA -ACGGAAGCGTTATCAAGCGGTTGA -ACGGAAGCGTTATCAAGCTCCGAT -ACGGAAGCGTTATCAAGCTGGCAT -ACGGAAGCGTTATCAAGCCGAGAT -ACGGAAGCGTTATCAAGCTACCAC -ACGGAAGCGTTATCAAGCCAGAAC -ACGGAAGCGTTATCAAGCGTCTAC -ACGGAAGCGTTATCAAGCACGTAC -ACGGAAGCGTTATCAAGCAGTGAC -ACGGAAGCGTTATCAAGCCTGTAG -ACGGAAGCGTTATCAAGCCCTAAG -ACGGAAGCGTTATCAAGCGTTCAG -ACGGAAGCGTTATCAAGCGCATAG -ACGGAAGCGTTATCAAGCGACAAG -ACGGAAGCGTTATCAAGCAAGCAG -ACGGAAGCGTTATCAAGCCGTCAA -ACGGAAGCGTTATCAAGCGCTGAA -ACGGAAGCGTTATCAAGCAGTACG -ACGGAAGCGTTATCAAGCATCCGA -ACGGAAGCGTTATCAAGCATGGGA -ACGGAAGCGTTATCAAGCGTGCAA -ACGGAAGCGTTATCAAGCGAGGAA -ACGGAAGCGTTATCAAGCCAGGTA -ACGGAAGCGTTATCAAGCGACTCT -ACGGAAGCGTTATCAAGCAGTCCT -ACGGAAGCGTTATCAAGCTAAGCC -ACGGAAGCGTTATCAAGCATAGCC -ACGGAAGCGTTATCAAGCTAACCG -ACGGAAGCGTTATCAAGCATGCCA -ACGGAAGCGTTACGTTCAGGAAAC -ACGGAAGCGTTACGTTCAAACACC -ACGGAAGCGTTACGTTCAATCGAG -ACGGAAGCGTTACGTTCACTCCTT -ACGGAAGCGTTACGTTCACCTGTT -ACGGAAGCGTTACGTTCACGGTTT -ACGGAAGCGTTACGTTCAGTGGTT -ACGGAAGCGTTACGTTCAGCCTTT -ACGGAAGCGTTACGTTCAGGTCTT -ACGGAAGCGTTACGTTCAACGCTT -ACGGAAGCGTTACGTTCAAGCGTT -ACGGAAGCGTTACGTTCATTCGTC -ACGGAAGCGTTACGTTCATCTCTC -ACGGAAGCGTTACGTTCATGGATC -ACGGAAGCGTTACGTTCACACTTC -ACGGAAGCGTTACGTTCAGTACTC -ACGGAAGCGTTACGTTCAGATGTC -ACGGAAGCGTTACGTTCAACAGTC -ACGGAAGCGTTACGTTCATTGCTG -ACGGAAGCGTTACGTTCATCCATG -ACGGAAGCGTTACGTTCATGTGTG -ACGGAAGCGTTACGTTCACTAGTG -ACGGAAGCGTTACGTTCACATCTG -ACGGAAGCGTTACGTTCAGAGTTG -ACGGAAGCGTTACGTTCAAGACTG -ACGGAAGCGTTACGTTCATCGGTA -ACGGAAGCGTTACGTTCATGCCTA -ACGGAAGCGTTACGTTCACCACTA -ACGGAAGCGTTACGTTCAGGAGTA -ACGGAAGCGTTACGTTCATCGTCT -ACGGAAGCGTTACGTTCATGCACT -ACGGAAGCGTTACGTTCACTGACT -ACGGAAGCGTTACGTTCACAACCT -ACGGAAGCGTTACGTTCAGCTACT -ACGGAAGCGTTACGTTCAGGATCT -ACGGAAGCGTTACGTTCAAAGGCT -ACGGAAGCGTTACGTTCATCAACC -ACGGAAGCGTTACGTTCATGTTCC -ACGGAAGCGTTACGTTCAATTCCC -ACGGAAGCGTTACGTTCATTCTCG -ACGGAAGCGTTACGTTCATAGACG -ACGGAAGCGTTACGTTCAGTAACG -ACGGAAGCGTTACGTTCAACTTCG -ACGGAAGCGTTACGTTCATACGCA -ACGGAAGCGTTACGTTCACTTGCA -ACGGAAGCGTTACGTTCACGAACA -ACGGAAGCGTTACGTTCACAGTCA -ACGGAAGCGTTACGTTCAGATCCA -ACGGAAGCGTTACGTTCAACGACA -ACGGAAGCGTTACGTTCAAGCTCA -ACGGAAGCGTTACGTTCATCACGT -ACGGAAGCGTTACGTTCACGTAGT -ACGGAAGCGTTACGTTCAGTCAGT -ACGGAAGCGTTACGTTCAGAAGGT -ACGGAAGCGTTACGTTCAAACCGT -ACGGAAGCGTTACGTTCATTGTGC -ACGGAAGCGTTACGTTCACTAAGC -ACGGAAGCGTTACGTTCAACTAGC -ACGGAAGCGTTACGTTCAAGATGC -ACGGAAGCGTTACGTTCATGAAGG -ACGGAAGCGTTACGTTCACAATGG -ACGGAAGCGTTACGTTCAATGAGG -ACGGAAGCGTTACGTTCAAATGGG -ACGGAAGCGTTACGTTCATCCTGA -ACGGAAGCGTTACGTTCATAGCGA -ACGGAAGCGTTACGTTCACACAGA -ACGGAAGCGTTACGTTCAGCAAGA -ACGGAAGCGTTACGTTCAGGTTGA -ACGGAAGCGTTACGTTCATCCGAT -ACGGAAGCGTTACGTTCATGGCAT -ACGGAAGCGTTACGTTCACGAGAT -ACGGAAGCGTTACGTTCATACCAC -ACGGAAGCGTTACGTTCACAGAAC -ACGGAAGCGTTACGTTCAGTCTAC -ACGGAAGCGTTACGTTCAACGTAC -ACGGAAGCGTTACGTTCAAGTGAC -ACGGAAGCGTTACGTTCACTGTAG -ACGGAAGCGTTACGTTCACCTAAG -ACGGAAGCGTTACGTTCAGTTCAG -ACGGAAGCGTTACGTTCAGCATAG -ACGGAAGCGTTACGTTCAGACAAG -ACGGAAGCGTTACGTTCAAAGCAG -ACGGAAGCGTTACGTTCACGTCAA -ACGGAAGCGTTACGTTCAGCTGAA -ACGGAAGCGTTACGTTCAAGTACG -ACGGAAGCGTTACGTTCAATCCGA -ACGGAAGCGTTACGTTCAATGGGA -ACGGAAGCGTTACGTTCAGTGCAA -ACGGAAGCGTTACGTTCAGAGGAA -ACGGAAGCGTTACGTTCACAGGTA -ACGGAAGCGTTACGTTCAGACTCT -ACGGAAGCGTTACGTTCAAGTCCT -ACGGAAGCGTTACGTTCATAAGCC -ACGGAAGCGTTACGTTCAATAGCC -ACGGAAGCGTTACGTTCATAACCG -ACGGAAGCGTTACGTTCAATGCCA -ACGGAAGCGTTAAGTCGTGGAAAC -ACGGAAGCGTTAAGTCGTAACACC -ACGGAAGCGTTAAGTCGTATCGAG -ACGGAAGCGTTAAGTCGTCTCCTT -ACGGAAGCGTTAAGTCGTCCTGTT -ACGGAAGCGTTAAGTCGTCGGTTT -ACGGAAGCGTTAAGTCGTGTGGTT -ACGGAAGCGTTAAGTCGTGCCTTT -ACGGAAGCGTTAAGTCGTGGTCTT -ACGGAAGCGTTAAGTCGTACGCTT -ACGGAAGCGTTAAGTCGTAGCGTT -ACGGAAGCGTTAAGTCGTTTCGTC -ACGGAAGCGTTAAGTCGTTCTCTC -ACGGAAGCGTTAAGTCGTTGGATC -ACGGAAGCGTTAAGTCGTCACTTC -ACGGAAGCGTTAAGTCGTGTACTC -ACGGAAGCGTTAAGTCGTGATGTC -ACGGAAGCGTTAAGTCGTACAGTC -ACGGAAGCGTTAAGTCGTTTGCTG -ACGGAAGCGTTAAGTCGTTCCATG -ACGGAAGCGTTAAGTCGTTGTGTG -ACGGAAGCGTTAAGTCGTCTAGTG -ACGGAAGCGTTAAGTCGTCATCTG -ACGGAAGCGTTAAGTCGTGAGTTG -ACGGAAGCGTTAAGTCGTAGACTG -ACGGAAGCGTTAAGTCGTTCGGTA -ACGGAAGCGTTAAGTCGTTGCCTA -ACGGAAGCGTTAAGTCGTCCACTA -ACGGAAGCGTTAAGTCGTGGAGTA -ACGGAAGCGTTAAGTCGTTCGTCT -ACGGAAGCGTTAAGTCGTTGCACT -ACGGAAGCGTTAAGTCGTCTGACT -ACGGAAGCGTTAAGTCGTCAACCT -ACGGAAGCGTTAAGTCGTGCTACT -ACGGAAGCGTTAAGTCGTGGATCT -ACGGAAGCGTTAAGTCGTAAGGCT -ACGGAAGCGTTAAGTCGTTCAACC -ACGGAAGCGTTAAGTCGTTGTTCC -ACGGAAGCGTTAAGTCGTATTCCC -ACGGAAGCGTTAAGTCGTTTCTCG -ACGGAAGCGTTAAGTCGTTAGACG -ACGGAAGCGTTAAGTCGTGTAACG -ACGGAAGCGTTAAGTCGTACTTCG -ACGGAAGCGTTAAGTCGTTACGCA -ACGGAAGCGTTAAGTCGTCTTGCA -ACGGAAGCGTTAAGTCGTCGAACA -ACGGAAGCGTTAAGTCGTCAGTCA -ACGGAAGCGTTAAGTCGTGATCCA -ACGGAAGCGTTAAGTCGTACGACA -ACGGAAGCGTTAAGTCGTAGCTCA -ACGGAAGCGTTAAGTCGTTCACGT -ACGGAAGCGTTAAGTCGTCGTAGT -ACGGAAGCGTTAAGTCGTGTCAGT -ACGGAAGCGTTAAGTCGTGAAGGT -ACGGAAGCGTTAAGTCGTAACCGT -ACGGAAGCGTTAAGTCGTTTGTGC -ACGGAAGCGTTAAGTCGTCTAAGC -ACGGAAGCGTTAAGTCGTACTAGC -ACGGAAGCGTTAAGTCGTAGATGC -ACGGAAGCGTTAAGTCGTTGAAGG -ACGGAAGCGTTAAGTCGTCAATGG -ACGGAAGCGTTAAGTCGTATGAGG -ACGGAAGCGTTAAGTCGTAATGGG -ACGGAAGCGTTAAGTCGTTCCTGA -ACGGAAGCGTTAAGTCGTTAGCGA -ACGGAAGCGTTAAGTCGTCACAGA -ACGGAAGCGTTAAGTCGTGCAAGA -ACGGAAGCGTTAAGTCGTGGTTGA -ACGGAAGCGTTAAGTCGTTCCGAT -ACGGAAGCGTTAAGTCGTTGGCAT -ACGGAAGCGTTAAGTCGTCGAGAT -ACGGAAGCGTTAAGTCGTTACCAC -ACGGAAGCGTTAAGTCGTCAGAAC -ACGGAAGCGTTAAGTCGTGTCTAC -ACGGAAGCGTTAAGTCGTACGTAC -ACGGAAGCGTTAAGTCGTAGTGAC -ACGGAAGCGTTAAGTCGTCTGTAG -ACGGAAGCGTTAAGTCGTCCTAAG -ACGGAAGCGTTAAGTCGTGTTCAG -ACGGAAGCGTTAAGTCGTGCATAG -ACGGAAGCGTTAAGTCGTGACAAG -ACGGAAGCGTTAAGTCGTAAGCAG -ACGGAAGCGTTAAGTCGTCGTCAA -ACGGAAGCGTTAAGTCGTGCTGAA -ACGGAAGCGTTAAGTCGTAGTACG -ACGGAAGCGTTAAGTCGTATCCGA -ACGGAAGCGTTAAGTCGTATGGGA -ACGGAAGCGTTAAGTCGTGTGCAA -ACGGAAGCGTTAAGTCGTGAGGAA -ACGGAAGCGTTAAGTCGTCAGGTA -ACGGAAGCGTTAAGTCGTGACTCT -ACGGAAGCGTTAAGTCGTAGTCCT -ACGGAAGCGTTAAGTCGTTAAGCC -ACGGAAGCGTTAAGTCGTATAGCC -ACGGAAGCGTTAAGTCGTTAACCG -ACGGAAGCGTTAAGTCGTATGCCA -ACGGAAGCGTTAAGTGTCGGAAAC -ACGGAAGCGTTAAGTGTCAACACC -ACGGAAGCGTTAAGTGTCATCGAG -ACGGAAGCGTTAAGTGTCCTCCTT -ACGGAAGCGTTAAGTGTCCCTGTT -ACGGAAGCGTTAAGTGTCCGGTTT -ACGGAAGCGTTAAGTGTCGTGGTT -ACGGAAGCGTTAAGTGTCGCCTTT -ACGGAAGCGTTAAGTGTCGGTCTT -ACGGAAGCGTTAAGTGTCACGCTT -ACGGAAGCGTTAAGTGTCAGCGTT -ACGGAAGCGTTAAGTGTCTTCGTC -ACGGAAGCGTTAAGTGTCTCTCTC -ACGGAAGCGTTAAGTGTCTGGATC -ACGGAAGCGTTAAGTGTCCACTTC -ACGGAAGCGTTAAGTGTCGTACTC -ACGGAAGCGTTAAGTGTCGATGTC -ACGGAAGCGTTAAGTGTCACAGTC -ACGGAAGCGTTAAGTGTCTTGCTG -ACGGAAGCGTTAAGTGTCTCCATG -ACGGAAGCGTTAAGTGTCTGTGTG -ACGGAAGCGTTAAGTGTCCTAGTG -ACGGAAGCGTTAAGTGTCCATCTG -ACGGAAGCGTTAAGTGTCGAGTTG -ACGGAAGCGTTAAGTGTCAGACTG -ACGGAAGCGTTAAGTGTCTCGGTA -ACGGAAGCGTTAAGTGTCTGCCTA -ACGGAAGCGTTAAGTGTCCCACTA -ACGGAAGCGTTAAGTGTCGGAGTA -ACGGAAGCGTTAAGTGTCTCGTCT -ACGGAAGCGTTAAGTGTCTGCACT -ACGGAAGCGTTAAGTGTCCTGACT -ACGGAAGCGTTAAGTGTCCAACCT -ACGGAAGCGTTAAGTGTCGCTACT -ACGGAAGCGTTAAGTGTCGGATCT -ACGGAAGCGTTAAGTGTCAAGGCT -ACGGAAGCGTTAAGTGTCTCAACC -ACGGAAGCGTTAAGTGTCTGTTCC -ACGGAAGCGTTAAGTGTCATTCCC -ACGGAAGCGTTAAGTGTCTTCTCG -ACGGAAGCGTTAAGTGTCTAGACG -ACGGAAGCGTTAAGTGTCGTAACG -ACGGAAGCGTTAAGTGTCACTTCG -ACGGAAGCGTTAAGTGTCTACGCA -ACGGAAGCGTTAAGTGTCCTTGCA -ACGGAAGCGTTAAGTGTCCGAACA -ACGGAAGCGTTAAGTGTCCAGTCA -ACGGAAGCGTTAAGTGTCGATCCA -ACGGAAGCGTTAAGTGTCACGACA -ACGGAAGCGTTAAGTGTCAGCTCA -ACGGAAGCGTTAAGTGTCTCACGT -ACGGAAGCGTTAAGTGTCCGTAGT -ACGGAAGCGTTAAGTGTCGTCAGT -ACGGAAGCGTTAAGTGTCGAAGGT -ACGGAAGCGTTAAGTGTCAACCGT -ACGGAAGCGTTAAGTGTCTTGTGC -ACGGAAGCGTTAAGTGTCCTAAGC -ACGGAAGCGTTAAGTGTCACTAGC -ACGGAAGCGTTAAGTGTCAGATGC -ACGGAAGCGTTAAGTGTCTGAAGG -ACGGAAGCGTTAAGTGTCCAATGG -ACGGAAGCGTTAAGTGTCATGAGG -ACGGAAGCGTTAAGTGTCAATGGG -ACGGAAGCGTTAAGTGTCTCCTGA -ACGGAAGCGTTAAGTGTCTAGCGA -ACGGAAGCGTTAAGTGTCCACAGA -ACGGAAGCGTTAAGTGTCGCAAGA -ACGGAAGCGTTAAGTGTCGGTTGA -ACGGAAGCGTTAAGTGTCTCCGAT -ACGGAAGCGTTAAGTGTCTGGCAT -ACGGAAGCGTTAAGTGTCCGAGAT -ACGGAAGCGTTAAGTGTCTACCAC -ACGGAAGCGTTAAGTGTCCAGAAC -ACGGAAGCGTTAAGTGTCGTCTAC -ACGGAAGCGTTAAGTGTCACGTAC -ACGGAAGCGTTAAGTGTCAGTGAC -ACGGAAGCGTTAAGTGTCCTGTAG -ACGGAAGCGTTAAGTGTCCCTAAG -ACGGAAGCGTTAAGTGTCGTTCAG -ACGGAAGCGTTAAGTGTCGCATAG -ACGGAAGCGTTAAGTGTCGACAAG -ACGGAAGCGTTAAGTGTCAAGCAG -ACGGAAGCGTTAAGTGTCCGTCAA -ACGGAAGCGTTAAGTGTCGCTGAA -ACGGAAGCGTTAAGTGTCAGTACG -ACGGAAGCGTTAAGTGTCATCCGA -ACGGAAGCGTTAAGTGTCATGGGA -ACGGAAGCGTTAAGTGTCGTGCAA -ACGGAAGCGTTAAGTGTCGAGGAA -ACGGAAGCGTTAAGTGTCCAGGTA -ACGGAAGCGTTAAGTGTCGACTCT -ACGGAAGCGTTAAGTGTCAGTCCT -ACGGAAGCGTTAAGTGTCTAAGCC -ACGGAAGCGTTAAGTGTCATAGCC -ACGGAAGCGTTAAGTGTCTAACCG -ACGGAAGCGTTAAGTGTCATGCCA -ACGGAAGCGTTAGGTGAAGGAAAC -ACGGAAGCGTTAGGTGAAAACACC -ACGGAAGCGTTAGGTGAAATCGAG -ACGGAAGCGTTAGGTGAACTCCTT -ACGGAAGCGTTAGGTGAACCTGTT -ACGGAAGCGTTAGGTGAACGGTTT -ACGGAAGCGTTAGGTGAAGTGGTT -ACGGAAGCGTTAGGTGAAGCCTTT -ACGGAAGCGTTAGGTGAAGGTCTT -ACGGAAGCGTTAGGTGAAACGCTT -ACGGAAGCGTTAGGTGAAAGCGTT -ACGGAAGCGTTAGGTGAATTCGTC -ACGGAAGCGTTAGGTGAATCTCTC -ACGGAAGCGTTAGGTGAATGGATC -ACGGAAGCGTTAGGTGAACACTTC -ACGGAAGCGTTAGGTGAAGTACTC -ACGGAAGCGTTAGGTGAAGATGTC -ACGGAAGCGTTAGGTGAAACAGTC -ACGGAAGCGTTAGGTGAATTGCTG -ACGGAAGCGTTAGGTGAATCCATG -ACGGAAGCGTTAGGTGAATGTGTG -ACGGAAGCGTTAGGTGAACTAGTG -ACGGAAGCGTTAGGTGAACATCTG -ACGGAAGCGTTAGGTGAAGAGTTG -ACGGAAGCGTTAGGTGAAAGACTG -ACGGAAGCGTTAGGTGAATCGGTA -ACGGAAGCGTTAGGTGAATGCCTA -ACGGAAGCGTTAGGTGAACCACTA -ACGGAAGCGTTAGGTGAAGGAGTA -ACGGAAGCGTTAGGTGAATCGTCT -ACGGAAGCGTTAGGTGAATGCACT -ACGGAAGCGTTAGGTGAACTGACT -ACGGAAGCGTTAGGTGAACAACCT -ACGGAAGCGTTAGGTGAAGCTACT -ACGGAAGCGTTAGGTGAAGGATCT -ACGGAAGCGTTAGGTGAAAAGGCT -ACGGAAGCGTTAGGTGAATCAACC -ACGGAAGCGTTAGGTGAATGTTCC -ACGGAAGCGTTAGGTGAAATTCCC -ACGGAAGCGTTAGGTGAATTCTCG -ACGGAAGCGTTAGGTGAATAGACG -ACGGAAGCGTTAGGTGAAGTAACG -ACGGAAGCGTTAGGTGAAACTTCG -ACGGAAGCGTTAGGTGAATACGCA -ACGGAAGCGTTAGGTGAACTTGCA -ACGGAAGCGTTAGGTGAACGAACA -ACGGAAGCGTTAGGTGAACAGTCA -ACGGAAGCGTTAGGTGAAGATCCA -ACGGAAGCGTTAGGTGAAACGACA -ACGGAAGCGTTAGGTGAAAGCTCA -ACGGAAGCGTTAGGTGAATCACGT -ACGGAAGCGTTAGGTGAACGTAGT -ACGGAAGCGTTAGGTGAAGTCAGT -ACGGAAGCGTTAGGTGAAGAAGGT -ACGGAAGCGTTAGGTGAAAACCGT -ACGGAAGCGTTAGGTGAATTGTGC -ACGGAAGCGTTAGGTGAACTAAGC -ACGGAAGCGTTAGGTGAAACTAGC -ACGGAAGCGTTAGGTGAAAGATGC -ACGGAAGCGTTAGGTGAATGAAGG -ACGGAAGCGTTAGGTGAACAATGG -ACGGAAGCGTTAGGTGAAATGAGG -ACGGAAGCGTTAGGTGAAAATGGG -ACGGAAGCGTTAGGTGAATCCTGA -ACGGAAGCGTTAGGTGAATAGCGA -ACGGAAGCGTTAGGTGAACACAGA -ACGGAAGCGTTAGGTGAAGCAAGA -ACGGAAGCGTTAGGTGAAGGTTGA -ACGGAAGCGTTAGGTGAATCCGAT -ACGGAAGCGTTAGGTGAATGGCAT -ACGGAAGCGTTAGGTGAACGAGAT -ACGGAAGCGTTAGGTGAATACCAC -ACGGAAGCGTTAGGTGAACAGAAC -ACGGAAGCGTTAGGTGAAGTCTAC -ACGGAAGCGTTAGGTGAAACGTAC -ACGGAAGCGTTAGGTGAAAGTGAC -ACGGAAGCGTTAGGTGAACTGTAG -ACGGAAGCGTTAGGTGAACCTAAG -ACGGAAGCGTTAGGTGAAGTTCAG -ACGGAAGCGTTAGGTGAAGCATAG -ACGGAAGCGTTAGGTGAAGACAAG -ACGGAAGCGTTAGGTGAAAAGCAG -ACGGAAGCGTTAGGTGAACGTCAA -ACGGAAGCGTTAGGTGAAGCTGAA -ACGGAAGCGTTAGGTGAAAGTACG -ACGGAAGCGTTAGGTGAAATCCGA -ACGGAAGCGTTAGGTGAAATGGGA -ACGGAAGCGTTAGGTGAAGTGCAA -ACGGAAGCGTTAGGTGAAGAGGAA -ACGGAAGCGTTAGGTGAACAGGTA -ACGGAAGCGTTAGGTGAAGACTCT -ACGGAAGCGTTAGGTGAAAGTCCT -ACGGAAGCGTTAGGTGAATAAGCC -ACGGAAGCGTTAGGTGAAATAGCC -ACGGAAGCGTTAGGTGAATAACCG -ACGGAAGCGTTAGGTGAAATGCCA -ACGGAAGCGTTACGTAACGGAAAC -ACGGAAGCGTTACGTAACAACACC -ACGGAAGCGTTACGTAACATCGAG -ACGGAAGCGTTACGTAACCTCCTT -ACGGAAGCGTTACGTAACCCTGTT -ACGGAAGCGTTACGTAACCGGTTT -ACGGAAGCGTTACGTAACGTGGTT -ACGGAAGCGTTACGTAACGCCTTT -ACGGAAGCGTTACGTAACGGTCTT -ACGGAAGCGTTACGTAACACGCTT -ACGGAAGCGTTACGTAACAGCGTT -ACGGAAGCGTTACGTAACTTCGTC -ACGGAAGCGTTACGTAACTCTCTC -ACGGAAGCGTTACGTAACTGGATC -ACGGAAGCGTTACGTAACCACTTC -ACGGAAGCGTTACGTAACGTACTC -ACGGAAGCGTTACGTAACGATGTC -ACGGAAGCGTTACGTAACACAGTC -ACGGAAGCGTTACGTAACTTGCTG -ACGGAAGCGTTACGTAACTCCATG -ACGGAAGCGTTACGTAACTGTGTG -ACGGAAGCGTTACGTAACCTAGTG -ACGGAAGCGTTACGTAACCATCTG -ACGGAAGCGTTACGTAACGAGTTG -ACGGAAGCGTTACGTAACAGACTG -ACGGAAGCGTTACGTAACTCGGTA -ACGGAAGCGTTACGTAACTGCCTA -ACGGAAGCGTTACGTAACCCACTA -ACGGAAGCGTTACGTAACGGAGTA -ACGGAAGCGTTACGTAACTCGTCT -ACGGAAGCGTTACGTAACTGCACT -ACGGAAGCGTTACGTAACCTGACT -ACGGAAGCGTTACGTAACCAACCT -ACGGAAGCGTTACGTAACGCTACT -ACGGAAGCGTTACGTAACGGATCT -ACGGAAGCGTTACGTAACAAGGCT -ACGGAAGCGTTACGTAACTCAACC -ACGGAAGCGTTACGTAACTGTTCC -ACGGAAGCGTTACGTAACATTCCC -ACGGAAGCGTTACGTAACTTCTCG -ACGGAAGCGTTACGTAACTAGACG -ACGGAAGCGTTACGTAACGTAACG -ACGGAAGCGTTACGTAACACTTCG -ACGGAAGCGTTACGTAACTACGCA -ACGGAAGCGTTACGTAACCTTGCA -ACGGAAGCGTTACGTAACCGAACA -ACGGAAGCGTTACGTAACCAGTCA -ACGGAAGCGTTACGTAACGATCCA -ACGGAAGCGTTACGTAACACGACA -ACGGAAGCGTTACGTAACAGCTCA -ACGGAAGCGTTACGTAACTCACGT -ACGGAAGCGTTACGTAACCGTAGT -ACGGAAGCGTTACGTAACGTCAGT -ACGGAAGCGTTACGTAACGAAGGT -ACGGAAGCGTTACGTAACAACCGT -ACGGAAGCGTTACGTAACTTGTGC -ACGGAAGCGTTACGTAACCTAAGC -ACGGAAGCGTTACGTAACACTAGC -ACGGAAGCGTTACGTAACAGATGC -ACGGAAGCGTTACGTAACTGAAGG -ACGGAAGCGTTACGTAACCAATGG -ACGGAAGCGTTACGTAACATGAGG -ACGGAAGCGTTACGTAACAATGGG -ACGGAAGCGTTACGTAACTCCTGA -ACGGAAGCGTTACGTAACTAGCGA -ACGGAAGCGTTACGTAACCACAGA -ACGGAAGCGTTACGTAACGCAAGA -ACGGAAGCGTTACGTAACGGTTGA -ACGGAAGCGTTACGTAACTCCGAT -ACGGAAGCGTTACGTAACTGGCAT -ACGGAAGCGTTACGTAACCGAGAT -ACGGAAGCGTTACGTAACTACCAC -ACGGAAGCGTTACGTAACCAGAAC -ACGGAAGCGTTACGTAACGTCTAC -ACGGAAGCGTTACGTAACACGTAC -ACGGAAGCGTTACGTAACAGTGAC -ACGGAAGCGTTACGTAACCTGTAG -ACGGAAGCGTTACGTAACCCTAAG -ACGGAAGCGTTACGTAACGTTCAG -ACGGAAGCGTTACGTAACGCATAG -ACGGAAGCGTTACGTAACGACAAG -ACGGAAGCGTTACGTAACAAGCAG -ACGGAAGCGTTACGTAACCGTCAA -ACGGAAGCGTTACGTAACGCTGAA -ACGGAAGCGTTACGTAACAGTACG -ACGGAAGCGTTACGTAACATCCGA -ACGGAAGCGTTACGTAACATGGGA -ACGGAAGCGTTACGTAACGTGCAA -ACGGAAGCGTTACGTAACGAGGAA -ACGGAAGCGTTACGTAACCAGGTA -ACGGAAGCGTTACGTAACGACTCT -ACGGAAGCGTTACGTAACAGTCCT -ACGGAAGCGTTACGTAACTAAGCC -ACGGAAGCGTTACGTAACATAGCC -ACGGAAGCGTTACGTAACTAACCG -ACGGAAGCGTTACGTAACATGCCA -ACGGAAGCGTTATGCTTGGGAAAC -ACGGAAGCGTTATGCTTGAACACC -ACGGAAGCGTTATGCTTGATCGAG -ACGGAAGCGTTATGCTTGCTCCTT -ACGGAAGCGTTATGCTTGCCTGTT -ACGGAAGCGTTATGCTTGCGGTTT -ACGGAAGCGTTATGCTTGGTGGTT -ACGGAAGCGTTATGCTTGGCCTTT -ACGGAAGCGTTATGCTTGGGTCTT -ACGGAAGCGTTATGCTTGACGCTT -ACGGAAGCGTTATGCTTGAGCGTT -ACGGAAGCGTTATGCTTGTTCGTC -ACGGAAGCGTTATGCTTGTCTCTC -ACGGAAGCGTTATGCTTGTGGATC -ACGGAAGCGTTATGCTTGCACTTC -ACGGAAGCGTTATGCTTGGTACTC -ACGGAAGCGTTATGCTTGGATGTC -ACGGAAGCGTTATGCTTGACAGTC -ACGGAAGCGTTATGCTTGTTGCTG -ACGGAAGCGTTATGCTTGTCCATG -ACGGAAGCGTTATGCTTGTGTGTG -ACGGAAGCGTTATGCTTGCTAGTG -ACGGAAGCGTTATGCTTGCATCTG -ACGGAAGCGTTATGCTTGGAGTTG -ACGGAAGCGTTATGCTTGAGACTG -ACGGAAGCGTTATGCTTGTCGGTA -ACGGAAGCGTTATGCTTGTGCCTA -ACGGAAGCGTTATGCTTGCCACTA -ACGGAAGCGTTATGCTTGGGAGTA -ACGGAAGCGTTATGCTTGTCGTCT -ACGGAAGCGTTATGCTTGTGCACT -ACGGAAGCGTTATGCTTGCTGACT -ACGGAAGCGTTATGCTTGCAACCT -ACGGAAGCGTTATGCTTGGCTACT -ACGGAAGCGTTATGCTTGGGATCT -ACGGAAGCGTTATGCTTGAAGGCT -ACGGAAGCGTTATGCTTGTCAACC -ACGGAAGCGTTATGCTTGTGTTCC -ACGGAAGCGTTATGCTTGATTCCC -ACGGAAGCGTTATGCTTGTTCTCG -ACGGAAGCGTTATGCTTGTAGACG -ACGGAAGCGTTATGCTTGGTAACG -ACGGAAGCGTTATGCTTGACTTCG -ACGGAAGCGTTATGCTTGTACGCA -ACGGAAGCGTTATGCTTGCTTGCA -ACGGAAGCGTTATGCTTGCGAACA -ACGGAAGCGTTATGCTTGCAGTCA -ACGGAAGCGTTATGCTTGGATCCA -ACGGAAGCGTTATGCTTGACGACA -ACGGAAGCGTTATGCTTGAGCTCA -ACGGAAGCGTTATGCTTGTCACGT -ACGGAAGCGTTATGCTTGCGTAGT -ACGGAAGCGTTATGCTTGGTCAGT -ACGGAAGCGTTATGCTTGGAAGGT -ACGGAAGCGTTATGCTTGAACCGT -ACGGAAGCGTTATGCTTGTTGTGC -ACGGAAGCGTTATGCTTGCTAAGC -ACGGAAGCGTTATGCTTGACTAGC -ACGGAAGCGTTATGCTTGAGATGC -ACGGAAGCGTTATGCTTGTGAAGG -ACGGAAGCGTTATGCTTGCAATGG -ACGGAAGCGTTATGCTTGATGAGG -ACGGAAGCGTTATGCTTGAATGGG -ACGGAAGCGTTATGCTTGTCCTGA -ACGGAAGCGTTATGCTTGTAGCGA -ACGGAAGCGTTATGCTTGCACAGA -ACGGAAGCGTTATGCTTGGCAAGA -ACGGAAGCGTTATGCTTGGGTTGA -ACGGAAGCGTTATGCTTGTCCGAT -ACGGAAGCGTTATGCTTGTGGCAT -ACGGAAGCGTTATGCTTGCGAGAT -ACGGAAGCGTTATGCTTGTACCAC -ACGGAAGCGTTATGCTTGCAGAAC -ACGGAAGCGTTATGCTTGGTCTAC -ACGGAAGCGTTATGCTTGACGTAC -ACGGAAGCGTTATGCTTGAGTGAC -ACGGAAGCGTTATGCTTGCTGTAG -ACGGAAGCGTTATGCTTGCCTAAG -ACGGAAGCGTTATGCTTGGTTCAG -ACGGAAGCGTTATGCTTGGCATAG -ACGGAAGCGTTATGCTTGGACAAG -ACGGAAGCGTTATGCTTGAAGCAG -ACGGAAGCGTTATGCTTGCGTCAA -ACGGAAGCGTTATGCTTGGCTGAA -ACGGAAGCGTTATGCTTGAGTACG -ACGGAAGCGTTATGCTTGATCCGA -ACGGAAGCGTTATGCTTGATGGGA -ACGGAAGCGTTATGCTTGGTGCAA -ACGGAAGCGTTATGCTTGGAGGAA -ACGGAAGCGTTATGCTTGCAGGTA -ACGGAAGCGTTATGCTTGGACTCT -ACGGAAGCGTTATGCTTGAGTCCT -ACGGAAGCGTTATGCTTGTAAGCC -ACGGAAGCGTTATGCTTGATAGCC -ACGGAAGCGTTATGCTTGTAACCG -ACGGAAGCGTTATGCTTGATGCCA -ACGGAAGCGTTAAGCCTAGGAAAC -ACGGAAGCGTTAAGCCTAAACACC -ACGGAAGCGTTAAGCCTAATCGAG -ACGGAAGCGTTAAGCCTACTCCTT -ACGGAAGCGTTAAGCCTACCTGTT -ACGGAAGCGTTAAGCCTACGGTTT -ACGGAAGCGTTAAGCCTAGTGGTT -ACGGAAGCGTTAAGCCTAGCCTTT -ACGGAAGCGTTAAGCCTAGGTCTT -ACGGAAGCGTTAAGCCTAACGCTT -ACGGAAGCGTTAAGCCTAAGCGTT -ACGGAAGCGTTAAGCCTATTCGTC -ACGGAAGCGTTAAGCCTATCTCTC -ACGGAAGCGTTAAGCCTATGGATC -ACGGAAGCGTTAAGCCTACACTTC -ACGGAAGCGTTAAGCCTAGTACTC -ACGGAAGCGTTAAGCCTAGATGTC -ACGGAAGCGTTAAGCCTAACAGTC -ACGGAAGCGTTAAGCCTATTGCTG -ACGGAAGCGTTAAGCCTATCCATG -ACGGAAGCGTTAAGCCTATGTGTG -ACGGAAGCGTTAAGCCTACTAGTG -ACGGAAGCGTTAAGCCTACATCTG -ACGGAAGCGTTAAGCCTAGAGTTG -ACGGAAGCGTTAAGCCTAAGACTG -ACGGAAGCGTTAAGCCTATCGGTA -ACGGAAGCGTTAAGCCTATGCCTA -ACGGAAGCGTTAAGCCTACCACTA -ACGGAAGCGTTAAGCCTAGGAGTA -ACGGAAGCGTTAAGCCTATCGTCT -ACGGAAGCGTTAAGCCTATGCACT -ACGGAAGCGTTAAGCCTACTGACT -ACGGAAGCGTTAAGCCTACAACCT -ACGGAAGCGTTAAGCCTAGCTACT -ACGGAAGCGTTAAGCCTAGGATCT -ACGGAAGCGTTAAGCCTAAAGGCT -ACGGAAGCGTTAAGCCTATCAACC -ACGGAAGCGTTAAGCCTATGTTCC -ACGGAAGCGTTAAGCCTAATTCCC -ACGGAAGCGTTAAGCCTATTCTCG -ACGGAAGCGTTAAGCCTATAGACG -ACGGAAGCGTTAAGCCTAGTAACG -ACGGAAGCGTTAAGCCTAACTTCG -ACGGAAGCGTTAAGCCTATACGCA -ACGGAAGCGTTAAGCCTACTTGCA -ACGGAAGCGTTAAGCCTACGAACA -ACGGAAGCGTTAAGCCTACAGTCA -ACGGAAGCGTTAAGCCTAGATCCA -ACGGAAGCGTTAAGCCTAACGACA -ACGGAAGCGTTAAGCCTAAGCTCA -ACGGAAGCGTTAAGCCTATCACGT -ACGGAAGCGTTAAGCCTACGTAGT -ACGGAAGCGTTAAGCCTAGTCAGT -ACGGAAGCGTTAAGCCTAGAAGGT -ACGGAAGCGTTAAGCCTAAACCGT -ACGGAAGCGTTAAGCCTATTGTGC -ACGGAAGCGTTAAGCCTACTAAGC -ACGGAAGCGTTAAGCCTAACTAGC -ACGGAAGCGTTAAGCCTAAGATGC -ACGGAAGCGTTAAGCCTATGAAGG -ACGGAAGCGTTAAGCCTACAATGG -ACGGAAGCGTTAAGCCTAATGAGG -ACGGAAGCGTTAAGCCTAAATGGG -ACGGAAGCGTTAAGCCTATCCTGA -ACGGAAGCGTTAAGCCTATAGCGA -ACGGAAGCGTTAAGCCTACACAGA -ACGGAAGCGTTAAGCCTAGCAAGA -ACGGAAGCGTTAAGCCTAGGTTGA -ACGGAAGCGTTAAGCCTATCCGAT -ACGGAAGCGTTAAGCCTATGGCAT -ACGGAAGCGTTAAGCCTACGAGAT -ACGGAAGCGTTAAGCCTATACCAC -ACGGAAGCGTTAAGCCTACAGAAC -ACGGAAGCGTTAAGCCTAGTCTAC -ACGGAAGCGTTAAGCCTAACGTAC -ACGGAAGCGTTAAGCCTAAGTGAC -ACGGAAGCGTTAAGCCTACTGTAG -ACGGAAGCGTTAAGCCTACCTAAG -ACGGAAGCGTTAAGCCTAGTTCAG -ACGGAAGCGTTAAGCCTAGCATAG -ACGGAAGCGTTAAGCCTAGACAAG -ACGGAAGCGTTAAGCCTAAAGCAG -ACGGAAGCGTTAAGCCTACGTCAA -ACGGAAGCGTTAAGCCTAGCTGAA -ACGGAAGCGTTAAGCCTAAGTACG -ACGGAAGCGTTAAGCCTAATCCGA -ACGGAAGCGTTAAGCCTAATGGGA -ACGGAAGCGTTAAGCCTAGTGCAA -ACGGAAGCGTTAAGCCTAGAGGAA -ACGGAAGCGTTAAGCCTACAGGTA -ACGGAAGCGTTAAGCCTAGACTCT -ACGGAAGCGTTAAGCCTAAGTCCT -ACGGAAGCGTTAAGCCTATAAGCC -ACGGAAGCGTTAAGCCTAATAGCC -ACGGAAGCGTTAAGCCTATAACCG -ACGGAAGCGTTAAGCCTAATGCCA -ACGGAAGCGTTAAGCACTGGAAAC -ACGGAAGCGTTAAGCACTAACACC -ACGGAAGCGTTAAGCACTATCGAG -ACGGAAGCGTTAAGCACTCTCCTT -ACGGAAGCGTTAAGCACTCCTGTT -ACGGAAGCGTTAAGCACTCGGTTT -ACGGAAGCGTTAAGCACTGTGGTT -ACGGAAGCGTTAAGCACTGCCTTT -ACGGAAGCGTTAAGCACTGGTCTT -ACGGAAGCGTTAAGCACTACGCTT -ACGGAAGCGTTAAGCACTAGCGTT -ACGGAAGCGTTAAGCACTTTCGTC -ACGGAAGCGTTAAGCACTTCTCTC -ACGGAAGCGTTAAGCACTTGGATC -ACGGAAGCGTTAAGCACTCACTTC -ACGGAAGCGTTAAGCACTGTACTC -ACGGAAGCGTTAAGCACTGATGTC -ACGGAAGCGTTAAGCACTACAGTC -ACGGAAGCGTTAAGCACTTTGCTG -ACGGAAGCGTTAAGCACTTCCATG -ACGGAAGCGTTAAGCACTTGTGTG -ACGGAAGCGTTAAGCACTCTAGTG -ACGGAAGCGTTAAGCACTCATCTG -ACGGAAGCGTTAAGCACTGAGTTG -ACGGAAGCGTTAAGCACTAGACTG -ACGGAAGCGTTAAGCACTTCGGTA -ACGGAAGCGTTAAGCACTTGCCTA -ACGGAAGCGTTAAGCACTCCACTA -ACGGAAGCGTTAAGCACTGGAGTA -ACGGAAGCGTTAAGCACTTCGTCT -ACGGAAGCGTTAAGCACTTGCACT -ACGGAAGCGTTAAGCACTCTGACT -ACGGAAGCGTTAAGCACTCAACCT -ACGGAAGCGTTAAGCACTGCTACT -ACGGAAGCGTTAAGCACTGGATCT -ACGGAAGCGTTAAGCACTAAGGCT -ACGGAAGCGTTAAGCACTTCAACC -ACGGAAGCGTTAAGCACTTGTTCC -ACGGAAGCGTTAAGCACTATTCCC -ACGGAAGCGTTAAGCACTTTCTCG -ACGGAAGCGTTAAGCACTTAGACG -ACGGAAGCGTTAAGCACTGTAACG -ACGGAAGCGTTAAGCACTACTTCG -ACGGAAGCGTTAAGCACTTACGCA -ACGGAAGCGTTAAGCACTCTTGCA -ACGGAAGCGTTAAGCACTCGAACA -ACGGAAGCGTTAAGCACTCAGTCA -ACGGAAGCGTTAAGCACTGATCCA -ACGGAAGCGTTAAGCACTACGACA -ACGGAAGCGTTAAGCACTAGCTCA -ACGGAAGCGTTAAGCACTTCACGT -ACGGAAGCGTTAAGCACTCGTAGT -ACGGAAGCGTTAAGCACTGTCAGT -ACGGAAGCGTTAAGCACTGAAGGT -ACGGAAGCGTTAAGCACTAACCGT -ACGGAAGCGTTAAGCACTTTGTGC -ACGGAAGCGTTAAGCACTCTAAGC -ACGGAAGCGTTAAGCACTACTAGC -ACGGAAGCGTTAAGCACTAGATGC -ACGGAAGCGTTAAGCACTTGAAGG -ACGGAAGCGTTAAGCACTCAATGG -ACGGAAGCGTTAAGCACTATGAGG -ACGGAAGCGTTAAGCACTAATGGG -ACGGAAGCGTTAAGCACTTCCTGA -ACGGAAGCGTTAAGCACTTAGCGA -ACGGAAGCGTTAAGCACTCACAGA -ACGGAAGCGTTAAGCACTGCAAGA -ACGGAAGCGTTAAGCACTGGTTGA -ACGGAAGCGTTAAGCACTTCCGAT -ACGGAAGCGTTAAGCACTTGGCAT -ACGGAAGCGTTAAGCACTCGAGAT -ACGGAAGCGTTAAGCACTTACCAC -ACGGAAGCGTTAAGCACTCAGAAC -ACGGAAGCGTTAAGCACTGTCTAC -ACGGAAGCGTTAAGCACTACGTAC -ACGGAAGCGTTAAGCACTAGTGAC -ACGGAAGCGTTAAGCACTCTGTAG -ACGGAAGCGTTAAGCACTCCTAAG -ACGGAAGCGTTAAGCACTGTTCAG -ACGGAAGCGTTAAGCACTGCATAG -ACGGAAGCGTTAAGCACTGACAAG -ACGGAAGCGTTAAGCACTAAGCAG -ACGGAAGCGTTAAGCACTCGTCAA -ACGGAAGCGTTAAGCACTGCTGAA -ACGGAAGCGTTAAGCACTAGTACG -ACGGAAGCGTTAAGCACTATCCGA -ACGGAAGCGTTAAGCACTATGGGA -ACGGAAGCGTTAAGCACTGTGCAA -ACGGAAGCGTTAAGCACTGAGGAA -ACGGAAGCGTTAAGCACTCAGGTA -ACGGAAGCGTTAAGCACTGACTCT -ACGGAAGCGTTAAGCACTAGTCCT -ACGGAAGCGTTAAGCACTTAAGCC -ACGGAAGCGTTAAGCACTATAGCC -ACGGAAGCGTTAAGCACTTAACCG -ACGGAAGCGTTAAGCACTATGCCA -ACGGAAGCGTTATGCAGAGGAAAC -ACGGAAGCGTTATGCAGAAACACC -ACGGAAGCGTTATGCAGAATCGAG -ACGGAAGCGTTATGCAGACTCCTT -ACGGAAGCGTTATGCAGACCTGTT -ACGGAAGCGTTATGCAGACGGTTT -ACGGAAGCGTTATGCAGAGTGGTT -ACGGAAGCGTTATGCAGAGCCTTT -ACGGAAGCGTTATGCAGAGGTCTT -ACGGAAGCGTTATGCAGAACGCTT -ACGGAAGCGTTATGCAGAAGCGTT -ACGGAAGCGTTATGCAGATTCGTC -ACGGAAGCGTTATGCAGATCTCTC -ACGGAAGCGTTATGCAGATGGATC -ACGGAAGCGTTATGCAGACACTTC -ACGGAAGCGTTATGCAGAGTACTC -ACGGAAGCGTTATGCAGAGATGTC -ACGGAAGCGTTATGCAGAACAGTC -ACGGAAGCGTTATGCAGATTGCTG -ACGGAAGCGTTATGCAGATCCATG -ACGGAAGCGTTATGCAGATGTGTG -ACGGAAGCGTTATGCAGACTAGTG -ACGGAAGCGTTATGCAGACATCTG -ACGGAAGCGTTATGCAGAGAGTTG -ACGGAAGCGTTATGCAGAAGACTG -ACGGAAGCGTTATGCAGATCGGTA -ACGGAAGCGTTATGCAGATGCCTA -ACGGAAGCGTTATGCAGACCACTA -ACGGAAGCGTTATGCAGAGGAGTA -ACGGAAGCGTTATGCAGATCGTCT -ACGGAAGCGTTATGCAGATGCACT -ACGGAAGCGTTATGCAGACTGACT -ACGGAAGCGTTATGCAGACAACCT -ACGGAAGCGTTATGCAGAGCTACT -ACGGAAGCGTTATGCAGAGGATCT -ACGGAAGCGTTATGCAGAAAGGCT -ACGGAAGCGTTATGCAGATCAACC -ACGGAAGCGTTATGCAGATGTTCC -ACGGAAGCGTTATGCAGAATTCCC -ACGGAAGCGTTATGCAGATTCTCG -ACGGAAGCGTTATGCAGATAGACG -ACGGAAGCGTTATGCAGAGTAACG -ACGGAAGCGTTATGCAGAACTTCG -ACGGAAGCGTTATGCAGATACGCA -ACGGAAGCGTTATGCAGACTTGCA -ACGGAAGCGTTATGCAGACGAACA -ACGGAAGCGTTATGCAGACAGTCA -ACGGAAGCGTTATGCAGAGATCCA -ACGGAAGCGTTATGCAGAACGACA -ACGGAAGCGTTATGCAGAAGCTCA -ACGGAAGCGTTATGCAGATCACGT -ACGGAAGCGTTATGCAGACGTAGT -ACGGAAGCGTTATGCAGAGTCAGT -ACGGAAGCGTTATGCAGAGAAGGT -ACGGAAGCGTTATGCAGAAACCGT -ACGGAAGCGTTATGCAGATTGTGC -ACGGAAGCGTTATGCAGACTAAGC -ACGGAAGCGTTATGCAGAACTAGC -ACGGAAGCGTTATGCAGAAGATGC -ACGGAAGCGTTATGCAGATGAAGG -ACGGAAGCGTTATGCAGACAATGG -ACGGAAGCGTTATGCAGAATGAGG -ACGGAAGCGTTATGCAGAAATGGG -ACGGAAGCGTTATGCAGATCCTGA -ACGGAAGCGTTATGCAGATAGCGA -ACGGAAGCGTTATGCAGACACAGA -ACGGAAGCGTTATGCAGAGCAAGA -ACGGAAGCGTTATGCAGAGGTTGA -ACGGAAGCGTTATGCAGATCCGAT -ACGGAAGCGTTATGCAGATGGCAT -ACGGAAGCGTTATGCAGACGAGAT -ACGGAAGCGTTATGCAGATACCAC -ACGGAAGCGTTATGCAGACAGAAC -ACGGAAGCGTTATGCAGAGTCTAC -ACGGAAGCGTTATGCAGAACGTAC -ACGGAAGCGTTATGCAGAAGTGAC -ACGGAAGCGTTATGCAGACTGTAG -ACGGAAGCGTTATGCAGACCTAAG -ACGGAAGCGTTATGCAGAGTTCAG -ACGGAAGCGTTATGCAGAGCATAG -ACGGAAGCGTTATGCAGAGACAAG -ACGGAAGCGTTATGCAGAAAGCAG -ACGGAAGCGTTATGCAGACGTCAA -ACGGAAGCGTTATGCAGAGCTGAA -ACGGAAGCGTTATGCAGAAGTACG -ACGGAAGCGTTATGCAGAATCCGA -ACGGAAGCGTTATGCAGAATGGGA -ACGGAAGCGTTATGCAGAGTGCAA -ACGGAAGCGTTATGCAGAGAGGAA -ACGGAAGCGTTATGCAGACAGGTA -ACGGAAGCGTTATGCAGAGACTCT -ACGGAAGCGTTATGCAGAAGTCCT -ACGGAAGCGTTATGCAGATAAGCC -ACGGAAGCGTTATGCAGAATAGCC -ACGGAAGCGTTATGCAGATAACCG -ACGGAAGCGTTATGCAGAATGCCA -ACGGAAGCGTTAAGGTGAGGAAAC -ACGGAAGCGTTAAGGTGAAACACC -ACGGAAGCGTTAAGGTGAATCGAG -ACGGAAGCGTTAAGGTGACTCCTT -ACGGAAGCGTTAAGGTGACCTGTT -ACGGAAGCGTTAAGGTGACGGTTT -ACGGAAGCGTTAAGGTGAGTGGTT -ACGGAAGCGTTAAGGTGAGCCTTT -ACGGAAGCGTTAAGGTGAGGTCTT -ACGGAAGCGTTAAGGTGAACGCTT -ACGGAAGCGTTAAGGTGAAGCGTT -ACGGAAGCGTTAAGGTGATTCGTC -ACGGAAGCGTTAAGGTGATCTCTC -ACGGAAGCGTTAAGGTGATGGATC -ACGGAAGCGTTAAGGTGACACTTC -ACGGAAGCGTTAAGGTGAGTACTC -ACGGAAGCGTTAAGGTGAGATGTC -ACGGAAGCGTTAAGGTGAACAGTC -ACGGAAGCGTTAAGGTGATTGCTG -ACGGAAGCGTTAAGGTGATCCATG -ACGGAAGCGTTAAGGTGATGTGTG -ACGGAAGCGTTAAGGTGACTAGTG -ACGGAAGCGTTAAGGTGACATCTG -ACGGAAGCGTTAAGGTGAGAGTTG -ACGGAAGCGTTAAGGTGAAGACTG -ACGGAAGCGTTAAGGTGATCGGTA -ACGGAAGCGTTAAGGTGATGCCTA -ACGGAAGCGTTAAGGTGACCACTA -ACGGAAGCGTTAAGGTGAGGAGTA -ACGGAAGCGTTAAGGTGATCGTCT -ACGGAAGCGTTAAGGTGATGCACT -ACGGAAGCGTTAAGGTGACTGACT -ACGGAAGCGTTAAGGTGACAACCT -ACGGAAGCGTTAAGGTGAGCTACT -ACGGAAGCGTTAAGGTGAGGATCT -ACGGAAGCGTTAAGGTGAAAGGCT -ACGGAAGCGTTAAGGTGATCAACC -ACGGAAGCGTTAAGGTGATGTTCC -ACGGAAGCGTTAAGGTGAATTCCC -ACGGAAGCGTTAAGGTGATTCTCG -ACGGAAGCGTTAAGGTGATAGACG -ACGGAAGCGTTAAGGTGAGTAACG -ACGGAAGCGTTAAGGTGAACTTCG -ACGGAAGCGTTAAGGTGATACGCA -ACGGAAGCGTTAAGGTGACTTGCA -ACGGAAGCGTTAAGGTGACGAACA -ACGGAAGCGTTAAGGTGACAGTCA -ACGGAAGCGTTAAGGTGAGATCCA -ACGGAAGCGTTAAGGTGAACGACA -ACGGAAGCGTTAAGGTGAAGCTCA -ACGGAAGCGTTAAGGTGATCACGT -ACGGAAGCGTTAAGGTGACGTAGT -ACGGAAGCGTTAAGGTGAGTCAGT -ACGGAAGCGTTAAGGTGAGAAGGT -ACGGAAGCGTTAAGGTGAAACCGT -ACGGAAGCGTTAAGGTGATTGTGC -ACGGAAGCGTTAAGGTGACTAAGC -ACGGAAGCGTTAAGGTGAACTAGC -ACGGAAGCGTTAAGGTGAAGATGC -ACGGAAGCGTTAAGGTGATGAAGG -ACGGAAGCGTTAAGGTGACAATGG -ACGGAAGCGTTAAGGTGAATGAGG -ACGGAAGCGTTAAGGTGAAATGGG -ACGGAAGCGTTAAGGTGATCCTGA -ACGGAAGCGTTAAGGTGATAGCGA -ACGGAAGCGTTAAGGTGACACAGA -ACGGAAGCGTTAAGGTGAGCAAGA -ACGGAAGCGTTAAGGTGAGGTTGA -ACGGAAGCGTTAAGGTGATCCGAT -ACGGAAGCGTTAAGGTGATGGCAT -ACGGAAGCGTTAAGGTGACGAGAT -ACGGAAGCGTTAAGGTGATACCAC -ACGGAAGCGTTAAGGTGACAGAAC -ACGGAAGCGTTAAGGTGAGTCTAC -ACGGAAGCGTTAAGGTGAACGTAC -ACGGAAGCGTTAAGGTGAAGTGAC -ACGGAAGCGTTAAGGTGACTGTAG -ACGGAAGCGTTAAGGTGACCTAAG -ACGGAAGCGTTAAGGTGAGTTCAG -ACGGAAGCGTTAAGGTGAGCATAG -ACGGAAGCGTTAAGGTGAGACAAG -ACGGAAGCGTTAAGGTGAAAGCAG -ACGGAAGCGTTAAGGTGACGTCAA -ACGGAAGCGTTAAGGTGAGCTGAA -ACGGAAGCGTTAAGGTGAAGTACG -ACGGAAGCGTTAAGGTGAATCCGA -ACGGAAGCGTTAAGGTGAATGGGA -ACGGAAGCGTTAAGGTGAGTGCAA -ACGGAAGCGTTAAGGTGAGAGGAA -ACGGAAGCGTTAAGGTGACAGGTA -ACGGAAGCGTTAAGGTGAGACTCT -ACGGAAGCGTTAAGGTGAAGTCCT -ACGGAAGCGTTAAGGTGATAAGCC -ACGGAAGCGTTAAGGTGAATAGCC -ACGGAAGCGTTAAGGTGATAACCG -ACGGAAGCGTTAAGGTGAATGCCA -ACGGAAGCGTTATGGCAAGGAAAC -ACGGAAGCGTTATGGCAAAACACC -ACGGAAGCGTTATGGCAAATCGAG -ACGGAAGCGTTATGGCAACTCCTT -ACGGAAGCGTTATGGCAACCTGTT -ACGGAAGCGTTATGGCAACGGTTT -ACGGAAGCGTTATGGCAAGTGGTT -ACGGAAGCGTTATGGCAAGCCTTT -ACGGAAGCGTTATGGCAAGGTCTT -ACGGAAGCGTTATGGCAAACGCTT -ACGGAAGCGTTATGGCAAAGCGTT -ACGGAAGCGTTATGGCAATTCGTC -ACGGAAGCGTTATGGCAATCTCTC -ACGGAAGCGTTATGGCAATGGATC -ACGGAAGCGTTATGGCAACACTTC -ACGGAAGCGTTATGGCAAGTACTC -ACGGAAGCGTTATGGCAAGATGTC -ACGGAAGCGTTATGGCAAACAGTC -ACGGAAGCGTTATGGCAATTGCTG -ACGGAAGCGTTATGGCAATCCATG -ACGGAAGCGTTATGGCAATGTGTG -ACGGAAGCGTTATGGCAACTAGTG -ACGGAAGCGTTATGGCAACATCTG -ACGGAAGCGTTATGGCAAGAGTTG -ACGGAAGCGTTATGGCAAAGACTG -ACGGAAGCGTTATGGCAATCGGTA -ACGGAAGCGTTATGGCAATGCCTA -ACGGAAGCGTTATGGCAACCACTA -ACGGAAGCGTTATGGCAAGGAGTA -ACGGAAGCGTTATGGCAATCGTCT -ACGGAAGCGTTATGGCAATGCACT -ACGGAAGCGTTATGGCAACTGACT -ACGGAAGCGTTATGGCAACAACCT -ACGGAAGCGTTATGGCAAGCTACT -ACGGAAGCGTTATGGCAAGGATCT -ACGGAAGCGTTATGGCAAAAGGCT -ACGGAAGCGTTATGGCAATCAACC -ACGGAAGCGTTATGGCAATGTTCC -ACGGAAGCGTTATGGCAAATTCCC -ACGGAAGCGTTATGGCAATTCTCG -ACGGAAGCGTTATGGCAATAGACG -ACGGAAGCGTTATGGCAAGTAACG -ACGGAAGCGTTATGGCAAACTTCG -ACGGAAGCGTTATGGCAATACGCA -ACGGAAGCGTTATGGCAACTTGCA -ACGGAAGCGTTATGGCAACGAACA -ACGGAAGCGTTATGGCAACAGTCA -ACGGAAGCGTTATGGCAAGATCCA -ACGGAAGCGTTATGGCAAACGACA -ACGGAAGCGTTATGGCAAAGCTCA -ACGGAAGCGTTATGGCAATCACGT -ACGGAAGCGTTATGGCAACGTAGT -ACGGAAGCGTTATGGCAAGTCAGT -ACGGAAGCGTTATGGCAAGAAGGT -ACGGAAGCGTTATGGCAAAACCGT -ACGGAAGCGTTATGGCAATTGTGC -ACGGAAGCGTTATGGCAACTAAGC -ACGGAAGCGTTATGGCAAACTAGC -ACGGAAGCGTTATGGCAAAGATGC -ACGGAAGCGTTATGGCAATGAAGG -ACGGAAGCGTTATGGCAACAATGG -ACGGAAGCGTTATGGCAAATGAGG -ACGGAAGCGTTATGGCAAAATGGG -ACGGAAGCGTTATGGCAATCCTGA -ACGGAAGCGTTATGGCAATAGCGA -ACGGAAGCGTTATGGCAACACAGA -ACGGAAGCGTTATGGCAAGCAAGA -ACGGAAGCGTTATGGCAAGGTTGA -ACGGAAGCGTTATGGCAATCCGAT -ACGGAAGCGTTATGGCAATGGCAT -ACGGAAGCGTTATGGCAACGAGAT -ACGGAAGCGTTATGGCAATACCAC -ACGGAAGCGTTATGGCAACAGAAC -ACGGAAGCGTTATGGCAAGTCTAC -ACGGAAGCGTTATGGCAAACGTAC -ACGGAAGCGTTATGGCAAAGTGAC -ACGGAAGCGTTATGGCAACTGTAG -ACGGAAGCGTTATGGCAACCTAAG -ACGGAAGCGTTATGGCAAGTTCAG -ACGGAAGCGTTATGGCAAGCATAG -ACGGAAGCGTTATGGCAAGACAAG -ACGGAAGCGTTATGGCAAAAGCAG -ACGGAAGCGTTATGGCAACGTCAA -ACGGAAGCGTTATGGCAAGCTGAA -ACGGAAGCGTTATGGCAAAGTACG -ACGGAAGCGTTATGGCAAATCCGA -ACGGAAGCGTTATGGCAAATGGGA -ACGGAAGCGTTATGGCAAGTGCAA -ACGGAAGCGTTATGGCAAGAGGAA -ACGGAAGCGTTATGGCAACAGGTA -ACGGAAGCGTTATGGCAAGACTCT -ACGGAAGCGTTATGGCAAAGTCCT -ACGGAAGCGTTATGGCAATAAGCC -ACGGAAGCGTTATGGCAAATAGCC -ACGGAAGCGTTATGGCAATAACCG -ACGGAAGCGTTATGGCAAATGCCA -ACGGAAGCGTTAAGGATGGGAAAC -ACGGAAGCGTTAAGGATGAACACC -ACGGAAGCGTTAAGGATGATCGAG -ACGGAAGCGTTAAGGATGCTCCTT -ACGGAAGCGTTAAGGATGCCTGTT -ACGGAAGCGTTAAGGATGCGGTTT -ACGGAAGCGTTAAGGATGGTGGTT -ACGGAAGCGTTAAGGATGGCCTTT -ACGGAAGCGTTAAGGATGGGTCTT -ACGGAAGCGTTAAGGATGACGCTT -ACGGAAGCGTTAAGGATGAGCGTT -ACGGAAGCGTTAAGGATGTTCGTC -ACGGAAGCGTTAAGGATGTCTCTC -ACGGAAGCGTTAAGGATGTGGATC -ACGGAAGCGTTAAGGATGCACTTC -ACGGAAGCGTTAAGGATGGTACTC -ACGGAAGCGTTAAGGATGGATGTC -ACGGAAGCGTTAAGGATGACAGTC -ACGGAAGCGTTAAGGATGTTGCTG -ACGGAAGCGTTAAGGATGTCCATG -ACGGAAGCGTTAAGGATGTGTGTG -ACGGAAGCGTTAAGGATGCTAGTG -ACGGAAGCGTTAAGGATGCATCTG -ACGGAAGCGTTAAGGATGGAGTTG -ACGGAAGCGTTAAGGATGAGACTG -ACGGAAGCGTTAAGGATGTCGGTA -ACGGAAGCGTTAAGGATGTGCCTA -ACGGAAGCGTTAAGGATGCCACTA -ACGGAAGCGTTAAGGATGGGAGTA -ACGGAAGCGTTAAGGATGTCGTCT -ACGGAAGCGTTAAGGATGTGCACT -ACGGAAGCGTTAAGGATGCTGACT -ACGGAAGCGTTAAGGATGCAACCT -ACGGAAGCGTTAAGGATGGCTACT -ACGGAAGCGTTAAGGATGGGATCT -ACGGAAGCGTTAAGGATGAAGGCT -ACGGAAGCGTTAAGGATGTCAACC -ACGGAAGCGTTAAGGATGTGTTCC -ACGGAAGCGTTAAGGATGATTCCC -ACGGAAGCGTTAAGGATGTTCTCG -ACGGAAGCGTTAAGGATGTAGACG -ACGGAAGCGTTAAGGATGGTAACG -ACGGAAGCGTTAAGGATGACTTCG -ACGGAAGCGTTAAGGATGTACGCA -ACGGAAGCGTTAAGGATGCTTGCA -ACGGAAGCGTTAAGGATGCGAACA -ACGGAAGCGTTAAGGATGCAGTCA -ACGGAAGCGTTAAGGATGGATCCA -ACGGAAGCGTTAAGGATGACGACA -ACGGAAGCGTTAAGGATGAGCTCA -ACGGAAGCGTTAAGGATGTCACGT -ACGGAAGCGTTAAGGATGCGTAGT -ACGGAAGCGTTAAGGATGGTCAGT -ACGGAAGCGTTAAGGATGGAAGGT -ACGGAAGCGTTAAGGATGAACCGT -ACGGAAGCGTTAAGGATGTTGTGC -ACGGAAGCGTTAAGGATGCTAAGC -ACGGAAGCGTTAAGGATGACTAGC -ACGGAAGCGTTAAGGATGAGATGC -ACGGAAGCGTTAAGGATGTGAAGG -ACGGAAGCGTTAAGGATGCAATGG -ACGGAAGCGTTAAGGATGATGAGG -ACGGAAGCGTTAAGGATGAATGGG -ACGGAAGCGTTAAGGATGTCCTGA -ACGGAAGCGTTAAGGATGTAGCGA -ACGGAAGCGTTAAGGATGCACAGA -ACGGAAGCGTTAAGGATGGCAAGA -ACGGAAGCGTTAAGGATGGGTTGA -ACGGAAGCGTTAAGGATGTCCGAT -ACGGAAGCGTTAAGGATGTGGCAT -ACGGAAGCGTTAAGGATGCGAGAT -ACGGAAGCGTTAAGGATGTACCAC -ACGGAAGCGTTAAGGATGCAGAAC -ACGGAAGCGTTAAGGATGGTCTAC -ACGGAAGCGTTAAGGATGACGTAC -ACGGAAGCGTTAAGGATGAGTGAC -ACGGAAGCGTTAAGGATGCTGTAG -ACGGAAGCGTTAAGGATGCCTAAG -ACGGAAGCGTTAAGGATGGTTCAG -ACGGAAGCGTTAAGGATGGCATAG -ACGGAAGCGTTAAGGATGGACAAG -ACGGAAGCGTTAAGGATGAAGCAG -ACGGAAGCGTTAAGGATGCGTCAA -ACGGAAGCGTTAAGGATGGCTGAA -ACGGAAGCGTTAAGGATGAGTACG -ACGGAAGCGTTAAGGATGATCCGA -ACGGAAGCGTTAAGGATGATGGGA -ACGGAAGCGTTAAGGATGGTGCAA -ACGGAAGCGTTAAGGATGGAGGAA -ACGGAAGCGTTAAGGATGCAGGTA -ACGGAAGCGTTAAGGATGGACTCT -ACGGAAGCGTTAAGGATGAGTCCT -ACGGAAGCGTTAAGGATGTAAGCC -ACGGAAGCGTTAAGGATGATAGCC -ACGGAAGCGTTAAGGATGTAACCG -ACGGAAGCGTTAAGGATGATGCCA -ACGGAAGCGTTAGGGAATGGAAAC -ACGGAAGCGTTAGGGAATAACACC -ACGGAAGCGTTAGGGAATATCGAG -ACGGAAGCGTTAGGGAATCTCCTT -ACGGAAGCGTTAGGGAATCCTGTT -ACGGAAGCGTTAGGGAATCGGTTT -ACGGAAGCGTTAGGGAATGTGGTT -ACGGAAGCGTTAGGGAATGCCTTT -ACGGAAGCGTTAGGGAATGGTCTT -ACGGAAGCGTTAGGGAATACGCTT -ACGGAAGCGTTAGGGAATAGCGTT -ACGGAAGCGTTAGGGAATTTCGTC -ACGGAAGCGTTAGGGAATTCTCTC -ACGGAAGCGTTAGGGAATTGGATC -ACGGAAGCGTTAGGGAATCACTTC -ACGGAAGCGTTAGGGAATGTACTC -ACGGAAGCGTTAGGGAATGATGTC -ACGGAAGCGTTAGGGAATACAGTC -ACGGAAGCGTTAGGGAATTTGCTG -ACGGAAGCGTTAGGGAATTCCATG -ACGGAAGCGTTAGGGAATTGTGTG -ACGGAAGCGTTAGGGAATCTAGTG -ACGGAAGCGTTAGGGAATCATCTG -ACGGAAGCGTTAGGGAATGAGTTG -ACGGAAGCGTTAGGGAATAGACTG -ACGGAAGCGTTAGGGAATTCGGTA -ACGGAAGCGTTAGGGAATTGCCTA -ACGGAAGCGTTAGGGAATCCACTA -ACGGAAGCGTTAGGGAATGGAGTA -ACGGAAGCGTTAGGGAATTCGTCT -ACGGAAGCGTTAGGGAATTGCACT -ACGGAAGCGTTAGGGAATCTGACT -ACGGAAGCGTTAGGGAATCAACCT -ACGGAAGCGTTAGGGAATGCTACT -ACGGAAGCGTTAGGGAATGGATCT -ACGGAAGCGTTAGGGAATAAGGCT -ACGGAAGCGTTAGGGAATTCAACC -ACGGAAGCGTTAGGGAATTGTTCC -ACGGAAGCGTTAGGGAATATTCCC -ACGGAAGCGTTAGGGAATTTCTCG -ACGGAAGCGTTAGGGAATTAGACG -ACGGAAGCGTTAGGGAATGTAACG -ACGGAAGCGTTAGGGAATACTTCG -ACGGAAGCGTTAGGGAATTACGCA -ACGGAAGCGTTAGGGAATCTTGCA -ACGGAAGCGTTAGGGAATCGAACA -ACGGAAGCGTTAGGGAATCAGTCA -ACGGAAGCGTTAGGGAATGATCCA -ACGGAAGCGTTAGGGAATACGACA -ACGGAAGCGTTAGGGAATAGCTCA -ACGGAAGCGTTAGGGAATTCACGT -ACGGAAGCGTTAGGGAATCGTAGT -ACGGAAGCGTTAGGGAATGTCAGT -ACGGAAGCGTTAGGGAATGAAGGT -ACGGAAGCGTTAGGGAATAACCGT -ACGGAAGCGTTAGGGAATTTGTGC -ACGGAAGCGTTAGGGAATCTAAGC -ACGGAAGCGTTAGGGAATACTAGC -ACGGAAGCGTTAGGGAATAGATGC -ACGGAAGCGTTAGGGAATTGAAGG -ACGGAAGCGTTAGGGAATCAATGG -ACGGAAGCGTTAGGGAATATGAGG -ACGGAAGCGTTAGGGAATAATGGG -ACGGAAGCGTTAGGGAATTCCTGA -ACGGAAGCGTTAGGGAATTAGCGA -ACGGAAGCGTTAGGGAATCACAGA -ACGGAAGCGTTAGGGAATGCAAGA -ACGGAAGCGTTAGGGAATGGTTGA -ACGGAAGCGTTAGGGAATTCCGAT -ACGGAAGCGTTAGGGAATTGGCAT -ACGGAAGCGTTAGGGAATCGAGAT -ACGGAAGCGTTAGGGAATTACCAC -ACGGAAGCGTTAGGGAATCAGAAC -ACGGAAGCGTTAGGGAATGTCTAC -ACGGAAGCGTTAGGGAATACGTAC -ACGGAAGCGTTAGGGAATAGTGAC -ACGGAAGCGTTAGGGAATCTGTAG -ACGGAAGCGTTAGGGAATCCTAAG -ACGGAAGCGTTAGGGAATGTTCAG -ACGGAAGCGTTAGGGAATGCATAG -ACGGAAGCGTTAGGGAATGACAAG -ACGGAAGCGTTAGGGAATAAGCAG -ACGGAAGCGTTAGGGAATCGTCAA -ACGGAAGCGTTAGGGAATGCTGAA -ACGGAAGCGTTAGGGAATAGTACG -ACGGAAGCGTTAGGGAATATCCGA -ACGGAAGCGTTAGGGAATATGGGA -ACGGAAGCGTTAGGGAATGTGCAA -ACGGAAGCGTTAGGGAATGAGGAA -ACGGAAGCGTTAGGGAATCAGGTA -ACGGAAGCGTTAGGGAATGACTCT -ACGGAAGCGTTAGGGAATAGTCCT -ACGGAAGCGTTAGGGAATTAAGCC -ACGGAAGCGTTAGGGAATATAGCC -ACGGAAGCGTTAGGGAATTAACCG -ACGGAAGCGTTAGGGAATATGCCA -ACGGAAGCGTTATGATCCGGAAAC -ACGGAAGCGTTATGATCCAACACC -ACGGAAGCGTTATGATCCATCGAG -ACGGAAGCGTTATGATCCCTCCTT -ACGGAAGCGTTATGATCCCCTGTT -ACGGAAGCGTTATGATCCCGGTTT -ACGGAAGCGTTATGATCCGTGGTT -ACGGAAGCGTTATGATCCGCCTTT -ACGGAAGCGTTATGATCCGGTCTT -ACGGAAGCGTTATGATCCACGCTT -ACGGAAGCGTTATGATCCAGCGTT -ACGGAAGCGTTATGATCCTTCGTC -ACGGAAGCGTTATGATCCTCTCTC -ACGGAAGCGTTATGATCCTGGATC -ACGGAAGCGTTATGATCCCACTTC -ACGGAAGCGTTATGATCCGTACTC -ACGGAAGCGTTATGATCCGATGTC -ACGGAAGCGTTATGATCCACAGTC -ACGGAAGCGTTATGATCCTTGCTG -ACGGAAGCGTTATGATCCTCCATG -ACGGAAGCGTTATGATCCTGTGTG -ACGGAAGCGTTATGATCCCTAGTG -ACGGAAGCGTTATGATCCCATCTG -ACGGAAGCGTTATGATCCGAGTTG -ACGGAAGCGTTATGATCCAGACTG -ACGGAAGCGTTATGATCCTCGGTA -ACGGAAGCGTTATGATCCTGCCTA -ACGGAAGCGTTATGATCCCCACTA -ACGGAAGCGTTATGATCCGGAGTA -ACGGAAGCGTTATGATCCTCGTCT -ACGGAAGCGTTATGATCCTGCACT -ACGGAAGCGTTATGATCCCTGACT -ACGGAAGCGTTATGATCCCAACCT -ACGGAAGCGTTATGATCCGCTACT -ACGGAAGCGTTATGATCCGGATCT -ACGGAAGCGTTATGATCCAAGGCT -ACGGAAGCGTTATGATCCTCAACC -ACGGAAGCGTTATGATCCTGTTCC -ACGGAAGCGTTATGATCCATTCCC -ACGGAAGCGTTATGATCCTTCTCG -ACGGAAGCGTTATGATCCTAGACG -ACGGAAGCGTTATGATCCGTAACG -ACGGAAGCGTTATGATCCACTTCG -ACGGAAGCGTTATGATCCTACGCA -ACGGAAGCGTTATGATCCCTTGCA -ACGGAAGCGTTATGATCCCGAACA -ACGGAAGCGTTATGATCCCAGTCA -ACGGAAGCGTTATGATCCGATCCA -ACGGAAGCGTTATGATCCACGACA -ACGGAAGCGTTATGATCCAGCTCA -ACGGAAGCGTTATGATCCTCACGT -ACGGAAGCGTTATGATCCCGTAGT -ACGGAAGCGTTATGATCCGTCAGT -ACGGAAGCGTTATGATCCGAAGGT -ACGGAAGCGTTATGATCCAACCGT -ACGGAAGCGTTATGATCCTTGTGC -ACGGAAGCGTTATGATCCCTAAGC -ACGGAAGCGTTATGATCCACTAGC -ACGGAAGCGTTATGATCCAGATGC -ACGGAAGCGTTATGATCCTGAAGG -ACGGAAGCGTTATGATCCCAATGG -ACGGAAGCGTTATGATCCATGAGG -ACGGAAGCGTTATGATCCAATGGG -ACGGAAGCGTTATGATCCTCCTGA -ACGGAAGCGTTATGATCCTAGCGA -ACGGAAGCGTTATGATCCCACAGA -ACGGAAGCGTTATGATCCGCAAGA -ACGGAAGCGTTATGATCCGGTTGA -ACGGAAGCGTTATGATCCTCCGAT -ACGGAAGCGTTATGATCCTGGCAT -ACGGAAGCGTTATGATCCCGAGAT -ACGGAAGCGTTATGATCCTACCAC -ACGGAAGCGTTATGATCCCAGAAC -ACGGAAGCGTTATGATCCGTCTAC -ACGGAAGCGTTATGATCCACGTAC -ACGGAAGCGTTATGATCCAGTGAC -ACGGAAGCGTTATGATCCCTGTAG -ACGGAAGCGTTATGATCCCCTAAG -ACGGAAGCGTTATGATCCGTTCAG -ACGGAAGCGTTATGATCCGCATAG -ACGGAAGCGTTATGATCCGACAAG -ACGGAAGCGTTATGATCCAAGCAG -ACGGAAGCGTTATGATCCCGTCAA -ACGGAAGCGTTATGATCCGCTGAA -ACGGAAGCGTTATGATCCAGTACG -ACGGAAGCGTTATGATCCATCCGA -ACGGAAGCGTTATGATCCATGGGA -ACGGAAGCGTTATGATCCGTGCAA -ACGGAAGCGTTATGATCCGAGGAA -ACGGAAGCGTTATGATCCCAGGTA -ACGGAAGCGTTATGATCCGACTCT -ACGGAAGCGTTATGATCCAGTCCT -ACGGAAGCGTTATGATCCTAAGCC -ACGGAAGCGTTATGATCCATAGCC -ACGGAAGCGTTATGATCCTAACCG -ACGGAAGCGTTATGATCCATGCCA -ACGGAAGCGTTACGATAGGGAAAC -ACGGAAGCGTTACGATAGAACACC -ACGGAAGCGTTACGATAGATCGAG -ACGGAAGCGTTACGATAGCTCCTT -ACGGAAGCGTTACGATAGCCTGTT -ACGGAAGCGTTACGATAGCGGTTT -ACGGAAGCGTTACGATAGGTGGTT -ACGGAAGCGTTACGATAGGCCTTT -ACGGAAGCGTTACGATAGGGTCTT -ACGGAAGCGTTACGATAGACGCTT -ACGGAAGCGTTACGATAGAGCGTT -ACGGAAGCGTTACGATAGTTCGTC -ACGGAAGCGTTACGATAGTCTCTC -ACGGAAGCGTTACGATAGTGGATC -ACGGAAGCGTTACGATAGCACTTC -ACGGAAGCGTTACGATAGGTACTC -ACGGAAGCGTTACGATAGGATGTC -ACGGAAGCGTTACGATAGACAGTC -ACGGAAGCGTTACGATAGTTGCTG -ACGGAAGCGTTACGATAGTCCATG -ACGGAAGCGTTACGATAGTGTGTG -ACGGAAGCGTTACGATAGCTAGTG -ACGGAAGCGTTACGATAGCATCTG -ACGGAAGCGTTACGATAGGAGTTG -ACGGAAGCGTTACGATAGAGACTG -ACGGAAGCGTTACGATAGTCGGTA -ACGGAAGCGTTACGATAGTGCCTA -ACGGAAGCGTTACGATAGCCACTA -ACGGAAGCGTTACGATAGGGAGTA -ACGGAAGCGTTACGATAGTCGTCT -ACGGAAGCGTTACGATAGTGCACT -ACGGAAGCGTTACGATAGCTGACT -ACGGAAGCGTTACGATAGCAACCT -ACGGAAGCGTTACGATAGGCTACT -ACGGAAGCGTTACGATAGGGATCT -ACGGAAGCGTTACGATAGAAGGCT -ACGGAAGCGTTACGATAGTCAACC -ACGGAAGCGTTACGATAGTGTTCC -ACGGAAGCGTTACGATAGATTCCC -ACGGAAGCGTTACGATAGTTCTCG -ACGGAAGCGTTACGATAGTAGACG -ACGGAAGCGTTACGATAGGTAACG -ACGGAAGCGTTACGATAGACTTCG -ACGGAAGCGTTACGATAGTACGCA -ACGGAAGCGTTACGATAGCTTGCA -ACGGAAGCGTTACGATAGCGAACA -ACGGAAGCGTTACGATAGCAGTCA -ACGGAAGCGTTACGATAGGATCCA -ACGGAAGCGTTACGATAGACGACA -ACGGAAGCGTTACGATAGAGCTCA -ACGGAAGCGTTACGATAGTCACGT -ACGGAAGCGTTACGATAGCGTAGT -ACGGAAGCGTTACGATAGGTCAGT -ACGGAAGCGTTACGATAGGAAGGT -ACGGAAGCGTTACGATAGAACCGT -ACGGAAGCGTTACGATAGTTGTGC -ACGGAAGCGTTACGATAGCTAAGC -ACGGAAGCGTTACGATAGACTAGC -ACGGAAGCGTTACGATAGAGATGC -ACGGAAGCGTTACGATAGTGAAGG -ACGGAAGCGTTACGATAGCAATGG -ACGGAAGCGTTACGATAGATGAGG -ACGGAAGCGTTACGATAGAATGGG -ACGGAAGCGTTACGATAGTCCTGA -ACGGAAGCGTTACGATAGTAGCGA -ACGGAAGCGTTACGATAGCACAGA -ACGGAAGCGTTACGATAGGCAAGA -ACGGAAGCGTTACGATAGGGTTGA -ACGGAAGCGTTACGATAGTCCGAT -ACGGAAGCGTTACGATAGTGGCAT -ACGGAAGCGTTACGATAGCGAGAT -ACGGAAGCGTTACGATAGTACCAC -ACGGAAGCGTTACGATAGCAGAAC -ACGGAAGCGTTACGATAGGTCTAC -ACGGAAGCGTTACGATAGACGTAC -ACGGAAGCGTTACGATAGAGTGAC -ACGGAAGCGTTACGATAGCTGTAG -ACGGAAGCGTTACGATAGCCTAAG -ACGGAAGCGTTACGATAGGTTCAG -ACGGAAGCGTTACGATAGGCATAG -ACGGAAGCGTTACGATAGGACAAG -ACGGAAGCGTTACGATAGAAGCAG -ACGGAAGCGTTACGATAGCGTCAA -ACGGAAGCGTTACGATAGGCTGAA -ACGGAAGCGTTACGATAGAGTACG -ACGGAAGCGTTACGATAGATCCGA -ACGGAAGCGTTACGATAGATGGGA -ACGGAAGCGTTACGATAGGTGCAA -ACGGAAGCGTTACGATAGGAGGAA -ACGGAAGCGTTACGATAGCAGGTA -ACGGAAGCGTTACGATAGGACTCT -ACGGAAGCGTTACGATAGAGTCCT -ACGGAAGCGTTACGATAGTAAGCC -ACGGAAGCGTTACGATAGATAGCC -ACGGAAGCGTTACGATAGTAACCG -ACGGAAGCGTTACGATAGATGCCA -ACGGAAGCGTTAAGACACGGAAAC -ACGGAAGCGTTAAGACACAACACC -ACGGAAGCGTTAAGACACATCGAG -ACGGAAGCGTTAAGACACCTCCTT -ACGGAAGCGTTAAGACACCCTGTT -ACGGAAGCGTTAAGACACCGGTTT -ACGGAAGCGTTAAGACACGTGGTT -ACGGAAGCGTTAAGACACGCCTTT -ACGGAAGCGTTAAGACACGGTCTT -ACGGAAGCGTTAAGACACACGCTT -ACGGAAGCGTTAAGACACAGCGTT -ACGGAAGCGTTAAGACACTTCGTC -ACGGAAGCGTTAAGACACTCTCTC -ACGGAAGCGTTAAGACACTGGATC -ACGGAAGCGTTAAGACACCACTTC -ACGGAAGCGTTAAGACACGTACTC -ACGGAAGCGTTAAGACACGATGTC -ACGGAAGCGTTAAGACACACAGTC -ACGGAAGCGTTAAGACACTTGCTG -ACGGAAGCGTTAAGACACTCCATG -ACGGAAGCGTTAAGACACTGTGTG -ACGGAAGCGTTAAGACACCTAGTG -ACGGAAGCGTTAAGACACCATCTG -ACGGAAGCGTTAAGACACGAGTTG -ACGGAAGCGTTAAGACACAGACTG -ACGGAAGCGTTAAGACACTCGGTA -ACGGAAGCGTTAAGACACTGCCTA -ACGGAAGCGTTAAGACACCCACTA -ACGGAAGCGTTAAGACACGGAGTA -ACGGAAGCGTTAAGACACTCGTCT -ACGGAAGCGTTAAGACACTGCACT -ACGGAAGCGTTAAGACACCTGACT -ACGGAAGCGTTAAGACACCAACCT -ACGGAAGCGTTAAGACACGCTACT -ACGGAAGCGTTAAGACACGGATCT -ACGGAAGCGTTAAGACACAAGGCT -ACGGAAGCGTTAAGACACTCAACC -ACGGAAGCGTTAAGACACTGTTCC -ACGGAAGCGTTAAGACACATTCCC -ACGGAAGCGTTAAGACACTTCTCG -ACGGAAGCGTTAAGACACTAGACG -ACGGAAGCGTTAAGACACGTAACG -ACGGAAGCGTTAAGACACACTTCG -ACGGAAGCGTTAAGACACTACGCA -ACGGAAGCGTTAAGACACCTTGCA -ACGGAAGCGTTAAGACACCGAACA -ACGGAAGCGTTAAGACACCAGTCA -ACGGAAGCGTTAAGACACGATCCA -ACGGAAGCGTTAAGACACACGACA -ACGGAAGCGTTAAGACACAGCTCA -ACGGAAGCGTTAAGACACTCACGT -ACGGAAGCGTTAAGACACCGTAGT -ACGGAAGCGTTAAGACACGTCAGT -ACGGAAGCGTTAAGACACGAAGGT -ACGGAAGCGTTAAGACACAACCGT -ACGGAAGCGTTAAGACACTTGTGC -ACGGAAGCGTTAAGACACCTAAGC -ACGGAAGCGTTAAGACACACTAGC -ACGGAAGCGTTAAGACACAGATGC -ACGGAAGCGTTAAGACACTGAAGG -ACGGAAGCGTTAAGACACCAATGG -ACGGAAGCGTTAAGACACATGAGG -ACGGAAGCGTTAAGACACAATGGG -ACGGAAGCGTTAAGACACTCCTGA -ACGGAAGCGTTAAGACACTAGCGA -ACGGAAGCGTTAAGACACCACAGA -ACGGAAGCGTTAAGACACGCAAGA -ACGGAAGCGTTAAGACACGGTTGA -ACGGAAGCGTTAAGACACTCCGAT -ACGGAAGCGTTAAGACACTGGCAT -ACGGAAGCGTTAAGACACCGAGAT -ACGGAAGCGTTAAGACACTACCAC -ACGGAAGCGTTAAGACACCAGAAC -ACGGAAGCGTTAAGACACGTCTAC -ACGGAAGCGTTAAGACACACGTAC -ACGGAAGCGTTAAGACACAGTGAC -ACGGAAGCGTTAAGACACCTGTAG -ACGGAAGCGTTAAGACACCCTAAG -ACGGAAGCGTTAAGACACGTTCAG -ACGGAAGCGTTAAGACACGCATAG -ACGGAAGCGTTAAGACACGACAAG -ACGGAAGCGTTAAGACACAAGCAG -ACGGAAGCGTTAAGACACCGTCAA -ACGGAAGCGTTAAGACACGCTGAA -ACGGAAGCGTTAAGACACAGTACG -ACGGAAGCGTTAAGACACATCCGA -ACGGAAGCGTTAAGACACATGGGA -ACGGAAGCGTTAAGACACGTGCAA -ACGGAAGCGTTAAGACACGAGGAA -ACGGAAGCGTTAAGACACCAGGTA -ACGGAAGCGTTAAGACACGACTCT -ACGGAAGCGTTAAGACACAGTCCT -ACGGAAGCGTTAAGACACTAAGCC -ACGGAAGCGTTAAGACACATAGCC -ACGGAAGCGTTAAGACACTAACCG -ACGGAAGCGTTAAGACACATGCCA -ACGGAAGCGTTAAGAGCAGGAAAC -ACGGAAGCGTTAAGAGCAAACACC -ACGGAAGCGTTAAGAGCAATCGAG -ACGGAAGCGTTAAGAGCACTCCTT -ACGGAAGCGTTAAGAGCACCTGTT -ACGGAAGCGTTAAGAGCACGGTTT -ACGGAAGCGTTAAGAGCAGTGGTT -ACGGAAGCGTTAAGAGCAGCCTTT -ACGGAAGCGTTAAGAGCAGGTCTT -ACGGAAGCGTTAAGAGCAACGCTT -ACGGAAGCGTTAAGAGCAAGCGTT -ACGGAAGCGTTAAGAGCATTCGTC -ACGGAAGCGTTAAGAGCATCTCTC -ACGGAAGCGTTAAGAGCATGGATC -ACGGAAGCGTTAAGAGCACACTTC -ACGGAAGCGTTAAGAGCAGTACTC -ACGGAAGCGTTAAGAGCAGATGTC -ACGGAAGCGTTAAGAGCAACAGTC -ACGGAAGCGTTAAGAGCATTGCTG -ACGGAAGCGTTAAGAGCATCCATG -ACGGAAGCGTTAAGAGCATGTGTG -ACGGAAGCGTTAAGAGCACTAGTG -ACGGAAGCGTTAAGAGCACATCTG -ACGGAAGCGTTAAGAGCAGAGTTG -ACGGAAGCGTTAAGAGCAAGACTG -ACGGAAGCGTTAAGAGCATCGGTA -ACGGAAGCGTTAAGAGCATGCCTA -ACGGAAGCGTTAAGAGCACCACTA -ACGGAAGCGTTAAGAGCAGGAGTA -ACGGAAGCGTTAAGAGCATCGTCT -ACGGAAGCGTTAAGAGCATGCACT -ACGGAAGCGTTAAGAGCACTGACT -ACGGAAGCGTTAAGAGCACAACCT -ACGGAAGCGTTAAGAGCAGCTACT -ACGGAAGCGTTAAGAGCAGGATCT -ACGGAAGCGTTAAGAGCAAAGGCT -ACGGAAGCGTTAAGAGCATCAACC -ACGGAAGCGTTAAGAGCATGTTCC -ACGGAAGCGTTAAGAGCAATTCCC -ACGGAAGCGTTAAGAGCATTCTCG -ACGGAAGCGTTAAGAGCATAGACG -ACGGAAGCGTTAAGAGCAGTAACG -ACGGAAGCGTTAAGAGCAACTTCG -ACGGAAGCGTTAAGAGCATACGCA -ACGGAAGCGTTAAGAGCACTTGCA -ACGGAAGCGTTAAGAGCACGAACA -ACGGAAGCGTTAAGAGCACAGTCA -ACGGAAGCGTTAAGAGCAGATCCA -ACGGAAGCGTTAAGAGCAACGACA -ACGGAAGCGTTAAGAGCAAGCTCA -ACGGAAGCGTTAAGAGCATCACGT -ACGGAAGCGTTAAGAGCACGTAGT -ACGGAAGCGTTAAGAGCAGTCAGT -ACGGAAGCGTTAAGAGCAGAAGGT -ACGGAAGCGTTAAGAGCAAACCGT -ACGGAAGCGTTAAGAGCATTGTGC -ACGGAAGCGTTAAGAGCACTAAGC -ACGGAAGCGTTAAGAGCAACTAGC -ACGGAAGCGTTAAGAGCAAGATGC -ACGGAAGCGTTAAGAGCATGAAGG -ACGGAAGCGTTAAGAGCACAATGG -ACGGAAGCGTTAAGAGCAATGAGG -ACGGAAGCGTTAAGAGCAAATGGG -ACGGAAGCGTTAAGAGCATCCTGA -ACGGAAGCGTTAAGAGCATAGCGA -ACGGAAGCGTTAAGAGCACACAGA -ACGGAAGCGTTAAGAGCAGCAAGA -ACGGAAGCGTTAAGAGCAGGTTGA -ACGGAAGCGTTAAGAGCATCCGAT -ACGGAAGCGTTAAGAGCATGGCAT -ACGGAAGCGTTAAGAGCACGAGAT -ACGGAAGCGTTAAGAGCATACCAC -ACGGAAGCGTTAAGAGCACAGAAC -ACGGAAGCGTTAAGAGCAGTCTAC -ACGGAAGCGTTAAGAGCAACGTAC -ACGGAAGCGTTAAGAGCAAGTGAC -ACGGAAGCGTTAAGAGCACTGTAG -ACGGAAGCGTTAAGAGCACCTAAG -ACGGAAGCGTTAAGAGCAGTTCAG -ACGGAAGCGTTAAGAGCAGCATAG -ACGGAAGCGTTAAGAGCAGACAAG -ACGGAAGCGTTAAGAGCAAAGCAG -ACGGAAGCGTTAAGAGCACGTCAA -ACGGAAGCGTTAAGAGCAGCTGAA -ACGGAAGCGTTAAGAGCAAGTACG -ACGGAAGCGTTAAGAGCAATCCGA -ACGGAAGCGTTAAGAGCAATGGGA -ACGGAAGCGTTAAGAGCAGTGCAA -ACGGAAGCGTTAAGAGCAGAGGAA -ACGGAAGCGTTAAGAGCACAGGTA -ACGGAAGCGTTAAGAGCAGACTCT -ACGGAAGCGTTAAGAGCAAGTCCT -ACGGAAGCGTTAAGAGCATAAGCC -ACGGAAGCGTTAAGAGCAATAGCC -ACGGAAGCGTTAAGAGCATAACCG -ACGGAAGCGTTAAGAGCAATGCCA -ACGGAAGCGTTATGAGGTGGAAAC -ACGGAAGCGTTATGAGGTAACACC -ACGGAAGCGTTATGAGGTATCGAG -ACGGAAGCGTTATGAGGTCTCCTT -ACGGAAGCGTTATGAGGTCCTGTT -ACGGAAGCGTTATGAGGTCGGTTT -ACGGAAGCGTTATGAGGTGTGGTT -ACGGAAGCGTTATGAGGTGCCTTT -ACGGAAGCGTTATGAGGTGGTCTT -ACGGAAGCGTTATGAGGTACGCTT -ACGGAAGCGTTATGAGGTAGCGTT -ACGGAAGCGTTATGAGGTTTCGTC -ACGGAAGCGTTATGAGGTTCTCTC -ACGGAAGCGTTATGAGGTTGGATC -ACGGAAGCGTTATGAGGTCACTTC -ACGGAAGCGTTATGAGGTGTACTC -ACGGAAGCGTTATGAGGTGATGTC -ACGGAAGCGTTATGAGGTACAGTC -ACGGAAGCGTTATGAGGTTTGCTG -ACGGAAGCGTTATGAGGTTCCATG -ACGGAAGCGTTATGAGGTTGTGTG -ACGGAAGCGTTATGAGGTCTAGTG -ACGGAAGCGTTATGAGGTCATCTG -ACGGAAGCGTTATGAGGTGAGTTG -ACGGAAGCGTTATGAGGTAGACTG -ACGGAAGCGTTATGAGGTTCGGTA -ACGGAAGCGTTATGAGGTTGCCTA -ACGGAAGCGTTATGAGGTCCACTA -ACGGAAGCGTTATGAGGTGGAGTA -ACGGAAGCGTTATGAGGTTCGTCT -ACGGAAGCGTTATGAGGTTGCACT -ACGGAAGCGTTATGAGGTCTGACT -ACGGAAGCGTTATGAGGTCAACCT -ACGGAAGCGTTATGAGGTGCTACT -ACGGAAGCGTTATGAGGTGGATCT -ACGGAAGCGTTATGAGGTAAGGCT -ACGGAAGCGTTATGAGGTTCAACC -ACGGAAGCGTTATGAGGTTGTTCC -ACGGAAGCGTTATGAGGTATTCCC -ACGGAAGCGTTATGAGGTTTCTCG -ACGGAAGCGTTATGAGGTTAGACG -ACGGAAGCGTTATGAGGTGTAACG -ACGGAAGCGTTATGAGGTACTTCG -ACGGAAGCGTTATGAGGTTACGCA -ACGGAAGCGTTATGAGGTCTTGCA -ACGGAAGCGTTATGAGGTCGAACA -ACGGAAGCGTTATGAGGTCAGTCA -ACGGAAGCGTTATGAGGTGATCCA -ACGGAAGCGTTATGAGGTACGACA -ACGGAAGCGTTATGAGGTAGCTCA -ACGGAAGCGTTATGAGGTTCACGT -ACGGAAGCGTTATGAGGTCGTAGT -ACGGAAGCGTTATGAGGTGTCAGT -ACGGAAGCGTTATGAGGTGAAGGT -ACGGAAGCGTTATGAGGTAACCGT -ACGGAAGCGTTATGAGGTTTGTGC -ACGGAAGCGTTATGAGGTCTAAGC -ACGGAAGCGTTATGAGGTACTAGC -ACGGAAGCGTTATGAGGTAGATGC -ACGGAAGCGTTATGAGGTTGAAGG -ACGGAAGCGTTATGAGGTCAATGG -ACGGAAGCGTTATGAGGTATGAGG -ACGGAAGCGTTATGAGGTAATGGG -ACGGAAGCGTTATGAGGTTCCTGA -ACGGAAGCGTTATGAGGTTAGCGA -ACGGAAGCGTTATGAGGTCACAGA -ACGGAAGCGTTATGAGGTGCAAGA -ACGGAAGCGTTATGAGGTGGTTGA -ACGGAAGCGTTATGAGGTTCCGAT -ACGGAAGCGTTATGAGGTTGGCAT -ACGGAAGCGTTATGAGGTCGAGAT -ACGGAAGCGTTATGAGGTTACCAC -ACGGAAGCGTTATGAGGTCAGAAC -ACGGAAGCGTTATGAGGTGTCTAC -ACGGAAGCGTTATGAGGTACGTAC -ACGGAAGCGTTATGAGGTAGTGAC -ACGGAAGCGTTATGAGGTCTGTAG -ACGGAAGCGTTATGAGGTCCTAAG -ACGGAAGCGTTATGAGGTGTTCAG -ACGGAAGCGTTATGAGGTGCATAG -ACGGAAGCGTTATGAGGTGACAAG -ACGGAAGCGTTATGAGGTAAGCAG -ACGGAAGCGTTATGAGGTCGTCAA -ACGGAAGCGTTATGAGGTGCTGAA -ACGGAAGCGTTATGAGGTAGTACG -ACGGAAGCGTTATGAGGTATCCGA -ACGGAAGCGTTATGAGGTATGGGA -ACGGAAGCGTTATGAGGTGTGCAA -ACGGAAGCGTTATGAGGTGAGGAA -ACGGAAGCGTTATGAGGTCAGGTA -ACGGAAGCGTTATGAGGTGACTCT -ACGGAAGCGTTATGAGGTAGTCCT -ACGGAAGCGTTATGAGGTTAAGCC -ACGGAAGCGTTATGAGGTATAGCC -ACGGAAGCGTTATGAGGTTAACCG -ACGGAAGCGTTATGAGGTATGCCA -ACGGAAGCGTTAGATTCCGGAAAC -ACGGAAGCGTTAGATTCCAACACC -ACGGAAGCGTTAGATTCCATCGAG -ACGGAAGCGTTAGATTCCCTCCTT -ACGGAAGCGTTAGATTCCCCTGTT -ACGGAAGCGTTAGATTCCCGGTTT -ACGGAAGCGTTAGATTCCGTGGTT -ACGGAAGCGTTAGATTCCGCCTTT -ACGGAAGCGTTAGATTCCGGTCTT -ACGGAAGCGTTAGATTCCACGCTT -ACGGAAGCGTTAGATTCCAGCGTT -ACGGAAGCGTTAGATTCCTTCGTC -ACGGAAGCGTTAGATTCCTCTCTC -ACGGAAGCGTTAGATTCCTGGATC -ACGGAAGCGTTAGATTCCCACTTC -ACGGAAGCGTTAGATTCCGTACTC -ACGGAAGCGTTAGATTCCGATGTC -ACGGAAGCGTTAGATTCCACAGTC -ACGGAAGCGTTAGATTCCTTGCTG -ACGGAAGCGTTAGATTCCTCCATG -ACGGAAGCGTTAGATTCCTGTGTG -ACGGAAGCGTTAGATTCCCTAGTG -ACGGAAGCGTTAGATTCCCATCTG -ACGGAAGCGTTAGATTCCGAGTTG -ACGGAAGCGTTAGATTCCAGACTG -ACGGAAGCGTTAGATTCCTCGGTA -ACGGAAGCGTTAGATTCCTGCCTA -ACGGAAGCGTTAGATTCCCCACTA -ACGGAAGCGTTAGATTCCGGAGTA -ACGGAAGCGTTAGATTCCTCGTCT -ACGGAAGCGTTAGATTCCTGCACT -ACGGAAGCGTTAGATTCCCTGACT -ACGGAAGCGTTAGATTCCCAACCT -ACGGAAGCGTTAGATTCCGCTACT -ACGGAAGCGTTAGATTCCGGATCT -ACGGAAGCGTTAGATTCCAAGGCT -ACGGAAGCGTTAGATTCCTCAACC -ACGGAAGCGTTAGATTCCTGTTCC -ACGGAAGCGTTAGATTCCATTCCC -ACGGAAGCGTTAGATTCCTTCTCG -ACGGAAGCGTTAGATTCCTAGACG -ACGGAAGCGTTAGATTCCGTAACG -ACGGAAGCGTTAGATTCCACTTCG -ACGGAAGCGTTAGATTCCTACGCA -ACGGAAGCGTTAGATTCCCTTGCA -ACGGAAGCGTTAGATTCCCGAACA -ACGGAAGCGTTAGATTCCCAGTCA -ACGGAAGCGTTAGATTCCGATCCA -ACGGAAGCGTTAGATTCCACGACA -ACGGAAGCGTTAGATTCCAGCTCA -ACGGAAGCGTTAGATTCCTCACGT -ACGGAAGCGTTAGATTCCCGTAGT -ACGGAAGCGTTAGATTCCGTCAGT -ACGGAAGCGTTAGATTCCGAAGGT -ACGGAAGCGTTAGATTCCAACCGT -ACGGAAGCGTTAGATTCCTTGTGC -ACGGAAGCGTTAGATTCCCTAAGC -ACGGAAGCGTTAGATTCCACTAGC -ACGGAAGCGTTAGATTCCAGATGC -ACGGAAGCGTTAGATTCCTGAAGG -ACGGAAGCGTTAGATTCCCAATGG -ACGGAAGCGTTAGATTCCATGAGG -ACGGAAGCGTTAGATTCCAATGGG -ACGGAAGCGTTAGATTCCTCCTGA -ACGGAAGCGTTAGATTCCTAGCGA -ACGGAAGCGTTAGATTCCCACAGA -ACGGAAGCGTTAGATTCCGCAAGA -ACGGAAGCGTTAGATTCCGGTTGA -ACGGAAGCGTTAGATTCCTCCGAT -ACGGAAGCGTTAGATTCCTGGCAT -ACGGAAGCGTTAGATTCCCGAGAT -ACGGAAGCGTTAGATTCCTACCAC -ACGGAAGCGTTAGATTCCCAGAAC -ACGGAAGCGTTAGATTCCGTCTAC -ACGGAAGCGTTAGATTCCACGTAC -ACGGAAGCGTTAGATTCCAGTGAC -ACGGAAGCGTTAGATTCCCTGTAG -ACGGAAGCGTTAGATTCCCCTAAG -ACGGAAGCGTTAGATTCCGTTCAG -ACGGAAGCGTTAGATTCCGCATAG -ACGGAAGCGTTAGATTCCGACAAG -ACGGAAGCGTTAGATTCCAAGCAG -ACGGAAGCGTTAGATTCCCGTCAA -ACGGAAGCGTTAGATTCCGCTGAA -ACGGAAGCGTTAGATTCCAGTACG -ACGGAAGCGTTAGATTCCATCCGA -ACGGAAGCGTTAGATTCCATGGGA -ACGGAAGCGTTAGATTCCGTGCAA -ACGGAAGCGTTAGATTCCGAGGAA -ACGGAAGCGTTAGATTCCCAGGTA -ACGGAAGCGTTAGATTCCGACTCT -ACGGAAGCGTTAGATTCCAGTCCT -ACGGAAGCGTTAGATTCCTAAGCC -ACGGAAGCGTTAGATTCCATAGCC -ACGGAAGCGTTAGATTCCTAACCG -ACGGAAGCGTTAGATTCCATGCCA -ACGGAAGCGTTACATTGGGGAAAC -ACGGAAGCGTTACATTGGAACACC -ACGGAAGCGTTACATTGGATCGAG -ACGGAAGCGTTACATTGGCTCCTT -ACGGAAGCGTTACATTGGCCTGTT -ACGGAAGCGTTACATTGGCGGTTT -ACGGAAGCGTTACATTGGGTGGTT -ACGGAAGCGTTACATTGGGCCTTT -ACGGAAGCGTTACATTGGGGTCTT -ACGGAAGCGTTACATTGGACGCTT -ACGGAAGCGTTACATTGGAGCGTT -ACGGAAGCGTTACATTGGTTCGTC -ACGGAAGCGTTACATTGGTCTCTC -ACGGAAGCGTTACATTGGTGGATC -ACGGAAGCGTTACATTGGCACTTC -ACGGAAGCGTTACATTGGGTACTC -ACGGAAGCGTTACATTGGGATGTC -ACGGAAGCGTTACATTGGACAGTC -ACGGAAGCGTTACATTGGTTGCTG -ACGGAAGCGTTACATTGGTCCATG -ACGGAAGCGTTACATTGGTGTGTG -ACGGAAGCGTTACATTGGCTAGTG -ACGGAAGCGTTACATTGGCATCTG -ACGGAAGCGTTACATTGGGAGTTG -ACGGAAGCGTTACATTGGAGACTG -ACGGAAGCGTTACATTGGTCGGTA -ACGGAAGCGTTACATTGGTGCCTA -ACGGAAGCGTTACATTGGCCACTA -ACGGAAGCGTTACATTGGGGAGTA -ACGGAAGCGTTACATTGGTCGTCT -ACGGAAGCGTTACATTGGTGCACT -ACGGAAGCGTTACATTGGCTGACT -ACGGAAGCGTTACATTGGCAACCT -ACGGAAGCGTTACATTGGGCTACT -ACGGAAGCGTTACATTGGGGATCT -ACGGAAGCGTTACATTGGAAGGCT -ACGGAAGCGTTACATTGGTCAACC -ACGGAAGCGTTACATTGGTGTTCC -ACGGAAGCGTTACATTGGATTCCC -ACGGAAGCGTTACATTGGTTCTCG -ACGGAAGCGTTACATTGGTAGACG -ACGGAAGCGTTACATTGGGTAACG -ACGGAAGCGTTACATTGGACTTCG -ACGGAAGCGTTACATTGGTACGCA -ACGGAAGCGTTACATTGGCTTGCA -ACGGAAGCGTTACATTGGCGAACA -ACGGAAGCGTTACATTGGCAGTCA -ACGGAAGCGTTACATTGGGATCCA -ACGGAAGCGTTACATTGGACGACA -ACGGAAGCGTTACATTGGAGCTCA -ACGGAAGCGTTACATTGGTCACGT -ACGGAAGCGTTACATTGGCGTAGT -ACGGAAGCGTTACATTGGGTCAGT -ACGGAAGCGTTACATTGGGAAGGT -ACGGAAGCGTTACATTGGAACCGT -ACGGAAGCGTTACATTGGTTGTGC -ACGGAAGCGTTACATTGGCTAAGC -ACGGAAGCGTTACATTGGACTAGC -ACGGAAGCGTTACATTGGAGATGC -ACGGAAGCGTTACATTGGTGAAGG -ACGGAAGCGTTACATTGGCAATGG -ACGGAAGCGTTACATTGGATGAGG -ACGGAAGCGTTACATTGGAATGGG -ACGGAAGCGTTACATTGGTCCTGA -ACGGAAGCGTTACATTGGTAGCGA -ACGGAAGCGTTACATTGGCACAGA -ACGGAAGCGTTACATTGGGCAAGA -ACGGAAGCGTTACATTGGGGTTGA -ACGGAAGCGTTACATTGGTCCGAT -ACGGAAGCGTTACATTGGTGGCAT -ACGGAAGCGTTACATTGGCGAGAT -ACGGAAGCGTTACATTGGTACCAC -ACGGAAGCGTTACATTGGCAGAAC -ACGGAAGCGTTACATTGGGTCTAC -ACGGAAGCGTTACATTGGACGTAC -ACGGAAGCGTTACATTGGAGTGAC -ACGGAAGCGTTACATTGGCTGTAG -ACGGAAGCGTTACATTGGCCTAAG -ACGGAAGCGTTACATTGGGTTCAG -ACGGAAGCGTTACATTGGGCATAG -ACGGAAGCGTTACATTGGGACAAG -ACGGAAGCGTTACATTGGAAGCAG -ACGGAAGCGTTACATTGGCGTCAA -ACGGAAGCGTTACATTGGGCTGAA -ACGGAAGCGTTACATTGGAGTACG -ACGGAAGCGTTACATTGGATCCGA -ACGGAAGCGTTACATTGGATGGGA -ACGGAAGCGTTACATTGGGTGCAA -ACGGAAGCGTTACATTGGGAGGAA -ACGGAAGCGTTACATTGGCAGGTA -ACGGAAGCGTTACATTGGGACTCT -ACGGAAGCGTTACATTGGAGTCCT -ACGGAAGCGTTACATTGGTAAGCC -ACGGAAGCGTTACATTGGATAGCC -ACGGAAGCGTTACATTGGTAACCG -ACGGAAGCGTTACATTGGATGCCA -ACGGAAGCGTTAGATCGAGGAAAC -ACGGAAGCGTTAGATCGAAACACC -ACGGAAGCGTTAGATCGAATCGAG -ACGGAAGCGTTAGATCGACTCCTT -ACGGAAGCGTTAGATCGACCTGTT -ACGGAAGCGTTAGATCGACGGTTT -ACGGAAGCGTTAGATCGAGTGGTT -ACGGAAGCGTTAGATCGAGCCTTT -ACGGAAGCGTTAGATCGAGGTCTT -ACGGAAGCGTTAGATCGAACGCTT -ACGGAAGCGTTAGATCGAAGCGTT -ACGGAAGCGTTAGATCGATTCGTC -ACGGAAGCGTTAGATCGATCTCTC -ACGGAAGCGTTAGATCGATGGATC -ACGGAAGCGTTAGATCGACACTTC -ACGGAAGCGTTAGATCGAGTACTC -ACGGAAGCGTTAGATCGAGATGTC -ACGGAAGCGTTAGATCGAACAGTC -ACGGAAGCGTTAGATCGATTGCTG -ACGGAAGCGTTAGATCGATCCATG -ACGGAAGCGTTAGATCGATGTGTG -ACGGAAGCGTTAGATCGACTAGTG -ACGGAAGCGTTAGATCGACATCTG -ACGGAAGCGTTAGATCGAGAGTTG -ACGGAAGCGTTAGATCGAAGACTG -ACGGAAGCGTTAGATCGATCGGTA -ACGGAAGCGTTAGATCGATGCCTA -ACGGAAGCGTTAGATCGACCACTA -ACGGAAGCGTTAGATCGAGGAGTA -ACGGAAGCGTTAGATCGATCGTCT -ACGGAAGCGTTAGATCGATGCACT -ACGGAAGCGTTAGATCGACTGACT -ACGGAAGCGTTAGATCGACAACCT -ACGGAAGCGTTAGATCGAGCTACT -ACGGAAGCGTTAGATCGAGGATCT -ACGGAAGCGTTAGATCGAAAGGCT -ACGGAAGCGTTAGATCGATCAACC -ACGGAAGCGTTAGATCGATGTTCC -ACGGAAGCGTTAGATCGAATTCCC -ACGGAAGCGTTAGATCGATTCTCG -ACGGAAGCGTTAGATCGATAGACG -ACGGAAGCGTTAGATCGAGTAACG -ACGGAAGCGTTAGATCGAACTTCG -ACGGAAGCGTTAGATCGATACGCA -ACGGAAGCGTTAGATCGACTTGCA -ACGGAAGCGTTAGATCGACGAACA -ACGGAAGCGTTAGATCGACAGTCA -ACGGAAGCGTTAGATCGAGATCCA -ACGGAAGCGTTAGATCGAACGACA -ACGGAAGCGTTAGATCGAAGCTCA -ACGGAAGCGTTAGATCGATCACGT -ACGGAAGCGTTAGATCGACGTAGT -ACGGAAGCGTTAGATCGAGTCAGT -ACGGAAGCGTTAGATCGAGAAGGT -ACGGAAGCGTTAGATCGAAACCGT -ACGGAAGCGTTAGATCGATTGTGC -ACGGAAGCGTTAGATCGACTAAGC -ACGGAAGCGTTAGATCGAACTAGC -ACGGAAGCGTTAGATCGAAGATGC -ACGGAAGCGTTAGATCGATGAAGG -ACGGAAGCGTTAGATCGACAATGG -ACGGAAGCGTTAGATCGAATGAGG -ACGGAAGCGTTAGATCGAAATGGG -ACGGAAGCGTTAGATCGATCCTGA -ACGGAAGCGTTAGATCGATAGCGA -ACGGAAGCGTTAGATCGACACAGA -ACGGAAGCGTTAGATCGAGCAAGA -ACGGAAGCGTTAGATCGAGGTTGA -ACGGAAGCGTTAGATCGATCCGAT -ACGGAAGCGTTAGATCGATGGCAT -ACGGAAGCGTTAGATCGACGAGAT -ACGGAAGCGTTAGATCGATACCAC -ACGGAAGCGTTAGATCGACAGAAC -ACGGAAGCGTTAGATCGAGTCTAC -ACGGAAGCGTTAGATCGAACGTAC -ACGGAAGCGTTAGATCGAAGTGAC -ACGGAAGCGTTAGATCGACTGTAG -ACGGAAGCGTTAGATCGACCTAAG -ACGGAAGCGTTAGATCGAGTTCAG -ACGGAAGCGTTAGATCGAGCATAG -ACGGAAGCGTTAGATCGAGACAAG -ACGGAAGCGTTAGATCGAAAGCAG -ACGGAAGCGTTAGATCGACGTCAA -ACGGAAGCGTTAGATCGAGCTGAA -ACGGAAGCGTTAGATCGAAGTACG -ACGGAAGCGTTAGATCGAATCCGA -ACGGAAGCGTTAGATCGAATGGGA -ACGGAAGCGTTAGATCGAGTGCAA -ACGGAAGCGTTAGATCGAGAGGAA -ACGGAAGCGTTAGATCGACAGGTA -ACGGAAGCGTTAGATCGAGACTCT -ACGGAAGCGTTAGATCGAAGTCCT -ACGGAAGCGTTAGATCGATAAGCC -ACGGAAGCGTTAGATCGAATAGCC -ACGGAAGCGTTAGATCGATAACCG -ACGGAAGCGTTAGATCGAATGCCA -ACGGAAGCGTTACACTACGGAAAC -ACGGAAGCGTTACACTACAACACC -ACGGAAGCGTTACACTACATCGAG -ACGGAAGCGTTACACTACCTCCTT -ACGGAAGCGTTACACTACCCTGTT -ACGGAAGCGTTACACTACCGGTTT -ACGGAAGCGTTACACTACGTGGTT -ACGGAAGCGTTACACTACGCCTTT -ACGGAAGCGTTACACTACGGTCTT -ACGGAAGCGTTACACTACACGCTT -ACGGAAGCGTTACACTACAGCGTT -ACGGAAGCGTTACACTACTTCGTC -ACGGAAGCGTTACACTACTCTCTC -ACGGAAGCGTTACACTACTGGATC -ACGGAAGCGTTACACTACCACTTC -ACGGAAGCGTTACACTACGTACTC -ACGGAAGCGTTACACTACGATGTC -ACGGAAGCGTTACACTACACAGTC -ACGGAAGCGTTACACTACTTGCTG -ACGGAAGCGTTACACTACTCCATG -ACGGAAGCGTTACACTACTGTGTG -ACGGAAGCGTTACACTACCTAGTG -ACGGAAGCGTTACACTACCATCTG -ACGGAAGCGTTACACTACGAGTTG -ACGGAAGCGTTACACTACAGACTG -ACGGAAGCGTTACACTACTCGGTA -ACGGAAGCGTTACACTACTGCCTA -ACGGAAGCGTTACACTACCCACTA -ACGGAAGCGTTACACTACGGAGTA -ACGGAAGCGTTACACTACTCGTCT -ACGGAAGCGTTACACTACTGCACT -ACGGAAGCGTTACACTACCTGACT -ACGGAAGCGTTACACTACCAACCT -ACGGAAGCGTTACACTACGCTACT -ACGGAAGCGTTACACTACGGATCT -ACGGAAGCGTTACACTACAAGGCT -ACGGAAGCGTTACACTACTCAACC -ACGGAAGCGTTACACTACTGTTCC -ACGGAAGCGTTACACTACATTCCC -ACGGAAGCGTTACACTACTTCTCG -ACGGAAGCGTTACACTACTAGACG -ACGGAAGCGTTACACTACGTAACG -ACGGAAGCGTTACACTACACTTCG -ACGGAAGCGTTACACTACTACGCA -ACGGAAGCGTTACACTACCTTGCA -ACGGAAGCGTTACACTACCGAACA -ACGGAAGCGTTACACTACCAGTCA -ACGGAAGCGTTACACTACGATCCA -ACGGAAGCGTTACACTACACGACA -ACGGAAGCGTTACACTACAGCTCA -ACGGAAGCGTTACACTACTCACGT -ACGGAAGCGTTACACTACCGTAGT -ACGGAAGCGTTACACTACGTCAGT -ACGGAAGCGTTACACTACGAAGGT -ACGGAAGCGTTACACTACAACCGT -ACGGAAGCGTTACACTACTTGTGC -ACGGAAGCGTTACACTACCTAAGC -ACGGAAGCGTTACACTACACTAGC -ACGGAAGCGTTACACTACAGATGC -ACGGAAGCGTTACACTACTGAAGG -ACGGAAGCGTTACACTACCAATGG -ACGGAAGCGTTACACTACATGAGG -ACGGAAGCGTTACACTACAATGGG -ACGGAAGCGTTACACTACTCCTGA -ACGGAAGCGTTACACTACTAGCGA -ACGGAAGCGTTACACTACCACAGA -ACGGAAGCGTTACACTACGCAAGA -ACGGAAGCGTTACACTACGGTTGA -ACGGAAGCGTTACACTACTCCGAT -ACGGAAGCGTTACACTACTGGCAT -ACGGAAGCGTTACACTACCGAGAT -ACGGAAGCGTTACACTACTACCAC -ACGGAAGCGTTACACTACCAGAAC -ACGGAAGCGTTACACTACGTCTAC -ACGGAAGCGTTACACTACACGTAC -ACGGAAGCGTTACACTACAGTGAC -ACGGAAGCGTTACACTACCTGTAG -ACGGAAGCGTTACACTACCCTAAG -ACGGAAGCGTTACACTACGTTCAG -ACGGAAGCGTTACACTACGCATAG -ACGGAAGCGTTACACTACGACAAG -ACGGAAGCGTTACACTACAAGCAG -ACGGAAGCGTTACACTACCGTCAA -ACGGAAGCGTTACACTACGCTGAA -ACGGAAGCGTTACACTACAGTACG -ACGGAAGCGTTACACTACATCCGA -ACGGAAGCGTTACACTACATGGGA -ACGGAAGCGTTACACTACGTGCAA -ACGGAAGCGTTACACTACGAGGAA -ACGGAAGCGTTACACTACCAGGTA -ACGGAAGCGTTACACTACGACTCT -ACGGAAGCGTTACACTACAGTCCT -ACGGAAGCGTTACACTACTAAGCC -ACGGAAGCGTTACACTACATAGCC -ACGGAAGCGTTACACTACTAACCG -ACGGAAGCGTTACACTACATGCCA -ACGGAAGCGTTAAACCAGGGAAAC -ACGGAAGCGTTAAACCAGAACACC -ACGGAAGCGTTAAACCAGATCGAG -ACGGAAGCGTTAAACCAGCTCCTT -ACGGAAGCGTTAAACCAGCCTGTT -ACGGAAGCGTTAAACCAGCGGTTT -ACGGAAGCGTTAAACCAGGTGGTT -ACGGAAGCGTTAAACCAGGCCTTT -ACGGAAGCGTTAAACCAGGGTCTT -ACGGAAGCGTTAAACCAGACGCTT -ACGGAAGCGTTAAACCAGAGCGTT -ACGGAAGCGTTAAACCAGTTCGTC -ACGGAAGCGTTAAACCAGTCTCTC -ACGGAAGCGTTAAACCAGTGGATC -ACGGAAGCGTTAAACCAGCACTTC -ACGGAAGCGTTAAACCAGGTACTC -ACGGAAGCGTTAAACCAGGATGTC -ACGGAAGCGTTAAACCAGACAGTC -ACGGAAGCGTTAAACCAGTTGCTG -ACGGAAGCGTTAAACCAGTCCATG -ACGGAAGCGTTAAACCAGTGTGTG -ACGGAAGCGTTAAACCAGCTAGTG -ACGGAAGCGTTAAACCAGCATCTG -ACGGAAGCGTTAAACCAGGAGTTG -ACGGAAGCGTTAAACCAGAGACTG -ACGGAAGCGTTAAACCAGTCGGTA -ACGGAAGCGTTAAACCAGTGCCTA -ACGGAAGCGTTAAACCAGCCACTA -ACGGAAGCGTTAAACCAGGGAGTA -ACGGAAGCGTTAAACCAGTCGTCT -ACGGAAGCGTTAAACCAGTGCACT -ACGGAAGCGTTAAACCAGCTGACT -ACGGAAGCGTTAAACCAGCAACCT -ACGGAAGCGTTAAACCAGGCTACT -ACGGAAGCGTTAAACCAGGGATCT -ACGGAAGCGTTAAACCAGAAGGCT -ACGGAAGCGTTAAACCAGTCAACC -ACGGAAGCGTTAAACCAGTGTTCC -ACGGAAGCGTTAAACCAGATTCCC -ACGGAAGCGTTAAACCAGTTCTCG -ACGGAAGCGTTAAACCAGTAGACG -ACGGAAGCGTTAAACCAGGTAACG -ACGGAAGCGTTAAACCAGACTTCG -ACGGAAGCGTTAAACCAGTACGCA -ACGGAAGCGTTAAACCAGCTTGCA -ACGGAAGCGTTAAACCAGCGAACA -ACGGAAGCGTTAAACCAGCAGTCA -ACGGAAGCGTTAAACCAGGATCCA -ACGGAAGCGTTAAACCAGACGACA -ACGGAAGCGTTAAACCAGAGCTCA -ACGGAAGCGTTAAACCAGTCACGT -ACGGAAGCGTTAAACCAGCGTAGT -ACGGAAGCGTTAAACCAGGTCAGT -ACGGAAGCGTTAAACCAGGAAGGT -ACGGAAGCGTTAAACCAGAACCGT -ACGGAAGCGTTAAACCAGTTGTGC -ACGGAAGCGTTAAACCAGCTAAGC -ACGGAAGCGTTAAACCAGACTAGC -ACGGAAGCGTTAAACCAGAGATGC -ACGGAAGCGTTAAACCAGTGAAGG -ACGGAAGCGTTAAACCAGCAATGG -ACGGAAGCGTTAAACCAGATGAGG -ACGGAAGCGTTAAACCAGAATGGG -ACGGAAGCGTTAAACCAGTCCTGA -ACGGAAGCGTTAAACCAGTAGCGA -ACGGAAGCGTTAAACCAGCACAGA -ACGGAAGCGTTAAACCAGGCAAGA -ACGGAAGCGTTAAACCAGGGTTGA -ACGGAAGCGTTAAACCAGTCCGAT -ACGGAAGCGTTAAACCAGTGGCAT -ACGGAAGCGTTAAACCAGCGAGAT -ACGGAAGCGTTAAACCAGTACCAC -ACGGAAGCGTTAAACCAGCAGAAC -ACGGAAGCGTTAAACCAGGTCTAC -ACGGAAGCGTTAAACCAGACGTAC -ACGGAAGCGTTAAACCAGAGTGAC -ACGGAAGCGTTAAACCAGCTGTAG -ACGGAAGCGTTAAACCAGCCTAAG -ACGGAAGCGTTAAACCAGGTTCAG -ACGGAAGCGTTAAACCAGGCATAG -ACGGAAGCGTTAAACCAGGACAAG -ACGGAAGCGTTAAACCAGAAGCAG -ACGGAAGCGTTAAACCAGCGTCAA -ACGGAAGCGTTAAACCAGGCTGAA -ACGGAAGCGTTAAACCAGAGTACG -ACGGAAGCGTTAAACCAGATCCGA -ACGGAAGCGTTAAACCAGATGGGA -ACGGAAGCGTTAAACCAGGTGCAA -ACGGAAGCGTTAAACCAGGAGGAA -ACGGAAGCGTTAAACCAGCAGGTA -ACGGAAGCGTTAAACCAGGACTCT -ACGGAAGCGTTAAACCAGAGTCCT -ACGGAAGCGTTAAACCAGTAAGCC -ACGGAAGCGTTAAACCAGATAGCC -ACGGAAGCGTTAAACCAGTAACCG -ACGGAAGCGTTAAACCAGATGCCA -ACGGAAGCGTTATACGTCGGAAAC -ACGGAAGCGTTATACGTCAACACC -ACGGAAGCGTTATACGTCATCGAG -ACGGAAGCGTTATACGTCCTCCTT -ACGGAAGCGTTATACGTCCCTGTT -ACGGAAGCGTTATACGTCCGGTTT -ACGGAAGCGTTATACGTCGTGGTT -ACGGAAGCGTTATACGTCGCCTTT -ACGGAAGCGTTATACGTCGGTCTT -ACGGAAGCGTTATACGTCACGCTT -ACGGAAGCGTTATACGTCAGCGTT -ACGGAAGCGTTATACGTCTTCGTC -ACGGAAGCGTTATACGTCTCTCTC -ACGGAAGCGTTATACGTCTGGATC -ACGGAAGCGTTATACGTCCACTTC -ACGGAAGCGTTATACGTCGTACTC -ACGGAAGCGTTATACGTCGATGTC -ACGGAAGCGTTATACGTCACAGTC -ACGGAAGCGTTATACGTCTTGCTG -ACGGAAGCGTTATACGTCTCCATG -ACGGAAGCGTTATACGTCTGTGTG -ACGGAAGCGTTATACGTCCTAGTG -ACGGAAGCGTTATACGTCCATCTG -ACGGAAGCGTTATACGTCGAGTTG -ACGGAAGCGTTATACGTCAGACTG -ACGGAAGCGTTATACGTCTCGGTA -ACGGAAGCGTTATACGTCTGCCTA -ACGGAAGCGTTATACGTCCCACTA -ACGGAAGCGTTATACGTCGGAGTA -ACGGAAGCGTTATACGTCTCGTCT -ACGGAAGCGTTATACGTCTGCACT -ACGGAAGCGTTATACGTCCTGACT -ACGGAAGCGTTATACGTCCAACCT -ACGGAAGCGTTATACGTCGCTACT -ACGGAAGCGTTATACGTCGGATCT -ACGGAAGCGTTATACGTCAAGGCT -ACGGAAGCGTTATACGTCTCAACC -ACGGAAGCGTTATACGTCTGTTCC -ACGGAAGCGTTATACGTCATTCCC -ACGGAAGCGTTATACGTCTTCTCG -ACGGAAGCGTTATACGTCTAGACG -ACGGAAGCGTTATACGTCGTAACG -ACGGAAGCGTTATACGTCACTTCG -ACGGAAGCGTTATACGTCTACGCA -ACGGAAGCGTTATACGTCCTTGCA -ACGGAAGCGTTATACGTCCGAACA -ACGGAAGCGTTATACGTCCAGTCA -ACGGAAGCGTTATACGTCGATCCA -ACGGAAGCGTTATACGTCACGACA -ACGGAAGCGTTATACGTCAGCTCA -ACGGAAGCGTTATACGTCTCACGT -ACGGAAGCGTTATACGTCCGTAGT -ACGGAAGCGTTATACGTCGTCAGT -ACGGAAGCGTTATACGTCGAAGGT -ACGGAAGCGTTATACGTCAACCGT -ACGGAAGCGTTATACGTCTTGTGC -ACGGAAGCGTTATACGTCCTAAGC -ACGGAAGCGTTATACGTCACTAGC -ACGGAAGCGTTATACGTCAGATGC -ACGGAAGCGTTATACGTCTGAAGG -ACGGAAGCGTTATACGTCCAATGG -ACGGAAGCGTTATACGTCATGAGG -ACGGAAGCGTTATACGTCAATGGG -ACGGAAGCGTTATACGTCTCCTGA -ACGGAAGCGTTATACGTCTAGCGA -ACGGAAGCGTTATACGTCCACAGA -ACGGAAGCGTTATACGTCGCAAGA -ACGGAAGCGTTATACGTCGGTTGA -ACGGAAGCGTTATACGTCTCCGAT -ACGGAAGCGTTATACGTCTGGCAT -ACGGAAGCGTTATACGTCCGAGAT -ACGGAAGCGTTATACGTCTACCAC -ACGGAAGCGTTATACGTCCAGAAC -ACGGAAGCGTTATACGTCGTCTAC -ACGGAAGCGTTATACGTCACGTAC -ACGGAAGCGTTATACGTCAGTGAC -ACGGAAGCGTTATACGTCCTGTAG -ACGGAAGCGTTATACGTCCCTAAG -ACGGAAGCGTTATACGTCGTTCAG -ACGGAAGCGTTATACGTCGCATAG -ACGGAAGCGTTATACGTCGACAAG -ACGGAAGCGTTATACGTCAAGCAG -ACGGAAGCGTTATACGTCCGTCAA -ACGGAAGCGTTATACGTCGCTGAA -ACGGAAGCGTTATACGTCAGTACG -ACGGAAGCGTTATACGTCATCCGA -ACGGAAGCGTTATACGTCATGGGA -ACGGAAGCGTTATACGTCGTGCAA -ACGGAAGCGTTATACGTCGAGGAA -ACGGAAGCGTTATACGTCCAGGTA -ACGGAAGCGTTATACGTCGACTCT -ACGGAAGCGTTATACGTCAGTCCT -ACGGAAGCGTTATACGTCTAAGCC -ACGGAAGCGTTATACGTCATAGCC -ACGGAAGCGTTATACGTCTAACCG -ACGGAAGCGTTATACGTCATGCCA -ACGGAAGCGTTATACACGGGAAAC -ACGGAAGCGTTATACACGAACACC -ACGGAAGCGTTATACACGATCGAG -ACGGAAGCGTTATACACGCTCCTT -ACGGAAGCGTTATACACGCCTGTT -ACGGAAGCGTTATACACGCGGTTT -ACGGAAGCGTTATACACGGTGGTT -ACGGAAGCGTTATACACGGCCTTT -ACGGAAGCGTTATACACGGGTCTT -ACGGAAGCGTTATACACGACGCTT -ACGGAAGCGTTATACACGAGCGTT -ACGGAAGCGTTATACACGTTCGTC -ACGGAAGCGTTATACACGTCTCTC -ACGGAAGCGTTATACACGTGGATC -ACGGAAGCGTTATACACGCACTTC -ACGGAAGCGTTATACACGGTACTC -ACGGAAGCGTTATACACGGATGTC -ACGGAAGCGTTATACACGACAGTC -ACGGAAGCGTTATACACGTTGCTG -ACGGAAGCGTTATACACGTCCATG -ACGGAAGCGTTATACACGTGTGTG -ACGGAAGCGTTATACACGCTAGTG -ACGGAAGCGTTATACACGCATCTG -ACGGAAGCGTTATACACGGAGTTG -ACGGAAGCGTTATACACGAGACTG -ACGGAAGCGTTATACACGTCGGTA -ACGGAAGCGTTATACACGTGCCTA -ACGGAAGCGTTATACACGCCACTA -ACGGAAGCGTTATACACGGGAGTA -ACGGAAGCGTTATACACGTCGTCT -ACGGAAGCGTTATACACGTGCACT -ACGGAAGCGTTATACACGCTGACT -ACGGAAGCGTTATACACGCAACCT -ACGGAAGCGTTATACACGGCTACT -ACGGAAGCGTTATACACGGGATCT -ACGGAAGCGTTATACACGAAGGCT -ACGGAAGCGTTATACACGTCAACC -ACGGAAGCGTTATACACGTGTTCC -ACGGAAGCGTTATACACGATTCCC -ACGGAAGCGTTATACACGTTCTCG -ACGGAAGCGTTATACACGTAGACG -ACGGAAGCGTTATACACGGTAACG -ACGGAAGCGTTATACACGACTTCG -ACGGAAGCGTTATACACGTACGCA -ACGGAAGCGTTATACACGCTTGCA -ACGGAAGCGTTATACACGCGAACA -ACGGAAGCGTTATACACGCAGTCA -ACGGAAGCGTTATACACGGATCCA -ACGGAAGCGTTATACACGACGACA -ACGGAAGCGTTATACACGAGCTCA -ACGGAAGCGTTATACACGTCACGT -ACGGAAGCGTTATACACGCGTAGT -ACGGAAGCGTTATACACGGTCAGT -ACGGAAGCGTTATACACGGAAGGT -ACGGAAGCGTTATACACGAACCGT -ACGGAAGCGTTATACACGTTGTGC -ACGGAAGCGTTATACACGCTAAGC -ACGGAAGCGTTATACACGACTAGC -ACGGAAGCGTTATACACGAGATGC -ACGGAAGCGTTATACACGTGAAGG -ACGGAAGCGTTATACACGCAATGG -ACGGAAGCGTTATACACGATGAGG -ACGGAAGCGTTATACACGAATGGG -ACGGAAGCGTTATACACGTCCTGA -ACGGAAGCGTTATACACGTAGCGA -ACGGAAGCGTTATACACGCACAGA -ACGGAAGCGTTATACACGGCAAGA -ACGGAAGCGTTATACACGGGTTGA -ACGGAAGCGTTATACACGTCCGAT -ACGGAAGCGTTATACACGTGGCAT -ACGGAAGCGTTATACACGCGAGAT -ACGGAAGCGTTATACACGTACCAC -ACGGAAGCGTTATACACGCAGAAC -ACGGAAGCGTTATACACGGTCTAC -ACGGAAGCGTTATACACGACGTAC -ACGGAAGCGTTATACACGAGTGAC -ACGGAAGCGTTATACACGCTGTAG -ACGGAAGCGTTATACACGCCTAAG -ACGGAAGCGTTATACACGGTTCAG -ACGGAAGCGTTATACACGGCATAG -ACGGAAGCGTTATACACGGACAAG -ACGGAAGCGTTATACACGAAGCAG -ACGGAAGCGTTATACACGCGTCAA -ACGGAAGCGTTATACACGGCTGAA -ACGGAAGCGTTATACACGAGTACG -ACGGAAGCGTTATACACGATCCGA -ACGGAAGCGTTATACACGATGGGA -ACGGAAGCGTTATACACGGTGCAA -ACGGAAGCGTTATACACGGAGGAA -ACGGAAGCGTTATACACGCAGGTA -ACGGAAGCGTTATACACGGACTCT -ACGGAAGCGTTATACACGAGTCCT -ACGGAAGCGTTATACACGTAAGCC -ACGGAAGCGTTATACACGATAGCC -ACGGAAGCGTTATACACGTAACCG -ACGGAAGCGTTATACACGATGCCA -ACGGAAGCGTTAGACAGTGGAAAC -ACGGAAGCGTTAGACAGTAACACC -ACGGAAGCGTTAGACAGTATCGAG -ACGGAAGCGTTAGACAGTCTCCTT -ACGGAAGCGTTAGACAGTCCTGTT -ACGGAAGCGTTAGACAGTCGGTTT -ACGGAAGCGTTAGACAGTGTGGTT -ACGGAAGCGTTAGACAGTGCCTTT -ACGGAAGCGTTAGACAGTGGTCTT -ACGGAAGCGTTAGACAGTACGCTT -ACGGAAGCGTTAGACAGTAGCGTT -ACGGAAGCGTTAGACAGTTTCGTC -ACGGAAGCGTTAGACAGTTCTCTC -ACGGAAGCGTTAGACAGTTGGATC -ACGGAAGCGTTAGACAGTCACTTC -ACGGAAGCGTTAGACAGTGTACTC -ACGGAAGCGTTAGACAGTGATGTC -ACGGAAGCGTTAGACAGTACAGTC -ACGGAAGCGTTAGACAGTTTGCTG -ACGGAAGCGTTAGACAGTTCCATG -ACGGAAGCGTTAGACAGTTGTGTG -ACGGAAGCGTTAGACAGTCTAGTG -ACGGAAGCGTTAGACAGTCATCTG -ACGGAAGCGTTAGACAGTGAGTTG -ACGGAAGCGTTAGACAGTAGACTG -ACGGAAGCGTTAGACAGTTCGGTA -ACGGAAGCGTTAGACAGTTGCCTA -ACGGAAGCGTTAGACAGTCCACTA -ACGGAAGCGTTAGACAGTGGAGTA -ACGGAAGCGTTAGACAGTTCGTCT -ACGGAAGCGTTAGACAGTTGCACT -ACGGAAGCGTTAGACAGTCTGACT -ACGGAAGCGTTAGACAGTCAACCT -ACGGAAGCGTTAGACAGTGCTACT -ACGGAAGCGTTAGACAGTGGATCT -ACGGAAGCGTTAGACAGTAAGGCT -ACGGAAGCGTTAGACAGTTCAACC -ACGGAAGCGTTAGACAGTTGTTCC -ACGGAAGCGTTAGACAGTATTCCC -ACGGAAGCGTTAGACAGTTTCTCG -ACGGAAGCGTTAGACAGTTAGACG -ACGGAAGCGTTAGACAGTGTAACG -ACGGAAGCGTTAGACAGTACTTCG -ACGGAAGCGTTAGACAGTTACGCA -ACGGAAGCGTTAGACAGTCTTGCA -ACGGAAGCGTTAGACAGTCGAACA -ACGGAAGCGTTAGACAGTCAGTCA -ACGGAAGCGTTAGACAGTGATCCA -ACGGAAGCGTTAGACAGTACGACA -ACGGAAGCGTTAGACAGTAGCTCA -ACGGAAGCGTTAGACAGTTCACGT -ACGGAAGCGTTAGACAGTCGTAGT -ACGGAAGCGTTAGACAGTGTCAGT -ACGGAAGCGTTAGACAGTGAAGGT -ACGGAAGCGTTAGACAGTAACCGT -ACGGAAGCGTTAGACAGTTTGTGC -ACGGAAGCGTTAGACAGTCTAAGC -ACGGAAGCGTTAGACAGTACTAGC -ACGGAAGCGTTAGACAGTAGATGC -ACGGAAGCGTTAGACAGTTGAAGG -ACGGAAGCGTTAGACAGTCAATGG -ACGGAAGCGTTAGACAGTATGAGG -ACGGAAGCGTTAGACAGTAATGGG -ACGGAAGCGTTAGACAGTTCCTGA -ACGGAAGCGTTAGACAGTTAGCGA -ACGGAAGCGTTAGACAGTCACAGA -ACGGAAGCGTTAGACAGTGCAAGA -ACGGAAGCGTTAGACAGTGGTTGA -ACGGAAGCGTTAGACAGTTCCGAT -ACGGAAGCGTTAGACAGTTGGCAT -ACGGAAGCGTTAGACAGTCGAGAT -ACGGAAGCGTTAGACAGTTACCAC -ACGGAAGCGTTAGACAGTCAGAAC -ACGGAAGCGTTAGACAGTGTCTAC -ACGGAAGCGTTAGACAGTACGTAC -ACGGAAGCGTTAGACAGTAGTGAC -ACGGAAGCGTTAGACAGTCTGTAG -ACGGAAGCGTTAGACAGTCCTAAG -ACGGAAGCGTTAGACAGTGTTCAG -ACGGAAGCGTTAGACAGTGCATAG -ACGGAAGCGTTAGACAGTGACAAG -ACGGAAGCGTTAGACAGTAAGCAG -ACGGAAGCGTTAGACAGTCGTCAA -ACGGAAGCGTTAGACAGTGCTGAA -ACGGAAGCGTTAGACAGTAGTACG -ACGGAAGCGTTAGACAGTATCCGA -ACGGAAGCGTTAGACAGTATGGGA -ACGGAAGCGTTAGACAGTGTGCAA -ACGGAAGCGTTAGACAGTGAGGAA -ACGGAAGCGTTAGACAGTCAGGTA -ACGGAAGCGTTAGACAGTGACTCT -ACGGAAGCGTTAGACAGTAGTCCT -ACGGAAGCGTTAGACAGTTAAGCC -ACGGAAGCGTTAGACAGTATAGCC -ACGGAAGCGTTAGACAGTTAACCG -ACGGAAGCGTTAGACAGTATGCCA -ACGGAAGCGTTATAGCTGGGAAAC -ACGGAAGCGTTATAGCTGAACACC -ACGGAAGCGTTATAGCTGATCGAG -ACGGAAGCGTTATAGCTGCTCCTT -ACGGAAGCGTTATAGCTGCCTGTT -ACGGAAGCGTTATAGCTGCGGTTT -ACGGAAGCGTTATAGCTGGTGGTT -ACGGAAGCGTTATAGCTGGCCTTT -ACGGAAGCGTTATAGCTGGGTCTT -ACGGAAGCGTTATAGCTGACGCTT -ACGGAAGCGTTATAGCTGAGCGTT -ACGGAAGCGTTATAGCTGTTCGTC -ACGGAAGCGTTATAGCTGTCTCTC -ACGGAAGCGTTATAGCTGTGGATC -ACGGAAGCGTTATAGCTGCACTTC -ACGGAAGCGTTATAGCTGGTACTC -ACGGAAGCGTTATAGCTGGATGTC -ACGGAAGCGTTATAGCTGACAGTC -ACGGAAGCGTTATAGCTGTTGCTG -ACGGAAGCGTTATAGCTGTCCATG -ACGGAAGCGTTATAGCTGTGTGTG -ACGGAAGCGTTATAGCTGCTAGTG -ACGGAAGCGTTATAGCTGCATCTG -ACGGAAGCGTTATAGCTGGAGTTG -ACGGAAGCGTTATAGCTGAGACTG -ACGGAAGCGTTATAGCTGTCGGTA -ACGGAAGCGTTATAGCTGTGCCTA -ACGGAAGCGTTATAGCTGCCACTA -ACGGAAGCGTTATAGCTGGGAGTA -ACGGAAGCGTTATAGCTGTCGTCT -ACGGAAGCGTTATAGCTGTGCACT -ACGGAAGCGTTATAGCTGCTGACT -ACGGAAGCGTTATAGCTGCAACCT -ACGGAAGCGTTATAGCTGGCTACT -ACGGAAGCGTTATAGCTGGGATCT -ACGGAAGCGTTATAGCTGAAGGCT -ACGGAAGCGTTATAGCTGTCAACC -ACGGAAGCGTTATAGCTGTGTTCC -ACGGAAGCGTTATAGCTGATTCCC -ACGGAAGCGTTATAGCTGTTCTCG -ACGGAAGCGTTATAGCTGTAGACG -ACGGAAGCGTTATAGCTGGTAACG -ACGGAAGCGTTATAGCTGACTTCG -ACGGAAGCGTTATAGCTGTACGCA -ACGGAAGCGTTATAGCTGCTTGCA -ACGGAAGCGTTATAGCTGCGAACA -ACGGAAGCGTTATAGCTGCAGTCA -ACGGAAGCGTTATAGCTGGATCCA -ACGGAAGCGTTATAGCTGACGACA -ACGGAAGCGTTATAGCTGAGCTCA -ACGGAAGCGTTATAGCTGTCACGT -ACGGAAGCGTTATAGCTGCGTAGT -ACGGAAGCGTTATAGCTGGTCAGT -ACGGAAGCGTTATAGCTGGAAGGT -ACGGAAGCGTTATAGCTGAACCGT -ACGGAAGCGTTATAGCTGTTGTGC -ACGGAAGCGTTATAGCTGCTAAGC -ACGGAAGCGTTATAGCTGACTAGC -ACGGAAGCGTTATAGCTGAGATGC -ACGGAAGCGTTATAGCTGTGAAGG -ACGGAAGCGTTATAGCTGCAATGG -ACGGAAGCGTTATAGCTGATGAGG -ACGGAAGCGTTATAGCTGAATGGG -ACGGAAGCGTTATAGCTGTCCTGA -ACGGAAGCGTTATAGCTGTAGCGA -ACGGAAGCGTTATAGCTGCACAGA -ACGGAAGCGTTATAGCTGGCAAGA -ACGGAAGCGTTATAGCTGGGTTGA -ACGGAAGCGTTATAGCTGTCCGAT -ACGGAAGCGTTATAGCTGTGGCAT -ACGGAAGCGTTATAGCTGCGAGAT -ACGGAAGCGTTATAGCTGTACCAC -ACGGAAGCGTTATAGCTGCAGAAC -ACGGAAGCGTTATAGCTGGTCTAC -ACGGAAGCGTTATAGCTGACGTAC -ACGGAAGCGTTATAGCTGAGTGAC -ACGGAAGCGTTATAGCTGCTGTAG -ACGGAAGCGTTATAGCTGCCTAAG -ACGGAAGCGTTATAGCTGGTTCAG -ACGGAAGCGTTATAGCTGGCATAG -ACGGAAGCGTTATAGCTGGACAAG -ACGGAAGCGTTATAGCTGAAGCAG -ACGGAAGCGTTATAGCTGCGTCAA -ACGGAAGCGTTATAGCTGGCTGAA -ACGGAAGCGTTATAGCTGAGTACG -ACGGAAGCGTTATAGCTGATCCGA -ACGGAAGCGTTATAGCTGATGGGA -ACGGAAGCGTTATAGCTGGTGCAA -ACGGAAGCGTTATAGCTGGAGGAA -ACGGAAGCGTTATAGCTGCAGGTA -ACGGAAGCGTTATAGCTGGACTCT -ACGGAAGCGTTATAGCTGAGTCCT -ACGGAAGCGTTATAGCTGTAAGCC -ACGGAAGCGTTATAGCTGATAGCC -ACGGAAGCGTTATAGCTGTAACCG -ACGGAAGCGTTATAGCTGATGCCA -ACGGAAGCGTTAAAGCCTGGAAAC -ACGGAAGCGTTAAAGCCTAACACC -ACGGAAGCGTTAAAGCCTATCGAG -ACGGAAGCGTTAAAGCCTCTCCTT -ACGGAAGCGTTAAAGCCTCCTGTT -ACGGAAGCGTTAAAGCCTCGGTTT -ACGGAAGCGTTAAAGCCTGTGGTT -ACGGAAGCGTTAAAGCCTGCCTTT -ACGGAAGCGTTAAAGCCTGGTCTT -ACGGAAGCGTTAAAGCCTACGCTT -ACGGAAGCGTTAAAGCCTAGCGTT -ACGGAAGCGTTAAAGCCTTTCGTC -ACGGAAGCGTTAAAGCCTTCTCTC -ACGGAAGCGTTAAAGCCTTGGATC -ACGGAAGCGTTAAAGCCTCACTTC -ACGGAAGCGTTAAAGCCTGTACTC -ACGGAAGCGTTAAAGCCTGATGTC -ACGGAAGCGTTAAAGCCTACAGTC -ACGGAAGCGTTAAAGCCTTTGCTG -ACGGAAGCGTTAAAGCCTTCCATG -ACGGAAGCGTTAAAGCCTTGTGTG -ACGGAAGCGTTAAAGCCTCTAGTG -ACGGAAGCGTTAAAGCCTCATCTG -ACGGAAGCGTTAAAGCCTGAGTTG -ACGGAAGCGTTAAAGCCTAGACTG -ACGGAAGCGTTAAAGCCTTCGGTA -ACGGAAGCGTTAAAGCCTTGCCTA -ACGGAAGCGTTAAAGCCTCCACTA -ACGGAAGCGTTAAAGCCTGGAGTA -ACGGAAGCGTTAAAGCCTTCGTCT -ACGGAAGCGTTAAAGCCTTGCACT -ACGGAAGCGTTAAAGCCTCTGACT -ACGGAAGCGTTAAAGCCTCAACCT -ACGGAAGCGTTAAAGCCTGCTACT -ACGGAAGCGTTAAAGCCTGGATCT -ACGGAAGCGTTAAAGCCTAAGGCT -ACGGAAGCGTTAAAGCCTTCAACC -ACGGAAGCGTTAAAGCCTTGTTCC -ACGGAAGCGTTAAAGCCTATTCCC -ACGGAAGCGTTAAAGCCTTTCTCG -ACGGAAGCGTTAAAGCCTTAGACG -ACGGAAGCGTTAAAGCCTGTAACG -ACGGAAGCGTTAAAGCCTACTTCG -ACGGAAGCGTTAAAGCCTTACGCA -ACGGAAGCGTTAAAGCCTCTTGCA -ACGGAAGCGTTAAAGCCTCGAACA -ACGGAAGCGTTAAAGCCTCAGTCA -ACGGAAGCGTTAAAGCCTGATCCA -ACGGAAGCGTTAAAGCCTACGACA -ACGGAAGCGTTAAAGCCTAGCTCA -ACGGAAGCGTTAAAGCCTTCACGT -ACGGAAGCGTTAAAGCCTCGTAGT -ACGGAAGCGTTAAAGCCTGTCAGT -ACGGAAGCGTTAAAGCCTGAAGGT -ACGGAAGCGTTAAAGCCTAACCGT -ACGGAAGCGTTAAAGCCTTTGTGC -ACGGAAGCGTTAAAGCCTCTAAGC -ACGGAAGCGTTAAAGCCTACTAGC -ACGGAAGCGTTAAAGCCTAGATGC -ACGGAAGCGTTAAAGCCTTGAAGG -ACGGAAGCGTTAAAGCCTCAATGG -ACGGAAGCGTTAAAGCCTATGAGG -ACGGAAGCGTTAAAGCCTAATGGG -ACGGAAGCGTTAAAGCCTTCCTGA -ACGGAAGCGTTAAAGCCTTAGCGA -ACGGAAGCGTTAAAGCCTCACAGA -ACGGAAGCGTTAAAGCCTGCAAGA -ACGGAAGCGTTAAAGCCTGGTTGA -ACGGAAGCGTTAAAGCCTTCCGAT -ACGGAAGCGTTAAAGCCTTGGCAT -ACGGAAGCGTTAAAGCCTCGAGAT -ACGGAAGCGTTAAAGCCTTACCAC -ACGGAAGCGTTAAAGCCTCAGAAC -ACGGAAGCGTTAAAGCCTGTCTAC -ACGGAAGCGTTAAAGCCTACGTAC -ACGGAAGCGTTAAAGCCTAGTGAC -ACGGAAGCGTTAAAGCCTCTGTAG -ACGGAAGCGTTAAAGCCTCCTAAG -ACGGAAGCGTTAAAGCCTGTTCAG -ACGGAAGCGTTAAAGCCTGCATAG -ACGGAAGCGTTAAAGCCTGACAAG -ACGGAAGCGTTAAAGCCTAAGCAG -ACGGAAGCGTTAAAGCCTCGTCAA -ACGGAAGCGTTAAAGCCTGCTGAA -ACGGAAGCGTTAAAGCCTAGTACG -ACGGAAGCGTTAAAGCCTATCCGA -ACGGAAGCGTTAAAGCCTATGGGA -ACGGAAGCGTTAAAGCCTGTGCAA -ACGGAAGCGTTAAAGCCTGAGGAA -ACGGAAGCGTTAAAGCCTCAGGTA -ACGGAAGCGTTAAAGCCTGACTCT -ACGGAAGCGTTAAAGCCTAGTCCT -ACGGAAGCGTTAAAGCCTTAAGCC -ACGGAAGCGTTAAAGCCTATAGCC -ACGGAAGCGTTAAAGCCTTAACCG -ACGGAAGCGTTAAAGCCTATGCCA -ACGGAAGCGTTACAGGTTGGAAAC -ACGGAAGCGTTACAGGTTAACACC -ACGGAAGCGTTACAGGTTATCGAG -ACGGAAGCGTTACAGGTTCTCCTT -ACGGAAGCGTTACAGGTTCCTGTT -ACGGAAGCGTTACAGGTTCGGTTT -ACGGAAGCGTTACAGGTTGTGGTT -ACGGAAGCGTTACAGGTTGCCTTT -ACGGAAGCGTTACAGGTTGGTCTT -ACGGAAGCGTTACAGGTTACGCTT -ACGGAAGCGTTACAGGTTAGCGTT -ACGGAAGCGTTACAGGTTTTCGTC -ACGGAAGCGTTACAGGTTTCTCTC -ACGGAAGCGTTACAGGTTTGGATC -ACGGAAGCGTTACAGGTTCACTTC -ACGGAAGCGTTACAGGTTGTACTC -ACGGAAGCGTTACAGGTTGATGTC -ACGGAAGCGTTACAGGTTACAGTC -ACGGAAGCGTTACAGGTTTTGCTG -ACGGAAGCGTTACAGGTTTCCATG -ACGGAAGCGTTACAGGTTTGTGTG -ACGGAAGCGTTACAGGTTCTAGTG -ACGGAAGCGTTACAGGTTCATCTG -ACGGAAGCGTTACAGGTTGAGTTG -ACGGAAGCGTTACAGGTTAGACTG -ACGGAAGCGTTACAGGTTTCGGTA -ACGGAAGCGTTACAGGTTTGCCTA -ACGGAAGCGTTACAGGTTCCACTA -ACGGAAGCGTTACAGGTTGGAGTA -ACGGAAGCGTTACAGGTTTCGTCT -ACGGAAGCGTTACAGGTTTGCACT -ACGGAAGCGTTACAGGTTCTGACT -ACGGAAGCGTTACAGGTTCAACCT -ACGGAAGCGTTACAGGTTGCTACT -ACGGAAGCGTTACAGGTTGGATCT -ACGGAAGCGTTACAGGTTAAGGCT -ACGGAAGCGTTACAGGTTTCAACC -ACGGAAGCGTTACAGGTTTGTTCC -ACGGAAGCGTTACAGGTTATTCCC -ACGGAAGCGTTACAGGTTTTCTCG -ACGGAAGCGTTACAGGTTTAGACG -ACGGAAGCGTTACAGGTTGTAACG -ACGGAAGCGTTACAGGTTACTTCG -ACGGAAGCGTTACAGGTTTACGCA -ACGGAAGCGTTACAGGTTCTTGCA -ACGGAAGCGTTACAGGTTCGAACA -ACGGAAGCGTTACAGGTTCAGTCA -ACGGAAGCGTTACAGGTTGATCCA -ACGGAAGCGTTACAGGTTACGACA -ACGGAAGCGTTACAGGTTAGCTCA -ACGGAAGCGTTACAGGTTTCACGT -ACGGAAGCGTTACAGGTTCGTAGT -ACGGAAGCGTTACAGGTTGTCAGT -ACGGAAGCGTTACAGGTTGAAGGT -ACGGAAGCGTTACAGGTTAACCGT -ACGGAAGCGTTACAGGTTTTGTGC -ACGGAAGCGTTACAGGTTCTAAGC -ACGGAAGCGTTACAGGTTACTAGC -ACGGAAGCGTTACAGGTTAGATGC -ACGGAAGCGTTACAGGTTTGAAGG -ACGGAAGCGTTACAGGTTCAATGG -ACGGAAGCGTTACAGGTTATGAGG -ACGGAAGCGTTACAGGTTAATGGG -ACGGAAGCGTTACAGGTTTCCTGA -ACGGAAGCGTTACAGGTTTAGCGA -ACGGAAGCGTTACAGGTTCACAGA -ACGGAAGCGTTACAGGTTGCAAGA -ACGGAAGCGTTACAGGTTGGTTGA -ACGGAAGCGTTACAGGTTTCCGAT -ACGGAAGCGTTACAGGTTTGGCAT -ACGGAAGCGTTACAGGTTCGAGAT -ACGGAAGCGTTACAGGTTTACCAC -ACGGAAGCGTTACAGGTTCAGAAC -ACGGAAGCGTTACAGGTTGTCTAC -ACGGAAGCGTTACAGGTTACGTAC -ACGGAAGCGTTACAGGTTAGTGAC -ACGGAAGCGTTACAGGTTCTGTAG -ACGGAAGCGTTACAGGTTCCTAAG -ACGGAAGCGTTACAGGTTGTTCAG -ACGGAAGCGTTACAGGTTGCATAG -ACGGAAGCGTTACAGGTTGACAAG -ACGGAAGCGTTACAGGTTAAGCAG -ACGGAAGCGTTACAGGTTCGTCAA -ACGGAAGCGTTACAGGTTGCTGAA -ACGGAAGCGTTACAGGTTAGTACG -ACGGAAGCGTTACAGGTTATCCGA -ACGGAAGCGTTACAGGTTATGGGA -ACGGAAGCGTTACAGGTTGTGCAA -ACGGAAGCGTTACAGGTTGAGGAA -ACGGAAGCGTTACAGGTTCAGGTA -ACGGAAGCGTTACAGGTTGACTCT -ACGGAAGCGTTACAGGTTAGTCCT -ACGGAAGCGTTACAGGTTTAAGCC -ACGGAAGCGTTACAGGTTATAGCC -ACGGAAGCGTTACAGGTTTAACCG -ACGGAAGCGTTACAGGTTATGCCA -ACGGAAGCGTTATAGGCAGGAAAC -ACGGAAGCGTTATAGGCAAACACC -ACGGAAGCGTTATAGGCAATCGAG -ACGGAAGCGTTATAGGCACTCCTT -ACGGAAGCGTTATAGGCACCTGTT -ACGGAAGCGTTATAGGCACGGTTT -ACGGAAGCGTTATAGGCAGTGGTT -ACGGAAGCGTTATAGGCAGCCTTT -ACGGAAGCGTTATAGGCAGGTCTT -ACGGAAGCGTTATAGGCAACGCTT -ACGGAAGCGTTATAGGCAAGCGTT -ACGGAAGCGTTATAGGCATTCGTC -ACGGAAGCGTTATAGGCATCTCTC -ACGGAAGCGTTATAGGCATGGATC -ACGGAAGCGTTATAGGCACACTTC -ACGGAAGCGTTATAGGCAGTACTC -ACGGAAGCGTTATAGGCAGATGTC -ACGGAAGCGTTATAGGCAACAGTC -ACGGAAGCGTTATAGGCATTGCTG -ACGGAAGCGTTATAGGCATCCATG -ACGGAAGCGTTATAGGCATGTGTG -ACGGAAGCGTTATAGGCACTAGTG -ACGGAAGCGTTATAGGCACATCTG -ACGGAAGCGTTATAGGCAGAGTTG -ACGGAAGCGTTATAGGCAAGACTG -ACGGAAGCGTTATAGGCATCGGTA -ACGGAAGCGTTATAGGCATGCCTA -ACGGAAGCGTTATAGGCACCACTA -ACGGAAGCGTTATAGGCAGGAGTA -ACGGAAGCGTTATAGGCATCGTCT -ACGGAAGCGTTATAGGCATGCACT -ACGGAAGCGTTATAGGCACTGACT -ACGGAAGCGTTATAGGCACAACCT -ACGGAAGCGTTATAGGCAGCTACT -ACGGAAGCGTTATAGGCAGGATCT -ACGGAAGCGTTATAGGCAAAGGCT -ACGGAAGCGTTATAGGCATCAACC -ACGGAAGCGTTATAGGCATGTTCC -ACGGAAGCGTTATAGGCAATTCCC -ACGGAAGCGTTATAGGCATTCTCG -ACGGAAGCGTTATAGGCATAGACG -ACGGAAGCGTTATAGGCAGTAACG -ACGGAAGCGTTATAGGCAACTTCG -ACGGAAGCGTTATAGGCATACGCA -ACGGAAGCGTTATAGGCACTTGCA -ACGGAAGCGTTATAGGCACGAACA -ACGGAAGCGTTATAGGCACAGTCA -ACGGAAGCGTTATAGGCAGATCCA -ACGGAAGCGTTATAGGCAACGACA -ACGGAAGCGTTATAGGCAAGCTCA -ACGGAAGCGTTATAGGCATCACGT -ACGGAAGCGTTATAGGCACGTAGT -ACGGAAGCGTTATAGGCAGTCAGT -ACGGAAGCGTTATAGGCAGAAGGT -ACGGAAGCGTTATAGGCAAACCGT -ACGGAAGCGTTATAGGCATTGTGC -ACGGAAGCGTTATAGGCACTAAGC -ACGGAAGCGTTATAGGCAACTAGC -ACGGAAGCGTTATAGGCAAGATGC -ACGGAAGCGTTATAGGCATGAAGG -ACGGAAGCGTTATAGGCACAATGG -ACGGAAGCGTTATAGGCAATGAGG -ACGGAAGCGTTATAGGCAAATGGG -ACGGAAGCGTTATAGGCATCCTGA -ACGGAAGCGTTATAGGCATAGCGA -ACGGAAGCGTTATAGGCACACAGA -ACGGAAGCGTTATAGGCAGCAAGA -ACGGAAGCGTTATAGGCAGGTTGA -ACGGAAGCGTTATAGGCATCCGAT -ACGGAAGCGTTATAGGCATGGCAT -ACGGAAGCGTTATAGGCACGAGAT -ACGGAAGCGTTATAGGCATACCAC -ACGGAAGCGTTATAGGCACAGAAC -ACGGAAGCGTTATAGGCAGTCTAC -ACGGAAGCGTTATAGGCAACGTAC -ACGGAAGCGTTATAGGCAAGTGAC -ACGGAAGCGTTATAGGCACTGTAG -ACGGAAGCGTTATAGGCACCTAAG -ACGGAAGCGTTATAGGCAGTTCAG -ACGGAAGCGTTATAGGCAGCATAG -ACGGAAGCGTTATAGGCAGACAAG -ACGGAAGCGTTATAGGCAAAGCAG -ACGGAAGCGTTATAGGCACGTCAA -ACGGAAGCGTTATAGGCAGCTGAA -ACGGAAGCGTTATAGGCAAGTACG -ACGGAAGCGTTATAGGCAATCCGA -ACGGAAGCGTTATAGGCAATGGGA -ACGGAAGCGTTATAGGCAGTGCAA -ACGGAAGCGTTATAGGCAGAGGAA -ACGGAAGCGTTATAGGCACAGGTA -ACGGAAGCGTTATAGGCAGACTCT -ACGGAAGCGTTATAGGCAAGTCCT -ACGGAAGCGTTATAGGCATAAGCC -ACGGAAGCGTTATAGGCAATAGCC -ACGGAAGCGTTATAGGCATAACCG -ACGGAAGCGTTATAGGCAATGCCA -ACGGAAGCGTTAAAGGACGGAAAC -ACGGAAGCGTTAAAGGACAACACC -ACGGAAGCGTTAAAGGACATCGAG -ACGGAAGCGTTAAAGGACCTCCTT -ACGGAAGCGTTAAAGGACCCTGTT -ACGGAAGCGTTAAAGGACCGGTTT -ACGGAAGCGTTAAAGGACGTGGTT -ACGGAAGCGTTAAAGGACGCCTTT -ACGGAAGCGTTAAAGGACGGTCTT -ACGGAAGCGTTAAAGGACACGCTT -ACGGAAGCGTTAAAGGACAGCGTT -ACGGAAGCGTTAAAGGACTTCGTC -ACGGAAGCGTTAAAGGACTCTCTC -ACGGAAGCGTTAAAGGACTGGATC -ACGGAAGCGTTAAAGGACCACTTC -ACGGAAGCGTTAAAGGACGTACTC -ACGGAAGCGTTAAAGGACGATGTC -ACGGAAGCGTTAAAGGACACAGTC -ACGGAAGCGTTAAAGGACTTGCTG -ACGGAAGCGTTAAAGGACTCCATG -ACGGAAGCGTTAAAGGACTGTGTG -ACGGAAGCGTTAAAGGACCTAGTG -ACGGAAGCGTTAAAGGACCATCTG -ACGGAAGCGTTAAAGGACGAGTTG -ACGGAAGCGTTAAAGGACAGACTG -ACGGAAGCGTTAAAGGACTCGGTA -ACGGAAGCGTTAAAGGACTGCCTA -ACGGAAGCGTTAAAGGACCCACTA -ACGGAAGCGTTAAAGGACGGAGTA -ACGGAAGCGTTAAAGGACTCGTCT -ACGGAAGCGTTAAAGGACTGCACT -ACGGAAGCGTTAAAGGACCTGACT -ACGGAAGCGTTAAAGGACCAACCT -ACGGAAGCGTTAAAGGACGCTACT -ACGGAAGCGTTAAAGGACGGATCT -ACGGAAGCGTTAAAGGACAAGGCT -ACGGAAGCGTTAAAGGACTCAACC -ACGGAAGCGTTAAAGGACTGTTCC -ACGGAAGCGTTAAAGGACATTCCC -ACGGAAGCGTTAAAGGACTTCTCG -ACGGAAGCGTTAAAGGACTAGACG -ACGGAAGCGTTAAAGGACGTAACG -ACGGAAGCGTTAAAGGACACTTCG -ACGGAAGCGTTAAAGGACTACGCA -ACGGAAGCGTTAAAGGACCTTGCA -ACGGAAGCGTTAAAGGACCGAACA -ACGGAAGCGTTAAAGGACCAGTCA -ACGGAAGCGTTAAAGGACGATCCA -ACGGAAGCGTTAAAGGACACGACA -ACGGAAGCGTTAAAGGACAGCTCA -ACGGAAGCGTTAAAGGACTCACGT -ACGGAAGCGTTAAAGGACCGTAGT -ACGGAAGCGTTAAAGGACGTCAGT -ACGGAAGCGTTAAAGGACGAAGGT -ACGGAAGCGTTAAAGGACAACCGT -ACGGAAGCGTTAAAGGACTTGTGC -ACGGAAGCGTTAAAGGACCTAAGC -ACGGAAGCGTTAAAGGACACTAGC -ACGGAAGCGTTAAAGGACAGATGC -ACGGAAGCGTTAAAGGACTGAAGG -ACGGAAGCGTTAAAGGACCAATGG -ACGGAAGCGTTAAAGGACATGAGG -ACGGAAGCGTTAAAGGACAATGGG -ACGGAAGCGTTAAAGGACTCCTGA -ACGGAAGCGTTAAAGGACTAGCGA -ACGGAAGCGTTAAAGGACCACAGA -ACGGAAGCGTTAAAGGACGCAAGA -ACGGAAGCGTTAAAGGACGGTTGA -ACGGAAGCGTTAAAGGACTCCGAT -ACGGAAGCGTTAAAGGACTGGCAT -ACGGAAGCGTTAAAGGACCGAGAT -ACGGAAGCGTTAAAGGACTACCAC -ACGGAAGCGTTAAAGGACCAGAAC -ACGGAAGCGTTAAAGGACGTCTAC -ACGGAAGCGTTAAAGGACACGTAC -ACGGAAGCGTTAAAGGACAGTGAC -ACGGAAGCGTTAAAGGACCTGTAG -ACGGAAGCGTTAAAGGACCCTAAG -ACGGAAGCGTTAAAGGACGTTCAG -ACGGAAGCGTTAAAGGACGCATAG -ACGGAAGCGTTAAAGGACGACAAG -ACGGAAGCGTTAAAGGACAAGCAG -ACGGAAGCGTTAAAGGACCGTCAA -ACGGAAGCGTTAAAGGACGCTGAA -ACGGAAGCGTTAAAGGACAGTACG -ACGGAAGCGTTAAAGGACATCCGA -ACGGAAGCGTTAAAGGACATGGGA -ACGGAAGCGTTAAAGGACGTGCAA -ACGGAAGCGTTAAAGGACGAGGAA -ACGGAAGCGTTAAAGGACCAGGTA -ACGGAAGCGTTAAAGGACGACTCT -ACGGAAGCGTTAAAGGACAGTCCT -ACGGAAGCGTTAAAGGACTAAGCC -ACGGAAGCGTTAAAGGACATAGCC -ACGGAAGCGTTAAAGGACTAACCG -ACGGAAGCGTTAAAGGACATGCCA -ACGGAAGCGTTACAGAAGGGAAAC -ACGGAAGCGTTACAGAAGAACACC -ACGGAAGCGTTACAGAAGATCGAG -ACGGAAGCGTTACAGAAGCTCCTT -ACGGAAGCGTTACAGAAGCCTGTT -ACGGAAGCGTTACAGAAGCGGTTT -ACGGAAGCGTTACAGAAGGTGGTT -ACGGAAGCGTTACAGAAGGCCTTT -ACGGAAGCGTTACAGAAGGGTCTT -ACGGAAGCGTTACAGAAGACGCTT -ACGGAAGCGTTACAGAAGAGCGTT -ACGGAAGCGTTACAGAAGTTCGTC -ACGGAAGCGTTACAGAAGTCTCTC -ACGGAAGCGTTACAGAAGTGGATC -ACGGAAGCGTTACAGAAGCACTTC -ACGGAAGCGTTACAGAAGGTACTC -ACGGAAGCGTTACAGAAGGATGTC -ACGGAAGCGTTACAGAAGACAGTC -ACGGAAGCGTTACAGAAGTTGCTG -ACGGAAGCGTTACAGAAGTCCATG -ACGGAAGCGTTACAGAAGTGTGTG -ACGGAAGCGTTACAGAAGCTAGTG -ACGGAAGCGTTACAGAAGCATCTG -ACGGAAGCGTTACAGAAGGAGTTG -ACGGAAGCGTTACAGAAGAGACTG -ACGGAAGCGTTACAGAAGTCGGTA -ACGGAAGCGTTACAGAAGTGCCTA -ACGGAAGCGTTACAGAAGCCACTA -ACGGAAGCGTTACAGAAGGGAGTA -ACGGAAGCGTTACAGAAGTCGTCT -ACGGAAGCGTTACAGAAGTGCACT -ACGGAAGCGTTACAGAAGCTGACT -ACGGAAGCGTTACAGAAGCAACCT -ACGGAAGCGTTACAGAAGGCTACT -ACGGAAGCGTTACAGAAGGGATCT -ACGGAAGCGTTACAGAAGAAGGCT -ACGGAAGCGTTACAGAAGTCAACC -ACGGAAGCGTTACAGAAGTGTTCC -ACGGAAGCGTTACAGAAGATTCCC -ACGGAAGCGTTACAGAAGTTCTCG -ACGGAAGCGTTACAGAAGTAGACG -ACGGAAGCGTTACAGAAGGTAACG -ACGGAAGCGTTACAGAAGACTTCG -ACGGAAGCGTTACAGAAGTACGCA -ACGGAAGCGTTACAGAAGCTTGCA -ACGGAAGCGTTACAGAAGCGAACA -ACGGAAGCGTTACAGAAGCAGTCA -ACGGAAGCGTTACAGAAGGATCCA -ACGGAAGCGTTACAGAAGACGACA -ACGGAAGCGTTACAGAAGAGCTCA -ACGGAAGCGTTACAGAAGTCACGT -ACGGAAGCGTTACAGAAGCGTAGT -ACGGAAGCGTTACAGAAGGTCAGT -ACGGAAGCGTTACAGAAGGAAGGT -ACGGAAGCGTTACAGAAGAACCGT -ACGGAAGCGTTACAGAAGTTGTGC -ACGGAAGCGTTACAGAAGCTAAGC -ACGGAAGCGTTACAGAAGACTAGC -ACGGAAGCGTTACAGAAGAGATGC -ACGGAAGCGTTACAGAAGTGAAGG -ACGGAAGCGTTACAGAAGCAATGG -ACGGAAGCGTTACAGAAGATGAGG -ACGGAAGCGTTACAGAAGAATGGG -ACGGAAGCGTTACAGAAGTCCTGA -ACGGAAGCGTTACAGAAGTAGCGA -ACGGAAGCGTTACAGAAGCACAGA -ACGGAAGCGTTACAGAAGGCAAGA -ACGGAAGCGTTACAGAAGGGTTGA -ACGGAAGCGTTACAGAAGTCCGAT -ACGGAAGCGTTACAGAAGTGGCAT -ACGGAAGCGTTACAGAAGCGAGAT -ACGGAAGCGTTACAGAAGTACCAC -ACGGAAGCGTTACAGAAGCAGAAC -ACGGAAGCGTTACAGAAGGTCTAC -ACGGAAGCGTTACAGAAGACGTAC -ACGGAAGCGTTACAGAAGAGTGAC -ACGGAAGCGTTACAGAAGCTGTAG -ACGGAAGCGTTACAGAAGCCTAAG -ACGGAAGCGTTACAGAAGGTTCAG -ACGGAAGCGTTACAGAAGGCATAG -ACGGAAGCGTTACAGAAGGACAAG -ACGGAAGCGTTACAGAAGAAGCAG -ACGGAAGCGTTACAGAAGCGTCAA -ACGGAAGCGTTACAGAAGGCTGAA -ACGGAAGCGTTACAGAAGAGTACG -ACGGAAGCGTTACAGAAGATCCGA -ACGGAAGCGTTACAGAAGATGGGA -ACGGAAGCGTTACAGAAGGTGCAA -ACGGAAGCGTTACAGAAGGAGGAA -ACGGAAGCGTTACAGAAGCAGGTA -ACGGAAGCGTTACAGAAGGACTCT -ACGGAAGCGTTACAGAAGAGTCCT -ACGGAAGCGTTACAGAAGTAAGCC -ACGGAAGCGTTACAGAAGATAGCC -ACGGAAGCGTTACAGAAGTAACCG -ACGGAAGCGTTACAGAAGATGCCA -ACGGAAGCGTTACAACGTGGAAAC -ACGGAAGCGTTACAACGTAACACC -ACGGAAGCGTTACAACGTATCGAG -ACGGAAGCGTTACAACGTCTCCTT -ACGGAAGCGTTACAACGTCCTGTT -ACGGAAGCGTTACAACGTCGGTTT -ACGGAAGCGTTACAACGTGTGGTT -ACGGAAGCGTTACAACGTGCCTTT -ACGGAAGCGTTACAACGTGGTCTT -ACGGAAGCGTTACAACGTACGCTT -ACGGAAGCGTTACAACGTAGCGTT -ACGGAAGCGTTACAACGTTTCGTC -ACGGAAGCGTTACAACGTTCTCTC -ACGGAAGCGTTACAACGTTGGATC -ACGGAAGCGTTACAACGTCACTTC -ACGGAAGCGTTACAACGTGTACTC -ACGGAAGCGTTACAACGTGATGTC -ACGGAAGCGTTACAACGTACAGTC -ACGGAAGCGTTACAACGTTTGCTG -ACGGAAGCGTTACAACGTTCCATG -ACGGAAGCGTTACAACGTTGTGTG -ACGGAAGCGTTACAACGTCTAGTG -ACGGAAGCGTTACAACGTCATCTG -ACGGAAGCGTTACAACGTGAGTTG -ACGGAAGCGTTACAACGTAGACTG -ACGGAAGCGTTACAACGTTCGGTA -ACGGAAGCGTTACAACGTTGCCTA -ACGGAAGCGTTACAACGTCCACTA -ACGGAAGCGTTACAACGTGGAGTA -ACGGAAGCGTTACAACGTTCGTCT -ACGGAAGCGTTACAACGTTGCACT -ACGGAAGCGTTACAACGTCTGACT -ACGGAAGCGTTACAACGTCAACCT -ACGGAAGCGTTACAACGTGCTACT -ACGGAAGCGTTACAACGTGGATCT -ACGGAAGCGTTACAACGTAAGGCT -ACGGAAGCGTTACAACGTTCAACC -ACGGAAGCGTTACAACGTTGTTCC -ACGGAAGCGTTACAACGTATTCCC -ACGGAAGCGTTACAACGTTTCTCG -ACGGAAGCGTTACAACGTTAGACG -ACGGAAGCGTTACAACGTGTAACG -ACGGAAGCGTTACAACGTACTTCG -ACGGAAGCGTTACAACGTTACGCA -ACGGAAGCGTTACAACGTCTTGCA -ACGGAAGCGTTACAACGTCGAACA -ACGGAAGCGTTACAACGTCAGTCA -ACGGAAGCGTTACAACGTGATCCA -ACGGAAGCGTTACAACGTACGACA -ACGGAAGCGTTACAACGTAGCTCA -ACGGAAGCGTTACAACGTTCACGT -ACGGAAGCGTTACAACGTCGTAGT -ACGGAAGCGTTACAACGTGTCAGT -ACGGAAGCGTTACAACGTGAAGGT -ACGGAAGCGTTACAACGTAACCGT -ACGGAAGCGTTACAACGTTTGTGC -ACGGAAGCGTTACAACGTCTAAGC -ACGGAAGCGTTACAACGTACTAGC -ACGGAAGCGTTACAACGTAGATGC -ACGGAAGCGTTACAACGTTGAAGG -ACGGAAGCGTTACAACGTCAATGG -ACGGAAGCGTTACAACGTATGAGG -ACGGAAGCGTTACAACGTAATGGG -ACGGAAGCGTTACAACGTTCCTGA -ACGGAAGCGTTACAACGTTAGCGA -ACGGAAGCGTTACAACGTCACAGA -ACGGAAGCGTTACAACGTGCAAGA -ACGGAAGCGTTACAACGTGGTTGA -ACGGAAGCGTTACAACGTTCCGAT -ACGGAAGCGTTACAACGTTGGCAT -ACGGAAGCGTTACAACGTCGAGAT -ACGGAAGCGTTACAACGTTACCAC -ACGGAAGCGTTACAACGTCAGAAC -ACGGAAGCGTTACAACGTGTCTAC -ACGGAAGCGTTACAACGTACGTAC -ACGGAAGCGTTACAACGTAGTGAC -ACGGAAGCGTTACAACGTCTGTAG -ACGGAAGCGTTACAACGTCCTAAG -ACGGAAGCGTTACAACGTGTTCAG -ACGGAAGCGTTACAACGTGCATAG -ACGGAAGCGTTACAACGTGACAAG -ACGGAAGCGTTACAACGTAAGCAG -ACGGAAGCGTTACAACGTCGTCAA -ACGGAAGCGTTACAACGTGCTGAA -ACGGAAGCGTTACAACGTAGTACG -ACGGAAGCGTTACAACGTATCCGA -ACGGAAGCGTTACAACGTATGGGA -ACGGAAGCGTTACAACGTGTGCAA -ACGGAAGCGTTACAACGTGAGGAA -ACGGAAGCGTTACAACGTCAGGTA -ACGGAAGCGTTACAACGTGACTCT -ACGGAAGCGTTACAACGTAGTCCT -ACGGAAGCGTTACAACGTTAAGCC -ACGGAAGCGTTACAACGTATAGCC -ACGGAAGCGTTACAACGTTAACCG -ACGGAAGCGTTACAACGTATGCCA -ACGGAAGCGTTAGAAGCTGGAAAC -ACGGAAGCGTTAGAAGCTAACACC -ACGGAAGCGTTAGAAGCTATCGAG -ACGGAAGCGTTAGAAGCTCTCCTT -ACGGAAGCGTTAGAAGCTCCTGTT -ACGGAAGCGTTAGAAGCTCGGTTT -ACGGAAGCGTTAGAAGCTGTGGTT -ACGGAAGCGTTAGAAGCTGCCTTT -ACGGAAGCGTTAGAAGCTGGTCTT -ACGGAAGCGTTAGAAGCTACGCTT -ACGGAAGCGTTAGAAGCTAGCGTT -ACGGAAGCGTTAGAAGCTTTCGTC -ACGGAAGCGTTAGAAGCTTCTCTC -ACGGAAGCGTTAGAAGCTTGGATC -ACGGAAGCGTTAGAAGCTCACTTC -ACGGAAGCGTTAGAAGCTGTACTC -ACGGAAGCGTTAGAAGCTGATGTC -ACGGAAGCGTTAGAAGCTACAGTC -ACGGAAGCGTTAGAAGCTTTGCTG -ACGGAAGCGTTAGAAGCTTCCATG -ACGGAAGCGTTAGAAGCTTGTGTG -ACGGAAGCGTTAGAAGCTCTAGTG -ACGGAAGCGTTAGAAGCTCATCTG -ACGGAAGCGTTAGAAGCTGAGTTG -ACGGAAGCGTTAGAAGCTAGACTG -ACGGAAGCGTTAGAAGCTTCGGTA -ACGGAAGCGTTAGAAGCTTGCCTA -ACGGAAGCGTTAGAAGCTCCACTA -ACGGAAGCGTTAGAAGCTGGAGTA -ACGGAAGCGTTAGAAGCTTCGTCT -ACGGAAGCGTTAGAAGCTTGCACT -ACGGAAGCGTTAGAAGCTCTGACT -ACGGAAGCGTTAGAAGCTCAACCT -ACGGAAGCGTTAGAAGCTGCTACT -ACGGAAGCGTTAGAAGCTGGATCT -ACGGAAGCGTTAGAAGCTAAGGCT -ACGGAAGCGTTAGAAGCTTCAACC -ACGGAAGCGTTAGAAGCTTGTTCC -ACGGAAGCGTTAGAAGCTATTCCC -ACGGAAGCGTTAGAAGCTTTCTCG -ACGGAAGCGTTAGAAGCTTAGACG -ACGGAAGCGTTAGAAGCTGTAACG -ACGGAAGCGTTAGAAGCTACTTCG -ACGGAAGCGTTAGAAGCTTACGCA -ACGGAAGCGTTAGAAGCTCTTGCA -ACGGAAGCGTTAGAAGCTCGAACA -ACGGAAGCGTTAGAAGCTCAGTCA -ACGGAAGCGTTAGAAGCTGATCCA -ACGGAAGCGTTAGAAGCTACGACA -ACGGAAGCGTTAGAAGCTAGCTCA -ACGGAAGCGTTAGAAGCTTCACGT -ACGGAAGCGTTAGAAGCTCGTAGT -ACGGAAGCGTTAGAAGCTGTCAGT -ACGGAAGCGTTAGAAGCTGAAGGT -ACGGAAGCGTTAGAAGCTAACCGT -ACGGAAGCGTTAGAAGCTTTGTGC -ACGGAAGCGTTAGAAGCTCTAAGC -ACGGAAGCGTTAGAAGCTACTAGC -ACGGAAGCGTTAGAAGCTAGATGC -ACGGAAGCGTTAGAAGCTTGAAGG -ACGGAAGCGTTAGAAGCTCAATGG -ACGGAAGCGTTAGAAGCTATGAGG -ACGGAAGCGTTAGAAGCTAATGGG -ACGGAAGCGTTAGAAGCTTCCTGA -ACGGAAGCGTTAGAAGCTTAGCGA -ACGGAAGCGTTAGAAGCTCACAGA -ACGGAAGCGTTAGAAGCTGCAAGA -ACGGAAGCGTTAGAAGCTGGTTGA -ACGGAAGCGTTAGAAGCTTCCGAT -ACGGAAGCGTTAGAAGCTTGGCAT -ACGGAAGCGTTAGAAGCTCGAGAT -ACGGAAGCGTTAGAAGCTTACCAC -ACGGAAGCGTTAGAAGCTCAGAAC -ACGGAAGCGTTAGAAGCTGTCTAC -ACGGAAGCGTTAGAAGCTACGTAC -ACGGAAGCGTTAGAAGCTAGTGAC -ACGGAAGCGTTAGAAGCTCTGTAG -ACGGAAGCGTTAGAAGCTCCTAAG -ACGGAAGCGTTAGAAGCTGTTCAG -ACGGAAGCGTTAGAAGCTGCATAG -ACGGAAGCGTTAGAAGCTGACAAG -ACGGAAGCGTTAGAAGCTAAGCAG -ACGGAAGCGTTAGAAGCTCGTCAA -ACGGAAGCGTTAGAAGCTGCTGAA -ACGGAAGCGTTAGAAGCTAGTACG -ACGGAAGCGTTAGAAGCTATCCGA -ACGGAAGCGTTAGAAGCTATGGGA -ACGGAAGCGTTAGAAGCTGTGCAA -ACGGAAGCGTTAGAAGCTGAGGAA -ACGGAAGCGTTAGAAGCTCAGGTA -ACGGAAGCGTTAGAAGCTGACTCT -ACGGAAGCGTTAGAAGCTAGTCCT -ACGGAAGCGTTAGAAGCTTAAGCC -ACGGAAGCGTTAGAAGCTATAGCC -ACGGAAGCGTTAGAAGCTTAACCG -ACGGAAGCGTTAGAAGCTATGCCA -ACGGAAGCGTTAACGAGTGGAAAC -ACGGAAGCGTTAACGAGTAACACC -ACGGAAGCGTTAACGAGTATCGAG -ACGGAAGCGTTAACGAGTCTCCTT -ACGGAAGCGTTAACGAGTCCTGTT -ACGGAAGCGTTAACGAGTCGGTTT -ACGGAAGCGTTAACGAGTGTGGTT -ACGGAAGCGTTAACGAGTGCCTTT -ACGGAAGCGTTAACGAGTGGTCTT -ACGGAAGCGTTAACGAGTACGCTT -ACGGAAGCGTTAACGAGTAGCGTT -ACGGAAGCGTTAACGAGTTTCGTC -ACGGAAGCGTTAACGAGTTCTCTC -ACGGAAGCGTTAACGAGTTGGATC -ACGGAAGCGTTAACGAGTCACTTC -ACGGAAGCGTTAACGAGTGTACTC -ACGGAAGCGTTAACGAGTGATGTC -ACGGAAGCGTTAACGAGTACAGTC -ACGGAAGCGTTAACGAGTTTGCTG -ACGGAAGCGTTAACGAGTTCCATG -ACGGAAGCGTTAACGAGTTGTGTG -ACGGAAGCGTTAACGAGTCTAGTG -ACGGAAGCGTTAACGAGTCATCTG -ACGGAAGCGTTAACGAGTGAGTTG -ACGGAAGCGTTAACGAGTAGACTG -ACGGAAGCGTTAACGAGTTCGGTA -ACGGAAGCGTTAACGAGTTGCCTA -ACGGAAGCGTTAACGAGTCCACTA -ACGGAAGCGTTAACGAGTGGAGTA -ACGGAAGCGTTAACGAGTTCGTCT -ACGGAAGCGTTAACGAGTTGCACT -ACGGAAGCGTTAACGAGTCTGACT -ACGGAAGCGTTAACGAGTCAACCT -ACGGAAGCGTTAACGAGTGCTACT -ACGGAAGCGTTAACGAGTGGATCT -ACGGAAGCGTTAACGAGTAAGGCT -ACGGAAGCGTTAACGAGTTCAACC -ACGGAAGCGTTAACGAGTTGTTCC -ACGGAAGCGTTAACGAGTATTCCC -ACGGAAGCGTTAACGAGTTTCTCG -ACGGAAGCGTTAACGAGTTAGACG -ACGGAAGCGTTAACGAGTGTAACG -ACGGAAGCGTTAACGAGTACTTCG -ACGGAAGCGTTAACGAGTTACGCA -ACGGAAGCGTTAACGAGTCTTGCA -ACGGAAGCGTTAACGAGTCGAACA -ACGGAAGCGTTAACGAGTCAGTCA -ACGGAAGCGTTAACGAGTGATCCA -ACGGAAGCGTTAACGAGTACGACA -ACGGAAGCGTTAACGAGTAGCTCA -ACGGAAGCGTTAACGAGTTCACGT -ACGGAAGCGTTAACGAGTCGTAGT -ACGGAAGCGTTAACGAGTGTCAGT -ACGGAAGCGTTAACGAGTGAAGGT -ACGGAAGCGTTAACGAGTAACCGT -ACGGAAGCGTTAACGAGTTTGTGC -ACGGAAGCGTTAACGAGTCTAAGC -ACGGAAGCGTTAACGAGTACTAGC -ACGGAAGCGTTAACGAGTAGATGC -ACGGAAGCGTTAACGAGTTGAAGG -ACGGAAGCGTTAACGAGTCAATGG -ACGGAAGCGTTAACGAGTATGAGG -ACGGAAGCGTTAACGAGTAATGGG -ACGGAAGCGTTAACGAGTTCCTGA -ACGGAAGCGTTAACGAGTTAGCGA -ACGGAAGCGTTAACGAGTCACAGA -ACGGAAGCGTTAACGAGTGCAAGA -ACGGAAGCGTTAACGAGTGGTTGA -ACGGAAGCGTTAACGAGTTCCGAT -ACGGAAGCGTTAACGAGTTGGCAT -ACGGAAGCGTTAACGAGTCGAGAT -ACGGAAGCGTTAACGAGTTACCAC -ACGGAAGCGTTAACGAGTCAGAAC -ACGGAAGCGTTAACGAGTGTCTAC -ACGGAAGCGTTAACGAGTACGTAC -ACGGAAGCGTTAACGAGTAGTGAC -ACGGAAGCGTTAACGAGTCTGTAG -ACGGAAGCGTTAACGAGTCCTAAG -ACGGAAGCGTTAACGAGTGTTCAG -ACGGAAGCGTTAACGAGTGCATAG -ACGGAAGCGTTAACGAGTGACAAG -ACGGAAGCGTTAACGAGTAAGCAG -ACGGAAGCGTTAACGAGTCGTCAA -ACGGAAGCGTTAACGAGTGCTGAA -ACGGAAGCGTTAACGAGTAGTACG -ACGGAAGCGTTAACGAGTATCCGA -ACGGAAGCGTTAACGAGTATGGGA -ACGGAAGCGTTAACGAGTGTGCAA -ACGGAAGCGTTAACGAGTGAGGAA -ACGGAAGCGTTAACGAGTCAGGTA -ACGGAAGCGTTAACGAGTGACTCT -ACGGAAGCGTTAACGAGTAGTCCT -ACGGAAGCGTTAACGAGTTAAGCC -ACGGAAGCGTTAACGAGTATAGCC -ACGGAAGCGTTAACGAGTTAACCG -ACGGAAGCGTTAACGAGTATGCCA -ACGGAAGCGTTACGAATCGGAAAC -ACGGAAGCGTTACGAATCAACACC -ACGGAAGCGTTACGAATCATCGAG -ACGGAAGCGTTACGAATCCTCCTT -ACGGAAGCGTTACGAATCCCTGTT -ACGGAAGCGTTACGAATCCGGTTT -ACGGAAGCGTTACGAATCGTGGTT -ACGGAAGCGTTACGAATCGCCTTT -ACGGAAGCGTTACGAATCGGTCTT -ACGGAAGCGTTACGAATCACGCTT -ACGGAAGCGTTACGAATCAGCGTT -ACGGAAGCGTTACGAATCTTCGTC -ACGGAAGCGTTACGAATCTCTCTC -ACGGAAGCGTTACGAATCTGGATC -ACGGAAGCGTTACGAATCCACTTC -ACGGAAGCGTTACGAATCGTACTC -ACGGAAGCGTTACGAATCGATGTC -ACGGAAGCGTTACGAATCACAGTC -ACGGAAGCGTTACGAATCTTGCTG -ACGGAAGCGTTACGAATCTCCATG -ACGGAAGCGTTACGAATCTGTGTG -ACGGAAGCGTTACGAATCCTAGTG -ACGGAAGCGTTACGAATCCATCTG -ACGGAAGCGTTACGAATCGAGTTG -ACGGAAGCGTTACGAATCAGACTG -ACGGAAGCGTTACGAATCTCGGTA -ACGGAAGCGTTACGAATCTGCCTA -ACGGAAGCGTTACGAATCCCACTA -ACGGAAGCGTTACGAATCGGAGTA -ACGGAAGCGTTACGAATCTCGTCT -ACGGAAGCGTTACGAATCTGCACT -ACGGAAGCGTTACGAATCCTGACT -ACGGAAGCGTTACGAATCCAACCT -ACGGAAGCGTTACGAATCGCTACT -ACGGAAGCGTTACGAATCGGATCT -ACGGAAGCGTTACGAATCAAGGCT -ACGGAAGCGTTACGAATCTCAACC -ACGGAAGCGTTACGAATCTGTTCC -ACGGAAGCGTTACGAATCATTCCC -ACGGAAGCGTTACGAATCTTCTCG -ACGGAAGCGTTACGAATCTAGACG -ACGGAAGCGTTACGAATCGTAACG -ACGGAAGCGTTACGAATCACTTCG -ACGGAAGCGTTACGAATCTACGCA -ACGGAAGCGTTACGAATCCTTGCA -ACGGAAGCGTTACGAATCCGAACA -ACGGAAGCGTTACGAATCCAGTCA -ACGGAAGCGTTACGAATCGATCCA -ACGGAAGCGTTACGAATCACGACA -ACGGAAGCGTTACGAATCAGCTCA -ACGGAAGCGTTACGAATCTCACGT -ACGGAAGCGTTACGAATCCGTAGT -ACGGAAGCGTTACGAATCGTCAGT -ACGGAAGCGTTACGAATCGAAGGT -ACGGAAGCGTTACGAATCAACCGT -ACGGAAGCGTTACGAATCTTGTGC -ACGGAAGCGTTACGAATCCTAAGC -ACGGAAGCGTTACGAATCACTAGC -ACGGAAGCGTTACGAATCAGATGC -ACGGAAGCGTTACGAATCTGAAGG -ACGGAAGCGTTACGAATCCAATGG -ACGGAAGCGTTACGAATCATGAGG -ACGGAAGCGTTACGAATCAATGGG -ACGGAAGCGTTACGAATCTCCTGA -ACGGAAGCGTTACGAATCTAGCGA -ACGGAAGCGTTACGAATCCACAGA -ACGGAAGCGTTACGAATCGCAAGA -ACGGAAGCGTTACGAATCGGTTGA -ACGGAAGCGTTACGAATCTCCGAT -ACGGAAGCGTTACGAATCTGGCAT -ACGGAAGCGTTACGAATCCGAGAT -ACGGAAGCGTTACGAATCTACCAC -ACGGAAGCGTTACGAATCCAGAAC -ACGGAAGCGTTACGAATCGTCTAC -ACGGAAGCGTTACGAATCACGTAC -ACGGAAGCGTTACGAATCAGTGAC -ACGGAAGCGTTACGAATCCTGTAG -ACGGAAGCGTTACGAATCCCTAAG -ACGGAAGCGTTACGAATCGTTCAG -ACGGAAGCGTTACGAATCGCATAG -ACGGAAGCGTTACGAATCGACAAG -ACGGAAGCGTTACGAATCAAGCAG -ACGGAAGCGTTACGAATCCGTCAA -ACGGAAGCGTTACGAATCGCTGAA -ACGGAAGCGTTACGAATCAGTACG -ACGGAAGCGTTACGAATCATCCGA -ACGGAAGCGTTACGAATCATGGGA -ACGGAAGCGTTACGAATCGTGCAA -ACGGAAGCGTTACGAATCGAGGAA -ACGGAAGCGTTACGAATCCAGGTA -ACGGAAGCGTTACGAATCGACTCT -ACGGAAGCGTTACGAATCAGTCCT -ACGGAAGCGTTACGAATCTAAGCC -ACGGAAGCGTTACGAATCATAGCC -ACGGAAGCGTTACGAATCTAACCG -ACGGAAGCGTTACGAATCATGCCA -ACGGAAGCGTTAGGAATGGGAAAC -ACGGAAGCGTTAGGAATGAACACC -ACGGAAGCGTTAGGAATGATCGAG -ACGGAAGCGTTAGGAATGCTCCTT -ACGGAAGCGTTAGGAATGCCTGTT -ACGGAAGCGTTAGGAATGCGGTTT -ACGGAAGCGTTAGGAATGGTGGTT -ACGGAAGCGTTAGGAATGGCCTTT -ACGGAAGCGTTAGGAATGGGTCTT -ACGGAAGCGTTAGGAATGACGCTT -ACGGAAGCGTTAGGAATGAGCGTT -ACGGAAGCGTTAGGAATGTTCGTC -ACGGAAGCGTTAGGAATGTCTCTC -ACGGAAGCGTTAGGAATGTGGATC -ACGGAAGCGTTAGGAATGCACTTC -ACGGAAGCGTTAGGAATGGTACTC -ACGGAAGCGTTAGGAATGGATGTC -ACGGAAGCGTTAGGAATGACAGTC -ACGGAAGCGTTAGGAATGTTGCTG -ACGGAAGCGTTAGGAATGTCCATG -ACGGAAGCGTTAGGAATGTGTGTG -ACGGAAGCGTTAGGAATGCTAGTG -ACGGAAGCGTTAGGAATGCATCTG -ACGGAAGCGTTAGGAATGGAGTTG -ACGGAAGCGTTAGGAATGAGACTG -ACGGAAGCGTTAGGAATGTCGGTA -ACGGAAGCGTTAGGAATGTGCCTA -ACGGAAGCGTTAGGAATGCCACTA -ACGGAAGCGTTAGGAATGGGAGTA -ACGGAAGCGTTAGGAATGTCGTCT -ACGGAAGCGTTAGGAATGTGCACT -ACGGAAGCGTTAGGAATGCTGACT -ACGGAAGCGTTAGGAATGCAACCT -ACGGAAGCGTTAGGAATGGCTACT -ACGGAAGCGTTAGGAATGGGATCT -ACGGAAGCGTTAGGAATGAAGGCT -ACGGAAGCGTTAGGAATGTCAACC -ACGGAAGCGTTAGGAATGTGTTCC -ACGGAAGCGTTAGGAATGATTCCC -ACGGAAGCGTTAGGAATGTTCTCG -ACGGAAGCGTTAGGAATGTAGACG -ACGGAAGCGTTAGGAATGGTAACG -ACGGAAGCGTTAGGAATGACTTCG -ACGGAAGCGTTAGGAATGTACGCA -ACGGAAGCGTTAGGAATGCTTGCA -ACGGAAGCGTTAGGAATGCGAACA -ACGGAAGCGTTAGGAATGCAGTCA -ACGGAAGCGTTAGGAATGGATCCA -ACGGAAGCGTTAGGAATGACGACA -ACGGAAGCGTTAGGAATGAGCTCA -ACGGAAGCGTTAGGAATGTCACGT -ACGGAAGCGTTAGGAATGCGTAGT -ACGGAAGCGTTAGGAATGGTCAGT -ACGGAAGCGTTAGGAATGGAAGGT -ACGGAAGCGTTAGGAATGAACCGT -ACGGAAGCGTTAGGAATGTTGTGC -ACGGAAGCGTTAGGAATGCTAAGC -ACGGAAGCGTTAGGAATGACTAGC -ACGGAAGCGTTAGGAATGAGATGC -ACGGAAGCGTTAGGAATGTGAAGG -ACGGAAGCGTTAGGAATGCAATGG -ACGGAAGCGTTAGGAATGATGAGG -ACGGAAGCGTTAGGAATGAATGGG -ACGGAAGCGTTAGGAATGTCCTGA -ACGGAAGCGTTAGGAATGTAGCGA -ACGGAAGCGTTAGGAATGCACAGA -ACGGAAGCGTTAGGAATGGCAAGA -ACGGAAGCGTTAGGAATGGGTTGA -ACGGAAGCGTTAGGAATGTCCGAT -ACGGAAGCGTTAGGAATGTGGCAT -ACGGAAGCGTTAGGAATGCGAGAT -ACGGAAGCGTTAGGAATGTACCAC -ACGGAAGCGTTAGGAATGCAGAAC -ACGGAAGCGTTAGGAATGGTCTAC -ACGGAAGCGTTAGGAATGACGTAC -ACGGAAGCGTTAGGAATGAGTGAC -ACGGAAGCGTTAGGAATGCTGTAG -ACGGAAGCGTTAGGAATGCCTAAG -ACGGAAGCGTTAGGAATGGTTCAG -ACGGAAGCGTTAGGAATGGCATAG -ACGGAAGCGTTAGGAATGGACAAG -ACGGAAGCGTTAGGAATGAAGCAG -ACGGAAGCGTTAGGAATGCGTCAA -ACGGAAGCGTTAGGAATGGCTGAA -ACGGAAGCGTTAGGAATGAGTACG -ACGGAAGCGTTAGGAATGATCCGA -ACGGAAGCGTTAGGAATGATGGGA -ACGGAAGCGTTAGGAATGGTGCAA -ACGGAAGCGTTAGGAATGGAGGAA -ACGGAAGCGTTAGGAATGCAGGTA -ACGGAAGCGTTAGGAATGGACTCT -ACGGAAGCGTTAGGAATGAGTCCT -ACGGAAGCGTTAGGAATGTAAGCC -ACGGAAGCGTTAGGAATGATAGCC -ACGGAAGCGTTAGGAATGTAACCG -ACGGAAGCGTTAGGAATGATGCCA -ACGGAAGCGTTACAAGTGGGAAAC -ACGGAAGCGTTACAAGTGAACACC -ACGGAAGCGTTACAAGTGATCGAG -ACGGAAGCGTTACAAGTGCTCCTT -ACGGAAGCGTTACAAGTGCCTGTT -ACGGAAGCGTTACAAGTGCGGTTT -ACGGAAGCGTTACAAGTGGTGGTT -ACGGAAGCGTTACAAGTGGCCTTT -ACGGAAGCGTTACAAGTGGGTCTT -ACGGAAGCGTTACAAGTGACGCTT -ACGGAAGCGTTACAAGTGAGCGTT -ACGGAAGCGTTACAAGTGTTCGTC -ACGGAAGCGTTACAAGTGTCTCTC -ACGGAAGCGTTACAAGTGTGGATC -ACGGAAGCGTTACAAGTGCACTTC -ACGGAAGCGTTACAAGTGGTACTC -ACGGAAGCGTTACAAGTGGATGTC -ACGGAAGCGTTACAAGTGACAGTC -ACGGAAGCGTTACAAGTGTTGCTG -ACGGAAGCGTTACAAGTGTCCATG -ACGGAAGCGTTACAAGTGTGTGTG -ACGGAAGCGTTACAAGTGCTAGTG -ACGGAAGCGTTACAAGTGCATCTG -ACGGAAGCGTTACAAGTGGAGTTG -ACGGAAGCGTTACAAGTGAGACTG -ACGGAAGCGTTACAAGTGTCGGTA -ACGGAAGCGTTACAAGTGTGCCTA -ACGGAAGCGTTACAAGTGCCACTA -ACGGAAGCGTTACAAGTGGGAGTA -ACGGAAGCGTTACAAGTGTCGTCT -ACGGAAGCGTTACAAGTGTGCACT -ACGGAAGCGTTACAAGTGCTGACT -ACGGAAGCGTTACAAGTGCAACCT -ACGGAAGCGTTACAAGTGGCTACT -ACGGAAGCGTTACAAGTGGGATCT -ACGGAAGCGTTACAAGTGAAGGCT -ACGGAAGCGTTACAAGTGTCAACC -ACGGAAGCGTTACAAGTGTGTTCC -ACGGAAGCGTTACAAGTGATTCCC -ACGGAAGCGTTACAAGTGTTCTCG -ACGGAAGCGTTACAAGTGTAGACG -ACGGAAGCGTTACAAGTGGTAACG -ACGGAAGCGTTACAAGTGACTTCG -ACGGAAGCGTTACAAGTGTACGCA -ACGGAAGCGTTACAAGTGCTTGCA -ACGGAAGCGTTACAAGTGCGAACA -ACGGAAGCGTTACAAGTGCAGTCA -ACGGAAGCGTTACAAGTGGATCCA -ACGGAAGCGTTACAAGTGACGACA -ACGGAAGCGTTACAAGTGAGCTCA -ACGGAAGCGTTACAAGTGTCACGT -ACGGAAGCGTTACAAGTGCGTAGT -ACGGAAGCGTTACAAGTGGTCAGT -ACGGAAGCGTTACAAGTGGAAGGT -ACGGAAGCGTTACAAGTGAACCGT -ACGGAAGCGTTACAAGTGTTGTGC -ACGGAAGCGTTACAAGTGCTAAGC -ACGGAAGCGTTACAAGTGACTAGC -ACGGAAGCGTTACAAGTGAGATGC -ACGGAAGCGTTACAAGTGTGAAGG -ACGGAAGCGTTACAAGTGCAATGG -ACGGAAGCGTTACAAGTGATGAGG -ACGGAAGCGTTACAAGTGAATGGG -ACGGAAGCGTTACAAGTGTCCTGA -ACGGAAGCGTTACAAGTGTAGCGA -ACGGAAGCGTTACAAGTGCACAGA -ACGGAAGCGTTACAAGTGGCAAGA -ACGGAAGCGTTACAAGTGGGTTGA -ACGGAAGCGTTACAAGTGTCCGAT -ACGGAAGCGTTACAAGTGTGGCAT -ACGGAAGCGTTACAAGTGCGAGAT -ACGGAAGCGTTACAAGTGTACCAC -ACGGAAGCGTTACAAGTGCAGAAC -ACGGAAGCGTTACAAGTGGTCTAC -ACGGAAGCGTTACAAGTGACGTAC -ACGGAAGCGTTACAAGTGAGTGAC -ACGGAAGCGTTACAAGTGCTGTAG -ACGGAAGCGTTACAAGTGCCTAAG -ACGGAAGCGTTACAAGTGGTTCAG -ACGGAAGCGTTACAAGTGGCATAG -ACGGAAGCGTTACAAGTGGACAAG -ACGGAAGCGTTACAAGTGAAGCAG -ACGGAAGCGTTACAAGTGCGTCAA -ACGGAAGCGTTACAAGTGGCTGAA -ACGGAAGCGTTACAAGTGAGTACG -ACGGAAGCGTTACAAGTGATCCGA -ACGGAAGCGTTACAAGTGATGGGA -ACGGAAGCGTTACAAGTGGTGCAA -ACGGAAGCGTTACAAGTGGAGGAA -ACGGAAGCGTTACAAGTGCAGGTA -ACGGAAGCGTTACAAGTGGACTCT -ACGGAAGCGTTACAAGTGAGTCCT -ACGGAAGCGTTACAAGTGTAAGCC -ACGGAAGCGTTACAAGTGATAGCC -ACGGAAGCGTTACAAGTGTAACCG -ACGGAAGCGTTACAAGTGATGCCA -ACGGAAGCGTTAGAAGAGGGAAAC -ACGGAAGCGTTAGAAGAGAACACC -ACGGAAGCGTTAGAAGAGATCGAG -ACGGAAGCGTTAGAAGAGCTCCTT -ACGGAAGCGTTAGAAGAGCCTGTT -ACGGAAGCGTTAGAAGAGCGGTTT -ACGGAAGCGTTAGAAGAGGTGGTT -ACGGAAGCGTTAGAAGAGGCCTTT -ACGGAAGCGTTAGAAGAGGGTCTT -ACGGAAGCGTTAGAAGAGACGCTT -ACGGAAGCGTTAGAAGAGAGCGTT -ACGGAAGCGTTAGAAGAGTTCGTC -ACGGAAGCGTTAGAAGAGTCTCTC -ACGGAAGCGTTAGAAGAGTGGATC -ACGGAAGCGTTAGAAGAGCACTTC -ACGGAAGCGTTAGAAGAGGTACTC -ACGGAAGCGTTAGAAGAGGATGTC -ACGGAAGCGTTAGAAGAGACAGTC -ACGGAAGCGTTAGAAGAGTTGCTG -ACGGAAGCGTTAGAAGAGTCCATG -ACGGAAGCGTTAGAAGAGTGTGTG -ACGGAAGCGTTAGAAGAGCTAGTG -ACGGAAGCGTTAGAAGAGCATCTG -ACGGAAGCGTTAGAAGAGGAGTTG -ACGGAAGCGTTAGAAGAGAGACTG -ACGGAAGCGTTAGAAGAGTCGGTA -ACGGAAGCGTTAGAAGAGTGCCTA -ACGGAAGCGTTAGAAGAGCCACTA -ACGGAAGCGTTAGAAGAGGGAGTA -ACGGAAGCGTTAGAAGAGTCGTCT -ACGGAAGCGTTAGAAGAGTGCACT -ACGGAAGCGTTAGAAGAGCTGACT -ACGGAAGCGTTAGAAGAGCAACCT -ACGGAAGCGTTAGAAGAGGCTACT -ACGGAAGCGTTAGAAGAGGGATCT -ACGGAAGCGTTAGAAGAGAAGGCT -ACGGAAGCGTTAGAAGAGTCAACC -ACGGAAGCGTTAGAAGAGTGTTCC -ACGGAAGCGTTAGAAGAGATTCCC -ACGGAAGCGTTAGAAGAGTTCTCG -ACGGAAGCGTTAGAAGAGTAGACG -ACGGAAGCGTTAGAAGAGGTAACG -ACGGAAGCGTTAGAAGAGACTTCG -ACGGAAGCGTTAGAAGAGTACGCA -ACGGAAGCGTTAGAAGAGCTTGCA -ACGGAAGCGTTAGAAGAGCGAACA -ACGGAAGCGTTAGAAGAGCAGTCA -ACGGAAGCGTTAGAAGAGGATCCA -ACGGAAGCGTTAGAAGAGACGACA -ACGGAAGCGTTAGAAGAGAGCTCA -ACGGAAGCGTTAGAAGAGTCACGT -ACGGAAGCGTTAGAAGAGCGTAGT -ACGGAAGCGTTAGAAGAGGTCAGT -ACGGAAGCGTTAGAAGAGGAAGGT -ACGGAAGCGTTAGAAGAGAACCGT -ACGGAAGCGTTAGAAGAGTTGTGC -ACGGAAGCGTTAGAAGAGCTAAGC -ACGGAAGCGTTAGAAGAGACTAGC -ACGGAAGCGTTAGAAGAGAGATGC -ACGGAAGCGTTAGAAGAGTGAAGG -ACGGAAGCGTTAGAAGAGCAATGG -ACGGAAGCGTTAGAAGAGATGAGG -ACGGAAGCGTTAGAAGAGAATGGG -ACGGAAGCGTTAGAAGAGTCCTGA -ACGGAAGCGTTAGAAGAGTAGCGA -ACGGAAGCGTTAGAAGAGCACAGA -ACGGAAGCGTTAGAAGAGGCAAGA -ACGGAAGCGTTAGAAGAGGGTTGA -ACGGAAGCGTTAGAAGAGTCCGAT -ACGGAAGCGTTAGAAGAGTGGCAT -ACGGAAGCGTTAGAAGAGCGAGAT -ACGGAAGCGTTAGAAGAGTACCAC -ACGGAAGCGTTAGAAGAGCAGAAC -ACGGAAGCGTTAGAAGAGGTCTAC -ACGGAAGCGTTAGAAGAGACGTAC -ACGGAAGCGTTAGAAGAGAGTGAC -ACGGAAGCGTTAGAAGAGCTGTAG -ACGGAAGCGTTAGAAGAGCCTAAG -ACGGAAGCGTTAGAAGAGGTTCAG -ACGGAAGCGTTAGAAGAGGCATAG -ACGGAAGCGTTAGAAGAGGACAAG -ACGGAAGCGTTAGAAGAGAAGCAG -ACGGAAGCGTTAGAAGAGCGTCAA -ACGGAAGCGTTAGAAGAGGCTGAA -ACGGAAGCGTTAGAAGAGAGTACG -ACGGAAGCGTTAGAAGAGATCCGA -ACGGAAGCGTTAGAAGAGATGGGA -ACGGAAGCGTTAGAAGAGGTGCAA -ACGGAAGCGTTAGAAGAGGAGGAA -ACGGAAGCGTTAGAAGAGCAGGTA -ACGGAAGCGTTAGAAGAGGACTCT -ACGGAAGCGTTAGAAGAGAGTCCT -ACGGAAGCGTTAGAAGAGTAAGCC -ACGGAAGCGTTAGAAGAGATAGCC -ACGGAAGCGTTAGAAGAGTAACCG -ACGGAAGCGTTAGAAGAGATGCCA -ACGGAAGCGTTAGTACAGGGAAAC -ACGGAAGCGTTAGTACAGAACACC -ACGGAAGCGTTAGTACAGATCGAG -ACGGAAGCGTTAGTACAGCTCCTT -ACGGAAGCGTTAGTACAGCCTGTT -ACGGAAGCGTTAGTACAGCGGTTT -ACGGAAGCGTTAGTACAGGTGGTT -ACGGAAGCGTTAGTACAGGCCTTT -ACGGAAGCGTTAGTACAGGGTCTT -ACGGAAGCGTTAGTACAGACGCTT -ACGGAAGCGTTAGTACAGAGCGTT -ACGGAAGCGTTAGTACAGTTCGTC -ACGGAAGCGTTAGTACAGTCTCTC -ACGGAAGCGTTAGTACAGTGGATC -ACGGAAGCGTTAGTACAGCACTTC -ACGGAAGCGTTAGTACAGGTACTC -ACGGAAGCGTTAGTACAGGATGTC -ACGGAAGCGTTAGTACAGACAGTC -ACGGAAGCGTTAGTACAGTTGCTG -ACGGAAGCGTTAGTACAGTCCATG -ACGGAAGCGTTAGTACAGTGTGTG -ACGGAAGCGTTAGTACAGCTAGTG -ACGGAAGCGTTAGTACAGCATCTG -ACGGAAGCGTTAGTACAGGAGTTG -ACGGAAGCGTTAGTACAGAGACTG -ACGGAAGCGTTAGTACAGTCGGTA -ACGGAAGCGTTAGTACAGTGCCTA -ACGGAAGCGTTAGTACAGCCACTA -ACGGAAGCGTTAGTACAGGGAGTA -ACGGAAGCGTTAGTACAGTCGTCT -ACGGAAGCGTTAGTACAGTGCACT -ACGGAAGCGTTAGTACAGCTGACT -ACGGAAGCGTTAGTACAGCAACCT -ACGGAAGCGTTAGTACAGGCTACT -ACGGAAGCGTTAGTACAGGGATCT -ACGGAAGCGTTAGTACAGAAGGCT -ACGGAAGCGTTAGTACAGTCAACC -ACGGAAGCGTTAGTACAGTGTTCC -ACGGAAGCGTTAGTACAGATTCCC -ACGGAAGCGTTAGTACAGTTCTCG -ACGGAAGCGTTAGTACAGTAGACG -ACGGAAGCGTTAGTACAGGTAACG -ACGGAAGCGTTAGTACAGACTTCG -ACGGAAGCGTTAGTACAGTACGCA -ACGGAAGCGTTAGTACAGCTTGCA -ACGGAAGCGTTAGTACAGCGAACA -ACGGAAGCGTTAGTACAGCAGTCA -ACGGAAGCGTTAGTACAGGATCCA -ACGGAAGCGTTAGTACAGACGACA -ACGGAAGCGTTAGTACAGAGCTCA -ACGGAAGCGTTAGTACAGTCACGT -ACGGAAGCGTTAGTACAGCGTAGT -ACGGAAGCGTTAGTACAGGTCAGT -ACGGAAGCGTTAGTACAGGAAGGT -ACGGAAGCGTTAGTACAGAACCGT -ACGGAAGCGTTAGTACAGTTGTGC -ACGGAAGCGTTAGTACAGCTAAGC -ACGGAAGCGTTAGTACAGACTAGC -ACGGAAGCGTTAGTACAGAGATGC -ACGGAAGCGTTAGTACAGTGAAGG -ACGGAAGCGTTAGTACAGCAATGG -ACGGAAGCGTTAGTACAGATGAGG -ACGGAAGCGTTAGTACAGAATGGG -ACGGAAGCGTTAGTACAGTCCTGA -ACGGAAGCGTTAGTACAGTAGCGA -ACGGAAGCGTTAGTACAGCACAGA -ACGGAAGCGTTAGTACAGGCAAGA -ACGGAAGCGTTAGTACAGGGTTGA -ACGGAAGCGTTAGTACAGTCCGAT -ACGGAAGCGTTAGTACAGTGGCAT -ACGGAAGCGTTAGTACAGCGAGAT -ACGGAAGCGTTAGTACAGTACCAC -ACGGAAGCGTTAGTACAGCAGAAC -ACGGAAGCGTTAGTACAGGTCTAC -ACGGAAGCGTTAGTACAGACGTAC -ACGGAAGCGTTAGTACAGAGTGAC -ACGGAAGCGTTAGTACAGCTGTAG -ACGGAAGCGTTAGTACAGCCTAAG -ACGGAAGCGTTAGTACAGGTTCAG -ACGGAAGCGTTAGTACAGGCATAG -ACGGAAGCGTTAGTACAGGACAAG -ACGGAAGCGTTAGTACAGAAGCAG -ACGGAAGCGTTAGTACAGCGTCAA -ACGGAAGCGTTAGTACAGGCTGAA -ACGGAAGCGTTAGTACAGAGTACG -ACGGAAGCGTTAGTACAGATCCGA -ACGGAAGCGTTAGTACAGATGGGA -ACGGAAGCGTTAGTACAGGTGCAA -ACGGAAGCGTTAGTACAGGAGGAA -ACGGAAGCGTTAGTACAGCAGGTA -ACGGAAGCGTTAGTACAGGACTCT -ACGGAAGCGTTAGTACAGAGTCCT -ACGGAAGCGTTAGTACAGTAAGCC -ACGGAAGCGTTAGTACAGATAGCC -ACGGAAGCGTTAGTACAGTAACCG -ACGGAAGCGTTAGTACAGATGCCA -ACGGAAGCGTTATCTGACGGAAAC -ACGGAAGCGTTATCTGACAACACC -ACGGAAGCGTTATCTGACATCGAG -ACGGAAGCGTTATCTGACCTCCTT -ACGGAAGCGTTATCTGACCCTGTT -ACGGAAGCGTTATCTGACCGGTTT -ACGGAAGCGTTATCTGACGTGGTT -ACGGAAGCGTTATCTGACGCCTTT -ACGGAAGCGTTATCTGACGGTCTT -ACGGAAGCGTTATCTGACACGCTT -ACGGAAGCGTTATCTGACAGCGTT -ACGGAAGCGTTATCTGACTTCGTC -ACGGAAGCGTTATCTGACTCTCTC -ACGGAAGCGTTATCTGACTGGATC -ACGGAAGCGTTATCTGACCACTTC -ACGGAAGCGTTATCTGACGTACTC -ACGGAAGCGTTATCTGACGATGTC -ACGGAAGCGTTATCTGACACAGTC -ACGGAAGCGTTATCTGACTTGCTG -ACGGAAGCGTTATCTGACTCCATG -ACGGAAGCGTTATCTGACTGTGTG -ACGGAAGCGTTATCTGACCTAGTG -ACGGAAGCGTTATCTGACCATCTG -ACGGAAGCGTTATCTGACGAGTTG -ACGGAAGCGTTATCTGACAGACTG -ACGGAAGCGTTATCTGACTCGGTA -ACGGAAGCGTTATCTGACTGCCTA -ACGGAAGCGTTATCTGACCCACTA -ACGGAAGCGTTATCTGACGGAGTA -ACGGAAGCGTTATCTGACTCGTCT -ACGGAAGCGTTATCTGACTGCACT -ACGGAAGCGTTATCTGACCTGACT -ACGGAAGCGTTATCTGACCAACCT -ACGGAAGCGTTATCTGACGCTACT -ACGGAAGCGTTATCTGACGGATCT -ACGGAAGCGTTATCTGACAAGGCT -ACGGAAGCGTTATCTGACTCAACC -ACGGAAGCGTTATCTGACTGTTCC -ACGGAAGCGTTATCTGACATTCCC -ACGGAAGCGTTATCTGACTTCTCG -ACGGAAGCGTTATCTGACTAGACG -ACGGAAGCGTTATCTGACGTAACG -ACGGAAGCGTTATCTGACACTTCG -ACGGAAGCGTTATCTGACTACGCA -ACGGAAGCGTTATCTGACCTTGCA -ACGGAAGCGTTATCTGACCGAACA -ACGGAAGCGTTATCTGACCAGTCA -ACGGAAGCGTTATCTGACGATCCA -ACGGAAGCGTTATCTGACACGACA -ACGGAAGCGTTATCTGACAGCTCA -ACGGAAGCGTTATCTGACTCACGT -ACGGAAGCGTTATCTGACCGTAGT -ACGGAAGCGTTATCTGACGTCAGT -ACGGAAGCGTTATCTGACGAAGGT -ACGGAAGCGTTATCTGACAACCGT -ACGGAAGCGTTATCTGACTTGTGC -ACGGAAGCGTTATCTGACCTAAGC -ACGGAAGCGTTATCTGACACTAGC -ACGGAAGCGTTATCTGACAGATGC -ACGGAAGCGTTATCTGACTGAAGG -ACGGAAGCGTTATCTGACCAATGG -ACGGAAGCGTTATCTGACATGAGG -ACGGAAGCGTTATCTGACAATGGG -ACGGAAGCGTTATCTGACTCCTGA -ACGGAAGCGTTATCTGACTAGCGA -ACGGAAGCGTTATCTGACCACAGA -ACGGAAGCGTTATCTGACGCAAGA -ACGGAAGCGTTATCTGACGGTTGA -ACGGAAGCGTTATCTGACTCCGAT -ACGGAAGCGTTATCTGACTGGCAT -ACGGAAGCGTTATCTGACCGAGAT -ACGGAAGCGTTATCTGACTACCAC -ACGGAAGCGTTATCTGACCAGAAC -ACGGAAGCGTTATCTGACGTCTAC -ACGGAAGCGTTATCTGACACGTAC -ACGGAAGCGTTATCTGACAGTGAC -ACGGAAGCGTTATCTGACCTGTAG -ACGGAAGCGTTATCTGACCCTAAG -ACGGAAGCGTTATCTGACGTTCAG -ACGGAAGCGTTATCTGACGCATAG -ACGGAAGCGTTATCTGACGACAAG -ACGGAAGCGTTATCTGACAAGCAG -ACGGAAGCGTTATCTGACCGTCAA -ACGGAAGCGTTATCTGACGCTGAA -ACGGAAGCGTTATCTGACAGTACG -ACGGAAGCGTTATCTGACATCCGA -ACGGAAGCGTTATCTGACATGGGA -ACGGAAGCGTTATCTGACGTGCAA -ACGGAAGCGTTATCTGACGAGGAA -ACGGAAGCGTTATCTGACCAGGTA -ACGGAAGCGTTATCTGACGACTCT -ACGGAAGCGTTATCTGACAGTCCT -ACGGAAGCGTTATCTGACTAAGCC -ACGGAAGCGTTATCTGACATAGCC -ACGGAAGCGTTATCTGACTAACCG -ACGGAAGCGTTATCTGACATGCCA -ACGGAAGCGTTACCTAGTGGAAAC -ACGGAAGCGTTACCTAGTAACACC -ACGGAAGCGTTACCTAGTATCGAG -ACGGAAGCGTTACCTAGTCTCCTT -ACGGAAGCGTTACCTAGTCCTGTT -ACGGAAGCGTTACCTAGTCGGTTT -ACGGAAGCGTTACCTAGTGTGGTT -ACGGAAGCGTTACCTAGTGCCTTT -ACGGAAGCGTTACCTAGTGGTCTT -ACGGAAGCGTTACCTAGTACGCTT -ACGGAAGCGTTACCTAGTAGCGTT -ACGGAAGCGTTACCTAGTTTCGTC -ACGGAAGCGTTACCTAGTTCTCTC -ACGGAAGCGTTACCTAGTTGGATC -ACGGAAGCGTTACCTAGTCACTTC -ACGGAAGCGTTACCTAGTGTACTC -ACGGAAGCGTTACCTAGTGATGTC -ACGGAAGCGTTACCTAGTACAGTC -ACGGAAGCGTTACCTAGTTTGCTG -ACGGAAGCGTTACCTAGTTCCATG -ACGGAAGCGTTACCTAGTTGTGTG -ACGGAAGCGTTACCTAGTCTAGTG -ACGGAAGCGTTACCTAGTCATCTG -ACGGAAGCGTTACCTAGTGAGTTG -ACGGAAGCGTTACCTAGTAGACTG -ACGGAAGCGTTACCTAGTTCGGTA -ACGGAAGCGTTACCTAGTTGCCTA -ACGGAAGCGTTACCTAGTCCACTA -ACGGAAGCGTTACCTAGTGGAGTA -ACGGAAGCGTTACCTAGTTCGTCT -ACGGAAGCGTTACCTAGTTGCACT -ACGGAAGCGTTACCTAGTCTGACT -ACGGAAGCGTTACCTAGTCAACCT -ACGGAAGCGTTACCTAGTGCTACT -ACGGAAGCGTTACCTAGTGGATCT -ACGGAAGCGTTACCTAGTAAGGCT -ACGGAAGCGTTACCTAGTTCAACC -ACGGAAGCGTTACCTAGTTGTTCC -ACGGAAGCGTTACCTAGTATTCCC -ACGGAAGCGTTACCTAGTTTCTCG -ACGGAAGCGTTACCTAGTTAGACG -ACGGAAGCGTTACCTAGTGTAACG -ACGGAAGCGTTACCTAGTACTTCG -ACGGAAGCGTTACCTAGTTACGCA -ACGGAAGCGTTACCTAGTCTTGCA -ACGGAAGCGTTACCTAGTCGAACA -ACGGAAGCGTTACCTAGTCAGTCA -ACGGAAGCGTTACCTAGTGATCCA -ACGGAAGCGTTACCTAGTACGACA -ACGGAAGCGTTACCTAGTAGCTCA -ACGGAAGCGTTACCTAGTTCACGT -ACGGAAGCGTTACCTAGTCGTAGT -ACGGAAGCGTTACCTAGTGTCAGT -ACGGAAGCGTTACCTAGTGAAGGT -ACGGAAGCGTTACCTAGTAACCGT -ACGGAAGCGTTACCTAGTTTGTGC -ACGGAAGCGTTACCTAGTCTAAGC -ACGGAAGCGTTACCTAGTACTAGC -ACGGAAGCGTTACCTAGTAGATGC -ACGGAAGCGTTACCTAGTTGAAGG -ACGGAAGCGTTACCTAGTCAATGG -ACGGAAGCGTTACCTAGTATGAGG -ACGGAAGCGTTACCTAGTAATGGG -ACGGAAGCGTTACCTAGTTCCTGA -ACGGAAGCGTTACCTAGTTAGCGA -ACGGAAGCGTTACCTAGTCACAGA -ACGGAAGCGTTACCTAGTGCAAGA -ACGGAAGCGTTACCTAGTGGTTGA -ACGGAAGCGTTACCTAGTTCCGAT -ACGGAAGCGTTACCTAGTTGGCAT -ACGGAAGCGTTACCTAGTCGAGAT -ACGGAAGCGTTACCTAGTTACCAC -ACGGAAGCGTTACCTAGTCAGAAC -ACGGAAGCGTTACCTAGTGTCTAC -ACGGAAGCGTTACCTAGTACGTAC -ACGGAAGCGTTACCTAGTAGTGAC -ACGGAAGCGTTACCTAGTCTGTAG -ACGGAAGCGTTACCTAGTCCTAAG -ACGGAAGCGTTACCTAGTGTTCAG -ACGGAAGCGTTACCTAGTGCATAG -ACGGAAGCGTTACCTAGTGACAAG -ACGGAAGCGTTACCTAGTAAGCAG -ACGGAAGCGTTACCTAGTCGTCAA -ACGGAAGCGTTACCTAGTGCTGAA -ACGGAAGCGTTACCTAGTAGTACG -ACGGAAGCGTTACCTAGTATCCGA -ACGGAAGCGTTACCTAGTATGGGA -ACGGAAGCGTTACCTAGTGTGCAA -ACGGAAGCGTTACCTAGTGAGGAA -ACGGAAGCGTTACCTAGTCAGGTA -ACGGAAGCGTTACCTAGTGACTCT -ACGGAAGCGTTACCTAGTAGTCCT -ACGGAAGCGTTACCTAGTTAAGCC -ACGGAAGCGTTACCTAGTATAGCC -ACGGAAGCGTTACCTAGTTAACCG -ACGGAAGCGTTACCTAGTATGCCA -ACGGAAGCGTTAGCCTAAGGAAAC -ACGGAAGCGTTAGCCTAAAACACC -ACGGAAGCGTTAGCCTAAATCGAG -ACGGAAGCGTTAGCCTAACTCCTT -ACGGAAGCGTTAGCCTAACCTGTT -ACGGAAGCGTTAGCCTAACGGTTT -ACGGAAGCGTTAGCCTAAGTGGTT -ACGGAAGCGTTAGCCTAAGCCTTT -ACGGAAGCGTTAGCCTAAGGTCTT -ACGGAAGCGTTAGCCTAAACGCTT -ACGGAAGCGTTAGCCTAAAGCGTT -ACGGAAGCGTTAGCCTAATTCGTC -ACGGAAGCGTTAGCCTAATCTCTC -ACGGAAGCGTTAGCCTAATGGATC -ACGGAAGCGTTAGCCTAACACTTC -ACGGAAGCGTTAGCCTAAGTACTC -ACGGAAGCGTTAGCCTAAGATGTC -ACGGAAGCGTTAGCCTAAACAGTC -ACGGAAGCGTTAGCCTAATTGCTG -ACGGAAGCGTTAGCCTAATCCATG -ACGGAAGCGTTAGCCTAATGTGTG -ACGGAAGCGTTAGCCTAACTAGTG -ACGGAAGCGTTAGCCTAACATCTG -ACGGAAGCGTTAGCCTAAGAGTTG -ACGGAAGCGTTAGCCTAAAGACTG -ACGGAAGCGTTAGCCTAATCGGTA -ACGGAAGCGTTAGCCTAATGCCTA -ACGGAAGCGTTAGCCTAACCACTA -ACGGAAGCGTTAGCCTAAGGAGTA -ACGGAAGCGTTAGCCTAATCGTCT -ACGGAAGCGTTAGCCTAATGCACT -ACGGAAGCGTTAGCCTAACTGACT -ACGGAAGCGTTAGCCTAACAACCT -ACGGAAGCGTTAGCCTAAGCTACT -ACGGAAGCGTTAGCCTAAGGATCT -ACGGAAGCGTTAGCCTAAAAGGCT -ACGGAAGCGTTAGCCTAATCAACC -ACGGAAGCGTTAGCCTAATGTTCC -ACGGAAGCGTTAGCCTAAATTCCC -ACGGAAGCGTTAGCCTAATTCTCG -ACGGAAGCGTTAGCCTAATAGACG -ACGGAAGCGTTAGCCTAAGTAACG -ACGGAAGCGTTAGCCTAAACTTCG -ACGGAAGCGTTAGCCTAATACGCA -ACGGAAGCGTTAGCCTAACTTGCA -ACGGAAGCGTTAGCCTAACGAACA -ACGGAAGCGTTAGCCTAACAGTCA -ACGGAAGCGTTAGCCTAAGATCCA -ACGGAAGCGTTAGCCTAAACGACA -ACGGAAGCGTTAGCCTAAAGCTCA -ACGGAAGCGTTAGCCTAATCACGT -ACGGAAGCGTTAGCCTAACGTAGT -ACGGAAGCGTTAGCCTAAGTCAGT -ACGGAAGCGTTAGCCTAAGAAGGT -ACGGAAGCGTTAGCCTAAAACCGT -ACGGAAGCGTTAGCCTAATTGTGC -ACGGAAGCGTTAGCCTAACTAAGC -ACGGAAGCGTTAGCCTAAACTAGC -ACGGAAGCGTTAGCCTAAAGATGC -ACGGAAGCGTTAGCCTAATGAAGG -ACGGAAGCGTTAGCCTAACAATGG -ACGGAAGCGTTAGCCTAAATGAGG -ACGGAAGCGTTAGCCTAAAATGGG -ACGGAAGCGTTAGCCTAATCCTGA -ACGGAAGCGTTAGCCTAATAGCGA -ACGGAAGCGTTAGCCTAACACAGA -ACGGAAGCGTTAGCCTAAGCAAGA -ACGGAAGCGTTAGCCTAAGGTTGA -ACGGAAGCGTTAGCCTAATCCGAT -ACGGAAGCGTTAGCCTAATGGCAT -ACGGAAGCGTTAGCCTAACGAGAT -ACGGAAGCGTTAGCCTAATACCAC -ACGGAAGCGTTAGCCTAACAGAAC -ACGGAAGCGTTAGCCTAAGTCTAC -ACGGAAGCGTTAGCCTAAACGTAC -ACGGAAGCGTTAGCCTAAAGTGAC -ACGGAAGCGTTAGCCTAACTGTAG -ACGGAAGCGTTAGCCTAACCTAAG -ACGGAAGCGTTAGCCTAAGTTCAG -ACGGAAGCGTTAGCCTAAGCATAG -ACGGAAGCGTTAGCCTAAGACAAG -ACGGAAGCGTTAGCCTAAAAGCAG -ACGGAAGCGTTAGCCTAACGTCAA -ACGGAAGCGTTAGCCTAAGCTGAA -ACGGAAGCGTTAGCCTAAAGTACG -ACGGAAGCGTTAGCCTAAATCCGA -ACGGAAGCGTTAGCCTAAATGGGA -ACGGAAGCGTTAGCCTAAGTGCAA -ACGGAAGCGTTAGCCTAAGAGGAA -ACGGAAGCGTTAGCCTAACAGGTA -ACGGAAGCGTTAGCCTAAGACTCT -ACGGAAGCGTTAGCCTAAAGTCCT -ACGGAAGCGTTAGCCTAATAAGCC -ACGGAAGCGTTAGCCTAAATAGCC -ACGGAAGCGTTAGCCTAATAACCG -ACGGAAGCGTTAGCCTAAATGCCA -ACGGAAGCGTTAGCCATAGGAAAC -ACGGAAGCGTTAGCCATAAACACC -ACGGAAGCGTTAGCCATAATCGAG -ACGGAAGCGTTAGCCATACTCCTT -ACGGAAGCGTTAGCCATACCTGTT -ACGGAAGCGTTAGCCATACGGTTT -ACGGAAGCGTTAGCCATAGTGGTT -ACGGAAGCGTTAGCCATAGCCTTT -ACGGAAGCGTTAGCCATAGGTCTT -ACGGAAGCGTTAGCCATAACGCTT -ACGGAAGCGTTAGCCATAAGCGTT -ACGGAAGCGTTAGCCATATTCGTC -ACGGAAGCGTTAGCCATATCTCTC -ACGGAAGCGTTAGCCATATGGATC -ACGGAAGCGTTAGCCATACACTTC -ACGGAAGCGTTAGCCATAGTACTC -ACGGAAGCGTTAGCCATAGATGTC -ACGGAAGCGTTAGCCATAACAGTC -ACGGAAGCGTTAGCCATATTGCTG -ACGGAAGCGTTAGCCATATCCATG -ACGGAAGCGTTAGCCATATGTGTG -ACGGAAGCGTTAGCCATACTAGTG -ACGGAAGCGTTAGCCATACATCTG -ACGGAAGCGTTAGCCATAGAGTTG -ACGGAAGCGTTAGCCATAAGACTG -ACGGAAGCGTTAGCCATATCGGTA -ACGGAAGCGTTAGCCATATGCCTA -ACGGAAGCGTTAGCCATACCACTA -ACGGAAGCGTTAGCCATAGGAGTA -ACGGAAGCGTTAGCCATATCGTCT -ACGGAAGCGTTAGCCATATGCACT -ACGGAAGCGTTAGCCATACTGACT -ACGGAAGCGTTAGCCATACAACCT -ACGGAAGCGTTAGCCATAGCTACT -ACGGAAGCGTTAGCCATAGGATCT -ACGGAAGCGTTAGCCATAAAGGCT -ACGGAAGCGTTAGCCATATCAACC -ACGGAAGCGTTAGCCATATGTTCC -ACGGAAGCGTTAGCCATAATTCCC -ACGGAAGCGTTAGCCATATTCTCG -ACGGAAGCGTTAGCCATATAGACG -ACGGAAGCGTTAGCCATAGTAACG -ACGGAAGCGTTAGCCATAACTTCG -ACGGAAGCGTTAGCCATATACGCA -ACGGAAGCGTTAGCCATACTTGCA -ACGGAAGCGTTAGCCATACGAACA -ACGGAAGCGTTAGCCATACAGTCA -ACGGAAGCGTTAGCCATAGATCCA -ACGGAAGCGTTAGCCATAACGACA -ACGGAAGCGTTAGCCATAAGCTCA -ACGGAAGCGTTAGCCATATCACGT -ACGGAAGCGTTAGCCATACGTAGT -ACGGAAGCGTTAGCCATAGTCAGT -ACGGAAGCGTTAGCCATAGAAGGT -ACGGAAGCGTTAGCCATAAACCGT -ACGGAAGCGTTAGCCATATTGTGC -ACGGAAGCGTTAGCCATACTAAGC -ACGGAAGCGTTAGCCATAACTAGC -ACGGAAGCGTTAGCCATAAGATGC -ACGGAAGCGTTAGCCATATGAAGG -ACGGAAGCGTTAGCCATACAATGG -ACGGAAGCGTTAGCCATAATGAGG -ACGGAAGCGTTAGCCATAAATGGG -ACGGAAGCGTTAGCCATATCCTGA -ACGGAAGCGTTAGCCATATAGCGA -ACGGAAGCGTTAGCCATACACAGA -ACGGAAGCGTTAGCCATAGCAAGA -ACGGAAGCGTTAGCCATAGGTTGA -ACGGAAGCGTTAGCCATATCCGAT -ACGGAAGCGTTAGCCATATGGCAT -ACGGAAGCGTTAGCCATACGAGAT -ACGGAAGCGTTAGCCATATACCAC -ACGGAAGCGTTAGCCATACAGAAC -ACGGAAGCGTTAGCCATAGTCTAC -ACGGAAGCGTTAGCCATAACGTAC -ACGGAAGCGTTAGCCATAAGTGAC -ACGGAAGCGTTAGCCATACTGTAG -ACGGAAGCGTTAGCCATACCTAAG -ACGGAAGCGTTAGCCATAGTTCAG -ACGGAAGCGTTAGCCATAGCATAG -ACGGAAGCGTTAGCCATAGACAAG -ACGGAAGCGTTAGCCATAAAGCAG -ACGGAAGCGTTAGCCATACGTCAA -ACGGAAGCGTTAGCCATAGCTGAA -ACGGAAGCGTTAGCCATAAGTACG -ACGGAAGCGTTAGCCATAATCCGA -ACGGAAGCGTTAGCCATAATGGGA -ACGGAAGCGTTAGCCATAGTGCAA -ACGGAAGCGTTAGCCATAGAGGAA -ACGGAAGCGTTAGCCATACAGGTA -ACGGAAGCGTTAGCCATAGACTCT -ACGGAAGCGTTAGCCATAAGTCCT -ACGGAAGCGTTAGCCATATAAGCC -ACGGAAGCGTTAGCCATAATAGCC -ACGGAAGCGTTAGCCATATAACCG -ACGGAAGCGTTAGCCATAATGCCA -ACGGAAGCGTTACCGTAAGGAAAC -ACGGAAGCGTTACCGTAAAACACC -ACGGAAGCGTTACCGTAAATCGAG -ACGGAAGCGTTACCGTAACTCCTT -ACGGAAGCGTTACCGTAACCTGTT -ACGGAAGCGTTACCGTAACGGTTT -ACGGAAGCGTTACCGTAAGTGGTT -ACGGAAGCGTTACCGTAAGCCTTT -ACGGAAGCGTTACCGTAAGGTCTT -ACGGAAGCGTTACCGTAAACGCTT -ACGGAAGCGTTACCGTAAAGCGTT -ACGGAAGCGTTACCGTAATTCGTC -ACGGAAGCGTTACCGTAATCTCTC -ACGGAAGCGTTACCGTAATGGATC -ACGGAAGCGTTACCGTAACACTTC -ACGGAAGCGTTACCGTAAGTACTC -ACGGAAGCGTTACCGTAAGATGTC -ACGGAAGCGTTACCGTAAACAGTC -ACGGAAGCGTTACCGTAATTGCTG -ACGGAAGCGTTACCGTAATCCATG -ACGGAAGCGTTACCGTAATGTGTG -ACGGAAGCGTTACCGTAACTAGTG -ACGGAAGCGTTACCGTAACATCTG -ACGGAAGCGTTACCGTAAGAGTTG -ACGGAAGCGTTACCGTAAAGACTG -ACGGAAGCGTTACCGTAATCGGTA -ACGGAAGCGTTACCGTAATGCCTA -ACGGAAGCGTTACCGTAACCACTA -ACGGAAGCGTTACCGTAAGGAGTA -ACGGAAGCGTTACCGTAATCGTCT -ACGGAAGCGTTACCGTAATGCACT -ACGGAAGCGTTACCGTAACTGACT -ACGGAAGCGTTACCGTAACAACCT -ACGGAAGCGTTACCGTAAGCTACT -ACGGAAGCGTTACCGTAAGGATCT -ACGGAAGCGTTACCGTAAAAGGCT -ACGGAAGCGTTACCGTAATCAACC -ACGGAAGCGTTACCGTAATGTTCC -ACGGAAGCGTTACCGTAAATTCCC -ACGGAAGCGTTACCGTAATTCTCG -ACGGAAGCGTTACCGTAATAGACG -ACGGAAGCGTTACCGTAAGTAACG -ACGGAAGCGTTACCGTAAACTTCG -ACGGAAGCGTTACCGTAATACGCA -ACGGAAGCGTTACCGTAACTTGCA -ACGGAAGCGTTACCGTAACGAACA -ACGGAAGCGTTACCGTAACAGTCA -ACGGAAGCGTTACCGTAAGATCCA -ACGGAAGCGTTACCGTAAACGACA -ACGGAAGCGTTACCGTAAAGCTCA -ACGGAAGCGTTACCGTAATCACGT -ACGGAAGCGTTACCGTAACGTAGT -ACGGAAGCGTTACCGTAAGTCAGT -ACGGAAGCGTTACCGTAAGAAGGT -ACGGAAGCGTTACCGTAAAACCGT -ACGGAAGCGTTACCGTAATTGTGC -ACGGAAGCGTTACCGTAACTAAGC -ACGGAAGCGTTACCGTAAACTAGC -ACGGAAGCGTTACCGTAAAGATGC -ACGGAAGCGTTACCGTAATGAAGG -ACGGAAGCGTTACCGTAACAATGG -ACGGAAGCGTTACCGTAAATGAGG -ACGGAAGCGTTACCGTAAAATGGG -ACGGAAGCGTTACCGTAATCCTGA -ACGGAAGCGTTACCGTAATAGCGA -ACGGAAGCGTTACCGTAACACAGA -ACGGAAGCGTTACCGTAAGCAAGA -ACGGAAGCGTTACCGTAAGGTTGA -ACGGAAGCGTTACCGTAATCCGAT -ACGGAAGCGTTACCGTAATGGCAT -ACGGAAGCGTTACCGTAACGAGAT -ACGGAAGCGTTACCGTAATACCAC -ACGGAAGCGTTACCGTAACAGAAC -ACGGAAGCGTTACCGTAAGTCTAC -ACGGAAGCGTTACCGTAAACGTAC -ACGGAAGCGTTACCGTAAAGTGAC -ACGGAAGCGTTACCGTAACTGTAG -ACGGAAGCGTTACCGTAACCTAAG -ACGGAAGCGTTACCGTAAGTTCAG -ACGGAAGCGTTACCGTAAGCATAG -ACGGAAGCGTTACCGTAAGACAAG -ACGGAAGCGTTACCGTAAAAGCAG -ACGGAAGCGTTACCGTAACGTCAA -ACGGAAGCGTTACCGTAAGCTGAA -ACGGAAGCGTTACCGTAAAGTACG -ACGGAAGCGTTACCGTAAATCCGA -ACGGAAGCGTTACCGTAAATGGGA -ACGGAAGCGTTACCGTAAGTGCAA -ACGGAAGCGTTACCGTAAGAGGAA -ACGGAAGCGTTACCGTAACAGGTA -ACGGAAGCGTTACCGTAAGACTCT -ACGGAAGCGTTACCGTAAAGTCCT -ACGGAAGCGTTACCGTAATAAGCC -ACGGAAGCGTTACCGTAAATAGCC -ACGGAAGCGTTACCGTAATAACCG -ACGGAAGCGTTACCGTAAATGCCA -ACGGAAGCGTTACCAATGGGAAAC -ACGGAAGCGTTACCAATGAACACC -ACGGAAGCGTTACCAATGATCGAG -ACGGAAGCGTTACCAATGCTCCTT -ACGGAAGCGTTACCAATGCCTGTT -ACGGAAGCGTTACCAATGCGGTTT -ACGGAAGCGTTACCAATGGTGGTT -ACGGAAGCGTTACCAATGGCCTTT -ACGGAAGCGTTACCAATGGGTCTT -ACGGAAGCGTTACCAATGACGCTT -ACGGAAGCGTTACCAATGAGCGTT -ACGGAAGCGTTACCAATGTTCGTC -ACGGAAGCGTTACCAATGTCTCTC -ACGGAAGCGTTACCAATGTGGATC -ACGGAAGCGTTACCAATGCACTTC -ACGGAAGCGTTACCAATGGTACTC -ACGGAAGCGTTACCAATGGATGTC -ACGGAAGCGTTACCAATGACAGTC -ACGGAAGCGTTACCAATGTTGCTG -ACGGAAGCGTTACCAATGTCCATG -ACGGAAGCGTTACCAATGTGTGTG -ACGGAAGCGTTACCAATGCTAGTG -ACGGAAGCGTTACCAATGCATCTG -ACGGAAGCGTTACCAATGGAGTTG -ACGGAAGCGTTACCAATGAGACTG -ACGGAAGCGTTACCAATGTCGGTA -ACGGAAGCGTTACCAATGTGCCTA -ACGGAAGCGTTACCAATGCCACTA -ACGGAAGCGTTACCAATGGGAGTA -ACGGAAGCGTTACCAATGTCGTCT -ACGGAAGCGTTACCAATGTGCACT -ACGGAAGCGTTACCAATGCTGACT -ACGGAAGCGTTACCAATGCAACCT -ACGGAAGCGTTACCAATGGCTACT -ACGGAAGCGTTACCAATGGGATCT -ACGGAAGCGTTACCAATGAAGGCT -ACGGAAGCGTTACCAATGTCAACC -ACGGAAGCGTTACCAATGTGTTCC -ACGGAAGCGTTACCAATGATTCCC -ACGGAAGCGTTACCAATGTTCTCG -ACGGAAGCGTTACCAATGTAGACG -ACGGAAGCGTTACCAATGGTAACG -ACGGAAGCGTTACCAATGACTTCG -ACGGAAGCGTTACCAATGTACGCA -ACGGAAGCGTTACCAATGCTTGCA -ACGGAAGCGTTACCAATGCGAACA -ACGGAAGCGTTACCAATGCAGTCA -ACGGAAGCGTTACCAATGGATCCA -ACGGAAGCGTTACCAATGACGACA -ACGGAAGCGTTACCAATGAGCTCA -ACGGAAGCGTTACCAATGTCACGT -ACGGAAGCGTTACCAATGCGTAGT -ACGGAAGCGTTACCAATGGTCAGT -ACGGAAGCGTTACCAATGGAAGGT -ACGGAAGCGTTACCAATGAACCGT -ACGGAAGCGTTACCAATGTTGTGC -ACGGAAGCGTTACCAATGCTAAGC -ACGGAAGCGTTACCAATGACTAGC -ACGGAAGCGTTACCAATGAGATGC -ACGGAAGCGTTACCAATGTGAAGG -ACGGAAGCGTTACCAATGCAATGG -ACGGAAGCGTTACCAATGATGAGG -ACGGAAGCGTTACCAATGAATGGG -ACGGAAGCGTTACCAATGTCCTGA -ACGGAAGCGTTACCAATGTAGCGA -ACGGAAGCGTTACCAATGCACAGA -ACGGAAGCGTTACCAATGGCAAGA -ACGGAAGCGTTACCAATGGGTTGA -ACGGAAGCGTTACCAATGTCCGAT -ACGGAAGCGTTACCAATGTGGCAT -ACGGAAGCGTTACCAATGCGAGAT -ACGGAAGCGTTACCAATGTACCAC -ACGGAAGCGTTACCAATGCAGAAC -ACGGAAGCGTTACCAATGGTCTAC -ACGGAAGCGTTACCAATGACGTAC -ACGGAAGCGTTACCAATGAGTGAC -ACGGAAGCGTTACCAATGCTGTAG -ACGGAAGCGTTACCAATGCCTAAG -ACGGAAGCGTTACCAATGGTTCAG -ACGGAAGCGTTACCAATGGCATAG -ACGGAAGCGTTACCAATGGACAAG -ACGGAAGCGTTACCAATGAAGCAG -ACGGAAGCGTTACCAATGCGTCAA -ACGGAAGCGTTACCAATGGCTGAA -ACGGAAGCGTTACCAATGAGTACG -ACGGAAGCGTTACCAATGATCCGA -ACGGAAGCGTTACCAATGATGGGA -ACGGAAGCGTTACCAATGGTGCAA -ACGGAAGCGTTACCAATGGAGGAA -ACGGAAGCGTTACCAATGCAGGTA -ACGGAAGCGTTACCAATGGACTCT -ACGGAAGCGTTACCAATGAGTCCT -ACGGAAGCGTTACCAATGTAAGCC -ACGGAAGCGTTACCAATGATAGCC -ACGGAAGCGTTACCAATGTAACCG -ACGGAAGCGTTACCAATGATGCCA -ACGGAATCGTCTAACGGAGGAAAC -ACGGAATCGTCTAACGGAAACACC -ACGGAATCGTCTAACGGAATCGAG -ACGGAATCGTCTAACGGACTCCTT -ACGGAATCGTCTAACGGACCTGTT -ACGGAATCGTCTAACGGACGGTTT -ACGGAATCGTCTAACGGAGTGGTT -ACGGAATCGTCTAACGGAGCCTTT -ACGGAATCGTCTAACGGAGGTCTT -ACGGAATCGTCTAACGGAACGCTT -ACGGAATCGTCTAACGGAAGCGTT -ACGGAATCGTCTAACGGATTCGTC -ACGGAATCGTCTAACGGATCTCTC -ACGGAATCGTCTAACGGATGGATC -ACGGAATCGTCTAACGGACACTTC -ACGGAATCGTCTAACGGAGTACTC -ACGGAATCGTCTAACGGAGATGTC -ACGGAATCGTCTAACGGAACAGTC -ACGGAATCGTCTAACGGATTGCTG -ACGGAATCGTCTAACGGATCCATG -ACGGAATCGTCTAACGGATGTGTG -ACGGAATCGTCTAACGGACTAGTG -ACGGAATCGTCTAACGGACATCTG -ACGGAATCGTCTAACGGAGAGTTG -ACGGAATCGTCTAACGGAAGACTG -ACGGAATCGTCTAACGGATCGGTA -ACGGAATCGTCTAACGGATGCCTA -ACGGAATCGTCTAACGGACCACTA -ACGGAATCGTCTAACGGAGGAGTA -ACGGAATCGTCTAACGGATCGTCT -ACGGAATCGTCTAACGGATGCACT -ACGGAATCGTCTAACGGACTGACT -ACGGAATCGTCTAACGGACAACCT -ACGGAATCGTCTAACGGAGCTACT -ACGGAATCGTCTAACGGAGGATCT -ACGGAATCGTCTAACGGAAAGGCT -ACGGAATCGTCTAACGGATCAACC -ACGGAATCGTCTAACGGATGTTCC -ACGGAATCGTCTAACGGAATTCCC -ACGGAATCGTCTAACGGATTCTCG -ACGGAATCGTCTAACGGATAGACG -ACGGAATCGTCTAACGGAGTAACG -ACGGAATCGTCTAACGGAACTTCG -ACGGAATCGTCTAACGGATACGCA -ACGGAATCGTCTAACGGACTTGCA -ACGGAATCGTCTAACGGACGAACA -ACGGAATCGTCTAACGGACAGTCA -ACGGAATCGTCTAACGGAGATCCA -ACGGAATCGTCTAACGGAACGACA -ACGGAATCGTCTAACGGAAGCTCA -ACGGAATCGTCTAACGGATCACGT -ACGGAATCGTCTAACGGACGTAGT -ACGGAATCGTCTAACGGAGTCAGT -ACGGAATCGTCTAACGGAGAAGGT -ACGGAATCGTCTAACGGAAACCGT -ACGGAATCGTCTAACGGATTGTGC -ACGGAATCGTCTAACGGACTAAGC -ACGGAATCGTCTAACGGAACTAGC -ACGGAATCGTCTAACGGAAGATGC -ACGGAATCGTCTAACGGATGAAGG -ACGGAATCGTCTAACGGACAATGG -ACGGAATCGTCTAACGGAATGAGG -ACGGAATCGTCTAACGGAAATGGG -ACGGAATCGTCTAACGGATCCTGA -ACGGAATCGTCTAACGGATAGCGA -ACGGAATCGTCTAACGGACACAGA -ACGGAATCGTCTAACGGAGCAAGA -ACGGAATCGTCTAACGGAGGTTGA -ACGGAATCGTCTAACGGATCCGAT -ACGGAATCGTCTAACGGATGGCAT -ACGGAATCGTCTAACGGACGAGAT -ACGGAATCGTCTAACGGATACCAC -ACGGAATCGTCTAACGGACAGAAC -ACGGAATCGTCTAACGGAGTCTAC -ACGGAATCGTCTAACGGAACGTAC -ACGGAATCGTCTAACGGAAGTGAC -ACGGAATCGTCTAACGGACTGTAG -ACGGAATCGTCTAACGGACCTAAG -ACGGAATCGTCTAACGGAGTTCAG -ACGGAATCGTCTAACGGAGCATAG -ACGGAATCGTCTAACGGAGACAAG -ACGGAATCGTCTAACGGAAAGCAG -ACGGAATCGTCTAACGGACGTCAA -ACGGAATCGTCTAACGGAGCTGAA -ACGGAATCGTCTAACGGAAGTACG -ACGGAATCGTCTAACGGAATCCGA -ACGGAATCGTCTAACGGAATGGGA -ACGGAATCGTCTAACGGAGTGCAA -ACGGAATCGTCTAACGGAGAGGAA -ACGGAATCGTCTAACGGACAGGTA -ACGGAATCGTCTAACGGAGACTCT -ACGGAATCGTCTAACGGAAGTCCT -ACGGAATCGTCTAACGGATAAGCC -ACGGAATCGTCTAACGGAATAGCC -ACGGAATCGTCTAACGGATAACCG -ACGGAATCGTCTAACGGAATGCCA -ACGGAATCGTCTACCAACGGAAAC -ACGGAATCGTCTACCAACAACACC -ACGGAATCGTCTACCAACATCGAG -ACGGAATCGTCTACCAACCTCCTT -ACGGAATCGTCTACCAACCCTGTT -ACGGAATCGTCTACCAACCGGTTT -ACGGAATCGTCTACCAACGTGGTT -ACGGAATCGTCTACCAACGCCTTT -ACGGAATCGTCTACCAACGGTCTT -ACGGAATCGTCTACCAACACGCTT -ACGGAATCGTCTACCAACAGCGTT -ACGGAATCGTCTACCAACTTCGTC -ACGGAATCGTCTACCAACTCTCTC -ACGGAATCGTCTACCAACTGGATC -ACGGAATCGTCTACCAACCACTTC -ACGGAATCGTCTACCAACGTACTC -ACGGAATCGTCTACCAACGATGTC -ACGGAATCGTCTACCAACACAGTC -ACGGAATCGTCTACCAACTTGCTG -ACGGAATCGTCTACCAACTCCATG -ACGGAATCGTCTACCAACTGTGTG -ACGGAATCGTCTACCAACCTAGTG -ACGGAATCGTCTACCAACCATCTG -ACGGAATCGTCTACCAACGAGTTG -ACGGAATCGTCTACCAACAGACTG -ACGGAATCGTCTACCAACTCGGTA -ACGGAATCGTCTACCAACTGCCTA -ACGGAATCGTCTACCAACCCACTA -ACGGAATCGTCTACCAACGGAGTA -ACGGAATCGTCTACCAACTCGTCT -ACGGAATCGTCTACCAACTGCACT -ACGGAATCGTCTACCAACCTGACT -ACGGAATCGTCTACCAACCAACCT -ACGGAATCGTCTACCAACGCTACT -ACGGAATCGTCTACCAACGGATCT -ACGGAATCGTCTACCAACAAGGCT -ACGGAATCGTCTACCAACTCAACC -ACGGAATCGTCTACCAACTGTTCC -ACGGAATCGTCTACCAACATTCCC -ACGGAATCGTCTACCAACTTCTCG -ACGGAATCGTCTACCAACTAGACG -ACGGAATCGTCTACCAACGTAACG -ACGGAATCGTCTACCAACACTTCG -ACGGAATCGTCTACCAACTACGCA -ACGGAATCGTCTACCAACCTTGCA -ACGGAATCGTCTACCAACCGAACA -ACGGAATCGTCTACCAACCAGTCA -ACGGAATCGTCTACCAACGATCCA -ACGGAATCGTCTACCAACACGACA -ACGGAATCGTCTACCAACAGCTCA -ACGGAATCGTCTACCAACTCACGT -ACGGAATCGTCTACCAACCGTAGT -ACGGAATCGTCTACCAACGTCAGT -ACGGAATCGTCTACCAACGAAGGT -ACGGAATCGTCTACCAACAACCGT -ACGGAATCGTCTACCAACTTGTGC -ACGGAATCGTCTACCAACCTAAGC -ACGGAATCGTCTACCAACACTAGC -ACGGAATCGTCTACCAACAGATGC -ACGGAATCGTCTACCAACTGAAGG -ACGGAATCGTCTACCAACCAATGG -ACGGAATCGTCTACCAACATGAGG -ACGGAATCGTCTACCAACAATGGG -ACGGAATCGTCTACCAACTCCTGA -ACGGAATCGTCTACCAACTAGCGA -ACGGAATCGTCTACCAACCACAGA -ACGGAATCGTCTACCAACGCAAGA -ACGGAATCGTCTACCAACGGTTGA -ACGGAATCGTCTACCAACTCCGAT -ACGGAATCGTCTACCAACTGGCAT -ACGGAATCGTCTACCAACCGAGAT -ACGGAATCGTCTACCAACTACCAC -ACGGAATCGTCTACCAACCAGAAC -ACGGAATCGTCTACCAACGTCTAC -ACGGAATCGTCTACCAACACGTAC -ACGGAATCGTCTACCAACAGTGAC -ACGGAATCGTCTACCAACCTGTAG -ACGGAATCGTCTACCAACCCTAAG -ACGGAATCGTCTACCAACGTTCAG -ACGGAATCGTCTACCAACGCATAG -ACGGAATCGTCTACCAACGACAAG -ACGGAATCGTCTACCAACAAGCAG -ACGGAATCGTCTACCAACCGTCAA -ACGGAATCGTCTACCAACGCTGAA -ACGGAATCGTCTACCAACAGTACG -ACGGAATCGTCTACCAACATCCGA -ACGGAATCGTCTACCAACATGGGA -ACGGAATCGTCTACCAACGTGCAA -ACGGAATCGTCTACCAACGAGGAA -ACGGAATCGTCTACCAACCAGGTA -ACGGAATCGTCTACCAACGACTCT -ACGGAATCGTCTACCAACAGTCCT -ACGGAATCGTCTACCAACTAAGCC -ACGGAATCGTCTACCAACATAGCC -ACGGAATCGTCTACCAACTAACCG -ACGGAATCGTCTACCAACATGCCA -ACGGAATCGTCTGAGATCGGAAAC -ACGGAATCGTCTGAGATCAACACC -ACGGAATCGTCTGAGATCATCGAG -ACGGAATCGTCTGAGATCCTCCTT -ACGGAATCGTCTGAGATCCCTGTT -ACGGAATCGTCTGAGATCCGGTTT -ACGGAATCGTCTGAGATCGTGGTT -ACGGAATCGTCTGAGATCGCCTTT -ACGGAATCGTCTGAGATCGGTCTT -ACGGAATCGTCTGAGATCACGCTT -ACGGAATCGTCTGAGATCAGCGTT -ACGGAATCGTCTGAGATCTTCGTC -ACGGAATCGTCTGAGATCTCTCTC -ACGGAATCGTCTGAGATCTGGATC -ACGGAATCGTCTGAGATCCACTTC -ACGGAATCGTCTGAGATCGTACTC -ACGGAATCGTCTGAGATCGATGTC -ACGGAATCGTCTGAGATCACAGTC -ACGGAATCGTCTGAGATCTTGCTG -ACGGAATCGTCTGAGATCTCCATG -ACGGAATCGTCTGAGATCTGTGTG -ACGGAATCGTCTGAGATCCTAGTG -ACGGAATCGTCTGAGATCCATCTG -ACGGAATCGTCTGAGATCGAGTTG -ACGGAATCGTCTGAGATCAGACTG -ACGGAATCGTCTGAGATCTCGGTA -ACGGAATCGTCTGAGATCTGCCTA -ACGGAATCGTCTGAGATCCCACTA -ACGGAATCGTCTGAGATCGGAGTA -ACGGAATCGTCTGAGATCTCGTCT -ACGGAATCGTCTGAGATCTGCACT -ACGGAATCGTCTGAGATCCTGACT -ACGGAATCGTCTGAGATCCAACCT -ACGGAATCGTCTGAGATCGCTACT -ACGGAATCGTCTGAGATCGGATCT -ACGGAATCGTCTGAGATCAAGGCT -ACGGAATCGTCTGAGATCTCAACC -ACGGAATCGTCTGAGATCTGTTCC -ACGGAATCGTCTGAGATCATTCCC -ACGGAATCGTCTGAGATCTTCTCG -ACGGAATCGTCTGAGATCTAGACG -ACGGAATCGTCTGAGATCGTAACG -ACGGAATCGTCTGAGATCACTTCG -ACGGAATCGTCTGAGATCTACGCA -ACGGAATCGTCTGAGATCCTTGCA -ACGGAATCGTCTGAGATCCGAACA -ACGGAATCGTCTGAGATCCAGTCA -ACGGAATCGTCTGAGATCGATCCA -ACGGAATCGTCTGAGATCACGACA -ACGGAATCGTCTGAGATCAGCTCA -ACGGAATCGTCTGAGATCTCACGT -ACGGAATCGTCTGAGATCCGTAGT -ACGGAATCGTCTGAGATCGTCAGT -ACGGAATCGTCTGAGATCGAAGGT -ACGGAATCGTCTGAGATCAACCGT -ACGGAATCGTCTGAGATCTTGTGC -ACGGAATCGTCTGAGATCCTAAGC -ACGGAATCGTCTGAGATCACTAGC -ACGGAATCGTCTGAGATCAGATGC -ACGGAATCGTCTGAGATCTGAAGG -ACGGAATCGTCTGAGATCCAATGG -ACGGAATCGTCTGAGATCATGAGG -ACGGAATCGTCTGAGATCAATGGG -ACGGAATCGTCTGAGATCTCCTGA -ACGGAATCGTCTGAGATCTAGCGA -ACGGAATCGTCTGAGATCCACAGA -ACGGAATCGTCTGAGATCGCAAGA -ACGGAATCGTCTGAGATCGGTTGA -ACGGAATCGTCTGAGATCTCCGAT -ACGGAATCGTCTGAGATCTGGCAT -ACGGAATCGTCTGAGATCCGAGAT -ACGGAATCGTCTGAGATCTACCAC -ACGGAATCGTCTGAGATCCAGAAC -ACGGAATCGTCTGAGATCGTCTAC -ACGGAATCGTCTGAGATCACGTAC -ACGGAATCGTCTGAGATCAGTGAC -ACGGAATCGTCTGAGATCCTGTAG -ACGGAATCGTCTGAGATCCCTAAG -ACGGAATCGTCTGAGATCGTTCAG -ACGGAATCGTCTGAGATCGCATAG -ACGGAATCGTCTGAGATCGACAAG -ACGGAATCGTCTGAGATCAAGCAG -ACGGAATCGTCTGAGATCCGTCAA -ACGGAATCGTCTGAGATCGCTGAA -ACGGAATCGTCTGAGATCAGTACG -ACGGAATCGTCTGAGATCATCCGA -ACGGAATCGTCTGAGATCATGGGA -ACGGAATCGTCTGAGATCGTGCAA -ACGGAATCGTCTGAGATCGAGGAA -ACGGAATCGTCTGAGATCCAGGTA -ACGGAATCGTCTGAGATCGACTCT -ACGGAATCGTCTGAGATCAGTCCT -ACGGAATCGTCTGAGATCTAAGCC -ACGGAATCGTCTGAGATCATAGCC -ACGGAATCGTCTGAGATCTAACCG -ACGGAATCGTCTGAGATCATGCCA -ACGGAATCGTCTCTTCTCGGAAAC -ACGGAATCGTCTCTTCTCAACACC -ACGGAATCGTCTCTTCTCATCGAG -ACGGAATCGTCTCTTCTCCTCCTT -ACGGAATCGTCTCTTCTCCCTGTT -ACGGAATCGTCTCTTCTCCGGTTT -ACGGAATCGTCTCTTCTCGTGGTT -ACGGAATCGTCTCTTCTCGCCTTT -ACGGAATCGTCTCTTCTCGGTCTT -ACGGAATCGTCTCTTCTCACGCTT -ACGGAATCGTCTCTTCTCAGCGTT -ACGGAATCGTCTCTTCTCTTCGTC -ACGGAATCGTCTCTTCTCTCTCTC -ACGGAATCGTCTCTTCTCTGGATC -ACGGAATCGTCTCTTCTCCACTTC -ACGGAATCGTCTCTTCTCGTACTC -ACGGAATCGTCTCTTCTCGATGTC -ACGGAATCGTCTCTTCTCACAGTC -ACGGAATCGTCTCTTCTCTTGCTG -ACGGAATCGTCTCTTCTCTCCATG -ACGGAATCGTCTCTTCTCTGTGTG -ACGGAATCGTCTCTTCTCCTAGTG -ACGGAATCGTCTCTTCTCCATCTG -ACGGAATCGTCTCTTCTCGAGTTG -ACGGAATCGTCTCTTCTCAGACTG -ACGGAATCGTCTCTTCTCTCGGTA -ACGGAATCGTCTCTTCTCTGCCTA -ACGGAATCGTCTCTTCTCCCACTA -ACGGAATCGTCTCTTCTCGGAGTA -ACGGAATCGTCTCTTCTCTCGTCT -ACGGAATCGTCTCTTCTCTGCACT -ACGGAATCGTCTCTTCTCCTGACT -ACGGAATCGTCTCTTCTCCAACCT -ACGGAATCGTCTCTTCTCGCTACT -ACGGAATCGTCTCTTCTCGGATCT -ACGGAATCGTCTCTTCTCAAGGCT -ACGGAATCGTCTCTTCTCTCAACC -ACGGAATCGTCTCTTCTCTGTTCC -ACGGAATCGTCTCTTCTCATTCCC -ACGGAATCGTCTCTTCTCTTCTCG -ACGGAATCGTCTCTTCTCTAGACG -ACGGAATCGTCTCTTCTCGTAACG -ACGGAATCGTCTCTTCTCACTTCG -ACGGAATCGTCTCTTCTCTACGCA -ACGGAATCGTCTCTTCTCCTTGCA -ACGGAATCGTCTCTTCTCCGAACA -ACGGAATCGTCTCTTCTCCAGTCA -ACGGAATCGTCTCTTCTCGATCCA -ACGGAATCGTCTCTTCTCACGACA -ACGGAATCGTCTCTTCTCAGCTCA -ACGGAATCGTCTCTTCTCTCACGT -ACGGAATCGTCTCTTCTCCGTAGT -ACGGAATCGTCTCTTCTCGTCAGT -ACGGAATCGTCTCTTCTCGAAGGT -ACGGAATCGTCTCTTCTCAACCGT -ACGGAATCGTCTCTTCTCTTGTGC -ACGGAATCGTCTCTTCTCCTAAGC -ACGGAATCGTCTCTTCTCACTAGC -ACGGAATCGTCTCTTCTCAGATGC -ACGGAATCGTCTCTTCTCTGAAGG -ACGGAATCGTCTCTTCTCCAATGG -ACGGAATCGTCTCTTCTCATGAGG -ACGGAATCGTCTCTTCTCAATGGG -ACGGAATCGTCTCTTCTCTCCTGA -ACGGAATCGTCTCTTCTCTAGCGA -ACGGAATCGTCTCTTCTCCACAGA -ACGGAATCGTCTCTTCTCGCAAGA -ACGGAATCGTCTCTTCTCGGTTGA -ACGGAATCGTCTCTTCTCTCCGAT -ACGGAATCGTCTCTTCTCTGGCAT -ACGGAATCGTCTCTTCTCCGAGAT -ACGGAATCGTCTCTTCTCTACCAC -ACGGAATCGTCTCTTCTCCAGAAC -ACGGAATCGTCTCTTCTCGTCTAC -ACGGAATCGTCTCTTCTCACGTAC -ACGGAATCGTCTCTTCTCAGTGAC -ACGGAATCGTCTCTTCTCCTGTAG -ACGGAATCGTCTCTTCTCCCTAAG -ACGGAATCGTCTCTTCTCGTTCAG -ACGGAATCGTCTCTTCTCGCATAG -ACGGAATCGTCTCTTCTCGACAAG -ACGGAATCGTCTCTTCTCAAGCAG -ACGGAATCGTCTCTTCTCCGTCAA -ACGGAATCGTCTCTTCTCGCTGAA -ACGGAATCGTCTCTTCTCAGTACG -ACGGAATCGTCTCTTCTCATCCGA -ACGGAATCGTCTCTTCTCATGGGA -ACGGAATCGTCTCTTCTCGTGCAA -ACGGAATCGTCTCTTCTCGAGGAA -ACGGAATCGTCTCTTCTCCAGGTA -ACGGAATCGTCTCTTCTCGACTCT -ACGGAATCGTCTCTTCTCAGTCCT -ACGGAATCGTCTCTTCTCTAAGCC -ACGGAATCGTCTCTTCTCATAGCC -ACGGAATCGTCTCTTCTCTAACCG -ACGGAATCGTCTCTTCTCATGCCA -ACGGAATCGTCTGTTCCTGGAAAC -ACGGAATCGTCTGTTCCTAACACC -ACGGAATCGTCTGTTCCTATCGAG -ACGGAATCGTCTGTTCCTCTCCTT -ACGGAATCGTCTGTTCCTCCTGTT -ACGGAATCGTCTGTTCCTCGGTTT -ACGGAATCGTCTGTTCCTGTGGTT -ACGGAATCGTCTGTTCCTGCCTTT -ACGGAATCGTCTGTTCCTGGTCTT -ACGGAATCGTCTGTTCCTACGCTT -ACGGAATCGTCTGTTCCTAGCGTT -ACGGAATCGTCTGTTCCTTTCGTC -ACGGAATCGTCTGTTCCTTCTCTC -ACGGAATCGTCTGTTCCTTGGATC -ACGGAATCGTCTGTTCCTCACTTC -ACGGAATCGTCTGTTCCTGTACTC -ACGGAATCGTCTGTTCCTGATGTC -ACGGAATCGTCTGTTCCTACAGTC -ACGGAATCGTCTGTTCCTTTGCTG -ACGGAATCGTCTGTTCCTTCCATG -ACGGAATCGTCTGTTCCTTGTGTG -ACGGAATCGTCTGTTCCTCTAGTG -ACGGAATCGTCTGTTCCTCATCTG -ACGGAATCGTCTGTTCCTGAGTTG -ACGGAATCGTCTGTTCCTAGACTG -ACGGAATCGTCTGTTCCTTCGGTA -ACGGAATCGTCTGTTCCTTGCCTA -ACGGAATCGTCTGTTCCTCCACTA -ACGGAATCGTCTGTTCCTGGAGTA -ACGGAATCGTCTGTTCCTTCGTCT -ACGGAATCGTCTGTTCCTTGCACT -ACGGAATCGTCTGTTCCTCTGACT -ACGGAATCGTCTGTTCCTCAACCT -ACGGAATCGTCTGTTCCTGCTACT -ACGGAATCGTCTGTTCCTGGATCT -ACGGAATCGTCTGTTCCTAAGGCT -ACGGAATCGTCTGTTCCTTCAACC -ACGGAATCGTCTGTTCCTTGTTCC -ACGGAATCGTCTGTTCCTATTCCC -ACGGAATCGTCTGTTCCTTTCTCG -ACGGAATCGTCTGTTCCTTAGACG -ACGGAATCGTCTGTTCCTGTAACG -ACGGAATCGTCTGTTCCTACTTCG -ACGGAATCGTCTGTTCCTTACGCA -ACGGAATCGTCTGTTCCTCTTGCA -ACGGAATCGTCTGTTCCTCGAACA -ACGGAATCGTCTGTTCCTCAGTCA -ACGGAATCGTCTGTTCCTGATCCA -ACGGAATCGTCTGTTCCTACGACA -ACGGAATCGTCTGTTCCTAGCTCA -ACGGAATCGTCTGTTCCTTCACGT -ACGGAATCGTCTGTTCCTCGTAGT -ACGGAATCGTCTGTTCCTGTCAGT -ACGGAATCGTCTGTTCCTGAAGGT -ACGGAATCGTCTGTTCCTAACCGT -ACGGAATCGTCTGTTCCTTTGTGC -ACGGAATCGTCTGTTCCTCTAAGC -ACGGAATCGTCTGTTCCTACTAGC -ACGGAATCGTCTGTTCCTAGATGC -ACGGAATCGTCTGTTCCTTGAAGG -ACGGAATCGTCTGTTCCTCAATGG -ACGGAATCGTCTGTTCCTATGAGG -ACGGAATCGTCTGTTCCTAATGGG -ACGGAATCGTCTGTTCCTTCCTGA -ACGGAATCGTCTGTTCCTTAGCGA -ACGGAATCGTCTGTTCCTCACAGA -ACGGAATCGTCTGTTCCTGCAAGA -ACGGAATCGTCTGTTCCTGGTTGA -ACGGAATCGTCTGTTCCTTCCGAT -ACGGAATCGTCTGTTCCTTGGCAT -ACGGAATCGTCTGTTCCTCGAGAT -ACGGAATCGTCTGTTCCTTACCAC -ACGGAATCGTCTGTTCCTCAGAAC -ACGGAATCGTCTGTTCCTGTCTAC -ACGGAATCGTCTGTTCCTACGTAC -ACGGAATCGTCTGTTCCTAGTGAC -ACGGAATCGTCTGTTCCTCTGTAG -ACGGAATCGTCTGTTCCTCCTAAG -ACGGAATCGTCTGTTCCTGTTCAG -ACGGAATCGTCTGTTCCTGCATAG -ACGGAATCGTCTGTTCCTGACAAG -ACGGAATCGTCTGTTCCTAAGCAG -ACGGAATCGTCTGTTCCTCGTCAA -ACGGAATCGTCTGTTCCTGCTGAA -ACGGAATCGTCTGTTCCTAGTACG -ACGGAATCGTCTGTTCCTATCCGA -ACGGAATCGTCTGTTCCTATGGGA -ACGGAATCGTCTGTTCCTGTGCAA -ACGGAATCGTCTGTTCCTGAGGAA -ACGGAATCGTCTGTTCCTCAGGTA -ACGGAATCGTCTGTTCCTGACTCT -ACGGAATCGTCTGTTCCTAGTCCT -ACGGAATCGTCTGTTCCTTAAGCC -ACGGAATCGTCTGTTCCTATAGCC -ACGGAATCGTCTGTTCCTTAACCG -ACGGAATCGTCTGTTCCTATGCCA -ACGGAATCGTCTTTTCGGGGAAAC -ACGGAATCGTCTTTTCGGAACACC -ACGGAATCGTCTTTTCGGATCGAG -ACGGAATCGTCTTTTCGGCTCCTT -ACGGAATCGTCTTTTCGGCCTGTT -ACGGAATCGTCTTTTCGGCGGTTT -ACGGAATCGTCTTTTCGGGTGGTT -ACGGAATCGTCTTTTCGGGCCTTT -ACGGAATCGTCTTTTCGGGGTCTT -ACGGAATCGTCTTTTCGGACGCTT -ACGGAATCGTCTTTTCGGAGCGTT -ACGGAATCGTCTTTTCGGTTCGTC -ACGGAATCGTCTTTTCGGTCTCTC -ACGGAATCGTCTTTTCGGTGGATC -ACGGAATCGTCTTTTCGGCACTTC -ACGGAATCGTCTTTTCGGGTACTC -ACGGAATCGTCTTTTCGGGATGTC -ACGGAATCGTCTTTTCGGACAGTC -ACGGAATCGTCTTTTCGGTTGCTG -ACGGAATCGTCTTTTCGGTCCATG -ACGGAATCGTCTTTTCGGTGTGTG -ACGGAATCGTCTTTTCGGCTAGTG -ACGGAATCGTCTTTTCGGCATCTG -ACGGAATCGTCTTTTCGGGAGTTG -ACGGAATCGTCTTTTCGGAGACTG -ACGGAATCGTCTTTTCGGTCGGTA -ACGGAATCGTCTTTTCGGTGCCTA -ACGGAATCGTCTTTTCGGCCACTA -ACGGAATCGTCTTTTCGGGGAGTA -ACGGAATCGTCTTTTCGGTCGTCT -ACGGAATCGTCTTTTCGGTGCACT -ACGGAATCGTCTTTTCGGCTGACT -ACGGAATCGTCTTTTCGGCAACCT -ACGGAATCGTCTTTTCGGGCTACT -ACGGAATCGTCTTTTCGGGGATCT -ACGGAATCGTCTTTTCGGAAGGCT -ACGGAATCGTCTTTTCGGTCAACC -ACGGAATCGTCTTTTCGGTGTTCC -ACGGAATCGTCTTTTCGGATTCCC -ACGGAATCGTCTTTTCGGTTCTCG -ACGGAATCGTCTTTTCGGTAGACG -ACGGAATCGTCTTTTCGGGTAACG -ACGGAATCGTCTTTTCGGACTTCG -ACGGAATCGTCTTTTCGGTACGCA -ACGGAATCGTCTTTTCGGCTTGCA -ACGGAATCGTCTTTTCGGCGAACA -ACGGAATCGTCTTTTCGGCAGTCA -ACGGAATCGTCTTTTCGGGATCCA -ACGGAATCGTCTTTTCGGACGACA -ACGGAATCGTCTTTTCGGAGCTCA -ACGGAATCGTCTTTTCGGTCACGT -ACGGAATCGTCTTTTCGGCGTAGT -ACGGAATCGTCTTTTCGGGTCAGT -ACGGAATCGTCTTTTCGGGAAGGT -ACGGAATCGTCTTTTCGGAACCGT -ACGGAATCGTCTTTTCGGTTGTGC -ACGGAATCGTCTTTTCGGCTAAGC -ACGGAATCGTCTTTTCGGACTAGC -ACGGAATCGTCTTTTCGGAGATGC -ACGGAATCGTCTTTTCGGTGAAGG -ACGGAATCGTCTTTTCGGCAATGG -ACGGAATCGTCTTTTCGGATGAGG -ACGGAATCGTCTTTTCGGAATGGG -ACGGAATCGTCTTTTCGGTCCTGA -ACGGAATCGTCTTTTCGGTAGCGA -ACGGAATCGTCTTTTCGGCACAGA -ACGGAATCGTCTTTTCGGGCAAGA -ACGGAATCGTCTTTTCGGGGTTGA -ACGGAATCGTCTTTTCGGTCCGAT -ACGGAATCGTCTTTTCGGTGGCAT -ACGGAATCGTCTTTTCGGCGAGAT -ACGGAATCGTCTTTTCGGTACCAC -ACGGAATCGTCTTTTCGGCAGAAC -ACGGAATCGTCTTTTCGGGTCTAC -ACGGAATCGTCTTTTCGGACGTAC -ACGGAATCGTCTTTTCGGAGTGAC -ACGGAATCGTCTTTTCGGCTGTAG -ACGGAATCGTCTTTTCGGCCTAAG -ACGGAATCGTCTTTTCGGGTTCAG -ACGGAATCGTCTTTTCGGGCATAG -ACGGAATCGTCTTTTCGGGACAAG -ACGGAATCGTCTTTTCGGAAGCAG -ACGGAATCGTCTTTTCGGCGTCAA -ACGGAATCGTCTTTTCGGGCTGAA -ACGGAATCGTCTTTTCGGAGTACG -ACGGAATCGTCTTTTCGGATCCGA -ACGGAATCGTCTTTTCGGATGGGA -ACGGAATCGTCTTTTCGGGTGCAA -ACGGAATCGTCTTTTCGGGAGGAA -ACGGAATCGTCTTTTCGGCAGGTA -ACGGAATCGTCTTTTCGGGACTCT -ACGGAATCGTCTTTTCGGAGTCCT -ACGGAATCGTCTTTTCGGTAAGCC -ACGGAATCGTCTTTTCGGATAGCC -ACGGAATCGTCTTTTCGGTAACCG -ACGGAATCGTCTTTTCGGATGCCA -ACGGAATCGTCTGTTGTGGGAAAC -ACGGAATCGTCTGTTGTGAACACC -ACGGAATCGTCTGTTGTGATCGAG -ACGGAATCGTCTGTTGTGCTCCTT -ACGGAATCGTCTGTTGTGCCTGTT -ACGGAATCGTCTGTTGTGCGGTTT -ACGGAATCGTCTGTTGTGGTGGTT -ACGGAATCGTCTGTTGTGGCCTTT -ACGGAATCGTCTGTTGTGGGTCTT -ACGGAATCGTCTGTTGTGACGCTT -ACGGAATCGTCTGTTGTGAGCGTT -ACGGAATCGTCTGTTGTGTTCGTC -ACGGAATCGTCTGTTGTGTCTCTC -ACGGAATCGTCTGTTGTGTGGATC -ACGGAATCGTCTGTTGTGCACTTC -ACGGAATCGTCTGTTGTGGTACTC -ACGGAATCGTCTGTTGTGGATGTC -ACGGAATCGTCTGTTGTGACAGTC -ACGGAATCGTCTGTTGTGTTGCTG -ACGGAATCGTCTGTTGTGTCCATG -ACGGAATCGTCTGTTGTGTGTGTG -ACGGAATCGTCTGTTGTGCTAGTG -ACGGAATCGTCTGTTGTGCATCTG -ACGGAATCGTCTGTTGTGGAGTTG -ACGGAATCGTCTGTTGTGAGACTG -ACGGAATCGTCTGTTGTGTCGGTA -ACGGAATCGTCTGTTGTGTGCCTA -ACGGAATCGTCTGTTGTGCCACTA -ACGGAATCGTCTGTTGTGGGAGTA -ACGGAATCGTCTGTTGTGTCGTCT -ACGGAATCGTCTGTTGTGTGCACT -ACGGAATCGTCTGTTGTGCTGACT -ACGGAATCGTCTGTTGTGCAACCT -ACGGAATCGTCTGTTGTGGCTACT -ACGGAATCGTCTGTTGTGGGATCT -ACGGAATCGTCTGTTGTGAAGGCT -ACGGAATCGTCTGTTGTGTCAACC -ACGGAATCGTCTGTTGTGTGTTCC -ACGGAATCGTCTGTTGTGATTCCC -ACGGAATCGTCTGTTGTGTTCTCG -ACGGAATCGTCTGTTGTGTAGACG -ACGGAATCGTCTGTTGTGGTAACG -ACGGAATCGTCTGTTGTGACTTCG -ACGGAATCGTCTGTTGTGTACGCA -ACGGAATCGTCTGTTGTGCTTGCA -ACGGAATCGTCTGTTGTGCGAACA -ACGGAATCGTCTGTTGTGCAGTCA -ACGGAATCGTCTGTTGTGGATCCA -ACGGAATCGTCTGTTGTGACGACA -ACGGAATCGTCTGTTGTGAGCTCA -ACGGAATCGTCTGTTGTGTCACGT -ACGGAATCGTCTGTTGTGCGTAGT -ACGGAATCGTCTGTTGTGGTCAGT -ACGGAATCGTCTGTTGTGGAAGGT -ACGGAATCGTCTGTTGTGAACCGT -ACGGAATCGTCTGTTGTGTTGTGC -ACGGAATCGTCTGTTGTGCTAAGC -ACGGAATCGTCTGTTGTGACTAGC -ACGGAATCGTCTGTTGTGAGATGC -ACGGAATCGTCTGTTGTGTGAAGG -ACGGAATCGTCTGTTGTGCAATGG -ACGGAATCGTCTGTTGTGATGAGG -ACGGAATCGTCTGTTGTGAATGGG -ACGGAATCGTCTGTTGTGTCCTGA -ACGGAATCGTCTGTTGTGTAGCGA -ACGGAATCGTCTGTTGTGCACAGA -ACGGAATCGTCTGTTGTGGCAAGA -ACGGAATCGTCTGTTGTGGGTTGA -ACGGAATCGTCTGTTGTGTCCGAT -ACGGAATCGTCTGTTGTGTGGCAT -ACGGAATCGTCTGTTGTGCGAGAT -ACGGAATCGTCTGTTGTGTACCAC -ACGGAATCGTCTGTTGTGCAGAAC -ACGGAATCGTCTGTTGTGGTCTAC -ACGGAATCGTCTGTTGTGACGTAC -ACGGAATCGTCTGTTGTGAGTGAC -ACGGAATCGTCTGTTGTGCTGTAG -ACGGAATCGTCTGTTGTGCCTAAG -ACGGAATCGTCTGTTGTGGTTCAG -ACGGAATCGTCTGTTGTGGCATAG -ACGGAATCGTCTGTTGTGGACAAG -ACGGAATCGTCTGTTGTGAAGCAG -ACGGAATCGTCTGTTGTGCGTCAA -ACGGAATCGTCTGTTGTGGCTGAA -ACGGAATCGTCTGTTGTGAGTACG -ACGGAATCGTCTGTTGTGATCCGA -ACGGAATCGTCTGTTGTGATGGGA -ACGGAATCGTCTGTTGTGGTGCAA -ACGGAATCGTCTGTTGTGGAGGAA -ACGGAATCGTCTGTTGTGCAGGTA -ACGGAATCGTCTGTTGTGGACTCT -ACGGAATCGTCTGTTGTGAGTCCT -ACGGAATCGTCTGTTGTGTAAGCC -ACGGAATCGTCTGTTGTGATAGCC -ACGGAATCGTCTGTTGTGTAACCG -ACGGAATCGTCTGTTGTGATGCCA -ACGGAATCGTCTTTTGCCGGAAAC -ACGGAATCGTCTTTTGCCAACACC -ACGGAATCGTCTTTTGCCATCGAG -ACGGAATCGTCTTTTGCCCTCCTT -ACGGAATCGTCTTTTGCCCCTGTT -ACGGAATCGTCTTTTGCCCGGTTT -ACGGAATCGTCTTTTGCCGTGGTT -ACGGAATCGTCTTTTGCCGCCTTT -ACGGAATCGTCTTTTGCCGGTCTT -ACGGAATCGTCTTTTGCCACGCTT -ACGGAATCGTCTTTTGCCAGCGTT -ACGGAATCGTCTTTTGCCTTCGTC -ACGGAATCGTCTTTTGCCTCTCTC -ACGGAATCGTCTTTTGCCTGGATC -ACGGAATCGTCTTTTGCCCACTTC -ACGGAATCGTCTTTTGCCGTACTC -ACGGAATCGTCTTTTGCCGATGTC -ACGGAATCGTCTTTTGCCACAGTC -ACGGAATCGTCTTTTGCCTTGCTG -ACGGAATCGTCTTTTGCCTCCATG -ACGGAATCGTCTTTTGCCTGTGTG -ACGGAATCGTCTTTTGCCCTAGTG -ACGGAATCGTCTTTTGCCCATCTG -ACGGAATCGTCTTTTGCCGAGTTG -ACGGAATCGTCTTTTGCCAGACTG -ACGGAATCGTCTTTTGCCTCGGTA -ACGGAATCGTCTTTTGCCTGCCTA -ACGGAATCGTCTTTTGCCCCACTA -ACGGAATCGTCTTTTGCCGGAGTA -ACGGAATCGTCTTTTGCCTCGTCT -ACGGAATCGTCTTTTGCCTGCACT -ACGGAATCGTCTTTTGCCCTGACT -ACGGAATCGTCTTTTGCCCAACCT -ACGGAATCGTCTTTTGCCGCTACT -ACGGAATCGTCTTTTGCCGGATCT -ACGGAATCGTCTTTTGCCAAGGCT -ACGGAATCGTCTTTTGCCTCAACC -ACGGAATCGTCTTTTGCCTGTTCC -ACGGAATCGTCTTTTGCCATTCCC -ACGGAATCGTCTTTTGCCTTCTCG -ACGGAATCGTCTTTTGCCTAGACG -ACGGAATCGTCTTTTGCCGTAACG -ACGGAATCGTCTTTTGCCACTTCG -ACGGAATCGTCTTTTGCCTACGCA -ACGGAATCGTCTTTTGCCCTTGCA -ACGGAATCGTCTTTTGCCCGAACA -ACGGAATCGTCTTTTGCCCAGTCA -ACGGAATCGTCTTTTGCCGATCCA -ACGGAATCGTCTTTTGCCACGACA -ACGGAATCGTCTTTTGCCAGCTCA -ACGGAATCGTCTTTTGCCTCACGT -ACGGAATCGTCTTTTGCCCGTAGT -ACGGAATCGTCTTTTGCCGTCAGT -ACGGAATCGTCTTTTGCCGAAGGT -ACGGAATCGTCTTTTGCCAACCGT -ACGGAATCGTCTTTTGCCTTGTGC -ACGGAATCGTCTTTTGCCCTAAGC -ACGGAATCGTCTTTTGCCACTAGC -ACGGAATCGTCTTTTGCCAGATGC -ACGGAATCGTCTTTTGCCTGAAGG -ACGGAATCGTCTTTTGCCCAATGG -ACGGAATCGTCTTTTGCCATGAGG -ACGGAATCGTCTTTTGCCAATGGG -ACGGAATCGTCTTTTGCCTCCTGA -ACGGAATCGTCTTTTGCCTAGCGA -ACGGAATCGTCTTTTGCCCACAGA -ACGGAATCGTCTTTTGCCGCAAGA -ACGGAATCGTCTTTTGCCGGTTGA -ACGGAATCGTCTTTTGCCTCCGAT -ACGGAATCGTCTTTTGCCTGGCAT -ACGGAATCGTCTTTTGCCCGAGAT -ACGGAATCGTCTTTTGCCTACCAC -ACGGAATCGTCTTTTGCCCAGAAC -ACGGAATCGTCTTTTGCCGTCTAC -ACGGAATCGTCTTTTGCCACGTAC -ACGGAATCGTCTTTTGCCAGTGAC -ACGGAATCGTCTTTTGCCCTGTAG -ACGGAATCGTCTTTTGCCCCTAAG -ACGGAATCGTCTTTTGCCGTTCAG -ACGGAATCGTCTTTTGCCGCATAG -ACGGAATCGTCTTTTGCCGACAAG -ACGGAATCGTCTTTTGCCAAGCAG -ACGGAATCGTCTTTTGCCCGTCAA -ACGGAATCGTCTTTTGCCGCTGAA -ACGGAATCGTCTTTTGCCAGTACG -ACGGAATCGTCTTTTGCCATCCGA -ACGGAATCGTCTTTTGCCATGGGA -ACGGAATCGTCTTTTGCCGTGCAA -ACGGAATCGTCTTTTGCCGAGGAA -ACGGAATCGTCTTTTGCCCAGGTA -ACGGAATCGTCTTTTGCCGACTCT -ACGGAATCGTCTTTTGCCAGTCCT -ACGGAATCGTCTTTTGCCTAAGCC -ACGGAATCGTCTTTTGCCATAGCC -ACGGAATCGTCTTTTGCCTAACCG -ACGGAATCGTCTTTTGCCATGCCA -ACGGAATCGTCTCTTGGTGGAAAC -ACGGAATCGTCTCTTGGTAACACC -ACGGAATCGTCTCTTGGTATCGAG -ACGGAATCGTCTCTTGGTCTCCTT -ACGGAATCGTCTCTTGGTCCTGTT -ACGGAATCGTCTCTTGGTCGGTTT -ACGGAATCGTCTCTTGGTGTGGTT -ACGGAATCGTCTCTTGGTGCCTTT -ACGGAATCGTCTCTTGGTGGTCTT -ACGGAATCGTCTCTTGGTACGCTT -ACGGAATCGTCTCTTGGTAGCGTT -ACGGAATCGTCTCTTGGTTTCGTC -ACGGAATCGTCTCTTGGTTCTCTC -ACGGAATCGTCTCTTGGTTGGATC -ACGGAATCGTCTCTTGGTCACTTC -ACGGAATCGTCTCTTGGTGTACTC -ACGGAATCGTCTCTTGGTGATGTC -ACGGAATCGTCTCTTGGTACAGTC -ACGGAATCGTCTCTTGGTTTGCTG -ACGGAATCGTCTCTTGGTTCCATG -ACGGAATCGTCTCTTGGTTGTGTG -ACGGAATCGTCTCTTGGTCTAGTG -ACGGAATCGTCTCTTGGTCATCTG -ACGGAATCGTCTCTTGGTGAGTTG -ACGGAATCGTCTCTTGGTAGACTG -ACGGAATCGTCTCTTGGTTCGGTA -ACGGAATCGTCTCTTGGTTGCCTA -ACGGAATCGTCTCTTGGTCCACTA -ACGGAATCGTCTCTTGGTGGAGTA -ACGGAATCGTCTCTTGGTTCGTCT -ACGGAATCGTCTCTTGGTTGCACT -ACGGAATCGTCTCTTGGTCTGACT -ACGGAATCGTCTCTTGGTCAACCT -ACGGAATCGTCTCTTGGTGCTACT -ACGGAATCGTCTCTTGGTGGATCT -ACGGAATCGTCTCTTGGTAAGGCT -ACGGAATCGTCTCTTGGTTCAACC -ACGGAATCGTCTCTTGGTTGTTCC -ACGGAATCGTCTCTTGGTATTCCC -ACGGAATCGTCTCTTGGTTTCTCG -ACGGAATCGTCTCTTGGTTAGACG -ACGGAATCGTCTCTTGGTGTAACG -ACGGAATCGTCTCTTGGTACTTCG -ACGGAATCGTCTCTTGGTTACGCA -ACGGAATCGTCTCTTGGTCTTGCA -ACGGAATCGTCTCTTGGTCGAACA -ACGGAATCGTCTCTTGGTCAGTCA -ACGGAATCGTCTCTTGGTGATCCA -ACGGAATCGTCTCTTGGTACGACA -ACGGAATCGTCTCTTGGTAGCTCA -ACGGAATCGTCTCTTGGTTCACGT -ACGGAATCGTCTCTTGGTCGTAGT -ACGGAATCGTCTCTTGGTGTCAGT -ACGGAATCGTCTCTTGGTGAAGGT -ACGGAATCGTCTCTTGGTAACCGT -ACGGAATCGTCTCTTGGTTTGTGC -ACGGAATCGTCTCTTGGTCTAAGC -ACGGAATCGTCTCTTGGTACTAGC -ACGGAATCGTCTCTTGGTAGATGC -ACGGAATCGTCTCTTGGTTGAAGG -ACGGAATCGTCTCTTGGTCAATGG -ACGGAATCGTCTCTTGGTATGAGG -ACGGAATCGTCTCTTGGTAATGGG -ACGGAATCGTCTCTTGGTTCCTGA -ACGGAATCGTCTCTTGGTTAGCGA -ACGGAATCGTCTCTTGGTCACAGA -ACGGAATCGTCTCTTGGTGCAAGA -ACGGAATCGTCTCTTGGTGGTTGA -ACGGAATCGTCTCTTGGTTCCGAT -ACGGAATCGTCTCTTGGTTGGCAT -ACGGAATCGTCTCTTGGTCGAGAT -ACGGAATCGTCTCTTGGTTACCAC -ACGGAATCGTCTCTTGGTCAGAAC -ACGGAATCGTCTCTTGGTGTCTAC -ACGGAATCGTCTCTTGGTACGTAC -ACGGAATCGTCTCTTGGTAGTGAC -ACGGAATCGTCTCTTGGTCTGTAG -ACGGAATCGTCTCTTGGTCCTAAG -ACGGAATCGTCTCTTGGTGTTCAG -ACGGAATCGTCTCTTGGTGCATAG -ACGGAATCGTCTCTTGGTGACAAG -ACGGAATCGTCTCTTGGTAAGCAG -ACGGAATCGTCTCTTGGTCGTCAA -ACGGAATCGTCTCTTGGTGCTGAA -ACGGAATCGTCTCTTGGTAGTACG -ACGGAATCGTCTCTTGGTATCCGA -ACGGAATCGTCTCTTGGTATGGGA -ACGGAATCGTCTCTTGGTGTGCAA -ACGGAATCGTCTCTTGGTGAGGAA -ACGGAATCGTCTCTTGGTCAGGTA -ACGGAATCGTCTCTTGGTGACTCT -ACGGAATCGTCTCTTGGTAGTCCT -ACGGAATCGTCTCTTGGTTAAGCC -ACGGAATCGTCTCTTGGTATAGCC -ACGGAATCGTCTCTTGGTTAACCG -ACGGAATCGTCTCTTGGTATGCCA -ACGGAATCGTCTCTTACGGGAAAC -ACGGAATCGTCTCTTACGAACACC -ACGGAATCGTCTCTTACGATCGAG -ACGGAATCGTCTCTTACGCTCCTT -ACGGAATCGTCTCTTACGCCTGTT -ACGGAATCGTCTCTTACGCGGTTT -ACGGAATCGTCTCTTACGGTGGTT -ACGGAATCGTCTCTTACGGCCTTT -ACGGAATCGTCTCTTACGGGTCTT -ACGGAATCGTCTCTTACGACGCTT -ACGGAATCGTCTCTTACGAGCGTT -ACGGAATCGTCTCTTACGTTCGTC -ACGGAATCGTCTCTTACGTCTCTC -ACGGAATCGTCTCTTACGTGGATC -ACGGAATCGTCTCTTACGCACTTC -ACGGAATCGTCTCTTACGGTACTC -ACGGAATCGTCTCTTACGGATGTC -ACGGAATCGTCTCTTACGACAGTC -ACGGAATCGTCTCTTACGTTGCTG -ACGGAATCGTCTCTTACGTCCATG -ACGGAATCGTCTCTTACGTGTGTG -ACGGAATCGTCTCTTACGCTAGTG -ACGGAATCGTCTCTTACGCATCTG -ACGGAATCGTCTCTTACGGAGTTG -ACGGAATCGTCTCTTACGAGACTG -ACGGAATCGTCTCTTACGTCGGTA -ACGGAATCGTCTCTTACGTGCCTA -ACGGAATCGTCTCTTACGCCACTA -ACGGAATCGTCTCTTACGGGAGTA -ACGGAATCGTCTCTTACGTCGTCT -ACGGAATCGTCTCTTACGTGCACT -ACGGAATCGTCTCTTACGCTGACT -ACGGAATCGTCTCTTACGCAACCT -ACGGAATCGTCTCTTACGGCTACT -ACGGAATCGTCTCTTACGGGATCT -ACGGAATCGTCTCTTACGAAGGCT -ACGGAATCGTCTCTTACGTCAACC -ACGGAATCGTCTCTTACGTGTTCC -ACGGAATCGTCTCTTACGATTCCC -ACGGAATCGTCTCTTACGTTCTCG -ACGGAATCGTCTCTTACGTAGACG -ACGGAATCGTCTCTTACGGTAACG -ACGGAATCGTCTCTTACGACTTCG -ACGGAATCGTCTCTTACGTACGCA -ACGGAATCGTCTCTTACGCTTGCA -ACGGAATCGTCTCTTACGCGAACA -ACGGAATCGTCTCTTACGCAGTCA -ACGGAATCGTCTCTTACGGATCCA -ACGGAATCGTCTCTTACGACGACA -ACGGAATCGTCTCTTACGAGCTCA -ACGGAATCGTCTCTTACGTCACGT -ACGGAATCGTCTCTTACGCGTAGT -ACGGAATCGTCTCTTACGGTCAGT -ACGGAATCGTCTCTTACGGAAGGT -ACGGAATCGTCTCTTACGAACCGT -ACGGAATCGTCTCTTACGTTGTGC -ACGGAATCGTCTCTTACGCTAAGC -ACGGAATCGTCTCTTACGACTAGC -ACGGAATCGTCTCTTACGAGATGC -ACGGAATCGTCTCTTACGTGAAGG -ACGGAATCGTCTCTTACGCAATGG -ACGGAATCGTCTCTTACGATGAGG -ACGGAATCGTCTCTTACGAATGGG -ACGGAATCGTCTCTTACGTCCTGA -ACGGAATCGTCTCTTACGTAGCGA -ACGGAATCGTCTCTTACGCACAGA -ACGGAATCGTCTCTTACGGCAAGA -ACGGAATCGTCTCTTACGGGTTGA -ACGGAATCGTCTCTTACGTCCGAT -ACGGAATCGTCTCTTACGTGGCAT -ACGGAATCGTCTCTTACGCGAGAT -ACGGAATCGTCTCTTACGTACCAC -ACGGAATCGTCTCTTACGCAGAAC -ACGGAATCGTCTCTTACGGTCTAC -ACGGAATCGTCTCTTACGACGTAC -ACGGAATCGTCTCTTACGAGTGAC -ACGGAATCGTCTCTTACGCTGTAG -ACGGAATCGTCTCTTACGCCTAAG -ACGGAATCGTCTCTTACGGTTCAG -ACGGAATCGTCTCTTACGGCATAG -ACGGAATCGTCTCTTACGGACAAG -ACGGAATCGTCTCTTACGAAGCAG -ACGGAATCGTCTCTTACGCGTCAA -ACGGAATCGTCTCTTACGGCTGAA -ACGGAATCGTCTCTTACGAGTACG -ACGGAATCGTCTCTTACGATCCGA -ACGGAATCGTCTCTTACGATGGGA -ACGGAATCGTCTCTTACGGTGCAA -ACGGAATCGTCTCTTACGGAGGAA -ACGGAATCGTCTCTTACGCAGGTA -ACGGAATCGTCTCTTACGGACTCT -ACGGAATCGTCTCTTACGAGTCCT -ACGGAATCGTCTCTTACGTAAGCC -ACGGAATCGTCTCTTACGATAGCC -ACGGAATCGTCTCTTACGTAACCG -ACGGAATCGTCTCTTACGATGCCA -ACGGAATCGTCTGTTAGCGGAAAC -ACGGAATCGTCTGTTAGCAACACC -ACGGAATCGTCTGTTAGCATCGAG -ACGGAATCGTCTGTTAGCCTCCTT -ACGGAATCGTCTGTTAGCCCTGTT -ACGGAATCGTCTGTTAGCCGGTTT -ACGGAATCGTCTGTTAGCGTGGTT -ACGGAATCGTCTGTTAGCGCCTTT -ACGGAATCGTCTGTTAGCGGTCTT -ACGGAATCGTCTGTTAGCACGCTT -ACGGAATCGTCTGTTAGCAGCGTT -ACGGAATCGTCTGTTAGCTTCGTC -ACGGAATCGTCTGTTAGCTCTCTC -ACGGAATCGTCTGTTAGCTGGATC -ACGGAATCGTCTGTTAGCCACTTC -ACGGAATCGTCTGTTAGCGTACTC -ACGGAATCGTCTGTTAGCGATGTC -ACGGAATCGTCTGTTAGCACAGTC -ACGGAATCGTCTGTTAGCTTGCTG -ACGGAATCGTCTGTTAGCTCCATG -ACGGAATCGTCTGTTAGCTGTGTG -ACGGAATCGTCTGTTAGCCTAGTG -ACGGAATCGTCTGTTAGCCATCTG -ACGGAATCGTCTGTTAGCGAGTTG -ACGGAATCGTCTGTTAGCAGACTG -ACGGAATCGTCTGTTAGCTCGGTA -ACGGAATCGTCTGTTAGCTGCCTA -ACGGAATCGTCTGTTAGCCCACTA -ACGGAATCGTCTGTTAGCGGAGTA -ACGGAATCGTCTGTTAGCTCGTCT -ACGGAATCGTCTGTTAGCTGCACT -ACGGAATCGTCTGTTAGCCTGACT -ACGGAATCGTCTGTTAGCCAACCT -ACGGAATCGTCTGTTAGCGCTACT -ACGGAATCGTCTGTTAGCGGATCT -ACGGAATCGTCTGTTAGCAAGGCT -ACGGAATCGTCTGTTAGCTCAACC -ACGGAATCGTCTGTTAGCTGTTCC -ACGGAATCGTCTGTTAGCATTCCC -ACGGAATCGTCTGTTAGCTTCTCG -ACGGAATCGTCTGTTAGCTAGACG -ACGGAATCGTCTGTTAGCGTAACG -ACGGAATCGTCTGTTAGCACTTCG -ACGGAATCGTCTGTTAGCTACGCA -ACGGAATCGTCTGTTAGCCTTGCA -ACGGAATCGTCTGTTAGCCGAACA -ACGGAATCGTCTGTTAGCCAGTCA -ACGGAATCGTCTGTTAGCGATCCA -ACGGAATCGTCTGTTAGCACGACA -ACGGAATCGTCTGTTAGCAGCTCA -ACGGAATCGTCTGTTAGCTCACGT -ACGGAATCGTCTGTTAGCCGTAGT -ACGGAATCGTCTGTTAGCGTCAGT -ACGGAATCGTCTGTTAGCGAAGGT -ACGGAATCGTCTGTTAGCAACCGT -ACGGAATCGTCTGTTAGCTTGTGC -ACGGAATCGTCTGTTAGCCTAAGC -ACGGAATCGTCTGTTAGCACTAGC -ACGGAATCGTCTGTTAGCAGATGC -ACGGAATCGTCTGTTAGCTGAAGG -ACGGAATCGTCTGTTAGCCAATGG -ACGGAATCGTCTGTTAGCATGAGG -ACGGAATCGTCTGTTAGCAATGGG -ACGGAATCGTCTGTTAGCTCCTGA -ACGGAATCGTCTGTTAGCTAGCGA -ACGGAATCGTCTGTTAGCCACAGA -ACGGAATCGTCTGTTAGCGCAAGA -ACGGAATCGTCTGTTAGCGGTTGA -ACGGAATCGTCTGTTAGCTCCGAT -ACGGAATCGTCTGTTAGCTGGCAT -ACGGAATCGTCTGTTAGCCGAGAT -ACGGAATCGTCTGTTAGCTACCAC -ACGGAATCGTCTGTTAGCCAGAAC -ACGGAATCGTCTGTTAGCGTCTAC -ACGGAATCGTCTGTTAGCACGTAC -ACGGAATCGTCTGTTAGCAGTGAC -ACGGAATCGTCTGTTAGCCTGTAG -ACGGAATCGTCTGTTAGCCCTAAG -ACGGAATCGTCTGTTAGCGTTCAG -ACGGAATCGTCTGTTAGCGCATAG -ACGGAATCGTCTGTTAGCGACAAG -ACGGAATCGTCTGTTAGCAAGCAG -ACGGAATCGTCTGTTAGCCGTCAA -ACGGAATCGTCTGTTAGCGCTGAA -ACGGAATCGTCTGTTAGCAGTACG -ACGGAATCGTCTGTTAGCATCCGA -ACGGAATCGTCTGTTAGCATGGGA -ACGGAATCGTCTGTTAGCGTGCAA -ACGGAATCGTCTGTTAGCGAGGAA -ACGGAATCGTCTGTTAGCCAGGTA -ACGGAATCGTCTGTTAGCGACTCT -ACGGAATCGTCTGTTAGCAGTCCT -ACGGAATCGTCTGTTAGCTAAGCC -ACGGAATCGTCTGTTAGCATAGCC -ACGGAATCGTCTGTTAGCTAACCG -ACGGAATCGTCTGTTAGCATGCCA -ACGGAATCGTCTGTCTTCGGAAAC -ACGGAATCGTCTGTCTTCAACACC -ACGGAATCGTCTGTCTTCATCGAG -ACGGAATCGTCTGTCTTCCTCCTT -ACGGAATCGTCTGTCTTCCCTGTT -ACGGAATCGTCTGTCTTCCGGTTT -ACGGAATCGTCTGTCTTCGTGGTT -ACGGAATCGTCTGTCTTCGCCTTT -ACGGAATCGTCTGTCTTCGGTCTT -ACGGAATCGTCTGTCTTCACGCTT -ACGGAATCGTCTGTCTTCAGCGTT -ACGGAATCGTCTGTCTTCTTCGTC -ACGGAATCGTCTGTCTTCTCTCTC -ACGGAATCGTCTGTCTTCTGGATC -ACGGAATCGTCTGTCTTCCACTTC -ACGGAATCGTCTGTCTTCGTACTC -ACGGAATCGTCTGTCTTCGATGTC -ACGGAATCGTCTGTCTTCACAGTC -ACGGAATCGTCTGTCTTCTTGCTG -ACGGAATCGTCTGTCTTCTCCATG -ACGGAATCGTCTGTCTTCTGTGTG -ACGGAATCGTCTGTCTTCCTAGTG -ACGGAATCGTCTGTCTTCCATCTG -ACGGAATCGTCTGTCTTCGAGTTG -ACGGAATCGTCTGTCTTCAGACTG -ACGGAATCGTCTGTCTTCTCGGTA -ACGGAATCGTCTGTCTTCTGCCTA -ACGGAATCGTCTGTCTTCCCACTA -ACGGAATCGTCTGTCTTCGGAGTA -ACGGAATCGTCTGTCTTCTCGTCT -ACGGAATCGTCTGTCTTCTGCACT -ACGGAATCGTCTGTCTTCCTGACT -ACGGAATCGTCTGTCTTCCAACCT -ACGGAATCGTCTGTCTTCGCTACT -ACGGAATCGTCTGTCTTCGGATCT -ACGGAATCGTCTGTCTTCAAGGCT -ACGGAATCGTCTGTCTTCTCAACC -ACGGAATCGTCTGTCTTCTGTTCC -ACGGAATCGTCTGTCTTCATTCCC -ACGGAATCGTCTGTCTTCTTCTCG -ACGGAATCGTCTGTCTTCTAGACG -ACGGAATCGTCTGTCTTCGTAACG -ACGGAATCGTCTGTCTTCACTTCG -ACGGAATCGTCTGTCTTCTACGCA -ACGGAATCGTCTGTCTTCCTTGCA -ACGGAATCGTCTGTCTTCCGAACA -ACGGAATCGTCTGTCTTCCAGTCA -ACGGAATCGTCTGTCTTCGATCCA -ACGGAATCGTCTGTCTTCACGACA -ACGGAATCGTCTGTCTTCAGCTCA -ACGGAATCGTCTGTCTTCTCACGT -ACGGAATCGTCTGTCTTCCGTAGT -ACGGAATCGTCTGTCTTCGTCAGT -ACGGAATCGTCTGTCTTCGAAGGT -ACGGAATCGTCTGTCTTCAACCGT -ACGGAATCGTCTGTCTTCTTGTGC -ACGGAATCGTCTGTCTTCCTAAGC -ACGGAATCGTCTGTCTTCACTAGC -ACGGAATCGTCTGTCTTCAGATGC -ACGGAATCGTCTGTCTTCTGAAGG -ACGGAATCGTCTGTCTTCCAATGG -ACGGAATCGTCTGTCTTCATGAGG -ACGGAATCGTCTGTCTTCAATGGG -ACGGAATCGTCTGTCTTCTCCTGA -ACGGAATCGTCTGTCTTCTAGCGA -ACGGAATCGTCTGTCTTCCACAGA -ACGGAATCGTCTGTCTTCGCAAGA -ACGGAATCGTCTGTCTTCGGTTGA -ACGGAATCGTCTGTCTTCTCCGAT -ACGGAATCGTCTGTCTTCTGGCAT -ACGGAATCGTCTGTCTTCCGAGAT -ACGGAATCGTCTGTCTTCTACCAC -ACGGAATCGTCTGTCTTCCAGAAC -ACGGAATCGTCTGTCTTCGTCTAC -ACGGAATCGTCTGTCTTCACGTAC -ACGGAATCGTCTGTCTTCAGTGAC -ACGGAATCGTCTGTCTTCCTGTAG -ACGGAATCGTCTGTCTTCCCTAAG -ACGGAATCGTCTGTCTTCGTTCAG -ACGGAATCGTCTGTCTTCGCATAG -ACGGAATCGTCTGTCTTCGACAAG -ACGGAATCGTCTGTCTTCAAGCAG -ACGGAATCGTCTGTCTTCCGTCAA -ACGGAATCGTCTGTCTTCGCTGAA -ACGGAATCGTCTGTCTTCAGTACG -ACGGAATCGTCTGTCTTCATCCGA -ACGGAATCGTCTGTCTTCATGGGA -ACGGAATCGTCTGTCTTCGTGCAA -ACGGAATCGTCTGTCTTCGAGGAA -ACGGAATCGTCTGTCTTCCAGGTA -ACGGAATCGTCTGTCTTCGACTCT -ACGGAATCGTCTGTCTTCAGTCCT -ACGGAATCGTCTGTCTTCTAAGCC -ACGGAATCGTCTGTCTTCATAGCC -ACGGAATCGTCTGTCTTCTAACCG -ACGGAATCGTCTGTCTTCATGCCA -ACGGAATCGTCTCTCTCTGGAAAC -ACGGAATCGTCTCTCTCTAACACC -ACGGAATCGTCTCTCTCTATCGAG -ACGGAATCGTCTCTCTCTCTCCTT -ACGGAATCGTCTCTCTCTCCTGTT -ACGGAATCGTCTCTCTCTCGGTTT -ACGGAATCGTCTCTCTCTGTGGTT -ACGGAATCGTCTCTCTCTGCCTTT -ACGGAATCGTCTCTCTCTGGTCTT -ACGGAATCGTCTCTCTCTACGCTT -ACGGAATCGTCTCTCTCTAGCGTT -ACGGAATCGTCTCTCTCTTTCGTC -ACGGAATCGTCTCTCTCTTCTCTC -ACGGAATCGTCTCTCTCTTGGATC -ACGGAATCGTCTCTCTCTCACTTC -ACGGAATCGTCTCTCTCTGTACTC -ACGGAATCGTCTCTCTCTGATGTC -ACGGAATCGTCTCTCTCTACAGTC -ACGGAATCGTCTCTCTCTTTGCTG -ACGGAATCGTCTCTCTCTTCCATG -ACGGAATCGTCTCTCTCTTGTGTG -ACGGAATCGTCTCTCTCTCTAGTG -ACGGAATCGTCTCTCTCTCATCTG -ACGGAATCGTCTCTCTCTGAGTTG -ACGGAATCGTCTCTCTCTAGACTG -ACGGAATCGTCTCTCTCTTCGGTA -ACGGAATCGTCTCTCTCTTGCCTA -ACGGAATCGTCTCTCTCTCCACTA -ACGGAATCGTCTCTCTCTGGAGTA -ACGGAATCGTCTCTCTCTTCGTCT -ACGGAATCGTCTCTCTCTTGCACT -ACGGAATCGTCTCTCTCTCTGACT -ACGGAATCGTCTCTCTCTCAACCT -ACGGAATCGTCTCTCTCTGCTACT -ACGGAATCGTCTCTCTCTGGATCT -ACGGAATCGTCTCTCTCTAAGGCT -ACGGAATCGTCTCTCTCTTCAACC -ACGGAATCGTCTCTCTCTTGTTCC -ACGGAATCGTCTCTCTCTATTCCC -ACGGAATCGTCTCTCTCTTTCTCG -ACGGAATCGTCTCTCTCTTAGACG -ACGGAATCGTCTCTCTCTGTAACG -ACGGAATCGTCTCTCTCTACTTCG -ACGGAATCGTCTCTCTCTTACGCA -ACGGAATCGTCTCTCTCTCTTGCA -ACGGAATCGTCTCTCTCTCGAACA -ACGGAATCGTCTCTCTCTCAGTCA -ACGGAATCGTCTCTCTCTGATCCA -ACGGAATCGTCTCTCTCTACGACA -ACGGAATCGTCTCTCTCTAGCTCA -ACGGAATCGTCTCTCTCTTCACGT -ACGGAATCGTCTCTCTCTCGTAGT -ACGGAATCGTCTCTCTCTGTCAGT -ACGGAATCGTCTCTCTCTGAAGGT -ACGGAATCGTCTCTCTCTAACCGT -ACGGAATCGTCTCTCTCTTTGTGC -ACGGAATCGTCTCTCTCTCTAAGC -ACGGAATCGTCTCTCTCTACTAGC -ACGGAATCGTCTCTCTCTAGATGC -ACGGAATCGTCTCTCTCTTGAAGG -ACGGAATCGTCTCTCTCTCAATGG -ACGGAATCGTCTCTCTCTATGAGG -ACGGAATCGTCTCTCTCTAATGGG -ACGGAATCGTCTCTCTCTTCCTGA -ACGGAATCGTCTCTCTCTTAGCGA -ACGGAATCGTCTCTCTCTCACAGA -ACGGAATCGTCTCTCTCTGCAAGA -ACGGAATCGTCTCTCTCTGGTTGA -ACGGAATCGTCTCTCTCTTCCGAT -ACGGAATCGTCTCTCTCTTGGCAT -ACGGAATCGTCTCTCTCTCGAGAT -ACGGAATCGTCTCTCTCTTACCAC -ACGGAATCGTCTCTCTCTCAGAAC -ACGGAATCGTCTCTCTCTGTCTAC -ACGGAATCGTCTCTCTCTACGTAC -ACGGAATCGTCTCTCTCTAGTGAC -ACGGAATCGTCTCTCTCTCTGTAG -ACGGAATCGTCTCTCTCTCCTAAG -ACGGAATCGTCTCTCTCTGTTCAG -ACGGAATCGTCTCTCTCTGCATAG -ACGGAATCGTCTCTCTCTGACAAG -ACGGAATCGTCTCTCTCTAAGCAG -ACGGAATCGTCTCTCTCTCGTCAA -ACGGAATCGTCTCTCTCTGCTGAA -ACGGAATCGTCTCTCTCTAGTACG -ACGGAATCGTCTCTCTCTATCCGA -ACGGAATCGTCTCTCTCTATGGGA -ACGGAATCGTCTCTCTCTGTGCAA -ACGGAATCGTCTCTCTCTGAGGAA -ACGGAATCGTCTCTCTCTCAGGTA -ACGGAATCGTCTCTCTCTGACTCT -ACGGAATCGTCTCTCTCTAGTCCT -ACGGAATCGTCTCTCTCTTAAGCC -ACGGAATCGTCTCTCTCTATAGCC -ACGGAATCGTCTCTCTCTTAACCG -ACGGAATCGTCTCTCTCTATGCCA -ACGGAATCGTCTATCTGGGGAAAC -ACGGAATCGTCTATCTGGAACACC -ACGGAATCGTCTATCTGGATCGAG -ACGGAATCGTCTATCTGGCTCCTT -ACGGAATCGTCTATCTGGCCTGTT -ACGGAATCGTCTATCTGGCGGTTT -ACGGAATCGTCTATCTGGGTGGTT -ACGGAATCGTCTATCTGGGCCTTT -ACGGAATCGTCTATCTGGGGTCTT -ACGGAATCGTCTATCTGGACGCTT -ACGGAATCGTCTATCTGGAGCGTT -ACGGAATCGTCTATCTGGTTCGTC -ACGGAATCGTCTATCTGGTCTCTC -ACGGAATCGTCTATCTGGTGGATC -ACGGAATCGTCTATCTGGCACTTC -ACGGAATCGTCTATCTGGGTACTC -ACGGAATCGTCTATCTGGGATGTC -ACGGAATCGTCTATCTGGACAGTC -ACGGAATCGTCTATCTGGTTGCTG -ACGGAATCGTCTATCTGGTCCATG -ACGGAATCGTCTATCTGGTGTGTG -ACGGAATCGTCTATCTGGCTAGTG -ACGGAATCGTCTATCTGGCATCTG -ACGGAATCGTCTATCTGGGAGTTG -ACGGAATCGTCTATCTGGAGACTG -ACGGAATCGTCTATCTGGTCGGTA -ACGGAATCGTCTATCTGGTGCCTA -ACGGAATCGTCTATCTGGCCACTA -ACGGAATCGTCTATCTGGGGAGTA -ACGGAATCGTCTATCTGGTCGTCT -ACGGAATCGTCTATCTGGTGCACT -ACGGAATCGTCTATCTGGCTGACT -ACGGAATCGTCTATCTGGCAACCT -ACGGAATCGTCTATCTGGGCTACT -ACGGAATCGTCTATCTGGGGATCT -ACGGAATCGTCTATCTGGAAGGCT -ACGGAATCGTCTATCTGGTCAACC -ACGGAATCGTCTATCTGGTGTTCC -ACGGAATCGTCTATCTGGATTCCC -ACGGAATCGTCTATCTGGTTCTCG -ACGGAATCGTCTATCTGGTAGACG -ACGGAATCGTCTATCTGGGTAACG -ACGGAATCGTCTATCTGGACTTCG -ACGGAATCGTCTATCTGGTACGCA -ACGGAATCGTCTATCTGGCTTGCA -ACGGAATCGTCTATCTGGCGAACA -ACGGAATCGTCTATCTGGCAGTCA -ACGGAATCGTCTATCTGGGATCCA -ACGGAATCGTCTATCTGGACGACA -ACGGAATCGTCTATCTGGAGCTCA -ACGGAATCGTCTATCTGGTCACGT -ACGGAATCGTCTATCTGGCGTAGT -ACGGAATCGTCTATCTGGGTCAGT -ACGGAATCGTCTATCTGGGAAGGT -ACGGAATCGTCTATCTGGAACCGT -ACGGAATCGTCTATCTGGTTGTGC -ACGGAATCGTCTATCTGGCTAAGC -ACGGAATCGTCTATCTGGACTAGC -ACGGAATCGTCTATCTGGAGATGC -ACGGAATCGTCTATCTGGTGAAGG -ACGGAATCGTCTATCTGGCAATGG -ACGGAATCGTCTATCTGGATGAGG -ACGGAATCGTCTATCTGGAATGGG -ACGGAATCGTCTATCTGGTCCTGA -ACGGAATCGTCTATCTGGTAGCGA -ACGGAATCGTCTATCTGGCACAGA -ACGGAATCGTCTATCTGGGCAAGA -ACGGAATCGTCTATCTGGGGTTGA -ACGGAATCGTCTATCTGGTCCGAT -ACGGAATCGTCTATCTGGTGGCAT -ACGGAATCGTCTATCTGGCGAGAT -ACGGAATCGTCTATCTGGTACCAC -ACGGAATCGTCTATCTGGCAGAAC -ACGGAATCGTCTATCTGGGTCTAC -ACGGAATCGTCTATCTGGACGTAC -ACGGAATCGTCTATCTGGAGTGAC -ACGGAATCGTCTATCTGGCTGTAG -ACGGAATCGTCTATCTGGCCTAAG -ACGGAATCGTCTATCTGGGTTCAG -ACGGAATCGTCTATCTGGGCATAG -ACGGAATCGTCTATCTGGGACAAG -ACGGAATCGTCTATCTGGAAGCAG -ACGGAATCGTCTATCTGGCGTCAA -ACGGAATCGTCTATCTGGGCTGAA -ACGGAATCGTCTATCTGGAGTACG -ACGGAATCGTCTATCTGGATCCGA -ACGGAATCGTCTATCTGGATGGGA -ACGGAATCGTCTATCTGGGTGCAA -ACGGAATCGTCTATCTGGGAGGAA -ACGGAATCGTCTATCTGGCAGGTA -ACGGAATCGTCTATCTGGGACTCT -ACGGAATCGTCTATCTGGAGTCCT -ACGGAATCGTCTATCTGGTAAGCC -ACGGAATCGTCTATCTGGATAGCC -ACGGAATCGTCTATCTGGTAACCG -ACGGAATCGTCTATCTGGATGCCA -ACGGAATCGTCTTTCCACGGAAAC -ACGGAATCGTCTTTCCACAACACC -ACGGAATCGTCTTTCCACATCGAG -ACGGAATCGTCTTTCCACCTCCTT -ACGGAATCGTCTTTCCACCCTGTT -ACGGAATCGTCTTTCCACCGGTTT -ACGGAATCGTCTTTCCACGTGGTT -ACGGAATCGTCTTTCCACGCCTTT -ACGGAATCGTCTTTCCACGGTCTT -ACGGAATCGTCTTTCCACACGCTT -ACGGAATCGTCTTTCCACAGCGTT -ACGGAATCGTCTTTCCACTTCGTC -ACGGAATCGTCTTTCCACTCTCTC -ACGGAATCGTCTTTCCACTGGATC -ACGGAATCGTCTTTCCACCACTTC -ACGGAATCGTCTTTCCACGTACTC -ACGGAATCGTCTTTCCACGATGTC -ACGGAATCGTCTTTCCACACAGTC -ACGGAATCGTCTTTCCACTTGCTG -ACGGAATCGTCTTTCCACTCCATG -ACGGAATCGTCTTTCCACTGTGTG -ACGGAATCGTCTTTCCACCTAGTG -ACGGAATCGTCTTTCCACCATCTG -ACGGAATCGTCTTTCCACGAGTTG -ACGGAATCGTCTTTCCACAGACTG -ACGGAATCGTCTTTCCACTCGGTA -ACGGAATCGTCTTTCCACTGCCTA -ACGGAATCGTCTTTCCACCCACTA -ACGGAATCGTCTTTCCACGGAGTA -ACGGAATCGTCTTTCCACTCGTCT -ACGGAATCGTCTTTCCACTGCACT -ACGGAATCGTCTTTCCACCTGACT -ACGGAATCGTCTTTCCACCAACCT -ACGGAATCGTCTTTCCACGCTACT -ACGGAATCGTCTTTCCACGGATCT -ACGGAATCGTCTTTCCACAAGGCT -ACGGAATCGTCTTTCCACTCAACC -ACGGAATCGTCTTTCCACTGTTCC -ACGGAATCGTCTTTCCACATTCCC -ACGGAATCGTCTTTCCACTTCTCG -ACGGAATCGTCTTTCCACTAGACG -ACGGAATCGTCTTTCCACGTAACG -ACGGAATCGTCTTTCCACACTTCG -ACGGAATCGTCTTTCCACTACGCA -ACGGAATCGTCTTTCCACCTTGCA -ACGGAATCGTCTTTCCACCGAACA -ACGGAATCGTCTTTCCACCAGTCA -ACGGAATCGTCTTTCCACGATCCA -ACGGAATCGTCTTTCCACACGACA -ACGGAATCGTCTTTCCACAGCTCA -ACGGAATCGTCTTTCCACTCACGT -ACGGAATCGTCTTTCCACCGTAGT -ACGGAATCGTCTTTCCACGTCAGT -ACGGAATCGTCTTTCCACGAAGGT -ACGGAATCGTCTTTCCACAACCGT -ACGGAATCGTCTTTCCACTTGTGC -ACGGAATCGTCTTTCCACCTAAGC -ACGGAATCGTCTTTCCACACTAGC -ACGGAATCGTCTTTCCACAGATGC -ACGGAATCGTCTTTCCACTGAAGG -ACGGAATCGTCTTTCCACCAATGG -ACGGAATCGTCTTTCCACATGAGG -ACGGAATCGTCTTTCCACAATGGG -ACGGAATCGTCTTTCCACTCCTGA -ACGGAATCGTCTTTCCACTAGCGA -ACGGAATCGTCTTTCCACCACAGA -ACGGAATCGTCTTTCCACGCAAGA -ACGGAATCGTCTTTCCACGGTTGA -ACGGAATCGTCTTTCCACTCCGAT -ACGGAATCGTCTTTCCACTGGCAT -ACGGAATCGTCTTTCCACCGAGAT -ACGGAATCGTCTTTCCACTACCAC -ACGGAATCGTCTTTCCACCAGAAC -ACGGAATCGTCTTTCCACGTCTAC -ACGGAATCGTCTTTCCACACGTAC -ACGGAATCGTCTTTCCACAGTGAC -ACGGAATCGTCTTTCCACCTGTAG -ACGGAATCGTCTTTCCACCCTAAG -ACGGAATCGTCTTTCCACGTTCAG -ACGGAATCGTCTTTCCACGCATAG -ACGGAATCGTCTTTCCACGACAAG -ACGGAATCGTCTTTCCACAAGCAG -ACGGAATCGTCTTTCCACCGTCAA -ACGGAATCGTCTTTCCACGCTGAA -ACGGAATCGTCTTTCCACAGTACG -ACGGAATCGTCTTTCCACATCCGA -ACGGAATCGTCTTTCCACATGGGA -ACGGAATCGTCTTTCCACGTGCAA -ACGGAATCGTCTTTCCACGAGGAA -ACGGAATCGTCTTTCCACCAGGTA -ACGGAATCGTCTTTCCACGACTCT -ACGGAATCGTCTTTCCACAGTCCT -ACGGAATCGTCTTTCCACTAAGCC -ACGGAATCGTCTTTCCACATAGCC -ACGGAATCGTCTTTCCACTAACCG -ACGGAATCGTCTTTCCACATGCCA -ACGGAATCGTCTCTCGTAGGAAAC -ACGGAATCGTCTCTCGTAAACACC -ACGGAATCGTCTCTCGTAATCGAG -ACGGAATCGTCTCTCGTACTCCTT -ACGGAATCGTCTCTCGTACCTGTT -ACGGAATCGTCTCTCGTACGGTTT -ACGGAATCGTCTCTCGTAGTGGTT -ACGGAATCGTCTCTCGTAGCCTTT -ACGGAATCGTCTCTCGTAGGTCTT -ACGGAATCGTCTCTCGTAACGCTT -ACGGAATCGTCTCTCGTAAGCGTT -ACGGAATCGTCTCTCGTATTCGTC -ACGGAATCGTCTCTCGTATCTCTC -ACGGAATCGTCTCTCGTATGGATC -ACGGAATCGTCTCTCGTACACTTC -ACGGAATCGTCTCTCGTAGTACTC -ACGGAATCGTCTCTCGTAGATGTC -ACGGAATCGTCTCTCGTAACAGTC -ACGGAATCGTCTCTCGTATTGCTG -ACGGAATCGTCTCTCGTATCCATG -ACGGAATCGTCTCTCGTATGTGTG -ACGGAATCGTCTCTCGTACTAGTG -ACGGAATCGTCTCTCGTACATCTG -ACGGAATCGTCTCTCGTAGAGTTG -ACGGAATCGTCTCTCGTAAGACTG -ACGGAATCGTCTCTCGTATCGGTA -ACGGAATCGTCTCTCGTATGCCTA -ACGGAATCGTCTCTCGTACCACTA -ACGGAATCGTCTCTCGTAGGAGTA -ACGGAATCGTCTCTCGTATCGTCT -ACGGAATCGTCTCTCGTATGCACT -ACGGAATCGTCTCTCGTACTGACT -ACGGAATCGTCTCTCGTACAACCT -ACGGAATCGTCTCTCGTAGCTACT -ACGGAATCGTCTCTCGTAGGATCT -ACGGAATCGTCTCTCGTAAAGGCT -ACGGAATCGTCTCTCGTATCAACC -ACGGAATCGTCTCTCGTATGTTCC -ACGGAATCGTCTCTCGTAATTCCC -ACGGAATCGTCTCTCGTATTCTCG -ACGGAATCGTCTCTCGTATAGACG -ACGGAATCGTCTCTCGTAGTAACG -ACGGAATCGTCTCTCGTAACTTCG -ACGGAATCGTCTCTCGTATACGCA -ACGGAATCGTCTCTCGTACTTGCA -ACGGAATCGTCTCTCGTACGAACA -ACGGAATCGTCTCTCGTACAGTCA -ACGGAATCGTCTCTCGTAGATCCA -ACGGAATCGTCTCTCGTAACGACA -ACGGAATCGTCTCTCGTAAGCTCA -ACGGAATCGTCTCTCGTATCACGT -ACGGAATCGTCTCTCGTACGTAGT -ACGGAATCGTCTCTCGTAGTCAGT -ACGGAATCGTCTCTCGTAGAAGGT -ACGGAATCGTCTCTCGTAAACCGT -ACGGAATCGTCTCTCGTATTGTGC -ACGGAATCGTCTCTCGTACTAAGC -ACGGAATCGTCTCTCGTAACTAGC -ACGGAATCGTCTCTCGTAAGATGC -ACGGAATCGTCTCTCGTATGAAGG -ACGGAATCGTCTCTCGTACAATGG -ACGGAATCGTCTCTCGTAATGAGG -ACGGAATCGTCTCTCGTAAATGGG -ACGGAATCGTCTCTCGTATCCTGA -ACGGAATCGTCTCTCGTATAGCGA -ACGGAATCGTCTCTCGTACACAGA -ACGGAATCGTCTCTCGTAGCAAGA -ACGGAATCGTCTCTCGTAGGTTGA -ACGGAATCGTCTCTCGTATCCGAT -ACGGAATCGTCTCTCGTATGGCAT -ACGGAATCGTCTCTCGTACGAGAT -ACGGAATCGTCTCTCGTATACCAC -ACGGAATCGTCTCTCGTACAGAAC -ACGGAATCGTCTCTCGTAGTCTAC -ACGGAATCGTCTCTCGTAACGTAC -ACGGAATCGTCTCTCGTAAGTGAC -ACGGAATCGTCTCTCGTACTGTAG -ACGGAATCGTCTCTCGTACCTAAG -ACGGAATCGTCTCTCGTAGTTCAG -ACGGAATCGTCTCTCGTAGCATAG -ACGGAATCGTCTCTCGTAGACAAG -ACGGAATCGTCTCTCGTAAAGCAG -ACGGAATCGTCTCTCGTACGTCAA -ACGGAATCGTCTCTCGTAGCTGAA -ACGGAATCGTCTCTCGTAAGTACG -ACGGAATCGTCTCTCGTAATCCGA -ACGGAATCGTCTCTCGTAATGGGA -ACGGAATCGTCTCTCGTAGTGCAA -ACGGAATCGTCTCTCGTAGAGGAA -ACGGAATCGTCTCTCGTACAGGTA -ACGGAATCGTCTCTCGTAGACTCT -ACGGAATCGTCTCTCGTAAGTCCT -ACGGAATCGTCTCTCGTATAAGCC -ACGGAATCGTCTCTCGTAATAGCC -ACGGAATCGTCTCTCGTATAACCG -ACGGAATCGTCTCTCGTAATGCCA -ACGGAATCGTCTGTCGATGGAAAC -ACGGAATCGTCTGTCGATAACACC -ACGGAATCGTCTGTCGATATCGAG -ACGGAATCGTCTGTCGATCTCCTT -ACGGAATCGTCTGTCGATCCTGTT -ACGGAATCGTCTGTCGATCGGTTT -ACGGAATCGTCTGTCGATGTGGTT -ACGGAATCGTCTGTCGATGCCTTT -ACGGAATCGTCTGTCGATGGTCTT -ACGGAATCGTCTGTCGATACGCTT -ACGGAATCGTCTGTCGATAGCGTT -ACGGAATCGTCTGTCGATTTCGTC -ACGGAATCGTCTGTCGATTCTCTC -ACGGAATCGTCTGTCGATTGGATC -ACGGAATCGTCTGTCGATCACTTC -ACGGAATCGTCTGTCGATGTACTC -ACGGAATCGTCTGTCGATGATGTC -ACGGAATCGTCTGTCGATACAGTC -ACGGAATCGTCTGTCGATTTGCTG -ACGGAATCGTCTGTCGATTCCATG -ACGGAATCGTCTGTCGATTGTGTG -ACGGAATCGTCTGTCGATCTAGTG -ACGGAATCGTCTGTCGATCATCTG -ACGGAATCGTCTGTCGATGAGTTG -ACGGAATCGTCTGTCGATAGACTG -ACGGAATCGTCTGTCGATTCGGTA -ACGGAATCGTCTGTCGATTGCCTA -ACGGAATCGTCTGTCGATCCACTA -ACGGAATCGTCTGTCGATGGAGTA -ACGGAATCGTCTGTCGATTCGTCT -ACGGAATCGTCTGTCGATTGCACT -ACGGAATCGTCTGTCGATCTGACT -ACGGAATCGTCTGTCGATCAACCT -ACGGAATCGTCTGTCGATGCTACT -ACGGAATCGTCTGTCGATGGATCT -ACGGAATCGTCTGTCGATAAGGCT -ACGGAATCGTCTGTCGATTCAACC -ACGGAATCGTCTGTCGATTGTTCC -ACGGAATCGTCTGTCGATATTCCC -ACGGAATCGTCTGTCGATTTCTCG -ACGGAATCGTCTGTCGATTAGACG -ACGGAATCGTCTGTCGATGTAACG -ACGGAATCGTCTGTCGATACTTCG -ACGGAATCGTCTGTCGATTACGCA -ACGGAATCGTCTGTCGATCTTGCA -ACGGAATCGTCTGTCGATCGAACA -ACGGAATCGTCTGTCGATCAGTCA -ACGGAATCGTCTGTCGATGATCCA -ACGGAATCGTCTGTCGATACGACA -ACGGAATCGTCTGTCGATAGCTCA -ACGGAATCGTCTGTCGATTCACGT -ACGGAATCGTCTGTCGATCGTAGT -ACGGAATCGTCTGTCGATGTCAGT -ACGGAATCGTCTGTCGATGAAGGT -ACGGAATCGTCTGTCGATAACCGT -ACGGAATCGTCTGTCGATTTGTGC -ACGGAATCGTCTGTCGATCTAAGC -ACGGAATCGTCTGTCGATACTAGC -ACGGAATCGTCTGTCGATAGATGC -ACGGAATCGTCTGTCGATTGAAGG -ACGGAATCGTCTGTCGATCAATGG -ACGGAATCGTCTGTCGATATGAGG -ACGGAATCGTCTGTCGATAATGGG -ACGGAATCGTCTGTCGATTCCTGA -ACGGAATCGTCTGTCGATTAGCGA -ACGGAATCGTCTGTCGATCACAGA -ACGGAATCGTCTGTCGATGCAAGA -ACGGAATCGTCTGTCGATGGTTGA -ACGGAATCGTCTGTCGATTCCGAT -ACGGAATCGTCTGTCGATTGGCAT -ACGGAATCGTCTGTCGATCGAGAT -ACGGAATCGTCTGTCGATTACCAC -ACGGAATCGTCTGTCGATCAGAAC -ACGGAATCGTCTGTCGATGTCTAC -ACGGAATCGTCTGTCGATACGTAC -ACGGAATCGTCTGTCGATAGTGAC -ACGGAATCGTCTGTCGATCTGTAG -ACGGAATCGTCTGTCGATCCTAAG -ACGGAATCGTCTGTCGATGTTCAG -ACGGAATCGTCTGTCGATGCATAG -ACGGAATCGTCTGTCGATGACAAG -ACGGAATCGTCTGTCGATAAGCAG -ACGGAATCGTCTGTCGATCGTCAA -ACGGAATCGTCTGTCGATGCTGAA -ACGGAATCGTCTGTCGATAGTACG -ACGGAATCGTCTGTCGATATCCGA -ACGGAATCGTCTGTCGATATGGGA -ACGGAATCGTCTGTCGATGTGCAA -ACGGAATCGTCTGTCGATGAGGAA -ACGGAATCGTCTGTCGATCAGGTA -ACGGAATCGTCTGTCGATGACTCT -ACGGAATCGTCTGTCGATAGTCCT -ACGGAATCGTCTGTCGATTAAGCC -ACGGAATCGTCTGTCGATATAGCC -ACGGAATCGTCTGTCGATTAACCG -ACGGAATCGTCTGTCGATATGCCA -ACGGAATCGTCTGTCACAGGAAAC -ACGGAATCGTCTGTCACAAACACC -ACGGAATCGTCTGTCACAATCGAG -ACGGAATCGTCTGTCACACTCCTT -ACGGAATCGTCTGTCACACCTGTT -ACGGAATCGTCTGTCACACGGTTT -ACGGAATCGTCTGTCACAGTGGTT -ACGGAATCGTCTGTCACAGCCTTT -ACGGAATCGTCTGTCACAGGTCTT -ACGGAATCGTCTGTCACAACGCTT -ACGGAATCGTCTGTCACAAGCGTT -ACGGAATCGTCTGTCACATTCGTC -ACGGAATCGTCTGTCACATCTCTC -ACGGAATCGTCTGTCACATGGATC -ACGGAATCGTCTGTCACACACTTC -ACGGAATCGTCTGTCACAGTACTC -ACGGAATCGTCTGTCACAGATGTC -ACGGAATCGTCTGTCACAACAGTC -ACGGAATCGTCTGTCACATTGCTG -ACGGAATCGTCTGTCACATCCATG -ACGGAATCGTCTGTCACATGTGTG -ACGGAATCGTCTGTCACACTAGTG -ACGGAATCGTCTGTCACACATCTG -ACGGAATCGTCTGTCACAGAGTTG -ACGGAATCGTCTGTCACAAGACTG -ACGGAATCGTCTGTCACATCGGTA -ACGGAATCGTCTGTCACATGCCTA -ACGGAATCGTCTGTCACACCACTA -ACGGAATCGTCTGTCACAGGAGTA -ACGGAATCGTCTGTCACATCGTCT -ACGGAATCGTCTGTCACATGCACT -ACGGAATCGTCTGTCACACTGACT -ACGGAATCGTCTGTCACACAACCT -ACGGAATCGTCTGTCACAGCTACT -ACGGAATCGTCTGTCACAGGATCT -ACGGAATCGTCTGTCACAAAGGCT -ACGGAATCGTCTGTCACATCAACC -ACGGAATCGTCTGTCACATGTTCC -ACGGAATCGTCTGTCACAATTCCC -ACGGAATCGTCTGTCACATTCTCG -ACGGAATCGTCTGTCACATAGACG -ACGGAATCGTCTGTCACAGTAACG -ACGGAATCGTCTGTCACAACTTCG -ACGGAATCGTCTGTCACATACGCA -ACGGAATCGTCTGTCACACTTGCA -ACGGAATCGTCTGTCACACGAACA -ACGGAATCGTCTGTCACACAGTCA -ACGGAATCGTCTGTCACAGATCCA -ACGGAATCGTCTGTCACAACGACA -ACGGAATCGTCTGTCACAAGCTCA -ACGGAATCGTCTGTCACATCACGT -ACGGAATCGTCTGTCACACGTAGT -ACGGAATCGTCTGTCACAGTCAGT -ACGGAATCGTCTGTCACAGAAGGT -ACGGAATCGTCTGTCACAAACCGT -ACGGAATCGTCTGTCACATTGTGC -ACGGAATCGTCTGTCACACTAAGC -ACGGAATCGTCTGTCACAACTAGC -ACGGAATCGTCTGTCACAAGATGC -ACGGAATCGTCTGTCACATGAAGG -ACGGAATCGTCTGTCACACAATGG -ACGGAATCGTCTGTCACAATGAGG -ACGGAATCGTCTGTCACAAATGGG -ACGGAATCGTCTGTCACATCCTGA -ACGGAATCGTCTGTCACATAGCGA -ACGGAATCGTCTGTCACACACAGA -ACGGAATCGTCTGTCACAGCAAGA -ACGGAATCGTCTGTCACAGGTTGA -ACGGAATCGTCTGTCACATCCGAT -ACGGAATCGTCTGTCACATGGCAT -ACGGAATCGTCTGTCACACGAGAT -ACGGAATCGTCTGTCACATACCAC -ACGGAATCGTCTGTCACACAGAAC -ACGGAATCGTCTGTCACAGTCTAC -ACGGAATCGTCTGTCACAACGTAC -ACGGAATCGTCTGTCACAAGTGAC -ACGGAATCGTCTGTCACACTGTAG -ACGGAATCGTCTGTCACACCTAAG -ACGGAATCGTCTGTCACAGTTCAG -ACGGAATCGTCTGTCACAGCATAG -ACGGAATCGTCTGTCACAGACAAG -ACGGAATCGTCTGTCACAAAGCAG -ACGGAATCGTCTGTCACACGTCAA -ACGGAATCGTCTGTCACAGCTGAA -ACGGAATCGTCTGTCACAAGTACG -ACGGAATCGTCTGTCACAATCCGA -ACGGAATCGTCTGTCACAATGGGA -ACGGAATCGTCTGTCACAGTGCAA -ACGGAATCGTCTGTCACAGAGGAA -ACGGAATCGTCTGTCACACAGGTA -ACGGAATCGTCTGTCACAGACTCT -ACGGAATCGTCTGTCACAAGTCCT -ACGGAATCGTCTGTCACATAAGCC -ACGGAATCGTCTGTCACAATAGCC -ACGGAATCGTCTGTCACATAACCG -ACGGAATCGTCTGTCACAATGCCA -ACGGAATCGTCTCTGTTGGGAAAC -ACGGAATCGTCTCTGTTGAACACC -ACGGAATCGTCTCTGTTGATCGAG -ACGGAATCGTCTCTGTTGCTCCTT -ACGGAATCGTCTCTGTTGCCTGTT -ACGGAATCGTCTCTGTTGCGGTTT -ACGGAATCGTCTCTGTTGGTGGTT -ACGGAATCGTCTCTGTTGGCCTTT -ACGGAATCGTCTCTGTTGGGTCTT -ACGGAATCGTCTCTGTTGACGCTT -ACGGAATCGTCTCTGTTGAGCGTT -ACGGAATCGTCTCTGTTGTTCGTC -ACGGAATCGTCTCTGTTGTCTCTC -ACGGAATCGTCTCTGTTGTGGATC -ACGGAATCGTCTCTGTTGCACTTC -ACGGAATCGTCTCTGTTGGTACTC -ACGGAATCGTCTCTGTTGGATGTC -ACGGAATCGTCTCTGTTGACAGTC -ACGGAATCGTCTCTGTTGTTGCTG -ACGGAATCGTCTCTGTTGTCCATG -ACGGAATCGTCTCTGTTGTGTGTG -ACGGAATCGTCTCTGTTGCTAGTG -ACGGAATCGTCTCTGTTGCATCTG -ACGGAATCGTCTCTGTTGGAGTTG -ACGGAATCGTCTCTGTTGAGACTG -ACGGAATCGTCTCTGTTGTCGGTA -ACGGAATCGTCTCTGTTGTGCCTA -ACGGAATCGTCTCTGTTGCCACTA -ACGGAATCGTCTCTGTTGGGAGTA -ACGGAATCGTCTCTGTTGTCGTCT -ACGGAATCGTCTCTGTTGTGCACT -ACGGAATCGTCTCTGTTGCTGACT -ACGGAATCGTCTCTGTTGCAACCT -ACGGAATCGTCTCTGTTGGCTACT -ACGGAATCGTCTCTGTTGGGATCT -ACGGAATCGTCTCTGTTGAAGGCT -ACGGAATCGTCTCTGTTGTCAACC -ACGGAATCGTCTCTGTTGTGTTCC -ACGGAATCGTCTCTGTTGATTCCC -ACGGAATCGTCTCTGTTGTTCTCG -ACGGAATCGTCTCTGTTGTAGACG -ACGGAATCGTCTCTGTTGGTAACG -ACGGAATCGTCTCTGTTGACTTCG -ACGGAATCGTCTCTGTTGTACGCA -ACGGAATCGTCTCTGTTGCTTGCA -ACGGAATCGTCTCTGTTGCGAACA -ACGGAATCGTCTCTGTTGCAGTCA -ACGGAATCGTCTCTGTTGGATCCA -ACGGAATCGTCTCTGTTGACGACA -ACGGAATCGTCTCTGTTGAGCTCA -ACGGAATCGTCTCTGTTGTCACGT -ACGGAATCGTCTCTGTTGCGTAGT -ACGGAATCGTCTCTGTTGGTCAGT -ACGGAATCGTCTCTGTTGGAAGGT -ACGGAATCGTCTCTGTTGAACCGT -ACGGAATCGTCTCTGTTGTTGTGC -ACGGAATCGTCTCTGTTGCTAAGC -ACGGAATCGTCTCTGTTGACTAGC -ACGGAATCGTCTCTGTTGAGATGC -ACGGAATCGTCTCTGTTGTGAAGG -ACGGAATCGTCTCTGTTGCAATGG -ACGGAATCGTCTCTGTTGATGAGG -ACGGAATCGTCTCTGTTGAATGGG -ACGGAATCGTCTCTGTTGTCCTGA -ACGGAATCGTCTCTGTTGTAGCGA -ACGGAATCGTCTCTGTTGCACAGA -ACGGAATCGTCTCTGTTGGCAAGA -ACGGAATCGTCTCTGTTGGGTTGA -ACGGAATCGTCTCTGTTGTCCGAT -ACGGAATCGTCTCTGTTGTGGCAT -ACGGAATCGTCTCTGTTGCGAGAT -ACGGAATCGTCTCTGTTGTACCAC -ACGGAATCGTCTCTGTTGCAGAAC -ACGGAATCGTCTCTGTTGGTCTAC -ACGGAATCGTCTCTGTTGACGTAC -ACGGAATCGTCTCTGTTGAGTGAC -ACGGAATCGTCTCTGTTGCTGTAG -ACGGAATCGTCTCTGTTGCCTAAG -ACGGAATCGTCTCTGTTGGTTCAG -ACGGAATCGTCTCTGTTGGCATAG -ACGGAATCGTCTCTGTTGGACAAG -ACGGAATCGTCTCTGTTGAAGCAG -ACGGAATCGTCTCTGTTGCGTCAA -ACGGAATCGTCTCTGTTGGCTGAA -ACGGAATCGTCTCTGTTGAGTACG -ACGGAATCGTCTCTGTTGATCCGA -ACGGAATCGTCTCTGTTGATGGGA -ACGGAATCGTCTCTGTTGGTGCAA -ACGGAATCGTCTCTGTTGGAGGAA -ACGGAATCGTCTCTGTTGCAGGTA -ACGGAATCGTCTCTGTTGGACTCT -ACGGAATCGTCTCTGTTGAGTCCT -ACGGAATCGTCTCTGTTGTAAGCC -ACGGAATCGTCTCTGTTGATAGCC -ACGGAATCGTCTCTGTTGTAACCG -ACGGAATCGTCTCTGTTGATGCCA -ACGGAATCGTCTATGTCCGGAAAC -ACGGAATCGTCTATGTCCAACACC -ACGGAATCGTCTATGTCCATCGAG -ACGGAATCGTCTATGTCCCTCCTT -ACGGAATCGTCTATGTCCCCTGTT -ACGGAATCGTCTATGTCCCGGTTT -ACGGAATCGTCTATGTCCGTGGTT -ACGGAATCGTCTATGTCCGCCTTT -ACGGAATCGTCTATGTCCGGTCTT -ACGGAATCGTCTATGTCCACGCTT -ACGGAATCGTCTATGTCCAGCGTT -ACGGAATCGTCTATGTCCTTCGTC -ACGGAATCGTCTATGTCCTCTCTC -ACGGAATCGTCTATGTCCTGGATC -ACGGAATCGTCTATGTCCCACTTC -ACGGAATCGTCTATGTCCGTACTC -ACGGAATCGTCTATGTCCGATGTC -ACGGAATCGTCTATGTCCACAGTC -ACGGAATCGTCTATGTCCTTGCTG -ACGGAATCGTCTATGTCCTCCATG -ACGGAATCGTCTATGTCCTGTGTG -ACGGAATCGTCTATGTCCCTAGTG -ACGGAATCGTCTATGTCCCATCTG -ACGGAATCGTCTATGTCCGAGTTG -ACGGAATCGTCTATGTCCAGACTG -ACGGAATCGTCTATGTCCTCGGTA -ACGGAATCGTCTATGTCCTGCCTA -ACGGAATCGTCTATGTCCCCACTA -ACGGAATCGTCTATGTCCGGAGTA -ACGGAATCGTCTATGTCCTCGTCT -ACGGAATCGTCTATGTCCTGCACT -ACGGAATCGTCTATGTCCCTGACT -ACGGAATCGTCTATGTCCCAACCT -ACGGAATCGTCTATGTCCGCTACT -ACGGAATCGTCTATGTCCGGATCT -ACGGAATCGTCTATGTCCAAGGCT -ACGGAATCGTCTATGTCCTCAACC -ACGGAATCGTCTATGTCCTGTTCC -ACGGAATCGTCTATGTCCATTCCC -ACGGAATCGTCTATGTCCTTCTCG -ACGGAATCGTCTATGTCCTAGACG -ACGGAATCGTCTATGTCCGTAACG -ACGGAATCGTCTATGTCCACTTCG -ACGGAATCGTCTATGTCCTACGCA -ACGGAATCGTCTATGTCCCTTGCA -ACGGAATCGTCTATGTCCCGAACA -ACGGAATCGTCTATGTCCCAGTCA -ACGGAATCGTCTATGTCCGATCCA -ACGGAATCGTCTATGTCCACGACA -ACGGAATCGTCTATGTCCAGCTCA -ACGGAATCGTCTATGTCCTCACGT -ACGGAATCGTCTATGTCCCGTAGT -ACGGAATCGTCTATGTCCGTCAGT -ACGGAATCGTCTATGTCCGAAGGT -ACGGAATCGTCTATGTCCAACCGT -ACGGAATCGTCTATGTCCTTGTGC -ACGGAATCGTCTATGTCCCTAAGC -ACGGAATCGTCTATGTCCACTAGC -ACGGAATCGTCTATGTCCAGATGC -ACGGAATCGTCTATGTCCTGAAGG -ACGGAATCGTCTATGTCCCAATGG -ACGGAATCGTCTATGTCCATGAGG -ACGGAATCGTCTATGTCCAATGGG -ACGGAATCGTCTATGTCCTCCTGA -ACGGAATCGTCTATGTCCTAGCGA -ACGGAATCGTCTATGTCCCACAGA -ACGGAATCGTCTATGTCCGCAAGA -ACGGAATCGTCTATGTCCGGTTGA -ACGGAATCGTCTATGTCCTCCGAT -ACGGAATCGTCTATGTCCTGGCAT -ACGGAATCGTCTATGTCCCGAGAT -ACGGAATCGTCTATGTCCTACCAC -ACGGAATCGTCTATGTCCCAGAAC -ACGGAATCGTCTATGTCCGTCTAC -ACGGAATCGTCTATGTCCACGTAC -ACGGAATCGTCTATGTCCAGTGAC -ACGGAATCGTCTATGTCCCTGTAG -ACGGAATCGTCTATGTCCCCTAAG -ACGGAATCGTCTATGTCCGTTCAG -ACGGAATCGTCTATGTCCGCATAG -ACGGAATCGTCTATGTCCGACAAG -ACGGAATCGTCTATGTCCAAGCAG -ACGGAATCGTCTATGTCCCGTCAA -ACGGAATCGTCTATGTCCGCTGAA -ACGGAATCGTCTATGTCCAGTACG -ACGGAATCGTCTATGTCCATCCGA -ACGGAATCGTCTATGTCCATGGGA -ACGGAATCGTCTATGTCCGTGCAA -ACGGAATCGTCTATGTCCGAGGAA -ACGGAATCGTCTATGTCCCAGGTA -ACGGAATCGTCTATGTCCGACTCT -ACGGAATCGTCTATGTCCAGTCCT -ACGGAATCGTCTATGTCCTAAGCC -ACGGAATCGTCTATGTCCATAGCC -ACGGAATCGTCTATGTCCTAACCG -ACGGAATCGTCTATGTCCATGCCA -ACGGAATCGTCTGTGTGTGGAAAC -ACGGAATCGTCTGTGTGTAACACC -ACGGAATCGTCTGTGTGTATCGAG -ACGGAATCGTCTGTGTGTCTCCTT -ACGGAATCGTCTGTGTGTCCTGTT -ACGGAATCGTCTGTGTGTCGGTTT -ACGGAATCGTCTGTGTGTGTGGTT -ACGGAATCGTCTGTGTGTGCCTTT -ACGGAATCGTCTGTGTGTGGTCTT -ACGGAATCGTCTGTGTGTACGCTT -ACGGAATCGTCTGTGTGTAGCGTT -ACGGAATCGTCTGTGTGTTTCGTC -ACGGAATCGTCTGTGTGTTCTCTC -ACGGAATCGTCTGTGTGTTGGATC -ACGGAATCGTCTGTGTGTCACTTC -ACGGAATCGTCTGTGTGTGTACTC -ACGGAATCGTCTGTGTGTGATGTC -ACGGAATCGTCTGTGTGTACAGTC -ACGGAATCGTCTGTGTGTTTGCTG -ACGGAATCGTCTGTGTGTTCCATG -ACGGAATCGTCTGTGTGTTGTGTG -ACGGAATCGTCTGTGTGTCTAGTG -ACGGAATCGTCTGTGTGTCATCTG -ACGGAATCGTCTGTGTGTGAGTTG -ACGGAATCGTCTGTGTGTAGACTG -ACGGAATCGTCTGTGTGTTCGGTA -ACGGAATCGTCTGTGTGTTGCCTA -ACGGAATCGTCTGTGTGTCCACTA -ACGGAATCGTCTGTGTGTGGAGTA -ACGGAATCGTCTGTGTGTTCGTCT -ACGGAATCGTCTGTGTGTTGCACT -ACGGAATCGTCTGTGTGTCTGACT -ACGGAATCGTCTGTGTGTCAACCT -ACGGAATCGTCTGTGTGTGCTACT -ACGGAATCGTCTGTGTGTGGATCT -ACGGAATCGTCTGTGTGTAAGGCT -ACGGAATCGTCTGTGTGTTCAACC -ACGGAATCGTCTGTGTGTTGTTCC -ACGGAATCGTCTGTGTGTATTCCC -ACGGAATCGTCTGTGTGTTTCTCG -ACGGAATCGTCTGTGTGTTAGACG -ACGGAATCGTCTGTGTGTGTAACG -ACGGAATCGTCTGTGTGTACTTCG -ACGGAATCGTCTGTGTGTTACGCA -ACGGAATCGTCTGTGTGTCTTGCA -ACGGAATCGTCTGTGTGTCGAACA -ACGGAATCGTCTGTGTGTCAGTCA -ACGGAATCGTCTGTGTGTGATCCA -ACGGAATCGTCTGTGTGTACGACA -ACGGAATCGTCTGTGTGTAGCTCA -ACGGAATCGTCTGTGTGTTCACGT -ACGGAATCGTCTGTGTGTCGTAGT -ACGGAATCGTCTGTGTGTGTCAGT -ACGGAATCGTCTGTGTGTGAAGGT -ACGGAATCGTCTGTGTGTAACCGT -ACGGAATCGTCTGTGTGTTTGTGC -ACGGAATCGTCTGTGTGTCTAAGC -ACGGAATCGTCTGTGTGTACTAGC -ACGGAATCGTCTGTGTGTAGATGC -ACGGAATCGTCTGTGTGTTGAAGG -ACGGAATCGTCTGTGTGTCAATGG -ACGGAATCGTCTGTGTGTATGAGG -ACGGAATCGTCTGTGTGTAATGGG -ACGGAATCGTCTGTGTGTTCCTGA -ACGGAATCGTCTGTGTGTTAGCGA -ACGGAATCGTCTGTGTGTCACAGA -ACGGAATCGTCTGTGTGTGCAAGA -ACGGAATCGTCTGTGTGTGGTTGA -ACGGAATCGTCTGTGTGTTCCGAT -ACGGAATCGTCTGTGTGTTGGCAT -ACGGAATCGTCTGTGTGTCGAGAT -ACGGAATCGTCTGTGTGTTACCAC -ACGGAATCGTCTGTGTGTCAGAAC -ACGGAATCGTCTGTGTGTGTCTAC -ACGGAATCGTCTGTGTGTACGTAC -ACGGAATCGTCTGTGTGTAGTGAC -ACGGAATCGTCTGTGTGTCTGTAG -ACGGAATCGTCTGTGTGTCCTAAG -ACGGAATCGTCTGTGTGTGTTCAG -ACGGAATCGTCTGTGTGTGCATAG -ACGGAATCGTCTGTGTGTGACAAG -ACGGAATCGTCTGTGTGTAAGCAG -ACGGAATCGTCTGTGTGTCGTCAA -ACGGAATCGTCTGTGTGTGCTGAA -ACGGAATCGTCTGTGTGTAGTACG -ACGGAATCGTCTGTGTGTATCCGA -ACGGAATCGTCTGTGTGTATGGGA -ACGGAATCGTCTGTGTGTGTGCAA -ACGGAATCGTCTGTGTGTGAGGAA -ACGGAATCGTCTGTGTGTCAGGTA -ACGGAATCGTCTGTGTGTGACTCT -ACGGAATCGTCTGTGTGTAGTCCT -ACGGAATCGTCTGTGTGTTAAGCC -ACGGAATCGTCTGTGTGTATAGCC -ACGGAATCGTCTGTGTGTTAACCG -ACGGAATCGTCTGTGTGTATGCCA -ACGGAATCGTCTGTGCTAGGAAAC -ACGGAATCGTCTGTGCTAAACACC -ACGGAATCGTCTGTGCTAATCGAG -ACGGAATCGTCTGTGCTACTCCTT -ACGGAATCGTCTGTGCTACCTGTT -ACGGAATCGTCTGTGCTACGGTTT -ACGGAATCGTCTGTGCTAGTGGTT -ACGGAATCGTCTGTGCTAGCCTTT -ACGGAATCGTCTGTGCTAGGTCTT -ACGGAATCGTCTGTGCTAACGCTT -ACGGAATCGTCTGTGCTAAGCGTT -ACGGAATCGTCTGTGCTATTCGTC -ACGGAATCGTCTGTGCTATCTCTC -ACGGAATCGTCTGTGCTATGGATC -ACGGAATCGTCTGTGCTACACTTC -ACGGAATCGTCTGTGCTAGTACTC -ACGGAATCGTCTGTGCTAGATGTC -ACGGAATCGTCTGTGCTAACAGTC -ACGGAATCGTCTGTGCTATTGCTG -ACGGAATCGTCTGTGCTATCCATG -ACGGAATCGTCTGTGCTATGTGTG -ACGGAATCGTCTGTGCTACTAGTG -ACGGAATCGTCTGTGCTACATCTG -ACGGAATCGTCTGTGCTAGAGTTG -ACGGAATCGTCTGTGCTAAGACTG -ACGGAATCGTCTGTGCTATCGGTA -ACGGAATCGTCTGTGCTATGCCTA -ACGGAATCGTCTGTGCTACCACTA -ACGGAATCGTCTGTGCTAGGAGTA -ACGGAATCGTCTGTGCTATCGTCT -ACGGAATCGTCTGTGCTATGCACT -ACGGAATCGTCTGTGCTACTGACT -ACGGAATCGTCTGTGCTACAACCT -ACGGAATCGTCTGTGCTAGCTACT -ACGGAATCGTCTGTGCTAGGATCT -ACGGAATCGTCTGTGCTAAAGGCT -ACGGAATCGTCTGTGCTATCAACC -ACGGAATCGTCTGTGCTATGTTCC -ACGGAATCGTCTGTGCTAATTCCC -ACGGAATCGTCTGTGCTATTCTCG -ACGGAATCGTCTGTGCTATAGACG -ACGGAATCGTCTGTGCTAGTAACG -ACGGAATCGTCTGTGCTAACTTCG -ACGGAATCGTCTGTGCTATACGCA -ACGGAATCGTCTGTGCTACTTGCA -ACGGAATCGTCTGTGCTACGAACA -ACGGAATCGTCTGTGCTACAGTCA -ACGGAATCGTCTGTGCTAGATCCA -ACGGAATCGTCTGTGCTAACGACA -ACGGAATCGTCTGTGCTAAGCTCA -ACGGAATCGTCTGTGCTATCACGT -ACGGAATCGTCTGTGCTACGTAGT -ACGGAATCGTCTGTGCTAGTCAGT -ACGGAATCGTCTGTGCTAGAAGGT -ACGGAATCGTCTGTGCTAAACCGT -ACGGAATCGTCTGTGCTATTGTGC -ACGGAATCGTCTGTGCTACTAAGC -ACGGAATCGTCTGTGCTAACTAGC -ACGGAATCGTCTGTGCTAAGATGC -ACGGAATCGTCTGTGCTATGAAGG -ACGGAATCGTCTGTGCTACAATGG -ACGGAATCGTCTGTGCTAATGAGG -ACGGAATCGTCTGTGCTAAATGGG -ACGGAATCGTCTGTGCTATCCTGA -ACGGAATCGTCTGTGCTATAGCGA -ACGGAATCGTCTGTGCTACACAGA -ACGGAATCGTCTGTGCTAGCAAGA -ACGGAATCGTCTGTGCTAGGTTGA -ACGGAATCGTCTGTGCTATCCGAT -ACGGAATCGTCTGTGCTATGGCAT -ACGGAATCGTCTGTGCTACGAGAT -ACGGAATCGTCTGTGCTATACCAC -ACGGAATCGTCTGTGCTACAGAAC -ACGGAATCGTCTGTGCTAGTCTAC -ACGGAATCGTCTGTGCTAACGTAC -ACGGAATCGTCTGTGCTAAGTGAC -ACGGAATCGTCTGTGCTACTGTAG -ACGGAATCGTCTGTGCTACCTAAG -ACGGAATCGTCTGTGCTAGTTCAG -ACGGAATCGTCTGTGCTAGCATAG -ACGGAATCGTCTGTGCTAGACAAG -ACGGAATCGTCTGTGCTAAAGCAG -ACGGAATCGTCTGTGCTACGTCAA -ACGGAATCGTCTGTGCTAGCTGAA -ACGGAATCGTCTGTGCTAAGTACG -ACGGAATCGTCTGTGCTAATCCGA -ACGGAATCGTCTGTGCTAATGGGA -ACGGAATCGTCTGTGCTAGTGCAA -ACGGAATCGTCTGTGCTAGAGGAA -ACGGAATCGTCTGTGCTACAGGTA -ACGGAATCGTCTGTGCTAGACTCT -ACGGAATCGTCTGTGCTAAGTCCT -ACGGAATCGTCTGTGCTATAAGCC -ACGGAATCGTCTGTGCTAATAGCC -ACGGAATCGTCTGTGCTATAACCG -ACGGAATCGTCTGTGCTAATGCCA -ACGGAATCGTCTCTGCATGGAAAC -ACGGAATCGTCTCTGCATAACACC -ACGGAATCGTCTCTGCATATCGAG -ACGGAATCGTCTCTGCATCTCCTT -ACGGAATCGTCTCTGCATCCTGTT -ACGGAATCGTCTCTGCATCGGTTT -ACGGAATCGTCTCTGCATGTGGTT -ACGGAATCGTCTCTGCATGCCTTT -ACGGAATCGTCTCTGCATGGTCTT -ACGGAATCGTCTCTGCATACGCTT -ACGGAATCGTCTCTGCATAGCGTT -ACGGAATCGTCTCTGCATTTCGTC -ACGGAATCGTCTCTGCATTCTCTC -ACGGAATCGTCTCTGCATTGGATC -ACGGAATCGTCTCTGCATCACTTC -ACGGAATCGTCTCTGCATGTACTC -ACGGAATCGTCTCTGCATGATGTC -ACGGAATCGTCTCTGCATACAGTC -ACGGAATCGTCTCTGCATTTGCTG -ACGGAATCGTCTCTGCATTCCATG -ACGGAATCGTCTCTGCATTGTGTG -ACGGAATCGTCTCTGCATCTAGTG -ACGGAATCGTCTCTGCATCATCTG -ACGGAATCGTCTCTGCATGAGTTG -ACGGAATCGTCTCTGCATAGACTG -ACGGAATCGTCTCTGCATTCGGTA -ACGGAATCGTCTCTGCATTGCCTA -ACGGAATCGTCTCTGCATCCACTA -ACGGAATCGTCTCTGCATGGAGTA -ACGGAATCGTCTCTGCATTCGTCT -ACGGAATCGTCTCTGCATTGCACT -ACGGAATCGTCTCTGCATCTGACT -ACGGAATCGTCTCTGCATCAACCT -ACGGAATCGTCTCTGCATGCTACT -ACGGAATCGTCTCTGCATGGATCT -ACGGAATCGTCTCTGCATAAGGCT -ACGGAATCGTCTCTGCATTCAACC -ACGGAATCGTCTCTGCATTGTTCC -ACGGAATCGTCTCTGCATATTCCC -ACGGAATCGTCTCTGCATTTCTCG -ACGGAATCGTCTCTGCATTAGACG -ACGGAATCGTCTCTGCATGTAACG -ACGGAATCGTCTCTGCATACTTCG -ACGGAATCGTCTCTGCATTACGCA -ACGGAATCGTCTCTGCATCTTGCA -ACGGAATCGTCTCTGCATCGAACA -ACGGAATCGTCTCTGCATCAGTCA -ACGGAATCGTCTCTGCATGATCCA -ACGGAATCGTCTCTGCATACGACA -ACGGAATCGTCTCTGCATAGCTCA -ACGGAATCGTCTCTGCATTCACGT -ACGGAATCGTCTCTGCATCGTAGT -ACGGAATCGTCTCTGCATGTCAGT -ACGGAATCGTCTCTGCATGAAGGT -ACGGAATCGTCTCTGCATAACCGT -ACGGAATCGTCTCTGCATTTGTGC -ACGGAATCGTCTCTGCATCTAAGC -ACGGAATCGTCTCTGCATACTAGC -ACGGAATCGTCTCTGCATAGATGC -ACGGAATCGTCTCTGCATTGAAGG -ACGGAATCGTCTCTGCATCAATGG -ACGGAATCGTCTCTGCATATGAGG -ACGGAATCGTCTCTGCATAATGGG -ACGGAATCGTCTCTGCATTCCTGA -ACGGAATCGTCTCTGCATTAGCGA -ACGGAATCGTCTCTGCATCACAGA -ACGGAATCGTCTCTGCATGCAAGA -ACGGAATCGTCTCTGCATGGTTGA -ACGGAATCGTCTCTGCATTCCGAT -ACGGAATCGTCTCTGCATTGGCAT -ACGGAATCGTCTCTGCATCGAGAT -ACGGAATCGTCTCTGCATTACCAC -ACGGAATCGTCTCTGCATCAGAAC -ACGGAATCGTCTCTGCATGTCTAC -ACGGAATCGTCTCTGCATACGTAC -ACGGAATCGTCTCTGCATAGTGAC -ACGGAATCGTCTCTGCATCTGTAG -ACGGAATCGTCTCTGCATCCTAAG -ACGGAATCGTCTCTGCATGTTCAG -ACGGAATCGTCTCTGCATGCATAG -ACGGAATCGTCTCTGCATGACAAG -ACGGAATCGTCTCTGCATAAGCAG -ACGGAATCGTCTCTGCATCGTCAA -ACGGAATCGTCTCTGCATGCTGAA -ACGGAATCGTCTCTGCATAGTACG -ACGGAATCGTCTCTGCATATCCGA -ACGGAATCGTCTCTGCATATGGGA -ACGGAATCGTCTCTGCATGTGCAA -ACGGAATCGTCTCTGCATGAGGAA -ACGGAATCGTCTCTGCATCAGGTA -ACGGAATCGTCTCTGCATGACTCT -ACGGAATCGTCTCTGCATAGTCCT -ACGGAATCGTCTCTGCATTAAGCC -ACGGAATCGTCTCTGCATATAGCC -ACGGAATCGTCTCTGCATTAACCG -ACGGAATCGTCTCTGCATATGCCA -ACGGAATCGTCTTTGGAGGGAAAC -ACGGAATCGTCTTTGGAGAACACC -ACGGAATCGTCTTTGGAGATCGAG -ACGGAATCGTCTTTGGAGCTCCTT -ACGGAATCGTCTTTGGAGCCTGTT -ACGGAATCGTCTTTGGAGCGGTTT -ACGGAATCGTCTTTGGAGGTGGTT -ACGGAATCGTCTTTGGAGGCCTTT -ACGGAATCGTCTTTGGAGGGTCTT -ACGGAATCGTCTTTGGAGACGCTT -ACGGAATCGTCTTTGGAGAGCGTT -ACGGAATCGTCTTTGGAGTTCGTC -ACGGAATCGTCTTTGGAGTCTCTC -ACGGAATCGTCTTTGGAGTGGATC -ACGGAATCGTCTTTGGAGCACTTC -ACGGAATCGTCTTTGGAGGTACTC -ACGGAATCGTCTTTGGAGGATGTC -ACGGAATCGTCTTTGGAGACAGTC -ACGGAATCGTCTTTGGAGTTGCTG -ACGGAATCGTCTTTGGAGTCCATG -ACGGAATCGTCTTTGGAGTGTGTG -ACGGAATCGTCTTTGGAGCTAGTG -ACGGAATCGTCTTTGGAGCATCTG -ACGGAATCGTCTTTGGAGGAGTTG -ACGGAATCGTCTTTGGAGAGACTG -ACGGAATCGTCTTTGGAGTCGGTA -ACGGAATCGTCTTTGGAGTGCCTA -ACGGAATCGTCTTTGGAGCCACTA -ACGGAATCGTCTTTGGAGGGAGTA -ACGGAATCGTCTTTGGAGTCGTCT -ACGGAATCGTCTTTGGAGTGCACT -ACGGAATCGTCTTTGGAGCTGACT -ACGGAATCGTCTTTGGAGCAACCT -ACGGAATCGTCTTTGGAGGCTACT -ACGGAATCGTCTTTGGAGGGATCT -ACGGAATCGTCTTTGGAGAAGGCT -ACGGAATCGTCTTTGGAGTCAACC -ACGGAATCGTCTTTGGAGTGTTCC -ACGGAATCGTCTTTGGAGATTCCC -ACGGAATCGTCTTTGGAGTTCTCG -ACGGAATCGTCTTTGGAGTAGACG -ACGGAATCGTCTTTGGAGGTAACG -ACGGAATCGTCTTTGGAGACTTCG -ACGGAATCGTCTTTGGAGTACGCA -ACGGAATCGTCTTTGGAGCTTGCA -ACGGAATCGTCTTTGGAGCGAACA -ACGGAATCGTCTTTGGAGCAGTCA -ACGGAATCGTCTTTGGAGGATCCA -ACGGAATCGTCTTTGGAGACGACA -ACGGAATCGTCTTTGGAGAGCTCA -ACGGAATCGTCTTTGGAGTCACGT -ACGGAATCGTCTTTGGAGCGTAGT -ACGGAATCGTCTTTGGAGGTCAGT -ACGGAATCGTCTTTGGAGGAAGGT -ACGGAATCGTCTTTGGAGAACCGT -ACGGAATCGTCTTTGGAGTTGTGC -ACGGAATCGTCTTTGGAGCTAAGC -ACGGAATCGTCTTTGGAGACTAGC -ACGGAATCGTCTTTGGAGAGATGC -ACGGAATCGTCTTTGGAGTGAAGG -ACGGAATCGTCTTTGGAGCAATGG -ACGGAATCGTCTTTGGAGATGAGG -ACGGAATCGTCTTTGGAGAATGGG -ACGGAATCGTCTTTGGAGTCCTGA -ACGGAATCGTCTTTGGAGTAGCGA -ACGGAATCGTCTTTGGAGCACAGA -ACGGAATCGTCTTTGGAGGCAAGA -ACGGAATCGTCTTTGGAGGGTTGA -ACGGAATCGTCTTTGGAGTCCGAT -ACGGAATCGTCTTTGGAGTGGCAT -ACGGAATCGTCTTTGGAGCGAGAT -ACGGAATCGTCTTTGGAGTACCAC -ACGGAATCGTCTTTGGAGCAGAAC -ACGGAATCGTCTTTGGAGGTCTAC -ACGGAATCGTCTTTGGAGACGTAC -ACGGAATCGTCTTTGGAGAGTGAC -ACGGAATCGTCTTTGGAGCTGTAG -ACGGAATCGTCTTTGGAGCCTAAG -ACGGAATCGTCTTTGGAGGTTCAG -ACGGAATCGTCTTTGGAGGCATAG -ACGGAATCGTCTTTGGAGGACAAG -ACGGAATCGTCTTTGGAGAAGCAG -ACGGAATCGTCTTTGGAGCGTCAA -ACGGAATCGTCTTTGGAGGCTGAA -ACGGAATCGTCTTTGGAGAGTACG -ACGGAATCGTCTTTGGAGATCCGA -ACGGAATCGTCTTTGGAGATGGGA -ACGGAATCGTCTTTGGAGGTGCAA -ACGGAATCGTCTTTGGAGGAGGAA -ACGGAATCGTCTTTGGAGCAGGTA -ACGGAATCGTCTTTGGAGGACTCT -ACGGAATCGTCTTTGGAGAGTCCT -ACGGAATCGTCTTTGGAGTAAGCC -ACGGAATCGTCTTTGGAGATAGCC -ACGGAATCGTCTTTGGAGTAACCG -ACGGAATCGTCTTTGGAGATGCCA -ACGGAATCGTCTCTGAGAGGAAAC -ACGGAATCGTCTCTGAGAAACACC -ACGGAATCGTCTCTGAGAATCGAG -ACGGAATCGTCTCTGAGACTCCTT -ACGGAATCGTCTCTGAGACCTGTT -ACGGAATCGTCTCTGAGACGGTTT -ACGGAATCGTCTCTGAGAGTGGTT -ACGGAATCGTCTCTGAGAGCCTTT -ACGGAATCGTCTCTGAGAGGTCTT -ACGGAATCGTCTCTGAGAACGCTT -ACGGAATCGTCTCTGAGAAGCGTT -ACGGAATCGTCTCTGAGATTCGTC -ACGGAATCGTCTCTGAGATCTCTC -ACGGAATCGTCTCTGAGATGGATC -ACGGAATCGTCTCTGAGACACTTC -ACGGAATCGTCTCTGAGAGTACTC -ACGGAATCGTCTCTGAGAGATGTC -ACGGAATCGTCTCTGAGAACAGTC -ACGGAATCGTCTCTGAGATTGCTG -ACGGAATCGTCTCTGAGATCCATG -ACGGAATCGTCTCTGAGATGTGTG -ACGGAATCGTCTCTGAGACTAGTG -ACGGAATCGTCTCTGAGACATCTG -ACGGAATCGTCTCTGAGAGAGTTG -ACGGAATCGTCTCTGAGAAGACTG -ACGGAATCGTCTCTGAGATCGGTA -ACGGAATCGTCTCTGAGATGCCTA -ACGGAATCGTCTCTGAGACCACTA -ACGGAATCGTCTCTGAGAGGAGTA -ACGGAATCGTCTCTGAGATCGTCT -ACGGAATCGTCTCTGAGATGCACT -ACGGAATCGTCTCTGAGACTGACT -ACGGAATCGTCTCTGAGACAACCT -ACGGAATCGTCTCTGAGAGCTACT -ACGGAATCGTCTCTGAGAGGATCT -ACGGAATCGTCTCTGAGAAAGGCT -ACGGAATCGTCTCTGAGATCAACC -ACGGAATCGTCTCTGAGATGTTCC -ACGGAATCGTCTCTGAGAATTCCC -ACGGAATCGTCTCTGAGATTCTCG -ACGGAATCGTCTCTGAGATAGACG -ACGGAATCGTCTCTGAGAGTAACG -ACGGAATCGTCTCTGAGAACTTCG -ACGGAATCGTCTCTGAGATACGCA -ACGGAATCGTCTCTGAGACTTGCA -ACGGAATCGTCTCTGAGACGAACA -ACGGAATCGTCTCTGAGACAGTCA -ACGGAATCGTCTCTGAGAGATCCA -ACGGAATCGTCTCTGAGAACGACA -ACGGAATCGTCTCTGAGAAGCTCA -ACGGAATCGTCTCTGAGATCACGT -ACGGAATCGTCTCTGAGACGTAGT -ACGGAATCGTCTCTGAGAGTCAGT -ACGGAATCGTCTCTGAGAGAAGGT -ACGGAATCGTCTCTGAGAAACCGT -ACGGAATCGTCTCTGAGATTGTGC -ACGGAATCGTCTCTGAGACTAAGC -ACGGAATCGTCTCTGAGAACTAGC -ACGGAATCGTCTCTGAGAAGATGC -ACGGAATCGTCTCTGAGATGAAGG -ACGGAATCGTCTCTGAGACAATGG -ACGGAATCGTCTCTGAGAATGAGG -ACGGAATCGTCTCTGAGAAATGGG -ACGGAATCGTCTCTGAGATCCTGA -ACGGAATCGTCTCTGAGATAGCGA -ACGGAATCGTCTCTGAGACACAGA -ACGGAATCGTCTCTGAGAGCAAGA -ACGGAATCGTCTCTGAGAGGTTGA -ACGGAATCGTCTCTGAGATCCGAT -ACGGAATCGTCTCTGAGATGGCAT -ACGGAATCGTCTCTGAGACGAGAT -ACGGAATCGTCTCTGAGATACCAC -ACGGAATCGTCTCTGAGACAGAAC -ACGGAATCGTCTCTGAGAGTCTAC -ACGGAATCGTCTCTGAGAACGTAC -ACGGAATCGTCTCTGAGAAGTGAC -ACGGAATCGTCTCTGAGACTGTAG -ACGGAATCGTCTCTGAGACCTAAG -ACGGAATCGTCTCTGAGAGTTCAG -ACGGAATCGTCTCTGAGAGCATAG -ACGGAATCGTCTCTGAGAGACAAG -ACGGAATCGTCTCTGAGAAAGCAG -ACGGAATCGTCTCTGAGACGTCAA -ACGGAATCGTCTCTGAGAGCTGAA -ACGGAATCGTCTCTGAGAAGTACG -ACGGAATCGTCTCTGAGAATCCGA -ACGGAATCGTCTCTGAGAATGGGA -ACGGAATCGTCTCTGAGAGTGCAA -ACGGAATCGTCTCTGAGAGAGGAA -ACGGAATCGTCTCTGAGACAGGTA -ACGGAATCGTCTCTGAGAGACTCT -ACGGAATCGTCTCTGAGAAGTCCT -ACGGAATCGTCTCTGAGATAAGCC -ACGGAATCGTCTCTGAGAATAGCC -ACGGAATCGTCTCTGAGATAACCG -ACGGAATCGTCTCTGAGAATGCCA -ACGGAATCGTCTGTATCGGGAAAC -ACGGAATCGTCTGTATCGAACACC -ACGGAATCGTCTGTATCGATCGAG -ACGGAATCGTCTGTATCGCTCCTT -ACGGAATCGTCTGTATCGCCTGTT -ACGGAATCGTCTGTATCGCGGTTT -ACGGAATCGTCTGTATCGGTGGTT -ACGGAATCGTCTGTATCGGCCTTT -ACGGAATCGTCTGTATCGGGTCTT -ACGGAATCGTCTGTATCGACGCTT -ACGGAATCGTCTGTATCGAGCGTT -ACGGAATCGTCTGTATCGTTCGTC -ACGGAATCGTCTGTATCGTCTCTC -ACGGAATCGTCTGTATCGTGGATC -ACGGAATCGTCTGTATCGCACTTC -ACGGAATCGTCTGTATCGGTACTC -ACGGAATCGTCTGTATCGGATGTC -ACGGAATCGTCTGTATCGACAGTC -ACGGAATCGTCTGTATCGTTGCTG -ACGGAATCGTCTGTATCGTCCATG -ACGGAATCGTCTGTATCGTGTGTG -ACGGAATCGTCTGTATCGCTAGTG -ACGGAATCGTCTGTATCGCATCTG -ACGGAATCGTCTGTATCGGAGTTG -ACGGAATCGTCTGTATCGAGACTG -ACGGAATCGTCTGTATCGTCGGTA -ACGGAATCGTCTGTATCGTGCCTA -ACGGAATCGTCTGTATCGCCACTA -ACGGAATCGTCTGTATCGGGAGTA -ACGGAATCGTCTGTATCGTCGTCT -ACGGAATCGTCTGTATCGTGCACT -ACGGAATCGTCTGTATCGCTGACT -ACGGAATCGTCTGTATCGCAACCT -ACGGAATCGTCTGTATCGGCTACT -ACGGAATCGTCTGTATCGGGATCT -ACGGAATCGTCTGTATCGAAGGCT -ACGGAATCGTCTGTATCGTCAACC -ACGGAATCGTCTGTATCGTGTTCC -ACGGAATCGTCTGTATCGATTCCC -ACGGAATCGTCTGTATCGTTCTCG -ACGGAATCGTCTGTATCGTAGACG -ACGGAATCGTCTGTATCGGTAACG -ACGGAATCGTCTGTATCGACTTCG -ACGGAATCGTCTGTATCGTACGCA -ACGGAATCGTCTGTATCGCTTGCA -ACGGAATCGTCTGTATCGCGAACA -ACGGAATCGTCTGTATCGCAGTCA -ACGGAATCGTCTGTATCGGATCCA -ACGGAATCGTCTGTATCGACGACA -ACGGAATCGTCTGTATCGAGCTCA -ACGGAATCGTCTGTATCGTCACGT -ACGGAATCGTCTGTATCGCGTAGT -ACGGAATCGTCTGTATCGGTCAGT -ACGGAATCGTCTGTATCGGAAGGT -ACGGAATCGTCTGTATCGAACCGT -ACGGAATCGTCTGTATCGTTGTGC -ACGGAATCGTCTGTATCGCTAAGC -ACGGAATCGTCTGTATCGACTAGC -ACGGAATCGTCTGTATCGAGATGC -ACGGAATCGTCTGTATCGTGAAGG -ACGGAATCGTCTGTATCGCAATGG -ACGGAATCGTCTGTATCGATGAGG -ACGGAATCGTCTGTATCGAATGGG -ACGGAATCGTCTGTATCGTCCTGA -ACGGAATCGTCTGTATCGTAGCGA -ACGGAATCGTCTGTATCGCACAGA -ACGGAATCGTCTGTATCGGCAAGA -ACGGAATCGTCTGTATCGGGTTGA -ACGGAATCGTCTGTATCGTCCGAT -ACGGAATCGTCTGTATCGTGGCAT -ACGGAATCGTCTGTATCGCGAGAT -ACGGAATCGTCTGTATCGTACCAC -ACGGAATCGTCTGTATCGCAGAAC -ACGGAATCGTCTGTATCGGTCTAC -ACGGAATCGTCTGTATCGACGTAC -ACGGAATCGTCTGTATCGAGTGAC -ACGGAATCGTCTGTATCGCTGTAG -ACGGAATCGTCTGTATCGCCTAAG -ACGGAATCGTCTGTATCGGTTCAG -ACGGAATCGTCTGTATCGGCATAG -ACGGAATCGTCTGTATCGGACAAG -ACGGAATCGTCTGTATCGAAGCAG -ACGGAATCGTCTGTATCGCGTCAA -ACGGAATCGTCTGTATCGGCTGAA -ACGGAATCGTCTGTATCGAGTACG -ACGGAATCGTCTGTATCGATCCGA -ACGGAATCGTCTGTATCGATGGGA -ACGGAATCGTCTGTATCGGTGCAA -ACGGAATCGTCTGTATCGGAGGAA -ACGGAATCGTCTGTATCGCAGGTA -ACGGAATCGTCTGTATCGGACTCT -ACGGAATCGTCTGTATCGAGTCCT -ACGGAATCGTCTGTATCGTAAGCC -ACGGAATCGTCTGTATCGATAGCC -ACGGAATCGTCTGTATCGTAACCG -ACGGAATCGTCTGTATCGATGCCA -ACGGAATCGTCTCTATGCGGAAAC -ACGGAATCGTCTCTATGCAACACC -ACGGAATCGTCTCTATGCATCGAG -ACGGAATCGTCTCTATGCCTCCTT -ACGGAATCGTCTCTATGCCCTGTT -ACGGAATCGTCTCTATGCCGGTTT -ACGGAATCGTCTCTATGCGTGGTT -ACGGAATCGTCTCTATGCGCCTTT -ACGGAATCGTCTCTATGCGGTCTT -ACGGAATCGTCTCTATGCACGCTT -ACGGAATCGTCTCTATGCAGCGTT -ACGGAATCGTCTCTATGCTTCGTC -ACGGAATCGTCTCTATGCTCTCTC -ACGGAATCGTCTCTATGCTGGATC -ACGGAATCGTCTCTATGCCACTTC -ACGGAATCGTCTCTATGCGTACTC -ACGGAATCGTCTCTATGCGATGTC -ACGGAATCGTCTCTATGCACAGTC -ACGGAATCGTCTCTATGCTTGCTG -ACGGAATCGTCTCTATGCTCCATG -ACGGAATCGTCTCTATGCTGTGTG -ACGGAATCGTCTCTATGCCTAGTG -ACGGAATCGTCTCTATGCCATCTG -ACGGAATCGTCTCTATGCGAGTTG -ACGGAATCGTCTCTATGCAGACTG -ACGGAATCGTCTCTATGCTCGGTA -ACGGAATCGTCTCTATGCTGCCTA -ACGGAATCGTCTCTATGCCCACTA -ACGGAATCGTCTCTATGCGGAGTA -ACGGAATCGTCTCTATGCTCGTCT -ACGGAATCGTCTCTATGCTGCACT -ACGGAATCGTCTCTATGCCTGACT -ACGGAATCGTCTCTATGCCAACCT -ACGGAATCGTCTCTATGCGCTACT -ACGGAATCGTCTCTATGCGGATCT -ACGGAATCGTCTCTATGCAAGGCT -ACGGAATCGTCTCTATGCTCAACC -ACGGAATCGTCTCTATGCTGTTCC -ACGGAATCGTCTCTATGCATTCCC -ACGGAATCGTCTCTATGCTTCTCG -ACGGAATCGTCTCTATGCTAGACG -ACGGAATCGTCTCTATGCGTAACG -ACGGAATCGTCTCTATGCACTTCG -ACGGAATCGTCTCTATGCTACGCA -ACGGAATCGTCTCTATGCCTTGCA -ACGGAATCGTCTCTATGCCGAACA -ACGGAATCGTCTCTATGCCAGTCA -ACGGAATCGTCTCTATGCGATCCA -ACGGAATCGTCTCTATGCACGACA -ACGGAATCGTCTCTATGCAGCTCA -ACGGAATCGTCTCTATGCTCACGT -ACGGAATCGTCTCTATGCCGTAGT -ACGGAATCGTCTCTATGCGTCAGT -ACGGAATCGTCTCTATGCGAAGGT -ACGGAATCGTCTCTATGCAACCGT -ACGGAATCGTCTCTATGCTTGTGC -ACGGAATCGTCTCTATGCCTAAGC -ACGGAATCGTCTCTATGCACTAGC -ACGGAATCGTCTCTATGCAGATGC -ACGGAATCGTCTCTATGCTGAAGG -ACGGAATCGTCTCTATGCCAATGG -ACGGAATCGTCTCTATGCATGAGG -ACGGAATCGTCTCTATGCAATGGG -ACGGAATCGTCTCTATGCTCCTGA -ACGGAATCGTCTCTATGCTAGCGA -ACGGAATCGTCTCTATGCCACAGA -ACGGAATCGTCTCTATGCGCAAGA -ACGGAATCGTCTCTATGCGGTTGA -ACGGAATCGTCTCTATGCTCCGAT -ACGGAATCGTCTCTATGCTGGCAT -ACGGAATCGTCTCTATGCCGAGAT -ACGGAATCGTCTCTATGCTACCAC -ACGGAATCGTCTCTATGCCAGAAC -ACGGAATCGTCTCTATGCGTCTAC -ACGGAATCGTCTCTATGCACGTAC -ACGGAATCGTCTCTATGCAGTGAC -ACGGAATCGTCTCTATGCCTGTAG -ACGGAATCGTCTCTATGCCCTAAG -ACGGAATCGTCTCTATGCGTTCAG -ACGGAATCGTCTCTATGCGCATAG -ACGGAATCGTCTCTATGCGACAAG -ACGGAATCGTCTCTATGCAAGCAG -ACGGAATCGTCTCTATGCCGTCAA -ACGGAATCGTCTCTATGCGCTGAA -ACGGAATCGTCTCTATGCAGTACG -ACGGAATCGTCTCTATGCATCCGA -ACGGAATCGTCTCTATGCATGGGA -ACGGAATCGTCTCTATGCGTGCAA -ACGGAATCGTCTCTATGCGAGGAA -ACGGAATCGTCTCTATGCCAGGTA -ACGGAATCGTCTCTATGCGACTCT -ACGGAATCGTCTCTATGCAGTCCT -ACGGAATCGTCTCTATGCTAAGCC -ACGGAATCGTCTCTATGCATAGCC -ACGGAATCGTCTCTATGCTAACCG -ACGGAATCGTCTCTATGCATGCCA -ACGGAATCGTCTCTACCAGGAAAC -ACGGAATCGTCTCTACCAAACACC -ACGGAATCGTCTCTACCAATCGAG -ACGGAATCGTCTCTACCACTCCTT -ACGGAATCGTCTCTACCACCTGTT -ACGGAATCGTCTCTACCACGGTTT -ACGGAATCGTCTCTACCAGTGGTT -ACGGAATCGTCTCTACCAGCCTTT -ACGGAATCGTCTCTACCAGGTCTT -ACGGAATCGTCTCTACCAACGCTT -ACGGAATCGTCTCTACCAAGCGTT -ACGGAATCGTCTCTACCATTCGTC -ACGGAATCGTCTCTACCATCTCTC -ACGGAATCGTCTCTACCATGGATC -ACGGAATCGTCTCTACCACACTTC -ACGGAATCGTCTCTACCAGTACTC -ACGGAATCGTCTCTACCAGATGTC -ACGGAATCGTCTCTACCAACAGTC -ACGGAATCGTCTCTACCATTGCTG -ACGGAATCGTCTCTACCATCCATG -ACGGAATCGTCTCTACCATGTGTG -ACGGAATCGTCTCTACCACTAGTG -ACGGAATCGTCTCTACCACATCTG -ACGGAATCGTCTCTACCAGAGTTG -ACGGAATCGTCTCTACCAAGACTG -ACGGAATCGTCTCTACCATCGGTA -ACGGAATCGTCTCTACCATGCCTA -ACGGAATCGTCTCTACCACCACTA -ACGGAATCGTCTCTACCAGGAGTA -ACGGAATCGTCTCTACCATCGTCT -ACGGAATCGTCTCTACCATGCACT -ACGGAATCGTCTCTACCACTGACT -ACGGAATCGTCTCTACCACAACCT -ACGGAATCGTCTCTACCAGCTACT -ACGGAATCGTCTCTACCAGGATCT -ACGGAATCGTCTCTACCAAAGGCT -ACGGAATCGTCTCTACCATCAACC -ACGGAATCGTCTCTACCATGTTCC -ACGGAATCGTCTCTACCAATTCCC -ACGGAATCGTCTCTACCATTCTCG -ACGGAATCGTCTCTACCATAGACG -ACGGAATCGTCTCTACCAGTAACG -ACGGAATCGTCTCTACCAACTTCG -ACGGAATCGTCTCTACCATACGCA -ACGGAATCGTCTCTACCACTTGCA -ACGGAATCGTCTCTACCACGAACA -ACGGAATCGTCTCTACCACAGTCA -ACGGAATCGTCTCTACCAGATCCA -ACGGAATCGTCTCTACCAACGACA -ACGGAATCGTCTCTACCAAGCTCA -ACGGAATCGTCTCTACCATCACGT -ACGGAATCGTCTCTACCACGTAGT -ACGGAATCGTCTCTACCAGTCAGT -ACGGAATCGTCTCTACCAGAAGGT -ACGGAATCGTCTCTACCAAACCGT -ACGGAATCGTCTCTACCATTGTGC -ACGGAATCGTCTCTACCACTAAGC -ACGGAATCGTCTCTACCAACTAGC -ACGGAATCGTCTCTACCAAGATGC -ACGGAATCGTCTCTACCATGAAGG -ACGGAATCGTCTCTACCACAATGG -ACGGAATCGTCTCTACCAATGAGG -ACGGAATCGTCTCTACCAAATGGG -ACGGAATCGTCTCTACCATCCTGA -ACGGAATCGTCTCTACCATAGCGA -ACGGAATCGTCTCTACCACACAGA -ACGGAATCGTCTCTACCAGCAAGA -ACGGAATCGTCTCTACCAGGTTGA -ACGGAATCGTCTCTACCATCCGAT -ACGGAATCGTCTCTACCATGGCAT -ACGGAATCGTCTCTACCACGAGAT -ACGGAATCGTCTCTACCATACCAC -ACGGAATCGTCTCTACCACAGAAC -ACGGAATCGTCTCTACCAGTCTAC -ACGGAATCGTCTCTACCAACGTAC -ACGGAATCGTCTCTACCAAGTGAC -ACGGAATCGTCTCTACCACTGTAG -ACGGAATCGTCTCTACCACCTAAG -ACGGAATCGTCTCTACCAGTTCAG -ACGGAATCGTCTCTACCAGCATAG -ACGGAATCGTCTCTACCAGACAAG -ACGGAATCGTCTCTACCAAAGCAG -ACGGAATCGTCTCTACCACGTCAA -ACGGAATCGTCTCTACCAGCTGAA -ACGGAATCGTCTCTACCAAGTACG -ACGGAATCGTCTCTACCAATCCGA -ACGGAATCGTCTCTACCAATGGGA -ACGGAATCGTCTCTACCAGTGCAA -ACGGAATCGTCTCTACCAGAGGAA -ACGGAATCGTCTCTACCACAGGTA -ACGGAATCGTCTCTACCAGACTCT -ACGGAATCGTCTCTACCAAGTCCT -ACGGAATCGTCTCTACCATAAGCC -ACGGAATCGTCTCTACCAATAGCC -ACGGAATCGTCTCTACCATAACCG -ACGGAATCGTCTCTACCAATGCCA -ACGGAATCGTCTGTAGGAGGAAAC -ACGGAATCGTCTGTAGGAAACACC -ACGGAATCGTCTGTAGGAATCGAG -ACGGAATCGTCTGTAGGACTCCTT -ACGGAATCGTCTGTAGGACCTGTT -ACGGAATCGTCTGTAGGACGGTTT -ACGGAATCGTCTGTAGGAGTGGTT -ACGGAATCGTCTGTAGGAGCCTTT -ACGGAATCGTCTGTAGGAGGTCTT -ACGGAATCGTCTGTAGGAACGCTT -ACGGAATCGTCTGTAGGAAGCGTT -ACGGAATCGTCTGTAGGATTCGTC -ACGGAATCGTCTGTAGGATCTCTC -ACGGAATCGTCTGTAGGATGGATC -ACGGAATCGTCTGTAGGACACTTC -ACGGAATCGTCTGTAGGAGTACTC -ACGGAATCGTCTGTAGGAGATGTC -ACGGAATCGTCTGTAGGAACAGTC -ACGGAATCGTCTGTAGGATTGCTG -ACGGAATCGTCTGTAGGATCCATG -ACGGAATCGTCTGTAGGATGTGTG -ACGGAATCGTCTGTAGGACTAGTG -ACGGAATCGTCTGTAGGACATCTG -ACGGAATCGTCTGTAGGAGAGTTG -ACGGAATCGTCTGTAGGAAGACTG -ACGGAATCGTCTGTAGGATCGGTA -ACGGAATCGTCTGTAGGATGCCTA -ACGGAATCGTCTGTAGGACCACTA -ACGGAATCGTCTGTAGGAGGAGTA -ACGGAATCGTCTGTAGGATCGTCT -ACGGAATCGTCTGTAGGATGCACT -ACGGAATCGTCTGTAGGACTGACT -ACGGAATCGTCTGTAGGACAACCT -ACGGAATCGTCTGTAGGAGCTACT -ACGGAATCGTCTGTAGGAGGATCT -ACGGAATCGTCTGTAGGAAAGGCT -ACGGAATCGTCTGTAGGATCAACC -ACGGAATCGTCTGTAGGATGTTCC -ACGGAATCGTCTGTAGGAATTCCC -ACGGAATCGTCTGTAGGATTCTCG -ACGGAATCGTCTGTAGGATAGACG -ACGGAATCGTCTGTAGGAGTAACG -ACGGAATCGTCTGTAGGAACTTCG -ACGGAATCGTCTGTAGGATACGCA -ACGGAATCGTCTGTAGGACTTGCA -ACGGAATCGTCTGTAGGACGAACA -ACGGAATCGTCTGTAGGACAGTCA -ACGGAATCGTCTGTAGGAGATCCA -ACGGAATCGTCTGTAGGAACGACA -ACGGAATCGTCTGTAGGAAGCTCA -ACGGAATCGTCTGTAGGATCACGT -ACGGAATCGTCTGTAGGACGTAGT -ACGGAATCGTCTGTAGGAGTCAGT -ACGGAATCGTCTGTAGGAGAAGGT -ACGGAATCGTCTGTAGGAAACCGT -ACGGAATCGTCTGTAGGATTGTGC -ACGGAATCGTCTGTAGGACTAAGC -ACGGAATCGTCTGTAGGAACTAGC -ACGGAATCGTCTGTAGGAAGATGC -ACGGAATCGTCTGTAGGATGAAGG -ACGGAATCGTCTGTAGGACAATGG -ACGGAATCGTCTGTAGGAATGAGG -ACGGAATCGTCTGTAGGAAATGGG -ACGGAATCGTCTGTAGGATCCTGA -ACGGAATCGTCTGTAGGATAGCGA -ACGGAATCGTCTGTAGGACACAGA -ACGGAATCGTCTGTAGGAGCAAGA -ACGGAATCGTCTGTAGGAGGTTGA -ACGGAATCGTCTGTAGGATCCGAT -ACGGAATCGTCTGTAGGATGGCAT -ACGGAATCGTCTGTAGGACGAGAT -ACGGAATCGTCTGTAGGATACCAC -ACGGAATCGTCTGTAGGACAGAAC -ACGGAATCGTCTGTAGGAGTCTAC -ACGGAATCGTCTGTAGGAACGTAC -ACGGAATCGTCTGTAGGAAGTGAC -ACGGAATCGTCTGTAGGACTGTAG -ACGGAATCGTCTGTAGGACCTAAG -ACGGAATCGTCTGTAGGAGTTCAG -ACGGAATCGTCTGTAGGAGCATAG -ACGGAATCGTCTGTAGGAGACAAG -ACGGAATCGTCTGTAGGAAAGCAG -ACGGAATCGTCTGTAGGACGTCAA -ACGGAATCGTCTGTAGGAGCTGAA -ACGGAATCGTCTGTAGGAAGTACG -ACGGAATCGTCTGTAGGAATCCGA -ACGGAATCGTCTGTAGGAATGGGA -ACGGAATCGTCTGTAGGAGTGCAA -ACGGAATCGTCTGTAGGAGAGGAA -ACGGAATCGTCTGTAGGACAGGTA -ACGGAATCGTCTGTAGGAGACTCT -ACGGAATCGTCTGTAGGAAGTCCT -ACGGAATCGTCTGTAGGATAAGCC -ACGGAATCGTCTGTAGGAATAGCC -ACGGAATCGTCTGTAGGATAACCG -ACGGAATCGTCTGTAGGAATGCCA -ACGGAATCGTCTTCTTCGGGAAAC -ACGGAATCGTCTTCTTCGAACACC -ACGGAATCGTCTTCTTCGATCGAG -ACGGAATCGTCTTCTTCGCTCCTT -ACGGAATCGTCTTCTTCGCCTGTT -ACGGAATCGTCTTCTTCGCGGTTT -ACGGAATCGTCTTCTTCGGTGGTT -ACGGAATCGTCTTCTTCGGCCTTT -ACGGAATCGTCTTCTTCGGGTCTT -ACGGAATCGTCTTCTTCGACGCTT -ACGGAATCGTCTTCTTCGAGCGTT -ACGGAATCGTCTTCTTCGTTCGTC -ACGGAATCGTCTTCTTCGTCTCTC -ACGGAATCGTCTTCTTCGTGGATC -ACGGAATCGTCTTCTTCGCACTTC -ACGGAATCGTCTTCTTCGGTACTC -ACGGAATCGTCTTCTTCGGATGTC -ACGGAATCGTCTTCTTCGACAGTC -ACGGAATCGTCTTCTTCGTTGCTG -ACGGAATCGTCTTCTTCGTCCATG -ACGGAATCGTCTTCTTCGTGTGTG -ACGGAATCGTCTTCTTCGCTAGTG -ACGGAATCGTCTTCTTCGCATCTG -ACGGAATCGTCTTCTTCGGAGTTG -ACGGAATCGTCTTCTTCGAGACTG -ACGGAATCGTCTTCTTCGTCGGTA -ACGGAATCGTCTTCTTCGTGCCTA -ACGGAATCGTCTTCTTCGCCACTA -ACGGAATCGTCTTCTTCGGGAGTA -ACGGAATCGTCTTCTTCGTCGTCT -ACGGAATCGTCTTCTTCGTGCACT -ACGGAATCGTCTTCTTCGCTGACT -ACGGAATCGTCTTCTTCGCAACCT -ACGGAATCGTCTTCTTCGGCTACT -ACGGAATCGTCTTCTTCGGGATCT -ACGGAATCGTCTTCTTCGAAGGCT -ACGGAATCGTCTTCTTCGTCAACC -ACGGAATCGTCTTCTTCGTGTTCC -ACGGAATCGTCTTCTTCGATTCCC -ACGGAATCGTCTTCTTCGTTCTCG -ACGGAATCGTCTTCTTCGTAGACG -ACGGAATCGTCTTCTTCGGTAACG -ACGGAATCGTCTTCTTCGACTTCG -ACGGAATCGTCTTCTTCGTACGCA -ACGGAATCGTCTTCTTCGCTTGCA -ACGGAATCGTCTTCTTCGCGAACA -ACGGAATCGTCTTCTTCGCAGTCA -ACGGAATCGTCTTCTTCGGATCCA -ACGGAATCGTCTTCTTCGACGACA -ACGGAATCGTCTTCTTCGAGCTCA -ACGGAATCGTCTTCTTCGTCACGT -ACGGAATCGTCTTCTTCGCGTAGT -ACGGAATCGTCTTCTTCGGTCAGT -ACGGAATCGTCTTCTTCGGAAGGT -ACGGAATCGTCTTCTTCGAACCGT -ACGGAATCGTCTTCTTCGTTGTGC -ACGGAATCGTCTTCTTCGCTAAGC -ACGGAATCGTCTTCTTCGACTAGC -ACGGAATCGTCTTCTTCGAGATGC -ACGGAATCGTCTTCTTCGTGAAGG -ACGGAATCGTCTTCTTCGCAATGG -ACGGAATCGTCTTCTTCGATGAGG -ACGGAATCGTCTTCTTCGAATGGG -ACGGAATCGTCTTCTTCGTCCTGA -ACGGAATCGTCTTCTTCGTAGCGA -ACGGAATCGTCTTCTTCGCACAGA -ACGGAATCGTCTTCTTCGGCAAGA -ACGGAATCGTCTTCTTCGGGTTGA -ACGGAATCGTCTTCTTCGTCCGAT -ACGGAATCGTCTTCTTCGTGGCAT -ACGGAATCGTCTTCTTCGCGAGAT -ACGGAATCGTCTTCTTCGTACCAC -ACGGAATCGTCTTCTTCGCAGAAC -ACGGAATCGTCTTCTTCGGTCTAC -ACGGAATCGTCTTCTTCGACGTAC -ACGGAATCGTCTTCTTCGAGTGAC -ACGGAATCGTCTTCTTCGCTGTAG -ACGGAATCGTCTTCTTCGCCTAAG -ACGGAATCGTCTTCTTCGGTTCAG -ACGGAATCGTCTTCTTCGGCATAG -ACGGAATCGTCTTCTTCGGACAAG -ACGGAATCGTCTTCTTCGAAGCAG -ACGGAATCGTCTTCTTCGCGTCAA -ACGGAATCGTCTTCTTCGGCTGAA -ACGGAATCGTCTTCTTCGAGTACG -ACGGAATCGTCTTCTTCGATCCGA -ACGGAATCGTCTTCTTCGATGGGA -ACGGAATCGTCTTCTTCGGTGCAA -ACGGAATCGTCTTCTTCGGAGGAA -ACGGAATCGTCTTCTTCGCAGGTA -ACGGAATCGTCTTCTTCGGACTCT -ACGGAATCGTCTTCTTCGAGTCCT -ACGGAATCGTCTTCTTCGTAAGCC -ACGGAATCGTCTTCTTCGATAGCC -ACGGAATCGTCTTCTTCGTAACCG -ACGGAATCGTCTTCTTCGATGCCA -ACGGAATCGTCTACTTGCGGAAAC -ACGGAATCGTCTACTTGCAACACC -ACGGAATCGTCTACTTGCATCGAG -ACGGAATCGTCTACTTGCCTCCTT -ACGGAATCGTCTACTTGCCCTGTT -ACGGAATCGTCTACTTGCCGGTTT -ACGGAATCGTCTACTTGCGTGGTT -ACGGAATCGTCTACTTGCGCCTTT -ACGGAATCGTCTACTTGCGGTCTT -ACGGAATCGTCTACTTGCACGCTT -ACGGAATCGTCTACTTGCAGCGTT -ACGGAATCGTCTACTTGCTTCGTC -ACGGAATCGTCTACTTGCTCTCTC -ACGGAATCGTCTACTTGCTGGATC -ACGGAATCGTCTACTTGCCACTTC -ACGGAATCGTCTACTTGCGTACTC -ACGGAATCGTCTACTTGCGATGTC -ACGGAATCGTCTACTTGCACAGTC -ACGGAATCGTCTACTTGCTTGCTG -ACGGAATCGTCTACTTGCTCCATG -ACGGAATCGTCTACTTGCTGTGTG -ACGGAATCGTCTACTTGCCTAGTG -ACGGAATCGTCTACTTGCCATCTG -ACGGAATCGTCTACTTGCGAGTTG -ACGGAATCGTCTACTTGCAGACTG -ACGGAATCGTCTACTTGCTCGGTA -ACGGAATCGTCTACTTGCTGCCTA -ACGGAATCGTCTACTTGCCCACTA -ACGGAATCGTCTACTTGCGGAGTA -ACGGAATCGTCTACTTGCTCGTCT -ACGGAATCGTCTACTTGCTGCACT -ACGGAATCGTCTACTTGCCTGACT -ACGGAATCGTCTACTTGCCAACCT -ACGGAATCGTCTACTTGCGCTACT -ACGGAATCGTCTACTTGCGGATCT -ACGGAATCGTCTACTTGCAAGGCT -ACGGAATCGTCTACTTGCTCAACC -ACGGAATCGTCTACTTGCTGTTCC -ACGGAATCGTCTACTTGCATTCCC -ACGGAATCGTCTACTTGCTTCTCG -ACGGAATCGTCTACTTGCTAGACG -ACGGAATCGTCTACTTGCGTAACG -ACGGAATCGTCTACTTGCACTTCG -ACGGAATCGTCTACTTGCTACGCA -ACGGAATCGTCTACTTGCCTTGCA -ACGGAATCGTCTACTTGCCGAACA -ACGGAATCGTCTACTTGCCAGTCA -ACGGAATCGTCTACTTGCGATCCA -ACGGAATCGTCTACTTGCACGACA -ACGGAATCGTCTACTTGCAGCTCA -ACGGAATCGTCTACTTGCTCACGT -ACGGAATCGTCTACTTGCCGTAGT -ACGGAATCGTCTACTTGCGTCAGT -ACGGAATCGTCTACTTGCGAAGGT -ACGGAATCGTCTACTTGCAACCGT -ACGGAATCGTCTACTTGCTTGTGC -ACGGAATCGTCTACTTGCCTAAGC -ACGGAATCGTCTACTTGCACTAGC -ACGGAATCGTCTACTTGCAGATGC -ACGGAATCGTCTACTTGCTGAAGG -ACGGAATCGTCTACTTGCCAATGG -ACGGAATCGTCTACTTGCATGAGG -ACGGAATCGTCTACTTGCAATGGG -ACGGAATCGTCTACTTGCTCCTGA -ACGGAATCGTCTACTTGCTAGCGA -ACGGAATCGTCTACTTGCCACAGA -ACGGAATCGTCTACTTGCGCAAGA -ACGGAATCGTCTACTTGCGGTTGA -ACGGAATCGTCTACTTGCTCCGAT -ACGGAATCGTCTACTTGCTGGCAT -ACGGAATCGTCTACTTGCCGAGAT -ACGGAATCGTCTACTTGCTACCAC -ACGGAATCGTCTACTTGCCAGAAC -ACGGAATCGTCTACTTGCGTCTAC -ACGGAATCGTCTACTTGCACGTAC -ACGGAATCGTCTACTTGCAGTGAC -ACGGAATCGTCTACTTGCCTGTAG -ACGGAATCGTCTACTTGCCCTAAG -ACGGAATCGTCTACTTGCGTTCAG -ACGGAATCGTCTACTTGCGCATAG -ACGGAATCGTCTACTTGCGACAAG -ACGGAATCGTCTACTTGCAAGCAG -ACGGAATCGTCTACTTGCCGTCAA -ACGGAATCGTCTACTTGCGCTGAA -ACGGAATCGTCTACTTGCAGTACG -ACGGAATCGTCTACTTGCATCCGA -ACGGAATCGTCTACTTGCATGGGA -ACGGAATCGTCTACTTGCGTGCAA -ACGGAATCGTCTACTTGCGAGGAA -ACGGAATCGTCTACTTGCCAGGTA -ACGGAATCGTCTACTTGCGACTCT -ACGGAATCGTCTACTTGCAGTCCT -ACGGAATCGTCTACTTGCTAAGCC -ACGGAATCGTCTACTTGCATAGCC -ACGGAATCGTCTACTTGCTAACCG -ACGGAATCGTCTACTTGCATGCCA -ACGGAATCGTCTACTCTGGGAAAC -ACGGAATCGTCTACTCTGAACACC -ACGGAATCGTCTACTCTGATCGAG -ACGGAATCGTCTACTCTGCTCCTT -ACGGAATCGTCTACTCTGCCTGTT -ACGGAATCGTCTACTCTGCGGTTT -ACGGAATCGTCTACTCTGGTGGTT -ACGGAATCGTCTACTCTGGCCTTT -ACGGAATCGTCTACTCTGGGTCTT -ACGGAATCGTCTACTCTGACGCTT -ACGGAATCGTCTACTCTGAGCGTT -ACGGAATCGTCTACTCTGTTCGTC -ACGGAATCGTCTACTCTGTCTCTC -ACGGAATCGTCTACTCTGTGGATC -ACGGAATCGTCTACTCTGCACTTC -ACGGAATCGTCTACTCTGGTACTC -ACGGAATCGTCTACTCTGGATGTC -ACGGAATCGTCTACTCTGACAGTC -ACGGAATCGTCTACTCTGTTGCTG -ACGGAATCGTCTACTCTGTCCATG -ACGGAATCGTCTACTCTGTGTGTG -ACGGAATCGTCTACTCTGCTAGTG -ACGGAATCGTCTACTCTGCATCTG -ACGGAATCGTCTACTCTGGAGTTG -ACGGAATCGTCTACTCTGAGACTG -ACGGAATCGTCTACTCTGTCGGTA -ACGGAATCGTCTACTCTGTGCCTA -ACGGAATCGTCTACTCTGCCACTA -ACGGAATCGTCTACTCTGGGAGTA -ACGGAATCGTCTACTCTGTCGTCT -ACGGAATCGTCTACTCTGTGCACT -ACGGAATCGTCTACTCTGCTGACT -ACGGAATCGTCTACTCTGCAACCT -ACGGAATCGTCTACTCTGGCTACT -ACGGAATCGTCTACTCTGGGATCT -ACGGAATCGTCTACTCTGAAGGCT -ACGGAATCGTCTACTCTGTCAACC -ACGGAATCGTCTACTCTGTGTTCC -ACGGAATCGTCTACTCTGATTCCC -ACGGAATCGTCTACTCTGTTCTCG -ACGGAATCGTCTACTCTGTAGACG -ACGGAATCGTCTACTCTGGTAACG -ACGGAATCGTCTACTCTGACTTCG -ACGGAATCGTCTACTCTGTACGCA -ACGGAATCGTCTACTCTGCTTGCA -ACGGAATCGTCTACTCTGCGAACA -ACGGAATCGTCTACTCTGCAGTCA -ACGGAATCGTCTACTCTGGATCCA -ACGGAATCGTCTACTCTGACGACA -ACGGAATCGTCTACTCTGAGCTCA -ACGGAATCGTCTACTCTGTCACGT -ACGGAATCGTCTACTCTGCGTAGT -ACGGAATCGTCTACTCTGGTCAGT -ACGGAATCGTCTACTCTGGAAGGT -ACGGAATCGTCTACTCTGAACCGT -ACGGAATCGTCTACTCTGTTGTGC -ACGGAATCGTCTACTCTGCTAAGC -ACGGAATCGTCTACTCTGACTAGC -ACGGAATCGTCTACTCTGAGATGC -ACGGAATCGTCTACTCTGTGAAGG -ACGGAATCGTCTACTCTGCAATGG -ACGGAATCGTCTACTCTGATGAGG -ACGGAATCGTCTACTCTGAATGGG -ACGGAATCGTCTACTCTGTCCTGA -ACGGAATCGTCTACTCTGTAGCGA -ACGGAATCGTCTACTCTGCACAGA -ACGGAATCGTCTACTCTGGCAAGA -ACGGAATCGTCTACTCTGGGTTGA -ACGGAATCGTCTACTCTGTCCGAT -ACGGAATCGTCTACTCTGTGGCAT -ACGGAATCGTCTACTCTGCGAGAT -ACGGAATCGTCTACTCTGTACCAC -ACGGAATCGTCTACTCTGCAGAAC -ACGGAATCGTCTACTCTGGTCTAC -ACGGAATCGTCTACTCTGACGTAC -ACGGAATCGTCTACTCTGAGTGAC -ACGGAATCGTCTACTCTGCTGTAG -ACGGAATCGTCTACTCTGCCTAAG -ACGGAATCGTCTACTCTGGTTCAG -ACGGAATCGTCTACTCTGGCATAG -ACGGAATCGTCTACTCTGGACAAG -ACGGAATCGTCTACTCTGAAGCAG -ACGGAATCGTCTACTCTGCGTCAA -ACGGAATCGTCTACTCTGGCTGAA -ACGGAATCGTCTACTCTGAGTACG -ACGGAATCGTCTACTCTGATCCGA -ACGGAATCGTCTACTCTGATGGGA -ACGGAATCGTCTACTCTGGTGCAA -ACGGAATCGTCTACTCTGGAGGAA -ACGGAATCGTCTACTCTGCAGGTA -ACGGAATCGTCTACTCTGGACTCT -ACGGAATCGTCTACTCTGAGTCCT -ACGGAATCGTCTACTCTGTAAGCC -ACGGAATCGTCTACTCTGATAGCC -ACGGAATCGTCTACTCTGTAACCG -ACGGAATCGTCTACTCTGATGCCA -ACGGAATCGTCTCCTCAAGGAAAC -ACGGAATCGTCTCCTCAAAACACC -ACGGAATCGTCTCCTCAAATCGAG -ACGGAATCGTCTCCTCAACTCCTT -ACGGAATCGTCTCCTCAACCTGTT -ACGGAATCGTCTCCTCAACGGTTT -ACGGAATCGTCTCCTCAAGTGGTT -ACGGAATCGTCTCCTCAAGCCTTT -ACGGAATCGTCTCCTCAAGGTCTT -ACGGAATCGTCTCCTCAAACGCTT -ACGGAATCGTCTCCTCAAAGCGTT -ACGGAATCGTCTCCTCAATTCGTC -ACGGAATCGTCTCCTCAATCTCTC -ACGGAATCGTCTCCTCAATGGATC -ACGGAATCGTCTCCTCAACACTTC -ACGGAATCGTCTCCTCAAGTACTC -ACGGAATCGTCTCCTCAAGATGTC -ACGGAATCGTCTCCTCAAACAGTC -ACGGAATCGTCTCCTCAATTGCTG -ACGGAATCGTCTCCTCAATCCATG -ACGGAATCGTCTCCTCAATGTGTG -ACGGAATCGTCTCCTCAACTAGTG -ACGGAATCGTCTCCTCAACATCTG -ACGGAATCGTCTCCTCAAGAGTTG -ACGGAATCGTCTCCTCAAAGACTG -ACGGAATCGTCTCCTCAATCGGTA -ACGGAATCGTCTCCTCAATGCCTA -ACGGAATCGTCTCCTCAACCACTA -ACGGAATCGTCTCCTCAAGGAGTA -ACGGAATCGTCTCCTCAATCGTCT -ACGGAATCGTCTCCTCAATGCACT -ACGGAATCGTCTCCTCAACTGACT -ACGGAATCGTCTCCTCAACAACCT -ACGGAATCGTCTCCTCAAGCTACT -ACGGAATCGTCTCCTCAAGGATCT -ACGGAATCGTCTCCTCAAAAGGCT -ACGGAATCGTCTCCTCAATCAACC -ACGGAATCGTCTCCTCAATGTTCC -ACGGAATCGTCTCCTCAAATTCCC -ACGGAATCGTCTCCTCAATTCTCG -ACGGAATCGTCTCCTCAATAGACG -ACGGAATCGTCTCCTCAAGTAACG -ACGGAATCGTCTCCTCAAACTTCG -ACGGAATCGTCTCCTCAATACGCA -ACGGAATCGTCTCCTCAACTTGCA -ACGGAATCGTCTCCTCAACGAACA -ACGGAATCGTCTCCTCAACAGTCA -ACGGAATCGTCTCCTCAAGATCCA -ACGGAATCGTCTCCTCAAACGACA -ACGGAATCGTCTCCTCAAAGCTCA -ACGGAATCGTCTCCTCAATCACGT -ACGGAATCGTCTCCTCAACGTAGT -ACGGAATCGTCTCCTCAAGTCAGT -ACGGAATCGTCTCCTCAAGAAGGT -ACGGAATCGTCTCCTCAAAACCGT -ACGGAATCGTCTCCTCAATTGTGC -ACGGAATCGTCTCCTCAACTAAGC -ACGGAATCGTCTCCTCAAACTAGC -ACGGAATCGTCTCCTCAAAGATGC -ACGGAATCGTCTCCTCAATGAAGG -ACGGAATCGTCTCCTCAACAATGG -ACGGAATCGTCTCCTCAAATGAGG -ACGGAATCGTCTCCTCAAAATGGG -ACGGAATCGTCTCCTCAATCCTGA -ACGGAATCGTCTCCTCAATAGCGA -ACGGAATCGTCTCCTCAACACAGA -ACGGAATCGTCTCCTCAAGCAAGA -ACGGAATCGTCTCCTCAAGGTTGA -ACGGAATCGTCTCCTCAATCCGAT -ACGGAATCGTCTCCTCAATGGCAT -ACGGAATCGTCTCCTCAACGAGAT -ACGGAATCGTCTCCTCAATACCAC -ACGGAATCGTCTCCTCAACAGAAC -ACGGAATCGTCTCCTCAAGTCTAC -ACGGAATCGTCTCCTCAAACGTAC -ACGGAATCGTCTCCTCAAAGTGAC -ACGGAATCGTCTCCTCAACTGTAG -ACGGAATCGTCTCCTCAACCTAAG -ACGGAATCGTCTCCTCAAGTTCAG -ACGGAATCGTCTCCTCAAGCATAG -ACGGAATCGTCTCCTCAAGACAAG -ACGGAATCGTCTCCTCAAAAGCAG -ACGGAATCGTCTCCTCAACGTCAA -ACGGAATCGTCTCCTCAAGCTGAA -ACGGAATCGTCTCCTCAAAGTACG -ACGGAATCGTCTCCTCAAATCCGA -ACGGAATCGTCTCCTCAAATGGGA -ACGGAATCGTCTCCTCAAGTGCAA -ACGGAATCGTCTCCTCAAGAGGAA -ACGGAATCGTCTCCTCAACAGGTA -ACGGAATCGTCTCCTCAAGACTCT -ACGGAATCGTCTCCTCAAAGTCCT -ACGGAATCGTCTCCTCAATAAGCC -ACGGAATCGTCTCCTCAAATAGCC -ACGGAATCGTCTCCTCAATAACCG -ACGGAATCGTCTCCTCAAATGCCA -ACGGAATCGTCTACTGCTGGAAAC -ACGGAATCGTCTACTGCTAACACC -ACGGAATCGTCTACTGCTATCGAG -ACGGAATCGTCTACTGCTCTCCTT -ACGGAATCGTCTACTGCTCCTGTT -ACGGAATCGTCTACTGCTCGGTTT -ACGGAATCGTCTACTGCTGTGGTT -ACGGAATCGTCTACTGCTGCCTTT -ACGGAATCGTCTACTGCTGGTCTT -ACGGAATCGTCTACTGCTACGCTT -ACGGAATCGTCTACTGCTAGCGTT -ACGGAATCGTCTACTGCTTTCGTC -ACGGAATCGTCTACTGCTTCTCTC -ACGGAATCGTCTACTGCTTGGATC -ACGGAATCGTCTACTGCTCACTTC -ACGGAATCGTCTACTGCTGTACTC -ACGGAATCGTCTACTGCTGATGTC -ACGGAATCGTCTACTGCTACAGTC -ACGGAATCGTCTACTGCTTTGCTG -ACGGAATCGTCTACTGCTTCCATG -ACGGAATCGTCTACTGCTTGTGTG -ACGGAATCGTCTACTGCTCTAGTG -ACGGAATCGTCTACTGCTCATCTG -ACGGAATCGTCTACTGCTGAGTTG -ACGGAATCGTCTACTGCTAGACTG -ACGGAATCGTCTACTGCTTCGGTA -ACGGAATCGTCTACTGCTTGCCTA -ACGGAATCGTCTACTGCTCCACTA -ACGGAATCGTCTACTGCTGGAGTA -ACGGAATCGTCTACTGCTTCGTCT -ACGGAATCGTCTACTGCTTGCACT -ACGGAATCGTCTACTGCTCTGACT -ACGGAATCGTCTACTGCTCAACCT -ACGGAATCGTCTACTGCTGCTACT -ACGGAATCGTCTACTGCTGGATCT -ACGGAATCGTCTACTGCTAAGGCT -ACGGAATCGTCTACTGCTTCAACC -ACGGAATCGTCTACTGCTTGTTCC -ACGGAATCGTCTACTGCTATTCCC -ACGGAATCGTCTACTGCTTTCTCG -ACGGAATCGTCTACTGCTTAGACG -ACGGAATCGTCTACTGCTGTAACG -ACGGAATCGTCTACTGCTACTTCG -ACGGAATCGTCTACTGCTTACGCA -ACGGAATCGTCTACTGCTCTTGCA -ACGGAATCGTCTACTGCTCGAACA -ACGGAATCGTCTACTGCTCAGTCA -ACGGAATCGTCTACTGCTGATCCA -ACGGAATCGTCTACTGCTACGACA -ACGGAATCGTCTACTGCTAGCTCA -ACGGAATCGTCTACTGCTTCACGT -ACGGAATCGTCTACTGCTCGTAGT -ACGGAATCGTCTACTGCTGTCAGT -ACGGAATCGTCTACTGCTGAAGGT -ACGGAATCGTCTACTGCTAACCGT -ACGGAATCGTCTACTGCTTTGTGC -ACGGAATCGTCTACTGCTCTAAGC -ACGGAATCGTCTACTGCTACTAGC -ACGGAATCGTCTACTGCTAGATGC -ACGGAATCGTCTACTGCTTGAAGG -ACGGAATCGTCTACTGCTCAATGG -ACGGAATCGTCTACTGCTATGAGG -ACGGAATCGTCTACTGCTAATGGG -ACGGAATCGTCTACTGCTTCCTGA -ACGGAATCGTCTACTGCTTAGCGA -ACGGAATCGTCTACTGCTCACAGA -ACGGAATCGTCTACTGCTGCAAGA -ACGGAATCGTCTACTGCTGGTTGA -ACGGAATCGTCTACTGCTTCCGAT -ACGGAATCGTCTACTGCTTGGCAT -ACGGAATCGTCTACTGCTCGAGAT -ACGGAATCGTCTACTGCTTACCAC -ACGGAATCGTCTACTGCTCAGAAC -ACGGAATCGTCTACTGCTGTCTAC -ACGGAATCGTCTACTGCTACGTAC -ACGGAATCGTCTACTGCTAGTGAC -ACGGAATCGTCTACTGCTCTGTAG -ACGGAATCGTCTACTGCTCCTAAG -ACGGAATCGTCTACTGCTGTTCAG -ACGGAATCGTCTACTGCTGCATAG -ACGGAATCGTCTACTGCTGACAAG -ACGGAATCGTCTACTGCTAAGCAG -ACGGAATCGTCTACTGCTCGTCAA -ACGGAATCGTCTACTGCTGCTGAA -ACGGAATCGTCTACTGCTAGTACG -ACGGAATCGTCTACTGCTATCCGA -ACGGAATCGTCTACTGCTATGGGA -ACGGAATCGTCTACTGCTGTGCAA -ACGGAATCGTCTACTGCTGAGGAA -ACGGAATCGTCTACTGCTCAGGTA -ACGGAATCGTCTACTGCTGACTCT -ACGGAATCGTCTACTGCTAGTCCT -ACGGAATCGTCTACTGCTTAAGCC -ACGGAATCGTCTACTGCTATAGCC -ACGGAATCGTCTACTGCTTAACCG -ACGGAATCGTCTACTGCTATGCCA -ACGGAATCGTCTTCTGGAGGAAAC -ACGGAATCGTCTTCTGGAAACACC -ACGGAATCGTCTTCTGGAATCGAG -ACGGAATCGTCTTCTGGACTCCTT -ACGGAATCGTCTTCTGGACCTGTT -ACGGAATCGTCTTCTGGACGGTTT -ACGGAATCGTCTTCTGGAGTGGTT -ACGGAATCGTCTTCTGGAGCCTTT -ACGGAATCGTCTTCTGGAGGTCTT -ACGGAATCGTCTTCTGGAACGCTT -ACGGAATCGTCTTCTGGAAGCGTT -ACGGAATCGTCTTCTGGATTCGTC -ACGGAATCGTCTTCTGGATCTCTC -ACGGAATCGTCTTCTGGATGGATC -ACGGAATCGTCTTCTGGACACTTC -ACGGAATCGTCTTCTGGAGTACTC -ACGGAATCGTCTTCTGGAGATGTC -ACGGAATCGTCTTCTGGAACAGTC -ACGGAATCGTCTTCTGGATTGCTG -ACGGAATCGTCTTCTGGATCCATG -ACGGAATCGTCTTCTGGATGTGTG -ACGGAATCGTCTTCTGGACTAGTG -ACGGAATCGTCTTCTGGACATCTG -ACGGAATCGTCTTCTGGAGAGTTG -ACGGAATCGTCTTCTGGAAGACTG -ACGGAATCGTCTTCTGGATCGGTA -ACGGAATCGTCTTCTGGATGCCTA -ACGGAATCGTCTTCTGGACCACTA -ACGGAATCGTCTTCTGGAGGAGTA -ACGGAATCGTCTTCTGGATCGTCT -ACGGAATCGTCTTCTGGATGCACT -ACGGAATCGTCTTCTGGACTGACT -ACGGAATCGTCTTCTGGACAACCT -ACGGAATCGTCTTCTGGAGCTACT -ACGGAATCGTCTTCTGGAGGATCT -ACGGAATCGTCTTCTGGAAAGGCT -ACGGAATCGTCTTCTGGATCAACC -ACGGAATCGTCTTCTGGATGTTCC -ACGGAATCGTCTTCTGGAATTCCC -ACGGAATCGTCTTCTGGATTCTCG -ACGGAATCGTCTTCTGGATAGACG -ACGGAATCGTCTTCTGGAGTAACG -ACGGAATCGTCTTCTGGAACTTCG -ACGGAATCGTCTTCTGGATACGCA -ACGGAATCGTCTTCTGGACTTGCA -ACGGAATCGTCTTCTGGACGAACA -ACGGAATCGTCTTCTGGACAGTCA -ACGGAATCGTCTTCTGGAGATCCA -ACGGAATCGTCTTCTGGAACGACA -ACGGAATCGTCTTCTGGAAGCTCA -ACGGAATCGTCTTCTGGATCACGT -ACGGAATCGTCTTCTGGACGTAGT -ACGGAATCGTCTTCTGGAGTCAGT -ACGGAATCGTCTTCTGGAGAAGGT -ACGGAATCGTCTTCTGGAAACCGT -ACGGAATCGTCTTCTGGATTGTGC -ACGGAATCGTCTTCTGGACTAAGC -ACGGAATCGTCTTCTGGAACTAGC -ACGGAATCGTCTTCTGGAAGATGC -ACGGAATCGTCTTCTGGATGAAGG -ACGGAATCGTCTTCTGGACAATGG -ACGGAATCGTCTTCTGGAATGAGG -ACGGAATCGTCTTCTGGAAATGGG -ACGGAATCGTCTTCTGGATCCTGA -ACGGAATCGTCTTCTGGATAGCGA -ACGGAATCGTCTTCTGGACACAGA -ACGGAATCGTCTTCTGGAGCAAGA -ACGGAATCGTCTTCTGGAGGTTGA -ACGGAATCGTCTTCTGGATCCGAT -ACGGAATCGTCTTCTGGATGGCAT -ACGGAATCGTCTTCTGGACGAGAT -ACGGAATCGTCTTCTGGATACCAC -ACGGAATCGTCTTCTGGACAGAAC -ACGGAATCGTCTTCTGGAGTCTAC -ACGGAATCGTCTTCTGGAACGTAC -ACGGAATCGTCTTCTGGAAGTGAC -ACGGAATCGTCTTCTGGACTGTAG -ACGGAATCGTCTTCTGGACCTAAG -ACGGAATCGTCTTCTGGAGTTCAG -ACGGAATCGTCTTCTGGAGCATAG -ACGGAATCGTCTTCTGGAGACAAG -ACGGAATCGTCTTCTGGAAAGCAG -ACGGAATCGTCTTCTGGACGTCAA -ACGGAATCGTCTTCTGGAGCTGAA -ACGGAATCGTCTTCTGGAAGTACG -ACGGAATCGTCTTCTGGAATCCGA -ACGGAATCGTCTTCTGGAATGGGA -ACGGAATCGTCTTCTGGAGTGCAA -ACGGAATCGTCTTCTGGAGAGGAA -ACGGAATCGTCTTCTGGACAGGTA -ACGGAATCGTCTTCTGGAGACTCT -ACGGAATCGTCTTCTGGAAGTCCT -ACGGAATCGTCTTCTGGATAAGCC -ACGGAATCGTCTTCTGGAATAGCC -ACGGAATCGTCTTCTGGATAACCG -ACGGAATCGTCTTCTGGAATGCCA -ACGGAATCGTCTGCTAAGGGAAAC -ACGGAATCGTCTGCTAAGAACACC -ACGGAATCGTCTGCTAAGATCGAG -ACGGAATCGTCTGCTAAGCTCCTT -ACGGAATCGTCTGCTAAGCCTGTT -ACGGAATCGTCTGCTAAGCGGTTT -ACGGAATCGTCTGCTAAGGTGGTT -ACGGAATCGTCTGCTAAGGCCTTT -ACGGAATCGTCTGCTAAGGGTCTT -ACGGAATCGTCTGCTAAGACGCTT -ACGGAATCGTCTGCTAAGAGCGTT -ACGGAATCGTCTGCTAAGTTCGTC -ACGGAATCGTCTGCTAAGTCTCTC -ACGGAATCGTCTGCTAAGTGGATC -ACGGAATCGTCTGCTAAGCACTTC -ACGGAATCGTCTGCTAAGGTACTC -ACGGAATCGTCTGCTAAGGATGTC -ACGGAATCGTCTGCTAAGACAGTC -ACGGAATCGTCTGCTAAGTTGCTG -ACGGAATCGTCTGCTAAGTCCATG -ACGGAATCGTCTGCTAAGTGTGTG -ACGGAATCGTCTGCTAAGCTAGTG -ACGGAATCGTCTGCTAAGCATCTG -ACGGAATCGTCTGCTAAGGAGTTG -ACGGAATCGTCTGCTAAGAGACTG -ACGGAATCGTCTGCTAAGTCGGTA -ACGGAATCGTCTGCTAAGTGCCTA -ACGGAATCGTCTGCTAAGCCACTA -ACGGAATCGTCTGCTAAGGGAGTA -ACGGAATCGTCTGCTAAGTCGTCT -ACGGAATCGTCTGCTAAGTGCACT -ACGGAATCGTCTGCTAAGCTGACT -ACGGAATCGTCTGCTAAGCAACCT -ACGGAATCGTCTGCTAAGGCTACT -ACGGAATCGTCTGCTAAGGGATCT -ACGGAATCGTCTGCTAAGAAGGCT -ACGGAATCGTCTGCTAAGTCAACC -ACGGAATCGTCTGCTAAGTGTTCC -ACGGAATCGTCTGCTAAGATTCCC -ACGGAATCGTCTGCTAAGTTCTCG -ACGGAATCGTCTGCTAAGTAGACG -ACGGAATCGTCTGCTAAGGTAACG -ACGGAATCGTCTGCTAAGACTTCG -ACGGAATCGTCTGCTAAGTACGCA -ACGGAATCGTCTGCTAAGCTTGCA -ACGGAATCGTCTGCTAAGCGAACA -ACGGAATCGTCTGCTAAGCAGTCA -ACGGAATCGTCTGCTAAGGATCCA -ACGGAATCGTCTGCTAAGACGACA -ACGGAATCGTCTGCTAAGAGCTCA -ACGGAATCGTCTGCTAAGTCACGT -ACGGAATCGTCTGCTAAGCGTAGT -ACGGAATCGTCTGCTAAGGTCAGT -ACGGAATCGTCTGCTAAGGAAGGT -ACGGAATCGTCTGCTAAGAACCGT -ACGGAATCGTCTGCTAAGTTGTGC -ACGGAATCGTCTGCTAAGCTAAGC -ACGGAATCGTCTGCTAAGACTAGC -ACGGAATCGTCTGCTAAGAGATGC -ACGGAATCGTCTGCTAAGTGAAGG -ACGGAATCGTCTGCTAAGCAATGG -ACGGAATCGTCTGCTAAGATGAGG -ACGGAATCGTCTGCTAAGAATGGG -ACGGAATCGTCTGCTAAGTCCTGA -ACGGAATCGTCTGCTAAGTAGCGA -ACGGAATCGTCTGCTAAGCACAGA -ACGGAATCGTCTGCTAAGGCAAGA -ACGGAATCGTCTGCTAAGGGTTGA -ACGGAATCGTCTGCTAAGTCCGAT -ACGGAATCGTCTGCTAAGTGGCAT -ACGGAATCGTCTGCTAAGCGAGAT -ACGGAATCGTCTGCTAAGTACCAC -ACGGAATCGTCTGCTAAGCAGAAC -ACGGAATCGTCTGCTAAGGTCTAC -ACGGAATCGTCTGCTAAGACGTAC -ACGGAATCGTCTGCTAAGAGTGAC -ACGGAATCGTCTGCTAAGCTGTAG -ACGGAATCGTCTGCTAAGCCTAAG -ACGGAATCGTCTGCTAAGGTTCAG -ACGGAATCGTCTGCTAAGGCATAG -ACGGAATCGTCTGCTAAGGACAAG -ACGGAATCGTCTGCTAAGAAGCAG -ACGGAATCGTCTGCTAAGCGTCAA -ACGGAATCGTCTGCTAAGGCTGAA -ACGGAATCGTCTGCTAAGAGTACG -ACGGAATCGTCTGCTAAGATCCGA -ACGGAATCGTCTGCTAAGATGGGA -ACGGAATCGTCTGCTAAGGTGCAA -ACGGAATCGTCTGCTAAGGAGGAA -ACGGAATCGTCTGCTAAGCAGGTA -ACGGAATCGTCTGCTAAGGACTCT -ACGGAATCGTCTGCTAAGAGTCCT -ACGGAATCGTCTGCTAAGTAAGCC -ACGGAATCGTCTGCTAAGATAGCC -ACGGAATCGTCTGCTAAGTAACCG -ACGGAATCGTCTGCTAAGATGCCA -ACGGAATCGTCTACCTCAGGAAAC -ACGGAATCGTCTACCTCAAACACC -ACGGAATCGTCTACCTCAATCGAG -ACGGAATCGTCTACCTCACTCCTT -ACGGAATCGTCTACCTCACCTGTT -ACGGAATCGTCTACCTCACGGTTT -ACGGAATCGTCTACCTCAGTGGTT -ACGGAATCGTCTACCTCAGCCTTT -ACGGAATCGTCTACCTCAGGTCTT -ACGGAATCGTCTACCTCAACGCTT -ACGGAATCGTCTACCTCAAGCGTT -ACGGAATCGTCTACCTCATTCGTC -ACGGAATCGTCTACCTCATCTCTC -ACGGAATCGTCTACCTCATGGATC -ACGGAATCGTCTACCTCACACTTC -ACGGAATCGTCTACCTCAGTACTC -ACGGAATCGTCTACCTCAGATGTC -ACGGAATCGTCTACCTCAACAGTC -ACGGAATCGTCTACCTCATTGCTG -ACGGAATCGTCTACCTCATCCATG -ACGGAATCGTCTACCTCATGTGTG -ACGGAATCGTCTACCTCACTAGTG -ACGGAATCGTCTACCTCACATCTG -ACGGAATCGTCTACCTCAGAGTTG -ACGGAATCGTCTACCTCAAGACTG -ACGGAATCGTCTACCTCATCGGTA -ACGGAATCGTCTACCTCATGCCTA -ACGGAATCGTCTACCTCACCACTA -ACGGAATCGTCTACCTCAGGAGTA -ACGGAATCGTCTACCTCATCGTCT -ACGGAATCGTCTACCTCATGCACT -ACGGAATCGTCTACCTCACTGACT -ACGGAATCGTCTACCTCACAACCT -ACGGAATCGTCTACCTCAGCTACT -ACGGAATCGTCTACCTCAGGATCT -ACGGAATCGTCTACCTCAAAGGCT -ACGGAATCGTCTACCTCATCAACC -ACGGAATCGTCTACCTCATGTTCC -ACGGAATCGTCTACCTCAATTCCC -ACGGAATCGTCTACCTCATTCTCG -ACGGAATCGTCTACCTCATAGACG -ACGGAATCGTCTACCTCAGTAACG -ACGGAATCGTCTACCTCAACTTCG -ACGGAATCGTCTACCTCATACGCA -ACGGAATCGTCTACCTCACTTGCA -ACGGAATCGTCTACCTCACGAACA -ACGGAATCGTCTACCTCACAGTCA -ACGGAATCGTCTACCTCAGATCCA -ACGGAATCGTCTACCTCAACGACA -ACGGAATCGTCTACCTCAAGCTCA -ACGGAATCGTCTACCTCATCACGT -ACGGAATCGTCTACCTCACGTAGT -ACGGAATCGTCTACCTCAGTCAGT -ACGGAATCGTCTACCTCAGAAGGT -ACGGAATCGTCTACCTCAAACCGT -ACGGAATCGTCTACCTCATTGTGC -ACGGAATCGTCTACCTCACTAAGC -ACGGAATCGTCTACCTCAACTAGC -ACGGAATCGTCTACCTCAAGATGC -ACGGAATCGTCTACCTCATGAAGG -ACGGAATCGTCTACCTCACAATGG -ACGGAATCGTCTACCTCAATGAGG -ACGGAATCGTCTACCTCAAATGGG -ACGGAATCGTCTACCTCATCCTGA -ACGGAATCGTCTACCTCATAGCGA -ACGGAATCGTCTACCTCACACAGA -ACGGAATCGTCTACCTCAGCAAGA -ACGGAATCGTCTACCTCAGGTTGA -ACGGAATCGTCTACCTCATCCGAT -ACGGAATCGTCTACCTCATGGCAT -ACGGAATCGTCTACCTCACGAGAT -ACGGAATCGTCTACCTCATACCAC -ACGGAATCGTCTACCTCACAGAAC -ACGGAATCGTCTACCTCAGTCTAC -ACGGAATCGTCTACCTCAACGTAC -ACGGAATCGTCTACCTCAAGTGAC -ACGGAATCGTCTACCTCACTGTAG -ACGGAATCGTCTACCTCACCTAAG -ACGGAATCGTCTACCTCAGTTCAG -ACGGAATCGTCTACCTCAGCATAG -ACGGAATCGTCTACCTCAGACAAG -ACGGAATCGTCTACCTCAAAGCAG -ACGGAATCGTCTACCTCACGTCAA -ACGGAATCGTCTACCTCAGCTGAA -ACGGAATCGTCTACCTCAAGTACG -ACGGAATCGTCTACCTCAATCCGA -ACGGAATCGTCTACCTCAATGGGA -ACGGAATCGTCTACCTCAGTGCAA -ACGGAATCGTCTACCTCAGAGGAA -ACGGAATCGTCTACCTCACAGGTA -ACGGAATCGTCTACCTCAGACTCT -ACGGAATCGTCTACCTCAAGTCCT -ACGGAATCGTCTACCTCATAAGCC -ACGGAATCGTCTACCTCAATAGCC -ACGGAATCGTCTACCTCATAACCG -ACGGAATCGTCTACCTCAATGCCA -ACGGAATCGTCTTCCTGTGGAAAC -ACGGAATCGTCTTCCTGTAACACC -ACGGAATCGTCTTCCTGTATCGAG -ACGGAATCGTCTTCCTGTCTCCTT -ACGGAATCGTCTTCCTGTCCTGTT -ACGGAATCGTCTTCCTGTCGGTTT -ACGGAATCGTCTTCCTGTGTGGTT -ACGGAATCGTCTTCCTGTGCCTTT -ACGGAATCGTCTTCCTGTGGTCTT -ACGGAATCGTCTTCCTGTACGCTT -ACGGAATCGTCTTCCTGTAGCGTT -ACGGAATCGTCTTCCTGTTTCGTC -ACGGAATCGTCTTCCTGTTCTCTC -ACGGAATCGTCTTCCTGTTGGATC -ACGGAATCGTCTTCCTGTCACTTC -ACGGAATCGTCTTCCTGTGTACTC -ACGGAATCGTCTTCCTGTGATGTC -ACGGAATCGTCTTCCTGTACAGTC -ACGGAATCGTCTTCCTGTTTGCTG -ACGGAATCGTCTTCCTGTTCCATG -ACGGAATCGTCTTCCTGTTGTGTG -ACGGAATCGTCTTCCTGTCTAGTG -ACGGAATCGTCTTCCTGTCATCTG -ACGGAATCGTCTTCCTGTGAGTTG -ACGGAATCGTCTTCCTGTAGACTG -ACGGAATCGTCTTCCTGTTCGGTA -ACGGAATCGTCTTCCTGTTGCCTA -ACGGAATCGTCTTCCTGTCCACTA -ACGGAATCGTCTTCCTGTGGAGTA -ACGGAATCGTCTTCCTGTTCGTCT -ACGGAATCGTCTTCCTGTTGCACT -ACGGAATCGTCTTCCTGTCTGACT -ACGGAATCGTCTTCCTGTCAACCT -ACGGAATCGTCTTCCTGTGCTACT -ACGGAATCGTCTTCCTGTGGATCT -ACGGAATCGTCTTCCTGTAAGGCT -ACGGAATCGTCTTCCTGTTCAACC -ACGGAATCGTCTTCCTGTTGTTCC -ACGGAATCGTCTTCCTGTATTCCC -ACGGAATCGTCTTCCTGTTTCTCG -ACGGAATCGTCTTCCTGTTAGACG -ACGGAATCGTCTTCCTGTGTAACG -ACGGAATCGTCTTCCTGTACTTCG -ACGGAATCGTCTTCCTGTTACGCA -ACGGAATCGTCTTCCTGTCTTGCA -ACGGAATCGTCTTCCTGTCGAACA -ACGGAATCGTCTTCCTGTCAGTCA -ACGGAATCGTCTTCCTGTGATCCA -ACGGAATCGTCTTCCTGTACGACA -ACGGAATCGTCTTCCTGTAGCTCA -ACGGAATCGTCTTCCTGTTCACGT -ACGGAATCGTCTTCCTGTCGTAGT -ACGGAATCGTCTTCCTGTGTCAGT -ACGGAATCGTCTTCCTGTGAAGGT -ACGGAATCGTCTTCCTGTAACCGT -ACGGAATCGTCTTCCTGTTTGTGC -ACGGAATCGTCTTCCTGTCTAAGC -ACGGAATCGTCTTCCTGTACTAGC -ACGGAATCGTCTTCCTGTAGATGC -ACGGAATCGTCTTCCTGTTGAAGG -ACGGAATCGTCTTCCTGTCAATGG -ACGGAATCGTCTTCCTGTATGAGG -ACGGAATCGTCTTCCTGTAATGGG -ACGGAATCGTCTTCCTGTTCCTGA -ACGGAATCGTCTTCCTGTTAGCGA -ACGGAATCGTCTTCCTGTCACAGA -ACGGAATCGTCTTCCTGTGCAAGA -ACGGAATCGTCTTCCTGTGGTTGA -ACGGAATCGTCTTCCTGTTCCGAT -ACGGAATCGTCTTCCTGTTGGCAT -ACGGAATCGTCTTCCTGTCGAGAT -ACGGAATCGTCTTCCTGTTACCAC -ACGGAATCGTCTTCCTGTCAGAAC -ACGGAATCGTCTTCCTGTGTCTAC -ACGGAATCGTCTTCCTGTACGTAC -ACGGAATCGTCTTCCTGTAGTGAC -ACGGAATCGTCTTCCTGTCTGTAG -ACGGAATCGTCTTCCTGTCCTAAG -ACGGAATCGTCTTCCTGTGTTCAG -ACGGAATCGTCTTCCTGTGCATAG -ACGGAATCGTCTTCCTGTGACAAG -ACGGAATCGTCTTCCTGTAAGCAG -ACGGAATCGTCTTCCTGTCGTCAA -ACGGAATCGTCTTCCTGTGCTGAA -ACGGAATCGTCTTCCTGTAGTACG -ACGGAATCGTCTTCCTGTATCCGA -ACGGAATCGTCTTCCTGTATGGGA -ACGGAATCGTCTTCCTGTGTGCAA -ACGGAATCGTCTTCCTGTGAGGAA -ACGGAATCGTCTTCCTGTCAGGTA -ACGGAATCGTCTTCCTGTGACTCT -ACGGAATCGTCTTCCTGTAGTCCT -ACGGAATCGTCTTCCTGTTAAGCC -ACGGAATCGTCTTCCTGTATAGCC -ACGGAATCGTCTTCCTGTTAACCG -ACGGAATCGTCTTCCTGTATGCCA -ACGGAATCGTCTCCCATTGGAAAC -ACGGAATCGTCTCCCATTAACACC -ACGGAATCGTCTCCCATTATCGAG -ACGGAATCGTCTCCCATTCTCCTT -ACGGAATCGTCTCCCATTCCTGTT -ACGGAATCGTCTCCCATTCGGTTT -ACGGAATCGTCTCCCATTGTGGTT -ACGGAATCGTCTCCCATTGCCTTT -ACGGAATCGTCTCCCATTGGTCTT -ACGGAATCGTCTCCCATTACGCTT -ACGGAATCGTCTCCCATTAGCGTT -ACGGAATCGTCTCCCATTTTCGTC -ACGGAATCGTCTCCCATTTCTCTC -ACGGAATCGTCTCCCATTTGGATC -ACGGAATCGTCTCCCATTCACTTC -ACGGAATCGTCTCCCATTGTACTC -ACGGAATCGTCTCCCATTGATGTC -ACGGAATCGTCTCCCATTACAGTC -ACGGAATCGTCTCCCATTTTGCTG -ACGGAATCGTCTCCCATTTCCATG -ACGGAATCGTCTCCCATTTGTGTG -ACGGAATCGTCTCCCATTCTAGTG -ACGGAATCGTCTCCCATTCATCTG -ACGGAATCGTCTCCCATTGAGTTG -ACGGAATCGTCTCCCATTAGACTG -ACGGAATCGTCTCCCATTTCGGTA -ACGGAATCGTCTCCCATTTGCCTA -ACGGAATCGTCTCCCATTCCACTA -ACGGAATCGTCTCCCATTGGAGTA -ACGGAATCGTCTCCCATTTCGTCT -ACGGAATCGTCTCCCATTTGCACT -ACGGAATCGTCTCCCATTCTGACT -ACGGAATCGTCTCCCATTCAACCT -ACGGAATCGTCTCCCATTGCTACT -ACGGAATCGTCTCCCATTGGATCT -ACGGAATCGTCTCCCATTAAGGCT -ACGGAATCGTCTCCCATTTCAACC -ACGGAATCGTCTCCCATTTGTTCC -ACGGAATCGTCTCCCATTATTCCC -ACGGAATCGTCTCCCATTTTCTCG -ACGGAATCGTCTCCCATTTAGACG -ACGGAATCGTCTCCCATTGTAACG -ACGGAATCGTCTCCCATTACTTCG -ACGGAATCGTCTCCCATTTACGCA -ACGGAATCGTCTCCCATTCTTGCA -ACGGAATCGTCTCCCATTCGAACA -ACGGAATCGTCTCCCATTCAGTCA -ACGGAATCGTCTCCCATTGATCCA -ACGGAATCGTCTCCCATTACGACA -ACGGAATCGTCTCCCATTAGCTCA -ACGGAATCGTCTCCCATTTCACGT -ACGGAATCGTCTCCCATTCGTAGT -ACGGAATCGTCTCCCATTGTCAGT -ACGGAATCGTCTCCCATTGAAGGT -ACGGAATCGTCTCCCATTAACCGT -ACGGAATCGTCTCCCATTTTGTGC -ACGGAATCGTCTCCCATTCTAAGC -ACGGAATCGTCTCCCATTACTAGC -ACGGAATCGTCTCCCATTAGATGC -ACGGAATCGTCTCCCATTTGAAGG -ACGGAATCGTCTCCCATTCAATGG -ACGGAATCGTCTCCCATTATGAGG -ACGGAATCGTCTCCCATTAATGGG -ACGGAATCGTCTCCCATTTCCTGA -ACGGAATCGTCTCCCATTTAGCGA -ACGGAATCGTCTCCCATTCACAGA -ACGGAATCGTCTCCCATTGCAAGA -ACGGAATCGTCTCCCATTGGTTGA -ACGGAATCGTCTCCCATTTCCGAT -ACGGAATCGTCTCCCATTTGGCAT -ACGGAATCGTCTCCCATTCGAGAT -ACGGAATCGTCTCCCATTTACCAC -ACGGAATCGTCTCCCATTCAGAAC -ACGGAATCGTCTCCCATTGTCTAC -ACGGAATCGTCTCCCATTACGTAC -ACGGAATCGTCTCCCATTAGTGAC -ACGGAATCGTCTCCCATTCTGTAG -ACGGAATCGTCTCCCATTCCTAAG -ACGGAATCGTCTCCCATTGTTCAG -ACGGAATCGTCTCCCATTGCATAG -ACGGAATCGTCTCCCATTGACAAG -ACGGAATCGTCTCCCATTAAGCAG -ACGGAATCGTCTCCCATTCGTCAA -ACGGAATCGTCTCCCATTGCTGAA -ACGGAATCGTCTCCCATTAGTACG -ACGGAATCGTCTCCCATTATCCGA -ACGGAATCGTCTCCCATTATGGGA -ACGGAATCGTCTCCCATTGTGCAA -ACGGAATCGTCTCCCATTGAGGAA -ACGGAATCGTCTCCCATTCAGGTA -ACGGAATCGTCTCCCATTGACTCT -ACGGAATCGTCTCCCATTAGTCCT -ACGGAATCGTCTCCCATTTAAGCC -ACGGAATCGTCTCCCATTATAGCC -ACGGAATCGTCTCCCATTTAACCG -ACGGAATCGTCTCCCATTATGCCA -ACGGAATCGTCTTCGTTCGGAAAC -ACGGAATCGTCTTCGTTCAACACC -ACGGAATCGTCTTCGTTCATCGAG -ACGGAATCGTCTTCGTTCCTCCTT -ACGGAATCGTCTTCGTTCCCTGTT -ACGGAATCGTCTTCGTTCCGGTTT -ACGGAATCGTCTTCGTTCGTGGTT -ACGGAATCGTCTTCGTTCGCCTTT -ACGGAATCGTCTTCGTTCGGTCTT -ACGGAATCGTCTTCGTTCACGCTT -ACGGAATCGTCTTCGTTCAGCGTT -ACGGAATCGTCTTCGTTCTTCGTC -ACGGAATCGTCTTCGTTCTCTCTC -ACGGAATCGTCTTCGTTCTGGATC -ACGGAATCGTCTTCGTTCCACTTC -ACGGAATCGTCTTCGTTCGTACTC -ACGGAATCGTCTTCGTTCGATGTC -ACGGAATCGTCTTCGTTCACAGTC -ACGGAATCGTCTTCGTTCTTGCTG -ACGGAATCGTCTTCGTTCTCCATG -ACGGAATCGTCTTCGTTCTGTGTG -ACGGAATCGTCTTCGTTCCTAGTG -ACGGAATCGTCTTCGTTCCATCTG -ACGGAATCGTCTTCGTTCGAGTTG -ACGGAATCGTCTTCGTTCAGACTG -ACGGAATCGTCTTCGTTCTCGGTA -ACGGAATCGTCTTCGTTCTGCCTA -ACGGAATCGTCTTCGTTCCCACTA -ACGGAATCGTCTTCGTTCGGAGTA -ACGGAATCGTCTTCGTTCTCGTCT -ACGGAATCGTCTTCGTTCTGCACT -ACGGAATCGTCTTCGTTCCTGACT -ACGGAATCGTCTTCGTTCCAACCT -ACGGAATCGTCTTCGTTCGCTACT -ACGGAATCGTCTTCGTTCGGATCT -ACGGAATCGTCTTCGTTCAAGGCT -ACGGAATCGTCTTCGTTCTCAACC -ACGGAATCGTCTTCGTTCTGTTCC -ACGGAATCGTCTTCGTTCATTCCC -ACGGAATCGTCTTCGTTCTTCTCG -ACGGAATCGTCTTCGTTCTAGACG -ACGGAATCGTCTTCGTTCGTAACG -ACGGAATCGTCTTCGTTCACTTCG -ACGGAATCGTCTTCGTTCTACGCA -ACGGAATCGTCTTCGTTCCTTGCA -ACGGAATCGTCTTCGTTCCGAACA -ACGGAATCGTCTTCGTTCCAGTCA -ACGGAATCGTCTTCGTTCGATCCA -ACGGAATCGTCTTCGTTCACGACA -ACGGAATCGTCTTCGTTCAGCTCA -ACGGAATCGTCTTCGTTCTCACGT -ACGGAATCGTCTTCGTTCCGTAGT -ACGGAATCGTCTTCGTTCGTCAGT -ACGGAATCGTCTTCGTTCGAAGGT -ACGGAATCGTCTTCGTTCAACCGT -ACGGAATCGTCTTCGTTCTTGTGC -ACGGAATCGTCTTCGTTCCTAAGC -ACGGAATCGTCTTCGTTCACTAGC -ACGGAATCGTCTTCGTTCAGATGC -ACGGAATCGTCTTCGTTCTGAAGG -ACGGAATCGTCTTCGTTCCAATGG -ACGGAATCGTCTTCGTTCATGAGG -ACGGAATCGTCTTCGTTCAATGGG -ACGGAATCGTCTTCGTTCTCCTGA -ACGGAATCGTCTTCGTTCTAGCGA -ACGGAATCGTCTTCGTTCCACAGA -ACGGAATCGTCTTCGTTCGCAAGA -ACGGAATCGTCTTCGTTCGGTTGA -ACGGAATCGTCTTCGTTCTCCGAT -ACGGAATCGTCTTCGTTCTGGCAT -ACGGAATCGTCTTCGTTCCGAGAT -ACGGAATCGTCTTCGTTCTACCAC -ACGGAATCGTCTTCGTTCCAGAAC -ACGGAATCGTCTTCGTTCGTCTAC -ACGGAATCGTCTTCGTTCACGTAC -ACGGAATCGTCTTCGTTCAGTGAC -ACGGAATCGTCTTCGTTCCTGTAG -ACGGAATCGTCTTCGTTCCCTAAG -ACGGAATCGTCTTCGTTCGTTCAG -ACGGAATCGTCTTCGTTCGCATAG -ACGGAATCGTCTTCGTTCGACAAG -ACGGAATCGTCTTCGTTCAAGCAG -ACGGAATCGTCTTCGTTCCGTCAA -ACGGAATCGTCTTCGTTCGCTGAA -ACGGAATCGTCTTCGTTCAGTACG -ACGGAATCGTCTTCGTTCATCCGA -ACGGAATCGTCTTCGTTCATGGGA -ACGGAATCGTCTTCGTTCGTGCAA -ACGGAATCGTCTTCGTTCGAGGAA -ACGGAATCGTCTTCGTTCCAGGTA -ACGGAATCGTCTTCGTTCGACTCT -ACGGAATCGTCTTCGTTCAGTCCT -ACGGAATCGTCTTCGTTCTAAGCC -ACGGAATCGTCTTCGTTCATAGCC -ACGGAATCGTCTTCGTTCTAACCG -ACGGAATCGTCTTCGTTCATGCCA -ACGGAATCGTCTACGTAGGGAAAC -ACGGAATCGTCTACGTAGAACACC -ACGGAATCGTCTACGTAGATCGAG -ACGGAATCGTCTACGTAGCTCCTT -ACGGAATCGTCTACGTAGCCTGTT -ACGGAATCGTCTACGTAGCGGTTT -ACGGAATCGTCTACGTAGGTGGTT -ACGGAATCGTCTACGTAGGCCTTT -ACGGAATCGTCTACGTAGGGTCTT -ACGGAATCGTCTACGTAGACGCTT -ACGGAATCGTCTACGTAGAGCGTT -ACGGAATCGTCTACGTAGTTCGTC -ACGGAATCGTCTACGTAGTCTCTC -ACGGAATCGTCTACGTAGTGGATC -ACGGAATCGTCTACGTAGCACTTC -ACGGAATCGTCTACGTAGGTACTC -ACGGAATCGTCTACGTAGGATGTC -ACGGAATCGTCTACGTAGACAGTC -ACGGAATCGTCTACGTAGTTGCTG -ACGGAATCGTCTACGTAGTCCATG -ACGGAATCGTCTACGTAGTGTGTG -ACGGAATCGTCTACGTAGCTAGTG -ACGGAATCGTCTACGTAGCATCTG -ACGGAATCGTCTACGTAGGAGTTG -ACGGAATCGTCTACGTAGAGACTG -ACGGAATCGTCTACGTAGTCGGTA -ACGGAATCGTCTACGTAGTGCCTA -ACGGAATCGTCTACGTAGCCACTA -ACGGAATCGTCTACGTAGGGAGTA -ACGGAATCGTCTACGTAGTCGTCT -ACGGAATCGTCTACGTAGTGCACT -ACGGAATCGTCTACGTAGCTGACT -ACGGAATCGTCTACGTAGCAACCT -ACGGAATCGTCTACGTAGGCTACT -ACGGAATCGTCTACGTAGGGATCT -ACGGAATCGTCTACGTAGAAGGCT -ACGGAATCGTCTACGTAGTCAACC -ACGGAATCGTCTACGTAGTGTTCC -ACGGAATCGTCTACGTAGATTCCC -ACGGAATCGTCTACGTAGTTCTCG -ACGGAATCGTCTACGTAGTAGACG -ACGGAATCGTCTACGTAGGTAACG -ACGGAATCGTCTACGTAGACTTCG -ACGGAATCGTCTACGTAGTACGCA -ACGGAATCGTCTACGTAGCTTGCA -ACGGAATCGTCTACGTAGCGAACA -ACGGAATCGTCTACGTAGCAGTCA -ACGGAATCGTCTACGTAGGATCCA -ACGGAATCGTCTACGTAGACGACA -ACGGAATCGTCTACGTAGAGCTCA -ACGGAATCGTCTACGTAGTCACGT -ACGGAATCGTCTACGTAGCGTAGT -ACGGAATCGTCTACGTAGGTCAGT -ACGGAATCGTCTACGTAGGAAGGT -ACGGAATCGTCTACGTAGAACCGT -ACGGAATCGTCTACGTAGTTGTGC -ACGGAATCGTCTACGTAGCTAAGC -ACGGAATCGTCTACGTAGACTAGC -ACGGAATCGTCTACGTAGAGATGC -ACGGAATCGTCTACGTAGTGAAGG -ACGGAATCGTCTACGTAGCAATGG -ACGGAATCGTCTACGTAGATGAGG -ACGGAATCGTCTACGTAGAATGGG -ACGGAATCGTCTACGTAGTCCTGA -ACGGAATCGTCTACGTAGTAGCGA -ACGGAATCGTCTACGTAGCACAGA -ACGGAATCGTCTACGTAGGCAAGA -ACGGAATCGTCTACGTAGGGTTGA -ACGGAATCGTCTACGTAGTCCGAT -ACGGAATCGTCTACGTAGTGGCAT -ACGGAATCGTCTACGTAGCGAGAT -ACGGAATCGTCTACGTAGTACCAC -ACGGAATCGTCTACGTAGCAGAAC -ACGGAATCGTCTACGTAGGTCTAC -ACGGAATCGTCTACGTAGACGTAC -ACGGAATCGTCTACGTAGAGTGAC -ACGGAATCGTCTACGTAGCTGTAG -ACGGAATCGTCTACGTAGCCTAAG -ACGGAATCGTCTACGTAGGTTCAG -ACGGAATCGTCTACGTAGGCATAG -ACGGAATCGTCTACGTAGGACAAG -ACGGAATCGTCTACGTAGAAGCAG -ACGGAATCGTCTACGTAGCGTCAA -ACGGAATCGTCTACGTAGGCTGAA -ACGGAATCGTCTACGTAGAGTACG -ACGGAATCGTCTACGTAGATCCGA -ACGGAATCGTCTACGTAGATGGGA -ACGGAATCGTCTACGTAGGTGCAA -ACGGAATCGTCTACGTAGGAGGAA -ACGGAATCGTCTACGTAGCAGGTA -ACGGAATCGTCTACGTAGGACTCT -ACGGAATCGTCTACGTAGAGTCCT -ACGGAATCGTCTACGTAGTAAGCC -ACGGAATCGTCTACGTAGATAGCC -ACGGAATCGTCTACGTAGTAACCG -ACGGAATCGTCTACGTAGATGCCA -ACGGAATCGTCTACGGTAGGAAAC -ACGGAATCGTCTACGGTAAACACC -ACGGAATCGTCTACGGTAATCGAG -ACGGAATCGTCTACGGTACTCCTT -ACGGAATCGTCTACGGTACCTGTT -ACGGAATCGTCTACGGTACGGTTT -ACGGAATCGTCTACGGTAGTGGTT -ACGGAATCGTCTACGGTAGCCTTT -ACGGAATCGTCTACGGTAGGTCTT -ACGGAATCGTCTACGGTAACGCTT -ACGGAATCGTCTACGGTAAGCGTT -ACGGAATCGTCTACGGTATTCGTC -ACGGAATCGTCTACGGTATCTCTC -ACGGAATCGTCTACGGTATGGATC -ACGGAATCGTCTACGGTACACTTC -ACGGAATCGTCTACGGTAGTACTC -ACGGAATCGTCTACGGTAGATGTC -ACGGAATCGTCTACGGTAACAGTC -ACGGAATCGTCTACGGTATTGCTG -ACGGAATCGTCTACGGTATCCATG -ACGGAATCGTCTACGGTATGTGTG -ACGGAATCGTCTACGGTACTAGTG -ACGGAATCGTCTACGGTACATCTG -ACGGAATCGTCTACGGTAGAGTTG -ACGGAATCGTCTACGGTAAGACTG -ACGGAATCGTCTACGGTATCGGTA -ACGGAATCGTCTACGGTATGCCTA -ACGGAATCGTCTACGGTACCACTA -ACGGAATCGTCTACGGTAGGAGTA -ACGGAATCGTCTACGGTATCGTCT -ACGGAATCGTCTACGGTATGCACT -ACGGAATCGTCTACGGTACTGACT -ACGGAATCGTCTACGGTACAACCT -ACGGAATCGTCTACGGTAGCTACT -ACGGAATCGTCTACGGTAGGATCT -ACGGAATCGTCTACGGTAAAGGCT -ACGGAATCGTCTACGGTATCAACC -ACGGAATCGTCTACGGTATGTTCC -ACGGAATCGTCTACGGTAATTCCC -ACGGAATCGTCTACGGTATTCTCG -ACGGAATCGTCTACGGTATAGACG -ACGGAATCGTCTACGGTAGTAACG -ACGGAATCGTCTACGGTAACTTCG -ACGGAATCGTCTACGGTATACGCA -ACGGAATCGTCTACGGTACTTGCA -ACGGAATCGTCTACGGTACGAACA -ACGGAATCGTCTACGGTACAGTCA -ACGGAATCGTCTACGGTAGATCCA -ACGGAATCGTCTACGGTAACGACA -ACGGAATCGTCTACGGTAAGCTCA -ACGGAATCGTCTACGGTATCACGT -ACGGAATCGTCTACGGTACGTAGT -ACGGAATCGTCTACGGTAGTCAGT -ACGGAATCGTCTACGGTAGAAGGT -ACGGAATCGTCTACGGTAAACCGT -ACGGAATCGTCTACGGTATTGTGC -ACGGAATCGTCTACGGTACTAAGC -ACGGAATCGTCTACGGTAACTAGC -ACGGAATCGTCTACGGTAAGATGC -ACGGAATCGTCTACGGTATGAAGG -ACGGAATCGTCTACGGTACAATGG -ACGGAATCGTCTACGGTAATGAGG -ACGGAATCGTCTACGGTAAATGGG -ACGGAATCGTCTACGGTATCCTGA -ACGGAATCGTCTACGGTATAGCGA -ACGGAATCGTCTACGGTACACAGA -ACGGAATCGTCTACGGTAGCAAGA -ACGGAATCGTCTACGGTAGGTTGA -ACGGAATCGTCTACGGTATCCGAT -ACGGAATCGTCTACGGTATGGCAT -ACGGAATCGTCTACGGTACGAGAT -ACGGAATCGTCTACGGTATACCAC -ACGGAATCGTCTACGGTACAGAAC -ACGGAATCGTCTACGGTAGTCTAC -ACGGAATCGTCTACGGTAACGTAC -ACGGAATCGTCTACGGTAAGTGAC -ACGGAATCGTCTACGGTACTGTAG -ACGGAATCGTCTACGGTACCTAAG -ACGGAATCGTCTACGGTAGTTCAG -ACGGAATCGTCTACGGTAGCATAG -ACGGAATCGTCTACGGTAGACAAG -ACGGAATCGTCTACGGTAAAGCAG -ACGGAATCGTCTACGGTACGTCAA -ACGGAATCGTCTACGGTAGCTGAA -ACGGAATCGTCTACGGTAAGTACG -ACGGAATCGTCTACGGTAATCCGA -ACGGAATCGTCTACGGTAATGGGA -ACGGAATCGTCTACGGTAGTGCAA -ACGGAATCGTCTACGGTAGAGGAA -ACGGAATCGTCTACGGTACAGGTA -ACGGAATCGTCTACGGTAGACTCT -ACGGAATCGTCTACGGTAAGTCCT -ACGGAATCGTCTACGGTATAAGCC -ACGGAATCGTCTACGGTAATAGCC -ACGGAATCGTCTACGGTATAACCG -ACGGAATCGTCTACGGTAATGCCA -ACGGAATCGTCTTCGACTGGAAAC -ACGGAATCGTCTTCGACTAACACC -ACGGAATCGTCTTCGACTATCGAG -ACGGAATCGTCTTCGACTCTCCTT -ACGGAATCGTCTTCGACTCCTGTT -ACGGAATCGTCTTCGACTCGGTTT -ACGGAATCGTCTTCGACTGTGGTT -ACGGAATCGTCTTCGACTGCCTTT -ACGGAATCGTCTTCGACTGGTCTT -ACGGAATCGTCTTCGACTACGCTT -ACGGAATCGTCTTCGACTAGCGTT -ACGGAATCGTCTTCGACTTTCGTC -ACGGAATCGTCTTCGACTTCTCTC -ACGGAATCGTCTTCGACTTGGATC -ACGGAATCGTCTTCGACTCACTTC -ACGGAATCGTCTTCGACTGTACTC -ACGGAATCGTCTTCGACTGATGTC -ACGGAATCGTCTTCGACTACAGTC -ACGGAATCGTCTTCGACTTTGCTG -ACGGAATCGTCTTCGACTTCCATG -ACGGAATCGTCTTCGACTTGTGTG -ACGGAATCGTCTTCGACTCTAGTG -ACGGAATCGTCTTCGACTCATCTG -ACGGAATCGTCTTCGACTGAGTTG -ACGGAATCGTCTTCGACTAGACTG -ACGGAATCGTCTTCGACTTCGGTA -ACGGAATCGTCTTCGACTTGCCTA -ACGGAATCGTCTTCGACTCCACTA -ACGGAATCGTCTTCGACTGGAGTA -ACGGAATCGTCTTCGACTTCGTCT -ACGGAATCGTCTTCGACTTGCACT -ACGGAATCGTCTTCGACTCTGACT -ACGGAATCGTCTTCGACTCAACCT -ACGGAATCGTCTTCGACTGCTACT -ACGGAATCGTCTTCGACTGGATCT -ACGGAATCGTCTTCGACTAAGGCT -ACGGAATCGTCTTCGACTTCAACC -ACGGAATCGTCTTCGACTTGTTCC -ACGGAATCGTCTTCGACTATTCCC -ACGGAATCGTCTTCGACTTTCTCG -ACGGAATCGTCTTCGACTTAGACG -ACGGAATCGTCTTCGACTGTAACG -ACGGAATCGTCTTCGACTACTTCG -ACGGAATCGTCTTCGACTTACGCA -ACGGAATCGTCTTCGACTCTTGCA -ACGGAATCGTCTTCGACTCGAACA -ACGGAATCGTCTTCGACTCAGTCA -ACGGAATCGTCTTCGACTGATCCA -ACGGAATCGTCTTCGACTACGACA -ACGGAATCGTCTTCGACTAGCTCA -ACGGAATCGTCTTCGACTTCACGT -ACGGAATCGTCTTCGACTCGTAGT -ACGGAATCGTCTTCGACTGTCAGT -ACGGAATCGTCTTCGACTGAAGGT -ACGGAATCGTCTTCGACTAACCGT -ACGGAATCGTCTTCGACTTTGTGC -ACGGAATCGTCTTCGACTCTAAGC -ACGGAATCGTCTTCGACTACTAGC -ACGGAATCGTCTTCGACTAGATGC -ACGGAATCGTCTTCGACTTGAAGG -ACGGAATCGTCTTCGACTCAATGG -ACGGAATCGTCTTCGACTATGAGG -ACGGAATCGTCTTCGACTAATGGG -ACGGAATCGTCTTCGACTTCCTGA -ACGGAATCGTCTTCGACTTAGCGA -ACGGAATCGTCTTCGACTCACAGA -ACGGAATCGTCTTCGACTGCAAGA -ACGGAATCGTCTTCGACTGGTTGA -ACGGAATCGTCTTCGACTTCCGAT -ACGGAATCGTCTTCGACTTGGCAT -ACGGAATCGTCTTCGACTCGAGAT -ACGGAATCGTCTTCGACTTACCAC -ACGGAATCGTCTTCGACTCAGAAC -ACGGAATCGTCTTCGACTGTCTAC -ACGGAATCGTCTTCGACTACGTAC -ACGGAATCGTCTTCGACTAGTGAC -ACGGAATCGTCTTCGACTCTGTAG -ACGGAATCGTCTTCGACTCCTAAG -ACGGAATCGTCTTCGACTGTTCAG -ACGGAATCGTCTTCGACTGCATAG -ACGGAATCGTCTTCGACTGACAAG -ACGGAATCGTCTTCGACTAAGCAG -ACGGAATCGTCTTCGACTCGTCAA -ACGGAATCGTCTTCGACTGCTGAA -ACGGAATCGTCTTCGACTAGTACG -ACGGAATCGTCTTCGACTATCCGA -ACGGAATCGTCTTCGACTATGGGA -ACGGAATCGTCTTCGACTGTGCAA -ACGGAATCGTCTTCGACTGAGGAA -ACGGAATCGTCTTCGACTCAGGTA -ACGGAATCGTCTTCGACTGACTCT -ACGGAATCGTCTTCGACTAGTCCT -ACGGAATCGTCTTCGACTTAAGCC -ACGGAATCGTCTTCGACTATAGCC -ACGGAATCGTCTTCGACTTAACCG -ACGGAATCGTCTTCGACTATGCCA -ACGGAATCGTCTGCATACGGAAAC -ACGGAATCGTCTGCATACAACACC -ACGGAATCGTCTGCATACATCGAG -ACGGAATCGTCTGCATACCTCCTT -ACGGAATCGTCTGCATACCCTGTT -ACGGAATCGTCTGCATACCGGTTT -ACGGAATCGTCTGCATACGTGGTT -ACGGAATCGTCTGCATACGCCTTT -ACGGAATCGTCTGCATACGGTCTT -ACGGAATCGTCTGCATACACGCTT -ACGGAATCGTCTGCATACAGCGTT -ACGGAATCGTCTGCATACTTCGTC -ACGGAATCGTCTGCATACTCTCTC -ACGGAATCGTCTGCATACTGGATC -ACGGAATCGTCTGCATACCACTTC -ACGGAATCGTCTGCATACGTACTC -ACGGAATCGTCTGCATACGATGTC -ACGGAATCGTCTGCATACACAGTC -ACGGAATCGTCTGCATACTTGCTG -ACGGAATCGTCTGCATACTCCATG -ACGGAATCGTCTGCATACTGTGTG -ACGGAATCGTCTGCATACCTAGTG -ACGGAATCGTCTGCATACCATCTG -ACGGAATCGTCTGCATACGAGTTG -ACGGAATCGTCTGCATACAGACTG -ACGGAATCGTCTGCATACTCGGTA -ACGGAATCGTCTGCATACTGCCTA -ACGGAATCGTCTGCATACCCACTA -ACGGAATCGTCTGCATACGGAGTA -ACGGAATCGTCTGCATACTCGTCT -ACGGAATCGTCTGCATACTGCACT -ACGGAATCGTCTGCATACCTGACT -ACGGAATCGTCTGCATACCAACCT -ACGGAATCGTCTGCATACGCTACT -ACGGAATCGTCTGCATACGGATCT -ACGGAATCGTCTGCATACAAGGCT -ACGGAATCGTCTGCATACTCAACC -ACGGAATCGTCTGCATACTGTTCC -ACGGAATCGTCTGCATACATTCCC -ACGGAATCGTCTGCATACTTCTCG -ACGGAATCGTCTGCATACTAGACG -ACGGAATCGTCTGCATACGTAACG -ACGGAATCGTCTGCATACACTTCG -ACGGAATCGTCTGCATACTACGCA -ACGGAATCGTCTGCATACCTTGCA -ACGGAATCGTCTGCATACCGAACA -ACGGAATCGTCTGCATACCAGTCA -ACGGAATCGTCTGCATACGATCCA -ACGGAATCGTCTGCATACACGACA -ACGGAATCGTCTGCATACAGCTCA -ACGGAATCGTCTGCATACTCACGT -ACGGAATCGTCTGCATACCGTAGT -ACGGAATCGTCTGCATACGTCAGT -ACGGAATCGTCTGCATACGAAGGT -ACGGAATCGTCTGCATACAACCGT -ACGGAATCGTCTGCATACTTGTGC -ACGGAATCGTCTGCATACCTAAGC -ACGGAATCGTCTGCATACACTAGC -ACGGAATCGTCTGCATACAGATGC -ACGGAATCGTCTGCATACTGAAGG -ACGGAATCGTCTGCATACCAATGG -ACGGAATCGTCTGCATACATGAGG -ACGGAATCGTCTGCATACAATGGG -ACGGAATCGTCTGCATACTCCTGA -ACGGAATCGTCTGCATACTAGCGA -ACGGAATCGTCTGCATACCACAGA -ACGGAATCGTCTGCATACGCAAGA -ACGGAATCGTCTGCATACGGTTGA -ACGGAATCGTCTGCATACTCCGAT -ACGGAATCGTCTGCATACTGGCAT -ACGGAATCGTCTGCATACCGAGAT -ACGGAATCGTCTGCATACTACCAC -ACGGAATCGTCTGCATACCAGAAC -ACGGAATCGTCTGCATACGTCTAC -ACGGAATCGTCTGCATACACGTAC -ACGGAATCGTCTGCATACAGTGAC -ACGGAATCGTCTGCATACCTGTAG -ACGGAATCGTCTGCATACCCTAAG -ACGGAATCGTCTGCATACGTTCAG -ACGGAATCGTCTGCATACGCATAG -ACGGAATCGTCTGCATACGACAAG -ACGGAATCGTCTGCATACAAGCAG -ACGGAATCGTCTGCATACCGTCAA -ACGGAATCGTCTGCATACGCTGAA -ACGGAATCGTCTGCATACAGTACG -ACGGAATCGTCTGCATACATCCGA -ACGGAATCGTCTGCATACATGGGA -ACGGAATCGTCTGCATACGTGCAA -ACGGAATCGTCTGCATACGAGGAA -ACGGAATCGTCTGCATACCAGGTA -ACGGAATCGTCTGCATACGACTCT -ACGGAATCGTCTGCATACAGTCCT -ACGGAATCGTCTGCATACTAAGCC -ACGGAATCGTCTGCATACATAGCC -ACGGAATCGTCTGCATACTAACCG -ACGGAATCGTCTGCATACATGCCA -ACGGAATCGTCTGCACTTGGAAAC -ACGGAATCGTCTGCACTTAACACC -ACGGAATCGTCTGCACTTATCGAG -ACGGAATCGTCTGCACTTCTCCTT -ACGGAATCGTCTGCACTTCCTGTT -ACGGAATCGTCTGCACTTCGGTTT -ACGGAATCGTCTGCACTTGTGGTT -ACGGAATCGTCTGCACTTGCCTTT -ACGGAATCGTCTGCACTTGGTCTT -ACGGAATCGTCTGCACTTACGCTT -ACGGAATCGTCTGCACTTAGCGTT -ACGGAATCGTCTGCACTTTTCGTC -ACGGAATCGTCTGCACTTTCTCTC -ACGGAATCGTCTGCACTTTGGATC -ACGGAATCGTCTGCACTTCACTTC -ACGGAATCGTCTGCACTTGTACTC -ACGGAATCGTCTGCACTTGATGTC -ACGGAATCGTCTGCACTTACAGTC -ACGGAATCGTCTGCACTTTTGCTG -ACGGAATCGTCTGCACTTTCCATG -ACGGAATCGTCTGCACTTTGTGTG -ACGGAATCGTCTGCACTTCTAGTG -ACGGAATCGTCTGCACTTCATCTG -ACGGAATCGTCTGCACTTGAGTTG -ACGGAATCGTCTGCACTTAGACTG -ACGGAATCGTCTGCACTTTCGGTA -ACGGAATCGTCTGCACTTTGCCTA -ACGGAATCGTCTGCACTTCCACTA -ACGGAATCGTCTGCACTTGGAGTA -ACGGAATCGTCTGCACTTTCGTCT -ACGGAATCGTCTGCACTTTGCACT -ACGGAATCGTCTGCACTTCTGACT -ACGGAATCGTCTGCACTTCAACCT -ACGGAATCGTCTGCACTTGCTACT -ACGGAATCGTCTGCACTTGGATCT -ACGGAATCGTCTGCACTTAAGGCT -ACGGAATCGTCTGCACTTTCAACC -ACGGAATCGTCTGCACTTTGTTCC -ACGGAATCGTCTGCACTTATTCCC -ACGGAATCGTCTGCACTTTTCTCG -ACGGAATCGTCTGCACTTTAGACG -ACGGAATCGTCTGCACTTGTAACG -ACGGAATCGTCTGCACTTACTTCG -ACGGAATCGTCTGCACTTTACGCA -ACGGAATCGTCTGCACTTCTTGCA -ACGGAATCGTCTGCACTTCGAACA -ACGGAATCGTCTGCACTTCAGTCA -ACGGAATCGTCTGCACTTGATCCA -ACGGAATCGTCTGCACTTACGACA -ACGGAATCGTCTGCACTTAGCTCA -ACGGAATCGTCTGCACTTTCACGT -ACGGAATCGTCTGCACTTCGTAGT -ACGGAATCGTCTGCACTTGTCAGT -ACGGAATCGTCTGCACTTGAAGGT -ACGGAATCGTCTGCACTTAACCGT -ACGGAATCGTCTGCACTTTTGTGC -ACGGAATCGTCTGCACTTCTAAGC -ACGGAATCGTCTGCACTTACTAGC -ACGGAATCGTCTGCACTTAGATGC -ACGGAATCGTCTGCACTTTGAAGG -ACGGAATCGTCTGCACTTCAATGG -ACGGAATCGTCTGCACTTATGAGG -ACGGAATCGTCTGCACTTAATGGG -ACGGAATCGTCTGCACTTTCCTGA -ACGGAATCGTCTGCACTTTAGCGA -ACGGAATCGTCTGCACTTCACAGA -ACGGAATCGTCTGCACTTGCAAGA -ACGGAATCGTCTGCACTTGGTTGA -ACGGAATCGTCTGCACTTTCCGAT -ACGGAATCGTCTGCACTTTGGCAT -ACGGAATCGTCTGCACTTCGAGAT -ACGGAATCGTCTGCACTTTACCAC -ACGGAATCGTCTGCACTTCAGAAC -ACGGAATCGTCTGCACTTGTCTAC -ACGGAATCGTCTGCACTTACGTAC -ACGGAATCGTCTGCACTTAGTGAC -ACGGAATCGTCTGCACTTCTGTAG -ACGGAATCGTCTGCACTTCCTAAG -ACGGAATCGTCTGCACTTGTTCAG -ACGGAATCGTCTGCACTTGCATAG -ACGGAATCGTCTGCACTTGACAAG -ACGGAATCGTCTGCACTTAAGCAG -ACGGAATCGTCTGCACTTCGTCAA -ACGGAATCGTCTGCACTTGCTGAA -ACGGAATCGTCTGCACTTAGTACG -ACGGAATCGTCTGCACTTATCCGA -ACGGAATCGTCTGCACTTATGGGA -ACGGAATCGTCTGCACTTGTGCAA -ACGGAATCGTCTGCACTTGAGGAA -ACGGAATCGTCTGCACTTCAGGTA -ACGGAATCGTCTGCACTTGACTCT -ACGGAATCGTCTGCACTTAGTCCT -ACGGAATCGTCTGCACTTTAAGCC -ACGGAATCGTCTGCACTTATAGCC -ACGGAATCGTCTGCACTTTAACCG -ACGGAATCGTCTGCACTTATGCCA -ACGGAATCGTCTACACGAGGAAAC -ACGGAATCGTCTACACGAAACACC -ACGGAATCGTCTACACGAATCGAG -ACGGAATCGTCTACACGACTCCTT -ACGGAATCGTCTACACGACCTGTT -ACGGAATCGTCTACACGACGGTTT -ACGGAATCGTCTACACGAGTGGTT -ACGGAATCGTCTACACGAGCCTTT -ACGGAATCGTCTACACGAGGTCTT -ACGGAATCGTCTACACGAACGCTT -ACGGAATCGTCTACACGAAGCGTT -ACGGAATCGTCTACACGATTCGTC -ACGGAATCGTCTACACGATCTCTC -ACGGAATCGTCTACACGATGGATC -ACGGAATCGTCTACACGACACTTC -ACGGAATCGTCTACACGAGTACTC -ACGGAATCGTCTACACGAGATGTC -ACGGAATCGTCTACACGAACAGTC -ACGGAATCGTCTACACGATTGCTG -ACGGAATCGTCTACACGATCCATG -ACGGAATCGTCTACACGATGTGTG -ACGGAATCGTCTACACGACTAGTG -ACGGAATCGTCTACACGACATCTG -ACGGAATCGTCTACACGAGAGTTG -ACGGAATCGTCTACACGAAGACTG -ACGGAATCGTCTACACGATCGGTA -ACGGAATCGTCTACACGATGCCTA -ACGGAATCGTCTACACGACCACTA -ACGGAATCGTCTACACGAGGAGTA -ACGGAATCGTCTACACGATCGTCT -ACGGAATCGTCTACACGATGCACT -ACGGAATCGTCTACACGACTGACT -ACGGAATCGTCTACACGACAACCT -ACGGAATCGTCTACACGAGCTACT -ACGGAATCGTCTACACGAGGATCT -ACGGAATCGTCTACACGAAAGGCT -ACGGAATCGTCTACACGATCAACC -ACGGAATCGTCTACACGATGTTCC -ACGGAATCGTCTACACGAATTCCC -ACGGAATCGTCTACACGATTCTCG -ACGGAATCGTCTACACGATAGACG -ACGGAATCGTCTACACGAGTAACG -ACGGAATCGTCTACACGAACTTCG -ACGGAATCGTCTACACGATACGCA -ACGGAATCGTCTACACGACTTGCA -ACGGAATCGTCTACACGACGAACA -ACGGAATCGTCTACACGACAGTCA -ACGGAATCGTCTACACGAGATCCA -ACGGAATCGTCTACACGAACGACA -ACGGAATCGTCTACACGAAGCTCA -ACGGAATCGTCTACACGATCACGT -ACGGAATCGTCTACACGACGTAGT -ACGGAATCGTCTACACGAGTCAGT -ACGGAATCGTCTACACGAGAAGGT -ACGGAATCGTCTACACGAAACCGT -ACGGAATCGTCTACACGATTGTGC -ACGGAATCGTCTACACGACTAAGC -ACGGAATCGTCTACACGAACTAGC -ACGGAATCGTCTACACGAAGATGC -ACGGAATCGTCTACACGATGAAGG -ACGGAATCGTCTACACGACAATGG -ACGGAATCGTCTACACGAATGAGG -ACGGAATCGTCTACACGAAATGGG -ACGGAATCGTCTACACGATCCTGA -ACGGAATCGTCTACACGATAGCGA -ACGGAATCGTCTACACGACACAGA -ACGGAATCGTCTACACGAGCAAGA -ACGGAATCGTCTACACGAGGTTGA -ACGGAATCGTCTACACGATCCGAT -ACGGAATCGTCTACACGATGGCAT -ACGGAATCGTCTACACGACGAGAT -ACGGAATCGTCTACACGATACCAC -ACGGAATCGTCTACACGACAGAAC -ACGGAATCGTCTACACGAGTCTAC -ACGGAATCGTCTACACGAACGTAC -ACGGAATCGTCTACACGAAGTGAC -ACGGAATCGTCTACACGACTGTAG -ACGGAATCGTCTACACGACCTAAG -ACGGAATCGTCTACACGAGTTCAG -ACGGAATCGTCTACACGAGCATAG -ACGGAATCGTCTACACGAGACAAG -ACGGAATCGTCTACACGAAAGCAG -ACGGAATCGTCTACACGACGTCAA -ACGGAATCGTCTACACGAGCTGAA -ACGGAATCGTCTACACGAAGTACG -ACGGAATCGTCTACACGAATCCGA -ACGGAATCGTCTACACGAATGGGA -ACGGAATCGTCTACACGAGTGCAA -ACGGAATCGTCTACACGAGAGGAA -ACGGAATCGTCTACACGACAGGTA -ACGGAATCGTCTACACGAGACTCT -ACGGAATCGTCTACACGAAGTCCT -ACGGAATCGTCTACACGATAAGCC -ACGGAATCGTCTACACGAATAGCC -ACGGAATCGTCTACACGATAACCG -ACGGAATCGTCTACACGAATGCCA -ACGGAATCGTCTTCACAGGGAAAC -ACGGAATCGTCTTCACAGAACACC -ACGGAATCGTCTTCACAGATCGAG -ACGGAATCGTCTTCACAGCTCCTT -ACGGAATCGTCTTCACAGCCTGTT -ACGGAATCGTCTTCACAGCGGTTT -ACGGAATCGTCTTCACAGGTGGTT -ACGGAATCGTCTTCACAGGCCTTT -ACGGAATCGTCTTCACAGGGTCTT -ACGGAATCGTCTTCACAGACGCTT -ACGGAATCGTCTTCACAGAGCGTT -ACGGAATCGTCTTCACAGTTCGTC -ACGGAATCGTCTTCACAGTCTCTC -ACGGAATCGTCTTCACAGTGGATC -ACGGAATCGTCTTCACAGCACTTC -ACGGAATCGTCTTCACAGGTACTC -ACGGAATCGTCTTCACAGGATGTC -ACGGAATCGTCTTCACAGACAGTC -ACGGAATCGTCTTCACAGTTGCTG -ACGGAATCGTCTTCACAGTCCATG -ACGGAATCGTCTTCACAGTGTGTG -ACGGAATCGTCTTCACAGCTAGTG -ACGGAATCGTCTTCACAGCATCTG -ACGGAATCGTCTTCACAGGAGTTG -ACGGAATCGTCTTCACAGAGACTG -ACGGAATCGTCTTCACAGTCGGTA -ACGGAATCGTCTTCACAGTGCCTA -ACGGAATCGTCTTCACAGCCACTA -ACGGAATCGTCTTCACAGGGAGTA -ACGGAATCGTCTTCACAGTCGTCT -ACGGAATCGTCTTCACAGTGCACT -ACGGAATCGTCTTCACAGCTGACT -ACGGAATCGTCTTCACAGCAACCT -ACGGAATCGTCTTCACAGGCTACT -ACGGAATCGTCTTCACAGGGATCT -ACGGAATCGTCTTCACAGAAGGCT -ACGGAATCGTCTTCACAGTCAACC -ACGGAATCGTCTTCACAGTGTTCC -ACGGAATCGTCTTCACAGATTCCC -ACGGAATCGTCTTCACAGTTCTCG -ACGGAATCGTCTTCACAGTAGACG -ACGGAATCGTCTTCACAGGTAACG -ACGGAATCGTCTTCACAGACTTCG -ACGGAATCGTCTTCACAGTACGCA -ACGGAATCGTCTTCACAGCTTGCA -ACGGAATCGTCTTCACAGCGAACA -ACGGAATCGTCTTCACAGCAGTCA -ACGGAATCGTCTTCACAGGATCCA -ACGGAATCGTCTTCACAGACGACA -ACGGAATCGTCTTCACAGAGCTCA -ACGGAATCGTCTTCACAGTCACGT -ACGGAATCGTCTTCACAGCGTAGT -ACGGAATCGTCTTCACAGGTCAGT -ACGGAATCGTCTTCACAGGAAGGT -ACGGAATCGTCTTCACAGAACCGT -ACGGAATCGTCTTCACAGTTGTGC -ACGGAATCGTCTTCACAGCTAAGC -ACGGAATCGTCTTCACAGACTAGC -ACGGAATCGTCTTCACAGAGATGC -ACGGAATCGTCTTCACAGTGAAGG -ACGGAATCGTCTTCACAGCAATGG -ACGGAATCGTCTTCACAGATGAGG -ACGGAATCGTCTTCACAGAATGGG -ACGGAATCGTCTTCACAGTCCTGA -ACGGAATCGTCTTCACAGTAGCGA -ACGGAATCGTCTTCACAGCACAGA -ACGGAATCGTCTTCACAGGCAAGA -ACGGAATCGTCTTCACAGGGTTGA -ACGGAATCGTCTTCACAGTCCGAT -ACGGAATCGTCTTCACAGTGGCAT -ACGGAATCGTCTTCACAGCGAGAT -ACGGAATCGTCTTCACAGTACCAC -ACGGAATCGTCTTCACAGCAGAAC -ACGGAATCGTCTTCACAGGTCTAC -ACGGAATCGTCTTCACAGACGTAC -ACGGAATCGTCTTCACAGAGTGAC -ACGGAATCGTCTTCACAGCTGTAG -ACGGAATCGTCTTCACAGCCTAAG -ACGGAATCGTCTTCACAGGTTCAG -ACGGAATCGTCTTCACAGGCATAG -ACGGAATCGTCTTCACAGGACAAG -ACGGAATCGTCTTCACAGAAGCAG -ACGGAATCGTCTTCACAGCGTCAA -ACGGAATCGTCTTCACAGGCTGAA -ACGGAATCGTCTTCACAGAGTACG -ACGGAATCGTCTTCACAGATCCGA -ACGGAATCGTCTTCACAGATGGGA -ACGGAATCGTCTTCACAGGTGCAA -ACGGAATCGTCTTCACAGGAGGAA -ACGGAATCGTCTTCACAGCAGGTA -ACGGAATCGTCTTCACAGGACTCT -ACGGAATCGTCTTCACAGAGTCCT -ACGGAATCGTCTTCACAGTAAGCC -ACGGAATCGTCTTCACAGATAGCC -ACGGAATCGTCTTCACAGTAACCG -ACGGAATCGTCTTCACAGATGCCA -ACGGAATCGTCTCCAGATGGAAAC -ACGGAATCGTCTCCAGATAACACC -ACGGAATCGTCTCCAGATATCGAG -ACGGAATCGTCTCCAGATCTCCTT -ACGGAATCGTCTCCAGATCCTGTT -ACGGAATCGTCTCCAGATCGGTTT -ACGGAATCGTCTCCAGATGTGGTT -ACGGAATCGTCTCCAGATGCCTTT -ACGGAATCGTCTCCAGATGGTCTT -ACGGAATCGTCTCCAGATACGCTT -ACGGAATCGTCTCCAGATAGCGTT -ACGGAATCGTCTCCAGATTTCGTC -ACGGAATCGTCTCCAGATTCTCTC -ACGGAATCGTCTCCAGATTGGATC -ACGGAATCGTCTCCAGATCACTTC -ACGGAATCGTCTCCAGATGTACTC -ACGGAATCGTCTCCAGATGATGTC -ACGGAATCGTCTCCAGATACAGTC -ACGGAATCGTCTCCAGATTTGCTG -ACGGAATCGTCTCCAGATTCCATG -ACGGAATCGTCTCCAGATTGTGTG -ACGGAATCGTCTCCAGATCTAGTG -ACGGAATCGTCTCCAGATCATCTG -ACGGAATCGTCTCCAGATGAGTTG -ACGGAATCGTCTCCAGATAGACTG -ACGGAATCGTCTCCAGATTCGGTA -ACGGAATCGTCTCCAGATTGCCTA -ACGGAATCGTCTCCAGATCCACTA -ACGGAATCGTCTCCAGATGGAGTA -ACGGAATCGTCTCCAGATTCGTCT -ACGGAATCGTCTCCAGATTGCACT -ACGGAATCGTCTCCAGATCTGACT -ACGGAATCGTCTCCAGATCAACCT -ACGGAATCGTCTCCAGATGCTACT -ACGGAATCGTCTCCAGATGGATCT -ACGGAATCGTCTCCAGATAAGGCT -ACGGAATCGTCTCCAGATTCAACC -ACGGAATCGTCTCCAGATTGTTCC -ACGGAATCGTCTCCAGATATTCCC -ACGGAATCGTCTCCAGATTTCTCG -ACGGAATCGTCTCCAGATTAGACG -ACGGAATCGTCTCCAGATGTAACG -ACGGAATCGTCTCCAGATACTTCG -ACGGAATCGTCTCCAGATTACGCA -ACGGAATCGTCTCCAGATCTTGCA -ACGGAATCGTCTCCAGATCGAACA -ACGGAATCGTCTCCAGATCAGTCA -ACGGAATCGTCTCCAGATGATCCA -ACGGAATCGTCTCCAGATACGACA -ACGGAATCGTCTCCAGATAGCTCA -ACGGAATCGTCTCCAGATTCACGT -ACGGAATCGTCTCCAGATCGTAGT -ACGGAATCGTCTCCAGATGTCAGT -ACGGAATCGTCTCCAGATGAAGGT -ACGGAATCGTCTCCAGATAACCGT -ACGGAATCGTCTCCAGATTTGTGC -ACGGAATCGTCTCCAGATCTAAGC -ACGGAATCGTCTCCAGATACTAGC -ACGGAATCGTCTCCAGATAGATGC -ACGGAATCGTCTCCAGATTGAAGG -ACGGAATCGTCTCCAGATCAATGG -ACGGAATCGTCTCCAGATATGAGG -ACGGAATCGTCTCCAGATAATGGG -ACGGAATCGTCTCCAGATTCCTGA -ACGGAATCGTCTCCAGATTAGCGA -ACGGAATCGTCTCCAGATCACAGA -ACGGAATCGTCTCCAGATGCAAGA -ACGGAATCGTCTCCAGATGGTTGA -ACGGAATCGTCTCCAGATTCCGAT -ACGGAATCGTCTCCAGATTGGCAT -ACGGAATCGTCTCCAGATCGAGAT -ACGGAATCGTCTCCAGATTACCAC -ACGGAATCGTCTCCAGATCAGAAC -ACGGAATCGTCTCCAGATGTCTAC -ACGGAATCGTCTCCAGATACGTAC -ACGGAATCGTCTCCAGATAGTGAC -ACGGAATCGTCTCCAGATCTGTAG -ACGGAATCGTCTCCAGATCCTAAG -ACGGAATCGTCTCCAGATGTTCAG -ACGGAATCGTCTCCAGATGCATAG -ACGGAATCGTCTCCAGATGACAAG -ACGGAATCGTCTCCAGATAAGCAG -ACGGAATCGTCTCCAGATCGTCAA -ACGGAATCGTCTCCAGATGCTGAA -ACGGAATCGTCTCCAGATAGTACG -ACGGAATCGTCTCCAGATATCCGA -ACGGAATCGTCTCCAGATATGGGA -ACGGAATCGTCTCCAGATGTGCAA -ACGGAATCGTCTCCAGATGAGGAA -ACGGAATCGTCTCCAGATCAGGTA -ACGGAATCGTCTCCAGATGACTCT -ACGGAATCGTCTCCAGATAGTCCT -ACGGAATCGTCTCCAGATTAAGCC -ACGGAATCGTCTCCAGATATAGCC -ACGGAATCGTCTCCAGATTAACCG -ACGGAATCGTCTCCAGATATGCCA -ACGGAATCGTCTACAACGGGAAAC -ACGGAATCGTCTACAACGAACACC -ACGGAATCGTCTACAACGATCGAG -ACGGAATCGTCTACAACGCTCCTT -ACGGAATCGTCTACAACGCCTGTT -ACGGAATCGTCTACAACGCGGTTT -ACGGAATCGTCTACAACGGTGGTT -ACGGAATCGTCTACAACGGCCTTT -ACGGAATCGTCTACAACGGGTCTT -ACGGAATCGTCTACAACGACGCTT -ACGGAATCGTCTACAACGAGCGTT -ACGGAATCGTCTACAACGTTCGTC -ACGGAATCGTCTACAACGTCTCTC -ACGGAATCGTCTACAACGTGGATC -ACGGAATCGTCTACAACGCACTTC -ACGGAATCGTCTACAACGGTACTC -ACGGAATCGTCTACAACGGATGTC -ACGGAATCGTCTACAACGACAGTC -ACGGAATCGTCTACAACGTTGCTG -ACGGAATCGTCTACAACGTCCATG -ACGGAATCGTCTACAACGTGTGTG -ACGGAATCGTCTACAACGCTAGTG -ACGGAATCGTCTACAACGCATCTG -ACGGAATCGTCTACAACGGAGTTG -ACGGAATCGTCTACAACGAGACTG -ACGGAATCGTCTACAACGTCGGTA -ACGGAATCGTCTACAACGTGCCTA -ACGGAATCGTCTACAACGCCACTA -ACGGAATCGTCTACAACGGGAGTA -ACGGAATCGTCTACAACGTCGTCT -ACGGAATCGTCTACAACGTGCACT -ACGGAATCGTCTACAACGCTGACT -ACGGAATCGTCTACAACGCAACCT -ACGGAATCGTCTACAACGGCTACT -ACGGAATCGTCTACAACGGGATCT -ACGGAATCGTCTACAACGAAGGCT -ACGGAATCGTCTACAACGTCAACC -ACGGAATCGTCTACAACGTGTTCC -ACGGAATCGTCTACAACGATTCCC -ACGGAATCGTCTACAACGTTCTCG -ACGGAATCGTCTACAACGTAGACG -ACGGAATCGTCTACAACGGTAACG -ACGGAATCGTCTACAACGACTTCG -ACGGAATCGTCTACAACGTACGCA -ACGGAATCGTCTACAACGCTTGCA -ACGGAATCGTCTACAACGCGAACA -ACGGAATCGTCTACAACGCAGTCA -ACGGAATCGTCTACAACGGATCCA -ACGGAATCGTCTACAACGACGACA -ACGGAATCGTCTACAACGAGCTCA -ACGGAATCGTCTACAACGTCACGT -ACGGAATCGTCTACAACGCGTAGT -ACGGAATCGTCTACAACGGTCAGT -ACGGAATCGTCTACAACGGAAGGT -ACGGAATCGTCTACAACGAACCGT -ACGGAATCGTCTACAACGTTGTGC -ACGGAATCGTCTACAACGCTAAGC -ACGGAATCGTCTACAACGACTAGC -ACGGAATCGTCTACAACGAGATGC -ACGGAATCGTCTACAACGTGAAGG -ACGGAATCGTCTACAACGCAATGG -ACGGAATCGTCTACAACGATGAGG -ACGGAATCGTCTACAACGAATGGG -ACGGAATCGTCTACAACGTCCTGA -ACGGAATCGTCTACAACGTAGCGA -ACGGAATCGTCTACAACGCACAGA -ACGGAATCGTCTACAACGGCAAGA -ACGGAATCGTCTACAACGGGTTGA -ACGGAATCGTCTACAACGTCCGAT -ACGGAATCGTCTACAACGTGGCAT -ACGGAATCGTCTACAACGCGAGAT -ACGGAATCGTCTACAACGTACCAC -ACGGAATCGTCTACAACGCAGAAC -ACGGAATCGTCTACAACGGTCTAC -ACGGAATCGTCTACAACGACGTAC -ACGGAATCGTCTACAACGAGTGAC -ACGGAATCGTCTACAACGCTGTAG -ACGGAATCGTCTACAACGCCTAAG -ACGGAATCGTCTACAACGGTTCAG -ACGGAATCGTCTACAACGGCATAG -ACGGAATCGTCTACAACGGACAAG -ACGGAATCGTCTACAACGAAGCAG -ACGGAATCGTCTACAACGCGTCAA -ACGGAATCGTCTACAACGGCTGAA -ACGGAATCGTCTACAACGAGTACG -ACGGAATCGTCTACAACGATCCGA -ACGGAATCGTCTACAACGATGGGA -ACGGAATCGTCTACAACGGTGCAA -ACGGAATCGTCTACAACGGAGGAA -ACGGAATCGTCTACAACGCAGGTA -ACGGAATCGTCTACAACGGACTCT -ACGGAATCGTCTACAACGAGTCCT -ACGGAATCGTCTACAACGTAAGCC -ACGGAATCGTCTACAACGATAGCC -ACGGAATCGTCTACAACGTAACCG -ACGGAATCGTCTACAACGATGCCA -ACGGAATCGTCTTCAAGCGGAAAC -ACGGAATCGTCTTCAAGCAACACC -ACGGAATCGTCTTCAAGCATCGAG -ACGGAATCGTCTTCAAGCCTCCTT -ACGGAATCGTCTTCAAGCCCTGTT -ACGGAATCGTCTTCAAGCCGGTTT -ACGGAATCGTCTTCAAGCGTGGTT -ACGGAATCGTCTTCAAGCGCCTTT -ACGGAATCGTCTTCAAGCGGTCTT -ACGGAATCGTCTTCAAGCACGCTT -ACGGAATCGTCTTCAAGCAGCGTT -ACGGAATCGTCTTCAAGCTTCGTC -ACGGAATCGTCTTCAAGCTCTCTC -ACGGAATCGTCTTCAAGCTGGATC -ACGGAATCGTCTTCAAGCCACTTC -ACGGAATCGTCTTCAAGCGTACTC -ACGGAATCGTCTTCAAGCGATGTC -ACGGAATCGTCTTCAAGCACAGTC -ACGGAATCGTCTTCAAGCTTGCTG -ACGGAATCGTCTTCAAGCTCCATG -ACGGAATCGTCTTCAAGCTGTGTG -ACGGAATCGTCTTCAAGCCTAGTG -ACGGAATCGTCTTCAAGCCATCTG -ACGGAATCGTCTTCAAGCGAGTTG -ACGGAATCGTCTTCAAGCAGACTG -ACGGAATCGTCTTCAAGCTCGGTA -ACGGAATCGTCTTCAAGCTGCCTA -ACGGAATCGTCTTCAAGCCCACTA -ACGGAATCGTCTTCAAGCGGAGTA -ACGGAATCGTCTTCAAGCTCGTCT -ACGGAATCGTCTTCAAGCTGCACT -ACGGAATCGTCTTCAAGCCTGACT -ACGGAATCGTCTTCAAGCCAACCT -ACGGAATCGTCTTCAAGCGCTACT -ACGGAATCGTCTTCAAGCGGATCT -ACGGAATCGTCTTCAAGCAAGGCT -ACGGAATCGTCTTCAAGCTCAACC -ACGGAATCGTCTTCAAGCTGTTCC -ACGGAATCGTCTTCAAGCATTCCC -ACGGAATCGTCTTCAAGCTTCTCG -ACGGAATCGTCTTCAAGCTAGACG -ACGGAATCGTCTTCAAGCGTAACG -ACGGAATCGTCTTCAAGCACTTCG -ACGGAATCGTCTTCAAGCTACGCA -ACGGAATCGTCTTCAAGCCTTGCA -ACGGAATCGTCTTCAAGCCGAACA -ACGGAATCGTCTTCAAGCCAGTCA -ACGGAATCGTCTTCAAGCGATCCA -ACGGAATCGTCTTCAAGCACGACA -ACGGAATCGTCTTCAAGCAGCTCA -ACGGAATCGTCTTCAAGCTCACGT -ACGGAATCGTCTTCAAGCCGTAGT -ACGGAATCGTCTTCAAGCGTCAGT -ACGGAATCGTCTTCAAGCGAAGGT -ACGGAATCGTCTTCAAGCAACCGT -ACGGAATCGTCTTCAAGCTTGTGC -ACGGAATCGTCTTCAAGCCTAAGC -ACGGAATCGTCTTCAAGCACTAGC -ACGGAATCGTCTTCAAGCAGATGC -ACGGAATCGTCTTCAAGCTGAAGG -ACGGAATCGTCTTCAAGCCAATGG -ACGGAATCGTCTTCAAGCATGAGG -ACGGAATCGTCTTCAAGCAATGGG -ACGGAATCGTCTTCAAGCTCCTGA -ACGGAATCGTCTTCAAGCTAGCGA -ACGGAATCGTCTTCAAGCCACAGA -ACGGAATCGTCTTCAAGCGCAAGA -ACGGAATCGTCTTCAAGCGGTTGA -ACGGAATCGTCTTCAAGCTCCGAT -ACGGAATCGTCTTCAAGCTGGCAT -ACGGAATCGTCTTCAAGCCGAGAT -ACGGAATCGTCTTCAAGCTACCAC -ACGGAATCGTCTTCAAGCCAGAAC -ACGGAATCGTCTTCAAGCGTCTAC -ACGGAATCGTCTTCAAGCACGTAC -ACGGAATCGTCTTCAAGCAGTGAC -ACGGAATCGTCTTCAAGCCTGTAG -ACGGAATCGTCTTCAAGCCCTAAG -ACGGAATCGTCTTCAAGCGTTCAG -ACGGAATCGTCTTCAAGCGCATAG -ACGGAATCGTCTTCAAGCGACAAG -ACGGAATCGTCTTCAAGCAAGCAG -ACGGAATCGTCTTCAAGCCGTCAA -ACGGAATCGTCTTCAAGCGCTGAA -ACGGAATCGTCTTCAAGCAGTACG -ACGGAATCGTCTTCAAGCATCCGA -ACGGAATCGTCTTCAAGCATGGGA -ACGGAATCGTCTTCAAGCGTGCAA -ACGGAATCGTCTTCAAGCGAGGAA -ACGGAATCGTCTTCAAGCCAGGTA -ACGGAATCGTCTTCAAGCGACTCT -ACGGAATCGTCTTCAAGCAGTCCT -ACGGAATCGTCTTCAAGCTAAGCC -ACGGAATCGTCTTCAAGCATAGCC -ACGGAATCGTCTTCAAGCTAACCG -ACGGAATCGTCTTCAAGCATGCCA -ACGGAATCGTCTCGTTCAGGAAAC -ACGGAATCGTCTCGTTCAAACACC -ACGGAATCGTCTCGTTCAATCGAG -ACGGAATCGTCTCGTTCACTCCTT -ACGGAATCGTCTCGTTCACCTGTT -ACGGAATCGTCTCGTTCACGGTTT -ACGGAATCGTCTCGTTCAGTGGTT -ACGGAATCGTCTCGTTCAGCCTTT -ACGGAATCGTCTCGTTCAGGTCTT -ACGGAATCGTCTCGTTCAACGCTT -ACGGAATCGTCTCGTTCAAGCGTT -ACGGAATCGTCTCGTTCATTCGTC -ACGGAATCGTCTCGTTCATCTCTC -ACGGAATCGTCTCGTTCATGGATC -ACGGAATCGTCTCGTTCACACTTC -ACGGAATCGTCTCGTTCAGTACTC -ACGGAATCGTCTCGTTCAGATGTC -ACGGAATCGTCTCGTTCAACAGTC -ACGGAATCGTCTCGTTCATTGCTG -ACGGAATCGTCTCGTTCATCCATG -ACGGAATCGTCTCGTTCATGTGTG -ACGGAATCGTCTCGTTCACTAGTG -ACGGAATCGTCTCGTTCACATCTG -ACGGAATCGTCTCGTTCAGAGTTG -ACGGAATCGTCTCGTTCAAGACTG -ACGGAATCGTCTCGTTCATCGGTA -ACGGAATCGTCTCGTTCATGCCTA -ACGGAATCGTCTCGTTCACCACTA -ACGGAATCGTCTCGTTCAGGAGTA -ACGGAATCGTCTCGTTCATCGTCT -ACGGAATCGTCTCGTTCATGCACT -ACGGAATCGTCTCGTTCACTGACT -ACGGAATCGTCTCGTTCACAACCT -ACGGAATCGTCTCGTTCAGCTACT -ACGGAATCGTCTCGTTCAGGATCT -ACGGAATCGTCTCGTTCAAAGGCT -ACGGAATCGTCTCGTTCATCAACC -ACGGAATCGTCTCGTTCATGTTCC -ACGGAATCGTCTCGTTCAATTCCC -ACGGAATCGTCTCGTTCATTCTCG -ACGGAATCGTCTCGTTCATAGACG -ACGGAATCGTCTCGTTCAGTAACG -ACGGAATCGTCTCGTTCAACTTCG -ACGGAATCGTCTCGTTCATACGCA -ACGGAATCGTCTCGTTCACTTGCA -ACGGAATCGTCTCGTTCACGAACA -ACGGAATCGTCTCGTTCACAGTCA -ACGGAATCGTCTCGTTCAGATCCA -ACGGAATCGTCTCGTTCAACGACA -ACGGAATCGTCTCGTTCAAGCTCA -ACGGAATCGTCTCGTTCATCACGT -ACGGAATCGTCTCGTTCACGTAGT -ACGGAATCGTCTCGTTCAGTCAGT -ACGGAATCGTCTCGTTCAGAAGGT -ACGGAATCGTCTCGTTCAAACCGT -ACGGAATCGTCTCGTTCATTGTGC -ACGGAATCGTCTCGTTCACTAAGC -ACGGAATCGTCTCGTTCAACTAGC -ACGGAATCGTCTCGTTCAAGATGC -ACGGAATCGTCTCGTTCATGAAGG -ACGGAATCGTCTCGTTCACAATGG -ACGGAATCGTCTCGTTCAATGAGG -ACGGAATCGTCTCGTTCAAATGGG -ACGGAATCGTCTCGTTCATCCTGA -ACGGAATCGTCTCGTTCATAGCGA -ACGGAATCGTCTCGTTCACACAGA -ACGGAATCGTCTCGTTCAGCAAGA -ACGGAATCGTCTCGTTCAGGTTGA -ACGGAATCGTCTCGTTCATCCGAT -ACGGAATCGTCTCGTTCATGGCAT -ACGGAATCGTCTCGTTCACGAGAT -ACGGAATCGTCTCGTTCATACCAC -ACGGAATCGTCTCGTTCACAGAAC -ACGGAATCGTCTCGTTCAGTCTAC -ACGGAATCGTCTCGTTCAACGTAC -ACGGAATCGTCTCGTTCAAGTGAC -ACGGAATCGTCTCGTTCACTGTAG -ACGGAATCGTCTCGTTCACCTAAG -ACGGAATCGTCTCGTTCAGTTCAG -ACGGAATCGTCTCGTTCAGCATAG -ACGGAATCGTCTCGTTCAGACAAG -ACGGAATCGTCTCGTTCAAAGCAG -ACGGAATCGTCTCGTTCACGTCAA -ACGGAATCGTCTCGTTCAGCTGAA -ACGGAATCGTCTCGTTCAAGTACG -ACGGAATCGTCTCGTTCAATCCGA -ACGGAATCGTCTCGTTCAATGGGA -ACGGAATCGTCTCGTTCAGTGCAA -ACGGAATCGTCTCGTTCAGAGGAA -ACGGAATCGTCTCGTTCACAGGTA -ACGGAATCGTCTCGTTCAGACTCT -ACGGAATCGTCTCGTTCAAGTCCT -ACGGAATCGTCTCGTTCATAAGCC -ACGGAATCGTCTCGTTCAATAGCC -ACGGAATCGTCTCGTTCATAACCG -ACGGAATCGTCTCGTTCAATGCCA -ACGGAATCGTCTAGTCGTGGAAAC -ACGGAATCGTCTAGTCGTAACACC -ACGGAATCGTCTAGTCGTATCGAG -ACGGAATCGTCTAGTCGTCTCCTT -ACGGAATCGTCTAGTCGTCCTGTT -ACGGAATCGTCTAGTCGTCGGTTT -ACGGAATCGTCTAGTCGTGTGGTT -ACGGAATCGTCTAGTCGTGCCTTT -ACGGAATCGTCTAGTCGTGGTCTT -ACGGAATCGTCTAGTCGTACGCTT -ACGGAATCGTCTAGTCGTAGCGTT -ACGGAATCGTCTAGTCGTTTCGTC -ACGGAATCGTCTAGTCGTTCTCTC -ACGGAATCGTCTAGTCGTTGGATC -ACGGAATCGTCTAGTCGTCACTTC -ACGGAATCGTCTAGTCGTGTACTC -ACGGAATCGTCTAGTCGTGATGTC -ACGGAATCGTCTAGTCGTACAGTC -ACGGAATCGTCTAGTCGTTTGCTG -ACGGAATCGTCTAGTCGTTCCATG -ACGGAATCGTCTAGTCGTTGTGTG -ACGGAATCGTCTAGTCGTCTAGTG -ACGGAATCGTCTAGTCGTCATCTG -ACGGAATCGTCTAGTCGTGAGTTG -ACGGAATCGTCTAGTCGTAGACTG -ACGGAATCGTCTAGTCGTTCGGTA -ACGGAATCGTCTAGTCGTTGCCTA -ACGGAATCGTCTAGTCGTCCACTA -ACGGAATCGTCTAGTCGTGGAGTA -ACGGAATCGTCTAGTCGTTCGTCT -ACGGAATCGTCTAGTCGTTGCACT -ACGGAATCGTCTAGTCGTCTGACT -ACGGAATCGTCTAGTCGTCAACCT -ACGGAATCGTCTAGTCGTGCTACT -ACGGAATCGTCTAGTCGTGGATCT -ACGGAATCGTCTAGTCGTAAGGCT -ACGGAATCGTCTAGTCGTTCAACC -ACGGAATCGTCTAGTCGTTGTTCC -ACGGAATCGTCTAGTCGTATTCCC -ACGGAATCGTCTAGTCGTTTCTCG -ACGGAATCGTCTAGTCGTTAGACG -ACGGAATCGTCTAGTCGTGTAACG -ACGGAATCGTCTAGTCGTACTTCG -ACGGAATCGTCTAGTCGTTACGCA -ACGGAATCGTCTAGTCGTCTTGCA -ACGGAATCGTCTAGTCGTCGAACA -ACGGAATCGTCTAGTCGTCAGTCA -ACGGAATCGTCTAGTCGTGATCCA -ACGGAATCGTCTAGTCGTACGACA -ACGGAATCGTCTAGTCGTAGCTCA -ACGGAATCGTCTAGTCGTTCACGT -ACGGAATCGTCTAGTCGTCGTAGT -ACGGAATCGTCTAGTCGTGTCAGT -ACGGAATCGTCTAGTCGTGAAGGT -ACGGAATCGTCTAGTCGTAACCGT -ACGGAATCGTCTAGTCGTTTGTGC -ACGGAATCGTCTAGTCGTCTAAGC -ACGGAATCGTCTAGTCGTACTAGC -ACGGAATCGTCTAGTCGTAGATGC -ACGGAATCGTCTAGTCGTTGAAGG -ACGGAATCGTCTAGTCGTCAATGG -ACGGAATCGTCTAGTCGTATGAGG -ACGGAATCGTCTAGTCGTAATGGG -ACGGAATCGTCTAGTCGTTCCTGA -ACGGAATCGTCTAGTCGTTAGCGA -ACGGAATCGTCTAGTCGTCACAGA -ACGGAATCGTCTAGTCGTGCAAGA -ACGGAATCGTCTAGTCGTGGTTGA -ACGGAATCGTCTAGTCGTTCCGAT -ACGGAATCGTCTAGTCGTTGGCAT -ACGGAATCGTCTAGTCGTCGAGAT -ACGGAATCGTCTAGTCGTTACCAC -ACGGAATCGTCTAGTCGTCAGAAC -ACGGAATCGTCTAGTCGTGTCTAC -ACGGAATCGTCTAGTCGTACGTAC -ACGGAATCGTCTAGTCGTAGTGAC -ACGGAATCGTCTAGTCGTCTGTAG -ACGGAATCGTCTAGTCGTCCTAAG -ACGGAATCGTCTAGTCGTGTTCAG -ACGGAATCGTCTAGTCGTGCATAG -ACGGAATCGTCTAGTCGTGACAAG -ACGGAATCGTCTAGTCGTAAGCAG -ACGGAATCGTCTAGTCGTCGTCAA -ACGGAATCGTCTAGTCGTGCTGAA -ACGGAATCGTCTAGTCGTAGTACG -ACGGAATCGTCTAGTCGTATCCGA -ACGGAATCGTCTAGTCGTATGGGA -ACGGAATCGTCTAGTCGTGTGCAA -ACGGAATCGTCTAGTCGTGAGGAA -ACGGAATCGTCTAGTCGTCAGGTA -ACGGAATCGTCTAGTCGTGACTCT -ACGGAATCGTCTAGTCGTAGTCCT -ACGGAATCGTCTAGTCGTTAAGCC -ACGGAATCGTCTAGTCGTATAGCC -ACGGAATCGTCTAGTCGTTAACCG -ACGGAATCGTCTAGTCGTATGCCA -ACGGAATCGTCTAGTGTCGGAAAC -ACGGAATCGTCTAGTGTCAACACC -ACGGAATCGTCTAGTGTCATCGAG -ACGGAATCGTCTAGTGTCCTCCTT -ACGGAATCGTCTAGTGTCCCTGTT -ACGGAATCGTCTAGTGTCCGGTTT -ACGGAATCGTCTAGTGTCGTGGTT -ACGGAATCGTCTAGTGTCGCCTTT -ACGGAATCGTCTAGTGTCGGTCTT -ACGGAATCGTCTAGTGTCACGCTT -ACGGAATCGTCTAGTGTCAGCGTT -ACGGAATCGTCTAGTGTCTTCGTC -ACGGAATCGTCTAGTGTCTCTCTC -ACGGAATCGTCTAGTGTCTGGATC -ACGGAATCGTCTAGTGTCCACTTC -ACGGAATCGTCTAGTGTCGTACTC -ACGGAATCGTCTAGTGTCGATGTC -ACGGAATCGTCTAGTGTCACAGTC -ACGGAATCGTCTAGTGTCTTGCTG -ACGGAATCGTCTAGTGTCTCCATG -ACGGAATCGTCTAGTGTCTGTGTG -ACGGAATCGTCTAGTGTCCTAGTG -ACGGAATCGTCTAGTGTCCATCTG -ACGGAATCGTCTAGTGTCGAGTTG -ACGGAATCGTCTAGTGTCAGACTG -ACGGAATCGTCTAGTGTCTCGGTA -ACGGAATCGTCTAGTGTCTGCCTA -ACGGAATCGTCTAGTGTCCCACTA -ACGGAATCGTCTAGTGTCGGAGTA -ACGGAATCGTCTAGTGTCTCGTCT -ACGGAATCGTCTAGTGTCTGCACT -ACGGAATCGTCTAGTGTCCTGACT -ACGGAATCGTCTAGTGTCCAACCT -ACGGAATCGTCTAGTGTCGCTACT -ACGGAATCGTCTAGTGTCGGATCT -ACGGAATCGTCTAGTGTCAAGGCT -ACGGAATCGTCTAGTGTCTCAACC -ACGGAATCGTCTAGTGTCTGTTCC -ACGGAATCGTCTAGTGTCATTCCC -ACGGAATCGTCTAGTGTCTTCTCG -ACGGAATCGTCTAGTGTCTAGACG -ACGGAATCGTCTAGTGTCGTAACG -ACGGAATCGTCTAGTGTCACTTCG -ACGGAATCGTCTAGTGTCTACGCA -ACGGAATCGTCTAGTGTCCTTGCA -ACGGAATCGTCTAGTGTCCGAACA -ACGGAATCGTCTAGTGTCCAGTCA -ACGGAATCGTCTAGTGTCGATCCA -ACGGAATCGTCTAGTGTCACGACA -ACGGAATCGTCTAGTGTCAGCTCA -ACGGAATCGTCTAGTGTCTCACGT -ACGGAATCGTCTAGTGTCCGTAGT -ACGGAATCGTCTAGTGTCGTCAGT -ACGGAATCGTCTAGTGTCGAAGGT -ACGGAATCGTCTAGTGTCAACCGT -ACGGAATCGTCTAGTGTCTTGTGC -ACGGAATCGTCTAGTGTCCTAAGC -ACGGAATCGTCTAGTGTCACTAGC -ACGGAATCGTCTAGTGTCAGATGC -ACGGAATCGTCTAGTGTCTGAAGG -ACGGAATCGTCTAGTGTCCAATGG -ACGGAATCGTCTAGTGTCATGAGG -ACGGAATCGTCTAGTGTCAATGGG -ACGGAATCGTCTAGTGTCTCCTGA -ACGGAATCGTCTAGTGTCTAGCGA -ACGGAATCGTCTAGTGTCCACAGA -ACGGAATCGTCTAGTGTCGCAAGA -ACGGAATCGTCTAGTGTCGGTTGA -ACGGAATCGTCTAGTGTCTCCGAT -ACGGAATCGTCTAGTGTCTGGCAT -ACGGAATCGTCTAGTGTCCGAGAT -ACGGAATCGTCTAGTGTCTACCAC -ACGGAATCGTCTAGTGTCCAGAAC -ACGGAATCGTCTAGTGTCGTCTAC -ACGGAATCGTCTAGTGTCACGTAC -ACGGAATCGTCTAGTGTCAGTGAC -ACGGAATCGTCTAGTGTCCTGTAG -ACGGAATCGTCTAGTGTCCCTAAG -ACGGAATCGTCTAGTGTCGTTCAG -ACGGAATCGTCTAGTGTCGCATAG -ACGGAATCGTCTAGTGTCGACAAG -ACGGAATCGTCTAGTGTCAAGCAG -ACGGAATCGTCTAGTGTCCGTCAA -ACGGAATCGTCTAGTGTCGCTGAA -ACGGAATCGTCTAGTGTCAGTACG -ACGGAATCGTCTAGTGTCATCCGA -ACGGAATCGTCTAGTGTCATGGGA -ACGGAATCGTCTAGTGTCGTGCAA -ACGGAATCGTCTAGTGTCGAGGAA -ACGGAATCGTCTAGTGTCCAGGTA -ACGGAATCGTCTAGTGTCGACTCT -ACGGAATCGTCTAGTGTCAGTCCT -ACGGAATCGTCTAGTGTCTAAGCC -ACGGAATCGTCTAGTGTCATAGCC -ACGGAATCGTCTAGTGTCTAACCG -ACGGAATCGTCTAGTGTCATGCCA -ACGGAATCGTCTGGTGAAGGAAAC -ACGGAATCGTCTGGTGAAAACACC -ACGGAATCGTCTGGTGAAATCGAG -ACGGAATCGTCTGGTGAACTCCTT -ACGGAATCGTCTGGTGAACCTGTT -ACGGAATCGTCTGGTGAACGGTTT -ACGGAATCGTCTGGTGAAGTGGTT -ACGGAATCGTCTGGTGAAGCCTTT -ACGGAATCGTCTGGTGAAGGTCTT -ACGGAATCGTCTGGTGAAACGCTT -ACGGAATCGTCTGGTGAAAGCGTT -ACGGAATCGTCTGGTGAATTCGTC -ACGGAATCGTCTGGTGAATCTCTC -ACGGAATCGTCTGGTGAATGGATC -ACGGAATCGTCTGGTGAACACTTC -ACGGAATCGTCTGGTGAAGTACTC -ACGGAATCGTCTGGTGAAGATGTC -ACGGAATCGTCTGGTGAAACAGTC -ACGGAATCGTCTGGTGAATTGCTG -ACGGAATCGTCTGGTGAATCCATG -ACGGAATCGTCTGGTGAATGTGTG -ACGGAATCGTCTGGTGAACTAGTG -ACGGAATCGTCTGGTGAACATCTG -ACGGAATCGTCTGGTGAAGAGTTG -ACGGAATCGTCTGGTGAAAGACTG -ACGGAATCGTCTGGTGAATCGGTA -ACGGAATCGTCTGGTGAATGCCTA -ACGGAATCGTCTGGTGAACCACTA -ACGGAATCGTCTGGTGAAGGAGTA -ACGGAATCGTCTGGTGAATCGTCT -ACGGAATCGTCTGGTGAATGCACT -ACGGAATCGTCTGGTGAACTGACT -ACGGAATCGTCTGGTGAACAACCT -ACGGAATCGTCTGGTGAAGCTACT -ACGGAATCGTCTGGTGAAGGATCT -ACGGAATCGTCTGGTGAAAAGGCT -ACGGAATCGTCTGGTGAATCAACC -ACGGAATCGTCTGGTGAATGTTCC -ACGGAATCGTCTGGTGAAATTCCC -ACGGAATCGTCTGGTGAATTCTCG -ACGGAATCGTCTGGTGAATAGACG -ACGGAATCGTCTGGTGAAGTAACG -ACGGAATCGTCTGGTGAAACTTCG -ACGGAATCGTCTGGTGAATACGCA -ACGGAATCGTCTGGTGAACTTGCA -ACGGAATCGTCTGGTGAACGAACA -ACGGAATCGTCTGGTGAACAGTCA -ACGGAATCGTCTGGTGAAGATCCA -ACGGAATCGTCTGGTGAAACGACA -ACGGAATCGTCTGGTGAAAGCTCA -ACGGAATCGTCTGGTGAATCACGT -ACGGAATCGTCTGGTGAACGTAGT -ACGGAATCGTCTGGTGAAGTCAGT -ACGGAATCGTCTGGTGAAGAAGGT -ACGGAATCGTCTGGTGAAAACCGT -ACGGAATCGTCTGGTGAATTGTGC -ACGGAATCGTCTGGTGAACTAAGC -ACGGAATCGTCTGGTGAAACTAGC -ACGGAATCGTCTGGTGAAAGATGC -ACGGAATCGTCTGGTGAATGAAGG -ACGGAATCGTCTGGTGAACAATGG -ACGGAATCGTCTGGTGAAATGAGG -ACGGAATCGTCTGGTGAAAATGGG -ACGGAATCGTCTGGTGAATCCTGA -ACGGAATCGTCTGGTGAATAGCGA -ACGGAATCGTCTGGTGAACACAGA -ACGGAATCGTCTGGTGAAGCAAGA -ACGGAATCGTCTGGTGAAGGTTGA -ACGGAATCGTCTGGTGAATCCGAT -ACGGAATCGTCTGGTGAATGGCAT -ACGGAATCGTCTGGTGAACGAGAT -ACGGAATCGTCTGGTGAATACCAC -ACGGAATCGTCTGGTGAACAGAAC -ACGGAATCGTCTGGTGAAGTCTAC -ACGGAATCGTCTGGTGAAACGTAC -ACGGAATCGTCTGGTGAAAGTGAC -ACGGAATCGTCTGGTGAACTGTAG -ACGGAATCGTCTGGTGAACCTAAG -ACGGAATCGTCTGGTGAAGTTCAG -ACGGAATCGTCTGGTGAAGCATAG -ACGGAATCGTCTGGTGAAGACAAG -ACGGAATCGTCTGGTGAAAAGCAG -ACGGAATCGTCTGGTGAACGTCAA -ACGGAATCGTCTGGTGAAGCTGAA -ACGGAATCGTCTGGTGAAAGTACG -ACGGAATCGTCTGGTGAAATCCGA -ACGGAATCGTCTGGTGAAATGGGA -ACGGAATCGTCTGGTGAAGTGCAA -ACGGAATCGTCTGGTGAAGAGGAA -ACGGAATCGTCTGGTGAACAGGTA -ACGGAATCGTCTGGTGAAGACTCT -ACGGAATCGTCTGGTGAAAGTCCT -ACGGAATCGTCTGGTGAATAAGCC -ACGGAATCGTCTGGTGAAATAGCC -ACGGAATCGTCTGGTGAATAACCG -ACGGAATCGTCTGGTGAAATGCCA -ACGGAATCGTCTCGTAACGGAAAC -ACGGAATCGTCTCGTAACAACACC -ACGGAATCGTCTCGTAACATCGAG -ACGGAATCGTCTCGTAACCTCCTT -ACGGAATCGTCTCGTAACCCTGTT -ACGGAATCGTCTCGTAACCGGTTT -ACGGAATCGTCTCGTAACGTGGTT -ACGGAATCGTCTCGTAACGCCTTT -ACGGAATCGTCTCGTAACGGTCTT -ACGGAATCGTCTCGTAACACGCTT -ACGGAATCGTCTCGTAACAGCGTT -ACGGAATCGTCTCGTAACTTCGTC -ACGGAATCGTCTCGTAACTCTCTC -ACGGAATCGTCTCGTAACTGGATC -ACGGAATCGTCTCGTAACCACTTC -ACGGAATCGTCTCGTAACGTACTC -ACGGAATCGTCTCGTAACGATGTC -ACGGAATCGTCTCGTAACACAGTC -ACGGAATCGTCTCGTAACTTGCTG -ACGGAATCGTCTCGTAACTCCATG -ACGGAATCGTCTCGTAACTGTGTG -ACGGAATCGTCTCGTAACCTAGTG -ACGGAATCGTCTCGTAACCATCTG -ACGGAATCGTCTCGTAACGAGTTG -ACGGAATCGTCTCGTAACAGACTG -ACGGAATCGTCTCGTAACTCGGTA -ACGGAATCGTCTCGTAACTGCCTA -ACGGAATCGTCTCGTAACCCACTA -ACGGAATCGTCTCGTAACGGAGTA -ACGGAATCGTCTCGTAACTCGTCT -ACGGAATCGTCTCGTAACTGCACT -ACGGAATCGTCTCGTAACCTGACT -ACGGAATCGTCTCGTAACCAACCT -ACGGAATCGTCTCGTAACGCTACT -ACGGAATCGTCTCGTAACGGATCT -ACGGAATCGTCTCGTAACAAGGCT -ACGGAATCGTCTCGTAACTCAACC -ACGGAATCGTCTCGTAACTGTTCC -ACGGAATCGTCTCGTAACATTCCC -ACGGAATCGTCTCGTAACTTCTCG -ACGGAATCGTCTCGTAACTAGACG -ACGGAATCGTCTCGTAACGTAACG -ACGGAATCGTCTCGTAACACTTCG -ACGGAATCGTCTCGTAACTACGCA -ACGGAATCGTCTCGTAACCTTGCA -ACGGAATCGTCTCGTAACCGAACA -ACGGAATCGTCTCGTAACCAGTCA -ACGGAATCGTCTCGTAACGATCCA -ACGGAATCGTCTCGTAACACGACA -ACGGAATCGTCTCGTAACAGCTCA -ACGGAATCGTCTCGTAACTCACGT -ACGGAATCGTCTCGTAACCGTAGT -ACGGAATCGTCTCGTAACGTCAGT -ACGGAATCGTCTCGTAACGAAGGT -ACGGAATCGTCTCGTAACAACCGT -ACGGAATCGTCTCGTAACTTGTGC -ACGGAATCGTCTCGTAACCTAAGC -ACGGAATCGTCTCGTAACACTAGC -ACGGAATCGTCTCGTAACAGATGC -ACGGAATCGTCTCGTAACTGAAGG -ACGGAATCGTCTCGTAACCAATGG -ACGGAATCGTCTCGTAACATGAGG -ACGGAATCGTCTCGTAACAATGGG -ACGGAATCGTCTCGTAACTCCTGA -ACGGAATCGTCTCGTAACTAGCGA -ACGGAATCGTCTCGTAACCACAGA -ACGGAATCGTCTCGTAACGCAAGA -ACGGAATCGTCTCGTAACGGTTGA -ACGGAATCGTCTCGTAACTCCGAT -ACGGAATCGTCTCGTAACTGGCAT -ACGGAATCGTCTCGTAACCGAGAT -ACGGAATCGTCTCGTAACTACCAC -ACGGAATCGTCTCGTAACCAGAAC -ACGGAATCGTCTCGTAACGTCTAC -ACGGAATCGTCTCGTAACACGTAC -ACGGAATCGTCTCGTAACAGTGAC -ACGGAATCGTCTCGTAACCTGTAG -ACGGAATCGTCTCGTAACCCTAAG -ACGGAATCGTCTCGTAACGTTCAG -ACGGAATCGTCTCGTAACGCATAG -ACGGAATCGTCTCGTAACGACAAG -ACGGAATCGTCTCGTAACAAGCAG -ACGGAATCGTCTCGTAACCGTCAA -ACGGAATCGTCTCGTAACGCTGAA -ACGGAATCGTCTCGTAACAGTACG -ACGGAATCGTCTCGTAACATCCGA -ACGGAATCGTCTCGTAACATGGGA -ACGGAATCGTCTCGTAACGTGCAA -ACGGAATCGTCTCGTAACGAGGAA -ACGGAATCGTCTCGTAACCAGGTA -ACGGAATCGTCTCGTAACGACTCT -ACGGAATCGTCTCGTAACAGTCCT -ACGGAATCGTCTCGTAACTAAGCC -ACGGAATCGTCTCGTAACATAGCC -ACGGAATCGTCTCGTAACTAACCG -ACGGAATCGTCTCGTAACATGCCA -ACGGAATCGTCTTGCTTGGGAAAC -ACGGAATCGTCTTGCTTGAACACC -ACGGAATCGTCTTGCTTGATCGAG -ACGGAATCGTCTTGCTTGCTCCTT -ACGGAATCGTCTTGCTTGCCTGTT -ACGGAATCGTCTTGCTTGCGGTTT -ACGGAATCGTCTTGCTTGGTGGTT -ACGGAATCGTCTTGCTTGGCCTTT -ACGGAATCGTCTTGCTTGGGTCTT -ACGGAATCGTCTTGCTTGACGCTT -ACGGAATCGTCTTGCTTGAGCGTT -ACGGAATCGTCTTGCTTGTTCGTC -ACGGAATCGTCTTGCTTGTCTCTC -ACGGAATCGTCTTGCTTGTGGATC -ACGGAATCGTCTTGCTTGCACTTC -ACGGAATCGTCTTGCTTGGTACTC -ACGGAATCGTCTTGCTTGGATGTC -ACGGAATCGTCTTGCTTGACAGTC -ACGGAATCGTCTTGCTTGTTGCTG -ACGGAATCGTCTTGCTTGTCCATG -ACGGAATCGTCTTGCTTGTGTGTG -ACGGAATCGTCTTGCTTGCTAGTG -ACGGAATCGTCTTGCTTGCATCTG -ACGGAATCGTCTTGCTTGGAGTTG -ACGGAATCGTCTTGCTTGAGACTG -ACGGAATCGTCTTGCTTGTCGGTA -ACGGAATCGTCTTGCTTGTGCCTA -ACGGAATCGTCTTGCTTGCCACTA -ACGGAATCGTCTTGCTTGGGAGTA -ACGGAATCGTCTTGCTTGTCGTCT -ACGGAATCGTCTTGCTTGTGCACT -ACGGAATCGTCTTGCTTGCTGACT -ACGGAATCGTCTTGCTTGCAACCT -ACGGAATCGTCTTGCTTGGCTACT -ACGGAATCGTCTTGCTTGGGATCT -ACGGAATCGTCTTGCTTGAAGGCT -ACGGAATCGTCTTGCTTGTCAACC -ACGGAATCGTCTTGCTTGTGTTCC -ACGGAATCGTCTTGCTTGATTCCC -ACGGAATCGTCTTGCTTGTTCTCG -ACGGAATCGTCTTGCTTGTAGACG -ACGGAATCGTCTTGCTTGGTAACG -ACGGAATCGTCTTGCTTGACTTCG -ACGGAATCGTCTTGCTTGTACGCA -ACGGAATCGTCTTGCTTGCTTGCA -ACGGAATCGTCTTGCTTGCGAACA -ACGGAATCGTCTTGCTTGCAGTCA -ACGGAATCGTCTTGCTTGGATCCA -ACGGAATCGTCTTGCTTGACGACA -ACGGAATCGTCTTGCTTGAGCTCA -ACGGAATCGTCTTGCTTGTCACGT -ACGGAATCGTCTTGCTTGCGTAGT -ACGGAATCGTCTTGCTTGGTCAGT -ACGGAATCGTCTTGCTTGGAAGGT -ACGGAATCGTCTTGCTTGAACCGT -ACGGAATCGTCTTGCTTGTTGTGC -ACGGAATCGTCTTGCTTGCTAAGC -ACGGAATCGTCTTGCTTGACTAGC -ACGGAATCGTCTTGCTTGAGATGC -ACGGAATCGTCTTGCTTGTGAAGG -ACGGAATCGTCTTGCTTGCAATGG -ACGGAATCGTCTTGCTTGATGAGG -ACGGAATCGTCTTGCTTGAATGGG -ACGGAATCGTCTTGCTTGTCCTGA -ACGGAATCGTCTTGCTTGTAGCGA -ACGGAATCGTCTTGCTTGCACAGA -ACGGAATCGTCTTGCTTGGCAAGA -ACGGAATCGTCTTGCTTGGGTTGA -ACGGAATCGTCTTGCTTGTCCGAT -ACGGAATCGTCTTGCTTGTGGCAT -ACGGAATCGTCTTGCTTGCGAGAT -ACGGAATCGTCTTGCTTGTACCAC -ACGGAATCGTCTTGCTTGCAGAAC -ACGGAATCGTCTTGCTTGGTCTAC -ACGGAATCGTCTTGCTTGACGTAC -ACGGAATCGTCTTGCTTGAGTGAC -ACGGAATCGTCTTGCTTGCTGTAG -ACGGAATCGTCTTGCTTGCCTAAG -ACGGAATCGTCTTGCTTGGTTCAG -ACGGAATCGTCTTGCTTGGCATAG -ACGGAATCGTCTTGCTTGGACAAG -ACGGAATCGTCTTGCTTGAAGCAG -ACGGAATCGTCTTGCTTGCGTCAA -ACGGAATCGTCTTGCTTGGCTGAA -ACGGAATCGTCTTGCTTGAGTACG -ACGGAATCGTCTTGCTTGATCCGA -ACGGAATCGTCTTGCTTGATGGGA -ACGGAATCGTCTTGCTTGGTGCAA -ACGGAATCGTCTTGCTTGGAGGAA -ACGGAATCGTCTTGCTTGCAGGTA -ACGGAATCGTCTTGCTTGGACTCT -ACGGAATCGTCTTGCTTGAGTCCT -ACGGAATCGTCTTGCTTGTAAGCC -ACGGAATCGTCTTGCTTGATAGCC -ACGGAATCGTCTTGCTTGTAACCG -ACGGAATCGTCTTGCTTGATGCCA -ACGGAATCGTCTAGCCTAGGAAAC -ACGGAATCGTCTAGCCTAAACACC -ACGGAATCGTCTAGCCTAATCGAG -ACGGAATCGTCTAGCCTACTCCTT -ACGGAATCGTCTAGCCTACCTGTT -ACGGAATCGTCTAGCCTACGGTTT -ACGGAATCGTCTAGCCTAGTGGTT -ACGGAATCGTCTAGCCTAGCCTTT -ACGGAATCGTCTAGCCTAGGTCTT -ACGGAATCGTCTAGCCTAACGCTT -ACGGAATCGTCTAGCCTAAGCGTT -ACGGAATCGTCTAGCCTATTCGTC -ACGGAATCGTCTAGCCTATCTCTC -ACGGAATCGTCTAGCCTATGGATC -ACGGAATCGTCTAGCCTACACTTC -ACGGAATCGTCTAGCCTAGTACTC -ACGGAATCGTCTAGCCTAGATGTC -ACGGAATCGTCTAGCCTAACAGTC -ACGGAATCGTCTAGCCTATTGCTG -ACGGAATCGTCTAGCCTATCCATG -ACGGAATCGTCTAGCCTATGTGTG -ACGGAATCGTCTAGCCTACTAGTG -ACGGAATCGTCTAGCCTACATCTG -ACGGAATCGTCTAGCCTAGAGTTG -ACGGAATCGTCTAGCCTAAGACTG -ACGGAATCGTCTAGCCTATCGGTA -ACGGAATCGTCTAGCCTATGCCTA -ACGGAATCGTCTAGCCTACCACTA -ACGGAATCGTCTAGCCTAGGAGTA -ACGGAATCGTCTAGCCTATCGTCT -ACGGAATCGTCTAGCCTATGCACT -ACGGAATCGTCTAGCCTACTGACT -ACGGAATCGTCTAGCCTACAACCT -ACGGAATCGTCTAGCCTAGCTACT -ACGGAATCGTCTAGCCTAGGATCT -ACGGAATCGTCTAGCCTAAAGGCT -ACGGAATCGTCTAGCCTATCAACC -ACGGAATCGTCTAGCCTATGTTCC -ACGGAATCGTCTAGCCTAATTCCC -ACGGAATCGTCTAGCCTATTCTCG -ACGGAATCGTCTAGCCTATAGACG -ACGGAATCGTCTAGCCTAGTAACG -ACGGAATCGTCTAGCCTAACTTCG -ACGGAATCGTCTAGCCTATACGCA -ACGGAATCGTCTAGCCTACTTGCA -ACGGAATCGTCTAGCCTACGAACA -ACGGAATCGTCTAGCCTACAGTCA -ACGGAATCGTCTAGCCTAGATCCA -ACGGAATCGTCTAGCCTAACGACA -ACGGAATCGTCTAGCCTAAGCTCA -ACGGAATCGTCTAGCCTATCACGT -ACGGAATCGTCTAGCCTACGTAGT -ACGGAATCGTCTAGCCTAGTCAGT -ACGGAATCGTCTAGCCTAGAAGGT -ACGGAATCGTCTAGCCTAAACCGT -ACGGAATCGTCTAGCCTATTGTGC -ACGGAATCGTCTAGCCTACTAAGC -ACGGAATCGTCTAGCCTAACTAGC -ACGGAATCGTCTAGCCTAAGATGC -ACGGAATCGTCTAGCCTATGAAGG -ACGGAATCGTCTAGCCTACAATGG -ACGGAATCGTCTAGCCTAATGAGG -ACGGAATCGTCTAGCCTAAATGGG -ACGGAATCGTCTAGCCTATCCTGA -ACGGAATCGTCTAGCCTATAGCGA -ACGGAATCGTCTAGCCTACACAGA -ACGGAATCGTCTAGCCTAGCAAGA -ACGGAATCGTCTAGCCTAGGTTGA -ACGGAATCGTCTAGCCTATCCGAT -ACGGAATCGTCTAGCCTATGGCAT -ACGGAATCGTCTAGCCTACGAGAT -ACGGAATCGTCTAGCCTATACCAC -ACGGAATCGTCTAGCCTACAGAAC -ACGGAATCGTCTAGCCTAGTCTAC -ACGGAATCGTCTAGCCTAACGTAC -ACGGAATCGTCTAGCCTAAGTGAC -ACGGAATCGTCTAGCCTACTGTAG -ACGGAATCGTCTAGCCTACCTAAG -ACGGAATCGTCTAGCCTAGTTCAG -ACGGAATCGTCTAGCCTAGCATAG -ACGGAATCGTCTAGCCTAGACAAG -ACGGAATCGTCTAGCCTAAAGCAG -ACGGAATCGTCTAGCCTACGTCAA -ACGGAATCGTCTAGCCTAGCTGAA -ACGGAATCGTCTAGCCTAAGTACG -ACGGAATCGTCTAGCCTAATCCGA -ACGGAATCGTCTAGCCTAATGGGA -ACGGAATCGTCTAGCCTAGTGCAA -ACGGAATCGTCTAGCCTAGAGGAA -ACGGAATCGTCTAGCCTACAGGTA -ACGGAATCGTCTAGCCTAGACTCT -ACGGAATCGTCTAGCCTAAGTCCT -ACGGAATCGTCTAGCCTATAAGCC -ACGGAATCGTCTAGCCTAATAGCC -ACGGAATCGTCTAGCCTATAACCG -ACGGAATCGTCTAGCCTAATGCCA -ACGGAATCGTCTAGCACTGGAAAC -ACGGAATCGTCTAGCACTAACACC -ACGGAATCGTCTAGCACTATCGAG -ACGGAATCGTCTAGCACTCTCCTT -ACGGAATCGTCTAGCACTCCTGTT -ACGGAATCGTCTAGCACTCGGTTT -ACGGAATCGTCTAGCACTGTGGTT -ACGGAATCGTCTAGCACTGCCTTT -ACGGAATCGTCTAGCACTGGTCTT -ACGGAATCGTCTAGCACTACGCTT -ACGGAATCGTCTAGCACTAGCGTT -ACGGAATCGTCTAGCACTTTCGTC -ACGGAATCGTCTAGCACTTCTCTC -ACGGAATCGTCTAGCACTTGGATC -ACGGAATCGTCTAGCACTCACTTC -ACGGAATCGTCTAGCACTGTACTC -ACGGAATCGTCTAGCACTGATGTC -ACGGAATCGTCTAGCACTACAGTC -ACGGAATCGTCTAGCACTTTGCTG -ACGGAATCGTCTAGCACTTCCATG -ACGGAATCGTCTAGCACTTGTGTG -ACGGAATCGTCTAGCACTCTAGTG -ACGGAATCGTCTAGCACTCATCTG -ACGGAATCGTCTAGCACTGAGTTG -ACGGAATCGTCTAGCACTAGACTG -ACGGAATCGTCTAGCACTTCGGTA -ACGGAATCGTCTAGCACTTGCCTA -ACGGAATCGTCTAGCACTCCACTA -ACGGAATCGTCTAGCACTGGAGTA -ACGGAATCGTCTAGCACTTCGTCT -ACGGAATCGTCTAGCACTTGCACT -ACGGAATCGTCTAGCACTCTGACT -ACGGAATCGTCTAGCACTCAACCT -ACGGAATCGTCTAGCACTGCTACT -ACGGAATCGTCTAGCACTGGATCT -ACGGAATCGTCTAGCACTAAGGCT -ACGGAATCGTCTAGCACTTCAACC -ACGGAATCGTCTAGCACTTGTTCC -ACGGAATCGTCTAGCACTATTCCC -ACGGAATCGTCTAGCACTTTCTCG -ACGGAATCGTCTAGCACTTAGACG -ACGGAATCGTCTAGCACTGTAACG -ACGGAATCGTCTAGCACTACTTCG -ACGGAATCGTCTAGCACTTACGCA -ACGGAATCGTCTAGCACTCTTGCA -ACGGAATCGTCTAGCACTCGAACA -ACGGAATCGTCTAGCACTCAGTCA -ACGGAATCGTCTAGCACTGATCCA -ACGGAATCGTCTAGCACTACGACA -ACGGAATCGTCTAGCACTAGCTCA -ACGGAATCGTCTAGCACTTCACGT -ACGGAATCGTCTAGCACTCGTAGT -ACGGAATCGTCTAGCACTGTCAGT -ACGGAATCGTCTAGCACTGAAGGT -ACGGAATCGTCTAGCACTAACCGT -ACGGAATCGTCTAGCACTTTGTGC -ACGGAATCGTCTAGCACTCTAAGC -ACGGAATCGTCTAGCACTACTAGC -ACGGAATCGTCTAGCACTAGATGC -ACGGAATCGTCTAGCACTTGAAGG -ACGGAATCGTCTAGCACTCAATGG -ACGGAATCGTCTAGCACTATGAGG -ACGGAATCGTCTAGCACTAATGGG -ACGGAATCGTCTAGCACTTCCTGA -ACGGAATCGTCTAGCACTTAGCGA -ACGGAATCGTCTAGCACTCACAGA -ACGGAATCGTCTAGCACTGCAAGA -ACGGAATCGTCTAGCACTGGTTGA -ACGGAATCGTCTAGCACTTCCGAT -ACGGAATCGTCTAGCACTTGGCAT -ACGGAATCGTCTAGCACTCGAGAT -ACGGAATCGTCTAGCACTTACCAC -ACGGAATCGTCTAGCACTCAGAAC -ACGGAATCGTCTAGCACTGTCTAC -ACGGAATCGTCTAGCACTACGTAC -ACGGAATCGTCTAGCACTAGTGAC -ACGGAATCGTCTAGCACTCTGTAG -ACGGAATCGTCTAGCACTCCTAAG -ACGGAATCGTCTAGCACTGTTCAG -ACGGAATCGTCTAGCACTGCATAG -ACGGAATCGTCTAGCACTGACAAG -ACGGAATCGTCTAGCACTAAGCAG -ACGGAATCGTCTAGCACTCGTCAA -ACGGAATCGTCTAGCACTGCTGAA -ACGGAATCGTCTAGCACTAGTACG -ACGGAATCGTCTAGCACTATCCGA -ACGGAATCGTCTAGCACTATGGGA -ACGGAATCGTCTAGCACTGTGCAA -ACGGAATCGTCTAGCACTGAGGAA -ACGGAATCGTCTAGCACTCAGGTA -ACGGAATCGTCTAGCACTGACTCT -ACGGAATCGTCTAGCACTAGTCCT -ACGGAATCGTCTAGCACTTAAGCC -ACGGAATCGTCTAGCACTATAGCC -ACGGAATCGTCTAGCACTTAACCG -ACGGAATCGTCTAGCACTATGCCA -ACGGAATCGTCTTGCAGAGGAAAC -ACGGAATCGTCTTGCAGAAACACC -ACGGAATCGTCTTGCAGAATCGAG -ACGGAATCGTCTTGCAGACTCCTT -ACGGAATCGTCTTGCAGACCTGTT -ACGGAATCGTCTTGCAGACGGTTT -ACGGAATCGTCTTGCAGAGTGGTT -ACGGAATCGTCTTGCAGAGCCTTT -ACGGAATCGTCTTGCAGAGGTCTT -ACGGAATCGTCTTGCAGAACGCTT -ACGGAATCGTCTTGCAGAAGCGTT -ACGGAATCGTCTTGCAGATTCGTC -ACGGAATCGTCTTGCAGATCTCTC -ACGGAATCGTCTTGCAGATGGATC -ACGGAATCGTCTTGCAGACACTTC -ACGGAATCGTCTTGCAGAGTACTC -ACGGAATCGTCTTGCAGAGATGTC -ACGGAATCGTCTTGCAGAACAGTC -ACGGAATCGTCTTGCAGATTGCTG -ACGGAATCGTCTTGCAGATCCATG -ACGGAATCGTCTTGCAGATGTGTG -ACGGAATCGTCTTGCAGACTAGTG -ACGGAATCGTCTTGCAGACATCTG -ACGGAATCGTCTTGCAGAGAGTTG -ACGGAATCGTCTTGCAGAAGACTG -ACGGAATCGTCTTGCAGATCGGTA -ACGGAATCGTCTTGCAGATGCCTA -ACGGAATCGTCTTGCAGACCACTA -ACGGAATCGTCTTGCAGAGGAGTA -ACGGAATCGTCTTGCAGATCGTCT -ACGGAATCGTCTTGCAGATGCACT -ACGGAATCGTCTTGCAGACTGACT -ACGGAATCGTCTTGCAGACAACCT -ACGGAATCGTCTTGCAGAGCTACT -ACGGAATCGTCTTGCAGAGGATCT -ACGGAATCGTCTTGCAGAAAGGCT -ACGGAATCGTCTTGCAGATCAACC -ACGGAATCGTCTTGCAGATGTTCC -ACGGAATCGTCTTGCAGAATTCCC -ACGGAATCGTCTTGCAGATTCTCG -ACGGAATCGTCTTGCAGATAGACG -ACGGAATCGTCTTGCAGAGTAACG -ACGGAATCGTCTTGCAGAACTTCG -ACGGAATCGTCTTGCAGATACGCA -ACGGAATCGTCTTGCAGACTTGCA -ACGGAATCGTCTTGCAGACGAACA -ACGGAATCGTCTTGCAGACAGTCA -ACGGAATCGTCTTGCAGAGATCCA -ACGGAATCGTCTTGCAGAACGACA -ACGGAATCGTCTTGCAGAAGCTCA -ACGGAATCGTCTTGCAGATCACGT -ACGGAATCGTCTTGCAGACGTAGT -ACGGAATCGTCTTGCAGAGTCAGT -ACGGAATCGTCTTGCAGAGAAGGT -ACGGAATCGTCTTGCAGAAACCGT -ACGGAATCGTCTTGCAGATTGTGC -ACGGAATCGTCTTGCAGACTAAGC -ACGGAATCGTCTTGCAGAACTAGC -ACGGAATCGTCTTGCAGAAGATGC -ACGGAATCGTCTTGCAGATGAAGG -ACGGAATCGTCTTGCAGACAATGG -ACGGAATCGTCTTGCAGAATGAGG -ACGGAATCGTCTTGCAGAAATGGG -ACGGAATCGTCTTGCAGATCCTGA -ACGGAATCGTCTTGCAGATAGCGA -ACGGAATCGTCTTGCAGACACAGA -ACGGAATCGTCTTGCAGAGCAAGA -ACGGAATCGTCTTGCAGAGGTTGA -ACGGAATCGTCTTGCAGATCCGAT -ACGGAATCGTCTTGCAGATGGCAT -ACGGAATCGTCTTGCAGACGAGAT -ACGGAATCGTCTTGCAGATACCAC -ACGGAATCGTCTTGCAGACAGAAC -ACGGAATCGTCTTGCAGAGTCTAC -ACGGAATCGTCTTGCAGAACGTAC -ACGGAATCGTCTTGCAGAAGTGAC -ACGGAATCGTCTTGCAGACTGTAG -ACGGAATCGTCTTGCAGACCTAAG -ACGGAATCGTCTTGCAGAGTTCAG -ACGGAATCGTCTTGCAGAGCATAG -ACGGAATCGTCTTGCAGAGACAAG -ACGGAATCGTCTTGCAGAAAGCAG -ACGGAATCGTCTTGCAGACGTCAA -ACGGAATCGTCTTGCAGAGCTGAA -ACGGAATCGTCTTGCAGAAGTACG -ACGGAATCGTCTTGCAGAATCCGA -ACGGAATCGTCTTGCAGAATGGGA -ACGGAATCGTCTTGCAGAGTGCAA -ACGGAATCGTCTTGCAGAGAGGAA -ACGGAATCGTCTTGCAGACAGGTA -ACGGAATCGTCTTGCAGAGACTCT -ACGGAATCGTCTTGCAGAAGTCCT -ACGGAATCGTCTTGCAGATAAGCC -ACGGAATCGTCTTGCAGAATAGCC -ACGGAATCGTCTTGCAGATAACCG -ACGGAATCGTCTTGCAGAATGCCA -ACGGAATCGTCTAGGTGAGGAAAC -ACGGAATCGTCTAGGTGAAACACC -ACGGAATCGTCTAGGTGAATCGAG -ACGGAATCGTCTAGGTGACTCCTT -ACGGAATCGTCTAGGTGACCTGTT -ACGGAATCGTCTAGGTGACGGTTT -ACGGAATCGTCTAGGTGAGTGGTT -ACGGAATCGTCTAGGTGAGCCTTT -ACGGAATCGTCTAGGTGAGGTCTT -ACGGAATCGTCTAGGTGAACGCTT -ACGGAATCGTCTAGGTGAAGCGTT -ACGGAATCGTCTAGGTGATTCGTC -ACGGAATCGTCTAGGTGATCTCTC -ACGGAATCGTCTAGGTGATGGATC -ACGGAATCGTCTAGGTGACACTTC -ACGGAATCGTCTAGGTGAGTACTC -ACGGAATCGTCTAGGTGAGATGTC -ACGGAATCGTCTAGGTGAACAGTC -ACGGAATCGTCTAGGTGATTGCTG -ACGGAATCGTCTAGGTGATCCATG -ACGGAATCGTCTAGGTGATGTGTG -ACGGAATCGTCTAGGTGACTAGTG -ACGGAATCGTCTAGGTGACATCTG -ACGGAATCGTCTAGGTGAGAGTTG -ACGGAATCGTCTAGGTGAAGACTG -ACGGAATCGTCTAGGTGATCGGTA -ACGGAATCGTCTAGGTGATGCCTA -ACGGAATCGTCTAGGTGACCACTA -ACGGAATCGTCTAGGTGAGGAGTA -ACGGAATCGTCTAGGTGATCGTCT -ACGGAATCGTCTAGGTGATGCACT -ACGGAATCGTCTAGGTGACTGACT -ACGGAATCGTCTAGGTGACAACCT -ACGGAATCGTCTAGGTGAGCTACT -ACGGAATCGTCTAGGTGAGGATCT -ACGGAATCGTCTAGGTGAAAGGCT -ACGGAATCGTCTAGGTGATCAACC -ACGGAATCGTCTAGGTGATGTTCC -ACGGAATCGTCTAGGTGAATTCCC -ACGGAATCGTCTAGGTGATTCTCG -ACGGAATCGTCTAGGTGATAGACG -ACGGAATCGTCTAGGTGAGTAACG -ACGGAATCGTCTAGGTGAACTTCG -ACGGAATCGTCTAGGTGATACGCA -ACGGAATCGTCTAGGTGACTTGCA -ACGGAATCGTCTAGGTGACGAACA -ACGGAATCGTCTAGGTGACAGTCA -ACGGAATCGTCTAGGTGAGATCCA -ACGGAATCGTCTAGGTGAACGACA -ACGGAATCGTCTAGGTGAAGCTCA -ACGGAATCGTCTAGGTGATCACGT -ACGGAATCGTCTAGGTGACGTAGT -ACGGAATCGTCTAGGTGAGTCAGT -ACGGAATCGTCTAGGTGAGAAGGT -ACGGAATCGTCTAGGTGAAACCGT -ACGGAATCGTCTAGGTGATTGTGC -ACGGAATCGTCTAGGTGACTAAGC -ACGGAATCGTCTAGGTGAACTAGC -ACGGAATCGTCTAGGTGAAGATGC -ACGGAATCGTCTAGGTGATGAAGG -ACGGAATCGTCTAGGTGACAATGG -ACGGAATCGTCTAGGTGAATGAGG -ACGGAATCGTCTAGGTGAAATGGG -ACGGAATCGTCTAGGTGATCCTGA -ACGGAATCGTCTAGGTGATAGCGA -ACGGAATCGTCTAGGTGACACAGA -ACGGAATCGTCTAGGTGAGCAAGA -ACGGAATCGTCTAGGTGAGGTTGA -ACGGAATCGTCTAGGTGATCCGAT -ACGGAATCGTCTAGGTGATGGCAT -ACGGAATCGTCTAGGTGACGAGAT -ACGGAATCGTCTAGGTGATACCAC -ACGGAATCGTCTAGGTGACAGAAC -ACGGAATCGTCTAGGTGAGTCTAC -ACGGAATCGTCTAGGTGAACGTAC -ACGGAATCGTCTAGGTGAAGTGAC -ACGGAATCGTCTAGGTGACTGTAG -ACGGAATCGTCTAGGTGACCTAAG -ACGGAATCGTCTAGGTGAGTTCAG -ACGGAATCGTCTAGGTGAGCATAG -ACGGAATCGTCTAGGTGAGACAAG -ACGGAATCGTCTAGGTGAAAGCAG -ACGGAATCGTCTAGGTGACGTCAA -ACGGAATCGTCTAGGTGAGCTGAA -ACGGAATCGTCTAGGTGAAGTACG -ACGGAATCGTCTAGGTGAATCCGA -ACGGAATCGTCTAGGTGAATGGGA -ACGGAATCGTCTAGGTGAGTGCAA -ACGGAATCGTCTAGGTGAGAGGAA -ACGGAATCGTCTAGGTGACAGGTA -ACGGAATCGTCTAGGTGAGACTCT -ACGGAATCGTCTAGGTGAAGTCCT -ACGGAATCGTCTAGGTGATAAGCC -ACGGAATCGTCTAGGTGAATAGCC -ACGGAATCGTCTAGGTGATAACCG -ACGGAATCGTCTAGGTGAATGCCA -ACGGAATCGTCTTGGCAAGGAAAC -ACGGAATCGTCTTGGCAAAACACC -ACGGAATCGTCTTGGCAAATCGAG -ACGGAATCGTCTTGGCAACTCCTT -ACGGAATCGTCTTGGCAACCTGTT -ACGGAATCGTCTTGGCAACGGTTT -ACGGAATCGTCTTGGCAAGTGGTT -ACGGAATCGTCTTGGCAAGCCTTT -ACGGAATCGTCTTGGCAAGGTCTT -ACGGAATCGTCTTGGCAAACGCTT -ACGGAATCGTCTTGGCAAAGCGTT -ACGGAATCGTCTTGGCAATTCGTC -ACGGAATCGTCTTGGCAATCTCTC -ACGGAATCGTCTTGGCAATGGATC -ACGGAATCGTCTTGGCAACACTTC -ACGGAATCGTCTTGGCAAGTACTC -ACGGAATCGTCTTGGCAAGATGTC -ACGGAATCGTCTTGGCAAACAGTC -ACGGAATCGTCTTGGCAATTGCTG -ACGGAATCGTCTTGGCAATCCATG -ACGGAATCGTCTTGGCAATGTGTG -ACGGAATCGTCTTGGCAACTAGTG -ACGGAATCGTCTTGGCAACATCTG -ACGGAATCGTCTTGGCAAGAGTTG -ACGGAATCGTCTTGGCAAAGACTG -ACGGAATCGTCTTGGCAATCGGTA -ACGGAATCGTCTTGGCAATGCCTA -ACGGAATCGTCTTGGCAACCACTA -ACGGAATCGTCTTGGCAAGGAGTA -ACGGAATCGTCTTGGCAATCGTCT -ACGGAATCGTCTTGGCAATGCACT -ACGGAATCGTCTTGGCAACTGACT -ACGGAATCGTCTTGGCAACAACCT -ACGGAATCGTCTTGGCAAGCTACT -ACGGAATCGTCTTGGCAAGGATCT -ACGGAATCGTCTTGGCAAAAGGCT -ACGGAATCGTCTTGGCAATCAACC -ACGGAATCGTCTTGGCAATGTTCC -ACGGAATCGTCTTGGCAAATTCCC -ACGGAATCGTCTTGGCAATTCTCG -ACGGAATCGTCTTGGCAATAGACG -ACGGAATCGTCTTGGCAAGTAACG -ACGGAATCGTCTTGGCAAACTTCG -ACGGAATCGTCTTGGCAATACGCA -ACGGAATCGTCTTGGCAACTTGCA -ACGGAATCGTCTTGGCAACGAACA -ACGGAATCGTCTTGGCAACAGTCA -ACGGAATCGTCTTGGCAAGATCCA -ACGGAATCGTCTTGGCAAACGACA -ACGGAATCGTCTTGGCAAAGCTCA -ACGGAATCGTCTTGGCAATCACGT -ACGGAATCGTCTTGGCAACGTAGT -ACGGAATCGTCTTGGCAAGTCAGT -ACGGAATCGTCTTGGCAAGAAGGT -ACGGAATCGTCTTGGCAAAACCGT -ACGGAATCGTCTTGGCAATTGTGC -ACGGAATCGTCTTGGCAACTAAGC -ACGGAATCGTCTTGGCAAACTAGC -ACGGAATCGTCTTGGCAAAGATGC -ACGGAATCGTCTTGGCAATGAAGG -ACGGAATCGTCTTGGCAACAATGG -ACGGAATCGTCTTGGCAAATGAGG -ACGGAATCGTCTTGGCAAAATGGG -ACGGAATCGTCTTGGCAATCCTGA -ACGGAATCGTCTTGGCAATAGCGA -ACGGAATCGTCTTGGCAACACAGA -ACGGAATCGTCTTGGCAAGCAAGA -ACGGAATCGTCTTGGCAAGGTTGA -ACGGAATCGTCTTGGCAATCCGAT -ACGGAATCGTCTTGGCAATGGCAT -ACGGAATCGTCTTGGCAACGAGAT -ACGGAATCGTCTTGGCAATACCAC -ACGGAATCGTCTTGGCAACAGAAC -ACGGAATCGTCTTGGCAAGTCTAC -ACGGAATCGTCTTGGCAAACGTAC -ACGGAATCGTCTTGGCAAAGTGAC -ACGGAATCGTCTTGGCAACTGTAG -ACGGAATCGTCTTGGCAACCTAAG -ACGGAATCGTCTTGGCAAGTTCAG -ACGGAATCGTCTTGGCAAGCATAG -ACGGAATCGTCTTGGCAAGACAAG -ACGGAATCGTCTTGGCAAAAGCAG -ACGGAATCGTCTTGGCAACGTCAA -ACGGAATCGTCTTGGCAAGCTGAA -ACGGAATCGTCTTGGCAAAGTACG -ACGGAATCGTCTTGGCAAATCCGA -ACGGAATCGTCTTGGCAAATGGGA -ACGGAATCGTCTTGGCAAGTGCAA -ACGGAATCGTCTTGGCAAGAGGAA -ACGGAATCGTCTTGGCAACAGGTA -ACGGAATCGTCTTGGCAAGACTCT -ACGGAATCGTCTTGGCAAAGTCCT -ACGGAATCGTCTTGGCAATAAGCC -ACGGAATCGTCTTGGCAAATAGCC -ACGGAATCGTCTTGGCAATAACCG -ACGGAATCGTCTTGGCAAATGCCA -ACGGAATCGTCTAGGATGGGAAAC -ACGGAATCGTCTAGGATGAACACC -ACGGAATCGTCTAGGATGATCGAG -ACGGAATCGTCTAGGATGCTCCTT -ACGGAATCGTCTAGGATGCCTGTT -ACGGAATCGTCTAGGATGCGGTTT -ACGGAATCGTCTAGGATGGTGGTT -ACGGAATCGTCTAGGATGGCCTTT -ACGGAATCGTCTAGGATGGGTCTT -ACGGAATCGTCTAGGATGACGCTT -ACGGAATCGTCTAGGATGAGCGTT -ACGGAATCGTCTAGGATGTTCGTC -ACGGAATCGTCTAGGATGTCTCTC -ACGGAATCGTCTAGGATGTGGATC -ACGGAATCGTCTAGGATGCACTTC -ACGGAATCGTCTAGGATGGTACTC -ACGGAATCGTCTAGGATGGATGTC -ACGGAATCGTCTAGGATGACAGTC -ACGGAATCGTCTAGGATGTTGCTG -ACGGAATCGTCTAGGATGTCCATG -ACGGAATCGTCTAGGATGTGTGTG -ACGGAATCGTCTAGGATGCTAGTG -ACGGAATCGTCTAGGATGCATCTG -ACGGAATCGTCTAGGATGGAGTTG -ACGGAATCGTCTAGGATGAGACTG -ACGGAATCGTCTAGGATGTCGGTA -ACGGAATCGTCTAGGATGTGCCTA -ACGGAATCGTCTAGGATGCCACTA -ACGGAATCGTCTAGGATGGGAGTA -ACGGAATCGTCTAGGATGTCGTCT -ACGGAATCGTCTAGGATGTGCACT -ACGGAATCGTCTAGGATGCTGACT -ACGGAATCGTCTAGGATGCAACCT -ACGGAATCGTCTAGGATGGCTACT -ACGGAATCGTCTAGGATGGGATCT -ACGGAATCGTCTAGGATGAAGGCT -ACGGAATCGTCTAGGATGTCAACC -ACGGAATCGTCTAGGATGTGTTCC -ACGGAATCGTCTAGGATGATTCCC -ACGGAATCGTCTAGGATGTTCTCG -ACGGAATCGTCTAGGATGTAGACG -ACGGAATCGTCTAGGATGGTAACG -ACGGAATCGTCTAGGATGACTTCG -ACGGAATCGTCTAGGATGTACGCA -ACGGAATCGTCTAGGATGCTTGCA -ACGGAATCGTCTAGGATGCGAACA -ACGGAATCGTCTAGGATGCAGTCA -ACGGAATCGTCTAGGATGGATCCA -ACGGAATCGTCTAGGATGACGACA -ACGGAATCGTCTAGGATGAGCTCA -ACGGAATCGTCTAGGATGTCACGT -ACGGAATCGTCTAGGATGCGTAGT -ACGGAATCGTCTAGGATGGTCAGT -ACGGAATCGTCTAGGATGGAAGGT -ACGGAATCGTCTAGGATGAACCGT -ACGGAATCGTCTAGGATGTTGTGC -ACGGAATCGTCTAGGATGCTAAGC -ACGGAATCGTCTAGGATGACTAGC -ACGGAATCGTCTAGGATGAGATGC -ACGGAATCGTCTAGGATGTGAAGG -ACGGAATCGTCTAGGATGCAATGG -ACGGAATCGTCTAGGATGATGAGG -ACGGAATCGTCTAGGATGAATGGG -ACGGAATCGTCTAGGATGTCCTGA -ACGGAATCGTCTAGGATGTAGCGA -ACGGAATCGTCTAGGATGCACAGA -ACGGAATCGTCTAGGATGGCAAGA -ACGGAATCGTCTAGGATGGGTTGA -ACGGAATCGTCTAGGATGTCCGAT -ACGGAATCGTCTAGGATGTGGCAT -ACGGAATCGTCTAGGATGCGAGAT -ACGGAATCGTCTAGGATGTACCAC -ACGGAATCGTCTAGGATGCAGAAC -ACGGAATCGTCTAGGATGGTCTAC -ACGGAATCGTCTAGGATGACGTAC -ACGGAATCGTCTAGGATGAGTGAC -ACGGAATCGTCTAGGATGCTGTAG -ACGGAATCGTCTAGGATGCCTAAG -ACGGAATCGTCTAGGATGGTTCAG -ACGGAATCGTCTAGGATGGCATAG -ACGGAATCGTCTAGGATGGACAAG -ACGGAATCGTCTAGGATGAAGCAG -ACGGAATCGTCTAGGATGCGTCAA -ACGGAATCGTCTAGGATGGCTGAA -ACGGAATCGTCTAGGATGAGTACG -ACGGAATCGTCTAGGATGATCCGA -ACGGAATCGTCTAGGATGATGGGA -ACGGAATCGTCTAGGATGGTGCAA -ACGGAATCGTCTAGGATGGAGGAA -ACGGAATCGTCTAGGATGCAGGTA -ACGGAATCGTCTAGGATGGACTCT -ACGGAATCGTCTAGGATGAGTCCT -ACGGAATCGTCTAGGATGTAAGCC -ACGGAATCGTCTAGGATGATAGCC -ACGGAATCGTCTAGGATGTAACCG -ACGGAATCGTCTAGGATGATGCCA -ACGGAATCGTCTGGGAATGGAAAC -ACGGAATCGTCTGGGAATAACACC -ACGGAATCGTCTGGGAATATCGAG -ACGGAATCGTCTGGGAATCTCCTT -ACGGAATCGTCTGGGAATCCTGTT -ACGGAATCGTCTGGGAATCGGTTT -ACGGAATCGTCTGGGAATGTGGTT -ACGGAATCGTCTGGGAATGCCTTT -ACGGAATCGTCTGGGAATGGTCTT -ACGGAATCGTCTGGGAATACGCTT -ACGGAATCGTCTGGGAATAGCGTT -ACGGAATCGTCTGGGAATTTCGTC -ACGGAATCGTCTGGGAATTCTCTC -ACGGAATCGTCTGGGAATTGGATC -ACGGAATCGTCTGGGAATCACTTC -ACGGAATCGTCTGGGAATGTACTC -ACGGAATCGTCTGGGAATGATGTC -ACGGAATCGTCTGGGAATACAGTC -ACGGAATCGTCTGGGAATTTGCTG -ACGGAATCGTCTGGGAATTCCATG -ACGGAATCGTCTGGGAATTGTGTG -ACGGAATCGTCTGGGAATCTAGTG -ACGGAATCGTCTGGGAATCATCTG -ACGGAATCGTCTGGGAATGAGTTG -ACGGAATCGTCTGGGAATAGACTG -ACGGAATCGTCTGGGAATTCGGTA -ACGGAATCGTCTGGGAATTGCCTA -ACGGAATCGTCTGGGAATCCACTA -ACGGAATCGTCTGGGAATGGAGTA -ACGGAATCGTCTGGGAATTCGTCT -ACGGAATCGTCTGGGAATTGCACT -ACGGAATCGTCTGGGAATCTGACT -ACGGAATCGTCTGGGAATCAACCT -ACGGAATCGTCTGGGAATGCTACT -ACGGAATCGTCTGGGAATGGATCT -ACGGAATCGTCTGGGAATAAGGCT -ACGGAATCGTCTGGGAATTCAACC -ACGGAATCGTCTGGGAATTGTTCC -ACGGAATCGTCTGGGAATATTCCC -ACGGAATCGTCTGGGAATTTCTCG -ACGGAATCGTCTGGGAATTAGACG -ACGGAATCGTCTGGGAATGTAACG -ACGGAATCGTCTGGGAATACTTCG -ACGGAATCGTCTGGGAATTACGCA -ACGGAATCGTCTGGGAATCTTGCA -ACGGAATCGTCTGGGAATCGAACA -ACGGAATCGTCTGGGAATCAGTCA -ACGGAATCGTCTGGGAATGATCCA -ACGGAATCGTCTGGGAATACGACA -ACGGAATCGTCTGGGAATAGCTCA -ACGGAATCGTCTGGGAATTCACGT -ACGGAATCGTCTGGGAATCGTAGT -ACGGAATCGTCTGGGAATGTCAGT -ACGGAATCGTCTGGGAATGAAGGT -ACGGAATCGTCTGGGAATAACCGT -ACGGAATCGTCTGGGAATTTGTGC -ACGGAATCGTCTGGGAATCTAAGC -ACGGAATCGTCTGGGAATACTAGC -ACGGAATCGTCTGGGAATAGATGC -ACGGAATCGTCTGGGAATTGAAGG -ACGGAATCGTCTGGGAATCAATGG -ACGGAATCGTCTGGGAATATGAGG -ACGGAATCGTCTGGGAATAATGGG -ACGGAATCGTCTGGGAATTCCTGA -ACGGAATCGTCTGGGAATTAGCGA -ACGGAATCGTCTGGGAATCACAGA -ACGGAATCGTCTGGGAATGCAAGA -ACGGAATCGTCTGGGAATGGTTGA -ACGGAATCGTCTGGGAATTCCGAT -ACGGAATCGTCTGGGAATTGGCAT -ACGGAATCGTCTGGGAATCGAGAT -ACGGAATCGTCTGGGAATTACCAC -ACGGAATCGTCTGGGAATCAGAAC -ACGGAATCGTCTGGGAATGTCTAC -ACGGAATCGTCTGGGAATACGTAC -ACGGAATCGTCTGGGAATAGTGAC -ACGGAATCGTCTGGGAATCTGTAG -ACGGAATCGTCTGGGAATCCTAAG -ACGGAATCGTCTGGGAATGTTCAG -ACGGAATCGTCTGGGAATGCATAG -ACGGAATCGTCTGGGAATGACAAG -ACGGAATCGTCTGGGAATAAGCAG -ACGGAATCGTCTGGGAATCGTCAA -ACGGAATCGTCTGGGAATGCTGAA -ACGGAATCGTCTGGGAATAGTACG -ACGGAATCGTCTGGGAATATCCGA -ACGGAATCGTCTGGGAATATGGGA -ACGGAATCGTCTGGGAATGTGCAA -ACGGAATCGTCTGGGAATGAGGAA -ACGGAATCGTCTGGGAATCAGGTA -ACGGAATCGTCTGGGAATGACTCT -ACGGAATCGTCTGGGAATAGTCCT -ACGGAATCGTCTGGGAATTAAGCC -ACGGAATCGTCTGGGAATATAGCC -ACGGAATCGTCTGGGAATTAACCG -ACGGAATCGTCTGGGAATATGCCA -ACGGAATCGTCTTGATCCGGAAAC -ACGGAATCGTCTTGATCCAACACC -ACGGAATCGTCTTGATCCATCGAG -ACGGAATCGTCTTGATCCCTCCTT -ACGGAATCGTCTTGATCCCCTGTT -ACGGAATCGTCTTGATCCCGGTTT -ACGGAATCGTCTTGATCCGTGGTT -ACGGAATCGTCTTGATCCGCCTTT -ACGGAATCGTCTTGATCCGGTCTT -ACGGAATCGTCTTGATCCACGCTT -ACGGAATCGTCTTGATCCAGCGTT -ACGGAATCGTCTTGATCCTTCGTC -ACGGAATCGTCTTGATCCTCTCTC -ACGGAATCGTCTTGATCCTGGATC -ACGGAATCGTCTTGATCCCACTTC -ACGGAATCGTCTTGATCCGTACTC -ACGGAATCGTCTTGATCCGATGTC -ACGGAATCGTCTTGATCCACAGTC -ACGGAATCGTCTTGATCCTTGCTG -ACGGAATCGTCTTGATCCTCCATG -ACGGAATCGTCTTGATCCTGTGTG -ACGGAATCGTCTTGATCCCTAGTG -ACGGAATCGTCTTGATCCCATCTG -ACGGAATCGTCTTGATCCGAGTTG -ACGGAATCGTCTTGATCCAGACTG -ACGGAATCGTCTTGATCCTCGGTA -ACGGAATCGTCTTGATCCTGCCTA -ACGGAATCGTCTTGATCCCCACTA -ACGGAATCGTCTTGATCCGGAGTA -ACGGAATCGTCTTGATCCTCGTCT -ACGGAATCGTCTTGATCCTGCACT -ACGGAATCGTCTTGATCCCTGACT -ACGGAATCGTCTTGATCCCAACCT -ACGGAATCGTCTTGATCCGCTACT -ACGGAATCGTCTTGATCCGGATCT -ACGGAATCGTCTTGATCCAAGGCT -ACGGAATCGTCTTGATCCTCAACC -ACGGAATCGTCTTGATCCTGTTCC -ACGGAATCGTCTTGATCCATTCCC -ACGGAATCGTCTTGATCCTTCTCG -ACGGAATCGTCTTGATCCTAGACG -ACGGAATCGTCTTGATCCGTAACG -ACGGAATCGTCTTGATCCACTTCG -ACGGAATCGTCTTGATCCTACGCA -ACGGAATCGTCTTGATCCCTTGCA -ACGGAATCGTCTTGATCCCGAACA -ACGGAATCGTCTTGATCCCAGTCA -ACGGAATCGTCTTGATCCGATCCA -ACGGAATCGTCTTGATCCACGACA -ACGGAATCGTCTTGATCCAGCTCA -ACGGAATCGTCTTGATCCTCACGT -ACGGAATCGTCTTGATCCCGTAGT -ACGGAATCGTCTTGATCCGTCAGT -ACGGAATCGTCTTGATCCGAAGGT -ACGGAATCGTCTTGATCCAACCGT -ACGGAATCGTCTTGATCCTTGTGC -ACGGAATCGTCTTGATCCCTAAGC -ACGGAATCGTCTTGATCCACTAGC -ACGGAATCGTCTTGATCCAGATGC -ACGGAATCGTCTTGATCCTGAAGG -ACGGAATCGTCTTGATCCCAATGG -ACGGAATCGTCTTGATCCATGAGG -ACGGAATCGTCTTGATCCAATGGG -ACGGAATCGTCTTGATCCTCCTGA -ACGGAATCGTCTTGATCCTAGCGA -ACGGAATCGTCTTGATCCCACAGA -ACGGAATCGTCTTGATCCGCAAGA -ACGGAATCGTCTTGATCCGGTTGA -ACGGAATCGTCTTGATCCTCCGAT -ACGGAATCGTCTTGATCCTGGCAT -ACGGAATCGTCTTGATCCCGAGAT -ACGGAATCGTCTTGATCCTACCAC -ACGGAATCGTCTTGATCCCAGAAC -ACGGAATCGTCTTGATCCGTCTAC -ACGGAATCGTCTTGATCCACGTAC -ACGGAATCGTCTTGATCCAGTGAC -ACGGAATCGTCTTGATCCCTGTAG -ACGGAATCGTCTTGATCCCCTAAG -ACGGAATCGTCTTGATCCGTTCAG -ACGGAATCGTCTTGATCCGCATAG -ACGGAATCGTCTTGATCCGACAAG -ACGGAATCGTCTTGATCCAAGCAG -ACGGAATCGTCTTGATCCCGTCAA -ACGGAATCGTCTTGATCCGCTGAA -ACGGAATCGTCTTGATCCAGTACG -ACGGAATCGTCTTGATCCATCCGA -ACGGAATCGTCTTGATCCATGGGA -ACGGAATCGTCTTGATCCGTGCAA -ACGGAATCGTCTTGATCCGAGGAA -ACGGAATCGTCTTGATCCCAGGTA -ACGGAATCGTCTTGATCCGACTCT -ACGGAATCGTCTTGATCCAGTCCT -ACGGAATCGTCTTGATCCTAAGCC -ACGGAATCGTCTTGATCCATAGCC -ACGGAATCGTCTTGATCCTAACCG -ACGGAATCGTCTTGATCCATGCCA -ACGGAATCGTCTCGATAGGGAAAC -ACGGAATCGTCTCGATAGAACACC -ACGGAATCGTCTCGATAGATCGAG -ACGGAATCGTCTCGATAGCTCCTT -ACGGAATCGTCTCGATAGCCTGTT -ACGGAATCGTCTCGATAGCGGTTT -ACGGAATCGTCTCGATAGGTGGTT -ACGGAATCGTCTCGATAGGCCTTT -ACGGAATCGTCTCGATAGGGTCTT -ACGGAATCGTCTCGATAGACGCTT -ACGGAATCGTCTCGATAGAGCGTT -ACGGAATCGTCTCGATAGTTCGTC -ACGGAATCGTCTCGATAGTCTCTC -ACGGAATCGTCTCGATAGTGGATC -ACGGAATCGTCTCGATAGCACTTC -ACGGAATCGTCTCGATAGGTACTC -ACGGAATCGTCTCGATAGGATGTC -ACGGAATCGTCTCGATAGACAGTC -ACGGAATCGTCTCGATAGTTGCTG -ACGGAATCGTCTCGATAGTCCATG -ACGGAATCGTCTCGATAGTGTGTG -ACGGAATCGTCTCGATAGCTAGTG -ACGGAATCGTCTCGATAGCATCTG -ACGGAATCGTCTCGATAGGAGTTG -ACGGAATCGTCTCGATAGAGACTG -ACGGAATCGTCTCGATAGTCGGTA -ACGGAATCGTCTCGATAGTGCCTA -ACGGAATCGTCTCGATAGCCACTA -ACGGAATCGTCTCGATAGGGAGTA -ACGGAATCGTCTCGATAGTCGTCT -ACGGAATCGTCTCGATAGTGCACT -ACGGAATCGTCTCGATAGCTGACT -ACGGAATCGTCTCGATAGCAACCT -ACGGAATCGTCTCGATAGGCTACT -ACGGAATCGTCTCGATAGGGATCT -ACGGAATCGTCTCGATAGAAGGCT -ACGGAATCGTCTCGATAGTCAACC -ACGGAATCGTCTCGATAGTGTTCC -ACGGAATCGTCTCGATAGATTCCC -ACGGAATCGTCTCGATAGTTCTCG -ACGGAATCGTCTCGATAGTAGACG -ACGGAATCGTCTCGATAGGTAACG -ACGGAATCGTCTCGATAGACTTCG -ACGGAATCGTCTCGATAGTACGCA -ACGGAATCGTCTCGATAGCTTGCA -ACGGAATCGTCTCGATAGCGAACA -ACGGAATCGTCTCGATAGCAGTCA -ACGGAATCGTCTCGATAGGATCCA -ACGGAATCGTCTCGATAGACGACA -ACGGAATCGTCTCGATAGAGCTCA -ACGGAATCGTCTCGATAGTCACGT -ACGGAATCGTCTCGATAGCGTAGT -ACGGAATCGTCTCGATAGGTCAGT -ACGGAATCGTCTCGATAGGAAGGT -ACGGAATCGTCTCGATAGAACCGT -ACGGAATCGTCTCGATAGTTGTGC -ACGGAATCGTCTCGATAGCTAAGC -ACGGAATCGTCTCGATAGACTAGC -ACGGAATCGTCTCGATAGAGATGC -ACGGAATCGTCTCGATAGTGAAGG -ACGGAATCGTCTCGATAGCAATGG -ACGGAATCGTCTCGATAGATGAGG -ACGGAATCGTCTCGATAGAATGGG -ACGGAATCGTCTCGATAGTCCTGA -ACGGAATCGTCTCGATAGTAGCGA -ACGGAATCGTCTCGATAGCACAGA -ACGGAATCGTCTCGATAGGCAAGA -ACGGAATCGTCTCGATAGGGTTGA -ACGGAATCGTCTCGATAGTCCGAT -ACGGAATCGTCTCGATAGTGGCAT -ACGGAATCGTCTCGATAGCGAGAT -ACGGAATCGTCTCGATAGTACCAC -ACGGAATCGTCTCGATAGCAGAAC -ACGGAATCGTCTCGATAGGTCTAC -ACGGAATCGTCTCGATAGACGTAC -ACGGAATCGTCTCGATAGAGTGAC -ACGGAATCGTCTCGATAGCTGTAG -ACGGAATCGTCTCGATAGCCTAAG -ACGGAATCGTCTCGATAGGTTCAG -ACGGAATCGTCTCGATAGGCATAG -ACGGAATCGTCTCGATAGGACAAG -ACGGAATCGTCTCGATAGAAGCAG -ACGGAATCGTCTCGATAGCGTCAA -ACGGAATCGTCTCGATAGGCTGAA -ACGGAATCGTCTCGATAGAGTACG -ACGGAATCGTCTCGATAGATCCGA -ACGGAATCGTCTCGATAGATGGGA -ACGGAATCGTCTCGATAGGTGCAA -ACGGAATCGTCTCGATAGGAGGAA -ACGGAATCGTCTCGATAGCAGGTA -ACGGAATCGTCTCGATAGGACTCT -ACGGAATCGTCTCGATAGAGTCCT -ACGGAATCGTCTCGATAGTAAGCC -ACGGAATCGTCTCGATAGATAGCC -ACGGAATCGTCTCGATAGTAACCG -ACGGAATCGTCTCGATAGATGCCA -ACGGAATCGTCTAGACACGGAAAC -ACGGAATCGTCTAGACACAACACC -ACGGAATCGTCTAGACACATCGAG -ACGGAATCGTCTAGACACCTCCTT -ACGGAATCGTCTAGACACCCTGTT -ACGGAATCGTCTAGACACCGGTTT -ACGGAATCGTCTAGACACGTGGTT -ACGGAATCGTCTAGACACGCCTTT -ACGGAATCGTCTAGACACGGTCTT -ACGGAATCGTCTAGACACACGCTT -ACGGAATCGTCTAGACACAGCGTT -ACGGAATCGTCTAGACACTTCGTC -ACGGAATCGTCTAGACACTCTCTC -ACGGAATCGTCTAGACACTGGATC -ACGGAATCGTCTAGACACCACTTC -ACGGAATCGTCTAGACACGTACTC -ACGGAATCGTCTAGACACGATGTC -ACGGAATCGTCTAGACACACAGTC -ACGGAATCGTCTAGACACTTGCTG -ACGGAATCGTCTAGACACTCCATG -ACGGAATCGTCTAGACACTGTGTG -ACGGAATCGTCTAGACACCTAGTG -ACGGAATCGTCTAGACACCATCTG -ACGGAATCGTCTAGACACGAGTTG -ACGGAATCGTCTAGACACAGACTG -ACGGAATCGTCTAGACACTCGGTA -ACGGAATCGTCTAGACACTGCCTA -ACGGAATCGTCTAGACACCCACTA -ACGGAATCGTCTAGACACGGAGTA -ACGGAATCGTCTAGACACTCGTCT -ACGGAATCGTCTAGACACTGCACT -ACGGAATCGTCTAGACACCTGACT -ACGGAATCGTCTAGACACCAACCT -ACGGAATCGTCTAGACACGCTACT -ACGGAATCGTCTAGACACGGATCT -ACGGAATCGTCTAGACACAAGGCT -ACGGAATCGTCTAGACACTCAACC -ACGGAATCGTCTAGACACTGTTCC -ACGGAATCGTCTAGACACATTCCC -ACGGAATCGTCTAGACACTTCTCG -ACGGAATCGTCTAGACACTAGACG -ACGGAATCGTCTAGACACGTAACG -ACGGAATCGTCTAGACACACTTCG -ACGGAATCGTCTAGACACTACGCA -ACGGAATCGTCTAGACACCTTGCA -ACGGAATCGTCTAGACACCGAACA -ACGGAATCGTCTAGACACCAGTCA -ACGGAATCGTCTAGACACGATCCA -ACGGAATCGTCTAGACACACGACA -ACGGAATCGTCTAGACACAGCTCA -ACGGAATCGTCTAGACACTCACGT -ACGGAATCGTCTAGACACCGTAGT -ACGGAATCGTCTAGACACGTCAGT -ACGGAATCGTCTAGACACGAAGGT -ACGGAATCGTCTAGACACAACCGT -ACGGAATCGTCTAGACACTTGTGC -ACGGAATCGTCTAGACACCTAAGC -ACGGAATCGTCTAGACACACTAGC -ACGGAATCGTCTAGACACAGATGC -ACGGAATCGTCTAGACACTGAAGG -ACGGAATCGTCTAGACACCAATGG -ACGGAATCGTCTAGACACATGAGG -ACGGAATCGTCTAGACACAATGGG -ACGGAATCGTCTAGACACTCCTGA -ACGGAATCGTCTAGACACTAGCGA -ACGGAATCGTCTAGACACCACAGA -ACGGAATCGTCTAGACACGCAAGA -ACGGAATCGTCTAGACACGGTTGA -ACGGAATCGTCTAGACACTCCGAT -ACGGAATCGTCTAGACACTGGCAT -ACGGAATCGTCTAGACACCGAGAT -ACGGAATCGTCTAGACACTACCAC -ACGGAATCGTCTAGACACCAGAAC -ACGGAATCGTCTAGACACGTCTAC -ACGGAATCGTCTAGACACACGTAC -ACGGAATCGTCTAGACACAGTGAC -ACGGAATCGTCTAGACACCTGTAG -ACGGAATCGTCTAGACACCCTAAG -ACGGAATCGTCTAGACACGTTCAG -ACGGAATCGTCTAGACACGCATAG -ACGGAATCGTCTAGACACGACAAG -ACGGAATCGTCTAGACACAAGCAG -ACGGAATCGTCTAGACACCGTCAA -ACGGAATCGTCTAGACACGCTGAA -ACGGAATCGTCTAGACACAGTACG -ACGGAATCGTCTAGACACATCCGA -ACGGAATCGTCTAGACACATGGGA -ACGGAATCGTCTAGACACGTGCAA -ACGGAATCGTCTAGACACGAGGAA -ACGGAATCGTCTAGACACCAGGTA -ACGGAATCGTCTAGACACGACTCT -ACGGAATCGTCTAGACACAGTCCT -ACGGAATCGTCTAGACACTAAGCC -ACGGAATCGTCTAGACACATAGCC -ACGGAATCGTCTAGACACTAACCG -ACGGAATCGTCTAGACACATGCCA -ACGGAATCGTCTAGAGCAGGAAAC -ACGGAATCGTCTAGAGCAAACACC -ACGGAATCGTCTAGAGCAATCGAG -ACGGAATCGTCTAGAGCACTCCTT -ACGGAATCGTCTAGAGCACCTGTT -ACGGAATCGTCTAGAGCACGGTTT -ACGGAATCGTCTAGAGCAGTGGTT -ACGGAATCGTCTAGAGCAGCCTTT -ACGGAATCGTCTAGAGCAGGTCTT -ACGGAATCGTCTAGAGCAACGCTT -ACGGAATCGTCTAGAGCAAGCGTT -ACGGAATCGTCTAGAGCATTCGTC -ACGGAATCGTCTAGAGCATCTCTC -ACGGAATCGTCTAGAGCATGGATC -ACGGAATCGTCTAGAGCACACTTC -ACGGAATCGTCTAGAGCAGTACTC -ACGGAATCGTCTAGAGCAGATGTC -ACGGAATCGTCTAGAGCAACAGTC -ACGGAATCGTCTAGAGCATTGCTG -ACGGAATCGTCTAGAGCATCCATG -ACGGAATCGTCTAGAGCATGTGTG -ACGGAATCGTCTAGAGCACTAGTG -ACGGAATCGTCTAGAGCACATCTG -ACGGAATCGTCTAGAGCAGAGTTG -ACGGAATCGTCTAGAGCAAGACTG -ACGGAATCGTCTAGAGCATCGGTA -ACGGAATCGTCTAGAGCATGCCTA -ACGGAATCGTCTAGAGCACCACTA -ACGGAATCGTCTAGAGCAGGAGTA -ACGGAATCGTCTAGAGCATCGTCT -ACGGAATCGTCTAGAGCATGCACT -ACGGAATCGTCTAGAGCACTGACT -ACGGAATCGTCTAGAGCACAACCT -ACGGAATCGTCTAGAGCAGCTACT -ACGGAATCGTCTAGAGCAGGATCT -ACGGAATCGTCTAGAGCAAAGGCT -ACGGAATCGTCTAGAGCATCAACC -ACGGAATCGTCTAGAGCATGTTCC -ACGGAATCGTCTAGAGCAATTCCC -ACGGAATCGTCTAGAGCATTCTCG -ACGGAATCGTCTAGAGCATAGACG -ACGGAATCGTCTAGAGCAGTAACG -ACGGAATCGTCTAGAGCAACTTCG -ACGGAATCGTCTAGAGCATACGCA -ACGGAATCGTCTAGAGCACTTGCA -ACGGAATCGTCTAGAGCACGAACA -ACGGAATCGTCTAGAGCACAGTCA -ACGGAATCGTCTAGAGCAGATCCA -ACGGAATCGTCTAGAGCAACGACA -ACGGAATCGTCTAGAGCAAGCTCA -ACGGAATCGTCTAGAGCATCACGT -ACGGAATCGTCTAGAGCACGTAGT -ACGGAATCGTCTAGAGCAGTCAGT -ACGGAATCGTCTAGAGCAGAAGGT -ACGGAATCGTCTAGAGCAAACCGT -ACGGAATCGTCTAGAGCATTGTGC -ACGGAATCGTCTAGAGCACTAAGC -ACGGAATCGTCTAGAGCAACTAGC -ACGGAATCGTCTAGAGCAAGATGC -ACGGAATCGTCTAGAGCATGAAGG -ACGGAATCGTCTAGAGCACAATGG -ACGGAATCGTCTAGAGCAATGAGG -ACGGAATCGTCTAGAGCAAATGGG -ACGGAATCGTCTAGAGCATCCTGA -ACGGAATCGTCTAGAGCATAGCGA -ACGGAATCGTCTAGAGCACACAGA -ACGGAATCGTCTAGAGCAGCAAGA -ACGGAATCGTCTAGAGCAGGTTGA -ACGGAATCGTCTAGAGCATCCGAT -ACGGAATCGTCTAGAGCATGGCAT -ACGGAATCGTCTAGAGCACGAGAT -ACGGAATCGTCTAGAGCATACCAC -ACGGAATCGTCTAGAGCACAGAAC -ACGGAATCGTCTAGAGCAGTCTAC -ACGGAATCGTCTAGAGCAACGTAC -ACGGAATCGTCTAGAGCAAGTGAC -ACGGAATCGTCTAGAGCACTGTAG -ACGGAATCGTCTAGAGCACCTAAG -ACGGAATCGTCTAGAGCAGTTCAG -ACGGAATCGTCTAGAGCAGCATAG -ACGGAATCGTCTAGAGCAGACAAG -ACGGAATCGTCTAGAGCAAAGCAG -ACGGAATCGTCTAGAGCACGTCAA -ACGGAATCGTCTAGAGCAGCTGAA -ACGGAATCGTCTAGAGCAAGTACG -ACGGAATCGTCTAGAGCAATCCGA -ACGGAATCGTCTAGAGCAATGGGA -ACGGAATCGTCTAGAGCAGTGCAA -ACGGAATCGTCTAGAGCAGAGGAA -ACGGAATCGTCTAGAGCACAGGTA -ACGGAATCGTCTAGAGCAGACTCT -ACGGAATCGTCTAGAGCAAGTCCT -ACGGAATCGTCTAGAGCATAAGCC -ACGGAATCGTCTAGAGCAATAGCC -ACGGAATCGTCTAGAGCATAACCG -ACGGAATCGTCTAGAGCAATGCCA -ACGGAATCGTCTTGAGGTGGAAAC -ACGGAATCGTCTTGAGGTAACACC -ACGGAATCGTCTTGAGGTATCGAG -ACGGAATCGTCTTGAGGTCTCCTT -ACGGAATCGTCTTGAGGTCCTGTT -ACGGAATCGTCTTGAGGTCGGTTT -ACGGAATCGTCTTGAGGTGTGGTT -ACGGAATCGTCTTGAGGTGCCTTT -ACGGAATCGTCTTGAGGTGGTCTT -ACGGAATCGTCTTGAGGTACGCTT -ACGGAATCGTCTTGAGGTAGCGTT -ACGGAATCGTCTTGAGGTTTCGTC -ACGGAATCGTCTTGAGGTTCTCTC -ACGGAATCGTCTTGAGGTTGGATC -ACGGAATCGTCTTGAGGTCACTTC -ACGGAATCGTCTTGAGGTGTACTC -ACGGAATCGTCTTGAGGTGATGTC -ACGGAATCGTCTTGAGGTACAGTC -ACGGAATCGTCTTGAGGTTTGCTG -ACGGAATCGTCTTGAGGTTCCATG -ACGGAATCGTCTTGAGGTTGTGTG -ACGGAATCGTCTTGAGGTCTAGTG -ACGGAATCGTCTTGAGGTCATCTG -ACGGAATCGTCTTGAGGTGAGTTG -ACGGAATCGTCTTGAGGTAGACTG -ACGGAATCGTCTTGAGGTTCGGTA -ACGGAATCGTCTTGAGGTTGCCTA -ACGGAATCGTCTTGAGGTCCACTA -ACGGAATCGTCTTGAGGTGGAGTA -ACGGAATCGTCTTGAGGTTCGTCT -ACGGAATCGTCTTGAGGTTGCACT -ACGGAATCGTCTTGAGGTCTGACT -ACGGAATCGTCTTGAGGTCAACCT -ACGGAATCGTCTTGAGGTGCTACT -ACGGAATCGTCTTGAGGTGGATCT -ACGGAATCGTCTTGAGGTAAGGCT -ACGGAATCGTCTTGAGGTTCAACC -ACGGAATCGTCTTGAGGTTGTTCC -ACGGAATCGTCTTGAGGTATTCCC -ACGGAATCGTCTTGAGGTTTCTCG -ACGGAATCGTCTTGAGGTTAGACG -ACGGAATCGTCTTGAGGTGTAACG -ACGGAATCGTCTTGAGGTACTTCG -ACGGAATCGTCTTGAGGTTACGCA -ACGGAATCGTCTTGAGGTCTTGCA -ACGGAATCGTCTTGAGGTCGAACA -ACGGAATCGTCTTGAGGTCAGTCA -ACGGAATCGTCTTGAGGTGATCCA -ACGGAATCGTCTTGAGGTACGACA -ACGGAATCGTCTTGAGGTAGCTCA -ACGGAATCGTCTTGAGGTTCACGT -ACGGAATCGTCTTGAGGTCGTAGT -ACGGAATCGTCTTGAGGTGTCAGT -ACGGAATCGTCTTGAGGTGAAGGT -ACGGAATCGTCTTGAGGTAACCGT -ACGGAATCGTCTTGAGGTTTGTGC -ACGGAATCGTCTTGAGGTCTAAGC -ACGGAATCGTCTTGAGGTACTAGC -ACGGAATCGTCTTGAGGTAGATGC -ACGGAATCGTCTTGAGGTTGAAGG -ACGGAATCGTCTTGAGGTCAATGG -ACGGAATCGTCTTGAGGTATGAGG -ACGGAATCGTCTTGAGGTAATGGG -ACGGAATCGTCTTGAGGTTCCTGA -ACGGAATCGTCTTGAGGTTAGCGA -ACGGAATCGTCTTGAGGTCACAGA -ACGGAATCGTCTTGAGGTGCAAGA -ACGGAATCGTCTTGAGGTGGTTGA -ACGGAATCGTCTTGAGGTTCCGAT -ACGGAATCGTCTTGAGGTTGGCAT -ACGGAATCGTCTTGAGGTCGAGAT -ACGGAATCGTCTTGAGGTTACCAC -ACGGAATCGTCTTGAGGTCAGAAC -ACGGAATCGTCTTGAGGTGTCTAC -ACGGAATCGTCTTGAGGTACGTAC -ACGGAATCGTCTTGAGGTAGTGAC -ACGGAATCGTCTTGAGGTCTGTAG -ACGGAATCGTCTTGAGGTCCTAAG -ACGGAATCGTCTTGAGGTGTTCAG -ACGGAATCGTCTTGAGGTGCATAG -ACGGAATCGTCTTGAGGTGACAAG -ACGGAATCGTCTTGAGGTAAGCAG -ACGGAATCGTCTTGAGGTCGTCAA -ACGGAATCGTCTTGAGGTGCTGAA -ACGGAATCGTCTTGAGGTAGTACG -ACGGAATCGTCTTGAGGTATCCGA -ACGGAATCGTCTTGAGGTATGGGA -ACGGAATCGTCTTGAGGTGTGCAA -ACGGAATCGTCTTGAGGTGAGGAA -ACGGAATCGTCTTGAGGTCAGGTA -ACGGAATCGTCTTGAGGTGACTCT -ACGGAATCGTCTTGAGGTAGTCCT -ACGGAATCGTCTTGAGGTTAAGCC -ACGGAATCGTCTTGAGGTATAGCC -ACGGAATCGTCTTGAGGTTAACCG -ACGGAATCGTCTTGAGGTATGCCA -ACGGAATCGTCTGATTCCGGAAAC -ACGGAATCGTCTGATTCCAACACC -ACGGAATCGTCTGATTCCATCGAG -ACGGAATCGTCTGATTCCCTCCTT -ACGGAATCGTCTGATTCCCCTGTT -ACGGAATCGTCTGATTCCCGGTTT -ACGGAATCGTCTGATTCCGTGGTT -ACGGAATCGTCTGATTCCGCCTTT -ACGGAATCGTCTGATTCCGGTCTT -ACGGAATCGTCTGATTCCACGCTT -ACGGAATCGTCTGATTCCAGCGTT -ACGGAATCGTCTGATTCCTTCGTC -ACGGAATCGTCTGATTCCTCTCTC -ACGGAATCGTCTGATTCCTGGATC -ACGGAATCGTCTGATTCCCACTTC -ACGGAATCGTCTGATTCCGTACTC -ACGGAATCGTCTGATTCCGATGTC -ACGGAATCGTCTGATTCCACAGTC -ACGGAATCGTCTGATTCCTTGCTG -ACGGAATCGTCTGATTCCTCCATG -ACGGAATCGTCTGATTCCTGTGTG -ACGGAATCGTCTGATTCCCTAGTG -ACGGAATCGTCTGATTCCCATCTG -ACGGAATCGTCTGATTCCGAGTTG -ACGGAATCGTCTGATTCCAGACTG -ACGGAATCGTCTGATTCCTCGGTA -ACGGAATCGTCTGATTCCTGCCTA -ACGGAATCGTCTGATTCCCCACTA -ACGGAATCGTCTGATTCCGGAGTA -ACGGAATCGTCTGATTCCTCGTCT -ACGGAATCGTCTGATTCCTGCACT -ACGGAATCGTCTGATTCCCTGACT -ACGGAATCGTCTGATTCCCAACCT -ACGGAATCGTCTGATTCCGCTACT -ACGGAATCGTCTGATTCCGGATCT -ACGGAATCGTCTGATTCCAAGGCT -ACGGAATCGTCTGATTCCTCAACC -ACGGAATCGTCTGATTCCTGTTCC -ACGGAATCGTCTGATTCCATTCCC -ACGGAATCGTCTGATTCCTTCTCG -ACGGAATCGTCTGATTCCTAGACG -ACGGAATCGTCTGATTCCGTAACG -ACGGAATCGTCTGATTCCACTTCG -ACGGAATCGTCTGATTCCTACGCA -ACGGAATCGTCTGATTCCCTTGCA -ACGGAATCGTCTGATTCCCGAACA -ACGGAATCGTCTGATTCCCAGTCA -ACGGAATCGTCTGATTCCGATCCA -ACGGAATCGTCTGATTCCACGACA -ACGGAATCGTCTGATTCCAGCTCA -ACGGAATCGTCTGATTCCTCACGT -ACGGAATCGTCTGATTCCCGTAGT -ACGGAATCGTCTGATTCCGTCAGT -ACGGAATCGTCTGATTCCGAAGGT -ACGGAATCGTCTGATTCCAACCGT -ACGGAATCGTCTGATTCCTTGTGC -ACGGAATCGTCTGATTCCCTAAGC -ACGGAATCGTCTGATTCCACTAGC -ACGGAATCGTCTGATTCCAGATGC -ACGGAATCGTCTGATTCCTGAAGG -ACGGAATCGTCTGATTCCCAATGG -ACGGAATCGTCTGATTCCATGAGG -ACGGAATCGTCTGATTCCAATGGG -ACGGAATCGTCTGATTCCTCCTGA -ACGGAATCGTCTGATTCCTAGCGA -ACGGAATCGTCTGATTCCCACAGA -ACGGAATCGTCTGATTCCGCAAGA -ACGGAATCGTCTGATTCCGGTTGA -ACGGAATCGTCTGATTCCTCCGAT -ACGGAATCGTCTGATTCCTGGCAT -ACGGAATCGTCTGATTCCCGAGAT -ACGGAATCGTCTGATTCCTACCAC -ACGGAATCGTCTGATTCCCAGAAC -ACGGAATCGTCTGATTCCGTCTAC -ACGGAATCGTCTGATTCCACGTAC -ACGGAATCGTCTGATTCCAGTGAC -ACGGAATCGTCTGATTCCCTGTAG -ACGGAATCGTCTGATTCCCCTAAG -ACGGAATCGTCTGATTCCGTTCAG -ACGGAATCGTCTGATTCCGCATAG -ACGGAATCGTCTGATTCCGACAAG -ACGGAATCGTCTGATTCCAAGCAG -ACGGAATCGTCTGATTCCCGTCAA -ACGGAATCGTCTGATTCCGCTGAA -ACGGAATCGTCTGATTCCAGTACG -ACGGAATCGTCTGATTCCATCCGA -ACGGAATCGTCTGATTCCATGGGA -ACGGAATCGTCTGATTCCGTGCAA -ACGGAATCGTCTGATTCCGAGGAA -ACGGAATCGTCTGATTCCCAGGTA -ACGGAATCGTCTGATTCCGACTCT -ACGGAATCGTCTGATTCCAGTCCT -ACGGAATCGTCTGATTCCTAAGCC -ACGGAATCGTCTGATTCCATAGCC -ACGGAATCGTCTGATTCCTAACCG -ACGGAATCGTCTGATTCCATGCCA -ACGGAATCGTCTCATTGGGGAAAC -ACGGAATCGTCTCATTGGAACACC -ACGGAATCGTCTCATTGGATCGAG -ACGGAATCGTCTCATTGGCTCCTT -ACGGAATCGTCTCATTGGCCTGTT -ACGGAATCGTCTCATTGGCGGTTT -ACGGAATCGTCTCATTGGGTGGTT -ACGGAATCGTCTCATTGGGCCTTT -ACGGAATCGTCTCATTGGGGTCTT -ACGGAATCGTCTCATTGGACGCTT -ACGGAATCGTCTCATTGGAGCGTT -ACGGAATCGTCTCATTGGTTCGTC -ACGGAATCGTCTCATTGGTCTCTC -ACGGAATCGTCTCATTGGTGGATC -ACGGAATCGTCTCATTGGCACTTC -ACGGAATCGTCTCATTGGGTACTC -ACGGAATCGTCTCATTGGGATGTC -ACGGAATCGTCTCATTGGACAGTC -ACGGAATCGTCTCATTGGTTGCTG -ACGGAATCGTCTCATTGGTCCATG -ACGGAATCGTCTCATTGGTGTGTG -ACGGAATCGTCTCATTGGCTAGTG -ACGGAATCGTCTCATTGGCATCTG -ACGGAATCGTCTCATTGGGAGTTG -ACGGAATCGTCTCATTGGAGACTG -ACGGAATCGTCTCATTGGTCGGTA -ACGGAATCGTCTCATTGGTGCCTA -ACGGAATCGTCTCATTGGCCACTA -ACGGAATCGTCTCATTGGGGAGTA -ACGGAATCGTCTCATTGGTCGTCT -ACGGAATCGTCTCATTGGTGCACT -ACGGAATCGTCTCATTGGCTGACT -ACGGAATCGTCTCATTGGCAACCT -ACGGAATCGTCTCATTGGGCTACT -ACGGAATCGTCTCATTGGGGATCT -ACGGAATCGTCTCATTGGAAGGCT -ACGGAATCGTCTCATTGGTCAACC -ACGGAATCGTCTCATTGGTGTTCC -ACGGAATCGTCTCATTGGATTCCC -ACGGAATCGTCTCATTGGTTCTCG -ACGGAATCGTCTCATTGGTAGACG -ACGGAATCGTCTCATTGGGTAACG -ACGGAATCGTCTCATTGGACTTCG -ACGGAATCGTCTCATTGGTACGCA -ACGGAATCGTCTCATTGGCTTGCA -ACGGAATCGTCTCATTGGCGAACA -ACGGAATCGTCTCATTGGCAGTCA -ACGGAATCGTCTCATTGGGATCCA -ACGGAATCGTCTCATTGGACGACA -ACGGAATCGTCTCATTGGAGCTCA -ACGGAATCGTCTCATTGGTCACGT -ACGGAATCGTCTCATTGGCGTAGT -ACGGAATCGTCTCATTGGGTCAGT -ACGGAATCGTCTCATTGGGAAGGT -ACGGAATCGTCTCATTGGAACCGT -ACGGAATCGTCTCATTGGTTGTGC -ACGGAATCGTCTCATTGGCTAAGC -ACGGAATCGTCTCATTGGACTAGC -ACGGAATCGTCTCATTGGAGATGC -ACGGAATCGTCTCATTGGTGAAGG -ACGGAATCGTCTCATTGGCAATGG -ACGGAATCGTCTCATTGGATGAGG -ACGGAATCGTCTCATTGGAATGGG -ACGGAATCGTCTCATTGGTCCTGA -ACGGAATCGTCTCATTGGTAGCGA -ACGGAATCGTCTCATTGGCACAGA -ACGGAATCGTCTCATTGGGCAAGA -ACGGAATCGTCTCATTGGGGTTGA -ACGGAATCGTCTCATTGGTCCGAT -ACGGAATCGTCTCATTGGTGGCAT -ACGGAATCGTCTCATTGGCGAGAT -ACGGAATCGTCTCATTGGTACCAC -ACGGAATCGTCTCATTGGCAGAAC -ACGGAATCGTCTCATTGGGTCTAC -ACGGAATCGTCTCATTGGACGTAC -ACGGAATCGTCTCATTGGAGTGAC -ACGGAATCGTCTCATTGGCTGTAG -ACGGAATCGTCTCATTGGCCTAAG -ACGGAATCGTCTCATTGGGTTCAG -ACGGAATCGTCTCATTGGGCATAG -ACGGAATCGTCTCATTGGGACAAG -ACGGAATCGTCTCATTGGAAGCAG -ACGGAATCGTCTCATTGGCGTCAA -ACGGAATCGTCTCATTGGGCTGAA -ACGGAATCGTCTCATTGGAGTACG -ACGGAATCGTCTCATTGGATCCGA -ACGGAATCGTCTCATTGGATGGGA -ACGGAATCGTCTCATTGGGTGCAA -ACGGAATCGTCTCATTGGGAGGAA -ACGGAATCGTCTCATTGGCAGGTA -ACGGAATCGTCTCATTGGGACTCT -ACGGAATCGTCTCATTGGAGTCCT -ACGGAATCGTCTCATTGGTAAGCC -ACGGAATCGTCTCATTGGATAGCC -ACGGAATCGTCTCATTGGTAACCG -ACGGAATCGTCTCATTGGATGCCA -ACGGAATCGTCTGATCGAGGAAAC -ACGGAATCGTCTGATCGAAACACC -ACGGAATCGTCTGATCGAATCGAG -ACGGAATCGTCTGATCGACTCCTT -ACGGAATCGTCTGATCGACCTGTT -ACGGAATCGTCTGATCGACGGTTT -ACGGAATCGTCTGATCGAGTGGTT -ACGGAATCGTCTGATCGAGCCTTT -ACGGAATCGTCTGATCGAGGTCTT -ACGGAATCGTCTGATCGAACGCTT -ACGGAATCGTCTGATCGAAGCGTT -ACGGAATCGTCTGATCGATTCGTC -ACGGAATCGTCTGATCGATCTCTC -ACGGAATCGTCTGATCGATGGATC -ACGGAATCGTCTGATCGACACTTC -ACGGAATCGTCTGATCGAGTACTC -ACGGAATCGTCTGATCGAGATGTC -ACGGAATCGTCTGATCGAACAGTC -ACGGAATCGTCTGATCGATTGCTG -ACGGAATCGTCTGATCGATCCATG -ACGGAATCGTCTGATCGATGTGTG -ACGGAATCGTCTGATCGACTAGTG -ACGGAATCGTCTGATCGACATCTG -ACGGAATCGTCTGATCGAGAGTTG -ACGGAATCGTCTGATCGAAGACTG -ACGGAATCGTCTGATCGATCGGTA -ACGGAATCGTCTGATCGATGCCTA -ACGGAATCGTCTGATCGACCACTA -ACGGAATCGTCTGATCGAGGAGTA -ACGGAATCGTCTGATCGATCGTCT -ACGGAATCGTCTGATCGATGCACT -ACGGAATCGTCTGATCGACTGACT -ACGGAATCGTCTGATCGACAACCT -ACGGAATCGTCTGATCGAGCTACT -ACGGAATCGTCTGATCGAGGATCT -ACGGAATCGTCTGATCGAAAGGCT -ACGGAATCGTCTGATCGATCAACC -ACGGAATCGTCTGATCGATGTTCC -ACGGAATCGTCTGATCGAATTCCC -ACGGAATCGTCTGATCGATTCTCG -ACGGAATCGTCTGATCGATAGACG -ACGGAATCGTCTGATCGAGTAACG -ACGGAATCGTCTGATCGAACTTCG -ACGGAATCGTCTGATCGATACGCA -ACGGAATCGTCTGATCGACTTGCA -ACGGAATCGTCTGATCGACGAACA -ACGGAATCGTCTGATCGACAGTCA -ACGGAATCGTCTGATCGAGATCCA -ACGGAATCGTCTGATCGAACGACA -ACGGAATCGTCTGATCGAAGCTCA -ACGGAATCGTCTGATCGATCACGT -ACGGAATCGTCTGATCGACGTAGT -ACGGAATCGTCTGATCGAGTCAGT -ACGGAATCGTCTGATCGAGAAGGT -ACGGAATCGTCTGATCGAAACCGT -ACGGAATCGTCTGATCGATTGTGC -ACGGAATCGTCTGATCGACTAAGC -ACGGAATCGTCTGATCGAACTAGC -ACGGAATCGTCTGATCGAAGATGC -ACGGAATCGTCTGATCGATGAAGG -ACGGAATCGTCTGATCGACAATGG -ACGGAATCGTCTGATCGAATGAGG -ACGGAATCGTCTGATCGAAATGGG -ACGGAATCGTCTGATCGATCCTGA -ACGGAATCGTCTGATCGATAGCGA -ACGGAATCGTCTGATCGACACAGA -ACGGAATCGTCTGATCGAGCAAGA -ACGGAATCGTCTGATCGAGGTTGA -ACGGAATCGTCTGATCGATCCGAT -ACGGAATCGTCTGATCGATGGCAT -ACGGAATCGTCTGATCGACGAGAT -ACGGAATCGTCTGATCGATACCAC -ACGGAATCGTCTGATCGACAGAAC -ACGGAATCGTCTGATCGAGTCTAC -ACGGAATCGTCTGATCGAACGTAC -ACGGAATCGTCTGATCGAAGTGAC -ACGGAATCGTCTGATCGACTGTAG -ACGGAATCGTCTGATCGACCTAAG -ACGGAATCGTCTGATCGAGTTCAG -ACGGAATCGTCTGATCGAGCATAG -ACGGAATCGTCTGATCGAGACAAG -ACGGAATCGTCTGATCGAAAGCAG -ACGGAATCGTCTGATCGACGTCAA -ACGGAATCGTCTGATCGAGCTGAA -ACGGAATCGTCTGATCGAAGTACG -ACGGAATCGTCTGATCGAATCCGA -ACGGAATCGTCTGATCGAATGGGA -ACGGAATCGTCTGATCGAGTGCAA -ACGGAATCGTCTGATCGAGAGGAA -ACGGAATCGTCTGATCGACAGGTA -ACGGAATCGTCTGATCGAGACTCT -ACGGAATCGTCTGATCGAAGTCCT -ACGGAATCGTCTGATCGATAAGCC -ACGGAATCGTCTGATCGAATAGCC -ACGGAATCGTCTGATCGATAACCG -ACGGAATCGTCTGATCGAATGCCA -ACGGAATCGTCTCACTACGGAAAC -ACGGAATCGTCTCACTACAACACC -ACGGAATCGTCTCACTACATCGAG -ACGGAATCGTCTCACTACCTCCTT -ACGGAATCGTCTCACTACCCTGTT -ACGGAATCGTCTCACTACCGGTTT -ACGGAATCGTCTCACTACGTGGTT -ACGGAATCGTCTCACTACGCCTTT -ACGGAATCGTCTCACTACGGTCTT -ACGGAATCGTCTCACTACACGCTT -ACGGAATCGTCTCACTACAGCGTT -ACGGAATCGTCTCACTACTTCGTC -ACGGAATCGTCTCACTACTCTCTC -ACGGAATCGTCTCACTACTGGATC -ACGGAATCGTCTCACTACCACTTC -ACGGAATCGTCTCACTACGTACTC -ACGGAATCGTCTCACTACGATGTC -ACGGAATCGTCTCACTACACAGTC -ACGGAATCGTCTCACTACTTGCTG -ACGGAATCGTCTCACTACTCCATG -ACGGAATCGTCTCACTACTGTGTG -ACGGAATCGTCTCACTACCTAGTG -ACGGAATCGTCTCACTACCATCTG -ACGGAATCGTCTCACTACGAGTTG -ACGGAATCGTCTCACTACAGACTG -ACGGAATCGTCTCACTACTCGGTA -ACGGAATCGTCTCACTACTGCCTA -ACGGAATCGTCTCACTACCCACTA -ACGGAATCGTCTCACTACGGAGTA -ACGGAATCGTCTCACTACTCGTCT -ACGGAATCGTCTCACTACTGCACT -ACGGAATCGTCTCACTACCTGACT -ACGGAATCGTCTCACTACCAACCT -ACGGAATCGTCTCACTACGCTACT -ACGGAATCGTCTCACTACGGATCT -ACGGAATCGTCTCACTACAAGGCT -ACGGAATCGTCTCACTACTCAACC -ACGGAATCGTCTCACTACTGTTCC -ACGGAATCGTCTCACTACATTCCC -ACGGAATCGTCTCACTACTTCTCG -ACGGAATCGTCTCACTACTAGACG -ACGGAATCGTCTCACTACGTAACG -ACGGAATCGTCTCACTACACTTCG -ACGGAATCGTCTCACTACTACGCA -ACGGAATCGTCTCACTACCTTGCA -ACGGAATCGTCTCACTACCGAACA -ACGGAATCGTCTCACTACCAGTCA -ACGGAATCGTCTCACTACGATCCA -ACGGAATCGTCTCACTACACGACA -ACGGAATCGTCTCACTACAGCTCA -ACGGAATCGTCTCACTACTCACGT -ACGGAATCGTCTCACTACCGTAGT -ACGGAATCGTCTCACTACGTCAGT -ACGGAATCGTCTCACTACGAAGGT -ACGGAATCGTCTCACTACAACCGT -ACGGAATCGTCTCACTACTTGTGC -ACGGAATCGTCTCACTACCTAAGC -ACGGAATCGTCTCACTACACTAGC -ACGGAATCGTCTCACTACAGATGC -ACGGAATCGTCTCACTACTGAAGG -ACGGAATCGTCTCACTACCAATGG -ACGGAATCGTCTCACTACATGAGG -ACGGAATCGTCTCACTACAATGGG -ACGGAATCGTCTCACTACTCCTGA -ACGGAATCGTCTCACTACTAGCGA -ACGGAATCGTCTCACTACCACAGA -ACGGAATCGTCTCACTACGCAAGA -ACGGAATCGTCTCACTACGGTTGA -ACGGAATCGTCTCACTACTCCGAT -ACGGAATCGTCTCACTACTGGCAT -ACGGAATCGTCTCACTACCGAGAT -ACGGAATCGTCTCACTACTACCAC -ACGGAATCGTCTCACTACCAGAAC -ACGGAATCGTCTCACTACGTCTAC -ACGGAATCGTCTCACTACACGTAC -ACGGAATCGTCTCACTACAGTGAC -ACGGAATCGTCTCACTACCTGTAG -ACGGAATCGTCTCACTACCCTAAG -ACGGAATCGTCTCACTACGTTCAG -ACGGAATCGTCTCACTACGCATAG -ACGGAATCGTCTCACTACGACAAG -ACGGAATCGTCTCACTACAAGCAG -ACGGAATCGTCTCACTACCGTCAA -ACGGAATCGTCTCACTACGCTGAA -ACGGAATCGTCTCACTACAGTACG -ACGGAATCGTCTCACTACATCCGA -ACGGAATCGTCTCACTACATGGGA -ACGGAATCGTCTCACTACGTGCAA -ACGGAATCGTCTCACTACGAGGAA -ACGGAATCGTCTCACTACCAGGTA -ACGGAATCGTCTCACTACGACTCT -ACGGAATCGTCTCACTACAGTCCT -ACGGAATCGTCTCACTACTAAGCC -ACGGAATCGTCTCACTACATAGCC -ACGGAATCGTCTCACTACTAACCG -ACGGAATCGTCTCACTACATGCCA -ACGGAATCGTCTAACCAGGGAAAC -ACGGAATCGTCTAACCAGAACACC -ACGGAATCGTCTAACCAGATCGAG -ACGGAATCGTCTAACCAGCTCCTT -ACGGAATCGTCTAACCAGCCTGTT -ACGGAATCGTCTAACCAGCGGTTT -ACGGAATCGTCTAACCAGGTGGTT -ACGGAATCGTCTAACCAGGCCTTT -ACGGAATCGTCTAACCAGGGTCTT -ACGGAATCGTCTAACCAGACGCTT -ACGGAATCGTCTAACCAGAGCGTT -ACGGAATCGTCTAACCAGTTCGTC -ACGGAATCGTCTAACCAGTCTCTC -ACGGAATCGTCTAACCAGTGGATC -ACGGAATCGTCTAACCAGCACTTC -ACGGAATCGTCTAACCAGGTACTC -ACGGAATCGTCTAACCAGGATGTC -ACGGAATCGTCTAACCAGACAGTC -ACGGAATCGTCTAACCAGTTGCTG -ACGGAATCGTCTAACCAGTCCATG -ACGGAATCGTCTAACCAGTGTGTG -ACGGAATCGTCTAACCAGCTAGTG -ACGGAATCGTCTAACCAGCATCTG -ACGGAATCGTCTAACCAGGAGTTG -ACGGAATCGTCTAACCAGAGACTG -ACGGAATCGTCTAACCAGTCGGTA -ACGGAATCGTCTAACCAGTGCCTA -ACGGAATCGTCTAACCAGCCACTA -ACGGAATCGTCTAACCAGGGAGTA -ACGGAATCGTCTAACCAGTCGTCT -ACGGAATCGTCTAACCAGTGCACT -ACGGAATCGTCTAACCAGCTGACT -ACGGAATCGTCTAACCAGCAACCT -ACGGAATCGTCTAACCAGGCTACT -ACGGAATCGTCTAACCAGGGATCT -ACGGAATCGTCTAACCAGAAGGCT -ACGGAATCGTCTAACCAGTCAACC -ACGGAATCGTCTAACCAGTGTTCC -ACGGAATCGTCTAACCAGATTCCC -ACGGAATCGTCTAACCAGTTCTCG -ACGGAATCGTCTAACCAGTAGACG -ACGGAATCGTCTAACCAGGTAACG -ACGGAATCGTCTAACCAGACTTCG -ACGGAATCGTCTAACCAGTACGCA -ACGGAATCGTCTAACCAGCTTGCA -ACGGAATCGTCTAACCAGCGAACA -ACGGAATCGTCTAACCAGCAGTCA -ACGGAATCGTCTAACCAGGATCCA -ACGGAATCGTCTAACCAGACGACA -ACGGAATCGTCTAACCAGAGCTCA -ACGGAATCGTCTAACCAGTCACGT -ACGGAATCGTCTAACCAGCGTAGT -ACGGAATCGTCTAACCAGGTCAGT -ACGGAATCGTCTAACCAGGAAGGT -ACGGAATCGTCTAACCAGAACCGT -ACGGAATCGTCTAACCAGTTGTGC -ACGGAATCGTCTAACCAGCTAAGC -ACGGAATCGTCTAACCAGACTAGC -ACGGAATCGTCTAACCAGAGATGC -ACGGAATCGTCTAACCAGTGAAGG -ACGGAATCGTCTAACCAGCAATGG -ACGGAATCGTCTAACCAGATGAGG -ACGGAATCGTCTAACCAGAATGGG -ACGGAATCGTCTAACCAGTCCTGA -ACGGAATCGTCTAACCAGTAGCGA -ACGGAATCGTCTAACCAGCACAGA -ACGGAATCGTCTAACCAGGCAAGA -ACGGAATCGTCTAACCAGGGTTGA -ACGGAATCGTCTAACCAGTCCGAT -ACGGAATCGTCTAACCAGTGGCAT -ACGGAATCGTCTAACCAGCGAGAT -ACGGAATCGTCTAACCAGTACCAC -ACGGAATCGTCTAACCAGCAGAAC -ACGGAATCGTCTAACCAGGTCTAC -ACGGAATCGTCTAACCAGACGTAC -ACGGAATCGTCTAACCAGAGTGAC -ACGGAATCGTCTAACCAGCTGTAG -ACGGAATCGTCTAACCAGCCTAAG -ACGGAATCGTCTAACCAGGTTCAG -ACGGAATCGTCTAACCAGGCATAG -ACGGAATCGTCTAACCAGGACAAG -ACGGAATCGTCTAACCAGAAGCAG -ACGGAATCGTCTAACCAGCGTCAA -ACGGAATCGTCTAACCAGGCTGAA -ACGGAATCGTCTAACCAGAGTACG -ACGGAATCGTCTAACCAGATCCGA -ACGGAATCGTCTAACCAGATGGGA -ACGGAATCGTCTAACCAGGTGCAA -ACGGAATCGTCTAACCAGGAGGAA -ACGGAATCGTCTAACCAGCAGGTA -ACGGAATCGTCTAACCAGGACTCT -ACGGAATCGTCTAACCAGAGTCCT -ACGGAATCGTCTAACCAGTAAGCC -ACGGAATCGTCTAACCAGATAGCC -ACGGAATCGTCTAACCAGTAACCG -ACGGAATCGTCTAACCAGATGCCA -ACGGAATCGTCTTACGTCGGAAAC -ACGGAATCGTCTTACGTCAACACC -ACGGAATCGTCTTACGTCATCGAG -ACGGAATCGTCTTACGTCCTCCTT -ACGGAATCGTCTTACGTCCCTGTT -ACGGAATCGTCTTACGTCCGGTTT -ACGGAATCGTCTTACGTCGTGGTT -ACGGAATCGTCTTACGTCGCCTTT -ACGGAATCGTCTTACGTCGGTCTT -ACGGAATCGTCTTACGTCACGCTT -ACGGAATCGTCTTACGTCAGCGTT -ACGGAATCGTCTTACGTCTTCGTC -ACGGAATCGTCTTACGTCTCTCTC -ACGGAATCGTCTTACGTCTGGATC -ACGGAATCGTCTTACGTCCACTTC -ACGGAATCGTCTTACGTCGTACTC -ACGGAATCGTCTTACGTCGATGTC -ACGGAATCGTCTTACGTCACAGTC -ACGGAATCGTCTTACGTCTTGCTG -ACGGAATCGTCTTACGTCTCCATG -ACGGAATCGTCTTACGTCTGTGTG -ACGGAATCGTCTTACGTCCTAGTG -ACGGAATCGTCTTACGTCCATCTG -ACGGAATCGTCTTACGTCGAGTTG -ACGGAATCGTCTTACGTCAGACTG -ACGGAATCGTCTTACGTCTCGGTA -ACGGAATCGTCTTACGTCTGCCTA -ACGGAATCGTCTTACGTCCCACTA -ACGGAATCGTCTTACGTCGGAGTA -ACGGAATCGTCTTACGTCTCGTCT -ACGGAATCGTCTTACGTCTGCACT -ACGGAATCGTCTTACGTCCTGACT -ACGGAATCGTCTTACGTCCAACCT -ACGGAATCGTCTTACGTCGCTACT -ACGGAATCGTCTTACGTCGGATCT -ACGGAATCGTCTTACGTCAAGGCT -ACGGAATCGTCTTACGTCTCAACC -ACGGAATCGTCTTACGTCTGTTCC -ACGGAATCGTCTTACGTCATTCCC -ACGGAATCGTCTTACGTCTTCTCG -ACGGAATCGTCTTACGTCTAGACG -ACGGAATCGTCTTACGTCGTAACG -ACGGAATCGTCTTACGTCACTTCG -ACGGAATCGTCTTACGTCTACGCA -ACGGAATCGTCTTACGTCCTTGCA -ACGGAATCGTCTTACGTCCGAACA -ACGGAATCGTCTTACGTCCAGTCA -ACGGAATCGTCTTACGTCGATCCA -ACGGAATCGTCTTACGTCACGACA -ACGGAATCGTCTTACGTCAGCTCA -ACGGAATCGTCTTACGTCTCACGT -ACGGAATCGTCTTACGTCCGTAGT -ACGGAATCGTCTTACGTCGTCAGT -ACGGAATCGTCTTACGTCGAAGGT -ACGGAATCGTCTTACGTCAACCGT -ACGGAATCGTCTTACGTCTTGTGC -ACGGAATCGTCTTACGTCCTAAGC -ACGGAATCGTCTTACGTCACTAGC -ACGGAATCGTCTTACGTCAGATGC -ACGGAATCGTCTTACGTCTGAAGG -ACGGAATCGTCTTACGTCCAATGG -ACGGAATCGTCTTACGTCATGAGG -ACGGAATCGTCTTACGTCAATGGG -ACGGAATCGTCTTACGTCTCCTGA -ACGGAATCGTCTTACGTCTAGCGA -ACGGAATCGTCTTACGTCCACAGA -ACGGAATCGTCTTACGTCGCAAGA -ACGGAATCGTCTTACGTCGGTTGA -ACGGAATCGTCTTACGTCTCCGAT -ACGGAATCGTCTTACGTCTGGCAT -ACGGAATCGTCTTACGTCCGAGAT -ACGGAATCGTCTTACGTCTACCAC -ACGGAATCGTCTTACGTCCAGAAC -ACGGAATCGTCTTACGTCGTCTAC -ACGGAATCGTCTTACGTCACGTAC -ACGGAATCGTCTTACGTCAGTGAC -ACGGAATCGTCTTACGTCCTGTAG -ACGGAATCGTCTTACGTCCCTAAG -ACGGAATCGTCTTACGTCGTTCAG -ACGGAATCGTCTTACGTCGCATAG -ACGGAATCGTCTTACGTCGACAAG -ACGGAATCGTCTTACGTCAAGCAG -ACGGAATCGTCTTACGTCCGTCAA -ACGGAATCGTCTTACGTCGCTGAA -ACGGAATCGTCTTACGTCAGTACG -ACGGAATCGTCTTACGTCATCCGA -ACGGAATCGTCTTACGTCATGGGA -ACGGAATCGTCTTACGTCGTGCAA -ACGGAATCGTCTTACGTCGAGGAA -ACGGAATCGTCTTACGTCCAGGTA -ACGGAATCGTCTTACGTCGACTCT -ACGGAATCGTCTTACGTCAGTCCT -ACGGAATCGTCTTACGTCTAAGCC -ACGGAATCGTCTTACGTCATAGCC -ACGGAATCGTCTTACGTCTAACCG -ACGGAATCGTCTTACGTCATGCCA -ACGGAATCGTCTTACACGGGAAAC -ACGGAATCGTCTTACACGAACACC -ACGGAATCGTCTTACACGATCGAG -ACGGAATCGTCTTACACGCTCCTT -ACGGAATCGTCTTACACGCCTGTT -ACGGAATCGTCTTACACGCGGTTT -ACGGAATCGTCTTACACGGTGGTT -ACGGAATCGTCTTACACGGCCTTT -ACGGAATCGTCTTACACGGGTCTT -ACGGAATCGTCTTACACGACGCTT -ACGGAATCGTCTTACACGAGCGTT -ACGGAATCGTCTTACACGTTCGTC -ACGGAATCGTCTTACACGTCTCTC -ACGGAATCGTCTTACACGTGGATC -ACGGAATCGTCTTACACGCACTTC -ACGGAATCGTCTTACACGGTACTC -ACGGAATCGTCTTACACGGATGTC -ACGGAATCGTCTTACACGACAGTC -ACGGAATCGTCTTACACGTTGCTG -ACGGAATCGTCTTACACGTCCATG -ACGGAATCGTCTTACACGTGTGTG -ACGGAATCGTCTTACACGCTAGTG -ACGGAATCGTCTTACACGCATCTG -ACGGAATCGTCTTACACGGAGTTG -ACGGAATCGTCTTACACGAGACTG -ACGGAATCGTCTTACACGTCGGTA -ACGGAATCGTCTTACACGTGCCTA -ACGGAATCGTCTTACACGCCACTA -ACGGAATCGTCTTACACGGGAGTA -ACGGAATCGTCTTACACGTCGTCT -ACGGAATCGTCTTACACGTGCACT -ACGGAATCGTCTTACACGCTGACT -ACGGAATCGTCTTACACGCAACCT -ACGGAATCGTCTTACACGGCTACT -ACGGAATCGTCTTACACGGGATCT -ACGGAATCGTCTTACACGAAGGCT -ACGGAATCGTCTTACACGTCAACC -ACGGAATCGTCTTACACGTGTTCC -ACGGAATCGTCTTACACGATTCCC -ACGGAATCGTCTTACACGTTCTCG -ACGGAATCGTCTTACACGTAGACG -ACGGAATCGTCTTACACGGTAACG -ACGGAATCGTCTTACACGACTTCG -ACGGAATCGTCTTACACGTACGCA -ACGGAATCGTCTTACACGCTTGCA -ACGGAATCGTCTTACACGCGAACA -ACGGAATCGTCTTACACGCAGTCA -ACGGAATCGTCTTACACGGATCCA -ACGGAATCGTCTTACACGACGACA -ACGGAATCGTCTTACACGAGCTCA -ACGGAATCGTCTTACACGTCACGT -ACGGAATCGTCTTACACGCGTAGT -ACGGAATCGTCTTACACGGTCAGT -ACGGAATCGTCTTACACGGAAGGT -ACGGAATCGTCTTACACGAACCGT -ACGGAATCGTCTTACACGTTGTGC -ACGGAATCGTCTTACACGCTAAGC -ACGGAATCGTCTTACACGACTAGC -ACGGAATCGTCTTACACGAGATGC -ACGGAATCGTCTTACACGTGAAGG -ACGGAATCGTCTTACACGCAATGG -ACGGAATCGTCTTACACGATGAGG -ACGGAATCGTCTTACACGAATGGG -ACGGAATCGTCTTACACGTCCTGA -ACGGAATCGTCTTACACGTAGCGA -ACGGAATCGTCTTACACGCACAGA -ACGGAATCGTCTTACACGGCAAGA -ACGGAATCGTCTTACACGGGTTGA -ACGGAATCGTCTTACACGTCCGAT -ACGGAATCGTCTTACACGTGGCAT -ACGGAATCGTCTTACACGCGAGAT -ACGGAATCGTCTTACACGTACCAC -ACGGAATCGTCTTACACGCAGAAC -ACGGAATCGTCTTACACGGTCTAC -ACGGAATCGTCTTACACGACGTAC -ACGGAATCGTCTTACACGAGTGAC -ACGGAATCGTCTTACACGCTGTAG -ACGGAATCGTCTTACACGCCTAAG -ACGGAATCGTCTTACACGGTTCAG -ACGGAATCGTCTTACACGGCATAG -ACGGAATCGTCTTACACGGACAAG -ACGGAATCGTCTTACACGAAGCAG -ACGGAATCGTCTTACACGCGTCAA -ACGGAATCGTCTTACACGGCTGAA -ACGGAATCGTCTTACACGAGTACG -ACGGAATCGTCTTACACGATCCGA -ACGGAATCGTCTTACACGATGGGA -ACGGAATCGTCTTACACGGTGCAA -ACGGAATCGTCTTACACGGAGGAA -ACGGAATCGTCTTACACGCAGGTA -ACGGAATCGTCTTACACGGACTCT -ACGGAATCGTCTTACACGAGTCCT -ACGGAATCGTCTTACACGTAAGCC -ACGGAATCGTCTTACACGATAGCC -ACGGAATCGTCTTACACGTAACCG -ACGGAATCGTCTTACACGATGCCA -ACGGAATCGTCTGACAGTGGAAAC -ACGGAATCGTCTGACAGTAACACC -ACGGAATCGTCTGACAGTATCGAG -ACGGAATCGTCTGACAGTCTCCTT -ACGGAATCGTCTGACAGTCCTGTT -ACGGAATCGTCTGACAGTCGGTTT -ACGGAATCGTCTGACAGTGTGGTT -ACGGAATCGTCTGACAGTGCCTTT -ACGGAATCGTCTGACAGTGGTCTT -ACGGAATCGTCTGACAGTACGCTT -ACGGAATCGTCTGACAGTAGCGTT -ACGGAATCGTCTGACAGTTTCGTC -ACGGAATCGTCTGACAGTTCTCTC -ACGGAATCGTCTGACAGTTGGATC -ACGGAATCGTCTGACAGTCACTTC -ACGGAATCGTCTGACAGTGTACTC -ACGGAATCGTCTGACAGTGATGTC -ACGGAATCGTCTGACAGTACAGTC -ACGGAATCGTCTGACAGTTTGCTG -ACGGAATCGTCTGACAGTTCCATG -ACGGAATCGTCTGACAGTTGTGTG -ACGGAATCGTCTGACAGTCTAGTG -ACGGAATCGTCTGACAGTCATCTG -ACGGAATCGTCTGACAGTGAGTTG -ACGGAATCGTCTGACAGTAGACTG -ACGGAATCGTCTGACAGTTCGGTA -ACGGAATCGTCTGACAGTTGCCTA -ACGGAATCGTCTGACAGTCCACTA -ACGGAATCGTCTGACAGTGGAGTA -ACGGAATCGTCTGACAGTTCGTCT -ACGGAATCGTCTGACAGTTGCACT -ACGGAATCGTCTGACAGTCTGACT -ACGGAATCGTCTGACAGTCAACCT -ACGGAATCGTCTGACAGTGCTACT -ACGGAATCGTCTGACAGTGGATCT -ACGGAATCGTCTGACAGTAAGGCT -ACGGAATCGTCTGACAGTTCAACC -ACGGAATCGTCTGACAGTTGTTCC -ACGGAATCGTCTGACAGTATTCCC -ACGGAATCGTCTGACAGTTTCTCG -ACGGAATCGTCTGACAGTTAGACG -ACGGAATCGTCTGACAGTGTAACG -ACGGAATCGTCTGACAGTACTTCG -ACGGAATCGTCTGACAGTTACGCA -ACGGAATCGTCTGACAGTCTTGCA -ACGGAATCGTCTGACAGTCGAACA -ACGGAATCGTCTGACAGTCAGTCA -ACGGAATCGTCTGACAGTGATCCA -ACGGAATCGTCTGACAGTACGACA -ACGGAATCGTCTGACAGTAGCTCA -ACGGAATCGTCTGACAGTTCACGT -ACGGAATCGTCTGACAGTCGTAGT -ACGGAATCGTCTGACAGTGTCAGT -ACGGAATCGTCTGACAGTGAAGGT -ACGGAATCGTCTGACAGTAACCGT -ACGGAATCGTCTGACAGTTTGTGC -ACGGAATCGTCTGACAGTCTAAGC -ACGGAATCGTCTGACAGTACTAGC -ACGGAATCGTCTGACAGTAGATGC -ACGGAATCGTCTGACAGTTGAAGG -ACGGAATCGTCTGACAGTCAATGG -ACGGAATCGTCTGACAGTATGAGG -ACGGAATCGTCTGACAGTAATGGG -ACGGAATCGTCTGACAGTTCCTGA -ACGGAATCGTCTGACAGTTAGCGA -ACGGAATCGTCTGACAGTCACAGA -ACGGAATCGTCTGACAGTGCAAGA -ACGGAATCGTCTGACAGTGGTTGA -ACGGAATCGTCTGACAGTTCCGAT -ACGGAATCGTCTGACAGTTGGCAT -ACGGAATCGTCTGACAGTCGAGAT -ACGGAATCGTCTGACAGTTACCAC -ACGGAATCGTCTGACAGTCAGAAC -ACGGAATCGTCTGACAGTGTCTAC -ACGGAATCGTCTGACAGTACGTAC -ACGGAATCGTCTGACAGTAGTGAC -ACGGAATCGTCTGACAGTCTGTAG -ACGGAATCGTCTGACAGTCCTAAG -ACGGAATCGTCTGACAGTGTTCAG -ACGGAATCGTCTGACAGTGCATAG -ACGGAATCGTCTGACAGTGACAAG -ACGGAATCGTCTGACAGTAAGCAG -ACGGAATCGTCTGACAGTCGTCAA -ACGGAATCGTCTGACAGTGCTGAA -ACGGAATCGTCTGACAGTAGTACG -ACGGAATCGTCTGACAGTATCCGA -ACGGAATCGTCTGACAGTATGGGA -ACGGAATCGTCTGACAGTGTGCAA -ACGGAATCGTCTGACAGTGAGGAA -ACGGAATCGTCTGACAGTCAGGTA -ACGGAATCGTCTGACAGTGACTCT -ACGGAATCGTCTGACAGTAGTCCT -ACGGAATCGTCTGACAGTTAAGCC -ACGGAATCGTCTGACAGTATAGCC -ACGGAATCGTCTGACAGTTAACCG -ACGGAATCGTCTGACAGTATGCCA -ACGGAATCGTCTTAGCTGGGAAAC -ACGGAATCGTCTTAGCTGAACACC -ACGGAATCGTCTTAGCTGATCGAG -ACGGAATCGTCTTAGCTGCTCCTT -ACGGAATCGTCTTAGCTGCCTGTT -ACGGAATCGTCTTAGCTGCGGTTT -ACGGAATCGTCTTAGCTGGTGGTT -ACGGAATCGTCTTAGCTGGCCTTT -ACGGAATCGTCTTAGCTGGGTCTT -ACGGAATCGTCTTAGCTGACGCTT -ACGGAATCGTCTTAGCTGAGCGTT -ACGGAATCGTCTTAGCTGTTCGTC -ACGGAATCGTCTTAGCTGTCTCTC -ACGGAATCGTCTTAGCTGTGGATC -ACGGAATCGTCTTAGCTGCACTTC -ACGGAATCGTCTTAGCTGGTACTC -ACGGAATCGTCTTAGCTGGATGTC -ACGGAATCGTCTTAGCTGACAGTC -ACGGAATCGTCTTAGCTGTTGCTG -ACGGAATCGTCTTAGCTGTCCATG -ACGGAATCGTCTTAGCTGTGTGTG -ACGGAATCGTCTTAGCTGCTAGTG -ACGGAATCGTCTTAGCTGCATCTG -ACGGAATCGTCTTAGCTGGAGTTG -ACGGAATCGTCTTAGCTGAGACTG -ACGGAATCGTCTTAGCTGTCGGTA -ACGGAATCGTCTTAGCTGTGCCTA -ACGGAATCGTCTTAGCTGCCACTA -ACGGAATCGTCTTAGCTGGGAGTA -ACGGAATCGTCTTAGCTGTCGTCT -ACGGAATCGTCTTAGCTGTGCACT -ACGGAATCGTCTTAGCTGCTGACT -ACGGAATCGTCTTAGCTGCAACCT -ACGGAATCGTCTTAGCTGGCTACT -ACGGAATCGTCTTAGCTGGGATCT -ACGGAATCGTCTTAGCTGAAGGCT -ACGGAATCGTCTTAGCTGTCAACC -ACGGAATCGTCTTAGCTGTGTTCC -ACGGAATCGTCTTAGCTGATTCCC -ACGGAATCGTCTTAGCTGTTCTCG -ACGGAATCGTCTTAGCTGTAGACG -ACGGAATCGTCTTAGCTGGTAACG -ACGGAATCGTCTTAGCTGACTTCG -ACGGAATCGTCTTAGCTGTACGCA -ACGGAATCGTCTTAGCTGCTTGCA -ACGGAATCGTCTTAGCTGCGAACA -ACGGAATCGTCTTAGCTGCAGTCA -ACGGAATCGTCTTAGCTGGATCCA -ACGGAATCGTCTTAGCTGACGACA -ACGGAATCGTCTTAGCTGAGCTCA -ACGGAATCGTCTTAGCTGTCACGT -ACGGAATCGTCTTAGCTGCGTAGT -ACGGAATCGTCTTAGCTGGTCAGT -ACGGAATCGTCTTAGCTGGAAGGT -ACGGAATCGTCTTAGCTGAACCGT -ACGGAATCGTCTTAGCTGTTGTGC -ACGGAATCGTCTTAGCTGCTAAGC -ACGGAATCGTCTTAGCTGACTAGC -ACGGAATCGTCTTAGCTGAGATGC -ACGGAATCGTCTTAGCTGTGAAGG -ACGGAATCGTCTTAGCTGCAATGG -ACGGAATCGTCTTAGCTGATGAGG -ACGGAATCGTCTTAGCTGAATGGG -ACGGAATCGTCTTAGCTGTCCTGA -ACGGAATCGTCTTAGCTGTAGCGA -ACGGAATCGTCTTAGCTGCACAGA -ACGGAATCGTCTTAGCTGGCAAGA -ACGGAATCGTCTTAGCTGGGTTGA -ACGGAATCGTCTTAGCTGTCCGAT -ACGGAATCGTCTTAGCTGTGGCAT -ACGGAATCGTCTTAGCTGCGAGAT -ACGGAATCGTCTTAGCTGTACCAC -ACGGAATCGTCTTAGCTGCAGAAC -ACGGAATCGTCTTAGCTGGTCTAC -ACGGAATCGTCTTAGCTGACGTAC -ACGGAATCGTCTTAGCTGAGTGAC -ACGGAATCGTCTTAGCTGCTGTAG -ACGGAATCGTCTTAGCTGCCTAAG -ACGGAATCGTCTTAGCTGGTTCAG -ACGGAATCGTCTTAGCTGGCATAG -ACGGAATCGTCTTAGCTGGACAAG -ACGGAATCGTCTTAGCTGAAGCAG -ACGGAATCGTCTTAGCTGCGTCAA -ACGGAATCGTCTTAGCTGGCTGAA -ACGGAATCGTCTTAGCTGAGTACG -ACGGAATCGTCTTAGCTGATCCGA -ACGGAATCGTCTTAGCTGATGGGA -ACGGAATCGTCTTAGCTGGTGCAA -ACGGAATCGTCTTAGCTGGAGGAA -ACGGAATCGTCTTAGCTGCAGGTA -ACGGAATCGTCTTAGCTGGACTCT -ACGGAATCGTCTTAGCTGAGTCCT -ACGGAATCGTCTTAGCTGTAAGCC -ACGGAATCGTCTTAGCTGATAGCC -ACGGAATCGTCTTAGCTGTAACCG -ACGGAATCGTCTTAGCTGATGCCA -ACGGAATCGTCTAAGCCTGGAAAC -ACGGAATCGTCTAAGCCTAACACC -ACGGAATCGTCTAAGCCTATCGAG -ACGGAATCGTCTAAGCCTCTCCTT -ACGGAATCGTCTAAGCCTCCTGTT -ACGGAATCGTCTAAGCCTCGGTTT -ACGGAATCGTCTAAGCCTGTGGTT -ACGGAATCGTCTAAGCCTGCCTTT -ACGGAATCGTCTAAGCCTGGTCTT -ACGGAATCGTCTAAGCCTACGCTT -ACGGAATCGTCTAAGCCTAGCGTT -ACGGAATCGTCTAAGCCTTTCGTC -ACGGAATCGTCTAAGCCTTCTCTC -ACGGAATCGTCTAAGCCTTGGATC -ACGGAATCGTCTAAGCCTCACTTC -ACGGAATCGTCTAAGCCTGTACTC -ACGGAATCGTCTAAGCCTGATGTC -ACGGAATCGTCTAAGCCTACAGTC -ACGGAATCGTCTAAGCCTTTGCTG -ACGGAATCGTCTAAGCCTTCCATG -ACGGAATCGTCTAAGCCTTGTGTG -ACGGAATCGTCTAAGCCTCTAGTG -ACGGAATCGTCTAAGCCTCATCTG -ACGGAATCGTCTAAGCCTGAGTTG -ACGGAATCGTCTAAGCCTAGACTG -ACGGAATCGTCTAAGCCTTCGGTA -ACGGAATCGTCTAAGCCTTGCCTA -ACGGAATCGTCTAAGCCTCCACTA -ACGGAATCGTCTAAGCCTGGAGTA -ACGGAATCGTCTAAGCCTTCGTCT -ACGGAATCGTCTAAGCCTTGCACT -ACGGAATCGTCTAAGCCTCTGACT -ACGGAATCGTCTAAGCCTCAACCT -ACGGAATCGTCTAAGCCTGCTACT -ACGGAATCGTCTAAGCCTGGATCT -ACGGAATCGTCTAAGCCTAAGGCT -ACGGAATCGTCTAAGCCTTCAACC -ACGGAATCGTCTAAGCCTTGTTCC -ACGGAATCGTCTAAGCCTATTCCC -ACGGAATCGTCTAAGCCTTTCTCG -ACGGAATCGTCTAAGCCTTAGACG -ACGGAATCGTCTAAGCCTGTAACG -ACGGAATCGTCTAAGCCTACTTCG -ACGGAATCGTCTAAGCCTTACGCA -ACGGAATCGTCTAAGCCTCTTGCA -ACGGAATCGTCTAAGCCTCGAACA -ACGGAATCGTCTAAGCCTCAGTCA -ACGGAATCGTCTAAGCCTGATCCA -ACGGAATCGTCTAAGCCTACGACA -ACGGAATCGTCTAAGCCTAGCTCA -ACGGAATCGTCTAAGCCTTCACGT -ACGGAATCGTCTAAGCCTCGTAGT -ACGGAATCGTCTAAGCCTGTCAGT -ACGGAATCGTCTAAGCCTGAAGGT -ACGGAATCGTCTAAGCCTAACCGT -ACGGAATCGTCTAAGCCTTTGTGC -ACGGAATCGTCTAAGCCTCTAAGC -ACGGAATCGTCTAAGCCTACTAGC -ACGGAATCGTCTAAGCCTAGATGC -ACGGAATCGTCTAAGCCTTGAAGG -ACGGAATCGTCTAAGCCTCAATGG -ACGGAATCGTCTAAGCCTATGAGG -ACGGAATCGTCTAAGCCTAATGGG -ACGGAATCGTCTAAGCCTTCCTGA -ACGGAATCGTCTAAGCCTTAGCGA -ACGGAATCGTCTAAGCCTCACAGA -ACGGAATCGTCTAAGCCTGCAAGA -ACGGAATCGTCTAAGCCTGGTTGA -ACGGAATCGTCTAAGCCTTCCGAT -ACGGAATCGTCTAAGCCTTGGCAT -ACGGAATCGTCTAAGCCTCGAGAT -ACGGAATCGTCTAAGCCTTACCAC -ACGGAATCGTCTAAGCCTCAGAAC -ACGGAATCGTCTAAGCCTGTCTAC -ACGGAATCGTCTAAGCCTACGTAC -ACGGAATCGTCTAAGCCTAGTGAC -ACGGAATCGTCTAAGCCTCTGTAG -ACGGAATCGTCTAAGCCTCCTAAG -ACGGAATCGTCTAAGCCTGTTCAG -ACGGAATCGTCTAAGCCTGCATAG -ACGGAATCGTCTAAGCCTGACAAG -ACGGAATCGTCTAAGCCTAAGCAG -ACGGAATCGTCTAAGCCTCGTCAA -ACGGAATCGTCTAAGCCTGCTGAA -ACGGAATCGTCTAAGCCTAGTACG -ACGGAATCGTCTAAGCCTATCCGA -ACGGAATCGTCTAAGCCTATGGGA -ACGGAATCGTCTAAGCCTGTGCAA -ACGGAATCGTCTAAGCCTGAGGAA -ACGGAATCGTCTAAGCCTCAGGTA -ACGGAATCGTCTAAGCCTGACTCT -ACGGAATCGTCTAAGCCTAGTCCT -ACGGAATCGTCTAAGCCTTAAGCC -ACGGAATCGTCTAAGCCTATAGCC -ACGGAATCGTCTAAGCCTTAACCG -ACGGAATCGTCTAAGCCTATGCCA -ACGGAATCGTCTCAGGTTGGAAAC -ACGGAATCGTCTCAGGTTAACACC -ACGGAATCGTCTCAGGTTATCGAG -ACGGAATCGTCTCAGGTTCTCCTT -ACGGAATCGTCTCAGGTTCCTGTT -ACGGAATCGTCTCAGGTTCGGTTT -ACGGAATCGTCTCAGGTTGTGGTT -ACGGAATCGTCTCAGGTTGCCTTT -ACGGAATCGTCTCAGGTTGGTCTT -ACGGAATCGTCTCAGGTTACGCTT -ACGGAATCGTCTCAGGTTAGCGTT -ACGGAATCGTCTCAGGTTTTCGTC -ACGGAATCGTCTCAGGTTTCTCTC -ACGGAATCGTCTCAGGTTTGGATC -ACGGAATCGTCTCAGGTTCACTTC -ACGGAATCGTCTCAGGTTGTACTC -ACGGAATCGTCTCAGGTTGATGTC -ACGGAATCGTCTCAGGTTACAGTC -ACGGAATCGTCTCAGGTTTTGCTG -ACGGAATCGTCTCAGGTTTCCATG -ACGGAATCGTCTCAGGTTTGTGTG -ACGGAATCGTCTCAGGTTCTAGTG -ACGGAATCGTCTCAGGTTCATCTG -ACGGAATCGTCTCAGGTTGAGTTG -ACGGAATCGTCTCAGGTTAGACTG -ACGGAATCGTCTCAGGTTTCGGTA -ACGGAATCGTCTCAGGTTTGCCTA -ACGGAATCGTCTCAGGTTCCACTA -ACGGAATCGTCTCAGGTTGGAGTA -ACGGAATCGTCTCAGGTTTCGTCT -ACGGAATCGTCTCAGGTTTGCACT -ACGGAATCGTCTCAGGTTCTGACT -ACGGAATCGTCTCAGGTTCAACCT -ACGGAATCGTCTCAGGTTGCTACT -ACGGAATCGTCTCAGGTTGGATCT -ACGGAATCGTCTCAGGTTAAGGCT -ACGGAATCGTCTCAGGTTTCAACC -ACGGAATCGTCTCAGGTTTGTTCC -ACGGAATCGTCTCAGGTTATTCCC -ACGGAATCGTCTCAGGTTTTCTCG -ACGGAATCGTCTCAGGTTTAGACG -ACGGAATCGTCTCAGGTTGTAACG -ACGGAATCGTCTCAGGTTACTTCG -ACGGAATCGTCTCAGGTTTACGCA -ACGGAATCGTCTCAGGTTCTTGCA -ACGGAATCGTCTCAGGTTCGAACA -ACGGAATCGTCTCAGGTTCAGTCA -ACGGAATCGTCTCAGGTTGATCCA -ACGGAATCGTCTCAGGTTACGACA -ACGGAATCGTCTCAGGTTAGCTCA -ACGGAATCGTCTCAGGTTTCACGT -ACGGAATCGTCTCAGGTTCGTAGT -ACGGAATCGTCTCAGGTTGTCAGT -ACGGAATCGTCTCAGGTTGAAGGT -ACGGAATCGTCTCAGGTTAACCGT -ACGGAATCGTCTCAGGTTTTGTGC -ACGGAATCGTCTCAGGTTCTAAGC -ACGGAATCGTCTCAGGTTACTAGC -ACGGAATCGTCTCAGGTTAGATGC -ACGGAATCGTCTCAGGTTTGAAGG -ACGGAATCGTCTCAGGTTCAATGG -ACGGAATCGTCTCAGGTTATGAGG -ACGGAATCGTCTCAGGTTAATGGG -ACGGAATCGTCTCAGGTTTCCTGA -ACGGAATCGTCTCAGGTTTAGCGA -ACGGAATCGTCTCAGGTTCACAGA -ACGGAATCGTCTCAGGTTGCAAGA -ACGGAATCGTCTCAGGTTGGTTGA -ACGGAATCGTCTCAGGTTTCCGAT -ACGGAATCGTCTCAGGTTTGGCAT -ACGGAATCGTCTCAGGTTCGAGAT -ACGGAATCGTCTCAGGTTTACCAC -ACGGAATCGTCTCAGGTTCAGAAC -ACGGAATCGTCTCAGGTTGTCTAC -ACGGAATCGTCTCAGGTTACGTAC -ACGGAATCGTCTCAGGTTAGTGAC -ACGGAATCGTCTCAGGTTCTGTAG -ACGGAATCGTCTCAGGTTCCTAAG -ACGGAATCGTCTCAGGTTGTTCAG -ACGGAATCGTCTCAGGTTGCATAG -ACGGAATCGTCTCAGGTTGACAAG -ACGGAATCGTCTCAGGTTAAGCAG -ACGGAATCGTCTCAGGTTCGTCAA -ACGGAATCGTCTCAGGTTGCTGAA -ACGGAATCGTCTCAGGTTAGTACG -ACGGAATCGTCTCAGGTTATCCGA -ACGGAATCGTCTCAGGTTATGGGA -ACGGAATCGTCTCAGGTTGTGCAA -ACGGAATCGTCTCAGGTTGAGGAA -ACGGAATCGTCTCAGGTTCAGGTA -ACGGAATCGTCTCAGGTTGACTCT -ACGGAATCGTCTCAGGTTAGTCCT -ACGGAATCGTCTCAGGTTTAAGCC -ACGGAATCGTCTCAGGTTATAGCC -ACGGAATCGTCTCAGGTTTAACCG -ACGGAATCGTCTCAGGTTATGCCA -ACGGAATCGTCTTAGGCAGGAAAC -ACGGAATCGTCTTAGGCAAACACC -ACGGAATCGTCTTAGGCAATCGAG -ACGGAATCGTCTTAGGCACTCCTT -ACGGAATCGTCTTAGGCACCTGTT -ACGGAATCGTCTTAGGCACGGTTT -ACGGAATCGTCTTAGGCAGTGGTT -ACGGAATCGTCTTAGGCAGCCTTT -ACGGAATCGTCTTAGGCAGGTCTT -ACGGAATCGTCTTAGGCAACGCTT -ACGGAATCGTCTTAGGCAAGCGTT -ACGGAATCGTCTTAGGCATTCGTC -ACGGAATCGTCTTAGGCATCTCTC -ACGGAATCGTCTTAGGCATGGATC -ACGGAATCGTCTTAGGCACACTTC -ACGGAATCGTCTTAGGCAGTACTC -ACGGAATCGTCTTAGGCAGATGTC -ACGGAATCGTCTTAGGCAACAGTC -ACGGAATCGTCTTAGGCATTGCTG -ACGGAATCGTCTTAGGCATCCATG -ACGGAATCGTCTTAGGCATGTGTG -ACGGAATCGTCTTAGGCACTAGTG -ACGGAATCGTCTTAGGCACATCTG -ACGGAATCGTCTTAGGCAGAGTTG -ACGGAATCGTCTTAGGCAAGACTG -ACGGAATCGTCTTAGGCATCGGTA -ACGGAATCGTCTTAGGCATGCCTA -ACGGAATCGTCTTAGGCACCACTA -ACGGAATCGTCTTAGGCAGGAGTA -ACGGAATCGTCTTAGGCATCGTCT -ACGGAATCGTCTTAGGCATGCACT -ACGGAATCGTCTTAGGCACTGACT -ACGGAATCGTCTTAGGCACAACCT -ACGGAATCGTCTTAGGCAGCTACT -ACGGAATCGTCTTAGGCAGGATCT -ACGGAATCGTCTTAGGCAAAGGCT -ACGGAATCGTCTTAGGCATCAACC -ACGGAATCGTCTTAGGCATGTTCC -ACGGAATCGTCTTAGGCAATTCCC -ACGGAATCGTCTTAGGCATTCTCG -ACGGAATCGTCTTAGGCATAGACG -ACGGAATCGTCTTAGGCAGTAACG -ACGGAATCGTCTTAGGCAACTTCG -ACGGAATCGTCTTAGGCATACGCA -ACGGAATCGTCTTAGGCACTTGCA -ACGGAATCGTCTTAGGCACGAACA -ACGGAATCGTCTTAGGCACAGTCA -ACGGAATCGTCTTAGGCAGATCCA -ACGGAATCGTCTTAGGCAACGACA -ACGGAATCGTCTTAGGCAAGCTCA -ACGGAATCGTCTTAGGCATCACGT -ACGGAATCGTCTTAGGCACGTAGT -ACGGAATCGTCTTAGGCAGTCAGT -ACGGAATCGTCTTAGGCAGAAGGT -ACGGAATCGTCTTAGGCAAACCGT -ACGGAATCGTCTTAGGCATTGTGC -ACGGAATCGTCTTAGGCACTAAGC -ACGGAATCGTCTTAGGCAACTAGC -ACGGAATCGTCTTAGGCAAGATGC -ACGGAATCGTCTTAGGCATGAAGG -ACGGAATCGTCTTAGGCACAATGG -ACGGAATCGTCTTAGGCAATGAGG -ACGGAATCGTCTTAGGCAAATGGG -ACGGAATCGTCTTAGGCATCCTGA -ACGGAATCGTCTTAGGCATAGCGA -ACGGAATCGTCTTAGGCACACAGA -ACGGAATCGTCTTAGGCAGCAAGA -ACGGAATCGTCTTAGGCAGGTTGA -ACGGAATCGTCTTAGGCATCCGAT -ACGGAATCGTCTTAGGCATGGCAT -ACGGAATCGTCTTAGGCACGAGAT -ACGGAATCGTCTTAGGCATACCAC -ACGGAATCGTCTTAGGCACAGAAC -ACGGAATCGTCTTAGGCAGTCTAC -ACGGAATCGTCTTAGGCAACGTAC -ACGGAATCGTCTTAGGCAAGTGAC -ACGGAATCGTCTTAGGCACTGTAG -ACGGAATCGTCTTAGGCACCTAAG -ACGGAATCGTCTTAGGCAGTTCAG -ACGGAATCGTCTTAGGCAGCATAG -ACGGAATCGTCTTAGGCAGACAAG -ACGGAATCGTCTTAGGCAAAGCAG -ACGGAATCGTCTTAGGCACGTCAA -ACGGAATCGTCTTAGGCAGCTGAA -ACGGAATCGTCTTAGGCAAGTACG -ACGGAATCGTCTTAGGCAATCCGA -ACGGAATCGTCTTAGGCAATGGGA -ACGGAATCGTCTTAGGCAGTGCAA -ACGGAATCGTCTTAGGCAGAGGAA -ACGGAATCGTCTTAGGCACAGGTA -ACGGAATCGTCTTAGGCAGACTCT -ACGGAATCGTCTTAGGCAAGTCCT -ACGGAATCGTCTTAGGCATAAGCC -ACGGAATCGTCTTAGGCAATAGCC -ACGGAATCGTCTTAGGCATAACCG -ACGGAATCGTCTTAGGCAATGCCA -ACGGAATCGTCTAAGGACGGAAAC -ACGGAATCGTCTAAGGACAACACC -ACGGAATCGTCTAAGGACATCGAG -ACGGAATCGTCTAAGGACCTCCTT -ACGGAATCGTCTAAGGACCCTGTT -ACGGAATCGTCTAAGGACCGGTTT -ACGGAATCGTCTAAGGACGTGGTT -ACGGAATCGTCTAAGGACGCCTTT -ACGGAATCGTCTAAGGACGGTCTT -ACGGAATCGTCTAAGGACACGCTT -ACGGAATCGTCTAAGGACAGCGTT -ACGGAATCGTCTAAGGACTTCGTC -ACGGAATCGTCTAAGGACTCTCTC -ACGGAATCGTCTAAGGACTGGATC -ACGGAATCGTCTAAGGACCACTTC -ACGGAATCGTCTAAGGACGTACTC -ACGGAATCGTCTAAGGACGATGTC -ACGGAATCGTCTAAGGACACAGTC -ACGGAATCGTCTAAGGACTTGCTG -ACGGAATCGTCTAAGGACTCCATG -ACGGAATCGTCTAAGGACTGTGTG -ACGGAATCGTCTAAGGACCTAGTG -ACGGAATCGTCTAAGGACCATCTG -ACGGAATCGTCTAAGGACGAGTTG -ACGGAATCGTCTAAGGACAGACTG -ACGGAATCGTCTAAGGACTCGGTA -ACGGAATCGTCTAAGGACTGCCTA -ACGGAATCGTCTAAGGACCCACTA -ACGGAATCGTCTAAGGACGGAGTA -ACGGAATCGTCTAAGGACTCGTCT -ACGGAATCGTCTAAGGACTGCACT -ACGGAATCGTCTAAGGACCTGACT -ACGGAATCGTCTAAGGACCAACCT -ACGGAATCGTCTAAGGACGCTACT -ACGGAATCGTCTAAGGACGGATCT -ACGGAATCGTCTAAGGACAAGGCT -ACGGAATCGTCTAAGGACTCAACC -ACGGAATCGTCTAAGGACTGTTCC -ACGGAATCGTCTAAGGACATTCCC -ACGGAATCGTCTAAGGACTTCTCG -ACGGAATCGTCTAAGGACTAGACG -ACGGAATCGTCTAAGGACGTAACG -ACGGAATCGTCTAAGGACACTTCG -ACGGAATCGTCTAAGGACTACGCA -ACGGAATCGTCTAAGGACCTTGCA -ACGGAATCGTCTAAGGACCGAACA -ACGGAATCGTCTAAGGACCAGTCA -ACGGAATCGTCTAAGGACGATCCA -ACGGAATCGTCTAAGGACACGACA -ACGGAATCGTCTAAGGACAGCTCA -ACGGAATCGTCTAAGGACTCACGT -ACGGAATCGTCTAAGGACCGTAGT -ACGGAATCGTCTAAGGACGTCAGT -ACGGAATCGTCTAAGGACGAAGGT -ACGGAATCGTCTAAGGACAACCGT -ACGGAATCGTCTAAGGACTTGTGC -ACGGAATCGTCTAAGGACCTAAGC -ACGGAATCGTCTAAGGACACTAGC -ACGGAATCGTCTAAGGACAGATGC -ACGGAATCGTCTAAGGACTGAAGG -ACGGAATCGTCTAAGGACCAATGG -ACGGAATCGTCTAAGGACATGAGG -ACGGAATCGTCTAAGGACAATGGG -ACGGAATCGTCTAAGGACTCCTGA -ACGGAATCGTCTAAGGACTAGCGA -ACGGAATCGTCTAAGGACCACAGA -ACGGAATCGTCTAAGGACGCAAGA -ACGGAATCGTCTAAGGACGGTTGA -ACGGAATCGTCTAAGGACTCCGAT -ACGGAATCGTCTAAGGACTGGCAT -ACGGAATCGTCTAAGGACCGAGAT -ACGGAATCGTCTAAGGACTACCAC -ACGGAATCGTCTAAGGACCAGAAC -ACGGAATCGTCTAAGGACGTCTAC -ACGGAATCGTCTAAGGACACGTAC -ACGGAATCGTCTAAGGACAGTGAC -ACGGAATCGTCTAAGGACCTGTAG -ACGGAATCGTCTAAGGACCCTAAG -ACGGAATCGTCTAAGGACGTTCAG -ACGGAATCGTCTAAGGACGCATAG -ACGGAATCGTCTAAGGACGACAAG -ACGGAATCGTCTAAGGACAAGCAG -ACGGAATCGTCTAAGGACCGTCAA -ACGGAATCGTCTAAGGACGCTGAA -ACGGAATCGTCTAAGGACAGTACG -ACGGAATCGTCTAAGGACATCCGA -ACGGAATCGTCTAAGGACATGGGA -ACGGAATCGTCTAAGGACGTGCAA -ACGGAATCGTCTAAGGACGAGGAA -ACGGAATCGTCTAAGGACCAGGTA -ACGGAATCGTCTAAGGACGACTCT -ACGGAATCGTCTAAGGACAGTCCT -ACGGAATCGTCTAAGGACTAAGCC -ACGGAATCGTCTAAGGACATAGCC -ACGGAATCGTCTAAGGACTAACCG -ACGGAATCGTCTAAGGACATGCCA -ACGGAATCGTCTCAGAAGGGAAAC -ACGGAATCGTCTCAGAAGAACACC -ACGGAATCGTCTCAGAAGATCGAG -ACGGAATCGTCTCAGAAGCTCCTT -ACGGAATCGTCTCAGAAGCCTGTT -ACGGAATCGTCTCAGAAGCGGTTT -ACGGAATCGTCTCAGAAGGTGGTT -ACGGAATCGTCTCAGAAGGCCTTT -ACGGAATCGTCTCAGAAGGGTCTT -ACGGAATCGTCTCAGAAGACGCTT -ACGGAATCGTCTCAGAAGAGCGTT -ACGGAATCGTCTCAGAAGTTCGTC -ACGGAATCGTCTCAGAAGTCTCTC -ACGGAATCGTCTCAGAAGTGGATC -ACGGAATCGTCTCAGAAGCACTTC -ACGGAATCGTCTCAGAAGGTACTC -ACGGAATCGTCTCAGAAGGATGTC -ACGGAATCGTCTCAGAAGACAGTC -ACGGAATCGTCTCAGAAGTTGCTG -ACGGAATCGTCTCAGAAGTCCATG -ACGGAATCGTCTCAGAAGTGTGTG -ACGGAATCGTCTCAGAAGCTAGTG -ACGGAATCGTCTCAGAAGCATCTG -ACGGAATCGTCTCAGAAGGAGTTG -ACGGAATCGTCTCAGAAGAGACTG -ACGGAATCGTCTCAGAAGTCGGTA -ACGGAATCGTCTCAGAAGTGCCTA -ACGGAATCGTCTCAGAAGCCACTA -ACGGAATCGTCTCAGAAGGGAGTA -ACGGAATCGTCTCAGAAGTCGTCT -ACGGAATCGTCTCAGAAGTGCACT -ACGGAATCGTCTCAGAAGCTGACT -ACGGAATCGTCTCAGAAGCAACCT -ACGGAATCGTCTCAGAAGGCTACT -ACGGAATCGTCTCAGAAGGGATCT -ACGGAATCGTCTCAGAAGAAGGCT -ACGGAATCGTCTCAGAAGTCAACC -ACGGAATCGTCTCAGAAGTGTTCC -ACGGAATCGTCTCAGAAGATTCCC -ACGGAATCGTCTCAGAAGTTCTCG -ACGGAATCGTCTCAGAAGTAGACG -ACGGAATCGTCTCAGAAGGTAACG -ACGGAATCGTCTCAGAAGACTTCG -ACGGAATCGTCTCAGAAGTACGCA -ACGGAATCGTCTCAGAAGCTTGCA -ACGGAATCGTCTCAGAAGCGAACA -ACGGAATCGTCTCAGAAGCAGTCA -ACGGAATCGTCTCAGAAGGATCCA -ACGGAATCGTCTCAGAAGACGACA -ACGGAATCGTCTCAGAAGAGCTCA -ACGGAATCGTCTCAGAAGTCACGT -ACGGAATCGTCTCAGAAGCGTAGT -ACGGAATCGTCTCAGAAGGTCAGT -ACGGAATCGTCTCAGAAGGAAGGT -ACGGAATCGTCTCAGAAGAACCGT -ACGGAATCGTCTCAGAAGTTGTGC -ACGGAATCGTCTCAGAAGCTAAGC -ACGGAATCGTCTCAGAAGACTAGC -ACGGAATCGTCTCAGAAGAGATGC -ACGGAATCGTCTCAGAAGTGAAGG -ACGGAATCGTCTCAGAAGCAATGG -ACGGAATCGTCTCAGAAGATGAGG -ACGGAATCGTCTCAGAAGAATGGG -ACGGAATCGTCTCAGAAGTCCTGA -ACGGAATCGTCTCAGAAGTAGCGA -ACGGAATCGTCTCAGAAGCACAGA -ACGGAATCGTCTCAGAAGGCAAGA -ACGGAATCGTCTCAGAAGGGTTGA -ACGGAATCGTCTCAGAAGTCCGAT -ACGGAATCGTCTCAGAAGTGGCAT -ACGGAATCGTCTCAGAAGCGAGAT -ACGGAATCGTCTCAGAAGTACCAC -ACGGAATCGTCTCAGAAGCAGAAC -ACGGAATCGTCTCAGAAGGTCTAC -ACGGAATCGTCTCAGAAGACGTAC -ACGGAATCGTCTCAGAAGAGTGAC -ACGGAATCGTCTCAGAAGCTGTAG -ACGGAATCGTCTCAGAAGCCTAAG -ACGGAATCGTCTCAGAAGGTTCAG -ACGGAATCGTCTCAGAAGGCATAG -ACGGAATCGTCTCAGAAGGACAAG -ACGGAATCGTCTCAGAAGAAGCAG -ACGGAATCGTCTCAGAAGCGTCAA -ACGGAATCGTCTCAGAAGGCTGAA -ACGGAATCGTCTCAGAAGAGTACG -ACGGAATCGTCTCAGAAGATCCGA -ACGGAATCGTCTCAGAAGATGGGA -ACGGAATCGTCTCAGAAGGTGCAA -ACGGAATCGTCTCAGAAGGAGGAA -ACGGAATCGTCTCAGAAGCAGGTA -ACGGAATCGTCTCAGAAGGACTCT -ACGGAATCGTCTCAGAAGAGTCCT -ACGGAATCGTCTCAGAAGTAAGCC -ACGGAATCGTCTCAGAAGATAGCC -ACGGAATCGTCTCAGAAGTAACCG -ACGGAATCGTCTCAGAAGATGCCA -ACGGAATCGTCTCAACGTGGAAAC -ACGGAATCGTCTCAACGTAACACC -ACGGAATCGTCTCAACGTATCGAG -ACGGAATCGTCTCAACGTCTCCTT -ACGGAATCGTCTCAACGTCCTGTT -ACGGAATCGTCTCAACGTCGGTTT -ACGGAATCGTCTCAACGTGTGGTT -ACGGAATCGTCTCAACGTGCCTTT -ACGGAATCGTCTCAACGTGGTCTT -ACGGAATCGTCTCAACGTACGCTT -ACGGAATCGTCTCAACGTAGCGTT -ACGGAATCGTCTCAACGTTTCGTC -ACGGAATCGTCTCAACGTTCTCTC -ACGGAATCGTCTCAACGTTGGATC -ACGGAATCGTCTCAACGTCACTTC -ACGGAATCGTCTCAACGTGTACTC -ACGGAATCGTCTCAACGTGATGTC -ACGGAATCGTCTCAACGTACAGTC -ACGGAATCGTCTCAACGTTTGCTG -ACGGAATCGTCTCAACGTTCCATG -ACGGAATCGTCTCAACGTTGTGTG -ACGGAATCGTCTCAACGTCTAGTG -ACGGAATCGTCTCAACGTCATCTG -ACGGAATCGTCTCAACGTGAGTTG -ACGGAATCGTCTCAACGTAGACTG -ACGGAATCGTCTCAACGTTCGGTA -ACGGAATCGTCTCAACGTTGCCTA -ACGGAATCGTCTCAACGTCCACTA -ACGGAATCGTCTCAACGTGGAGTA -ACGGAATCGTCTCAACGTTCGTCT -ACGGAATCGTCTCAACGTTGCACT -ACGGAATCGTCTCAACGTCTGACT -ACGGAATCGTCTCAACGTCAACCT -ACGGAATCGTCTCAACGTGCTACT -ACGGAATCGTCTCAACGTGGATCT -ACGGAATCGTCTCAACGTAAGGCT -ACGGAATCGTCTCAACGTTCAACC -ACGGAATCGTCTCAACGTTGTTCC -ACGGAATCGTCTCAACGTATTCCC -ACGGAATCGTCTCAACGTTTCTCG -ACGGAATCGTCTCAACGTTAGACG -ACGGAATCGTCTCAACGTGTAACG -ACGGAATCGTCTCAACGTACTTCG -ACGGAATCGTCTCAACGTTACGCA -ACGGAATCGTCTCAACGTCTTGCA -ACGGAATCGTCTCAACGTCGAACA -ACGGAATCGTCTCAACGTCAGTCA -ACGGAATCGTCTCAACGTGATCCA -ACGGAATCGTCTCAACGTACGACA -ACGGAATCGTCTCAACGTAGCTCA -ACGGAATCGTCTCAACGTTCACGT -ACGGAATCGTCTCAACGTCGTAGT -ACGGAATCGTCTCAACGTGTCAGT -ACGGAATCGTCTCAACGTGAAGGT -ACGGAATCGTCTCAACGTAACCGT -ACGGAATCGTCTCAACGTTTGTGC -ACGGAATCGTCTCAACGTCTAAGC -ACGGAATCGTCTCAACGTACTAGC -ACGGAATCGTCTCAACGTAGATGC -ACGGAATCGTCTCAACGTTGAAGG -ACGGAATCGTCTCAACGTCAATGG -ACGGAATCGTCTCAACGTATGAGG -ACGGAATCGTCTCAACGTAATGGG -ACGGAATCGTCTCAACGTTCCTGA -ACGGAATCGTCTCAACGTTAGCGA -ACGGAATCGTCTCAACGTCACAGA -ACGGAATCGTCTCAACGTGCAAGA -ACGGAATCGTCTCAACGTGGTTGA -ACGGAATCGTCTCAACGTTCCGAT -ACGGAATCGTCTCAACGTTGGCAT -ACGGAATCGTCTCAACGTCGAGAT -ACGGAATCGTCTCAACGTTACCAC -ACGGAATCGTCTCAACGTCAGAAC -ACGGAATCGTCTCAACGTGTCTAC -ACGGAATCGTCTCAACGTACGTAC -ACGGAATCGTCTCAACGTAGTGAC -ACGGAATCGTCTCAACGTCTGTAG -ACGGAATCGTCTCAACGTCCTAAG -ACGGAATCGTCTCAACGTGTTCAG -ACGGAATCGTCTCAACGTGCATAG -ACGGAATCGTCTCAACGTGACAAG -ACGGAATCGTCTCAACGTAAGCAG -ACGGAATCGTCTCAACGTCGTCAA -ACGGAATCGTCTCAACGTGCTGAA -ACGGAATCGTCTCAACGTAGTACG -ACGGAATCGTCTCAACGTATCCGA -ACGGAATCGTCTCAACGTATGGGA -ACGGAATCGTCTCAACGTGTGCAA -ACGGAATCGTCTCAACGTGAGGAA -ACGGAATCGTCTCAACGTCAGGTA -ACGGAATCGTCTCAACGTGACTCT -ACGGAATCGTCTCAACGTAGTCCT -ACGGAATCGTCTCAACGTTAAGCC -ACGGAATCGTCTCAACGTATAGCC -ACGGAATCGTCTCAACGTTAACCG -ACGGAATCGTCTCAACGTATGCCA -ACGGAATCGTCTGAAGCTGGAAAC -ACGGAATCGTCTGAAGCTAACACC -ACGGAATCGTCTGAAGCTATCGAG -ACGGAATCGTCTGAAGCTCTCCTT -ACGGAATCGTCTGAAGCTCCTGTT -ACGGAATCGTCTGAAGCTCGGTTT -ACGGAATCGTCTGAAGCTGTGGTT -ACGGAATCGTCTGAAGCTGCCTTT -ACGGAATCGTCTGAAGCTGGTCTT -ACGGAATCGTCTGAAGCTACGCTT -ACGGAATCGTCTGAAGCTAGCGTT -ACGGAATCGTCTGAAGCTTTCGTC -ACGGAATCGTCTGAAGCTTCTCTC -ACGGAATCGTCTGAAGCTTGGATC -ACGGAATCGTCTGAAGCTCACTTC -ACGGAATCGTCTGAAGCTGTACTC -ACGGAATCGTCTGAAGCTGATGTC -ACGGAATCGTCTGAAGCTACAGTC -ACGGAATCGTCTGAAGCTTTGCTG -ACGGAATCGTCTGAAGCTTCCATG -ACGGAATCGTCTGAAGCTTGTGTG -ACGGAATCGTCTGAAGCTCTAGTG -ACGGAATCGTCTGAAGCTCATCTG -ACGGAATCGTCTGAAGCTGAGTTG -ACGGAATCGTCTGAAGCTAGACTG -ACGGAATCGTCTGAAGCTTCGGTA -ACGGAATCGTCTGAAGCTTGCCTA -ACGGAATCGTCTGAAGCTCCACTA -ACGGAATCGTCTGAAGCTGGAGTA -ACGGAATCGTCTGAAGCTTCGTCT -ACGGAATCGTCTGAAGCTTGCACT -ACGGAATCGTCTGAAGCTCTGACT -ACGGAATCGTCTGAAGCTCAACCT -ACGGAATCGTCTGAAGCTGCTACT -ACGGAATCGTCTGAAGCTGGATCT -ACGGAATCGTCTGAAGCTAAGGCT -ACGGAATCGTCTGAAGCTTCAACC -ACGGAATCGTCTGAAGCTTGTTCC -ACGGAATCGTCTGAAGCTATTCCC -ACGGAATCGTCTGAAGCTTTCTCG -ACGGAATCGTCTGAAGCTTAGACG -ACGGAATCGTCTGAAGCTGTAACG -ACGGAATCGTCTGAAGCTACTTCG -ACGGAATCGTCTGAAGCTTACGCA -ACGGAATCGTCTGAAGCTCTTGCA -ACGGAATCGTCTGAAGCTCGAACA -ACGGAATCGTCTGAAGCTCAGTCA -ACGGAATCGTCTGAAGCTGATCCA -ACGGAATCGTCTGAAGCTACGACA -ACGGAATCGTCTGAAGCTAGCTCA -ACGGAATCGTCTGAAGCTTCACGT -ACGGAATCGTCTGAAGCTCGTAGT -ACGGAATCGTCTGAAGCTGTCAGT -ACGGAATCGTCTGAAGCTGAAGGT -ACGGAATCGTCTGAAGCTAACCGT -ACGGAATCGTCTGAAGCTTTGTGC -ACGGAATCGTCTGAAGCTCTAAGC -ACGGAATCGTCTGAAGCTACTAGC -ACGGAATCGTCTGAAGCTAGATGC -ACGGAATCGTCTGAAGCTTGAAGG -ACGGAATCGTCTGAAGCTCAATGG -ACGGAATCGTCTGAAGCTATGAGG -ACGGAATCGTCTGAAGCTAATGGG -ACGGAATCGTCTGAAGCTTCCTGA -ACGGAATCGTCTGAAGCTTAGCGA -ACGGAATCGTCTGAAGCTCACAGA -ACGGAATCGTCTGAAGCTGCAAGA -ACGGAATCGTCTGAAGCTGGTTGA -ACGGAATCGTCTGAAGCTTCCGAT -ACGGAATCGTCTGAAGCTTGGCAT -ACGGAATCGTCTGAAGCTCGAGAT -ACGGAATCGTCTGAAGCTTACCAC -ACGGAATCGTCTGAAGCTCAGAAC -ACGGAATCGTCTGAAGCTGTCTAC -ACGGAATCGTCTGAAGCTACGTAC -ACGGAATCGTCTGAAGCTAGTGAC -ACGGAATCGTCTGAAGCTCTGTAG -ACGGAATCGTCTGAAGCTCCTAAG -ACGGAATCGTCTGAAGCTGTTCAG -ACGGAATCGTCTGAAGCTGCATAG -ACGGAATCGTCTGAAGCTGACAAG -ACGGAATCGTCTGAAGCTAAGCAG -ACGGAATCGTCTGAAGCTCGTCAA -ACGGAATCGTCTGAAGCTGCTGAA -ACGGAATCGTCTGAAGCTAGTACG -ACGGAATCGTCTGAAGCTATCCGA -ACGGAATCGTCTGAAGCTATGGGA -ACGGAATCGTCTGAAGCTGTGCAA -ACGGAATCGTCTGAAGCTGAGGAA -ACGGAATCGTCTGAAGCTCAGGTA -ACGGAATCGTCTGAAGCTGACTCT -ACGGAATCGTCTGAAGCTAGTCCT -ACGGAATCGTCTGAAGCTTAAGCC -ACGGAATCGTCTGAAGCTATAGCC -ACGGAATCGTCTGAAGCTTAACCG -ACGGAATCGTCTGAAGCTATGCCA -ACGGAATCGTCTACGAGTGGAAAC -ACGGAATCGTCTACGAGTAACACC -ACGGAATCGTCTACGAGTATCGAG -ACGGAATCGTCTACGAGTCTCCTT -ACGGAATCGTCTACGAGTCCTGTT -ACGGAATCGTCTACGAGTCGGTTT -ACGGAATCGTCTACGAGTGTGGTT -ACGGAATCGTCTACGAGTGCCTTT -ACGGAATCGTCTACGAGTGGTCTT -ACGGAATCGTCTACGAGTACGCTT -ACGGAATCGTCTACGAGTAGCGTT -ACGGAATCGTCTACGAGTTTCGTC -ACGGAATCGTCTACGAGTTCTCTC -ACGGAATCGTCTACGAGTTGGATC -ACGGAATCGTCTACGAGTCACTTC -ACGGAATCGTCTACGAGTGTACTC -ACGGAATCGTCTACGAGTGATGTC -ACGGAATCGTCTACGAGTACAGTC -ACGGAATCGTCTACGAGTTTGCTG -ACGGAATCGTCTACGAGTTCCATG -ACGGAATCGTCTACGAGTTGTGTG -ACGGAATCGTCTACGAGTCTAGTG -ACGGAATCGTCTACGAGTCATCTG -ACGGAATCGTCTACGAGTGAGTTG -ACGGAATCGTCTACGAGTAGACTG -ACGGAATCGTCTACGAGTTCGGTA -ACGGAATCGTCTACGAGTTGCCTA -ACGGAATCGTCTACGAGTCCACTA -ACGGAATCGTCTACGAGTGGAGTA -ACGGAATCGTCTACGAGTTCGTCT -ACGGAATCGTCTACGAGTTGCACT -ACGGAATCGTCTACGAGTCTGACT -ACGGAATCGTCTACGAGTCAACCT -ACGGAATCGTCTACGAGTGCTACT -ACGGAATCGTCTACGAGTGGATCT -ACGGAATCGTCTACGAGTAAGGCT -ACGGAATCGTCTACGAGTTCAACC -ACGGAATCGTCTACGAGTTGTTCC -ACGGAATCGTCTACGAGTATTCCC -ACGGAATCGTCTACGAGTTTCTCG -ACGGAATCGTCTACGAGTTAGACG -ACGGAATCGTCTACGAGTGTAACG -ACGGAATCGTCTACGAGTACTTCG -ACGGAATCGTCTACGAGTTACGCA -ACGGAATCGTCTACGAGTCTTGCA -ACGGAATCGTCTACGAGTCGAACA -ACGGAATCGTCTACGAGTCAGTCA -ACGGAATCGTCTACGAGTGATCCA -ACGGAATCGTCTACGAGTACGACA -ACGGAATCGTCTACGAGTAGCTCA -ACGGAATCGTCTACGAGTTCACGT -ACGGAATCGTCTACGAGTCGTAGT -ACGGAATCGTCTACGAGTGTCAGT -ACGGAATCGTCTACGAGTGAAGGT -ACGGAATCGTCTACGAGTAACCGT -ACGGAATCGTCTACGAGTTTGTGC -ACGGAATCGTCTACGAGTCTAAGC -ACGGAATCGTCTACGAGTACTAGC -ACGGAATCGTCTACGAGTAGATGC -ACGGAATCGTCTACGAGTTGAAGG -ACGGAATCGTCTACGAGTCAATGG -ACGGAATCGTCTACGAGTATGAGG -ACGGAATCGTCTACGAGTAATGGG -ACGGAATCGTCTACGAGTTCCTGA -ACGGAATCGTCTACGAGTTAGCGA -ACGGAATCGTCTACGAGTCACAGA -ACGGAATCGTCTACGAGTGCAAGA -ACGGAATCGTCTACGAGTGGTTGA -ACGGAATCGTCTACGAGTTCCGAT -ACGGAATCGTCTACGAGTTGGCAT -ACGGAATCGTCTACGAGTCGAGAT -ACGGAATCGTCTACGAGTTACCAC -ACGGAATCGTCTACGAGTCAGAAC -ACGGAATCGTCTACGAGTGTCTAC -ACGGAATCGTCTACGAGTACGTAC -ACGGAATCGTCTACGAGTAGTGAC -ACGGAATCGTCTACGAGTCTGTAG -ACGGAATCGTCTACGAGTCCTAAG -ACGGAATCGTCTACGAGTGTTCAG -ACGGAATCGTCTACGAGTGCATAG -ACGGAATCGTCTACGAGTGACAAG -ACGGAATCGTCTACGAGTAAGCAG -ACGGAATCGTCTACGAGTCGTCAA -ACGGAATCGTCTACGAGTGCTGAA -ACGGAATCGTCTACGAGTAGTACG -ACGGAATCGTCTACGAGTATCCGA -ACGGAATCGTCTACGAGTATGGGA -ACGGAATCGTCTACGAGTGTGCAA -ACGGAATCGTCTACGAGTGAGGAA -ACGGAATCGTCTACGAGTCAGGTA -ACGGAATCGTCTACGAGTGACTCT -ACGGAATCGTCTACGAGTAGTCCT -ACGGAATCGTCTACGAGTTAAGCC -ACGGAATCGTCTACGAGTATAGCC -ACGGAATCGTCTACGAGTTAACCG -ACGGAATCGTCTACGAGTATGCCA -ACGGAATCGTCTCGAATCGGAAAC -ACGGAATCGTCTCGAATCAACACC -ACGGAATCGTCTCGAATCATCGAG -ACGGAATCGTCTCGAATCCTCCTT -ACGGAATCGTCTCGAATCCCTGTT -ACGGAATCGTCTCGAATCCGGTTT -ACGGAATCGTCTCGAATCGTGGTT -ACGGAATCGTCTCGAATCGCCTTT -ACGGAATCGTCTCGAATCGGTCTT -ACGGAATCGTCTCGAATCACGCTT -ACGGAATCGTCTCGAATCAGCGTT -ACGGAATCGTCTCGAATCTTCGTC -ACGGAATCGTCTCGAATCTCTCTC -ACGGAATCGTCTCGAATCTGGATC -ACGGAATCGTCTCGAATCCACTTC -ACGGAATCGTCTCGAATCGTACTC -ACGGAATCGTCTCGAATCGATGTC -ACGGAATCGTCTCGAATCACAGTC -ACGGAATCGTCTCGAATCTTGCTG -ACGGAATCGTCTCGAATCTCCATG -ACGGAATCGTCTCGAATCTGTGTG -ACGGAATCGTCTCGAATCCTAGTG -ACGGAATCGTCTCGAATCCATCTG -ACGGAATCGTCTCGAATCGAGTTG -ACGGAATCGTCTCGAATCAGACTG -ACGGAATCGTCTCGAATCTCGGTA -ACGGAATCGTCTCGAATCTGCCTA -ACGGAATCGTCTCGAATCCCACTA -ACGGAATCGTCTCGAATCGGAGTA -ACGGAATCGTCTCGAATCTCGTCT -ACGGAATCGTCTCGAATCTGCACT -ACGGAATCGTCTCGAATCCTGACT -ACGGAATCGTCTCGAATCCAACCT -ACGGAATCGTCTCGAATCGCTACT -ACGGAATCGTCTCGAATCGGATCT -ACGGAATCGTCTCGAATCAAGGCT -ACGGAATCGTCTCGAATCTCAACC -ACGGAATCGTCTCGAATCTGTTCC -ACGGAATCGTCTCGAATCATTCCC -ACGGAATCGTCTCGAATCTTCTCG -ACGGAATCGTCTCGAATCTAGACG -ACGGAATCGTCTCGAATCGTAACG -ACGGAATCGTCTCGAATCACTTCG -ACGGAATCGTCTCGAATCTACGCA -ACGGAATCGTCTCGAATCCTTGCA -ACGGAATCGTCTCGAATCCGAACA -ACGGAATCGTCTCGAATCCAGTCA -ACGGAATCGTCTCGAATCGATCCA -ACGGAATCGTCTCGAATCACGACA -ACGGAATCGTCTCGAATCAGCTCA -ACGGAATCGTCTCGAATCTCACGT -ACGGAATCGTCTCGAATCCGTAGT -ACGGAATCGTCTCGAATCGTCAGT -ACGGAATCGTCTCGAATCGAAGGT -ACGGAATCGTCTCGAATCAACCGT -ACGGAATCGTCTCGAATCTTGTGC -ACGGAATCGTCTCGAATCCTAAGC -ACGGAATCGTCTCGAATCACTAGC -ACGGAATCGTCTCGAATCAGATGC -ACGGAATCGTCTCGAATCTGAAGG -ACGGAATCGTCTCGAATCCAATGG -ACGGAATCGTCTCGAATCATGAGG -ACGGAATCGTCTCGAATCAATGGG -ACGGAATCGTCTCGAATCTCCTGA -ACGGAATCGTCTCGAATCTAGCGA -ACGGAATCGTCTCGAATCCACAGA -ACGGAATCGTCTCGAATCGCAAGA -ACGGAATCGTCTCGAATCGGTTGA -ACGGAATCGTCTCGAATCTCCGAT -ACGGAATCGTCTCGAATCTGGCAT -ACGGAATCGTCTCGAATCCGAGAT -ACGGAATCGTCTCGAATCTACCAC -ACGGAATCGTCTCGAATCCAGAAC -ACGGAATCGTCTCGAATCGTCTAC -ACGGAATCGTCTCGAATCACGTAC -ACGGAATCGTCTCGAATCAGTGAC -ACGGAATCGTCTCGAATCCTGTAG -ACGGAATCGTCTCGAATCCCTAAG -ACGGAATCGTCTCGAATCGTTCAG -ACGGAATCGTCTCGAATCGCATAG -ACGGAATCGTCTCGAATCGACAAG -ACGGAATCGTCTCGAATCAAGCAG -ACGGAATCGTCTCGAATCCGTCAA -ACGGAATCGTCTCGAATCGCTGAA -ACGGAATCGTCTCGAATCAGTACG -ACGGAATCGTCTCGAATCATCCGA -ACGGAATCGTCTCGAATCATGGGA -ACGGAATCGTCTCGAATCGTGCAA -ACGGAATCGTCTCGAATCGAGGAA -ACGGAATCGTCTCGAATCCAGGTA -ACGGAATCGTCTCGAATCGACTCT -ACGGAATCGTCTCGAATCAGTCCT -ACGGAATCGTCTCGAATCTAAGCC -ACGGAATCGTCTCGAATCATAGCC -ACGGAATCGTCTCGAATCTAACCG -ACGGAATCGTCTCGAATCATGCCA -ACGGAATCGTCTGGAATGGGAAAC -ACGGAATCGTCTGGAATGAACACC -ACGGAATCGTCTGGAATGATCGAG -ACGGAATCGTCTGGAATGCTCCTT -ACGGAATCGTCTGGAATGCCTGTT -ACGGAATCGTCTGGAATGCGGTTT -ACGGAATCGTCTGGAATGGTGGTT -ACGGAATCGTCTGGAATGGCCTTT -ACGGAATCGTCTGGAATGGGTCTT -ACGGAATCGTCTGGAATGACGCTT -ACGGAATCGTCTGGAATGAGCGTT -ACGGAATCGTCTGGAATGTTCGTC -ACGGAATCGTCTGGAATGTCTCTC -ACGGAATCGTCTGGAATGTGGATC -ACGGAATCGTCTGGAATGCACTTC -ACGGAATCGTCTGGAATGGTACTC -ACGGAATCGTCTGGAATGGATGTC -ACGGAATCGTCTGGAATGACAGTC -ACGGAATCGTCTGGAATGTTGCTG -ACGGAATCGTCTGGAATGTCCATG -ACGGAATCGTCTGGAATGTGTGTG -ACGGAATCGTCTGGAATGCTAGTG -ACGGAATCGTCTGGAATGCATCTG -ACGGAATCGTCTGGAATGGAGTTG -ACGGAATCGTCTGGAATGAGACTG -ACGGAATCGTCTGGAATGTCGGTA -ACGGAATCGTCTGGAATGTGCCTA -ACGGAATCGTCTGGAATGCCACTA -ACGGAATCGTCTGGAATGGGAGTA -ACGGAATCGTCTGGAATGTCGTCT -ACGGAATCGTCTGGAATGTGCACT -ACGGAATCGTCTGGAATGCTGACT -ACGGAATCGTCTGGAATGCAACCT -ACGGAATCGTCTGGAATGGCTACT -ACGGAATCGTCTGGAATGGGATCT -ACGGAATCGTCTGGAATGAAGGCT -ACGGAATCGTCTGGAATGTCAACC -ACGGAATCGTCTGGAATGTGTTCC -ACGGAATCGTCTGGAATGATTCCC -ACGGAATCGTCTGGAATGTTCTCG -ACGGAATCGTCTGGAATGTAGACG -ACGGAATCGTCTGGAATGGTAACG -ACGGAATCGTCTGGAATGACTTCG -ACGGAATCGTCTGGAATGTACGCA -ACGGAATCGTCTGGAATGCTTGCA -ACGGAATCGTCTGGAATGCGAACA -ACGGAATCGTCTGGAATGCAGTCA -ACGGAATCGTCTGGAATGGATCCA -ACGGAATCGTCTGGAATGACGACA -ACGGAATCGTCTGGAATGAGCTCA -ACGGAATCGTCTGGAATGTCACGT -ACGGAATCGTCTGGAATGCGTAGT -ACGGAATCGTCTGGAATGGTCAGT -ACGGAATCGTCTGGAATGGAAGGT -ACGGAATCGTCTGGAATGAACCGT -ACGGAATCGTCTGGAATGTTGTGC -ACGGAATCGTCTGGAATGCTAAGC -ACGGAATCGTCTGGAATGACTAGC -ACGGAATCGTCTGGAATGAGATGC -ACGGAATCGTCTGGAATGTGAAGG -ACGGAATCGTCTGGAATGCAATGG -ACGGAATCGTCTGGAATGATGAGG -ACGGAATCGTCTGGAATGAATGGG -ACGGAATCGTCTGGAATGTCCTGA -ACGGAATCGTCTGGAATGTAGCGA -ACGGAATCGTCTGGAATGCACAGA -ACGGAATCGTCTGGAATGGCAAGA -ACGGAATCGTCTGGAATGGGTTGA -ACGGAATCGTCTGGAATGTCCGAT -ACGGAATCGTCTGGAATGTGGCAT -ACGGAATCGTCTGGAATGCGAGAT -ACGGAATCGTCTGGAATGTACCAC -ACGGAATCGTCTGGAATGCAGAAC -ACGGAATCGTCTGGAATGGTCTAC -ACGGAATCGTCTGGAATGACGTAC -ACGGAATCGTCTGGAATGAGTGAC -ACGGAATCGTCTGGAATGCTGTAG -ACGGAATCGTCTGGAATGCCTAAG -ACGGAATCGTCTGGAATGGTTCAG -ACGGAATCGTCTGGAATGGCATAG -ACGGAATCGTCTGGAATGGACAAG -ACGGAATCGTCTGGAATGAAGCAG -ACGGAATCGTCTGGAATGCGTCAA -ACGGAATCGTCTGGAATGGCTGAA -ACGGAATCGTCTGGAATGAGTACG -ACGGAATCGTCTGGAATGATCCGA -ACGGAATCGTCTGGAATGATGGGA -ACGGAATCGTCTGGAATGGTGCAA -ACGGAATCGTCTGGAATGGAGGAA -ACGGAATCGTCTGGAATGCAGGTA -ACGGAATCGTCTGGAATGGACTCT -ACGGAATCGTCTGGAATGAGTCCT -ACGGAATCGTCTGGAATGTAAGCC -ACGGAATCGTCTGGAATGATAGCC -ACGGAATCGTCTGGAATGTAACCG -ACGGAATCGTCTGGAATGATGCCA -ACGGAATCGTCTCAAGTGGGAAAC -ACGGAATCGTCTCAAGTGAACACC -ACGGAATCGTCTCAAGTGATCGAG -ACGGAATCGTCTCAAGTGCTCCTT -ACGGAATCGTCTCAAGTGCCTGTT -ACGGAATCGTCTCAAGTGCGGTTT -ACGGAATCGTCTCAAGTGGTGGTT -ACGGAATCGTCTCAAGTGGCCTTT -ACGGAATCGTCTCAAGTGGGTCTT -ACGGAATCGTCTCAAGTGACGCTT -ACGGAATCGTCTCAAGTGAGCGTT -ACGGAATCGTCTCAAGTGTTCGTC -ACGGAATCGTCTCAAGTGTCTCTC -ACGGAATCGTCTCAAGTGTGGATC -ACGGAATCGTCTCAAGTGCACTTC -ACGGAATCGTCTCAAGTGGTACTC -ACGGAATCGTCTCAAGTGGATGTC -ACGGAATCGTCTCAAGTGACAGTC -ACGGAATCGTCTCAAGTGTTGCTG -ACGGAATCGTCTCAAGTGTCCATG -ACGGAATCGTCTCAAGTGTGTGTG -ACGGAATCGTCTCAAGTGCTAGTG -ACGGAATCGTCTCAAGTGCATCTG -ACGGAATCGTCTCAAGTGGAGTTG -ACGGAATCGTCTCAAGTGAGACTG -ACGGAATCGTCTCAAGTGTCGGTA -ACGGAATCGTCTCAAGTGTGCCTA -ACGGAATCGTCTCAAGTGCCACTA -ACGGAATCGTCTCAAGTGGGAGTA -ACGGAATCGTCTCAAGTGTCGTCT -ACGGAATCGTCTCAAGTGTGCACT -ACGGAATCGTCTCAAGTGCTGACT -ACGGAATCGTCTCAAGTGCAACCT -ACGGAATCGTCTCAAGTGGCTACT -ACGGAATCGTCTCAAGTGGGATCT -ACGGAATCGTCTCAAGTGAAGGCT -ACGGAATCGTCTCAAGTGTCAACC -ACGGAATCGTCTCAAGTGTGTTCC -ACGGAATCGTCTCAAGTGATTCCC -ACGGAATCGTCTCAAGTGTTCTCG -ACGGAATCGTCTCAAGTGTAGACG -ACGGAATCGTCTCAAGTGGTAACG -ACGGAATCGTCTCAAGTGACTTCG -ACGGAATCGTCTCAAGTGTACGCA -ACGGAATCGTCTCAAGTGCTTGCA -ACGGAATCGTCTCAAGTGCGAACA -ACGGAATCGTCTCAAGTGCAGTCA -ACGGAATCGTCTCAAGTGGATCCA -ACGGAATCGTCTCAAGTGACGACA -ACGGAATCGTCTCAAGTGAGCTCA -ACGGAATCGTCTCAAGTGTCACGT -ACGGAATCGTCTCAAGTGCGTAGT -ACGGAATCGTCTCAAGTGGTCAGT -ACGGAATCGTCTCAAGTGGAAGGT -ACGGAATCGTCTCAAGTGAACCGT -ACGGAATCGTCTCAAGTGTTGTGC -ACGGAATCGTCTCAAGTGCTAAGC -ACGGAATCGTCTCAAGTGACTAGC -ACGGAATCGTCTCAAGTGAGATGC -ACGGAATCGTCTCAAGTGTGAAGG -ACGGAATCGTCTCAAGTGCAATGG -ACGGAATCGTCTCAAGTGATGAGG -ACGGAATCGTCTCAAGTGAATGGG -ACGGAATCGTCTCAAGTGTCCTGA -ACGGAATCGTCTCAAGTGTAGCGA -ACGGAATCGTCTCAAGTGCACAGA -ACGGAATCGTCTCAAGTGGCAAGA -ACGGAATCGTCTCAAGTGGGTTGA -ACGGAATCGTCTCAAGTGTCCGAT -ACGGAATCGTCTCAAGTGTGGCAT -ACGGAATCGTCTCAAGTGCGAGAT -ACGGAATCGTCTCAAGTGTACCAC -ACGGAATCGTCTCAAGTGCAGAAC -ACGGAATCGTCTCAAGTGGTCTAC -ACGGAATCGTCTCAAGTGACGTAC -ACGGAATCGTCTCAAGTGAGTGAC -ACGGAATCGTCTCAAGTGCTGTAG -ACGGAATCGTCTCAAGTGCCTAAG -ACGGAATCGTCTCAAGTGGTTCAG -ACGGAATCGTCTCAAGTGGCATAG -ACGGAATCGTCTCAAGTGGACAAG -ACGGAATCGTCTCAAGTGAAGCAG -ACGGAATCGTCTCAAGTGCGTCAA -ACGGAATCGTCTCAAGTGGCTGAA -ACGGAATCGTCTCAAGTGAGTACG -ACGGAATCGTCTCAAGTGATCCGA -ACGGAATCGTCTCAAGTGATGGGA -ACGGAATCGTCTCAAGTGGTGCAA -ACGGAATCGTCTCAAGTGGAGGAA -ACGGAATCGTCTCAAGTGCAGGTA -ACGGAATCGTCTCAAGTGGACTCT -ACGGAATCGTCTCAAGTGAGTCCT -ACGGAATCGTCTCAAGTGTAAGCC -ACGGAATCGTCTCAAGTGATAGCC -ACGGAATCGTCTCAAGTGTAACCG -ACGGAATCGTCTCAAGTGATGCCA -ACGGAATCGTCTGAAGAGGGAAAC -ACGGAATCGTCTGAAGAGAACACC -ACGGAATCGTCTGAAGAGATCGAG -ACGGAATCGTCTGAAGAGCTCCTT -ACGGAATCGTCTGAAGAGCCTGTT -ACGGAATCGTCTGAAGAGCGGTTT -ACGGAATCGTCTGAAGAGGTGGTT -ACGGAATCGTCTGAAGAGGCCTTT -ACGGAATCGTCTGAAGAGGGTCTT -ACGGAATCGTCTGAAGAGACGCTT -ACGGAATCGTCTGAAGAGAGCGTT -ACGGAATCGTCTGAAGAGTTCGTC -ACGGAATCGTCTGAAGAGTCTCTC -ACGGAATCGTCTGAAGAGTGGATC -ACGGAATCGTCTGAAGAGCACTTC -ACGGAATCGTCTGAAGAGGTACTC -ACGGAATCGTCTGAAGAGGATGTC -ACGGAATCGTCTGAAGAGACAGTC -ACGGAATCGTCTGAAGAGTTGCTG -ACGGAATCGTCTGAAGAGTCCATG -ACGGAATCGTCTGAAGAGTGTGTG -ACGGAATCGTCTGAAGAGCTAGTG -ACGGAATCGTCTGAAGAGCATCTG -ACGGAATCGTCTGAAGAGGAGTTG -ACGGAATCGTCTGAAGAGAGACTG -ACGGAATCGTCTGAAGAGTCGGTA -ACGGAATCGTCTGAAGAGTGCCTA -ACGGAATCGTCTGAAGAGCCACTA -ACGGAATCGTCTGAAGAGGGAGTA -ACGGAATCGTCTGAAGAGTCGTCT -ACGGAATCGTCTGAAGAGTGCACT -ACGGAATCGTCTGAAGAGCTGACT -ACGGAATCGTCTGAAGAGCAACCT -ACGGAATCGTCTGAAGAGGCTACT -ACGGAATCGTCTGAAGAGGGATCT -ACGGAATCGTCTGAAGAGAAGGCT -ACGGAATCGTCTGAAGAGTCAACC -ACGGAATCGTCTGAAGAGTGTTCC -ACGGAATCGTCTGAAGAGATTCCC -ACGGAATCGTCTGAAGAGTTCTCG -ACGGAATCGTCTGAAGAGTAGACG -ACGGAATCGTCTGAAGAGGTAACG -ACGGAATCGTCTGAAGAGACTTCG -ACGGAATCGTCTGAAGAGTACGCA -ACGGAATCGTCTGAAGAGCTTGCA -ACGGAATCGTCTGAAGAGCGAACA -ACGGAATCGTCTGAAGAGCAGTCA -ACGGAATCGTCTGAAGAGGATCCA -ACGGAATCGTCTGAAGAGACGACA -ACGGAATCGTCTGAAGAGAGCTCA -ACGGAATCGTCTGAAGAGTCACGT -ACGGAATCGTCTGAAGAGCGTAGT -ACGGAATCGTCTGAAGAGGTCAGT -ACGGAATCGTCTGAAGAGGAAGGT -ACGGAATCGTCTGAAGAGAACCGT -ACGGAATCGTCTGAAGAGTTGTGC -ACGGAATCGTCTGAAGAGCTAAGC -ACGGAATCGTCTGAAGAGACTAGC -ACGGAATCGTCTGAAGAGAGATGC -ACGGAATCGTCTGAAGAGTGAAGG -ACGGAATCGTCTGAAGAGCAATGG -ACGGAATCGTCTGAAGAGATGAGG -ACGGAATCGTCTGAAGAGAATGGG -ACGGAATCGTCTGAAGAGTCCTGA -ACGGAATCGTCTGAAGAGTAGCGA -ACGGAATCGTCTGAAGAGCACAGA -ACGGAATCGTCTGAAGAGGCAAGA -ACGGAATCGTCTGAAGAGGGTTGA -ACGGAATCGTCTGAAGAGTCCGAT -ACGGAATCGTCTGAAGAGTGGCAT -ACGGAATCGTCTGAAGAGCGAGAT -ACGGAATCGTCTGAAGAGTACCAC -ACGGAATCGTCTGAAGAGCAGAAC -ACGGAATCGTCTGAAGAGGTCTAC -ACGGAATCGTCTGAAGAGACGTAC -ACGGAATCGTCTGAAGAGAGTGAC -ACGGAATCGTCTGAAGAGCTGTAG -ACGGAATCGTCTGAAGAGCCTAAG -ACGGAATCGTCTGAAGAGGTTCAG -ACGGAATCGTCTGAAGAGGCATAG -ACGGAATCGTCTGAAGAGGACAAG -ACGGAATCGTCTGAAGAGAAGCAG -ACGGAATCGTCTGAAGAGCGTCAA -ACGGAATCGTCTGAAGAGGCTGAA -ACGGAATCGTCTGAAGAGAGTACG -ACGGAATCGTCTGAAGAGATCCGA -ACGGAATCGTCTGAAGAGATGGGA -ACGGAATCGTCTGAAGAGGTGCAA -ACGGAATCGTCTGAAGAGGAGGAA -ACGGAATCGTCTGAAGAGCAGGTA -ACGGAATCGTCTGAAGAGGACTCT -ACGGAATCGTCTGAAGAGAGTCCT -ACGGAATCGTCTGAAGAGTAAGCC -ACGGAATCGTCTGAAGAGATAGCC -ACGGAATCGTCTGAAGAGTAACCG -ACGGAATCGTCTGAAGAGATGCCA -ACGGAATCGTCTGTACAGGGAAAC -ACGGAATCGTCTGTACAGAACACC -ACGGAATCGTCTGTACAGATCGAG -ACGGAATCGTCTGTACAGCTCCTT -ACGGAATCGTCTGTACAGCCTGTT -ACGGAATCGTCTGTACAGCGGTTT -ACGGAATCGTCTGTACAGGTGGTT -ACGGAATCGTCTGTACAGGCCTTT -ACGGAATCGTCTGTACAGGGTCTT -ACGGAATCGTCTGTACAGACGCTT -ACGGAATCGTCTGTACAGAGCGTT -ACGGAATCGTCTGTACAGTTCGTC -ACGGAATCGTCTGTACAGTCTCTC -ACGGAATCGTCTGTACAGTGGATC -ACGGAATCGTCTGTACAGCACTTC -ACGGAATCGTCTGTACAGGTACTC -ACGGAATCGTCTGTACAGGATGTC -ACGGAATCGTCTGTACAGACAGTC -ACGGAATCGTCTGTACAGTTGCTG -ACGGAATCGTCTGTACAGTCCATG -ACGGAATCGTCTGTACAGTGTGTG -ACGGAATCGTCTGTACAGCTAGTG -ACGGAATCGTCTGTACAGCATCTG -ACGGAATCGTCTGTACAGGAGTTG -ACGGAATCGTCTGTACAGAGACTG -ACGGAATCGTCTGTACAGTCGGTA -ACGGAATCGTCTGTACAGTGCCTA -ACGGAATCGTCTGTACAGCCACTA -ACGGAATCGTCTGTACAGGGAGTA -ACGGAATCGTCTGTACAGTCGTCT -ACGGAATCGTCTGTACAGTGCACT -ACGGAATCGTCTGTACAGCTGACT -ACGGAATCGTCTGTACAGCAACCT -ACGGAATCGTCTGTACAGGCTACT -ACGGAATCGTCTGTACAGGGATCT -ACGGAATCGTCTGTACAGAAGGCT -ACGGAATCGTCTGTACAGTCAACC -ACGGAATCGTCTGTACAGTGTTCC -ACGGAATCGTCTGTACAGATTCCC -ACGGAATCGTCTGTACAGTTCTCG -ACGGAATCGTCTGTACAGTAGACG -ACGGAATCGTCTGTACAGGTAACG -ACGGAATCGTCTGTACAGACTTCG -ACGGAATCGTCTGTACAGTACGCA -ACGGAATCGTCTGTACAGCTTGCA -ACGGAATCGTCTGTACAGCGAACA -ACGGAATCGTCTGTACAGCAGTCA -ACGGAATCGTCTGTACAGGATCCA -ACGGAATCGTCTGTACAGACGACA -ACGGAATCGTCTGTACAGAGCTCA -ACGGAATCGTCTGTACAGTCACGT -ACGGAATCGTCTGTACAGCGTAGT -ACGGAATCGTCTGTACAGGTCAGT -ACGGAATCGTCTGTACAGGAAGGT -ACGGAATCGTCTGTACAGAACCGT -ACGGAATCGTCTGTACAGTTGTGC -ACGGAATCGTCTGTACAGCTAAGC -ACGGAATCGTCTGTACAGACTAGC -ACGGAATCGTCTGTACAGAGATGC -ACGGAATCGTCTGTACAGTGAAGG -ACGGAATCGTCTGTACAGCAATGG -ACGGAATCGTCTGTACAGATGAGG -ACGGAATCGTCTGTACAGAATGGG -ACGGAATCGTCTGTACAGTCCTGA -ACGGAATCGTCTGTACAGTAGCGA -ACGGAATCGTCTGTACAGCACAGA -ACGGAATCGTCTGTACAGGCAAGA -ACGGAATCGTCTGTACAGGGTTGA -ACGGAATCGTCTGTACAGTCCGAT -ACGGAATCGTCTGTACAGTGGCAT -ACGGAATCGTCTGTACAGCGAGAT -ACGGAATCGTCTGTACAGTACCAC -ACGGAATCGTCTGTACAGCAGAAC -ACGGAATCGTCTGTACAGGTCTAC -ACGGAATCGTCTGTACAGACGTAC -ACGGAATCGTCTGTACAGAGTGAC -ACGGAATCGTCTGTACAGCTGTAG -ACGGAATCGTCTGTACAGCCTAAG -ACGGAATCGTCTGTACAGGTTCAG -ACGGAATCGTCTGTACAGGCATAG -ACGGAATCGTCTGTACAGGACAAG -ACGGAATCGTCTGTACAGAAGCAG -ACGGAATCGTCTGTACAGCGTCAA -ACGGAATCGTCTGTACAGGCTGAA -ACGGAATCGTCTGTACAGAGTACG -ACGGAATCGTCTGTACAGATCCGA -ACGGAATCGTCTGTACAGATGGGA -ACGGAATCGTCTGTACAGGTGCAA -ACGGAATCGTCTGTACAGGAGGAA -ACGGAATCGTCTGTACAGCAGGTA -ACGGAATCGTCTGTACAGGACTCT -ACGGAATCGTCTGTACAGAGTCCT -ACGGAATCGTCTGTACAGTAAGCC -ACGGAATCGTCTGTACAGATAGCC -ACGGAATCGTCTGTACAGTAACCG -ACGGAATCGTCTGTACAGATGCCA -ACGGAATCGTCTTCTGACGGAAAC -ACGGAATCGTCTTCTGACAACACC -ACGGAATCGTCTTCTGACATCGAG -ACGGAATCGTCTTCTGACCTCCTT -ACGGAATCGTCTTCTGACCCTGTT -ACGGAATCGTCTTCTGACCGGTTT -ACGGAATCGTCTTCTGACGTGGTT -ACGGAATCGTCTTCTGACGCCTTT -ACGGAATCGTCTTCTGACGGTCTT -ACGGAATCGTCTTCTGACACGCTT -ACGGAATCGTCTTCTGACAGCGTT -ACGGAATCGTCTTCTGACTTCGTC -ACGGAATCGTCTTCTGACTCTCTC -ACGGAATCGTCTTCTGACTGGATC -ACGGAATCGTCTTCTGACCACTTC -ACGGAATCGTCTTCTGACGTACTC -ACGGAATCGTCTTCTGACGATGTC -ACGGAATCGTCTTCTGACACAGTC -ACGGAATCGTCTTCTGACTTGCTG -ACGGAATCGTCTTCTGACTCCATG -ACGGAATCGTCTTCTGACTGTGTG -ACGGAATCGTCTTCTGACCTAGTG -ACGGAATCGTCTTCTGACCATCTG -ACGGAATCGTCTTCTGACGAGTTG -ACGGAATCGTCTTCTGACAGACTG -ACGGAATCGTCTTCTGACTCGGTA -ACGGAATCGTCTTCTGACTGCCTA -ACGGAATCGTCTTCTGACCCACTA -ACGGAATCGTCTTCTGACGGAGTA -ACGGAATCGTCTTCTGACTCGTCT -ACGGAATCGTCTTCTGACTGCACT -ACGGAATCGTCTTCTGACCTGACT -ACGGAATCGTCTTCTGACCAACCT -ACGGAATCGTCTTCTGACGCTACT -ACGGAATCGTCTTCTGACGGATCT -ACGGAATCGTCTTCTGACAAGGCT -ACGGAATCGTCTTCTGACTCAACC -ACGGAATCGTCTTCTGACTGTTCC -ACGGAATCGTCTTCTGACATTCCC -ACGGAATCGTCTTCTGACTTCTCG -ACGGAATCGTCTTCTGACTAGACG -ACGGAATCGTCTTCTGACGTAACG -ACGGAATCGTCTTCTGACACTTCG -ACGGAATCGTCTTCTGACTACGCA -ACGGAATCGTCTTCTGACCTTGCA -ACGGAATCGTCTTCTGACCGAACA -ACGGAATCGTCTTCTGACCAGTCA -ACGGAATCGTCTTCTGACGATCCA -ACGGAATCGTCTTCTGACACGACA -ACGGAATCGTCTTCTGACAGCTCA -ACGGAATCGTCTTCTGACTCACGT -ACGGAATCGTCTTCTGACCGTAGT -ACGGAATCGTCTTCTGACGTCAGT -ACGGAATCGTCTTCTGACGAAGGT -ACGGAATCGTCTTCTGACAACCGT -ACGGAATCGTCTTCTGACTTGTGC -ACGGAATCGTCTTCTGACCTAAGC -ACGGAATCGTCTTCTGACACTAGC -ACGGAATCGTCTTCTGACAGATGC -ACGGAATCGTCTTCTGACTGAAGG -ACGGAATCGTCTTCTGACCAATGG -ACGGAATCGTCTTCTGACATGAGG -ACGGAATCGTCTTCTGACAATGGG -ACGGAATCGTCTTCTGACTCCTGA -ACGGAATCGTCTTCTGACTAGCGA -ACGGAATCGTCTTCTGACCACAGA -ACGGAATCGTCTTCTGACGCAAGA -ACGGAATCGTCTTCTGACGGTTGA -ACGGAATCGTCTTCTGACTCCGAT -ACGGAATCGTCTTCTGACTGGCAT -ACGGAATCGTCTTCTGACCGAGAT -ACGGAATCGTCTTCTGACTACCAC -ACGGAATCGTCTTCTGACCAGAAC -ACGGAATCGTCTTCTGACGTCTAC -ACGGAATCGTCTTCTGACACGTAC -ACGGAATCGTCTTCTGACAGTGAC -ACGGAATCGTCTTCTGACCTGTAG -ACGGAATCGTCTTCTGACCCTAAG -ACGGAATCGTCTTCTGACGTTCAG -ACGGAATCGTCTTCTGACGCATAG -ACGGAATCGTCTTCTGACGACAAG -ACGGAATCGTCTTCTGACAAGCAG -ACGGAATCGTCTTCTGACCGTCAA -ACGGAATCGTCTTCTGACGCTGAA -ACGGAATCGTCTTCTGACAGTACG -ACGGAATCGTCTTCTGACATCCGA -ACGGAATCGTCTTCTGACATGGGA -ACGGAATCGTCTTCTGACGTGCAA -ACGGAATCGTCTTCTGACGAGGAA -ACGGAATCGTCTTCTGACCAGGTA -ACGGAATCGTCTTCTGACGACTCT -ACGGAATCGTCTTCTGACAGTCCT -ACGGAATCGTCTTCTGACTAAGCC -ACGGAATCGTCTTCTGACATAGCC -ACGGAATCGTCTTCTGACTAACCG -ACGGAATCGTCTTCTGACATGCCA -ACGGAATCGTCTCCTAGTGGAAAC -ACGGAATCGTCTCCTAGTAACACC -ACGGAATCGTCTCCTAGTATCGAG -ACGGAATCGTCTCCTAGTCTCCTT -ACGGAATCGTCTCCTAGTCCTGTT -ACGGAATCGTCTCCTAGTCGGTTT -ACGGAATCGTCTCCTAGTGTGGTT -ACGGAATCGTCTCCTAGTGCCTTT -ACGGAATCGTCTCCTAGTGGTCTT -ACGGAATCGTCTCCTAGTACGCTT -ACGGAATCGTCTCCTAGTAGCGTT -ACGGAATCGTCTCCTAGTTTCGTC -ACGGAATCGTCTCCTAGTTCTCTC -ACGGAATCGTCTCCTAGTTGGATC -ACGGAATCGTCTCCTAGTCACTTC -ACGGAATCGTCTCCTAGTGTACTC -ACGGAATCGTCTCCTAGTGATGTC -ACGGAATCGTCTCCTAGTACAGTC -ACGGAATCGTCTCCTAGTTTGCTG -ACGGAATCGTCTCCTAGTTCCATG -ACGGAATCGTCTCCTAGTTGTGTG -ACGGAATCGTCTCCTAGTCTAGTG -ACGGAATCGTCTCCTAGTCATCTG -ACGGAATCGTCTCCTAGTGAGTTG -ACGGAATCGTCTCCTAGTAGACTG -ACGGAATCGTCTCCTAGTTCGGTA -ACGGAATCGTCTCCTAGTTGCCTA -ACGGAATCGTCTCCTAGTCCACTA -ACGGAATCGTCTCCTAGTGGAGTA -ACGGAATCGTCTCCTAGTTCGTCT -ACGGAATCGTCTCCTAGTTGCACT -ACGGAATCGTCTCCTAGTCTGACT -ACGGAATCGTCTCCTAGTCAACCT -ACGGAATCGTCTCCTAGTGCTACT -ACGGAATCGTCTCCTAGTGGATCT -ACGGAATCGTCTCCTAGTAAGGCT -ACGGAATCGTCTCCTAGTTCAACC -ACGGAATCGTCTCCTAGTTGTTCC -ACGGAATCGTCTCCTAGTATTCCC -ACGGAATCGTCTCCTAGTTTCTCG -ACGGAATCGTCTCCTAGTTAGACG -ACGGAATCGTCTCCTAGTGTAACG -ACGGAATCGTCTCCTAGTACTTCG -ACGGAATCGTCTCCTAGTTACGCA -ACGGAATCGTCTCCTAGTCTTGCA -ACGGAATCGTCTCCTAGTCGAACA -ACGGAATCGTCTCCTAGTCAGTCA -ACGGAATCGTCTCCTAGTGATCCA -ACGGAATCGTCTCCTAGTACGACA -ACGGAATCGTCTCCTAGTAGCTCA -ACGGAATCGTCTCCTAGTTCACGT -ACGGAATCGTCTCCTAGTCGTAGT -ACGGAATCGTCTCCTAGTGTCAGT -ACGGAATCGTCTCCTAGTGAAGGT -ACGGAATCGTCTCCTAGTAACCGT -ACGGAATCGTCTCCTAGTTTGTGC -ACGGAATCGTCTCCTAGTCTAAGC -ACGGAATCGTCTCCTAGTACTAGC -ACGGAATCGTCTCCTAGTAGATGC -ACGGAATCGTCTCCTAGTTGAAGG -ACGGAATCGTCTCCTAGTCAATGG -ACGGAATCGTCTCCTAGTATGAGG -ACGGAATCGTCTCCTAGTAATGGG -ACGGAATCGTCTCCTAGTTCCTGA -ACGGAATCGTCTCCTAGTTAGCGA -ACGGAATCGTCTCCTAGTCACAGA -ACGGAATCGTCTCCTAGTGCAAGA -ACGGAATCGTCTCCTAGTGGTTGA -ACGGAATCGTCTCCTAGTTCCGAT -ACGGAATCGTCTCCTAGTTGGCAT -ACGGAATCGTCTCCTAGTCGAGAT -ACGGAATCGTCTCCTAGTTACCAC -ACGGAATCGTCTCCTAGTCAGAAC -ACGGAATCGTCTCCTAGTGTCTAC -ACGGAATCGTCTCCTAGTACGTAC -ACGGAATCGTCTCCTAGTAGTGAC -ACGGAATCGTCTCCTAGTCTGTAG -ACGGAATCGTCTCCTAGTCCTAAG -ACGGAATCGTCTCCTAGTGTTCAG -ACGGAATCGTCTCCTAGTGCATAG -ACGGAATCGTCTCCTAGTGACAAG -ACGGAATCGTCTCCTAGTAAGCAG -ACGGAATCGTCTCCTAGTCGTCAA -ACGGAATCGTCTCCTAGTGCTGAA -ACGGAATCGTCTCCTAGTAGTACG -ACGGAATCGTCTCCTAGTATCCGA -ACGGAATCGTCTCCTAGTATGGGA -ACGGAATCGTCTCCTAGTGTGCAA -ACGGAATCGTCTCCTAGTGAGGAA -ACGGAATCGTCTCCTAGTCAGGTA -ACGGAATCGTCTCCTAGTGACTCT -ACGGAATCGTCTCCTAGTAGTCCT -ACGGAATCGTCTCCTAGTTAAGCC -ACGGAATCGTCTCCTAGTATAGCC -ACGGAATCGTCTCCTAGTTAACCG -ACGGAATCGTCTCCTAGTATGCCA -ACGGAATCGTCTGCCTAAGGAAAC -ACGGAATCGTCTGCCTAAAACACC -ACGGAATCGTCTGCCTAAATCGAG -ACGGAATCGTCTGCCTAACTCCTT -ACGGAATCGTCTGCCTAACCTGTT -ACGGAATCGTCTGCCTAACGGTTT -ACGGAATCGTCTGCCTAAGTGGTT -ACGGAATCGTCTGCCTAAGCCTTT -ACGGAATCGTCTGCCTAAGGTCTT -ACGGAATCGTCTGCCTAAACGCTT -ACGGAATCGTCTGCCTAAAGCGTT -ACGGAATCGTCTGCCTAATTCGTC -ACGGAATCGTCTGCCTAATCTCTC -ACGGAATCGTCTGCCTAATGGATC -ACGGAATCGTCTGCCTAACACTTC -ACGGAATCGTCTGCCTAAGTACTC -ACGGAATCGTCTGCCTAAGATGTC -ACGGAATCGTCTGCCTAAACAGTC -ACGGAATCGTCTGCCTAATTGCTG -ACGGAATCGTCTGCCTAATCCATG -ACGGAATCGTCTGCCTAATGTGTG -ACGGAATCGTCTGCCTAACTAGTG -ACGGAATCGTCTGCCTAACATCTG -ACGGAATCGTCTGCCTAAGAGTTG -ACGGAATCGTCTGCCTAAAGACTG -ACGGAATCGTCTGCCTAATCGGTA -ACGGAATCGTCTGCCTAATGCCTA -ACGGAATCGTCTGCCTAACCACTA -ACGGAATCGTCTGCCTAAGGAGTA -ACGGAATCGTCTGCCTAATCGTCT -ACGGAATCGTCTGCCTAATGCACT -ACGGAATCGTCTGCCTAACTGACT -ACGGAATCGTCTGCCTAACAACCT -ACGGAATCGTCTGCCTAAGCTACT -ACGGAATCGTCTGCCTAAGGATCT -ACGGAATCGTCTGCCTAAAAGGCT -ACGGAATCGTCTGCCTAATCAACC -ACGGAATCGTCTGCCTAATGTTCC -ACGGAATCGTCTGCCTAAATTCCC -ACGGAATCGTCTGCCTAATTCTCG -ACGGAATCGTCTGCCTAATAGACG -ACGGAATCGTCTGCCTAAGTAACG -ACGGAATCGTCTGCCTAAACTTCG -ACGGAATCGTCTGCCTAATACGCA -ACGGAATCGTCTGCCTAACTTGCA -ACGGAATCGTCTGCCTAACGAACA -ACGGAATCGTCTGCCTAACAGTCA -ACGGAATCGTCTGCCTAAGATCCA -ACGGAATCGTCTGCCTAAACGACA -ACGGAATCGTCTGCCTAAAGCTCA -ACGGAATCGTCTGCCTAATCACGT -ACGGAATCGTCTGCCTAACGTAGT -ACGGAATCGTCTGCCTAAGTCAGT -ACGGAATCGTCTGCCTAAGAAGGT -ACGGAATCGTCTGCCTAAAACCGT -ACGGAATCGTCTGCCTAATTGTGC -ACGGAATCGTCTGCCTAACTAAGC -ACGGAATCGTCTGCCTAAACTAGC -ACGGAATCGTCTGCCTAAAGATGC -ACGGAATCGTCTGCCTAATGAAGG -ACGGAATCGTCTGCCTAACAATGG -ACGGAATCGTCTGCCTAAATGAGG -ACGGAATCGTCTGCCTAAAATGGG -ACGGAATCGTCTGCCTAATCCTGA -ACGGAATCGTCTGCCTAATAGCGA -ACGGAATCGTCTGCCTAACACAGA -ACGGAATCGTCTGCCTAAGCAAGA -ACGGAATCGTCTGCCTAAGGTTGA -ACGGAATCGTCTGCCTAATCCGAT -ACGGAATCGTCTGCCTAATGGCAT -ACGGAATCGTCTGCCTAACGAGAT -ACGGAATCGTCTGCCTAATACCAC -ACGGAATCGTCTGCCTAACAGAAC -ACGGAATCGTCTGCCTAAGTCTAC -ACGGAATCGTCTGCCTAAACGTAC -ACGGAATCGTCTGCCTAAAGTGAC -ACGGAATCGTCTGCCTAACTGTAG -ACGGAATCGTCTGCCTAACCTAAG -ACGGAATCGTCTGCCTAAGTTCAG -ACGGAATCGTCTGCCTAAGCATAG -ACGGAATCGTCTGCCTAAGACAAG -ACGGAATCGTCTGCCTAAAAGCAG -ACGGAATCGTCTGCCTAACGTCAA -ACGGAATCGTCTGCCTAAGCTGAA -ACGGAATCGTCTGCCTAAAGTACG -ACGGAATCGTCTGCCTAAATCCGA -ACGGAATCGTCTGCCTAAATGGGA -ACGGAATCGTCTGCCTAAGTGCAA -ACGGAATCGTCTGCCTAAGAGGAA -ACGGAATCGTCTGCCTAACAGGTA -ACGGAATCGTCTGCCTAAGACTCT -ACGGAATCGTCTGCCTAAAGTCCT -ACGGAATCGTCTGCCTAATAAGCC -ACGGAATCGTCTGCCTAAATAGCC -ACGGAATCGTCTGCCTAATAACCG -ACGGAATCGTCTGCCTAAATGCCA -ACGGAATCGTCTGCCATAGGAAAC -ACGGAATCGTCTGCCATAAACACC -ACGGAATCGTCTGCCATAATCGAG -ACGGAATCGTCTGCCATACTCCTT -ACGGAATCGTCTGCCATACCTGTT -ACGGAATCGTCTGCCATACGGTTT -ACGGAATCGTCTGCCATAGTGGTT -ACGGAATCGTCTGCCATAGCCTTT -ACGGAATCGTCTGCCATAGGTCTT -ACGGAATCGTCTGCCATAACGCTT -ACGGAATCGTCTGCCATAAGCGTT -ACGGAATCGTCTGCCATATTCGTC -ACGGAATCGTCTGCCATATCTCTC -ACGGAATCGTCTGCCATATGGATC -ACGGAATCGTCTGCCATACACTTC -ACGGAATCGTCTGCCATAGTACTC -ACGGAATCGTCTGCCATAGATGTC -ACGGAATCGTCTGCCATAACAGTC -ACGGAATCGTCTGCCATATTGCTG -ACGGAATCGTCTGCCATATCCATG -ACGGAATCGTCTGCCATATGTGTG -ACGGAATCGTCTGCCATACTAGTG -ACGGAATCGTCTGCCATACATCTG -ACGGAATCGTCTGCCATAGAGTTG -ACGGAATCGTCTGCCATAAGACTG -ACGGAATCGTCTGCCATATCGGTA -ACGGAATCGTCTGCCATATGCCTA -ACGGAATCGTCTGCCATACCACTA -ACGGAATCGTCTGCCATAGGAGTA -ACGGAATCGTCTGCCATATCGTCT -ACGGAATCGTCTGCCATATGCACT -ACGGAATCGTCTGCCATACTGACT -ACGGAATCGTCTGCCATACAACCT -ACGGAATCGTCTGCCATAGCTACT -ACGGAATCGTCTGCCATAGGATCT -ACGGAATCGTCTGCCATAAAGGCT -ACGGAATCGTCTGCCATATCAACC -ACGGAATCGTCTGCCATATGTTCC -ACGGAATCGTCTGCCATAATTCCC -ACGGAATCGTCTGCCATATTCTCG -ACGGAATCGTCTGCCATATAGACG -ACGGAATCGTCTGCCATAGTAACG -ACGGAATCGTCTGCCATAACTTCG -ACGGAATCGTCTGCCATATACGCA -ACGGAATCGTCTGCCATACTTGCA -ACGGAATCGTCTGCCATACGAACA -ACGGAATCGTCTGCCATACAGTCA -ACGGAATCGTCTGCCATAGATCCA -ACGGAATCGTCTGCCATAACGACA -ACGGAATCGTCTGCCATAAGCTCA -ACGGAATCGTCTGCCATATCACGT -ACGGAATCGTCTGCCATACGTAGT -ACGGAATCGTCTGCCATAGTCAGT -ACGGAATCGTCTGCCATAGAAGGT -ACGGAATCGTCTGCCATAAACCGT -ACGGAATCGTCTGCCATATTGTGC -ACGGAATCGTCTGCCATACTAAGC -ACGGAATCGTCTGCCATAACTAGC -ACGGAATCGTCTGCCATAAGATGC -ACGGAATCGTCTGCCATATGAAGG -ACGGAATCGTCTGCCATACAATGG -ACGGAATCGTCTGCCATAATGAGG -ACGGAATCGTCTGCCATAAATGGG -ACGGAATCGTCTGCCATATCCTGA -ACGGAATCGTCTGCCATATAGCGA -ACGGAATCGTCTGCCATACACAGA -ACGGAATCGTCTGCCATAGCAAGA -ACGGAATCGTCTGCCATAGGTTGA -ACGGAATCGTCTGCCATATCCGAT -ACGGAATCGTCTGCCATATGGCAT -ACGGAATCGTCTGCCATACGAGAT -ACGGAATCGTCTGCCATATACCAC -ACGGAATCGTCTGCCATACAGAAC -ACGGAATCGTCTGCCATAGTCTAC -ACGGAATCGTCTGCCATAACGTAC -ACGGAATCGTCTGCCATAAGTGAC -ACGGAATCGTCTGCCATACTGTAG -ACGGAATCGTCTGCCATACCTAAG -ACGGAATCGTCTGCCATAGTTCAG -ACGGAATCGTCTGCCATAGCATAG -ACGGAATCGTCTGCCATAGACAAG -ACGGAATCGTCTGCCATAAAGCAG -ACGGAATCGTCTGCCATACGTCAA -ACGGAATCGTCTGCCATAGCTGAA -ACGGAATCGTCTGCCATAAGTACG -ACGGAATCGTCTGCCATAATCCGA -ACGGAATCGTCTGCCATAATGGGA -ACGGAATCGTCTGCCATAGTGCAA -ACGGAATCGTCTGCCATAGAGGAA -ACGGAATCGTCTGCCATACAGGTA -ACGGAATCGTCTGCCATAGACTCT -ACGGAATCGTCTGCCATAAGTCCT -ACGGAATCGTCTGCCATATAAGCC -ACGGAATCGTCTGCCATAATAGCC -ACGGAATCGTCTGCCATATAACCG -ACGGAATCGTCTGCCATAATGCCA -ACGGAATCGTCTCCGTAAGGAAAC -ACGGAATCGTCTCCGTAAAACACC -ACGGAATCGTCTCCGTAAATCGAG -ACGGAATCGTCTCCGTAACTCCTT -ACGGAATCGTCTCCGTAACCTGTT -ACGGAATCGTCTCCGTAACGGTTT -ACGGAATCGTCTCCGTAAGTGGTT -ACGGAATCGTCTCCGTAAGCCTTT -ACGGAATCGTCTCCGTAAGGTCTT -ACGGAATCGTCTCCGTAAACGCTT -ACGGAATCGTCTCCGTAAAGCGTT -ACGGAATCGTCTCCGTAATTCGTC -ACGGAATCGTCTCCGTAATCTCTC -ACGGAATCGTCTCCGTAATGGATC -ACGGAATCGTCTCCGTAACACTTC -ACGGAATCGTCTCCGTAAGTACTC -ACGGAATCGTCTCCGTAAGATGTC -ACGGAATCGTCTCCGTAAACAGTC -ACGGAATCGTCTCCGTAATTGCTG -ACGGAATCGTCTCCGTAATCCATG -ACGGAATCGTCTCCGTAATGTGTG -ACGGAATCGTCTCCGTAACTAGTG -ACGGAATCGTCTCCGTAACATCTG -ACGGAATCGTCTCCGTAAGAGTTG -ACGGAATCGTCTCCGTAAAGACTG -ACGGAATCGTCTCCGTAATCGGTA -ACGGAATCGTCTCCGTAATGCCTA -ACGGAATCGTCTCCGTAACCACTA -ACGGAATCGTCTCCGTAAGGAGTA -ACGGAATCGTCTCCGTAATCGTCT -ACGGAATCGTCTCCGTAATGCACT -ACGGAATCGTCTCCGTAACTGACT -ACGGAATCGTCTCCGTAACAACCT -ACGGAATCGTCTCCGTAAGCTACT -ACGGAATCGTCTCCGTAAGGATCT -ACGGAATCGTCTCCGTAAAAGGCT -ACGGAATCGTCTCCGTAATCAACC -ACGGAATCGTCTCCGTAATGTTCC -ACGGAATCGTCTCCGTAAATTCCC -ACGGAATCGTCTCCGTAATTCTCG -ACGGAATCGTCTCCGTAATAGACG -ACGGAATCGTCTCCGTAAGTAACG -ACGGAATCGTCTCCGTAAACTTCG -ACGGAATCGTCTCCGTAATACGCA -ACGGAATCGTCTCCGTAACTTGCA -ACGGAATCGTCTCCGTAACGAACA -ACGGAATCGTCTCCGTAACAGTCA -ACGGAATCGTCTCCGTAAGATCCA -ACGGAATCGTCTCCGTAAACGACA -ACGGAATCGTCTCCGTAAAGCTCA -ACGGAATCGTCTCCGTAATCACGT -ACGGAATCGTCTCCGTAACGTAGT -ACGGAATCGTCTCCGTAAGTCAGT -ACGGAATCGTCTCCGTAAGAAGGT -ACGGAATCGTCTCCGTAAAACCGT -ACGGAATCGTCTCCGTAATTGTGC -ACGGAATCGTCTCCGTAACTAAGC -ACGGAATCGTCTCCGTAAACTAGC -ACGGAATCGTCTCCGTAAAGATGC -ACGGAATCGTCTCCGTAATGAAGG -ACGGAATCGTCTCCGTAACAATGG -ACGGAATCGTCTCCGTAAATGAGG -ACGGAATCGTCTCCGTAAAATGGG -ACGGAATCGTCTCCGTAATCCTGA -ACGGAATCGTCTCCGTAATAGCGA -ACGGAATCGTCTCCGTAACACAGA -ACGGAATCGTCTCCGTAAGCAAGA -ACGGAATCGTCTCCGTAAGGTTGA -ACGGAATCGTCTCCGTAATCCGAT -ACGGAATCGTCTCCGTAATGGCAT -ACGGAATCGTCTCCGTAACGAGAT -ACGGAATCGTCTCCGTAATACCAC -ACGGAATCGTCTCCGTAACAGAAC -ACGGAATCGTCTCCGTAAGTCTAC -ACGGAATCGTCTCCGTAAACGTAC -ACGGAATCGTCTCCGTAAAGTGAC -ACGGAATCGTCTCCGTAACTGTAG -ACGGAATCGTCTCCGTAACCTAAG -ACGGAATCGTCTCCGTAAGTTCAG -ACGGAATCGTCTCCGTAAGCATAG -ACGGAATCGTCTCCGTAAGACAAG -ACGGAATCGTCTCCGTAAAAGCAG -ACGGAATCGTCTCCGTAACGTCAA -ACGGAATCGTCTCCGTAAGCTGAA -ACGGAATCGTCTCCGTAAAGTACG -ACGGAATCGTCTCCGTAAATCCGA -ACGGAATCGTCTCCGTAAATGGGA -ACGGAATCGTCTCCGTAAGTGCAA -ACGGAATCGTCTCCGTAAGAGGAA -ACGGAATCGTCTCCGTAACAGGTA -ACGGAATCGTCTCCGTAAGACTCT -ACGGAATCGTCTCCGTAAAGTCCT -ACGGAATCGTCTCCGTAATAAGCC -ACGGAATCGTCTCCGTAAATAGCC -ACGGAATCGTCTCCGTAATAACCG -ACGGAATCGTCTCCGTAAATGCCA -ACGGAATCGTCTCCAATGGGAAAC -ACGGAATCGTCTCCAATGAACACC -ACGGAATCGTCTCCAATGATCGAG -ACGGAATCGTCTCCAATGCTCCTT -ACGGAATCGTCTCCAATGCCTGTT -ACGGAATCGTCTCCAATGCGGTTT -ACGGAATCGTCTCCAATGGTGGTT -ACGGAATCGTCTCCAATGGCCTTT -ACGGAATCGTCTCCAATGGGTCTT -ACGGAATCGTCTCCAATGACGCTT -ACGGAATCGTCTCCAATGAGCGTT -ACGGAATCGTCTCCAATGTTCGTC -ACGGAATCGTCTCCAATGTCTCTC -ACGGAATCGTCTCCAATGTGGATC -ACGGAATCGTCTCCAATGCACTTC -ACGGAATCGTCTCCAATGGTACTC -ACGGAATCGTCTCCAATGGATGTC -ACGGAATCGTCTCCAATGACAGTC -ACGGAATCGTCTCCAATGTTGCTG -ACGGAATCGTCTCCAATGTCCATG -ACGGAATCGTCTCCAATGTGTGTG -ACGGAATCGTCTCCAATGCTAGTG -ACGGAATCGTCTCCAATGCATCTG -ACGGAATCGTCTCCAATGGAGTTG -ACGGAATCGTCTCCAATGAGACTG -ACGGAATCGTCTCCAATGTCGGTA -ACGGAATCGTCTCCAATGTGCCTA -ACGGAATCGTCTCCAATGCCACTA -ACGGAATCGTCTCCAATGGGAGTA -ACGGAATCGTCTCCAATGTCGTCT -ACGGAATCGTCTCCAATGTGCACT -ACGGAATCGTCTCCAATGCTGACT -ACGGAATCGTCTCCAATGCAACCT -ACGGAATCGTCTCCAATGGCTACT -ACGGAATCGTCTCCAATGGGATCT -ACGGAATCGTCTCCAATGAAGGCT -ACGGAATCGTCTCCAATGTCAACC -ACGGAATCGTCTCCAATGTGTTCC -ACGGAATCGTCTCCAATGATTCCC -ACGGAATCGTCTCCAATGTTCTCG -ACGGAATCGTCTCCAATGTAGACG -ACGGAATCGTCTCCAATGGTAACG -ACGGAATCGTCTCCAATGACTTCG -ACGGAATCGTCTCCAATGTACGCA -ACGGAATCGTCTCCAATGCTTGCA -ACGGAATCGTCTCCAATGCGAACA -ACGGAATCGTCTCCAATGCAGTCA -ACGGAATCGTCTCCAATGGATCCA -ACGGAATCGTCTCCAATGACGACA -ACGGAATCGTCTCCAATGAGCTCA -ACGGAATCGTCTCCAATGTCACGT -ACGGAATCGTCTCCAATGCGTAGT -ACGGAATCGTCTCCAATGGTCAGT -ACGGAATCGTCTCCAATGGAAGGT -ACGGAATCGTCTCCAATGAACCGT -ACGGAATCGTCTCCAATGTTGTGC -ACGGAATCGTCTCCAATGCTAAGC -ACGGAATCGTCTCCAATGACTAGC -ACGGAATCGTCTCCAATGAGATGC -ACGGAATCGTCTCCAATGTGAAGG -ACGGAATCGTCTCCAATGCAATGG -ACGGAATCGTCTCCAATGATGAGG -ACGGAATCGTCTCCAATGAATGGG -ACGGAATCGTCTCCAATGTCCTGA -ACGGAATCGTCTCCAATGTAGCGA -ACGGAATCGTCTCCAATGCACAGA -ACGGAATCGTCTCCAATGGCAAGA -ACGGAATCGTCTCCAATGGGTTGA -ACGGAATCGTCTCCAATGTCCGAT -ACGGAATCGTCTCCAATGTGGCAT -ACGGAATCGTCTCCAATGCGAGAT -ACGGAATCGTCTCCAATGTACCAC -ACGGAATCGTCTCCAATGCAGAAC -ACGGAATCGTCTCCAATGGTCTAC -ACGGAATCGTCTCCAATGACGTAC -ACGGAATCGTCTCCAATGAGTGAC -ACGGAATCGTCTCCAATGCTGTAG -ACGGAATCGTCTCCAATGCCTAAG -ACGGAATCGTCTCCAATGGTTCAG -ACGGAATCGTCTCCAATGGCATAG -ACGGAATCGTCTCCAATGGACAAG -ACGGAATCGTCTCCAATGAAGCAG -ACGGAATCGTCTCCAATGCGTCAA -ACGGAATCGTCTCCAATGGCTGAA -ACGGAATCGTCTCCAATGAGTACG -ACGGAATCGTCTCCAATGATCCGA -ACGGAATCGTCTCCAATGATGGGA -ACGGAATCGTCTCCAATGGTGCAA -ACGGAATCGTCTCCAATGGAGGAA -ACGGAATCGTCTCCAATGCAGGTA -ACGGAATCGTCTCCAATGGACTCT -ACGGAATCGTCTCCAATGAGTCCT -ACGGAATCGTCTCCAATGTAAGCC -ACGGAATCGTCTCCAATGATAGCC -ACGGAATCGTCTCCAATGTAACCG -ACGGAATCGTCTCCAATGATGCCA -ACGGAACTCTCTAACGGAGGAAAC -ACGGAACTCTCTAACGGAAACACC -ACGGAACTCTCTAACGGAATCGAG -ACGGAACTCTCTAACGGACTCCTT -ACGGAACTCTCTAACGGACCTGTT -ACGGAACTCTCTAACGGACGGTTT -ACGGAACTCTCTAACGGAGTGGTT -ACGGAACTCTCTAACGGAGCCTTT -ACGGAACTCTCTAACGGAGGTCTT -ACGGAACTCTCTAACGGAACGCTT -ACGGAACTCTCTAACGGAAGCGTT -ACGGAACTCTCTAACGGATTCGTC -ACGGAACTCTCTAACGGATCTCTC -ACGGAACTCTCTAACGGATGGATC -ACGGAACTCTCTAACGGACACTTC -ACGGAACTCTCTAACGGAGTACTC -ACGGAACTCTCTAACGGAGATGTC -ACGGAACTCTCTAACGGAACAGTC -ACGGAACTCTCTAACGGATTGCTG -ACGGAACTCTCTAACGGATCCATG -ACGGAACTCTCTAACGGATGTGTG -ACGGAACTCTCTAACGGACTAGTG -ACGGAACTCTCTAACGGACATCTG -ACGGAACTCTCTAACGGAGAGTTG -ACGGAACTCTCTAACGGAAGACTG -ACGGAACTCTCTAACGGATCGGTA -ACGGAACTCTCTAACGGATGCCTA -ACGGAACTCTCTAACGGACCACTA -ACGGAACTCTCTAACGGAGGAGTA -ACGGAACTCTCTAACGGATCGTCT -ACGGAACTCTCTAACGGATGCACT -ACGGAACTCTCTAACGGACTGACT -ACGGAACTCTCTAACGGACAACCT -ACGGAACTCTCTAACGGAGCTACT -ACGGAACTCTCTAACGGAGGATCT -ACGGAACTCTCTAACGGAAAGGCT -ACGGAACTCTCTAACGGATCAACC -ACGGAACTCTCTAACGGATGTTCC -ACGGAACTCTCTAACGGAATTCCC -ACGGAACTCTCTAACGGATTCTCG -ACGGAACTCTCTAACGGATAGACG -ACGGAACTCTCTAACGGAGTAACG -ACGGAACTCTCTAACGGAACTTCG -ACGGAACTCTCTAACGGATACGCA -ACGGAACTCTCTAACGGACTTGCA -ACGGAACTCTCTAACGGACGAACA -ACGGAACTCTCTAACGGACAGTCA -ACGGAACTCTCTAACGGAGATCCA -ACGGAACTCTCTAACGGAACGACA -ACGGAACTCTCTAACGGAAGCTCA -ACGGAACTCTCTAACGGATCACGT -ACGGAACTCTCTAACGGACGTAGT -ACGGAACTCTCTAACGGAGTCAGT -ACGGAACTCTCTAACGGAGAAGGT -ACGGAACTCTCTAACGGAAACCGT -ACGGAACTCTCTAACGGATTGTGC -ACGGAACTCTCTAACGGACTAAGC -ACGGAACTCTCTAACGGAACTAGC -ACGGAACTCTCTAACGGAAGATGC -ACGGAACTCTCTAACGGATGAAGG -ACGGAACTCTCTAACGGACAATGG -ACGGAACTCTCTAACGGAATGAGG -ACGGAACTCTCTAACGGAAATGGG -ACGGAACTCTCTAACGGATCCTGA -ACGGAACTCTCTAACGGATAGCGA -ACGGAACTCTCTAACGGACACAGA -ACGGAACTCTCTAACGGAGCAAGA -ACGGAACTCTCTAACGGAGGTTGA -ACGGAACTCTCTAACGGATCCGAT -ACGGAACTCTCTAACGGATGGCAT -ACGGAACTCTCTAACGGACGAGAT -ACGGAACTCTCTAACGGATACCAC -ACGGAACTCTCTAACGGACAGAAC -ACGGAACTCTCTAACGGAGTCTAC -ACGGAACTCTCTAACGGAACGTAC -ACGGAACTCTCTAACGGAAGTGAC -ACGGAACTCTCTAACGGACTGTAG -ACGGAACTCTCTAACGGACCTAAG -ACGGAACTCTCTAACGGAGTTCAG -ACGGAACTCTCTAACGGAGCATAG -ACGGAACTCTCTAACGGAGACAAG -ACGGAACTCTCTAACGGAAAGCAG -ACGGAACTCTCTAACGGACGTCAA -ACGGAACTCTCTAACGGAGCTGAA -ACGGAACTCTCTAACGGAAGTACG -ACGGAACTCTCTAACGGAATCCGA -ACGGAACTCTCTAACGGAATGGGA -ACGGAACTCTCTAACGGAGTGCAA -ACGGAACTCTCTAACGGAGAGGAA -ACGGAACTCTCTAACGGACAGGTA -ACGGAACTCTCTAACGGAGACTCT -ACGGAACTCTCTAACGGAAGTCCT -ACGGAACTCTCTAACGGATAAGCC -ACGGAACTCTCTAACGGAATAGCC -ACGGAACTCTCTAACGGATAACCG -ACGGAACTCTCTAACGGAATGCCA -ACGGAACTCTCTACCAACGGAAAC -ACGGAACTCTCTACCAACAACACC -ACGGAACTCTCTACCAACATCGAG -ACGGAACTCTCTACCAACCTCCTT -ACGGAACTCTCTACCAACCCTGTT -ACGGAACTCTCTACCAACCGGTTT -ACGGAACTCTCTACCAACGTGGTT -ACGGAACTCTCTACCAACGCCTTT -ACGGAACTCTCTACCAACGGTCTT -ACGGAACTCTCTACCAACACGCTT -ACGGAACTCTCTACCAACAGCGTT -ACGGAACTCTCTACCAACTTCGTC -ACGGAACTCTCTACCAACTCTCTC -ACGGAACTCTCTACCAACTGGATC -ACGGAACTCTCTACCAACCACTTC -ACGGAACTCTCTACCAACGTACTC -ACGGAACTCTCTACCAACGATGTC -ACGGAACTCTCTACCAACACAGTC -ACGGAACTCTCTACCAACTTGCTG -ACGGAACTCTCTACCAACTCCATG -ACGGAACTCTCTACCAACTGTGTG -ACGGAACTCTCTACCAACCTAGTG -ACGGAACTCTCTACCAACCATCTG -ACGGAACTCTCTACCAACGAGTTG -ACGGAACTCTCTACCAACAGACTG -ACGGAACTCTCTACCAACTCGGTA -ACGGAACTCTCTACCAACTGCCTA -ACGGAACTCTCTACCAACCCACTA -ACGGAACTCTCTACCAACGGAGTA -ACGGAACTCTCTACCAACTCGTCT -ACGGAACTCTCTACCAACTGCACT -ACGGAACTCTCTACCAACCTGACT -ACGGAACTCTCTACCAACCAACCT -ACGGAACTCTCTACCAACGCTACT -ACGGAACTCTCTACCAACGGATCT -ACGGAACTCTCTACCAACAAGGCT -ACGGAACTCTCTACCAACTCAACC -ACGGAACTCTCTACCAACTGTTCC -ACGGAACTCTCTACCAACATTCCC -ACGGAACTCTCTACCAACTTCTCG -ACGGAACTCTCTACCAACTAGACG -ACGGAACTCTCTACCAACGTAACG -ACGGAACTCTCTACCAACACTTCG -ACGGAACTCTCTACCAACTACGCA -ACGGAACTCTCTACCAACCTTGCA -ACGGAACTCTCTACCAACCGAACA -ACGGAACTCTCTACCAACCAGTCA -ACGGAACTCTCTACCAACGATCCA -ACGGAACTCTCTACCAACACGACA -ACGGAACTCTCTACCAACAGCTCA -ACGGAACTCTCTACCAACTCACGT -ACGGAACTCTCTACCAACCGTAGT -ACGGAACTCTCTACCAACGTCAGT -ACGGAACTCTCTACCAACGAAGGT -ACGGAACTCTCTACCAACAACCGT -ACGGAACTCTCTACCAACTTGTGC -ACGGAACTCTCTACCAACCTAAGC -ACGGAACTCTCTACCAACACTAGC -ACGGAACTCTCTACCAACAGATGC -ACGGAACTCTCTACCAACTGAAGG -ACGGAACTCTCTACCAACCAATGG -ACGGAACTCTCTACCAACATGAGG -ACGGAACTCTCTACCAACAATGGG -ACGGAACTCTCTACCAACTCCTGA -ACGGAACTCTCTACCAACTAGCGA -ACGGAACTCTCTACCAACCACAGA -ACGGAACTCTCTACCAACGCAAGA -ACGGAACTCTCTACCAACGGTTGA -ACGGAACTCTCTACCAACTCCGAT -ACGGAACTCTCTACCAACTGGCAT -ACGGAACTCTCTACCAACCGAGAT -ACGGAACTCTCTACCAACTACCAC -ACGGAACTCTCTACCAACCAGAAC -ACGGAACTCTCTACCAACGTCTAC -ACGGAACTCTCTACCAACACGTAC -ACGGAACTCTCTACCAACAGTGAC -ACGGAACTCTCTACCAACCTGTAG -ACGGAACTCTCTACCAACCCTAAG -ACGGAACTCTCTACCAACGTTCAG -ACGGAACTCTCTACCAACGCATAG -ACGGAACTCTCTACCAACGACAAG -ACGGAACTCTCTACCAACAAGCAG -ACGGAACTCTCTACCAACCGTCAA -ACGGAACTCTCTACCAACGCTGAA -ACGGAACTCTCTACCAACAGTACG -ACGGAACTCTCTACCAACATCCGA -ACGGAACTCTCTACCAACATGGGA -ACGGAACTCTCTACCAACGTGCAA -ACGGAACTCTCTACCAACGAGGAA -ACGGAACTCTCTACCAACCAGGTA -ACGGAACTCTCTACCAACGACTCT -ACGGAACTCTCTACCAACAGTCCT -ACGGAACTCTCTACCAACTAAGCC -ACGGAACTCTCTACCAACATAGCC -ACGGAACTCTCTACCAACTAACCG -ACGGAACTCTCTACCAACATGCCA -ACGGAACTCTCTGAGATCGGAAAC -ACGGAACTCTCTGAGATCAACACC -ACGGAACTCTCTGAGATCATCGAG -ACGGAACTCTCTGAGATCCTCCTT -ACGGAACTCTCTGAGATCCCTGTT -ACGGAACTCTCTGAGATCCGGTTT -ACGGAACTCTCTGAGATCGTGGTT -ACGGAACTCTCTGAGATCGCCTTT -ACGGAACTCTCTGAGATCGGTCTT -ACGGAACTCTCTGAGATCACGCTT -ACGGAACTCTCTGAGATCAGCGTT -ACGGAACTCTCTGAGATCTTCGTC -ACGGAACTCTCTGAGATCTCTCTC -ACGGAACTCTCTGAGATCTGGATC -ACGGAACTCTCTGAGATCCACTTC -ACGGAACTCTCTGAGATCGTACTC -ACGGAACTCTCTGAGATCGATGTC -ACGGAACTCTCTGAGATCACAGTC -ACGGAACTCTCTGAGATCTTGCTG -ACGGAACTCTCTGAGATCTCCATG -ACGGAACTCTCTGAGATCTGTGTG -ACGGAACTCTCTGAGATCCTAGTG -ACGGAACTCTCTGAGATCCATCTG -ACGGAACTCTCTGAGATCGAGTTG -ACGGAACTCTCTGAGATCAGACTG -ACGGAACTCTCTGAGATCTCGGTA -ACGGAACTCTCTGAGATCTGCCTA -ACGGAACTCTCTGAGATCCCACTA -ACGGAACTCTCTGAGATCGGAGTA -ACGGAACTCTCTGAGATCTCGTCT -ACGGAACTCTCTGAGATCTGCACT -ACGGAACTCTCTGAGATCCTGACT -ACGGAACTCTCTGAGATCCAACCT -ACGGAACTCTCTGAGATCGCTACT -ACGGAACTCTCTGAGATCGGATCT -ACGGAACTCTCTGAGATCAAGGCT -ACGGAACTCTCTGAGATCTCAACC -ACGGAACTCTCTGAGATCTGTTCC -ACGGAACTCTCTGAGATCATTCCC -ACGGAACTCTCTGAGATCTTCTCG -ACGGAACTCTCTGAGATCTAGACG -ACGGAACTCTCTGAGATCGTAACG -ACGGAACTCTCTGAGATCACTTCG -ACGGAACTCTCTGAGATCTACGCA -ACGGAACTCTCTGAGATCCTTGCA -ACGGAACTCTCTGAGATCCGAACA -ACGGAACTCTCTGAGATCCAGTCA -ACGGAACTCTCTGAGATCGATCCA -ACGGAACTCTCTGAGATCACGACA -ACGGAACTCTCTGAGATCAGCTCA -ACGGAACTCTCTGAGATCTCACGT -ACGGAACTCTCTGAGATCCGTAGT -ACGGAACTCTCTGAGATCGTCAGT -ACGGAACTCTCTGAGATCGAAGGT -ACGGAACTCTCTGAGATCAACCGT -ACGGAACTCTCTGAGATCTTGTGC -ACGGAACTCTCTGAGATCCTAAGC -ACGGAACTCTCTGAGATCACTAGC -ACGGAACTCTCTGAGATCAGATGC -ACGGAACTCTCTGAGATCTGAAGG -ACGGAACTCTCTGAGATCCAATGG -ACGGAACTCTCTGAGATCATGAGG -ACGGAACTCTCTGAGATCAATGGG -ACGGAACTCTCTGAGATCTCCTGA -ACGGAACTCTCTGAGATCTAGCGA -ACGGAACTCTCTGAGATCCACAGA -ACGGAACTCTCTGAGATCGCAAGA -ACGGAACTCTCTGAGATCGGTTGA -ACGGAACTCTCTGAGATCTCCGAT -ACGGAACTCTCTGAGATCTGGCAT -ACGGAACTCTCTGAGATCCGAGAT -ACGGAACTCTCTGAGATCTACCAC -ACGGAACTCTCTGAGATCCAGAAC -ACGGAACTCTCTGAGATCGTCTAC -ACGGAACTCTCTGAGATCACGTAC -ACGGAACTCTCTGAGATCAGTGAC -ACGGAACTCTCTGAGATCCTGTAG -ACGGAACTCTCTGAGATCCCTAAG -ACGGAACTCTCTGAGATCGTTCAG -ACGGAACTCTCTGAGATCGCATAG -ACGGAACTCTCTGAGATCGACAAG -ACGGAACTCTCTGAGATCAAGCAG -ACGGAACTCTCTGAGATCCGTCAA -ACGGAACTCTCTGAGATCGCTGAA -ACGGAACTCTCTGAGATCAGTACG -ACGGAACTCTCTGAGATCATCCGA -ACGGAACTCTCTGAGATCATGGGA -ACGGAACTCTCTGAGATCGTGCAA -ACGGAACTCTCTGAGATCGAGGAA -ACGGAACTCTCTGAGATCCAGGTA -ACGGAACTCTCTGAGATCGACTCT -ACGGAACTCTCTGAGATCAGTCCT -ACGGAACTCTCTGAGATCTAAGCC -ACGGAACTCTCTGAGATCATAGCC -ACGGAACTCTCTGAGATCTAACCG -ACGGAACTCTCTGAGATCATGCCA -ACGGAACTCTCTCTTCTCGGAAAC -ACGGAACTCTCTCTTCTCAACACC -ACGGAACTCTCTCTTCTCATCGAG -ACGGAACTCTCTCTTCTCCTCCTT -ACGGAACTCTCTCTTCTCCCTGTT -ACGGAACTCTCTCTTCTCCGGTTT -ACGGAACTCTCTCTTCTCGTGGTT -ACGGAACTCTCTCTTCTCGCCTTT -ACGGAACTCTCTCTTCTCGGTCTT -ACGGAACTCTCTCTTCTCACGCTT -ACGGAACTCTCTCTTCTCAGCGTT -ACGGAACTCTCTCTTCTCTTCGTC -ACGGAACTCTCTCTTCTCTCTCTC -ACGGAACTCTCTCTTCTCTGGATC -ACGGAACTCTCTCTTCTCCACTTC -ACGGAACTCTCTCTTCTCGTACTC -ACGGAACTCTCTCTTCTCGATGTC -ACGGAACTCTCTCTTCTCACAGTC -ACGGAACTCTCTCTTCTCTTGCTG -ACGGAACTCTCTCTTCTCTCCATG -ACGGAACTCTCTCTTCTCTGTGTG -ACGGAACTCTCTCTTCTCCTAGTG -ACGGAACTCTCTCTTCTCCATCTG -ACGGAACTCTCTCTTCTCGAGTTG -ACGGAACTCTCTCTTCTCAGACTG -ACGGAACTCTCTCTTCTCTCGGTA -ACGGAACTCTCTCTTCTCTGCCTA -ACGGAACTCTCTCTTCTCCCACTA -ACGGAACTCTCTCTTCTCGGAGTA -ACGGAACTCTCTCTTCTCTCGTCT -ACGGAACTCTCTCTTCTCTGCACT -ACGGAACTCTCTCTTCTCCTGACT -ACGGAACTCTCTCTTCTCCAACCT -ACGGAACTCTCTCTTCTCGCTACT -ACGGAACTCTCTCTTCTCGGATCT -ACGGAACTCTCTCTTCTCAAGGCT -ACGGAACTCTCTCTTCTCTCAACC -ACGGAACTCTCTCTTCTCTGTTCC -ACGGAACTCTCTCTTCTCATTCCC -ACGGAACTCTCTCTTCTCTTCTCG -ACGGAACTCTCTCTTCTCTAGACG -ACGGAACTCTCTCTTCTCGTAACG -ACGGAACTCTCTCTTCTCACTTCG -ACGGAACTCTCTCTTCTCTACGCA -ACGGAACTCTCTCTTCTCCTTGCA -ACGGAACTCTCTCTTCTCCGAACA -ACGGAACTCTCTCTTCTCCAGTCA -ACGGAACTCTCTCTTCTCGATCCA -ACGGAACTCTCTCTTCTCACGACA -ACGGAACTCTCTCTTCTCAGCTCA -ACGGAACTCTCTCTTCTCTCACGT -ACGGAACTCTCTCTTCTCCGTAGT -ACGGAACTCTCTCTTCTCGTCAGT -ACGGAACTCTCTCTTCTCGAAGGT -ACGGAACTCTCTCTTCTCAACCGT -ACGGAACTCTCTCTTCTCTTGTGC -ACGGAACTCTCTCTTCTCCTAAGC -ACGGAACTCTCTCTTCTCACTAGC -ACGGAACTCTCTCTTCTCAGATGC -ACGGAACTCTCTCTTCTCTGAAGG -ACGGAACTCTCTCTTCTCCAATGG -ACGGAACTCTCTCTTCTCATGAGG -ACGGAACTCTCTCTTCTCAATGGG -ACGGAACTCTCTCTTCTCTCCTGA -ACGGAACTCTCTCTTCTCTAGCGA -ACGGAACTCTCTCTTCTCCACAGA -ACGGAACTCTCTCTTCTCGCAAGA -ACGGAACTCTCTCTTCTCGGTTGA -ACGGAACTCTCTCTTCTCTCCGAT -ACGGAACTCTCTCTTCTCTGGCAT -ACGGAACTCTCTCTTCTCCGAGAT -ACGGAACTCTCTCTTCTCTACCAC -ACGGAACTCTCTCTTCTCCAGAAC -ACGGAACTCTCTCTTCTCGTCTAC -ACGGAACTCTCTCTTCTCACGTAC -ACGGAACTCTCTCTTCTCAGTGAC -ACGGAACTCTCTCTTCTCCTGTAG -ACGGAACTCTCTCTTCTCCCTAAG -ACGGAACTCTCTCTTCTCGTTCAG -ACGGAACTCTCTCTTCTCGCATAG -ACGGAACTCTCTCTTCTCGACAAG -ACGGAACTCTCTCTTCTCAAGCAG -ACGGAACTCTCTCTTCTCCGTCAA -ACGGAACTCTCTCTTCTCGCTGAA -ACGGAACTCTCTCTTCTCAGTACG -ACGGAACTCTCTCTTCTCATCCGA -ACGGAACTCTCTCTTCTCATGGGA -ACGGAACTCTCTCTTCTCGTGCAA -ACGGAACTCTCTCTTCTCGAGGAA -ACGGAACTCTCTCTTCTCCAGGTA -ACGGAACTCTCTCTTCTCGACTCT -ACGGAACTCTCTCTTCTCAGTCCT -ACGGAACTCTCTCTTCTCTAAGCC -ACGGAACTCTCTCTTCTCATAGCC -ACGGAACTCTCTCTTCTCTAACCG -ACGGAACTCTCTCTTCTCATGCCA -ACGGAACTCTCTGTTCCTGGAAAC -ACGGAACTCTCTGTTCCTAACACC -ACGGAACTCTCTGTTCCTATCGAG -ACGGAACTCTCTGTTCCTCTCCTT -ACGGAACTCTCTGTTCCTCCTGTT -ACGGAACTCTCTGTTCCTCGGTTT -ACGGAACTCTCTGTTCCTGTGGTT -ACGGAACTCTCTGTTCCTGCCTTT -ACGGAACTCTCTGTTCCTGGTCTT -ACGGAACTCTCTGTTCCTACGCTT -ACGGAACTCTCTGTTCCTAGCGTT -ACGGAACTCTCTGTTCCTTTCGTC -ACGGAACTCTCTGTTCCTTCTCTC -ACGGAACTCTCTGTTCCTTGGATC -ACGGAACTCTCTGTTCCTCACTTC -ACGGAACTCTCTGTTCCTGTACTC -ACGGAACTCTCTGTTCCTGATGTC -ACGGAACTCTCTGTTCCTACAGTC -ACGGAACTCTCTGTTCCTTTGCTG -ACGGAACTCTCTGTTCCTTCCATG -ACGGAACTCTCTGTTCCTTGTGTG -ACGGAACTCTCTGTTCCTCTAGTG -ACGGAACTCTCTGTTCCTCATCTG -ACGGAACTCTCTGTTCCTGAGTTG -ACGGAACTCTCTGTTCCTAGACTG -ACGGAACTCTCTGTTCCTTCGGTA -ACGGAACTCTCTGTTCCTTGCCTA -ACGGAACTCTCTGTTCCTCCACTA -ACGGAACTCTCTGTTCCTGGAGTA -ACGGAACTCTCTGTTCCTTCGTCT -ACGGAACTCTCTGTTCCTTGCACT -ACGGAACTCTCTGTTCCTCTGACT -ACGGAACTCTCTGTTCCTCAACCT -ACGGAACTCTCTGTTCCTGCTACT -ACGGAACTCTCTGTTCCTGGATCT -ACGGAACTCTCTGTTCCTAAGGCT -ACGGAACTCTCTGTTCCTTCAACC -ACGGAACTCTCTGTTCCTTGTTCC -ACGGAACTCTCTGTTCCTATTCCC -ACGGAACTCTCTGTTCCTTTCTCG -ACGGAACTCTCTGTTCCTTAGACG -ACGGAACTCTCTGTTCCTGTAACG -ACGGAACTCTCTGTTCCTACTTCG -ACGGAACTCTCTGTTCCTTACGCA -ACGGAACTCTCTGTTCCTCTTGCA -ACGGAACTCTCTGTTCCTCGAACA -ACGGAACTCTCTGTTCCTCAGTCA -ACGGAACTCTCTGTTCCTGATCCA -ACGGAACTCTCTGTTCCTACGACA -ACGGAACTCTCTGTTCCTAGCTCA -ACGGAACTCTCTGTTCCTTCACGT -ACGGAACTCTCTGTTCCTCGTAGT -ACGGAACTCTCTGTTCCTGTCAGT -ACGGAACTCTCTGTTCCTGAAGGT -ACGGAACTCTCTGTTCCTAACCGT -ACGGAACTCTCTGTTCCTTTGTGC -ACGGAACTCTCTGTTCCTCTAAGC -ACGGAACTCTCTGTTCCTACTAGC -ACGGAACTCTCTGTTCCTAGATGC -ACGGAACTCTCTGTTCCTTGAAGG -ACGGAACTCTCTGTTCCTCAATGG -ACGGAACTCTCTGTTCCTATGAGG -ACGGAACTCTCTGTTCCTAATGGG -ACGGAACTCTCTGTTCCTTCCTGA -ACGGAACTCTCTGTTCCTTAGCGA -ACGGAACTCTCTGTTCCTCACAGA -ACGGAACTCTCTGTTCCTGCAAGA -ACGGAACTCTCTGTTCCTGGTTGA -ACGGAACTCTCTGTTCCTTCCGAT -ACGGAACTCTCTGTTCCTTGGCAT -ACGGAACTCTCTGTTCCTCGAGAT -ACGGAACTCTCTGTTCCTTACCAC -ACGGAACTCTCTGTTCCTCAGAAC -ACGGAACTCTCTGTTCCTGTCTAC -ACGGAACTCTCTGTTCCTACGTAC -ACGGAACTCTCTGTTCCTAGTGAC -ACGGAACTCTCTGTTCCTCTGTAG -ACGGAACTCTCTGTTCCTCCTAAG -ACGGAACTCTCTGTTCCTGTTCAG -ACGGAACTCTCTGTTCCTGCATAG -ACGGAACTCTCTGTTCCTGACAAG -ACGGAACTCTCTGTTCCTAAGCAG -ACGGAACTCTCTGTTCCTCGTCAA -ACGGAACTCTCTGTTCCTGCTGAA -ACGGAACTCTCTGTTCCTAGTACG -ACGGAACTCTCTGTTCCTATCCGA -ACGGAACTCTCTGTTCCTATGGGA -ACGGAACTCTCTGTTCCTGTGCAA -ACGGAACTCTCTGTTCCTGAGGAA -ACGGAACTCTCTGTTCCTCAGGTA -ACGGAACTCTCTGTTCCTGACTCT -ACGGAACTCTCTGTTCCTAGTCCT -ACGGAACTCTCTGTTCCTTAAGCC -ACGGAACTCTCTGTTCCTATAGCC -ACGGAACTCTCTGTTCCTTAACCG -ACGGAACTCTCTGTTCCTATGCCA -ACGGAACTCTCTTTTCGGGGAAAC -ACGGAACTCTCTTTTCGGAACACC -ACGGAACTCTCTTTTCGGATCGAG -ACGGAACTCTCTTTTCGGCTCCTT -ACGGAACTCTCTTTTCGGCCTGTT -ACGGAACTCTCTTTTCGGCGGTTT -ACGGAACTCTCTTTTCGGGTGGTT -ACGGAACTCTCTTTTCGGGCCTTT -ACGGAACTCTCTTTTCGGGGTCTT -ACGGAACTCTCTTTTCGGACGCTT -ACGGAACTCTCTTTTCGGAGCGTT -ACGGAACTCTCTTTTCGGTTCGTC -ACGGAACTCTCTTTTCGGTCTCTC -ACGGAACTCTCTTTTCGGTGGATC -ACGGAACTCTCTTTTCGGCACTTC -ACGGAACTCTCTTTTCGGGTACTC -ACGGAACTCTCTTTTCGGGATGTC -ACGGAACTCTCTTTTCGGACAGTC -ACGGAACTCTCTTTTCGGTTGCTG -ACGGAACTCTCTTTTCGGTCCATG -ACGGAACTCTCTTTTCGGTGTGTG -ACGGAACTCTCTTTTCGGCTAGTG -ACGGAACTCTCTTTTCGGCATCTG -ACGGAACTCTCTTTTCGGGAGTTG -ACGGAACTCTCTTTTCGGAGACTG -ACGGAACTCTCTTTTCGGTCGGTA -ACGGAACTCTCTTTTCGGTGCCTA -ACGGAACTCTCTTTTCGGCCACTA -ACGGAACTCTCTTTTCGGGGAGTA -ACGGAACTCTCTTTTCGGTCGTCT -ACGGAACTCTCTTTTCGGTGCACT -ACGGAACTCTCTTTTCGGCTGACT -ACGGAACTCTCTTTTCGGCAACCT -ACGGAACTCTCTTTTCGGGCTACT -ACGGAACTCTCTTTTCGGGGATCT -ACGGAACTCTCTTTTCGGAAGGCT -ACGGAACTCTCTTTTCGGTCAACC -ACGGAACTCTCTTTTCGGTGTTCC -ACGGAACTCTCTTTTCGGATTCCC -ACGGAACTCTCTTTTCGGTTCTCG -ACGGAACTCTCTTTTCGGTAGACG -ACGGAACTCTCTTTTCGGGTAACG -ACGGAACTCTCTTTTCGGACTTCG -ACGGAACTCTCTTTTCGGTACGCA -ACGGAACTCTCTTTTCGGCTTGCA -ACGGAACTCTCTTTTCGGCGAACA -ACGGAACTCTCTTTTCGGCAGTCA -ACGGAACTCTCTTTTCGGGATCCA -ACGGAACTCTCTTTTCGGACGACA -ACGGAACTCTCTTTTCGGAGCTCA -ACGGAACTCTCTTTTCGGTCACGT -ACGGAACTCTCTTTTCGGCGTAGT -ACGGAACTCTCTTTTCGGGTCAGT -ACGGAACTCTCTTTTCGGGAAGGT -ACGGAACTCTCTTTTCGGAACCGT -ACGGAACTCTCTTTTCGGTTGTGC -ACGGAACTCTCTTTTCGGCTAAGC -ACGGAACTCTCTTTTCGGACTAGC -ACGGAACTCTCTTTTCGGAGATGC -ACGGAACTCTCTTTTCGGTGAAGG -ACGGAACTCTCTTTTCGGCAATGG -ACGGAACTCTCTTTTCGGATGAGG -ACGGAACTCTCTTTTCGGAATGGG -ACGGAACTCTCTTTTCGGTCCTGA -ACGGAACTCTCTTTTCGGTAGCGA -ACGGAACTCTCTTTTCGGCACAGA -ACGGAACTCTCTTTTCGGGCAAGA -ACGGAACTCTCTTTTCGGGGTTGA -ACGGAACTCTCTTTTCGGTCCGAT -ACGGAACTCTCTTTTCGGTGGCAT -ACGGAACTCTCTTTTCGGCGAGAT -ACGGAACTCTCTTTTCGGTACCAC -ACGGAACTCTCTTTTCGGCAGAAC -ACGGAACTCTCTTTTCGGGTCTAC -ACGGAACTCTCTTTTCGGACGTAC -ACGGAACTCTCTTTTCGGAGTGAC -ACGGAACTCTCTTTTCGGCTGTAG -ACGGAACTCTCTTTTCGGCCTAAG -ACGGAACTCTCTTTTCGGGTTCAG -ACGGAACTCTCTTTTCGGGCATAG -ACGGAACTCTCTTTTCGGGACAAG -ACGGAACTCTCTTTTCGGAAGCAG -ACGGAACTCTCTTTTCGGCGTCAA -ACGGAACTCTCTTTTCGGGCTGAA -ACGGAACTCTCTTTTCGGAGTACG -ACGGAACTCTCTTTTCGGATCCGA -ACGGAACTCTCTTTTCGGATGGGA -ACGGAACTCTCTTTTCGGGTGCAA -ACGGAACTCTCTTTTCGGGAGGAA -ACGGAACTCTCTTTTCGGCAGGTA -ACGGAACTCTCTTTTCGGGACTCT -ACGGAACTCTCTTTTCGGAGTCCT -ACGGAACTCTCTTTTCGGTAAGCC -ACGGAACTCTCTTTTCGGATAGCC -ACGGAACTCTCTTTTCGGTAACCG -ACGGAACTCTCTTTTCGGATGCCA -ACGGAACTCTCTGTTGTGGGAAAC -ACGGAACTCTCTGTTGTGAACACC -ACGGAACTCTCTGTTGTGATCGAG -ACGGAACTCTCTGTTGTGCTCCTT -ACGGAACTCTCTGTTGTGCCTGTT -ACGGAACTCTCTGTTGTGCGGTTT -ACGGAACTCTCTGTTGTGGTGGTT -ACGGAACTCTCTGTTGTGGCCTTT -ACGGAACTCTCTGTTGTGGGTCTT -ACGGAACTCTCTGTTGTGACGCTT -ACGGAACTCTCTGTTGTGAGCGTT -ACGGAACTCTCTGTTGTGTTCGTC -ACGGAACTCTCTGTTGTGTCTCTC -ACGGAACTCTCTGTTGTGTGGATC -ACGGAACTCTCTGTTGTGCACTTC -ACGGAACTCTCTGTTGTGGTACTC -ACGGAACTCTCTGTTGTGGATGTC -ACGGAACTCTCTGTTGTGACAGTC -ACGGAACTCTCTGTTGTGTTGCTG -ACGGAACTCTCTGTTGTGTCCATG -ACGGAACTCTCTGTTGTGTGTGTG -ACGGAACTCTCTGTTGTGCTAGTG -ACGGAACTCTCTGTTGTGCATCTG -ACGGAACTCTCTGTTGTGGAGTTG -ACGGAACTCTCTGTTGTGAGACTG -ACGGAACTCTCTGTTGTGTCGGTA -ACGGAACTCTCTGTTGTGTGCCTA -ACGGAACTCTCTGTTGTGCCACTA -ACGGAACTCTCTGTTGTGGGAGTA -ACGGAACTCTCTGTTGTGTCGTCT -ACGGAACTCTCTGTTGTGTGCACT -ACGGAACTCTCTGTTGTGCTGACT -ACGGAACTCTCTGTTGTGCAACCT -ACGGAACTCTCTGTTGTGGCTACT -ACGGAACTCTCTGTTGTGGGATCT -ACGGAACTCTCTGTTGTGAAGGCT -ACGGAACTCTCTGTTGTGTCAACC -ACGGAACTCTCTGTTGTGTGTTCC -ACGGAACTCTCTGTTGTGATTCCC -ACGGAACTCTCTGTTGTGTTCTCG -ACGGAACTCTCTGTTGTGTAGACG -ACGGAACTCTCTGTTGTGGTAACG -ACGGAACTCTCTGTTGTGACTTCG -ACGGAACTCTCTGTTGTGTACGCA -ACGGAACTCTCTGTTGTGCTTGCA -ACGGAACTCTCTGTTGTGCGAACA -ACGGAACTCTCTGTTGTGCAGTCA -ACGGAACTCTCTGTTGTGGATCCA -ACGGAACTCTCTGTTGTGACGACA -ACGGAACTCTCTGTTGTGAGCTCA -ACGGAACTCTCTGTTGTGTCACGT -ACGGAACTCTCTGTTGTGCGTAGT -ACGGAACTCTCTGTTGTGGTCAGT -ACGGAACTCTCTGTTGTGGAAGGT -ACGGAACTCTCTGTTGTGAACCGT -ACGGAACTCTCTGTTGTGTTGTGC -ACGGAACTCTCTGTTGTGCTAAGC -ACGGAACTCTCTGTTGTGACTAGC -ACGGAACTCTCTGTTGTGAGATGC -ACGGAACTCTCTGTTGTGTGAAGG -ACGGAACTCTCTGTTGTGCAATGG -ACGGAACTCTCTGTTGTGATGAGG -ACGGAACTCTCTGTTGTGAATGGG -ACGGAACTCTCTGTTGTGTCCTGA -ACGGAACTCTCTGTTGTGTAGCGA -ACGGAACTCTCTGTTGTGCACAGA -ACGGAACTCTCTGTTGTGGCAAGA -ACGGAACTCTCTGTTGTGGGTTGA -ACGGAACTCTCTGTTGTGTCCGAT -ACGGAACTCTCTGTTGTGTGGCAT -ACGGAACTCTCTGTTGTGCGAGAT -ACGGAACTCTCTGTTGTGTACCAC -ACGGAACTCTCTGTTGTGCAGAAC -ACGGAACTCTCTGTTGTGGTCTAC -ACGGAACTCTCTGTTGTGACGTAC -ACGGAACTCTCTGTTGTGAGTGAC -ACGGAACTCTCTGTTGTGCTGTAG -ACGGAACTCTCTGTTGTGCCTAAG -ACGGAACTCTCTGTTGTGGTTCAG -ACGGAACTCTCTGTTGTGGCATAG -ACGGAACTCTCTGTTGTGGACAAG -ACGGAACTCTCTGTTGTGAAGCAG -ACGGAACTCTCTGTTGTGCGTCAA -ACGGAACTCTCTGTTGTGGCTGAA -ACGGAACTCTCTGTTGTGAGTACG -ACGGAACTCTCTGTTGTGATCCGA -ACGGAACTCTCTGTTGTGATGGGA -ACGGAACTCTCTGTTGTGGTGCAA -ACGGAACTCTCTGTTGTGGAGGAA -ACGGAACTCTCTGTTGTGCAGGTA -ACGGAACTCTCTGTTGTGGACTCT -ACGGAACTCTCTGTTGTGAGTCCT -ACGGAACTCTCTGTTGTGTAAGCC -ACGGAACTCTCTGTTGTGATAGCC -ACGGAACTCTCTGTTGTGTAACCG -ACGGAACTCTCTGTTGTGATGCCA -ACGGAACTCTCTTTTGCCGGAAAC -ACGGAACTCTCTTTTGCCAACACC -ACGGAACTCTCTTTTGCCATCGAG -ACGGAACTCTCTTTTGCCCTCCTT -ACGGAACTCTCTTTTGCCCCTGTT -ACGGAACTCTCTTTTGCCCGGTTT -ACGGAACTCTCTTTTGCCGTGGTT -ACGGAACTCTCTTTTGCCGCCTTT -ACGGAACTCTCTTTTGCCGGTCTT -ACGGAACTCTCTTTTGCCACGCTT -ACGGAACTCTCTTTTGCCAGCGTT -ACGGAACTCTCTTTTGCCTTCGTC -ACGGAACTCTCTTTTGCCTCTCTC -ACGGAACTCTCTTTTGCCTGGATC -ACGGAACTCTCTTTTGCCCACTTC -ACGGAACTCTCTTTTGCCGTACTC -ACGGAACTCTCTTTTGCCGATGTC -ACGGAACTCTCTTTTGCCACAGTC -ACGGAACTCTCTTTTGCCTTGCTG -ACGGAACTCTCTTTTGCCTCCATG -ACGGAACTCTCTTTTGCCTGTGTG -ACGGAACTCTCTTTTGCCCTAGTG -ACGGAACTCTCTTTTGCCCATCTG -ACGGAACTCTCTTTTGCCGAGTTG -ACGGAACTCTCTTTTGCCAGACTG -ACGGAACTCTCTTTTGCCTCGGTA -ACGGAACTCTCTTTTGCCTGCCTA -ACGGAACTCTCTTTTGCCCCACTA -ACGGAACTCTCTTTTGCCGGAGTA -ACGGAACTCTCTTTTGCCTCGTCT -ACGGAACTCTCTTTTGCCTGCACT -ACGGAACTCTCTTTTGCCCTGACT -ACGGAACTCTCTTTTGCCCAACCT -ACGGAACTCTCTTTTGCCGCTACT -ACGGAACTCTCTTTTGCCGGATCT -ACGGAACTCTCTTTTGCCAAGGCT -ACGGAACTCTCTTTTGCCTCAACC -ACGGAACTCTCTTTTGCCTGTTCC -ACGGAACTCTCTTTTGCCATTCCC -ACGGAACTCTCTTTTGCCTTCTCG -ACGGAACTCTCTTTTGCCTAGACG -ACGGAACTCTCTTTTGCCGTAACG -ACGGAACTCTCTTTTGCCACTTCG -ACGGAACTCTCTTTTGCCTACGCA -ACGGAACTCTCTTTTGCCCTTGCA -ACGGAACTCTCTTTTGCCCGAACA -ACGGAACTCTCTTTTGCCCAGTCA -ACGGAACTCTCTTTTGCCGATCCA -ACGGAACTCTCTTTTGCCACGACA -ACGGAACTCTCTTTTGCCAGCTCA -ACGGAACTCTCTTTTGCCTCACGT -ACGGAACTCTCTTTTGCCCGTAGT -ACGGAACTCTCTTTTGCCGTCAGT -ACGGAACTCTCTTTTGCCGAAGGT -ACGGAACTCTCTTTTGCCAACCGT -ACGGAACTCTCTTTTGCCTTGTGC -ACGGAACTCTCTTTTGCCCTAAGC -ACGGAACTCTCTTTTGCCACTAGC -ACGGAACTCTCTTTTGCCAGATGC -ACGGAACTCTCTTTTGCCTGAAGG -ACGGAACTCTCTTTTGCCCAATGG -ACGGAACTCTCTTTTGCCATGAGG -ACGGAACTCTCTTTTGCCAATGGG -ACGGAACTCTCTTTTGCCTCCTGA -ACGGAACTCTCTTTTGCCTAGCGA -ACGGAACTCTCTTTTGCCCACAGA -ACGGAACTCTCTTTTGCCGCAAGA -ACGGAACTCTCTTTTGCCGGTTGA -ACGGAACTCTCTTTTGCCTCCGAT -ACGGAACTCTCTTTTGCCTGGCAT -ACGGAACTCTCTTTTGCCCGAGAT -ACGGAACTCTCTTTTGCCTACCAC -ACGGAACTCTCTTTTGCCCAGAAC -ACGGAACTCTCTTTTGCCGTCTAC -ACGGAACTCTCTTTTGCCACGTAC -ACGGAACTCTCTTTTGCCAGTGAC -ACGGAACTCTCTTTTGCCCTGTAG -ACGGAACTCTCTTTTGCCCCTAAG -ACGGAACTCTCTTTTGCCGTTCAG -ACGGAACTCTCTTTTGCCGCATAG -ACGGAACTCTCTTTTGCCGACAAG -ACGGAACTCTCTTTTGCCAAGCAG -ACGGAACTCTCTTTTGCCCGTCAA -ACGGAACTCTCTTTTGCCGCTGAA -ACGGAACTCTCTTTTGCCAGTACG -ACGGAACTCTCTTTTGCCATCCGA -ACGGAACTCTCTTTTGCCATGGGA -ACGGAACTCTCTTTTGCCGTGCAA -ACGGAACTCTCTTTTGCCGAGGAA -ACGGAACTCTCTTTTGCCCAGGTA -ACGGAACTCTCTTTTGCCGACTCT -ACGGAACTCTCTTTTGCCAGTCCT -ACGGAACTCTCTTTTGCCTAAGCC -ACGGAACTCTCTTTTGCCATAGCC -ACGGAACTCTCTTTTGCCTAACCG -ACGGAACTCTCTTTTGCCATGCCA -ACGGAACTCTCTCTTGGTGGAAAC -ACGGAACTCTCTCTTGGTAACACC -ACGGAACTCTCTCTTGGTATCGAG -ACGGAACTCTCTCTTGGTCTCCTT -ACGGAACTCTCTCTTGGTCCTGTT -ACGGAACTCTCTCTTGGTCGGTTT -ACGGAACTCTCTCTTGGTGTGGTT -ACGGAACTCTCTCTTGGTGCCTTT -ACGGAACTCTCTCTTGGTGGTCTT -ACGGAACTCTCTCTTGGTACGCTT -ACGGAACTCTCTCTTGGTAGCGTT -ACGGAACTCTCTCTTGGTTTCGTC -ACGGAACTCTCTCTTGGTTCTCTC -ACGGAACTCTCTCTTGGTTGGATC -ACGGAACTCTCTCTTGGTCACTTC -ACGGAACTCTCTCTTGGTGTACTC -ACGGAACTCTCTCTTGGTGATGTC -ACGGAACTCTCTCTTGGTACAGTC -ACGGAACTCTCTCTTGGTTTGCTG -ACGGAACTCTCTCTTGGTTCCATG -ACGGAACTCTCTCTTGGTTGTGTG -ACGGAACTCTCTCTTGGTCTAGTG -ACGGAACTCTCTCTTGGTCATCTG -ACGGAACTCTCTCTTGGTGAGTTG -ACGGAACTCTCTCTTGGTAGACTG -ACGGAACTCTCTCTTGGTTCGGTA -ACGGAACTCTCTCTTGGTTGCCTA -ACGGAACTCTCTCTTGGTCCACTA -ACGGAACTCTCTCTTGGTGGAGTA -ACGGAACTCTCTCTTGGTTCGTCT -ACGGAACTCTCTCTTGGTTGCACT -ACGGAACTCTCTCTTGGTCTGACT -ACGGAACTCTCTCTTGGTCAACCT -ACGGAACTCTCTCTTGGTGCTACT -ACGGAACTCTCTCTTGGTGGATCT -ACGGAACTCTCTCTTGGTAAGGCT -ACGGAACTCTCTCTTGGTTCAACC -ACGGAACTCTCTCTTGGTTGTTCC -ACGGAACTCTCTCTTGGTATTCCC -ACGGAACTCTCTCTTGGTTTCTCG -ACGGAACTCTCTCTTGGTTAGACG -ACGGAACTCTCTCTTGGTGTAACG -ACGGAACTCTCTCTTGGTACTTCG -ACGGAACTCTCTCTTGGTTACGCA -ACGGAACTCTCTCTTGGTCTTGCA -ACGGAACTCTCTCTTGGTCGAACA -ACGGAACTCTCTCTTGGTCAGTCA -ACGGAACTCTCTCTTGGTGATCCA -ACGGAACTCTCTCTTGGTACGACA -ACGGAACTCTCTCTTGGTAGCTCA -ACGGAACTCTCTCTTGGTTCACGT -ACGGAACTCTCTCTTGGTCGTAGT -ACGGAACTCTCTCTTGGTGTCAGT -ACGGAACTCTCTCTTGGTGAAGGT -ACGGAACTCTCTCTTGGTAACCGT -ACGGAACTCTCTCTTGGTTTGTGC -ACGGAACTCTCTCTTGGTCTAAGC -ACGGAACTCTCTCTTGGTACTAGC -ACGGAACTCTCTCTTGGTAGATGC -ACGGAACTCTCTCTTGGTTGAAGG -ACGGAACTCTCTCTTGGTCAATGG -ACGGAACTCTCTCTTGGTATGAGG -ACGGAACTCTCTCTTGGTAATGGG -ACGGAACTCTCTCTTGGTTCCTGA -ACGGAACTCTCTCTTGGTTAGCGA -ACGGAACTCTCTCTTGGTCACAGA -ACGGAACTCTCTCTTGGTGCAAGA -ACGGAACTCTCTCTTGGTGGTTGA -ACGGAACTCTCTCTTGGTTCCGAT -ACGGAACTCTCTCTTGGTTGGCAT -ACGGAACTCTCTCTTGGTCGAGAT -ACGGAACTCTCTCTTGGTTACCAC -ACGGAACTCTCTCTTGGTCAGAAC -ACGGAACTCTCTCTTGGTGTCTAC -ACGGAACTCTCTCTTGGTACGTAC -ACGGAACTCTCTCTTGGTAGTGAC -ACGGAACTCTCTCTTGGTCTGTAG -ACGGAACTCTCTCTTGGTCCTAAG -ACGGAACTCTCTCTTGGTGTTCAG -ACGGAACTCTCTCTTGGTGCATAG -ACGGAACTCTCTCTTGGTGACAAG -ACGGAACTCTCTCTTGGTAAGCAG -ACGGAACTCTCTCTTGGTCGTCAA -ACGGAACTCTCTCTTGGTGCTGAA -ACGGAACTCTCTCTTGGTAGTACG -ACGGAACTCTCTCTTGGTATCCGA -ACGGAACTCTCTCTTGGTATGGGA -ACGGAACTCTCTCTTGGTGTGCAA -ACGGAACTCTCTCTTGGTGAGGAA -ACGGAACTCTCTCTTGGTCAGGTA -ACGGAACTCTCTCTTGGTGACTCT -ACGGAACTCTCTCTTGGTAGTCCT -ACGGAACTCTCTCTTGGTTAAGCC -ACGGAACTCTCTCTTGGTATAGCC -ACGGAACTCTCTCTTGGTTAACCG -ACGGAACTCTCTCTTGGTATGCCA -ACGGAACTCTCTCTTACGGGAAAC -ACGGAACTCTCTCTTACGAACACC -ACGGAACTCTCTCTTACGATCGAG -ACGGAACTCTCTCTTACGCTCCTT -ACGGAACTCTCTCTTACGCCTGTT -ACGGAACTCTCTCTTACGCGGTTT -ACGGAACTCTCTCTTACGGTGGTT -ACGGAACTCTCTCTTACGGCCTTT -ACGGAACTCTCTCTTACGGGTCTT -ACGGAACTCTCTCTTACGACGCTT -ACGGAACTCTCTCTTACGAGCGTT -ACGGAACTCTCTCTTACGTTCGTC -ACGGAACTCTCTCTTACGTCTCTC -ACGGAACTCTCTCTTACGTGGATC -ACGGAACTCTCTCTTACGCACTTC -ACGGAACTCTCTCTTACGGTACTC -ACGGAACTCTCTCTTACGGATGTC -ACGGAACTCTCTCTTACGACAGTC -ACGGAACTCTCTCTTACGTTGCTG -ACGGAACTCTCTCTTACGTCCATG -ACGGAACTCTCTCTTACGTGTGTG -ACGGAACTCTCTCTTACGCTAGTG -ACGGAACTCTCTCTTACGCATCTG -ACGGAACTCTCTCTTACGGAGTTG -ACGGAACTCTCTCTTACGAGACTG -ACGGAACTCTCTCTTACGTCGGTA -ACGGAACTCTCTCTTACGTGCCTA -ACGGAACTCTCTCTTACGCCACTA -ACGGAACTCTCTCTTACGGGAGTA -ACGGAACTCTCTCTTACGTCGTCT -ACGGAACTCTCTCTTACGTGCACT -ACGGAACTCTCTCTTACGCTGACT -ACGGAACTCTCTCTTACGCAACCT -ACGGAACTCTCTCTTACGGCTACT -ACGGAACTCTCTCTTACGGGATCT -ACGGAACTCTCTCTTACGAAGGCT -ACGGAACTCTCTCTTACGTCAACC -ACGGAACTCTCTCTTACGTGTTCC -ACGGAACTCTCTCTTACGATTCCC -ACGGAACTCTCTCTTACGTTCTCG -ACGGAACTCTCTCTTACGTAGACG -ACGGAACTCTCTCTTACGGTAACG -ACGGAACTCTCTCTTACGACTTCG -ACGGAACTCTCTCTTACGTACGCA -ACGGAACTCTCTCTTACGCTTGCA -ACGGAACTCTCTCTTACGCGAACA -ACGGAACTCTCTCTTACGCAGTCA -ACGGAACTCTCTCTTACGGATCCA -ACGGAACTCTCTCTTACGACGACA -ACGGAACTCTCTCTTACGAGCTCA -ACGGAACTCTCTCTTACGTCACGT -ACGGAACTCTCTCTTACGCGTAGT -ACGGAACTCTCTCTTACGGTCAGT -ACGGAACTCTCTCTTACGGAAGGT -ACGGAACTCTCTCTTACGAACCGT -ACGGAACTCTCTCTTACGTTGTGC -ACGGAACTCTCTCTTACGCTAAGC -ACGGAACTCTCTCTTACGACTAGC -ACGGAACTCTCTCTTACGAGATGC -ACGGAACTCTCTCTTACGTGAAGG -ACGGAACTCTCTCTTACGCAATGG -ACGGAACTCTCTCTTACGATGAGG -ACGGAACTCTCTCTTACGAATGGG -ACGGAACTCTCTCTTACGTCCTGA -ACGGAACTCTCTCTTACGTAGCGA -ACGGAACTCTCTCTTACGCACAGA -ACGGAACTCTCTCTTACGGCAAGA -ACGGAACTCTCTCTTACGGGTTGA -ACGGAACTCTCTCTTACGTCCGAT -ACGGAACTCTCTCTTACGTGGCAT -ACGGAACTCTCTCTTACGCGAGAT -ACGGAACTCTCTCTTACGTACCAC -ACGGAACTCTCTCTTACGCAGAAC -ACGGAACTCTCTCTTACGGTCTAC -ACGGAACTCTCTCTTACGACGTAC -ACGGAACTCTCTCTTACGAGTGAC -ACGGAACTCTCTCTTACGCTGTAG -ACGGAACTCTCTCTTACGCCTAAG -ACGGAACTCTCTCTTACGGTTCAG -ACGGAACTCTCTCTTACGGCATAG -ACGGAACTCTCTCTTACGGACAAG -ACGGAACTCTCTCTTACGAAGCAG -ACGGAACTCTCTCTTACGCGTCAA -ACGGAACTCTCTCTTACGGCTGAA -ACGGAACTCTCTCTTACGAGTACG -ACGGAACTCTCTCTTACGATCCGA -ACGGAACTCTCTCTTACGATGGGA -ACGGAACTCTCTCTTACGGTGCAA -ACGGAACTCTCTCTTACGGAGGAA -ACGGAACTCTCTCTTACGCAGGTA -ACGGAACTCTCTCTTACGGACTCT -ACGGAACTCTCTCTTACGAGTCCT -ACGGAACTCTCTCTTACGTAAGCC -ACGGAACTCTCTCTTACGATAGCC -ACGGAACTCTCTCTTACGTAACCG -ACGGAACTCTCTCTTACGATGCCA -ACGGAACTCTCTGTTAGCGGAAAC -ACGGAACTCTCTGTTAGCAACACC -ACGGAACTCTCTGTTAGCATCGAG -ACGGAACTCTCTGTTAGCCTCCTT -ACGGAACTCTCTGTTAGCCCTGTT -ACGGAACTCTCTGTTAGCCGGTTT -ACGGAACTCTCTGTTAGCGTGGTT -ACGGAACTCTCTGTTAGCGCCTTT -ACGGAACTCTCTGTTAGCGGTCTT -ACGGAACTCTCTGTTAGCACGCTT -ACGGAACTCTCTGTTAGCAGCGTT -ACGGAACTCTCTGTTAGCTTCGTC -ACGGAACTCTCTGTTAGCTCTCTC -ACGGAACTCTCTGTTAGCTGGATC -ACGGAACTCTCTGTTAGCCACTTC -ACGGAACTCTCTGTTAGCGTACTC -ACGGAACTCTCTGTTAGCGATGTC -ACGGAACTCTCTGTTAGCACAGTC -ACGGAACTCTCTGTTAGCTTGCTG -ACGGAACTCTCTGTTAGCTCCATG -ACGGAACTCTCTGTTAGCTGTGTG -ACGGAACTCTCTGTTAGCCTAGTG -ACGGAACTCTCTGTTAGCCATCTG -ACGGAACTCTCTGTTAGCGAGTTG -ACGGAACTCTCTGTTAGCAGACTG -ACGGAACTCTCTGTTAGCTCGGTA -ACGGAACTCTCTGTTAGCTGCCTA -ACGGAACTCTCTGTTAGCCCACTA -ACGGAACTCTCTGTTAGCGGAGTA -ACGGAACTCTCTGTTAGCTCGTCT -ACGGAACTCTCTGTTAGCTGCACT -ACGGAACTCTCTGTTAGCCTGACT -ACGGAACTCTCTGTTAGCCAACCT -ACGGAACTCTCTGTTAGCGCTACT -ACGGAACTCTCTGTTAGCGGATCT -ACGGAACTCTCTGTTAGCAAGGCT -ACGGAACTCTCTGTTAGCTCAACC -ACGGAACTCTCTGTTAGCTGTTCC -ACGGAACTCTCTGTTAGCATTCCC -ACGGAACTCTCTGTTAGCTTCTCG -ACGGAACTCTCTGTTAGCTAGACG -ACGGAACTCTCTGTTAGCGTAACG -ACGGAACTCTCTGTTAGCACTTCG -ACGGAACTCTCTGTTAGCTACGCA -ACGGAACTCTCTGTTAGCCTTGCA -ACGGAACTCTCTGTTAGCCGAACA -ACGGAACTCTCTGTTAGCCAGTCA -ACGGAACTCTCTGTTAGCGATCCA -ACGGAACTCTCTGTTAGCACGACA -ACGGAACTCTCTGTTAGCAGCTCA -ACGGAACTCTCTGTTAGCTCACGT -ACGGAACTCTCTGTTAGCCGTAGT -ACGGAACTCTCTGTTAGCGTCAGT -ACGGAACTCTCTGTTAGCGAAGGT -ACGGAACTCTCTGTTAGCAACCGT -ACGGAACTCTCTGTTAGCTTGTGC -ACGGAACTCTCTGTTAGCCTAAGC -ACGGAACTCTCTGTTAGCACTAGC -ACGGAACTCTCTGTTAGCAGATGC -ACGGAACTCTCTGTTAGCTGAAGG -ACGGAACTCTCTGTTAGCCAATGG -ACGGAACTCTCTGTTAGCATGAGG -ACGGAACTCTCTGTTAGCAATGGG -ACGGAACTCTCTGTTAGCTCCTGA -ACGGAACTCTCTGTTAGCTAGCGA -ACGGAACTCTCTGTTAGCCACAGA -ACGGAACTCTCTGTTAGCGCAAGA -ACGGAACTCTCTGTTAGCGGTTGA -ACGGAACTCTCTGTTAGCTCCGAT -ACGGAACTCTCTGTTAGCTGGCAT -ACGGAACTCTCTGTTAGCCGAGAT -ACGGAACTCTCTGTTAGCTACCAC -ACGGAACTCTCTGTTAGCCAGAAC -ACGGAACTCTCTGTTAGCGTCTAC -ACGGAACTCTCTGTTAGCACGTAC -ACGGAACTCTCTGTTAGCAGTGAC -ACGGAACTCTCTGTTAGCCTGTAG -ACGGAACTCTCTGTTAGCCCTAAG -ACGGAACTCTCTGTTAGCGTTCAG -ACGGAACTCTCTGTTAGCGCATAG -ACGGAACTCTCTGTTAGCGACAAG -ACGGAACTCTCTGTTAGCAAGCAG -ACGGAACTCTCTGTTAGCCGTCAA -ACGGAACTCTCTGTTAGCGCTGAA -ACGGAACTCTCTGTTAGCAGTACG -ACGGAACTCTCTGTTAGCATCCGA -ACGGAACTCTCTGTTAGCATGGGA -ACGGAACTCTCTGTTAGCGTGCAA -ACGGAACTCTCTGTTAGCGAGGAA -ACGGAACTCTCTGTTAGCCAGGTA -ACGGAACTCTCTGTTAGCGACTCT -ACGGAACTCTCTGTTAGCAGTCCT -ACGGAACTCTCTGTTAGCTAAGCC -ACGGAACTCTCTGTTAGCATAGCC -ACGGAACTCTCTGTTAGCTAACCG -ACGGAACTCTCTGTTAGCATGCCA -ACGGAACTCTCTGTCTTCGGAAAC -ACGGAACTCTCTGTCTTCAACACC -ACGGAACTCTCTGTCTTCATCGAG -ACGGAACTCTCTGTCTTCCTCCTT -ACGGAACTCTCTGTCTTCCCTGTT -ACGGAACTCTCTGTCTTCCGGTTT -ACGGAACTCTCTGTCTTCGTGGTT -ACGGAACTCTCTGTCTTCGCCTTT -ACGGAACTCTCTGTCTTCGGTCTT -ACGGAACTCTCTGTCTTCACGCTT -ACGGAACTCTCTGTCTTCAGCGTT -ACGGAACTCTCTGTCTTCTTCGTC -ACGGAACTCTCTGTCTTCTCTCTC -ACGGAACTCTCTGTCTTCTGGATC -ACGGAACTCTCTGTCTTCCACTTC -ACGGAACTCTCTGTCTTCGTACTC -ACGGAACTCTCTGTCTTCGATGTC -ACGGAACTCTCTGTCTTCACAGTC -ACGGAACTCTCTGTCTTCTTGCTG -ACGGAACTCTCTGTCTTCTCCATG -ACGGAACTCTCTGTCTTCTGTGTG -ACGGAACTCTCTGTCTTCCTAGTG -ACGGAACTCTCTGTCTTCCATCTG -ACGGAACTCTCTGTCTTCGAGTTG -ACGGAACTCTCTGTCTTCAGACTG -ACGGAACTCTCTGTCTTCTCGGTA -ACGGAACTCTCTGTCTTCTGCCTA -ACGGAACTCTCTGTCTTCCCACTA -ACGGAACTCTCTGTCTTCGGAGTA -ACGGAACTCTCTGTCTTCTCGTCT -ACGGAACTCTCTGTCTTCTGCACT -ACGGAACTCTCTGTCTTCCTGACT -ACGGAACTCTCTGTCTTCCAACCT -ACGGAACTCTCTGTCTTCGCTACT -ACGGAACTCTCTGTCTTCGGATCT -ACGGAACTCTCTGTCTTCAAGGCT -ACGGAACTCTCTGTCTTCTCAACC -ACGGAACTCTCTGTCTTCTGTTCC -ACGGAACTCTCTGTCTTCATTCCC -ACGGAACTCTCTGTCTTCTTCTCG -ACGGAACTCTCTGTCTTCTAGACG -ACGGAACTCTCTGTCTTCGTAACG -ACGGAACTCTCTGTCTTCACTTCG -ACGGAACTCTCTGTCTTCTACGCA -ACGGAACTCTCTGTCTTCCTTGCA -ACGGAACTCTCTGTCTTCCGAACA -ACGGAACTCTCTGTCTTCCAGTCA -ACGGAACTCTCTGTCTTCGATCCA -ACGGAACTCTCTGTCTTCACGACA -ACGGAACTCTCTGTCTTCAGCTCA -ACGGAACTCTCTGTCTTCTCACGT -ACGGAACTCTCTGTCTTCCGTAGT -ACGGAACTCTCTGTCTTCGTCAGT -ACGGAACTCTCTGTCTTCGAAGGT -ACGGAACTCTCTGTCTTCAACCGT -ACGGAACTCTCTGTCTTCTTGTGC -ACGGAACTCTCTGTCTTCCTAAGC -ACGGAACTCTCTGTCTTCACTAGC -ACGGAACTCTCTGTCTTCAGATGC -ACGGAACTCTCTGTCTTCTGAAGG -ACGGAACTCTCTGTCTTCCAATGG -ACGGAACTCTCTGTCTTCATGAGG -ACGGAACTCTCTGTCTTCAATGGG -ACGGAACTCTCTGTCTTCTCCTGA -ACGGAACTCTCTGTCTTCTAGCGA -ACGGAACTCTCTGTCTTCCACAGA -ACGGAACTCTCTGTCTTCGCAAGA -ACGGAACTCTCTGTCTTCGGTTGA -ACGGAACTCTCTGTCTTCTCCGAT -ACGGAACTCTCTGTCTTCTGGCAT -ACGGAACTCTCTGTCTTCCGAGAT -ACGGAACTCTCTGTCTTCTACCAC -ACGGAACTCTCTGTCTTCCAGAAC -ACGGAACTCTCTGTCTTCGTCTAC -ACGGAACTCTCTGTCTTCACGTAC -ACGGAACTCTCTGTCTTCAGTGAC -ACGGAACTCTCTGTCTTCCTGTAG -ACGGAACTCTCTGTCTTCCCTAAG -ACGGAACTCTCTGTCTTCGTTCAG -ACGGAACTCTCTGTCTTCGCATAG -ACGGAACTCTCTGTCTTCGACAAG -ACGGAACTCTCTGTCTTCAAGCAG -ACGGAACTCTCTGTCTTCCGTCAA -ACGGAACTCTCTGTCTTCGCTGAA -ACGGAACTCTCTGTCTTCAGTACG -ACGGAACTCTCTGTCTTCATCCGA -ACGGAACTCTCTGTCTTCATGGGA -ACGGAACTCTCTGTCTTCGTGCAA -ACGGAACTCTCTGTCTTCGAGGAA -ACGGAACTCTCTGTCTTCCAGGTA -ACGGAACTCTCTGTCTTCGACTCT -ACGGAACTCTCTGTCTTCAGTCCT -ACGGAACTCTCTGTCTTCTAAGCC -ACGGAACTCTCTGTCTTCATAGCC -ACGGAACTCTCTGTCTTCTAACCG -ACGGAACTCTCTGTCTTCATGCCA -ACGGAACTCTCTCTCTCTGGAAAC -ACGGAACTCTCTCTCTCTAACACC -ACGGAACTCTCTCTCTCTATCGAG -ACGGAACTCTCTCTCTCTCTCCTT -ACGGAACTCTCTCTCTCTCCTGTT -ACGGAACTCTCTCTCTCTCGGTTT -ACGGAACTCTCTCTCTCTGTGGTT -ACGGAACTCTCTCTCTCTGCCTTT -ACGGAACTCTCTCTCTCTGGTCTT -ACGGAACTCTCTCTCTCTACGCTT -ACGGAACTCTCTCTCTCTAGCGTT -ACGGAACTCTCTCTCTCTTTCGTC -ACGGAACTCTCTCTCTCTTCTCTC -ACGGAACTCTCTCTCTCTTGGATC -ACGGAACTCTCTCTCTCTCACTTC -ACGGAACTCTCTCTCTCTGTACTC -ACGGAACTCTCTCTCTCTGATGTC -ACGGAACTCTCTCTCTCTACAGTC -ACGGAACTCTCTCTCTCTTTGCTG -ACGGAACTCTCTCTCTCTTCCATG -ACGGAACTCTCTCTCTCTTGTGTG -ACGGAACTCTCTCTCTCTCTAGTG -ACGGAACTCTCTCTCTCTCATCTG -ACGGAACTCTCTCTCTCTGAGTTG -ACGGAACTCTCTCTCTCTAGACTG -ACGGAACTCTCTCTCTCTTCGGTA -ACGGAACTCTCTCTCTCTTGCCTA -ACGGAACTCTCTCTCTCTCCACTA -ACGGAACTCTCTCTCTCTGGAGTA -ACGGAACTCTCTCTCTCTTCGTCT -ACGGAACTCTCTCTCTCTTGCACT -ACGGAACTCTCTCTCTCTCTGACT -ACGGAACTCTCTCTCTCTCAACCT -ACGGAACTCTCTCTCTCTGCTACT -ACGGAACTCTCTCTCTCTGGATCT -ACGGAACTCTCTCTCTCTAAGGCT -ACGGAACTCTCTCTCTCTTCAACC -ACGGAACTCTCTCTCTCTTGTTCC -ACGGAACTCTCTCTCTCTATTCCC -ACGGAACTCTCTCTCTCTTTCTCG -ACGGAACTCTCTCTCTCTTAGACG -ACGGAACTCTCTCTCTCTGTAACG -ACGGAACTCTCTCTCTCTACTTCG -ACGGAACTCTCTCTCTCTTACGCA -ACGGAACTCTCTCTCTCTCTTGCA -ACGGAACTCTCTCTCTCTCGAACA -ACGGAACTCTCTCTCTCTCAGTCA -ACGGAACTCTCTCTCTCTGATCCA -ACGGAACTCTCTCTCTCTACGACA -ACGGAACTCTCTCTCTCTAGCTCA -ACGGAACTCTCTCTCTCTTCACGT -ACGGAACTCTCTCTCTCTCGTAGT -ACGGAACTCTCTCTCTCTGTCAGT -ACGGAACTCTCTCTCTCTGAAGGT -ACGGAACTCTCTCTCTCTAACCGT -ACGGAACTCTCTCTCTCTTTGTGC -ACGGAACTCTCTCTCTCTCTAAGC -ACGGAACTCTCTCTCTCTACTAGC -ACGGAACTCTCTCTCTCTAGATGC -ACGGAACTCTCTCTCTCTTGAAGG -ACGGAACTCTCTCTCTCTCAATGG -ACGGAACTCTCTCTCTCTATGAGG -ACGGAACTCTCTCTCTCTAATGGG -ACGGAACTCTCTCTCTCTTCCTGA -ACGGAACTCTCTCTCTCTTAGCGA -ACGGAACTCTCTCTCTCTCACAGA -ACGGAACTCTCTCTCTCTGCAAGA -ACGGAACTCTCTCTCTCTGGTTGA -ACGGAACTCTCTCTCTCTTCCGAT -ACGGAACTCTCTCTCTCTTGGCAT -ACGGAACTCTCTCTCTCTCGAGAT -ACGGAACTCTCTCTCTCTTACCAC -ACGGAACTCTCTCTCTCTCAGAAC -ACGGAACTCTCTCTCTCTGTCTAC -ACGGAACTCTCTCTCTCTACGTAC -ACGGAACTCTCTCTCTCTAGTGAC -ACGGAACTCTCTCTCTCTCTGTAG -ACGGAACTCTCTCTCTCTCCTAAG -ACGGAACTCTCTCTCTCTGTTCAG -ACGGAACTCTCTCTCTCTGCATAG -ACGGAACTCTCTCTCTCTGACAAG -ACGGAACTCTCTCTCTCTAAGCAG -ACGGAACTCTCTCTCTCTCGTCAA -ACGGAACTCTCTCTCTCTGCTGAA -ACGGAACTCTCTCTCTCTAGTACG -ACGGAACTCTCTCTCTCTATCCGA -ACGGAACTCTCTCTCTCTATGGGA -ACGGAACTCTCTCTCTCTGTGCAA -ACGGAACTCTCTCTCTCTGAGGAA -ACGGAACTCTCTCTCTCTCAGGTA -ACGGAACTCTCTCTCTCTGACTCT -ACGGAACTCTCTCTCTCTAGTCCT -ACGGAACTCTCTCTCTCTTAAGCC -ACGGAACTCTCTCTCTCTATAGCC -ACGGAACTCTCTCTCTCTTAACCG -ACGGAACTCTCTCTCTCTATGCCA -ACGGAACTCTCTATCTGGGGAAAC -ACGGAACTCTCTATCTGGAACACC -ACGGAACTCTCTATCTGGATCGAG -ACGGAACTCTCTATCTGGCTCCTT -ACGGAACTCTCTATCTGGCCTGTT -ACGGAACTCTCTATCTGGCGGTTT -ACGGAACTCTCTATCTGGGTGGTT -ACGGAACTCTCTATCTGGGCCTTT -ACGGAACTCTCTATCTGGGGTCTT -ACGGAACTCTCTATCTGGACGCTT -ACGGAACTCTCTATCTGGAGCGTT -ACGGAACTCTCTATCTGGTTCGTC -ACGGAACTCTCTATCTGGTCTCTC -ACGGAACTCTCTATCTGGTGGATC -ACGGAACTCTCTATCTGGCACTTC -ACGGAACTCTCTATCTGGGTACTC -ACGGAACTCTCTATCTGGGATGTC -ACGGAACTCTCTATCTGGACAGTC -ACGGAACTCTCTATCTGGTTGCTG -ACGGAACTCTCTATCTGGTCCATG -ACGGAACTCTCTATCTGGTGTGTG -ACGGAACTCTCTATCTGGCTAGTG -ACGGAACTCTCTATCTGGCATCTG -ACGGAACTCTCTATCTGGGAGTTG -ACGGAACTCTCTATCTGGAGACTG -ACGGAACTCTCTATCTGGTCGGTA -ACGGAACTCTCTATCTGGTGCCTA -ACGGAACTCTCTATCTGGCCACTA -ACGGAACTCTCTATCTGGGGAGTA -ACGGAACTCTCTATCTGGTCGTCT -ACGGAACTCTCTATCTGGTGCACT -ACGGAACTCTCTATCTGGCTGACT -ACGGAACTCTCTATCTGGCAACCT -ACGGAACTCTCTATCTGGGCTACT -ACGGAACTCTCTATCTGGGGATCT -ACGGAACTCTCTATCTGGAAGGCT -ACGGAACTCTCTATCTGGTCAACC -ACGGAACTCTCTATCTGGTGTTCC -ACGGAACTCTCTATCTGGATTCCC -ACGGAACTCTCTATCTGGTTCTCG -ACGGAACTCTCTATCTGGTAGACG -ACGGAACTCTCTATCTGGGTAACG -ACGGAACTCTCTATCTGGACTTCG -ACGGAACTCTCTATCTGGTACGCA -ACGGAACTCTCTATCTGGCTTGCA -ACGGAACTCTCTATCTGGCGAACA -ACGGAACTCTCTATCTGGCAGTCA -ACGGAACTCTCTATCTGGGATCCA -ACGGAACTCTCTATCTGGACGACA -ACGGAACTCTCTATCTGGAGCTCA -ACGGAACTCTCTATCTGGTCACGT -ACGGAACTCTCTATCTGGCGTAGT -ACGGAACTCTCTATCTGGGTCAGT -ACGGAACTCTCTATCTGGGAAGGT -ACGGAACTCTCTATCTGGAACCGT -ACGGAACTCTCTATCTGGTTGTGC -ACGGAACTCTCTATCTGGCTAAGC -ACGGAACTCTCTATCTGGACTAGC -ACGGAACTCTCTATCTGGAGATGC -ACGGAACTCTCTATCTGGTGAAGG -ACGGAACTCTCTATCTGGCAATGG -ACGGAACTCTCTATCTGGATGAGG -ACGGAACTCTCTATCTGGAATGGG -ACGGAACTCTCTATCTGGTCCTGA -ACGGAACTCTCTATCTGGTAGCGA -ACGGAACTCTCTATCTGGCACAGA -ACGGAACTCTCTATCTGGGCAAGA -ACGGAACTCTCTATCTGGGGTTGA -ACGGAACTCTCTATCTGGTCCGAT -ACGGAACTCTCTATCTGGTGGCAT -ACGGAACTCTCTATCTGGCGAGAT -ACGGAACTCTCTATCTGGTACCAC -ACGGAACTCTCTATCTGGCAGAAC -ACGGAACTCTCTATCTGGGTCTAC -ACGGAACTCTCTATCTGGACGTAC -ACGGAACTCTCTATCTGGAGTGAC -ACGGAACTCTCTATCTGGCTGTAG -ACGGAACTCTCTATCTGGCCTAAG -ACGGAACTCTCTATCTGGGTTCAG -ACGGAACTCTCTATCTGGGCATAG -ACGGAACTCTCTATCTGGGACAAG -ACGGAACTCTCTATCTGGAAGCAG -ACGGAACTCTCTATCTGGCGTCAA -ACGGAACTCTCTATCTGGGCTGAA -ACGGAACTCTCTATCTGGAGTACG -ACGGAACTCTCTATCTGGATCCGA -ACGGAACTCTCTATCTGGATGGGA -ACGGAACTCTCTATCTGGGTGCAA -ACGGAACTCTCTATCTGGGAGGAA -ACGGAACTCTCTATCTGGCAGGTA -ACGGAACTCTCTATCTGGGACTCT -ACGGAACTCTCTATCTGGAGTCCT -ACGGAACTCTCTATCTGGTAAGCC -ACGGAACTCTCTATCTGGATAGCC -ACGGAACTCTCTATCTGGTAACCG -ACGGAACTCTCTATCTGGATGCCA -ACGGAACTCTCTTTCCACGGAAAC -ACGGAACTCTCTTTCCACAACACC -ACGGAACTCTCTTTCCACATCGAG -ACGGAACTCTCTTTCCACCTCCTT -ACGGAACTCTCTTTCCACCCTGTT -ACGGAACTCTCTTTCCACCGGTTT -ACGGAACTCTCTTTCCACGTGGTT -ACGGAACTCTCTTTCCACGCCTTT -ACGGAACTCTCTTTCCACGGTCTT -ACGGAACTCTCTTTCCACACGCTT -ACGGAACTCTCTTTCCACAGCGTT -ACGGAACTCTCTTTCCACTTCGTC -ACGGAACTCTCTTTCCACTCTCTC -ACGGAACTCTCTTTCCACTGGATC -ACGGAACTCTCTTTCCACCACTTC -ACGGAACTCTCTTTCCACGTACTC -ACGGAACTCTCTTTCCACGATGTC -ACGGAACTCTCTTTCCACACAGTC -ACGGAACTCTCTTTCCACTTGCTG -ACGGAACTCTCTTTCCACTCCATG -ACGGAACTCTCTTTCCACTGTGTG -ACGGAACTCTCTTTCCACCTAGTG -ACGGAACTCTCTTTCCACCATCTG -ACGGAACTCTCTTTCCACGAGTTG -ACGGAACTCTCTTTCCACAGACTG -ACGGAACTCTCTTTCCACTCGGTA -ACGGAACTCTCTTTCCACTGCCTA -ACGGAACTCTCTTTCCACCCACTA -ACGGAACTCTCTTTCCACGGAGTA -ACGGAACTCTCTTTCCACTCGTCT -ACGGAACTCTCTTTCCACTGCACT -ACGGAACTCTCTTTCCACCTGACT -ACGGAACTCTCTTTCCACCAACCT -ACGGAACTCTCTTTCCACGCTACT -ACGGAACTCTCTTTCCACGGATCT -ACGGAACTCTCTTTCCACAAGGCT -ACGGAACTCTCTTTCCACTCAACC -ACGGAACTCTCTTTCCACTGTTCC -ACGGAACTCTCTTTCCACATTCCC -ACGGAACTCTCTTTCCACTTCTCG -ACGGAACTCTCTTTCCACTAGACG -ACGGAACTCTCTTTCCACGTAACG -ACGGAACTCTCTTTCCACACTTCG -ACGGAACTCTCTTTCCACTACGCA -ACGGAACTCTCTTTCCACCTTGCA -ACGGAACTCTCTTTCCACCGAACA -ACGGAACTCTCTTTCCACCAGTCA -ACGGAACTCTCTTTCCACGATCCA -ACGGAACTCTCTTTCCACACGACA -ACGGAACTCTCTTTCCACAGCTCA -ACGGAACTCTCTTTCCACTCACGT -ACGGAACTCTCTTTCCACCGTAGT -ACGGAACTCTCTTTCCACGTCAGT -ACGGAACTCTCTTTCCACGAAGGT -ACGGAACTCTCTTTCCACAACCGT -ACGGAACTCTCTTTCCACTTGTGC -ACGGAACTCTCTTTCCACCTAAGC -ACGGAACTCTCTTTCCACACTAGC -ACGGAACTCTCTTTCCACAGATGC -ACGGAACTCTCTTTCCACTGAAGG -ACGGAACTCTCTTTCCACCAATGG -ACGGAACTCTCTTTCCACATGAGG -ACGGAACTCTCTTTCCACAATGGG -ACGGAACTCTCTTTCCACTCCTGA -ACGGAACTCTCTTTCCACTAGCGA -ACGGAACTCTCTTTCCACCACAGA -ACGGAACTCTCTTTCCACGCAAGA -ACGGAACTCTCTTTCCACGGTTGA -ACGGAACTCTCTTTCCACTCCGAT -ACGGAACTCTCTTTCCACTGGCAT -ACGGAACTCTCTTTCCACCGAGAT -ACGGAACTCTCTTTCCACTACCAC -ACGGAACTCTCTTTCCACCAGAAC -ACGGAACTCTCTTTCCACGTCTAC -ACGGAACTCTCTTTCCACACGTAC -ACGGAACTCTCTTTCCACAGTGAC -ACGGAACTCTCTTTCCACCTGTAG -ACGGAACTCTCTTTCCACCCTAAG -ACGGAACTCTCTTTCCACGTTCAG -ACGGAACTCTCTTTCCACGCATAG -ACGGAACTCTCTTTCCACGACAAG -ACGGAACTCTCTTTCCACAAGCAG -ACGGAACTCTCTTTCCACCGTCAA -ACGGAACTCTCTTTCCACGCTGAA -ACGGAACTCTCTTTCCACAGTACG -ACGGAACTCTCTTTCCACATCCGA -ACGGAACTCTCTTTCCACATGGGA -ACGGAACTCTCTTTCCACGTGCAA -ACGGAACTCTCTTTCCACGAGGAA -ACGGAACTCTCTTTCCACCAGGTA -ACGGAACTCTCTTTCCACGACTCT -ACGGAACTCTCTTTCCACAGTCCT -ACGGAACTCTCTTTCCACTAAGCC -ACGGAACTCTCTTTCCACATAGCC -ACGGAACTCTCTTTCCACTAACCG -ACGGAACTCTCTTTCCACATGCCA -ACGGAACTCTCTCTCGTAGGAAAC -ACGGAACTCTCTCTCGTAAACACC -ACGGAACTCTCTCTCGTAATCGAG -ACGGAACTCTCTCTCGTACTCCTT -ACGGAACTCTCTCTCGTACCTGTT -ACGGAACTCTCTCTCGTACGGTTT -ACGGAACTCTCTCTCGTAGTGGTT -ACGGAACTCTCTCTCGTAGCCTTT -ACGGAACTCTCTCTCGTAGGTCTT -ACGGAACTCTCTCTCGTAACGCTT -ACGGAACTCTCTCTCGTAAGCGTT -ACGGAACTCTCTCTCGTATTCGTC -ACGGAACTCTCTCTCGTATCTCTC -ACGGAACTCTCTCTCGTATGGATC -ACGGAACTCTCTCTCGTACACTTC -ACGGAACTCTCTCTCGTAGTACTC -ACGGAACTCTCTCTCGTAGATGTC -ACGGAACTCTCTCTCGTAACAGTC -ACGGAACTCTCTCTCGTATTGCTG -ACGGAACTCTCTCTCGTATCCATG -ACGGAACTCTCTCTCGTATGTGTG -ACGGAACTCTCTCTCGTACTAGTG -ACGGAACTCTCTCTCGTACATCTG -ACGGAACTCTCTCTCGTAGAGTTG -ACGGAACTCTCTCTCGTAAGACTG -ACGGAACTCTCTCTCGTATCGGTA -ACGGAACTCTCTCTCGTATGCCTA -ACGGAACTCTCTCTCGTACCACTA -ACGGAACTCTCTCTCGTAGGAGTA -ACGGAACTCTCTCTCGTATCGTCT -ACGGAACTCTCTCTCGTATGCACT -ACGGAACTCTCTCTCGTACTGACT -ACGGAACTCTCTCTCGTACAACCT -ACGGAACTCTCTCTCGTAGCTACT -ACGGAACTCTCTCTCGTAGGATCT -ACGGAACTCTCTCTCGTAAAGGCT -ACGGAACTCTCTCTCGTATCAACC -ACGGAACTCTCTCTCGTATGTTCC -ACGGAACTCTCTCTCGTAATTCCC -ACGGAACTCTCTCTCGTATTCTCG -ACGGAACTCTCTCTCGTATAGACG -ACGGAACTCTCTCTCGTAGTAACG -ACGGAACTCTCTCTCGTAACTTCG -ACGGAACTCTCTCTCGTATACGCA -ACGGAACTCTCTCTCGTACTTGCA -ACGGAACTCTCTCTCGTACGAACA -ACGGAACTCTCTCTCGTACAGTCA -ACGGAACTCTCTCTCGTAGATCCA -ACGGAACTCTCTCTCGTAACGACA -ACGGAACTCTCTCTCGTAAGCTCA -ACGGAACTCTCTCTCGTATCACGT -ACGGAACTCTCTCTCGTACGTAGT -ACGGAACTCTCTCTCGTAGTCAGT -ACGGAACTCTCTCTCGTAGAAGGT -ACGGAACTCTCTCTCGTAAACCGT -ACGGAACTCTCTCTCGTATTGTGC -ACGGAACTCTCTCTCGTACTAAGC -ACGGAACTCTCTCTCGTAACTAGC -ACGGAACTCTCTCTCGTAAGATGC -ACGGAACTCTCTCTCGTATGAAGG -ACGGAACTCTCTCTCGTACAATGG -ACGGAACTCTCTCTCGTAATGAGG -ACGGAACTCTCTCTCGTAAATGGG -ACGGAACTCTCTCTCGTATCCTGA -ACGGAACTCTCTCTCGTATAGCGA -ACGGAACTCTCTCTCGTACACAGA -ACGGAACTCTCTCTCGTAGCAAGA -ACGGAACTCTCTCTCGTAGGTTGA -ACGGAACTCTCTCTCGTATCCGAT -ACGGAACTCTCTCTCGTATGGCAT -ACGGAACTCTCTCTCGTACGAGAT -ACGGAACTCTCTCTCGTATACCAC -ACGGAACTCTCTCTCGTACAGAAC -ACGGAACTCTCTCTCGTAGTCTAC -ACGGAACTCTCTCTCGTAACGTAC -ACGGAACTCTCTCTCGTAAGTGAC -ACGGAACTCTCTCTCGTACTGTAG -ACGGAACTCTCTCTCGTACCTAAG -ACGGAACTCTCTCTCGTAGTTCAG -ACGGAACTCTCTCTCGTAGCATAG -ACGGAACTCTCTCTCGTAGACAAG -ACGGAACTCTCTCTCGTAAAGCAG -ACGGAACTCTCTCTCGTACGTCAA -ACGGAACTCTCTCTCGTAGCTGAA -ACGGAACTCTCTCTCGTAAGTACG -ACGGAACTCTCTCTCGTAATCCGA -ACGGAACTCTCTCTCGTAATGGGA -ACGGAACTCTCTCTCGTAGTGCAA -ACGGAACTCTCTCTCGTAGAGGAA -ACGGAACTCTCTCTCGTACAGGTA -ACGGAACTCTCTCTCGTAGACTCT -ACGGAACTCTCTCTCGTAAGTCCT -ACGGAACTCTCTCTCGTATAAGCC -ACGGAACTCTCTCTCGTAATAGCC -ACGGAACTCTCTCTCGTATAACCG -ACGGAACTCTCTCTCGTAATGCCA -ACGGAACTCTCTGTCGATGGAAAC -ACGGAACTCTCTGTCGATAACACC -ACGGAACTCTCTGTCGATATCGAG -ACGGAACTCTCTGTCGATCTCCTT -ACGGAACTCTCTGTCGATCCTGTT -ACGGAACTCTCTGTCGATCGGTTT -ACGGAACTCTCTGTCGATGTGGTT -ACGGAACTCTCTGTCGATGCCTTT -ACGGAACTCTCTGTCGATGGTCTT -ACGGAACTCTCTGTCGATACGCTT -ACGGAACTCTCTGTCGATAGCGTT -ACGGAACTCTCTGTCGATTTCGTC -ACGGAACTCTCTGTCGATTCTCTC -ACGGAACTCTCTGTCGATTGGATC -ACGGAACTCTCTGTCGATCACTTC -ACGGAACTCTCTGTCGATGTACTC -ACGGAACTCTCTGTCGATGATGTC -ACGGAACTCTCTGTCGATACAGTC -ACGGAACTCTCTGTCGATTTGCTG -ACGGAACTCTCTGTCGATTCCATG -ACGGAACTCTCTGTCGATTGTGTG -ACGGAACTCTCTGTCGATCTAGTG -ACGGAACTCTCTGTCGATCATCTG -ACGGAACTCTCTGTCGATGAGTTG -ACGGAACTCTCTGTCGATAGACTG -ACGGAACTCTCTGTCGATTCGGTA -ACGGAACTCTCTGTCGATTGCCTA -ACGGAACTCTCTGTCGATCCACTA -ACGGAACTCTCTGTCGATGGAGTA -ACGGAACTCTCTGTCGATTCGTCT -ACGGAACTCTCTGTCGATTGCACT -ACGGAACTCTCTGTCGATCTGACT -ACGGAACTCTCTGTCGATCAACCT -ACGGAACTCTCTGTCGATGCTACT -ACGGAACTCTCTGTCGATGGATCT -ACGGAACTCTCTGTCGATAAGGCT -ACGGAACTCTCTGTCGATTCAACC -ACGGAACTCTCTGTCGATTGTTCC -ACGGAACTCTCTGTCGATATTCCC -ACGGAACTCTCTGTCGATTTCTCG -ACGGAACTCTCTGTCGATTAGACG -ACGGAACTCTCTGTCGATGTAACG -ACGGAACTCTCTGTCGATACTTCG -ACGGAACTCTCTGTCGATTACGCA -ACGGAACTCTCTGTCGATCTTGCA -ACGGAACTCTCTGTCGATCGAACA -ACGGAACTCTCTGTCGATCAGTCA -ACGGAACTCTCTGTCGATGATCCA -ACGGAACTCTCTGTCGATACGACA -ACGGAACTCTCTGTCGATAGCTCA -ACGGAACTCTCTGTCGATTCACGT -ACGGAACTCTCTGTCGATCGTAGT -ACGGAACTCTCTGTCGATGTCAGT -ACGGAACTCTCTGTCGATGAAGGT -ACGGAACTCTCTGTCGATAACCGT -ACGGAACTCTCTGTCGATTTGTGC -ACGGAACTCTCTGTCGATCTAAGC -ACGGAACTCTCTGTCGATACTAGC -ACGGAACTCTCTGTCGATAGATGC -ACGGAACTCTCTGTCGATTGAAGG -ACGGAACTCTCTGTCGATCAATGG -ACGGAACTCTCTGTCGATATGAGG -ACGGAACTCTCTGTCGATAATGGG -ACGGAACTCTCTGTCGATTCCTGA -ACGGAACTCTCTGTCGATTAGCGA -ACGGAACTCTCTGTCGATCACAGA -ACGGAACTCTCTGTCGATGCAAGA -ACGGAACTCTCTGTCGATGGTTGA -ACGGAACTCTCTGTCGATTCCGAT -ACGGAACTCTCTGTCGATTGGCAT -ACGGAACTCTCTGTCGATCGAGAT -ACGGAACTCTCTGTCGATTACCAC -ACGGAACTCTCTGTCGATCAGAAC -ACGGAACTCTCTGTCGATGTCTAC -ACGGAACTCTCTGTCGATACGTAC -ACGGAACTCTCTGTCGATAGTGAC -ACGGAACTCTCTGTCGATCTGTAG -ACGGAACTCTCTGTCGATCCTAAG -ACGGAACTCTCTGTCGATGTTCAG -ACGGAACTCTCTGTCGATGCATAG -ACGGAACTCTCTGTCGATGACAAG -ACGGAACTCTCTGTCGATAAGCAG -ACGGAACTCTCTGTCGATCGTCAA -ACGGAACTCTCTGTCGATGCTGAA -ACGGAACTCTCTGTCGATAGTACG -ACGGAACTCTCTGTCGATATCCGA -ACGGAACTCTCTGTCGATATGGGA -ACGGAACTCTCTGTCGATGTGCAA -ACGGAACTCTCTGTCGATGAGGAA -ACGGAACTCTCTGTCGATCAGGTA -ACGGAACTCTCTGTCGATGACTCT -ACGGAACTCTCTGTCGATAGTCCT -ACGGAACTCTCTGTCGATTAAGCC -ACGGAACTCTCTGTCGATATAGCC -ACGGAACTCTCTGTCGATTAACCG -ACGGAACTCTCTGTCGATATGCCA -ACGGAACTCTCTGTCACAGGAAAC -ACGGAACTCTCTGTCACAAACACC -ACGGAACTCTCTGTCACAATCGAG -ACGGAACTCTCTGTCACACTCCTT -ACGGAACTCTCTGTCACACCTGTT -ACGGAACTCTCTGTCACACGGTTT -ACGGAACTCTCTGTCACAGTGGTT -ACGGAACTCTCTGTCACAGCCTTT -ACGGAACTCTCTGTCACAGGTCTT -ACGGAACTCTCTGTCACAACGCTT -ACGGAACTCTCTGTCACAAGCGTT -ACGGAACTCTCTGTCACATTCGTC -ACGGAACTCTCTGTCACATCTCTC -ACGGAACTCTCTGTCACATGGATC -ACGGAACTCTCTGTCACACACTTC -ACGGAACTCTCTGTCACAGTACTC -ACGGAACTCTCTGTCACAGATGTC -ACGGAACTCTCTGTCACAACAGTC -ACGGAACTCTCTGTCACATTGCTG -ACGGAACTCTCTGTCACATCCATG -ACGGAACTCTCTGTCACATGTGTG -ACGGAACTCTCTGTCACACTAGTG -ACGGAACTCTCTGTCACACATCTG -ACGGAACTCTCTGTCACAGAGTTG -ACGGAACTCTCTGTCACAAGACTG -ACGGAACTCTCTGTCACATCGGTA -ACGGAACTCTCTGTCACATGCCTA -ACGGAACTCTCTGTCACACCACTA -ACGGAACTCTCTGTCACAGGAGTA -ACGGAACTCTCTGTCACATCGTCT -ACGGAACTCTCTGTCACATGCACT -ACGGAACTCTCTGTCACACTGACT -ACGGAACTCTCTGTCACACAACCT -ACGGAACTCTCTGTCACAGCTACT -ACGGAACTCTCTGTCACAGGATCT -ACGGAACTCTCTGTCACAAAGGCT -ACGGAACTCTCTGTCACATCAACC -ACGGAACTCTCTGTCACATGTTCC -ACGGAACTCTCTGTCACAATTCCC -ACGGAACTCTCTGTCACATTCTCG -ACGGAACTCTCTGTCACATAGACG -ACGGAACTCTCTGTCACAGTAACG -ACGGAACTCTCTGTCACAACTTCG -ACGGAACTCTCTGTCACATACGCA -ACGGAACTCTCTGTCACACTTGCA -ACGGAACTCTCTGTCACACGAACA -ACGGAACTCTCTGTCACACAGTCA -ACGGAACTCTCTGTCACAGATCCA -ACGGAACTCTCTGTCACAACGACA -ACGGAACTCTCTGTCACAAGCTCA -ACGGAACTCTCTGTCACATCACGT -ACGGAACTCTCTGTCACACGTAGT -ACGGAACTCTCTGTCACAGTCAGT -ACGGAACTCTCTGTCACAGAAGGT -ACGGAACTCTCTGTCACAAACCGT -ACGGAACTCTCTGTCACATTGTGC -ACGGAACTCTCTGTCACACTAAGC -ACGGAACTCTCTGTCACAACTAGC -ACGGAACTCTCTGTCACAAGATGC -ACGGAACTCTCTGTCACATGAAGG -ACGGAACTCTCTGTCACACAATGG -ACGGAACTCTCTGTCACAATGAGG -ACGGAACTCTCTGTCACAAATGGG -ACGGAACTCTCTGTCACATCCTGA -ACGGAACTCTCTGTCACATAGCGA -ACGGAACTCTCTGTCACACACAGA -ACGGAACTCTCTGTCACAGCAAGA -ACGGAACTCTCTGTCACAGGTTGA -ACGGAACTCTCTGTCACATCCGAT -ACGGAACTCTCTGTCACATGGCAT -ACGGAACTCTCTGTCACACGAGAT -ACGGAACTCTCTGTCACATACCAC -ACGGAACTCTCTGTCACACAGAAC -ACGGAACTCTCTGTCACAGTCTAC -ACGGAACTCTCTGTCACAACGTAC -ACGGAACTCTCTGTCACAAGTGAC -ACGGAACTCTCTGTCACACTGTAG -ACGGAACTCTCTGTCACACCTAAG -ACGGAACTCTCTGTCACAGTTCAG -ACGGAACTCTCTGTCACAGCATAG -ACGGAACTCTCTGTCACAGACAAG -ACGGAACTCTCTGTCACAAAGCAG -ACGGAACTCTCTGTCACACGTCAA -ACGGAACTCTCTGTCACAGCTGAA -ACGGAACTCTCTGTCACAAGTACG -ACGGAACTCTCTGTCACAATCCGA -ACGGAACTCTCTGTCACAATGGGA -ACGGAACTCTCTGTCACAGTGCAA -ACGGAACTCTCTGTCACAGAGGAA -ACGGAACTCTCTGTCACACAGGTA -ACGGAACTCTCTGTCACAGACTCT -ACGGAACTCTCTGTCACAAGTCCT -ACGGAACTCTCTGTCACATAAGCC -ACGGAACTCTCTGTCACAATAGCC -ACGGAACTCTCTGTCACATAACCG -ACGGAACTCTCTGTCACAATGCCA -ACGGAACTCTCTCTGTTGGGAAAC -ACGGAACTCTCTCTGTTGAACACC -ACGGAACTCTCTCTGTTGATCGAG -ACGGAACTCTCTCTGTTGCTCCTT -ACGGAACTCTCTCTGTTGCCTGTT -ACGGAACTCTCTCTGTTGCGGTTT -ACGGAACTCTCTCTGTTGGTGGTT -ACGGAACTCTCTCTGTTGGCCTTT -ACGGAACTCTCTCTGTTGGGTCTT -ACGGAACTCTCTCTGTTGACGCTT -ACGGAACTCTCTCTGTTGAGCGTT -ACGGAACTCTCTCTGTTGTTCGTC -ACGGAACTCTCTCTGTTGTCTCTC -ACGGAACTCTCTCTGTTGTGGATC -ACGGAACTCTCTCTGTTGCACTTC -ACGGAACTCTCTCTGTTGGTACTC -ACGGAACTCTCTCTGTTGGATGTC -ACGGAACTCTCTCTGTTGACAGTC -ACGGAACTCTCTCTGTTGTTGCTG -ACGGAACTCTCTCTGTTGTCCATG -ACGGAACTCTCTCTGTTGTGTGTG -ACGGAACTCTCTCTGTTGCTAGTG -ACGGAACTCTCTCTGTTGCATCTG -ACGGAACTCTCTCTGTTGGAGTTG -ACGGAACTCTCTCTGTTGAGACTG -ACGGAACTCTCTCTGTTGTCGGTA -ACGGAACTCTCTCTGTTGTGCCTA -ACGGAACTCTCTCTGTTGCCACTA -ACGGAACTCTCTCTGTTGGGAGTA -ACGGAACTCTCTCTGTTGTCGTCT -ACGGAACTCTCTCTGTTGTGCACT -ACGGAACTCTCTCTGTTGCTGACT -ACGGAACTCTCTCTGTTGCAACCT -ACGGAACTCTCTCTGTTGGCTACT -ACGGAACTCTCTCTGTTGGGATCT -ACGGAACTCTCTCTGTTGAAGGCT -ACGGAACTCTCTCTGTTGTCAACC -ACGGAACTCTCTCTGTTGTGTTCC -ACGGAACTCTCTCTGTTGATTCCC -ACGGAACTCTCTCTGTTGTTCTCG -ACGGAACTCTCTCTGTTGTAGACG -ACGGAACTCTCTCTGTTGGTAACG -ACGGAACTCTCTCTGTTGACTTCG -ACGGAACTCTCTCTGTTGTACGCA -ACGGAACTCTCTCTGTTGCTTGCA -ACGGAACTCTCTCTGTTGCGAACA -ACGGAACTCTCTCTGTTGCAGTCA -ACGGAACTCTCTCTGTTGGATCCA -ACGGAACTCTCTCTGTTGACGACA -ACGGAACTCTCTCTGTTGAGCTCA -ACGGAACTCTCTCTGTTGTCACGT -ACGGAACTCTCTCTGTTGCGTAGT -ACGGAACTCTCTCTGTTGGTCAGT -ACGGAACTCTCTCTGTTGGAAGGT -ACGGAACTCTCTCTGTTGAACCGT -ACGGAACTCTCTCTGTTGTTGTGC -ACGGAACTCTCTCTGTTGCTAAGC -ACGGAACTCTCTCTGTTGACTAGC -ACGGAACTCTCTCTGTTGAGATGC -ACGGAACTCTCTCTGTTGTGAAGG -ACGGAACTCTCTCTGTTGCAATGG -ACGGAACTCTCTCTGTTGATGAGG -ACGGAACTCTCTCTGTTGAATGGG -ACGGAACTCTCTCTGTTGTCCTGA -ACGGAACTCTCTCTGTTGTAGCGA -ACGGAACTCTCTCTGTTGCACAGA -ACGGAACTCTCTCTGTTGGCAAGA -ACGGAACTCTCTCTGTTGGGTTGA -ACGGAACTCTCTCTGTTGTCCGAT -ACGGAACTCTCTCTGTTGTGGCAT -ACGGAACTCTCTCTGTTGCGAGAT -ACGGAACTCTCTCTGTTGTACCAC -ACGGAACTCTCTCTGTTGCAGAAC -ACGGAACTCTCTCTGTTGGTCTAC -ACGGAACTCTCTCTGTTGACGTAC -ACGGAACTCTCTCTGTTGAGTGAC -ACGGAACTCTCTCTGTTGCTGTAG -ACGGAACTCTCTCTGTTGCCTAAG -ACGGAACTCTCTCTGTTGGTTCAG -ACGGAACTCTCTCTGTTGGCATAG -ACGGAACTCTCTCTGTTGGACAAG -ACGGAACTCTCTCTGTTGAAGCAG -ACGGAACTCTCTCTGTTGCGTCAA -ACGGAACTCTCTCTGTTGGCTGAA -ACGGAACTCTCTCTGTTGAGTACG -ACGGAACTCTCTCTGTTGATCCGA -ACGGAACTCTCTCTGTTGATGGGA -ACGGAACTCTCTCTGTTGGTGCAA -ACGGAACTCTCTCTGTTGGAGGAA -ACGGAACTCTCTCTGTTGCAGGTA -ACGGAACTCTCTCTGTTGGACTCT -ACGGAACTCTCTCTGTTGAGTCCT -ACGGAACTCTCTCTGTTGTAAGCC -ACGGAACTCTCTCTGTTGATAGCC -ACGGAACTCTCTCTGTTGTAACCG -ACGGAACTCTCTCTGTTGATGCCA -ACGGAACTCTCTATGTCCGGAAAC -ACGGAACTCTCTATGTCCAACACC -ACGGAACTCTCTATGTCCATCGAG -ACGGAACTCTCTATGTCCCTCCTT -ACGGAACTCTCTATGTCCCCTGTT -ACGGAACTCTCTATGTCCCGGTTT -ACGGAACTCTCTATGTCCGTGGTT -ACGGAACTCTCTATGTCCGCCTTT -ACGGAACTCTCTATGTCCGGTCTT -ACGGAACTCTCTATGTCCACGCTT -ACGGAACTCTCTATGTCCAGCGTT -ACGGAACTCTCTATGTCCTTCGTC -ACGGAACTCTCTATGTCCTCTCTC -ACGGAACTCTCTATGTCCTGGATC -ACGGAACTCTCTATGTCCCACTTC -ACGGAACTCTCTATGTCCGTACTC -ACGGAACTCTCTATGTCCGATGTC -ACGGAACTCTCTATGTCCACAGTC -ACGGAACTCTCTATGTCCTTGCTG -ACGGAACTCTCTATGTCCTCCATG -ACGGAACTCTCTATGTCCTGTGTG -ACGGAACTCTCTATGTCCCTAGTG -ACGGAACTCTCTATGTCCCATCTG -ACGGAACTCTCTATGTCCGAGTTG -ACGGAACTCTCTATGTCCAGACTG -ACGGAACTCTCTATGTCCTCGGTA -ACGGAACTCTCTATGTCCTGCCTA -ACGGAACTCTCTATGTCCCCACTA -ACGGAACTCTCTATGTCCGGAGTA -ACGGAACTCTCTATGTCCTCGTCT -ACGGAACTCTCTATGTCCTGCACT -ACGGAACTCTCTATGTCCCTGACT -ACGGAACTCTCTATGTCCCAACCT -ACGGAACTCTCTATGTCCGCTACT -ACGGAACTCTCTATGTCCGGATCT -ACGGAACTCTCTATGTCCAAGGCT -ACGGAACTCTCTATGTCCTCAACC -ACGGAACTCTCTATGTCCTGTTCC -ACGGAACTCTCTATGTCCATTCCC -ACGGAACTCTCTATGTCCTTCTCG -ACGGAACTCTCTATGTCCTAGACG -ACGGAACTCTCTATGTCCGTAACG -ACGGAACTCTCTATGTCCACTTCG -ACGGAACTCTCTATGTCCTACGCA -ACGGAACTCTCTATGTCCCTTGCA -ACGGAACTCTCTATGTCCCGAACA -ACGGAACTCTCTATGTCCCAGTCA -ACGGAACTCTCTATGTCCGATCCA -ACGGAACTCTCTATGTCCACGACA -ACGGAACTCTCTATGTCCAGCTCA -ACGGAACTCTCTATGTCCTCACGT -ACGGAACTCTCTATGTCCCGTAGT -ACGGAACTCTCTATGTCCGTCAGT -ACGGAACTCTCTATGTCCGAAGGT -ACGGAACTCTCTATGTCCAACCGT -ACGGAACTCTCTATGTCCTTGTGC -ACGGAACTCTCTATGTCCCTAAGC -ACGGAACTCTCTATGTCCACTAGC -ACGGAACTCTCTATGTCCAGATGC -ACGGAACTCTCTATGTCCTGAAGG -ACGGAACTCTCTATGTCCCAATGG -ACGGAACTCTCTATGTCCATGAGG -ACGGAACTCTCTATGTCCAATGGG -ACGGAACTCTCTATGTCCTCCTGA -ACGGAACTCTCTATGTCCTAGCGA -ACGGAACTCTCTATGTCCCACAGA -ACGGAACTCTCTATGTCCGCAAGA -ACGGAACTCTCTATGTCCGGTTGA -ACGGAACTCTCTATGTCCTCCGAT -ACGGAACTCTCTATGTCCTGGCAT -ACGGAACTCTCTATGTCCCGAGAT -ACGGAACTCTCTATGTCCTACCAC -ACGGAACTCTCTATGTCCCAGAAC -ACGGAACTCTCTATGTCCGTCTAC -ACGGAACTCTCTATGTCCACGTAC -ACGGAACTCTCTATGTCCAGTGAC -ACGGAACTCTCTATGTCCCTGTAG -ACGGAACTCTCTATGTCCCCTAAG -ACGGAACTCTCTATGTCCGTTCAG -ACGGAACTCTCTATGTCCGCATAG -ACGGAACTCTCTATGTCCGACAAG -ACGGAACTCTCTATGTCCAAGCAG -ACGGAACTCTCTATGTCCCGTCAA -ACGGAACTCTCTATGTCCGCTGAA -ACGGAACTCTCTATGTCCAGTACG -ACGGAACTCTCTATGTCCATCCGA -ACGGAACTCTCTATGTCCATGGGA -ACGGAACTCTCTATGTCCGTGCAA -ACGGAACTCTCTATGTCCGAGGAA -ACGGAACTCTCTATGTCCCAGGTA -ACGGAACTCTCTATGTCCGACTCT -ACGGAACTCTCTATGTCCAGTCCT -ACGGAACTCTCTATGTCCTAAGCC -ACGGAACTCTCTATGTCCATAGCC -ACGGAACTCTCTATGTCCTAACCG -ACGGAACTCTCTATGTCCATGCCA -ACGGAACTCTCTGTGTGTGGAAAC -ACGGAACTCTCTGTGTGTAACACC -ACGGAACTCTCTGTGTGTATCGAG -ACGGAACTCTCTGTGTGTCTCCTT -ACGGAACTCTCTGTGTGTCCTGTT -ACGGAACTCTCTGTGTGTCGGTTT -ACGGAACTCTCTGTGTGTGTGGTT -ACGGAACTCTCTGTGTGTGCCTTT -ACGGAACTCTCTGTGTGTGGTCTT -ACGGAACTCTCTGTGTGTACGCTT -ACGGAACTCTCTGTGTGTAGCGTT -ACGGAACTCTCTGTGTGTTTCGTC -ACGGAACTCTCTGTGTGTTCTCTC -ACGGAACTCTCTGTGTGTTGGATC -ACGGAACTCTCTGTGTGTCACTTC -ACGGAACTCTCTGTGTGTGTACTC -ACGGAACTCTCTGTGTGTGATGTC -ACGGAACTCTCTGTGTGTACAGTC -ACGGAACTCTCTGTGTGTTTGCTG -ACGGAACTCTCTGTGTGTTCCATG -ACGGAACTCTCTGTGTGTTGTGTG -ACGGAACTCTCTGTGTGTCTAGTG -ACGGAACTCTCTGTGTGTCATCTG -ACGGAACTCTCTGTGTGTGAGTTG -ACGGAACTCTCTGTGTGTAGACTG -ACGGAACTCTCTGTGTGTTCGGTA -ACGGAACTCTCTGTGTGTTGCCTA -ACGGAACTCTCTGTGTGTCCACTA -ACGGAACTCTCTGTGTGTGGAGTA -ACGGAACTCTCTGTGTGTTCGTCT -ACGGAACTCTCTGTGTGTTGCACT -ACGGAACTCTCTGTGTGTCTGACT -ACGGAACTCTCTGTGTGTCAACCT -ACGGAACTCTCTGTGTGTGCTACT -ACGGAACTCTCTGTGTGTGGATCT -ACGGAACTCTCTGTGTGTAAGGCT -ACGGAACTCTCTGTGTGTTCAACC -ACGGAACTCTCTGTGTGTTGTTCC -ACGGAACTCTCTGTGTGTATTCCC -ACGGAACTCTCTGTGTGTTTCTCG -ACGGAACTCTCTGTGTGTTAGACG -ACGGAACTCTCTGTGTGTGTAACG -ACGGAACTCTCTGTGTGTACTTCG -ACGGAACTCTCTGTGTGTTACGCA -ACGGAACTCTCTGTGTGTCTTGCA -ACGGAACTCTCTGTGTGTCGAACA -ACGGAACTCTCTGTGTGTCAGTCA -ACGGAACTCTCTGTGTGTGATCCA -ACGGAACTCTCTGTGTGTACGACA -ACGGAACTCTCTGTGTGTAGCTCA -ACGGAACTCTCTGTGTGTTCACGT -ACGGAACTCTCTGTGTGTCGTAGT -ACGGAACTCTCTGTGTGTGTCAGT -ACGGAACTCTCTGTGTGTGAAGGT -ACGGAACTCTCTGTGTGTAACCGT -ACGGAACTCTCTGTGTGTTTGTGC -ACGGAACTCTCTGTGTGTCTAAGC -ACGGAACTCTCTGTGTGTACTAGC -ACGGAACTCTCTGTGTGTAGATGC -ACGGAACTCTCTGTGTGTTGAAGG -ACGGAACTCTCTGTGTGTCAATGG -ACGGAACTCTCTGTGTGTATGAGG -ACGGAACTCTCTGTGTGTAATGGG -ACGGAACTCTCTGTGTGTTCCTGA -ACGGAACTCTCTGTGTGTTAGCGA -ACGGAACTCTCTGTGTGTCACAGA -ACGGAACTCTCTGTGTGTGCAAGA -ACGGAACTCTCTGTGTGTGGTTGA -ACGGAACTCTCTGTGTGTTCCGAT -ACGGAACTCTCTGTGTGTTGGCAT -ACGGAACTCTCTGTGTGTCGAGAT -ACGGAACTCTCTGTGTGTTACCAC -ACGGAACTCTCTGTGTGTCAGAAC -ACGGAACTCTCTGTGTGTGTCTAC -ACGGAACTCTCTGTGTGTACGTAC -ACGGAACTCTCTGTGTGTAGTGAC -ACGGAACTCTCTGTGTGTCTGTAG -ACGGAACTCTCTGTGTGTCCTAAG -ACGGAACTCTCTGTGTGTGTTCAG -ACGGAACTCTCTGTGTGTGCATAG -ACGGAACTCTCTGTGTGTGACAAG -ACGGAACTCTCTGTGTGTAAGCAG -ACGGAACTCTCTGTGTGTCGTCAA -ACGGAACTCTCTGTGTGTGCTGAA -ACGGAACTCTCTGTGTGTAGTACG -ACGGAACTCTCTGTGTGTATCCGA -ACGGAACTCTCTGTGTGTATGGGA -ACGGAACTCTCTGTGTGTGTGCAA -ACGGAACTCTCTGTGTGTGAGGAA -ACGGAACTCTCTGTGTGTCAGGTA -ACGGAACTCTCTGTGTGTGACTCT -ACGGAACTCTCTGTGTGTAGTCCT -ACGGAACTCTCTGTGTGTTAAGCC -ACGGAACTCTCTGTGTGTATAGCC -ACGGAACTCTCTGTGTGTTAACCG -ACGGAACTCTCTGTGTGTATGCCA -ACGGAACTCTCTGTGCTAGGAAAC -ACGGAACTCTCTGTGCTAAACACC -ACGGAACTCTCTGTGCTAATCGAG -ACGGAACTCTCTGTGCTACTCCTT -ACGGAACTCTCTGTGCTACCTGTT -ACGGAACTCTCTGTGCTACGGTTT -ACGGAACTCTCTGTGCTAGTGGTT -ACGGAACTCTCTGTGCTAGCCTTT -ACGGAACTCTCTGTGCTAGGTCTT -ACGGAACTCTCTGTGCTAACGCTT -ACGGAACTCTCTGTGCTAAGCGTT -ACGGAACTCTCTGTGCTATTCGTC -ACGGAACTCTCTGTGCTATCTCTC -ACGGAACTCTCTGTGCTATGGATC -ACGGAACTCTCTGTGCTACACTTC -ACGGAACTCTCTGTGCTAGTACTC -ACGGAACTCTCTGTGCTAGATGTC -ACGGAACTCTCTGTGCTAACAGTC -ACGGAACTCTCTGTGCTATTGCTG -ACGGAACTCTCTGTGCTATCCATG -ACGGAACTCTCTGTGCTATGTGTG -ACGGAACTCTCTGTGCTACTAGTG -ACGGAACTCTCTGTGCTACATCTG -ACGGAACTCTCTGTGCTAGAGTTG -ACGGAACTCTCTGTGCTAAGACTG -ACGGAACTCTCTGTGCTATCGGTA -ACGGAACTCTCTGTGCTATGCCTA -ACGGAACTCTCTGTGCTACCACTA -ACGGAACTCTCTGTGCTAGGAGTA -ACGGAACTCTCTGTGCTATCGTCT -ACGGAACTCTCTGTGCTATGCACT -ACGGAACTCTCTGTGCTACTGACT -ACGGAACTCTCTGTGCTACAACCT -ACGGAACTCTCTGTGCTAGCTACT -ACGGAACTCTCTGTGCTAGGATCT -ACGGAACTCTCTGTGCTAAAGGCT -ACGGAACTCTCTGTGCTATCAACC -ACGGAACTCTCTGTGCTATGTTCC -ACGGAACTCTCTGTGCTAATTCCC -ACGGAACTCTCTGTGCTATTCTCG -ACGGAACTCTCTGTGCTATAGACG -ACGGAACTCTCTGTGCTAGTAACG -ACGGAACTCTCTGTGCTAACTTCG -ACGGAACTCTCTGTGCTATACGCA -ACGGAACTCTCTGTGCTACTTGCA -ACGGAACTCTCTGTGCTACGAACA -ACGGAACTCTCTGTGCTACAGTCA -ACGGAACTCTCTGTGCTAGATCCA -ACGGAACTCTCTGTGCTAACGACA -ACGGAACTCTCTGTGCTAAGCTCA -ACGGAACTCTCTGTGCTATCACGT -ACGGAACTCTCTGTGCTACGTAGT -ACGGAACTCTCTGTGCTAGTCAGT -ACGGAACTCTCTGTGCTAGAAGGT -ACGGAACTCTCTGTGCTAAACCGT -ACGGAACTCTCTGTGCTATTGTGC -ACGGAACTCTCTGTGCTACTAAGC -ACGGAACTCTCTGTGCTAACTAGC -ACGGAACTCTCTGTGCTAAGATGC -ACGGAACTCTCTGTGCTATGAAGG -ACGGAACTCTCTGTGCTACAATGG -ACGGAACTCTCTGTGCTAATGAGG -ACGGAACTCTCTGTGCTAAATGGG -ACGGAACTCTCTGTGCTATCCTGA -ACGGAACTCTCTGTGCTATAGCGA -ACGGAACTCTCTGTGCTACACAGA -ACGGAACTCTCTGTGCTAGCAAGA -ACGGAACTCTCTGTGCTAGGTTGA -ACGGAACTCTCTGTGCTATCCGAT -ACGGAACTCTCTGTGCTATGGCAT -ACGGAACTCTCTGTGCTACGAGAT -ACGGAACTCTCTGTGCTATACCAC -ACGGAACTCTCTGTGCTACAGAAC -ACGGAACTCTCTGTGCTAGTCTAC -ACGGAACTCTCTGTGCTAACGTAC -ACGGAACTCTCTGTGCTAAGTGAC -ACGGAACTCTCTGTGCTACTGTAG -ACGGAACTCTCTGTGCTACCTAAG -ACGGAACTCTCTGTGCTAGTTCAG -ACGGAACTCTCTGTGCTAGCATAG -ACGGAACTCTCTGTGCTAGACAAG -ACGGAACTCTCTGTGCTAAAGCAG -ACGGAACTCTCTGTGCTACGTCAA -ACGGAACTCTCTGTGCTAGCTGAA -ACGGAACTCTCTGTGCTAAGTACG -ACGGAACTCTCTGTGCTAATCCGA -ACGGAACTCTCTGTGCTAATGGGA -ACGGAACTCTCTGTGCTAGTGCAA -ACGGAACTCTCTGTGCTAGAGGAA -ACGGAACTCTCTGTGCTACAGGTA -ACGGAACTCTCTGTGCTAGACTCT -ACGGAACTCTCTGTGCTAAGTCCT -ACGGAACTCTCTGTGCTATAAGCC -ACGGAACTCTCTGTGCTAATAGCC -ACGGAACTCTCTGTGCTATAACCG -ACGGAACTCTCTGTGCTAATGCCA -ACGGAACTCTCTCTGCATGGAAAC -ACGGAACTCTCTCTGCATAACACC -ACGGAACTCTCTCTGCATATCGAG -ACGGAACTCTCTCTGCATCTCCTT -ACGGAACTCTCTCTGCATCCTGTT -ACGGAACTCTCTCTGCATCGGTTT -ACGGAACTCTCTCTGCATGTGGTT -ACGGAACTCTCTCTGCATGCCTTT -ACGGAACTCTCTCTGCATGGTCTT -ACGGAACTCTCTCTGCATACGCTT -ACGGAACTCTCTCTGCATAGCGTT -ACGGAACTCTCTCTGCATTTCGTC -ACGGAACTCTCTCTGCATTCTCTC -ACGGAACTCTCTCTGCATTGGATC -ACGGAACTCTCTCTGCATCACTTC -ACGGAACTCTCTCTGCATGTACTC -ACGGAACTCTCTCTGCATGATGTC -ACGGAACTCTCTCTGCATACAGTC -ACGGAACTCTCTCTGCATTTGCTG -ACGGAACTCTCTCTGCATTCCATG -ACGGAACTCTCTCTGCATTGTGTG -ACGGAACTCTCTCTGCATCTAGTG -ACGGAACTCTCTCTGCATCATCTG -ACGGAACTCTCTCTGCATGAGTTG -ACGGAACTCTCTCTGCATAGACTG -ACGGAACTCTCTCTGCATTCGGTA -ACGGAACTCTCTCTGCATTGCCTA -ACGGAACTCTCTCTGCATCCACTA -ACGGAACTCTCTCTGCATGGAGTA -ACGGAACTCTCTCTGCATTCGTCT -ACGGAACTCTCTCTGCATTGCACT -ACGGAACTCTCTCTGCATCTGACT -ACGGAACTCTCTCTGCATCAACCT -ACGGAACTCTCTCTGCATGCTACT -ACGGAACTCTCTCTGCATGGATCT -ACGGAACTCTCTCTGCATAAGGCT -ACGGAACTCTCTCTGCATTCAACC -ACGGAACTCTCTCTGCATTGTTCC -ACGGAACTCTCTCTGCATATTCCC -ACGGAACTCTCTCTGCATTTCTCG -ACGGAACTCTCTCTGCATTAGACG -ACGGAACTCTCTCTGCATGTAACG -ACGGAACTCTCTCTGCATACTTCG -ACGGAACTCTCTCTGCATTACGCA -ACGGAACTCTCTCTGCATCTTGCA -ACGGAACTCTCTCTGCATCGAACA -ACGGAACTCTCTCTGCATCAGTCA -ACGGAACTCTCTCTGCATGATCCA -ACGGAACTCTCTCTGCATACGACA -ACGGAACTCTCTCTGCATAGCTCA -ACGGAACTCTCTCTGCATTCACGT -ACGGAACTCTCTCTGCATCGTAGT -ACGGAACTCTCTCTGCATGTCAGT -ACGGAACTCTCTCTGCATGAAGGT -ACGGAACTCTCTCTGCATAACCGT -ACGGAACTCTCTCTGCATTTGTGC -ACGGAACTCTCTCTGCATCTAAGC -ACGGAACTCTCTCTGCATACTAGC -ACGGAACTCTCTCTGCATAGATGC -ACGGAACTCTCTCTGCATTGAAGG -ACGGAACTCTCTCTGCATCAATGG -ACGGAACTCTCTCTGCATATGAGG -ACGGAACTCTCTCTGCATAATGGG -ACGGAACTCTCTCTGCATTCCTGA -ACGGAACTCTCTCTGCATTAGCGA -ACGGAACTCTCTCTGCATCACAGA -ACGGAACTCTCTCTGCATGCAAGA -ACGGAACTCTCTCTGCATGGTTGA -ACGGAACTCTCTCTGCATTCCGAT -ACGGAACTCTCTCTGCATTGGCAT -ACGGAACTCTCTCTGCATCGAGAT -ACGGAACTCTCTCTGCATTACCAC -ACGGAACTCTCTCTGCATCAGAAC -ACGGAACTCTCTCTGCATGTCTAC -ACGGAACTCTCTCTGCATACGTAC -ACGGAACTCTCTCTGCATAGTGAC -ACGGAACTCTCTCTGCATCTGTAG -ACGGAACTCTCTCTGCATCCTAAG -ACGGAACTCTCTCTGCATGTTCAG -ACGGAACTCTCTCTGCATGCATAG -ACGGAACTCTCTCTGCATGACAAG -ACGGAACTCTCTCTGCATAAGCAG -ACGGAACTCTCTCTGCATCGTCAA -ACGGAACTCTCTCTGCATGCTGAA -ACGGAACTCTCTCTGCATAGTACG -ACGGAACTCTCTCTGCATATCCGA -ACGGAACTCTCTCTGCATATGGGA -ACGGAACTCTCTCTGCATGTGCAA -ACGGAACTCTCTCTGCATGAGGAA -ACGGAACTCTCTCTGCATCAGGTA -ACGGAACTCTCTCTGCATGACTCT -ACGGAACTCTCTCTGCATAGTCCT -ACGGAACTCTCTCTGCATTAAGCC -ACGGAACTCTCTCTGCATATAGCC -ACGGAACTCTCTCTGCATTAACCG -ACGGAACTCTCTCTGCATATGCCA -ACGGAACTCTCTTTGGAGGGAAAC -ACGGAACTCTCTTTGGAGAACACC -ACGGAACTCTCTTTGGAGATCGAG -ACGGAACTCTCTTTGGAGCTCCTT -ACGGAACTCTCTTTGGAGCCTGTT -ACGGAACTCTCTTTGGAGCGGTTT -ACGGAACTCTCTTTGGAGGTGGTT -ACGGAACTCTCTTTGGAGGCCTTT -ACGGAACTCTCTTTGGAGGGTCTT -ACGGAACTCTCTTTGGAGACGCTT -ACGGAACTCTCTTTGGAGAGCGTT -ACGGAACTCTCTTTGGAGTTCGTC -ACGGAACTCTCTTTGGAGTCTCTC -ACGGAACTCTCTTTGGAGTGGATC -ACGGAACTCTCTTTGGAGCACTTC -ACGGAACTCTCTTTGGAGGTACTC -ACGGAACTCTCTTTGGAGGATGTC -ACGGAACTCTCTTTGGAGACAGTC -ACGGAACTCTCTTTGGAGTTGCTG -ACGGAACTCTCTTTGGAGTCCATG -ACGGAACTCTCTTTGGAGTGTGTG -ACGGAACTCTCTTTGGAGCTAGTG -ACGGAACTCTCTTTGGAGCATCTG -ACGGAACTCTCTTTGGAGGAGTTG -ACGGAACTCTCTTTGGAGAGACTG -ACGGAACTCTCTTTGGAGTCGGTA -ACGGAACTCTCTTTGGAGTGCCTA -ACGGAACTCTCTTTGGAGCCACTA -ACGGAACTCTCTTTGGAGGGAGTA -ACGGAACTCTCTTTGGAGTCGTCT -ACGGAACTCTCTTTGGAGTGCACT -ACGGAACTCTCTTTGGAGCTGACT -ACGGAACTCTCTTTGGAGCAACCT -ACGGAACTCTCTTTGGAGGCTACT -ACGGAACTCTCTTTGGAGGGATCT -ACGGAACTCTCTTTGGAGAAGGCT -ACGGAACTCTCTTTGGAGTCAACC -ACGGAACTCTCTTTGGAGTGTTCC -ACGGAACTCTCTTTGGAGATTCCC -ACGGAACTCTCTTTGGAGTTCTCG -ACGGAACTCTCTTTGGAGTAGACG -ACGGAACTCTCTTTGGAGGTAACG -ACGGAACTCTCTTTGGAGACTTCG -ACGGAACTCTCTTTGGAGTACGCA -ACGGAACTCTCTTTGGAGCTTGCA -ACGGAACTCTCTTTGGAGCGAACA -ACGGAACTCTCTTTGGAGCAGTCA -ACGGAACTCTCTTTGGAGGATCCA -ACGGAACTCTCTTTGGAGACGACA -ACGGAACTCTCTTTGGAGAGCTCA -ACGGAACTCTCTTTGGAGTCACGT -ACGGAACTCTCTTTGGAGCGTAGT -ACGGAACTCTCTTTGGAGGTCAGT -ACGGAACTCTCTTTGGAGGAAGGT -ACGGAACTCTCTTTGGAGAACCGT -ACGGAACTCTCTTTGGAGTTGTGC -ACGGAACTCTCTTTGGAGCTAAGC -ACGGAACTCTCTTTGGAGACTAGC -ACGGAACTCTCTTTGGAGAGATGC -ACGGAACTCTCTTTGGAGTGAAGG -ACGGAACTCTCTTTGGAGCAATGG -ACGGAACTCTCTTTGGAGATGAGG -ACGGAACTCTCTTTGGAGAATGGG -ACGGAACTCTCTTTGGAGTCCTGA -ACGGAACTCTCTTTGGAGTAGCGA -ACGGAACTCTCTTTGGAGCACAGA -ACGGAACTCTCTTTGGAGGCAAGA -ACGGAACTCTCTTTGGAGGGTTGA -ACGGAACTCTCTTTGGAGTCCGAT -ACGGAACTCTCTTTGGAGTGGCAT -ACGGAACTCTCTTTGGAGCGAGAT -ACGGAACTCTCTTTGGAGTACCAC -ACGGAACTCTCTTTGGAGCAGAAC -ACGGAACTCTCTTTGGAGGTCTAC -ACGGAACTCTCTTTGGAGACGTAC -ACGGAACTCTCTTTGGAGAGTGAC -ACGGAACTCTCTTTGGAGCTGTAG -ACGGAACTCTCTTTGGAGCCTAAG -ACGGAACTCTCTTTGGAGGTTCAG -ACGGAACTCTCTTTGGAGGCATAG -ACGGAACTCTCTTTGGAGGACAAG -ACGGAACTCTCTTTGGAGAAGCAG -ACGGAACTCTCTTTGGAGCGTCAA -ACGGAACTCTCTTTGGAGGCTGAA -ACGGAACTCTCTTTGGAGAGTACG -ACGGAACTCTCTTTGGAGATCCGA -ACGGAACTCTCTTTGGAGATGGGA -ACGGAACTCTCTTTGGAGGTGCAA -ACGGAACTCTCTTTGGAGGAGGAA -ACGGAACTCTCTTTGGAGCAGGTA -ACGGAACTCTCTTTGGAGGACTCT -ACGGAACTCTCTTTGGAGAGTCCT -ACGGAACTCTCTTTGGAGTAAGCC -ACGGAACTCTCTTTGGAGATAGCC -ACGGAACTCTCTTTGGAGTAACCG -ACGGAACTCTCTTTGGAGATGCCA -ACGGAACTCTCTCTGAGAGGAAAC -ACGGAACTCTCTCTGAGAAACACC -ACGGAACTCTCTCTGAGAATCGAG -ACGGAACTCTCTCTGAGACTCCTT -ACGGAACTCTCTCTGAGACCTGTT -ACGGAACTCTCTCTGAGACGGTTT -ACGGAACTCTCTCTGAGAGTGGTT -ACGGAACTCTCTCTGAGAGCCTTT -ACGGAACTCTCTCTGAGAGGTCTT -ACGGAACTCTCTCTGAGAACGCTT -ACGGAACTCTCTCTGAGAAGCGTT -ACGGAACTCTCTCTGAGATTCGTC -ACGGAACTCTCTCTGAGATCTCTC -ACGGAACTCTCTCTGAGATGGATC -ACGGAACTCTCTCTGAGACACTTC -ACGGAACTCTCTCTGAGAGTACTC -ACGGAACTCTCTCTGAGAGATGTC -ACGGAACTCTCTCTGAGAACAGTC -ACGGAACTCTCTCTGAGATTGCTG -ACGGAACTCTCTCTGAGATCCATG -ACGGAACTCTCTCTGAGATGTGTG -ACGGAACTCTCTCTGAGACTAGTG -ACGGAACTCTCTCTGAGACATCTG -ACGGAACTCTCTCTGAGAGAGTTG -ACGGAACTCTCTCTGAGAAGACTG -ACGGAACTCTCTCTGAGATCGGTA -ACGGAACTCTCTCTGAGATGCCTA -ACGGAACTCTCTCTGAGACCACTA -ACGGAACTCTCTCTGAGAGGAGTA -ACGGAACTCTCTCTGAGATCGTCT -ACGGAACTCTCTCTGAGATGCACT -ACGGAACTCTCTCTGAGACTGACT -ACGGAACTCTCTCTGAGACAACCT -ACGGAACTCTCTCTGAGAGCTACT -ACGGAACTCTCTCTGAGAGGATCT -ACGGAACTCTCTCTGAGAAAGGCT -ACGGAACTCTCTCTGAGATCAACC -ACGGAACTCTCTCTGAGATGTTCC -ACGGAACTCTCTCTGAGAATTCCC -ACGGAACTCTCTCTGAGATTCTCG -ACGGAACTCTCTCTGAGATAGACG -ACGGAACTCTCTCTGAGAGTAACG -ACGGAACTCTCTCTGAGAACTTCG -ACGGAACTCTCTCTGAGATACGCA -ACGGAACTCTCTCTGAGACTTGCA -ACGGAACTCTCTCTGAGACGAACA -ACGGAACTCTCTCTGAGACAGTCA -ACGGAACTCTCTCTGAGAGATCCA -ACGGAACTCTCTCTGAGAACGACA -ACGGAACTCTCTCTGAGAAGCTCA -ACGGAACTCTCTCTGAGATCACGT -ACGGAACTCTCTCTGAGACGTAGT -ACGGAACTCTCTCTGAGAGTCAGT -ACGGAACTCTCTCTGAGAGAAGGT -ACGGAACTCTCTCTGAGAAACCGT -ACGGAACTCTCTCTGAGATTGTGC -ACGGAACTCTCTCTGAGACTAAGC -ACGGAACTCTCTCTGAGAACTAGC -ACGGAACTCTCTCTGAGAAGATGC -ACGGAACTCTCTCTGAGATGAAGG -ACGGAACTCTCTCTGAGACAATGG -ACGGAACTCTCTCTGAGAATGAGG -ACGGAACTCTCTCTGAGAAATGGG -ACGGAACTCTCTCTGAGATCCTGA -ACGGAACTCTCTCTGAGATAGCGA -ACGGAACTCTCTCTGAGACACAGA -ACGGAACTCTCTCTGAGAGCAAGA -ACGGAACTCTCTCTGAGAGGTTGA -ACGGAACTCTCTCTGAGATCCGAT -ACGGAACTCTCTCTGAGATGGCAT -ACGGAACTCTCTCTGAGACGAGAT -ACGGAACTCTCTCTGAGATACCAC -ACGGAACTCTCTCTGAGACAGAAC -ACGGAACTCTCTCTGAGAGTCTAC -ACGGAACTCTCTCTGAGAACGTAC -ACGGAACTCTCTCTGAGAAGTGAC -ACGGAACTCTCTCTGAGACTGTAG -ACGGAACTCTCTCTGAGACCTAAG -ACGGAACTCTCTCTGAGAGTTCAG -ACGGAACTCTCTCTGAGAGCATAG -ACGGAACTCTCTCTGAGAGACAAG -ACGGAACTCTCTCTGAGAAAGCAG -ACGGAACTCTCTCTGAGACGTCAA -ACGGAACTCTCTCTGAGAGCTGAA -ACGGAACTCTCTCTGAGAAGTACG -ACGGAACTCTCTCTGAGAATCCGA -ACGGAACTCTCTCTGAGAATGGGA -ACGGAACTCTCTCTGAGAGTGCAA -ACGGAACTCTCTCTGAGAGAGGAA -ACGGAACTCTCTCTGAGACAGGTA -ACGGAACTCTCTCTGAGAGACTCT -ACGGAACTCTCTCTGAGAAGTCCT -ACGGAACTCTCTCTGAGATAAGCC -ACGGAACTCTCTCTGAGAATAGCC -ACGGAACTCTCTCTGAGATAACCG -ACGGAACTCTCTCTGAGAATGCCA -ACGGAACTCTCTGTATCGGGAAAC -ACGGAACTCTCTGTATCGAACACC -ACGGAACTCTCTGTATCGATCGAG -ACGGAACTCTCTGTATCGCTCCTT -ACGGAACTCTCTGTATCGCCTGTT -ACGGAACTCTCTGTATCGCGGTTT -ACGGAACTCTCTGTATCGGTGGTT -ACGGAACTCTCTGTATCGGCCTTT -ACGGAACTCTCTGTATCGGGTCTT -ACGGAACTCTCTGTATCGACGCTT -ACGGAACTCTCTGTATCGAGCGTT -ACGGAACTCTCTGTATCGTTCGTC -ACGGAACTCTCTGTATCGTCTCTC -ACGGAACTCTCTGTATCGTGGATC -ACGGAACTCTCTGTATCGCACTTC -ACGGAACTCTCTGTATCGGTACTC -ACGGAACTCTCTGTATCGGATGTC -ACGGAACTCTCTGTATCGACAGTC -ACGGAACTCTCTGTATCGTTGCTG -ACGGAACTCTCTGTATCGTCCATG -ACGGAACTCTCTGTATCGTGTGTG -ACGGAACTCTCTGTATCGCTAGTG -ACGGAACTCTCTGTATCGCATCTG -ACGGAACTCTCTGTATCGGAGTTG -ACGGAACTCTCTGTATCGAGACTG -ACGGAACTCTCTGTATCGTCGGTA -ACGGAACTCTCTGTATCGTGCCTA -ACGGAACTCTCTGTATCGCCACTA -ACGGAACTCTCTGTATCGGGAGTA -ACGGAACTCTCTGTATCGTCGTCT -ACGGAACTCTCTGTATCGTGCACT -ACGGAACTCTCTGTATCGCTGACT -ACGGAACTCTCTGTATCGCAACCT -ACGGAACTCTCTGTATCGGCTACT -ACGGAACTCTCTGTATCGGGATCT -ACGGAACTCTCTGTATCGAAGGCT -ACGGAACTCTCTGTATCGTCAACC -ACGGAACTCTCTGTATCGTGTTCC -ACGGAACTCTCTGTATCGATTCCC -ACGGAACTCTCTGTATCGTTCTCG -ACGGAACTCTCTGTATCGTAGACG -ACGGAACTCTCTGTATCGGTAACG -ACGGAACTCTCTGTATCGACTTCG -ACGGAACTCTCTGTATCGTACGCA -ACGGAACTCTCTGTATCGCTTGCA -ACGGAACTCTCTGTATCGCGAACA -ACGGAACTCTCTGTATCGCAGTCA -ACGGAACTCTCTGTATCGGATCCA -ACGGAACTCTCTGTATCGACGACA -ACGGAACTCTCTGTATCGAGCTCA -ACGGAACTCTCTGTATCGTCACGT -ACGGAACTCTCTGTATCGCGTAGT -ACGGAACTCTCTGTATCGGTCAGT -ACGGAACTCTCTGTATCGGAAGGT -ACGGAACTCTCTGTATCGAACCGT -ACGGAACTCTCTGTATCGTTGTGC -ACGGAACTCTCTGTATCGCTAAGC -ACGGAACTCTCTGTATCGACTAGC -ACGGAACTCTCTGTATCGAGATGC -ACGGAACTCTCTGTATCGTGAAGG -ACGGAACTCTCTGTATCGCAATGG -ACGGAACTCTCTGTATCGATGAGG -ACGGAACTCTCTGTATCGAATGGG -ACGGAACTCTCTGTATCGTCCTGA -ACGGAACTCTCTGTATCGTAGCGA -ACGGAACTCTCTGTATCGCACAGA -ACGGAACTCTCTGTATCGGCAAGA -ACGGAACTCTCTGTATCGGGTTGA -ACGGAACTCTCTGTATCGTCCGAT -ACGGAACTCTCTGTATCGTGGCAT -ACGGAACTCTCTGTATCGCGAGAT -ACGGAACTCTCTGTATCGTACCAC -ACGGAACTCTCTGTATCGCAGAAC -ACGGAACTCTCTGTATCGGTCTAC -ACGGAACTCTCTGTATCGACGTAC -ACGGAACTCTCTGTATCGAGTGAC -ACGGAACTCTCTGTATCGCTGTAG -ACGGAACTCTCTGTATCGCCTAAG -ACGGAACTCTCTGTATCGGTTCAG -ACGGAACTCTCTGTATCGGCATAG -ACGGAACTCTCTGTATCGGACAAG -ACGGAACTCTCTGTATCGAAGCAG -ACGGAACTCTCTGTATCGCGTCAA -ACGGAACTCTCTGTATCGGCTGAA -ACGGAACTCTCTGTATCGAGTACG -ACGGAACTCTCTGTATCGATCCGA -ACGGAACTCTCTGTATCGATGGGA -ACGGAACTCTCTGTATCGGTGCAA -ACGGAACTCTCTGTATCGGAGGAA -ACGGAACTCTCTGTATCGCAGGTA -ACGGAACTCTCTGTATCGGACTCT -ACGGAACTCTCTGTATCGAGTCCT -ACGGAACTCTCTGTATCGTAAGCC -ACGGAACTCTCTGTATCGATAGCC -ACGGAACTCTCTGTATCGTAACCG -ACGGAACTCTCTGTATCGATGCCA -ACGGAACTCTCTCTATGCGGAAAC -ACGGAACTCTCTCTATGCAACACC -ACGGAACTCTCTCTATGCATCGAG -ACGGAACTCTCTCTATGCCTCCTT -ACGGAACTCTCTCTATGCCCTGTT -ACGGAACTCTCTCTATGCCGGTTT -ACGGAACTCTCTCTATGCGTGGTT -ACGGAACTCTCTCTATGCGCCTTT -ACGGAACTCTCTCTATGCGGTCTT -ACGGAACTCTCTCTATGCACGCTT -ACGGAACTCTCTCTATGCAGCGTT -ACGGAACTCTCTCTATGCTTCGTC -ACGGAACTCTCTCTATGCTCTCTC -ACGGAACTCTCTCTATGCTGGATC -ACGGAACTCTCTCTATGCCACTTC -ACGGAACTCTCTCTATGCGTACTC -ACGGAACTCTCTCTATGCGATGTC -ACGGAACTCTCTCTATGCACAGTC -ACGGAACTCTCTCTATGCTTGCTG -ACGGAACTCTCTCTATGCTCCATG -ACGGAACTCTCTCTATGCTGTGTG -ACGGAACTCTCTCTATGCCTAGTG -ACGGAACTCTCTCTATGCCATCTG -ACGGAACTCTCTCTATGCGAGTTG -ACGGAACTCTCTCTATGCAGACTG -ACGGAACTCTCTCTATGCTCGGTA -ACGGAACTCTCTCTATGCTGCCTA -ACGGAACTCTCTCTATGCCCACTA -ACGGAACTCTCTCTATGCGGAGTA -ACGGAACTCTCTCTATGCTCGTCT -ACGGAACTCTCTCTATGCTGCACT -ACGGAACTCTCTCTATGCCTGACT -ACGGAACTCTCTCTATGCCAACCT -ACGGAACTCTCTCTATGCGCTACT -ACGGAACTCTCTCTATGCGGATCT -ACGGAACTCTCTCTATGCAAGGCT -ACGGAACTCTCTCTATGCTCAACC -ACGGAACTCTCTCTATGCTGTTCC -ACGGAACTCTCTCTATGCATTCCC -ACGGAACTCTCTCTATGCTTCTCG -ACGGAACTCTCTCTATGCTAGACG -ACGGAACTCTCTCTATGCGTAACG -ACGGAACTCTCTCTATGCACTTCG -ACGGAACTCTCTCTATGCTACGCA -ACGGAACTCTCTCTATGCCTTGCA -ACGGAACTCTCTCTATGCCGAACA -ACGGAACTCTCTCTATGCCAGTCA -ACGGAACTCTCTCTATGCGATCCA -ACGGAACTCTCTCTATGCACGACA -ACGGAACTCTCTCTATGCAGCTCA -ACGGAACTCTCTCTATGCTCACGT -ACGGAACTCTCTCTATGCCGTAGT -ACGGAACTCTCTCTATGCGTCAGT -ACGGAACTCTCTCTATGCGAAGGT -ACGGAACTCTCTCTATGCAACCGT -ACGGAACTCTCTCTATGCTTGTGC -ACGGAACTCTCTCTATGCCTAAGC -ACGGAACTCTCTCTATGCACTAGC -ACGGAACTCTCTCTATGCAGATGC -ACGGAACTCTCTCTATGCTGAAGG -ACGGAACTCTCTCTATGCCAATGG -ACGGAACTCTCTCTATGCATGAGG -ACGGAACTCTCTCTATGCAATGGG -ACGGAACTCTCTCTATGCTCCTGA -ACGGAACTCTCTCTATGCTAGCGA -ACGGAACTCTCTCTATGCCACAGA -ACGGAACTCTCTCTATGCGCAAGA -ACGGAACTCTCTCTATGCGGTTGA -ACGGAACTCTCTCTATGCTCCGAT -ACGGAACTCTCTCTATGCTGGCAT -ACGGAACTCTCTCTATGCCGAGAT -ACGGAACTCTCTCTATGCTACCAC -ACGGAACTCTCTCTATGCCAGAAC -ACGGAACTCTCTCTATGCGTCTAC -ACGGAACTCTCTCTATGCACGTAC -ACGGAACTCTCTCTATGCAGTGAC -ACGGAACTCTCTCTATGCCTGTAG -ACGGAACTCTCTCTATGCCCTAAG -ACGGAACTCTCTCTATGCGTTCAG -ACGGAACTCTCTCTATGCGCATAG -ACGGAACTCTCTCTATGCGACAAG -ACGGAACTCTCTCTATGCAAGCAG -ACGGAACTCTCTCTATGCCGTCAA -ACGGAACTCTCTCTATGCGCTGAA -ACGGAACTCTCTCTATGCAGTACG -ACGGAACTCTCTCTATGCATCCGA -ACGGAACTCTCTCTATGCATGGGA -ACGGAACTCTCTCTATGCGTGCAA -ACGGAACTCTCTCTATGCGAGGAA -ACGGAACTCTCTCTATGCCAGGTA -ACGGAACTCTCTCTATGCGACTCT -ACGGAACTCTCTCTATGCAGTCCT -ACGGAACTCTCTCTATGCTAAGCC -ACGGAACTCTCTCTATGCATAGCC -ACGGAACTCTCTCTATGCTAACCG -ACGGAACTCTCTCTATGCATGCCA -ACGGAACTCTCTCTACCAGGAAAC -ACGGAACTCTCTCTACCAAACACC -ACGGAACTCTCTCTACCAATCGAG -ACGGAACTCTCTCTACCACTCCTT -ACGGAACTCTCTCTACCACCTGTT -ACGGAACTCTCTCTACCACGGTTT -ACGGAACTCTCTCTACCAGTGGTT -ACGGAACTCTCTCTACCAGCCTTT -ACGGAACTCTCTCTACCAGGTCTT -ACGGAACTCTCTCTACCAACGCTT -ACGGAACTCTCTCTACCAAGCGTT -ACGGAACTCTCTCTACCATTCGTC -ACGGAACTCTCTCTACCATCTCTC -ACGGAACTCTCTCTACCATGGATC -ACGGAACTCTCTCTACCACACTTC -ACGGAACTCTCTCTACCAGTACTC -ACGGAACTCTCTCTACCAGATGTC -ACGGAACTCTCTCTACCAACAGTC -ACGGAACTCTCTCTACCATTGCTG -ACGGAACTCTCTCTACCATCCATG -ACGGAACTCTCTCTACCATGTGTG -ACGGAACTCTCTCTACCACTAGTG -ACGGAACTCTCTCTACCACATCTG -ACGGAACTCTCTCTACCAGAGTTG -ACGGAACTCTCTCTACCAAGACTG -ACGGAACTCTCTCTACCATCGGTA -ACGGAACTCTCTCTACCATGCCTA -ACGGAACTCTCTCTACCACCACTA -ACGGAACTCTCTCTACCAGGAGTA -ACGGAACTCTCTCTACCATCGTCT -ACGGAACTCTCTCTACCATGCACT -ACGGAACTCTCTCTACCACTGACT -ACGGAACTCTCTCTACCACAACCT -ACGGAACTCTCTCTACCAGCTACT -ACGGAACTCTCTCTACCAGGATCT -ACGGAACTCTCTCTACCAAAGGCT -ACGGAACTCTCTCTACCATCAACC -ACGGAACTCTCTCTACCATGTTCC -ACGGAACTCTCTCTACCAATTCCC -ACGGAACTCTCTCTACCATTCTCG -ACGGAACTCTCTCTACCATAGACG -ACGGAACTCTCTCTACCAGTAACG -ACGGAACTCTCTCTACCAACTTCG -ACGGAACTCTCTCTACCATACGCA -ACGGAACTCTCTCTACCACTTGCA -ACGGAACTCTCTCTACCACGAACA -ACGGAACTCTCTCTACCACAGTCA -ACGGAACTCTCTCTACCAGATCCA -ACGGAACTCTCTCTACCAACGACA -ACGGAACTCTCTCTACCAAGCTCA -ACGGAACTCTCTCTACCATCACGT -ACGGAACTCTCTCTACCACGTAGT -ACGGAACTCTCTCTACCAGTCAGT -ACGGAACTCTCTCTACCAGAAGGT -ACGGAACTCTCTCTACCAAACCGT -ACGGAACTCTCTCTACCATTGTGC -ACGGAACTCTCTCTACCACTAAGC -ACGGAACTCTCTCTACCAACTAGC -ACGGAACTCTCTCTACCAAGATGC -ACGGAACTCTCTCTACCATGAAGG -ACGGAACTCTCTCTACCACAATGG -ACGGAACTCTCTCTACCAATGAGG -ACGGAACTCTCTCTACCAAATGGG -ACGGAACTCTCTCTACCATCCTGA -ACGGAACTCTCTCTACCATAGCGA -ACGGAACTCTCTCTACCACACAGA -ACGGAACTCTCTCTACCAGCAAGA -ACGGAACTCTCTCTACCAGGTTGA -ACGGAACTCTCTCTACCATCCGAT -ACGGAACTCTCTCTACCATGGCAT -ACGGAACTCTCTCTACCACGAGAT -ACGGAACTCTCTCTACCATACCAC -ACGGAACTCTCTCTACCACAGAAC -ACGGAACTCTCTCTACCAGTCTAC -ACGGAACTCTCTCTACCAACGTAC -ACGGAACTCTCTCTACCAAGTGAC -ACGGAACTCTCTCTACCACTGTAG -ACGGAACTCTCTCTACCACCTAAG -ACGGAACTCTCTCTACCAGTTCAG -ACGGAACTCTCTCTACCAGCATAG -ACGGAACTCTCTCTACCAGACAAG -ACGGAACTCTCTCTACCAAAGCAG -ACGGAACTCTCTCTACCACGTCAA -ACGGAACTCTCTCTACCAGCTGAA -ACGGAACTCTCTCTACCAAGTACG -ACGGAACTCTCTCTACCAATCCGA -ACGGAACTCTCTCTACCAATGGGA -ACGGAACTCTCTCTACCAGTGCAA -ACGGAACTCTCTCTACCAGAGGAA -ACGGAACTCTCTCTACCACAGGTA -ACGGAACTCTCTCTACCAGACTCT -ACGGAACTCTCTCTACCAAGTCCT -ACGGAACTCTCTCTACCATAAGCC -ACGGAACTCTCTCTACCAATAGCC -ACGGAACTCTCTCTACCATAACCG -ACGGAACTCTCTCTACCAATGCCA -ACGGAACTCTCTGTAGGAGGAAAC -ACGGAACTCTCTGTAGGAAACACC -ACGGAACTCTCTGTAGGAATCGAG -ACGGAACTCTCTGTAGGACTCCTT -ACGGAACTCTCTGTAGGACCTGTT -ACGGAACTCTCTGTAGGACGGTTT -ACGGAACTCTCTGTAGGAGTGGTT -ACGGAACTCTCTGTAGGAGCCTTT -ACGGAACTCTCTGTAGGAGGTCTT -ACGGAACTCTCTGTAGGAACGCTT -ACGGAACTCTCTGTAGGAAGCGTT -ACGGAACTCTCTGTAGGATTCGTC -ACGGAACTCTCTGTAGGATCTCTC -ACGGAACTCTCTGTAGGATGGATC -ACGGAACTCTCTGTAGGACACTTC -ACGGAACTCTCTGTAGGAGTACTC -ACGGAACTCTCTGTAGGAGATGTC -ACGGAACTCTCTGTAGGAACAGTC -ACGGAACTCTCTGTAGGATTGCTG -ACGGAACTCTCTGTAGGATCCATG -ACGGAACTCTCTGTAGGATGTGTG -ACGGAACTCTCTGTAGGACTAGTG -ACGGAACTCTCTGTAGGACATCTG -ACGGAACTCTCTGTAGGAGAGTTG -ACGGAACTCTCTGTAGGAAGACTG -ACGGAACTCTCTGTAGGATCGGTA -ACGGAACTCTCTGTAGGATGCCTA -ACGGAACTCTCTGTAGGACCACTA -ACGGAACTCTCTGTAGGAGGAGTA -ACGGAACTCTCTGTAGGATCGTCT -ACGGAACTCTCTGTAGGATGCACT -ACGGAACTCTCTGTAGGACTGACT -ACGGAACTCTCTGTAGGACAACCT -ACGGAACTCTCTGTAGGAGCTACT -ACGGAACTCTCTGTAGGAGGATCT -ACGGAACTCTCTGTAGGAAAGGCT -ACGGAACTCTCTGTAGGATCAACC -ACGGAACTCTCTGTAGGATGTTCC -ACGGAACTCTCTGTAGGAATTCCC -ACGGAACTCTCTGTAGGATTCTCG -ACGGAACTCTCTGTAGGATAGACG -ACGGAACTCTCTGTAGGAGTAACG -ACGGAACTCTCTGTAGGAACTTCG -ACGGAACTCTCTGTAGGATACGCA -ACGGAACTCTCTGTAGGACTTGCA -ACGGAACTCTCTGTAGGACGAACA -ACGGAACTCTCTGTAGGACAGTCA -ACGGAACTCTCTGTAGGAGATCCA -ACGGAACTCTCTGTAGGAACGACA -ACGGAACTCTCTGTAGGAAGCTCA -ACGGAACTCTCTGTAGGATCACGT -ACGGAACTCTCTGTAGGACGTAGT -ACGGAACTCTCTGTAGGAGTCAGT -ACGGAACTCTCTGTAGGAGAAGGT -ACGGAACTCTCTGTAGGAAACCGT -ACGGAACTCTCTGTAGGATTGTGC -ACGGAACTCTCTGTAGGACTAAGC -ACGGAACTCTCTGTAGGAACTAGC -ACGGAACTCTCTGTAGGAAGATGC -ACGGAACTCTCTGTAGGATGAAGG -ACGGAACTCTCTGTAGGACAATGG -ACGGAACTCTCTGTAGGAATGAGG -ACGGAACTCTCTGTAGGAAATGGG -ACGGAACTCTCTGTAGGATCCTGA -ACGGAACTCTCTGTAGGATAGCGA -ACGGAACTCTCTGTAGGACACAGA -ACGGAACTCTCTGTAGGAGCAAGA -ACGGAACTCTCTGTAGGAGGTTGA -ACGGAACTCTCTGTAGGATCCGAT -ACGGAACTCTCTGTAGGATGGCAT -ACGGAACTCTCTGTAGGACGAGAT -ACGGAACTCTCTGTAGGATACCAC -ACGGAACTCTCTGTAGGACAGAAC -ACGGAACTCTCTGTAGGAGTCTAC -ACGGAACTCTCTGTAGGAACGTAC -ACGGAACTCTCTGTAGGAAGTGAC -ACGGAACTCTCTGTAGGACTGTAG -ACGGAACTCTCTGTAGGACCTAAG -ACGGAACTCTCTGTAGGAGTTCAG -ACGGAACTCTCTGTAGGAGCATAG -ACGGAACTCTCTGTAGGAGACAAG -ACGGAACTCTCTGTAGGAAAGCAG -ACGGAACTCTCTGTAGGACGTCAA -ACGGAACTCTCTGTAGGAGCTGAA -ACGGAACTCTCTGTAGGAAGTACG -ACGGAACTCTCTGTAGGAATCCGA -ACGGAACTCTCTGTAGGAATGGGA -ACGGAACTCTCTGTAGGAGTGCAA -ACGGAACTCTCTGTAGGAGAGGAA -ACGGAACTCTCTGTAGGACAGGTA -ACGGAACTCTCTGTAGGAGACTCT -ACGGAACTCTCTGTAGGAAGTCCT -ACGGAACTCTCTGTAGGATAAGCC -ACGGAACTCTCTGTAGGAATAGCC -ACGGAACTCTCTGTAGGATAACCG -ACGGAACTCTCTGTAGGAATGCCA -ACGGAACTCTCTTCTTCGGGAAAC -ACGGAACTCTCTTCTTCGAACACC -ACGGAACTCTCTTCTTCGATCGAG -ACGGAACTCTCTTCTTCGCTCCTT -ACGGAACTCTCTTCTTCGCCTGTT -ACGGAACTCTCTTCTTCGCGGTTT -ACGGAACTCTCTTCTTCGGTGGTT -ACGGAACTCTCTTCTTCGGCCTTT -ACGGAACTCTCTTCTTCGGGTCTT -ACGGAACTCTCTTCTTCGACGCTT -ACGGAACTCTCTTCTTCGAGCGTT -ACGGAACTCTCTTCTTCGTTCGTC -ACGGAACTCTCTTCTTCGTCTCTC -ACGGAACTCTCTTCTTCGTGGATC -ACGGAACTCTCTTCTTCGCACTTC -ACGGAACTCTCTTCTTCGGTACTC -ACGGAACTCTCTTCTTCGGATGTC -ACGGAACTCTCTTCTTCGACAGTC -ACGGAACTCTCTTCTTCGTTGCTG -ACGGAACTCTCTTCTTCGTCCATG -ACGGAACTCTCTTCTTCGTGTGTG -ACGGAACTCTCTTCTTCGCTAGTG -ACGGAACTCTCTTCTTCGCATCTG -ACGGAACTCTCTTCTTCGGAGTTG -ACGGAACTCTCTTCTTCGAGACTG -ACGGAACTCTCTTCTTCGTCGGTA -ACGGAACTCTCTTCTTCGTGCCTA -ACGGAACTCTCTTCTTCGCCACTA -ACGGAACTCTCTTCTTCGGGAGTA -ACGGAACTCTCTTCTTCGTCGTCT -ACGGAACTCTCTTCTTCGTGCACT -ACGGAACTCTCTTCTTCGCTGACT -ACGGAACTCTCTTCTTCGCAACCT -ACGGAACTCTCTTCTTCGGCTACT -ACGGAACTCTCTTCTTCGGGATCT -ACGGAACTCTCTTCTTCGAAGGCT -ACGGAACTCTCTTCTTCGTCAACC -ACGGAACTCTCTTCTTCGTGTTCC -ACGGAACTCTCTTCTTCGATTCCC -ACGGAACTCTCTTCTTCGTTCTCG -ACGGAACTCTCTTCTTCGTAGACG -ACGGAACTCTCTTCTTCGGTAACG -ACGGAACTCTCTTCTTCGACTTCG -ACGGAACTCTCTTCTTCGTACGCA -ACGGAACTCTCTTCTTCGCTTGCA -ACGGAACTCTCTTCTTCGCGAACA -ACGGAACTCTCTTCTTCGCAGTCA -ACGGAACTCTCTTCTTCGGATCCA -ACGGAACTCTCTTCTTCGACGACA -ACGGAACTCTCTTCTTCGAGCTCA -ACGGAACTCTCTTCTTCGTCACGT -ACGGAACTCTCTTCTTCGCGTAGT -ACGGAACTCTCTTCTTCGGTCAGT -ACGGAACTCTCTTCTTCGGAAGGT -ACGGAACTCTCTTCTTCGAACCGT -ACGGAACTCTCTTCTTCGTTGTGC -ACGGAACTCTCTTCTTCGCTAAGC -ACGGAACTCTCTTCTTCGACTAGC -ACGGAACTCTCTTCTTCGAGATGC -ACGGAACTCTCTTCTTCGTGAAGG -ACGGAACTCTCTTCTTCGCAATGG -ACGGAACTCTCTTCTTCGATGAGG -ACGGAACTCTCTTCTTCGAATGGG -ACGGAACTCTCTTCTTCGTCCTGA -ACGGAACTCTCTTCTTCGTAGCGA -ACGGAACTCTCTTCTTCGCACAGA -ACGGAACTCTCTTCTTCGGCAAGA -ACGGAACTCTCTTCTTCGGGTTGA -ACGGAACTCTCTTCTTCGTCCGAT -ACGGAACTCTCTTCTTCGTGGCAT -ACGGAACTCTCTTCTTCGCGAGAT -ACGGAACTCTCTTCTTCGTACCAC -ACGGAACTCTCTTCTTCGCAGAAC -ACGGAACTCTCTTCTTCGGTCTAC -ACGGAACTCTCTTCTTCGACGTAC -ACGGAACTCTCTTCTTCGAGTGAC -ACGGAACTCTCTTCTTCGCTGTAG -ACGGAACTCTCTTCTTCGCCTAAG -ACGGAACTCTCTTCTTCGGTTCAG -ACGGAACTCTCTTCTTCGGCATAG -ACGGAACTCTCTTCTTCGGACAAG -ACGGAACTCTCTTCTTCGAAGCAG -ACGGAACTCTCTTCTTCGCGTCAA -ACGGAACTCTCTTCTTCGGCTGAA -ACGGAACTCTCTTCTTCGAGTACG -ACGGAACTCTCTTCTTCGATCCGA -ACGGAACTCTCTTCTTCGATGGGA -ACGGAACTCTCTTCTTCGGTGCAA -ACGGAACTCTCTTCTTCGGAGGAA -ACGGAACTCTCTTCTTCGCAGGTA -ACGGAACTCTCTTCTTCGGACTCT -ACGGAACTCTCTTCTTCGAGTCCT -ACGGAACTCTCTTCTTCGTAAGCC -ACGGAACTCTCTTCTTCGATAGCC -ACGGAACTCTCTTCTTCGTAACCG -ACGGAACTCTCTTCTTCGATGCCA -ACGGAACTCTCTACTTGCGGAAAC -ACGGAACTCTCTACTTGCAACACC -ACGGAACTCTCTACTTGCATCGAG -ACGGAACTCTCTACTTGCCTCCTT -ACGGAACTCTCTACTTGCCCTGTT -ACGGAACTCTCTACTTGCCGGTTT -ACGGAACTCTCTACTTGCGTGGTT -ACGGAACTCTCTACTTGCGCCTTT -ACGGAACTCTCTACTTGCGGTCTT -ACGGAACTCTCTACTTGCACGCTT -ACGGAACTCTCTACTTGCAGCGTT -ACGGAACTCTCTACTTGCTTCGTC -ACGGAACTCTCTACTTGCTCTCTC -ACGGAACTCTCTACTTGCTGGATC -ACGGAACTCTCTACTTGCCACTTC -ACGGAACTCTCTACTTGCGTACTC -ACGGAACTCTCTACTTGCGATGTC -ACGGAACTCTCTACTTGCACAGTC -ACGGAACTCTCTACTTGCTTGCTG -ACGGAACTCTCTACTTGCTCCATG -ACGGAACTCTCTACTTGCTGTGTG -ACGGAACTCTCTACTTGCCTAGTG -ACGGAACTCTCTACTTGCCATCTG -ACGGAACTCTCTACTTGCGAGTTG -ACGGAACTCTCTACTTGCAGACTG -ACGGAACTCTCTACTTGCTCGGTA -ACGGAACTCTCTACTTGCTGCCTA -ACGGAACTCTCTACTTGCCCACTA -ACGGAACTCTCTACTTGCGGAGTA -ACGGAACTCTCTACTTGCTCGTCT -ACGGAACTCTCTACTTGCTGCACT -ACGGAACTCTCTACTTGCCTGACT -ACGGAACTCTCTACTTGCCAACCT -ACGGAACTCTCTACTTGCGCTACT -ACGGAACTCTCTACTTGCGGATCT -ACGGAACTCTCTACTTGCAAGGCT -ACGGAACTCTCTACTTGCTCAACC -ACGGAACTCTCTACTTGCTGTTCC -ACGGAACTCTCTACTTGCATTCCC -ACGGAACTCTCTACTTGCTTCTCG -ACGGAACTCTCTACTTGCTAGACG -ACGGAACTCTCTACTTGCGTAACG -ACGGAACTCTCTACTTGCACTTCG -ACGGAACTCTCTACTTGCTACGCA -ACGGAACTCTCTACTTGCCTTGCA -ACGGAACTCTCTACTTGCCGAACA -ACGGAACTCTCTACTTGCCAGTCA -ACGGAACTCTCTACTTGCGATCCA -ACGGAACTCTCTACTTGCACGACA -ACGGAACTCTCTACTTGCAGCTCA -ACGGAACTCTCTACTTGCTCACGT -ACGGAACTCTCTACTTGCCGTAGT -ACGGAACTCTCTACTTGCGTCAGT -ACGGAACTCTCTACTTGCGAAGGT -ACGGAACTCTCTACTTGCAACCGT -ACGGAACTCTCTACTTGCTTGTGC -ACGGAACTCTCTACTTGCCTAAGC -ACGGAACTCTCTACTTGCACTAGC -ACGGAACTCTCTACTTGCAGATGC -ACGGAACTCTCTACTTGCTGAAGG -ACGGAACTCTCTACTTGCCAATGG -ACGGAACTCTCTACTTGCATGAGG -ACGGAACTCTCTACTTGCAATGGG -ACGGAACTCTCTACTTGCTCCTGA -ACGGAACTCTCTACTTGCTAGCGA -ACGGAACTCTCTACTTGCCACAGA -ACGGAACTCTCTACTTGCGCAAGA -ACGGAACTCTCTACTTGCGGTTGA -ACGGAACTCTCTACTTGCTCCGAT -ACGGAACTCTCTACTTGCTGGCAT -ACGGAACTCTCTACTTGCCGAGAT -ACGGAACTCTCTACTTGCTACCAC -ACGGAACTCTCTACTTGCCAGAAC -ACGGAACTCTCTACTTGCGTCTAC -ACGGAACTCTCTACTTGCACGTAC -ACGGAACTCTCTACTTGCAGTGAC -ACGGAACTCTCTACTTGCCTGTAG -ACGGAACTCTCTACTTGCCCTAAG -ACGGAACTCTCTACTTGCGTTCAG -ACGGAACTCTCTACTTGCGCATAG -ACGGAACTCTCTACTTGCGACAAG -ACGGAACTCTCTACTTGCAAGCAG -ACGGAACTCTCTACTTGCCGTCAA -ACGGAACTCTCTACTTGCGCTGAA -ACGGAACTCTCTACTTGCAGTACG -ACGGAACTCTCTACTTGCATCCGA -ACGGAACTCTCTACTTGCATGGGA -ACGGAACTCTCTACTTGCGTGCAA -ACGGAACTCTCTACTTGCGAGGAA -ACGGAACTCTCTACTTGCCAGGTA -ACGGAACTCTCTACTTGCGACTCT -ACGGAACTCTCTACTTGCAGTCCT -ACGGAACTCTCTACTTGCTAAGCC -ACGGAACTCTCTACTTGCATAGCC -ACGGAACTCTCTACTTGCTAACCG -ACGGAACTCTCTACTTGCATGCCA -ACGGAACTCTCTACTCTGGGAAAC -ACGGAACTCTCTACTCTGAACACC -ACGGAACTCTCTACTCTGATCGAG -ACGGAACTCTCTACTCTGCTCCTT -ACGGAACTCTCTACTCTGCCTGTT -ACGGAACTCTCTACTCTGCGGTTT -ACGGAACTCTCTACTCTGGTGGTT -ACGGAACTCTCTACTCTGGCCTTT -ACGGAACTCTCTACTCTGGGTCTT -ACGGAACTCTCTACTCTGACGCTT -ACGGAACTCTCTACTCTGAGCGTT -ACGGAACTCTCTACTCTGTTCGTC -ACGGAACTCTCTACTCTGTCTCTC -ACGGAACTCTCTACTCTGTGGATC -ACGGAACTCTCTACTCTGCACTTC -ACGGAACTCTCTACTCTGGTACTC -ACGGAACTCTCTACTCTGGATGTC -ACGGAACTCTCTACTCTGACAGTC -ACGGAACTCTCTACTCTGTTGCTG -ACGGAACTCTCTACTCTGTCCATG -ACGGAACTCTCTACTCTGTGTGTG -ACGGAACTCTCTACTCTGCTAGTG -ACGGAACTCTCTACTCTGCATCTG -ACGGAACTCTCTACTCTGGAGTTG -ACGGAACTCTCTACTCTGAGACTG -ACGGAACTCTCTACTCTGTCGGTA -ACGGAACTCTCTACTCTGTGCCTA -ACGGAACTCTCTACTCTGCCACTA -ACGGAACTCTCTACTCTGGGAGTA -ACGGAACTCTCTACTCTGTCGTCT -ACGGAACTCTCTACTCTGTGCACT -ACGGAACTCTCTACTCTGCTGACT -ACGGAACTCTCTACTCTGCAACCT -ACGGAACTCTCTACTCTGGCTACT -ACGGAACTCTCTACTCTGGGATCT -ACGGAACTCTCTACTCTGAAGGCT -ACGGAACTCTCTACTCTGTCAACC -ACGGAACTCTCTACTCTGTGTTCC -ACGGAACTCTCTACTCTGATTCCC -ACGGAACTCTCTACTCTGTTCTCG -ACGGAACTCTCTACTCTGTAGACG -ACGGAACTCTCTACTCTGGTAACG -ACGGAACTCTCTACTCTGACTTCG -ACGGAACTCTCTACTCTGTACGCA -ACGGAACTCTCTACTCTGCTTGCA -ACGGAACTCTCTACTCTGCGAACA -ACGGAACTCTCTACTCTGCAGTCA -ACGGAACTCTCTACTCTGGATCCA -ACGGAACTCTCTACTCTGACGACA -ACGGAACTCTCTACTCTGAGCTCA -ACGGAACTCTCTACTCTGTCACGT -ACGGAACTCTCTACTCTGCGTAGT -ACGGAACTCTCTACTCTGGTCAGT -ACGGAACTCTCTACTCTGGAAGGT -ACGGAACTCTCTACTCTGAACCGT -ACGGAACTCTCTACTCTGTTGTGC -ACGGAACTCTCTACTCTGCTAAGC -ACGGAACTCTCTACTCTGACTAGC -ACGGAACTCTCTACTCTGAGATGC -ACGGAACTCTCTACTCTGTGAAGG -ACGGAACTCTCTACTCTGCAATGG -ACGGAACTCTCTACTCTGATGAGG -ACGGAACTCTCTACTCTGAATGGG -ACGGAACTCTCTACTCTGTCCTGA -ACGGAACTCTCTACTCTGTAGCGA -ACGGAACTCTCTACTCTGCACAGA -ACGGAACTCTCTACTCTGGCAAGA -ACGGAACTCTCTACTCTGGGTTGA -ACGGAACTCTCTACTCTGTCCGAT -ACGGAACTCTCTACTCTGTGGCAT -ACGGAACTCTCTACTCTGCGAGAT -ACGGAACTCTCTACTCTGTACCAC -ACGGAACTCTCTACTCTGCAGAAC -ACGGAACTCTCTACTCTGGTCTAC -ACGGAACTCTCTACTCTGACGTAC -ACGGAACTCTCTACTCTGAGTGAC -ACGGAACTCTCTACTCTGCTGTAG -ACGGAACTCTCTACTCTGCCTAAG -ACGGAACTCTCTACTCTGGTTCAG -ACGGAACTCTCTACTCTGGCATAG -ACGGAACTCTCTACTCTGGACAAG -ACGGAACTCTCTACTCTGAAGCAG -ACGGAACTCTCTACTCTGCGTCAA -ACGGAACTCTCTACTCTGGCTGAA -ACGGAACTCTCTACTCTGAGTACG -ACGGAACTCTCTACTCTGATCCGA -ACGGAACTCTCTACTCTGATGGGA -ACGGAACTCTCTACTCTGGTGCAA -ACGGAACTCTCTACTCTGGAGGAA -ACGGAACTCTCTACTCTGCAGGTA -ACGGAACTCTCTACTCTGGACTCT -ACGGAACTCTCTACTCTGAGTCCT -ACGGAACTCTCTACTCTGTAAGCC -ACGGAACTCTCTACTCTGATAGCC -ACGGAACTCTCTACTCTGTAACCG -ACGGAACTCTCTACTCTGATGCCA -ACGGAACTCTCTCCTCAAGGAAAC -ACGGAACTCTCTCCTCAAAACACC -ACGGAACTCTCTCCTCAAATCGAG -ACGGAACTCTCTCCTCAACTCCTT -ACGGAACTCTCTCCTCAACCTGTT -ACGGAACTCTCTCCTCAACGGTTT -ACGGAACTCTCTCCTCAAGTGGTT -ACGGAACTCTCTCCTCAAGCCTTT -ACGGAACTCTCTCCTCAAGGTCTT -ACGGAACTCTCTCCTCAAACGCTT -ACGGAACTCTCTCCTCAAAGCGTT -ACGGAACTCTCTCCTCAATTCGTC -ACGGAACTCTCTCCTCAATCTCTC -ACGGAACTCTCTCCTCAATGGATC -ACGGAACTCTCTCCTCAACACTTC -ACGGAACTCTCTCCTCAAGTACTC -ACGGAACTCTCTCCTCAAGATGTC -ACGGAACTCTCTCCTCAAACAGTC -ACGGAACTCTCTCCTCAATTGCTG -ACGGAACTCTCTCCTCAATCCATG -ACGGAACTCTCTCCTCAATGTGTG -ACGGAACTCTCTCCTCAACTAGTG -ACGGAACTCTCTCCTCAACATCTG -ACGGAACTCTCTCCTCAAGAGTTG -ACGGAACTCTCTCCTCAAAGACTG -ACGGAACTCTCTCCTCAATCGGTA -ACGGAACTCTCTCCTCAATGCCTA -ACGGAACTCTCTCCTCAACCACTA -ACGGAACTCTCTCCTCAAGGAGTA -ACGGAACTCTCTCCTCAATCGTCT -ACGGAACTCTCTCCTCAATGCACT -ACGGAACTCTCTCCTCAACTGACT -ACGGAACTCTCTCCTCAACAACCT -ACGGAACTCTCTCCTCAAGCTACT -ACGGAACTCTCTCCTCAAGGATCT -ACGGAACTCTCTCCTCAAAAGGCT -ACGGAACTCTCTCCTCAATCAACC -ACGGAACTCTCTCCTCAATGTTCC -ACGGAACTCTCTCCTCAAATTCCC -ACGGAACTCTCTCCTCAATTCTCG -ACGGAACTCTCTCCTCAATAGACG -ACGGAACTCTCTCCTCAAGTAACG -ACGGAACTCTCTCCTCAAACTTCG -ACGGAACTCTCTCCTCAATACGCA -ACGGAACTCTCTCCTCAACTTGCA -ACGGAACTCTCTCCTCAACGAACA -ACGGAACTCTCTCCTCAACAGTCA -ACGGAACTCTCTCCTCAAGATCCA -ACGGAACTCTCTCCTCAAACGACA -ACGGAACTCTCTCCTCAAAGCTCA -ACGGAACTCTCTCCTCAATCACGT -ACGGAACTCTCTCCTCAACGTAGT -ACGGAACTCTCTCCTCAAGTCAGT -ACGGAACTCTCTCCTCAAGAAGGT -ACGGAACTCTCTCCTCAAAACCGT -ACGGAACTCTCTCCTCAATTGTGC -ACGGAACTCTCTCCTCAACTAAGC -ACGGAACTCTCTCCTCAAACTAGC -ACGGAACTCTCTCCTCAAAGATGC -ACGGAACTCTCTCCTCAATGAAGG -ACGGAACTCTCTCCTCAACAATGG -ACGGAACTCTCTCCTCAAATGAGG -ACGGAACTCTCTCCTCAAAATGGG -ACGGAACTCTCTCCTCAATCCTGA -ACGGAACTCTCTCCTCAATAGCGA -ACGGAACTCTCTCCTCAACACAGA -ACGGAACTCTCTCCTCAAGCAAGA -ACGGAACTCTCTCCTCAAGGTTGA -ACGGAACTCTCTCCTCAATCCGAT -ACGGAACTCTCTCCTCAATGGCAT -ACGGAACTCTCTCCTCAACGAGAT -ACGGAACTCTCTCCTCAATACCAC -ACGGAACTCTCTCCTCAACAGAAC -ACGGAACTCTCTCCTCAAGTCTAC -ACGGAACTCTCTCCTCAAACGTAC -ACGGAACTCTCTCCTCAAAGTGAC -ACGGAACTCTCTCCTCAACTGTAG -ACGGAACTCTCTCCTCAACCTAAG -ACGGAACTCTCTCCTCAAGTTCAG -ACGGAACTCTCTCCTCAAGCATAG -ACGGAACTCTCTCCTCAAGACAAG -ACGGAACTCTCTCCTCAAAAGCAG -ACGGAACTCTCTCCTCAACGTCAA -ACGGAACTCTCTCCTCAAGCTGAA -ACGGAACTCTCTCCTCAAAGTACG -ACGGAACTCTCTCCTCAAATCCGA -ACGGAACTCTCTCCTCAAATGGGA -ACGGAACTCTCTCCTCAAGTGCAA -ACGGAACTCTCTCCTCAAGAGGAA -ACGGAACTCTCTCCTCAACAGGTA -ACGGAACTCTCTCCTCAAGACTCT -ACGGAACTCTCTCCTCAAAGTCCT -ACGGAACTCTCTCCTCAATAAGCC -ACGGAACTCTCTCCTCAAATAGCC -ACGGAACTCTCTCCTCAATAACCG -ACGGAACTCTCTCCTCAAATGCCA -ACGGAACTCTCTACTGCTGGAAAC -ACGGAACTCTCTACTGCTAACACC -ACGGAACTCTCTACTGCTATCGAG -ACGGAACTCTCTACTGCTCTCCTT -ACGGAACTCTCTACTGCTCCTGTT -ACGGAACTCTCTACTGCTCGGTTT -ACGGAACTCTCTACTGCTGTGGTT -ACGGAACTCTCTACTGCTGCCTTT -ACGGAACTCTCTACTGCTGGTCTT -ACGGAACTCTCTACTGCTACGCTT -ACGGAACTCTCTACTGCTAGCGTT -ACGGAACTCTCTACTGCTTTCGTC -ACGGAACTCTCTACTGCTTCTCTC -ACGGAACTCTCTACTGCTTGGATC -ACGGAACTCTCTACTGCTCACTTC -ACGGAACTCTCTACTGCTGTACTC -ACGGAACTCTCTACTGCTGATGTC -ACGGAACTCTCTACTGCTACAGTC -ACGGAACTCTCTACTGCTTTGCTG -ACGGAACTCTCTACTGCTTCCATG -ACGGAACTCTCTACTGCTTGTGTG -ACGGAACTCTCTACTGCTCTAGTG -ACGGAACTCTCTACTGCTCATCTG -ACGGAACTCTCTACTGCTGAGTTG -ACGGAACTCTCTACTGCTAGACTG -ACGGAACTCTCTACTGCTTCGGTA -ACGGAACTCTCTACTGCTTGCCTA -ACGGAACTCTCTACTGCTCCACTA -ACGGAACTCTCTACTGCTGGAGTA -ACGGAACTCTCTACTGCTTCGTCT -ACGGAACTCTCTACTGCTTGCACT -ACGGAACTCTCTACTGCTCTGACT -ACGGAACTCTCTACTGCTCAACCT -ACGGAACTCTCTACTGCTGCTACT -ACGGAACTCTCTACTGCTGGATCT -ACGGAACTCTCTACTGCTAAGGCT -ACGGAACTCTCTACTGCTTCAACC -ACGGAACTCTCTACTGCTTGTTCC -ACGGAACTCTCTACTGCTATTCCC -ACGGAACTCTCTACTGCTTTCTCG -ACGGAACTCTCTACTGCTTAGACG -ACGGAACTCTCTACTGCTGTAACG -ACGGAACTCTCTACTGCTACTTCG -ACGGAACTCTCTACTGCTTACGCA -ACGGAACTCTCTACTGCTCTTGCA -ACGGAACTCTCTACTGCTCGAACA -ACGGAACTCTCTACTGCTCAGTCA -ACGGAACTCTCTACTGCTGATCCA -ACGGAACTCTCTACTGCTACGACA -ACGGAACTCTCTACTGCTAGCTCA -ACGGAACTCTCTACTGCTTCACGT -ACGGAACTCTCTACTGCTCGTAGT -ACGGAACTCTCTACTGCTGTCAGT -ACGGAACTCTCTACTGCTGAAGGT -ACGGAACTCTCTACTGCTAACCGT -ACGGAACTCTCTACTGCTTTGTGC -ACGGAACTCTCTACTGCTCTAAGC -ACGGAACTCTCTACTGCTACTAGC -ACGGAACTCTCTACTGCTAGATGC -ACGGAACTCTCTACTGCTTGAAGG -ACGGAACTCTCTACTGCTCAATGG -ACGGAACTCTCTACTGCTATGAGG -ACGGAACTCTCTACTGCTAATGGG -ACGGAACTCTCTACTGCTTCCTGA -ACGGAACTCTCTACTGCTTAGCGA -ACGGAACTCTCTACTGCTCACAGA -ACGGAACTCTCTACTGCTGCAAGA -ACGGAACTCTCTACTGCTGGTTGA -ACGGAACTCTCTACTGCTTCCGAT -ACGGAACTCTCTACTGCTTGGCAT -ACGGAACTCTCTACTGCTCGAGAT -ACGGAACTCTCTACTGCTTACCAC -ACGGAACTCTCTACTGCTCAGAAC -ACGGAACTCTCTACTGCTGTCTAC -ACGGAACTCTCTACTGCTACGTAC -ACGGAACTCTCTACTGCTAGTGAC -ACGGAACTCTCTACTGCTCTGTAG -ACGGAACTCTCTACTGCTCCTAAG -ACGGAACTCTCTACTGCTGTTCAG -ACGGAACTCTCTACTGCTGCATAG -ACGGAACTCTCTACTGCTGACAAG -ACGGAACTCTCTACTGCTAAGCAG -ACGGAACTCTCTACTGCTCGTCAA -ACGGAACTCTCTACTGCTGCTGAA -ACGGAACTCTCTACTGCTAGTACG -ACGGAACTCTCTACTGCTATCCGA -ACGGAACTCTCTACTGCTATGGGA -ACGGAACTCTCTACTGCTGTGCAA -ACGGAACTCTCTACTGCTGAGGAA -ACGGAACTCTCTACTGCTCAGGTA -ACGGAACTCTCTACTGCTGACTCT -ACGGAACTCTCTACTGCTAGTCCT -ACGGAACTCTCTACTGCTTAAGCC -ACGGAACTCTCTACTGCTATAGCC -ACGGAACTCTCTACTGCTTAACCG -ACGGAACTCTCTACTGCTATGCCA -ACGGAACTCTCTTCTGGAGGAAAC -ACGGAACTCTCTTCTGGAAACACC -ACGGAACTCTCTTCTGGAATCGAG -ACGGAACTCTCTTCTGGACTCCTT -ACGGAACTCTCTTCTGGACCTGTT -ACGGAACTCTCTTCTGGACGGTTT -ACGGAACTCTCTTCTGGAGTGGTT -ACGGAACTCTCTTCTGGAGCCTTT -ACGGAACTCTCTTCTGGAGGTCTT -ACGGAACTCTCTTCTGGAACGCTT -ACGGAACTCTCTTCTGGAAGCGTT -ACGGAACTCTCTTCTGGATTCGTC -ACGGAACTCTCTTCTGGATCTCTC -ACGGAACTCTCTTCTGGATGGATC -ACGGAACTCTCTTCTGGACACTTC -ACGGAACTCTCTTCTGGAGTACTC -ACGGAACTCTCTTCTGGAGATGTC -ACGGAACTCTCTTCTGGAACAGTC -ACGGAACTCTCTTCTGGATTGCTG -ACGGAACTCTCTTCTGGATCCATG -ACGGAACTCTCTTCTGGATGTGTG -ACGGAACTCTCTTCTGGACTAGTG -ACGGAACTCTCTTCTGGACATCTG -ACGGAACTCTCTTCTGGAGAGTTG -ACGGAACTCTCTTCTGGAAGACTG -ACGGAACTCTCTTCTGGATCGGTA -ACGGAACTCTCTTCTGGATGCCTA -ACGGAACTCTCTTCTGGACCACTA -ACGGAACTCTCTTCTGGAGGAGTA -ACGGAACTCTCTTCTGGATCGTCT -ACGGAACTCTCTTCTGGATGCACT -ACGGAACTCTCTTCTGGACTGACT -ACGGAACTCTCTTCTGGACAACCT -ACGGAACTCTCTTCTGGAGCTACT -ACGGAACTCTCTTCTGGAGGATCT -ACGGAACTCTCTTCTGGAAAGGCT -ACGGAACTCTCTTCTGGATCAACC -ACGGAACTCTCTTCTGGATGTTCC -ACGGAACTCTCTTCTGGAATTCCC -ACGGAACTCTCTTCTGGATTCTCG -ACGGAACTCTCTTCTGGATAGACG -ACGGAACTCTCTTCTGGAGTAACG -ACGGAACTCTCTTCTGGAACTTCG -ACGGAACTCTCTTCTGGATACGCA -ACGGAACTCTCTTCTGGACTTGCA -ACGGAACTCTCTTCTGGACGAACA -ACGGAACTCTCTTCTGGACAGTCA -ACGGAACTCTCTTCTGGAGATCCA -ACGGAACTCTCTTCTGGAACGACA -ACGGAACTCTCTTCTGGAAGCTCA -ACGGAACTCTCTTCTGGATCACGT -ACGGAACTCTCTTCTGGACGTAGT -ACGGAACTCTCTTCTGGAGTCAGT -ACGGAACTCTCTTCTGGAGAAGGT -ACGGAACTCTCTTCTGGAAACCGT -ACGGAACTCTCTTCTGGATTGTGC -ACGGAACTCTCTTCTGGACTAAGC -ACGGAACTCTCTTCTGGAACTAGC -ACGGAACTCTCTTCTGGAAGATGC -ACGGAACTCTCTTCTGGATGAAGG -ACGGAACTCTCTTCTGGACAATGG -ACGGAACTCTCTTCTGGAATGAGG -ACGGAACTCTCTTCTGGAAATGGG -ACGGAACTCTCTTCTGGATCCTGA -ACGGAACTCTCTTCTGGATAGCGA -ACGGAACTCTCTTCTGGACACAGA -ACGGAACTCTCTTCTGGAGCAAGA -ACGGAACTCTCTTCTGGAGGTTGA -ACGGAACTCTCTTCTGGATCCGAT -ACGGAACTCTCTTCTGGATGGCAT -ACGGAACTCTCTTCTGGACGAGAT -ACGGAACTCTCTTCTGGATACCAC -ACGGAACTCTCTTCTGGACAGAAC -ACGGAACTCTCTTCTGGAGTCTAC -ACGGAACTCTCTTCTGGAACGTAC -ACGGAACTCTCTTCTGGAAGTGAC -ACGGAACTCTCTTCTGGACTGTAG -ACGGAACTCTCTTCTGGACCTAAG -ACGGAACTCTCTTCTGGAGTTCAG -ACGGAACTCTCTTCTGGAGCATAG -ACGGAACTCTCTTCTGGAGACAAG -ACGGAACTCTCTTCTGGAAAGCAG -ACGGAACTCTCTTCTGGACGTCAA -ACGGAACTCTCTTCTGGAGCTGAA -ACGGAACTCTCTTCTGGAAGTACG -ACGGAACTCTCTTCTGGAATCCGA -ACGGAACTCTCTTCTGGAATGGGA -ACGGAACTCTCTTCTGGAGTGCAA -ACGGAACTCTCTTCTGGAGAGGAA -ACGGAACTCTCTTCTGGACAGGTA -ACGGAACTCTCTTCTGGAGACTCT -ACGGAACTCTCTTCTGGAAGTCCT -ACGGAACTCTCTTCTGGATAAGCC -ACGGAACTCTCTTCTGGAATAGCC -ACGGAACTCTCTTCTGGATAACCG -ACGGAACTCTCTTCTGGAATGCCA -ACGGAACTCTCTGCTAAGGGAAAC -ACGGAACTCTCTGCTAAGAACACC -ACGGAACTCTCTGCTAAGATCGAG -ACGGAACTCTCTGCTAAGCTCCTT -ACGGAACTCTCTGCTAAGCCTGTT -ACGGAACTCTCTGCTAAGCGGTTT -ACGGAACTCTCTGCTAAGGTGGTT -ACGGAACTCTCTGCTAAGGCCTTT -ACGGAACTCTCTGCTAAGGGTCTT -ACGGAACTCTCTGCTAAGACGCTT -ACGGAACTCTCTGCTAAGAGCGTT -ACGGAACTCTCTGCTAAGTTCGTC -ACGGAACTCTCTGCTAAGTCTCTC -ACGGAACTCTCTGCTAAGTGGATC -ACGGAACTCTCTGCTAAGCACTTC -ACGGAACTCTCTGCTAAGGTACTC -ACGGAACTCTCTGCTAAGGATGTC -ACGGAACTCTCTGCTAAGACAGTC -ACGGAACTCTCTGCTAAGTTGCTG -ACGGAACTCTCTGCTAAGTCCATG -ACGGAACTCTCTGCTAAGTGTGTG -ACGGAACTCTCTGCTAAGCTAGTG -ACGGAACTCTCTGCTAAGCATCTG -ACGGAACTCTCTGCTAAGGAGTTG -ACGGAACTCTCTGCTAAGAGACTG -ACGGAACTCTCTGCTAAGTCGGTA -ACGGAACTCTCTGCTAAGTGCCTA -ACGGAACTCTCTGCTAAGCCACTA -ACGGAACTCTCTGCTAAGGGAGTA -ACGGAACTCTCTGCTAAGTCGTCT -ACGGAACTCTCTGCTAAGTGCACT -ACGGAACTCTCTGCTAAGCTGACT -ACGGAACTCTCTGCTAAGCAACCT -ACGGAACTCTCTGCTAAGGCTACT -ACGGAACTCTCTGCTAAGGGATCT -ACGGAACTCTCTGCTAAGAAGGCT -ACGGAACTCTCTGCTAAGTCAACC -ACGGAACTCTCTGCTAAGTGTTCC -ACGGAACTCTCTGCTAAGATTCCC -ACGGAACTCTCTGCTAAGTTCTCG -ACGGAACTCTCTGCTAAGTAGACG -ACGGAACTCTCTGCTAAGGTAACG -ACGGAACTCTCTGCTAAGACTTCG -ACGGAACTCTCTGCTAAGTACGCA -ACGGAACTCTCTGCTAAGCTTGCA -ACGGAACTCTCTGCTAAGCGAACA -ACGGAACTCTCTGCTAAGCAGTCA -ACGGAACTCTCTGCTAAGGATCCA -ACGGAACTCTCTGCTAAGACGACA -ACGGAACTCTCTGCTAAGAGCTCA -ACGGAACTCTCTGCTAAGTCACGT -ACGGAACTCTCTGCTAAGCGTAGT -ACGGAACTCTCTGCTAAGGTCAGT -ACGGAACTCTCTGCTAAGGAAGGT -ACGGAACTCTCTGCTAAGAACCGT -ACGGAACTCTCTGCTAAGTTGTGC -ACGGAACTCTCTGCTAAGCTAAGC -ACGGAACTCTCTGCTAAGACTAGC -ACGGAACTCTCTGCTAAGAGATGC -ACGGAACTCTCTGCTAAGTGAAGG -ACGGAACTCTCTGCTAAGCAATGG -ACGGAACTCTCTGCTAAGATGAGG -ACGGAACTCTCTGCTAAGAATGGG -ACGGAACTCTCTGCTAAGTCCTGA -ACGGAACTCTCTGCTAAGTAGCGA -ACGGAACTCTCTGCTAAGCACAGA -ACGGAACTCTCTGCTAAGGCAAGA -ACGGAACTCTCTGCTAAGGGTTGA -ACGGAACTCTCTGCTAAGTCCGAT -ACGGAACTCTCTGCTAAGTGGCAT -ACGGAACTCTCTGCTAAGCGAGAT -ACGGAACTCTCTGCTAAGTACCAC -ACGGAACTCTCTGCTAAGCAGAAC -ACGGAACTCTCTGCTAAGGTCTAC -ACGGAACTCTCTGCTAAGACGTAC -ACGGAACTCTCTGCTAAGAGTGAC -ACGGAACTCTCTGCTAAGCTGTAG -ACGGAACTCTCTGCTAAGCCTAAG -ACGGAACTCTCTGCTAAGGTTCAG -ACGGAACTCTCTGCTAAGGCATAG -ACGGAACTCTCTGCTAAGGACAAG -ACGGAACTCTCTGCTAAGAAGCAG -ACGGAACTCTCTGCTAAGCGTCAA -ACGGAACTCTCTGCTAAGGCTGAA -ACGGAACTCTCTGCTAAGAGTACG -ACGGAACTCTCTGCTAAGATCCGA -ACGGAACTCTCTGCTAAGATGGGA -ACGGAACTCTCTGCTAAGGTGCAA -ACGGAACTCTCTGCTAAGGAGGAA -ACGGAACTCTCTGCTAAGCAGGTA -ACGGAACTCTCTGCTAAGGACTCT -ACGGAACTCTCTGCTAAGAGTCCT -ACGGAACTCTCTGCTAAGTAAGCC -ACGGAACTCTCTGCTAAGATAGCC -ACGGAACTCTCTGCTAAGTAACCG -ACGGAACTCTCTGCTAAGATGCCA -ACGGAACTCTCTACCTCAGGAAAC -ACGGAACTCTCTACCTCAAACACC -ACGGAACTCTCTACCTCAATCGAG -ACGGAACTCTCTACCTCACTCCTT -ACGGAACTCTCTACCTCACCTGTT -ACGGAACTCTCTACCTCACGGTTT -ACGGAACTCTCTACCTCAGTGGTT -ACGGAACTCTCTACCTCAGCCTTT -ACGGAACTCTCTACCTCAGGTCTT -ACGGAACTCTCTACCTCAACGCTT -ACGGAACTCTCTACCTCAAGCGTT -ACGGAACTCTCTACCTCATTCGTC -ACGGAACTCTCTACCTCATCTCTC -ACGGAACTCTCTACCTCATGGATC -ACGGAACTCTCTACCTCACACTTC -ACGGAACTCTCTACCTCAGTACTC -ACGGAACTCTCTACCTCAGATGTC -ACGGAACTCTCTACCTCAACAGTC -ACGGAACTCTCTACCTCATTGCTG -ACGGAACTCTCTACCTCATCCATG -ACGGAACTCTCTACCTCATGTGTG -ACGGAACTCTCTACCTCACTAGTG -ACGGAACTCTCTACCTCACATCTG -ACGGAACTCTCTACCTCAGAGTTG -ACGGAACTCTCTACCTCAAGACTG -ACGGAACTCTCTACCTCATCGGTA -ACGGAACTCTCTACCTCATGCCTA -ACGGAACTCTCTACCTCACCACTA -ACGGAACTCTCTACCTCAGGAGTA -ACGGAACTCTCTACCTCATCGTCT -ACGGAACTCTCTACCTCATGCACT -ACGGAACTCTCTACCTCACTGACT -ACGGAACTCTCTACCTCACAACCT -ACGGAACTCTCTACCTCAGCTACT -ACGGAACTCTCTACCTCAGGATCT -ACGGAACTCTCTACCTCAAAGGCT -ACGGAACTCTCTACCTCATCAACC -ACGGAACTCTCTACCTCATGTTCC -ACGGAACTCTCTACCTCAATTCCC -ACGGAACTCTCTACCTCATTCTCG -ACGGAACTCTCTACCTCATAGACG -ACGGAACTCTCTACCTCAGTAACG -ACGGAACTCTCTACCTCAACTTCG -ACGGAACTCTCTACCTCATACGCA -ACGGAACTCTCTACCTCACTTGCA -ACGGAACTCTCTACCTCACGAACA -ACGGAACTCTCTACCTCACAGTCA -ACGGAACTCTCTACCTCAGATCCA -ACGGAACTCTCTACCTCAACGACA -ACGGAACTCTCTACCTCAAGCTCA -ACGGAACTCTCTACCTCATCACGT -ACGGAACTCTCTACCTCACGTAGT -ACGGAACTCTCTACCTCAGTCAGT -ACGGAACTCTCTACCTCAGAAGGT -ACGGAACTCTCTACCTCAAACCGT -ACGGAACTCTCTACCTCATTGTGC -ACGGAACTCTCTACCTCACTAAGC -ACGGAACTCTCTACCTCAACTAGC -ACGGAACTCTCTACCTCAAGATGC -ACGGAACTCTCTACCTCATGAAGG -ACGGAACTCTCTACCTCACAATGG -ACGGAACTCTCTACCTCAATGAGG -ACGGAACTCTCTACCTCAAATGGG -ACGGAACTCTCTACCTCATCCTGA -ACGGAACTCTCTACCTCATAGCGA -ACGGAACTCTCTACCTCACACAGA -ACGGAACTCTCTACCTCAGCAAGA -ACGGAACTCTCTACCTCAGGTTGA -ACGGAACTCTCTACCTCATCCGAT -ACGGAACTCTCTACCTCATGGCAT -ACGGAACTCTCTACCTCACGAGAT -ACGGAACTCTCTACCTCATACCAC -ACGGAACTCTCTACCTCACAGAAC -ACGGAACTCTCTACCTCAGTCTAC -ACGGAACTCTCTACCTCAACGTAC -ACGGAACTCTCTACCTCAAGTGAC -ACGGAACTCTCTACCTCACTGTAG -ACGGAACTCTCTACCTCACCTAAG -ACGGAACTCTCTACCTCAGTTCAG -ACGGAACTCTCTACCTCAGCATAG -ACGGAACTCTCTACCTCAGACAAG -ACGGAACTCTCTACCTCAAAGCAG -ACGGAACTCTCTACCTCACGTCAA -ACGGAACTCTCTACCTCAGCTGAA -ACGGAACTCTCTACCTCAAGTACG -ACGGAACTCTCTACCTCAATCCGA -ACGGAACTCTCTACCTCAATGGGA -ACGGAACTCTCTACCTCAGTGCAA -ACGGAACTCTCTACCTCAGAGGAA -ACGGAACTCTCTACCTCACAGGTA -ACGGAACTCTCTACCTCAGACTCT -ACGGAACTCTCTACCTCAAGTCCT -ACGGAACTCTCTACCTCATAAGCC -ACGGAACTCTCTACCTCAATAGCC -ACGGAACTCTCTACCTCATAACCG -ACGGAACTCTCTACCTCAATGCCA -ACGGAACTCTCTTCCTGTGGAAAC -ACGGAACTCTCTTCCTGTAACACC -ACGGAACTCTCTTCCTGTATCGAG -ACGGAACTCTCTTCCTGTCTCCTT -ACGGAACTCTCTTCCTGTCCTGTT -ACGGAACTCTCTTCCTGTCGGTTT -ACGGAACTCTCTTCCTGTGTGGTT -ACGGAACTCTCTTCCTGTGCCTTT -ACGGAACTCTCTTCCTGTGGTCTT -ACGGAACTCTCTTCCTGTACGCTT -ACGGAACTCTCTTCCTGTAGCGTT -ACGGAACTCTCTTCCTGTTTCGTC -ACGGAACTCTCTTCCTGTTCTCTC -ACGGAACTCTCTTCCTGTTGGATC -ACGGAACTCTCTTCCTGTCACTTC -ACGGAACTCTCTTCCTGTGTACTC -ACGGAACTCTCTTCCTGTGATGTC -ACGGAACTCTCTTCCTGTACAGTC -ACGGAACTCTCTTCCTGTTTGCTG -ACGGAACTCTCTTCCTGTTCCATG -ACGGAACTCTCTTCCTGTTGTGTG -ACGGAACTCTCTTCCTGTCTAGTG -ACGGAACTCTCTTCCTGTCATCTG -ACGGAACTCTCTTCCTGTGAGTTG -ACGGAACTCTCTTCCTGTAGACTG -ACGGAACTCTCTTCCTGTTCGGTA -ACGGAACTCTCTTCCTGTTGCCTA -ACGGAACTCTCTTCCTGTCCACTA -ACGGAACTCTCTTCCTGTGGAGTA -ACGGAACTCTCTTCCTGTTCGTCT -ACGGAACTCTCTTCCTGTTGCACT -ACGGAACTCTCTTCCTGTCTGACT -ACGGAACTCTCTTCCTGTCAACCT -ACGGAACTCTCTTCCTGTGCTACT -ACGGAACTCTCTTCCTGTGGATCT -ACGGAACTCTCTTCCTGTAAGGCT -ACGGAACTCTCTTCCTGTTCAACC -ACGGAACTCTCTTCCTGTTGTTCC -ACGGAACTCTCTTCCTGTATTCCC -ACGGAACTCTCTTCCTGTTTCTCG -ACGGAACTCTCTTCCTGTTAGACG -ACGGAACTCTCTTCCTGTGTAACG -ACGGAACTCTCTTCCTGTACTTCG -ACGGAACTCTCTTCCTGTTACGCA -ACGGAACTCTCTTCCTGTCTTGCA -ACGGAACTCTCTTCCTGTCGAACA -ACGGAACTCTCTTCCTGTCAGTCA -ACGGAACTCTCTTCCTGTGATCCA -ACGGAACTCTCTTCCTGTACGACA -ACGGAACTCTCTTCCTGTAGCTCA -ACGGAACTCTCTTCCTGTTCACGT -ACGGAACTCTCTTCCTGTCGTAGT -ACGGAACTCTCTTCCTGTGTCAGT -ACGGAACTCTCTTCCTGTGAAGGT -ACGGAACTCTCTTCCTGTAACCGT -ACGGAACTCTCTTCCTGTTTGTGC -ACGGAACTCTCTTCCTGTCTAAGC -ACGGAACTCTCTTCCTGTACTAGC -ACGGAACTCTCTTCCTGTAGATGC -ACGGAACTCTCTTCCTGTTGAAGG -ACGGAACTCTCTTCCTGTCAATGG -ACGGAACTCTCTTCCTGTATGAGG -ACGGAACTCTCTTCCTGTAATGGG -ACGGAACTCTCTTCCTGTTCCTGA -ACGGAACTCTCTTCCTGTTAGCGA -ACGGAACTCTCTTCCTGTCACAGA -ACGGAACTCTCTTCCTGTGCAAGA -ACGGAACTCTCTTCCTGTGGTTGA -ACGGAACTCTCTTCCTGTTCCGAT -ACGGAACTCTCTTCCTGTTGGCAT -ACGGAACTCTCTTCCTGTCGAGAT -ACGGAACTCTCTTCCTGTTACCAC -ACGGAACTCTCTTCCTGTCAGAAC -ACGGAACTCTCTTCCTGTGTCTAC -ACGGAACTCTCTTCCTGTACGTAC -ACGGAACTCTCTTCCTGTAGTGAC -ACGGAACTCTCTTCCTGTCTGTAG -ACGGAACTCTCTTCCTGTCCTAAG -ACGGAACTCTCTTCCTGTGTTCAG -ACGGAACTCTCTTCCTGTGCATAG -ACGGAACTCTCTTCCTGTGACAAG -ACGGAACTCTCTTCCTGTAAGCAG -ACGGAACTCTCTTCCTGTCGTCAA -ACGGAACTCTCTTCCTGTGCTGAA -ACGGAACTCTCTTCCTGTAGTACG -ACGGAACTCTCTTCCTGTATCCGA -ACGGAACTCTCTTCCTGTATGGGA -ACGGAACTCTCTTCCTGTGTGCAA -ACGGAACTCTCTTCCTGTGAGGAA -ACGGAACTCTCTTCCTGTCAGGTA -ACGGAACTCTCTTCCTGTGACTCT -ACGGAACTCTCTTCCTGTAGTCCT -ACGGAACTCTCTTCCTGTTAAGCC -ACGGAACTCTCTTCCTGTATAGCC -ACGGAACTCTCTTCCTGTTAACCG -ACGGAACTCTCTTCCTGTATGCCA -ACGGAACTCTCTCCCATTGGAAAC -ACGGAACTCTCTCCCATTAACACC -ACGGAACTCTCTCCCATTATCGAG -ACGGAACTCTCTCCCATTCTCCTT -ACGGAACTCTCTCCCATTCCTGTT -ACGGAACTCTCTCCCATTCGGTTT -ACGGAACTCTCTCCCATTGTGGTT -ACGGAACTCTCTCCCATTGCCTTT -ACGGAACTCTCTCCCATTGGTCTT -ACGGAACTCTCTCCCATTACGCTT -ACGGAACTCTCTCCCATTAGCGTT -ACGGAACTCTCTCCCATTTTCGTC -ACGGAACTCTCTCCCATTTCTCTC -ACGGAACTCTCTCCCATTTGGATC -ACGGAACTCTCTCCCATTCACTTC -ACGGAACTCTCTCCCATTGTACTC -ACGGAACTCTCTCCCATTGATGTC -ACGGAACTCTCTCCCATTACAGTC -ACGGAACTCTCTCCCATTTTGCTG -ACGGAACTCTCTCCCATTTCCATG -ACGGAACTCTCTCCCATTTGTGTG -ACGGAACTCTCTCCCATTCTAGTG -ACGGAACTCTCTCCCATTCATCTG -ACGGAACTCTCTCCCATTGAGTTG -ACGGAACTCTCTCCCATTAGACTG -ACGGAACTCTCTCCCATTTCGGTA -ACGGAACTCTCTCCCATTTGCCTA -ACGGAACTCTCTCCCATTCCACTA -ACGGAACTCTCTCCCATTGGAGTA -ACGGAACTCTCTCCCATTTCGTCT -ACGGAACTCTCTCCCATTTGCACT -ACGGAACTCTCTCCCATTCTGACT -ACGGAACTCTCTCCCATTCAACCT -ACGGAACTCTCTCCCATTGCTACT -ACGGAACTCTCTCCCATTGGATCT -ACGGAACTCTCTCCCATTAAGGCT -ACGGAACTCTCTCCCATTTCAACC -ACGGAACTCTCTCCCATTTGTTCC -ACGGAACTCTCTCCCATTATTCCC -ACGGAACTCTCTCCCATTTTCTCG -ACGGAACTCTCTCCCATTTAGACG -ACGGAACTCTCTCCCATTGTAACG -ACGGAACTCTCTCCCATTACTTCG -ACGGAACTCTCTCCCATTTACGCA -ACGGAACTCTCTCCCATTCTTGCA -ACGGAACTCTCTCCCATTCGAACA -ACGGAACTCTCTCCCATTCAGTCA -ACGGAACTCTCTCCCATTGATCCA -ACGGAACTCTCTCCCATTACGACA -ACGGAACTCTCTCCCATTAGCTCA -ACGGAACTCTCTCCCATTTCACGT -ACGGAACTCTCTCCCATTCGTAGT -ACGGAACTCTCTCCCATTGTCAGT -ACGGAACTCTCTCCCATTGAAGGT -ACGGAACTCTCTCCCATTAACCGT -ACGGAACTCTCTCCCATTTTGTGC -ACGGAACTCTCTCCCATTCTAAGC -ACGGAACTCTCTCCCATTACTAGC -ACGGAACTCTCTCCCATTAGATGC -ACGGAACTCTCTCCCATTTGAAGG -ACGGAACTCTCTCCCATTCAATGG -ACGGAACTCTCTCCCATTATGAGG -ACGGAACTCTCTCCCATTAATGGG -ACGGAACTCTCTCCCATTTCCTGA -ACGGAACTCTCTCCCATTTAGCGA -ACGGAACTCTCTCCCATTCACAGA -ACGGAACTCTCTCCCATTGCAAGA -ACGGAACTCTCTCCCATTGGTTGA -ACGGAACTCTCTCCCATTTCCGAT -ACGGAACTCTCTCCCATTTGGCAT -ACGGAACTCTCTCCCATTCGAGAT -ACGGAACTCTCTCCCATTTACCAC -ACGGAACTCTCTCCCATTCAGAAC -ACGGAACTCTCTCCCATTGTCTAC -ACGGAACTCTCTCCCATTACGTAC -ACGGAACTCTCTCCCATTAGTGAC -ACGGAACTCTCTCCCATTCTGTAG -ACGGAACTCTCTCCCATTCCTAAG -ACGGAACTCTCTCCCATTGTTCAG -ACGGAACTCTCTCCCATTGCATAG -ACGGAACTCTCTCCCATTGACAAG -ACGGAACTCTCTCCCATTAAGCAG -ACGGAACTCTCTCCCATTCGTCAA -ACGGAACTCTCTCCCATTGCTGAA -ACGGAACTCTCTCCCATTAGTACG -ACGGAACTCTCTCCCATTATCCGA -ACGGAACTCTCTCCCATTATGGGA -ACGGAACTCTCTCCCATTGTGCAA -ACGGAACTCTCTCCCATTGAGGAA -ACGGAACTCTCTCCCATTCAGGTA -ACGGAACTCTCTCCCATTGACTCT -ACGGAACTCTCTCCCATTAGTCCT -ACGGAACTCTCTCCCATTTAAGCC -ACGGAACTCTCTCCCATTATAGCC -ACGGAACTCTCTCCCATTTAACCG -ACGGAACTCTCTCCCATTATGCCA -ACGGAACTCTCTTCGTTCGGAAAC -ACGGAACTCTCTTCGTTCAACACC -ACGGAACTCTCTTCGTTCATCGAG -ACGGAACTCTCTTCGTTCCTCCTT -ACGGAACTCTCTTCGTTCCCTGTT -ACGGAACTCTCTTCGTTCCGGTTT -ACGGAACTCTCTTCGTTCGTGGTT -ACGGAACTCTCTTCGTTCGCCTTT -ACGGAACTCTCTTCGTTCGGTCTT -ACGGAACTCTCTTCGTTCACGCTT -ACGGAACTCTCTTCGTTCAGCGTT -ACGGAACTCTCTTCGTTCTTCGTC -ACGGAACTCTCTTCGTTCTCTCTC -ACGGAACTCTCTTCGTTCTGGATC -ACGGAACTCTCTTCGTTCCACTTC -ACGGAACTCTCTTCGTTCGTACTC -ACGGAACTCTCTTCGTTCGATGTC -ACGGAACTCTCTTCGTTCACAGTC -ACGGAACTCTCTTCGTTCTTGCTG -ACGGAACTCTCTTCGTTCTCCATG -ACGGAACTCTCTTCGTTCTGTGTG -ACGGAACTCTCTTCGTTCCTAGTG -ACGGAACTCTCTTCGTTCCATCTG -ACGGAACTCTCTTCGTTCGAGTTG -ACGGAACTCTCTTCGTTCAGACTG -ACGGAACTCTCTTCGTTCTCGGTA -ACGGAACTCTCTTCGTTCTGCCTA -ACGGAACTCTCTTCGTTCCCACTA -ACGGAACTCTCTTCGTTCGGAGTA -ACGGAACTCTCTTCGTTCTCGTCT -ACGGAACTCTCTTCGTTCTGCACT -ACGGAACTCTCTTCGTTCCTGACT -ACGGAACTCTCTTCGTTCCAACCT -ACGGAACTCTCTTCGTTCGCTACT -ACGGAACTCTCTTCGTTCGGATCT -ACGGAACTCTCTTCGTTCAAGGCT -ACGGAACTCTCTTCGTTCTCAACC -ACGGAACTCTCTTCGTTCTGTTCC -ACGGAACTCTCTTCGTTCATTCCC -ACGGAACTCTCTTCGTTCTTCTCG -ACGGAACTCTCTTCGTTCTAGACG -ACGGAACTCTCTTCGTTCGTAACG -ACGGAACTCTCTTCGTTCACTTCG -ACGGAACTCTCTTCGTTCTACGCA -ACGGAACTCTCTTCGTTCCTTGCA -ACGGAACTCTCTTCGTTCCGAACA -ACGGAACTCTCTTCGTTCCAGTCA -ACGGAACTCTCTTCGTTCGATCCA -ACGGAACTCTCTTCGTTCACGACA -ACGGAACTCTCTTCGTTCAGCTCA -ACGGAACTCTCTTCGTTCTCACGT -ACGGAACTCTCTTCGTTCCGTAGT -ACGGAACTCTCTTCGTTCGTCAGT -ACGGAACTCTCTTCGTTCGAAGGT -ACGGAACTCTCTTCGTTCAACCGT -ACGGAACTCTCTTCGTTCTTGTGC -ACGGAACTCTCTTCGTTCCTAAGC -ACGGAACTCTCTTCGTTCACTAGC -ACGGAACTCTCTTCGTTCAGATGC -ACGGAACTCTCTTCGTTCTGAAGG -ACGGAACTCTCTTCGTTCCAATGG -ACGGAACTCTCTTCGTTCATGAGG -ACGGAACTCTCTTCGTTCAATGGG -ACGGAACTCTCTTCGTTCTCCTGA -ACGGAACTCTCTTCGTTCTAGCGA -ACGGAACTCTCTTCGTTCCACAGA -ACGGAACTCTCTTCGTTCGCAAGA -ACGGAACTCTCTTCGTTCGGTTGA -ACGGAACTCTCTTCGTTCTCCGAT -ACGGAACTCTCTTCGTTCTGGCAT -ACGGAACTCTCTTCGTTCCGAGAT -ACGGAACTCTCTTCGTTCTACCAC -ACGGAACTCTCTTCGTTCCAGAAC -ACGGAACTCTCTTCGTTCGTCTAC -ACGGAACTCTCTTCGTTCACGTAC -ACGGAACTCTCTTCGTTCAGTGAC -ACGGAACTCTCTTCGTTCCTGTAG -ACGGAACTCTCTTCGTTCCCTAAG -ACGGAACTCTCTTCGTTCGTTCAG -ACGGAACTCTCTTCGTTCGCATAG -ACGGAACTCTCTTCGTTCGACAAG -ACGGAACTCTCTTCGTTCAAGCAG -ACGGAACTCTCTTCGTTCCGTCAA -ACGGAACTCTCTTCGTTCGCTGAA -ACGGAACTCTCTTCGTTCAGTACG -ACGGAACTCTCTTCGTTCATCCGA -ACGGAACTCTCTTCGTTCATGGGA -ACGGAACTCTCTTCGTTCGTGCAA -ACGGAACTCTCTTCGTTCGAGGAA -ACGGAACTCTCTTCGTTCCAGGTA -ACGGAACTCTCTTCGTTCGACTCT -ACGGAACTCTCTTCGTTCAGTCCT -ACGGAACTCTCTTCGTTCTAAGCC -ACGGAACTCTCTTCGTTCATAGCC -ACGGAACTCTCTTCGTTCTAACCG -ACGGAACTCTCTTCGTTCATGCCA -ACGGAACTCTCTACGTAGGGAAAC -ACGGAACTCTCTACGTAGAACACC -ACGGAACTCTCTACGTAGATCGAG -ACGGAACTCTCTACGTAGCTCCTT -ACGGAACTCTCTACGTAGCCTGTT -ACGGAACTCTCTACGTAGCGGTTT -ACGGAACTCTCTACGTAGGTGGTT -ACGGAACTCTCTACGTAGGCCTTT -ACGGAACTCTCTACGTAGGGTCTT -ACGGAACTCTCTACGTAGACGCTT -ACGGAACTCTCTACGTAGAGCGTT -ACGGAACTCTCTACGTAGTTCGTC -ACGGAACTCTCTACGTAGTCTCTC -ACGGAACTCTCTACGTAGTGGATC -ACGGAACTCTCTACGTAGCACTTC -ACGGAACTCTCTACGTAGGTACTC -ACGGAACTCTCTACGTAGGATGTC -ACGGAACTCTCTACGTAGACAGTC -ACGGAACTCTCTACGTAGTTGCTG -ACGGAACTCTCTACGTAGTCCATG -ACGGAACTCTCTACGTAGTGTGTG -ACGGAACTCTCTACGTAGCTAGTG -ACGGAACTCTCTACGTAGCATCTG -ACGGAACTCTCTACGTAGGAGTTG -ACGGAACTCTCTACGTAGAGACTG -ACGGAACTCTCTACGTAGTCGGTA -ACGGAACTCTCTACGTAGTGCCTA -ACGGAACTCTCTACGTAGCCACTA -ACGGAACTCTCTACGTAGGGAGTA -ACGGAACTCTCTACGTAGTCGTCT -ACGGAACTCTCTACGTAGTGCACT -ACGGAACTCTCTACGTAGCTGACT -ACGGAACTCTCTACGTAGCAACCT -ACGGAACTCTCTACGTAGGCTACT -ACGGAACTCTCTACGTAGGGATCT -ACGGAACTCTCTACGTAGAAGGCT -ACGGAACTCTCTACGTAGTCAACC -ACGGAACTCTCTACGTAGTGTTCC -ACGGAACTCTCTACGTAGATTCCC -ACGGAACTCTCTACGTAGTTCTCG -ACGGAACTCTCTACGTAGTAGACG -ACGGAACTCTCTACGTAGGTAACG -ACGGAACTCTCTACGTAGACTTCG -ACGGAACTCTCTACGTAGTACGCA -ACGGAACTCTCTACGTAGCTTGCA -ACGGAACTCTCTACGTAGCGAACA -ACGGAACTCTCTACGTAGCAGTCA -ACGGAACTCTCTACGTAGGATCCA -ACGGAACTCTCTACGTAGACGACA -ACGGAACTCTCTACGTAGAGCTCA -ACGGAACTCTCTACGTAGTCACGT -ACGGAACTCTCTACGTAGCGTAGT -ACGGAACTCTCTACGTAGGTCAGT -ACGGAACTCTCTACGTAGGAAGGT -ACGGAACTCTCTACGTAGAACCGT -ACGGAACTCTCTACGTAGTTGTGC -ACGGAACTCTCTACGTAGCTAAGC -ACGGAACTCTCTACGTAGACTAGC -ACGGAACTCTCTACGTAGAGATGC -ACGGAACTCTCTACGTAGTGAAGG -ACGGAACTCTCTACGTAGCAATGG -ACGGAACTCTCTACGTAGATGAGG -ACGGAACTCTCTACGTAGAATGGG -ACGGAACTCTCTACGTAGTCCTGA -ACGGAACTCTCTACGTAGTAGCGA -ACGGAACTCTCTACGTAGCACAGA -ACGGAACTCTCTACGTAGGCAAGA -ACGGAACTCTCTACGTAGGGTTGA -ACGGAACTCTCTACGTAGTCCGAT -ACGGAACTCTCTACGTAGTGGCAT -ACGGAACTCTCTACGTAGCGAGAT -ACGGAACTCTCTACGTAGTACCAC -ACGGAACTCTCTACGTAGCAGAAC -ACGGAACTCTCTACGTAGGTCTAC -ACGGAACTCTCTACGTAGACGTAC -ACGGAACTCTCTACGTAGAGTGAC -ACGGAACTCTCTACGTAGCTGTAG -ACGGAACTCTCTACGTAGCCTAAG -ACGGAACTCTCTACGTAGGTTCAG -ACGGAACTCTCTACGTAGGCATAG -ACGGAACTCTCTACGTAGGACAAG -ACGGAACTCTCTACGTAGAAGCAG -ACGGAACTCTCTACGTAGCGTCAA -ACGGAACTCTCTACGTAGGCTGAA -ACGGAACTCTCTACGTAGAGTACG -ACGGAACTCTCTACGTAGATCCGA -ACGGAACTCTCTACGTAGATGGGA -ACGGAACTCTCTACGTAGGTGCAA -ACGGAACTCTCTACGTAGGAGGAA -ACGGAACTCTCTACGTAGCAGGTA -ACGGAACTCTCTACGTAGGACTCT -ACGGAACTCTCTACGTAGAGTCCT -ACGGAACTCTCTACGTAGTAAGCC -ACGGAACTCTCTACGTAGATAGCC -ACGGAACTCTCTACGTAGTAACCG -ACGGAACTCTCTACGTAGATGCCA -ACGGAACTCTCTACGGTAGGAAAC -ACGGAACTCTCTACGGTAAACACC -ACGGAACTCTCTACGGTAATCGAG -ACGGAACTCTCTACGGTACTCCTT -ACGGAACTCTCTACGGTACCTGTT -ACGGAACTCTCTACGGTACGGTTT -ACGGAACTCTCTACGGTAGTGGTT -ACGGAACTCTCTACGGTAGCCTTT -ACGGAACTCTCTACGGTAGGTCTT -ACGGAACTCTCTACGGTAACGCTT -ACGGAACTCTCTACGGTAAGCGTT -ACGGAACTCTCTACGGTATTCGTC -ACGGAACTCTCTACGGTATCTCTC -ACGGAACTCTCTACGGTATGGATC -ACGGAACTCTCTACGGTACACTTC -ACGGAACTCTCTACGGTAGTACTC -ACGGAACTCTCTACGGTAGATGTC -ACGGAACTCTCTACGGTAACAGTC -ACGGAACTCTCTACGGTATTGCTG -ACGGAACTCTCTACGGTATCCATG -ACGGAACTCTCTACGGTATGTGTG -ACGGAACTCTCTACGGTACTAGTG -ACGGAACTCTCTACGGTACATCTG -ACGGAACTCTCTACGGTAGAGTTG -ACGGAACTCTCTACGGTAAGACTG -ACGGAACTCTCTACGGTATCGGTA -ACGGAACTCTCTACGGTATGCCTA -ACGGAACTCTCTACGGTACCACTA -ACGGAACTCTCTACGGTAGGAGTA -ACGGAACTCTCTACGGTATCGTCT -ACGGAACTCTCTACGGTATGCACT -ACGGAACTCTCTACGGTACTGACT -ACGGAACTCTCTACGGTACAACCT -ACGGAACTCTCTACGGTAGCTACT -ACGGAACTCTCTACGGTAGGATCT -ACGGAACTCTCTACGGTAAAGGCT -ACGGAACTCTCTACGGTATCAACC -ACGGAACTCTCTACGGTATGTTCC -ACGGAACTCTCTACGGTAATTCCC -ACGGAACTCTCTACGGTATTCTCG -ACGGAACTCTCTACGGTATAGACG -ACGGAACTCTCTACGGTAGTAACG -ACGGAACTCTCTACGGTAACTTCG -ACGGAACTCTCTACGGTATACGCA -ACGGAACTCTCTACGGTACTTGCA -ACGGAACTCTCTACGGTACGAACA -ACGGAACTCTCTACGGTACAGTCA -ACGGAACTCTCTACGGTAGATCCA -ACGGAACTCTCTACGGTAACGACA -ACGGAACTCTCTACGGTAAGCTCA -ACGGAACTCTCTACGGTATCACGT -ACGGAACTCTCTACGGTACGTAGT -ACGGAACTCTCTACGGTAGTCAGT -ACGGAACTCTCTACGGTAGAAGGT -ACGGAACTCTCTACGGTAAACCGT -ACGGAACTCTCTACGGTATTGTGC -ACGGAACTCTCTACGGTACTAAGC -ACGGAACTCTCTACGGTAACTAGC -ACGGAACTCTCTACGGTAAGATGC -ACGGAACTCTCTACGGTATGAAGG -ACGGAACTCTCTACGGTACAATGG -ACGGAACTCTCTACGGTAATGAGG -ACGGAACTCTCTACGGTAAATGGG -ACGGAACTCTCTACGGTATCCTGA -ACGGAACTCTCTACGGTATAGCGA -ACGGAACTCTCTACGGTACACAGA -ACGGAACTCTCTACGGTAGCAAGA -ACGGAACTCTCTACGGTAGGTTGA -ACGGAACTCTCTACGGTATCCGAT -ACGGAACTCTCTACGGTATGGCAT -ACGGAACTCTCTACGGTACGAGAT -ACGGAACTCTCTACGGTATACCAC -ACGGAACTCTCTACGGTACAGAAC -ACGGAACTCTCTACGGTAGTCTAC -ACGGAACTCTCTACGGTAACGTAC -ACGGAACTCTCTACGGTAAGTGAC -ACGGAACTCTCTACGGTACTGTAG -ACGGAACTCTCTACGGTACCTAAG -ACGGAACTCTCTACGGTAGTTCAG -ACGGAACTCTCTACGGTAGCATAG -ACGGAACTCTCTACGGTAGACAAG -ACGGAACTCTCTACGGTAAAGCAG -ACGGAACTCTCTACGGTACGTCAA -ACGGAACTCTCTACGGTAGCTGAA -ACGGAACTCTCTACGGTAAGTACG -ACGGAACTCTCTACGGTAATCCGA -ACGGAACTCTCTACGGTAATGGGA -ACGGAACTCTCTACGGTAGTGCAA -ACGGAACTCTCTACGGTAGAGGAA -ACGGAACTCTCTACGGTACAGGTA -ACGGAACTCTCTACGGTAGACTCT -ACGGAACTCTCTACGGTAAGTCCT -ACGGAACTCTCTACGGTATAAGCC -ACGGAACTCTCTACGGTAATAGCC -ACGGAACTCTCTACGGTATAACCG -ACGGAACTCTCTACGGTAATGCCA -ACGGAACTCTCTTCGACTGGAAAC -ACGGAACTCTCTTCGACTAACACC -ACGGAACTCTCTTCGACTATCGAG -ACGGAACTCTCTTCGACTCTCCTT -ACGGAACTCTCTTCGACTCCTGTT -ACGGAACTCTCTTCGACTCGGTTT -ACGGAACTCTCTTCGACTGTGGTT -ACGGAACTCTCTTCGACTGCCTTT -ACGGAACTCTCTTCGACTGGTCTT -ACGGAACTCTCTTCGACTACGCTT -ACGGAACTCTCTTCGACTAGCGTT -ACGGAACTCTCTTCGACTTTCGTC -ACGGAACTCTCTTCGACTTCTCTC -ACGGAACTCTCTTCGACTTGGATC -ACGGAACTCTCTTCGACTCACTTC -ACGGAACTCTCTTCGACTGTACTC -ACGGAACTCTCTTCGACTGATGTC -ACGGAACTCTCTTCGACTACAGTC -ACGGAACTCTCTTCGACTTTGCTG -ACGGAACTCTCTTCGACTTCCATG -ACGGAACTCTCTTCGACTTGTGTG -ACGGAACTCTCTTCGACTCTAGTG -ACGGAACTCTCTTCGACTCATCTG -ACGGAACTCTCTTCGACTGAGTTG -ACGGAACTCTCTTCGACTAGACTG -ACGGAACTCTCTTCGACTTCGGTA -ACGGAACTCTCTTCGACTTGCCTA -ACGGAACTCTCTTCGACTCCACTA -ACGGAACTCTCTTCGACTGGAGTA -ACGGAACTCTCTTCGACTTCGTCT -ACGGAACTCTCTTCGACTTGCACT -ACGGAACTCTCTTCGACTCTGACT -ACGGAACTCTCTTCGACTCAACCT -ACGGAACTCTCTTCGACTGCTACT -ACGGAACTCTCTTCGACTGGATCT -ACGGAACTCTCTTCGACTAAGGCT -ACGGAACTCTCTTCGACTTCAACC -ACGGAACTCTCTTCGACTTGTTCC -ACGGAACTCTCTTCGACTATTCCC -ACGGAACTCTCTTCGACTTTCTCG -ACGGAACTCTCTTCGACTTAGACG -ACGGAACTCTCTTCGACTGTAACG -ACGGAACTCTCTTCGACTACTTCG -ACGGAACTCTCTTCGACTTACGCA -ACGGAACTCTCTTCGACTCTTGCA -ACGGAACTCTCTTCGACTCGAACA -ACGGAACTCTCTTCGACTCAGTCA -ACGGAACTCTCTTCGACTGATCCA -ACGGAACTCTCTTCGACTACGACA -ACGGAACTCTCTTCGACTAGCTCA -ACGGAACTCTCTTCGACTTCACGT -ACGGAACTCTCTTCGACTCGTAGT -ACGGAACTCTCTTCGACTGTCAGT -ACGGAACTCTCTTCGACTGAAGGT -ACGGAACTCTCTTCGACTAACCGT -ACGGAACTCTCTTCGACTTTGTGC -ACGGAACTCTCTTCGACTCTAAGC -ACGGAACTCTCTTCGACTACTAGC -ACGGAACTCTCTTCGACTAGATGC -ACGGAACTCTCTTCGACTTGAAGG -ACGGAACTCTCTTCGACTCAATGG -ACGGAACTCTCTTCGACTATGAGG -ACGGAACTCTCTTCGACTAATGGG -ACGGAACTCTCTTCGACTTCCTGA -ACGGAACTCTCTTCGACTTAGCGA -ACGGAACTCTCTTCGACTCACAGA -ACGGAACTCTCTTCGACTGCAAGA -ACGGAACTCTCTTCGACTGGTTGA -ACGGAACTCTCTTCGACTTCCGAT -ACGGAACTCTCTTCGACTTGGCAT -ACGGAACTCTCTTCGACTCGAGAT -ACGGAACTCTCTTCGACTTACCAC -ACGGAACTCTCTTCGACTCAGAAC -ACGGAACTCTCTTCGACTGTCTAC -ACGGAACTCTCTTCGACTACGTAC -ACGGAACTCTCTTCGACTAGTGAC -ACGGAACTCTCTTCGACTCTGTAG -ACGGAACTCTCTTCGACTCCTAAG -ACGGAACTCTCTTCGACTGTTCAG -ACGGAACTCTCTTCGACTGCATAG -ACGGAACTCTCTTCGACTGACAAG -ACGGAACTCTCTTCGACTAAGCAG -ACGGAACTCTCTTCGACTCGTCAA -ACGGAACTCTCTTCGACTGCTGAA -ACGGAACTCTCTTCGACTAGTACG -ACGGAACTCTCTTCGACTATCCGA -ACGGAACTCTCTTCGACTATGGGA -ACGGAACTCTCTTCGACTGTGCAA -ACGGAACTCTCTTCGACTGAGGAA -ACGGAACTCTCTTCGACTCAGGTA -ACGGAACTCTCTTCGACTGACTCT -ACGGAACTCTCTTCGACTAGTCCT -ACGGAACTCTCTTCGACTTAAGCC -ACGGAACTCTCTTCGACTATAGCC -ACGGAACTCTCTTCGACTTAACCG -ACGGAACTCTCTTCGACTATGCCA -ACGGAACTCTCTGCATACGGAAAC -ACGGAACTCTCTGCATACAACACC -ACGGAACTCTCTGCATACATCGAG -ACGGAACTCTCTGCATACCTCCTT -ACGGAACTCTCTGCATACCCTGTT -ACGGAACTCTCTGCATACCGGTTT -ACGGAACTCTCTGCATACGTGGTT -ACGGAACTCTCTGCATACGCCTTT -ACGGAACTCTCTGCATACGGTCTT -ACGGAACTCTCTGCATACACGCTT -ACGGAACTCTCTGCATACAGCGTT -ACGGAACTCTCTGCATACTTCGTC -ACGGAACTCTCTGCATACTCTCTC -ACGGAACTCTCTGCATACTGGATC -ACGGAACTCTCTGCATACCACTTC -ACGGAACTCTCTGCATACGTACTC -ACGGAACTCTCTGCATACGATGTC -ACGGAACTCTCTGCATACACAGTC -ACGGAACTCTCTGCATACTTGCTG -ACGGAACTCTCTGCATACTCCATG -ACGGAACTCTCTGCATACTGTGTG -ACGGAACTCTCTGCATACCTAGTG -ACGGAACTCTCTGCATACCATCTG -ACGGAACTCTCTGCATACGAGTTG -ACGGAACTCTCTGCATACAGACTG -ACGGAACTCTCTGCATACTCGGTA -ACGGAACTCTCTGCATACTGCCTA -ACGGAACTCTCTGCATACCCACTA -ACGGAACTCTCTGCATACGGAGTA -ACGGAACTCTCTGCATACTCGTCT -ACGGAACTCTCTGCATACTGCACT -ACGGAACTCTCTGCATACCTGACT -ACGGAACTCTCTGCATACCAACCT -ACGGAACTCTCTGCATACGCTACT -ACGGAACTCTCTGCATACGGATCT -ACGGAACTCTCTGCATACAAGGCT -ACGGAACTCTCTGCATACTCAACC -ACGGAACTCTCTGCATACTGTTCC -ACGGAACTCTCTGCATACATTCCC -ACGGAACTCTCTGCATACTTCTCG -ACGGAACTCTCTGCATACTAGACG -ACGGAACTCTCTGCATACGTAACG -ACGGAACTCTCTGCATACACTTCG -ACGGAACTCTCTGCATACTACGCA -ACGGAACTCTCTGCATACCTTGCA -ACGGAACTCTCTGCATACCGAACA -ACGGAACTCTCTGCATACCAGTCA -ACGGAACTCTCTGCATACGATCCA -ACGGAACTCTCTGCATACACGACA -ACGGAACTCTCTGCATACAGCTCA -ACGGAACTCTCTGCATACTCACGT -ACGGAACTCTCTGCATACCGTAGT -ACGGAACTCTCTGCATACGTCAGT -ACGGAACTCTCTGCATACGAAGGT -ACGGAACTCTCTGCATACAACCGT -ACGGAACTCTCTGCATACTTGTGC -ACGGAACTCTCTGCATACCTAAGC -ACGGAACTCTCTGCATACACTAGC -ACGGAACTCTCTGCATACAGATGC -ACGGAACTCTCTGCATACTGAAGG -ACGGAACTCTCTGCATACCAATGG -ACGGAACTCTCTGCATACATGAGG -ACGGAACTCTCTGCATACAATGGG -ACGGAACTCTCTGCATACTCCTGA -ACGGAACTCTCTGCATACTAGCGA -ACGGAACTCTCTGCATACCACAGA -ACGGAACTCTCTGCATACGCAAGA -ACGGAACTCTCTGCATACGGTTGA -ACGGAACTCTCTGCATACTCCGAT -ACGGAACTCTCTGCATACTGGCAT -ACGGAACTCTCTGCATACCGAGAT -ACGGAACTCTCTGCATACTACCAC -ACGGAACTCTCTGCATACCAGAAC -ACGGAACTCTCTGCATACGTCTAC -ACGGAACTCTCTGCATACACGTAC -ACGGAACTCTCTGCATACAGTGAC -ACGGAACTCTCTGCATACCTGTAG -ACGGAACTCTCTGCATACCCTAAG -ACGGAACTCTCTGCATACGTTCAG -ACGGAACTCTCTGCATACGCATAG -ACGGAACTCTCTGCATACGACAAG -ACGGAACTCTCTGCATACAAGCAG -ACGGAACTCTCTGCATACCGTCAA -ACGGAACTCTCTGCATACGCTGAA -ACGGAACTCTCTGCATACAGTACG -ACGGAACTCTCTGCATACATCCGA -ACGGAACTCTCTGCATACATGGGA -ACGGAACTCTCTGCATACGTGCAA -ACGGAACTCTCTGCATACGAGGAA -ACGGAACTCTCTGCATACCAGGTA -ACGGAACTCTCTGCATACGACTCT -ACGGAACTCTCTGCATACAGTCCT -ACGGAACTCTCTGCATACTAAGCC -ACGGAACTCTCTGCATACATAGCC -ACGGAACTCTCTGCATACTAACCG -ACGGAACTCTCTGCATACATGCCA -ACGGAACTCTCTGCACTTGGAAAC -ACGGAACTCTCTGCACTTAACACC -ACGGAACTCTCTGCACTTATCGAG -ACGGAACTCTCTGCACTTCTCCTT -ACGGAACTCTCTGCACTTCCTGTT -ACGGAACTCTCTGCACTTCGGTTT -ACGGAACTCTCTGCACTTGTGGTT -ACGGAACTCTCTGCACTTGCCTTT -ACGGAACTCTCTGCACTTGGTCTT -ACGGAACTCTCTGCACTTACGCTT -ACGGAACTCTCTGCACTTAGCGTT -ACGGAACTCTCTGCACTTTTCGTC -ACGGAACTCTCTGCACTTTCTCTC -ACGGAACTCTCTGCACTTTGGATC -ACGGAACTCTCTGCACTTCACTTC -ACGGAACTCTCTGCACTTGTACTC -ACGGAACTCTCTGCACTTGATGTC -ACGGAACTCTCTGCACTTACAGTC -ACGGAACTCTCTGCACTTTTGCTG -ACGGAACTCTCTGCACTTTCCATG -ACGGAACTCTCTGCACTTTGTGTG -ACGGAACTCTCTGCACTTCTAGTG -ACGGAACTCTCTGCACTTCATCTG -ACGGAACTCTCTGCACTTGAGTTG -ACGGAACTCTCTGCACTTAGACTG -ACGGAACTCTCTGCACTTTCGGTA -ACGGAACTCTCTGCACTTTGCCTA -ACGGAACTCTCTGCACTTCCACTA -ACGGAACTCTCTGCACTTGGAGTA -ACGGAACTCTCTGCACTTTCGTCT -ACGGAACTCTCTGCACTTTGCACT -ACGGAACTCTCTGCACTTCTGACT -ACGGAACTCTCTGCACTTCAACCT -ACGGAACTCTCTGCACTTGCTACT -ACGGAACTCTCTGCACTTGGATCT -ACGGAACTCTCTGCACTTAAGGCT -ACGGAACTCTCTGCACTTTCAACC -ACGGAACTCTCTGCACTTTGTTCC -ACGGAACTCTCTGCACTTATTCCC -ACGGAACTCTCTGCACTTTTCTCG -ACGGAACTCTCTGCACTTTAGACG -ACGGAACTCTCTGCACTTGTAACG -ACGGAACTCTCTGCACTTACTTCG -ACGGAACTCTCTGCACTTTACGCA -ACGGAACTCTCTGCACTTCTTGCA -ACGGAACTCTCTGCACTTCGAACA -ACGGAACTCTCTGCACTTCAGTCA -ACGGAACTCTCTGCACTTGATCCA -ACGGAACTCTCTGCACTTACGACA -ACGGAACTCTCTGCACTTAGCTCA -ACGGAACTCTCTGCACTTTCACGT -ACGGAACTCTCTGCACTTCGTAGT -ACGGAACTCTCTGCACTTGTCAGT -ACGGAACTCTCTGCACTTGAAGGT -ACGGAACTCTCTGCACTTAACCGT -ACGGAACTCTCTGCACTTTTGTGC -ACGGAACTCTCTGCACTTCTAAGC -ACGGAACTCTCTGCACTTACTAGC -ACGGAACTCTCTGCACTTAGATGC -ACGGAACTCTCTGCACTTTGAAGG -ACGGAACTCTCTGCACTTCAATGG -ACGGAACTCTCTGCACTTATGAGG -ACGGAACTCTCTGCACTTAATGGG -ACGGAACTCTCTGCACTTTCCTGA -ACGGAACTCTCTGCACTTTAGCGA -ACGGAACTCTCTGCACTTCACAGA -ACGGAACTCTCTGCACTTGCAAGA -ACGGAACTCTCTGCACTTGGTTGA -ACGGAACTCTCTGCACTTTCCGAT -ACGGAACTCTCTGCACTTTGGCAT -ACGGAACTCTCTGCACTTCGAGAT -ACGGAACTCTCTGCACTTTACCAC -ACGGAACTCTCTGCACTTCAGAAC -ACGGAACTCTCTGCACTTGTCTAC -ACGGAACTCTCTGCACTTACGTAC -ACGGAACTCTCTGCACTTAGTGAC -ACGGAACTCTCTGCACTTCTGTAG -ACGGAACTCTCTGCACTTCCTAAG -ACGGAACTCTCTGCACTTGTTCAG -ACGGAACTCTCTGCACTTGCATAG -ACGGAACTCTCTGCACTTGACAAG -ACGGAACTCTCTGCACTTAAGCAG -ACGGAACTCTCTGCACTTCGTCAA -ACGGAACTCTCTGCACTTGCTGAA -ACGGAACTCTCTGCACTTAGTACG -ACGGAACTCTCTGCACTTATCCGA -ACGGAACTCTCTGCACTTATGGGA -ACGGAACTCTCTGCACTTGTGCAA -ACGGAACTCTCTGCACTTGAGGAA -ACGGAACTCTCTGCACTTCAGGTA -ACGGAACTCTCTGCACTTGACTCT -ACGGAACTCTCTGCACTTAGTCCT -ACGGAACTCTCTGCACTTTAAGCC -ACGGAACTCTCTGCACTTATAGCC -ACGGAACTCTCTGCACTTTAACCG -ACGGAACTCTCTGCACTTATGCCA -ACGGAACTCTCTACACGAGGAAAC -ACGGAACTCTCTACACGAAACACC -ACGGAACTCTCTACACGAATCGAG -ACGGAACTCTCTACACGACTCCTT -ACGGAACTCTCTACACGACCTGTT -ACGGAACTCTCTACACGACGGTTT -ACGGAACTCTCTACACGAGTGGTT -ACGGAACTCTCTACACGAGCCTTT -ACGGAACTCTCTACACGAGGTCTT -ACGGAACTCTCTACACGAACGCTT -ACGGAACTCTCTACACGAAGCGTT -ACGGAACTCTCTACACGATTCGTC -ACGGAACTCTCTACACGATCTCTC -ACGGAACTCTCTACACGATGGATC -ACGGAACTCTCTACACGACACTTC -ACGGAACTCTCTACACGAGTACTC -ACGGAACTCTCTACACGAGATGTC -ACGGAACTCTCTACACGAACAGTC -ACGGAACTCTCTACACGATTGCTG -ACGGAACTCTCTACACGATCCATG -ACGGAACTCTCTACACGATGTGTG -ACGGAACTCTCTACACGACTAGTG -ACGGAACTCTCTACACGACATCTG -ACGGAACTCTCTACACGAGAGTTG -ACGGAACTCTCTACACGAAGACTG -ACGGAACTCTCTACACGATCGGTA -ACGGAACTCTCTACACGATGCCTA -ACGGAACTCTCTACACGACCACTA -ACGGAACTCTCTACACGAGGAGTA -ACGGAACTCTCTACACGATCGTCT -ACGGAACTCTCTACACGATGCACT -ACGGAACTCTCTACACGACTGACT -ACGGAACTCTCTACACGACAACCT -ACGGAACTCTCTACACGAGCTACT -ACGGAACTCTCTACACGAGGATCT -ACGGAACTCTCTACACGAAAGGCT -ACGGAACTCTCTACACGATCAACC -ACGGAACTCTCTACACGATGTTCC -ACGGAACTCTCTACACGAATTCCC -ACGGAACTCTCTACACGATTCTCG -ACGGAACTCTCTACACGATAGACG -ACGGAACTCTCTACACGAGTAACG -ACGGAACTCTCTACACGAACTTCG -ACGGAACTCTCTACACGATACGCA -ACGGAACTCTCTACACGACTTGCA -ACGGAACTCTCTACACGACGAACA -ACGGAACTCTCTACACGACAGTCA -ACGGAACTCTCTACACGAGATCCA -ACGGAACTCTCTACACGAACGACA -ACGGAACTCTCTACACGAAGCTCA -ACGGAACTCTCTACACGATCACGT -ACGGAACTCTCTACACGACGTAGT -ACGGAACTCTCTACACGAGTCAGT -ACGGAACTCTCTACACGAGAAGGT -ACGGAACTCTCTACACGAAACCGT -ACGGAACTCTCTACACGATTGTGC -ACGGAACTCTCTACACGACTAAGC -ACGGAACTCTCTACACGAACTAGC -ACGGAACTCTCTACACGAAGATGC -ACGGAACTCTCTACACGATGAAGG -ACGGAACTCTCTACACGACAATGG -ACGGAACTCTCTACACGAATGAGG -ACGGAACTCTCTACACGAAATGGG -ACGGAACTCTCTACACGATCCTGA -ACGGAACTCTCTACACGATAGCGA -ACGGAACTCTCTACACGACACAGA -ACGGAACTCTCTACACGAGCAAGA -ACGGAACTCTCTACACGAGGTTGA -ACGGAACTCTCTACACGATCCGAT -ACGGAACTCTCTACACGATGGCAT -ACGGAACTCTCTACACGACGAGAT -ACGGAACTCTCTACACGATACCAC -ACGGAACTCTCTACACGACAGAAC -ACGGAACTCTCTACACGAGTCTAC -ACGGAACTCTCTACACGAACGTAC -ACGGAACTCTCTACACGAAGTGAC -ACGGAACTCTCTACACGACTGTAG -ACGGAACTCTCTACACGACCTAAG -ACGGAACTCTCTACACGAGTTCAG -ACGGAACTCTCTACACGAGCATAG -ACGGAACTCTCTACACGAGACAAG -ACGGAACTCTCTACACGAAAGCAG -ACGGAACTCTCTACACGACGTCAA -ACGGAACTCTCTACACGAGCTGAA -ACGGAACTCTCTACACGAAGTACG -ACGGAACTCTCTACACGAATCCGA -ACGGAACTCTCTACACGAATGGGA -ACGGAACTCTCTACACGAGTGCAA -ACGGAACTCTCTACACGAGAGGAA -ACGGAACTCTCTACACGACAGGTA -ACGGAACTCTCTACACGAGACTCT -ACGGAACTCTCTACACGAAGTCCT -ACGGAACTCTCTACACGATAAGCC -ACGGAACTCTCTACACGAATAGCC -ACGGAACTCTCTACACGATAACCG -ACGGAACTCTCTACACGAATGCCA -ACGGAACTCTCTTCACAGGGAAAC -ACGGAACTCTCTTCACAGAACACC -ACGGAACTCTCTTCACAGATCGAG -ACGGAACTCTCTTCACAGCTCCTT -ACGGAACTCTCTTCACAGCCTGTT -ACGGAACTCTCTTCACAGCGGTTT -ACGGAACTCTCTTCACAGGTGGTT -ACGGAACTCTCTTCACAGGCCTTT -ACGGAACTCTCTTCACAGGGTCTT -ACGGAACTCTCTTCACAGACGCTT -ACGGAACTCTCTTCACAGAGCGTT -ACGGAACTCTCTTCACAGTTCGTC -ACGGAACTCTCTTCACAGTCTCTC -ACGGAACTCTCTTCACAGTGGATC -ACGGAACTCTCTTCACAGCACTTC -ACGGAACTCTCTTCACAGGTACTC -ACGGAACTCTCTTCACAGGATGTC -ACGGAACTCTCTTCACAGACAGTC -ACGGAACTCTCTTCACAGTTGCTG -ACGGAACTCTCTTCACAGTCCATG -ACGGAACTCTCTTCACAGTGTGTG -ACGGAACTCTCTTCACAGCTAGTG -ACGGAACTCTCTTCACAGCATCTG -ACGGAACTCTCTTCACAGGAGTTG -ACGGAACTCTCTTCACAGAGACTG -ACGGAACTCTCTTCACAGTCGGTA -ACGGAACTCTCTTCACAGTGCCTA -ACGGAACTCTCTTCACAGCCACTA -ACGGAACTCTCTTCACAGGGAGTA -ACGGAACTCTCTTCACAGTCGTCT -ACGGAACTCTCTTCACAGTGCACT -ACGGAACTCTCTTCACAGCTGACT -ACGGAACTCTCTTCACAGCAACCT -ACGGAACTCTCTTCACAGGCTACT -ACGGAACTCTCTTCACAGGGATCT -ACGGAACTCTCTTCACAGAAGGCT -ACGGAACTCTCTTCACAGTCAACC -ACGGAACTCTCTTCACAGTGTTCC -ACGGAACTCTCTTCACAGATTCCC -ACGGAACTCTCTTCACAGTTCTCG -ACGGAACTCTCTTCACAGTAGACG -ACGGAACTCTCTTCACAGGTAACG -ACGGAACTCTCTTCACAGACTTCG -ACGGAACTCTCTTCACAGTACGCA -ACGGAACTCTCTTCACAGCTTGCA -ACGGAACTCTCTTCACAGCGAACA -ACGGAACTCTCTTCACAGCAGTCA -ACGGAACTCTCTTCACAGGATCCA -ACGGAACTCTCTTCACAGACGACA -ACGGAACTCTCTTCACAGAGCTCA -ACGGAACTCTCTTCACAGTCACGT -ACGGAACTCTCTTCACAGCGTAGT -ACGGAACTCTCTTCACAGGTCAGT -ACGGAACTCTCTTCACAGGAAGGT -ACGGAACTCTCTTCACAGAACCGT -ACGGAACTCTCTTCACAGTTGTGC -ACGGAACTCTCTTCACAGCTAAGC -ACGGAACTCTCTTCACAGACTAGC -ACGGAACTCTCTTCACAGAGATGC -ACGGAACTCTCTTCACAGTGAAGG -ACGGAACTCTCTTCACAGCAATGG -ACGGAACTCTCTTCACAGATGAGG -ACGGAACTCTCTTCACAGAATGGG -ACGGAACTCTCTTCACAGTCCTGA -ACGGAACTCTCTTCACAGTAGCGA -ACGGAACTCTCTTCACAGCACAGA -ACGGAACTCTCTTCACAGGCAAGA -ACGGAACTCTCTTCACAGGGTTGA -ACGGAACTCTCTTCACAGTCCGAT -ACGGAACTCTCTTCACAGTGGCAT -ACGGAACTCTCTTCACAGCGAGAT -ACGGAACTCTCTTCACAGTACCAC -ACGGAACTCTCTTCACAGCAGAAC -ACGGAACTCTCTTCACAGGTCTAC -ACGGAACTCTCTTCACAGACGTAC -ACGGAACTCTCTTCACAGAGTGAC -ACGGAACTCTCTTCACAGCTGTAG -ACGGAACTCTCTTCACAGCCTAAG -ACGGAACTCTCTTCACAGGTTCAG -ACGGAACTCTCTTCACAGGCATAG -ACGGAACTCTCTTCACAGGACAAG -ACGGAACTCTCTTCACAGAAGCAG -ACGGAACTCTCTTCACAGCGTCAA -ACGGAACTCTCTTCACAGGCTGAA -ACGGAACTCTCTTCACAGAGTACG -ACGGAACTCTCTTCACAGATCCGA -ACGGAACTCTCTTCACAGATGGGA -ACGGAACTCTCTTCACAGGTGCAA -ACGGAACTCTCTTCACAGGAGGAA -ACGGAACTCTCTTCACAGCAGGTA -ACGGAACTCTCTTCACAGGACTCT -ACGGAACTCTCTTCACAGAGTCCT -ACGGAACTCTCTTCACAGTAAGCC -ACGGAACTCTCTTCACAGATAGCC -ACGGAACTCTCTTCACAGTAACCG -ACGGAACTCTCTTCACAGATGCCA -ACGGAACTCTCTCCAGATGGAAAC -ACGGAACTCTCTCCAGATAACACC -ACGGAACTCTCTCCAGATATCGAG -ACGGAACTCTCTCCAGATCTCCTT -ACGGAACTCTCTCCAGATCCTGTT -ACGGAACTCTCTCCAGATCGGTTT -ACGGAACTCTCTCCAGATGTGGTT -ACGGAACTCTCTCCAGATGCCTTT -ACGGAACTCTCTCCAGATGGTCTT -ACGGAACTCTCTCCAGATACGCTT -ACGGAACTCTCTCCAGATAGCGTT -ACGGAACTCTCTCCAGATTTCGTC -ACGGAACTCTCTCCAGATTCTCTC -ACGGAACTCTCTCCAGATTGGATC -ACGGAACTCTCTCCAGATCACTTC -ACGGAACTCTCTCCAGATGTACTC -ACGGAACTCTCTCCAGATGATGTC -ACGGAACTCTCTCCAGATACAGTC -ACGGAACTCTCTCCAGATTTGCTG -ACGGAACTCTCTCCAGATTCCATG -ACGGAACTCTCTCCAGATTGTGTG -ACGGAACTCTCTCCAGATCTAGTG -ACGGAACTCTCTCCAGATCATCTG -ACGGAACTCTCTCCAGATGAGTTG -ACGGAACTCTCTCCAGATAGACTG -ACGGAACTCTCTCCAGATTCGGTA -ACGGAACTCTCTCCAGATTGCCTA -ACGGAACTCTCTCCAGATCCACTA -ACGGAACTCTCTCCAGATGGAGTA -ACGGAACTCTCTCCAGATTCGTCT -ACGGAACTCTCTCCAGATTGCACT -ACGGAACTCTCTCCAGATCTGACT -ACGGAACTCTCTCCAGATCAACCT -ACGGAACTCTCTCCAGATGCTACT -ACGGAACTCTCTCCAGATGGATCT -ACGGAACTCTCTCCAGATAAGGCT -ACGGAACTCTCTCCAGATTCAACC -ACGGAACTCTCTCCAGATTGTTCC -ACGGAACTCTCTCCAGATATTCCC -ACGGAACTCTCTCCAGATTTCTCG -ACGGAACTCTCTCCAGATTAGACG -ACGGAACTCTCTCCAGATGTAACG -ACGGAACTCTCTCCAGATACTTCG -ACGGAACTCTCTCCAGATTACGCA -ACGGAACTCTCTCCAGATCTTGCA -ACGGAACTCTCTCCAGATCGAACA -ACGGAACTCTCTCCAGATCAGTCA -ACGGAACTCTCTCCAGATGATCCA -ACGGAACTCTCTCCAGATACGACA -ACGGAACTCTCTCCAGATAGCTCA -ACGGAACTCTCTCCAGATTCACGT -ACGGAACTCTCTCCAGATCGTAGT -ACGGAACTCTCTCCAGATGTCAGT -ACGGAACTCTCTCCAGATGAAGGT -ACGGAACTCTCTCCAGATAACCGT -ACGGAACTCTCTCCAGATTTGTGC -ACGGAACTCTCTCCAGATCTAAGC -ACGGAACTCTCTCCAGATACTAGC -ACGGAACTCTCTCCAGATAGATGC -ACGGAACTCTCTCCAGATTGAAGG -ACGGAACTCTCTCCAGATCAATGG -ACGGAACTCTCTCCAGATATGAGG -ACGGAACTCTCTCCAGATAATGGG -ACGGAACTCTCTCCAGATTCCTGA -ACGGAACTCTCTCCAGATTAGCGA -ACGGAACTCTCTCCAGATCACAGA -ACGGAACTCTCTCCAGATGCAAGA -ACGGAACTCTCTCCAGATGGTTGA -ACGGAACTCTCTCCAGATTCCGAT -ACGGAACTCTCTCCAGATTGGCAT -ACGGAACTCTCTCCAGATCGAGAT -ACGGAACTCTCTCCAGATTACCAC -ACGGAACTCTCTCCAGATCAGAAC -ACGGAACTCTCTCCAGATGTCTAC -ACGGAACTCTCTCCAGATACGTAC -ACGGAACTCTCTCCAGATAGTGAC -ACGGAACTCTCTCCAGATCTGTAG -ACGGAACTCTCTCCAGATCCTAAG -ACGGAACTCTCTCCAGATGTTCAG -ACGGAACTCTCTCCAGATGCATAG -ACGGAACTCTCTCCAGATGACAAG -ACGGAACTCTCTCCAGATAAGCAG -ACGGAACTCTCTCCAGATCGTCAA -ACGGAACTCTCTCCAGATGCTGAA -ACGGAACTCTCTCCAGATAGTACG -ACGGAACTCTCTCCAGATATCCGA -ACGGAACTCTCTCCAGATATGGGA -ACGGAACTCTCTCCAGATGTGCAA -ACGGAACTCTCTCCAGATGAGGAA -ACGGAACTCTCTCCAGATCAGGTA -ACGGAACTCTCTCCAGATGACTCT -ACGGAACTCTCTCCAGATAGTCCT -ACGGAACTCTCTCCAGATTAAGCC -ACGGAACTCTCTCCAGATATAGCC -ACGGAACTCTCTCCAGATTAACCG -ACGGAACTCTCTCCAGATATGCCA -ACGGAACTCTCTACAACGGGAAAC -ACGGAACTCTCTACAACGAACACC -ACGGAACTCTCTACAACGATCGAG -ACGGAACTCTCTACAACGCTCCTT -ACGGAACTCTCTACAACGCCTGTT -ACGGAACTCTCTACAACGCGGTTT -ACGGAACTCTCTACAACGGTGGTT -ACGGAACTCTCTACAACGGCCTTT -ACGGAACTCTCTACAACGGGTCTT -ACGGAACTCTCTACAACGACGCTT -ACGGAACTCTCTACAACGAGCGTT -ACGGAACTCTCTACAACGTTCGTC -ACGGAACTCTCTACAACGTCTCTC -ACGGAACTCTCTACAACGTGGATC -ACGGAACTCTCTACAACGCACTTC -ACGGAACTCTCTACAACGGTACTC -ACGGAACTCTCTACAACGGATGTC -ACGGAACTCTCTACAACGACAGTC -ACGGAACTCTCTACAACGTTGCTG -ACGGAACTCTCTACAACGTCCATG -ACGGAACTCTCTACAACGTGTGTG -ACGGAACTCTCTACAACGCTAGTG -ACGGAACTCTCTACAACGCATCTG -ACGGAACTCTCTACAACGGAGTTG -ACGGAACTCTCTACAACGAGACTG -ACGGAACTCTCTACAACGTCGGTA -ACGGAACTCTCTACAACGTGCCTA -ACGGAACTCTCTACAACGCCACTA -ACGGAACTCTCTACAACGGGAGTA -ACGGAACTCTCTACAACGTCGTCT -ACGGAACTCTCTACAACGTGCACT -ACGGAACTCTCTACAACGCTGACT -ACGGAACTCTCTACAACGCAACCT -ACGGAACTCTCTACAACGGCTACT -ACGGAACTCTCTACAACGGGATCT -ACGGAACTCTCTACAACGAAGGCT -ACGGAACTCTCTACAACGTCAACC -ACGGAACTCTCTACAACGTGTTCC -ACGGAACTCTCTACAACGATTCCC -ACGGAACTCTCTACAACGTTCTCG -ACGGAACTCTCTACAACGTAGACG -ACGGAACTCTCTACAACGGTAACG -ACGGAACTCTCTACAACGACTTCG -ACGGAACTCTCTACAACGTACGCA -ACGGAACTCTCTACAACGCTTGCA -ACGGAACTCTCTACAACGCGAACA -ACGGAACTCTCTACAACGCAGTCA -ACGGAACTCTCTACAACGGATCCA -ACGGAACTCTCTACAACGACGACA -ACGGAACTCTCTACAACGAGCTCA -ACGGAACTCTCTACAACGTCACGT -ACGGAACTCTCTACAACGCGTAGT -ACGGAACTCTCTACAACGGTCAGT -ACGGAACTCTCTACAACGGAAGGT -ACGGAACTCTCTACAACGAACCGT -ACGGAACTCTCTACAACGTTGTGC -ACGGAACTCTCTACAACGCTAAGC -ACGGAACTCTCTACAACGACTAGC -ACGGAACTCTCTACAACGAGATGC -ACGGAACTCTCTACAACGTGAAGG -ACGGAACTCTCTACAACGCAATGG -ACGGAACTCTCTACAACGATGAGG -ACGGAACTCTCTACAACGAATGGG -ACGGAACTCTCTACAACGTCCTGA -ACGGAACTCTCTACAACGTAGCGA -ACGGAACTCTCTACAACGCACAGA -ACGGAACTCTCTACAACGGCAAGA -ACGGAACTCTCTACAACGGGTTGA -ACGGAACTCTCTACAACGTCCGAT -ACGGAACTCTCTACAACGTGGCAT -ACGGAACTCTCTACAACGCGAGAT -ACGGAACTCTCTACAACGTACCAC -ACGGAACTCTCTACAACGCAGAAC -ACGGAACTCTCTACAACGGTCTAC -ACGGAACTCTCTACAACGACGTAC -ACGGAACTCTCTACAACGAGTGAC -ACGGAACTCTCTACAACGCTGTAG -ACGGAACTCTCTACAACGCCTAAG -ACGGAACTCTCTACAACGGTTCAG -ACGGAACTCTCTACAACGGCATAG -ACGGAACTCTCTACAACGGACAAG -ACGGAACTCTCTACAACGAAGCAG -ACGGAACTCTCTACAACGCGTCAA -ACGGAACTCTCTACAACGGCTGAA -ACGGAACTCTCTACAACGAGTACG -ACGGAACTCTCTACAACGATCCGA -ACGGAACTCTCTACAACGATGGGA -ACGGAACTCTCTACAACGGTGCAA -ACGGAACTCTCTACAACGGAGGAA -ACGGAACTCTCTACAACGCAGGTA -ACGGAACTCTCTACAACGGACTCT -ACGGAACTCTCTACAACGAGTCCT -ACGGAACTCTCTACAACGTAAGCC -ACGGAACTCTCTACAACGATAGCC -ACGGAACTCTCTACAACGTAACCG -ACGGAACTCTCTACAACGATGCCA -ACGGAACTCTCTTCAAGCGGAAAC -ACGGAACTCTCTTCAAGCAACACC -ACGGAACTCTCTTCAAGCATCGAG -ACGGAACTCTCTTCAAGCCTCCTT -ACGGAACTCTCTTCAAGCCCTGTT -ACGGAACTCTCTTCAAGCCGGTTT -ACGGAACTCTCTTCAAGCGTGGTT -ACGGAACTCTCTTCAAGCGCCTTT -ACGGAACTCTCTTCAAGCGGTCTT -ACGGAACTCTCTTCAAGCACGCTT -ACGGAACTCTCTTCAAGCAGCGTT -ACGGAACTCTCTTCAAGCTTCGTC -ACGGAACTCTCTTCAAGCTCTCTC -ACGGAACTCTCTTCAAGCTGGATC -ACGGAACTCTCTTCAAGCCACTTC -ACGGAACTCTCTTCAAGCGTACTC -ACGGAACTCTCTTCAAGCGATGTC -ACGGAACTCTCTTCAAGCACAGTC -ACGGAACTCTCTTCAAGCTTGCTG -ACGGAACTCTCTTCAAGCTCCATG -ACGGAACTCTCTTCAAGCTGTGTG -ACGGAACTCTCTTCAAGCCTAGTG -ACGGAACTCTCTTCAAGCCATCTG -ACGGAACTCTCTTCAAGCGAGTTG -ACGGAACTCTCTTCAAGCAGACTG -ACGGAACTCTCTTCAAGCTCGGTA -ACGGAACTCTCTTCAAGCTGCCTA -ACGGAACTCTCTTCAAGCCCACTA -ACGGAACTCTCTTCAAGCGGAGTA -ACGGAACTCTCTTCAAGCTCGTCT -ACGGAACTCTCTTCAAGCTGCACT -ACGGAACTCTCTTCAAGCCTGACT -ACGGAACTCTCTTCAAGCCAACCT -ACGGAACTCTCTTCAAGCGCTACT -ACGGAACTCTCTTCAAGCGGATCT -ACGGAACTCTCTTCAAGCAAGGCT -ACGGAACTCTCTTCAAGCTCAACC -ACGGAACTCTCTTCAAGCTGTTCC -ACGGAACTCTCTTCAAGCATTCCC -ACGGAACTCTCTTCAAGCTTCTCG -ACGGAACTCTCTTCAAGCTAGACG -ACGGAACTCTCTTCAAGCGTAACG -ACGGAACTCTCTTCAAGCACTTCG -ACGGAACTCTCTTCAAGCTACGCA -ACGGAACTCTCTTCAAGCCTTGCA -ACGGAACTCTCTTCAAGCCGAACA -ACGGAACTCTCTTCAAGCCAGTCA -ACGGAACTCTCTTCAAGCGATCCA -ACGGAACTCTCTTCAAGCACGACA -ACGGAACTCTCTTCAAGCAGCTCA -ACGGAACTCTCTTCAAGCTCACGT -ACGGAACTCTCTTCAAGCCGTAGT -ACGGAACTCTCTTCAAGCGTCAGT -ACGGAACTCTCTTCAAGCGAAGGT -ACGGAACTCTCTTCAAGCAACCGT -ACGGAACTCTCTTCAAGCTTGTGC -ACGGAACTCTCTTCAAGCCTAAGC -ACGGAACTCTCTTCAAGCACTAGC -ACGGAACTCTCTTCAAGCAGATGC -ACGGAACTCTCTTCAAGCTGAAGG -ACGGAACTCTCTTCAAGCCAATGG -ACGGAACTCTCTTCAAGCATGAGG -ACGGAACTCTCTTCAAGCAATGGG -ACGGAACTCTCTTCAAGCTCCTGA -ACGGAACTCTCTTCAAGCTAGCGA -ACGGAACTCTCTTCAAGCCACAGA -ACGGAACTCTCTTCAAGCGCAAGA -ACGGAACTCTCTTCAAGCGGTTGA -ACGGAACTCTCTTCAAGCTCCGAT -ACGGAACTCTCTTCAAGCTGGCAT -ACGGAACTCTCTTCAAGCCGAGAT -ACGGAACTCTCTTCAAGCTACCAC -ACGGAACTCTCTTCAAGCCAGAAC -ACGGAACTCTCTTCAAGCGTCTAC -ACGGAACTCTCTTCAAGCACGTAC -ACGGAACTCTCTTCAAGCAGTGAC -ACGGAACTCTCTTCAAGCCTGTAG -ACGGAACTCTCTTCAAGCCCTAAG -ACGGAACTCTCTTCAAGCGTTCAG -ACGGAACTCTCTTCAAGCGCATAG -ACGGAACTCTCTTCAAGCGACAAG -ACGGAACTCTCTTCAAGCAAGCAG -ACGGAACTCTCTTCAAGCCGTCAA -ACGGAACTCTCTTCAAGCGCTGAA -ACGGAACTCTCTTCAAGCAGTACG -ACGGAACTCTCTTCAAGCATCCGA -ACGGAACTCTCTTCAAGCATGGGA -ACGGAACTCTCTTCAAGCGTGCAA -ACGGAACTCTCTTCAAGCGAGGAA -ACGGAACTCTCTTCAAGCCAGGTA -ACGGAACTCTCTTCAAGCGACTCT -ACGGAACTCTCTTCAAGCAGTCCT -ACGGAACTCTCTTCAAGCTAAGCC -ACGGAACTCTCTTCAAGCATAGCC -ACGGAACTCTCTTCAAGCTAACCG -ACGGAACTCTCTTCAAGCATGCCA -ACGGAACTCTCTCGTTCAGGAAAC -ACGGAACTCTCTCGTTCAAACACC -ACGGAACTCTCTCGTTCAATCGAG -ACGGAACTCTCTCGTTCACTCCTT -ACGGAACTCTCTCGTTCACCTGTT -ACGGAACTCTCTCGTTCACGGTTT -ACGGAACTCTCTCGTTCAGTGGTT -ACGGAACTCTCTCGTTCAGCCTTT -ACGGAACTCTCTCGTTCAGGTCTT -ACGGAACTCTCTCGTTCAACGCTT -ACGGAACTCTCTCGTTCAAGCGTT -ACGGAACTCTCTCGTTCATTCGTC -ACGGAACTCTCTCGTTCATCTCTC -ACGGAACTCTCTCGTTCATGGATC -ACGGAACTCTCTCGTTCACACTTC -ACGGAACTCTCTCGTTCAGTACTC -ACGGAACTCTCTCGTTCAGATGTC -ACGGAACTCTCTCGTTCAACAGTC -ACGGAACTCTCTCGTTCATTGCTG -ACGGAACTCTCTCGTTCATCCATG -ACGGAACTCTCTCGTTCATGTGTG -ACGGAACTCTCTCGTTCACTAGTG -ACGGAACTCTCTCGTTCACATCTG -ACGGAACTCTCTCGTTCAGAGTTG -ACGGAACTCTCTCGTTCAAGACTG -ACGGAACTCTCTCGTTCATCGGTA -ACGGAACTCTCTCGTTCATGCCTA -ACGGAACTCTCTCGTTCACCACTA -ACGGAACTCTCTCGTTCAGGAGTA -ACGGAACTCTCTCGTTCATCGTCT -ACGGAACTCTCTCGTTCATGCACT -ACGGAACTCTCTCGTTCACTGACT -ACGGAACTCTCTCGTTCACAACCT -ACGGAACTCTCTCGTTCAGCTACT -ACGGAACTCTCTCGTTCAGGATCT -ACGGAACTCTCTCGTTCAAAGGCT -ACGGAACTCTCTCGTTCATCAACC -ACGGAACTCTCTCGTTCATGTTCC -ACGGAACTCTCTCGTTCAATTCCC -ACGGAACTCTCTCGTTCATTCTCG -ACGGAACTCTCTCGTTCATAGACG -ACGGAACTCTCTCGTTCAGTAACG -ACGGAACTCTCTCGTTCAACTTCG -ACGGAACTCTCTCGTTCATACGCA -ACGGAACTCTCTCGTTCACTTGCA -ACGGAACTCTCTCGTTCACGAACA -ACGGAACTCTCTCGTTCACAGTCA -ACGGAACTCTCTCGTTCAGATCCA -ACGGAACTCTCTCGTTCAACGACA -ACGGAACTCTCTCGTTCAAGCTCA -ACGGAACTCTCTCGTTCATCACGT -ACGGAACTCTCTCGTTCACGTAGT -ACGGAACTCTCTCGTTCAGTCAGT -ACGGAACTCTCTCGTTCAGAAGGT -ACGGAACTCTCTCGTTCAAACCGT -ACGGAACTCTCTCGTTCATTGTGC -ACGGAACTCTCTCGTTCACTAAGC -ACGGAACTCTCTCGTTCAACTAGC -ACGGAACTCTCTCGTTCAAGATGC -ACGGAACTCTCTCGTTCATGAAGG -ACGGAACTCTCTCGTTCACAATGG -ACGGAACTCTCTCGTTCAATGAGG -ACGGAACTCTCTCGTTCAAATGGG -ACGGAACTCTCTCGTTCATCCTGA -ACGGAACTCTCTCGTTCATAGCGA -ACGGAACTCTCTCGTTCACACAGA -ACGGAACTCTCTCGTTCAGCAAGA -ACGGAACTCTCTCGTTCAGGTTGA -ACGGAACTCTCTCGTTCATCCGAT -ACGGAACTCTCTCGTTCATGGCAT -ACGGAACTCTCTCGTTCACGAGAT -ACGGAACTCTCTCGTTCATACCAC -ACGGAACTCTCTCGTTCACAGAAC -ACGGAACTCTCTCGTTCAGTCTAC -ACGGAACTCTCTCGTTCAACGTAC -ACGGAACTCTCTCGTTCAAGTGAC -ACGGAACTCTCTCGTTCACTGTAG -ACGGAACTCTCTCGTTCACCTAAG -ACGGAACTCTCTCGTTCAGTTCAG -ACGGAACTCTCTCGTTCAGCATAG -ACGGAACTCTCTCGTTCAGACAAG -ACGGAACTCTCTCGTTCAAAGCAG -ACGGAACTCTCTCGTTCACGTCAA -ACGGAACTCTCTCGTTCAGCTGAA -ACGGAACTCTCTCGTTCAAGTACG -ACGGAACTCTCTCGTTCAATCCGA -ACGGAACTCTCTCGTTCAATGGGA -ACGGAACTCTCTCGTTCAGTGCAA -ACGGAACTCTCTCGTTCAGAGGAA -ACGGAACTCTCTCGTTCACAGGTA -ACGGAACTCTCTCGTTCAGACTCT -ACGGAACTCTCTCGTTCAAGTCCT -ACGGAACTCTCTCGTTCATAAGCC -ACGGAACTCTCTCGTTCAATAGCC -ACGGAACTCTCTCGTTCATAACCG -ACGGAACTCTCTCGTTCAATGCCA -ACGGAACTCTCTAGTCGTGGAAAC -ACGGAACTCTCTAGTCGTAACACC -ACGGAACTCTCTAGTCGTATCGAG -ACGGAACTCTCTAGTCGTCTCCTT -ACGGAACTCTCTAGTCGTCCTGTT -ACGGAACTCTCTAGTCGTCGGTTT -ACGGAACTCTCTAGTCGTGTGGTT -ACGGAACTCTCTAGTCGTGCCTTT -ACGGAACTCTCTAGTCGTGGTCTT -ACGGAACTCTCTAGTCGTACGCTT -ACGGAACTCTCTAGTCGTAGCGTT -ACGGAACTCTCTAGTCGTTTCGTC -ACGGAACTCTCTAGTCGTTCTCTC -ACGGAACTCTCTAGTCGTTGGATC -ACGGAACTCTCTAGTCGTCACTTC -ACGGAACTCTCTAGTCGTGTACTC -ACGGAACTCTCTAGTCGTGATGTC -ACGGAACTCTCTAGTCGTACAGTC -ACGGAACTCTCTAGTCGTTTGCTG -ACGGAACTCTCTAGTCGTTCCATG -ACGGAACTCTCTAGTCGTTGTGTG -ACGGAACTCTCTAGTCGTCTAGTG -ACGGAACTCTCTAGTCGTCATCTG -ACGGAACTCTCTAGTCGTGAGTTG -ACGGAACTCTCTAGTCGTAGACTG -ACGGAACTCTCTAGTCGTTCGGTA -ACGGAACTCTCTAGTCGTTGCCTA -ACGGAACTCTCTAGTCGTCCACTA -ACGGAACTCTCTAGTCGTGGAGTA -ACGGAACTCTCTAGTCGTTCGTCT -ACGGAACTCTCTAGTCGTTGCACT -ACGGAACTCTCTAGTCGTCTGACT -ACGGAACTCTCTAGTCGTCAACCT -ACGGAACTCTCTAGTCGTGCTACT -ACGGAACTCTCTAGTCGTGGATCT -ACGGAACTCTCTAGTCGTAAGGCT -ACGGAACTCTCTAGTCGTTCAACC -ACGGAACTCTCTAGTCGTTGTTCC -ACGGAACTCTCTAGTCGTATTCCC -ACGGAACTCTCTAGTCGTTTCTCG -ACGGAACTCTCTAGTCGTTAGACG -ACGGAACTCTCTAGTCGTGTAACG -ACGGAACTCTCTAGTCGTACTTCG -ACGGAACTCTCTAGTCGTTACGCA -ACGGAACTCTCTAGTCGTCTTGCA -ACGGAACTCTCTAGTCGTCGAACA -ACGGAACTCTCTAGTCGTCAGTCA -ACGGAACTCTCTAGTCGTGATCCA -ACGGAACTCTCTAGTCGTACGACA -ACGGAACTCTCTAGTCGTAGCTCA -ACGGAACTCTCTAGTCGTTCACGT -ACGGAACTCTCTAGTCGTCGTAGT -ACGGAACTCTCTAGTCGTGTCAGT -ACGGAACTCTCTAGTCGTGAAGGT -ACGGAACTCTCTAGTCGTAACCGT -ACGGAACTCTCTAGTCGTTTGTGC -ACGGAACTCTCTAGTCGTCTAAGC -ACGGAACTCTCTAGTCGTACTAGC -ACGGAACTCTCTAGTCGTAGATGC -ACGGAACTCTCTAGTCGTTGAAGG -ACGGAACTCTCTAGTCGTCAATGG -ACGGAACTCTCTAGTCGTATGAGG -ACGGAACTCTCTAGTCGTAATGGG -ACGGAACTCTCTAGTCGTTCCTGA -ACGGAACTCTCTAGTCGTTAGCGA -ACGGAACTCTCTAGTCGTCACAGA -ACGGAACTCTCTAGTCGTGCAAGA -ACGGAACTCTCTAGTCGTGGTTGA -ACGGAACTCTCTAGTCGTTCCGAT -ACGGAACTCTCTAGTCGTTGGCAT -ACGGAACTCTCTAGTCGTCGAGAT -ACGGAACTCTCTAGTCGTTACCAC -ACGGAACTCTCTAGTCGTCAGAAC -ACGGAACTCTCTAGTCGTGTCTAC -ACGGAACTCTCTAGTCGTACGTAC -ACGGAACTCTCTAGTCGTAGTGAC -ACGGAACTCTCTAGTCGTCTGTAG -ACGGAACTCTCTAGTCGTCCTAAG -ACGGAACTCTCTAGTCGTGTTCAG -ACGGAACTCTCTAGTCGTGCATAG -ACGGAACTCTCTAGTCGTGACAAG -ACGGAACTCTCTAGTCGTAAGCAG -ACGGAACTCTCTAGTCGTCGTCAA -ACGGAACTCTCTAGTCGTGCTGAA -ACGGAACTCTCTAGTCGTAGTACG -ACGGAACTCTCTAGTCGTATCCGA -ACGGAACTCTCTAGTCGTATGGGA -ACGGAACTCTCTAGTCGTGTGCAA -ACGGAACTCTCTAGTCGTGAGGAA -ACGGAACTCTCTAGTCGTCAGGTA -ACGGAACTCTCTAGTCGTGACTCT -ACGGAACTCTCTAGTCGTAGTCCT -ACGGAACTCTCTAGTCGTTAAGCC -ACGGAACTCTCTAGTCGTATAGCC -ACGGAACTCTCTAGTCGTTAACCG -ACGGAACTCTCTAGTCGTATGCCA -ACGGAACTCTCTAGTGTCGGAAAC -ACGGAACTCTCTAGTGTCAACACC -ACGGAACTCTCTAGTGTCATCGAG -ACGGAACTCTCTAGTGTCCTCCTT -ACGGAACTCTCTAGTGTCCCTGTT -ACGGAACTCTCTAGTGTCCGGTTT -ACGGAACTCTCTAGTGTCGTGGTT -ACGGAACTCTCTAGTGTCGCCTTT -ACGGAACTCTCTAGTGTCGGTCTT -ACGGAACTCTCTAGTGTCACGCTT -ACGGAACTCTCTAGTGTCAGCGTT -ACGGAACTCTCTAGTGTCTTCGTC -ACGGAACTCTCTAGTGTCTCTCTC -ACGGAACTCTCTAGTGTCTGGATC -ACGGAACTCTCTAGTGTCCACTTC -ACGGAACTCTCTAGTGTCGTACTC -ACGGAACTCTCTAGTGTCGATGTC -ACGGAACTCTCTAGTGTCACAGTC -ACGGAACTCTCTAGTGTCTTGCTG -ACGGAACTCTCTAGTGTCTCCATG -ACGGAACTCTCTAGTGTCTGTGTG -ACGGAACTCTCTAGTGTCCTAGTG -ACGGAACTCTCTAGTGTCCATCTG -ACGGAACTCTCTAGTGTCGAGTTG -ACGGAACTCTCTAGTGTCAGACTG -ACGGAACTCTCTAGTGTCTCGGTA -ACGGAACTCTCTAGTGTCTGCCTA -ACGGAACTCTCTAGTGTCCCACTA -ACGGAACTCTCTAGTGTCGGAGTA -ACGGAACTCTCTAGTGTCTCGTCT -ACGGAACTCTCTAGTGTCTGCACT -ACGGAACTCTCTAGTGTCCTGACT -ACGGAACTCTCTAGTGTCCAACCT -ACGGAACTCTCTAGTGTCGCTACT -ACGGAACTCTCTAGTGTCGGATCT -ACGGAACTCTCTAGTGTCAAGGCT -ACGGAACTCTCTAGTGTCTCAACC -ACGGAACTCTCTAGTGTCTGTTCC -ACGGAACTCTCTAGTGTCATTCCC -ACGGAACTCTCTAGTGTCTTCTCG -ACGGAACTCTCTAGTGTCTAGACG -ACGGAACTCTCTAGTGTCGTAACG -ACGGAACTCTCTAGTGTCACTTCG -ACGGAACTCTCTAGTGTCTACGCA -ACGGAACTCTCTAGTGTCCTTGCA -ACGGAACTCTCTAGTGTCCGAACA -ACGGAACTCTCTAGTGTCCAGTCA -ACGGAACTCTCTAGTGTCGATCCA -ACGGAACTCTCTAGTGTCACGACA -ACGGAACTCTCTAGTGTCAGCTCA -ACGGAACTCTCTAGTGTCTCACGT -ACGGAACTCTCTAGTGTCCGTAGT -ACGGAACTCTCTAGTGTCGTCAGT -ACGGAACTCTCTAGTGTCGAAGGT -ACGGAACTCTCTAGTGTCAACCGT -ACGGAACTCTCTAGTGTCTTGTGC -ACGGAACTCTCTAGTGTCCTAAGC -ACGGAACTCTCTAGTGTCACTAGC -ACGGAACTCTCTAGTGTCAGATGC -ACGGAACTCTCTAGTGTCTGAAGG -ACGGAACTCTCTAGTGTCCAATGG -ACGGAACTCTCTAGTGTCATGAGG -ACGGAACTCTCTAGTGTCAATGGG -ACGGAACTCTCTAGTGTCTCCTGA -ACGGAACTCTCTAGTGTCTAGCGA -ACGGAACTCTCTAGTGTCCACAGA -ACGGAACTCTCTAGTGTCGCAAGA -ACGGAACTCTCTAGTGTCGGTTGA -ACGGAACTCTCTAGTGTCTCCGAT -ACGGAACTCTCTAGTGTCTGGCAT -ACGGAACTCTCTAGTGTCCGAGAT -ACGGAACTCTCTAGTGTCTACCAC -ACGGAACTCTCTAGTGTCCAGAAC -ACGGAACTCTCTAGTGTCGTCTAC -ACGGAACTCTCTAGTGTCACGTAC -ACGGAACTCTCTAGTGTCAGTGAC -ACGGAACTCTCTAGTGTCCTGTAG -ACGGAACTCTCTAGTGTCCCTAAG -ACGGAACTCTCTAGTGTCGTTCAG -ACGGAACTCTCTAGTGTCGCATAG -ACGGAACTCTCTAGTGTCGACAAG -ACGGAACTCTCTAGTGTCAAGCAG -ACGGAACTCTCTAGTGTCCGTCAA -ACGGAACTCTCTAGTGTCGCTGAA -ACGGAACTCTCTAGTGTCAGTACG -ACGGAACTCTCTAGTGTCATCCGA -ACGGAACTCTCTAGTGTCATGGGA -ACGGAACTCTCTAGTGTCGTGCAA -ACGGAACTCTCTAGTGTCGAGGAA -ACGGAACTCTCTAGTGTCCAGGTA -ACGGAACTCTCTAGTGTCGACTCT -ACGGAACTCTCTAGTGTCAGTCCT -ACGGAACTCTCTAGTGTCTAAGCC -ACGGAACTCTCTAGTGTCATAGCC -ACGGAACTCTCTAGTGTCTAACCG -ACGGAACTCTCTAGTGTCATGCCA -ACGGAACTCTCTGGTGAAGGAAAC -ACGGAACTCTCTGGTGAAAACACC -ACGGAACTCTCTGGTGAAATCGAG -ACGGAACTCTCTGGTGAACTCCTT -ACGGAACTCTCTGGTGAACCTGTT -ACGGAACTCTCTGGTGAACGGTTT -ACGGAACTCTCTGGTGAAGTGGTT -ACGGAACTCTCTGGTGAAGCCTTT -ACGGAACTCTCTGGTGAAGGTCTT -ACGGAACTCTCTGGTGAAACGCTT -ACGGAACTCTCTGGTGAAAGCGTT -ACGGAACTCTCTGGTGAATTCGTC -ACGGAACTCTCTGGTGAATCTCTC -ACGGAACTCTCTGGTGAATGGATC -ACGGAACTCTCTGGTGAACACTTC -ACGGAACTCTCTGGTGAAGTACTC -ACGGAACTCTCTGGTGAAGATGTC -ACGGAACTCTCTGGTGAAACAGTC -ACGGAACTCTCTGGTGAATTGCTG -ACGGAACTCTCTGGTGAATCCATG -ACGGAACTCTCTGGTGAATGTGTG -ACGGAACTCTCTGGTGAACTAGTG -ACGGAACTCTCTGGTGAACATCTG -ACGGAACTCTCTGGTGAAGAGTTG -ACGGAACTCTCTGGTGAAAGACTG -ACGGAACTCTCTGGTGAATCGGTA -ACGGAACTCTCTGGTGAATGCCTA -ACGGAACTCTCTGGTGAACCACTA -ACGGAACTCTCTGGTGAAGGAGTA -ACGGAACTCTCTGGTGAATCGTCT -ACGGAACTCTCTGGTGAATGCACT -ACGGAACTCTCTGGTGAACTGACT -ACGGAACTCTCTGGTGAACAACCT -ACGGAACTCTCTGGTGAAGCTACT -ACGGAACTCTCTGGTGAAGGATCT -ACGGAACTCTCTGGTGAAAAGGCT -ACGGAACTCTCTGGTGAATCAACC -ACGGAACTCTCTGGTGAATGTTCC -ACGGAACTCTCTGGTGAAATTCCC -ACGGAACTCTCTGGTGAATTCTCG -ACGGAACTCTCTGGTGAATAGACG -ACGGAACTCTCTGGTGAAGTAACG -ACGGAACTCTCTGGTGAAACTTCG -ACGGAACTCTCTGGTGAATACGCA -ACGGAACTCTCTGGTGAACTTGCA -ACGGAACTCTCTGGTGAACGAACA -ACGGAACTCTCTGGTGAACAGTCA -ACGGAACTCTCTGGTGAAGATCCA -ACGGAACTCTCTGGTGAAACGACA -ACGGAACTCTCTGGTGAAAGCTCA -ACGGAACTCTCTGGTGAATCACGT -ACGGAACTCTCTGGTGAACGTAGT -ACGGAACTCTCTGGTGAAGTCAGT -ACGGAACTCTCTGGTGAAGAAGGT -ACGGAACTCTCTGGTGAAAACCGT -ACGGAACTCTCTGGTGAATTGTGC -ACGGAACTCTCTGGTGAACTAAGC -ACGGAACTCTCTGGTGAAACTAGC -ACGGAACTCTCTGGTGAAAGATGC -ACGGAACTCTCTGGTGAATGAAGG -ACGGAACTCTCTGGTGAACAATGG -ACGGAACTCTCTGGTGAAATGAGG -ACGGAACTCTCTGGTGAAAATGGG -ACGGAACTCTCTGGTGAATCCTGA -ACGGAACTCTCTGGTGAATAGCGA -ACGGAACTCTCTGGTGAACACAGA -ACGGAACTCTCTGGTGAAGCAAGA -ACGGAACTCTCTGGTGAAGGTTGA -ACGGAACTCTCTGGTGAATCCGAT -ACGGAACTCTCTGGTGAATGGCAT -ACGGAACTCTCTGGTGAACGAGAT -ACGGAACTCTCTGGTGAATACCAC -ACGGAACTCTCTGGTGAACAGAAC -ACGGAACTCTCTGGTGAAGTCTAC -ACGGAACTCTCTGGTGAAACGTAC -ACGGAACTCTCTGGTGAAAGTGAC -ACGGAACTCTCTGGTGAACTGTAG -ACGGAACTCTCTGGTGAACCTAAG -ACGGAACTCTCTGGTGAAGTTCAG -ACGGAACTCTCTGGTGAAGCATAG -ACGGAACTCTCTGGTGAAGACAAG -ACGGAACTCTCTGGTGAAAAGCAG -ACGGAACTCTCTGGTGAACGTCAA -ACGGAACTCTCTGGTGAAGCTGAA -ACGGAACTCTCTGGTGAAAGTACG -ACGGAACTCTCTGGTGAAATCCGA -ACGGAACTCTCTGGTGAAATGGGA -ACGGAACTCTCTGGTGAAGTGCAA -ACGGAACTCTCTGGTGAAGAGGAA -ACGGAACTCTCTGGTGAACAGGTA -ACGGAACTCTCTGGTGAAGACTCT -ACGGAACTCTCTGGTGAAAGTCCT -ACGGAACTCTCTGGTGAATAAGCC -ACGGAACTCTCTGGTGAAATAGCC -ACGGAACTCTCTGGTGAATAACCG -ACGGAACTCTCTGGTGAAATGCCA -ACGGAACTCTCTCGTAACGGAAAC -ACGGAACTCTCTCGTAACAACACC -ACGGAACTCTCTCGTAACATCGAG -ACGGAACTCTCTCGTAACCTCCTT -ACGGAACTCTCTCGTAACCCTGTT -ACGGAACTCTCTCGTAACCGGTTT -ACGGAACTCTCTCGTAACGTGGTT -ACGGAACTCTCTCGTAACGCCTTT -ACGGAACTCTCTCGTAACGGTCTT -ACGGAACTCTCTCGTAACACGCTT -ACGGAACTCTCTCGTAACAGCGTT -ACGGAACTCTCTCGTAACTTCGTC -ACGGAACTCTCTCGTAACTCTCTC -ACGGAACTCTCTCGTAACTGGATC -ACGGAACTCTCTCGTAACCACTTC -ACGGAACTCTCTCGTAACGTACTC -ACGGAACTCTCTCGTAACGATGTC -ACGGAACTCTCTCGTAACACAGTC -ACGGAACTCTCTCGTAACTTGCTG -ACGGAACTCTCTCGTAACTCCATG -ACGGAACTCTCTCGTAACTGTGTG -ACGGAACTCTCTCGTAACCTAGTG -ACGGAACTCTCTCGTAACCATCTG -ACGGAACTCTCTCGTAACGAGTTG -ACGGAACTCTCTCGTAACAGACTG -ACGGAACTCTCTCGTAACTCGGTA -ACGGAACTCTCTCGTAACTGCCTA -ACGGAACTCTCTCGTAACCCACTA -ACGGAACTCTCTCGTAACGGAGTA -ACGGAACTCTCTCGTAACTCGTCT -ACGGAACTCTCTCGTAACTGCACT -ACGGAACTCTCTCGTAACCTGACT -ACGGAACTCTCTCGTAACCAACCT -ACGGAACTCTCTCGTAACGCTACT -ACGGAACTCTCTCGTAACGGATCT -ACGGAACTCTCTCGTAACAAGGCT -ACGGAACTCTCTCGTAACTCAACC -ACGGAACTCTCTCGTAACTGTTCC -ACGGAACTCTCTCGTAACATTCCC -ACGGAACTCTCTCGTAACTTCTCG -ACGGAACTCTCTCGTAACTAGACG -ACGGAACTCTCTCGTAACGTAACG -ACGGAACTCTCTCGTAACACTTCG -ACGGAACTCTCTCGTAACTACGCA -ACGGAACTCTCTCGTAACCTTGCA -ACGGAACTCTCTCGTAACCGAACA -ACGGAACTCTCTCGTAACCAGTCA -ACGGAACTCTCTCGTAACGATCCA -ACGGAACTCTCTCGTAACACGACA -ACGGAACTCTCTCGTAACAGCTCA -ACGGAACTCTCTCGTAACTCACGT -ACGGAACTCTCTCGTAACCGTAGT -ACGGAACTCTCTCGTAACGTCAGT -ACGGAACTCTCTCGTAACGAAGGT -ACGGAACTCTCTCGTAACAACCGT -ACGGAACTCTCTCGTAACTTGTGC -ACGGAACTCTCTCGTAACCTAAGC -ACGGAACTCTCTCGTAACACTAGC -ACGGAACTCTCTCGTAACAGATGC -ACGGAACTCTCTCGTAACTGAAGG -ACGGAACTCTCTCGTAACCAATGG -ACGGAACTCTCTCGTAACATGAGG -ACGGAACTCTCTCGTAACAATGGG -ACGGAACTCTCTCGTAACTCCTGA -ACGGAACTCTCTCGTAACTAGCGA -ACGGAACTCTCTCGTAACCACAGA -ACGGAACTCTCTCGTAACGCAAGA -ACGGAACTCTCTCGTAACGGTTGA -ACGGAACTCTCTCGTAACTCCGAT -ACGGAACTCTCTCGTAACTGGCAT -ACGGAACTCTCTCGTAACCGAGAT -ACGGAACTCTCTCGTAACTACCAC -ACGGAACTCTCTCGTAACCAGAAC -ACGGAACTCTCTCGTAACGTCTAC -ACGGAACTCTCTCGTAACACGTAC -ACGGAACTCTCTCGTAACAGTGAC -ACGGAACTCTCTCGTAACCTGTAG -ACGGAACTCTCTCGTAACCCTAAG -ACGGAACTCTCTCGTAACGTTCAG -ACGGAACTCTCTCGTAACGCATAG -ACGGAACTCTCTCGTAACGACAAG -ACGGAACTCTCTCGTAACAAGCAG -ACGGAACTCTCTCGTAACCGTCAA -ACGGAACTCTCTCGTAACGCTGAA -ACGGAACTCTCTCGTAACAGTACG -ACGGAACTCTCTCGTAACATCCGA -ACGGAACTCTCTCGTAACATGGGA -ACGGAACTCTCTCGTAACGTGCAA -ACGGAACTCTCTCGTAACGAGGAA -ACGGAACTCTCTCGTAACCAGGTA -ACGGAACTCTCTCGTAACGACTCT -ACGGAACTCTCTCGTAACAGTCCT -ACGGAACTCTCTCGTAACTAAGCC -ACGGAACTCTCTCGTAACATAGCC -ACGGAACTCTCTCGTAACTAACCG -ACGGAACTCTCTCGTAACATGCCA -ACGGAACTCTCTTGCTTGGGAAAC -ACGGAACTCTCTTGCTTGAACACC -ACGGAACTCTCTTGCTTGATCGAG -ACGGAACTCTCTTGCTTGCTCCTT -ACGGAACTCTCTTGCTTGCCTGTT -ACGGAACTCTCTTGCTTGCGGTTT -ACGGAACTCTCTTGCTTGGTGGTT -ACGGAACTCTCTTGCTTGGCCTTT -ACGGAACTCTCTTGCTTGGGTCTT -ACGGAACTCTCTTGCTTGACGCTT -ACGGAACTCTCTTGCTTGAGCGTT -ACGGAACTCTCTTGCTTGTTCGTC -ACGGAACTCTCTTGCTTGTCTCTC -ACGGAACTCTCTTGCTTGTGGATC -ACGGAACTCTCTTGCTTGCACTTC -ACGGAACTCTCTTGCTTGGTACTC -ACGGAACTCTCTTGCTTGGATGTC -ACGGAACTCTCTTGCTTGACAGTC -ACGGAACTCTCTTGCTTGTTGCTG -ACGGAACTCTCTTGCTTGTCCATG -ACGGAACTCTCTTGCTTGTGTGTG -ACGGAACTCTCTTGCTTGCTAGTG -ACGGAACTCTCTTGCTTGCATCTG -ACGGAACTCTCTTGCTTGGAGTTG -ACGGAACTCTCTTGCTTGAGACTG -ACGGAACTCTCTTGCTTGTCGGTA -ACGGAACTCTCTTGCTTGTGCCTA -ACGGAACTCTCTTGCTTGCCACTA -ACGGAACTCTCTTGCTTGGGAGTA -ACGGAACTCTCTTGCTTGTCGTCT -ACGGAACTCTCTTGCTTGTGCACT -ACGGAACTCTCTTGCTTGCTGACT -ACGGAACTCTCTTGCTTGCAACCT -ACGGAACTCTCTTGCTTGGCTACT -ACGGAACTCTCTTGCTTGGGATCT -ACGGAACTCTCTTGCTTGAAGGCT -ACGGAACTCTCTTGCTTGTCAACC -ACGGAACTCTCTTGCTTGTGTTCC -ACGGAACTCTCTTGCTTGATTCCC -ACGGAACTCTCTTGCTTGTTCTCG -ACGGAACTCTCTTGCTTGTAGACG -ACGGAACTCTCTTGCTTGGTAACG -ACGGAACTCTCTTGCTTGACTTCG -ACGGAACTCTCTTGCTTGTACGCA -ACGGAACTCTCTTGCTTGCTTGCA -ACGGAACTCTCTTGCTTGCGAACA -ACGGAACTCTCTTGCTTGCAGTCA -ACGGAACTCTCTTGCTTGGATCCA -ACGGAACTCTCTTGCTTGACGACA -ACGGAACTCTCTTGCTTGAGCTCA -ACGGAACTCTCTTGCTTGTCACGT -ACGGAACTCTCTTGCTTGCGTAGT -ACGGAACTCTCTTGCTTGGTCAGT -ACGGAACTCTCTTGCTTGGAAGGT -ACGGAACTCTCTTGCTTGAACCGT -ACGGAACTCTCTTGCTTGTTGTGC -ACGGAACTCTCTTGCTTGCTAAGC -ACGGAACTCTCTTGCTTGACTAGC -ACGGAACTCTCTTGCTTGAGATGC -ACGGAACTCTCTTGCTTGTGAAGG -ACGGAACTCTCTTGCTTGCAATGG -ACGGAACTCTCTTGCTTGATGAGG -ACGGAACTCTCTTGCTTGAATGGG -ACGGAACTCTCTTGCTTGTCCTGA -ACGGAACTCTCTTGCTTGTAGCGA -ACGGAACTCTCTTGCTTGCACAGA -ACGGAACTCTCTTGCTTGGCAAGA -ACGGAACTCTCTTGCTTGGGTTGA -ACGGAACTCTCTTGCTTGTCCGAT -ACGGAACTCTCTTGCTTGTGGCAT -ACGGAACTCTCTTGCTTGCGAGAT -ACGGAACTCTCTTGCTTGTACCAC -ACGGAACTCTCTTGCTTGCAGAAC -ACGGAACTCTCTTGCTTGGTCTAC -ACGGAACTCTCTTGCTTGACGTAC -ACGGAACTCTCTTGCTTGAGTGAC -ACGGAACTCTCTTGCTTGCTGTAG -ACGGAACTCTCTTGCTTGCCTAAG -ACGGAACTCTCTTGCTTGGTTCAG -ACGGAACTCTCTTGCTTGGCATAG -ACGGAACTCTCTTGCTTGGACAAG -ACGGAACTCTCTTGCTTGAAGCAG -ACGGAACTCTCTTGCTTGCGTCAA -ACGGAACTCTCTTGCTTGGCTGAA -ACGGAACTCTCTTGCTTGAGTACG -ACGGAACTCTCTTGCTTGATCCGA -ACGGAACTCTCTTGCTTGATGGGA -ACGGAACTCTCTTGCTTGGTGCAA -ACGGAACTCTCTTGCTTGGAGGAA -ACGGAACTCTCTTGCTTGCAGGTA -ACGGAACTCTCTTGCTTGGACTCT -ACGGAACTCTCTTGCTTGAGTCCT -ACGGAACTCTCTTGCTTGTAAGCC -ACGGAACTCTCTTGCTTGATAGCC -ACGGAACTCTCTTGCTTGTAACCG -ACGGAACTCTCTTGCTTGATGCCA -ACGGAACTCTCTAGCCTAGGAAAC -ACGGAACTCTCTAGCCTAAACACC -ACGGAACTCTCTAGCCTAATCGAG -ACGGAACTCTCTAGCCTACTCCTT -ACGGAACTCTCTAGCCTACCTGTT -ACGGAACTCTCTAGCCTACGGTTT -ACGGAACTCTCTAGCCTAGTGGTT -ACGGAACTCTCTAGCCTAGCCTTT -ACGGAACTCTCTAGCCTAGGTCTT -ACGGAACTCTCTAGCCTAACGCTT -ACGGAACTCTCTAGCCTAAGCGTT -ACGGAACTCTCTAGCCTATTCGTC -ACGGAACTCTCTAGCCTATCTCTC -ACGGAACTCTCTAGCCTATGGATC -ACGGAACTCTCTAGCCTACACTTC -ACGGAACTCTCTAGCCTAGTACTC -ACGGAACTCTCTAGCCTAGATGTC -ACGGAACTCTCTAGCCTAACAGTC -ACGGAACTCTCTAGCCTATTGCTG -ACGGAACTCTCTAGCCTATCCATG -ACGGAACTCTCTAGCCTATGTGTG -ACGGAACTCTCTAGCCTACTAGTG -ACGGAACTCTCTAGCCTACATCTG -ACGGAACTCTCTAGCCTAGAGTTG -ACGGAACTCTCTAGCCTAAGACTG -ACGGAACTCTCTAGCCTATCGGTA -ACGGAACTCTCTAGCCTATGCCTA -ACGGAACTCTCTAGCCTACCACTA -ACGGAACTCTCTAGCCTAGGAGTA -ACGGAACTCTCTAGCCTATCGTCT -ACGGAACTCTCTAGCCTATGCACT -ACGGAACTCTCTAGCCTACTGACT -ACGGAACTCTCTAGCCTACAACCT -ACGGAACTCTCTAGCCTAGCTACT -ACGGAACTCTCTAGCCTAGGATCT -ACGGAACTCTCTAGCCTAAAGGCT -ACGGAACTCTCTAGCCTATCAACC -ACGGAACTCTCTAGCCTATGTTCC -ACGGAACTCTCTAGCCTAATTCCC -ACGGAACTCTCTAGCCTATTCTCG -ACGGAACTCTCTAGCCTATAGACG -ACGGAACTCTCTAGCCTAGTAACG -ACGGAACTCTCTAGCCTAACTTCG -ACGGAACTCTCTAGCCTATACGCA -ACGGAACTCTCTAGCCTACTTGCA -ACGGAACTCTCTAGCCTACGAACA -ACGGAACTCTCTAGCCTACAGTCA -ACGGAACTCTCTAGCCTAGATCCA -ACGGAACTCTCTAGCCTAACGACA -ACGGAACTCTCTAGCCTAAGCTCA -ACGGAACTCTCTAGCCTATCACGT -ACGGAACTCTCTAGCCTACGTAGT -ACGGAACTCTCTAGCCTAGTCAGT -ACGGAACTCTCTAGCCTAGAAGGT -ACGGAACTCTCTAGCCTAAACCGT -ACGGAACTCTCTAGCCTATTGTGC -ACGGAACTCTCTAGCCTACTAAGC -ACGGAACTCTCTAGCCTAACTAGC -ACGGAACTCTCTAGCCTAAGATGC -ACGGAACTCTCTAGCCTATGAAGG -ACGGAACTCTCTAGCCTACAATGG -ACGGAACTCTCTAGCCTAATGAGG -ACGGAACTCTCTAGCCTAAATGGG -ACGGAACTCTCTAGCCTATCCTGA -ACGGAACTCTCTAGCCTATAGCGA -ACGGAACTCTCTAGCCTACACAGA -ACGGAACTCTCTAGCCTAGCAAGA -ACGGAACTCTCTAGCCTAGGTTGA -ACGGAACTCTCTAGCCTATCCGAT -ACGGAACTCTCTAGCCTATGGCAT -ACGGAACTCTCTAGCCTACGAGAT -ACGGAACTCTCTAGCCTATACCAC -ACGGAACTCTCTAGCCTACAGAAC -ACGGAACTCTCTAGCCTAGTCTAC -ACGGAACTCTCTAGCCTAACGTAC -ACGGAACTCTCTAGCCTAAGTGAC -ACGGAACTCTCTAGCCTACTGTAG -ACGGAACTCTCTAGCCTACCTAAG -ACGGAACTCTCTAGCCTAGTTCAG -ACGGAACTCTCTAGCCTAGCATAG -ACGGAACTCTCTAGCCTAGACAAG -ACGGAACTCTCTAGCCTAAAGCAG -ACGGAACTCTCTAGCCTACGTCAA -ACGGAACTCTCTAGCCTAGCTGAA -ACGGAACTCTCTAGCCTAAGTACG -ACGGAACTCTCTAGCCTAATCCGA -ACGGAACTCTCTAGCCTAATGGGA -ACGGAACTCTCTAGCCTAGTGCAA -ACGGAACTCTCTAGCCTAGAGGAA -ACGGAACTCTCTAGCCTACAGGTA -ACGGAACTCTCTAGCCTAGACTCT -ACGGAACTCTCTAGCCTAAGTCCT -ACGGAACTCTCTAGCCTATAAGCC -ACGGAACTCTCTAGCCTAATAGCC -ACGGAACTCTCTAGCCTATAACCG -ACGGAACTCTCTAGCCTAATGCCA -ACGGAACTCTCTAGCACTGGAAAC -ACGGAACTCTCTAGCACTAACACC -ACGGAACTCTCTAGCACTATCGAG -ACGGAACTCTCTAGCACTCTCCTT -ACGGAACTCTCTAGCACTCCTGTT -ACGGAACTCTCTAGCACTCGGTTT -ACGGAACTCTCTAGCACTGTGGTT -ACGGAACTCTCTAGCACTGCCTTT -ACGGAACTCTCTAGCACTGGTCTT -ACGGAACTCTCTAGCACTACGCTT -ACGGAACTCTCTAGCACTAGCGTT -ACGGAACTCTCTAGCACTTTCGTC -ACGGAACTCTCTAGCACTTCTCTC -ACGGAACTCTCTAGCACTTGGATC -ACGGAACTCTCTAGCACTCACTTC -ACGGAACTCTCTAGCACTGTACTC -ACGGAACTCTCTAGCACTGATGTC -ACGGAACTCTCTAGCACTACAGTC -ACGGAACTCTCTAGCACTTTGCTG -ACGGAACTCTCTAGCACTTCCATG -ACGGAACTCTCTAGCACTTGTGTG -ACGGAACTCTCTAGCACTCTAGTG -ACGGAACTCTCTAGCACTCATCTG -ACGGAACTCTCTAGCACTGAGTTG -ACGGAACTCTCTAGCACTAGACTG -ACGGAACTCTCTAGCACTTCGGTA -ACGGAACTCTCTAGCACTTGCCTA -ACGGAACTCTCTAGCACTCCACTA -ACGGAACTCTCTAGCACTGGAGTA -ACGGAACTCTCTAGCACTTCGTCT -ACGGAACTCTCTAGCACTTGCACT -ACGGAACTCTCTAGCACTCTGACT -ACGGAACTCTCTAGCACTCAACCT -ACGGAACTCTCTAGCACTGCTACT -ACGGAACTCTCTAGCACTGGATCT -ACGGAACTCTCTAGCACTAAGGCT -ACGGAACTCTCTAGCACTTCAACC -ACGGAACTCTCTAGCACTTGTTCC -ACGGAACTCTCTAGCACTATTCCC -ACGGAACTCTCTAGCACTTTCTCG -ACGGAACTCTCTAGCACTTAGACG -ACGGAACTCTCTAGCACTGTAACG -ACGGAACTCTCTAGCACTACTTCG -ACGGAACTCTCTAGCACTTACGCA -ACGGAACTCTCTAGCACTCTTGCA -ACGGAACTCTCTAGCACTCGAACA -ACGGAACTCTCTAGCACTCAGTCA -ACGGAACTCTCTAGCACTGATCCA -ACGGAACTCTCTAGCACTACGACA -ACGGAACTCTCTAGCACTAGCTCA -ACGGAACTCTCTAGCACTTCACGT -ACGGAACTCTCTAGCACTCGTAGT -ACGGAACTCTCTAGCACTGTCAGT -ACGGAACTCTCTAGCACTGAAGGT -ACGGAACTCTCTAGCACTAACCGT -ACGGAACTCTCTAGCACTTTGTGC -ACGGAACTCTCTAGCACTCTAAGC -ACGGAACTCTCTAGCACTACTAGC -ACGGAACTCTCTAGCACTAGATGC -ACGGAACTCTCTAGCACTTGAAGG -ACGGAACTCTCTAGCACTCAATGG -ACGGAACTCTCTAGCACTATGAGG -ACGGAACTCTCTAGCACTAATGGG -ACGGAACTCTCTAGCACTTCCTGA -ACGGAACTCTCTAGCACTTAGCGA -ACGGAACTCTCTAGCACTCACAGA -ACGGAACTCTCTAGCACTGCAAGA -ACGGAACTCTCTAGCACTGGTTGA -ACGGAACTCTCTAGCACTTCCGAT -ACGGAACTCTCTAGCACTTGGCAT -ACGGAACTCTCTAGCACTCGAGAT -ACGGAACTCTCTAGCACTTACCAC -ACGGAACTCTCTAGCACTCAGAAC -ACGGAACTCTCTAGCACTGTCTAC -ACGGAACTCTCTAGCACTACGTAC -ACGGAACTCTCTAGCACTAGTGAC -ACGGAACTCTCTAGCACTCTGTAG -ACGGAACTCTCTAGCACTCCTAAG -ACGGAACTCTCTAGCACTGTTCAG -ACGGAACTCTCTAGCACTGCATAG -ACGGAACTCTCTAGCACTGACAAG -ACGGAACTCTCTAGCACTAAGCAG -ACGGAACTCTCTAGCACTCGTCAA -ACGGAACTCTCTAGCACTGCTGAA -ACGGAACTCTCTAGCACTAGTACG -ACGGAACTCTCTAGCACTATCCGA -ACGGAACTCTCTAGCACTATGGGA -ACGGAACTCTCTAGCACTGTGCAA -ACGGAACTCTCTAGCACTGAGGAA -ACGGAACTCTCTAGCACTCAGGTA -ACGGAACTCTCTAGCACTGACTCT -ACGGAACTCTCTAGCACTAGTCCT -ACGGAACTCTCTAGCACTTAAGCC -ACGGAACTCTCTAGCACTATAGCC -ACGGAACTCTCTAGCACTTAACCG -ACGGAACTCTCTAGCACTATGCCA -ACGGAACTCTCTTGCAGAGGAAAC -ACGGAACTCTCTTGCAGAAACACC -ACGGAACTCTCTTGCAGAATCGAG -ACGGAACTCTCTTGCAGACTCCTT -ACGGAACTCTCTTGCAGACCTGTT -ACGGAACTCTCTTGCAGACGGTTT -ACGGAACTCTCTTGCAGAGTGGTT -ACGGAACTCTCTTGCAGAGCCTTT -ACGGAACTCTCTTGCAGAGGTCTT -ACGGAACTCTCTTGCAGAACGCTT -ACGGAACTCTCTTGCAGAAGCGTT -ACGGAACTCTCTTGCAGATTCGTC -ACGGAACTCTCTTGCAGATCTCTC -ACGGAACTCTCTTGCAGATGGATC -ACGGAACTCTCTTGCAGACACTTC -ACGGAACTCTCTTGCAGAGTACTC -ACGGAACTCTCTTGCAGAGATGTC -ACGGAACTCTCTTGCAGAACAGTC -ACGGAACTCTCTTGCAGATTGCTG -ACGGAACTCTCTTGCAGATCCATG -ACGGAACTCTCTTGCAGATGTGTG -ACGGAACTCTCTTGCAGACTAGTG -ACGGAACTCTCTTGCAGACATCTG -ACGGAACTCTCTTGCAGAGAGTTG -ACGGAACTCTCTTGCAGAAGACTG -ACGGAACTCTCTTGCAGATCGGTA -ACGGAACTCTCTTGCAGATGCCTA -ACGGAACTCTCTTGCAGACCACTA -ACGGAACTCTCTTGCAGAGGAGTA -ACGGAACTCTCTTGCAGATCGTCT -ACGGAACTCTCTTGCAGATGCACT -ACGGAACTCTCTTGCAGACTGACT -ACGGAACTCTCTTGCAGACAACCT -ACGGAACTCTCTTGCAGAGCTACT -ACGGAACTCTCTTGCAGAGGATCT -ACGGAACTCTCTTGCAGAAAGGCT -ACGGAACTCTCTTGCAGATCAACC -ACGGAACTCTCTTGCAGATGTTCC -ACGGAACTCTCTTGCAGAATTCCC -ACGGAACTCTCTTGCAGATTCTCG -ACGGAACTCTCTTGCAGATAGACG -ACGGAACTCTCTTGCAGAGTAACG -ACGGAACTCTCTTGCAGAACTTCG -ACGGAACTCTCTTGCAGATACGCA -ACGGAACTCTCTTGCAGACTTGCA -ACGGAACTCTCTTGCAGACGAACA -ACGGAACTCTCTTGCAGACAGTCA -ACGGAACTCTCTTGCAGAGATCCA -ACGGAACTCTCTTGCAGAACGACA -ACGGAACTCTCTTGCAGAAGCTCA -ACGGAACTCTCTTGCAGATCACGT -ACGGAACTCTCTTGCAGACGTAGT -ACGGAACTCTCTTGCAGAGTCAGT -ACGGAACTCTCTTGCAGAGAAGGT -ACGGAACTCTCTTGCAGAAACCGT -ACGGAACTCTCTTGCAGATTGTGC -ACGGAACTCTCTTGCAGACTAAGC -ACGGAACTCTCTTGCAGAACTAGC -ACGGAACTCTCTTGCAGAAGATGC -ACGGAACTCTCTTGCAGATGAAGG -ACGGAACTCTCTTGCAGACAATGG -ACGGAACTCTCTTGCAGAATGAGG -ACGGAACTCTCTTGCAGAAATGGG -ACGGAACTCTCTTGCAGATCCTGA -ACGGAACTCTCTTGCAGATAGCGA -ACGGAACTCTCTTGCAGACACAGA -ACGGAACTCTCTTGCAGAGCAAGA -ACGGAACTCTCTTGCAGAGGTTGA -ACGGAACTCTCTTGCAGATCCGAT -ACGGAACTCTCTTGCAGATGGCAT -ACGGAACTCTCTTGCAGACGAGAT -ACGGAACTCTCTTGCAGATACCAC -ACGGAACTCTCTTGCAGACAGAAC -ACGGAACTCTCTTGCAGAGTCTAC -ACGGAACTCTCTTGCAGAACGTAC -ACGGAACTCTCTTGCAGAAGTGAC -ACGGAACTCTCTTGCAGACTGTAG -ACGGAACTCTCTTGCAGACCTAAG -ACGGAACTCTCTTGCAGAGTTCAG -ACGGAACTCTCTTGCAGAGCATAG -ACGGAACTCTCTTGCAGAGACAAG -ACGGAACTCTCTTGCAGAAAGCAG -ACGGAACTCTCTTGCAGACGTCAA -ACGGAACTCTCTTGCAGAGCTGAA -ACGGAACTCTCTTGCAGAAGTACG -ACGGAACTCTCTTGCAGAATCCGA -ACGGAACTCTCTTGCAGAATGGGA -ACGGAACTCTCTTGCAGAGTGCAA -ACGGAACTCTCTTGCAGAGAGGAA -ACGGAACTCTCTTGCAGACAGGTA -ACGGAACTCTCTTGCAGAGACTCT -ACGGAACTCTCTTGCAGAAGTCCT -ACGGAACTCTCTTGCAGATAAGCC -ACGGAACTCTCTTGCAGAATAGCC -ACGGAACTCTCTTGCAGATAACCG -ACGGAACTCTCTTGCAGAATGCCA -ACGGAACTCTCTAGGTGAGGAAAC -ACGGAACTCTCTAGGTGAAACACC -ACGGAACTCTCTAGGTGAATCGAG -ACGGAACTCTCTAGGTGACTCCTT -ACGGAACTCTCTAGGTGACCTGTT -ACGGAACTCTCTAGGTGACGGTTT -ACGGAACTCTCTAGGTGAGTGGTT -ACGGAACTCTCTAGGTGAGCCTTT -ACGGAACTCTCTAGGTGAGGTCTT -ACGGAACTCTCTAGGTGAACGCTT -ACGGAACTCTCTAGGTGAAGCGTT -ACGGAACTCTCTAGGTGATTCGTC -ACGGAACTCTCTAGGTGATCTCTC -ACGGAACTCTCTAGGTGATGGATC -ACGGAACTCTCTAGGTGACACTTC -ACGGAACTCTCTAGGTGAGTACTC -ACGGAACTCTCTAGGTGAGATGTC -ACGGAACTCTCTAGGTGAACAGTC -ACGGAACTCTCTAGGTGATTGCTG -ACGGAACTCTCTAGGTGATCCATG -ACGGAACTCTCTAGGTGATGTGTG -ACGGAACTCTCTAGGTGACTAGTG -ACGGAACTCTCTAGGTGACATCTG -ACGGAACTCTCTAGGTGAGAGTTG -ACGGAACTCTCTAGGTGAAGACTG -ACGGAACTCTCTAGGTGATCGGTA -ACGGAACTCTCTAGGTGATGCCTA -ACGGAACTCTCTAGGTGACCACTA -ACGGAACTCTCTAGGTGAGGAGTA -ACGGAACTCTCTAGGTGATCGTCT -ACGGAACTCTCTAGGTGATGCACT -ACGGAACTCTCTAGGTGACTGACT -ACGGAACTCTCTAGGTGACAACCT -ACGGAACTCTCTAGGTGAGCTACT -ACGGAACTCTCTAGGTGAGGATCT -ACGGAACTCTCTAGGTGAAAGGCT -ACGGAACTCTCTAGGTGATCAACC -ACGGAACTCTCTAGGTGATGTTCC -ACGGAACTCTCTAGGTGAATTCCC -ACGGAACTCTCTAGGTGATTCTCG -ACGGAACTCTCTAGGTGATAGACG -ACGGAACTCTCTAGGTGAGTAACG -ACGGAACTCTCTAGGTGAACTTCG -ACGGAACTCTCTAGGTGATACGCA -ACGGAACTCTCTAGGTGACTTGCA -ACGGAACTCTCTAGGTGACGAACA -ACGGAACTCTCTAGGTGACAGTCA -ACGGAACTCTCTAGGTGAGATCCA -ACGGAACTCTCTAGGTGAACGACA -ACGGAACTCTCTAGGTGAAGCTCA -ACGGAACTCTCTAGGTGATCACGT -ACGGAACTCTCTAGGTGACGTAGT -ACGGAACTCTCTAGGTGAGTCAGT -ACGGAACTCTCTAGGTGAGAAGGT -ACGGAACTCTCTAGGTGAAACCGT -ACGGAACTCTCTAGGTGATTGTGC -ACGGAACTCTCTAGGTGACTAAGC -ACGGAACTCTCTAGGTGAACTAGC -ACGGAACTCTCTAGGTGAAGATGC -ACGGAACTCTCTAGGTGATGAAGG -ACGGAACTCTCTAGGTGACAATGG -ACGGAACTCTCTAGGTGAATGAGG -ACGGAACTCTCTAGGTGAAATGGG -ACGGAACTCTCTAGGTGATCCTGA -ACGGAACTCTCTAGGTGATAGCGA -ACGGAACTCTCTAGGTGACACAGA -ACGGAACTCTCTAGGTGAGCAAGA -ACGGAACTCTCTAGGTGAGGTTGA -ACGGAACTCTCTAGGTGATCCGAT -ACGGAACTCTCTAGGTGATGGCAT -ACGGAACTCTCTAGGTGACGAGAT -ACGGAACTCTCTAGGTGATACCAC -ACGGAACTCTCTAGGTGACAGAAC -ACGGAACTCTCTAGGTGAGTCTAC -ACGGAACTCTCTAGGTGAACGTAC -ACGGAACTCTCTAGGTGAAGTGAC -ACGGAACTCTCTAGGTGACTGTAG -ACGGAACTCTCTAGGTGACCTAAG -ACGGAACTCTCTAGGTGAGTTCAG -ACGGAACTCTCTAGGTGAGCATAG -ACGGAACTCTCTAGGTGAGACAAG -ACGGAACTCTCTAGGTGAAAGCAG -ACGGAACTCTCTAGGTGACGTCAA -ACGGAACTCTCTAGGTGAGCTGAA -ACGGAACTCTCTAGGTGAAGTACG -ACGGAACTCTCTAGGTGAATCCGA -ACGGAACTCTCTAGGTGAATGGGA -ACGGAACTCTCTAGGTGAGTGCAA -ACGGAACTCTCTAGGTGAGAGGAA -ACGGAACTCTCTAGGTGACAGGTA -ACGGAACTCTCTAGGTGAGACTCT -ACGGAACTCTCTAGGTGAAGTCCT -ACGGAACTCTCTAGGTGATAAGCC -ACGGAACTCTCTAGGTGAATAGCC -ACGGAACTCTCTAGGTGATAACCG -ACGGAACTCTCTAGGTGAATGCCA -ACGGAACTCTCTTGGCAAGGAAAC -ACGGAACTCTCTTGGCAAAACACC -ACGGAACTCTCTTGGCAAATCGAG -ACGGAACTCTCTTGGCAACTCCTT -ACGGAACTCTCTTGGCAACCTGTT -ACGGAACTCTCTTGGCAACGGTTT -ACGGAACTCTCTTGGCAAGTGGTT -ACGGAACTCTCTTGGCAAGCCTTT -ACGGAACTCTCTTGGCAAGGTCTT -ACGGAACTCTCTTGGCAAACGCTT -ACGGAACTCTCTTGGCAAAGCGTT -ACGGAACTCTCTTGGCAATTCGTC -ACGGAACTCTCTTGGCAATCTCTC -ACGGAACTCTCTTGGCAATGGATC -ACGGAACTCTCTTGGCAACACTTC -ACGGAACTCTCTTGGCAAGTACTC -ACGGAACTCTCTTGGCAAGATGTC -ACGGAACTCTCTTGGCAAACAGTC -ACGGAACTCTCTTGGCAATTGCTG -ACGGAACTCTCTTGGCAATCCATG -ACGGAACTCTCTTGGCAATGTGTG -ACGGAACTCTCTTGGCAACTAGTG -ACGGAACTCTCTTGGCAACATCTG -ACGGAACTCTCTTGGCAAGAGTTG -ACGGAACTCTCTTGGCAAAGACTG -ACGGAACTCTCTTGGCAATCGGTA -ACGGAACTCTCTTGGCAATGCCTA -ACGGAACTCTCTTGGCAACCACTA -ACGGAACTCTCTTGGCAAGGAGTA -ACGGAACTCTCTTGGCAATCGTCT -ACGGAACTCTCTTGGCAATGCACT -ACGGAACTCTCTTGGCAACTGACT -ACGGAACTCTCTTGGCAACAACCT -ACGGAACTCTCTTGGCAAGCTACT -ACGGAACTCTCTTGGCAAGGATCT -ACGGAACTCTCTTGGCAAAAGGCT -ACGGAACTCTCTTGGCAATCAACC -ACGGAACTCTCTTGGCAATGTTCC -ACGGAACTCTCTTGGCAAATTCCC -ACGGAACTCTCTTGGCAATTCTCG -ACGGAACTCTCTTGGCAATAGACG -ACGGAACTCTCTTGGCAAGTAACG -ACGGAACTCTCTTGGCAAACTTCG -ACGGAACTCTCTTGGCAATACGCA -ACGGAACTCTCTTGGCAACTTGCA -ACGGAACTCTCTTGGCAACGAACA -ACGGAACTCTCTTGGCAACAGTCA -ACGGAACTCTCTTGGCAAGATCCA -ACGGAACTCTCTTGGCAAACGACA -ACGGAACTCTCTTGGCAAAGCTCA -ACGGAACTCTCTTGGCAATCACGT -ACGGAACTCTCTTGGCAACGTAGT -ACGGAACTCTCTTGGCAAGTCAGT -ACGGAACTCTCTTGGCAAGAAGGT -ACGGAACTCTCTTGGCAAAACCGT -ACGGAACTCTCTTGGCAATTGTGC -ACGGAACTCTCTTGGCAACTAAGC -ACGGAACTCTCTTGGCAAACTAGC -ACGGAACTCTCTTGGCAAAGATGC -ACGGAACTCTCTTGGCAATGAAGG -ACGGAACTCTCTTGGCAACAATGG -ACGGAACTCTCTTGGCAAATGAGG -ACGGAACTCTCTTGGCAAAATGGG -ACGGAACTCTCTTGGCAATCCTGA -ACGGAACTCTCTTGGCAATAGCGA -ACGGAACTCTCTTGGCAACACAGA -ACGGAACTCTCTTGGCAAGCAAGA -ACGGAACTCTCTTGGCAAGGTTGA -ACGGAACTCTCTTGGCAATCCGAT -ACGGAACTCTCTTGGCAATGGCAT -ACGGAACTCTCTTGGCAACGAGAT -ACGGAACTCTCTTGGCAATACCAC -ACGGAACTCTCTTGGCAACAGAAC -ACGGAACTCTCTTGGCAAGTCTAC -ACGGAACTCTCTTGGCAAACGTAC -ACGGAACTCTCTTGGCAAAGTGAC -ACGGAACTCTCTTGGCAACTGTAG -ACGGAACTCTCTTGGCAACCTAAG -ACGGAACTCTCTTGGCAAGTTCAG -ACGGAACTCTCTTGGCAAGCATAG -ACGGAACTCTCTTGGCAAGACAAG -ACGGAACTCTCTTGGCAAAAGCAG -ACGGAACTCTCTTGGCAACGTCAA -ACGGAACTCTCTTGGCAAGCTGAA -ACGGAACTCTCTTGGCAAAGTACG -ACGGAACTCTCTTGGCAAATCCGA -ACGGAACTCTCTTGGCAAATGGGA -ACGGAACTCTCTTGGCAAGTGCAA -ACGGAACTCTCTTGGCAAGAGGAA -ACGGAACTCTCTTGGCAACAGGTA -ACGGAACTCTCTTGGCAAGACTCT -ACGGAACTCTCTTGGCAAAGTCCT -ACGGAACTCTCTTGGCAATAAGCC -ACGGAACTCTCTTGGCAAATAGCC -ACGGAACTCTCTTGGCAATAACCG -ACGGAACTCTCTTGGCAAATGCCA -ACGGAACTCTCTAGGATGGGAAAC -ACGGAACTCTCTAGGATGAACACC -ACGGAACTCTCTAGGATGATCGAG -ACGGAACTCTCTAGGATGCTCCTT -ACGGAACTCTCTAGGATGCCTGTT -ACGGAACTCTCTAGGATGCGGTTT -ACGGAACTCTCTAGGATGGTGGTT -ACGGAACTCTCTAGGATGGCCTTT -ACGGAACTCTCTAGGATGGGTCTT -ACGGAACTCTCTAGGATGACGCTT -ACGGAACTCTCTAGGATGAGCGTT -ACGGAACTCTCTAGGATGTTCGTC -ACGGAACTCTCTAGGATGTCTCTC -ACGGAACTCTCTAGGATGTGGATC -ACGGAACTCTCTAGGATGCACTTC -ACGGAACTCTCTAGGATGGTACTC -ACGGAACTCTCTAGGATGGATGTC -ACGGAACTCTCTAGGATGACAGTC -ACGGAACTCTCTAGGATGTTGCTG -ACGGAACTCTCTAGGATGTCCATG -ACGGAACTCTCTAGGATGTGTGTG -ACGGAACTCTCTAGGATGCTAGTG -ACGGAACTCTCTAGGATGCATCTG -ACGGAACTCTCTAGGATGGAGTTG -ACGGAACTCTCTAGGATGAGACTG -ACGGAACTCTCTAGGATGTCGGTA -ACGGAACTCTCTAGGATGTGCCTA -ACGGAACTCTCTAGGATGCCACTA -ACGGAACTCTCTAGGATGGGAGTA -ACGGAACTCTCTAGGATGTCGTCT -ACGGAACTCTCTAGGATGTGCACT -ACGGAACTCTCTAGGATGCTGACT -ACGGAACTCTCTAGGATGCAACCT -ACGGAACTCTCTAGGATGGCTACT -ACGGAACTCTCTAGGATGGGATCT -ACGGAACTCTCTAGGATGAAGGCT -ACGGAACTCTCTAGGATGTCAACC -ACGGAACTCTCTAGGATGTGTTCC -ACGGAACTCTCTAGGATGATTCCC -ACGGAACTCTCTAGGATGTTCTCG -ACGGAACTCTCTAGGATGTAGACG -ACGGAACTCTCTAGGATGGTAACG -ACGGAACTCTCTAGGATGACTTCG -ACGGAACTCTCTAGGATGTACGCA -ACGGAACTCTCTAGGATGCTTGCA -ACGGAACTCTCTAGGATGCGAACA -ACGGAACTCTCTAGGATGCAGTCA -ACGGAACTCTCTAGGATGGATCCA -ACGGAACTCTCTAGGATGACGACA -ACGGAACTCTCTAGGATGAGCTCA -ACGGAACTCTCTAGGATGTCACGT -ACGGAACTCTCTAGGATGCGTAGT -ACGGAACTCTCTAGGATGGTCAGT -ACGGAACTCTCTAGGATGGAAGGT -ACGGAACTCTCTAGGATGAACCGT -ACGGAACTCTCTAGGATGTTGTGC -ACGGAACTCTCTAGGATGCTAAGC -ACGGAACTCTCTAGGATGACTAGC -ACGGAACTCTCTAGGATGAGATGC -ACGGAACTCTCTAGGATGTGAAGG -ACGGAACTCTCTAGGATGCAATGG -ACGGAACTCTCTAGGATGATGAGG -ACGGAACTCTCTAGGATGAATGGG -ACGGAACTCTCTAGGATGTCCTGA -ACGGAACTCTCTAGGATGTAGCGA -ACGGAACTCTCTAGGATGCACAGA -ACGGAACTCTCTAGGATGGCAAGA -ACGGAACTCTCTAGGATGGGTTGA -ACGGAACTCTCTAGGATGTCCGAT -ACGGAACTCTCTAGGATGTGGCAT -ACGGAACTCTCTAGGATGCGAGAT -ACGGAACTCTCTAGGATGTACCAC -ACGGAACTCTCTAGGATGCAGAAC -ACGGAACTCTCTAGGATGGTCTAC -ACGGAACTCTCTAGGATGACGTAC -ACGGAACTCTCTAGGATGAGTGAC -ACGGAACTCTCTAGGATGCTGTAG -ACGGAACTCTCTAGGATGCCTAAG -ACGGAACTCTCTAGGATGGTTCAG -ACGGAACTCTCTAGGATGGCATAG -ACGGAACTCTCTAGGATGGACAAG -ACGGAACTCTCTAGGATGAAGCAG -ACGGAACTCTCTAGGATGCGTCAA -ACGGAACTCTCTAGGATGGCTGAA -ACGGAACTCTCTAGGATGAGTACG -ACGGAACTCTCTAGGATGATCCGA -ACGGAACTCTCTAGGATGATGGGA -ACGGAACTCTCTAGGATGGTGCAA -ACGGAACTCTCTAGGATGGAGGAA -ACGGAACTCTCTAGGATGCAGGTA -ACGGAACTCTCTAGGATGGACTCT -ACGGAACTCTCTAGGATGAGTCCT -ACGGAACTCTCTAGGATGTAAGCC -ACGGAACTCTCTAGGATGATAGCC -ACGGAACTCTCTAGGATGTAACCG -ACGGAACTCTCTAGGATGATGCCA -ACGGAACTCTCTGGGAATGGAAAC -ACGGAACTCTCTGGGAATAACACC -ACGGAACTCTCTGGGAATATCGAG -ACGGAACTCTCTGGGAATCTCCTT -ACGGAACTCTCTGGGAATCCTGTT -ACGGAACTCTCTGGGAATCGGTTT -ACGGAACTCTCTGGGAATGTGGTT -ACGGAACTCTCTGGGAATGCCTTT -ACGGAACTCTCTGGGAATGGTCTT -ACGGAACTCTCTGGGAATACGCTT -ACGGAACTCTCTGGGAATAGCGTT -ACGGAACTCTCTGGGAATTTCGTC -ACGGAACTCTCTGGGAATTCTCTC -ACGGAACTCTCTGGGAATTGGATC -ACGGAACTCTCTGGGAATCACTTC -ACGGAACTCTCTGGGAATGTACTC -ACGGAACTCTCTGGGAATGATGTC -ACGGAACTCTCTGGGAATACAGTC -ACGGAACTCTCTGGGAATTTGCTG -ACGGAACTCTCTGGGAATTCCATG -ACGGAACTCTCTGGGAATTGTGTG -ACGGAACTCTCTGGGAATCTAGTG -ACGGAACTCTCTGGGAATCATCTG -ACGGAACTCTCTGGGAATGAGTTG -ACGGAACTCTCTGGGAATAGACTG -ACGGAACTCTCTGGGAATTCGGTA -ACGGAACTCTCTGGGAATTGCCTA -ACGGAACTCTCTGGGAATCCACTA -ACGGAACTCTCTGGGAATGGAGTA -ACGGAACTCTCTGGGAATTCGTCT -ACGGAACTCTCTGGGAATTGCACT -ACGGAACTCTCTGGGAATCTGACT -ACGGAACTCTCTGGGAATCAACCT -ACGGAACTCTCTGGGAATGCTACT -ACGGAACTCTCTGGGAATGGATCT -ACGGAACTCTCTGGGAATAAGGCT -ACGGAACTCTCTGGGAATTCAACC -ACGGAACTCTCTGGGAATTGTTCC -ACGGAACTCTCTGGGAATATTCCC -ACGGAACTCTCTGGGAATTTCTCG -ACGGAACTCTCTGGGAATTAGACG -ACGGAACTCTCTGGGAATGTAACG -ACGGAACTCTCTGGGAATACTTCG -ACGGAACTCTCTGGGAATTACGCA -ACGGAACTCTCTGGGAATCTTGCA -ACGGAACTCTCTGGGAATCGAACA -ACGGAACTCTCTGGGAATCAGTCA -ACGGAACTCTCTGGGAATGATCCA -ACGGAACTCTCTGGGAATACGACA -ACGGAACTCTCTGGGAATAGCTCA -ACGGAACTCTCTGGGAATTCACGT -ACGGAACTCTCTGGGAATCGTAGT -ACGGAACTCTCTGGGAATGTCAGT -ACGGAACTCTCTGGGAATGAAGGT -ACGGAACTCTCTGGGAATAACCGT -ACGGAACTCTCTGGGAATTTGTGC -ACGGAACTCTCTGGGAATCTAAGC -ACGGAACTCTCTGGGAATACTAGC -ACGGAACTCTCTGGGAATAGATGC -ACGGAACTCTCTGGGAATTGAAGG -ACGGAACTCTCTGGGAATCAATGG -ACGGAACTCTCTGGGAATATGAGG -ACGGAACTCTCTGGGAATAATGGG -ACGGAACTCTCTGGGAATTCCTGA -ACGGAACTCTCTGGGAATTAGCGA -ACGGAACTCTCTGGGAATCACAGA -ACGGAACTCTCTGGGAATGCAAGA -ACGGAACTCTCTGGGAATGGTTGA -ACGGAACTCTCTGGGAATTCCGAT -ACGGAACTCTCTGGGAATTGGCAT -ACGGAACTCTCTGGGAATCGAGAT -ACGGAACTCTCTGGGAATTACCAC -ACGGAACTCTCTGGGAATCAGAAC -ACGGAACTCTCTGGGAATGTCTAC -ACGGAACTCTCTGGGAATACGTAC -ACGGAACTCTCTGGGAATAGTGAC -ACGGAACTCTCTGGGAATCTGTAG -ACGGAACTCTCTGGGAATCCTAAG -ACGGAACTCTCTGGGAATGTTCAG -ACGGAACTCTCTGGGAATGCATAG -ACGGAACTCTCTGGGAATGACAAG -ACGGAACTCTCTGGGAATAAGCAG -ACGGAACTCTCTGGGAATCGTCAA -ACGGAACTCTCTGGGAATGCTGAA -ACGGAACTCTCTGGGAATAGTACG -ACGGAACTCTCTGGGAATATCCGA -ACGGAACTCTCTGGGAATATGGGA -ACGGAACTCTCTGGGAATGTGCAA -ACGGAACTCTCTGGGAATGAGGAA -ACGGAACTCTCTGGGAATCAGGTA -ACGGAACTCTCTGGGAATGACTCT -ACGGAACTCTCTGGGAATAGTCCT -ACGGAACTCTCTGGGAATTAAGCC -ACGGAACTCTCTGGGAATATAGCC -ACGGAACTCTCTGGGAATTAACCG -ACGGAACTCTCTGGGAATATGCCA -ACGGAACTCTCTTGATCCGGAAAC -ACGGAACTCTCTTGATCCAACACC -ACGGAACTCTCTTGATCCATCGAG -ACGGAACTCTCTTGATCCCTCCTT -ACGGAACTCTCTTGATCCCCTGTT -ACGGAACTCTCTTGATCCCGGTTT -ACGGAACTCTCTTGATCCGTGGTT -ACGGAACTCTCTTGATCCGCCTTT -ACGGAACTCTCTTGATCCGGTCTT -ACGGAACTCTCTTGATCCACGCTT -ACGGAACTCTCTTGATCCAGCGTT -ACGGAACTCTCTTGATCCTTCGTC -ACGGAACTCTCTTGATCCTCTCTC -ACGGAACTCTCTTGATCCTGGATC -ACGGAACTCTCTTGATCCCACTTC -ACGGAACTCTCTTGATCCGTACTC -ACGGAACTCTCTTGATCCGATGTC -ACGGAACTCTCTTGATCCACAGTC -ACGGAACTCTCTTGATCCTTGCTG -ACGGAACTCTCTTGATCCTCCATG -ACGGAACTCTCTTGATCCTGTGTG -ACGGAACTCTCTTGATCCCTAGTG -ACGGAACTCTCTTGATCCCATCTG -ACGGAACTCTCTTGATCCGAGTTG -ACGGAACTCTCTTGATCCAGACTG -ACGGAACTCTCTTGATCCTCGGTA -ACGGAACTCTCTTGATCCTGCCTA -ACGGAACTCTCTTGATCCCCACTA -ACGGAACTCTCTTGATCCGGAGTA -ACGGAACTCTCTTGATCCTCGTCT -ACGGAACTCTCTTGATCCTGCACT -ACGGAACTCTCTTGATCCCTGACT -ACGGAACTCTCTTGATCCCAACCT -ACGGAACTCTCTTGATCCGCTACT -ACGGAACTCTCTTGATCCGGATCT -ACGGAACTCTCTTGATCCAAGGCT -ACGGAACTCTCTTGATCCTCAACC -ACGGAACTCTCTTGATCCTGTTCC -ACGGAACTCTCTTGATCCATTCCC -ACGGAACTCTCTTGATCCTTCTCG -ACGGAACTCTCTTGATCCTAGACG -ACGGAACTCTCTTGATCCGTAACG -ACGGAACTCTCTTGATCCACTTCG -ACGGAACTCTCTTGATCCTACGCA -ACGGAACTCTCTTGATCCCTTGCA -ACGGAACTCTCTTGATCCCGAACA -ACGGAACTCTCTTGATCCCAGTCA -ACGGAACTCTCTTGATCCGATCCA -ACGGAACTCTCTTGATCCACGACA -ACGGAACTCTCTTGATCCAGCTCA -ACGGAACTCTCTTGATCCTCACGT -ACGGAACTCTCTTGATCCCGTAGT -ACGGAACTCTCTTGATCCGTCAGT -ACGGAACTCTCTTGATCCGAAGGT -ACGGAACTCTCTTGATCCAACCGT -ACGGAACTCTCTTGATCCTTGTGC -ACGGAACTCTCTTGATCCCTAAGC -ACGGAACTCTCTTGATCCACTAGC -ACGGAACTCTCTTGATCCAGATGC -ACGGAACTCTCTTGATCCTGAAGG -ACGGAACTCTCTTGATCCCAATGG -ACGGAACTCTCTTGATCCATGAGG -ACGGAACTCTCTTGATCCAATGGG -ACGGAACTCTCTTGATCCTCCTGA -ACGGAACTCTCTTGATCCTAGCGA -ACGGAACTCTCTTGATCCCACAGA -ACGGAACTCTCTTGATCCGCAAGA -ACGGAACTCTCTTGATCCGGTTGA -ACGGAACTCTCTTGATCCTCCGAT -ACGGAACTCTCTTGATCCTGGCAT -ACGGAACTCTCTTGATCCCGAGAT -ACGGAACTCTCTTGATCCTACCAC -ACGGAACTCTCTTGATCCCAGAAC -ACGGAACTCTCTTGATCCGTCTAC -ACGGAACTCTCTTGATCCACGTAC -ACGGAACTCTCTTGATCCAGTGAC -ACGGAACTCTCTTGATCCCTGTAG -ACGGAACTCTCTTGATCCCCTAAG -ACGGAACTCTCTTGATCCGTTCAG -ACGGAACTCTCTTGATCCGCATAG -ACGGAACTCTCTTGATCCGACAAG -ACGGAACTCTCTTGATCCAAGCAG -ACGGAACTCTCTTGATCCCGTCAA -ACGGAACTCTCTTGATCCGCTGAA -ACGGAACTCTCTTGATCCAGTACG -ACGGAACTCTCTTGATCCATCCGA -ACGGAACTCTCTTGATCCATGGGA -ACGGAACTCTCTTGATCCGTGCAA -ACGGAACTCTCTTGATCCGAGGAA -ACGGAACTCTCTTGATCCCAGGTA -ACGGAACTCTCTTGATCCGACTCT -ACGGAACTCTCTTGATCCAGTCCT -ACGGAACTCTCTTGATCCTAAGCC -ACGGAACTCTCTTGATCCATAGCC -ACGGAACTCTCTTGATCCTAACCG -ACGGAACTCTCTTGATCCATGCCA -ACGGAACTCTCTCGATAGGGAAAC -ACGGAACTCTCTCGATAGAACACC -ACGGAACTCTCTCGATAGATCGAG -ACGGAACTCTCTCGATAGCTCCTT -ACGGAACTCTCTCGATAGCCTGTT -ACGGAACTCTCTCGATAGCGGTTT -ACGGAACTCTCTCGATAGGTGGTT -ACGGAACTCTCTCGATAGGCCTTT -ACGGAACTCTCTCGATAGGGTCTT -ACGGAACTCTCTCGATAGACGCTT -ACGGAACTCTCTCGATAGAGCGTT -ACGGAACTCTCTCGATAGTTCGTC -ACGGAACTCTCTCGATAGTCTCTC -ACGGAACTCTCTCGATAGTGGATC -ACGGAACTCTCTCGATAGCACTTC -ACGGAACTCTCTCGATAGGTACTC -ACGGAACTCTCTCGATAGGATGTC -ACGGAACTCTCTCGATAGACAGTC -ACGGAACTCTCTCGATAGTTGCTG -ACGGAACTCTCTCGATAGTCCATG -ACGGAACTCTCTCGATAGTGTGTG -ACGGAACTCTCTCGATAGCTAGTG -ACGGAACTCTCTCGATAGCATCTG -ACGGAACTCTCTCGATAGGAGTTG -ACGGAACTCTCTCGATAGAGACTG -ACGGAACTCTCTCGATAGTCGGTA -ACGGAACTCTCTCGATAGTGCCTA -ACGGAACTCTCTCGATAGCCACTA -ACGGAACTCTCTCGATAGGGAGTA -ACGGAACTCTCTCGATAGTCGTCT -ACGGAACTCTCTCGATAGTGCACT -ACGGAACTCTCTCGATAGCTGACT -ACGGAACTCTCTCGATAGCAACCT -ACGGAACTCTCTCGATAGGCTACT -ACGGAACTCTCTCGATAGGGATCT -ACGGAACTCTCTCGATAGAAGGCT -ACGGAACTCTCTCGATAGTCAACC -ACGGAACTCTCTCGATAGTGTTCC -ACGGAACTCTCTCGATAGATTCCC -ACGGAACTCTCTCGATAGTTCTCG -ACGGAACTCTCTCGATAGTAGACG -ACGGAACTCTCTCGATAGGTAACG -ACGGAACTCTCTCGATAGACTTCG -ACGGAACTCTCTCGATAGTACGCA -ACGGAACTCTCTCGATAGCTTGCA -ACGGAACTCTCTCGATAGCGAACA -ACGGAACTCTCTCGATAGCAGTCA -ACGGAACTCTCTCGATAGGATCCA -ACGGAACTCTCTCGATAGACGACA -ACGGAACTCTCTCGATAGAGCTCA -ACGGAACTCTCTCGATAGTCACGT -ACGGAACTCTCTCGATAGCGTAGT -ACGGAACTCTCTCGATAGGTCAGT -ACGGAACTCTCTCGATAGGAAGGT -ACGGAACTCTCTCGATAGAACCGT -ACGGAACTCTCTCGATAGTTGTGC -ACGGAACTCTCTCGATAGCTAAGC -ACGGAACTCTCTCGATAGACTAGC -ACGGAACTCTCTCGATAGAGATGC -ACGGAACTCTCTCGATAGTGAAGG -ACGGAACTCTCTCGATAGCAATGG -ACGGAACTCTCTCGATAGATGAGG -ACGGAACTCTCTCGATAGAATGGG -ACGGAACTCTCTCGATAGTCCTGA -ACGGAACTCTCTCGATAGTAGCGA -ACGGAACTCTCTCGATAGCACAGA -ACGGAACTCTCTCGATAGGCAAGA -ACGGAACTCTCTCGATAGGGTTGA -ACGGAACTCTCTCGATAGTCCGAT -ACGGAACTCTCTCGATAGTGGCAT -ACGGAACTCTCTCGATAGCGAGAT -ACGGAACTCTCTCGATAGTACCAC -ACGGAACTCTCTCGATAGCAGAAC -ACGGAACTCTCTCGATAGGTCTAC -ACGGAACTCTCTCGATAGACGTAC -ACGGAACTCTCTCGATAGAGTGAC -ACGGAACTCTCTCGATAGCTGTAG -ACGGAACTCTCTCGATAGCCTAAG -ACGGAACTCTCTCGATAGGTTCAG -ACGGAACTCTCTCGATAGGCATAG -ACGGAACTCTCTCGATAGGACAAG -ACGGAACTCTCTCGATAGAAGCAG -ACGGAACTCTCTCGATAGCGTCAA -ACGGAACTCTCTCGATAGGCTGAA -ACGGAACTCTCTCGATAGAGTACG -ACGGAACTCTCTCGATAGATCCGA -ACGGAACTCTCTCGATAGATGGGA -ACGGAACTCTCTCGATAGGTGCAA -ACGGAACTCTCTCGATAGGAGGAA -ACGGAACTCTCTCGATAGCAGGTA -ACGGAACTCTCTCGATAGGACTCT -ACGGAACTCTCTCGATAGAGTCCT -ACGGAACTCTCTCGATAGTAAGCC -ACGGAACTCTCTCGATAGATAGCC -ACGGAACTCTCTCGATAGTAACCG -ACGGAACTCTCTCGATAGATGCCA -ACGGAACTCTCTAGACACGGAAAC -ACGGAACTCTCTAGACACAACACC -ACGGAACTCTCTAGACACATCGAG -ACGGAACTCTCTAGACACCTCCTT -ACGGAACTCTCTAGACACCCTGTT -ACGGAACTCTCTAGACACCGGTTT -ACGGAACTCTCTAGACACGTGGTT -ACGGAACTCTCTAGACACGCCTTT -ACGGAACTCTCTAGACACGGTCTT -ACGGAACTCTCTAGACACACGCTT -ACGGAACTCTCTAGACACAGCGTT -ACGGAACTCTCTAGACACTTCGTC -ACGGAACTCTCTAGACACTCTCTC -ACGGAACTCTCTAGACACTGGATC -ACGGAACTCTCTAGACACCACTTC -ACGGAACTCTCTAGACACGTACTC -ACGGAACTCTCTAGACACGATGTC -ACGGAACTCTCTAGACACACAGTC -ACGGAACTCTCTAGACACTTGCTG -ACGGAACTCTCTAGACACTCCATG -ACGGAACTCTCTAGACACTGTGTG -ACGGAACTCTCTAGACACCTAGTG -ACGGAACTCTCTAGACACCATCTG -ACGGAACTCTCTAGACACGAGTTG -ACGGAACTCTCTAGACACAGACTG -ACGGAACTCTCTAGACACTCGGTA -ACGGAACTCTCTAGACACTGCCTA -ACGGAACTCTCTAGACACCCACTA -ACGGAACTCTCTAGACACGGAGTA -ACGGAACTCTCTAGACACTCGTCT -ACGGAACTCTCTAGACACTGCACT -ACGGAACTCTCTAGACACCTGACT -ACGGAACTCTCTAGACACCAACCT -ACGGAACTCTCTAGACACGCTACT -ACGGAACTCTCTAGACACGGATCT -ACGGAACTCTCTAGACACAAGGCT -ACGGAACTCTCTAGACACTCAACC -ACGGAACTCTCTAGACACTGTTCC -ACGGAACTCTCTAGACACATTCCC -ACGGAACTCTCTAGACACTTCTCG -ACGGAACTCTCTAGACACTAGACG -ACGGAACTCTCTAGACACGTAACG -ACGGAACTCTCTAGACACACTTCG -ACGGAACTCTCTAGACACTACGCA -ACGGAACTCTCTAGACACCTTGCA -ACGGAACTCTCTAGACACCGAACA -ACGGAACTCTCTAGACACCAGTCA -ACGGAACTCTCTAGACACGATCCA -ACGGAACTCTCTAGACACACGACA -ACGGAACTCTCTAGACACAGCTCA -ACGGAACTCTCTAGACACTCACGT -ACGGAACTCTCTAGACACCGTAGT -ACGGAACTCTCTAGACACGTCAGT -ACGGAACTCTCTAGACACGAAGGT -ACGGAACTCTCTAGACACAACCGT -ACGGAACTCTCTAGACACTTGTGC -ACGGAACTCTCTAGACACCTAAGC -ACGGAACTCTCTAGACACACTAGC -ACGGAACTCTCTAGACACAGATGC -ACGGAACTCTCTAGACACTGAAGG -ACGGAACTCTCTAGACACCAATGG -ACGGAACTCTCTAGACACATGAGG -ACGGAACTCTCTAGACACAATGGG -ACGGAACTCTCTAGACACTCCTGA -ACGGAACTCTCTAGACACTAGCGA -ACGGAACTCTCTAGACACCACAGA -ACGGAACTCTCTAGACACGCAAGA -ACGGAACTCTCTAGACACGGTTGA -ACGGAACTCTCTAGACACTCCGAT -ACGGAACTCTCTAGACACTGGCAT -ACGGAACTCTCTAGACACCGAGAT -ACGGAACTCTCTAGACACTACCAC -ACGGAACTCTCTAGACACCAGAAC -ACGGAACTCTCTAGACACGTCTAC -ACGGAACTCTCTAGACACACGTAC -ACGGAACTCTCTAGACACAGTGAC -ACGGAACTCTCTAGACACCTGTAG -ACGGAACTCTCTAGACACCCTAAG -ACGGAACTCTCTAGACACGTTCAG -ACGGAACTCTCTAGACACGCATAG -ACGGAACTCTCTAGACACGACAAG -ACGGAACTCTCTAGACACAAGCAG -ACGGAACTCTCTAGACACCGTCAA -ACGGAACTCTCTAGACACGCTGAA -ACGGAACTCTCTAGACACAGTACG -ACGGAACTCTCTAGACACATCCGA -ACGGAACTCTCTAGACACATGGGA -ACGGAACTCTCTAGACACGTGCAA -ACGGAACTCTCTAGACACGAGGAA -ACGGAACTCTCTAGACACCAGGTA -ACGGAACTCTCTAGACACGACTCT -ACGGAACTCTCTAGACACAGTCCT -ACGGAACTCTCTAGACACTAAGCC -ACGGAACTCTCTAGACACATAGCC -ACGGAACTCTCTAGACACTAACCG -ACGGAACTCTCTAGACACATGCCA -ACGGAACTCTCTAGAGCAGGAAAC -ACGGAACTCTCTAGAGCAAACACC -ACGGAACTCTCTAGAGCAATCGAG -ACGGAACTCTCTAGAGCACTCCTT -ACGGAACTCTCTAGAGCACCTGTT -ACGGAACTCTCTAGAGCACGGTTT -ACGGAACTCTCTAGAGCAGTGGTT -ACGGAACTCTCTAGAGCAGCCTTT -ACGGAACTCTCTAGAGCAGGTCTT -ACGGAACTCTCTAGAGCAACGCTT -ACGGAACTCTCTAGAGCAAGCGTT -ACGGAACTCTCTAGAGCATTCGTC -ACGGAACTCTCTAGAGCATCTCTC -ACGGAACTCTCTAGAGCATGGATC -ACGGAACTCTCTAGAGCACACTTC -ACGGAACTCTCTAGAGCAGTACTC -ACGGAACTCTCTAGAGCAGATGTC -ACGGAACTCTCTAGAGCAACAGTC -ACGGAACTCTCTAGAGCATTGCTG -ACGGAACTCTCTAGAGCATCCATG -ACGGAACTCTCTAGAGCATGTGTG -ACGGAACTCTCTAGAGCACTAGTG -ACGGAACTCTCTAGAGCACATCTG -ACGGAACTCTCTAGAGCAGAGTTG -ACGGAACTCTCTAGAGCAAGACTG -ACGGAACTCTCTAGAGCATCGGTA -ACGGAACTCTCTAGAGCATGCCTA -ACGGAACTCTCTAGAGCACCACTA -ACGGAACTCTCTAGAGCAGGAGTA -ACGGAACTCTCTAGAGCATCGTCT -ACGGAACTCTCTAGAGCATGCACT -ACGGAACTCTCTAGAGCACTGACT -ACGGAACTCTCTAGAGCACAACCT -ACGGAACTCTCTAGAGCAGCTACT -ACGGAACTCTCTAGAGCAGGATCT -ACGGAACTCTCTAGAGCAAAGGCT -ACGGAACTCTCTAGAGCATCAACC -ACGGAACTCTCTAGAGCATGTTCC -ACGGAACTCTCTAGAGCAATTCCC -ACGGAACTCTCTAGAGCATTCTCG -ACGGAACTCTCTAGAGCATAGACG -ACGGAACTCTCTAGAGCAGTAACG -ACGGAACTCTCTAGAGCAACTTCG -ACGGAACTCTCTAGAGCATACGCA -ACGGAACTCTCTAGAGCACTTGCA -ACGGAACTCTCTAGAGCACGAACA -ACGGAACTCTCTAGAGCACAGTCA -ACGGAACTCTCTAGAGCAGATCCA -ACGGAACTCTCTAGAGCAACGACA -ACGGAACTCTCTAGAGCAAGCTCA -ACGGAACTCTCTAGAGCATCACGT -ACGGAACTCTCTAGAGCACGTAGT -ACGGAACTCTCTAGAGCAGTCAGT -ACGGAACTCTCTAGAGCAGAAGGT -ACGGAACTCTCTAGAGCAAACCGT -ACGGAACTCTCTAGAGCATTGTGC -ACGGAACTCTCTAGAGCACTAAGC -ACGGAACTCTCTAGAGCAACTAGC -ACGGAACTCTCTAGAGCAAGATGC -ACGGAACTCTCTAGAGCATGAAGG -ACGGAACTCTCTAGAGCACAATGG -ACGGAACTCTCTAGAGCAATGAGG -ACGGAACTCTCTAGAGCAAATGGG -ACGGAACTCTCTAGAGCATCCTGA -ACGGAACTCTCTAGAGCATAGCGA -ACGGAACTCTCTAGAGCACACAGA -ACGGAACTCTCTAGAGCAGCAAGA -ACGGAACTCTCTAGAGCAGGTTGA -ACGGAACTCTCTAGAGCATCCGAT -ACGGAACTCTCTAGAGCATGGCAT -ACGGAACTCTCTAGAGCACGAGAT -ACGGAACTCTCTAGAGCATACCAC -ACGGAACTCTCTAGAGCACAGAAC -ACGGAACTCTCTAGAGCAGTCTAC -ACGGAACTCTCTAGAGCAACGTAC -ACGGAACTCTCTAGAGCAAGTGAC -ACGGAACTCTCTAGAGCACTGTAG -ACGGAACTCTCTAGAGCACCTAAG -ACGGAACTCTCTAGAGCAGTTCAG -ACGGAACTCTCTAGAGCAGCATAG -ACGGAACTCTCTAGAGCAGACAAG -ACGGAACTCTCTAGAGCAAAGCAG -ACGGAACTCTCTAGAGCACGTCAA -ACGGAACTCTCTAGAGCAGCTGAA -ACGGAACTCTCTAGAGCAAGTACG -ACGGAACTCTCTAGAGCAATCCGA -ACGGAACTCTCTAGAGCAATGGGA -ACGGAACTCTCTAGAGCAGTGCAA -ACGGAACTCTCTAGAGCAGAGGAA -ACGGAACTCTCTAGAGCACAGGTA -ACGGAACTCTCTAGAGCAGACTCT -ACGGAACTCTCTAGAGCAAGTCCT -ACGGAACTCTCTAGAGCATAAGCC -ACGGAACTCTCTAGAGCAATAGCC -ACGGAACTCTCTAGAGCATAACCG -ACGGAACTCTCTAGAGCAATGCCA -ACGGAACTCTCTTGAGGTGGAAAC -ACGGAACTCTCTTGAGGTAACACC -ACGGAACTCTCTTGAGGTATCGAG -ACGGAACTCTCTTGAGGTCTCCTT -ACGGAACTCTCTTGAGGTCCTGTT -ACGGAACTCTCTTGAGGTCGGTTT -ACGGAACTCTCTTGAGGTGTGGTT -ACGGAACTCTCTTGAGGTGCCTTT -ACGGAACTCTCTTGAGGTGGTCTT -ACGGAACTCTCTTGAGGTACGCTT -ACGGAACTCTCTTGAGGTAGCGTT -ACGGAACTCTCTTGAGGTTTCGTC -ACGGAACTCTCTTGAGGTTCTCTC -ACGGAACTCTCTTGAGGTTGGATC -ACGGAACTCTCTTGAGGTCACTTC -ACGGAACTCTCTTGAGGTGTACTC -ACGGAACTCTCTTGAGGTGATGTC -ACGGAACTCTCTTGAGGTACAGTC -ACGGAACTCTCTTGAGGTTTGCTG -ACGGAACTCTCTTGAGGTTCCATG -ACGGAACTCTCTTGAGGTTGTGTG -ACGGAACTCTCTTGAGGTCTAGTG -ACGGAACTCTCTTGAGGTCATCTG -ACGGAACTCTCTTGAGGTGAGTTG -ACGGAACTCTCTTGAGGTAGACTG -ACGGAACTCTCTTGAGGTTCGGTA -ACGGAACTCTCTTGAGGTTGCCTA -ACGGAACTCTCTTGAGGTCCACTA -ACGGAACTCTCTTGAGGTGGAGTA -ACGGAACTCTCTTGAGGTTCGTCT -ACGGAACTCTCTTGAGGTTGCACT -ACGGAACTCTCTTGAGGTCTGACT -ACGGAACTCTCTTGAGGTCAACCT -ACGGAACTCTCTTGAGGTGCTACT -ACGGAACTCTCTTGAGGTGGATCT -ACGGAACTCTCTTGAGGTAAGGCT -ACGGAACTCTCTTGAGGTTCAACC -ACGGAACTCTCTTGAGGTTGTTCC -ACGGAACTCTCTTGAGGTATTCCC -ACGGAACTCTCTTGAGGTTTCTCG -ACGGAACTCTCTTGAGGTTAGACG -ACGGAACTCTCTTGAGGTGTAACG -ACGGAACTCTCTTGAGGTACTTCG -ACGGAACTCTCTTGAGGTTACGCA -ACGGAACTCTCTTGAGGTCTTGCA -ACGGAACTCTCTTGAGGTCGAACA -ACGGAACTCTCTTGAGGTCAGTCA -ACGGAACTCTCTTGAGGTGATCCA -ACGGAACTCTCTTGAGGTACGACA -ACGGAACTCTCTTGAGGTAGCTCA -ACGGAACTCTCTTGAGGTTCACGT -ACGGAACTCTCTTGAGGTCGTAGT -ACGGAACTCTCTTGAGGTGTCAGT -ACGGAACTCTCTTGAGGTGAAGGT -ACGGAACTCTCTTGAGGTAACCGT -ACGGAACTCTCTTGAGGTTTGTGC -ACGGAACTCTCTTGAGGTCTAAGC -ACGGAACTCTCTTGAGGTACTAGC -ACGGAACTCTCTTGAGGTAGATGC -ACGGAACTCTCTTGAGGTTGAAGG -ACGGAACTCTCTTGAGGTCAATGG -ACGGAACTCTCTTGAGGTATGAGG -ACGGAACTCTCTTGAGGTAATGGG -ACGGAACTCTCTTGAGGTTCCTGA -ACGGAACTCTCTTGAGGTTAGCGA -ACGGAACTCTCTTGAGGTCACAGA -ACGGAACTCTCTTGAGGTGCAAGA -ACGGAACTCTCTTGAGGTGGTTGA -ACGGAACTCTCTTGAGGTTCCGAT -ACGGAACTCTCTTGAGGTTGGCAT -ACGGAACTCTCTTGAGGTCGAGAT -ACGGAACTCTCTTGAGGTTACCAC -ACGGAACTCTCTTGAGGTCAGAAC -ACGGAACTCTCTTGAGGTGTCTAC -ACGGAACTCTCTTGAGGTACGTAC -ACGGAACTCTCTTGAGGTAGTGAC -ACGGAACTCTCTTGAGGTCTGTAG -ACGGAACTCTCTTGAGGTCCTAAG -ACGGAACTCTCTTGAGGTGTTCAG -ACGGAACTCTCTTGAGGTGCATAG -ACGGAACTCTCTTGAGGTGACAAG -ACGGAACTCTCTTGAGGTAAGCAG -ACGGAACTCTCTTGAGGTCGTCAA -ACGGAACTCTCTTGAGGTGCTGAA -ACGGAACTCTCTTGAGGTAGTACG -ACGGAACTCTCTTGAGGTATCCGA -ACGGAACTCTCTTGAGGTATGGGA -ACGGAACTCTCTTGAGGTGTGCAA -ACGGAACTCTCTTGAGGTGAGGAA -ACGGAACTCTCTTGAGGTCAGGTA -ACGGAACTCTCTTGAGGTGACTCT -ACGGAACTCTCTTGAGGTAGTCCT -ACGGAACTCTCTTGAGGTTAAGCC -ACGGAACTCTCTTGAGGTATAGCC -ACGGAACTCTCTTGAGGTTAACCG -ACGGAACTCTCTTGAGGTATGCCA -ACGGAACTCTCTGATTCCGGAAAC -ACGGAACTCTCTGATTCCAACACC -ACGGAACTCTCTGATTCCATCGAG -ACGGAACTCTCTGATTCCCTCCTT -ACGGAACTCTCTGATTCCCCTGTT -ACGGAACTCTCTGATTCCCGGTTT -ACGGAACTCTCTGATTCCGTGGTT -ACGGAACTCTCTGATTCCGCCTTT -ACGGAACTCTCTGATTCCGGTCTT -ACGGAACTCTCTGATTCCACGCTT -ACGGAACTCTCTGATTCCAGCGTT -ACGGAACTCTCTGATTCCTTCGTC -ACGGAACTCTCTGATTCCTCTCTC -ACGGAACTCTCTGATTCCTGGATC -ACGGAACTCTCTGATTCCCACTTC -ACGGAACTCTCTGATTCCGTACTC -ACGGAACTCTCTGATTCCGATGTC -ACGGAACTCTCTGATTCCACAGTC -ACGGAACTCTCTGATTCCTTGCTG -ACGGAACTCTCTGATTCCTCCATG -ACGGAACTCTCTGATTCCTGTGTG -ACGGAACTCTCTGATTCCCTAGTG -ACGGAACTCTCTGATTCCCATCTG -ACGGAACTCTCTGATTCCGAGTTG -ACGGAACTCTCTGATTCCAGACTG -ACGGAACTCTCTGATTCCTCGGTA -ACGGAACTCTCTGATTCCTGCCTA -ACGGAACTCTCTGATTCCCCACTA -ACGGAACTCTCTGATTCCGGAGTA -ACGGAACTCTCTGATTCCTCGTCT -ACGGAACTCTCTGATTCCTGCACT -ACGGAACTCTCTGATTCCCTGACT -ACGGAACTCTCTGATTCCCAACCT -ACGGAACTCTCTGATTCCGCTACT -ACGGAACTCTCTGATTCCGGATCT -ACGGAACTCTCTGATTCCAAGGCT -ACGGAACTCTCTGATTCCTCAACC -ACGGAACTCTCTGATTCCTGTTCC -ACGGAACTCTCTGATTCCATTCCC -ACGGAACTCTCTGATTCCTTCTCG -ACGGAACTCTCTGATTCCTAGACG -ACGGAACTCTCTGATTCCGTAACG -ACGGAACTCTCTGATTCCACTTCG -ACGGAACTCTCTGATTCCTACGCA -ACGGAACTCTCTGATTCCCTTGCA -ACGGAACTCTCTGATTCCCGAACA -ACGGAACTCTCTGATTCCCAGTCA -ACGGAACTCTCTGATTCCGATCCA -ACGGAACTCTCTGATTCCACGACA -ACGGAACTCTCTGATTCCAGCTCA -ACGGAACTCTCTGATTCCTCACGT -ACGGAACTCTCTGATTCCCGTAGT -ACGGAACTCTCTGATTCCGTCAGT -ACGGAACTCTCTGATTCCGAAGGT -ACGGAACTCTCTGATTCCAACCGT -ACGGAACTCTCTGATTCCTTGTGC -ACGGAACTCTCTGATTCCCTAAGC -ACGGAACTCTCTGATTCCACTAGC -ACGGAACTCTCTGATTCCAGATGC -ACGGAACTCTCTGATTCCTGAAGG -ACGGAACTCTCTGATTCCCAATGG -ACGGAACTCTCTGATTCCATGAGG -ACGGAACTCTCTGATTCCAATGGG -ACGGAACTCTCTGATTCCTCCTGA -ACGGAACTCTCTGATTCCTAGCGA -ACGGAACTCTCTGATTCCCACAGA -ACGGAACTCTCTGATTCCGCAAGA -ACGGAACTCTCTGATTCCGGTTGA -ACGGAACTCTCTGATTCCTCCGAT -ACGGAACTCTCTGATTCCTGGCAT -ACGGAACTCTCTGATTCCCGAGAT -ACGGAACTCTCTGATTCCTACCAC -ACGGAACTCTCTGATTCCCAGAAC -ACGGAACTCTCTGATTCCGTCTAC -ACGGAACTCTCTGATTCCACGTAC -ACGGAACTCTCTGATTCCAGTGAC -ACGGAACTCTCTGATTCCCTGTAG -ACGGAACTCTCTGATTCCCCTAAG -ACGGAACTCTCTGATTCCGTTCAG -ACGGAACTCTCTGATTCCGCATAG -ACGGAACTCTCTGATTCCGACAAG -ACGGAACTCTCTGATTCCAAGCAG -ACGGAACTCTCTGATTCCCGTCAA -ACGGAACTCTCTGATTCCGCTGAA -ACGGAACTCTCTGATTCCAGTACG -ACGGAACTCTCTGATTCCATCCGA -ACGGAACTCTCTGATTCCATGGGA -ACGGAACTCTCTGATTCCGTGCAA -ACGGAACTCTCTGATTCCGAGGAA -ACGGAACTCTCTGATTCCCAGGTA -ACGGAACTCTCTGATTCCGACTCT -ACGGAACTCTCTGATTCCAGTCCT -ACGGAACTCTCTGATTCCTAAGCC -ACGGAACTCTCTGATTCCATAGCC -ACGGAACTCTCTGATTCCTAACCG -ACGGAACTCTCTGATTCCATGCCA -ACGGAACTCTCTCATTGGGGAAAC -ACGGAACTCTCTCATTGGAACACC -ACGGAACTCTCTCATTGGATCGAG -ACGGAACTCTCTCATTGGCTCCTT -ACGGAACTCTCTCATTGGCCTGTT -ACGGAACTCTCTCATTGGCGGTTT -ACGGAACTCTCTCATTGGGTGGTT -ACGGAACTCTCTCATTGGGCCTTT -ACGGAACTCTCTCATTGGGGTCTT -ACGGAACTCTCTCATTGGACGCTT -ACGGAACTCTCTCATTGGAGCGTT -ACGGAACTCTCTCATTGGTTCGTC -ACGGAACTCTCTCATTGGTCTCTC -ACGGAACTCTCTCATTGGTGGATC -ACGGAACTCTCTCATTGGCACTTC -ACGGAACTCTCTCATTGGGTACTC -ACGGAACTCTCTCATTGGGATGTC -ACGGAACTCTCTCATTGGACAGTC -ACGGAACTCTCTCATTGGTTGCTG -ACGGAACTCTCTCATTGGTCCATG -ACGGAACTCTCTCATTGGTGTGTG -ACGGAACTCTCTCATTGGCTAGTG -ACGGAACTCTCTCATTGGCATCTG -ACGGAACTCTCTCATTGGGAGTTG -ACGGAACTCTCTCATTGGAGACTG -ACGGAACTCTCTCATTGGTCGGTA -ACGGAACTCTCTCATTGGTGCCTA -ACGGAACTCTCTCATTGGCCACTA -ACGGAACTCTCTCATTGGGGAGTA -ACGGAACTCTCTCATTGGTCGTCT -ACGGAACTCTCTCATTGGTGCACT -ACGGAACTCTCTCATTGGCTGACT -ACGGAACTCTCTCATTGGCAACCT -ACGGAACTCTCTCATTGGGCTACT -ACGGAACTCTCTCATTGGGGATCT -ACGGAACTCTCTCATTGGAAGGCT -ACGGAACTCTCTCATTGGTCAACC -ACGGAACTCTCTCATTGGTGTTCC -ACGGAACTCTCTCATTGGATTCCC -ACGGAACTCTCTCATTGGTTCTCG -ACGGAACTCTCTCATTGGTAGACG -ACGGAACTCTCTCATTGGGTAACG -ACGGAACTCTCTCATTGGACTTCG -ACGGAACTCTCTCATTGGTACGCA -ACGGAACTCTCTCATTGGCTTGCA -ACGGAACTCTCTCATTGGCGAACA -ACGGAACTCTCTCATTGGCAGTCA -ACGGAACTCTCTCATTGGGATCCA -ACGGAACTCTCTCATTGGACGACA -ACGGAACTCTCTCATTGGAGCTCA -ACGGAACTCTCTCATTGGTCACGT -ACGGAACTCTCTCATTGGCGTAGT -ACGGAACTCTCTCATTGGGTCAGT -ACGGAACTCTCTCATTGGGAAGGT -ACGGAACTCTCTCATTGGAACCGT -ACGGAACTCTCTCATTGGTTGTGC -ACGGAACTCTCTCATTGGCTAAGC -ACGGAACTCTCTCATTGGACTAGC -ACGGAACTCTCTCATTGGAGATGC -ACGGAACTCTCTCATTGGTGAAGG -ACGGAACTCTCTCATTGGCAATGG -ACGGAACTCTCTCATTGGATGAGG -ACGGAACTCTCTCATTGGAATGGG -ACGGAACTCTCTCATTGGTCCTGA -ACGGAACTCTCTCATTGGTAGCGA -ACGGAACTCTCTCATTGGCACAGA -ACGGAACTCTCTCATTGGGCAAGA -ACGGAACTCTCTCATTGGGGTTGA -ACGGAACTCTCTCATTGGTCCGAT -ACGGAACTCTCTCATTGGTGGCAT -ACGGAACTCTCTCATTGGCGAGAT -ACGGAACTCTCTCATTGGTACCAC -ACGGAACTCTCTCATTGGCAGAAC -ACGGAACTCTCTCATTGGGTCTAC -ACGGAACTCTCTCATTGGACGTAC -ACGGAACTCTCTCATTGGAGTGAC -ACGGAACTCTCTCATTGGCTGTAG -ACGGAACTCTCTCATTGGCCTAAG -ACGGAACTCTCTCATTGGGTTCAG -ACGGAACTCTCTCATTGGGCATAG -ACGGAACTCTCTCATTGGGACAAG -ACGGAACTCTCTCATTGGAAGCAG -ACGGAACTCTCTCATTGGCGTCAA -ACGGAACTCTCTCATTGGGCTGAA -ACGGAACTCTCTCATTGGAGTACG -ACGGAACTCTCTCATTGGATCCGA -ACGGAACTCTCTCATTGGATGGGA -ACGGAACTCTCTCATTGGGTGCAA -ACGGAACTCTCTCATTGGGAGGAA -ACGGAACTCTCTCATTGGCAGGTA -ACGGAACTCTCTCATTGGGACTCT -ACGGAACTCTCTCATTGGAGTCCT -ACGGAACTCTCTCATTGGTAAGCC -ACGGAACTCTCTCATTGGATAGCC -ACGGAACTCTCTCATTGGTAACCG -ACGGAACTCTCTCATTGGATGCCA -ACGGAACTCTCTGATCGAGGAAAC -ACGGAACTCTCTGATCGAAACACC -ACGGAACTCTCTGATCGAATCGAG -ACGGAACTCTCTGATCGACTCCTT -ACGGAACTCTCTGATCGACCTGTT -ACGGAACTCTCTGATCGACGGTTT -ACGGAACTCTCTGATCGAGTGGTT -ACGGAACTCTCTGATCGAGCCTTT -ACGGAACTCTCTGATCGAGGTCTT -ACGGAACTCTCTGATCGAACGCTT -ACGGAACTCTCTGATCGAAGCGTT -ACGGAACTCTCTGATCGATTCGTC -ACGGAACTCTCTGATCGATCTCTC -ACGGAACTCTCTGATCGATGGATC -ACGGAACTCTCTGATCGACACTTC -ACGGAACTCTCTGATCGAGTACTC -ACGGAACTCTCTGATCGAGATGTC -ACGGAACTCTCTGATCGAACAGTC -ACGGAACTCTCTGATCGATTGCTG -ACGGAACTCTCTGATCGATCCATG -ACGGAACTCTCTGATCGATGTGTG -ACGGAACTCTCTGATCGACTAGTG -ACGGAACTCTCTGATCGACATCTG -ACGGAACTCTCTGATCGAGAGTTG -ACGGAACTCTCTGATCGAAGACTG -ACGGAACTCTCTGATCGATCGGTA -ACGGAACTCTCTGATCGATGCCTA -ACGGAACTCTCTGATCGACCACTA -ACGGAACTCTCTGATCGAGGAGTA -ACGGAACTCTCTGATCGATCGTCT -ACGGAACTCTCTGATCGATGCACT -ACGGAACTCTCTGATCGACTGACT -ACGGAACTCTCTGATCGACAACCT -ACGGAACTCTCTGATCGAGCTACT -ACGGAACTCTCTGATCGAGGATCT -ACGGAACTCTCTGATCGAAAGGCT -ACGGAACTCTCTGATCGATCAACC -ACGGAACTCTCTGATCGATGTTCC -ACGGAACTCTCTGATCGAATTCCC -ACGGAACTCTCTGATCGATTCTCG -ACGGAACTCTCTGATCGATAGACG -ACGGAACTCTCTGATCGAGTAACG -ACGGAACTCTCTGATCGAACTTCG -ACGGAACTCTCTGATCGATACGCA -ACGGAACTCTCTGATCGACTTGCA -ACGGAACTCTCTGATCGACGAACA -ACGGAACTCTCTGATCGACAGTCA -ACGGAACTCTCTGATCGAGATCCA -ACGGAACTCTCTGATCGAACGACA -ACGGAACTCTCTGATCGAAGCTCA -ACGGAACTCTCTGATCGATCACGT -ACGGAACTCTCTGATCGACGTAGT -ACGGAACTCTCTGATCGAGTCAGT -ACGGAACTCTCTGATCGAGAAGGT -ACGGAACTCTCTGATCGAAACCGT -ACGGAACTCTCTGATCGATTGTGC -ACGGAACTCTCTGATCGACTAAGC -ACGGAACTCTCTGATCGAACTAGC -ACGGAACTCTCTGATCGAAGATGC -ACGGAACTCTCTGATCGATGAAGG -ACGGAACTCTCTGATCGACAATGG -ACGGAACTCTCTGATCGAATGAGG -ACGGAACTCTCTGATCGAAATGGG -ACGGAACTCTCTGATCGATCCTGA -ACGGAACTCTCTGATCGATAGCGA -ACGGAACTCTCTGATCGACACAGA -ACGGAACTCTCTGATCGAGCAAGA -ACGGAACTCTCTGATCGAGGTTGA -ACGGAACTCTCTGATCGATCCGAT -ACGGAACTCTCTGATCGATGGCAT -ACGGAACTCTCTGATCGACGAGAT -ACGGAACTCTCTGATCGATACCAC -ACGGAACTCTCTGATCGACAGAAC -ACGGAACTCTCTGATCGAGTCTAC -ACGGAACTCTCTGATCGAACGTAC -ACGGAACTCTCTGATCGAAGTGAC -ACGGAACTCTCTGATCGACTGTAG -ACGGAACTCTCTGATCGACCTAAG -ACGGAACTCTCTGATCGAGTTCAG -ACGGAACTCTCTGATCGAGCATAG -ACGGAACTCTCTGATCGAGACAAG -ACGGAACTCTCTGATCGAAAGCAG -ACGGAACTCTCTGATCGACGTCAA -ACGGAACTCTCTGATCGAGCTGAA -ACGGAACTCTCTGATCGAAGTACG -ACGGAACTCTCTGATCGAATCCGA -ACGGAACTCTCTGATCGAATGGGA -ACGGAACTCTCTGATCGAGTGCAA -ACGGAACTCTCTGATCGAGAGGAA -ACGGAACTCTCTGATCGACAGGTA -ACGGAACTCTCTGATCGAGACTCT -ACGGAACTCTCTGATCGAAGTCCT -ACGGAACTCTCTGATCGATAAGCC -ACGGAACTCTCTGATCGAATAGCC -ACGGAACTCTCTGATCGATAACCG -ACGGAACTCTCTGATCGAATGCCA -ACGGAACTCTCTCACTACGGAAAC -ACGGAACTCTCTCACTACAACACC -ACGGAACTCTCTCACTACATCGAG -ACGGAACTCTCTCACTACCTCCTT -ACGGAACTCTCTCACTACCCTGTT -ACGGAACTCTCTCACTACCGGTTT -ACGGAACTCTCTCACTACGTGGTT -ACGGAACTCTCTCACTACGCCTTT -ACGGAACTCTCTCACTACGGTCTT -ACGGAACTCTCTCACTACACGCTT -ACGGAACTCTCTCACTACAGCGTT -ACGGAACTCTCTCACTACTTCGTC -ACGGAACTCTCTCACTACTCTCTC -ACGGAACTCTCTCACTACTGGATC -ACGGAACTCTCTCACTACCACTTC -ACGGAACTCTCTCACTACGTACTC -ACGGAACTCTCTCACTACGATGTC -ACGGAACTCTCTCACTACACAGTC -ACGGAACTCTCTCACTACTTGCTG -ACGGAACTCTCTCACTACTCCATG -ACGGAACTCTCTCACTACTGTGTG -ACGGAACTCTCTCACTACCTAGTG -ACGGAACTCTCTCACTACCATCTG -ACGGAACTCTCTCACTACGAGTTG -ACGGAACTCTCTCACTACAGACTG -ACGGAACTCTCTCACTACTCGGTA -ACGGAACTCTCTCACTACTGCCTA -ACGGAACTCTCTCACTACCCACTA -ACGGAACTCTCTCACTACGGAGTA -ACGGAACTCTCTCACTACTCGTCT -ACGGAACTCTCTCACTACTGCACT -ACGGAACTCTCTCACTACCTGACT -ACGGAACTCTCTCACTACCAACCT -ACGGAACTCTCTCACTACGCTACT -ACGGAACTCTCTCACTACGGATCT -ACGGAACTCTCTCACTACAAGGCT -ACGGAACTCTCTCACTACTCAACC -ACGGAACTCTCTCACTACTGTTCC -ACGGAACTCTCTCACTACATTCCC -ACGGAACTCTCTCACTACTTCTCG -ACGGAACTCTCTCACTACTAGACG -ACGGAACTCTCTCACTACGTAACG -ACGGAACTCTCTCACTACACTTCG -ACGGAACTCTCTCACTACTACGCA -ACGGAACTCTCTCACTACCTTGCA -ACGGAACTCTCTCACTACCGAACA -ACGGAACTCTCTCACTACCAGTCA -ACGGAACTCTCTCACTACGATCCA -ACGGAACTCTCTCACTACACGACA -ACGGAACTCTCTCACTACAGCTCA -ACGGAACTCTCTCACTACTCACGT -ACGGAACTCTCTCACTACCGTAGT -ACGGAACTCTCTCACTACGTCAGT -ACGGAACTCTCTCACTACGAAGGT -ACGGAACTCTCTCACTACAACCGT -ACGGAACTCTCTCACTACTTGTGC -ACGGAACTCTCTCACTACCTAAGC -ACGGAACTCTCTCACTACACTAGC -ACGGAACTCTCTCACTACAGATGC -ACGGAACTCTCTCACTACTGAAGG -ACGGAACTCTCTCACTACCAATGG -ACGGAACTCTCTCACTACATGAGG -ACGGAACTCTCTCACTACAATGGG -ACGGAACTCTCTCACTACTCCTGA -ACGGAACTCTCTCACTACTAGCGA -ACGGAACTCTCTCACTACCACAGA -ACGGAACTCTCTCACTACGCAAGA -ACGGAACTCTCTCACTACGGTTGA -ACGGAACTCTCTCACTACTCCGAT -ACGGAACTCTCTCACTACTGGCAT -ACGGAACTCTCTCACTACCGAGAT -ACGGAACTCTCTCACTACTACCAC -ACGGAACTCTCTCACTACCAGAAC -ACGGAACTCTCTCACTACGTCTAC -ACGGAACTCTCTCACTACACGTAC -ACGGAACTCTCTCACTACAGTGAC -ACGGAACTCTCTCACTACCTGTAG -ACGGAACTCTCTCACTACCCTAAG -ACGGAACTCTCTCACTACGTTCAG -ACGGAACTCTCTCACTACGCATAG -ACGGAACTCTCTCACTACGACAAG -ACGGAACTCTCTCACTACAAGCAG -ACGGAACTCTCTCACTACCGTCAA -ACGGAACTCTCTCACTACGCTGAA -ACGGAACTCTCTCACTACAGTACG -ACGGAACTCTCTCACTACATCCGA -ACGGAACTCTCTCACTACATGGGA -ACGGAACTCTCTCACTACGTGCAA -ACGGAACTCTCTCACTACGAGGAA -ACGGAACTCTCTCACTACCAGGTA -ACGGAACTCTCTCACTACGACTCT -ACGGAACTCTCTCACTACAGTCCT -ACGGAACTCTCTCACTACTAAGCC -ACGGAACTCTCTCACTACATAGCC -ACGGAACTCTCTCACTACTAACCG -ACGGAACTCTCTCACTACATGCCA -ACGGAACTCTCTAACCAGGGAAAC -ACGGAACTCTCTAACCAGAACACC -ACGGAACTCTCTAACCAGATCGAG -ACGGAACTCTCTAACCAGCTCCTT -ACGGAACTCTCTAACCAGCCTGTT -ACGGAACTCTCTAACCAGCGGTTT -ACGGAACTCTCTAACCAGGTGGTT -ACGGAACTCTCTAACCAGGCCTTT -ACGGAACTCTCTAACCAGGGTCTT -ACGGAACTCTCTAACCAGACGCTT -ACGGAACTCTCTAACCAGAGCGTT -ACGGAACTCTCTAACCAGTTCGTC -ACGGAACTCTCTAACCAGTCTCTC -ACGGAACTCTCTAACCAGTGGATC -ACGGAACTCTCTAACCAGCACTTC -ACGGAACTCTCTAACCAGGTACTC -ACGGAACTCTCTAACCAGGATGTC -ACGGAACTCTCTAACCAGACAGTC -ACGGAACTCTCTAACCAGTTGCTG -ACGGAACTCTCTAACCAGTCCATG -ACGGAACTCTCTAACCAGTGTGTG -ACGGAACTCTCTAACCAGCTAGTG -ACGGAACTCTCTAACCAGCATCTG -ACGGAACTCTCTAACCAGGAGTTG -ACGGAACTCTCTAACCAGAGACTG -ACGGAACTCTCTAACCAGTCGGTA -ACGGAACTCTCTAACCAGTGCCTA -ACGGAACTCTCTAACCAGCCACTA -ACGGAACTCTCTAACCAGGGAGTA -ACGGAACTCTCTAACCAGTCGTCT -ACGGAACTCTCTAACCAGTGCACT -ACGGAACTCTCTAACCAGCTGACT -ACGGAACTCTCTAACCAGCAACCT -ACGGAACTCTCTAACCAGGCTACT -ACGGAACTCTCTAACCAGGGATCT -ACGGAACTCTCTAACCAGAAGGCT -ACGGAACTCTCTAACCAGTCAACC -ACGGAACTCTCTAACCAGTGTTCC -ACGGAACTCTCTAACCAGATTCCC -ACGGAACTCTCTAACCAGTTCTCG -ACGGAACTCTCTAACCAGTAGACG -ACGGAACTCTCTAACCAGGTAACG -ACGGAACTCTCTAACCAGACTTCG -ACGGAACTCTCTAACCAGTACGCA -ACGGAACTCTCTAACCAGCTTGCA -ACGGAACTCTCTAACCAGCGAACA -ACGGAACTCTCTAACCAGCAGTCA -ACGGAACTCTCTAACCAGGATCCA -ACGGAACTCTCTAACCAGACGACA -ACGGAACTCTCTAACCAGAGCTCA -ACGGAACTCTCTAACCAGTCACGT -ACGGAACTCTCTAACCAGCGTAGT -ACGGAACTCTCTAACCAGGTCAGT -ACGGAACTCTCTAACCAGGAAGGT -ACGGAACTCTCTAACCAGAACCGT -ACGGAACTCTCTAACCAGTTGTGC -ACGGAACTCTCTAACCAGCTAAGC -ACGGAACTCTCTAACCAGACTAGC -ACGGAACTCTCTAACCAGAGATGC -ACGGAACTCTCTAACCAGTGAAGG -ACGGAACTCTCTAACCAGCAATGG -ACGGAACTCTCTAACCAGATGAGG -ACGGAACTCTCTAACCAGAATGGG -ACGGAACTCTCTAACCAGTCCTGA -ACGGAACTCTCTAACCAGTAGCGA -ACGGAACTCTCTAACCAGCACAGA -ACGGAACTCTCTAACCAGGCAAGA -ACGGAACTCTCTAACCAGGGTTGA -ACGGAACTCTCTAACCAGTCCGAT -ACGGAACTCTCTAACCAGTGGCAT -ACGGAACTCTCTAACCAGCGAGAT -ACGGAACTCTCTAACCAGTACCAC -ACGGAACTCTCTAACCAGCAGAAC -ACGGAACTCTCTAACCAGGTCTAC -ACGGAACTCTCTAACCAGACGTAC -ACGGAACTCTCTAACCAGAGTGAC -ACGGAACTCTCTAACCAGCTGTAG -ACGGAACTCTCTAACCAGCCTAAG -ACGGAACTCTCTAACCAGGTTCAG -ACGGAACTCTCTAACCAGGCATAG -ACGGAACTCTCTAACCAGGACAAG -ACGGAACTCTCTAACCAGAAGCAG -ACGGAACTCTCTAACCAGCGTCAA -ACGGAACTCTCTAACCAGGCTGAA -ACGGAACTCTCTAACCAGAGTACG -ACGGAACTCTCTAACCAGATCCGA -ACGGAACTCTCTAACCAGATGGGA -ACGGAACTCTCTAACCAGGTGCAA -ACGGAACTCTCTAACCAGGAGGAA -ACGGAACTCTCTAACCAGCAGGTA -ACGGAACTCTCTAACCAGGACTCT -ACGGAACTCTCTAACCAGAGTCCT -ACGGAACTCTCTAACCAGTAAGCC -ACGGAACTCTCTAACCAGATAGCC -ACGGAACTCTCTAACCAGTAACCG -ACGGAACTCTCTAACCAGATGCCA -ACGGAACTCTCTTACGTCGGAAAC -ACGGAACTCTCTTACGTCAACACC -ACGGAACTCTCTTACGTCATCGAG -ACGGAACTCTCTTACGTCCTCCTT -ACGGAACTCTCTTACGTCCCTGTT -ACGGAACTCTCTTACGTCCGGTTT -ACGGAACTCTCTTACGTCGTGGTT -ACGGAACTCTCTTACGTCGCCTTT -ACGGAACTCTCTTACGTCGGTCTT -ACGGAACTCTCTTACGTCACGCTT -ACGGAACTCTCTTACGTCAGCGTT -ACGGAACTCTCTTACGTCTTCGTC -ACGGAACTCTCTTACGTCTCTCTC -ACGGAACTCTCTTACGTCTGGATC -ACGGAACTCTCTTACGTCCACTTC -ACGGAACTCTCTTACGTCGTACTC -ACGGAACTCTCTTACGTCGATGTC -ACGGAACTCTCTTACGTCACAGTC -ACGGAACTCTCTTACGTCTTGCTG -ACGGAACTCTCTTACGTCTCCATG -ACGGAACTCTCTTACGTCTGTGTG -ACGGAACTCTCTTACGTCCTAGTG -ACGGAACTCTCTTACGTCCATCTG -ACGGAACTCTCTTACGTCGAGTTG -ACGGAACTCTCTTACGTCAGACTG -ACGGAACTCTCTTACGTCTCGGTA -ACGGAACTCTCTTACGTCTGCCTA -ACGGAACTCTCTTACGTCCCACTA -ACGGAACTCTCTTACGTCGGAGTA -ACGGAACTCTCTTACGTCTCGTCT -ACGGAACTCTCTTACGTCTGCACT -ACGGAACTCTCTTACGTCCTGACT -ACGGAACTCTCTTACGTCCAACCT -ACGGAACTCTCTTACGTCGCTACT -ACGGAACTCTCTTACGTCGGATCT -ACGGAACTCTCTTACGTCAAGGCT -ACGGAACTCTCTTACGTCTCAACC -ACGGAACTCTCTTACGTCTGTTCC -ACGGAACTCTCTTACGTCATTCCC -ACGGAACTCTCTTACGTCTTCTCG -ACGGAACTCTCTTACGTCTAGACG -ACGGAACTCTCTTACGTCGTAACG -ACGGAACTCTCTTACGTCACTTCG -ACGGAACTCTCTTACGTCTACGCA -ACGGAACTCTCTTACGTCCTTGCA -ACGGAACTCTCTTACGTCCGAACA -ACGGAACTCTCTTACGTCCAGTCA -ACGGAACTCTCTTACGTCGATCCA -ACGGAACTCTCTTACGTCACGACA -ACGGAACTCTCTTACGTCAGCTCA -ACGGAACTCTCTTACGTCTCACGT -ACGGAACTCTCTTACGTCCGTAGT -ACGGAACTCTCTTACGTCGTCAGT -ACGGAACTCTCTTACGTCGAAGGT -ACGGAACTCTCTTACGTCAACCGT -ACGGAACTCTCTTACGTCTTGTGC -ACGGAACTCTCTTACGTCCTAAGC -ACGGAACTCTCTTACGTCACTAGC -ACGGAACTCTCTTACGTCAGATGC -ACGGAACTCTCTTACGTCTGAAGG -ACGGAACTCTCTTACGTCCAATGG -ACGGAACTCTCTTACGTCATGAGG -ACGGAACTCTCTTACGTCAATGGG -ACGGAACTCTCTTACGTCTCCTGA -ACGGAACTCTCTTACGTCTAGCGA -ACGGAACTCTCTTACGTCCACAGA -ACGGAACTCTCTTACGTCGCAAGA -ACGGAACTCTCTTACGTCGGTTGA -ACGGAACTCTCTTACGTCTCCGAT -ACGGAACTCTCTTACGTCTGGCAT -ACGGAACTCTCTTACGTCCGAGAT -ACGGAACTCTCTTACGTCTACCAC -ACGGAACTCTCTTACGTCCAGAAC -ACGGAACTCTCTTACGTCGTCTAC -ACGGAACTCTCTTACGTCACGTAC -ACGGAACTCTCTTACGTCAGTGAC -ACGGAACTCTCTTACGTCCTGTAG -ACGGAACTCTCTTACGTCCCTAAG -ACGGAACTCTCTTACGTCGTTCAG -ACGGAACTCTCTTACGTCGCATAG -ACGGAACTCTCTTACGTCGACAAG -ACGGAACTCTCTTACGTCAAGCAG -ACGGAACTCTCTTACGTCCGTCAA -ACGGAACTCTCTTACGTCGCTGAA -ACGGAACTCTCTTACGTCAGTACG -ACGGAACTCTCTTACGTCATCCGA -ACGGAACTCTCTTACGTCATGGGA -ACGGAACTCTCTTACGTCGTGCAA -ACGGAACTCTCTTACGTCGAGGAA -ACGGAACTCTCTTACGTCCAGGTA -ACGGAACTCTCTTACGTCGACTCT -ACGGAACTCTCTTACGTCAGTCCT -ACGGAACTCTCTTACGTCTAAGCC -ACGGAACTCTCTTACGTCATAGCC -ACGGAACTCTCTTACGTCTAACCG -ACGGAACTCTCTTACGTCATGCCA -ACGGAACTCTCTTACACGGGAAAC -ACGGAACTCTCTTACACGAACACC -ACGGAACTCTCTTACACGATCGAG -ACGGAACTCTCTTACACGCTCCTT -ACGGAACTCTCTTACACGCCTGTT -ACGGAACTCTCTTACACGCGGTTT -ACGGAACTCTCTTACACGGTGGTT -ACGGAACTCTCTTACACGGCCTTT -ACGGAACTCTCTTACACGGGTCTT -ACGGAACTCTCTTACACGACGCTT -ACGGAACTCTCTTACACGAGCGTT -ACGGAACTCTCTTACACGTTCGTC -ACGGAACTCTCTTACACGTCTCTC -ACGGAACTCTCTTACACGTGGATC -ACGGAACTCTCTTACACGCACTTC -ACGGAACTCTCTTACACGGTACTC -ACGGAACTCTCTTACACGGATGTC -ACGGAACTCTCTTACACGACAGTC -ACGGAACTCTCTTACACGTTGCTG -ACGGAACTCTCTTACACGTCCATG -ACGGAACTCTCTTACACGTGTGTG -ACGGAACTCTCTTACACGCTAGTG -ACGGAACTCTCTTACACGCATCTG -ACGGAACTCTCTTACACGGAGTTG -ACGGAACTCTCTTACACGAGACTG -ACGGAACTCTCTTACACGTCGGTA -ACGGAACTCTCTTACACGTGCCTA -ACGGAACTCTCTTACACGCCACTA -ACGGAACTCTCTTACACGGGAGTA -ACGGAACTCTCTTACACGTCGTCT -ACGGAACTCTCTTACACGTGCACT -ACGGAACTCTCTTACACGCTGACT -ACGGAACTCTCTTACACGCAACCT -ACGGAACTCTCTTACACGGCTACT -ACGGAACTCTCTTACACGGGATCT -ACGGAACTCTCTTACACGAAGGCT -ACGGAACTCTCTTACACGTCAACC -ACGGAACTCTCTTACACGTGTTCC -ACGGAACTCTCTTACACGATTCCC -ACGGAACTCTCTTACACGTTCTCG -ACGGAACTCTCTTACACGTAGACG -ACGGAACTCTCTTACACGGTAACG -ACGGAACTCTCTTACACGACTTCG -ACGGAACTCTCTTACACGTACGCA -ACGGAACTCTCTTACACGCTTGCA -ACGGAACTCTCTTACACGCGAACA -ACGGAACTCTCTTACACGCAGTCA -ACGGAACTCTCTTACACGGATCCA -ACGGAACTCTCTTACACGACGACA -ACGGAACTCTCTTACACGAGCTCA -ACGGAACTCTCTTACACGTCACGT -ACGGAACTCTCTTACACGCGTAGT -ACGGAACTCTCTTACACGGTCAGT -ACGGAACTCTCTTACACGGAAGGT -ACGGAACTCTCTTACACGAACCGT -ACGGAACTCTCTTACACGTTGTGC -ACGGAACTCTCTTACACGCTAAGC -ACGGAACTCTCTTACACGACTAGC -ACGGAACTCTCTTACACGAGATGC -ACGGAACTCTCTTACACGTGAAGG -ACGGAACTCTCTTACACGCAATGG -ACGGAACTCTCTTACACGATGAGG -ACGGAACTCTCTTACACGAATGGG -ACGGAACTCTCTTACACGTCCTGA -ACGGAACTCTCTTACACGTAGCGA -ACGGAACTCTCTTACACGCACAGA -ACGGAACTCTCTTACACGGCAAGA -ACGGAACTCTCTTACACGGGTTGA -ACGGAACTCTCTTACACGTCCGAT -ACGGAACTCTCTTACACGTGGCAT -ACGGAACTCTCTTACACGCGAGAT -ACGGAACTCTCTTACACGTACCAC -ACGGAACTCTCTTACACGCAGAAC -ACGGAACTCTCTTACACGGTCTAC -ACGGAACTCTCTTACACGACGTAC -ACGGAACTCTCTTACACGAGTGAC -ACGGAACTCTCTTACACGCTGTAG -ACGGAACTCTCTTACACGCCTAAG -ACGGAACTCTCTTACACGGTTCAG -ACGGAACTCTCTTACACGGCATAG -ACGGAACTCTCTTACACGGACAAG -ACGGAACTCTCTTACACGAAGCAG -ACGGAACTCTCTTACACGCGTCAA -ACGGAACTCTCTTACACGGCTGAA -ACGGAACTCTCTTACACGAGTACG -ACGGAACTCTCTTACACGATCCGA -ACGGAACTCTCTTACACGATGGGA -ACGGAACTCTCTTACACGGTGCAA -ACGGAACTCTCTTACACGGAGGAA -ACGGAACTCTCTTACACGCAGGTA -ACGGAACTCTCTTACACGGACTCT -ACGGAACTCTCTTACACGAGTCCT -ACGGAACTCTCTTACACGTAAGCC -ACGGAACTCTCTTACACGATAGCC -ACGGAACTCTCTTACACGTAACCG -ACGGAACTCTCTTACACGATGCCA -ACGGAACTCTCTGACAGTGGAAAC -ACGGAACTCTCTGACAGTAACACC -ACGGAACTCTCTGACAGTATCGAG -ACGGAACTCTCTGACAGTCTCCTT -ACGGAACTCTCTGACAGTCCTGTT -ACGGAACTCTCTGACAGTCGGTTT -ACGGAACTCTCTGACAGTGTGGTT -ACGGAACTCTCTGACAGTGCCTTT -ACGGAACTCTCTGACAGTGGTCTT -ACGGAACTCTCTGACAGTACGCTT -ACGGAACTCTCTGACAGTAGCGTT -ACGGAACTCTCTGACAGTTTCGTC -ACGGAACTCTCTGACAGTTCTCTC -ACGGAACTCTCTGACAGTTGGATC -ACGGAACTCTCTGACAGTCACTTC -ACGGAACTCTCTGACAGTGTACTC -ACGGAACTCTCTGACAGTGATGTC -ACGGAACTCTCTGACAGTACAGTC -ACGGAACTCTCTGACAGTTTGCTG -ACGGAACTCTCTGACAGTTCCATG -ACGGAACTCTCTGACAGTTGTGTG -ACGGAACTCTCTGACAGTCTAGTG -ACGGAACTCTCTGACAGTCATCTG -ACGGAACTCTCTGACAGTGAGTTG -ACGGAACTCTCTGACAGTAGACTG -ACGGAACTCTCTGACAGTTCGGTA -ACGGAACTCTCTGACAGTTGCCTA -ACGGAACTCTCTGACAGTCCACTA -ACGGAACTCTCTGACAGTGGAGTA -ACGGAACTCTCTGACAGTTCGTCT -ACGGAACTCTCTGACAGTTGCACT -ACGGAACTCTCTGACAGTCTGACT -ACGGAACTCTCTGACAGTCAACCT -ACGGAACTCTCTGACAGTGCTACT -ACGGAACTCTCTGACAGTGGATCT -ACGGAACTCTCTGACAGTAAGGCT -ACGGAACTCTCTGACAGTTCAACC -ACGGAACTCTCTGACAGTTGTTCC -ACGGAACTCTCTGACAGTATTCCC -ACGGAACTCTCTGACAGTTTCTCG -ACGGAACTCTCTGACAGTTAGACG -ACGGAACTCTCTGACAGTGTAACG -ACGGAACTCTCTGACAGTACTTCG -ACGGAACTCTCTGACAGTTACGCA -ACGGAACTCTCTGACAGTCTTGCA -ACGGAACTCTCTGACAGTCGAACA -ACGGAACTCTCTGACAGTCAGTCA -ACGGAACTCTCTGACAGTGATCCA -ACGGAACTCTCTGACAGTACGACA -ACGGAACTCTCTGACAGTAGCTCA -ACGGAACTCTCTGACAGTTCACGT -ACGGAACTCTCTGACAGTCGTAGT -ACGGAACTCTCTGACAGTGTCAGT -ACGGAACTCTCTGACAGTGAAGGT -ACGGAACTCTCTGACAGTAACCGT -ACGGAACTCTCTGACAGTTTGTGC -ACGGAACTCTCTGACAGTCTAAGC -ACGGAACTCTCTGACAGTACTAGC -ACGGAACTCTCTGACAGTAGATGC -ACGGAACTCTCTGACAGTTGAAGG -ACGGAACTCTCTGACAGTCAATGG -ACGGAACTCTCTGACAGTATGAGG -ACGGAACTCTCTGACAGTAATGGG -ACGGAACTCTCTGACAGTTCCTGA -ACGGAACTCTCTGACAGTTAGCGA -ACGGAACTCTCTGACAGTCACAGA -ACGGAACTCTCTGACAGTGCAAGA -ACGGAACTCTCTGACAGTGGTTGA -ACGGAACTCTCTGACAGTTCCGAT -ACGGAACTCTCTGACAGTTGGCAT -ACGGAACTCTCTGACAGTCGAGAT -ACGGAACTCTCTGACAGTTACCAC -ACGGAACTCTCTGACAGTCAGAAC -ACGGAACTCTCTGACAGTGTCTAC -ACGGAACTCTCTGACAGTACGTAC -ACGGAACTCTCTGACAGTAGTGAC -ACGGAACTCTCTGACAGTCTGTAG -ACGGAACTCTCTGACAGTCCTAAG -ACGGAACTCTCTGACAGTGTTCAG -ACGGAACTCTCTGACAGTGCATAG -ACGGAACTCTCTGACAGTGACAAG -ACGGAACTCTCTGACAGTAAGCAG -ACGGAACTCTCTGACAGTCGTCAA -ACGGAACTCTCTGACAGTGCTGAA -ACGGAACTCTCTGACAGTAGTACG -ACGGAACTCTCTGACAGTATCCGA -ACGGAACTCTCTGACAGTATGGGA -ACGGAACTCTCTGACAGTGTGCAA -ACGGAACTCTCTGACAGTGAGGAA -ACGGAACTCTCTGACAGTCAGGTA -ACGGAACTCTCTGACAGTGACTCT -ACGGAACTCTCTGACAGTAGTCCT -ACGGAACTCTCTGACAGTTAAGCC -ACGGAACTCTCTGACAGTATAGCC -ACGGAACTCTCTGACAGTTAACCG -ACGGAACTCTCTGACAGTATGCCA -ACGGAACTCTCTTAGCTGGGAAAC -ACGGAACTCTCTTAGCTGAACACC -ACGGAACTCTCTTAGCTGATCGAG -ACGGAACTCTCTTAGCTGCTCCTT -ACGGAACTCTCTTAGCTGCCTGTT -ACGGAACTCTCTTAGCTGCGGTTT -ACGGAACTCTCTTAGCTGGTGGTT -ACGGAACTCTCTTAGCTGGCCTTT -ACGGAACTCTCTTAGCTGGGTCTT -ACGGAACTCTCTTAGCTGACGCTT -ACGGAACTCTCTTAGCTGAGCGTT -ACGGAACTCTCTTAGCTGTTCGTC -ACGGAACTCTCTTAGCTGTCTCTC -ACGGAACTCTCTTAGCTGTGGATC -ACGGAACTCTCTTAGCTGCACTTC -ACGGAACTCTCTTAGCTGGTACTC -ACGGAACTCTCTTAGCTGGATGTC -ACGGAACTCTCTTAGCTGACAGTC -ACGGAACTCTCTTAGCTGTTGCTG -ACGGAACTCTCTTAGCTGTCCATG -ACGGAACTCTCTTAGCTGTGTGTG -ACGGAACTCTCTTAGCTGCTAGTG -ACGGAACTCTCTTAGCTGCATCTG -ACGGAACTCTCTTAGCTGGAGTTG -ACGGAACTCTCTTAGCTGAGACTG -ACGGAACTCTCTTAGCTGTCGGTA -ACGGAACTCTCTTAGCTGTGCCTA -ACGGAACTCTCTTAGCTGCCACTA -ACGGAACTCTCTTAGCTGGGAGTA -ACGGAACTCTCTTAGCTGTCGTCT -ACGGAACTCTCTTAGCTGTGCACT -ACGGAACTCTCTTAGCTGCTGACT -ACGGAACTCTCTTAGCTGCAACCT -ACGGAACTCTCTTAGCTGGCTACT -ACGGAACTCTCTTAGCTGGGATCT -ACGGAACTCTCTTAGCTGAAGGCT -ACGGAACTCTCTTAGCTGTCAACC -ACGGAACTCTCTTAGCTGTGTTCC -ACGGAACTCTCTTAGCTGATTCCC -ACGGAACTCTCTTAGCTGTTCTCG -ACGGAACTCTCTTAGCTGTAGACG -ACGGAACTCTCTTAGCTGGTAACG -ACGGAACTCTCTTAGCTGACTTCG -ACGGAACTCTCTTAGCTGTACGCA -ACGGAACTCTCTTAGCTGCTTGCA -ACGGAACTCTCTTAGCTGCGAACA -ACGGAACTCTCTTAGCTGCAGTCA -ACGGAACTCTCTTAGCTGGATCCA -ACGGAACTCTCTTAGCTGACGACA -ACGGAACTCTCTTAGCTGAGCTCA -ACGGAACTCTCTTAGCTGTCACGT -ACGGAACTCTCTTAGCTGCGTAGT -ACGGAACTCTCTTAGCTGGTCAGT -ACGGAACTCTCTTAGCTGGAAGGT -ACGGAACTCTCTTAGCTGAACCGT -ACGGAACTCTCTTAGCTGTTGTGC -ACGGAACTCTCTTAGCTGCTAAGC -ACGGAACTCTCTTAGCTGACTAGC -ACGGAACTCTCTTAGCTGAGATGC -ACGGAACTCTCTTAGCTGTGAAGG -ACGGAACTCTCTTAGCTGCAATGG -ACGGAACTCTCTTAGCTGATGAGG -ACGGAACTCTCTTAGCTGAATGGG -ACGGAACTCTCTTAGCTGTCCTGA -ACGGAACTCTCTTAGCTGTAGCGA -ACGGAACTCTCTTAGCTGCACAGA -ACGGAACTCTCTTAGCTGGCAAGA -ACGGAACTCTCTTAGCTGGGTTGA -ACGGAACTCTCTTAGCTGTCCGAT -ACGGAACTCTCTTAGCTGTGGCAT -ACGGAACTCTCTTAGCTGCGAGAT -ACGGAACTCTCTTAGCTGTACCAC -ACGGAACTCTCTTAGCTGCAGAAC -ACGGAACTCTCTTAGCTGGTCTAC -ACGGAACTCTCTTAGCTGACGTAC -ACGGAACTCTCTTAGCTGAGTGAC -ACGGAACTCTCTTAGCTGCTGTAG -ACGGAACTCTCTTAGCTGCCTAAG -ACGGAACTCTCTTAGCTGGTTCAG -ACGGAACTCTCTTAGCTGGCATAG -ACGGAACTCTCTTAGCTGGACAAG -ACGGAACTCTCTTAGCTGAAGCAG -ACGGAACTCTCTTAGCTGCGTCAA -ACGGAACTCTCTTAGCTGGCTGAA -ACGGAACTCTCTTAGCTGAGTACG -ACGGAACTCTCTTAGCTGATCCGA -ACGGAACTCTCTTAGCTGATGGGA -ACGGAACTCTCTTAGCTGGTGCAA -ACGGAACTCTCTTAGCTGGAGGAA -ACGGAACTCTCTTAGCTGCAGGTA -ACGGAACTCTCTTAGCTGGACTCT -ACGGAACTCTCTTAGCTGAGTCCT -ACGGAACTCTCTTAGCTGTAAGCC -ACGGAACTCTCTTAGCTGATAGCC -ACGGAACTCTCTTAGCTGTAACCG -ACGGAACTCTCTTAGCTGATGCCA -ACGGAACTCTCTAAGCCTGGAAAC -ACGGAACTCTCTAAGCCTAACACC -ACGGAACTCTCTAAGCCTATCGAG -ACGGAACTCTCTAAGCCTCTCCTT -ACGGAACTCTCTAAGCCTCCTGTT -ACGGAACTCTCTAAGCCTCGGTTT -ACGGAACTCTCTAAGCCTGTGGTT -ACGGAACTCTCTAAGCCTGCCTTT -ACGGAACTCTCTAAGCCTGGTCTT -ACGGAACTCTCTAAGCCTACGCTT -ACGGAACTCTCTAAGCCTAGCGTT -ACGGAACTCTCTAAGCCTTTCGTC -ACGGAACTCTCTAAGCCTTCTCTC -ACGGAACTCTCTAAGCCTTGGATC -ACGGAACTCTCTAAGCCTCACTTC -ACGGAACTCTCTAAGCCTGTACTC -ACGGAACTCTCTAAGCCTGATGTC -ACGGAACTCTCTAAGCCTACAGTC -ACGGAACTCTCTAAGCCTTTGCTG -ACGGAACTCTCTAAGCCTTCCATG -ACGGAACTCTCTAAGCCTTGTGTG -ACGGAACTCTCTAAGCCTCTAGTG -ACGGAACTCTCTAAGCCTCATCTG -ACGGAACTCTCTAAGCCTGAGTTG -ACGGAACTCTCTAAGCCTAGACTG -ACGGAACTCTCTAAGCCTTCGGTA -ACGGAACTCTCTAAGCCTTGCCTA -ACGGAACTCTCTAAGCCTCCACTA -ACGGAACTCTCTAAGCCTGGAGTA -ACGGAACTCTCTAAGCCTTCGTCT -ACGGAACTCTCTAAGCCTTGCACT -ACGGAACTCTCTAAGCCTCTGACT -ACGGAACTCTCTAAGCCTCAACCT -ACGGAACTCTCTAAGCCTGCTACT -ACGGAACTCTCTAAGCCTGGATCT -ACGGAACTCTCTAAGCCTAAGGCT -ACGGAACTCTCTAAGCCTTCAACC -ACGGAACTCTCTAAGCCTTGTTCC -ACGGAACTCTCTAAGCCTATTCCC -ACGGAACTCTCTAAGCCTTTCTCG -ACGGAACTCTCTAAGCCTTAGACG -ACGGAACTCTCTAAGCCTGTAACG -ACGGAACTCTCTAAGCCTACTTCG -ACGGAACTCTCTAAGCCTTACGCA -ACGGAACTCTCTAAGCCTCTTGCA -ACGGAACTCTCTAAGCCTCGAACA -ACGGAACTCTCTAAGCCTCAGTCA -ACGGAACTCTCTAAGCCTGATCCA -ACGGAACTCTCTAAGCCTACGACA -ACGGAACTCTCTAAGCCTAGCTCA -ACGGAACTCTCTAAGCCTTCACGT -ACGGAACTCTCTAAGCCTCGTAGT -ACGGAACTCTCTAAGCCTGTCAGT -ACGGAACTCTCTAAGCCTGAAGGT -ACGGAACTCTCTAAGCCTAACCGT -ACGGAACTCTCTAAGCCTTTGTGC -ACGGAACTCTCTAAGCCTCTAAGC -ACGGAACTCTCTAAGCCTACTAGC -ACGGAACTCTCTAAGCCTAGATGC -ACGGAACTCTCTAAGCCTTGAAGG -ACGGAACTCTCTAAGCCTCAATGG -ACGGAACTCTCTAAGCCTATGAGG -ACGGAACTCTCTAAGCCTAATGGG -ACGGAACTCTCTAAGCCTTCCTGA -ACGGAACTCTCTAAGCCTTAGCGA -ACGGAACTCTCTAAGCCTCACAGA -ACGGAACTCTCTAAGCCTGCAAGA -ACGGAACTCTCTAAGCCTGGTTGA -ACGGAACTCTCTAAGCCTTCCGAT -ACGGAACTCTCTAAGCCTTGGCAT -ACGGAACTCTCTAAGCCTCGAGAT -ACGGAACTCTCTAAGCCTTACCAC -ACGGAACTCTCTAAGCCTCAGAAC -ACGGAACTCTCTAAGCCTGTCTAC -ACGGAACTCTCTAAGCCTACGTAC -ACGGAACTCTCTAAGCCTAGTGAC -ACGGAACTCTCTAAGCCTCTGTAG -ACGGAACTCTCTAAGCCTCCTAAG -ACGGAACTCTCTAAGCCTGTTCAG -ACGGAACTCTCTAAGCCTGCATAG -ACGGAACTCTCTAAGCCTGACAAG -ACGGAACTCTCTAAGCCTAAGCAG -ACGGAACTCTCTAAGCCTCGTCAA -ACGGAACTCTCTAAGCCTGCTGAA -ACGGAACTCTCTAAGCCTAGTACG -ACGGAACTCTCTAAGCCTATCCGA -ACGGAACTCTCTAAGCCTATGGGA -ACGGAACTCTCTAAGCCTGTGCAA -ACGGAACTCTCTAAGCCTGAGGAA -ACGGAACTCTCTAAGCCTCAGGTA -ACGGAACTCTCTAAGCCTGACTCT -ACGGAACTCTCTAAGCCTAGTCCT -ACGGAACTCTCTAAGCCTTAAGCC -ACGGAACTCTCTAAGCCTATAGCC -ACGGAACTCTCTAAGCCTTAACCG -ACGGAACTCTCTAAGCCTATGCCA -ACGGAACTCTCTCAGGTTGGAAAC -ACGGAACTCTCTCAGGTTAACACC -ACGGAACTCTCTCAGGTTATCGAG -ACGGAACTCTCTCAGGTTCTCCTT -ACGGAACTCTCTCAGGTTCCTGTT -ACGGAACTCTCTCAGGTTCGGTTT -ACGGAACTCTCTCAGGTTGTGGTT -ACGGAACTCTCTCAGGTTGCCTTT -ACGGAACTCTCTCAGGTTGGTCTT -ACGGAACTCTCTCAGGTTACGCTT -ACGGAACTCTCTCAGGTTAGCGTT -ACGGAACTCTCTCAGGTTTTCGTC -ACGGAACTCTCTCAGGTTTCTCTC -ACGGAACTCTCTCAGGTTTGGATC -ACGGAACTCTCTCAGGTTCACTTC -ACGGAACTCTCTCAGGTTGTACTC -ACGGAACTCTCTCAGGTTGATGTC -ACGGAACTCTCTCAGGTTACAGTC -ACGGAACTCTCTCAGGTTTTGCTG -ACGGAACTCTCTCAGGTTTCCATG -ACGGAACTCTCTCAGGTTTGTGTG -ACGGAACTCTCTCAGGTTCTAGTG -ACGGAACTCTCTCAGGTTCATCTG -ACGGAACTCTCTCAGGTTGAGTTG -ACGGAACTCTCTCAGGTTAGACTG -ACGGAACTCTCTCAGGTTTCGGTA -ACGGAACTCTCTCAGGTTTGCCTA -ACGGAACTCTCTCAGGTTCCACTA -ACGGAACTCTCTCAGGTTGGAGTA -ACGGAACTCTCTCAGGTTTCGTCT -ACGGAACTCTCTCAGGTTTGCACT -ACGGAACTCTCTCAGGTTCTGACT -ACGGAACTCTCTCAGGTTCAACCT -ACGGAACTCTCTCAGGTTGCTACT -ACGGAACTCTCTCAGGTTGGATCT -ACGGAACTCTCTCAGGTTAAGGCT -ACGGAACTCTCTCAGGTTTCAACC -ACGGAACTCTCTCAGGTTTGTTCC -ACGGAACTCTCTCAGGTTATTCCC -ACGGAACTCTCTCAGGTTTTCTCG -ACGGAACTCTCTCAGGTTTAGACG -ACGGAACTCTCTCAGGTTGTAACG -ACGGAACTCTCTCAGGTTACTTCG -ACGGAACTCTCTCAGGTTTACGCA -ACGGAACTCTCTCAGGTTCTTGCA -ACGGAACTCTCTCAGGTTCGAACA -ACGGAACTCTCTCAGGTTCAGTCA -ACGGAACTCTCTCAGGTTGATCCA -ACGGAACTCTCTCAGGTTACGACA -ACGGAACTCTCTCAGGTTAGCTCA -ACGGAACTCTCTCAGGTTTCACGT -ACGGAACTCTCTCAGGTTCGTAGT -ACGGAACTCTCTCAGGTTGTCAGT -ACGGAACTCTCTCAGGTTGAAGGT -ACGGAACTCTCTCAGGTTAACCGT -ACGGAACTCTCTCAGGTTTTGTGC -ACGGAACTCTCTCAGGTTCTAAGC -ACGGAACTCTCTCAGGTTACTAGC -ACGGAACTCTCTCAGGTTAGATGC -ACGGAACTCTCTCAGGTTTGAAGG -ACGGAACTCTCTCAGGTTCAATGG -ACGGAACTCTCTCAGGTTATGAGG -ACGGAACTCTCTCAGGTTAATGGG -ACGGAACTCTCTCAGGTTTCCTGA -ACGGAACTCTCTCAGGTTTAGCGA -ACGGAACTCTCTCAGGTTCACAGA -ACGGAACTCTCTCAGGTTGCAAGA -ACGGAACTCTCTCAGGTTGGTTGA -ACGGAACTCTCTCAGGTTTCCGAT -ACGGAACTCTCTCAGGTTTGGCAT -ACGGAACTCTCTCAGGTTCGAGAT -ACGGAACTCTCTCAGGTTTACCAC -ACGGAACTCTCTCAGGTTCAGAAC -ACGGAACTCTCTCAGGTTGTCTAC -ACGGAACTCTCTCAGGTTACGTAC -ACGGAACTCTCTCAGGTTAGTGAC -ACGGAACTCTCTCAGGTTCTGTAG -ACGGAACTCTCTCAGGTTCCTAAG -ACGGAACTCTCTCAGGTTGTTCAG -ACGGAACTCTCTCAGGTTGCATAG -ACGGAACTCTCTCAGGTTGACAAG -ACGGAACTCTCTCAGGTTAAGCAG -ACGGAACTCTCTCAGGTTCGTCAA -ACGGAACTCTCTCAGGTTGCTGAA -ACGGAACTCTCTCAGGTTAGTACG -ACGGAACTCTCTCAGGTTATCCGA -ACGGAACTCTCTCAGGTTATGGGA -ACGGAACTCTCTCAGGTTGTGCAA -ACGGAACTCTCTCAGGTTGAGGAA -ACGGAACTCTCTCAGGTTCAGGTA -ACGGAACTCTCTCAGGTTGACTCT -ACGGAACTCTCTCAGGTTAGTCCT -ACGGAACTCTCTCAGGTTTAAGCC -ACGGAACTCTCTCAGGTTATAGCC -ACGGAACTCTCTCAGGTTTAACCG -ACGGAACTCTCTCAGGTTATGCCA -ACGGAACTCTCTTAGGCAGGAAAC -ACGGAACTCTCTTAGGCAAACACC -ACGGAACTCTCTTAGGCAATCGAG -ACGGAACTCTCTTAGGCACTCCTT -ACGGAACTCTCTTAGGCACCTGTT -ACGGAACTCTCTTAGGCACGGTTT -ACGGAACTCTCTTAGGCAGTGGTT -ACGGAACTCTCTTAGGCAGCCTTT -ACGGAACTCTCTTAGGCAGGTCTT -ACGGAACTCTCTTAGGCAACGCTT -ACGGAACTCTCTTAGGCAAGCGTT -ACGGAACTCTCTTAGGCATTCGTC -ACGGAACTCTCTTAGGCATCTCTC -ACGGAACTCTCTTAGGCATGGATC -ACGGAACTCTCTTAGGCACACTTC -ACGGAACTCTCTTAGGCAGTACTC -ACGGAACTCTCTTAGGCAGATGTC -ACGGAACTCTCTTAGGCAACAGTC -ACGGAACTCTCTTAGGCATTGCTG -ACGGAACTCTCTTAGGCATCCATG -ACGGAACTCTCTTAGGCATGTGTG -ACGGAACTCTCTTAGGCACTAGTG -ACGGAACTCTCTTAGGCACATCTG -ACGGAACTCTCTTAGGCAGAGTTG -ACGGAACTCTCTTAGGCAAGACTG -ACGGAACTCTCTTAGGCATCGGTA -ACGGAACTCTCTTAGGCATGCCTA -ACGGAACTCTCTTAGGCACCACTA -ACGGAACTCTCTTAGGCAGGAGTA -ACGGAACTCTCTTAGGCATCGTCT -ACGGAACTCTCTTAGGCATGCACT -ACGGAACTCTCTTAGGCACTGACT -ACGGAACTCTCTTAGGCACAACCT -ACGGAACTCTCTTAGGCAGCTACT -ACGGAACTCTCTTAGGCAGGATCT -ACGGAACTCTCTTAGGCAAAGGCT -ACGGAACTCTCTTAGGCATCAACC -ACGGAACTCTCTTAGGCATGTTCC -ACGGAACTCTCTTAGGCAATTCCC -ACGGAACTCTCTTAGGCATTCTCG -ACGGAACTCTCTTAGGCATAGACG -ACGGAACTCTCTTAGGCAGTAACG -ACGGAACTCTCTTAGGCAACTTCG -ACGGAACTCTCTTAGGCATACGCA -ACGGAACTCTCTTAGGCACTTGCA -ACGGAACTCTCTTAGGCACGAACA -ACGGAACTCTCTTAGGCACAGTCA -ACGGAACTCTCTTAGGCAGATCCA -ACGGAACTCTCTTAGGCAACGACA -ACGGAACTCTCTTAGGCAAGCTCA -ACGGAACTCTCTTAGGCATCACGT -ACGGAACTCTCTTAGGCACGTAGT -ACGGAACTCTCTTAGGCAGTCAGT -ACGGAACTCTCTTAGGCAGAAGGT -ACGGAACTCTCTTAGGCAAACCGT -ACGGAACTCTCTTAGGCATTGTGC -ACGGAACTCTCTTAGGCACTAAGC -ACGGAACTCTCTTAGGCAACTAGC -ACGGAACTCTCTTAGGCAAGATGC -ACGGAACTCTCTTAGGCATGAAGG -ACGGAACTCTCTTAGGCACAATGG -ACGGAACTCTCTTAGGCAATGAGG -ACGGAACTCTCTTAGGCAAATGGG -ACGGAACTCTCTTAGGCATCCTGA -ACGGAACTCTCTTAGGCATAGCGA -ACGGAACTCTCTTAGGCACACAGA -ACGGAACTCTCTTAGGCAGCAAGA -ACGGAACTCTCTTAGGCAGGTTGA -ACGGAACTCTCTTAGGCATCCGAT -ACGGAACTCTCTTAGGCATGGCAT -ACGGAACTCTCTTAGGCACGAGAT -ACGGAACTCTCTTAGGCATACCAC -ACGGAACTCTCTTAGGCACAGAAC -ACGGAACTCTCTTAGGCAGTCTAC -ACGGAACTCTCTTAGGCAACGTAC -ACGGAACTCTCTTAGGCAAGTGAC -ACGGAACTCTCTTAGGCACTGTAG -ACGGAACTCTCTTAGGCACCTAAG -ACGGAACTCTCTTAGGCAGTTCAG -ACGGAACTCTCTTAGGCAGCATAG -ACGGAACTCTCTTAGGCAGACAAG -ACGGAACTCTCTTAGGCAAAGCAG -ACGGAACTCTCTTAGGCACGTCAA -ACGGAACTCTCTTAGGCAGCTGAA -ACGGAACTCTCTTAGGCAAGTACG -ACGGAACTCTCTTAGGCAATCCGA -ACGGAACTCTCTTAGGCAATGGGA -ACGGAACTCTCTTAGGCAGTGCAA -ACGGAACTCTCTTAGGCAGAGGAA -ACGGAACTCTCTTAGGCACAGGTA -ACGGAACTCTCTTAGGCAGACTCT -ACGGAACTCTCTTAGGCAAGTCCT -ACGGAACTCTCTTAGGCATAAGCC -ACGGAACTCTCTTAGGCAATAGCC -ACGGAACTCTCTTAGGCATAACCG -ACGGAACTCTCTTAGGCAATGCCA -ACGGAACTCTCTAAGGACGGAAAC -ACGGAACTCTCTAAGGACAACACC -ACGGAACTCTCTAAGGACATCGAG -ACGGAACTCTCTAAGGACCTCCTT -ACGGAACTCTCTAAGGACCCTGTT -ACGGAACTCTCTAAGGACCGGTTT -ACGGAACTCTCTAAGGACGTGGTT -ACGGAACTCTCTAAGGACGCCTTT -ACGGAACTCTCTAAGGACGGTCTT -ACGGAACTCTCTAAGGACACGCTT -ACGGAACTCTCTAAGGACAGCGTT -ACGGAACTCTCTAAGGACTTCGTC -ACGGAACTCTCTAAGGACTCTCTC -ACGGAACTCTCTAAGGACTGGATC -ACGGAACTCTCTAAGGACCACTTC -ACGGAACTCTCTAAGGACGTACTC -ACGGAACTCTCTAAGGACGATGTC -ACGGAACTCTCTAAGGACACAGTC -ACGGAACTCTCTAAGGACTTGCTG -ACGGAACTCTCTAAGGACTCCATG -ACGGAACTCTCTAAGGACTGTGTG -ACGGAACTCTCTAAGGACCTAGTG -ACGGAACTCTCTAAGGACCATCTG -ACGGAACTCTCTAAGGACGAGTTG -ACGGAACTCTCTAAGGACAGACTG -ACGGAACTCTCTAAGGACTCGGTA -ACGGAACTCTCTAAGGACTGCCTA -ACGGAACTCTCTAAGGACCCACTA -ACGGAACTCTCTAAGGACGGAGTA -ACGGAACTCTCTAAGGACTCGTCT -ACGGAACTCTCTAAGGACTGCACT -ACGGAACTCTCTAAGGACCTGACT -ACGGAACTCTCTAAGGACCAACCT -ACGGAACTCTCTAAGGACGCTACT -ACGGAACTCTCTAAGGACGGATCT -ACGGAACTCTCTAAGGACAAGGCT -ACGGAACTCTCTAAGGACTCAACC -ACGGAACTCTCTAAGGACTGTTCC -ACGGAACTCTCTAAGGACATTCCC -ACGGAACTCTCTAAGGACTTCTCG -ACGGAACTCTCTAAGGACTAGACG -ACGGAACTCTCTAAGGACGTAACG -ACGGAACTCTCTAAGGACACTTCG -ACGGAACTCTCTAAGGACTACGCA -ACGGAACTCTCTAAGGACCTTGCA -ACGGAACTCTCTAAGGACCGAACA -ACGGAACTCTCTAAGGACCAGTCA -ACGGAACTCTCTAAGGACGATCCA -ACGGAACTCTCTAAGGACACGACA -ACGGAACTCTCTAAGGACAGCTCA -ACGGAACTCTCTAAGGACTCACGT -ACGGAACTCTCTAAGGACCGTAGT -ACGGAACTCTCTAAGGACGTCAGT -ACGGAACTCTCTAAGGACGAAGGT -ACGGAACTCTCTAAGGACAACCGT -ACGGAACTCTCTAAGGACTTGTGC -ACGGAACTCTCTAAGGACCTAAGC -ACGGAACTCTCTAAGGACACTAGC -ACGGAACTCTCTAAGGACAGATGC -ACGGAACTCTCTAAGGACTGAAGG -ACGGAACTCTCTAAGGACCAATGG -ACGGAACTCTCTAAGGACATGAGG -ACGGAACTCTCTAAGGACAATGGG -ACGGAACTCTCTAAGGACTCCTGA -ACGGAACTCTCTAAGGACTAGCGA -ACGGAACTCTCTAAGGACCACAGA -ACGGAACTCTCTAAGGACGCAAGA -ACGGAACTCTCTAAGGACGGTTGA -ACGGAACTCTCTAAGGACTCCGAT -ACGGAACTCTCTAAGGACTGGCAT -ACGGAACTCTCTAAGGACCGAGAT -ACGGAACTCTCTAAGGACTACCAC -ACGGAACTCTCTAAGGACCAGAAC -ACGGAACTCTCTAAGGACGTCTAC -ACGGAACTCTCTAAGGACACGTAC -ACGGAACTCTCTAAGGACAGTGAC -ACGGAACTCTCTAAGGACCTGTAG -ACGGAACTCTCTAAGGACCCTAAG -ACGGAACTCTCTAAGGACGTTCAG -ACGGAACTCTCTAAGGACGCATAG -ACGGAACTCTCTAAGGACGACAAG -ACGGAACTCTCTAAGGACAAGCAG -ACGGAACTCTCTAAGGACCGTCAA -ACGGAACTCTCTAAGGACGCTGAA -ACGGAACTCTCTAAGGACAGTACG -ACGGAACTCTCTAAGGACATCCGA -ACGGAACTCTCTAAGGACATGGGA -ACGGAACTCTCTAAGGACGTGCAA -ACGGAACTCTCTAAGGACGAGGAA -ACGGAACTCTCTAAGGACCAGGTA -ACGGAACTCTCTAAGGACGACTCT -ACGGAACTCTCTAAGGACAGTCCT -ACGGAACTCTCTAAGGACTAAGCC -ACGGAACTCTCTAAGGACATAGCC -ACGGAACTCTCTAAGGACTAACCG -ACGGAACTCTCTAAGGACATGCCA -ACGGAACTCTCTCAGAAGGGAAAC -ACGGAACTCTCTCAGAAGAACACC -ACGGAACTCTCTCAGAAGATCGAG -ACGGAACTCTCTCAGAAGCTCCTT -ACGGAACTCTCTCAGAAGCCTGTT -ACGGAACTCTCTCAGAAGCGGTTT -ACGGAACTCTCTCAGAAGGTGGTT -ACGGAACTCTCTCAGAAGGCCTTT -ACGGAACTCTCTCAGAAGGGTCTT -ACGGAACTCTCTCAGAAGACGCTT -ACGGAACTCTCTCAGAAGAGCGTT -ACGGAACTCTCTCAGAAGTTCGTC -ACGGAACTCTCTCAGAAGTCTCTC -ACGGAACTCTCTCAGAAGTGGATC -ACGGAACTCTCTCAGAAGCACTTC -ACGGAACTCTCTCAGAAGGTACTC -ACGGAACTCTCTCAGAAGGATGTC -ACGGAACTCTCTCAGAAGACAGTC -ACGGAACTCTCTCAGAAGTTGCTG -ACGGAACTCTCTCAGAAGTCCATG -ACGGAACTCTCTCAGAAGTGTGTG -ACGGAACTCTCTCAGAAGCTAGTG -ACGGAACTCTCTCAGAAGCATCTG -ACGGAACTCTCTCAGAAGGAGTTG -ACGGAACTCTCTCAGAAGAGACTG -ACGGAACTCTCTCAGAAGTCGGTA -ACGGAACTCTCTCAGAAGTGCCTA -ACGGAACTCTCTCAGAAGCCACTA -ACGGAACTCTCTCAGAAGGGAGTA -ACGGAACTCTCTCAGAAGTCGTCT -ACGGAACTCTCTCAGAAGTGCACT -ACGGAACTCTCTCAGAAGCTGACT -ACGGAACTCTCTCAGAAGCAACCT -ACGGAACTCTCTCAGAAGGCTACT -ACGGAACTCTCTCAGAAGGGATCT -ACGGAACTCTCTCAGAAGAAGGCT -ACGGAACTCTCTCAGAAGTCAACC -ACGGAACTCTCTCAGAAGTGTTCC -ACGGAACTCTCTCAGAAGATTCCC -ACGGAACTCTCTCAGAAGTTCTCG -ACGGAACTCTCTCAGAAGTAGACG -ACGGAACTCTCTCAGAAGGTAACG -ACGGAACTCTCTCAGAAGACTTCG -ACGGAACTCTCTCAGAAGTACGCA -ACGGAACTCTCTCAGAAGCTTGCA -ACGGAACTCTCTCAGAAGCGAACA -ACGGAACTCTCTCAGAAGCAGTCA -ACGGAACTCTCTCAGAAGGATCCA -ACGGAACTCTCTCAGAAGACGACA -ACGGAACTCTCTCAGAAGAGCTCA -ACGGAACTCTCTCAGAAGTCACGT -ACGGAACTCTCTCAGAAGCGTAGT -ACGGAACTCTCTCAGAAGGTCAGT -ACGGAACTCTCTCAGAAGGAAGGT -ACGGAACTCTCTCAGAAGAACCGT -ACGGAACTCTCTCAGAAGTTGTGC -ACGGAACTCTCTCAGAAGCTAAGC -ACGGAACTCTCTCAGAAGACTAGC -ACGGAACTCTCTCAGAAGAGATGC -ACGGAACTCTCTCAGAAGTGAAGG -ACGGAACTCTCTCAGAAGCAATGG -ACGGAACTCTCTCAGAAGATGAGG -ACGGAACTCTCTCAGAAGAATGGG -ACGGAACTCTCTCAGAAGTCCTGA -ACGGAACTCTCTCAGAAGTAGCGA -ACGGAACTCTCTCAGAAGCACAGA -ACGGAACTCTCTCAGAAGGCAAGA -ACGGAACTCTCTCAGAAGGGTTGA -ACGGAACTCTCTCAGAAGTCCGAT -ACGGAACTCTCTCAGAAGTGGCAT -ACGGAACTCTCTCAGAAGCGAGAT -ACGGAACTCTCTCAGAAGTACCAC -ACGGAACTCTCTCAGAAGCAGAAC -ACGGAACTCTCTCAGAAGGTCTAC -ACGGAACTCTCTCAGAAGACGTAC -ACGGAACTCTCTCAGAAGAGTGAC -ACGGAACTCTCTCAGAAGCTGTAG -ACGGAACTCTCTCAGAAGCCTAAG -ACGGAACTCTCTCAGAAGGTTCAG -ACGGAACTCTCTCAGAAGGCATAG -ACGGAACTCTCTCAGAAGGACAAG -ACGGAACTCTCTCAGAAGAAGCAG -ACGGAACTCTCTCAGAAGCGTCAA -ACGGAACTCTCTCAGAAGGCTGAA -ACGGAACTCTCTCAGAAGAGTACG -ACGGAACTCTCTCAGAAGATCCGA -ACGGAACTCTCTCAGAAGATGGGA -ACGGAACTCTCTCAGAAGGTGCAA -ACGGAACTCTCTCAGAAGGAGGAA -ACGGAACTCTCTCAGAAGCAGGTA -ACGGAACTCTCTCAGAAGGACTCT -ACGGAACTCTCTCAGAAGAGTCCT -ACGGAACTCTCTCAGAAGTAAGCC -ACGGAACTCTCTCAGAAGATAGCC -ACGGAACTCTCTCAGAAGTAACCG -ACGGAACTCTCTCAGAAGATGCCA -ACGGAACTCTCTCAACGTGGAAAC -ACGGAACTCTCTCAACGTAACACC -ACGGAACTCTCTCAACGTATCGAG -ACGGAACTCTCTCAACGTCTCCTT -ACGGAACTCTCTCAACGTCCTGTT -ACGGAACTCTCTCAACGTCGGTTT -ACGGAACTCTCTCAACGTGTGGTT -ACGGAACTCTCTCAACGTGCCTTT -ACGGAACTCTCTCAACGTGGTCTT -ACGGAACTCTCTCAACGTACGCTT -ACGGAACTCTCTCAACGTAGCGTT -ACGGAACTCTCTCAACGTTTCGTC -ACGGAACTCTCTCAACGTTCTCTC -ACGGAACTCTCTCAACGTTGGATC -ACGGAACTCTCTCAACGTCACTTC -ACGGAACTCTCTCAACGTGTACTC -ACGGAACTCTCTCAACGTGATGTC -ACGGAACTCTCTCAACGTACAGTC -ACGGAACTCTCTCAACGTTTGCTG -ACGGAACTCTCTCAACGTTCCATG -ACGGAACTCTCTCAACGTTGTGTG -ACGGAACTCTCTCAACGTCTAGTG -ACGGAACTCTCTCAACGTCATCTG -ACGGAACTCTCTCAACGTGAGTTG -ACGGAACTCTCTCAACGTAGACTG -ACGGAACTCTCTCAACGTTCGGTA -ACGGAACTCTCTCAACGTTGCCTA -ACGGAACTCTCTCAACGTCCACTA -ACGGAACTCTCTCAACGTGGAGTA -ACGGAACTCTCTCAACGTTCGTCT -ACGGAACTCTCTCAACGTTGCACT -ACGGAACTCTCTCAACGTCTGACT -ACGGAACTCTCTCAACGTCAACCT -ACGGAACTCTCTCAACGTGCTACT -ACGGAACTCTCTCAACGTGGATCT -ACGGAACTCTCTCAACGTAAGGCT -ACGGAACTCTCTCAACGTTCAACC -ACGGAACTCTCTCAACGTTGTTCC -ACGGAACTCTCTCAACGTATTCCC -ACGGAACTCTCTCAACGTTTCTCG -ACGGAACTCTCTCAACGTTAGACG -ACGGAACTCTCTCAACGTGTAACG -ACGGAACTCTCTCAACGTACTTCG -ACGGAACTCTCTCAACGTTACGCA -ACGGAACTCTCTCAACGTCTTGCA -ACGGAACTCTCTCAACGTCGAACA -ACGGAACTCTCTCAACGTCAGTCA -ACGGAACTCTCTCAACGTGATCCA -ACGGAACTCTCTCAACGTACGACA -ACGGAACTCTCTCAACGTAGCTCA -ACGGAACTCTCTCAACGTTCACGT -ACGGAACTCTCTCAACGTCGTAGT -ACGGAACTCTCTCAACGTGTCAGT -ACGGAACTCTCTCAACGTGAAGGT -ACGGAACTCTCTCAACGTAACCGT -ACGGAACTCTCTCAACGTTTGTGC -ACGGAACTCTCTCAACGTCTAAGC -ACGGAACTCTCTCAACGTACTAGC -ACGGAACTCTCTCAACGTAGATGC -ACGGAACTCTCTCAACGTTGAAGG -ACGGAACTCTCTCAACGTCAATGG -ACGGAACTCTCTCAACGTATGAGG -ACGGAACTCTCTCAACGTAATGGG -ACGGAACTCTCTCAACGTTCCTGA -ACGGAACTCTCTCAACGTTAGCGA -ACGGAACTCTCTCAACGTCACAGA -ACGGAACTCTCTCAACGTGCAAGA -ACGGAACTCTCTCAACGTGGTTGA -ACGGAACTCTCTCAACGTTCCGAT -ACGGAACTCTCTCAACGTTGGCAT -ACGGAACTCTCTCAACGTCGAGAT -ACGGAACTCTCTCAACGTTACCAC -ACGGAACTCTCTCAACGTCAGAAC -ACGGAACTCTCTCAACGTGTCTAC -ACGGAACTCTCTCAACGTACGTAC -ACGGAACTCTCTCAACGTAGTGAC -ACGGAACTCTCTCAACGTCTGTAG -ACGGAACTCTCTCAACGTCCTAAG -ACGGAACTCTCTCAACGTGTTCAG -ACGGAACTCTCTCAACGTGCATAG -ACGGAACTCTCTCAACGTGACAAG -ACGGAACTCTCTCAACGTAAGCAG -ACGGAACTCTCTCAACGTCGTCAA -ACGGAACTCTCTCAACGTGCTGAA -ACGGAACTCTCTCAACGTAGTACG -ACGGAACTCTCTCAACGTATCCGA -ACGGAACTCTCTCAACGTATGGGA -ACGGAACTCTCTCAACGTGTGCAA -ACGGAACTCTCTCAACGTGAGGAA -ACGGAACTCTCTCAACGTCAGGTA -ACGGAACTCTCTCAACGTGACTCT -ACGGAACTCTCTCAACGTAGTCCT -ACGGAACTCTCTCAACGTTAAGCC -ACGGAACTCTCTCAACGTATAGCC -ACGGAACTCTCTCAACGTTAACCG -ACGGAACTCTCTCAACGTATGCCA -ACGGAACTCTCTGAAGCTGGAAAC -ACGGAACTCTCTGAAGCTAACACC -ACGGAACTCTCTGAAGCTATCGAG -ACGGAACTCTCTGAAGCTCTCCTT -ACGGAACTCTCTGAAGCTCCTGTT -ACGGAACTCTCTGAAGCTCGGTTT -ACGGAACTCTCTGAAGCTGTGGTT -ACGGAACTCTCTGAAGCTGCCTTT -ACGGAACTCTCTGAAGCTGGTCTT -ACGGAACTCTCTGAAGCTACGCTT -ACGGAACTCTCTGAAGCTAGCGTT -ACGGAACTCTCTGAAGCTTTCGTC -ACGGAACTCTCTGAAGCTTCTCTC -ACGGAACTCTCTGAAGCTTGGATC -ACGGAACTCTCTGAAGCTCACTTC -ACGGAACTCTCTGAAGCTGTACTC -ACGGAACTCTCTGAAGCTGATGTC -ACGGAACTCTCTGAAGCTACAGTC -ACGGAACTCTCTGAAGCTTTGCTG -ACGGAACTCTCTGAAGCTTCCATG -ACGGAACTCTCTGAAGCTTGTGTG -ACGGAACTCTCTGAAGCTCTAGTG -ACGGAACTCTCTGAAGCTCATCTG -ACGGAACTCTCTGAAGCTGAGTTG -ACGGAACTCTCTGAAGCTAGACTG -ACGGAACTCTCTGAAGCTTCGGTA -ACGGAACTCTCTGAAGCTTGCCTA -ACGGAACTCTCTGAAGCTCCACTA -ACGGAACTCTCTGAAGCTGGAGTA -ACGGAACTCTCTGAAGCTTCGTCT -ACGGAACTCTCTGAAGCTTGCACT -ACGGAACTCTCTGAAGCTCTGACT -ACGGAACTCTCTGAAGCTCAACCT -ACGGAACTCTCTGAAGCTGCTACT -ACGGAACTCTCTGAAGCTGGATCT -ACGGAACTCTCTGAAGCTAAGGCT -ACGGAACTCTCTGAAGCTTCAACC -ACGGAACTCTCTGAAGCTTGTTCC -ACGGAACTCTCTGAAGCTATTCCC -ACGGAACTCTCTGAAGCTTTCTCG -ACGGAACTCTCTGAAGCTTAGACG -ACGGAACTCTCTGAAGCTGTAACG -ACGGAACTCTCTGAAGCTACTTCG -ACGGAACTCTCTGAAGCTTACGCA -ACGGAACTCTCTGAAGCTCTTGCA -ACGGAACTCTCTGAAGCTCGAACA -ACGGAACTCTCTGAAGCTCAGTCA -ACGGAACTCTCTGAAGCTGATCCA -ACGGAACTCTCTGAAGCTACGACA -ACGGAACTCTCTGAAGCTAGCTCA -ACGGAACTCTCTGAAGCTTCACGT -ACGGAACTCTCTGAAGCTCGTAGT -ACGGAACTCTCTGAAGCTGTCAGT -ACGGAACTCTCTGAAGCTGAAGGT -ACGGAACTCTCTGAAGCTAACCGT -ACGGAACTCTCTGAAGCTTTGTGC -ACGGAACTCTCTGAAGCTCTAAGC -ACGGAACTCTCTGAAGCTACTAGC -ACGGAACTCTCTGAAGCTAGATGC -ACGGAACTCTCTGAAGCTTGAAGG -ACGGAACTCTCTGAAGCTCAATGG -ACGGAACTCTCTGAAGCTATGAGG -ACGGAACTCTCTGAAGCTAATGGG -ACGGAACTCTCTGAAGCTTCCTGA -ACGGAACTCTCTGAAGCTTAGCGA -ACGGAACTCTCTGAAGCTCACAGA -ACGGAACTCTCTGAAGCTGCAAGA -ACGGAACTCTCTGAAGCTGGTTGA -ACGGAACTCTCTGAAGCTTCCGAT -ACGGAACTCTCTGAAGCTTGGCAT -ACGGAACTCTCTGAAGCTCGAGAT -ACGGAACTCTCTGAAGCTTACCAC -ACGGAACTCTCTGAAGCTCAGAAC -ACGGAACTCTCTGAAGCTGTCTAC -ACGGAACTCTCTGAAGCTACGTAC -ACGGAACTCTCTGAAGCTAGTGAC -ACGGAACTCTCTGAAGCTCTGTAG -ACGGAACTCTCTGAAGCTCCTAAG -ACGGAACTCTCTGAAGCTGTTCAG -ACGGAACTCTCTGAAGCTGCATAG -ACGGAACTCTCTGAAGCTGACAAG -ACGGAACTCTCTGAAGCTAAGCAG -ACGGAACTCTCTGAAGCTCGTCAA -ACGGAACTCTCTGAAGCTGCTGAA -ACGGAACTCTCTGAAGCTAGTACG -ACGGAACTCTCTGAAGCTATCCGA -ACGGAACTCTCTGAAGCTATGGGA -ACGGAACTCTCTGAAGCTGTGCAA -ACGGAACTCTCTGAAGCTGAGGAA -ACGGAACTCTCTGAAGCTCAGGTA -ACGGAACTCTCTGAAGCTGACTCT -ACGGAACTCTCTGAAGCTAGTCCT -ACGGAACTCTCTGAAGCTTAAGCC -ACGGAACTCTCTGAAGCTATAGCC -ACGGAACTCTCTGAAGCTTAACCG -ACGGAACTCTCTGAAGCTATGCCA -ACGGAACTCTCTACGAGTGGAAAC -ACGGAACTCTCTACGAGTAACACC -ACGGAACTCTCTACGAGTATCGAG -ACGGAACTCTCTACGAGTCTCCTT -ACGGAACTCTCTACGAGTCCTGTT -ACGGAACTCTCTACGAGTCGGTTT -ACGGAACTCTCTACGAGTGTGGTT -ACGGAACTCTCTACGAGTGCCTTT -ACGGAACTCTCTACGAGTGGTCTT -ACGGAACTCTCTACGAGTACGCTT -ACGGAACTCTCTACGAGTAGCGTT -ACGGAACTCTCTACGAGTTTCGTC -ACGGAACTCTCTACGAGTTCTCTC -ACGGAACTCTCTACGAGTTGGATC -ACGGAACTCTCTACGAGTCACTTC -ACGGAACTCTCTACGAGTGTACTC -ACGGAACTCTCTACGAGTGATGTC -ACGGAACTCTCTACGAGTACAGTC -ACGGAACTCTCTACGAGTTTGCTG -ACGGAACTCTCTACGAGTTCCATG -ACGGAACTCTCTACGAGTTGTGTG -ACGGAACTCTCTACGAGTCTAGTG -ACGGAACTCTCTACGAGTCATCTG -ACGGAACTCTCTACGAGTGAGTTG -ACGGAACTCTCTACGAGTAGACTG -ACGGAACTCTCTACGAGTTCGGTA -ACGGAACTCTCTACGAGTTGCCTA -ACGGAACTCTCTACGAGTCCACTA -ACGGAACTCTCTACGAGTGGAGTA -ACGGAACTCTCTACGAGTTCGTCT -ACGGAACTCTCTACGAGTTGCACT -ACGGAACTCTCTACGAGTCTGACT -ACGGAACTCTCTACGAGTCAACCT -ACGGAACTCTCTACGAGTGCTACT -ACGGAACTCTCTACGAGTGGATCT -ACGGAACTCTCTACGAGTAAGGCT -ACGGAACTCTCTACGAGTTCAACC -ACGGAACTCTCTACGAGTTGTTCC -ACGGAACTCTCTACGAGTATTCCC -ACGGAACTCTCTACGAGTTTCTCG -ACGGAACTCTCTACGAGTTAGACG -ACGGAACTCTCTACGAGTGTAACG -ACGGAACTCTCTACGAGTACTTCG -ACGGAACTCTCTACGAGTTACGCA -ACGGAACTCTCTACGAGTCTTGCA -ACGGAACTCTCTACGAGTCGAACA -ACGGAACTCTCTACGAGTCAGTCA -ACGGAACTCTCTACGAGTGATCCA -ACGGAACTCTCTACGAGTACGACA -ACGGAACTCTCTACGAGTAGCTCA -ACGGAACTCTCTACGAGTTCACGT -ACGGAACTCTCTACGAGTCGTAGT -ACGGAACTCTCTACGAGTGTCAGT -ACGGAACTCTCTACGAGTGAAGGT -ACGGAACTCTCTACGAGTAACCGT -ACGGAACTCTCTACGAGTTTGTGC -ACGGAACTCTCTACGAGTCTAAGC -ACGGAACTCTCTACGAGTACTAGC -ACGGAACTCTCTACGAGTAGATGC -ACGGAACTCTCTACGAGTTGAAGG -ACGGAACTCTCTACGAGTCAATGG -ACGGAACTCTCTACGAGTATGAGG -ACGGAACTCTCTACGAGTAATGGG -ACGGAACTCTCTACGAGTTCCTGA -ACGGAACTCTCTACGAGTTAGCGA -ACGGAACTCTCTACGAGTCACAGA -ACGGAACTCTCTACGAGTGCAAGA -ACGGAACTCTCTACGAGTGGTTGA -ACGGAACTCTCTACGAGTTCCGAT -ACGGAACTCTCTACGAGTTGGCAT -ACGGAACTCTCTACGAGTCGAGAT -ACGGAACTCTCTACGAGTTACCAC -ACGGAACTCTCTACGAGTCAGAAC -ACGGAACTCTCTACGAGTGTCTAC -ACGGAACTCTCTACGAGTACGTAC -ACGGAACTCTCTACGAGTAGTGAC -ACGGAACTCTCTACGAGTCTGTAG -ACGGAACTCTCTACGAGTCCTAAG -ACGGAACTCTCTACGAGTGTTCAG -ACGGAACTCTCTACGAGTGCATAG -ACGGAACTCTCTACGAGTGACAAG -ACGGAACTCTCTACGAGTAAGCAG -ACGGAACTCTCTACGAGTCGTCAA -ACGGAACTCTCTACGAGTGCTGAA -ACGGAACTCTCTACGAGTAGTACG -ACGGAACTCTCTACGAGTATCCGA -ACGGAACTCTCTACGAGTATGGGA -ACGGAACTCTCTACGAGTGTGCAA -ACGGAACTCTCTACGAGTGAGGAA -ACGGAACTCTCTACGAGTCAGGTA -ACGGAACTCTCTACGAGTGACTCT -ACGGAACTCTCTACGAGTAGTCCT -ACGGAACTCTCTACGAGTTAAGCC -ACGGAACTCTCTACGAGTATAGCC -ACGGAACTCTCTACGAGTTAACCG -ACGGAACTCTCTACGAGTATGCCA -ACGGAACTCTCTCGAATCGGAAAC -ACGGAACTCTCTCGAATCAACACC -ACGGAACTCTCTCGAATCATCGAG -ACGGAACTCTCTCGAATCCTCCTT -ACGGAACTCTCTCGAATCCCTGTT -ACGGAACTCTCTCGAATCCGGTTT -ACGGAACTCTCTCGAATCGTGGTT -ACGGAACTCTCTCGAATCGCCTTT -ACGGAACTCTCTCGAATCGGTCTT -ACGGAACTCTCTCGAATCACGCTT -ACGGAACTCTCTCGAATCAGCGTT -ACGGAACTCTCTCGAATCTTCGTC -ACGGAACTCTCTCGAATCTCTCTC -ACGGAACTCTCTCGAATCTGGATC -ACGGAACTCTCTCGAATCCACTTC -ACGGAACTCTCTCGAATCGTACTC -ACGGAACTCTCTCGAATCGATGTC -ACGGAACTCTCTCGAATCACAGTC -ACGGAACTCTCTCGAATCTTGCTG -ACGGAACTCTCTCGAATCTCCATG -ACGGAACTCTCTCGAATCTGTGTG -ACGGAACTCTCTCGAATCCTAGTG -ACGGAACTCTCTCGAATCCATCTG -ACGGAACTCTCTCGAATCGAGTTG -ACGGAACTCTCTCGAATCAGACTG -ACGGAACTCTCTCGAATCTCGGTA -ACGGAACTCTCTCGAATCTGCCTA -ACGGAACTCTCTCGAATCCCACTA -ACGGAACTCTCTCGAATCGGAGTA -ACGGAACTCTCTCGAATCTCGTCT -ACGGAACTCTCTCGAATCTGCACT -ACGGAACTCTCTCGAATCCTGACT -ACGGAACTCTCTCGAATCCAACCT -ACGGAACTCTCTCGAATCGCTACT -ACGGAACTCTCTCGAATCGGATCT -ACGGAACTCTCTCGAATCAAGGCT -ACGGAACTCTCTCGAATCTCAACC -ACGGAACTCTCTCGAATCTGTTCC -ACGGAACTCTCTCGAATCATTCCC -ACGGAACTCTCTCGAATCTTCTCG -ACGGAACTCTCTCGAATCTAGACG -ACGGAACTCTCTCGAATCGTAACG -ACGGAACTCTCTCGAATCACTTCG -ACGGAACTCTCTCGAATCTACGCA -ACGGAACTCTCTCGAATCCTTGCA -ACGGAACTCTCTCGAATCCGAACA -ACGGAACTCTCTCGAATCCAGTCA -ACGGAACTCTCTCGAATCGATCCA -ACGGAACTCTCTCGAATCACGACA -ACGGAACTCTCTCGAATCAGCTCA -ACGGAACTCTCTCGAATCTCACGT -ACGGAACTCTCTCGAATCCGTAGT -ACGGAACTCTCTCGAATCGTCAGT -ACGGAACTCTCTCGAATCGAAGGT -ACGGAACTCTCTCGAATCAACCGT -ACGGAACTCTCTCGAATCTTGTGC -ACGGAACTCTCTCGAATCCTAAGC -ACGGAACTCTCTCGAATCACTAGC -ACGGAACTCTCTCGAATCAGATGC -ACGGAACTCTCTCGAATCTGAAGG -ACGGAACTCTCTCGAATCCAATGG -ACGGAACTCTCTCGAATCATGAGG -ACGGAACTCTCTCGAATCAATGGG -ACGGAACTCTCTCGAATCTCCTGA -ACGGAACTCTCTCGAATCTAGCGA -ACGGAACTCTCTCGAATCCACAGA -ACGGAACTCTCTCGAATCGCAAGA -ACGGAACTCTCTCGAATCGGTTGA -ACGGAACTCTCTCGAATCTCCGAT -ACGGAACTCTCTCGAATCTGGCAT -ACGGAACTCTCTCGAATCCGAGAT -ACGGAACTCTCTCGAATCTACCAC -ACGGAACTCTCTCGAATCCAGAAC -ACGGAACTCTCTCGAATCGTCTAC -ACGGAACTCTCTCGAATCACGTAC -ACGGAACTCTCTCGAATCAGTGAC -ACGGAACTCTCTCGAATCCTGTAG -ACGGAACTCTCTCGAATCCCTAAG -ACGGAACTCTCTCGAATCGTTCAG -ACGGAACTCTCTCGAATCGCATAG -ACGGAACTCTCTCGAATCGACAAG -ACGGAACTCTCTCGAATCAAGCAG -ACGGAACTCTCTCGAATCCGTCAA -ACGGAACTCTCTCGAATCGCTGAA -ACGGAACTCTCTCGAATCAGTACG -ACGGAACTCTCTCGAATCATCCGA -ACGGAACTCTCTCGAATCATGGGA -ACGGAACTCTCTCGAATCGTGCAA -ACGGAACTCTCTCGAATCGAGGAA -ACGGAACTCTCTCGAATCCAGGTA -ACGGAACTCTCTCGAATCGACTCT -ACGGAACTCTCTCGAATCAGTCCT -ACGGAACTCTCTCGAATCTAAGCC -ACGGAACTCTCTCGAATCATAGCC -ACGGAACTCTCTCGAATCTAACCG -ACGGAACTCTCTCGAATCATGCCA -ACGGAACTCTCTGGAATGGGAAAC -ACGGAACTCTCTGGAATGAACACC -ACGGAACTCTCTGGAATGATCGAG -ACGGAACTCTCTGGAATGCTCCTT -ACGGAACTCTCTGGAATGCCTGTT -ACGGAACTCTCTGGAATGCGGTTT -ACGGAACTCTCTGGAATGGTGGTT -ACGGAACTCTCTGGAATGGCCTTT -ACGGAACTCTCTGGAATGGGTCTT -ACGGAACTCTCTGGAATGACGCTT -ACGGAACTCTCTGGAATGAGCGTT -ACGGAACTCTCTGGAATGTTCGTC -ACGGAACTCTCTGGAATGTCTCTC -ACGGAACTCTCTGGAATGTGGATC -ACGGAACTCTCTGGAATGCACTTC -ACGGAACTCTCTGGAATGGTACTC -ACGGAACTCTCTGGAATGGATGTC -ACGGAACTCTCTGGAATGACAGTC -ACGGAACTCTCTGGAATGTTGCTG -ACGGAACTCTCTGGAATGTCCATG -ACGGAACTCTCTGGAATGTGTGTG -ACGGAACTCTCTGGAATGCTAGTG -ACGGAACTCTCTGGAATGCATCTG -ACGGAACTCTCTGGAATGGAGTTG -ACGGAACTCTCTGGAATGAGACTG -ACGGAACTCTCTGGAATGTCGGTA -ACGGAACTCTCTGGAATGTGCCTA -ACGGAACTCTCTGGAATGCCACTA -ACGGAACTCTCTGGAATGGGAGTA -ACGGAACTCTCTGGAATGTCGTCT -ACGGAACTCTCTGGAATGTGCACT -ACGGAACTCTCTGGAATGCTGACT -ACGGAACTCTCTGGAATGCAACCT -ACGGAACTCTCTGGAATGGCTACT -ACGGAACTCTCTGGAATGGGATCT -ACGGAACTCTCTGGAATGAAGGCT -ACGGAACTCTCTGGAATGTCAACC -ACGGAACTCTCTGGAATGTGTTCC -ACGGAACTCTCTGGAATGATTCCC -ACGGAACTCTCTGGAATGTTCTCG -ACGGAACTCTCTGGAATGTAGACG -ACGGAACTCTCTGGAATGGTAACG -ACGGAACTCTCTGGAATGACTTCG -ACGGAACTCTCTGGAATGTACGCA -ACGGAACTCTCTGGAATGCTTGCA -ACGGAACTCTCTGGAATGCGAACA -ACGGAACTCTCTGGAATGCAGTCA -ACGGAACTCTCTGGAATGGATCCA -ACGGAACTCTCTGGAATGACGACA -ACGGAACTCTCTGGAATGAGCTCA -ACGGAACTCTCTGGAATGTCACGT -ACGGAACTCTCTGGAATGCGTAGT -ACGGAACTCTCTGGAATGGTCAGT -ACGGAACTCTCTGGAATGGAAGGT -ACGGAACTCTCTGGAATGAACCGT -ACGGAACTCTCTGGAATGTTGTGC -ACGGAACTCTCTGGAATGCTAAGC -ACGGAACTCTCTGGAATGACTAGC -ACGGAACTCTCTGGAATGAGATGC -ACGGAACTCTCTGGAATGTGAAGG -ACGGAACTCTCTGGAATGCAATGG -ACGGAACTCTCTGGAATGATGAGG -ACGGAACTCTCTGGAATGAATGGG -ACGGAACTCTCTGGAATGTCCTGA -ACGGAACTCTCTGGAATGTAGCGA -ACGGAACTCTCTGGAATGCACAGA -ACGGAACTCTCTGGAATGGCAAGA -ACGGAACTCTCTGGAATGGGTTGA -ACGGAACTCTCTGGAATGTCCGAT -ACGGAACTCTCTGGAATGTGGCAT -ACGGAACTCTCTGGAATGCGAGAT -ACGGAACTCTCTGGAATGTACCAC -ACGGAACTCTCTGGAATGCAGAAC -ACGGAACTCTCTGGAATGGTCTAC -ACGGAACTCTCTGGAATGACGTAC -ACGGAACTCTCTGGAATGAGTGAC -ACGGAACTCTCTGGAATGCTGTAG -ACGGAACTCTCTGGAATGCCTAAG -ACGGAACTCTCTGGAATGGTTCAG -ACGGAACTCTCTGGAATGGCATAG -ACGGAACTCTCTGGAATGGACAAG -ACGGAACTCTCTGGAATGAAGCAG -ACGGAACTCTCTGGAATGCGTCAA -ACGGAACTCTCTGGAATGGCTGAA -ACGGAACTCTCTGGAATGAGTACG -ACGGAACTCTCTGGAATGATCCGA -ACGGAACTCTCTGGAATGATGGGA -ACGGAACTCTCTGGAATGGTGCAA -ACGGAACTCTCTGGAATGGAGGAA -ACGGAACTCTCTGGAATGCAGGTA -ACGGAACTCTCTGGAATGGACTCT -ACGGAACTCTCTGGAATGAGTCCT -ACGGAACTCTCTGGAATGTAAGCC -ACGGAACTCTCTGGAATGATAGCC -ACGGAACTCTCTGGAATGTAACCG -ACGGAACTCTCTGGAATGATGCCA -ACGGAACTCTCTCAAGTGGGAAAC -ACGGAACTCTCTCAAGTGAACACC -ACGGAACTCTCTCAAGTGATCGAG -ACGGAACTCTCTCAAGTGCTCCTT -ACGGAACTCTCTCAAGTGCCTGTT -ACGGAACTCTCTCAAGTGCGGTTT -ACGGAACTCTCTCAAGTGGTGGTT -ACGGAACTCTCTCAAGTGGCCTTT -ACGGAACTCTCTCAAGTGGGTCTT -ACGGAACTCTCTCAAGTGACGCTT -ACGGAACTCTCTCAAGTGAGCGTT -ACGGAACTCTCTCAAGTGTTCGTC -ACGGAACTCTCTCAAGTGTCTCTC -ACGGAACTCTCTCAAGTGTGGATC -ACGGAACTCTCTCAAGTGCACTTC -ACGGAACTCTCTCAAGTGGTACTC -ACGGAACTCTCTCAAGTGGATGTC -ACGGAACTCTCTCAAGTGACAGTC -ACGGAACTCTCTCAAGTGTTGCTG -ACGGAACTCTCTCAAGTGTCCATG -ACGGAACTCTCTCAAGTGTGTGTG -ACGGAACTCTCTCAAGTGCTAGTG -ACGGAACTCTCTCAAGTGCATCTG -ACGGAACTCTCTCAAGTGGAGTTG -ACGGAACTCTCTCAAGTGAGACTG -ACGGAACTCTCTCAAGTGTCGGTA -ACGGAACTCTCTCAAGTGTGCCTA -ACGGAACTCTCTCAAGTGCCACTA -ACGGAACTCTCTCAAGTGGGAGTA -ACGGAACTCTCTCAAGTGTCGTCT -ACGGAACTCTCTCAAGTGTGCACT -ACGGAACTCTCTCAAGTGCTGACT -ACGGAACTCTCTCAAGTGCAACCT -ACGGAACTCTCTCAAGTGGCTACT -ACGGAACTCTCTCAAGTGGGATCT -ACGGAACTCTCTCAAGTGAAGGCT -ACGGAACTCTCTCAAGTGTCAACC -ACGGAACTCTCTCAAGTGTGTTCC -ACGGAACTCTCTCAAGTGATTCCC -ACGGAACTCTCTCAAGTGTTCTCG -ACGGAACTCTCTCAAGTGTAGACG -ACGGAACTCTCTCAAGTGGTAACG -ACGGAACTCTCTCAAGTGACTTCG -ACGGAACTCTCTCAAGTGTACGCA -ACGGAACTCTCTCAAGTGCTTGCA -ACGGAACTCTCTCAAGTGCGAACA -ACGGAACTCTCTCAAGTGCAGTCA -ACGGAACTCTCTCAAGTGGATCCA -ACGGAACTCTCTCAAGTGACGACA -ACGGAACTCTCTCAAGTGAGCTCA -ACGGAACTCTCTCAAGTGTCACGT -ACGGAACTCTCTCAAGTGCGTAGT -ACGGAACTCTCTCAAGTGGTCAGT -ACGGAACTCTCTCAAGTGGAAGGT -ACGGAACTCTCTCAAGTGAACCGT -ACGGAACTCTCTCAAGTGTTGTGC -ACGGAACTCTCTCAAGTGCTAAGC -ACGGAACTCTCTCAAGTGACTAGC -ACGGAACTCTCTCAAGTGAGATGC -ACGGAACTCTCTCAAGTGTGAAGG -ACGGAACTCTCTCAAGTGCAATGG -ACGGAACTCTCTCAAGTGATGAGG -ACGGAACTCTCTCAAGTGAATGGG -ACGGAACTCTCTCAAGTGTCCTGA -ACGGAACTCTCTCAAGTGTAGCGA -ACGGAACTCTCTCAAGTGCACAGA -ACGGAACTCTCTCAAGTGGCAAGA -ACGGAACTCTCTCAAGTGGGTTGA -ACGGAACTCTCTCAAGTGTCCGAT -ACGGAACTCTCTCAAGTGTGGCAT -ACGGAACTCTCTCAAGTGCGAGAT -ACGGAACTCTCTCAAGTGTACCAC -ACGGAACTCTCTCAAGTGCAGAAC -ACGGAACTCTCTCAAGTGGTCTAC -ACGGAACTCTCTCAAGTGACGTAC -ACGGAACTCTCTCAAGTGAGTGAC -ACGGAACTCTCTCAAGTGCTGTAG -ACGGAACTCTCTCAAGTGCCTAAG -ACGGAACTCTCTCAAGTGGTTCAG -ACGGAACTCTCTCAAGTGGCATAG -ACGGAACTCTCTCAAGTGGACAAG -ACGGAACTCTCTCAAGTGAAGCAG -ACGGAACTCTCTCAAGTGCGTCAA -ACGGAACTCTCTCAAGTGGCTGAA -ACGGAACTCTCTCAAGTGAGTACG -ACGGAACTCTCTCAAGTGATCCGA -ACGGAACTCTCTCAAGTGATGGGA -ACGGAACTCTCTCAAGTGGTGCAA -ACGGAACTCTCTCAAGTGGAGGAA -ACGGAACTCTCTCAAGTGCAGGTA -ACGGAACTCTCTCAAGTGGACTCT -ACGGAACTCTCTCAAGTGAGTCCT -ACGGAACTCTCTCAAGTGTAAGCC -ACGGAACTCTCTCAAGTGATAGCC -ACGGAACTCTCTCAAGTGTAACCG -ACGGAACTCTCTCAAGTGATGCCA -ACGGAACTCTCTGAAGAGGGAAAC -ACGGAACTCTCTGAAGAGAACACC -ACGGAACTCTCTGAAGAGATCGAG -ACGGAACTCTCTGAAGAGCTCCTT -ACGGAACTCTCTGAAGAGCCTGTT -ACGGAACTCTCTGAAGAGCGGTTT -ACGGAACTCTCTGAAGAGGTGGTT -ACGGAACTCTCTGAAGAGGCCTTT -ACGGAACTCTCTGAAGAGGGTCTT -ACGGAACTCTCTGAAGAGACGCTT -ACGGAACTCTCTGAAGAGAGCGTT -ACGGAACTCTCTGAAGAGTTCGTC -ACGGAACTCTCTGAAGAGTCTCTC -ACGGAACTCTCTGAAGAGTGGATC -ACGGAACTCTCTGAAGAGCACTTC -ACGGAACTCTCTGAAGAGGTACTC -ACGGAACTCTCTGAAGAGGATGTC -ACGGAACTCTCTGAAGAGACAGTC -ACGGAACTCTCTGAAGAGTTGCTG -ACGGAACTCTCTGAAGAGTCCATG -ACGGAACTCTCTGAAGAGTGTGTG -ACGGAACTCTCTGAAGAGCTAGTG -ACGGAACTCTCTGAAGAGCATCTG -ACGGAACTCTCTGAAGAGGAGTTG -ACGGAACTCTCTGAAGAGAGACTG -ACGGAACTCTCTGAAGAGTCGGTA -ACGGAACTCTCTGAAGAGTGCCTA -ACGGAACTCTCTGAAGAGCCACTA -ACGGAACTCTCTGAAGAGGGAGTA -ACGGAACTCTCTGAAGAGTCGTCT -ACGGAACTCTCTGAAGAGTGCACT -ACGGAACTCTCTGAAGAGCTGACT -ACGGAACTCTCTGAAGAGCAACCT -ACGGAACTCTCTGAAGAGGCTACT -ACGGAACTCTCTGAAGAGGGATCT -ACGGAACTCTCTGAAGAGAAGGCT -ACGGAACTCTCTGAAGAGTCAACC -ACGGAACTCTCTGAAGAGTGTTCC -ACGGAACTCTCTGAAGAGATTCCC -ACGGAACTCTCTGAAGAGTTCTCG -ACGGAACTCTCTGAAGAGTAGACG -ACGGAACTCTCTGAAGAGGTAACG -ACGGAACTCTCTGAAGAGACTTCG -ACGGAACTCTCTGAAGAGTACGCA -ACGGAACTCTCTGAAGAGCTTGCA -ACGGAACTCTCTGAAGAGCGAACA -ACGGAACTCTCTGAAGAGCAGTCA -ACGGAACTCTCTGAAGAGGATCCA -ACGGAACTCTCTGAAGAGACGACA -ACGGAACTCTCTGAAGAGAGCTCA -ACGGAACTCTCTGAAGAGTCACGT -ACGGAACTCTCTGAAGAGCGTAGT -ACGGAACTCTCTGAAGAGGTCAGT -ACGGAACTCTCTGAAGAGGAAGGT -ACGGAACTCTCTGAAGAGAACCGT -ACGGAACTCTCTGAAGAGTTGTGC -ACGGAACTCTCTGAAGAGCTAAGC -ACGGAACTCTCTGAAGAGACTAGC -ACGGAACTCTCTGAAGAGAGATGC -ACGGAACTCTCTGAAGAGTGAAGG -ACGGAACTCTCTGAAGAGCAATGG -ACGGAACTCTCTGAAGAGATGAGG -ACGGAACTCTCTGAAGAGAATGGG -ACGGAACTCTCTGAAGAGTCCTGA -ACGGAACTCTCTGAAGAGTAGCGA -ACGGAACTCTCTGAAGAGCACAGA -ACGGAACTCTCTGAAGAGGCAAGA -ACGGAACTCTCTGAAGAGGGTTGA -ACGGAACTCTCTGAAGAGTCCGAT -ACGGAACTCTCTGAAGAGTGGCAT -ACGGAACTCTCTGAAGAGCGAGAT -ACGGAACTCTCTGAAGAGTACCAC -ACGGAACTCTCTGAAGAGCAGAAC -ACGGAACTCTCTGAAGAGGTCTAC -ACGGAACTCTCTGAAGAGACGTAC -ACGGAACTCTCTGAAGAGAGTGAC -ACGGAACTCTCTGAAGAGCTGTAG -ACGGAACTCTCTGAAGAGCCTAAG -ACGGAACTCTCTGAAGAGGTTCAG -ACGGAACTCTCTGAAGAGGCATAG -ACGGAACTCTCTGAAGAGGACAAG -ACGGAACTCTCTGAAGAGAAGCAG -ACGGAACTCTCTGAAGAGCGTCAA -ACGGAACTCTCTGAAGAGGCTGAA -ACGGAACTCTCTGAAGAGAGTACG -ACGGAACTCTCTGAAGAGATCCGA -ACGGAACTCTCTGAAGAGATGGGA -ACGGAACTCTCTGAAGAGGTGCAA -ACGGAACTCTCTGAAGAGGAGGAA -ACGGAACTCTCTGAAGAGCAGGTA -ACGGAACTCTCTGAAGAGGACTCT -ACGGAACTCTCTGAAGAGAGTCCT -ACGGAACTCTCTGAAGAGTAAGCC -ACGGAACTCTCTGAAGAGATAGCC -ACGGAACTCTCTGAAGAGTAACCG -ACGGAACTCTCTGAAGAGATGCCA -ACGGAACTCTCTGTACAGGGAAAC -ACGGAACTCTCTGTACAGAACACC -ACGGAACTCTCTGTACAGATCGAG -ACGGAACTCTCTGTACAGCTCCTT -ACGGAACTCTCTGTACAGCCTGTT -ACGGAACTCTCTGTACAGCGGTTT -ACGGAACTCTCTGTACAGGTGGTT -ACGGAACTCTCTGTACAGGCCTTT -ACGGAACTCTCTGTACAGGGTCTT -ACGGAACTCTCTGTACAGACGCTT -ACGGAACTCTCTGTACAGAGCGTT -ACGGAACTCTCTGTACAGTTCGTC -ACGGAACTCTCTGTACAGTCTCTC -ACGGAACTCTCTGTACAGTGGATC -ACGGAACTCTCTGTACAGCACTTC -ACGGAACTCTCTGTACAGGTACTC -ACGGAACTCTCTGTACAGGATGTC -ACGGAACTCTCTGTACAGACAGTC -ACGGAACTCTCTGTACAGTTGCTG -ACGGAACTCTCTGTACAGTCCATG -ACGGAACTCTCTGTACAGTGTGTG -ACGGAACTCTCTGTACAGCTAGTG -ACGGAACTCTCTGTACAGCATCTG -ACGGAACTCTCTGTACAGGAGTTG -ACGGAACTCTCTGTACAGAGACTG -ACGGAACTCTCTGTACAGTCGGTA -ACGGAACTCTCTGTACAGTGCCTA -ACGGAACTCTCTGTACAGCCACTA -ACGGAACTCTCTGTACAGGGAGTA -ACGGAACTCTCTGTACAGTCGTCT -ACGGAACTCTCTGTACAGTGCACT -ACGGAACTCTCTGTACAGCTGACT -ACGGAACTCTCTGTACAGCAACCT -ACGGAACTCTCTGTACAGGCTACT -ACGGAACTCTCTGTACAGGGATCT -ACGGAACTCTCTGTACAGAAGGCT -ACGGAACTCTCTGTACAGTCAACC -ACGGAACTCTCTGTACAGTGTTCC -ACGGAACTCTCTGTACAGATTCCC -ACGGAACTCTCTGTACAGTTCTCG -ACGGAACTCTCTGTACAGTAGACG -ACGGAACTCTCTGTACAGGTAACG -ACGGAACTCTCTGTACAGACTTCG -ACGGAACTCTCTGTACAGTACGCA -ACGGAACTCTCTGTACAGCTTGCA -ACGGAACTCTCTGTACAGCGAACA -ACGGAACTCTCTGTACAGCAGTCA -ACGGAACTCTCTGTACAGGATCCA -ACGGAACTCTCTGTACAGACGACA -ACGGAACTCTCTGTACAGAGCTCA -ACGGAACTCTCTGTACAGTCACGT -ACGGAACTCTCTGTACAGCGTAGT -ACGGAACTCTCTGTACAGGTCAGT -ACGGAACTCTCTGTACAGGAAGGT -ACGGAACTCTCTGTACAGAACCGT -ACGGAACTCTCTGTACAGTTGTGC -ACGGAACTCTCTGTACAGCTAAGC -ACGGAACTCTCTGTACAGACTAGC -ACGGAACTCTCTGTACAGAGATGC -ACGGAACTCTCTGTACAGTGAAGG -ACGGAACTCTCTGTACAGCAATGG -ACGGAACTCTCTGTACAGATGAGG -ACGGAACTCTCTGTACAGAATGGG -ACGGAACTCTCTGTACAGTCCTGA -ACGGAACTCTCTGTACAGTAGCGA -ACGGAACTCTCTGTACAGCACAGA -ACGGAACTCTCTGTACAGGCAAGA -ACGGAACTCTCTGTACAGGGTTGA -ACGGAACTCTCTGTACAGTCCGAT -ACGGAACTCTCTGTACAGTGGCAT -ACGGAACTCTCTGTACAGCGAGAT -ACGGAACTCTCTGTACAGTACCAC -ACGGAACTCTCTGTACAGCAGAAC -ACGGAACTCTCTGTACAGGTCTAC -ACGGAACTCTCTGTACAGACGTAC -ACGGAACTCTCTGTACAGAGTGAC -ACGGAACTCTCTGTACAGCTGTAG -ACGGAACTCTCTGTACAGCCTAAG -ACGGAACTCTCTGTACAGGTTCAG -ACGGAACTCTCTGTACAGGCATAG -ACGGAACTCTCTGTACAGGACAAG -ACGGAACTCTCTGTACAGAAGCAG -ACGGAACTCTCTGTACAGCGTCAA -ACGGAACTCTCTGTACAGGCTGAA -ACGGAACTCTCTGTACAGAGTACG -ACGGAACTCTCTGTACAGATCCGA -ACGGAACTCTCTGTACAGATGGGA -ACGGAACTCTCTGTACAGGTGCAA -ACGGAACTCTCTGTACAGGAGGAA -ACGGAACTCTCTGTACAGCAGGTA -ACGGAACTCTCTGTACAGGACTCT -ACGGAACTCTCTGTACAGAGTCCT -ACGGAACTCTCTGTACAGTAAGCC -ACGGAACTCTCTGTACAGATAGCC -ACGGAACTCTCTGTACAGTAACCG -ACGGAACTCTCTGTACAGATGCCA -ACGGAACTCTCTTCTGACGGAAAC -ACGGAACTCTCTTCTGACAACACC -ACGGAACTCTCTTCTGACATCGAG -ACGGAACTCTCTTCTGACCTCCTT -ACGGAACTCTCTTCTGACCCTGTT -ACGGAACTCTCTTCTGACCGGTTT -ACGGAACTCTCTTCTGACGTGGTT -ACGGAACTCTCTTCTGACGCCTTT -ACGGAACTCTCTTCTGACGGTCTT -ACGGAACTCTCTTCTGACACGCTT -ACGGAACTCTCTTCTGACAGCGTT -ACGGAACTCTCTTCTGACTTCGTC -ACGGAACTCTCTTCTGACTCTCTC -ACGGAACTCTCTTCTGACTGGATC -ACGGAACTCTCTTCTGACCACTTC -ACGGAACTCTCTTCTGACGTACTC -ACGGAACTCTCTTCTGACGATGTC -ACGGAACTCTCTTCTGACACAGTC -ACGGAACTCTCTTCTGACTTGCTG -ACGGAACTCTCTTCTGACTCCATG -ACGGAACTCTCTTCTGACTGTGTG -ACGGAACTCTCTTCTGACCTAGTG -ACGGAACTCTCTTCTGACCATCTG -ACGGAACTCTCTTCTGACGAGTTG -ACGGAACTCTCTTCTGACAGACTG -ACGGAACTCTCTTCTGACTCGGTA -ACGGAACTCTCTTCTGACTGCCTA -ACGGAACTCTCTTCTGACCCACTA -ACGGAACTCTCTTCTGACGGAGTA -ACGGAACTCTCTTCTGACTCGTCT -ACGGAACTCTCTTCTGACTGCACT -ACGGAACTCTCTTCTGACCTGACT -ACGGAACTCTCTTCTGACCAACCT -ACGGAACTCTCTTCTGACGCTACT -ACGGAACTCTCTTCTGACGGATCT -ACGGAACTCTCTTCTGACAAGGCT -ACGGAACTCTCTTCTGACTCAACC -ACGGAACTCTCTTCTGACTGTTCC -ACGGAACTCTCTTCTGACATTCCC -ACGGAACTCTCTTCTGACTTCTCG -ACGGAACTCTCTTCTGACTAGACG -ACGGAACTCTCTTCTGACGTAACG -ACGGAACTCTCTTCTGACACTTCG -ACGGAACTCTCTTCTGACTACGCA -ACGGAACTCTCTTCTGACCTTGCA -ACGGAACTCTCTTCTGACCGAACA -ACGGAACTCTCTTCTGACCAGTCA -ACGGAACTCTCTTCTGACGATCCA -ACGGAACTCTCTTCTGACACGACA -ACGGAACTCTCTTCTGACAGCTCA -ACGGAACTCTCTTCTGACTCACGT -ACGGAACTCTCTTCTGACCGTAGT -ACGGAACTCTCTTCTGACGTCAGT -ACGGAACTCTCTTCTGACGAAGGT -ACGGAACTCTCTTCTGACAACCGT -ACGGAACTCTCTTCTGACTTGTGC -ACGGAACTCTCTTCTGACCTAAGC -ACGGAACTCTCTTCTGACACTAGC -ACGGAACTCTCTTCTGACAGATGC -ACGGAACTCTCTTCTGACTGAAGG -ACGGAACTCTCTTCTGACCAATGG -ACGGAACTCTCTTCTGACATGAGG -ACGGAACTCTCTTCTGACAATGGG -ACGGAACTCTCTTCTGACTCCTGA -ACGGAACTCTCTTCTGACTAGCGA -ACGGAACTCTCTTCTGACCACAGA -ACGGAACTCTCTTCTGACGCAAGA -ACGGAACTCTCTTCTGACGGTTGA -ACGGAACTCTCTTCTGACTCCGAT -ACGGAACTCTCTTCTGACTGGCAT -ACGGAACTCTCTTCTGACCGAGAT -ACGGAACTCTCTTCTGACTACCAC -ACGGAACTCTCTTCTGACCAGAAC -ACGGAACTCTCTTCTGACGTCTAC -ACGGAACTCTCTTCTGACACGTAC -ACGGAACTCTCTTCTGACAGTGAC -ACGGAACTCTCTTCTGACCTGTAG -ACGGAACTCTCTTCTGACCCTAAG -ACGGAACTCTCTTCTGACGTTCAG -ACGGAACTCTCTTCTGACGCATAG -ACGGAACTCTCTTCTGACGACAAG -ACGGAACTCTCTTCTGACAAGCAG -ACGGAACTCTCTTCTGACCGTCAA -ACGGAACTCTCTTCTGACGCTGAA -ACGGAACTCTCTTCTGACAGTACG -ACGGAACTCTCTTCTGACATCCGA -ACGGAACTCTCTTCTGACATGGGA -ACGGAACTCTCTTCTGACGTGCAA -ACGGAACTCTCTTCTGACGAGGAA -ACGGAACTCTCTTCTGACCAGGTA -ACGGAACTCTCTTCTGACGACTCT -ACGGAACTCTCTTCTGACAGTCCT -ACGGAACTCTCTTCTGACTAAGCC -ACGGAACTCTCTTCTGACATAGCC -ACGGAACTCTCTTCTGACTAACCG -ACGGAACTCTCTTCTGACATGCCA -ACGGAACTCTCTCCTAGTGGAAAC -ACGGAACTCTCTCCTAGTAACACC -ACGGAACTCTCTCCTAGTATCGAG -ACGGAACTCTCTCCTAGTCTCCTT -ACGGAACTCTCTCCTAGTCCTGTT -ACGGAACTCTCTCCTAGTCGGTTT -ACGGAACTCTCTCCTAGTGTGGTT -ACGGAACTCTCTCCTAGTGCCTTT -ACGGAACTCTCTCCTAGTGGTCTT -ACGGAACTCTCTCCTAGTACGCTT -ACGGAACTCTCTCCTAGTAGCGTT -ACGGAACTCTCTCCTAGTTTCGTC -ACGGAACTCTCTCCTAGTTCTCTC -ACGGAACTCTCTCCTAGTTGGATC -ACGGAACTCTCTCCTAGTCACTTC -ACGGAACTCTCTCCTAGTGTACTC -ACGGAACTCTCTCCTAGTGATGTC -ACGGAACTCTCTCCTAGTACAGTC -ACGGAACTCTCTCCTAGTTTGCTG -ACGGAACTCTCTCCTAGTTCCATG -ACGGAACTCTCTCCTAGTTGTGTG -ACGGAACTCTCTCCTAGTCTAGTG -ACGGAACTCTCTCCTAGTCATCTG -ACGGAACTCTCTCCTAGTGAGTTG -ACGGAACTCTCTCCTAGTAGACTG -ACGGAACTCTCTCCTAGTTCGGTA -ACGGAACTCTCTCCTAGTTGCCTA -ACGGAACTCTCTCCTAGTCCACTA -ACGGAACTCTCTCCTAGTGGAGTA -ACGGAACTCTCTCCTAGTTCGTCT -ACGGAACTCTCTCCTAGTTGCACT -ACGGAACTCTCTCCTAGTCTGACT -ACGGAACTCTCTCCTAGTCAACCT -ACGGAACTCTCTCCTAGTGCTACT -ACGGAACTCTCTCCTAGTGGATCT -ACGGAACTCTCTCCTAGTAAGGCT -ACGGAACTCTCTCCTAGTTCAACC -ACGGAACTCTCTCCTAGTTGTTCC -ACGGAACTCTCTCCTAGTATTCCC -ACGGAACTCTCTCCTAGTTTCTCG -ACGGAACTCTCTCCTAGTTAGACG -ACGGAACTCTCTCCTAGTGTAACG -ACGGAACTCTCTCCTAGTACTTCG -ACGGAACTCTCTCCTAGTTACGCA -ACGGAACTCTCTCCTAGTCTTGCA -ACGGAACTCTCTCCTAGTCGAACA -ACGGAACTCTCTCCTAGTCAGTCA -ACGGAACTCTCTCCTAGTGATCCA -ACGGAACTCTCTCCTAGTACGACA -ACGGAACTCTCTCCTAGTAGCTCA -ACGGAACTCTCTCCTAGTTCACGT -ACGGAACTCTCTCCTAGTCGTAGT -ACGGAACTCTCTCCTAGTGTCAGT -ACGGAACTCTCTCCTAGTGAAGGT -ACGGAACTCTCTCCTAGTAACCGT -ACGGAACTCTCTCCTAGTTTGTGC -ACGGAACTCTCTCCTAGTCTAAGC -ACGGAACTCTCTCCTAGTACTAGC -ACGGAACTCTCTCCTAGTAGATGC -ACGGAACTCTCTCCTAGTTGAAGG -ACGGAACTCTCTCCTAGTCAATGG -ACGGAACTCTCTCCTAGTATGAGG -ACGGAACTCTCTCCTAGTAATGGG -ACGGAACTCTCTCCTAGTTCCTGA -ACGGAACTCTCTCCTAGTTAGCGA -ACGGAACTCTCTCCTAGTCACAGA -ACGGAACTCTCTCCTAGTGCAAGA -ACGGAACTCTCTCCTAGTGGTTGA -ACGGAACTCTCTCCTAGTTCCGAT -ACGGAACTCTCTCCTAGTTGGCAT -ACGGAACTCTCTCCTAGTCGAGAT -ACGGAACTCTCTCCTAGTTACCAC -ACGGAACTCTCTCCTAGTCAGAAC -ACGGAACTCTCTCCTAGTGTCTAC -ACGGAACTCTCTCCTAGTACGTAC -ACGGAACTCTCTCCTAGTAGTGAC -ACGGAACTCTCTCCTAGTCTGTAG -ACGGAACTCTCTCCTAGTCCTAAG -ACGGAACTCTCTCCTAGTGTTCAG -ACGGAACTCTCTCCTAGTGCATAG -ACGGAACTCTCTCCTAGTGACAAG -ACGGAACTCTCTCCTAGTAAGCAG -ACGGAACTCTCTCCTAGTCGTCAA -ACGGAACTCTCTCCTAGTGCTGAA -ACGGAACTCTCTCCTAGTAGTACG -ACGGAACTCTCTCCTAGTATCCGA -ACGGAACTCTCTCCTAGTATGGGA -ACGGAACTCTCTCCTAGTGTGCAA -ACGGAACTCTCTCCTAGTGAGGAA -ACGGAACTCTCTCCTAGTCAGGTA -ACGGAACTCTCTCCTAGTGACTCT -ACGGAACTCTCTCCTAGTAGTCCT -ACGGAACTCTCTCCTAGTTAAGCC -ACGGAACTCTCTCCTAGTATAGCC -ACGGAACTCTCTCCTAGTTAACCG -ACGGAACTCTCTCCTAGTATGCCA -ACGGAACTCTCTGCCTAAGGAAAC -ACGGAACTCTCTGCCTAAAACACC -ACGGAACTCTCTGCCTAAATCGAG -ACGGAACTCTCTGCCTAACTCCTT -ACGGAACTCTCTGCCTAACCTGTT -ACGGAACTCTCTGCCTAACGGTTT -ACGGAACTCTCTGCCTAAGTGGTT -ACGGAACTCTCTGCCTAAGCCTTT -ACGGAACTCTCTGCCTAAGGTCTT -ACGGAACTCTCTGCCTAAACGCTT -ACGGAACTCTCTGCCTAAAGCGTT -ACGGAACTCTCTGCCTAATTCGTC -ACGGAACTCTCTGCCTAATCTCTC -ACGGAACTCTCTGCCTAATGGATC -ACGGAACTCTCTGCCTAACACTTC -ACGGAACTCTCTGCCTAAGTACTC -ACGGAACTCTCTGCCTAAGATGTC -ACGGAACTCTCTGCCTAAACAGTC -ACGGAACTCTCTGCCTAATTGCTG -ACGGAACTCTCTGCCTAATCCATG -ACGGAACTCTCTGCCTAATGTGTG -ACGGAACTCTCTGCCTAACTAGTG -ACGGAACTCTCTGCCTAACATCTG -ACGGAACTCTCTGCCTAAGAGTTG -ACGGAACTCTCTGCCTAAAGACTG -ACGGAACTCTCTGCCTAATCGGTA -ACGGAACTCTCTGCCTAATGCCTA -ACGGAACTCTCTGCCTAACCACTA -ACGGAACTCTCTGCCTAAGGAGTA -ACGGAACTCTCTGCCTAATCGTCT -ACGGAACTCTCTGCCTAATGCACT -ACGGAACTCTCTGCCTAACTGACT -ACGGAACTCTCTGCCTAACAACCT -ACGGAACTCTCTGCCTAAGCTACT -ACGGAACTCTCTGCCTAAGGATCT -ACGGAACTCTCTGCCTAAAAGGCT -ACGGAACTCTCTGCCTAATCAACC -ACGGAACTCTCTGCCTAATGTTCC -ACGGAACTCTCTGCCTAAATTCCC -ACGGAACTCTCTGCCTAATTCTCG -ACGGAACTCTCTGCCTAATAGACG -ACGGAACTCTCTGCCTAAGTAACG -ACGGAACTCTCTGCCTAAACTTCG -ACGGAACTCTCTGCCTAATACGCA -ACGGAACTCTCTGCCTAACTTGCA -ACGGAACTCTCTGCCTAACGAACA -ACGGAACTCTCTGCCTAACAGTCA -ACGGAACTCTCTGCCTAAGATCCA -ACGGAACTCTCTGCCTAAACGACA -ACGGAACTCTCTGCCTAAAGCTCA -ACGGAACTCTCTGCCTAATCACGT -ACGGAACTCTCTGCCTAACGTAGT -ACGGAACTCTCTGCCTAAGTCAGT -ACGGAACTCTCTGCCTAAGAAGGT -ACGGAACTCTCTGCCTAAAACCGT -ACGGAACTCTCTGCCTAATTGTGC -ACGGAACTCTCTGCCTAACTAAGC -ACGGAACTCTCTGCCTAAACTAGC -ACGGAACTCTCTGCCTAAAGATGC -ACGGAACTCTCTGCCTAATGAAGG -ACGGAACTCTCTGCCTAACAATGG -ACGGAACTCTCTGCCTAAATGAGG -ACGGAACTCTCTGCCTAAAATGGG -ACGGAACTCTCTGCCTAATCCTGA -ACGGAACTCTCTGCCTAATAGCGA -ACGGAACTCTCTGCCTAACACAGA -ACGGAACTCTCTGCCTAAGCAAGA -ACGGAACTCTCTGCCTAAGGTTGA -ACGGAACTCTCTGCCTAATCCGAT -ACGGAACTCTCTGCCTAATGGCAT -ACGGAACTCTCTGCCTAACGAGAT -ACGGAACTCTCTGCCTAATACCAC -ACGGAACTCTCTGCCTAACAGAAC -ACGGAACTCTCTGCCTAAGTCTAC -ACGGAACTCTCTGCCTAAACGTAC -ACGGAACTCTCTGCCTAAAGTGAC -ACGGAACTCTCTGCCTAACTGTAG -ACGGAACTCTCTGCCTAACCTAAG -ACGGAACTCTCTGCCTAAGTTCAG -ACGGAACTCTCTGCCTAAGCATAG -ACGGAACTCTCTGCCTAAGACAAG -ACGGAACTCTCTGCCTAAAAGCAG -ACGGAACTCTCTGCCTAACGTCAA -ACGGAACTCTCTGCCTAAGCTGAA -ACGGAACTCTCTGCCTAAAGTACG -ACGGAACTCTCTGCCTAAATCCGA -ACGGAACTCTCTGCCTAAATGGGA -ACGGAACTCTCTGCCTAAGTGCAA -ACGGAACTCTCTGCCTAAGAGGAA -ACGGAACTCTCTGCCTAACAGGTA -ACGGAACTCTCTGCCTAAGACTCT -ACGGAACTCTCTGCCTAAAGTCCT -ACGGAACTCTCTGCCTAATAAGCC -ACGGAACTCTCTGCCTAAATAGCC -ACGGAACTCTCTGCCTAATAACCG -ACGGAACTCTCTGCCTAAATGCCA -ACGGAACTCTCTGCCATAGGAAAC -ACGGAACTCTCTGCCATAAACACC -ACGGAACTCTCTGCCATAATCGAG -ACGGAACTCTCTGCCATACTCCTT -ACGGAACTCTCTGCCATACCTGTT -ACGGAACTCTCTGCCATACGGTTT -ACGGAACTCTCTGCCATAGTGGTT -ACGGAACTCTCTGCCATAGCCTTT -ACGGAACTCTCTGCCATAGGTCTT -ACGGAACTCTCTGCCATAACGCTT -ACGGAACTCTCTGCCATAAGCGTT -ACGGAACTCTCTGCCATATTCGTC -ACGGAACTCTCTGCCATATCTCTC -ACGGAACTCTCTGCCATATGGATC -ACGGAACTCTCTGCCATACACTTC -ACGGAACTCTCTGCCATAGTACTC -ACGGAACTCTCTGCCATAGATGTC -ACGGAACTCTCTGCCATAACAGTC -ACGGAACTCTCTGCCATATTGCTG -ACGGAACTCTCTGCCATATCCATG -ACGGAACTCTCTGCCATATGTGTG -ACGGAACTCTCTGCCATACTAGTG -ACGGAACTCTCTGCCATACATCTG -ACGGAACTCTCTGCCATAGAGTTG -ACGGAACTCTCTGCCATAAGACTG -ACGGAACTCTCTGCCATATCGGTA -ACGGAACTCTCTGCCATATGCCTA -ACGGAACTCTCTGCCATACCACTA -ACGGAACTCTCTGCCATAGGAGTA -ACGGAACTCTCTGCCATATCGTCT -ACGGAACTCTCTGCCATATGCACT -ACGGAACTCTCTGCCATACTGACT -ACGGAACTCTCTGCCATACAACCT -ACGGAACTCTCTGCCATAGCTACT -ACGGAACTCTCTGCCATAGGATCT -ACGGAACTCTCTGCCATAAAGGCT -ACGGAACTCTCTGCCATATCAACC -ACGGAACTCTCTGCCATATGTTCC -ACGGAACTCTCTGCCATAATTCCC -ACGGAACTCTCTGCCATATTCTCG -ACGGAACTCTCTGCCATATAGACG -ACGGAACTCTCTGCCATAGTAACG -ACGGAACTCTCTGCCATAACTTCG -ACGGAACTCTCTGCCATATACGCA -ACGGAACTCTCTGCCATACTTGCA -ACGGAACTCTCTGCCATACGAACA -ACGGAACTCTCTGCCATACAGTCA -ACGGAACTCTCTGCCATAGATCCA -ACGGAACTCTCTGCCATAACGACA -ACGGAACTCTCTGCCATAAGCTCA -ACGGAACTCTCTGCCATATCACGT -ACGGAACTCTCTGCCATACGTAGT -ACGGAACTCTCTGCCATAGTCAGT -ACGGAACTCTCTGCCATAGAAGGT -ACGGAACTCTCTGCCATAAACCGT -ACGGAACTCTCTGCCATATTGTGC -ACGGAACTCTCTGCCATACTAAGC -ACGGAACTCTCTGCCATAACTAGC -ACGGAACTCTCTGCCATAAGATGC -ACGGAACTCTCTGCCATATGAAGG -ACGGAACTCTCTGCCATACAATGG -ACGGAACTCTCTGCCATAATGAGG -ACGGAACTCTCTGCCATAAATGGG -ACGGAACTCTCTGCCATATCCTGA -ACGGAACTCTCTGCCATATAGCGA -ACGGAACTCTCTGCCATACACAGA -ACGGAACTCTCTGCCATAGCAAGA -ACGGAACTCTCTGCCATAGGTTGA -ACGGAACTCTCTGCCATATCCGAT -ACGGAACTCTCTGCCATATGGCAT -ACGGAACTCTCTGCCATACGAGAT -ACGGAACTCTCTGCCATATACCAC -ACGGAACTCTCTGCCATACAGAAC -ACGGAACTCTCTGCCATAGTCTAC -ACGGAACTCTCTGCCATAACGTAC -ACGGAACTCTCTGCCATAAGTGAC -ACGGAACTCTCTGCCATACTGTAG -ACGGAACTCTCTGCCATACCTAAG -ACGGAACTCTCTGCCATAGTTCAG -ACGGAACTCTCTGCCATAGCATAG -ACGGAACTCTCTGCCATAGACAAG -ACGGAACTCTCTGCCATAAAGCAG -ACGGAACTCTCTGCCATACGTCAA -ACGGAACTCTCTGCCATAGCTGAA -ACGGAACTCTCTGCCATAAGTACG -ACGGAACTCTCTGCCATAATCCGA -ACGGAACTCTCTGCCATAATGGGA -ACGGAACTCTCTGCCATAGTGCAA -ACGGAACTCTCTGCCATAGAGGAA -ACGGAACTCTCTGCCATACAGGTA -ACGGAACTCTCTGCCATAGACTCT -ACGGAACTCTCTGCCATAAGTCCT -ACGGAACTCTCTGCCATATAAGCC -ACGGAACTCTCTGCCATAATAGCC -ACGGAACTCTCTGCCATATAACCG -ACGGAACTCTCTGCCATAATGCCA -ACGGAACTCTCTCCGTAAGGAAAC -ACGGAACTCTCTCCGTAAAACACC -ACGGAACTCTCTCCGTAAATCGAG -ACGGAACTCTCTCCGTAACTCCTT -ACGGAACTCTCTCCGTAACCTGTT -ACGGAACTCTCTCCGTAACGGTTT -ACGGAACTCTCTCCGTAAGTGGTT -ACGGAACTCTCTCCGTAAGCCTTT -ACGGAACTCTCTCCGTAAGGTCTT -ACGGAACTCTCTCCGTAAACGCTT -ACGGAACTCTCTCCGTAAAGCGTT -ACGGAACTCTCTCCGTAATTCGTC -ACGGAACTCTCTCCGTAATCTCTC -ACGGAACTCTCTCCGTAATGGATC -ACGGAACTCTCTCCGTAACACTTC -ACGGAACTCTCTCCGTAAGTACTC -ACGGAACTCTCTCCGTAAGATGTC -ACGGAACTCTCTCCGTAAACAGTC -ACGGAACTCTCTCCGTAATTGCTG -ACGGAACTCTCTCCGTAATCCATG -ACGGAACTCTCTCCGTAATGTGTG -ACGGAACTCTCTCCGTAACTAGTG -ACGGAACTCTCTCCGTAACATCTG -ACGGAACTCTCTCCGTAAGAGTTG -ACGGAACTCTCTCCGTAAAGACTG -ACGGAACTCTCTCCGTAATCGGTA -ACGGAACTCTCTCCGTAATGCCTA -ACGGAACTCTCTCCGTAACCACTA -ACGGAACTCTCTCCGTAAGGAGTA -ACGGAACTCTCTCCGTAATCGTCT -ACGGAACTCTCTCCGTAATGCACT -ACGGAACTCTCTCCGTAACTGACT -ACGGAACTCTCTCCGTAACAACCT -ACGGAACTCTCTCCGTAAGCTACT -ACGGAACTCTCTCCGTAAGGATCT -ACGGAACTCTCTCCGTAAAAGGCT -ACGGAACTCTCTCCGTAATCAACC -ACGGAACTCTCTCCGTAATGTTCC -ACGGAACTCTCTCCGTAAATTCCC -ACGGAACTCTCTCCGTAATTCTCG -ACGGAACTCTCTCCGTAATAGACG -ACGGAACTCTCTCCGTAAGTAACG -ACGGAACTCTCTCCGTAAACTTCG -ACGGAACTCTCTCCGTAATACGCA -ACGGAACTCTCTCCGTAACTTGCA -ACGGAACTCTCTCCGTAACGAACA -ACGGAACTCTCTCCGTAACAGTCA -ACGGAACTCTCTCCGTAAGATCCA -ACGGAACTCTCTCCGTAAACGACA -ACGGAACTCTCTCCGTAAAGCTCA -ACGGAACTCTCTCCGTAATCACGT -ACGGAACTCTCTCCGTAACGTAGT -ACGGAACTCTCTCCGTAAGTCAGT -ACGGAACTCTCTCCGTAAGAAGGT -ACGGAACTCTCTCCGTAAAACCGT -ACGGAACTCTCTCCGTAATTGTGC -ACGGAACTCTCTCCGTAACTAAGC -ACGGAACTCTCTCCGTAAACTAGC -ACGGAACTCTCTCCGTAAAGATGC -ACGGAACTCTCTCCGTAATGAAGG -ACGGAACTCTCTCCGTAACAATGG -ACGGAACTCTCTCCGTAAATGAGG -ACGGAACTCTCTCCGTAAAATGGG -ACGGAACTCTCTCCGTAATCCTGA -ACGGAACTCTCTCCGTAATAGCGA -ACGGAACTCTCTCCGTAACACAGA -ACGGAACTCTCTCCGTAAGCAAGA -ACGGAACTCTCTCCGTAAGGTTGA -ACGGAACTCTCTCCGTAATCCGAT -ACGGAACTCTCTCCGTAATGGCAT -ACGGAACTCTCTCCGTAACGAGAT -ACGGAACTCTCTCCGTAATACCAC -ACGGAACTCTCTCCGTAACAGAAC -ACGGAACTCTCTCCGTAAGTCTAC -ACGGAACTCTCTCCGTAAACGTAC -ACGGAACTCTCTCCGTAAAGTGAC -ACGGAACTCTCTCCGTAACTGTAG -ACGGAACTCTCTCCGTAACCTAAG -ACGGAACTCTCTCCGTAAGTTCAG -ACGGAACTCTCTCCGTAAGCATAG -ACGGAACTCTCTCCGTAAGACAAG -ACGGAACTCTCTCCGTAAAAGCAG -ACGGAACTCTCTCCGTAACGTCAA -ACGGAACTCTCTCCGTAAGCTGAA -ACGGAACTCTCTCCGTAAAGTACG -ACGGAACTCTCTCCGTAAATCCGA -ACGGAACTCTCTCCGTAAATGGGA -ACGGAACTCTCTCCGTAAGTGCAA -ACGGAACTCTCTCCGTAAGAGGAA -ACGGAACTCTCTCCGTAACAGGTA -ACGGAACTCTCTCCGTAAGACTCT -ACGGAACTCTCTCCGTAAAGTCCT -ACGGAACTCTCTCCGTAATAAGCC -ACGGAACTCTCTCCGTAAATAGCC -ACGGAACTCTCTCCGTAATAACCG -ACGGAACTCTCTCCGTAAATGCCA -ACGGAACTCTCTCCAATGGGAAAC -ACGGAACTCTCTCCAATGAACACC -ACGGAACTCTCTCCAATGATCGAG -ACGGAACTCTCTCCAATGCTCCTT -ACGGAACTCTCTCCAATGCCTGTT -ACGGAACTCTCTCCAATGCGGTTT -ACGGAACTCTCTCCAATGGTGGTT -ACGGAACTCTCTCCAATGGCCTTT -ACGGAACTCTCTCCAATGGGTCTT -ACGGAACTCTCTCCAATGACGCTT -ACGGAACTCTCTCCAATGAGCGTT -ACGGAACTCTCTCCAATGTTCGTC -ACGGAACTCTCTCCAATGTCTCTC -ACGGAACTCTCTCCAATGTGGATC -ACGGAACTCTCTCCAATGCACTTC -ACGGAACTCTCTCCAATGGTACTC -ACGGAACTCTCTCCAATGGATGTC -ACGGAACTCTCTCCAATGACAGTC -ACGGAACTCTCTCCAATGTTGCTG -ACGGAACTCTCTCCAATGTCCATG -ACGGAACTCTCTCCAATGTGTGTG -ACGGAACTCTCTCCAATGCTAGTG -ACGGAACTCTCTCCAATGCATCTG -ACGGAACTCTCTCCAATGGAGTTG -ACGGAACTCTCTCCAATGAGACTG -ACGGAACTCTCTCCAATGTCGGTA -ACGGAACTCTCTCCAATGTGCCTA -ACGGAACTCTCTCCAATGCCACTA -ACGGAACTCTCTCCAATGGGAGTA -ACGGAACTCTCTCCAATGTCGTCT -ACGGAACTCTCTCCAATGTGCACT -ACGGAACTCTCTCCAATGCTGACT -ACGGAACTCTCTCCAATGCAACCT -ACGGAACTCTCTCCAATGGCTACT -ACGGAACTCTCTCCAATGGGATCT -ACGGAACTCTCTCCAATGAAGGCT -ACGGAACTCTCTCCAATGTCAACC -ACGGAACTCTCTCCAATGTGTTCC -ACGGAACTCTCTCCAATGATTCCC -ACGGAACTCTCTCCAATGTTCTCG -ACGGAACTCTCTCCAATGTAGACG -ACGGAACTCTCTCCAATGGTAACG -ACGGAACTCTCTCCAATGACTTCG -ACGGAACTCTCTCCAATGTACGCA -ACGGAACTCTCTCCAATGCTTGCA -ACGGAACTCTCTCCAATGCGAACA -ACGGAACTCTCTCCAATGCAGTCA -ACGGAACTCTCTCCAATGGATCCA -ACGGAACTCTCTCCAATGACGACA -ACGGAACTCTCTCCAATGAGCTCA -ACGGAACTCTCTCCAATGTCACGT -ACGGAACTCTCTCCAATGCGTAGT -ACGGAACTCTCTCCAATGGTCAGT -ACGGAACTCTCTCCAATGGAAGGT -ACGGAACTCTCTCCAATGAACCGT -ACGGAACTCTCTCCAATGTTGTGC -ACGGAACTCTCTCCAATGCTAAGC -ACGGAACTCTCTCCAATGACTAGC -ACGGAACTCTCTCCAATGAGATGC -ACGGAACTCTCTCCAATGTGAAGG -ACGGAACTCTCTCCAATGCAATGG -ACGGAACTCTCTCCAATGATGAGG -ACGGAACTCTCTCCAATGAATGGG -ACGGAACTCTCTCCAATGTCCTGA -ACGGAACTCTCTCCAATGTAGCGA -ACGGAACTCTCTCCAATGCACAGA -ACGGAACTCTCTCCAATGGCAAGA -ACGGAACTCTCTCCAATGGGTTGA -ACGGAACTCTCTCCAATGTCCGAT -ACGGAACTCTCTCCAATGTGGCAT -ACGGAACTCTCTCCAATGCGAGAT -ACGGAACTCTCTCCAATGTACCAC -ACGGAACTCTCTCCAATGCAGAAC -ACGGAACTCTCTCCAATGGTCTAC -ACGGAACTCTCTCCAATGACGTAC -ACGGAACTCTCTCCAATGAGTGAC -ACGGAACTCTCTCCAATGCTGTAG -ACGGAACTCTCTCCAATGCCTAAG -ACGGAACTCTCTCCAATGGTTCAG -ACGGAACTCTCTCCAATGGCATAG -ACGGAACTCTCTCCAATGGACAAG -ACGGAACTCTCTCCAATGAAGCAG -ACGGAACTCTCTCCAATGCGTCAA -ACGGAACTCTCTCCAATGGCTGAA -ACGGAACTCTCTCCAATGAGTACG -ACGGAACTCTCTCCAATGATCCGA -ACGGAACTCTCTCCAATGATGGGA -ACGGAACTCTCTCCAATGGTGCAA -ACGGAACTCTCTCCAATGGAGGAA -ACGGAACTCTCTCCAATGCAGGTA -ACGGAACTCTCTCCAATGGACTCT -ACGGAACTCTCTCCAATGAGTCCT -ACGGAACTCTCTCCAATGTAAGCC -ACGGAACTCTCTCCAATGATAGCC -ACGGAACTCTCTCCAATGTAACCG -ACGGAACTCTCTCCAATGATGCCA -ACGGAAGGATCTAACGGAGGAAAC -ACGGAAGGATCTAACGGAAACACC -ACGGAAGGATCTAACGGAATCGAG -ACGGAAGGATCTAACGGACTCCTT -ACGGAAGGATCTAACGGACCTGTT -ACGGAAGGATCTAACGGACGGTTT -ACGGAAGGATCTAACGGAGTGGTT -ACGGAAGGATCTAACGGAGCCTTT -ACGGAAGGATCTAACGGAGGTCTT -ACGGAAGGATCTAACGGAACGCTT -ACGGAAGGATCTAACGGAAGCGTT -ACGGAAGGATCTAACGGATTCGTC -ACGGAAGGATCTAACGGATCTCTC -ACGGAAGGATCTAACGGATGGATC -ACGGAAGGATCTAACGGACACTTC -ACGGAAGGATCTAACGGAGTACTC -ACGGAAGGATCTAACGGAGATGTC -ACGGAAGGATCTAACGGAACAGTC -ACGGAAGGATCTAACGGATTGCTG -ACGGAAGGATCTAACGGATCCATG -ACGGAAGGATCTAACGGATGTGTG -ACGGAAGGATCTAACGGACTAGTG -ACGGAAGGATCTAACGGACATCTG -ACGGAAGGATCTAACGGAGAGTTG -ACGGAAGGATCTAACGGAAGACTG -ACGGAAGGATCTAACGGATCGGTA -ACGGAAGGATCTAACGGATGCCTA -ACGGAAGGATCTAACGGACCACTA -ACGGAAGGATCTAACGGAGGAGTA -ACGGAAGGATCTAACGGATCGTCT -ACGGAAGGATCTAACGGATGCACT -ACGGAAGGATCTAACGGACTGACT -ACGGAAGGATCTAACGGACAACCT -ACGGAAGGATCTAACGGAGCTACT -ACGGAAGGATCTAACGGAGGATCT -ACGGAAGGATCTAACGGAAAGGCT -ACGGAAGGATCTAACGGATCAACC -ACGGAAGGATCTAACGGATGTTCC -ACGGAAGGATCTAACGGAATTCCC -ACGGAAGGATCTAACGGATTCTCG -ACGGAAGGATCTAACGGATAGACG -ACGGAAGGATCTAACGGAGTAACG -ACGGAAGGATCTAACGGAACTTCG -ACGGAAGGATCTAACGGATACGCA -ACGGAAGGATCTAACGGACTTGCA -ACGGAAGGATCTAACGGACGAACA -ACGGAAGGATCTAACGGACAGTCA -ACGGAAGGATCTAACGGAGATCCA -ACGGAAGGATCTAACGGAACGACA -ACGGAAGGATCTAACGGAAGCTCA -ACGGAAGGATCTAACGGATCACGT -ACGGAAGGATCTAACGGACGTAGT -ACGGAAGGATCTAACGGAGTCAGT -ACGGAAGGATCTAACGGAGAAGGT -ACGGAAGGATCTAACGGAAACCGT -ACGGAAGGATCTAACGGATTGTGC -ACGGAAGGATCTAACGGACTAAGC -ACGGAAGGATCTAACGGAACTAGC -ACGGAAGGATCTAACGGAAGATGC -ACGGAAGGATCTAACGGATGAAGG -ACGGAAGGATCTAACGGACAATGG -ACGGAAGGATCTAACGGAATGAGG -ACGGAAGGATCTAACGGAAATGGG -ACGGAAGGATCTAACGGATCCTGA -ACGGAAGGATCTAACGGATAGCGA -ACGGAAGGATCTAACGGACACAGA -ACGGAAGGATCTAACGGAGCAAGA -ACGGAAGGATCTAACGGAGGTTGA -ACGGAAGGATCTAACGGATCCGAT -ACGGAAGGATCTAACGGATGGCAT -ACGGAAGGATCTAACGGACGAGAT -ACGGAAGGATCTAACGGATACCAC -ACGGAAGGATCTAACGGACAGAAC -ACGGAAGGATCTAACGGAGTCTAC -ACGGAAGGATCTAACGGAACGTAC -ACGGAAGGATCTAACGGAAGTGAC -ACGGAAGGATCTAACGGACTGTAG -ACGGAAGGATCTAACGGACCTAAG -ACGGAAGGATCTAACGGAGTTCAG -ACGGAAGGATCTAACGGAGCATAG -ACGGAAGGATCTAACGGAGACAAG -ACGGAAGGATCTAACGGAAAGCAG -ACGGAAGGATCTAACGGACGTCAA -ACGGAAGGATCTAACGGAGCTGAA -ACGGAAGGATCTAACGGAAGTACG -ACGGAAGGATCTAACGGAATCCGA -ACGGAAGGATCTAACGGAATGGGA -ACGGAAGGATCTAACGGAGTGCAA -ACGGAAGGATCTAACGGAGAGGAA -ACGGAAGGATCTAACGGACAGGTA -ACGGAAGGATCTAACGGAGACTCT -ACGGAAGGATCTAACGGAAGTCCT -ACGGAAGGATCTAACGGATAAGCC -ACGGAAGGATCTAACGGAATAGCC -ACGGAAGGATCTAACGGATAACCG -ACGGAAGGATCTAACGGAATGCCA -ACGGAAGGATCTACCAACGGAAAC -ACGGAAGGATCTACCAACAACACC -ACGGAAGGATCTACCAACATCGAG -ACGGAAGGATCTACCAACCTCCTT -ACGGAAGGATCTACCAACCCTGTT -ACGGAAGGATCTACCAACCGGTTT -ACGGAAGGATCTACCAACGTGGTT -ACGGAAGGATCTACCAACGCCTTT -ACGGAAGGATCTACCAACGGTCTT -ACGGAAGGATCTACCAACACGCTT -ACGGAAGGATCTACCAACAGCGTT -ACGGAAGGATCTACCAACTTCGTC -ACGGAAGGATCTACCAACTCTCTC -ACGGAAGGATCTACCAACTGGATC -ACGGAAGGATCTACCAACCACTTC -ACGGAAGGATCTACCAACGTACTC -ACGGAAGGATCTACCAACGATGTC -ACGGAAGGATCTACCAACACAGTC -ACGGAAGGATCTACCAACTTGCTG -ACGGAAGGATCTACCAACTCCATG -ACGGAAGGATCTACCAACTGTGTG -ACGGAAGGATCTACCAACCTAGTG -ACGGAAGGATCTACCAACCATCTG -ACGGAAGGATCTACCAACGAGTTG -ACGGAAGGATCTACCAACAGACTG -ACGGAAGGATCTACCAACTCGGTA -ACGGAAGGATCTACCAACTGCCTA -ACGGAAGGATCTACCAACCCACTA -ACGGAAGGATCTACCAACGGAGTA -ACGGAAGGATCTACCAACTCGTCT -ACGGAAGGATCTACCAACTGCACT -ACGGAAGGATCTACCAACCTGACT -ACGGAAGGATCTACCAACCAACCT -ACGGAAGGATCTACCAACGCTACT -ACGGAAGGATCTACCAACGGATCT -ACGGAAGGATCTACCAACAAGGCT -ACGGAAGGATCTACCAACTCAACC -ACGGAAGGATCTACCAACTGTTCC -ACGGAAGGATCTACCAACATTCCC -ACGGAAGGATCTACCAACTTCTCG -ACGGAAGGATCTACCAACTAGACG -ACGGAAGGATCTACCAACGTAACG -ACGGAAGGATCTACCAACACTTCG -ACGGAAGGATCTACCAACTACGCA -ACGGAAGGATCTACCAACCTTGCA -ACGGAAGGATCTACCAACCGAACA -ACGGAAGGATCTACCAACCAGTCA -ACGGAAGGATCTACCAACGATCCA -ACGGAAGGATCTACCAACACGACA -ACGGAAGGATCTACCAACAGCTCA -ACGGAAGGATCTACCAACTCACGT -ACGGAAGGATCTACCAACCGTAGT -ACGGAAGGATCTACCAACGTCAGT -ACGGAAGGATCTACCAACGAAGGT -ACGGAAGGATCTACCAACAACCGT -ACGGAAGGATCTACCAACTTGTGC -ACGGAAGGATCTACCAACCTAAGC -ACGGAAGGATCTACCAACACTAGC -ACGGAAGGATCTACCAACAGATGC -ACGGAAGGATCTACCAACTGAAGG -ACGGAAGGATCTACCAACCAATGG -ACGGAAGGATCTACCAACATGAGG -ACGGAAGGATCTACCAACAATGGG -ACGGAAGGATCTACCAACTCCTGA -ACGGAAGGATCTACCAACTAGCGA -ACGGAAGGATCTACCAACCACAGA -ACGGAAGGATCTACCAACGCAAGA -ACGGAAGGATCTACCAACGGTTGA -ACGGAAGGATCTACCAACTCCGAT -ACGGAAGGATCTACCAACTGGCAT -ACGGAAGGATCTACCAACCGAGAT -ACGGAAGGATCTACCAACTACCAC -ACGGAAGGATCTACCAACCAGAAC -ACGGAAGGATCTACCAACGTCTAC -ACGGAAGGATCTACCAACACGTAC -ACGGAAGGATCTACCAACAGTGAC -ACGGAAGGATCTACCAACCTGTAG -ACGGAAGGATCTACCAACCCTAAG -ACGGAAGGATCTACCAACGTTCAG -ACGGAAGGATCTACCAACGCATAG -ACGGAAGGATCTACCAACGACAAG -ACGGAAGGATCTACCAACAAGCAG -ACGGAAGGATCTACCAACCGTCAA -ACGGAAGGATCTACCAACGCTGAA -ACGGAAGGATCTACCAACAGTACG -ACGGAAGGATCTACCAACATCCGA -ACGGAAGGATCTACCAACATGGGA -ACGGAAGGATCTACCAACGTGCAA -ACGGAAGGATCTACCAACGAGGAA -ACGGAAGGATCTACCAACCAGGTA -ACGGAAGGATCTACCAACGACTCT -ACGGAAGGATCTACCAACAGTCCT -ACGGAAGGATCTACCAACTAAGCC -ACGGAAGGATCTACCAACATAGCC -ACGGAAGGATCTACCAACTAACCG -ACGGAAGGATCTACCAACATGCCA -ACGGAAGGATCTGAGATCGGAAAC -ACGGAAGGATCTGAGATCAACACC -ACGGAAGGATCTGAGATCATCGAG -ACGGAAGGATCTGAGATCCTCCTT -ACGGAAGGATCTGAGATCCCTGTT -ACGGAAGGATCTGAGATCCGGTTT -ACGGAAGGATCTGAGATCGTGGTT -ACGGAAGGATCTGAGATCGCCTTT -ACGGAAGGATCTGAGATCGGTCTT -ACGGAAGGATCTGAGATCACGCTT -ACGGAAGGATCTGAGATCAGCGTT -ACGGAAGGATCTGAGATCTTCGTC -ACGGAAGGATCTGAGATCTCTCTC -ACGGAAGGATCTGAGATCTGGATC -ACGGAAGGATCTGAGATCCACTTC -ACGGAAGGATCTGAGATCGTACTC -ACGGAAGGATCTGAGATCGATGTC -ACGGAAGGATCTGAGATCACAGTC -ACGGAAGGATCTGAGATCTTGCTG -ACGGAAGGATCTGAGATCTCCATG -ACGGAAGGATCTGAGATCTGTGTG -ACGGAAGGATCTGAGATCCTAGTG -ACGGAAGGATCTGAGATCCATCTG -ACGGAAGGATCTGAGATCGAGTTG -ACGGAAGGATCTGAGATCAGACTG -ACGGAAGGATCTGAGATCTCGGTA -ACGGAAGGATCTGAGATCTGCCTA -ACGGAAGGATCTGAGATCCCACTA -ACGGAAGGATCTGAGATCGGAGTA -ACGGAAGGATCTGAGATCTCGTCT -ACGGAAGGATCTGAGATCTGCACT -ACGGAAGGATCTGAGATCCTGACT -ACGGAAGGATCTGAGATCCAACCT -ACGGAAGGATCTGAGATCGCTACT -ACGGAAGGATCTGAGATCGGATCT -ACGGAAGGATCTGAGATCAAGGCT -ACGGAAGGATCTGAGATCTCAACC -ACGGAAGGATCTGAGATCTGTTCC -ACGGAAGGATCTGAGATCATTCCC -ACGGAAGGATCTGAGATCTTCTCG -ACGGAAGGATCTGAGATCTAGACG -ACGGAAGGATCTGAGATCGTAACG -ACGGAAGGATCTGAGATCACTTCG -ACGGAAGGATCTGAGATCTACGCA -ACGGAAGGATCTGAGATCCTTGCA -ACGGAAGGATCTGAGATCCGAACA -ACGGAAGGATCTGAGATCCAGTCA -ACGGAAGGATCTGAGATCGATCCA -ACGGAAGGATCTGAGATCACGACA -ACGGAAGGATCTGAGATCAGCTCA -ACGGAAGGATCTGAGATCTCACGT -ACGGAAGGATCTGAGATCCGTAGT -ACGGAAGGATCTGAGATCGTCAGT -ACGGAAGGATCTGAGATCGAAGGT -ACGGAAGGATCTGAGATCAACCGT -ACGGAAGGATCTGAGATCTTGTGC -ACGGAAGGATCTGAGATCCTAAGC -ACGGAAGGATCTGAGATCACTAGC -ACGGAAGGATCTGAGATCAGATGC -ACGGAAGGATCTGAGATCTGAAGG -ACGGAAGGATCTGAGATCCAATGG -ACGGAAGGATCTGAGATCATGAGG -ACGGAAGGATCTGAGATCAATGGG -ACGGAAGGATCTGAGATCTCCTGA -ACGGAAGGATCTGAGATCTAGCGA -ACGGAAGGATCTGAGATCCACAGA -ACGGAAGGATCTGAGATCGCAAGA -ACGGAAGGATCTGAGATCGGTTGA -ACGGAAGGATCTGAGATCTCCGAT -ACGGAAGGATCTGAGATCTGGCAT -ACGGAAGGATCTGAGATCCGAGAT -ACGGAAGGATCTGAGATCTACCAC -ACGGAAGGATCTGAGATCCAGAAC -ACGGAAGGATCTGAGATCGTCTAC -ACGGAAGGATCTGAGATCACGTAC -ACGGAAGGATCTGAGATCAGTGAC -ACGGAAGGATCTGAGATCCTGTAG -ACGGAAGGATCTGAGATCCCTAAG -ACGGAAGGATCTGAGATCGTTCAG -ACGGAAGGATCTGAGATCGCATAG -ACGGAAGGATCTGAGATCGACAAG -ACGGAAGGATCTGAGATCAAGCAG -ACGGAAGGATCTGAGATCCGTCAA -ACGGAAGGATCTGAGATCGCTGAA -ACGGAAGGATCTGAGATCAGTACG -ACGGAAGGATCTGAGATCATCCGA -ACGGAAGGATCTGAGATCATGGGA -ACGGAAGGATCTGAGATCGTGCAA -ACGGAAGGATCTGAGATCGAGGAA -ACGGAAGGATCTGAGATCCAGGTA -ACGGAAGGATCTGAGATCGACTCT -ACGGAAGGATCTGAGATCAGTCCT -ACGGAAGGATCTGAGATCTAAGCC -ACGGAAGGATCTGAGATCATAGCC -ACGGAAGGATCTGAGATCTAACCG -ACGGAAGGATCTGAGATCATGCCA -ACGGAAGGATCTCTTCTCGGAAAC -ACGGAAGGATCTCTTCTCAACACC -ACGGAAGGATCTCTTCTCATCGAG -ACGGAAGGATCTCTTCTCCTCCTT -ACGGAAGGATCTCTTCTCCCTGTT -ACGGAAGGATCTCTTCTCCGGTTT -ACGGAAGGATCTCTTCTCGTGGTT -ACGGAAGGATCTCTTCTCGCCTTT -ACGGAAGGATCTCTTCTCGGTCTT -ACGGAAGGATCTCTTCTCACGCTT -ACGGAAGGATCTCTTCTCAGCGTT -ACGGAAGGATCTCTTCTCTTCGTC -ACGGAAGGATCTCTTCTCTCTCTC -ACGGAAGGATCTCTTCTCTGGATC -ACGGAAGGATCTCTTCTCCACTTC -ACGGAAGGATCTCTTCTCGTACTC -ACGGAAGGATCTCTTCTCGATGTC -ACGGAAGGATCTCTTCTCACAGTC -ACGGAAGGATCTCTTCTCTTGCTG -ACGGAAGGATCTCTTCTCTCCATG -ACGGAAGGATCTCTTCTCTGTGTG -ACGGAAGGATCTCTTCTCCTAGTG -ACGGAAGGATCTCTTCTCCATCTG -ACGGAAGGATCTCTTCTCGAGTTG -ACGGAAGGATCTCTTCTCAGACTG -ACGGAAGGATCTCTTCTCTCGGTA -ACGGAAGGATCTCTTCTCTGCCTA -ACGGAAGGATCTCTTCTCCCACTA -ACGGAAGGATCTCTTCTCGGAGTA -ACGGAAGGATCTCTTCTCTCGTCT -ACGGAAGGATCTCTTCTCTGCACT -ACGGAAGGATCTCTTCTCCTGACT -ACGGAAGGATCTCTTCTCCAACCT -ACGGAAGGATCTCTTCTCGCTACT -ACGGAAGGATCTCTTCTCGGATCT -ACGGAAGGATCTCTTCTCAAGGCT -ACGGAAGGATCTCTTCTCTCAACC -ACGGAAGGATCTCTTCTCTGTTCC -ACGGAAGGATCTCTTCTCATTCCC -ACGGAAGGATCTCTTCTCTTCTCG -ACGGAAGGATCTCTTCTCTAGACG -ACGGAAGGATCTCTTCTCGTAACG -ACGGAAGGATCTCTTCTCACTTCG -ACGGAAGGATCTCTTCTCTACGCA -ACGGAAGGATCTCTTCTCCTTGCA -ACGGAAGGATCTCTTCTCCGAACA -ACGGAAGGATCTCTTCTCCAGTCA -ACGGAAGGATCTCTTCTCGATCCA -ACGGAAGGATCTCTTCTCACGACA -ACGGAAGGATCTCTTCTCAGCTCA -ACGGAAGGATCTCTTCTCTCACGT -ACGGAAGGATCTCTTCTCCGTAGT -ACGGAAGGATCTCTTCTCGTCAGT -ACGGAAGGATCTCTTCTCGAAGGT -ACGGAAGGATCTCTTCTCAACCGT -ACGGAAGGATCTCTTCTCTTGTGC -ACGGAAGGATCTCTTCTCCTAAGC -ACGGAAGGATCTCTTCTCACTAGC -ACGGAAGGATCTCTTCTCAGATGC -ACGGAAGGATCTCTTCTCTGAAGG -ACGGAAGGATCTCTTCTCCAATGG -ACGGAAGGATCTCTTCTCATGAGG -ACGGAAGGATCTCTTCTCAATGGG -ACGGAAGGATCTCTTCTCTCCTGA -ACGGAAGGATCTCTTCTCTAGCGA -ACGGAAGGATCTCTTCTCCACAGA -ACGGAAGGATCTCTTCTCGCAAGA -ACGGAAGGATCTCTTCTCGGTTGA -ACGGAAGGATCTCTTCTCTCCGAT -ACGGAAGGATCTCTTCTCTGGCAT -ACGGAAGGATCTCTTCTCCGAGAT -ACGGAAGGATCTCTTCTCTACCAC -ACGGAAGGATCTCTTCTCCAGAAC -ACGGAAGGATCTCTTCTCGTCTAC -ACGGAAGGATCTCTTCTCACGTAC -ACGGAAGGATCTCTTCTCAGTGAC -ACGGAAGGATCTCTTCTCCTGTAG -ACGGAAGGATCTCTTCTCCCTAAG -ACGGAAGGATCTCTTCTCGTTCAG -ACGGAAGGATCTCTTCTCGCATAG -ACGGAAGGATCTCTTCTCGACAAG -ACGGAAGGATCTCTTCTCAAGCAG -ACGGAAGGATCTCTTCTCCGTCAA -ACGGAAGGATCTCTTCTCGCTGAA -ACGGAAGGATCTCTTCTCAGTACG -ACGGAAGGATCTCTTCTCATCCGA -ACGGAAGGATCTCTTCTCATGGGA -ACGGAAGGATCTCTTCTCGTGCAA -ACGGAAGGATCTCTTCTCGAGGAA -ACGGAAGGATCTCTTCTCCAGGTA -ACGGAAGGATCTCTTCTCGACTCT -ACGGAAGGATCTCTTCTCAGTCCT -ACGGAAGGATCTCTTCTCTAAGCC -ACGGAAGGATCTCTTCTCATAGCC -ACGGAAGGATCTCTTCTCTAACCG -ACGGAAGGATCTCTTCTCATGCCA -ACGGAAGGATCTGTTCCTGGAAAC -ACGGAAGGATCTGTTCCTAACACC -ACGGAAGGATCTGTTCCTATCGAG -ACGGAAGGATCTGTTCCTCTCCTT -ACGGAAGGATCTGTTCCTCCTGTT -ACGGAAGGATCTGTTCCTCGGTTT -ACGGAAGGATCTGTTCCTGTGGTT -ACGGAAGGATCTGTTCCTGCCTTT -ACGGAAGGATCTGTTCCTGGTCTT -ACGGAAGGATCTGTTCCTACGCTT -ACGGAAGGATCTGTTCCTAGCGTT -ACGGAAGGATCTGTTCCTTTCGTC -ACGGAAGGATCTGTTCCTTCTCTC -ACGGAAGGATCTGTTCCTTGGATC -ACGGAAGGATCTGTTCCTCACTTC -ACGGAAGGATCTGTTCCTGTACTC -ACGGAAGGATCTGTTCCTGATGTC -ACGGAAGGATCTGTTCCTACAGTC -ACGGAAGGATCTGTTCCTTTGCTG -ACGGAAGGATCTGTTCCTTCCATG -ACGGAAGGATCTGTTCCTTGTGTG -ACGGAAGGATCTGTTCCTCTAGTG -ACGGAAGGATCTGTTCCTCATCTG -ACGGAAGGATCTGTTCCTGAGTTG -ACGGAAGGATCTGTTCCTAGACTG -ACGGAAGGATCTGTTCCTTCGGTA -ACGGAAGGATCTGTTCCTTGCCTA -ACGGAAGGATCTGTTCCTCCACTA -ACGGAAGGATCTGTTCCTGGAGTA -ACGGAAGGATCTGTTCCTTCGTCT -ACGGAAGGATCTGTTCCTTGCACT -ACGGAAGGATCTGTTCCTCTGACT -ACGGAAGGATCTGTTCCTCAACCT -ACGGAAGGATCTGTTCCTGCTACT -ACGGAAGGATCTGTTCCTGGATCT -ACGGAAGGATCTGTTCCTAAGGCT -ACGGAAGGATCTGTTCCTTCAACC -ACGGAAGGATCTGTTCCTTGTTCC -ACGGAAGGATCTGTTCCTATTCCC -ACGGAAGGATCTGTTCCTTTCTCG -ACGGAAGGATCTGTTCCTTAGACG -ACGGAAGGATCTGTTCCTGTAACG -ACGGAAGGATCTGTTCCTACTTCG -ACGGAAGGATCTGTTCCTTACGCA -ACGGAAGGATCTGTTCCTCTTGCA -ACGGAAGGATCTGTTCCTCGAACA -ACGGAAGGATCTGTTCCTCAGTCA -ACGGAAGGATCTGTTCCTGATCCA -ACGGAAGGATCTGTTCCTACGACA -ACGGAAGGATCTGTTCCTAGCTCA -ACGGAAGGATCTGTTCCTTCACGT -ACGGAAGGATCTGTTCCTCGTAGT -ACGGAAGGATCTGTTCCTGTCAGT -ACGGAAGGATCTGTTCCTGAAGGT -ACGGAAGGATCTGTTCCTAACCGT -ACGGAAGGATCTGTTCCTTTGTGC -ACGGAAGGATCTGTTCCTCTAAGC -ACGGAAGGATCTGTTCCTACTAGC -ACGGAAGGATCTGTTCCTAGATGC -ACGGAAGGATCTGTTCCTTGAAGG -ACGGAAGGATCTGTTCCTCAATGG -ACGGAAGGATCTGTTCCTATGAGG -ACGGAAGGATCTGTTCCTAATGGG -ACGGAAGGATCTGTTCCTTCCTGA -ACGGAAGGATCTGTTCCTTAGCGA -ACGGAAGGATCTGTTCCTCACAGA -ACGGAAGGATCTGTTCCTGCAAGA -ACGGAAGGATCTGTTCCTGGTTGA -ACGGAAGGATCTGTTCCTTCCGAT -ACGGAAGGATCTGTTCCTTGGCAT -ACGGAAGGATCTGTTCCTCGAGAT -ACGGAAGGATCTGTTCCTTACCAC -ACGGAAGGATCTGTTCCTCAGAAC -ACGGAAGGATCTGTTCCTGTCTAC -ACGGAAGGATCTGTTCCTACGTAC -ACGGAAGGATCTGTTCCTAGTGAC -ACGGAAGGATCTGTTCCTCTGTAG -ACGGAAGGATCTGTTCCTCCTAAG -ACGGAAGGATCTGTTCCTGTTCAG -ACGGAAGGATCTGTTCCTGCATAG -ACGGAAGGATCTGTTCCTGACAAG -ACGGAAGGATCTGTTCCTAAGCAG -ACGGAAGGATCTGTTCCTCGTCAA -ACGGAAGGATCTGTTCCTGCTGAA -ACGGAAGGATCTGTTCCTAGTACG -ACGGAAGGATCTGTTCCTATCCGA -ACGGAAGGATCTGTTCCTATGGGA -ACGGAAGGATCTGTTCCTGTGCAA -ACGGAAGGATCTGTTCCTGAGGAA -ACGGAAGGATCTGTTCCTCAGGTA -ACGGAAGGATCTGTTCCTGACTCT -ACGGAAGGATCTGTTCCTAGTCCT -ACGGAAGGATCTGTTCCTTAAGCC -ACGGAAGGATCTGTTCCTATAGCC -ACGGAAGGATCTGTTCCTTAACCG -ACGGAAGGATCTGTTCCTATGCCA -ACGGAAGGATCTTTTCGGGGAAAC -ACGGAAGGATCTTTTCGGAACACC -ACGGAAGGATCTTTTCGGATCGAG -ACGGAAGGATCTTTTCGGCTCCTT -ACGGAAGGATCTTTTCGGCCTGTT -ACGGAAGGATCTTTTCGGCGGTTT -ACGGAAGGATCTTTTCGGGTGGTT -ACGGAAGGATCTTTTCGGGCCTTT -ACGGAAGGATCTTTTCGGGGTCTT -ACGGAAGGATCTTTTCGGACGCTT -ACGGAAGGATCTTTTCGGAGCGTT -ACGGAAGGATCTTTTCGGTTCGTC -ACGGAAGGATCTTTTCGGTCTCTC -ACGGAAGGATCTTTTCGGTGGATC -ACGGAAGGATCTTTTCGGCACTTC -ACGGAAGGATCTTTTCGGGTACTC -ACGGAAGGATCTTTTCGGGATGTC -ACGGAAGGATCTTTTCGGACAGTC -ACGGAAGGATCTTTTCGGTTGCTG -ACGGAAGGATCTTTTCGGTCCATG -ACGGAAGGATCTTTTCGGTGTGTG -ACGGAAGGATCTTTTCGGCTAGTG -ACGGAAGGATCTTTTCGGCATCTG -ACGGAAGGATCTTTTCGGGAGTTG -ACGGAAGGATCTTTTCGGAGACTG -ACGGAAGGATCTTTTCGGTCGGTA -ACGGAAGGATCTTTTCGGTGCCTA -ACGGAAGGATCTTTTCGGCCACTA -ACGGAAGGATCTTTTCGGGGAGTA -ACGGAAGGATCTTTTCGGTCGTCT -ACGGAAGGATCTTTTCGGTGCACT -ACGGAAGGATCTTTTCGGCTGACT -ACGGAAGGATCTTTTCGGCAACCT -ACGGAAGGATCTTTTCGGGCTACT -ACGGAAGGATCTTTTCGGGGATCT -ACGGAAGGATCTTTTCGGAAGGCT -ACGGAAGGATCTTTTCGGTCAACC -ACGGAAGGATCTTTTCGGTGTTCC -ACGGAAGGATCTTTTCGGATTCCC -ACGGAAGGATCTTTTCGGTTCTCG -ACGGAAGGATCTTTTCGGTAGACG -ACGGAAGGATCTTTTCGGGTAACG -ACGGAAGGATCTTTTCGGACTTCG -ACGGAAGGATCTTTTCGGTACGCA -ACGGAAGGATCTTTTCGGCTTGCA -ACGGAAGGATCTTTTCGGCGAACA -ACGGAAGGATCTTTTCGGCAGTCA -ACGGAAGGATCTTTTCGGGATCCA -ACGGAAGGATCTTTTCGGACGACA -ACGGAAGGATCTTTTCGGAGCTCA -ACGGAAGGATCTTTTCGGTCACGT -ACGGAAGGATCTTTTCGGCGTAGT -ACGGAAGGATCTTTTCGGGTCAGT -ACGGAAGGATCTTTTCGGGAAGGT -ACGGAAGGATCTTTTCGGAACCGT -ACGGAAGGATCTTTTCGGTTGTGC -ACGGAAGGATCTTTTCGGCTAAGC -ACGGAAGGATCTTTTCGGACTAGC -ACGGAAGGATCTTTTCGGAGATGC -ACGGAAGGATCTTTTCGGTGAAGG -ACGGAAGGATCTTTTCGGCAATGG -ACGGAAGGATCTTTTCGGATGAGG -ACGGAAGGATCTTTTCGGAATGGG -ACGGAAGGATCTTTTCGGTCCTGA -ACGGAAGGATCTTTTCGGTAGCGA -ACGGAAGGATCTTTTCGGCACAGA -ACGGAAGGATCTTTTCGGGCAAGA -ACGGAAGGATCTTTTCGGGGTTGA -ACGGAAGGATCTTTTCGGTCCGAT -ACGGAAGGATCTTTTCGGTGGCAT -ACGGAAGGATCTTTTCGGCGAGAT -ACGGAAGGATCTTTTCGGTACCAC -ACGGAAGGATCTTTTCGGCAGAAC -ACGGAAGGATCTTTTCGGGTCTAC -ACGGAAGGATCTTTTCGGACGTAC -ACGGAAGGATCTTTTCGGAGTGAC -ACGGAAGGATCTTTTCGGCTGTAG -ACGGAAGGATCTTTTCGGCCTAAG -ACGGAAGGATCTTTTCGGGTTCAG -ACGGAAGGATCTTTTCGGGCATAG -ACGGAAGGATCTTTTCGGGACAAG -ACGGAAGGATCTTTTCGGAAGCAG -ACGGAAGGATCTTTTCGGCGTCAA -ACGGAAGGATCTTTTCGGGCTGAA -ACGGAAGGATCTTTTCGGAGTACG -ACGGAAGGATCTTTTCGGATCCGA -ACGGAAGGATCTTTTCGGATGGGA -ACGGAAGGATCTTTTCGGGTGCAA -ACGGAAGGATCTTTTCGGGAGGAA -ACGGAAGGATCTTTTCGGCAGGTA -ACGGAAGGATCTTTTCGGGACTCT -ACGGAAGGATCTTTTCGGAGTCCT -ACGGAAGGATCTTTTCGGTAAGCC -ACGGAAGGATCTTTTCGGATAGCC -ACGGAAGGATCTTTTCGGTAACCG -ACGGAAGGATCTTTTCGGATGCCA -ACGGAAGGATCTGTTGTGGGAAAC -ACGGAAGGATCTGTTGTGAACACC -ACGGAAGGATCTGTTGTGATCGAG -ACGGAAGGATCTGTTGTGCTCCTT -ACGGAAGGATCTGTTGTGCCTGTT -ACGGAAGGATCTGTTGTGCGGTTT -ACGGAAGGATCTGTTGTGGTGGTT -ACGGAAGGATCTGTTGTGGCCTTT -ACGGAAGGATCTGTTGTGGGTCTT -ACGGAAGGATCTGTTGTGACGCTT -ACGGAAGGATCTGTTGTGAGCGTT -ACGGAAGGATCTGTTGTGTTCGTC -ACGGAAGGATCTGTTGTGTCTCTC -ACGGAAGGATCTGTTGTGTGGATC -ACGGAAGGATCTGTTGTGCACTTC -ACGGAAGGATCTGTTGTGGTACTC -ACGGAAGGATCTGTTGTGGATGTC -ACGGAAGGATCTGTTGTGACAGTC -ACGGAAGGATCTGTTGTGTTGCTG -ACGGAAGGATCTGTTGTGTCCATG -ACGGAAGGATCTGTTGTGTGTGTG -ACGGAAGGATCTGTTGTGCTAGTG -ACGGAAGGATCTGTTGTGCATCTG -ACGGAAGGATCTGTTGTGGAGTTG -ACGGAAGGATCTGTTGTGAGACTG -ACGGAAGGATCTGTTGTGTCGGTA -ACGGAAGGATCTGTTGTGTGCCTA -ACGGAAGGATCTGTTGTGCCACTA -ACGGAAGGATCTGTTGTGGGAGTA -ACGGAAGGATCTGTTGTGTCGTCT -ACGGAAGGATCTGTTGTGTGCACT -ACGGAAGGATCTGTTGTGCTGACT -ACGGAAGGATCTGTTGTGCAACCT -ACGGAAGGATCTGTTGTGGCTACT -ACGGAAGGATCTGTTGTGGGATCT -ACGGAAGGATCTGTTGTGAAGGCT -ACGGAAGGATCTGTTGTGTCAACC -ACGGAAGGATCTGTTGTGTGTTCC -ACGGAAGGATCTGTTGTGATTCCC -ACGGAAGGATCTGTTGTGTTCTCG -ACGGAAGGATCTGTTGTGTAGACG -ACGGAAGGATCTGTTGTGGTAACG -ACGGAAGGATCTGTTGTGACTTCG -ACGGAAGGATCTGTTGTGTACGCA -ACGGAAGGATCTGTTGTGCTTGCA -ACGGAAGGATCTGTTGTGCGAACA -ACGGAAGGATCTGTTGTGCAGTCA -ACGGAAGGATCTGTTGTGGATCCA -ACGGAAGGATCTGTTGTGACGACA -ACGGAAGGATCTGTTGTGAGCTCA -ACGGAAGGATCTGTTGTGTCACGT -ACGGAAGGATCTGTTGTGCGTAGT -ACGGAAGGATCTGTTGTGGTCAGT -ACGGAAGGATCTGTTGTGGAAGGT -ACGGAAGGATCTGTTGTGAACCGT -ACGGAAGGATCTGTTGTGTTGTGC -ACGGAAGGATCTGTTGTGCTAAGC -ACGGAAGGATCTGTTGTGACTAGC -ACGGAAGGATCTGTTGTGAGATGC -ACGGAAGGATCTGTTGTGTGAAGG -ACGGAAGGATCTGTTGTGCAATGG -ACGGAAGGATCTGTTGTGATGAGG -ACGGAAGGATCTGTTGTGAATGGG -ACGGAAGGATCTGTTGTGTCCTGA -ACGGAAGGATCTGTTGTGTAGCGA -ACGGAAGGATCTGTTGTGCACAGA -ACGGAAGGATCTGTTGTGGCAAGA -ACGGAAGGATCTGTTGTGGGTTGA -ACGGAAGGATCTGTTGTGTCCGAT -ACGGAAGGATCTGTTGTGTGGCAT -ACGGAAGGATCTGTTGTGCGAGAT -ACGGAAGGATCTGTTGTGTACCAC -ACGGAAGGATCTGTTGTGCAGAAC -ACGGAAGGATCTGTTGTGGTCTAC -ACGGAAGGATCTGTTGTGACGTAC -ACGGAAGGATCTGTTGTGAGTGAC -ACGGAAGGATCTGTTGTGCTGTAG -ACGGAAGGATCTGTTGTGCCTAAG -ACGGAAGGATCTGTTGTGGTTCAG -ACGGAAGGATCTGTTGTGGCATAG -ACGGAAGGATCTGTTGTGGACAAG -ACGGAAGGATCTGTTGTGAAGCAG -ACGGAAGGATCTGTTGTGCGTCAA -ACGGAAGGATCTGTTGTGGCTGAA -ACGGAAGGATCTGTTGTGAGTACG -ACGGAAGGATCTGTTGTGATCCGA -ACGGAAGGATCTGTTGTGATGGGA -ACGGAAGGATCTGTTGTGGTGCAA -ACGGAAGGATCTGTTGTGGAGGAA -ACGGAAGGATCTGTTGTGCAGGTA -ACGGAAGGATCTGTTGTGGACTCT -ACGGAAGGATCTGTTGTGAGTCCT -ACGGAAGGATCTGTTGTGTAAGCC -ACGGAAGGATCTGTTGTGATAGCC -ACGGAAGGATCTGTTGTGTAACCG -ACGGAAGGATCTGTTGTGATGCCA -ACGGAAGGATCTTTTGCCGGAAAC -ACGGAAGGATCTTTTGCCAACACC -ACGGAAGGATCTTTTGCCATCGAG -ACGGAAGGATCTTTTGCCCTCCTT -ACGGAAGGATCTTTTGCCCCTGTT -ACGGAAGGATCTTTTGCCCGGTTT -ACGGAAGGATCTTTTGCCGTGGTT -ACGGAAGGATCTTTTGCCGCCTTT -ACGGAAGGATCTTTTGCCGGTCTT -ACGGAAGGATCTTTTGCCACGCTT -ACGGAAGGATCTTTTGCCAGCGTT -ACGGAAGGATCTTTTGCCTTCGTC -ACGGAAGGATCTTTTGCCTCTCTC -ACGGAAGGATCTTTTGCCTGGATC -ACGGAAGGATCTTTTGCCCACTTC -ACGGAAGGATCTTTTGCCGTACTC -ACGGAAGGATCTTTTGCCGATGTC -ACGGAAGGATCTTTTGCCACAGTC -ACGGAAGGATCTTTTGCCTTGCTG -ACGGAAGGATCTTTTGCCTCCATG -ACGGAAGGATCTTTTGCCTGTGTG -ACGGAAGGATCTTTTGCCCTAGTG -ACGGAAGGATCTTTTGCCCATCTG -ACGGAAGGATCTTTTGCCGAGTTG -ACGGAAGGATCTTTTGCCAGACTG -ACGGAAGGATCTTTTGCCTCGGTA -ACGGAAGGATCTTTTGCCTGCCTA -ACGGAAGGATCTTTTGCCCCACTA -ACGGAAGGATCTTTTGCCGGAGTA -ACGGAAGGATCTTTTGCCTCGTCT -ACGGAAGGATCTTTTGCCTGCACT -ACGGAAGGATCTTTTGCCCTGACT -ACGGAAGGATCTTTTGCCCAACCT -ACGGAAGGATCTTTTGCCGCTACT -ACGGAAGGATCTTTTGCCGGATCT -ACGGAAGGATCTTTTGCCAAGGCT -ACGGAAGGATCTTTTGCCTCAACC -ACGGAAGGATCTTTTGCCTGTTCC -ACGGAAGGATCTTTTGCCATTCCC -ACGGAAGGATCTTTTGCCTTCTCG -ACGGAAGGATCTTTTGCCTAGACG -ACGGAAGGATCTTTTGCCGTAACG -ACGGAAGGATCTTTTGCCACTTCG -ACGGAAGGATCTTTTGCCTACGCA -ACGGAAGGATCTTTTGCCCTTGCA -ACGGAAGGATCTTTTGCCCGAACA -ACGGAAGGATCTTTTGCCCAGTCA -ACGGAAGGATCTTTTGCCGATCCA -ACGGAAGGATCTTTTGCCACGACA -ACGGAAGGATCTTTTGCCAGCTCA -ACGGAAGGATCTTTTGCCTCACGT -ACGGAAGGATCTTTTGCCCGTAGT -ACGGAAGGATCTTTTGCCGTCAGT -ACGGAAGGATCTTTTGCCGAAGGT -ACGGAAGGATCTTTTGCCAACCGT -ACGGAAGGATCTTTTGCCTTGTGC -ACGGAAGGATCTTTTGCCCTAAGC -ACGGAAGGATCTTTTGCCACTAGC -ACGGAAGGATCTTTTGCCAGATGC -ACGGAAGGATCTTTTGCCTGAAGG -ACGGAAGGATCTTTTGCCCAATGG -ACGGAAGGATCTTTTGCCATGAGG -ACGGAAGGATCTTTTGCCAATGGG -ACGGAAGGATCTTTTGCCTCCTGA -ACGGAAGGATCTTTTGCCTAGCGA -ACGGAAGGATCTTTTGCCCACAGA -ACGGAAGGATCTTTTGCCGCAAGA -ACGGAAGGATCTTTTGCCGGTTGA -ACGGAAGGATCTTTTGCCTCCGAT -ACGGAAGGATCTTTTGCCTGGCAT -ACGGAAGGATCTTTTGCCCGAGAT -ACGGAAGGATCTTTTGCCTACCAC -ACGGAAGGATCTTTTGCCCAGAAC -ACGGAAGGATCTTTTGCCGTCTAC -ACGGAAGGATCTTTTGCCACGTAC -ACGGAAGGATCTTTTGCCAGTGAC -ACGGAAGGATCTTTTGCCCTGTAG -ACGGAAGGATCTTTTGCCCCTAAG -ACGGAAGGATCTTTTGCCGTTCAG -ACGGAAGGATCTTTTGCCGCATAG -ACGGAAGGATCTTTTGCCGACAAG -ACGGAAGGATCTTTTGCCAAGCAG -ACGGAAGGATCTTTTGCCCGTCAA -ACGGAAGGATCTTTTGCCGCTGAA -ACGGAAGGATCTTTTGCCAGTACG -ACGGAAGGATCTTTTGCCATCCGA -ACGGAAGGATCTTTTGCCATGGGA -ACGGAAGGATCTTTTGCCGTGCAA -ACGGAAGGATCTTTTGCCGAGGAA -ACGGAAGGATCTTTTGCCCAGGTA -ACGGAAGGATCTTTTGCCGACTCT -ACGGAAGGATCTTTTGCCAGTCCT -ACGGAAGGATCTTTTGCCTAAGCC -ACGGAAGGATCTTTTGCCATAGCC -ACGGAAGGATCTTTTGCCTAACCG -ACGGAAGGATCTTTTGCCATGCCA -ACGGAAGGATCTCTTGGTGGAAAC -ACGGAAGGATCTCTTGGTAACACC -ACGGAAGGATCTCTTGGTATCGAG -ACGGAAGGATCTCTTGGTCTCCTT -ACGGAAGGATCTCTTGGTCCTGTT -ACGGAAGGATCTCTTGGTCGGTTT -ACGGAAGGATCTCTTGGTGTGGTT -ACGGAAGGATCTCTTGGTGCCTTT -ACGGAAGGATCTCTTGGTGGTCTT -ACGGAAGGATCTCTTGGTACGCTT -ACGGAAGGATCTCTTGGTAGCGTT -ACGGAAGGATCTCTTGGTTTCGTC -ACGGAAGGATCTCTTGGTTCTCTC -ACGGAAGGATCTCTTGGTTGGATC -ACGGAAGGATCTCTTGGTCACTTC -ACGGAAGGATCTCTTGGTGTACTC -ACGGAAGGATCTCTTGGTGATGTC -ACGGAAGGATCTCTTGGTACAGTC -ACGGAAGGATCTCTTGGTTTGCTG -ACGGAAGGATCTCTTGGTTCCATG -ACGGAAGGATCTCTTGGTTGTGTG -ACGGAAGGATCTCTTGGTCTAGTG -ACGGAAGGATCTCTTGGTCATCTG -ACGGAAGGATCTCTTGGTGAGTTG -ACGGAAGGATCTCTTGGTAGACTG -ACGGAAGGATCTCTTGGTTCGGTA -ACGGAAGGATCTCTTGGTTGCCTA -ACGGAAGGATCTCTTGGTCCACTA -ACGGAAGGATCTCTTGGTGGAGTA -ACGGAAGGATCTCTTGGTTCGTCT -ACGGAAGGATCTCTTGGTTGCACT -ACGGAAGGATCTCTTGGTCTGACT -ACGGAAGGATCTCTTGGTCAACCT -ACGGAAGGATCTCTTGGTGCTACT -ACGGAAGGATCTCTTGGTGGATCT -ACGGAAGGATCTCTTGGTAAGGCT -ACGGAAGGATCTCTTGGTTCAACC -ACGGAAGGATCTCTTGGTTGTTCC -ACGGAAGGATCTCTTGGTATTCCC -ACGGAAGGATCTCTTGGTTTCTCG -ACGGAAGGATCTCTTGGTTAGACG -ACGGAAGGATCTCTTGGTGTAACG -ACGGAAGGATCTCTTGGTACTTCG -ACGGAAGGATCTCTTGGTTACGCA -ACGGAAGGATCTCTTGGTCTTGCA -ACGGAAGGATCTCTTGGTCGAACA -ACGGAAGGATCTCTTGGTCAGTCA -ACGGAAGGATCTCTTGGTGATCCA -ACGGAAGGATCTCTTGGTACGACA -ACGGAAGGATCTCTTGGTAGCTCA -ACGGAAGGATCTCTTGGTTCACGT -ACGGAAGGATCTCTTGGTCGTAGT -ACGGAAGGATCTCTTGGTGTCAGT -ACGGAAGGATCTCTTGGTGAAGGT -ACGGAAGGATCTCTTGGTAACCGT -ACGGAAGGATCTCTTGGTTTGTGC -ACGGAAGGATCTCTTGGTCTAAGC -ACGGAAGGATCTCTTGGTACTAGC -ACGGAAGGATCTCTTGGTAGATGC -ACGGAAGGATCTCTTGGTTGAAGG -ACGGAAGGATCTCTTGGTCAATGG -ACGGAAGGATCTCTTGGTATGAGG -ACGGAAGGATCTCTTGGTAATGGG -ACGGAAGGATCTCTTGGTTCCTGA -ACGGAAGGATCTCTTGGTTAGCGA -ACGGAAGGATCTCTTGGTCACAGA -ACGGAAGGATCTCTTGGTGCAAGA -ACGGAAGGATCTCTTGGTGGTTGA -ACGGAAGGATCTCTTGGTTCCGAT -ACGGAAGGATCTCTTGGTTGGCAT -ACGGAAGGATCTCTTGGTCGAGAT -ACGGAAGGATCTCTTGGTTACCAC -ACGGAAGGATCTCTTGGTCAGAAC -ACGGAAGGATCTCTTGGTGTCTAC -ACGGAAGGATCTCTTGGTACGTAC -ACGGAAGGATCTCTTGGTAGTGAC -ACGGAAGGATCTCTTGGTCTGTAG -ACGGAAGGATCTCTTGGTCCTAAG -ACGGAAGGATCTCTTGGTGTTCAG -ACGGAAGGATCTCTTGGTGCATAG -ACGGAAGGATCTCTTGGTGACAAG -ACGGAAGGATCTCTTGGTAAGCAG -ACGGAAGGATCTCTTGGTCGTCAA -ACGGAAGGATCTCTTGGTGCTGAA -ACGGAAGGATCTCTTGGTAGTACG -ACGGAAGGATCTCTTGGTATCCGA -ACGGAAGGATCTCTTGGTATGGGA -ACGGAAGGATCTCTTGGTGTGCAA -ACGGAAGGATCTCTTGGTGAGGAA -ACGGAAGGATCTCTTGGTCAGGTA -ACGGAAGGATCTCTTGGTGACTCT -ACGGAAGGATCTCTTGGTAGTCCT -ACGGAAGGATCTCTTGGTTAAGCC -ACGGAAGGATCTCTTGGTATAGCC -ACGGAAGGATCTCTTGGTTAACCG -ACGGAAGGATCTCTTGGTATGCCA -ACGGAAGGATCTCTTACGGGAAAC -ACGGAAGGATCTCTTACGAACACC -ACGGAAGGATCTCTTACGATCGAG -ACGGAAGGATCTCTTACGCTCCTT -ACGGAAGGATCTCTTACGCCTGTT -ACGGAAGGATCTCTTACGCGGTTT -ACGGAAGGATCTCTTACGGTGGTT -ACGGAAGGATCTCTTACGGCCTTT -ACGGAAGGATCTCTTACGGGTCTT -ACGGAAGGATCTCTTACGACGCTT -ACGGAAGGATCTCTTACGAGCGTT -ACGGAAGGATCTCTTACGTTCGTC -ACGGAAGGATCTCTTACGTCTCTC -ACGGAAGGATCTCTTACGTGGATC -ACGGAAGGATCTCTTACGCACTTC -ACGGAAGGATCTCTTACGGTACTC -ACGGAAGGATCTCTTACGGATGTC -ACGGAAGGATCTCTTACGACAGTC -ACGGAAGGATCTCTTACGTTGCTG -ACGGAAGGATCTCTTACGTCCATG -ACGGAAGGATCTCTTACGTGTGTG -ACGGAAGGATCTCTTACGCTAGTG -ACGGAAGGATCTCTTACGCATCTG -ACGGAAGGATCTCTTACGGAGTTG -ACGGAAGGATCTCTTACGAGACTG -ACGGAAGGATCTCTTACGTCGGTA -ACGGAAGGATCTCTTACGTGCCTA -ACGGAAGGATCTCTTACGCCACTA -ACGGAAGGATCTCTTACGGGAGTA -ACGGAAGGATCTCTTACGTCGTCT -ACGGAAGGATCTCTTACGTGCACT -ACGGAAGGATCTCTTACGCTGACT -ACGGAAGGATCTCTTACGCAACCT -ACGGAAGGATCTCTTACGGCTACT -ACGGAAGGATCTCTTACGGGATCT -ACGGAAGGATCTCTTACGAAGGCT -ACGGAAGGATCTCTTACGTCAACC -ACGGAAGGATCTCTTACGTGTTCC -ACGGAAGGATCTCTTACGATTCCC -ACGGAAGGATCTCTTACGTTCTCG -ACGGAAGGATCTCTTACGTAGACG -ACGGAAGGATCTCTTACGGTAACG -ACGGAAGGATCTCTTACGACTTCG -ACGGAAGGATCTCTTACGTACGCA -ACGGAAGGATCTCTTACGCTTGCA -ACGGAAGGATCTCTTACGCGAACA -ACGGAAGGATCTCTTACGCAGTCA -ACGGAAGGATCTCTTACGGATCCA -ACGGAAGGATCTCTTACGACGACA -ACGGAAGGATCTCTTACGAGCTCA -ACGGAAGGATCTCTTACGTCACGT -ACGGAAGGATCTCTTACGCGTAGT -ACGGAAGGATCTCTTACGGTCAGT -ACGGAAGGATCTCTTACGGAAGGT -ACGGAAGGATCTCTTACGAACCGT -ACGGAAGGATCTCTTACGTTGTGC -ACGGAAGGATCTCTTACGCTAAGC -ACGGAAGGATCTCTTACGACTAGC -ACGGAAGGATCTCTTACGAGATGC -ACGGAAGGATCTCTTACGTGAAGG -ACGGAAGGATCTCTTACGCAATGG -ACGGAAGGATCTCTTACGATGAGG -ACGGAAGGATCTCTTACGAATGGG -ACGGAAGGATCTCTTACGTCCTGA -ACGGAAGGATCTCTTACGTAGCGA -ACGGAAGGATCTCTTACGCACAGA -ACGGAAGGATCTCTTACGGCAAGA -ACGGAAGGATCTCTTACGGGTTGA -ACGGAAGGATCTCTTACGTCCGAT -ACGGAAGGATCTCTTACGTGGCAT -ACGGAAGGATCTCTTACGCGAGAT -ACGGAAGGATCTCTTACGTACCAC -ACGGAAGGATCTCTTACGCAGAAC -ACGGAAGGATCTCTTACGGTCTAC -ACGGAAGGATCTCTTACGACGTAC -ACGGAAGGATCTCTTACGAGTGAC -ACGGAAGGATCTCTTACGCTGTAG -ACGGAAGGATCTCTTACGCCTAAG -ACGGAAGGATCTCTTACGGTTCAG -ACGGAAGGATCTCTTACGGCATAG -ACGGAAGGATCTCTTACGGACAAG -ACGGAAGGATCTCTTACGAAGCAG -ACGGAAGGATCTCTTACGCGTCAA -ACGGAAGGATCTCTTACGGCTGAA -ACGGAAGGATCTCTTACGAGTACG -ACGGAAGGATCTCTTACGATCCGA -ACGGAAGGATCTCTTACGATGGGA -ACGGAAGGATCTCTTACGGTGCAA -ACGGAAGGATCTCTTACGGAGGAA -ACGGAAGGATCTCTTACGCAGGTA -ACGGAAGGATCTCTTACGGACTCT -ACGGAAGGATCTCTTACGAGTCCT -ACGGAAGGATCTCTTACGTAAGCC -ACGGAAGGATCTCTTACGATAGCC -ACGGAAGGATCTCTTACGTAACCG -ACGGAAGGATCTCTTACGATGCCA -ACGGAAGGATCTGTTAGCGGAAAC -ACGGAAGGATCTGTTAGCAACACC -ACGGAAGGATCTGTTAGCATCGAG -ACGGAAGGATCTGTTAGCCTCCTT -ACGGAAGGATCTGTTAGCCCTGTT -ACGGAAGGATCTGTTAGCCGGTTT -ACGGAAGGATCTGTTAGCGTGGTT -ACGGAAGGATCTGTTAGCGCCTTT -ACGGAAGGATCTGTTAGCGGTCTT -ACGGAAGGATCTGTTAGCACGCTT -ACGGAAGGATCTGTTAGCAGCGTT -ACGGAAGGATCTGTTAGCTTCGTC -ACGGAAGGATCTGTTAGCTCTCTC -ACGGAAGGATCTGTTAGCTGGATC -ACGGAAGGATCTGTTAGCCACTTC -ACGGAAGGATCTGTTAGCGTACTC -ACGGAAGGATCTGTTAGCGATGTC -ACGGAAGGATCTGTTAGCACAGTC -ACGGAAGGATCTGTTAGCTTGCTG -ACGGAAGGATCTGTTAGCTCCATG -ACGGAAGGATCTGTTAGCTGTGTG -ACGGAAGGATCTGTTAGCCTAGTG -ACGGAAGGATCTGTTAGCCATCTG -ACGGAAGGATCTGTTAGCGAGTTG -ACGGAAGGATCTGTTAGCAGACTG -ACGGAAGGATCTGTTAGCTCGGTA -ACGGAAGGATCTGTTAGCTGCCTA -ACGGAAGGATCTGTTAGCCCACTA -ACGGAAGGATCTGTTAGCGGAGTA -ACGGAAGGATCTGTTAGCTCGTCT -ACGGAAGGATCTGTTAGCTGCACT -ACGGAAGGATCTGTTAGCCTGACT -ACGGAAGGATCTGTTAGCCAACCT -ACGGAAGGATCTGTTAGCGCTACT -ACGGAAGGATCTGTTAGCGGATCT -ACGGAAGGATCTGTTAGCAAGGCT -ACGGAAGGATCTGTTAGCTCAACC -ACGGAAGGATCTGTTAGCTGTTCC -ACGGAAGGATCTGTTAGCATTCCC -ACGGAAGGATCTGTTAGCTTCTCG -ACGGAAGGATCTGTTAGCTAGACG -ACGGAAGGATCTGTTAGCGTAACG -ACGGAAGGATCTGTTAGCACTTCG -ACGGAAGGATCTGTTAGCTACGCA -ACGGAAGGATCTGTTAGCCTTGCA -ACGGAAGGATCTGTTAGCCGAACA -ACGGAAGGATCTGTTAGCCAGTCA -ACGGAAGGATCTGTTAGCGATCCA -ACGGAAGGATCTGTTAGCACGACA -ACGGAAGGATCTGTTAGCAGCTCA -ACGGAAGGATCTGTTAGCTCACGT -ACGGAAGGATCTGTTAGCCGTAGT -ACGGAAGGATCTGTTAGCGTCAGT -ACGGAAGGATCTGTTAGCGAAGGT -ACGGAAGGATCTGTTAGCAACCGT -ACGGAAGGATCTGTTAGCTTGTGC -ACGGAAGGATCTGTTAGCCTAAGC -ACGGAAGGATCTGTTAGCACTAGC -ACGGAAGGATCTGTTAGCAGATGC -ACGGAAGGATCTGTTAGCTGAAGG -ACGGAAGGATCTGTTAGCCAATGG -ACGGAAGGATCTGTTAGCATGAGG -ACGGAAGGATCTGTTAGCAATGGG -ACGGAAGGATCTGTTAGCTCCTGA -ACGGAAGGATCTGTTAGCTAGCGA -ACGGAAGGATCTGTTAGCCACAGA -ACGGAAGGATCTGTTAGCGCAAGA -ACGGAAGGATCTGTTAGCGGTTGA -ACGGAAGGATCTGTTAGCTCCGAT -ACGGAAGGATCTGTTAGCTGGCAT -ACGGAAGGATCTGTTAGCCGAGAT -ACGGAAGGATCTGTTAGCTACCAC -ACGGAAGGATCTGTTAGCCAGAAC -ACGGAAGGATCTGTTAGCGTCTAC -ACGGAAGGATCTGTTAGCACGTAC -ACGGAAGGATCTGTTAGCAGTGAC -ACGGAAGGATCTGTTAGCCTGTAG -ACGGAAGGATCTGTTAGCCCTAAG -ACGGAAGGATCTGTTAGCGTTCAG -ACGGAAGGATCTGTTAGCGCATAG -ACGGAAGGATCTGTTAGCGACAAG -ACGGAAGGATCTGTTAGCAAGCAG -ACGGAAGGATCTGTTAGCCGTCAA -ACGGAAGGATCTGTTAGCGCTGAA -ACGGAAGGATCTGTTAGCAGTACG -ACGGAAGGATCTGTTAGCATCCGA -ACGGAAGGATCTGTTAGCATGGGA -ACGGAAGGATCTGTTAGCGTGCAA -ACGGAAGGATCTGTTAGCGAGGAA -ACGGAAGGATCTGTTAGCCAGGTA -ACGGAAGGATCTGTTAGCGACTCT -ACGGAAGGATCTGTTAGCAGTCCT -ACGGAAGGATCTGTTAGCTAAGCC -ACGGAAGGATCTGTTAGCATAGCC -ACGGAAGGATCTGTTAGCTAACCG -ACGGAAGGATCTGTTAGCATGCCA -ACGGAAGGATCTGTCTTCGGAAAC -ACGGAAGGATCTGTCTTCAACACC -ACGGAAGGATCTGTCTTCATCGAG -ACGGAAGGATCTGTCTTCCTCCTT -ACGGAAGGATCTGTCTTCCCTGTT -ACGGAAGGATCTGTCTTCCGGTTT -ACGGAAGGATCTGTCTTCGTGGTT -ACGGAAGGATCTGTCTTCGCCTTT -ACGGAAGGATCTGTCTTCGGTCTT -ACGGAAGGATCTGTCTTCACGCTT -ACGGAAGGATCTGTCTTCAGCGTT -ACGGAAGGATCTGTCTTCTTCGTC -ACGGAAGGATCTGTCTTCTCTCTC -ACGGAAGGATCTGTCTTCTGGATC -ACGGAAGGATCTGTCTTCCACTTC -ACGGAAGGATCTGTCTTCGTACTC -ACGGAAGGATCTGTCTTCGATGTC -ACGGAAGGATCTGTCTTCACAGTC -ACGGAAGGATCTGTCTTCTTGCTG -ACGGAAGGATCTGTCTTCTCCATG -ACGGAAGGATCTGTCTTCTGTGTG -ACGGAAGGATCTGTCTTCCTAGTG -ACGGAAGGATCTGTCTTCCATCTG -ACGGAAGGATCTGTCTTCGAGTTG -ACGGAAGGATCTGTCTTCAGACTG -ACGGAAGGATCTGTCTTCTCGGTA -ACGGAAGGATCTGTCTTCTGCCTA -ACGGAAGGATCTGTCTTCCCACTA -ACGGAAGGATCTGTCTTCGGAGTA -ACGGAAGGATCTGTCTTCTCGTCT -ACGGAAGGATCTGTCTTCTGCACT -ACGGAAGGATCTGTCTTCCTGACT -ACGGAAGGATCTGTCTTCCAACCT -ACGGAAGGATCTGTCTTCGCTACT -ACGGAAGGATCTGTCTTCGGATCT -ACGGAAGGATCTGTCTTCAAGGCT -ACGGAAGGATCTGTCTTCTCAACC -ACGGAAGGATCTGTCTTCTGTTCC -ACGGAAGGATCTGTCTTCATTCCC -ACGGAAGGATCTGTCTTCTTCTCG -ACGGAAGGATCTGTCTTCTAGACG -ACGGAAGGATCTGTCTTCGTAACG -ACGGAAGGATCTGTCTTCACTTCG -ACGGAAGGATCTGTCTTCTACGCA -ACGGAAGGATCTGTCTTCCTTGCA -ACGGAAGGATCTGTCTTCCGAACA -ACGGAAGGATCTGTCTTCCAGTCA -ACGGAAGGATCTGTCTTCGATCCA -ACGGAAGGATCTGTCTTCACGACA -ACGGAAGGATCTGTCTTCAGCTCA -ACGGAAGGATCTGTCTTCTCACGT -ACGGAAGGATCTGTCTTCCGTAGT -ACGGAAGGATCTGTCTTCGTCAGT -ACGGAAGGATCTGTCTTCGAAGGT -ACGGAAGGATCTGTCTTCAACCGT -ACGGAAGGATCTGTCTTCTTGTGC -ACGGAAGGATCTGTCTTCCTAAGC -ACGGAAGGATCTGTCTTCACTAGC -ACGGAAGGATCTGTCTTCAGATGC -ACGGAAGGATCTGTCTTCTGAAGG -ACGGAAGGATCTGTCTTCCAATGG -ACGGAAGGATCTGTCTTCATGAGG -ACGGAAGGATCTGTCTTCAATGGG -ACGGAAGGATCTGTCTTCTCCTGA -ACGGAAGGATCTGTCTTCTAGCGA -ACGGAAGGATCTGTCTTCCACAGA -ACGGAAGGATCTGTCTTCGCAAGA -ACGGAAGGATCTGTCTTCGGTTGA -ACGGAAGGATCTGTCTTCTCCGAT -ACGGAAGGATCTGTCTTCTGGCAT -ACGGAAGGATCTGTCTTCCGAGAT -ACGGAAGGATCTGTCTTCTACCAC -ACGGAAGGATCTGTCTTCCAGAAC -ACGGAAGGATCTGTCTTCGTCTAC -ACGGAAGGATCTGTCTTCACGTAC -ACGGAAGGATCTGTCTTCAGTGAC -ACGGAAGGATCTGTCTTCCTGTAG -ACGGAAGGATCTGTCTTCCCTAAG -ACGGAAGGATCTGTCTTCGTTCAG -ACGGAAGGATCTGTCTTCGCATAG -ACGGAAGGATCTGTCTTCGACAAG -ACGGAAGGATCTGTCTTCAAGCAG -ACGGAAGGATCTGTCTTCCGTCAA -ACGGAAGGATCTGTCTTCGCTGAA -ACGGAAGGATCTGTCTTCAGTACG -ACGGAAGGATCTGTCTTCATCCGA -ACGGAAGGATCTGTCTTCATGGGA -ACGGAAGGATCTGTCTTCGTGCAA -ACGGAAGGATCTGTCTTCGAGGAA -ACGGAAGGATCTGTCTTCCAGGTA -ACGGAAGGATCTGTCTTCGACTCT -ACGGAAGGATCTGTCTTCAGTCCT -ACGGAAGGATCTGTCTTCTAAGCC -ACGGAAGGATCTGTCTTCATAGCC -ACGGAAGGATCTGTCTTCTAACCG -ACGGAAGGATCTGTCTTCATGCCA -ACGGAAGGATCTCTCTCTGGAAAC -ACGGAAGGATCTCTCTCTAACACC -ACGGAAGGATCTCTCTCTATCGAG -ACGGAAGGATCTCTCTCTCTCCTT -ACGGAAGGATCTCTCTCTCCTGTT -ACGGAAGGATCTCTCTCTCGGTTT -ACGGAAGGATCTCTCTCTGTGGTT -ACGGAAGGATCTCTCTCTGCCTTT -ACGGAAGGATCTCTCTCTGGTCTT -ACGGAAGGATCTCTCTCTACGCTT -ACGGAAGGATCTCTCTCTAGCGTT -ACGGAAGGATCTCTCTCTTTCGTC -ACGGAAGGATCTCTCTCTTCTCTC -ACGGAAGGATCTCTCTCTTGGATC -ACGGAAGGATCTCTCTCTCACTTC -ACGGAAGGATCTCTCTCTGTACTC -ACGGAAGGATCTCTCTCTGATGTC -ACGGAAGGATCTCTCTCTACAGTC -ACGGAAGGATCTCTCTCTTTGCTG -ACGGAAGGATCTCTCTCTTCCATG -ACGGAAGGATCTCTCTCTTGTGTG -ACGGAAGGATCTCTCTCTCTAGTG -ACGGAAGGATCTCTCTCTCATCTG -ACGGAAGGATCTCTCTCTGAGTTG -ACGGAAGGATCTCTCTCTAGACTG -ACGGAAGGATCTCTCTCTTCGGTA -ACGGAAGGATCTCTCTCTTGCCTA -ACGGAAGGATCTCTCTCTCCACTA -ACGGAAGGATCTCTCTCTGGAGTA -ACGGAAGGATCTCTCTCTTCGTCT -ACGGAAGGATCTCTCTCTTGCACT -ACGGAAGGATCTCTCTCTCTGACT -ACGGAAGGATCTCTCTCTCAACCT -ACGGAAGGATCTCTCTCTGCTACT -ACGGAAGGATCTCTCTCTGGATCT -ACGGAAGGATCTCTCTCTAAGGCT -ACGGAAGGATCTCTCTCTTCAACC -ACGGAAGGATCTCTCTCTTGTTCC -ACGGAAGGATCTCTCTCTATTCCC -ACGGAAGGATCTCTCTCTTTCTCG -ACGGAAGGATCTCTCTCTTAGACG -ACGGAAGGATCTCTCTCTGTAACG -ACGGAAGGATCTCTCTCTACTTCG -ACGGAAGGATCTCTCTCTTACGCA -ACGGAAGGATCTCTCTCTCTTGCA -ACGGAAGGATCTCTCTCTCGAACA -ACGGAAGGATCTCTCTCTCAGTCA -ACGGAAGGATCTCTCTCTGATCCA -ACGGAAGGATCTCTCTCTACGACA -ACGGAAGGATCTCTCTCTAGCTCA -ACGGAAGGATCTCTCTCTTCACGT -ACGGAAGGATCTCTCTCTCGTAGT -ACGGAAGGATCTCTCTCTGTCAGT -ACGGAAGGATCTCTCTCTGAAGGT -ACGGAAGGATCTCTCTCTAACCGT -ACGGAAGGATCTCTCTCTTTGTGC -ACGGAAGGATCTCTCTCTCTAAGC -ACGGAAGGATCTCTCTCTACTAGC -ACGGAAGGATCTCTCTCTAGATGC -ACGGAAGGATCTCTCTCTTGAAGG -ACGGAAGGATCTCTCTCTCAATGG -ACGGAAGGATCTCTCTCTATGAGG -ACGGAAGGATCTCTCTCTAATGGG -ACGGAAGGATCTCTCTCTTCCTGA -ACGGAAGGATCTCTCTCTTAGCGA -ACGGAAGGATCTCTCTCTCACAGA -ACGGAAGGATCTCTCTCTGCAAGA -ACGGAAGGATCTCTCTCTGGTTGA -ACGGAAGGATCTCTCTCTTCCGAT -ACGGAAGGATCTCTCTCTTGGCAT -ACGGAAGGATCTCTCTCTCGAGAT -ACGGAAGGATCTCTCTCTTACCAC -ACGGAAGGATCTCTCTCTCAGAAC -ACGGAAGGATCTCTCTCTGTCTAC -ACGGAAGGATCTCTCTCTACGTAC -ACGGAAGGATCTCTCTCTAGTGAC -ACGGAAGGATCTCTCTCTCTGTAG -ACGGAAGGATCTCTCTCTCCTAAG -ACGGAAGGATCTCTCTCTGTTCAG -ACGGAAGGATCTCTCTCTGCATAG -ACGGAAGGATCTCTCTCTGACAAG -ACGGAAGGATCTCTCTCTAAGCAG -ACGGAAGGATCTCTCTCTCGTCAA -ACGGAAGGATCTCTCTCTGCTGAA -ACGGAAGGATCTCTCTCTAGTACG -ACGGAAGGATCTCTCTCTATCCGA -ACGGAAGGATCTCTCTCTATGGGA -ACGGAAGGATCTCTCTCTGTGCAA -ACGGAAGGATCTCTCTCTGAGGAA -ACGGAAGGATCTCTCTCTCAGGTA -ACGGAAGGATCTCTCTCTGACTCT -ACGGAAGGATCTCTCTCTAGTCCT -ACGGAAGGATCTCTCTCTTAAGCC -ACGGAAGGATCTCTCTCTATAGCC -ACGGAAGGATCTCTCTCTTAACCG -ACGGAAGGATCTCTCTCTATGCCA -ACGGAAGGATCTATCTGGGGAAAC -ACGGAAGGATCTATCTGGAACACC -ACGGAAGGATCTATCTGGATCGAG -ACGGAAGGATCTATCTGGCTCCTT -ACGGAAGGATCTATCTGGCCTGTT -ACGGAAGGATCTATCTGGCGGTTT -ACGGAAGGATCTATCTGGGTGGTT -ACGGAAGGATCTATCTGGGCCTTT -ACGGAAGGATCTATCTGGGGTCTT -ACGGAAGGATCTATCTGGACGCTT -ACGGAAGGATCTATCTGGAGCGTT -ACGGAAGGATCTATCTGGTTCGTC -ACGGAAGGATCTATCTGGTCTCTC -ACGGAAGGATCTATCTGGTGGATC -ACGGAAGGATCTATCTGGCACTTC -ACGGAAGGATCTATCTGGGTACTC -ACGGAAGGATCTATCTGGGATGTC -ACGGAAGGATCTATCTGGACAGTC -ACGGAAGGATCTATCTGGTTGCTG -ACGGAAGGATCTATCTGGTCCATG -ACGGAAGGATCTATCTGGTGTGTG -ACGGAAGGATCTATCTGGCTAGTG -ACGGAAGGATCTATCTGGCATCTG -ACGGAAGGATCTATCTGGGAGTTG -ACGGAAGGATCTATCTGGAGACTG -ACGGAAGGATCTATCTGGTCGGTA -ACGGAAGGATCTATCTGGTGCCTA -ACGGAAGGATCTATCTGGCCACTA -ACGGAAGGATCTATCTGGGGAGTA -ACGGAAGGATCTATCTGGTCGTCT -ACGGAAGGATCTATCTGGTGCACT -ACGGAAGGATCTATCTGGCTGACT -ACGGAAGGATCTATCTGGCAACCT -ACGGAAGGATCTATCTGGGCTACT -ACGGAAGGATCTATCTGGGGATCT -ACGGAAGGATCTATCTGGAAGGCT -ACGGAAGGATCTATCTGGTCAACC -ACGGAAGGATCTATCTGGTGTTCC -ACGGAAGGATCTATCTGGATTCCC -ACGGAAGGATCTATCTGGTTCTCG -ACGGAAGGATCTATCTGGTAGACG -ACGGAAGGATCTATCTGGGTAACG -ACGGAAGGATCTATCTGGACTTCG -ACGGAAGGATCTATCTGGTACGCA -ACGGAAGGATCTATCTGGCTTGCA -ACGGAAGGATCTATCTGGCGAACA -ACGGAAGGATCTATCTGGCAGTCA -ACGGAAGGATCTATCTGGGATCCA -ACGGAAGGATCTATCTGGACGACA -ACGGAAGGATCTATCTGGAGCTCA -ACGGAAGGATCTATCTGGTCACGT -ACGGAAGGATCTATCTGGCGTAGT -ACGGAAGGATCTATCTGGGTCAGT -ACGGAAGGATCTATCTGGGAAGGT -ACGGAAGGATCTATCTGGAACCGT -ACGGAAGGATCTATCTGGTTGTGC -ACGGAAGGATCTATCTGGCTAAGC -ACGGAAGGATCTATCTGGACTAGC -ACGGAAGGATCTATCTGGAGATGC -ACGGAAGGATCTATCTGGTGAAGG -ACGGAAGGATCTATCTGGCAATGG -ACGGAAGGATCTATCTGGATGAGG -ACGGAAGGATCTATCTGGAATGGG -ACGGAAGGATCTATCTGGTCCTGA -ACGGAAGGATCTATCTGGTAGCGA -ACGGAAGGATCTATCTGGCACAGA -ACGGAAGGATCTATCTGGGCAAGA -ACGGAAGGATCTATCTGGGGTTGA -ACGGAAGGATCTATCTGGTCCGAT -ACGGAAGGATCTATCTGGTGGCAT -ACGGAAGGATCTATCTGGCGAGAT -ACGGAAGGATCTATCTGGTACCAC -ACGGAAGGATCTATCTGGCAGAAC -ACGGAAGGATCTATCTGGGTCTAC -ACGGAAGGATCTATCTGGACGTAC -ACGGAAGGATCTATCTGGAGTGAC -ACGGAAGGATCTATCTGGCTGTAG -ACGGAAGGATCTATCTGGCCTAAG -ACGGAAGGATCTATCTGGGTTCAG -ACGGAAGGATCTATCTGGGCATAG -ACGGAAGGATCTATCTGGGACAAG -ACGGAAGGATCTATCTGGAAGCAG -ACGGAAGGATCTATCTGGCGTCAA -ACGGAAGGATCTATCTGGGCTGAA -ACGGAAGGATCTATCTGGAGTACG -ACGGAAGGATCTATCTGGATCCGA -ACGGAAGGATCTATCTGGATGGGA -ACGGAAGGATCTATCTGGGTGCAA -ACGGAAGGATCTATCTGGGAGGAA -ACGGAAGGATCTATCTGGCAGGTA -ACGGAAGGATCTATCTGGGACTCT -ACGGAAGGATCTATCTGGAGTCCT -ACGGAAGGATCTATCTGGTAAGCC -ACGGAAGGATCTATCTGGATAGCC -ACGGAAGGATCTATCTGGTAACCG -ACGGAAGGATCTATCTGGATGCCA -ACGGAAGGATCTTTCCACGGAAAC -ACGGAAGGATCTTTCCACAACACC -ACGGAAGGATCTTTCCACATCGAG -ACGGAAGGATCTTTCCACCTCCTT -ACGGAAGGATCTTTCCACCCTGTT -ACGGAAGGATCTTTCCACCGGTTT -ACGGAAGGATCTTTCCACGTGGTT -ACGGAAGGATCTTTCCACGCCTTT -ACGGAAGGATCTTTCCACGGTCTT -ACGGAAGGATCTTTCCACACGCTT -ACGGAAGGATCTTTCCACAGCGTT -ACGGAAGGATCTTTCCACTTCGTC -ACGGAAGGATCTTTCCACTCTCTC -ACGGAAGGATCTTTCCACTGGATC -ACGGAAGGATCTTTCCACCACTTC -ACGGAAGGATCTTTCCACGTACTC -ACGGAAGGATCTTTCCACGATGTC -ACGGAAGGATCTTTCCACACAGTC -ACGGAAGGATCTTTCCACTTGCTG -ACGGAAGGATCTTTCCACTCCATG -ACGGAAGGATCTTTCCACTGTGTG -ACGGAAGGATCTTTCCACCTAGTG -ACGGAAGGATCTTTCCACCATCTG -ACGGAAGGATCTTTCCACGAGTTG -ACGGAAGGATCTTTCCACAGACTG -ACGGAAGGATCTTTCCACTCGGTA -ACGGAAGGATCTTTCCACTGCCTA -ACGGAAGGATCTTTCCACCCACTA -ACGGAAGGATCTTTCCACGGAGTA -ACGGAAGGATCTTTCCACTCGTCT -ACGGAAGGATCTTTCCACTGCACT -ACGGAAGGATCTTTCCACCTGACT -ACGGAAGGATCTTTCCACCAACCT -ACGGAAGGATCTTTCCACGCTACT -ACGGAAGGATCTTTCCACGGATCT -ACGGAAGGATCTTTCCACAAGGCT -ACGGAAGGATCTTTCCACTCAACC -ACGGAAGGATCTTTCCACTGTTCC -ACGGAAGGATCTTTCCACATTCCC -ACGGAAGGATCTTTCCACTTCTCG -ACGGAAGGATCTTTCCACTAGACG -ACGGAAGGATCTTTCCACGTAACG -ACGGAAGGATCTTTCCACACTTCG -ACGGAAGGATCTTTCCACTACGCA -ACGGAAGGATCTTTCCACCTTGCA -ACGGAAGGATCTTTCCACCGAACA -ACGGAAGGATCTTTCCACCAGTCA -ACGGAAGGATCTTTCCACGATCCA -ACGGAAGGATCTTTCCACACGACA -ACGGAAGGATCTTTCCACAGCTCA -ACGGAAGGATCTTTCCACTCACGT -ACGGAAGGATCTTTCCACCGTAGT -ACGGAAGGATCTTTCCACGTCAGT -ACGGAAGGATCTTTCCACGAAGGT -ACGGAAGGATCTTTCCACAACCGT -ACGGAAGGATCTTTCCACTTGTGC -ACGGAAGGATCTTTCCACCTAAGC -ACGGAAGGATCTTTCCACACTAGC -ACGGAAGGATCTTTCCACAGATGC -ACGGAAGGATCTTTCCACTGAAGG -ACGGAAGGATCTTTCCACCAATGG -ACGGAAGGATCTTTCCACATGAGG -ACGGAAGGATCTTTCCACAATGGG -ACGGAAGGATCTTTCCACTCCTGA -ACGGAAGGATCTTTCCACTAGCGA -ACGGAAGGATCTTTCCACCACAGA -ACGGAAGGATCTTTCCACGCAAGA -ACGGAAGGATCTTTCCACGGTTGA -ACGGAAGGATCTTTCCACTCCGAT -ACGGAAGGATCTTTCCACTGGCAT -ACGGAAGGATCTTTCCACCGAGAT -ACGGAAGGATCTTTCCACTACCAC -ACGGAAGGATCTTTCCACCAGAAC -ACGGAAGGATCTTTCCACGTCTAC -ACGGAAGGATCTTTCCACACGTAC -ACGGAAGGATCTTTCCACAGTGAC -ACGGAAGGATCTTTCCACCTGTAG -ACGGAAGGATCTTTCCACCCTAAG -ACGGAAGGATCTTTCCACGTTCAG -ACGGAAGGATCTTTCCACGCATAG -ACGGAAGGATCTTTCCACGACAAG -ACGGAAGGATCTTTCCACAAGCAG -ACGGAAGGATCTTTCCACCGTCAA -ACGGAAGGATCTTTCCACGCTGAA -ACGGAAGGATCTTTCCACAGTACG -ACGGAAGGATCTTTCCACATCCGA -ACGGAAGGATCTTTCCACATGGGA -ACGGAAGGATCTTTCCACGTGCAA -ACGGAAGGATCTTTCCACGAGGAA -ACGGAAGGATCTTTCCACCAGGTA -ACGGAAGGATCTTTCCACGACTCT -ACGGAAGGATCTTTCCACAGTCCT -ACGGAAGGATCTTTCCACTAAGCC -ACGGAAGGATCTTTCCACATAGCC -ACGGAAGGATCTTTCCACTAACCG -ACGGAAGGATCTTTCCACATGCCA -ACGGAAGGATCTCTCGTAGGAAAC -ACGGAAGGATCTCTCGTAAACACC -ACGGAAGGATCTCTCGTAATCGAG -ACGGAAGGATCTCTCGTACTCCTT -ACGGAAGGATCTCTCGTACCTGTT -ACGGAAGGATCTCTCGTACGGTTT -ACGGAAGGATCTCTCGTAGTGGTT -ACGGAAGGATCTCTCGTAGCCTTT -ACGGAAGGATCTCTCGTAGGTCTT -ACGGAAGGATCTCTCGTAACGCTT -ACGGAAGGATCTCTCGTAAGCGTT -ACGGAAGGATCTCTCGTATTCGTC -ACGGAAGGATCTCTCGTATCTCTC -ACGGAAGGATCTCTCGTATGGATC -ACGGAAGGATCTCTCGTACACTTC -ACGGAAGGATCTCTCGTAGTACTC -ACGGAAGGATCTCTCGTAGATGTC -ACGGAAGGATCTCTCGTAACAGTC -ACGGAAGGATCTCTCGTATTGCTG -ACGGAAGGATCTCTCGTATCCATG -ACGGAAGGATCTCTCGTATGTGTG -ACGGAAGGATCTCTCGTACTAGTG -ACGGAAGGATCTCTCGTACATCTG -ACGGAAGGATCTCTCGTAGAGTTG -ACGGAAGGATCTCTCGTAAGACTG -ACGGAAGGATCTCTCGTATCGGTA -ACGGAAGGATCTCTCGTATGCCTA -ACGGAAGGATCTCTCGTACCACTA -ACGGAAGGATCTCTCGTAGGAGTA -ACGGAAGGATCTCTCGTATCGTCT -ACGGAAGGATCTCTCGTATGCACT -ACGGAAGGATCTCTCGTACTGACT -ACGGAAGGATCTCTCGTACAACCT -ACGGAAGGATCTCTCGTAGCTACT -ACGGAAGGATCTCTCGTAGGATCT -ACGGAAGGATCTCTCGTAAAGGCT -ACGGAAGGATCTCTCGTATCAACC -ACGGAAGGATCTCTCGTATGTTCC -ACGGAAGGATCTCTCGTAATTCCC -ACGGAAGGATCTCTCGTATTCTCG -ACGGAAGGATCTCTCGTATAGACG -ACGGAAGGATCTCTCGTAGTAACG -ACGGAAGGATCTCTCGTAACTTCG -ACGGAAGGATCTCTCGTATACGCA -ACGGAAGGATCTCTCGTACTTGCA -ACGGAAGGATCTCTCGTACGAACA -ACGGAAGGATCTCTCGTACAGTCA -ACGGAAGGATCTCTCGTAGATCCA -ACGGAAGGATCTCTCGTAACGACA -ACGGAAGGATCTCTCGTAAGCTCA -ACGGAAGGATCTCTCGTATCACGT -ACGGAAGGATCTCTCGTACGTAGT -ACGGAAGGATCTCTCGTAGTCAGT -ACGGAAGGATCTCTCGTAGAAGGT -ACGGAAGGATCTCTCGTAAACCGT -ACGGAAGGATCTCTCGTATTGTGC -ACGGAAGGATCTCTCGTACTAAGC -ACGGAAGGATCTCTCGTAACTAGC -ACGGAAGGATCTCTCGTAAGATGC -ACGGAAGGATCTCTCGTATGAAGG -ACGGAAGGATCTCTCGTACAATGG -ACGGAAGGATCTCTCGTAATGAGG -ACGGAAGGATCTCTCGTAAATGGG -ACGGAAGGATCTCTCGTATCCTGA -ACGGAAGGATCTCTCGTATAGCGA -ACGGAAGGATCTCTCGTACACAGA -ACGGAAGGATCTCTCGTAGCAAGA -ACGGAAGGATCTCTCGTAGGTTGA -ACGGAAGGATCTCTCGTATCCGAT -ACGGAAGGATCTCTCGTATGGCAT -ACGGAAGGATCTCTCGTACGAGAT -ACGGAAGGATCTCTCGTATACCAC -ACGGAAGGATCTCTCGTACAGAAC -ACGGAAGGATCTCTCGTAGTCTAC -ACGGAAGGATCTCTCGTAACGTAC -ACGGAAGGATCTCTCGTAAGTGAC -ACGGAAGGATCTCTCGTACTGTAG -ACGGAAGGATCTCTCGTACCTAAG -ACGGAAGGATCTCTCGTAGTTCAG -ACGGAAGGATCTCTCGTAGCATAG -ACGGAAGGATCTCTCGTAGACAAG -ACGGAAGGATCTCTCGTAAAGCAG -ACGGAAGGATCTCTCGTACGTCAA -ACGGAAGGATCTCTCGTAGCTGAA -ACGGAAGGATCTCTCGTAAGTACG -ACGGAAGGATCTCTCGTAATCCGA -ACGGAAGGATCTCTCGTAATGGGA -ACGGAAGGATCTCTCGTAGTGCAA -ACGGAAGGATCTCTCGTAGAGGAA -ACGGAAGGATCTCTCGTACAGGTA -ACGGAAGGATCTCTCGTAGACTCT -ACGGAAGGATCTCTCGTAAGTCCT -ACGGAAGGATCTCTCGTATAAGCC -ACGGAAGGATCTCTCGTAATAGCC -ACGGAAGGATCTCTCGTATAACCG -ACGGAAGGATCTCTCGTAATGCCA -ACGGAAGGATCTGTCGATGGAAAC -ACGGAAGGATCTGTCGATAACACC -ACGGAAGGATCTGTCGATATCGAG -ACGGAAGGATCTGTCGATCTCCTT -ACGGAAGGATCTGTCGATCCTGTT -ACGGAAGGATCTGTCGATCGGTTT -ACGGAAGGATCTGTCGATGTGGTT -ACGGAAGGATCTGTCGATGCCTTT -ACGGAAGGATCTGTCGATGGTCTT -ACGGAAGGATCTGTCGATACGCTT -ACGGAAGGATCTGTCGATAGCGTT -ACGGAAGGATCTGTCGATTTCGTC -ACGGAAGGATCTGTCGATTCTCTC -ACGGAAGGATCTGTCGATTGGATC -ACGGAAGGATCTGTCGATCACTTC -ACGGAAGGATCTGTCGATGTACTC -ACGGAAGGATCTGTCGATGATGTC -ACGGAAGGATCTGTCGATACAGTC -ACGGAAGGATCTGTCGATTTGCTG -ACGGAAGGATCTGTCGATTCCATG -ACGGAAGGATCTGTCGATTGTGTG -ACGGAAGGATCTGTCGATCTAGTG -ACGGAAGGATCTGTCGATCATCTG -ACGGAAGGATCTGTCGATGAGTTG -ACGGAAGGATCTGTCGATAGACTG -ACGGAAGGATCTGTCGATTCGGTA -ACGGAAGGATCTGTCGATTGCCTA -ACGGAAGGATCTGTCGATCCACTA -ACGGAAGGATCTGTCGATGGAGTA -ACGGAAGGATCTGTCGATTCGTCT -ACGGAAGGATCTGTCGATTGCACT -ACGGAAGGATCTGTCGATCTGACT -ACGGAAGGATCTGTCGATCAACCT -ACGGAAGGATCTGTCGATGCTACT -ACGGAAGGATCTGTCGATGGATCT -ACGGAAGGATCTGTCGATAAGGCT -ACGGAAGGATCTGTCGATTCAACC -ACGGAAGGATCTGTCGATTGTTCC -ACGGAAGGATCTGTCGATATTCCC -ACGGAAGGATCTGTCGATTTCTCG -ACGGAAGGATCTGTCGATTAGACG -ACGGAAGGATCTGTCGATGTAACG -ACGGAAGGATCTGTCGATACTTCG -ACGGAAGGATCTGTCGATTACGCA -ACGGAAGGATCTGTCGATCTTGCA -ACGGAAGGATCTGTCGATCGAACA -ACGGAAGGATCTGTCGATCAGTCA -ACGGAAGGATCTGTCGATGATCCA -ACGGAAGGATCTGTCGATACGACA -ACGGAAGGATCTGTCGATAGCTCA -ACGGAAGGATCTGTCGATTCACGT -ACGGAAGGATCTGTCGATCGTAGT -ACGGAAGGATCTGTCGATGTCAGT -ACGGAAGGATCTGTCGATGAAGGT -ACGGAAGGATCTGTCGATAACCGT -ACGGAAGGATCTGTCGATTTGTGC -ACGGAAGGATCTGTCGATCTAAGC -ACGGAAGGATCTGTCGATACTAGC -ACGGAAGGATCTGTCGATAGATGC -ACGGAAGGATCTGTCGATTGAAGG -ACGGAAGGATCTGTCGATCAATGG -ACGGAAGGATCTGTCGATATGAGG -ACGGAAGGATCTGTCGATAATGGG -ACGGAAGGATCTGTCGATTCCTGA -ACGGAAGGATCTGTCGATTAGCGA -ACGGAAGGATCTGTCGATCACAGA -ACGGAAGGATCTGTCGATGCAAGA -ACGGAAGGATCTGTCGATGGTTGA -ACGGAAGGATCTGTCGATTCCGAT -ACGGAAGGATCTGTCGATTGGCAT -ACGGAAGGATCTGTCGATCGAGAT -ACGGAAGGATCTGTCGATTACCAC -ACGGAAGGATCTGTCGATCAGAAC -ACGGAAGGATCTGTCGATGTCTAC -ACGGAAGGATCTGTCGATACGTAC -ACGGAAGGATCTGTCGATAGTGAC -ACGGAAGGATCTGTCGATCTGTAG -ACGGAAGGATCTGTCGATCCTAAG -ACGGAAGGATCTGTCGATGTTCAG -ACGGAAGGATCTGTCGATGCATAG -ACGGAAGGATCTGTCGATGACAAG -ACGGAAGGATCTGTCGATAAGCAG -ACGGAAGGATCTGTCGATCGTCAA -ACGGAAGGATCTGTCGATGCTGAA -ACGGAAGGATCTGTCGATAGTACG -ACGGAAGGATCTGTCGATATCCGA -ACGGAAGGATCTGTCGATATGGGA -ACGGAAGGATCTGTCGATGTGCAA -ACGGAAGGATCTGTCGATGAGGAA -ACGGAAGGATCTGTCGATCAGGTA -ACGGAAGGATCTGTCGATGACTCT -ACGGAAGGATCTGTCGATAGTCCT -ACGGAAGGATCTGTCGATTAAGCC -ACGGAAGGATCTGTCGATATAGCC -ACGGAAGGATCTGTCGATTAACCG -ACGGAAGGATCTGTCGATATGCCA -ACGGAAGGATCTGTCACAGGAAAC -ACGGAAGGATCTGTCACAAACACC -ACGGAAGGATCTGTCACAATCGAG -ACGGAAGGATCTGTCACACTCCTT -ACGGAAGGATCTGTCACACCTGTT -ACGGAAGGATCTGTCACACGGTTT -ACGGAAGGATCTGTCACAGTGGTT -ACGGAAGGATCTGTCACAGCCTTT -ACGGAAGGATCTGTCACAGGTCTT -ACGGAAGGATCTGTCACAACGCTT -ACGGAAGGATCTGTCACAAGCGTT -ACGGAAGGATCTGTCACATTCGTC -ACGGAAGGATCTGTCACATCTCTC -ACGGAAGGATCTGTCACATGGATC -ACGGAAGGATCTGTCACACACTTC -ACGGAAGGATCTGTCACAGTACTC -ACGGAAGGATCTGTCACAGATGTC -ACGGAAGGATCTGTCACAACAGTC -ACGGAAGGATCTGTCACATTGCTG -ACGGAAGGATCTGTCACATCCATG -ACGGAAGGATCTGTCACATGTGTG -ACGGAAGGATCTGTCACACTAGTG -ACGGAAGGATCTGTCACACATCTG -ACGGAAGGATCTGTCACAGAGTTG -ACGGAAGGATCTGTCACAAGACTG -ACGGAAGGATCTGTCACATCGGTA -ACGGAAGGATCTGTCACATGCCTA -ACGGAAGGATCTGTCACACCACTA -ACGGAAGGATCTGTCACAGGAGTA -ACGGAAGGATCTGTCACATCGTCT -ACGGAAGGATCTGTCACATGCACT -ACGGAAGGATCTGTCACACTGACT -ACGGAAGGATCTGTCACACAACCT -ACGGAAGGATCTGTCACAGCTACT -ACGGAAGGATCTGTCACAGGATCT -ACGGAAGGATCTGTCACAAAGGCT -ACGGAAGGATCTGTCACATCAACC -ACGGAAGGATCTGTCACATGTTCC -ACGGAAGGATCTGTCACAATTCCC -ACGGAAGGATCTGTCACATTCTCG -ACGGAAGGATCTGTCACATAGACG -ACGGAAGGATCTGTCACAGTAACG -ACGGAAGGATCTGTCACAACTTCG -ACGGAAGGATCTGTCACATACGCA -ACGGAAGGATCTGTCACACTTGCA -ACGGAAGGATCTGTCACACGAACA -ACGGAAGGATCTGTCACACAGTCA -ACGGAAGGATCTGTCACAGATCCA -ACGGAAGGATCTGTCACAACGACA -ACGGAAGGATCTGTCACAAGCTCA -ACGGAAGGATCTGTCACATCACGT -ACGGAAGGATCTGTCACACGTAGT -ACGGAAGGATCTGTCACAGTCAGT -ACGGAAGGATCTGTCACAGAAGGT -ACGGAAGGATCTGTCACAAACCGT -ACGGAAGGATCTGTCACATTGTGC -ACGGAAGGATCTGTCACACTAAGC -ACGGAAGGATCTGTCACAACTAGC -ACGGAAGGATCTGTCACAAGATGC -ACGGAAGGATCTGTCACATGAAGG -ACGGAAGGATCTGTCACACAATGG -ACGGAAGGATCTGTCACAATGAGG -ACGGAAGGATCTGTCACAAATGGG -ACGGAAGGATCTGTCACATCCTGA -ACGGAAGGATCTGTCACATAGCGA -ACGGAAGGATCTGTCACACACAGA -ACGGAAGGATCTGTCACAGCAAGA -ACGGAAGGATCTGTCACAGGTTGA -ACGGAAGGATCTGTCACATCCGAT -ACGGAAGGATCTGTCACATGGCAT -ACGGAAGGATCTGTCACACGAGAT -ACGGAAGGATCTGTCACATACCAC -ACGGAAGGATCTGTCACACAGAAC -ACGGAAGGATCTGTCACAGTCTAC -ACGGAAGGATCTGTCACAACGTAC -ACGGAAGGATCTGTCACAAGTGAC -ACGGAAGGATCTGTCACACTGTAG -ACGGAAGGATCTGTCACACCTAAG -ACGGAAGGATCTGTCACAGTTCAG -ACGGAAGGATCTGTCACAGCATAG -ACGGAAGGATCTGTCACAGACAAG -ACGGAAGGATCTGTCACAAAGCAG -ACGGAAGGATCTGTCACACGTCAA -ACGGAAGGATCTGTCACAGCTGAA -ACGGAAGGATCTGTCACAAGTACG -ACGGAAGGATCTGTCACAATCCGA -ACGGAAGGATCTGTCACAATGGGA -ACGGAAGGATCTGTCACAGTGCAA -ACGGAAGGATCTGTCACAGAGGAA -ACGGAAGGATCTGTCACACAGGTA -ACGGAAGGATCTGTCACAGACTCT -ACGGAAGGATCTGTCACAAGTCCT -ACGGAAGGATCTGTCACATAAGCC -ACGGAAGGATCTGTCACAATAGCC -ACGGAAGGATCTGTCACATAACCG -ACGGAAGGATCTGTCACAATGCCA -ACGGAAGGATCTCTGTTGGGAAAC -ACGGAAGGATCTCTGTTGAACACC -ACGGAAGGATCTCTGTTGATCGAG -ACGGAAGGATCTCTGTTGCTCCTT -ACGGAAGGATCTCTGTTGCCTGTT -ACGGAAGGATCTCTGTTGCGGTTT -ACGGAAGGATCTCTGTTGGTGGTT -ACGGAAGGATCTCTGTTGGCCTTT -ACGGAAGGATCTCTGTTGGGTCTT -ACGGAAGGATCTCTGTTGACGCTT -ACGGAAGGATCTCTGTTGAGCGTT -ACGGAAGGATCTCTGTTGTTCGTC -ACGGAAGGATCTCTGTTGTCTCTC -ACGGAAGGATCTCTGTTGTGGATC -ACGGAAGGATCTCTGTTGCACTTC -ACGGAAGGATCTCTGTTGGTACTC -ACGGAAGGATCTCTGTTGGATGTC -ACGGAAGGATCTCTGTTGACAGTC -ACGGAAGGATCTCTGTTGTTGCTG -ACGGAAGGATCTCTGTTGTCCATG -ACGGAAGGATCTCTGTTGTGTGTG -ACGGAAGGATCTCTGTTGCTAGTG -ACGGAAGGATCTCTGTTGCATCTG -ACGGAAGGATCTCTGTTGGAGTTG -ACGGAAGGATCTCTGTTGAGACTG -ACGGAAGGATCTCTGTTGTCGGTA -ACGGAAGGATCTCTGTTGTGCCTA -ACGGAAGGATCTCTGTTGCCACTA -ACGGAAGGATCTCTGTTGGGAGTA -ACGGAAGGATCTCTGTTGTCGTCT -ACGGAAGGATCTCTGTTGTGCACT -ACGGAAGGATCTCTGTTGCTGACT -ACGGAAGGATCTCTGTTGCAACCT -ACGGAAGGATCTCTGTTGGCTACT -ACGGAAGGATCTCTGTTGGGATCT -ACGGAAGGATCTCTGTTGAAGGCT -ACGGAAGGATCTCTGTTGTCAACC -ACGGAAGGATCTCTGTTGTGTTCC -ACGGAAGGATCTCTGTTGATTCCC -ACGGAAGGATCTCTGTTGTTCTCG -ACGGAAGGATCTCTGTTGTAGACG -ACGGAAGGATCTCTGTTGGTAACG -ACGGAAGGATCTCTGTTGACTTCG -ACGGAAGGATCTCTGTTGTACGCA -ACGGAAGGATCTCTGTTGCTTGCA -ACGGAAGGATCTCTGTTGCGAACA -ACGGAAGGATCTCTGTTGCAGTCA -ACGGAAGGATCTCTGTTGGATCCA -ACGGAAGGATCTCTGTTGACGACA -ACGGAAGGATCTCTGTTGAGCTCA -ACGGAAGGATCTCTGTTGTCACGT -ACGGAAGGATCTCTGTTGCGTAGT -ACGGAAGGATCTCTGTTGGTCAGT -ACGGAAGGATCTCTGTTGGAAGGT -ACGGAAGGATCTCTGTTGAACCGT -ACGGAAGGATCTCTGTTGTTGTGC -ACGGAAGGATCTCTGTTGCTAAGC -ACGGAAGGATCTCTGTTGACTAGC -ACGGAAGGATCTCTGTTGAGATGC -ACGGAAGGATCTCTGTTGTGAAGG -ACGGAAGGATCTCTGTTGCAATGG -ACGGAAGGATCTCTGTTGATGAGG -ACGGAAGGATCTCTGTTGAATGGG -ACGGAAGGATCTCTGTTGTCCTGA -ACGGAAGGATCTCTGTTGTAGCGA -ACGGAAGGATCTCTGTTGCACAGA -ACGGAAGGATCTCTGTTGGCAAGA -ACGGAAGGATCTCTGTTGGGTTGA -ACGGAAGGATCTCTGTTGTCCGAT -ACGGAAGGATCTCTGTTGTGGCAT -ACGGAAGGATCTCTGTTGCGAGAT -ACGGAAGGATCTCTGTTGTACCAC -ACGGAAGGATCTCTGTTGCAGAAC -ACGGAAGGATCTCTGTTGGTCTAC -ACGGAAGGATCTCTGTTGACGTAC -ACGGAAGGATCTCTGTTGAGTGAC -ACGGAAGGATCTCTGTTGCTGTAG -ACGGAAGGATCTCTGTTGCCTAAG -ACGGAAGGATCTCTGTTGGTTCAG -ACGGAAGGATCTCTGTTGGCATAG -ACGGAAGGATCTCTGTTGGACAAG -ACGGAAGGATCTCTGTTGAAGCAG -ACGGAAGGATCTCTGTTGCGTCAA -ACGGAAGGATCTCTGTTGGCTGAA -ACGGAAGGATCTCTGTTGAGTACG -ACGGAAGGATCTCTGTTGATCCGA -ACGGAAGGATCTCTGTTGATGGGA -ACGGAAGGATCTCTGTTGGTGCAA -ACGGAAGGATCTCTGTTGGAGGAA -ACGGAAGGATCTCTGTTGCAGGTA -ACGGAAGGATCTCTGTTGGACTCT -ACGGAAGGATCTCTGTTGAGTCCT -ACGGAAGGATCTCTGTTGTAAGCC -ACGGAAGGATCTCTGTTGATAGCC -ACGGAAGGATCTCTGTTGTAACCG -ACGGAAGGATCTCTGTTGATGCCA -ACGGAAGGATCTATGTCCGGAAAC -ACGGAAGGATCTATGTCCAACACC -ACGGAAGGATCTATGTCCATCGAG -ACGGAAGGATCTATGTCCCTCCTT -ACGGAAGGATCTATGTCCCCTGTT -ACGGAAGGATCTATGTCCCGGTTT -ACGGAAGGATCTATGTCCGTGGTT -ACGGAAGGATCTATGTCCGCCTTT -ACGGAAGGATCTATGTCCGGTCTT -ACGGAAGGATCTATGTCCACGCTT -ACGGAAGGATCTATGTCCAGCGTT -ACGGAAGGATCTATGTCCTTCGTC -ACGGAAGGATCTATGTCCTCTCTC -ACGGAAGGATCTATGTCCTGGATC -ACGGAAGGATCTATGTCCCACTTC -ACGGAAGGATCTATGTCCGTACTC -ACGGAAGGATCTATGTCCGATGTC -ACGGAAGGATCTATGTCCACAGTC -ACGGAAGGATCTATGTCCTTGCTG -ACGGAAGGATCTATGTCCTCCATG -ACGGAAGGATCTATGTCCTGTGTG -ACGGAAGGATCTATGTCCCTAGTG -ACGGAAGGATCTATGTCCCATCTG -ACGGAAGGATCTATGTCCGAGTTG -ACGGAAGGATCTATGTCCAGACTG -ACGGAAGGATCTATGTCCTCGGTA -ACGGAAGGATCTATGTCCTGCCTA -ACGGAAGGATCTATGTCCCCACTA -ACGGAAGGATCTATGTCCGGAGTA -ACGGAAGGATCTATGTCCTCGTCT -ACGGAAGGATCTATGTCCTGCACT -ACGGAAGGATCTATGTCCCTGACT -ACGGAAGGATCTATGTCCCAACCT -ACGGAAGGATCTATGTCCGCTACT -ACGGAAGGATCTATGTCCGGATCT -ACGGAAGGATCTATGTCCAAGGCT -ACGGAAGGATCTATGTCCTCAACC -ACGGAAGGATCTATGTCCTGTTCC -ACGGAAGGATCTATGTCCATTCCC -ACGGAAGGATCTATGTCCTTCTCG -ACGGAAGGATCTATGTCCTAGACG -ACGGAAGGATCTATGTCCGTAACG -ACGGAAGGATCTATGTCCACTTCG -ACGGAAGGATCTATGTCCTACGCA -ACGGAAGGATCTATGTCCCTTGCA -ACGGAAGGATCTATGTCCCGAACA -ACGGAAGGATCTATGTCCCAGTCA -ACGGAAGGATCTATGTCCGATCCA -ACGGAAGGATCTATGTCCACGACA -ACGGAAGGATCTATGTCCAGCTCA -ACGGAAGGATCTATGTCCTCACGT -ACGGAAGGATCTATGTCCCGTAGT -ACGGAAGGATCTATGTCCGTCAGT -ACGGAAGGATCTATGTCCGAAGGT -ACGGAAGGATCTATGTCCAACCGT -ACGGAAGGATCTATGTCCTTGTGC -ACGGAAGGATCTATGTCCCTAAGC -ACGGAAGGATCTATGTCCACTAGC -ACGGAAGGATCTATGTCCAGATGC -ACGGAAGGATCTATGTCCTGAAGG -ACGGAAGGATCTATGTCCCAATGG -ACGGAAGGATCTATGTCCATGAGG -ACGGAAGGATCTATGTCCAATGGG -ACGGAAGGATCTATGTCCTCCTGA -ACGGAAGGATCTATGTCCTAGCGA -ACGGAAGGATCTATGTCCCACAGA -ACGGAAGGATCTATGTCCGCAAGA -ACGGAAGGATCTATGTCCGGTTGA -ACGGAAGGATCTATGTCCTCCGAT -ACGGAAGGATCTATGTCCTGGCAT -ACGGAAGGATCTATGTCCCGAGAT -ACGGAAGGATCTATGTCCTACCAC -ACGGAAGGATCTATGTCCCAGAAC -ACGGAAGGATCTATGTCCGTCTAC -ACGGAAGGATCTATGTCCACGTAC -ACGGAAGGATCTATGTCCAGTGAC -ACGGAAGGATCTATGTCCCTGTAG -ACGGAAGGATCTATGTCCCCTAAG -ACGGAAGGATCTATGTCCGTTCAG -ACGGAAGGATCTATGTCCGCATAG -ACGGAAGGATCTATGTCCGACAAG -ACGGAAGGATCTATGTCCAAGCAG -ACGGAAGGATCTATGTCCCGTCAA -ACGGAAGGATCTATGTCCGCTGAA -ACGGAAGGATCTATGTCCAGTACG -ACGGAAGGATCTATGTCCATCCGA -ACGGAAGGATCTATGTCCATGGGA -ACGGAAGGATCTATGTCCGTGCAA -ACGGAAGGATCTATGTCCGAGGAA -ACGGAAGGATCTATGTCCCAGGTA -ACGGAAGGATCTATGTCCGACTCT -ACGGAAGGATCTATGTCCAGTCCT -ACGGAAGGATCTATGTCCTAAGCC -ACGGAAGGATCTATGTCCATAGCC -ACGGAAGGATCTATGTCCTAACCG -ACGGAAGGATCTATGTCCATGCCA -ACGGAAGGATCTGTGTGTGGAAAC -ACGGAAGGATCTGTGTGTAACACC -ACGGAAGGATCTGTGTGTATCGAG -ACGGAAGGATCTGTGTGTCTCCTT -ACGGAAGGATCTGTGTGTCCTGTT -ACGGAAGGATCTGTGTGTCGGTTT -ACGGAAGGATCTGTGTGTGTGGTT -ACGGAAGGATCTGTGTGTGCCTTT -ACGGAAGGATCTGTGTGTGGTCTT -ACGGAAGGATCTGTGTGTACGCTT -ACGGAAGGATCTGTGTGTAGCGTT -ACGGAAGGATCTGTGTGTTTCGTC -ACGGAAGGATCTGTGTGTTCTCTC -ACGGAAGGATCTGTGTGTTGGATC -ACGGAAGGATCTGTGTGTCACTTC -ACGGAAGGATCTGTGTGTGTACTC -ACGGAAGGATCTGTGTGTGATGTC -ACGGAAGGATCTGTGTGTACAGTC -ACGGAAGGATCTGTGTGTTTGCTG -ACGGAAGGATCTGTGTGTTCCATG -ACGGAAGGATCTGTGTGTTGTGTG -ACGGAAGGATCTGTGTGTCTAGTG -ACGGAAGGATCTGTGTGTCATCTG -ACGGAAGGATCTGTGTGTGAGTTG -ACGGAAGGATCTGTGTGTAGACTG -ACGGAAGGATCTGTGTGTTCGGTA -ACGGAAGGATCTGTGTGTTGCCTA -ACGGAAGGATCTGTGTGTCCACTA -ACGGAAGGATCTGTGTGTGGAGTA -ACGGAAGGATCTGTGTGTTCGTCT -ACGGAAGGATCTGTGTGTTGCACT -ACGGAAGGATCTGTGTGTCTGACT -ACGGAAGGATCTGTGTGTCAACCT -ACGGAAGGATCTGTGTGTGCTACT -ACGGAAGGATCTGTGTGTGGATCT -ACGGAAGGATCTGTGTGTAAGGCT -ACGGAAGGATCTGTGTGTTCAACC -ACGGAAGGATCTGTGTGTTGTTCC -ACGGAAGGATCTGTGTGTATTCCC -ACGGAAGGATCTGTGTGTTTCTCG -ACGGAAGGATCTGTGTGTTAGACG -ACGGAAGGATCTGTGTGTGTAACG -ACGGAAGGATCTGTGTGTACTTCG -ACGGAAGGATCTGTGTGTTACGCA -ACGGAAGGATCTGTGTGTCTTGCA -ACGGAAGGATCTGTGTGTCGAACA -ACGGAAGGATCTGTGTGTCAGTCA -ACGGAAGGATCTGTGTGTGATCCA -ACGGAAGGATCTGTGTGTACGACA -ACGGAAGGATCTGTGTGTAGCTCA -ACGGAAGGATCTGTGTGTTCACGT -ACGGAAGGATCTGTGTGTCGTAGT -ACGGAAGGATCTGTGTGTGTCAGT -ACGGAAGGATCTGTGTGTGAAGGT -ACGGAAGGATCTGTGTGTAACCGT -ACGGAAGGATCTGTGTGTTTGTGC -ACGGAAGGATCTGTGTGTCTAAGC -ACGGAAGGATCTGTGTGTACTAGC -ACGGAAGGATCTGTGTGTAGATGC -ACGGAAGGATCTGTGTGTTGAAGG -ACGGAAGGATCTGTGTGTCAATGG -ACGGAAGGATCTGTGTGTATGAGG -ACGGAAGGATCTGTGTGTAATGGG -ACGGAAGGATCTGTGTGTTCCTGA -ACGGAAGGATCTGTGTGTTAGCGA -ACGGAAGGATCTGTGTGTCACAGA -ACGGAAGGATCTGTGTGTGCAAGA -ACGGAAGGATCTGTGTGTGGTTGA -ACGGAAGGATCTGTGTGTTCCGAT -ACGGAAGGATCTGTGTGTTGGCAT -ACGGAAGGATCTGTGTGTCGAGAT -ACGGAAGGATCTGTGTGTTACCAC -ACGGAAGGATCTGTGTGTCAGAAC -ACGGAAGGATCTGTGTGTGTCTAC -ACGGAAGGATCTGTGTGTACGTAC -ACGGAAGGATCTGTGTGTAGTGAC -ACGGAAGGATCTGTGTGTCTGTAG -ACGGAAGGATCTGTGTGTCCTAAG -ACGGAAGGATCTGTGTGTGTTCAG -ACGGAAGGATCTGTGTGTGCATAG -ACGGAAGGATCTGTGTGTGACAAG -ACGGAAGGATCTGTGTGTAAGCAG -ACGGAAGGATCTGTGTGTCGTCAA -ACGGAAGGATCTGTGTGTGCTGAA -ACGGAAGGATCTGTGTGTAGTACG -ACGGAAGGATCTGTGTGTATCCGA -ACGGAAGGATCTGTGTGTATGGGA -ACGGAAGGATCTGTGTGTGTGCAA -ACGGAAGGATCTGTGTGTGAGGAA -ACGGAAGGATCTGTGTGTCAGGTA -ACGGAAGGATCTGTGTGTGACTCT -ACGGAAGGATCTGTGTGTAGTCCT -ACGGAAGGATCTGTGTGTTAAGCC -ACGGAAGGATCTGTGTGTATAGCC -ACGGAAGGATCTGTGTGTTAACCG -ACGGAAGGATCTGTGTGTATGCCA -ACGGAAGGATCTGTGCTAGGAAAC -ACGGAAGGATCTGTGCTAAACACC -ACGGAAGGATCTGTGCTAATCGAG -ACGGAAGGATCTGTGCTACTCCTT -ACGGAAGGATCTGTGCTACCTGTT -ACGGAAGGATCTGTGCTACGGTTT -ACGGAAGGATCTGTGCTAGTGGTT -ACGGAAGGATCTGTGCTAGCCTTT -ACGGAAGGATCTGTGCTAGGTCTT -ACGGAAGGATCTGTGCTAACGCTT -ACGGAAGGATCTGTGCTAAGCGTT -ACGGAAGGATCTGTGCTATTCGTC -ACGGAAGGATCTGTGCTATCTCTC -ACGGAAGGATCTGTGCTATGGATC -ACGGAAGGATCTGTGCTACACTTC -ACGGAAGGATCTGTGCTAGTACTC -ACGGAAGGATCTGTGCTAGATGTC -ACGGAAGGATCTGTGCTAACAGTC -ACGGAAGGATCTGTGCTATTGCTG -ACGGAAGGATCTGTGCTATCCATG -ACGGAAGGATCTGTGCTATGTGTG -ACGGAAGGATCTGTGCTACTAGTG -ACGGAAGGATCTGTGCTACATCTG -ACGGAAGGATCTGTGCTAGAGTTG -ACGGAAGGATCTGTGCTAAGACTG -ACGGAAGGATCTGTGCTATCGGTA -ACGGAAGGATCTGTGCTATGCCTA -ACGGAAGGATCTGTGCTACCACTA -ACGGAAGGATCTGTGCTAGGAGTA -ACGGAAGGATCTGTGCTATCGTCT -ACGGAAGGATCTGTGCTATGCACT -ACGGAAGGATCTGTGCTACTGACT -ACGGAAGGATCTGTGCTACAACCT -ACGGAAGGATCTGTGCTAGCTACT -ACGGAAGGATCTGTGCTAGGATCT -ACGGAAGGATCTGTGCTAAAGGCT -ACGGAAGGATCTGTGCTATCAACC -ACGGAAGGATCTGTGCTATGTTCC -ACGGAAGGATCTGTGCTAATTCCC -ACGGAAGGATCTGTGCTATTCTCG -ACGGAAGGATCTGTGCTATAGACG -ACGGAAGGATCTGTGCTAGTAACG -ACGGAAGGATCTGTGCTAACTTCG -ACGGAAGGATCTGTGCTATACGCA -ACGGAAGGATCTGTGCTACTTGCA -ACGGAAGGATCTGTGCTACGAACA -ACGGAAGGATCTGTGCTACAGTCA -ACGGAAGGATCTGTGCTAGATCCA -ACGGAAGGATCTGTGCTAACGACA -ACGGAAGGATCTGTGCTAAGCTCA -ACGGAAGGATCTGTGCTATCACGT -ACGGAAGGATCTGTGCTACGTAGT -ACGGAAGGATCTGTGCTAGTCAGT -ACGGAAGGATCTGTGCTAGAAGGT -ACGGAAGGATCTGTGCTAAACCGT -ACGGAAGGATCTGTGCTATTGTGC -ACGGAAGGATCTGTGCTACTAAGC -ACGGAAGGATCTGTGCTAACTAGC -ACGGAAGGATCTGTGCTAAGATGC -ACGGAAGGATCTGTGCTATGAAGG -ACGGAAGGATCTGTGCTACAATGG -ACGGAAGGATCTGTGCTAATGAGG -ACGGAAGGATCTGTGCTAAATGGG -ACGGAAGGATCTGTGCTATCCTGA -ACGGAAGGATCTGTGCTATAGCGA -ACGGAAGGATCTGTGCTACACAGA -ACGGAAGGATCTGTGCTAGCAAGA -ACGGAAGGATCTGTGCTAGGTTGA -ACGGAAGGATCTGTGCTATCCGAT -ACGGAAGGATCTGTGCTATGGCAT -ACGGAAGGATCTGTGCTACGAGAT -ACGGAAGGATCTGTGCTATACCAC -ACGGAAGGATCTGTGCTACAGAAC -ACGGAAGGATCTGTGCTAGTCTAC -ACGGAAGGATCTGTGCTAACGTAC -ACGGAAGGATCTGTGCTAAGTGAC -ACGGAAGGATCTGTGCTACTGTAG -ACGGAAGGATCTGTGCTACCTAAG -ACGGAAGGATCTGTGCTAGTTCAG -ACGGAAGGATCTGTGCTAGCATAG -ACGGAAGGATCTGTGCTAGACAAG -ACGGAAGGATCTGTGCTAAAGCAG -ACGGAAGGATCTGTGCTACGTCAA -ACGGAAGGATCTGTGCTAGCTGAA -ACGGAAGGATCTGTGCTAAGTACG -ACGGAAGGATCTGTGCTAATCCGA -ACGGAAGGATCTGTGCTAATGGGA -ACGGAAGGATCTGTGCTAGTGCAA -ACGGAAGGATCTGTGCTAGAGGAA -ACGGAAGGATCTGTGCTACAGGTA -ACGGAAGGATCTGTGCTAGACTCT -ACGGAAGGATCTGTGCTAAGTCCT -ACGGAAGGATCTGTGCTATAAGCC -ACGGAAGGATCTGTGCTAATAGCC -ACGGAAGGATCTGTGCTATAACCG -ACGGAAGGATCTGTGCTAATGCCA -ACGGAAGGATCTCTGCATGGAAAC -ACGGAAGGATCTCTGCATAACACC -ACGGAAGGATCTCTGCATATCGAG -ACGGAAGGATCTCTGCATCTCCTT -ACGGAAGGATCTCTGCATCCTGTT -ACGGAAGGATCTCTGCATCGGTTT -ACGGAAGGATCTCTGCATGTGGTT -ACGGAAGGATCTCTGCATGCCTTT -ACGGAAGGATCTCTGCATGGTCTT -ACGGAAGGATCTCTGCATACGCTT -ACGGAAGGATCTCTGCATAGCGTT -ACGGAAGGATCTCTGCATTTCGTC -ACGGAAGGATCTCTGCATTCTCTC -ACGGAAGGATCTCTGCATTGGATC -ACGGAAGGATCTCTGCATCACTTC -ACGGAAGGATCTCTGCATGTACTC -ACGGAAGGATCTCTGCATGATGTC -ACGGAAGGATCTCTGCATACAGTC -ACGGAAGGATCTCTGCATTTGCTG -ACGGAAGGATCTCTGCATTCCATG -ACGGAAGGATCTCTGCATTGTGTG -ACGGAAGGATCTCTGCATCTAGTG -ACGGAAGGATCTCTGCATCATCTG -ACGGAAGGATCTCTGCATGAGTTG -ACGGAAGGATCTCTGCATAGACTG -ACGGAAGGATCTCTGCATTCGGTA -ACGGAAGGATCTCTGCATTGCCTA -ACGGAAGGATCTCTGCATCCACTA -ACGGAAGGATCTCTGCATGGAGTA -ACGGAAGGATCTCTGCATTCGTCT -ACGGAAGGATCTCTGCATTGCACT -ACGGAAGGATCTCTGCATCTGACT -ACGGAAGGATCTCTGCATCAACCT -ACGGAAGGATCTCTGCATGCTACT -ACGGAAGGATCTCTGCATGGATCT -ACGGAAGGATCTCTGCATAAGGCT -ACGGAAGGATCTCTGCATTCAACC -ACGGAAGGATCTCTGCATTGTTCC -ACGGAAGGATCTCTGCATATTCCC -ACGGAAGGATCTCTGCATTTCTCG -ACGGAAGGATCTCTGCATTAGACG -ACGGAAGGATCTCTGCATGTAACG -ACGGAAGGATCTCTGCATACTTCG -ACGGAAGGATCTCTGCATTACGCA -ACGGAAGGATCTCTGCATCTTGCA -ACGGAAGGATCTCTGCATCGAACA -ACGGAAGGATCTCTGCATCAGTCA -ACGGAAGGATCTCTGCATGATCCA -ACGGAAGGATCTCTGCATACGACA -ACGGAAGGATCTCTGCATAGCTCA -ACGGAAGGATCTCTGCATTCACGT -ACGGAAGGATCTCTGCATCGTAGT -ACGGAAGGATCTCTGCATGTCAGT -ACGGAAGGATCTCTGCATGAAGGT -ACGGAAGGATCTCTGCATAACCGT -ACGGAAGGATCTCTGCATTTGTGC -ACGGAAGGATCTCTGCATCTAAGC -ACGGAAGGATCTCTGCATACTAGC -ACGGAAGGATCTCTGCATAGATGC -ACGGAAGGATCTCTGCATTGAAGG -ACGGAAGGATCTCTGCATCAATGG -ACGGAAGGATCTCTGCATATGAGG -ACGGAAGGATCTCTGCATAATGGG -ACGGAAGGATCTCTGCATTCCTGA -ACGGAAGGATCTCTGCATTAGCGA -ACGGAAGGATCTCTGCATCACAGA -ACGGAAGGATCTCTGCATGCAAGA -ACGGAAGGATCTCTGCATGGTTGA -ACGGAAGGATCTCTGCATTCCGAT -ACGGAAGGATCTCTGCATTGGCAT -ACGGAAGGATCTCTGCATCGAGAT -ACGGAAGGATCTCTGCATTACCAC -ACGGAAGGATCTCTGCATCAGAAC -ACGGAAGGATCTCTGCATGTCTAC -ACGGAAGGATCTCTGCATACGTAC -ACGGAAGGATCTCTGCATAGTGAC -ACGGAAGGATCTCTGCATCTGTAG -ACGGAAGGATCTCTGCATCCTAAG -ACGGAAGGATCTCTGCATGTTCAG -ACGGAAGGATCTCTGCATGCATAG -ACGGAAGGATCTCTGCATGACAAG -ACGGAAGGATCTCTGCATAAGCAG -ACGGAAGGATCTCTGCATCGTCAA -ACGGAAGGATCTCTGCATGCTGAA -ACGGAAGGATCTCTGCATAGTACG -ACGGAAGGATCTCTGCATATCCGA -ACGGAAGGATCTCTGCATATGGGA -ACGGAAGGATCTCTGCATGTGCAA -ACGGAAGGATCTCTGCATGAGGAA -ACGGAAGGATCTCTGCATCAGGTA -ACGGAAGGATCTCTGCATGACTCT -ACGGAAGGATCTCTGCATAGTCCT -ACGGAAGGATCTCTGCATTAAGCC -ACGGAAGGATCTCTGCATATAGCC -ACGGAAGGATCTCTGCATTAACCG -ACGGAAGGATCTCTGCATATGCCA -ACGGAAGGATCTTTGGAGGGAAAC -ACGGAAGGATCTTTGGAGAACACC -ACGGAAGGATCTTTGGAGATCGAG -ACGGAAGGATCTTTGGAGCTCCTT -ACGGAAGGATCTTTGGAGCCTGTT -ACGGAAGGATCTTTGGAGCGGTTT -ACGGAAGGATCTTTGGAGGTGGTT -ACGGAAGGATCTTTGGAGGCCTTT -ACGGAAGGATCTTTGGAGGGTCTT -ACGGAAGGATCTTTGGAGACGCTT -ACGGAAGGATCTTTGGAGAGCGTT -ACGGAAGGATCTTTGGAGTTCGTC -ACGGAAGGATCTTTGGAGTCTCTC -ACGGAAGGATCTTTGGAGTGGATC -ACGGAAGGATCTTTGGAGCACTTC -ACGGAAGGATCTTTGGAGGTACTC -ACGGAAGGATCTTTGGAGGATGTC -ACGGAAGGATCTTTGGAGACAGTC -ACGGAAGGATCTTTGGAGTTGCTG -ACGGAAGGATCTTTGGAGTCCATG -ACGGAAGGATCTTTGGAGTGTGTG -ACGGAAGGATCTTTGGAGCTAGTG -ACGGAAGGATCTTTGGAGCATCTG -ACGGAAGGATCTTTGGAGGAGTTG -ACGGAAGGATCTTTGGAGAGACTG -ACGGAAGGATCTTTGGAGTCGGTA -ACGGAAGGATCTTTGGAGTGCCTA -ACGGAAGGATCTTTGGAGCCACTA -ACGGAAGGATCTTTGGAGGGAGTA -ACGGAAGGATCTTTGGAGTCGTCT -ACGGAAGGATCTTTGGAGTGCACT -ACGGAAGGATCTTTGGAGCTGACT -ACGGAAGGATCTTTGGAGCAACCT -ACGGAAGGATCTTTGGAGGCTACT -ACGGAAGGATCTTTGGAGGGATCT -ACGGAAGGATCTTTGGAGAAGGCT -ACGGAAGGATCTTTGGAGTCAACC -ACGGAAGGATCTTTGGAGTGTTCC -ACGGAAGGATCTTTGGAGATTCCC -ACGGAAGGATCTTTGGAGTTCTCG -ACGGAAGGATCTTTGGAGTAGACG -ACGGAAGGATCTTTGGAGGTAACG -ACGGAAGGATCTTTGGAGACTTCG -ACGGAAGGATCTTTGGAGTACGCA -ACGGAAGGATCTTTGGAGCTTGCA -ACGGAAGGATCTTTGGAGCGAACA -ACGGAAGGATCTTTGGAGCAGTCA -ACGGAAGGATCTTTGGAGGATCCA -ACGGAAGGATCTTTGGAGACGACA -ACGGAAGGATCTTTGGAGAGCTCA -ACGGAAGGATCTTTGGAGTCACGT -ACGGAAGGATCTTTGGAGCGTAGT -ACGGAAGGATCTTTGGAGGTCAGT -ACGGAAGGATCTTTGGAGGAAGGT -ACGGAAGGATCTTTGGAGAACCGT -ACGGAAGGATCTTTGGAGTTGTGC -ACGGAAGGATCTTTGGAGCTAAGC -ACGGAAGGATCTTTGGAGACTAGC -ACGGAAGGATCTTTGGAGAGATGC -ACGGAAGGATCTTTGGAGTGAAGG -ACGGAAGGATCTTTGGAGCAATGG -ACGGAAGGATCTTTGGAGATGAGG -ACGGAAGGATCTTTGGAGAATGGG -ACGGAAGGATCTTTGGAGTCCTGA -ACGGAAGGATCTTTGGAGTAGCGA -ACGGAAGGATCTTTGGAGCACAGA -ACGGAAGGATCTTTGGAGGCAAGA -ACGGAAGGATCTTTGGAGGGTTGA -ACGGAAGGATCTTTGGAGTCCGAT -ACGGAAGGATCTTTGGAGTGGCAT -ACGGAAGGATCTTTGGAGCGAGAT -ACGGAAGGATCTTTGGAGTACCAC -ACGGAAGGATCTTTGGAGCAGAAC -ACGGAAGGATCTTTGGAGGTCTAC -ACGGAAGGATCTTTGGAGACGTAC -ACGGAAGGATCTTTGGAGAGTGAC -ACGGAAGGATCTTTGGAGCTGTAG -ACGGAAGGATCTTTGGAGCCTAAG -ACGGAAGGATCTTTGGAGGTTCAG -ACGGAAGGATCTTTGGAGGCATAG -ACGGAAGGATCTTTGGAGGACAAG -ACGGAAGGATCTTTGGAGAAGCAG -ACGGAAGGATCTTTGGAGCGTCAA -ACGGAAGGATCTTTGGAGGCTGAA -ACGGAAGGATCTTTGGAGAGTACG -ACGGAAGGATCTTTGGAGATCCGA -ACGGAAGGATCTTTGGAGATGGGA -ACGGAAGGATCTTTGGAGGTGCAA -ACGGAAGGATCTTTGGAGGAGGAA -ACGGAAGGATCTTTGGAGCAGGTA -ACGGAAGGATCTTTGGAGGACTCT -ACGGAAGGATCTTTGGAGAGTCCT -ACGGAAGGATCTTTGGAGTAAGCC -ACGGAAGGATCTTTGGAGATAGCC -ACGGAAGGATCTTTGGAGTAACCG -ACGGAAGGATCTTTGGAGATGCCA -ACGGAAGGATCTCTGAGAGGAAAC -ACGGAAGGATCTCTGAGAAACACC -ACGGAAGGATCTCTGAGAATCGAG -ACGGAAGGATCTCTGAGACTCCTT -ACGGAAGGATCTCTGAGACCTGTT -ACGGAAGGATCTCTGAGACGGTTT -ACGGAAGGATCTCTGAGAGTGGTT -ACGGAAGGATCTCTGAGAGCCTTT -ACGGAAGGATCTCTGAGAGGTCTT -ACGGAAGGATCTCTGAGAACGCTT -ACGGAAGGATCTCTGAGAAGCGTT -ACGGAAGGATCTCTGAGATTCGTC -ACGGAAGGATCTCTGAGATCTCTC -ACGGAAGGATCTCTGAGATGGATC -ACGGAAGGATCTCTGAGACACTTC -ACGGAAGGATCTCTGAGAGTACTC -ACGGAAGGATCTCTGAGAGATGTC -ACGGAAGGATCTCTGAGAACAGTC -ACGGAAGGATCTCTGAGATTGCTG -ACGGAAGGATCTCTGAGATCCATG -ACGGAAGGATCTCTGAGATGTGTG -ACGGAAGGATCTCTGAGACTAGTG -ACGGAAGGATCTCTGAGACATCTG -ACGGAAGGATCTCTGAGAGAGTTG -ACGGAAGGATCTCTGAGAAGACTG -ACGGAAGGATCTCTGAGATCGGTA -ACGGAAGGATCTCTGAGATGCCTA -ACGGAAGGATCTCTGAGACCACTA -ACGGAAGGATCTCTGAGAGGAGTA -ACGGAAGGATCTCTGAGATCGTCT -ACGGAAGGATCTCTGAGATGCACT -ACGGAAGGATCTCTGAGACTGACT -ACGGAAGGATCTCTGAGACAACCT -ACGGAAGGATCTCTGAGAGCTACT -ACGGAAGGATCTCTGAGAGGATCT -ACGGAAGGATCTCTGAGAAAGGCT -ACGGAAGGATCTCTGAGATCAACC -ACGGAAGGATCTCTGAGATGTTCC -ACGGAAGGATCTCTGAGAATTCCC -ACGGAAGGATCTCTGAGATTCTCG -ACGGAAGGATCTCTGAGATAGACG -ACGGAAGGATCTCTGAGAGTAACG -ACGGAAGGATCTCTGAGAACTTCG -ACGGAAGGATCTCTGAGATACGCA -ACGGAAGGATCTCTGAGACTTGCA -ACGGAAGGATCTCTGAGACGAACA -ACGGAAGGATCTCTGAGACAGTCA -ACGGAAGGATCTCTGAGAGATCCA -ACGGAAGGATCTCTGAGAACGACA -ACGGAAGGATCTCTGAGAAGCTCA -ACGGAAGGATCTCTGAGATCACGT -ACGGAAGGATCTCTGAGACGTAGT -ACGGAAGGATCTCTGAGAGTCAGT -ACGGAAGGATCTCTGAGAGAAGGT -ACGGAAGGATCTCTGAGAAACCGT -ACGGAAGGATCTCTGAGATTGTGC -ACGGAAGGATCTCTGAGACTAAGC -ACGGAAGGATCTCTGAGAACTAGC -ACGGAAGGATCTCTGAGAAGATGC -ACGGAAGGATCTCTGAGATGAAGG -ACGGAAGGATCTCTGAGACAATGG -ACGGAAGGATCTCTGAGAATGAGG -ACGGAAGGATCTCTGAGAAATGGG -ACGGAAGGATCTCTGAGATCCTGA -ACGGAAGGATCTCTGAGATAGCGA -ACGGAAGGATCTCTGAGACACAGA -ACGGAAGGATCTCTGAGAGCAAGA -ACGGAAGGATCTCTGAGAGGTTGA -ACGGAAGGATCTCTGAGATCCGAT -ACGGAAGGATCTCTGAGATGGCAT -ACGGAAGGATCTCTGAGACGAGAT -ACGGAAGGATCTCTGAGATACCAC -ACGGAAGGATCTCTGAGACAGAAC -ACGGAAGGATCTCTGAGAGTCTAC -ACGGAAGGATCTCTGAGAACGTAC -ACGGAAGGATCTCTGAGAAGTGAC -ACGGAAGGATCTCTGAGACTGTAG -ACGGAAGGATCTCTGAGACCTAAG -ACGGAAGGATCTCTGAGAGTTCAG -ACGGAAGGATCTCTGAGAGCATAG -ACGGAAGGATCTCTGAGAGACAAG -ACGGAAGGATCTCTGAGAAAGCAG -ACGGAAGGATCTCTGAGACGTCAA -ACGGAAGGATCTCTGAGAGCTGAA -ACGGAAGGATCTCTGAGAAGTACG -ACGGAAGGATCTCTGAGAATCCGA -ACGGAAGGATCTCTGAGAATGGGA -ACGGAAGGATCTCTGAGAGTGCAA -ACGGAAGGATCTCTGAGAGAGGAA -ACGGAAGGATCTCTGAGACAGGTA -ACGGAAGGATCTCTGAGAGACTCT -ACGGAAGGATCTCTGAGAAGTCCT -ACGGAAGGATCTCTGAGATAAGCC -ACGGAAGGATCTCTGAGAATAGCC -ACGGAAGGATCTCTGAGATAACCG -ACGGAAGGATCTCTGAGAATGCCA -ACGGAAGGATCTGTATCGGGAAAC -ACGGAAGGATCTGTATCGAACACC -ACGGAAGGATCTGTATCGATCGAG -ACGGAAGGATCTGTATCGCTCCTT -ACGGAAGGATCTGTATCGCCTGTT -ACGGAAGGATCTGTATCGCGGTTT -ACGGAAGGATCTGTATCGGTGGTT -ACGGAAGGATCTGTATCGGCCTTT -ACGGAAGGATCTGTATCGGGTCTT -ACGGAAGGATCTGTATCGACGCTT -ACGGAAGGATCTGTATCGAGCGTT -ACGGAAGGATCTGTATCGTTCGTC -ACGGAAGGATCTGTATCGTCTCTC -ACGGAAGGATCTGTATCGTGGATC -ACGGAAGGATCTGTATCGCACTTC -ACGGAAGGATCTGTATCGGTACTC -ACGGAAGGATCTGTATCGGATGTC -ACGGAAGGATCTGTATCGACAGTC -ACGGAAGGATCTGTATCGTTGCTG -ACGGAAGGATCTGTATCGTCCATG -ACGGAAGGATCTGTATCGTGTGTG -ACGGAAGGATCTGTATCGCTAGTG -ACGGAAGGATCTGTATCGCATCTG -ACGGAAGGATCTGTATCGGAGTTG -ACGGAAGGATCTGTATCGAGACTG -ACGGAAGGATCTGTATCGTCGGTA -ACGGAAGGATCTGTATCGTGCCTA -ACGGAAGGATCTGTATCGCCACTA -ACGGAAGGATCTGTATCGGGAGTA -ACGGAAGGATCTGTATCGTCGTCT -ACGGAAGGATCTGTATCGTGCACT -ACGGAAGGATCTGTATCGCTGACT -ACGGAAGGATCTGTATCGCAACCT -ACGGAAGGATCTGTATCGGCTACT -ACGGAAGGATCTGTATCGGGATCT -ACGGAAGGATCTGTATCGAAGGCT -ACGGAAGGATCTGTATCGTCAACC -ACGGAAGGATCTGTATCGTGTTCC -ACGGAAGGATCTGTATCGATTCCC -ACGGAAGGATCTGTATCGTTCTCG -ACGGAAGGATCTGTATCGTAGACG -ACGGAAGGATCTGTATCGGTAACG -ACGGAAGGATCTGTATCGACTTCG -ACGGAAGGATCTGTATCGTACGCA -ACGGAAGGATCTGTATCGCTTGCA -ACGGAAGGATCTGTATCGCGAACA -ACGGAAGGATCTGTATCGCAGTCA -ACGGAAGGATCTGTATCGGATCCA -ACGGAAGGATCTGTATCGACGACA -ACGGAAGGATCTGTATCGAGCTCA -ACGGAAGGATCTGTATCGTCACGT -ACGGAAGGATCTGTATCGCGTAGT -ACGGAAGGATCTGTATCGGTCAGT -ACGGAAGGATCTGTATCGGAAGGT -ACGGAAGGATCTGTATCGAACCGT -ACGGAAGGATCTGTATCGTTGTGC -ACGGAAGGATCTGTATCGCTAAGC -ACGGAAGGATCTGTATCGACTAGC -ACGGAAGGATCTGTATCGAGATGC -ACGGAAGGATCTGTATCGTGAAGG -ACGGAAGGATCTGTATCGCAATGG -ACGGAAGGATCTGTATCGATGAGG -ACGGAAGGATCTGTATCGAATGGG -ACGGAAGGATCTGTATCGTCCTGA -ACGGAAGGATCTGTATCGTAGCGA -ACGGAAGGATCTGTATCGCACAGA -ACGGAAGGATCTGTATCGGCAAGA -ACGGAAGGATCTGTATCGGGTTGA -ACGGAAGGATCTGTATCGTCCGAT -ACGGAAGGATCTGTATCGTGGCAT -ACGGAAGGATCTGTATCGCGAGAT -ACGGAAGGATCTGTATCGTACCAC -ACGGAAGGATCTGTATCGCAGAAC -ACGGAAGGATCTGTATCGGTCTAC -ACGGAAGGATCTGTATCGACGTAC -ACGGAAGGATCTGTATCGAGTGAC -ACGGAAGGATCTGTATCGCTGTAG -ACGGAAGGATCTGTATCGCCTAAG -ACGGAAGGATCTGTATCGGTTCAG -ACGGAAGGATCTGTATCGGCATAG -ACGGAAGGATCTGTATCGGACAAG -ACGGAAGGATCTGTATCGAAGCAG -ACGGAAGGATCTGTATCGCGTCAA -ACGGAAGGATCTGTATCGGCTGAA -ACGGAAGGATCTGTATCGAGTACG -ACGGAAGGATCTGTATCGATCCGA -ACGGAAGGATCTGTATCGATGGGA -ACGGAAGGATCTGTATCGGTGCAA -ACGGAAGGATCTGTATCGGAGGAA -ACGGAAGGATCTGTATCGCAGGTA -ACGGAAGGATCTGTATCGGACTCT -ACGGAAGGATCTGTATCGAGTCCT -ACGGAAGGATCTGTATCGTAAGCC -ACGGAAGGATCTGTATCGATAGCC -ACGGAAGGATCTGTATCGTAACCG -ACGGAAGGATCTGTATCGATGCCA -ACGGAAGGATCTCTATGCGGAAAC -ACGGAAGGATCTCTATGCAACACC -ACGGAAGGATCTCTATGCATCGAG -ACGGAAGGATCTCTATGCCTCCTT -ACGGAAGGATCTCTATGCCCTGTT -ACGGAAGGATCTCTATGCCGGTTT -ACGGAAGGATCTCTATGCGTGGTT -ACGGAAGGATCTCTATGCGCCTTT -ACGGAAGGATCTCTATGCGGTCTT -ACGGAAGGATCTCTATGCACGCTT -ACGGAAGGATCTCTATGCAGCGTT -ACGGAAGGATCTCTATGCTTCGTC -ACGGAAGGATCTCTATGCTCTCTC -ACGGAAGGATCTCTATGCTGGATC -ACGGAAGGATCTCTATGCCACTTC -ACGGAAGGATCTCTATGCGTACTC -ACGGAAGGATCTCTATGCGATGTC -ACGGAAGGATCTCTATGCACAGTC -ACGGAAGGATCTCTATGCTTGCTG -ACGGAAGGATCTCTATGCTCCATG -ACGGAAGGATCTCTATGCTGTGTG -ACGGAAGGATCTCTATGCCTAGTG -ACGGAAGGATCTCTATGCCATCTG -ACGGAAGGATCTCTATGCGAGTTG -ACGGAAGGATCTCTATGCAGACTG -ACGGAAGGATCTCTATGCTCGGTA -ACGGAAGGATCTCTATGCTGCCTA -ACGGAAGGATCTCTATGCCCACTA -ACGGAAGGATCTCTATGCGGAGTA -ACGGAAGGATCTCTATGCTCGTCT -ACGGAAGGATCTCTATGCTGCACT -ACGGAAGGATCTCTATGCCTGACT -ACGGAAGGATCTCTATGCCAACCT -ACGGAAGGATCTCTATGCGCTACT -ACGGAAGGATCTCTATGCGGATCT -ACGGAAGGATCTCTATGCAAGGCT -ACGGAAGGATCTCTATGCTCAACC -ACGGAAGGATCTCTATGCTGTTCC -ACGGAAGGATCTCTATGCATTCCC -ACGGAAGGATCTCTATGCTTCTCG -ACGGAAGGATCTCTATGCTAGACG -ACGGAAGGATCTCTATGCGTAACG -ACGGAAGGATCTCTATGCACTTCG -ACGGAAGGATCTCTATGCTACGCA -ACGGAAGGATCTCTATGCCTTGCA -ACGGAAGGATCTCTATGCCGAACA -ACGGAAGGATCTCTATGCCAGTCA -ACGGAAGGATCTCTATGCGATCCA -ACGGAAGGATCTCTATGCACGACA -ACGGAAGGATCTCTATGCAGCTCA -ACGGAAGGATCTCTATGCTCACGT -ACGGAAGGATCTCTATGCCGTAGT -ACGGAAGGATCTCTATGCGTCAGT -ACGGAAGGATCTCTATGCGAAGGT -ACGGAAGGATCTCTATGCAACCGT -ACGGAAGGATCTCTATGCTTGTGC -ACGGAAGGATCTCTATGCCTAAGC -ACGGAAGGATCTCTATGCACTAGC -ACGGAAGGATCTCTATGCAGATGC -ACGGAAGGATCTCTATGCTGAAGG -ACGGAAGGATCTCTATGCCAATGG -ACGGAAGGATCTCTATGCATGAGG -ACGGAAGGATCTCTATGCAATGGG -ACGGAAGGATCTCTATGCTCCTGA -ACGGAAGGATCTCTATGCTAGCGA -ACGGAAGGATCTCTATGCCACAGA -ACGGAAGGATCTCTATGCGCAAGA -ACGGAAGGATCTCTATGCGGTTGA -ACGGAAGGATCTCTATGCTCCGAT -ACGGAAGGATCTCTATGCTGGCAT -ACGGAAGGATCTCTATGCCGAGAT -ACGGAAGGATCTCTATGCTACCAC -ACGGAAGGATCTCTATGCCAGAAC -ACGGAAGGATCTCTATGCGTCTAC -ACGGAAGGATCTCTATGCACGTAC -ACGGAAGGATCTCTATGCAGTGAC -ACGGAAGGATCTCTATGCCTGTAG -ACGGAAGGATCTCTATGCCCTAAG -ACGGAAGGATCTCTATGCGTTCAG -ACGGAAGGATCTCTATGCGCATAG -ACGGAAGGATCTCTATGCGACAAG -ACGGAAGGATCTCTATGCAAGCAG -ACGGAAGGATCTCTATGCCGTCAA -ACGGAAGGATCTCTATGCGCTGAA -ACGGAAGGATCTCTATGCAGTACG -ACGGAAGGATCTCTATGCATCCGA -ACGGAAGGATCTCTATGCATGGGA -ACGGAAGGATCTCTATGCGTGCAA -ACGGAAGGATCTCTATGCGAGGAA -ACGGAAGGATCTCTATGCCAGGTA -ACGGAAGGATCTCTATGCGACTCT -ACGGAAGGATCTCTATGCAGTCCT -ACGGAAGGATCTCTATGCTAAGCC -ACGGAAGGATCTCTATGCATAGCC -ACGGAAGGATCTCTATGCTAACCG -ACGGAAGGATCTCTATGCATGCCA -ACGGAAGGATCTCTACCAGGAAAC -ACGGAAGGATCTCTACCAAACACC -ACGGAAGGATCTCTACCAATCGAG -ACGGAAGGATCTCTACCACTCCTT -ACGGAAGGATCTCTACCACCTGTT -ACGGAAGGATCTCTACCACGGTTT -ACGGAAGGATCTCTACCAGTGGTT -ACGGAAGGATCTCTACCAGCCTTT -ACGGAAGGATCTCTACCAGGTCTT -ACGGAAGGATCTCTACCAACGCTT -ACGGAAGGATCTCTACCAAGCGTT -ACGGAAGGATCTCTACCATTCGTC -ACGGAAGGATCTCTACCATCTCTC -ACGGAAGGATCTCTACCATGGATC -ACGGAAGGATCTCTACCACACTTC -ACGGAAGGATCTCTACCAGTACTC -ACGGAAGGATCTCTACCAGATGTC -ACGGAAGGATCTCTACCAACAGTC -ACGGAAGGATCTCTACCATTGCTG -ACGGAAGGATCTCTACCATCCATG -ACGGAAGGATCTCTACCATGTGTG -ACGGAAGGATCTCTACCACTAGTG -ACGGAAGGATCTCTACCACATCTG -ACGGAAGGATCTCTACCAGAGTTG -ACGGAAGGATCTCTACCAAGACTG -ACGGAAGGATCTCTACCATCGGTA -ACGGAAGGATCTCTACCATGCCTA -ACGGAAGGATCTCTACCACCACTA -ACGGAAGGATCTCTACCAGGAGTA -ACGGAAGGATCTCTACCATCGTCT -ACGGAAGGATCTCTACCATGCACT -ACGGAAGGATCTCTACCACTGACT -ACGGAAGGATCTCTACCACAACCT -ACGGAAGGATCTCTACCAGCTACT -ACGGAAGGATCTCTACCAGGATCT -ACGGAAGGATCTCTACCAAAGGCT -ACGGAAGGATCTCTACCATCAACC -ACGGAAGGATCTCTACCATGTTCC -ACGGAAGGATCTCTACCAATTCCC -ACGGAAGGATCTCTACCATTCTCG -ACGGAAGGATCTCTACCATAGACG -ACGGAAGGATCTCTACCAGTAACG -ACGGAAGGATCTCTACCAACTTCG -ACGGAAGGATCTCTACCATACGCA -ACGGAAGGATCTCTACCACTTGCA -ACGGAAGGATCTCTACCACGAACA -ACGGAAGGATCTCTACCACAGTCA -ACGGAAGGATCTCTACCAGATCCA -ACGGAAGGATCTCTACCAACGACA -ACGGAAGGATCTCTACCAAGCTCA -ACGGAAGGATCTCTACCATCACGT -ACGGAAGGATCTCTACCACGTAGT -ACGGAAGGATCTCTACCAGTCAGT -ACGGAAGGATCTCTACCAGAAGGT -ACGGAAGGATCTCTACCAAACCGT -ACGGAAGGATCTCTACCATTGTGC -ACGGAAGGATCTCTACCACTAAGC -ACGGAAGGATCTCTACCAACTAGC -ACGGAAGGATCTCTACCAAGATGC -ACGGAAGGATCTCTACCATGAAGG -ACGGAAGGATCTCTACCACAATGG -ACGGAAGGATCTCTACCAATGAGG -ACGGAAGGATCTCTACCAAATGGG -ACGGAAGGATCTCTACCATCCTGA -ACGGAAGGATCTCTACCATAGCGA -ACGGAAGGATCTCTACCACACAGA -ACGGAAGGATCTCTACCAGCAAGA -ACGGAAGGATCTCTACCAGGTTGA -ACGGAAGGATCTCTACCATCCGAT -ACGGAAGGATCTCTACCATGGCAT -ACGGAAGGATCTCTACCACGAGAT -ACGGAAGGATCTCTACCATACCAC -ACGGAAGGATCTCTACCACAGAAC -ACGGAAGGATCTCTACCAGTCTAC -ACGGAAGGATCTCTACCAACGTAC -ACGGAAGGATCTCTACCAAGTGAC -ACGGAAGGATCTCTACCACTGTAG -ACGGAAGGATCTCTACCACCTAAG -ACGGAAGGATCTCTACCAGTTCAG -ACGGAAGGATCTCTACCAGCATAG -ACGGAAGGATCTCTACCAGACAAG -ACGGAAGGATCTCTACCAAAGCAG -ACGGAAGGATCTCTACCACGTCAA -ACGGAAGGATCTCTACCAGCTGAA -ACGGAAGGATCTCTACCAAGTACG -ACGGAAGGATCTCTACCAATCCGA -ACGGAAGGATCTCTACCAATGGGA -ACGGAAGGATCTCTACCAGTGCAA -ACGGAAGGATCTCTACCAGAGGAA -ACGGAAGGATCTCTACCACAGGTA -ACGGAAGGATCTCTACCAGACTCT -ACGGAAGGATCTCTACCAAGTCCT -ACGGAAGGATCTCTACCATAAGCC -ACGGAAGGATCTCTACCAATAGCC -ACGGAAGGATCTCTACCATAACCG -ACGGAAGGATCTCTACCAATGCCA -ACGGAAGGATCTGTAGGAGGAAAC -ACGGAAGGATCTGTAGGAAACACC -ACGGAAGGATCTGTAGGAATCGAG -ACGGAAGGATCTGTAGGACTCCTT -ACGGAAGGATCTGTAGGACCTGTT -ACGGAAGGATCTGTAGGACGGTTT -ACGGAAGGATCTGTAGGAGTGGTT -ACGGAAGGATCTGTAGGAGCCTTT -ACGGAAGGATCTGTAGGAGGTCTT -ACGGAAGGATCTGTAGGAACGCTT -ACGGAAGGATCTGTAGGAAGCGTT -ACGGAAGGATCTGTAGGATTCGTC -ACGGAAGGATCTGTAGGATCTCTC -ACGGAAGGATCTGTAGGATGGATC -ACGGAAGGATCTGTAGGACACTTC -ACGGAAGGATCTGTAGGAGTACTC -ACGGAAGGATCTGTAGGAGATGTC -ACGGAAGGATCTGTAGGAACAGTC -ACGGAAGGATCTGTAGGATTGCTG -ACGGAAGGATCTGTAGGATCCATG -ACGGAAGGATCTGTAGGATGTGTG -ACGGAAGGATCTGTAGGACTAGTG -ACGGAAGGATCTGTAGGACATCTG -ACGGAAGGATCTGTAGGAGAGTTG -ACGGAAGGATCTGTAGGAAGACTG -ACGGAAGGATCTGTAGGATCGGTA -ACGGAAGGATCTGTAGGATGCCTA -ACGGAAGGATCTGTAGGACCACTA -ACGGAAGGATCTGTAGGAGGAGTA -ACGGAAGGATCTGTAGGATCGTCT -ACGGAAGGATCTGTAGGATGCACT -ACGGAAGGATCTGTAGGACTGACT -ACGGAAGGATCTGTAGGACAACCT -ACGGAAGGATCTGTAGGAGCTACT -ACGGAAGGATCTGTAGGAGGATCT -ACGGAAGGATCTGTAGGAAAGGCT -ACGGAAGGATCTGTAGGATCAACC -ACGGAAGGATCTGTAGGATGTTCC -ACGGAAGGATCTGTAGGAATTCCC -ACGGAAGGATCTGTAGGATTCTCG -ACGGAAGGATCTGTAGGATAGACG -ACGGAAGGATCTGTAGGAGTAACG -ACGGAAGGATCTGTAGGAACTTCG -ACGGAAGGATCTGTAGGATACGCA -ACGGAAGGATCTGTAGGACTTGCA -ACGGAAGGATCTGTAGGACGAACA -ACGGAAGGATCTGTAGGACAGTCA -ACGGAAGGATCTGTAGGAGATCCA -ACGGAAGGATCTGTAGGAACGACA -ACGGAAGGATCTGTAGGAAGCTCA -ACGGAAGGATCTGTAGGATCACGT -ACGGAAGGATCTGTAGGACGTAGT -ACGGAAGGATCTGTAGGAGTCAGT -ACGGAAGGATCTGTAGGAGAAGGT -ACGGAAGGATCTGTAGGAAACCGT -ACGGAAGGATCTGTAGGATTGTGC -ACGGAAGGATCTGTAGGACTAAGC -ACGGAAGGATCTGTAGGAACTAGC -ACGGAAGGATCTGTAGGAAGATGC -ACGGAAGGATCTGTAGGATGAAGG -ACGGAAGGATCTGTAGGACAATGG -ACGGAAGGATCTGTAGGAATGAGG -ACGGAAGGATCTGTAGGAAATGGG -ACGGAAGGATCTGTAGGATCCTGA -ACGGAAGGATCTGTAGGATAGCGA -ACGGAAGGATCTGTAGGACACAGA -ACGGAAGGATCTGTAGGAGCAAGA -ACGGAAGGATCTGTAGGAGGTTGA -ACGGAAGGATCTGTAGGATCCGAT -ACGGAAGGATCTGTAGGATGGCAT -ACGGAAGGATCTGTAGGACGAGAT -ACGGAAGGATCTGTAGGATACCAC -ACGGAAGGATCTGTAGGACAGAAC -ACGGAAGGATCTGTAGGAGTCTAC -ACGGAAGGATCTGTAGGAACGTAC -ACGGAAGGATCTGTAGGAAGTGAC -ACGGAAGGATCTGTAGGACTGTAG -ACGGAAGGATCTGTAGGACCTAAG -ACGGAAGGATCTGTAGGAGTTCAG -ACGGAAGGATCTGTAGGAGCATAG -ACGGAAGGATCTGTAGGAGACAAG -ACGGAAGGATCTGTAGGAAAGCAG -ACGGAAGGATCTGTAGGACGTCAA -ACGGAAGGATCTGTAGGAGCTGAA -ACGGAAGGATCTGTAGGAAGTACG -ACGGAAGGATCTGTAGGAATCCGA -ACGGAAGGATCTGTAGGAATGGGA -ACGGAAGGATCTGTAGGAGTGCAA -ACGGAAGGATCTGTAGGAGAGGAA -ACGGAAGGATCTGTAGGACAGGTA -ACGGAAGGATCTGTAGGAGACTCT -ACGGAAGGATCTGTAGGAAGTCCT -ACGGAAGGATCTGTAGGATAAGCC -ACGGAAGGATCTGTAGGAATAGCC -ACGGAAGGATCTGTAGGATAACCG -ACGGAAGGATCTGTAGGAATGCCA -ACGGAAGGATCTTCTTCGGGAAAC -ACGGAAGGATCTTCTTCGAACACC -ACGGAAGGATCTTCTTCGATCGAG -ACGGAAGGATCTTCTTCGCTCCTT -ACGGAAGGATCTTCTTCGCCTGTT -ACGGAAGGATCTTCTTCGCGGTTT -ACGGAAGGATCTTCTTCGGTGGTT -ACGGAAGGATCTTCTTCGGCCTTT -ACGGAAGGATCTTCTTCGGGTCTT -ACGGAAGGATCTTCTTCGACGCTT -ACGGAAGGATCTTCTTCGAGCGTT -ACGGAAGGATCTTCTTCGTTCGTC -ACGGAAGGATCTTCTTCGTCTCTC -ACGGAAGGATCTTCTTCGTGGATC -ACGGAAGGATCTTCTTCGCACTTC -ACGGAAGGATCTTCTTCGGTACTC -ACGGAAGGATCTTCTTCGGATGTC -ACGGAAGGATCTTCTTCGACAGTC -ACGGAAGGATCTTCTTCGTTGCTG -ACGGAAGGATCTTCTTCGTCCATG -ACGGAAGGATCTTCTTCGTGTGTG -ACGGAAGGATCTTCTTCGCTAGTG -ACGGAAGGATCTTCTTCGCATCTG -ACGGAAGGATCTTCTTCGGAGTTG -ACGGAAGGATCTTCTTCGAGACTG -ACGGAAGGATCTTCTTCGTCGGTA -ACGGAAGGATCTTCTTCGTGCCTA -ACGGAAGGATCTTCTTCGCCACTA -ACGGAAGGATCTTCTTCGGGAGTA -ACGGAAGGATCTTCTTCGTCGTCT -ACGGAAGGATCTTCTTCGTGCACT -ACGGAAGGATCTTCTTCGCTGACT -ACGGAAGGATCTTCTTCGCAACCT -ACGGAAGGATCTTCTTCGGCTACT -ACGGAAGGATCTTCTTCGGGATCT -ACGGAAGGATCTTCTTCGAAGGCT -ACGGAAGGATCTTCTTCGTCAACC -ACGGAAGGATCTTCTTCGTGTTCC -ACGGAAGGATCTTCTTCGATTCCC -ACGGAAGGATCTTCTTCGTTCTCG -ACGGAAGGATCTTCTTCGTAGACG -ACGGAAGGATCTTCTTCGGTAACG -ACGGAAGGATCTTCTTCGACTTCG -ACGGAAGGATCTTCTTCGTACGCA -ACGGAAGGATCTTCTTCGCTTGCA -ACGGAAGGATCTTCTTCGCGAACA -ACGGAAGGATCTTCTTCGCAGTCA -ACGGAAGGATCTTCTTCGGATCCA -ACGGAAGGATCTTCTTCGACGACA -ACGGAAGGATCTTCTTCGAGCTCA -ACGGAAGGATCTTCTTCGTCACGT -ACGGAAGGATCTTCTTCGCGTAGT -ACGGAAGGATCTTCTTCGGTCAGT -ACGGAAGGATCTTCTTCGGAAGGT -ACGGAAGGATCTTCTTCGAACCGT -ACGGAAGGATCTTCTTCGTTGTGC -ACGGAAGGATCTTCTTCGCTAAGC -ACGGAAGGATCTTCTTCGACTAGC -ACGGAAGGATCTTCTTCGAGATGC -ACGGAAGGATCTTCTTCGTGAAGG -ACGGAAGGATCTTCTTCGCAATGG -ACGGAAGGATCTTCTTCGATGAGG -ACGGAAGGATCTTCTTCGAATGGG -ACGGAAGGATCTTCTTCGTCCTGA -ACGGAAGGATCTTCTTCGTAGCGA -ACGGAAGGATCTTCTTCGCACAGA -ACGGAAGGATCTTCTTCGGCAAGA -ACGGAAGGATCTTCTTCGGGTTGA -ACGGAAGGATCTTCTTCGTCCGAT -ACGGAAGGATCTTCTTCGTGGCAT -ACGGAAGGATCTTCTTCGCGAGAT -ACGGAAGGATCTTCTTCGTACCAC -ACGGAAGGATCTTCTTCGCAGAAC -ACGGAAGGATCTTCTTCGGTCTAC -ACGGAAGGATCTTCTTCGACGTAC -ACGGAAGGATCTTCTTCGAGTGAC -ACGGAAGGATCTTCTTCGCTGTAG -ACGGAAGGATCTTCTTCGCCTAAG -ACGGAAGGATCTTCTTCGGTTCAG -ACGGAAGGATCTTCTTCGGCATAG -ACGGAAGGATCTTCTTCGGACAAG -ACGGAAGGATCTTCTTCGAAGCAG -ACGGAAGGATCTTCTTCGCGTCAA -ACGGAAGGATCTTCTTCGGCTGAA -ACGGAAGGATCTTCTTCGAGTACG -ACGGAAGGATCTTCTTCGATCCGA -ACGGAAGGATCTTCTTCGATGGGA -ACGGAAGGATCTTCTTCGGTGCAA -ACGGAAGGATCTTCTTCGGAGGAA -ACGGAAGGATCTTCTTCGCAGGTA -ACGGAAGGATCTTCTTCGGACTCT -ACGGAAGGATCTTCTTCGAGTCCT -ACGGAAGGATCTTCTTCGTAAGCC -ACGGAAGGATCTTCTTCGATAGCC -ACGGAAGGATCTTCTTCGTAACCG -ACGGAAGGATCTTCTTCGATGCCA -ACGGAAGGATCTACTTGCGGAAAC -ACGGAAGGATCTACTTGCAACACC -ACGGAAGGATCTACTTGCATCGAG -ACGGAAGGATCTACTTGCCTCCTT -ACGGAAGGATCTACTTGCCCTGTT -ACGGAAGGATCTACTTGCCGGTTT -ACGGAAGGATCTACTTGCGTGGTT -ACGGAAGGATCTACTTGCGCCTTT -ACGGAAGGATCTACTTGCGGTCTT -ACGGAAGGATCTACTTGCACGCTT -ACGGAAGGATCTACTTGCAGCGTT -ACGGAAGGATCTACTTGCTTCGTC -ACGGAAGGATCTACTTGCTCTCTC -ACGGAAGGATCTACTTGCTGGATC -ACGGAAGGATCTACTTGCCACTTC -ACGGAAGGATCTACTTGCGTACTC -ACGGAAGGATCTACTTGCGATGTC -ACGGAAGGATCTACTTGCACAGTC -ACGGAAGGATCTACTTGCTTGCTG -ACGGAAGGATCTACTTGCTCCATG -ACGGAAGGATCTACTTGCTGTGTG -ACGGAAGGATCTACTTGCCTAGTG -ACGGAAGGATCTACTTGCCATCTG -ACGGAAGGATCTACTTGCGAGTTG -ACGGAAGGATCTACTTGCAGACTG -ACGGAAGGATCTACTTGCTCGGTA -ACGGAAGGATCTACTTGCTGCCTA -ACGGAAGGATCTACTTGCCCACTA -ACGGAAGGATCTACTTGCGGAGTA -ACGGAAGGATCTACTTGCTCGTCT -ACGGAAGGATCTACTTGCTGCACT -ACGGAAGGATCTACTTGCCTGACT -ACGGAAGGATCTACTTGCCAACCT -ACGGAAGGATCTACTTGCGCTACT -ACGGAAGGATCTACTTGCGGATCT -ACGGAAGGATCTACTTGCAAGGCT -ACGGAAGGATCTACTTGCTCAACC -ACGGAAGGATCTACTTGCTGTTCC -ACGGAAGGATCTACTTGCATTCCC -ACGGAAGGATCTACTTGCTTCTCG -ACGGAAGGATCTACTTGCTAGACG -ACGGAAGGATCTACTTGCGTAACG -ACGGAAGGATCTACTTGCACTTCG -ACGGAAGGATCTACTTGCTACGCA -ACGGAAGGATCTACTTGCCTTGCA -ACGGAAGGATCTACTTGCCGAACA -ACGGAAGGATCTACTTGCCAGTCA -ACGGAAGGATCTACTTGCGATCCA -ACGGAAGGATCTACTTGCACGACA -ACGGAAGGATCTACTTGCAGCTCA -ACGGAAGGATCTACTTGCTCACGT -ACGGAAGGATCTACTTGCCGTAGT -ACGGAAGGATCTACTTGCGTCAGT -ACGGAAGGATCTACTTGCGAAGGT -ACGGAAGGATCTACTTGCAACCGT -ACGGAAGGATCTACTTGCTTGTGC -ACGGAAGGATCTACTTGCCTAAGC -ACGGAAGGATCTACTTGCACTAGC -ACGGAAGGATCTACTTGCAGATGC -ACGGAAGGATCTACTTGCTGAAGG -ACGGAAGGATCTACTTGCCAATGG -ACGGAAGGATCTACTTGCATGAGG -ACGGAAGGATCTACTTGCAATGGG -ACGGAAGGATCTACTTGCTCCTGA -ACGGAAGGATCTACTTGCTAGCGA -ACGGAAGGATCTACTTGCCACAGA -ACGGAAGGATCTACTTGCGCAAGA -ACGGAAGGATCTACTTGCGGTTGA -ACGGAAGGATCTACTTGCTCCGAT -ACGGAAGGATCTACTTGCTGGCAT -ACGGAAGGATCTACTTGCCGAGAT -ACGGAAGGATCTACTTGCTACCAC -ACGGAAGGATCTACTTGCCAGAAC -ACGGAAGGATCTACTTGCGTCTAC -ACGGAAGGATCTACTTGCACGTAC -ACGGAAGGATCTACTTGCAGTGAC -ACGGAAGGATCTACTTGCCTGTAG -ACGGAAGGATCTACTTGCCCTAAG -ACGGAAGGATCTACTTGCGTTCAG -ACGGAAGGATCTACTTGCGCATAG -ACGGAAGGATCTACTTGCGACAAG -ACGGAAGGATCTACTTGCAAGCAG -ACGGAAGGATCTACTTGCCGTCAA -ACGGAAGGATCTACTTGCGCTGAA -ACGGAAGGATCTACTTGCAGTACG -ACGGAAGGATCTACTTGCATCCGA -ACGGAAGGATCTACTTGCATGGGA -ACGGAAGGATCTACTTGCGTGCAA -ACGGAAGGATCTACTTGCGAGGAA -ACGGAAGGATCTACTTGCCAGGTA -ACGGAAGGATCTACTTGCGACTCT -ACGGAAGGATCTACTTGCAGTCCT -ACGGAAGGATCTACTTGCTAAGCC -ACGGAAGGATCTACTTGCATAGCC -ACGGAAGGATCTACTTGCTAACCG -ACGGAAGGATCTACTTGCATGCCA -ACGGAAGGATCTACTCTGGGAAAC -ACGGAAGGATCTACTCTGAACACC -ACGGAAGGATCTACTCTGATCGAG -ACGGAAGGATCTACTCTGCTCCTT -ACGGAAGGATCTACTCTGCCTGTT -ACGGAAGGATCTACTCTGCGGTTT -ACGGAAGGATCTACTCTGGTGGTT -ACGGAAGGATCTACTCTGGCCTTT -ACGGAAGGATCTACTCTGGGTCTT -ACGGAAGGATCTACTCTGACGCTT -ACGGAAGGATCTACTCTGAGCGTT -ACGGAAGGATCTACTCTGTTCGTC -ACGGAAGGATCTACTCTGTCTCTC -ACGGAAGGATCTACTCTGTGGATC -ACGGAAGGATCTACTCTGCACTTC -ACGGAAGGATCTACTCTGGTACTC -ACGGAAGGATCTACTCTGGATGTC -ACGGAAGGATCTACTCTGACAGTC -ACGGAAGGATCTACTCTGTTGCTG -ACGGAAGGATCTACTCTGTCCATG -ACGGAAGGATCTACTCTGTGTGTG -ACGGAAGGATCTACTCTGCTAGTG -ACGGAAGGATCTACTCTGCATCTG -ACGGAAGGATCTACTCTGGAGTTG -ACGGAAGGATCTACTCTGAGACTG -ACGGAAGGATCTACTCTGTCGGTA -ACGGAAGGATCTACTCTGTGCCTA -ACGGAAGGATCTACTCTGCCACTA -ACGGAAGGATCTACTCTGGGAGTA -ACGGAAGGATCTACTCTGTCGTCT -ACGGAAGGATCTACTCTGTGCACT -ACGGAAGGATCTACTCTGCTGACT -ACGGAAGGATCTACTCTGCAACCT -ACGGAAGGATCTACTCTGGCTACT -ACGGAAGGATCTACTCTGGGATCT -ACGGAAGGATCTACTCTGAAGGCT -ACGGAAGGATCTACTCTGTCAACC -ACGGAAGGATCTACTCTGTGTTCC -ACGGAAGGATCTACTCTGATTCCC -ACGGAAGGATCTACTCTGTTCTCG -ACGGAAGGATCTACTCTGTAGACG -ACGGAAGGATCTACTCTGGTAACG -ACGGAAGGATCTACTCTGACTTCG -ACGGAAGGATCTACTCTGTACGCA -ACGGAAGGATCTACTCTGCTTGCA -ACGGAAGGATCTACTCTGCGAACA -ACGGAAGGATCTACTCTGCAGTCA -ACGGAAGGATCTACTCTGGATCCA -ACGGAAGGATCTACTCTGACGACA -ACGGAAGGATCTACTCTGAGCTCA -ACGGAAGGATCTACTCTGTCACGT -ACGGAAGGATCTACTCTGCGTAGT -ACGGAAGGATCTACTCTGGTCAGT -ACGGAAGGATCTACTCTGGAAGGT -ACGGAAGGATCTACTCTGAACCGT -ACGGAAGGATCTACTCTGTTGTGC -ACGGAAGGATCTACTCTGCTAAGC -ACGGAAGGATCTACTCTGACTAGC -ACGGAAGGATCTACTCTGAGATGC -ACGGAAGGATCTACTCTGTGAAGG -ACGGAAGGATCTACTCTGCAATGG -ACGGAAGGATCTACTCTGATGAGG -ACGGAAGGATCTACTCTGAATGGG -ACGGAAGGATCTACTCTGTCCTGA -ACGGAAGGATCTACTCTGTAGCGA -ACGGAAGGATCTACTCTGCACAGA -ACGGAAGGATCTACTCTGGCAAGA -ACGGAAGGATCTACTCTGGGTTGA -ACGGAAGGATCTACTCTGTCCGAT -ACGGAAGGATCTACTCTGTGGCAT -ACGGAAGGATCTACTCTGCGAGAT -ACGGAAGGATCTACTCTGTACCAC -ACGGAAGGATCTACTCTGCAGAAC -ACGGAAGGATCTACTCTGGTCTAC -ACGGAAGGATCTACTCTGACGTAC -ACGGAAGGATCTACTCTGAGTGAC -ACGGAAGGATCTACTCTGCTGTAG -ACGGAAGGATCTACTCTGCCTAAG -ACGGAAGGATCTACTCTGGTTCAG -ACGGAAGGATCTACTCTGGCATAG -ACGGAAGGATCTACTCTGGACAAG -ACGGAAGGATCTACTCTGAAGCAG -ACGGAAGGATCTACTCTGCGTCAA -ACGGAAGGATCTACTCTGGCTGAA -ACGGAAGGATCTACTCTGAGTACG -ACGGAAGGATCTACTCTGATCCGA -ACGGAAGGATCTACTCTGATGGGA -ACGGAAGGATCTACTCTGGTGCAA -ACGGAAGGATCTACTCTGGAGGAA -ACGGAAGGATCTACTCTGCAGGTA -ACGGAAGGATCTACTCTGGACTCT -ACGGAAGGATCTACTCTGAGTCCT -ACGGAAGGATCTACTCTGTAAGCC -ACGGAAGGATCTACTCTGATAGCC -ACGGAAGGATCTACTCTGTAACCG -ACGGAAGGATCTACTCTGATGCCA -ACGGAAGGATCTCCTCAAGGAAAC -ACGGAAGGATCTCCTCAAAACACC -ACGGAAGGATCTCCTCAAATCGAG -ACGGAAGGATCTCCTCAACTCCTT -ACGGAAGGATCTCCTCAACCTGTT -ACGGAAGGATCTCCTCAACGGTTT -ACGGAAGGATCTCCTCAAGTGGTT -ACGGAAGGATCTCCTCAAGCCTTT -ACGGAAGGATCTCCTCAAGGTCTT -ACGGAAGGATCTCCTCAAACGCTT -ACGGAAGGATCTCCTCAAAGCGTT -ACGGAAGGATCTCCTCAATTCGTC -ACGGAAGGATCTCCTCAATCTCTC -ACGGAAGGATCTCCTCAATGGATC -ACGGAAGGATCTCCTCAACACTTC -ACGGAAGGATCTCCTCAAGTACTC -ACGGAAGGATCTCCTCAAGATGTC -ACGGAAGGATCTCCTCAAACAGTC -ACGGAAGGATCTCCTCAATTGCTG -ACGGAAGGATCTCCTCAATCCATG -ACGGAAGGATCTCCTCAATGTGTG -ACGGAAGGATCTCCTCAACTAGTG -ACGGAAGGATCTCCTCAACATCTG -ACGGAAGGATCTCCTCAAGAGTTG -ACGGAAGGATCTCCTCAAAGACTG -ACGGAAGGATCTCCTCAATCGGTA -ACGGAAGGATCTCCTCAATGCCTA -ACGGAAGGATCTCCTCAACCACTA -ACGGAAGGATCTCCTCAAGGAGTA -ACGGAAGGATCTCCTCAATCGTCT -ACGGAAGGATCTCCTCAATGCACT -ACGGAAGGATCTCCTCAACTGACT -ACGGAAGGATCTCCTCAACAACCT -ACGGAAGGATCTCCTCAAGCTACT -ACGGAAGGATCTCCTCAAGGATCT -ACGGAAGGATCTCCTCAAAAGGCT -ACGGAAGGATCTCCTCAATCAACC -ACGGAAGGATCTCCTCAATGTTCC -ACGGAAGGATCTCCTCAAATTCCC -ACGGAAGGATCTCCTCAATTCTCG -ACGGAAGGATCTCCTCAATAGACG -ACGGAAGGATCTCCTCAAGTAACG -ACGGAAGGATCTCCTCAAACTTCG -ACGGAAGGATCTCCTCAATACGCA -ACGGAAGGATCTCCTCAACTTGCA -ACGGAAGGATCTCCTCAACGAACA -ACGGAAGGATCTCCTCAACAGTCA -ACGGAAGGATCTCCTCAAGATCCA -ACGGAAGGATCTCCTCAAACGACA -ACGGAAGGATCTCCTCAAAGCTCA -ACGGAAGGATCTCCTCAATCACGT -ACGGAAGGATCTCCTCAACGTAGT -ACGGAAGGATCTCCTCAAGTCAGT -ACGGAAGGATCTCCTCAAGAAGGT -ACGGAAGGATCTCCTCAAAACCGT -ACGGAAGGATCTCCTCAATTGTGC -ACGGAAGGATCTCCTCAACTAAGC -ACGGAAGGATCTCCTCAAACTAGC -ACGGAAGGATCTCCTCAAAGATGC -ACGGAAGGATCTCCTCAATGAAGG -ACGGAAGGATCTCCTCAACAATGG -ACGGAAGGATCTCCTCAAATGAGG -ACGGAAGGATCTCCTCAAAATGGG -ACGGAAGGATCTCCTCAATCCTGA -ACGGAAGGATCTCCTCAATAGCGA -ACGGAAGGATCTCCTCAACACAGA -ACGGAAGGATCTCCTCAAGCAAGA -ACGGAAGGATCTCCTCAAGGTTGA -ACGGAAGGATCTCCTCAATCCGAT -ACGGAAGGATCTCCTCAATGGCAT -ACGGAAGGATCTCCTCAACGAGAT -ACGGAAGGATCTCCTCAATACCAC -ACGGAAGGATCTCCTCAACAGAAC -ACGGAAGGATCTCCTCAAGTCTAC -ACGGAAGGATCTCCTCAAACGTAC -ACGGAAGGATCTCCTCAAAGTGAC -ACGGAAGGATCTCCTCAACTGTAG -ACGGAAGGATCTCCTCAACCTAAG -ACGGAAGGATCTCCTCAAGTTCAG -ACGGAAGGATCTCCTCAAGCATAG -ACGGAAGGATCTCCTCAAGACAAG -ACGGAAGGATCTCCTCAAAAGCAG -ACGGAAGGATCTCCTCAACGTCAA -ACGGAAGGATCTCCTCAAGCTGAA -ACGGAAGGATCTCCTCAAAGTACG -ACGGAAGGATCTCCTCAAATCCGA -ACGGAAGGATCTCCTCAAATGGGA -ACGGAAGGATCTCCTCAAGTGCAA -ACGGAAGGATCTCCTCAAGAGGAA -ACGGAAGGATCTCCTCAACAGGTA -ACGGAAGGATCTCCTCAAGACTCT -ACGGAAGGATCTCCTCAAAGTCCT -ACGGAAGGATCTCCTCAATAAGCC -ACGGAAGGATCTCCTCAAATAGCC -ACGGAAGGATCTCCTCAATAACCG -ACGGAAGGATCTCCTCAAATGCCA -ACGGAAGGATCTACTGCTGGAAAC -ACGGAAGGATCTACTGCTAACACC -ACGGAAGGATCTACTGCTATCGAG -ACGGAAGGATCTACTGCTCTCCTT -ACGGAAGGATCTACTGCTCCTGTT -ACGGAAGGATCTACTGCTCGGTTT -ACGGAAGGATCTACTGCTGTGGTT -ACGGAAGGATCTACTGCTGCCTTT -ACGGAAGGATCTACTGCTGGTCTT -ACGGAAGGATCTACTGCTACGCTT -ACGGAAGGATCTACTGCTAGCGTT -ACGGAAGGATCTACTGCTTTCGTC -ACGGAAGGATCTACTGCTTCTCTC -ACGGAAGGATCTACTGCTTGGATC -ACGGAAGGATCTACTGCTCACTTC -ACGGAAGGATCTACTGCTGTACTC -ACGGAAGGATCTACTGCTGATGTC -ACGGAAGGATCTACTGCTACAGTC -ACGGAAGGATCTACTGCTTTGCTG -ACGGAAGGATCTACTGCTTCCATG -ACGGAAGGATCTACTGCTTGTGTG -ACGGAAGGATCTACTGCTCTAGTG -ACGGAAGGATCTACTGCTCATCTG -ACGGAAGGATCTACTGCTGAGTTG -ACGGAAGGATCTACTGCTAGACTG -ACGGAAGGATCTACTGCTTCGGTA -ACGGAAGGATCTACTGCTTGCCTA -ACGGAAGGATCTACTGCTCCACTA -ACGGAAGGATCTACTGCTGGAGTA -ACGGAAGGATCTACTGCTTCGTCT -ACGGAAGGATCTACTGCTTGCACT -ACGGAAGGATCTACTGCTCTGACT -ACGGAAGGATCTACTGCTCAACCT -ACGGAAGGATCTACTGCTGCTACT -ACGGAAGGATCTACTGCTGGATCT -ACGGAAGGATCTACTGCTAAGGCT -ACGGAAGGATCTACTGCTTCAACC -ACGGAAGGATCTACTGCTTGTTCC -ACGGAAGGATCTACTGCTATTCCC -ACGGAAGGATCTACTGCTTTCTCG -ACGGAAGGATCTACTGCTTAGACG -ACGGAAGGATCTACTGCTGTAACG -ACGGAAGGATCTACTGCTACTTCG -ACGGAAGGATCTACTGCTTACGCA -ACGGAAGGATCTACTGCTCTTGCA -ACGGAAGGATCTACTGCTCGAACA -ACGGAAGGATCTACTGCTCAGTCA -ACGGAAGGATCTACTGCTGATCCA -ACGGAAGGATCTACTGCTACGACA -ACGGAAGGATCTACTGCTAGCTCA -ACGGAAGGATCTACTGCTTCACGT -ACGGAAGGATCTACTGCTCGTAGT -ACGGAAGGATCTACTGCTGTCAGT -ACGGAAGGATCTACTGCTGAAGGT -ACGGAAGGATCTACTGCTAACCGT -ACGGAAGGATCTACTGCTTTGTGC -ACGGAAGGATCTACTGCTCTAAGC -ACGGAAGGATCTACTGCTACTAGC -ACGGAAGGATCTACTGCTAGATGC -ACGGAAGGATCTACTGCTTGAAGG -ACGGAAGGATCTACTGCTCAATGG -ACGGAAGGATCTACTGCTATGAGG -ACGGAAGGATCTACTGCTAATGGG -ACGGAAGGATCTACTGCTTCCTGA -ACGGAAGGATCTACTGCTTAGCGA -ACGGAAGGATCTACTGCTCACAGA -ACGGAAGGATCTACTGCTGCAAGA -ACGGAAGGATCTACTGCTGGTTGA -ACGGAAGGATCTACTGCTTCCGAT -ACGGAAGGATCTACTGCTTGGCAT -ACGGAAGGATCTACTGCTCGAGAT -ACGGAAGGATCTACTGCTTACCAC -ACGGAAGGATCTACTGCTCAGAAC -ACGGAAGGATCTACTGCTGTCTAC -ACGGAAGGATCTACTGCTACGTAC -ACGGAAGGATCTACTGCTAGTGAC -ACGGAAGGATCTACTGCTCTGTAG -ACGGAAGGATCTACTGCTCCTAAG -ACGGAAGGATCTACTGCTGTTCAG -ACGGAAGGATCTACTGCTGCATAG -ACGGAAGGATCTACTGCTGACAAG -ACGGAAGGATCTACTGCTAAGCAG -ACGGAAGGATCTACTGCTCGTCAA -ACGGAAGGATCTACTGCTGCTGAA -ACGGAAGGATCTACTGCTAGTACG -ACGGAAGGATCTACTGCTATCCGA -ACGGAAGGATCTACTGCTATGGGA -ACGGAAGGATCTACTGCTGTGCAA -ACGGAAGGATCTACTGCTGAGGAA -ACGGAAGGATCTACTGCTCAGGTA -ACGGAAGGATCTACTGCTGACTCT -ACGGAAGGATCTACTGCTAGTCCT -ACGGAAGGATCTACTGCTTAAGCC -ACGGAAGGATCTACTGCTATAGCC -ACGGAAGGATCTACTGCTTAACCG -ACGGAAGGATCTACTGCTATGCCA -ACGGAAGGATCTTCTGGAGGAAAC -ACGGAAGGATCTTCTGGAAACACC -ACGGAAGGATCTTCTGGAATCGAG -ACGGAAGGATCTTCTGGACTCCTT -ACGGAAGGATCTTCTGGACCTGTT -ACGGAAGGATCTTCTGGACGGTTT -ACGGAAGGATCTTCTGGAGTGGTT -ACGGAAGGATCTTCTGGAGCCTTT -ACGGAAGGATCTTCTGGAGGTCTT -ACGGAAGGATCTTCTGGAACGCTT -ACGGAAGGATCTTCTGGAAGCGTT -ACGGAAGGATCTTCTGGATTCGTC -ACGGAAGGATCTTCTGGATCTCTC -ACGGAAGGATCTTCTGGATGGATC -ACGGAAGGATCTTCTGGACACTTC -ACGGAAGGATCTTCTGGAGTACTC -ACGGAAGGATCTTCTGGAGATGTC -ACGGAAGGATCTTCTGGAACAGTC -ACGGAAGGATCTTCTGGATTGCTG -ACGGAAGGATCTTCTGGATCCATG -ACGGAAGGATCTTCTGGATGTGTG -ACGGAAGGATCTTCTGGACTAGTG -ACGGAAGGATCTTCTGGACATCTG -ACGGAAGGATCTTCTGGAGAGTTG -ACGGAAGGATCTTCTGGAAGACTG -ACGGAAGGATCTTCTGGATCGGTA -ACGGAAGGATCTTCTGGATGCCTA -ACGGAAGGATCTTCTGGACCACTA -ACGGAAGGATCTTCTGGAGGAGTA -ACGGAAGGATCTTCTGGATCGTCT -ACGGAAGGATCTTCTGGATGCACT -ACGGAAGGATCTTCTGGACTGACT -ACGGAAGGATCTTCTGGACAACCT -ACGGAAGGATCTTCTGGAGCTACT -ACGGAAGGATCTTCTGGAGGATCT -ACGGAAGGATCTTCTGGAAAGGCT -ACGGAAGGATCTTCTGGATCAACC -ACGGAAGGATCTTCTGGATGTTCC -ACGGAAGGATCTTCTGGAATTCCC -ACGGAAGGATCTTCTGGATTCTCG -ACGGAAGGATCTTCTGGATAGACG -ACGGAAGGATCTTCTGGAGTAACG -ACGGAAGGATCTTCTGGAACTTCG -ACGGAAGGATCTTCTGGATACGCA -ACGGAAGGATCTTCTGGACTTGCA -ACGGAAGGATCTTCTGGACGAACA -ACGGAAGGATCTTCTGGACAGTCA -ACGGAAGGATCTTCTGGAGATCCA -ACGGAAGGATCTTCTGGAACGACA -ACGGAAGGATCTTCTGGAAGCTCA -ACGGAAGGATCTTCTGGATCACGT -ACGGAAGGATCTTCTGGACGTAGT -ACGGAAGGATCTTCTGGAGTCAGT -ACGGAAGGATCTTCTGGAGAAGGT -ACGGAAGGATCTTCTGGAAACCGT -ACGGAAGGATCTTCTGGATTGTGC -ACGGAAGGATCTTCTGGACTAAGC -ACGGAAGGATCTTCTGGAACTAGC -ACGGAAGGATCTTCTGGAAGATGC -ACGGAAGGATCTTCTGGATGAAGG -ACGGAAGGATCTTCTGGACAATGG -ACGGAAGGATCTTCTGGAATGAGG -ACGGAAGGATCTTCTGGAAATGGG -ACGGAAGGATCTTCTGGATCCTGA -ACGGAAGGATCTTCTGGATAGCGA -ACGGAAGGATCTTCTGGACACAGA -ACGGAAGGATCTTCTGGAGCAAGA -ACGGAAGGATCTTCTGGAGGTTGA -ACGGAAGGATCTTCTGGATCCGAT -ACGGAAGGATCTTCTGGATGGCAT -ACGGAAGGATCTTCTGGACGAGAT -ACGGAAGGATCTTCTGGATACCAC -ACGGAAGGATCTTCTGGACAGAAC -ACGGAAGGATCTTCTGGAGTCTAC -ACGGAAGGATCTTCTGGAACGTAC -ACGGAAGGATCTTCTGGAAGTGAC -ACGGAAGGATCTTCTGGACTGTAG -ACGGAAGGATCTTCTGGACCTAAG -ACGGAAGGATCTTCTGGAGTTCAG -ACGGAAGGATCTTCTGGAGCATAG -ACGGAAGGATCTTCTGGAGACAAG -ACGGAAGGATCTTCTGGAAAGCAG -ACGGAAGGATCTTCTGGACGTCAA -ACGGAAGGATCTTCTGGAGCTGAA -ACGGAAGGATCTTCTGGAAGTACG -ACGGAAGGATCTTCTGGAATCCGA -ACGGAAGGATCTTCTGGAATGGGA -ACGGAAGGATCTTCTGGAGTGCAA -ACGGAAGGATCTTCTGGAGAGGAA -ACGGAAGGATCTTCTGGACAGGTA -ACGGAAGGATCTTCTGGAGACTCT -ACGGAAGGATCTTCTGGAAGTCCT -ACGGAAGGATCTTCTGGATAAGCC -ACGGAAGGATCTTCTGGAATAGCC -ACGGAAGGATCTTCTGGATAACCG -ACGGAAGGATCTTCTGGAATGCCA -ACGGAAGGATCTGCTAAGGGAAAC -ACGGAAGGATCTGCTAAGAACACC -ACGGAAGGATCTGCTAAGATCGAG -ACGGAAGGATCTGCTAAGCTCCTT -ACGGAAGGATCTGCTAAGCCTGTT -ACGGAAGGATCTGCTAAGCGGTTT -ACGGAAGGATCTGCTAAGGTGGTT -ACGGAAGGATCTGCTAAGGCCTTT -ACGGAAGGATCTGCTAAGGGTCTT -ACGGAAGGATCTGCTAAGACGCTT -ACGGAAGGATCTGCTAAGAGCGTT -ACGGAAGGATCTGCTAAGTTCGTC -ACGGAAGGATCTGCTAAGTCTCTC -ACGGAAGGATCTGCTAAGTGGATC -ACGGAAGGATCTGCTAAGCACTTC -ACGGAAGGATCTGCTAAGGTACTC -ACGGAAGGATCTGCTAAGGATGTC -ACGGAAGGATCTGCTAAGACAGTC -ACGGAAGGATCTGCTAAGTTGCTG -ACGGAAGGATCTGCTAAGTCCATG -ACGGAAGGATCTGCTAAGTGTGTG -ACGGAAGGATCTGCTAAGCTAGTG -ACGGAAGGATCTGCTAAGCATCTG -ACGGAAGGATCTGCTAAGGAGTTG -ACGGAAGGATCTGCTAAGAGACTG -ACGGAAGGATCTGCTAAGTCGGTA -ACGGAAGGATCTGCTAAGTGCCTA -ACGGAAGGATCTGCTAAGCCACTA -ACGGAAGGATCTGCTAAGGGAGTA -ACGGAAGGATCTGCTAAGTCGTCT -ACGGAAGGATCTGCTAAGTGCACT -ACGGAAGGATCTGCTAAGCTGACT -ACGGAAGGATCTGCTAAGCAACCT -ACGGAAGGATCTGCTAAGGCTACT -ACGGAAGGATCTGCTAAGGGATCT -ACGGAAGGATCTGCTAAGAAGGCT -ACGGAAGGATCTGCTAAGTCAACC -ACGGAAGGATCTGCTAAGTGTTCC -ACGGAAGGATCTGCTAAGATTCCC -ACGGAAGGATCTGCTAAGTTCTCG -ACGGAAGGATCTGCTAAGTAGACG -ACGGAAGGATCTGCTAAGGTAACG -ACGGAAGGATCTGCTAAGACTTCG -ACGGAAGGATCTGCTAAGTACGCA -ACGGAAGGATCTGCTAAGCTTGCA -ACGGAAGGATCTGCTAAGCGAACA -ACGGAAGGATCTGCTAAGCAGTCA -ACGGAAGGATCTGCTAAGGATCCA -ACGGAAGGATCTGCTAAGACGACA -ACGGAAGGATCTGCTAAGAGCTCA -ACGGAAGGATCTGCTAAGTCACGT -ACGGAAGGATCTGCTAAGCGTAGT -ACGGAAGGATCTGCTAAGGTCAGT -ACGGAAGGATCTGCTAAGGAAGGT -ACGGAAGGATCTGCTAAGAACCGT -ACGGAAGGATCTGCTAAGTTGTGC -ACGGAAGGATCTGCTAAGCTAAGC -ACGGAAGGATCTGCTAAGACTAGC -ACGGAAGGATCTGCTAAGAGATGC -ACGGAAGGATCTGCTAAGTGAAGG -ACGGAAGGATCTGCTAAGCAATGG -ACGGAAGGATCTGCTAAGATGAGG -ACGGAAGGATCTGCTAAGAATGGG -ACGGAAGGATCTGCTAAGTCCTGA -ACGGAAGGATCTGCTAAGTAGCGA -ACGGAAGGATCTGCTAAGCACAGA -ACGGAAGGATCTGCTAAGGCAAGA -ACGGAAGGATCTGCTAAGGGTTGA -ACGGAAGGATCTGCTAAGTCCGAT -ACGGAAGGATCTGCTAAGTGGCAT -ACGGAAGGATCTGCTAAGCGAGAT -ACGGAAGGATCTGCTAAGTACCAC -ACGGAAGGATCTGCTAAGCAGAAC -ACGGAAGGATCTGCTAAGGTCTAC -ACGGAAGGATCTGCTAAGACGTAC -ACGGAAGGATCTGCTAAGAGTGAC -ACGGAAGGATCTGCTAAGCTGTAG -ACGGAAGGATCTGCTAAGCCTAAG -ACGGAAGGATCTGCTAAGGTTCAG -ACGGAAGGATCTGCTAAGGCATAG -ACGGAAGGATCTGCTAAGGACAAG -ACGGAAGGATCTGCTAAGAAGCAG -ACGGAAGGATCTGCTAAGCGTCAA -ACGGAAGGATCTGCTAAGGCTGAA -ACGGAAGGATCTGCTAAGAGTACG -ACGGAAGGATCTGCTAAGATCCGA -ACGGAAGGATCTGCTAAGATGGGA -ACGGAAGGATCTGCTAAGGTGCAA -ACGGAAGGATCTGCTAAGGAGGAA -ACGGAAGGATCTGCTAAGCAGGTA -ACGGAAGGATCTGCTAAGGACTCT -ACGGAAGGATCTGCTAAGAGTCCT -ACGGAAGGATCTGCTAAGTAAGCC -ACGGAAGGATCTGCTAAGATAGCC -ACGGAAGGATCTGCTAAGTAACCG -ACGGAAGGATCTGCTAAGATGCCA -ACGGAAGGATCTACCTCAGGAAAC -ACGGAAGGATCTACCTCAAACACC -ACGGAAGGATCTACCTCAATCGAG -ACGGAAGGATCTACCTCACTCCTT -ACGGAAGGATCTACCTCACCTGTT -ACGGAAGGATCTACCTCACGGTTT -ACGGAAGGATCTACCTCAGTGGTT -ACGGAAGGATCTACCTCAGCCTTT -ACGGAAGGATCTACCTCAGGTCTT -ACGGAAGGATCTACCTCAACGCTT -ACGGAAGGATCTACCTCAAGCGTT -ACGGAAGGATCTACCTCATTCGTC -ACGGAAGGATCTACCTCATCTCTC -ACGGAAGGATCTACCTCATGGATC -ACGGAAGGATCTACCTCACACTTC -ACGGAAGGATCTACCTCAGTACTC -ACGGAAGGATCTACCTCAGATGTC -ACGGAAGGATCTACCTCAACAGTC -ACGGAAGGATCTACCTCATTGCTG -ACGGAAGGATCTACCTCATCCATG -ACGGAAGGATCTACCTCATGTGTG -ACGGAAGGATCTACCTCACTAGTG -ACGGAAGGATCTACCTCACATCTG -ACGGAAGGATCTACCTCAGAGTTG -ACGGAAGGATCTACCTCAAGACTG -ACGGAAGGATCTACCTCATCGGTA -ACGGAAGGATCTACCTCATGCCTA -ACGGAAGGATCTACCTCACCACTA -ACGGAAGGATCTACCTCAGGAGTA -ACGGAAGGATCTACCTCATCGTCT -ACGGAAGGATCTACCTCATGCACT -ACGGAAGGATCTACCTCACTGACT -ACGGAAGGATCTACCTCACAACCT -ACGGAAGGATCTACCTCAGCTACT -ACGGAAGGATCTACCTCAGGATCT -ACGGAAGGATCTACCTCAAAGGCT -ACGGAAGGATCTACCTCATCAACC -ACGGAAGGATCTACCTCATGTTCC -ACGGAAGGATCTACCTCAATTCCC -ACGGAAGGATCTACCTCATTCTCG -ACGGAAGGATCTACCTCATAGACG -ACGGAAGGATCTACCTCAGTAACG -ACGGAAGGATCTACCTCAACTTCG -ACGGAAGGATCTACCTCATACGCA -ACGGAAGGATCTACCTCACTTGCA -ACGGAAGGATCTACCTCACGAACA -ACGGAAGGATCTACCTCACAGTCA -ACGGAAGGATCTACCTCAGATCCA -ACGGAAGGATCTACCTCAACGACA -ACGGAAGGATCTACCTCAAGCTCA -ACGGAAGGATCTACCTCATCACGT -ACGGAAGGATCTACCTCACGTAGT -ACGGAAGGATCTACCTCAGTCAGT -ACGGAAGGATCTACCTCAGAAGGT -ACGGAAGGATCTACCTCAAACCGT -ACGGAAGGATCTACCTCATTGTGC -ACGGAAGGATCTACCTCACTAAGC -ACGGAAGGATCTACCTCAACTAGC -ACGGAAGGATCTACCTCAAGATGC -ACGGAAGGATCTACCTCATGAAGG -ACGGAAGGATCTACCTCACAATGG -ACGGAAGGATCTACCTCAATGAGG -ACGGAAGGATCTACCTCAAATGGG -ACGGAAGGATCTACCTCATCCTGA -ACGGAAGGATCTACCTCATAGCGA -ACGGAAGGATCTACCTCACACAGA -ACGGAAGGATCTACCTCAGCAAGA -ACGGAAGGATCTACCTCAGGTTGA -ACGGAAGGATCTACCTCATCCGAT -ACGGAAGGATCTACCTCATGGCAT -ACGGAAGGATCTACCTCACGAGAT -ACGGAAGGATCTACCTCATACCAC -ACGGAAGGATCTACCTCACAGAAC -ACGGAAGGATCTACCTCAGTCTAC -ACGGAAGGATCTACCTCAACGTAC -ACGGAAGGATCTACCTCAAGTGAC -ACGGAAGGATCTACCTCACTGTAG -ACGGAAGGATCTACCTCACCTAAG -ACGGAAGGATCTACCTCAGTTCAG -ACGGAAGGATCTACCTCAGCATAG -ACGGAAGGATCTACCTCAGACAAG -ACGGAAGGATCTACCTCAAAGCAG -ACGGAAGGATCTACCTCACGTCAA -ACGGAAGGATCTACCTCAGCTGAA -ACGGAAGGATCTACCTCAAGTACG -ACGGAAGGATCTACCTCAATCCGA -ACGGAAGGATCTACCTCAATGGGA -ACGGAAGGATCTACCTCAGTGCAA -ACGGAAGGATCTACCTCAGAGGAA -ACGGAAGGATCTACCTCACAGGTA -ACGGAAGGATCTACCTCAGACTCT -ACGGAAGGATCTACCTCAAGTCCT -ACGGAAGGATCTACCTCATAAGCC -ACGGAAGGATCTACCTCAATAGCC -ACGGAAGGATCTACCTCATAACCG -ACGGAAGGATCTACCTCAATGCCA -ACGGAAGGATCTTCCTGTGGAAAC -ACGGAAGGATCTTCCTGTAACACC -ACGGAAGGATCTTCCTGTATCGAG -ACGGAAGGATCTTCCTGTCTCCTT -ACGGAAGGATCTTCCTGTCCTGTT -ACGGAAGGATCTTCCTGTCGGTTT -ACGGAAGGATCTTCCTGTGTGGTT -ACGGAAGGATCTTCCTGTGCCTTT -ACGGAAGGATCTTCCTGTGGTCTT -ACGGAAGGATCTTCCTGTACGCTT -ACGGAAGGATCTTCCTGTAGCGTT -ACGGAAGGATCTTCCTGTTTCGTC -ACGGAAGGATCTTCCTGTTCTCTC -ACGGAAGGATCTTCCTGTTGGATC -ACGGAAGGATCTTCCTGTCACTTC -ACGGAAGGATCTTCCTGTGTACTC -ACGGAAGGATCTTCCTGTGATGTC -ACGGAAGGATCTTCCTGTACAGTC -ACGGAAGGATCTTCCTGTTTGCTG -ACGGAAGGATCTTCCTGTTCCATG -ACGGAAGGATCTTCCTGTTGTGTG -ACGGAAGGATCTTCCTGTCTAGTG -ACGGAAGGATCTTCCTGTCATCTG -ACGGAAGGATCTTCCTGTGAGTTG -ACGGAAGGATCTTCCTGTAGACTG -ACGGAAGGATCTTCCTGTTCGGTA -ACGGAAGGATCTTCCTGTTGCCTA -ACGGAAGGATCTTCCTGTCCACTA -ACGGAAGGATCTTCCTGTGGAGTA -ACGGAAGGATCTTCCTGTTCGTCT -ACGGAAGGATCTTCCTGTTGCACT -ACGGAAGGATCTTCCTGTCTGACT -ACGGAAGGATCTTCCTGTCAACCT -ACGGAAGGATCTTCCTGTGCTACT -ACGGAAGGATCTTCCTGTGGATCT -ACGGAAGGATCTTCCTGTAAGGCT -ACGGAAGGATCTTCCTGTTCAACC -ACGGAAGGATCTTCCTGTTGTTCC -ACGGAAGGATCTTCCTGTATTCCC -ACGGAAGGATCTTCCTGTTTCTCG -ACGGAAGGATCTTCCTGTTAGACG -ACGGAAGGATCTTCCTGTGTAACG -ACGGAAGGATCTTCCTGTACTTCG -ACGGAAGGATCTTCCTGTTACGCA -ACGGAAGGATCTTCCTGTCTTGCA -ACGGAAGGATCTTCCTGTCGAACA -ACGGAAGGATCTTCCTGTCAGTCA -ACGGAAGGATCTTCCTGTGATCCA -ACGGAAGGATCTTCCTGTACGACA -ACGGAAGGATCTTCCTGTAGCTCA -ACGGAAGGATCTTCCTGTTCACGT -ACGGAAGGATCTTCCTGTCGTAGT -ACGGAAGGATCTTCCTGTGTCAGT -ACGGAAGGATCTTCCTGTGAAGGT -ACGGAAGGATCTTCCTGTAACCGT -ACGGAAGGATCTTCCTGTTTGTGC -ACGGAAGGATCTTCCTGTCTAAGC -ACGGAAGGATCTTCCTGTACTAGC -ACGGAAGGATCTTCCTGTAGATGC -ACGGAAGGATCTTCCTGTTGAAGG -ACGGAAGGATCTTCCTGTCAATGG -ACGGAAGGATCTTCCTGTATGAGG -ACGGAAGGATCTTCCTGTAATGGG -ACGGAAGGATCTTCCTGTTCCTGA -ACGGAAGGATCTTCCTGTTAGCGA -ACGGAAGGATCTTCCTGTCACAGA -ACGGAAGGATCTTCCTGTGCAAGA -ACGGAAGGATCTTCCTGTGGTTGA -ACGGAAGGATCTTCCTGTTCCGAT -ACGGAAGGATCTTCCTGTTGGCAT -ACGGAAGGATCTTCCTGTCGAGAT -ACGGAAGGATCTTCCTGTTACCAC -ACGGAAGGATCTTCCTGTCAGAAC -ACGGAAGGATCTTCCTGTGTCTAC -ACGGAAGGATCTTCCTGTACGTAC -ACGGAAGGATCTTCCTGTAGTGAC -ACGGAAGGATCTTCCTGTCTGTAG -ACGGAAGGATCTTCCTGTCCTAAG -ACGGAAGGATCTTCCTGTGTTCAG -ACGGAAGGATCTTCCTGTGCATAG -ACGGAAGGATCTTCCTGTGACAAG -ACGGAAGGATCTTCCTGTAAGCAG -ACGGAAGGATCTTCCTGTCGTCAA -ACGGAAGGATCTTCCTGTGCTGAA -ACGGAAGGATCTTCCTGTAGTACG -ACGGAAGGATCTTCCTGTATCCGA -ACGGAAGGATCTTCCTGTATGGGA -ACGGAAGGATCTTCCTGTGTGCAA -ACGGAAGGATCTTCCTGTGAGGAA -ACGGAAGGATCTTCCTGTCAGGTA -ACGGAAGGATCTTCCTGTGACTCT -ACGGAAGGATCTTCCTGTAGTCCT -ACGGAAGGATCTTCCTGTTAAGCC -ACGGAAGGATCTTCCTGTATAGCC -ACGGAAGGATCTTCCTGTTAACCG -ACGGAAGGATCTTCCTGTATGCCA -ACGGAAGGATCTCCCATTGGAAAC -ACGGAAGGATCTCCCATTAACACC -ACGGAAGGATCTCCCATTATCGAG -ACGGAAGGATCTCCCATTCTCCTT -ACGGAAGGATCTCCCATTCCTGTT -ACGGAAGGATCTCCCATTCGGTTT -ACGGAAGGATCTCCCATTGTGGTT -ACGGAAGGATCTCCCATTGCCTTT -ACGGAAGGATCTCCCATTGGTCTT -ACGGAAGGATCTCCCATTACGCTT -ACGGAAGGATCTCCCATTAGCGTT -ACGGAAGGATCTCCCATTTTCGTC -ACGGAAGGATCTCCCATTTCTCTC -ACGGAAGGATCTCCCATTTGGATC -ACGGAAGGATCTCCCATTCACTTC -ACGGAAGGATCTCCCATTGTACTC -ACGGAAGGATCTCCCATTGATGTC -ACGGAAGGATCTCCCATTACAGTC -ACGGAAGGATCTCCCATTTTGCTG -ACGGAAGGATCTCCCATTTCCATG -ACGGAAGGATCTCCCATTTGTGTG -ACGGAAGGATCTCCCATTCTAGTG -ACGGAAGGATCTCCCATTCATCTG -ACGGAAGGATCTCCCATTGAGTTG -ACGGAAGGATCTCCCATTAGACTG -ACGGAAGGATCTCCCATTTCGGTA -ACGGAAGGATCTCCCATTTGCCTA -ACGGAAGGATCTCCCATTCCACTA -ACGGAAGGATCTCCCATTGGAGTA -ACGGAAGGATCTCCCATTTCGTCT -ACGGAAGGATCTCCCATTTGCACT -ACGGAAGGATCTCCCATTCTGACT -ACGGAAGGATCTCCCATTCAACCT -ACGGAAGGATCTCCCATTGCTACT -ACGGAAGGATCTCCCATTGGATCT -ACGGAAGGATCTCCCATTAAGGCT -ACGGAAGGATCTCCCATTTCAACC -ACGGAAGGATCTCCCATTTGTTCC -ACGGAAGGATCTCCCATTATTCCC -ACGGAAGGATCTCCCATTTTCTCG -ACGGAAGGATCTCCCATTTAGACG -ACGGAAGGATCTCCCATTGTAACG -ACGGAAGGATCTCCCATTACTTCG -ACGGAAGGATCTCCCATTTACGCA -ACGGAAGGATCTCCCATTCTTGCA -ACGGAAGGATCTCCCATTCGAACA -ACGGAAGGATCTCCCATTCAGTCA -ACGGAAGGATCTCCCATTGATCCA -ACGGAAGGATCTCCCATTACGACA -ACGGAAGGATCTCCCATTAGCTCA -ACGGAAGGATCTCCCATTTCACGT -ACGGAAGGATCTCCCATTCGTAGT -ACGGAAGGATCTCCCATTGTCAGT -ACGGAAGGATCTCCCATTGAAGGT -ACGGAAGGATCTCCCATTAACCGT -ACGGAAGGATCTCCCATTTTGTGC -ACGGAAGGATCTCCCATTCTAAGC -ACGGAAGGATCTCCCATTACTAGC -ACGGAAGGATCTCCCATTAGATGC -ACGGAAGGATCTCCCATTTGAAGG -ACGGAAGGATCTCCCATTCAATGG -ACGGAAGGATCTCCCATTATGAGG -ACGGAAGGATCTCCCATTAATGGG -ACGGAAGGATCTCCCATTTCCTGA -ACGGAAGGATCTCCCATTTAGCGA -ACGGAAGGATCTCCCATTCACAGA -ACGGAAGGATCTCCCATTGCAAGA -ACGGAAGGATCTCCCATTGGTTGA -ACGGAAGGATCTCCCATTTCCGAT -ACGGAAGGATCTCCCATTTGGCAT -ACGGAAGGATCTCCCATTCGAGAT -ACGGAAGGATCTCCCATTTACCAC -ACGGAAGGATCTCCCATTCAGAAC -ACGGAAGGATCTCCCATTGTCTAC -ACGGAAGGATCTCCCATTACGTAC -ACGGAAGGATCTCCCATTAGTGAC -ACGGAAGGATCTCCCATTCTGTAG -ACGGAAGGATCTCCCATTCCTAAG -ACGGAAGGATCTCCCATTGTTCAG -ACGGAAGGATCTCCCATTGCATAG -ACGGAAGGATCTCCCATTGACAAG -ACGGAAGGATCTCCCATTAAGCAG -ACGGAAGGATCTCCCATTCGTCAA -ACGGAAGGATCTCCCATTGCTGAA -ACGGAAGGATCTCCCATTAGTACG -ACGGAAGGATCTCCCATTATCCGA -ACGGAAGGATCTCCCATTATGGGA -ACGGAAGGATCTCCCATTGTGCAA -ACGGAAGGATCTCCCATTGAGGAA -ACGGAAGGATCTCCCATTCAGGTA -ACGGAAGGATCTCCCATTGACTCT -ACGGAAGGATCTCCCATTAGTCCT -ACGGAAGGATCTCCCATTTAAGCC -ACGGAAGGATCTCCCATTATAGCC -ACGGAAGGATCTCCCATTTAACCG -ACGGAAGGATCTCCCATTATGCCA -ACGGAAGGATCTTCGTTCGGAAAC -ACGGAAGGATCTTCGTTCAACACC -ACGGAAGGATCTTCGTTCATCGAG -ACGGAAGGATCTTCGTTCCTCCTT -ACGGAAGGATCTTCGTTCCCTGTT -ACGGAAGGATCTTCGTTCCGGTTT -ACGGAAGGATCTTCGTTCGTGGTT -ACGGAAGGATCTTCGTTCGCCTTT -ACGGAAGGATCTTCGTTCGGTCTT -ACGGAAGGATCTTCGTTCACGCTT -ACGGAAGGATCTTCGTTCAGCGTT -ACGGAAGGATCTTCGTTCTTCGTC -ACGGAAGGATCTTCGTTCTCTCTC -ACGGAAGGATCTTCGTTCTGGATC -ACGGAAGGATCTTCGTTCCACTTC -ACGGAAGGATCTTCGTTCGTACTC -ACGGAAGGATCTTCGTTCGATGTC -ACGGAAGGATCTTCGTTCACAGTC -ACGGAAGGATCTTCGTTCTTGCTG -ACGGAAGGATCTTCGTTCTCCATG -ACGGAAGGATCTTCGTTCTGTGTG -ACGGAAGGATCTTCGTTCCTAGTG -ACGGAAGGATCTTCGTTCCATCTG -ACGGAAGGATCTTCGTTCGAGTTG -ACGGAAGGATCTTCGTTCAGACTG -ACGGAAGGATCTTCGTTCTCGGTA -ACGGAAGGATCTTCGTTCTGCCTA -ACGGAAGGATCTTCGTTCCCACTA -ACGGAAGGATCTTCGTTCGGAGTA -ACGGAAGGATCTTCGTTCTCGTCT -ACGGAAGGATCTTCGTTCTGCACT -ACGGAAGGATCTTCGTTCCTGACT -ACGGAAGGATCTTCGTTCCAACCT -ACGGAAGGATCTTCGTTCGCTACT -ACGGAAGGATCTTCGTTCGGATCT -ACGGAAGGATCTTCGTTCAAGGCT -ACGGAAGGATCTTCGTTCTCAACC -ACGGAAGGATCTTCGTTCTGTTCC -ACGGAAGGATCTTCGTTCATTCCC -ACGGAAGGATCTTCGTTCTTCTCG -ACGGAAGGATCTTCGTTCTAGACG -ACGGAAGGATCTTCGTTCGTAACG -ACGGAAGGATCTTCGTTCACTTCG -ACGGAAGGATCTTCGTTCTACGCA -ACGGAAGGATCTTCGTTCCTTGCA -ACGGAAGGATCTTCGTTCCGAACA -ACGGAAGGATCTTCGTTCCAGTCA -ACGGAAGGATCTTCGTTCGATCCA -ACGGAAGGATCTTCGTTCACGACA -ACGGAAGGATCTTCGTTCAGCTCA -ACGGAAGGATCTTCGTTCTCACGT -ACGGAAGGATCTTCGTTCCGTAGT -ACGGAAGGATCTTCGTTCGTCAGT -ACGGAAGGATCTTCGTTCGAAGGT -ACGGAAGGATCTTCGTTCAACCGT -ACGGAAGGATCTTCGTTCTTGTGC -ACGGAAGGATCTTCGTTCCTAAGC -ACGGAAGGATCTTCGTTCACTAGC -ACGGAAGGATCTTCGTTCAGATGC -ACGGAAGGATCTTCGTTCTGAAGG -ACGGAAGGATCTTCGTTCCAATGG -ACGGAAGGATCTTCGTTCATGAGG -ACGGAAGGATCTTCGTTCAATGGG -ACGGAAGGATCTTCGTTCTCCTGA -ACGGAAGGATCTTCGTTCTAGCGA -ACGGAAGGATCTTCGTTCCACAGA -ACGGAAGGATCTTCGTTCGCAAGA -ACGGAAGGATCTTCGTTCGGTTGA -ACGGAAGGATCTTCGTTCTCCGAT -ACGGAAGGATCTTCGTTCTGGCAT -ACGGAAGGATCTTCGTTCCGAGAT -ACGGAAGGATCTTCGTTCTACCAC -ACGGAAGGATCTTCGTTCCAGAAC -ACGGAAGGATCTTCGTTCGTCTAC -ACGGAAGGATCTTCGTTCACGTAC -ACGGAAGGATCTTCGTTCAGTGAC -ACGGAAGGATCTTCGTTCCTGTAG -ACGGAAGGATCTTCGTTCCCTAAG -ACGGAAGGATCTTCGTTCGTTCAG -ACGGAAGGATCTTCGTTCGCATAG -ACGGAAGGATCTTCGTTCGACAAG -ACGGAAGGATCTTCGTTCAAGCAG -ACGGAAGGATCTTCGTTCCGTCAA -ACGGAAGGATCTTCGTTCGCTGAA -ACGGAAGGATCTTCGTTCAGTACG -ACGGAAGGATCTTCGTTCATCCGA -ACGGAAGGATCTTCGTTCATGGGA -ACGGAAGGATCTTCGTTCGTGCAA -ACGGAAGGATCTTCGTTCGAGGAA -ACGGAAGGATCTTCGTTCCAGGTA -ACGGAAGGATCTTCGTTCGACTCT -ACGGAAGGATCTTCGTTCAGTCCT -ACGGAAGGATCTTCGTTCTAAGCC -ACGGAAGGATCTTCGTTCATAGCC -ACGGAAGGATCTTCGTTCTAACCG -ACGGAAGGATCTTCGTTCATGCCA -ACGGAAGGATCTACGTAGGGAAAC -ACGGAAGGATCTACGTAGAACACC -ACGGAAGGATCTACGTAGATCGAG -ACGGAAGGATCTACGTAGCTCCTT -ACGGAAGGATCTACGTAGCCTGTT -ACGGAAGGATCTACGTAGCGGTTT -ACGGAAGGATCTACGTAGGTGGTT -ACGGAAGGATCTACGTAGGCCTTT -ACGGAAGGATCTACGTAGGGTCTT -ACGGAAGGATCTACGTAGACGCTT -ACGGAAGGATCTACGTAGAGCGTT -ACGGAAGGATCTACGTAGTTCGTC -ACGGAAGGATCTACGTAGTCTCTC -ACGGAAGGATCTACGTAGTGGATC -ACGGAAGGATCTACGTAGCACTTC -ACGGAAGGATCTACGTAGGTACTC -ACGGAAGGATCTACGTAGGATGTC -ACGGAAGGATCTACGTAGACAGTC -ACGGAAGGATCTACGTAGTTGCTG -ACGGAAGGATCTACGTAGTCCATG -ACGGAAGGATCTACGTAGTGTGTG -ACGGAAGGATCTACGTAGCTAGTG -ACGGAAGGATCTACGTAGCATCTG -ACGGAAGGATCTACGTAGGAGTTG -ACGGAAGGATCTACGTAGAGACTG -ACGGAAGGATCTACGTAGTCGGTA -ACGGAAGGATCTACGTAGTGCCTA -ACGGAAGGATCTACGTAGCCACTA -ACGGAAGGATCTACGTAGGGAGTA -ACGGAAGGATCTACGTAGTCGTCT -ACGGAAGGATCTACGTAGTGCACT -ACGGAAGGATCTACGTAGCTGACT -ACGGAAGGATCTACGTAGCAACCT -ACGGAAGGATCTACGTAGGCTACT -ACGGAAGGATCTACGTAGGGATCT -ACGGAAGGATCTACGTAGAAGGCT -ACGGAAGGATCTACGTAGTCAACC -ACGGAAGGATCTACGTAGTGTTCC -ACGGAAGGATCTACGTAGATTCCC -ACGGAAGGATCTACGTAGTTCTCG -ACGGAAGGATCTACGTAGTAGACG -ACGGAAGGATCTACGTAGGTAACG -ACGGAAGGATCTACGTAGACTTCG -ACGGAAGGATCTACGTAGTACGCA -ACGGAAGGATCTACGTAGCTTGCA -ACGGAAGGATCTACGTAGCGAACA -ACGGAAGGATCTACGTAGCAGTCA -ACGGAAGGATCTACGTAGGATCCA -ACGGAAGGATCTACGTAGACGACA -ACGGAAGGATCTACGTAGAGCTCA -ACGGAAGGATCTACGTAGTCACGT -ACGGAAGGATCTACGTAGCGTAGT -ACGGAAGGATCTACGTAGGTCAGT -ACGGAAGGATCTACGTAGGAAGGT -ACGGAAGGATCTACGTAGAACCGT -ACGGAAGGATCTACGTAGTTGTGC -ACGGAAGGATCTACGTAGCTAAGC -ACGGAAGGATCTACGTAGACTAGC -ACGGAAGGATCTACGTAGAGATGC -ACGGAAGGATCTACGTAGTGAAGG -ACGGAAGGATCTACGTAGCAATGG -ACGGAAGGATCTACGTAGATGAGG -ACGGAAGGATCTACGTAGAATGGG -ACGGAAGGATCTACGTAGTCCTGA -ACGGAAGGATCTACGTAGTAGCGA -ACGGAAGGATCTACGTAGCACAGA -ACGGAAGGATCTACGTAGGCAAGA -ACGGAAGGATCTACGTAGGGTTGA -ACGGAAGGATCTACGTAGTCCGAT -ACGGAAGGATCTACGTAGTGGCAT -ACGGAAGGATCTACGTAGCGAGAT -ACGGAAGGATCTACGTAGTACCAC -ACGGAAGGATCTACGTAGCAGAAC -ACGGAAGGATCTACGTAGGTCTAC -ACGGAAGGATCTACGTAGACGTAC -ACGGAAGGATCTACGTAGAGTGAC -ACGGAAGGATCTACGTAGCTGTAG -ACGGAAGGATCTACGTAGCCTAAG -ACGGAAGGATCTACGTAGGTTCAG -ACGGAAGGATCTACGTAGGCATAG -ACGGAAGGATCTACGTAGGACAAG -ACGGAAGGATCTACGTAGAAGCAG -ACGGAAGGATCTACGTAGCGTCAA -ACGGAAGGATCTACGTAGGCTGAA -ACGGAAGGATCTACGTAGAGTACG -ACGGAAGGATCTACGTAGATCCGA -ACGGAAGGATCTACGTAGATGGGA -ACGGAAGGATCTACGTAGGTGCAA -ACGGAAGGATCTACGTAGGAGGAA -ACGGAAGGATCTACGTAGCAGGTA -ACGGAAGGATCTACGTAGGACTCT -ACGGAAGGATCTACGTAGAGTCCT -ACGGAAGGATCTACGTAGTAAGCC -ACGGAAGGATCTACGTAGATAGCC -ACGGAAGGATCTACGTAGTAACCG -ACGGAAGGATCTACGTAGATGCCA -ACGGAAGGATCTACGGTAGGAAAC -ACGGAAGGATCTACGGTAAACACC -ACGGAAGGATCTACGGTAATCGAG -ACGGAAGGATCTACGGTACTCCTT -ACGGAAGGATCTACGGTACCTGTT -ACGGAAGGATCTACGGTACGGTTT -ACGGAAGGATCTACGGTAGTGGTT -ACGGAAGGATCTACGGTAGCCTTT -ACGGAAGGATCTACGGTAGGTCTT -ACGGAAGGATCTACGGTAACGCTT -ACGGAAGGATCTACGGTAAGCGTT -ACGGAAGGATCTACGGTATTCGTC -ACGGAAGGATCTACGGTATCTCTC -ACGGAAGGATCTACGGTATGGATC -ACGGAAGGATCTACGGTACACTTC -ACGGAAGGATCTACGGTAGTACTC -ACGGAAGGATCTACGGTAGATGTC -ACGGAAGGATCTACGGTAACAGTC -ACGGAAGGATCTACGGTATTGCTG -ACGGAAGGATCTACGGTATCCATG -ACGGAAGGATCTACGGTATGTGTG -ACGGAAGGATCTACGGTACTAGTG -ACGGAAGGATCTACGGTACATCTG -ACGGAAGGATCTACGGTAGAGTTG -ACGGAAGGATCTACGGTAAGACTG -ACGGAAGGATCTACGGTATCGGTA -ACGGAAGGATCTACGGTATGCCTA -ACGGAAGGATCTACGGTACCACTA -ACGGAAGGATCTACGGTAGGAGTA -ACGGAAGGATCTACGGTATCGTCT -ACGGAAGGATCTACGGTATGCACT -ACGGAAGGATCTACGGTACTGACT -ACGGAAGGATCTACGGTACAACCT -ACGGAAGGATCTACGGTAGCTACT -ACGGAAGGATCTACGGTAGGATCT -ACGGAAGGATCTACGGTAAAGGCT -ACGGAAGGATCTACGGTATCAACC -ACGGAAGGATCTACGGTATGTTCC -ACGGAAGGATCTACGGTAATTCCC -ACGGAAGGATCTACGGTATTCTCG -ACGGAAGGATCTACGGTATAGACG -ACGGAAGGATCTACGGTAGTAACG -ACGGAAGGATCTACGGTAACTTCG -ACGGAAGGATCTACGGTATACGCA -ACGGAAGGATCTACGGTACTTGCA -ACGGAAGGATCTACGGTACGAACA -ACGGAAGGATCTACGGTACAGTCA -ACGGAAGGATCTACGGTAGATCCA -ACGGAAGGATCTACGGTAACGACA -ACGGAAGGATCTACGGTAAGCTCA -ACGGAAGGATCTACGGTATCACGT -ACGGAAGGATCTACGGTACGTAGT -ACGGAAGGATCTACGGTAGTCAGT -ACGGAAGGATCTACGGTAGAAGGT -ACGGAAGGATCTACGGTAAACCGT -ACGGAAGGATCTACGGTATTGTGC -ACGGAAGGATCTACGGTACTAAGC -ACGGAAGGATCTACGGTAACTAGC -ACGGAAGGATCTACGGTAAGATGC -ACGGAAGGATCTACGGTATGAAGG -ACGGAAGGATCTACGGTACAATGG -ACGGAAGGATCTACGGTAATGAGG -ACGGAAGGATCTACGGTAAATGGG -ACGGAAGGATCTACGGTATCCTGA -ACGGAAGGATCTACGGTATAGCGA -ACGGAAGGATCTACGGTACACAGA -ACGGAAGGATCTACGGTAGCAAGA -ACGGAAGGATCTACGGTAGGTTGA -ACGGAAGGATCTACGGTATCCGAT -ACGGAAGGATCTACGGTATGGCAT -ACGGAAGGATCTACGGTACGAGAT -ACGGAAGGATCTACGGTATACCAC -ACGGAAGGATCTACGGTACAGAAC -ACGGAAGGATCTACGGTAGTCTAC -ACGGAAGGATCTACGGTAACGTAC -ACGGAAGGATCTACGGTAAGTGAC -ACGGAAGGATCTACGGTACTGTAG -ACGGAAGGATCTACGGTACCTAAG -ACGGAAGGATCTACGGTAGTTCAG -ACGGAAGGATCTACGGTAGCATAG -ACGGAAGGATCTACGGTAGACAAG -ACGGAAGGATCTACGGTAAAGCAG -ACGGAAGGATCTACGGTACGTCAA -ACGGAAGGATCTACGGTAGCTGAA -ACGGAAGGATCTACGGTAAGTACG -ACGGAAGGATCTACGGTAATCCGA -ACGGAAGGATCTACGGTAATGGGA -ACGGAAGGATCTACGGTAGTGCAA -ACGGAAGGATCTACGGTAGAGGAA -ACGGAAGGATCTACGGTACAGGTA -ACGGAAGGATCTACGGTAGACTCT -ACGGAAGGATCTACGGTAAGTCCT -ACGGAAGGATCTACGGTATAAGCC -ACGGAAGGATCTACGGTAATAGCC -ACGGAAGGATCTACGGTATAACCG -ACGGAAGGATCTACGGTAATGCCA -ACGGAAGGATCTTCGACTGGAAAC -ACGGAAGGATCTTCGACTAACACC -ACGGAAGGATCTTCGACTATCGAG -ACGGAAGGATCTTCGACTCTCCTT -ACGGAAGGATCTTCGACTCCTGTT -ACGGAAGGATCTTCGACTCGGTTT -ACGGAAGGATCTTCGACTGTGGTT -ACGGAAGGATCTTCGACTGCCTTT -ACGGAAGGATCTTCGACTGGTCTT -ACGGAAGGATCTTCGACTACGCTT -ACGGAAGGATCTTCGACTAGCGTT -ACGGAAGGATCTTCGACTTTCGTC -ACGGAAGGATCTTCGACTTCTCTC -ACGGAAGGATCTTCGACTTGGATC -ACGGAAGGATCTTCGACTCACTTC -ACGGAAGGATCTTCGACTGTACTC -ACGGAAGGATCTTCGACTGATGTC -ACGGAAGGATCTTCGACTACAGTC -ACGGAAGGATCTTCGACTTTGCTG -ACGGAAGGATCTTCGACTTCCATG -ACGGAAGGATCTTCGACTTGTGTG -ACGGAAGGATCTTCGACTCTAGTG -ACGGAAGGATCTTCGACTCATCTG -ACGGAAGGATCTTCGACTGAGTTG -ACGGAAGGATCTTCGACTAGACTG -ACGGAAGGATCTTCGACTTCGGTA -ACGGAAGGATCTTCGACTTGCCTA -ACGGAAGGATCTTCGACTCCACTA -ACGGAAGGATCTTCGACTGGAGTA -ACGGAAGGATCTTCGACTTCGTCT -ACGGAAGGATCTTCGACTTGCACT -ACGGAAGGATCTTCGACTCTGACT -ACGGAAGGATCTTCGACTCAACCT -ACGGAAGGATCTTCGACTGCTACT -ACGGAAGGATCTTCGACTGGATCT -ACGGAAGGATCTTCGACTAAGGCT -ACGGAAGGATCTTCGACTTCAACC -ACGGAAGGATCTTCGACTTGTTCC -ACGGAAGGATCTTCGACTATTCCC -ACGGAAGGATCTTCGACTTTCTCG -ACGGAAGGATCTTCGACTTAGACG -ACGGAAGGATCTTCGACTGTAACG -ACGGAAGGATCTTCGACTACTTCG -ACGGAAGGATCTTCGACTTACGCA -ACGGAAGGATCTTCGACTCTTGCA -ACGGAAGGATCTTCGACTCGAACA -ACGGAAGGATCTTCGACTCAGTCA -ACGGAAGGATCTTCGACTGATCCA -ACGGAAGGATCTTCGACTACGACA -ACGGAAGGATCTTCGACTAGCTCA -ACGGAAGGATCTTCGACTTCACGT -ACGGAAGGATCTTCGACTCGTAGT -ACGGAAGGATCTTCGACTGTCAGT -ACGGAAGGATCTTCGACTGAAGGT -ACGGAAGGATCTTCGACTAACCGT -ACGGAAGGATCTTCGACTTTGTGC -ACGGAAGGATCTTCGACTCTAAGC -ACGGAAGGATCTTCGACTACTAGC -ACGGAAGGATCTTCGACTAGATGC -ACGGAAGGATCTTCGACTTGAAGG -ACGGAAGGATCTTCGACTCAATGG -ACGGAAGGATCTTCGACTATGAGG -ACGGAAGGATCTTCGACTAATGGG -ACGGAAGGATCTTCGACTTCCTGA -ACGGAAGGATCTTCGACTTAGCGA -ACGGAAGGATCTTCGACTCACAGA -ACGGAAGGATCTTCGACTGCAAGA -ACGGAAGGATCTTCGACTGGTTGA -ACGGAAGGATCTTCGACTTCCGAT -ACGGAAGGATCTTCGACTTGGCAT -ACGGAAGGATCTTCGACTCGAGAT -ACGGAAGGATCTTCGACTTACCAC -ACGGAAGGATCTTCGACTCAGAAC -ACGGAAGGATCTTCGACTGTCTAC -ACGGAAGGATCTTCGACTACGTAC -ACGGAAGGATCTTCGACTAGTGAC -ACGGAAGGATCTTCGACTCTGTAG -ACGGAAGGATCTTCGACTCCTAAG -ACGGAAGGATCTTCGACTGTTCAG -ACGGAAGGATCTTCGACTGCATAG -ACGGAAGGATCTTCGACTGACAAG -ACGGAAGGATCTTCGACTAAGCAG -ACGGAAGGATCTTCGACTCGTCAA -ACGGAAGGATCTTCGACTGCTGAA -ACGGAAGGATCTTCGACTAGTACG -ACGGAAGGATCTTCGACTATCCGA -ACGGAAGGATCTTCGACTATGGGA -ACGGAAGGATCTTCGACTGTGCAA -ACGGAAGGATCTTCGACTGAGGAA -ACGGAAGGATCTTCGACTCAGGTA -ACGGAAGGATCTTCGACTGACTCT -ACGGAAGGATCTTCGACTAGTCCT -ACGGAAGGATCTTCGACTTAAGCC -ACGGAAGGATCTTCGACTATAGCC -ACGGAAGGATCTTCGACTTAACCG -ACGGAAGGATCTTCGACTATGCCA -ACGGAAGGATCTGCATACGGAAAC -ACGGAAGGATCTGCATACAACACC -ACGGAAGGATCTGCATACATCGAG -ACGGAAGGATCTGCATACCTCCTT -ACGGAAGGATCTGCATACCCTGTT -ACGGAAGGATCTGCATACCGGTTT -ACGGAAGGATCTGCATACGTGGTT -ACGGAAGGATCTGCATACGCCTTT -ACGGAAGGATCTGCATACGGTCTT -ACGGAAGGATCTGCATACACGCTT -ACGGAAGGATCTGCATACAGCGTT -ACGGAAGGATCTGCATACTTCGTC -ACGGAAGGATCTGCATACTCTCTC -ACGGAAGGATCTGCATACTGGATC -ACGGAAGGATCTGCATACCACTTC -ACGGAAGGATCTGCATACGTACTC -ACGGAAGGATCTGCATACGATGTC -ACGGAAGGATCTGCATACACAGTC -ACGGAAGGATCTGCATACTTGCTG -ACGGAAGGATCTGCATACTCCATG -ACGGAAGGATCTGCATACTGTGTG -ACGGAAGGATCTGCATACCTAGTG -ACGGAAGGATCTGCATACCATCTG -ACGGAAGGATCTGCATACGAGTTG -ACGGAAGGATCTGCATACAGACTG -ACGGAAGGATCTGCATACTCGGTA -ACGGAAGGATCTGCATACTGCCTA -ACGGAAGGATCTGCATACCCACTA -ACGGAAGGATCTGCATACGGAGTA -ACGGAAGGATCTGCATACTCGTCT -ACGGAAGGATCTGCATACTGCACT -ACGGAAGGATCTGCATACCTGACT -ACGGAAGGATCTGCATACCAACCT -ACGGAAGGATCTGCATACGCTACT -ACGGAAGGATCTGCATACGGATCT -ACGGAAGGATCTGCATACAAGGCT -ACGGAAGGATCTGCATACTCAACC -ACGGAAGGATCTGCATACTGTTCC -ACGGAAGGATCTGCATACATTCCC -ACGGAAGGATCTGCATACTTCTCG -ACGGAAGGATCTGCATACTAGACG -ACGGAAGGATCTGCATACGTAACG -ACGGAAGGATCTGCATACACTTCG -ACGGAAGGATCTGCATACTACGCA -ACGGAAGGATCTGCATACCTTGCA -ACGGAAGGATCTGCATACCGAACA -ACGGAAGGATCTGCATACCAGTCA -ACGGAAGGATCTGCATACGATCCA -ACGGAAGGATCTGCATACACGACA -ACGGAAGGATCTGCATACAGCTCA -ACGGAAGGATCTGCATACTCACGT -ACGGAAGGATCTGCATACCGTAGT -ACGGAAGGATCTGCATACGTCAGT -ACGGAAGGATCTGCATACGAAGGT -ACGGAAGGATCTGCATACAACCGT -ACGGAAGGATCTGCATACTTGTGC -ACGGAAGGATCTGCATACCTAAGC -ACGGAAGGATCTGCATACACTAGC -ACGGAAGGATCTGCATACAGATGC -ACGGAAGGATCTGCATACTGAAGG -ACGGAAGGATCTGCATACCAATGG -ACGGAAGGATCTGCATACATGAGG -ACGGAAGGATCTGCATACAATGGG -ACGGAAGGATCTGCATACTCCTGA -ACGGAAGGATCTGCATACTAGCGA -ACGGAAGGATCTGCATACCACAGA -ACGGAAGGATCTGCATACGCAAGA -ACGGAAGGATCTGCATACGGTTGA -ACGGAAGGATCTGCATACTCCGAT -ACGGAAGGATCTGCATACTGGCAT -ACGGAAGGATCTGCATACCGAGAT -ACGGAAGGATCTGCATACTACCAC -ACGGAAGGATCTGCATACCAGAAC -ACGGAAGGATCTGCATACGTCTAC -ACGGAAGGATCTGCATACACGTAC -ACGGAAGGATCTGCATACAGTGAC -ACGGAAGGATCTGCATACCTGTAG -ACGGAAGGATCTGCATACCCTAAG -ACGGAAGGATCTGCATACGTTCAG -ACGGAAGGATCTGCATACGCATAG -ACGGAAGGATCTGCATACGACAAG -ACGGAAGGATCTGCATACAAGCAG -ACGGAAGGATCTGCATACCGTCAA -ACGGAAGGATCTGCATACGCTGAA -ACGGAAGGATCTGCATACAGTACG -ACGGAAGGATCTGCATACATCCGA -ACGGAAGGATCTGCATACATGGGA -ACGGAAGGATCTGCATACGTGCAA -ACGGAAGGATCTGCATACGAGGAA -ACGGAAGGATCTGCATACCAGGTA -ACGGAAGGATCTGCATACGACTCT -ACGGAAGGATCTGCATACAGTCCT -ACGGAAGGATCTGCATACTAAGCC -ACGGAAGGATCTGCATACATAGCC -ACGGAAGGATCTGCATACTAACCG -ACGGAAGGATCTGCATACATGCCA -ACGGAAGGATCTGCACTTGGAAAC -ACGGAAGGATCTGCACTTAACACC -ACGGAAGGATCTGCACTTATCGAG -ACGGAAGGATCTGCACTTCTCCTT -ACGGAAGGATCTGCACTTCCTGTT -ACGGAAGGATCTGCACTTCGGTTT -ACGGAAGGATCTGCACTTGTGGTT -ACGGAAGGATCTGCACTTGCCTTT -ACGGAAGGATCTGCACTTGGTCTT -ACGGAAGGATCTGCACTTACGCTT -ACGGAAGGATCTGCACTTAGCGTT -ACGGAAGGATCTGCACTTTTCGTC -ACGGAAGGATCTGCACTTTCTCTC -ACGGAAGGATCTGCACTTTGGATC -ACGGAAGGATCTGCACTTCACTTC -ACGGAAGGATCTGCACTTGTACTC -ACGGAAGGATCTGCACTTGATGTC -ACGGAAGGATCTGCACTTACAGTC -ACGGAAGGATCTGCACTTTTGCTG -ACGGAAGGATCTGCACTTTCCATG -ACGGAAGGATCTGCACTTTGTGTG -ACGGAAGGATCTGCACTTCTAGTG -ACGGAAGGATCTGCACTTCATCTG -ACGGAAGGATCTGCACTTGAGTTG -ACGGAAGGATCTGCACTTAGACTG -ACGGAAGGATCTGCACTTTCGGTA -ACGGAAGGATCTGCACTTTGCCTA -ACGGAAGGATCTGCACTTCCACTA -ACGGAAGGATCTGCACTTGGAGTA -ACGGAAGGATCTGCACTTTCGTCT -ACGGAAGGATCTGCACTTTGCACT -ACGGAAGGATCTGCACTTCTGACT -ACGGAAGGATCTGCACTTCAACCT -ACGGAAGGATCTGCACTTGCTACT -ACGGAAGGATCTGCACTTGGATCT -ACGGAAGGATCTGCACTTAAGGCT -ACGGAAGGATCTGCACTTTCAACC -ACGGAAGGATCTGCACTTTGTTCC -ACGGAAGGATCTGCACTTATTCCC -ACGGAAGGATCTGCACTTTTCTCG -ACGGAAGGATCTGCACTTTAGACG -ACGGAAGGATCTGCACTTGTAACG -ACGGAAGGATCTGCACTTACTTCG -ACGGAAGGATCTGCACTTTACGCA -ACGGAAGGATCTGCACTTCTTGCA -ACGGAAGGATCTGCACTTCGAACA -ACGGAAGGATCTGCACTTCAGTCA -ACGGAAGGATCTGCACTTGATCCA -ACGGAAGGATCTGCACTTACGACA -ACGGAAGGATCTGCACTTAGCTCA -ACGGAAGGATCTGCACTTTCACGT -ACGGAAGGATCTGCACTTCGTAGT -ACGGAAGGATCTGCACTTGTCAGT -ACGGAAGGATCTGCACTTGAAGGT -ACGGAAGGATCTGCACTTAACCGT -ACGGAAGGATCTGCACTTTTGTGC -ACGGAAGGATCTGCACTTCTAAGC -ACGGAAGGATCTGCACTTACTAGC -ACGGAAGGATCTGCACTTAGATGC -ACGGAAGGATCTGCACTTTGAAGG -ACGGAAGGATCTGCACTTCAATGG -ACGGAAGGATCTGCACTTATGAGG -ACGGAAGGATCTGCACTTAATGGG -ACGGAAGGATCTGCACTTTCCTGA -ACGGAAGGATCTGCACTTTAGCGA -ACGGAAGGATCTGCACTTCACAGA -ACGGAAGGATCTGCACTTGCAAGA -ACGGAAGGATCTGCACTTGGTTGA -ACGGAAGGATCTGCACTTTCCGAT -ACGGAAGGATCTGCACTTTGGCAT -ACGGAAGGATCTGCACTTCGAGAT -ACGGAAGGATCTGCACTTTACCAC -ACGGAAGGATCTGCACTTCAGAAC -ACGGAAGGATCTGCACTTGTCTAC -ACGGAAGGATCTGCACTTACGTAC -ACGGAAGGATCTGCACTTAGTGAC -ACGGAAGGATCTGCACTTCTGTAG -ACGGAAGGATCTGCACTTCCTAAG -ACGGAAGGATCTGCACTTGTTCAG -ACGGAAGGATCTGCACTTGCATAG -ACGGAAGGATCTGCACTTGACAAG -ACGGAAGGATCTGCACTTAAGCAG -ACGGAAGGATCTGCACTTCGTCAA -ACGGAAGGATCTGCACTTGCTGAA -ACGGAAGGATCTGCACTTAGTACG -ACGGAAGGATCTGCACTTATCCGA -ACGGAAGGATCTGCACTTATGGGA -ACGGAAGGATCTGCACTTGTGCAA -ACGGAAGGATCTGCACTTGAGGAA -ACGGAAGGATCTGCACTTCAGGTA -ACGGAAGGATCTGCACTTGACTCT -ACGGAAGGATCTGCACTTAGTCCT -ACGGAAGGATCTGCACTTTAAGCC -ACGGAAGGATCTGCACTTATAGCC -ACGGAAGGATCTGCACTTTAACCG -ACGGAAGGATCTGCACTTATGCCA -ACGGAAGGATCTACACGAGGAAAC -ACGGAAGGATCTACACGAAACACC -ACGGAAGGATCTACACGAATCGAG -ACGGAAGGATCTACACGACTCCTT -ACGGAAGGATCTACACGACCTGTT -ACGGAAGGATCTACACGACGGTTT -ACGGAAGGATCTACACGAGTGGTT -ACGGAAGGATCTACACGAGCCTTT -ACGGAAGGATCTACACGAGGTCTT -ACGGAAGGATCTACACGAACGCTT -ACGGAAGGATCTACACGAAGCGTT -ACGGAAGGATCTACACGATTCGTC -ACGGAAGGATCTACACGATCTCTC -ACGGAAGGATCTACACGATGGATC -ACGGAAGGATCTACACGACACTTC -ACGGAAGGATCTACACGAGTACTC -ACGGAAGGATCTACACGAGATGTC -ACGGAAGGATCTACACGAACAGTC -ACGGAAGGATCTACACGATTGCTG -ACGGAAGGATCTACACGATCCATG -ACGGAAGGATCTACACGATGTGTG -ACGGAAGGATCTACACGACTAGTG -ACGGAAGGATCTACACGACATCTG -ACGGAAGGATCTACACGAGAGTTG -ACGGAAGGATCTACACGAAGACTG -ACGGAAGGATCTACACGATCGGTA -ACGGAAGGATCTACACGATGCCTA -ACGGAAGGATCTACACGACCACTA -ACGGAAGGATCTACACGAGGAGTA -ACGGAAGGATCTACACGATCGTCT -ACGGAAGGATCTACACGATGCACT -ACGGAAGGATCTACACGACTGACT -ACGGAAGGATCTACACGACAACCT -ACGGAAGGATCTACACGAGCTACT -ACGGAAGGATCTACACGAGGATCT -ACGGAAGGATCTACACGAAAGGCT -ACGGAAGGATCTACACGATCAACC -ACGGAAGGATCTACACGATGTTCC -ACGGAAGGATCTACACGAATTCCC -ACGGAAGGATCTACACGATTCTCG -ACGGAAGGATCTACACGATAGACG -ACGGAAGGATCTACACGAGTAACG -ACGGAAGGATCTACACGAACTTCG -ACGGAAGGATCTACACGATACGCA -ACGGAAGGATCTACACGACTTGCA -ACGGAAGGATCTACACGACGAACA -ACGGAAGGATCTACACGACAGTCA -ACGGAAGGATCTACACGAGATCCA -ACGGAAGGATCTACACGAACGACA -ACGGAAGGATCTACACGAAGCTCA -ACGGAAGGATCTACACGATCACGT -ACGGAAGGATCTACACGACGTAGT -ACGGAAGGATCTACACGAGTCAGT -ACGGAAGGATCTACACGAGAAGGT -ACGGAAGGATCTACACGAAACCGT -ACGGAAGGATCTACACGATTGTGC -ACGGAAGGATCTACACGACTAAGC -ACGGAAGGATCTACACGAACTAGC -ACGGAAGGATCTACACGAAGATGC -ACGGAAGGATCTACACGATGAAGG -ACGGAAGGATCTACACGACAATGG -ACGGAAGGATCTACACGAATGAGG -ACGGAAGGATCTACACGAAATGGG -ACGGAAGGATCTACACGATCCTGA -ACGGAAGGATCTACACGATAGCGA -ACGGAAGGATCTACACGACACAGA -ACGGAAGGATCTACACGAGCAAGA -ACGGAAGGATCTACACGAGGTTGA -ACGGAAGGATCTACACGATCCGAT -ACGGAAGGATCTACACGATGGCAT -ACGGAAGGATCTACACGACGAGAT -ACGGAAGGATCTACACGATACCAC -ACGGAAGGATCTACACGACAGAAC -ACGGAAGGATCTACACGAGTCTAC -ACGGAAGGATCTACACGAACGTAC -ACGGAAGGATCTACACGAAGTGAC -ACGGAAGGATCTACACGACTGTAG -ACGGAAGGATCTACACGACCTAAG -ACGGAAGGATCTACACGAGTTCAG -ACGGAAGGATCTACACGAGCATAG -ACGGAAGGATCTACACGAGACAAG -ACGGAAGGATCTACACGAAAGCAG -ACGGAAGGATCTACACGACGTCAA -ACGGAAGGATCTACACGAGCTGAA -ACGGAAGGATCTACACGAAGTACG -ACGGAAGGATCTACACGAATCCGA -ACGGAAGGATCTACACGAATGGGA -ACGGAAGGATCTACACGAGTGCAA -ACGGAAGGATCTACACGAGAGGAA -ACGGAAGGATCTACACGACAGGTA -ACGGAAGGATCTACACGAGACTCT -ACGGAAGGATCTACACGAAGTCCT -ACGGAAGGATCTACACGATAAGCC -ACGGAAGGATCTACACGAATAGCC -ACGGAAGGATCTACACGATAACCG -ACGGAAGGATCTACACGAATGCCA -ACGGAAGGATCTTCACAGGGAAAC -ACGGAAGGATCTTCACAGAACACC -ACGGAAGGATCTTCACAGATCGAG -ACGGAAGGATCTTCACAGCTCCTT -ACGGAAGGATCTTCACAGCCTGTT -ACGGAAGGATCTTCACAGCGGTTT -ACGGAAGGATCTTCACAGGTGGTT -ACGGAAGGATCTTCACAGGCCTTT -ACGGAAGGATCTTCACAGGGTCTT -ACGGAAGGATCTTCACAGACGCTT -ACGGAAGGATCTTCACAGAGCGTT -ACGGAAGGATCTTCACAGTTCGTC -ACGGAAGGATCTTCACAGTCTCTC -ACGGAAGGATCTTCACAGTGGATC -ACGGAAGGATCTTCACAGCACTTC -ACGGAAGGATCTTCACAGGTACTC -ACGGAAGGATCTTCACAGGATGTC -ACGGAAGGATCTTCACAGACAGTC -ACGGAAGGATCTTCACAGTTGCTG -ACGGAAGGATCTTCACAGTCCATG -ACGGAAGGATCTTCACAGTGTGTG -ACGGAAGGATCTTCACAGCTAGTG -ACGGAAGGATCTTCACAGCATCTG -ACGGAAGGATCTTCACAGGAGTTG -ACGGAAGGATCTTCACAGAGACTG -ACGGAAGGATCTTCACAGTCGGTA -ACGGAAGGATCTTCACAGTGCCTA -ACGGAAGGATCTTCACAGCCACTA -ACGGAAGGATCTTCACAGGGAGTA -ACGGAAGGATCTTCACAGTCGTCT -ACGGAAGGATCTTCACAGTGCACT -ACGGAAGGATCTTCACAGCTGACT -ACGGAAGGATCTTCACAGCAACCT -ACGGAAGGATCTTCACAGGCTACT -ACGGAAGGATCTTCACAGGGATCT -ACGGAAGGATCTTCACAGAAGGCT -ACGGAAGGATCTTCACAGTCAACC -ACGGAAGGATCTTCACAGTGTTCC -ACGGAAGGATCTTCACAGATTCCC -ACGGAAGGATCTTCACAGTTCTCG -ACGGAAGGATCTTCACAGTAGACG -ACGGAAGGATCTTCACAGGTAACG -ACGGAAGGATCTTCACAGACTTCG -ACGGAAGGATCTTCACAGTACGCA -ACGGAAGGATCTTCACAGCTTGCA -ACGGAAGGATCTTCACAGCGAACA -ACGGAAGGATCTTCACAGCAGTCA -ACGGAAGGATCTTCACAGGATCCA -ACGGAAGGATCTTCACAGACGACA -ACGGAAGGATCTTCACAGAGCTCA -ACGGAAGGATCTTCACAGTCACGT -ACGGAAGGATCTTCACAGCGTAGT -ACGGAAGGATCTTCACAGGTCAGT -ACGGAAGGATCTTCACAGGAAGGT -ACGGAAGGATCTTCACAGAACCGT -ACGGAAGGATCTTCACAGTTGTGC -ACGGAAGGATCTTCACAGCTAAGC -ACGGAAGGATCTTCACAGACTAGC -ACGGAAGGATCTTCACAGAGATGC -ACGGAAGGATCTTCACAGTGAAGG -ACGGAAGGATCTTCACAGCAATGG -ACGGAAGGATCTTCACAGATGAGG -ACGGAAGGATCTTCACAGAATGGG -ACGGAAGGATCTTCACAGTCCTGA -ACGGAAGGATCTTCACAGTAGCGA -ACGGAAGGATCTTCACAGCACAGA -ACGGAAGGATCTTCACAGGCAAGA -ACGGAAGGATCTTCACAGGGTTGA -ACGGAAGGATCTTCACAGTCCGAT -ACGGAAGGATCTTCACAGTGGCAT -ACGGAAGGATCTTCACAGCGAGAT -ACGGAAGGATCTTCACAGTACCAC -ACGGAAGGATCTTCACAGCAGAAC -ACGGAAGGATCTTCACAGGTCTAC -ACGGAAGGATCTTCACAGACGTAC -ACGGAAGGATCTTCACAGAGTGAC -ACGGAAGGATCTTCACAGCTGTAG -ACGGAAGGATCTTCACAGCCTAAG -ACGGAAGGATCTTCACAGGTTCAG -ACGGAAGGATCTTCACAGGCATAG -ACGGAAGGATCTTCACAGGACAAG -ACGGAAGGATCTTCACAGAAGCAG -ACGGAAGGATCTTCACAGCGTCAA -ACGGAAGGATCTTCACAGGCTGAA -ACGGAAGGATCTTCACAGAGTACG -ACGGAAGGATCTTCACAGATCCGA -ACGGAAGGATCTTCACAGATGGGA -ACGGAAGGATCTTCACAGGTGCAA -ACGGAAGGATCTTCACAGGAGGAA -ACGGAAGGATCTTCACAGCAGGTA -ACGGAAGGATCTTCACAGGACTCT -ACGGAAGGATCTTCACAGAGTCCT -ACGGAAGGATCTTCACAGTAAGCC -ACGGAAGGATCTTCACAGATAGCC -ACGGAAGGATCTTCACAGTAACCG -ACGGAAGGATCTTCACAGATGCCA -ACGGAAGGATCTCCAGATGGAAAC -ACGGAAGGATCTCCAGATAACACC -ACGGAAGGATCTCCAGATATCGAG -ACGGAAGGATCTCCAGATCTCCTT -ACGGAAGGATCTCCAGATCCTGTT -ACGGAAGGATCTCCAGATCGGTTT -ACGGAAGGATCTCCAGATGTGGTT -ACGGAAGGATCTCCAGATGCCTTT -ACGGAAGGATCTCCAGATGGTCTT -ACGGAAGGATCTCCAGATACGCTT -ACGGAAGGATCTCCAGATAGCGTT -ACGGAAGGATCTCCAGATTTCGTC -ACGGAAGGATCTCCAGATTCTCTC -ACGGAAGGATCTCCAGATTGGATC -ACGGAAGGATCTCCAGATCACTTC -ACGGAAGGATCTCCAGATGTACTC -ACGGAAGGATCTCCAGATGATGTC -ACGGAAGGATCTCCAGATACAGTC -ACGGAAGGATCTCCAGATTTGCTG -ACGGAAGGATCTCCAGATTCCATG -ACGGAAGGATCTCCAGATTGTGTG -ACGGAAGGATCTCCAGATCTAGTG -ACGGAAGGATCTCCAGATCATCTG -ACGGAAGGATCTCCAGATGAGTTG -ACGGAAGGATCTCCAGATAGACTG -ACGGAAGGATCTCCAGATTCGGTA -ACGGAAGGATCTCCAGATTGCCTA -ACGGAAGGATCTCCAGATCCACTA -ACGGAAGGATCTCCAGATGGAGTA -ACGGAAGGATCTCCAGATTCGTCT -ACGGAAGGATCTCCAGATTGCACT -ACGGAAGGATCTCCAGATCTGACT -ACGGAAGGATCTCCAGATCAACCT -ACGGAAGGATCTCCAGATGCTACT -ACGGAAGGATCTCCAGATGGATCT -ACGGAAGGATCTCCAGATAAGGCT -ACGGAAGGATCTCCAGATTCAACC -ACGGAAGGATCTCCAGATTGTTCC -ACGGAAGGATCTCCAGATATTCCC -ACGGAAGGATCTCCAGATTTCTCG -ACGGAAGGATCTCCAGATTAGACG -ACGGAAGGATCTCCAGATGTAACG -ACGGAAGGATCTCCAGATACTTCG -ACGGAAGGATCTCCAGATTACGCA -ACGGAAGGATCTCCAGATCTTGCA -ACGGAAGGATCTCCAGATCGAACA -ACGGAAGGATCTCCAGATCAGTCA -ACGGAAGGATCTCCAGATGATCCA -ACGGAAGGATCTCCAGATACGACA -ACGGAAGGATCTCCAGATAGCTCA -ACGGAAGGATCTCCAGATTCACGT -ACGGAAGGATCTCCAGATCGTAGT -ACGGAAGGATCTCCAGATGTCAGT -ACGGAAGGATCTCCAGATGAAGGT -ACGGAAGGATCTCCAGATAACCGT -ACGGAAGGATCTCCAGATTTGTGC -ACGGAAGGATCTCCAGATCTAAGC -ACGGAAGGATCTCCAGATACTAGC -ACGGAAGGATCTCCAGATAGATGC -ACGGAAGGATCTCCAGATTGAAGG -ACGGAAGGATCTCCAGATCAATGG -ACGGAAGGATCTCCAGATATGAGG -ACGGAAGGATCTCCAGATAATGGG -ACGGAAGGATCTCCAGATTCCTGA -ACGGAAGGATCTCCAGATTAGCGA -ACGGAAGGATCTCCAGATCACAGA -ACGGAAGGATCTCCAGATGCAAGA -ACGGAAGGATCTCCAGATGGTTGA -ACGGAAGGATCTCCAGATTCCGAT -ACGGAAGGATCTCCAGATTGGCAT -ACGGAAGGATCTCCAGATCGAGAT -ACGGAAGGATCTCCAGATTACCAC -ACGGAAGGATCTCCAGATCAGAAC -ACGGAAGGATCTCCAGATGTCTAC -ACGGAAGGATCTCCAGATACGTAC -ACGGAAGGATCTCCAGATAGTGAC -ACGGAAGGATCTCCAGATCTGTAG -ACGGAAGGATCTCCAGATCCTAAG -ACGGAAGGATCTCCAGATGTTCAG -ACGGAAGGATCTCCAGATGCATAG -ACGGAAGGATCTCCAGATGACAAG -ACGGAAGGATCTCCAGATAAGCAG -ACGGAAGGATCTCCAGATCGTCAA -ACGGAAGGATCTCCAGATGCTGAA -ACGGAAGGATCTCCAGATAGTACG -ACGGAAGGATCTCCAGATATCCGA -ACGGAAGGATCTCCAGATATGGGA -ACGGAAGGATCTCCAGATGTGCAA -ACGGAAGGATCTCCAGATGAGGAA -ACGGAAGGATCTCCAGATCAGGTA -ACGGAAGGATCTCCAGATGACTCT -ACGGAAGGATCTCCAGATAGTCCT -ACGGAAGGATCTCCAGATTAAGCC -ACGGAAGGATCTCCAGATATAGCC -ACGGAAGGATCTCCAGATTAACCG -ACGGAAGGATCTCCAGATATGCCA -ACGGAAGGATCTACAACGGGAAAC -ACGGAAGGATCTACAACGAACACC -ACGGAAGGATCTACAACGATCGAG -ACGGAAGGATCTACAACGCTCCTT -ACGGAAGGATCTACAACGCCTGTT -ACGGAAGGATCTACAACGCGGTTT -ACGGAAGGATCTACAACGGTGGTT -ACGGAAGGATCTACAACGGCCTTT -ACGGAAGGATCTACAACGGGTCTT -ACGGAAGGATCTACAACGACGCTT -ACGGAAGGATCTACAACGAGCGTT -ACGGAAGGATCTACAACGTTCGTC -ACGGAAGGATCTACAACGTCTCTC -ACGGAAGGATCTACAACGTGGATC -ACGGAAGGATCTACAACGCACTTC -ACGGAAGGATCTACAACGGTACTC -ACGGAAGGATCTACAACGGATGTC -ACGGAAGGATCTACAACGACAGTC -ACGGAAGGATCTACAACGTTGCTG -ACGGAAGGATCTACAACGTCCATG -ACGGAAGGATCTACAACGTGTGTG -ACGGAAGGATCTACAACGCTAGTG -ACGGAAGGATCTACAACGCATCTG -ACGGAAGGATCTACAACGGAGTTG -ACGGAAGGATCTACAACGAGACTG -ACGGAAGGATCTACAACGTCGGTA -ACGGAAGGATCTACAACGTGCCTA -ACGGAAGGATCTACAACGCCACTA -ACGGAAGGATCTACAACGGGAGTA -ACGGAAGGATCTACAACGTCGTCT -ACGGAAGGATCTACAACGTGCACT -ACGGAAGGATCTACAACGCTGACT -ACGGAAGGATCTACAACGCAACCT -ACGGAAGGATCTACAACGGCTACT -ACGGAAGGATCTACAACGGGATCT -ACGGAAGGATCTACAACGAAGGCT -ACGGAAGGATCTACAACGTCAACC -ACGGAAGGATCTACAACGTGTTCC -ACGGAAGGATCTACAACGATTCCC -ACGGAAGGATCTACAACGTTCTCG -ACGGAAGGATCTACAACGTAGACG -ACGGAAGGATCTACAACGGTAACG -ACGGAAGGATCTACAACGACTTCG -ACGGAAGGATCTACAACGTACGCA -ACGGAAGGATCTACAACGCTTGCA -ACGGAAGGATCTACAACGCGAACA -ACGGAAGGATCTACAACGCAGTCA -ACGGAAGGATCTACAACGGATCCA -ACGGAAGGATCTACAACGACGACA -ACGGAAGGATCTACAACGAGCTCA -ACGGAAGGATCTACAACGTCACGT -ACGGAAGGATCTACAACGCGTAGT -ACGGAAGGATCTACAACGGTCAGT -ACGGAAGGATCTACAACGGAAGGT -ACGGAAGGATCTACAACGAACCGT -ACGGAAGGATCTACAACGTTGTGC -ACGGAAGGATCTACAACGCTAAGC -ACGGAAGGATCTACAACGACTAGC -ACGGAAGGATCTACAACGAGATGC -ACGGAAGGATCTACAACGTGAAGG -ACGGAAGGATCTACAACGCAATGG -ACGGAAGGATCTACAACGATGAGG -ACGGAAGGATCTACAACGAATGGG -ACGGAAGGATCTACAACGTCCTGA -ACGGAAGGATCTACAACGTAGCGA -ACGGAAGGATCTACAACGCACAGA -ACGGAAGGATCTACAACGGCAAGA -ACGGAAGGATCTACAACGGGTTGA -ACGGAAGGATCTACAACGTCCGAT -ACGGAAGGATCTACAACGTGGCAT -ACGGAAGGATCTACAACGCGAGAT -ACGGAAGGATCTACAACGTACCAC -ACGGAAGGATCTACAACGCAGAAC -ACGGAAGGATCTACAACGGTCTAC -ACGGAAGGATCTACAACGACGTAC -ACGGAAGGATCTACAACGAGTGAC -ACGGAAGGATCTACAACGCTGTAG -ACGGAAGGATCTACAACGCCTAAG -ACGGAAGGATCTACAACGGTTCAG -ACGGAAGGATCTACAACGGCATAG -ACGGAAGGATCTACAACGGACAAG -ACGGAAGGATCTACAACGAAGCAG -ACGGAAGGATCTACAACGCGTCAA -ACGGAAGGATCTACAACGGCTGAA -ACGGAAGGATCTACAACGAGTACG -ACGGAAGGATCTACAACGATCCGA -ACGGAAGGATCTACAACGATGGGA -ACGGAAGGATCTACAACGGTGCAA -ACGGAAGGATCTACAACGGAGGAA -ACGGAAGGATCTACAACGCAGGTA -ACGGAAGGATCTACAACGGACTCT -ACGGAAGGATCTACAACGAGTCCT -ACGGAAGGATCTACAACGTAAGCC -ACGGAAGGATCTACAACGATAGCC -ACGGAAGGATCTACAACGTAACCG -ACGGAAGGATCTACAACGATGCCA -ACGGAAGGATCTTCAAGCGGAAAC -ACGGAAGGATCTTCAAGCAACACC -ACGGAAGGATCTTCAAGCATCGAG -ACGGAAGGATCTTCAAGCCTCCTT -ACGGAAGGATCTTCAAGCCCTGTT -ACGGAAGGATCTTCAAGCCGGTTT -ACGGAAGGATCTTCAAGCGTGGTT -ACGGAAGGATCTTCAAGCGCCTTT -ACGGAAGGATCTTCAAGCGGTCTT -ACGGAAGGATCTTCAAGCACGCTT -ACGGAAGGATCTTCAAGCAGCGTT -ACGGAAGGATCTTCAAGCTTCGTC -ACGGAAGGATCTTCAAGCTCTCTC -ACGGAAGGATCTTCAAGCTGGATC -ACGGAAGGATCTTCAAGCCACTTC -ACGGAAGGATCTTCAAGCGTACTC -ACGGAAGGATCTTCAAGCGATGTC -ACGGAAGGATCTTCAAGCACAGTC -ACGGAAGGATCTTCAAGCTTGCTG -ACGGAAGGATCTTCAAGCTCCATG -ACGGAAGGATCTTCAAGCTGTGTG -ACGGAAGGATCTTCAAGCCTAGTG -ACGGAAGGATCTTCAAGCCATCTG -ACGGAAGGATCTTCAAGCGAGTTG -ACGGAAGGATCTTCAAGCAGACTG -ACGGAAGGATCTTCAAGCTCGGTA -ACGGAAGGATCTTCAAGCTGCCTA -ACGGAAGGATCTTCAAGCCCACTA -ACGGAAGGATCTTCAAGCGGAGTA -ACGGAAGGATCTTCAAGCTCGTCT -ACGGAAGGATCTTCAAGCTGCACT -ACGGAAGGATCTTCAAGCCTGACT -ACGGAAGGATCTTCAAGCCAACCT -ACGGAAGGATCTTCAAGCGCTACT -ACGGAAGGATCTTCAAGCGGATCT -ACGGAAGGATCTTCAAGCAAGGCT -ACGGAAGGATCTTCAAGCTCAACC -ACGGAAGGATCTTCAAGCTGTTCC -ACGGAAGGATCTTCAAGCATTCCC -ACGGAAGGATCTTCAAGCTTCTCG -ACGGAAGGATCTTCAAGCTAGACG -ACGGAAGGATCTTCAAGCGTAACG -ACGGAAGGATCTTCAAGCACTTCG -ACGGAAGGATCTTCAAGCTACGCA -ACGGAAGGATCTTCAAGCCTTGCA -ACGGAAGGATCTTCAAGCCGAACA -ACGGAAGGATCTTCAAGCCAGTCA -ACGGAAGGATCTTCAAGCGATCCA -ACGGAAGGATCTTCAAGCACGACA -ACGGAAGGATCTTCAAGCAGCTCA -ACGGAAGGATCTTCAAGCTCACGT -ACGGAAGGATCTTCAAGCCGTAGT -ACGGAAGGATCTTCAAGCGTCAGT -ACGGAAGGATCTTCAAGCGAAGGT -ACGGAAGGATCTTCAAGCAACCGT -ACGGAAGGATCTTCAAGCTTGTGC -ACGGAAGGATCTTCAAGCCTAAGC -ACGGAAGGATCTTCAAGCACTAGC -ACGGAAGGATCTTCAAGCAGATGC -ACGGAAGGATCTTCAAGCTGAAGG -ACGGAAGGATCTTCAAGCCAATGG -ACGGAAGGATCTTCAAGCATGAGG -ACGGAAGGATCTTCAAGCAATGGG -ACGGAAGGATCTTCAAGCTCCTGA -ACGGAAGGATCTTCAAGCTAGCGA -ACGGAAGGATCTTCAAGCCACAGA -ACGGAAGGATCTTCAAGCGCAAGA -ACGGAAGGATCTTCAAGCGGTTGA -ACGGAAGGATCTTCAAGCTCCGAT -ACGGAAGGATCTTCAAGCTGGCAT -ACGGAAGGATCTTCAAGCCGAGAT -ACGGAAGGATCTTCAAGCTACCAC -ACGGAAGGATCTTCAAGCCAGAAC -ACGGAAGGATCTTCAAGCGTCTAC -ACGGAAGGATCTTCAAGCACGTAC -ACGGAAGGATCTTCAAGCAGTGAC -ACGGAAGGATCTTCAAGCCTGTAG -ACGGAAGGATCTTCAAGCCCTAAG -ACGGAAGGATCTTCAAGCGTTCAG -ACGGAAGGATCTTCAAGCGCATAG -ACGGAAGGATCTTCAAGCGACAAG -ACGGAAGGATCTTCAAGCAAGCAG -ACGGAAGGATCTTCAAGCCGTCAA -ACGGAAGGATCTTCAAGCGCTGAA -ACGGAAGGATCTTCAAGCAGTACG -ACGGAAGGATCTTCAAGCATCCGA -ACGGAAGGATCTTCAAGCATGGGA -ACGGAAGGATCTTCAAGCGTGCAA -ACGGAAGGATCTTCAAGCGAGGAA -ACGGAAGGATCTTCAAGCCAGGTA -ACGGAAGGATCTTCAAGCGACTCT -ACGGAAGGATCTTCAAGCAGTCCT -ACGGAAGGATCTTCAAGCTAAGCC -ACGGAAGGATCTTCAAGCATAGCC -ACGGAAGGATCTTCAAGCTAACCG -ACGGAAGGATCTTCAAGCATGCCA -ACGGAAGGATCTCGTTCAGGAAAC -ACGGAAGGATCTCGTTCAAACACC -ACGGAAGGATCTCGTTCAATCGAG -ACGGAAGGATCTCGTTCACTCCTT -ACGGAAGGATCTCGTTCACCTGTT -ACGGAAGGATCTCGTTCACGGTTT -ACGGAAGGATCTCGTTCAGTGGTT -ACGGAAGGATCTCGTTCAGCCTTT -ACGGAAGGATCTCGTTCAGGTCTT -ACGGAAGGATCTCGTTCAACGCTT -ACGGAAGGATCTCGTTCAAGCGTT -ACGGAAGGATCTCGTTCATTCGTC -ACGGAAGGATCTCGTTCATCTCTC -ACGGAAGGATCTCGTTCATGGATC -ACGGAAGGATCTCGTTCACACTTC -ACGGAAGGATCTCGTTCAGTACTC -ACGGAAGGATCTCGTTCAGATGTC -ACGGAAGGATCTCGTTCAACAGTC -ACGGAAGGATCTCGTTCATTGCTG -ACGGAAGGATCTCGTTCATCCATG -ACGGAAGGATCTCGTTCATGTGTG -ACGGAAGGATCTCGTTCACTAGTG -ACGGAAGGATCTCGTTCACATCTG -ACGGAAGGATCTCGTTCAGAGTTG -ACGGAAGGATCTCGTTCAAGACTG -ACGGAAGGATCTCGTTCATCGGTA -ACGGAAGGATCTCGTTCATGCCTA -ACGGAAGGATCTCGTTCACCACTA -ACGGAAGGATCTCGTTCAGGAGTA -ACGGAAGGATCTCGTTCATCGTCT -ACGGAAGGATCTCGTTCATGCACT -ACGGAAGGATCTCGTTCACTGACT -ACGGAAGGATCTCGTTCACAACCT -ACGGAAGGATCTCGTTCAGCTACT -ACGGAAGGATCTCGTTCAGGATCT -ACGGAAGGATCTCGTTCAAAGGCT -ACGGAAGGATCTCGTTCATCAACC -ACGGAAGGATCTCGTTCATGTTCC -ACGGAAGGATCTCGTTCAATTCCC -ACGGAAGGATCTCGTTCATTCTCG -ACGGAAGGATCTCGTTCATAGACG -ACGGAAGGATCTCGTTCAGTAACG -ACGGAAGGATCTCGTTCAACTTCG -ACGGAAGGATCTCGTTCATACGCA -ACGGAAGGATCTCGTTCACTTGCA -ACGGAAGGATCTCGTTCACGAACA -ACGGAAGGATCTCGTTCACAGTCA -ACGGAAGGATCTCGTTCAGATCCA -ACGGAAGGATCTCGTTCAACGACA -ACGGAAGGATCTCGTTCAAGCTCA -ACGGAAGGATCTCGTTCATCACGT -ACGGAAGGATCTCGTTCACGTAGT -ACGGAAGGATCTCGTTCAGTCAGT -ACGGAAGGATCTCGTTCAGAAGGT -ACGGAAGGATCTCGTTCAAACCGT -ACGGAAGGATCTCGTTCATTGTGC -ACGGAAGGATCTCGTTCACTAAGC -ACGGAAGGATCTCGTTCAACTAGC -ACGGAAGGATCTCGTTCAAGATGC -ACGGAAGGATCTCGTTCATGAAGG -ACGGAAGGATCTCGTTCACAATGG -ACGGAAGGATCTCGTTCAATGAGG -ACGGAAGGATCTCGTTCAAATGGG -ACGGAAGGATCTCGTTCATCCTGA -ACGGAAGGATCTCGTTCATAGCGA -ACGGAAGGATCTCGTTCACACAGA -ACGGAAGGATCTCGTTCAGCAAGA -ACGGAAGGATCTCGTTCAGGTTGA -ACGGAAGGATCTCGTTCATCCGAT -ACGGAAGGATCTCGTTCATGGCAT -ACGGAAGGATCTCGTTCACGAGAT -ACGGAAGGATCTCGTTCATACCAC -ACGGAAGGATCTCGTTCACAGAAC -ACGGAAGGATCTCGTTCAGTCTAC -ACGGAAGGATCTCGTTCAACGTAC -ACGGAAGGATCTCGTTCAAGTGAC -ACGGAAGGATCTCGTTCACTGTAG -ACGGAAGGATCTCGTTCACCTAAG -ACGGAAGGATCTCGTTCAGTTCAG -ACGGAAGGATCTCGTTCAGCATAG -ACGGAAGGATCTCGTTCAGACAAG -ACGGAAGGATCTCGTTCAAAGCAG -ACGGAAGGATCTCGTTCACGTCAA -ACGGAAGGATCTCGTTCAGCTGAA -ACGGAAGGATCTCGTTCAAGTACG -ACGGAAGGATCTCGTTCAATCCGA -ACGGAAGGATCTCGTTCAATGGGA -ACGGAAGGATCTCGTTCAGTGCAA -ACGGAAGGATCTCGTTCAGAGGAA -ACGGAAGGATCTCGTTCACAGGTA -ACGGAAGGATCTCGTTCAGACTCT -ACGGAAGGATCTCGTTCAAGTCCT -ACGGAAGGATCTCGTTCATAAGCC -ACGGAAGGATCTCGTTCAATAGCC -ACGGAAGGATCTCGTTCATAACCG -ACGGAAGGATCTCGTTCAATGCCA -ACGGAAGGATCTAGTCGTGGAAAC -ACGGAAGGATCTAGTCGTAACACC -ACGGAAGGATCTAGTCGTATCGAG -ACGGAAGGATCTAGTCGTCTCCTT -ACGGAAGGATCTAGTCGTCCTGTT -ACGGAAGGATCTAGTCGTCGGTTT -ACGGAAGGATCTAGTCGTGTGGTT -ACGGAAGGATCTAGTCGTGCCTTT -ACGGAAGGATCTAGTCGTGGTCTT -ACGGAAGGATCTAGTCGTACGCTT -ACGGAAGGATCTAGTCGTAGCGTT -ACGGAAGGATCTAGTCGTTTCGTC -ACGGAAGGATCTAGTCGTTCTCTC -ACGGAAGGATCTAGTCGTTGGATC -ACGGAAGGATCTAGTCGTCACTTC -ACGGAAGGATCTAGTCGTGTACTC -ACGGAAGGATCTAGTCGTGATGTC -ACGGAAGGATCTAGTCGTACAGTC -ACGGAAGGATCTAGTCGTTTGCTG -ACGGAAGGATCTAGTCGTTCCATG -ACGGAAGGATCTAGTCGTTGTGTG -ACGGAAGGATCTAGTCGTCTAGTG -ACGGAAGGATCTAGTCGTCATCTG -ACGGAAGGATCTAGTCGTGAGTTG -ACGGAAGGATCTAGTCGTAGACTG -ACGGAAGGATCTAGTCGTTCGGTA -ACGGAAGGATCTAGTCGTTGCCTA -ACGGAAGGATCTAGTCGTCCACTA -ACGGAAGGATCTAGTCGTGGAGTA -ACGGAAGGATCTAGTCGTTCGTCT -ACGGAAGGATCTAGTCGTTGCACT -ACGGAAGGATCTAGTCGTCTGACT -ACGGAAGGATCTAGTCGTCAACCT -ACGGAAGGATCTAGTCGTGCTACT -ACGGAAGGATCTAGTCGTGGATCT -ACGGAAGGATCTAGTCGTAAGGCT -ACGGAAGGATCTAGTCGTTCAACC -ACGGAAGGATCTAGTCGTTGTTCC -ACGGAAGGATCTAGTCGTATTCCC -ACGGAAGGATCTAGTCGTTTCTCG -ACGGAAGGATCTAGTCGTTAGACG -ACGGAAGGATCTAGTCGTGTAACG -ACGGAAGGATCTAGTCGTACTTCG -ACGGAAGGATCTAGTCGTTACGCA -ACGGAAGGATCTAGTCGTCTTGCA -ACGGAAGGATCTAGTCGTCGAACA -ACGGAAGGATCTAGTCGTCAGTCA -ACGGAAGGATCTAGTCGTGATCCA -ACGGAAGGATCTAGTCGTACGACA -ACGGAAGGATCTAGTCGTAGCTCA -ACGGAAGGATCTAGTCGTTCACGT -ACGGAAGGATCTAGTCGTCGTAGT -ACGGAAGGATCTAGTCGTGTCAGT -ACGGAAGGATCTAGTCGTGAAGGT -ACGGAAGGATCTAGTCGTAACCGT -ACGGAAGGATCTAGTCGTTTGTGC -ACGGAAGGATCTAGTCGTCTAAGC -ACGGAAGGATCTAGTCGTACTAGC -ACGGAAGGATCTAGTCGTAGATGC -ACGGAAGGATCTAGTCGTTGAAGG -ACGGAAGGATCTAGTCGTCAATGG -ACGGAAGGATCTAGTCGTATGAGG -ACGGAAGGATCTAGTCGTAATGGG -ACGGAAGGATCTAGTCGTTCCTGA -ACGGAAGGATCTAGTCGTTAGCGA -ACGGAAGGATCTAGTCGTCACAGA -ACGGAAGGATCTAGTCGTGCAAGA -ACGGAAGGATCTAGTCGTGGTTGA -ACGGAAGGATCTAGTCGTTCCGAT -ACGGAAGGATCTAGTCGTTGGCAT -ACGGAAGGATCTAGTCGTCGAGAT -ACGGAAGGATCTAGTCGTTACCAC -ACGGAAGGATCTAGTCGTCAGAAC -ACGGAAGGATCTAGTCGTGTCTAC -ACGGAAGGATCTAGTCGTACGTAC -ACGGAAGGATCTAGTCGTAGTGAC -ACGGAAGGATCTAGTCGTCTGTAG -ACGGAAGGATCTAGTCGTCCTAAG -ACGGAAGGATCTAGTCGTGTTCAG -ACGGAAGGATCTAGTCGTGCATAG -ACGGAAGGATCTAGTCGTGACAAG -ACGGAAGGATCTAGTCGTAAGCAG -ACGGAAGGATCTAGTCGTCGTCAA -ACGGAAGGATCTAGTCGTGCTGAA -ACGGAAGGATCTAGTCGTAGTACG -ACGGAAGGATCTAGTCGTATCCGA -ACGGAAGGATCTAGTCGTATGGGA -ACGGAAGGATCTAGTCGTGTGCAA -ACGGAAGGATCTAGTCGTGAGGAA -ACGGAAGGATCTAGTCGTCAGGTA -ACGGAAGGATCTAGTCGTGACTCT -ACGGAAGGATCTAGTCGTAGTCCT -ACGGAAGGATCTAGTCGTTAAGCC -ACGGAAGGATCTAGTCGTATAGCC -ACGGAAGGATCTAGTCGTTAACCG -ACGGAAGGATCTAGTCGTATGCCA -ACGGAAGGATCTAGTGTCGGAAAC -ACGGAAGGATCTAGTGTCAACACC -ACGGAAGGATCTAGTGTCATCGAG -ACGGAAGGATCTAGTGTCCTCCTT -ACGGAAGGATCTAGTGTCCCTGTT -ACGGAAGGATCTAGTGTCCGGTTT -ACGGAAGGATCTAGTGTCGTGGTT -ACGGAAGGATCTAGTGTCGCCTTT -ACGGAAGGATCTAGTGTCGGTCTT -ACGGAAGGATCTAGTGTCACGCTT -ACGGAAGGATCTAGTGTCAGCGTT -ACGGAAGGATCTAGTGTCTTCGTC -ACGGAAGGATCTAGTGTCTCTCTC -ACGGAAGGATCTAGTGTCTGGATC -ACGGAAGGATCTAGTGTCCACTTC -ACGGAAGGATCTAGTGTCGTACTC -ACGGAAGGATCTAGTGTCGATGTC -ACGGAAGGATCTAGTGTCACAGTC -ACGGAAGGATCTAGTGTCTTGCTG -ACGGAAGGATCTAGTGTCTCCATG -ACGGAAGGATCTAGTGTCTGTGTG -ACGGAAGGATCTAGTGTCCTAGTG -ACGGAAGGATCTAGTGTCCATCTG -ACGGAAGGATCTAGTGTCGAGTTG -ACGGAAGGATCTAGTGTCAGACTG -ACGGAAGGATCTAGTGTCTCGGTA -ACGGAAGGATCTAGTGTCTGCCTA -ACGGAAGGATCTAGTGTCCCACTA -ACGGAAGGATCTAGTGTCGGAGTA -ACGGAAGGATCTAGTGTCTCGTCT -ACGGAAGGATCTAGTGTCTGCACT -ACGGAAGGATCTAGTGTCCTGACT -ACGGAAGGATCTAGTGTCCAACCT -ACGGAAGGATCTAGTGTCGCTACT -ACGGAAGGATCTAGTGTCGGATCT -ACGGAAGGATCTAGTGTCAAGGCT -ACGGAAGGATCTAGTGTCTCAACC -ACGGAAGGATCTAGTGTCTGTTCC -ACGGAAGGATCTAGTGTCATTCCC -ACGGAAGGATCTAGTGTCTTCTCG -ACGGAAGGATCTAGTGTCTAGACG -ACGGAAGGATCTAGTGTCGTAACG -ACGGAAGGATCTAGTGTCACTTCG -ACGGAAGGATCTAGTGTCTACGCA -ACGGAAGGATCTAGTGTCCTTGCA -ACGGAAGGATCTAGTGTCCGAACA -ACGGAAGGATCTAGTGTCCAGTCA -ACGGAAGGATCTAGTGTCGATCCA -ACGGAAGGATCTAGTGTCACGACA -ACGGAAGGATCTAGTGTCAGCTCA -ACGGAAGGATCTAGTGTCTCACGT -ACGGAAGGATCTAGTGTCCGTAGT -ACGGAAGGATCTAGTGTCGTCAGT -ACGGAAGGATCTAGTGTCGAAGGT -ACGGAAGGATCTAGTGTCAACCGT -ACGGAAGGATCTAGTGTCTTGTGC -ACGGAAGGATCTAGTGTCCTAAGC -ACGGAAGGATCTAGTGTCACTAGC -ACGGAAGGATCTAGTGTCAGATGC -ACGGAAGGATCTAGTGTCTGAAGG -ACGGAAGGATCTAGTGTCCAATGG -ACGGAAGGATCTAGTGTCATGAGG -ACGGAAGGATCTAGTGTCAATGGG -ACGGAAGGATCTAGTGTCTCCTGA -ACGGAAGGATCTAGTGTCTAGCGA -ACGGAAGGATCTAGTGTCCACAGA -ACGGAAGGATCTAGTGTCGCAAGA -ACGGAAGGATCTAGTGTCGGTTGA -ACGGAAGGATCTAGTGTCTCCGAT -ACGGAAGGATCTAGTGTCTGGCAT -ACGGAAGGATCTAGTGTCCGAGAT -ACGGAAGGATCTAGTGTCTACCAC -ACGGAAGGATCTAGTGTCCAGAAC -ACGGAAGGATCTAGTGTCGTCTAC -ACGGAAGGATCTAGTGTCACGTAC -ACGGAAGGATCTAGTGTCAGTGAC -ACGGAAGGATCTAGTGTCCTGTAG -ACGGAAGGATCTAGTGTCCCTAAG -ACGGAAGGATCTAGTGTCGTTCAG -ACGGAAGGATCTAGTGTCGCATAG -ACGGAAGGATCTAGTGTCGACAAG -ACGGAAGGATCTAGTGTCAAGCAG -ACGGAAGGATCTAGTGTCCGTCAA -ACGGAAGGATCTAGTGTCGCTGAA -ACGGAAGGATCTAGTGTCAGTACG -ACGGAAGGATCTAGTGTCATCCGA -ACGGAAGGATCTAGTGTCATGGGA -ACGGAAGGATCTAGTGTCGTGCAA -ACGGAAGGATCTAGTGTCGAGGAA -ACGGAAGGATCTAGTGTCCAGGTA -ACGGAAGGATCTAGTGTCGACTCT -ACGGAAGGATCTAGTGTCAGTCCT -ACGGAAGGATCTAGTGTCTAAGCC -ACGGAAGGATCTAGTGTCATAGCC -ACGGAAGGATCTAGTGTCTAACCG -ACGGAAGGATCTAGTGTCATGCCA -ACGGAAGGATCTGGTGAAGGAAAC -ACGGAAGGATCTGGTGAAAACACC -ACGGAAGGATCTGGTGAAATCGAG -ACGGAAGGATCTGGTGAACTCCTT -ACGGAAGGATCTGGTGAACCTGTT -ACGGAAGGATCTGGTGAACGGTTT -ACGGAAGGATCTGGTGAAGTGGTT -ACGGAAGGATCTGGTGAAGCCTTT -ACGGAAGGATCTGGTGAAGGTCTT -ACGGAAGGATCTGGTGAAACGCTT -ACGGAAGGATCTGGTGAAAGCGTT -ACGGAAGGATCTGGTGAATTCGTC -ACGGAAGGATCTGGTGAATCTCTC -ACGGAAGGATCTGGTGAATGGATC -ACGGAAGGATCTGGTGAACACTTC -ACGGAAGGATCTGGTGAAGTACTC -ACGGAAGGATCTGGTGAAGATGTC -ACGGAAGGATCTGGTGAAACAGTC -ACGGAAGGATCTGGTGAATTGCTG -ACGGAAGGATCTGGTGAATCCATG -ACGGAAGGATCTGGTGAATGTGTG -ACGGAAGGATCTGGTGAACTAGTG -ACGGAAGGATCTGGTGAACATCTG -ACGGAAGGATCTGGTGAAGAGTTG -ACGGAAGGATCTGGTGAAAGACTG -ACGGAAGGATCTGGTGAATCGGTA -ACGGAAGGATCTGGTGAATGCCTA -ACGGAAGGATCTGGTGAACCACTA -ACGGAAGGATCTGGTGAAGGAGTA -ACGGAAGGATCTGGTGAATCGTCT -ACGGAAGGATCTGGTGAATGCACT -ACGGAAGGATCTGGTGAACTGACT -ACGGAAGGATCTGGTGAACAACCT -ACGGAAGGATCTGGTGAAGCTACT -ACGGAAGGATCTGGTGAAGGATCT -ACGGAAGGATCTGGTGAAAAGGCT -ACGGAAGGATCTGGTGAATCAACC -ACGGAAGGATCTGGTGAATGTTCC -ACGGAAGGATCTGGTGAAATTCCC -ACGGAAGGATCTGGTGAATTCTCG -ACGGAAGGATCTGGTGAATAGACG -ACGGAAGGATCTGGTGAAGTAACG -ACGGAAGGATCTGGTGAAACTTCG -ACGGAAGGATCTGGTGAATACGCA -ACGGAAGGATCTGGTGAACTTGCA -ACGGAAGGATCTGGTGAACGAACA -ACGGAAGGATCTGGTGAACAGTCA -ACGGAAGGATCTGGTGAAGATCCA -ACGGAAGGATCTGGTGAAACGACA -ACGGAAGGATCTGGTGAAAGCTCA -ACGGAAGGATCTGGTGAATCACGT -ACGGAAGGATCTGGTGAACGTAGT -ACGGAAGGATCTGGTGAAGTCAGT -ACGGAAGGATCTGGTGAAGAAGGT -ACGGAAGGATCTGGTGAAAACCGT -ACGGAAGGATCTGGTGAATTGTGC -ACGGAAGGATCTGGTGAACTAAGC -ACGGAAGGATCTGGTGAAACTAGC -ACGGAAGGATCTGGTGAAAGATGC -ACGGAAGGATCTGGTGAATGAAGG -ACGGAAGGATCTGGTGAACAATGG -ACGGAAGGATCTGGTGAAATGAGG -ACGGAAGGATCTGGTGAAAATGGG -ACGGAAGGATCTGGTGAATCCTGA -ACGGAAGGATCTGGTGAATAGCGA -ACGGAAGGATCTGGTGAACACAGA -ACGGAAGGATCTGGTGAAGCAAGA -ACGGAAGGATCTGGTGAAGGTTGA -ACGGAAGGATCTGGTGAATCCGAT -ACGGAAGGATCTGGTGAATGGCAT -ACGGAAGGATCTGGTGAACGAGAT -ACGGAAGGATCTGGTGAATACCAC -ACGGAAGGATCTGGTGAACAGAAC -ACGGAAGGATCTGGTGAAGTCTAC -ACGGAAGGATCTGGTGAAACGTAC -ACGGAAGGATCTGGTGAAAGTGAC -ACGGAAGGATCTGGTGAACTGTAG -ACGGAAGGATCTGGTGAACCTAAG -ACGGAAGGATCTGGTGAAGTTCAG -ACGGAAGGATCTGGTGAAGCATAG -ACGGAAGGATCTGGTGAAGACAAG -ACGGAAGGATCTGGTGAAAAGCAG -ACGGAAGGATCTGGTGAACGTCAA -ACGGAAGGATCTGGTGAAGCTGAA -ACGGAAGGATCTGGTGAAAGTACG -ACGGAAGGATCTGGTGAAATCCGA -ACGGAAGGATCTGGTGAAATGGGA -ACGGAAGGATCTGGTGAAGTGCAA -ACGGAAGGATCTGGTGAAGAGGAA -ACGGAAGGATCTGGTGAACAGGTA -ACGGAAGGATCTGGTGAAGACTCT -ACGGAAGGATCTGGTGAAAGTCCT -ACGGAAGGATCTGGTGAATAAGCC -ACGGAAGGATCTGGTGAAATAGCC -ACGGAAGGATCTGGTGAATAACCG -ACGGAAGGATCTGGTGAAATGCCA -ACGGAAGGATCTCGTAACGGAAAC -ACGGAAGGATCTCGTAACAACACC -ACGGAAGGATCTCGTAACATCGAG -ACGGAAGGATCTCGTAACCTCCTT -ACGGAAGGATCTCGTAACCCTGTT -ACGGAAGGATCTCGTAACCGGTTT -ACGGAAGGATCTCGTAACGTGGTT -ACGGAAGGATCTCGTAACGCCTTT -ACGGAAGGATCTCGTAACGGTCTT -ACGGAAGGATCTCGTAACACGCTT -ACGGAAGGATCTCGTAACAGCGTT -ACGGAAGGATCTCGTAACTTCGTC -ACGGAAGGATCTCGTAACTCTCTC -ACGGAAGGATCTCGTAACTGGATC -ACGGAAGGATCTCGTAACCACTTC -ACGGAAGGATCTCGTAACGTACTC -ACGGAAGGATCTCGTAACGATGTC -ACGGAAGGATCTCGTAACACAGTC -ACGGAAGGATCTCGTAACTTGCTG -ACGGAAGGATCTCGTAACTCCATG -ACGGAAGGATCTCGTAACTGTGTG -ACGGAAGGATCTCGTAACCTAGTG -ACGGAAGGATCTCGTAACCATCTG -ACGGAAGGATCTCGTAACGAGTTG -ACGGAAGGATCTCGTAACAGACTG -ACGGAAGGATCTCGTAACTCGGTA -ACGGAAGGATCTCGTAACTGCCTA -ACGGAAGGATCTCGTAACCCACTA -ACGGAAGGATCTCGTAACGGAGTA -ACGGAAGGATCTCGTAACTCGTCT -ACGGAAGGATCTCGTAACTGCACT -ACGGAAGGATCTCGTAACCTGACT -ACGGAAGGATCTCGTAACCAACCT -ACGGAAGGATCTCGTAACGCTACT -ACGGAAGGATCTCGTAACGGATCT -ACGGAAGGATCTCGTAACAAGGCT -ACGGAAGGATCTCGTAACTCAACC -ACGGAAGGATCTCGTAACTGTTCC -ACGGAAGGATCTCGTAACATTCCC -ACGGAAGGATCTCGTAACTTCTCG -ACGGAAGGATCTCGTAACTAGACG -ACGGAAGGATCTCGTAACGTAACG -ACGGAAGGATCTCGTAACACTTCG -ACGGAAGGATCTCGTAACTACGCA -ACGGAAGGATCTCGTAACCTTGCA -ACGGAAGGATCTCGTAACCGAACA -ACGGAAGGATCTCGTAACCAGTCA -ACGGAAGGATCTCGTAACGATCCA -ACGGAAGGATCTCGTAACACGACA -ACGGAAGGATCTCGTAACAGCTCA -ACGGAAGGATCTCGTAACTCACGT -ACGGAAGGATCTCGTAACCGTAGT -ACGGAAGGATCTCGTAACGTCAGT -ACGGAAGGATCTCGTAACGAAGGT -ACGGAAGGATCTCGTAACAACCGT -ACGGAAGGATCTCGTAACTTGTGC -ACGGAAGGATCTCGTAACCTAAGC -ACGGAAGGATCTCGTAACACTAGC -ACGGAAGGATCTCGTAACAGATGC -ACGGAAGGATCTCGTAACTGAAGG -ACGGAAGGATCTCGTAACCAATGG -ACGGAAGGATCTCGTAACATGAGG -ACGGAAGGATCTCGTAACAATGGG -ACGGAAGGATCTCGTAACTCCTGA -ACGGAAGGATCTCGTAACTAGCGA -ACGGAAGGATCTCGTAACCACAGA -ACGGAAGGATCTCGTAACGCAAGA -ACGGAAGGATCTCGTAACGGTTGA -ACGGAAGGATCTCGTAACTCCGAT -ACGGAAGGATCTCGTAACTGGCAT -ACGGAAGGATCTCGTAACCGAGAT -ACGGAAGGATCTCGTAACTACCAC -ACGGAAGGATCTCGTAACCAGAAC -ACGGAAGGATCTCGTAACGTCTAC -ACGGAAGGATCTCGTAACACGTAC -ACGGAAGGATCTCGTAACAGTGAC -ACGGAAGGATCTCGTAACCTGTAG -ACGGAAGGATCTCGTAACCCTAAG -ACGGAAGGATCTCGTAACGTTCAG -ACGGAAGGATCTCGTAACGCATAG -ACGGAAGGATCTCGTAACGACAAG -ACGGAAGGATCTCGTAACAAGCAG -ACGGAAGGATCTCGTAACCGTCAA -ACGGAAGGATCTCGTAACGCTGAA -ACGGAAGGATCTCGTAACAGTACG -ACGGAAGGATCTCGTAACATCCGA -ACGGAAGGATCTCGTAACATGGGA -ACGGAAGGATCTCGTAACGTGCAA -ACGGAAGGATCTCGTAACGAGGAA -ACGGAAGGATCTCGTAACCAGGTA -ACGGAAGGATCTCGTAACGACTCT -ACGGAAGGATCTCGTAACAGTCCT -ACGGAAGGATCTCGTAACTAAGCC -ACGGAAGGATCTCGTAACATAGCC -ACGGAAGGATCTCGTAACTAACCG -ACGGAAGGATCTCGTAACATGCCA -ACGGAAGGATCTTGCTTGGGAAAC -ACGGAAGGATCTTGCTTGAACACC -ACGGAAGGATCTTGCTTGATCGAG -ACGGAAGGATCTTGCTTGCTCCTT -ACGGAAGGATCTTGCTTGCCTGTT -ACGGAAGGATCTTGCTTGCGGTTT -ACGGAAGGATCTTGCTTGGTGGTT -ACGGAAGGATCTTGCTTGGCCTTT -ACGGAAGGATCTTGCTTGGGTCTT -ACGGAAGGATCTTGCTTGACGCTT -ACGGAAGGATCTTGCTTGAGCGTT -ACGGAAGGATCTTGCTTGTTCGTC -ACGGAAGGATCTTGCTTGTCTCTC -ACGGAAGGATCTTGCTTGTGGATC -ACGGAAGGATCTTGCTTGCACTTC -ACGGAAGGATCTTGCTTGGTACTC -ACGGAAGGATCTTGCTTGGATGTC -ACGGAAGGATCTTGCTTGACAGTC -ACGGAAGGATCTTGCTTGTTGCTG -ACGGAAGGATCTTGCTTGTCCATG -ACGGAAGGATCTTGCTTGTGTGTG -ACGGAAGGATCTTGCTTGCTAGTG -ACGGAAGGATCTTGCTTGCATCTG -ACGGAAGGATCTTGCTTGGAGTTG -ACGGAAGGATCTTGCTTGAGACTG -ACGGAAGGATCTTGCTTGTCGGTA -ACGGAAGGATCTTGCTTGTGCCTA -ACGGAAGGATCTTGCTTGCCACTA -ACGGAAGGATCTTGCTTGGGAGTA -ACGGAAGGATCTTGCTTGTCGTCT -ACGGAAGGATCTTGCTTGTGCACT -ACGGAAGGATCTTGCTTGCTGACT -ACGGAAGGATCTTGCTTGCAACCT -ACGGAAGGATCTTGCTTGGCTACT -ACGGAAGGATCTTGCTTGGGATCT -ACGGAAGGATCTTGCTTGAAGGCT -ACGGAAGGATCTTGCTTGTCAACC -ACGGAAGGATCTTGCTTGTGTTCC -ACGGAAGGATCTTGCTTGATTCCC -ACGGAAGGATCTTGCTTGTTCTCG -ACGGAAGGATCTTGCTTGTAGACG -ACGGAAGGATCTTGCTTGGTAACG -ACGGAAGGATCTTGCTTGACTTCG -ACGGAAGGATCTTGCTTGTACGCA -ACGGAAGGATCTTGCTTGCTTGCA -ACGGAAGGATCTTGCTTGCGAACA -ACGGAAGGATCTTGCTTGCAGTCA -ACGGAAGGATCTTGCTTGGATCCA -ACGGAAGGATCTTGCTTGACGACA -ACGGAAGGATCTTGCTTGAGCTCA -ACGGAAGGATCTTGCTTGTCACGT -ACGGAAGGATCTTGCTTGCGTAGT -ACGGAAGGATCTTGCTTGGTCAGT -ACGGAAGGATCTTGCTTGGAAGGT -ACGGAAGGATCTTGCTTGAACCGT -ACGGAAGGATCTTGCTTGTTGTGC -ACGGAAGGATCTTGCTTGCTAAGC -ACGGAAGGATCTTGCTTGACTAGC -ACGGAAGGATCTTGCTTGAGATGC -ACGGAAGGATCTTGCTTGTGAAGG -ACGGAAGGATCTTGCTTGCAATGG -ACGGAAGGATCTTGCTTGATGAGG -ACGGAAGGATCTTGCTTGAATGGG -ACGGAAGGATCTTGCTTGTCCTGA -ACGGAAGGATCTTGCTTGTAGCGA -ACGGAAGGATCTTGCTTGCACAGA -ACGGAAGGATCTTGCTTGGCAAGA -ACGGAAGGATCTTGCTTGGGTTGA -ACGGAAGGATCTTGCTTGTCCGAT -ACGGAAGGATCTTGCTTGTGGCAT -ACGGAAGGATCTTGCTTGCGAGAT -ACGGAAGGATCTTGCTTGTACCAC -ACGGAAGGATCTTGCTTGCAGAAC -ACGGAAGGATCTTGCTTGGTCTAC -ACGGAAGGATCTTGCTTGACGTAC -ACGGAAGGATCTTGCTTGAGTGAC -ACGGAAGGATCTTGCTTGCTGTAG -ACGGAAGGATCTTGCTTGCCTAAG -ACGGAAGGATCTTGCTTGGTTCAG -ACGGAAGGATCTTGCTTGGCATAG -ACGGAAGGATCTTGCTTGGACAAG -ACGGAAGGATCTTGCTTGAAGCAG -ACGGAAGGATCTTGCTTGCGTCAA -ACGGAAGGATCTTGCTTGGCTGAA -ACGGAAGGATCTTGCTTGAGTACG -ACGGAAGGATCTTGCTTGATCCGA -ACGGAAGGATCTTGCTTGATGGGA -ACGGAAGGATCTTGCTTGGTGCAA -ACGGAAGGATCTTGCTTGGAGGAA -ACGGAAGGATCTTGCTTGCAGGTA -ACGGAAGGATCTTGCTTGGACTCT -ACGGAAGGATCTTGCTTGAGTCCT -ACGGAAGGATCTTGCTTGTAAGCC -ACGGAAGGATCTTGCTTGATAGCC -ACGGAAGGATCTTGCTTGTAACCG -ACGGAAGGATCTTGCTTGATGCCA -ACGGAAGGATCTAGCCTAGGAAAC -ACGGAAGGATCTAGCCTAAACACC -ACGGAAGGATCTAGCCTAATCGAG -ACGGAAGGATCTAGCCTACTCCTT -ACGGAAGGATCTAGCCTACCTGTT -ACGGAAGGATCTAGCCTACGGTTT -ACGGAAGGATCTAGCCTAGTGGTT -ACGGAAGGATCTAGCCTAGCCTTT -ACGGAAGGATCTAGCCTAGGTCTT -ACGGAAGGATCTAGCCTAACGCTT -ACGGAAGGATCTAGCCTAAGCGTT -ACGGAAGGATCTAGCCTATTCGTC -ACGGAAGGATCTAGCCTATCTCTC -ACGGAAGGATCTAGCCTATGGATC -ACGGAAGGATCTAGCCTACACTTC -ACGGAAGGATCTAGCCTAGTACTC -ACGGAAGGATCTAGCCTAGATGTC -ACGGAAGGATCTAGCCTAACAGTC -ACGGAAGGATCTAGCCTATTGCTG -ACGGAAGGATCTAGCCTATCCATG -ACGGAAGGATCTAGCCTATGTGTG -ACGGAAGGATCTAGCCTACTAGTG -ACGGAAGGATCTAGCCTACATCTG -ACGGAAGGATCTAGCCTAGAGTTG -ACGGAAGGATCTAGCCTAAGACTG -ACGGAAGGATCTAGCCTATCGGTA -ACGGAAGGATCTAGCCTATGCCTA -ACGGAAGGATCTAGCCTACCACTA -ACGGAAGGATCTAGCCTAGGAGTA -ACGGAAGGATCTAGCCTATCGTCT -ACGGAAGGATCTAGCCTATGCACT -ACGGAAGGATCTAGCCTACTGACT -ACGGAAGGATCTAGCCTACAACCT -ACGGAAGGATCTAGCCTAGCTACT -ACGGAAGGATCTAGCCTAGGATCT -ACGGAAGGATCTAGCCTAAAGGCT -ACGGAAGGATCTAGCCTATCAACC -ACGGAAGGATCTAGCCTATGTTCC -ACGGAAGGATCTAGCCTAATTCCC -ACGGAAGGATCTAGCCTATTCTCG -ACGGAAGGATCTAGCCTATAGACG -ACGGAAGGATCTAGCCTAGTAACG -ACGGAAGGATCTAGCCTAACTTCG -ACGGAAGGATCTAGCCTATACGCA -ACGGAAGGATCTAGCCTACTTGCA -ACGGAAGGATCTAGCCTACGAACA -ACGGAAGGATCTAGCCTACAGTCA -ACGGAAGGATCTAGCCTAGATCCA -ACGGAAGGATCTAGCCTAACGACA -ACGGAAGGATCTAGCCTAAGCTCA -ACGGAAGGATCTAGCCTATCACGT -ACGGAAGGATCTAGCCTACGTAGT -ACGGAAGGATCTAGCCTAGTCAGT -ACGGAAGGATCTAGCCTAGAAGGT -ACGGAAGGATCTAGCCTAAACCGT -ACGGAAGGATCTAGCCTATTGTGC -ACGGAAGGATCTAGCCTACTAAGC -ACGGAAGGATCTAGCCTAACTAGC -ACGGAAGGATCTAGCCTAAGATGC -ACGGAAGGATCTAGCCTATGAAGG -ACGGAAGGATCTAGCCTACAATGG -ACGGAAGGATCTAGCCTAATGAGG -ACGGAAGGATCTAGCCTAAATGGG -ACGGAAGGATCTAGCCTATCCTGA -ACGGAAGGATCTAGCCTATAGCGA -ACGGAAGGATCTAGCCTACACAGA -ACGGAAGGATCTAGCCTAGCAAGA -ACGGAAGGATCTAGCCTAGGTTGA -ACGGAAGGATCTAGCCTATCCGAT -ACGGAAGGATCTAGCCTATGGCAT -ACGGAAGGATCTAGCCTACGAGAT -ACGGAAGGATCTAGCCTATACCAC -ACGGAAGGATCTAGCCTACAGAAC -ACGGAAGGATCTAGCCTAGTCTAC -ACGGAAGGATCTAGCCTAACGTAC -ACGGAAGGATCTAGCCTAAGTGAC -ACGGAAGGATCTAGCCTACTGTAG -ACGGAAGGATCTAGCCTACCTAAG -ACGGAAGGATCTAGCCTAGTTCAG -ACGGAAGGATCTAGCCTAGCATAG -ACGGAAGGATCTAGCCTAGACAAG -ACGGAAGGATCTAGCCTAAAGCAG -ACGGAAGGATCTAGCCTACGTCAA -ACGGAAGGATCTAGCCTAGCTGAA -ACGGAAGGATCTAGCCTAAGTACG -ACGGAAGGATCTAGCCTAATCCGA -ACGGAAGGATCTAGCCTAATGGGA -ACGGAAGGATCTAGCCTAGTGCAA -ACGGAAGGATCTAGCCTAGAGGAA -ACGGAAGGATCTAGCCTACAGGTA -ACGGAAGGATCTAGCCTAGACTCT -ACGGAAGGATCTAGCCTAAGTCCT -ACGGAAGGATCTAGCCTATAAGCC -ACGGAAGGATCTAGCCTAATAGCC -ACGGAAGGATCTAGCCTATAACCG -ACGGAAGGATCTAGCCTAATGCCA -ACGGAAGGATCTAGCACTGGAAAC -ACGGAAGGATCTAGCACTAACACC -ACGGAAGGATCTAGCACTATCGAG -ACGGAAGGATCTAGCACTCTCCTT -ACGGAAGGATCTAGCACTCCTGTT -ACGGAAGGATCTAGCACTCGGTTT -ACGGAAGGATCTAGCACTGTGGTT -ACGGAAGGATCTAGCACTGCCTTT -ACGGAAGGATCTAGCACTGGTCTT -ACGGAAGGATCTAGCACTACGCTT -ACGGAAGGATCTAGCACTAGCGTT -ACGGAAGGATCTAGCACTTTCGTC -ACGGAAGGATCTAGCACTTCTCTC -ACGGAAGGATCTAGCACTTGGATC -ACGGAAGGATCTAGCACTCACTTC -ACGGAAGGATCTAGCACTGTACTC -ACGGAAGGATCTAGCACTGATGTC -ACGGAAGGATCTAGCACTACAGTC -ACGGAAGGATCTAGCACTTTGCTG -ACGGAAGGATCTAGCACTTCCATG -ACGGAAGGATCTAGCACTTGTGTG -ACGGAAGGATCTAGCACTCTAGTG -ACGGAAGGATCTAGCACTCATCTG -ACGGAAGGATCTAGCACTGAGTTG -ACGGAAGGATCTAGCACTAGACTG -ACGGAAGGATCTAGCACTTCGGTA -ACGGAAGGATCTAGCACTTGCCTA -ACGGAAGGATCTAGCACTCCACTA -ACGGAAGGATCTAGCACTGGAGTA -ACGGAAGGATCTAGCACTTCGTCT -ACGGAAGGATCTAGCACTTGCACT -ACGGAAGGATCTAGCACTCTGACT -ACGGAAGGATCTAGCACTCAACCT -ACGGAAGGATCTAGCACTGCTACT -ACGGAAGGATCTAGCACTGGATCT -ACGGAAGGATCTAGCACTAAGGCT -ACGGAAGGATCTAGCACTTCAACC -ACGGAAGGATCTAGCACTTGTTCC -ACGGAAGGATCTAGCACTATTCCC -ACGGAAGGATCTAGCACTTTCTCG -ACGGAAGGATCTAGCACTTAGACG -ACGGAAGGATCTAGCACTGTAACG -ACGGAAGGATCTAGCACTACTTCG -ACGGAAGGATCTAGCACTTACGCA -ACGGAAGGATCTAGCACTCTTGCA -ACGGAAGGATCTAGCACTCGAACA -ACGGAAGGATCTAGCACTCAGTCA -ACGGAAGGATCTAGCACTGATCCA -ACGGAAGGATCTAGCACTACGACA -ACGGAAGGATCTAGCACTAGCTCA -ACGGAAGGATCTAGCACTTCACGT -ACGGAAGGATCTAGCACTCGTAGT -ACGGAAGGATCTAGCACTGTCAGT -ACGGAAGGATCTAGCACTGAAGGT -ACGGAAGGATCTAGCACTAACCGT -ACGGAAGGATCTAGCACTTTGTGC -ACGGAAGGATCTAGCACTCTAAGC -ACGGAAGGATCTAGCACTACTAGC -ACGGAAGGATCTAGCACTAGATGC -ACGGAAGGATCTAGCACTTGAAGG -ACGGAAGGATCTAGCACTCAATGG -ACGGAAGGATCTAGCACTATGAGG -ACGGAAGGATCTAGCACTAATGGG -ACGGAAGGATCTAGCACTTCCTGA -ACGGAAGGATCTAGCACTTAGCGA -ACGGAAGGATCTAGCACTCACAGA -ACGGAAGGATCTAGCACTGCAAGA -ACGGAAGGATCTAGCACTGGTTGA -ACGGAAGGATCTAGCACTTCCGAT -ACGGAAGGATCTAGCACTTGGCAT -ACGGAAGGATCTAGCACTCGAGAT -ACGGAAGGATCTAGCACTTACCAC -ACGGAAGGATCTAGCACTCAGAAC -ACGGAAGGATCTAGCACTGTCTAC -ACGGAAGGATCTAGCACTACGTAC -ACGGAAGGATCTAGCACTAGTGAC -ACGGAAGGATCTAGCACTCTGTAG -ACGGAAGGATCTAGCACTCCTAAG -ACGGAAGGATCTAGCACTGTTCAG -ACGGAAGGATCTAGCACTGCATAG -ACGGAAGGATCTAGCACTGACAAG -ACGGAAGGATCTAGCACTAAGCAG -ACGGAAGGATCTAGCACTCGTCAA -ACGGAAGGATCTAGCACTGCTGAA -ACGGAAGGATCTAGCACTAGTACG -ACGGAAGGATCTAGCACTATCCGA -ACGGAAGGATCTAGCACTATGGGA -ACGGAAGGATCTAGCACTGTGCAA -ACGGAAGGATCTAGCACTGAGGAA -ACGGAAGGATCTAGCACTCAGGTA -ACGGAAGGATCTAGCACTGACTCT -ACGGAAGGATCTAGCACTAGTCCT -ACGGAAGGATCTAGCACTTAAGCC -ACGGAAGGATCTAGCACTATAGCC -ACGGAAGGATCTAGCACTTAACCG -ACGGAAGGATCTAGCACTATGCCA -ACGGAAGGATCTTGCAGAGGAAAC -ACGGAAGGATCTTGCAGAAACACC -ACGGAAGGATCTTGCAGAATCGAG -ACGGAAGGATCTTGCAGACTCCTT -ACGGAAGGATCTTGCAGACCTGTT -ACGGAAGGATCTTGCAGACGGTTT -ACGGAAGGATCTTGCAGAGTGGTT -ACGGAAGGATCTTGCAGAGCCTTT -ACGGAAGGATCTTGCAGAGGTCTT -ACGGAAGGATCTTGCAGAACGCTT -ACGGAAGGATCTTGCAGAAGCGTT -ACGGAAGGATCTTGCAGATTCGTC -ACGGAAGGATCTTGCAGATCTCTC -ACGGAAGGATCTTGCAGATGGATC -ACGGAAGGATCTTGCAGACACTTC -ACGGAAGGATCTTGCAGAGTACTC -ACGGAAGGATCTTGCAGAGATGTC -ACGGAAGGATCTTGCAGAACAGTC -ACGGAAGGATCTTGCAGATTGCTG -ACGGAAGGATCTTGCAGATCCATG -ACGGAAGGATCTTGCAGATGTGTG -ACGGAAGGATCTTGCAGACTAGTG -ACGGAAGGATCTTGCAGACATCTG -ACGGAAGGATCTTGCAGAGAGTTG -ACGGAAGGATCTTGCAGAAGACTG -ACGGAAGGATCTTGCAGATCGGTA -ACGGAAGGATCTTGCAGATGCCTA -ACGGAAGGATCTTGCAGACCACTA -ACGGAAGGATCTTGCAGAGGAGTA -ACGGAAGGATCTTGCAGATCGTCT -ACGGAAGGATCTTGCAGATGCACT -ACGGAAGGATCTTGCAGACTGACT -ACGGAAGGATCTTGCAGACAACCT -ACGGAAGGATCTTGCAGAGCTACT -ACGGAAGGATCTTGCAGAGGATCT -ACGGAAGGATCTTGCAGAAAGGCT -ACGGAAGGATCTTGCAGATCAACC -ACGGAAGGATCTTGCAGATGTTCC -ACGGAAGGATCTTGCAGAATTCCC -ACGGAAGGATCTTGCAGATTCTCG -ACGGAAGGATCTTGCAGATAGACG -ACGGAAGGATCTTGCAGAGTAACG -ACGGAAGGATCTTGCAGAACTTCG -ACGGAAGGATCTTGCAGATACGCA -ACGGAAGGATCTTGCAGACTTGCA -ACGGAAGGATCTTGCAGACGAACA -ACGGAAGGATCTTGCAGACAGTCA -ACGGAAGGATCTTGCAGAGATCCA -ACGGAAGGATCTTGCAGAACGACA -ACGGAAGGATCTTGCAGAAGCTCA -ACGGAAGGATCTTGCAGATCACGT -ACGGAAGGATCTTGCAGACGTAGT -ACGGAAGGATCTTGCAGAGTCAGT -ACGGAAGGATCTTGCAGAGAAGGT -ACGGAAGGATCTTGCAGAAACCGT -ACGGAAGGATCTTGCAGATTGTGC -ACGGAAGGATCTTGCAGACTAAGC -ACGGAAGGATCTTGCAGAACTAGC -ACGGAAGGATCTTGCAGAAGATGC -ACGGAAGGATCTTGCAGATGAAGG -ACGGAAGGATCTTGCAGACAATGG -ACGGAAGGATCTTGCAGAATGAGG -ACGGAAGGATCTTGCAGAAATGGG -ACGGAAGGATCTTGCAGATCCTGA -ACGGAAGGATCTTGCAGATAGCGA -ACGGAAGGATCTTGCAGACACAGA -ACGGAAGGATCTTGCAGAGCAAGA -ACGGAAGGATCTTGCAGAGGTTGA -ACGGAAGGATCTTGCAGATCCGAT -ACGGAAGGATCTTGCAGATGGCAT -ACGGAAGGATCTTGCAGACGAGAT -ACGGAAGGATCTTGCAGATACCAC -ACGGAAGGATCTTGCAGACAGAAC -ACGGAAGGATCTTGCAGAGTCTAC -ACGGAAGGATCTTGCAGAACGTAC -ACGGAAGGATCTTGCAGAAGTGAC -ACGGAAGGATCTTGCAGACTGTAG -ACGGAAGGATCTTGCAGACCTAAG -ACGGAAGGATCTTGCAGAGTTCAG -ACGGAAGGATCTTGCAGAGCATAG -ACGGAAGGATCTTGCAGAGACAAG -ACGGAAGGATCTTGCAGAAAGCAG -ACGGAAGGATCTTGCAGACGTCAA -ACGGAAGGATCTTGCAGAGCTGAA -ACGGAAGGATCTTGCAGAAGTACG -ACGGAAGGATCTTGCAGAATCCGA -ACGGAAGGATCTTGCAGAATGGGA -ACGGAAGGATCTTGCAGAGTGCAA -ACGGAAGGATCTTGCAGAGAGGAA -ACGGAAGGATCTTGCAGACAGGTA -ACGGAAGGATCTTGCAGAGACTCT -ACGGAAGGATCTTGCAGAAGTCCT -ACGGAAGGATCTTGCAGATAAGCC -ACGGAAGGATCTTGCAGAATAGCC -ACGGAAGGATCTTGCAGATAACCG -ACGGAAGGATCTTGCAGAATGCCA -ACGGAAGGATCTAGGTGAGGAAAC -ACGGAAGGATCTAGGTGAAACACC -ACGGAAGGATCTAGGTGAATCGAG -ACGGAAGGATCTAGGTGACTCCTT -ACGGAAGGATCTAGGTGACCTGTT -ACGGAAGGATCTAGGTGACGGTTT -ACGGAAGGATCTAGGTGAGTGGTT -ACGGAAGGATCTAGGTGAGCCTTT -ACGGAAGGATCTAGGTGAGGTCTT -ACGGAAGGATCTAGGTGAACGCTT -ACGGAAGGATCTAGGTGAAGCGTT -ACGGAAGGATCTAGGTGATTCGTC -ACGGAAGGATCTAGGTGATCTCTC -ACGGAAGGATCTAGGTGATGGATC -ACGGAAGGATCTAGGTGACACTTC -ACGGAAGGATCTAGGTGAGTACTC -ACGGAAGGATCTAGGTGAGATGTC -ACGGAAGGATCTAGGTGAACAGTC -ACGGAAGGATCTAGGTGATTGCTG -ACGGAAGGATCTAGGTGATCCATG -ACGGAAGGATCTAGGTGATGTGTG -ACGGAAGGATCTAGGTGACTAGTG -ACGGAAGGATCTAGGTGACATCTG -ACGGAAGGATCTAGGTGAGAGTTG -ACGGAAGGATCTAGGTGAAGACTG -ACGGAAGGATCTAGGTGATCGGTA -ACGGAAGGATCTAGGTGATGCCTA -ACGGAAGGATCTAGGTGACCACTA -ACGGAAGGATCTAGGTGAGGAGTA -ACGGAAGGATCTAGGTGATCGTCT -ACGGAAGGATCTAGGTGATGCACT -ACGGAAGGATCTAGGTGACTGACT -ACGGAAGGATCTAGGTGACAACCT -ACGGAAGGATCTAGGTGAGCTACT -ACGGAAGGATCTAGGTGAGGATCT -ACGGAAGGATCTAGGTGAAAGGCT -ACGGAAGGATCTAGGTGATCAACC -ACGGAAGGATCTAGGTGATGTTCC -ACGGAAGGATCTAGGTGAATTCCC -ACGGAAGGATCTAGGTGATTCTCG -ACGGAAGGATCTAGGTGATAGACG -ACGGAAGGATCTAGGTGAGTAACG -ACGGAAGGATCTAGGTGAACTTCG -ACGGAAGGATCTAGGTGATACGCA -ACGGAAGGATCTAGGTGACTTGCA -ACGGAAGGATCTAGGTGACGAACA -ACGGAAGGATCTAGGTGACAGTCA -ACGGAAGGATCTAGGTGAGATCCA -ACGGAAGGATCTAGGTGAACGACA -ACGGAAGGATCTAGGTGAAGCTCA -ACGGAAGGATCTAGGTGATCACGT -ACGGAAGGATCTAGGTGACGTAGT -ACGGAAGGATCTAGGTGAGTCAGT -ACGGAAGGATCTAGGTGAGAAGGT -ACGGAAGGATCTAGGTGAAACCGT -ACGGAAGGATCTAGGTGATTGTGC -ACGGAAGGATCTAGGTGACTAAGC -ACGGAAGGATCTAGGTGAACTAGC -ACGGAAGGATCTAGGTGAAGATGC -ACGGAAGGATCTAGGTGATGAAGG -ACGGAAGGATCTAGGTGACAATGG -ACGGAAGGATCTAGGTGAATGAGG -ACGGAAGGATCTAGGTGAAATGGG -ACGGAAGGATCTAGGTGATCCTGA -ACGGAAGGATCTAGGTGATAGCGA -ACGGAAGGATCTAGGTGACACAGA -ACGGAAGGATCTAGGTGAGCAAGA -ACGGAAGGATCTAGGTGAGGTTGA -ACGGAAGGATCTAGGTGATCCGAT -ACGGAAGGATCTAGGTGATGGCAT -ACGGAAGGATCTAGGTGACGAGAT -ACGGAAGGATCTAGGTGATACCAC -ACGGAAGGATCTAGGTGACAGAAC -ACGGAAGGATCTAGGTGAGTCTAC -ACGGAAGGATCTAGGTGAACGTAC -ACGGAAGGATCTAGGTGAAGTGAC -ACGGAAGGATCTAGGTGACTGTAG -ACGGAAGGATCTAGGTGACCTAAG -ACGGAAGGATCTAGGTGAGTTCAG -ACGGAAGGATCTAGGTGAGCATAG -ACGGAAGGATCTAGGTGAGACAAG -ACGGAAGGATCTAGGTGAAAGCAG -ACGGAAGGATCTAGGTGACGTCAA -ACGGAAGGATCTAGGTGAGCTGAA -ACGGAAGGATCTAGGTGAAGTACG -ACGGAAGGATCTAGGTGAATCCGA -ACGGAAGGATCTAGGTGAATGGGA -ACGGAAGGATCTAGGTGAGTGCAA -ACGGAAGGATCTAGGTGAGAGGAA -ACGGAAGGATCTAGGTGACAGGTA -ACGGAAGGATCTAGGTGAGACTCT -ACGGAAGGATCTAGGTGAAGTCCT -ACGGAAGGATCTAGGTGATAAGCC -ACGGAAGGATCTAGGTGAATAGCC -ACGGAAGGATCTAGGTGATAACCG -ACGGAAGGATCTAGGTGAATGCCA -ACGGAAGGATCTTGGCAAGGAAAC -ACGGAAGGATCTTGGCAAAACACC -ACGGAAGGATCTTGGCAAATCGAG -ACGGAAGGATCTTGGCAACTCCTT -ACGGAAGGATCTTGGCAACCTGTT -ACGGAAGGATCTTGGCAACGGTTT -ACGGAAGGATCTTGGCAAGTGGTT -ACGGAAGGATCTTGGCAAGCCTTT -ACGGAAGGATCTTGGCAAGGTCTT -ACGGAAGGATCTTGGCAAACGCTT -ACGGAAGGATCTTGGCAAAGCGTT -ACGGAAGGATCTTGGCAATTCGTC -ACGGAAGGATCTTGGCAATCTCTC -ACGGAAGGATCTTGGCAATGGATC -ACGGAAGGATCTTGGCAACACTTC -ACGGAAGGATCTTGGCAAGTACTC -ACGGAAGGATCTTGGCAAGATGTC -ACGGAAGGATCTTGGCAAACAGTC -ACGGAAGGATCTTGGCAATTGCTG -ACGGAAGGATCTTGGCAATCCATG -ACGGAAGGATCTTGGCAATGTGTG -ACGGAAGGATCTTGGCAACTAGTG -ACGGAAGGATCTTGGCAACATCTG -ACGGAAGGATCTTGGCAAGAGTTG -ACGGAAGGATCTTGGCAAAGACTG -ACGGAAGGATCTTGGCAATCGGTA -ACGGAAGGATCTTGGCAATGCCTA -ACGGAAGGATCTTGGCAACCACTA -ACGGAAGGATCTTGGCAAGGAGTA -ACGGAAGGATCTTGGCAATCGTCT -ACGGAAGGATCTTGGCAATGCACT -ACGGAAGGATCTTGGCAACTGACT -ACGGAAGGATCTTGGCAACAACCT -ACGGAAGGATCTTGGCAAGCTACT -ACGGAAGGATCTTGGCAAGGATCT -ACGGAAGGATCTTGGCAAAAGGCT -ACGGAAGGATCTTGGCAATCAACC -ACGGAAGGATCTTGGCAATGTTCC -ACGGAAGGATCTTGGCAAATTCCC -ACGGAAGGATCTTGGCAATTCTCG -ACGGAAGGATCTTGGCAATAGACG -ACGGAAGGATCTTGGCAAGTAACG -ACGGAAGGATCTTGGCAAACTTCG -ACGGAAGGATCTTGGCAATACGCA -ACGGAAGGATCTTGGCAACTTGCA -ACGGAAGGATCTTGGCAACGAACA -ACGGAAGGATCTTGGCAACAGTCA -ACGGAAGGATCTTGGCAAGATCCA -ACGGAAGGATCTTGGCAAACGACA -ACGGAAGGATCTTGGCAAAGCTCA -ACGGAAGGATCTTGGCAATCACGT -ACGGAAGGATCTTGGCAACGTAGT -ACGGAAGGATCTTGGCAAGTCAGT -ACGGAAGGATCTTGGCAAGAAGGT -ACGGAAGGATCTTGGCAAAACCGT -ACGGAAGGATCTTGGCAATTGTGC -ACGGAAGGATCTTGGCAACTAAGC -ACGGAAGGATCTTGGCAAACTAGC -ACGGAAGGATCTTGGCAAAGATGC -ACGGAAGGATCTTGGCAATGAAGG -ACGGAAGGATCTTGGCAACAATGG -ACGGAAGGATCTTGGCAAATGAGG -ACGGAAGGATCTTGGCAAAATGGG -ACGGAAGGATCTTGGCAATCCTGA -ACGGAAGGATCTTGGCAATAGCGA -ACGGAAGGATCTTGGCAACACAGA -ACGGAAGGATCTTGGCAAGCAAGA -ACGGAAGGATCTTGGCAAGGTTGA -ACGGAAGGATCTTGGCAATCCGAT -ACGGAAGGATCTTGGCAATGGCAT -ACGGAAGGATCTTGGCAACGAGAT -ACGGAAGGATCTTGGCAATACCAC -ACGGAAGGATCTTGGCAACAGAAC -ACGGAAGGATCTTGGCAAGTCTAC -ACGGAAGGATCTTGGCAAACGTAC -ACGGAAGGATCTTGGCAAAGTGAC -ACGGAAGGATCTTGGCAACTGTAG -ACGGAAGGATCTTGGCAACCTAAG -ACGGAAGGATCTTGGCAAGTTCAG -ACGGAAGGATCTTGGCAAGCATAG -ACGGAAGGATCTTGGCAAGACAAG -ACGGAAGGATCTTGGCAAAAGCAG -ACGGAAGGATCTTGGCAACGTCAA -ACGGAAGGATCTTGGCAAGCTGAA -ACGGAAGGATCTTGGCAAAGTACG -ACGGAAGGATCTTGGCAAATCCGA -ACGGAAGGATCTTGGCAAATGGGA -ACGGAAGGATCTTGGCAAGTGCAA -ACGGAAGGATCTTGGCAAGAGGAA -ACGGAAGGATCTTGGCAACAGGTA -ACGGAAGGATCTTGGCAAGACTCT -ACGGAAGGATCTTGGCAAAGTCCT -ACGGAAGGATCTTGGCAATAAGCC -ACGGAAGGATCTTGGCAAATAGCC -ACGGAAGGATCTTGGCAATAACCG -ACGGAAGGATCTTGGCAAATGCCA -ACGGAAGGATCTAGGATGGGAAAC -ACGGAAGGATCTAGGATGAACACC -ACGGAAGGATCTAGGATGATCGAG -ACGGAAGGATCTAGGATGCTCCTT -ACGGAAGGATCTAGGATGCCTGTT -ACGGAAGGATCTAGGATGCGGTTT -ACGGAAGGATCTAGGATGGTGGTT -ACGGAAGGATCTAGGATGGCCTTT -ACGGAAGGATCTAGGATGGGTCTT -ACGGAAGGATCTAGGATGACGCTT -ACGGAAGGATCTAGGATGAGCGTT -ACGGAAGGATCTAGGATGTTCGTC -ACGGAAGGATCTAGGATGTCTCTC -ACGGAAGGATCTAGGATGTGGATC -ACGGAAGGATCTAGGATGCACTTC -ACGGAAGGATCTAGGATGGTACTC -ACGGAAGGATCTAGGATGGATGTC -ACGGAAGGATCTAGGATGACAGTC -ACGGAAGGATCTAGGATGTTGCTG -ACGGAAGGATCTAGGATGTCCATG -ACGGAAGGATCTAGGATGTGTGTG -ACGGAAGGATCTAGGATGCTAGTG -ACGGAAGGATCTAGGATGCATCTG -ACGGAAGGATCTAGGATGGAGTTG -ACGGAAGGATCTAGGATGAGACTG -ACGGAAGGATCTAGGATGTCGGTA -ACGGAAGGATCTAGGATGTGCCTA -ACGGAAGGATCTAGGATGCCACTA -ACGGAAGGATCTAGGATGGGAGTA -ACGGAAGGATCTAGGATGTCGTCT -ACGGAAGGATCTAGGATGTGCACT -ACGGAAGGATCTAGGATGCTGACT -ACGGAAGGATCTAGGATGCAACCT -ACGGAAGGATCTAGGATGGCTACT -ACGGAAGGATCTAGGATGGGATCT -ACGGAAGGATCTAGGATGAAGGCT -ACGGAAGGATCTAGGATGTCAACC -ACGGAAGGATCTAGGATGTGTTCC -ACGGAAGGATCTAGGATGATTCCC -ACGGAAGGATCTAGGATGTTCTCG -ACGGAAGGATCTAGGATGTAGACG -ACGGAAGGATCTAGGATGGTAACG -ACGGAAGGATCTAGGATGACTTCG -ACGGAAGGATCTAGGATGTACGCA -ACGGAAGGATCTAGGATGCTTGCA -ACGGAAGGATCTAGGATGCGAACA -ACGGAAGGATCTAGGATGCAGTCA -ACGGAAGGATCTAGGATGGATCCA -ACGGAAGGATCTAGGATGACGACA -ACGGAAGGATCTAGGATGAGCTCA -ACGGAAGGATCTAGGATGTCACGT -ACGGAAGGATCTAGGATGCGTAGT -ACGGAAGGATCTAGGATGGTCAGT -ACGGAAGGATCTAGGATGGAAGGT -ACGGAAGGATCTAGGATGAACCGT -ACGGAAGGATCTAGGATGTTGTGC -ACGGAAGGATCTAGGATGCTAAGC -ACGGAAGGATCTAGGATGACTAGC -ACGGAAGGATCTAGGATGAGATGC -ACGGAAGGATCTAGGATGTGAAGG -ACGGAAGGATCTAGGATGCAATGG -ACGGAAGGATCTAGGATGATGAGG -ACGGAAGGATCTAGGATGAATGGG -ACGGAAGGATCTAGGATGTCCTGA -ACGGAAGGATCTAGGATGTAGCGA -ACGGAAGGATCTAGGATGCACAGA -ACGGAAGGATCTAGGATGGCAAGA -ACGGAAGGATCTAGGATGGGTTGA -ACGGAAGGATCTAGGATGTCCGAT -ACGGAAGGATCTAGGATGTGGCAT -ACGGAAGGATCTAGGATGCGAGAT -ACGGAAGGATCTAGGATGTACCAC -ACGGAAGGATCTAGGATGCAGAAC -ACGGAAGGATCTAGGATGGTCTAC -ACGGAAGGATCTAGGATGACGTAC -ACGGAAGGATCTAGGATGAGTGAC -ACGGAAGGATCTAGGATGCTGTAG -ACGGAAGGATCTAGGATGCCTAAG -ACGGAAGGATCTAGGATGGTTCAG -ACGGAAGGATCTAGGATGGCATAG -ACGGAAGGATCTAGGATGGACAAG -ACGGAAGGATCTAGGATGAAGCAG -ACGGAAGGATCTAGGATGCGTCAA -ACGGAAGGATCTAGGATGGCTGAA -ACGGAAGGATCTAGGATGAGTACG -ACGGAAGGATCTAGGATGATCCGA -ACGGAAGGATCTAGGATGATGGGA -ACGGAAGGATCTAGGATGGTGCAA -ACGGAAGGATCTAGGATGGAGGAA -ACGGAAGGATCTAGGATGCAGGTA -ACGGAAGGATCTAGGATGGACTCT -ACGGAAGGATCTAGGATGAGTCCT -ACGGAAGGATCTAGGATGTAAGCC -ACGGAAGGATCTAGGATGATAGCC -ACGGAAGGATCTAGGATGTAACCG -ACGGAAGGATCTAGGATGATGCCA -ACGGAAGGATCTGGGAATGGAAAC -ACGGAAGGATCTGGGAATAACACC -ACGGAAGGATCTGGGAATATCGAG -ACGGAAGGATCTGGGAATCTCCTT -ACGGAAGGATCTGGGAATCCTGTT -ACGGAAGGATCTGGGAATCGGTTT -ACGGAAGGATCTGGGAATGTGGTT -ACGGAAGGATCTGGGAATGCCTTT -ACGGAAGGATCTGGGAATGGTCTT -ACGGAAGGATCTGGGAATACGCTT -ACGGAAGGATCTGGGAATAGCGTT -ACGGAAGGATCTGGGAATTTCGTC -ACGGAAGGATCTGGGAATTCTCTC -ACGGAAGGATCTGGGAATTGGATC -ACGGAAGGATCTGGGAATCACTTC -ACGGAAGGATCTGGGAATGTACTC -ACGGAAGGATCTGGGAATGATGTC -ACGGAAGGATCTGGGAATACAGTC -ACGGAAGGATCTGGGAATTTGCTG -ACGGAAGGATCTGGGAATTCCATG -ACGGAAGGATCTGGGAATTGTGTG -ACGGAAGGATCTGGGAATCTAGTG -ACGGAAGGATCTGGGAATCATCTG -ACGGAAGGATCTGGGAATGAGTTG -ACGGAAGGATCTGGGAATAGACTG -ACGGAAGGATCTGGGAATTCGGTA -ACGGAAGGATCTGGGAATTGCCTA -ACGGAAGGATCTGGGAATCCACTA -ACGGAAGGATCTGGGAATGGAGTA -ACGGAAGGATCTGGGAATTCGTCT -ACGGAAGGATCTGGGAATTGCACT -ACGGAAGGATCTGGGAATCTGACT -ACGGAAGGATCTGGGAATCAACCT -ACGGAAGGATCTGGGAATGCTACT -ACGGAAGGATCTGGGAATGGATCT -ACGGAAGGATCTGGGAATAAGGCT -ACGGAAGGATCTGGGAATTCAACC -ACGGAAGGATCTGGGAATTGTTCC -ACGGAAGGATCTGGGAATATTCCC -ACGGAAGGATCTGGGAATTTCTCG -ACGGAAGGATCTGGGAATTAGACG -ACGGAAGGATCTGGGAATGTAACG -ACGGAAGGATCTGGGAATACTTCG -ACGGAAGGATCTGGGAATTACGCA -ACGGAAGGATCTGGGAATCTTGCA -ACGGAAGGATCTGGGAATCGAACA -ACGGAAGGATCTGGGAATCAGTCA -ACGGAAGGATCTGGGAATGATCCA -ACGGAAGGATCTGGGAATACGACA -ACGGAAGGATCTGGGAATAGCTCA -ACGGAAGGATCTGGGAATTCACGT -ACGGAAGGATCTGGGAATCGTAGT -ACGGAAGGATCTGGGAATGTCAGT -ACGGAAGGATCTGGGAATGAAGGT -ACGGAAGGATCTGGGAATAACCGT -ACGGAAGGATCTGGGAATTTGTGC -ACGGAAGGATCTGGGAATCTAAGC -ACGGAAGGATCTGGGAATACTAGC -ACGGAAGGATCTGGGAATAGATGC -ACGGAAGGATCTGGGAATTGAAGG -ACGGAAGGATCTGGGAATCAATGG -ACGGAAGGATCTGGGAATATGAGG -ACGGAAGGATCTGGGAATAATGGG -ACGGAAGGATCTGGGAATTCCTGA -ACGGAAGGATCTGGGAATTAGCGA -ACGGAAGGATCTGGGAATCACAGA -ACGGAAGGATCTGGGAATGCAAGA -ACGGAAGGATCTGGGAATGGTTGA -ACGGAAGGATCTGGGAATTCCGAT -ACGGAAGGATCTGGGAATTGGCAT -ACGGAAGGATCTGGGAATCGAGAT -ACGGAAGGATCTGGGAATTACCAC -ACGGAAGGATCTGGGAATCAGAAC -ACGGAAGGATCTGGGAATGTCTAC -ACGGAAGGATCTGGGAATACGTAC -ACGGAAGGATCTGGGAATAGTGAC -ACGGAAGGATCTGGGAATCTGTAG -ACGGAAGGATCTGGGAATCCTAAG -ACGGAAGGATCTGGGAATGTTCAG -ACGGAAGGATCTGGGAATGCATAG -ACGGAAGGATCTGGGAATGACAAG -ACGGAAGGATCTGGGAATAAGCAG -ACGGAAGGATCTGGGAATCGTCAA -ACGGAAGGATCTGGGAATGCTGAA -ACGGAAGGATCTGGGAATAGTACG -ACGGAAGGATCTGGGAATATCCGA -ACGGAAGGATCTGGGAATATGGGA -ACGGAAGGATCTGGGAATGTGCAA -ACGGAAGGATCTGGGAATGAGGAA -ACGGAAGGATCTGGGAATCAGGTA -ACGGAAGGATCTGGGAATGACTCT -ACGGAAGGATCTGGGAATAGTCCT -ACGGAAGGATCTGGGAATTAAGCC -ACGGAAGGATCTGGGAATATAGCC -ACGGAAGGATCTGGGAATTAACCG -ACGGAAGGATCTGGGAATATGCCA -ACGGAAGGATCTTGATCCGGAAAC -ACGGAAGGATCTTGATCCAACACC -ACGGAAGGATCTTGATCCATCGAG -ACGGAAGGATCTTGATCCCTCCTT -ACGGAAGGATCTTGATCCCCTGTT -ACGGAAGGATCTTGATCCCGGTTT -ACGGAAGGATCTTGATCCGTGGTT -ACGGAAGGATCTTGATCCGCCTTT -ACGGAAGGATCTTGATCCGGTCTT -ACGGAAGGATCTTGATCCACGCTT -ACGGAAGGATCTTGATCCAGCGTT -ACGGAAGGATCTTGATCCTTCGTC -ACGGAAGGATCTTGATCCTCTCTC -ACGGAAGGATCTTGATCCTGGATC -ACGGAAGGATCTTGATCCCACTTC -ACGGAAGGATCTTGATCCGTACTC -ACGGAAGGATCTTGATCCGATGTC -ACGGAAGGATCTTGATCCACAGTC -ACGGAAGGATCTTGATCCTTGCTG -ACGGAAGGATCTTGATCCTCCATG -ACGGAAGGATCTTGATCCTGTGTG -ACGGAAGGATCTTGATCCCTAGTG -ACGGAAGGATCTTGATCCCATCTG -ACGGAAGGATCTTGATCCGAGTTG -ACGGAAGGATCTTGATCCAGACTG -ACGGAAGGATCTTGATCCTCGGTA -ACGGAAGGATCTTGATCCTGCCTA -ACGGAAGGATCTTGATCCCCACTA -ACGGAAGGATCTTGATCCGGAGTA -ACGGAAGGATCTTGATCCTCGTCT -ACGGAAGGATCTTGATCCTGCACT -ACGGAAGGATCTTGATCCCTGACT -ACGGAAGGATCTTGATCCCAACCT -ACGGAAGGATCTTGATCCGCTACT -ACGGAAGGATCTTGATCCGGATCT -ACGGAAGGATCTTGATCCAAGGCT -ACGGAAGGATCTTGATCCTCAACC -ACGGAAGGATCTTGATCCTGTTCC -ACGGAAGGATCTTGATCCATTCCC -ACGGAAGGATCTTGATCCTTCTCG -ACGGAAGGATCTTGATCCTAGACG -ACGGAAGGATCTTGATCCGTAACG -ACGGAAGGATCTTGATCCACTTCG -ACGGAAGGATCTTGATCCTACGCA -ACGGAAGGATCTTGATCCCTTGCA -ACGGAAGGATCTTGATCCCGAACA -ACGGAAGGATCTTGATCCCAGTCA -ACGGAAGGATCTTGATCCGATCCA -ACGGAAGGATCTTGATCCACGACA -ACGGAAGGATCTTGATCCAGCTCA -ACGGAAGGATCTTGATCCTCACGT -ACGGAAGGATCTTGATCCCGTAGT -ACGGAAGGATCTTGATCCGTCAGT -ACGGAAGGATCTTGATCCGAAGGT -ACGGAAGGATCTTGATCCAACCGT -ACGGAAGGATCTTGATCCTTGTGC -ACGGAAGGATCTTGATCCCTAAGC -ACGGAAGGATCTTGATCCACTAGC -ACGGAAGGATCTTGATCCAGATGC -ACGGAAGGATCTTGATCCTGAAGG -ACGGAAGGATCTTGATCCCAATGG -ACGGAAGGATCTTGATCCATGAGG -ACGGAAGGATCTTGATCCAATGGG -ACGGAAGGATCTTGATCCTCCTGA -ACGGAAGGATCTTGATCCTAGCGA -ACGGAAGGATCTTGATCCCACAGA -ACGGAAGGATCTTGATCCGCAAGA -ACGGAAGGATCTTGATCCGGTTGA -ACGGAAGGATCTTGATCCTCCGAT -ACGGAAGGATCTTGATCCTGGCAT -ACGGAAGGATCTTGATCCCGAGAT -ACGGAAGGATCTTGATCCTACCAC -ACGGAAGGATCTTGATCCCAGAAC -ACGGAAGGATCTTGATCCGTCTAC -ACGGAAGGATCTTGATCCACGTAC -ACGGAAGGATCTTGATCCAGTGAC -ACGGAAGGATCTTGATCCCTGTAG -ACGGAAGGATCTTGATCCCCTAAG -ACGGAAGGATCTTGATCCGTTCAG -ACGGAAGGATCTTGATCCGCATAG -ACGGAAGGATCTTGATCCGACAAG -ACGGAAGGATCTTGATCCAAGCAG -ACGGAAGGATCTTGATCCCGTCAA -ACGGAAGGATCTTGATCCGCTGAA -ACGGAAGGATCTTGATCCAGTACG -ACGGAAGGATCTTGATCCATCCGA -ACGGAAGGATCTTGATCCATGGGA -ACGGAAGGATCTTGATCCGTGCAA -ACGGAAGGATCTTGATCCGAGGAA -ACGGAAGGATCTTGATCCCAGGTA -ACGGAAGGATCTTGATCCGACTCT -ACGGAAGGATCTTGATCCAGTCCT -ACGGAAGGATCTTGATCCTAAGCC -ACGGAAGGATCTTGATCCATAGCC -ACGGAAGGATCTTGATCCTAACCG -ACGGAAGGATCTTGATCCATGCCA -ACGGAAGGATCTCGATAGGGAAAC -ACGGAAGGATCTCGATAGAACACC -ACGGAAGGATCTCGATAGATCGAG -ACGGAAGGATCTCGATAGCTCCTT -ACGGAAGGATCTCGATAGCCTGTT -ACGGAAGGATCTCGATAGCGGTTT -ACGGAAGGATCTCGATAGGTGGTT -ACGGAAGGATCTCGATAGGCCTTT -ACGGAAGGATCTCGATAGGGTCTT -ACGGAAGGATCTCGATAGACGCTT -ACGGAAGGATCTCGATAGAGCGTT -ACGGAAGGATCTCGATAGTTCGTC -ACGGAAGGATCTCGATAGTCTCTC -ACGGAAGGATCTCGATAGTGGATC -ACGGAAGGATCTCGATAGCACTTC -ACGGAAGGATCTCGATAGGTACTC -ACGGAAGGATCTCGATAGGATGTC -ACGGAAGGATCTCGATAGACAGTC -ACGGAAGGATCTCGATAGTTGCTG -ACGGAAGGATCTCGATAGTCCATG -ACGGAAGGATCTCGATAGTGTGTG -ACGGAAGGATCTCGATAGCTAGTG -ACGGAAGGATCTCGATAGCATCTG -ACGGAAGGATCTCGATAGGAGTTG -ACGGAAGGATCTCGATAGAGACTG -ACGGAAGGATCTCGATAGTCGGTA -ACGGAAGGATCTCGATAGTGCCTA -ACGGAAGGATCTCGATAGCCACTA -ACGGAAGGATCTCGATAGGGAGTA -ACGGAAGGATCTCGATAGTCGTCT -ACGGAAGGATCTCGATAGTGCACT -ACGGAAGGATCTCGATAGCTGACT -ACGGAAGGATCTCGATAGCAACCT -ACGGAAGGATCTCGATAGGCTACT -ACGGAAGGATCTCGATAGGGATCT -ACGGAAGGATCTCGATAGAAGGCT -ACGGAAGGATCTCGATAGTCAACC -ACGGAAGGATCTCGATAGTGTTCC -ACGGAAGGATCTCGATAGATTCCC -ACGGAAGGATCTCGATAGTTCTCG -ACGGAAGGATCTCGATAGTAGACG -ACGGAAGGATCTCGATAGGTAACG -ACGGAAGGATCTCGATAGACTTCG -ACGGAAGGATCTCGATAGTACGCA -ACGGAAGGATCTCGATAGCTTGCA -ACGGAAGGATCTCGATAGCGAACA -ACGGAAGGATCTCGATAGCAGTCA -ACGGAAGGATCTCGATAGGATCCA -ACGGAAGGATCTCGATAGACGACA -ACGGAAGGATCTCGATAGAGCTCA -ACGGAAGGATCTCGATAGTCACGT -ACGGAAGGATCTCGATAGCGTAGT -ACGGAAGGATCTCGATAGGTCAGT -ACGGAAGGATCTCGATAGGAAGGT -ACGGAAGGATCTCGATAGAACCGT -ACGGAAGGATCTCGATAGTTGTGC -ACGGAAGGATCTCGATAGCTAAGC -ACGGAAGGATCTCGATAGACTAGC -ACGGAAGGATCTCGATAGAGATGC -ACGGAAGGATCTCGATAGTGAAGG -ACGGAAGGATCTCGATAGCAATGG -ACGGAAGGATCTCGATAGATGAGG -ACGGAAGGATCTCGATAGAATGGG -ACGGAAGGATCTCGATAGTCCTGA -ACGGAAGGATCTCGATAGTAGCGA -ACGGAAGGATCTCGATAGCACAGA -ACGGAAGGATCTCGATAGGCAAGA -ACGGAAGGATCTCGATAGGGTTGA -ACGGAAGGATCTCGATAGTCCGAT -ACGGAAGGATCTCGATAGTGGCAT -ACGGAAGGATCTCGATAGCGAGAT -ACGGAAGGATCTCGATAGTACCAC -ACGGAAGGATCTCGATAGCAGAAC -ACGGAAGGATCTCGATAGGTCTAC -ACGGAAGGATCTCGATAGACGTAC -ACGGAAGGATCTCGATAGAGTGAC -ACGGAAGGATCTCGATAGCTGTAG -ACGGAAGGATCTCGATAGCCTAAG -ACGGAAGGATCTCGATAGGTTCAG -ACGGAAGGATCTCGATAGGCATAG -ACGGAAGGATCTCGATAGGACAAG -ACGGAAGGATCTCGATAGAAGCAG -ACGGAAGGATCTCGATAGCGTCAA -ACGGAAGGATCTCGATAGGCTGAA -ACGGAAGGATCTCGATAGAGTACG -ACGGAAGGATCTCGATAGATCCGA -ACGGAAGGATCTCGATAGATGGGA -ACGGAAGGATCTCGATAGGTGCAA -ACGGAAGGATCTCGATAGGAGGAA -ACGGAAGGATCTCGATAGCAGGTA -ACGGAAGGATCTCGATAGGACTCT -ACGGAAGGATCTCGATAGAGTCCT -ACGGAAGGATCTCGATAGTAAGCC -ACGGAAGGATCTCGATAGATAGCC -ACGGAAGGATCTCGATAGTAACCG -ACGGAAGGATCTCGATAGATGCCA -ACGGAAGGATCTAGACACGGAAAC -ACGGAAGGATCTAGACACAACACC -ACGGAAGGATCTAGACACATCGAG -ACGGAAGGATCTAGACACCTCCTT -ACGGAAGGATCTAGACACCCTGTT -ACGGAAGGATCTAGACACCGGTTT -ACGGAAGGATCTAGACACGTGGTT -ACGGAAGGATCTAGACACGCCTTT -ACGGAAGGATCTAGACACGGTCTT -ACGGAAGGATCTAGACACACGCTT -ACGGAAGGATCTAGACACAGCGTT -ACGGAAGGATCTAGACACTTCGTC -ACGGAAGGATCTAGACACTCTCTC -ACGGAAGGATCTAGACACTGGATC -ACGGAAGGATCTAGACACCACTTC -ACGGAAGGATCTAGACACGTACTC -ACGGAAGGATCTAGACACGATGTC -ACGGAAGGATCTAGACACACAGTC -ACGGAAGGATCTAGACACTTGCTG -ACGGAAGGATCTAGACACTCCATG -ACGGAAGGATCTAGACACTGTGTG -ACGGAAGGATCTAGACACCTAGTG -ACGGAAGGATCTAGACACCATCTG -ACGGAAGGATCTAGACACGAGTTG -ACGGAAGGATCTAGACACAGACTG -ACGGAAGGATCTAGACACTCGGTA -ACGGAAGGATCTAGACACTGCCTA -ACGGAAGGATCTAGACACCCACTA -ACGGAAGGATCTAGACACGGAGTA -ACGGAAGGATCTAGACACTCGTCT -ACGGAAGGATCTAGACACTGCACT -ACGGAAGGATCTAGACACCTGACT -ACGGAAGGATCTAGACACCAACCT -ACGGAAGGATCTAGACACGCTACT -ACGGAAGGATCTAGACACGGATCT -ACGGAAGGATCTAGACACAAGGCT -ACGGAAGGATCTAGACACTCAACC -ACGGAAGGATCTAGACACTGTTCC -ACGGAAGGATCTAGACACATTCCC -ACGGAAGGATCTAGACACTTCTCG -ACGGAAGGATCTAGACACTAGACG -ACGGAAGGATCTAGACACGTAACG -ACGGAAGGATCTAGACACACTTCG -ACGGAAGGATCTAGACACTACGCA -ACGGAAGGATCTAGACACCTTGCA -ACGGAAGGATCTAGACACCGAACA -ACGGAAGGATCTAGACACCAGTCA -ACGGAAGGATCTAGACACGATCCA -ACGGAAGGATCTAGACACACGACA -ACGGAAGGATCTAGACACAGCTCA -ACGGAAGGATCTAGACACTCACGT -ACGGAAGGATCTAGACACCGTAGT -ACGGAAGGATCTAGACACGTCAGT -ACGGAAGGATCTAGACACGAAGGT -ACGGAAGGATCTAGACACAACCGT -ACGGAAGGATCTAGACACTTGTGC -ACGGAAGGATCTAGACACCTAAGC -ACGGAAGGATCTAGACACACTAGC -ACGGAAGGATCTAGACACAGATGC -ACGGAAGGATCTAGACACTGAAGG -ACGGAAGGATCTAGACACCAATGG -ACGGAAGGATCTAGACACATGAGG -ACGGAAGGATCTAGACACAATGGG -ACGGAAGGATCTAGACACTCCTGA -ACGGAAGGATCTAGACACTAGCGA -ACGGAAGGATCTAGACACCACAGA -ACGGAAGGATCTAGACACGCAAGA -ACGGAAGGATCTAGACACGGTTGA -ACGGAAGGATCTAGACACTCCGAT -ACGGAAGGATCTAGACACTGGCAT -ACGGAAGGATCTAGACACCGAGAT -ACGGAAGGATCTAGACACTACCAC -ACGGAAGGATCTAGACACCAGAAC -ACGGAAGGATCTAGACACGTCTAC -ACGGAAGGATCTAGACACACGTAC -ACGGAAGGATCTAGACACAGTGAC -ACGGAAGGATCTAGACACCTGTAG -ACGGAAGGATCTAGACACCCTAAG -ACGGAAGGATCTAGACACGTTCAG -ACGGAAGGATCTAGACACGCATAG -ACGGAAGGATCTAGACACGACAAG -ACGGAAGGATCTAGACACAAGCAG -ACGGAAGGATCTAGACACCGTCAA -ACGGAAGGATCTAGACACGCTGAA -ACGGAAGGATCTAGACACAGTACG -ACGGAAGGATCTAGACACATCCGA -ACGGAAGGATCTAGACACATGGGA -ACGGAAGGATCTAGACACGTGCAA -ACGGAAGGATCTAGACACGAGGAA -ACGGAAGGATCTAGACACCAGGTA -ACGGAAGGATCTAGACACGACTCT -ACGGAAGGATCTAGACACAGTCCT -ACGGAAGGATCTAGACACTAAGCC -ACGGAAGGATCTAGACACATAGCC -ACGGAAGGATCTAGACACTAACCG -ACGGAAGGATCTAGACACATGCCA -ACGGAAGGATCTAGAGCAGGAAAC -ACGGAAGGATCTAGAGCAAACACC -ACGGAAGGATCTAGAGCAATCGAG -ACGGAAGGATCTAGAGCACTCCTT -ACGGAAGGATCTAGAGCACCTGTT -ACGGAAGGATCTAGAGCACGGTTT -ACGGAAGGATCTAGAGCAGTGGTT -ACGGAAGGATCTAGAGCAGCCTTT -ACGGAAGGATCTAGAGCAGGTCTT -ACGGAAGGATCTAGAGCAACGCTT -ACGGAAGGATCTAGAGCAAGCGTT -ACGGAAGGATCTAGAGCATTCGTC -ACGGAAGGATCTAGAGCATCTCTC -ACGGAAGGATCTAGAGCATGGATC -ACGGAAGGATCTAGAGCACACTTC -ACGGAAGGATCTAGAGCAGTACTC -ACGGAAGGATCTAGAGCAGATGTC -ACGGAAGGATCTAGAGCAACAGTC -ACGGAAGGATCTAGAGCATTGCTG -ACGGAAGGATCTAGAGCATCCATG -ACGGAAGGATCTAGAGCATGTGTG -ACGGAAGGATCTAGAGCACTAGTG -ACGGAAGGATCTAGAGCACATCTG -ACGGAAGGATCTAGAGCAGAGTTG -ACGGAAGGATCTAGAGCAAGACTG -ACGGAAGGATCTAGAGCATCGGTA -ACGGAAGGATCTAGAGCATGCCTA -ACGGAAGGATCTAGAGCACCACTA -ACGGAAGGATCTAGAGCAGGAGTA -ACGGAAGGATCTAGAGCATCGTCT -ACGGAAGGATCTAGAGCATGCACT -ACGGAAGGATCTAGAGCACTGACT -ACGGAAGGATCTAGAGCACAACCT -ACGGAAGGATCTAGAGCAGCTACT -ACGGAAGGATCTAGAGCAGGATCT -ACGGAAGGATCTAGAGCAAAGGCT -ACGGAAGGATCTAGAGCATCAACC -ACGGAAGGATCTAGAGCATGTTCC -ACGGAAGGATCTAGAGCAATTCCC -ACGGAAGGATCTAGAGCATTCTCG -ACGGAAGGATCTAGAGCATAGACG -ACGGAAGGATCTAGAGCAGTAACG -ACGGAAGGATCTAGAGCAACTTCG -ACGGAAGGATCTAGAGCATACGCA -ACGGAAGGATCTAGAGCACTTGCA -ACGGAAGGATCTAGAGCACGAACA -ACGGAAGGATCTAGAGCACAGTCA -ACGGAAGGATCTAGAGCAGATCCA -ACGGAAGGATCTAGAGCAACGACA -ACGGAAGGATCTAGAGCAAGCTCA -ACGGAAGGATCTAGAGCATCACGT -ACGGAAGGATCTAGAGCACGTAGT -ACGGAAGGATCTAGAGCAGTCAGT -ACGGAAGGATCTAGAGCAGAAGGT -ACGGAAGGATCTAGAGCAAACCGT -ACGGAAGGATCTAGAGCATTGTGC -ACGGAAGGATCTAGAGCACTAAGC -ACGGAAGGATCTAGAGCAACTAGC -ACGGAAGGATCTAGAGCAAGATGC -ACGGAAGGATCTAGAGCATGAAGG -ACGGAAGGATCTAGAGCACAATGG -ACGGAAGGATCTAGAGCAATGAGG -ACGGAAGGATCTAGAGCAAATGGG -ACGGAAGGATCTAGAGCATCCTGA -ACGGAAGGATCTAGAGCATAGCGA -ACGGAAGGATCTAGAGCACACAGA -ACGGAAGGATCTAGAGCAGCAAGA -ACGGAAGGATCTAGAGCAGGTTGA -ACGGAAGGATCTAGAGCATCCGAT -ACGGAAGGATCTAGAGCATGGCAT -ACGGAAGGATCTAGAGCACGAGAT -ACGGAAGGATCTAGAGCATACCAC -ACGGAAGGATCTAGAGCACAGAAC -ACGGAAGGATCTAGAGCAGTCTAC -ACGGAAGGATCTAGAGCAACGTAC -ACGGAAGGATCTAGAGCAAGTGAC -ACGGAAGGATCTAGAGCACTGTAG -ACGGAAGGATCTAGAGCACCTAAG -ACGGAAGGATCTAGAGCAGTTCAG -ACGGAAGGATCTAGAGCAGCATAG -ACGGAAGGATCTAGAGCAGACAAG -ACGGAAGGATCTAGAGCAAAGCAG -ACGGAAGGATCTAGAGCACGTCAA -ACGGAAGGATCTAGAGCAGCTGAA -ACGGAAGGATCTAGAGCAAGTACG -ACGGAAGGATCTAGAGCAATCCGA -ACGGAAGGATCTAGAGCAATGGGA -ACGGAAGGATCTAGAGCAGTGCAA -ACGGAAGGATCTAGAGCAGAGGAA -ACGGAAGGATCTAGAGCACAGGTA -ACGGAAGGATCTAGAGCAGACTCT -ACGGAAGGATCTAGAGCAAGTCCT -ACGGAAGGATCTAGAGCATAAGCC -ACGGAAGGATCTAGAGCAATAGCC -ACGGAAGGATCTAGAGCATAACCG -ACGGAAGGATCTAGAGCAATGCCA -ACGGAAGGATCTTGAGGTGGAAAC -ACGGAAGGATCTTGAGGTAACACC -ACGGAAGGATCTTGAGGTATCGAG -ACGGAAGGATCTTGAGGTCTCCTT -ACGGAAGGATCTTGAGGTCCTGTT -ACGGAAGGATCTTGAGGTCGGTTT -ACGGAAGGATCTTGAGGTGTGGTT -ACGGAAGGATCTTGAGGTGCCTTT -ACGGAAGGATCTTGAGGTGGTCTT -ACGGAAGGATCTTGAGGTACGCTT -ACGGAAGGATCTTGAGGTAGCGTT -ACGGAAGGATCTTGAGGTTTCGTC -ACGGAAGGATCTTGAGGTTCTCTC -ACGGAAGGATCTTGAGGTTGGATC -ACGGAAGGATCTTGAGGTCACTTC -ACGGAAGGATCTTGAGGTGTACTC -ACGGAAGGATCTTGAGGTGATGTC -ACGGAAGGATCTTGAGGTACAGTC -ACGGAAGGATCTTGAGGTTTGCTG -ACGGAAGGATCTTGAGGTTCCATG -ACGGAAGGATCTTGAGGTTGTGTG -ACGGAAGGATCTTGAGGTCTAGTG -ACGGAAGGATCTTGAGGTCATCTG -ACGGAAGGATCTTGAGGTGAGTTG -ACGGAAGGATCTTGAGGTAGACTG -ACGGAAGGATCTTGAGGTTCGGTA -ACGGAAGGATCTTGAGGTTGCCTA -ACGGAAGGATCTTGAGGTCCACTA -ACGGAAGGATCTTGAGGTGGAGTA -ACGGAAGGATCTTGAGGTTCGTCT -ACGGAAGGATCTTGAGGTTGCACT -ACGGAAGGATCTTGAGGTCTGACT -ACGGAAGGATCTTGAGGTCAACCT -ACGGAAGGATCTTGAGGTGCTACT -ACGGAAGGATCTTGAGGTGGATCT -ACGGAAGGATCTTGAGGTAAGGCT -ACGGAAGGATCTTGAGGTTCAACC -ACGGAAGGATCTTGAGGTTGTTCC -ACGGAAGGATCTTGAGGTATTCCC -ACGGAAGGATCTTGAGGTTTCTCG -ACGGAAGGATCTTGAGGTTAGACG -ACGGAAGGATCTTGAGGTGTAACG -ACGGAAGGATCTTGAGGTACTTCG -ACGGAAGGATCTTGAGGTTACGCA -ACGGAAGGATCTTGAGGTCTTGCA -ACGGAAGGATCTTGAGGTCGAACA -ACGGAAGGATCTTGAGGTCAGTCA -ACGGAAGGATCTTGAGGTGATCCA -ACGGAAGGATCTTGAGGTACGACA -ACGGAAGGATCTTGAGGTAGCTCA -ACGGAAGGATCTTGAGGTTCACGT -ACGGAAGGATCTTGAGGTCGTAGT -ACGGAAGGATCTTGAGGTGTCAGT -ACGGAAGGATCTTGAGGTGAAGGT -ACGGAAGGATCTTGAGGTAACCGT -ACGGAAGGATCTTGAGGTTTGTGC -ACGGAAGGATCTTGAGGTCTAAGC -ACGGAAGGATCTTGAGGTACTAGC -ACGGAAGGATCTTGAGGTAGATGC -ACGGAAGGATCTTGAGGTTGAAGG -ACGGAAGGATCTTGAGGTCAATGG -ACGGAAGGATCTTGAGGTATGAGG -ACGGAAGGATCTTGAGGTAATGGG -ACGGAAGGATCTTGAGGTTCCTGA -ACGGAAGGATCTTGAGGTTAGCGA -ACGGAAGGATCTTGAGGTCACAGA -ACGGAAGGATCTTGAGGTGCAAGA -ACGGAAGGATCTTGAGGTGGTTGA -ACGGAAGGATCTTGAGGTTCCGAT -ACGGAAGGATCTTGAGGTTGGCAT -ACGGAAGGATCTTGAGGTCGAGAT -ACGGAAGGATCTTGAGGTTACCAC -ACGGAAGGATCTTGAGGTCAGAAC -ACGGAAGGATCTTGAGGTGTCTAC -ACGGAAGGATCTTGAGGTACGTAC -ACGGAAGGATCTTGAGGTAGTGAC -ACGGAAGGATCTTGAGGTCTGTAG -ACGGAAGGATCTTGAGGTCCTAAG -ACGGAAGGATCTTGAGGTGTTCAG -ACGGAAGGATCTTGAGGTGCATAG -ACGGAAGGATCTTGAGGTGACAAG -ACGGAAGGATCTTGAGGTAAGCAG -ACGGAAGGATCTTGAGGTCGTCAA -ACGGAAGGATCTTGAGGTGCTGAA -ACGGAAGGATCTTGAGGTAGTACG -ACGGAAGGATCTTGAGGTATCCGA -ACGGAAGGATCTTGAGGTATGGGA -ACGGAAGGATCTTGAGGTGTGCAA -ACGGAAGGATCTTGAGGTGAGGAA -ACGGAAGGATCTTGAGGTCAGGTA -ACGGAAGGATCTTGAGGTGACTCT -ACGGAAGGATCTTGAGGTAGTCCT -ACGGAAGGATCTTGAGGTTAAGCC -ACGGAAGGATCTTGAGGTATAGCC -ACGGAAGGATCTTGAGGTTAACCG -ACGGAAGGATCTTGAGGTATGCCA -ACGGAAGGATCTGATTCCGGAAAC -ACGGAAGGATCTGATTCCAACACC -ACGGAAGGATCTGATTCCATCGAG -ACGGAAGGATCTGATTCCCTCCTT -ACGGAAGGATCTGATTCCCCTGTT -ACGGAAGGATCTGATTCCCGGTTT -ACGGAAGGATCTGATTCCGTGGTT -ACGGAAGGATCTGATTCCGCCTTT -ACGGAAGGATCTGATTCCGGTCTT -ACGGAAGGATCTGATTCCACGCTT -ACGGAAGGATCTGATTCCAGCGTT -ACGGAAGGATCTGATTCCTTCGTC -ACGGAAGGATCTGATTCCTCTCTC -ACGGAAGGATCTGATTCCTGGATC -ACGGAAGGATCTGATTCCCACTTC -ACGGAAGGATCTGATTCCGTACTC -ACGGAAGGATCTGATTCCGATGTC -ACGGAAGGATCTGATTCCACAGTC -ACGGAAGGATCTGATTCCTTGCTG -ACGGAAGGATCTGATTCCTCCATG -ACGGAAGGATCTGATTCCTGTGTG -ACGGAAGGATCTGATTCCCTAGTG -ACGGAAGGATCTGATTCCCATCTG -ACGGAAGGATCTGATTCCGAGTTG -ACGGAAGGATCTGATTCCAGACTG -ACGGAAGGATCTGATTCCTCGGTA -ACGGAAGGATCTGATTCCTGCCTA -ACGGAAGGATCTGATTCCCCACTA -ACGGAAGGATCTGATTCCGGAGTA -ACGGAAGGATCTGATTCCTCGTCT -ACGGAAGGATCTGATTCCTGCACT -ACGGAAGGATCTGATTCCCTGACT -ACGGAAGGATCTGATTCCCAACCT -ACGGAAGGATCTGATTCCGCTACT -ACGGAAGGATCTGATTCCGGATCT -ACGGAAGGATCTGATTCCAAGGCT -ACGGAAGGATCTGATTCCTCAACC -ACGGAAGGATCTGATTCCTGTTCC -ACGGAAGGATCTGATTCCATTCCC -ACGGAAGGATCTGATTCCTTCTCG -ACGGAAGGATCTGATTCCTAGACG -ACGGAAGGATCTGATTCCGTAACG -ACGGAAGGATCTGATTCCACTTCG -ACGGAAGGATCTGATTCCTACGCA -ACGGAAGGATCTGATTCCCTTGCA -ACGGAAGGATCTGATTCCCGAACA -ACGGAAGGATCTGATTCCCAGTCA -ACGGAAGGATCTGATTCCGATCCA -ACGGAAGGATCTGATTCCACGACA -ACGGAAGGATCTGATTCCAGCTCA -ACGGAAGGATCTGATTCCTCACGT -ACGGAAGGATCTGATTCCCGTAGT -ACGGAAGGATCTGATTCCGTCAGT -ACGGAAGGATCTGATTCCGAAGGT -ACGGAAGGATCTGATTCCAACCGT -ACGGAAGGATCTGATTCCTTGTGC -ACGGAAGGATCTGATTCCCTAAGC -ACGGAAGGATCTGATTCCACTAGC -ACGGAAGGATCTGATTCCAGATGC -ACGGAAGGATCTGATTCCTGAAGG -ACGGAAGGATCTGATTCCCAATGG -ACGGAAGGATCTGATTCCATGAGG -ACGGAAGGATCTGATTCCAATGGG -ACGGAAGGATCTGATTCCTCCTGA -ACGGAAGGATCTGATTCCTAGCGA -ACGGAAGGATCTGATTCCCACAGA -ACGGAAGGATCTGATTCCGCAAGA -ACGGAAGGATCTGATTCCGGTTGA -ACGGAAGGATCTGATTCCTCCGAT -ACGGAAGGATCTGATTCCTGGCAT -ACGGAAGGATCTGATTCCCGAGAT -ACGGAAGGATCTGATTCCTACCAC -ACGGAAGGATCTGATTCCCAGAAC -ACGGAAGGATCTGATTCCGTCTAC -ACGGAAGGATCTGATTCCACGTAC -ACGGAAGGATCTGATTCCAGTGAC -ACGGAAGGATCTGATTCCCTGTAG -ACGGAAGGATCTGATTCCCCTAAG -ACGGAAGGATCTGATTCCGTTCAG -ACGGAAGGATCTGATTCCGCATAG -ACGGAAGGATCTGATTCCGACAAG -ACGGAAGGATCTGATTCCAAGCAG -ACGGAAGGATCTGATTCCCGTCAA -ACGGAAGGATCTGATTCCGCTGAA -ACGGAAGGATCTGATTCCAGTACG -ACGGAAGGATCTGATTCCATCCGA -ACGGAAGGATCTGATTCCATGGGA -ACGGAAGGATCTGATTCCGTGCAA -ACGGAAGGATCTGATTCCGAGGAA -ACGGAAGGATCTGATTCCCAGGTA -ACGGAAGGATCTGATTCCGACTCT -ACGGAAGGATCTGATTCCAGTCCT -ACGGAAGGATCTGATTCCTAAGCC -ACGGAAGGATCTGATTCCATAGCC -ACGGAAGGATCTGATTCCTAACCG -ACGGAAGGATCTGATTCCATGCCA -ACGGAAGGATCTCATTGGGGAAAC -ACGGAAGGATCTCATTGGAACACC -ACGGAAGGATCTCATTGGATCGAG -ACGGAAGGATCTCATTGGCTCCTT -ACGGAAGGATCTCATTGGCCTGTT -ACGGAAGGATCTCATTGGCGGTTT -ACGGAAGGATCTCATTGGGTGGTT -ACGGAAGGATCTCATTGGGCCTTT -ACGGAAGGATCTCATTGGGGTCTT -ACGGAAGGATCTCATTGGACGCTT -ACGGAAGGATCTCATTGGAGCGTT -ACGGAAGGATCTCATTGGTTCGTC -ACGGAAGGATCTCATTGGTCTCTC -ACGGAAGGATCTCATTGGTGGATC -ACGGAAGGATCTCATTGGCACTTC -ACGGAAGGATCTCATTGGGTACTC -ACGGAAGGATCTCATTGGGATGTC -ACGGAAGGATCTCATTGGACAGTC -ACGGAAGGATCTCATTGGTTGCTG -ACGGAAGGATCTCATTGGTCCATG -ACGGAAGGATCTCATTGGTGTGTG -ACGGAAGGATCTCATTGGCTAGTG -ACGGAAGGATCTCATTGGCATCTG -ACGGAAGGATCTCATTGGGAGTTG -ACGGAAGGATCTCATTGGAGACTG -ACGGAAGGATCTCATTGGTCGGTA -ACGGAAGGATCTCATTGGTGCCTA -ACGGAAGGATCTCATTGGCCACTA -ACGGAAGGATCTCATTGGGGAGTA -ACGGAAGGATCTCATTGGTCGTCT -ACGGAAGGATCTCATTGGTGCACT -ACGGAAGGATCTCATTGGCTGACT -ACGGAAGGATCTCATTGGCAACCT -ACGGAAGGATCTCATTGGGCTACT -ACGGAAGGATCTCATTGGGGATCT -ACGGAAGGATCTCATTGGAAGGCT -ACGGAAGGATCTCATTGGTCAACC -ACGGAAGGATCTCATTGGTGTTCC -ACGGAAGGATCTCATTGGATTCCC -ACGGAAGGATCTCATTGGTTCTCG -ACGGAAGGATCTCATTGGTAGACG -ACGGAAGGATCTCATTGGGTAACG -ACGGAAGGATCTCATTGGACTTCG -ACGGAAGGATCTCATTGGTACGCA -ACGGAAGGATCTCATTGGCTTGCA -ACGGAAGGATCTCATTGGCGAACA -ACGGAAGGATCTCATTGGCAGTCA -ACGGAAGGATCTCATTGGGATCCA -ACGGAAGGATCTCATTGGACGACA -ACGGAAGGATCTCATTGGAGCTCA -ACGGAAGGATCTCATTGGTCACGT -ACGGAAGGATCTCATTGGCGTAGT -ACGGAAGGATCTCATTGGGTCAGT -ACGGAAGGATCTCATTGGGAAGGT -ACGGAAGGATCTCATTGGAACCGT -ACGGAAGGATCTCATTGGTTGTGC -ACGGAAGGATCTCATTGGCTAAGC -ACGGAAGGATCTCATTGGACTAGC -ACGGAAGGATCTCATTGGAGATGC -ACGGAAGGATCTCATTGGTGAAGG -ACGGAAGGATCTCATTGGCAATGG -ACGGAAGGATCTCATTGGATGAGG -ACGGAAGGATCTCATTGGAATGGG -ACGGAAGGATCTCATTGGTCCTGA -ACGGAAGGATCTCATTGGTAGCGA -ACGGAAGGATCTCATTGGCACAGA -ACGGAAGGATCTCATTGGGCAAGA -ACGGAAGGATCTCATTGGGGTTGA -ACGGAAGGATCTCATTGGTCCGAT -ACGGAAGGATCTCATTGGTGGCAT -ACGGAAGGATCTCATTGGCGAGAT -ACGGAAGGATCTCATTGGTACCAC -ACGGAAGGATCTCATTGGCAGAAC -ACGGAAGGATCTCATTGGGTCTAC -ACGGAAGGATCTCATTGGACGTAC -ACGGAAGGATCTCATTGGAGTGAC -ACGGAAGGATCTCATTGGCTGTAG -ACGGAAGGATCTCATTGGCCTAAG -ACGGAAGGATCTCATTGGGTTCAG -ACGGAAGGATCTCATTGGGCATAG -ACGGAAGGATCTCATTGGGACAAG -ACGGAAGGATCTCATTGGAAGCAG -ACGGAAGGATCTCATTGGCGTCAA -ACGGAAGGATCTCATTGGGCTGAA -ACGGAAGGATCTCATTGGAGTACG -ACGGAAGGATCTCATTGGATCCGA -ACGGAAGGATCTCATTGGATGGGA -ACGGAAGGATCTCATTGGGTGCAA -ACGGAAGGATCTCATTGGGAGGAA -ACGGAAGGATCTCATTGGCAGGTA -ACGGAAGGATCTCATTGGGACTCT -ACGGAAGGATCTCATTGGAGTCCT -ACGGAAGGATCTCATTGGTAAGCC -ACGGAAGGATCTCATTGGATAGCC -ACGGAAGGATCTCATTGGTAACCG -ACGGAAGGATCTCATTGGATGCCA -ACGGAAGGATCTGATCGAGGAAAC -ACGGAAGGATCTGATCGAAACACC -ACGGAAGGATCTGATCGAATCGAG -ACGGAAGGATCTGATCGACTCCTT -ACGGAAGGATCTGATCGACCTGTT -ACGGAAGGATCTGATCGACGGTTT -ACGGAAGGATCTGATCGAGTGGTT -ACGGAAGGATCTGATCGAGCCTTT -ACGGAAGGATCTGATCGAGGTCTT -ACGGAAGGATCTGATCGAACGCTT -ACGGAAGGATCTGATCGAAGCGTT -ACGGAAGGATCTGATCGATTCGTC -ACGGAAGGATCTGATCGATCTCTC -ACGGAAGGATCTGATCGATGGATC -ACGGAAGGATCTGATCGACACTTC -ACGGAAGGATCTGATCGAGTACTC -ACGGAAGGATCTGATCGAGATGTC -ACGGAAGGATCTGATCGAACAGTC -ACGGAAGGATCTGATCGATTGCTG -ACGGAAGGATCTGATCGATCCATG -ACGGAAGGATCTGATCGATGTGTG -ACGGAAGGATCTGATCGACTAGTG -ACGGAAGGATCTGATCGACATCTG -ACGGAAGGATCTGATCGAGAGTTG -ACGGAAGGATCTGATCGAAGACTG -ACGGAAGGATCTGATCGATCGGTA -ACGGAAGGATCTGATCGATGCCTA -ACGGAAGGATCTGATCGACCACTA -ACGGAAGGATCTGATCGAGGAGTA -ACGGAAGGATCTGATCGATCGTCT -ACGGAAGGATCTGATCGATGCACT -ACGGAAGGATCTGATCGACTGACT -ACGGAAGGATCTGATCGACAACCT -ACGGAAGGATCTGATCGAGCTACT -ACGGAAGGATCTGATCGAGGATCT -ACGGAAGGATCTGATCGAAAGGCT -ACGGAAGGATCTGATCGATCAACC -ACGGAAGGATCTGATCGATGTTCC -ACGGAAGGATCTGATCGAATTCCC -ACGGAAGGATCTGATCGATTCTCG -ACGGAAGGATCTGATCGATAGACG -ACGGAAGGATCTGATCGAGTAACG -ACGGAAGGATCTGATCGAACTTCG -ACGGAAGGATCTGATCGATACGCA -ACGGAAGGATCTGATCGACTTGCA -ACGGAAGGATCTGATCGACGAACA -ACGGAAGGATCTGATCGACAGTCA -ACGGAAGGATCTGATCGAGATCCA -ACGGAAGGATCTGATCGAACGACA -ACGGAAGGATCTGATCGAAGCTCA -ACGGAAGGATCTGATCGATCACGT -ACGGAAGGATCTGATCGACGTAGT -ACGGAAGGATCTGATCGAGTCAGT -ACGGAAGGATCTGATCGAGAAGGT -ACGGAAGGATCTGATCGAAACCGT -ACGGAAGGATCTGATCGATTGTGC -ACGGAAGGATCTGATCGACTAAGC -ACGGAAGGATCTGATCGAACTAGC -ACGGAAGGATCTGATCGAAGATGC -ACGGAAGGATCTGATCGATGAAGG -ACGGAAGGATCTGATCGACAATGG -ACGGAAGGATCTGATCGAATGAGG -ACGGAAGGATCTGATCGAAATGGG -ACGGAAGGATCTGATCGATCCTGA -ACGGAAGGATCTGATCGATAGCGA -ACGGAAGGATCTGATCGACACAGA -ACGGAAGGATCTGATCGAGCAAGA -ACGGAAGGATCTGATCGAGGTTGA -ACGGAAGGATCTGATCGATCCGAT -ACGGAAGGATCTGATCGATGGCAT -ACGGAAGGATCTGATCGACGAGAT -ACGGAAGGATCTGATCGATACCAC -ACGGAAGGATCTGATCGACAGAAC -ACGGAAGGATCTGATCGAGTCTAC -ACGGAAGGATCTGATCGAACGTAC -ACGGAAGGATCTGATCGAAGTGAC -ACGGAAGGATCTGATCGACTGTAG -ACGGAAGGATCTGATCGACCTAAG -ACGGAAGGATCTGATCGAGTTCAG -ACGGAAGGATCTGATCGAGCATAG -ACGGAAGGATCTGATCGAGACAAG -ACGGAAGGATCTGATCGAAAGCAG -ACGGAAGGATCTGATCGACGTCAA -ACGGAAGGATCTGATCGAGCTGAA -ACGGAAGGATCTGATCGAAGTACG -ACGGAAGGATCTGATCGAATCCGA -ACGGAAGGATCTGATCGAATGGGA -ACGGAAGGATCTGATCGAGTGCAA -ACGGAAGGATCTGATCGAGAGGAA -ACGGAAGGATCTGATCGACAGGTA -ACGGAAGGATCTGATCGAGACTCT -ACGGAAGGATCTGATCGAAGTCCT -ACGGAAGGATCTGATCGATAAGCC -ACGGAAGGATCTGATCGAATAGCC -ACGGAAGGATCTGATCGATAACCG -ACGGAAGGATCTGATCGAATGCCA -ACGGAAGGATCTCACTACGGAAAC -ACGGAAGGATCTCACTACAACACC -ACGGAAGGATCTCACTACATCGAG -ACGGAAGGATCTCACTACCTCCTT -ACGGAAGGATCTCACTACCCTGTT -ACGGAAGGATCTCACTACCGGTTT -ACGGAAGGATCTCACTACGTGGTT -ACGGAAGGATCTCACTACGCCTTT -ACGGAAGGATCTCACTACGGTCTT -ACGGAAGGATCTCACTACACGCTT -ACGGAAGGATCTCACTACAGCGTT -ACGGAAGGATCTCACTACTTCGTC -ACGGAAGGATCTCACTACTCTCTC -ACGGAAGGATCTCACTACTGGATC -ACGGAAGGATCTCACTACCACTTC -ACGGAAGGATCTCACTACGTACTC -ACGGAAGGATCTCACTACGATGTC -ACGGAAGGATCTCACTACACAGTC -ACGGAAGGATCTCACTACTTGCTG -ACGGAAGGATCTCACTACTCCATG -ACGGAAGGATCTCACTACTGTGTG -ACGGAAGGATCTCACTACCTAGTG -ACGGAAGGATCTCACTACCATCTG -ACGGAAGGATCTCACTACGAGTTG -ACGGAAGGATCTCACTACAGACTG -ACGGAAGGATCTCACTACTCGGTA -ACGGAAGGATCTCACTACTGCCTA -ACGGAAGGATCTCACTACCCACTA -ACGGAAGGATCTCACTACGGAGTA -ACGGAAGGATCTCACTACTCGTCT -ACGGAAGGATCTCACTACTGCACT -ACGGAAGGATCTCACTACCTGACT -ACGGAAGGATCTCACTACCAACCT -ACGGAAGGATCTCACTACGCTACT -ACGGAAGGATCTCACTACGGATCT -ACGGAAGGATCTCACTACAAGGCT -ACGGAAGGATCTCACTACTCAACC -ACGGAAGGATCTCACTACTGTTCC -ACGGAAGGATCTCACTACATTCCC -ACGGAAGGATCTCACTACTTCTCG -ACGGAAGGATCTCACTACTAGACG -ACGGAAGGATCTCACTACGTAACG -ACGGAAGGATCTCACTACACTTCG -ACGGAAGGATCTCACTACTACGCA -ACGGAAGGATCTCACTACCTTGCA -ACGGAAGGATCTCACTACCGAACA -ACGGAAGGATCTCACTACCAGTCA -ACGGAAGGATCTCACTACGATCCA -ACGGAAGGATCTCACTACACGACA -ACGGAAGGATCTCACTACAGCTCA -ACGGAAGGATCTCACTACTCACGT -ACGGAAGGATCTCACTACCGTAGT -ACGGAAGGATCTCACTACGTCAGT -ACGGAAGGATCTCACTACGAAGGT -ACGGAAGGATCTCACTACAACCGT -ACGGAAGGATCTCACTACTTGTGC -ACGGAAGGATCTCACTACCTAAGC -ACGGAAGGATCTCACTACACTAGC -ACGGAAGGATCTCACTACAGATGC -ACGGAAGGATCTCACTACTGAAGG -ACGGAAGGATCTCACTACCAATGG -ACGGAAGGATCTCACTACATGAGG -ACGGAAGGATCTCACTACAATGGG -ACGGAAGGATCTCACTACTCCTGA -ACGGAAGGATCTCACTACTAGCGA -ACGGAAGGATCTCACTACCACAGA -ACGGAAGGATCTCACTACGCAAGA -ACGGAAGGATCTCACTACGGTTGA -ACGGAAGGATCTCACTACTCCGAT -ACGGAAGGATCTCACTACTGGCAT -ACGGAAGGATCTCACTACCGAGAT -ACGGAAGGATCTCACTACTACCAC -ACGGAAGGATCTCACTACCAGAAC -ACGGAAGGATCTCACTACGTCTAC -ACGGAAGGATCTCACTACACGTAC -ACGGAAGGATCTCACTACAGTGAC -ACGGAAGGATCTCACTACCTGTAG -ACGGAAGGATCTCACTACCCTAAG -ACGGAAGGATCTCACTACGTTCAG -ACGGAAGGATCTCACTACGCATAG -ACGGAAGGATCTCACTACGACAAG -ACGGAAGGATCTCACTACAAGCAG -ACGGAAGGATCTCACTACCGTCAA -ACGGAAGGATCTCACTACGCTGAA -ACGGAAGGATCTCACTACAGTACG -ACGGAAGGATCTCACTACATCCGA -ACGGAAGGATCTCACTACATGGGA -ACGGAAGGATCTCACTACGTGCAA -ACGGAAGGATCTCACTACGAGGAA -ACGGAAGGATCTCACTACCAGGTA -ACGGAAGGATCTCACTACGACTCT -ACGGAAGGATCTCACTACAGTCCT -ACGGAAGGATCTCACTACTAAGCC -ACGGAAGGATCTCACTACATAGCC -ACGGAAGGATCTCACTACTAACCG -ACGGAAGGATCTCACTACATGCCA -ACGGAAGGATCTAACCAGGGAAAC -ACGGAAGGATCTAACCAGAACACC -ACGGAAGGATCTAACCAGATCGAG -ACGGAAGGATCTAACCAGCTCCTT -ACGGAAGGATCTAACCAGCCTGTT -ACGGAAGGATCTAACCAGCGGTTT -ACGGAAGGATCTAACCAGGTGGTT -ACGGAAGGATCTAACCAGGCCTTT -ACGGAAGGATCTAACCAGGGTCTT -ACGGAAGGATCTAACCAGACGCTT -ACGGAAGGATCTAACCAGAGCGTT -ACGGAAGGATCTAACCAGTTCGTC -ACGGAAGGATCTAACCAGTCTCTC -ACGGAAGGATCTAACCAGTGGATC -ACGGAAGGATCTAACCAGCACTTC -ACGGAAGGATCTAACCAGGTACTC -ACGGAAGGATCTAACCAGGATGTC -ACGGAAGGATCTAACCAGACAGTC -ACGGAAGGATCTAACCAGTTGCTG -ACGGAAGGATCTAACCAGTCCATG -ACGGAAGGATCTAACCAGTGTGTG -ACGGAAGGATCTAACCAGCTAGTG -ACGGAAGGATCTAACCAGCATCTG -ACGGAAGGATCTAACCAGGAGTTG -ACGGAAGGATCTAACCAGAGACTG -ACGGAAGGATCTAACCAGTCGGTA -ACGGAAGGATCTAACCAGTGCCTA -ACGGAAGGATCTAACCAGCCACTA -ACGGAAGGATCTAACCAGGGAGTA -ACGGAAGGATCTAACCAGTCGTCT -ACGGAAGGATCTAACCAGTGCACT -ACGGAAGGATCTAACCAGCTGACT -ACGGAAGGATCTAACCAGCAACCT -ACGGAAGGATCTAACCAGGCTACT -ACGGAAGGATCTAACCAGGGATCT -ACGGAAGGATCTAACCAGAAGGCT -ACGGAAGGATCTAACCAGTCAACC -ACGGAAGGATCTAACCAGTGTTCC -ACGGAAGGATCTAACCAGATTCCC -ACGGAAGGATCTAACCAGTTCTCG -ACGGAAGGATCTAACCAGTAGACG -ACGGAAGGATCTAACCAGGTAACG -ACGGAAGGATCTAACCAGACTTCG -ACGGAAGGATCTAACCAGTACGCA -ACGGAAGGATCTAACCAGCTTGCA -ACGGAAGGATCTAACCAGCGAACA -ACGGAAGGATCTAACCAGCAGTCA -ACGGAAGGATCTAACCAGGATCCA -ACGGAAGGATCTAACCAGACGACA -ACGGAAGGATCTAACCAGAGCTCA -ACGGAAGGATCTAACCAGTCACGT -ACGGAAGGATCTAACCAGCGTAGT -ACGGAAGGATCTAACCAGGTCAGT -ACGGAAGGATCTAACCAGGAAGGT -ACGGAAGGATCTAACCAGAACCGT -ACGGAAGGATCTAACCAGTTGTGC -ACGGAAGGATCTAACCAGCTAAGC -ACGGAAGGATCTAACCAGACTAGC -ACGGAAGGATCTAACCAGAGATGC -ACGGAAGGATCTAACCAGTGAAGG -ACGGAAGGATCTAACCAGCAATGG -ACGGAAGGATCTAACCAGATGAGG -ACGGAAGGATCTAACCAGAATGGG -ACGGAAGGATCTAACCAGTCCTGA -ACGGAAGGATCTAACCAGTAGCGA -ACGGAAGGATCTAACCAGCACAGA -ACGGAAGGATCTAACCAGGCAAGA -ACGGAAGGATCTAACCAGGGTTGA -ACGGAAGGATCTAACCAGTCCGAT -ACGGAAGGATCTAACCAGTGGCAT -ACGGAAGGATCTAACCAGCGAGAT -ACGGAAGGATCTAACCAGTACCAC -ACGGAAGGATCTAACCAGCAGAAC -ACGGAAGGATCTAACCAGGTCTAC -ACGGAAGGATCTAACCAGACGTAC -ACGGAAGGATCTAACCAGAGTGAC -ACGGAAGGATCTAACCAGCTGTAG -ACGGAAGGATCTAACCAGCCTAAG -ACGGAAGGATCTAACCAGGTTCAG -ACGGAAGGATCTAACCAGGCATAG -ACGGAAGGATCTAACCAGGACAAG -ACGGAAGGATCTAACCAGAAGCAG -ACGGAAGGATCTAACCAGCGTCAA -ACGGAAGGATCTAACCAGGCTGAA -ACGGAAGGATCTAACCAGAGTACG -ACGGAAGGATCTAACCAGATCCGA -ACGGAAGGATCTAACCAGATGGGA -ACGGAAGGATCTAACCAGGTGCAA -ACGGAAGGATCTAACCAGGAGGAA -ACGGAAGGATCTAACCAGCAGGTA -ACGGAAGGATCTAACCAGGACTCT -ACGGAAGGATCTAACCAGAGTCCT -ACGGAAGGATCTAACCAGTAAGCC -ACGGAAGGATCTAACCAGATAGCC -ACGGAAGGATCTAACCAGTAACCG -ACGGAAGGATCTAACCAGATGCCA -ACGGAAGGATCTTACGTCGGAAAC -ACGGAAGGATCTTACGTCAACACC -ACGGAAGGATCTTACGTCATCGAG -ACGGAAGGATCTTACGTCCTCCTT -ACGGAAGGATCTTACGTCCCTGTT -ACGGAAGGATCTTACGTCCGGTTT -ACGGAAGGATCTTACGTCGTGGTT -ACGGAAGGATCTTACGTCGCCTTT -ACGGAAGGATCTTACGTCGGTCTT -ACGGAAGGATCTTACGTCACGCTT -ACGGAAGGATCTTACGTCAGCGTT -ACGGAAGGATCTTACGTCTTCGTC -ACGGAAGGATCTTACGTCTCTCTC -ACGGAAGGATCTTACGTCTGGATC -ACGGAAGGATCTTACGTCCACTTC -ACGGAAGGATCTTACGTCGTACTC -ACGGAAGGATCTTACGTCGATGTC -ACGGAAGGATCTTACGTCACAGTC -ACGGAAGGATCTTACGTCTTGCTG -ACGGAAGGATCTTACGTCTCCATG -ACGGAAGGATCTTACGTCTGTGTG -ACGGAAGGATCTTACGTCCTAGTG -ACGGAAGGATCTTACGTCCATCTG -ACGGAAGGATCTTACGTCGAGTTG -ACGGAAGGATCTTACGTCAGACTG -ACGGAAGGATCTTACGTCTCGGTA -ACGGAAGGATCTTACGTCTGCCTA -ACGGAAGGATCTTACGTCCCACTA -ACGGAAGGATCTTACGTCGGAGTA -ACGGAAGGATCTTACGTCTCGTCT -ACGGAAGGATCTTACGTCTGCACT -ACGGAAGGATCTTACGTCCTGACT -ACGGAAGGATCTTACGTCCAACCT -ACGGAAGGATCTTACGTCGCTACT -ACGGAAGGATCTTACGTCGGATCT -ACGGAAGGATCTTACGTCAAGGCT -ACGGAAGGATCTTACGTCTCAACC -ACGGAAGGATCTTACGTCTGTTCC -ACGGAAGGATCTTACGTCATTCCC -ACGGAAGGATCTTACGTCTTCTCG -ACGGAAGGATCTTACGTCTAGACG -ACGGAAGGATCTTACGTCGTAACG -ACGGAAGGATCTTACGTCACTTCG -ACGGAAGGATCTTACGTCTACGCA -ACGGAAGGATCTTACGTCCTTGCA -ACGGAAGGATCTTACGTCCGAACA -ACGGAAGGATCTTACGTCCAGTCA -ACGGAAGGATCTTACGTCGATCCA -ACGGAAGGATCTTACGTCACGACA -ACGGAAGGATCTTACGTCAGCTCA -ACGGAAGGATCTTACGTCTCACGT -ACGGAAGGATCTTACGTCCGTAGT -ACGGAAGGATCTTACGTCGTCAGT -ACGGAAGGATCTTACGTCGAAGGT -ACGGAAGGATCTTACGTCAACCGT -ACGGAAGGATCTTACGTCTTGTGC -ACGGAAGGATCTTACGTCCTAAGC -ACGGAAGGATCTTACGTCACTAGC -ACGGAAGGATCTTACGTCAGATGC -ACGGAAGGATCTTACGTCTGAAGG -ACGGAAGGATCTTACGTCCAATGG -ACGGAAGGATCTTACGTCATGAGG -ACGGAAGGATCTTACGTCAATGGG -ACGGAAGGATCTTACGTCTCCTGA -ACGGAAGGATCTTACGTCTAGCGA -ACGGAAGGATCTTACGTCCACAGA -ACGGAAGGATCTTACGTCGCAAGA -ACGGAAGGATCTTACGTCGGTTGA -ACGGAAGGATCTTACGTCTCCGAT -ACGGAAGGATCTTACGTCTGGCAT -ACGGAAGGATCTTACGTCCGAGAT -ACGGAAGGATCTTACGTCTACCAC -ACGGAAGGATCTTACGTCCAGAAC -ACGGAAGGATCTTACGTCGTCTAC -ACGGAAGGATCTTACGTCACGTAC -ACGGAAGGATCTTACGTCAGTGAC -ACGGAAGGATCTTACGTCCTGTAG -ACGGAAGGATCTTACGTCCCTAAG -ACGGAAGGATCTTACGTCGTTCAG -ACGGAAGGATCTTACGTCGCATAG -ACGGAAGGATCTTACGTCGACAAG -ACGGAAGGATCTTACGTCAAGCAG -ACGGAAGGATCTTACGTCCGTCAA -ACGGAAGGATCTTACGTCGCTGAA -ACGGAAGGATCTTACGTCAGTACG -ACGGAAGGATCTTACGTCATCCGA -ACGGAAGGATCTTACGTCATGGGA -ACGGAAGGATCTTACGTCGTGCAA -ACGGAAGGATCTTACGTCGAGGAA -ACGGAAGGATCTTACGTCCAGGTA -ACGGAAGGATCTTACGTCGACTCT -ACGGAAGGATCTTACGTCAGTCCT -ACGGAAGGATCTTACGTCTAAGCC -ACGGAAGGATCTTACGTCATAGCC -ACGGAAGGATCTTACGTCTAACCG -ACGGAAGGATCTTACGTCATGCCA -ACGGAAGGATCTTACACGGGAAAC -ACGGAAGGATCTTACACGAACACC -ACGGAAGGATCTTACACGATCGAG -ACGGAAGGATCTTACACGCTCCTT -ACGGAAGGATCTTACACGCCTGTT -ACGGAAGGATCTTACACGCGGTTT -ACGGAAGGATCTTACACGGTGGTT -ACGGAAGGATCTTACACGGCCTTT -ACGGAAGGATCTTACACGGGTCTT -ACGGAAGGATCTTACACGACGCTT -ACGGAAGGATCTTACACGAGCGTT -ACGGAAGGATCTTACACGTTCGTC -ACGGAAGGATCTTACACGTCTCTC -ACGGAAGGATCTTACACGTGGATC -ACGGAAGGATCTTACACGCACTTC -ACGGAAGGATCTTACACGGTACTC -ACGGAAGGATCTTACACGGATGTC -ACGGAAGGATCTTACACGACAGTC -ACGGAAGGATCTTACACGTTGCTG -ACGGAAGGATCTTACACGTCCATG -ACGGAAGGATCTTACACGTGTGTG -ACGGAAGGATCTTACACGCTAGTG -ACGGAAGGATCTTACACGCATCTG -ACGGAAGGATCTTACACGGAGTTG -ACGGAAGGATCTTACACGAGACTG -ACGGAAGGATCTTACACGTCGGTA -ACGGAAGGATCTTACACGTGCCTA -ACGGAAGGATCTTACACGCCACTA -ACGGAAGGATCTTACACGGGAGTA -ACGGAAGGATCTTACACGTCGTCT -ACGGAAGGATCTTACACGTGCACT -ACGGAAGGATCTTACACGCTGACT -ACGGAAGGATCTTACACGCAACCT -ACGGAAGGATCTTACACGGCTACT -ACGGAAGGATCTTACACGGGATCT -ACGGAAGGATCTTACACGAAGGCT -ACGGAAGGATCTTACACGTCAACC -ACGGAAGGATCTTACACGTGTTCC -ACGGAAGGATCTTACACGATTCCC -ACGGAAGGATCTTACACGTTCTCG -ACGGAAGGATCTTACACGTAGACG -ACGGAAGGATCTTACACGGTAACG -ACGGAAGGATCTTACACGACTTCG -ACGGAAGGATCTTACACGTACGCA -ACGGAAGGATCTTACACGCTTGCA -ACGGAAGGATCTTACACGCGAACA -ACGGAAGGATCTTACACGCAGTCA -ACGGAAGGATCTTACACGGATCCA -ACGGAAGGATCTTACACGACGACA -ACGGAAGGATCTTACACGAGCTCA -ACGGAAGGATCTTACACGTCACGT -ACGGAAGGATCTTACACGCGTAGT -ACGGAAGGATCTTACACGGTCAGT -ACGGAAGGATCTTACACGGAAGGT -ACGGAAGGATCTTACACGAACCGT -ACGGAAGGATCTTACACGTTGTGC -ACGGAAGGATCTTACACGCTAAGC -ACGGAAGGATCTTACACGACTAGC -ACGGAAGGATCTTACACGAGATGC -ACGGAAGGATCTTACACGTGAAGG -ACGGAAGGATCTTACACGCAATGG -ACGGAAGGATCTTACACGATGAGG -ACGGAAGGATCTTACACGAATGGG -ACGGAAGGATCTTACACGTCCTGA -ACGGAAGGATCTTACACGTAGCGA -ACGGAAGGATCTTACACGCACAGA -ACGGAAGGATCTTACACGGCAAGA -ACGGAAGGATCTTACACGGGTTGA -ACGGAAGGATCTTACACGTCCGAT -ACGGAAGGATCTTACACGTGGCAT -ACGGAAGGATCTTACACGCGAGAT -ACGGAAGGATCTTACACGTACCAC -ACGGAAGGATCTTACACGCAGAAC -ACGGAAGGATCTTACACGGTCTAC -ACGGAAGGATCTTACACGACGTAC -ACGGAAGGATCTTACACGAGTGAC -ACGGAAGGATCTTACACGCTGTAG -ACGGAAGGATCTTACACGCCTAAG -ACGGAAGGATCTTACACGGTTCAG -ACGGAAGGATCTTACACGGCATAG -ACGGAAGGATCTTACACGGACAAG -ACGGAAGGATCTTACACGAAGCAG -ACGGAAGGATCTTACACGCGTCAA -ACGGAAGGATCTTACACGGCTGAA -ACGGAAGGATCTTACACGAGTACG -ACGGAAGGATCTTACACGATCCGA -ACGGAAGGATCTTACACGATGGGA -ACGGAAGGATCTTACACGGTGCAA -ACGGAAGGATCTTACACGGAGGAA -ACGGAAGGATCTTACACGCAGGTA -ACGGAAGGATCTTACACGGACTCT -ACGGAAGGATCTTACACGAGTCCT -ACGGAAGGATCTTACACGTAAGCC -ACGGAAGGATCTTACACGATAGCC -ACGGAAGGATCTTACACGTAACCG -ACGGAAGGATCTTACACGATGCCA -ACGGAAGGATCTGACAGTGGAAAC -ACGGAAGGATCTGACAGTAACACC -ACGGAAGGATCTGACAGTATCGAG -ACGGAAGGATCTGACAGTCTCCTT -ACGGAAGGATCTGACAGTCCTGTT -ACGGAAGGATCTGACAGTCGGTTT -ACGGAAGGATCTGACAGTGTGGTT -ACGGAAGGATCTGACAGTGCCTTT -ACGGAAGGATCTGACAGTGGTCTT -ACGGAAGGATCTGACAGTACGCTT -ACGGAAGGATCTGACAGTAGCGTT -ACGGAAGGATCTGACAGTTTCGTC -ACGGAAGGATCTGACAGTTCTCTC -ACGGAAGGATCTGACAGTTGGATC -ACGGAAGGATCTGACAGTCACTTC -ACGGAAGGATCTGACAGTGTACTC -ACGGAAGGATCTGACAGTGATGTC -ACGGAAGGATCTGACAGTACAGTC -ACGGAAGGATCTGACAGTTTGCTG -ACGGAAGGATCTGACAGTTCCATG -ACGGAAGGATCTGACAGTTGTGTG -ACGGAAGGATCTGACAGTCTAGTG -ACGGAAGGATCTGACAGTCATCTG -ACGGAAGGATCTGACAGTGAGTTG -ACGGAAGGATCTGACAGTAGACTG -ACGGAAGGATCTGACAGTTCGGTA -ACGGAAGGATCTGACAGTTGCCTA -ACGGAAGGATCTGACAGTCCACTA -ACGGAAGGATCTGACAGTGGAGTA -ACGGAAGGATCTGACAGTTCGTCT -ACGGAAGGATCTGACAGTTGCACT -ACGGAAGGATCTGACAGTCTGACT -ACGGAAGGATCTGACAGTCAACCT -ACGGAAGGATCTGACAGTGCTACT -ACGGAAGGATCTGACAGTGGATCT -ACGGAAGGATCTGACAGTAAGGCT -ACGGAAGGATCTGACAGTTCAACC -ACGGAAGGATCTGACAGTTGTTCC -ACGGAAGGATCTGACAGTATTCCC -ACGGAAGGATCTGACAGTTTCTCG -ACGGAAGGATCTGACAGTTAGACG -ACGGAAGGATCTGACAGTGTAACG -ACGGAAGGATCTGACAGTACTTCG -ACGGAAGGATCTGACAGTTACGCA -ACGGAAGGATCTGACAGTCTTGCA -ACGGAAGGATCTGACAGTCGAACA -ACGGAAGGATCTGACAGTCAGTCA -ACGGAAGGATCTGACAGTGATCCA -ACGGAAGGATCTGACAGTACGACA -ACGGAAGGATCTGACAGTAGCTCA -ACGGAAGGATCTGACAGTTCACGT -ACGGAAGGATCTGACAGTCGTAGT -ACGGAAGGATCTGACAGTGTCAGT -ACGGAAGGATCTGACAGTGAAGGT -ACGGAAGGATCTGACAGTAACCGT -ACGGAAGGATCTGACAGTTTGTGC -ACGGAAGGATCTGACAGTCTAAGC -ACGGAAGGATCTGACAGTACTAGC -ACGGAAGGATCTGACAGTAGATGC -ACGGAAGGATCTGACAGTTGAAGG -ACGGAAGGATCTGACAGTCAATGG -ACGGAAGGATCTGACAGTATGAGG -ACGGAAGGATCTGACAGTAATGGG -ACGGAAGGATCTGACAGTTCCTGA -ACGGAAGGATCTGACAGTTAGCGA -ACGGAAGGATCTGACAGTCACAGA -ACGGAAGGATCTGACAGTGCAAGA -ACGGAAGGATCTGACAGTGGTTGA -ACGGAAGGATCTGACAGTTCCGAT -ACGGAAGGATCTGACAGTTGGCAT -ACGGAAGGATCTGACAGTCGAGAT -ACGGAAGGATCTGACAGTTACCAC -ACGGAAGGATCTGACAGTCAGAAC -ACGGAAGGATCTGACAGTGTCTAC -ACGGAAGGATCTGACAGTACGTAC -ACGGAAGGATCTGACAGTAGTGAC -ACGGAAGGATCTGACAGTCTGTAG -ACGGAAGGATCTGACAGTCCTAAG -ACGGAAGGATCTGACAGTGTTCAG -ACGGAAGGATCTGACAGTGCATAG -ACGGAAGGATCTGACAGTGACAAG -ACGGAAGGATCTGACAGTAAGCAG -ACGGAAGGATCTGACAGTCGTCAA -ACGGAAGGATCTGACAGTGCTGAA -ACGGAAGGATCTGACAGTAGTACG -ACGGAAGGATCTGACAGTATCCGA -ACGGAAGGATCTGACAGTATGGGA -ACGGAAGGATCTGACAGTGTGCAA -ACGGAAGGATCTGACAGTGAGGAA -ACGGAAGGATCTGACAGTCAGGTA -ACGGAAGGATCTGACAGTGACTCT -ACGGAAGGATCTGACAGTAGTCCT -ACGGAAGGATCTGACAGTTAAGCC -ACGGAAGGATCTGACAGTATAGCC -ACGGAAGGATCTGACAGTTAACCG -ACGGAAGGATCTGACAGTATGCCA -ACGGAAGGATCTTAGCTGGGAAAC -ACGGAAGGATCTTAGCTGAACACC -ACGGAAGGATCTTAGCTGATCGAG -ACGGAAGGATCTTAGCTGCTCCTT -ACGGAAGGATCTTAGCTGCCTGTT -ACGGAAGGATCTTAGCTGCGGTTT -ACGGAAGGATCTTAGCTGGTGGTT -ACGGAAGGATCTTAGCTGGCCTTT -ACGGAAGGATCTTAGCTGGGTCTT -ACGGAAGGATCTTAGCTGACGCTT -ACGGAAGGATCTTAGCTGAGCGTT -ACGGAAGGATCTTAGCTGTTCGTC -ACGGAAGGATCTTAGCTGTCTCTC -ACGGAAGGATCTTAGCTGTGGATC -ACGGAAGGATCTTAGCTGCACTTC -ACGGAAGGATCTTAGCTGGTACTC -ACGGAAGGATCTTAGCTGGATGTC -ACGGAAGGATCTTAGCTGACAGTC -ACGGAAGGATCTTAGCTGTTGCTG -ACGGAAGGATCTTAGCTGTCCATG -ACGGAAGGATCTTAGCTGTGTGTG -ACGGAAGGATCTTAGCTGCTAGTG -ACGGAAGGATCTTAGCTGCATCTG -ACGGAAGGATCTTAGCTGGAGTTG -ACGGAAGGATCTTAGCTGAGACTG -ACGGAAGGATCTTAGCTGTCGGTA -ACGGAAGGATCTTAGCTGTGCCTA -ACGGAAGGATCTTAGCTGCCACTA -ACGGAAGGATCTTAGCTGGGAGTA -ACGGAAGGATCTTAGCTGTCGTCT -ACGGAAGGATCTTAGCTGTGCACT -ACGGAAGGATCTTAGCTGCTGACT -ACGGAAGGATCTTAGCTGCAACCT -ACGGAAGGATCTTAGCTGGCTACT -ACGGAAGGATCTTAGCTGGGATCT -ACGGAAGGATCTTAGCTGAAGGCT -ACGGAAGGATCTTAGCTGTCAACC -ACGGAAGGATCTTAGCTGTGTTCC -ACGGAAGGATCTTAGCTGATTCCC -ACGGAAGGATCTTAGCTGTTCTCG -ACGGAAGGATCTTAGCTGTAGACG -ACGGAAGGATCTTAGCTGGTAACG -ACGGAAGGATCTTAGCTGACTTCG -ACGGAAGGATCTTAGCTGTACGCA -ACGGAAGGATCTTAGCTGCTTGCA -ACGGAAGGATCTTAGCTGCGAACA -ACGGAAGGATCTTAGCTGCAGTCA -ACGGAAGGATCTTAGCTGGATCCA -ACGGAAGGATCTTAGCTGACGACA -ACGGAAGGATCTTAGCTGAGCTCA -ACGGAAGGATCTTAGCTGTCACGT -ACGGAAGGATCTTAGCTGCGTAGT -ACGGAAGGATCTTAGCTGGTCAGT -ACGGAAGGATCTTAGCTGGAAGGT -ACGGAAGGATCTTAGCTGAACCGT -ACGGAAGGATCTTAGCTGTTGTGC -ACGGAAGGATCTTAGCTGCTAAGC -ACGGAAGGATCTTAGCTGACTAGC -ACGGAAGGATCTTAGCTGAGATGC -ACGGAAGGATCTTAGCTGTGAAGG -ACGGAAGGATCTTAGCTGCAATGG -ACGGAAGGATCTTAGCTGATGAGG -ACGGAAGGATCTTAGCTGAATGGG -ACGGAAGGATCTTAGCTGTCCTGA -ACGGAAGGATCTTAGCTGTAGCGA -ACGGAAGGATCTTAGCTGCACAGA -ACGGAAGGATCTTAGCTGGCAAGA -ACGGAAGGATCTTAGCTGGGTTGA -ACGGAAGGATCTTAGCTGTCCGAT -ACGGAAGGATCTTAGCTGTGGCAT -ACGGAAGGATCTTAGCTGCGAGAT -ACGGAAGGATCTTAGCTGTACCAC -ACGGAAGGATCTTAGCTGCAGAAC -ACGGAAGGATCTTAGCTGGTCTAC -ACGGAAGGATCTTAGCTGACGTAC -ACGGAAGGATCTTAGCTGAGTGAC -ACGGAAGGATCTTAGCTGCTGTAG -ACGGAAGGATCTTAGCTGCCTAAG -ACGGAAGGATCTTAGCTGGTTCAG -ACGGAAGGATCTTAGCTGGCATAG -ACGGAAGGATCTTAGCTGGACAAG -ACGGAAGGATCTTAGCTGAAGCAG -ACGGAAGGATCTTAGCTGCGTCAA -ACGGAAGGATCTTAGCTGGCTGAA -ACGGAAGGATCTTAGCTGAGTACG -ACGGAAGGATCTTAGCTGATCCGA -ACGGAAGGATCTTAGCTGATGGGA -ACGGAAGGATCTTAGCTGGTGCAA -ACGGAAGGATCTTAGCTGGAGGAA -ACGGAAGGATCTTAGCTGCAGGTA -ACGGAAGGATCTTAGCTGGACTCT -ACGGAAGGATCTTAGCTGAGTCCT -ACGGAAGGATCTTAGCTGTAAGCC -ACGGAAGGATCTTAGCTGATAGCC -ACGGAAGGATCTTAGCTGTAACCG -ACGGAAGGATCTTAGCTGATGCCA -ACGGAAGGATCTAAGCCTGGAAAC -ACGGAAGGATCTAAGCCTAACACC -ACGGAAGGATCTAAGCCTATCGAG -ACGGAAGGATCTAAGCCTCTCCTT -ACGGAAGGATCTAAGCCTCCTGTT -ACGGAAGGATCTAAGCCTCGGTTT -ACGGAAGGATCTAAGCCTGTGGTT -ACGGAAGGATCTAAGCCTGCCTTT -ACGGAAGGATCTAAGCCTGGTCTT -ACGGAAGGATCTAAGCCTACGCTT -ACGGAAGGATCTAAGCCTAGCGTT -ACGGAAGGATCTAAGCCTTTCGTC -ACGGAAGGATCTAAGCCTTCTCTC -ACGGAAGGATCTAAGCCTTGGATC -ACGGAAGGATCTAAGCCTCACTTC -ACGGAAGGATCTAAGCCTGTACTC -ACGGAAGGATCTAAGCCTGATGTC -ACGGAAGGATCTAAGCCTACAGTC -ACGGAAGGATCTAAGCCTTTGCTG -ACGGAAGGATCTAAGCCTTCCATG -ACGGAAGGATCTAAGCCTTGTGTG -ACGGAAGGATCTAAGCCTCTAGTG -ACGGAAGGATCTAAGCCTCATCTG -ACGGAAGGATCTAAGCCTGAGTTG -ACGGAAGGATCTAAGCCTAGACTG -ACGGAAGGATCTAAGCCTTCGGTA -ACGGAAGGATCTAAGCCTTGCCTA -ACGGAAGGATCTAAGCCTCCACTA -ACGGAAGGATCTAAGCCTGGAGTA -ACGGAAGGATCTAAGCCTTCGTCT -ACGGAAGGATCTAAGCCTTGCACT -ACGGAAGGATCTAAGCCTCTGACT -ACGGAAGGATCTAAGCCTCAACCT -ACGGAAGGATCTAAGCCTGCTACT -ACGGAAGGATCTAAGCCTGGATCT -ACGGAAGGATCTAAGCCTAAGGCT -ACGGAAGGATCTAAGCCTTCAACC -ACGGAAGGATCTAAGCCTTGTTCC -ACGGAAGGATCTAAGCCTATTCCC -ACGGAAGGATCTAAGCCTTTCTCG -ACGGAAGGATCTAAGCCTTAGACG -ACGGAAGGATCTAAGCCTGTAACG -ACGGAAGGATCTAAGCCTACTTCG -ACGGAAGGATCTAAGCCTTACGCA -ACGGAAGGATCTAAGCCTCTTGCA -ACGGAAGGATCTAAGCCTCGAACA -ACGGAAGGATCTAAGCCTCAGTCA -ACGGAAGGATCTAAGCCTGATCCA -ACGGAAGGATCTAAGCCTACGACA -ACGGAAGGATCTAAGCCTAGCTCA -ACGGAAGGATCTAAGCCTTCACGT -ACGGAAGGATCTAAGCCTCGTAGT -ACGGAAGGATCTAAGCCTGTCAGT -ACGGAAGGATCTAAGCCTGAAGGT -ACGGAAGGATCTAAGCCTAACCGT -ACGGAAGGATCTAAGCCTTTGTGC -ACGGAAGGATCTAAGCCTCTAAGC -ACGGAAGGATCTAAGCCTACTAGC -ACGGAAGGATCTAAGCCTAGATGC -ACGGAAGGATCTAAGCCTTGAAGG -ACGGAAGGATCTAAGCCTCAATGG -ACGGAAGGATCTAAGCCTATGAGG -ACGGAAGGATCTAAGCCTAATGGG -ACGGAAGGATCTAAGCCTTCCTGA -ACGGAAGGATCTAAGCCTTAGCGA -ACGGAAGGATCTAAGCCTCACAGA -ACGGAAGGATCTAAGCCTGCAAGA -ACGGAAGGATCTAAGCCTGGTTGA -ACGGAAGGATCTAAGCCTTCCGAT -ACGGAAGGATCTAAGCCTTGGCAT -ACGGAAGGATCTAAGCCTCGAGAT -ACGGAAGGATCTAAGCCTTACCAC -ACGGAAGGATCTAAGCCTCAGAAC -ACGGAAGGATCTAAGCCTGTCTAC -ACGGAAGGATCTAAGCCTACGTAC -ACGGAAGGATCTAAGCCTAGTGAC -ACGGAAGGATCTAAGCCTCTGTAG -ACGGAAGGATCTAAGCCTCCTAAG -ACGGAAGGATCTAAGCCTGTTCAG -ACGGAAGGATCTAAGCCTGCATAG -ACGGAAGGATCTAAGCCTGACAAG -ACGGAAGGATCTAAGCCTAAGCAG -ACGGAAGGATCTAAGCCTCGTCAA -ACGGAAGGATCTAAGCCTGCTGAA -ACGGAAGGATCTAAGCCTAGTACG -ACGGAAGGATCTAAGCCTATCCGA -ACGGAAGGATCTAAGCCTATGGGA -ACGGAAGGATCTAAGCCTGTGCAA -ACGGAAGGATCTAAGCCTGAGGAA -ACGGAAGGATCTAAGCCTCAGGTA -ACGGAAGGATCTAAGCCTGACTCT -ACGGAAGGATCTAAGCCTAGTCCT -ACGGAAGGATCTAAGCCTTAAGCC -ACGGAAGGATCTAAGCCTATAGCC -ACGGAAGGATCTAAGCCTTAACCG -ACGGAAGGATCTAAGCCTATGCCA -ACGGAAGGATCTCAGGTTGGAAAC -ACGGAAGGATCTCAGGTTAACACC -ACGGAAGGATCTCAGGTTATCGAG -ACGGAAGGATCTCAGGTTCTCCTT -ACGGAAGGATCTCAGGTTCCTGTT -ACGGAAGGATCTCAGGTTCGGTTT -ACGGAAGGATCTCAGGTTGTGGTT -ACGGAAGGATCTCAGGTTGCCTTT -ACGGAAGGATCTCAGGTTGGTCTT -ACGGAAGGATCTCAGGTTACGCTT -ACGGAAGGATCTCAGGTTAGCGTT -ACGGAAGGATCTCAGGTTTTCGTC -ACGGAAGGATCTCAGGTTTCTCTC -ACGGAAGGATCTCAGGTTTGGATC -ACGGAAGGATCTCAGGTTCACTTC -ACGGAAGGATCTCAGGTTGTACTC -ACGGAAGGATCTCAGGTTGATGTC -ACGGAAGGATCTCAGGTTACAGTC -ACGGAAGGATCTCAGGTTTTGCTG -ACGGAAGGATCTCAGGTTTCCATG -ACGGAAGGATCTCAGGTTTGTGTG -ACGGAAGGATCTCAGGTTCTAGTG -ACGGAAGGATCTCAGGTTCATCTG -ACGGAAGGATCTCAGGTTGAGTTG -ACGGAAGGATCTCAGGTTAGACTG -ACGGAAGGATCTCAGGTTTCGGTA -ACGGAAGGATCTCAGGTTTGCCTA -ACGGAAGGATCTCAGGTTCCACTA -ACGGAAGGATCTCAGGTTGGAGTA -ACGGAAGGATCTCAGGTTTCGTCT -ACGGAAGGATCTCAGGTTTGCACT -ACGGAAGGATCTCAGGTTCTGACT -ACGGAAGGATCTCAGGTTCAACCT -ACGGAAGGATCTCAGGTTGCTACT -ACGGAAGGATCTCAGGTTGGATCT -ACGGAAGGATCTCAGGTTAAGGCT -ACGGAAGGATCTCAGGTTTCAACC -ACGGAAGGATCTCAGGTTTGTTCC -ACGGAAGGATCTCAGGTTATTCCC -ACGGAAGGATCTCAGGTTTTCTCG -ACGGAAGGATCTCAGGTTTAGACG -ACGGAAGGATCTCAGGTTGTAACG -ACGGAAGGATCTCAGGTTACTTCG -ACGGAAGGATCTCAGGTTTACGCA -ACGGAAGGATCTCAGGTTCTTGCA -ACGGAAGGATCTCAGGTTCGAACA -ACGGAAGGATCTCAGGTTCAGTCA -ACGGAAGGATCTCAGGTTGATCCA -ACGGAAGGATCTCAGGTTACGACA -ACGGAAGGATCTCAGGTTAGCTCA -ACGGAAGGATCTCAGGTTTCACGT -ACGGAAGGATCTCAGGTTCGTAGT -ACGGAAGGATCTCAGGTTGTCAGT -ACGGAAGGATCTCAGGTTGAAGGT -ACGGAAGGATCTCAGGTTAACCGT -ACGGAAGGATCTCAGGTTTTGTGC -ACGGAAGGATCTCAGGTTCTAAGC -ACGGAAGGATCTCAGGTTACTAGC -ACGGAAGGATCTCAGGTTAGATGC -ACGGAAGGATCTCAGGTTTGAAGG -ACGGAAGGATCTCAGGTTCAATGG -ACGGAAGGATCTCAGGTTATGAGG -ACGGAAGGATCTCAGGTTAATGGG -ACGGAAGGATCTCAGGTTTCCTGA -ACGGAAGGATCTCAGGTTTAGCGA -ACGGAAGGATCTCAGGTTCACAGA -ACGGAAGGATCTCAGGTTGCAAGA -ACGGAAGGATCTCAGGTTGGTTGA -ACGGAAGGATCTCAGGTTTCCGAT -ACGGAAGGATCTCAGGTTTGGCAT -ACGGAAGGATCTCAGGTTCGAGAT -ACGGAAGGATCTCAGGTTTACCAC -ACGGAAGGATCTCAGGTTCAGAAC -ACGGAAGGATCTCAGGTTGTCTAC -ACGGAAGGATCTCAGGTTACGTAC -ACGGAAGGATCTCAGGTTAGTGAC -ACGGAAGGATCTCAGGTTCTGTAG -ACGGAAGGATCTCAGGTTCCTAAG -ACGGAAGGATCTCAGGTTGTTCAG -ACGGAAGGATCTCAGGTTGCATAG -ACGGAAGGATCTCAGGTTGACAAG -ACGGAAGGATCTCAGGTTAAGCAG -ACGGAAGGATCTCAGGTTCGTCAA -ACGGAAGGATCTCAGGTTGCTGAA -ACGGAAGGATCTCAGGTTAGTACG -ACGGAAGGATCTCAGGTTATCCGA -ACGGAAGGATCTCAGGTTATGGGA -ACGGAAGGATCTCAGGTTGTGCAA -ACGGAAGGATCTCAGGTTGAGGAA -ACGGAAGGATCTCAGGTTCAGGTA -ACGGAAGGATCTCAGGTTGACTCT -ACGGAAGGATCTCAGGTTAGTCCT -ACGGAAGGATCTCAGGTTTAAGCC -ACGGAAGGATCTCAGGTTATAGCC -ACGGAAGGATCTCAGGTTTAACCG -ACGGAAGGATCTCAGGTTATGCCA -ACGGAAGGATCTTAGGCAGGAAAC -ACGGAAGGATCTTAGGCAAACACC -ACGGAAGGATCTTAGGCAATCGAG -ACGGAAGGATCTTAGGCACTCCTT -ACGGAAGGATCTTAGGCACCTGTT -ACGGAAGGATCTTAGGCACGGTTT -ACGGAAGGATCTTAGGCAGTGGTT -ACGGAAGGATCTTAGGCAGCCTTT -ACGGAAGGATCTTAGGCAGGTCTT -ACGGAAGGATCTTAGGCAACGCTT -ACGGAAGGATCTTAGGCAAGCGTT -ACGGAAGGATCTTAGGCATTCGTC -ACGGAAGGATCTTAGGCATCTCTC -ACGGAAGGATCTTAGGCATGGATC -ACGGAAGGATCTTAGGCACACTTC -ACGGAAGGATCTTAGGCAGTACTC -ACGGAAGGATCTTAGGCAGATGTC -ACGGAAGGATCTTAGGCAACAGTC -ACGGAAGGATCTTAGGCATTGCTG -ACGGAAGGATCTTAGGCATCCATG -ACGGAAGGATCTTAGGCATGTGTG -ACGGAAGGATCTTAGGCACTAGTG -ACGGAAGGATCTTAGGCACATCTG -ACGGAAGGATCTTAGGCAGAGTTG -ACGGAAGGATCTTAGGCAAGACTG -ACGGAAGGATCTTAGGCATCGGTA -ACGGAAGGATCTTAGGCATGCCTA -ACGGAAGGATCTTAGGCACCACTA -ACGGAAGGATCTTAGGCAGGAGTA -ACGGAAGGATCTTAGGCATCGTCT -ACGGAAGGATCTTAGGCATGCACT -ACGGAAGGATCTTAGGCACTGACT -ACGGAAGGATCTTAGGCACAACCT -ACGGAAGGATCTTAGGCAGCTACT -ACGGAAGGATCTTAGGCAGGATCT -ACGGAAGGATCTTAGGCAAAGGCT -ACGGAAGGATCTTAGGCATCAACC -ACGGAAGGATCTTAGGCATGTTCC -ACGGAAGGATCTTAGGCAATTCCC -ACGGAAGGATCTTAGGCATTCTCG -ACGGAAGGATCTTAGGCATAGACG -ACGGAAGGATCTTAGGCAGTAACG -ACGGAAGGATCTTAGGCAACTTCG -ACGGAAGGATCTTAGGCATACGCA -ACGGAAGGATCTTAGGCACTTGCA -ACGGAAGGATCTTAGGCACGAACA -ACGGAAGGATCTTAGGCACAGTCA -ACGGAAGGATCTTAGGCAGATCCA -ACGGAAGGATCTTAGGCAACGACA -ACGGAAGGATCTTAGGCAAGCTCA -ACGGAAGGATCTTAGGCATCACGT -ACGGAAGGATCTTAGGCACGTAGT -ACGGAAGGATCTTAGGCAGTCAGT -ACGGAAGGATCTTAGGCAGAAGGT -ACGGAAGGATCTTAGGCAAACCGT -ACGGAAGGATCTTAGGCATTGTGC -ACGGAAGGATCTTAGGCACTAAGC -ACGGAAGGATCTTAGGCAACTAGC -ACGGAAGGATCTTAGGCAAGATGC -ACGGAAGGATCTTAGGCATGAAGG -ACGGAAGGATCTTAGGCACAATGG -ACGGAAGGATCTTAGGCAATGAGG -ACGGAAGGATCTTAGGCAAATGGG -ACGGAAGGATCTTAGGCATCCTGA -ACGGAAGGATCTTAGGCATAGCGA -ACGGAAGGATCTTAGGCACACAGA -ACGGAAGGATCTTAGGCAGCAAGA -ACGGAAGGATCTTAGGCAGGTTGA -ACGGAAGGATCTTAGGCATCCGAT -ACGGAAGGATCTTAGGCATGGCAT -ACGGAAGGATCTTAGGCACGAGAT -ACGGAAGGATCTTAGGCATACCAC -ACGGAAGGATCTTAGGCACAGAAC -ACGGAAGGATCTTAGGCAGTCTAC -ACGGAAGGATCTTAGGCAACGTAC -ACGGAAGGATCTTAGGCAAGTGAC -ACGGAAGGATCTTAGGCACTGTAG -ACGGAAGGATCTTAGGCACCTAAG -ACGGAAGGATCTTAGGCAGTTCAG -ACGGAAGGATCTTAGGCAGCATAG -ACGGAAGGATCTTAGGCAGACAAG -ACGGAAGGATCTTAGGCAAAGCAG -ACGGAAGGATCTTAGGCACGTCAA -ACGGAAGGATCTTAGGCAGCTGAA -ACGGAAGGATCTTAGGCAAGTACG -ACGGAAGGATCTTAGGCAATCCGA -ACGGAAGGATCTTAGGCAATGGGA -ACGGAAGGATCTTAGGCAGTGCAA -ACGGAAGGATCTTAGGCAGAGGAA -ACGGAAGGATCTTAGGCACAGGTA -ACGGAAGGATCTTAGGCAGACTCT -ACGGAAGGATCTTAGGCAAGTCCT -ACGGAAGGATCTTAGGCATAAGCC -ACGGAAGGATCTTAGGCAATAGCC -ACGGAAGGATCTTAGGCATAACCG -ACGGAAGGATCTTAGGCAATGCCA -ACGGAAGGATCTAAGGACGGAAAC -ACGGAAGGATCTAAGGACAACACC -ACGGAAGGATCTAAGGACATCGAG -ACGGAAGGATCTAAGGACCTCCTT -ACGGAAGGATCTAAGGACCCTGTT -ACGGAAGGATCTAAGGACCGGTTT -ACGGAAGGATCTAAGGACGTGGTT -ACGGAAGGATCTAAGGACGCCTTT -ACGGAAGGATCTAAGGACGGTCTT -ACGGAAGGATCTAAGGACACGCTT -ACGGAAGGATCTAAGGACAGCGTT -ACGGAAGGATCTAAGGACTTCGTC -ACGGAAGGATCTAAGGACTCTCTC -ACGGAAGGATCTAAGGACTGGATC -ACGGAAGGATCTAAGGACCACTTC -ACGGAAGGATCTAAGGACGTACTC -ACGGAAGGATCTAAGGACGATGTC -ACGGAAGGATCTAAGGACACAGTC -ACGGAAGGATCTAAGGACTTGCTG -ACGGAAGGATCTAAGGACTCCATG -ACGGAAGGATCTAAGGACTGTGTG -ACGGAAGGATCTAAGGACCTAGTG -ACGGAAGGATCTAAGGACCATCTG -ACGGAAGGATCTAAGGACGAGTTG -ACGGAAGGATCTAAGGACAGACTG -ACGGAAGGATCTAAGGACTCGGTA -ACGGAAGGATCTAAGGACTGCCTA -ACGGAAGGATCTAAGGACCCACTA -ACGGAAGGATCTAAGGACGGAGTA -ACGGAAGGATCTAAGGACTCGTCT -ACGGAAGGATCTAAGGACTGCACT -ACGGAAGGATCTAAGGACCTGACT -ACGGAAGGATCTAAGGACCAACCT -ACGGAAGGATCTAAGGACGCTACT -ACGGAAGGATCTAAGGACGGATCT -ACGGAAGGATCTAAGGACAAGGCT -ACGGAAGGATCTAAGGACTCAACC -ACGGAAGGATCTAAGGACTGTTCC -ACGGAAGGATCTAAGGACATTCCC -ACGGAAGGATCTAAGGACTTCTCG -ACGGAAGGATCTAAGGACTAGACG -ACGGAAGGATCTAAGGACGTAACG -ACGGAAGGATCTAAGGACACTTCG -ACGGAAGGATCTAAGGACTACGCA -ACGGAAGGATCTAAGGACCTTGCA -ACGGAAGGATCTAAGGACCGAACA -ACGGAAGGATCTAAGGACCAGTCA -ACGGAAGGATCTAAGGACGATCCA -ACGGAAGGATCTAAGGACACGACA -ACGGAAGGATCTAAGGACAGCTCA -ACGGAAGGATCTAAGGACTCACGT -ACGGAAGGATCTAAGGACCGTAGT -ACGGAAGGATCTAAGGACGTCAGT -ACGGAAGGATCTAAGGACGAAGGT -ACGGAAGGATCTAAGGACAACCGT -ACGGAAGGATCTAAGGACTTGTGC -ACGGAAGGATCTAAGGACCTAAGC -ACGGAAGGATCTAAGGACACTAGC -ACGGAAGGATCTAAGGACAGATGC -ACGGAAGGATCTAAGGACTGAAGG -ACGGAAGGATCTAAGGACCAATGG -ACGGAAGGATCTAAGGACATGAGG -ACGGAAGGATCTAAGGACAATGGG -ACGGAAGGATCTAAGGACTCCTGA -ACGGAAGGATCTAAGGACTAGCGA -ACGGAAGGATCTAAGGACCACAGA -ACGGAAGGATCTAAGGACGCAAGA -ACGGAAGGATCTAAGGACGGTTGA -ACGGAAGGATCTAAGGACTCCGAT -ACGGAAGGATCTAAGGACTGGCAT -ACGGAAGGATCTAAGGACCGAGAT -ACGGAAGGATCTAAGGACTACCAC -ACGGAAGGATCTAAGGACCAGAAC -ACGGAAGGATCTAAGGACGTCTAC -ACGGAAGGATCTAAGGACACGTAC -ACGGAAGGATCTAAGGACAGTGAC -ACGGAAGGATCTAAGGACCTGTAG -ACGGAAGGATCTAAGGACCCTAAG -ACGGAAGGATCTAAGGACGTTCAG -ACGGAAGGATCTAAGGACGCATAG -ACGGAAGGATCTAAGGACGACAAG -ACGGAAGGATCTAAGGACAAGCAG -ACGGAAGGATCTAAGGACCGTCAA -ACGGAAGGATCTAAGGACGCTGAA -ACGGAAGGATCTAAGGACAGTACG -ACGGAAGGATCTAAGGACATCCGA -ACGGAAGGATCTAAGGACATGGGA -ACGGAAGGATCTAAGGACGTGCAA -ACGGAAGGATCTAAGGACGAGGAA -ACGGAAGGATCTAAGGACCAGGTA -ACGGAAGGATCTAAGGACGACTCT -ACGGAAGGATCTAAGGACAGTCCT -ACGGAAGGATCTAAGGACTAAGCC -ACGGAAGGATCTAAGGACATAGCC -ACGGAAGGATCTAAGGACTAACCG -ACGGAAGGATCTAAGGACATGCCA -ACGGAAGGATCTCAGAAGGGAAAC -ACGGAAGGATCTCAGAAGAACACC -ACGGAAGGATCTCAGAAGATCGAG -ACGGAAGGATCTCAGAAGCTCCTT -ACGGAAGGATCTCAGAAGCCTGTT -ACGGAAGGATCTCAGAAGCGGTTT -ACGGAAGGATCTCAGAAGGTGGTT -ACGGAAGGATCTCAGAAGGCCTTT -ACGGAAGGATCTCAGAAGGGTCTT -ACGGAAGGATCTCAGAAGACGCTT -ACGGAAGGATCTCAGAAGAGCGTT -ACGGAAGGATCTCAGAAGTTCGTC -ACGGAAGGATCTCAGAAGTCTCTC -ACGGAAGGATCTCAGAAGTGGATC -ACGGAAGGATCTCAGAAGCACTTC -ACGGAAGGATCTCAGAAGGTACTC -ACGGAAGGATCTCAGAAGGATGTC -ACGGAAGGATCTCAGAAGACAGTC -ACGGAAGGATCTCAGAAGTTGCTG -ACGGAAGGATCTCAGAAGTCCATG -ACGGAAGGATCTCAGAAGTGTGTG -ACGGAAGGATCTCAGAAGCTAGTG -ACGGAAGGATCTCAGAAGCATCTG -ACGGAAGGATCTCAGAAGGAGTTG -ACGGAAGGATCTCAGAAGAGACTG -ACGGAAGGATCTCAGAAGTCGGTA -ACGGAAGGATCTCAGAAGTGCCTA -ACGGAAGGATCTCAGAAGCCACTA -ACGGAAGGATCTCAGAAGGGAGTA -ACGGAAGGATCTCAGAAGTCGTCT -ACGGAAGGATCTCAGAAGTGCACT -ACGGAAGGATCTCAGAAGCTGACT -ACGGAAGGATCTCAGAAGCAACCT -ACGGAAGGATCTCAGAAGGCTACT -ACGGAAGGATCTCAGAAGGGATCT -ACGGAAGGATCTCAGAAGAAGGCT -ACGGAAGGATCTCAGAAGTCAACC -ACGGAAGGATCTCAGAAGTGTTCC -ACGGAAGGATCTCAGAAGATTCCC -ACGGAAGGATCTCAGAAGTTCTCG -ACGGAAGGATCTCAGAAGTAGACG -ACGGAAGGATCTCAGAAGGTAACG -ACGGAAGGATCTCAGAAGACTTCG -ACGGAAGGATCTCAGAAGTACGCA -ACGGAAGGATCTCAGAAGCTTGCA -ACGGAAGGATCTCAGAAGCGAACA -ACGGAAGGATCTCAGAAGCAGTCA -ACGGAAGGATCTCAGAAGGATCCA -ACGGAAGGATCTCAGAAGACGACA -ACGGAAGGATCTCAGAAGAGCTCA -ACGGAAGGATCTCAGAAGTCACGT -ACGGAAGGATCTCAGAAGCGTAGT -ACGGAAGGATCTCAGAAGGTCAGT -ACGGAAGGATCTCAGAAGGAAGGT -ACGGAAGGATCTCAGAAGAACCGT -ACGGAAGGATCTCAGAAGTTGTGC -ACGGAAGGATCTCAGAAGCTAAGC -ACGGAAGGATCTCAGAAGACTAGC -ACGGAAGGATCTCAGAAGAGATGC -ACGGAAGGATCTCAGAAGTGAAGG -ACGGAAGGATCTCAGAAGCAATGG -ACGGAAGGATCTCAGAAGATGAGG -ACGGAAGGATCTCAGAAGAATGGG -ACGGAAGGATCTCAGAAGTCCTGA -ACGGAAGGATCTCAGAAGTAGCGA -ACGGAAGGATCTCAGAAGCACAGA -ACGGAAGGATCTCAGAAGGCAAGA -ACGGAAGGATCTCAGAAGGGTTGA -ACGGAAGGATCTCAGAAGTCCGAT -ACGGAAGGATCTCAGAAGTGGCAT -ACGGAAGGATCTCAGAAGCGAGAT -ACGGAAGGATCTCAGAAGTACCAC -ACGGAAGGATCTCAGAAGCAGAAC -ACGGAAGGATCTCAGAAGGTCTAC -ACGGAAGGATCTCAGAAGACGTAC -ACGGAAGGATCTCAGAAGAGTGAC -ACGGAAGGATCTCAGAAGCTGTAG -ACGGAAGGATCTCAGAAGCCTAAG -ACGGAAGGATCTCAGAAGGTTCAG -ACGGAAGGATCTCAGAAGGCATAG -ACGGAAGGATCTCAGAAGGACAAG -ACGGAAGGATCTCAGAAGAAGCAG -ACGGAAGGATCTCAGAAGCGTCAA -ACGGAAGGATCTCAGAAGGCTGAA -ACGGAAGGATCTCAGAAGAGTACG -ACGGAAGGATCTCAGAAGATCCGA -ACGGAAGGATCTCAGAAGATGGGA -ACGGAAGGATCTCAGAAGGTGCAA -ACGGAAGGATCTCAGAAGGAGGAA -ACGGAAGGATCTCAGAAGCAGGTA -ACGGAAGGATCTCAGAAGGACTCT -ACGGAAGGATCTCAGAAGAGTCCT -ACGGAAGGATCTCAGAAGTAAGCC -ACGGAAGGATCTCAGAAGATAGCC -ACGGAAGGATCTCAGAAGTAACCG -ACGGAAGGATCTCAGAAGATGCCA -ACGGAAGGATCTCAACGTGGAAAC -ACGGAAGGATCTCAACGTAACACC -ACGGAAGGATCTCAACGTATCGAG -ACGGAAGGATCTCAACGTCTCCTT -ACGGAAGGATCTCAACGTCCTGTT -ACGGAAGGATCTCAACGTCGGTTT -ACGGAAGGATCTCAACGTGTGGTT -ACGGAAGGATCTCAACGTGCCTTT -ACGGAAGGATCTCAACGTGGTCTT -ACGGAAGGATCTCAACGTACGCTT -ACGGAAGGATCTCAACGTAGCGTT -ACGGAAGGATCTCAACGTTTCGTC -ACGGAAGGATCTCAACGTTCTCTC -ACGGAAGGATCTCAACGTTGGATC -ACGGAAGGATCTCAACGTCACTTC -ACGGAAGGATCTCAACGTGTACTC -ACGGAAGGATCTCAACGTGATGTC -ACGGAAGGATCTCAACGTACAGTC -ACGGAAGGATCTCAACGTTTGCTG -ACGGAAGGATCTCAACGTTCCATG -ACGGAAGGATCTCAACGTTGTGTG -ACGGAAGGATCTCAACGTCTAGTG -ACGGAAGGATCTCAACGTCATCTG -ACGGAAGGATCTCAACGTGAGTTG -ACGGAAGGATCTCAACGTAGACTG -ACGGAAGGATCTCAACGTTCGGTA -ACGGAAGGATCTCAACGTTGCCTA -ACGGAAGGATCTCAACGTCCACTA -ACGGAAGGATCTCAACGTGGAGTA -ACGGAAGGATCTCAACGTTCGTCT -ACGGAAGGATCTCAACGTTGCACT -ACGGAAGGATCTCAACGTCTGACT -ACGGAAGGATCTCAACGTCAACCT -ACGGAAGGATCTCAACGTGCTACT -ACGGAAGGATCTCAACGTGGATCT -ACGGAAGGATCTCAACGTAAGGCT -ACGGAAGGATCTCAACGTTCAACC -ACGGAAGGATCTCAACGTTGTTCC -ACGGAAGGATCTCAACGTATTCCC -ACGGAAGGATCTCAACGTTTCTCG -ACGGAAGGATCTCAACGTTAGACG -ACGGAAGGATCTCAACGTGTAACG -ACGGAAGGATCTCAACGTACTTCG -ACGGAAGGATCTCAACGTTACGCA -ACGGAAGGATCTCAACGTCTTGCA -ACGGAAGGATCTCAACGTCGAACA -ACGGAAGGATCTCAACGTCAGTCA -ACGGAAGGATCTCAACGTGATCCA -ACGGAAGGATCTCAACGTACGACA -ACGGAAGGATCTCAACGTAGCTCA -ACGGAAGGATCTCAACGTTCACGT -ACGGAAGGATCTCAACGTCGTAGT -ACGGAAGGATCTCAACGTGTCAGT -ACGGAAGGATCTCAACGTGAAGGT -ACGGAAGGATCTCAACGTAACCGT -ACGGAAGGATCTCAACGTTTGTGC -ACGGAAGGATCTCAACGTCTAAGC -ACGGAAGGATCTCAACGTACTAGC -ACGGAAGGATCTCAACGTAGATGC -ACGGAAGGATCTCAACGTTGAAGG -ACGGAAGGATCTCAACGTCAATGG -ACGGAAGGATCTCAACGTATGAGG -ACGGAAGGATCTCAACGTAATGGG -ACGGAAGGATCTCAACGTTCCTGA -ACGGAAGGATCTCAACGTTAGCGA -ACGGAAGGATCTCAACGTCACAGA -ACGGAAGGATCTCAACGTGCAAGA -ACGGAAGGATCTCAACGTGGTTGA -ACGGAAGGATCTCAACGTTCCGAT -ACGGAAGGATCTCAACGTTGGCAT -ACGGAAGGATCTCAACGTCGAGAT -ACGGAAGGATCTCAACGTTACCAC -ACGGAAGGATCTCAACGTCAGAAC -ACGGAAGGATCTCAACGTGTCTAC -ACGGAAGGATCTCAACGTACGTAC -ACGGAAGGATCTCAACGTAGTGAC -ACGGAAGGATCTCAACGTCTGTAG -ACGGAAGGATCTCAACGTCCTAAG -ACGGAAGGATCTCAACGTGTTCAG -ACGGAAGGATCTCAACGTGCATAG -ACGGAAGGATCTCAACGTGACAAG -ACGGAAGGATCTCAACGTAAGCAG -ACGGAAGGATCTCAACGTCGTCAA -ACGGAAGGATCTCAACGTGCTGAA -ACGGAAGGATCTCAACGTAGTACG -ACGGAAGGATCTCAACGTATCCGA -ACGGAAGGATCTCAACGTATGGGA -ACGGAAGGATCTCAACGTGTGCAA -ACGGAAGGATCTCAACGTGAGGAA -ACGGAAGGATCTCAACGTCAGGTA -ACGGAAGGATCTCAACGTGACTCT -ACGGAAGGATCTCAACGTAGTCCT -ACGGAAGGATCTCAACGTTAAGCC -ACGGAAGGATCTCAACGTATAGCC -ACGGAAGGATCTCAACGTTAACCG -ACGGAAGGATCTCAACGTATGCCA -ACGGAAGGATCTGAAGCTGGAAAC -ACGGAAGGATCTGAAGCTAACACC -ACGGAAGGATCTGAAGCTATCGAG -ACGGAAGGATCTGAAGCTCTCCTT -ACGGAAGGATCTGAAGCTCCTGTT -ACGGAAGGATCTGAAGCTCGGTTT -ACGGAAGGATCTGAAGCTGTGGTT -ACGGAAGGATCTGAAGCTGCCTTT -ACGGAAGGATCTGAAGCTGGTCTT -ACGGAAGGATCTGAAGCTACGCTT -ACGGAAGGATCTGAAGCTAGCGTT -ACGGAAGGATCTGAAGCTTTCGTC -ACGGAAGGATCTGAAGCTTCTCTC -ACGGAAGGATCTGAAGCTTGGATC -ACGGAAGGATCTGAAGCTCACTTC -ACGGAAGGATCTGAAGCTGTACTC -ACGGAAGGATCTGAAGCTGATGTC -ACGGAAGGATCTGAAGCTACAGTC -ACGGAAGGATCTGAAGCTTTGCTG -ACGGAAGGATCTGAAGCTTCCATG -ACGGAAGGATCTGAAGCTTGTGTG -ACGGAAGGATCTGAAGCTCTAGTG -ACGGAAGGATCTGAAGCTCATCTG -ACGGAAGGATCTGAAGCTGAGTTG -ACGGAAGGATCTGAAGCTAGACTG -ACGGAAGGATCTGAAGCTTCGGTA -ACGGAAGGATCTGAAGCTTGCCTA -ACGGAAGGATCTGAAGCTCCACTA -ACGGAAGGATCTGAAGCTGGAGTA -ACGGAAGGATCTGAAGCTTCGTCT -ACGGAAGGATCTGAAGCTTGCACT -ACGGAAGGATCTGAAGCTCTGACT -ACGGAAGGATCTGAAGCTCAACCT -ACGGAAGGATCTGAAGCTGCTACT -ACGGAAGGATCTGAAGCTGGATCT -ACGGAAGGATCTGAAGCTAAGGCT -ACGGAAGGATCTGAAGCTTCAACC -ACGGAAGGATCTGAAGCTTGTTCC -ACGGAAGGATCTGAAGCTATTCCC -ACGGAAGGATCTGAAGCTTTCTCG -ACGGAAGGATCTGAAGCTTAGACG -ACGGAAGGATCTGAAGCTGTAACG -ACGGAAGGATCTGAAGCTACTTCG -ACGGAAGGATCTGAAGCTTACGCA -ACGGAAGGATCTGAAGCTCTTGCA -ACGGAAGGATCTGAAGCTCGAACA -ACGGAAGGATCTGAAGCTCAGTCA -ACGGAAGGATCTGAAGCTGATCCA -ACGGAAGGATCTGAAGCTACGACA -ACGGAAGGATCTGAAGCTAGCTCA -ACGGAAGGATCTGAAGCTTCACGT -ACGGAAGGATCTGAAGCTCGTAGT -ACGGAAGGATCTGAAGCTGTCAGT -ACGGAAGGATCTGAAGCTGAAGGT -ACGGAAGGATCTGAAGCTAACCGT -ACGGAAGGATCTGAAGCTTTGTGC -ACGGAAGGATCTGAAGCTCTAAGC -ACGGAAGGATCTGAAGCTACTAGC -ACGGAAGGATCTGAAGCTAGATGC -ACGGAAGGATCTGAAGCTTGAAGG -ACGGAAGGATCTGAAGCTCAATGG -ACGGAAGGATCTGAAGCTATGAGG -ACGGAAGGATCTGAAGCTAATGGG -ACGGAAGGATCTGAAGCTTCCTGA -ACGGAAGGATCTGAAGCTTAGCGA -ACGGAAGGATCTGAAGCTCACAGA -ACGGAAGGATCTGAAGCTGCAAGA -ACGGAAGGATCTGAAGCTGGTTGA -ACGGAAGGATCTGAAGCTTCCGAT -ACGGAAGGATCTGAAGCTTGGCAT -ACGGAAGGATCTGAAGCTCGAGAT -ACGGAAGGATCTGAAGCTTACCAC -ACGGAAGGATCTGAAGCTCAGAAC -ACGGAAGGATCTGAAGCTGTCTAC -ACGGAAGGATCTGAAGCTACGTAC -ACGGAAGGATCTGAAGCTAGTGAC -ACGGAAGGATCTGAAGCTCTGTAG -ACGGAAGGATCTGAAGCTCCTAAG -ACGGAAGGATCTGAAGCTGTTCAG -ACGGAAGGATCTGAAGCTGCATAG -ACGGAAGGATCTGAAGCTGACAAG -ACGGAAGGATCTGAAGCTAAGCAG -ACGGAAGGATCTGAAGCTCGTCAA -ACGGAAGGATCTGAAGCTGCTGAA -ACGGAAGGATCTGAAGCTAGTACG -ACGGAAGGATCTGAAGCTATCCGA -ACGGAAGGATCTGAAGCTATGGGA -ACGGAAGGATCTGAAGCTGTGCAA -ACGGAAGGATCTGAAGCTGAGGAA -ACGGAAGGATCTGAAGCTCAGGTA -ACGGAAGGATCTGAAGCTGACTCT -ACGGAAGGATCTGAAGCTAGTCCT -ACGGAAGGATCTGAAGCTTAAGCC -ACGGAAGGATCTGAAGCTATAGCC -ACGGAAGGATCTGAAGCTTAACCG -ACGGAAGGATCTGAAGCTATGCCA -ACGGAAGGATCTACGAGTGGAAAC -ACGGAAGGATCTACGAGTAACACC -ACGGAAGGATCTACGAGTATCGAG -ACGGAAGGATCTACGAGTCTCCTT -ACGGAAGGATCTACGAGTCCTGTT -ACGGAAGGATCTACGAGTCGGTTT -ACGGAAGGATCTACGAGTGTGGTT -ACGGAAGGATCTACGAGTGCCTTT -ACGGAAGGATCTACGAGTGGTCTT -ACGGAAGGATCTACGAGTACGCTT -ACGGAAGGATCTACGAGTAGCGTT -ACGGAAGGATCTACGAGTTTCGTC -ACGGAAGGATCTACGAGTTCTCTC -ACGGAAGGATCTACGAGTTGGATC -ACGGAAGGATCTACGAGTCACTTC -ACGGAAGGATCTACGAGTGTACTC -ACGGAAGGATCTACGAGTGATGTC -ACGGAAGGATCTACGAGTACAGTC -ACGGAAGGATCTACGAGTTTGCTG -ACGGAAGGATCTACGAGTTCCATG -ACGGAAGGATCTACGAGTTGTGTG -ACGGAAGGATCTACGAGTCTAGTG -ACGGAAGGATCTACGAGTCATCTG -ACGGAAGGATCTACGAGTGAGTTG -ACGGAAGGATCTACGAGTAGACTG -ACGGAAGGATCTACGAGTTCGGTA -ACGGAAGGATCTACGAGTTGCCTA -ACGGAAGGATCTACGAGTCCACTA -ACGGAAGGATCTACGAGTGGAGTA -ACGGAAGGATCTACGAGTTCGTCT -ACGGAAGGATCTACGAGTTGCACT -ACGGAAGGATCTACGAGTCTGACT -ACGGAAGGATCTACGAGTCAACCT -ACGGAAGGATCTACGAGTGCTACT -ACGGAAGGATCTACGAGTGGATCT -ACGGAAGGATCTACGAGTAAGGCT -ACGGAAGGATCTACGAGTTCAACC -ACGGAAGGATCTACGAGTTGTTCC -ACGGAAGGATCTACGAGTATTCCC -ACGGAAGGATCTACGAGTTTCTCG -ACGGAAGGATCTACGAGTTAGACG -ACGGAAGGATCTACGAGTGTAACG -ACGGAAGGATCTACGAGTACTTCG -ACGGAAGGATCTACGAGTTACGCA -ACGGAAGGATCTACGAGTCTTGCA -ACGGAAGGATCTACGAGTCGAACA -ACGGAAGGATCTACGAGTCAGTCA -ACGGAAGGATCTACGAGTGATCCA -ACGGAAGGATCTACGAGTACGACA -ACGGAAGGATCTACGAGTAGCTCA -ACGGAAGGATCTACGAGTTCACGT -ACGGAAGGATCTACGAGTCGTAGT -ACGGAAGGATCTACGAGTGTCAGT -ACGGAAGGATCTACGAGTGAAGGT -ACGGAAGGATCTACGAGTAACCGT -ACGGAAGGATCTACGAGTTTGTGC -ACGGAAGGATCTACGAGTCTAAGC -ACGGAAGGATCTACGAGTACTAGC -ACGGAAGGATCTACGAGTAGATGC -ACGGAAGGATCTACGAGTTGAAGG -ACGGAAGGATCTACGAGTCAATGG -ACGGAAGGATCTACGAGTATGAGG -ACGGAAGGATCTACGAGTAATGGG -ACGGAAGGATCTACGAGTTCCTGA -ACGGAAGGATCTACGAGTTAGCGA -ACGGAAGGATCTACGAGTCACAGA -ACGGAAGGATCTACGAGTGCAAGA -ACGGAAGGATCTACGAGTGGTTGA -ACGGAAGGATCTACGAGTTCCGAT -ACGGAAGGATCTACGAGTTGGCAT -ACGGAAGGATCTACGAGTCGAGAT -ACGGAAGGATCTACGAGTTACCAC -ACGGAAGGATCTACGAGTCAGAAC -ACGGAAGGATCTACGAGTGTCTAC -ACGGAAGGATCTACGAGTACGTAC -ACGGAAGGATCTACGAGTAGTGAC -ACGGAAGGATCTACGAGTCTGTAG -ACGGAAGGATCTACGAGTCCTAAG -ACGGAAGGATCTACGAGTGTTCAG -ACGGAAGGATCTACGAGTGCATAG -ACGGAAGGATCTACGAGTGACAAG -ACGGAAGGATCTACGAGTAAGCAG -ACGGAAGGATCTACGAGTCGTCAA -ACGGAAGGATCTACGAGTGCTGAA -ACGGAAGGATCTACGAGTAGTACG -ACGGAAGGATCTACGAGTATCCGA -ACGGAAGGATCTACGAGTATGGGA -ACGGAAGGATCTACGAGTGTGCAA -ACGGAAGGATCTACGAGTGAGGAA -ACGGAAGGATCTACGAGTCAGGTA -ACGGAAGGATCTACGAGTGACTCT -ACGGAAGGATCTACGAGTAGTCCT -ACGGAAGGATCTACGAGTTAAGCC -ACGGAAGGATCTACGAGTATAGCC -ACGGAAGGATCTACGAGTTAACCG -ACGGAAGGATCTACGAGTATGCCA -ACGGAAGGATCTCGAATCGGAAAC -ACGGAAGGATCTCGAATCAACACC -ACGGAAGGATCTCGAATCATCGAG -ACGGAAGGATCTCGAATCCTCCTT -ACGGAAGGATCTCGAATCCCTGTT -ACGGAAGGATCTCGAATCCGGTTT -ACGGAAGGATCTCGAATCGTGGTT -ACGGAAGGATCTCGAATCGCCTTT -ACGGAAGGATCTCGAATCGGTCTT -ACGGAAGGATCTCGAATCACGCTT -ACGGAAGGATCTCGAATCAGCGTT -ACGGAAGGATCTCGAATCTTCGTC -ACGGAAGGATCTCGAATCTCTCTC -ACGGAAGGATCTCGAATCTGGATC -ACGGAAGGATCTCGAATCCACTTC -ACGGAAGGATCTCGAATCGTACTC -ACGGAAGGATCTCGAATCGATGTC -ACGGAAGGATCTCGAATCACAGTC -ACGGAAGGATCTCGAATCTTGCTG -ACGGAAGGATCTCGAATCTCCATG -ACGGAAGGATCTCGAATCTGTGTG -ACGGAAGGATCTCGAATCCTAGTG -ACGGAAGGATCTCGAATCCATCTG -ACGGAAGGATCTCGAATCGAGTTG -ACGGAAGGATCTCGAATCAGACTG -ACGGAAGGATCTCGAATCTCGGTA -ACGGAAGGATCTCGAATCTGCCTA -ACGGAAGGATCTCGAATCCCACTA -ACGGAAGGATCTCGAATCGGAGTA -ACGGAAGGATCTCGAATCTCGTCT -ACGGAAGGATCTCGAATCTGCACT -ACGGAAGGATCTCGAATCCTGACT -ACGGAAGGATCTCGAATCCAACCT -ACGGAAGGATCTCGAATCGCTACT -ACGGAAGGATCTCGAATCGGATCT -ACGGAAGGATCTCGAATCAAGGCT -ACGGAAGGATCTCGAATCTCAACC -ACGGAAGGATCTCGAATCTGTTCC -ACGGAAGGATCTCGAATCATTCCC -ACGGAAGGATCTCGAATCTTCTCG -ACGGAAGGATCTCGAATCTAGACG -ACGGAAGGATCTCGAATCGTAACG -ACGGAAGGATCTCGAATCACTTCG -ACGGAAGGATCTCGAATCTACGCA -ACGGAAGGATCTCGAATCCTTGCA -ACGGAAGGATCTCGAATCCGAACA -ACGGAAGGATCTCGAATCCAGTCA -ACGGAAGGATCTCGAATCGATCCA -ACGGAAGGATCTCGAATCACGACA -ACGGAAGGATCTCGAATCAGCTCA -ACGGAAGGATCTCGAATCTCACGT -ACGGAAGGATCTCGAATCCGTAGT -ACGGAAGGATCTCGAATCGTCAGT -ACGGAAGGATCTCGAATCGAAGGT -ACGGAAGGATCTCGAATCAACCGT -ACGGAAGGATCTCGAATCTTGTGC -ACGGAAGGATCTCGAATCCTAAGC -ACGGAAGGATCTCGAATCACTAGC -ACGGAAGGATCTCGAATCAGATGC -ACGGAAGGATCTCGAATCTGAAGG -ACGGAAGGATCTCGAATCCAATGG -ACGGAAGGATCTCGAATCATGAGG -ACGGAAGGATCTCGAATCAATGGG -ACGGAAGGATCTCGAATCTCCTGA -ACGGAAGGATCTCGAATCTAGCGA -ACGGAAGGATCTCGAATCCACAGA -ACGGAAGGATCTCGAATCGCAAGA -ACGGAAGGATCTCGAATCGGTTGA -ACGGAAGGATCTCGAATCTCCGAT -ACGGAAGGATCTCGAATCTGGCAT -ACGGAAGGATCTCGAATCCGAGAT -ACGGAAGGATCTCGAATCTACCAC -ACGGAAGGATCTCGAATCCAGAAC -ACGGAAGGATCTCGAATCGTCTAC -ACGGAAGGATCTCGAATCACGTAC -ACGGAAGGATCTCGAATCAGTGAC -ACGGAAGGATCTCGAATCCTGTAG -ACGGAAGGATCTCGAATCCCTAAG -ACGGAAGGATCTCGAATCGTTCAG -ACGGAAGGATCTCGAATCGCATAG -ACGGAAGGATCTCGAATCGACAAG -ACGGAAGGATCTCGAATCAAGCAG -ACGGAAGGATCTCGAATCCGTCAA -ACGGAAGGATCTCGAATCGCTGAA -ACGGAAGGATCTCGAATCAGTACG -ACGGAAGGATCTCGAATCATCCGA -ACGGAAGGATCTCGAATCATGGGA -ACGGAAGGATCTCGAATCGTGCAA -ACGGAAGGATCTCGAATCGAGGAA -ACGGAAGGATCTCGAATCCAGGTA -ACGGAAGGATCTCGAATCGACTCT -ACGGAAGGATCTCGAATCAGTCCT -ACGGAAGGATCTCGAATCTAAGCC -ACGGAAGGATCTCGAATCATAGCC -ACGGAAGGATCTCGAATCTAACCG -ACGGAAGGATCTCGAATCATGCCA -ACGGAAGGATCTGGAATGGGAAAC -ACGGAAGGATCTGGAATGAACACC -ACGGAAGGATCTGGAATGATCGAG -ACGGAAGGATCTGGAATGCTCCTT -ACGGAAGGATCTGGAATGCCTGTT -ACGGAAGGATCTGGAATGCGGTTT -ACGGAAGGATCTGGAATGGTGGTT -ACGGAAGGATCTGGAATGGCCTTT -ACGGAAGGATCTGGAATGGGTCTT -ACGGAAGGATCTGGAATGACGCTT -ACGGAAGGATCTGGAATGAGCGTT -ACGGAAGGATCTGGAATGTTCGTC -ACGGAAGGATCTGGAATGTCTCTC -ACGGAAGGATCTGGAATGTGGATC -ACGGAAGGATCTGGAATGCACTTC -ACGGAAGGATCTGGAATGGTACTC -ACGGAAGGATCTGGAATGGATGTC -ACGGAAGGATCTGGAATGACAGTC -ACGGAAGGATCTGGAATGTTGCTG -ACGGAAGGATCTGGAATGTCCATG -ACGGAAGGATCTGGAATGTGTGTG -ACGGAAGGATCTGGAATGCTAGTG -ACGGAAGGATCTGGAATGCATCTG -ACGGAAGGATCTGGAATGGAGTTG -ACGGAAGGATCTGGAATGAGACTG -ACGGAAGGATCTGGAATGTCGGTA -ACGGAAGGATCTGGAATGTGCCTA -ACGGAAGGATCTGGAATGCCACTA -ACGGAAGGATCTGGAATGGGAGTA -ACGGAAGGATCTGGAATGTCGTCT -ACGGAAGGATCTGGAATGTGCACT -ACGGAAGGATCTGGAATGCTGACT -ACGGAAGGATCTGGAATGCAACCT -ACGGAAGGATCTGGAATGGCTACT -ACGGAAGGATCTGGAATGGGATCT -ACGGAAGGATCTGGAATGAAGGCT -ACGGAAGGATCTGGAATGTCAACC -ACGGAAGGATCTGGAATGTGTTCC -ACGGAAGGATCTGGAATGATTCCC -ACGGAAGGATCTGGAATGTTCTCG -ACGGAAGGATCTGGAATGTAGACG -ACGGAAGGATCTGGAATGGTAACG -ACGGAAGGATCTGGAATGACTTCG -ACGGAAGGATCTGGAATGTACGCA -ACGGAAGGATCTGGAATGCTTGCA -ACGGAAGGATCTGGAATGCGAACA -ACGGAAGGATCTGGAATGCAGTCA -ACGGAAGGATCTGGAATGGATCCA -ACGGAAGGATCTGGAATGACGACA -ACGGAAGGATCTGGAATGAGCTCA -ACGGAAGGATCTGGAATGTCACGT -ACGGAAGGATCTGGAATGCGTAGT -ACGGAAGGATCTGGAATGGTCAGT -ACGGAAGGATCTGGAATGGAAGGT -ACGGAAGGATCTGGAATGAACCGT -ACGGAAGGATCTGGAATGTTGTGC -ACGGAAGGATCTGGAATGCTAAGC -ACGGAAGGATCTGGAATGACTAGC -ACGGAAGGATCTGGAATGAGATGC -ACGGAAGGATCTGGAATGTGAAGG -ACGGAAGGATCTGGAATGCAATGG -ACGGAAGGATCTGGAATGATGAGG -ACGGAAGGATCTGGAATGAATGGG -ACGGAAGGATCTGGAATGTCCTGA -ACGGAAGGATCTGGAATGTAGCGA -ACGGAAGGATCTGGAATGCACAGA -ACGGAAGGATCTGGAATGGCAAGA -ACGGAAGGATCTGGAATGGGTTGA -ACGGAAGGATCTGGAATGTCCGAT -ACGGAAGGATCTGGAATGTGGCAT -ACGGAAGGATCTGGAATGCGAGAT -ACGGAAGGATCTGGAATGTACCAC -ACGGAAGGATCTGGAATGCAGAAC -ACGGAAGGATCTGGAATGGTCTAC -ACGGAAGGATCTGGAATGACGTAC -ACGGAAGGATCTGGAATGAGTGAC -ACGGAAGGATCTGGAATGCTGTAG -ACGGAAGGATCTGGAATGCCTAAG -ACGGAAGGATCTGGAATGGTTCAG -ACGGAAGGATCTGGAATGGCATAG -ACGGAAGGATCTGGAATGGACAAG -ACGGAAGGATCTGGAATGAAGCAG -ACGGAAGGATCTGGAATGCGTCAA -ACGGAAGGATCTGGAATGGCTGAA -ACGGAAGGATCTGGAATGAGTACG -ACGGAAGGATCTGGAATGATCCGA -ACGGAAGGATCTGGAATGATGGGA -ACGGAAGGATCTGGAATGGTGCAA -ACGGAAGGATCTGGAATGGAGGAA -ACGGAAGGATCTGGAATGCAGGTA -ACGGAAGGATCTGGAATGGACTCT -ACGGAAGGATCTGGAATGAGTCCT -ACGGAAGGATCTGGAATGTAAGCC -ACGGAAGGATCTGGAATGATAGCC -ACGGAAGGATCTGGAATGTAACCG -ACGGAAGGATCTGGAATGATGCCA -ACGGAAGGATCTCAAGTGGGAAAC -ACGGAAGGATCTCAAGTGAACACC -ACGGAAGGATCTCAAGTGATCGAG -ACGGAAGGATCTCAAGTGCTCCTT -ACGGAAGGATCTCAAGTGCCTGTT -ACGGAAGGATCTCAAGTGCGGTTT -ACGGAAGGATCTCAAGTGGTGGTT -ACGGAAGGATCTCAAGTGGCCTTT -ACGGAAGGATCTCAAGTGGGTCTT -ACGGAAGGATCTCAAGTGACGCTT -ACGGAAGGATCTCAAGTGAGCGTT -ACGGAAGGATCTCAAGTGTTCGTC -ACGGAAGGATCTCAAGTGTCTCTC -ACGGAAGGATCTCAAGTGTGGATC -ACGGAAGGATCTCAAGTGCACTTC -ACGGAAGGATCTCAAGTGGTACTC -ACGGAAGGATCTCAAGTGGATGTC -ACGGAAGGATCTCAAGTGACAGTC -ACGGAAGGATCTCAAGTGTTGCTG -ACGGAAGGATCTCAAGTGTCCATG -ACGGAAGGATCTCAAGTGTGTGTG -ACGGAAGGATCTCAAGTGCTAGTG -ACGGAAGGATCTCAAGTGCATCTG -ACGGAAGGATCTCAAGTGGAGTTG -ACGGAAGGATCTCAAGTGAGACTG -ACGGAAGGATCTCAAGTGTCGGTA -ACGGAAGGATCTCAAGTGTGCCTA -ACGGAAGGATCTCAAGTGCCACTA -ACGGAAGGATCTCAAGTGGGAGTA -ACGGAAGGATCTCAAGTGTCGTCT -ACGGAAGGATCTCAAGTGTGCACT -ACGGAAGGATCTCAAGTGCTGACT -ACGGAAGGATCTCAAGTGCAACCT -ACGGAAGGATCTCAAGTGGCTACT -ACGGAAGGATCTCAAGTGGGATCT -ACGGAAGGATCTCAAGTGAAGGCT -ACGGAAGGATCTCAAGTGTCAACC -ACGGAAGGATCTCAAGTGTGTTCC -ACGGAAGGATCTCAAGTGATTCCC -ACGGAAGGATCTCAAGTGTTCTCG -ACGGAAGGATCTCAAGTGTAGACG -ACGGAAGGATCTCAAGTGGTAACG -ACGGAAGGATCTCAAGTGACTTCG -ACGGAAGGATCTCAAGTGTACGCA -ACGGAAGGATCTCAAGTGCTTGCA -ACGGAAGGATCTCAAGTGCGAACA -ACGGAAGGATCTCAAGTGCAGTCA -ACGGAAGGATCTCAAGTGGATCCA -ACGGAAGGATCTCAAGTGACGACA -ACGGAAGGATCTCAAGTGAGCTCA -ACGGAAGGATCTCAAGTGTCACGT -ACGGAAGGATCTCAAGTGCGTAGT -ACGGAAGGATCTCAAGTGGTCAGT -ACGGAAGGATCTCAAGTGGAAGGT -ACGGAAGGATCTCAAGTGAACCGT -ACGGAAGGATCTCAAGTGTTGTGC -ACGGAAGGATCTCAAGTGCTAAGC -ACGGAAGGATCTCAAGTGACTAGC -ACGGAAGGATCTCAAGTGAGATGC -ACGGAAGGATCTCAAGTGTGAAGG -ACGGAAGGATCTCAAGTGCAATGG -ACGGAAGGATCTCAAGTGATGAGG -ACGGAAGGATCTCAAGTGAATGGG -ACGGAAGGATCTCAAGTGTCCTGA -ACGGAAGGATCTCAAGTGTAGCGA -ACGGAAGGATCTCAAGTGCACAGA -ACGGAAGGATCTCAAGTGGCAAGA -ACGGAAGGATCTCAAGTGGGTTGA -ACGGAAGGATCTCAAGTGTCCGAT -ACGGAAGGATCTCAAGTGTGGCAT -ACGGAAGGATCTCAAGTGCGAGAT -ACGGAAGGATCTCAAGTGTACCAC -ACGGAAGGATCTCAAGTGCAGAAC -ACGGAAGGATCTCAAGTGGTCTAC -ACGGAAGGATCTCAAGTGACGTAC -ACGGAAGGATCTCAAGTGAGTGAC -ACGGAAGGATCTCAAGTGCTGTAG -ACGGAAGGATCTCAAGTGCCTAAG -ACGGAAGGATCTCAAGTGGTTCAG -ACGGAAGGATCTCAAGTGGCATAG -ACGGAAGGATCTCAAGTGGACAAG -ACGGAAGGATCTCAAGTGAAGCAG -ACGGAAGGATCTCAAGTGCGTCAA -ACGGAAGGATCTCAAGTGGCTGAA -ACGGAAGGATCTCAAGTGAGTACG -ACGGAAGGATCTCAAGTGATCCGA -ACGGAAGGATCTCAAGTGATGGGA -ACGGAAGGATCTCAAGTGGTGCAA -ACGGAAGGATCTCAAGTGGAGGAA -ACGGAAGGATCTCAAGTGCAGGTA -ACGGAAGGATCTCAAGTGGACTCT -ACGGAAGGATCTCAAGTGAGTCCT -ACGGAAGGATCTCAAGTGTAAGCC -ACGGAAGGATCTCAAGTGATAGCC -ACGGAAGGATCTCAAGTGTAACCG -ACGGAAGGATCTCAAGTGATGCCA -ACGGAAGGATCTGAAGAGGGAAAC -ACGGAAGGATCTGAAGAGAACACC -ACGGAAGGATCTGAAGAGATCGAG -ACGGAAGGATCTGAAGAGCTCCTT -ACGGAAGGATCTGAAGAGCCTGTT -ACGGAAGGATCTGAAGAGCGGTTT -ACGGAAGGATCTGAAGAGGTGGTT -ACGGAAGGATCTGAAGAGGCCTTT -ACGGAAGGATCTGAAGAGGGTCTT -ACGGAAGGATCTGAAGAGACGCTT -ACGGAAGGATCTGAAGAGAGCGTT -ACGGAAGGATCTGAAGAGTTCGTC -ACGGAAGGATCTGAAGAGTCTCTC -ACGGAAGGATCTGAAGAGTGGATC -ACGGAAGGATCTGAAGAGCACTTC -ACGGAAGGATCTGAAGAGGTACTC -ACGGAAGGATCTGAAGAGGATGTC -ACGGAAGGATCTGAAGAGACAGTC -ACGGAAGGATCTGAAGAGTTGCTG -ACGGAAGGATCTGAAGAGTCCATG -ACGGAAGGATCTGAAGAGTGTGTG -ACGGAAGGATCTGAAGAGCTAGTG -ACGGAAGGATCTGAAGAGCATCTG -ACGGAAGGATCTGAAGAGGAGTTG -ACGGAAGGATCTGAAGAGAGACTG -ACGGAAGGATCTGAAGAGTCGGTA -ACGGAAGGATCTGAAGAGTGCCTA -ACGGAAGGATCTGAAGAGCCACTA -ACGGAAGGATCTGAAGAGGGAGTA -ACGGAAGGATCTGAAGAGTCGTCT -ACGGAAGGATCTGAAGAGTGCACT -ACGGAAGGATCTGAAGAGCTGACT -ACGGAAGGATCTGAAGAGCAACCT -ACGGAAGGATCTGAAGAGGCTACT -ACGGAAGGATCTGAAGAGGGATCT -ACGGAAGGATCTGAAGAGAAGGCT -ACGGAAGGATCTGAAGAGTCAACC -ACGGAAGGATCTGAAGAGTGTTCC -ACGGAAGGATCTGAAGAGATTCCC -ACGGAAGGATCTGAAGAGTTCTCG -ACGGAAGGATCTGAAGAGTAGACG -ACGGAAGGATCTGAAGAGGTAACG -ACGGAAGGATCTGAAGAGACTTCG -ACGGAAGGATCTGAAGAGTACGCA -ACGGAAGGATCTGAAGAGCTTGCA -ACGGAAGGATCTGAAGAGCGAACA -ACGGAAGGATCTGAAGAGCAGTCA -ACGGAAGGATCTGAAGAGGATCCA -ACGGAAGGATCTGAAGAGACGACA -ACGGAAGGATCTGAAGAGAGCTCA -ACGGAAGGATCTGAAGAGTCACGT -ACGGAAGGATCTGAAGAGCGTAGT -ACGGAAGGATCTGAAGAGGTCAGT -ACGGAAGGATCTGAAGAGGAAGGT -ACGGAAGGATCTGAAGAGAACCGT -ACGGAAGGATCTGAAGAGTTGTGC -ACGGAAGGATCTGAAGAGCTAAGC -ACGGAAGGATCTGAAGAGACTAGC -ACGGAAGGATCTGAAGAGAGATGC -ACGGAAGGATCTGAAGAGTGAAGG -ACGGAAGGATCTGAAGAGCAATGG -ACGGAAGGATCTGAAGAGATGAGG -ACGGAAGGATCTGAAGAGAATGGG -ACGGAAGGATCTGAAGAGTCCTGA -ACGGAAGGATCTGAAGAGTAGCGA -ACGGAAGGATCTGAAGAGCACAGA -ACGGAAGGATCTGAAGAGGCAAGA -ACGGAAGGATCTGAAGAGGGTTGA -ACGGAAGGATCTGAAGAGTCCGAT -ACGGAAGGATCTGAAGAGTGGCAT -ACGGAAGGATCTGAAGAGCGAGAT -ACGGAAGGATCTGAAGAGTACCAC -ACGGAAGGATCTGAAGAGCAGAAC -ACGGAAGGATCTGAAGAGGTCTAC -ACGGAAGGATCTGAAGAGACGTAC -ACGGAAGGATCTGAAGAGAGTGAC -ACGGAAGGATCTGAAGAGCTGTAG -ACGGAAGGATCTGAAGAGCCTAAG -ACGGAAGGATCTGAAGAGGTTCAG -ACGGAAGGATCTGAAGAGGCATAG -ACGGAAGGATCTGAAGAGGACAAG -ACGGAAGGATCTGAAGAGAAGCAG -ACGGAAGGATCTGAAGAGCGTCAA -ACGGAAGGATCTGAAGAGGCTGAA -ACGGAAGGATCTGAAGAGAGTACG -ACGGAAGGATCTGAAGAGATCCGA -ACGGAAGGATCTGAAGAGATGGGA -ACGGAAGGATCTGAAGAGGTGCAA -ACGGAAGGATCTGAAGAGGAGGAA -ACGGAAGGATCTGAAGAGCAGGTA -ACGGAAGGATCTGAAGAGGACTCT -ACGGAAGGATCTGAAGAGAGTCCT -ACGGAAGGATCTGAAGAGTAAGCC -ACGGAAGGATCTGAAGAGATAGCC -ACGGAAGGATCTGAAGAGTAACCG -ACGGAAGGATCTGAAGAGATGCCA -ACGGAAGGATCTGTACAGGGAAAC -ACGGAAGGATCTGTACAGAACACC -ACGGAAGGATCTGTACAGATCGAG -ACGGAAGGATCTGTACAGCTCCTT -ACGGAAGGATCTGTACAGCCTGTT -ACGGAAGGATCTGTACAGCGGTTT -ACGGAAGGATCTGTACAGGTGGTT -ACGGAAGGATCTGTACAGGCCTTT -ACGGAAGGATCTGTACAGGGTCTT -ACGGAAGGATCTGTACAGACGCTT -ACGGAAGGATCTGTACAGAGCGTT -ACGGAAGGATCTGTACAGTTCGTC -ACGGAAGGATCTGTACAGTCTCTC -ACGGAAGGATCTGTACAGTGGATC -ACGGAAGGATCTGTACAGCACTTC -ACGGAAGGATCTGTACAGGTACTC -ACGGAAGGATCTGTACAGGATGTC -ACGGAAGGATCTGTACAGACAGTC -ACGGAAGGATCTGTACAGTTGCTG -ACGGAAGGATCTGTACAGTCCATG -ACGGAAGGATCTGTACAGTGTGTG -ACGGAAGGATCTGTACAGCTAGTG -ACGGAAGGATCTGTACAGCATCTG -ACGGAAGGATCTGTACAGGAGTTG -ACGGAAGGATCTGTACAGAGACTG -ACGGAAGGATCTGTACAGTCGGTA -ACGGAAGGATCTGTACAGTGCCTA -ACGGAAGGATCTGTACAGCCACTA -ACGGAAGGATCTGTACAGGGAGTA -ACGGAAGGATCTGTACAGTCGTCT -ACGGAAGGATCTGTACAGTGCACT -ACGGAAGGATCTGTACAGCTGACT -ACGGAAGGATCTGTACAGCAACCT -ACGGAAGGATCTGTACAGGCTACT -ACGGAAGGATCTGTACAGGGATCT -ACGGAAGGATCTGTACAGAAGGCT -ACGGAAGGATCTGTACAGTCAACC -ACGGAAGGATCTGTACAGTGTTCC -ACGGAAGGATCTGTACAGATTCCC -ACGGAAGGATCTGTACAGTTCTCG -ACGGAAGGATCTGTACAGTAGACG -ACGGAAGGATCTGTACAGGTAACG -ACGGAAGGATCTGTACAGACTTCG -ACGGAAGGATCTGTACAGTACGCA -ACGGAAGGATCTGTACAGCTTGCA -ACGGAAGGATCTGTACAGCGAACA -ACGGAAGGATCTGTACAGCAGTCA -ACGGAAGGATCTGTACAGGATCCA -ACGGAAGGATCTGTACAGACGACA -ACGGAAGGATCTGTACAGAGCTCA -ACGGAAGGATCTGTACAGTCACGT -ACGGAAGGATCTGTACAGCGTAGT -ACGGAAGGATCTGTACAGGTCAGT -ACGGAAGGATCTGTACAGGAAGGT -ACGGAAGGATCTGTACAGAACCGT -ACGGAAGGATCTGTACAGTTGTGC -ACGGAAGGATCTGTACAGCTAAGC -ACGGAAGGATCTGTACAGACTAGC -ACGGAAGGATCTGTACAGAGATGC -ACGGAAGGATCTGTACAGTGAAGG -ACGGAAGGATCTGTACAGCAATGG -ACGGAAGGATCTGTACAGATGAGG -ACGGAAGGATCTGTACAGAATGGG -ACGGAAGGATCTGTACAGTCCTGA -ACGGAAGGATCTGTACAGTAGCGA -ACGGAAGGATCTGTACAGCACAGA -ACGGAAGGATCTGTACAGGCAAGA -ACGGAAGGATCTGTACAGGGTTGA -ACGGAAGGATCTGTACAGTCCGAT -ACGGAAGGATCTGTACAGTGGCAT -ACGGAAGGATCTGTACAGCGAGAT -ACGGAAGGATCTGTACAGTACCAC -ACGGAAGGATCTGTACAGCAGAAC -ACGGAAGGATCTGTACAGGTCTAC -ACGGAAGGATCTGTACAGACGTAC -ACGGAAGGATCTGTACAGAGTGAC -ACGGAAGGATCTGTACAGCTGTAG -ACGGAAGGATCTGTACAGCCTAAG -ACGGAAGGATCTGTACAGGTTCAG -ACGGAAGGATCTGTACAGGCATAG -ACGGAAGGATCTGTACAGGACAAG -ACGGAAGGATCTGTACAGAAGCAG -ACGGAAGGATCTGTACAGCGTCAA -ACGGAAGGATCTGTACAGGCTGAA -ACGGAAGGATCTGTACAGAGTACG -ACGGAAGGATCTGTACAGATCCGA -ACGGAAGGATCTGTACAGATGGGA -ACGGAAGGATCTGTACAGGTGCAA -ACGGAAGGATCTGTACAGGAGGAA -ACGGAAGGATCTGTACAGCAGGTA -ACGGAAGGATCTGTACAGGACTCT -ACGGAAGGATCTGTACAGAGTCCT -ACGGAAGGATCTGTACAGTAAGCC -ACGGAAGGATCTGTACAGATAGCC -ACGGAAGGATCTGTACAGTAACCG -ACGGAAGGATCTGTACAGATGCCA -ACGGAAGGATCTTCTGACGGAAAC -ACGGAAGGATCTTCTGACAACACC -ACGGAAGGATCTTCTGACATCGAG -ACGGAAGGATCTTCTGACCTCCTT -ACGGAAGGATCTTCTGACCCTGTT -ACGGAAGGATCTTCTGACCGGTTT -ACGGAAGGATCTTCTGACGTGGTT -ACGGAAGGATCTTCTGACGCCTTT -ACGGAAGGATCTTCTGACGGTCTT -ACGGAAGGATCTTCTGACACGCTT -ACGGAAGGATCTTCTGACAGCGTT -ACGGAAGGATCTTCTGACTTCGTC -ACGGAAGGATCTTCTGACTCTCTC -ACGGAAGGATCTTCTGACTGGATC -ACGGAAGGATCTTCTGACCACTTC -ACGGAAGGATCTTCTGACGTACTC -ACGGAAGGATCTTCTGACGATGTC -ACGGAAGGATCTTCTGACACAGTC -ACGGAAGGATCTTCTGACTTGCTG -ACGGAAGGATCTTCTGACTCCATG -ACGGAAGGATCTTCTGACTGTGTG -ACGGAAGGATCTTCTGACCTAGTG -ACGGAAGGATCTTCTGACCATCTG -ACGGAAGGATCTTCTGACGAGTTG -ACGGAAGGATCTTCTGACAGACTG -ACGGAAGGATCTTCTGACTCGGTA -ACGGAAGGATCTTCTGACTGCCTA -ACGGAAGGATCTTCTGACCCACTA -ACGGAAGGATCTTCTGACGGAGTA -ACGGAAGGATCTTCTGACTCGTCT -ACGGAAGGATCTTCTGACTGCACT -ACGGAAGGATCTTCTGACCTGACT -ACGGAAGGATCTTCTGACCAACCT -ACGGAAGGATCTTCTGACGCTACT -ACGGAAGGATCTTCTGACGGATCT -ACGGAAGGATCTTCTGACAAGGCT -ACGGAAGGATCTTCTGACTCAACC -ACGGAAGGATCTTCTGACTGTTCC -ACGGAAGGATCTTCTGACATTCCC -ACGGAAGGATCTTCTGACTTCTCG -ACGGAAGGATCTTCTGACTAGACG -ACGGAAGGATCTTCTGACGTAACG -ACGGAAGGATCTTCTGACACTTCG -ACGGAAGGATCTTCTGACTACGCA -ACGGAAGGATCTTCTGACCTTGCA -ACGGAAGGATCTTCTGACCGAACA -ACGGAAGGATCTTCTGACCAGTCA -ACGGAAGGATCTTCTGACGATCCA -ACGGAAGGATCTTCTGACACGACA -ACGGAAGGATCTTCTGACAGCTCA -ACGGAAGGATCTTCTGACTCACGT -ACGGAAGGATCTTCTGACCGTAGT -ACGGAAGGATCTTCTGACGTCAGT -ACGGAAGGATCTTCTGACGAAGGT -ACGGAAGGATCTTCTGACAACCGT -ACGGAAGGATCTTCTGACTTGTGC -ACGGAAGGATCTTCTGACCTAAGC -ACGGAAGGATCTTCTGACACTAGC -ACGGAAGGATCTTCTGACAGATGC -ACGGAAGGATCTTCTGACTGAAGG -ACGGAAGGATCTTCTGACCAATGG -ACGGAAGGATCTTCTGACATGAGG -ACGGAAGGATCTTCTGACAATGGG -ACGGAAGGATCTTCTGACTCCTGA -ACGGAAGGATCTTCTGACTAGCGA -ACGGAAGGATCTTCTGACCACAGA -ACGGAAGGATCTTCTGACGCAAGA -ACGGAAGGATCTTCTGACGGTTGA -ACGGAAGGATCTTCTGACTCCGAT -ACGGAAGGATCTTCTGACTGGCAT -ACGGAAGGATCTTCTGACCGAGAT -ACGGAAGGATCTTCTGACTACCAC -ACGGAAGGATCTTCTGACCAGAAC -ACGGAAGGATCTTCTGACGTCTAC -ACGGAAGGATCTTCTGACACGTAC -ACGGAAGGATCTTCTGACAGTGAC -ACGGAAGGATCTTCTGACCTGTAG -ACGGAAGGATCTTCTGACCCTAAG -ACGGAAGGATCTTCTGACGTTCAG -ACGGAAGGATCTTCTGACGCATAG -ACGGAAGGATCTTCTGACGACAAG -ACGGAAGGATCTTCTGACAAGCAG -ACGGAAGGATCTTCTGACCGTCAA -ACGGAAGGATCTTCTGACGCTGAA -ACGGAAGGATCTTCTGACAGTACG -ACGGAAGGATCTTCTGACATCCGA -ACGGAAGGATCTTCTGACATGGGA -ACGGAAGGATCTTCTGACGTGCAA -ACGGAAGGATCTTCTGACGAGGAA -ACGGAAGGATCTTCTGACCAGGTA -ACGGAAGGATCTTCTGACGACTCT -ACGGAAGGATCTTCTGACAGTCCT -ACGGAAGGATCTTCTGACTAAGCC -ACGGAAGGATCTTCTGACATAGCC -ACGGAAGGATCTTCTGACTAACCG -ACGGAAGGATCTTCTGACATGCCA -ACGGAAGGATCTCCTAGTGGAAAC -ACGGAAGGATCTCCTAGTAACACC -ACGGAAGGATCTCCTAGTATCGAG -ACGGAAGGATCTCCTAGTCTCCTT -ACGGAAGGATCTCCTAGTCCTGTT -ACGGAAGGATCTCCTAGTCGGTTT -ACGGAAGGATCTCCTAGTGTGGTT -ACGGAAGGATCTCCTAGTGCCTTT -ACGGAAGGATCTCCTAGTGGTCTT -ACGGAAGGATCTCCTAGTACGCTT -ACGGAAGGATCTCCTAGTAGCGTT -ACGGAAGGATCTCCTAGTTTCGTC -ACGGAAGGATCTCCTAGTTCTCTC -ACGGAAGGATCTCCTAGTTGGATC -ACGGAAGGATCTCCTAGTCACTTC -ACGGAAGGATCTCCTAGTGTACTC -ACGGAAGGATCTCCTAGTGATGTC -ACGGAAGGATCTCCTAGTACAGTC -ACGGAAGGATCTCCTAGTTTGCTG -ACGGAAGGATCTCCTAGTTCCATG -ACGGAAGGATCTCCTAGTTGTGTG -ACGGAAGGATCTCCTAGTCTAGTG -ACGGAAGGATCTCCTAGTCATCTG -ACGGAAGGATCTCCTAGTGAGTTG -ACGGAAGGATCTCCTAGTAGACTG -ACGGAAGGATCTCCTAGTTCGGTA -ACGGAAGGATCTCCTAGTTGCCTA -ACGGAAGGATCTCCTAGTCCACTA -ACGGAAGGATCTCCTAGTGGAGTA -ACGGAAGGATCTCCTAGTTCGTCT -ACGGAAGGATCTCCTAGTTGCACT -ACGGAAGGATCTCCTAGTCTGACT -ACGGAAGGATCTCCTAGTCAACCT -ACGGAAGGATCTCCTAGTGCTACT -ACGGAAGGATCTCCTAGTGGATCT -ACGGAAGGATCTCCTAGTAAGGCT -ACGGAAGGATCTCCTAGTTCAACC -ACGGAAGGATCTCCTAGTTGTTCC -ACGGAAGGATCTCCTAGTATTCCC -ACGGAAGGATCTCCTAGTTTCTCG -ACGGAAGGATCTCCTAGTTAGACG -ACGGAAGGATCTCCTAGTGTAACG -ACGGAAGGATCTCCTAGTACTTCG -ACGGAAGGATCTCCTAGTTACGCA -ACGGAAGGATCTCCTAGTCTTGCA -ACGGAAGGATCTCCTAGTCGAACA -ACGGAAGGATCTCCTAGTCAGTCA -ACGGAAGGATCTCCTAGTGATCCA -ACGGAAGGATCTCCTAGTACGACA -ACGGAAGGATCTCCTAGTAGCTCA -ACGGAAGGATCTCCTAGTTCACGT -ACGGAAGGATCTCCTAGTCGTAGT -ACGGAAGGATCTCCTAGTGTCAGT -ACGGAAGGATCTCCTAGTGAAGGT -ACGGAAGGATCTCCTAGTAACCGT -ACGGAAGGATCTCCTAGTTTGTGC -ACGGAAGGATCTCCTAGTCTAAGC -ACGGAAGGATCTCCTAGTACTAGC -ACGGAAGGATCTCCTAGTAGATGC -ACGGAAGGATCTCCTAGTTGAAGG -ACGGAAGGATCTCCTAGTCAATGG -ACGGAAGGATCTCCTAGTATGAGG -ACGGAAGGATCTCCTAGTAATGGG -ACGGAAGGATCTCCTAGTTCCTGA -ACGGAAGGATCTCCTAGTTAGCGA -ACGGAAGGATCTCCTAGTCACAGA -ACGGAAGGATCTCCTAGTGCAAGA -ACGGAAGGATCTCCTAGTGGTTGA -ACGGAAGGATCTCCTAGTTCCGAT -ACGGAAGGATCTCCTAGTTGGCAT -ACGGAAGGATCTCCTAGTCGAGAT -ACGGAAGGATCTCCTAGTTACCAC -ACGGAAGGATCTCCTAGTCAGAAC -ACGGAAGGATCTCCTAGTGTCTAC -ACGGAAGGATCTCCTAGTACGTAC -ACGGAAGGATCTCCTAGTAGTGAC -ACGGAAGGATCTCCTAGTCTGTAG -ACGGAAGGATCTCCTAGTCCTAAG -ACGGAAGGATCTCCTAGTGTTCAG -ACGGAAGGATCTCCTAGTGCATAG -ACGGAAGGATCTCCTAGTGACAAG -ACGGAAGGATCTCCTAGTAAGCAG -ACGGAAGGATCTCCTAGTCGTCAA -ACGGAAGGATCTCCTAGTGCTGAA -ACGGAAGGATCTCCTAGTAGTACG -ACGGAAGGATCTCCTAGTATCCGA -ACGGAAGGATCTCCTAGTATGGGA -ACGGAAGGATCTCCTAGTGTGCAA -ACGGAAGGATCTCCTAGTGAGGAA -ACGGAAGGATCTCCTAGTCAGGTA -ACGGAAGGATCTCCTAGTGACTCT -ACGGAAGGATCTCCTAGTAGTCCT -ACGGAAGGATCTCCTAGTTAAGCC -ACGGAAGGATCTCCTAGTATAGCC -ACGGAAGGATCTCCTAGTTAACCG -ACGGAAGGATCTCCTAGTATGCCA -ACGGAAGGATCTGCCTAAGGAAAC -ACGGAAGGATCTGCCTAAAACACC -ACGGAAGGATCTGCCTAAATCGAG -ACGGAAGGATCTGCCTAACTCCTT -ACGGAAGGATCTGCCTAACCTGTT -ACGGAAGGATCTGCCTAACGGTTT -ACGGAAGGATCTGCCTAAGTGGTT -ACGGAAGGATCTGCCTAAGCCTTT -ACGGAAGGATCTGCCTAAGGTCTT -ACGGAAGGATCTGCCTAAACGCTT -ACGGAAGGATCTGCCTAAAGCGTT -ACGGAAGGATCTGCCTAATTCGTC -ACGGAAGGATCTGCCTAATCTCTC -ACGGAAGGATCTGCCTAATGGATC -ACGGAAGGATCTGCCTAACACTTC -ACGGAAGGATCTGCCTAAGTACTC -ACGGAAGGATCTGCCTAAGATGTC -ACGGAAGGATCTGCCTAAACAGTC -ACGGAAGGATCTGCCTAATTGCTG -ACGGAAGGATCTGCCTAATCCATG -ACGGAAGGATCTGCCTAATGTGTG -ACGGAAGGATCTGCCTAACTAGTG -ACGGAAGGATCTGCCTAACATCTG -ACGGAAGGATCTGCCTAAGAGTTG -ACGGAAGGATCTGCCTAAAGACTG -ACGGAAGGATCTGCCTAATCGGTA -ACGGAAGGATCTGCCTAATGCCTA -ACGGAAGGATCTGCCTAACCACTA -ACGGAAGGATCTGCCTAAGGAGTA -ACGGAAGGATCTGCCTAATCGTCT -ACGGAAGGATCTGCCTAATGCACT -ACGGAAGGATCTGCCTAACTGACT -ACGGAAGGATCTGCCTAACAACCT -ACGGAAGGATCTGCCTAAGCTACT -ACGGAAGGATCTGCCTAAGGATCT -ACGGAAGGATCTGCCTAAAAGGCT -ACGGAAGGATCTGCCTAATCAACC -ACGGAAGGATCTGCCTAATGTTCC -ACGGAAGGATCTGCCTAAATTCCC -ACGGAAGGATCTGCCTAATTCTCG -ACGGAAGGATCTGCCTAATAGACG -ACGGAAGGATCTGCCTAAGTAACG -ACGGAAGGATCTGCCTAAACTTCG -ACGGAAGGATCTGCCTAATACGCA -ACGGAAGGATCTGCCTAACTTGCA -ACGGAAGGATCTGCCTAACGAACA -ACGGAAGGATCTGCCTAACAGTCA -ACGGAAGGATCTGCCTAAGATCCA -ACGGAAGGATCTGCCTAAACGACA -ACGGAAGGATCTGCCTAAAGCTCA -ACGGAAGGATCTGCCTAATCACGT -ACGGAAGGATCTGCCTAACGTAGT -ACGGAAGGATCTGCCTAAGTCAGT -ACGGAAGGATCTGCCTAAGAAGGT -ACGGAAGGATCTGCCTAAAACCGT -ACGGAAGGATCTGCCTAATTGTGC -ACGGAAGGATCTGCCTAACTAAGC -ACGGAAGGATCTGCCTAAACTAGC -ACGGAAGGATCTGCCTAAAGATGC -ACGGAAGGATCTGCCTAATGAAGG -ACGGAAGGATCTGCCTAACAATGG -ACGGAAGGATCTGCCTAAATGAGG -ACGGAAGGATCTGCCTAAAATGGG -ACGGAAGGATCTGCCTAATCCTGA -ACGGAAGGATCTGCCTAATAGCGA -ACGGAAGGATCTGCCTAACACAGA -ACGGAAGGATCTGCCTAAGCAAGA -ACGGAAGGATCTGCCTAAGGTTGA -ACGGAAGGATCTGCCTAATCCGAT -ACGGAAGGATCTGCCTAATGGCAT -ACGGAAGGATCTGCCTAACGAGAT -ACGGAAGGATCTGCCTAATACCAC -ACGGAAGGATCTGCCTAACAGAAC -ACGGAAGGATCTGCCTAAGTCTAC -ACGGAAGGATCTGCCTAAACGTAC -ACGGAAGGATCTGCCTAAAGTGAC -ACGGAAGGATCTGCCTAACTGTAG -ACGGAAGGATCTGCCTAACCTAAG -ACGGAAGGATCTGCCTAAGTTCAG -ACGGAAGGATCTGCCTAAGCATAG -ACGGAAGGATCTGCCTAAGACAAG -ACGGAAGGATCTGCCTAAAAGCAG -ACGGAAGGATCTGCCTAACGTCAA -ACGGAAGGATCTGCCTAAGCTGAA -ACGGAAGGATCTGCCTAAAGTACG -ACGGAAGGATCTGCCTAAATCCGA -ACGGAAGGATCTGCCTAAATGGGA -ACGGAAGGATCTGCCTAAGTGCAA -ACGGAAGGATCTGCCTAAGAGGAA -ACGGAAGGATCTGCCTAACAGGTA -ACGGAAGGATCTGCCTAAGACTCT -ACGGAAGGATCTGCCTAAAGTCCT -ACGGAAGGATCTGCCTAATAAGCC -ACGGAAGGATCTGCCTAAATAGCC -ACGGAAGGATCTGCCTAATAACCG -ACGGAAGGATCTGCCTAAATGCCA -ACGGAAGGATCTGCCATAGGAAAC -ACGGAAGGATCTGCCATAAACACC -ACGGAAGGATCTGCCATAATCGAG -ACGGAAGGATCTGCCATACTCCTT -ACGGAAGGATCTGCCATACCTGTT -ACGGAAGGATCTGCCATACGGTTT -ACGGAAGGATCTGCCATAGTGGTT -ACGGAAGGATCTGCCATAGCCTTT -ACGGAAGGATCTGCCATAGGTCTT -ACGGAAGGATCTGCCATAACGCTT -ACGGAAGGATCTGCCATAAGCGTT -ACGGAAGGATCTGCCATATTCGTC -ACGGAAGGATCTGCCATATCTCTC -ACGGAAGGATCTGCCATATGGATC -ACGGAAGGATCTGCCATACACTTC -ACGGAAGGATCTGCCATAGTACTC -ACGGAAGGATCTGCCATAGATGTC -ACGGAAGGATCTGCCATAACAGTC -ACGGAAGGATCTGCCATATTGCTG -ACGGAAGGATCTGCCATATCCATG -ACGGAAGGATCTGCCATATGTGTG -ACGGAAGGATCTGCCATACTAGTG -ACGGAAGGATCTGCCATACATCTG -ACGGAAGGATCTGCCATAGAGTTG -ACGGAAGGATCTGCCATAAGACTG -ACGGAAGGATCTGCCATATCGGTA -ACGGAAGGATCTGCCATATGCCTA -ACGGAAGGATCTGCCATACCACTA -ACGGAAGGATCTGCCATAGGAGTA -ACGGAAGGATCTGCCATATCGTCT -ACGGAAGGATCTGCCATATGCACT -ACGGAAGGATCTGCCATACTGACT -ACGGAAGGATCTGCCATACAACCT -ACGGAAGGATCTGCCATAGCTACT -ACGGAAGGATCTGCCATAGGATCT -ACGGAAGGATCTGCCATAAAGGCT -ACGGAAGGATCTGCCATATCAACC -ACGGAAGGATCTGCCATATGTTCC -ACGGAAGGATCTGCCATAATTCCC -ACGGAAGGATCTGCCATATTCTCG -ACGGAAGGATCTGCCATATAGACG -ACGGAAGGATCTGCCATAGTAACG -ACGGAAGGATCTGCCATAACTTCG -ACGGAAGGATCTGCCATATACGCA -ACGGAAGGATCTGCCATACTTGCA -ACGGAAGGATCTGCCATACGAACA -ACGGAAGGATCTGCCATACAGTCA -ACGGAAGGATCTGCCATAGATCCA -ACGGAAGGATCTGCCATAACGACA -ACGGAAGGATCTGCCATAAGCTCA -ACGGAAGGATCTGCCATATCACGT -ACGGAAGGATCTGCCATACGTAGT -ACGGAAGGATCTGCCATAGTCAGT -ACGGAAGGATCTGCCATAGAAGGT -ACGGAAGGATCTGCCATAAACCGT -ACGGAAGGATCTGCCATATTGTGC -ACGGAAGGATCTGCCATACTAAGC -ACGGAAGGATCTGCCATAACTAGC -ACGGAAGGATCTGCCATAAGATGC -ACGGAAGGATCTGCCATATGAAGG -ACGGAAGGATCTGCCATACAATGG -ACGGAAGGATCTGCCATAATGAGG -ACGGAAGGATCTGCCATAAATGGG -ACGGAAGGATCTGCCATATCCTGA -ACGGAAGGATCTGCCATATAGCGA -ACGGAAGGATCTGCCATACACAGA -ACGGAAGGATCTGCCATAGCAAGA -ACGGAAGGATCTGCCATAGGTTGA -ACGGAAGGATCTGCCATATCCGAT -ACGGAAGGATCTGCCATATGGCAT -ACGGAAGGATCTGCCATACGAGAT -ACGGAAGGATCTGCCATATACCAC -ACGGAAGGATCTGCCATACAGAAC -ACGGAAGGATCTGCCATAGTCTAC -ACGGAAGGATCTGCCATAACGTAC -ACGGAAGGATCTGCCATAAGTGAC -ACGGAAGGATCTGCCATACTGTAG -ACGGAAGGATCTGCCATACCTAAG -ACGGAAGGATCTGCCATAGTTCAG -ACGGAAGGATCTGCCATAGCATAG -ACGGAAGGATCTGCCATAGACAAG -ACGGAAGGATCTGCCATAAAGCAG -ACGGAAGGATCTGCCATACGTCAA -ACGGAAGGATCTGCCATAGCTGAA -ACGGAAGGATCTGCCATAAGTACG -ACGGAAGGATCTGCCATAATCCGA -ACGGAAGGATCTGCCATAATGGGA -ACGGAAGGATCTGCCATAGTGCAA -ACGGAAGGATCTGCCATAGAGGAA -ACGGAAGGATCTGCCATACAGGTA -ACGGAAGGATCTGCCATAGACTCT -ACGGAAGGATCTGCCATAAGTCCT -ACGGAAGGATCTGCCATATAAGCC -ACGGAAGGATCTGCCATAATAGCC -ACGGAAGGATCTGCCATATAACCG -ACGGAAGGATCTGCCATAATGCCA -ACGGAAGGATCTCCGTAAGGAAAC -ACGGAAGGATCTCCGTAAAACACC -ACGGAAGGATCTCCGTAAATCGAG -ACGGAAGGATCTCCGTAACTCCTT -ACGGAAGGATCTCCGTAACCTGTT -ACGGAAGGATCTCCGTAACGGTTT -ACGGAAGGATCTCCGTAAGTGGTT -ACGGAAGGATCTCCGTAAGCCTTT -ACGGAAGGATCTCCGTAAGGTCTT -ACGGAAGGATCTCCGTAAACGCTT -ACGGAAGGATCTCCGTAAAGCGTT -ACGGAAGGATCTCCGTAATTCGTC -ACGGAAGGATCTCCGTAATCTCTC -ACGGAAGGATCTCCGTAATGGATC -ACGGAAGGATCTCCGTAACACTTC -ACGGAAGGATCTCCGTAAGTACTC -ACGGAAGGATCTCCGTAAGATGTC -ACGGAAGGATCTCCGTAAACAGTC -ACGGAAGGATCTCCGTAATTGCTG -ACGGAAGGATCTCCGTAATCCATG -ACGGAAGGATCTCCGTAATGTGTG -ACGGAAGGATCTCCGTAACTAGTG -ACGGAAGGATCTCCGTAACATCTG -ACGGAAGGATCTCCGTAAGAGTTG -ACGGAAGGATCTCCGTAAAGACTG -ACGGAAGGATCTCCGTAATCGGTA -ACGGAAGGATCTCCGTAATGCCTA -ACGGAAGGATCTCCGTAACCACTA -ACGGAAGGATCTCCGTAAGGAGTA -ACGGAAGGATCTCCGTAATCGTCT -ACGGAAGGATCTCCGTAATGCACT -ACGGAAGGATCTCCGTAACTGACT -ACGGAAGGATCTCCGTAACAACCT -ACGGAAGGATCTCCGTAAGCTACT -ACGGAAGGATCTCCGTAAGGATCT -ACGGAAGGATCTCCGTAAAAGGCT -ACGGAAGGATCTCCGTAATCAACC -ACGGAAGGATCTCCGTAATGTTCC -ACGGAAGGATCTCCGTAAATTCCC -ACGGAAGGATCTCCGTAATTCTCG -ACGGAAGGATCTCCGTAATAGACG -ACGGAAGGATCTCCGTAAGTAACG -ACGGAAGGATCTCCGTAAACTTCG -ACGGAAGGATCTCCGTAATACGCA -ACGGAAGGATCTCCGTAACTTGCA -ACGGAAGGATCTCCGTAACGAACA -ACGGAAGGATCTCCGTAACAGTCA -ACGGAAGGATCTCCGTAAGATCCA -ACGGAAGGATCTCCGTAAACGACA -ACGGAAGGATCTCCGTAAAGCTCA -ACGGAAGGATCTCCGTAATCACGT -ACGGAAGGATCTCCGTAACGTAGT -ACGGAAGGATCTCCGTAAGTCAGT -ACGGAAGGATCTCCGTAAGAAGGT -ACGGAAGGATCTCCGTAAAACCGT -ACGGAAGGATCTCCGTAATTGTGC -ACGGAAGGATCTCCGTAACTAAGC -ACGGAAGGATCTCCGTAAACTAGC -ACGGAAGGATCTCCGTAAAGATGC -ACGGAAGGATCTCCGTAATGAAGG -ACGGAAGGATCTCCGTAACAATGG -ACGGAAGGATCTCCGTAAATGAGG -ACGGAAGGATCTCCGTAAAATGGG -ACGGAAGGATCTCCGTAATCCTGA -ACGGAAGGATCTCCGTAATAGCGA -ACGGAAGGATCTCCGTAACACAGA -ACGGAAGGATCTCCGTAAGCAAGA -ACGGAAGGATCTCCGTAAGGTTGA -ACGGAAGGATCTCCGTAATCCGAT -ACGGAAGGATCTCCGTAATGGCAT -ACGGAAGGATCTCCGTAACGAGAT -ACGGAAGGATCTCCGTAATACCAC -ACGGAAGGATCTCCGTAACAGAAC -ACGGAAGGATCTCCGTAAGTCTAC -ACGGAAGGATCTCCGTAAACGTAC -ACGGAAGGATCTCCGTAAAGTGAC -ACGGAAGGATCTCCGTAACTGTAG -ACGGAAGGATCTCCGTAACCTAAG -ACGGAAGGATCTCCGTAAGTTCAG -ACGGAAGGATCTCCGTAAGCATAG -ACGGAAGGATCTCCGTAAGACAAG -ACGGAAGGATCTCCGTAAAAGCAG -ACGGAAGGATCTCCGTAACGTCAA -ACGGAAGGATCTCCGTAAGCTGAA -ACGGAAGGATCTCCGTAAAGTACG -ACGGAAGGATCTCCGTAAATCCGA -ACGGAAGGATCTCCGTAAATGGGA -ACGGAAGGATCTCCGTAAGTGCAA -ACGGAAGGATCTCCGTAAGAGGAA -ACGGAAGGATCTCCGTAACAGGTA -ACGGAAGGATCTCCGTAAGACTCT -ACGGAAGGATCTCCGTAAAGTCCT -ACGGAAGGATCTCCGTAATAAGCC -ACGGAAGGATCTCCGTAAATAGCC -ACGGAAGGATCTCCGTAATAACCG -ACGGAAGGATCTCCGTAAATGCCA -ACGGAAGGATCTCCAATGGGAAAC -ACGGAAGGATCTCCAATGAACACC -ACGGAAGGATCTCCAATGATCGAG -ACGGAAGGATCTCCAATGCTCCTT -ACGGAAGGATCTCCAATGCCTGTT -ACGGAAGGATCTCCAATGCGGTTT -ACGGAAGGATCTCCAATGGTGGTT -ACGGAAGGATCTCCAATGGCCTTT -ACGGAAGGATCTCCAATGGGTCTT -ACGGAAGGATCTCCAATGACGCTT -ACGGAAGGATCTCCAATGAGCGTT -ACGGAAGGATCTCCAATGTTCGTC -ACGGAAGGATCTCCAATGTCTCTC -ACGGAAGGATCTCCAATGTGGATC -ACGGAAGGATCTCCAATGCACTTC -ACGGAAGGATCTCCAATGGTACTC -ACGGAAGGATCTCCAATGGATGTC -ACGGAAGGATCTCCAATGACAGTC -ACGGAAGGATCTCCAATGTTGCTG -ACGGAAGGATCTCCAATGTCCATG -ACGGAAGGATCTCCAATGTGTGTG -ACGGAAGGATCTCCAATGCTAGTG -ACGGAAGGATCTCCAATGCATCTG -ACGGAAGGATCTCCAATGGAGTTG -ACGGAAGGATCTCCAATGAGACTG -ACGGAAGGATCTCCAATGTCGGTA -ACGGAAGGATCTCCAATGTGCCTA -ACGGAAGGATCTCCAATGCCACTA -ACGGAAGGATCTCCAATGGGAGTA -ACGGAAGGATCTCCAATGTCGTCT -ACGGAAGGATCTCCAATGTGCACT -ACGGAAGGATCTCCAATGCTGACT -ACGGAAGGATCTCCAATGCAACCT -ACGGAAGGATCTCCAATGGCTACT -ACGGAAGGATCTCCAATGGGATCT -ACGGAAGGATCTCCAATGAAGGCT -ACGGAAGGATCTCCAATGTCAACC -ACGGAAGGATCTCCAATGTGTTCC -ACGGAAGGATCTCCAATGATTCCC -ACGGAAGGATCTCCAATGTTCTCG -ACGGAAGGATCTCCAATGTAGACG -ACGGAAGGATCTCCAATGGTAACG -ACGGAAGGATCTCCAATGACTTCG -ACGGAAGGATCTCCAATGTACGCA -ACGGAAGGATCTCCAATGCTTGCA -ACGGAAGGATCTCCAATGCGAACA -ACGGAAGGATCTCCAATGCAGTCA -ACGGAAGGATCTCCAATGGATCCA -ACGGAAGGATCTCCAATGACGACA -ACGGAAGGATCTCCAATGAGCTCA -ACGGAAGGATCTCCAATGTCACGT -ACGGAAGGATCTCCAATGCGTAGT -ACGGAAGGATCTCCAATGGTCAGT -ACGGAAGGATCTCCAATGGAAGGT -ACGGAAGGATCTCCAATGAACCGT -ACGGAAGGATCTCCAATGTTGTGC -ACGGAAGGATCTCCAATGCTAAGC -ACGGAAGGATCTCCAATGACTAGC -ACGGAAGGATCTCCAATGAGATGC -ACGGAAGGATCTCCAATGTGAAGG -ACGGAAGGATCTCCAATGCAATGG -ACGGAAGGATCTCCAATGATGAGG -ACGGAAGGATCTCCAATGAATGGG -ACGGAAGGATCTCCAATGTCCTGA -ACGGAAGGATCTCCAATGTAGCGA -ACGGAAGGATCTCCAATGCACAGA -ACGGAAGGATCTCCAATGGCAAGA -ACGGAAGGATCTCCAATGGGTTGA -ACGGAAGGATCTCCAATGTCCGAT -ACGGAAGGATCTCCAATGTGGCAT -ACGGAAGGATCTCCAATGCGAGAT -ACGGAAGGATCTCCAATGTACCAC -ACGGAAGGATCTCCAATGCAGAAC -ACGGAAGGATCTCCAATGGTCTAC -ACGGAAGGATCTCCAATGACGTAC -ACGGAAGGATCTCCAATGAGTGAC -ACGGAAGGATCTCCAATGCTGTAG -ACGGAAGGATCTCCAATGCCTAAG -ACGGAAGGATCTCCAATGGTTCAG -ACGGAAGGATCTCCAATGGCATAG -ACGGAAGGATCTCCAATGGACAAG -ACGGAAGGATCTCCAATGAAGCAG -ACGGAAGGATCTCCAATGCGTCAA -ACGGAAGGATCTCCAATGGCTGAA -ACGGAAGGATCTCCAATGAGTACG -ACGGAAGGATCTCCAATGATCCGA -ACGGAAGGATCTCCAATGATGGGA -ACGGAAGGATCTCCAATGGTGCAA -ACGGAAGGATCTCCAATGGAGGAA -ACGGAAGGATCTCCAATGCAGGTA -ACGGAAGGATCTCCAATGGACTCT -ACGGAAGGATCTCCAATGAGTCCT -ACGGAAGGATCTCCAATGTAAGCC -ACGGAAGGATCTCCAATGATAGCC -ACGGAAGGATCTCCAATGTAACCG -ACGGAAGGATCTCCAATGATGCCA -ACGGAAACTTCCAACGGAGGAAAC -ACGGAAACTTCCAACGGAAACACC -ACGGAAACTTCCAACGGAATCGAG -ACGGAAACTTCCAACGGACTCCTT -ACGGAAACTTCCAACGGACCTGTT -ACGGAAACTTCCAACGGACGGTTT -ACGGAAACTTCCAACGGAGTGGTT -ACGGAAACTTCCAACGGAGCCTTT -ACGGAAACTTCCAACGGAGGTCTT -ACGGAAACTTCCAACGGAACGCTT -ACGGAAACTTCCAACGGAAGCGTT -ACGGAAACTTCCAACGGATTCGTC -ACGGAAACTTCCAACGGATCTCTC -ACGGAAACTTCCAACGGATGGATC -ACGGAAACTTCCAACGGACACTTC -ACGGAAACTTCCAACGGAGTACTC -ACGGAAACTTCCAACGGAGATGTC -ACGGAAACTTCCAACGGAACAGTC -ACGGAAACTTCCAACGGATTGCTG -ACGGAAACTTCCAACGGATCCATG -ACGGAAACTTCCAACGGATGTGTG -ACGGAAACTTCCAACGGACTAGTG -ACGGAAACTTCCAACGGACATCTG -ACGGAAACTTCCAACGGAGAGTTG -ACGGAAACTTCCAACGGAAGACTG -ACGGAAACTTCCAACGGATCGGTA -ACGGAAACTTCCAACGGATGCCTA -ACGGAAACTTCCAACGGACCACTA -ACGGAAACTTCCAACGGAGGAGTA -ACGGAAACTTCCAACGGATCGTCT -ACGGAAACTTCCAACGGATGCACT -ACGGAAACTTCCAACGGACTGACT -ACGGAAACTTCCAACGGACAACCT -ACGGAAACTTCCAACGGAGCTACT -ACGGAAACTTCCAACGGAGGATCT -ACGGAAACTTCCAACGGAAAGGCT -ACGGAAACTTCCAACGGATCAACC -ACGGAAACTTCCAACGGATGTTCC -ACGGAAACTTCCAACGGAATTCCC -ACGGAAACTTCCAACGGATTCTCG -ACGGAAACTTCCAACGGATAGACG -ACGGAAACTTCCAACGGAGTAACG -ACGGAAACTTCCAACGGAACTTCG -ACGGAAACTTCCAACGGATACGCA -ACGGAAACTTCCAACGGACTTGCA -ACGGAAACTTCCAACGGACGAACA -ACGGAAACTTCCAACGGACAGTCA -ACGGAAACTTCCAACGGAGATCCA -ACGGAAACTTCCAACGGAACGACA -ACGGAAACTTCCAACGGAAGCTCA -ACGGAAACTTCCAACGGATCACGT -ACGGAAACTTCCAACGGACGTAGT -ACGGAAACTTCCAACGGAGTCAGT -ACGGAAACTTCCAACGGAGAAGGT -ACGGAAACTTCCAACGGAAACCGT -ACGGAAACTTCCAACGGATTGTGC -ACGGAAACTTCCAACGGACTAAGC -ACGGAAACTTCCAACGGAACTAGC -ACGGAAACTTCCAACGGAAGATGC -ACGGAAACTTCCAACGGATGAAGG -ACGGAAACTTCCAACGGACAATGG -ACGGAAACTTCCAACGGAATGAGG -ACGGAAACTTCCAACGGAAATGGG -ACGGAAACTTCCAACGGATCCTGA -ACGGAAACTTCCAACGGATAGCGA -ACGGAAACTTCCAACGGACACAGA -ACGGAAACTTCCAACGGAGCAAGA -ACGGAAACTTCCAACGGAGGTTGA -ACGGAAACTTCCAACGGATCCGAT -ACGGAAACTTCCAACGGATGGCAT -ACGGAAACTTCCAACGGACGAGAT -ACGGAAACTTCCAACGGATACCAC -ACGGAAACTTCCAACGGACAGAAC -ACGGAAACTTCCAACGGAGTCTAC -ACGGAAACTTCCAACGGAACGTAC -ACGGAAACTTCCAACGGAAGTGAC -ACGGAAACTTCCAACGGACTGTAG -ACGGAAACTTCCAACGGACCTAAG -ACGGAAACTTCCAACGGAGTTCAG -ACGGAAACTTCCAACGGAGCATAG -ACGGAAACTTCCAACGGAGACAAG -ACGGAAACTTCCAACGGAAAGCAG -ACGGAAACTTCCAACGGACGTCAA -ACGGAAACTTCCAACGGAGCTGAA -ACGGAAACTTCCAACGGAAGTACG -ACGGAAACTTCCAACGGAATCCGA -ACGGAAACTTCCAACGGAATGGGA -ACGGAAACTTCCAACGGAGTGCAA -ACGGAAACTTCCAACGGAGAGGAA -ACGGAAACTTCCAACGGACAGGTA -ACGGAAACTTCCAACGGAGACTCT -ACGGAAACTTCCAACGGAAGTCCT -ACGGAAACTTCCAACGGATAAGCC -ACGGAAACTTCCAACGGAATAGCC -ACGGAAACTTCCAACGGATAACCG -ACGGAAACTTCCAACGGAATGCCA -ACGGAAACTTCCACCAACGGAAAC -ACGGAAACTTCCACCAACAACACC -ACGGAAACTTCCACCAACATCGAG -ACGGAAACTTCCACCAACCTCCTT -ACGGAAACTTCCACCAACCCTGTT -ACGGAAACTTCCACCAACCGGTTT -ACGGAAACTTCCACCAACGTGGTT -ACGGAAACTTCCACCAACGCCTTT -ACGGAAACTTCCACCAACGGTCTT -ACGGAAACTTCCACCAACACGCTT -ACGGAAACTTCCACCAACAGCGTT -ACGGAAACTTCCACCAACTTCGTC -ACGGAAACTTCCACCAACTCTCTC -ACGGAAACTTCCACCAACTGGATC -ACGGAAACTTCCACCAACCACTTC -ACGGAAACTTCCACCAACGTACTC -ACGGAAACTTCCACCAACGATGTC -ACGGAAACTTCCACCAACACAGTC -ACGGAAACTTCCACCAACTTGCTG -ACGGAAACTTCCACCAACTCCATG -ACGGAAACTTCCACCAACTGTGTG -ACGGAAACTTCCACCAACCTAGTG -ACGGAAACTTCCACCAACCATCTG -ACGGAAACTTCCACCAACGAGTTG -ACGGAAACTTCCACCAACAGACTG -ACGGAAACTTCCACCAACTCGGTA -ACGGAAACTTCCACCAACTGCCTA -ACGGAAACTTCCACCAACCCACTA -ACGGAAACTTCCACCAACGGAGTA -ACGGAAACTTCCACCAACTCGTCT -ACGGAAACTTCCACCAACTGCACT -ACGGAAACTTCCACCAACCTGACT -ACGGAAACTTCCACCAACCAACCT -ACGGAAACTTCCACCAACGCTACT -ACGGAAACTTCCACCAACGGATCT -ACGGAAACTTCCACCAACAAGGCT -ACGGAAACTTCCACCAACTCAACC -ACGGAAACTTCCACCAACTGTTCC -ACGGAAACTTCCACCAACATTCCC -ACGGAAACTTCCACCAACTTCTCG -ACGGAAACTTCCACCAACTAGACG -ACGGAAACTTCCACCAACGTAACG -ACGGAAACTTCCACCAACACTTCG -ACGGAAACTTCCACCAACTACGCA -ACGGAAACTTCCACCAACCTTGCA -ACGGAAACTTCCACCAACCGAACA -ACGGAAACTTCCACCAACCAGTCA -ACGGAAACTTCCACCAACGATCCA -ACGGAAACTTCCACCAACACGACA -ACGGAAACTTCCACCAACAGCTCA -ACGGAAACTTCCACCAACTCACGT -ACGGAAACTTCCACCAACCGTAGT -ACGGAAACTTCCACCAACGTCAGT -ACGGAAACTTCCACCAACGAAGGT -ACGGAAACTTCCACCAACAACCGT -ACGGAAACTTCCACCAACTTGTGC -ACGGAAACTTCCACCAACCTAAGC -ACGGAAACTTCCACCAACACTAGC -ACGGAAACTTCCACCAACAGATGC -ACGGAAACTTCCACCAACTGAAGG -ACGGAAACTTCCACCAACCAATGG -ACGGAAACTTCCACCAACATGAGG -ACGGAAACTTCCACCAACAATGGG -ACGGAAACTTCCACCAACTCCTGA -ACGGAAACTTCCACCAACTAGCGA -ACGGAAACTTCCACCAACCACAGA -ACGGAAACTTCCACCAACGCAAGA -ACGGAAACTTCCACCAACGGTTGA -ACGGAAACTTCCACCAACTCCGAT -ACGGAAACTTCCACCAACTGGCAT -ACGGAAACTTCCACCAACCGAGAT -ACGGAAACTTCCACCAACTACCAC -ACGGAAACTTCCACCAACCAGAAC -ACGGAAACTTCCACCAACGTCTAC -ACGGAAACTTCCACCAACACGTAC -ACGGAAACTTCCACCAACAGTGAC -ACGGAAACTTCCACCAACCTGTAG -ACGGAAACTTCCACCAACCCTAAG -ACGGAAACTTCCACCAACGTTCAG -ACGGAAACTTCCACCAACGCATAG -ACGGAAACTTCCACCAACGACAAG -ACGGAAACTTCCACCAACAAGCAG -ACGGAAACTTCCACCAACCGTCAA -ACGGAAACTTCCACCAACGCTGAA -ACGGAAACTTCCACCAACAGTACG -ACGGAAACTTCCACCAACATCCGA -ACGGAAACTTCCACCAACATGGGA -ACGGAAACTTCCACCAACGTGCAA -ACGGAAACTTCCACCAACGAGGAA -ACGGAAACTTCCACCAACCAGGTA -ACGGAAACTTCCACCAACGACTCT -ACGGAAACTTCCACCAACAGTCCT -ACGGAAACTTCCACCAACTAAGCC -ACGGAAACTTCCACCAACATAGCC -ACGGAAACTTCCACCAACTAACCG -ACGGAAACTTCCACCAACATGCCA -ACGGAAACTTCCGAGATCGGAAAC -ACGGAAACTTCCGAGATCAACACC -ACGGAAACTTCCGAGATCATCGAG -ACGGAAACTTCCGAGATCCTCCTT -ACGGAAACTTCCGAGATCCCTGTT -ACGGAAACTTCCGAGATCCGGTTT -ACGGAAACTTCCGAGATCGTGGTT -ACGGAAACTTCCGAGATCGCCTTT -ACGGAAACTTCCGAGATCGGTCTT -ACGGAAACTTCCGAGATCACGCTT -ACGGAAACTTCCGAGATCAGCGTT -ACGGAAACTTCCGAGATCTTCGTC -ACGGAAACTTCCGAGATCTCTCTC -ACGGAAACTTCCGAGATCTGGATC -ACGGAAACTTCCGAGATCCACTTC -ACGGAAACTTCCGAGATCGTACTC -ACGGAAACTTCCGAGATCGATGTC -ACGGAAACTTCCGAGATCACAGTC -ACGGAAACTTCCGAGATCTTGCTG -ACGGAAACTTCCGAGATCTCCATG -ACGGAAACTTCCGAGATCTGTGTG -ACGGAAACTTCCGAGATCCTAGTG -ACGGAAACTTCCGAGATCCATCTG -ACGGAAACTTCCGAGATCGAGTTG -ACGGAAACTTCCGAGATCAGACTG -ACGGAAACTTCCGAGATCTCGGTA -ACGGAAACTTCCGAGATCTGCCTA -ACGGAAACTTCCGAGATCCCACTA -ACGGAAACTTCCGAGATCGGAGTA -ACGGAAACTTCCGAGATCTCGTCT -ACGGAAACTTCCGAGATCTGCACT -ACGGAAACTTCCGAGATCCTGACT -ACGGAAACTTCCGAGATCCAACCT -ACGGAAACTTCCGAGATCGCTACT -ACGGAAACTTCCGAGATCGGATCT -ACGGAAACTTCCGAGATCAAGGCT -ACGGAAACTTCCGAGATCTCAACC -ACGGAAACTTCCGAGATCTGTTCC -ACGGAAACTTCCGAGATCATTCCC -ACGGAAACTTCCGAGATCTTCTCG -ACGGAAACTTCCGAGATCTAGACG -ACGGAAACTTCCGAGATCGTAACG -ACGGAAACTTCCGAGATCACTTCG -ACGGAAACTTCCGAGATCTACGCA -ACGGAAACTTCCGAGATCCTTGCA -ACGGAAACTTCCGAGATCCGAACA -ACGGAAACTTCCGAGATCCAGTCA -ACGGAAACTTCCGAGATCGATCCA -ACGGAAACTTCCGAGATCACGACA -ACGGAAACTTCCGAGATCAGCTCA -ACGGAAACTTCCGAGATCTCACGT -ACGGAAACTTCCGAGATCCGTAGT -ACGGAAACTTCCGAGATCGTCAGT -ACGGAAACTTCCGAGATCGAAGGT -ACGGAAACTTCCGAGATCAACCGT -ACGGAAACTTCCGAGATCTTGTGC -ACGGAAACTTCCGAGATCCTAAGC -ACGGAAACTTCCGAGATCACTAGC -ACGGAAACTTCCGAGATCAGATGC -ACGGAAACTTCCGAGATCTGAAGG -ACGGAAACTTCCGAGATCCAATGG -ACGGAAACTTCCGAGATCATGAGG -ACGGAAACTTCCGAGATCAATGGG -ACGGAAACTTCCGAGATCTCCTGA -ACGGAAACTTCCGAGATCTAGCGA -ACGGAAACTTCCGAGATCCACAGA -ACGGAAACTTCCGAGATCGCAAGA -ACGGAAACTTCCGAGATCGGTTGA -ACGGAAACTTCCGAGATCTCCGAT -ACGGAAACTTCCGAGATCTGGCAT -ACGGAAACTTCCGAGATCCGAGAT -ACGGAAACTTCCGAGATCTACCAC -ACGGAAACTTCCGAGATCCAGAAC -ACGGAAACTTCCGAGATCGTCTAC -ACGGAAACTTCCGAGATCACGTAC -ACGGAAACTTCCGAGATCAGTGAC -ACGGAAACTTCCGAGATCCTGTAG -ACGGAAACTTCCGAGATCCCTAAG -ACGGAAACTTCCGAGATCGTTCAG -ACGGAAACTTCCGAGATCGCATAG -ACGGAAACTTCCGAGATCGACAAG -ACGGAAACTTCCGAGATCAAGCAG -ACGGAAACTTCCGAGATCCGTCAA -ACGGAAACTTCCGAGATCGCTGAA -ACGGAAACTTCCGAGATCAGTACG -ACGGAAACTTCCGAGATCATCCGA -ACGGAAACTTCCGAGATCATGGGA -ACGGAAACTTCCGAGATCGTGCAA -ACGGAAACTTCCGAGATCGAGGAA -ACGGAAACTTCCGAGATCCAGGTA -ACGGAAACTTCCGAGATCGACTCT -ACGGAAACTTCCGAGATCAGTCCT -ACGGAAACTTCCGAGATCTAAGCC -ACGGAAACTTCCGAGATCATAGCC -ACGGAAACTTCCGAGATCTAACCG -ACGGAAACTTCCGAGATCATGCCA -ACGGAAACTTCCCTTCTCGGAAAC -ACGGAAACTTCCCTTCTCAACACC -ACGGAAACTTCCCTTCTCATCGAG -ACGGAAACTTCCCTTCTCCTCCTT -ACGGAAACTTCCCTTCTCCCTGTT -ACGGAAACTTCCCTTCTCCGGTTT -ACGGAAACTTCCCTTCTCGTGGTT -ACGGAAACTTCCCTTCTCGCCTTT -ACGGAAACTTCCCTTCTCGGTCTT -ACGGAAACTTCCCTTCTCACGCTT -ACGGAAACTTCCCTTCTCAGCGTT -ACGGAAACTTCCCTTCTCTTCGTC -ACGGAAACTTCCCTTCTCTCTCTC -ACGGAAACTTCCCTTCTCTGGATC -ACGGAAACTTCCCTTCTCCACTTC -ACGGAAACTTCCCTTCTCGTACTC -ACGGAAACTTCCCTTCTCGATGTC -ACGGAAACTTCCCTTCTCACAGTC -ACGGAAACTTCCCTTCTCTTGCTG -ACGGAAACTTCCCTTCTCTCCATG -ACGGAAACTTCCCTTCTCTGTGTG -ACGGAAACTTCCCTTCTCCTAGTG -ACGGAAACTTCCCTTCTCCATCTG -ACGGAAACTTCCCTTCTCGAGTTG -ACGGAAACTTCCCTTCTCAGACTG -ACGGAAACTTCCCTTCTCTCGGTA -ACGGAAACTTCCCTTCTCTGCCTA -ACGGAAACTTCCCTTCTCCCACTA -ACGGAAACTTCCCTTCTCGGAGTA -ACGGAAACTTCCCTTCTCTCGTCT -ACGGAAACTTCCCTTCTCTGCACT -ACGGAAACTTCCCTTCTCCTGACT -ACGGAAACTTCCCTTCTCCAACCT -ACGGAAACTTCCCTTCTCGCTACT -ACGGAAACTTCCCTTCTCGGATCT -ACGGAAACTTCCCTTCTCAAGGCT -ACGGAAACTTCCCTTCTCTCAACC -ACGGAAACTTCCCTTCTCTGTTCC -ACGGAAACTTCCCTTCTCATTCCC -ACGGAAACTTCCCTTCTCTTCTCG -ACGGAAACTTCCCTTCTCTAGACG -ACGGAAACTTCCCTTCTCGTAACG -ACGGAAACTTCCCTTCTCACTTCG -ACGGAAACTTCCCTTCTCTACGCA -ACGGAAACTTCCCTTCTCCTTGCA -ACGGAAACTTCCCTTCTCCGAACA -ACGGAAACTTCCCTTCTCCAGTCA -ACGGAAACTTCCCTTCTCGATCCA -ACGGAAACTTCCCTTCTCACGACA -ACGGAAACTTCCCTTCTCAGCTCA -ACGGAAACTTCCCTTCTCTCACGT -ACGGAAACTTCCCTTCTCCGTAGT -ACGGAAACTTCCCTTCTCGTCAGT -ACGGAAACTTCCCTTCTCGAAGGT -ACGGAAACTTCCCTTCTCAACCGT -ACGGAAACTTCCCTTCTCTTGTGC -ACGGAAACTTCCCTTCTCCTAAGC -ACGGAAACTTCCCTTCTCACTAGC -ACGGAAACTTCCCTTCTCAGATGC -ACGGAAACTTCCCTTCTCTGAAGG -ACGGAAACTTCCCTTCTCCAATGG -ACGGAAACTTCCCTTCTCATGAGG -ACGGAAACTTCCCTTCTCAATGGG -ACGGAAACTTCCCTTCTCTCCTGA -ACGGAAACTTCCCTTCTCTAGCGA -ACGGAAACTTCCCTTCTCCACAGA -ACGGAAACTTCCCTTCTCGCAAGA -ACGGAAACTTCCCTTCTCGGTTGA -ACGGAAACTTCCCTTCTCTCCGAT -ACGGAAACTTCCCTTCTCTGGCAT -ACGGAAACTTCCCTTCTCCGAGAT -ACGGAAACTTCCCTTCTCTACCAC -ACGGAAACTTCCCTTCTCCAGAAC -ACGGAAACTTCCCTTCTCGTCTAC -ACGGAAACTTCCCTTCTCACGTAC -ACGGAAACTTCCCTTCTCAGTGAC -ACGGAAACTTCCCTTCTCCTGTAG -ACGGAAACTTCCCTTCTCCCTAAG -ACGGAAACTTCCCTTCTCGTTCAG -ACGGAAACTTCCCTTCTCGCATAG -ACGGAAACTTCCCTTCTCGACAAG -ACGGAAACTTCCCTTCTCAAGCAG -ACGGAAACTTCCCTTCTCCGTCAA -ACGGAAACTTCCCTTCTCGCTGAA -ACGGAAACTTCCCTTCTCAGTACG -ACGGAAACTTCCCTTCTCATCCGA -ACGGAAACTTCCCTTCTCATGGGA -ACGGAAACTTCCCTTCTCGTGCAA -ACGGAAACTTCCCTTCTCGAGGAA -ACGGAAACTTCCCTTCTCCAGGTA -ACGGAAACTTCCCTTCTCGACTCT -ACGGAAACTTCCCTTCTCAGTCCT -ACGGAAACTTCCCTTCTCTAAGCC -ACGGAAACTTCCCTTCTCATAGCC -ACGGAAACTTCCCTTCTCTAACCG -ACGGAAACTTCCCTTCTCATGCCA -ACGGAAACTTCCGTTCCTGGAAAC -ACGGAAACTTCCGTTCCTAACACC -ACGGAAACTTCCGTTCCTATCGAG -ACGGAAACTTCCGTTCCTCTCCTT -ACGGAAACTTCCGTTCCTCCTGTT -ACGGAAACTTCCGTTCCTCGGTTT -ACGGAAACTTCCGTTCCTGTGGTT -ACGGAAACTTCCGTTCCTGCCTTT -ACGGAAACTTCCGTTCCTGGTCTT -ACGGAAACTTCCGTTCCTACGCTT -ACGGAAACTTCCGTTCCTAGCGTT -ACGGAAACTTCCGTTCCTTTCGTC -ACGGAAACTTCCGTTCCTTCTCTC -ACGGAAACTTCCGTTCCTTGGATC -ACGGAAACTTCCGTTCCTCACTTC -ACGGAAACTTCCGTTCCTGTACTC -ACGGAAACTTCCGTTCCTGATGTC -ACGGAAACTTCCGTTCCTACAGTC -ACGGAAACTTCCGTTCCTTTGCTG -ACGGAAACTTCCGTTCCTTCCATG -ACGGAAACTTCCGTTCCTTGTGTG -ACGGAAACTTCCGTTCCTCTAGTG -ACGGAAACTTCCGTTCCTCATCTG -ACGGAAACTTCCGTTCCTGAGTTG -ACGGAAACTTCCGTTCCTAGACTG -ACGGAAACTTCCGTTCCTTCGGTA -ACGGAAACTTCCGTTCCTTGCCTA -ACGGAAACTTCCGTTCCTCCACTA -ACGGAAACTTCCGTTCCTGGAGTA -ACGGAAACTTCCGTTCCTTCGTCT -ACGGAAACTTCCGTTCCTTGCACT -ACGGAAACTTCCGTTCCTCTGACT -ACGGAAACTTCCGTTCCTCAACCT -ACGGAAACTTCCGTTCCTGCTACT -ACGGAAACTTCCGTTCCTGGATCT -ACGGAAACTTCCGTTCCTAAGGCT -ACGGAAACTTCCGTTCCTTCAACC -ACGGAAACTTCCGTTCCTTGTTCC -ACGGAAACTTCCGTTCCTATTCCC -ACGGAAACTTCCGTTCCTTTCTCG -ACGGAAACTTCCGTTCCTTAGACG -ACGGAAACTTCCGTTCCTGTAACG -ACGGAAACTTCCGTTCCTACTTCG -ACGGAAACTTCCGTTCCTTACGCA -ACGGAAACTTCCGTTCCTCTTGCA -ACGGAAACTTCCGTTCCTCGAACA -ACGGAAACTTCCGTTCCTCAGTCA -ACGGAAACTTCCGTTCCTGATCCA -ACGGAAACTTCCGTTCCTACGACA -ACGGAAACTTCCGTTCCTAGCTCA -ACGGAAACTTCCGTTCCTTCACGT -ACGGAAACTTCCGTTCCTCGTAGT -ACGGAAACTTCCGTTCCTGTCAGT -ACGGAAACTTCCGTTCCTGAAGGT -ACGGAAACTTCCGTTCCTAACCGT -ACGGAAACTTCCGTTCCTTTGTGC -ACGGAAACTTCCGTTCCTCTAAGC -ACGGAAACTTCCGTTCCTACTAGC -ACGGAAACTTCCGTTCCTAGATGC -ACGGAAACTTCCGTTCCTTGAAGG -ACGGAAACTTCCGTTCCTCAATGG -ACGGAAACTTCCGTTCCTATGAGG -ACGGAAACTTCCGTTCCTAATGGG -ACGGAAACTTCCGTTCCTTCCTGA -ACGGAAACTTCCGTTCCTTAGCGA -ACGGAAACTTCCGTTCCTCACAGA -ACGGAAACTTCCGTTCCTGCAAGA -ACGGAAACTTCCGTTCCTGGTTGA -ACGGAAACTTCCGTTCCTTCCGAT -ACGGAAACTTCCGTTCCTTGGCAT -ACGGAAACTTCCGTTCCTCGAGAT -ACGGAAACTTCCGTTCCTTACCAC -ACGGAAACTTCCGTTCCTCAGAAC -ACGGAAACTTCCGTTCCTGTCTAC -ACGGAAACTTCCGTTCCTACGTAC -ACGGAAACTTCCGTTCCTAGTGAC -ACGGAAACTTCCGTTCCTCTGTAG -ACGGAAACTTCCGTTCCTCCTAAG -ACGGAAACTTCCGTTCCTGTTCAG -ACGGAAACTTCCGTTCCTGCATAG -ACGGAAACTTCCGTTCCTGACAAG -ACGGAAACTTCCGTTCCTAAGCAG -ACGGAAACTTCCGTTCCTCGTCAA -ACGGAAACTTCCGTTCCTGCTGAA -ACGGAAACTTCCGTTCCTAGTACG -ACGGAAACTTCCGTTCCTATCCGA -ACGGAAACTTCCGTTCCTATGGGA -ACGGAAACTTCCGTTCCTGTGCAA -ACGGAAACTTCCGTTCCTGAGGAA -ACGGAAACTTCCGTTCCTCAGGTA -ACGGAAACTTCCGTTCCTGACTCT -ACGGAAACTTCCGTTCCTAGTCCT -ACGGAAACTTCCGTTCCTTAAGCC -ACGGAAACTTCCGTTCCTATAGCC -ACGGAAACTTCCGTTCCTTAACCG -ACGGAAACTTCCGTTCCTATGCCA -ACGGAAACTTCCTTTCGGGGAAAC -ACGGAAACTTCCTTTCGGAACACC -ACGGAAACTTCCTTTCGGATCGAG -ACGGAAACTTCCTTTCGGCTCCTT -ACGGAAACTTCCTTTCGGCCTGTT -ACGGAAACTTCCTTTCGGCGGTTT -ACGGAAACTTCCTTTCGGGTGGTT -ACGGAAACTTCCTTTCGGGCCTTT -ACGGAAACTTCCTTTCGGGGTCTT -ACGGAAACTTCCTTTCGGACGCTT -ACGGAAACTTCCTTTCGGAGCGTT -ACGGAAACTTCCTTTCGGTTCGTC -ACGGAAACTTCCTTTCGGTCTCTC -ACGGAAACTTCCTTTCGGTGGATC -ACGGAAACTTCCTTTCGGCACTTC -ACGGAAACTTCCTTTCGGGTACTC -ACGGAAACTTCCTTTCGGGATGTC -ACGGAAACTTCCTTTCGGACAGTC -ACGGAAACTTCCTTTCGGTTGCTG -ACGGAAACTTCCTTTCGGTCCATG -ACGGAAACTTCCTTTCGGTGTGTG -ACGGAAACTTCCTTTCGGCTAGTG -ACGGAAACTTCCTTTCGGCATCTG -ACGGAAACTTCCTTTCGGGAGTTG -ACGGAAACTTCCTTTCGGAGACTG -ACGGAAACTTCCTTTCGGTCGGTA -ACGGAAACTTCCTTTCGGTGCCTA -ACGGAAACTTCCTTTCGGCCACTA -ACGGAAACTTCCTTTCGGGGAGTA -ACGGAAACTTCCTTTCGGTCGTCT -ACGGAAACTTCCTTTCGGTGCACT -ACGGAAACTTCCTTTCGGCTGACT -ACGGAAACTTCCTTTCGGCAACCT -ACGGAAACTTCCTTTCGGGCTACT -ACGGAAACTTCCTTTCGGGGATCT -ACGGAAACTTCCTTTCGGAAGGCT -ACGGAAACTTCCTTTCGGTCAACC -ACGGAAACTTCCTTTCGGTGTTCC -ACGGAAACTTCCTTTCGGATTCCC -ACGGAAACTTCCTTTCGGTTCTCG -ACGGAAACTTCCTTTCGGTAGACG -ACGGAAACTTCCTTTCGGGTAACG -ACGGAAACTTCCTTTCGGACTTCG -ACGGAAACTTCCTTTCGGTACGCA -ACGGAAACTTCCTTTCGGCTTGCA -ACGGAAACTTCCTTTCGGCGAACA -ACGGAAACTTCCTTTCGGCAGTCA -ACGGAAACTTCCTTTCGGGATCCA -ACGGAAACTTCCTTTCGGACGACA -ACGGAAACTTCCTTTCGGAGCTCA -ACGGAAACTTCCTTTCGGTCACGT -ACGGAAACTTCCTTTCGGCGTAGT -ACGGAAACTTCCTTTCGGGTCAGT -ACGGAAACTTCCTTTCGGGAAGGT -ACGGAAACTTCCTTTCGGAACCGT -ACGGAAACTTCCTTTCGGTTGTGC -ACGGAAACTTCCTTTCGGCTAAGC -ACGGAAACTTCCTTTCGGACTAGC -ACGGAAACTTCCTTTCGGAGATGC -ACGGAAACTTCCTTTCGGTGAAGG -ACGGAAACTTCCTTTCGGCAATGG -ACGGAAACTTCCTTTCGGATGAGG -ACGGAAACTTCCTTTCGGAATGGG -ACGGAAACTTCCTTTCGGTCCTGA -ACGGAAACTTCCTTTCGGTAGCGA -ACGGAAACTTCCTTTCGGCACAGA -ACGGAAACTTCCTTTCGGGCAAGA -ACGGAAACTTCCTTTCGGGGTTGA -ACGGAAACTTCCTTTCGGTCCGAT -ACGGAAACTTCCTTTCGGTGGCAT -ACGGAAACTTCCTTTCGGCGAGAT -ACGGAAACTTCCTTTCGGTACCAC -ACGGAAACTTCCTTTCGGCAGAAC -ACGGAAACTTCCTTTCGGGTCTAC -ACGGAAACTTCCTTTCGGACGTAC -ACGGAAACTTCCTTTCGGAGTGAC -ACGGAAACTTCCTTTCGGCTGTAG -ACGGAAACTTCCTTTCGGCCTAAG -ACGGAAACTTCCTTTCGGGTTCAG -ACGGAAACTTCCTTTCGGGCATAG -ACGGAAACTTCCTTTCGGGACAAG -ACGGAAACTTCCTTTCGGAAGCAG -ACGGAAACTTCCTTTCGGCGTCAA -ACGGAAACTTCCTTTCGGGCTGAA -ACGGAAACTTCCTTTCGGAGTACG -ACGGAAACTTCCTTTCGGATCCGA -ACGGAAACTTCCTTTCGGATGGGA -ACGGAAACTTCCTTTCGGGTGCAA -ACGGAAACTTCCTTTCGGGAGGAA -ACGGAAACTTCCTTTCGGCAGGTA -ACGGAAACTTCCTTTCGGGACTCT -ACGGAAACTTCCTTTCGGAGTCCT -ACGGAAACTTCCTTTCGGTAAGCC -ACGGAAACTTCCTTTCGGATAGCC -ACGGAAACTTCCTTTCGGTAACCG -ACGGAAACTTCCTTTCGGATGCCA -ACGGAAACTTCCGTTGTGGGAAAC -ACGGAAACTTCCGTTGTGAACACC -ACGGAAACTTCCGTTGTGATCGAG -ACGGAAACTTCCGTTGTGCTCCTT -ACGGAAACTTCCGTTGTGCCTGTT -ACGGAAACTTCCGTTGTGCGGTTT -ACGGAAACTTCCGTTGTGGTGGTT -ACGGAAACTTCCGTTGTGGCCTTT -ACGGAAACTTCCGTTGTGGGTCTT -ACGGAAACTTCCGTTGTGACGCTT -ACGGAAACTTCCGTTGTGAGCGTT -ACGGAAACTTCCGTTGTGTTCGTC -ACGGAAACTTCCGTTGTGTCTCTC -ACGGAAACTTCCGTTGTGTGGATC -ACGGAAACTTCCGTTGTGCACTTC -ACGGAAACTTCCGTTGTGGTACTC -ACGGAAACTTCCGTTGTGGATGTC -ACGGAAACTTCCGTTGTGACAGTC -ACGGAAACTTCCGTTGTGTTGCTG -ACGGAAACTTCCGTTGTGTCCATG -ACGGAAACTTCCGTTGTGTGTGTG -ACGGAAACTTCCGTTGTGCTAGTG -ACGGAAACTTCCGTTGTGCATCTG -ACGGAAACTTCCGTTGTGGAGTTG -ACGGAAACTTCCGTTGTGAGACTG -ACGGAAACTTCCGTTGTGTCGGTA -ACGGAAACTTCCGTTGTGTGCCTA -ACGGAAACTTCCGTTGTGCCACTA -ACGGAAACTTCCGTTGTGGGAGTA -ACGGAAACTTCCGTTGTGTCGTCT -ACGGAAACTTCCGTTGTGTGCACT -ACGGAAACTTCCGTTGTGCTGACT -ACGGAAACTTCCGTTGTGCAACCT -ACGGAAACTTCCGTTGTGGCTACT -ACGGAAACTTCCGTTGTGGGATCT -ACGGAAACTTCCGTTGTGAAGGCT -ACGGAAACTTCCGTTGTGTCAACC -ACGGAAACTTCCGTTGTGTGTTCC -ACGGAAACTTCCGTTGTGATTCCC -ACGGAAACTTCCGTTGTGTTCTCG -ACGGAAACTTCCGTTGTGTAGACG -ACGGAAACTTCCGTTGTGGTAACG -ACGGAAACTTCCGTTGTGACTTCG -ACGGAAACTTCCGTTGTGTACGCA -ACGGAAACTTCCGTTGTGCTTGCA -ACGGAAACTTCCGTTGTGCGAACA -ACGGAAACTTCCGTTGTGCAGTCA -ACGGAAACTTCCGTTGTGGATCCA -ACGGAAACTTCCGTTGTGACGACA -ACGGAAACTTCCGTTGTGAGCTCA -ACGGAAACTTCCGTTGTGTCACGT -ACGGAAACTTCCGTTGTGCGTAGT -ACGGAAACTTCCGTTGTGGTCAGT -ACGGAAACTTCCGTTGTGGAAGGT -ACGGAAACTTCCGTTGTGAACCGT -ACGGAAACTTCCGTTGTGTTGTGC -ACGGAAACTTCCGTTGTGCTAAGC -ACGGAAACTTCCGTTGTGACTAGC -ACGGAAACTTCCGTTGTGAGATGC -ACGGAAACTTCCGTTGTGTGAAGG -ACGGAAACTTCCGTTGTGCAATGG -ACGGAAACTTCCGTTGTGATGAGG -ACGGAAACTTCCGTTGTGAATGGG -ACGGAAACTTCCGTTGTGTCCTGA -ACGGAAACTTCCGTTGTGTAGCGA -ACGGAAACTTCCGTTGTGCACAGA -ACGGAAACTTCCGTTGTGGCAAGA -ACGGAAACTTCCGTTGTGGGTTGA -ACGGAAACTTCCGTTGTGTCCGAT -ACGGAAACTTCCGTTGTGTGGCAT -ACGGAAACTTCCGTTGTGCGAGAT -ACGGAAACTTCCGTTGTGTACCAC -ACGGAAACTTCCGTTGTGCAGAAC -ACGGAAACTTCCGTTGTGGTCTAC -ACGGAAACTTCCGTTGTGACGTAC -ACGGAAACTTCCGTTGTGAGTGAC -ACGGAAACTTCCGTTGTGCTGTAG -ACGGAAACTTCCGTTGTGCCTAAG -ACGGAAACTTCCGTTGTGGTTCAG -ACGGAAACTTCCGTTGTGGCATAG -ACGGAAACTTCCGTTGTGGACAAG -ACGGAAACTTCCGTTGTGAAGCAG -ACGGAAACTTCCGTTGTGCGTCAA -ACGGAAACTTCCGTTGTGGCTGAA -ACGGAAACTTCCGTTGTGAGTACG -ACGGAAACTTCCGTTGTGATCCGA -ACGGAAACTTCCGTTGTGATGGGA -ACGGAAACTTCCGTTGTGGTGCAA -ACGGAAACTTCCGTTGTGGAGGAA -ACGGAAACTTCCGTTGTGCAGGTA -ACGGAAACTTCCGTTGTGGACTCT -ACGGAAACTTCCGTTGTGAGTCCT -ACGGAAACTTCCGTTGTGTAAGCC -ACGGAAACTTCCGTTGTGATAGCC -ACGGAAACTTCCGTTGTGTAACCG -ACGGAAACTTCCGTTGTGATGCCA -ACGGAAACTTCCTTTGCCGGAAAC -ACGGAAACTTCCTTTGCCAACACC -ACGGAAACTTCCTTTGCCATCGAG -ACGGAAACTTCCTTTGCCCTCCTT -ACGGAAACTTCCTTTGCCCCTGTT -ACGGAAACTTCCTTTGCCCGGTTT -ACGGAAACTTCCTTTGCCGTGGTT -ACGGAAACTTCCTTTGCCGCCTTT -ACGGAAACTTCCTTTGCCGGTCTT -ACGGAAACTTCCTTTGCCACGCTT -ACGGAAACTTCCTTTGCCAGCGTT -ACGGAAACTTCCTTTGCCTTCGTC -ACGGAAACTTCCTTTGCCTCTCTC -ACGGAAACTTCCTTTGCCTGGATC -ACGGAAACTTCCTTTGCCCACTTC -ACGGAAACTTCCTTTGCCGTACTC -ACGGAAACTTCCTTTGCCGATGTC -ACGGAAACTTCCTTTGCCACAGTC -ACGGAAACTTCCTTTGCCTTGCTG -ACGGAAACTTCCTTTGCCTCCATG -ACGGAAACTTCCTTTGCCTGTGTG -ACGGAAACTTCCTTTGCCCTAGTG -ACGGAAACTTCCTTTGCCCATCTG -ACGGAAACTTCCTTTGCCGAGTTG -ACGGAAACTTCCTTTGCCAGACTG -ACGGAAACTTCCTTTGCCTCGGTA -ACGGAAACTTCCTTTGCCTGCCTA -ACGGAAACTTCCTTTGCCCCACTA -ACGGAAACTTCCTTTGCCGGAGTA -ACGGAAACTTCCTTTGCCTCGTCT -ACGGAAACTTCCTTTGCCTGCACT -ACGGAAACTTCCTTTGCCCTGACT -ACGGAAACTTCCTTTGCCCAACCT -ACGGAAACTTCCTTTGCCGCTACT -ACGGAAACTTCCTTTGCCGGATCT -ACGGAAACTTCCTTTGCCAAGGCT -ACGGAAACTTCCTTTGCCTCAACC -ACGGAAACTTCCTTTGCCTGTTCC -ACGGAAACTTCCTTTGCCATTCCC -ACGGAAACTTCCTTTGCCTTCTCG -ACGGAAACTTCCTTTGCCTAGACG -ACGGAAACTTCCTTTGCCGTAACG -ACGGAAACTTCCTTTGCCACTTCG -ACGGAAACTTCCTTTGCCTACGCA -ACGGAAACTTCCTTTGCCCTTGCA -ACGGAAACTTCCTTTGCCCGAACA -ACGGAAACTTCCTTTGCCCAGTCA -ACGGAAACTTCCTTTGCCGATCCA -ACGGAAACTTCCTTTGCCACGACA -ACGGAAACTTCCTTTGCCAGCTCA -ACGGAAACTTCCTTTGCCTCACGT -ACGGAAACTTCCTTTGCCCGTAGT -ACGGAAACTTCCTTTGCCGTCAGT -ACGGAAACTTCCTTTGCCGAAGGT -ACGGAAACTTCCTTTGCCAACCGT -ACGGAAACTTCCTTTGCCTTGTGC -ACGGAAACTTCCTTTGCCCTAAGC -ACGGAAACTTCCTTTGCCACTAGC -ACGGAAACTTCCTTTGCCAGATGC -ACGGAAACTTCCTTTGCCTGAAGG -ACGGAAACTTCCTTTGCCCAATGG -ACGGAAACTTCCTTTGCCATGAGG -ACGGAAACTTCCTTTGCCAATGGG -ACGGAAACTTCCTTTGCCTCCTGA -ACGGAAACTTCCTTTGCCTAGCGA -ACGGAAACTTCCTTTGCCCACAGA -ACGGAAACTTCCTTTGCCGCAAGA -ACGGAAACTTCCTTTGCCGGTTGA -ACGGAAACTTCCTTTGCCTCCGAT -ACGGAAACTTCCTTTGCCTGGCAT -ACGGAAACTTCCTTTGCCCGAGAT -ACGGAAACTTCCTTTGCCTACCAC -ACGGAAACTTCCTTTGCCCAGAAC -ACGGAAACTTCCTTTGCCGTCTAC -ACGGAAACTTCCTTTGCCACGTAC -ACGGAAACTTCCTTTGCCAGTGAC -ACGGAAACTTCCTTTGCCCTGTAG -ACGGAAACTTCCTTTGCCCCTAAG -ACGGAAACTTCCTTTGCCGTTCAG -ACGGAAACTTCCTTTGCCGCATAG -ACGGAAACTTCCTTTGCCGACAAG -ACGGAAACTTCCTTTGCCAAGCAG -ACGGAAACTTCCTTTGCCCGTCAA -ACGGAAACTTCCTTTGCCGCTGAA -ACGGAAACTTCCTTTGCCAGTACG -ACGGAAACTTCCTTTGCCATCCGA -ACGGAAACTTCCTTTGCCATGGGA -ACGGAAACTTCCTTTGCCGTGCAA -ACGGAAACTTCCTTTGCCGAGGAA -ACGGAAACTTCCTTTGCCCAGGTA -ACGGAAACTTCCTTTGCCGACTCT -ACGGAAACTTCCTTTGCCAGTCCT -ACGGAAACTTCCTTTGCCTAAGCC -ACGGAAACTTCCTTTGCCATAGCC -ACGGAAACTTCCTTTGCCTAACCG -ACGGAAACTTCCTTTGCCATGCCA -ACGGAAACTTCCCTTGGTGGAAAC -ACGGAAACTTCCCTTGGTAACACC -ACGGAAACTTCCCTTGGTATCGAG -ACGGAAACTTCCCTTGGTCTCCTT -ACGGAAACTTCCCTTGGTCCTGTT -ACGGAAACTTCCCTTGGTCGGTTT -ACGGAAACTTCCCTTGGTGTGGTT -ACGGAAACTTCCCTTGGTGCCTTT -ACGGAAACTTCCCTTGGTGGTCTT -ACGGAAACTTCCCTTGGTACGCTT -ACGGAAACTTCCCTTGGTAGCGTT -ACGGAAACTTCCCTTGGTTTCGTC -ACGGAAACTTCCCTTGGTTCTCTC -ACGGAAACTTCCCTTGGTTGGATC -ACGGAAACTTCCCTTGGTCACTTC -ACGGAAACTTCCCTTGGTGTACTC -ACGGAAACTTCCCTTGGTGATGTC -ACGGAAACTTCCCTTGGTACAGTC -ACGGAAACTTCCCTTGGTTTGCTG -ACGGAAACTTCCCTTGGTTCCATG -ACGGAAACTTCCCTTGGTTGTGTG -ACGGAAACTTCCCTTGGTCTAGTG -ACGGAAACTTCCCTTGGTCATCTG -ACGGAAACTTCCCTTGGTGAGTTG -ACGGAAACTTCCCTTGGTAGACTG -ACGGAAACTTCCCTTGGTTCGGTA -ACGGAAACTTCCCTTGGTTGCCTA -ACGGAAACTTCCCTTGGTCCACTA -ACGGAAACTTCCCTTGGTGGAGTA -ACGGAAACTTCCCTTGGTTCGTCT -ACGGAAACTTCCCTTGGTTGCACT -ACGGAAACTTCCCTTGGTCTGACT -ACGGAAACTTCCCTTGGTCAACCT -ACGGAAACTTCCCTTGGTGCTACT -ACGGAAACTTCCCTTGGTGGATCT -ACGGAAACTTCCCTTGGTAAGGCT -ACGGAAACTTCCCTTGGTTCAACC -ACGGAAACTTCCCTTGGTTGTTCC -ACGGAAACTTCCCTTGGTATTCCC -ACGGAAACTTCCCTTGGTTTCTCG -ACGGAAACTTCCCTTGGTTAGACG -ACGGAAACTTCCCTTGGTGTAACG -ACGGAAACTTCCCTTGGTACTTCG -ACGGAAACTTCCCTTGGTTACGCA -ACGGAAACTTCCCTTGGTCTTGCA -ACGGAAACTTCCCTTGGTCGAACA -ACGGAAACTTCCCTTGGTCAGTCA -ACGGAAACTTCCCTTGGTGATCCA -ACGGAAACTTCCCTTGGTACGACA -ACGGAAACTTCCCTTGGTAGCTCA -ACGGAAACTTCCCTTGGTTCACGT -ACGGAAACTTCCCTTGGTCGTAGT -ACGGAAACTTCCCTTGGTGTCAGT -ACGGAAACTTCCCTTGGTGAAGGT -ACGGAAACTTCCCTTGGTAACCGT -ACGGAAACTTCCCTTGGTTTGTGC -ACGGAAACTTCCCTTGGTCTAAGC -ACGGAAACTTCCCTTGGTACTAGC -ACGGAAACTTCCCTTGGTAGATGC -ACGGAAACTTCCCTTGGTTGAAGG -ACGGAAACTTCCCTTGGTCAATGG -ACGGAAACTTCCCTTGGTATGAGG -ACGGAAACTTCCCTTGGTAATGGG -ACGGAAACTTCCCTTGGTTCCTGA -ACGGAAACTTCCCTTGGTTAGCGA -ACGGAAACTTCCCTTGGTCACAGA -ACGGAAACTTCCCTTGGTGCAAGA -ACGGAAACTTCCCTTGGTGGTTGA -ACGGAAACTTCCCTTGGTTCCGAT -ACGGAAACTTCCCTTGGTTGGCAT -ACGGAAACTTCCCTTGGTCGAGAT -ACGGAAACTTCCCTTGGTTACCAC -ACGGAAACTTCCCTTGGTCAGAAC -ACGGAAACTTCCCTTGGTGTCTAC -ACGGAAACTTCCCTTGGTACGTAC -ACGGAAACTTCCCTTGGTAGTGAC -ACGGAAACTTCCCTTGGTCTGTAG -ACGGAAACTTCCCTTGGTCCTAAG -ACGGAAACTTCCCTTGGTGTTCAG -ACGGAAACTTCCCTTGGTGCATAG -ACGGAAACTTCCCTTGGTGACAAG -ACGGAAACTTCCCTTGGTAAGCAG -ACGGAAACTTCCCTTGGTCGTCAA -ACGGAAACTTCCCTTGGTGCTGAA -ACGGAAACTTCCCTTGGTAGTACG -ACGGAAACTTCCCTTGGTATCCGA -ACGGAAACTTCCCTTGGTATGGGA -ACGGAAACTTCCCTTGGTGTGCAA -ACGGAAACTTCCCTTGGTGAGGAA -ACGGAAACTTCCCTTGGTCAGGTA -ACGGAAACTTCCCTTGGTGACTCT -ACGGAAACTTCCCTTGGTAGTCCT -ACGGAAACTTCCCTTGGTTAAGCC -ACGGAAACTTCCCTTGGTATAGCC -ACGGAAACTTCCCTTGGTTAACCG -ACGGAAACTTCCCTTGGTATGCCA -ACGGAAACTTCCCTTACGGGAAAC -ACGGAAACTTCCCTTACGAACACC -ACGGAAACTTCCCTTACGATCGAG -ACGGAAACTTCCCTTACGCTCCTT -ACGGAAACTTCCCTTACGCCTGTT -ACGGAAACTTCCCTTACGCGGTTT -ACGGAAACTTCCCTTACGGTGGTT -ACGGAAACTTCCCTTACGGCCTTT -ACGGAAACTTCCCTTACGGGTCTT -ACGGAAACTTCCCTTACGACGCTT -ACGGAAACTTCCCTTACGAGCGTT -ACGGAAACTTCCCTTACGTTCGTC -ACGGAAACTTCCCTTACGTCTCTC -ACGGAAACTTCCCTTACGTGGATC -ACGGAAACTTCCCTTACGCACTTC -ACGGAAACTTCCCTTACGGTACTC -ACGGAAACTTCCCTTACGGATGTC -ACGGAAACTTCCCTTACGACAGTC -ACGGAAACTTCCCTTACGTTGCTG -ACGGAAACTTCCCTTACGTCCATG -ACGGAAACTTCCCTTACGTGTGTG -ACGGAAACTTCCCTTACGCTAGTG -ACGGAAACTTCCCTTACGCATCTG -ACGGAAACTTCCCTTACGGAGTTG -ACGGAAACTTCCCTTACGAGACTG -ACGGAAACTTCCCTTACGTCGGTA -ACGGAAACTTCCCTTACGTGCCTA -ACGGAAACTTCCCTTACGCCACTA -ACGGAAACTTCCCTTACGGGAGTA -ACGGAAACTTCCCTTACGTCGTCT -ACGGAAACTTCCCTTACGTGCACT -ACGGAAACTTCCCTTACGCTGACT -ACGGAAACTTCCCTTACGCAACCT -ACGGAAACTTCCCTTACGGCTACT -ACGGAAACTTCCCTTACGGGATCT -ACGGAAACTTCCCTTACGAAGGCT -ACGGAAACTTCCCTTACGTCAACC -ACGGAAACTTCCCTTACGTGTTCC -ACGGAAACTTCCCTTACGATTCCC -ACGGAAACTTCCCTTACGTTCTCG -ACGGAAACTTCCCTTACGTAGACG -ACGGAAACTTCCCTTACGGTAACG -ACGGAAACTTCCCTTACGACTTCG -ACGGAAACTTCCCTTACGTACGCA -ACGGAAACTTCCCTTACGCTTGCA -ACGGAAACTTCCCTTACGCGAACA -ACGGAAACTTCCCTTACGCAGTCA -ACGGAAACTTCCCTTACGGATCCA -ACGGAAACTTCCCTTACGACGACA -ACGGAAACTTCCCTTACGAGCTCA -ACGGAAACTTCCCTTACGTCACGT -ACGGAAACTTCCCTTACGCGTAGT -ACGGAAACTTCCCTTACGGTCAGT -ACGGAAACTTCCCTTACGGAAGGT -ACGGAAACTTCCCTTACGAACCGT -ACGGAAACTTCCCTTACGTTGTGC -ACGGAAACTTCCCTTACGCTAAGC -ACGGAAACTTCCCTTACGACTAGC -ACGGAAACTTCCCTTACGAGATGC -ACGGAAACTTCCCTTACGTGAAGG -ACGGAAACTTCCCTTACGCAATGG -ACGGAAACTTCCCTTACGATGAGG -ACGGAAACTTCCCTTACGAATGGG -ACGGAAACTTCCCTTACGTCCTGA -ACGGAAACTTCCCTTACGTAGCGA -ACGGAAACTTCCCTTACGCACAGA -ACGGAAACTTCCCTTACGGCAAGA -ACGGAAACTTCCCTTACGGGTTGA -ACGGAAACTTCCCTTACGTCCGAT -ACGGAAACTTCCCTTACGTGGCAT -ACGGAAACTTCCCTTACGCGAGAT -ACGGAAACTTCCCTTACGTACCAC -ACGGAAACTTCCCTTACGCAGAAC -ACGGAAACTTCCCTTACGGTCTAC -ACGGAAACTTCCCTTACGACGTAC -ACGGAAACTTCCCTTACGAGTGAC -ACGGAAACTTCCCTTACGCTGTAG -ACGGAAACTTCCCTTACGCCTAAG -ACGGAAACTTCCCTTACGGTTCAG -ACGGAAACTTCCCTTACGGCATAG -ACGGAAACTTCCCTTACGGACAAG -ACGGAAACTTCCCTTACGAAGCAG -ACGGAAACTTCCCTTACGCGTCAA -ACGGAAACTTCCCTTACGGCTGAA -ACGGAAACTTCCCTTACGAGTACG -ACGGAAACTTCCCTTACGATCCGA -ACGGAAACTTCCCTTACGATGGGA -ACGGAAACTTCCCTTACGGTGCAA -ACGGAAACTTCCCTTACGGAGGAA -ACGGAAACTTCCCTTACGCAGGTA -ACGGAAACTTCCCTTACGGACTCT -ACGGAAACTTCCCTTACGAGTCCT -ACGGAAACTTCCCTTACGTAAGCC -ACGGAAACTTCCCTTACGATAGCC -ACGGAAACTTCCCTTACGTAACCG -ACGGAAACTTCCCTTACGATGCCA -ACGGAAACTTCCGTTAGCGGAAAC -ACGGAAACTTCCGTTAGCAACACC -ACGGAAACTTCCGTTAGCATCGAG -ACGGAAACTTCCGTTAGCCTCCTT -ACGGAAACTTCCGTTAGCCCTGTT -ACGGAAACTTCCGTTAGCCGGTTT -ACGGAAACTTCCGTTAGCGTGGTT -ACGGAAACTTCCGTTAGCGCCTTT -ACGGAAACTTCCGTTAGCGGTCTT -ACGGAAACTTCCGTTAGCACGCTT -ACGGAAACTTCCGTTAGCAGCGTT -ACGGAAACTTCCGTTAGCTTCGTC -ACGGAAACTTCCGTTAGCTCTCTC -ACGGAAACTTCCGTTAGCTGGATC -ACGGAAACTTCCGTTAGCCACTTC -ACGGAAACTTCCGTTAGCGTACTC -ACGGAAACTTCCGTTAGCGATGTC -ACGGAAACTTCCGTTAGCACAGTC -ACGGAAACTTCCGTTAGCTTGCTG -ACGGAAACTTCCGTTAGCTCCATG -ACGGAAACTTCCGTTAGCTGTGTG -ACGGAAACTTCCGTTAGCCTAGTG -ACGGAAACTTCCGTTAGCCATCTG -ACGGAAACTTCCGTTAGCGAGTTG -ACGGAAACTTCCGTTAGCAGACTG -ACGGAAACTTCCGTTAGCTCGGTA -ACGGAAACTTCCGTTAGCTGCCTA -ACGGAAACTTCCGTTAGCCCACTA -ACGGAAACTTCCGTTAGCGGAGTA -ACGGAAACTTCCGTTAGCTCGTCT -ACGGAAACTTCCGTTAGCTGCACT -ACGGAAACTTCCGTTAGCCTGACT -ACGGAAACTTCCGTTAGCCAACCT -ACGGAAACTTCCGTTAGCGCTACT -ACGGAAACTTCCGTTAGCGGATCT -ACGGAAACTTCCGTTAGCAAGGCT -ACGGAAACTTCCGTTAGCTCAACC -ACGGAAACTTCCGTTAGCTGTTCC -ACGGAAACTTCCGTTAGCATTCCC -ACGGAAACTTCCGTTAGCTTCTCG -ACGGAAACTTCCGTTAGCTAGACG -ACGGAAACTTCCGTTAGCGTAACG -ACGGAAACTTCCGTTAGCACTTCG -ACGGAAACTTCCGTTAGCTACGCA -ACGGAAACTTCCGTTAGCCTTGCA -ACGGAAACTTCCGTTAGCCGAACA -ACGGAAACTTCCGTTAGCCAGTCA -ACGGAAACTTCCGTTAGCGATCCA -ACGGAAACTTCCGTTAGCACGACA -ACGGAAACTTCCGTTAGCAGCTCA -ACGGAAACTTCCGTTAGCTCACGT -ACGGAAACTTCCGTTAGCCGTAGT -ACGGAAACTTCCGTTAGCGTCAGT -ACGGAAACTTCCGTTAGCGAAGGT -ACGGAAACTTCCGTTAGCAACCGT -ACGGAAACTTCCGTTAGCTTGTGC -ACGGAAACTTCCGTTAGCCTAAGC -ACGGAAACTTCCGTTAGCACTAGC -ACGGAAACTTCCGTTAGCAGATGC -ACGGAAACTTCCGTTAGCTGAAGG -ACGGAAACTTCCGTTAGCCAATGG -ACGGAAACTTCCGTTAGCATGAGG -ACGGAAACTTCCGTTAGCAATGGG -ACGGAAACTTCCGTTAGCTCCTGA -ACGGAAACTTCCGTTAGCTAGCGA -ACGGAAACTTCCGTTAGCCACAGA -ACGGAAACTTCCGTTAGCGCAAGA -ACGGAAACTTCCGTTAGCGGTTGA -ACGGAAACTTCCGTTAGCTCCGAT -ACGGAAACTTCCGTTAGCTGGCAT -ACGGAAACTTCCGTTAGCCGAGAT -ACGGAAACTTCCGTTAGCTACCAC -ACGGAAACTTCCGTTAGCCAGAAC -ACGGAAACTTCCGTTAGCGTCTAC -ACGGAAACTTCCGTTAGCACGTAC -ACGGAAACTTCCGTTAGCAGTGAC -ACGGAAACTTCCGTTAGCCTGTAG -ACGGAAACTTCCGTTAGCCCTAAG -ACGGAAACTTCCGTTAGCGTTCAG -ACGGAAACTTCCGTTAGCGCATAG -ACGGAAACTTCCGTTAGCGACAAG -ACGGAAACTTCCGTTAGCAAGCAG -ACGGAAACTTCCGTTAGCCGTCAA -ACGGAAACTTCCGTTAGCGCTGAA -ACGGAAACTTCCGTTAGCAGTACG -ACGGAAACTTCCGTTAGCATCCGA -ACGGAAACTTCCGTTAGCATGGGA -ACGGAAACTTCCGTTAGCGTGCAA -ACGGAAACTTCCGTTAGCGAGGAA -ACGGAAACTTCCGTTAGCCAGGTA -ACGGAAACTTCCGTTAGCGACTCT -ACGGAAACTTCCGTTAGCAGTCCT -ACGGAAACTTCCGTTAGCTAAGCC -ACGGAAACTTCCGTTAGCATAGCC -ACGGAAACTTCCGTTAGCTAACCG -ACGGAAACTTCCGTTAGCATGCCA -ACGGAAACTTCCGTCTTCGGAAAC -ACGGAAACTTCCGTCTTCAACACC -ACGGAAACTTCCGTCTTCATCGAG -ACGGAAACTTCCGTCTTCCTCCTT -ACGGAAACTTCCGTCTTCCCTGTT -ACGGAAACTTCCGTCTTCCGGTTT -ACGGAAACTTCCGTCTTCGTGGTT -ACGGAAACTTCCGTCTTCGCCTTT -ACGGAAACTTCCGTCTTCGGTCTT -ACGGAAACTTCCGTCTTCACGCTT -ACGGAAACTTCCGTCTTCAGCGTT -ACGGAAACTTCCGTCTTCTTCGTC -ACGGAAACTTCCGTCTTCTCTCTC -ACGGAAACTTCCGTCTTCTGGATC -ACGGAAACTTCCGTCTTCCACTTC -ACGGAAACTTCCGTCTTCGTACTC -ACGGAAACTTCCGTCTTCGATGTC -ACGGAAACTTCCGTCTTCACAGTC -ACGGAAACTTCCGTCTTCTTGCTG -ACGGAAACTTCCGTCTTCTCCATG -ACGGAAACTTCCGTCTTCTGTGTG -ACGGAAACTTCCGTCTTCCTAGTG -ACGGAAACTTCCGTCTTCCATCTG -ACGGAAACTTCCGTCTTCGAGTTG -ACGGAAACTTCCGTCTTCAGACTG -ACGGAAACTTCCGTCTTCTCGGTA -ACGGAAACTTCCGTCTTCTGCCTA -ACGGAAACTTCCGTCTTCCCACTA -ACGGAAACTTCCGTCTTCGGAGTA -ACGGAAACTTCCGTCTTCTCGTCT -ACGGAAACTTCCGTCTTCTGCACT -ACGGAAACTTCCGTCTTCCTGACT -ACGGAAACTTCCGTCTTCCAACCT -ACGGAAACTTCCGTCTTCGCTACT -ACGGAAACTTCCGTCTTCGGATCT -ACGGAAACTTCCGTCTTCAAGGCT -ACGGAAACTTCCGTCTTCTCAACC -ACGGAAACTTCCGTCTTCTGTTCC -ACGGAAACTTCCGTCTTCATTCCC -ACGGAAACTTCCGTCTTCTTCTCG -ACGGAAACTTCCGTCTTCTAGACG -ACGGAAACTTCCGTCTTCGTAACG -ACGGAAACTTCCGTCTTCACTTCG -ACGGAAACTTCCGTCTTCTACGCA -ACGGAAACTTCCGTCTTCCTTGCA -ACGGAAACTTCCGTCTTCCGAACA -ACGGAAACTTCCGTCTTCCAGTCA -ACGGAAACTTCCGTCTTCGATCCA -ACGGAAACTTCCGTCTTCACGACA -ACGGAAACTTCCGTCTTCAGCTCA -ACGGAAACTTCCGTCTTCTCACGT -ACGGAAACTTCCGTCTTCCGTAGT -ACGGAAACTTCCGTCTTCGTCAGT -ACGGAAACTTCCGTCTTCGAAGGT -ACGGAAACTTCCGTCTTCAACCGT -ACGGAAACTTCCGTCTTCTTGTGC -ACGGAAACTTCCGTCTTCCTAAGC -ACGGAAACTTCCGTCTTCACTAGC -ACGGAAACTTCCGTCTTCAGATGC -ACGGAAACTTCCGTCTTCTGAAGG -ACGGAAACTTCCGTCTTCCAATGG -ACGGAAACTTCCGTCTTCATGAGG -ACGGAAACTTCCGTCTTCAATGGG -ACGGAAACTTCCGTCTTCTCCTGA -ACGGAAACTTCCGTCTTCTAGCGA -ACGGAAACTTCCGTCTTCCACAGA -ACGGAAACTTCCGTCTTCGCAAGA -ACGGAAACTTCCGTCTTCGGTTGA -ACGGAAACTTCCGTCTTCTCCGAT -ACGGAAACTTCCGTCTTCTGGCAT -ACGGAAACTTCCGTCTTCCGAGAT -ACGGAAACTTCCGTCTTCTACCAC -ACGGAAACTTCCGTCTTCCAGAAC -ACGGAAACTTCCGTCTTCGTCTAC -ACGGAAACTTCCGTCTTCACGTAC -ACGGAAACTTCCGTCTTCAGTGAC -ACGGAAACTTCCGTCTTCCTGTAG -ACGGAAACTTCCGTCTTCCCTAAG -ACGGAAACTTCCGTCTTCGTTCAG -ACGGAAACTTCCGTCTTCGCATAG -ACGGAAACTTCCGTCTTCGACAAG -ACGGAAACTTCCGTCTTCAAGCAG -ACGGAAACTTCCGTCTTCCGTCAA -ACGGAAACTTCCGTCTTCGCTGAA -ACGGAAACTTCCGTCTTCAGTACG -ACGGAAACTTCCGTCTTCATCCGA -ACGGAAACTTCCGTCTTCATGGGA -ACGGAAACTTCCGTCTTCGTGCAA -ACGGAAACTTCCGTCTTCGAGGAA -ACGGAAACTTCCGTCTTCCAGGTA -ACGGAAACTTCCGTCTTCGACTCT -ACGGAAACTTCCGTCTTCAGTCCT -ACGGAAACTTCCGTCTTCTAAGCC -ACGGAAACTTCCGTCTTCATAGCC -ACGGAAACTTCCGTCTTCTAACCG -ACGGAAACTTCCGTCTTCATGCCA -ACGGAAACTTCCCTCTCTGGAAAC -ACGGAAACTTCCCTCTCTAACACC -ACGGAAACTTCCCTCTCTATCGAG -ACGGAAACTTCCCTCTCTCTCCTT -ACGGAAACTTCCCTCTCTCCTGTT -ACGGAAACTTCCCTCTCTCGGTTT -ACGGAAACTTCCCTCTCTGTGGTT -ACGGAAACTTCCCTCTCTGCCTTT -ACGGAAACTTCCCTCTCTGGTCTT -ACGGAAACTTCCCTCTCTACGCTT -ACGGAAACTTCCCTCTCTAGCGTT -ACGGAAACTTCCCTCTCTTTCGTC -ACGGAAACTTCCCTCTCTTCTCTC -ACGGAAACTTCCCTCTCTTGGATC -ACGGAAACTTCCCTCTCTCACTTC -ACGGAAACTTCCCTCTCTGTACTC -ACGGAAACTTCCCTCTCTGATGTC -ACGGAAACTTCCCTCTCTACAGTC -ACGGAAACTTCCCTCTCTTTGCTG -ACGGAAACTTCCCTCTCTTCCATG -ACGGAAACTTCCCTCTCTTGTGTG -ACGGAAACTTCCCTCTCTCTAGTG -ACGGAAACTTCCCTCTCTCATCTG -ACGGAAACTTCCCTCTCTGAGTTG -ACGGAAACTTCCCTCTCTAGACTG -ACGGAAACTTCCCTCTCTTCGGTA -ACGGAAACTTCCCTCTCTTGCCTA -ACGGAAACTTCCCTCTCTCCACTA -ACGGAAACTTCCCTCTCTGGAGTA -ACGGAAACTTCCCTCTCTTCGTCT -ACGGAAACTTCCCTCTCTTGCACT -ACGGAAACTTCCCTCTCTCTGACT -ACGGAAACTTCCCTCTCTCAACCT -ACGGAAACTTCCCTCTCTGCTACT -ACGGAAACTTCCCTCTCTGGATCT -ACGGAAACTTCCCTCTCTAAGGCT -ACGGAAACTTCCCTCTCTTCAACC -ACGGAAACTTCCCTCTCTTGTTCC -ACGGAAACTTCCCTCTCTATTCCC -ACGGAAACTTCCCTCTCTTTCTCG -ACGGAAACTTCCCTCTCTTAGACG -ACGGAAACTTCCCTCTCTGTAACG -ACGGAAACTTCCCTCTCTACTTCG -ACGGAAACTTCCCTCTCTTACGCA -ACGGAAACTTCCCTCTCTCTTGCA -ACGGAAACTTCCCTCTCTCGAACA -ACGGAAACTTCCCTCTCTCAGTCA -ACGGAAACTTCCCTCTCTGATCCA -ACGGAAACTTCCCTCTCTACGACA -ACGGAAACTTCCCTCTCTAGCTCA -ACGGAAACTTCCCTCTCTTCACGT -ACGGAAACTTCCCTCTCTCGTAGT -ACGGAAACTTCCCTCTCTGTCAGT -ACGGAAACTTCCCTCTCTGAAGGT -ACGGAAACTTCCCTCTCTAACCGT -ACGGAAACTTCCCTCTCTTTGTGC -ACGGAAACTTCCCTCTCTCTAAGC -ACGGAAACTTCCCTCTCTACTAGC -ACGGAAACTTCCCTCTCTAGATGC -ACGGAAACTTCCCTCTCTTGAAGG -ACGGAAACTTCCCTCTCTCAATGG -ACGGAAACTTCCCTCTCTATGAGG -ACGGAAACTTCCCTCTCTAATGGG -ACGGAAACTTCCCTCTCTTCCTGA -ACGGAAACTTCCCTCTCTTAGCGA -ACGGAAACTTCCCTCTCTCACAGA -ACGGAAACTTCCCTCTCTGCAAGA -ACGGAAACTTCCCTCTCTGGTTGA -ACGGAAACTTCCCTCTCTTCCGAT -ACGGAAACTTCCCTCTCTTGGCAT -ACGGAAACTTCCCTCTCTCGAGAT -ACGGAAACTTCCCTCTCTTACCAC -ACGGAAACTTCCCTCTCTCAGAAC -ACGGAAACTTCCCTCTCTGTCTAC -ACGGAAACTTCCCTCTCTACGTAC -ACGGAAACTTCCCTCTCTAGTGAC -ACGGAAACTTCCCTCTCTCTGTAG -ACGGAAACTTCCCTCTCTCCTAAG -ACGGAAACTTCCCTCTCTGTTCAG -ACGGAAACTTCCCTCTCTGCATAG -ACGGAAACTTCCCTCTCTGACAAG -ACGGAAACTTCCCTCTCTAAGCAG -ACGGAAACTTCCCTCTCTCGTCAA -ACGGAAACTTCCCTCTCTGCTGAA -ACGGAAACTTCCCTCTCTAGTACG -ACGGAAACTTCCCTCTCTATCCGA -ACGGAAACTTCCCTCTCTATGGGA -ACGGAAACTTCCCTCTCTGTGCAA -ACGGAAACTTCCCTCTCTGAGGAA -ACGGAAACTTCCCTCTCTCAGGTA -ACGGAAACTTCCCTCTCTGACTCT -ACGGAAACTTCCCTCTCTAGTCCT -ACGGAAACTTCCCTCTCTTAAGCC -ACGGAAACTTCCCTCTCTATAGCC -ACGGAAACTTCCCTCTCTTAACCG -ACGGAAACTTCCCTCTCTATGCCA -ACGGAAACTTCCATCTGGGGAAAC -ACGGAAACTTCCATCTGGAACACC -ACGGAAACTTCCATCTGGATCGAG -ACGGAAACTTCCATCTGGCTCCTT -ACGGAAACTTCCATCTGGCCTGTT -ACGGAAACTTCCATCTGGCGGTTT -ACGGAAACTTCCATCTGGGTGGTT -ACGGAAACTTCCATCTGGGCCTTT -ACGGAAACTTCCATCTGGGGTCTT -ACGGAAACTTCCATCTGGACGCTT -ACGGAAACTTCCATCTGGAGCGTT -ACGGAAACTTCCATCTGGTTCGTC -ACGGAAACTTCCATCTGGTCTCTC -ACGGAAACTTCCATCTGGTGGATC -ACGGAAACTTCCATCTGGCACTTC -ACGGAAACTTCCATCTGGGTACTC -ACGGAAACTTCCATCTGGGATGTC -ACGGAAACTTCCATCTGGACAGTC -ACGGAAACTTCCATCTGGTTGCTG -ACGGAAACTTCCATCTGGTCCATG -ACGGAAACTTCCATCTGGTGTGTG -ACGGAAACTTCCATCTGGCTAGTG -ACGGAAACTTCCATCTGGCATCTG -ACGGAAACTTCCATCTGGGAGTTG -ACGGAAACTTCCATCTGGAGACTG -ACGGAAACTTCCATCTGGTCGGTA -ACGGAAACTTCCATCTGGTGCCTA -ACGGAAACTTCCATCTGGCCACTA -ACGGAAACTTCCATCTGGGGAGTA -ACGGAAACTTCCATCTGGTCGTCT -ACGGAAACTTCCATCTGGTGCACT -ACGGAAACTTCCATCTGGCTGACT -ACGGAAACTTCCATCTGGCAACCT -ACGGAAACTTCCATCTGGGCTACT -ACGGAAACTTCCATCTGGGGATCT -ACGGAAACTTCCATCTGGAAGGCT -ACGGAAACTTCCATCTGGTCAACC -ACGGAAACTTCCATCTGGTGTTCC -ACGGAAACTTCCATCTGGATTCCC -ACGGAAACTTCCATCTGGTTCTCG -ACGGAAACTTCCATCTGGTAGACG -ACGGAAACTTCCATCTGGGTAACG -ACGGAAACTTCCATCTGGACTTCG -ACGGAAACTTCCATCTGGTACGCA -ACGGAAACTTCCATCTGGCTTGCA -ACGGAAACTTCCATCTGGCGAACA -ACGGAAACTTCCATCTGGCAGTCA -ACGGAAACTTCCATCTGGGATCCA -ACGGAAACTTCCATCTGGACGACA -ACGGAAACTTCCATCTGGAGCTCA -ACGGAAACTTCCATCTGGTCACGT -ACGGAAACTTCCATCTGGCGTAGT -ACGGAAACTTCCATCTGGGTCAGT -ACGGAAACTTCCATCTGGGAAGGT -ACGGAAACTTCCATCTGGAACCGT -ACGGAAACTTCCATCTGGTTGTGC -ACGGAAACTTCCATCTGGCTAAGC -ACGGAAACTTCCATCTGGACTAGC -ACGGAAACTTCCATCTGGAGATGC -ACGGAAACTTCCATCTGGTGAAGG -ACGGAAACTTCCATCTGGCAATGG -ACGGAAACTTCCATCTGGATGAGG -ACGGAAACTTCCATCTGGAATGGG -ACGGAAACTTCCATCTGGTCCTGA -ACGGAAACTTCCATCTGGTAGCGA -ACGGAAACTTCCATCTGGCACAGA -ACGGAAACTTCCATCTGGGCAAGA -ACGGAAACTTCCATCTGGGGTTGA -ACGGAAACTTCCATCTGGTCCGAT -ACGGAAACTTCCATCTGGTGGCAT -ACGGAAACTTCCATCTGGCGAGAT -ACGGAAACTTCCATCTGGTACCAC -ACGGAAACTTCCATCTGGCAGAAC -ACGGAAACTTCCATCTGGGTCTAC -ACGGAAACTTCCATCTGGACGTAC -ACGGAAACTTCCATCTGGAGTGAC -ACGGAAACTTCCATCTGGCTGTAG -ACGGAAACTTCCATCTGGCCTAAG -ACGGAAACTTCCATCTGGGTTCAG -ACGGAAACTTCCATCTGGGCATAG -ACGGAAACTTCCATCTGGGACAAG -ACGGAAACTTCCATCTGGAAGCAG -ACGGAAACTTCCATCTGGCGTCAA -ACGGAAACTTCCATCTGGGCTGAA -ACGGAAACTTCCATCTGGAGTACG -ACGGAAACTTCCATCTGGATCCGA -ACGGAAACTTCCATCTGGATGGGA -ACGGAAACTTCCATCTGGGTGCAA -ACGGAAACTTCCATCTGGGAGGAA -ACGGAAACTTCCATCTGGCAGGTA -ACGGAAACTTCCATCTGGGACTCT -ACGGAAACTTCCATCTGGAGTCCT -ACGGAAACTTCCATCTGGTAAGCC -ACGGAAACTTCCATCTGGATAGCC -ACGGAAACTTCCATCTGGTAACCG -ACGGAAACTTCCATCTGGATGCCA -ACGGAAACTTCCTTCCACGGAAAC -ACGGAAACTTCCTTCCACAACACC -ACGGAAACTTCCTTCCACATCGAG -ACGGAAACTTCCTTCCACCTCCTT -ACGGAAACTTCCTTCCACCCTGTT -ACGGAAACTTCCTTCCACCGGTTT -ACGGAAACTTCCTTCCACGTGGTT -ACGGAAACTTCCTTCCACGCCTTT -ACGGAAACTTCCTTCCACGGTCTT -ACGGAAACTTCCTTCCACACGCTT -ACGGAAACTTCCTTCCACAGCGTT -ACGGAAACTTCCTTCCACTTCGTC -ACGGAAACTTCCTTCCACTCTCTC -ACGGAAACTTCCTTCCACTGGATC -ACGGAAACTTCCTTCCACCACTTC -ACGGAAACTTCCTTCCACGTACTC -ACGGAAACTTCCTTCCACGATGTC -ACGGAAACTTCCTTCCACACAGTC -ACGGAAACTTCCTTCCACTTGCTG -ACGGAAACTTCCTTCCACTCCATG -ACGGAAACTTCCTTCCACTGTGTG -ACGGAAACTTCCTTCCACCTAGTG -ACGGAAACTTCCTTCCACCATCTG -ACGGAAACTTCCTTCCACGAGTTG -ACGGAAACTTCCTTCCACAGACTG -ACGGAAACTTCCTTCCACTCGGTA -ACGGAAACTTCCTTCCACTGCCTA -ACGGAAACTTCCTTCCACCCACTA -ACGGAAACTTCCTTCCACGGAGTA -ACGGAAACTTCCTTCCACTCGTCT -ACGGAAACTTCCTTCCACTGCACT -ACGGAAACTTCCTTCCACCTGACT -ACGGAAACTTCCTTCCACCAACCT -ACGGAAACTTCCTTCCACGCTACT -ACGGAAACTTCCTTCCACGGATCT -ACGGAAACTTCCTTCCACAAGGCT -ACGGAAACTTCCTTCCACTCAACC -ACGGAAACTTCCTTCCACTGTTCC -ACGGAAACTTCCTTCCACATTCCC -ACGGAAACTTCCTTCCACTTCTCG -ACGGAAACTTCCTTCCACTAGACG -ACGGAAACTTCCTTCCACGTAACG -ACGGAAACTTCCTTCCACACTTCG -ACGGAAACTTCCTTCCACTACGCA -ACGGAAACTTCCTTCCACCTTGCA -ACGGAAACTTCCTTCCACCGAACA -ACGGAAACTTCCTTCCACCAGTCA -ACGGAAACTTCCTTCCACGATCCA -ACGGAAACTTCCTTCCACACGACA -ACGGAAACTTCCTTCCACAGCTCA -ACGGAAACTTCCTTCCACTCACGT -ACGGAAACTTCCTTCCACCGTAGT -ACGGAAACTTCCTTCCACGTCAGT -ACGGAAACTTCCTTCCACGAAGGT -ACGGAAACTTCCTTCCACAACCGT -ACGGAAACTTCCTTCCACTTGTGC -ACGGAAACTTCCTTCCACCTAAGC -ACGGAAACTTCCTTCCACACTAGC -ACGGAAACTTCCTTCCACAGATGC -ACGGAAACTTCCTTCCACTGAAGG -ACGGAAACTTCCTTCCACCAATGG -ACGGAAACTTCCTTCCACATGAGG -ACGGAAACTTCCTTCCACAATGGG -ACGGAAACTTCCTTCCACTCCTGA -ACGGAAACTTCCTTCCACTAGCGA -ACGGAAACTTCCTTCCACCACAGA -ACGGAAACTTCCTTCCACGCAAGA -ACGGAAACTTCCTTCCACGGTTGA -ACGGAAACTTCCTTCCACTCCGAT -ACGGAAACTTCCTTCCACTGGCAT -ACGGAAACTTCCTTCCACCGAGAT -ACGGAAACTTCCTTCCACTACCAC -ACGGAAACTTCCTTCCACCAGAAC -ACGGAAACTTCCTTCCACGTCTAC -ACGGAAACTTCCTTCCACACGTAC -ACGGAAACTTCCTTCCACAGTGAC -ACGGAAACTTCCTTCCACCTGTAG -ACGGAAACTTCCTTCCACCCTAAG -ACGGAAACTTCCTTCCACGTTCAG -ACGGAAACTTCCTTCCACGCATAG -ACGGAAACTTCCTTCCACGACAAG -ACGGAAACTTCCTTCCACAAGCAG -ACGGAAACTTCCTTCCACCGTCAA -ACGGAAACTTCCTTCCACGCTGAA -ACGGAAACTTCCTTCCACAGTACG -ACGGAAACTTCCTTCCACATCCGA -ACGGAAACTTCCTTCCACATGGGA -ACGGAAACTTCCTTCCACGTGCAA -ACGGAAACTTCCTTCCACGAGGAA -ACGGAAACTTCCTTCCACCAGGTA -ACGGAAACTTCCTTCCACGACTCT -ACGGAAACTTCCTTCCACAGTCCT -ACGGAAACTTCCTTCCACTAAGCC -ACGGAAACTTCCTTCCACATAGCC -ACGGAAACTTCCTTCCACTAACCG -ACGGAAACTTCCTTCCACATGCCA -ACGGAAACTTCCCTCGTAGGAAAC -ACGGAAACTTCCCTCGTAAACACC -ACGGAAACTTCCCTCGTAATCGAG -ACGGAAACTTCCCTCGTACTCCTT -ACGGAAACTTCCCTCGTACCTGTT -ACGGAAACTTCCCTCGTACGGTTT -ACGGAAACTTCCCTCGTAGTGGTT -ACGGAAACTTCCCTCGTAGCCTTT -ACGGAAACTTCCCTCGTAGGTCTT -ACGGAAACTTCCCTCGTAACGCTT -ACGGAAACTTCCCTCGTAAGCGTT -ACGGAAACTTCCCTCGTATTCGTC -ACGGAAACTTCCCTCGTATCTCTC -ACGGAAACTTCCCTCGTATGGATC -ACGGAAACTTCCCTCGTACACTTC -ACGGAAACTTCCCTCGTAGTACTC -ACGGAAACTTCCCTCGTAGATGTC -ACGGAAACTTCCCTCGTAACAGTC -ACGGAAACTTCCCTCGTATTGCTG -ACGGAAACTTCCCTCGTATCCATG -ACGGAAACTTCCCTCGTATGTGTG -ACGGAAACTTCCCTCGTACTAGTG -ACGGAAACTTCCCTCGTACATCTG -ACGGAAACTTCCCTCGTAGAGTTG -ACGGAAACTTCCCTCGTAAGACTG -ACGGAAACTTCCCTCGTATCGGTA -ACGGAAACTTCCCTCGTATGCCTA -ACGGAAACTTCCCTCGTACCACTA -ACGGAAACTTCCCTCGTAGGAGTA -ACGGAAACTTCCCTCGTATCGTCT -ACGGAAACTTCCCTCGTATGCACT -ACGGAAACTTCCCTCGTACTGACT -ACGGAAACTTCCCTCGTACAACCT -ACGGAAACTTCCCTCGTAGCTACT -ACGGAAACTTCCCTCGTAGGATCT -ACGGAAACTTCCCTCGTAAAGGCT -ACGGAAACTTCCCTCGTATCAACC -ACGGAAACTTCCCTCGTATGTTCC -ACGGAAACTTCCCTCGTAATTCCC -ACGGAAACTTCCCTCGTATTCTCG -ACGGAAACTTCCCTCGTATAGACG -ACGGAAACTTCCCTCGTAGTAACG -ACGGAAACTTCCCTCGTAACTTCG -ACGGAAACTTCCCTCGTATACGCA -ACGGAAACTTCCCTCGTACTTGCA -ACGGAAACTTCCCTCGTACGAACA -ACGGAAACTTCCCTCGTACAGTCA -ACGGAAACTTCCCTCGTAGATCCA -ACGGAAACTTCCCTCGTAACGACA -ACGGAAACTTCCCTCGTAAGCTCA -ACGGAAACTTCCCTCGTATCACGT -ACGGAAACTTCCCTCGTACGTAGT -ACGGAAACTTCCCTCGTAGTCAGT -ACGGAAACTTCCCTCGTAGAAGGT -ACGGAAACTTCCCTCGTAAACCGT -ACGGAAACTTCCCTCGTATTGTGC -ACGGAAACTTCCCTCGTACTAAGC -ACGGAAACTTCCCTCGTAACTAGC -ACGGAAACTTCCCTCGTAAGATGC -ACGGAAACTTCCCTCGTATGAAGG -ACGGAAACTTCCCTCGTACAATGG -ACGGAAACTTCCCTCGTAATGAGG -ACGGAAACTTCCCTCGTAAATGGG -ACGGAAACTTCCCTCGTATCCTGA -ACGGAAACTTCCCTCGTATAGCGA -ACGGAAACTTCCCTCGTACACAGA -ACGGAAACTTCCCTCGTAGCAAGA -ACGGAAACTTCCCTCGTAGGTTGA -ACGGAAACTTCCCTCGTATCCGAT -ACGGAAACTTCCCTCGTATGGCAT -ACGGAAACTTCCCTCGTACGAGAT -ACGGAAACTTCCCTCGTATACCAC -ACGGAAACTTCCCTCGTACAGAAC -ACGGAAACTTCCCTCGTAGTCTAC -ACGGAAACTTCCCTCGTAACGTAC -ACGGAAACTTCCCTCGTAAGTGAC -ACGGAAACTTCCCTCGTACTGTAG -ACGGAAACTTCCCTCGTACCTAAG -ACGGAAACTTCCCTCGTAGTTCAG -ACGGAAACTTCCCTCGTAGCATAG -ACGGAAACTTCCCTCGTAGACAAG -ACGGAAACTTCCCTCGTAAAGCAG -ACGGAAACTTCCCTCGTACGTCAA -ACGGAAACTTCCCTCGTAGCTGAA -ACGGAAACTTCCCTCGTAAGTACG -ACGGAAACTTCCCTCGTAATCCGA -ACGGAAACTTCCCTCGTAATGGGA -ACGGAAACTTCCCTCGTAGTGCAA -ACGGAAACTTCCCTCGTAGAGGAA -ACGGAAACTTCCCTCGTACAGGTA -ACGGAAACTTCCCTCGTAGACTCT -ACGGAAACTTCCCTCGTAAGTCCT -ACGGAAACTTCCCTCGTATAAGCC -ACGGAAACTTCCCTCGTAATAGCC -ACGGAAACTTCCCTCGTATAACCG -ACGGAAACTTCCCTCGTAATGCCA -ACGGAAACTTCCGTCGATGGAAAC -ACGGAAACTTCCGTCGATAACACC -ACGGAAACTTCCGTCGATATCGAG -ACGGAAACTTCCGTCGATCTCCTT -ACGGAAACTTCCGTCGATCCTGTT -ACGGAAACTTCCGTCGATCGGTTT -ACGGAAACTTCCGTCGATGTGGTT -ACGGAAACTTCCGTCGATGCCTTT -ACGGAAACTTCCGTCGATGGTCTT -ACGGAAACTTCCGTCGATACGCTT -ACGGAAACTTCCGTCGATAGCGTT -ACGGAAACTTCCGTCGATTTCGTC -ACGGAAACTTCCGTCGATTCTCTC -ACGGAAACTTCCGTCGATTGGATC -ACGGAAACTTCCGTCGATCACTTC -ACGGAAACTTCCGTCGATGTACTC -ACGGAAACTTCCGTCGATGATGTC -ACGGAAACTTCCGTCGATACAGTC -ACGGAAACTTCCGTCGATTTGCTG -ACGGAAACTTCCGTCGATTCCATG -ACGGAAACTTCCGTCGATTGTGTG -ACGGAAACTTCCGTCGATCTAGTG -ACGGAAACTTCCGTCGATCATCTG -ACGGAAACTTCCGTCGATGAGTTG -ACGGAAACTTCCGTCGATAGACTG -ACGGAAACTTCCGTCGATTCGGTA -ACGGAAACTTCCGTCGATTGCCTA -ACGGAAACTTCCGTCGATCCACTA -ACGGAAACTTCCGTCGATGGAGTA -ACGGAAACTTCCGTCGATTCGTCT -ACGGAAACTTCCGTCGATTGCACT -ACGGAAACTTCCGTCGATCTGACT -ACGGAAACTTCCGTCGATCAACCT -ACGGAAACTTCCGTCGATGCTACT -ACGGAAACTTCCGTCGATGGATCT -ACGGAAACTTCCGTCGATAAGGCT -ACGGAAACTTCCGTCGATTCAACC -ACGGAAACTTCCGTCGATTGTTCC -ACGGAAACTTCCGTCGATATTCCC -ACGGAAACTTCCGTCGATTTCTCG -ACGGAAACTTCCGTCGATTAGACG -ACGGAAACTTCCGTCGATGTAACG -ACGGAAACTTCCGTCGATACTTCG -ACGGAAACTTCCGTCGATTACGCA -ACGGAAACTTCCGTCGATCTTGCA -ACGGAAACTTCCGTCGATCGAACA -ACGGAAACTTCCGTCGATCAGTCA -ACGGAAACTTCCGTCGATGATCCA -ACGGAAACTTCCGTCGATACGACA -ACGGAAACTTCCGTCGATAGCTCA -ACGGAAACTTCCGTCGATTCACGT -ACGGAAACTTCCGTCGATCGTAGT -ACGGAAACTTCCGTCGATGTCAGT -ACGGAAACTTCCGTCGATGAAGGT -ACGGAAACTTCCGTCGATAACCGT -ACGGAAACTTCCGTCGATTTGTGC -ACGGAAACTTCCGTCGATCTAAGC -ACGGAAACTTCCGTCGATACTAGC -ACGGAAACTTCCGTCGATAGATGC -ACGGAAACTTCCGTCGATTGAAGG -ACGGAAACTTCCGTCGATCAATGG -ACGGAAACTTCCGTCGATATGAGG -ACGGAAACTTCCGTCGATAATGGG -ACGGAAACTTCCGTCGATTCCTGA -ACGGAAACTTCCGTCGATTAGCGA -ACGGAAACTTCCGTCGATCACAGA -ACGGAAACTTCCGTCGATGCAAGA -ACGGAAACTTCCGTCGATGGTTGA -ACGGAAACTTCCGTCGATTCCGAT -ACGGAAACTTCCGTCGATTGGCAT -ACGGAAACTTCCGTCGATCGAGAT -ACGGAAACTTCCGTCGATTACCAC -ACGGAAACTTCCGTCGATCAGAAC -ACGGAAACTTCCGTCGATGTCTAC -ACGGAAACTTCCGTCGATACGTAC -ACGGAAACTTCCGTCGATAGTGAC -ACGGAAACTTCCGTCGATCTGTAG -ACGGAAACTTCCGTCGATCCTAAG -ACGGAAACTTCCGTCGATGTTCAG -ACGGAAACTTCCGTCGATGCATAG -ACGGAAACTTCCGTCGATGACAAG -ACGGAAACTTCCGTCGATAAGCAG -ACGGAAACTTCCGTCGATCGTCAA -ACGGAAACTTCCGTCGATGCTGAA -ACGGAAACTTCCGTCGATAGTACG -ACGGAAACTTCCGTCGATATCCGA -ACGGAAACTTCCGTCGATATGGGA -ACGGAAACTTCCGTCGATGTGCAA -ACGGAAACTTCCGTCGATGAGGAA -ACGGAAACTTCCGTCGATCAGGTA -ACGGAAACTTCCGTCGATGACTCT -ACGGAAACTTCCGTCGATAGTCCT -ACGGAAACTTCCGTCGATTAAGCC -ACGGAAACTTCCGTCGATATAGCC -ACGGAAACTTCCGTCGATTAACCG -ACGGAAACTTCCGTCGATATGCCA -ACGGAAACTTCCGTCACAGGAAAC -ACGGAAACTTCCGTCACAAACACC -ACGGAAACTTCCGTCACAATCGAG -ACGGAAACTTCCGTCACACTCCTT -ACGGAAACTTCCGTCACACCTGTT -ACGGAAACTTCCGTCACACGGTTT -ACGGAAACTTCCGTCACAGTGGTT -ACGGAAACTTCCGTCACAGCCTTT -ACGGAAACTTCCGTCACAGGTCTT -ACGGAAACTTCCGTCACAACGCTT -ACGGAAACTTCCGTCACAAGCGTT -ACGGAAACTTCCGTCACATTCGTC -ACGGAAACTTCCGTCACATCTCTC -ACGGAAACTTCCGTCACATGGATC -ACGGAAACTTCCGTCACACACTTC -ACGGAAACTTCCGTCACAGTACTC -ACGGAAACTTCCGTCACAGATGTC -ACGGAAACTTCCGTCACAACAGTC -ACGGAAACTTCCGTCACATTGCTG -ACGGAAACTTCCGTCACATCCATG -ACGGAAACTTCCGTCACATGTGTG -ACGGAAACTTCCGTCACACTAGTG -ACGGAAACTTCCGTCACACATCTG -ACGGAAACTTCCGTCACAGAGTTG -ACGGAAACTTCCGTCACAAGACTG -ACGGAAACTTCCGTCACATCGGTA -ACGGAAACTTCCGTCACATGCCTA -ACGGAAACTTCCGTCACACCACTA -ACGGAAACTTCCGTCACAGGAGTA -ACGGAAACTTCCGTCACATCGTCT -ACGGAAACTTCCGTCACATGCACT -ACGGAAACTTCCGTCACACTGACT -ACGGAAACTTCCGTCACACAACCT -ACGGAAACTTCCGTCACAGCTACT -ACGGAAACTTCCGTCACAGGATCT -ACGGAAACTTCCGTCACAAAGGCT -ACGGAAACTTCCGTCACATCAACC -ACGGAAACTTCCGTCACATGTTCC -ACGGAAACTTCCGTCACAATTCCC -ACGGAAACTTCCGTCACATTCTCG -ACGGAAACTTCCGTCACATAGACG -ACGGAAACTTCCGTCACAGTAACG -ACGGAAACTTCCGTCACAACTTCG -ACGGAAACTTCCGTCACATACGCA -ACGGAAACTTCCGTCACACTTGCA -ACGGAAACTTCCGTCACACGAACA -ACGGAAACTTCCGTCACACAGTCA -ACGGAAACTTCCGTCACAGATCCA -ACGGAAACTTCCGTCACAACGACA -ACGGAAACTTCCGTCACAAGCTCA -ACGGAAACTTCCGTCACATCACGT -ACGGAAACTTCCGTCACACGTAGT -ACGGAAACTTCCGTCACAGTCAGT -ACGGAAACTTCCGTCACAGAAGGT -ACGGAAACTTCCGTCACAAACCGT -ACGGAAACTTCCGTCACATTGTGC -ACGGAAACTTCCGTCACACTAAGC -ACGGAAACTTCCGTCACAACTAGC -ACGGAAACTTCCGTCACAAGATGC -ACGGAAACTTCCGTCACATGAAGG -ACGGAAACTTCCGTCACACAATGG -ACGGAAACTTCCGTCACAATGAGG -ACGGAAACTTCCGTCACAAATGGG -ACGGAAACTTCCGTCACATCCTGA -ACGGAAACTTCCGTCACATAGCGA -ACGGAAACTTCCGTCACACACAGA -ACGGAAACTTCCGTCACAGCAAGA -ACGGAAACTTCCGTCACAGGTTGA -ACGGAAACTTCCGTCACATCCGAT -ACGGAAACTTCCGTCACATGGCAT -ACGGAAACTTCCGTCACACGAGAT -ACGGAAACTTCCGTCACATACCAC -ACGGAAACTTCCGTCACACAGAAC -ACGGAAACTTCCGTCACAGTCTAC -ACGGAAACTTCCGTCACAACGTAC -ACGGAAACTTCCGTCACAAGTGAC -ACGGAAACTTCCGTCACACTGTAG -ACGGAAACTTCCGTCACACCTAAG -ACGGAAACTTCCGTCACAGTTCAG -ACGGAAACTTCCGTCACAGCATAG -ACGGAAACTTCCGTCACAGACAAG -ACGGAAACTTCCGTCACAAAGCAG -ACGGAAACTTCCGTCACACGTCAA -ACGGAAACTTCCGTCACAGCTGAA -ACGGAAACTTCCGTCACAAGTACG -ACGGAAACTTCCGTCACAATCCGA -ACGGAAACTTCCGTCACAATGGGA -ACGGAAACTTCCGTCACAGTGCAA -ACGGAAACTTCCGTCACAGAGGAA -ACGGAAACTTCCGTCACACAGGTA -ACGGAAACTTCCGTCACAGACTCT -ACGGAAACTTCCGTCACAAGTCCT -ACGGAAACTTCCGTCACATAAGCC -ACGGAAACTTCCGTCACAATAGCC -ACGGAAACTTCCGTCACATAACCG -ACGGAAACTTCCGTCACAATGCCA -ACGGAAACTTCCCTGTTGGGAAAC -ACGGAAACTTCCCTGTTGAACACC -ACGGAAACTTCCCTGTTGATCGAG -ACGGAAACTTCCCTGTTGCTCCTT -ACGGAAACTTCCCTGTTGCCTGTT -ACGGAAACTTCCCTGTTGCGGTTT -ACGGAAACTTCCCTGTTGGTGGTT -ACGGAAACTTCCCTGTTGGCCTTT -ACGGAAACTTCCCTGTTGGGTCTT -ACGGAAACTTCCCTGTTGACGCTT -ACGGAAACTTCCCTGTTGAGCGTT -ACGGAAACTTCCCTGTTGTTCGTC -ACGGAAACTTCCCTGTTGTCTCTC -ACGGAAACTTCCCTGTTGTGGATC -ACGGAAACTTCCCTGTTGCACTTC -ACGGAAACTTCCCTGTTGGTACTC -ACGGAAACTTCCCTGTTGGATGTC -ACGGAAACTTCCCTGTTGACAGTC -ACGGAAACTTCCCTGTTGTTGCTG -ACGGAAACTTCCCTGTTGTCCATG -ACGGAAACTTCCCTGTTGTGTGTG -ACGGAAACTTCCCTGTTGCTAGTG -ACGGAAACTTCCCTGTTGCATCTG -ACGGAAACTTCCCTGTTGGAGTTG -ACGGAAACTTCCCTGTTGAGACTG -ACGGAAACTTCCCTGTTGTCGGTA -ACGGAAACTTCCCTGTTGTGCCTA -ACGGAAACTTCCCTGTTGCCACTA -ACGGAAACTTCCCTGTTGGGAGTA -ACGGAAACTTCCCTGTTGTCGTCT -ACGGAAACTTCCCTGTTGTGCACT -ACGGAAACTTCCCTGTTGCTGACT -ACGGAAACTTCCCTGTTGCAACCT -ACGGAAACTTCCCTGTTGGCTACT -ACGGAAACTTCCCTGTTGGGATCT -ACGGAAACTTCCCTGTTGAAGGCT -ACGGAAACTTCCCTGTTGTCAACC -ACGGAAACTTCCCTGTTGTGTTCC -ACGGAAACTTCCCTGTTGATTCCC -ACGGAAACTTCCCTGTTGTTCTCG -ACGGAAACTTCCCTGTTGTAGACG -ACGGAAACTTCCCTGTTGGTAACG -ACGGAAACTTCCCTGTTGACTTCG -ACGGAAACTTCCCTGTTGTACGCA -ACGGAAACTTCCCTGTTGCTTGCA -ACGGAAACTTCCCTGTTGCGAACA -ACGGAAACTTCCCTGTTGCAGTCA -ACGGAAACTTCCCTGTTGGATCCA -ACGGAAACTTCCCTGTTGACGACA -ACGGAAACTTCCCTGTTGAGCTCA -ACGGAAACTTCCCTGTTGTCACGT -ACGGAAACTTCCCTGTTGCGTAGT -ACGGAAACTTCCCTGTTGGTCAGT -ACGGAAACTTCCCTGTTGGAAGGT -ACGGAAACTTCCCTGTTGAACCGT -ACGGAAACTTCCCTGTTGTTGTGC -ACGGAAACTTCCCTGTTGCTAAGC -ACGGAAACTTCCCTGTTGACTAGC -ACGGAAACTTCCCTGTTGAGATGC -ACGGAAACTTCCCTGTTGTGAAGG -ACGGAAACTTCCCTGTTGCAATGG -ACGGAAACTTCCCTGTTGATGAGG -ACGGAAACTTCCCTGTTGAATGGG -ACGGAAACTTCCCTGTTGTCCTGA -ACGGAAACTTCCCTGTTGTAGCGA -ACGGAAACTTCCCTGTTGCACAGA -ACGGAAACTTCCCTGTTGGCAAGA -ACGGAAACTTCCCTGTTGGGTTGA -ACGGAAACTTCCCTGTTGTCCGAT -ACGGAAACTTCCCTGTTGTGGCAT -ACGGAAACTTCCCTGTTGCGAGAT -ACGGAAACTTCCCTGTTGTACCAC -ACGGAAACTTCCCTGTTGCAGAAC -ACGGAAACTTCCCTGTTGGTCTAC -ACGGAAACTTCCCTGTTGACGTAC -ACGGAAACTTCCCTGTTGAGTGAC -ACGGAAACTTCCCTGTTGCTGTAG -ACGGAAACTTCCCTGTTGCCTAAG -ACGGAAACTTCCCTGTTGGTTCAG -ACGGAAACTTCCCTGTTGGCATAG -ACGGAAACTTCCCTGTTGGACAAG -ACGGAAACTTCCCTGTTGAAGCAG -ACGGAAACTTCCCTGTTGCGTCAA -ACGGAAACTTCCCTGTTGGCTGAA -ACGGAAACTTCCCTGTTGAGTACG -ACGGAAACTTCCCTGTTGATCCGA -ACGGAAACTTCCCTGTTGATGGGA -ACGGAAACTTCCCTGTTGGTGCAA -ACGGAAACTTCCCTGTTGGAGGAA -ACGGAAACTTCCCTGTTGCAGGTA -ACGGAAACTTCCCTGTTGGACTCT -ACGGAAACTTCCCTGTTGAGTCCT -ACGGAAACTTCCCTGTTGTAAGCC -ACGGAAACTTCCCTGTTGATAGCC -ACGGAAACTTCCCTGTTGTAACCG -ACGGAAACTTCCCTGTTGATGCCA -ACGGAAACTTCCATGTCCGGAAAC -ACGGAAACTTCCATGTCCAACACC -ACGGAAACTTCCATGTCCATCGAG -ACGGAAACTTCCATGTCCCTCCTT -ACGGAAACTTCCATGTCCCCTGTT -ACGGAAACTTCCATGTCCCGGTTT -ACGGAAACTTCCATGTCCGTGGTT -ACGGAAACTTCCATGTCCGCCTTT -ACGGAAACTTCCATGTCCGGTCTT -ACGGAAACTTCCATGTCCACGCTT -ACGGAAACTTCCATGTCCAGCGTT -ACGGAAACTTCCATGTCCTTCGTC -ACGGAAACTTCCATGTCCTCTCTC -ACGGAAACTTCCATGTCCTGGATC -ACGGAAACTTCCATGTCCCACTTC -ACGGAAACTTCCATGTCCGTACTC -ACGGAAACTTCCATGTCCGATGTC -ACGGAAACTTCCATGTCCACAGTC -ACGGAAACTTCCATGTCCTTGCTG -ACGGAAACTTCCATGTCCTCCATG -ACGGAAACTTCCATGTCCTGTGTG -ACGGAAACTTCCATGTCCCTAGTG -ACGGAAACTTCCATGTCCCATCTG -ACGGAAACTTCCATGTCCGAGTTG -ACGGAAACTTCCATGTCCAGACTG -ACGGAAACTTCCATGTCCTCGGTA -ACGGAAACTTCCATGTCCTGCCTA -ACGGAAACTTCCATGTCCCCACTA -ACGGAAACTTCCATGTCCGGAGTA -ACGGAAACTTCCATGTCCTCGTCT -ACGGAAACTTCCATGTCCTGCACT -ACGGAAACTTCCATGTCCCTGACT -ACGGAAACTTCCATGTCCCAACCT -ACGGAAACTTCCATGTCCGCTACT -ACGGAAACTTCCATGTCCGGATCT -ACGGAAACTTCCATGTCCAAGGCT -ACGGAAACTTCCATGTCCTCAACC -ACGGAAACTTCCATGTCCTGTTCC -ACGGAAACTTCCATGTCCATTCCC -ACGGAAACTTCCATGTCCTTCTCG -ACGGAAACTTCCATGTCCTAGACG -ACGGAAACTTCCATGTCCGTAACG -ACGGAAACTTCCATGTCCACTTCG -ACGGAAACTTCCATGTCCTACGCA -ACGGAAACTTCCATGTCCCTTGCA -ACGGAAACTTCCATGTCCCGAACA -ACGGAAACTTCCATGTCCCAGTCA -ACGGAAACTTCCATGTCCGATCCA -ACGGAAACTTCCATGTCCACGACA -ACGGAAACTTCCATGTCCAGCTCA -ACGGAAACTTCCATGTCCTCACGT -ACGGAAACTTCCATGTCCCGTAGT -ACGGAAACTTCCATGTCCGTCAGT -ACGGAAACTTCCATGTCCGAAGGT -ACGGAAACTTCCATGTCCAACCGT -ACGGAAACTTCCATGTCCTTGTGC -ACGGAAACTTCCATGTCCCTAAGC -ACGGAAACTTCCATGTCCACTAGC -ACGGAAACTTCCATGTCCAGATGC -ACGGAAACTTCCATGTCCTGAAGG -ACGGAAACTTCCATGTCCCAATGG -ACGGAAACTTCCATGTCCATGAGG -ACGGAAACTTCCATGTCCAATGGG -ACGGAAACTTCCATGTCCTCCTGA -ACGGAAACTTCCATGTCCTAGCGA -ACGGAAACTTCCATGTCCCACAGA -ACGGAAACTTCCATGTCCGCAAGA -ACGGAAACTTCCATGTCCGGTTGA -ACGGAAACTTCCATGTCCTCCGAT -ACGGAAACTTCCATGTCCTGGCAT -ACGGAAACTTCCATGTCCCGAGAT -ACGGAAACTTCCATGTCCTACCAC -ACGGAAACTTCCATGTCCCAGAAC -ACGGAAACTTCCATGTCCGTCTAC -ACGGAAACTTCCATGTCCACGTAC -ACGGAAACTTCCATGTCCAGTGAC -ACGGAAACTTCCATGTCCCTGTAG -ACGGAAACTTCCATGTCCCCTAAG -ACGGAAACTTCCATGTCCGTTCAG -ACGGAAACTTCCATGTCCGCATAG -ACGGAAACTTCCATGTCCGACAAG -ACGGAAACTTCCATGTCCAAGCAG -ACGGAAACTTCCATGTCCCGTCAA -ACGGAAACTTCCATGTCCGCTGAA -ACGGAAACTTCCATGTCCAGTACG -ACGGAAACTTCCATGTCCATCCGA -ACGGAAACTTCCATGTCCATGGGA -ACGGAAACTTCCATGTCCGTGCAA -ACGGAAACTTCCATGTCCGAGGAA -ACGGAAACTTCCATGTCCCAGGTA -ACGGAAACTTCCATGTCCGACTCT -ACGGAAACTTCCATGTCCAGTCCT -ACGGAAACTTCCATGTCCTAAGCC -ACGGAAACTTCCATGTCCATAGCC -ACGGAAACTTCCATGTCCTAACCG -ACGGAAACTTCCATGTCCATGCCA -ACGGAAACTTCCGTGTGTGGAAAC -ACGGAAACTTCCGTGTGTAACACC -ACGGAAACTTCCGTGTGTATCGAG -ACGGAAACTTCCGTGTGTCTCCTT -ACGGAAACTTCCGTGTGTCCTGTT -ACGGAAACTTCCGTGTGTCGGTTT -ACGGAAACTTCCGTGTGTGTGGTT -ACGGAAACTTCCGTGTGTGCCTTT -ACGGAAACTTCCGTGTGTGGTCTT -ACGGAAACTTCCGTGTGTACGCTT -ACGGAAACTTCCGTGTGTAGCGTT -ACGGAAACTTCCGTGTGTTTCGTC -ACGGAAACTTCCGTGTGTTCTCTC -ACGGAAACTTCCGTGTGTTGGATC -ACGGAAACTTCCGTGTGTCACTTC -ACGGAAACTTCCGTGTGTGTACTC -ACGGAAACTTCCGTGTGTGATGTC -ACGGAAACTTCCGTGTGTACAGTC -ACGGAAACTTCCGTGTGTTTGCTG -ACGGAAACTTCCGTGTGTTCCATG -ACGGAAACTTCCGTGTGTTGTGTG -ACGGAAACTTCCGTGTGTCTAGTG -ACGGAAACTTCCGTGTGTCATCTG -ACGGAAACTTCCGTGTGTGAGTTG -ACGGAAACTTCCGTGTGTAGACTG -ACGGAAACTTCCGTGTGTTCGGTA -ACGGAAACTTCCGTGTGTTGCCTA -ACGGAAACTTCCGTGTGTCCACTA -ACGGAAACTTCCGTGTGTGGAGTA -ACGGAAACTTCCGTGTGTTCGTCT -ACGGAAACTTCCGTGTGTTGCACT -ACGGAAACTTCCGTGTGTCTGACT -ACGGAAACTTCCGTGTGTCAACCT -ACGGAAACTTCCGTGTGTGCTACT -ACGGAAACTTCCGTGTGTGGATCT -ACGGAAACTTCCGTGTGTAAGGCT -ACGGAAACTTCCGTGTGTTCAACC -ACGGAAACTTCCGTGTGTTGTTCC -ACGGAAACTTCCGTGTGTATTCCC -ACGGAAACTTCCGTGTGTTTCTCG -ACGGAAACTTCCGTGTGTTAGACG -ACGGAAACTTCCGTGTGTGTAACG -ACGGAAACTTCCGTGTGTACTTCG -ACGGAAACTTCCGTGTGTTACGCA -ACGGAAACTTCCGTGTGTCTTGCA -ACGGAAACTTCCGTGTGTCGAACA -ACGGAAACTTCCGTGTGTCAGTCA -ACGGAAACTTCCGTGTGTGATCCA -ACGGAAACTTCCGTGTGTACGACA -ACGGAAACTTCCGTGTGTAGCTCA -ACGGAAACTTCCGTGTGTTCACGT -ACGGAAACTTCCGTGTGTCGTAGT -ACGGAAACTTCCGTGTGTGTCAGT -ACGGAAACTTCCGTGTGTGAAGGT -ACGGAAACTTCCGTGTGTAACCGT -ACGGAAACTTCCGTGTGTTTGTGC -ACGGAAACTTCCGTGTGTCTAAGC -ACGGAAACTTCCGTGTGTACTAGC -ACGGAAACTTCCGTGTGTAGATGC -ACGGAAACTTCCGTGTGTTGAAGG -ACGGAAACTTCCGTGTGTCAATGG -ACGGAAACTTCCGTGTGTATGAGG -ACGGAAACTTCCGTGTGTAATGGG -ACGGAAACTTCCGTGTGTTCCTGA -ACGGAAACTTCCGTGTGTTAGCGA -ACGGAAACTTCCGTGTGTCACAGA -ACGGAAACTTCCGTGTGTGCAAGA -ACGGAAACTTCCGTGTGTGGTTGA -ACGGAAACTTCCGTGTGTTCCGAT -ACGGAAACTTCCGTGTGTTGGCAT -ACGGAAACTTCCGTGTGTCGAGAT -ACGGAAACTTCCGTGTGTTACCAC -ACGGAAACTTCCGTGTGTCAGAAC -ACGGAAACTTCCGTGTGTGTCTAC -ACGGAAACTTCCGTGTGTACGTAC -ACGGAAACTTCCGTGTGTAGTGAC -ACGGAAACTTCCGTGTGTCTGTAG -ACGGAAACTTCCGTGTGTCCTAAG -ACGGAAACTTCCGTGTGTGTTCAG -ACGGAAACTTCCGTGTGTGCATAG -ACGGAAACTTCCGTGTGTGACAAG -ACGGAAACTTCCGTGTGTAAGCAG -ACGGAAACTTCCGTGTGTCGTCAA -ACGGAAACTTCCGTGTGTGCTGAA -ACGGAAACTTCCGTGTGTAGTACG -ACGGAAACTTCCGTGTGTATCCGA -ACGGAAACTTCCGTGTGTATGGGA -ACGGAAACTTCCGTGTGTGTGCAA -ACGGAAACTTCCGTGTGTGAGGAA -ACGGAAACTTCCGTGTGTCAGGTA -ACGGAAACTTCCGTGTGTGACTCT -ACGGAAACTTCCGTGTGTAGTCCT -ACGGAAACTTCCGTGTGTTAAGCC -ACGGAAACTTCCGTGTGTATAGCC -ACGGAAACTTCCGTGTGTTAACCG -ACGGAAACTTCCGTGTGTATGCCA -ACGGAAACTTCCGTGCTAGGAAAC -ACGGAAACTTCCGTGCTAAACACC -ACGGAAACTTCCGTGCTAATCGAG -ACGGAAACTTCCGTGCTACTCCTT -ACGGAAACTTCCGTGCTACCTGTT -ACGGAAACTTCCGTGCTACGGTTT -ACGGAAACTTCCGTGCTAGTGGTT -ACGGAAACTTCCGTGCTAGCCTTT -ACGGAAACTTCCGTGCTAGGTCTT -ACGGAAACTTCCGTGCTAACGCTT -ACGGAAACTTCCGTGCTAAGCGTT -ACGGAAACTTCCGTGCTATTCGTC -ACGGAAACTTCCGTGCTATCTCTC -ACGGAAACTTCCGTGCTATGGATC -ACGGAAACTTCCGTGCTACACTTC -ACGGAAACTTCCGTGCTAGTACTC -ACGGAAACTTCCGTGCTAGATGTC -ACGGAAACTTCCGTGCTAACAGTC -ACGGAAACTTCCGTGCTATTGCTG -ACGGAAACTTCCGTGCTATCCATG -ACGGAAACTTCCGTGCTATGTGTG -ACGGAAACTTCCGTGCTACTAGTG -ACGGAAACTTCCGTGCTACATCTG -ACGGAAACTTCCGTGCTAGAGTTG -ACGGAAACTTCCGTGCTAAGACTG -ACGGAAACTTCCGTGCTATCGGTA -ACGGAAACTTCCGTGCTATGCCTA -ACGGAAACTTCCGTGCTACCACTA -ACGGAAACTTCCGTGCTAGGAGTA -ACGGAAACTTCCGTGCTATCGTCT -ACGGAAACTTCCGTGCTATGCACT -ACGGAAACTTCCGTGCTACTGACT -ACGGAAACTTCCGTGCTACAACCT -ACGGAAACTTCCGTGCTAGCTACT -ACGGAAACTTCCGTGCTAGGATCT -ACGGAAACTTCCGTGCTAAAGGCT -ACGGAAACTTCCGTGCTATCAACC -ACGGAAACTTCCGTGCTATGTTCC -ACGGAAACTTCCGTGCTAATTCCC -ACGGAAACTTCCGTGCTATTCTCG -ACGGAAACTTCCGTGCTATAGACG -ACGGAAACTTCCGTGCTAGTAACG -ACGGAAACTTCCGTGCTAACTTCG -ACGGAAACTTCCGTGCTATACGCA -ACGGAAACTTCCGTGCTACTTGCA -ACGGAAACTTCCGTGCTACGAACA -ACGGAAACTTCCGTGCTACAGTCA -ACGGAAACTTCCGTGCTAGATCCA -ACGGAAACTTCCGTGCTAACGACA -ACGGAAACTTCCGTGCTAAGCTCA -ACGGAAACTTCCGTGCTATCACGT -ACGGAAACTTCCGTGCTACGTAGT -ACGGAAACTTCCGTGCTAGTCAGT -ACGGAAACTTCCGTGCTAGAAGGT -ACGGAAACTTCCGTGCTAAACCGT -ACGGAAACTTCCGTGCTATTGTGC -ACGGAAACTTCCGTGCTACTAAGC -ACGGAAACTTCCGTGCTAACTAGC -ACGGAAACTTCCGTGCTAAGATGC -ACGGAAACTTCCGTGCTATGAAGG -ACGGAAACTTCCGTGCTACAATGG -ACGGAAACTTCCGTGCTAATGAGG -ACGGAAACTTCCGTGCTAAATGGG -ACGGAAACTTCCGTGCTATCCTGA -ACGGAAACTTCCGTGCTATAGCGA -ACGGAAACTTCCGTGCTACACAGA -ACGGAAACTTCCGTGCTAGCAAGA -ACGGAAACTTCCGTGCTAGGTTGA -ACGGAAACTTCCGTGCTATCCGAT -ACGGAAACTTCCGTGCTATGGCAT -ACGGAAACTTCCGTGCTACGAGAT -ACGGAAACTTCCGTGCTATACCAC -ACGGAAACTTCCGTGCTACAGAAC -ACGGAAACTTCCGTGCTAGTCTAC -ACGGAAACTTCCGTGCTAACGTAC -ACGGAAACTTCCGTGCTAAGTGAC -ACGGAAACTTCCGTGCTACTGTAG -ACGGAAACTTCCGTGCTACCTAAG -ACGGAAACTTCCGTGCTAGTTCAG -ACGGAAACTTCCGTGCTAGCATAG -ACGGAAACTTCCGTGCTAGACAAG -ACGGAAACTTCCGTGCTAAAGCAG -ACGGAAACTTCCGTGCTACGTCAA -ACGGAAACTTCCGTGCTAGCTGAA -ACGGAAACTTCCGTGCTAAGTACG -ACGGAAACTTCCGTGCTAATCCGA -ACGGAAACTTCCGTGCTAATGGGA -ACGGAAACTTCCGTGCTAGTGCAA -ACGGAAACTTCCGTGCTAGAGGAA -ACGGAAACTTCCGTGCTACAGGTA -ACGGAAACTTCCGTGCTAGACTCT -ACGGAAACTTCCGTGCTAAGTCCT -ACGGAAACTTCCGTGCTATAAGCC -ACGGAAACTTCCGTGCTAATAGCC -ACGGAAACTTCCGTGCTATAACCG -ACGGAAACTTCCGTGCTAATGCCA -ACGGAAACTTCCCTGCATGGAAAC -ACGGAAACTTCCCTGCATAACACC -ACGGAAACTTCCCTGCATATCGAG -ACGGAAACTTCCCTGCATCTCCTT -ACGGAAACTTCCCTGCATCCTGTT -ACGGAAACTTCCCTGCATCGGTTT -ACGGAAACTTCCCTGCATGTGGTT -ACGGAAACTTCCCTGCATGCCTTT -ACGGAAACTTCCCTGCATGGTCTT -ACGGAAACTTCCCTGCATACGCTT -ACGGAAACTTCCCTGCATAGCGTT -ACGGAAACTTCCCTGCATTTCGTC -ACGGAAACTTCCCTGCATTCTCTC -ACGGAAACTTCCCTGCATTGGATC -ACGGAAACTTCCCTGCATCACTTC -ACGGAAACTTCCCTGCATGTACTC -ACGGAAACTTCCCTGCATGATGTC -ACGGAAACTTCCCTGCATACAGTC -ACGGAAACTTCCCTGCATTTGCTG -ACGGAAACTTCCCTGCATTCCATG -ACGGAAACTTCCCTGCATTGTGTG -ACGGAAACTTCCCTGCATCTAGTG -ACGGAAACTTCCCTGCATCATCTG -ACGGAAACTTCCCTGCATGAGTTG -ACGGAAACTTCCCTGCATAGACTG -ACGGAAACTTCCCTGCATTCGGTA -ACGGAAACTTCCCTGCATTGCCTA -ACGGAAACTTCCCTGCATCCACTA -ACGGAAACTTCCCTGCATGGAGTA -ACGGAAACTTCCCTGCATTCGTCT -ACGGAAACTTCCCTGCATTGCACT -ACGGAAACTTCCCTGCATCTGACT -ACGGAAACTTCCCTGCATCAACCT -ACGGAAACTTCCCTGCATGCTACT -ACGGAAACTTCCCTGCATGGATCT -ACGGAAACTTCCCTGCATAAGGCT -ACGGAAACTTCCCTGCATTCAACC -ACGGAAACTTCCCTGCATTGTTCC -ACGGAAACTTCCCTGCATATTCCC -ACGGAAACTTCCCTGCATTTCTCG -ACGGAAACTTCCCTGCATTAGACG -ACGGAAACTTCCCTGCATGTAACG -ACGGAAACTTCCCTGCATACTTCG -ACGGAAACTTCCCTGCATTACGCA -ACGGAAACTTCCCTGCATCTTGCA -ACGGAAACTTCCCTGCATCGAACA -ACGGAAACTTCCCTGCATCAGTCA -ACGGAAACTTCCCTGCATGATCCA -ACGGAAACTTCCCTGCATACGACA -ACGGAAACTTCCCTGCATAGCTCA -ACGGAAACTTCCCTGCATTCACGT -ACGGAAACTTCCCTGCATCGTAGT -ACGGAAACTTCCCTGCATGTCAGT -ACGGAAACTTCCCTGCATGAAGGT -ACGGAAACTTCCCTGCATAACCGT -ACGGAAACTTCCCTGCATTTGTGC -ACGGAAACTTCCCTGCATCTAAGC -ACGGAAACTTCCCTGCATACTAGC -ACGGAAACTTCCCTGCATAGATGC -ACGGAAACTTCCCTGCATTGAAGG -ACGGAAACTTCCCTGCATCAATGG -ACGGAAACTTCCCTGCATATGAGG -ACGGAAACTTCCCTGCATAATGGG -ACGGAAACTTCCCTGCATTCCTGA -ACGGAAACTTCCCTGCATTAGCGA -ACGGAAACTTCCCTGCATCACAGA -ACGGAAACTTCCCTGCATGCAAGA -ACGGAAACTTCCCTGCATGGTTGA -ACGGAAACTTCCCTGCATTCCGAT -ACGGAAACTTCCCTGCATTGGCAT -ACGGAAACTTCCCTGCATCGAGAT -ACGGAAACTTCCCTGCATTACCAC -ACGGAAACTTCCCTGCATCAGAAC -ACGGAAACTTCCCTGCATGTCTAC -ACGGAAACTTCCCTGCATACGTAC -ACGGAAACTTCCCTGCATAGTGAC -ACGGAAACTTCCCTGCATCTGTAG -ACGGAAACTTCCCTGCATCCTAAG -ACGGAAACTTCCCTGCATGTTCAG -ACGGAAACTTCCCTGCATGCATAG -ACGGAAACTTCCCTGCATGACAAG -ACGGAAACTTCCCTGCATAAGCAG -ACGGAAACTTCCCTGCATCGTCAA -ACGGAAACTTCCCTGCATGCTGAA -ACGGAAACTTCCCTGCATAGTACG -ACGGAAACTTCCCTGCATATCCGA -ACGGAAACTTCCCTGCATATGGGA -ACGGAAACTTCCCTGCATGTGCAA -ACGGAAACTTCCCTGCATGAGGAA -ACGGAAACTTCCCTGCATCAGGTA -ACGGAAACTTCCCTGCATGACTCT -ACGGAAACTTCCCTGCATAGTCCT -ACGGAAACTTCCCTGCATTAAGCC -ACGGAAACTTCCCTGCATATAGCC -ACGGAAACTTCCCTGCATTAACCG -ACGGAAACTTCCCTGCATATGCCA -ACGGAAACTTCCTTGGAGGGAAAC -ACGGAAACTTCCTTGGAGAACACC -ACGGAAACTTCCTTGGAGATCGAG -ACGGAAACTTCCTTGGAGCTCCTT -ACGGAAACTTCCTTGGAGCCTGTT -ACGGAAACTTCCTTGGAGCGGTTT -ACGGAAACTTCCTTGGAGGTGGTT -ACGGAAACTTCCTTGGAGGCCTTT -ACGGAAACTTCCTTGGAGGGTCTT -ACGGAAACTTCCTTGGAGACGCTT -ACGGAAACTTCCTTGGAGAGCGTT -ACGGAAACTTCCTTGGAGTTCGTC -ACGGAAACTTCCTTGGAGTCTCTC -ACGGAAACTTCCTTGGAGTGGATC -ACGGAAACTTCCTTGGAGCACTTC -ACGGAAACTTCCTTGGAGGTACTC -ACGGAAACTTCCTTGGAGGATGTC -ACGGAAACTTCCTTGGAGACAGTC -ACGGAAACTTCCTTGGAGTTGCTG -ACGGAAACTTCCTTGGAGTCCATG -ACGGAAACTTCCTTGGAGTGTGTG -ACGGAAACTTCCTTGGAGCTAGTG -ACGGAAACTTCCTTGGAGCATCTG -ACGGAAACTTCCTTGGAGGAGTTG -ACGGAAACTTCCTTGGAGAGACTG -ACGGAAACTTCCTTGGAGTCGGTA -ACGGAAACTTCCTTGGAGTGCCTA -ACGGAAACTTCCTTGGAGCCACTA -ACGGAAACTTCCTTGGAGGGAGTA -ACGGAAACTTCCTTGGAGTCGTCT -ACGGAAACTTCCTTGGAGTGCACT -ACGGAAACTTCCTTGGAGCTGACT -ACGGAAACTTCCTTGGAGCAACCT -ACGGAAACTTCCTTGGAGGCTACT -ACGGAAACTTCCTTGGAGGGATCT -ACGGAAACTTCCTTGGAGAAGGCT -ACGGAAACTTCCTTGGAGTCAACC -ACGGAAACTTCCTTGGAGTGTTCC -ACGGAAACTTCCTTGGAGATTCCC -ACGGAAACTTCCTTGGAGTTCTCG -ACGGAAACTTCCTTGGAGTAGACG -ACGGAAACTTCCTTGGAGGTAACG -ACGGAAACTTCCTTGGAGACTTCG -ACGGAAACTTCCTTGGAGTACGCA -ACGGAAACTTCCTTGGAGCTTGCA -ACGGAAACTTCCTTGGAGCGAACA -ACGGAAACTTCCTTGGAGCAGTCA -ACGGAAACTTCCTTGGAGGATCCA -ACGGAAACTTCCTTGGAGACGACA -ACGGAAACTTCCTTGGAGAGCTCA -ACGGAAACTTCCTTGGAGTCACGT -ACGGAAACTTCCTTGGAGCGTAGT -ACGGAAACTTCCTTGGAGGTCAGT -ACGGAAACTTCCTTGGAGGAAGGT -ACGGAAACTTCCTTGGAGAACCGT -ACGGAAACTTCCTTGGAGTTGTGC -ACGGAAACTTCCTTGGAGCTAAGC -ACGGAAACTTCCTTGGAGACTAGC -ACGGAAACTTCCTTGGAGAGATGC -ACGGAAACTTCCTTGGAGTGAAGG -ACGGAAACTTCCTTGGAGCAATGG -ACGGAAACTTCCTTGGAGATGAGG -ACGGAAACTTCCTTGGAGAATGGG -ACGGAAACTTCCTTGGAGTCCTGA -ACGGAAACTTCCTTGGAGTAGCGA -ACGGAAACTTCCTTGGAGCACAGA -ACGGAAACTTCCTTGGAGGCAAGA -ACGGAAACTTCCTTGGAGGGTTGA -ACGGAAACTTCCTTGGAGTCCGAT -ACGGAAACTTCCTTGGAGTGGCAT -ACGGAAACTTCCTTGGAGCGAGAT -ACGGAAACTTCCTTGGAGTACCAC -ACGGAAACTTCCTTGGAGCAGAAC -ACGGAAACTTCCTTGGAGGTCTAC -ACGGAAACTTCCTTGGAGACGTAC -ACGGAAACTTCCTTGGAGAGTGAC -ACGGAAACTTCCTTGGAGCTGTAG -ACGGAAACTTCCTTGGAGCCTAAG -ACGGAAACTTCCTTGGAGGTTCAG -ACGGAAACTTCCTTGGAGGCATAG -ACGGAAACTTCCTTGGAGGACAAG -ACGGAAACTTCCTTGGAGAAGCAG -ACGGAAACTTCCTTGGAGCGTCAA -ACGGAAACTTCCTTGGAGGCTGAA -ACGGAAACTTCCTTGGAGAGTACG -ACGGAAACTTCCTTGGAGATCCGA -ACGGAAACTTCCTTGGAGATGGGA -ACGGAAACTTCCTTGGAGGTGCAA -ACGGAAACTTCCTTGGAGGAGGAA -ACGGAAACTTCCTTGGAGCAGGTA -ACGGAAACTTCCTTGGAGGACTCT -ACGGAAACTTCCTTGGAGAGTCCT -ACGGAAACTTCCTTGGAGTAAGCC -ACGGAAACTTCCTTGGAGATAGCC -ACGGAAACTTCCTTGGAGTAACCG -ACGGAAACTTCCTTGGAGATGCCA -ACGGAAACTTCCCTGAGAGGAAAC -ACGGAAACTTCCCTGAGAAACACC -ACGGAAACTTCCCTGAGAATCGAG -ACGGAAACTTCCCTGAGACTCCTT -ACGGAAACTTCCCTGAGACCTGTT -ACGGAAACTTCCCTGAGACGGTTT -ACGGAAACTTCCCTGAGAGTGGTT -ACGGAAACTTCCCTGAGAGCCTTT -ACGGAAACTTCCCTGAGAGGTCTT -ACGGAAACTTCCCTGAGAACGCTT -ACGGAAACTTCCCTGAGAAGCGTT -ACGGAAACTTCCCTGAGATTCGTC -ACGGAAACTTCCCTGAGATCTCTC -ACGGAAACTTCCCTGAGATGGATC -ACGGAAACTTCCCTGAGACACTTC -ACGGAAACTTCCCTGAGAGTACTC -ACGGAAACTTCCCTGAGAGATGTC -ACGGAAACTTCCCTGAGAACAGTC -ACGGAAACTTCCCTGAGATTGCTG -ACGGAAACTTCCCTGAGATCCATG -ACGGAAACTTCCCTGAGATGTGTG -ACGGAAACTTCCCTGAGACTAGTG -ACGGAAACTTCCCTGAGACATCTG -ACGGAAACTTCCCTGAGAGAGTTG -ACGGAAACTTCCCTGAGAAGACTG -ACGGAAACTTCCCTGAGATCGGTA -ACGGAAACTTCCCTGAGATGCCTA -ACGGAAACTTCCCTGAGACCACTA -ACGGAAACTTCCCTGAGAGGAGTA -ACGGAAACTTCCCTGAGATCGTCT -ACGGAAACTTCCCTGAGATGCACT -ACGGAAACTTCCCTGAGACTGACT -ACGGAAACTTCCCTGAGACAACCT -ACGGAAACTTCCCTGAGAGCTACT -ACGGAAACTTCCCTGAGAGGATCT -ACGGAAACTTCCCTGAGAAAGGCT -ACGGAAACTTCCCTGAGATCAACC -ACGGAAACTTCCCTGAGATGTTCC -ACGGAAACTTCCCTGAGAATTCCC -ACGGAAACTTCCCTGAGATTCTCG -ACGGAAACTTCCCTGAGATAGACG -ACGGAAACTTCCCTGAGAGTAACG -ACGGAAACTTCCCTGAGAACTTCG -ACGGAAACTTCCCTGAGATACGCA -ACGGAAACTTCCCTGAGACTTGCA -ACGGAAACTTCCCTGAGACGAACA -ACGGAAACTTCCCTGAGACAGTCA -ACGGAAACTTCCCTGAGAGATCCA -ACGGAAACTTCCCTGAGAACGACA -ACGGAAACTTCCCTGAGAAGCTCA -ACGGAAACTTCCCTGAGATCACGT -ACGGAAACTTCCCTGAGACGTAGT -ACGGAAACTTCCCTGAGAGTCAGT -ACGGAAACTTCCCTGAGAGAAGGT -ACGGAAACTTCCCTGAGAAACCGT -ACGGAAACTTCCCTGAGATTGTGC -ACGGAAACTTCCCTGAGACTAAGC -ACGGAAACTTCCCTGAGAACTAGC -ACGGAAACTTCCCTGAGAAGATGC -ACGGAAACTTCCCTGAGATGAAGG -ACGGAAACTTCCCTGAGACAATGG -ACGGAAACTTCCCTGAGAATGAGG -ACGGAAACTTCCCTGAGAAATGGG -ACGGAAACTTCCCTGAGATCCTGA -ACGGAAACTTCCCTGAGATAGCGA -ACGGAAACTTCCCTGAGACACAGA -ACGGAAACTTCCCTGAGAGCAAGA -ACGGAAACTTCCCTGAGAGGTTGA -ACGGAAACTTCCCTGAGATCCGAT -ACGGAAACTTCCCTGAGATGGCAT -ACGGAAACTTCCCTGAGACGAGAT -ACGGAAACTTCCCTGAGATACCAC -ACGGAAACTTCCCTGAGACAGAAC -ACGGAAACTTCCCTGAGAGTCTAC -ACGGAAACTTCCCTGAGAACGTAC -ACGGAAACTTCCCTGAGAAGTGAC -ACGGAAACTTCCCTGAGACTGTAG -ACGGAAACTTCCCTGAGACCTAAG -ACGGAAACTTCCCTGAGAGTTCAG -ACGGAAACTTCCCTGAGAGCATAG -ACGGAAACTTCCCTGAGAGACAAG -ACGGAAACTTCCCTGAGAAAGCAG -ACGGAAACTTCCCTGAGACGTCAA -ACGGAAACTTCCCTGAGAGCTGAA -ACGGAAACTTCCCTGAGAAGTACG -ACGGAAACTTCCCTGAGAATCCGA -ACGGAAACTTCCCTGAGAATGGGA -ACGGAAACTTCCCTGAGAGTGCAA -ACGGAAACTTCCCTGAGAGAGGAA -ACGGAAACTTCCCTGAGACAGGTA -ACGGAAACTTCCCTGAGAGACTCT -ACGGAAACTTCCCTGAGAAGTCCT -ACGGAAACTTCCCTGAGATAAGCC -ACGGAAACTTCCCTGAGAATAGCC -ACGGAAACTTCCCTGAGATAACCG -ACGGAAACTTCCCTGAGAATGCCA -ACGGAAACTTCCGTATCGGGAAAC -ACGGAAACTTCCGTATCGAACACC -ACGGAAACTTCCGTATCGATCGAG -ACGGAAACTTCCGTATCGCTCCTT -ACGGAAACTTCCGTATCGCCTGTT -ACGGAAACTTCCGTATCGCGGTTT -ACGGAAACTTCCGTATCGGTGGTT -ACGGAAACTTCCGTATCGGCCTTT -ACGGAAACTTCCGTATCGGGTCTT -ACGGAAACTTCCGTATCGACGCTT -ACGGAAACTTCCGTATCGAGCGTT -ACGGAAACTTCCGTATCGTTCGTC -ACGGAAACTTCCGTATCGTCTCTC -ACGGAAACTTCCGTATCGTGGATC -ACGGAAACTTCCGTATCGCACTTC -ACGGAAACTTCCGTATCGGTACTC -ACGGAAACTTCCGTATCGGATGTC -ACGGAAACTTCCGTATCGACAGTC -ACGGAAACTTCCGTATCGTTGCTG -ACGGAAACTTCCGTATCGTCCATG -ACGGAAACTTCCGTATCGTGTGTG -ACGGAAACTTCCGTATCGCTAGTG -ACGGAAACTTCCGTATCGCATCTG -ACGGAAACTTCCGTATCGGAGTTG -ACGGAAACTTCCGTATCGAGACTG -ACGGAAACTTCCGTATCGTCGGTA -ACGGAAACTTCCGTATCGTGCCTA -ACGGAAACTTCCGTATCGCCACTA -ACGGAAACTTCCGTATCGGGAGTA -ACGGAAACTTCCGTATCGTCGTCT -ACGGAAACTTCCGTATCGTGCACT -ACGGAAACTTCCGTATCGCTGACT -ACGGAAACTTCCGTATCGCAACCT -ACGGAAACTTCCGTATCGGCTACT -ACGGAAACTTCCGTATCGGGATCT -ACGGAAACTTCCGTATCGAAGGCT -ACGGAAACTTCCGTATCGTCAACC -ACGGAAACTTCCGTATCGTGTTCC -ACGGAAACTTCCGTATCGATTCCC -ACGGAAACTTCCGTATCGTTCTCG -ACGGAAACTTCCGTATCGTAGACG -ACGGAAACTTCCGTATCGGTAACG -ACGGAAACTTCCGTATCGACTTCG -ACGGAAACTTCCGTATCGTACGCA -ACGGAAACTTCCGTATCGCTTGCA -ACGGAAACTTCCGTATCGCGAACA -ACGGAAACTTCCGTATCGCAGTCA -ACGGAAACTTCCGTATCGGATCCA -ACGGAAACTTCCGTATCGACGACA -ACGGAAACTTCCGTATCGAGCTCA -ACGGAAACTTCCGTATCGTCACGT -ACGGAAACTTCCGTATCGCGTAGT -ACGGAAACTTCCGTATCGGTCAGT -ACGGAAACTTCCGTATCGGAAGGT -ACGGAAACTTCCGTATCGAACCGT -ACGGAAACTTCCGTATCGTTGTGC -ACGGAAACTTCCGTATCGCTAAGC -ACGGAAACTTCCGTATCGACTAGC -ACGGAAACTTCCGTATCGAGATGC -ACGGAAACTTCCGTATCGTGAAGG -ACGGAAACTTCCGTATCGCAATGG -ACGGAAACTTCCGTATCGATGAGG -ACGGAAACTTCCGTATCGAATGGG -ACGGAAACTTCCGTATCGTCCTGA -ACGGAAACTTCCGTATCGTAGCGA -ACGGAAACTTCCGTATCGCACAGA -ACGGAAACTTCCGTATCGGCAAGA -ACGGAAACTTCCGTATCGGGTTGA -ACGGAAACTTCCGTATCGTCCGAT -ACGGAAACTTCCGTATCGTGGCAT -ACGGAAACTTCCGTATCGCGAGAT -ACGGAAACTTCCGTATCGTACCAC -ACGGAAACTTCCGTATCGCAGAAC -ACGGAAACTTCCGTATCGGTCTAC -ACGGAAACTTCCGTATCGACGTAC -ACGGAAACTTCCGTATCGAGTGAC -ACGGAAACTTCCGTATCGCTGTAG -ACGGAAACTTCCGTATCGCCTAAG -ACGGAAACTTCCGTATCGGTTCAG -ACGGAAACTTCCGTATCGGCATAG -ACGGAAACTTCCGTATCGGACAAG -ACGGAAACTTCCGTATCGAAGCAG -ACGGAAACTTCCGTATCGCGTCAA -ACGGAAACTTCCGTATCGGCTGAA -ACGGAAACTTCCGTATCGAGTACG -ACGGAAACTTCCGTATCGATCCGA -ACGGAAACTTCCGTATCGATGGGA -ACGGAAACTTCCGTATCGGTGCAA -ACGGAAACTTCCGTATCGGAGGAA -ACGGAAACTTCCGTATCGCAGGTA -ACGGAAACTTCCGTATCGGACTCT -ACGGAAACTTCCGTATCGAGTCCT -ACGGAAACTTCCGTATCGTAAGCC -ACGGAAACTTCCGTATCGATAGCC -ACGGAAACTTCCGTATCGTAACCG -ACGGAAACTTCCGTATCGATGCCA -ACGGAAACTTCCCTATGCGGAAAC -ACGGAAACTTCCCTATGCAACACC -ACGGAAACTTCCCTATGCATCGAG -ACGGAAACTTCCCTATGCCTCCTT -ACGGAAACTTCCCTATGCCCTGTT -ACGGAAACTTCCCTATGCCGGTTT -ACGGAAACTTCCCTATGCGTGGTT -ACGGAAACTTCCCTATGCGCCTTT -ACGGAAACTTCCCTATGCGGTCTT -ACGGAAACTTCCCTATGCACGCTT -ACGGAAACTTCCCTATGCAGCGTT -ACGGAAACTTCCCTATGCTTCGTC -ACGGAAACTTCCCTATGCTCTCTC -ACGGAAACTTCCCTATGCTGGATC -ACGGAAACTTCCCTATGCCACTTC -ACGGAAACTTCCCTATGCGTACTC -ACGGAAACTTCCCTATGCGATGTC -ACGGAAACTTCCCTATGCACAGTC -ACGGAAACTTCCCTATGCTTGCTG -ACGGAAACTTCCCTATGCTCCATG -ACGGAAACTTCCCTATGCTGTGTG -ACGGAAACTTCCCTATGCCTAGTG -ACGGAAACTTCCCTATGCCATCTG -ACGGAAACTTCCCTATGCGAGTTG -ACGGAAACTTCCCTATGCAGACTG -ACGGAAACTTCCCTATGCTCGGTA -ACGGAAACTTCCCTATGCTGCCTA -ACGGAAACTTCCCTATGCCCACTA -ACGGAAACTTCCCTATGCGGAGTA -ACGGAAACTTCCCTATGCTCGTCT -ACGGAAACTTCCCTATGCTGCACT -ACGGAAACTTCCCTATGCCTGACT -ACGGAAACTTCCCTATGCCAACCT -ACGGAAACTTCCCTATGCGCTACT -ACGGAAACTTCCCTATGCGGATCT -ACGGAAACTTCCCTATGCAAGGCT -ACGGAAACTTCCCTATGCTCAACC -ACGGAAACTTCCCTATGCTGTTCC -ACGGAAACTTCCCTATGCATTCCC -ACGGAAACTTCCCTATGCTTCTCG -ACGGAAACTTCCCTATGCTAGACG -ACGGAAACTTCCCTATGCGTAACG -ACGGAAACTTCCCTATGCACTTCG -ACGGAAACTTCCCTATGCTACGCA -ACGGAAACTTCCCTATGCCTTGCA -ACGGAAACTTCCCTATGCCGAACA -ACGGAAACTTCCCTATGCCAGTCA -ACGGAAACTTCCCTATGCGATCCA -ACGGAAACTTCCCTATGCACGACA -ACGGAAACTTCCCTATGCAGCTCA -ACGGAAACTTCCCTATGCTCACGT -ACGGAAACTTCCCTATGCCGTAGT -ACGGAAACTTCCCTATGCGTCAGT -ACGGAAACTTCCCTATGCGAAGGT -ACGGAAACTTCCCTATGCAACCGT -ACGGAAACTTCCCTATGCTTGTGC -ACGGAAACTTCCCTATGCCTAAGC -ACGGAAACTTCCCTATGCACTAGC -ACGGAAACTTCCCTATGCAGATGC -ACGGAAACTTCCCTATGCTGAAGG -ACGGAAACTTCCCTATGCCAATGG -ACGGAAACTTCCCTATGCATGAGG -ACGGAAACTTCCCTATGCAATGGG -ACGGAAACTTCCCTATGCTCCTGA -ACGGAAACTTCCCTATGCTAGCGA -ACGGAAACTTCCCTATGCCACAGA -ACGGAAACTTCCCTATGCGCAAGA -ACGGAAACTTCCCTATGCGGTTGA -ACGGAAACTTCCCTATGCTCCGAT -ACGGAAACTTCCCTATGCTGGCAT -ACGGAAACTTCCCTATGCCGAGAT -ACGGAAACTTCCCTATGCTACCAC -ACGGAAACTTCCCTATGCCAGAAC -ACGGAAACTTCCCTATGCGTCTAC -ACGGAAACTTCCCTATGCACGTAC -ACGGAAACTTCCCTATGCAGTGAC -ACGGAAACTTCCCTATGCCTGTAG -ACGGAAACTTCCCTATGCCCTAAG -ACGGAAACTTCCCTATGCGTTCAG -ACGGAAACTTCCCTATGCGCATAG -ACGGAAACTTCCCTATGCGACAAG -ACGGAAACTTCCCTATGCAAGCAG -ACGGAAACTTCCCTATGCCGTCAA -ACGGAAACTTCCCTATGCGCTGAA -ACGGAAACTTCCCTATGCAGTACG -ACGGAAACTTCCCTATGCATCCGA -ACGGAAACTTCCCTATGCATGGGA -ACGGAAACTTCCCTATGCGTGCAA -ACGGAAACTTCCCTATGCGAGGAA -ACGGAAACTTCCCTATGCCAGGTA -ACGGAAACTTCCCTATGCGACTCT -ACGGAAACTTCCCTATGCAGTCCT -ACGGAAACTTCCCTATGCTAAGCC -ACGGAAACTTCCCTATGCATAGCC -ACGGAAACTTCCCTATGCTAACCG -ACGGAAACTTCCCTATGCATGCCA -ACGGAAACTTCCCTACCAGGAAAC -ACGGAAACTTCCCTACCAAACACC -ACGGAAACTTCCCTACCAATCGAG -ACGGAAACTTCCCTACCACTCCTT -ACGGAAACTTCCCTACCACCTGTT -ACGGAAACTTCCCTACCACGGTTT -ACGGAAACTTCCCTACCAGTGGTT -ACGGAAACTTCCCTACCAGCCTTT -ACGGAAACTTCCCTACCAGGTCTT -ACGGAAACTTCCCTACCAACGCTT -ACGGAAACTTCCCTACCAAGCGTT -ACGGAAACTTCCCTACCATTCGTC -ACGGAAACTTCCCTACCATCTCTC -ACGGAAACTTCCCTACCATGGATC -ACGGAAACTTCCCTACCACACTTC -ACGGAAACTTCCCTACCAGTACTC -ACGGAAACTTCCCTACCAGATGTC -ACGGAAACTTCCCTACCAACAGTC -ACGGAAACTTCCCTACCATTGCTG -ACGGAAACTTCCCTACCATCCATG -ACGGAAACTTCCCTACCATGTGTG -ACGGAAACTTCCCTACCACTAGTG -ACGGAAACTTCCCTACCACATCTG -ACGGAAACTTCCCTACCAGAGTTG -ACGGAAACTTCCCTACCAAGACTG -ACGGAAACTTCCCTACCATCGGTA -ACGGAAACTTCCCTACCATGCCTA -ACGGAAACTTCCCTACCACCACTA -ACGGAAACTTCCCTACCAGGAGTA -ACGGAAACTTCCCTACCATCGTCT -ACGGAAACTTCCCTACCATGCACT -ACGGAAACTTCCCTACCACTGACT -ACGGAAACTTCCCTACCACAACCT -ACGGAAACTTCCCTACCAGCTACT -ACGGAAACTTCCCTACCAGGATCT -ACGGAAACTTCCCTACCAAAGGCT -ACGGAAACTTCCCTACCATCAACC -ACGGAAACTTCCCTACCATGTTCC -ACGGAAACTTCCCTACCAATTCCC -ACGGAAACTTCCCTACCATTCTCG -ACGGAAACTTCCCTACCATAGACG -ACGGAAACTTCCCTACCAGTAACG -ACGGAAACTTCCCTACCAACTTCG -ACGGAAACTTCCCTACCATACGCA -ACGGAAACTTCCCTACCACTTGCA -ACGGAAACTTCCCTACCACGAACA -ACGGAAACTTCCCTACCACAGTCA -ACGGAAACTTCCCTACCAGATCCA -ACGGAAACTTCCCTACCAACGACA -ACGGAAACTTCCCTACCAAGCTCA -ACGGAAACTTCCCTACCATCACGT -ACGGAAACTTCCCTACCACGTAGT -ACGGAAACTTCCCTACCAGTCAGT -ACGGAAACTTCCCTACCAGAAGGT -ACGGAAACTTCCCTACCAAACCGT -ACGGAAACTTCCCTACCATTGTGC -ACGGAAACTTCCCTACCACTAAGC -ACGGAAACTTCCCTACCAACTAGC -ACGGAAACTTCCCTACCAAGATGC -ACGGAAACTTCCCTACCATGAAGG -ACGGAAACTTCCCTACCACAATGG -ACGGAAACTTCCCTACCAATGAGG -ACGGAAACTTCCCTACCAAATGGG -ACGGAAACTTCCCTACCATCCTGA -ACGGAAACTTCCCTACCATAGCGA -ACGGAAACTTCCCTACCACACAGA -ACGGAAACTTCCCTACCAGCAAGA -ACGGAAACTTCCCTACCAGGTTGA -ACGGAAACTTCCCTACCATCCGAT -ACGGAAACTTCCCTACCATGGCAT -ACGGAAACTTCCCTACCACGAGAT -ACGGAAACTTCCCTACCATACCAC -ACGGAAACTTCCCTACCACAGAAC -ACGGAAACTTCCCTACCAGTCTAC -ACGGAAACTTCCCTACCAACGTAC -ACGGAAACTTCCCTACCAAGTGAC -ACGGAAACTTCCCTACCACTGTAG -ACGGAAACTTCCCTACCACCTAAG -ACGGAAACTTCCCTACCAGTTCAG -ACGGAAACTTCCCTACCAGCATAG -ACGGAAACTTCCCTACCAGACAAG -ACGGAAACTTCCCTACCAAAGCAG -ACGGAAACTTCCCTACCACGTCAA -ACGGAAACTTCCCTACCAGCTGAA -ACGGAAACTTCCCTACCAAGTACG -ACGGAAACTTCCCTACCAATCCGA -ACGGAAACTTCCCTACCAATGGGA -ACGGAAACTTCCCTACCAGTGCAA -ACGGAAACTTCCCTACCAGAGGAA -ACGGAAACTTCCCTACCACAGGTA -ACGGAAACTTCCCTACCAGACTCT -ACGGAAACTTCCCTACCAAGTCCT -ACGGAAACTTCCCTACCATAAGCC -ACGGAAACTTCCCTACCAATAGCC -ACGGAAACTTCCCTACCATAACCG -ACGGAAACTTCCCTACCAATGCCA -ACGGAAACTTCCGTAGGAGGAAAC -ACGGAAACTTCCGTAGGAAACACC -ACGGAAACTTCCGTAGGAATCGAG -ACGGAAACTTCCGTAGGACTCCTT -ACGGAAACTTCCGTAGGACCTGTT -ACGGAAACTTCCGTAGGACGGTTT -ACGGAAACTTCCGTAGGAGTGGTT -ACGGAAACTTCCGTAGGAGCCTTT -ACGGAAACTTCCGTAGGAGGTCTT -ACGGAAACTTCCGTAGGAACGCTT -ACGGAAACTTCCGTAGGAAGCGTT -ACGGAAACTTCCGTAGGATTCGTC -ACGGAAACTTCCGTAGGATCTCTC -ACGGAAACTTCCGTAGGATGGATC -ACGGAAACTTCCGTAGGACACTTC -ACGGAAACTTCCGTAGGAGTACTC -ACGGAAACTTCCGTAGGAGATGTC -ACGGAAACTTCCGTAGGAACAGTC -ACGGAAACTTCCGTAGGATTGCTG -ACGGAAACTTCCGTAGGATCCATG -ACGGAAACTTCCGTAGGATGTGTG -ACGGAAACTTCCGTAGGACTAGTG -ACGGAAACTTCCGTAGGACATCTG -ACGGAAACTTCCGTAGGAGAGTTG -ACGGAAACTTCCGTAGGAAGACTG -ACGGAAACTTCCGTAGGATCGGTA -ACGGAAACTTCCGTAGGATGCCTA -ACGGAAACTTCCGTAGGACCACTA -ACGGAAACTTCCGTAGGAGGAGTA -ACGGAAACTTCCGTAGGATCGTCT -ACGGAAACTTCCGTAGGATGCACT -ACGGAAACTTCCGTAGGACTGACT -ACGGAAACTTCCGTAGGACAACCT -ACGGAAACTTCCGTAGGAGCTACT -ACGGAAACTTCCGTAGGAGGATCT -ACGGAAACTTCCGTAGGAAAGGCT -ACGGAAACTTCCGTAGGATCAACC -ACGGAAACTTCCGTAGGATGTTCC -ACGGAAACTTCCGTAGGAATTCCC -ACGGAAACTTCCGTAGGATTCTCG -ACGGAAACTTCCGTAGGATAGACG -ACGGAAACTTCCGTAGGAGTAACG -ACGGAAACTTCCGTAGGAACTTCG -ACGGAAACTTCCGTAGGATACGCA -ACGGAAACTTCCGTAGGACTTGCA -ACGGAAACTTCCGTAGGACGAACA -ACGGAAACTTCCGTAGGACAGTCA -ACGGAAACTTCCGTAGGAGATCCA -ACGGAAACTTCCGTAGGAACGACA -ACGGAAACTTCCGTAGGAAGCTCA -ACGGAAACTTCCGTAGGATCACGT -ACGGAAACTTCCGTAGGACGTAGT -ACGGAAACTTCCGTAGGAGTCAGT -ACGGAAACTTCCGTAGGAGAAGGT -ACGGAAACTTCCGTAGGAAACCGT -ACGGAAACTTCCGTAGGATTGTGC -ACGGAAACTTCCGTAGGACTAAGC -ACGGAAACTTCCGTAGGAACTAGC -ACGGAAACTTCCGTAGGAAGATGC -ACGGAAACTTCCGTAGGATGAAGG -ACGGAAACTTCCGTAGGACAATGG -ACGGAAACTTCCGTAGGAATGAGG -ACGGAAACTTCCGTAGGAAATGGG -ACGGAAACTTCCGTAGGATCCTGA -ACGGAAACTTCCGTAGGATAGCGA -ACGGAAACTTCCGTAGGACACAGA -ACGGAAACTTCCGTAGGAGCAAGA -ACGGAAACTTCCGTAGGAGGTTGA -ACGGAAACTTCCGTAGGATCCGAT -ACGGAAACTTCCGTAGGATGGCAT -ACGGAAACTTCCGTAGGACGAGAT -ACGGAAACTTCCGTAGGATACCAC -ACGGAAACTTCCGTAGGACAGAAC -ACGGAAACTTCCGTAGGAGTCTAC -ACGGAAACTTCCGTAGGAACGTAC -ACGGAAACTTCCGTAGGAAGTGAC -ACGGAAACTTCCGTAGGACTGTAG -ACGGAAACTTCCGTAGGACCTAAG -ACGGAAACTTCCGTAGGAGTTCAG -ACGGAAACTTCCGTAGGAGCATAG -ACGGAAACTTCCGTAGGAGACAAG -ACGGAAACTTCCGTAGGAAAGCAG -ACGGAAACTTCCGTAGGACGTCAA -ACGGAAACTTCCGTAGGAGCTGAA -ACGGAAACTTCCGTAGGAAGTACG -ACGGAAACTTCCGTAGGAATCCGA -ACGGAAACTTCCGTAGGAATGGGA -ACGGAAACTTCCGTAGGAGTGCAA -ACGGAAACTTCCGTAGGAGAGGAA -ACGGAAACTTCCGTAGGACAGGTA -ACGGAAACTTCCGTAGGAGACTCT -ACGGAAACTTCCGTAGGAAGTCCT -ACGGAAACTTCCGTAGGATAAGCC -ACGGAAACTTCCGTAGGAATAGCC -ACGGAAACTTCCGTAGGATAACCG -ACGGAAACTTCCGTAGGAATGCCA -ACGGAAACTTCCTCTTCGGGAAAC -ACGGAAACTTCCTCTTCGAACACC -ACGGAAACTTCCTCTTCGATCGAG -ACGGAAACTTCCTCTTCGCTCCTT -ACGGAAACTTCCTCTTCGCCTGTT -ACGGAAACTTCCTCTTCGCGGTTT -ACGGAAACTTCCTCTTCGGTGGTT -ACGGAAACTTCCTCTTCGGCCTTT -ACGGAAACTTCCTCTTCGGGTCTT -ACGGAAACTTCCTCTTCGACGCTT -ACGGAAACTTCCTCTTCGAGCGTT -ACGGAAACTTCCTCTTCGTTCGTC -ACGGAAACTTCCTCTTCGTCTCTC -ACGGAAACTTCCTCTTCGTGGATC -ACGGAAACTTCCTCTTCGCACTTC -ACGGAAACTTCCTCTTCGGTACTC -ACGGAAACTTCCTCTTCGGATGTC -ACGGAAACTTCCTCTTCGACAGTC -ACGGAAACTTCCTCTTCGTTGCTG -ACGGAAACTTCCTCTTCGTCCATG -ACGGAAACTTCCTCTTCGTGTGTG -ACGGAAACTTCCTCTTCGCTAGTG -ACGGAAACTTCCTCTTCGCATCTG -ACGGAAACTTCCTCTTCGGAGTTG -ACGGAAACTTCCTCTTCGAGACTG -ACGGAAACTTCCTCTTCGTCGGTA -ACGGAAACTTCCTCTTCGTGCCTA -ACGGAAACTTCCTCTTCGCCACTA -ACGGAAACTTCCTCTTCGGGAGTA -ACGGAAACTTCCTCTTCGTCGTCT -ACGGAAACTTCCTCTTCGTGCACT -ACGGAAACTTCCTCTTCGCTGACT -ACGGAAACTTCCTCTTCGCAACCT -ACGGAAACTTCCTCTTCGGCTACT -ACGGAAACTTCCTCTTCGGGATCT -ACGGAAACTTCCTCTTCGAAGGCT -ACGGAAACTTCCTCTTCGTCAACC -ACGGAAACTTCCTCTTCGTGTTCC -ACGGAAACTTCCTCTTCGATTCCC -ACGGAAACTTCCTCTTCGTTCTCG -ACGGAAACTTCCTCTTCGTAGACG -ACGGAAACTTCCTCTTCGGTAACG -ACGGAAACTTCCTCTTCGACTTCG -ACGGAAACTTCCTCTTCGTACGCA -ACGGAAACTTCCTCTTCGCTTGCA -ACGGAAACTTCCTCTTCGCGAACA -ACGGAAACTTCCTCTTCGCAGTCA -ACGGAAACTTCCTCTTCGGATCCA -ACGGAAACTTCCTCTTCGACGACA -ACGGAAACTTCCTCTTCGAGCTCA -ACGGAAACTTCCTCTTCGTCACGT -ACGGAAACTTCCTCTTCGCGTAGT -ACGGAAACTTCCTCTTCGGTCAGT -ACGGAAACTTCCTCTTCGGAAGGT -ACGGAAACTTCCTCTTCGAACCGT -ACGGAAACTTCCTCTTCGTTGTGC -ACGGAAACTTCCTCTTCGCTAAGC -ACGGAAACTTCCTCTTCGACTAGC -ACGGAAACTTCCTCTTCGAGATGC -ACGGAAACTTCCTCTTCGTGAAGG -ACGGAAACTTCCTCTTCGCAATGG -ACGGAAACTTCCTCTTCGATGAGG -ACGGAAACTTCCTCTTCGAATGGG -ACGGAAACTTCCTCTTCGTCCTGA -ACGGAAACTTCCTCTTCGTAGCGA -ACGGAAACTTCCTCTTCGCACAGA -ACGGAAACTTCCTCTTCGGCAAGA -ACGGAAACTTCCTCTTCGGGTTGA -ACGGAAACTTCCTCTTCGTCCGAT -ACGGAAACTTCCTCTTCGTGGCAT -ACGGAAACTTCCTCTTCGCGAGAT -ACGGAAACTTCCTCTTCGTACCAC -ACGGAAACTTCCTCTTCGCAGAAC -ACGGAAACTTCCTCTTCGGTCTAC -ACGGAAACTTCCTCTTCGACGTAC -ACGGAAACTTCCTCTTCGAGTGAC -ACGGAAACTTCCTCTTCGCTGTAG -ACGGAAACTTCCTCTTCGCCTAAG -ACGGAAACTTCCTCTTCGGTTCAG -ACGGAAACTTCCTCTTCGGCATAG -ACGGAAACTTCCTCTTCGGACAAG -ACGGAAACTTCCTCTTCGAAGCAG -ACGGAAACTTCCTCTTCGCGTCAA -ACGGAAACTTCCTCTTCGGCTGAA -ACGGAAACTTCCTCTTCGAGTACG -ACGGAAACTTCCTCTTCGATCCGA -ACGGAAACTTCCTCTTCGATGGGA -ACGGAAACTTCCTCTTCGGTGCAA -ACGGAAACTTCCTCTTCGGAGGAA -ACGGAAACTTCCTCTTCGCAGGTA -ACGGAAACTTCCTCTTCGGACTCT -ACGGAAACTTCCTCTTCGAGTCCT -ACGGAAACTTCCTCTTCGTAAGCC -ACGGAAACTTCCTCTTCGATAGCC -ACGGAAACTTCCTCTTCGTAACCG -ACGGAAACTTCCTCTTCGATGCCA -ACGGAAACTTCCACTTGCGGAAAC -ACGGAAACTTCCACTTGCAACACC -ACGGAAACTTCCACTTGCATCGAG -ACGGAAACTTCCACTTGCCTCCTT -ACGGAAACTTCCACTTGCCCTGTT -ACGGAAACTTCCACTTGCCGGTTT -ACGGAAACTTCCACTTGCGTGGTT -ACGGAAACTTCCACTTGCGCCTTT -ACGGAAACTTCCACTTGCGGTCTT -ACGGAAACTTCCACTTGCACGCTT -ACGGAAACTTCCACTTGCAGCGTT -ACGGAAACTTCCACTTGCTTCGTC -ACGGAAACTTCCACTTGCTCTCTC -ACGGAAACTTCCACTTGCTGGATC -ACGGAAACTTCCACTTGCCACTTC -ACGGAAACTTCCACTTGCGTACTC -ACGGAAACTTCCACTTGCGATGTC -ACGGAAACTTCCACTTGCACAGTC -ACGGAAACTTCCACTTGCTTGCTG -ACGGAAACTTCCACTTGCTCCATG -ACGGAAACTTCCACTTGCTGTGTG -ACGGAAACTTCCACTTGCCTAGTG -ACGGAAACTTCCACTTGCCATCTG -ACGGAAACTTCCACTTGCGAGTTG -ACGGAAACTTCCACTTGCAGACTG -ACGGAAACTTCCACTTGCTCGGTA -ACGGAAACTTCCACTTGCTGCCTA -ACGGAAACTTCCACTTGCCCACTA -ACGGAAACTTCCACTTGCGGAGTA -ACGGAAACTTCCACTTGCTCGTCT -ACGGAAACTTCCACTTGCTGCACT -ACGGAAACTTCCACTTGCCTGACT -ACGGAAACTTCCACTTGCCAACCT -ACGGAAACTTCCACTTGCGCTACT -ACGGAAACTTCCACTTGCGGATCT -ACGGAAACTTCCACTTGCAAGGCT -ACGGAAACTTCCACTTGCTCAACC -ACGGAAACTTCCACTTGCTGTTCC -ACGGAAACTTCCACTTGCATTCCC -ACGGAAACTTCCACTTGCTTCTCG -ACGGAAACTTCCACTTGCTAGACG -ACGGAAACTTCCACTTGCGTAACG -ACGGAAACTTCCACTTGCACTTCG -ACGGAAACTTCCACTTGCTACGCA -ACGGAAACTTCCACTTGCCTTGCA -ACGGAAACTTCCACTTGCCGAACA -ACGGAAACTTCCACTTGCCAGTCA -ACGGAAACTTCCACTTGCGATCCA -ACGGAAACTTCCACTTGCACGACA -ACGGAAACTTCCACTTGCAGCTCA -ACGGAAACTTCCACTTGCTCACGT -ACGGAAACTTCCACTTGCCGTAGT -ACGGAAACTTCCACTTGCGTCAGT -ACGGAAACTTCCACTTGCGAAGGT -ACGGAAACTTCCACTTGCAACCGT -ACGGAAACTTCCACTTGCTTGTGC -ACGGAAACTTCCACTTGCCTAAGC -ACGGAAACTTCCACTTGCACTAGC -ACGGAAACTTCCACTTGCAGATGC -ACGGAAACTTCCACTTGCTGAAGG -ACGGAAACTTCCACTTGCCAATGG -ACGGAAACTTCCACTTGCATGAGG -ACGGAAACTTCCACTTGCAATGGG -ACGGAAACTTCCACTTGCTCCTGA -ACGGAAACTTCCACTTGCTAGCGA -ACGGAAACTTCCACTTGCCACAGA -ACGGAAACTTCCACTTGCGCAAGA -ACGGAAACTTCCACTTGCGGTTGA -ACGGAAACTTCCACTTGCTCCGAT -ACGGAAACTTCCACTTGCTGGCAT -ACGGAAACTTCCACTTGCCGAGAT -ACGGAAACTTCCACTTGCTACCAC -ACGGAAACTTCCACTTGCCAGAAC -ACGGAAACTTCCACTTGCGTCTAC -ACGGAAACTTCCACTTGCACGTAC -ACGGAAACTTCCACTTGCAGTGAC -ACGGAAACTTCCACTTGCCTGTAG -ACGGAAACTTCCACTTGCCCTAAG -ACGGAAACTTCCACTTGCGTTCAG -ACGGAAACTTCCACTTGCGCATAG -ACGGAAACTTCCACTTGCGACAAG -ACGGAAACTTCCACTTGCAAGCAG -ACGGAAACTTCCACTTGCCGTCAA -ACGGAAACTTCCACTTGCGCTGAA -ACGGAAACTTCCACTTGCAGTACG -ACGGAAACTTCCACTTGCATCCGA -ACGGAAACTTCCACTTGCATGGGA -ACGGAAACTTCCACTTGCGTGCAA -ACGGAAACTTCCACTTGCGAGGAA -ACGGAAACTTCCACTTGCCAGGTA -ACGGAAACTTCCACTTGCGACTCT -ACGGAAACTTCCACTTGCAGTCCT -ACGGAAACTTCCACTTGCTAAGCC -ACGGAAACTTCCACTTGCATAGCC -ACGGAAACTTCCACTTGCTAACCG -ACGGAAACTTCCACTTGCATGCCA -ACGGAAACTTCCACTCTGGGAAAC -ACGGAAACTTCCACTCTGAACACC -ACGGAAACTTCCACTCTGATCGAG -ACGGAAACTTCCACTCTGCTCCTT -ACGGAAACTTCCACTCTGCCTGTT -ACGGAAACTTCCACTCTGCGGTTT -ACGGAAACTTCCACTCTGGTGGTT -ACGGAAACTTCCACTCTGGCCTTT -ACGGAAACTTCCACTCTGGGTCTT -ACGGAAACTTCCACTCTGACGCTT -ACGGAAACTTCCACTCTGAGCGTT -ACGGAAACTTCCACTCTGTTCGTC -ACGGAAACTTCCACTCTGTCTCTC -ACGGAAACTTCCACTCTGTGGATC -ACGGAAACTTCCACTCTGCACTTC -ACGGAAACTTCCACTCTGGTACTC -ACGGAAACTTCCACTCTGGATGTC -ACGGAAACTTCCACTCTGACAGTC -ACGGAAACTTCCACTCTGTTGCTG -ACGGAAACTTCCACTCTGTCCATG -ACGGAAACTTCCACTCTGTGTGTG -ACGGAAACTTCCACTCTGCTAGTG -ACGGAAACTTCCACTCTGCATCTG -ACGGAAACTTCCACTCTGGAGTTG -ACGGAAACTTCCACTCTGAGACTG -ACGGAAACTTCCACTCTGTCGGTA -ACGGAAACTTCCACTCTGTGCCTA -ACGGAAACTTCCACTCTGCCACTA -ACGGAAACTTCCACTCTGGGAGTA -ACGGAAACTTCCACTCTGTCGTCT -ACGGAAACTTCCACTCTGTGCACT -ACGGAAACTTCCACTCTGCTGACT -ACGGAAACTTCCACTCTGCAACCT -ACGGAAACTTCCACTCTGGCTACT -ACGGAAACTTCCACTCTGGGATCT -ACGGAAACTTCCACTCTGAAGGCT -ACGGAAACTTCCACTCTGTCAACC -ACGGAAACTTCCACTCTGTGTTCC -ACGGAAACTTCCACTCTGATTCCC -ACGGAAACTTCCACTCTGTTCTCG -ACGGAAACTTCCACTCTGTAGACG -ACGGAAACTTCCACTCTGGTAACG -ACGGAAACTTCCACTCTGACTTCG -ACGGAAACTTCCACTCTGTACGCA -ACGGAAACTTCCACTCTGCTTGCA -ACGGAAACTTCCACTCTGCGAACA -ACGGAAACTTCCACTCTGCAGTCA -ACGGAAACTTCCACTCTGGATCCA -ACGGAAACTTCCACTCTGACGACA -ACGGAAACTTCCACTCTGAGCTCA -ACGGAAACTTCCACTCTGTCACGT -ACGGAAACTTCCACTCTGCGTAGT -ACGGAAACTTCCACTCTGGTCAGT -ACGGAAACTTCCACTCTGGAAGGT -ACGGAAACTTCCACTCTGAACCGT -ACGGAAACTTCCACTCTGTTGTGC -ACGGAAACTTCCACTCTGCTAAGC -ACGGAAACTTCCACTCTGACTAGC -ACGGAAACTTCCACTCTGAGATGC -ACGGAAACTTCCACTCTGTGAAGG -ACGGAAACTTCCACTCTGCAATGG -ACGGAAACTTCCACTCTGATGAGG -ACGGAAACTTCCACTCTGAATGGG -ACGGAAACTTCCACTCTGTCCTGA -ACGGAAACTTCCACTCTGTAGCGA -ACGGAAACTTCCACTCTGCACAGA -ACGGAAACTTCCACTCTGGCAAGA -ACGGAAACTTCCACTCTGGGTTGA -ACGGAAACTTCCACTCTGTCCGAT -ACGGAAACTTCCACTCTGTGGCAT -ACGGAAACTTCCACTCTGCGAGAT -ACGGAAACTTCCACTCTGTACCAC -ACGGAAACTTCCACTCTGCAGAAC -ACGGAAACTTCCACTCTGGTCTAC -ACGGAAACTTCCACTCTGACGTAC -ACGGAAACTTCCACTCTGAGTGAC -ACGGAAACTTCCACTCTGCTGTAG -ACGGAAACTTCCACTCTGCCTAAG -ACGGAAACTTCCACTCTGGTTCAG -ACGGAAACTTCCACTCTGGCATAG -ACGGAAACTTCCACTCTGGACAAG -ACGGAAACTTCCACTCTGAAGCAG -ACGGAAACTTCCACTCTGCGTCAA -ACGGAAACTTCCACTCTGGCTGAA -ACGGAAACTTCCACTCTGAGTACG -ACGGAAACTTCCACTCTGATCCGA -ACGGAAACTTCCACTCTGATGGGA -ACGGAAACTTCCACTCTGGTGCAA -ACGGAAACTTCCACTCTGGAGGAA -ACGGAAACTTCCACTCTGCAGGTA -ACGGAAACTTCCACTCTGGACTCT -ACGGAAACTTCCACTCTGAGTCCT -ACGGAAACTTCCACTCTGTAAGCC -ACGGAAACTTCCACTCTGATAGCC -ACGGAAACTTCCACTCTGTAACCG -ACGGAAACTTCCACTCTGATGCCA -ACGGAAACTTCCCCTCAAGGAAAC -ACGGAAACTTCCCCTCAAAACACC -ACGGAAACTTCCCCTCAAATCGAG -ACGGAAACTTCCCCTCAACTCCTT -ACGGAAACTTCCCCTCAACCTGTT -ACGGAAACTTCCCCTCAACGGTTT -ACGGAAACTTCCCCTCAAGTGGTT -ACGGAAACTTCCCCTCAAGCCTTT -ACGGAAACTTCCCCTCAAGGTCTT -ACGGAAACTTCCCCTCAAACGCTT -ACGGAAACTTCCCCTCAAAGCGTT -ACGGAAACTTCCCCTCAATTCGTC -ACGGAAACTTCCCCTCAATCTCTC -ACGGAAACTTCCCCTCAATGGATC -ACGGAAACTTCCCCTCAACACTTC -ACGGAAACTTCCCCTCAAGTACTC -ACGGAAACTTCCCCTCAAGATGTC -ACGGAAACTTCCCCTCAAACAGTC -ACGGAAACTTCCCCTCAATTGCTG -ACGGAAACTTCCCCTCAATCCATG -ACGGAAACTTCCCCTCAATGTGTG -ACGGAAACTTCCCCTCAACTAGTG -ACGGAAACTTCCCCTCAACATCTG -ACGGAAACTTCCCCTCAAGAGTTG -ACGGAAACTTCCCCTCAAAGACTG -ACGGAAACTTCCCCTCAATCGGTA -ACGGAAACTTCCCCTCAATGCCTA -ACGGAAACTTCCCCTCAACCACTA -ACGGAAACTTCCCCTCAAGGAGTA -ACGGAAACTTCCCCTCAATCGTCT -ACGGAAACTTCCCCTCAATGCACT -ACGGAAACTTCCCCTCAACTGACT -ACGGAAACTTCCCCTCAACAACCT -ACGGAAACTTCCCCTCAAGCTACT -ACGGAAACTTCCCCTCAAGGATCT -ACGGAAACTTCCCCTCAAAAGGCT -ACGGAAACTTCCCCTCAATCAACC -ACGGAAACTTCCCCTCAATGTTCC -ACGGAAACTTCCCCTCAAATTCCC -ACGGAAACTTCCCCTCAATTCTCG -ACGGAAACTTCCCCTCAATAGACG -ACGGAAACTTCCCCTCAAGTAACG -ACGGAAACTTCCCCTCAAACTTCG -ACGGAAACTTCCCCTCAATACGCA -ACGGAAACTTCCCCTCAACTTGCA -ACGGAAACTTCCCCTCAACGAACA -ACGGAAACTTCCCCTCAACAGTCA -ACGGAAACTTCCCCTCAAGATCCA -ACGGAAACTTCCCCTCAAACGACA -ACGGAAACTTCCCCTCAAAGCTCA -ACGGAAACTTCCCCTCAATCACGT -ACGGAAACTTCCCCTCAACGTAGT -ACGGAAACTTCCCCTCAAGTCAGT -ACGGAAACTTCCCCTCAAGAAGGT -ACGGAAACTTCCCCTCAAAACCGT -ACGGAAACTTCCCCTCAATTGTGC -ACGGAAACTTCCCCTCAACTAAGC -ACGGAAACTTCCCCTCAAACTAGC -ACGGAAACTTCCCCTCAAAGATGC -ACGGAAACTTCCCCTCAATGAAGG -ACGGAAACTTCCCCTCAACAATGG -ACGGAAACTTCCCCTCAAATGAGG -ACGGAAACTTCCCCTCAAAATGGG -ACGGAAACTTCCCCTCAATCCTGA -ACGGAAACTTCCCCTCAATAGCGA -ACGGAAACTTCCCCTCAACACAGA -ACGGAAACTTCCCCTCAAGCAAGA -ACGGAAACTTCCCCTCAAGGTTGA -ACGGAAACTTCCCCTCAATCCGAT -ACGGAAACTTCCCCTCAATGGCAT -ACGGAAACTTCCCCTCAACGAGAT -ACGGAAACTTCCCCTCAATACCAC -ACGGAAACTTCCCCTCAACAGAAC -ACGGAAACTTCCCCTCAAGTCTAC -ACGGAAACTTCCCCTCAAACGTAC -ACGGAAACTTCCCCTCAAAGTGAC -ACGGAAACTTCCCCTCAACTGTAG -ACGGAAACTTCCCCTCAACCTAAG -ACGGAAACTTCCCCTCAAGTTCAG -ACGGAAACTTCCCCTCAAGCATAG -ACGGAAACTTCCCCTCAAGACAAG -ACGGAAACTTCCCCTCAAAAGCAG -ACGGAAACTTCCCCTCAACGTCAA -ACGGAAACTTCCCCTCAAGCTGAA -ACGGAAACTTCCCCTCAAAGTACG -ACGGAAACTTCCCCTCAAATCCGA -ACGGAAACTTCCCCTCAAATGGGA -ACGGAAACTTCCCCTCAAGTGCAA -ACGGAAACTTCCCCTCAAGAGGAA -ACGGAAACTTCCCCTCAACAGGTA -ACGGAAACTTCCCCTCAAGACTCT -ACGGAAACTTCCCCTCAAAGTCCT -ACGGAAACTTCCCCTCAATAAGCC -ACGGAAACTTCCCCTCAAATAGCC -ACGGAAACTTCCCCTCAATAACCG -ACGGAAACTTCCCCTCAAATGCCA -ACGGAAACTTCCACTGCTGGAAAC -ACGGAAACTTCCACTGCTAACACC -ACGGAAACTTCCACTGCTATCGAG -ACGGAAACTTCCACTGCTCTCCTT -ACGGAAACTTCCACTGCTCCTGTT -ACGGAAACTTCCACTGCTCGGTTT -ACGGAAACTTCCACTGCTGTGGTT -ACGGAAACTTCCACTGCTGCCTTT -ACGGAAACTTCCACTGCTGGTCTT -ACGGAAACTTCCACTGCTACGCTT -ACGGAAACTTCCACTGCTAGCGTT -ACGGAAACTTCCACTGCTTTCGTC -ACGGAAACTTCCACTGCTTCTCTC -ACGGAAACTTCCACTGCTTGGATC -ACGGAAACTTCCACTGCTCACTTC -ACGGAAACTTCCACTGCTGTACTC -ACGGAAACTTCCACTGCTGATGTC -ACGGAAACTTCCACTGCTACAGTC -ACGGAAACTTCCACTGCTTTGCTG -ACGGAAACTTCCACTGCTTCCATG -ACGGAAACTTCCACTGCTTGTGTG -ACGGAAACTTCCACTGCTCTAGTG -ACGGAAACTTCCACTGCTCATCTG -ACGGAAACTTCCACTGCTGAGTTG -ACGGAAACTTCCACTGCTAGACTG -ACGGAAACTTCCACTGCTTCGGTA -ACGGAAACTTCCACTGCTTGCCTA -ACGGAAACTTCCACTGCTCCACTA -ACGGAAACTTCCACTGCTGGAGTA -ACGGAAACTTCCACTGCTTCGTCT -ACGGAAACTTCCACTGCTTGCACT -ACGGAAACTTCCACTGCTCTGACT -ACGGAAACTTCCACTGCTCAACCT -ACGGAAACTTCCACTGCTGCTACT -ACGGAAACTTCCACTGCTGGATCT -ACGGAAACTTCCACTGCTAAGGCT -ACGGAAACTTCCACTGCTTCAACC -ACGGAAACTTCCACTGCTTGTTCC -ACGGAAACTTCCACTGCTATTCCC -ACGGAAACTTCCACTGCTTTCTCG -ACGGAAACTTCCACTGCTTAGACG -ACGGAAACTTCCACTGCTGTAACG -ACGGAAACTTCCACTGCTACTTCG -ACGGAAACTTCCACTGCTTACGCA -ACGGAAACTTCCACTGCTCTTGCA -ACGGAAACTTCCACTGCTCGAACA -ACGGAAACTTCCACTGCTCAGTCA -ACGGAAACTTCCACTGCTGATCCA -ACGGAAACTTCCACTGCTACGACA -ACGGAAACTTCCACTGCTAGCTCA -ACGGAAACTTCCACTGCTTCACGT -ACGGAAACTTCCACTGCTCGTAGT -ACGGAAACTTCCACTGCTGTCAGT -ACGGAAACTTCCACTGCTGAAGGT -ACGGAAACTTCCACTGCTAACCGT -ACGGAAACTTCCACTGCTTTGTGC -ACGGAAACTTCCACTGCTCTAAGC -ACGGAAACTTCCACTGCTACTAGC -ACGGAAACTTCCACTGCTAGATGC -ACGGAAACTTCCACTGCTTGAAGG -ACGGAAACTTCCACTGCTCAATGG -ACGGAAACTTCCACTGCTATGAGG -ACGGAAACTTCCACTGCTAATGGG -ACGGAAACTTCCACTGCTTCCTGA -ACGGAAACTTCCACTGCTTAGCGA -ACGGAAACTTCCACTGCTCACAGA -ACGGAAACTTCCACTGCTGCAAGA -ACGGAAACTTCCACTGCTGGTTGA -ACGGAAACTTCCACTGCTTCCGAT -ACGGAAACTTCCACTGCTTGGCAT -ACGGAAACTTCCACTGCTCGAGAT -ACGGAAACTTCCACTGCTTACCAC -ACGGAAACTTCCACTGCTCAGAAC -ACGGAAACTTCCACTGCTGTCTAC -ACGGAAACTTCCACTGCTACGTAC -ACGGAAACTTCCACTGCTAGTGAC -ACGGAAACTTCCACTGCTCTGTAG -ACGGAAACTTCCACTGCTCCTAAG -ACGGAAACTTCCACTGCTGTTCAG -ACGGAAACTTCCACTGCTGCATAG -ACGGAAACTTCCACTGCTGACAAG -ACGGAAACTTCCACTGCTAAGCAG -ACGGAAACTTCCACTGCTCGTCAA -ACGGAAACTTCCACTGCTGCTGAA -ACGGAAACTTCCACTGCTAGTACG -ACGGAAACTTCCACTGCTATCCGA -ACGGAAACTTCCACTGCTATGGGA -ACGGAAACTTCCACTGCTGTGCAA -ACGGAAACTTCCACTGCTGAGGAA -ACGGAAACTTCCACTGCTCAGGTA -ACGGAAACTTCCACTGCTGACTCT -ACGGAAACTTCCACTGCTAGTCCT -ACGGAAACTTCCACTGCTTAAGCC -ACGGAAACTTCCACTGCTATAGCC -ACGGAAACTTCCACTGCTTAACCG -ACGGAAACTTCCACTGCTATGCCA -ACGGAAACTTCCTCTGGAGGAAAC -ACGGAAACTTCCTCTGGAAACACC -ACGGAAACTTCCTCTGGAATCGAG -ACGGAAACTTCCTCTGGACTCCTT -ACGGAAACTTCCTCTGGACCTGTT -ACGGAAACTTCCTCTGGACGGTTT -ACGGAAACTTCCTCTGGAGTGGTT -ACGGAAACTTCCTCTGGAGCCTTT -ACGGAAACTTCCTCTGGAGGTCTT -ACGGAAACTTCCTCTGGAACGCTT -ACGGAAACTTCCTCTGGAAGCGTT -ACGGAAACTTCCTCTGGATTCGTC -ACGGAAACTTCCTCTGGATCTCTC -ACGGAAACTTCCTCTGGATGGATC -ACGGAAACTTCCTCTGGACACTTC -ACGGAAACTTCCTCTGGAGTACTC -ACGGAAACTTCCTCTGGAGATGTC -ACGGAAACTTCCTCTGGAACAGTC -ACGGAAACTTCCTCTGGATTGCTG -ACGGAAACTTCCTCTGGATCCATG -ACGGAAACTTCCTCTGGATGTGTG -ACGGAAACTTCCTCTGGACTAGTG -ACGGAAACTTCCTCTGGACATCTG -ACGGAAACTTCCTCTGGAGAGTTG -ACGGAAACTTCCTCTGGAAGACTG -ACGGAAACTTCCTCTGGATCGGTA -ACGGAAACTTCCTCTGGATGCCTA -ACGGAAACTTCCTCTGGACCACTA -ACGGAAACTTCCTCTGGAGGAGTA -ACGGAAACTTCCTCTGGATCGTCT -ACGGAAACTTCCTCTGGATGCACT -ACGGAAACTTCCTCTGGACTGACT -ACGGAAACTTCCTCTGGACAACCT -ACGGAAACTTCCTCTGGAGCTACT -ACGGAAACTTCCTCTGGAGGATCT -ACGGAAACTTCCTCTGGAAAGGCT -ACGGAAACTTCCTCTGGATCAACC -ACGGAAACTTCCTCTGGATGTTCC -ACGGAAACTTCCTCTGGAATTCCC -ACGGAAACTTCCTCTGGATTCTCG -ACGGAAACTTCCTCTGGATAGACG -ACGGAAACTTCCTCTGGAGTAACG -ACGGAAACTTCCTCTGGAACTTCG -ACGGAAACTTCCTCTGGATACGCA -ACGGAAACTTCCTCTGGACTTGCA -ACGGAAACTTCCTCTGGACGAACA -ACGGAAACTTCCTCTGGACAGTCA -ACGGAAACTTCCTCTGGAGATCCA -ACGGAAACTTCCTCTGGAACGACA -ACGGAAACTTCCTCTGGAAGCTCA -ACGGAAACTTCCTCTGGATCACGT -ACGGAAACTTCCTCTGGACGTAGT -ACGGAAACTTCCTCTGGAGTCAGT -ACGGAAACTTCCTCTGGAGAAGGT -ACGGAAACTTCCTCTGGAAACCGT -ACGGAAACTTCCTCTGGATTGTGC -ACGGAAACTTCCTCTGGACTAAGC -ACGGAAACTTCCTCTGGAACTAGC -ACGGAAACTTCCTCTGGAAGATGC -ACGGAAACTTCCTCTGGATGAAGG -ACGGAAACTTCCTCTGGACAATGG -ACGGAAACTTCCTCTGGAATGAGG -ACGGAAACTTCCTCTGGAAATGGG -ACGGAAACTTCCTCTGGATCCTGA -ACGGAAACTTCCTCTGGATAGCGA -ACGGAAACTTCCTCTGGACACAGA -ACGGAAACTTCCTCTGGAGCAAGA -ACGGAAACTTCCTCTGGAGGTTGA -ACGGAAACTTCCTCTGGATCCGAT -ACGGAAACTTCCTCTGGATGGCAT -ACGGAAACTTCCTCTGGACGAGAT -ACGGAAACTTCCTCTGGATACCAC -ACGGAAACTTCCTCTGGACAGAAC -ACGGAAACTTCCTCTGGAGTCTAC -ACGGAAACTTCCTCTGGAACGTAC -ACGGAAACTTCCTCTGGAAGTGAC -ACGGAAACTTCCTCTGGACTGTAG -ACGGAAACTTCCTCTGGACCTAAG -ACGGAAACTTCCTCTGGAGTTCAG -ACGGAAACTTCCTCTGGAGCATAG -ACGGAAACTTCCTCTGGAGACAAG -ACGGAAACTTCCTCTGGAAAGCAG -ACGGAAACTTCCTCTGGACGTCAA -ACGGAAACTTCCTCTGGAGCTGAA -ACGGAAACTTCCTCTGGAAGTACG -ACGGAAACTTCCTCTGGAATCCGA -ACGGAAACTTCCTCTGGAATGGGA -ACGGAAACTTCCTCTGGAGTGCAA -ACGGAAACTTCCTCTGGAGAGGAA -ACGGAAACTTCCTCTGGACAGGTA -ACGGAAACTTCCTCTGGAGACTCT -ACGGAAACTTCCTCTGGAAGTCCT -ACGGAAACTTCCTCTGGATAAGCC -ACGGAAACTTCCTCTGGAATAGCC -ACGGAAACTTCCTCTGGATAACCG -ACGGAAACTTCCTCTGGAATGCCA -ACGGAAACTTCCGCTAAGGGAAAC -ACGGAAACTTCCGCTAAGAACACC -ACGGAAACTTCCGCTAAGATCGAG -ACGGAAACTTCCGCTAAGCTCCTT -ACGGAAACTTCCGCTAAGCCTGTT -ACGGAAACTTCCGCTAAGCGGTTT -ACGGAAACTTCCGCTAAGGTGGTT -ACGGAAACTTCCGCTAAGGCCTTT -ACGGAAACTTCCGCTAAGGGTCTT -ACGGAAACTTCCGCTAAGACGCTT -ACGGAAACTTCCGCTAAGAGCGTT -ACGGAAACTTCCGCTAAGTTCGTC -ACGGAAACTTCCGCTAAGTCTCTC -ACGGAAACTTCCGCTAAGTGGATC -ACGGAAACTTCCGCTAAGCACTTC -ACGGAAACTTCCGCTAAGGTACTC -ACGGAAACTTCCGCTAAGGATGTC -ACGGAAACTTCCGCTAAGACAGTC -ACGGAAACTTCCGCTAAGTTGCTG -ACGGAAACTTCCGCTAAGTCCATG -ACGGAAACTTCCGCTAAGTGTGTG -ACGGAAACTTCCGCTAAGCTAGTG -ACGGAAACTTCCGCTAAGCATCTG -ACGGAAACTTCCGCTAAGGAGTTG -ACGGAAACTTCCGCTAAGAGACTG -ACGGAAACTTCCGCTAAGTCGGTA -ACGGAAACTTCCGCTAAGTGCCTA -ACGGAAACTTCCGCTAAGCCACTA -ACGGAAACTTCCGCTAAGGGAGTA -ACGGAAACTTCCGCTAAGTCGTCT -ACGGAAACTTCCGCTAAGTGCACT -ACGGAAACTTCCGCTAAGCTGACT -ACGGAAACTTCCGCTAAGCAACCT -ACGGAAACTTCCGCTAAGGCTACT -ACGGAAACTTCCGCTAAGGGATCT -ACGGAAACTTCCGCTAAGAAGGCT -ACGGAAACTTCCGCTAAGTCAACC -ACGGAAACTTCCGCTAAGTGTTCC -ACGGAAACTTCCGCTAAGATTCCC -ACGGAAACTTCCGCTAAGTTCTCG -ACGGAAACTTCCGCTAAGTAGACG -ACGGAAACTTCCGCTAAGGTAACG -ACGGAAACTTCCGCTAAGACTTCG -ACGGAAACTTCCGCTAAGTACGCA -ACGGAAACTTCCGCTAAGCTTGCA -ACGGAAACTTCCGCTAAGCGAACA -ACGGAAACTTCCGCTAAGCAGTCA -ACGGAAACTTCCGCTAAGGATCCA -ACGGAAACTTCCGCTAAGACGACA -ACGGAAACTTCCGCTAAGAGCTCA -ACGGAAACTTCCGCTAAGTCACGT -ACGGAAACTTCCGCTAAGCGTAGT -ACGGAAACTTCCGCTAAGGTCAGT -ACGGAAACTTCCGCTAAGGAAGGT -ACGGAAACTTCCGCTAAGAACCGT -ACGGAAACTTCCGCTAAGTTGTGC -ACGGAAACTTCCGCTAAGCTAAGC -ACGGAAACTTCCGCTAAGACTAGC -ACGGAAACTTCCGCTAAGAGATGC -ACGGAAACTTCCGCTAAGTGAAGG -ACGGAAACTTCCGCTAAGCAATGG -ACGGAAACTTCCGCTAAGATGAGG -ACGGAAACTTCCGCTAAGAATGGG -ACGGAAACTTCCGCTAAGTCCTGA -ACGGAAACTTCCGCTAAGTAGCGA -ACGGAAACTTCCGCTAAGCACAGA -ACGGAAACTTCCGCTAAGGCAAGA -ACGGAAACTTCCGCTAAGGGTTGA -ACGGAAACTTCCGCTAAGTCCGAT -ACGGAAACTTCCGCTAAGTGGCAT -ACGGAAACTTCCGCTAAGCGAGAT -ACGGAAACTTCCGCTAAGTACCAC -ACGGAAACTTCCGCTAAGCAGAAC -ACGGAAACTTCCGCTAAGGTCTAC -ACGGAAACTTCCGCTAAGACGTAC -ACGGAAACTTCCGCTAAGAGTGAC -ACGGAAACTTCCGCTAAGCTGTAG -ACGGAAACTTCCGCTAAGCCTAAG -ACGGAAACTTCCGCTAAGGTTCAG -ACGGAAACTTCCGCTAAGGCATAG -ACGGAAACTTCCGCTAAGGACAAG -ACGGAAACTTCCGCTAAGAAGCAG -ACGGAAACTTCCGCTAAGCGTCAA -ACGGAAACTTCCGCTAAGGCTGAA -ACGGAAACTTCCGCTAAGAGTACG -ACGGAAACTTCCGCTAAGATCCGA -ACGGAAACTTCCGCTAAGATGGGA -ACGGAAACTTCCGCTAAGGTGCAA -ACGGAAACTTCCGCTAAGGAGGAA -ACGGAAACTTCCGCTAAGCAGGTA -ACGGAAACTTCCGCTAAGGACTCT -ACGGAAACTTCCGCTAAGAGTCCT -ACGGAAACTTCCGCTAAGTAAGCC -ACGGAAACTTCCGCTAAGATAGCC -ACGGAAACTTCCGCTAAGTAACCG -ACGGAAACTTCCGCTAAGATGCCA -ACGGAAACTTCCACCTCAGGAAAC -ACGGAAACTTCCACCTCAAACACC -ACGGAAACTTCCACCTCAATCGAG -ACGGAAACTTCCACCTCACTCCTT -ACGGAAACTTCCACCTCACCTGTT -ACGGAAACTTCCACCTCACGGTTT -ACGGAAACTTCCACCTCAGTGGTT -ACGGAAACTTCCACCTCAGCCTTT -ACGGAAACTTCCACCTCAGGTCTT -ACGGAAACTTCCACCTCAACGCTT -ACGGAAACTTCCACCTCAAGCGTT -ACGGAAACTTCCACCTCATTCGTC -ACGGAAACTTCCACCTCATCTCTC -ACGGAAACTTCCACCTCATGGATC -ACGGAAACTTCCACCTCACACTTC -ACGGAAACTTCCACCTCAGTACTC -ACGGAAACTTCCACCTCAGATGTC -ACGGAAACTTCCACCTCAACAGTC -ACGGAAACTTCCACCTCATTGCTG -ACGGAAACTTCCACCTCATCCATG -ACGGAAACTTCCACCTCATGTGTG -ACGGAAACTTCCACCTCACTAGTG -ACGGAAACTTCCACCTCACATCTG -ACGGAAACTTCCACCTCAGAGTTG -ACGGAAACTTCCACCTCAAGACTG -ACGGAAACTTCCACCTCATCGGTA -ACGGAAACTTCCACCTCATGCCTA -ACGGAAACTTCCACCTCACCACTA -ACGGAAACTTCCACCTCAGGAGTA -ACGGAAACTTCCACCTCATCGTCT -ACGGAAACTTCCACCTCATGCACT -ACGGAAACTTCCACCTCACTGACT -ACGGAAACTTCCACCTCACAACCT -ACGGAAACTTCCACCTCAGCTACT -ACGGAAACTTCCACCTCAGGATCT -ACGGAAACTTCCACCTCAAAGGCT -ACGGAAACTTCCACCTCATCAACC -ACGGAAACTTCCACCTCATGTTCC -ACGGAAACTTCCACCTCAATTCCC -ACGGAAACTTCCACCTCATTCTCG -ACGGAAACTTCCACCTCATAGACG -ACGGAAACTTCCACCTCAGTAACG -ACGGAAACTTCCACCTCAACTTCG -ACGGAAACTTCCACCTCATACGCA -ACGGAAACTTCCACCTCACTTGCA -ACGGAAACTTCCACCTCACGAACA -ACGGAAACTTCCACCTCACAGTCA -ACGGAAACTTCCACCTCAGATCCA -ACGGAAACTTCCACCTCAACGACA -ACGGAAACTTCCACCTCAAGCTCA -ACGGAAACTTCCACCTCATCACGT -ACGGAAACTTCCACCTCACGTAGT -ACGGAAACTTCCACCTCAGTCAGT -ACGGAAACTTCCACCTCAGAAGGT -ACGGAAACTTCCACCTCAAACCGT -ACGGAAACTTCCACCTCATTGTGC -ACGGAAACTTCCACCTCACTAAGC -ACGGAAACTTCCACCTCAACTAGC -ACGGAAACTTCCACCTCAAGATGC -ACGGAAACTTCCACCTCATGAAGG -ACGGAAACTTCCACCTCACAATGG -ACGGAAACTTCCACCTCAATGAGG -ACGGAAACTTCCACCTCAAATGGG -ACGGAAACTTCCACCTCATCCTGA -ACGGAAACTTCCACCTCATAGCGA -ACGGAAACTTCCACCTCACACAGA -ACGGAAACTTCCACCTCAGCAAGA -ACGGAAACTTCCACCTCAGGTTGA -ACGGAAACTTCCACCTCATCCGAT -ACGGAAACTTCCACCTCATGGCAT -ACGGAAACTTCCACCTCACGAGAT -ACGGAAACTTCCACCTCATACCAC -ACGGAAACTTCCACCTCACAGAAC -ACGGAAACTTCCACCTCAGTCTAC -ACGGAAACTTCCACCTCAACGTAC -ACGGAAACTTCCACCTCAAGTGAC -ACGGAAACTTCCACCTCACTGTAG -ACGGAAACTTCCACCTCACCTAAG -ACGGAAACTTCCACCTCAGTTCAG -ACGGAAACTTCCACCTCAGCATAG -ACGGAAACTTCCACCTCAGACAAG -ACGGAAACTTCCACCTCAAAGCAG -ACGGAAACTTCCACCTCACGTCAA -ACGGAAACTTCCACCTCAGCTGAA -ACGGAAACTTCCACCTCAAGTACG -ACGGAAACTTCCACCTCAATCCGA -ACGGAAACTTCCACCTCAATGGGA -ACGGAAACTTCCACCTCAGTGCAA -ACGGAAACTTCCACCTCAGAGGAA -ACGGAAACTTCCACCTCACAGGTA -ACGGAAACTTCCACCTCAGACTCT -ACGGAAACTTCCACCTCAAGTCCT -ACGGAAACTTCCACCTCATAAGCC -ACGGAAACTTCCACCTCAATAGCC -ACGGAAACTTCCACCTCATAACCG -ACGGAAACTTCCACCTCAATGCCA -ACGGAAACTTCCTCCTGTGGAAAC -ACGGAAACTTCCTCCTGTAACACC -ACGGAAACTTCCTCCTGTATCGAG -ACGGAAACTTCCTCCTGTCTCCTT -ACGGAAACTTCCTCCTGTCCTGTT -ACGGAAACTTCCTCCTGTCGGTTT -ACGGAAACTTCCTCCTGTGTGGTT -ACGGAAACTTCCTCCTGTGCCTTT -ACGGAAACTTCCTCCTGTGGTCTT -ACGGAAACTTCCTCCTGTACGCTT -ACGGAAACTTCCTCCTGTAGCGTT -ACGGAAACTTCCTCCTGTTTCGTC -ACGGAAACTTCCTCCTGTTCTCTC -ACGGAAACTTCCTCCTGTTGGATC -ACGGAAACTTCCTCCTGTCACTTC -ACGGAAACTTCCTCCTGTGTACTC -ACGGAAACTTCCTCCTGTGATGTC -ACGGAAACTTCCTCCTGTACAGTC -ACGGAAACTTCCTCCTGTTTGCTG -ACGGAAACTTCCTCCTGTTCCATG -ACGGAAACTTCCTCCTGTTGTGTG -ACGGAAACTTCCTCCTGTCTAGTG -ACGGAAACTTCCTCCTGTCATCTG -ACGGAAACTTCCTCCTGTGAGTTG -ACGGAAACTTCCTCCTGTAGACTG -ACGGAAACTTCCTCCTGTTCGGTA -ACGGAAACTTCCTCCTGTTGCCTA -ACGGAAACTTCCTCCTGTCCACTA -ACGGAAACTTCCTCCTGTGGAGTA -ACGGAAACTTCCTCCTGTTCGTCT -ACGGAAACTTCCTCCTGTTGCACT -ACGGAAACTTCCTCCTGTCTGACT -ACGGAAACTTCCTCCTGTCAACCT -ACGGAAACTTCCTCCTGTGCTACT -ACGGAAACTTCCTCCTGTGGATCT -ACGGAAACTTCCTCCTGTAAGGCT -ACGGAAACTTCCTCCTGTTCAACC -ACGGAAACTTCCTCCTGTTGTTCC -ACGGAAACTTCCTCCTGTATTCCC -ACGGAAACTTCCTCCTGTTTCTCG -ACGGAAACTTCCTCCTGTTAGACG -ACGGAAACTTCCTCCTGTGTAACG -ACGGAAACTTCCTCCTGTACTTCG -ACGGAAACTTCCTCCTGTTACGCA -ACGGAAACTTCCTCCTGTCTTGCA -ACGGAAACTTCCTCCTGTCGAACA -ACGGAAACTTCCTCCTGTCAGTCA -ACGGAAACTTCCTCCTGTGATCCA -ACGGAAACTTCCTCCTGTACGACA -ACGGAAACTTCCTCCTGTAGCTCA -ACGGAAACTTCCTCCTGTTCACGT -ACGGAAACTTCCTCCTGTCGTAGT -ACGGAAACTTCCTCCTGTGTCAGT -ACGGAAACTTCCTCCTGTGAAGGT -ACGGAAACTTCCTCCTGTAACCGT -ACGGAAACTTCCTCCTGTTTGTGC -ACGGAAACTTCCTCCTGTCTAAGC -ACGGAAACTTCCTCCTGTACTAGC -ACGGAAACTTCCTCCTGTAGATGC -ACGGAAACTTCCTCCTGTTGAAGG -ACGGAAACTTCCTCCTGTCAATGG -ACGGAAACTTCCTCCTGTATGAGG -ACGGAAACTTCCTCCTGTAATGGG -ACGGAAACTTCCTCCTGTTCCTGA -ACGGAAACTTCCTCCTGTTAGCGA -ACGGAAACTTCCTCCTGTCACAGA -ACGGAAACTTCCTCCTGTGCAAGA -ACGGAAACTTCCTCCTGTGGTTGA -ACGGAAACTTCCTCCTGTTCCGAT -ACGGAAACTTCCTCCTGTTGGCAT -ACGGAAACTTCCTCCTGTCGAGAT -ACGGAAACTTCCTCCTGTTACCAC -ACGGAAACTTCCTCCTGTCAGAAC -ACGGAAACTTCCTCCTGTGTCTAC -ACGGAAACTTCCTCCTGTACGTAC -ACGGAAACTTCCTCCTGTAGTGAC -ACGGAAACTTCCTCCTGTCTGTAG -ACGGAAACTTCCTCCTGTCCTAAG -ACGGAAACTTCCTCCTGTGTTCAG -ACGGAAACTTCCTCCTGTGCATAG -ACGGAAACTTCCTCCTGTGACAAG -ACGGAAACTTCCTCCTGTAAGCAG -ACGGAAACTTCCTCCTGTCGTCAA -ACGGAAACTTCCTCCTGTGCTGAA -ACGGAAACTTCCTCCTGTAGTACG -ACGGAAACTTCCTCCTGTATCCGA -ACGGAAACTTCCTCCTGTATGGGA -ACGGAAACTTCCTCCTGTGTGCAA -ACGGAAACTTCCTCCTGTGAGGAA -ACGGAAACTTCCTCCTGTCAGGTA -ACGGAAACTTCCTCCTGTGACTCT -ACGGAAACTTCCTCCTGTAGTCCT -ACGGAAACTTCCTCCTGTTAAGCC -ACGGAAACTTCCTCCTGTATAGCC -ACGGAAACTTCCTCCTGTTAACCG -ACGGAAACTTCCTCCTGTATGCCA -ACGGAAACTTCCCCCATTGGAAAC -ACGGAAACTTCCCCCATTAACACC -ACGGAAACTTCCCCCATTATCGAG -ACGGAAACTTCCCCCATTCTCCTT -ACGGAAACTTCCCCCATTCCTGTT -ACGGAAACTTCCCCCATTCGGTTT -ACGGAAACTTCCCCCATTGTGGTT -ACGGAAACTTCCCCCATTGCCTTT -ACGGAAACTTCCCCCATTGGTCTT -ACGGAAACTTCCCCCATTACGCTT -ACGGAAACTTCCCCCATTAGCGTT -ACGGAAACTTCCCCCATTTTCGTC -ACGGAAACTTCCCCCATTTCTCTC -ACGGAAACTTCCCCCATTTGGATC -ACGGAAACTTCCCCCATTCACTTC -ACGGAAACTTCCCCCATTGTACTC -ACGGAAACTTCCCCCATTGATGTC -ACGGAAACTTCCCCCATTACAGTC -ACGGAAACTTCCCCCATTTTGCTG -ACGGAAACTTCCCCCATTTCCATG -ACGGAAACTTCCCCCATTTGTGTG -ACGGAAACTTCCCCCATTCTAGTG -ACGGAAACTTCCCCCATTCATCTG -ACGGAAACTTCCCCCATTGAGTTG -ACGGAAACTTCCCCCATTAGACTG -ACGGAAACTTCCCCCATTTCGGTA -ACGGAAACTTCCCCCATTTGCCTA -ACGGAAACTTCCCCCATTCCACTA -ACGGAAACTTCCCCCATTGGAGTA -ACGGAAACTTCCCCCATTTCGTCT -ACGGAAACTTCCCCCATTTGCACT -ACGGAAACTTCCCCCATTCTGACT -ACGGAAACTTCCCCCATTCAACCT -ACGGAAACTTCCCCCATTGCTACT -ACGGAAACTTCCCCCATTGGATCT -ACGGAAACTTCCCCCATTAAGGCT -ACGGAAACTTCCCCCATTTCAACC -ACGGAAACTTCCCCCATTTGTTCC -ACGGAAACTTCCCCCATTATTCCC -ACGGAAACTTCCCCCATTTTCTCG -ACGGAAACTTCCCCCATTTAGACG -ACGGAAACTTCCCCCATTGTAACG -ACGGAAACTTCCCCCATTACTTCG -ACGGAAACTTCCCCCATTTACGCA -ACGGAAACTTCCCCCATTCTTGCA -ACGGAAACTTCCCCCATTCGAACA -ACGGAAACTTCCCCCATTCAGTCA -ACGGAAACTTCCCCCATTGATCCA -ACGGAAACTTCCCCCATTACGACA -ACGGAAACTTCCCCCATTAGCTCA -ACGGAAACTTCCCCCATTTCACGT -ACGGAAACTTCCCCCATTCGTAGT -ACGGAAACTTCCCCCATTGTCAGT -ACGGAAACTTCCCCCATTGAAGGT -ACGGAAACTTCCCCCATTAACCGT -ACGGAAACTTCCCCCATTTTGTGC -ACGGAAACTTCCCCCATTCTAAGC -ACGGAAACTTCCCCCATTACTAGC -ACGGAAACTTCCCCCATTAGATGC -ACGGAAACTTCCCCCATTTGAAGG -ACGGAAACTTCCCCCATTCAATGG -ACGGAAACTTCCCCCATTATGAGG -ACGGAAACTTCCCCCATTAATGGG -ACGGAAACTTCCCCCATTTCCTGA -ACGGAAACTTCCCCCATTTAGCGA -ACGGAAACTTCCCCCATTCACAGA -ACGGAAACTTCCCCCATTGCAAGA -ACGGAAACTTCCCCCATTGGTTGA -ACGGAAACTTCCCCCATTTCCGAT -ACGGAAACTTCCCCCATTTGGCAT -ACGGAAACTTCCCCCATTCGAGAT -ACGGAAACTTCCCCCATTTACCAC -ACGGAAACTTCCCCCATTCAGAAC -ACGGAAACTTCCCCCATTGTCTAC -ACGGAAACTTCCCCCATTACGTAC -ACGGAAACTTCCCCCATTAGTGAC -ACGGAAACTTCCCCCATTCTGTAG -ACGGAAACTTCCCCCATTCCTAAG -ACGGAAACTTCCCCCATTGTTCAG -ACGGAAACTTCCCCCATTGCATAG -ACGGAAACTTCCCCCATTGACAAG -ACGGAAACTTCCCCCATTAAGCAG -ACGGAAACTTCCCCCATTCGTCAA -ACGGAAACTTCCCCCATTGCTGAA -ACGGAAACTTCCCCCATTAGTACG -ACGGAAACTTCCCCCATTATCCGA -ACGGAAACTTCCCCCATTATGGGA -ACGGAAACTTCCCCCATTGTGCAA -ACGGAAACTTCCCCCATTGAGGAA -ACGGAAACTTCCCCCATTCAGGTA -ACGGAAACTTCCCCCATTGACTCT -ACGGAAACTTCCCCCATTAGTCCT -ACGGAAACTTCCCCCATTTAAGCC -ACGGAAACTTCCCCCATTATAGCC -ACGGAAACTTCCCCCATTTAACCG -ACGGAAACTTCCCCCATTATGCCA -ACGGAAACTTCCTCGTTCGGAAAC -ACGGAAACTTCCTCGTTCAACACC -ACGGAAACTTCCTCGTTCATCGAG -ACGGAAACTTCCTCGTTCCTCCTT -ACGGAAACTTCCTCGTTCCCTGTT -ACGGAAACTTCCTCGTTCCGGTTT -ACGGAAACTTCCTCGTTCGTGGTT -ACGGAAACTTCCTCGTTCGCCTTT -ACGGAAACTTCCTCGTTCGGTCTT -ACGGAAACTTCCTCGTTCACGCTT -ACGGAAACTTCCTCGTTCAGCGTT -ACGGAAACTTCCTCGTTCTTCGTC -ACGGAAACTTCCTCGTTCTCTCTC -ACGGAAACTTCCTCGTTCTGGATC -ACGGAAACTTCCTCGTTCCACTTC -ACGGAAACTTCCTCGTTCGTACTC -ACGGAAACTTCCTCGTTCGATGTC -ACGGAAACTTCCTCGTTCACAGTC -ACGGAAACTTCCTCGTTCTTGCTG -ACGGAAACTTCCTCGTTCTCCATG -ACGGAAACTTCCTCGTTCTGTGTG -ACGGAAACTTCCTCGTTCCTAGTG -ACGGAAACTTCCTCGTTCCATCTG -ACGGAAACTTCCTCGTTCGAGTTG -ACGGAAACTTCCTCGTTCAGACTG -ACGGAAACTTCCTCGTTCTCGGTA -ACGGAAACTTCCTCGTTCTGCCTA -ACGGAAACTTCCTCGTTCCCACTA -ACGGAAACTTCCTCGTTCGGAGTA -ACGGAAACTTCCTCGTTCTCGTCT -ACGGAAACTTCCTCGTTCTGCACT -ACGGAAACTTCCTCGTTCCTGACT -ACGGAAACTTCCTCGTTCCAACCT -ACGGAAACTTCCTCGTTCGCTACT -ACGGAAACTTCCTCGTTCGGATCT -ACGGAAACTTCCTCGTTCAAGGCT -ACGGAAACTTCCTCGTTCTCAACC -ACGGAAACTTCCTCGTTCTGTTCC -ACGGAAACTTCCTCGTTCATTCCC -ACGGAAACTTCCTCGTTCTTCTCG -ACGGAAACTTCCTCGTTCTAGACG -ACGGAAACTTCCTCGTTCGTAACG -ACGGAAACTTCCTCGTTCACTTCG -ACGGAAACTTCCTCGTTCTACGCA -ACGGAAACTTCCTCGTTCCTTGCA -ACGGAAACTTCCTCGTTCCGAACA -ACGGAAACTTCCTCGTTCCAGTCA -ACGGAAACTTCCTCGTTCGATCCA -ACGGAAACTTCCTCGTTCACGACA -ACGGAAACTTCCTCGTTCAGCTCA -ACGGAAACTTCCTCGTTCTCACGT -ACGGAAACTTCCTCGTTCCGTAGT -ACGGAAACTTCCTCGTTCGTCAGT -ACGGAAACTTCCTCGTTCGAAGGT -ACGGAAACTTCCTCGTTCAACCGT -ACGGAAACTTCCTCGTTCTTGTGC -ACGGAAACTTCCTCGTTCCTAAGC -ACGGAAACTTCCTCGTTCACTAGC -ACGGAAACTTCCTCGTTCAGATGC -ACGGAAACTTCCTCGTTCTGAAGG -ACGGAAACTTCCTCGTTCCAATGG -ACGGAAACTTCCTCGTTCATGAGG -ACGGAAACTTCCTCGTTCAATGGG -ACGGAAACTTCCTCGTTCTCCTGA -ACGGAAACTTCCTCGTTCTAGCGA -ACGGAAACTTCCTCGTTCCACAGA -ACGGAAACTTCCTCGTTCGCAAGA -ACGGAAACTTCCTCGTTCGGTTGA -ACGGAAACTTCCTCGTTCTCCGAT -ACGGAAACTTCCTCGTTCTGGCAT -ACGGAAACTTCCTCGTTCCGAGAT -ACGGAAACTTCCTCGTTCTACCAC -ACGGAAACTTCCTCGTTCCAGAAC -ACGGAAACTTCCTCGTTCGTCTAC -ACGGAAACTTCCTCGTTCACGTAC -ACGGAAACTTCCTCGTTCAGTGAC -ACGGAAACTTCCTCGTTCCTGTAG -ACGGAAACTTCCTCGTTCCCTAAG -ACGGAAACTTCCTCGTTCGTTCAG -ACGGAAACTTCCTCGTTCGCATAG -ACGGAAACTTCCTCGTTCGACAAG -ACGGAAACTTCCTCGTTCAAGCAG -ACGGAAACTTCCTCGTTCCGTCAA -ACGGAAACTTCCTCGTTCGCTGAA -ACGGAAACTTCCTCGTTCAGTACG -ACGGAAACTTCCTCGTTCATCCGA -ACGGAAACTTCCTCGTTCATGGGA -ACGGAAACTTCCTCGTTCGTGCAA -ACGGAAACTTCCTCGTTCGAGGAA -ACGGAAACTTCCTCGTTCCAGGTA -ACGGAAACTTCCTCGTTCGACTCT -ACGGAAACTTCCTCGTTCAGTCCT -ACGGAAACTTCCTCGTTCTAAGCC -ACGGAAACTTCCTCGTTCATAGCC -ACGGAAACTTCCTCGTTCTAACCG -ACGGAAACTTCCTCGTTCATGCCA -ACGGAAACTTCCACGTAGGGAAAC -ACGGAAACTTCCACGTAGAACACC -ACGGAAACTTCCACGTAGATCGAG -ACGGAAACTTCCACGTAGCTCCTT -ACGGAAACTTCCACGTAGCCTGTT -ACGGAAACTTCCACGTAGCGGTTT -ACGGAAACTTCCACGTAGGTGGTT -ACGGAAACTTCCACGTAGGCCTTT -ACGGAAACTTCCACGTAGGGTCTT -ACGGAAACTTCCACGTAGACGCTT -ACGGAAACTTCCACGTAGAGCGTT -ACGGAAACTTCCACGTAGTTCGTC -ACGGAAACTTCCACGTAGTCTCTC -ACGGAAACTTCCACGTAGTGGATC -ACGGAAACTTCCACGTAGCACTTC -ACGGAAACTTCCACGTAGGTACTC -ACGGAAACTTCCACGTAGGATGTC -ACGGAAACTTCCACGTAGACAGTC -ACGGAAACTTCCACGTAGTTGCTG -ACGGAAACTTCCACGTAGTCCATG -ACGGAAACTTCCACGTAGTGTGTG -ACGGAAACTTCCACGTAGCTAGTG -ACGGAAACTTCCACGTAGCATCTG -ACGGAAACTTCCACGTAGGAGTTG -ACGGAAACTTCCACGTAGAGACTG -ACGGAAACTTCCACGTAGTCGGTA -ACGGAAACTTCCACGTAGTGCCTA -ACGGAAACTTCCACGTAGCCACTA -ACGGAAACTTCCACGTAGGGAGTA -ACGGAAACTTCCACGTAGTCGTCT -ACGGAAACTTCCACGTAGTGCACT -ACGGAAACTTCCACGTAGCTGACT -ACGGAAACTTCCACGTAGCAACCT -ACGGAAACTTCCACGTAGGCTACT -ACGGAAACTTCCACGTAGGGATCT -ACGGAAACTTCCACGTAGAAGGCT -ACGGAAACTTCCACGTAGTCAACC -ACGGAAACTTCCACGTAGTGTTCC -ACGGAAACTTCCACGTAGATTCCC -ACGGAAACTTCCACGTAGTTCTCG -ACGGAAACTTCCACGTAGTAGACG -ACGGAAACTTCCACGTAGGTAACG -ACGGAAACTTCCACGTAGACTTCG -ACGGAAACTTCCACGTAGTACGCA -ACGGAAACTTCCACGTAGCTTGCA -ACGGAAACTTCCACGTAGCGAACA -ACGGAAACTTCCACGTAGCAGTCA -ACGGAAACTTCCACGTAGGATCCA -ACGGAAACTTCCACGTAGACGACA -ACGGAAACTTCCACGTAGAGCTCA -ACGGAAACTTCCACGTAGTCACGT -ACGGAAACTTCCACGTAGCGTAGT -ACGGAAACTTCCACGTAGGTCAGT -ACGGAAACTTCCACGTAGGAAGGT -ACGGAAACTTCCACGTAGAACCGT -ACGGAAACTTCCACGTAGTTGTGC -ACGGAAACTTCCACGTAGCTAAGC -ACGGAAACTTCCACGTAGACTAGC -ACGGAAACTTCCACGTAGAGATGC -ACGGAAACTTCCACGTAGTGAAGG -ACGGAAACTTCCACGTAGCAATGG -ACGGAAACTTCCACGTAGATGAGG -ACGGAAACTTCCACGTAGAATGGG -ACGGAAACTTCCACGTAGTCCTGA -ACGGAAACTTCCACGTAGTAGCGA -ACGGAAACTTCCACGTAGCACAGA -ACGGAAACTTCCACGTAGGCAAGA -ACGGAAACTTCCACGTAGGGTTGA -ACGGAAACTTCCACGTAGTCCGAT -ACGGAAACTTCCACGTAGTGGCAT -ACGGAAACTTCCACGTAGCGAGAT -ACGGAAACTTCCACGTAGTACCAC -ACGGAAACTTCCACGTAGCAGAAC -ACGGAAACTTCCACGTAGGTCTAC -ACGGAAACTTCCACGTAGACGTAC -ACGGAAACTTCCACGTAGAGTGAC -ACGGAAACTTCCACGTAGCTGTAG -ACGGAAACTTCCACGTAGCCTAAG -ACGGAAACTTCCACGTAGGTTCAG -ACGGAAACTTCCACGTAGGCATAG -ACGGAAACTTCCACGTAGGACAAG -ACGGAAACTTCCACGTAGAAGCAG -ACGGAAACTTCCACGTAGCGTCAA -ACGGAAACTTCCACGTAGGCTGAA -ACGGAAACTTCCACGTAGAGTACG -ACGGAAACTTCCACGTAGATCCGA -ACGGAAACTTCCACGTAGATGGGA -ACGGAAACTTCCACGTAGGTGCAA -ACGGAAACTTCCACGTAGGAGGAA -ACGGAAACTTCCACGTAGCAGGTA -ACGGAAACTTCCACGTAGGACTCT -ACGGAAACTTCCACGTAGAGTCCT -ACGGAAACTTCCACGTAGTAAGCC -ACGGAAACTTCCACGTAGATAGCC -ACGGAAACTTCCACGTAGTAACCG -ACGGAAACTTCCACGTAGATGCCA -ACGGAAACTTCCACGGTAGGAAAC -ACGGAAACTTCCACGGTAAACACC -ACGGAAACTTCCACGGTAATCGAG -ACGGAAACTTCCACGGTACTCCTT -ACGGAAACTTCCACGGTACCTGTT -ACGGAAACTTCCACGGTACGGTTT -ACGGAAACTTCCACGGTAGTGGTT -ACGGAAACTTCCACGGTAGCCTTT -ACGGAAACTTCCACGGTAGGTCTT -ACGGAAACTTCCACGGTAACGCTT -ACGGAAACTTCCACGGTAAGCGTT -ACGGAAACTTCCACGGTATTCGTC -ACGGAAACTTCCACGGTATCTCTC -ACGGAAACTTCCACGGTATGGATC -ACGGAAACTTCCACGGTACACTTC -ACGGAAACTTCCACGGTAGTACTC -ACGGAAACTTCCACGGTAGATGTC -ACGGAAACTTCCACGGTAACAGTC -ACGGAAACTTCCACGGTATTGCTG -ACGGAAACTTCCACGGTATCCATG -ACGGAAACTTCCACGGTATGTGTG -ACGGAAACTTCCACGGTACTAGTG -ACGGAAACTTCCACGGTACATCTG -ACGGAAACTTCCACGGTAGAGTTG -ACGGAAACTTCCACGGTAAGACTG -ACGGAAACTTCCACGGTATCGGTA -ACGGAAACTTCCACGGTATGCCTA -ACGGAAACTTCCACGGTACCACTA -ACGGAAACTTCCACGGTAGGAGTA -ACGGAAACTTCCACGGTATCGTCT -ACGGAAACTTCCACGGTATGCACT -ACGGAAACTTCCACGGTACTGACT -ACGGAAACTTCCACGGTACAACCT -ACGGAAACTTCCACGGTAGCTACT -ACGGAAACTTCCACGGTAGGATCT -ACGGAAACTTCCACGGTAAAGGCT -ACGGAAACTTCCACGGTATCAACC -ACGGAAACTTCCACGGTATGTTCC -ACGGAAACTTCCACGGTAATTCCC -ACGGAAACTTCCACGGTATTCTCG -ACGGAAACTTCCACGGTATAGACG -ACGGAAACTTCCACGGTAGTAACG -ACGGAAACTTCCACGGTAACTTCG -ACGGAAACTTCCACGGTATACGCA -ACGGAAACTTCCACGGTACTTGCA -ACGGAAACTTCCACGGTACGAACA -ACGGAAACTTCCACGGTACAGTCA -ACGGAAACTTCCACGGTAGATCCA -ACGGAAACTTCCACGGTAACGACA -ACGGAAACTTCCACGGTAAGCTCA -ACGGAAACTTCCACGGTATCACGT -ACGGAAACTTCCACGGTACGTAGT -ACGGAAACTTCCACGGTAGTCAGT -ACGGAAACTTCCACGGTAGAAGGT -ACGGAAACTTCCACGGTAAACCGT -ACGGAAACTTCCACGGTATTGTGC -ACGGAAACTTCCACGGTACTAAGC -ACGGAAACTTCCACGGTAACTAGC -ACGGAAACTTCCACGGTAAGATGC -ACGGAAACTTCCACGGTATGAAGG -ACGGAAACTTCCACGGTACAATGG -ACGGAAACTTCCACGGTAATGAGG -ACGGAAACTTCCACGGTAAATGGG -ACGGAAACTTCCACGGTATCCTGA -ACGGAAACTTCCACGGTATAGCGA -ACGGAAACTTCCACGGTACACAGA -ACGGAAACTTCCACGGTAGCAAGA -ACGGAAACTTCCACGGTAGGTTGA -ACGGAAACTTCCACGGTATCCGAT -ACGGAAACTTCCACGGTATGGCAT -ACGGAAACTTCCACGGTACGAGAT -ACGGAAACTTCCACGGTATACCAC -ACGGAAACTTCCACGGTACAGAAC -ACGGAAACTTCCACGGTAGTCTAC -ACGGAAACTTCCACGGTAACGTAC -ACGGAAACTTCCACGGTAAGTGAC -ACGGAAACTTCCACGGTACTGTAG -ACGGAAACTTCCACGGTACCTAAG -ACGGAAACTTCCACGGTAGTTCAG -ACGGAAACTTCCACGGTAGCATAG -ACGGAAACTTCCACGGTAGACAAG -ACGGAAACTTCCACGGTAAAGCAG -ACGGAAACTTCCACGGTACGTCAA -ACGGAAACTTCCACGGTAGCTGAA -ACGGAAACTTCCACGGTAAGTACG -ACGGAAACTTCCACGGTAATCCGA -ACGGAAACTTCCACGGTAATGGGA -ACGGAAACTTCCACGGTAGTGCAA -ACGGAAACTTCCACGGTAGAGGAA -ACGGAAACTTCCACGGTACAGGTA -ACGGAAACTTCCACGGTAGACTCT -ACGGAAACTTCCACGGTAAGTCCT -ACGGAAACTTCCACGGTATAAGCC -ACGGAAACTTCCACGGTAATAGCC -ACGGAAACTTCCACGGTATAACCG -ACGGAAACTTCCACGGTAATGCCA -ACGGAAACTTCCTCGACTGGAAAC -ACGGAAACTTCCTCGACTAACACC -ACGGAAACTTCCTCGACTATCGAG -ACGGAAACTTCCTCGACTCTCCTT -ACGGAAACTTCCTCGACTCCTGTT -ACGGAAACTTCCTCGACTCGGTTT -ACGGAAACTTCCTCGACTGTGGTT -ACGGAAACTTCCTCGACTGCCTTT -ACGGAAACTTCCTCGACTGGTCTT -ACGGAAACTTCCTCGACTACGCTT -ACGGAAACTTCCTCGACTAGCGTT -ACGGAAACTTCCTCGACTTTCGTC -ACGGAAACTTCCTCGACTTCTCTC -ACGGAAACTTCCTCGACTTGGATC -ACGGAAACTTCCTCGACTCACTTC -ACGGAAACTTCCTCGACTGTACTC -ACGGAAACTTCCTCGACTGATGTC -ACGGAAACTTCCTCGACTACAGTC -ACGGAAACTTCCTCGACTTTGCTG -ACGGAAACTTCCTCGACTTCCATG -ACGGAAACTTCCTCGACTTGTGTG -ACGGAAACTTCCTCGACTCTAGTG -ACGGAAACTTCCTCGACTCATCTG -ACGGAAACTTCCTCGACTGAGTTG -ACGGAAACTTCCTCGACTAGACTG -ACGGAAACTTCCTCGACTTCGGTA -ACGGAAACTTCCTCGACTTGCCTA -ACGGAAACTTCCTCGACTCCACTA -ACGGAAACTTCCTCGACTGGAGTA -ACGGAAACTTCCTCGACTTCGTCT -ACGGAAACTTCCTCGACTTGCACT -ACGGAAACTTCCTCGACTCTGACT -ACGGAAACTTCCTCGACTCAACCT -ACGGAAACTTCCTCGACTGCTACT -ACGGAAACTTCCTCGACTGGATCT -ACGGAAACTTCCTCGACTAAGGCT -ACGGAAACTTCCTCGACTTCAACC -ACGGAAACTTCCTCGACTTGTTCC -ACGGAAACTTCCTCGACTATTCCC -ACGGAAACTTCCTCGACTTTCTCG -ACGGAAACTTCCTCGACTTAGACG -ACGGAAACTTCCTCGACTGTAACG -ACGGAAACTTCCTCGACTACTTCG -ACGGAAACTTCCTCGACTTACGCA -ACGGAAACTTCCTCGACTCTTGCA -ACGGAAACTTCCTCGACTCGAACA -ACGGAAACTTCCTCGACTCAGTCA -ACGGAAACTTCCTCGACTGATCCA -ACGGAAACTTCCTCGACTACGACA -ACGGAAACTTCCTCGACTAGCTCA -ACGGAAACTTCCTCGACTTCACGT -ACGGAAACTTCCTCGACTCGTAGT -ACGGAAACTTCCTCGACTGTCAGT -ACGGAAACTTCCTCGACTGAAGGT -ACGGAAACTTCCTCGACTAACCGT -ACGGAAACTTCCTCGACTTTGTGC -ACGGAAACTTCCTCGACTCTAAGC -ACGGAAACTTCCTCGACTACTAGC -ACGGAAACTTCCTCGACTAGATGC -ACGGAAACTTCCTCGACTTGAAGG -ACGGAAACTTCCTCGACTCAATGG -ACGGAAACTTCCTCGACTATGAGG -ACGGAAACTTCCTCGACTAATGGG -ACGGAAACTTCCTCGACTTCCTGA -ACGGAAACTTCCTCGACTTAGCGA -ACGGAAACTTCCTCGACTCACAGA -ACGGAAACTTCCTCGACTGCAAGA -ACGGAAACTTCCTCGACTGGTTGA -ACGGAAACTTCCTCGACTTCCGAT -ACGGAAACTTCCTCGACTTGGCAT -ACGGAAACTTCCTCGACTCGAGAT -ACGGAAACTTCCTCGACTTACCAC -ACGGAAACTTCCTCGACTCAGAAC -ACGGAAACTTCCTCGACTGTCTAC -ACGGAAACTTCCTCGACTACGTAC -ACGGAAACTTCCTCGACTAGTGAC -ACGGAAACTTCCTCGACTCTGTAG -ACGGAAACTTCCTCGACTCCTAAG -ACGGAAACTTCCTCGACTGTTCAG -ACGGAAACTTCCTCGACTGCATAG -ACGGAAACTTCCTCGACTGACAAG -ACGGAAACTTCCTCGACTAAGCAG -ACGGAAACTTCCTCGACTCGTCAA -ACGGAAACTTCCTCGACTGCTGAA -ACGGAAACTTCCTCGACTAGTACG -ACGGAAACTTCCTCGACTATCCGA -ACGGAAACTTCCTCGACTATGGGA -ACGGAAACTTCCTCGACTGTGCAA -ACGGAAACTTCCTCGACTGAGGAA -ACGGAAACTTCCTCGACTCAGGTA -ACGGAAACTTCCTCGACTGACTCT -ACGGAAACTTCCTCGACTAGTCCT -ACGGAAACTTCCTCGACTTAAGCC -ACGGAAACTTCCTCGACTATAGCC -ACGGAAACTTCCTCGACTTAACCG -ACGGAAACTTCCTCGACTATGCCA -ACGGAAACTTCCGCATACGGAAAC -ACGGAAACTTCCGCATACAACACC -ACGGAAACTTCCGCATACATCGAG -ACGGAAACTTCCGCATACCTCCTT -ACGGAAACTTCCGCATACCCTGTT -ACGGAAACTTCCGCATACCGGTTT -ACGGAAACTTCCGCATACGTGGTT -ACGGAAACTTCCGCATACGCCTTT -ACGGAAACTTCCGCATACGGTCTT -ACGGAAACTTCCGCATACACGCTT -ACGGAAACTTCCGCATACAGCGTT -ACGGAAACTTCCGCATACTTCGTC -ACGGAAACTTCCGCATACTCTCTC -ACGGAAACTTCCGCATACTGGATC -ACGGAAACTTCCGCATACCACTTC -ACGGAAACTTCCGCATACGTACTC -ACGGAAACTTCCGCATACGATGTC -ACGGAAACTTCCGCATACACAGTC -ACGGAAACTTCCGCATACTTGCTG -ACGGAAACTTCCGCATACTCCATG -ACGGAAACTTCCGCATACTGTGTG -ACGGAAACTTCCGCATACCTAGTG -ACGGAAACTTCCGCATACCATCTG -ACGGAAACTTCCGCATACGAGTTG -ACGGAAACTTCCGCATACAGACTG -ACGGAAACTTCCGCATACTCGGTA -ACGGAAACTTCCGCATACTGCCTA -ACGGAAACTTCCGCATACCCACTA -ACGGAAACTTCCGCATACGGAGTA -ACGGAAACTTCCGCATACTCGTCT -ACGGAAACTTCCGCATACTGCACT -ACGGAAACTTCCGCATACCTGACT -ACGGAAACTTCCGCATACCAACCT -ACGGAAACTTCCGCATACGCTACT -ACGGAAACTTCCGCATACGGATCT -ACGGAAACTTCCGCATACAAGGCT -ACGGAAACTTCCGCATACTCAACC -ACGGAAACTTCCGCATACTGTTCC -ACGGAAACTTCCGCATACATTCCC -ACGGAAACTTCCGCATACTTCTCG -ACGGAAACTTCCGCATACTAGACG -ACGGAAACTTCCGCATACGTAACG -ACGGAAACTTCCGCATACACTTCG -ACGGAAACTTCCGCATACTACGCA -ACGGAAACTTCCGCATACCTTGCA -ACGGAAACTTCCGCATACCGAACA -ACGGAAACTTCCGCATACCAGTCA -ACGGAAACTTCCGCATACGATCCA -ACGGAAACTTCCGCATACACGACA -ACGGAAACTTCCGCATACAGCTCA -ACGGAAACTTCCGCATACTCACGT -ACGGAAACTTCCGCATACCGTAGT -ACGGAAACTTCCGCATACGTCAGT -ACGGAAACTTCCGCATACGAAGGT -ACGGAAACTTCCGCATACAACCGT -ACGGAAACTTCCGCATACTTGTGC -ACGGAAACTTCCGCATACCTAAGC -ACGGAAACTTCCGCATACACTAGC -ACGGAAACTTCCGCATACAGATGC -ACGGAAACTTCCGCATACTGAAGG -ACGGAAACTTCCGCATACCAATGG -ACGGAAACTTCCGCATACATGAGG -ACGGAAACTTCCGCATACAATGGG -ACGGAAACTTCCGCATACTCCTGA -ACGGAAACTTCCGCATACTAGCGA -ACGGAAACTTCCGCATACCACAGA -ACGGAAACTTCCGCATACGCAAGA -ACGGAAACTTCCGCATACGGTTGA -ACGGAAACTTCCGCATACTCCGAT -ACGGAAACTTCCGCATACTGGCAT -ACGGAAACTTCCGCATACCGAGAT -ACGGAAACTTCCGCATACTACCAC -ACGGAAACTTCCGCATACCAGAAC -ACGGAAACTTCCGCATACGTCTAC -ACGGAAACTTCCGCATACACGTAC -ACGGAAACTTCCGCATACAGTGAC -ACGGAAACTTCCGCATACCTGTAG -ACGGAAACTTCCGCATACCCTAAG -ACGGAAACTTCCGCATACGTTCAG -ACGGAAACTTCCGCATACGCATAG -ACGGAAACTTCCGCATACGACAAG -ACGGAAACTTCCGCATACAAGCAG -ACGGAAACTTCCGCATACCGTCAA -ACGGAAACTTCCGCATACGCTGAA -ACGGAAACTTCCGCATACAGTACG -ACGGAAACTTCCGCATACATCCGA -ACGGAAACTTCCGCATACATGGGA -ACGGAAACTTCCGCATACGTGCAA -ACGGAAACTTCCGCATACGAGGAA -ACGGAAACTTCCGCATACCAGGTA -ACGGAAACTTCCGCATACGACTCT -ACGGAAACTTCCGCATACAGTCCT -ACGGAAACTTCCGCATACTAAGCC -ACGGAAACTTCCGCATACATAGCC -ACGGAAACTTCCGCATACTAACCG -ACGGAAACTTCCGCATACATGCCA -ACGGAAACTTCCGCACTTGGAAAC -ACGGAAACTTCCGCACTTAACACC -ACGGAAACTTCCGCACTTATCGAG -ACGGAAACTTCCGCACTTCTCCTT -ACGGAAACTTCCGCACTTCCTGTT -ACGGAAACTTCCGCACTTCGGTTT -ACGGAAACTTCCGCACTTGTGGTT -ACGGAAACTTCCGCACTTGCCTTT -ACGGAAACTTCCGCACTTGGTCTT -ACGGAAACTTCCGCACTTACGCTT -ACGGAAACTTCCGCACTTAGCGTT -ACGGAAACTTCCGCACTTTTCGTC -ACGGAAACTTCCGCACTTTCTCTC -ACGGAAACTTCCGCACTTTGGATC -ACGGAAACTTCCGCACTTCACTTC -ACGGAAACTTCCGCACTTGTACTC -ACGGAAACTTCCGCACTTGATGTC -ACGGAAACTTCCGCACTTACAGTC -ACGGAAACTTCCGCACTTTTGCTG -ACGGAAACTTCCGCACTTTCCATG -ACGGAAACTTCCGCACTTTGTGTG -ACGGAAACTTCCGCACTTCTAGTG -ACGGAAACTTCCGCACTTCATCTG -ACGGAAACTTCCGCACTTGAGTTG -ACGGAAACTTCCGCACTTAGACTG -ACGGAAACTTCCGCACTTTCGGTA -ACGGAAACTTCCGCACTTTGCCTA -ACGGAAACTTCCGCACTTCCACTA -ACGGAAACTTCCGCACTTGGAGTA -ACGGAAACTTCCGCACTTTCGTCT -ACGGAAACTTCCGCACTTTGCACT -ACGGAAACTTCCGCACTTCTGACT -ACGGAAACTTCCGCACTTCAACCT -ACGGAAACTTCCGCACTTGCTACT -ACGGAAACTTCCGCACTTGGATCT -ACGGAAACTTCCGCACTTAAGGCT -ACGGAAACTTCCGCACTTTCAACC -ACGGAAACTTCCGCACTTTGTTCC -ACGGAAACTTCCGCACTTATTCCC -ACGGAAACTTCCGCACTTTTCTCG -ACGGAAACTTCCGCACTTTAGACG -ACGGAAACTTCCGCACTTGTAACG -ACGGAAACTTCCGCACTTACTTCG -ACGGAAACTTCCGCACTTTACGCA -ACGGAAACTTCCGCACTTCTTGCA -ACGGAAACTTCCGCACTTCGAACA -ACGGAAACTTCCGCACTTCAGTCA -ACGGAAACTTCCGCACTTGATCCA -ACGGAAACTTCCGCACTTACGACA -ACGGAAACTTCCGCACTTAGCTCA -ACGGAAACTTCCGCACTTTCACGT -ACGGAAACTTCCGCACTTCGTAGT -ACGGAAACTTCCGCACTTGTCAGT -ACGGAAACTTCCGCACTTGAAGGT -ACGGAAACTTCCGCACTTAACCGT -ACGGAAACTTCCGCACTTTTGTGC -ACGGAAACTTCCGCACTTCTAAGC -ACGGAAACTTCCGCACTTACTAGC -ACGGAAACTTCCGCACTTAGATGC -ACGGAAACTTCCGCACTTTGAAGG -ACGGAAACTTCCGCACTTCAATGG -ACGGAAACTTCCGCACTTATGAGG -ACGGAAACTTCCGCACTTAATGGG -ACGGAAACTTCCGCACTTTCCTGA -ACGGAAACTTCCGCACTTTAGCGA -ACGGAAACTTCCGCACTTCACAGA -ACGGAAACTTCCGCACTTGCAAGA -ACGGAAACTTCCGCACTTGGTTGA -ACGGAAACTTCCGCACTTTCCGAT -ACGGAAACTTCCGCACTTTGGCAT -ACGGAAACTTCCGCACTTCGAGAT -ACGGAAACTTCCGCACTTTACCAC -ACGGAAACTTCCGCACTTCAGAAC -ACGGAAACTTCCGCACTTGTCTAC -ACGGAAACTTCCGCACTTACGTAC -ACGGAAACTTCCGCACTTAGTGAC -ACGGAAACTTCCGCACTTCTGTAG -ACGGAAACTTCCGCACTTCCTAAG -ACGGAAACTTCCGCACTTGTTCAG -ACGGAAACTTCCGCACTTGCATAG -ACGGAAACTTCCGCACTTGACAAG -ACGGAAACTTCCGCACTTAAGCAG -ACGGAAACTTCCGCACTTCGTCAA -ACGGAAACTTCCGCACTTGCTGAA -ACGGAAACTTCCGCACTTAGTACG -ACGGAAACTTCCGCACTTATCCGA -ACGGAAACTTCCGCACTTATGGGA -ACGGAAACTTCCGCACTTGTGCAA -ACGGAAACTTCCGCACTTGAGGAA -ACGGAAACTTCCGCACTTCAGGTA -ACGGAAACTTCCGCACTTGACTCT -ACGGAAACTTCCGCACTTAGTCCT -ACGGAAACTTCCGCACTTTAAGCC -ACGGAAACTTCCGCACTTATAGCC -ACGGAAACTTCCGCACTTTAACCG -ACGGAAACTTCCGCACTTATGCCA -ACGGAAACTTCCACACGAGGAAAC -ACGGAAACTTCCACACGAAACACC -ACGGAAACTTCCACACGAATCGAG -ACGGAAACTTCCACACGACTCCTT -ACGGAAACTTCCACACGACCTGTT -ACGGAAACTTCCACACGACGGTTT -ACGGAAACTTCCACACGAGTGGTT -ACGGAAACTTCCACACGAGCCTTT -ACGGAAACTTCCACACGAGGTCTT -ACGGAAACTTCCACACGAACGCTT -ACGGAAACTTCCACACGAAGCGTT -ACGGAAACTTCCACACGATTCGTC -ACGGAAACTTCCACACGATCTCTC -ACGGAAACTTCCACACGATGGATC -ACGGAAACTTCCACACGACACTTC -ACGGAAACTTCCACACGAGTACTC -ACGGAAACTTCCACACGAGATGTC -ACGGAAACTTCCACACGAACAGTC -ACGGAAACTTCCACACGATTGCTG -ACGGAAACTTCCACACGATCCATG -ACGGAAACTTCCACACGATGTGTG -ACGGAAACTTCCACACGACTAGTG -ACGGAAACTTCCACACGACATCTG -ACGGAAACTTCCACACGAGAGTTG -ACGGAAACTTCCACACGAAGACTG -ACGGAAACTTCCACACGATCGGTA -ACGGAAACTTCCACACGATGCCTA -ACGGAAACTTCCACACGACCACTA -ACGGAAACTTCCACACGAGGAGTA -ACGGAAACTTCCACACGATCGTCT -ACGGAAACTTCCACACGATGCACT -ACGGAAACTTCCACACGACTGACT -ACGGAAACTTCCACACGACAACCT -ACGGAAACTTCCACACGAGCTACT -ACGGAAACTTCCACACGAGGATCT -ACGGAAACTTCCACACGAAAGGCT -ACGGAAACTTCCACACGATCAACC -ACGGAAACTTCCACACGATGTTCC -ACGGAAACTTCCACACGAATTCCC -ACGGAAACTTCCACACGATTCTCG -ACGGAAACTTCCACACGATAGACG -ACGGAAACTTCCACACGAGTAACG -ACGGAAACTTCCACACGAACTTCG -ACGGAAACTTCCACACGATACGCA -ACGGAAACTTCCACACGACTTGCA -ACGGAAACTTCCACACGACGAACA -ACGGAAACTTCCACACGACAGTCA -ACGGAAACTTCCACACGAGATCCA -ACGGAAACTTCCACACGAACGACA -ACGGAAACTTCCACACGAAGCTCA -ACGGAAACTTCCACACGATCACGT -ACGGAAACTTCCACACGACGTAGT -ACGGAAACTTCCACACGAGTCAGT -ACGGAAACTTCCACACGAGAAGGT -ACGGAAACTTCCACACGAAACCGT -ACGGAAACTTCCACACGATTGTGC -ACGGAAACTTCCACACGACTAAGC -ACGGAAACTTCCACACGAACTAGC -ACGGAAACTTCCACACGAAGATGC -ACGGAAACTTCCACACGATGAAGG -ACGGAAACTTCCACACGACAATGG -ACGGAAACTTCCACACGAATGAGG -ACGGAAACTTCCACACGAAATGGG -ACGGAAACTTCCACACGATCCTGA -ACGGAAACTTCCACACGATAGCGA -ACGGAAACTTCCACACGACACAGA -ACGGAAACTTCCACACGAGCAAGA -ACGGAAACTTCCACACGAGGTTGA -ACGGAAACTTCCACACGATCCGAT -ACGGAAACTTCCACACGATGGCAT -ACGGAAACTTCCACACGACGAGAT -ACGGAAACTTCCACACGATACCAC -ACGGAAACTTCCACACGACAGAAC -ACGGAAACTTCCACACGAGTCTAC -ACGGAAACTTCCACACGAACGTAC -ACGGAAACTTCCACACGAAGTGAC -ACGGAAACTTCCACACGACTGTAG -ACGGAAACTTCCACACGACCTAAG -ACGGAAACTTCCACACGAGTTCAG -ACGGAAACTTCCACACGAGCATAG -ACGGAAACTTCCACACGAGACAAG -ACGGAAACTTCCACACGAAAGCAG -ACGGAAACTTCCACACGACGTCAA -ACGGAAACTTCCACACGAGCTGAA -ACGGAAACTTCCACACGAAGTACG -ACGGAAACTTCCACACGAATCCGA -ACGGAAACTTCCACACGAATGGGA -ACGGAAACTTCCACACGAGTGCAA -ACGGAAACTTCCACACGAGAGGAA -ACGGAAACTTCCACACGACAGGTA -ACGGAAACTTCCACACGAGACTCT -ACGGAAACTTCCACACGAAGTCCT -ACGGAAACTTCCACACGATAAGCC -ACGGAAACTTCCACACGAATAGCC -ACGGAAACTTCCACACGATAACCG -ACGGAAACTTCCACACGAATGCCA -ACGGAAACTTCCTCACAGGGAAAC -ACGGAAACTTCCTCACAGAACACC -ACGGAAACTTCCTCACAGATCGAG -ACGGAAACTTCCTCACAGCTCCTT -ACGGAAACTTCCTCACAGCCTGTT -ACGGAAACTTCCTCACAGCGGTTT -ACGGAAACTTCCTCACAGGTGGTT -ACGGAAACTTCCTCACAGGCCTTT -ACGGAAACTTCCTCACAGGGTCTT -ACGGAAACTTCCTCACAGACGCTT -ACGGAAACTTCCTCACAGAGCGTT -ACGGAAACTTCCTCACAGTTCGTC -ACGGAAACTTCCTCACAGTCTCTC -ACGGAAACTTCCTCACAGTGGATC -ACGGAAACTTCCTCACAGCACTTC -ACGGAAACTTCCTCACAGGTACTC -ACGGAAACTTCCTCACAGGATGTC -ACGGAAACTTCCTCACAGACAGTC -ACGGAAACTTCCTCACAGTTGCTG -ACGGAAACTTCCTCACAGTCCATG -ACGGAAACTTCCTCACAGTGTGTG -ACGGAAACTTCCTCACAGCTAGTG -ACGGAAACTTCCTCACAGCATCTG -ACGGAAACTTCCTCACAGGAGTTG -ACGGAAACTTCCTCACAGAGACTG -ACGGAAACTTCCTCACAGTCGGTA -ACGGAAACTTCCTCACAGTGCCTA -ACGGAAACTTCCTCACAGCCACTA -ACGGAAACTTCCTCACAGGGAGTA -ACGGAAACTTCCTCACAGTCGTCT -ACGGAAACTTCCTCACAGTGCACT -ACGGAAACTTCCTCACAGCTGACT -ACGGAAACTTCCTCACAGCAACCT -ACGGAAACTTCCTCACAGGCTACT -ACGGAAACTTCCTCACAGGGATCT -ACGGAAACTTCCTCACAGAAGGCT -ACGGAAACTTCCTCACAGTCAACC -ACGGAAACTTCCTCACAGTGTTCC -ACGGAAACTTCCTCACAGATTCCC -ACGGAAACTTCCTCACAGTTCTCG -ACGGAAACTTCCTCACAGTAGACG -ACGGAAACTTCCTCACAGGTAACG -ACGGAAACTTCCTCACAGACTTCG -ACGGAAACTTCCTCACAGTACGCA -ACGGAAACTTCCTCACAGCTTGCA -ACGGAAACTTCCTCACAGCGAACA -ACGGAAACTTCCTCACAGCAGTCA -ACGGAAACTTCCTCACAGGATCCA -ACGGAAACTTCCTCACAGACGACA -ACGGAAACTTCCTCACAGAGCTCA -ACGGAAACTTCCTCACAGTCACGT -ACGGAAACTTCCTCACAGCGTAGT -ACGGAAACTTCCTCACAGGTCAGT -ACGGAAACTTCCTCACAGGAAGGT -ACGGAAACTTCCTCACAGAACCGT -ACGGAAACTTCCTCACAGTTGTGC -ACGGAAACTTCCTCACAGCTAAGC -ACGGAAACTTCCTCACAGACTAGC -ACGGAAACTTCCTCACAGAGATGC -ACGGAAACTTCCTCACAGTGAAGG -ACGGAAACTTCCTCACAGCAATGG -ACGGAAACTTCCTCACAGATGAGG -ACGGAAACTTCCTCACAGAATGGG -ACGGAAACTTCCTCACAGTCCTGA -ACGGAAACTTCCTCACAGTAGCGA -ACGGAAACTTCCTCACAGCACAGA -ACGGAAACTTCCTCACAGGCAAGA -ACGGAAACTTCCTCACAGGGTTGA -ACGGAAACTTCCTCACAGTCCGAT -ACGGAAACTTCCTCACAGTGGCAT -ACGGAAACTTCCTCACAGCGAGAT -ACGGAAACTTCCTCACAGTACCAC -ACGGAAACTTCCTCACAGCAGAAC -ACGGAAACTTCCTCACAGGTCTAC -ACGGAAACTTCCTCACAGACGTAC -ACGGAAACTTCCTCACAGAGTGAC -ACGGAAACTTCCTCACAGCTGTAG -ACGGAAACTTCCTCACAGCCTAAG -ACGGAAACTTCCTCACAGGTTCAG -ACGGAAACTTCCTCACAGGCATAG -ACGGAAACTTCCTCACAGGACAAG -ACGGAAACTTCCTCACAGAAGCAG -ACGGAAACTTCCTCACAGCGTCAA -ACGGAAACTTCCTCACAGGCTGAA -ACGGAAACTTCCTCACAGAGTACG -ACGGAAACTTCCTCACAGATCCGA -ACGGAAACTTCCTCACAGATGGGA -ACGGAAACTTCCTCACAGGTGCAA -ACGGAAACTTCCTCACAGGAGGAA -ACGGAAACTTCCTCACAGCAGGTA -ACGGAAACTTCCTCACAGGACTCT -ACGGAAACTTCCTCACAGAGTCCT -ACGGAAACTTCCTCACAGTAAGCC -ACGGAAACTTCCTCACAGATAGCC -ACGGAAACTTCCTCACAGTAACCG -ACGGAAACTTCCTCACAGATGCCA -ACGGAAACTTCCCCAGATGGAAAC -ACGGAAACTTCCCCAGATAACACC -ACGGAAACTTCCCCAGATATCGAG -ACGGAAACTTCCCCAGATCTCCTT -ACGGAAACTTCCCCAGATCCTGTT -ACGGAAACTTCCCCAGATCGGTTT -ACGGAAACTTCCCCAGATGTGGTT -ACGGAAACTTCCCCAGATGCCTTT -ACGGAAACTTCCCCAGATGGTCTT -ACGGAAACTTCCCCAGATACGCTT -ACGGAAACTTCCCCAGATAGCGTT -ACGGAAACTTCCCCAGATTTCGTC -ACGGAAACTTCCCCAGATTCTCTC -ACGGAAACTTCCCCAGATTGGATC -ACGGAAACTTCCCCAGATCACTTC -ACGGAAACTTCCCCAGATGTACTC -ACGGAAACTTCCCCAGATGATGTC -ACGGAAACTTCCCCAGATACAGTC -ACGGAAACTTCCCCAGATTTGCTG -ACGGAAACTTCCCCAGATTCCATG -ACGGAAACTTCCCCAGATTGTGTG -ACGGAAACTTCCCCAGATCTAGTG -ACGGAAACTTCCCCAGATCATCTG -ACGGAAACTTCCCCAGATGAGTTG -ACGGAAACTTCCCCAGATAGACTG -ACGGAAACTTCCCCAGATTCGGTA -ACGGAAACTTCCCCAGATTGCCTA -ACGGAAACTTCCCCAGATCCACTA -ACGGAAACTTCCCCAGATGGAGTA -ACGGAAACTTCCCCAGATTCGTCT -ACGGAAACTTCCCCAGATTGCACT -ACGGAAACTTCCCCAGATCTGACT -ACGGAAACTTCCCCAGATCAACCT -ACGGAAACTTCCCCAGATGCTACT -ACGGAAACTTCCCCAGATGGATCT -ACGGAAACTTCCCCAGATAAGGCT -ACGGAAACTTCCCCAGATTCAACC -ACGGAAACTTCCCCAGATTGTTCC -ACGGAAACTTCCCCAGATATTCCC -ACGGAAACTTCCCCAGATTTCTCG -ACGGAAACTTCCCCAGATTAGACG -ACGGAAACTTCCCCAGATGTAACG -ACGGAAACTTCCCCAGATACTTCG -ACGGAAACTTCCCCAGATTACGCA -ACGGAAACTTCCCCAGATCTTGCA -ACGGAAACTTCCCCAGATCGAACA -ACGGAAACTTCCCCAGATCAGTCA -ACGGAAACTTCCCCAGATGATCCA -ACGGAAACTTCCCCAGATACGACA -ACGGAAACTTCCCCAGATAGCTCA -ACGGAAACTTCCCCAGATTCACGT -ACGGAAACTTCCCCAGATCGTAGT -ACGGAAACTTCCCCAGATGTCAGT -ACGGAAACTTCCCCAGATGAAGGT -ACGGAAACTTCCCCAGATAACCGT -ACGGAAACTTCCCCAGATTTGTGC -ACGGAAACTTCCCCAGATCTAAGC -ACGGAAACTTCCCCAGATACTAGC -ACGGAAACTTCCCCAGATAGATGC -ACGGAAACTTCCCCAGATTGAAGG -ACGGAAACTTCCCCAGATCAATGG -ACGGAAACTTCCCCAGATATGAGG -ACGGAAACTTCCCCAGATAATGGG -ACGGAAACTTCCCCAGATTCCTGA -ACGGAAACTTCCCCAGATTAGCGA -ACGGAAACTTCCCCAGATCACAGA -ACGGAAACTTCCCCAGATGCAAGA -ACGGAAACTTCCCCAGATGGTTGA -ACGGAAACTTCCCCAGATTCCGAT -ACGGAAACTTCCCCAGATTGGCAT -ACGGAAACTTCCCCAGATCGAGAT -ACGGAAACTTCCCCAGATTACCAC -ACGGAAACTTCCCCAGATCAGAAC -ACGGAAACTTCCCCAGATGTCTAC -ACGGAAACTTCCCCAGATACGTAC -ACGGAAACTTCCCCAGATAGTGAC -ACGGAAACTTCCCCAGATCTGTAG -ACGGAAACTTCCCCAGATCCTAAG -ACGGAAACTTCCCCAGATGTTCAG -ACGGAAACTTCCCCAGATGCATAG -ACGGAAACTTCCCCAGATGACAAG -ACGGAAACTTCCCCAGATAAGCAG -ACGGAAACTTCCCCAGATCGTCAA -ACGGAAACTTCCCCAGATGCTGAA -ACGGAAACTTCCCCAGATAGTACG -ACGGAAACTTCCCCAGATATCCGA -ACGGAAACTTCCCCAGATATGGGA -ACGGAAACTTCCCCAGATGTGCAA -ACGGAAACTTCCCCAGATGAGGAA -ACGGAAACTTCCCCAGATCAGGTA -ACGGAAACTTCCCCAGATGACTCT -ACGGAAACTTCCCCAGATAGTCCT -ACGGAAACTTCCCCAGATTAAGCC -ACGGAAACTTCCCCAGATATAGCC -ACGGAAACTTCCCCAGATTAACCG -ACGGAAACTTCCCCAGATATGCCA -ACGGAAACTTCCACAACGGGAAAC -ACGGAAACTTCCACAACGAACACC -ACGGAAACTTCCACAACGATCGAG -ACGGAAACTTCCACAACGCTCCTT -ACGGAAACTTCCACAACGCCTGTT -ACGGAAACTTCCACAACGCGGTTT -ACGGAAACTTCCACAACGGTGGTT -ACGGAAACTTCCACAACGGCCTTT -ACGGAAACTTCCACAACGGGTCTT -ACGGAAACTTCCACAACGACGCTT -ACGGAAACTTCCACAACGAGCGTT -ACGGAAACTTCCACAACGTTCGTC -ACGGAAACTTCCACAACGTCTCTC -ACGGAAACTTCCACAACGTGGATC -ACGGAAACTTCCACAACGCACTTC -ACGGAAACTTCCACAACGGTACTC -ACGGAAACTTCCACAACGGATGTC -ACGGAAACTTCCACAACGACAGTC -ACGGAAACTTCCACAACGTTGCTG -ACGGAAACTTCCACAACGTCCATG -ACGGAAACTTCCACAACGTGTGTG -ACGGAAACTTCCACAACGCTAGTG -ACGGAAACTTCCACAACGCATCTG -ACGGAAACTTCCACAACGGAGTTG -ACGGAAACTTCCACAACGAGACTG -ACGGAAACTTCCACAACGTCGGTA -ACGGAAACTTCCACAACGTGCCTA -ACGGAAACTTCCACAACGCCACTA -ACGGAAACTTCCACAACGGGAGTA -ACGGAAACTTCCACAACGTCGTCT -ACGGAAACTTCCACAACGTGCACT -ACGGAAACTTCCACAACGCTGACT -ACGGAAACTTCCACAACGCAACCT -ACGGAAACTTCCACAACGGCTACT -ACGGAAACTTCCACAACGGGATCT -ACGGAAACTTCCACAACGAAGGCT -ACGGAAACTTCCACAACGTCAACC -ACGGAAACTTCCACAACGTGTTCC -ACGGAAACTTCCACAACGATTCCC -ACGGAAACTTCCACAACGTTCTCG -ACGGAAACTTCCACAACGTAGACG -ACGGAAACTTCCACAACGGTAACG -ACGGAAACTTCCACAACGACTTCG -ACGGAAACTTCCACAACGTACGCA -ACGGAAACTTCCACAACGCTTGCA -ACGGAAACTTCCACAACGCGAACA -ACGGAAACTTCCACAACGCAGTCA -ACGGAAACTTCCACAACGGATCCA -ACGGAAACTTCCACAACGACGACA -ACGGAAACTTCCACAACGAGCTCA -ACGGAAACTTCCACAACGTCACGT -ACGGAAACTTCCACAACGCGTAGT -ACGGAAACTTCCACAACGGTCAGT -ACGGAAACTTCCACAACGGAAGGT -ACGGAAACTTCCACAACGAACCGT -ACGGAAACTTCCACAACGTTGTGC -ACGGAAACTTCCACAACGCTAAGC -ACGGAAACTTCCACAACGACTAGC -ACGGAAACTTCCACAACGAGATGC -ACGGAAACTTCCACAACGTGAAGG -ACGGAAACTTCCACAACGCAATGG -ACGGAAACTTCCACAACGATGAGG -ACGGAAACTTCCACAACGAATGGG -ACGGAAACTTCCACAACGTCCTGA -ACGGAAACTTCCACAACGTAGCGA -ACGGAAACTTCCACAACGCACAGA -ACGGAAACTTCCACAACGGCAAGA -ACGGAAACTTCCACAACGGGTTGA -ACGGAAACTTCCACAACGTCCGAT -ACGGAAACTTCCACAACGTGGCAT -ACGGAAACTTCCACAACGCGAGAT -ACGGAAACTTCCACAACGTACCAC -ACGGAAACTTCCACAACGCAGAAC -ACGGAAACTTCCACAACGGTCTAC -ACGGAAACTTCCACAACGACGTAC -ACGGAAACTTCCACAACGAGTGAC -ACGGAAACTTCCACAACGCTGTAG -ACGGAAACTTCCACAACGCCTAAG -ACGGAAACTTCCACAACGGTTCAG -ACGGAAACTTCCACAACGGCATAG -ACGGAAACTTCCACAACGGACAAG -ACGGAAACTTCCACAACGAAGCAG -ACGGAAACTTCCACAACGCGTCAA -ACGGAAACTTCCACAACGGCTGAA -ACGGAAACTTCCACAACGAGTACG -ACGGAAACTTCCACAACGATCCGA -ACGGAAACTTCCACAACGATGGGA -ACGGAAACTTCCACAACGGTGCAA -ACGGAAACTTCCACAACGGAGGAA -ACGGAAACTTCCACAACGCAGGTA -ACGGAAACTTCCACAACGGACTCT -ACGGAAACTTCCACAACGAGTCCT -ACGGAAACTTCCACAACGTAAGCC -ACGGAAACTTCCACAACGATAGCC -ACGGAAACTTCCACAACGTAACCG -ACGGAAACTTCCACAACGATGCCA -ACGGAAACTTCCTCAAGCGGAAAC -ACGGAAACTTCCTCAAGCAACACC -ACGGAAACTTCCTCAAGCATCGAG -ACGGAAACTTCCTCAAGCCTCCTT -ACGGAAACTTCCTCAAGCCCTGTT -ACGGAAACTTCCTCAAGCCGGTTT -ACGGAAACTTCCTCAAGCGTGGTT -ACGGAAACTTCCTCAAGCGCCTTT -ACGGAAACTTCCTCAAGCGGTCTT -ACGGAAACTTCCTCAAGCACGCTT -ACGGAAACTTCCTCAAGCAGCGTT -ACGGAAACTTCCTCAAGCTTCGTC -ACGGAAACTTCCTCAAGCTCTCTC -ACGGAAACTTCCTCAAGCTGGATC -ACGGAAACTTCCTCAAGCCACTTC -ACGGAAACTTCCTCAAGCGTACTC -ACGGAAACTTCCTCAAGCGATGTC -ACGGAAACTTCCTCAAGCACAGTC -ACGGAAACTTCCTCAAGCTTGCTG -ACGGAAACTTCCTCAAGCTCCATG -ACGGAAACTTCCTCAAGCTGTGTG -ACGGAAACTTCCTCAAGCCTAGTG -ACGGAAACTTCCTCAAGCCATCTG -ACGGAAACTTCCTCAAGCGAGTTG -ACGGAAACTTCCTCAAGCAGACTG -ACGGAAACTTCCTCAAGCTCGGTA -ACGGAAACTTCCTCAAGCTGCCTA -ACGGAAACTTCCTCAAGCCCACTA -ACGGAAACTTCCTCAAGCGGAGTA -ACGGAAACTTCCTCAAGCTCGTCT -ACGGAAACTTCCTCAAGCTGCACT -ACGGAAACTTCCTCAAGCCTGACT -ACGGAAACTTCCTCAAGCCAACCT -ACGGAAACTTCCTCAAGCGCTACT -ACGGAAACTTCCTCAAGCGGATCT -ACGGAAACTTCCTCAAGCAAGGCT -ACGGAAACTTCCTCAAGCTCAACC -ACGGAAACTTCCTCAAGCTGTTCC -ACGGAAACTTCCTCAAGCATTCCC -ACGGAAACTTCCTCAAGCTTCTCG -ACGGAAACTTCCTCAAGCTAGACG -ACGGAAACTTCCTCAAGCGTAACG -ACGGAAACTTCCTCAAGCACTTCG -ACGGAAACTTCCTCAAGCTACGCA -ACGGAAACTTCCTCAAGCCTTGCA -ACGGAAACTTCCTCAAGCCGAACA -ACGGAAACTTCCTCAAGCCAGTCA -ACGGAAACTTCCTCAAGCGATCCA -ACGGAAACTTCCTCAAGCACGACA -ACGGAAACTTCCTCAAGCAGCTCA -ACGGAAACTTCCTCAAGCTCACGT -ACGGAAACTTCCTCAAGCCGTAGT -ACGGAAACTTCCTCAAGCGTCAGT -ACGGAAACTTCCTCAAGCGAAGGT -ACGGAAACTTCCTCAAGCAACCGT -ACGGAAACTTCCTCAAGCTTGTGC -ACGGAAACTTCCTCAAGCCTAAGC -ACGGAAACTTCCTCAAGCACTAGC -ACGGAAACTTCCTCAAGCAGATGC -ACGGAAACTTCCTCAAGCTGAAGG -ACGGAAACTTCCTCAAGCCAATGG -ACGGAAACTTCCTCAAGCATGAGG -ACGGAAACTTCCTCAAGCAATGGG -ACGGAAACTTCCTCAAGCTCCTGA -ACGGAAACTTCCTCAAGCTAGCGA -ACGGAAACTTCCTCAAGCCACAGA -ACGGAAACTTCCTCAAGCGCAAGA -ACGGAAACTTCCTCAAGCGGTTGA -ACGGAAACTTCCTCAAGCTCCGAT -ACGGAAACTTCCTCAAGCTGGCAT -ACGGAAACTTCCTCAAGCCGAGAT -ACGGAAACTTCCTCAAGCTACCAC -ACGGAAACTTCCTCAAGCCAGAAC -ACGGAAACTTCCTCAAGCGTCTAC -ACGGAAACTTCCTCAAGCACGTAC -ACGGAAACTTCCTCAAGCAGTGAC -ACGGAAACTTCCTCAAGCCTGTAG -ACGGAAACTTCCTCAAGCCCTAAG -ACGGAAACTTCCTCAAGCGTTCAG -ACGGAAACTTCCTCAAGCGCATAG -ACGGAAACTTCCTCAAGCGACAAG -ACGGAAACTTCCTCAAGCAAGCAG -ACGGAAACTTCCTCAAGCCGTCAA -ACGGAAACTTCCTCAAGCGCTGAA -ACGGAAACTTCCTCAAGCAGTACG -ACGGAAACTTCCTCAAGCATCCGA -ACGGAAACTTCCTCAAGCATGGGA -ACGGAAACTTCCTCAAGCGTGCAA -ACGGAAACTTCCTCAAGCGAGGAA -ACGGAAACTTCCTCAAGCCAGGTA -ACGGAAACTTCCTCAAGCGACTCT -ACGGAAACTTCCTCAAGCAGTCCT -ACGGAAACTTCCTCAAGCTAAGCC -ACGGAAACTTCCTCAAGCATAGCC -ACGGAAACTTCCTCAAGCTAACCG -ACGGAAACTTCCTCAAGCATGCCA -ACGGAAACTTCCCGTTCAGGAAAC -ACGGAAACTTCCCGTTCAAACACC -ACGGAAACTTCCCGTTCAATCGAG -ACGGAAACTTCCCGTTCACTCCTT -ACGGAAACTTCCCGTTCACCTGTT -ACGGAAACTTCCCGTTCACGGTTT -ACGGAAACTTCCCGTTCAGTGGTT -ACGGAAACTTCCCGTTCAGCCTTT -ACGGAAACTTCCCGTTCAGGTCTT -ACGGAAACTTCCCGTTCAACGCTT -ACGGAAACTTCCCGTTCAAGCGTT -ACGGAAACTTCCCGTTCATTCGTC -ACGGAAACTTCCCGTTCATCTCTC -ACGGAAACTTCCCGTTCATGGATC -ACGGAAACTTCCCGTTCACACTTC -ACGGAAACTTCCCGTTCAGTACTC -ACGGAAACTTCCCGTTCAGATGTC -ACGGAAACTTCCCGTTCAACAGTC -ACGGAAACTTCCCGTTCATTGCTG -ACGGAAACTTCCCGTTCATCCATG -ACGGAAACTTCCCGTTCATGTGTG -ACGGAAACTTCCCGTTCACTAGTG -ACGGAAACTTCCCGTTCACATCTG -ACGGAAACTTCCCGTTCAGAGTTG -ACGGAAACTTCCCGTTCAAGACTG -ACGGAAACTTCCCGTTCATCGGTA -ACGGAAACTTCCCGTTCATGCCTA -ACGGAAACTTCCCGTTCACCACTA -ACGGAAACTTCCCGTTCAGGAGTA -ACGGAAACTTCCCGTTCATCGTCT -ACGGAAACTTCCCGTTCATGCACT -ACGGAAACTTCCCGTTCACTGACT -ACGGAAACTTCCCGTTCACAACCT -ACGGAAACTTCCCGTTCAGCTACT -ACGGAAACTTCCCGTTCAGGATCT -ACGGAAACTTCCCGTTCAAAGGCT -ACGGAAACTTCCCGTTCATCAACC -ACGGAAACTTCCCGTTCATGTTCC -ACGGAAACTTCCCGTTCAATTCCC -ACGGAAACTTCCCGTTCATTCTCG -ACGGAAACTTCCCGTTCATAGACG -ACGGAAACTTCCCGTTCAGTAACG -ACGGAAACTTCCCGTTCAACTTCG -ACGGAAACTTCCCGTTCATACGCA -ACGGAAACTTCCCGTTCACTTGCA -ACGGAAACTTCCCGTTCACGAACA -ACGGAAACTTCCCGTTCACAGTCA -ACGGAAACTTCCCGTTCAGATCCA -ACGGAAACTTCCCGTTCAACGACA -ACGGAAACTTCCCGTTCAAGCTCA -ACGGAAACTTCCCGTTCATCACGT -ACGGAAACTTCCCGTTCACGTAGT -ACGGAAACTTCCCGTTCAGTCAGT -ACGGAAACTTCCCGTTCAGAAGGT -ACGGAAACTTCCCGTTCAAACCGT -ACGGAAACTTCCCGTTCATTGTGC -ACGGAAACTTCCCGTTCACTAAGC -ACGGAAACTTCCCGTTCAACTAGC -ACGGAAACTTCCCGTTCAAGATGC -ACGGAAACTTCCCGTTCATGAAGG -ACGGAAACTTCCCGTTCACAATGG -ACGGAAACTTCCCGTTCAATGAGG -ACGGAAACTTCCCGTTCAAATGGG -ACGGAAACTTCCCGTTCATCCTGA -ACGGAAACTTCCCGTTCATAGCGA -ACGGAAACTTCCCGTTCACACAGA -ACGGAAACTTCCCGTTCAGCAAGA -ACGGAAACTTCCCGTTCAGGTTGA -ACGGAAACTTCCCGTTCATCCGAT -ACGGAAACTTCCCGTTCATGGCAT -ACGGAAACTTCCCGTTCACGAGAT -ACGGAAACTTCCCGTTCATACCAC -ACGGAAACTTCCCGTTCACAGAAC -ACGGAAACTTCCCGTTCAGTCTAC -ACGGAAACTTCCCGTTCAACGTAC -ACGGAAACTTCCCGTTCAAGTGAC -ACGGAAACTTCCCGTTCACTGTAG -ACGGAAACTTCCCGTTCACCTAAG -ACGGAAACTTCCCGTTCAGTTCAG -ACGGAAACTTCCCGTTCAGCATAG -ACGGAAACTTCCCGTTCAGACAAG -ACGGAAACTTCCCGTTCAAAGCAG -ACGGAAACTTCCCGTTCACGTCAA -ACGGAAACTTCCCGTTCAGCTGAA -ACGGAAACTTCCCGTTCAAGTACG -ACGGAAACTTCCCGTTCAATCCGA -ACGGAAACTTCCCGTTCAATGGGA -ACGGAAACTTCCCGTTCAGTGCAA -ACGGAAACTTCCCGTTCAGAGGAA -ACGGAAACTTCCCGTTCACAGGTA -ACGGAAACTTCCCGTTCAGACTCT -ACGGAAACTTCCCGTTCAAGTCCT -ACGGAAACTTCCCGTTCATAAGCC -ACGGAAACTTCCCGTTCAATAGCC -ACGGAAACTTCCCGTTCATAACCG -ACGGAAACTTCCCGTTCAATGCCA -ACGGAAACTTCCAGTCGTGGAAAC -ACGGAAACTTCCAGTCGTAACACC -ACGGAAACTTCCAGTCGTATCGAG -ACGGAAACTTCCAGTCGTCTCCTT -ACGGAAACTTCCAGTCGTCCTGTT -ACGGAAACTTCCAGTCGTCGGTTT -ACGGAAACTTCCAGTCGTGTGGTT -ACGGAAACTTCCAGTCGTGCCTTT -ACGGAAACTTCCAGTCGTGGTCTT -ACGGAAACTTCCAGTCGTACGCTT -ACGGAAACTTCCAGTCGTAGCGTT -ACGGAAACTTCCAGTCGTTTCGTC -ACGGAAACTTCCAGTCGTTCTCTC -ACGGAAACTTCCAGTCGTTGGATC -ACGGAAACTTCCAGTCGTCACTTC -ACGGAAACTTCCAGTCGTGTACTC -ACGGAAACTTCCAGTCGTGATGTC -ACGGAAACTTCCAGTCGTACAGTC -ACGGAAACTTCCAGTCGTTTGCTG -ACGGAAACTTCCAGTCGTTCCATG -ACGGAAACTTCCAGTCGTTGTGTG -ACGGAAACTTCCAGTCGTCTAGTG -ACGGAAACTTCCAGTCGTCATCTG -ACGGAAACTTCCAGTCGTGAGTTG -ACGGAAACTTCCAGTCGTAGACTG -ACGGAAACTTCCAGTCGTTCGGTA -ACGGAAACTTCCAGTCGTTGCCTA -ACGGAAACTTCCAGTCGTCCACTA -ACGGAAACTTCCAGTCGTGGAGTA -ACGGAAACTTCCAGTCGTTCGTCT -ACGGAAACTTCCAGTCGTTGCACT -ACGGAAACTTCCAGTCGTCTGACT -ACGGAAACTTCCAGTCGTCAACCT -ACGGAAACTTCCAGTCGTGCTACT -ACGGAAACTTCCAGTCGTGGATCT -ACGGAAACTTCCAGTCGTAAGGCT -ACGGAAACTTCCAGTCGTTCAACC -ACGGAAACTTCCAGTCGTTGTTCC -ACGGAAACTTCCAGTCGTATTCCC -ACGGAAACTTCCAGTCGTTTCTCG -ACGGAAACTTCCAGTCGTTAGACG -ACGGAAACTTCCAGTCGTGTAACG -ACGGAAACTTCCAGTCGTACTTCG -ACGGAAACTTCCAGTCGTTACGCA -ACGGAAACTTCCAGTCGTCTTGCA -ACGGAAACTTCCAGTCGTCGAACA -ACGGAAACTTCCAGTCGTCAGTCA -ACGGAAACTTCCAGTCGTGATCCA -ACGGAAACTTCCAGTCGTACGACA -ACGGAAACTTCCAGTCGTAGCTCA -ACGGAAACTTCCAGTCGTTCACGT -ACGGAAACTTCCAGTCGTCGTAGT -ACGGAAACTTCCAGTCGTGTCAGT -ACGGAAACTTCCAGTCGTGAAGGT -ACGGAAACTTCCAGTCGTAACCGT -ACGGAAACTTCCAGTCGTTTGTGC -ACGGAAACTTCCAGTCGTCTAAGC -ACGGAAACTTCCAGTCGTACTAGC -ACGGAAACTTCCAGTCGTAGATGC -ACGGAAACTTCCAGTCGTTGAAGG -ACGGAAACTTCCAGTCGTCAATGG -ACGGAAACTTCCAGTCGTATGAGG -ACGGAAACTTCCAGTCGTAATGGG -ACGGAAACTTCCAGTCGTTCCTGA -ACGGAAACTTCCAGTCGTTAGCGA -ACGGAAACTTCCAGTCGTCACAGA -ACGGAAACTTCCAGTCGTGCAAGA -ACGGAAACTTCCAGTCGTGGTTGA -ACGGAAACTTCCAGTCGTTCCGAT -ACGGAAACTTCCAGTCGTTGGCAT -ACGGAAACTTCCAGTCGTCGAGAT -ACGGAAACTTCCAGTCGTTACCAC -ACGGAAACTTCCAGTCGTCAGAAC -ACGGAAACTTCCAGTCGTGTCTAC -ACGGAAACTTCCAGTCGTACGTAC -ACGGAAACTTCCAGTCGTAGTGAC -ACGGAAACTTCCAGTCGTCTGTAG -ACGGAAACTTCCAGTCGTCCTAAG -ACGGAAACTTCCAGTCGTGTTCAG -ACGGAAACTTCCAGTCGTGCATAG -ACGGAAACTTCCAGTCGTGACAAG -ACGGAAACTTCCAGTCGTAAGCAG -ACGGAAACTTCCAGTCGTCGTCAA -ACGGAAACTTCCAGTCGTGCTGAA -ACGGAAACTTCCAGTCGTAGTACG -ACGGAAACTTCCAGTCGTATCCGA -ACGGAAACTTCCAGTCGTATGGGA -ACGGAAACTTCCAGTCGTGTGCAA -ACGGAAACTTCCAGTCGTGAGGAA -ACGGAAACTTCCAGTCGTCAGGTA -ACGGAAACTTCCAGTCGTGACTCT -ACGGAAACTTCCAGTCGTAGTCCT -ACGGAAACTTCCAGTCGTTAAGCC -ACGGAAACTTCCAGTCGTATAGCC -ACGGAAACTTCCAGTCGTTAACCG -ACGGAAACTTCCAGTCGTATGCCA -ACGGAAACTTCCAGTGTCGGAAAC -ACGGAAACTTCCAGTGTCAACACC -ACGGAAACTTCCAGTGTCATCGAG -ACGGAAACTTCCAGTGTCCTCCTT -ACGGAAACTTCCAGTGTCCCTGTT -ACGGAAACTTCCAGTGTCCGGTTT -ACGGAAACTTCCAGTGTCGTGGTT -ACGGAAACTTCCAGTGTCGCCTTT -ACGGAAACTTCCAGTGTCGGTCTT -ACGGAAACTTCCAGTGTCACGCTT -ACGGAAACTTCCAGTGTCAGCGTT -ACGGAAACTTCCAGTGTCTTCGTC -ACGGAAACTTCCAGTGTCTCTCTC -ACGGAAACTTCCAGTGTCTGGATC -ACGGAAACTTCCAGTGTCCACTTC -ACGGAAACTTCCAGTGTCGTACTC -ACGGAAACTTCCAGTGTCGATGTC -ACGGAAACTTCCAGTGTCACAGTC -ACGGAAACTTCCAGTGTCTTGCTG -ACGGAAACTTCCAGTGTCTCCATG -ACGGAAACTTCCAGTGTCTGTGTG -ACGGAAACTTCCAGTGTCCTAGTG -ACGGAAACTTCCAGTGTCCATCTG -ACGGAAACTTCCAGTGTCGAGTTG -ACGGAAACTTCCAGTGTCAGACTG -ACGGAAACTTCCAGTGTCTCGGTA -ACGGAAACTTCCAGTGTCTGCCTA -ACGGAAACTTCCAGTGTCCCACTA -ACGGAAACTTCCAGTGTCGGAGTA -ACGGAAACTTCCAGTGTCTCGTCT -ACGGAAACTTCCAGTGTCTGCACT -ACGGAAACTTCCAGTGTCCTGACT -ACGGAAACTTCCAGTGTCCAACCT -ACGGAAACTTCCAGTGTCGCTACT -ACGGAAACTTCCAGTGTCGGATCT -ACGGAAACTTCCAGTGTCAAGGCT -ACGGAAACTTCCAGTGTCTCAACC -ACGGAAACTTCCAGTGTCTGTTCC -ACGGAAACTTCCAGTGTCATTCCC -ACGGAAACTTCCAGTGTCTTCTCG -ACGGAAACTTCCAGTGTCTAGACG -ACGGAAACTTCCAGTGTCGTAACG -ACGGAAACTTCCAGTGTCACTTCG -ACGGAAACTTCCAGTGTCTACGCA -ACGGAAACTTCCAGTGTCCTTGCA -ACGGAAACTTCCAGTGTCCGAACA -ACGGAAACTTCCAGTGTCCAGTCA -ACGGAAACTTCCAGTGTCGATCCA -ACGGAAACTTCCAGTGTCACGACA -ACGGAAACTTCCAGTGTCAGCTCA -ACGGAAACTTCCAGTGTCTCACGT -ACGGAAACTTCCAGTGTCCGTAGT -ACGGAAACTTCCAGTGTCGTCAGT -ACGGAAACTTCCAGTGTCGAAGGT -ACGGAAACTTCCAGTGTCAACCGT -ACGGAAACTTCCAGTGTCTTGTGC -ACGGAAACTTCCAGTGTCCTAAGC -ACGGAAACTTCCAGTGTCACTAGC -ACGGAAACTTCCAGTGTCAGATGC -ACGGAAACTTCCAGTGTCTGAAGG -ACGGAAACTTCCAGTGTCCAATGG -ACGGAAACTTCCAGTGTCATGAGG -ACGGAAACTTCCAGTGTCAATGGG -ACGGAAACTTCCAGTGTCTCCTGA -ACGGAAACTTCCAGTGTCTAGCGA -ACGGAAACTTCCAGTGTCCACAGA -ACGGAAACTTCCAGTGTCGCAAGA -ACGGAAACTTCCAGTGTCGGTTGA -ACGGAAACTTCCAGTGTCTCCGAT -ACGGAAACTTCCAGTGTCTGGCAT -ACGGAAACTTCCAGTGTCCGAGAT -ACGGAAACTTCCAGTGTCTACCAC -ACGGAAACTTCCAGTGTCCAGAAC -ACGGAAACTTCCAGTGTCGTCTAC -ACGGAAACTTCCAGTGTCACGTAC -ACGGAAACTTCCAGTGTCAGTGAC -ACGGAAACTTCCAGTGTCCTGTAG -ACGGAAACTTCCAGTGTCCCTAAG -ACGGAAACTTCCAGTGTCGTTCAG -ACGGAAACTTCCAGTGTCGCATAG -ACGGAAACTTCCAGTGTCGACAAG -ACGGAAACTTCCAGTGTCAAGCAG -ACGGAAACTTCCAGTGTCCGTCAA -ACGGAAACTTCCAGTGTCGCTGAA -ACGGAAACTTCCAGTGTCAGTACG -ACGGAAACTTCCAGTGTCATCCGA -ACGGAAACTTCCAGTGTCATGGGA -ACGGAAACTTCCAGTGTCGTGCAA -ACGGAAACTTCCAGTGTCGAGGAA -ACGGAAACTTCCAGTGTCCAGGTA -ACGGAAACTTCCAGTGTCGACTCT -ACGGAAACTTCCAGTGTCAGTCCT -ACGGAAACTTCCAGTGTCTAAGCC -ACGGAAACTTCCAGTGTCATAGCC -ACGGAAACTTCCAGTGTCTAACCG -ACGGAAACTTCCAGTGTCATGCCA -ACGGAAACTTCCGGTGAAGGAAAC -ACGGAAACTTCCGGTGAAAACACC -ACGGAAACTTCCGGTGAAATCGAG -ACGGAAACTTCCGGTGAACTCCTT -ACGGAAACTTCCGGTGAACCTGTT -ACGGAAACTTCCGGTGAACGGTTT -ACGGAAACTTCCGGTGAAGTGGTT -ACGGAAACTTCCGGTGAAGCCTTT -ACGGAAACTTCCGGTGAAGGTCTT -ACGGAAACTTCCGGTGAAACGCTT -ACGGAAACTTCCGGTGAAAGCGTT -ACGGAAACTTCCGGTGAATTCGTC -ACGGAAACTTCCGGTGAATCTCTC -ACGGAAACTTCCGGTGAATGGATC -ACGGAAACTTCCGGTGAACACTTC -ACGGAAACTTCCGGTGAAGTACTC -ACGGAAACTTCCGGTGAAGATGTC -ACGGAAACTTCCGGTGAAACAGTC -ACGGAAACTTCCGGTGAATTGCTG -ACGGAAACTTCCGGTGAATCCATG -ACGGAAACTTCCGGTGAATGTGTG -ACGGAAACTTCCGGTGAACTAGTG -ACGGAAACTTCCGGTGAACATCTG -ACGGAAACTTCCGGTGAAGAGTTG -ACGGAAACTTCCGGTGAAAGACTG -ACGGAAACTTCCGGTGAATCGGTA -ACGGAAACTTCCGGTGAATGCCTA -ACGGAAACTTCCGGTGAACCACTA -ACGGAAACTTCCGGTGAAGGAGTA -ACGGAAACTTCCGGTGAATCGTCT -ACGGAAACTTCCGGTGAATGCACT -ACGGAAACTTCCGGTGAACTGACT -ACGGAAACTTCCGGTGAACAACCT -ACGGAAACTTCCGGTGAAGCTACT -ACGGAAACTTCCGGTGAAGGATCT -ACGGAAACTTCCGGTGAAAAGGCT -ACGGAAACTTCCGGTGAATCAACC -ACGGAAACTTCCGGTGAATGTTCC -ACGGAAACTTCCGGTGAAATTCCC -ACGGAAACTTCCGGTGAATTCTCG -ACGGAAACTTCCGGTGAATAGACG -ACGGAAACTTCCGGTGAAGTAACG -ACGGAAACTTCCGGTGAAACTTCG -ACGGAAACTTCCGGTGAATACGCA -ACGGAAACTTCCGGTGAACTTGCA -ACGGAAACTTCCGGTGAACGAACA -ACGGAAACTTCCGGTGAACAGTCA -ACGGAAACTTCCGGTGAAGATCCA -ACGGAAACTTCCGGTGAAACGACA -ACGGAAACTTCCGGTGAAAGCTCA -ACGGAAACTTCCGGTGAATCACGT -ACGGAAACTTCCGGTGAACGTAGT -ACGGAAACTTCCGGTGAAGTCAGT -ACGGAAACTTCCGGTGAAGAAGGT -ACGGAAACTTCCGGTGAAAACCGT -ACGGAAACTTCCGGTGAATTGTGC -ACGGAAACTTCCGGTGAACTAAGC -ACGGAAACTTCCGGTGAAACTAGC -ACGGAAACTTCCGGTGAAAGATGC -ACGGAAACTTCCGGTGAATGAAGG -ACGGAAACTTCCGGTGAACAATGG -ACGGAAACTTCCGGTGAAATGAGG -ACGGAAACTTCCGGTGAAAATGGG -ACGGAAACTTCCGGTGAATCCTGA -ACGGAAACTTCCGGTGAATAGCGA -ACGGAAACTTCCGGTGAACACAGA -ACGGAAACTTCCGGTGAAGCAAGA -ACGGAAACTTCCGGTGAAGGTTGA -ACGGAAACTTCCGGTGAATCCGAT -ACGGAAACTTCCGGTGAATGGCAT -ACGGAAACTTCCGGTGAACGAGAT -ACGGAAACTTCCGGTGAATACCAC -ACGGAAACTTCCGGTGAACAGAAC -ACGGAAACTTCCGGTGAAGTCTAC -ACGGAAACTTCCGGTGAAACGTAC -ACGGAAACTTCCGGTGAAAGTGAC -ACGGAAACTTCCGGTGAACTGTAG -ACGGAAACTTCCGGTGAACCTAAG -ACGGAAACTTCCGGTGAAGTTCAG -ACGGAAACTTCCGGTGAAGCATAG -ACGGAAACTTCCGGTGAAGACAAG -ACGGAAACTTCCGGTGAAAAGCAG -ACGGAAACTTCCGGTGAACGTCAA -ACGGAAACTTCCGGTGAAGCTGAA -ACGGAAACTTCCGGTGAAAGTACG -ACGGAAACTTCCGGTGAAATCCGA -ACGGAAACTTCCGGTGAAATGGGA -ACGGAAACTTCCGGTGAAGTGCAA -ACGGAAACTTCCGGTGAAGAGGAA -ACGGAAACTTCCGGTGAACAGGTA -ACGGAAACTTCCGGTGAAGACTCT -ACGGAAACTTCCGGTGAAAGTCCT -ACGGAAACTTCCGGTGAATAAGCC -ACGGAAACTTCCGGTGAAATAGCC -ACGGAAACTTCCGGTGAATAACCG -ACGGAAACTTCCGGTGAAATGCCA -ACGGAAACTTCCCGTAACGGAAAC -ACGGAAACTTCCCGTAACAACACC -ACGGAAACTTCCCGTAACATCGAG -ACGGAAACTTCCCGTAACCTCCTT -ACGGAAACTTCCCGTAACCCTGTT -ACGGAAACTTCCCGTAACCGGTTT -ACGGAAACTTCCCGTAACGTGGTT -ACGGAAACTTCCCGTAACGCCTTT -ACGGAAACTTCCCGTAACGGTCTT -ACGGAAACTTCCCGTAACACGCTT -ACGGAAACTTCCCGTAACAGCGTT -ACGGAAACTTCCCGTAACTTCGTC -ACGGAAACTTCCCGTAACTCTCTC -ACGGAAACTTCCCGTAACTGGATC -ACGGAAACTTCCCGTAACCACTTC -ACGGAAACTTCCCGTAACGTACTC -ACGGAAACTTCCCGTAACGATGTC -ACGGAAACTTCCCGTAACACAGTC -ACGGAAACTTCCCGTAACTTGCTG -ACGGAAACTTCCCGTAACTCCATG -ACGGAAACTTCCCGTAACTGTGTG -ACGGAAACTTCCCGTAACCTAGTG -ACGGAAACTTCCCGTAACCATCTG -ACGGAAACTTCCCGTAACGAGTTG -ACGGAAACTTCCCGTAACAGACTG -ACGGAAACTTCCCGTAACTCGGTA -ACGGAAACTTCCCGTAACTGCCTA -ACGGAAACTTCCCGTAACCCACTA -ACGGAAACTTCCCGTAACGGAGTA -ACGGAAACTTCCCGTAACTCGTCT -ACGGAAACTTCCCGTAACTGCACT -ACGGAAACTTCCCGTAACCTGACT -ACGGAAACTTCCCGTAACCAACCT -ACGGAAACTTCCCGTAACGCTACT -ACGGAAACTTCCCGTAACGGATCT -ACGGAAACTTCCCGTAACAAGGCT -ACGGAAACTTCCCGTAACTCAACC -ACGGAAACTTCCCGTAACTGTTCC -ACGGAAACTTCCCGTAACATTCCC -ACGGAAACTTCCCGTAACTTCTCG -ACGGAAACTTCCCGTAACTAGACG -ACGGAAACTTCCCGTAACGTAACG -ACGGAAACTTCCCGTAACACTTCG -ACGGAAACTTCCCGTAACTACGCA -ACGGAAACTTCCCGTAACCTTGCA -ACGGAAACTTCCCGTAACCGAACA -ACGGAAACTTCCCGTAACCAGTCA -ACGGAAACTTCCCGTAACGATCCA -ACGGAAACTTCCCGTAACACGACA -ACGGAAACTTCCCGTAACAGCTCA -ACGGAAACTTCCCGTAACTCACGT -ACGGAAACTTCCCGTAACCGTAGT -ACGGAAACTTCCCGTAACGTCAGT -ACGGAAACTTCCCGTAACGAAGGT -ACGGAAACTTCCCGTAACAACCGT -ACGGAAACTTCCCGTAACTTGTGC -ACGGAAACTTCCCGTAACCTAAGC -ACGGAAACTTCCCGTAACACTAGC -ACGGAAACTTCCCGTAACAGATGC -ACGGAAACTTCCCGTAACTGAAGG -ACGGAAACTTCCCGTAACCAATGG -ACGGAAACTTCCCGTAACATGAGG -ACGGAAACTTCCCGTAACAATGGG -ACGGAAACTTCCCGTAACTCCTGA -ACGGAAACTTCCCGTAACTAGCGA -ACGGAAACTTCCCGTAACCACAGA -ACGGAAACTTCCCGTAACGCAAGA -ACGGAAACTTCCCGTAACGGTTGA -ACGGAAACTTCCCGTAACTCCGAT -ACGGAAACTTCCCGTAACTGGCAT -ACGGAAACTTCCCGTAACCGAGAT -ACGGAAACTTCCCGTAACTACCAC -ACGGAAACTTCCCGTAACCAGAAC -ACGGAAACTTCCCGTAACGTCTAC -ACGGAAACTTCCCGTAACACGTAC -ACGGAAACTTCCCGTAACAGTGAC -ACGGAAACTTCCCGTAACCTGTAG -ACGGAAACTTCCCGTAACCCTAAG -ACGGAAACTTCCCGTAACGTTCAG -ACGGAAACTTCCCGTAACGCATAG -ACGGAAACTTCCCGTAACGACAAG -ACGGAAACTTCCCGTAACAAGCAG -ACGGAAACTTCCCGTAACCGTCAA -ACGGAAACTTCCCGTAACGCTGAA -ACGGAAACTTCCCGTAACAGTACG -ACGGAAACTTCCCGTAACATCCGA -ACGGAAACTTCCCGTAACATGGGA -ACGGAAACTTCCCGTAACGTGCAA -ACGGAAACTTCCCGTAACGAGGAA -ACGGAAACTTCCCGTAACCAGGTA -ACGGAAACTTCCCGTAACGACTCT -ACGGAAACTTCCCGTAACAGTCCT -ACGGAAACTTCCCGTAACTAAGCC -ACGGAAACTTCCCGTAACATAGCC -ACGGAAACTTCCCGTAACTAACCG -ACGGAAACTTCCCGTAACATGCCA -ACGGAAACTTCCTGCTTGGGAAAC -ACGGAAACTTCCTGCTTGAACACC -ACGGAAACTTCCTGCTTGATCGAG -ACGGAAACTTCCTGCTTGCTCCTT -ACGGAAACTTCCTGCTTGCCTGTT -ACGGAAACTTCCTGCTTGCGGTTT -ACGGAAACTTCCTGCTTGGTGGTT -ACGGAAACTTCCTGCTTGGCCTTT -ACGGAAACTTCCTGCTTGGGTCTT -ACGGAAACTTCCTGCTTGACGCTT -ACGGAAACTTCCTGCTTGAGCGTT -ACGGAAACTTCCTGCTTGTTCGTC -ACGGAAACTTCCTGCTTGTCTCTC -ACGGAAACTTCCTGCTTGTGGATC -ACGGAAACTTCCTGCTTGCACTTC -ACGGAAACTTCCTGCTTGGTACTC -ACGGAAACTTCCTGCTTGGATGTC -ACGGAAACTTCCTGCTTGACAGTC -ACGGAAACTTCCTGCTTGTTGCTG -ACGGAAACTTCCTGCTTGTCCATG -ACGGAAACTTCCTGCTTGTGTGTG -ACGGAAACTTCCTGCTTGCTAGTG -ACGGAAACTTCCTGCTTGCATCTG -ACGGAAACTTCCTGCTTGGAGTTG -ACGGAAACTTCCTGCTTGAGACTG -ACGGAAACTTCCTGCTTGTCGGTA -ACGGAAACTTCCTGCTTGTGCCTA -ACGGAAACTTCCTGCTTGCCACTA -ACGGAAACTTCCTGCTTGGGAGTA -ACGGAAACTTCCTGCTTGTCGTCT -ACGGAAACTTCCTGCTTGTGCACT -ACGGAAACTTCCTGCTTGCTGACT -ACGGAAACTTCCTGCTTGCAACCT -ACGGAAACTTCCTGCTTGGCTACT -ACGGAAACTTCCTGCTTGGGATCT -ACGGAAACTTCCTGCTTGAAGGCT -ACGGAAACTTCCTGCTTGTCAACC -ACGGAAACTTCCTGCTTGTGTTCC -ACGGAAACTTCCTGCTTGATTCCC -ACGGAAACTTCCTGCTTGTTCTCG -ACGGAAACTTCCTGCTTGTAGACG -ACGGAAACTTCCTGCTTGGTAACG -ACGGAAACTTCCTGCTTGACTTCG -ACGGAAACTTCCTGCTTGTACGCA -ACGGAAACTTCCTGCTTGCTTGCA -ACGGAAACTTCCTGCTTGCGAACA -ACGGAAACTTCCTGCTTGCAGTCA -ACGGAAACTTCCTGCTTGGATCCA -ACGGAAACTTCCTGCTTGACGACA -ACGGAAACTTCCTGCTTGAGCTCA -ACGGAAACTTCCTGCTTGTCACGT -ACGGAAACTTCCTGCTTGCGTAGT -ACGGAAACTTCCTGCTTGGTCAGT -ACGGAAACTTCCTGCTTGGAAGGT -ACGGAAACTTCCTGCTTGAACCGT -ACGGAAACTTCCTGCTTGTTGTGC -ACGGAAACTTCCTGCTTGCTAAGC -ACGGAAACTTCCTGCTTGACTAGC -ACGGAAACTTCCTGCTTGAGATGC -ACGGAAACTTCCTGCTTGTGAAGG -ACGGAAACTTCCTGCTTGCAATGG -ACGGAAACTTCCTGCTTGATGAGG -ACGGAAACTTCCTGCTTGAATGGG -ACGGAAACTTCCTGCTTGTCCTGA -ACGGAAACTTCCTGCTTGTAGCGA -ACGGAAACTTCCTGCTTGCACAGA -ACGGAAACTTCCTGCTTGGCAAGA -ACGGAAACTTCCTGCTTGGGTTGA -ACGGAAACTTCCTGCTTGTCCGAT -ACGGAAACTTCCTGCTTGTGGCAT -ACGGAAACTTCCTGCTTGCGAGAT -ACGGAAACTTCCTGCTTGTACCAC -ACGGAAACTTCCTGCTTGCAGAAC -ACGGAAACTTCCTGCTTGGTCTAC -ACGGAAACTTCCTGCTTGACGTAC -ACGGAAACTTCCTGCTTGAGTGAC -ACGGAAACTTCCTGCTTGCTGTAG -ACGGAAACTTCCTGCTTGCCTAAG -ACGGAAACTTCCTGCTTGGTTCAG -ACGGAAACTTCCTGCTTGGCATAG -ACGGAAACTTCCTGCTTGGACAAG -ACGGAAACTTCCTGCTTGAAGCAG -ACGGAAACTTCCTGCTTGCGTCAA -ACGGAAACTTCCTGCTTGGCTGAA -ACGGAAACTTCCTGCTTGAGTACG -ACGGAAACTTCCTGCTTGATCCGA -ACGGAAACTTCCTGCTTGATGGGA -ACGGAAACTTCCTGCTTGGTGCAA -ACGGAAACTTCCTGCTTGGAGGAA -ACGGAAACTTCCTGCTTGCAGGTA -ACGGAAACTTCCTGCTTGGACTCT -ACGGAAACTTCCTGCTTGAGTCCT -ACGGAAACTTCCTGCTTGTAAGCC -ACGGAAACTTCCTGCTTGATAGCC -ACGGAAACTTCCTGCTTGTAACCG -ACGGAAACTTCCTGCTTGATGCCA -ACGGAAACTTCCAGCCTAGGAAAC -ACGGAAACTTCCAGCCTAAACACC -ACGGAAACTTCCAGCCTAATCGAG -ACGGAAACTTCCAGCCTACTCCTT -ACGGAAACTTCCAGCCTACCTGTT -ACGGAAACTTCCAGCCTACGGTTT -ACGGAAACTTCCAGCCTAGTGGTT -ACGGAAACTTCCAGCCTAGCCTTT -ACGGAAACTTCCAGCCTAGGTCTT -ACGGAAACTTCCAGCCTAACGCTT -ACGGAAACTTCCAGCCTAAGCGTT -ACGGAAACTTCCAGCCTATTCGTC -ACGGAAACTTCCAGCCTATCTCTC -ACGGAAACTTCCAGCCTATGGATC -ACGGAAACTTCCAGCCTACACTTC -ACGGAAACTTCCAGCCTAGTACTC -ACGGAAACTTCCAGCCTAGATGTC -ACGGAAACTTCCAGCCTAACAGTC -ACGGAAACTTCCAGCCTATTGCTG -ACGGAAACTTCCAGCCTATCCATG -ACGGAAACTTCCAGCCTATGTGTG -ACGGAAACTTCCAGCCTACTAGTG -ACGGAAACTTCCAGCCTACATCTG -ACGGAAACTTCCAGCCTAGAGTTG -ACGGAAACTTCCAGCCTAAGACTG -ACGGAAACTTCCAGCCTATCGGTA -ACGGAAACTTCCAGCCTATGCCTA -ACGGAAACTTCCAGCCTACCACTA -ACGGAAACTTCCAGCCTAGGAGTA -ACGGAAACTTCCAGCCTATCGTCT -ACGGAAACTTCCAGCCTATGCACT -ACGGAAACTTCCAGCCTACTGACT -ACGGAAACTTCCAGCCTACAACCT -ACGGAAACTTCCAGCCTAGCTACT -ACGGAAACTTCCAGCCTAGGATCT -ACGGAAACTTCCAGCCTAAAGGCT -ACGGAAACTTCCAGCCTATCAACC -ACGGAAACTTCCAGCCTATGTTCC -ACGGAAACTTCCAGCCTAATTCCC -ACGGAAACTTCCAGCCTATTCTCG -ACGGAAACTTCCAGCCTATAGACG -ACGGAAACTTCCAGCCTAGTAACG -ACGGAAACTTCCAGCCTAACTTCG -ACGGAAACTTCCAGCCTATACGCA -ACGGAAACTTCCAGCCTACTTGCA -ACGGAAACTTCCAGCCTACGAACA -ACGGAAACTTCCAGCCTACAGTCA -ACGGAAACTTCCAGCCTAGATCCA -ACGGAAACTTCCAGCCTAACGACA -ACGGAAACTTCCAGCCTAAGCTCA -ACGGAAACTTCCAGCCTATCACGT -ACGGAAACTTCCAGCCTACGTAGT -ACGGAAACTTCCAGCCTAGTCAGT -ACGGAAACTTCCAGCCTAGAAGGT -ACGGAAACTTCCAGCCTAAACCGT -ACGGAAACTTCCAGCCTATTGTGC -ACGGAAACTTCCAGCCTACTAAGC -ACGGAAACTTCCAGCCTAACTAGC -ACGGAAACTTCCAGCCTAAGATGC -ACGGAAACTTCCAGCCTATGAAGG -ACGGAAACTTCCAGCCTACAATGG -ACGGAAACTTCCAGCCTAATGAGG -ACGGAAACTTCCAGCCTAAATGGG -ACGGAAACTTCCAGCCTATCCTGA -ACGGAAACTTCCAGCCTATAGCGA -ACGGAAACTTCCAGCCTACACAGA -ACGGAAACTTCCAGCCTAGCAAGA -ACGGAAACTTCCAGCCTAGGTTGA -ACGGAAACTTCCAGCCTATCCGAT -ACGGAAACTTCCAGCCTATGGCAT -ACGGAAACTTCCAGCCTACGAGAT -ACGGAAACTTCCAGCCTATACCAC -ACGGAAACTTCCAGCCTACAGAAC -ACGGAAACTTCCAGCCTAGTCTAC -ACGGAAACTTCCAGCCTAACGTAC -ACGGAAACTTCCAGCCTAAGTGAC -ACGGAAACTTCCAGCCTACTGTAG -ACGGAAACTTCCAGCCTACCTAAG -ACGGAAACTTCCAGCCTAGTTCAG -ACGGAAACTTCCAGCCTAGCATAG -ACGGAAACTTCCAGCCTAGACAAG -ACGGAAACTTCCAGCCTAAAGCAG -ACGGAAACTTCCAGCCTACGTCAA -ACGGAAACTTCCAGCCTAGCTGAA -ACGGAAACTTCCAGCCTAAGTACG -ACGGAAACTTCCAGCCTAATCCGA -ACGGAAACTTCCAGCCTAATGGGA -ACGGAAACTTCCAGCCTAGTGCAA -ACGGAAACTTCCAGCCTAGAGGAA -ACGGAAACTTCCAGCCTACAGGTA -ACGGAAACTTCCAGCCTAGACTCT -ACGGAAACTTCCAGCCTAAGTCCT -ACGGAAACTTCCAGCCTATAAGCC -ACGGAAACTTCCAGCCTAATAGCC -ACGGAAACTTCCAGCCTATAACCG -ACGGAAACTTCCAGCCTAATGCCA -ACGGAAACTTCCAGCACTGGAAAC -ACGGAAACTTCCAGCACTAACACC -ACGGAAACTTCCAGCACTATCGAG -ACGGAAACTTCCAGCACTCTCCTT -ACGGAAACTTCCAGCACTCCTGTT -ACGGAAACTTCCAGCACTCGGTTT -ACGGAAACTTCCAGCACTGTGGTT -ACGGAAACTTCCAGCACTGCCTTT -ACGGAAACTTCCAGCACTGGTCTT -ACGGAAACTTCCAGCACTACGCTT -ACGGAAACTTCCAGCACTAGCGTT -ACGGAAACTTCCAGCACTTTCGTC -ACGGAAACTTCCAGCACTTCTCTC -ACGGAAACTTCCAGCACTTGGATC -ACGGAAACTTCCAGCACTCACTTC -ACGGAAACTTCCAGCACTGTACTC -ACGGAAACTTCCAGCACTGATGTC -ACGGAAACTTCCAGCACTACAGTC -ACGGAAACTTCCAGCACTTTGCTG -ACGGAAACTTCCAGCACTTCCATG -ACGGAAACTTCCAGCACTTGTGTG -ACGGAAACTTCCAGCACTCTAGTG -ACGGAAACTTCCAGCACTCATCTG -ACGGAAACTTCCAGCACTGAGTTG -ACGGAAACTTCCAGCACTAGACTG -ACGGAAACTTCCAGCACTTCGGTA -ACGGAAACTTCCAGCACTTGCCTA -ACGGAAACTTCCAGCACTCCACTA -ACGGAAACTTCCAGCACTGGAGTA -ACGGAAACTTCCAGCACTTCGTCT -ACGGAAACTTCCAGCACTTGCACT -ACGGAAACTTCCAGCACTCTGACT -ACGGAAACTTCCAGCACTCAACCT -ACGGAAACTTCCAGCACTGCTACT -ACGGAAACTTCCAGCACTGGATCT -ACGGAAACTTCCAGCACTAAGGCT -ACGGAAACTTCCAGCACTTCAACC -ACGGAAACTTCCAGCACTTGTTCC -ACGGAAACTTCCAGCACTATTCCC -ACGGAAACTTCCAGCACTTTCTCG -ACGGAAACTTCCAGCACTTAGACG -ACGGAAACTTCCAGCACTGTAACG -ACGGAAACTTCCAGCACTACTTCG -ACGGAAACTTCCAGCACTTACGCA -ACGGAAACTTCCAGCACTCTTGCA -ACGGAAACTTCCAGCACTCGAACA -ACGGAAACTTCCAGCACTCAGTCA -ACGGAAACTTCCAGCACTGATCCA -ACGGAAACTTCCAGCACTACGACA -ACGGAAACTTCCAGCACTAGCTCA -ACGGAAACTTCCAGCACTTCACGT -ACGGAAACTTCCAGCACTCGTAGT -ACGGAAACTTCCAGCACTGTCAGT -ACGGAAACTTCCAGCACTGAAGGT -ACGGAAACTTCCAGCACTAACCGT -ACGGAAACTTCCAGCACTTTGTGC -ACGGAAACTTCCAGCACTCTAAGC -ACGGAAACTTCCAGCACTACTAGC -ACGGAAACTTCCAGCACTAGATGC -ACGGAAACTTCCAGCACTTGAAGG -ACGGAAACTTCCAGCACTCAATGG -ACGGAAACTTCCAGCACTATGAGG -ACGGAAACTTCCAGCACTAATGGG -ACGGAAACTTCCAGCACTTCCTGA -ACGGAAACTTCCAGCACTTAGCGA -ACGGAAACTTCCAGCACTCACAGA -ACGGAAACTTCCAGCACTGCAAGA -ACGGAAACTTCCAGCACTGGTTGA -ACGGAAACTTCCAGCACTTCCGAT -ACGGAAACTTCCAGCACTTGGCAT -ACGGAAACTTCCAGCACTCGAGAT -ACGGAAACTTCCAGCACTTACCAC -ACGGAAACTTCCAGCACTCAGAAC -ACGGAAACTTCCAGCACTGTCTAC -ACGGAAACTTCCAGCACTACGTAC -ACGGAAACTTCCAGCACTAGTGAC -ACGGAAACTTCCAGCACTCTGTAG -ACGGAAACTTCCAGCACTCCTAAG -ACGGAAACTTCCAGCACTGTTCAG -ACGGAAACTTCCAGCACTGCATAG -ACGGAAACTTCCAGCACTGACAAG -ACGGAAACTTCCAGCACTAAGCAG -ACGGAAACTTCCAGCACTCGTCAA -ACGGAAACTTCCAGCACTGCTGAA -ACGGAAACTTCCAGCACTAGTACG -ACGGAAACTTCCAGCACTATCCGA -ACGGAAACTTCCAGCACTATGGGA -ACGGAAACTTCCAGCACTGTGCAA -ACGGAAACTTCCAGCACTGAGGAA -ACGGAAACTTCCAGCACTCAGGTA -ACGGAAACTTCCAGCACTGACTCT -ACGGAAACTTCCAGCACTAGTCCT -ACGGAAACTTCCAGCACTTAAGCC -ACGGAAACTTCCAGCACTATAGCC -ACGGAAACTTCCAGCACTTAACCG -ACGGAAACTTCCAGCACTATGCCA -ACGGAAACTTCCTGCAGAGGAAAC -ACGGAAACTTCCTGCAGAAACACC -ACGGAAACTTCCTGCAGAATCGAG -ACGGAAACTTCCTGCAGACTCCTT -ACGGAAACTTCCTGCAGACCTGTT -ACGGAAACTTCCTGCAGACGGTTT -ACGGAAACTTCCTGCAGAGTGGTT -ACGGAAACTTCCTGCAGAGCCTTT -ACGGAAACTTCCTGCAGAGGTCTT -ACGGAAACTTCCTGCAGAACGCTT -ACGGAAACTTCCTGCAGAAGCGTT -ACGGAAACTTCCTGCAGATTCGTC -ACGGAAACTTCCTGCAGATCTCTC -ACGGAAACTTCCTGCAGATGGATC -ACGGAAACTTCCTGCAGACACTTC -ACGGAAACTTCCTGCAGAGTACTC -ACGGAAACTTCCTGCAGAGATGTC -ACGGAAACTTCCTGCAGAACAGTC -ACGGAAACTTCCTGCAGATTGCTG -ACGGAAACTTCCTGCAGATCCATG -ACGGAAACTTCCTGCAGATGTGTG -ACGGAAACTTCCTGCAGACTAGTG -ACGGAAACTTCCTGCAGACATCTG -ACGGAAACTTCCTGCAGAGAGTTG -ACGGAAACTTCCTGCAGAAGACTG -ACGGAAACTTCCTGCAGATCGGTA -ACGGAAACTTCCTGCAGATGCCTA -ACGGAAACTTCCTGCAGACCACTA -ACGGAAACTTCCTGCAGAGGAGTA -ACGGAAACTTCCTGCAGATCGTCT -ACGGAAACTTCCTGCAGATGCACT -ACGGAAACTTCCTGCAGACTGACT -ACGGAAACTTCCTGCAGACAACCT -ACGGAAACTTCCTGCAGAGCTACT -ACGGAAACTTCCTGCAGAGGATCT -ACGGAAACTTCCTGCAGAAAGGCT -ACGGAAACTTCCTGCAGATCAACC -ACGGAAACTTCCTGCAGATGTTCC -ACGGAAACTTCCTGCAGAATTCCC -ACGGAAACTTCCTGCAGATTCTCG -ACGGAAACTTCCTGCAGATAGACG -ACGGAAACTTCCTGCAGAGTAACG -ACGGAAACTTCCTGCAGAACTTCG -ACGGAAACTTCCTGCAGATACGCA -ACGGAAACTTCCTGCAGACTTGCA -ACGGAAACTTCCTGCAGACGAACA -ACGGAAACTTCCTGCAGACAGTCA -ACGGAAACTTCCTGCAGAGATCCA -ACGGAAACTTCCTGCAGAACGACA -ACGGAAACTTCCTGCAGAAGCTCA -ACGGAAACTTCCTGCAGATCACGT -ACGGAAACTTCCTGCAGACGTAGT -ACGGAAACTTCCTGCAGAGTCAGT -ACGGAAACTTCCTGCAGAGAAGGT -ACGGAAACTTCCTGCAGAAACCGT -ACGGAAACTTCCTGCAGATTGTGC -ACGGAAACTTCCTGCAGACTAAGC -ACGGAAACTTCCTGCAGAACTAGC -ACGGAAACTTCCTGCAGAAGATGC -ACGGAAACTTCCTGCAGATGAAGG -ACGGAAACTTCCTGCAGACAATGG -ACGGAAACTTCCTGCAGAATGAGG -ACGGAAACTTCCTGCAGAAATGGG -ACGGAAACTTCCTGCAGATCCTGA -ACGGAAACTTCCTGCAGATAGCGA -ACGGAAACTTCCTGCAGACACAGA -ACGGAAACTTCCTGCAGAGCAAGA -ACGGAAACTTCCTGCAGAGGTTGA -ACGGAAACTTCCTGCAGATCCGAT -ACGGAAACTTCCTGCAGATGGCAT -ACGGAAACTTCCTGCAGACGAGAT -ACGGAAACTTCCTGCAGATACCAC -ACGGAAACTTCCTGCAGACAGAAC -ACGGAAACTTCCTGCAGAGTCTAC -ACGGAAACTTCCTGCAGAACGTAC -ACGGAAACTTCCTGCAGAAGTGAC -ACGGAAACTTCCTGCAGACTGTAG -ACGGAAACTTCCTGCAGACCTAAG -ACGGAAACTTCCTGCAGAGTTCAG -ACGGAAACTTCCTGCAGAGCATAG -ACGGAAACTTCCTGCAGAGACAAG -ACGGAAACTTCCTGCAGAAAGCAG -ACGGAAACTTCCTGCAGACGTCAA -ACGGAAACTTCCTGCAGAGCTGAA -ACGGAAACTTCCTGCAGAAGTACG -ACGGAAACTTCCTGCAGAATCCGA -ACGGAAACTTCCTGCAGAATGGGA -ACGGAAACTTCCTGCAGAGTGCAA -ACGGAAACTTCCTGCAGAGAGGAA -ACGGAAACTTCCTGCAGACAGGTA -ACGGAAACTTCCTGCAGAGACTCT -ACGGAAACTTCCTGCAGAAGTCCT -ACGGAAACTTCCTGCAGATAAGCC -ACGGAAACTTCCTGCAGAATAGCC -ACGGAAACTTCCTGCAGATAACCG -ACGGAAACTTCCTGCAGAATGCCA -ACGGAAACTTCCAGGTGAGGAAAC -ACGGAAACTTCCAGGTGAAACACC -ACGGAAACTTCCAGGTGAATCGAG -ACGGAAACTTCCAGGTGACTCCTT -ACGGAAACTTCCAGGTGACCTGTT -ACGGAAACTTCCAGGTGACGGTTT -ACGGAAACTTCCAGGTGAGTGGTT -ACGGAAACTTCCAGGTGAGCCTTT -ACGGAAACTTCCAGGTGAGGTCTT -ACGGAAACTTCCAGGTGAACGCTT -ACGGAAACTTCCAGGTGAAGCGTT -ACGGAAACTTCCAGGTGATTCGTC -ACGGAAACTTCCAGGTGATCTCTC -ACGGAAACTTCCAGGTGATGGATC -ACGGAAACTTCCAGGTGACACTTC -ACGGAAACTTCCAGGTGAGTACTC -ACGGAAACTTCCAGGTGAGATGTC -ACGGAAACTTCCAGGTGAACAGTC -ACGGAAACTTCCAGGTGATTGCTG -ACGGAAACTTCCAGGTGATCCATG -ACGGAAACTTCCAGGTGATGTGTG -ACGGAAACTTCCAGGTGACTAGTG -ACGGAAACTTCCAGGTGACATCTG -ACGGAAACTTCCAGGTGAGAGTTG -ACGGAAACTTCCAGGTGAAGACTG -ACGGAAACTTCCAGGTGATCGGTA -ACGGAAACTTCCAGGTGATGCCTA -ACGGAAACTTCCAGGTGACCACTA -ACGGAAACTTCCAGGTGAGGAGTA -ACGGAAACTTCCAGGTGATCGTCT -ACGGAAACTTCCAGGTGATGCACT -ACGGAAACTTCCAGGTGACTGACT -ACGGAAACTTCCAGGTGACAACCT -ACGGAAACTTCCAGGTGAGCTACT -ACGGAAACTTCCAGGTGAGGATCT -ACGGAAACTTCCAGGTGAAAGGCT -ACGGAAACTTCCAGGTGATCAACC -ACGGAAACTTCCAGGTGATGTTCC -ACGGAAACTTCCAGGTGAATTCCC -ACGGAAACTTCCAGGTGATTCTCG -ACGGAAACTTCCAGGTGATAGACG -ACGGAAACTTCCAGGTGAGTAACG -ACGGAAACTTCCAGGTGAACTTCG -ACGGAAACTTCCAGGTGATACGCA -ACGGAAACTTCCAGGTGACTTGCA -ACGGAAACTTCCAGGTGACGAACA -ACGGAAACTTCCAGGTGACAGTCA -ACGGAAACTTCCAGGTGAGATCCA -ACGGAAACTTCCAGGTGAACGACA -ACGGAAACTTCCAGGTGAAGCTCA -ACGGAAACTTCCAGGTGATCACGT -ACGGAAACTTCCAGGTGACGTAGT -ACGGAAACTTCCAGGTGAGTCAGT -ACGGAAACTTCCAGGTGAGAAGGT -ACGGAAACTTCCAGGTGAAACCGT -ACGGAAACTTCCAGGTGATTGTGC -ACGGAAACTTCCAGGTGACTAAGC -ACGGAAACTTCCAGGTGAACTAGC -ACGGAAACTTCCAGGTGAAGATGC -ACGGAAACTTCCAGGTGATGAAGG -ACGGAAACTTCCAGGTGACAATGG -ACGGAAACTTCCAGGTGAATGAGG -ACGGAAACTTCCAGGTGAAATGGG -ACGGAAACTTCCAGGTGATCCTGA -ACGGAAACTTCCAGGTGATAGCGA -ACGGAAACTTCCAGGTGACACAGA -ACGGAAACTTCCAGGTGAGCAAGA -ACGGAAACTTCCAGGTGAGGTTGA -ACGGAAACTTCCAGGTGATCCGAT -ACGGAAACTTCCAGGTGATGGCAT -ACGGAAACTTCCAGGTGACGAGAT -ACGGAAACTTCCAGGTGATACCAC -ACGGAAACTTCCAGGTGACAGAAC -ACGGAAACTTCCAGGTGAGTCTAC -ACGGAAACTTCCAGGTGAACGTAC -ACGGAAACTTCCAGGTGAAGTGAC -ACGGAAACTTCCAGGTGACTGTAG -ACGGAAACTTCCAGGTGACCTAAG -ACGGAAACTTCCAGGTGAGTTCAG -ACGGAAACTTCCAGGTGAGCATAG -ACGGAAACTTCCAGGTGAGACAAG -ACGGAAACTTCCAGGTGAAAGCAG -ACGGAAACTTCCAGGTGACGTCAA -ACGGAAACTTCCAGGTGAGCTGAA -ACGGAAACTTCCAGGTGAAGTACG -ACGGAAACTTCCAGGTGAATCCGA -ACGGAAACTTCCAGGTGAATGGGA -ACGGAAACTTCCAGGTGAGTGCAA -ACGGAAACTTCCAGGTGAGAGGAA -ACGGAAACTTCCAGGTGACAGGTA -ACGGAAACTTCCAGGTGAGACTCT -ACGGAAACTTCCAGGTGAAGTCCT -ACGGAAACTTCCAGGTGATAAGCC -ACGGAAACTTCCAGGTGAATAGCC -ACGGAAACTTCCAGGTGATAACCG -ACGGAAACTTCCAGGTGAATGCCA -ACGGAAACTTCCTGGCAAGGAAAC -ACGGAAACTTCCTGGCAAAACACC -ACGGAAACTTCCTGGCAAATCGAG -ACGGAAACTTCCTGGCAACTCCTT -ACGGAAACTTCCTGGCAACCTGTT -ACGGAAACTTCCTGGCAACGGTTT -ACGGAAACTTCCTGGCAAGTGGTT -ACGGAAACTTCCTGGCAAGCCTTT -ACGGAAACTTCCTGGCAAGGTCTT -ACGGAAACTTCCTGGCAAACGCTT -ACGGAAACTTCCTGGCAAAGCGTT -ACGGAAACTTCCTGGCAATTCGTC -ACGGAAACTTCCTGGCAATCTCTC -ACGGAAACTTCCTGGCAATGGATC -ACGGAAACTTCCTGGCAACACTTC -ACGGAAACTTCCTGGCAAGTACTC -ACGGAAACTTCCTGGCAAGATGTC -ACGGAAACTTCCTGGCAAACAGTC -ACGGAAACTTCCTGGCAATTGCTG -ACGGAAACTTCCTGGCAATCCATG -ACGGAAACTTCCTGGCAATGTGTG -ACGGAAACTTCCTGGCAACTAGTG -ACGGAAACTTCCTGGCAACATCTG -ACGGAAACTTCCTGGCAAGAGTTG -ACGGAAACTTCCTGGCAAAGACTG -ACGGAAACTTCCTGGCAATCGGTA -ACGGAAACTTCCTGGCAATGCCTA -ACGGAAACTTCCTGGCAACCACTA -ACGGAAACTTCCTGGCAAGGAGTA -ACGGAAACTTCCTGGCAATCGTCT -ACGGAAACTTCCTGGCAATGCACT -ACGGAAACTTCCTGGCAACTGACT -ACGGAAACTTCCTGGCAACAACCT -ACGGAAACTTCCTGGCAAGCTACT -ACGGAAACTTCCTGGCAAGGATCT -ACGGAAACTTCCTGGCAAAAGGCT -ACGGAAACTTCCTGGCAATCAACC -ACGGAAACTTCCTGGCAATGTTCC -ACGGAAACTTCCTGGCAAATTCCC -ACGGAAACTTCCTGGCAATTCTCG -ACGGAAACTTCCTGGCAATAGACG -ACGGAAACTTCCTGGCAAGTAACG -ACGGAAACTTCCTGGCAAACTTCG -ACGGAAACTTCCTGGCAATACGCA -ACGGAAACTTCCTGGCAACTTGCA -ACGGAAACTTCCTGGCAACGAACA -ACGGAAACTTCCTGGCAACAGTCA -ACGGAAACTTCCTGGCAAGATCCA -ACGGAAACTTCCTGGCAAACGACA -ACGGAAACTTCCTGGCAAAGCTCA -ACGGAAACTTCCTGGCAATCACGT -ACGGAAACTTCCTGGCAACGTAGT -ACGGAAACTTCCTGGCAAGTCAGT -ACGGAAACTTCCTGGCAAGAAGGT -ACGGAAACTTCCTGGCAAAACCGT -ACGGAAACTTCCTGGCAATTGTGC -ACGGAAACTTCCTGGCAACTAAGC -ACGGAAACTTCCTGGCAAACTAGC -ACGGAAACTTCCTGGCAAAGATGC -ACGGAAACTTCCTGGCAATGAAGG -ACGGAAACTTCCTGGCAACAATGG -ACGGAAACTTCCTGGCAAATGAGG -ACGGAAACTTCCTGGCAAAATGGG -ACGGAAACTTCCTGGCAATCCTGA -ACGGAAACTTCCTGGCAATAGCGA -ACGGAAACTTCCTGGCAACACAGA -ACGGAAACTTCCTGGCAAGCAAGA -ACGGAAACTTCCTGGCAAGGTTGA -ACGGAAACTTCCTGGCAATCCGAT -ACGGAAACTTCCTGGCAATGGCAT -ACGGAAACTTCCTGGCAACGAGAT -ACGGAAACTTCCTGGCAATACCAC -ACGGAAACTTCCTGGCAACAGAAC -ACGGAAACTTCCTGGCAAGTCTAC -ACGGAAACTTCCTGGCAAACGTAC -ACGGAAACTTCCTGGCAAAGTGAC -ACGGAAACTTCCTGGCAACTGTAG -ACGGAAACTTCCTGGCAACCTAAG -ACGGAAACTTCCTGGCAAGTTCAG -ACGGAAACTTCCTGGCAAGCATAG -ACGGAAACTTCCTGGCAAGACAAG -ACGGAAACTTCCTGGCAAAAGCAG -ACGGAAACTTCCTGGCAACGTCAA -ACGGAAACTTCCTGGCAAGCTGAA -ACGGAAACTTCCTGGCAAAGTACG -ACGGAAACTTCCTGGCAAATCCGA -ACGGAAACTTCCTGGCAAATGGGA -ACGGAAACTTCCTGGCAAGTGCAA -ACGGAAACTTCCTGGCAAGAGGAA -ACGGAAACTTCCTGGCAACAGGTA -ACGGAAACTTCCTGGCAAGACTCT -ACGGAAACTTCCTGGCAAAGTCCT -ACGGAAACTTCCTGGCAATAAGCC -ACGGAAACTTCCTGGCAAATAGCC -ACGGAAACTTCCTGGCAATAACCG -ACGGAAACTTCCTGGCAAATGCCA -ACGGAAACTTCCAGGATGGGAAAC -ACGGAAACTTCCAGGATGAACACC -ACGGAAACTTCCAGGATGATCGAG -ACGGAAACTTCCAGGATGCTCCTT -ACGGAAACTTCCAGGATGCCTGTT -ACGGAAACTTCCAGGATGCGGTTT -ACGGAAACTTCCAGGATGGTGGTT -ACGGAAACTTCCAGGATGGCCTTT -ACGGAAACTTCCAGGATGGGTCTT -ACGGAAACTTCCAGGATGACGCTT -ACGGAAACTTCCAGGATGAGCGTT -ACGGAAACTTCCAGGATGTTCGTC -ACGGAAACTTCCAGGATGTCTCTC -ACGGAAACTTCCAGGATGTGGATC -ACGGAAACTTCCAGGATGCACTTC -ACGGAAACTTCCAGGATGGTACTC -ACGGAAACTTCCAGGATGGATGTC -ACGGAAACTTCCAGGATGACAGTC -ACGGAAACTTCCAGGATGTTGCTG -ACGGAAACTTCCAGGATGTCCATG -ACGGAAACTTCCAGGATGTGTGTG -ACGGAAACTTCCAGGATGCTAGTG -ACGGAAACTTCCAGGATGCATCTG -ACGGAAACTTCCAGGATGGAGTTG -ACGGAAACTTCCAGGATGAGACTG -ACGGAAACTTCCAGGATGTCGGTA -ACGGAAACTTCCAGGATGTGCCTA -ACGGAAACTTCCAGGATGCCACTA -ACGGAAACTTCCAGGATGGGAGTA -ACGGAAACTTCCAGGATGTCGTCT -ACGGAAACTTCCAGGATGTGCACT -ACGGAAACTTCCAGGATGCTGACT -ACGGAAACTTCCAGGATGCAACCT -ACGGAAACTTCCAGGATGGCTACT -ACGGAAACTTCCAGGATGGGATCT -ACGGAAACTTCCAGGATGAAGGCT -ACGGAAACTTCCAGGATGTCAACC -ACGGAAACTTCCAGGATGTGTTCC -ACGGAAACTTCCAGGATGATTCCC -ACGGAAACTTCCAGGATGTTCTCG -ACGGAAACTTCCAGGATGTAGACG -ACGGAAACTTCCAGGATGGTAACG -ACGGAAACTTCCAGGATGACTTCG -ACGGAAACTTCCAGGATGTACGCA -ACGGAAACTTCCAGGATGCTTGCA -ACGGAAACTTCCAGGATGCGAACA -ACGGAAACTTCCAGGATGCAGTCA -ACGGAAACTTCCAGGATGGATCCA -ACGGAAACTTCCAGGATGACGACA -ACGGAAACTTCCAGGATGAGCTCA -ACGGAAACTTCCAGGATGTCACGT -ACGGAAACTTCCAGGATGCGTAGT -ACGGAAACTTCCAGGATGGTCAGT -ACGGAAACTTCCAGGATGGAAGGT -ACGGAAACTTCCAGGATGAACCGT -ACGGAAACTTCCAGGATGTTGTGC -ACGGAAACTTCCAGGATGCTAAGC -ACGGAAACTTCCAGGATGACTAGC -ACGGAAACTTCCAGGATGAGATGC -ACGGAAACTTCCAGGATGTGAAGG -ACGGAAACTTCCAGGATGCAATGG -ACGGAAACTTCCAGGATGATGAGG -ACGGAAACTTCCAGGATGAATGGG -ACGGAAACTTCCAGGATGTCCTGA -ACGGAAACTTCCAGGATGTAGCGA -ACGGAAACTTCCAGGATGCACAGA -ACGGAAACTTCCAGGATGGCAAGA -ACGGAAACTTCCAGGATGGGTTGA -ACGGAAACTTCCAGGATGTCCGAT -ACGGAAACTTCCAGGATGTGGCAT -ACGGAAACTTCCAGGATGCGAGAT -ACGGAAACTTCCAGGATGTACCAC -ACGGAAACTTCCAGGATGCAGAAC -ACGGAAACTTCCAGGATGGTCTAC -ACGGAAACTTCCAGGATGACGTAC -ACGGAAACTTCCAGGATGAGTGAC -ACGGAAACTTCCAGGATGCTGTAG -ACGGAAACTTCCAGGATGCCTAAG -ACGGAAACTTCCAGGATGGTTCAG -ACGGAAACTTCCAGGATGGCATAG -ACGGAAACTTCCAGGATGGACAAG -ACGGAAACTTCCAGGATGAAGCAG -ACGGAAACTTCCAGGATGCGTCAA -ACGGAAACTTCCAGGATGGCTGAA -ACGGAAACTTCCAGGATGAGTACG -ACGGAAACTTCCAGGATGATCCGA -ACGGAAACTTCCAGGATGATGGGA -ACGGAAACTTCCAGGATGGTGCAA -ACGGAAACTTCCAGGATGGAGGAA -ACGGAAACTTCCAGGATGCAGGTA -ACGGAAACTTCCAGGATGGACTCT -ACGGAAACTTCCAGGATGAGTCCT -ACGGAAACTTCCAGGATGTAAGCC -ACGGAAACTTCCAGGATGATAGCC -ACGGAAACTTCCAGGATGTAACCG -ACGGAAACTTCCAGGATGATGCCA -ACGGAAACTTCCGGGAATGGAAAC -ACGGAAACTTCCGGGAATAACACC -ACGGAAACTTCCGGGAATATCGAG -ACGGAAACTTCCGGGAATCTCCTT -ACGGAAACTTCCGGGAATCCTGTT -ACGGAAACTTCCGGGAATCGGTTT -ACGGAAACTTCCGGGAATGTGGTT -ACGGAAACTTCCGGGAATGCCTTT -ACGGAAACTTCCGGGAATGGTCTT -ACGGAAACTTCCGGGAATACGCTT -ACGGAAACTTCCGGGAATAGCGTT -ACGGAAACTTCCGGGAATTTCGTC -ACGGAAACTTCCGGGAATTCTCTC -ACGGAAACTTCCGGGAATTGGATC -ACGGAAACTTCCGGGAATCACTTC -ACGGAAACTTCCGGGAATGTACTC -ACGGAAACTTCCGGGAATGATGTC -ACGGAAACTTCCGGGAATACAGTC -ACGGAAACTTCCGGGAATTTGCTG -ACGGAAACTTCCGGGAATTCCATG -ACGGAAACTTCCGGGAATTGTGTG -ACGGAAACTTCCGGGAATCTAGTG -ACGGAAACTTCCGGGAATCATCTG -ACGGAAACTTCCGGGAATGAGTTG -ACGGAAACTTCCGGGAATAGACTG -ACGGAAACTTCCGGGAATTCGGTA -ACGGAAACTTCCGGGAATTGCCTA -ACGGAAACTTCCGGGAATCCACTA -ACGGAAACTTCCGGGAATGGAGTA -ACGGAAACTTCCGGGAATTCGTCT -ACGGAAACTTCCGGGAATTGCACT -ACGGAAACTTCCGGGAATCTGACT -ACGGAAACTTCCGGGAATCAACCT -ACGGAAACTTCCGGGAATGCTACT -ACGGAAACTTCCGGGAATGGATCT -ACGGAAACTTCCGGGAATAAGGCT -ACGGAAACTTCCGGGAATTCAACC -ACGGAAACTTCCGGGAATTGTTCC -ACGGAAACTTCCGGGAATATTCCC -ACGGAAACTTCCGGGAATTTCTCG -ACGGAAACTTCCGGGAATTAGACG -ACGGAAACTTCCGGGAATGTAACG -ACGGAAACTTCCGGGAATACTTCG -ACGGAAACTTCCGGGAATTACGCA -ACGGAAACTTCCGGGAATCTTGCA -ACGGAAACTTCCGGGAATCGAACA -ACGGAAACTTCCGGGAATCAGTCA -ACGGAAACTTCCGGGAATGATCCA -ACGGAAACTTCCGGGAATACGACA -ACGGAAACTTCCGGGAATAGCTCA -ACGGAAACTTCCGGGAATTCACGT -ACGGAAACTTCCGGGAATCGTAGT -ACGGAAACTTCCGGGAATGTCAGT -ACGGAAACTTCCGGGAATGAAGGT -ACGGAAACTTCCGGGAATAACCGT -ACGGAAACTTCCGGGAATTTGTGC -ACGGAAACTTCCGGGAATCTAAGC -ACGGAAACTTCCGGGAATACTAGC -ACGGAAACTTCCGGGAATAGATGC -ACGGAAACTTCCGGGAATTGAAGG -ACGGAAACTTCCGGGAATCAATGG -ACGGAAACTTCCGGGAATATGAGG -ACGGAAACTTCCGGGAATAATGGG -ACGGAAACTTCCGGGAATTCCTGA -ACGGAAACTTCCGGGAATTAGCGA -ACGGAAACTTCCGGGAATCACAGA -ACGGAAACTTCCGGGAATGCAAGA -ACGGAAACTTCCGGGAATGGTTGA -ACGGAAACTTCCGGGAATTCCGAT -ACGGAAACTTCCGGGAATTGGCAT -ACGGAAACTTCCGGGAATCGAGAT -ACGGAAACTTCCGGGAATTACCAC -ACGGAAACTTCCGGGAATCAGAAC -ACGGAAACTTCCGGGAATGTCTAC -ACGGAAACTTCCGGGAATACGTAC -ACGGAAACTTCCGGGAATAGTGAC -ACGGAAACTTCCGGGAATCTGTAG -ACGGAAACTTCCGGGAATCCTAAG -ACGGAAACTTCCGGGAATGTTCAG -ACGGAAACTTCCGGGAATGCATAG -ACGGAAACTTCCGGGAATGACAAG -ACGGAAACTTCCGGGAATAAGCAG -ACGGAAACTTCCGGGAATCGTCAA -ACGGAAACTTCCGGGAATGCTGAA -ACGGAAACTTCCGGGAATAGTACG -ACGGAAACTTCCGGGAATATCCGA -ACGGAAACTTCCGGGAATATGGGA -ACGGAAACTTCCGGGAATGTGCAA -ACGGAAACTTCCGGGAATGAGGAA -ACGGAAACTTCCGGGAATCAGGTA -ACGGAAACTTCCGGGAATGACTCT -ACGGAAACTTCCGGGAATAGTCCT -ACGGAAACTTCCGGGAATTAAGCC -ACGGAAACTTCCGGGAATATAGCC -ACGGAAACTTCCGGGAATTAACCG -ACGGAAACTTCCGGGAATATGCCA -ACGGAAACTTCCTGATCCGGAAAC -ACGGAAACTTCCTGATCCAACACC -ACGGAAACTTCCTGATCCATCGAG -ACGGAAACTTCCTGATCCCTCCTT -ACGGAAACTTCCTGATCCCCTGTT -ACGGAAACTTCCTGATCCCGGTTT -ACGGAAACTTCCTGATCCGTGGTT -ACGGAAACTTCCTGATCCGCCTTT -ACGGAAACTTCCTGATCCGGTCTT -ACGGAAACTTCCTGATCCACGCTT -ACGGAAACTTCCTGATCCAGCGTT -ACGGAAACTTCCTGATCCTTCGTC -ACGGAAACTTCCTGATCCTCTCTC -ACGGAAACTTCCTGATCCTGGATC -ACGGAAACTTCCTGATCCCACTTC -ACGGAAACTTCCTGATCCGTACTC -ACGGAAACTTCCTGATCCGATGTC -ACGGAAACTTCCTGATCCACAGTC -ACGGAAACTTCCTGATCCTTGCTG -ACGGAAACTTCCTGATCCTCCATG -ACGGAAACTTCCTGATCCTGTGTG -ACGGAAACTTCCTGATCCCTAGTG -ACGGAAACTTCCTGATCCCATCTG -ACGGAAACTTCCTGATCCGAGTTG -ACGGAAACTTCCTGATCCAGACTG -ACGGAAACTTCCTGATCCTCGGTA -ACGGAAACTTCCTGATCCTGCCTA -ACGGAAACTTCCTGATCCCCACTA -ACGGAAACTTCCTGATCCGGAGTA -ACGGAAACTTCCTGATCCTCGTCT -ACGGAAACTTCCTGATCCTGCACT -ACGGAAACTTCCTGATCCCTGACT -ACGGAAACTTCCTGATCCCAACCT -ACGGAAACTTCCTGATCCGCTACT -ACGGAAACTTCCTGATCCGGATCT -ACGGAAACTTCCTGATCCAAGGCT -ACGGAAACTTCCTGATCCTCAACC -ACGGAAACTTCCTGATCCTGTTCC -ACGGAAACTTCCTGATCCATTCCC -ACGGAAACTTCCTGATCCTTCTCG -ACGGAAACTTCCTGATCCTAGACG -ACGGAAACTTCCTGATCCGTAACG -ACGGAAACTTCCTGATCCACTTCG -ACGGAAACTTCCTGATCCTACGCA -ACGGAAACTTCCTGATCCCTTGCA -ACGGAAACTTCCTGATCCCGAACA -ACGGAAACTTCCTGATCCCAGTCA -ACGGAAACTTCCTGATCCGATCCA -ACGGAAACTTCCTGATCCACGACA -ACGGAAACTTCCTGATCCAGCTCA -ACGGAAACTTCCTGATCCTCACGT -ACGGAAACTTCCTGATCCCGTAGT -ACGGAAACTTCCTGATCCGTCAGT -ACGGAAACTTCCTGATCCGAAGGT -ACGGAAACTTCCTGATCCAACCGT -ACGGAAACTTCCTGATCCTTGTGC -ACGGAAACTTCCTGATCCCTAAGC -ACGGAAACTTCCTGATCCACTAGC -ACGGAAACTTCCTGATCCAGATGC -ACGGAAACTTCCTGATCCTGAAGG -ACGGAAACTTCCTGATCCCAATGG -ACGGAAACTTCCTGATCCATGAGG -ACGGAAACTTCCTGATCCAATGGG -ACGGAAACTTCCTGATCCTCCTGA -ACGGAAACTTCCTGATCCTAGCGA -ACGGAAACTTCCTGATCCCACAGA -ACGGAAACTTCCTGATCCGCAAGA -ACGGAAACTTCCTGATCCGGTTGA -ACGGAAACTTCCTGATCCTCCGAT -ACGGAAACTTCCTGATCCTGGCAT -ACGGAAACTTCCTGATCCCGAGAT -ACGGAAACTTCCTGATCCTACCAC -ACGGAAACTTCCTGATCCCAGAAC -ACGGAAACTTCCTGATCCGTCTAC -ACGGAAACTTCCTGATCCACGTAC -ACGGAAACTTCCTGATCCAGTGAC -ACGGAAACTTCCTGATCCCTGTAG -ACGGAAACTTCCTGATCCCCTAAG -ACGGAAACTTCCTGATCCGTTCAG -ACGGAAACTTCCTGATCCGCATAG -ACGGAAACTTCCTGATCCGACAAG -ACGGAAACTTCCTGATCCAAGCAG -ACGGAAACTTCCTGATCCCGTCAA -ACGGAAACTTCCTGATCCGCTGAA -ACGGAAACTTCCTGATCCAGTACG -ACGGAAACTTCCTGATCCATCCGA -ACGGAAACTTCCTGATCCATGGGA -ACGGAAACTTCCTGATCCGTGCAA -ACGGAAACTTCCTGATCCGAGGAA -ACGGAAACTTCCTGATCCCAGGTA -ACGGAAACTTCCTGATCCGACTCT -ACGGAAACTTCCTGATCCAGTCCT -ACGGAAACTTCCTGATCCTAAGCC -ACGGAAACTTCCTGATCCATAGCC -ACGGAAACTTCCTGATCCTAACCG -ACGGAAACTTCCTGATCCATGCCA -ACGGAAACTTCCCGATAGGGAAAC -ACGGAAACTTCCCGATAGAACACC -ACGGAAACTTCCCGATAGATCGAG -ACGGAAACTTCCCGATAGCTCCTT -ACGGAAACTTCCCGATAGCCTGTT -ACGGAAACTTCCCGATAGCGGTTT -ACGGAAACTTCCCGATAGGTGGTT -ACGGAAACTTCCCGATAGGCCTTT -ACGGAAACTTCCCGATAGGGTCTT -ACGGAAACTTCCCGATAGACGCTT -ACGGAAACTTCCCGATAGAGCGTT -ACGGAAACTTCCCGATAGTTCGTC -ACGGAAACTTCCCGATAGTCTCTC -ACGGAAACTTCCCGATAGTGGATC -ACGGAAACTTCCCGATAGCACTTC -ACGGAAACTTCCCGATAGGTACTC -ACGGAAACTTCCCGATAGGATGTC -ACGGAAACTTCCCGATAGACAGTC -ACGGAAACTTCCCGATAGTTGCTG -ACGGAAACTTCCCGATAGTCCATG -ACGGAAACTTCCCGATAGTGTGTG -ACGGAAACTTCCCGATAGCTAGTG -ACGGAAACTTCCCGATAGCATCTG -ACGGAAACTTCCCGATAGGAGTTG -ACGGAAACTTCCCGATAGAGACTG -ACGGAAACTTCCCGATAGTCGGTA -ACGGAAACTTCCCGATAGTGCCTA -ACGGAAACTTCCCGATAGCCACTA -ACGGAAACTTCCCGATAGGGAGTA -ACGGAAACTTCCCGATAGTCGTCT -ACGGAAACTTCCCGATAGTGCACT -ACGGAAACTTCCCGATAGCTGACT -ACGGAAACTTCCCGATAGCAACCT -ACGGAAACTTCCCGATAGGCTACT -ACGGAAACTTCCCGATAGGGATCT -ACGGAAACTTCCCGATAGAAGGCT -ACGGAAACTTCCCGATAGTCAACC -ACGGAAACTTCCCGATAGTGTTCC -ACGGAAACTTCCCGATAGATTCCC -ACGGAAACTTCCCGATAGTTCTCG -ACGGAAACTTCCCGATAGTAGACG -ACGGAAACTTCCCGATAGGTAACG -ACGGAAACTTCCCGATAGACTTCG -ACGGAAACTTCCCGATAGTACGCA -ACGGAAACTTCCCGATAGCTTGCA -ACGGAAACTTCCCGATAGCGAACA -ACGGAAACTTCCCGATAGCAGTCA -ACGGAAACTTCCCGATAGGATCCA -ACGGAAACTTCCCGATAGACGACA -ACGGAAACTTCCCGATAGAGCTCA -ACGGAAACTTCCCGATAGTCACGT -ACGGAAACTTCCCGATAGCGTAGT -ACGGAAACTTCCCGATAGGTCAGT -ACGGAAACTTCCCGATAGGAAGGT -ACGGAAACTTCCCGATAGAACCGT -ACGGAAACTTCCCGATAGTTGTGC -ACGGAAACTTCCCGATAGCTAAGC -ACGGAAACTTCCCGATAGACTAGC -ACGGAAACTTCCCGATAGAGATGC -ACGGAAACTTCCCGATAGTGAAGG -ACGGAAACTTCCCGATAGCAATGG -ACGGAAACTTCCCGATAGATGAGG -ACGGAAACTTCCCGATAGAATGGG -ACGGAAACTTCCCGATAGTCCTGA -ACGGAAACTTCCCGATAGTAGCGA -ACGGAAACTTCCCGATAGCACAGA -ACGGAAACTTCCCGATAGGCAAGA -ACGGAAACTTCCCGATAGGGTTGA -ACGGAAACTTCCCGATAGTCCGAT -ACGGAAACTTCCCGATAGTGGCAT -ACGGAAACTTCCCGATAGCGAGAT -ACGGAAACTTCCCGATAGTACCAC -ACGGAAACTTCCCGATAGCAGAAC -ACGGAAACTTCCCGATAGGTCTAC -ACGGAAACTTCCCGATAGACGTAC -ACGGAAACTTCCCGATAGAGTGAC -ACGGAAACTTCCCGATAGCTGTAG -ACGGAAACTTCCCGATAGCCTAAG -ACGGAAACTTCCCGATAGGTTCAG -ACGGAAACTTCCCGATAGGCATAG -ACGGAAACTTCCCGATAGGACAAG -ACGGAAACTTCCCGATAGAAGCAG -ACGGAAACTTCCCGATAGCGTCAA -ACGGAAACTTCCCGATAGGCTGAA -ACGGAAACTTCCCGATAGAGTACG -ACGGAAACTTCCCGATAGATCCGA -ACGGAAACTTCCCGATAGATGGGA -ACGGAAACTTCCCGATAGGTGCAA -ACGGAAACTTCCCGATAGGAGGAA -ACGGAAACTTCCCGATAGCAGGTA -ACGGAAACTTCCCGATAGGACTCT -ACGGAAACTTCCCGATAGAGTCCT -ACGGAAACTTCCCGATAGTAAGCC -ACGGAAACTTCCCGATAGATAGCC -ACGGAAACTTCCCGATAGTAACCG -ACGGAAACTTCCCGATAGATGCCA -ACGGAAACTTCCAGACACGGAAAC -ACGGAAACTTCCAGACACAACACC -ACGGAAACTTCCAGACACATCGAG -ACGGAAACTTCCAGACACCTCCTT -ACGGAAACTTCCAGACACCCTGTT -ACGGAAACTTCCAGACACCGGTTT -ACGGAAACTTCCAGACACGTGGTT -ACGGAAACTTCCAGACACGCCTTT -ACGGAAACTTCCAGACACGGTCTT -ACGGAAACTTCCAGACACACGCTT -ACGGAAACTTCCAGACACAGCGTT -ACGGAAACTTCCAGACACTTCGTC -ACGGAAACTTCCAGACACTCTCTC -ACGGAAACTTCCAGACACTGGATC -ACGGAAACTTCCAGACACCACTTC -ACGGAAACTTCCAGACACGTACTC -ACGGAAACTTCCAGACACGATGTC -ACGGAAACTTCCAGACACACAGTC -ACGGAAACTTCCAGACACTTGCTG -ACGGAAACTTCCAGACACTCCATG -ACGGAAACTTCCAGACACTGTGTG -ACGGAAACTTCCAGACACCTAGTG -ACGGAAACTTCCAGACACCATCTG -ACGGAAACTTCCAGACACGAGTTG -ACGGAAACTTCCAGACACAGACTG -ACGGAAACTTCCAGACACTCGGTA -ACGGAAACTTCCAGACACTGCCTA -ACGGAAACTTCCAGACACCCACTA -ACGGAAACTTCCAGACACGGAGTA -ACGGAAACTTCCAGACACTCGTCT -ACGGAAACTTCCAGACACTGCACT -ACGGAAACTTCCAGACACCTGACT -ACGGAAACTTCCAGACACCAACCT -ACGGAAACTTCCAGACACGCTACT -ACGGAAACTTCCAGACACGGATCT -ACGGAAACTTCCAGACACAAGGCT -ACGGAAACTTCCAGACACTCAACC -ACGGAAACTTCCAGACACTGTTCC -ACGGAAACTTCCAGACACATTCCC -ACGGAAACTTCCAGACACTTCTCG -ACGGAAACTTCCAGACACTAGACG -ACGGAAACTTCCAGACACGTAACG -ACGGAAACTTCCAGACACACTTCG -ACGGAAACTTCCAGACACTACGCA -ACGGAAACTTCCAGACACCTTGCA -ACGGAAACTTCCAGACACCGAACA -ACGGAAACTTCCAGACACCAGTCA -ACGGAAACTTCCAGACACGATCCA -ACGGAAACTTCCAGACACACGACA -ACGGAAACTTCCAGACACAGCTCA -ACGGAAACTTCCAGACACTCACGT -ACGGAAACTTCCAGACACCGTAGT -ACGGAAACTTCCAGACACGTCAGT -ACGGAAACTTCCAGACACGAAGGT -ACGGAAACTTCCAGACACAACCGT -ACGGAAACTTCCAGACACTTGTGC -ACGGAAACTTCCAGACACCTAAGC -ACGGAAACTTCCAGACACACTAGC -ACGGAAACTTCCAGACACAGATGC -ACGGAAACTTCCAGACACTGAAGG -ACGGAAACTTCCAGACACCAATGG -ACGGAAACTTCCAGACACATGAGG -ACGGAAACTTCCAGACACAATGGG -ACGGAAACTTCCAGACACTCCTGA -ACGGAAACTTCCAGACACTAGCGA -ACGGAAACTTCCAGACACCACAGA -ACGGAAACTTCCAGACACGCAAGA -ACGGAAACTTCCAGACACGGTTGA -ACGGAAACTTCCAGACACTCCGAT -ACGGAAACTTCCAGACACTGGCAT -ACGGAAACTTCCAGACACCGAGAT -ACGGAAACTTCCAGACACTACCAC -ACGGAAACTTCCAGACACCAGAAC -ACGGAAACTTCCAGACACGTCTAC -ACGGAAACTTCCAGACACACGTAC -ACGGAAACTTCCAGACACAGTGAC -ACGGAAACTTCCAGACACCTGTAG -ACGGAAACTTCCAGACACCCTAAG -ACGGAAACTTCCAGACACGTTCAG -ACGGAAACTTCCAGACACGCATAG -ACGGAAACTTCCAGACACGACAAG -ACGGAAACTTCCAGACACAAGCAG -ACGGAAACTTCCAGACACCGTCAA -ACGGAAACTTCCAGACACGCTGAA -ACGGAAACTTCCAGACACAGTACG -ACGGAAACTTCCAGACACATCCGA -ACGGAAACTTCCAGACACATGGGA -ACGGAAACTTCCAGACACGTGCAA -ACGGAAACTTCCAGACACGAGGAA -ACGGAAACTTCCAGACACCAGGTA -ACGGAAACTTCCAGACACGACTCT -ACGGAAACTTCCAGACACAGTCCT -ACGGAAACTTCCAGACACTAAGCC -ACGGAAACTTCCAGACACATAGCC -ACGGAAACTTCCAGACACTAACCG -ACGGAAACTTCCAGACACATGCCA -ACGGAAACTTCCAGAGCAGGAAAC -ACGGAAACTTCCAGAGCAAACACC -ACGGAAACTTCCAGAGCAATCGAG -ACGGAAACTTCCAGAGCACTCCTT -ACGGAAACTTCCAGAGCACCTGTT -ACGGAAACTTCCAGAGCACGGTTT -ACGGAAACTTCCAGAGCAGTGGTT -ACGGAAACTTCCAGAGCAGCCTTT -ACGGAAACTTCCAGAGCAGGTCTT -ACGGAAACTTCCAGAGCAACGCTT -ACGGAAACTTCCAGAGCAAGCGTT -ACGGAAACTTCCAGAGCATTCGTC -ACGGAAACTTCCAGAGCATCTCTC -ACGGAAACTTCCAGAGCATGGATC -ACGGAAACTTCCAGAGCACACTTC -ACGGAAACTTCCAGAGCAGTACTC -ACGGAAACTTCCAGAGCAGATGTC -ACGGAAACTTCCAGAGCAACAGTC -ACGGAAACTTCCAGAGCATTGCTG -ACGGAAACTTCCAGAGCATCCATG -ACGGAAACTTCCAGAGCATGTGTG -ACGGAAACTTCCAGAGCACTAGTG -ACGGAAACTTCCAGAGCACATCTG -ACGGAAACTTCCAGAGCAGAGTTG -ACGGAAACTTCCAGAGCAAGACTG -ACGGAAACTTCCAGAGCATCGGTA -ACGGAAACTTCCAGAGCATGCCTA -ACGGAAACTTCCAGAGCACCACTA -ACGGAAACTTCCAGAGCAGGAGTA -ACGGAAACTTCCAGAGCATCGTCT -ACGGAAACTTCCAGAGCATGCACT -ACGGAAACTTCCAGAGCACTGACT -ACGGAAACTTCCAGAGCACAACCT -ACGGAAACTTCCAGAGCAGCTACT -ACGGAAACTTCCAGAGCAGGATCT -ACGGAAACTTCCAGAGCAAAGGCT -ACGGAAACTTCCAGAGCATCAACC -ACGGAAACTTCCAGAGCATGTTCC -ACGGAAACTTCCAGAGCAATTCCC -ACGGAAACTTCCAGAGCATTCTCG -ACGGAAACTTCCAGAGCATAGACG -ACGGAAACTTCCAGAGCAGTAACG -ACGGAAACTTCCAGAGCAACTTCG -ACGGAAACTTCCAGAGCATACGCA -ACGGAAACTTCCAGAGCACTTGCA -ACGGAAACTTCCAGAGCACGAACA -ACGGAAACTTCCAGAGCACAGTCA -ACGGAAACTTCCAGAGCAGATCCA -ACGGAAACTTCCAGAGCAACGACA -ACGGAAACTTCCAGAGCAAGCTCA -ACGGAAACTTCCAGAGCATCACGT -ACGGAAACTTCCAGAGCACGTAGT -ACGGAAACTTCCAGAGCAGTCAGT -ACGGAAACTTCCAGAGCAGAAGGT -ACGGAAACTTCCAGAGCAAACCGT -ACGGAAACTTCCAGAGCATTGTGC -ACGGAAACTTCCAGAGCACTAAGC -ACGGAAACTTCCAGAGCAACTAGC -ACGGAAACTTCCAGAGCAAGATGC -ACGGAAACTTCCAGAGCATGAAGG -ACGGAAACTTCCAGAGCACAATGG -ACGGAAACTTCCAGAGCAATGAGG -ACGGAAACTTCCAGAGCAAATGGG -ACGGAAACTTCCAGAGCATCCTGA -ACGGAAACTTCCAGAGCATAGCGA -ACGGAAACTTCCAGAGCACACAGA -ACGGAAACTTCCAGAGCAGCAAGA -ACGGAAACTTCCAGAGCAGGTTGA -ACGGAAACTTCCAGAGCATCCGAT -ACGGAAACTTCCAGAGCATGGCAT -ACGGAAACTTCCAGAGCACGAGAT -ACGGAAACTTCCAGAGCATACCAC -ACGGAAACTTCCAGAGCACAGAAC -ACGGAAACTTCCAGAGCAGTCTAC -ACGGAAACTTCCAGAGCAACGTAC -ACGGAAACTTCCAGAGCAAGTGAC -ACGGAAACTTCCAGAGCACTGTAG -ACGGAAACTTCCAGAGCACCTAAG -ACGGAAACTTCCAGAGCAGTTCAG -ACGGAAACTTCCAGAGCAGCATAG -ACGGAAACTTCCAGAGCAGACAAG -ACGGAAACTTCCAGAGCAAAGCAG -ACGGAAACTTCCAGAGCACGTCAA -ACGGAAACTTCCAGAGCAGCTGAA -ACGGAAACTTCCAGAGCAAGTACG -ACGGAAACTTCCAGAGCAATCCGA -ACGGAAACTTCCAGAGCAATGGGA -ACGGAAACTTCCAGAGCAGTGCAA -ACGGAAACTTCCAGAGCAGAGGAA -ACGGAAACTTCCAGAGCACAGGTA -ACGGAAACTTCCAGAGCAGACTCT -ACGGAAACTTCCAGAGCAAGTCCT -ACGGAAACTTCCAGAGCATAAGCC -ACGGAAACTTCCAGAGCAATAGCC -ACGGAAACTTCCAGAGCATAACCG -ACGGAAACTTCCAGAGCAATGCCA -ACGGAAACTTCCTGAGGTGGAAAC -ACGGAAACTTCCTGAGGTAACACC -ACGGAAACTTCCTGAGGTATCGAG -ACGGAAACTTCCTGAGGTCTCCTT -ACGGAAACTTCCTGAGGTCCTGTT -ACGGAAACTTCCTGAGGTCGGTTT -ACGGAAACTTCCTGAGGTGTGGTT -ACGGAAACTTCCTGAGGTGCCTTT -ACGGAAACTTCCTGAGGTGGTCTT -ACGGAAACTTCCTGAGGTACGCTT -ACGGAAACTTCCTGAGGTAGCGTT -ACGGAAACTTCCTGAGGTTTCGTC -ACGGAAACTTCCTGAGGTTCTCTC -ACGGAAACTTCCTGAGGTTGGATC -ACGGAAACTTCCTGAGGTCACTTC -ACGGAAACTTCCTGAGGTGTACTC -ACGGAAACTTCCTGAGGTGATGTC -ACGGAAACTTCCTGAGGTACAGTC -ACGGAAACTTCCTGAGGTTTGCTG -ACGGAAACTTCCTGAGGTTCCATG -ACGGAAACTTCCTGAGGTTGTGTG -ACGGAAACTTCCTGAGGTCTAGTG -ACGGAAACTTCCTGAGGTCATCTG -ACGGAAACTTCCTGAGGTGAGTTG -ACGGAAACTTCCTGAGGTAGACTG -ACGGAAACTTCCTGAGGTTCGGTA -ACGGAAACTTCCTGAGGTTGCCTA -ACGGAAACTTCCTGAGGTCCACTA -ACGGAAACTTCCTGAGGTGGAGTA -ACGGAAACTTCCTGAGGTTCGTCT -ACGGAAACTTCCTGAGGTTGCACT -ACGGAAACTTCCTGAGGTCTGACT -ACGGAAACTTCCTGAGGTCAACCT -ACGGAAACTTCCTGAGGTGCTACT -ACGGAAACTTCCTGAGGTGGATCT -ACGGAAACTTCCTGAGGTAAGGCT -ACGGAAACTTCCTGAGGTTCAACC -ACGGAAACTTCCTGAGGTTGTTCC -ACGGAAACTTCCTGAGGTATTCCC -ACGGAAACTTCCTGAGGTTTCTCG -ACGGAAACTTCCTGAGGTTAGACG -ACGGAAACTTCCTGAGGTGTAACG -ACGGAAACTTCCTGAGGTACTTCG -ACGGAAACTTCCTGAGGTTACGCA -ACGGAAACTTCCTGAGGTCTTGCA -ACGGAAACTTCCTGAGGTCGAACA -ACGGAAACTTCCTGAGGTCAGTCA -ACGGAAACTTCCTGAGGTGATCCA -ACGGAAACTTCCTGAGGTACGACA -ACGGAAACTTCCTGAGGTAGCTCA -ACGGAAACTTCCTGAGGTTCACGT -ACGGAAACTTCCTGAGGTCGTAGT -ACGGAAACTTCCTGAGGTGTCAGT -ACGGAAACTTCCTGAGGTGAAGGT -ACGGAAACTTCCTGAGGTAACCGT -ACGGAAACTTCCTGAGGTTTGTGC -ACGGAAACTTCCTGAGGTCTAAGC -ACGGAAACTTCCTGAGGTACTAGC -ACGGAAACTTCCTGAGGTAGATGC -ACGGAAACTTCCTGAGGTTGAAGG -ACGGAAACTTCCTGAGGTCAATGG -ACGGAAACTTCCTGAGGTATGAGG -ACGGAAACTTCCTGAGGTAATGGG -ACGGAAACTTCCTGAGGTTCCTGA -ACGGAAACTTCCTGAGGTTAGCGA -ACGGAAACTTCCTGAGGTCACAGA -ACGGAAACTTCCTGAGGTGCAAGA -ACGGAAACTTCCTGAGGTGGTTGA -ACGGAAACTTCCTGAGGTTCCGAT -ACGGAAACTTCCTGAGGTTGGCAT -ACGGAAACTTCCTGAGGTCGAGAT -ACGGAAACTTCCTGAGGTTACCAC -ACGGAAACTTCCTGAGGTCAGAAC -ACGGAAACTTCCTGAGGTGTCTAC -ACGGAAACTTCCTGAGGTACGTAC -ACGGAAACTTCCTGAGGTAGTGAC -ACGGAAACTTCCTGAGGTCTGTAG -ACGGAAACTTCCTGAGGTCCTAAG -ACGGAAACTTCCTGAGGTGTTCAG -ACGGAAACTTCCTGAGGTGCATAG -ACGGAAACTTCCTGAGGTGACAAG -ACGGAAACTTCCTGAGGTAAGCAG -ACGGAAACTTCCTGAGGTCGTCAA -ACGGAAACTTCCTGAGGTGCTGAA -ACGGAAACTTCCTGAGGTAGTACG -ACGGAAACTTCCTGAGGTATCCGA -ACGGAAACTTCCTGAGGTATGGGA -ACGGAAACTTCCTGAGGTGTGCAA -ACGGAAACTTCCTGAGGTGAGGAA -ACGGAAACTTCCTGAGGTCAGGTA -ACGGAAACTTCCTGAGGTGACTCT -ACGGAAACTTCCTGAGGTAGTCCT -ACGGAAACTTCCTGAGGTTAAGCC -ACGGAAACTTCCTGAGGTATAGCC -ACGGAAACTTCCTGAGGTTAACCG -ACGGAAACTTCCTGAGGTATGCCA -ACGGAAACTTCCGATTCCGGAAAC -ACGGAAACTTCCGATTCCAACACC -ACGGAAACTTCCGATTCCATCGAG -ACGGAAACTTCCGATTCCCTCCTT -ACGGAAACTTCCGATTCCCCTGTT -ACGGAAACTTCCGATTCCCGGTTT -ACGGAAACTTCCGATTCCGTGGTT -ACGGAAACTTCCGATTCCGCCTTT -ACGGAAACTTCCGATTCCGGTCTT -ACGGAAACTTCCGATTCCACGCTT -ACGGAAACTTCCGATTCCAGCGTT -ACGGAAACTTCCGATTCCTTCGTC -ACGGAAACTTCCGATTCCTCTCTC -ACGGAAACTTCCGATTCCTGGATC -ACGGAAACTTCCGATTCCCACTTC -ACGGAAACTTCCGATTCCGTACTC -ACGGAAACTTCCGATTCCGATGTC -ACGGAAACTTCCGATTCCACAGTC -ACGGAAACTTCCGATTCCTTGCTG -ACGGAAACTTCCGATTCCTCCATG -ACGGAAACTTCCGATTCCTGTGTG -ACGGAAACTTCCGATTCCCTAGTG -ACGGAAACTTCCGATTCCCATCTG -ACGGAAACTTCCGATTCCGAGTTG -ACGGAAACTTCCGATTCCAGACTG -ACGGAAACTTCCGATTCCTCGGTA -ACGGAAACTTCCGATTCCTGCCTA -ACGGAAACTTCCGATTCCCCACTA -ACGGAAACTTCCGATTCCGGAGTA -ACGGAAACTTCCGATTCCTCGTCT -ACGGAAACTTCCGATTCCTGCACT -ACGGAAACTTCCGATTCCCTGACT -ACGGAAACTTCCGATTCCCAACCT -ACGGAAACTTCCGATTCCGCTACT -ACGGAAACTTCCGATTCCGGATCT -ACGGAAACTTCCGATTCCAAGGCT -ACGGAAACTTCCGATTCCTCAACC -ACGGAAACTTCCGATTCCTGTTCC -ACGGAAACTTCCGATTCCATTCCC -ACGGAAACTTCCGATTCCTTCTCG -ACGGAAACTTCCGATTCCTAGACG -ACGGAAACTTCCGATTCCGTAACG -ACGGAAACTTCCGATTCCACTTCG -ACGGAAACTTCCGATTCCTACGCA -ACGGAAACTTCCGATTCCCTTGCA -ACGGAAACTTCCGATTCCCGAACA -ACGGAAACTTCCGATTCCCAGTCA -ACGGAAACTTCCGATTCCGATCCA -ACGGAAACTTCCGATTCCACGACA -ACGGAAACTTCCGATTCCAGCTCA -ACGGAAACTTCCGATTCCTCACGT -ACGGAAACTTCCGATTCCCGTAGT -ACGGAAACTTCCGATTCCGTCAGT -ACGGAAACTTCCGATTCCGAAGGT -ACGGAAACTTCCGATTCCAACCGT -ACGGAAACTTCCGATTCCTTGTGC -ACGGAAACTTCCGATTCCCTAAGC -ACGGAAACTTCCGATTCCACTAGC -ACGGAAACTTCCGATTCCAGATGC -ACGGAAACTTCCGATTCCTGAAGG -ACGGAAACTTCCGATTCCCAATGG -ACGGAAACTTCCGATTCCATGAGG -ACGGAAACTTCCGATTCCAATGGG -ACGGAAACTTCCGATTCCTCCTGA -ACGGAAACTTCCGATTCCTAGCGA -ACGGAAACTTCCGATTCCCACAGA -ACGGAAACTTCCGATTCCGCAAGA -ACGGAAACTTCCGATTCCGGTTGA -ACGGAAACTTCCGATTCCTCCGAT -ACGGAAACTTCCGATTCCTGGCAT -ACGGAAACTTCCGATTCCCGAGAT -ACGGAAACTTCCGATTCCTACCAC -ACGGAAACTTCCGATTCCCAGAAC -ACGGAAACTTCCGATTCCGTCTAC -ACGGAAACTTCCGATTCCACGTAC -ACGGAAACTTCCGATTCCAGTGAC -ACGGAAACTTCCGATTCCCTGTAG -ACGGAAACTTCCGATTCCCCTAAG -ACGGAAACTTCCGATTCCGTTCAG -ACGGAAACTTCCGATTCCGCATAG -ACGGAAACTTCCGATTCCGACAAG -ACGGAAACTTCCGATTCCAAGCAG -ACGGAAACTTCCGATTCCCGTCAA -ACGGAAACTTCCGATTCCGCTGAA -ACGGAAACTTCCGATTCCAGTACG -ACGGAAACTTCCGATTCCATCCGA -ACGGAAACTTCCGATTCCATGGGA -ACGGAAACTTCCGATTCCGTGCAA -ACGGAAACTTCCGATTCCGAGGAA -ACGGAAACTTCCGATTCCCAGGTA -ACGGAAACTTCCGATTCCGACTCT -ACGGAAACTTCCGATTCCAGTCCT -ACGGAAACTTCCGATTCCTAAGCC -ACGGAAACTTCCGATTCCATAGCC -ACGGAAACTTCCGATTCCTAACCG -ACGGAAACTTCCGATTCCATGCCA -ACGGAAACTTCCCATTGGGGAAAC -ACGGAAACTTCCCATTGGAACACC -ACGGAAACTTCCCATTGGATCGAG -ACGGAAACTTCCCATTGGCTCCTT -ACGGAAACTTCCCATTGGCCTGTT -ACGGAAACTTCCCATTGGCGGTTT -ACGGAAACTTCCCATTGGGTGGTT -ACGGAAACTTCCCATTGGGCCTTT -ACGGAAACTTCCCATTGGGGTCTT -ACGGAAACTTCCCATTGGACGCTT -ACGGAAACTTCCCATTGGAGCGTT -ACGGAAACTTCCCATTGGTTCGTC -ACGGAAACTTCCCATTGGTCTCTC -ACGGAAACTTCCCATTGGTGGATC -ACGGAAACTTCCCATTGGCACTTC -ACGGAAACTTCCCATTGGGTACTC -ACGGAAACTTCCCATTGGGATGTC -ACGGAAACTTCCCATTGGACAGTC -ACGGAAACTTCCCATTGGTTGCTG -ACGGAAACTTCCCATTGGTCCATG -ACGGAAACTTCCCATTGGTGTGTG -ACGGAAACTTCCCATTGGCTAGTG -ACGGAAACTTCCCATTGGCATCTG -ACGGAAACTTCCCATTGGGAGTTG -ACGGAAACTTCCCATTGGAGACTG -ACGGAAACTTCCCATTGGTCGGTA -ACGGAAACTTCCCATTGGTGCCTA -ACGGAAACTTCCCATTGGCCACTA -ACGGAAACTTCCCATTGGGGAGTA -ACGGAAACTTCCCATTGGTCGTCT -ACGGAAACTTCCCATTGGTGCACT -ACGGAAACTTCCCATTGGCTGACT -ACGGAAACTTCCCATTGGCAACCT -ACGGAAACTTCCCATTGGGCTACT -ACGGAAACTTCCCATTGGGGATCT -ACGGAAACTTCCCATTGGAAGGCT -ACGGAAACTTCCCATTGGTCAACC -ACGGAAACTTCCCATTGGTGTTCC -ACGGAAACTTCCCATTGGATTCCC -ACGGAAACTTCCCATTGGTTCTCG -ACGGAAACTTCCCATTGGTAGACG -ACGGAAACTTCCCATTGGGTAACG -ACGGAAACTTCCCATTGGACTTCG -ACGGAAACTTCCCATTGGTACGCA -ACGGAAACTTCCCATTGGCTTGCA -ACGGAAACTTCCCATTGGCGAACA -ACGGAAACTTCCCATTGGCAGTCA -ACGGAAACTTCCCATTGGGATCCA -ACGGAAACTTCCCATTGGACGACA -ACGGAAACTTCCCATTGGAGCTCA -ACGGAAACTTCCCATTGGTCACGT -ACGGAAACTTCCCATTGGCGTAGT -ACGGAAACTTCCCATTGGGTCAGT -ACGGAAACTTCCCATTGGGAAGGT -ACGGAAACTTCCCATTGGAACCGT -ACGGAAACTTCCCATTGGTTGTGC -ACGGAAACTTCCCATTGGCTAAGC -ACGGAAACTTCCCATTGGACTAGC -ACGGAAACTTCCCATTGGAGATGC -ACGGAAACTTCCCATTGGTGAAGG -ACGGAAACTTCCCATTGGCAATGG -ACGGAAACTTCCCATTGGATGAGG -ACGGAAACTTCCCATTGGAATGGG -ACGGAAACTTCCCATTGGTCCTGA -ACGGAAACTTCCCATTGGTAGCGA -ACGGAAACTTCCCATTGGCACAGA -ACGGAAACTTCCCATTGGGCAAGA -ACGGAAACTTCCCATTGGGGTTGA -ACGGAAACTTCCCATTGGTCCGAT -ACGGAAACTTCCCATTGGTGGCAT -ACGGAAACTTCCCATTGGCGAGAT -ACGGAAACTTCCCATTGGTACCAC -ACGGAAACTTCCCATTGGCAGAAC -ACGGAAACTTCCCATTGGGTCTAC -ACGGAAACTTCCCATTGGACGTAC -ACGGAAACTTCCCATTGGAGTGAC -ACGGAAACTTCCCATTGGCTGTAG -ACGGAAACTTCCCATTGGCCTAAG -ACGGAAACTTCCCATTGGGTTCAG -ACGGAAACTTCCCATTGGGCATAG -ACGGAAACTTCCCATTGGGACAAG -ACGGAAACTTCCCATTGGAAGCAG -ACGGAAACTTCCCATTGGCGTCAA -ACGGAAACTTCCCATTGGGCTGAA -ACGGAAACTTCCCATTGGAGTACG -ACGGAAACTTCCCATTGGATCCGA -ACGGAAACTTCCCATTGGATGGGA -ACGGAAACTTCCCATTGGGTGCAA -ACGGAAACTTCCCATTGGGAGGAA -ACGGAAACTTCCCATTGGCAGGTA -ACGGAAACTTCCCATTGGGACTCT -ACGGAAACTTCCCATTGGAGTCCT -ACGGAAACTTCCCATTGGTAAGCC -ACGGAAACTTCCCATTGGATAGCC -ACGGAAACTTCCCATTGGTAACCG -ACGGAAACTTCCCATTGGATGCCA -ACGGAAACTTCCGATCGAGGAAAC -ACGGAAACTTCCGATCGAAACACC -ACGGAAACTTCCGATCGAATCGAG -ACGGAAACTTCCGATCGACTCCTT -ACGGAAACTTCCGATCGACCTGTT -ACGGAAACTTCCGATCGACGGTTT -ACGGAAACTTCCGATCGAGTGGTT -ACGGAAACTTCCGATCGAGCCTTT -ACGGAAACTTCCGATCGAGGTCTT -ACGGAAACTTCCGATCGAACGCTT -ACGGAAACTTCCGATCGAAGCGTT -ACGGAAACTTCCGATCGATTCGTC -ACGGAAACTTCCGATCGATCTCTC -ACGGAAACTTCCGATCGATGGATC -ACGGAAACTTCCGATCGACACTTC -ACGGAAACTTCCGATCGAGTACTC -ACGGAAACTTCCGATCGAGATGTC -ACGGAAACTTCCGATCGAACAGTC -ACGGAAACTTCCGATCGATTGCTG -ACGGAAACTTCCGATCGATCCATG -ACGGAAACTTCCGATCGATGTGTG -ACGGAAACTTCCGATCGACTAGTG -ACGGAAACTTCCGATCGACATCTG -ACGGAAACTTCCGATCGAGAGTTG -ACGGAAACTTCCGATCGAAGACTG -ACGGAAACTTCCGATCGATCGGTA -ACGGAAACTTCCGATCGATGCCTA -ACGGAAACTTCCGATCGACCACTA -ACGGAAACTTCCGATCGAGGAGTA -ACGGAAACTTCCGATCGATCGTCT -ACGGAAACTTCCGATCGATGCACT -ACGGAAACTTCCGATCGACTGACT -ACGGAAACTTCCGATCGACAACCT -ACGGAAACTTCCGATCGAGCTACT -ACGGAAACTTCCGATCGAGGATCT -ACGGAAACTTCCGATCGAAAGGCT -ACGGAAACTTCCGATCGATCAACC -ACGGAAACTTCCGATCGATGTTCC -ACGGAAACTTCCGATCGAATTCCC -ACGGAAACTTCCGATCGATTCTCG -ACGGAAACTTCCGATCGATAGACG -ACGGAAACTTCCGATCGAGTAACG -ACGGAAACTTCCGATCGAACTTCG -ACGGAAACTTCCGATCGATACGCA -ACGGAAACTTCCGATCGACTTGCA -ACGGAAACTTCCGATCGACGAACA -ACGGAAACTTCCGATCGACAGTCA -ACGGAAACTTCCGATCGAGATCCA -ACGGAAACTTCCGATCGAACGACA -ACGGAAACTTCCGATCGAAGCTCA -ACGGAAACTTCCGATCGATCACGT -ACGGAAACTTCCGATCGACGTAGT -ACGGAAACTTCCGATCGAGTCAGT -ACGGAAACTTCCGATCGAGAAGGT -ACGGAAACTTCCGATCGAAACCGT -ACGGAAACTTCCGATCGATTGTGC -ACGGAAACTTCCGATCGACTAAGC -ACGGAAACTTCCGATCGAACTAGC -ACGGAAACTTCCGATCGAAGATGC -ACGGAAACTTCCGATCGATGAAGG -ACGGAAACTTCCGATCGACAATGG -ACGGAAACTTCCGATCGAATGAGG -ACGGAAACTTCCGATCGAAATGGG -ACGGAAACTTCCGATCGATCCTGA -ACGGAAACTTCCGATCGATAGCGA -ACGGAAACTTCCGATCGACACAGA -ACGGAAACTTCCGATCGAGCAAGA -ACGGAAACTTCCGATCGAGGTTGA -ACGGAAACTTCCGATCGATCCGAT -ACGGAAACTTCCGATCGATGGCAT -ACGGAAACTTCCGATCGACGAGAT -ACGGAAACTTCCGATCGATACCAC -ACGGAAACTTCCGATCGACAGAAC -ACGGAAACTTCCGATCGAGTCTAC -ACGGAAACTTCCGATCGAACGTAC -ACGGAAACTTCCGATCGAAGTGAC -ACGGAAACTTCCGATCGACTGTAG -ACGGAAACTTCCGATCGACCTAAG -ACGGAAACTTCCGATCGAGTTCAG -ACGGAAACTTCCGATCGAGCATAG -ACGGAAACTTCCGATCGAGACAAG -ACGGAAACTTCCGATCGAAAGCAG -ACGGAAACTTCCGATCGACGTCAA -ACGGAAACTTCCGATCGAGCTGAA -ACGGAAACTTCCGATCGAAGTACG -ACGGAAACTTCCGATCGAATCCGA -ACGGAAACTTCCGATCGAATGGGA -ACGGAAACTTCCGATCGAGTGCAA -ACGGAAACTTCCGATCGAGAGGAA -ACGGAAACTTCCGATCGACAGGTA -ACGGAAACTTCCGATCGAGACTCT -ACGGAAACTTCCGATCGAAGTCCT -ACGGAAACTTCCGATCGATAAGCC -ACGGAAACTTCCGATCGAATAGCC -ACGGAAACTTCCGATCGATAACCG -ACGGAAACTTCCGATCGAATGCCA -ACGGAAACTTCCCACTACGGAAAC -ACGGAAACTTCCCACTACAACACC -ACGGAAACTTCCCACTACATCGAG -ACGGAAACTTCCCACTACCTCCTT -ACGGAAACTTCCCACTACCCTGTT -ACGGAAACTTCCCACTACCGGTTT -ACGGAAACTTCCCACTACGTGGTT -ACGGAAACTTCCCACTACGCCTTT -ACGGAAACTTCCCACTACGGTCTT -ACGGAAACTTCCCACTACACGCTT -ACGGAAACTTCCCACTACAGCGTT -ACGGAAACTTCCCACTACTTCGTC -ACGGAAACTTCCCACTACTCTCTC -ACGGAAACTTCCCACTACTGGATC -ACGGAAACTTCCCACTACCACTTC -ACGGAAACTTCCCACTACGTACTC -ACGGAAACTTCCCACTACGATGTC -ACGGAAACTTCCCACTACACAGTC -ACGGAAACTTCCCACTACTTGCTG -ACGGAAACTTCCCACTACTCCATG -ACGGAAACTTCCCACTACTGTGTG -ACGGAAACTTCCCACTACCTAGTG -ACGGAAACTTCCCACTACCATCTG -ACGGAAACTTCCCACTACGAGTTG -ACGGAAACTTCCCACTACAGACTG -ACGGAAACTTCCCACTACTCGGTA -ACGGAAACTTCCCACTACTGCCTA -ACGGAAACTTCCCACTACCCACTA -ACGGAAACTTCCCACTACGGAGTA -ACGGAAACTTCCCACTACTCGTCT -ACGGAAACTTCCCACTACTGCACT -ACGGAAACTTCCCACTACCTGACT -ACGGAAACTTCCCACTACCAACCT -ACGGAAACTTCCCACTACGCTACT -ACGGAAACTTCCCACTACGGATCT -ACGGAAACTTCCCACTACAAGGCT -ACGGAAACTTCCCACTACTCAACC -ACGGAAACTTCCCACTACTGTTCC -ACGGAAACTTCCCACTACATTCCC -ACGGAAACTTCCCACTACTTCTCG -ACGGAAACTTCCCACTACTAGACG -ACGGAAACTTCCCACTACGTAACG -ACGGAAACTTCCCACTACACTTCG -ACGGAAACTTCCCACTACTACGCA -ACGGAAACTTCCCACTACCTTGCA -ACGGAAACTTCCCACTACCGAACA -ACGGAAACTTCCCACTACCAGTCA -ACGGAAACTTCCCACTACGATCCA -ACGGAAACTTCCCACTACACGACA -ACGGAAACTTCCCACTACAGCTCA -ACGGAAACTTCCCACTACTCACGT -ACGGAAACTTCCCACTACCGTAGT -ACGGAAACTTCCCACTACGTCAGT -ACGGAAACTTCCCACTACGAAGGT -ACGGAAACTTCCCACTACAACCGT -ACGGAAACTTCCCACTACTTGTGC -ACGGAAACTTCCCACTACCTAAGC -ACGGAAACTTCCCACTACACTAGC -ACGGAAACTTCCCACTACAGATGC -ACGGAAACTTCCCACTACTGAAGG -ACGGAAACTTCCCACTACCAATGG -ACGGAAACTTCCCACTACATGAGG -ACGGAAACTTCCCACTACAATGGG -ACGGAAACTTCCCACTACTCCTGA -ACGGAAACTTCCCACTACTAGCGA -ACGGAAACTTCCCACTACCACAGA -ACGGAAACTTCCCACTACGCAAGA -ACGGAAACTTCCCACTACGGTTGA -ACGGAAACTTCCCACTACTCCGAT -ACGGAAACTTCCCACTACTGGCAT -ACGGAAACTTCCCACTACCGAGAT -ACGGAAACTTCCCACTACTACCAC -ACGGAAACTTCCCACTACCAGAAC -ACGGAAACTTCCCACTACGTCTAC -ACGGAAACTTCCCACTACACGTAC -ACGGAAACTTCCCACTACAGTGAC -ACGGAAACTTCCCACTACCTGTAG -ACGGAAACTTCCCACTACCCTAAG -ACGGAAACTTCCCACTACGTTCAG -ACGGAAACTTCCCACTACGCATAG -ACGGAAACTTCCCACTACGACAAG -ACGGAAACTTCCCACTACAAGCAG -ACGGAAACTTCCCACTACCGTCAA -ACGGAAACTTCCCACTACGCTGAA -ACGGAAACTTCCCACTACAGTACG -ACGGAAACTTCCCACTACATCCGA -ACGGAAACTTCCCACTACATGGGA -ACGGAAACTTCCCACTACGTGCAA -ACGGAAACTTCCCACTACGAGGAA -ACGGAAACTTCCCACTACCAGGTA -ACGGAAACTTCCCACTACGACTCT -ACGGAAACTTCCCACTACAGTCCT -ACGGAAACTTCCCACTACTAAGCC -ACGGAAACTTCCCACTACATAGCC -ACGGAAACTTCCCACTACTAACCG -ACGGAAACTTCCCACTACATGCCA -ACGGAAACTTCCAACCAGGGAAAC -ACGGAAACTTCCAACCAGAACACC -ACGGAAACTTCCAACCAGATCGAG -ACGGAAACTTCCAACCAGCTCCTT -ACGGAAACTTCCAACCAGCCTGTT -ACGGAAACTTCCAACCAGCGGTTT -ACGGAAACTTCCAACCAGGTGGTT -ACGGAAACTTCCAACCAGGCCTTT -ACGGAAACTTCCAACCAGGGTCTT -ACGGAAACTTCCAACCAGACGCTT -ACGGAAACTTCCAACCAGAGCGTT -ACGGAAACTTCCAACCAGTTCGTC -ACGGAAACTTCCAACCAGTCTCTC -ACGGAAACTTCCAACCAGTGGATC -ACGGAAACTTCCAACCAGCACTTC -ACGGAAACTTCCAACCAGGTACTC -ACGGAAACTTCCAACCAGGATGTC -ACGGAAACTTCCAACCAGACAGTC -ACGGAAACTTCCAACCAGTTGCTG -ACGGAAACTTCCAACCAGTCCATG -ACGGAAACTTCCAACCAGTGTGTG -ACGGAAACTTCCAACCAGCTAGTG -ACGGAAACTTCCAACCAGCATCTG -ACGGAAACTTCCAACCAGGAGTTG -ACGGAAACTTCCAACCAGAGACTG -ACGGAAACTTCCAACCAGTCGGTA -ACGGAAACTTCCAACCAGTGCCTA -ACGGAAACTTCCAACCAGCCACTA -ACGGAAACTTCCAACCAGGGAGTA -ACGGAAACTTCCAACCAGTCGTCT -ACGGAAACTTCCAACCAGTGCACT -ACGGAAACTTCCAACCAGCTGACT -ACGGAAACTTCCAACCAGCAACCT -ACGGAAACTTCCAACCAGGCTACT -ACGGAAACTTCCAACCAGGGATCT -ACGGAAACTTCCAACCAGAAGGCT -ACGGAAACTTCCAACCAGTCAACC -ACGGAAACTTCCAACCAGTGTTCC -ACGGAAACTTCCAACCAGATTCCC -ACGGAAACTTCCAACCAGTTCTCG -ACGGAAACTTCCAACCAGTAGACG -ACGGAAACTTCCAACCAGGTAACG -ACGGAAACTTCCAACCAGACTTCG -ACGGAAACTTCCAACCAGTACGCA -ACGGAAACTTCCAACCAGCTTGCA -ACGGAAACTTCCAACCAGCGAACA -ACGGAAACTTCCAACCAGCAGTCA -ACGGAAACTTCCAACCAGGATCCA -ACGGAAACTTCCAACCAGACGACA -ACGGAAACTTCCAACCAGAGCTCA -ACGGAAACTTCCAACCAGTCACGT -ACGGAAACTTCCAACCAGCGTAGT -ACGGAAACTTCCAACCAGGTCAGT -ACGGAAACTTCCAACCAGGAAGGT -ACGGAAACTTCCAACCAGAACCGT -ACGGAAACTTCCAACCAGTTGTGC -ACGGAAACTTCCAACCAGCTAAGC -ACGGAAACTTCCAACCAGACTAGC -ACGGAAACTTCCAACCAGAGATGC -ACGGAAACTTCCAACCAGTGAAGG -ACGGAAACTTCCAACCAGCAATGG -ACGGAAACTTCCAACCAGATGAGG -ACGGAAACTTCCAACCAGAATGGG -ACGGAAACTTCCAACCAGTCCTGA -ACGGAAACTTCCAACCAGTAGCGA -ACGGAAACTTCCAACCAGCACAGA -ACGGAAACTTCCAACCAGGCAAGA -ACGGAAACTTCCAACCAGGGTTGA -ACGGAAACTTCCAACCAGTCCGAT -ACGGAAACTTCCAACCAGTGGCAT -ACGGAAACTTCCAACCAGCGAGAT -ACGGAAACTTCCAACCAGTACCAC -ACGGAAACTTCCAACCAGCAGAAC -ACGGAAACTTCCAACCAGGTCTAC -ACGGAAACTTCCAACCAGACGTAC -ACGGAAACTTCCAACCAGAGTGAC -ACGGAAACTTCCAACCAGCTGTAG -ACGGAAACTTCCAACCAGCCTAAG -ACGGAAACTTCCAACCAGGTTCAG -ACGGAAACTTCCAACCAGGCATAG -ACGGAAACTTCCAACCAGGACAAG -ACGGAAACTTCCAACCAGAAGCAG -ACGGAAACTTCCAACCAGCGTCAA -ACGGAAACTTCCAACCAGGCTGAA -ACGGAAACTTCCAACCAGAGTACG -ACGGAAACTTCCAACCAGATCCGA -ACGGAAACTTCCAACCAGATGGGA -ACGGAAACTTCCAACCAGGTGCAA -ACGGAAACTTCCAACCAGGAGGAA -ACGGAAACTTCCAACCAGCAGGTA -ACGGAAACTTCCAACCAGGACTCT -ACGGAAACTTCCAACCAGAGTCCT -ACGGAAACTTCCAACCAGTAAGCC -ACGGAAACTTCCAACCAGATAGCC -ACGGAAACTTCCAACCAGTAACCG -ACGGAAACTTCCAACCAGATGCCA -ACGGAAACTTCCTACGTCGGAAAC -ACGGAAACTTCCTACGTCAACACC -ACGGAAACTTCCTACGTCATCGAG -ACGGAAACTTCCTACGTCCTCCTT -ACGGAAACTTCCTACGTCCCTGTT -ACGGAAACTTCCTACGTCCGGTTT -ACGGAAACTTCCTACGTCGTGGTT -ACGGAAACTTCCTACGTCGCCTTT -ACGGAAACTTCCTACGTCGGTCTT -ACGGAAACTTCCTACGTCACGCTT -ACGGAAACTTCCTACGTCAGCGTT -ACGGAAACTTCCTACGTCTTCGTC -ACGGAAACTTCCTACGTCTCTCTC -ACGGAAACTTCCTACGTCTGGATC -ACGGAAACTTCCTACGTCCACTTC -ACGGAAACTTCCTACGTCGTACTC -ACGGAAACTTCCTACGTCGATGTC -ACGGAAACTTCCTACGTCACAGTC -ACGGAAACTTCCTACGTCTTGCTG -ACGGAAACTTCCTACGTCTCCATG -ACGGAAACTTCCTACGTCTGTGTG -ACGGAAACTTCCTACGTCCTAGTG -ACGGAAACTTCCTACGTCCATCTG -ACGGAAACTTCCTACGTCGAGTTG -ACGGAAACTTCCTACGTCAGACTG -ACGGAAACTTCCTACGTCTCGGTA -ACGGAAACTTCCTACGTCTGCCTA -ACGGAAACTTCCTACGTCCCACTA -ACGGAAACTTCCTACGTCGGAGTA -ACGGAAACTTCCTACGTCTCGTCT -ACGGAAACTTCCTACGTCTGCACT -ACGGAAACTTCCTACGTCCTGACT -ACGGAAACTTCCTACGTCCAACCT -ACGGAAACTTCCTACGTCGCTACT -ACGGAAACTTCCTACGTCGGATCT -ACGGAAACTTCCTACGTCAAGGCT -ACGGAAACTTCCTACGTCTCAACC -ACGGAAACTTCCTACGTCTGTTCC -ACGGAAACTTCCTACGTCATTCCC -ACGGAAACTTCCTACGTCTTCTCG -ACGGAAACTTCCTACGTCTAGACG -ACGGAAACTTCCTACGTCGTAACG -ACGGAAACTTCCTACGTCACTTCG -ACGGAAACTTCCTACGTCTACGCA -ACGGAAACTTCCTACGTCCTTGCA -ACGGAAACTTCCTACGTCCGAACA -ACGGAAACTTCCTACGTCCAGTCA -ACGGAAACTTCCTACGTCGATCCA -ACGGAAACTTCCTACGTCACGACA -ACGGAAACTTCCTACGTCAGCTCA -ACGGAAACTTCCTACGTCTCACGT -ACGGAAACTTCCTACGTCCGTAGT -ACGGAAACTTCCTACGTCGTCAGT -ACGGAAACTTCCTACGTCGAAGGT -ACGGAAACTTCCTACGTCAACCGT -ACGGAAACTTCCTACGTCTTGTGC -ACGGAAACTTCCTACGTCCTAAGC -ACGGAAACTTCCTACGTCACTAGC -ACGGAAACTTCCTACGTCAGATGC -ACGGAAACTTCCTACGTCTGAAGG -ACGGAAACTTCCTACGTCCAATGG -ACGGAAACTTCCTACGTCATGAGG -ACGGAAACTTCCTACGTCAATGGG -ACGGAAACTTCCTACGTCTCCTGA -ACGGAAACTTCCTACGTCTAGCGA -ACGGAAACTTCCTACGTCCACAGA -ACGGAAACTTCCTACGTCGCAAGA -ACGGAAACTTCCTACGTCGGTTGA -ACGGAAACTTCCTACGTCTCCGAT -ACGGAAACTTCCTACGTCTGGCAT -ACGGAAACTTCCTACGTCCGAGAT -ACGGAAACTTCCTACGTCTACCAC -ACGGAAACTTCCTACGTCCAGAAC -ACGGAAACTTCCTACGTCGTCTAC -ACGGAAACTTCCTACGTCACGTAC -ACGGAAACTTCCTACGTCAGTGAC -ACGGAAACTTCCTACGTCCTGTAG -ACGGAAACTTCCTACGTCCCTAAG -ACGGAAACTTCCTACGTCGTTCAG -ACGGAAACTTCCTACGTCGCATAG -ACGGAAACTTCCTACGTCGACAAG -ACGGAAACTTCCTACGTCAAGCAG -ACGGAAACTTCCTACGTCCGTCAA -ACGGAAACTTCCTACGTCGCTGAA -ACGGAAACTTCCTACGTCAGTACG -ACGGAAACTTCCTACGTCATCCGA -ACGGAAACTTCCTACGTCATGGGA -ACGGAAACTTCCTACGTCGTGCAA -ACGGAAACTTCCTACGTCGAGGAA -ACGGAAACTTCCTACGTCCAGGTA -ACGGAAACTTCCTACGTCGACTCT -ACGGAAACTTCCTACGTCAGTCCT -ACGGAAACTTCCTACGTCTAAGCC -ACGGAAACTTCCTACGTCATAGCC -ACGGAAACTTCCTACGTCTAACCG -ACGGAAACTTCCTACGTCATGCCA -ACGGAAACTTCCTACACGGGAAAC -ACGGAAACTTCCTACACGAACACC -ACGGAAACTTCCTACACGATCGAG -ACGGAAACTTCCTACACGCTCCTT -ACGGAAACTTCCTACACGCCTGTT -ACGGAAACTTCCTACACGCGGTTT -ACGGAAACTTCCTACACGGTGGTT -ACGGAAACTTCCTACACGGCCTTT -ACGGAAACTTCCTACACGGGTCTT -ACGGAAACTTCCTACACGACGCTT -ACGGAAACTTCCTACACGAGCGTT -ACGGAAACTTCCTACACGTTCGTC -ACGGAAACTTCCTACACGTCTCTC -ACGGAAACTTCCTACACGTGGATC -ACGGAAACTTCCTACACGCACTTC -ACGGAAACTTCCTACACGGTACTC -ACGGAAACTTCCTACACGGATGTC -ACGGAAACTTCCTACACGACAGTC -ACGGAAACTTCCTACACGTTGCTG -ACGGAAACTTCCTACACGTCCATG -ACGGAAACTTCCTACACGTGTGTG -ACGGAAACTTCCTACACGCTAGTG -ACGGAAACTTCCTACACGCATCTG -ACGGAAACTTCCTACACGGAGTTG -ACGGAAACTTCCTACACGAGACTG -ACGGAAACTTCCTACACGTCGGTA -ACGGAAACTTCCTACACGTGCCTA -ACGGAAACTTCCTACACGCCACTA -ACGGAAACTTCCTACACGGGAGTA -ACGGAAACTTCCTACACGTCGTCT -ACGGAAACTTCCTACACGTGCACT -ACGGAAACTTCCTACACGCTGACT -ACGGAAACTTCCTACACGCAACCT -ACGGAAACTTCCTACACGGCTACT -ACGGAAACTTCCTACACGGGATCT -ACGGAAACTTCCTACACGAAGGCT -ACGGAAACTTCCTACACGTCAACC -ACGGAAACTTCCTACACGTGTTCC -ACGGAAACTTCCTACACGATTCCC -ACGGAAACTTCCTACACGTTCTCG -ACGGAAACTTCCTACACGTAGACG -ACGGAAACTTCCTACACGGTAACG -ACGGAAACTTCCTACACGACTTCG -ACGGAAACTTCCTACACGTACGCA -ACGGAAACTTCCTACACGCTTGCA -ACGGAAACTTCCTACACGCGAACA -ACGGAAACTTCCTACACGCAGTCA -ACGGAAACTTCCTACACGGATCCA -ACGGAAACTTCCTACACGACGACA -ACGGAAACTTCCTACACGAGCTCA -ACGGAAACTTCCTACACGTCACGT -ACGGAAACTTCCTACACGCGTAGT -ACGGAAACTTCCTACACGGTCAGT -ACGGAAACTTCCTACACGGAAGGT -ACGGAAACTTCCTACACGAACCGT -ACGGAAACTTCCTACACGTTGTGC -ACGGAAACTTCCTACACGCTAAGC -ACGGAAACTTCCTACACGACTAGC -ACGGAAACTTCCTACACGAGATGC -ACGGAAACTTCCTACACGTGAAGG -ACGGAAACTTCCTACACGCAATGG -ACGGAAACTTCCTACACGATGAGG -ACGGAAACTTCCTACACGAATGGG -ACGGAAACTTCCTACACGTCCTGA -ACGGAAACTTCCTACACGTAGCGA -ACGGAAACTTCCTACACGCACAGA -ACGGAAACTTCCTACACGGCAAGA -ACGGAAACTTCCTACACGGGTTGA -ACGGAAACTTCCTACACGTCCGAT -ACGGAAACTTCCTACACGTGGCAT -ACGGAAACTTCCTACACGCGAGAT -ACGGAAACTTCCTACACGTACCAC -ACGGAAACTTCCTACACGCAGAAC -ACGGAAACTTCCTACACGGTCTAC -ACGGAAACTTCCTACACGACGTAC -ACGGAAACTTCCTACACGAGTGAC -ACGGAAACTTCCTACACGCTGTAG -ACGGAAACTTCCTACACGCCTAAG -ACGGAAACTTCCTACACGGTTCAG -ACGGAAACTTCCTACACGGCATAG -ACGGAAACTTCCTACACGGACAAG -ACGGAAACTTCCTACACGAAGCAG -ACGGAAACTTCCTACACGCGTCAA -ACGGAAACTTCCTACACGGCTGAA -ACGGAAACTTCCTACACGAGTACG -ACGGAAACTTCCTACACGATCCGA -ACGGAAACTTCCTACACGATGGGA -ACGGAAACTTCCTACACGGTGCAA -ACGGAAACTTCCTACACGGAGGAA -ACGGAAACTTCCTACACGCAGGTA -ACGGAAACTTCCTACACGGACTCT -ACGGAAACTTCCTACACGAGTCCT -ACGGAAACTTCCTACACGTAAGCC -ACGGAAACTTCCTACACGATAGCC -ACGGAAACTTCCTACACGTAACCG -ACGGAAACTTCCTACACGATGCCA -ACGGAAACTTCCGACAGTGGAAAC -ACGGAAACTTCCGACAGTAACACC -ACGGAAACTTCCGACAGTATCGAG -ACGGAAACTTCCGACAGTCTCCTT -ACGGAAACTTCCGACAGTCCTGTT -ACGGAAACTTCCGACAGTCGGTTT -ACGGAAACTTCCGACAGTGTGGTT -ACGGAAACTTCCGACAGTGCCTTT -ACGGAAACTTCCGACAGTGGTCTT -ACGGAAACTTCCGACAGTACGCTT -ACGGAAACTTCCGACAGTAGCGTT -ACGGAAACTTCCGACAGTTTCGTC -ACGGAAACTTCCGACAGTTCTCTC -ACGGAAACTTCCGACAGTTGGATC -ACGGAAACTTCCGACAGTCACTTC -ACGGAAACTTCCGACAGTGTACTC -ACGGAAACTTCCGACAGTGATGTC -ACGGAAACTTCCGACAGTACAGTC -ACGGAAACTTCCGACAGTTTGCTG -ACGGAAACTTCCGACAGTTCCATG -ACGGAAACTTCCGACAGTTGTGTG -ACGGAAACTTCCGACAGTCTAGTG -ACGGAAACTTCCGACAGTCATCTG -ACGGAAACTTCCGACAGTGAGTTG -ACGGAAACTTCCGACAGTAGACTG -ACGGAAACTTCCGACAGTTCGGTA -ACGGAAACTTCCGACAGTTGCCTA -ACGGAAACTTCCGACAGTCCACTA -ACGGAAACTTCCGACAGTGGAGTA -ACGGAAACTTCCGACAGTTCGTCT -ACGGAAACTTCCGACAGTTGCACT -ACGGAAACTTCCGACAGTCTGACT -ACGGAAACTTCCGACAGTCAACCT -ACGGAAACTTCCGACAGTGCTACT -ACGGAAACTTCCGACAGTGGATCT -ACGGAAACTTCCGACAGTAAGGCT -ACGGAAACTTCCGACAGTTCAACC -ACGGAAACTTCCGACAGTTGTTCC -ACGGAAACTTCCGACAGTATTCCC -ACGGAAACTTCCGACAGTTTCTCG -ACGGAAACTTCCGACAGTTAGACG -ACGGAAACTTCCGACAGTGTAACG -ACGGAAACTTCCGACAGTACTTCG -ACGGAAACTTCCGACAGTTACGCA -ACGGAAACTTCCGACAGTCTTGCA -ACGGAAACTTCCGACAGTCGAACA -ACGGAAACTTCCGACAGTCAGTCA -ACGGAAACTTCCGACAGTGATCCA -ACGGAAACTTCCGACAGTACGACA -ACGGAAACTTCCGACAGTAGCTCA -ACGGAAACTTCCGACAGTTCACGT -ACGGAAACTTCCGACAGTCGTAGT -ACGGAAACTTCCGACAGTGTCAGT -ACGGAAACTTCCGACAGTGAAGGT -ACGGAAACTTCCGACAGTAACCGT -ACGGAAACTTCCGACAGTTTGTGC -ACGGAAACTTCCGACAGTCTAAGC -ACGGAAACTTCCGACAGTACTAGC -ACGGAAACTTCCGACAGTAGATGC -ACGGAAACTTCCGACAGTTGAAGG -ACGGAAACTTCCGACAGTCAATGG -ACGGAAACTTCCGACAGTATGAGG -ACGGAAACTTCCGACAGTAATGGG -ACGGAAACTTCCGACAGTTCCTGA -ACGGAAACTTCCGACAGTTAGCGA -ACGGAAACTTCCGACAGTCACAGA -ACGGAAACTTCCGACAGTGCAAGA -ACGGAAACTTCCGACAGTGGTTGA -ACGGAAACTTCCGACAGTTCCGAT -ACGGAAACTTCCGACAGTTGGCAT -ACGGAAACTTCCGACAGTCGAGAT -ACGGAAACTTCCGACAGTTACCAC -ACGGAAACTTCCGACAGTCAGAAC -ACGGAAACTTCCGACAGTGTCTAC -ACGGAAACTTCCGACAGTACGTAC -ACGGAAACTTCCGACAGTAGTGAC -ACGGAAACTTCCGACAGTCTGTAG -ACGGAAACTTCCGACAGTCCTAAG -ACGGAAACTTCCGACAGTGTTCAG -ACGGAAACTTCCGACAGTGCATAG -ACGGAAACTTCCGACAGTGACAAG -ACGGAAACTTCCGACAGTAAGCAG -ACGGAAACTTCCGACAGTCGTCAA -ACGGAAACTTCCGACAGTGCTGAA -ACGGAAACTTCCGACAGTAGTACG -ACGGAAACTTCCGACAGTATCCGA -ACGGAAACTTCCGACAGTATGGGA -ACGGAAACTTCCGACAGTGTGCAA -ACGGAAACTTCCGACAGTGAGGAA -ACGGAAACTTCCGACAGTCAGGTA -ACGGAAACTTCCGACAGTGACTCT -ACGGAAACTTCCGACAGTAGTCCT -ACGGAAACTTCCGACAGTTAAGCC -ACGGAAACTTCCGACAGTATAGCC -ACGGAAACTTCCGACAGTTAACCG -ACGGAAACTTCCGACAGTATGCCA -ACGGAAACTTCCTAGCTGGGAAAC -ACGGAAACTTCCTAGCTGAACACC -ACGGAAACTTCCTAGCTGATCGAG -ACGGAAACTTCCTAGCTGCTCCTT -ACGGAAACTTCCTAGCTGCCTGTT -ACGGAAACTTCCTAGCTGCGGTTT -ACGGAAACTTCCTAGCTGGTGGTT -ACGGAAACTTCCTAGCTGGCCTTT -ACGGAAACTTCCTAGCTGGGTCTT -ACGGAAACTTCCTAGCTGACGCTT -ACGGAAACTTCCTAGCTGAGCGTT -ACGGAAACTTCCTAGCTGTTCGTC -ACGGAAACTTCCTAGCTGTCTCTC -ACGGAAACTTCCTAGCTGTGGATC -ACGGAAACTTCCTAGCTGCACTTC -ACGGAAACTTCCTAGCTGGTACTC -ACGGAAACTTCCTAGCTGGATGTC -ACGGAAACTTCCTAGCTGACAGTC -ACGGAAACTTCCTAGCTGTTGCTG -ACGGAAACTTCCTAGCTGTCCATG -ACGGAAACTTCCTAGCTGTGTGTG -ACGGAAACTTCCTAGCTGCTAGTG -ACGGAAACTTCCTAGCTGCATCTG -ACGGAAACTTCCTAGCTGGAGTTG -ACGGAAACTTCCTAGCTGAGACTG -ACGGAAACTTCCTAGCTGTCGGTA -ACGGAAACTTCCTAGCTGTGCCTA -ACGGAAACTTCCTAGCTGCCACTA -ACGGAAACTTCCTAGCTGGGAGTA -ACGGAAACTTCCTAGCTGTCGTCT -ACGGAAACTTCCTAGCTGTGCACT -ACGGAAACTTCCTAGCTGCTGACT -ACGGAAACTTCCTAGCTGCAACCT -ACGGAAACTTCCTAGCTGGCTACT -ACGGAAACTTCCTAGCTGGGATCT -ACGGAAACTTCCTAGCTGAAGGCT -ACGGAAACTTCCTAGCTGTCAACC -ACGGAAACTTCCTAGCTGTGTTCC -ACGGAAACTTCCTAGCTGATTCCC -ACGGAAACTTCCTAGCTGTTCTCG -ACGGAAACTTCCTAGCTGTAGACG -ACGGAAACTTCCTAGCTGGTAACG -ACGGAAACTTCCTAGCTGACTTCG -ACGGAAACTTCCTAGCTGTACGCA -ACGGAAACTTCCTAGCTGCTTGCA -ACGGAAACTTCCTAGCTGCGAACA -ACGGAAACTTCCTAGCTGCAGTCA -ACGGAAACTTCCTAGCTGGATCCA -ACGGAAACTTCCTAGCTGACGACA -ACGGAAACTTCCTAGCTGAGCTCA -ACGGAAACTTCCTAGCTGTCACGT -ACGGAAACTTCCTAGCTGCGTAGT -ACGGAAACTTCCTAGCTGGTCAGT -ACGGAAACTTCCTAGCTGGAAGGT -ACGGAAACTTCCTAGCTGAACCGT -ACGGAAACTTCCTAGCTGTTGTGC -ACGGAAACTTCCTAGCTGCTAAGC -ACGGAAACTTCCTAGCTGACTAGC -ACGGAAACTTCCTAGCTGAGATGC -ACGGAAACTTCCTAGCTGTGAAGG -ACGGAAACTTCCTAGCTGCAATGG -ACGGAAACTTCCTAGCTGATGAGG -ACGGAAACTTCCTAGCTGAATGGG -ACGGAAACTTCCTAGCTGTCCTGA -ACGGAAACTTCCTAGCTGTAGCGA -ACGGAAACTTCCTAGCTGCACAGA -ACGGAAACTTCCTAGCTGGCAAGA -ACGGAAACTTCCTAGCTGGGTTGA -ACGGAAACTTCCTAGCTGTCCGAT -ACGGAAACTTCCTAGCTGTGGCAT -ACGGAAACTTCCTAGCTGCGAGAT -ACGGAAACTTCCTAGCTGTACCAC -ACGGAAACTTCCTAGCTGCAGAAC -ACGGAAACTTCCTAGCTGGTCTAC -ACGGAAACTTCCTAGCTGACGTAC -ACGGAAACTTCCTAGCTGAGTGAC -ACGGAAACTTCCTAGCTGCTGTAG -ACGGAAACTTCCTAGCTGCCTAAG -ACGGAAACTTCCTAGCTGGTTCAG -ACGGAAACTTCCTAGCTGGCATAG -ACGGAAACTTCCTAGCTGGACAAG -ACGGAAACTTCCTAGCTGAAGCAG -ACGGAAACTTCCTAGCTGCGTCAA -ACGGAAACTTCCTAGCTGGCTGAA -ACGGAAACTTCCTAGCTGAGTACG -ACGGAAACTTCCTAGCTGATCCGA -ACGGAAACTTCCTAGCTGATGGGA -ACGGAAACTTCCTAGCTGGTGCAA -ACGGAAACTTCCTAGCTGGAGGAA -ACGGAAACTTCCTAGCTGCAGGTA -ACGGAAACTTCCTAGCTGGACTCT -ACGGAAACTTCCTAGCTGAGTCCT -ACGGAAACTTCCTAGCTGTAAGCC -ACGGAAACTTCCTAGCTGATAGCC -ACGGAAACTTCCTAGCTGTAACCG -ACGGAAACTTCCTAGCTGATGCCA -ACGGAAACTTCCAAGCCTGGAAAC -ACGGAAACTTCCAAGCCTAACACC -ACGGAAACTTCCAAGCCTATCGAG -ACGGAAACTTCCAAGCCTCTCCTT -ACGGAAACTTCCAAGCCTCCTGTT -ACGGAAACTTCCAAGCCTCGGTTT -ACGGAAACTTCCAAGCCTGTGGTT -ACGGAAACTTCCAAGCCTGCCTTT -ACGGAAACTTCCAAGCCTGGTCTT -ACGGAAACTTCCAAGCCTACGCTT -ACGGAAACTTCCAAGCCTAGCGTT -ACGGAAACTTCCAAGCCTTTCGTC -ACGGAAACTTCCAAGCCTTCTCTC -ACGGAAACTTCCAAGCCTTGGATC -ACGGAAACTTCCAAGCCTCACTTC -ACGGAAACTTCCAAGCCTGTACTC -ACGGAAACTTCCAAGCCTGATGTC -ACGGAAACTTCCAAGCCTACAGTC -ACGGAAACTTCCAAGCCTTTGCTG -ACGGAAACTTCCAAGCCTTCCATG -ACGGAAACTTCCAAGCCTTGTGTG -ACGGAAACTTCCAAGCCTCTAGTG -ACGGAAACTTCCAAGCCTCATCTG -ACGGAAACTTCCAAGCCTGAGTTG -ACGGAAACTTCCAAGCCTAGACTG -ACGGAAACTTCCAAGCCTTCGGTA -ACGGAAACTTCCAAGCCTTGCCTA -ACGGAAACTTCCAAGCCTCCACTA -ACGGAAACTTCCAAGCCTGGAGTA -ACGGAAACTTCCAAGCCTTCGTCT -ACGGAAACTTCCAAGCCTTGCACT -ACGGAAACTTCCAAGCCTCTGACT -ACGGAAACTTCCAAGCCTCAACCT -ACGGAAACTTCCAAGCCTGCTACT -ACGGAAACTTCCAAGCCTGGATCT -ACGGAAACTTCCAAGCCTAAGGCT -ACGGAAACTTCCAAGCCTTCAACC -ACGGAAACTTCCAAGCCTTGTTCC -ACGGAAACTTCCAAGCCTATTCCC -ACGGAAACTTCCAAGCCTTTCTCG -ACGGAAACTTCCAAGCCTTAGACG -ACGGAAACTTCCAAGCCTGTAACG -ACGGAAACTTCCAAGCCTACTTCG -ACGGAAACTTCCAAGCCTTACGCA -ACGGAAACTTCCAAGCCTCTTGCA -ACGGAAACTTCCAAGCCTCGAACA -ACGGAAACTTCCAAGCCTCAGTCA -ACGGAAACTTCCAAGCCTGATCCA -ACGGAAACTTCCAAGCCTACGACA -ACGGAAACTTCCAAGCCTAGCTCA -ACGGAAACTTCCAAGCCTTCACGT -ACGGAAACTTCCAAGCCTCGTAGT -ACGGAAACTTCCAAGCCTGTCAGT -ACGGAAACTTCCAAGCCTGAAGGT -ACGGAAACTTCCAAGCCTAACCGT -ACGGAAACTTCCAAGCCTTTGTGC -ACGGAAACTTCCAAGCCTCTAAGC -ACGGAAACTTCCAAGCCTACTAGC -ACGGAAACTTCCAAGCCTAGATGC -ACGGAAACTTCCAAGCCTTGAAGG -ACGGAAACTTCCAAGCCTCAATGG -ACGGAAACTTCCAAGCCTATGAGG -ACGGAAACTTCCAAGCCTAATGGG -ACGGAAACTTCCAAGCCTTCCTGA -ACGGAAACTTCCAAGCCTTAGCGA -ACGGAAACTTCCAAGCCTCACAGA -ACGGAAACTTCCAAGCCTGCAAGA -ACGGAAACTTCCAAGCCTGGTTGA -ACGGAAACTTCCAAGCCTTCCGAT -ACGGAAACTTCCAAGCCTTGGCAT -ACGGAAACTTCCAAGCCTCGAGAT -ACGGAAACTTCCAAGCCTTACCAC -ACGGAAACTTCCAAGCCTCAGAAC -ACGGAAACTTCCAAGCCTGTCTAC -ACGGAAACTTCCAAGCCTACGTAC -ACGGAAACTTCCAAGCCTAGTGAC -ACGGAAACTTCCAAGCCTCTGTAG -ACGGAAACTTCCAAGCCTCCTAAG -ACGGAAACTTCCAAGCCTGTTCAG -ACGGAAACTTCCAAGCCTGCATAG -ACGGAAACTTCCAAGCCTGACAAG -ACGGAAACTTCCAAGCCTAAGCAG -ACGGAAACTTCCAAGCCTCGTCAA -ACGGAAACTTCCAAGCCTGCTGAA -ACGGAAACTTCCAAGCCTAGTACG -ACGGAAACTTCCAAGCCTATCCGA -ACGGAAACTTCCAAGCCTATGGGA -ACGGAAACTTCCAAGCCTGTGCAA -ACGGAAACTTCCAAGCCTGAGGAA -ACGGAAACTTCCAAGCCTCAGGTA -ACGGAAACTTCCAAGCCTGACTCT -ACGGAAACTTCCAAGCCTAGTCCT -ACGGAAACTTCCAAGCCTTAAGCC -ACGGAAACTTCCAAGCCTATAGCC -ACGGAAACTTCCAAGCCTTAACCG -ACGGAAACTTCCAAGCCTATGCCA -ACGGAAACTTCCCAGGTTGGAAAC -ACGGAAACTTCCCAGGTTAACACC -ACGGAAACTTCCCAGGTTATCGAG -ACGGAAACTTCCCAGGTTCTCCTT -ACGGAAACTTCCCAGGTTCCTGTT -ACGGAAACTTCCCAGGTTCGGTTT -ACGGAAACTTCCCAGGTTGTGGTT -ACGGAAACTTCCCAGGTTGCCTTT -ACGGAAACTTCCCAGGTTGGTCTT -ACGGAAACTTCCCAGGTTACGCTT -ACGGAAACTTCCCAGGTTAGCGTT -ACGGAAACTTCCCAGGTTTTCGTC -ACGGAAACTTCCCAGGTTTCTCTC -ACGGAAACTTCCCAGGTTTGGATC -ACGGAAACTTCCCAGGTTCACTTC -ACGGAAACTTCCCAGGTTGTACTC -ACGGAAACTTCCCAGGTTGATGTC -ACGGAAACTTCCCAGGTTACAGTC -ACGGAAACTTCCCAGGTTTTGCTG -ACGGAAACTTCCCAGGTTTCCATG -ACGGAAACTTCCCAGGTTTGTGTG -ACGGAAACTTCCCAGGTTCTAGTG -ACGGAAACTTCCCAGGTTCATCTG -ACGGAAACTTCCCAGGTTGAGTTG -ACGGAAACTTCCCAGGTTAGACTG -ACGGAAACTTCCCAGGTTTCGGTA -ACGGAAACTTCCCAGGTTTGCCTA -ACGGAAACTTCCCAGGTTCCACTA -ACGGAAACTTCCCAGGTTGGAGTA -ACGGAAACTTCCCAGGTTTCGTCT -ACGGAAACTTCCCAGGTTTGCACT -ACGGAAACTTCCCAGGTTCTGACT -ACGGAAACTTCCCAGGTTCAACCT -ACGGAAACTTCCCAGGTTGCTACT -ACGGAAACTTCCCAGGTTGGATCT -ACGGAAACTTCCCAGGTTAAGGCT -ACGGAAACTTCCCAGGTTTCAACC -ACGGAAACTTCCCAGGTTTGTTCC -ACGGAAACTTCCCAGGTTATTCCC -ACGGAAACTTCCCAGGTTTTCTCG -ACGGAAACTTCCCAGGTTTAGACG -ACGGAAACTTCCCAGGTTGTAACG -ACGGAAACTTCCCAGGTTACTTCG -ACGGAAACTTCCCAGGTTTACGCA -ACGGAAACTTCCCAGGTTCTTGCA -ACGGAAACTTCCCAGGTTCGAACA -ACGGAAACTTCCCAGGTTCAGTCA -ACGGAAACTTCCCAGGTTGATCCA -ACGGAAACTTCCCAGGTTACGACA -ACGGAAACTTCCCAGGTTAGCTCA -ACGGAAACTTCCCAGGTTTCACGT -ACGGAAACTTCCCAGGTTCGTAGT -ACGGAAACTTCCCAGGTTGTCAGT -ACGGAAACTTCCCAGGTTGAAGGT -ACGGAAACTTCCCAGGTTAACCGT -ACGGAAACTTCCCAGGTTTTGTGC -ACGGAAACTTCCCAGGTTCTAAGC -ACGGAAACTTCCCAGGTTACTAGC -ACGGAAACTTCCCAGGTTAGATGC -ACGGAAACTTCCCAGGTTTGAAGG -ACGGAAACTTCCCAGGTTCAATGG -ACGGAAACTTCCCAGGTTATGAGG -ACGGAAACTTCCCAGGTTAATGGG -ACGGAAACTTCCCAGGTTTCCTGA -ACGGAAACTTCCCAGGTTTAGCGA -ACGGAAACTTCCCAGGTTCACAGA -ACGGAAACTTCCCAGGTTGCAAGA -ACGGAAACTTCCCAGGTTGGTTGA -ACGGAAACTTCCCAGGTTTCCGAT -ACGGAAACTTCCCAGGTTTGGCAT -ACGGAAACTTCCCAGGTTCGAGAT -ACGGAAACTTCCCAGGTTTACCAC -ACGGAAACTTCCCAGGTTCAGAAC -ACGGAAACTTCCCAGGTTGTCTAC -ACGGAAACTTCCCAGGTTACGTAC -ACGGAAACTTCCCAGGTTAGTGAC -ACGGAAACTTCCCAGGTTCTGTAG -ACGGAAACTTCCCAGGTTCCTAAG -ACGGAAACTTCCCAGGTTGTTCAG -ACGGAAACTTCCCAGGTTGCATAG -ACGGAAACTTCCCAGGTTGACAAG -ACGGAAACTTCCCAGGTTAAGCAG -ACGGAAACTTCCCAGGTTCGTCAA -ACGGAAACTTCCCAGGTTGCTGAA -ACGGAAACTTCCCAGGTTAGTACG -ACGGAAACTTCCCAGGTTATCCGA -ACGGAAACTTCCCAGGTTATGGGA -ACGGAAACTTCCCAGGTTGTGCAA -ACGGAAACTTCCCAGGTTGAGGAA -ACGGAAACTTCCCAGGTTCAGGTA -ACGGAAACTTCCCAGGTTGACTCT -ACGGAAACTTCCCAGGTTAGTCCT -ACGGAAACTTCCCAGGTTTAAGCC -ACGGAAACTTCCCAGGTTATAGCC -ACGGAAACTTCCCAGGTTTAACCG -ACGGAAACTTCCCAGGTTATGCCA -ACGGAAACTTCCTAGGCAGGAAAC -ACGGAAACTTCCTAGGCAAACACC -ACGGAAACTTCCTAGGCAATCGAG -ACGGAAACTTCCTAGGCACTCCTT -ACGGAAACTTCCTAGGCACCTGTT -ACGGAAACTTCCTAGGCACGGTTT -ACGGAAACTTCCTAGGCAGTGGTT -ACGGAAACTTCCTAGGCAGCCTTT -ACGGAAACTTCCTAGGCAGGTCTT -ACGGAAACTTCCTAGGCAACGCTT -ACGGAAACTTCCTAGGCAAGCGTT -ACGGAAACTTCCTAGGCATTCGTC -ACGGAAACTTCCTAGGCATCTCTC -ACGGAAACTTCCTAGGCATGGATC -ACGGAAACTTCCTAGGCACACTTC -ACGGAAACTTCCTAGGCAGTACTC -ACGGAAACTTCCTAGGCAGATGTC -ACGGAAACTTCCTAGGCAACAGTC -ACGGAAACTTCCTAGGCATTGCTG -ACGGAAACTTCCTAGGCATCCATG -ACGGAAACTTCCTAGGCATGTGTG -ACGGAAACTTCCTAGGCACTAGTG -ACGGAAACTTCCTAGGCACATCTG -ACGGAAACTTCCTAGGCAGAGTTG -ACGGAAACTTCCTAGGCAAGACTG -ACGGAAACTTCCTAGGCATCGGTA -ACGGAAACTTCCTAGGCATGCCTA -ACGGAAACTTCCTAGGCACCACTA -ACGGAAACTTCCTAGGCAGGAGTA -ACGGAAACTTCCTAGGCATCGTCT -ACGGAAACTTCCTAGGCATGCACT -ACGGAAACTTCCTAGGCACTGACT -ACGGAAACTTCCTAGGCACAACCT -ACGGAAACTTCCTAGGCAGCTACT -ACGGAAACTTCCTAGGCAGGATCT -ACGGAAACTTCCTAGGCAAAGGCT -ACGGAAACTTCCTAGGCATCAACC -ACGGAAACTTCCTAGGCATGTTCC -ACGGAAACTTCCTAGGCAATTCCC -ACGGAAACTTCCTAGGCATTCTCG -ACGGAAACTTCCTAGGCATAGACG -ACGGAAACTTCCTAGGCAGTAACG -ACGGAAACTTCCTAGGCAACTTCG -ACGGAAACTTCCTAGGCATACGCA -ACGGAAACTTCCTAGGCACTTGCA -ACGGAAACTTCCTAGGCACGAACA -ACGGAAACTTCCTAGGCACAGTCA -ACGGAAACTTCCTAGGCAGATCCA -ACGGAAACTTCCTAGGCAACGACA -ACGGAAACTTCCTAGGCAAGCTCA -ACGGAAACTTCCTAGGCATCACGT -ACGGAAACTTCCTAGGCACGTAGT -ACGGAAACTTCCTAGGCAGTCAGT -ACGGAAACTTCCTAGGCAGAAGGT -ACGGAAACTTCCTAGGCAAACCGT -ACGGAAACTTCCTAGGCATTGTGC -ACGGAAACTTCCTAGGCACTAAGC -ACGGAAACTTCCTAGGCAACTAGC -ACGGAAACTTCCTAGGCAAGATGC -ACGGAAACTTCCTAGGCATGAAGG -ACGGAAACTTCCTAGGCACAATGG -ACGGAAACTTCCTAGGCAATGAGG -ACGGAAACTTCCTAGGCAAATGGG -ACGGAAACTTCCTAGGCATCCTGA -ACGGAAACTTCCTAGGCATAGCGA -ACGGAAACTTCCTAGGCACACAGA -ACGGAAACTTCCTAGGCAGCAAGA -ACGGAAACTTCCTAGGCAGGTTGA -ACGGAAACTTCCTAGGCATCCGAT -ACGGAAACTTCCTAGGCATGGCAT -ACGGAAACTTCCTAGGCACGAGAT -ACGGAAACTTCCTAGGCATACCAC -ACGGAAACTTCCTAGGCACAGAAC -ACGGAAACTTCCTAGGCAGTCTAC -ACGGAAACTTCCTAGGCAACGTAC -ACGGAAACTTCCTAGGCAAGTGAC -ACGGAAACTTCCTAGGCACTGTAG -ACGGAAACTTCCTAGGCACCTAAG -ACGGAAACTTCCTAGGCAGTTCAG -ACGGAAACTTCCTAGGCAGCATAG -ACGGAAACTTCCTAGGCAGACAAG -ACGGAAACTTCCTAGGCAAAGCAG -ACGGAAACTTCCTAGGCACGTCAA -ACGGAAACTTCCTAGGCAGCTGAA -ACGGAAACTTCCTAGGCAAGTACG -ACGGAAACTTCCTAGGCAATCCGA -ACGGAAACTTCCTAGGCAATGGGA -ACGGAAACTTCCTAGGCAGTGCAA -ACGGAAACTTCCTAGGCAGAGGAA -ACGGAAACTTCCTAGGCACAGGTA -ACGGAAACTTCCTAGGCAGACTCT -ACGGAAACTTCCTAGGCAAGTCCT -ACGGAAACTTCCTAGGCATAAGCC -ACGGAAACTTCCTAGGCAATAGCC -ACGGAAACTTCCTAGGCATAACCG -ACGGAAACTTCCTAGGCAATGCCA -ACGGAAACTTCCAAGGACGGAAAC -ACGGAAACTTCCAAGGACAACACC -ACGGAAACTTCCAAGGACATCGAG -ACGGAAACTTCCAAGGACCTCCTT -ACGGAAACTTCCAAGGACCCTGTT -ACGGAAACTTCCAAGGACCGGTTT -ACGGAAACTTCCAAGGACGTGGTT -ACGGAAACTTCCAAGGACGCCTTT -ACGGAAACTTCCAAGGACGGTCTT -ACGGAAACTTCCAAGGACACGCTT -ACGGAAACTTCCAAGGACAGCGTT -ACGGAAACTTCCAAGGACTTCGTC -ACGGAAACTTCCAAGGACTCTCTC -ACGGAAACTTCCAAGGACTGGATC -ACGGAAACTTCCAAGGACCACTTC -ACGGAAACTTCCAAGGACGTACTC -ACGGAAACTTCCAAGGACGATGTC -ACGGAAACTTCCAAGGACACAGTC -ACGGAAACTTCCAAGGACTTGCTG -ACGGAAACTTCCAAGGACTCCATG -ACGGAAACTTCCAAGGACTGTGTG -ACGGAAACTTCCAAGGACCTAGTG -ACGGAAACTTCCAAGGACCATCTG -ACGGAAACTTCCAAGGACGAGTTG -ACGGAAACTTCCAAGGACAGACTG -ACGGAAACTTCCAAGGACTCGGTA -ACGGAAACTTCCAAGGACTGCCTA -ACGGAAACTTCCAAGGACCCACTA -ACGGAAACTTCCAAGGACGGAGTA -ACGGAAACTTCCAAGGACTCGTCT -ACGGAAACTTCCAAGGACTGCACT -ACGGAAACTTCCAAGGACCTGACT -ACGGAAACTTCCAAGGACCAACCT -ACGGAAACTTCCAAGGACGCTACT -ACGGAAACTTCCAAGGACGGATCT -ACGGAAACTTCCAAGGACAAGGCT -ACGGAAACTTCCAAGGACTCAACC -ACGGAAACTTCCAAGGACTGTTCC -ACGGAAACTTCCAAGGACATTCCC -ACGGAAACTTCCAAGGACTTCTCG -ACGGAAACTTCCAAGGACTAGACG -ACGGAAACTTCCAAGGACGTAACG -ACGGAAACTTCCAAGGACACTTCG -ACGGAAACTTCCAAGGACTACGCA -ACGGAAACTTCCAAGGACCTTGCA -ACGGAAACTTCCAAGGACCGAACA -ACGGAAACTTCCAAGGACCAGTCA -ACGGAAACTTCCAAGGACGATCCA -ACGGAAACTTCCAAGGACACGACA -ACGGAAACTTCCAAGGACAGCTCA -ACGGAAACTTCCAAGGACTCACGT -ACGGAAACTTCCAAGGACCGTAGT -ACGGAAACTTCCAAGGACGTCAGT -ACGGAAACTTCCAAGGACGAAGGT -ACGGAAACTTCCAAGGACAACCGT -ACGGAAACTTCCAAGGACTTGTGC -ACGGAAACTTCCAAGGACCTAAGC -ACGGAAACTTCCAAGGACACTAGC -ACGGAAACTTCCAAGGACAGATGC -ACGGAAACTTCCAAGGACTGAAGG -ACGGAAACTTCCAAGGACCAATGG -ACGGAAACTTCCAAGGACATGAGG -ACGGAAACTTCCAAGGACAATGGG -ACGGAAACTTCCAAGGACTCCTGA -ACGGAAACTTCCAAGGACTAGCGA -ACGGAAACTTCCAAGGACCACAGA -ACGGAAACTTCCAAGGACGCAAGA -ACGGAAACTTCCAAGGACGGTTGA -ACGGAAACTTCCAAGGACTCCGAT -ACGGAAACTTCCAAGGACTGGCAT -ACGGAAACTTCCAAGGACCGAGAT -ACGGAAACTTCCAAGGACTACCAC -ACGGAAACTTCCAAGGACCAGAAC -ACGGAAACTTCCAAGGACGTCTAC -ACGGAAACTTCCAAGGACACGTAC -ACGGAAACTTCCAAGGACAGTGAC -ACGGAAACTTCCAAGGACCTGTAG -ACGGAAACTTCCAAGGACCCTAAG -ACGGAAACTTCCAAGGACGTTCAG -ACGGAAACTTCCAAGGACGCATAG -ACGGAAACTTCCAAGGACGACAAG -ACGGAAACTTCCAAGGACAAGCAG -ACGGAAACTTCCAAGGACCGTCAA -ACGGAAACTTCCAAGGACGCTGAA -ACGGAAACTTCCAAGGACAGTACG -ACGGAAACTTCCAAGGACATCCGA -ACGGAAACTTCCAAGGACATGGGA -ACGGAAACTTCCAAGGACGTGCAA -ACGGAAACTTCCAAGGACGAGGAA -ACGGAAACTTCCAAGGACCAGGTA -ACGGAAACTTCCAAGGACGACTCT -ACGGAAACTTCCAAGGACAGTCCT -ACGGAAACTTCCAAGGACTAAGCC -ACGGAAACTTCCAAGGACATAGCC -ACGGAAACTTCCAAGGACTAACCG -ACGGAAACTTCCAAGGACATGCCA -ACGGAAACTTCCCAGAAGGGAAAC -ACGGAAACTTCCCAGAAGAACACC -ACGGAAACTTCCCAGAAGATCGAG -ACGGAAACTTCCCAGAAGCTCCTT -ACGGAAACTTCCCAGAAGCCTGTT -ACGGAAACTTCCCAGAAGCGGTTT -ACGGAAACTTCCCAGAAGGTGGTT -ACGGAAACTTCCCAGAAGGCCTTT -ACGGAAACTTCCCAGAAGGGTCTT -ACGGAAACTTCCCAGAAGACGCTT -ACGGAAACTTCCCAGAAGAGCGTT -ACGGAAACTTCCCAGAAGTTCGTC -ACGGAAACTTCCCAGAAGTCTCTC -ACGGAAACTTCCCAGAAGTGGATC -ACGGAAACTTCCCAGAAGCACTTC -ACGGAAACTTCCCAGAAGGTACTC -ACGGAAACTTCCCAGAAGGATGTC -ACGGAAACTTCCCAGAAGACAGTC -ACGGAAACTTCCCAGAAGTTGCTG -ACGGAAACTTCCCAGAAGTCCATG -ACGGAAACTTCCCAGAAGTGTGTG -ACGGAAACTTCCCAGAAGCTAGTG -ACGGAAACTTCCCAGAAGCATCTG -ACGGAAACTTCCCAGAAGGAGTTG -ACGGAAACTTCCCAGAAGAGACTG -ACGGAAACTTCCCAGAAGTCGGTA -ACGGAAACTTCCCAGAAGTGCCTA -ACGGAAACTTCCCAGAAGCCACTA -ACGGAAACTTCCCAGAAGGGAGTA -ACGGAAACTTCCCAGAAGTCGTCT -ACGGAAACTTCCCAGAAGTGCACT -ACGGAAACTTCCCAGAAGCTGACT -ACGGAAACTTCCCAGAAGCAACCT -ACGGAAACTTCCCAGAAGGCTACT -ACGGAAACTTCCCAGAAGGGATCT -ACGGAAACTTCCCAGAAGAAGGCT -ACGGAAACTTCCCAGAAGTCAACC -ACGGAAACTTCCCAGAAGTGTTCC -ACGGAAACTTCCCAGAAGATTCCC -ACGGAAACTTCCCAGAAGTTCTCG -ACGGAAACTTCCCAGAAGTAGACG -ACGGAAACTTCCCAGAAGGTAACG -ACGGAAACTTCCCAGAAGACTTCG -ACGGAAACTTCCCAGAAGTACGCA -ACGGAAACTTCCCAGAAGCTTGCA -ACGGAAACTTCCCAGAAGCGAACA -ACGGAAACTTCCCAGAAGCAGTCA -ACGGAAACTTCCCAGAAGGATCCA -ACGGAAACTTCCCAGAAGACGACA -ACGGAAACTTCCCAGAAGAGCTCA -ACGGAAACTTCCCAGAAGTCACGT -ACGGAAACTTCCCAGAAGCGTAGT -ACGGAAACTTCCCAGAAGGTCAGT -ACGGAAACTTCCCAGAAGGAAGGT -ACGGAAACTTCCCAGAAGAACCGT -ACGGAAACTTCCCAGAAGTTGTGC -ACGGAAACTTCCCAGAAGCTAAGC -ACGGAAACTTCCCAGAAGACTAGC -ACGGAAACTTCCCAGAAGAGATGC -ACGGAAACTTCCCAGAAGTGAAGG -ACGGAAACTTCCCAGAAGCAATGG -ACGGAAACTTCCCAGAAGATGAGG -ACGGAAACTTCCCAGAAGAATGGG -ACGGAAACTTCCCAGAAGTCCTGA -ACGGAAACTTCCCAGAAGTAGCGA -ACGGAAACTTCCCAGAAGCACAGA -ACGGAAACTTCCCAGAAGGCAAGA -ACGGAAACTTCCCAGAAGGGTTGA -ACGGAAACTTCCCAGAAGTCCGAT -ACGGAAACTTCCCAGAAGTGGCAT -ACGGAAACTTCCCAGAAGCGAGAT -ACGGAAACTTCCCAGAAGTACCAC -ACGGAAACTTCCCAGAAGCAGAAC -ACGGAAACTTCCCAGAAGGTCTAC -ACGGAAACTTCCCAGAAGACGTAC -ACGGAAACTTCCCAGAAGAGTGAC -ACGGAAACTTCCCAGAAGCTGTAG -ACGGAAACTTCCCAGAAGCCTAAG -ACGGAAACTTCCCAGAAGGTTCAG -ACGGAAACTTCCCAGAAGGCATAG -ACGGAAACTTCCCAGAAGGACAAG -ACGGAAACTTCCCAGAAGAAGCAG -ACGGAAACTTCCCAGAAGCGTCAA -ACGGAAACTTCCCAGAAGGCTGAA -ACGGAAACTTCCCAGAAGAGTACG -ACGGAAACTTCCCAGAAGATCCGA -ACGGAAACTTCCCAGAAGATGGGA -ACGGAAACTTCCCAGAAGGTGCAA -ACGGAAACTTCCCAGAAGGAGGAA -ACGGAAACTTCCCAGAAGCAGGTA -ACGGAAACTTCCCAGAAGGACTCT -ACGGAAACTTCCCAGAAGAGTCCT -ACGGAAACTTCCCAGAAGTAAGCC -ACGGAAACTTCCCAGAAGATAGCC -ACGGAAACTTCCCAGAAGTAACCG -ACGGAAACTTCCCAGAAGATGCCA -ACGGAAACTTCCCAACGTGGAAAC -ACGGAAACTTCCCAACGTAACACC -ACGGAAACTTCCCAACGTATCGAG -ACGGAAACTTCCCAACGTCTCCTT -ACGGAAACTTCCCAACGTCCTGTT -ACGGAAACTTCCCAACGTCGGTTT -ACGGAAACTTCCCAACGTGTGGTT -ACGGAAACTTCCCAACGTGCCTTT -ACGGAAACTTCCCAACGTGGTCTT -ACGGAAACTTCCCAACGTACGCTT -ACGGAAACTTCCCAACGTAGCGTT -ACGGAAACTTCCCAACGTTTCGTC -ACGGAAACTTCCCAACGTTCTCTC -ACGGAAACTTCCCAACGTTGGATC -ACGGAAACTTCCCAACGTCACTTC -ACGGAAACTTCCCAACGTGTACTC -ACGGAAACTTCCCAACGTGATGTC -ACGGAAACTTCCCAACGTACAGTC -ACGGAAACTTCCCAACGTTTGCTG -ACGGAAACTTCCCAACGTTCCATG -ACGGAAACTTCCCAACGTTGTGTG -ACGGAAACTTCCCAACGTCTAGTG -ACGGAAACTTCCCAACGTCATCTG -ACGGAAACTTCCCAACGTGAGTTG -ACGGAAACTTCCCAACGTAGACTG -ACGGAAACTTCCCAACGTTCGGTA -ACGGAAACTTCCCAACGTTGCCTA -ACGGAAACTTCCCAACGTCCACTA -ACGGAAACTTCCCAACGTGGAGTA -ACGGAAACTTCCCAACGTTCGTCT -ACGGAAACTTCCCAACGTTGCACT -ACGGAAACTTCCCAACGTCTGACT -ACGGAAACTTCCCAACGTCAACCT -ACGGAAACTTCCCAACGTGCTACT -ACGGAAACTTCCCAACGTGGATCT -ACGGAAACTTCCCAACGTAAGGCT -ACGGAAACTTCCCAACGTTCAACC -ACGGAAACTTCCCAACGTTGTTCC -ACGGAAACTTCCCAACGTATTCCC -ACGGAAACTTCCCAACGTTTCTCG -ACGGAAACTTCCCAACGTTAGACG -ACGGAAACTTCCCAACGTGTAACG -ACGGAAACTTCCCAACGTACTTCG -ACGGAAACTTCCCAACGTTACGCA -ACGGAAACTTCCCAACGTCTTGCA -ACGGAAACTTCCCAACGTCGAACA -ACGGAAACTTCCCAACGTCAGTCA -ACGGAAACTTCCCAACGTGATCCA -ACGGAAACTTCCCAACGTACGACA -ACGGAAACTTCCCAACGTAGCTCA -ACGGAAACTTCCCAACGTTCACGT -ACGGAAACTTCCCAACGTCGTAGT -ACGGAAACTTCCCAACGTGTCAGT -ACGGAAACTTCCCAACGTGAAGGT -ACGGAAACTTCCCAACGTAACCGT -ACGGAAACTTCCCAACGTTTGTGC -ACGGAAACTTCCCAACGTCTAAGC -ACGGAAACTTCCCAACGTACTAGC -ACGGAAACTTCCCAACGTAGATGC -ACGGAAACTTCCCAACGTTGAAGG -ACGGAAACTTCCCAACGTCAATGG -ACGGAAACTTCCCAACGTATGAGG -ACGGAAACTTCCCAACGTAATGGG -ACGGAAACTTCCCAACGTTCCTGA -ACGGAAACTTCCCAACGTTAGCGA -ACGGAAACTTCCCAACGTCACAGA -ACGGAAACTTCCCAACGTGCAAGA -ACGGAAACTTCCCAACGTGGTTGA -ACGGAAACTTCCCAACGTTCCGAT -ACGGAAACTTCCCAACGTTGGCAT -ACGGAAACTTCCCAACGTCGAGAT -ACGGAAACTTCCCAACGTTACCAC -ACGGAAACTTCCCAACGTCAGAAC -ACGGAAACTTCCCAACGTGTCTAC -ACGGAAACTTCCCAACGTACGTAC -ACGGAAACTTCCCAACGTAGTGAC -ACGGAAACTTCCCAACGTCTGTAG -ACGGAAACTTCCCAACGTCCTAAG -ACGGAAACTTCCCAACGTGTTCAG -ACGGAAACTTCCCAACGTGCATAG -ACGGAAACTTCCCAACGTGACAAG -ACGGAAACTTCCCAACGTAAGCAG -ACGGAAACTTCCCAACGTCGTCAA -ACGGAAACTTCCCAACGTGCTGAA -ACGGAAACTTCCCAACGTAGTACG -ACGGAAACTTCCCAACGTATCCGA -ACGGAAACTTCCCAACGTATGGGA -ACGGAAACTTCCCAACGTGTGCAA -ACGGAAACTTCCCAACGTGAGGAA -ACGGAAACTTCCCAACGTCAGGTA -ACGGAAACTTCCCAACGTGACTCT -ACGGAAACTTCCCAACGTAGTCCT -ACGGAAACTTCCCAACGTTAAGCC -ACGGAAACTTCCCAACGTATAGCC -ACGGAAACTTCCCAACGTTAACCG -ACGGAAACTTCCCAACGTATGCCA -ACGGAAACTTCCGAAGCTGGAAAC -ACGGAAACTTCCGAAGCTAACACC -ACGGAAACTTCCGAAGCTATCGAG -ACGGAAACTTCCGAAGCTCTCCTT -ACGGAAACTTCCGAAGCTCCTGTT -ACGGAAACTTCCGAAGCTCGGTTT -ACGGAAACTTCCGAAGCTGTGGTT -ACGGAAACTTCCGAAGCTGCCTTT -ACGGAAACTTCCGAAGCTGGTCTT -ACGGAAACTTCCGAAGCTACGCTT -ACGGAAACTTCCGAAGCTAGCGTT -ACGGAAACTTCCGAAGCTTTCGTC -ACGGAAACTTCCGAAGCTTCTCTC -ACGGAAACTTCCGAAGCTTGGATC -ACGGAAACTTCCGAAGCTCACTTC -ACGGAAACTTCCGAAGCTGTACTC -ACGGAAACTTCCGAAGCTGATGTC -ACGGAAACTTCCGAAGCTACAGTC -ACGGAAACTTCCGAAGCTTTGCTG -ACGGAAACTTCCGAAGCTTCCATG -ACGGAAACTTCCGAAGCTTGTGTG -ACGGAAACTTCCGAAGCTCTAGTG -ACGGAAACTTCCGAAGCTCATCTG -ACGGAAACTTCCGAAGCTGAGTTG -ACGGAAACTTCCGAAGCTAGACTG -ACGGAAACTTCCGAAGCTTCGGTA -ACGGAAACTTCCGAAGCTTGCCTA -ACGGAAACTTCCGAAGCTCCACTA -ACGGAAACTTCCGAAGCTGGAGTA -ACGGAAACTTCCGAAGCTTCGTCT -ACGGAAACTTCCGAAGCTTGCACT -ACGGAAACTTCCGAAGCTCTGACT -ACGGAAACTTCCGAAGCTCAACCT -ACGGAAACTTCCGAAGCTGCTACT -ACGGAAACTTCCGAAGCTGGATCT -ACGGAAACTTCCGAAGCTAAGGCT -ACGGAAACTTCCGAAGCTTCAACC -ACGGAAACTTCCGAAGCTTGTTCC -ACGGAAACTTCCGAAGCTATTCCC -ACGGAAACTTCCGAAGCTTTCTCG -ACGGAAACTTCCGAAGCTTAGACG -ACGGAAACTTCCGAAGCTGTAACG -ACGGAAACTTCCGAAGCTACTTCG -ACGGAAACTTCCGAAGCTTACGCA -ACGGAAACTTCCGAAGCTCTTGCA -ACGGAAACTTCCGAAGCTCGAACA -ACGGAAACTTCCGAAGCTCAGTCA -ACGGAAACTTCCGAAGCTGATCCA -ACGGAAACTTCCGAAGCTACGACA -ACGGAAACTTCCGAAGCTAGCTCA -ACGGAAACTTCCGAAGCTTCACGT -ACGGAAACTTCCGAAGCTCGTAGT -ACGGAAACTTCCGAAGCTGTCAGT -ACGGAAACTTCCGAAGCTGAAGGT -ACGGAAACTTCCGAAGCTAACCGT -ACGGAAACTTCCGAAGCTTTGTGC -ACGGAAACTTCCGAAGCTCTAAGC -ACGGAAACTTCCGAAGCTACTAGC -ACGGAAACTTCCGAAGCTAGATGC -ACGGAAACTTCCGAAGCTTGAAGG -ACGGAAACTTCCGAAGCTCAATGG -ACGGAAACTTCCGAAGCTATGAGG -ACGGAAACTTCCGAAGCTAATGGG -ACGGAAACTTCCGAAGCTTCCTGA -ACGGAAACTTCCGAAGCTTAGCGA -ACGGAAACTTCCGAAGCTCACAGA -ACGGAAACTTCCGAAGCTGCAAGA -ACGGAAACTTCCGAAGCTGGTTGA -ACGGAAACTTCCGAAGCTTCCGAT -ACGGAAACTTCCGAAGCTTGGCAT -ACGGAAACTTCCGAAGCTCGAGAT -ACGGAAACTTCCGAAGCTTACCAC -ACGGAAACTTCCGAAGCTCAGAAC -ACGGAAACTTCCGAAGCTGTCTAC -ACGGAAACTTCCGAAGCTACGTAC -ACGGAAACTTCCGAAGCTAGTGAC -ACGGAAACTTCCGAAGCTCTGTAG -ACGGAAACTTCCGAAGCTCCTAAG -ACGGAAACTTCCGAAGCTGTTCAG -ACGGAAACTTCCGAAGCTGCATAG -ACGGAAACTTCCGAAGCTGACAAG -ACGGAAACTTCCGAAGCTAAGCAG -ACGGAAACTTCCGAAGCTCGTCAA -ACGGAAACTTCCGAAGCTGCTGAA -ACGGAAACTTCCGAAGCTAGTACG -ACGGAAACTTCCGAAGCTATCCGA -ACGGAAACTTCCGAAGCTATGGGA -ACGGAAACTTCCGAAGCTGTGCAA -ACGGAAACTTCCGAAGCTGAGGAA -ACGGAAACTTCCGAAGCTCAGGTA -ACGGAAACTTCCGAAGCTGACTCT -ACGGAAACTTCCGAAGCTAGTCCT -ACGGAAACTTCCGAAGCTTAAGCC -ACGGAAACTTCCGAAGCTATAGCC -ACGGAAACTTCCGAAGCTTAACCG -ACGGAAACTTCCGAAGCTATGCCA -ACGGAAACTTCCACGAGTGGAAAC -ACGGAAACTTCCACGAGTAACACC -ACGGAAACTTCCACGAGTATCGAG -ACGGAAACTTCCACGAGTCTCCTT -ACGGAAACTTCCACGAGTCCTGTT -ACGGAAACTTCCACGAGTCGGTTT -ACGGAAACTTCCACGAGTGTGGTT -ACGGAAACTTCCACGAGTGCCTTT -ACGGAAACTTCCACGAGTGGTCTT -ACGGAAACTTCCACGAGTACGCTT -ACGGAAACTTCCACGAGTAGCGTT -ACGGAAACTTCCACGAGTTTCGTC -ACGGAAACTTCCACGAGTTCTCTC -ACGGAAACTTCCACGAGTTGGATC -ACGGAAACTTCCACGAGTCACTTC -ACGGAAACTTCCACGAGTGTACTC -ACGGAAACTTCCACGAGTGATGTC -ACGGAAACTTCCACGAGTACAGTC -ACGGAAACTTCCACGAGTTTGCTG -ACGGAAACTTCCACGAGTTCCATG -ACGGAAACTTCCACGAGTTGTGTG -ACGGAAACTTCCACGAGTCTAGTG -ACGGAAACTTCCACGAGTCATCTG -ACGGAAACTTCCACGAGTGAGTTG -ACGGAAACTTCCACGAGTAGACTG -ACGGAAACTTCCACGAGTTCGGTA -ACGGAAACTTCCACGAGTTGCCTA -ACGGAAACTTCCACGAGTCCACTA -ACGGAAACTTCCACGAGTGGAGTA -ACGGAAACTTCCACGAGTTCGTCT -ACGGAAACTTCCACGAGTTGCACT -ACGGAAACTTCCACGAGTCTGACT -ACGGAAACTTCCACGAGTCAACCT -ACGGAAACTTCCACGAGTGCTACT -ACGGAAACTTCCACGAGTGGATCT -ACGGAAACTTCCACGAGTAAGGCT -ACGGAAACTTCCACGAGTTCAACC -ACGGAAACTTCCACGAGTTGTTCC -ACGGAAACTTCCACGAGTATTCCC -ACGGAAACTTCCACGAGTTTCTCG -ACGGAAACTTCCACGAGTTAGACG -ACGGAAACTTCCACGAGTGTAACG -ACGGAAACTTCCACGAGTACTTCG -ACGGAAACTTCCACGAGTTACGCA -ACGGAAACTTCCACGAGTCTTGCA -ACGGAAACTTCCACGAGTCGAACA -ACGGAAACTTCCACGAGTCAGTCA -ACGGAAACTTCCACGAGTGATCCA -ACGGAAACTTCCACGAGTACGACA -ACGGAAACTTCCACGAGTAGCTCA -ACGGAAACTTCCACGAGTTCACGT -ACGGAAACTTCCACGAGTCGTAGT -ACGGAAACTTCCACGAGTGTCAGT -ACGGAAACTTCCACGAGTGAAGGT -ACGGAAACTTCCACGAGTAACCGT -ACGGAAACTTCCACGAGTTTGTGC -ACGGAAACTTCCACGAGTCTAAGC -ACGGAAACTTCCACGAGTACTAGC -ACGGAAACTTCCACGAGTAGATGC -ACGGAAACTTCCACGAGTTGAAGG -ACGGAAACTTCCACGAGTCAATGG -ACGGAAACTTCCACGAGTATGAGG -ACGGAAACTTCCACGAGTAATGGG -ACGGAAACTTCCACGAGTTCCTGA -ACGGAAACTTCCACGAGTTAGCGA -ACGGAAACTTCCACGAGTCACAGA -ACGGAAACTTCCACGAGTGCAAGA -ACGGAAACTTCCACGAGTGGTTGA -ACGGAAACTTCCACGAGTTCCGAT -ACGGAAACTTCCACGAGTTGGCAT -ACGGAAACTTCCACGAGTCGAGAT -ACGGAAACTTCCACGAGTTACCAC -ACGGAAACTTCCACGAGTCAGAAC -ACGGAAACTTCCACGAGTGTCTAC -ACGGAAACTTCCACGAGTACGTAC -ACGGAAACTTCCACGAGTAGTGAC -ACGGAAACTTCCACGAGTCTGTAG -ACGGAAACTTCCACGAGTCCTAAG -ACGGAAACTTCCACGAGTGTTCAG -ACGGAAACTTCCACGAGTGCATAG -ACGGAAACTTCCACGAGTGACAAG -ACGGAAACTTCCACGAGTAAGCAG -ACGGAAACTTCCACGAGTCGTCAA -ACGGAAACTTCCACGAGTGCTGAA -ACGGAAACTTCCACGAGTAGTACG -ACGGAAACTTCCACGAGTATCCGA -ACGGAAACTTCCACGAGTATGGGA -ACGGAAACTTCCACGAGTGTGCAA -ACGGAAACTTCCACGAGTGAGGAA -ACGGAAACTTCCACGAGTCAGGTA -ACGGAAACTTCCACGAGTGACTCT -ACGGAAACTTCCACGAGTAGTCCT -ACGGAAACTTCCACGAGTTAAGCC -ACGGAAACTTCCACGAGTATAGCC -ACGGAAACTTCCACGAGTTAACCG -ACGGAAACTTCCACGAGTATGCCA -ACGGAAACTTCCCGAATCGGAAAC -ACGGAAACTTCCCGAATCAACACC -ACGGAAACTTCCCGAATCATCGAG -ACGGAAACTTCCCGAATCCTCCTT -ACGGAAACTTCCCGAATCCCTGTT -ACGGAAACTTCCCGAATCCGGTTT -ACGGAAACTTCCCGAATCGTGGTT -ACGGAAACTTCCCGAATCGCCTTT -ACGGAAACTTCCCGAATCGGTCTT -ACGGAAACTTCCCGAATCACGCTT -ACGGAAACTTCCCGAATCAGCGTT -ACGGAAACTTCCCGAATCTTCGTC -ACGGAAACTTCCCGAATCTCTCTC -ACGGAAACTTCCCGAATCTGGATC -ACGGAAACTTCCCGAATCCACTTC -ACGGAAACTTCCCGAATCGTACTC -ACGGAAACTTCCCGAATCGATGTC -ACGGAAACTTCCCGAATCACAGTC -ACGGAAACTTCCCGAATCTTGCTG -ACGGAAACTTCCCGAATCTCCATG -ACGGAAACTTCCCGAATCTGTGTG -ACGGAAACTTCCCGAATCCTAGTG -ACGGAAACTTCCCGAATCCATCTG -ACGGAAACTTCCCGAATCGAGTTG -ACGGAAACTTCCCGAATCAGACTG -ACGGAAACTTCCCGAATCTCGGTA -ACGGAAACTTCCCGAATCTGCCTA -ACGGAAACTTCCCGAATCCCACTA -ACGGAAACTTCCCGAATCGGAGTA -ACGGAAACTTCCCGAATCTCGTCT -ACGGAAACTTCCCGAATCTGCACT -ACGGAAACTTCCCGAATCCTGACT -ACGGAAACTTCCCGAATCCAACCT -ACGGAAACTTCCCGAATCGCTACT -ACGGAAACTTCCCGAATCGGATCT -ACGGAAACTTCCCGAATCAAGGCT -ACGGAAACTTCCCGAATCTCAACC -ACGGAAACTTCCCGAATCTGTTCC -ACGGAAACTTCCCGAATCATTCCC -ACGGAAACTTCCCGAATCTTCTCG -ACGGAAACTTCCCGAATCTAGACG -ACGGAAACTTCCCGAATCGTAACG -ACGGAAACTTCCCGAATCACTTCG -ACGGAAACTTCCCGAATCTACGCA -ACGGAAACTTCCCGAATCCTTGCA -ACGGAAACTTCCCGAATCCGAACA -ACGGAAACTTCCCGAATCCAGTCA -ACGGAAACTTCCCGAATCGATCCA -ACGGAAACTTCCCGAATCACGACA -ACGGAAACTTCCCGAATCAGCTCA -ACGGAAACTTCCCGAATCTCACGT -ACGGAAACTTCCCGAATCCGTAGT -ACGGAAACTTCCCGAATCGTCAGT -ACGGAAACTTCCCGAATCGAAGGT -ACGGAAACTTCCCGAATCAACCGT -ACGGAAACTTCCCGAATCTTGTGC -ACGGAAACTTCCCGAATCCTAAGC -ACGGAAACTTCCCGAATCACTAGC -ACGGAAACTTCCCGAATCAGATGC -ACGGAAACTTCCCGAATCTGAAGG -ACGGAAACTTCCCGAATCCAATGG -ACGGAAACTTCCCGAATCATGAGG -ACGGAAACTTCCCGAATCAATGGG -ACGGAAACTTCCCGAATCTCCTGA -ACGGAAACTTCCCGAATCTAGCGA -ACGGAAACTTCCCGAATCCACAGA -ACGGAAACTTCCCGAATCGCAAGA -ACGGAAACTTCCCGAATCGGTTGA -ACGGAAACTTCCCGAATCTCCGAT -ACGGAAACTTCCCGAATCTGGCAT -ACGGAAACTTCCCGAATCCGAGAT -ACGGAAACTTCCCGAATCTACCAC -ACGGAAACTTCCCGAATCCAGAAC -ACGGAAACTTCCCGAATCGTCTAC -ACGGAAACTTCCCGAATCACGTAC -ACGGAAACTTCCCGAATCAGTGAC -ACGGAAACTTCCCGAATCCTGTAG -ACGGAAACTTCCCGAATCCCTAAG -ACGGAAACTTCCCGAATCGTTCAG -ACGGAAACTTCCCGAATCGCATAG -ACGGAAACTTCCCGAATCGACAAG -ACGGAAACTTCCCGAATCAAGCAG -ACGGAAACTTCCCGAATCCGTCAA -ACGGAAACTTCCCGAATCGCTGAA -ACGGAAACTTCCCGAATCAGTACG -ACGGAAACTTCCCGAATCATCCGA -ACGGAAACTTCCCGAATCATGGGA -ACGGAAACTTCCCGAATCGTGCAA -ACGGAAACTTCCCGAATCGAGGAA -ACGGAAACTTCCCGAATCCAGGTA -ACGGAAACTTCCCGAATCGACTCT -ACGGAAACTTCCCGAATCAGTCCT -ACGGAAACTTCCCGAATCTAAGCC -ACGGAAACTTCCCGAATCATAGCC -ACGGAAACTTCCCGAATCTAACCG -ACGGAAACTTCCCGAATCATGCCA -ACGGAAACTTCCGGAATGGGAAAC -ACGGAAACTTCCGGAATGAACACC -ACGGAAACTTCCGGAATGATCGAG -ACGGAAACTTCCGGAATGCTCCTT -ACGGAAACTTCCGGAATGCCTGTT -ACGGAAACTTCCGGAATGCGGTTT -ACGGAAACTTCCGGAATGGTGGTT -ACGGAAACTTCCGGAATGGCCTTT -ACGGAAACTTCCGGAATGGGTCTT -ACGGAAACTTCCGGAATGACGCTT -ACGGAAACTTCCGGAATGAGCGTT -ACGGAAACTTCCGGAATGTTCGTC -ACGGAAACTTCCGGAATGTCTCTC -ACGGAAACTTCCGGAATGTGGATC -ACGGAAACTTCCGGAATGCACTTC -ACGGAAACTTCCGGAATGGTACTC -ACGGAAACTTCCGGAATGGATGTC -ACGGAAACTTCCGGAATGACAGTC -ACGGAAACTTCCGGAATGTTGCTG -ACGGAAACTTCCGGAATGTCCATG -ACGGAAACTTCCGGAATGTGTGTG -ACGGAAACTTCCGGAATGCTAGTG -ACGGAAACTTCCGGAATGCATCTG -ACGGAAACTTCCGGAATGGAGTTG -ACGGAAACTTCCGGAATGAGACTG -ACGGAAACTTCCGGAATGTCGGTA -ACGGAAACTTCCGGAATGTGCCTA -ACGGAAACTTCCGGAATGCCACTA -ACGGAAACTTCCGGAATGGGAGTA -ACGGAAACTTCCGGAATGTCGTCT -ACGGAAACTTCCGGAATGTGCACT -ACGGAAACTTCCGGAATGCTGACT -ACGGAAACTTCCGGAATGCAACCT -ACGGAAACTTCCGGAATGGCTACT -ACGGAAACTTCCGGAATGGGATCT -ACGGAAACTTCCGGAATGAAGGCT -ACGGAAACTTCCGGAATGTCAACC -ACGGAAACTTCCGGAATGTGTTCC -ACGGAAACTTCCGGAATGATTCCC -ACGGAAACTTCCGGAATGTTCTCG -ACGGAAACTTCCGGAATGTAGACG -ACGGAAACTTCCGGAATGGTAACG -ACGGAAACTTCCGGAATGACTTCG -ACGGAAACTTCCGGAATGTACGCA -ACGGAAACTTCCGGAATGCTTGCA -ACGGAAACTTCCGGAATGCGAACA -ACGGAAACTTCCGGAATGCAGTCA -ACGGAAACTTCCGGAATGGATCCA -ACGGAAACTTCCGGAATGACGACA -ACGGAAACTTCCGGAATGAGCTCA -ACGGAAACTTCCGGAATGTCACGT -ACGGAAACTTCCGGAATGCGTAGT -ACGGAAACTTCCGGAATGGTCAGT -ACGGAAACTTCCGGAATGGAAGGT -ACGGAAACTTCCGGAATGAACCGT -ACGGAAACTTCCGGAATGTTGTGC -ACGGAAACTTCCGGAATGCTAAGC -ACGGAAACTTCCGGAATGACTAGC -ACGGAAACTTCCGGAATGAGATGC -ACGGAAACTTCCGGAATGTGAAGG -ACGGAAACTTCCGGAATGCAATGG -ACGGAAACTTCCGGAATGATGAGG -ACGGAAACTTCCGGAATGAATGGG -ACGGAAACTTCCGGAATGTCCTGA -ACGGAAACTTCCGGAATGTAGCGA -ACGGAAACTTCCGGAATGCACAGA -ACGGAAACTTCCGGAATGGCAAGA -ACGGAAACTTCCGGAATGGGTTGA -ACGGAAACTTCCGGAATGTCCGAT -ACGGAAACTTCCGGAATGTGGCAT -ACGGAAACTTCCGGAATGCGAGAT -ACGGAAACTTCCGGAATGTACCAC -ACGGAAACTTCCGGAATGCAGAAC -ACGGAAACTTCCGGAATGGTCTAC -ACGGAAACTTCCGGAATGACGTAC -ACGGAAACTTCCGGAATGAGTGAC -ACGGAAACTTCCGGAATGCTGTAG -ACGGAAACTTCCGGAATGCCTAAG -ACGGAAACTTCCGGAATGGTTCAG -ACGGAAACTTCCGGAATGGCATAG -ACGGAAACTTCCGGAATGGACAAG -ACGGAAACTTCCGGAATGAAGCAG -ACGGAAACTTCCGGAATGCGTCAA -ACGGAAACTTCCGGAATGGCTGAA -ACGGAAACTTCCGGAATGAGTACG -ACGGAAACTTCCGGAATGATCCGA -ACGGAAACTTCCGGAATGATGGGA -ACGGAAACTTCCGGAATGGTGCAA -ACGGAAACTTCCGGAATGGAGGAA -ACGGAAACTTCCGGAATGCAGGTA -ACGGAAACTTCCGGAATGGACTCT -ACGGAAACTTCCGGAATGAGTCCT -ACGGAAACTTCCGGAATGTAAGCC -ACGGAAACTTCCGGAATGATAGCC -ACGGAAACTTCCGGAATGTAACCG -ACGGAAACTTCCGGAATGATGCCA -ACGGAAACTTCCCAAGTGGGAAAC -ACGGAAACTTCCCAAGTGAACACC -ACGGAAACTTCCCAAGTGATCGAG -ACGGAAACTTCCCAAGTGCTCCTT -ACGGAAACTTCCCAAGTGCCTGTT -ACGGAAACTTCCCAAGTGCGGTTT -ACGGAAACTTCCCAAGTGGTGGTT -ACGGAAACTTCCCAAGTGGCCTTT -ACGGAAACTTCCCAAGTGGGTCTT -ACGGAAACTTCCCAAGTGACGCTT -ACGGAAACTTCCCAAGTGAGCGTT -ACGGAAACTTCCCAAGTGTTCGTC -ACGGAAACTTCCCAAGTGTCTCTC -ACGGAAACTTCCCAAGTGTGGATC -ACGGAAACTTCCCAAGTGCACTTC -ACGGAAACTTCCCAAGTGGTACTC -ACGGAAACTTCCCAAGTGGATGTC -ACGGAAACTTCCCAAGTGACAGTC -ACGGAAACTTCCCAAGTGTTGCTG -ACGGAAACTTCCCAAGTGTCCATG -ACGGAAACTTCCCAAGTGTGTGTG -ACGGAAACTTCCCAAGTGCTAGTG -ACGGAAACTTCCCAAGTGCATCTG -ACGGAAACTTCCCAAGTGGAGTTG -ACGGAAACTTCCCAAGTGAGACTG -ACGGAAACTTCCCAAGTGTCGGTA -ACGGAAACTTCCCAAGTGTGCCTA -ACGGAAACTTCCCAAGTGCCACTA -ACGGAAACTTCCCAAGTGGGAGTA -ACGGAAACTTCCCAAGTGTCGTCT -ACGGAAACTTCCCAAGTGTGCACT -ACGGAAACTTCCCAAGTGCTGACT -ACGGAAACTTCCCAAGTGCAACCT -ACGGAAACTTCCCAAGTGGCTACT -ACGGAAACTTCCCAAGTGGGATCT -ACGGAAACTTCCCAAGTGAAGGCT -ACGGAAACTTCCCAAGTGTCAACC -ACGGAAACTTCCCAAGTGTGTTCC -ACGGAAACTTCCCAAGTGATTCCC -ACGGAAACTTCCCAAGTGTTCTCG -ACGGAAACTTCCCAAGTGTAGACG -ACGGAAACTTCCCAAGTGGTAACG -ACGGAAACTTCCCAAGTGACTTCG -ACGGAAACTTCCCAAGTGTACGCA -ACGGAAACTTCCCAAGTGCTTGCA -ACGGAAACTTCCCAAGTGCGAACA -ACGGAAACTTCCCAAGTGCAGTCA -ACGGAAACTTCCCAAGTGGATCCA -ACGGAAACTTCCCAAGTGACGACA -ACGGAAACTTCCCAAGTGAGCTCA -ACGGAAACTTCCCAAGTGTCACGT -ACGGAAACTTCCCAAGTGCGTAGT -ACGGAAACTTCCCAAGTGGTCAGT -ACGGAAACTTCCCAAGTGGAAGGT -ACGGAAACTTCCCAAGTGAACCGT -ACGGAAACTTCCCAAGTGTTGTGC -ACGGAAACTTCCCAAGTGCTAAGC -ACGGAAACTTCCCAAGTGACTAGC -ACGGAAACTTCCCAAGTGAGATGC -ACGGAAACTTCCCAAGTGTGAAGG -ACGGAAACTTCCCAAGTGCAATGG -ACGGAAACTTCCCAAGTGATGAGG -ACGGAAACTTCCCAAGTGAATGGG -ACGGAAACTTCCCAAGTGTCCTGA -ACGGAAACTTCCCAAGTGTAGCGA -ACGGAAACTTCCCAAGTGCACAGA -ACGGAAACTTCCCAAGTGGCAAGA -ACGGAAACTTCCCAAGTGGGTTGA -ACGGAAACTTCCCAAGTGTCCGAT -ACGGAAACTTCCCAAGTGTGGCAT -ACGGAAACTTCCCAAGTGCGAGAT -ACGGAAACTTCCCAAGTGTACCAC -ACGGAAACTTCCCAAGTGCAGAAC -ACGGAAACTTCCCAAGTGGTCTAC -ACGGAAACTTCCCAAGTGACGTAC -ACGGAAACTTCCCAAGTGAGTGAC -ACGGAAACTTCCCAAGTGCTGTAG -ACGGAAACTTCCCAAGTGCCTAAG -ACGGAAACTTCCCAAGTGGTTCAG -ACGGAAACTTCCCAAGTGGCATAG -ACGGAAACTTCCCAAGTGGACAAG -ACGGAAACTTCCCAAGTGAAGCAG -ACGGAAACTTCCCAAGTGCGTCAA -ACGGAAACTTCCCAAGTGGCTGAA -ACGGAAACTTCCCAAGTGAGTACG -ACGGAAACTTCCCAAGTGATCCGA -ACGGAAACTTCCCAAGTGATGGGA -ACGGAAACTTCCCAAGTGGTGCAA -ACGGAAACTTCCCAAGTGGAGGAA -ACGGAAACTTCCCAAGTGCAGGTA -ACGGAAACTTCCCAAGTGGACTCT -ACGGAAACTTCCCAAGTGAGTCCT -ACGGAAACTTCCCAAGTGTAAGCC -ACGGAAACTTCCCAAGTGATAGCC -ACGGAAACTTCCCAAGTGTAACCG -ACGGAAACTTCCCAAGTGATGCCA -ACGGAAACTTCCGAAGAGGGAAAC -ACGGAAACTTCCGAAGAGAACACC -ACGGAAACTTCCGAAGAGATCGAG -ACGGAAACTTCCGAAGAGCTCCTT -ACGGAAACTTCCGAAGAGCCTGTT -ACGGAAACTTCCGAAGAGCGGTTT -ACGGAAACTTCCGAAGAGGTGGTT -ACGGAAACTTCCGAAGAGGCCTTT -ACGGAAACTTCCGAAGAGGGTCTT -ACGGAAACTTCCGAAGAGACGCTT -ACGGAAACTTCCGAAGAGAGCGTT -ACGGAAACTTCCGAAGAGTTCGTC -ACGGAAACTTCCGAAGAGTCTCTC -ACGGAAACTTCCGAAGAGTGGATC -ACGGAAACTTCCGAAGAGCACTTC -ACGGAAACTTCCGAAGAGGTACTC -ACGGAAACTTCCGAAGAGGATGTC -ACGGAAACTTCCGAAGAGACAGTC -ACGGAAACTTCCGAAGAGTTGCTG -ACGGAAACTTCCGAAGAGTCCATG -ACGGAAACTTCCGAAGAGTGTGTG -ACGGAAACTTCCGAAGAGCTAGTG -ACGGAAACTTCCGAAGAGCATCTG -ACGGAAACTTCCGAAGAGGAGTTG -ACGGAAACTTCCGAAGAGAGACTG -ACGGAAACTTCCGAAGAGTCGGTA -ACGGAAACTTCCGAAGAGTGCCTA -ACGGAAACTTCCGAAGAGCCACTA -ACGGAAACTTCCGAAGAGGGAGTA -ACGGAAACTTCCGAAGAGTCGTCT -ACGGAAACTTCCGAAGAGTGCACT -ACGGAAACTTCCGAAGAGCTGACT -ACGGAAACTTCCGAAGAGCAACCT -ACGGAAACTTCCGAAGAGGCTACT -ACGGAAACTTCCGAAGAGGGATCT -ACGGAAACTTCCGAAGAGAAGGCT -ACGGAAACTTCCGAAGAGTCAACC -ACGGAAACTTCCGAAGAGTGTTCC -ACGGAAACTTCCGAAGAGATTCCC -ACGGAAACTTCCGAAGAGTTCTCG -ACGGAAACTTCCGAAGAGTAGACG -ACGGAAACTTCCGAAGAGGTAACG -ACGGAAACTTCCGAAGAGACTTCG -ACGGAAACTTCCGAAGAGTACGCA -ACGGAAACTTCCGAAGAGCTTGCA -ACGGAAACTTCCGAAGAGCGAACA -ACGGAAACTTCCGAAGAGCAGTCA -ACGGAAACTTCCGAAGAGGATCCA -ACGGAAACTTCCGAAGAGACGACA -ACGGAAACTTCCGAAGAGAGCTCA -ACGGAAACTTCCGAAGAGTCACGT -ACGGAAACTTCCGAAGAGCGTAGT -ACGGAAACTTCCGAAGAGGTCAGT -ACGGAAACTTCCGAAGAGGAAGGT -ACGGAAACTTCCGAAGAGAACCGT -ACGGAAACTTCCGAAGAGTTGTGC -ACGGAAACTTCCGAAGAGCTAAGC -ACGGAAACTTCCGAAGAGACTAGC -ACGGAAACTTCCGAAGAGAGATGC -ACGGAAACTTCCGAAGAGTGAAGG -ACGGAAACTTCCGAAGAGCAATGG -ACGGAAACTTCCGAAGAGATGAGG -ACGGAAACTTCCGAAGAGAATGGG -ACGGAAACTTCCGAAGAGTCCTGA -ACGGAAACTTCCGAAGAGTAGCGA -ACGGAAACTTCCGAAGAGCACAGA -ACGGAAACTTCCGAAGAGGCAAGA -ACGGAAACTTCCGAAGAGGGTTGA -ACGGAAACTTCCGAAGAGTCCGAT -ACGGAAACTTCCGAAGAGTGGCAT -ACGGAAACTTCCGAAGAGCGAGAT -ACGGAAACTTCCGAAGAGTACCAC -ACGGAAACTTCCGAAGAGCAGAAC -ACGGAAACTTCCGAAGAGGTCTAC -ACGGAAACTTCCGAAGAGACGTAC -ACGGAAACTTCCGAAGAGAGTGAC -ACGGAAACTTCCGAAGAGCTGTAG -ACGGAAACTTCCGAAGAGCCTAAG -ACGGAAACTTCCGAAGAGGTTCAG -ACGGAAACTTCCGAAGAGGCATAG -ACGGAAACTTCCGAAGAGGACAAG -ACGGAAACTTCCGAAGAGAAGCAG -ACGGAAACTTCCGAAGAGCGTCAA -ACGGAAACTTCCGAAGAGGCTGAA -ACGGAAACTTCCGAAGAGAGTACG -ACGGAAACTTCCGAAGAGATCCGA -ACGGAAACTTCCGAAGAGATGGGA -ACGGAAACTTCCGAAGAGGTGCAA -ACGGAAACTTCCGAAGAGGAGGAA -ACGGAAACTTCCGAAGAGCAGGTA -ACGGAAACTTCCGAAGAGGACTCT -ACGGAAACTTCCGAAGAGAGTCCT -ACGGAAACTTCCGAAGAGTAAGCC -ACGGAAACTTCCGAAGAGATAGCC -ACGGAAACTTCCGAAGAGTAACCG -ACGGAAACTTCCGAAGAGATGCCA -ACGGAAACTTCCGTACAGGGAAAC -ACGGAAACTTCCGTACAGAACACC -ACGGAAACTTCCGTACAGATCGAG -ACGGAAACTTCCGTACAGCTCCTT -ACGGAAACTTCCGTACAGCCTGTT -ACGGAAACTTCCGTACAGCGGTTT -ACGGAAACTTCCGTACAGGTGGTT -ACGGAAACTTCCGTACAGGCCTTT -ACGGAAACTTCCGTACAGGGTCTT -ACGGAAACTTCCGTACAGACGCTT -ACGGAAACTTCCGTACAGAGCGTT -ACGGAAACTTCCGTACAGTTCGTC -ACGGAAACTTCCGTACAGTCTCTC -ACGGAAACTTCCGTACAGTGGATC -ACGGAAACTTCCGTACAGCACTTC -ACGGAAACTTCCGTACAGGTACTC -ACGGAAACTTCCGTACAGGATGTC -ACGGAAACTTCCGTACAGACAGTC -ACGGAAACTTCCGTACAGTTGCTG -ACGGAAACTTCCGTACAGTCCATG -ACGGAAACTTCCGTACAGTGTGTG -ACGGAAACTTCCGTACAGCTAGTG -ACGGAAACTTCCGTACAGCATCTG -ACGGAAACTTCCGTACAGGAGTTG -ACGGAAACTTCCGTACAGAGACTG -ACGGAAACTTCCGTACAGTCGGTA -ACGGAAACTTCCGTACAGTGCCTA -ACGGAAACTTCCGTACAGCCACTA -ACGGAAACTTCCGTACAGGGAGTA -ACGGAAACTTCCGTACAGTCGTCT -ACGGAAACTTCCGTACAGTGCACT -ACGGAAACTTCCGTACAGCTGACT -ACGGAAACTTCCGTACAGCAACCT -ACGGAAACTTCCGTACAGGCTACT -ACGGAAACTTCCGTACAGGGATCT -ACGGAAACTTCCGTACAGAAGGCT -ACGGAAACTTCCGTACAGTCAACC -ACGGAAACTTCCGTACAGTGTTCC -ACGGAAACTTCCGTACAGATTCCC -ACGGAAACTTCCGTACAGTTCTCG -ACGGAAACTTCCGTACAGTAGACG -ACGGAAACTTCCGTACAGGTAACG -ACGGAAACTTCCGTACAGACTTCG -ACGGAAACTTCCGTACAGTACGCA -ACGGAAACTTCCGTACAGCTTGCA -ACGGAAACTTCCGTACAGCGAACA -ACGGAAACTTCCGTACAGCAGTCA -ACGGAAACTTCCGTACAGGATCCA -ACGGAAACTTCCGTACAGACGACA -ACGGAAACTTCCGTACAGAGCTCA -ACGGAAACTTCCGTACAGTCACGT -ACGGAAACTTCCGTACAGCGTAGT -ACGGAAACTTCCGTACAGGTCAGT -ACGGAAACTTCCGTACAGGAAGGT -ACGGAAACTTCCGTACAGAACCGT -ACGGAAACTTCCGTACAGTTGTGC -ACGGAAACTTCCGTACAGCTAAGC -ACGGAAACTTCCGTACAGACTAGC -ACGGAAACTTCCGTACAGAGATGC -ACGGAAACTTCCGTACAGTGAAGG -ACGGAAACTTCCGTACAGCAATGG -ACGGAAACTTCCGTACAGATGAGG -ACGGAAACTTCCGTACAGAATGGG -ACGGAAACTTCCGTACAGTCCTGA -ACGGAAACTTCCGTACAGTAGCGA -ACGGAAACTTCCGTACAGCACAGA -ACGGAAACTTCCGTACAGGCAAGA -ACGGAAACTTCCGTACAGGGTTGA -ACGGAAACTTCCGTACAGTCCGAT -ACGGAAACTTCCGTACAGTGGCAT -ACGGAAACTTCCGTACAGCGAGAT -ACGGAAACTTCCGTACAGTACCAC -ACGGAAACTTCCGTACAGCAGAAC -ACGGAAACTTCCGTACAGGTCTAC -ACGGAAACTTCCGTACAGACGTAC -ACGGAAACTTCCGTACAGAGTGAC -ACGGAAACTTCCGTACAGCTGTAG -ACGGAAACTTCCGTACAGCCTAAG -ACGGAAACTTCCGTACAGGTTCAG -ACGGAAACTTCCGTACAGGCATAG -ACGGAAACTTCCGTACAGGACAAG -ACGGAAACTTCCGTACAGAAGCAG -ACGGAAACTTCCGTACAGCGTCAA -ACGGAAACTTCCGTACAGGCTGAA -ACGGAAACTTCCGTACAGAGTACG -ACGGAAACTTCCGTACAGATCCGA -ACGGAAACTTCCGTACAGATGGGA -ACGGAAACTTCCGTACAGGTGCAA -ACGGAAACTTCCGTACAGGAGGAA -ACGGAAACTTCCGTACAGCAGGTA -ACGGAAACTTCCGTACAGGACTCT -ACGGAAACTTCCGTACAGAGTCCT -ACGGAAACTTCCGTACAGTAAGCC -ACGGAAACTTCCGTACAGATAGCC -ACGGAAACTTCCGTACAGTAACCG -ACGGAAACTTCCGTACAGATGCCA -ACGGAAACTTCCTCTGACGGAAAC -ACGGAAACTTCCTCTGACAACACC -ACGGAAACTTCCTCTGACATCGAG -ACGGAAACTTCCTCTGACCTCCTT -ACGGAAACTTCCTCTGACCCTGTT -ACGGAAACTTCCTCTGACCGGTTT -ACGGAAACTTCCTCTGACGTGGTT -ACGGAAACTTCCTCTGACGCCTTT -ACGGAAACTTCCTCTGACGGTCTT -ACGGAAACTTCCTCTGACACGCTT -ACGGAAACTTCCTCTGACAGCGTT -ACGGAAACTTCCTCTGACTTCGTC -ACGGAAACTTCCTCTGACTCTCTC -ACGGAAACTTCCTCTGACTGGATC -ACGGAAACTTCCTCTGACCACTTC -ACGGAAACTTCCTCTGACGTACTC -ACGGAAACTTCCTCTGACGATGTC -ACGGAAACTTCCTCTGACACAGTC -ACGGAAACTTCCTCTGACTTGCTG -ACGGAAACTTCCTCTGACTCCATG -ACGGAAACTTCCTCTGACTGTGTG -ACGGAAACTTCCTCTGACCTAGTG -ACGGAAACTTCCTCTGACCATCTG -ACGGAAACTTCCTCTGACGAGTTG -ACGGAAACTTCCTCTGACAGACTG -ACGGAAACTTCCTCTGACTCGGTA -ACGGAAACTTCCTCTGACTGCCTA -ACGGAAACTTCCTCTGACCCACTA -ACGGAAACTTCCTCTGACGGAGTA -ACGGAAACTTCCTCTGACTCGTCT -ACGGAAACTTCCTCTGACTGCACT -ACGGAAACTTCCTCTGACCTGACT -ACGGAAACTTCCTCTGACCAACCT -ACGGAAACTTCCTCTGACGCTACT -ACGGAAACTTCCTCTGACGGATCT -ACGGAAACTTCCTCTGACAAGGCT -ACGGAAACTTCCTCTGACTCAACC -ACGGAAACTTCCTCTGACTGTTCC -ACGGAAACTTCCTCTGACATTCCC -ACGGAAACTTCCTCTGACTTCTCG -ACGGAAACTTCCTCTGACTAGACG -ACGGAAACTTCCTCTGACGTAACG -ACGGAAACTTCCTCTGACACTTCG -ACGGAAACTTCCTCTGACTACGCA -ACGGAAACTTCCTCTGACCTTGCA -ACGGAAACTTCCTCTGACCGAACA -ACGGAAACTTCCTCTGACCAGTCA -ACGGAAACTTCCTCTGACGATCCA -ACGGAAACTTCCTCTGACACGACA -ACGGAAACTTCCTCTGACAGCTCA -ACGGAAACTTCCTCTGACTCACGT -ACGGAAACTTCCTCTGACCGTAGT -ACGGAAACTTCCTCTGACGTCAGT -ACGGAAACTTCCTCTGACGAAGGT -ACGGAAACTTCCTCTGACAACCGT -ACGGAAACTTCCTCTGACTTGTGC -ACGGAAACTTCCTCTGACCTAAGC -ACGGAAACTTCCTCTGACACTAGC -ACGGAAACTTCCTCTGACAGATGC -ACGGAAACTTCCTCTGACTGAAGG -ACGGAAACTTCCTCTGACCAATGG -ACGGAAACTTCCTCTGACATGAGG -ACGGAAACTTCCTCTGACAATGGG -ACGGAAACTTCCTCTGACTCCTGA -ACGGAAACTTCCTCTGACTAGCGA -ACGGAAACTTCCTCTGACCACAGA -ACGGAAACTTCCTCTGACGCAAGA -ACGGAAACTTCCTCTGACGGTTGA -ACGGAAACTTCCTCTGACTCCGAT -ACGGAAACTTCCTCTGACTGGCAT -ACGGAAACTTCCTCTGACCGAGAT -ACGGAAACTTCCTCTGACTACCAC -ACGGAAACTTCCTCTGACCAGAAC -ACGGAAACTTCCTCTGACGTCTAC -ACGGAAACTTCCTCTGACACGTAC -ACGGAAACTTCCTCTGACAGTGAC -ACGGAAACTTCCTCTGACCTGTAG -ACGGAAACTTCCTCTGACCCTAAG -ACGGAAACTTCCTCTGACGTTCAG -ACGGAAACTTCCTCTGACGCATAG -ACGGAAACTTCCTCTGACGACAAG -ACGGAAACTTCCTCTGACAAGCAG -ACGGAAACTTCCTCTGACCGTCAA -ACGGAAACTTCCTCTGACGCTGAA -ACGGAAACTTCCTCTGACAGTACG -ACGGAAACTTCCTCTGACATCCGA -ACGGAAACTTCCTCTGACATGGGA -ACGGAAACTTCCTCTGACGTGCAA -ACGGAAACTTCCTCTGACGAGGAA -ACGGAAACTTCCTCTGACCAGGTA -ACGGAAACTTCCTCTGACGACTCT -ACGGAAACTTCCTCTGACAGTCCT -ACGGAAACTTCCTCTGACTAAGCC -ACGGAAACTTCCTCTGACATAGCC -ACGGAAACTTCCTCTGACTAACCG -ACGGAAACTTCCTCTGACATGCCA -ACGGAAACTTCCCCTAGTGGAAAC -ACGGAAACTTCCCCTAGTAACACC -ACGGAAACTTCCCCTAGTATCGAG -ACGGAAACTTCCCCTAGTCTCCTT -ACGGAAACTTCCCCTAGTCCTGTT -ACGGAAACTTCCCCTAGTCGGTTT -ACGGAAACTTCCCCTAGTGTGGTT -ACGGAAACTTCCCCTAGTGCCTTT -ACGGAAACTTCCCCTAGTGGTCTT -ACGGAAACTTCCCCTAGTACGCTT -ACGGAAACTTCCCCTAGTAGCGTT -ACGGAAACTTCCCCTAGTTTCGTC -ACGGAAACTTCCCCTAGTTCTCTC -ACGGAAACTTCCCCTAGTTGGATC -ACGGAAACTTCCCCTAGTCACTTC -ACGGAAACTTCCCCTAGTGTACTC -ACGGAAACTTCCCCTAGTGATGTC -ACGGAAACTTCCCCTAGTACAGTC -ACGGAAACTTCCCCTAGTTTGCTG -ACGGAAACTTCCCCTAGTTCCATG -ACGGAAACTTCCCCTAGTTGTGTG -ACGGAAACTTCCCCTAGTCTAGTG -ACGGAAACTTCCCCTAGTCATCTG -ACGGAAACTTCCCCTAGTGAGTTG -ACGGAAACTTCCCCTAGTAGACTG -ACGGAAACTTCCCCTAGTTCGGTA -ACGGAAACTTCCCCTAGTTGCCTA -ACGGAAACTTCCCCTAGTCCACTA -ACGGAAACTTCCCCTAGTGGAGTA -ACGGAAACTTCCCCTAGTTCGTCT -ACGGAAACTTCCCCTAGTTGCACT -ACGGAAACTTCCCCTAGTCTGACT -ACGGAAACTTCCCCTAGTCAACCT -ACGGAAACTTCCCCTAGTGCTACT -ACGGAAACTTCCCCTAGTGGATCT -ACGGAAACTTCCCCTAGTAAGGCT -ACGGAAACTTCCCCTAGTTCAACC -ACGGAAACTTCCCCTAGTTGTTCC -ACGGAAACTTCCCCTAGTATTCCC -ACGGAAACTTCCCCTAGTTTCTCG -ACGGAAACTTCCCCTAGTTAGACG -ACGGAAACTTCCCCTAGTGTAACG -ACGGAAACTTCCCCTAGTACTTCG -ACGGAAACTTCCCCTAGTTACGCA -ACGGAAACTTCCCCTAGTCTTGCA -ACGGAAACTTCCCCTAGTCGAACA -ACGGAAACTTCCCCTAGTCAGTCA -ACGGAAACTTCCCCTAGTGATCCA -ACGGAAACTTCCCCTAGTACGACA -ACGGAAACTTCCCCTAGTAGCTCA -ACGGAAACTTCCCCTAGTTCACGT -ACGGAAACTTCCCCTAGTCGTAGT -ACGGAAACTTCCCCTAGTGTCAGT -ACGGAAACTTCCCCTAGTGAAGGT -ACGGAAACTTCCCCTAGTAACCGT -ACGGAAACTTCCCCTAGTTTGTGC -ACGGAAACTTCCCCTAGTCTAAGC -ACGGAAACTTCCCCTAGTACTAGC -ACGGAAACTTCCCCTAGTAGATGC -ACGGAAACTTCCCCTAGTTGAAGG -ACGGAAACTTCCCCTAGTCAATGG -ACGGAAACTTCCCCTAGTATGAGG -ACGGAAACTTCCCCTAGTAATGGG -ACGGAAACTTCCCCTAGTTCCTGA -ACGGAAACTTCCCCTAGTTAGCGA -ACGGAAACTTCCCCTAGTCACAGA -ACGGAAACTTCCCCTAGTGCAAGA -ACGGAAACTTCCCCTAGTGGTTGA -ACGGAAACTTCCCCTAGTTCCGAT -ACGGAAACTTCCCCTAGTTGGCAT -ACGGAAACTTCCCCTAGTCGAGAT -ACGGAAACTTCCCCTAGTTACCAC -ACGGAAACTTCCCCTAGTCAGAAC -ACGGAAACTTCCCCTAGTGTCTAC -ACGGAAACTTCCCCTAGTACGTAC -ACGGAAACTTCCCCTAGTAGTGAC -ACGGAAACTTCCCCTAGTCTGTAG -ACGGAAACTTCCCCTAGTCCTAAG -ACGGAAACTTCCCCTAGTGTTCAG -ACGGAAACTTCCCCTAGTGCATAG -ACGGAAACTTCCCCTAGTGACAAG -ACGGAAACTTCCCCTAGTAAGCAG -ACGGAAACTTCCCCTAGTCGTCAA -ACGGAAACTTCCCCTAGTGCTGAA -ACGGAAACTTCCCCTAGTAGTACG -ACGGAAACTTCCCCTAGTATCCGA -ACGGAAACTTCCCCTAGTATGGGA -ACGGAAACTTCCCCTAGTGTGCAA -ACGGAAACTTCCCCTAGTGAGGAA -ACGGAAACTTCCCCTAGTCAGGTA -ACGGAAACTTCCCCTAGTGACTCT -ACGGAAACTTCCCCTAGTAGTCCT -ACGGAAACTTCCCCTAGTTAAGCC -ACGGAAACTTCCCCTAGTATAGCC -ACGGAAACTTCCCCTAGTTAACCG -ACGGAAACTTCCCCTAGTATGCCA -ACGGAAACTTCCGCCTAAGGAAAC -ACGGAAACTTCCGCCTAAAACACC -ACGGAAACTTCCGCCTAAATCGAG -ACGGAAACTTCCGCCTAACTCCTT -ACGGAAACTTCCGCCTAACCTGTT -ACGGAAACTTCCGCCTAACGGTTT -ACGGAAACTTCCGCCTAAGTGGTT -ACGGAAACTTCCGCCTAAGCCTTT -ACGGAAACTTCCGCCTAAGGTCTT -ACGGAAACTTCCGCCTAAACGCTT -ACGGAAACTTCCGCCTAAAGCGTT -ACGGAAACTTCCGCCTAATTCGTC -ACGGAAACTTCCGCCTAATCTCTC -ACGGAAACTTCCGCCTAATGGATC -ACGGAAACTTCCGCCTAACACTTC -ACGGAAACTTCCGCCTAAGTACTC -ACGGAAACTTCCGCCTAAGATGTC -ACGGAAACTTCCGCCTAAACAGTC -ACGGAAACTTCCGCCTAATTGCTG -ACGGAAACTTCCGCCTAATCCATG -ACGGAAACTTCCGCCTAATGTGTG -ACGGAAACTTCCGCCTAACTAGTG -ACGGAAACTTCCGCCTAACATCTG -ACGGAAACTTCCGCCTAAGAGTTG -ACGGAAACTTCCGCCTAAAGACTG -ACGGAAACTTCCGCCTAATCGGTA -ACGGAAACTTCCGCCTAATGCCTA -ACGGAAACTTCCGCCTAACCACTA -ACGGAAACTTCCGCCTAAGGAGTA -ACGGAAACTTCCGCCTAATCGTCT -ACGGAAACTTCCGCCTAATGCACT -ACGGAAACTTCCGCCTAACTGACT -ACGGAAACTTCCGCCTAACAACCT -ACGGAAACTTCCGCCTAAGCTACT -ACGGAAACTTCCGCCTAAGGATCT -ACGGAAACTTCCGCCTAAAAGGCT -ACGGAAACTTCCGCCTAATCAACC -ACGGAAACTTCCGCCTAATGTTCC -ACGGAAACTTCCGCCTAAATTCCC -ACGGAAACTTCCGCCTAATTCTCG -ACGGAAACTTCCGCCTAATAGACG -ACGGAAACTTCCGCCTAAGTAACG -ACGGAAACTTCCGCCTAAACTTCG -ACGGAAACTTCCGCCTAATACGCA -ACGGAAACTTCCGCCTAACTTGCA -ACGGAAACTTCCGCCTAACGAACA -ACGGAAACTTCCGCCTAACAGTCA -ACGGAAACTTCCGCCTAAGATCCA -ACGGAAACTTCCGCCTAAACGACA -ACGGAAACTTCCGCCTAAAGCTCA -ACGGAAACTTCCGCCTAATCACGT -ACGGAAACTTCCGCCTAACGTAGT -ACGGAAACTTCCGCCTAAGTCAGT -ACGGAAACTTCCGCCTAAGAAGGT -ACGGAAACTTCCGCCTAAAACCGT -ACGGAAACTTCCGCCTAATTGTGC -ACGGAAACTTCCGCCTAACTAAGC -ACGGAAACTTCCGCCTAAACTAGC -ACGGAAACTTCCGCCTAAAGATGC -ACGGAAACTTCCGCCTAATGAAGG -ACGGAAACTTCCGCCTAACAATGG -ACGGAAACTTCCGCCTAAATGAGG -ACGGAAACTTCCGCCTAAAATGGG -ACGGAAACTTCCGCCTAATCCTGA -ACGGAAACTTCCGCCTAATAGCGA -ACGGAAACTTCCGCCTAACACAGA -ACGGAAACTTCCGCCTAAGCAAGA -ACGGAAACTTCCGCCTAAGGTTGA -ACGGAAACTTCCGCCTAATCCGAT -ACGGAAACTTCCGCCTAATGGCAT -ACGGAAACTTCCGCCTAACGAGAT -ACGGAAACTTCCGCCTAATACCAC -ACGGAAACTTCCGCCTAACAGAAC -ACGGAAACTTCCGCCTAAGTCTAC -ACGGAAACTTCCGCCTAAACGTAC -ACGGAAACTTCCGCCTAAAGTGAC -ACGGAAACTTCCGCCTAACTGTAG -ACGGAAACTTCCGCCTAACCTAAG -ACGGAAACTTCCGCCTAAGTTCAG -ACGGAAACTTCCGCCTAAGCATAG -ACGGAAACTTCCGCCTAAGACAAG -ACGGAAACTTCCGCCTAAAAGCAG -ACGGAAACTTCCGCCTAACGTCAA -ACGGAAACTTCCGCCTAAGCTGAA -ACGGAAACTTCCGCCTAAAGTACG -ACGGAAACTTCCGCCTAAATCCGA -ACGGAAACTTCCGCCTAAATGGGA -ACGGAAACTTCCGCCTAAGTGCAA -ACGGAAACTTCCGCCTAAGAGGAA -ACGGAAACTTCCGCCTAACAGGTA -ACGGAAACTTCCGCCTAAGACTCT -ACGGAAACTTCCGCCTAAAGTCCT -ACGGAAACTTCCGCCTAATAAGCC -ACGGAAACTTCCGCCTAAATAGCC -ACGGAAACTTCCGCCTAATAACCG -ACGGAAACTTCCGCCTAAATGCCA -ACGGAAACTTCCGCCATAGGAAAC -ACGGAAACTTCCGCCATAAACACC -ACGGAAACTTCCGCCATAATCGAG -ACGGAAACTTCCGCCATACTCCTT -ACGGAAACTTCCGCCATACCTGTT -ACGGAAACTTCCGCCATACGGTTT -ACGGAAACTTCCGCCATAGTGGTT -ACGGAAACTTCCGCCATAGCCTTT -ACGGAAACTTCCGCCATAGGTCTT -ACGGAAACTTCCGCCATAACGCTT -ACGGAAACTTCCGCCATAAGCGTT -ACGGAAACTTCCGCCATATTCGTC -ACGGAAACTTCCGCCATATCTCTC -ACGGAAACTTCCGCCATATGGATC -ACGGAAACTTCCGCCATACACTTC -ACGGAAACTTCCGCCATAGTACTC -ACGGAAACTTCCGCCATAGATGTC -ACGGAAACTTCCGCCATAACAGTC -ACGGAAACTTCCGCCATATTGCTG -ACGGAAACTTCCGCCATATCCATG -ACGGAAACTTCCGCCATATGTGTG -ACGGAAACTTCCGCCATACTAGTG -ACGGAAACTTCCGCCATACATCTG -ACGGAAACTTCCGCCATAGAGTTG -ACGGAAACTTCCGCCATAAGACTG -ACGGAAACTTCCGCCATATCGGTA -ACGGAAACTTCCGCCATATGCCTA -ACGGAAACTTCCGCCATACCACTA -ACGGAAACTTCCGCCATAGGAGTA -ACGGAAACTTCCGCCATATCGTCT -ACGGAAACTTCCGCCATATGCACT -ACGGAAACTTCCGCCATACTGACT -ACGGAAACTTCCGCCATACAACCT -ACGGAAACTTCCGCCATAGCTACT -ACGGAAACTTCCGCCATAGGATCT -ACGGAAACTTCCGCCATAAAGGCT -ACGGAAACTTCCGCCATATCAACC -ACGGAAACTTCCGCCATATGTTCC -ACGGAAACTTCCGCCATAATTCCC -ACGGAAACTTCCGCCATATTCTCG -ACGGAAACTTCCGCCATATAGACG -ACGGAAACTTCCGCCATAGTAACG -ACGGAAACTTCCGCCATAACTTCG -ACGGAAACTTCCGCCATATACGCA -ACGGAAACTTCCGCCATACTTGCA -ACGGAAACTTCCGCCATACGAACA -ACGGAAACTTCCGCCATACAGTCA -ACGGAAACTTCCGCCATAGATCCA -ACGGAAACTTCCGCCATAACGACA -ACGGAAACTTCCGCCATAAGCTCA -ACGGAAACTTCCGCCATATCACGT -ACGGAAACTTCCGCCATACGTAGT -ACGGAAACTTCCGCCATAGTCAGT -ACGGAAACTTCCGCCATAGAAGGT -ACGGAAACTTCCGCCATAAACCGT -ACGGAAACTTCCGCCATATTGTGC -ACGGAAACTTCCGCCATACTAAGC -ACGGAAACTTCCGCCATAACTAGC -ACGGAAACTTCCGCCATAAGATGC -ACGGAAACTTCCGCCATATGAAGG -ACGGAAACTTCCGCCATACAATGG -ACGGAAACTTCCGCCATAATGAGG -ACGGAAACTTCCGCCATAAATGGG -ACGGAAACTTCCGCCATATCCTGA -ACGGAAACTTCCGCCATATAGCGA -ACGGAAACTTCCGCCATACACAGA -ACGGAAACTTCCGCCATAGCAAGA -ACGGAAACTTCCGCCATAGGTTGA -ACGGAAACTTCCGCCATATCCGAT -ACGGAAACTTCCGCCATATGGCAT -ACGGAAACTTCCGCCATACGAGAT -ACGGAAACTTCCGCCATATACCAC -ACGGAAACTTCCGCCATACAGAAC -ACGGAAACTTCCGCCATAGTCTAC -ACGGAAACTTCCGCCATAACGTAC -ACGGAAACTTCCGCCATAAGTGAC -ACGGAAACTTCCGCCATACTGTAG -ACGGAAACTTCCGCCATACCTAAG -ACGGAAACTTCCGCCATAGTTCAG -ACGGAAACTTCCGCCATAGCATAG -ACGGAAACTTCCGCCATAGACAAG -ACGGAAACTTCCGCCATAAAGCAG -ACGGAAACTTCCGCCATACGTCAA -ACGGAAACTTCCGCCATAGCTGAA -ACGGAAACTTCCGCCATAAGTACG -ACGGAAACTTCCGCCATAATCCGA -ACGGAAACTTCCGCCATAATGGGA -ACGGAAACTTCCGCCATAGTGCAA -ACGGAAACTTCCGCCATAGAGGAA -ACGGAAACTTCCGCCATACAGGTA -ACGGAAACTTCCGCCATAGACTCT -ACGGAAACTTCCGCCATAAGTCCT -ACGGAAACTTCCGCCATATAAGCC -ACGGAAACTTCCGCCATAATAGCC -ACGGAAACTTCCGCCATATAACCG -ACGGAAACTTCCGCCATAATGCCA -ACGGAAACTTCCCCGTAAGGAAAC -ACGGAAACTTCCCCGTAAAACACC -ACGGAAACTTCCCCGTAAATCGAG -ACGGAAACTTCCCCGTAACTCCTT -ACGGAAACTTCCCCGTAACCTGTT -ACGGAAACTTCCCCGTAACGGTTT -ACGGAAACTTCCCCGTAAGTGGTT -ACGGAAACTTCCCCGTAAGCCTTT -ACGGAAACTTCCCCGTAAGGTCTT -ACGGAAACTTCCCCGTAAACGCTT -ACGGAAACTTCCCCGTAAAGCGTT -ACGGAAACTTCCCCGTAATTCGTC -ACGGAAACTTCCCCGTAATCTCTC -ACGGAAACTTCCCCGTAATGGATC -ACGGAAACTTCCCCGTAACACTTC -ACGGAAACTTCCCCGTAAGTACTC -ACGGAAACTTCCCCGTAAGATGTC -ACGGAAACTTCCCCGTAAACAGTC -ACGGAAACTTCCCCGTAATTGCTG -ACGGAAACTTCCCCGTAATCCATG -ACGGAAACTTCCCCGTAATGTGTG -ACGGAAACTTCCCCGTAACTAGTG -ACGGAAACTTCCCCGTAACATCTG -ACGGAAACTTCCCCGTAAGAGTTG -ACGGAAACTTCCCCGTAAAGACTG -ACGGAAACTTCCCCGTAATCGGTA -ACGGAAACTTCCCCGTAATGCCTA -ACGGAAACTTCCCCGTAACCACTA -ACGGAAACTTCCCCGTAAGGAGTA -ACGGAAACTTCCCCGTAATCGTCT -ACGGAAACTTCCCCGTAATGCACT -ACGGAAACTTCCCCGTAACTGACT -ACGGAAACTTCCCCGTAACAACCT -ACGGAAACTTCCCCGTAAGCTACT -ACGGAAACTTCCCCGTAAGGATCT -ACGGAAACTTCCCCGTAAAAGGCT -ACGGAAACTTCCCCGTAATCAACC -ACGGAAACTTCCCCGTAATGTTCC -ACGGAAACTTCCCCGTAAATTCCC -ACGGAAACTTCCCCGTAATTCTCG -ACGGAAACTTCCCCGTAATAGACG -ACGGAAACTTCCCCGTAAGTAACG -ACGGAAACTTCCCCGTAAACTTCG -ACGGAAACTTCCCCGTAATACGCA -ACGGAAACTTCCCCGTAACTTGCA -ACGGAAACTTCCCCGTAACGAACA -ACGGAAACTTCCCCGTAACAGTCA -ACGGAAACTTCCCCGTAAGATCCA -ACGGAAACTTCCCCGTAAACGACA -ACGGAAACTTCCCCGTAAAGCTCA -ACGGAAACTTCCCCGTAATCACGT -ACGGAAACTTCCCCGTAACGTAGT -ACGGAAACTTCCCCGTAAGTCAGT -ACGGAAACTTCCCCGTAAGAAGGT -ACGGAAACTTCCCCGTAAAACCGT -ACGGAAACTTCCCCGTAATTGTGC -ACGGAAACTTCCCCGTAACTAAGC -ACGGAAACTTCCCCGTAAACTAGC -ACGGAAACTTCCCCGTAAAGATGC -ACGGAAACTTCCCCGTAATGAAGG -ACGGAAACTTCCCCGTAACAATGG -ACGGAAACTTCCCCGTAAATGAGG -ACGGAAACTTCCCCGTAAAATGGG -ACGGAAACTTCCCCGTAATCCTGA -ACGGAAACTTCCCCGTAATAGCGA -ACGGAAACTTCCCCGTAACACAGA -ACGGAAACTTCCCCGTAAGCAAGA -ACGGAAACTTCCCCGTAAGGTTGA -ACGGAAACTTCCCCGTAATCCGAT -ACGGAAACTTCCCCGTAATGGCAT -ACGGAAACTTCCCCGTAACGAGAT -ACGGAAACTTCCCCGTAATACCAC -ACGGAAACTTCCCCGTAACAGAAC -ACGGAAACTTCCCCGTAAGTCTAC -ACGGAAACTTCCCCGTAAACGTAC -ACGGAAACTTCCCCGTAAAGTGAC -ACGGAAACTTCCCCGTAACTGTAG -ACGGAAACTTCCCCGTAACCTAAG -ACGGAAACTTCCCCGTAAGTTCAG -ACGGAAACTTCCCCGTAAGCATAG -ACGGAAACTTCCCCGTAAGACAAG -ACGGAAACTTCCCCGTAAAAGCAG -ACGGAAACTTCCCCGTAACGTCAA -ACGGAAACTTCCCCGTAAGCTGAA -ACGGAAACTTCCCCGTAAAGTACG -ACGGAAACTTCCCCGTAAATCCGA -ACGGAAACTTCCCCGTAAATGGGA -ACGGAAACTTCCCCGTAAGTGCAA -ACGGAAACTTCCCCGTAAGAGGAA -ACGGAAACTTCCCCGTAACAGGTA -ACGGAAACTTCCCCGTAAGACTCT -ACGGAAACTTCCCCGTAAAGTCCT -ACGGAAACTTCCCCGTAATAAGCC -ACGGAAACTTCCCCGTAAATAGCC -ACGGAAACTTCCCCGTAATAACCG -ACGGAAACTTCCCCGTAAATGCCA -ACGGAAACTTCCCCAATGGGAAAC -ACGGAAACTTCCCCAATGAACACC -ACGGAAACTTCCCCAATGATCGAG -ACGGAAACTTCCCCAATGCTCCTT -ACGGAAACTTCCCCAATGCCTGTT -ACGGAAACTTCCCCAATGCGGTTT -ACGGAAACTTCCCCAATGGTGGTT -ACGGAAACTTCCCCAATGGCCTTT -ACGGAAACTTCCCCAATGGGTCTT -ACGGAAACTTCCCCAATGACGCTT -ACGGAAACTTCCCCAATGAGCGTT -ACGGAAACTTCCCCAATGTTCGTC -ACGGAAACTTCCCCAATGTCTCTC -ACGGAAACTTCCCCAATGTGGATC -ACGGAAACTTCCCCAATGCACTTC -ACGGAAACTTCCCCAATGGTACTC -ACGGAAACTTCCCCAATGGATGTC -ACGGAAACTTCCCCAATGACAGTC -ACGGAAACTTCCCCAATGTTGCTG -ACGGAAACTTCCCCAATGTCCATG -ACGGAAACTTCCCCAATGTGTGTG -ACGGAAACTTCCCCAATGCTAGTG -ACGGAAACTTCCCCAATGCATCTG -ACGGAAACTTCCCCAATGGAGTTG -ACGGAAACTTCCCCAATGAGACTG -ACGGAAACTTCCCCAATGTCGGTA -ACGGAAACTTCCCCAATGTGCCTA -ACGGAAACTTCCCCAATGCCACTA -ACGGAAACTTCCCCAATGGGAGTA -ACGGAAACTTCCCCAATGTCGTCT -ACGGAAACTTCCCCAATGTGCACT -ACGGAAACTTCCCCAATGCTGACT -ACGGAAACTTCCCCAATGCAACCT -ACGGAAACTTCCCCAATGGCTACT -ACGGAAACTTCCCCAATGGGATCT -ACGGAAACTTCCCCAATGAAGGCT -ACGGAAACTTCCCCAATGTCAACC -ACGGAAACTTCCCCAATGTGTTCC -ACGGAAACTTCCCCAATGATTCCC -ACGGAAACTTCCCCAATGTTCTCG -ACGGAAACTTCCCCAATGTAGACG -ACGGAAACTTCCCCAATGGTAACG -ACGGAAACTTCCCCAATGACTTCG -ACGGAAACTTCCCCAATGTACGCA -ACGGAAACTTCCCCAATGCTTGCA -ACGGAAACTTCCCCAATGCGAACA -ACGGAAACTTCCCCAATGCAGTCA -ACGGAAACTTCCCCAATGGATCCA -ACGGAAACTTCCCCAATGACGACA -ACGGAAACTTCCCCAATGAGCTCA -ACGGAAACTTCCCCAATGTCACGT -ACGGAAACTTCCCCAATGCGTAGT -ACGGAAACTTCCCCAATGGTCAGT -ACGGAAACTTCCCCAATGGAAGGT -ACGGAAACTTCCCCAATGAACCGT -ACGGAAACTTCCCCAATGTTGTGC -ACGGAAACTTCCCCAATGCTAAGC -ACGGAAACTTCCCCAATGACTAGC -ACGGAAACTTCCCCAATGAGATGC -ACGGAAACTTCCCCAATGTGAAGG -ACGGAAACTTCCCCAATGCAATGG -ACGGAAACTTCCCCAATGATGAGG -ACGGAAACTTCCCCAATGAATGGG -ACGGAAACTTCCCCAATGTCCTGA -ACGGAAACTTCCCCAATGTAGCGA -ACGGAAACTTCCCCAATGCACAGA -ACGGAAACTTCCCCAATGGCAAGA -ACGGAAACTTCCCCAATGGGTTGA -ACGGAAACTTCCCCAATGTCCGAT -ACGGAAACTTCCCCAATGTGGCAT -ACGGAAACTTCCCCAATGCGAGAT -ACGGAAACTTCCCCAATGTACCAC -ACGGAAACTTCCCCAATGCAGAAC -ACGGAAACTTCCCCAATGGTCTAC -ACGGAAACTTCCCCAATGACGTAC -ACGGAAACTTCCCCAATGAGTGAC -ACGGAAACTTCCCCAATGCTGTAG -ACGGAAACTTCCCCAATGCCTAAG -ACGGAAACTTCCCCAATGGTTCAG -ACGGAAACTTCCCCAATGGCATAG -ACGGAAACTTCCCCAATGGACAAG -ACGGAAACTTCCCCAATGAAGCAG -ACGGAAACTTCCCCAATGCGTCAA -ACGGAAACTTCCCCAATGGCTGAA -ACGGAAACTTCCCCAATGAGTACG -ACGGAAACTTCCCCAATGATCCGA -ACGGAAACTTCCCCAATGATGGGA -ACGGAAACTTCCCCAATGGTGCAA -ACGGAAACTTCCCCAATGGAGGAA -ACGGAAACTTCCCCAATGCAGGTA -ACGGAAACTTCCCCAATGGACTCT -ACGGAAACTTCCCCAATGAGTCCT -ACGGAAACTTCCCCAATGTAAGCC -ACGGAAACTTCCCCAATGATAGCC -ACGGAAACTTCCCCAATGTAACCG -ACGGAAACTTCCCCAATGATGCCA -ACGGAATACTCGAACGGAGGAAAC -ACGGAATACTCGAACGGAAACACC -ACGGAATACTCGAACGGAATCGAG -ACGGAATACTCGAACGGACTCCTT -ACGGAATACTCGAACGGACCTGTT -ACGGAATACTCGAACGGACGGTTT -ACGGAATACTCGAACGGAGTGGTT -ACGGAATACTCGAACGGAGCCTTT -ACGGAATACTCGAACGGAGGTCTT -ACGGAATACTCGAACGGAACGCTT -ACGGAATACTCGAACGGAAGCGTT -ACGGAATACTCGAACGGATTCGTC -ACGGAATACTCGAACGGATCTCTC -ACGGAATACTCGAACGGATGGATC -ACGGAATACTCGAACGGACACTTC -ACGGAATACTCGAACGGAGTACTC -ACGGAATACTCGAACGGAGATGTC -ACGGAATACTCGAACGGAACAGTC -ACGGAATACTCGAACGGATTGCTG -ACGGAATACTCGAACGGATCCATG -ACGGAATACTCGAACGGATGTGTG -ACGGAATACTCGAACGGACTAGTG -ACGGAATACTCGAACGGACATCTG -ACGGAATACTCGAACGGAGAGTTG -ACGGAATACTCGAACGGAAGACTG -ACGGAATACTCGAACGGATCGGTA -ACGGAATACTCGAACGGATGCCTA -ACGGAATACTCGAACGGACCACTA -ACGGAATACTCGAACGGAGGAGTA -ACGGAATACTCGAACGGATCGTCT -ACGGAATACTCGAACGGATGCACT -ACGGAATACTCGAACGGACTGACT -ACGGAATACTCGAACGGACAACCT -ACGGAATACTCGAACGGAGCTACT -ACGGAATACTCGAACGGAGGATCT -ACGGAATACTCGAACGGAAAGGCT -ACGGAATACTCGAACGGATCAACC -ACGGAATACTCGAACGGATGTTCC -ACGGAATACTCGAACGGAATTCCC -ACGGAATACTCGAACGGATTCTCG -ACGGAATACTCGAACGGATAGACG -ACGGAATACTCGAACGGAGTAACG -ACGGAATACTCGAACGGAACTTCG -ACGGAATACTCGAACGGATACGCA -ACGGAATACTCGAACGGACTTGCA -ACGGAATACTCGAACGGACGAACA -ACGGAATACTCGAACGGACAGTCA -ACGGAATACTCGAACGGAGATCCA -ACGGAATACTCGAACGGAACGACA -ACGGAATACTCGAACGGAAGCTCA -ACGGAATACTCGAACGGATCACGT -ACGGAATACTCGAACGGACGTAGT -ACGGAATACTCGAACGGAGTCAGT -ACGGAATACTCGAACGGAGAAGGT -ACGGAATACTCGAACGGAAACCGT -ACGGAATACTCGAACGGATTGTGC -ACGGAATACTCGAACGGACTAAGC -ACGGAATACTCGAACGGAACTAGC -ACGGAATACTCGAACGGAAGATGC -ACGGAATACTCGAACGGATGAAGG -ACGGAATACTCGAACGGACAATGG -ACGGAATACTCGAACGGAATGAGG -ACGGAATACTCGAACGGAAATGGG -ACGGAATACTCGAACGGATCCTGA -ACGGAATACTCGAACGGATAGCGA -ACGGAATACTCGAACGGACACAGA -ACGGAATACTCGAACGGAGCAAGA -ACGGAATACTCGAACGGAGGTTGA -ACGGAATACTCGAACGGATCCGAT -ACGGAATACTCGAACGGATGGCAT -ACGGAATACTCGAACGGACGAGAT -ACGGAATACTCGAACGGATACCAC -ACGGAATACTCGAACGGACAGAAC -ACGGAATACTCGAACGGAGTCTAC -ACGGAATACTCGAACGGAACGTAC -ACGGAATACTCGAACGGAAGTGAC -ACGGAATACTCGAACGGACTGTAG -ACGGAATACTCGAACGGACCTAAG -ACGGAATACTCGAACGGAGTTCAG -ACGGAATACTCGAACGGAGCATAG -ACGGAATACTCGAACGGAGACAAG -ACGGAATACTCGAACGGAAAGCAG -ACGGAATACTCGAACGGACGTCAA -ACGGAATACTCGAACGGAGCTGAA -ACGGAATACTCGAACGGAAGTACG -ACGGAATACTCGAACGGAATCCGA -ACGGAATACTCGAACGGAATGGGA -ACGGAATACTCGAACGGAGTGCAA -ACGGAATACTCGAACGGAGAGGAA -ACGGAATACTCGAACGGACAGGTA -ACGGAATACTCGAACGGAGACTCT -ACGGAATACTCGAACGGAAGTCCT -ACGGAATACTCGAACGGATAAGCC -ACGGAATACTCGAACGGAATAGCC -ACGGAATACTCGAACGGATAACCG -ACGGAATACTCGAACGGAATGCCA -ACGGAATACTCGACCAACGGAAAC -ACGGAATACTCGACCAACAACACC -ACGGAATACTCGACCAACATCGAG -ACGGAATACTCGACCAACCTCCTT -ACGGAATACTCGACCAACCCTGTT -ACGGAATACTCGACCAACCGGTTT -ACGGAATACTCGACCAACGTGGTT -ACGGAATACTCGACCAACGCCTTT -ACGGAATACTCGACCAACGGTCTT -ACGGAATACTCGACCAACACGCTT -ACGGAATACTCGACCAACAGCGTT -ACGGAATACTCGACCAACTTCGTC -ACGGAATACTCGACCAACTCTCTC -ACGGAATACTCGACCAACTGGATC -ACGGAATACTCGACCAACCACTTC -ACGGAATACTCGACCAACGTACTC -ACGGAATACTCGACCAACGATGTC -ACGGAATACTCGACCAACACAGTC -ACGGAATACTCGACCAACTTGCTG -ACGGAATACTCGACCAACTCCATG -ACGGAATACTCGACCAACTGTGTG -ACGGAATACTCGACCAACCTAGTG -ACGGAATACTCGACCAACCATCTG -ACGGAATACTCGACCAACGAGTTG -ACGGAATACTCGACCAACAGACTG -ACGGAATACTCGACCAACTCGGTA -ACGGAATACTCGACCAACTGCCTA -ACGGAATACTCGACCAACCCACTA -ACGGAATACTCGACCAACGGAGTA -ACGGAATACTCGACCAACTCGTCT -ACGGAATACTCGACCAACTGCACT -ACGGAATACTCGACCAACCTGACT -ACGGAATACTCGACCAACCAACCT -ACGGAATACTCGACCAACGCTACT -ACGGAATACTCGACCAACGGATCT -ACGGAATACTCGACCAACAAGGCT -ACGGAATACTCGACCAACTCAACC -ACGGAATACTCGACCAACTGTTCC -ACGGAATACTCGACCAACATTCCC -ACGGAATACTCGACCAACTTCTCG -ACGGAATACTCGACCAACTAGACG -ACGGAATACTCGACCAACGTAACG -ACGGAATACTCGACCAACACTTCG -ACGGAATACTCGACCAACTACGCA -ACGGAATACTCGACCAACCTTGCA -ACGGAATACTCGACCAACCGAACA -ACGGAATACTCGACCAACCAGTCA -ACGGAATACTCGACCAACGATCCA -ACGGAATACTCGACCAACACGACA -ACGGAATACTCGACCAACAGCTCA -ACGGAATACTCGACCAACTCACGT -ACGGAATACTCGACCAACCGTAGT -ACGGAATACTCGACCAACGTCAGT -ACGGAATACTCGACCAACGAAGGT -ACGGAATACTCGACCAACAACCGT -ACGGAATACTCGACCAACTTGTGC -ACGGAATACTCGACCAACCTAAGC -ACGGAATACTCGACCAACACTAGC -ACGGAATACTCGACCAACAGATGC -ACGGAATACTCGACCAACTGAAGG -ACGGAATACTCGACCAACCAATGG -ACGGAATACTCGACCAACATGAGG -ACGGAATACTCGACCAACAATGGG -ACGGAATACTCGACCAACTCCTGA -ACGGAATACTCGACCAACTAGCGA -ACGGAATACTCGACCAACCACAGA -ACGGAATACTCGACCAACGCAAGA -ACGGAATACTCGACCAACGGTTGA -ACGGAATACTCGACCAACTCCGAT -ACGGAATACTCGACCAACTGGCAT -ACGGAATACTCGACCAACCGAGAT -ACGGAATACTCGACCAACTACCAC -ACGGAATACTCGACCAACCAGAAC -ACGGAATACTCGACCAACGTCTAC -ACGGAATACTCGACCAACACGTAC -ACGGAATACTCGACCAACAGTGAC -ACGGAATACTCGACCAACCTGTAG -ACGGAATACTCGACCAACCCTAAG -ACGGAATACTCGACCAACGTTCAG -ACGGAATACTCGACCAACGCATAG -ACGGAATACTCGACCAACGACAAG -ACGGAATACTCGACCAACAAGCAG -ACGGAATACTCGACCAACCGTCAA -ACGGAATACTCGACCAACGCTGAA -ACGGAATACTCGACCAACAGTACG -ACGGAATACTCGACCAACATCCGA -ACGGAATACTCGACCAACATGGGA -ACGGAATACTCGACCAACGTGCAA -ACGGAATACTCGACCAACGAGGAA -ACGGAATACTCGACCAACCAGGTA -ACGGAATACTCGACCAACGACTCT -ACGGAATACTCGACCAACAGTCCT -ACGGAATACTCGACCAACTAAGCC -ACGGAATACTCGACCAACATAGCC -ACGGAATACTCGACCAACTAACCG -ACGGAATACTCGACCAACATGCCA -ACGGAATACTCGGAGATCGGAAAC -ACGGAATACTCGGAGATCAACACC -ACGGAATACTCGGAGATCATCGAG -ACGGAATACTCGGAGATCCTCCTT -ACGGAATACTCGGAGATCCCTGTT -ACGGAATACTCGGAGATCCGGTTT -ACGGAATACTCGGAGATCGTGGTT -ACGGAATACTCGGAGATCGCCTTT -ACGGAATACTCGGAGATCGGTCTT -ACGGAATACTCGGAGATCACGCTT -ACGGAATACTCGGAGATCAGCGTT -ACGGAATACTCGGAGATCTTCGTC -ACGGAATACTCGGAGATCTCTCTC -ACGGAATACTCGGAGATCTGGATC -ACGGAATACTCGGAGATCCACTTC -ACGGAATACTCGGAGATCGTACTC -ACGGAATACTCGGAGATCGATGTC -ACGGAATACTCGGAGATCACAGTC -ACGGAATACTCGGAGATCTTGCTG -ACGGAATACTCGGAGATCTCCATG -ACGGAATACTCGGAGATCTGTGTG -ACGGAATACTCGGAGATCCTAGTG -ACGGAATACTCGGAGATCCATCTG -ACGGAATACTCGGAGATCGAGTTG -ACGGAATACTCGGAGATCAGACTG -ACGGAATACTCGGAGATCTCGGTA -ACGGAATACTCGGAGATCTGCCTA -ACGGAATACTCGGAGATCCCACTA -ACGGAATACTCGGAGATCGGAGTA -ACGGAATACTCGGAGATCTCGTCT -ACGGAATACTCGGAGATCTGCACT -ACGGAATACTCGGAGATCCTGACT -ACGGAATACTCGGAGATCCAACCT -ACGGAATACTCGGAGATCGCTACT -ACGGAATACTCGGAGATCGGATCT -ACGGAATACTCGGAGATCAAGGCT -ACGGAATACTCGGAGATCTCAACC -ACGGAATACTCGGAGATCTGTTCC -ACGGAATACTCGGAGATCATTCCC -ACGGAATACTCGGAGATCTTCTCG -ACGGAATACTCGGAGATCTAGACG -ACGGAATACTCGGAGATCGTAACG -ACGGAATACTCGGAGATCACTTCG -ACGGAATACTCGGAGATCTACGCA -ACGGAATACTCGGAGATCCTTGCA -ACGGAATACTCGGAGATCCGAACA -ACGGAATACTCGGAGATCCAGTCA -ACGGAATACTCGGAGATCGATCCA -ACGGAATACTCGGAGATCACGACA -ACGGAATACTCGGAGATCAGCTCA -ACGGAATACTCGGAGATCTCACGT -ACGGAATACTCGGAGATCCGTAGT -ACGGAATACTCGGAGATCGTCAGT -ACGGAATACTCGGAGATCGAAGGT -ACGGAATACTCGGAGATCAACCGT -ACGGAATACTCGGAGATCTTGTGC -ACGGAATACTCGGAGATCCTAAGC -ACGGAATACTCGGAGATCACTAGC -ACGGAATACTCGGAGATCAGATGC -ACGGAATACTCGGAGATCTGAAGG -ACGGAATACTCGGAGATCCAATGG -ACGGAATACTCGGAGATCATGAGG -ACGGAATACTCGGAGATCAATGGG -ACGGAATACTCGGAGATCTCCTGA -ACGGAATACTCGGAGATCTAGCGA -ACGGAATACTCGGAGATCCACAGA -ACGGAATACTCGGAGATCGCAAGA -ACGGAATACTCGGAGATCGGTTGA -ACGGAATACTCGGAGATCTCCGAT -ACGGAATACTCGGAGATCTGGCAT -ACGGAATACTCGGAGATCCGAGAT -ACGGAATACTCGGAGATCTACCAC -ACGGAATACTCGGAGATCCAGAAC -ACGGAATACTCGGAGATCGTCTAC -ACGGAATACTCGGAGATCACGTAC -ACGGAATACTCGGAGATCAGTGAC -ACGGAATACTCGGAGATCCTGTAG -ACGGAATACTCGGAGATCCCTAAG -ACGGAATACTCGGAGATCGTTCAG -ACGGAATACTCGGAGATCGCATAG -ACGGAATACTCGGAGATCGACAAG -ACGGAATACTCGGAGATCAAGCAG -ACGGAATACTCGGAGATCCGTCAA -ACGGAATACTCGGAGATCGCTGAA -ACGGAATACTCGGAGATCAGTACG -ACGGAATACTCGGAGATCATCCGA -ACGGAATACTCGGAGATCATGGGA -ACGGAATACTCGGAGATCGTGCAA -ACGGAATACTCGGAGATCGAGGAA -ACGGAATACTCGGAGATCCAGGTA -ACGGAATACTCGGAGATCGACTCT -ACGGAATACTCGGAGATCAGTCCT -ACGGAATACTCGGAGATCTAAGCC -ACGGAATACTCGGAGATCATAGCC -ACGGAATACTCGGAGATCTAACCG -ACGGAATACTCGGAGATCATGCCA -ACGGAATACTCGCTTCTCGGAAAC -ACGGAATACTCGCTTCTCAACACC -ACGGAATACTCGCTTCTCATCGAG -ACGGAATACTCGCTTCTCCTCCTT -ACGGAATACTCGCTTCTCCCTGTT -ACGGAATACTCGCTTCTCCGGTTT -ACGGAATACTCGCTTCTCGTGGTT -ACGGAATACTCGCTTCTCGCCTTT -ACGGAATACTCGCTTCTCGGTCTT -ACGGAATACTCGCTTCTCACGCTT -ACGGAATACTCGCTTCTCAGCGTT -ACGGAATACTCGCTTCTCTTCGTC -ACGGAATACTCGCTTCTCTCTCTC -ACGGAATACTCGCTTCTCTGGATC -ACGGAATACTCGCTTCTCCACTTC -ACGGAATACTCGCTTCTCGTACTC -ACGGAATACTCGCTTCTCGATGTC -ACGGAATACTCGCTTCTCACAGTC -ACGGAATACTCGCTTCTCTTGCTG -ACGGAATACTCGCTTCTCTCCATG -ACGGAATACTCGCTTCTCTGTGTG -ACGGAATACTCGCTTCTCCTAGTG -ACGGAATACTCGCTTCTCCATCTG -ACGGAATACTCGCTTCTCGAGTTG -ACGGAATACTCGCTTCTCAGACTG -ACGGAATACTCGCTTCTCTCGGTA -ACGGAATACTCGCTTCTCTGCCTA -ACGGAATACTCGCTTCTCCCACTA -ACGGAATACTCGCTTCTCGGAGTA -ACGGAATACTCGCTTCTCTCGTCT -ACGGAATACTCGCTTCTCTGCACT -ACGGAATACTCGCTTCTCCTGACT -ACGGAATACTCGCTTCTCCAACCT -ACGGAATACTCGCTTCTCGCTACT -ACGGAATACTCGCTTCTCGGATCT -ACGGAATACTCGCTTCTCAAGGCT -ACGGAATACTCGCTTCTCTCAACC -ACGGAATACTCGCTTCTCTGTTCC -ACGGAATACTCGCTTCTCATTCCC -ACGGAATACTCGCTTCTCTTCTCG -ACGGAATACTCGCTTCTCTAGACG -ACGGAATACTCGCTTCTCGTAACG -ACGGAATACTCGCTTCTCACTTCG -ACGGAATACTCGCTTCTCTACGCA -ACGGAATACTCGCTTCTCCTTGCA -ACGGAATACTCGCTTCTCCGAACA -ACGGAATACTCGCTTCTCCAGTCA -ACGGAATACTCGCTTCTCGATCCA -ACGGAATACTCGCTTCTCACGACA -ACGGAATACTCGCTTCTCAGCTCA -ACGGAATACTCGCTTCTCTCACGT -ACGGAATACTCGCTTCTCCGTAGT -ACGGAATACTCGCTTCTCGTCAGT -ACGGAATACTCGCTTCTCGAAGGT -ACGGAATACTCGCTTCTCAACCGT -ACGGAATACTCGCTTCTCTTGTGC -ACGGAATACTCGCTTCTCCTAAGC -ACGGAATACTCGCTTCTCACTAGC -ACGGAATACTCGCTTCTCAGATGC -ACGGAATACTCGCTTCTCTGAAGG -ACGGAATACTCGCTTCTCCAATGG -ACGGAATACTCGCTTCTCATGAGG -ACGGAATACTCGCTTCTCAATGGG -ACGGAATACTCGCTTCTCTCCTGA -ACGGAATACTCGCTTCTCTAGCGA -ACGGAATACTCGCTTCTCCACAGA -ACGGAATACTCGCTTCTCGCAAGA -ACGGAATACTCGCTTCTCGGTTGA -ACGGAATACTCGCTTCTCTCCGAT -ACGGAATACTCGCTTCTCTGGCAT -ACGGAATACTCGCTTCTCCGAGAT -ACGGAATACTCGCTTCTCTACCAC -ACGGAATACTCGCTTCTCCAGAAC -ACGGAATACTCGCTTCTCGTCTAC -ACGGAATACTCGCTTCTCACGTAC -ACGGAATACTCGCTTCTCAGTGAC -ACGGAATACTCGCTTCTCCTGTAG -ACGGAATACTCGCTTCTCCCTAAG -ACGGAATACTCGCTTCTCGTTCAG -ACGGAATACTCGCTTCTCGCATAG -ACGGAATACTCGCTTCTCGACAAG -ACGGAATACTCGCTTCTCAAGCAG -ACGGAATACTCGCTTCTCCGTCAA -ACGGAATACTCGCTTCTCGCTGAA -ACGGAATACTCGCTTCTCAGTACG -ACGGAATACTCGCTTCTCATCCGA -ACGGAATACTCGCTTCTCATGGGA -ACGGAATACTCGCTTCTCGTGCAA -ACGGAATACTCGCTTCTCGAGGAA -ACGGAATACTCGCTTCTCCAGGTA -ACGGAATACTCGCTTCTCGACTCT -ACGGAATACTCGCTTCTCAGTCCT -ACGGAATACTCGCTTCTCTAAGCC -ACGGAATACTCGCTTCTCATAGCC -ACGGAATACTCGCTTCTCTAACCG -ACGGAATACTCGCTTCTCATGCCA -ACGGAATACTCGGTTCCTGGAAAC -ACGGAATACTCGGTTCCTAACACC -ACGGAATACTCGGTTCCTATCGAG -ACGGAATACTCGGTTCCTCTCCTT -ACGGAATACTCGGTTCCTCCTGTT -ACGGAATACTCGGTTCCTCGGTTT -ACGGAATACTCGGTTCCTGTGGTT -ACGGAATACTCGGTTCCTGCCTTT -ACGGAATACTCGGTTCCTGGTCTT -ACGGAATACTCGGTTCCTACGCTT -ACGGAATACTCGGTTCCTAGCGTT -ACGGAATACTCGGTTCCTTTCGTC -ACGGAATACTCGGTTCCTTCTCTC -ACGGAATACTCGGTTCCTTGGATC -ACGGAATACTCGGTTCCTCACTTC -ACGGAATACTCGGTTCCTGTACTC -ACGGAATACTCGGTTCCTGATGTC -ACGGAATACTCGGTTCCTACAGTC -ACGGAATACTCGGTTCCTTTGCTG -ACGGAATACTCGGTTCCTTCCATG -ACGGAATACTCGGTTCCTTGTGTG -ACGGAATACTCGGTTCCTCTAGTG -ACGGAATACTCGGTTCCTCATCTG -ACGGAATACTCGGTTCCTGAGTTG -ACGGAATACTCGGTTCCTAGACTG -ACGGAATACTCGGTTCCTTCGGTA -ACGGAATACTCGGTTCCTTGCCTA -ACGGAATACTCGGTTCCTCCACTA -ACGGAATACTCGGTTCCTGGAGTA -ACGGAATACTCGGTTCCTTCGTCT -ACGGAATACTCGGTTCCTTGCACT -ACGGAATACTCGGTTCCTCTGACT -ACGGAATACTCGGTTCCTCAACCT -ACGGAATACTCGGTTCCTGCTACT -ACGGAATACTCGGTTCCTGGATCT -ACGGAATACTCGGTTCCTAAGGCT -ACGGAATACTCGGTTCCTTCAACC -ACGGAATACTCGGTTCCTTGTTCC -ACGGAATACTCGGTTCCTATTCCC -ACGGAATACTCGGTTCCTTTCTCG -ACGGAATACTCGGTTCCTTAGACG -ACGGAATACTCGGTTCCTGTAACG -ACGGAATACTCGGTTCCTACTTCG -ACGGAATACTCGGTTCCTTACGCA -ACGGAATACTCGGTTCCTCTTGCA -ACGGAATACTCGGTTCCTCGAACA -ACGGAATACTCGGTTCCTCAGTCA -ACGGAATACTCGGTTCCTGATCCA -ACGGAATACTCGGTTCCTACGACA -ACGGAATACTCGGTTCCTAGCTCA -ACGGAATACTCGGTTCCTTCACGT -ACGGAATACTCGGTTCCTCGTAGT -ACGGAATACTCGGTTCCTGTCAGT -ACGGAATACTCGGTTCCTGAAGGT -ACGGAATACTCGGTTCCTAACCGT -ACGGAATACTCGGTTCCTTTGTGC -ACGGAATACTCGGTTCCTCTAAGC -ACGGAATACTCGGTTCCTACTAGC -ACGGAATACTCGGTTCCTAGATGC -ACGGAATACTCGGTTCCTTGAAGG -ACGGAATACTCGGTTCCTCAATGG -ACGGAATACTCGGTTCCTATGAGG -ACGGAATACTCGGTTCCTAATGGG -ACGGAATACTCGGTTCCTTCCTGA -ACGGAATACTCGGTTCCTTAGCGA -ACGGAATACTCGGTTCCTCACAGA -ACGGAATACTCGGTTCCTGCAAGA -ACGGAATACTCGGTTCCTGGTTGA -ACGGAATACTCGGTTCCTTCCGAT -ACGGAATACTCGGTTCCTTGGCAT -ACGGAATACTCGGTTCCTCGAGAT -ACGGAATACTCGGTTCCTTACCAC -ACGGAATACTCGGTTCCTCAGAAC -ACGGAATACTCGGTTCCTGTCTAC -ACGGAATACTCGGTTCCTACGTAC -ACGGAATACTCGGTTCCTAGTGAC -ACGGAATACTCGGTTCCTCTGTAG -ACGGAATACTCGGTTCCTCCTAAG -ACGGAATACTCGGTTCCTGTTCAG -ACGGAATACTCGGTTCCTGCATAG -ACGGAATACTCGGTTCCTGACAAG -ACGGAATACTCGGTTCCTAAGCAG -ACGGAATACTCGGTTCCTCGTCAA -ACGGAATACTCGGTTCCTGCTGAA -ACGGAATACTCGGTTCCTAGTACG -ACGGAATACTCGGTTCCTATCCGA -ACGGAATACTCGGTTCCTATGGGA -ACGGAATACTCGGTTCCTGTGCAA -ACGGAATACTCGGTTCCTGAGGAA -ACGGAATACTCGGTTCCTCAGGTA -ACGGAATACTCGGTTCCTGACTCT -ACGGAATACTCGGTTCCTAGTCCT -ACGGAATACTCGGTTCCTTAAGCC -ACGGAATACTCGGTTCCTATAGCC -ACGGAATACTCGGTTCCTTAACCG -ACGGAATACTCGGTTCCTATGCCA -ACGGAATACTCGTTTCGGGGAAAC -ACGGAATACTCGTTTCGGAACACC -ACGGAATACTCGTTTCGGATCGAG -ACGGAATACTCGTTTCGGCTCCTT -ACGGAATACTCGTTTCGGCCTGTT -ACGGAATACTCGTTTCGGCGGTTT -ACGGAATACTCGTTTCGGGTGGTT -ACGGAATACTCGTTTCGGGCCTTT -ACGGAATACTCGTTTCGGGGTCTT -ACGGAATACTCGTTTCGGACGCTT -ACGGAATACTCGTTTCGGAGCGTT -ACGGAATACTCGTTTCGGTTCGTC -ACGGAATACTCGTTTCGGTCTCTC -ACGGAATACTCGTTTCGGTGGATC -ACGGAATACTCGTTTCGGCACTTC -ACGGAATACTCGTTTCGGGTACTC -ACGGAATACTCGTTTCGGGATGTC -ACGGAATACTCGTTTCGGACAGTC -ACGGAATACTCGTTTCGGTTGCTG -ACGGAATACTCGTTTCGGTCCATG -ACGGAATACTCGTTTCGGTGTGTG -ACGGAATACTCGTTTCGGCTAGTG -ACGGAATACTCGTTTCGGCATCTG -ACGGAATACTCGTTTCGGGAGTTG -ACGGAATACTCGTTTCGGAGACTG -ACGGAATACTCGTTTCGGTCGGTA -ACGGAATACTCGTTTCGGTGCCTA -ACGGAATACTCGTTTCGGCCACTA -ACGGAATACTCGTTTCGGGGAGTA -ACGGAATACTCGTTTCGGTCGTCT -ACGGAATACTCGTTTCGGTGCACT -ACGGAATACTCGTTTCGGCTGACT -ACGGAATACTCGTTTCGGCAACCT -ACGGAATACTCGTTTCGGGCTACT -ACGGAATACTCGTTTCGGGGATCT -ACGGAATACTCGTTTCGGAAGGCT -ACGGAATACTCGTTTCGGTCAACC -ACGGAATACTCGTTTCGGTGTTCC -ACGGAATACTCGTTTCGGATTCCC -ACGGAATACTCGTTTCGGTTCTCG -ACGGAATACTCGTTTCGGTAGACG -ACGGAATACTCGTTTCGGGTAACG -ACGGAATACTCGTTTCGGACTTCG -ACGGAATACTCGTTTCGGTACGCA -ACGGAATACTCGTTTCGGCTTGCA -ACGGAATACTCGTTTCGGCGAACA -ACGGAATACTCGTTTCGGCAGTCA -ACGGAATACTCGTTTCGGGATCCA -ACGGAATACTCGTTTCGGACGACA -ACGGAATACTCGTTTCGGAGCTCA -ACGGAATACTCGTTTCGGTCACGT -ACGGAATACTCGTTTCGGCGTAGT -ACGGAATACTCGTTTCGGGTCAGT -ACGGAATACTCGTTTCGGGAAGGT -ACGGAATACTCGTTTCGGAACCGT -ACGGAATACTCGTTTCGGTTGTGC -ACGGAATACTCGTTTCGGCTAAGC -ACGGAATACTCGTTTCGGACTAGC -ACGGAATACTCGTTTCGGAGATGC -ACGGAATACTCGTTTCGGTGAAGG -ACGGAATACTCGTTTCGGCAATGG -ACGGAATACTCGTTTCGGATGAGG -ACGGAATACTCGTTTCGGAATGGG -ACGGAATACTCGTTTCGGTCCTGA -ACGGAATACTCGTTTCGGTAGCGA -ACGGAATACTCGTTTCGGCACAGA -ACGGAATACTCGTTTCGGGCAAGA -ACGGAATACTCGTTTCGGGGTTGA -ACGGAATACTCGTTTCGGTCCGAT -ACGGAATACTCGTTTCGGTGGCAT -ACGGAATACTCGTTTCGGCGAGAT -ACGGAATACTCGTTTCGGTACCAC -ACGGAATACTCGTTTCGGCAGAAC -ACGGAATACTCGTTTCGGGTCTAC -ACGGAATACTCGTTTCGGACGTAC -ACGGAATACTCGTTTCGGAGTGAC -ACGGAATACTCGTTTCGGCTGTAG -ACGGAATACTCGTTTCGGCCTAAG -ACGGAATACTCGTTTCGGGTTCAG -ACGGAATACTCGTTTCGGGCATAG -ACGGAATACTCGTTTCGGGACAAG -ACGGAATACTCGTTTCGGAAGCAG -ACGGAATACTCGTTTCGGCGTCAA -ACGGAATACTCGTTTCGGGCTGAA -ACGGAATACTCGTTTCGGAGTACG -ACGGAATACTCGTTTCGGATCCGA -ACGGAATACTCGTTTCGGATGGGA -ACGGAATACTCGTTTCGGGTGCAA -ACGGAATACTCGTTTCGGGAGGAA -ACGGAATACTCGTTTCGGCAGGTA -ACGGAATACTCGTTTCGGGACTCT -ACGGAATACTCGTTTCGGAGTCCT -ACGGAATACTCGTTTCGGTAAGCC -ACGGAATACTCGTTTCGGATAGCC -ACGGAATACTCGTTTCGGTAACCG -ACGGAATACTCGTTTCGGATGCCA -ACGGAATACTCGGTTGTGGGAAAC -ACGGAATACTCGGTTGTGAACACC -ACGGAATACTCGGTTGTGATCGAG -ACGGAATACTCGGTTGTGCTCCTT -ACGGAATACTCGGTTGTGCCTGTT -ACGGAATACTCGGTTGTGCGGTTT -ACGGAATACTCGGTTGTGGTGGTT -ACGGAATACTCGGTTGTGGCCTTT -ACGGAATACTCGGTTGTGGGTCTT -ACGGAATACTCGGTTGTGACGCTT -ACGGAATACTCGGTTGTGAGCGTT -ACGGAATACTCGGTTGTGTTCGTC -ACGGAATACTCGGTTGTGTCTCTC -ACGGAATACTCGGTTGTGTGGATC -ACGGAATACTCGGTTGTGCACTTC -ACGGAATACTCGGTTGTGGTACTC -ACGGAATACTCGGTTGTGGATGTC -ACGGAATACTCGGTTGTGACAGTC -ACGGAATACTCGGTTGTGTTGCTG -ACGGAATACTCGGTTGTGTCCATG -ACGGAATACTCGGTTGTGTGTGTG -ACGGAATACTCGGTTGTGCTAGTG -ACGGAATACTCGGTTGTGCATCTG -ACGGAATACTCGGTTGTGGAGTTG -ACGGAATACTCGGTTGTGAGACTG -ACGGAATACTCGGTTGTGTCGGTA -ACGGAATACTCGGTTGTGTGCCTA -ACGGAATACTCGGTTGTGCCACTA -ACGGAATACTCGGTTGTGGGAGTA -ACGGAATACTCGGTTGTGTCGTCT -ACGGAATACTCGGTTGTGTGCACT -ACGGAATACTCGGTTGTGCTGACT -ACGGAATACTCGGTTGTGCAACCT -ACGGAATACTCGGTTGTGGCTACT -ACGGAATACTCGGTTGTGGGATCT -ACGGAATACTCGGTTGTGAAGGCT -ACGGAATACTCGGTTGTGTCAACC -ACGGAATACTCGGTTGTGTGTTCC -ACGGAATACTCGGTTGTGATTCCC -ACGGAATACTCGGTTGTGTTCTCG -ACGGAATACTCGGTTGTGTAGACG -ACGGAATACTCGGTTGTGGTAACG -ACGGAATACTCGGTTGTGACTTCG -ACGGAATACTCGGTTGTGTACGCA -ACGGAATACTCGGTTGTGCTTGCA -ACGGAATACTCGGTTGTGCGAACA -ACGGAATACTCGGTTGTGCAGTCA -ACGGAATACTCGGTTGTGGATCCA -ACGGAATACTCGGTTGTGACGACA -ACGGAATACTCGGTTGTGAGCTCA -ACGGAATACTCGGTTGTGTCACGT -ACGGAATACTCGGTTGTGCGTAGT -ACGGAATACTCGGTTGTGGTCAGT -ACGGAATACTCGGTTGTGGAAGGT -ACGGAATACTCGGTTGTGAACCGT -ACGGAATACTCGGTTGTGTTGTGC -ACGGAATACTCGGTTGTGCTAAGC -ACGGAATACTCGGTTGTGACTAGC -ACGGAATACTCGGTTGTGAGATGC -ACGGAATACTCGGTTGTGTGAAGG -ACGGAATACTCGGTTGTGCAATGG -ACGGAATACTCGGTTGTGATGAGG -ACGGAATACTCGGTTGTGAATGGG -ACGGAATACTCGGTTGTGTCCTGA -ACGGAATACTCGGTTGTGTAGCGA -ACGGAATACTCGGTTGTGCACAGA -ACGGAATACTCGGTTGTGGCAAGA -ACGGAATACTCGGTTGTGGGTTGA -ACGGAATACTCGGTTGTGTCCGAT -ACGGAATACTCGGTTGTGTGGCAT -ACGGAATACTCGGTTGTGCGAGAT -ACGGAATACTCGGTTGTGTACCAC -ACGGAATACTCGGTTGTGCAGAAC -ACGGAATACTCGGTTGTGGTCTAC -ACGGAATACTCGGTTGTGACGTAC -ACGGAATACTCGGTTGTGAGTGAC -ACGGAATACTCGGTTGTGCTGTAG -ACGGAATACTCGGTTGTGCCTAAG -ACGGAATACTCGGTTGTGGTTCAG -ACGGAATACTCGGTTGTGGCATAG -ACGGAATACTCGGTTGTGGACAAG -ACGGAATACTCGGTTGTGAAGCAG -ACGGAATACTCGGTTGTGCGTCAA -ACGGAATACTCGGTTGTGGCTGAA -ACGGAATACTCGGTTGTGAGTACG -ACGGAATACTCGGTTGTGATCCGA -ACGGAATACTCGGTTGTGATGGGA -ACGGAATACTCGGTTGTGGTGCAA -ACGGAATACTCGGTTGTGGAGGAA -ACGGAATACTCGGTTGTGCAGGTA -ACGGAATACTCGGTTGTGGACTCT -ACGGAATACTCGGTTGTGAGTCCT -ACGGAATACTCGGTTGTGTAAGCC -ACGGAATACTCGGTTGTGATAGCC -ACGGAATACTCGGTTGTGTAACCG -ACGGAATACTCGGTTGTGATGCCA -ACGGAATACTCGTTTGCCGGAAAC -ACGGAATACTCGTTTGCCAACACC -ACGGAATACTCGTTTGCCATCGAG -ACGGAATACTCGTTTGCCCTCCTT -ACGGAATACTCGTTTGCCCCTGTT -ACGGAATACTCGTTTGCCCGGTTT -ACGGAATACTCGTTTGCCGTGGTT -ACGGAATACTCGTTTGCCGCCTTT -ACGGAATACTCGTTTGCCGGTCTT -ACGGAATACTCGTTTGCCACGCTT -ACGGAATACTCGTTTGCCAGCGTT -ACGGAATACTCGTTTGCCTTCGTC -ACGGAATACTCGTTTGCCTCTCTC -ACGGAATACTCGTTTGCCTGGATC -ACGGAATACTCGTTTGCCCACTTC -ACGGAATACTCGTTTGCCGTACTC -ACGGAATACTCGTTTGCCGATGTC -ACGGAATACTCGTTTGCCACAGTC -ACGGAATACTCGTTTGCCTTGCTG -ACGGAATACTCGTTTGCCTCCATG -ACGGAATACTCGTTTGCCTGTGTG -ACGGAATACTCGTTTGCCCTAGTG -ACGGAATACTCGTTTGCCCATCTG -ACGGAATACTCGTTTGCCGAGTTG -ACGGAATACTCGTTTGCCAGACTG -ACGGAATACTCGTTTGCCTCGGTA -ACGGAATACTCGTTTGCCTGCCTA -ACGGAATACTCGTTTGCCCCACTA -ACGGAATACTCGTTTGCCGGAGTA -ACGGAATACTCGTTTGCCTCGTCT -ACGGAATACTCGTTTGCCTGCACT -ACGGAATACTCGTTTGCCCTGACT -ACGGAATACTCGTTTGCCCAACCT -ACGGAATACTCGTTTGCCGCTACT -ACGGAATACTCGTTTGCCGGATCT -ACGGAATACTCGTTTGCCAAGGCT -ACGGAATACTCGTTTGCCTCAACC -ACGGAATACTCGTTTGCCTGTTCC -ACGGAATACTCGTTTGCCATTCCC -ACGGAATACTCGTTTGCCTTCTCG -ACGGAATACTCGTTTGCCTAGACG -ACGGAATACTCGTTTGCCGTAACG -ACGGAATACTCGTTTGCCACTTCG -ACGGAATACTCGTTTGCCTACGCA -ACGGAATACTCGTTTGCCCTTGCA -ACGGAATACTCGTTTGCCCGAACA -ACGGAATACTCGTTTGCCCAGTCA -ACGGAATACTCGTTTGCCGATCCA -ACGGAATACTCGTTTGCCACGACA -ACGGAATACTCGTTTGCCAGCTCA -ACGGAATACTCGTTTGCCTCACGT -ACGGAATACTCGTTTGCCCGTAGT -ACGGAATACTCGTTTGCCGTCAGT -ACGGAATACTCGTTTGCCGAAGGT -ACGGAATACTCGTTTGCCAACCGT -ACGGAATACTCGTTTGCCTTGTGC -ACGGAATACTCGTTTGCCCTAAGC -ACGGAATACTCGTTTGCCACTAGC -ACGGAATACTCGTTTGCCAGATGC -ACGGAATACTCGTTTGCCTGAAGG -ACGGAATACTCGTTTGCCCAATGG -ACGGAATACTCGTTTGCCATGAGG -ACGGAATACTCGTTTGCCAATGGG -ACGGAATACTCGTTTGCCTCCTGA -ACGGAATACTCGTTTGCCTAGCGA -ACGGAATACTCGTTTGCCCACAGA -ACGGAATACTCGTTTGCCGCAAGA -ACGGAATACTCGTTTGCCGGTTGA -ACGGAATACTCGTTTGCCTCCGAT -ACGGAATACTCGTTTGCCTGGCAT -ACGGAATACTCGTTTGCCCGAGAT -ACGGAATACTCGTTTGCCTACCAC -ACGGAATACTCGTTTGCCCAGAAC -ACGGAATACTCGTTTGCCGTCTAC -ACGGAATACTCGTTTGCCACGTAC -ACGGAATACTCGTTTGCCAGTGAC -ACGGAATACTCGTTTGCCCTGTAG -ACGGAATACTCGTTTGCCCCTAAG -ACGGAATACTCGTTTGCCGTTCAG -ACGGAATACTCGTTTGCCGCATAG -ACGGAATACTCGTTTGCCGACAAG -ACGGAATACTCGTTTGCCAAGCAG -ACGGAATACTCGTTTGCCCGTCAA -ACGGAATACTCGTTTGCCGCTGAA -ACGGAATACTCGTTTGCCAGTACG -ACGGAATACTCGTTTGCCATCCGA -ACGGAATACTCGTTTGCCATGGGA -ACGGAATACTCGTTTGCCGTGCAA -ACGGAATACTCGTTTGCCGAGGAA -ACGGAATACTCGTTTGCCCAGGTA -ACGGAATACTCGTTTGCCGACTCT -ACGGAATACTCGTTTGCCAGTCCT -ACGGAATACTCGTTTGCCTAAGCC -ACGGAATACTCGTTTGCCATAGCC -ACGGAATACTCGTTTGCCTAACCG -ACGGAATACTCGTTTGCCATGCCA -ACGGAATACTCGCTTGGTGGAAAC -ACGGAATACTCGCTTGGTAACACC -ACGGAATACTCGCTTGGTATCGAG -ACGGAATACTCGCTTGGTCTCCTT -ACGGAATACTCGCTTGGTCCTGTT -ACGGAATACTCGCTTGGTCGGTTT -ACGGAATACTCGCTTGGTGTGGTT -ACGGAATACTCGCTTGGTGCCTTT -ACGGAATACTCGCTTGGTGGTCTT -ACGGAATACTCGCTTGGTACGCTT -ACGGAATACTCGCTTGGTAGCGTT -ACGGAATACTCGCTTGGTTTCGTC -ACGGAATACTCGCTTGGTTCTCTC -ACGGAATACTCGCTTGGTTGGATC -ACGGAATACTCGCTTGGTCACTTC -ACGGAATACTCGCTTGGTGTACTC -ACGGAATACTCGCTTGGTGATGTC -ACGGAATACTCGCTTGGTACAGTC -ACGGAATACTCGCTTGGTTTGCTG -ACGGAATACTCGCTTGGTTCCATG -ACGGAATACTCGCTTGGTTGTGTG -ACGGAATACTCGCTTGGTCTAGTG -ACGGAATACTCGCTTGGTCATCTG -ACGGAATACTCGCTTGGTGAGTTG -ACGGAATACTCGCTTGGTAGACTG -ACGGAATACTCGCTTGGTTCGGTA -ACGGAATACTCGCTTGGTTGCCTA -ACGGAATACTCGCTTGGTCCACTA -ACGGAATACTCGCTTGGTGGAGTA -ACGGAATACTCGCTTGGTTCGTCT -ACGGAATACTCGCTTGGTTGCACT -ACGGAATACTCGCTTGGTCTGACT -ACGGAATACTCGCTTGGTCAACCT -ACGGAATACTCGCTTGGTGCTACT -ACGGAATACTCGCTTGGTGGATCT -ACGGAATACTCGCTTGGTAAGGCT -ACGGAATACTCGCTTGGTTCAACC -ACGGAATACTCGCTTGGTTGTTCC -ACGGAATACTCGCTTGGTATTCCC -ACGGAATACTCGCTTGGTTTCTCG -ACGGAATACTCGCTTGGTTAGACG -ACGGAATACTCGCTTGGTGTAACG -ACGGAATACTCGCTTGGTACTTCG -ACGGAATACTCGCTTGGTTACGCA -ACGGAATACTCGCTTGGTCTTGCA -ACGGAATACTCGCTTGGTCGAACA -ACGGAATACTCGCTTGGTCAGTCA -ACGGAATACTCGCTTGGTGATCCA -ACGGAATACTCGCTTGGTACGACA -ACGGAATACTCGCTTGGTAGCTCA -ACGGAATACTCGCTTGGTTCACGT -ACGGAATACTCGCTTGGTCGTAGT -ACGGAATACTCGCTTGGTGTCAGT -ACGGAATACTCGCTTGGTGAAGGT -ACGGAATACTCGCTTGGTAACCGT -ACGGAATACTCGCTTGGTTTGTGC -ACGGAATACTCGCTTGGTCTAAGC -ACGGAATACTCGCTTGGTACTAGC -ACGGAATACTCGCTTGGTAGATGC -ACGGAATACTCGCTTGGTTGAAGG -ACGGAATACTCGCTTGGTCAATGG -ACGGAATACTCGCTTGGTATGAGG -ACGGAATACTCGCTTGGTAATGGG -ACGGAATACTCGCTTGGTTCCTGA -ACGGAATACTCGCTTGGTTAGCGA -ACGGAATACTCGCTTGGTCACAGA -ACGGAATACTCGCTTGGTGCAAGA -ACGGAATACTCGCTTGGTGGTTGA -ACGGAATACTCGCTTGGTTCCGAT -ACGGAATACTCGCTTGGTTGGCAT -ACGGAATACTCGCTTGGTCGAGAT -ACGGAATACTCGCTTGGTTACCAC -ACGGAATACTCGCTTGGTCAGAAC -ACGGAATACTCGCTTGGTGTCTAC -ACGGAATACTCGCTTGGTACGTAC -ACGGAATACTCGCTTGGTAGTGAC -ACGGAATACTCGCTTGGTCTGTAG -ACGGAATACTCGCTTGGTCCTAAG -ACGGAATACTCGCTTGGTGTTCAG -ACGGAATACTCGCTTGGTGCATAG -ACGGAATACTCGCTTGGTGACAAG -ACGGAATACTCGCTTGGTAAGCAG -ACGGAATACTCGCTTGGTCGTCAA -ACGGAATACTCGCTTGGTGCTGAA -ACGGAATACTCGCTTGGTAGTACG -ACGGAATACTCGCTTGGTATCCGA -ACGGAATACTCGCTTGGTATGGGA -ACGGAATACTCGCTTGGTGTGCAA -ACGGAATACTCGCTTGGTGAGGAA -ACGGAATACTCGCTTGGTCAGGTA -ACGGAATACTCGCTTGGTGACTCT -ACGGAATACTCGCTTGGTAGTCCT -ACGGAATACTCGCTTGGTTAAGCC -ACGGAATACTCGCTTGGTATAGCC -ACGGAATACTCGCTTGGTTAACCG -ACGGAATACTCGCTTGGTATGCCA -ACGGAATACTCGCTTACGGGAAAC -ACGGAATACTCGCTTACGAACACC -ACGGAATACTCGCTTACGATCGAG -ACGGAATACTCGCTTACGCTCCTT -ACGGAATACTCGCTTACGCCTGTT -ACGGAATACTCGCTTACGCGGTTT -ACGGAATACTCGCTTACGGTGGTT -ACGGAATACTCGCTTACGGCCTTT -ACGGAATACTCGCTTACGGGTCTT -ACGGAATACTCGCTTACGACGCTT -ACGGAATACTCGCTTACGAGCGTT -ACGGAATACTCGCTTACGTTCGTC -ACGGAATACTCGCTTACGTCTCTC -ACGGAATACTCGCTTACGTGGATC -ACGGAATACTCGCTTACGCACTTC -ACGGAATACTCGCTTACGGTACTC -ACGGAATACTCGCTTACGGATGTC -ACGGAATACTCGCTTACGACAGTC -ACGGAATACTCGCTTACGTTGCTG -ACGGAATACTCGCTTACGTCCATG -ACGGAATACTCGCTTACGTGTGTG -ACGGAATACTCGCTTACGCTAGTG -ACGGAATACTCGCTTACGCATCTG -ACGGAATACTCGCTTACGGAGTTG -ACGGAATACTCGCTTACGAGACTG -ACGGAATACTCGCTTACGTCGGTA -ACGGAATACTCGCTTACGTGCCTA -ACGGAATACTCGCTTACGCCACTA -ACGGAATACTCGCTTACGGGAGTA -ACGGAATACTCGCTTACGTCGTCT -ACGGAATACTCGCTTACGTGCACT -ACGGAATACTCGCTTACGCTGACT -ACGGAATACTCGCTTACGCAACCT -ACGGAATACTCGCTTACGGCTACT -ACGGAATACTCGCTTACGGGATCT -ACGGAATACTCGCTTACGAAGGCT -ACGGAATACTCGCTTACGTCAACC -ACGGAATACTCGCTTACGTGTTCC -ACGGAATACTCGCTTACGATTCCC -ACGGAATACTCGCTTACGTTCTCG -ACGGAATACTCGCTTACGTAGACG -ACGGAATACTCGCTTACGGTAACG -ACGGAATACTCGCTTACGACTTCG -ACGGAATACTCGCTTACGTACGCA -ACGGAATACTCGCTTACGCTTGCA -ACGGAATACTCGCTTACGCGAACA -ACGGAATACTCGCTTACGCAGTCA -ACGGAATACTCGCTTACGGATCCA -ACGGAATACTCGCTTACGACGACA -ACGGAATACTCGCTTACGAGCTCA -ACGGAATACTCGCTTACGTCACGT -ACGGAATACTCGCTTACGCGTAGT -ACGGAATACTCGCTTACGGTCAGT -ACGGAATACTCGCTTACGGAAGGT -ACGGAATACTCGCTTACGAACCGT -ACGGAATACTCGCTTACGTTGTGC -ACGGAATACTCGCTTACGCTAAGC -ACGGAATACTCGCTTACGACTAGC -ACGGAATACTCGCTTACGAGATGC -ACGGAATACTCGCTTACGTGAAGG -ACGGAATACTCGCTTACGCAATGG -ACGGAATACTCGCTTACGATGAGG -ACGGAATACTCGCTTACGAATGGG -ACGGAATACTCGCTTACGTCCTGA -ACGGAATACTCGCTTACGTAGCGA -ACGGAATACTCGCTTACGCACAGA -ACGGAATACTCGCTTACGGCAAGA -ACGGAATACTCGCTTACGGGTTGA -ACGGAATACTCGCTTACGTCCGAT -ACGGAATACTCGCTTACGTGGCAT -ACGGAATACTCGCTTACGCGAGAT -ACGGAATACTCGCTTACGTACCAC -ACGGAATACTCGCTTACGCAGAAC -ACGGAATACTCGCTTACGGTCTAC -ACGGAATACTCGCTTACGACGTAC -ACGGAATACTCGCTTACGAGTGAC -ACGGAATACTCGCTTACGCTGTAG -ACGGAATACTCGCTTACGCCTAAG -ACGGAATACTCGCTTACGGTTCAG -ACGGAATACTCGCTTACGGCATAG -ACGGAATACTCGCTTACGGACAAG -ACGGAATACTCGCTTACGAAGCAG -ACGGAATACTCGCTTACGCGTCAA -ACGGAATACTCGCTTACGGCTGAA -ACGGAATACTCGCTTACGAGTACG -ACGGAATACTCGCTTACGATCCGA -ACGGAATACTCGCTTACGATGGGA -ACGGAATACTCGCTTACGGTGCAA -ACGGAATACTCGCTTACGGAGGAA -ACGGAATACTCGCTTACGCAGGTA -ACGGAATACTCGCTTACGGACTCT -ACGGAATACTCGCTTACGAGTCCT -ACGGAATACTCGCTTACGTAAGCC -ACGGAATACTCGCTTACGATAGCC -ACGGAATACTCGCTTACGTAACCG -ACGGAATACTCGCTTACGATGCCA -ACGGAATACTCGGTTAGCGGAAAC -ACGGAATACTCGGTTAGCAACACC -ACGGAATACTCGGTTAGCATCGAG -ACGGAATACTCGGTTAGCCTCCTT -ACGGAATACTCGGTTAGCCCTGTT -ACGGAATACTCGGTTAGCCGGTTT -ACGGAATACTCGGTTAGCGTGGTT -ACGGAATACTCGGTTAGCGCCTTT -ACGGAATACTCGGTTAGCGGTCTT -ACGGAATACTCGGTTAGCACGCTT -ACGGAATACTCGGTTAGCAGCGTT -ACGGAATACTCGGTTAGCTTCGTC -ACGGAATACTCGGTTAGCTCTCTC -ACGGAATACTCGGTTAGCTGGATC -ACGGAATACTCGGTTAGCCACTTC -ACGGAATACTCGGTTAGCGTACTC -ACGGAATACTCGGTTAGCGATGTC -ACGGAATACTCGGTTAGCACAGTC -ACGGAATACTCGGTTAGCTTGCTG -ACGGAATACTCGGTTAGCTCCATG -ACGGAATACTCGGTTAGCTGTGTG -ACGGAATACTCGGTTAGCCTAGTG -ACGGAATACTCGGTTAGCCATCTG -ACGGAATACTCGGTTAGCGAGTTG -ACGGAATACTCGGTTAGCAGACTG -ACGGAATACTCGGTTAGCTCGGTA -ACGGAATACTCGGTTAGCTGCCTA -ACGGAATACTCGGTTAGCCCACTA -ACGGAATACTCGGTTAGCGGAGTA -ACGGAATACTCGGTTAGCTCGTCT -ACGGAATACTCGGTTAGCTGCACT -ACGGAATACTCGGTTAGCCTGACT -ACGGAATACTCGGTTAGCCAACCT -ACGGAATACTCGGTTAGCGCTACT -ACGGAATACTCGGTTAGCGGATCT -ACGGAATACTCGGTTAGCAAGGCT -ACGGAATACTCGGTTAGCTCAACC -ACGGAATACTCGGTTAGCTGTTCC -ACGGAATACTCGGTTAGCATTCCC -ACGGAATACTCGGTTAGCTTCTCG -ACGGAATACTCGGTTAGCTAGACG -ACGGAATACTCGGTTAGCGTAACG -ACGGAATACTCGGTTAGCACTTCG -ACGGAATACTCGGTTAGCTACGCA -ACGGAATACTCGGTTAGCCTTGCA -ACGGAATACTCGGTTAGCCGAACA -ACGGAATACTCGGTTAGCCAGTCA -ACGGAATACTCGGTTAGCGATCCA -ACGGAATACTCGGTTAGCACGACA -ACGGAATACTCGGTTAGCAGCTCA -ACGGAATACTCGGTTAGCTCACGT -ACGGAATACTCGGTTAGCCGTAGT -ACGGAATACTCGGTTAGCGTCAGT -ACGGAATACTCGGTTAGCGAAGGT -ACGGAATACTCGGTTAGCAACCGT -ACGGAATACTCGGTTAGCTTGTGC -ACGGAATACTCGGTTAGCCTAAGC -ACGGAATACTCGGTTAGCACTAGC -ACGGAATACTCGGTTAGCAGATGC -ACGGAATACTCGGTTAGCTGAAGG -ACGGAATACTCGGTTAGCCAATGG -ACGGAATACTCGGTTAGCATGAGG -ACGGAATACTCGGTTAGCAATGGG -ACGGAATACTCGGTTAGCTCCTGA -ACGGAATACTCGGTTAGCTAGCGA -ACGGAATACTCGGTTAGCCACAGA -ACGGAATACTCGGTTAGCGCAAGA -ACGGAATACTCGGTTAGCGGTTGA -ACGGAATACTCGGTTAGCTCCGAT -ACGGAATACTCGGTTAGCTGGCAT -ACGGAATACTCGGTTAGCCGAGAT -ACGGAATACTCGGTTAGCTACCAC -ACGGAATACTCGGTTAGCCAGAAC -ACGGAATACTCGGTTAGCGTCTAC -ACGGAATACTCGGTTAGCACGTAC -ACGGAATACTCGGTTAGCAGTGAC -ACGGAATACTCGGTTAGCCTGTAG -ACGGAATACTCGGTTAGCCCTAAG -ACGGAATACTCGGTTAGCGTTCAG -ACGGAATACTCGGTTAGCGCATAG -ACGGAATACTCGGTTAGCGACAAG -ACGGAATACTCGGTTAGCAAGCAG -ACGGAATACTCGGTTAGCCGTCAA -ACGGAATACTCGGTTAGCGCTGAA -ACGGAATACTCGGTTAGCAGTACG -ACGGAATACTCGGTTAGCATCCGA -ACGGAATACTCGGTTAGCATGGGA -ACGGAATACTCGGTTAGCGTGCAA -ACGGAATACTCGGTTAGCGAGGAA -ACGGAATACTCGGTTAGCCAGGTA -ACGGAATACTCGGTTAGCGACTCT -ACGGAATACTCGGTTAGCAGTCCT -ACGGAATACTCGGTTAGCTAAGCC -ACGGAATACTCGGTTAGCATAGCC -ACGGAATACTCGGTTAGCTAACCG -ACGGAATACTCGGTTAGCATGCCA -ACGGAATACTCGGTCTTCGGAAAC -ACGGAATACTCGGTCTTCAACACC -ACGGAATACTCGGTCTTCATCGAG -ACGGAATACTCGGTCTTCCTCCTT -ACGGAATACTCGGTCTTCCCTGTT -ACGGAATACTCGGTCTTCCGGTTT -ACGGAATACTCGGTCTTCGTGGTT -ACGGAATACTCGGTCTTCGCCTTT -ACGGAATACTCGGTCTTCGGTCTT -ACGGAATACTCGGTCTTCACGCTT -ACGGAATACTCGGTCTTCAGCGTT -ACGGAATACTCGGTCTTCTTCGTC -ACGGAATACTCGGTCTTCTCTCTC -ACGGAATACTCGGTCTTCTGGATC -ACGGAATACTCGGTCTTCCACTTC -ACGGAATACTCGGTCTTCGTACTC -ACGGAATACTCGGTCTTCGATGTC -ACGGAATACTCGGTCTTCACAGTC -ACGGAATACTCGGTCTTCTTGCTG -ACGGAATACTCGGTCTTCTCCATG -ACGGAATACTCGGTCTTCTGTGTG -ACGGAATACTCGGTCTTCCTAGTG -ACGGAATACTCGGTCTTCCATCTG -ACGGAATACTCGGTCTTCGAGTTG -ACGGAATACTCGGTCTTCAGACTG -ACGGAATACTCGGTCTTCTCGGTA -ACGGAATACTCGGTCTTCTGCCTA -ACGGAATACTCGGTCTTCCCACTA -ACGGAATACTCGGTCTTCGGAGTA -ACGGAATACTCGGTCTTCTCGTCT -ACGGAATACTCGGTCTTCTGCACT -ACGGAATACTCGGTCTTCCTGACT -ACGGAATACTCGGTCTTCCAACCT -ACGGAATACTCGGTCTTCGCTACT -ACGGAATACTCGGTCTTCGGATCT -ACGGAATACTCGGTCTTCAAGGCT -ACGGAATACTCGGTCTTCTCAACC -ACGGAATACTCGGTCTTCTGTTCC -ACGGAATACTCGGTCTTCATTCCC -ACGGAATACTCGGTCTTCTTCTCG -ACGGAATACTCGGTCTTCTAGACG -ACGGAATACTCGGTCTTCGTAACG -ACGGAATACTCGGTCTTCACTTCG -ACGGAATACTCGGTCTTCTACGCA -ACGGAATACTCGGTCTTCCTTGCA -ACGGAATACTCGGTCTTCCGAACA -ACGGAATACTCGGTCTTCCAGTCA -ACGGAATACTCGGTCTTCGATCCA -ACGGAATACTCGGTCTTCACGACA -ACGGAATACTCGGTCTTCAGCTCA -ACGGAATACTCGGTCTTCTCACGT -ACGGAATACTCGGTCTTCCGTAGT -ACGGAATACTCGGTCTTCGTCAGT -ACGGAATACTCGGTCTTCGAAGGT -ACGGAATACTCGGTCTTCAACCGT -ACGGAATACTCGGTCTTCTTGTGC -ACGGAATACTCGGTCTTCCTAAGC -ACGGAATACTCGGTCTTCACTAGC -ACGGAATACTCGGTCTTCAGATGC -ACGGAATACTCGGTCTTCTGAAGG -ACGGAATACTCGGTCTTCCAATGG -ACGGAATACTCGGTCTTCATGAGG -ACGGAATACTCGGTCTTCAATGGG -ACGGAATACTCGGTCTTCTCCTGA -ACGGAATACTCGGTCTTCTAGCGA -ACGGAATACTCGGTCTTCCACAGA -ACGGAATACTCGGTCTTCGCAAGA -ACGGAATACTCGGTCTTCGGTTGA -ACGGAATACTCGGTCTTCTCCGAT -ACGGAATACTCGGTCTTCTGGCAT -ACGGAATACTCGGTCTTCCGAGAT -ACGGAATACTCGGTCTTCTACCAC -ACGGAATACTCGGTCTTCCAGAAC -ACGGAATACTCGGTCTTCGTCTAC -ACGGAATACTCGGTCTTCACGTAC -ACGGAATACTCGGTCTTCAGTGAC -ACGGAATACTCGGTCTTCCTGTAG -ACGGAATACTCGGTCTTCCCTAAG -ACGGAATACTCGGTCTTCGTTCAG -ACGGAATACTCGGTCTTCGCATAG -ACGGAATACTCGGTCTTCGACAAG -ACGGAATACTCGGTCTTCAAGCAG -ACGGAATACTCGGTCTTCCGTCAA -ACGGAATACTCGGTCTTCGCTGAA -ACGGAATACTCGGTCTTCAGTACG -ACGGAATACTCGGTCTTCATCCGA -ACGGAATACTCGGTCTTCATGGGA -ACGGAATACTCGGTCTTCGTGCAA -ACGGAATACTCGGTCTTCGAGGAA -ACGGAATACTCGGTCTTCCAGGTA -ACGGAATACTCGGTCTTCGACTCT -ACGGAATACTCGGTCTTCAGTCCT -ACGGAATACTCGGTCTTCTAAGCC -ACGGAATACTCGGTCTTCATAGCC -ACGGAATACTCGGTCTTCTAACCG -ACGGAATACTCGGTCTTCATGCCA -ACGGAATACTCGCTCTCTGGAAAC -ACGGAATACTCGCTCTCTAACACC -ACGGAATACTCGCTCTCTATCGAG -ACGGAATACTCGCTCTCTCTCCTT -ACGGAATACTCGCTCTCTCCTGTT -ACGGAATACTCGCTCTCTCGGTTT -ACGGAATACTCGCTCTCTGTGGTT -ACGGAATACTCGCTCTCTGCCTTT -ACGGAATACTCGCTCTCTGGTCTT -ACGGAATACTCGCTCTCTACGCTT -ACGGAATACTCGCTCTCTAGCGTT -ACGGAATACTCGCTCTCTTTCGTC -ACGGAATACTCGCTCTCTTCTCTC -ACGGAATACTCGCTCTCTTGGATC -ACGGAATACTCGCTCTCTCACTTC -ACGGAATACTCGCTCTCTGTACTC -ACGGAATACTCGCTCTCTGATGTC -ACGGAATACTCGCTCTCTACAGTC -ACGGAATACTCGCTCTCTTTGCTG -ACGGAATACTCGCTCTCTTCCATG -ACGGAATACTCGCTCTCTTGTGTG -ACGGAATACTCGCTCTCTCTAGTG -ACGGAATACTCGCTCTCTCATCTG -ACGGAATACTCGCTCTCTGAGTTG -ACGGAATACTCGCTCTCTAGACTG -ACGGAATACTCGCTCTCTTCGGTA -ACGGAATACTCGCTCTCTTGCCTA -ACGGAATACTCGCTCTCTCCACTA -ACGGAATACTCGCTCTCTGGAGTA -ACGGAATACTCGCTCTCTTCGTCT -ACGGAATACTCGCTCTCTTGCACT -ACGGAATACTCGCTCTCTCTGACT -ACGGAATACTCGCTCTCTCAACCT -ACGGAATACTCGCTCTCTGCTACT -ACGGAATACTCGCTCTCTGGATCT -ACGGAATACTCGCTCTCTAAGGCT -ACGGAATACTCGCTCTCTTCAACC -ACGGAATACTCGCTCTCTTGTTCC -ACGGAATACTCGCTCTCTATTCCC -ACGGAATACTCGCTCTCTTTCTCG -ACGGAATACTCGCTCTCTTAGACG -ACGGAATACTCGCTCTCTGTAACG -ACGGAATACTCGCTCTCTACTTCG -ACGGAATACTCGCTCTCTTACGCA -ACGGAATACTCGCTCTCTCTTGCA -ACGGAATACTCGCTCTCTCGAACA -ACGGAATACTCGCTCTCTCAGTCA -ACGGAATACTCGCTCTCTGATCCA -ACGGAATACTCGCTCTCTACGACA -ACGGAATACTCGCTCTCTAGCTCA -ACGGAATACTCGCTCTCTTCACGT -ACGGAATACTCGCTCTCTCGTAGT -ACGGAATACTCGCTCTCTGTCAGT -ACGGAATACTCGCTCTCTGAAGGT -ACGGAATACTCGCTCTCTAACCGT -ACGGAATACTCGCTCTCTTTGTGC -ACGGAATACTCGCTCTCTCTAAGC -ACGGAATACTCGCTCTCTACTAGC -ACGGAATACTCGCTCTCTAGATGC -ACGGAATACTCGCTCTCTTGAAGG -ACGGAATACTCGCTCTCTCAATGG -ACGGAATACTCGCTCTCTATGAGG -ACGGAATACTCGCTCTCTAATGGG -ACGGAATACTCGCTCTCTTCCTGA -ACGGAATACTCGCTCTCTTAGCGA -ACGGAATACTCGCTCTCTCACAGA -ACGGAATACTCGCTCTCTGCAAGA -ACGGAATACTCGCTCTCTGGTTGA -ACGGAATACTCGCTCTCTTCCGAT -ACGGAATACTCGCTCTCTTGGCAT -ACGGAATACTCGCTCTCTCGAGAT -ACGGAATACTCGCTCTCTTACCAC -ACGGAATACTCGCTCTCTCAGAAC -ACGGAATACTCGCTCTCTGTCTAC -ACGGAATACTCGCTCTCTACGTAC -ACGGAATACTCGCTCTCTAGTGAC -ACGGAATACTCGCTCTCTCTGTAG -ACGGAATACTCGCTCTCTCCTAAG -ACGGAATACTCGCTCTCTGTTCAG -ACGGAATACTCGCTCTCTGCATAG -ACGGAATACTCGCTCTCTGACAAG -ACGGAATACTCGCTCTCTAAGCAG -ACGGAATACTCGCTCTCTCGTCAA -ACGGAATACTCGCTCTCTGCTGAA -ACGGAATACTCGCTCTCTAGTACG -ACGGAATACTCGCTCTCTATCCGA -ACGGAATACTCGCTCTCTATGGGA -ACGGAATACTCGCTCTCTGTGCAA -ACGGAATACTCGCTCTCTGAGGAA -ACGGAATACTCGCTCTCTCAGGTA -ACGGAATACTCGCTCTCTGACTCT -ACGGAATACTCGCTCTCTAGTCCT -ACGGAATACTCGCTCTCTTAAGCC -ACGGAATACTCGCTCTCTATAGCC -ACGGAATACTCGCTCTCTTAACCG -ACGGAATACTCGCTCTCTATGCCA -ACGGAATACTCGATCTGGGGAAAC -ACGGAATACTCGATCTGGAACACC -ACGGAATACTCGATCTGGATCGAG -ACGGAATACTCGATCTGGCTCCTT -ACGGAATACTCGATCTGGCCTGTT -ACGGAATACTCGATCTGGCGGTTT -ACGGAATACTCGATCTGGGTGGTT -ACGGAATACTCGATCTGGGCCTTT -ACGGAATACTCGATCTGGGGTCTT -ACGGAATACTCGATCTGGACGCTT -ACGGAATACTCGATCTGGAGCGTT -ACGGAATACTCGATCTGGTTCGTC -ACGGAATACTCGATCTGGTCTCTC -ACGGAATACTCGATCTGGTGGATC -ACGGAATACTCGATCTGGCACTTC -ACGGAATACTCGATCTGGGTACTC -ACGGAATACTCGATCTGGGATGTC -ACGGAATACTCGATCTGGACAGTC -ACGGAATACTCGATCTGGTTGCTG -ACGGAATACTCGATCTGGTCCATG -ACGGAATACTCGATCTGGTGTGTG -ACGGAATACTCGATCTGGCTAGTG -ACGGAATACTCGATCTGGCATCTG -ACGGAATACTCGATCTGGGAGTTG -ACGGAATACTCGATCTGGAGACTG -ACGGAATACTCGATCTGGTCGGTA -ACGGAATACTCGATCTGGTGCCTA -ACGGAATACTCGATCTGGCCACTA -ACGGAATACTCGATCTGGGGAGTA -ACGGAATACTCGATCTGGTCGTCT -ACGGAATACTCGATCTGGTGCACT -ACGGAATACTCGATCTGGCTGACT -ACGGAATACTCGATCTGGCAACCT -ACGGAATACTCGATCTGGGCTACT -ACGGAATACTCGATCTGGGGATCT -ACGGAATACTCGATCTGGAAGGCT -ACGGAATACTCGATCTGGTCAACC -ACGGAATACTCGATCTGGTGTTCC -ACGGAATACTCGATCTGGATTCCC -ACGGAATACTCGATCTGGTTCTCG -ACGGAATACTCGATCTGGTAGACG -ACGGAATACTCGATCTGGGTAACG -ACGGAATACTCGATCTGGACTTCG -ACGGAATACTCGATCTGGTACGCA -ACGGAATACTCGATCTGGCTTGCA -ACGGAATACTCGATCTGGCGAACA -ACGGAATACTCGATCTGGCAGTCA -ACGGAATACTCGATCTGGGATCCA -ACGGAATACTCGATCTGGACGACA -ACGGAATACTCGATCTGGAGCTCA -ACGGAATACTCGATCTGGTCACGT -ACGGAATACTCGATCTGGCGTAGT -ACGGAATACTCGATCTGGGTCAGT -ACGGAATACTCGATCTGGGAAGGT -ACGGAATACTCGATCTGGAACCGT -ACGGAATACTCGATCTGGTTGTGC -ACGGAATACTCGATCTGGCTAAGC -ACGGAATACTCGATCTGGACTAGC -ACGGAATACTCGATCTGGAGATGC -ACGGAATACTCGATCTGGTGAAGG -ACGGAATACTCGATCTGGCAATGG -ACGGAATACTCGATCTGGATGAGG -ACGGAATACTCGATCTGGAATGGG -ACGGAATACTCGATCTGGTCCTGA -ACGGAATACTCGATCTGGTAGCGA -ACGGAATACTCGATCTGGCACAGA -ACGGAATACTCGATCTGGGCAAGA -ACGGAATACTCGATCTGGGGTTGA -ACGGAATACTCGATCTGGTCCGAT -ACGGAATACTCGATCTGGTGGCAT -ACGGAATACTCGATCTGGCGAGAT -ACGGAATACTCGATCTGGTACCAC -ACGGAATACTCGATCTGGCAGAAC -ACGGAATACTCGATCTGGGTCTAC -ACGGAATACTCGATCTGGACGTAC -ACGGAATACTCGATCTGGAGTGAC -ACGGAATACTCGATCTGGCTGTAG -ACGGAATACTCGATCTGGCCTAAG -ACGGAATACTCGATCTGGGTTCAG -ACGGAATACTCGATCTGGGCATAG -ACGGAATACTCGATCTGGGACAAG -ACGGAATACTCGATCTGGAAGCAG -ACGGAATACTCGATCTGGCGTCAA -ACGGAATACTCGATCTGGGCTGAA -ACGGAATACTCGATCTGGAGTACG -ACGGAATACTCGATCTGGATCCGA -ACGGAATACTCGATCTGGATGGGA -ACGGAATACTCGATCTGGGTGCAA -ACGGAATACTCGATCTGGGAGGAA -ACGGAATACTCGATCTGGCAGGTA -ACGGAATACTCGATCTGGGACTCT -ACGGAATACTCGATCTGGAGTCCT -ACGGAATACTCGATCTGGTAAGCC -ACGGAATACTCGATCTGGATAGCC -ACGGAATACTCGATCTGGTAACCG -ACGGAATACTCGATCTGGATGCCA -ACGGAATACTCGTTCCACGGAAAC -ACGGAATACTCGTTCCACAACACC -ACGGAATACTCGTTCCACATCGAG -ACGGAATACTCGTTCCACCTCCTT -ACGGAATACTCGTTCCACCCTGTT -ACGGAATACTCGTTCCACCGGTTT -ACGGAATACTCGTTCCACGTGGTT -ACGGAATACTCGTTCCACGCCTTT -ACGGAATACTCGTTCCACGGTCTT -ACGGAATACTCGTTCCACACGCTT -ACGGAATACTCGTTCCACAGCGTT -ACGGAATACTCGTTCCACTTCGTC -ACGGAATACTCGTTCCACTCTCTC -ACGGAATACTCGTTCCACTGGATC -ACGGAATACTCGTTCCACCACTTC -ACGGAATACTCGTTCCACGTACTC -ACGGAATACTCGTTCCACGATGTC -ACGGAATACTCGTTCCACACAGTC -ACGGAATACTCGTTCCACTTGCTG -ACGGAATACTCGTTCCACTCCATG -ACGGAATACTCGTTCCACTGTGTG -ACGGAATACTCGTTCCACCTAGTG -ACGGAATACTCGTTCCACCATCTG -ACGGAATACTCGTTCCACGAGTTG -ACGGAATACTCGTTCCACAGACTG -ACGGAATACTCGTTCCACTCGGTA -ACGGAATACTCGTTCCACTGCCTA -ACGGAATACTCGTTCCACCCACTA -ACGGAATACTCGTTCCACGGAGTA -ACGGAATACTCGTTCCACTCGTCT -ACGGAATACTCGTTCCACTGCACT -ACGGAATACTCGTTCCACCTGACT -ACGGAATACTCGTTCCACCAACCT -ACGGAATACTCGTTCCACGCTACT -ACGGAATACTCGTTCCACGGATCT -ACGGAATACTCGTTCCACAAGGCT -ACGGAATACTCGTTCCACTCAACC -ACGGAATACTCGTTCCACTGTTCC -ACGGAATACTCGTTCCACATTCCC -ACGGAATACTCGTTCCACTTCTCG -ACGGAATACTCGTTCCACTAGACG -ACGGAATACTCGTTCCACGTAACG -ACGGAATACTCGTTCCACACTTCG -ACGGAATACTCGTTCCACTACGCA -ACGGAATACTCGTTCCACCTTGCA -ACGGAATACTCGTTCCACCGAACA -ACGGAATACTCGTTCCACCAGTCA -ACGGAATACTCGTTCCACGATCCA -ACGGAATACTCGTTCCACACGACA -ACGGAATACTCGTTCCACAGCTCA -ACGGAATACTCGTTCCACTCACGT -ACGGAATACTCGTTCCACCGTAGT -ACGGAATACTCGTTCCACGTCAGT -ACGGAATACTCGTTCCACGAAGGT -ACGGAATACTCGTTCCACAACCGT -ACGGAATACTCGTTCCACTTGTGC -ACGGAATACTCGTTCCACCTAAGC -ACGGAATACTCGTTCCACACTAGC -ACGGAATACTCGTTCCACAGATGC -ACGGAATACTCGTTCCACTGAAGG -ACGGAATACTCGTTCCACCAATGG -ACGGAATACTCGTTCCACATGAGG -ACGGAATACTCGTTCCACAATGGG -ACGGAATACTCGTTCCACTCCTGA -ACGGAATACTCGTTCCACTAGCGA -ACGGAATACTCGTTCCACCACAGA -ACGGAATACTCGTTCCACGCAAGA -ACGGAATACTCGTTCCACGGTTGA -ACGGAATACTCGTTCCACTCCGAT -ACGGAATACTCGTTCCACTGGCAT -ACGGAATACTCGTTCCACCGAGAT -ACGGAATACTCGTTCCACTACCAC -ACGGAATACTCGTTCCACCAGAAC -ACGGAATACTCGTTCCACGTCTAC -ACGGAATACTCGTTCCACACGTAC -ACGGAATACTCGTTCCACAGTGAC -ACGGAATACTCGTTCCACCTGTAG -ACGGAATACTCGTTCCACCCTAAG -ACGGAATACTCGTTCCACGTTCAG -ACGGAATACTCGTTCCACGCATAG -ACGGAATACTCGTTCCACGACAAG -ACGGAATACTCGTTCCACAAGCAG -ACGGAATACTCGTTCCACCGTCAA -ACGGAATACTCGTTCCACGCTGAA -ACGGAATACTCGTTCCACAGTACG -ACGGAATACTCGTTCCACATCCGA -ACGGAATACTCGTTCCACATGGGA -ACGGAATACTCGTTCCACGTGCAA -ACGGAATACTCGTTCCACGAGGAA -ACGGAATACTCGTTCCACCAGGTA -ACGGAATACTCGTTCCACGACTCT -ACGGAATACTCGTTCCACAGTCCT -ACGGAATACTCGTTCCACTAAGCC -ACGGAATACTCGTTCCACATAGCC -ACGGAATACTCGTTCCACTAACCG -ACGGAATACTCGTTCCACATGCCA -ACGGAATACTCGCTCGTAGGAAAC -ACGGAATACTCGCTCGTAAACACC -ACGGAATACTCGCTCGTAATCGAG -ACGGAATACTCGCTCGTACTCCTT -ACGGAATACTCGCTCGTACCTGTT -ACGGAATACTCGCTCGTACGGTTT -ACGGAATACTCGCTCGTAGTGGTT -ACGGAATACTCGCTCGTAGCCTTT -ACGGAATACTCGCTCGTAGGTCTT -ACGGAATACTCGCTCGTAACGCTT -ACGGAATACTCGCTCGTAAGCGTT -ACGGAATACTCGCTCGTATTCGTC -ACGGAATACTCGCTCGTATCTCTC -ACGGAATACTCGCTCGTATGGATC -ACGGAATACTCGCTCGTACACTTC -ACGGAATACTCGCTCGTAGTACTC -ACGGAATACTCGCTCGTAGATGTC -ACGGAATACTCGCTCGTAACAGTC -ACGGAATACTCGCTCGTATTGCTG -ACGGAATACTCGCTCGTATCCATG -ACGGAATACTCGCTCGTATGTGTG -ACGGAATACTCGCTCGTACTAGTG -ACGGAATACTCGCTCGTACATCTG -ACGGAATACTCGCTCGTAGAGTTG -ACGGAATACTCGCTCGTAAGACTG -ACGGAATACTCGCTCGTATCGGTA -ACGGAATACTCGCTCGTATGCCTA -ACGGAATACTCGCTCGTACCACTA -ACGGAATACTCGCTCGTAGGAGTA -ACGGAATACTCGCTCGTATCGTCT -ACGGAATACTCGCTCGTATGCACT -ACGGAATACTCGCTCGTACTGACT -ACGGAATACTCGCTCGTACAACCT -ACGGAATACTCGCTCGTAGCTACT -ACGGAATACTCGCTCGTAGGATCT -ACGGAATACTCGCTCGTAAAGGCT -ACGGAATACTCGCTCGTATCAACC -ACGGAATACTCGCTCGTATGTTCC -ACGGAATACTCGCTCGTAATTCCC -ACGGAATACTCGCTCGTATTCTCG -ACGGAATACTCGCTCGTATAGACG -ACGGAATACTCGCTCGTAGTAACG -ACGGAATACTCGCTCGTAACTTCG -ACGGAATACTCGCTCGTATACGCA -ACGGAATACTCGCTCGTACTTGCA -ACGGAATACTCGCTCGTACGAACA -ACGGAATACTCGCTCGTACAGTCA -ACGGAATACTCGCTCGTAGATCCA -ACGGAATACTCGCTCGTAACGACA -ACGGAATACTCGCTCGTAAGCTCA -ACGGAATACTCGCTCGTATCACGT -ACGGAATACTCGCTCGTACGTAGT -ACGGAATACTCGCTCGTAGTCAGT -ACGGAATACTCGCTCGTAGAAGGT -ACGGAATACTCGCTCGTAAACCGT -ACGGAATACTCGCTCGTATTGTGC -ACGGAATACTCGCTCGTACTAAGC -ACGGAATACTCGCTCGTAACTAGC -ACGGAATACTCGCTCGTAAGATGC -ACGGAATACTCGCTCGTATGAAGG -ACGGAATACTCGCTCGTACAATGG -ACGGAATACTCGCTCGTAATGAGG -ACGGAATACTCGCTCGTAAATGGG -ACGGAATACTCGCTCGTATCCTGA -ACGGAATACTCGCTCGTATAGCGA -ACGGAATACTCGCTCGTACACAGA -ACGGAATACTCGCTCGTAGCAAGA -ACGGAATACTCGCTCGTAGGTTGA -ACGGAATACTCGCTCGTATCCGAT -ACGGAATACTCGCTCGTATGGCAT -ACGGAATACTCGCTCGTACGAGAT -ACGGAATACTCGCTCGTATACCAC -ACGGAATACTCGCTCGTACAGAAC -ACGGAATACTCGCTCGTAGTCTAC -ACGGAATACTCGCTCGTAACGTAC -ACGGAATACTCGCTCGTAAGTGAC -ACGGAATACTCGCTCGTACTGTAG -ACGGAATACTCGCTCGTACCTAAG -ACGGAATACTCGCTCGTAGTTCAG -ACGGAATACTCGCTCGTAGCATAG -ACGGAATACTCGCTCGTAGACAAG -ACGGAATACTCGCTCGTAAAGCAG -ACGGAATACTCGCTCGTACGTCAA -ACGGAATACTCGCTCGTAGCTGAA -ACGGAATACTCGCTCGTAAGTACG -ACGGAATACTCGCTCGTAATCCGA -ACGGAATACTCGCTCGTAATGGGA -ACGGAATACTCGCTCGTAGTGCAA -ACGGAATACTCGCTCGTAGAGGAA -ACGGAATACTCGCTCGTACAGGTA -ACGGAATACTCGCTCGTAGACTCT -ACGGAATACTCGCTCGTAAGTCCT -ACGGAATACTCGCTCGTATAAGCC -ACGGAATACTCGCTCGTAATAGCC -ACGGAATACTCGCTCGTATAACCG -ACGGAATACTCGCTCGTAATGCCA -ACGGAATACTCGGTCGATGGAAAC -ACGGAATACTCGGTCGATAACACC -ACGGAATACTCGGTCGATATCGAG -ACGGAATACTCGGTCGATCTCCTT -ACGGAATACTCGGTCGATCCTGTT -ACGGAATACTCGGTCGATCGGTTT -ACGGAATACTCGGTCGATGTGGTT -ACGGAATACTCGGTCGATGCCTTT -ACGGAATACTCGGTCGATGGTCTT -ACGGAATACTCGGTCGATACGCTT -ACGGAATACTCGGTCGATAGCGTT -ACGGAATACTCGGTCGATTTCGTC -ACGGAATACTCGGTCGATTCTCTC -ACGGAATACTCGGTCGATTGGATC -ACGGAATACTCGGTCGATCACTTC -ACGGAATACTCGGTCGATGTACTC -ACGGAATACTCGGTCGATGATGTC -ACGGAATACTCGGTCGATACAGTC -ACGGAATACTCGGTCGATTTGCTG -ACGGAATACTCGGTCGATTCCATG -ACGGAATACTCGGTCGATTGTGTG -ACGGAATACTCGGTCGATCTAGTG -ACGGAATACTCGGTCGATCATCTG -ACGGAATACTCGGTCGATGAGTTG -ACGGAATACTCGGTCGATAGACTG -ACGGAATACTCGGTCGATTCGGTA -ACGGAATACTCGGTCGATTGCCTA -ACGGAATACTCGGTCGATCCACTA -ACGGAATACTCGGTCGATGGAGTA -ACGGAATACTCGGTCGATTCGTCT -ACGGAATACTCGGTCGATTGCACT -ACGGAATACTCGGTCGATCTGACT -ACGGAATACTCGGTCGATCAACCT -ACGGAATACTCGGTCGATGCTACT -ACGGAATACTCGGTCGATGGATCT -ACGGAATACTCGGTCGATAAGGCT -ACGGAATACTCGGTCGATTCAACC -ACGGAATACTCGGTCGATTGTTCC -ACGGAATACTCGGTCGATATTCCC -ACGGAATACTCGGTCGATTTCTCG -ACGGAATACTCGGTCGATTAGACG -ACGGAATACTCGGTCGATGTAACG -ACGGAATACTCGGTCGATACTTCG -ACGGAATACTCGGTCGATTACGCA -ACGGAATACTCGGTCGATCTTGCA -ACGGAATACTCGGTCGATCGAACA -ACGGAATACTCGGTCGATCAGTCA -ACGGAATACTCGGTCGATGATCCA -ACGGAATACTCGGTCGATACGACA -ACGGAATACTCGGTCGATAGCTCA -ACGGAATACTCGGTCGATTCACGT -ACGGAATACTCGGTCGATCGTAGT -ACGGAATACTCGGTCGATGTCAGT -ACGGAATACTCGGTCGATGAAGGT -ACGGAATACTCGGTCGATAACCGT -ACGGAATACTCGGTCGATTTGTGC -ACGGAATACTCGGTCGATCTAAGC -ACGGAATACTCGGTCGATACTAGC -ACGGAATACTCGGTCGATAGATGC -ACGGAATACTCGGTCGATTGAAGG -ACGGAATACTCGGTCGATCAATGG -ACGGAATACTCGGTCGATATGAGG -ACGGAATACTCGGTCGATAATGGG -ACGGAATACTCGGTCGATTCCTGA -ACGGAATACTCGGTCGATTAGCGA -ACGGAATACTCGGTCGATCACAGA -ACGGAATACTCGGTCGATGCAAGA -ACGGAATACTCGGTCGATGGTTGA -ACGGAATACTCGGTCGATTCCGAT -ACGGAATACTCGGTCGATTGGCAT -ACGGAATACTCGGTCGATCGAGAT -ACGGAATACTCGGTCGATTACCAC -ACGGAATACTCGGTCGATCAGAAC -ACGGAATACTCGGTCGATGTCTAC -ACGGAATACTCGGTCGATACGTAC -ACGGAATACTCGGTCGATAGTGAC -ACGGAATACTCGGTCGATCTGTAG -ACGGAATACTCGGTCGATCCTAAG -ACGGAATACTCGGTCGATGTTCAG -ACGGAATACTCGGTCGATGCATAG -ACGGAATACTCGGTCGATGACAAG -ACGGAATACTCGGTCGATAAGCAG -ACGGAATACTCGGTCGATCGTCAA -ACGGAATACTCGGTCGATGCTGAA -ACGGAATACTCGGTCGATAGTACG -ACGGAATACTCGGTCGATATCCGA -ACGGAATACTCGGTCGATATGGGA -ACGGAATACTCGGTCGATGTGCAA -ACGGAATACTCGGTCGATGAGGAA -ACGGAATACTCGGTCGATCAGGTA -ACGGAATACTCGGTCGATGACTCT -ACGGAATACTCGGTCGATAGTCCT -ACGGAATACTCGGTCGATTAAGCC -ACGGAATACTCGGTCGATATAGCC -ACGGAATACTCGGTCGATTAACCG -ACGGAATACTCGGTCGATATGCCA -ACGGAATACTCGGTCACAGGAAAC -ACGGAATACTCGGTCACAAACACC -ACGGAATACTCGGTCACAATCGAG -ACGGAATACTCGGTCACACTCCTT -ACGGAATACTCGGTCACACCTGTT -ACGGAATACTCGGTCACACGGTTT -ACGGAATACTCGGTCACAGTGGTT -ACGGAATACTCGGTCACAGCCTTT -ACGGAATACTCGGTCACAGGTCTT -ACGGAATACTCGGTCACAACGCTT -ACGGAATACTCGGTCACAAGCGTT -ACGGAATACTCGGTCACATTCGTC -ACGGAATACTCGGTCACATCTCTC -ACGGAATACTCGGTCACATGGATC -ACGGAATACTCGGTCACACACTTC -ACGGAATACTCGGTCACAGTACTC -ACGGAATACTCGGTCACAGATGTC -ACGGAATACTCGGTCACAACAGTC -ACGGAATACTCGGTCACATTGCTG -ACGGAATACTCGGTCACATCCATG -ACGGAATACTCGGTCACATGTGTG -ACGGAATACTCGGTCACACTAGTG -ACGGAATACTCGGTCACACATCTG -ACGGAATACTCGGTCACAGAGTTG -ACGGAATACTCGGTCACAAGACTG -ACGGAATACTCGGTCACATCGGTA -ACGGAATACTCGGTCACATGCCTA -ACGGAATACTCGGTCACACCACTA -ACGGAATACTCGGTCACAGGAGTA -ACGGAATACTCGGTCACATCGTCT -ACGGAATACTCGGTCACATGCACT -ACGGAATACTCGGTCACACTGACT -ACGGAATACTCGGTCACACAACCT -ACGGAATACTCGGTCACAGCTACT -ACGGAATACTCGGTCACAGGATCT -ACGGAATACTCGGTCACAAAGGCT -ACGGAATACTCGGTCACATCAACC -ACGGAATACTCGGTCACATGTTCC -ACGGAATACTCGGTCACAATTCCC -ACGGAATACTCGGTCACATTCTCG -ACGGAATACTCGGTCACATAGACG -ACGGAATACTCGGTCACAGTAACG -ACGGAATACTCGGTCACAACTTCG -ACGGAATACTCGGTCACATACGCA -ACGGAATACTCGGTCACACTTGCA -ACGGAATACTCGGTCACACGAACA -ACGGAATACTCGGTCACACAGTCA -ACGGAATACTCGGTCACAGATCCA -ACGGAATACTCGGTCACAACGACA -ACGGAATACTCGGTCACAAGCTCA -ACGGAATACTCGGTCACATCACGT -ACGGAATACTCGGTCACACGTAGT -ACGGAATACTCGGTCACAGTCAGT -ACGGAATACTCGGTCACAGAAGGT -ACGGAATACTCGGTCACAAACCGT -ACGGAATACTCGGTCACATTGTGC -ACGGAATACTCGGTCACACTAAGC -ACGGAATACTCGGTCACAACTAGC -ACGGAATACTCGGTCACAAGATGC -ACGGAATACTCGGTCACATGAAGG -ACGGAATACTCGGTCACACAATGG -ACGGAATACTCGGTCACAATGAGG -ACGGAATACTCGGTCACAAATGGG -ACGGAATACTCGGTCACATCCTGA -ACGGAATACTCGGTCACATAGCGA -ACGGAATACTCGGTCACACACAGA -ACGGAATACTCGGTCACAGCAAGA -ACGGAATACTCGGTCACAGGTTGA -ACGGAATACTCGGTCACATCCGAT -ACGGAATACTCGGTCACATGGCAT -ACGGAATACTCGGTCACACGAGAT -ACGGAATACTCGGTCACATACCAC -ACGGAATACTCGGTCACACAGAAC -ACGGAATACTCGGTCACAGTCTAC -ACGGAATACTCGGTCACAACGTAC -ACGGAATACTCGGTCACAAGTGAC -ACGGAATACTCGGTCACACTGTAG -ACGGAATACTCGGTCACACCTAAG -ACGGAATACTCGGTCACAGTTCAG -ACGGAATACTCGGTCACAGCATAG -ACGGAATACTCGGTCACAGACAAG -ACGGAATACTCGGTCACAAAGCAG -ACGGAATACTCGGTCACACGTCAA -ACGGAATACTCGGTCACAGCTGAA -ACGGAATACTCGGTCACAAGTACG -ACGGAATACTCGGTCACAATCCGA -ACGGAATACTCGGTCACAATGGGA -ACGGAATACTCGGTCACAGTGCAA -ACGGAATACTCGGTCACAGAGGAA -ACGGAATACTCGGTCACACAGGTA -ACGGAATACTCGGTCACAGACTCT -ACGGAATACTCGGTCACAAGTCCT -ACGGAATACTCGGTCACATAAGCC -ACGGAATACTCGGTCACAATAGCC -ACGGAATACTCGGTCACATAACCG -ACGGAATACTCGGTCACAATGCCA -ACGGAATACTCGCTGTTGGGAAAC -ACGGAATACTCGCTGTTGAACACC -ACGGAATACTCGCTGTTGATCGAG -ACGGAATACTCGCTGTTGCTCCTT -ACGGAATACTCGCTGTTGCCTGTT -ACGGAATACTCGCTGTTGCGGTTT -ACGGAATACTCGCTGTTGGTGGTT -ACGGAATACTCGCTGTTGGCCTTT -ACGGAATACTCGCTGTTGGGTCTT -ACGGAATACTCGCTGTTGACGCTT -ACGGAATACTCGCTGTTGAGCGTT -ACGGAATACTCGCTGTTGTTCGTC -ACGGAATACTCGCTGTTGTCTCTC -ACGGAATACTCGCTGTTGTGGATC -ACGGAATACTCGCTGTTGCACTTC -ACGGAATACTCGCTGTTGGTACTC -ACGGAATACTCGCTGTTGGATGTC -ACGGAATACTCGCTGTTGACAGTC -ACGGAATACTCGCTGTTGTTGCTG -ACGGAATACTCGCTGTTGTCCATG -ACGGAATACTCGCTGTTGTGTGTG -ACGGAATACTCGCTGTTGCTAGTG -ACGGAATACTCGCTGTTGCATCTG -ACGGAATACTCGCTGTTGGAGTTG -ACGGAATACTCGCTGTTGAGACTG -ACGGAATACTCGCTGTTGTCGGTA -ACGGAATACTCGCTGTTGTGCCTA -ACGGAATACTCGCTGTTGCCACTA -ACGGAATACTCGCTGTTGGGAGTA -ACGGAATACTCGCTGTTGTCGTCT -ACGGAATACTCGCTGTTGTGCACT -ACGGAATACTCGCTGTTGCTGACT -ACGGAATACTCGCTGTTGCAACCT -ACGGAATACTCGCTGTTGGCTACT -ACGGAATACTCGCTGTTGGGATCT -ACGGAATACTCGCTGTTGAAGGCT -ACGGAATACTCGCTGTTGTCAACC -ACGGAATACTCGCTGTTGTGTTCC -ACGGAATACTCGCTGTTGATTCCC -ACGGAATACTCGCTGTTGTTCTCG -ACGGAATACTCGCTGTTGTAGACG -ACGGAATACTCGCTGTTGGTAACG -ACGGAATACTCGCTGTTGACTTCG -ACGGAATACTCGCTGTTGTACGCA -ACGGAATACTCGCTGTTGCTTGCA -ACGGAATACTCGCTGTTGCGAACA -ACGGAATACTCGCTGTTGCAGTCA -ACGGAATACTCGCTGTTGGATCCA -ACGGAATACTCGCTGTTGACGACA -ACGGAATACTCGCTGTTGAGCTCA -ACGGAATACTCGCTGTTGTCACGT -ACGGAATACTCGCTGTTGCGTAGT -ACGGAATACTCGCTGTTGGTCAGT -ACGGAATACTCGCTGTTGGAAGGT -ACGGAATACTCGCTGTTGAACCGT -ACGGAATACTCGCTGTTGTTGTGC -ACGGAATACTCGCTGTTGCTAAGC -ACGGAATACTCGCTGTTGACTAGC -ACGGAATACTCGCTGTTGAGATGC -ACGGAATACTCGCTGTTGTGAAGG -ACGGAATACTCGCTGTTGCAATGG -ACGGAATACTCGCTGTTGATGAGG -ACGGAATACTCGCTGTTGAATGGG -ACGGAATACTCGCTGTTGTCCTGA -ACGGAATACTCGCTGTTGTAGCGA -ACGGAATACTCGCTGTTGCACAGA -ACGGAATACTCGCTGTTGGCAAGA -ACGGAATACTCGCTGTTGGGTTGA -ACGGAATACTCGCTGTTGTCCGAT -ACGGAATACTCGCTGTTGTGGCAT -ACGGAATACTCGCTGTTGCGAGAT -ACGGAATACTCGCTGTTGTACCAC -ACGGAATACTCGCTGTTGCAGAAC -ACGGAATACTCGCTGTTGGTCTAC -ACGGAATACTCGCTGTTGACGTAC -ACGGAATACTCGCTGTTGAGTGAC -ACGGAATACTCGCTGTTGCTGTAG -ACGGAATACTCGCTGTTGCCTAAG -ACGGAATACTCGCTGTTGGTTCAG -ACGGAATACTCGCTGTTGGCATAG -ACGGAATACTCGCTGTTGGACAAG -ACGGAATACTCGCTGTTGAAGCAG -ACGGAATACTCGCTGTTGCGTCAA -ACGGAATACTCGCTGTTGGCTGAA -ACGGAATACTCGCTGTTGAGTACG -ACGGAATACTCGCTGTTGATCCGA -ACGGAATACTCGCTGTTGATGGGA -ACGGAATACTCGCTGTTGGTGCAA -ACGGAATACTCGCTGTTGGAGGAA -ACGGAATACTCGCTGTTGCAGGTA -ACGGAATACTCGCTGTTGGACTCT -ACGGAATACTCGCTGTTGAGTCCT -ACGGAATACTCGCTGTTGTAAGCC -ACGGAATACTCGCTGTTGATAGCC -ACGGAATACTCGCTGTTGTAACCG -ACGGAATACTCGCTGTTGATGCCA -ACGGAATACTCGATGTCCGGAAAC -ACGGAATACTCGATGTCCAACACC -ACGGAATACTCGATGTCCATCGAG -ACGGAATACTCGATGTCCCTCCTT -ACGGAATACTCGATGTCCCCTGTT -ACGGAATACTCGATGTCCCGGTTT -ACGGAATACTCGATGTCCGTGGTT -ACGGAATACTCGATGTCCGCCTTT -ACGGAATACTCGATGTCCGGTCTT -ACGGAATACTCGATGTCCACGCTT -ACGGAATACTCGATGTCCAGCGTT -ACGGAATACTCGATGTCCTTCGTC -ACGGAATACTCGATGTCCTCTCTC -ACGGAATACTCGATGTCCTGGATC -ACGGAATACTCGATGTCCCACTTC -ACGGAATACTCGATGTCCGTACTC -ACGGAATACTCGATGTCCGATGTC -ACGGAATACTCGATGTCCACAGTC -ACGGAATACTCGATGTCCTTGCTG -ACGGAATACTCGATGTCCTCCATG -ACGGAATACTCGATGTCCTGTGTG -ACGGAATACTCGATGTCCCTAGTG -ACGGAATACTCGATGTCCCATCTG -ACGGAATACTCGATGTCCGAGTTG -ACGGAATACTCGATGTCCAGACTG -ACGGAATACTCGATGTCCTCGGTA -ACGGAATACTCGATGTCCTGCCTA -ACGGAATACTCGATGTCCCCACTA -ACGGAATACTCGATGTCCGGAGTA -ACGGAATACTCGATGTCCTCGTCT -ACGGAATACTCGATGTCCTGCACT -ACGGAATACTCGATGTCCCTGACT -ACGGAATACTCGATGTCCCAACCT -ACGGAATACTCGATGTCCGCTACT -ACGGAATACTCGATGTCCGGATCT -ACGGAATACTCGATGTCCAAGGCT -ACGGAATACTCGATGTCCTCAACC -ACGGAATACTCGATGTCCTGTTCC -ACGGAATACTCGATGTCCATTCCC -ACGGAATACTCGATGTCCTTCTCG -ACGGAATACTCGATGTCCTAGACG -ACGGAATACTCGATGTCCGTAACG -ACGGAATACTCGATGTCCACTTCG -ACGGAATACTCGATGTCCTACGCA -ACGGAATACTCGATGTCCCTTGCA -ACGGAATACTCGATGTCCCGAACA -ACGGAATACTCGATGTCCCAGTCA -ACGGAATACTCGATGTCCGATCCA -ACGGAATACTCGATGTCCACGACA -ACGGAATACTCGATGTCCAGCTCA -ACGGAATACTCGATGTCCTCACGT -ACGGAATACTCGATGTCCCGTAGT -ACGGAATACTCGATGTCCGTCAGT -ACGGAATACTCGATGTCCGAAGGT -ACGGAATACTCGATGTCCAACCGT -ACGGAATACTCGATGTCCTTGTGC -ACGGAATACTCGATGTCCCTAAGC -ACGGAATACTCGATGTCCACTAGC -ACGGAATACTCGATGTCCAGATGC -ACGGAATACTCGATGTCCTGAAGG -ACGGAATACTCGATGTCCCAATGG -ACGGAATACTCGATGTCCATGAGG -ACGGAATACTCGATGTCCAATGGG -ACGGAATACTCGATGTCCTCCTGA -ACGGAATACTCGATGTCCTAGCGA -ACGGAATACTCGATGTCCCACAGA -ACGGAATACTCGATGTCCGCAAGA -ACGGAATACTCGATGTCCGGTTGA -ACGGAATACTCGATGTCCTCCGAT -ACGGAATACTCGATGTCCTGGCAT -ACGGAATACTCGATGTCCCGAGAT -ACGGAATACTCGATGTCCTACCAC -ACGGAATACTCGATGTCCCAGAAC -ACGGAATACTCGATGTCCGTCTAC -ACGGAATACTCGATGTCCACGTAC -ACGGAATACTCGATGTCCAGTGAC -ACGGAATACTCGATGTCCCTGTAG -ACGGAATACTCGATGTCCCCTAAG -ACGGAATACTCGATGTCCGTTCAG -ACGGAATACTCGATGTCCGCATAG -ACGGAATACTCGATGTCCGACAAG -ACGGAATACTCGATGTCCAAGCAG -ACGGAATACTCGATGTCCCGTCAA -ACGGAATACTCGATGTCCGCTGAA -ACGGAATACTCGATGTCCAGTACG -ACGGAATACTCGATGTCCATCCGA -ACGGAATACTCGATGTCCATGGGA -ACGGAATACTCGATGTCCGTGCAA -ACGGAATACTCGATGTCCGAGGAA -ACGGAATACTCGATGTCCCAGGTA -ACGGAATACTCGATGTCCGACTCT -ACGGAATACTCGATGTCCAGTCCT -ACGGAATACTCGATGTCCTAAGCC -ACGGAATACTCGATGTCCATAGCC -ACGGAATACTCGATGTCCTAACCG -ACGGAATACTCGATGTCCATGCCA -ACGGAATACTCGGTGTGTGGAAAC -ACGGAATACTCGGTGTGTAACACC -ACGGAATACTCGGTGTGTATCGAG -ACGGAATACTCGGTGTGTCTCCTT -ACGGAATACTCGGTGTGTCCTGTT -ACGGAATACTCGGTGTGTCGGTTT -ACGGAATACTCGGTGTGTGTGGTT -ACGGAATACTCGGTGTGTGCCTTT -ACGGAATACTCGGTGTGTGGTCTT -ACGGAATACTCGGTGTGTACGCTT -ACGGAATACTCGGTGTGTAGCGTT -ACGGAATACTCGGTGTGTTTCGTC -ACGGAATACTCGGTGTGTTCTCTC -ACGGAATACTCGGTGTGTTGGATC -ACGGAATACTCGGTGTGTCACTTC -ACGGAATACTCGGTGTGTGTACTC -ACGGAATACTCGGTGTGTGATGTC -ACGGAATACTCGGTGTGTACAGTC -ACGGAATACTCGGTGTGTTTGCTG -ACGGAATACTCGGTGTGTTCCATG -ACGGAATACTCGGTGTGTTGTGTG -ACGGAATACTCGGTGTGTCTAGTG -ACGGAATACTCGGTGTGTCATCTG -ACGGAATACTCGGTGTGTGAGTTG -ACGGAATACTCGGTGTGTAGACTG -ACGGAATACTCGGTGTGTTCGGTA -ACGGAATACTCGGTGTGTTGCCTA -ACGGAATACTCGGTGTGTCCACTA -ACGGAATACTCGGTGTGTGGAGTA -ACGGAATACTCGGTGTGTTCGTCT -ACGGAATACTCGGTGTGTTGCACT -ACGGAATACTCGGTGTGTCTGACT -ACGGAATACTCGGTGTGTCAACCT -ACGGAATACTCGGTGTGTGCTACT -ACGGAATACTCGGTGTGTGGATCT -ACGGAATACTCGGTGTGTAAGGCT -ACGGAATACTCGGTGTGTTCAACC -ACGGAATACTCGGTGTGTTGTTCC -ACGGAATACTCGGTGTGTATTCCC -ACGGAATACTCGGTGTGTTTCTCG -ACGGAATACTCGGTGTGTTAGACG -ACGGAATACTCGGTGTGTGTAACG -ACGGAATACTCGGTGTGTACTTCG -ACGGAATACTCGGTGTGTTACGCA -ACGGAATACTCGGTGTGTCTTGCA -ACGGAATACTCGGTGTGTCGAACA -ACGGAATACTCGGTGTGTCAGTCA -ACGGAATACTCGGTGTGTGATCCA -ACGGAATACTCGGTGTGTACGACA -ACGGAATACTCGGTGTGTAGCTCA -ACGGAATACTCGGTGTGTTCACGT -ACGGAATACTCGGTGTGTCGTAGT -ACGGAATACTCGGTGTGTGTCAGT -ACGGAATACTCGGTGTGTGAAGGT -ACGGAATACTCGGTGTGTAACCGT -ACGGAATACTCGGTGTGTTTGTGC -ACGGAATACTCGGTGTGTCTAAGC -ACGGAATACTCGGTGTGTACTAGC -ACGGAATACTCGGTGTGTAGATGC -ACGGAATACTCGGTGTGTTGAAGG -ACGGAATACTCGGTGTGTCAATGG -ACGGAATACTCGGTGTGTATGAGG -ACGGAATACTCGGTGTGTAATGGG -ACGGAATACTCGGTGTGTTCCTGA -ACGGAATACTCGGTGTGTTAGCGA -ACGGAATACTCGGTGTGTCACAGA -ACGGAATACTCGGTGTGTGCAAGA -ACGGAATACTCGGTGTGTGGTTGA -ACGGAATACTCGGTGTGTTCCGAT -ACGGAATACTCGGTGTGTTGGCAT -ACGGAATACTCGGTGTGTCGAGAT -ACGGAATACTCGGTGTGTTACCAC -ACGGAATACTCGGTGTGTCAGAAC -ACGGAATACTCGGTGTGTGTCTAC -ACGGAATACTCGGTGTGTACGTAC -ACGGAATACTCGGTGTGTAGTGAC -ACGGAATACTCGGTGTGTCTGTAG -ACGGAATACTCGGTGTGTCCTAAG -ACGGAATACTCGGTGTGTGTTCAG -ACGGAATACTCGGTGTGTGCATAG -ACGGAATACTCGGTGTGTGACAAG -ACGGAATACTCGGTGTGTAAGCAG -ACGGAATACTCGGTGTGTCGTCAA -ACGGAATACTCGGTGTGTGCTGAA -ACGGAATACTCGGTGTGTAGTACG -ACGGAATACTCGGTGTGTATCCGA -ACGGAATACTCGGTGTGTATGGGA -ACGGAATACTCGGTGTGTGTGCAA -ACGGAATACTCGGTGTGTGAGGAA -ACGGAATACTCGGTGTGTCAGGTA -ACGGAATACTCGGTGTGTGACTCT -ACGGAATACTCGGTGTGTAGTCCT -ACGGAATACTCGGTGTGTTAAGCC -ACGGAATACTCGGTGTGTATAGCC -ACGGAATACTCGGTGTGTTAACCG -ACGGAATACTCGGTGTGTATGCCA -ACGGAATACTCGGTGCTAGGAAAC -ACGGAATACTCGGTGCTAAACACC -ACGGAATACTCGGTGCTAATCGAG -ACGGAATACTCGGTGCTACTCCTT -ACGGAATACTCGGTGCTACCTGTT -ACGGAATACTCGGTGCTACGGTTT -ACGGAATACTCGGTGCTAGTGGTT -ACGGAATACTCGGTGCTAGCCTTT -ACGGAATACTCGGTGCTAGGTCTT -ACGGAATACTCGGTGCTAACGCTT -ACGGAATACTCGGTGCTAAGCGTT -ACGGAATACTCGGTGCTATTCGTC -ACGGAATACTCGGTGCTATCTCTC -ACGGAATACTCGGTGCTATGGATC -ACGGAATACTCGGTGCTACACTTC -ACGGAATACTCGGTGCTAGTACTC -ACGGAATACTCGGTGCTAGATGTC -ACGGAATACTCGGTGCTAACAGTC -ACGGAATACTCGGTGCTATTGCTG -ACGGAATACTCGGTGCTATCCATG -ACGGAATACTCGGTGCTATGTGTG -ACGGAATACTCGGTGCTACTAGTG -ACGGAATACTCGGTGCTACATCTG -ACGGAATACTCGGTGCTAGAGTTG -ACGGAATACTCGGTGCTAAGACTG -ACGGAATACTCGGTGCTATCGGTA -ACGGAATACTCGGTGCTATGCCTA -ACGGAATACTCGGTGCTACCACTA -ACGGAATACTCGGTGCTAGGAGTA -ACGGAATACTCGGTGCTATCGTCT -ACGGAATACTCGGTGCTATGCACT -ACGGAATACTCGGTGCTACTGACT -ACGGAATACTCGGTGCTACAACCT -ACGGAATACTCGGTGCTAGCTACT -ACGGAATACTCGGTGCTAGGATCT -ACGGAATACTCGGTGCTAAAGGCT -ACGGAATACTCGGTGCTATCAACC -ACGGAATACTCGGTGCTATGTTCC -ACGGAATACTCGGTGCTAATTCCC -ACGGAATACTCGGTGCTATTCTCG -ACGGAATACTCGGTGCTATAGACG -ACGGAATACTCGGTGCTAGTAACG -ACGGAATACTCGGTGCTAACTTCG -ACGGAATACTCGGTGCTATACGCA -ACGGAATACTCGGTGCTACTTGCA -ACGGAATACTCGGTGCTACGAACA -ACGGAATACTCGGTGCTACAGTCA -ACGGAATACTCGGTGCTAGATCCA -ACGGAATACTCGGTGCTAACGACA -ACGGAATACTCGGTGCTAAGCTCA -ACGGAATACTCGGTGCTATCACGT -ACGGAATACTCGGTGCTACGTAGT -ACGGAATACTCGGTGCTAGTCAGT -ACGGAATACTCGGTGCTAGAAGGT -ACGGAATACTCGGTGCTAAACCGT -ACGGAATACTCGGTGCTATTGTGC -ACGGAATACTCGGTGCTACTAAGC -ACGGAATACTCGGTGCTAACTAGC -ACGGAATACTCGGTGCTAAGATGC -ACGGAATACTCGGTGCTATGAAGG -ACGGAATACTCGGTGCTACAATGG -ACGGAATACTCGGTGCTAATGAGG -ACGGAATACTCGGTGCTAAATGGG -ACGGAATACTCGGTGCTATCCTGA -ACGGAATACTCGGTGCTATAGCGA -ACGGAATACTCGGTGCTACACAGA -ACGGAATACTCGGTGCTAGCAAGA -ACGGAATACTCGGTGCTAGGTTGA -ACGGAATACTCGGTGCTATCCGAT -ACGGAATACTCGGTGCTATGGCAT -ACGGAATACTCGGTGCTACGAGAT -ACGGAATACTCGGTGCTATACCAC -ACGGAATACTCGGTGCTACAGAAC -ACGGAATACTCGGTGCTAGTCTAC -ACGGAATACTCGGTGCTAACGTAC -ACGGAATACTCGGTGCTAAGTGAC -ACGGAATACTCGGTGCTACTGTAG -ACGGAATACTCGGTGCTACCTAAG -ACGGAATACTCGGTGCTAGTTCAG -ACGGAATACTCGGTGCTAGCATAG -ACGGAATACTCGGTGCTAGACAAG -ACGGAATACTCGGTGCTAAAGCAG -ACGGAATACTCGGTGCTACGTCAA -ACGGAATACTCGGTGCTAGCTGAA -ACGGAATACTCGGTGCTAAGTACG -ACGGAATACTCGGTGCTAATCCGA -ACGGAATACTCGGTGCTAATGGGA -ACGGAATACTCGGTGCTAGTGCAA -ACGGAATACTCGGTGCTAGAGGAA -ACGGAATACTCGGTGCTACAGGTA -ACGGAATACTCGGTGCTAGACTCT -ACGGAATACTCGGTGCTAAGTCCT -ACGGAATACTCGGTGCTATAAGCC -ACGGAATACTCGGTGCTAATAGCC -ACGGAATACTCGGTGCTATAACCG -ACGGAATACTCGGTGCTAATGCCA -ACGGAATACTCGCTGCATGGAAAC -ACGGAATACTCGCTGCATAACACC -ACGGAATACTCGCTGCATATCGAG -ACGGAATACTCGCTGCATCTCCTT -ACGGAATACTCGCTGCATCCTGTT -ACGGAATACTCGCTGCATCGGTTT -ACGGAATACTCGCTGCATGTGGTT -ACGGAATACTCGCTGCATGCCTTT -ACGGAATACTCGCTGCATGGTCTT -ACGGAATACTCGCTGCATACGCTT -ACGGAATACTCGCTGCATAGCGTT -ACGGAATACTCGCTGCATTTCGTC -ACGGAATACTCGCTGCATTCTCTC -ACGGAATACTCGCTGCATTGGATC -ACGGAATACTCGCTGCATCACTTC -ACGGAATACTCGCTGCATGTACTC -ACGGAATACTCGCTGCATGATGTC -ACGGAATACTCGCTGCATACAGTC -ACGGAATACTCGCTGCATTTGCTG -ACGGAATACTCGCTGCATTCCATG -ACGGAATACTCGCTGCATTGTGTG -ACGGAATACTCGCTGCATCTAGTG -ACGGAATACTCGCTGCATCATCTG -ACGGAATACTCGCTGCATGAGTTG -ACGGAATACTCGCTGCATAGACTG -ACGGAATACTCGCTGCATTCGGTA -ACGGAATACTCGCTGCATTGCCTA -ACGGAATACTCGCTGCATCCACTA -ACGGAATACTCGCTGCATGGAGTA -ACGGAATACTCGCTGCATTCGTCT -ACGGAATACTCGCTGCATTGCACT -ACGGAATACTCGCTGCATCTGACT -ACGGAATACTCGCTGCATCAACCT -ACGGAATACTCGCTGCATGCTACT -ACGGAATACTCGCTGCATGGATCT -ACGGAATACTCGCTGCATAAGGCT -ACGGAATACTCGCTGCATTCAACC -ACGGAATACTCGCTGCATTGTTCC -ACGGAATACTCGCTGCATATTCCC -ACGGAATACTCGCTGCATTTCTCG -ACGGAATACTCGCTGCATTAGACG -ACGGAATACTCGCTGCATGTAACG -ACGGAATACTCGCTGCATACTTCG -ACGGAATACTCGCTGCATTACGCA -ACGGAATACTCGCTGCATCTTGCA -ACGGAATACTCGCTGCATCGAACA -ACGGAATACTCGCTGCATCAGTCA -ACGGAATACTCGCTGCATGATCCA -ACGGAATACTCGCTGCATACGACA -ACGGAATACTCGCTGCATAGCTCA -ACGGAATACTCGCTGCATTCACGT -ACGGAATACTCGCTGCATCGTAGT -ACGGAATACTCGCTGCATGTCAGT -ACGGAATACTCGCTGCATGAAGGT -ACGGAATACTCGCTGCATAACCGT -ACGGAATACTCGCTGCATTTGTGC -ACGGAATACTCGCTGCATCTAAGC -ACGGAATACTCGCTGCATACTAGC -ACGGAATACTCGCTGCATAGATGC -ACGGAATACTCGCTGCATTGAAGG -ACGGAATACTCGCTGCATCAATGG -ACGGAATACTCGCTGCATATGAGG -ACGGAATACTCGCTGCATAATGGG -ACGGAATACTCGCTGCATTCCTGA -ACGGAATACTCGCTGCATTAGCGA -ACGGAATACTCGCTGCATCACAGA -ACGGAATACTCGCTGCATGCAAGA -ACGGAATACTCGCTGCATGGTTGA -ACGGAATACTCGCTGCATTCCGAT -ACGGAATACTCGCTGCATTGGCAT -ACGGAATACTCGCTGCATCGAGAT -ACGGAATACTCGCTGCATTACCAC -ACGGAATACTCGCTGCATCAGAAC -ACGGAATACTCGCTGCATGTCTAC -ACGGAATACTCGCTGCATACGTAC -ACGGAATACTCGCTGCATAGTGAC -ACGGAATACTCGCTGCATCTGTAG -ACGGAATACTCGCTGCATCCTAAG -ACGGAATACTCGCTGCATGTTCAG -ACGGAATACTCGCTGCATGCATAG -ACGGAATACTCGCTGCATGACAAG -ACGGAATACTCGCTGCATAAGCAG -ACGGAATACTCGCTGCATCGTCAA -ACGGAATACTCGCTGCATGCTGAA -ACGGAATACTCGCTGCATAGTACG -ACGGAATACTCGCTGCATATCCGA -ACGGAATACTCGCTGCATATGGGA -ACGGAATACTCGCTGCATGTGCAA -ACGGAATACTCGCTGCATGAGGAA -ACGGAATACTCGCTGCATCAGGTA -ACGGAATACTCGCTGCATGACTCT -ACGGAATACTCGCTGCATAGTCCT -ACGGAATACTCGCTGCATTAAGCC -ACGGAATACTCGCTGCATATAGCC -ACGGAATACTCGCTGCATTAACCG -ACGGAATACTCGCTGCATATGCCA -ACGGAATACTCGTTGGAGGGAAAC -ACGGAATACTCGTTGGAGAACACC -ACGGAATACTCGTTGGAGATCGAG -ACGGAATACTCGTTGGAGCTCCTT -ACGGAATACTCGTTGGAGCCTGTT -ACGGAATACTCGTTGGAGCGGTTT -ACGGAATACTCGTTGGAGGTGGTT -ACGGAATACTCGTTGGAGGCCTTT -ACGGAATACTCGTTGGAGGGTCTT -ACGGAATACTCGTTGGAGACGCTT -ACGGAATACTCGTTGGAGAGCGTT -ACGGAATACTCGTTGGAGTTCGTC -ACGGAATACTCGTTGGAGTCTCTC -ACGGAATACTCGTTGGAGTGGATC -ACGGAATACTCGTTGGAGCACTTC -ACGGAATACTCGTTGGAGGTACTC -ACGGAATACTCGTTGGAGGATGTC -ACGGAATACTCGTTGGAGACAGTC -ACGGAATACTCGTTGGAGTTGCTG -ACGGAATACTCGTTGGAGTCCATG -ACGGAATACTCGTTGGAGTGTGTG -ACGGAATACTCGTTGGAGCTAGTG -ACGGAATACTCGTTGGAGCATCTG -ACGGAATACTCGTTGGAGGAGTTG -ACGGAATACTCGTTGGAGAGACTG -ACGGAATACTCGTTGGAGTCGGTA -ACGGAATACTCGTTGGAGTGCCTA -ACGGAATACTCGTTGGAGCCACTA -ACGGAATACTCGTTGGAGGGAGTA -ACGGAATACTCGTTGGAGTCGTCT -ACGGAATACTCGTTGGAGTGCACT -ACGGAATACTCGTTGGAGCTGACT -ACGGAATACTCGTTGGAGCAACCT -ACGGAATACTCGTTGGAGGCTACT -ACGGAATACTCGTTGGAGGGATCT -ACGGAATACTCGTTGGAGAAGGCT -ACGGAATACTCGTTGGAGTCAACC -ACGGAATACTCGTTGGAGTGTTCC -ACGGAATACTCGTTGGAGATTCCC -ACGGAATACTCGTTGGAGTTCTCG -ACGGAATACTCGTTGGAGTAGACG -ACGGAATACTCGTTGGAGGTAACG -ACGGAATACTCGTTGGAGACTTCG -ACGGAATACTCGTTGGAGTACGCA -ACGGAATACTCGTTGGAGCTTGCA -ACGGAATACTCGTTGGAGCGAACA -ACGGAATACTCGTTGGAGCAGTCA -ACGGAATACTCGTTGGAGGATCCA -ACGGAATACTCGTTGGAGACGACA -ACGGAATACTCGTTGGAGAGCTCA -ACGGAATACTCGTTGGAGTCACGT -ACGGAATACTCGTTGGAGCGTAGT -ACGGAATACTCGTTGGAGGTCAGT -ACGGAATACTCGTTGGAGGAAGGT -ACGGAATACTCGTTGGAGAACCGT -ACGGAATACTCGTTGGAGTTGTGC -ACGGAATACTCGTTGGAGCTAAGC -ACGGAATACTCGTTGGAGACTAGC -ACGGAATACTCGTTGGAGAGATGC -ACGGAATACTCGTTGGAGTGAAGG -ACGGAATACTCGTTGGAGCAATGG -ACGGAATACTCGTTGGAGATGAGG -ACGGAATACTCGTTGGAGAATGGG -ACGGAATACTCGTTGGAGTCCTGA -ACGGAATACTCGTTGGAGTAGCGA -ACGGAATACTCGTTGGAGCACAGA -ACGGAATACTCGTTGGAGGCAAGA -ACGGAATACTCGTTGGAGGGTTGA -ACGGAATACTCGTTGGAGTCCGAT -ACGGAATACTCGTTGGAGTGGCAT -ACGGAATACTCGTTGGAGCGAGAT -ACGGAATACTCGTTGGAGTACCAC -ACGGAATACTCGTTGGAGCAGAAC -ACGGAATACTCGTTGGAGGTCTAC -ACGGAATACTCGTTGGAGACGTAC -ACGGAATACTCGTTGGAGAGTGAC -ACGGAATACTCGTTGGAGCTGTAG -ACGGAATACTCGTTGGAGCCTAAG -ACGGAATACTCGTTGGAGGTTCAG -ACGGAATACTCGTTGGAGGCATAG -ACGGAATACTCGTTGGAGGACAAG -ACGGAATACTCGTTGGAGAAGCAG -ACGGAATACTCGTTGGAGCGTCAA -ACGGAATACTCGTTGGAGGCTGAA -ACGGAATACTCGTTGGAGAGTACG -ACGGAATACTCGTTGGAGATCCGA -ACGGAATACTCGTTGGAGATGGGA -ACGGAATACTCGTTGGAGGTGCAA -ACGGAATACTCGTTGGAGGAGGAA -ACGGAATACTCGTTGGAGCAGGTA -ACGGAATACTCGTTGGAGGACTCT -ACGGAATACTCGTTGGAGAGTCCT -ACGGAATACTCGTTGGAGTAAGCC -ACGGAATACTCGTTGGAGATAGCC -ACGGAATACTCGTTGGAGTAACCG -ACGGAATACTCGTTGGAGATGCCA -ACGGAATACTCGCTGAGAGGAAAC -ACGGAATACTCGCTGAGAAACACC -ACGGAATACTCGCTGAGAATCGAG -ACGGAATACTCGCTGAGACTCCTT -ACGGAATACTCGCTGAGACCTGTT -ACGGAATACTCGCTGAGACGGTTT -ACGGAATACTCGCTGAGAGTGGTT -ACGGAATACTCGCTGAGAGCCTTT -ACGGAATACTCGCTGAGAGGTCTT -ACGGAATACTCGCTGAGAACGCTT -ACGGAATACTCGCTGAGAAGCGTT -ACGGAATACTCGCTGAGATTCGTC -ACGGAATACTCGCTGAGATCTCTC -ACGGAATACTCGCTGAGATGGATC -ACGGAATACTCGCTGAGACACTTC -ACGGAATACTCGCTGAGAGTACTC -ACGGAATACTCGCTGAGAGATGTC -ACGGAATACTCGCTGAGAACAGTC -ACGGAATACTCGCTGAGATTGCTG -ACGGAATACTCGCTGAGATCCATG -ACGGAATACTCGCTGAGATGTGTG -ACGGAATACTCGCTGAGACTAGTG -ACGGAATACTCGCTGAGACATCTG -ACGGAATACTCGCTGAGAGAGTTG -ACGGAATACTCGCTGAGAAGACTG -ACGGAATACTCGCTGAGATCGGTA -ACGGAATACTCGCTGAGATGCCTA -ACGGAATACTCGCTGAGACCACTA -ACGGAATACTCGCTGAGAGGAGTA -ACGGAATACTCGCTGAGATCGTCT -ACGGAATACTCGCTGAGATGCACT -ACGGAATACTCGCTGAGACTGACT -ACGGAATACTCGCTGAGACAACCT -ACGGAATACTCGCTGAGAGCTACT -ACGGAATACTCGCTGAGAGGATCT -ACGGAATACTCGCTGAGAAAGGCT -ACGGAATACTCGCTGAGATCAACC -ACGGAATACTCGCTGAGATGTTCC -ACGGAATACTCGCTGAGAATTCCC -ACGGAATACTCGCTGAGATTCTCG -ACGGAATACTCGCTGAGATAGACG -ACGGAATACTCGCTGAGAGTAACG -ACGGAATACTCGCTGAGAACTTCG -ACGGAATACTCGCTGAGATACGCA -ACGGAATACTCGCTGAGACTTGCA -ACGGAATACTCGCTGAGACGAACA -ACGGAATACTCGCTGAGACAGTCA -ACGGAATACTCGCTGAGAGATCCA -ACGGAATACTCGCTGAGAACGACA -ACGGAATACTCGCTGAGAAGCTCA -ACGGAATACTCGCTGAGATCACGT -ACGGAATACTCGCTGAGACGTAGT -ACGGAATACTCGCTGAGAGTCAGT -ACGGAATACTCGCTGAGAGAAGGT -ACGGAATACTCGCTGAGAAACCGT -ACGGAATACTCGCTGAGATTGTGC -ACGGAATACTCGCTGAGACTAAGC -ACGGAATACTCGCTGAGAACTAGC -ACGGAATACTCGCTGAGAAGATGC -ACGGAATACTCGCTGAGATGAAGG -ACGGAATACTCGCTGAGACAATGG -ACGGAATACTCGCTGAGAATGAGG -ACGGAATACTCGCTGAGAAATGGG -ACGGAATACTCGCTGAGATCCTGA -ACGGAATACTCGCTGAGATAGCGA -ACGGAATACTCGCTGAGACACAGA -ACGGAATACTCGCTGAGAGCAAGA -ACGGAATACTCGCTGAGAGGTTGA -ACGGAATACTCGCTGAGATCCGAT -ACGGAATACTCGCTGAGATGGCAT -ACGGAATACTCGCTGAGACGAGAT -ACGGAATACTCGCTGAGATACCAC -ACGGAATACTCGCTGAGACAGAAC -ACGGAATACTCGCTGAGAGTCTAC -ACGGAATACTCGCTGAGAACGTAC -ACGGAATACTCGCTGAGAAGTGAC -ACGGAATACTCGCTGAGACTGTAG -ACGGAATACTCGCTGAGACCTAAG -ACGGAATACTCGCTGAGAGTTCAG -ACGGAATACTCGCTGAGAGCATAG -ACGGAATACTCGCTGAGAGACAAG -ACGGAATACTCGCTGAGAAAGCAG -ACGGAATACTCGCTGAGACGTCAA -ACGGAATACTCGCTGAGAGCTGAA -ACGGAATACTCGCTGAGAAGTACG -ACGGAATACTCGCTGAGAATCCGA -ACGGAATACTCGCTGAGAATGGGA -ACGGAATACTCGCTGAGAGTGCAA -ACGGAATACTCGCTGAGAGAGGAA -ACGGAATACTCGCTGAGACAGGTA -ACGGAATACTCGCTGAGAGACTCT -ACGGAATACTCGCTGAGAAGTCCT -ACGGAATACTCGCTGAGATAAGCC -ACGGAATACTCGCTGAGAATAGCC -ACGGAATACTCGCTGAGATAACCG -ACGGAATACTCGCTGAGAATGCCA -ACGGAATACTCGGTATCGGGAAAC -ACGGAATACTCGGTATCGAACACC -ACGGAATACTCGGTATCGATCGAG -ACGGAATACTCGGTATCGCTCCTT -ACGGAATACTCGGTATCGCCTGTT -ACGGAATACTCGGTATCGCGGTTT -ACGGAATACTCGGTATCGGTGGTT -ACGGAATACTCGGTATCGGCCTTT -ACGGAATACTCGGTATCGGGTCTT -ACGGAATACTCGGTATCGACGCTT -ACGGAATACTCGGTATCGAGCGTT -ACGGAATACTCGGTATCGTTCGTC -ACGGAATACTCGGTATCGTCTCTC -ACGGAATACTCGGTATCGTGGATC -ACGGAATACTCGGTATCGCACTTC -ACGGAATACTCGGTATCGGTACTC -ACGGAATACTCGGTATCGGATGTC -ACGGAATACTCGGTATCGACAGTC -ACGGAATACTCGGTATCGTTGCTG -ACGGAATACTCGGTATCGTCCATG -ACGGAATACTCGGTATCGTGTGTG -ACGGAATACTCGGTATCGCTAGTG -ACGGAATACTCGGTATCGCATCTG -ACGGAATACTCGGTATCGGAGTTG -ACGGAATACTCGGTATCGAGACTG -ACGGAATACTCGGTATCGTCGGTA -ACGGAATACTCGGTATCGTGCCTA -ACGGAATACTCGGTATCGCCACTA -ACGGAATACTCGGTATCGGGAGTA -ACGGAATACTCGGTATCGTCGTCT -ACGGAATACTCGGTATCGTGCACT -ACGGAATACTCGGTATCGCTGACT -ACGGAATACTCGGTATCGCAACCT -ACGGAATACTCGGTATCGGCTACT -ACGGAATACTCGGTATCGGGATCT -ACGGAATACTCGGTATCGAAGGCT -ACGGAATACTCGGTATCGTCAACC -ACGGAATACTCGGTATCGTGTTCC -ACGGAATACTCGGTATCGATTCCC -ACGGAATACTCGGTATCGTTCTCG -ACGGAATACTCGGTATCGTAGACG -ACGGAATACTCGGTATCGGTAACG -ACGGAATACTCGGTATCGACTTCG -ACGGAATACTCGGTATCGTACGCA -ACGGAATACTCGGTATCGCTTGCA -ACGGAATACTCGGTATCGCGAACA -ACGGAATACTCGGTATCGCAGTCA -ACGGAATACTCGGTATCGGATCCA -ACGGAATACTCGGTATCGACGACA -ACGGAATACTCGGTATCGAGCTCA -ACGGAATACTCGGTATCGTCACGT -ACGGAATACTCGGTATCGCGTAGT -ACGGAATACTCGGTATCGGTCAGT -ACGGAATACTCGGTATCGGAAGGT -ACGGAATACTCGGTATCGAACCGT -ACGGAATACTCGGTATCGTTGTGC -ACGGAATACTCGGTATCGCTAAGC -ACGGAATACTCGGTATCGACTAGC -ACGGAATACTCGGTATCGAGATGC -ACGGAATACTCGGTATCGTGAAGG -ACGGAATACTCGGTATCGCAATGG -ACGGAATACTCGGTATCGATGAGG -ACGGAATACTCGGTATCGAATGGG -ACGGAATACTCGGTATCGTCCTGA -ACGGAATACTCGGTATCGTAGCGA -ACGGAATACTCGGTATCGCACAGA -ACGGAATACTCGGTATCGGCAAGA -ACGGAATACTCGGTATCGGGTTGA -ACGGAATACTCGGTATCGTCCGAT -ACGGAATACTCGGTATCGTGGCAT -ACGGAATACTCGGTATCGCGAGAT -ACGGAATACTCGGTATCGTACCAC -ACGGAATACTCGGTATCGCAGAAC -ACGGAATACTCGGTATCGGTCTAC -ACGGAATACTCGGTATCGACGTAC -ACGGAATACTCGGTATCGAGTGAC -ACGGAATACTCGGTATCGCTGTAG -ACGGAATACTCGGTATCGCCTAAG -ACGGAATACTCGGTATCGGTTCAG -ACGGAATACTCGGTATCGGCATAG -ACGGAATACTCGGTATCGGACAAG -ACGGAATACTCGGTATCGAAGCAG -ACGGAATACTCGGTATCGCGTCAA -ACGGAATACTCGGTATCGGCTGAA -ACGGAATACTCGGTATCGAGTACG -ACGGAATACTCGGTATCGATCCGA -ACGGAATACTCGGTATCGATGGGA -ACGGAATACTCGGTATCGGTGCAA -ACGGAATACTCGGTATCGGAGGAA -ACGGAATACTCGGTATCGCAGGTA -ACGGAATACTCGGTATCGGACTCT -ACGGAATACTCGGTATCGAGTCCT -ACGGAATACTCGGTATCGTAAGCC -ACGGAATACTCGGTATCGATAGCC -ACGGAATACTCGGTATCGTAACCG -ACGGAATACTCGGTATCGATGCCA -ACGGAATACTCGCTATGCGGAAAC -ACGGAATACTCGCTATGCAACACC -ACGGAATACTCGCTATGCATCGAG -ACGGAATACTCGCTATGCCTCCTT -ACGGAATACTCGCTATGCCCTGTT -ACGGAATACTCGCTATGCCGGTTT -ACGGAATACTCGCTATGCGTGGTT -ACGGAATACTCGCTATGCGCCTTT -ACGGAATACTCGCTATGCGGTCTT -ACGGAATACTCGCTATGCACGCTT -ACGGAATACTCGCTATGCAGCGTT -ACGGAATACTCGCTATGCTTCGTC -ACGGAATACTCGCTATGCTCTCTC -ACGGAATACTCGCTATGCTGGATC -ACGGAATACTCGCTATGCCACTTC -ACGGAATACTCGCTATGCGTACTC -ACGGAATACTCGCTATGCGATGTC -ACGGAATACTCGCTATGCACAGTC -ACGGAATACTCGCTATGCTTGCTG -ACGGAATACTCGCTATGCTCCATG -ACGGAATACTCGCTATGCTGTGTG -ACGGAATACTCGCTATGCCTAGTG -ACGGAATACTCGCTATGCCATCTG -ACGGAATACTCGCTATGCGAGTTG -ACGGAATACTCGCTATGCAGACTG -ACGGAATACTCGCTATGCTCGGTA -ACGGAATACTCGCTATGCTGCCTA -ACGGAATACTCGCTATGCCCACTA -ACGGAATACTCGCTATGCGGAGTA -ACGGAATACTCGCTATGCTCGTCT -ACGGAATACTCGCTATGCTGCACT -ACGGAATACTCGCTATGCCTGACT -ACGGAATACTCGCTATGCCAACCT -ACGGAATACTCGCTATGCGCTACT -ACGGAATACTCGCTATGCGGATCT -ACGGAATACTCGCTATGCAAGGCT -ACGGAATACTCGCTATGCTCAACC -ACGGAATACTCGCTATGCTGTTCC -ACGGAATACTCGCTATGCATTCCC -ACGGAATACTCGCTATGCTTCTCG -ACGGAATACTCGCTATGCTAGACG -ACGGAATACTCGCTATGCGTAACG -ACGGAATACTCGCTATGCACTTCG -ACGGAATACTCGCTATGCTACGCA -ACGGAATACTCGCTATGCCTTGCA -ACGGAATACTCGCTATGCCGAACA -ACGGAATACTCGCTATGCCAGTCA -ACGGAATACTCGCTATGCGATCCA -ACGGAATACTCGCTATGCACGACA -ACGGAATACTCGCTATGCAGCTCA -ACGGAATACTCGCTATGCTCACGT -ACGGAATACTCGCTATGCCGTAGT -ACGGAATACTCGCTATGCGTCAGT -ACGGAATACTCGCTATGCGAAGGT -ACGGAATACTCGCTATGCAACCGT -ACGGAATACTCGCTATGCTTGTGC -ACGGAATACTCGCTATGCCTAAGC -ACGGAATACTCGCTATGCACTAGC -ACGGAATACTCGCTATGCAGATGC -ACGGAATACTCGCTATGCTGAAGG -ACGGAATACTCGCTATGCCAATGG -ACGGAATACTCGCTATGCATGAGG -ACGGAATACTCGCTATGCAATGGG -ACGGAATACTCGCTATGCTCCTGA -ACGGAATACTCGCTATGCTAGCGA -ACGGAATACTCGCTATGCCACAGA -ACGGAATACTCGCTATGCGCAAGA -ACGGAATACTCGCTATGCGGTTGA -ACGGAATACTCGCTATGCTCCGAT -ACGGAATACTCGCTATGCTGGCAT -ACGGAATACTCGCTATGCCGAGAT -ACGGAATACTCGCTATGCTACCAC -ACGGAATACTCGCTATGCCAGAAC -ACGGAATACTCGCTATGCGTCTAC -ACGGAATACTCGCTATGCACGTAC -ACGGAATACTCGCTATGCAGTGAC -ACGGAATACTCGCTATGCCTGTAG -ACGGAATACTCGCTATGCCCTAAG -ACGGAATACTCGCTATGCGTTCAG -ACGGAATACTCGCTATGCGCATAG -ACGGAATACTCGCTATGCGACAAG -ACGGAATACTCGCTATGCAAGCAG -ACGGAATACTCGCTATGCCGTCAA -ACGGAATACTCGCTATGCGCTGAA -ACGGAATACTCGCTATGCAGTACG -ACGGAATACTCGCTATGCATCCGA -ACGGAATACTCGCTATGCATGGGA -ACGGAATACTCGCTATGCGTGCAA -ACGGAATACTCGCTATGCGAGGAA -ACGGAATACTCGCTATGCCAGGTA -ACGGAATACTCGCTATGCGACTCT -ACGGAATACTCGCTATGCAGTCCT -ACGGAATACTCGCTATGCTAAGCC -ACGGAATACTCGCTATGCATAGCC -ACGGAATACTCGCTATGCTAACCG -ACGGAATACTCGCTATGCATGCCA -ACGGAATACTCGCTACCAGGAAAC -ACGGAATACTCGCTACCAAACACC -ACGGAATACTCGCTACCAATCGAG -ACGGAATACTCGCTACCACTCCTT -ACGGAATACTCGCTACCACCTGTT -ACGGAATACTCGCTACCACGGTTT -ACGGAATACTCGCTACCAGTGGTT -ACGGAATACTCGCTACCAGCCTTT -ACGGAATACTCGCTACCAGGTCTT -ACGGAATACTCGCTACCAACGCTT -ACGGAATACTCGCTACCAAGCGTT -ACGGAATACTCGCTACCATTCGTC -ACGGAATACTCGCTACCATCTCTC -ACGGAATACTCGCTACCATGGATC -ACGGAATACTCGCTACCACACTTC -ACGGAATACTCGCTACCAGTACTC -ACGGAATACTCGCTACCAGATGTC -ACGGAATACTCGCTACCAACAGTC -ACGGAATACTCGCTACCATTGCTG -ACGGAATACTCGCTACCATCCATG -ACGGAATACTCGCTACCATGTGTG -ACGGAATACTCGCTACCACTAGTG -ACGGAATACTCGCTACCACATCTG -ACGGAATACTCGCTACCAGAGTTG -ACGGAATACTCGCTACCAAGACTG -ACGGAATACTCGCTACCATCGGTA -ACGGAATACTCGCTACCATGCCTA -ACGGAATACTCGCTACCACCACTA -ACGGAATACTCGCTACCAGGAGTA -ACGGAATACTCGCTACCATCGTCT -ACGGAATACTCGCTACCATGCACT -ACGGAATACTCGCTACCACTGACT -ACGGAATACTCGCTACCACAACCT -ACGGAATACTCGCTACCAGCTACT -ACGGAATACTCGCTACCAGGATCT -ACGGAATACTCGCTACCAAAGGCT -ACGGAATACTCGCTACCATCAACC -ACGGAATACTCGCTACCATGTTCC -ACGGAATACTCGCTACCAATTCCC -ACGGAATACTCGCTACCATTCTCG -ACGGAATACTCGCTACCATAGACG -ACGGAATACTCGCTACCAGTAACG -ACGGAATACTCGCTACCAACTTCG -ACGGAATACTCGCTACCATACGCA -ACGGAATACTCGCTACCACTTGCA -ACGGAATACTCGCTACCACGAACA -ACGGAATACTCGCTACCACAGTCA -ACGGAATACTCGCTACCAGATCCA -ACGGAATACTCGCTACCAACGACA -ACGGAATACTCGCTACCAAGCTCA -ACGGAATACTCGCTACCATCACGT -ACGGAATACTCGCTACCACGTAGT -ACGGAATACTCGCTACCAGTCAGT -ACGGAATACTCGCTACCAGAAGGT -ACGGAATACTCGCTACCAAACCGT -ACGGAATACTCGCTACCATTGTGC -ACGGAATACTCGCTACCACTAAGC -ACGGAATACTCGCTACCAACTAGC -ACGGAATACTCGCTACCAAGATGC -ACGGAATACTCGCTACCATGAAGG -ACGGAATACTCGCTACCACAATGG -ACGGAATACTCGCTACCAATGAGG -ACGGAATACTCGCTACCAAATGGG -ACGGAATACTCGCTACCATCCTGA -ACGGAATACTCGCTACCATAGCGA -ACGGAATACTCGCTACCACACAGA -ACGGAATACTCGCTACCAGCAAGA -ACGGAATACTCGCTACCAGGTTGA -ACGGAATACTCGCTACCATCCGAT -ACGGAATACTCGCTACCATGGCAT -ACGGAATACTCGCTACCACGAGAT -ACGGAATACTCGCTACCATACCAC -ACGGAATACTCGCTACCACAGAAC -ACGGAATACTCGCTACCAGTCTAC -ACGGAATACTCGCTACCAACGTAC -ACGGAATACTCGCTACCAAGTGAC -ACGGAATACTCGCTACCACTGTAG -ACGGAATACTCGCTACCACCTAAG -ACGGAATACTCGCTACCAGTTCAG -ACGGAATACTCGCTACCAGCATAG -ACGGAATACTCGCTACCAGACAAG -ACGGAATACTCGCTACCAAAGCAG -ACGGAATACTCGCTACCACGTCAA -ACGGAATACTCGCTACCAGCTGAA -ACGGAATACTCGCTACCAAGTACG -ACGGAATACTCGCTACCAATCCGA -ACGGAATACTCGCTACCAATGGGA -ACGGAATACTCGCTACCAGTGCAA -ACGGAATACTCGCTACCAGAGGAA -ACGGAATACTCGCTACCACAGGTA -ACGGAATACTCGCTACCAGACTCT -ACGGAATACTCGCTACCAAGTCCT -ACGGAATACTCGCTACCATAAGCC -ACGGAATACTCGCTACCAATAGCC -ACGGAATACTCGCTACCATAACCG -ACGGAATACTCGCTACCAATGCCA -ACGGAATACTCGGTAGGAGGAAAC -ACGGAATACTCGGTAGGAAACACC -ACGGAATACTCGGTAGGAATCGAG -ACGGAATACTCGGTAGGACTCCTT -ACGGAATACTCGGTAGGACCTGTT -ACGGAATACTCGGTAGGACGGTTT -ACGGAATACTCGGTAGGAGTGGTT -ACGGAATACTCGGTAGGAGCCTTT -ACGGAATACTCGGTAGGAGGTCTT -ACGGAATACTCGGTAGGAACGCTT -ACGGAATACTCGGTAGGAAGCGTT -ACGGAATACTCGGTAGGATTCGTC -ACGGAATACTCGGTAGGATCTCTC -ACGGAATACTCGGTAGGATGGATC -ACGGAATACTCGGTAGGACACTTC -ACGGAATACTCGGTAGGAGTACTC -ACGGAATACTCGGTAGGAGATGTC -ACGGAATACTCGGTAGGAACAGTC -ACGGAATACTCGGTAGGATTGCTG -ACGGAATACTCGGTAGGATCCATG -ACGGAATACTCGGTAGGATGTGTG -ACGGAATACTCGGTAGGACTAGTG -ACGGAATACTCGGTAGGACATCTG -ACGGAATACTCGGTAGGAGAGTTG -ACGGAATACTCGGTAGGAAGACTG -ACGGAATACTCGGTAGGATCGGTA -ACGGAATACTCGGTAGGATGCCTA -ACGGAATACTCGGTAGGACCACTA -ACGGAATACTCGGTAGGAGGAGTA -ACGGAATACTCGGTAGGATCGTCT -ACGGAATACTCGGTAGGATGCACT -ACGGAATACTCGGTAGGACTGACT -ACGGAATACTCGGTAGGACAACCT -ACGGAATACTCGGTAGGAGCTACT -ACGGAATACTCGGTAGGAGGATCT -ACGGAATACTCGGTAGGAAAGGCT -ACGGAATACTCGGTAGGATCAACC -ACGGAATACTCGGTAGGATGTTCC -ACGGAATACTCGGTAGGAATTCCC -ACGGAATACTCGGTAGGATTCTCG -ACGGAATACTCGGTAGGATAGACG -ACGGAATACTCGGTAGGAGTAACG -ACGGAATACTCGGTAGGAACTTCG -ACGGAATACTCGGTAGGATACGCA -ACGGAATACTCGGTAGGACTTGCA -ACGGAATACTCGGTAGGACGAACA -ACGGAATACTCGGTAGGACAGTCA -ACGGAATACTCGGTAGGAGATCCA -ACGGAATACTCGGTAGGAACGACA -ACGGAATACTCGGTAGGAAGCTCA -ACGGAATACTCGGTAGGATCACGT -ACGGAATACTCGGTAGGACGTAGT -ACGGAATACTCGGTAGGAGTCAGT -ACGGAATACTCGGTAGGAGAAGGT -ACGGAATACTCGGTAGGAAACCGT -ACGGAATACTCGGTAGGATTGTGC -ACGGAATACTCGGTAGGACTAAGC -ACGGAATACTCGGTAGGAACTAGC -ACGGAATACTCGGTAGGAAGATGC -ACGGAATACTCGGTAGGATGAAGG -ACGGAATACTCGGTAGGACAATGG -ACGGAATACTCGGTAGGAATGAGG -ACGGAATACTCGGTAGGAAATGGG -ACGGAATACTCGGTAGGATCCTGA -ACGGAATACTCGGTAGGATAGCGA -ACGGAATACTCGGTAGGACACAGA -ACGGAATACTCGGTAGGAGCAAGA -ACGGAATACTCGGTAGGAGGTTGA -ACGGAATACTCGGTAGGATCCGAT -ACGGAATACTCGGTAGGATGGCAT -ACGGAATACTCGGTAGGACGAGAT -ACGGAATACTCGGTAGGATACCAC -ACGGAATACTCGGTAGGACAGAAC -ACGGAATACTCGGTAGGAGTCTAC -ACGGAATACTCGGTAGGAACGTAC -ACGGAATACTCGGTAGGAAGTGAC -ACGGAATACTCGGTAGGACTGTAG -ACGGAATACTCGGTAGGACCTAAG -ACGGAATACTCGGTAGGAGTTCAG -ACGGAATACTCGGTAGGAGCATAG -ACGGAATACTCGGTAGGAGACAAG -ACGGAATACTCGGTAGGAAAGCAG -ACGGAATACTCGGTAGGACGTCAA -ACGGAATACTCGGTAGGAGCTGAA -ACGGAATACTCGGTAGGAAGTACG -ACGGAATACTCGGTAGGAATCCGA -ACGGAATACTCGGTAGGAATGGGA -ACGGAATACTCGGTAGGAGTGCAA -ACGGAATACTCGGTAGGAGAGGAA -ACGGAATACTCGGTAGGACAGGTA -ACGGAATACTCGGTAGGAGACTCT -ACGGAATACTCGGTAGGAAGTCCT -ACGGAATACTCGGTAGGATAAGCC -ACGGAATACTCGGTAGGAATAGCC -ACGGAATACTCGGTAGGATAACCG -ACGGAATACTCGGTAGGAATGCCA -ACGGAATACTCGTCTTCGGGAAAC -ACGGAATACTCGTCTTCGAACACC -ACGGAATACTCGTCTTCGATCGAG -ACGGAATACTCGTCTTCGCTCCTT -ACGGAATACTCGTCTTCGCCTGTT -ACGGAATACTCGTCTTCGCGGTTT -ACGGAATACTCGTCTTCGGTGGTT -ACGGAATACTCGTCTTCGGCCTTT -ACGGAATACTCGTCTTCGGGTCTT -ACGGAATACTCGTCTTCGACGCTT -ACGGAATACTCGTCTTCGAGCGTT -ACGGAATACTCGTCTTCGTTCGTC -ACGGAATACTCGTCTTCGTCTCTC -ACGGAATACTCGTCTTCGTGGATC -ACGGAATACTCGTCTTCGCACTTC -ACGGAATACTCGTCTTCGGTACTC -ACGGAATACTCGTCTTCGGATGTC -ACGGAATACTCGTCTTCGACAGTC -ACGGAATACTCGTCTTCGTTGCTG -ACGGAATACTCGTCTTCGTCCATG -ACGGAATACTCGTCTTCGTGTGTG -ACGGAATACTCGTCTTCGCTAGTG -ACGGAATACTCGTCTTCGCATCTG -ACGGAATACTCGTCTTCGGAGTTG -ACGGAATACTCGTCTTCGAGACTG -ACGGAATACTCGTCTTCGTCGGTA -ACGGAATACTCGTCTTCGTGCCTA -ACGGAATACTCGTCTTCGCCACTA -ACGGAATACTCGTCTTCGGGAGTA -ACGGAATACTCGTCTTCGTCGTCT -ACGGAATACTCGTCTTCGTGCACT -ACGGAATACTCGTCTTCGCTGACT -ACGGAATACTCGTCTTCGCAACCT -ACGGAATACTCGTCTTCGGCTACT -ACGGAATACTCGTCTTCGGGATCT -ACGGAATACTCGTCTTCGAAGGCT -ACGGAATACTCGTCTTCGTCAACC -ACGGAATACTCGTCTTCGTGTTCC -ACGGAATACTCGTCTTCGATTCCC -ACGGAATACTCGTCTTCGTTCTCG -ACGGAATACTCGTCTTCGTAGACG -ACGGAATACTCGTCTTCGGTAACG -ACGGAATACTCGTCTTCGACTTCG -ACGGAATACTCGTCTTCGTACGCA -ACGGAATACTCGTCTTCGCTTGCA -ACGGAATACTCGTCTTCGCGAACA -ACGGAATACTCGTCTTCGCAGTCA -ACGGAATACTCGTCTTCGGATCCA -ACGGAATACTCGTCTTCGACGACA -ACGGAATACTCGTCTTCGAGCTCA -ACGGAATACTCGTCTTCGTCACGT -ACGGAATACTCGTCTTCGCGTAGT -ACGGAATACTCGTCTTCGGTCAGT -ACGGAATACTCGTCTTCGGAAGGT -ACGGAATACTCGTCTTCGAACCGT -ACGGAATACTCGTCTTCGTTGTGC -ACGGAATACTCGTCTTCGCTAAGC -ACGGAATACTCGTCTTCGACTAGC -ACGGAATACTCGTCTTCGAGATGC -ACGGAATACTCGTCTTCGTGAAGG -ACGGAATACTCGTCTTCGCAATGG -ACGGAATACTCGTCTTCGATGAGG -ACGGAATACTCGTCTTCGAATGGG -ACGGAATACTCGTCTTCGTCCTGA -ACGGAATACTCGTCTTCGTAGCGA -ACGGAATACTCGTCTTCGCACAGA -ACGGAATACTCGTCTTCGGCAAGA -ACGGAATACTCGTCTTCGGGTTGA -ACGGAATACTCGTCTTCGTCCGAT -ACGGAATACTCGTCTTCGTGGCAT -ACGGAATACTCGTCTTCGCGAGAT -ACGGAATACTCGTCTTCGTACCAC -ACGGAATACTCGTCTTCGCAGAAC -ACGGAATACTCGTCTTCGGTCTAC -ACGGAATACTCGTCTTCGACGTAC -ACGGAATACTCGTCTTCGAGTGAC -ACGGAATACTCGTCTTCGCTGTAG -ACGGAATACTCGTCTTCGCCTAAG -ACGGAATACTCGTCTTCGGTTCAG -ACGGAATACTCGTCTTCGGCATAG -ACGGAATACTCGTCTTCGGACAAG -ACGGAATACTCGTCTTCGAAGCAG -ACGGAATACTCGTCTTCGCGTCAA -ACGGAATACTCGTCTTCGGCTGAA -ACGGAATACTCGTCTTCGAGTACG -ACGGAATACTCGTCTTCGATCCGA -ACGGAATACTCGTCTTCGATGGGA -ACGGAATACTCGTCTTCGGTGCAA -ACGGAATACTCGTCTTCGGAGGAA -ACGGAATACTCGTCTTCGCAGGTA -ACGGAATACTCGTCTTCGGACTCT -ACGGAATACTCGTCTTCGAGTCCT -ACGGAATACTCGTCTTCGTAAGCC -ACGGAATACTCGTCTTCGATAGCC -ACGGAATACTCGTCTTCGTAACCG -ACGGAATACTCGTCTTCGATGCCA -ACGGAATACTCGACTTGCGGAAAC -ACGGAATACTCGACTTGCAACACC -ACGGAATACTCGACTTGCATCGAG -ACGGAATACTCGACTTGCCTCCTT -ACGGAATACTCGACTTGCCCTGTT -ACGGAATACTCGACTTGCCGGTTT -ACGGAATACTCGACTTGCGTGGTT -ACGGAATACTCGACTTGCGCCTTT -ACGGAATACTCGACTTGCGGTCTT -ACGGAATACTCGACTTGCACGCTT -ACGGAATACTCGACTTGCAGCGTT -ACGGAATACTCGACTTGCTTCGTC -ACGGAATACTCGACTTGCTCTCTC -ACGGAATACTCGACTTGCTGGATC -ACGGAATACTCGACTTGCCACTTC -ACGGAATACTCGACTTGCGTACTC -ACGGAATACTCGACTTGCGATGTC -ACGGAATACTCGACTTGCACAGTC -ACGGAATACTCGACTTGCTTGCTG -ACGGAATACTCGACTTGCTCCATG -ACGGAATACTCGACTTGCTGTGTG -ACGGAATACTCGACTTGCCTAGTG -ACGGAATACTCGACTTGCCATCTG -ACGGAATACTCGACTTGCGAGTTG -ACGGAATACTCGACTTGCAGACTG -ACGGAATACTCGACTTGCTCGGTA -ACGGAATACTCGACTTGCTGCCTA -ACGGAATACTCGACTTGCCCACTA -ACGGAATACTCGACTTGCGGAGTA -ACGGAATACTCGACTTGCTCGTCT -ACGGAATACTCGACTTGCTGCACT -ACGGAATACTCGACTTGCCTGACT -ACGGAATACTCGACTTGCCAACCT -ACGGAATACTCGACTTGCGCTACT -ACGGAATACTCGACTTGCGGATCT -ACGGAATACTCGACTTGCAAGGCT -ACGGAATACTCGACTTGCTCAACC -ACGGAATACTCGACTTGCTGTTCC -ACGGAATACTCGACTTGCATTCCC -ACGGAATACTCGACTTGCTTCTCG -ACGGAATACTCGACTTGCTAGACG -ACGGAATACTCGACTTGCGTAACG -ACGGAATACTCGACTTGCACTTCG -ACGGAATACTCGACTTGCTACGCA -ACGGAATACTCGACTTGCCTTGCA -ACGGAATACTCGACTTGCCGAACA -ACGGAATACTCGACTTGCCAGTCA -ACGGAATACTCGACTTGCGATCCA -ACGGAATACTCGACTTGCACGACA -ACGGAATACTCGACTTGCAGCTCA -ACGGAATACTCGACTTGCTCACGT -ACGGAATACTCGACTTGCCGTAGT -ACGGAATACTCGACTTGCGTCAGT -ACGGAATACTCGACTTGCGAAGGT -ACGGAATACTCGACTTGCAACCGT -ACGGAATACTCGACTTGCTTGTGC -ACGGAATACTCGACTTGCCTAAGC -ACGGAATACTCGACTTGCACTAGC -ACGGAATACTCGACTTGCAGATGC -ACGGAATACTCGACTTGCTGAAGG -ACGGAATACTCGACTTGCCAATGG -ACGGAATACTCGACTTGCATGAGG -ACGGAATACTCGACTTGCAATGGG -ACGGAATACTCGACTTGCTCCTGA -ACGGAATACTCGACTTGCTAGCGA -ACGGAATACTCGACTTGCCACAGA -ACGGAATACTCGACTTGCGCAAGA -ACGGAATACTCGACTTGCGGTTGA -ACGGAATACTCGACTTGCTCCGAT -ACGGAATACTCGACTTGCTGGCAT -ACGGAATACTCGACTTGCCGAGAT -ACGGAATACTCGACTTGCTACCAC -ACGGAATACTCGACTTGCCAGAAC -ACGGAATACTCGACTTGCGTCTAC -ACGGAATACTCGACTTGCACGTAC -ACGGAATACTCGACTTGCAGTGAC -ACGGAATACTCGACTTGCCTGTAG -ACGGAATACTCGACTTGCCCTAAG -ACGGAATACTCGACTTGCGTTCAG -ACGGAATACTCGACTTGCGCATAG -ACGGAATACTCGACTTGCGACAAG -ACGGAATACTCGACTTGCAAGCAG -ACGGAATACTCGACTTGCCGTCAA -ACGGAATACTCGACTTGCGCTGAA -ACGGAATACTCGACTTGCAGTACG -ACGGAATACTCGACTTGCATCCGA -ACGGAATACTCGACTTGCATGGGA -ACGGAATACTCGACTTGCGTGCAA -ACGGAATACTCGACTTGCGAGGAA -ACGGAATACTCGACTTGCCAGGTA -ACGGAATACTCGACTTGCGACTCT -ACGGAATACTCGACTTGCAGTCCT -ACGGAATACTCGACTTGCTAAGCC -ACGGAATACTCGACTTGCATAGCC -ACGGAATACTCGACTTGCTAACCG -ACGGAATACTCGACTTGCATGCCA -ACGGAATACTCGACTCTGGGAAAC -ACGGAATACTCGACTCTGAACACC -ACGGAATACTCGACTCTGATCGAG -ACGGAATACTCGACTCTGCTCCTT -ACGGAATACTCGACTCTGCCTGTT -ACGGAATACTCGACTCTGCGGTTT -ACGGAATACTCGACTCTGGTGGTT -ACGGAATACTCGACTCTGGCCTTT -ACGGAATACTCGACTCTGGGTCTT -ACGGAATACTCGACTCTGACGCTT -ACGGAATACTCGACTCTGAGCGTT -ACGGAATACTCGACTCTGTTCGTC -ACGGAATACTCGACTCTGTCTCTC -ACGGAATACTCGACTCTGTGGATC -ACGGAATACTCGACTCTGCACTTC -ACGGAATACTCGACTCTGGTACTC -ACGGAATACTCGACTCTGGATGTC -ACGGAATACTCGACTCTGACAGTC -ACGGAATACTCGACTCTGTTGCTG -ACGGAATACTCGACTCTGTCCATG -ACGGAATACTCGACTCTGTGTGTG -ACGGAATACTCGACTCTGCTAGTG -ACGGAATACTCGACTCTGCATCTG -ACGGAATACTCGACTCTGGAGTTG -ACGGAATACTCGACTCTGAGACTG -ACGGAATACTCGACTCTGTCGGTA -ACGGAATACTCGACTCTGTGCCTA -ACGGAATACTCGACTCTGCCACTA -ACGGAATACTCGACTCTGGGAGTA -ACGGAATACTCGACTCTGTCGTCT -ACGGAATACTCGACTCTGTGCACT -ACGGAATACTCGACTCTGCTGACT -ACGGAATACTCGACTCTGCAACCT -ACGGAATACTCGACTCTGGCTACT -ACGGAATACTCGACTCTGGGATCT -ACGGAATACTCGACTCTGAAGGCT -ACGGAATACTCGACTCTGTCAACC -ACGGAATACTCGACTCTGTGTTCC -ACGGAATACTCGACTCTGATTCCC -ACGGAATACTCGACTCTGTTCTCG -ACGGAATACTCGACTCTGTAGACG -ACGGAATACTCGACTCTGGTAACG -ACGGAATACTCGACTCTGACTTCG -ACGGAATACTCGACTCTGTACGCA -ACGGAATACTCGACTCTGCTTGCA -ACGGAATACTCGACTCTGCGAACA -ACGGAATACTCGACTCTGCAGTCA -ACGGAATACTCGACTCTGGATCCA -ACGGAATACTCGACTCTGACGACA -ACGGAATACTCGACTCTGAGCTCA -ACGGAATACTCGACTCTGTCACGT -ACGGAATACTCGACTCTGCGTAGT -ACGGAATACTCGACTCTGGTCAGT -ACGGAATACTCGACTCTGGAAGGT -ACGGAATACTCGACTCTGAACCGT -ACGGAATACTCGACTCTGTTGTGC -ACGGAATACTCGACTCTGCTAAGC -ACGGAATACTCGACTCTGACTAGC -ACGGAATACTCGACTCTGAGATGC -ACGGAATACTCGACTCTGTGAAGG -ACGGAATACTCGACTCTGCAATGG -ACGGAATACTCGACTCTGATGAGG -ACGGAATACTCGACTCTGAATGGG -ACGGAATACTCGACTCTGTCCTGA -ACGGAATACTCGACTCTGTAGCGA -ACGGAATACTCGACTCTGCACAGA -ACGGAATACTCGACTCTGGCAAGA -ACGGAATACTCGACTCTGGGTTGA -ACGGAATACTCGACTCTGTCCGAT -ACGGAATACTCGACTCTGTGGCAT -ACGGAATACTCGACTCTGCGAGAT -ACGGAATACTCGACTCTGTACCAC -ACGGAATACTCGACTCTGCAGAAC -ACGGAATACTCGACTCTGGTCTAC -ACGGAATACTCGACTCTGACGTAC -ACGGAATACTCGACTCTGAGTGAC -ACGGAATACTCGACTCTGCTGTAG -ACGGAATACTCGACTCTGCCTAAG -ACGGAATACTCGACTCTGGTTCAG -ACGGAATACTCGACTCTGGCATAG -ACGGAATACTCGACTCTGGACAAG -ACGGAATACTCGACTCTGAAGCAG -ACGGAATACTCGACTCTGCGTCAA -ACGGAATACTCGACTCTGGCTGAA -ACGGAATACTCGACTCTGAGTACG -ACGGAATACTCGACTCTGATCCGA -ACGGAATACTCGACTCTGATGGGA -ACGGAATACTCGACTCTGGTGCAA -ACGGAATACTCGACTCTGGAGGAA -ACGGAATACTCGACTCTGCAGGTA -ACGGAATACTCGACTCTGGACTCT -ACGGAATACTCGACTCTGAGTCCT -ACGGAATACTCGACTCTGTAAGCC -ACGGAATACTCGACTCTGATAGCC -ACGGAATACTCGACTCTGTAACCG -ACGGAATACTCGACTCTGATGCCA -ACGGAATACTCGCCTCAAGGAAAC -ACGGAATACTCGCCTCAAAACACC -ACGGAATACTCGCCTCAAATCGAG -ACGGAATACTCGCCTCAACTCCTT -ACGGAATACTCGCCTCAACCTGTT -ACGGAATACTCGCCTCAACGGTTT -ACGGAATACTCGCCTCAAGTGGTT -ACGGAATACTCGCCTCAAGCCTTT -ACGGAATACTCGCCTCAAGGTCTT -ACGGAATACTCGCCTCAAACGCTT -ACGGAATACTCGCCTCAAAGCGTT -ACGGAATACTCGCCTCAATTCGTC -ACGGAATACTCGCCTCAATCTCTC -ACGGAATACTCGCCTCAATGGATC -ACGGAATACTCGCCTCAACACTTC -ACGGAATACTCGCCTCAAGTACTC -ACGGAATACTCGCCTCAAGATGTC -ACGGAATACTCGCCTCAAACAGTC -ACGGAATACTCGCCTCAATTGCTG -ACGGAATACTCGCCTCAATCCATG -ACGGAATACTCGCCTCAATGTGTG -ACGGAATACTCGCCTCAACTAGTG -ACGGAATACTCGCCTCAACATCTG -ACGGAATACTCGCCTCAAGAGTTG -ACGGAATACTCGCCTCAAAGACTG -ACGGAATACTCGCCTCAATCGGTA -ACGGAATACTCGCCTCAATGCCTA -ACGGAATACTCGCCTCAACCACTA -ACGGAATACTCGCCTCAAGGAGTA -ACGGAATACTCGCCTCAATCGTCT -ACGGAATACTCGCCTCAATGCACT -ACGGAATACTCGCCTCAACTGACT -ACGGAATACTCGCCTCAACAACCT -ACGGAATACTCGCCTCAAGCTACT -ACGGAATACTCGCCTCAAGGATCT -ACGGAATACTCGCCTCAAAAGGCT -ACGGAATACTCGCCTCAATCAACC -ACGGAATACTCGCCTCAATGTTCC -ACGGAATACTCGCCTCAAATTCCC -ACGGAATACTCGCCTCAATTCTCG -ACGGAATACTCGCCTCAATAGACG -ACGGAATACTCGCCTCAAGTAACG -ACGGAATACTCGCCTCAAACTTCG -ACGGAATACTCGCCTCAATACGCA -ACGGAATACTCGCCTCAACTTGCA -ACGGAATACTCGCCTCAACGAACA -ACGGAATACTCGCCTCAACAGTCA -ACGGAATACTCGCCTCAAGATCCA -ACGGAATACTCGCCTCAAACGACA -ACGGAATACTCGCCTCAAAGCTCA -ACGGAATACTCGCCTCAATCACGT -ACGGAATACTCGCCTCAACGTAGT -ACGGAATACTCGCCTCAAGTCAGT -ACGGAATACTCGCCTCAAGAAGGT -ACGGAATACTCGCCTCAAAACCGT -ACGGAATACTCGCCTCAATTGTGC -ACGGAATACTCGCCTCAACTAAGC -ACGGAATACTCGCCTCAAACTAGC -ACGGAATACTCGCCTCAAAGATGC -ACGGAATACTCGCCTCAATGAAGG -ACGGAATACTCGCCTCAACAATGG -ACGGAATACTCGCCTCAAATGAGG -ACGGAATACTCGCCTCAAAATGGG -ACGGAATACTCGCCTCAATCCTGA -ACGGAATACTCGCCTCAATAGCGA -ACGGAATACTCGCCTCAACACAGA -ACGGAATACTCGCCTCAAGCAAGA -ACGGAATACTCGCCTCAAGGTTGA -ACGGAATACTCGCCTCAATCCGAT -ACGGAATACTCGCCTCAATGGCAT -ACGGAATACTCGCCTCAACGAGAT -ACGGAATACTCGCCTCAATACCAC -ACGGAATACTCGCCTCAACAGAAC -ACGGAATACTCGCCTCAAGTCTAC -ACGGAATACTCGCCTCAAACGTAC -ACGGAATACTCGCCTCAAAGTGAC -ACGGAATACTCGCCTCAACTGTAG -ACGGAATACTCGCCTCAACCTAAG -ACGGAATACTCGCCTCAAGTTCAG -ACGGAATACTCGCCTCAAGCATAG -ACGGAATACTCGCCTCAAGACAAG -ACGGAATACTCGCCTCAAAAGCAG -ACGGAATACTCGCCTCAACGTCAA -ACGGAATACTCGCCTCAAGCTGAA -ACGGAATACTCGCCTCAAAGTACG -ACGGAATACTCGCCTCAAATCCGA -ACGGAATACTCGCCTCAAATGGGA -ACGGAATACTCGCCTCAAGTGCAA -ACGGAATACTCGCCTCAAGAGGAA -ACGGAATACTCGCCTCAACAGGTA -ACGGAATACTCGCCTCAAGACTCT -ACGGAATACTCGCCTCAAAGTCCT -ACGGAATACTCGCCTCAATAAGCC -ACGGAATACTCGCCTCAAATAGCC -ACGGAATACTCGCCTCAATAACCG -ACGGAATACTCGCCTCAAATGCCA -ACGGAATACTCGACTGCTGGAAAC -ACGGAATACTCGACTGCTAACACC -ACGGAATACTCGACTGCTATCGAG -ACGGAATACTCGACTGCTCTCCTT -ACGGAATACTCGACTGCTCCTGTT -ACGGAATACTCGACTGCTCGGTTT -ACGGAATACTCGACTGCTGTGGTT -ACGGAATACTCGACTGCTGCCTTT -ACGGAATACTCGACTGCTGGTCTT -ACGGAATACTCGACTGCTACGCTT -ACGGAATACTCGACTGCTAGCGTT -ACGGAATACTCGACTGCTTTCGTC -ACGGAATACTCGACTGCTTCTCTC -ACGGAATACTCGACTGCTTGGATC -ACGGAATACTCGACTGCTCACTTC -ACGGAATACTCGACTGCTGTACTC -ACGGAATACTCGACTGCTGATGTC -ACGGAATACTCGACTGCTACAGTC -ACGGAATACTCGACTGCTTTGCTG -ACGGAATACTCGACTGCTTCCATG -ACGGAATACTCGACTGCTTGTGTG -ACGGAATACTCGACTGCTCTAGTG -ACGGAATACTCGACTGCTCATCTG -ACGGAATACTCGACTGCTGAGTTG -ACGGAATACTCGACTGCTAGACTG -ACGGAATACTCGACTGCTTCGGTA -ACGGAATACTCGACTGCTTGCCTA -ACGGAATACTCGACTGCTCCACTA -ACGGAATACTCGACTGCTGGAGTA -ACGGAATACTCGACTGCTTCGTCT -ACGGAATACTCGACTGCTTGCACT -ACGGAATACTCGACTGCTCTGACT -ACGGAATACTCGACTGCTCAACCT -ACGGAATACTCGACTGCTGCTACT -ACGGAATACTCGACTGCTGGATCT -ACGGAATACTCGACTGCTAAGGCT -ACGGAATACTCGACTGCTTCAACC -ACGGAATACTCGACTGCTTGTTCC -ACGGAATACTCGACTGCTATTCCC -ACGGAATACTCGACTGCTTTCTCG -ACGGAATACTCGACTGCTTAGACG -ACGGAATACTCGACTGCTGTAACG -ACGGAATACTCGACTGCTACTTCG -ACGGAATACTCGACTGCTTACGCA -ACGGAATACTCGACTGCTCTTGCA -ACGGAATACTCGACTGCTCGAACA -ACGGAATACTCGACTGCTCAGTCA -ACGGAATACTCGACTGCTGATCCA -ACGGAATACTCGACTGCTACGACA -ACGGAATACTCGACTGCTAGCTCA -ACGGAATACTCGACTGCTTCACGT -ACGGAATACTCGACTGCTCGTAGT -ACGGAATACTCGACTGCTGTCAGT -ACGGAATACTCGACTGCTGAAGGT -ACGGAATACTCGACTGCTAACCGT -ACGGAATACTCGACTGCTTTGTGC -ACGGAATACTCGACTGCTCTAAGC -ACGGAATACTCGACTGCTACTAGC -ACGGAATACTCGACTGCTAGATGC -ACGGAATACTCGACTGCTTGAAGG -ACGGAATACTCGACTGCTCAATGG -ACGGAATACTCGACTGCTATGAGG -ACGGAATACTCGACTGCTAATGGG -ACGGAATACTCGACTGCTTCCTGA -ACGGAATACTCGACTGCTTAGCGA -ACGGAATACTCGACTGCTCACAGA -ACGGAATACTCGACTGCTGCAAGA -ACGGAATACTCGACTGCTGGTTGA -ACGGAATACTCGACTGCTTCCGAT -ACGGAATACTCGACTGCTTGGCAT -ACGGAATACTCGACTGCTCGAGAT -ACGGAATACTCGACTGCTTACCAC -ACGGAATACTCGACTGCTCAGAAC -ACGGAATACTCGACTGCTGTCTAC -ACGGAATACTCGACTGCTACGTAC -ACGGAATACTCGACTGCTAGTGAC -ACGGAATACTCGACTGCTCTGTAG -ACGGAATACTCGACTGCTCCTAAG -ACGGAATACTCGACTGCTGTTCAG -ACGGAATACTCGACTGCTGCATAG -ACGGAATACTCGACTGCTGACAAG -ACGGAATACTCGACTGCTAAGCAG -ACGGAATACTCGACTGCTCGTCAA -ACGGAATACTCGACTGCTGCTGAA -ACGGAATACTCGACTGCTAGTACG -ACGGAATACTCGACTGCTATCCGA -ACGGAATACTCGACTGCTATGGGA -ACGGAATACTCGACTGCTGTGCAA -ACGGAATACTCGACTGCTGAGGAA -ACGGAATACTCGACTGCTCAGGTA -ACGGAATACTCGACTGCTGACTCT -ACGGAATACTCGACTGCTAGTCCT -ACGGAATACTCGACTGCTTAAGCC -ACGGAATACTCGACTGCTATAGCC -ACGGAATACTCGACTGCTTAACCG -ACGGAATACTCGACTGCTATGCCA -ACGGAATACTCGTCTGGAGGAAAC -ACGGAATACTCGTCTGGAAACACC -ACGGAATACTCGTCTGGAATCGAG -ACGGAATACTCGTCTGGACTCCTT -ACGGAATACTCGTCTGGACCTGTT -ACGGAATACTCGTCTGGACGGTTT -ACGGAATACTCGTCTGGAGTGGTT -ACGGAATACTCGTCTGGAGCCTTT -ACGGAATACTCGTCTGGAGGTCTT -ACGGAATACTCGTCTGGAACGCTT -ACGGAATACTCGTCTGGAAGCGTT -ACGGAATACTCGTCTGGATTCGTC -ACGGAATACTCGTCTGGATCTCTC -ACGGAATACTCGTCTGGATGGATC -ACGGAATACTCGTCTGGACACTTC -ACGGAATACTCGTCTGGAGTACTC -ACGGAATACTCGTCTGGAGATGTC -ACGGAATACTCGTCTGGAACAGTC -ACGGAATACTCGTCTGGATTGCTG -ACGGAATACTCGTCTGGATCCATG -ACGGAATACTCGTCTGGATGTGTG -ACGGAATACTCGTCTGGACTAGTG -ACGGAATACTCGTCTGGACATCTG -ACGGAATACTCGTCTGGAGAGTTG -ACGGAATACTCGTCTGGAAGACTG -ACGGAATACTCGTCTGGATCGGTA -ACGGAATACTCGTCTGGATGCCTA -ACGGAATACTCGTCTGGACCACTA -ACGGAATACTCGTCTGGAGGAGTA -ACGGAATACTCGTCTGGATCGTCT -ACGGAATACTCGTCTGGATGCACT -ACGGAATACTCGTCTGGACTGACT -ACGGAATACTCGTCTGGACAACCT -ACGGAATACTCGTCTGGAGCTACT -ACGGAATACTCGTCTGGAGGATCT -ACGGAATACTCGTCTGGAAAGGCT -ACGGAATACTCGTCTGGATCAACC -ACGGAATACTCGTCTGGATGTTCC -ACGGAATACTCGTCTGGAATTCCC -ACGGAATACTCGTCTGGATTCTCG -ACGGAATACTCGTCTGGATAGACG -ACGGAATACTCGTCTGGAGTAACG -ACGGAATACTCGTCTGGAACTTCG -ACGGAATACTCGTCTGGATACGCA -ACGGAATACTCGTCTGGACTTGCA -ACGGAATACTCGTCTGGACGAACA -ACGGAATACTCGTCTGGACAGTCA -ACGGAATACTCGTCTGGAGATCCA -ACGGAATACTCGTCTGGAACGACA -ACGGAATACTCGTCTGGAAGCTCA -ACGGAATACTCGTCTGGATCACGT -ACGGAATACTCGTCTGGACGTAGT -ACGGAATACTCGTCTGGAGTCAGT -ACGGAATACTCGTCTGGAGAAGGT -ACGGAATACTCGTCTGGAAACCGT -ACGGAATACTCGTCTGGATTGTGC -ACGGAATACTCGTCTGGACTAAGC -ACGGAATACTCGTCTGGAACTAGC -ACGGAATACTCGTCTGGAAGATGC -ACGGAATACTCGTCTGGATGAAGG -ACGGAATACTCGTCTGGACAATGG -ACGGAATACTCGTCTGGAATGAGG -ACGGAATACTCGTCTGGAAATGGG -ACGGAATACTCGTCTGGATCCTGA -ACGGAATACTCGTCTGGATAGCGA -ACGGAATACTCGTCTGGACACAGA -ACGGAATACTCGTCTGGAGCAAGA -ACGGAATACTCGTCTGGAGGTTGA -ACGGAATACTCGTCTGGATCCGAT -ACGGAATACTCGTCTGGATGGCAT -ACGGAATACTCGTCTGGACGAGAT -ACGGAATACTCGTCTGGATACCAC -ACGGAATACTCGTCTGGACAGAAC -ACGGAATACTCGTCTGGAGTCTAC -ACGGAATACTCGTCTGGAACGTAC -ACGGAATACTCGTCTGGAAGTGAC -ACGGAATACTCGTCTGGACTGTAG -ACGGAATACTCGTCTGGACCTAAG -ACGGAATACTCGTCTGGAGTTCAG -ACGGAATACTCGTCTGGAGCATAG -ACGGAATACTCGTCTGGAGACAAG -ACGGAATACTCGTCTGGAAAGCAG -ACGGAATACTCGTCTGGACGTCAA -ACGGAATACTCGTCTGGAGCTGAA -ACGGAATACTCGTCTGGAAGTACG -ACGGAATACTCGTCTGGAATCCGA -ACGGAATACTCGTCTGGAATGGGA -ACGGAATACTCGTCTGGAGTGCAA -ACGGAATACTCGTCTGGAGAGGAA -ACGGAATACTCGTCTGGACAGGTA -ACGGAATACTCGTCTGGAGACTCT -ACGGAATACTCGTCTGGAAGTCCT -ACGGAATACTCGTCTGGATAAGCC -ACGGAATACTCGTCTGGAATAGCC -ACGGAATACTCGTCTGGATAACCG -ACGGAATACTCGTCTGGAATGCCA -ACGGAATACTCGGCTAAGGGAAAC -ACGGAATACTCGGCTAAGAACACC -ACGGAATACTCGGCTAAGATCGAG -ACGGAATACTCGGCTAAGCTCCTT -ACGGAATACTCGGCTAAGCCTGTT -ACGGAATACTCGGCTAAGCGGTTT -ACGGAATACTCGGCTAAGGTGGTT -ACGGAATACTCGGCTAAGGCCTTT -ACGGAATACTCGGCTAAGGGTCTT -ACGGAATACTCGGCTAAGACGCTT -ACGGAATACTCGGCTAAGAGCGTT -ACGGAATACTCGGCTAAGTTCGTC -ACGGAATACTCGGCTAAGTCTCTC -ACGGAATACTCGGCTAAGTGGATC -ACGGAATACTCGGCTAAGCACTTC -ACGGAATACTCGGCTAAGGTACTC -ACGGAATACTCGGCTAAGGATGTC -ACGGAATACTCGGCTAAGACAGTC -ACGGAATACTCGGCTAAGTTGCTG -ACGGAATACTCGGCTAAGTCCATG -ACGGAATACTCGGCTAAGTGTGTG -ACGGAATACTCGGCTAAGCTAGTG -ACGGAATACTCGGCTAAGCATCTG -ACGGAATACTCGGCTAAGGAGTTG -ACGGAATACTCGGCTAAGAGACTG -ACGGAATACTCGGCTAAGTCGGTA -ACGGAATACTCGGCTAAGTGCCTA -ACGGAATACTCGGCTAAGCCACTA -ACGGAATACTCGGCTAAGGGAGTA -ACGGAATACTCGGCTAAGTCGTCT -ACGGAATACTCGGCTAAGTGCACT -ACGGAATACTCGGCTAAGCTGACT -ACGGAATACTCGGCTAAGCAACCT -ACGGAATACTCGGCTAAGGCTACT -ACGGAATACTCGGCTAAGGGATCT -ACGGAATACTCGGCTAAGAAGGCT -ACGGAATACTCGGCTAAGTCAACC -ACGGAATACTCGGCTAAGTGTTCC -ACGGAATACTCGGCTAAGATTCCC -ACGGAATACTCGGCTAAGTTCTCG -ACGGAATACTCGGCTAAGTAGACG -ACGGAATACTCGGCTAAGGTAACG -ACGGAATACTCGGCTAAGACTTCG -ACGGAATACTCGGCTAAGTACGCA -ACGGAATACTCGGCTAAGCTTGCA -ACGGAATACTCGGCTAAGCGAACA -ACGGAATACTCGGCTAAGCAGTCA -ACGGAATACTCGGCTAAGGATCCA -ACGGAATACTCGGCTAAGACGACA -ACGGAATACTCGGCTAAGAGCTCA -ACGGAATACTCGGCTAAGTCACGT -ACGGAATACTCGGCTAAGCGTAGT -ACGGAATACTCGGCTAAGGTCAGT -ACGGAATACTCGGCTAAGGAAGGT -ACGGAATACTCGGCTAAGAACCGT -ACGGAATACTCGGCTAAGTTGTGC -ACGGAATACTCGGCTAAGCTAAGC -ACGGAATACTCGGCTAAGACTAGC -ACGGAATACTCGGCTAAGAGATGC -ACGGAATACTCGGCTAAGTGAAGG -ACGGAATACTCGGCTAAGCAATGG -ACGGAATACTCGGCTAAGATGAGG -ACGGAATACTCGGCTAAGAATGGG -ACGGAATACTCGGCTAAGTCCTGA -ACGGAATACTCGGCTAAGTAGCGA -ACGGAATACTCGGCTAAGCACAGA -ACGGAATACTCGGCTAAGGCAAGA -ACGGAATACTCGGCTAAGGGTTGA -ACGGAATACTCGGCTAAGTCCGAT -ACGGAATACTCGGCTAAGTGGCAT -ACGGAATACTCGGCTAAGCGAGAT -ACGGAATACTCGGCTAAGTACCAC -ACGGAATACTCGGCTAAGCAGAAC -ACGGAATACTCGGCTAAGGTCTAC -ACGGAATACTCGGCTAAGACGTAC -ACGGAATACTCGGCTAAGAGTGAC -ACGGAATACTCGGCTAAGCTGTAG -ACGGAATACTCGGCTAAGCCTAAG -ACGGAATACTCGGCTAAGGTTCAG -ACGGAATACTCGGCTAAGGCATAG -ACGGAATACTCGGCTAAGGACAAG -ACGGAATACTCGGCTAAGAAGCAG -ACGGAATACTCGGCTAAGCGTCAA -ACGGAATACTCGGCTAAGGCTGAA -ACGGAATACTCGGCTAAGAGTACG -ACGGAATACTCGGCTAAGATCCGA -ACGGAATACTCGGCTAAGATGGGA -ACGGAATACTCGGCTAAGGTGCAA -ACGGAATACTCGGCTAAGGAGGAA -ACGGAATACTCGGCTAAGCAGGTA -ACGGAATACTCGGCTAAGGACTCT -ACGGAATACTCGGCTAAGAGTCCT -ACGGAATACTCGGCTAAGTAAGCC -ACGGAATACTCGGCTAAGATAGCC -ACGGAATACTCGGCTAAGTAACCG -ACGGAATACTCGGCTAAGATGCCA -ACGGAATACTCGACCTCAGGAAAC -ACGGAATACTCGACCTCAAACACC -ACGGAATACTCGACCTCAATCGAG -ACGGAATACTCGACCTCACTCCTT -ACGGAATACTCGACCTCACCTGTT -ACGGAATACTCGACCTCACGGTTT -ACGGAATACTCGACCTCAGTGGTT -ACGGAATACTCGACCTCAGCCTTT -ACGGAATACTCGACCTCAGGTCTT -ACGGAATACTCGACCTCAACGCTT -ACGGAATACTCGACCTCAAGCGTT -ACGGAATACTCGACCTCATTCGTC -ACGGAATACTCGACCTCATCTCTC -ACGGAATACTCGACCTCATGGATC -ACGGAATACTCGACCTCACACTTC -ACGGAATACTCGACCTCAGTACTC -ACGGAATACTCGACCTCAGATGTC -ACGGAATACTCGACCTCAACAGTC -ACGGAATACTCGACCTCATTGCTG -ACGGAATACTCGACCTCATCCATG -ACGGAATACTCGACCTCATGTGTG -ACGGAATACTCGACCTCACTAGTG -ACGGAATACTCGACCTCACATCTG -ACGGAATACTCGACCTCAGAGTTG -ACGGAATACTCGACCTCAAGACTG -ACGGAATACTCGACCTCATCGGTA -ACGGAATACTCGACCTCATGCCTA -ACGGAATACTCGACCTCACCACTA -ACGGAATACTCGACCTCAGGAGTA -ACGGAATACTCGACCTCATCGTCT -ACGGAATACTCGACCTCATGCACT -ACGGAATACTCGACCTCACTGACT -ACGGAATACTCGACCTCACAACCT -ACGGAATACTCGACCTCAGCTACT -ACGGAATACTCGACCTCAGGATCT -ACGGAATACTCGACCTCAAAGGCT -ACGGAATACTCGACCTCATCAACC -ACGGAATACTCGACCTCATGTTCC -ACGGAATACTCGACCTCAATTCCC -ACGGAATACTCGACCTCATTCTCG -ACGGAATACTCGACCTCATAGACG -ACGGAATACTCGACCTCAGTAACG -ACGGAATACTCGACCTCAACTTCG -ACGGAATACTCGACCTCATACGCA -ACGGAATACTCGACCTCACTTGCA -ACGGAATACTCGACCTCACGAACA -ACGGAATACTCGACCTCACAGTCA -ACGGAATACTCGACCTCAGATCCA -ACGGAATACTCGACCTCAACGACA -ACGGAATACTCGACCTCAAGCTCA -ACGGAATACTCGACCTCATCACGT -ACGGAATACTCGACCTCACGTAGT -ACGGAATACTCGACCTCAGTCAGT -ACGGAATACTCGACCTCAGAAGGT -ACGGAATACTCGACCTCAAACCGT -ACGGAATACTCGACCTCATTGTGC -ACGGAATACTCGACCTCACTAAGC -ACGGAATACTCGACCTCAACTAGC -ACGGAATACTCGACCTCAAGATGC -ACGGAATACTCGACCTCATGAAGG -ACGGAATACTCGACCTCACAATGG -ACGGAATACTCGACCTCAATGAGG -ACGGAATACTCGACCTCAAATGGG -ACGGAATACTCGACCTCATCCTGA -ACGGAATACTCGACCTCATAGCGA -ACGGAATACTCGACCTCACACAGA -ACGGAATACTCGACCTCAGCAAGA -ACGGAATACTCGACCTCAGGTTGA -ACGGAATACTCGACCTCATCCGAT -ACGGAATACTCGACCTCATGGCAT -ACGGAATACTCGACCTCACGAGAT -ACGGAATACTCGACCTCATACCAC -ACGGAATACTCGACCTCACAGAAC -ACGGAATACTCGACCTCAGTCTAC -ACGGAATACTCGACCTCAACGTAC -ACGGAATACTCGACCTCAAGTGAC -ACGGAATACTCGACCTCACTGTAG -ACGGAATACTCGACCTCACCTAAG -ACGGAATACTCGACCTCAGTTCAG -ACGGAATACTCGACCTCAGCATAG -ACGGAATACTCGACCTCAGACAAG -ACGGAATACTCGACCTCAAAGCAG -ACGGAATACTCGACCTCACGTCAA -ACGGAATACTCGACCTCAGCTGAA -ACGGAATACTCGACCTCAAGTACG -ACGGAATACTCGACCTCAATCCGA -ACGGAATACTCGACCTCAATGGGA -ACGGAATACTCGACCTCAGTGCAA -ACGGAATACTCGACCTCAGAGGAA -ACGGAATACTCGACCTCACAGGTA -ACGGAATACTCGACCTCAGACTCT -ACGGAATACTCGACCTCAAGTCCT -ACGGAATACTCGACCTCATAAGCC -ACGGAATACTCGACCTCAATAGCC -ACGGAATACTCGACCTCATAACCG -ACGGAATACTCGACCTCAATGCCA -ACGGAATACTCGTCCTGTGGAAAC -ACGGAATACTCGTCCTGTAACACC -ACGGAATACTCGTCCTGTATCGAG -ACGGAATACTCGTCCTGTCTCCTT -ACGGAATACTCGTCCTGTCCTGTT -ACGGAATACTCGTCCTGTCGGTTT -ACGGAATACTCGTCCTGTGTGGTT -ACGGAATACTCGTCCTGTGCCTTT -ACGGAATACTCGTCCTGTGGTCTT -ACGGAATACTCGTCCTGTACGCTT -ACGGAATACTCGTCCTGTAGCGTT -ACGGAATACTCGTCCTGTTTCGTC -ACGGAATACTCGTCCTGTTCTCTC -ACGGAATACTCGTCCTGTTGGATC -ACGGAATACTCGTCCTGTCACTTC -ACGGAATACTCGTCCTGTGTACTC -ACGGAATACTCGTCCTGTGATGTC -ACGGAATACTCGTCCTGTACAGTC -ACGGAATACTCGTCCTGTTTGCTG -ACGGAATACTCGTCCTGTTCCATG -ACGGAATACTCGTCCTGTTGTGTG -ACGGAATACTCGTCCTGTCTAGTG -ACGGAATACTCGTCCTGTCATCTG -ACGGAATACTCGTCCTGTGAGTTG -ACGGAATACTCGTCCTGTAGACTG -ACGGAATACTCGTCCTGTTCGGTA -ACGGAATACTCGTCCTGTTGCCTA -ACGGAATACTCGTCCTGTCCACTA -ACGGAATACTCGTCCTGTGGAGTA -ACGGAATACTCGTCCTGTTCGTCT -ACGGAATACTCGTCCTGTTGCACT -ACGGAATACTCGTCCTGTCTGACT -ACGGAATACTCGTCCTGTCAACCT -ACGGAATACTCGTCCTGTGCTACT -ACGGAATACTCGTCCTGTGGATCT -ACGGAATACTCGTCCTGTAAGGCT -ACGGAATACTCGTCCTGTTCAACC -ACGGAATACTCGTCCTGTTGTTCC -ACGGAATACTCGTCCTGTATTCCC -ACGGAATACTCGTCCTGTTTCTCG -ACGGAATACTCGTCCTGTTAGACG -ACGGAATACTCGTCCTGTGTAACG -ACGGAATACTCGTCCTGTACTTCG -ACGGAATACTCGTCCTGTTACGCA -ACGGAATACTCGTCCTGTCTTGCA -ACGGAATACTCGTCCTGTCGAACA -ACGGAATACTCGTCCTGTCAGTCA -ACGGAATACTCGTCCTGTGATCCA -ACGGAATACTCGTCCTGTACGACA -ACGGAATACTCGTCCTGTAGCTCA -ACGGAATACTCGTCCTGTTCACGT -ACGGAATACTCGTCCTGTCGTAGT -ACGGAATACTCGTCCTGTGTCAGT -ACGGAATACTCGTCCTGTGAAGGT -ACGGAATACTCGTCCTGTAACCGT -ACGGAATACTCGTCCTGTTTGTGC -ACGGAATACTCGTCCTGTCTAAGC -ACGGAATACTCGTCCTGTACTAGC -ACGGAATACTCGTCCTGTAGATGC -ACGGAATACTCGTCCTGTTGAAGG -ACGGAATACTCGTCCTGTCAATGG -ACGGAATACTCGTCCTGTATGAGG -ACGGAATACTCGTCCTGTAATGGG -ACGGAATACTCGTCCTGTTCCTGA -ACGGAATACTCGTCCTGTTAGCGA -ACGGAATACTCGTCCTGTCACAGA -ACGGAATACTCGTCCTGTGCAAGA -ACGGAATACTCGTCCTGTGGTTGA -ACGGAATACTCGTCCTGTTCCGAT -ACGGAATACTCGTCCTGTTGGCAT -ACGGAATACTCGTCCTGTCGAGAT -ACGGAATACTCGTCCTGTTACCAC -ACGGAATACTCGTCCTGTCAGAAC -ACGGAATACTCGTCCTGTGTCTAC -ACGGAATACTCGTCCTGTACGTAC -ACGGAATACTCGTCCTGTAGTGAC -ACGGAATACTCGTCCTGTCTGTAG -ACGGAATACTCGTCCTGTCCTAAG -ACGGAATACTCGTCCTGTGTTCAG -ACGGAATACTCGTCCTGTGCATAG -ACGGAATACTCGTCCTGTGACAAG -ACGGAATACTCGTCCTGTAAGCAG -ACGGAATACTCGTCCTGTCGTCAA -ACGGAATACTCGTCCTGTGCTGAA -ACGGAATACTCGTCCTGTAGTACG -ACGGAATACTCGTCCTGTATCCGA -ACGGAATACTCGTCCTGTATGGGA -ACGGAATACTCGTCCTGTGTGCAA -ACGGAATACTCGTCCTGTGAGGAA -ACGGAATACTCGTCCTGTCAGGTA -ACGGAATACTCGTCCTGTGACTCT -ACGGAATACTCGTCCTGTAGTCCT -ACGGAATACTCGTCCTGTTAAGCC -ACGGAATACTCGTCCTGTATAGCC -ACGGAATACTCGTCCTGTTAACCG -ACGGAATACTCGTCCTGTATGCCA -ACGGAATACTCGCCCATTGGAAAC -ACGGAATACTCGCCCATTAACACC -ACGGAATACTCGCCCATTATCGAG -ACGGAATACTCGCCCATTCTCCTT -ACGGAATACTCGCCCATTCCTGTT -ACGGAATACTCGCCCATTCGGTTT -ACGGAATACTCGCCCATTGTGGTT -ACGGAATACTCGCCCATTGCCTTT -ACGGAATACTCGCCCATTGGTCTT -ACGGAATACTCGCCCATTACGCTT -ACGGAATACTCGCCCATTAGCGTT -ACGGAATACTCGCCCATTTTCGTC -ACGGAATACTCGCCCATTTCTCTC -ACGGAATACTCGCCCATTTGGATC -ACGGAATACTCGCCCATTCACTTC -ACGGAATACTCGCCCATTGTACTC -ACGGAATACTCGCCCATTGATGTC -ACGGAATACTCGCCCATTACAGTC -ACGGAATACTCGCCCATTTTGCTG -ACGGAATACTCGCCCATTTCCATG -ACGGAATACTCGCCCATTTGTGTG -ACGGAATACTCGCCCATTCTAGTG -ACGGAATACTCGCCCATTCATCTG -ACGGAATACTCGCCCATTGAGTTG -ACGGAATACTCGCCCATTAGACTG -ACGGAATACTCGCCCATTTCGGTA -ACGGAATACTCGCCCATTTGCCTA -ACGGAATACTCGCCCATTCCACTA -ACGGAATACTCGCCCATTGGAGTA -ACGGAATACTCGCCCATTTCGTCT -ACGGAATACTCGCCCATTTGCACT -ACGGAATACTCGCCCATTCTGACT -ACGGAATACTCGCCCATTCAACCT -ACGGAATACTCGCCCATTGCTACT -ACGGAATACTCGCCCATTGGATCT -ACGGAATACTCGCCCATTAAGGCT -ACGGAATACTCGCCCATTTCAACC -ACGGAATACTCGCCCATTTGTTCC -ACGGAATACTCGCCCATTATTCCC -ACGGAATACTCGCCCATTTTCTCG -ACGGAATACTCGCCCATTTAGACG -ACGGAATACTCGCCCATTGTAACG -ACGGAATACTCGCCCATTACTTCG -ACGGAATACTCGCCCATTTACGCA -ACGGAATACTCGCCCATTCTTGCA -ACGGAATACTCGCCCATTCGAACA -ACGGAATACTCGCCCATTCAGTCA -ACGGAATACTCGCCCATTGATCCA -ACGGAATACTCGCCCATTACGACA -ACGGAATACTCGCCCATTAGCTCA -ACGGAATACTCGCCCATTTCACGT -ACGGAATACTCGCCCATTCGTAGT -ACGGAATACTCGCCCATTGTCAGT -ACGGAATACTCGCCCATTGAAGGT -ACGGAATACTCGCCCATTAACCGT -ACGGAATACTCGCCCATTTTGTGC -ACGGAATACTCGCCCATTCTAAGC -ACGGAATACTCGCCCATTACTAGC -ACGGAATACTCGCCCATTAGATGC -ACGGAATACTCGCCCATTTGAAGG -ACGGAATACTCGCCCATTCAATGG -ACGGAATACTCGCCCATTATGAGG -ACGGAATACTCGCCCATTAATGGG -ACGGAATACTCGCCCATTTCCTGA -ACGGAATACTCGCCCATTTAGCGA -ACGGAATACTCGCCCATTCACAGA -ACGGAATACTCGCCCATTGCAAGA -ACGGAATACTCGCCCATTGGTTGA -ACGGAATACTCGCCCATTTCCGAT -ACGGAATACTCGCCCATTTGGCAT -ACGGAATACTCGCCCATTCGAGAT -ACGGAATACTCGCCCATTTACCAC -ACGGAATACTCGCCCATTCAGAAC -ACGGAATACTCGCCCATTGTCTAC -ACGGAATACTCGCCCATTACGTAC -ACGGAATACTCGCCCATTAGTGAC -ACGGAATACTCGCCCATTCTGTAG -ACGGAATACTCGCCCATTCCTAAG -ACGGAATACTCGCCCATTGTTCAG -ACGGAATACTCGCCCATTGCATAG -ACGGAATACTCGCCCATTGACAAG -ACGGAATACTCGCCCATTAAGCAG -ACGGAATACTCGCCCATTCGTCAA -ACGGAATACTCGCCCATTGCTGAA -ACGGAATACTCGCCCATTAGTACG -ACGGAATACTCGCCCATTATCCGA -ACGGAATACTCGCCCATTATGGGA -ACGGAATACTCGCCCATTGTGCAA -ACGGAATACTCGCCCATTGAGGAA -ACGGAATACTCGCCCATTCAGGTA -ACGGAATACTCGCCCATTGACTCT -ACGGAATACTCGCCCATTAGTCCT -ACGGAATACTCGCCCATTTAAGCC -ACGGAATACTCGCCCATTATAGCC -ACGGAATACTCGCCCATTTAACCG -ACGGAATACTCGCCCATTATGCCA -ACGGAATACTCGTCGTTCGGAAAC -ACGGAATACTCGTCGTTCAACACC -ACGGAATACTCGTCGTTCATCGAG -ACGGAATACTCGTCGTTCCTCCTT -ACGGAATACTCGTCGTTCCCTGTT -ACGGAATACTCGTCGTTCCGGTTT -ACGGAATACTCGTCGTTCGTGGTT -ACGGAATACTCGTCGTTCGCCTTT -ACGGAATACTCGTCGTTCGGTCTT -ACGGAATACTCGTCGTTCACGCTT -ACGGAATACTCGTCGTTCAGCGTT -ACGGAATACTCGTCGTTCTTCGTC -ACGGAATACTCGTCGTTCTCTCTC -ACGGAATACTCGTCGTTCTGGATC -ACGGAATACTCGTCGTTCCACTTC -ACGGAATACTCGTCGTTCGTACTC -ACGGAATACTCGTCGTTCGATGTC -ACGGAATACTCGTCGTTCACAGTC -ACGGAATACTCGTCGTTCTTGCTG -ACGGAATACTCGTCGTTCTCCATG -ACGGAATACTCGTCGTTCTGTGTG -ACGGAATACTCGTCGTTCCTAGTG -ACGGAATACTCGTCGTTCCATCTG -ACGGAATACTCGTCGTTCGAGTTG -ACGGAATACTCGTCGTTCAGACTG -ACGGAATACTCGTCGTTCTCGGTA -ACGGAATACTCGTCGTTCTGCCTA -ACGGAATACTCGTCGTTCCCACTA -ACGGAATACTCGTCGTTCGGAGTA -ACGGAATACTCGTCGTTCTCGTCT -ACGGAATACTCGTCGTTCTGCACT -ACGGAATACTCGTCGTTCCTGACT -ACGGAATACTCGTCGTTCCAACCT -ACGGAATACTCGTCGTTCGCTACT -ACGGAATACTCGTCGTTCGGATCT -ACGGAATACTCGTCGTTCAAGGCT -ACGGAATACTCGTCGTTCTCAACC -ACGGAATACTCGTCGTTCTGTTCC -ACGGAATACTCGTCGTTCATTCCC -ACGGAATACTCGTCGTTCTTCTCG -ACGGAATACTCGTCGTTCTAGACG -ACGGAATACTCGTCGTTCGTAACG -ACGGAATACTCGTCGTTCACTTCG -ACGGAATACTCGTCGTTCTACGCA -ACGGAATACTCGTCGTTCCTTGCA -ACGGAATACTCGTCGTTCCGAACA -ACGGAATACTCGTCGTTCCAGTCA -ACGGAATACTCGTCGTTCGATCCA -ACGGAATACTCGTCGTTCACGACA -ACGGAATACTCGTCGTTCAGCTCA -ACGGAATACTCGTCGTTCTCACGT -ACGGAATACTCGTCGTTCCGTAGT -ACGGAATACTCGTCGTTCGTCAGT -ACGGAATACTCGTCGTTCGAAGGT -ACGGAATACTCGTCGTTCAACCGT -ACGGAATACTCGTCGTTCTTGTGC -ACGGAATACTCGTCGTTCCTAAGC -ACGGAATACTCGTCGTTCACTAGC -ACGGAATACTCGTCGTTCAGATGC -ACGGAATACTCGTCGTTCTGAAGG -ACGGAATACTCGTCGTTCCAATGG -ACGGAATACTCGTCGTTCATGAGG -ACGGAATACTCGTCGTTCAATGGG -ACGGAATACTCGTCGTTCTCCTGA -ACGGAATACTCGTCGTTCTAGCGA -ACGGAATACTCGTCGTTCCACAGA -ACGGAATACTCGTCGTTCGCAAGA -ACGGAATACTCGTCGTTCGGTTGA -ACGGAATACTCGTCGTTCTCCGAT -ACGGAATACTCGTCGTTCTGGCAT -ACGGAATACTCGTCGTTCCGAGAT -ACGGAATACTCGTCGTTCTACCAC -ACGGAATACTCGTCGTTCCAGAAC -ACGGAATACTCGTCGTTCGTCTAC -ACGGAATACTCGTCGTTCACGTAC -ACGGAATACTCGTCGTTCAGTGAC -ACGGAATACTCGTCGTTCCTGTAG -ACGGAATACTCGTCGTTCCCTAAG -ACGGAATACTCGTCGTTCGTTCAG -ACGGAATACTCGTCGTTCGCATAG -ACGGAATACTCGTCGTTCGACAAG -ACGGAATACTCGTCGTTCAAGCAG -ACGGAATACTCGTCGTTCCGTCAA -ACGGAATACTCGTCGTTCGCTGAA -ACGGAATACTCGTCGTTCAGTACG -ACGGAATACTCGTCGTTCATCCGA -ACGGAATACTCGTCGTTCATGGGA -ACGGAATACTCGTCGTTCGTGCAA -ACGGAATACTCGTCGTTCGAGGAA -ACGGAATACTCGTCGTTCCAGGTA -ACGGAATACTCGTCGTTCGACTCT -ACGGAATACTCGTCGTTCAGTCCT -ACGGAATACTCGTCGTTCTAAGCC -ACGGAATACTCGTCGTTCATAGCC -ACGGAATACTCGTCGTTCTAACCG -ACGGAATACTCGTCGTTCATGCCA -ACGGAATACTCGACGTAGGGAAAC -ACGGAATACTCGACGTAGAACACC -ACGGAATACTCGACGTAGATCGAG -ACGGAATACTCGACGTAGCTCCTT -ACGGAATACTCGACGTAGCCTGTT -ACGGAATACTCGACGTAGCGGTTT -ACGGAATACTCGACGTAGGTGGTT -ACGGAATACTCGACGTAGGCCTTT -ACGGAATACTCGACGTAGGGTCTT -ACGGAATACTCGACGTAGACGCTT -ACGGAATACTCGACGTAGAGCGTT -ACGGAATACTCGACGTAGTTCGTC -ACGGAATACTCGACGTAGTCTCTC -ACGGAATACTCGACGTAGTGGATC -ACGGAATACTCGACGTAGCACTTC -ACGGAATACTCGACGTAGGTACTC -ACGGAATACTCGACGTAGGATGTC -ACGGAATACTCGACGTAGACAGTC -ACGGAATACTCGACGTAGTTGCTG -ACGGAATACTCGACGTAGTCCATG -ACGGAATACTCGACGTAGTGTGTG -ACGGAATACTCGACGTAGCTAGTG -ACGGAATACTCGACGTAGCATCTG -ACGGAATACTCGACGTAGGAGTTG -ACGGAATACTCGACGTAGAGACTG -ACGGAATACTCGACGTAGTCGGTA -ACGGAATACTCGACGTAGTGCCTA -ACGGAATACTCGACGTAGCCACTA -ACGGAATACTCGACGTAGGGAGTA -ACGGAATACTCGACGTAGTCGTCT -ACGGAATACTCGACGTAGTGCACT -ACGGAATACTCGACGTAGCTGACT -ACGGAATACTCGACGTAGCAACCT -ACGGAATACTCGACGTAGGCTACT -ACGGAATACTCGACGTAGGGATCT -ACGGAATACTCGACGTAGAAGGCT -ACGGAATACTCGACGTAGTCAACC -ACGGAATACTCGACGTAGTGTTCC -ACGGAATACTCGACGTAGATTCCC -ACGGAATACTCGACGTAGTTCTCG -ACGGAATACTCGACGTAGTAGACG -ACGGAATACTCGACGTAGGTAACG -ACGGAATACTCGACGTAGACTTCG -ACGGAATACTCGACGTAGTACGCA -ACGGAATACTCGACGTAGCTTGCA -ACGGAATACTCGACGTAGCGAACA -ACGGAATACTCGACGTAGCAGTCA -ACGGAATACTCGACGTAGGATCCA -ACGGAATACTCGACGTAGACGACA -ACGGAATACTCGACGTAGAGCTCA -ACGGAATACTCGACGTAGTCACGT -ACGGAATACTCGACGTAGCGTAGT -ACGGAATACTCGACGTAGGTCAGT -ACGGAATACTCGACGTAGGAAGGT -ACGGAATACTCGACGTAGAACCGT -ACGGAATACTCGACGTAGTTGTGC -ACGGAATACTCGACGTAGCTAAGC -ACGGAATACTCGACGTAGACTAGC -ACGGAATACTCGACGTAGAGATGC -ACGGAATACTCGACGTAGTGAAGG -ACGGAATACTCGACGTAGCAATGG -ACGGAATACTCGACGTAGATGAGG -ACGGAATACTCGACGTAGAATGGG -ACGGAATACTCGACGTAGTCCTGA -ACGGAATACTCGACGTAGTAGCGA -ACGGAATACTCGACGTAGCACAGA -ACGGAATACTCGACGTAGGCAAGA -ACGGAATACTCGACGTAGGGTTGA -ACGGAATACTCGACGTAGTCCGAT -ACGGAATACTCGACGTAGTGGCAT -ACGGAATACTCGACGTAGCGAGAT -ACGGAATACTCGACGTAGTACCAC -ACGGAATACTCGACGTAGCAGAAC -ACGGAATACTCGACGTAGGTCTAC -ACGGAATACTCGACGTAGACGTAC -ACGGAATACTCGACGTAGAGTGAC -ACGGAATACTCGACGTAGCTGTAG -ACGGAATACTCGACGTAGCCTAAG -ACGGAATACTCGACGTAGGTTCAG -ACGGAATACTCGACGTAGGCATAG -ACGGAATACTCGACGTAGGACAAG -ACGGAATACTCGACGTAGAAGCAG -ACGGAATACTCGACGTAGCGTCAA -ACGGAATACTCGACGTAGGCTGAA -ACGGAATACTCGACGTAGAGTACG -ACGGAATACTCGACGTAGATCCGA -ACGGAATACTCGACGTAGATGGGA -ACGGAATACTCGACGTAGGTGCAA -ACGGAATACTCGACGTAGGAGGAA -ACGGAATACTCGACGTAGCAGGTA -ACGGAATACTCGACGTAGGACTCT -ACGGAATACTCGACGTAGAGTCCT -ACGGAATACTCGACGTAGTAAGCC -ACGGAATACTCGACGTAGATAGCC -ACGGAATACTCGACGTAGTAACCG -ACGGAATACTCGACGTAGATGCCA -ACGGAATACTCGACGGTAGGAAAC -ACGGAATACTCGACGGTAAACACC -ACGGAATACTCGACGGTAATCGAG -ACGGAATACTCGACGGTACTCCTT -ACGGAATACTCGACGGTACCTGTT -ACGGAATACTCGACGGTACGGTTT -ACGGAATACTCGACGGTAGTGGTT -ACGGAATACTCGACGGTAGCCTTT -ACGGAATACTCGACGGTAGGTCTT -ACGGAATACTCGACGGTAACGCTT -ACGGAATACTCGACGGTAAGCGTT -ACGGAATACTCGACGGTATTCGTC -ACGGAATACTCGACGGTATCTCTC -ACGGAATACTCGACGGTATGGATC -ACGGAATACTCGACGGTACACTTC -ACGGAATACTCGACGGTAGTACTC -ACGGAATACTCGACGGTAGATGTC -ACGGAATACTCGACGGTAACAGTC -ACGGAATACTCGACGGTATTGCTG -ACGGAATACTCGACGGTATCCATG -ACGGAATACTCGACGGTATGTGTG -ACGGAATACTCGACGGTACTAGTG -ACGGAATACTCGACGGTACATCTG -ACGGAATACTCGACGGTAGAGTTG -ACGGAATACTCGACGGTAAGACTG -ACGGAATACTCGACGGTATCGGTA -ACGGAATACTCGACGGTATGCCTA -ACGGAATACTCGACGGTACCACTA -ACGGAATACTCGACGGTAGGAGTA -ACGGAATACTCGACGGTATCGTCT -ACGGAATACTCGACGGTATGCACT -ACGGAATACTCGACGGTACTGACT -ACGGAATACTCGACGGTACAACCT -ACGGAATACTCGACGGTAGCTACT -ACGGAATACTCGACGGTAGGATCT -ACGGAATACTCGACGGTAAAGGCT -ACGGAATACTCGACGGTATCAACC -ACGGAATACTCGACGGTATGTTCC -ACGGAATACTCGACGGTAATTCCC -ACGGAATACTCGACGGTATTCTCG -ACGGAATACTCGACGGTATAGACG -ACGGAATACTCGACGGTAGTAACG -ACGGAATACTCGACGGTAACTTCG -ACGGAATACTCGACGGTATACGCA -ACGGAATACTCGACGGTACTTGCA -ACGGAATACTCGACGGTACGAACA -ACGGAATACTCGACGGTACAGTCA -ACGGAATACTCGACGGTAGATCCA -ACGGAATACTCGACGGTAACGACA -ACGGAATACTCGACGGTAAGCTCA -ACGGAATACTCGACGGTATCACGT -ACGGAATACTCGACGGTACGTAGT -ACGGAATACTCGACGGTAGTCAGT -ACGGAATACTCGACGGTAGAAGGT -ACGGAATACTCGACGGTAAACCGT -ACGGAATACTCGACGGTATTGTGC -ACGGAATACTCGACGGTACTAAGC -ACGGAATACTCGACGGTAACTAGC -ACGGAATACTCGACGGTAAGATGC -ACGGAATACTCGACGGTATGAAGG -ACGGAATACTCGACGGTACAATGG -ACGGAATACTCGACGGTAATGAGG -ACGGAATACTCGACGGTAAATGGG -ACGGAATACTCGACGGTATCCTGA -ACGGAATACTCGACGGTATAGCGA -ACGGAATACTCGACGGTACACAGA -ACGGAATACTCGACGGTAGCAAGA -ACGGAATACTCGACGGTAGGTTGA -ACGGAATACTCGACGGTATCCGAT -ACGGAATACTCGACGGTATGGCAT -ACGGAATACTCGACGGTACGAGAT -ACGGAATACTCGACGGTATACCAC -ACGGAATACTCGACGGTACAGAAC -ACGGAATACTCGACGGTAGTCTAC -ACGGAATACTCGACGGTAACGTAC -ACGGAATACTCGACGGTAAGTGAC -ACGGAATACTCGACGGTACTGTAG -ACGGAATACTCGACGGTACCTAAG -ACGGAATACTCGACGGTAGTTCAG -ACGGAATACTCGACGGTAGCATAG -ACGGAATACTCGACGGTAGACAAG -ACGGAATACTCGACGGTAAAGCAG -ACGGAATACTCGACGGTACGTCAA -ACGGAATACTCGACGGTAGCTGAA -ACGGAATACTCGACGGTAAGTACG -ACGGAATACTCGACGGTAATCCGA -ACGGAATACTCGACGGTAATGGGA -ACGGAATACTCGACGGTAGTGCAA -ACGGAATACTCGACGGTAGAGGAA -ACGGAATACTCGACGGTACAGGTA -ACGGAATACTCGACGGTAGACTCT -ACGGAATACTCGACGGTAAGTCCT -ACGGAATACTCGACGGTATAAGCC -ACGGAATACTCGACGGTAATAGCC -ACGGAATACTCGACGGTATAACCG -ACGGAATACTCGACGGTAATGCCA -ACGGAATACTCGTCGACTGGAAAC -ACGGAATACTCGTCGACTAACACC -ACGGAATACTCGTCGACTATCGAG -ACGGAATACTCGTCGACTCTCCTT -ACGGAATACTCGTCGACTCCTGTT -ACGGAATACTCGTCGACTCGGTTT -ACGGAATACTCGTCGACTGTGGTT -ACGGAATACTCGTCGACTGCCTTT -ACGGAATACTCGTCGACTGGTCTT -ACGGAATACTCGTCGACTACGCTT -ACGGAATACTCGTCGACTAGCGTT -ACGGAATACTCGTCGACTTTCGTC -ACGGAATACTCGTCGACTTCTCTC -ACGGAATACTCGTCGACTTGGATC -ACGGAATACTCGTCGACTCACTTC -ACGGAATACTCGTCGACTGTACTC -ACGGAATACTCGTCGACTGATGTC -ACGGAATACTCGTCGACTACAGTC -ACGGAATACTCGTCGACTTTGCTG -ACGGAATACTCGTCGACTTCCATG -ACGGAATACTCGTCGACTTGTGTG -ACGGAATACTCGTCGACTCTAGTG -ACGGAATACTCGTCGACTCATCTG -ACGGAATACTCGTCGACTGAGTTG -ACGGAATACTCGTCGACTAGACTG -ACGGAATACTCGTCGACTTCGGTA -ACGGAATACTCGTCGACTTGCCTA -ACGGAATACTCGTCGACTCCACTA -ACGGAATACTCGTCGACTGGAGTA -ACGGAATACTCGTCGACTTCGTCT -ACGGAATACTCGTCGACTTGCACT -ACGGAATACTCGTCGACTCTGACT -ACGGAATACTCGTCGACTCAACCT -ACGGAATACTCGTCGACTGCTACT -ACGGAATACTCGTCGACTGGATCT -ACGGAATACTCGTCGACTAAGGCT -ACGGAATACTCGTCGACTTCAACC -ACGGAATACTCGTCGACTTGTTCC -ACGGAATACTCGTCGACTATTCCC -ACGGAATACTCGTCGACTTTCTCG -ACGGAATACTCGTCGACTTAGACG -ACGGAATACTCGTCGACTGTAACG -ACGGAATACTCGTCGACTACTTCG -ACGGAATACTCGTCGACTTACGCA -ACGGAATACTCGTCGACTCTTGCA -ACGGAATACTCGTCGACTCGAACA -ACGGAATACTCGTCGACTCAGTCA -ACGGAATACTCGTCGACTGATCCA -ACGGAATACTCGTCGACTACGACA -ACGGAATACTCGTCGACTAGCTCA -ACGGAATACTCGTCGACTTCACGT -ACGGAATACTCGTCGACTCGTAGT -ACGGAATACTCGTCGACTGTCAGT -ACGGAATACTCGTCGACTGAAGGT -ACGGAATACTCGTCGACTAACCGT -ACGGAATACTCGTCGACTTTGTGC -ACGGAATACTCGTCGACTCTAAGC -ACGGAATACTCGTCGACTACTAGC -ACGGAATACTCGTCGACTAGATGC -ACGGAATACTCGTCGACTTGAAGG -ACGGAATACTCGTCGACTCAATGG -ACGGAATACTCGTCGACTATGAGG -ACGGAATACTCGTCGACTAATGGG -ACGGAATACTCGTCGACTTCCTGA -ACGGAATACTCGTCGACTTAGCGA -ACGGAATACTCGTCGACTCACAGA -ACGGAATACTCGTCGACTGCAAGA -ACGGAATACTCGTCGACTGGTTGA -ACGGAATACTCGTCGACTTCCGAT -ACGGAATACTCGTCGACTTGGCAT -ACGGAATACTCGTCGACTCGAGAT -ACGGAATACTCGTCGACTTACCAC -ACGGAATACTCGTCGACTCAGAAC -ACGGAATACTCGTCGACTGTCTAC -ACGGAATACTCGTCGACTACGTAC -ACGGAATACTCGTCGACTAGTGAC -ACGGAATACTCGTCGACTCTGTAG -ACGGAATACTCGTCGACTCCTAAG -ACGGAATACTCGTCGACTGTTCAG -ACGGAATACTCGTCGACTGCATAG -ACGGAATACTCGTCGACTGACAAG -ACGGAATACTCGTCGACTAAGCAG -ACGGAATACTCGTCGACTCGTCAA -ACGGAATACTCGTCGACTGCTGAA -ACGGAATACTCGTCGACTAGTACG -ACGGAATACTCGTCGACTATCCGA -ACGGAATACTCGTCGACTATGGGA -ACGGAATACTCGTCGACTGTGCAA -ACGGAATACTCGTCGACTGAGGAA -ACGGAATACTCGTCGACTCAGGTA -ACGGAATACTCGTCGACTGACTCT -ACGGAATACTCGTCGACTAGTCCT -ACGGAATACTCGTCGACTTAAGCC -ACGGAATACTCGTCGACTATAGCC -ACGGAATACTCGTCGACTTAACCG -ACGGAATACTCGTCGACTATGCCA -ACGGAATACTCGGCATACGGAAAC -ACGGAATACTCGGCATACAACACC -ACGGAATACTCGGCATACATCGAG -ACGGAATACTCGGCATACCTCCTT -ACGGAATACTCGGCATACCCTGTT -ACGGAATACTCGGCATACCGGTTT -ACGGAATACTCGGCATACGTGGTT -ACGGAATACTCGGCATACGCCTTT -ACGGAATACTCGGCATACGGTCTT -ACGGAATACTCGGCATACACGCTT -ACGGAATACTCGGCATACAGCGTT -ACGGAATACTCGGCATACTTCGTC -ACGGAATACTCGGCATACTCTCTC -ACGGAATACTCGGCATACTGGATC -ACGGAATACTCGGCATACCACTTC -ACGGAATACTCGGCATACGTACTC -ACGGAATACTCGGCATACGATGTC -ACGGAATACTCGGCATACACAGTC -ACGGAATACTCGGCATACTTGCTG -ACGGAATACTCGGCATACTCCATG -ACGGAATACTCGGCATACTGTGTG -ACGGAATACTCGGCATACCTAGTG -ACGGAATACTCGGCATACCATCTG -ACGGAATACTCGGCATACGAGTTG -ACGGAATACTCGGCATACAGACTG -ACGGAATACTCGGCATACTCGGTA -ACGGAATACTCGGCATACTGCCTA -ACGGAATACTCGGCATACCCACTA -ACGGAATACTCGGCATACGGAGTA -ACGGAATACTCGGCATACTCGTCT -ACGGAATACTCGGCATACTGCACT -ACGGAATACTCGGCATACCTGACT -ACGGAATACTCGGCATACCAACCT -ACGGAATACTCGGCATACGCTACT -ACGGAATACTCGGCATACGGATCT -ACGGAATACTCGGCATACAAGGCT -ACGGAATACTCGGCATACTCAACC -ACGGAATACTCGGCATACTGTTCC -ACGGAATACTCGGCATACATTCCC -ACGGAATACTCGGCATACTTCTCG -ACGGAATACTCGGCATACTAGACG -ACGGAATACTCGGCATACGTAACG -ACGGAATACTCGGCATACACTTCG -ACGGAATACTCGGCATACTACGCA -ACGGAATACTCGGCATACCTTGCA -ACGGAATACTCGGCATACCGAACA -ACGGAATACTCGGCATACCAGTCA -ACGGAATACTCGGCATACGATCCA -ACGGAATACTCGGCATACACGACA -ACGGAATACTCGGCATACAGCTCA -ACGGAATACTCGGCATACTCACGT -ACGGAATACTCGGCATACCGTAGT -ACGGAATACTCGGCATACGTCAGT -ACGGAATACTCGGCATACGAAGGT -ACGGAATACTCGGCATACAACCGT -ACGGAATACTCGGCATACTTGTGC -ACGGAATACTCGGCATACCTAAGC -ACGGAATACTCGGCATACACTAGC -ACGGAATACTCGGCATACAGATGC -ACGGAATACTCGGCATACTGAAGG -ACGGAATACTCGGCATACCAATGG -ACGGAATACTCGGCATACATGAGG -ACGGAATACTCGGCATACAATGGG -ACGGAATACTCGGCATACTCCTGA -ACGGAATACTCGGCATACTAGCGA -ACGGAATACTCGGCATACCACAGA -ACGGAATACTCGGCATACGCAAGA -ACGGAATACTCGGCATACGGTTGA -ACGGAATACTCGGCATACTCCGAT -ACGGAATACTCGGCATACTGGCAT -ACGGAATACTCGGCATACCGAGAT -ACGGAATACTCGGCATACTACCAC -ACGGAATACTCGGCATACCAGAAC -ACGGAATACTCGGCATACGTCTAC -ACGGAATACTCGGCATACACGTAC -ACGGAATACTCGGCATACAGTGAC -ACGGAATACTCGGCATACCTGTAG -ACGGAATACTCGGCATACCCTAAG -ACGGAATACTCGGCATACGTTCAG -ACGGAATACTCGGCATACGCATAG -ACGGAATACTCGGCATACGACAAG -ACGGAATACTCGGCATACAAGCAG -ACGGAATACTCGGCATACCGTCAA -ACGGAATACTCGGCATACGCTGAA -ACGGAATACTCGGCATACAGTACG -ACGGAATACTCGGCATACATCCGA -ACGGAATACTCGGCATACATGGGA -ACGGAATACTCGGCATACGTGCAA -ACGGAATACTCGGCATACGAGGAA -ACGGAATACTCGGCATACCAGGTA -ACGGAATACTCGGCATACGACTCT -ACGGAATACTCGGCATACAGTCCT -ACGGAATACTCGGCATACTAAGCC -ACGGAATACTCGGCATACATAGCC -ACGGAATACTCGGCATACTAACCG -ACGGAATACTCGGCATACATGCCA -ACGGAATACTCGGCACTTGGAAAC -ACGGAATACTCGGCACTTAACACC -ACGGAATACTCGGCACTTATCGAG -ACGGAATACTCGGCACTTCTCCTT -ACGGAATACTCGGCACTTCCTGTT -ACGGAATACTCGGCACTTCGGTTT -ACGGAATACTCGGCACTTGTGGTT -ACGGAATACTCGGCACTTGCCTTT -ACGGAATACTCGGCACTTGGTCTT -ACGGAATACTCGGCACTTACGCTT -ACGGAATACTCGGCACTTAGCGTT -ACGGAATACTCGGCACTTTTCGTC -ACGGAATACTCGGCACTTTCTCTC -ACGGAATACTCGGCACTTTGGATC -ACGGAATACTCGGCACTTCACTTC -ACGGAATACTCGGCACTTGTACTC -ACGGAATACTCGGCACTTGATGTC -ACGGAATACTCGGCACTTACAGTC -ACGGAATACTCGGCACTTTTGCTG -ACGGAATACTCGGCACTTTCCATG -ACGGAATACTCGGCACTTTGTGTG -ACGGAATACTCGGCACTTCTAGTG -ACGGAATACTCGGCACTTCATCTG -ACGGAATACTCGGCACTTGAGTTG -ACGGAATACTCGGCACTTAGACTG -ACGGAATACTCGGCACTTTCGGTA -ACGGAATACTCGGCACTTTGCCTA -ACGGAATACTCGGCACTTCCACTA -ACGGAATACTCGGCACTTGGAGTA -ACGGAATACTCGGCACTTTCGTCT -ACGGAATACTCGGCACTTTGCACT -ACGGAATACTCGGCACTTCTGACT -ACGGAATACTCGGCACTTCAACCT -ACGGAATACTCGGCACTTGCTACT -ACGGAATACTCGGCACTTGGATCT -ACGGAATACTCGGCACTTAAGGCT -ACGGAATACTCGGCACTTTCAACC -ACGGAATACTCGGCACTTTGTTCC -ACGGAATACTCGGCACTTATTCCC -ACGGAATACTCGGCACTTTTCTCG -ACGGAATACTCGGCACTTTAGACG -ACGGAATACTCGGCACTTGTAACG -ACGGAATACTCGGCACTTACTTCG -ACGGAATACTCGGCACTTTACGCA -ACGGAATACTCGGCACTTCTTGCA -ACGGAATACTCGGCACTTCGAACA -ACGGAATACTCGGCACTTCAGTCA -ACGGAATACTCGGCACTTGATCCA -ACGGAATACTCGGCACTTACGACA -ACGGAATACTCGGCACTTAGCTCA -ACGGAATACTCGGCACTTTCACGT -ACGGAATACTCGGCACTTCGTAGT -ACGGAATACTCGGCACTTGTCAGT -ACGGAATACTCGGCACTTGAAGGT -ACGGAATACTCGGCACTTAACCGT -ACGGAATACTCGGCACTTTTGTGC -ACGGAATACTCGGCACTTCTAAGC -ACGGAATACTCGGCACTTACTAGC -ACGGAATACTCGGCACTTAGATGC -ACGGAATACTCGGCACTTTGAAGG -ACGGAATACTCGGCACTTCAATGG -ACGGAATACTCGGCACTTATGAGG -ACGGAATACTCGGCACTTAATGGG -ACGGAATACTCGGCACTTTCCTGA -ACGGAATACTCGGCACTTTAGCGA -ACGGAATACTCGGCACTTCACAGA -ACGGAATACTCGGCACTTGCAAGA -ACGGAATACTCGGCACTTGGTTGA -ACGGAATACTCGGCACTTTCCGAT -ACGGAATACTCGGCACTTTGGCAT -ACGGAATACTCGGCACTTCGAGAT -ACGGAATACTCGGCACTTTACCAC -ACGGAATACTCGGCACTTCAGAAC -ACGGAATACTCGGCACTTGTCTAC -ACGGAATACTCGGCACTTACGTAC -ACGGAATACTCGGCACTTAGTGAC -ACGGAATACTCGGCACTTCTGTAG -ACGGAATACTCGGCACTTCCTAAG -ACGGAATACTCGGCACTTGTTCAG -ACGGAATACTCGGCACTTGCATAG -ACGGAATACTCGGCACTTGACAAG -ACGGAATACTCGGCACTTAAGCAG -ACGGAATACTCGGCACTTCGTCAA -ACGGAATACTCGGCACTTGCTGAA -ACGGAATACTCGGCACTTAGTACG -ACGGAATACTCGGCACTTATCCGA -ACGGAATACTCGGCACTTATGGGA -ACGGAATACTCGGCACTTGTGCAA -ACGGAATACTCGGCACTTGAGGAA -ACGGAATACTCGGCACTTCAGGTA -ACGGAATACTCGGCACTTGACTCT -ACGGAATACTCGGCACTTAGTCCT -ACGGAATACTCGGCACTTTAAGCC -ACGGAATACTCGGCACTTATAGCC -ACGGAATACTCGGCACTTTAACCG -ACGGAATACTCGGCACTTATGCCA -ACGGAATACTCGACACGAGGAAAC -ACGGAATACTCGACACGAAACACC -ACGGAATACTCGACACGAATCGAG -ACGGAATACTCGACACGACTCCTT -ACGGAATACTCGACACGACCTGTT -ACGGAATACTCGACACGACGGTTT -ACGGAATACTCGACACGAGTGGTT -ACGGAATACTCGACACGAGCCTTT -ACGGAATACTCGACACGAGGTCTT -ACGGAATACTCGACACGAACGCTT -ACGGAATACTCGACACGAAGCGTT -ACGGAATACTCGACACGATTCGTC -ACGGAATACTCGACACGATCTCTC -ACGGAATACTCGACACGATGGATC -ACGGAATACTCGACACGACACTTC -ACGGAATACTCGACACGAGTACTC -ACGGAATACTCGACACGAGATGTC -ACGGAATACTCGACACGAACAGTC -ACGGAATACTCGACACGATTGCTG -ACGGAATACTCGACACGATCCATG -ACGGAATACTCGACACGATGTGTG -ACGGAATACTCGACACGACTAGTG -ACGGAATACTCGACACGACATCTG -ACGGAATACTCGACACGAGAGTTG -ACGGAATACTCGACACGAAGACTG -ACGGAATACTCGACACGATCGGTA -ACGGAATACTCGACACGATGCCTA -ACGGAATACTCGACACGACCACTA -ACGGAATACTCGACACGAGGAGTA -ACGGAATACTCGACACGATCGTCT -ACGGAATACTCGACACGATGCACT -ACGGAATACTCGACACGACTGACT -ACGGAATACTCGACACGACAACCT -ACGGAATACTCGACACGAGCTACT -ACGGAATACTCGACACGAGGATCT -ACGGAATACTCGACACGAAAGGCT -ACGGAATACTCGACACGATCAACC -ACGGAATACTCGACACGATGTTCC -ACGGAATACTCGACACGAATTCCC -ACGGAATACTCGACACGATTCTCG -ACGGAATACTCGACACGATAGACG -ACGGAATACTCGACACGAGTAACG -ACGGAATACTCGACACGAACTTCG -ACGGAATACTCGACACGATACGCA -ACGGAATACTCGACACGACTTGCA -ACGGAATACTCGACACGACGAACA -ACGGAATACTCGACACGACAGTCA -ACGGAATACTCGACACGAGATCCA -ACGGAATACTCGACACGAACGACA -ACGGAATACTCGACACGAAGCTCA -ACGGAATACTCGACACGATCACGT -ACGGAATACTCGACACGACGTAGT -ACGGAATACTCGACACGAGTCAGT -ACGGAATACTCGACACGAGAAGGT -ACGGAATACTCGACACGAAACCGT -ACGGAATACTCGACACGATTGTGC -ACGGAATACTCGACACGACTAAGC -ACGGAATACTCGACACGAACTAGC -ACGGAATACTCGACACGAAGATGC -ACGGAATACTCGACACGATGAAGG -ACGGAATACTCGACACGACAATGG -ACGGAATACTCGACACGAATGAGG -ACGGAATACTCGACACGAAATGGG -ACGGAATACTCGACACGATCCTGA -ACGGAATACTCGACACGATAGCGA -ACGGAATACTCGACACGACACAGA -ACGGAATACTCGACACGAGCAAGA -ACGGAATACTCGACACGAGGTTGA -ACGGAATACTCGACACGATCCGAT -ACGGAATACTCGACACGATGGCAT -ACGGAATACTCGACACGACGAGAT -ACGGAATACTCGACACGATACCAC -ACGGAATACTCGACACGACAGAAC -ACGGAATACTCGACACGAGTCTAC -ACGGAATACTCGACACGAACGTAC -ACGGAATACTCGACACGAAGTGAC -ACGGAATACTCGACACGACTGTAG -ACGGAATACTCGACACGACCTAAG -ACGGAATACTCGACACGAGTTCAG -ACGGAATACTCGACACGAGCATAG -ACGGAATACTCGACACGAGACAAG -ACGGAATACTCGACACGAAAGCAG -ACGGAATACTCGACACGACGTCAA -ACGGAATACTCGACACGAGCTGAA -ACGGAATACTCGACACGAAGTACG -ACGGAATACTCGACACGAATCCGA -ACGGAATACTCGACACGAATGGGA -ACGGAATACTCGACACGAGTGCAA -ACGGAATACTCGACACGAGAGGAA -ACGGAATACTCGACACGACAGGTA -ACGGAATACTCGACACGAGACTCT -ACGGAATACTCGACACGAAGTCCT -ACGGAATACTCGACACGATAAGCC -ACGGAATACTCGACACGAATAGCC -ACGGAATACTCGACACGATAACCG -ACGGAATACTCGACACGAATGCCA -ACGGAATACTCGTCACAGGGAAAC -ACGGAATACTCGTCACAGAACACC -ACGGAATACTCGTCACAGATCGAG -ACGGAATACTCGTCACAGCTCCTT -ACGGAATACTCGTCACAGCCTGTT -ACGGAATACTCGTCACAGCGGTTT -ACGGAATACTCGTCACAGGTGGTT -ACGGAATACTCGTCACAGGCCTTT -ACGGAATACTCGTCACAGGGTCTT -ACGGAATACTCGTCACAGACGCTT -ACGGAATACTCGTCACAGAGCGTT -ACGGAATACTCGTCACAGTTCGTC -ACGGAATACTCGTCACAGTCTCTC -ACGGAATACTCGTCACAGTGGATC -ACGGAATACTCGTCACAGCACTTC -ACGGAATACTCGTCACAGGTACTC -ACGGAATACTCGTCACAGGATGTC -ACGGAATACTCGTCACAGACAGTC -ACGGAATACTCGTCACAGTTGCTG -ACGGAATACTCGTCACAGTCCATG -ACGGAATACTCGTCACAGTGTGTG -ACGGAATACTCGTCACAGCTAGTG -ACGGAATACTCGTCACAGCATCTG -ACGGAATACTCGTCACAGGAGTTG -ACGGAATACTCGTCACAGAGACTG -ACGGAATACTCGTCACAGTCGGTA -ACGGAATACTCGTCACAGTGCCTA -ACGGAATACTCGTCACAGCCACTA -ACGGAATACTCGTCACAGGGAGTA -ACGGAATACTCGTCACAGTCGTCT -ACGGAATACTCGTCACAGTGCACT -ACGGAATACTCGTCACAGCTGACT -ACGGAATACTCGTCACAGCAACCT -ACGGAATACTCGTCACAGGCTACT -ACGGAATACTCGTCACAGGGATCT -ACGGAATACTCGTCACAGAAGGCT -ACGGAATACTCGTCACAGTCAACC -ACGGAATACTCGTCACAGTGTTCC -ACGGAATACTCGTCACAGATTCCC -ACGGAATACTCGTCACAGTTCTCG -ACGGAATACTCGTCACAGTAGACG -ACGGAATACTCGTCACAGGTAACG -ACGGAATACTCGTCACAGACTTCG -ACGGAATACTCGTCACAGTACGCA -ACGGAATACTCGTCACAGCTTGCA -ACGGAATACTCGTCACAGCGAACA -ACGGAATACTCGTCACAGCAGTCA -ACGGAATACTCGTCACAGGATCCA -ACGGAATACTCGTCACAGACGACA -ACGGAATACTCGTCACAGAGCTCA -ACGGAATACTCGTCACAGTCACGT -ACGGAATACTCGTCACAGCGTAGT -ACGGAATACTCGTCACAGGTCAGT -ACGGAATACTCGTCACAGGAAGGT -ACGGAATACTCGTCACAGAACCGT -ACGGAATACTCGTCACAGTTGTGC -ACGGAATACTCGTCACAGCTAAGC -ACGGAATACTCGTCACAGACTAGC -ACGGAATACTCGTCACAGAGATGC -ACGGAATACTCGTCACAGTGAAGG -ACGGAATACTCGTCACAGCAATGG -ACGGAATACTCGTCACAGATGAGG -ACGGAATACTCGTCACAGAATGGG -ACGGAATACTCGTCACAGTCCTGA -ACGGAATACTCGTCACAGTAGCGA -ACGGAATACTCGTCACAGCACAGA -ACGGAATACTCGTCACAGGCAAGA -ACGGAATACTCGTCACAGGGTTGA -ACGGAATACTCGTCACAGTCCGAT -ACGGAATACTCGTCACAGTGGCAT -ACGGAATACTCGTCACAGCGAGAT -ACGGAATACTCGTCACAGTACCAC -ACGGAATACTCGTCACAGCAGAAC -ACGGAATACTCGTCACAGGTCTAC -ACGGAATACTCGTCACAGACGTAC -ACGGAATACTCGTCACAGAGTGAC -ACGGAATACTCGTCACAGCTGTAG -ACGGAATACTCGTCACAGCCTAAG -ACGGAATACTCGTCACAGGTTCAG -ACGGAATACTCGTCACAGGCATAG -ACGGAATACTCGTCACAGGACAAG -ACGGAATACTCGTCACAGAAGCAG -ACGGAATACTCGTCACAGCGTCAA -ACGGAATACTCGTCACAGGCTGAA -ACGGAATACTCGTCACAGAGTACG -ACGGAATACTCGTCACAGATCCGA -ACGGAATACTCGTCACAGATGGGA -ACGGAATACTCGTCACAGGTGCAA -ACGGAATACTCGTCACAGGAGGAA -ACGGAATACTCGTCACAGCAGGTA -ACGGAATACTCGTCACAGGACTCT -ACGGAATACTCGTCACAGAGTCCT -ACGGAATACTCGTCACAGTAAGCC -ACGGAATACTCGTCACAGATAGCC -ACGGAATACTCGTCACAGTAACCG -ACGGAATACTCGTCACAGATGCCA -ACGGAATACTCGCCAGATGGAAAC -ACGGAATACTCGCCAGATAACACC -ACGGAATACTCGCCAGATATCGAG -ACGGAATACTCGCCAGATCTCCTT -ACGGAATACTCGCCAGATCCTGTT -ACGGAATACTCGCCAGATCGGTTT -ACGGAATACTCGCCAGATGTGGTT -ACGGAATACTCGCCAGATGCCTTT -ACGGAATACTCGCCAGATGGTCTT -ACGGAATACTCGCCAGATACGCTT -ACGGAATACTCGCCAGATAGCGTT -ACGGAATACTCGCCAGATTTCGTC -ACGGAATACTCGCCAGATTCTCTC -ACGGAATACTCGCCAGATTGGATC -ACGGAATACTCGCCAGATCACTTC -ACGGAATACTCGCCAGATGTACTC -ACGGAATACTCGCCAGATGATGTC -ACGGAATACTCGCCAGATACAGTC -ACGGAATACTCGCCAGATTTGCTG -ACGGAATACTCGCCAGATTCCATG -ACGGAATACTCGCCAGATTGTGTG -ACGGAATACTCGCCAGATCTAGTG -ACGGAATACTCGCCAGATCATCTG -ACGGAATACTCGCCAGATGAGTTG -ACGGAATACTCGCCAGATAGACTG -ACGGAATACTCGCCAGATTCGGTA -ACGGAATACTCGCCAGATTGCCTA -ACGGAATACTCGCCAGATCCACTA -ACGGAATACTCGCCAGATGGAGTA -ACGGAATACTCGCCAGATTCGTCT -ACGGAATACTCGCCAGATTGCACT -ACGGAATACTCGCCAGATCTGACT -ACGGAATACTCGCCAGATCAACCT -ACGGAATACTCGCCAGATGCTACT -ACGGAATACTCGCCAGATGGATCT -ACGGAATACTCGCCAGATAAGGCT -ACGGAATACTCGCCAGATTCAACC -ACGGAATACTCGCCAGATTGTTCC -ACGGAATACTCGCCAGATATTCCC -ACGGAATACTCGCCAGATTTCTCG -ACGGAATACTCGCCAGATTAGACG -ACGGAATACTCGCCAGATGTAACG -ACGGAATACTCGCCAGATACTTCG -ACGGAATACTCGCCAGATTACGCA -ACGGAATACTCGCCAGATCTTGCA -ACGGAATACTCGCCAGATCGAACA -ACGGAATACTCGCCAGATCAGTCA -ACGGAATACTCGCCAGATGATCCA -ACGGAATACTCGCCAGATACGACA -ACGGAATACTCGCCAGATAGCTCA -ACGGAATACTCGCCAGATTCACGT -ACGGAATACTCGCCAGATCGTAGT -ACGGAATACTCGCCAGATGTCAGT -ACGGAATACTCGCCAGATGAAGGT -ACGGAATACTCGCCAGATAACCGT -ACGGAATACTCGCCAGATTTGTGC -ACGGAATACTCGCCAGATCTAAGC -ACGGAATACTCGCCAGATACTAGC -ACGGAATACTCGCCAGATAGATGC -ACGGAATACTCGCCAGATTGAAGG -ACGGAATACTCGCCAGATCAATGG -ACGGAATACTCGCCAGATATGAGG -ACGGAATACTCGCCAGATAATGGG -ACGGAATACTCGCCAGATTCCTGA -ACGGAATACTCGCCAGATTAGCGA -ACGGAATACTCGCCAGATCACAGA -ACGGAATACTCGCCAGATGCAAGA -ACGGAATACTCGCCAGATGGTTGA -ACGGAATACTCGCCAGATTCCGAT -ACGGAATACTCGCCAGATTGGCAT -ACGGAATACTCGCCAGATCGAGAT -ACGGAATACTCGCCAGATTACCAC -ACGGAATACTCGCCAGATCAGAAC -ACGGAATACTCGCCAGATGTCTAC -ACGGAATACTCGCCAGATACGTAC -ACGGAATACTCGCCAGATAGTGAC -ACGGAATACTCGCCAGATCTGTAG -ACGGAATACTCGCCAGATCCTAAG -ACGGAATACTCGCCAGATGTTCAG -ACGGAATACTCGCCAGATGCATAG -ACGGAATACTCGCCAGATGACAAG -ACGGAATACTCGCCAGATAAGCAG -ACGGAATACTCGCCAGATCGTCAA -ACGGAATACTCGCCAGATGCTGAA -ACGGAATACTCGCCAGATAGTACG -ACGGAATACTCGCCAGATATCCGA -ACGGAATACTCGCCAGATATGGGA -ACGGAATACTCGCCAGATGTGCAA -ACGGAATACTCGCCAGATGAGGAA -ACGGAATACTCGCCAGATCAGGTA -ACGGAATACTCGCCAGATGACTCT -ACGGAATACTCGCCAGATAGTCCT -ACGGAATACTCGCCAGATTAAGCC -ACGGAATACTCGCCAGATATAGCC -ACGGAATACTCGCCAGATTAACCG -ACGGAATACTCGCCAGATATGCCA -ACGGAATACTCGACAACGGGAAAC -ACGGAATACTCGACAACGAACACC -ACGGAATACTCGACAACGATCGAG -ACGGAATACTCGACAACGCTCCTT -ACGGAATACTCGACAACGCCTGTT -ACGGAATACTCGACAACGCGGTTT -ACGGAATACTCGACAACGGTGGTT -ACGGAATACTCGACAACGGCCTTT -ACGGAATACTCGACAACGGGTCTT -ACGGAATACTCGACAACGACGCTT -ACGGAATACTCGACAACGAGCGTT -ACGGAATACTCGACAACGTTCGTC -ACGGAATACTCGACAACGTCTCTC -ACGGAATACTCGACAACGTGGATC -ACGGAATACTCGACAACGCACTTC -ACGGAATACTCGACAACGGTACTC -ACGGAATACTCGACAACGGATGTC -ACGGAATACTCGACAACGACAGTC -ACGGAATACTCGACAACGTTGCTG -ACGGAATACTCGACAACGTCCATG -ACGGAATACTCGACAACGTGTGTG -ACGGAATACTCGACAACGCTAGTG -ACGGAATACTCGACAACGCATCTG -ACGGAATACTCGACAACGGAGTTG -ACGGAATACTCGACAACGAGACTG -ACGGAATACTCGACAACGTCGGTA -ACGGAATACTCGACAACGTGCCTA -ACGGAATACTCGACAACGCCACTA -ACGGAATACTCGACAACGGGAGTA -ACGGAATACTCGACAACGTCGTCT -ACGGAATACTCGACAACGTGCACT -ACGGAATACTCGACAACGCTGACT -ACGGAATACTCGACAACGCAACCT -ACGGAATACTCGACAACGGCTACT -ACGGAATACTCGACAACGGGATCT -ACGGAATACTCGACAACGAAGGCT -ACGGAATACTCGACAACGTCAACC -ACGGAATACTCGACAACGTGTTCC -ACGGAATACTCGACAACGATTCCC -ACGGAATACTCGACAACGTTCTCG -ACGGAATACTCGACAACGTAGACG -ACGGAATACTCGACAACGGTAACG -ACGGAATACTCGACAACGACTTCG -ACGGAATACTCGACAACGTACGCA -ACGGAATACTCGACAACGCTTGCA -ACGGAATACTCGACAACGCGAACA -ACGGAATACTCGACAACGCAGTCA -ACGGAATACTCGACAACGGATCCA -ACGGAATACTCGACAACGACGACA -ACGGAATACTCGACAACGAGCTCA -ACGGAATACTCGACAACGTCACGT -ACGGAATACTCGACAACGCGTAGT -ACGGAATACTCGACAACGGTCAGT -ACGGAATACTCGACAACGGAAGGT -ACGGAATACTCGACAACGAACCGT -ACGGAATACTCGACAACGTTGTGC -ACGGAATACTCGACAACGCTAAGC -ACGGAATACTCGACAACGACTAGC -ACGGAATACTCGACAACGAGATGC -ACGGAATACTCGACAACGTGAAGG -ACGGAATACTCGACAACGCAATGG -ACGGAATACTCGACAACGATGAGG -ACGGAATACTCGACAACGAATGGG -ACGGAATACTCGACAACGTCCTGA -ACGGAATACTCGACAACGTAGCGA -ACGGAATACTCGACAACGCACAGA -ACGGAATACTCGACAACGGCAAGA -ACGGAATACTCGACAACGGGTTGA -ACGGAATACTCGACAACGTCCGAT -ACGGAATACTCGACAACGTGGCAT -ACGGAATACTCGACAACGCGAGAT -ACGGAATACTCGACAACGTACCAC -ACGGAATACTCGACAACGCAGAAC -ACGGAATACTCGACAACGGTCTAC -ACGGAATACTCGACAACGACGTAC -ACGGAATACTCGACAACGAGTGAC -ACGGAATACTCGACAACGCTGTAG -ACGGAATACTCGACAACGCCTAAG -ACGGAATACTCGACAACGGTTCAG -ACGGAATACTCGACAACGGCATAG -ACGGAATACTCGACAACGGACAAG -ACGGAATACTCGACAACGAAGCAG -ACGGAATACTCGACAACGCGTCAA -ACGGAATACTCGACAACGGCTGAA -ACGGAATACTCGACAACGAGTACG -ACGGAATACTCGACAACGATCCGA -ACGGAATACTCGACAACGATGGGA -ACGGAATACTCGACAACGGTGCAA -ACGGAATACTCGACAACGGAGGAA -ACGGAATACTCGACAACGCAGGTA -ACGGAATACTCGACAACGGACTCT -ACGGAATACTCGACAACGAGTCCT -ACGGAATACTCGACAACGTAAGCC -ACGGAATACTCGACAACGATAGCC -ACGGAATACTCGACAACGTAACCG -ACGGAATACTCGACAACGATGCCA -ACGGAATACTCGTCAAGCGGAAAC -ACGGAATACTCGTCAAGCAACACC -ACGGAATACTCGTCAAGCATCGAG -ACGGAATACTCGTCAAGCCTCCTT -ACGGAATACTCGTCAAGCCCTGTT -ACGGAATACTCGTCAAGCCGGTTT -ACGGAATACTCGTCAAGCGTGGTT -ACGGAATACTCGTCAAGCGCCTTT -ACGGAATACTCGTCAAGCGGTCTT -ACGGAATACTCGTCAAGCACGCTT -ACGGAATACTCGTCAAGCAGCGTT -ACGGAATACTCGTCAAGCTTCGTC -ACGGAATACTCGTCAAGCTCTCTC -ACGGAATACTCGTCAAGCTGGATC -ACGGAATACTCGTCAAGCCACTTC -ACGGAATACTCGTCAAGCGTACTC -ACGGAATACTCGTCAAGCGATGTC -ACGGAATACTCGTCAAGCACAGTC -ACGGAATACTCGTCAAGCTTGCTG -ACGGAATACTCGTCAAGCTCCATG -ACGGAATACTCGTCAAGCTGTGTG -ACGGAATACTCGTCAAGCCTAGTG -ACGGAATACTCGTCAAGCCATCTG -ACGGAATACTCGTCAAGCGAGTTG -ACGGAATACTCGTCAAGCAGACTG -ACGGAATACTCGTCAAGCTCGGTA -ACGGAATACTCGTCAAGCTGCCTA -ACGGAATACTCGTCAAGCCCACTA -ACGGAATACTCGTCAAGCGGAGTA -ACGGAATACTCGTCAAGCTCGTCT -ACGGAATACTCGTCAAGCTGCACT -ACGGAATACTCGTCAAGCCTGACT -ACGGAATACTCGTCAAGCCAACCT -ACGGAATACTCGTCAAGCGCTACT -ACGGAATACTCGTCAAGCGGATCT -ACGGAATACTCGTCAAGCAAGGCT -ACGGAATACTCGTCAAGCTCAACC -ACGGAATACTCGTCAAGCTGTTCC -ACGGAATACTCGTCAAGCATTCCC -ACGGAATACTCGTCAAGCTTCTCG -ACGGAATACTCGTCAAGCTAGACG -ACGGAATACTCGTCAAGCGTAACG -ACGGAATACTCGTCAAGCACTTCG -ACGGAATACTCGTCAAGCTACGCA -ACGGAATACTCGTCAAGCCTTGCA -ACGGAATACTCGTCAAGCCGAACA -ACGGAATACTCGTCAAGCCAGTCA -ACGGAATACTCGTCAAGCGATCCA -ACGGAATACTCGTCAAGCACGACA -ACGGAATACTCGTCAAGCAGCTCA -ACGGAATACTCGTCAAGCTCACGT -ACGGAATACTCGTCAAGCCGTAGT -ACGGAATACTCGTCAAGCGTCAGT -ACGGAATACTCGTCAAGCGAAGGT -ACGGAATACTCGTCAAGCAACCGT -ACGGAATACTCGTCAAGCTTGTGC -ACGGAATACTCGTCAAGCCTAAGC -ACGGAATACTCGTCAAGCACTAGC -ACGGAATACTCGTCAAGCAGATGC -ACGGAATACTCGTCAAGCTGAAGG -ACGGAATACTCGTCAAGCCAATGG -ACGGAATACTCGTCAAGCATGAGG -ACGGAATACTCGTCAAGCAATGGG -ACGGAATACTCGTCAAGCTCCTGA -ACGGAATACTCGTCAAGCTAGCGA -ACGGAATACTCGTCAAGCCACAGA -ACGGAATACTCGTCAAGCGCAAGA -ACGGAATACTCGTCAAGCGGTTGA -ACGGAATACTCGTCAAGCTCCGAT -ACGGAATACTCGTCAAGCTGGCAT -ACGGAATACTCGTCAAGCCGAGAT -ACGGAATACTCGTCAAGCTACCAC -ACGGAATACTCGTCAAGCCAGAAC -ACGGAATACTCGTCAAGCGTCTAC -ACGGAATACTCGTCAAGCACGTAC -ACGGAATACTCGTCAAGCAGTGAC -ACGGAATACTCGTCAAGCCTGTAG -ACGGAATACTCGTCAAGCCCTAAG -ACGGAATACTCGTCAAGCGTTCAG -ACGGAATACTCGTCAAGCGCATAG -ACGGAATACTCGTCAAGCGACAAG -ACGGAATACTCGTCAAGCAAGCAG -ACGGAATACTCGTCAAGCCGTCAA -ACGGAATACTCGTCAAGCGCTGAA -ACGGAATACTCGTCAAGCAGTACG -ACGGAATACTCGTCAAGCATCCGA -ACGGAATACTCGTCAAGCATGGGA -ACGGAATACTCGTCAAGCGTGCAA -ACGGAATACTCGTCAAGCGAGGAA -ACGGAATACTCGTCAAGCCAGGTA -ACGGAATACTCGTCAAGCGACTCT -ACGGAATACTCGTCAAGCAGTCCT -ACGGAATACTCGTCAAGCTAAGCC -ACGGAATACTCGTCAAGCATAGCC -ACGGAATACTCGTCAAGCTAACCG -ACGGAATACTCGTCAAGCATGCCA -ACGGAATACTCGCGTTCAGGAAAC -ACGGAATACTCGCGTTCAAACACC -ACGGAATACTCGCGTTCAATCGAG -ACGGAATACTCGCGTTCACTCCTT -ACGGAATACTCGCGTTCACCTGTT -ACGGAATACTCGCGTTCACGGTTT -ACGGAATACTCGCGTTCAGTGGTT -ACGGAATACTCGCGTTCAGCCTTT -ACGGAATACTCGCGTTCAGGTCTT -ACGGAATACTCGCGTTCAACGCTT -ACGGAATACTCGCGTTCAAGCGTT -ACGGAATACTCGCGTTCATTCGTC -ACGGAATACTCGCGTTCATCTCTC -ACGGAATACTCGCGTTCATGGATC -ACGGAATACTCGCGTTCACACTTC -ACGGAATACTCGCGTTCAGTACTC -ACGGAATACTCGCGTTCAGATGTC -ACGGAATACTCGCGTTCAACAGTC -ACGGAATACTCGCGTTCATTGCTG -ACGGAATACTCGCGTTCATCCATG -ACGGAATACTCGCGTTCATGTGTG -ACGGAATACTCGCGTTCACTAGTG -ACGGAATACTCGCGTTCACATCTG -ACGGAATACTCGCGTTCAGAGTTG -ACGGAATACTCGCGTTCAAGACTG -ACGGAATACTCGCGTTCATCGGTA -ACGGAATACTCGCGTTCATGCCTA -ACGGAATACTCGCGTTCACCACTA -ACGGAATACTCGCGTTCAGGAGTA -ACGGAATACTCGCGTTCATCGTCT -ACGGAATACTCGCGTTCATGCACT -ACGGAATACTCGCGTTCACTGACT -ACGGAATACTCGCGTTCACAACCT -ACGGAATACTCGCGTTCAGCTACT -ACGGAATACTCGCGTTCAGGATCT -ACGGAATACTCGCGTTCAAAGGCT -ACGGAATACTCGCGTTCATCAACC -ACGGAATACTCGCGTTCATGTTCC -ACGGAATACTCGCGTTCAATTCCC -ACGGAATACTCGCGTTCATTCTCG -ACGGAATACTCGCGTTCATAGACG -ACGGAATACTCGCGTTCAGTAACG -ACGGAATACTCGCGTTCAACTTCG -ACGGAATACTCGCGTTCATACGCA -ACGGAATACTCGCGTTCACTTGCA -ACGGAATACTCGCGTTCACGAACA -ACGGAATACTCGCGTTCACAGTCA -ACGGAATACTCGCGTTCAGATCCA -ACGGAATACTCGCGTTCAACGACA -ACGGAATACTCGCGTTCAAGCTCA -ACGGAATACTCGCGTTCATCACGT -ACGGAATACTCGCGTTCACGTAGT -ACGGAATACTCGCGTTCAGTCAGT -ACGGAATACTCGCGTTCAGAAGGT -ACGGAATACTCGCGTTCAAACCGT -ACGGAATACTCGCGTTCATTGTGC -ACGGAATACTCGCGTTCACTAAGC -ACGGAATACTCGCGTTCAACTAGC -ACGGAATACTCGCGTTCAAGATGC -ACGGAATACTCGCGTTCATGAAGG -ACGGAATACTCGCGTTCACAATGG -ACGGAATACTCGCGTTCAATGAGG -ACGGAATACTCGCGTTCAAATGGG -ACGGAATACTCGCGTTCATCCTGA -ACGGAATACTCGCGTTCATAGCGA -ACGGAATACTCGCGTTCACACAGA -ACGGAATACTCGCGTTCAGCAAGA -ACGGAATACTCGCGTTCAGGTTGA -ACGGAATACTCGCGTTCATCCGAT -ACGGAATACTCGCGTTCATGGCAT -ACGGAATACTCGCGTTCACGAGAT -ACGGAATACTCGCGTTCATACCAC -ACGGAATACTCGCGTTCACAGAAC -ACGGAATACTCGCGTTCAGTCTAC -ACGGAATACTCGCGTTCAACGTAC -ACGGAATACTCGCGTTCAAGTGAC -ACGGAATACTCGCGTTCACTGTAG -ACGGAATACTCGCGTTCACCTAAG -ACGGAATACTCGCGTTCAGTTCAG -ACGGAATACTCGCGTTCAGCATAG -ACGGAATACTCGCGTTCAGACAAG -ACGGAATACTCGCGTTCAAAGCAG -ACGGAATACTCGCGTTCACGTCAA -ACGGAATACTCGCGTTCAGCTGAA -ACGGAATACTCGCGTTCAAGTACG -ACGGAATACTCGCGTTCAATCCGA -ACGGAATACTCGCGTTCAATGGGA -ACGGAATACTCGCGTTCAGTGCAA -ACGGAATACTCGCGTTCAGAGGAA -ACGGAATACTCGCGTTCACAGGTA -ACGGAATACTCGCGTTCAGACTCT -ACGGAATACTCGCGTTCAAGTCCT -ACGGAATACTCGCGTTCATAAGCC -ACGGAATACTCGCGTTCAATAGCC -ACGGAATACTCGCGTTCATAACCG -ACGGAATACTCGCGTTCAATGCCA -ACGGAATACTCGAGTCGTGGAAAC -ACGGAATACTCGAGTCGTAACACC -ACGGAATACTCGAGTCGTATCGAG -ACGGAATACTCGAGTCGTCTCCTT -ACGGAATACTCGAGTCGTCCTGTT -ACGGAATACTCGAGTCGTCGGTTT -ACGGAATACTCGAGTCGTGTGGTT -ACGGAATACTCGAGTCGTGCCTTT -ACGGAATACTCGAGTCGTGGTCTT -ACGGAATACTCGAGTCGTACGCTT -ACGGAATACTCGAGTCGTAGCGTT -ACGGAATACTCGAGTCGTTTCGTC -ACGGAATACTCGAGTCGTTCTCTC -ACGGAATACTCGAGTCGTTGGATC -ACGGAATACTCGAGTCGTCACTTC -ACGGAATACTCGAGTCGTGTACTC -ACGGAATACTCGAGTCGTGATGTC -ACGGAATACTCGAGTCGTACAGTC -ACGGAATACTCGAGTCGTTTGCTG -ACGGAATACTCGAGTCGTTCCATG -ACGGAATACTCGAGTCGTTGTGTG -ACGGAATACTCGAGTCGTCTAGTG -ACGGAATACTCGAGTCGTCATCTG -ACGGAATACTCGAGTCGTGAGTTG -ACGGAATACTCGAGTCGTAGACTG -ACGGAATACTCGAGTCGTTCGGTA -ACGGAATACTCGAGTCGTTGCCTA -ACGGAATACTCGAGTCGTCCACTA -ACGGAATACTCGAGTCGTGGAGTA -ACGGAATACTCGAGTCGTTCGTCT -ACGGAATACTCGAGTCGTTGCACT -ACGGAATACTCGAGTCGTCTGACT -ACGGAATACTCGAGTCGTCAACCT -ACGGAATACTCGAGTCGTGCTACT -ACGGAATACTCGAGTCGTGGATCT -ACGGAATACTCGAGTCGTAAGGCT -ACGGAATACTCGAGTCGTTCAACC -ACGGAATACTCGAGTCGTTGTTCC -ACGGAATACTCGAGTCGTATTCCC -ACGGAATACTCGAGTCGTTTCTCG -ACGGAATACTCGAGTCGTTAGACG -ACGGAATACTCGAGTCGTGTAACG -ACGGAATACTCGAGTCGTACTTCG -ACGGAATACTCGAGTCGTTACGCA -ACGGAATACTCGAGTCGTCTTGCA -ACGGAATACTCGAGTCGTCGAACA -ACGGAATACTCGAGTCGTCAGTCA -ACGGAATACTCGAGTCGTGATCCA -ACGGAATACTCGAGTCGTACGACA -ACGGAATACTCGAGTCGTAGCTCA -ACGGAATACTCGAGTCGTTCACGT -ACGGAATACTCGAGTCGTCGTAGT -ACGGAATACTCGAGTCGTGTCAGT -ACGGAATACTCGAGTCGTGAAGGT -ACGGAATACTCGAGTCGTAACCGT -ACGGAATACTCGAGTCGTTTGTGC -ACGGAATACTCGAGTCGTCTAAGC -ACGGAATACTCGAGTCGTACTAGC -ACGGAATACTCGAGTCGTAGATGC -ACGGAATACTCGAGTCGTTGAAGG -ACGGAATACTCGAGTCGTCAATGG -ACGGAATACTCGAGTCGTATGAGG -ACGGAATACTCGAGTCGTAATGGG -ACGGAATACTCGAGTCGTTCCTGA -ACGGAATACTCGAGTCGTTAGCGA -ACGGAATACTCGAGTCGTCACAGA -ACGGAATACTCGAGTCGTGCAAGA -ACGGAATACTCGAGTCGTGGTTGA -ACGGAATACTCGAGTCGTTCCGAT -ACGGAATACTCGAGTCGTTGGCAT -ACGGAATACTCGAGTCGTCGAGAT -ACGGAATACTCGAGTCGTTACCAC -ACGGAATACTCGAGTCGTCAGAAC -ACGGAATACTCGAGTCGTGTCTAC -ACGGAATACTCGAGTCGTACGTAC -ACGGAATACTCGAGTCGTAGTGAC -ACGGAATACTCGAGTCGTCTGTAG -ACGGAATACTCGAGTCGTCCTAAG -ACGGAATACTCGAGTCGTGTTCAG -ACGGAATACTCGAGTCGTGCATAG -ACGGAATACTCGAGTCGTGACAAG -ACGGAATACTCGAGTCGTAAGCAG -ACGGAATACTCGAGTCGTCGTCAA -ACGGAATACTCGAGTCGTGCTGAA -ACGGAATACTCGAGTCGTAGTACG -ACGGAATACTCGAGTCGTATCCGA -ACGGAATACTCGAGTCGTATGGGA -ACGGAATACTCGAGTCGTGTGCAA -ACGGAATACTCGAGTCGTGAGGAA -ACGGAATACTCGAGTCGTCAGGTA -ACGGAATACTCGAGTCGTGACTCT -ACGGAATACTCGAGTCGTAGTCCT -ACGGAATACTCGAGTCGTTAAGCC -ACGGAATACTCGAGTCGTATAGCC -ACGGAATACTCGAGTCGTTAACCG -ACGGAATACTCGAGTCGTATGCCA -ACGGAATACTCGAGTGTCGGAAAC -ACGGAATACTCGAGTGTCAACACC -ACGGAATACTCGAGTGTCATCGAG -ACGGAATACTCGAGTGTCCTCCTT -ACGGAATACTCGAGTGTCCCTGTT -ACGGAATACTCGAGTGTCCGGTTT -ACGGAATACTCGAGTGTCGTGGTT -ACGGAATACTCGAGTGTCGCCTTT -ACGGAATACTCGAGTGTCGGTCTT -ACGGAATACTCGAGTGTCACGCTT -ACGGAATACTCGAGTGTCAGCGTT -ACGGAATACTCGAGTGTCTTCGTC -ACGGAATACTCGAGTGTCTCTCTC -ACGGAATACTCGAGTGTCTGGATC -ACGGAATACTCGAGTGTCCACTTC -ACGGAATACTCGAGTGTCGTACTC -ACGGAATACTCGAGTGTCGATGTC -ACGGAATACTCGAGTGTCACAGTC -ACGGAATACTCGAGTGTCTTGCTG -ACGGAATACTCGAGTGTCTCCATG -ACGGAATACTCGAGTGTCTGTGTG -ACGGAATACTCGAGTGTCCTAGTG -ACGGAATACTCGAGTGTCCATCTG -ACGGAATACTCGAGTGTCGAGTTG -ACGGAATACTCGAGTGTCAGACTG -ACGGAATACTCGAGTGTCTCGGTA -ACGGAATACTCGAGTGTCTGCCTA -ACGGAATACTCGAGTGTCCCACTA -ACGGAATACTCGAGTGTCGGAGTA -ACGGAATACTCGAGTGTCTCGTCT -ACGGAATACTCGAGTGTCTGCACT -ACGGAATACTCGAGTGTCCTGACT -ACGGAATACTCGAGTGTCCAACCT -ACGGAATACTCGAGTGTCGCTACT -ACGGAATACTCGAGTGTCGGATCT -ACGGAATACTCGAGTGTCAAGGCT -ACGGAATACTCGAGTGTCTCAACC -ACGGAATACTCGAGTGTCTGTTCC -ACGGAATACTCGAGTGTCATTCCC -ACGGAATACTCGAGTGTCTTCTCG -ACGGAATACTCGAGTGTCTAGACG -ACGGAATACTCGAGTGTCGTAACG -ACGGAATACTCGAGTGTCACTTCG -ACGGAATACTCGAGTGTCTACGCA -ACGGAATACTCGAGTGTCCTTGCA -ACGGAATACTCGAGTGTCCGAACA -ACGGAATACTCGAGTGTCCAGTCA -ACGGAATACTCGAGTGTCGATCCA -ACGGAATACTCGAGTGTCACGACA -ACGGAATACTCGAGTGTCAGCTCA -ACGGAATACTCGAGTGTCTCACGT -ACGGAATACTCGAGTGTCCGTAGT -ACGGAATACTCGAGTGTCGTCAGT -ACGGAATACTCGAGTGTCGAAGGT -ACGGAATACTCGAGTGTCAACCGT -ACGGAATACTCGAGTGTCTTGTGC -ACGGAATACTCGAGTGTCCTAAGC -ACGGAATACTCGAGTGTCACTAGC -ACGGAATACTCGAGTGTCAGATGC -ACGGAATACTCGAGTGTCTGAAGG -ACGGAATACTCGAGTGTCCAATGG -ACGGAATACTCGAGTGTCATGAGG -ACGGAATACTCGAGTGTCAATGGG -ACGGAATACTCGAGTGTCTCCTGA -ACGGAATACTCGAGTGTCTAGCGA -ACGGAATACTCGAGTGTCCACAGA -ACGGAATACTCGAGTGTCGCAAGA -ACGGAATACTCGAGTGTCGGTTGA -ACGGAATACTCGAGTGTCTCCGAT -ACGGAATACTCGAGTGTCTGGCAT -ACGGAATACTCGAGTGTCCGAGAT -ACGGAATACTCGAGTGTCTACCAC -ACGGAATACTCGAGTGTCCAGAAC -ACGGAATACTCGAGTGTCGTCTAC -ACGGAATACTCGAGTGTCACGTAC -ACGGAATACTCGAGTGTCAGTGAC -ACGGAATACTCGAGTGTCCTGTAG -ACGGAATACTCGAGTGTCCCTAAG -ACGGAATACTCGAGTGTCGTTCAG -ACGGAATACTCGAGTGTCGCATAG -ACGGAATACTCGAGTGTCGACAAG -ACGGAATACTCGAGTGTCAAGCAG -ACGGAATACTCGAGTGTCCGTCAA -ACGGAATACTCGAGTGTCGCTGAA -ACGGAATACTCGAGTGTCAGTACG -ACGGAATACTCGAGTGTCATCCGA -ACGGAATACTCGAGTGTCATGGGA -ACGGAATACTCGAGTGTCGTGCAA -ACGGAATACTCGAGTGTCGAGGAA -ACGGAATACTCGAGTGTCCAGGTA -ACGGAATACTCGAGTGTCGACTCT -ACGGAATACTCGAGTGTCAGTCCT -ACGGAATACTCGAGTGTCTAAGCC -ACGGAATACTCGAGTGTCATAGCC -ACGGAATACTCGAGTGTCTAACCG -ACGGAATACTCGAGTGTCATGCCA -ACGGAATACTCGGGTGAAGGAAAC -ACGGAATACTCGGGTGAAAACACC -ACGGAATACTCGGGTGAAATCGAG -ACGGAATACTCGGGTGAACTCCTT -ACGGAATACTCGGGTGAACCTGTT -ACGGAATACTCGGGTGAACGGTTT -ACGGAATACTCGGGTGAAGTGGTT -ACGGAATACTCGGGTGAAGCCTTT -ACGGAATACTCGGGTGAAGGTCTT -ACGGAATACTCGGGTGAAACGCTT -ACGGAATACTCGGGTGAAAGCGTT -ACGGAATACTCGGGTGAATTCGTC -ACGGAATACTCGGGTGAATCTCTC -ACGGAATACTCGGGTGAATGGATC -ACGGAATACTCGGGTGAACACTTC -ACGGAATACTCGGGTGAAGTACTC -ACGGAATACTCGGGTGAAGATGTC -ACGGAATACTCGGGTGAAACAGTC -ACGGAATACTCGGGTGAATTGCTG -ACGGAATACTCGGGTGAATCCATG -ACGGAATACTCGGGTGAATGTGTG -ACGGAATACTCGGGTGAACTAGTG -ACGGAATACTCGGGTGAACATCTG -ACGGAATACTCGGGTGAAGAGTTG -ACGGAATACTCGGGTGAAAGACTG -ACGGAATACTCGGGTGAATCGGTA -ACGGAATACTCGGGTGAATGCCTA -ACGGAATACTCGGGTGAACCACTA -ACGGAATACTCGGGTGAAGGAGTA -ACGGAATACTCGGGTGAATCGTCT -ACGGAATACTCGGGTGAATGCACT -ACGGAATACTCGGGTGAACTGACT -ACGGAATACTCGGGTGAACAACCT -ACGGAATACTCGGGTGAAGCTACT -ACGGAATACTCGGGTGAAGGATCT -ACGGAATACTCGGGTGAAAAGGCT -ACGGAATACTCGGGTGAATCAACC -ACGGAATACTCGGGTGAATGTTCC -ACGGAATACTCGGGTGAAATTCCC -ACGGAATACTCGGGTGAATTCTCG -ACGGAATACTCGGGTGAATAGACG -ACGGAATACTCGGGTGAAGTAACG -ACGGAATACTCGGGTGAAACTTCG -ACGGAATACTCGGGTGAATACGCA -ACGGAATACTCGGGTGAACTTGCA -ACGGAATACTCGGGTGAACGAACA -ACGGAATACTCGGGTGAACAGTCA -ACGGAATACTCGGGTGAAGATCCA -ACGGAATACTCGGGTGAAACGACA -ACGGAATACTCGGGTGAAAGCTCA -ACGGAATACTCGGGTGAATCACGT -ACGGAATACTCGGGTGAACGTAGT -ACGGAATACTCGGGTGAAGTCAGT -ACGGAATACTCGGGTGAAGAAGGT -ACGGAATACTCGGGTGAAAACCGT -ACGGAATACTCGGGTGAATTGTGC -ACGGAATACTCGGGTGAACTAAGC -ACGGAATACTCGGGTGAAACTAGC -ACGGAATACTCGGGTGAAAGATGC -ACGGAATACTCGGGTGAATGAAGG -ACGGAATACTCGGGTGAACAATGG -ACGGAATACTCGGGTGAAATGAGG -ACGGAATACTCGGGTGAAAATGGG -ACGGAATACTCGGGTGAATCCTGA -ACGGAATACTCGGGTGAATAGCGA -ACGGAATACTCGGGTGAACACAGA -ACGGAATACTCGGGTGAAGCAAGA -ACGGAATACTCGGGTGAAGGTTGA -ACGGAATACTCGGGTGAATCCGAT -ACGGAATACTCGGGTGAATGGCAT -ACGGAATACTCGGGTGAACGAGAT -ACGGAATACTCGGGTGAATACCAC -ACGGAATACTCGGGTGAACAGAAC -ACGGAATACTCGGGTGAAGTCTAC -ACGGAATACTCGGGTGAAACGTAC -ACGGAATACTCGGGTGAAAGTGAC -ACGGAATACTCGGGTGAACTGTAG -ACGGAATACTCGGGTGAACCTAAG -ACGGAATACTCGGGTGAAGTTCAG -ACGGAATACTCGGGTGAAGCATAG -ACGGAATACTCGGGTGAAGACAAG -ACGGAATACTCGGGTGAAAAGCAG -ACGGAATACTCGGGTGAACGTCAA -ACGGAATACTCGGGTGAAGCTGAA -ACGGAATACTCGGGTGAAAGTACG -ACGGAATACTCGGGTGAAATCCGA -ACGGAATACTCGGGTGAAATGGGA -ACGGAATACTCGGGTGAAGTGCAA -ACGGAATACTCGGGTGAAGAGGAA -ACGGAATACTCGGGTGAACAGGTA -ACGGAATACTCGGGTGAAGACTCT -ACGGAATACTCGGGTGAAAGTCCT -ACGGAATACTCGGGTGAATAAGCC -ACGGAATACTCGGGTGAAATAGCC -ACGGAATACTCGGGTGAATAACCG -ACGGAATACTCGGGTGAAATGCCA -ACGGAATACTCGCGTAACGGAAAC -ACGGAATACTCGCGTAACAACACC -ACGGAATACTCGCGTAACATCGAG -ACGGAATACTCGCGTAACCTCCTT -ACGGAATACTCGCGTAACCCTGTT -ACGGAATACTCGCGTAACCGGTTT -ACGGAATACTCGCGTAACGTGGTT -ACGGAATACTCGCGTAACGCCTTT -ACGGAATACTCGCGTAACGGTCTT -ACGGAATACTCGCGTAACACGCTT -ACGGAATACTCGCGTAACAGCGTT -ACGGAATACTCGCGTAACTTCGTC -ACGGAATACTCGCGTAACTCTCTC -ACGGAATACTCGCGTAACTGGATC -ACGGAATACTCGCGTAACCACTTC -ACGGAATACTCGCGTAACGTACTC -ACGGAATACTCGCGTAACGATGTC -ACGGAATACTCGCGTAACACAGTC -ACGGAATACTCGCGTAACTTGCTG -ACGGAATACTCGCGTAACTCCATG -ACGGAATACTCGCGTAACTGTGTG -ACGGAATACTCGCGTAACCTAGTG -ACGGAATACTCGCGTAACCATCTG -ACGGAATACTCGCGTAACGAGTTG -ACGGAATACTCGCGTAACAGACTG -ACGGAATACTCGCGTAACTCGGTA -ACGGAATACTCGCGTAACTGCCTA -ACGGAATACTCGCGTAACCCACTA -ACGGAATACTCGCGTAACGGAGTA -ACGGAATACTCGCGTAACTCGTCT -ACGGAATACTCGCGTAACTGCACT -ACGGAATACTCGCGTAACCTGACT -ACGGAATACTCGCGTAACCAACCT -ACGGAATACTCGCGTAACGCTACT -ACGGAATACTCGCGTAACGGATCT -ACGGAATACTCGCGTAACAAGGCT -ACGGAATACTCGCGTAACTCAACC -ACGGAATACTCGCGTAACTGTTCC -ACGGAATACTCGCGTAACATTCCC -ACGGAATACTCGCGTAACTTCTCG -ACGGAATACTCGCGTAACTAGACG -ACGGAATACTCGCGTAACGTAACG -ACGGAATACTCGCGTAACACTTCG -ACGGAATACTCGCGTAACTACGCA -ACGGAATACTCGCGTAACCTTGCA -ACGGAATACTCGCGTAACCGAACA -ACGGAATACTCGCGTAACCAGTCA -ACGGAATACTCGCGTAACGATCCA -ACGGAATACTCGCGTAACACGACA -ACGGAATACTCGCGTAACAGCTCA -ACGGAATACTCGCGTAACTCACGT -ACGGAATACTCGCGTAACCGTAGT -ACGGAATACTCGCGTAACGTCAGT -ACGGAATACTCGCGTAACGAAGGT -ACGGAATACTCGCGTAACAACCGT -ACGGAATACTCGCGTAACTTGTGC -ACGGAATACTCGCGTAACCTAAGC -ACGGAATACTCGCGTAACACTAGC -ACGGAATACTCGCGTAACAGATGC -ACGGAATACTCGCGTAACTGAAGG -ACGGAATACTCGCGTAACCAATGG -ACGGAATACTCGCGTAACATGAGG -ACGGAATACTCGCGTAACAATGGG -ACGGAATACTCGCGTAACTCCTGA -ACGGAATACTCGCGTAACTAGCGA -ACGGAATACTCGCGTAACCACAGA -ACGGAATACTCGCGTAACGCAAGA -ACGGAATACTCGCGTAACGGTTGA -ACGGAATACTCGCGTAACTCCGAT -ACGGAATACTCGCGTAACTGGCAT -ACGGAATACTCGCGTAACCGAGAT -ACGGAATACTCGCGTAACTACCAC -ACGGAATACTCGCGTAACCAGAAC -ACGGAATACTCGCGTAACGTCTAC -ACGGAATACTCGCGTAACACGTAC -ACGGAATACTCGCGTAACAGTGAC -ACGGAATACTCGCGTAACCTGTAG -ACGGAATACTCGCGTAACCCTAAG -ACGGAATACTCGCGTAACGTTCAG -ACGGAATACTCGCGTAACGCATAG -ACGGAATACTCGCGTAACGACAAG -ACGGAATACTCGCGTAACAAGCAG -ACGGAATACTCGCGTAACCGTCAA -ACGGAATACTCGCGTAACGCTGAA -ACGGAATACTCGCGTAACAGTACG -ACGGAATACTCGCGTAACATCCGA -ACGGAATACTCGCGTAACATGGGA -ACGGAATACTCGCGTAACGTGCAA -ACGGAATACTCGCGTAACGAGGAA -ACGGAATACTCGCGTAACCAGGTA -ACGGAATACTCGCGTAACGACTCT -ACGGAATACTCGCGTAACAGTCCT -ACGGAATACTCGCGTAACTAAGCC -ACGGAATACTCGCGTAACATAGCC -ACGGAATACTCGCGTAACTAACCG -ACGGAATACTCGCGTAACATGCCA -ACGGAATACTCGTGCTTGGGAAAC -ACGGAATACTCGTGCTTGAACACC -ACGGAATACTCGTGCTTGATCGAG -ACGGAATACTCGTGCTTGCTCCTT -ACGGAATACTCGTGCTTGCCTGTT -ACGGAATACTCGTGCTTGCGGTTT -ACGGAATACTCGTGCTTGGTGGTT -ACGGAATACTCGTGCTTGGCCTTT -ACGGAATACTCGTGCTTGGGTCTT -ACGGAATACTCGTGCTTGACGCTT -ACGGAATACTCGTGCTTGAGCGTT -ACGGAATACTCGTGCTTGTTCGTC -ACGGAATACTCGTGCTTGTCTCTC -ACGGAATACTCGTGCTTGTGGATC -ACGGAATACTCGTGCTTGCACTTC -ACGGAATACTCGTGCTTGGTACTC -ACGGAATACTCGTGCTTGGATGTC -ACGGAATACTCGTGCTTGACAGTC -ACGGAATACTCGTGCTTGTTGCTG -ACGGAATACTCGTGCTTGTCCATG -ACGGAATACTCGTGCTTGTGTGTG -ACGGAATACTCGTGCTTGCTAGTG -ACGGAATACTCGTGCTTGCATCTG -ACGGAATACTCGTGCTTGGAGTTG -ACGGAATACTCGTGCTTGAGACTG -ACGGAATACTCGTGCTTGTCGGTA -ACGGAATACTCGTGCTTGTGCCTA -ACGGAATACTCGTGCTTGCCACTA -ACGGAATACTCGTGCTTGGGAGTA -ACGGAATACTCGTGCTTGTCGTCT -ACGGAATACTCGTGCTTGTGCACT -ACGGAATACTCGTGCTTGCTGACT -ACGGAATACTCGTGCTTGCAACCT -ACGGAATACTCGTGCTTGGCTACT -ACGGAATACTCGTGCTTGGGATCT -ACGGAATACTCGTGCTTGAAGGCT -ACGGAATACTCGTGCTTGTCAACC -ACGGAATACTCGTGCTTGTGTTCC -ACGGAATACTCGTGCTTGATTCCC -ACGGAATACTCGTGCTTGTTCTCG -ACGGAATACTCGTGCTTGTAGACG -ACGGAATACTCGTGCTTGGTAACG -ACGGAATACTCGTGCTTGACTTCG -ACGGAATACTCGTGCTTGTACGCA -ACGGAATACTCGTGCTTGCTTGCA -ACGGAATACTCGTGCTTGCGAACA -ACGGAATACTCGTGCTTGCAGTCA -ACGGAATACTCGTGCTTGGATCCA -ACGGAATACTCGTGCTTGACGACA -ACGGAATACTCGTGCTTGAGCTCA -ACGGAATACTCGTGCTTGTCACGT -ACGGAATACTCGTGCTTGCGTAGT -ACGGAATACTCGTGCTTGGTCAGT -ACGGAATACTCGTGCTTGGAAGGT -ACGGAATACTCGTGCTTGAACCGT -ACGGAATACTCGTGCTTGTTGTGC -ACGGAATACTCGTGCTTGCTAAGC -ACGGAATACTCGTGCTTGACTAGC -ACGGAATACTCGTGCTTGAGATGC -ACGGAATACTCGTGCTTGTGAAGG -ACGGAATACTCGTGCTTGCAATGG -ACGGAATACTCGTGCTTGATGAGG -ACGGAATACTCGTGCTTGAATGGG -ACGGAATACTCGTGCTTGTCCTGA -ACGGAATACTCGTGCTTGTAGCGA -ACGGAATACTCGTGCTTGCACAGA -ACGGAATACTCGTGCTTGGCAAGA -ACGGAATACTCGTGCTTGGGTTGA -ACGGAATACTCGTGCTTGTCCGAT -ACGGAATACTCGTGCTTGTGGCAT -ACGGAATACTCGTGCTTGCGAGAT -ACGGAATACTCGTGCTTGTACCAC -ACGGAATACTCGTGCTTGCAGAAC -ACGGAATACTCGTGCTTGGTCTAC -ACGGAATACTCGTGCTTGACGTAC -ACGGAATACTCGTGCTTGAGTGAC -ACGGAATACTCGTGCTTGCTGTAG -ACGGAATACTCGTGCTTGCCTAAG -ACGGAATACTCGTGCTTGGTTCAG -ACGGAATACTCGTGCTTGGCATAG -ACGGAATACTCGTGCTTGGACAAG -ACGGAATACTCGTGCTTGAAGCAG -ACGGAATACTCGTGCTTGCGTCAA -ACGGAATACTCGTGCTTGGCTGAA -ACGGAATACTCGTGCTTGAGTACG -ACGGAATACTCGTGCTTGATCCGA -ACGGAATACTCGTGCTTGATGGGA -ACGGAATACTCGTGCTTGGTGCAA -ACGGAATACTCGTGCTTGGAGGAA -ACGGAATACTCGTGCTTGCAGGTA -ACGGAATACTCGTGCTTGGACTCT -ACGGAATACTCGTGCTTGAGTCCT -ACGGAATACTCGTGCTTGTAAGCC -ACGGAATACTCGTGCTTGATAGCC -ACGGAATACTCGTGCTTGTAACCG -ACGGAATACTCGTGCTTGATGCCA -ACGGAATACTCGAGCCTAGGAAAC -ACGGAATACTCGAGCCTAAACACC -ACGGAATACTCGAGCCTAATCGAG -ACGGAATACTCGAGCCTACTCCTT -ACGGAATACTCGAGCCTACCTGTT -ACGGAATACTCGAGCCTACGGTTT -ACGGAATACTCGAGCCTAGTGGTT -ACGGAATACTCGAGCCTAGCCTTT -ACGGAATACTCGAGCCTAGGTCTT -ACGGAATACTCGAGCCTAACGCTT -ACGGAATACTCGAGCCTAAGCGTT -ACGGAATACTCGAGCCTATTCGTC -ACGGAATACTCGAGCCTATCTCTC -ACGGAATACTCGAGCCTATGGATC -ACGGAATACTCGAGCCTACACTTC -ACGGAATACTCGAGCCTAGTACTC -ACGGAATACTCGAGCCTAGATGTC -ACGGAATACTCGAGCCTAACAGTC -ACGGAATACTCGAGCCTATTGCTG -ACGGAATACTCGAGCCTATCCATG -ACGGAATACTCGAGCCTATGTGTG -ACGGAATACTCGAGCCTACTAGTG -ACGGAATACTCGAGCCTACATCTG -ACGGAATACTCGAGCCTAGAGTTG -ACGGAATACTCGAGCCTAAGACTG -ACGGAATACTCGAGCCTATCGGTA -ACGGAATACTCGAGCCTATGCCTA -ACGGAATACTCGAGCCTACCACTA -ACGGAATACTCGAGCCTAGGAGTA -ACGGAATACTCGAGCCTATCGTCT -ACGGAATACTCGAGCCTATGCACT -ACGGAATACTCGAGCCTACTGACT -ACGGAATACTCGAGCCTACAACCT -ACGGAATACTCGAGCCTAGCTACT -ACGGAATACTCGAGCCTAGGATCT -ACGGAATACTCGAGCCTAAAGGCT -ACGGAATACTCGAGCCTATCAACC -ACGGAATACTCGAGCCTATGTTCC -ACGGAATACTCGAGCCTAATTCCC -ACGGAATACTCGAGCCTATTCTCG -ACGGAATACTCGAGCCTATAGACG -ACGGAATACTCGAGCCTAGTAACG -ACGGAATACTCGAGCCTAACTTCG -ACGGAATACTCGAGCCTATACGCA -ACGGAATACTCGAGCCTACTTGCA -ACGGAATACTCGAGCCTACGAACA -ACGGAATACTCGAGCCTACAGTCA -ACGGAATACTCGAGCCTAGATCCA -ACGGAATACTCGAGCCTAACGACA -ACGGAATACTCGAGCCTAAGCTCA -ACGGAATACTCGAGCCTATCACGT -ACGGAATACTCGAGCCTACGTAGT -ACGGAATACTCGAGCCTAGTCAGT -ACGGAATACTCGAGCCTAGAAGGT -ACGGAATACTCGAGCCTAAACCGT -ACGGAATACTCGAGCCTATTGTGC -ACGGAATACTCGAGCCTACTAAGC -ACGGAATACTCGAGCCTAACTAGC -ACGGAATACTCGAGCCTAAGATGC -ACGGAATACTCGAGCCTATGAAGG -ACGGAATACTCGAGCCTACAATGG -ACGGAATACTCGAGCCTAATGAGG -ACGGAATACTCGAGCCTAAATGGG -ACGGAATACTCGAGCCTATCCTGA -ACGGAATACTCGAGCCTATAGCGA -ACGGAATACTCGAGCCTACACAGA -ACGGAATACTCGAGCCTAGCAAGA -ACGGAATACTCGAGCCTAGGTTGA -ACGGAATACTCGAGCCTATCCGAT -ACGGAATACTCGAGCCTATGGCAT -ACGGAATACTCGAGCCTACGAGAT -ACGGAATACTCGAGCCTATACCAC -ACGGAATACTCGAGCCTACAGAAC -ACGGAATACTCGAGCCTAGTCTAC -ACGGAATACTCGAGCCTAACGTAC -ACGGAATACTCGAGCCTAAGTGAC -ACGGAATACTCGAGCCTACTGTAG -ACGGAATACTCGAGCCTACCTAAG -ACGGAATACTCGAGCCTAGTTCAG -ACGGAATACTCGAGCCTAGCATAG -ACGGAATACTCGAGCCTAGACAAG -ACGGAATACTCGAGCCTAAAGCAG -ACGGAATACTCGAGCCTACGTCAA -ACGGAATACTCGAGCCTAGCTGAA -ACGGAATACTCGAGCCTAAGTACG -ACGGAATACTCGAGCCTAATCCGA -ACGGAATACTCGAGCCTAATGGGA -ACGGAATACTCGAGCCTAGTGCAA -ACGGAATACTCGAGCCTAGAGGAA -ACGGAATACTCGAGCCTACAGGTA -ACGGAATACTCGAGCCTAGACTCT -ACGGAATACTCGAGCCTAAGTCCT -ACGGAATACTCGAGCCTATAAGCC -ACGGAATACTCGAGCCTAATAGCC -ACGGAATACTCGAGCCTATAACCG -ACGGAATACTCGAGCCTAATGCCA -ACGGAATACTCGAGCACTGGAAAC -ACGGAATACTCGAGCACTAACACC -ACGGAATACTCGAGCACTATCGAG -ACGGAATACTCGAGCACTCTCCTT -ACGGAATACTCGAGCACTCCTGTT -ACGGAATACTCGAGCACTCGGTTT -ACGGAATACTCGAGCACTGTGGTT -ACGGAATACTCGAGCACTGCCTTT -ACGGAATACTCGAGCACTGGTCTT -ACGGAATACTCGAGCACTACGCTT -ACGGAATACTCGAGCACTAGCGTT -ACGGAATACTCGAGCACTTTCGTC -ACGGAATACTCGAGCACTTCTCTC -ACGGAATACTCGAGCACTTGGATC -ACGGAATACTCGAGCACTCACTTC -ACGGAATACTCGAGCACTGTACTC -ACGGAATACTCGAGCACTGATGTC -ACGGAATACTCGAGCACTACAGTC -ACGGAATACTCGAGCACTTTGCTG -ACGGAATACTCGAGCACTTCCATG -ACGGAATACTCGAGCACTTGTGTG -ACGGAATACTCGAGCACTCTAGTG -ACGGAATACTCGAGCACTCATCTG -ACGGAATACTCGAGCACTGAGTTG -ACGGAATACTCGAGCACTAGACTG -ACGGAATACTCGAGCACTTCGGTA -ACGGAATACTCGAGCACTTGCCTA -ACGGAATACTCGAGCACTCCACTA -ACGGAATACTCGAGCACTGGAGTA -ACGGAATACTCGAGCACTTCGTCT -ACGGAATACTCGAGCACTTGCACT -ACGGAATACTCGAGCACTCTGACT -ACGGAATACTCGAGCACTCAACCT -ACGGAATACTCGAGCACTGCTACT -ACGGAATACTCGAGCACTGGATCT -ACGGAATACTCGAGCACTAAGGCT -ACGGAATACTCGAGCACTTCAACC -ACGGAATACTCGAGCACTTGTTCC -ACGGAATACTCGAGCACTATTCCC -ACGGAATACTCGAGCACTTTCTCG -ACGGAATACTCGAGCACTTAGACG -ACGGAATACTCGAGCACTGTAACG -ACGGAATACTCGAGCACTACTTCG -ACGGAATACTCGAGCACTTACGCA -ACGGAATACTCGAGCACTCTTGCA -ACGGAATACTCGAGCACTCGAACA -ACGGAATACTCGAGCACTCAGTCA -ACGGAATACTCGAGCACTGATCCA -ACGGAATACTCGAGCACTACGACA -ACGGAATACTCGAGCACTAGCTCA -ACGGAATACTCGAGCACTTCACGT -ACGGAATACTCGAGCACTCGTAGT -ACGGAATACTCGAGCACTGTCAGT -ACGGAATACTCGAGCACTGAAGGT -ACGGAATACTCGAGCACTAACCGT -ACGGAATACTCGAGCACTTTGTGC -ACGGAATACTCGAGCACTCTAAGC -ACGGAATACTCGAGCACTACTAGC -ACGGAATACTCGAGCACTAGATGC -ACGGAATACTCGAGCACTTGAAGG -ACGGAATACTCGAGCACTCAATGG -ACGGAATACTCGAGCACTATGAGG -ACGGAATACTCGAGCACTAATGGG -ACGGAATACTCGAGCACTTCCTGA -ACGGAATACTCGAGCACTTAGCGA -ACGGAATACTCGAGCACTCACAGA -ACGGAATACTCGAGCACTGCAAGA -ACGGAATACTCGAGCACTGGTTGA -ACGGAATACTCGAGCACTTCCGAT -ACGGAATACTCGAGCACTTGGCAT -ACGGAATACTCGAGCACTCGAGAT -ACGGAATACTCGAGCACTTACCAC -ACGGAATACTCGAGCACTCAGAAC -ACGGAATACTCGAGCACTGTCTAC -ACGGAATACTCGAGCACTACGTAC -ACGGAATACTCGAGCACTAGTGAC -ACGGAATACTCGAGCACTCTGTAG -ACGGAATACTCGAGCACTCCTAAG -ACGGAATACTCGAGCACTGTTCAG -ACGGAATACTCGAGCACTGCATAG -ACGGAATACTCGAGCACTGACAAG -ACGGAATACTCGAGCACTAAGCAG -ACGGAATACTCGAGCACTCGTCAA -ACGGAATACTCGAGCACTGCTGAA -ACGGAATACTCGAGCACTAGTACG -ACGGAATACTCGAGCACTATCCGA -ACGGAATACTCGAGCACTATGGGA -ACGGAATACTCGAGCACTGTGCAA -ACGGAATACTCGAGCACTGAGGAA -ACGGAATACTCGAGCACTCAGGTA -ACGGAATACTCGAGCACTGACTCT -ACGGAATACTCGAGCACTAGTCCT -ACGGAATACTCGAGCACTTAAGCC -ACGGAATACTCGAGCACTATAGCC -ACGGAATACTCGAGCACTTAACCG -ACGGAATACTCGAGCACTATGCCA -ACGGAATACTCGTGCAGAGGAAAC -ACGGAATACTCGTGCAGAAACACC -ACGGAATACTCGTGCAGAATCGAG -ACGGAATACTCGTGCAGACTCCTT -ACGGAATACTCGTGCAGACCTGTT -ACGGAATACTCGTGCAGACGGTTT -ACGGAATACTCGTGCAGAGTGGTT -ACGGAATACTCGTGCAGAGCCTTT -ACGGAATACTCGTGCAGAGGTCTT -ACGGAATACTCGTGCAGAACGCTT -ACGGAATACTCGTGCAGAAGCGTT -ACGGAATACTCGTGCAGATTCGTC -ACGGAATACTCGTGCAGATCTCTC -ACGGAATACTCGTGCAGATGGATC -ACGGAATACTCGTGCAGACACTTC -ACGGAATACTCGTGCAGAGTACTC -ACGGAATACTCGTGCAGAGATGTC -ACGGAATACTCGTGCAGAACAGTC -ACGGAATACTCGTGCAGATTGCTG -ACGGAATACTCGTGCAGATCCATG -ACGGAATACTCGTGCAGATGTGTG -ACGGAATACTCGTGCAGACTAGTG -ACGGAATACTCGTGCAGACATCTG -ACGGAATACTCGTGCAGAGAGTTG -ACGGAATACTCGTGCAGAAGACTG -ACGGAATACTCGTGCAGATCGGTA -ACGGAATACTCGTGCAGATGCCTA -ACGGAATACTCGTGCAGACCACTA -ACGGAATACTCGTGCAGAGGAGTA -ACGGAATACTCGTGCAGATCGTCT -ACGGAATACTCGTGCAGATGCACT -ACGGAATACTCGTGCAGACTGACT -ACGGAATACTCGTGCAGACAACCT -ACGGAATACTCGTGCAGAGCTACT -ACGGAATACTCGTGCAGAGGATCT -ACGGAATACTCGTGCAGAAAGGCT -ACGGAATACTCGTGCAGATCAACC -ACGGAATACTCGTGCAGATGTTCC -ACGGAATACTCGTGCAGAATTCCC -ACGGAATACTCGTGCAGATTCTCG -ACGGAATACTCGTGCAGATAGACG -ACGGAATACTCGTGCAGAGTAACG -ACGGAATACTCGTGCAGAACTTCG -ACGGAATACTCGTGCAGATACGCA -ACGGAATACTCGTGCAGACTTGCA -ACGGAATACTCGTGCAGACGAACA -ACGGAATACTCGTGCAGACAGTCA -ACGGAATACTCGTGCAGAGATCCA -ACGGAATACTCGTGCAGAACGACA -ACGGAATACTCGTGCAGAAGCTCA -ACGGAATACTCGTGCAGATCACGT -ACGGAATACTCGTGCAGACGTAGT -ACGGAATACTCGTGCAGAGTCAGT -ACGGAATACTCGTGCAGAGAAGGT -ACGGAATACTCGTGCAGAAACCGT -ACGGAATACTCGTGCAGATTGTGC -ACGGAATACTCGTGCAGACTAAGC -ACGGAATACTCGTGCAGAACTAGC -ACGGAATACTCGTGCAGAAGATGC -ACGGAATACTCGTGCAGATGAAGG -ACGGAATACTCGTGCAGACAATGG -ACGGAATACTCGTGCAGAATGAGG -ACGGAATACTCGTGCAGAAATGGG -ACGGAATACTCGTGCAGATCCTGA -ACGGAATACTCGTGCAGATAGCGA -ACGGAATACTCGTGCAGACACAGA -ACGGAATACTCGTGCAGAGCAAGA -ACGGAATACTCGTGCAGAGGTTGA -ACGGAATACTCGTGCAGATCCGAT -ACGGAATACTCGTGCAGATGGCAT -ACGGAATACTCGTGCAGACGAGAT -ACGGAATACTCGTGCAGATACCAC -ACGGAATACTCGTGCAGACAGAAC -ACGGAATACTCGTGCAGAGTCTAC -ACGGAATACTCGTGCAGAACGTAC -ACGGAATACTCGTGCAGAAGTGAC -ACGGAATACTCGTGCAGACTGTAG -ACGGAATACTCGTGCAGACCTAAG -ACGGAATACTCGTGCAGAGTTCAG -ACGGAATACTCGTGCAGAGCATAG -ACGGAATACTCGTGCAGAGACAAG -ACGGAATACTCGTGCAGAAAGCAG -ACGGAATACTCGTGCAGACGTCAA -ACGGAATACTCGTGCAGAGCTGAA -ACGGAATACTCGTGCAGAAGTACG -ACGGAATACTCGTGCAGAATCCGA -ACGGAATACTCGTGCAGAATGGGA -ACGGAATACTCGTGCAGAGTGCAA -ACGGAATACTCGTGCAGAGAGGAA -ACGGAATACTCGTGCAGACAGGTA -ACGGAATACTCGTGCAGAGACTCT -ACGGAATACTCGTGCAGAAGTCCT -ACGGAATACTCGTGCAGATAAGCC -ACGGAATACTCGTGCAGAATAGCC -ACGGAATACTCGTGCAGATAACCG -ACGGAATACTCGTGCAGAATGCCA -ACGGAATACTCGAGGTGAGGAAAC -ACGGAATACTCGAGGTGAAACACC -ACGGAATACTCGAGGTGAATCGAG -ACGGAATACTCGAGGTGACTCCTT -ACGGAATACTCGAGGTGACCTGTT -ACGGAATACTCGAGGTGACGGTTT -ACGGAATACTCGAGGTGAGTGGTT -ACGGAATACTCGAGGTGAGCCTTT -ACGGAATACTCGAGGTGAGGTCTT -ACGGAATACTCGAGGTGAACGCTT -ACGGAATACTCGAGGTGAAGCGTT -ACGGAATACTCGAGGTGATTCGTC -ACGGAATACTCGAGGTGATCTCTC -ACGGAATACTCGAGGTGATGGATC -ACGGAATACTCGAGGTGACACTTC -ACGGAATACTCGAGGTGAGTACTC -ACGGAATACTCGAGGTGAGATGTC -ACGGAATACTCGAGGTGAACAGTC -ACGGAATACTCGAGGTGATTGCTG -ACGGAATACTCGAGGTGATCCATG -ACGGAATACTCGAGGTGATGTGTG -ACGGAATACTCGAGGTGACTAGTG -ACGGAATACTCGAGGTGACATCTG -ACGGAATACTCGAGGTGAGAGTTG -ACGGAATACTCGAGGTGAAGACTG -ACGGAATACTCGAGGTGATCGGTA -ACGGAATACTCGAGGTGATGCCTA -ACGGAATACTCGAGGTGACCACTA -ACGGAATACTCGAGGTGAGGAGTA -ACGGAATACTCGAGGTGATCGTCT -ACGGAATACTCGAGGTGATGCACT -ACGGAATACTCGAGGTGACTGACT -ACGGAATACTCGAGGTGACAACCT -ACGGAATACTCGAGGTGAGCTACT -ACGGAATACTCGAGGTGAGGATCT -ACGGAATACTCGAGGTGAAAGGCT -ACGGAATACTCGAGGTGATCAACC -ACGGAATACTCGAGGTGATGTTCC -ACGGAATACTCGAGGTGAATTCCC -ACGGAATACTCGAGGTGATTCTCG -ACGGAATACTCGAGGTGATAGACG -ACGGAATACTCGAGGTGAGTAACG -ACGGAATACTCGAGGTGAACTTCG -ACGGAATACTCGAGGTGATACGCA -ACGGAATACTCGAGGTGACTTGCA -ACGGAATACTCGAGGTGACGAACA -ACGGAATACTCGAGGTGACAGTCA -ACGGAATACTCGAGGTGAGATCCA -ACGGAATACTCGAGGTGAACGACA -ACGGAATACTCGAGGTGAAGCTCA -ACGGAATACTCGAGGTGATCACGT -ACGGAATACTCGAGGTGACGTAGT -ACGGAATACTCGAGGTGAGTCAGT -ACGGAATACTCGAGGTGAGAAGGT -ACGGAATACTCGAGGTGAAACCGT -ACGGAATACTCGAGGTGATTGTGC -ACGGAATACTCGAGGTGACTAAGC -ACGGAATACTCGAGGTGAACTAGC -ACGGAATACTCGAGGTGAAGATGC -ACGGAATACTCGAGGTGATGAAGG -ACGGAATACTCGAGGTGACAATGG -ACGGAATACTCGAGGTGAATGAGG -ACGGAATACTCGAGGTGAAATGGG -ACGGAATACTCGAGGTGATCCTGA -ACGGAATACTCGAGGTGATAGCGA -ACGGAATACTCGAGGTGACACAGA -ACGGAATACTCGAGGTGAGCAAGA -ACGGAATACTCGAGGTGAGGTTGA -ACGGAATACTCGAGGTGATCCGAT -ACGGAATACTCGAGGTGATGGCAT -ACGGAATACTCGAGGTGACGAGAT -ACGGAATACTCGAGGTGATACCAC -ACGGAATACTCGAGGTGACAGAAC -ACGGAATACTCGAGGTGAGTCTAC -ACGGAATACTCGAGGTGAACGTAC -ACGGAATACTCGAGGTGAAGTGAC -ACGGAATACTCGAGGTGACTGTAG -ACGGAATACTCGAGGTGACCTAAG -ACGGAATACTCGAGGTGAGTTCAG -ACGGAATACTCGAGGTGAGCATAG -ACGGAATACTCGAGGTGAGACAAG -ACGGAATACTCGAGGTGAAAGCAG -ACGGAATACTCGAGGTGACGTCAA -ACGGAATACTCGAGGTGAGCTGAA -ACGGAATACTCGAGGTGAAGTACG -ACGGAATACTCGAGGTGAATCCGA -ACGGAATACTCGAGGTGAATGGGA -ACGGAATACTCGAGGTGAGTGCAA -ACGGAATACTCGAGGTGAGAGGAA -ACGGAATACTCGAGGTGACAGGTA -ACGGAATACTCGAGGTGAGACTCT -ACGGAATACTCGAGGTGAAGTCCT -ACGGAATACTCGAGGTGATAAGCC -ACGGAATACTCGAGGTGAATAGCC -ACGGAATACTCGAGGTGATAACCG -ACGGAATACTCGAGGTGAATGCCA -ACGGAATACTCGTGGCAAGGAAAC -ACGGAATACTCGTGGCAAAACACC -ACGGAATACTCGTGGCAAATCGAG -ACGGAATACTCGTGGCAACTCCTT -ACGGAATACTCGTGGCAACCTGTT -ACGGAATACTCGTGGCAACGGTTT -ACGGAATACTCGTGGCAAGTGGTT -ACGGAATACTCGTGGCAAGCCTTT -ACGGAATACTCGTGGCAAGGTCTT -ACGGAATACTCGTGGCAAACGCTT -ACGGAATACTCGTGGCAAAGCGTT -ACGGAATACTCGTGGCAATTCGTC -ACGGAATACTCGTGGCAATCTCTC -ACGGAATACTCGTGGCAATGGATC -ACGGAATACTCGTGGCAACACTTC -ACGGAATACTCGTGGCAAGTACTC -ACGGAATACTCGTGGCAAGATGTC -ACGGAATACTCGTGGCAAACAGTC -ACGGAATACTCGTGGCAATTGCTG -ACGGAATACTCGTGGCAATCCATG -ACGGAATACTCGTGGCAATGTGTG -ACGGAATACTCGTGGCAACTAGTG -ACGGAATACTCGTGGCAACATCTG -ACGGAATACTCGTGGCAAGAGTTG -ACGGAATACTCGTGGCAAAGACTG -ACGGAATACTCGTGGCAATCGGTA -ACGGAATACTCGTGGCAATGCCTA -ACGGAATACTCGTGGCAACCACTA -ACGGAATACTCGTGGCAAGGAGTA -ACGGAATACTCGTGGCAATCGTCT -ACGGAATACTCGTGGCAATGCACT -ACGGAATACTCGTGGCAACTGACT -ACGGAATACTCGTGGCAACAACCT -ACGGAATACTCGTGGCAAGCTACT -ACGGAATACTCGTGGCAAGGATCT -ACGGAATACTCGTGGCAAAAGGCT -ACGGAATACTCGTGGCAATCAACC -ACGGAATACTCGTGGCAATGTTCC -ACGGAATACTCGTGGCAAATTCCC -ACGGAATACTCGTGGCAATTCTCG -ACGGAATACTCGTGGCAATAGACG -ACGGAATACTCGTGGCAAGTAACG -ACGGAATACTCGTGGCAAACTTCG -ACGGAATACTCGTGGCAATACGCA -ACGGAATACTCGTGGCAACTTGCA -ACGGAATACTCGTGGCAACGAACA -ACGGAATACTCGTGGCAACAGTCA -ACGGAATACTCGTGGCAAGATCCA -ACGGAATACTCGTGGCAAACGACA -ACGGAATACTCGTGGCAAAGCTCA -ACGGAATACTCGTGGCAATCACGT -ACGGAATACTCGTGGCAACGTAGT -ACGGAATACTCGTGGCAAGTCAGT -ACGGAATACTCGTGGCAAGAAGGT -ACGGAATACTCGTGGCAAAACCGT -ACGGAATACTCGTGGCAATTGTGC -ACGGAATACTCGTGGCAACTAAGC -ACGGAATACTCGTGGCAAACTAGC -ACGGAATACTCGTGGCAAAGATGC -ACGGAATACTCGTGGCAATGAAGG -ACGGAATACTCGTGGCAACAATGG -ACGGAATACTCGTGGCAAATGAGG -ACGGAATACTCGTGGCAAAATGGG -ACGGAATACTCGTGGCAATCCTGA -ACGGAATACTCGTGGCAATAGCGA -ACGGAATACTCGTGGCAACACAGA -ACGGAATACTCGTGGCAAGCAAGA -ACGGAATACTCGTGGCAAGGTTGA -ACGGAATACTCGTGGCAATCCGAT -ACGGAATACTCGTGGCAATGGCAT -ACGGAATACTCGTGGCAACGAGAT -ACGGAATACTCGTGGCAATACCAC -ACGGAATACTCGTGGCAACAGAAC -ACGGAATACTCGTGGCAAGTCTAC -ACGGAATACTCGTGGCAAACGTAC -ACGGAATACTCGTGGCAAAGTGAC -ACGGAATACTCGTGGCAACTGTAG -ACGGAATACTCGTGGCAACCTAAG -ACGGAATACTCGTGGCAAGTTCAG -ACGGAATACTCGTGGCAAGCATAG -ACGGAATACTCGTGGCAAGACAAG -ACGGAATACTCGTGGCAAAAGCAG -ACGGAATACTCGTGGCAACGTCAA -ACGGAATACTCGTGGCAAGCTGAA -ACGGAATACTCGTGGCAAAGTACG -ACGGAATACTCGTGGCAAATCCGA -ACGGAATACTCGTGGCAAATGGGA -ACGGAATACTCGTGGCAAGTGCAA -ACGGAATACTCGTGGCAAGAGGAA -ACGGAATACTCGTGGCAACAGGTA -ACGGAATACTCGTGGCAAGACTCT -ACGGAATACTCGTGGCAAAGTCCT -ACGGAATACTCGTGGCAATAAGCC -ACGGAATACTCGTGGCAAATAGCC -ACGGAATACTCGTGGCAATAACCG -ACGGAATACTCGTGGCAAATGCCA -ACGGAATACTCGAGGATGGGAAAC -ACGGAATACTCGAGGATGAACACC -ACGGAATACTCGAGGATGATCGAG -ACGGAATACTCGAGGATGCTCCTT -ACGGAATACTCGAGGATGCCTGTT -ACGGAATACTCGAGGATGCGGTTT -ACGGAATACTCGAGGATGGTGGTT -ACGGAATACTCGAGGATGGCCTTT -ACGGAATACTCGAGGATGGGTCTT -ACGGAATACTCGAGGATGACGCTT -ACGGAATACTCGAGGATGAGCGTT -ACGGAATACTCGAGGATGTTCGTC -ACGGAATACTCGAGGATGTCTCTC -ACGGAATACTCGAGGATGTGGATC -ACGGAATACTCGAGGATGCACTTC -ACGGAATACTCGAGGATGGTACTC -ACGGAATACTCGAGGATGGATGTC -ACGGAATACTCGAGGATGACAGTC -ACGGAATACTCGAGGATGTTGCTG -ACGGAATACTCGAGGATGTCCATG -ACGGAATACTCGAGGATGTGTGTG -ACGGAATACTCGAGGATGCTAGTG -ACGGAATACTCGAGGATGCATCTG -ACGGAATACTCGAGGATGGAGTTG -ACGGAATACTCGAGGATGAGACTG -ACGGAATACTCGAGGATGTCGGTA -ACGGAATACTCGAGGATGTGCCTA -ACGGAATACTCGAGGATGCCACTA -ACGGAATACTCGAGGATGGGAGTA -ACGGAATACTCGAGGATGTCGTCT -ACGGAATACTCGAGGATGTGCACT -ACGGAATACTCGAGGATGCTGACT -ACGGAATACTCGAGGATGCAACCT -ACGGAATACTCGAGGATGGCTACT -ACGGAATACTCGAGGATGGGATCT -ACGGAATACTCGAGGATGAAGGCT -ACGGAATACTCGAGGATGTCAACC -ACGGAATACTCGAGGATGTGTTCC -ACGGAATACTCGAGGATGATTCCC -ACGGAATACTCGAGGATGTTCTCG -ACGGAATACTCGAGGATGTAGACG -ACGGAATACTCGAGGATGGTAACG -ACGGAATACTCGAGGATGACTTCG -ACGGAATACTCGAGGATGTACGCA -ACGGAATACTCGAGGATGCTTGCA -ACGGAATACTCGAGGATGCGAACA -ACGGAATACTCGAGGATGCAGTCA -ACGGAATACTCGAGGATGGATCCA -ACGGAATACTCGAGGATGACGACA -ACGGAATACTCGAGGATGAGCTCA -ACGGAATACTCGAGGATGTCACGT -ACGGAATACTCGAGGATGCGTAGT -ACGGAATACTCGAGGATGGTCAGT -ACGGAATACTCGAGGATGGAAGGT -ACGGAATACTCGAGGATGAACCGT -ACGGAATACTCGAGGATGTTGTGC -ACGGAATACTCGAGGATGCTAAGC -ACGGAATACTCGAGGATGACTAGC -ACGGAATACTCGAGGATGAGATGC -ACGGAATACTCGAGGATGTGAAGG -ACGGAATACTCGAGGATGCAATGG -ACGGAATACTCGAGGATGATGAGG -ACGGAATACTCGAGGATGAATGGG -ACGGAATACTCGAGGATGTCCTGA -ACGGAATACTCGAGGATGTAGCGA -ACGGAATACTCGAGGATGCACAGA -ACGGAATACTCGAGGATGGCAAGA -ACGGAATACTCGAGGATGGGTTGA -ACGGAATACTCGAGGATGTCCGAT -ACGGAATACTCGAGGATGTGGCAT -ACGGAATACTCGAGGATGCGAGAT -ACGGAATACTCGAGGATGTACCAC -ACGGAATACTCGAGGATGCAGAAC -ACGGAATACTCGAGGATGGTCTAC -ACGGAATACTCGAGGATGACGTAC -ACGGAATACTCGAGGATGAGTGAC -ACGGAATACTCGAGGATGCTGTAG -ACGGAATACTCGAGGATGCCTAAG -ACGGAATACTCGAGGATGGTTCAG -ACGGAATACTCGAGGATGGCATAG -ACGGAATACTCGAGGATGGACAAG -ACGGAATACTCGAGGATGAAGCAG -ACGGAATACTCGAGGATGCGTCAA -ACGGAATACTCGAGGATGGCTGAA -ACGGAATACTCGAGGATGAGTACG -ACGGAATACTCGAGGATGATCCGA -ACGGAATACTCGAGGATGATGGGA -ACGGAATACTCGAGGATGGTGCAA -ACGGAATACTCGAGGATGGAGGAA -ACGGAATACTCGAGGATGCAGGTA -ACGGAATACTCGAGGATGGACTCT -ACGGAATACTCGAGGATGAGTCCT -ACGGAATACTCGAGGATGTAAGCC -ACGGAATACTCGAGGATGATAGCC -ACGGAATACTCGAGGATGTAACCG -ACGGAATACTCGAGGATGATGCCA -ACGGAATACTCGGGGAATGGAAAC -ACGGAATACTCGGGGAATAACACC -ACGGAATACTCGGGGAATATCGAG -ACGGAATACTCGGGGAATCTCCTT -ACGGAATACTCGGGGAATCCTGTT -ACGGAATACTCGGGGAATCGGTTT -ACGGAATACTCGGGGAATGTGGTT -ACGGAATACTCGGGGAATGCCTTT -ACGGAATACTCGGGGAATGGTCTT -ACGGAATACTCGGGGAATACGCTT -ACGGAATACTCGGGGAATAGCGTT -ACGGAATACTCGGGGAATTTCGTC -ACGGAATACTCGGGGAATTCTCTC -ACGGAATACTCGGGGAATTGGATC -ACGGAATACTCGGGGAATCACTTC -ACGGAATACTCGGGGAATGTACTC -ACGGAATACTCGGGGAATGATGTC -ACGGAATACTCGGGGAATACAGTC -ACGGAATACTCGGGGAATTTGCTG -ACGGAATACTCGGGGAATTCCATG -ACGGAATACTCGGGGAATTGTGTG -ACGGAATACTCGGGGAATCTAGTG -ACGGAATACTCGGGGAATCATCTG -ACGGAATACTCGGGGAATGAGTTG -ACGGAATACTCGGGGAATAGACTG -ACGGAATACTCGGGGAATTCGGTA -ACGGAATACTCGGGGAATTGCCTA -ACGGAATACTCGGGGAATCCACTA -ACGGAATACTCGGGGAATGGAGTA -ACGGAATACTCGGGGAATTCGTCT -ACGGAATACTCGGGGAATTGCACT -ACGGAATACTCGGGGAATCTGACT -ACGGAATACTCGGGGAATCAACCT -ACGGAATACTCGGGGAATGCTACT -ACGGAATACTCGGGGAATGGATCT -ACGGAATACTCGGGGAATAAGGCT -ACGGAATACTCGGGGAATTCAACC -ACGGAATACTCGGGGAATTGTTCC -ACGGAATACTCGGGGAATATTCCC -ACGGAATACTCGGGGAATTTCTCG -ACGGAATACTCGGGGAATTAGACG -ACGGAATACTCGGGGAATGTAACG -ACGGAATACTCGGGGAATACTTCG -ACGGAATACTCGGGGAATTACGCA -ACGGAATACTCGGGGAATCTTGCA -ACGGAATACTCGGGGAATCGAACA -ACGGAATACTCGGGGAATCAGTCA -ACGGAATACTCGGGGAATGATCCA -ACGGAATACTCGGGGAATACGACA -ACGGAATACTCGGGGAATAGCTCA -ACGGAATACTCGGGGAATTCACGT -ACGGAATACTCGGGGAATCGTAGT -ACGGAATACTCGGGGAATGTCAGT -ACGGAATACTCGGGGAATGAAGGT -ACGGAATACTCGGGGAATAACCGT -ACGGAATACTCGGGGAATTTGTGC -ACGGAATACTCGGGGAATCTAAGC -ACGGAATACTCGGGGAATACTAGC -ACGGAATACTCGGGGAATAGATGC -ACGGAATACTCGGGGAATTGAAGG -ACGGAATACTCGGGGAATCAATGG -ACGGAATACTCGGGGAATATGAGG -ACGGAATACTCGGGGAATAATGGG -ACGGAATACTCGGGGAATTCCTGA -ACGGAATACTCGGGGAATTAGCGA -ACGGAATACTCGGGGAATCACAGA -ACGGAATACTCGGGGAATGCAAGA -ACGGAATACTCGGGGAATGGTTGA -ACGGAATACTCGGGGAATTCCGAT -ACGGAATACTCGGGGAATTGGCAT -ACGGAATACTCGGGGAATCGAGAT -ACGGAATACTCGGGGAATTACCAC -ACGGAATACTCGGGGAATCAGAAC -ACGGAATACTCGGGGAATGTCTAC -ACGGAATACTCGGGGAATACGTAC -ACGGAATACTCGGGGAATAGTGAC -ACGGAATACTCGGGGAATCTGTAG -ACGGAATACTCGGGGAATCCTAAG -ACGGAATACTCGGGGAATGTTCAG -ACGGAATACTCGGGGAATGCATAG -ACGGAATACTCGGGGAATGACAAG -ACGGAATACTCGGGGAATAAGCAG -ACGGAATACTCGGGGAATCGTCAA -ACGGAATACTCGGGGAATGCTGAA -ACGGAATACTCGGGGAATAGTACG -ACGGAATACTCGGGGAATATCCGA -ACGGAATACTCGGGGAATATGGGA -ACGGAATACTCGGGGAATGTGCAA -ACGGAATACTCGGGGAATGAGGAA -ACGGAATACTCGGGGAATCAGGTA -ACGGAATACTCGGGGAATGACTCT -ACGGAATACTCGGGGAATAGTCCT -ACGGAATACTCGGGGAATTAAGCC -ACGGAATACTCGGGGAATATAGCC -ACGGAATACTCGGGGAATTAACCG -ACGGAATACTCGGGGAATATGCCA -ACGGAATACTCGTGATCCGGAAAC -ACGGAATACTCGTGATCCAACACC -ACGGAATACTCGTGATCCATCGAG -ACGGAATACTCGTGATCCCTCCTT -ACGGAATACTCGTGATCCCCTGTT -ACGGAATACTCGTGATCCCGGTTT -ACGGAATACTCGTGATCCGTGGTT -ACGGAATACTCGTGATCCGCCTTT -ACGGAATACTCGTGATCCGGTCTT -ACGGAATACTCGTGATCCACGCTT -ACGGAATACTCGTGATCCAGCGTT -ACGGAATACTCGTGATCCTTCGTC -ACGGAATACTCGTGATCCTCTCTC -ACGGAATACTCGTGATCCTGGATC -ACGGAATACTCGTGATCCCACTTC -ACGGAATACTCGTGATCCGTACTC -ACGGAATACTCGTGATCCGATGTC -ACGGAATACTCGTGATCCACAGTC -ACGGAATACTCGTGATCCTTGCTG -ACGGAATACTCGTGATCCTCCATG -ACGGAATACTCGTGATCCTGTGTG -ACGGAATACTCGTGATCCCTAGTG -ACGGAATACTCGTGATCCCATCTG -ACGGAATACTCGTGATCCGAGTTG -ACGGAATACTCGTGATCCAGACTG -ACGGAATACTCGTGATCCTCGGTA -ACGGAATACTCGTGATCCTGCCTA -ACGGAATACTCGTGATCCCCACTA -ACGGAATACTCGTGATCCGGAGTA -ACGGAATACTCGTGATCCTCGTCT -ACGGAATACTCGTGATCCTGCACT -ACGGAATACTCGTGATCCCTGACT -ACGGAATACTCGTGATCCCAACCT -ACGGAATACTCGTGATCCGCTACT -ACGGAATACTCGTGATCCGGATCT -ACGGAATACTCGTGATCCAAGGCT -ACGGAATACTCGTGATCCTCAACC -ACGGAATACTCGTGATCCTGTTCC -ACGGAATACTCGTGATCCATTCCC -ACGGAATACTCGTGATCCTTCTCG -ACGGAATACTCGTGATCCTAGACG -ACGGAATACTCGTGATCCGTAACG -ACGGAATACTCGTGATCCACTTCG -ACGGAATACTCGTGATCCTACGCA -ACGGAATACTCGTGATCCCTTGCA -ACGGAATACTCGTGATCCCGAACA -ACGGAATACTCGTGATCCCAGTCA -ACGGAATACTCGTGATCCGATCCA -ACGGAATACTCGTGATCCACGACA -ACGGAATACTCGTGATCCAGCTCA -ACGGAATACTCGTGATCCTCACGT -ACGGAATACTCGTGATCCCGTAGT -ACGGAATACTCGTGATCCGTCAGT -ACGGAATACTCGTGATCCGAAGGT -ACGGAATACTCGTGATCCAACCGT -ACGGAATACTCGTGATCCTTGTGC -ACGGAATACTCGTGATCCCTAAGC -ACGGAATACTCGTGATCCACTAGC -ACGGAATACTCGTGATCCAGATGC -ACGGAATACTCGTGATCCTGAAGG -ACGGAATACTCGTGATCCCAATGG -ACGGAATACTCGTGATCCATGAGG -ACGGAATACTCGTGATCCAATGGG -ACGGAATACTCGTGATCCTCCTGA -ACGGAATACTCGTGATCCTAGCGA -ACGGAATACTCGTGATCCCACAGA -ACGGAATACTCGTGATCCGCAAGA -ACGGAATACTCGTGATCCGGTTGA -ACGGAATACTCGTGATCCTCCGAT -ACGGAATACTCGTGATCCTGGCAT -ACGGAATACTCGTGATCCCGAGAT -ACGGAATACTCGTGATCCTACCAC -ACGGAATACTCGTGATCCCAGAAC -ACGGAATACTCGTGATCCGTCTAC -ACGGAATACTCGTGATCCACGTAC -ACGGAATACTCGTGATCCAGTGAC -ACGGAATACTCGTGATCCCTGTAG -ACGGAATACTCGTGATCCCCTAAG -ACGGAATACTCGTGATCCGTTCAG -ACGGAATACTCGTGATCCGCATAG -ACGGAATACTCGTGATCCGACAAG -ACGGAATACTCGTGATCCAAGCAG -ACGGAATACTCGTGATCCCGTCAA -ACGGAATACTCGTGATCCGCTGAA -ACGGAATACTCGTGATCCAGTACG -ACGGAATACTCGTGATCCATCCGA -ACGGAATACTCGTGATCCATGGGA -ACGGAATACTCGTGATCCGTGCAA -ACGGAATACTCGTGATCCGAGGAA -ACGGAATACTCGTGATCCCAGGTA -ACGGAATACTCGTGATCCGACTCT -ACGGAATACTCGTGATCCAGTCCT -ACGGAATACTCGTGATCCTAAGCC -ACGGAATACTCGTGATCCATAGCC -ACGGAATACTCGTGATCCTAACCG -ACGGAATACTCGTGATCCATGCCA -ACGGAATACTCGCGATAGGGAAAC -ACGGAATACTCGCGATAGAACACC -ACGGAATACTCGCGATAGATCGAG -ACGGAATACTCGCGATAGCTCCTT -ACGGAATACTCGCGATAGCCTGTT -ACGGAATACTCGCGATAGCGGTTT -ACGGAATACTCGCGATAGGTGGTT -ACGGAATACTCGCGATAGGCCTTT -ACGGAATACTCGCGATAGGGTCTT -ACGGAATACTCGCGATAGACGCTT -ACGGAATACTCGCGATAGAGCGTT -ACGGAATACTCGCGATAGTTCGTC -ACGGAATACTCGCGATAGTCTCTC -ACGGAATACTCGCGATAGTGGATC -ACGGAATACTCGCGATAGCACTTC -ACGGAATACTCGCGATAGGTACTC -ACGGAATACTCGCGATAGGATGTC -ACGGAATACTCGCGATAGACAGTC -ACGGAATACTCGCGATAGTTGCTG -ACGGAATACTCGCGATAGTCCATG -ACGGAATACTCGCGATAGTGTGTG -ACGGAATACTCGCGATAGCTAGTG -ACGGAATACTCGCGATAGCATCTG -ACGGAATACTCGCGATAGGAGTTG -ACGGAATACTCGCGATAGAGACTG -ACGGAATACTCGCGATAGTCGGTA -ACGGAATACTCGCGATAGTGCCTA -ACGGAATACTCGCGATAGCCACTA -ACGGAATACTCGCGATAGGGAGTA -ACGGAATACTCGCGATAGTCGTCT -ACGGAATACTCGCGATAGTGCACT -ACGGAATACTCGCGATAGCTGACT -ACGGAATACTCGCGATAGCAACCT -ACGGAATACTCGCGATAGGCTACT -ACGGAATACTCGCGATAGGGATCT -ACGGAATACTCGCGATAGAAGGCT -ACGGAATACTCGCGATAGTCAACC -ACGGAATACTCGCGATAGTGTTCC -ACGGAATACTCGCGATAGATTCCC -ACGGAATACTCGCGATAGTTCTCG -ACGGAATACTCGCGATAGTAGACG -ACGGAATACTCGCGATAGGTAACG -ACGGAATACTCGCGATAGACTTCG -ACGGAATACTCGCGATAGTACGCA -ACGGAATACTCGCGATAGCTTGCA -ACGGAATACTCGCGATAGCGAACA -ACGGAATACTCGCGATAGCAGTCA -ACGGAATACTCGCGATAGGATCCA -ACGGAATACTCGCGATAGACGACA -ACGGAATACTCGCGATAGAGCTCA -ACGGAATACTCGCGATAGTCACGT -ACGGAATACTCGCGATAGCGTAGT -ACGGAATACTCGCGATAGGTCAGT -ACGGAATACTCGCGATAGGAAGGT -ACGGAATACTCGCGATAGAACCGT -ACGGAATACTCGCGATAGTTGTGC -ACGGAATACTCGCGATAGCTAAGC -ACGGAATACTCGCGATAGACTAGC -ACGGAATACTCGCGATAGAGATGC -ACGGAATACTCGCGATAGTGAAGG -ACGGAATACTCGCGATAGCAATGG -ACGGAATACTCGCGATAGATGAGG -ACGGAATACTCGCGATAGAATGGG -ACGGAATACTCGCGATAGTCCTGA -ACGGAATACTCGCGATAGTAGCGA -ACGGAATACTCGCGATAGCACAGA -ACGGAATACTCGCGATAGGCAAGA -ACGGAATACTCGCGATAGGGTTGA -ACGGAATACTCGCGATAGTCCGAT -ACGGAATACTCGCGATAGTGGCAT -ACGGAATACTCGCGATAGCGAGAT -ACGGAATACTCGCGATAGTACCAC -ACGGAATACTCGCGATAGCAGAAC -ACGGAATACTCGCGATAGGTCTAC -ACGGAATACTCGCGATAGACGTAC -ACGGAATACTCGCGATAGAGTGAC -ACGGAATACTCGCGATAGCTGTAG -ACGGAATACTCGCGATAGCCTAAG -ACGGAATACTCGCGATAGGTTCAG -ACGGAATACTCGCGATAGGCATAG -ACGGAATACTCGCGATAGGACAAG -ACGGAATACTCGCGATAGAAGCAG -ACGGAATACTCGCGATAGCGTCAA -ACGGAATACTCGCGATAGGCTGAA -ACGGAATACTCGCGATAGAGTACG -ACGGAATACTCGCGATAGATCCGA -ACGGAATACTCGCGATAGATGGGA -ACGGAATACTCGCGATAGGTGCAA -ACGGAATACTCGCGATAGGAGGAA -ACGGAATACTCGCGATAGCAGGTA -ACGGAATACTCGCGATAGGACTCT -ACGGAATACTCGCGATAGAGTCCT -ACGGAATACTCGCGATAGTAAGCC -ACGGAATACTCGCGATAGATAGCC -ACGGAATACTCGCGATAGTAACCG -ACGGAATACTCGCGATAGATGCCA -ACGGAATACTCGAGACACGGAAAC -ACGGAATACTCGAGACACAACACC -ACGGAATACTCGAGACACATCGAG -ACGGAATACTCGAGACACCTCCTT -ACGGAATACTCGAGACACCCTGTT -ACGGAATACTCGAGACACCGGTTT -ACGGAATACTCGAGACACGTGGTT -ACGGAATACTCGAGACACGCCTTT -ACGGAATACTCGAGACACGGTCTT -ACGGAATACTCGAGACACACGCTT -ACGGAATACTCGAGACACAGCGTT -ACGGAATACTCGAGACACTTCGTC -ACGGAATACTCGAGACACTCTCTC -ACGGAATACTCGAGACACTGGATC -ACGGAATACTCGAGACACCACTTC -ACGGAATACTCGAGACACGTACTC -ACGGAATACTCGAGACACGATGTC -ACGGAATACTCGAGACACACAGTC -ACGGAATACTCGAGACACTTGCTG -ACGGAATACTCGAGACACTCCATG -ACGGAATACTCGAGACACTGTGTG -ACGGAATACTCGAGACACCTAGTG -ACGGAATACTCGAGACACCATCTG -ACGGAATACTCGAGACACGAGTTG -ACGGAATACTCGAGACACAGACTG -ACGGAATACTCGAGACACTCGGTA -ACGGAATACTCGAGACACTGCCTA -ACGGAATACTCGAGACACCCACTA -ACGGAATACTCGAGACACGGAGTA -ACGGAATACTCGAGACACTCGTCT -ACGGAATACTCGAGACACTGCACT -ACGGAATACTCGAGACACCTGACT -ACGGAATACTCGAGACACCAACCT -ACGGAATACTCGAGACACGCTACT -ACGGAATACTCGAGACACGGATCT -ACGGAATACTCGAGACACAAGGCT -ACGGAATACTCGAGACACTCAACC -ACGGAATACTCGAGACACTGTTCC -ACGGAATACTCGAGACACATTCCC -ACGGAATACTCGAGACACTTCTCG -ACGGAATACTCGAGACACTAGACG -ACGGAATACTCGAGACACGTAACG -ACGGAATACTCGAGACACACTTCG -ACGGAATACTCGAGACACTACGCA -ACGGAATACTCGAGACACCTTGCA -ACGGAATACTCGAGACACCGAACA -ACGGAATACTCGAGACACCAGTCA -ACGGAATACTCGAGACACGATCCA -ACGGAATACTCGAGACACACGACA -ACGGAATACTCGAGACACAGCTCA -ACGGAATACTCGAGACACTCACGT -ACGGAATACTCGAGACACCGTAGT -ACGGAATACTCGAGACACGTCAGT -ACGGAATACTCGAGACACGAAGGT -ACGGAATACTCGAGACACAACCGT -ACGGAATACTCGAGACACTTGTGC -ACGGAATACTCGAGACACCTAAGC -ACGGAATACTCGAGACACACTAGC -ACGGAATACTCGAGACACAGATGC -ACGGAATACTCGAGACACTGAAGG -ACGGAATACTCGAGACACCAATGG -ACGGAATACTCGAGACACATGAGG -ACGGAATACTCGAGACACAATGGG -ACGGAATACTCGAGACACTCCTGA -ACGGAATACTCGAGACACTAGCGA -ACGGAATACTCGAGACACCACAGA -ACGGAATACTCGAGACACGCAAGA -ACGGAATACTCGAGACACGGTTGA -ACGGAATACTCGAGACACTCCGAT -ACGGAATACTCGAGACACTGGCAT -ACGGAATACTCGAGACACCGAGAT -ACGGAATACTCGAGACACTACCAC -ACGGAATACTCGAGACACCAGAAC -ACGGAATACTCGAGACACGTCTAC -ACGGAATACTCGAGACACACGTAC -ACGGAATACTCGAGACACAGTGAC -ACGGAATACTCGAGACACCTGTAG -ACGGAATACTCGAGACACCCTAAG -ACGGAATACTCGAGACACGTTCAG -ACGGAATACTCGAGACACGCATAG -ACGGAATACTCGAGACACGACAAG -ACGGAATACTCGAGACACAAGCAG -ACGGAATACTCGAGACACCGTCAA -ACGGAATACTCGAGACACGCTGAA -ACGGAATACTCGAGACACAGTACG -ACGGAATACTCGAGACACATCCGA -ACGGAATACTCGAGACACATGGGA -ACGGAATACTCGAGACACGTGCAA -ACGGAATACTCGAGACACGAGGAA -ACGGAATACTCGAGACACCAGGTA -ACGGAATACTCGAGACACGACTCT -ACGGAATACTCGAGACACAGTCCT -ACGGAATACTCGAGACACTAAGCC -ACGGAATACTCGAGACACATAGCC -ACGGAATACTCGAGACACTAACCG -ACGGAATACTCGAGACACATGCCA -ACGGAATACTCGAGAGCAGGAAAC -ACGGAATACTCGAGAGCAAACACC -ACGGAATACTCGAGAGCAATCGAG -ACGGAATACTCGAGAGCACTCCTT -ACGGAATACTCGAGAGCACCTGTT -ACGGAATACTCGAGAGCACGGTTT -ACGGAATACTCGAGAGCAGTGGTT -ACGGAATACTCGAGAGCAGCCTTT -ACGGAATACTCGAGAGCAGGTCTT -ACGGAATACTCGAGAGCAACGCTT -ACGGAATACTCGAGAGCAAGCGTT -ACGGAATACTCGAGAGCATTCGTC -ACGGAATACTCGAGAGCATCTCTC -ACGGAATACTCGAGAGCATGGATC -ACGGAATACTCGAGAGCACACTTC -ACGGAATACTCGAGAGCAGTACTC -ACGGAATACTCGAGAGCAGATGTC -ACGGAATACTCGAGAGCAACAGTC -ACGGAATACTCGAGAGCATTGCTG -ACGGAATACTCGAGAGCATCCATG -ACGGAATACTCGAGAGCATGTGTG -ACGGAATACTCGAGAGCACTAGTG -ACGGAATACTCGAGAGCACATCTG -ACGGAATACTCGAGAGCAGAGTTG -ACGGAATACTCGAGAGCAAGACTG -ACGGAATACTCGAGAGCATCGGTA -ACGGAATACTCGAGAGCATGCCTA -ACGGAATACTCGAGAGCACCACTA -ACGGAATACTCGAGAGCAGGAGTA -ACGGAATACTCGAGAGCATCGTCT -ACGGAATACTCGAGAGCATGCACT -ACGGAATACTCGAGAGCACTGACT -ACGGAATACTCGAGAGCACAACCT -ACGGAATACTCGAGAGCAGCTACT -ACGGAATACTCGAGAGCAGGATCT -ACGGAATACTCGAGAGCAAAGGCT -ACGGAATACTCGAGAGCATCAACC -ACGGAATACTCGAGAGCATGTTCC -ACGGAATACTCGAGAGCAATTCCC -ACGGAATACTCGAGAGCATTCTCG -ACGGAATACTCGAGAGCATAGACG -ACGGAATACTCGAGAGCAGTAACG -ACGGAATACTCGAGAGCAACTTCG -ACGGAATACTCGAGAGCATACGCA -ACGGAATACTCGAGAGCACTTGCA -ACGGAATACTCGAGAGCACGAACA -ACGGAATACTCGAGAGCACAGTCA -ACGGAATACTCGAGAGCAGATCCA -ACGGAATACTCGAGAGCAACGACA -ACGGAATACTCGAGAGCAAGCTCA -ACGGAATACTCGAGAGCATCACGT -ACGGAATACTCGAGAGCACGTAGT -ACGGAATACTCGAGAGCAGTCAGT -ACGGAATACTCGAGAGCAGAAGGT -ACGGAATACTCGAGAGCAAACCGT -ACGGAATACTCGAGAGCATTGTGC -ACGGAATACTCGAGAGCACTAAGC -ACGGAATACTCGAGAGCAACTAGC -ACGGAATACTCGAGAGCAAGATGC -ACGGAATACTCGAGAGCATGAAGG -ACGGAATACTCGAGAGCACAATGG -ACGGAATACTCGAGAGCAATGAGG -ACGGAATACTCGAGAGCAAATGGG -ACGGAATACTCGAGAGCATCCTGA -ACGGAATACTCGAGAGCATAGCGA -ACGGAATACTCGAGAGCACACAGA -ACGGAATACTCGAGAGCAGCAAGA -ACGGAATACTCGAGAGCAGGTTGA -ACGGAATACTCGAGAGCATCCGAT -ACGGAATACTCGAGAGCATGGCAT -ACGGAATACTCGAGAGCACGAGAT -ACGGAATACTCGAGAGCATACCAC -ACGGAATACTCGAGAGCACAGAAC -ACGGAATACTCGAGAGCAGTCTAC -ACGGAATACTCGAGAGCAACGTAC -ACGGAATACTCGAGAGCAAGTGAC -ACGGAATACTCGAGAGCACTGTAG -ACGGAATACTCGAGAGCACCTAAG -ACGGAATACTCGAGAGCAGTTCAG -ACGGAATACTCGAGAGCAGCATAG -ACGGAATACTCGAGAGCAGACAAG -ACGGAATACTCGAGAGCAAAGCAG -ACGGAATACTCGAGAGCACGTCAA -ACGGAATACTCGAGAGCAGCTGAA -ACGGAATACTCGAGAGCAAGTACG -ACGGAATACTCGAGAGCAATCCGA -ACGGAATACTCGAGAGCAATGGGA -ACGGAATACTCGAGAGCAGTGCAA -ACGGAATACTCGAGAGCAGAGGAA -ACGGAATACTCGAGAGCACAGGTA -ACGGAATACTCGAGAGCAGACTCT -ACGGAATACTCGAGAGCAAGTCCT -ACGGAATACTCGAGAGCATAAGCC -ACGGAATACTCGAGAGCAATAGCC -ACGGAATACTCGAGAGCATAACCG -ACGGAATACTCGAGAGCAATGCCA -ACGGAATACTCGTGAGGTGGAAAC -ACGGAATACTCGTGAGGTAACACC -ACGGAATACTCGTGAGGTATCGAG -ACGGAATACTCGTGAGGTCTCCTT -ACGGAATACTCGTGAGGTCCTGTT -ACGGAATACTCGTGAGGTCGGTTT -ACGGAATACTCGTGAGGTGTGGTT -ACGGAATACTCGTGAGGTGCCTTT -ACGGAATACTCGTGAGGTGGTCTT -ACGGAATACTCGTGAGGTACGCTT -ACGGAATACTCGTGAGGTAGCGTT -ACGGAATACTCGTGAGGTTTCGTC -ACGGAATACTCGTGAGGTTCTCTC -ACGGAATACTCGTGAGGTTGGATC -ACGGAATACTCGTGAGGTCACTTC -ACGGAATACTCGTGAGGTGTACTC -ACGGAATACTCGTGAGGTGATGTC -ACGGAATACTCGTGAGGTACAGTC -ACGGAATACTCGTGAGGTTTGCTG -ACGGAATACTCGTGAGGTTCCATG -ACGGAATACTCGTGAGGTTGTGTG -ACGGAATACTCGTGAGGTCTAGTG -ACGGAATACTCGTGAGGTCATCTG -ACGGAATACTCGTGAGGTGAGTTG -ACGGAATACTCGTGAGGTAGACTG -ACGGAATACTCGTGAGGTTCGGTA -ACGGAATACTCGTGAGGTTGCCTA -ACGGAATACTCGTGAGGTCCACTA -ACGGAATACTCGTGAGGTGGAGTA -ACGGAATACTCGTGAGGTTCGTCT -ACGGAATACTCGTGAGGTTGCACT -ACGGAATACTCGTGAGGTCTGACT -ACGGAATACTCGTGAGGTCAACCT -ACGGAATACTCGTGAGGTGCTACT -ACGGAATACTCGTGAGGTGGATCT -ACGGAATACTCGTGAGGTAAGGCT -ACGGAATACTCGTGAGGTTCAACC -ACGGAATACTCGTGAGGTTGTTCC -ACGGAATACTCGTGAGGTATTCCC -ACGGAATACTCGTGAGGTTTCTCG -ACGGAATACTCGTGAGGTTAGACG -ACGGAATACTCGTGAGGTGTAACG -ACGGAATACTCGTGAGGTACTTCG -ACGGAATACTCGTGAGGTTACGCA -ACGGAATACTCGTGAGGTCTTGCA -ACGGAATACTCGTGAGGTCGAACA -ACGGAATACTCGTGAGGTCAGTCA -ACGGAATACTCGTGAGGTGATCCA -ACGGAATACTCGTGAGGTACGACA -ACGGAATACTCGTGAGGTAGCTCA -ACGGAATACTCGTGAGGTTCACGT -ACGGAATACTCGTGAGGTCGTAGT -ACGGAATACTCGTGAGGTGTCAGT -ACGGAATACTCGTGAGGTGAAGGT -ACGGAATACTCGTGAGGTAACCGT -ACGGAATACTCGTGAGGTTTGTGC -ACGGAATACTCGTGAGGTCTAAGC -ACGGAATACTCGTGAGGTACTAGC -ACGGAATACTCGTGAGGTAGATGC -ACGGAATACTCGTGAGGTTGAAGG -ACGGAATACTCGTGAGGTCAATGG -ACGGAATACTCGTGAGGTATGAGG -ACGGAATACTCGTGAGGTAATGGG -ACGGAATACTCGTGAGGTTCCTGA -ACGGAATACTCGTGAGGTTAGCGA -ACGGAATACTCGTGAGGTCACAGA -ACGGAATACTCGTGAGGTGCAAGA -ACGGAATACTCGTGAGGTGGTTGA -ACGGAATACTCGTGAGGTTCCGAT -ACGGAATACTCGTGAGGTTGGCAT -ACGGAATACTCGTGAGGTCGAGAT -ACGGAATACTCGTGAGGTTACCAC -ACGGAATACTCGTGAGGTCAGAAC -ACGGAATACTCGTGAGGTGTCTAC -ACGGAATACTCGTGAGGTACGTAC -ACGGAATACTCGTGAGGTAGTGAC -ACGGAATACTCGTGAGGTCTGTAG -ACGGAATACTCGTGAGGTCCTAAG -ACGGAATACTCGTGAGGTGTTCAG -ACGGAATACTCGTGAGGTGCATAG -ACGGAATACTCGTGAGGTGACAAG -ACGGAATACTCGTGAGGTAAGCAG -ACGGAATACTCGTGAGGTCGTCAA -ACGGAATACTCGTGAGGTGCTGAA -ACGGAATACTCGTGAGGTAGTACG -ACGGAATACTCGTGAGGTATCCGA -ACGGAATACTCGTGAGGTATGGGA -ACGGAATACTCGTGAGGTGTGCAA -ACGGAATACTCGTGAGGTGAGGAA -ACGGAATACTCGTGAGGTCAGGTA -ACGGAATACTCGTGAGGTGACTCT -ACGGAATACTCGTGAGGTAGTCCT -ACGGAATACTCGTGAGGTTAAGCC -ACGGAATACTCGTGAGGTATAGCC -ACGGAATACTCGTGAGGTTAACCG -ACGGAATACTCGTGAGGTATGCCA -ACGGAATACTCGGATTCCGGAAAC -ACGGAATACTCGGATTCCAACACC -ACGGAATACTCGGATTCCATCGAG -ACGGAATACTCGGATTCCCTCCTT -ACGGAATACTCGGATTCCCCTGTT -ACGGAATACTCGGATTCCCGGTTT -ACGGAATACTCGGATTCCGTGGTT -ACGGAATACTCGGATTCCGCCTTT -ACGGAATACTCGGATTCCGGTCTT -ACGGAATACTCGGATTCCACGCTT -ACGGAATACTCGGATTCCAGCGTT -ACGGAATACTCGGATTCCTTCGTC -ACGGAATACTCGGATTCCTCTCTC -ACGGAATACTCGGATTCCTGGATC -ACGGAATACTCGGATTCCCACTTC -ACGGAATACTCGGATTCCGTACTC -ACGGAATACTCGGATTCCGATGTC -ACGGAATACTCGGATTCCACAGTC -ACGGAATACTCGGATTCCTTGCTG -ACGGAATACTCGGATTCCTCCATG -ACGGAATACTCGGATTCCTGTGTG -ACGGAATACTCGGATTCCCTAGTG -ACGGAATACTCGGATTCCCATCTG -ACGGAATACTCGGATTCCGAGTTG -ACGGAATACTCGGATTCCAGACTG -ACGGAATACTCGGATTCCTCGGTA -ACGGAATACTCGGATTCCTGCCTA -ACGGAATACTCGGATTCCCCACTA -ACGGAATACTCGGATTCCGGAGTA -ACGGAATACTCGGATTCCTCGTCT -ACGGAATACTCGGATTCCTGCACT -ACGGAATACTCGGATTCCCTGACT -ACGGAATACTCGGATTCCCAACCT -ACGGAATACTCGGATTCCGCTACT -ACGGAATACTCGGATTCCGGATCT -ACGGAATACTCGGATTCCAAGGCT -ACGGAATACTCGGATTCCTCAACC -ACGGAATACTCGGATTCCTGTTCC -ACGGAATACTCGGATTCCATTCCC -ACGGAATACTCGGATTCCTTCTCG -ACGGAATACTCGGATTCCTAGACG -ACGGAATACTCGGATTCCGTAACG -ACGGAATACTCGGATTCCACTTCG -ACGGAATACTCGGATTCCTACGCA -ACGGAATACTCGGATTCCCTTGCA -ACGGAATACTCGGATTCCCGAACA -ACGGAATACTCGGATTCCCAGTCA -ACGGAATACTCGGATTCCGATCCA -ACGGAATACTCGGATTCCACGACA -ACGGAATACTCGGATTCCAGCTCA -ACGGAATACTCGGATTCCTCACGT -ACGGAATACTCGGATTCCCGTAGT -ACGGAATACTCGGATTCCGTCAGT -ACGGAATACTCGGATTCCGAAGGT -ACGGAATACTCGGATTCCAACCGT -ACGGAATACTCGGATTCCTTGTGC -ACGGAATACTCGGATTCCCTAAGC -ACGGAATACTCGGATTCCACTAGC -ACGGAATACTCGGATTCCAGATGC -ACGGAATACTCGGATTCCTGAAGG -ACGGAATACTCGGATTCCCAATGG -ACGGAATACTCGGATTCCATGAGG -ACGGAATACTCGGATTCCAATGGG -ACGGAATACTCGGATTCCTCCTGA -ACGGAATACTCGGATTCCTAGCGA -ACGGAATACTCGGATTCCCACAGA -ACGGAATACTCGGATTCCGCAAGA -ACGGAATACTCGGATTCCGGTTGA -ACGGAATACTCGGATTCCTCCGAT -ACGGAATACTCGGATTCCTGGCAT -ACGGAATACTCGGATTCCCGAGAT -ACGGAATACTCGGATTCCTACCAC -ACGGAATACTCGGATTCCCAGAAC -ACGGAATACTCGGATTCCGTCTAC -ACGGAATACTCGGATTCCACGTAC -ACGGAATACTCGGATTCCAGTGAC -ACGGAATACTCGGATTCCCTGTAG -ACGGAATACTCGGATTCCCCTAAG -ACGGAATACTCGGATTCCGTTCAG -ACGGAATACTCGGATTCCGCATAG -ACGGAATACTCGGATTCCGACAAG -ACGGAATACTCGGATTCCAAGCAG -ACGGAATACTCGGATTCCCGTCAA -ACGGAATACTCGGATTCCGCTGAA -ACGGAATACTCGGATTCCAGTACG -ACGGAATACTCGGATTCCATCCGA -ACGGAATACTCGGATTCCATGGGA -ACGGAATACTCGGATTCCGTGCAA -ACGGAATACTCGGATTCCGAGGAA -ACGGAATACTCGGATTCCCAGGTA -ACGGAATACTCGGATTCCGACTCT -ACGGAATACTCGGATTCCAGTCCT -ACGGAATACTCGGATTCCTAAGCC -ACGGAATACTCGGATTCCATAGCC -ACGGAATACTCGGATTCCTAACCG -ACGGAATACTCGGATTCCATGCCA -ACGGAATACTCGCATTGGGGAAAC -ACGGAATACTCGCATTGGAACACC -ACGGAATACTCGCATTGGATCGAG -ACGGAATACTCGCATTGGCTCCTT -ACGGAATACTCGCATTGGCCTGTT -ACGGAATACTCGCATTGGCGGTTT -ACGGAATACTCGCATTGGGTGGTT -ACGGAATACTCGCATTGGGCCTTT -ACGGAATACTCGCATTGGGGTCTT -ACGGAATACTCGCATTGGACGCTT -ACGGAATACTCGCATTGGAGCGTT -ACGGAATACTCGCATTGGTTCGTC -ACGGAATACTCGCATTGGTCTCTC -ACGGAATACTCGCATTGGTGGATC -ACGGAATACTCGCATTGGCACTTC -ACGGAATACTCGCATTGGGTACTC -ACGGAATACTCGCATTGGGATGTC -ACGGAATACTCGCATTGGACAGTC -ACGGAATACTCGCATTGGTTGCTG -ACGGAATACTCGCATTGGTCCATG -ACGGAATACTCGCATTGGTGTGTG -ACGGAATACTCGCATTGGCTAGTG -ACGGAATACTCGCATTGGCATCTG -ACGGAATACTCGCATTGGGAGTTG -ACGGAATACTCGCATTGGAGACTG -ACGGAATACTCGCATTGGTCGGTA -ACGGAATACTCGCATTGGTGCCTA -ACGGAATACTCGCATTGGCCACTA -ACGGAATACTCGCATTGGGGAGTA -ACGGAATACTCGCATTGGTCGTCT -ACGGAATACTCGCATTGGTGCACT -ACGGAATACTCGCATTGGCTGACT -ACGGAATACTCGCATTGGCAACCT -ACGGAATACTCGCATTGGGCTACT -ACGGAATACTCGCATTGGGGATCT -ACGGAATACTCGCATTGGAAGGCT -ACGGAATACTCGCATTGGTCAACC -ACGGAATACTCGCATTGGTGTTCC -ACGGAATACTCGCATTGGATTCCC -ACGGAATACTCGCATTGGTTCTCG -ACGGAATACTCGCATTGGTAGACG -ACGGAATACTCGCATTGGGTAACG -ACGGAATACTCGCATTGGACTTCG -ACGGAATACTCGCATTGGTACGCA -ACGGAATACTCGCATTGGCTTGCA -ACGGAATACTCGCATTGGCGAACA -ACGGAATACTCGCATTGGCAGTCA -ACGGAATACTCGCATTGGGATCCA -ACGGAATACTCGCATTGGACGACA -ACGGAATACTCGCATTGGAGCTCA -ACGGAATACTCGCATTGGTCACGT -ACGGAATACTCGCATTGGCGTAGT -ACGGAATACTCGCATTGGGTCAGT -ACGGAATACTCGCATTGGGAAGGT -ACGGAATACTCGCATTGGAACCGT -ACGGAATACTCGCATTGGTTGTGC -ACGGAATACTCGCATTGGCTAAGC -ACGGAATACTCGCATTGGACTAGC -ACGGAATACTCGCATTGGAGATGC -ACGGAATACTCGCATTGGTGAAGG -ACGGAATACTCGCATTGGCAATGG -ACGGAATACTCGCATTGGATGAGG -ACGGAATACTCGCATTGGAATGGG -ACGGAATACTCGCATTGGTCCTGA -ACGGAATACTCGCATTGGTAGCGA -ACGGAATACTCGCATTGGCACAGA -ACGGAATACTCGCATTGGGCAAGA -ACGGAATACTCGCATTGGGGTTGA -ACGGAATACTCGCATTGGTCCGAT -ACGGAATACTCGCATTGGTGGCAT -ACGGAATACTCGCATTGGCGAGAT -ACGGAATACTCGCATTGGTACCAC -ACGGAATACTCGCATTGGCAGAAC -ACGGAATACTCGCATTGGGTCTAC -ACGGAATACTCGCATTGGACGTAC -ACGGAATACTCGCATTGGAGTGAC -ACGGAATACTCGCATTGGCTGTAG -ACGGAATACTCGCATTGGCCTAAG -ACGGAATACTCGCATTGGGTTCAG -ACGGAATACTCGCATTGGGCATAG -ACGGAATACTCGCATTGGGACAAG -ACGGAATACTCGCATTGGAAGCAG -ACGGAATACTCGCATTGGCGTCAA -ACGGAATACTCGCATTGGGCTGAA -ACGGAATACTCGCATTGGAGTACG -ACGGAATACTCGCATTGGATCCGA -ACGGAATACTCGCATTGGATGGGA -ACGGAATACTCGCATTGGGTGCAA -ACGGAATACTCGCATTGGGAGGAA -ACGGAATACTCGCATTGGCAGGTA -ACGGAATACTCGCATTGGGACTCT -ACGGAATACTCGCATTGGAGTCCT -ACGGAATACTCGCATTGGTAAGCC -ACGGAATACTCGCATTGGATAGCC -ACGGAATACTCGCATTGGTAACCG -ACGGAATACTCGCATTGGATGCCA -ACGGAATACTCGGATCGAGGAAAC -ACGGAATACTCGGATCGAAACACC -ACGGAATACTCGGATCGAATCGAG -ACGGAATACTCGGATCGACTCCTT -ACGGAATACTCGGATCGACCTGTT -ACGGAATACTCGGATCGACGGTTT -ACGGAATACTCGGATCGAGTGGTT -ACGGAATACTCGGATCGAGCCTTT -ACGGAATACTCGGATCGAGGTCTT -ACGGAATACTCGGATCGAACGCTT -ACGGAATACTCGGATCGAAGCGTT -ACGGAATACTCGGATCGATTCGTC -ACGGAATACTCGGATCGATCTCTC -ACGGAATACTCGGATCGATGGATC -ACGGAATACTCGGATCGACACTTC -ACGGAATACTCGGATCGAGTACTC -ACGGAATACTCGGATCGAGATGTC -ACGGAATACTCGGATCGAACAGTC -ACGGAATACTCGGATCGATTGCTG -ACGGAATACTCGGATCGATCCATG -ACGGAATACTCGGATCGATGTGTG -ACGGAATACTCGGATCGACTAGTG -ACGGAATACTCGGATCGACATCTG -ACGGAATACTCGGATCGAGAGTTG -ACGGAATACTCGGATCGAAGACTG -ACGGAATACTCGGATCGATCGGTA -ACGGAATACTCGGATCGATGCCTA -ACGGAATACTCGGATCGACCACTA -ACGGAATACTCGGATCGAGGAGTA -ACGGAATACTCGGATCGATCGTCT -ACGGAATACTCGGATCGATGCACT -ACGGAATACTCGGATCGACTGACT -ACGGAATACTCGGATCGACAACCT -ACGGAATACTCGGATCGAGCTACT -ACGGAATACTCGGATCGAGGATCT -ACGGAATACTCGGATCGAAAGGCT -ACGGAATACTCGGATCGATCAACC -ACGGAATACTCGGATCGATGTTCC -ACGGAATACTCGGATCGAATTCCC -ACGGAATACTCGGATCGATTCTCG -ACGGAATACTCGGATCGATAGACG -ACGGAATACTCGGATCGAGTAACG -ACGGAATACTCGGATCGAACTTCG -ACGGAATACTCGGATCGATACGCA -ACGGAATACTCGGATCGACTTGCA -ACGGAATACTCGGATCGACGAACA -ACGGAATACTCGGATCGACAGTCA -ACGGAATACTCGGATCGAGATCCA -ACGGAATACTCGGATCGAACGACA -ACGGAATACTCGGATCGAAGCTCA -ACGGAATACTCGGATCGATCACGT -ACGGAATACTCGGATCGACGTAGT -ACGGAATACTCGGATCGAGTCAGT -ACGGAATACTCGGATCGAGAAGGT -ACGGAATACTCGGATCGAAACCGT -ACGGAATACTCGGATCGATTGTGC -ACGGAATACTCGGATCGACTAAGC -ACGGAATACTCGGATCGAACTAGC -ACGGAATACTCGGATCGAAGATGC -ACGGAATACTCGGATCGATGAAGG -ACGGAATACTCGGATCGACAATGG -ACGGAATACTCGGATCGAATGAGG -ACGGAATACTCGGATCGAAATGGG -ACGGAATACTCGGATCGATCCTGA -ACGGAATACTCGGATCGATAGCGA -ACGGAATACTCGGATCGACACAGA -ACGGAATACTCGGATCGAGCAAGA -ACGGAATACTCGGATCGAGGTTGA -ACGGAATACTCGGATCGATCCGAT -ACGGAATACTCGGATCGATGGCAT -ACGGAATACTCGGATCGACGAGAT -ACGGAATACTCGGATCGATACCAC -ACGGAATACTCGGATCGACAGAAC -ACGGAATACTCGGATCGAGTCTAC -ACGGAATACTCGGATCGAACGTAC -ACGGAATACTCGGATCGAAGTGAC -ACGGAATACTCGGATCGACTGTAG -ACGGAATACTCGGATCGACCTAAG -ACGGAATACTCGGATCGAGTTCAG -ACGGAATACTCGGATCGAGCATAG -ACGGAATACTCGGATCGAGACAAG -ACGGAATACTCGGATCGAAAGCAG -ACGGAATACTCGGATCGACGTCAA -ACGGAATACTCGGATCGAGCTGAA -ACGGAATACTCGGATCGAAGTACG -ACGGAATACTCGGATCGAATCCGA -ACGGAATACTCGGATCGAATGGGA -ACGGAATACTCGGATCGAGTGCAA -ACGGAATACTCGGATCGAGAGGAA -ACGGAATACTCGGATCGACAGGTA -ACGGAATACTCGGATCGAGACTCT -ACGGAATACTCGGATCGAAGTCCT -ACGGAATACTCGGATCGATAAGCC -ACGGAATACTCGGATCGAATAGCC -ACGGAATACTCGGATCGATAACCG -ACGGAATACTCGGATCGAATGCCA -ACGGAATACTCGCACTACGGAAAC -ACGGAATACTCGCACTACAACACC -ACGGAATACTCGCACTACATCGAG -ACGGAATACTCGCACTACCTCCTT -ACGGAATACTCGCACTACCCTGTT -ACGGAATACTCGCACTACCGGTTT -ACGGAATACTCGCACTACGTGGTT -ACGGAATACTCGCACTACGCCTTT -ACGGAATACTCGCACTACGGTCTT -ACGGAATACTCGCACTACACGCTT -ACGGAATACTCGCACTACAGCGTT -ACGGAATACTCGCACTACTTCGTC -ACGGAATACTCGCACTACTCTCTC -ACGGAATACTCGCACTACTGGATC -ACGGAATACTCGCACTACCACTTC -ACGGAATACTCGCACTACGTACTC -ACGGAATACTCGCACTACGATGTC -ACGGAATACTCGCACTACACAGTC -ACGGAATACTCGCACTACTTGCTG -ACGGAATACTCGCACTACTCCATG -ACGGAATACTCGCACTACTGTGTG -ACGGAATACTCGCACTACCTAGTG -ACGGAATACTCGCACTACCATCTG -ACGGAATACTCGCACTACGAGTTG -ACGGAATACTCGCACTACAGACTG -ACGGAATACTCGCACTACTCGGTA -ACGGAATACTCGCACTACTGCCTA -ACGGAATACTCGCACTACCCACTA -ACGGAATACTCGCACTACGGAGTA -ACGGAATACTCGCACTACTCGTCT -ACGGAATACTCGCACTACTGCACT -ACGGAATACTCGCACTACCTGACT -ACGGAATACTCGCACTACCAACCT -ACGGAATACTCGCACTACGCTACT -ACGGAATACTCGCACTACGGATCT -ACGGAATACTCGCACTACAAGGCT -ACGGAATACTCGCACTACTCAACC -ACGGAATACTCGCACTACTGTTCC -ACGGAATACTCGCACTACATTCCC -ACGGAATACTCGCACTACTTCTCG -ACGGAATACTCGCACTACTAGACG -ACGGAATACTCGCACTACGTAACG -ACGGAATACTCGCACTACACTTCG -ACGGAATACTCGCACTACTACGCA -ACGGAATACTCGCACTACCTTGCA -ACGGAATACTCGCACTACCGAACA -ACGGAATACTCGCACTACCAGTCA -ACGGAATACTCGCACTACGATCCA -ACGGAATACTCGCACTACACGACA -ACGGAATACTCGCACTACAGCTCA -ACGGAATACTCGCACTACTCACGT -ACGGAATACTCGCACTACCGTAGT -ACGGAATACTCGCACTACGTCAGT -ACGGAATACTCGCACTACGAAGGT -ACGGAATACTCGCACTACAACCGT -ACGGAATACTCGCACTACTTGTGC -ACGGAATACTCGCACTACCTAAGC -ACGGAATACTCGCACTACACTAGC -ACGGAATACTCGCACTACAGATGC -ACGGAATACTCGCACTACTGAAGG -ACGGAATACTCGCACTACCAATGG -ACGGAATACTCGCACTACATGAGG -ACGGAATACTCGCACTACAATGGG -ACGGAATACTCGCACTACTCCTGA -ACGGAATACTCGCACTACTAGCGA -ACGGAATACTCGCACTACCACAGA -ACGGAATACTCGCACTACGCAAGA -ACGGAATACTCGCACTACGGTTGA -ACGGAATACTCGCACTACTCCGAT -ACGGAATACTCGCACTACTGGCAT -ACGGAATACTCGCACTACCGAGAT -ACGGAATACTCGCACTACTACCAC -ACGGAATACTCGCACTACCAGAAC -ACGGAATACTCGCACTACGTCTAC -ACGGAATACTCGCACTACACGTAC -ACGGAATACTCGCACTACAGTGAC -ACGGAATACTCGCACTACCTGTAG -ACGGAATACTCGCACTACCCTAAG -ACGGAATACTCGCACTACGTTCAG -ACGGAATACTCGCACTACGCATAG -ACGGAATACTCGCACTACGACAAG -ACGGAATACTCGCACTACAAGCAG -ACGGAATACTCGCACTACCGTCAA -ACGGAATACTCGCACTACGCTGAA -ACGGAATACTCGCACTACAGTACG -ACGGAATACTCGCACTACATCCGA -ACGGAATACTCGCACTACATGGGA -ACGGAATACTCGCACTACGTGCAA -ACGGAATACTCGCACTACGAGGAA -ACGGAATACTCGCACTACCAGGTA -ACGGAATACTCGCACTACGACTCT -ACGGAATACTCGCACTACAGTCCT -ACGGAATACTCGCACTACTAAGCC -ACGGAATACTCGCACTACATAGCC -ACGGAATACTCGCACTACTAACCG -ACGGAATACTCGCACTACATGCCA -ACGGAATACTCGAACCAGGGAAAC -ACGGAATACTCGAACCAGAACACC -ACGGAATACTCGAACCAGATCGAG -ACGGAATACTCGAACCAGCTCCTT -ACGGAATACTCGAACCAGCCTGTT -ACGGAATACTCGAACCAGCGGTTT -ACGGAATACTCGAACCAGGTGGTT -ACGGAATACTCGAACCAGGCCTTT -ACGGAATACTCGAACCAGGGTCTT -ACGGAATACTCGAACCAGACGCTT -ACGGAATACTCGAACCAGAGCGTT -ACGGAATACTCGAACCAGTTCGTC -ACGGAATACTCGAACCAGTCTCTC -ACGGAATACTCGAACCAGTGGATC -ACGGAATACTCGAACCAGCACTTC -ACGGAATACTCGAACCAGGTACTC -ACGGAATACTCGAACCAGGATGTC -ACGGAATACTCGAACCAGACAGTC -ACGGAATACTCGAACCAGTTGCTG -ACGGAATACTCGAACCAGTCCATG -ACGGAATACTCGAACCAGTGTGTG -ACGGAATACTCGAACCAGCTAGTG -ACGGAATACTCGAACCAGCATCTG -ACGGAATACTCGAACCAGGAGTTG -ACGGAATACTCGAACCAGAGACTG -ACGGAATACTCGAACCAGTCGGTA -ACGGAATACTCGAACCAGTGCCTA -ACGGAATACTCGAACCAGCCACTA -ACGGAATACTCGAACCAGGGAGTA -ACGGAATACTCGAACCAGTCGTCT -ACGGAATACTCGAACCAGTGCACT -ACGGAATACTCGAACCAGCTGACT -ACGGAATACTCGAACCAGCAACCT -ACGGAATACTCGAACCAGGCTACT -ACGGAATACTCGAACCAGGGATCT -ACGGAATACTCGAACCAGAAGGCT -ACGGAATACTCGAACCAGTCAACC -ACGGAATACTCGAACCAGTGTTCC -ACGGAATACTCGAACCAGATTCCC -ACGGAATACTCGAACCAGTTCTCG -ACGGAATACTCGAACCAGTAGACG -ACGGAATACTCGAACCAGGTAACG -ACGGAATACTCGAACCAGACTTCG -ACGGAATACTCGAACCAGTACGCA -ACGGAATACTCGAACCAGCTTGCA -ACGGAATACTCGAACCAGCGAACA -ACGGAATACTCGAACCAGCAGTCA -ACGGAATACTCGAACCAGGATCCA -ACGGAATACTCGAACCAGACGACA -ACGGAATACTCGAACCAGAGCTCA -ACGGAATACTCGAACCAGTCACGT -ACGGAATACTCGAACCAGCGTAGT -ACGGAATACTCGAACCAGGTCAGT -ACGGAATACTCGAACCAGGAAGGT -ACGGAATACTCGAACCAGAACCGT -ACGGAATACTCGAACCAGTTGTGC -ACGGAATACTCGAACCAGCTAAGC -ACGGAATACTCGAACCAGACTAGC -ACGGAATACTCGAACCAGAGATGC -ACGGAATACTCGAACCAGTGAAGG -ACGGAATACTCGAACCAGCAATGG -ACGGAATACTCGAACCAGATGAGG -ACGGAATACTCGAACCAGAATGGG -ACGGAATACTCGAACCAGTCCTGA -ACGGAATACTCGAACCAGTAGCGA -ACGGAATACTCGAACCAGCACAGA -ACGGAATACTCGAACCAGGCAAGA -ACGGAATACTCGAACCAGGGTTGA -ACGGAATACTCGAACCAGTCCGAT -ACGGAATACTCGAACCAGTGGCAT -ACGGAATACTCGAACCAGCGAGAT -ACGGAATACTCGAACCAGTACCAC -ACGGAATACTCGAACCAGCAGAAC -ACGGAATACTCGAACCAGGTCTAC -ACGGAATACTCGAACCAGACGTAC -ACGGAATACTCGAACCAGAGTGAC -ACGGAATACTCGAACCAGCTGTAG -ACGGAATACTCGAACCAGCCTAAG -ACGGAATACTCGAACCAGGTTCAG -ACGGAATACTCGAACCAGGCATAG -ACGGAATACTCGAACCAGGACAAG -ACGGAATACTCGAACCAGAAGCAG -ACGGAATACTCGAACCAGCGTCAA -ACGGAATACTCGAACCAGGCTGAA -ACGGAATACTCGAACCAGAGTACG -ACGGAATACTCGAACCAGATCCGA -ACGGAATACTCGAACCAGATGGGA -ACGGAATACTCGAACCAGGTGCAA -ACGGAATACTCGAACCAGGAGGAA -ACGGAATACTCGAACCAGCAGGTA -ACGGAATACTCGAACCAGGACTCT -ACGGAATACTCGAACCAGAGTCCT -ACGGAATACTCGAACCAGTAAGCC -ACGGAATACTCGAACCAGATAGCC -ACGGAATACTCGAACCAGTAACCG -ACGGAATACTCGAACCAGATGCCA -ACGGAATACTCGTACGTCGGAAAC -ACGGAATACTCGTACGTCAACACC -ACGGAATACTCGTACGTCATCGAG -ACGGAATACTCGTACGTCCTCCTT -ACGGAATACTCGTACGTCCCTGTT -ACGGAATACTCGTACGTCCGGTTT -ACGGAATACTCGTACGTCGTGGTT -ACGGAATACTCGTACGTCGCCTTT -ACGGAATACTCGTACGTCGGTCTT -ACGGAATACTCGTACGTCACGCTT -ACGGAATACTCGTACGTCAGCGTT -ACGGAATACTCGTACGTCTTCGTC -ACGGAATACTCGTACGTCTCTCTC -ACGGAATACTCGTACGTCTGGATC -ACGGAATACTCGTACGTCCACTTC -ACGGAATACTCGTACGTCGTACTC -ACGGAATACTCGTACGTCGATGTC -ACGGAATACTCGTACGTCACAGTC -ACGGAATACTCGTACGTCTTGCTG -ACGGAATACTCGTACGTCTCCATG -ACGGAATACTCGTACGTCTGTGTG -ACGGAATACTCGTACGTCCTAGTG -ACGGAATACTCGTACGTCCATCTG -ACGGAATACTCGTACGTCGAGTTG -ACGGAATACTCGTACGTCAGACTG -ACGGAATACTCGTACGTCTCGGTA -ACGGAATACTCGTACGTCTGCCTA -ACGGAATACTCGTACGTCCCACTA -ACGGAATACTCGTACGTCGGAGTA -ACGGAATACTCGTACGTCTCGTCT -ACGGAATACTCGTACGTCTGCACT -ACGGAATACTCGTACGTCCTGACT -ACGGAATACTCGTACGTCCAACCT -ACGGAATACTCGTACGTCGCTACT -ACGGAATACTCGTACGTCGGATCT -ACGGAATACTCGTACGTCAAGGCT -ACGGAATACTCGTACGTCTCAACC -ACGGAATACTCGTACGTCTGTTCC -ACGGAATACTCGTACGTCATTCCC -ACGGAATACTCGTACGTCTTCTCG -ACGGAATACTCGTACGTCTAGACG -ACGGAATACTCGTACGTCGTAACG -ACGGAATACTCGTACGTCACTTCG -ACGGAATACTCGTACGTCTACGCA -ACGGAATACTCGTACGTCCTTGCA -ACGGAATACTCGTACGTCCGAACA -ACGGAATACTCGTACGTCCAGTCA -ACGGAATACTCGTACGTCGATCCA -ACGGAATACTCGTACGTCACGACA -ACGGAATACTCGTACGTCAGCTCA -ACGGAATACTCGTACGTCTCACGT -ACGGAATACTCGTACGTCCGTAGT -ACGGAATACTCGTACGTCGTCAGT -ACGGAATACTCGTACGTCGAAGGT -ACGGAATACTCGTACGTCAACCGT -ACGGAATACTCGTACGTCTTGTGC -ACGGAATACTCGTACGTCCTAAGC -ACGGAATACTCGTACGTCACTAGC -ACGGAATACTCGTACGTCAGATGC -ACGGAATACTCGTACGTCTGAAGG -ACGGAATACTCGTACGTCCAATGG -ACGGAATACTCGTACGTCATGAGG -ACGGAATACTCGTACGTCAATGGG -ACGGAATACTCGTACGTCTCCTGA -ACGGAATACTCGTACGTCTAGCGA -ACGGAATACTCGTACGTCCACAGA -ACGGAATACTCGTACGTCGCAAGA -ACGGAATACTCGTACGTCGGTTGA -ACGGAATACTCGTACGTCTCCGAT -ACGGAATACTCGTACGTCTGGCAT -ACGGAATACTCGTACGTCCGAGAT -ACGGAATACTCGTACGTCTACCAC -ACGGAATACTCGTACGTCCAGAAC -ACGGAATACTCGTACGTCGTCTAC -ACGGAATACTCGTACGTCACGTAC -ACGGAATACTCGTACGTCAGTGAC -ACGGAATACTCGTACGTCCTGTAG -ACGGAATACTCGTACGTCCCTAAG -ACGGAATACTCGTACGTCGTTCAG -ACGGAATACTCGTACGTCGCATAG -ACGGAATACTCGTACGTCGACAAG -ACGGAATACTCGTACGTCAAGCAG -ACGGAATACTCGTACGTCCGTCAA -ACGGAATACTCGTACGTCGCTGAA -ACGGAATACTCGTACGTCAGTACG -ACGGAATACTCGTACGTCATCCGA -ACGGAATACTCGTACGTCATGGGA -ACGGAATACTCGTACGTCGTGCAA -ACGGAATACTCGTACGTCGAGGAA -ACGGAATACTCGTACGTCCAGGTA -ACGGAATACTCGTACGTCGACTCT -ACGGAATACTCGTACGTCAGTCCT -ACGGAATACTCGTACGTCTAAGCC -ACGGAATACTCGTACGTCATAGCC -ACGGAATACTCGTACGTCTAACCG -ACGGAATACTCGTACGTCATGCCA -ACGGAATACTCGTACACGGGAAAC -ACGGAATACTCGTACACGAACACC -ACGGAATACTCGTACACGATCGAG -ACGGAATACTCGTACACGCTCCTT -ACGGAATACTCGTACACGCCTGTT -ACGGAATACTCGTACACGCGGTTT -ACGGAATACTCGTACACGGTGGTT -ACGGAATACTCGTACACGGCCTTT -ACGGAATACTCGTACACGGGTCTT -ACGGAATACTCGTACACGACGCTT -ACGGAATACTCGTACACGAGCGTT -ACGGAATACTCGTACACGTTCGTC -ACGGAATACTCGTACACGTCTCTC -ACGGAATACTCGTACACGTGGATC -ACGGAATACTCGTACACGCACTTC -ACGGAATACTCGTACACGGTACTC -ACGGAATACTCGTACACGGATGTC -ACGGAATACTCGTACACGACAGTC -ACGGAATACTCGTACACGTTGCTG -ACGGAATACTCGTACACGTCCATG -ACGGAATACTCGTACACGTGTGTG -ACGGAATACTCGTACACGCTAGTG -ACGGAATACTCGTACACGCATCTG -ACGGAATACTCGTACACGGAGTTG -ACGGAATACTCGTACACGAGACTG -ACGGAATACTCGTACACGTCGGTA -ACGGAATACTCGTACACGTGCCTA -ACGGAATACTCGTACACGCCACTA -ACGGAATACTCGTACACGGGAGTA -ACGGAATACTCGTACACGTCGTCT -ACGGAATACTCGTACACGTGCACT -ACGGAATACTCGTACACGCTGACT -ACGGAATACTCGTACACGCAACCT -ACGGAATACTCGTACACGGCTACT -ACGGAATACTCGTACACGGGATCT -ACGGAATACTCGTACACGAAGGCT -ACGGAATACTCGTACACGTCAACC -ACGGAATACTCGTACACGTGTTCC -ACGGAATACTCGTACACGATTCCC -ACGGAATACTCGTACACGTTCTCG -ACGGAATACTCGTACACGTAGACG -ACGGAATACTCGTACACGGTAACG -ACGGAATACTCGTACACGACTTCG -ACGGAATACTCGTACACGTACGCA -ACGGAATACTCGTACACGCTTGCA -ACGGAATACTCGTACACGCGAACA -ACGGAATACTCGTACACGCAGTCA -ACGGAATACTCGTACACGGATCCA -ACGGAATACTCGTACACGACGACA -ACGGAATACTCGTACACGAGCTCA -ACGGAATACTCGTACACGTCACGT -ACGGAATACTCGTACACGCGTAGT -ACGGAATACTCGTACACGGTCAGT -ACGGAATACTCGTACACGGAAGGT -ACGGAATACTCGTACACGAACCGT -ACGGAATACTCGTACACGTTGTGC -ACGGAATACTCGTACACGCTAAGC -ACGGAATACTCGTACACGACTAGC -ACGGAATACTCGTACACGAGATGC -ACGGAATACTCGTACACGTGAAGG -ACGGAATACTCGTACACGCAATGG -ACGGAATACTCGTACACGATGAGG -ACGGAATACTCGTACACGAATGGG -ACGGAATACTCGTACACGTCCTGA -ACGGAATACTCGTACACGTAGCGA -ACGGAATACTCGTACACGCACAGA -ACGGAATACTCGTACACGGCAAGA -ACGGAATACTCGTACACGGGTTGA -ACGGAATACTCGTACACGTCCGAT -ACGGAATACTCGTACACGTGGCAT -ACGGAATACTCGTACACGCGAGAT -ACGGAATACTCGTACACGTACCAC -ACGGAATACTCGTACACGCAGAAC -ACGGAATACTCGTACACGGTCTAC -ACGGAATACTCGTACACGACGTAC -ACGGAATACTCGTACACGAGTGAC -ACGGAATACTCGTACACGCTGTAG -ACGGAATACTCGTACACGCCTAAG -ACGGAATACTCGTACACGGTTCAG -ACGGAATACTCGTACACGGCATAG -ACGGAATACTCGTACACGGACAAG -ACGGAATACTCGTACACGAAGCAG -ACGGAATACTCGTACACGCGTCAA -ACGGAATACTCGTACACGGCTGAA -ACGGAATACTCGTACACGAGTACG -ACGGAATACTCGTACACGATCCGA -ACGGAATACTCGTACACGATGGGA -ACGGAATACTCGTACACGGTGCAA -ACGGAATACTCGTACACGGAGGAA -ACGGAATACTCGTACACGCAGGTA -ACGGAATACTCGTACACGGACTCT -ACGGAATACTCGTACACGAGTCCT -ACGGAATACTCGTACACGTAAGCC -ACGGAATACTCGTACACGATAGCC -ACGGAATACTCGTACACGTAACCG -ACGGAATACTCGTACACGATGCCA -ACGGAATACTCGGACAGTGGAAAC -ACGGAATACTCGGACAGTAACACC -ACGGAATACTCGGACAGTATCGAG -ACGGAATACTCGGACAGTCTCCTT -ACGGAATACTCGGACAGTCCTGTT -ACGGAATACTCGGACAGTCGGTTT -ACGGAATACTCGGACAGTGTGGTT -ACGGAATACTCGGACAGTGCCTTT -ACGGAATACTCGGACAGTGGTCTT -ACGGAATACTCGGACAGTACGCTT -ACGGAATACTCGGACAGTAGCGTT -ACGGAATACTCGGACAGTTTCGTC -ACGGAATACTCGGACAGTTCTCTC -ACGGAATACTCGGACAGTTGGATC -ACGGAATACTCGGACAGTCACTTC -ACGGAATACTCGGACAGTGTACTC -ACGGAATACTCGGACAGTGATGTC -ACGGAATACTCGGACAGTACAGTC -ACGGAATACTCGGACAGTTTGCTG -ACGGAATACTCGGACAGTTCCATG -ACGGAATACTCGGACAGTTGTGTG -ACGGAATACTCGGACAGTCTAGTG -ACGGAATACTCGGACAGTCATCTG -ACGGAATACTCGGACAGTGAGTTG -ACGGAATACTCGGACAGTAGACTG -ACGGAATACTCGGACAGTTCGGTA -ACGGAATACTCGGACAGTTGCCTA -ACGGAATACTCGGACAGTCCACTA -ACGGAATACTCGGACAGTGGAGTA -ACGGAATACTCGGACAGTTCGTCT -ACGGAATACTCGGACAGTTGCACT -ACGGAATACTCGGACAGTCTGACT -ACGGAATACTCGGACAGTCAACCT -ACGGAATACTCGGACAGTGCTACT -ACGGAATACTCGGACAGTGGATCT -ACGGAATACTCGGACAGTAAGGCT -ACGGAATACTCGGACAGTTCAACC -ACGGAATACTCGGACAGTTGTTCC -ACGGAATACTCGGACAGTATTCCC -ACGGAATACTCGGACAGTTTCTCG -ACGGAATACTCGGACAGTTAGACG -ACGGAATACTCGGACAGTGTAACG -ACGGAATACTCGGACAGTACTTCG -ACGGAATACTCGGACAGTTACGCA -ACGGAATACTCGGACAGTCTTGCA -ACGGAATACTCGGACAGTCGAACA -ACGGAATACTCGGACAGTCAGTCA -ACGGAATACTCGGACAGTGATCCA -ACGGAATACTCGGACAGTACGACA -ACGGAATACTCGGACAGTAGCTCA -ACGGAATACTCGGACAGTTCACGT -ACGGAATACTCGGACAGTCGTAGT -ACGGAATACTCGGACAGTGTCAGT -ACGGAATACTCGGACAGTGAAGGT -ACGGAATACTCGGACAGTAACCGT -ACGGAATACTCGGACAGTTTGTGC -ACGGAATACTCGGACAGTCTAAGC -ACGGAATACTCGGACAGTACTAGC -ACGGAATACTCGGACAGTAGATGC -ACGGAATACTCGGACAGTTGAAGG -ACGGAATACTCGGACAGTCAATGG -ACGGAATACTCGGACAGTATGAGG -ACGGAATACTCGGACAGTAATGGG -ACGGAATACTCGGACAGTTCCTGA -ACGGAATACTCGGACAGTTAGCGA -ACGGAATACTCGGACAGTCACAGA -ACGGAATACTCGGACAGTGCAAGA -ACGGAATACTCGGACAGTGGTTGA -ACGGAATACTCGGACAGTTCCGAT -ACGGAATACTCGGACAGTTGGCAT -ACGGAATACTCGGACAGTCGAGAT -ACGGAATACTCGGACAGTTACCAC -ACGGAATACTCGGACAGTCAGAAC -ACGGAATACTCGGACAGTGTCTAC -ACGGAATACTCGGACAGTACGTAC -ACGGAATACTCGGACAGTAGTGAC -ACGGAATACTCGGACAGTCTGTAG -ACGGAATACTCGGACAGTCCTAAG -ACGGAATACTCGGACAGTGTTCAG -ACGGAATACTCGGACAGTGCATAG -ACGGAATACTCGGACAGTGACAAG -ACGGAATACTCGGACAGTAAGCAG -ACGGAATACTCGGACAGTCGTCAA -ACGGAATACTCGGACAGTGCTGAA -ACGGAATACTCGGACAGTAGTACG -ACGGAATACTCGGACAGTATCCGA -ACGGAATACTCGGACAGTATGGGA -ACGGAATACTCGGACAGTGTGCAA -ACGGAATACTCGGACAGTGAGGAA -ACGGAATACTCGGACAGTCAGGTA -ACGGAATACTCGGACAGTGACTCT -ACGGAATACTCGGACAGTAGTCCT -ACGGAATACTCGGACAGTTAAGCC -ACGGAATACTCGGACAGTATAGCC -ACGGAATACTCGGACAGTTAACCG -ACGGAATACTCGGACAGTATGCCA -ACGGAATACTCGTAGCTGGGAAAC -ACGGAATACTCGTAGCTGAACACC -ACGGAATACTCGTAGCTGATCGAG -ACGGAATACTCGTAGCTGCTCCTT -ACGGAATACTCGTAGCTGCCTGTT -ACGGAATACTCGTAGCTGCGGTTT -ACGGAATACTCGTAGCTGGTGGTT -ACGGAATACTCGTAGCTGGCCTTT -ACGGAATACTCGTAGCTGGGTCTT -ACGGAATACTCGTAGCTGACGCTT -ACGGAATACTCGTAGCTGAGCGTT -ACGGAATACTCGTAGCTGTTCGTC -ACGGAATACTCGTAGCTGTCTCTC -ACGGAATACTCGTAGCTGTGGATC -ACGGAATACTCGTAGCTGCACTTC -ACGGAATACTCGTAGCTGGTACTC -ACGGAATACTCGTAGCTGGATGTC -ACGGAATACTCGTAGCTGACAGTC -ACGGAATACTCGTAGCTGTTGCTG -ACGGAATACTCGTAGCTGTCCATG -ACGGAATACTCGTAGCTGTGTGTG -ACGGAATACTCGTAGCTGCTAGTG -ACGGAATACTCGTAGCTGCATCTG -ACGGAATACTCGTAGCTGGAGTTG -ACGGAATACTCGTAGCTGAGACTG -ACGGAATACTCGTAGCTGTCGGTA -ACGGAATACTCGTAGCTGTGCCTA -ACGGAATACTCGTAGCTGCCACTA -ACGGAATACTCGTAGCTGGGAGTA -ACGGAATACTCGTAGCTGTCGTCT -ACGGAATACTCGTAGCTGTGCACT -ACGGAATACTCGTAGCTGCTGACT -ACGGAATACTCGTAGCTGCAACCT -ACGGAATACTCGTAGCTGGCTACT -ACGGAATACTCGTAGCTGGGATCT -ACGGAATACTCGTAGCTGAAGGCT -ACGGAATACTCGTAGCTGTCAACC -ACGGAATACTCGTAGCTGTGTTCC -ACGGAATACTCGTAGCTGATTCCC -ACGGAATACTCGTAGCTGTTCTCG -ACGGAATACTCGTAGCTGTAGACG -ACGGAATACTCGTAGCTGGTAACG -ACGGAATACTCGTAGCTGACTTCG -ACGGAATACTCGTAGCTGTACGCA -ACGGAATACTCGTAGCTGCTTGCA -ACGGAATACTCGTAGCTGCGAACA -ACGGAATACTCGTAGCTGCAGTCA -ACGGAATACTCGTAGCTGGATCCA -ACGGAATACTCGTAGCTGACGACA -ACGGAATACTCGTAGCTGAGCTCA -ACGGAATACTCGTAGCTGTCACGT -ACGGAATACTCGTAGCTGCGTAGT -ACGGAATACTCGTAGCTGGTCAGT -ACGGAATACTCGTAGCTGGAAGGT -ACGGAATACTCGTAGCTGAACCGT -ACGGAATACTCGTAGCTGTTGTGC -ACGGAATACTCGTAGCTGCTAAGC -ACGGAATACTCGTAGCTGACTAGC -ACGGAATACTCGTAGCTGAGATGC -ACGGAATACTCGTAGCTGTGAAGG -ACGGAATACTCGTAGCTGCAATGG -ACGGAATACTCGTAGCTGATGAGG -ACGGAATACTCGTAGCTGAATGGG -ACGGAATACTCGTAGCTGTCCTGA -ACGGAATACTCGTAGCTGTAGCGA -ACGGAATACTCGTAGCTGCACAGA -ACGGAATACTCGTAGCTGGCAAGA -ACGGAATACTCGTAGCTGGGTTGA -ACGGAATACTCGTAGCTGTCCGAT -ACGGAATACTCGTAGCTGTGGCAT -ACGGAATACTCGTAGCTGCGAGAT -ACGGAATACTCGTAGCTGTACCAC -ACGGAATACTCGTAGCTGCAGAAC -ACGGAATACTCGTAGCTGGTCTAC -ACGGAATACTCGTAGCTGACGTAC -ACGGAATACTCGTAGCTGAGTGAC -ACGGAATACTCGTAGCTGCTGTAG -ACGGAATACTCGTAGCTGCCTAAG -ACGGAATACTCGTAGCTGGTTCAG -ACGGAATACTCGTAGCTGGCATAG -ACGGAATACTCGTAGCTGGACAAG -ACGGAATACTCGTAGCTGAAGCAG -ACGGAATACTCGTAGCTGCGTCAA -ACGGAATACTCGTAGCTGGCTGAA -ACGGAATACTCGTAGCTGAGTACG -ACGGAATACTCGTAGCTGATCCGA -ACGGAATACTCGTAGCTGATGGGA -ACGGAATACTCGTAGCTGGTGCAA -ACGGAATACTCGTAGCTGGAGGAA -ACGGAATACTCGTAGCTGCAGGTA -ACGGAATACTCGTAGCTGGACTCT -ACGGAATACTCGTAGCTGAGTCCT -ACGGAATACTCGTAGCTGTAAGCC -ACGGAATACTCGTAGCTGATAGCC -ACGGAATACTCGTAGCTGTAACCG -ACGGAATACTCGTAGCTGATGCCA -ACGGAATACTCGAAGCCTGGAAAC -ACGGAATACTCGAAGCCTAACACC -ACGGAATACTCGAAGCCTATCGAG -ACGGAATACTCGAAGCCTCTCCTT -ACGGAATACTCGAAGCCTCCTGTT -ACGGAATACTCGAAGCCTCGGTTT -ACGGAATACTCGAAGCCTGTGGTT -ACGGAATACTCGAAGCCTGCCTTT -ACGGAATACTCGAAGCCTGGTCTT -ACGGAATACTCGAAGCCTACGCTT -ACGGAATACTCGAAGCCTAGCGTT -ACGGAATACTCGAAGCCTTTCGTC -ACGGAATACTCGAAGCCTTCTCTC -ACGGAATACTCGAAGCCTTGGATC -ACGGAATACTCGAAGCCTCACTTC -ACGGAATACTCGAAGCCTGTACTC -ACGGAATACTCGAAGCCTGATGTC -ACGGAATACTCGAAGCCTACAGTC -ACGGAATACTCGAAGCCTTTGCTG -ACGGAATACTCGAAGCCTTCCATG -ACGGAATACTCGAAGCCTTGTGTG -ACGGAATACTCGAAGCCTCTAGTG -ACGGAATACTCGAAGCCTCATCTG -ACGGAATACTCGAAGCCTGAGTTG -ACGGAATACTCGAAGCCTAGACTG -ACGGAATACTCGAAGCCTTCGGTA -ACGGAATACTCGAAGCCTTGCCTA -ACGGAATACTCGAAGCCTCCACTA -ACGGAATACTCGAAGCCTGGAGTA -ACGGAATACTCGAAGCCTTCGTCT -ACGGAATACTCGAAGCCTTGCACT -ACGGAATACTCGAAGCCTCTGACT -ACGGAATACTCGAAGCCTCAACCT -ACGGAATACTCGAAGCCTGCTACT -ACGGAATACTCGAAGCCTGGATCT -ACGGAATACTCGAAGCCTAAGGCT -ACGGAATACTCGAAGCCTTCAACC -ACGGAATACTCGAAGCCTTGTTCC -ACGGAATACTCGAAGCCTATTCCC -ACGGAATACTCGAAGCCTTTCTCG -ACGGAATACTCGAAGCCTTAGACG -ACGGAATACTCGAAGCCTGTAACG -ACGGAATACTCGAAGCCTACTTCG -ACGGAATACTCGAAGCCTTACGCA -ACGGAATACTCGAAGCCTCTTGCA -ACGGAATACTCGAAGCCTCGAACA -ACGGAATACTCGAAGCCTCAGTCA -ACGGAATACTCGAAGCCTGATCCA -ACGGAATACTCGAAGCCTACGACA -ACGGAATACTCGAAGCCTAGCTCA -ACGGAATACTCGAAGCCTTCACGT -ACGGAATACTCGAAGCCTCGTAGT -ACGGAATACTCGAAGCCTGTCAGT -ACGGAATACTCGAAGCCTGAAGGT -ACGGAATACTCGAAGCCTAACCGT -ACGGAATACTCGAAGCCTTTGTGC -ACGGAATACTCGAAGCCTCTAAGC -ACGGAATACTCGAAGCCTACTAGC -ACGGAATACTCGAAGCCTAGATGC -ACGGAATACTCGAAGCCTTGAAGG -ACGGAATACTCGAAGCCTCAATGG -ACGGAATACTCGAAGCCTATGAGG -ACGGAATACTCGAAGCCTAATGGG -ACGGAATACTCGAAGCCTTCCTGA -ACGGAATACTCGAAGCCTTAGCGA -ACGGAATACTCGAAGCCTCACAGA -ACGGAATACTCGAAGCCTGCAAGA -ACGGAATACTCGAAGCCTGGTTGA -ACGGAATACTCGAAGCCTTCCGAT -ACGGAATACTCGAAGCCTTGGCAT -ACGGAATACTCGAAGCCTCGAGAT -ACGGAATACTCGAAGCCTTACCAC -ACGGAATACTCGAAGCCTCAGAAC -ACGGAATACTCGAAGCCTGTCTAC -ACGGAATACTCGAAGCCTACGTAC -ACGGAATACTCGAAGCCTAGTGAC -ACGGAATACTCGAAGCCTCTGTAG -ACGGAATACTCGAAGCCTCCTAAG -ACGGAATACTCGAAGCCTGTTCAG -ACGGAATACTCGAAGCCTGCATAG -ACGGAATACTCGAAGCCTGACAAG -ACGGAATACTCGAAGCCTAAGCAG -ACGGAATACTCGAAGCCTCGTCAA -ACGGAATACTCGAAGCCTGCTGAA -ACGGAATACTCGAAGCCTAGTACG -ACGGAATACTCGAAGCCTATCCGA -ACGGAATACTCGAAGCCTATGGGA -ACGGAATACTCGAAGCCTGTGCAA -ACGGAATACTCGAAGCCTGAGGAA -ACGGAATACTCGAAGCCTCAGGTA -ACGGAATACTCGAAGCCTGACTCT -ACGGAATACTCGAAGCCTAGTCCT -ACGGAATACTCGAAGCCTTAAGCC -ACGGAATACTCGAAGCCTATAGCC -ACGGAATACTCGAAGCCTTAACCG -ACGGAATACTCGAAGCCTATGCCA -ACGGAATACTCGCAGGTTGGAAAC -ACGGAATACTCGCAGGTTAACACC -ACGGAATACTCGCAGGTTATCGAG -ACGGAATACTCGCAGGTTCTCCTT -ACGGAATACTCGCAGGTTCCTGTT -ACGGAATACTCGCAGGTTCGGTTT -ACGGAATACTCGCAGGTTGTGGTT -ACGGAATACTCGCAGGTTGCCTTT -ACGGAATACTCGCAGGTTGGTCTT -ACGGAATACTCGCAGGTTACGCTT -ACGGAATACTCGCAGGTTAGCGTT -ACGGAATACTCGCAGGTTTTCGTC -ACGGAATACTCGCAGGTTTCTCTC -ACGGAATACTCGCAGGTTTGGATC -ACGGAATACTCGCAGGTTCACTTC -ACGGAATACTCGCAGGTTGTACTC -ACGGAATACTCGCAGGTTGATGTC -ACGGAATACTCGCAGGTTACAGTC -ACGGAATACTCGCAGGTTTTGCTG -ACGGAATACTCGCAGGTTTCCATG -ACGGAATACTCGCAGGTTTGTGTG -ACGGAATACTCGCAGGTTCTAGTG -ACGGAATACTCGCAGGTTCATCTG -ACGGAATACTCGCAGGTTGAGTTG -ACGGAATACTCGCAGGTTAGACTG -ACGGAATACTCGCAGGTTTCGGTA -ACGGAATACTCGCAGGTTTGCCTA -ACGGAATACTCGCAGGTTCCACTA -ACGGAATACTCGCAGGTTGGAGTA -ACGGAATACTCGCAGGTTTCGTCT -ACGGAATACTCGCAGGTTTGCACT -ACGGAATACTCGCAGGTTCTGACT -ACGGAATACTCGCAGGTTCAACCT -ACGGAATACTCGCAGGTTGCTACT -ACGGAATACTCGCAGGTTGGATCT -ACGGAATACTCGCAGGTTAAGGCT -ACGGAATACTCGCAGGTTTCAACC -ACGGAATACTCGCAGGTTTGTTCC -ACGGAATACTCGCAGGTTATTCCC -ACGGAATACTCGCAGGTTTTCTCG -ACGGAATACTCGCAGGTTTAGACG -ACGGAATACTCGCAGGTTGTAACG -ACGGAATACTCGCAGGTTACTTCG -ACGGAATACTCGCAGGTTTACGCA -ACGGAATACTCGCAGGTTCTTGCA -ACGGAATACTCGCAGGTTCGAACA -ACGGAATACTCGCAGGTTCAGTCA -ACGGAATACTCGCAGGTTGATCCA -ACGGAATACTCGCAGGTTACGACA -ACGGAATACTCGCAGGTTAGCTCA -ACGGAATACTCGCAGGTTTCACGT -ACGGAATACTCGCAGGTTCGTAGT -ACGGAATACTCGCAGGTTGTCAGT -ACGGAATACTCGCAGGTTGAAGGT -ACGGAATACTCGCAGGTTAACCGT -ACGGAATACTCGCAGGTTTTGTGC -ACGGAATACTCGCAGGTTCTAAGC -ACGGAATACTCGCAGGTTACTAGC -ACGGAATACTCGCAGGTTAGATGC -ACGGAATACTCGCAGGTTTGAAGG -ACGGAATACTCGCAGGTTCAATGG -ACGGAATACTCGCAGGTTATGAGG -ACGGAATACTCGCAGGTTAATGGG -ACGGAATACTCGCAGGTTTCCTGA -ACGGAATACTCGCAGGTTTAGCGA -ACGGAATACTCGCAGGTTCACAGA -ACGGAATACTCGCAGGTTGCAAGA -ACGGAATACTCGCAGGTTGGTTGA -ACGGAATACTCGCAGGTTTCCGAT -ACGGAATACTCGCAGGTTTGGCAT -ACGGAATACTCGCAGGTTCGAGAT -ACGGAATACTCGCAGGTTTACCAC -ACGGAATACTCGCAGGTTCAGAAC -ACGGAATACTCGCAGGTTGTCTAC -ACGGAATACTCGCAGGTTACGTAC -ACGGAATACTCGCAGGTTAGTGAC -ACGGAATACTCGCAGGTTCTGTAG -ACGGAATACTCGCAGGTTCCTAAG -ACGGAATACTCGCAGGTTGTTCAG -ACGGAATACTCGCAGGTTGCATAG -ACGGAATACTCGCAGGTTGACAAG -ACGGAATACTCGCAGGTTAAGCAG -ACGGAATACTCGCAGGTTCGTCAA -ACGGAATACTCGCAGGTTGCTGAA -ACGGAATACTCGCAGGTTAGTACG -ACGGAATACTCGCAGGTTATCCGA -ACGGAATACTCGCAGGTTATGGGA -ACGGAATACTCGCAGGTTGTGCAA -ACGGAATACTCGCAGGTTGAGGAA -ACGGAATACTCGCAGGTTCAGGTA -ACGGAATACTCGCAGGTTGACTCT -ACGGAATACTCGCAGGTTAGTCCT -ACGGAATACTCGCAGGTTTAAGCC -ACGGAATACTCGCAGGTTATAGCC -ACGGAATACTCGCAGGTTTAACCG -ACGGAATACTCGCAGGTTATGCCA -ACGGAATACTCGTAGGCAGGAAAC -ACGGAATACTCGTAGGCAAACACC -ACGGAATACTCGTAGGCAATCGAG -ACGGAATACTCGTAGGCACTCCTT -ACGGAATACTCGTAGGCACCTGTT -ACGGAATACTCGTAGGCACGGTTT -ACGGAATACTCGTAGGCAGTGGTT -ACGGAATACTCGTAGGCAGCCTTT -ACGGAATACTCGTAGGCAGGTCTT -ACGGAATACTCGTAGGCAACGCTT -ACGGAATACTCGTAGGCAAGCGTT -ACGGAATACTCGTAGGCATTCGTC -ACGGAATACTCGTAGGCATCTCTC -ACGGAATACTCGTAGGCATGGATC -ACGGAATACTCGTAGGCACACTTC -ACGGAATACTCGTAGGCAGTACTC -ACGGAATACTCGTAGGCAGATGTC -ACGGAATACTCGTAGGCAACAGTC -ACGGAATACTCGTAGGCATTGCTG -ACGGAATACTCGTAGGCATCCATG -ACGGAATACTCGTAGGCATGTGTG -ACGGAATACTCGTAGGCACTAGTG -ACGGAATACTCGTAGGCACATCTG -ACGGAATACTCGTAGGCAGAGTTG -ACGGAATACTCGTAGGCAAGACTG -ACGGAATACTCGTAGGCATCGGTA -ACGGAATACTCGTAGGCATGCCTA -ACGGAATACTCGTAGGCACCACTA -ACGGAATACTCGTAGGCAGGAGTA -ACGGAATACTCGTAGGCATCGTCT -ACGGAATACTCGTAGGCATGCACT -ACGGAATACTCGTAGGCACTGACT -ACGGAATACTCGTAGGCACAACCT -ACGGAATACTCGTAGGCAGCTACT -ACGGAATACTCGTAGGCAGGATCT -ACGGAATACTCGTAGGCAAAGGCT -ACGGAATACTCGTAGGCATCAACC -ACGGAATACTCGTAGGCATGTTCC -ACGGAATACTCGTAGGCAATTCCC -ACGGAATACTCGTAGGCATTCTCG -ACGGAATACTCGTAGGCATAGACG -ACGGAATACTCGTAGGCAGTAACG -ACGGAATACTCGTAGGCAACTTCG -ACGGAATACTCGTAGGCATACGCA -ACGGAATACTCGTAGGCACTTGCA -ACGGAATACTCGTAGGCACGAACA -ACGGAATACTCGTAGGCACAGTCA -ACGGAATACTCGTAGGCAGATCCA -ACGGAATACTCGTAGGCAACGACA -ACGGAATACTCGTAGGCAAGCTCA -ACGGAATACTCGTAGGCATCACGT -ACGGAATACTCGTAGGCACGTAGT -ACGGAATACTCGTAGGCAGTCAGT -ACGGAATACTCGTAGGCAGAAGGT -ACGGAATACTCGTAGGCAAACCGT -ACGGAATACTCGTAGGCATTGTGC -ACGGAATACTCGTAGGCACTAAGC -ACGGAATACTCGTAGGCAACTAGC -ACGGAATACTCGTAGGCAAGATGC -ACGGAATACTCGTAGGCATGAAGG -ACGGAATACTCGTAGGCACAATGG -ACGGAATACTCGTAGGCAATGAGG -ACGGAATACTCGTAGGCAAATGGG -ACGGAATACTCGTAGGCATCCTGA -ACGGAATACTCGTAGGCATAGCGA -ACGGAATACTCGTAGGCACACAGA -ACGGAATACTCGTAGGCAGCAAGA -ACGGAATACTCGTAGGCAGGTTGA -ACGGAATACTCGTAGGCATCCGAT -ACGGAATACTCGTAGGCATGGCAT -ACGGAATACTCGTAGGCACGAGAT -ACGGAATACTCGTAGGCATACCAC -ACGGAATACTCGTAGGCACAGAAC -ACGGAATACTCGTAGGCAGTCTAC -ACGGAATACTCGTAGGCAACGTAC -ACGGAATACTCGTAGGCAAGTGAC -ACGGAATACTCGTAGGCACTGTAG -ACGGAATACTCGTAGGCACCTAAG -ACGGAATACTCGTAGGCAGTTCAG -ACGGAATACTCGTAGGCAGCATAG -ACGGAATACTCGTAGGCAGACAAG -ACGGAATACTCGTAGGCAAAGCAG -ACGGAATACTCGTAGGCACGTCAA -ACGGAATACTCGTAGGCAGCTGAA -ACGGAATACTCGTAGGCAAGTACG -ACGGAATACTCGTAGGCAATCCGA -ACGGAATACTCGTAGGCAATGGGA -ACGGAATACTCGTAGGCAGTGCAA -ACGGAATACTCGTAGGCAGAGGAA -ACGGAATACTCGTAGGCACAGGTA -ACGGAATACTCGTAGGCAGACTCT -ACGGAATACTCGTAGGCAAGTCCT -ACGGAATACTCGTAGGCATAAGCC -ACGGAATACTCGTAGGCAATAGCC -ACGGAATACTCGTAGGCATAACCG -ACGGAATACTCGTAGGCAATGCCA -ACGGAATACTCGAAGGACGGAAAC -ACGGAATACTCGAAGGACAACACC -ACGGAATACTCGAAGGACATCGAG -ACGGAATACTCGAAGGACCTCCTT -ACGGAATACTCGAAGGACCCTGTT -ACGGAATACTCGAAGGACCGGTTT -ACGGAATACTCGAAGGACGTGGTT -ACGGAATACTCGAAGGACGCCTTT -ACGGAATACTCGAAGGACGGTCTT -ACGGAATACTCGAAGGACACGCTT -ACGGAATACTCGAAGGACAGCGTT -ACGGAATACTCGAAGGACTTCGTC -ACGGAATACTCGAAGGACTCTCTC -ACGGAATACTCGAAGGACTGGATC -ACGGAATACTCGAAGGACCACTTC -ACGGAATACTCGAAGGACGTACTC -ACGGAATACTCGAAGGACGATGTC -ACGGAATACTCGAAGGACACAGTC -ACGGAATACTCGAAGGACTTGCTG -ACGGAATACTCGAAGGACTCCATG -ACGGAATACTCGAAGGACTGTGTG -ACGGAATACTCGAAGGACCTAGTG -ACGGAATACTCGAAGGACCATCTG -ACGGAATACTCGAAGGACGAGTTG -ACGGAATACTCGAAGGACAGACTG -ACGGAATACTCGAAGGACTCGGTA -ACGGAATACTCGAAGGACTGCCTA -ACGGAATACTCGAAGGACCCACTA -ACGGAATACTCGAAGGACGGAGTA -ACGGAATACTCGAAGGACTCGTCT -ACGGAATACTCGAAGGACTGCACT -ACGGAATACTCGAAGGACCTGACT -ACGGAATACTCGAAGGACCAACCT -ACGGAATACTCGAAGGACGCTACT -ACGGAATACTCGAAGGACGGATCT -ACGGAATACTCGAAGGACAAGGCT -ACGGAATACTCGAAGGACTCAACC -ACGGAATACTCGAAGGACTGTTCC -ACGGAATACTCGAAGGACATTCCC -ACGGAATACTCGAAGGACTTCTCG -ACGGAATACTCGAAGGACTAGACG -ACGGAATACTCGAAGGACGTAACG -ACGGAATACTCGAAGGACACTTCG -ACGGAATACTCGAAGGACTACGCA -ACGGAATACTCGAAGGACCTTGCA -ACGGAATACTCGAAGGACCGAACA -ACGGAATACTCGAAGGACCAGTCA -ACGGAATACTCGAAGGACGATCCA -ACGGAATACTCGAAGGACACGACA -ACGGAATACTCGAAGGACAGCTCA -ACGGAATACTCGAAGGACTCACGT -ACGGAATACTCGAAGGACCGTAGT -ACGGAATACTCGAAGGACGTCAGT -ACGGAATACTCGAAGGACGAAGGT -ACGGAATACTCGAAGGACAACCGT -ACGGAATACTCGAAGGACTTGTGC -ACGGAATACTCGAAGGACCTAAGC -ACGGAATACTCGAAGGACACTAGC -ACGGAATACTCGAAGGACAGATGC -ACGGAATACTCGAAGGACTGAAGG -ACGGAATACTCGAAGGACCAATGG -ACGGAATACTCGAAGGACATGAGG -ACGGAATACTCGAAGGACAATGGG -ACGGAATACTCGAAGGACTCCTGA -ACGGAATACTCGAAGGACTAGCGA -ACGGAATACTCGAAGGACCACAGA -ACGGAATACTCGAAGGACGCAAGA -ACGGAATACTCGAAGGACGGTTGA -ACGGAATACTCGAAGGACTCCGAT -ACGGAATACTCGAAGGACTGGCAT -ACGGAATACTCGAAGGACCGAGAT -ACGGAATACTCGAAGGACTACCAC -ACGGAATACTCGAAGGACCAGAAC -ACGGAATACTCGAAGGACGTCTAC -ACGGAATACTCGAAGGACACGTAC -ACGGAATACTCGAAGGACAGTGAC -ACGGAATACTCGAAGGACCTGTAG -ACGGAATACTCGAAGGACCCTAAG -ACGGAATACTCGAAGGACGTTCAG -ACGGAATACTCGAAGGACGCATAG -ACGGAATACTCGAAGGACGACAAG -ACGGAATACTCGAAGGACAAGCAG -ACGGAATACTCGAAGGACCGTCAA -ACGGAATACTCGAAGGACGCTGAA -ACGGAATACTCGAAGGACAGTACG -ACGGAATACTCGAAGGACATCCGA -ACGGAATACTCGAAGGACATGGGA -ACGGAATACTCGAAGGACGTGCAA -ACGGAATACTCGAAGGACGAGGAA -ACGGAATACTCGAAGGACCAGGTA -ACGGAATACTCGAAGGACGACTCT -ACGGAATACTCGAAGGACAGTCCT -ACGGAATACTCGAAGGACTAAGCC -ACGGAATACTCGAAGGACATAGCC -ACGGAATACTCGAAGGACTAACCG -ACGGAATACTCGAAGGACATGCCA -ACGGAATACTCGCAGAAGGGAAAC -ACGGAATACTCGCAGAAGAACACC -ACGGAATACTCGCAGAAGATCGAG -ACGGAATACTCGCAGAAGCTCCTT -ACGGAATACTCGCAGAAGCCTGTT -ACGGAATACTCGCAGAAGCGGTTT -ACGGAATACTCGCAGAAGGTGGTT -ACGGAATACTCGCAGAAGGCCTTT -ACGGAATACTCGCAGAAGGGTCTT -ACGGAATACTCGCAGAAGACGCTT -ACGGAATACTCGCAGAAGAGCGTT -ACGGAATACTCGCAGAAGTTCGTC -ACGGAATACTCGCAGAAGTCTCTC -ACGGAATACTCGCAGAAGTGGATC -ACGGAATACTCGCAGAAGCACTTC -ACGGAATACTCGCAGAAGGTACTC -ACGGAATACTCGCAGAAGGATGTC -ACGGAATACTCGCAGAAGACAGTC -ACGGAATACTCGCAGAAGTTGCTG -ACGGAATACTCGCAGAAGTCCATG -ACGGAATACTCGCAGAAGTGTGTG -ACGGAATACTCGCAGAAGCTAGTG -ACGGAATACTCGCAGAAGCATCTG -ACGGAATACTCGCAGAAGGAGTTG -ACGGAATACTCGCAGAAGAGACTG -ACGGAATACTCGCAGAAGTCGGTA -ACGGAATACTCGCAGAAGTGCCTA -ACGGAATACTCGCAGAAGCCACTA -ACGGAATACTCGCAGAAGGGAGTA -ACGGAATACTCGCAGAAGTCGTCT -ACGGAATACTCGCAGAAGTGCACT -ACGGAATACTCGCAGAAGCTGACT -ACGGAATACTCGCAGAAGCAACCT -ACGGAATACTCGCAGAAGGCTACT -ACGGAATACTCGCAGAAGGGATCT -ACGGAATACTCGCAGAAGAAGGCT -ACGGAATACTCGCAGAAGTCAACC -ACGGAATACTCGCAGAAGTGTTCC -ACGGAATACTCGCAGAAGATTCCC -ACGGAATACTCGCAGAAGTTCTCG -ACGGAATACTCGCAGAAGTAGACG -ACGGAATACTCGCAGAAGGTAACG -ACGGAATACTCGCAGAAGACTTCG -ACGGAATACTCGCAGAAGTACGCA -ACGGAATACTCGCAGAAGCTTGCA -ACGGAATACTCGCAGAAGCGAACA -ACGGAATACTCGCAGAAGCAGTCA -ACGGAATACTCGCAGAAGGATCCA -ACGGAATACTCGCAGAAGACGACA -ACGGAATACTCGCAGAAGAGCTCA -ACGGAATACTCGCAGAAGTCACGT -ACGGAATACTCGCAGAAGCGTAGT -ACGGAATACTCGCAGAAGGTCAGT -ACGGAATACTCGCAGAAGGAAGGT -ACGGAATACTCGCAGAAGAACCGT -ACGGAATACTCGCAGAAGTTGTGC -ACGGAATACTCGCAGAAGCTAAGC -ACGGAATACTCGCAGAAGACTAGC -ACGGAATACTCGCAGAAGAGATGC -ACGGAATACTCGCAGAAGTGAAGG -ACGGAATACTCGCAGAAGCAATGG -ACGGAATACTCGCAGAAGATGAGG -ACGGAATACTCGCAGAAGAATGGG -ACGGAATACTCGCAGAAGTCCTGA -ACGGAATACTCGCAGAAGTAGCGA -ACGGAATACTCGCAGAAGCACAGA -ACGGAATACTCGCAGAAGGCAAGA -ACGGAATACTCGCAGAAGGGTTGA -ACGGAATACTCGCAGAAGTCCGAT -ACGGAATACTCGCAGAAGTGGCAT -ACGGAATACTCGCAGAAGCGAGAT -ACGGAATACTCGCAGAAGTACCAC -ACGGAATACTCGCAGAAGCAGAAC -ACGGAATACTCGCAGAAGGTCTAC -ACGGAATACTCGCAGAAGACGTAC -ACGGAATACTCGCAGAAGAGTGAC -ACGGAATACTCGCAGAAGCTGTAG -ACGGAATACTCGCAGAAGCCTAAG -ACGGAATACTCGCAGAAGGTTCAG -ACGGAATACTCGCAGAAGGCATAG -ACGGAATACTCGCAGAAGGACAAG -ACGGAATACTCGCAGAAGAAGCAG -ACGGAATACTCGCAGAAGCGTCAA -ACGGAATACTCGCAGAAGGCTGAA -ACGGAATACTCGCAGAAGAGTACG -ACGGAATACTCGCAGAAGATCCGA -ACGGAATACTCGCAGAAGATGGGA -ACGGAATACTCGCAGAAGGTGCAA -ACGGAATACTCGCAGAAGGAGGAA -ACGGAATACTCGCAGAAGCAGGTA -ACGGAATACTCGCAGAAGGACTCT -ACGGAATACTCGCAGAAGAGTCCT -ACGGAATACTCGCAGAAGTAAGCC -ACGGAATACTCGCAGAAGATAGCC -ACGGAATACTCGCAGAAGTAACCG -ACGGAATACTCGCAGAAGATGCCA -ACGGAATACTCGCAACGTGGAAAC -ACGGAATACTCGCAACGTAACACC -ACGGAATACTCGCAACGTATCGAG -ACGGAATACTCGCAACGTCTCCTT -ACGGAATACTCGCAACGTCCTGTT -ACGGAATACTCGCAACGTCGGTTT -ACGGAATACTCGCAACGTGTGGTT -ACGGAATACTCGCAACGTGCCTTT -ACGGAATACTCGCAACGTGGTCTT -ACGGAATACTCGCAACGTACGCTT -ACGGAATACTCGCAACGTAGCGTT -ACGGAATACTCGCAACGTTTCGTC -ACGGAATACTCGCAACGTTCTCTC -ACGGAATACTCGCAACGTTGGATC -ACGGAATACTCGCAACGTCACTTC -ACGGAATACTCGCAACGTGTACTC -ACGGAATACTCGCAACGTGATGTC -ACGGAATACTCGCAACGTACAGTC -ACGGAATACTCGCAACGTTTGCTG -ACGGAATACTCGCAACGTTCCATG -ACGGAATACTCGCAACGTTGTGTG -ACGGAATACTCGCAACGTCTAGTG -ACGGAATACTCGCAACGTCATCTG -ACGGAATACTCGCAACGTGAGTTG -ACGGAATACTCGCAACGTAGACTG -ACGGAATACTCGCAACGTTCGGTA -ACGGAATACTCGCAACGTTGCCTA -ACGGAATACTCGCAACGTCCACTA -ACGGAATACTCGCAACGTGGAGTA -ACGGAATACTCGCAACGTTCGTCT -ACGGAATACTCGCAACGTTGCACT -ACGGAATACTCGCAACGTCTGACT -ACGGAATACTCGCAACGTCAACCT -ACGGAATACTCGCAACGTGCTACT -ACGGAATACTCGCAACGTGGATCT -ACGGAATACTCGCAACGTAAGGCT -ACGGAATACTCGCAACGTTCAACC -ACGGAATACTCGCAACGTTGTTCC -ACGGAATACTCGCAACGTATTCCC -ACGGAATACTCGCAACGTTTCTCG -ACGGAATACTCGCAACGTTAGACG -ACGGAATACTCGCAACGTGTAACG -ACGGAATACTCGCAACGTACTTCG -ACGGAATACTCGCAACGTTACGCA -ACGGAATACTCGCAACGTCTTGCA -ACGGAATACTCGCAACGTCGAACA -ACGGAATACTCGCAACGTCAGTCA -ACGGAATACTCGCAACGTGATCCA -ACGGAATACTCGCAACGTACGACA -ACGGAATACTCGCAACGTAGCTCA -ACGGAATACTCGCAACGTTCACGT -ACGGAATACTCGCAACGTCGTAGT -ACGGAATACTCGCAACGTGTCAGT -ACGGAATACTCGCAACGTGAAGGT -ACGGAATACTCGCAACGTAACCGT -ACGGAATACTCGCAACGTTTGTGC -ACGGAATACTCGCAACGTCTAAGC -ACGGAATACTCGCAACGTACTAGC -ACGGAATACTCGCAACGTAGATGC -ACGGAATACTCGCAACGTTGAAGG -ACGGAATACTCGCAACGTCAATGG -ACGGAATACTCGCAACGTATGAGG -ACGGAATACTCGCAACGTAATGGG -ACGGAATACTCGCAACGTTCCTGA -ACGGAATACTCGCAACGTTAGCGA -ACGGAATACTCGCAACGTCACAGA -ACGGAATACTCGCAACGTGCAAGA -ACGGAATACTCGCAACGTGGTTGA -ACGGAATACTCGCAACGTTCCGAT -ACGGAATACTCGCAACGTTGGCAT -ACGGAATACTCGCAACGTCGAGAT -ACGGAATACTCGCAACGTTACCAC -ACGGAATACTCGCAACGTCAGAAC -ACGGAATACTCGCAACGTGTCTAC -ACGGAATACTCGCAACGTACGTAC -ACGGAATACTCGCAACGTAGTGAC -ACGGAATACTCGCAACGTCTGTAG -ACGGAATACTCGCAACGTCCTAAG -ACGGAATACTCGCAACGTGTTCAG -ACGGAATACTCGCAACGTGCATAG -ACGGAATACTCGCAACGTGACAAG -ACGGAATACTCGCAACGTAAGCAG -ACGGAATACTCGCAACGTCGTCAA -ACGGAATACTCGCAACGTGCTGAA -ACGGAATACTCGCAACGTAGTACG -ACGGAATACTCGCAACGTATCCGA -ACGGAATACTCGCAACGTATGGGA -ACGGAATACTCGCAACGTGTGCAA -ACGGAATACTCGCAACGTGAGGAA -ACGGAATACTCGCAACGTCAGGTA -ACGGAATACTCGCAACGTGACTCT -ACGGAATACTCGCAACGTAGTCCT -ACGGAATACTCGCAACGTTAAGCC -ACGGAATACTCGCAACGTATAGCC -ACGGAATACTCGCAACGTTAACCG -ACGGAATACTCGCAACGTATGCCA -ACGGAATACTCGGAAGCTGGAAAC -ACGGAATACTCGGAAGCTAACACC -ACGGAATACTCGGAAGCTATCGAG -ACGGAATACTCGGAAGCTCTCCTT -ACGGAATACTCGGAAGCTCCTGTT -ACGGAATACTCGGAAGCTCGGTTT -ACGGAATACTCGGAAGCTGTGGTT -ACGGAATACTCGGAAGCTGCCTTT -ACGGAATACTCGGAAGCTGGTCTT -ACGGAATACTCGGAAGCTACGCTT -ACGGAATACTCGGAAGCTAGCGTT -ACGGAATACTCGGAAGCTTTCGTC -ACGGAATACTCGGAAGCTTCTCTC -ACGGAATACTCGGAAGCTTGGATC -ACGGAATACTCGGAAGCTCACTTC -ACGGAATACTCGGAAGCTGTACTC -ACGGAATACTCGGAAGCTGATGTC -ACGGAATACTCGGAAGCTACAGTC -ACGGAATACTCGGAAGCTTTGCTG -ACGGAATACTCGGAAGCTTCCATG -ACGGAATACTCGGAAGCTTGTGTG -ACGGAATACTCGGAAGCTCTAGTG -ACGGAATACTCGGAAGCTCATCTG -ACGGAATACTCGGAAGCTGAGTTG -ACGGAATACTCGGAAGCTAGACTG -ACGGAATACTCGGAAGCTTCGGTA -ACGGAATACTCGGAAGCTTGCCTA -ACGGAATACTCGGAAGCTCCACTA -ACGGAATACTCGGAAGCTGGAGTA -ACGGAATACTCGGAAGCTTCGTCT -ACGGAATACTCGGAAGCTTGCACT -ACGGAATACTCGGAAGCTCTGACT -ACGGAATACTCGGAAGCTCAACCT -ACGGAATACTCGGAAGCTGCTACT -ACGGAATACTCGGAAGCTGGATCT -ACGGAATACTCGGAAGCTAAGGCT -ACGGAATACTCGGAAGCTTCAACC -ACGGAATACTCGGAAGCTTGTTCC -ACGGAATACTCGGAAGCTATTCCC -ACGGAATACTCGGAAGCTTTCTCG -ACGGAATACTCGGAAGCTTAGACG -ACGGAATACTCGGAAGCTGTAACG -ACGGAATACTCGGAAGCTACTTCG -ACGGAATACTCGGAAGCTTACGCA -ACGGAATACTCGGAAGCTCTTGCA -ACGGAATACTCGGAAGCTCGAACA -ACGGAATACTCGGAAGCTCAGTCA -ACGGAATACTCGGAAGCTGATCCA -ACGGAATACTCGGAAGCTACGACA -ACGGAATACTCGGAAGCTAGCTCA -ACGGAATACTCGGAAGCTTCACGT -ACGGAATACTCGGAAGCTCGTAGT -ACGGAATACTCGGAAGCTGTCAGT -ACGGAATACTCGGAAGCTGAAGGT -ACGGAATACTCGGAAGCTAACCGT -ACGGAATACTCGGAAGCTTTGTGC -ACGGAATACTCGGAAGCTCTAAGC -ACGGAATACTCGGAAGCTACTAGC -ACGGAATACTCGGAAGCTAGATGC -ACGGAATACTCGGAAGCTTGAAGG -ACGGAATACTCGGAAGCTCAATGG -ACGGAATACTCGGAAGCTATGAGG -ACGGAATACTCGGAAGCTAATGGG -ACGGAATACTCGGAAGCTTCCTGA -ACGGAATACTCGGAAGCTTAGCGA -ACGGAATACTCGGAAGCTCACAGA -ACGGAATACTCGGAAGCTGCAAGA -ACGGAATACTCGGAAGCTGGTTGA -ACGGAATACTCGGAAGCTTCCGAT -ACGGAATACTCGGAAGCTTGGCAT -ACGGAATACTCGGAAGCTCGAGAT -ACGGAATACTCGGAAGCTTACCAC -ACGGAATACTCGGAAGCTCAGAAC -ACGGAATACTCGGAAGCTGTCTAC -ACGGAATACTCGGAAGCTACGTAC -ACGGAATACTCGGAAGCTAGTGAC -ACGGAATACTCGGAAGCTCTGTAG -ACGGAATACTCGGAAGCTCCTAAG -ACGGAATACTCGGAAGCTGTTCAG -ACGGAATACTCGGAAGCTGCATAG -ACGGAATACTCGGAAGCTGACAAG -ACGGAATACTCGGAAGCTAAGCAG -ACGGAATACTCGGAAGCTCGTCAA -ACGGAATACTCGGAAGCTGCTGAA -ACGGAATACTCGGAAGCTAGTACG -ACGGAATACTCGGAAGCTATCCGA -ACGGAATACTCGGAAGCTATGGGA -ACGGAATACTCGGAAGCTGTGCAA -ACGGAATACTCGGAAGCTGAGGAA -ACGGAATACTCGGAAGCTCAGGTA -ACGGAATACTCGGAAGCTGACTCT -ACGGAATACTCGGAAGCTAGTCCT -ACGGAATACTCGGAAGCTTAAGCC -ACGGAATACTCGGAAGCTATAGCC -ACGGAATACTCGGAAGCTTAACCG -ACGGAATACTCGGAAGCTATGCCA -ACGGAATACTCGACGAGTGGAAAC -ACGGAATACTCGACGAGTAACACC -ACGGAATACTCGACGAGTATCGAG -ACGGAATACTCGACGAGTCTCCTT -ACGGAATACTCGACGAGTCCTGTT -ACGGAATACTCGACGAGTCGGTTT -ACGGAATACTCGACGAGTGTGGTT -ACGGAATACTCGACGAGTGCCTTT -ACGGAATACTCGACGAGTGGTCTT -ACGGAATACTCGACGAGTACGCTT -ACGGAATACTCGACGAGTAGCGTT -ACGGAATACTCGACGAGTTTCGTC -ACGGAATACTCGACGAGTTCTCTC -ACGGAATACTCGACGAGTTGGATC -ACGGAATACTCGACGAGTCACTTC -ACGGAATACTCGACGAGTGTACTC -ACGGAATACTCGACGAGTGATGTC -ACGGAATACTCGACGAGTACAGTC -ACGGAATACTCGACGAGTTTGCTG -ACGGAATACTCGACGAGTTCCATG -ACGGAATACTCGACGAGTTGTGTG -ACGGAATACTCGACGAGTCTAGTG -ACGGAATACTCGACGAGTCATCTG -ACGGAATACTCGACGAGTGAGTTG -ACGGAATACTCGACGAGTAGACTG -ACGGAATACTCGACGAGTTCGGTA -ACGGAATACTCGACGAGTTGCCTA -ACGGAATACTCGACGAGTCCACTA -ACGGAATACTCGACGAGTGGAGTA -ACGGAATACTCGACGAGTTCGTCT -ACGGAATACTCGACGAGTTGCACT -ACGGAATACTCGACGAGTCTGACT -ACGGAATACTCGACGAGTCAACCT -ACGGAATACTCGACGAGTGCTACT -ACGGAATACTCGACGAGTGGATCT -ACGGAATACTCGACGAGTAAGGCT -ACGGAATACTCGACGAGTTCAACC -ACGGAATACTCGACGAGTTGTTCC -ACGGAATACTCGACGAGTATTCCC -ACGGAATACTCGACGAGTTTCTCG -ACGGAATACTCGACGAGTTAGACG -ACGGAATACTCGACGAGTGTAACG -ACGGAATACTCGACGAGTACTTCG -ACGGAATACTCGACGAGTTACGCA -ACGGAATACTCGACGAGTCTTGCA -ACGGAATACTCGACGAGTCGAACA -ACGGAATACTCGACGAGTCAGTCA -ACGGAATACTCGACGAGTGATCCA -ACGGAATACTCGACGAGTACGACA -ACGGAATACTCGACGAGTAGCTCA -ACGGAATACTCGACGAGTTCACGT -ACGGAATACTCGACGAGTCGTAGT -ACGGAATACTCGACGAGTGTCAGT -ACGGAATACTCGACGAGTGAAGGT -ACGGAATACTCGACGAGTAACCGT -ACGGAATACTCGACGAGTTTGTGC -ACGGAATACTCGACGAGTCTAAGC -ACGGAATACTCGACGAGTACTAGC -ACGGAATACTCGACGAGTAGATGC -ACGGAATACTCGACGAGTTGAAGG -ACGGAATACTCGACGAGTCAATGG -ACGGAATACTCGACGAGTATGAGG -ACGGAATACTCGACGAGTAATGGG -ACGGAATACTCGACGAGTTCCTGA -ACGGAATACTCGACGAGTTAGCGA -ACGGAATACTCGACGAGTCACAGA -ACGGAATACTCGACGAGTGCAAGA -ACGGAATACTCGACGAGTGGTTGA -ACGGAATACTCGACGAGTTCCGAT -ACGGAATACTCGACGAGTTGGCAT -ACGGAATACTCGACGAGTCGAGAT -ACGGAATACTCGACGAGTTACCAC -ACGGAATACTCGACGAGTCAGAAC -ACGGAATACTCGACGAGTGTCTAC -ACGGAATACTCGACGAGTACGTAC -ACGGAATACTCGACGAGTAGTGAC -ACGGAATACTCGACGAGTCTGTAG -ACGGAATACTCGACGAGTCCTAAG -ACGGAATACTCGACGAGTGTTCAG -ACGGAATACTCGACGAGTGCATAG -ACGGAATACTCGACGAGTGACAAG -ACGGAATACTCGACGAGTAAGCAG -ACGGAATACTCGACGAGTCGTCAA -ACGGAATACTCGACGAGTGCTGAA -ACGGAATACTCGACGAGTAGTACG -ACGGAATACTCGACGAGTATCCGA -ACGGAATACTCGACGAGTATGGGA -ACGGAATACTCGACGAGTGTGCAA -ACGGAATACTCGACGAGTGAGGAA -ACGGAATACTCGACGAGTCAGGTA -ACGGAATACTCGACGAGTGACTCT -ACGGAATACTCGACGAGTAGTCCT -ACGGAATACTCGACGAGTTAAGCC -ACGGAATACTCGACGAGTATAGCC -ACGGAATACTCGACGAGTTAACCG -ACGGAATACTCGACGAGTATGCCA -ACGGAATACTCGCGAATCGGAAAC -ACGGAATACTCGCGAATCAACACC -ACGGAATACTCGCGAATCATCGAG -ACGGAATACTCGCGAATCCTCCTT -ACGGAATACTCGCGAATCCCTGTT -ACGGAATACTCGCGAATCCGGTTT -ACGGAATACTCGCGAATCGTGGTT -ACGGAATACTCGCGAATCGCCTTT -ACGGAATACTCGCGAATCGGTCTT -ACGGAATACTCGCGAATCACGCTT -ACGGAATACTCGCGAATCAGCGTT -ACGGAATACTCGCGAATCTTCGTC -ACGGAATACTCGCGAATCTCTCTC -ACGGAATACTCGCGAATCTGGATC -ACGGAATACTCGCGAATCCACTTC -ACGGAATACTCGCGAATCGTACTC -ACGGAATACTCGCGAATCGATGTC -ACGGAATACTCGCGAATCACAGTC -ACGGAATACTCGCGAATCTTGCTG -ACGGAATACTCGCGAATCTCCATG -ACGGAATACTCGCGAATCTGTGTG -ACGGAATACTCGCGAATCCTAGTG -ACGGAATACTCGCGAATCCATCTG -ACGGAATACTCGCGAATCGAGTTG -ACGGAATACTCGCGAATCAGACTG -ACGGAATACTCGCGAATCTCGGTA -ACGGAATACTCGCGAATCTGCCTA -ACGGAATACTCGCGAATCCCACTA -ACGGAATACTCGCGAATCGGAGTA -ACGGAATACTCGCGAATCTCGTCT -ACGGAATACTCGCGAATCTGCACT -ACGGAATACTCGCGAATCCTGACT -ACGGAATACTCGCGAATCCAACCT -ACGGAATACTCGCGAATCGCTACT -ACGGAATACTCGCGAATCGGATCT -ACGGAATACTCGCGAATCAAGGCT -ACGGAATACTCGCGAATCTCAACC -ACGGAATACTCGCGAATCTGTTCC -ACGGAATACTCGCGAATCATTCCC -ACGGAATACTCGCGAATCTTCTCG -ACGGAATACTCGCGAATCTAGACG -ACGGAATACTCGCGAATCGTAACG -ACGGAATACTCGCGAATCACTTCG -ACGGAATACTCGCGAATCTACGCA -ACGGAATACTCGCGAATCCTTGCA -ACGGAATACTCGCGAATCCGAACA -ACGGAATACTCGCGAATCCAGTCA -ACGGAATACTCGCGAATCGATCCA -ACGGAATACTCGCGAATCACGACA -ACGGAATACTCGCGAATCAGCTCA -ACGGAATACTCGCGAATCTCACGT -ACGGAATACTCGCGAATCCGTAGT -ACGGAATACTCGCGAATCGTCAGT -ACGGAATACTCGCGAATCGAAGGT -ACGGAATACTCGCGAATCAACCGT -ACGGAATACTCGCGAATCTTGTGC -ACGGAATACTCGCGAATCCTAAGC -ACGGAATACTCGCGAATCACTAGC -ACGGAATACTCGCGAATCAGATGC -ACGGAATACTCGCGAATCTGAAGG -ACGGAATACTCGCGAATCCAATGG -ACGGAATACTCGCGAATCATGAGG -ACGGAATACTCGCGAATCAATGGG -ACGGAATACTCGCGAATCTCCTGA -ACGGAATACTCGCGAATCTAGCGA -ACGGAATACTCGCGAATCCACAGA -ACGGAATACTCGCGAATCGCAAGA -ACGGAATACTCGCGAATCGGTTGA -ACGGAATACTCGCGAATCTCCGAT -ACGGAATACTCGCGAATCTGGCAT -ACGGAATACTCGCGAATCCGAGAT -ACGGAATACTCGCGAATCTACCAC -ACGGAATACTCGCGAATCCAGAAC -ACGGAATACTCGCGAATCGTCTAC -ACGGAATACTCGCGAATCACGTAC -ACGGAATACTCGCGAATCAGTGAC -ACGGAATACTCGCGAATCCTGTAG -ACGGAATACTCGCGAATCCCTAAG -ACGGAATACTCGCGAATCGTTCAG -ACGGAATACTCGCGAATCGCATAG -ACGGAATACTCGCGAATCGACAAG -ACGGAATACTCGCGAATCAAGCAG -ACGGAATACTCGCGAATCCGTCAA -ACGGAATACTCGCGAATCGCTGAA -ACGGAATACTCGCGAATCAGTACG -ACGGAATACTCGCGAATCATCCGA -ACGGAATACTCGCGAATCATGGGA -ACGGAATACTCGCGAATCGTGCAA -ACGGAATACTCGCGAATCGAGGAA -ACGGAATACTCGCGAATCCAGGTA -ACGGAATACTCGCGAATCGACTCT -ACGGAATACTCGCGAATCAGTCCT -ACGGAATACTCGCGAATCTAAGCC -ACGGAATACTCGCGAATCATAGCC -ACGGAATACTCGCGAATCTAACCG -ACGGAATACTCGCGAATCATGCCA -ACGGAATACTCGGGAATGGGAAAC -ACGGAATACTCGGGAATGAACACC -ACGGAATACTCGGGAATGATCGAG -ACGGAATACTCGGGAATGCTCCTT -ACGGAATACTCGGGAATGCCTGTT -ACGGAATACTCGGGAATGCGGTTT -ACGGAATACTCGGGAATGGTGGTT -ACGGAATACTCGGGAATGGCCTTT -ACGGAATACTCGGGAATGGGTCTT -ACGGAATACTCGGGAATGACGCTT -ACGGAATACTCGGGAATGAGCGTT -ACGGAATACTCGGGAATGTTCGTC -ACGGAATACTCGGGAATGTCTCTC -ACGGAATACTCGGGAATGTGGATC -ACGGAATACTCGGGAATGCACTTC -ACGGAATACTCGGGAATGGTACTC -ACGGAATACTCGGGAATGGATGTC -ACGGAATACTCGGGAATGACAGTC -ACGGAATACTCGGGAATGTTGCTG -ACGGAATACTCGGGAATGTCCATG -ACGGAATACTCGGGAATGTGTGTG -ACGGAATACTCGGGAATGCTAGTG -ACGGAATACTCGGGAATGCATCTG -ACGGAATACTCGGGAATGGAGTTG -ACGGAATACTCGGGAATGAGACTG -ACGGAATACTCGGGAATGTCGGTA -ACGGAATACTCGGGAATGTGCCTA -ACGGAATACTCGGGAATGCCACTA -ACGGAATACTCGGGAATGGGAGTA -ACGGAATACTCGGGAATGTCGTCT -ACGGAATACTCGGGAATGTGCACT -ACGGAATACTCGGGAATGCTGACT -ACGGAATACTCGGGAATGCAACCT -ACGGAATACTCGGGAATGGCTACT -ACGGAATACTCGGGAATGGGATCT -ACGGAATACTCGGGAATGAAGGCT -ACGGAATACTCGGGAATGTCAACC -ACGGAATACTCGGGAATGTGTTCC -ACGGAATACTCGGGAATGATTCCC -ACGGAATACTCGGGAATGTTCTCG -ACGGAATACTCGGGAATGTAGACG -ACGGAATACTCGGGAATGGTAACG -ACGGAATACTCGGGAATGACTTCG -ACGGAATACTCGGGAATGTACGCA -ACGGAATACTCGGGAATGCTTGCA -ACGGAATACTCGGGAATGCGAACA -ACGGAATACTCGGGAATGCAGTCA -ACGGAATACTCGGGAATGGATCCA -ACGGAATACTCGGGAATGACGACA -ACGGAATACTCGGGAATGAGCTCA -ACGGAATACTCGGGAATGTCACGT -ACGGAATACTCGGGAATGCGTAGT -ACGGAATACTCGGGAATGGTCAGT -ACGGAATACTCGGGAATGGAAGGT -ACGGAATACTCGGGAATGAACCGT -ACGGAATACTCGGGAATGTTGTGC -ACGGAATACTCGGGAATGCTAAGC -ACGGAATACTCGGGAATGACTAGC -ACGGAATACTCGGGAATGAGATGC -ACGGAATACTCGGGAATGTGAAGG -ACGGAATACTCGGGAATGCAATGG -ACGGAATACTCGGGAATGATGAGG -ACGGAATACTCGGGAATGAATGGG -ACGGAATACTCGGGAATGTCCTGA -ACGGAATACTCGGGAATGTAGCGA -ACGGAATACTCGGGAATGCACAGA -ACGGAATACTCGGGAATGGCAAGA -ACGGAATACTCGGGAATGGGTTGA -ACGGAATACTCGGGAATGTCCGAT -ACGGAATACTCGGGAATGTGGCAT -ACGGAATACTCGGGAATGCGAGAT -ACGGAATACTCGGGAATGTACCAC -ACGGAATACTCGGGAATGCAGAAC -ACGGAATACTCGGGAATGGTCTAC -ACGGAATACTCGGGAATGACGTAC -ACGGAATACTCGGGAATGAGTGAC -ACGGAATACTCGGGAATGCTGTAG -ACGGAATACTCGGGAATGCCTAAG -ACGGAATACTCGGGAATGGTTCAG -ACGGAATACTCGGGAATGGCATAG -ACGGAATACTCGGGAATGGACAAG -ACGGAATACTCGGGAATGAAGCAG -ACGGAATACTCGGGAATGCGTCAA -ACGGAATACTCGGGAATGGCTGAA -ACGGAATACTCGGGAATGAGTACG -ACGGAATACTCGGGAATGATCCGA -ACGGAATACTCGGGAATGATGGGA -ACGGAATACTCGGGAATGGTGCAA -ACGGAATACTCGGGAATGGAGGAA -ACGGAATACTCGGGAATGCAGGTA -ACGGAATACTCGGGAATGGACTCT -ACGGAATACTCGGGAATGAGTCCT -ACGGAATACTCGGGAATGTAAGCC -ACGGAATACTCGGGAATGATAGCC -ACGGAATACTCGGGAATGTAACCG -ACGGAATACTCGGGAATGATGCCA -ACGGAATACTCGCAAGTGGGAAAC -ACGGAATACTCGCAAGTGAACACC -ACGGAATACTCGCAAGTGATCGAG -ACGGAATACTCGCAAGTGCTCCTT -ACGGAATACTCGCAAGTGCCTGTT -ACGGAATACTCGCAAGTGCGGTTT -ACGGAATACTCGCAAGTGGTGGTT -ACGGAATACTCGCAAGTGGCCTTT -ACGGAATACTCGCAAGTGGGTCTT -ACGGAATACTCGCAAGTGACGCTT -ACGGAATACTCGCAAGTGAGCGTT -ACGGAATACTCGCAAGTGTTCGTC -ACGGAATACTCGCAAGTGTCTCTC -ACGGAATACTCGCAAGTGTGGATC -ACGGAATACTCGCAAGTGCACTTC -ACGGAATACTCGCAAGTGGTACTC -ACGGAATACTCGCAAGTGGATGTC -ACGGAATACTCGCAAGTGACAGTC -ACGGAATACTCGCAAGTGTTGCTG -ACGGAATACTCGCAAGTGTCCATG -ACGGAATACTCGCAAGTGTGTGTG -ACGGAATACTCGCAAGTGCTAGTG -ACGGAATACTCGCAAGTGCATCTG -ACGGAATACTCGCAAGTGGAGTTG -ACGGAATACTCGCAAGTGAGACTG -ACGGAATACTCGCAAGTGTCGGTA -ACGGAATACTCGCAAGTGTGCCTA -ACGGAATACTCGCAAGTGCCACTA -ACGGAATACTCGCAAGTGGGAGTA -ACGGAATACTCGCAAGTGTCGTCT -ACGGAATACTCGCAAGTGTGCACT -ACGGAATACTCGCAAGTGCTGACT -ACGGAATACTCGCAAGTGCAACCT -ACGGAATACTCGCAAGTGGCTACT -ACGGAATACTCGCAAGTGGGATCT -ACGGAATACTCGCAAGTGAAGGCT -ACGGAATACTCGCAAGTGTCAACC -ACGGAATACTCGCAAGTGTGTTCC -ACGGAATACTCGCAAGTGATTCCC -ACGGAATACTCGCAAGTGTTCTCG -ACGGAATACTCGCAAGTGTAGACG -ACGGAATACTCGCAAGTGGTAACG -ACGGAATACTCGCAAGTGACTTCG -ACGGAATACTCGCAAGTGTACGCA -ACGGAATACTCGCAAGTGCTTGCA -ACGGAATACTCGCAAGTGCGAACA -ACGGAATACTCGCAAGTGCAGTCA -ACGGAATACTCGCAAGTGGATCCA -ACGGAATACTCGCAAGTGACGACA -ACGGAATACTCGCAAGTGAGCTCA -ACGGAATACTCGCAAGTGTCACGT -ACGGAATACTCGCAAGTGCGTAGT -ACGGAATACTCGCAAGTGGTCAGT -ACGGAATACTCGCAAGTGGAAGGT -ACGGAATACTCGCAAGTGAACCGT -ACGGAATACTCGCAAGTGTTGTGC -ACGGAATACTCGCAAGTGCTAAGC -ACGGAATACTCGCAAGTGACTAGC -ACGGAATACTCGCAAGTGAGATGC -ACGGAATACTCGCAAGTGTGAAGG -ACGGAATACTCGCAAGTGCAATGG -ACGGAATACTCGCAAGTGATGAGG -ACGGAATACTCGCAAGTGAATGGG -ACGGAATACTCGCAAGTGTCCTGA -ACGGAATACTCGCAAGTGTAGCGA -ACGGAATACTCGCAAGTGCACAGA -ACGGAATACTCGCAAGTGGCAAGA -ACGGAATACTCGCAAGTGGGTTGA -ACGGAATACTCGCAAGTGTCCGAT -ACGGAATACTCGCAAGTGTGGCAT -ACGGAATACTCGCAAGTGCGAGAT -ACGGAATACTCGCAAGTGTACCAC -ACGGAATACTCGCAAGTGCAGAAC -ACGGAATACTCGCAAGTGGTCTAC -ACGGAATACTCGCAAGTGACGTAC -ACGGAATACTCGCAAGTGAGTGAC -ACGGAATACTCGCAAGTGCTGTAG -ACGGAATACTCGCAAGTGCCTAAG -ACGGAATACTCGCAAGTGGTTCAG -ACGGAATACTCGCAAGTGGCATAG -ACGGAATACTCGCAAGTGGACAAG -ACGGAATACTCGCAAGTGAAGCAG -ACGGAATACTCGCAAGTGCGTCAA -ACGGAATACTCGCAAGTGGCTGAA -ACGGAATACTCGCAAGTGAGTACG -ACGGAATACTCGCAAGTGATCCGA -ACGGAATACTCGCAAGTGATGGGA -ACGGAATACTCGCAAGTGGTGCAA -ACGGAATACTCGCAAGTGGAGGAA -ACGGAATACTCGCAAGTGCAGGTA -ACGGAATACTCGCAAGTGGACTCT -ACGGAATACTCGCAAGTGAGTCCT -ACGGAATACTCGCAAGTGTAAGCC -ACGGAATACTCGCAAGTGATAGCC -ACGGAATACTCGCAAGTGTAACCG -ACGGAATACTCGCAAGTGATGCCA -ACGGAATACTCGGAAGAGGGAAAC -ACGGAATACTCGGAAGAGAACACC -ACGGAATACTCGGAAGAGATCGAG -ACGGAATACTCGGAAGAGCTCCTT -ACGGAATACTCGGAAGAGCCTGTT -ACGGAATACTCGGAAGAGCGGTTT -ACGGAATACTCGGAAGAGGTGGTT -ACGGAATACTCGGAAGAGGCCTTT -ACGGAATACTCGGAAGAGGGTCTT -ACGGAATACTCGGAAGAGACGCTT -ACGGAATACTCGGAAGAGAGCGTT -ACGGAATACTCGGAAGAGTTCGTC -ACGGAATACTCGGAAGAGTCTCTC -ACGGAATACTCGGAAGAGTGGATC -ACGGAATACTCGGAAGAGCACTTC -ACGGAATACTCGGAAGAGGTACTC -ACGGAATACTCGGAAGAGGATGTC -ACGGAATACTCGGAAGAGACAGTC -ACGGAATACTCGGAAGAGTTGCTG -ACGGAATACTCGGAAGAGTCCATG -ACGGAATACTCGGAAGAGTGTGTG -ACGGAATACTCGGAAGAGCTAGTG -ACGGAATACTCGGAAGAGCATCTG -ACGGAATACTCGGAAGAGGAGTTG -ACGGAATACTCGGAAGAGAGACTG -ACGGAATACTCGGAAGAGTCGGTA -ACGGAATACTCGGAAGAGTGCCTA -ACGGAATACTCGGAAGAGCCACTA -ACGGAATACTCGGAAGAGGGAGTA -ACGGAATACTCGGAAGAGTCGTCT -ACGGAATACTCGGAAGAGTGCACT -ACGGAATACTCGGAAGAGCTGACT -ACGGAATACTCGGAAGAGCAACCT -ACGGAATACTCGGAAGAGGCTACT -ACGGAATACTCGGAAGAGGGATCT -ACGGAATACTCGGAAGAGAAGGCT -ACGGAATACTCGGAAGAGTCAACC -ACGGAATACTCGGAAGAGTGTTCC -ACGGAATACTCGGAAGAGATTCCC -ACGGAATACTCGGAAGAGTTCTCG -ACGGAATACTCGGAAGAGTAGACG -ACGGAATACTCGGAAGAGGTAACG -ACGGAATACTCGGAAGAGACTTCG -ACGGAATACTCGGAAGAGTACGCA -ACGGAATACTCGGAAGAGCTTGCA -ACGGAATACTCGGAAGAGCGAACA -ACGGAATACTCGGAAGAGCAGTCA -ACGGAATACTCGGAAGAGGATCCA -ACGGAATACTCGGAAGAGACGACA -ACGGAATACTCGGAAGAGAGCTCA -ACGGAATACTCGGAAGAGTCACGT -ACGGAATACTCGGAAGAGCGTAGT -ACGGAATACTCGGAAGAGGTCAGT -ACGGAATACTCGGAAGAGGAAGGT -ACGGAATACTCGGAAGAGAACCGT -ACGGAATACTCGGAAGAGTTGTGC -ACGGAATACTCGGAAGAGCTAAGC -ACGGAATACTCGGAAGAGACTAGC -ACGGAATACTCGGAAGAGAGATGC -ACGGAATACTCGGAAGAGTGAAGG -ACGGAATACTCGGAAGAGCAATGG -ACGGAATACTCGGAAGAGATGAGG -ACGGAATACTCGGAAGAGAATGGG -ACGGAATACTCGGAAGAGTCCTGA -ACGGAATACTCGGAAGAGTAGCGA -ACGGAATACTCGGAAGAGCACAGA -ACGGAATACTCGGAAGAGGCAAGA -ACGGAATACTCGGAAGAGGGTTGA -ACGGAATACTCGGAAGAGTCCGAT -ACGGAATACTCGGAAGAGTGGCAT -ACGGAATACTCGGAAGAGCGAGAT -ACGGAATACTCGGAAGAGTACCAC -ACGGAATACTCGGAAGAGCAGAAC -ACGGAATACTCGGAAGAGGTCTAC -ACGGAATACTCGGAAGAGACGTAC -ACGGAATACTCGGAAGAGAGTGAC -ACGGAATACTCGGAAGAGCTGTAG -ACGGAATACTCGGAAGAGCCTAAG -ACGGAATACTCGGAAGAGGTTCAG -ACGGAATACTCGGAAGAGGCATAG -ACGGAATACTCGGAAGAGGACAAG -ACGGAATACTCGGAAGAGAAGCAG -ACGGAATACTCGGAAGAGCGTCAA -ACGGAATACTCGGAAGAGGCTGAA -ACGGAATACTCGGAAGAGAGTACG -ACGGAATACTCGGAAGAGATCCGA -ACGGAATACTCGGAAGAGATGGGA -ACGGAATACTCGGAAGAGGTGCAA -ACGGAATACTCGGAAGAGGAGGAA -ACGGAATACTCGGAAGAGCAGGTA -ACGGAATACTCGGAAGAGGACTCT -ACGGAATACTCGGAAGAGAGTCCT -ACGGAATACTCGGAAGAGTAAGCC -ACGGAATACTCGGAAGAGATAGCC -ACGGAATACTCGGAAGAGTAACCG -ACGGAATACTCGGAAGAGATGCCA -ACGGAATACTCGGTACAGGGAAAC -ACGGAATACTCGGTACAGAACACC -ACGGAATACTCGGTACAGATCGAG -ACGGAATACTCGGTACAGCTCCTT -ACGGAATACTCGGTACAGCCTGTT -ACGGAATACTCGGTACAGCGGTTT -ACGGAATACTCGGTACAGGTGGTT -ACGGAATACTCGGTACAGGCCTTT -ACGGAATACTCGGTACAGGGTCTT -ACGGAATACTCGGTACAGACGCTT -ACGGAATACTCGGTACAGAGCGTT -ACGGAATACTCGGTACAGTTCGTC -ACGGAATACTCGGTACAGTCTCTC -ACGGAATACTCGGTACAGTGGATC -ACGGAATACTCGGTACAGCACTTC -ACGGAATACTCGGTACAGGTACTC -ACGGAATACTCGGTACAGGATGTC -ACGGAATACTCGGTACAGACAGTC -ACGGAATACTCGGTACAGTTGCTG -ACGGAATACTCGGTACAGTCCATG -ACGGAATACTCGGTACAGTGTGTG -ACGGAATACTCGGTACAGCTAGTG -ACGGAATACTCGGTACAGCATCTG -ACGGAATACTCGGTACAGGAGTTG -ACGGAATACTCGGTACAGAGACTG -ACGGAATACTCGGTACAGTCGGTA -ACGGAATACTCGGTACAGTGCCTA -ACGGAATACTCGGTACAGCCACTA -ACGGAATACTCGGTACAGGGAGTA -ACGGAATACTCGGTACAGTCGTCT -ACGGAATACTCGGTACAGTGCACT -ACGGAATACTCGGTACAGCTGACT -ACGGAATACTCGGTACAGCAACCT -ACGGAATACTCGGTACAGGCTACT -ACGGAATACTCGGTACAGGGATCT -ACGGAATACTCGGTACAGAAGGCT -ACGGAATACTCGGTACAGTCAACC -ACGGAATACTCGGTACAGTGTTCC -ACGGAATACTCGGTACAGATTCCC -ACGGAATACTCGGTACAGTTCTCG -ACGGAATACTCGGTACAGTAGACG -ACGGAATACTCGGTACAGGTAACG -ACGGAATACTCGGTACAGACTTCG -ACGGAATACTCGGTACAGTACGCA -ACGGAATACTCGGTACAGCTTGCA -ACGGAATACTCGGTACAGCGAACA -ACGGAATACTCGGTACAGCAGTCA -ACGGAATACTCGGTACAGGATCCA -ACGGAATACTCGGTACAGACGACA -ACGGAATACTCGGTACAGAGCTCA -ACGGAATACTCGGTACAGTCACGT -ACGGAATACTCGGTACAGCGTAGT -ACGGAATACTCGGTACAGGTCAGT -ACGGAATACTCGGTACAGGAAGGT -ACGGAATACTCGGTACAGAACCGT -ACGGAATACTCGGTACAGTTGTGC -ACGGAATACTCGGTACAGCTAAGC -ACGGAATACTCGGTACAGACTAGC -ACGGAATACTCGGTACAGAGATGC -ACGGAATACTCGGTACAGTGAAGG -ACGGAATACTCGGTACAGCAATGG -ACGGAATACTCGGTACAGATGAGG -ACGGAATACTCGGTACAGAATGGG -ACGGAATACTCGGTACAGTCCTGA -ACGGAATACTCGGTACAGTAGCGA -ACGGAATACTCGGTACAGCACAGA -ACGGAATACTCGGTACAGGCAAGA -ACGGAATACTCGGTACAGGGTTGA -ACGGAATACTCGGTACAGTCCGAT -ACGGAATACTCGGTACAGTGGCAT -ACGGAATACTCGGTACAGCGAGAT -ACGGAATACTCGGTACAGTACCAC -ACGGAATACTCGGTACAGCAGAAC -ACGGAATACTCGGTACAGGTCTAC -ACGGAATACTCGGTACAGACGTAC -ACGGAATACTCGGTACAGAGTGAC -ACGGAATACTCGGTACAGCTGTAG -ACGGAATACTCGGTACAGCCTAAG -ACGGAATACTCGGTACAGGTTCAG -ACGGAATACTCGGTACAGGCATAG -ACGGAATACTCGGTACAGGACAAG -ACGGAATACTCGGTACAGAAGCAG -ACGGAATACTCGGTACAGCGTCAA -ACGGAATACTCGGTACAGGCTGAA -ACGGAATACTCGGTACAGAGTACG -ACGGAATACTCGGTACAGATCCGA -ACGGAATACTCGGTACAGATGGGA -ACGGAATACTCGGTACAGGTGCAA -ACGGAATACTCGGTACAGGAGGAA -ACGGAATACTCGGTACAGCAGGTA -ACGGAATACTCGGTACAGGACTCT -ACGGAATACTCGGTACAGAGTCCT -ACGGAATACTCGGTACAGTAAGCC -ACGGAATACTCGGTACAGATAGCC -ACGGAATACTCGGTACAGTAACCG -ACGGAATACTCGGTACAGATGCCA -ACGGAATACTCGTCTGACGGAAAC -ACGGAATACTCGTCTGACAACACC -ACGGAATACTCGTCTGACATCGAG -ACGGAATACTCGTCTGACCTCCTT -ACGGAATACTCGTCTGACCCTGTT -ACGGAATACTCGTCTGACCGGTTT -ACGGAATACTCGTCTGACGTGGTT -ACGGAATACTCGTCTGACGCCTTT -ACGGAATACTCGTCTGACGGTCTT -ACGGAATACTCGTCTGACACGCTT -ACGGAATACTCGTCTGACAGCGTT -ACGGAATACTCGTCTGACTTCGTC -ACGGAATACTCGTCTGACTCTCTC -ACGGAATACTCGTCTGACTGGATC -ACGGAATACTCGTCTGACCACTTC -ACGGAATACTCGTCTGACGTACTC -ACGGAATACTCGTCTGACGATGTC -ACGGAATACTCGTCTGACACAGTC -ACGGAATACTCGTCTGACTTGCTG -ACGGAATACTCGTCTGACTCCATG -ACGGAATACTCGTCTGACTGTGTG -ACGGAATACTCGTCTGACCTAGTG -ACGGAATACTCGTCTGACCATCTG -ACGGAATACTCGTCTGACGAGTTG -ACGGAATACTCGTCTGACAGACTG -ACGGAATACTCGTCTGACTCGGTA -ACGGAATACTCGTCTGACTGCCTA -ACGGAATACTCGTCTGACCCACTA -ACGGAATACTCGTCTGACGGAGTA -ACGGAATACTCGTCTGACTCGTCT -ACGGAATACTCGTCTGACTGCACT -ACGGAATACTCGTCTGACCTGACT -ACGGAATACTCGTCTGACCAACCT -ACGGAATACTCGTCTGACGCTACT -ACGGAATACTCGTCTGACGGATCT -ACGGAATACTCGTCTGACAAGGCT -ACGGAATACTCGTCTGACTCAACC -ACGGAATACTCGTCTGACTGTTCC -ACGGAATACTCGTCTGACATTCCC -ACGGAATACTCGTCTGACTTCTCG -ACGGAATACTCGTCTGACTAGACG -ACGGAATACTCGTCTGACGTAACG -ACGGAATACTCGTCTGACACTTCG -ACGGAATACTCGTCTGACTACGCA -ACGGAATACTCGTCTGACCTTGCA -ACGGAATACTCGTCTGACCGAACA -ACGGAATACTCGTCTGACCAGTCA -ACGGAATACTCGTCTGACGATCCA -ACGGAATACTCGTCTGACACGACA -ACGGAATACTCGTCTGACAGCTCA -ACGGAATACTCGTCTGACTCACGT -ACGGAATACTCGTCTGACCGTAGT -ACGGAATACTCGTCTGACGTCAGT -ACGGAATACTCGTCTGACGAAGGT -ACGGAATACTCGTCTGACAACCGT -ACGGAATACTCGTCTGACTTGTGC -ACGGAATACTCGTCTGACCTAAGC -ACGGAATACTCGTCTGACACTAGC -ACGGAATACTCGTCTGACAGATGC -ACGGAATACTCGTCTGACTGAAGG -ACGGAATACTCGTCTGACCAATGG -ACGGAATACTCGTCTGACATGAGG -ACGGAATACTCGTCTGACAATGGG -ACGGAATACTCGTCTGACTCCTGA -ACGGAATACTCGTCTGACTAGCGA -ACGGAATACTCGTCTGACCACAGA -ACGGAATACTCGTCTGACGCAAGA -ACGGAATACTCGTCTGACGGTTGA -ACGGAATACTCGTCTGACTCCGAT -ACGGAATACTCGTCTGACTGGCAT -ACGGAATACTCGTCTGACCGAGAT -ACGGAATACTCGTCTGACTACCAC -ACGGAATACTCGTCTGACCAGAAC -ACGGAATACTCGTCTGACGTCTAC -ACGGAATACTCGTCTGACACGTAC -ACGGAATACTCGTCTGACAGTGAC -ACGGAATACTCGTCTGACCTGTAG -ACGGAATACTCGTCTGACCCTAAG -ACGGAATACTCGTCTGACGTTCAG -ACGGAATACTCGTCTGACGCATAG -ACGGAATACTCGTCTGACGACAAG -ACGGAATACTCGTCTGACAAGCAG -ACGGAATACTCGTCTGACCGTCAA -ACGGAATACTCGTCTGACGCTGAA -ACGGAATACTCGTCTGACAGTACG -ACGGAATACTCGTCTGACATCCGA -ACGGAATACTCGTCTGACATGGGA -ACGGAATACTCGTCTGACGTGCAA -ACGGAATACTCGTCTGACGAGGAA -ACGGAATACTCGTCTGACCAGGTA -ACGGAATACTCGTCTGACGACTCT -ACGGAATACTCGTCTGACAGTCCT -ACGGAATACTCGTCTGACTAAGCC -ACGGAATACTCGTCTGACATAGCC -ACGGAATACTCGTCTGACTAACCG -ACGGAATACTCGTCTGACATGCCA -ACGGAATACTCGCCTAGTGGAAAC -ACGGAATACTCGCCTAGTAACACC -ACGGAATACTCGCCTAGTATCGAG -ACGGAATACTCGCCTAGTCTCCTT -ACGGAATACTCGCCTAGTCCTGTT -ACGGAATACTCGCCTAGTCGGTTT -ACGGAATACTCGCCTAGTGTGGTT -ACGGAATACTCGCCTAGTGCCTTT -ACGGAATACTCGCCTAGTGGTCTT -ACGGAATACTCGCCTAGTACGCTT -ACGGAATACTCGCCTAGTAGCGTT -ACGGAATACTCGCCTAGTTTCGTC -ACGGAATACTCGCCTAGTTCTCTC -ACGGAATACTCGCCTAGTTGGATC -ACGGAATACTCGCCTAGTCACTTC -ACGGAATACTCGCCTAGTGTACTC -ACGGAATACTCGCCTAGTGATGTC -ACGGAATACTCGCCTAGTACAGTC -ACGGAATACTCGCCTAGTTTGCTG -ACGGAATACTCGCCTAGTTCCATG -ACGGAATACTCGCCTAGTTGTGTG -ACGGAATACTCGCCTAGTCTAGTG -ACGGAATACTCGCCTAGTCATCTG -ACGGAATACTCGCCTAGTGAGTTG -ACGGAATACTCGCCTAGTAGACTG -ACGGAATACTCGCCTAGTTCGGTA -ACGGAATACTCGCCTAGTTGCCTA -ACGGAATACTCGCCTAGTCCACTA -ACGGAATACTCGCCTAGTGGAGTA -ACGGAATACTCGCCTAGTTCGTCT -ACGGAATACTCGCCTAGTTGCACT -ACGGAATACTCGCCTAGTCTGACT -ACGGAATACTCGCCTAGTCAACCT -ACGGAATACTCGCCTAGTGCTACT -ACGGAATACTCGCCTAGTGGATCT -ACGGAATACTCGCCTAGTAAGGCT -ACGGAATACTCGCCTAGTTCAACC -ACGGAATACTCGCCTAGTTGTTCC -ACGGAATACTCGCCTAGTATTCCC -ACGGAATACTCGCCTAGTTTCTCG -ACGGAATACTCGCCTAGTTAGACG -ACGGAATACTCGCCTAGTGTAACG -ACGGAATACTCGCCTAGTACTTCG -ACGGAATACTCGCCTAGTTACGCA -ACGGAATACTCGCCTAGTCTTGCA -ACGGAATACTCGCCTAGTCGAACA -ACGGAATACTCGCCTAGTCAGTCA -ACGGAATACTCGCCTAGTGATCCA -ACGGAATACTCGCCTAGTACGACA -ACGGAATACTCGCCTAGTAGCTCA -ACGGAATACTCGCCTAGTTCACGT -ACGGAATACTCGCCTAGTCGTAGT -ACGGAATACTCGCCTAGTGTCAGT -ACGGAATACTCGCCTAGTGAAGGT -ACGGAATACTCGCCTAGTAACCGT -ACGGAATACTCGCCTAGTTTGTGC -ACGGAATACTCGCCTAGTCTAAGC -ACGGAATACTCGCCTAGTACTAGC -ACGGAATACTCGCCTAGTAGATGC -ACGGAATACTCGCCTAGTTGAAGG -ACGGAATACTCGCCTAGTCAATGG -ACGGAATACTCGCCTAGTATGAGG -ACGGAATACTCGCCTAGTAATGGG -ACGGAATACTCGCCTAGTTCCTGA -ACGGAATACTCGCCTAGTTAGCGA -ACGGAATACTCGCCTAGTCACAGA -ACGGAATACTCGCCTAGTGCAAGA -ACGGAATACTCGCCTAGTGGTTGA -ACGGAATACTCGCCTAGTTCCGAT -ACGGAATACTCGCCTAGTTGGCAT -ACGGAATACTCGCCTAGTCGAGAT -ACGGAATACTCGCCTAGTTACCAC -ACGGAATACTCGCCTAGTCAGAAC -ACGGAATACTCGCCTAGTGTCTAC -ACGGAATACTCGCCTAGTACGTAC -ACGGAATACTCGCCTAGTAGTGAC -ACGGAATACTCGCCTAGTCTGTAG -ACGGAATACTCGCCTAGTCCTAAG -ACGGAATACTCGCCTAGTGTTCAG -ACGGAATACTCGCCTAGTGCATAG -ACGGAATACTCGCCTAGTGACAAG -ACGGAATACTCGCCTAGTAAGCAG -ACGGAATACTCGCCTAGTCGTCAA -ACGGAATACTCGCCTAGTGCTGAA -ACGGAATACTCGCCTAGTAGTACG -ACGGAATACTCGCCTAGTATCCGA -ACGGAATACTCGCCTAGTATGGGA -ACGGAATACTCGCCTAGTGTGCAA -ACGGAATACTCGCCTAGTGAGGAA -ACGGAATACTCGCCTAGTCAGGTA -ACGGAATACTCGCCTAGTGACTCT -ACGGAATACTCGCCTAGTAGTCCT -ACGGAATACTCGCCTAGTTAAGCC -ACGGAATACTCGCCTAGTATAGCC -ACGGAATACTCGCCTAGTTAACCG -ACGGAATACTCGCCTAGTATGCCA -ACGGAATACTCGGCCTAAGGAAAC -ACGGAATACTCGGCCTAAAACACC -ACGGAATACTCGGCCTAAATCGAG -ACGGAATACTCGGCCTAACTCCTT -ACGGAATACTCGGCCTAACCTGTT -ACGGAATACTCGGCCTAACGGTTT -ACGGAATACTCGGCCTAAGTGGTT -ACGGAATACTCGGCCTAAGCCTTT -ACGGAATACTCGGCCTAAGGTCTT -ACGGAATACTCGGCCTAAACGCTT -ACGGAATACTCGGCCTAAAGCGTT -ACGGAATACTCGGCCTAATTCGTC -ACGGAATACTCGGCCTAATCTCTC -ACGGAATACTCGGCCTAATGGATC -ACGGAATACTCGGCCTAACACTTC -ACGGAATACTCGGCCTAAGTACTC -ACGGAATACTCGGCCTAAGATGTC -ACGGAATACTCGGCCTAAACAGTC -ACGGAATACTCGGCCTAATTGCTG -ACGGAATACTCGGCCTAATCCATG -ACGGAATACTCGGCCTAATGTGTG -ACGGAATACTCGGCCTAACTAGTG -ACGGAATACTCGGCCTAACATCTG -ACGGAATACTCGGCCTAAGAGTTG -ACGGAATACTCGGCCTAAAGACTG -ACGGAATACTCGGCCTAATCGGTA -ACGGAATACTCGGCCTAATGCCTA -ACGGAATACTCGGCCTAACCACTA -ACGGAATACTCGGCCTAAGGAGTA -ACGGAATACTCGGCCTAATCGTCT -ACGGAATACTCGGCCTAATGCACT -ACGGAATACTCGGCCTAACTGACT -ACGGAATACTCGGCCTAACAACCT -ACGGAATACTCGGCCTAAGCTACT -ACGGAATACTCGGCCTAAGGATCT -ACGGAATACTCGGCCTAAAAGGCT -ACGGAATACTCGGCCTAATCAACC -ACGGAATACTCGGCCTAATGTTCC -ACGGAATACTCGGCCTAAATTCCC -ACGGAATACTCGGCCTAATTCTCG -ACGGAATACTCGGCCTAATAGACG -ACGGAATACTCGGCCTAAGTAACG -ACGGAATACTCGGCCTAAACTTCG -ACGGAATACTCGGCCTAATACGCA -ACGGAATACTCGGCCTAACTTGCA -ACGGAATACTCGGCCTAACGAACA -ACGGAATACTCGGCCTAACAGTCA -ACGGAATACTCGGCCTAAGATCCA -ACGGAATACTCGGCCTAAACGACA -ACGGAATACTCGGCCTAAAGCTCA -ACGGAATACTCGGCCTAATCACGT -ACGGAATACTCGGCCTAACGTAGT -ACGGAATACTCGGCCTAAGTCAGT -ACGGAATACTCGGCCTAAGAAGGT -ACGGAATACTCGGCCTAAAACCGT -ACGGAATACTCGGCCTAATTGTGC -ACGGAATACTCGGCCTAACTAAGC -ACGGAATACTCGGCCTAAACTAGC -ACGGAATACTCGGCCTAAAGATGC -ACGGAATACTCGGCCTAATGAAGG -ACGGAATACTCGGCCTAACAATGG -ACGGAATACTCGGCCTAAATGAGG -ACGGAATACTCGGCCTAAAATGGG -ACGGAATACTCGGCCTAATCCTGA -ACGGAATACTCGGCCTAATAGCGA -ACGGAATACTCGGCCTAACACAGA -ACGGAATACTCGGCCTAAGCAAGA -ACGGAATACTCGGCCTAAGGTTGA -ACGGAATACTCGGCCTAATCCGAT -ACGGAATACTCGGCCTAATGGCAT -ACGGAATACTCGGCCTAACGAGAT -ACGGAATACTCGGCCTAATACCAC -ACGGAATACTCGGCCTAACAGAAC -ACGGAATACTCGGCCTAAGTCTAC -ACGGAATACTCGGCCTAAACGTAC -ACGGAATACTCGGCCTAAAGTGAC -ACGGAATACTCGGCCTAACTGTAG -ACGGAATACTCGGCCTAACCTAAG -ACGGAATACTCGGCCTAAGTTCAG -ACGGAATACTCGGCCTAAGCATAG -ACGGAATACTCGGCCTAAGACAAG -ACGGAATACTCGGCCTAAAAGCAG -ACGGAATACTCGGCCTAACGTCAA -ACGGAATACTCGGCCTAAGCTGAA -ACGGAATACTCGGCCTAAAGTACG -ACGGAATACTCGGCCTAAATCCGA -ACGGAATACTCGGCCTAAATGGGA -ACGGAATACTCGGCCTAAGTGCAA -ACGGAATACTCGGCCTAAGAGGAA -ACGGAATACTCGGCCTAACAGGTA -ACGGAATACTCGGCCTAAGACTCT -ACGGAATACTCGGCCTAAAGTCCT -ACGGAATACTCGGCCTAATAAGCC -ACGGAATACTCGGCCTAAATAGCC -ACGGAATACTCGGCCTAATAACCG -ACGGAATACTCGGCCTAAATGCCA -ACGGAATACTCGGCCATAGGAAAC -ACGGAATACTCGGCCATAAACACC -ACGGAATACTCGGCCATAATCGAG -ACGGAATACTCGGCCATACTCCTT -ACGGAATACTCGGCCATACCTGTT -ACGGAATACTCGGCCATACGGTTT -ACGGAATACTCGGCCATAGTGGTT -ACGGAATACTCGGCCATAGCCTTT -ACGGAATACTCGGCCATAGGTCTT -ACGGAATACTCGGCCATAACGCTT -ACGGAATACTCGGCCATAAGCGTT -ACGGAATACTCGGCCATATTCGTC -ACGGAATACTCGGCCATATCTCTC -ACGGAATACTCGGCCATATGGATC -ACGGAATACTCGGCCATACACTTC -ACGGAATACTCGGCCATAGTACTC -ACGGAATACTCGGCCATAGATGTC -ACGGAATACTCGGCCATAACAGTC -ACGGAATACTCGGCCATATTGCTG -ACGGAATACTCGGCCATATCCATG -ACGGAATACTCGGCCATATGTGTG -ACGGAATACTCGGCCATACTAGTG -ACGGAATACTCGGCCATACATCTG -ACGGAATACTCGGCCATAGAGTTG -ACGGAATACTCGGCCATAAGACTG -ACGGAATACTCGGCCATATCGGTA -ACGGAATACTCGGCCATATGCCTA -ACGGAATACTCGGCCATACCACTA -ACGGAATACTCGGCCATAGGAGTA -ACGGAATACTCGGCCATATCGTCT -ACGGAATACTCGGCCATATGCACT -ACGGAATACTCGGCCATACTGACT -ACGGAATACTCGGCCATACAACCT -ACGGAATACTCGGCCATAGCTACT -ACGGAATACTCGGCCATAGGATCT -ACGGAATACTCGGCCATAAAGGCT -ACGGAATACTCGGCCATATCAACC -ACGGAATACTCGGCCATATGTTCC -ACGGAATACTCGGCCATAATTCCC -ACGGAATACTCGGCCATATTCTCG -ACGGAATACTCGGCCATATAGACG -ACGGAATACTCGGCCATAGTAACG -ACGGAATACTCGGCCATAACTTCG -ACGGAATACTCGGCCATATACGCA -ACGGAATACTCGGCCATACTTGCA -ACGGAATACTCGGCCATACGAACA -ACGGAATACTCGGCCATACAGTCA -ACGGAATACTCGGCCATAGATCCA -ACGGAATACTCGGCCATAACGACA -ACGGAATACTCGGCCATAAGCTCA -ACGGAATACTCGGCCATATCACGT -ACGGAATACTCGGCCATACGTAGT -ACGGAATACTCGGCCATAGTCAGT -ACGGAATACTCGGCCATAGAAGGT -ACGGAATACTCGGCCATAAACCGT -ACGGAATACTCGGCCATATTGTGC -ACGGAATACTCGGCCATACTAAGC -ACGGAATACTCGGCCATAACTAGC -ACGGAATACTCGGCCATAAGATGC -ACGGAATACTCGGCCATATGAAGG -ACGGAATACTCGGCCATACAATGG -ACGGAATACTCGGCCATAATGAGG -ACGGAATACTCGGCCATAAATGGG -ACGGAATACTCGGCCATATCCTGA -ACGGAATACTCGGCCATATAGCGA -ACGGAATACTCGGCCATACACAGA -ACGGAATACTCGGCCATAGCAAGA -ACGGAATACTCGGCCATAGGTTGA -ACGGAATACTCGGCCATATCCGAT -ACGGAATACTCGGCCATATGGCAT -ACGGAATACTCGGCCATACGAGAT -ACGGAATACTCGGCCATATACCAC -ACGGAATACTCGGCCATACAGAAC -ACGGAATACTCGGCCATAGTCTAC -ACGGAATACTCGGCCATAACGTAC -ACGGAATACTCGGCCATAAGTGAC -ACGGAATACTCGGCCATACTGTAG -ACGGAATACTCGGCCATACCTAAG -ACGGAATACTCGGCCATAGTTCAG -ACGGAATACTCGGCCATAGCATAG -ACGGAATACTCGGCCATAGACAAG -ACGGAATACTCGGCCATAAAGCAG -ACGGAATACTCGGCCATACGTCAA -ACGGAATACTCGGCCATAGCTGAA -ACGGAATACTCGGCCATAAGTACG -ACGGAATACTCGGCCATAATCCGA -ACGGAATACTCGGCCATAATGGGA -ACGGAATACTCGGCCATAGTGCAA -ACGGAATACTCGGCCATAGAGGAA -ACGGAATACTCGGCCATACAGGTA -ACGGAATACTCGGCCATAGACTCT -ACGGAATACTCGGCCATAAGTCCT -ACGGAATACTCGGCCATATAAGCC -ACGGAATACTCGGCCATAATAGCC -ACGGAATACTCGGCCATATAACCG -ACGGAATACTCGGCCATAATGCCA -ACGGAATACTCGCCGTAAGGAAAC -ACGGAATACTCGCCGTAAAACACC -ACGGAATACTCGCCGTAAATCGAG -ACGGAATACTCGCCGTAACTCCTT -ACGGAATACTCGCCGTAACCTGTT -ACGGAATACTCGCCGTAACGGTTT -ACGGAATACTCGCCGTAAGTGGTT -ACGGAATACTCGCCGTAAGCCTTT -ACGGAATACTCGCCGTAAGGTCTT -ACGGAATACTCGCCGTAAACGCTT -ACGGAATACTCGCCGTAAAGCGTT -ACGGAATACTCGCCGTAATTCGTC -ACGGAATACTCGCCGTAATCTCTC -ACGGAATACTCGCCGTAATGGATC -ACGGAATACTCGCCGTAACACTTC -ACGGAATACTCGCCGTAAGTACTC -ACGGAATACTCGCCGTAAGATGTC -ACGGAATACTCGCCGTAAACAGTC -ACGGAATACTCGCCGTAATTGCTG -ACGGAATACTCGCCGTAATCCATG -ACGGAATACTCGCCGTAATGTGTG -ACGGAATACTCGCCGTAACTAGTG -ACGGAATACTCGCCGTAACATCTG -ACGGAATACTCGCCGTAAGAGTTG -ACGGAATACTCGCCGTAAAGACTG -ACGGAATACTCGCCGTAATCGGTA -ACGGAATACTCGCCGTAATGCCTA -ACGGAATACTCGCCGTAACCACTA -ACGGAATACTCGCCGTAAGGAGTA -ACGGAATACTCGCCGTAATCGTCT -ACGGAATACTCGCCGTAATGCACT -ACGGAATACTCGCCGTAACTGACT -ACGGAATACTCGCCGTAACAACCT -ACGGAATACTCGCCGTAAGCTACT -ACGGAATACTCGCCGTAAGGATCT -ACGGAATACTCGCCGTAAAAGGCT -ACGGAATACTCGCCGTAATCAACC -ACGGAATACTCGCCGTAATGTTCC -ACGGAATACTCGCCGTAAATTCCC -ACGGAATACTCGCCGTAATTCTCG -ACGGAATACTCGCCGTAATAGACG -ACGGAATACTCGCCGTAAGTAACG -ACGGAATACTCGCCGTAAACTTCG -ACGGAATACTCGCCGTAATACGCA -ACGGAATACTCGCCGTAACTTGCA -ACGGAATACTCGCCGTAACGAACA -ACGGAATACTCGCCGTAACAGTCA -ACGGAATACTCGCCGTAAGATCCA -ACGGAATACTCGCCGTAAACGACA -ACGGAATACTCGCCGTAAAGCTCA -ACGGAATACTCGCCGTAATCACGT -ACGGAATACTCGCCGTAACGTAGT -ACGGAATACTCGCCGTAAGTCAGT -ACGGAATACTCGCCGTAAGAAGGT -ACGGAATACTCGCCGTAAAACCGT -ACGGAATACTCGCCGTAATTGTGC -ACGGAATACTCGCCGTAACTAAGC -ACGGAATACTCGCCGTAAACTAGC -ACGGAATACTCGCCGTAAAGATGC -ACGGAATACTCGCCGTAATGAAGG -ACGGAATACTCGCCGTAACAATGG -ACGGAATACTCGCCGTAAATGAGG -ACGGAATACTCGCCGTAAAATGGG -ACGGAATACTCGCCGTAATCCTGA -ACGGAATACTCGCCGTAATAGCGA -ACGGAATACTCGCCGTAACACAGA -ACGGAATACTCGCCGTAAGCAAGA -ACGGAATACTCGCCGTAAGGTTGA -ACGGAATACTCGCCGTAATCCGAT -ACGGAATACTCGCCGTAATGGCAT -ACGGAATACTCGCCGTAACGAGAT -ACGGAATACTCGCCGTAATACCAC -ACGGAATACTCGCCGTAACAGAAC -ACGGAATACTCGCCGTAAGTCTAC -ACGGAATACTCGCCGTAAACGTAC -ACGGAATACTCGCCGTAAAGTGAC -ACGGAATACTCGCCGTAACTGTAG -ACGGAATACTCGCCGTAACCTAAG -ACGGAATACTCGCCGTAAGTTCAG -ACGGAATACTCGCCGTAAGCATAG -ACGGAATACTCGCCGTAAGACAAG -ACGGAATACTCGCCGTAAAAGCAG -ACGGAATACTCGCCGTAACGTCAA -ACGGAATACTCGCCGTAAGCTGAA -ACGGAATACTCGCCGTAAAGTACG -ACGGAATACTCGCCGTAAATCCGA -ACGGAATACTCGCCGTAAATGGGA -ACGGAATACTCGCCGTAAGTGCAA -ACGGAATACTCGCCGTAAGAGGAA -ACGGAATACTCGCCGTAACAGGTA -ACGGAATACTCGCCGTAAGACTCT -ACGGAATACTCGCCGTAAAGTCCT -ACGGAATACTCGCCGTAATAAGCC -ACGGAATACTCGCCGTAAATAGCC -ACGGAATACTCGCCGTAATAACCG -ACGGAATACTCGCCGTAAATGCCA -ACGGAATACTCGCCAATGGGAAAC -ACGGAATACTCGCCAATGAACACC -ACGGAATACTCGCCAATGATCGAG -ACGGAATACTCGCCAATGCTCCTT -ACGGAATACTCGCCAATGCCTGTT -ACGGAATACTCGCCAATGCGGTTT -ACGGAATACTCGCCAATGGTGGTT -ACGGAATACTCGCCAATGGCCTTT -ACGGAATACTCGCCAATGGGTCTT -ACGGAATACTCGCCAATGACGCTT -ACGGAATACTCGCCAATGAGCGTT -ACGGAATACTCGCCAATGTTCGTC -ACGGAATACTCGCCAATGTCTCTC -ACGGAATACTCGCCAATGTGGATC -ACGGAATACTCGCCAATGCACTTC -ACGGAATACTCGCCAATGGTACTC -ACGGAATACTCGCCAATGGATGTC -ACGGAATACTCGCCAATGACAGTC -ACGGAATACTCGCCAATGTTGCTG -ACGGAATACTCGCCAATGTCCATG -ACGGAATACTCGCCAATGTGTGTG -ACGGAATACTCGCCAATGCTAGTG -ACGGAATACTCGCCAATGCATCTG -ACGGAATACTCGCCAATGGAGTTG -ACGGAATACTCGCCAATGAGACTG -ACGGAATACTCGCCAATGTCGGTA -ACGGAATACTCGCCAATGTGCCTA -ACGGAATACTCGCCAATGCCACTA -ACGGAATACTCGCCAATGGGAGTA -ACGGAATACTCGCCAATGTCGTCT -ACGGAATACTCGCCAATGTGCACT -ACGGAATACTCGCCAATGCTGACT -ACGGAATACTCGCCAATGCAACCT -ACGGAATACTCGCCAATGGCTACT -ACGGAATACTCGCCAATGGGATCT -ACGGAATACTCGCCAATGAAGGCT -ACGGAATACTCGCCAATGTCAACC -ACGGAATACTCGCCAATGTGTTCC -ACGGAATACTCGCCAATGATTCCC -ACGGAATACTCGCCAATGTTCTCG -ACGGAATACTCGCCAATGTAGACG -ACGGAATACTCGCCAATGGTAACG -ACGGAATACTCGCCAATGACTTCG -ACGGAATACTCGCCAATGTACGCA -ACGGAATACTCGCCAATGCTTGCA -ACGGAATACTCGCCAATGCGAACA -ACGGAATACTCGCCAATGCAGTCA -ACGGAATACTCGCCAATGGATCCA -ACGGAATACTCGCCAATGACGACA -ACGGAATACTCGCCAATGAGCTCA -ACGGAATACTCGCCAATGTCACGT -ACGGAATACTCGCCAATGCGTAGT -ACGGAATACTCGCCAATGGTCAGT -ACGGAATACTCGCCAATGGAAGGT -ACGGAATACTCGCCAATGAACCGT -ACGGAATACTCGCCAATGTTGTGC -ACGGAATACTCGCCAATGCTAAGC -ACGGAATACTCGCCAATGACTAGC -ACGGAATACTCGCCAATGAGATGC -ACGGAATACTCGCCAATGTGAAGG -ACGGAATACTCGCCAATGCAATGG -ACGGAATACTCGCCAATGATGAGG -ACGGAATACTCGCCAATGAATGGG -ACGGAATACTCGCCAATGTCCTGA -ACGGAATACTCGCCAATGTAGCGA -ACGGAATACTCGCCAATGCACAGA -ACGGAATACTCGCCAATGGCAAGA -ACGGAATACTCGCCAATGGGTTGA -ACGGAATACTCGCCAATGTCCGAT -ACGGAATACTCGCCAATGTGGCAT -ACGGAATACTCGCCAATGCGAGAT -ACGGAATACTCGCCAATGTACCAC -ACGGAATACTCGCCAATGCAGAAC -ACGGAATACTCGCCAATGGTCTAC -ACGGAATACTCGCCAATGACGTAC -ACGGAATACTCGCCAATGAGTGAC -ACGGAATACTCGCCAATGCTGTAG -ACGGAATACTCGCCAATGCCTAAG -ACGGAATACTCGCCAATGGTTCAG -ACGGAATACTCGCCAATGGCATAG -ACGGAATACTCGCCAATGGACAAG -ACGGAATACTCGCCAATGAAGCAG -ACGGAATACTCGCCAATGCGTCAA -ACGGAATACTCGCCAATGGCTGAA -ACGGAATACTCGCCAATGAGTACG -ACGGAATACTCGCCAATGATCCGA -ACGGAATACTCGCCAATGATGGGA -ACGGAATACTCGCCAATGGTGCAA -ACGGAATACTCGCCAATGGAGGAA -ACGGAATACTCGCCAATGCAGGTA -ACGGAATACTCGCCAATGGACTCT -ACGGAATACTCGCCAATGAGTCCT -ACGGAATACTCGCCAATGTAAGCC -ACGGAATACTCGCCAATGATAGCC -ACGGAATACTCGCCAATGTAACCG -ACGGAATACTCGCCAATGATGCCA -ACGGAAATGTCGAACGGAGGAAAC -ACGGAAATGTCGAACGGAAACACC -ACGGAAATGTCGAACGGAATCGAG -ACGGAAATGTCGAACGGACTCCTT -ACGGAAATGTCGAACGGACCTGTT -ACGGAAATGTCGAACGGACGGTTT -ACGGAAATGTCGAACGGAGTGGTT -ACGGAAATGTCGAACGGAGCCTTT -ACGGAAATGTCGAACGGAGGTCTT -ACGGAAATGTCGAACGGAACGCTT -ACGGAAATGTCGAACGGAAGCGTT -ACGGAAATGTCGAACGGATTCGTC -ACGGAAATGTCGAACGGATCTCTC -ACGGAAATGTCGAACGGATGGATC -ACGGAAATGTCGAACGGACACTTC -ACGGAAATGTCGAACGGAGTACTC -ACGGAAATGTCGAACGGAGATGTC -ACGGAAATGTCGAACGGAACAGTC -ACGGAAATGTCGAACGGATTGCTG -ACGGAAATGTCGAACGGATCCATG -ACGGAAATGTCGAACGGATGTGTG -ACGGAAATGTCGAACGGACTAGTG -ACGGAAATGTCGAACGGACATCTG -ACGGAAATGTCGAACGGAGAGTTG -ACGGAAATGTCGAACGGAAGACTG -ACGGAAATGTCGAACGGATCGGTA -ACGGAAATGTCGAACGGATGCCTA -ACGGAAATGTCGAACGGACCACTA -ACGGAAATGTCGAACGGAGGAGTA -ACGGAAATGTCGAACGGATCGTCT -ACGGAAATGTCGAACGGATGCACT -ACGGAAATGTCGAACGGACTGACT -ACGGAAATGTCGAACGGACAACCT -ACGGAAATGTCGAACGGAGCTACT -ACGGAAATGTCGAACGGAGGATCT -ACGGAAATGTCGAACGGAAAGGCT -ACGGAAATGTCGAACGGATCAACC -ACGGAAATGTCGAACGGATGTTCC -ACGGAAATGTCGAACGGAATTCCC -ACGGAAATGTCGAACGGATTCTCG -ACGGAAATGTCGAACGGATAGACG -ACGGAAATGTCGAACGGAGTAACG -ACGGAAATGTCGAACGGAACTTCG -ACGGAAATGTCGAACGGATACGCA -ACGGAAATGTCGAACGGACTTGCA -ACGGAAATGTCGAACGGACGAACA -ACGGAAATGTCGAACGGACAGTCA -ACGGAAATGTCGAACGGAGATCCA -ACGGAAATGTCGAACGGAACGACA -ACGGAAATGTCGAACGGAAGCTCA -ACGGAAATGTCGAACGGATCACGT -ACGGAAATGTCGAACGGACGTAGT -ACGGAAATGTCGAACGGAGTCAGT -ACGGAAATGTCGAACGGAGAAGGT -ACGGAAATGTCGAACGGAAACCGT -ACGGAAATGTCGAACGGATTGTGC -ACGGAAATGTCGAACGGACTAAGC -ACGGAAATGTCGAACGGAACTAGC -ACGGAAATGTCGAACGGAAGATGC -ACGGAAATGTCGAACGGATGAAGG -ACGGAAATGTCGAACGGACAATGG -ACGGAAATGTCGAACGGAATGAGG -ACGGAAATGTCGAACGGAAATGGG -ACGGAAATGTCGAACGGATCCTGA -ACGGAAATGTCGAACGGATAGCGA -ACGGAAATGTCGAACGGACACAGA -ACGGAAATGTCGAACGGAGCAAGA -ACGGAAATGTCGAACGGAGGTTGA -ACGGAAATGTCGAACGGATCCGAT -ACGGAAATGTCGAACGGATGGCAT -ACGGAAATGTCGAACGGACGAGAT -ACGGAAATGTCGAACGGATACCAC -ACGGAAATGTCGAACGGACAGAAC -ACGGAAATGTCGAACGGAGTCTAC -ACGGAAATGTCGAACGGAACGTAC -ACGGAAATGTCGAACGGAAGTGAC -ACGGAAATGTCGAACGGACTGTAG -ACGGAAATGTCGAACGGACCTAAG -ACGGAAATGTCGAACGGAGTTCAG -ACGGAAATGTCGAACGGAGCATAG -ACGGAAATGTCGAACGGAGACAAG -ACGGAAATGTCGAACGGAAAGCAG -ACGGAAATGTCGAACGGACGTCAA -ACGGAAATGTCGAACGGAGCTGAA -ACGGAAATGTCGAACGGAAGTACG -ACGGAAATGTCGAACGGAATCCGA -ACGGAAATGTCGAACGGAATGGGA -ACGGAAATGTCGAACGGAGTGCAA -ACGGAAATGTCGAACGGAGAGGAA -ACGGAAATGTCGAACGGACAGGTA -ACGGAAATGTCGAACGGAGACTCT -ACGGAAATGTCGAACGGAAGTCCT -ACGGAAATGTCGAACGGATAAGCC -ACGGAAATGTCGAACGGAATAGCC -ACGGAAATGTCGAACGGATAACCG -ACGGAAATGTCGAACGGAATGCCA -ACGGAAATGTCGACCAACGGAAAC -ACGGAAATGTCGACCAACAACACC -ACGGAAATGTCGACCAACATCGAG -ACGGAAATGTCGACCAACCTCCTT -ACGGAAATGTCGACCAACCCTGTT -ACGGAAATGTCGACCAACCGGTTT -ACGGAAATGTCGACCAACGTGGTT -ACGGAAATGTCGACCAACGCCTTT -ACGGAAATGTCGACCAACGGTCTT -ACGGAAATGTCGACCAACACGCTT -ACGGAAATGTCGACCAACAGCGTT -ACGGAAATGTCGACCAACTTCGTC -ACGGAAATGTCGACCAACTCTCTC -ACGGAAATGTCGACCAACTGGATC -ACGGAAATGTCGACCAACCACTTC -ACGGAAATGTCGACCAACGTACTC -ACGGAAATGTCGACCAACGATGTC -ACGGAAATGTCGACCAACACAGTC -ACGGAAATGTCGACCAACTTGCTG -ACGGAAATGTCGACCAACTCCATG -ACGGAAATGTCGACCAACTGTGTG -ACGGAAATGTCGACCAACCTAGTG -ACGGAAATGTCGACCAACCATCTG -ACGGAAATGTCGACCAACGAGTTG -ACGGAAATGTCGACCAACAGACTG -ACGGAAATGTCGACCAACTCGGTA -ACGGAAATGTCGACCAACTGCCTA -ACGGAAATGTCGACCAACCCACTA -ACGGAAATGTCGACCAACGGAGTA -ACGGAAATGTCGACCAACTCGTCT -ACGGAAATGTCGACCAACTGCACT -ACGGAAATGTCGACCAACCTGACT -ACGGAAATGTCGACCAACCAACCT -ACGGAAATGTCGACCAACGCTACT -ACGGAAATGTCGACCAACGGATCT -ACGGAAATGTCGACCAACAAGGCT -ACGGAAATGTCGACCAACTCAACC -ACGGAAATGTCGACCAACTGTTCC -ACGGAAATGTCGACCAACATTCCC -ACGGAAATGTCGACCAACTTCTCG -ACGGAAATGTCGACCAACTAGACG -ACGGAAATGTCGACCAACGTAACG -ACGGAAATGTCGACCAACACTTCG -ACGGAAATGTCGACCAACTACGCA -ACGGAAATGTCGACCAACCTTGCA -ACGGAAATGTCGACCAACCGAACA -ACGGAAATGTCGACCAACCAGTCA -ACGGAAATGTCGACCAACGATCCA -ACGGAAATGTCGACCAACACGACA -ACGGAAATGTCGACCAACAGCTCA -ACGGAAATGTCGACCAACTCACGT -ACGGAAATGTCGACCAACCGTAGT -ACGGAAATGTCGACCAACGTCAGT -ACGGAAATGTCGACCAACGAAGGT -ACGGAAATGTCGACCAACAACCGT -ACGGAAATGTCGACCAACTTGTGC -ACGGAAATGTCGACCAACCTAAGC -ACGGAAATGTCGACCAACACTAGC -ACGGAAATGTCGACCAACAGATGC -ACGGAAATGTCGACCAACTGAAGG -ACGGAAATGTCGACCAACCAATGG -ACGGAAATGTCGACCAACATGAGG -ACGGAAATGTCGACCAACAATGGG -ACGGAAATGTCGACCAACTCCTGA -ACGGAAATGTCGACCAACTAGCGA -ACGGAAATGTCGACCAACCACAGA -ACGGAAATGTCGACCAACGCAAGA -ACGGAAATGTCGACCAACGGTTGA -ACGGAAATGTCGACCAACTCCGAT -ACGGAAATGTCGACCAACTGGCAT -ACGGAAATGTCGACCAACCGAGAT -ACGGAAATGTCGACCAACTACCAC -ACGGAAATGTCGACCAACCAGAAC -ACGGAAATGTCGACCAACGTCTAC -ACGGAAATGTCGACCAACACGTAC -ACGGAAATGTCGACCAACAGTGAC -ACGGAAATGTCGACCAACCTGTAG -ACGGAAATGTCGACCAACCCTAAG -ACGGAAATGTCGACCAACGTTCAG -ACGGAAATGTCGACCAACGCATAG -ACGGAAATGTCGACCAACGACAAG -ACGGAAATGTCGACCAACAAGCAG -ACGGAAATGTCGACCAACCGTCAA -ACGGAAATGTCGACCAACGCTGAA -ACGGAAATGTCGACCAACAGTACG -ACGGAAATGTCGACCAACATCCGA -ACGGAAATGTCGACCAACATGGGA -ACGGAAATGTCGACCAACGTGCAA -ACGGAAATGTCGACCAACGAGGAA -ACGGAAATGTCGACCAACCAGGTA -ACGGAAATGTCGACCAACGACTCT -ACGGAAATGTCGACCAACAGTCCT -ACGGAAATGTCGACCAACTAAGCC -ACGGAAATGTCGACCAACATAGCC -ACGGAAATGTCGACCAACTAACCG -ACGGAAATGTCGACCAACATGCCA -ACGGAAATGTCGGAGATCGGAAAC -ACGGAAATGTCGGAGATCAACACC -ACGGAAATGTCGGAGATCATCGAG -ACGGAAATGTCGGAGATCCTCCTT -ACGGAAATGTCGGAGATCCCTGTT -ACGGAAATGTCGGAGATCCGGTTT -ACGGAAATGTCGGAGATCGTGGTT -ACGGAAATGTCGGAGATCGCCTTT -ACGGAAATGTCGGAGATCGGTCTT -ACGGAAATGTCGGAGATCACGCTT -ACGGAAATGTCGGAGATCAGCGTT -ACGGAAATGTCGGAGATCTTCGTC -ACGGAAATGTCGGAGATCTCTCTC -ACGGAAATGTCGGAGATCTGGATC -ACGGAAATGTCGGAGATCCACTTC -ACGGAAATGTCGGAGATCGTACTC -ACGGAAATGTCGGAGATCGATGTC -ACGGAAATGTCGGAGATCACAGTC -ACGGAAATGTCGGAGATCTTGCTG -ACGGAAATGTCGGAGATCTCCATG -ACGGAAATGTCGGAGATCTGTGTG -ACGGAAATGTCGGAGATCCTAGTG -ACGGAAATGTCGGAGATCCATCTG -ACGGAAATGTCGGAGATCGAGTTG -ACGGAAATGTCGGAGATCAGACTG -ACGGAAATGTCGGAGATCTCGGTA -ACGGAAATGTCGGAGATCTGCCTA -ACGGAAATGTCGGAGATCCCACTA -ACGGAAATGTCGGAGATCGGAGTA -ACGGAAATGTCGGAGATCTCGTCT -ACGGAAATGTCGGAGATCTGCACT -ACGGAAATGTCGGAGATCCTGACT -ACGGAAATGTCGGAGATCCAACCT -ACGGAAATGTCGGAGATCGCTACT -ACGGAAATGTCGGAGATCGGATCT -ACGGAAATGTCGGAGATCAAGGCT -ACGGAAATGTCGGAGATCTCAACC -ACGGAAATGTCGGAGATCTGTTCC -ACGGAAATGTCGGAGATCATTCCC -ACGGAAATGTCGGAGATCTTCTCG -ACGGAAATGTCGGAGATCTAGACG -ACGGAAATGTCGGAGATCGTAACG -ACGGAAATGTCGGAGATCACTTCG -ACGGAAATGTCGGAGATCTACGCA -ACGGAAATGTCGGAGATCCTTGCA -ACGGAAATGTCGGAGATCCGAACA -ACGGAAATGTCGGAGATCCAGTCA -ACGGAAATGTCGGAGATCGATCCA -ACGGAAATGTCGGAGATCACGACA -ACGGAAATGTCGGAGATCAGCTCA -ACGGAAATGTCGGAGATCTCACGT -ACGGAAATGTCGGAGATCCGTAGT -ACGGAAATGTCGGAGATCGTCAGT -ACGGAAATGTCGGAGATCGAAGGT -ACGGAAATGTCGGAGATCAACCGT -ACGGAAATGTCGGAGATCTTGTGC -ACGGAAATGTCGGAGATCCTAAGC -ACGGAAATGTCGGAGATCACTAGC -ACGGAAATGTCGGAGATCAGATGC -ACGGAAATGTCGGAGATCTGAAGG -ACGGAAATGTCGGAGATCCAATGG -ACGGAAATGTCGGAGATCATGAGG -ACGGAAATGTCGGAGATCAATGGG -ACGGAAATGTCGGAGATCTCCTGA -ACGGAAATGTCGGAGATCTAGCGA -ACGGAAATGTCGGAGATCCACAGA -ACGGAAATGTCGGAGATCGCAAGA -ACGGAAATGTCGGAGATCGGTTGA -ACGGAAATGTCGGAGATCTCCGAT -ACGGAAATGTCGGAGATCTGGCAT -ACGGAAATGTCGGAGATCCGAGAT -ACGGAAATGTCGGAGATCTACCAC -ACGGAAATGTCGGAGATCCAGAAC -ACGGAAATGTCGGAGATCGTCTAC -ACGGAAATGTCGGAGATCACGTAC -ACGGAAATGTCGGAGATCAGTGAC -ACGGAAATGTCGGAGATCCTGTAG -ACGGAAATGTCGGAGATCCCTAAG -ACGGAAATGTCGGAGATCGTTCAG -ACGGAAATGTCGGAGATCGCATAG -ACGGAAATGTCGGAGATCGACAAG -ACGGAAATGTCGGAGATCAAGCAG -ACGGAAATGTCGGAGATCCGTCAA -ACGGAAATGTCGGAGATCGCTGAA -ACGGAAATGTCGGAGATCAGTACG -ACGGAAATGTCGGAGATCATCCGA -ACGGAAATGTCGGAGATCATGGGA -ACGGAAATGTCGGAGATCGTGCAA -ACGGAAATGTCGGAGATCGAGGAA -ACGGAAATGTCGGAGATCCAGGTA -ACGGAAATGTCGGAGATCGACTCT -ACGGAAATGTCGGAGATCAGTCCT -ACGGAAATGTCGGAGATCTAAGCC -ACGGAAATGTCGGAGATCATAGCC -ACGGAAATGTCGGAGATCTAACCG -ACGGAAATGTCGGAGATCATGCCA -ACGGAAATGTCGCTTCTCGGAAAC -ACGGAAATGTCGCTTCTCAACACC -ACGGAAATGTCGCTTCTCATCGAG -ACGGAAATGTCGCTTCTCCTCCTT -ACGGAAATGTCGCTTCTCCCTGTT -ACGGAAATGTCGCTTCTCCGGTTT -ACGGAAATGTCGCTTCTCGTGGTT -ACGGAAATGTCGCTTCTCGCCTTT -ACGGAAATGTCGCTTCTCGGTCTT -ACGGAAATGTCGCTTCTCACGCTT -ACGGAAATGTCGCTTCTCAGCGTT -ACGGAAATGTCGCTTCTCTTCGTC -ACGGAAATGTCGCTTCTCTCTCTC -ACGGAAATGTCGCTTCTCTGGATC -ACGGAAATGTCGCTTCTCCACTTC -ACGGAAATGTCGCTTCTCGTACTC -ACGGAAATGTCGCTTCTCGATGTC -ACGGAAATGTCGCTTCTCACAGTC -ACGGAAATGTCGCTTCTCTTGCTG -ACGGAAATGTCGCTTCTCTCCATG -ACGGAAATGTCGCTTCTCTGTGTG -ACGGAAATGTCGCTTCTCCTAGTG -ACGGAAATGTCGCTTCTCCATCTG -ACGGAAATGTCGCTTCTCGAGTTG -ACGGAAATGTCGCTTCTCAGACTG -ACGGAAATGTCGCTTCTCTCGGTA -ACGGAAATGTCGCTTCTCTGCCTA -ACGGAAATGTCGCTTCTCCCACTA -ACGGAAATGTCGCTTCTCGGAGTA -ACGGAAATGTCGCTTCTCTCGTCT -ACGGAAATGTCGCTTCTCTGCACT -ACGGAAATGTCGCTTCTCCTGACT -ACGGAAATGTCGCTTCTCCAACCT -ACGGAAATGTCGCTTCTCGCTACT -ACGGAAATGTCGCTTCTCGGATCT -ACGGAAATGTCGCTTCTCAAGGCT -ACGGAAATGTCGCTTCTCTCAACC -ACGGAAATGTCGCTTCTCTGTTCC -ACGGAAATGTCGCTTCTCATTCCC -ACGGAAATGTCGCTTCTCTTCTCG -ACGGAAATGTCGCTTCTCTAGACG -ACGGAAATGTCGCTTCTCGTAACG -ACGGAAATGTCGCTTCTCACTTCG -ACGGAAATGTCGCTTCTCTACGCA -ACGGAAATGTCGCTTCTCCTTGCA -ACGGAAATGTCGCTTCTCCGAACA -ACGGAAATGTCGCTTCTCCAGTCA -ACGGAAATGTCGCTTCTCGATCCA -ACGGAAATGTCGCTTCTCACGACA -ACGGAAATGTCGCTTCTCAGCTCA -ACGGAAATGTCGCTTCTCTCACGT -ACGGAAATGTCGCTTCTCCGTAGT -ACGGAAATGTCGCTTCTCGTCAGT -ACGGAAATGTCGCTTCTCGAAGGT -ACGGAAATGTCGCTTCTCAACCGT -ACGGAAATGTCGCTTCTCTTGTGC -ACGGAAATGTCGCTTCTCCTAAGC -ACGGAAATGTCGCTTCTCACTAGC -ACGGAAATGTCGCTTCTCAGATGC -ACGGAAATGTCGCTTCTCTGAAGG -ACGGAAATGTCGCTTCTCCAATGG -ACGGAAATGTCGCTTCTCATGAGG -ACGGAAATGTCGCTTCTCAATGGG -ACGGAAATGTCGCTTCTCTCCTGA -ACGGAAATGTCGCTTCTCTAGCGA -ACGGAAATGTCGCTTCTCCACAGA -ACGGAAATGTCGCTTCTCGCAAGA -ACGGAAATGTCGCTTCTCGGTTGA -ACGGAAATGTCGCTTCTCTCCGAT -ACGGAAATGTCGCTTCTCTGGCAT -ACGGAAATGTCGCTTCTCCGAGAT -ACGGAAATGTCGCTTCTCTACCAC -ACGGAAATGTCGCTTCTCCAGAAC -ACGGAAATGTCGCTTCTCGTCTAC -ACGGAAATGTCGCTTCTCACGTAC -ACGGAAATGTCGCTTCTCAGTGAC -ACGGAAATGTCGCTTCTCCTGTAG -ACGGAAATGTCGCTTCTCCCTAAG -ACGGAAATGTCGCTTCTCGTTCAG -ACGGAAATGTCGCTTCTCGCATAG -ACGGAAATGTCGCTTCTCGACAAG -ACGGAAATGTCGCTTCTCAAGCAG -ACGGAAATGTCGCTTCTCCGTCAA -ACGGAAATGTCGCTTCTCGCTGAA -ACGGAAATGTCGCTTCTCAGTACG -ACGGAAATGTCGCTTCTCATCCGA -ACGGAAATGTCGCTTCTCATGGGA -ACGGAAATGTCGCTTCTCGTGCAA -ACGGAAATGTCGCTTCTCGAGGAA -ACGGAAATGTCGCTTCTCCAGGTA -ACGGAAATGTCGCTTCTCGACTCT -ACGGAAATGTCGCTTCTCAGTCCT -ACGGAAATGTCGCTTCTCTAAGCC -ACGGAAATGTCGCTTCTCATAGCC -ACGGAAATGTCGCTTCTCTAACCG -ACGGAAATGTCGCTTCTCATGCCA -ACGGAAATGTCGGTTCCTGGAAAC -ACGGAAATGTCGGTTCCTAACACC -ACGGAAATGTCGGTTCCTATCGAG -ACGGAAATGTCGGTTCCTCTCCTT -ACGGAAATGTCGGTTCCTCCTGTT -ACGGAAATGTCGGTTCCTCGGTTT -ACGGAAATGTCGGTTCCTGTGGTT -ACGGAAATGTCGGTTCCTGCCTTT -ACGGAAATGTCGGTTCCTGGTCTT -ACGGAAATGTCGGTTCCTACGCTT -ACGGAAATGTCGGTTCCTAGCGTT -ACGGAAATGTCGGTTCCTTTCGTC -ACGGAAATGTCGGTTCCTTCTCTC -ACGGAAATGTCGGTTCCTTGGATC -ACGGAAATGTCGGTTCCTCACTTC -ACGGAAATGTCGGTTCCTGTACTC -ACGGAAATGTCGGTTCCTGATGTC -ACGGAAATGTCGGTTCCTACAGTC -ACGGAAATGTCGGTTCCTTTGCTG -ACGGAAATGTCGGTTCCTTCCATG -ACGGAAATGTCGGTTCCTTGTGTG -ACGGAAATGTCGGTTCCTCTAGTG -ACGGAAATGTCGGTTCCTCATCTG -ACGGAAATGTCGGTTCCTGAGTTG -ACGGAAATGTCGGTTCCTAGACTG -ACGGAAATGTCGGTTCCTTCGGTA -ACGGAAATGTCGGTTCCTTGCCTA -ACGGAAATGTCGGTTCCTCCACTA -ACGGAAATGTCGGTTCCTGGAGTA -ACGGAAATGTCGGTTCCTTCGTCT -ACGGAAATGTCGGTTCCTTGCACT -ACGGAAATGTCGGTTCCTCTGACT -ACGGAAATGTCGGTTCCTCAACCT -ACGGAAATGTCGGTTCCTGCTACT -ACGGAAATGTCGGTTCCTGGATCT -ACGGAAATGTCGGTTCCTAAGGCT -ACGGAAATGTCGGTTCCTTCAACC -ACGGAAATGTCGGTTCCTTGTTCC -ACGGAAATGTCGGTTCCTATTCCC -ACGGAAATGTCGGTTCCTTTCTCG -ACGGAAATGTCGGTTCCTTAGACG -ACGGAAATGTCGGTTCCTGTAACG -ACGGAAATGTCGGTTCCTACTTCG -ACGGAAATGTCGGTTCCTTACGCA -ACGGAAATGTCGGTTCCTCTTGCA -ACGGAAATGTCGGTTCCTCGAACA -ACGGAAATGTCGGTTCCTCAGTCA -ACGGAAATGTCGGTTCCTGATCCA -ACGGAAATGTCGGTTCCTACGACA -ACGGAAATGTCGGTTCCTAGCTCA -ACGGAAATGTCGGTTCCTTCACGT -ACGGAAATGTCGGTTCCTCGTAGT -ACGGAAATGTCGGTTCCTGTCAGT -ACGGAAATGTCGGTTCCTGAAGGT -ACGGAAATGTCGGTTCCTAACCGT -ACGGAAATGTCGGTTCCTTTGTGC -ACGGAAATGTCGGTTCCTCTAAGC -ACGGAAATGTCGGTTCCTACTAGC -ACGGAAATGTCGGTTCCTAGATGC -ACGGAAATGTCGGTTCCTTGAAGG -ACGGAAATGTCGGTTCCTCAATGG -ACGGAAATGTCGGTTCCTATGAGG -ACGGAAATGTCGGTTCCTAATGGG -ACGGAAATGTCGGTTCCTTCCTGA -ACGGAAATGTCGGTTCCTTAGCGA -ACGGAAATGTCGGTTCCTCACAGA -ACGGAAATGTCGGTTCCTGCAAGA -ACGGAAATGTCGGTTCCTGGTTGA -ACGGAAATGTCGGTTCCTTCCGAT -ACGGAAATGTCGGTTCCTTGGCAT -ACGGAAATGTCGGTTCCTCGAGAT -ACGGAAATGTCGGTTCCTTACCAC -ACGGAAATGTCGGTTCCTCAGAAC -ACGGAAATGTCGGTTCCTGTCTAC -ACGGAAATGTCGGTTCCTACGTAC -ACGGAAATGTCGGTTCCTAGTGAC -ACGGAAATGTCGGTTCCTCTGTAG -ACGGAAATGTCGGTTCCTCCTAAG -ACGGAAATGTCGGTTCCTGTTCAG -ACGGAAATGTCGGTTCCTGCATAG -ACGGAAATGTCGGTTCCTGACAAG -ACGGAAATGTCGGTTCCTAAGCAG -ACGGAAATGTCGGTTCCTCGTCAA -ACGGAAATGTCGGTTCCTGCTGAA -ACGGAAATGTCGGTTCCTAGTACG -ACGGAAATGTCGGTTCCTATCCGA -ACGGAAATGTCGGTTCCTATGGGA -ACGGAAATGTCGGTTCCTGTGCAA -ACGGAAATGTCGGTTCCTGAGGAA -ACGGAAATGTCGGTTCCTCAGGTA -ACGGAAATGTCGGTTCCTGACTCT -ACGGAAATGTCGGTTCCTAGTCCT -ACGGAAATGTCGGTTCCTTAAGCC -ACGGAAATGTCGGTTCCTATAGCC -ACGGAAATGTCGGTTCCTTAACCG -ACGGAAATGTCGGTTCCTATGCCA -ACGGAAATGTCGTTTCGGGGAAAC -ACGGAAATGTCGTTTCGGAACACC -ACGGAAATGTCGTTTCGGATCGAG -ACGGAAATGTCGTTTCGGCTCCTT -ACGGAAATGTCGTTTCGGCCTGTT -ACGGAAATGTCGTTTCGGCGGTTT -ACGGAAATGTCGTTTCGGGTGGTT -ACGGAAATGTCGTTTCGGGCCTTT -ACGGAAATGTCGTTTCGGGGTCTT -ACGGAAATGTCGTTTCGGACGCTT -ACGGAAATGTCGTTTCGGAGCGTT -ACGGAAATGTCGTTTCGGTTCGTC -ACGGAAATGTCGTTTCGGTCTCTC -ACGGAAATGTCGTTTCGGTGGATC -ACGGAAATGTCGTTTCGGCACTTC -ACGGAAATGTCGTTTCGGGTACTC -ACGGAAATGTCGTTTCGGGATGTC -ACGGAAATGTCGTTTCGGACAGTC -ACGGAAATGTCGTTTCGGTTGCTG -ACGGAAATGTCGTTTCGGTCCATG -ACGGAAATGTCGTTTCGGTGTGTG -ACGGAAATGTCGTTTCGGCTAGTG -ACGGAAATGTCGTTTCGGCATCTG -ACGGAAATGTCGTTTCGGGAGTTG -ACGGAAATGTCGTTTCGGAGACTG -ACGGAAATGTCGTTTCGGTCGGTA -ACGGAAATGTCGTTTCGGTGCCTA -ACGGAAATGTCGTTTCGGCCACTA -ACGGAAATGTCGTTTCGGGGAGTA -ACGGAAATGTCGTTTCGGTCGTCT -ACGGAAATGTCGTTTCGGTGCACT -ACGGAAATGTCGTTTCGGCTGACT -ACGGAAATGTCGTTTCGGCAACCT -ACGGAAATGTCGTTTCGGGCTACT -ACGGAAATGTCGTTTCGGGGATCT -ACGGAAATGTCGTTTCGGAAGGCT -ACGGAAATGTCGTTTCGGTCAACC -ACGGAAATGTCGTTTCGGTGTTCC -ACGGAAATGTCGTTTCGGATTCCC -ACGGAAATGTCGTTTCGGTTCTCG -ACGGAAATGTCGTTTCGGTAGACG -ACGGAAATGTCGTTTCGGGTAACG -ACGGAAATGTCGTTTCGGACTTCG -ACGGAAATGTCGTTTCGGTACGCA -ACGGAAATGTCGTTTCGGCTTGCA -ACGGAAATGTCGTTTCGGCGAACA -ACGGAAATGTCGTTTCGGCAGTCA -ACGGAAATGTCGTTTCGGGATCCA -ACGGAAATGTCGTTTCGGACGACA -ACGGAAATGTCGTTTCGGAGCTCA -ACGGAAATGTCGTTTCGGTCACGT -ACGGAAATGTCGTTTCGGCGTAGT -ACGGAAATGTCGTTTCGGGTCAGT -ACGGAAATGTCGTTTCGGGAAGGT -ACGGAAATGTCGTTTCGGAACCGT -ACGGAAATGTCGTTTCGGTTGTGC -ACGGAAATGTCGTTTCGGCTAAGC -ACGGAAATGTCGTTTCGGACTAGC -ACGGAAATGTCGTTTCGGAGATGC -ACGGAAATGTCGTTTCGGTGAAGG -ACGGAAATGTCGTTTCGGCAATGG -ACGGAAATGTCGTTTCGGATGAGG -ACGGAAATGTCGTTTCGGAATGGG -ACGGAAATGTCGTTTCGGTCCTGA -ACGGAAATGTCGTTTCGGTAGCGA -ACGGAAATGTCGTTTCGGCACAGA -ACGGAAATGTCGTTTCGGGCAAGA -ACGGAAATGTCGTTTCGGGGTTGA -ACGGAAATGTCGTTTCGGTCCGAT -ACGGAAATGTCGTTTCGGTGGCAT -ACGGAAATGTCGTTTCGGCGAGAT -ACGGAAATGTCGTTTCGGTACCAC -ACGGAAATGTCGTTTCGGCAGAAC -ACGGAAATGTCGTTTCGGGTCTAC -ACGGAAATGTCGTTTCGGACGTAC -ACGGAAATGTCGTTTCGGAGTGAC -ACGGAAATGTCGTTTCGGCTGTAG -ACGGAAATGTCGTTTCGGCCTAAG -ACGGAAATGTCGTTTCGGGTTCAG -ACGGAAATGTCGTTTCGGGCATAG -ACGGAAATGTCGTTTCGGGACAAG -ACGGAAATGTCGTTTCGGAAGCAG -ACGGAAATGTCGTTTCGGCGTCAA -ACGGAAATGTCGTTTCGGGCTGAA -ACGGAAATGTCGTTTCGGAGTACG -ACGGAAATGTCGTTTCGGATCCGA -ACGGAAATGTCGTTTCGGATGGGA -ACGGAAATGTCGTTTCGGGTGCAA -ACGGAAATGTCGTTTCGGGAGGAA -ACGGAAATGTCGTTTCGGCAGGTA -ACGGAAATGTCGTTTCGGGACTCT -ACGGAAATGTCGTTTCGGAGTCCT -ACGGAAATGTCGTTTCGGTAAGCC -ACGGAAATGTCGTTTCGGATAGCC -ACGGAAATGTCGTTTCGGTAACCG -ACGGAAATGTCGTTTCGGATGCCA -ACGGAAATGTCGGTTGTGGGAAAC -ACGGAAATGTCGGTTGTGAACACC -ACGGAAATGTCGGTTGTGATCGAG -ACGGAAATGTCGGTTGTGCTCCTT -ACGGAAATGTCGGTTGTGCCTGTT -ACGGAAATGTCGGTTGTGCGGTTT -ACGGAAATGTCGGTTGTGGTGGTT -ACGGAAATGTCGGTTGTGGCCTTT -ACGGAAATGTCGGTTGTGGGTCTT -ACGGAAATGTCGGTTGTGACGCTT -ACGGAAATGTCGGTTGTGAGCGTT -ACGGAAATGTCGGTTGTGTTCGTC -ACGGAAATGTCGGTTGTGTCTCTC -ACGGAAATGTCGGTTGTGTGGATC -ACGGAAATGTCGGTTGTGCACTTC -ACGGAAATGTCGGTTGTGGTACTC -ACGGAAATGTCGGTTGTGGATGTC -ACGGAAATGTCGGTTGTGACAGTC -ACGGAAATGTCGGTTGTGTTGCTG -ACGGAAATGTCGGTTGTGTCCATG -ACGGAAATGTCGGTTGTGTGTGTG -ACGGAAATGTCGGTTGTGCTAGTG -ACGGAAATGTCGGTTGTGCATCTG -ACGGAAATGTCGGTTGTGGAGTTG -ACGGAAATGTCGGTTGTGAGACTG -ACGGAAATGTCGGTTGTGTCGGTA -ACGGAAATGTCGGTTGTGTGCCTA -ACGGAAATGTCGGTTGTGCCACTA -ACGGAAATGTCGGTTGTGGGAGTA -ACGGAAATGTCGGTTGTGTCGTCT -ACGGAAATGTCGGTTGTGTGCACT -ACGGAAATGTCGGTTGTGCTGACT -ACGGAAATGTCGGTTGTGCAACCT -ACGGAAATGTCGGTTGTGGCTACT -ACGGAAATGTCGGTTGTGGGATCT -ACGGAAATGTCGGTTGTGAAGGCT -ACGGAAATGTCGGTTGTGTCAACC -ACGGAAATGTCGGTTGTGTGTTCC -ACGGAAATGTCGGTTGTGATTCCC -ACGGAAATGTCGGTTGTGTTCTCG -ACGGAAATGTCGGTTGTGTAGACG -ACGGAAATGTCGGTTGTGGTAACG -ACGGAAATGTCGGTTGTGACTTCG -ACGGAAATGTCGGTTGTGTACGCA -ACGGAAATGTCGGTTGTGCTTGCA -ACGGAAATGTCGGTTGTGCGAACA -ACGGAAATGTCGGTTGTGCAGTCA -ACGGAAATGTCGGTTGTGGATCCA -ACGGAAATGTCGGTTGTGACGACA -ACGGAAATGTCGGTTGTGAGCTCA -ACGGAAATGTCGGTTGTGTCACGT -ACGGAAATGTCGGTTGTGCGTAGT -ACGGAAATGTCGGTTGTGGTCAGT -ACGGAAATGTCGGTTGTGGAAGGT -ACGGAAATGTCGGTTGTGAACCGT -ACGGAAATGTCGGTTGTGTTGTGC -ACGGAAATGTCGGTTGTGCTAAGC -ACGGAAATGTCGGTTGTGACTAGC -ACGGAAATGTCGGTTGTGAGATGC -ACGGAAATGTCGGTTGTGTGAAGG -ACGGAAATGTCGGTTGTGCAATGG -ACGGAAATGTCGGTTGTGATGAGG -ACGGAAATGTCGGTTGTGAATGGG -ACGGAAATGTCGGTTGTGTCCTGA -ACGGAAATGTCGGTTGTGTAGCGA -ACGGAAATGTCGGTTGTGCACAGA -ACGGAAATGTCGGTTGTGGCAAGA -ACGGAAATGTCGGTTGTGGGTTGA -ACGGAAATGTCGGTTGTGTCCGAT -ACGGAAATGTCGGTTGTGTGGCAT -ACGGAAATGTCGGTTGTGCGAGAT -ACGGAAATGTCGGTTGTGTACCAC -ACGGAAATGTCGGTTGTGCAGAAC -ACGGAAATGTCGGTTGTGGTCTAC -ACGGAAATGTCGGTTGTGACGTAC -ACGGAAATGTCGGTTGTGAGTGAC -ACGGAAATGTCGGTTGTGCTGTAG -ACGGAAATGTCGGTTGTGCCTAAG -ACGGAAATGTCGGTTGTGGTTCAG -ACGGAAATGTCGGTTGTGGCATAG -ACGGAAATGTCGGTTGTGGACAAG -ACGGAAATGTCGGTTGTGAAGCAG -ACGGAAATGTCGGTTGTGCGTCAA -ACGGAAATGTCGGTTGTGGCTGAA -ACGGAAATGTCGGTTGTGAGTACG -ACGGAAATGTCGGTTGTGATCCGA -ACGGAAATGTCGGTTGTGATGGGA -ACGGAAATGTCGGTTGTGGTGCAA -ACGGAAATGTCGGTTGTGGAGGAA -ACGGAAATGTCGGTTGTGCAGGTA -ACGGAAATGTCGGTTGTGGACTCT -ACGGAAATGTCGGTTGTGAGTCCT -ACGGAAATGTCGGTTGTGTAAGCC -ACGGAAATGTCGGTTGTGATAGCC -ACGGAAATGTCGGTTGTGTAACCG -ACGGAAATGTCGGTTGTGATGCCA -ACGGAAATGTCGTTTGCCGGAAAC -ACGGAAATGTCGTTTGCCAACACC -ACGGAAATGTCGTTTGCCATCGAG -ACGGAAATGTCGTTTGCCCTCCTT -ACGGAAATGTCGTTTGCCCCTGTT -ACGGAAATGTCGTTTGCCCGGTTT -ACGGAAATGTCGTTTGCCGTGGTT -ACGGAAATGTCGTTTGCCGCCTTT -ACGGAAATGTCGTTTGCCGGTCTT -ACGGAAATGTCGTTTGCCACGCTT -ACGGAAATGTCGTTTGCCAGCGTT -ACGGAAATGTCGTTTGCCTTCGTC -ACGGAAATGTCGTTTGCCTCTCTC -ACGGAAATGTCGTTTGCCTGGATC -ACGGAAATGTCGTTTGCCCACTTC -ACGGAAATGTCGTTTGCCGTACTC -ACGGAAATGTCGTTTGCCGATGTC -ACGGAAATGTCGTTTGCCACAGTC -ACGGAAATGTCGTTTGCCTTGCTG -ACGGAAATGTCGTTTGCCTCCATG -ACGGAAATGTCGTTTGCCTGTGTG -ACGGAAATGTCGTTTGCCCTAGTG -ACGGAAATGTCGTTTGCCCATCTG -ACGGAAATGTCGTTTGCCGAGTTG -ACGGAAATGTCGTTTGCCAGACTG -ACGGAAATGTCGTTTGCCTCGGTA -ACGGAAATGTCGTTTGCCTGCCTA -ACGGAAATGTCGTTTGCCCCACTA -ACGGAAATGTCGTTTGCCGGAGTA -ACGGAAATGTCGTTTGCCTCGTCT -ACGGAAATGTCGTTTGCCTGCACT -ACGGAAATGTCGTTTGCCCTGACT -ACGGAAATGTCGTTTGCCCAACCT -ACGGAAATGTCGTTTGCCGCTACT -ACGGAAATGTCGTTTGCCGGATCT -ACGGAAATGTCGTTTGCCAAGGCT -ACGGAAATGTCGTTTGCCTCAACC -ACGGAAATGTCGTTTGCCTGTTCC -ACGGAAATGTCGTTTGCCATTCCC -ACGGAAATGTCGTTTGCCTTCTCG -ACGGAAATGTCGTTTGCCTAGACG -ACGGAAATGTCGTTTGCCGTAACG -ACGGAAATGTCGTTTGCCACTTCG -ACGGAAATGTCGTTTGCCTACGCA -ACGGAAATGTCGTTTGCCCTTGCA -ACGGAAATGTCGTTTGCCCGAACA -ACGGAAATGTCGTTTGCCCAGTCA -ACGGAAATGTCGTTTGCCGATCCA -ACGGAAATGTCGTTTGCCACGACA -ACGGAAATGTCGTTTGCCAGCTCA -ACGGAAATGTCGTTTGCCTCACGT -ACGGAAATGTCGTTTGCCCGTAGT -ACGGAAATGTCGTTTGCCGTCAGT -ACGGAAATGTCGTTTGCCGAAGGT -ACGGAAATGTCGTTTGCCAACCGT -ACGGAAATGTCGTTTGCCTTGTGC -ACGGAAATGTCGTTTGCCCTAAGC -ACGGAAATGTCGTTTGCCACTAGC -ACGGAAATGTCGTTTGCCAGATGC -ACGGAAATGTCGTTTGCCTGAAGG -ACGGAAATGTCGTTTGCCCAATGG -ACGGAAATGTCGTTTGCCATGAGG -ACGGAAATGTCGTTTGCCAATGGG -ACGGAAATGTCGTTTGCCTCCTGA -ACGGAAATGTCGTTTGCCTAGCGA -ACGGAAATGTCGTTTGCCCACAGA -ACGGAAATGTCGTTTGCCGCAAGA -ACGGAAATGTCGTTTGCCGGTTGA -ACGGAAATGTCGTTTGCCTCCGAT -ACGGAAATGTCGTTTGCCTGGCAT -ACGGAAATGTCGTTTGCCCGAGAT -ACGGAAATGTCGTTTGCCTACCAC -ACGGAAATGTCGTTTGCCCAGAAC -ACGGAAATGTCGTTTGCCGTCTAC -ACGGAAATGTCGTTTGCCACGTAC -ACGGAAATGTCGTTTGCCAGTGAC -ACGGAAATGTCGTTTGCCCTGTAG -ACGGAAATGTCGTTTGCCCCTAAG -ACGGAAATGTCGTTTGCCGTTCAG -ACGGAAATGTCGTTTGCCGCATAG -ACGGAAATGTCGTTTGCCGACAAG -ACGGAAATGTCGTTTGCCAAGCAG -ACGGAAATGTCGTTTGCCCGTCAA -ACGGAAATGTCGTTTGCCGCTGAA -ACGGAAATGTCGTTTGCCAGTACG -ACGGAAATGTCGTTTGCCATCCGA -ACGGAAATGTCGTTTGCCATGGGA -ACGGAAATGTCGTTTGCCGTGCAA -ACGGAAATGTCGTTTGCCGAGGAA -ACGGAAATGTCGTTTGCCCAGGTA -ACGGAAATGTCGTTTGCCGACTCT -ACGGAAATGTCGTTTGCCAGTCCT -ACGGAAATGTCGTTTGCCTAAGCC -ACGGAAATGTCGTTTGCCATAGCC -ACGGAAATGTCGTTTGCCTAACCG -ACGGAAATGTCGTTTGCCATGCCA -ACGGAAATGTCGCTTGGTGGAAAC -ACGGAAATGTCGCTTGGTAACACC -ACGGAAATGTCGCTTGGTATCGAG -ACGGAAATGTCGCTTGGTCTCCTT -ACGGAAATGTCGCTTGGTCCTGTT -ACGGAAATGTCGCTTGGTCGGTTT -ACGGAAATGTCGCTTGGTGTGGTT -ACGGAAATGTCGCTTGGTGCCTTT -ACGGAAATGTCGCTTGGTGGTCTT -ACGGAAATGTCGCTTGGTACGCTT -ACGGAAATGTCGCTTGGTAGCGTT -ACGGAAATGTCGCTTGGTTTCGTC -ACGGAAATGTCGCTTGGTTCTCTC -ACGGAAATGTCGCTTGGTTGGATC -ACGGAAATGTCGCTTGGTCACTTC -ACGGAAATGTCGCTTGGTGTACTC -ACGGAAATGTCGCTTGGTGATGTC -ACGGAAATGTCGCTTGGTACAGTC -ACGGAAATGTCGCTTGGTTTGCTG -ACGGAAATGTCGCTTGGTTCCATG -ACGGAAATGTCGCTTGGTTGTGTG -ACGGAAATGTCGCTTGGTCTAGTG -ACGGAAATGTCGCTTGGTCATCTG -ACGGAAATGTCGCTTGGTGAGTTG -ACGGAAATGTCGCTTGGTAGACTG -ACGGAAATGTCGCTTGGTTCGGTA -ACGGAAATGTCGCTTGGTTGCCTA -ACGGAAATGTCGCTTGGTCCACTA -ACGGAAATGTCGCTTGGTGGAGTA -ACGGAAATGTCGCTTGGTTCGTCT -ACGGAAATGTCGCTTGGTTGCACT -ACGGAAATGTCGCTTGGTCTGACT -ACGGAAATGTCGCTTGGTCAACCT -ACGGAAATGTCGCTTGGTGCTACT -ACGGAAATGTCGCTTGGTGGATCT -ACGGAAATGTCGCTTGGTAAGGCT -ACGGAAATGTCGCTTGGTTCAACC -ACGGAAATGTCGCTTGGTTGTTCC -ACGGAAATGTCGCTTGGTATTCCC -ACGGAAATGTCGCTTGGTTTCTCG -ACGGAAATGTCGCTTGGTTAGACG -ACGGAAATGTCGCTTGGTGTAACG -ACGGAAATGTCGCTTGGTACTTCG -ACGGAAATGTCGCTTGGTTACGCA -ACGGAAATGTCGCTTGGTCTTGCA -ACGGAAATGTCGCTTGGTCGAACA -ACGGAAATGTCGCTTGGTCAGTCA -ACGGAAATGTCGCTTGGTGATCCA -ACGGAAATGTCGCTTGGTACGACA -ACGGAAATGTCGCTTGGTAGCTCA -ACGGAAATGTCGCTTGGTTCACGT -ACGGAAATGTCGCTTGGTCGTAGT -ACGGAAATGTCGCTTGGTGTCAGT -ACGGAAATGTCGCTTGGTGAAGGT -ACGGAAATGTCGCTTGGTAACCGT -ACGGAAATGTCGCTTGGTTTGTGC -ACGGAAATGTCGCTTGGTCTAAGC -ACGGAAATGTCGCTTGGTACTAGC -ACGGAAATGTCGCTTGGTAGATGC -ACGGAAATGTCGCTTGGTTGAAGG -ACGGAAATGTCGCTTGGTCAATGG -ACGGAAATGTCGCTTGGTATGAGG -ACGGAAATGTCGCTTGGTAATGGG -ACGGAAATGTCGCTTGGTTCCTGA -ACGGAAATGTCGCTTGGTTAGCGA -ACGGAAATGTCGCTTGGTCACAGA -ACGGAAATGTCGCTTGGTGCAAGA -ACGGAAATGTCGCTTGGTGGTTGA -ACGGAAATGTCGCTTGGTTCCGAT -ACGGAAATGTCGCTTGGTTGGCAT -ACGGAAATGTCGCTTGGTCGAGAT -ACGGAAATGTCGCTTGGTTACCAC -ACGGAAATGTCGCTTGGTCAGAAC -ACGGAAATGTCGCTTGGTGTCTAC -ACGGAAATGTCGCTTGGTACGTAC -ACGGAAATGTCGCTTGGTAGTGAC -ACGGAAATGTCGCTTGGTCTGTAG -ACGGAAATGTCGCTTGGTCCTAAG -ACGGAAATGTCGCTTGGTGTTCAG -ACGGAAATGTCGCTTGGTGCATAG -ACGGAAATGTCGCTTGGTGACAAG -ACGGAAATGTCGCTTGGTAAGCAG -ACGGAAATGTCGCTTGGTCGTCAA -ACGGAAATGTCGCTTGGTGCTGAA -ACGGAAATGTCGCTTGGTAGTACG -ACGGAAATGTCGCTTGGTATCCGA -ACGGAAATGTCGCTTGGTATGGGA -ACGGAAATGTCGCTTGGTGTGCAA -ACGGAAATGTCGCTTGGTGAGGAA -ACGGAAATGTCGCTTGGTCAGGTA -ACGGAAATGTCGCTTGGTGACTCT -ACGGAAATGTCGCTTGGTAGTCCT -ACGGAAATGTCGCTTGGTTAAGCC -ACGGAAATGTCGCTTGGTATAGCC -ACGGAAATGTCGCTTGGTTAACCG -ACGGAAATGTCGCTTGGTATGCCA -ACGGAAATGTCGCTTACGGGAAAC -ACGGAAATGTCGCTTACGAACACC -ACGGAAATGTCGCTTACGATCGAG -ACGGAAATGTCGCTTACGCTCCTT -ACGGAAATGTCGCTTACGCCTGTT -ACGGAAATGTCGCTTACGCGGTTT -ACGGAAATGTCGCTTACGGTGGTT -ACGGAAATGTCGCTTACGGCCTTT -ACGGAAATGTCGCTTACGGGTCTT -ACGGAAATGTCGCTTACGACGCTT -ACGGAAATGTCGCTTACGAGCGTT -ACGGAAATGTCGCTTACGTTCGTC -ACGGAAATGTCGCTTACGTCTCTC -ACGGAAATGTCGCTTACGTGGATC -ACGGAAATGTCGCTTACGCACTTC -ACGGAAATGTCGCTTACGGTACTC -ACGGAAATGTCGCTTACGGATGTC -ACGGAAATGTCGCTTACGACAGTC -ACGGAAATGTCGCTTACGTTGCTG -ACGGAAATGTCGCTTACGTCCATG -ACGGAAATGTCGCTTACGTGTGTG -ACGGAAATGTCGCTTACGCTAGTG -ACGGAAATGTCGCTTACGCATCTG -ACGGAAATGTCGCTTACGGAGTTG -ACGGAAATGTCGCTTACGAGACTG -ACGGAAATGTCGCTTACGTCGGTA -ACGGAAATGTCGCTTACGTGCCTA -ACGGAAATGTCGCTTACGCCACTA -ACGGAAATGTCGCTTACGGGAGTA -ACGGAAATGTCGCTTACGTCGTCT -ACGGAAATGTCGCTTACGTGCACT -ACGGAAATGTCGCTTACGCTGACT -ACGGAAATGTCGCTTACGCAACCT -ACGGAAATGTCGCTTACGGCTACT -ACGGAAATGTCGCTTACGGGATCT -ACGGAAATGTCGCTTACGAAGGCT -ACGGAAATGTCGCTTACGTCAACC -ACGGAAATGTCGCTTACGTGTTCC -ACGGAAATGTCGCTTACGATTCCC -ACGGAAATGTCGCTTACGTTCTCG -ACGGAAATGTCGCTTACGTAGACG -ACGGAAATGTCGCTTACGGTAACG -ACGGAAATGTCGCTTACGACTTCG -ACGGAAATGTCGCTTACGTACGCA -ACGGAAATGTCGCTTACGCTTGCA -ACGGAAATGTCGCTTACGCGAACA -ACGGAAATGTCGCTTACGCAGTCA -ACGGAAATGTCGCTTACGGATCCA -ACGGAAATGTCGCTTACGACGACA -ACGGAAATGTCGCTTACGAGCTCA -ACGGAAATGTCGCTTACGTCACGT -ACGGAAATGTCGCTTACGCGTAGT -ACGGAAATGTCGCTTACGGTCAGT -ACGGAAATGTCGCTTACGGAAGGT -ACGGAAATGTCGCTTACGAACCGT -ACGGAAATGTCGCTTACGTTGTGC -ACGGAAATGTCGCTTACGCTAAGC -ACGGAAATGTCGCTTACGACTAGC -ACGGAAATGTCGCTTACGAGATGC -ACGGAAATGTCGCTTACGTGAAGG -ACGGAAATGTCGCTTACGCAATGG -ACGGAAATGTCGCTTACGATGAGG -ACGGAAATGTCGCTTACGAATGGG -ACGGAAATGTCGCTTACGTCCTGA -ACGGAAATGTCGCTTACGTAGCGA -ACGGAAATGTCGCTTACGCACAGA -ACGGAAATGTCGCTTACGGCAAGA -ACGGAAATGTCGCTTACGGGTTGA -ACGGAAATGTCGCTTACGTCCGAT -ACGGAAATGTCGCTTACGTGGCAT -ACGGAAATGTCGCTTACGCGAGAT -ACGGAAATGTCGCTTACGTACCAC -ACGGAAATGTCGCTTACGCAGAAC -ACGGAAATGTCGCTTACGGTCTAC -ACGGAAATGTCGCTTACGACGTAC -ACGGAAATGTCGCTTACGAGTGAC -ACGGAAATGTCGCTTACGCTGTAG -ACGGAAATGTCGCTTACGCCTAAG -ACGGAAATGTCGCTTACGGTTCAG -ACGGAAATGTCGCTTACGGCATAG -ACGGAAATGTCGCTTACGGACAAG -ACGGAAATGTCGCTTACGAAGCAG -ACGGAAATGTCGCTTACGCGTCAA -ACGGAAATGTCGCTTACGGCTGAA -ACGGAAATGTCGCTTACGAGTACG -ACGGAAATGTCGCTTACGATCCGA -ACGGAAATGTCGCTTACGATGGGA -ACGGAAATGTCGCTTACGGTGCAA -ACGGAAATGTCGCTTACGGAGGAA -ACGGAAATGTCGCTTACGCAGGTA -ACGGAAATGTCGCTTACGGACTCT -ACGGAAATGTCGCTTACGAGTCCT -ACGGAAATGTCGCTTACGTAAGCC -ACGGAAATGTCGCTTACGATAGCC -ACGGAAATGTCGCTTACGTAACCG -ACGGAAATGTCGCTTACGATGCCA -ACGGAAATGTCGGTTAGCGGAAAC -ACGGAAATGTCGGTTAGCAACACC -ACGGAAATGTCGGTTAGCATCGAG -ACGGAAATGTCGGTTAGCCTCCTT -ACGGAAATGTCGGTTAGCCCTGTT -ACGGAAATGTCGGTTAGCCGGTTT -ACGGAAATGTCGGTTAGCGTGGTT -ACGGAAATGTCGGTTAGCGCCTTT -ACGGAAATGTCGGTTAGCGGTCTT -ACGGAAATGTCGGTTAGCACGCTT -ACGGAAATGTCGGTTAGCAGCGTT -ACGGAAATGTCGGTTAGCTTCGTC -ACGGAAATGTCGGTTAGCTCTCTC -ACGGAAATGTCGGTTAGCTGGATC -ACGGAAATGTCGGTTAGCCACTTC -ACGGAAATGTCGGTTAGCGTACTC -ACGGAAATGTCGGTTAGCGATGTC -ACGGAAATGTCGGTTAGCACAGTC -ACGGAAATGTCGGTTAGCTTGCTG -ACGGAAATGTCGGTTAGCTCCATG -ACGGAAATGTCGGTTAGCTGTGTG -ACGGAAATGTCGGTTAGCCTAGTG -ACGGAAATGTCGGTTAGCCATCTG -ACGGAAATGTCGGTTAGCGAGTTG -ACGGAAATGTCGGTTAGCAGACTG -ACGGAAATGTCGGTTAGCTCGGTA -ACGGAAATGTCGGTTAGCTGCCTA -ACGGAAATGTCGGTTAGCCCACTA -ACGGAAATGTCGGTTAGCGGAGTA -ACGGAAATGTCGGTTAGCTCGTCT -ACGGAAATGTCGGTTAGCTGCACT -ACGGAAATGTCGGTTAGCCTGACT -ACGGAAATGTCGGTTAGCCAACCT -ACGGAAATGTCGGTTAGCGCTACT -ACGGAAATGTCGGTTAGCGGATCT -ACGGAAATGTCGGTTAGCAAGGCT -ACGGAAATGTCGGTTAGCTCAACC -ACGGAAATGTCGGTTAGCTGTTCC -ACGGAAATGTCGGTTAGCATTCCC -ACGGAAATGTCGGTTAGCTTCTCG -ACGGAAATGTCGGTTAGCTAGACG -ACGGAAATGTCGGTTAGCGTAACG -ACGGAAATGTCGGTTAGCACTTCG -ACGGAAATGTCGGTTAGCTACGCA -ACGGAAATGTCGGTTAGCCTTGCA -ACGGAAATGTCGGTTAGCCGAACA -ACGGAAATGTCGGTTAGCCAGTCA -ACGGAAATGTCGGTTAGCGATCCA -ACGGAAATGTCGGTTAGCACGACA -ACGGAAATGTCGGTTAGCAGCTCA -ACGGAAATGTCGGTTAGCTCACGT -ACGGAAATGTCGGTTAGCCGTAGT -ACGGAAATGTCGGTTAGCGTCAGT -ACGGAAATGTCGGTTAGCGAAGGT -ACGGAAATGTCGGTTAGCAACCGT -ACGGAAATGTCGGTTAGCTTGTGC -ACGGAAATGTCGGTTAGCCTAAGC -ACGGAAATGTCGGTTAGCACTAGC -ACGGAAATGTCGGTTAGCAGATGC -ACGGAAATGTCGGTTAGCTGAAGG -ACGGAAATGTCGGTTAGCCAATGG -ACGGAAATGTCGGTTAGCATGAGG -ACGGAAATGTCGGTTAGCAATGGG -ACGGAAATGTCGGTTAGCTCCTGA -ACGGAAATGTCGGTTAGCTAGCGA -ACGGAAATGTCGGTTAGCCACAGA -ACGGAAATGTCGGTTAGCGCAAGA -ACGGAAATGTCGGTTAGCGGTTGA -ACGGAAATGTCGGTTAGCTCCGAT -ACGGAAATGTCGGTTAGCTGGCAT -ACGGAAATGTCGGTTAGCCGAGAT -ACGGAAATGTCGGTTAGCTACCAC -ACGGAAATGTCGGTTAGCCAGAAC -ACGGAAATGTCGGTTAGCGTCTAC -ACGGAAATGTCGGTTAGCACGTAC -ACGGAAATGTCGGTTAGCAGTGAC -ACGGAAATGTCGGTTAGCCTGTAG -ACGGAAATGTCGGTTAGCCCTAAG -ACGGAAATGTCGGTTAGCGTTCAG -ACGGAAATGTCGGTTAGCGCATAG -ACGGAAATGTCGGTTAGCGACAAG -ACGGAAATGTCGGTTAGCAAGCAG -ACGGAAATGTCGGTTAGCCGTCAA -ACGGAAATGTCGGTTAGCGCTGAA -ACGGAAATGTCGGTTAGCAGTACG -ACGGAAATGTCGGTTAGCATCCGA -ACGGAAATGTCGGTTAGCATGGGA -ACGGAAATGTCGGTTAGCGTGCAA -ACGGAAATGTCGGTTAGCGAGGAA -ACGGAAATGTCGGTTAGCCAGGTA -ACGGAAATGTCGGTTAGCGACTCT -ACGGAAATGTCGGTTAGCAGTCCT -ACGGAAATGTCGGTTAGCTAAGCC -ACGGAAATGTCGGTTAGCATAGCC -ACGGAAATGTCGGTTAGCTAACCG -ACGGAAATGTCGGTTAGCATGCCA -ACGGAAATGTCGGTCTTCGGAAAC -ACGGAAATGTCGGTCTTCAACACC -ACGGAAATGTCGGTCTTCATCGAG -ACGGAAATGTCGGTCTTCCTCCTT -ACGGAAATGTCGGTCTTCCCTGTT -ACGGAAATGTCGGTCTTCCGGTTT -ACGGAAATGTCGGTCTTCGTGGTT -ACGGAAATGTCGGTCTTCGCCTTT -ACGGAAATGTCGGTCTTCGGTCTT -ACGGAAATGTCGGTCTTCACGCTT -ACGGAAATGTCGGTCTTCAGCGTT -ACGGAAATGTCGGTCTTCTTCGTC -ACGGAAATGTCGGTCTTCTCTCTC -ACGGAAATGTCGGTCTTCTGGATC -ACGGAAATGTCGGTCTTCCACTTC -ACGGAAATGTCGGTCTTCGTACTC -ACGGAAATGTCGGTCTTCGATGTC -ACGGAAATGTCGGTCTTCACAGTC -ACGGAAATGTCGGTCTTCTTGCTG -ACGGAAATGTCGGTCTTCTCCATG -ACGGAAATGTCGGTCTTCTGTGTG -ACGGAAATGTCGGTCTTCCTAGTG -ACGGAAATGTCGGTCTTCCATCTG -ACGGAAATGTCGGTCTTCGAGTTG -ACGGAAATGTCGGTCTTCAGACTG -ACGGAAATGTCGGTCTTCTCGGTA -ACGGAAATGTCGGTCTTCTGCCTA -ACGGAAATGTCGGTCTTCCCACTA -ACGGAAATGTCGGTCTTCGGAGTA -ACGGAAATGTCGGTCTTCTCGTCT -ACGGAAATGTCGGTCTTCTGCACT -ACGGAAATGTCGGTCTTCCTGACT -ACGGAAATGTCGGTCTTCCAACCT -ACGGAAATGTCGGTCTTCGCTACT -ACGGAAATGTCGGTCTTCGGATCT -ACGGAAATGTCGGTCTTCAAGGCT -ACGGAAATGTCGGTCTTCTCAACC -ACGGAAATGTCGGTCTTCTGTTCC -ACGGAAATGTCGGTCTTCATTCCC -ACGGAAATGTCGGTCTTCTTCTCG -ACGGAAATGTCGGTCTTCTAGACG -ACGGAAATGTCGGTCTTCGTAACG -ACGGAAATGTCGGTCTTCACTTCG -ACGGAAATGTCGGTCTTCTACGCA -ACGGAAATGTCGGTCTTCCTTGCA -ACGGAAATGTCGGTCTTCCGAACA -ACGGAAATGTCGGTCTTCCAGTCA -ACGGAAATGTCGGTCTTCGATCCA -ACGGAAATGTCGGTCTTCACGACA -ACGGAAATGTCGGTCTTCAGCTCA -ACGGAAATGTCGGTCTTCTCACGT -ACGGAAATGTCGGTCTTCCGTAGT -ACGGAAATGTCGGTCTTCGTCAGT -ACGGAAATGTCGGTCTTCGAAGGT -ACGGAAATGTCGGTCTTCAACCGT -ACGGAAATGTCGGTCTTCTTGTGC -ACGGAAATGTCGGTCTTCCTAAGC -ACGGAAATGTCGGTCTTCACTAGC -ACGGAAATGTCGGTCTTCAGATGC -ACGGAAATGTCGGTCTTCTGAAGG -ACGGAAATGTCGGTCTTCCAATGG -ACGGAAATGTCGGTCTTCATGAGG -ACGGAAATGTCGGTCTTCAATGGG -ACGGAAATGTCGGTCTTCTCCTGA -ACGGAAATGTCGGTCTTCTAGCGA -ACGGAAATGTCGGTCTTCCACAGA -ACGGAAATGTCGGTCTTCGCAAGA -ACGGAAATGTCGGTCTTCGGTTGA -ACGGAAATGTCGGTCTTCTCCGAT -ACGGAAATGTCGGTCTTCTGGCAT -ACGGAAATGTCGGTCTTCCGAGAT -ACGGAAATGTCGGTCTTCTACCAC -ACGGAAATGTCGGTCTTCCAGAAC -ACGGAAATGTCGGTCTTCGTCTAC -ACGGAAATGTCGGTCTTCACGTAC -ACGGAAATGTCGGTCTTCAGTGAC -ACGGAAATGTCGGTCTTCCTGTAG -ACGGAAATGTCGGTCTTCCCTAAG -ACGGAAATGTCGGTCTTCGTTCAG -ACGGAAATGTCGGTCTTCGCATAG -ACGGAAATGTCGGTCTTCGACAAG -ACGGAAATGTCGGTCTTCAAGCAG -ACGGAAATGTCGGTCTTCCGTCAA -ACGGAAATGTCGGTCTTCGCTGAA -ACGGAAATGTCGGTCTTCAGTACG -ACGGAAATGTCGGTCTTCATCCGA -ACGGAAATGTCGGTCTTCATGGGA -ACGGAAATGTCGGTCTTCGTGCAA -ACGGAAATGTCGGTCTTCGAGGAA -ACGGAAATGTCGGTCTTCCAGGTA -ACGGAAATGTCGGTCTTCGACTCT -ACGGAAATGTCGGTCTTCAGTCCT -ACGGAAATGTCGGTCTTCTAAGCC -ACGGAAATGTCGGTCTTCATAGCC -ACGGAAATGTCGGTCTTCTAACCG -ACGGAAATGTCGGTCTTCATGCCA -ACGGAAATGTCGCTCTCTGGAAAC -ACGGAAATGTCGCTCTCTAACACC -ACGGAAATGTCGCTCTCTATCGAG -ACGGAAATGTCGCTCTCTCTCCTT -ACGGAAATGTCGCTCTCTCCTGTT -ACGGAAATGTCGCTCTCTCGGTTT -ACGGAAATGTCGCTCTCTGTGGTT -ACGGAAATGTCGCTCTCTGCCTTT -ACGGAAATGTCGCTCTCTGGTCTT -ACGGAAATGTCGCTCTCTACGCTT -ACGGAAATGTCGCTCTCTAGCGTT -ACGGAAATGTCGCTCTCTTTCGTC -ACGGAAATGTCGCTCTCTTCTCTC -ACGGAAATGTCGCTCTCTTGGATC -ACGGAAATGTCGCTCTCTCACTTC -ACGGAAATGTCGCTCTCTGTACTC -ACGGAAATGTCGCTCTCTGATGTC -ACGGAAATGTCGCTCTCTACAGTC -ACGGAAATGTCGCTCTCTTTGCTG -ACGGAAATGTCGCTCTCTTCCATG -ACGGAAATGTCGCTCTCTTGTGTG -ACGGAAATGTCGCTCTCTCTAGTG -ACGGAAATGTCGCTCTCTCATCTG -ACGGAAATGTCGCTCTCTGAGTTG -ACGGAAATGTCGCTCTCTAGACTG -ACGGAAATGTCGCTCTCTTCGGTA -ACGGAAATGTCGCTCTCTTGCCTA -ACGGAAATGTCGCTCTCTCCACTA -ACGGAAATGTCGCTCTCTGGAGTA -ACGGAAATGTCGCTCTCTTCGTCT -ACGGAAATGTCGCTCTCTTGCACT -ACGGAAATGTCGCTCTCTCTGACT -ACGGAAATGTCGCTCTCTCAACCT -ACGGAAATGTCGCTCTCTGCTACT -ACGGAAATGTCGCTCTCTGGATCT -ACGGAAATGTCGCTCTCTAAGGCT -ACGGAAATGTCGCTCTCTTCAACC -ACGGAAATGTCGCTCTCTTGTTCC -ACGGAAATGTCGCTCTCTATTCCC -ACGGAAATGTCGCTCTCTTTCTCG -ACGGAAATGTCGCTCTCTTAGACG -ACGGAAATGTCGCTCTCTGTAACG -ACGGAAATGTCGCTCTCTACTTCG -ACGGAAATGTCGCTCTCTTACGCA -ACGGAAATGTCGCTCTCTCTTGCA -ACGGAAATGTCGCTCTCTCGAACA -ACGGAAATGTCGCTCTCTCAGTCA -ACGGAAATGTCGCTCTCTGATCCA -ACGGAAATGTCGCTCTCTACGACA -ACGGAAATGTCGCTCTCTAGCTCA -ACGGAAATGTCGCTCTCTTCACGT -ACGGAAATGTCGCTCTCTCGTAGT -ACGGAAATGTCGCTCTCTGTCAGT -ACGGAAATGTCGCTCTCTGAAGGT -ACGGAAATGTCGCTCTCTAACCGT -ACGGAAATGTCGCTCTCTTTGTGC -ACGGAAATGTCGCTCTCTCTAAGC -ACGGAAATGTCGCTCTCTACTAGC -ACGGAAATGTCGCTCTCTAGATGC -ACGGAAATGTCGCTCTCTTGAAGG -ACGGAAATGTCGCTCTCTCAATGG -ACGGAAATGTCGCTCTCTATGAGG -ACGGAAATGTCGCTCTCTAATGGG -ACGGAAATGTCGCTCTCTTCCTGA -ACGGAAATGTCGCTCTCTTAGCGA -ACGGAAATGTCGCTCTCTCACAGA -ACGGAAATGTCGCTCTCTGCAAGA -ACGGAAATGTCGCTCTCTGGTTGA -ACGGAAATGTCGCTCTCTTCCGAT -ACGGAAATGTCGCTCTCTTGGCAT -ACGGAAATGTCGCTCTCTCGAGAT -ACGGAAATGTCGCTCTCTTACCAC -ACGGAAATGTCGCTCTCTCAGAAC -ACGGAAATGTCGCTCTCTGTCTAC -ACGGAAATGTCGCTCTCTACGTAC -ACGGAAATGTCGCTCTCTAGTGAC -ACGGAAATGTCGCTCTCTCTGTAG -ACGGAAATGTCGCTCTCTCCTAAG -ACGGAAATGTCGCTCTCTGTTCAG -ACGGAAATGTCGCTCTCTGCATAG -ACGGAAATGTCGCTCTCTGACAAG -ACGGAAATGTCGCTCTCTAAGCAG -ACGGAAATGTCGCTCTCTCGTCAA -ACGGAAATGTCGCTCTCTGCTGAA -ACGGAAATGTCGCTCTCTAGTACG -ACGGAAATGTCGCTCTCTATCCGA -ACGGAAATGTCGCTCTCTATGGGA -ACGGAAATGTCGCTCTCTGTGCAA -ACGGAAATGTCGCTCTCTGAGGAA -ACGGAAATGTCGCTCTCTCAGGTA -ACGGAAATGTCGCTCTCTGACTCT -ACGGAAATGTCGCTCTCTAGTCCT -ACGGAAATGTCGCTCTCTTAAGCC -ACGGAAATGTCGCTCTCTATAGCC -ACGGAAATGTCGCTCTCTTAACCG -ACGGAAATGTCGCTCTCTATGCCA -ACGGAAATGTCGATCTGGGGAAAC -ACGGAAATGTCGATCTGGAACACC -ACGGAAATGTCGATCTGGATCGAG -ACGGAAATGTCGATCTGGCTCCTT -ACGGAAATGTCGATCTGGCCTGTT -ACGGAAATGTCGATCTGGCGGTTT -ACGGAAATGTCGATCTGGGTGGTT -ACGGAAATGTCGATCTGGGCCTTT -ACGGAAATGTCGATCTGGGGTCTT -ACGGAAATGTCGATCTGGACGCTT -ACGGAAATGTCGATCTGGAGCGTT -ACGGAAATGTCGATCTGGTTCGTC -ACGGAAATGTCGATCTGGTCTCTC -ACGGAAATGTCGATCTGGTGGATC -ACGGAAATGTCGATCTGGCACTTC -ACGGAAATGTCGATCTGGGTACTC -ACGGAAATGTCGATCTGGGATGTC -ACGGAAATGTCGATCTGGACAGTC -ACGGAAATGTCGATCTGGTTGCTG -ACGGAAATGTCGATCTGGTCCATG -ACGGAAATGTCGATCTGGTGTGTG -ACGGAAATGTCGATCTGGCTAGTG -ACGGAAATGTCGATCTGGCATCTG -ACGGAAATGTCGATCTGGGAGTTG -ACGGAAATGTCGATCTGGAGACTG -ACGGAAATGTCGATCTGGTCGGTA -ACGGAAATGTCGATCTGGTGCCTA -ACGGAAATGTCGATCTGGCCACTA -ACGGAAATGTCGATCTGGGGAGTA -ACGGAAATGTCGATCTGGTCGTCT -ACGGAAATGTCGATCTGGTGCACT -ACGGAAATGTCGATCTGGCTGACT -ACGGAAATGTCGATCTGGCAACCT -ACGGAAATGTCGATCTGGGCTACT -ACGGAAATGTCGATCTGGGGATCT -ACGGAAATGTCGATCTGGAAGGCT -ACGGAAATGTCGATCTGGTCAACC -ACGGAAATGTCGATCTGGTGTTCC -ACGGAAATGTCGATCTGGATTCCC -ACGGAAATGTCGATCTGGTTCTCG -ACGGAAATGTCGATCTGGTAGACG -ACGGAAATGTCGATCTGGGTAACG -ACGGAAATGTCGATCTGGACTTCG -ACGGAAATGTCGATCTGGTACGCA -ACGGAAATGTCGATCTGGCTTGCA -ACGGAAATGTCGATCTGGCGAACA -ACGGAAATGTCGATCTGGCAGTCA -ACGGAAATGTCGATCTGGGATCCA -ACGGAAATGTCGATCTGGACGACA -ACGGAAATGTCGATCTGGAGCTCA -ACGGAAATGTCGATCTGGTCACGT -ACGGAAATGTCGATCTGGCGTAGT -ACGGAAATGTCGATCTGGGTCAGT -ACGGAAATGTCGATCTGGGAAGGT -ACGGAAATGTCGATCTGGAACCGT -ACGGAAATGTCGATCTGGTTGTGC -ACGGAAATGTCGATCTGGCTAAGC -ACGGAAATGTCGATCTGGACTAGC -ACGGAAATGTCGATCTGGAGATGC -ACGGAAATGTCGATCTGGTGAAGG -ACGGAAATGTCGATCTGGCAATGG -ACGGAAATGTCGATCTGGATGAGG -ACGGAAATGTCGATCTGGAATGGG -ACGGAAATGTCGATCTGGTCCTGA -ACGGAAATGTCGATCTGGTAGCGA -ACGGAAATGTCGATCTGGCACAGA -ACGGAAATGTCGATCTGGGCAAGA -ACGGAAATGTCGATCTGGGGTTGA -ACGGAAATGTCGATCTGGTCCGAT -ACGGAAATGTCGATCTGGTGGCAT -ACGGAAATGTCGATCTGGCGAGAT -ACGGAAATGTCGATCTGGTACCAC -ACGGAAATGTCGATCTGGCAGAAC -ACGGAAATGTCGATCTGGGTCTAC -ACGGAAATGTCGATCTGGACGTAC -ACGGAAATGTCGATCTGGAGTGAC -ACGGAAATGTCGATCTGGCTGTAG -ACGGAAATGTCGATCTGGCCTAAG -ACGGAAATGTCGATCTGGGTTCAG -ACGGAAATGTCGATCTGGGCATAG -ACGGAAATGTCGATCTGGGACAAG -ACGGAAATGTCGATCTGGAAGCAG -ACGGAAATGTCGATCTGGCGTCAA -ACGGAAATGTCGATCTGGGCTGAA -ACGGAAATGTCGATCTGGAGTACG -ACGGAAATGTCGATCTGGATCCGA -ACGGAAATGTCGATCTGGATGGGA -ACGGAAATGTCGATCTGGGTGCAA -ACGGAAATGTCGATCTGGGAGGAA -ACGGAAATGTCGATCTGGCAGGTA -ACGGAAATGTCGATCTGGGACTCT -ACGGAAATGTCGATCTGGAGTCCT -ACGGAAATGTCGATCTGGTAAGCC -ACGGAAATGTCGATCTGGATAGCC -ACGGAAATGTCGATCTGGTAACCG -ACGGAAATGTCGATCTGGATGCCA -ACGGAAATGTCGTTCCACGGAAAC -ACGGAAATGTCGTTCCACAACACC -ACGGAAATGTCGTTCCACATCGAG -ACGGAAATGTCGTTCCACCTCCTT -ACGGAAATGTCGTTCCACCCTGTT -ACGGAAATGTCGTTCCACCGGTTT -ACGGAAATGTCGTTCCACGTGGTT -ACGGAAATGTCGTTCCACGCCTTT -ACGGAAATGTCGTTCCACGGTCTT -ACGGAAATGTCGTTCCACACGCTT -ACGGAAATGTCGTTCCACAGCGTT -ACGGAAATGTCGTTCCACTTCGTC -ACGGAAATGTCGTTCCACTCTCTC -ACGGAAATGTCGTTCCACTGGATC -ACGGAAATGTCGTTCCACCACTTC -ACGGAAATGTCGTTCCACGTACTC -ACGGAAATGTCGTTCCACGATGTC -ACGGAAATGTCGTTCCACACAGTC -ACGGAAATGTCGTTCCACTTGCTG -ACGGAAATGTCGTTCCACTCCATG -ACGGAAATGTCGTTCCACTGTGTG -ACGGAAATGTCGTTCCACCTAGTG -ACGGAAATGTCGTTCCACCATCTG -ACGGAAATGTCGTTCCACGAGTTG -ACGGAAATGTCGTTCCACAGACTG -ACGGAAATGTCGTTCCACTCGGTA -ACGGAAATGTCGTTCCACTGCCTA -ACGGAAATGTCGTTCCACCCACTA -ACGGAAATGTCGTTCCACGGAGTA -ACGGAAATGTCGTTCCACTCGTCT -ACGGAAATGTCGTTCCACTGCACT -ACGGAAATGTCGTTCCACCTGACT -ACGGAAATGTCGTTCCACCAACCT -ACGGAAATGTCGTTCCACGCTACT -ACGGAAATGTCGTTCCACGGATCT -ACGGAAATGTCGTTCCACAAGGCT -ACGGAAATGTCGTTCCACTCAACC -ACGGAAATGTCGTTCCACTGTTCC -ACGGAAATGTCGTTCCACATTCCC -ACGGAAATGTCGTTCCACTTCTCG -ACGGAAATGTCGTTCCACTAGACG -ACGGAAATGTCGTTCCACGTAACG -ACGGAAATGTCGTTCCACACTTCG -ACGGAAATGTCGTTCCACTACGCA -ACGGAAATGTCGTTCCACCTTGCA -ACGGAAATGTCGTTCCACCGAACA -ACGGAAATGTCGTTCCACCAGTCA -ACGGAAATGTCGTTCCACGATCCA -ACGGAAATGTCGTTCCACACGACA -ACGGAAATGTCGTTCCACAGCTCA -ACGGAAATGTCGTTCCACTCACGT -ACGGAAATGTCGTTCCACCGTAGT -ACGGAAATGTCGTTCCACGTCAGT -ACGGAAATGTCGTTCCACGAAGGT -ACGGAAATGTCGTTCCACAACCGT -ACGGAAATGTCGTTCCACTTGTGC -ACGGAAATGTCGTTCCACCTAAGC -ACGGAAATGTCGTTCCACACTAGC -ACGGAAATGTCGTTCCACAGATGC -ACGGAAATGTCGTTCCACTGAAGG -ACGGAAATGTCGTTCCACCAATGG -ACGGAAATGTCGTTCCACATGAGG -ACGGAAATGTCGTTCCACAATGGG -ACGGAAATGTCGTTCCACTCCTGA -ACGGAAATGTCGTTCCACTAGCGA -ACGGAAATGTCGTTCCACCACAGA -ACGGAAATGTCGTTCCACGCAAGA -ACGGAAATGTCGTTCCACGGTTGA -ACGGAAATGTCGTTCCACTCCGAT -ACGGAAATGTCGTTCCACTGGCAT -ACGGAAATGTCGTTCCACCGAGAT -ACGGAAATGTCGTTCCACTACCAC -ACGGAAATGTCGTTCCACCAGAAC -ACGGAAATGTCGTTCCACGTCTAC -ACGGAAATGTCGTTCCACACGTAC -ACGGAAATGTCGTTCCACAGTGAC -ACGGAAATGTCGTTCCACCTGTAG -ACGGAAATGTCGTTCCACCCTAAG -ACGGAAATGTCGTTCCACGTTCAG -ACGGAAATGTCGTTCCACGCATAG -ACGGAAATGTCGTTCCACGACAAG -ACGGAAATGTCGTTCCACAAGCAG -ACGGAAATGTCGTTCCACCGTCAA -ACGGAAATGTCGTTCCACGCTGAA -ACGGAAATGTCGTTCCACAGTACG -ACGGAAATGTCGTTCCACATCCGA -ACGGAAATGTCGTTCCACATGGGA -ACGGAAATGTCGTTCCACGTGCAA -ACGGAAATGTCGTTCCACGAGGAA -ACGGAAATGTCGTTCCACCAGGTA -ACGGAAATGTCGTTCCACGACTCT -ACGGAAATGTCGTTCCACAGTCCT -ACGGAAATGTCGTTCCACTAAGCC -ACGGAAATGTCGTTCCACATAGCC -ACGGAAATGTCGTTCCACTAACCG -ACGGAAATGTCGTTCCACATGCCA -ACGGAAATGTCGCTCGTAGGAAAC -ACGGAAATGTCGCTCGTAAACACC -ACGGAAATGTCGCTCGTAATCGAG -ACGGAAATGTCGCTCGTACTCCTT -ACGGAAATGTCGCTCGTACCTGTT -ACGGAAATGTCGCTCGTACGGTTT -ACGGAAATGTCGCTCGTAGTGGTT -ACGGAAATGTCGCTCGTAGCCTTT -ACGGAAATGTCGCTCGTAGGTCTT -ACGGAAATGTCGCTCGTAACGCTT -ACGGAAATGTCGCTCGTAAGCGTT -ACGGAAATGTCGCTCGTATTCGTC -ACGGAAATGTCGCTCGTATCTCTC -ACGGAAATGTCGCTCGTATGGATC -ACGGAAATGTCGCTCGTACACTTC -ACGGAAATGTCGCTCGTAGTACTC -ACGGAAATGTCGCTCGTAGATGTC -ACGGAAATGTCGCTCGTAACAGTC -ACGGAAATGTCGCTCGTATTGCTG -ACGGAAATGTCGCTCGTATCCATG -ACGGAAATGTCGCTCGTATGTGTG -ACGGAAATGTCGCTCGTACTAGTG -ACGGAAATGTCGCTCGTACATCTG -ACGGAAATGTCGCTCGTAGAGTTG -ACGGAAATGTCGCTCGTAAGACTG -ACGGAAATGTCGCTCGTATCGGTA -ACGGAAATGTCGCTCGTATGCCTA -ACGGAAATGTCGCTCGTACCACTA -ACGGAAATGTCGCTCGTAGGAGTA -ACGGAAATGTCGCTCGTATCGTCT -ACGGAAATGTCGCTCGTATGCACT -ACGGAAATGTCGCTCGTACTGACT -ACGGAAATGTCGCTCGTACAACCT -ACGGAAATGTCGCTCGTAGCTACT -ACGGAAATGTCGCTCGTAGGATCT -ACGGAAATGTCGCTCGTAAAGGCT -ACGGAAATGTCGCTCGTATCAACC -ACGGAAATGTCGCTCGTATGTTCC -ACGGAAATGTCGCTCGTAATTCCC -ACGGAAATGTCGCTCGTATTCTCG -ACGGAAATGTCGCTCGTATAGACG -ACGGAAATGTCGCTCGTAGTAACG -ACGGAAATGTCGCTCGTAACTTCG -ACGGAAATGTCGCTCGTATACGCA -ACGGAAATGTCGCTCGTACTTGCA -ACGGAAATGTCGCTCGTACGAACA -ACGGAAATGTCGCTCGTACAGTCA -ACGGAAATGTCGCTCGTAGATCCA -ACGGAAATGTCGCTCGTAACGACA -ACGGAAATGTCGCTCGTAAGCTCA -ACGGAAATGTCGCTCGTATCACGT -ACGGAAATGTCGCTCGTACGTAGT -ACGGAAATGTCGCTCGTAGTCAGT -ACGGAAATGTCGCTCGTAGAAGGT -ACGGAAATGTCGCTCGTAAACCGT -ACGGAAATGTCGCTCGTATTGTGC -ACGGAAATGTCGCTCGTACTAAGC -ACGGAAATGTCGCTCGTAACTAGC -ACGGAAATGTCGCTCGTAAGATGC -ACGGAAATGTCGCTCGTATGAAGG -ACGGAAATGTCGCTCGTACAATGG -ACGGAAATGTCGCTCGTAATGAGG -ACGGAAATGTCGCTCGTAAATGGG -ACGGAAATGTCGCTCGTATCCTGA -ACGGAAATGTCGCTCGTATAGCGA -ACGGAAATGTCGCTCGTACACAGA -ACGGAAATGTCGCTCGTAGCAAGA -ACGGAAATGTCGCTCGTAGGTTGA -ACGGAAATGTCGCTCGTATCCGAT -ACGGAAATGTCGCTCGTATGGCAT -ACGGAAATGTCGCTCGTACGAGAT -ACGGAAATGTCGCTCGTATACCAC -ACGGAAATGTCGCTCGTACAGAAC -ACGGAAATGTCGCTCGTAGTCTAC -ACGGAAATGTCGCTCGTAACGTAC -ACGGAAATGTCGCTCGTAAGTGAC -ACGGAAATGTCGCTCGTACTGTAG -ACGGAAATGTCGCTCGTACCTAAG -ACGGAAATGTCGCTCGTAGTTCAG -ACGGAAATGTCGCTCGTAGCATAG -ACGGAAATGTCGCTCGTAGACAAG -ACGGAAATGTCGCTCGTAAAGCAG -ACGGAAATGTCGCTCGTACGTCAA -ACGGAAATGTCGCTCGTAGCTGAA -ACGGAAATGTCGCTCGTAAGTACG -ACGGAAATGTCGCTCGTAATCCGA -ACGGAAATGTCGCTCGTAATGGGA -ACGGAAATGTCGCTCGTAGTGCAA -ACGGAAATGTCGCTCGTAGAGGAA -ACGGAAATGTCGCTCGTACAGGTA -ACGGAAATGTCGCTCGTAGACTCT -ACGGAAATGTCGCTCGTAAGTCCT -ACGGAAATGTCGCTCGTATAAGCC -ACGGAAATGTCGCTCGTAATAGCC -ACGGAAATGTCGCTCGTATAACCG -ACGGAAATGTCGCTCGTAATGCCA -ACGGAAATGTCGGTCGATGGAAAC -ACGGAAATGTCGGTCGATAACACC -ACGGAAATGTCGGTCGATATCGAG -ACGGAAATGTCGGTCGATCTCCTT -ACGGAAATGTCGGTCGATCCTGTT -ACGGAAATGTCGGTCGATCGGTTT -ACGGAAATGTCGGTCGATGTGGTT -ACGGAAATGTCGGTCGATGCCTTT -ACGGAAATGTCGGTCGATGGTCTT -ACGGAAATGTCGGTCGATACGCTT -ACGGAAATGTCGGTCGATAGCGTT -ACGGAAATGTCGGTCGATTTCGTC -ACGGAAATGTCGGTCGATTCTCTC -ACGGAAATGTCGGTCGATTGGATC -ACGGAAATGTCGGTCGATCACTTC -ACGGAAATGTCGGTCGATGTACTC -ACGGAAATGTCGGTCGATGATGTC -ACGGAAATGTCGGTCGATACAGTC -ACGGAAATGTCGGTCGATTTGCTG -ACGGAAATGTCGGTCGATTCCATG -ACGGAAATGTCGGTCGATTGTGTG -ACGGAAATGTCGGTCGATCTAGTG -ACGGAAATGTCGGTCGATCATCTG -ACGGAAATGTCGGTCGATGAGTTG -ACGGAAATGTCGGTCGATAGACTG -ACGGAAATGTCGGTCGATTCGGTA -ACGGAAATGTCGGTCGATTGCCTA -ACGGAAATGTCGGTCGATCCACTA -ACGGAAATGTCGGTCGATGGAGTA -ACGGAAATGTCGGTCGATTCGTCT -ACGGAAATGTCGGTCGATTGCACT -ACGGAAATGTCGGTCGATCTGACT -ACGGAAATGTCGGTCGATCAACCT -ACGGAAATGTCGGTCGATGCTACT -ACGGAAATGTCGGTCGATGGATCT -ACGGAAATGTCGGTCGATAAGGCT -ACGGAAATGTCGGTCGATTCAACC -ACGGAAATGTCGGTCGATTGTTCC -ACGGAAATGTCGGTCGATATTCCC -ACGGAAATGTCGGTCGATTTCTCG -ACGGAAATGTCGGTCGATTAGACG -ACGGAAATGTCGGTCGATGTAACG -ACGGAAATGTCGGTCGATACTTCG -ACGGAAATGTCGGTCGATTACGCA -ACGGAAATGTCGGTCGATCTTGCA -ACGGAAATGTCGGTCGATCGAACA -ACGGAAATGTCGGTCGATCAGTCA -ACGGAAATGTCGGTCGATGATCCA -ACGGAAATGTCGGTCGATACGACA -ACGGAAATGTCGGTCGATAGCTCA -ACGGAAATGTCGGTCGATTCACGT -ACGGAAATGTCGGTCGATCGTAGT -ACGGAAATGTCGGTCGATGTCAGT -ACGGAAATGTCGGTCGATGAAGGT -ACGGAAATGTCGGTCGATAACCGT -ACGGAAATGTCGGTCGATTTGTGC -ACGGAAATGTCGGTCGATCTAAGC -ACGGAAATGTCGGTCGATACTAGC -ACGGAAATGTCGGTCGATAGATGC -ACGGAAATGTCGGTCGATTGAAGG -ACGGAAATGTCGGTCGATCAATGG -ACGGAAATGTCGGTCGATATGAGG -ACGGAAATGTCGGTCGATAATGGG -ACGGAAATGTCGGTCGATTCCTGA -ACGGAAATGTCGGTCGATTAGCGA -ACGGAAATGTCGGTCGATCACAGA -ACGGAAATGTCGGTCGATGCAAGA -ACGGAAATGTCGGTCGATGGTTGA -ACGGAAATGTCGGTCGATTCCGAT -ACGGAAATGTCGGTCGATTGGCAT -ACGGAAATGTCGGTCGATCGAGAT -ACGGAAATGTCGGTCGATTACCAC -ACGGAAATGTCGGTCGATCAGAAC -ACGGAAATGTCGGTCGATGTCTAC -ACGGAAATGTCGGTCGATACGTAC -ACGGAAATGTCGGTCGATAGTGAC -ACGGAAATGTCGGTCGATCTGTAG -ACGGAAATGTCGGTCGATCCTAAG -ACGGAAATGTCGGTCGATGTTCAG -ACGGAAATGTCGGTCGATGCATAG -ACGGAAATGTCGGTCGATGACAAG -ACGGAAATGTCGGTCGATAAGCAG -ACGGAAATGTCGGTCGATCGTCAA -ACGGAAATGTCGGTCGATGCTGAA -ACGGAAATGTCGGTCGATAGTACG -ACGGAAATGTCGGTCGATATCCGA -ACGGAAATGTCGGTCGATATGGGA -ACGGAAATGTCGGTCGATGTGCAA -ACGGAAATGTCGGTCGATGAGGAA -ACGGAAATGTCGGTCGATCAGGTA -ACGGAAATGTCGGTCGATGACTCT -ACGGAAATGTCGGTCGATAGTCCT -ACGGAAATGTCGGTCGATTAAGCC -ACGGAAATGTCGGTCGATATAGCC -ACGGAAATGTCGGTCGATTAACCG -ACGGAAATGTCGGTCGATATGCCA -ACGGAAATGTCGGTCACAGGAAAC -ACGGAAATGTCGGTCACAAACACC -ACGGAAATGTCGGTCACAATCGAG -ACGGAAATGTCGGTCACACTCCTT -ACGGAAATGTCGGTCACACCTGTT -ACGGAAATGTCGGTCACACGGTTT -ACGGAAATGTCGGTCACAGTGGTT -ACGGAAATGTCGGTCACAGCCTTT -ACGGAAATGTCGGTCACAGGTCTT -ACGGAAATGTCGGTCACAACGCTT -ACGGAAATGTCGGTCACAAGCGTT -ACGGAAATGTCGGTCACATTCGTC -ACGGAAATGTCGGTCACATCTCTC -ACGGAAATGTCGGTCACATGGATC -ACGGAAATGTCGGTCACACACTTC -ACGGAAATGTCGGTCACAGTACTC -ACGGAAATGTCGGTCACAGATGTC -ACGGAAATGTCGGTCACAACAGTC -ACGGAAATGTCGGTCACATTGCTG -ACGGAAATGTCGGTCACATCCATG -ACGGAAATGTCGGTCACATGTGTG -ACGGAAATGTCGGTCACACTAGTG -ACGGAAATGTCGGTCACACATCTG -ACGGAAATGTCGGTCACAGAGTTG -ACGGAAATGTCGGTCACAAGACTG -ACGGAAATGTCGGTCACATCGGTA -ACGGAAATGTCGGTCACATGCCTA -ACGGAAATGTCGGTCACACCACTA -ACGGAAATGTCGGTCACAGGAGTA -ACGGAAATGTCGGTCACATCGTCT -ACGGAAATGTCGGTCACATGCACT -ACGGAAATGTCGGTCACACTGACT -ACGGAAATGTCGGTCACACAACCT -ACGGAAATGTCGGTCACAGCTACT -ACGGAAATGTCGGTCACAGGATCT -ACGGAAATGTCGGTCACAAAGGCT -ACGGAAATGTCGGTCACATCAACC -ACGGAAATGTCGGTCACATGTTCC -ACGGAAATGTCGGTCACAATTCCC -ACGGAAATGTCGGTCACATTCTCG -ACGGAAATGTCGGTCACATAGACG -ACGGAAATGTCGGTCACAGTAACG -ACGGAAATGTCGGTCACAACTTCG -ACGGAAATGTCGGTCACATACGCA -ACGGAAATGTCGGTCACACTTGCA -ACGGAAATGTCGGTCACACGAACA -ACGGAAATGTCGGTCACACAGTCA -ACGGAAATGTCGGTCACAGATCCA -ACGGAAATGTCGGTCACAACGACA -ACGGAAATGTCGGTCACAAGCTCA -ACGGAAATGTCGGTCACATCACGT -ACGGAAATGTCGGTCACACGTAGT -ACGGAAATGTCGGTCACAGTCAGT -ACGGAAATGTCGGTCACAGAAGGT -ACGGAAATGTCGGTCACAAACCGT -ACGGAAATGTCGGTCACATTGTGC -ACGGAAATGTCGGTCACACTAAGC -ACGGAAATGTCGGTCACAACTAGC -ACGGAAATGTCGGTCACAAGATGC -ACGGAAATGTCGGTCACATGAAGG -ACGGAAATGTCGGTCACACAATGG -ACGGAAATGTCGGTCACAATGAGG -ACGGAAATGTCGGTCACAAATGGG -ACGGAAATGTCGGTCACATCCTGA -ACGGAAATGTCGGTCACATAGCGA -ACGGAAATGTCGGTCACACACAGA -ACGGAAATGTCGGTCACAGCAAGA -ACGGAAATGTCGGTCACAGGTTGA -ACGGAAATGTCGGTCACATCCGAT -ACGGAAATGTCGGTCACATGGCAT -ACGGAAATGTCGGTCACACGAGAT -ACGGAAATGTCGGTCACATACCAC -ACGGAAATGTCGGTCACACAGAAC -ACGGAAATGTCGGTCACAGTCTAC -ACGGAAATGTCGGTCACAACGTAC -ACGGAAATGTCGGTCACAAGTGAC -ACGGAAATGTCGGTCACACTGTAG -ACGGAAATGTCGGTCACACCTAAG -ACGGAAATGTCGGTCACAGTTCAG -ACGGAAATGTCGGTCACAGCATAG -ACGGAAATGTCGGTCACAGACAAG -ACGGAAATGTCGGTCACAAAGCAG -ACGGAAATGTCGGTCACACGTCAA -ACGGAAATGTCGGTCACAGCTGAA -ACGGAAATGTCGGTCACAAGTACG -ACGGAAATGTCGGTCACAATCCGA -ACGGAAATGTCGGTCACAATGGGA -ACGGAAATGTCGGTCACAGTGCAA -ACGGAAATGTCGGTCACAGAGGAA -ACGGAAATGTCGGTCACACAGGTA -ACGGAAATGTCGGTCACAGACTCT -ACGGAAATGTCGGTCACAAGTCCT -ACGGAAATGTCGGTCACATAAGCC -ACGGAAATGTCGGTCACAATAGCC -ACGGAAATGTCGGTCACATAACCG -ACGGAAATGTCGGTCACAATGCCA -ACGGAAATGTCGCTGTTGGGAAAC -ACGGAAATGTCGCTGTTGAACACC -ACGGAAATGTCGCTGTTGATCGAG -ACGGAAATGTCGCTGTTGCTCCTT -ACGGAAATGTCGCTGTTGCCTGTT -ACGGAAATGTCGCTGTTGCGGTTT -ACGGAAATGTCGCTGTTGGTGGTT -ACGGAAATGTCGCTGTTGGCCTTT -ACGGAAATGTCGCTGTTGGGTCTT -ACGGAAATGTCGCTGTTGACGCTT -ACGGAAATGTCGCTGTTGAGCGTT -ACGGAAATGTCGCTGTTGTTCGTC -ACGGAAATGTCGCTGTTGTCTCTC -ACGGAAATGTCGCTGTTGTGGATC -ACGGAAATGTCGCTGTTGCACTTC -ACGGAAATGTCGCTGTTGGTACTC -ACGGAAATGTCGCTGTTGGATGTC -ACGGAAATGTCGCTGTTGACAGTC -ACGGAAATGTCGCTGTTGTTGCTG -ACGGAAATGTCGCTGTTGTCCATG -ACGGAAATGTCGCTGTTGTGTGTG -ACGGAAATGTCGCTGTTGCTAGTG -ACGGAAATGTCGCTGTTGCATCTG -ACGGAAATGTCGCTGTTGGAGTTG -ACGGAAATGTCGCTGTTGAGACTG -ACGGAAATGTCGCTGTTGTCGGTA -ACGGAAATGTCGCTGTTGTGCCTA -ACGGAAATGTCGCTGTTGCCACTA -ACGGAAATGTCGCTGTTGGGAGTA -ACGGAAATGTCGCTGTTGTCGTCT -ACGGAAATGTCGCTGTTGTGCACT -ACGGAAATGTCGCTGTTGCTGACT -ACGGAAATGTCGCTGTTGCAACCT -ACGGAAATGTCGCTGTTGGCTACT -ACGGAAATGTCGCTGTTGGGATCT -ACGGAAATGTCGCTGTTGAAGGCT -ACGGAAATGTCGCTGTTGTCAACC -ACGGAAATGTCGCTGTTGTGTTCC -ACGGAAATGTCGCTGTTGATTCCC -ACGGAAATGTCGCTGTTGTTCTCG -ACGGAAATGTCGCTGTTGTAGACG -ACGGAAATGTCGCTGTTGGTAACG -ACGGAAATGTCGCTGTTGACTTCG -ACGGAAATGTCGCTGTTGTACGCA -ACGGAAATGTCGCTGTTGCTTGCA -ACGGAAATGTCGCTGTTGCGAACA -ACGGAAATGTCGCTGTTGCAGTCA -ACGGAAATGTCGCTGTTGGATCCA -ACGGAAATGTCGCTGTTGACGACA -ACGGAAATGTCGCTGTTGAGCTCA -ACGGAAATGTCGCTGTTGTCACGT -ACGGAAATGTCGCTGTTGCGTAGT -ACGGAAATGTCGCTGTTGGTCAGT -ACGGAAATGTCGCTGTTGGAAGGT -ACGGAAATGTCGCTGTTGAACCGT -ACGGAAATGTCGCTGTTGTTGTGC -ACGGAAATGTCGCTGTTGCTAAGC -ACGGAAATGTCGCTGTTGACTAGC -ACGGAAATGTCGCTGTTGAGATGC -ACGGAAATGTCGCTGTTGTGAAGG -ACGGAAATGTCGCTGTTGCAATGG -ACGGAAATGTCGCTGTTGATGAGG -ACGGAAATGTCGCTGTTGAATGGG -ACGGAAATGTCGCTGTTGTCCTGA -ACGGAAATGTCGCTGTTGTAGCGA -ACGGAAATGTCGCTGTTGCACAGA -ACGGAAATGTCGCTGTTGGCAAGA -ACGGAAATGTCGCTGTTGGGTTGA -ACGGAAATGTCGCTGTTGTCCGAT -ACGGAAATGTCGCTGTTGTGGCAT -ACGGAAATGTCGCTGTTGCGAGAT -ACGGAAATGTCGCTGTTGTACCAC -ACGGAAATGTCGCTGTTGCAGAAC -ACGGAAATGTCGCTGTTGGTCTAC -ACGGAAATGTCGCTGTTGACGTAC -ACGGAAATGTCGCTGTTGAGTGAC -ACGGAAATGTCGCTGTTGCTGTAG -ACGGAAATGTCGCTGTTGCCTAAG -ACGGAAATGTCGCTGTTGGTTCAG -ACGGAAATGTCGCTGTTGGCATAG -ACGGAAATGTCGCTGTTGGACAAG -ACGGAAATGTCGCTGTTGAAGCAG -ACGGAAATGTCGCTGTTGCGTCAA -ACGGAAATGTCGCTGTTGGCTGAA -ACGGAAATGTCGCTGTTGAGTACG -ACGGAAATGTCGCTGTTGATCCGA -ACGGAAATGTCGCTGTTGATGGGA -ACGGAAATGTCGCTGTTGGTGCAA -ACGGAAATGTCGCTGTTGGAGGAA -ACGGAAATGTCGCTGTTGCAGGTA -ACGGAAATGTCGCTGTTGGACTCT -ACGGAAATGTCGCTGTTGAGTCCT -ACGGAAATGTCGCTGTTGTAAGCC -ACGGAAATGTCGCTGTTGATAGCC -ACGGAAATGTCGCTGTTGTAACCG -ACGGAAATGTCGCTGTTGATGCCA -ACGGAAATGTCGATGTCCGGAAAC -ACGGAAATGTCGATGTCCAACACC -ACGGAAATGTCGATGTCCATCGAG -ACGGAAATGTCGATGTCCCTCCTT -ACGGAAATGTCGATGTCCCCTGTT -ACGGAAATGTCGATGTCCCGGTTT -ACGGAAATGTCGATGTCCGTGGTT -ACGGAAATGTCGATGTCCGCCTTT -ACGGAAATGTCGATGTCCGGTCTT -ACGGAAATGTCGATGTCCACGCTT -ACGGAAATGTCGATGTCCAGCGTT -ACGGAAATGTCGATGTCCTTCGTC -ACGGAAATGTCGATGTCCTCTCTC -ACGGAAATGTCGATGTCCTGGATC -ACGGAAATGTCGATGTCCCACTTC -ACGGAAATGTCGATGTCCGTACTC -ACGGAAATGTCGATGTCCGATGTC -ACGGAAATGTCGATGTCCACAGTC -ACGGAAATGTCGATGTCCTTGCTG -ACGGAAATGTCGATGTCCTCCATG -ACGGAAATGTCGATGTCCTGTGTG -ACGGAAATGTCGATGTCCCTAGTG -ACGGAAATGTCGATGTCCCATCTG -ACGGAAATGTCGATGTCCGAGTTG -ACGGAAATGTCGATGTCCAGACTG -ACGGAAATGTCGATGTCCTCGGTA -ACGGAAATGTCGATGTCCTGCCTA -ACGGAAATGTCGATGTCCCCACTA -ACGGAAATGTCGATGTCCGGAGTA -ACGGAAATGTCGATGTCCTCGTCT -ACGGAAATGTCGATGTCCTGCACT -ACGGAAATGTCGATGTCCCTGACT -ACGGAAATGTCGATGTCCCAACCT -ACGGAAATGTCGATGTCCGCTACT -ACGGAAATGTCGATGTCCGGATCT -ACGGAAATGTCGATGTCCAAGGCT -ACGGAAATGTCGATGTCCTCAACC -ACGGAAATGTCGATGTCCTGTTCC -ACGGAAATGTCGATGTCCATTCCC -ACGGAAATGTCGATGTCCTTCTCG -ACGGAAATGTCGATGTCCTAGACG -ACGGAAATGTCGATGTCCGTAACG -ACGGAAATGTCGATGTCCACTTCG -ACGGAAATGTCGATGTCCTACGCA -ACGGAAATGTCGATGTCCCTTGCA -ACGGAAATGTCGATGTCCCGAACA -ACGGAAATGTCGATGTCCCAGTCA -ACGGAAATGTCGATGTCCGATCCA -ACGGAAATGTCGATGTCCACGACA -ACGGAAATGTCGATGTCCAGCTCA -ACGGAAATGTCGATGTCCTCACGT -ACGGAAATGTCGATGTCCCGTAGT -ACGGAAATGTCGATGTCCGTCAGT -ACGGAAATGTCGATGTCCGAAGGT -ACGGAAATGTCGATGTCCAACCGT -ACGGAAATGTCGATGTCCTTGTGC -ACGGAAATGTCGATGTCCCTAAGC -ACGGAAATGTCGATGTCCACTAGC -ACGGAAATGTCGATGTCCAGATGC -ACGGAAATGTCGATGTCCTGAAGG -ACGGAAATGTCGATGTCCCAATGG -ACGGAAATGTCGATGTCCATGAGG -ACGGAAATGTCGATGTCCAATGGG -ACGGAAATGTCGATGTCCTCCTGA -ACGGAAATGTCGATGTCCTAGCGA -ACGGAAATGTCGATGTCCCACAGA -ACGGAAATGTCGATGTCCGCAAGA -ACGGAAATGTCGATGTCCGGTTGA -ACGGAAATGTCGATGTCCTCCGAT -ACGGAAATGTCGATGTCCTGGCAT -ACGGAAATGTCGATGTCCCGAGAT -ACGGAAATGTCGATGTCCTACCAC -ACGGAAATGTCGATGTCCCAGAAC -ACGGAAATGTCGATGTCCGTCTAC -ACGGAAATGTCGATGTCCACGTAC -ACGGAAATGTCGATGTCCAGTGAC -ACGGAAATGTCGATGTCCCTGTAG -ACGGAAATGTCGATGTCCCCTAAG -ACGGAAATGTCGATGTCCGTTCAG -ACGGAAATGTCGATGTCCGCATAG -ACGGAAATGTCGATGTCCGACAAG -ACGGAAATGTCGATGTCCAAGCAG -ACGGAAATGTCGATGTCCCGTCAA -ACGGAAATGTCGATGTCCGCTGAA -ACGGAAATGTCGATGTCCAGTACG -ACGGAAATGTCGATGTCCATCCGA -ACGGAAATGTCGATGTCCATGGGA -ACGGAAATGTCGATGTCCGTGCAA -ACGGAAATGTCGATGTCCGAGGAA -ACGGAAATGTCGATGTCCCAGGTA -ACGGAAATGTCGATGTCCGACTCT -ACGGAAATGTCGATGTCCAGTCCT -ACGGAAATGTCGATGTCCTAAGCC -ACGGAAATGTCGATGTCCATAGCC -ACGGAAATGTCGATGTCCTAACCG -ACGGAAATGTCGATGTCCATGCCA -ACGGAAATGTCGGTGTGTGGAAAC -ACGGAAATGTCGGTGTGTAACACC -ACGGAAATGTCGGTGTGTATCGAG -ACGGAAATGTCGGTGTGTCTCCTT -ACGGAAATGTCGGTGTGTCCTGTT -ACGGAAATGTCGGTGTGTCGGTTT -ACGGAAATGTCGGTGTGTGTGGTT -ACGGAAATGTCGGTGTGTGCCTTT -ACGGAAATGTCGGTGTGTGGTCTT -ACGGAAATGTCGGTGTGTACGCTT -ACGGAAATGTCGGTGTGTAGCGTT -ACGGAAATGTCGGTGTGTTTCGTC -ACGGAAATGTCGGTGTGTTCTCTC -ACGGAAATGTCGGTGTGTTGGATC -ACGGAAATGTCGGTGTGTCACTTC -ACGGAAATGTCGGTGTGTGTACTC -ACGGAAATGTCGGTGTGTGATGTC -ACGGAAATGTCGGTGTGTACAGTC -ACGGAAATGTCGGTGTGTTTGCTG -ACGGAAATGTCGGTGTGTTCCATG -ACGGAAATGTCGGTGTGTTGTGTG -ACGGAAATGTCGGTGTGTCTAGTG -ACGGAAATGTCGGTGTGTCATCTG -ACGGAAATGTCGGTGTGTGAGTTG -ACGGAAATGTCGGTGTGTAGACTG -ACGGAAATGTCGGTGTGTTCGGTA -ACGGAAATGTCGGTGTGTTGCCTA -ACGGAAATGTCGGTGTGTCCACTA -ACGGAAATGTCGGTGTGTGGAGTA -ACGGAAATGTCGGTGTGTTCGTCT -ACGGAAATGTCGGTGTGTTGCACT -ACGGAAATGTCGGTGTGTCTGACT -ACGGAAATGTCGGTGTGTCAACCT -ACGGAAATGTCGGTGTGTGCTACT -ACGGAAATGTCGGTGTGTGGATCT -ACGGAAATGTCGGTGTGTAAGGCT -ACGGAAATGTCGGTGTGTTCAACC -ACGGAAATGTCGGTGTGTTGTTCC -ACGGAAATGTCGGTGTGTATTCCC -ACGGAAATGTCGGTGTGTTTCTCG -ACGGAAATGTCGGTGTGTTAGACG -ACGGAAATGTCGGTGTGTGTAACG -ACGGAAATGTCGGTGTGTACTTCG -ACGGAAATGTCGGTGTGTTACGCA -ACGGAAATGTCGGTGTGTCTTGCA -ACGGAAATGTCGGTGTGTCGAACA -ACGGAAATGTCGGTGTGTCAGTCA -ACGGAAATGTCGGTGTGTGATCCA -ACGGAAATGTCGGTGTGTACGACA -ACGGAAATGTCGGTGTGTAGCTCA -ACGGAAATGTCGGTGTGTTCACGT -ACGGAAATGTCGGTGTGTCGTAGT -ACGGAAATGTCGGTGTGTGTCAGT -ACGGAAATGTCGGTGTGTGAAGGT -ACGGAAATGTCGGTGTGTAACCGT -ACGGAAATGTCGGTGTGTTTGTGC -ACGGAAATGTCGGTGTGTCTAAGC -ACGGAAATGTCGGTGTGTACTAGC -ACGGAAATGTCGGTGTGTAGATGC -ACGGAAATGTCGGTGTGTTGAAGG -ACGGAAATGTCGGTGTGTCAATGG -ACGGAAATGTCGGTGTGTATGAGG -ACGGAAATGTCGGTGTGTAATGGG -ACGGAAATGTCGGTGTGTTCCTGA -ACGGAAATGTCGGTGTGTTAGCGA -ACGGAAATGTCGGTGTGTCACAGA -ACGGAAATGTCGGTGTGTGCAAGA -ACGGAAATGTCGGTGTGTGGTTGA -ACGGAAATGTCGGTGTGTTCCGAT -ACGGAAATGTCGGTGTGTTGGCAT -ACGGAAATGTCGGTGTGTCGAGAT -ACGGAAATGTCGGTGTGTTACCAC -ACGGAAATGTCGGTGTGTCAGAAC -ACGGAAATGTCGGTGTGTGTCTAC -ACGGAAATGTCGGTGTGTACGTAC -ACGGAAATGTCGGTGTGTAGTGAC -ACGGAAATGTCGGTGTGTCTGTAG -ACGGAAATGTCGGTGTGTCCTAAG -ACGGAAATGTCGGTGTGTGTTCAG -ACGGAAATGTCGGTGTGTGCATAG -ACGGAAATGTCGGTGTGTGACAAG -ACGGAAATGTCGGTGTGTAAGCAG -ACGGAAATGTCGGTGTGTCGTCAA -ACGGAAATGTCGGTGTGTGCTGAA -ACGGAAATGTCGGTGTGTAGTACG -ACGGAAATGTCGGTGTGTATCCGA -ACGGAAATGTCGGTGTGTATGGGA -ACGGAAATGTCGGTGTGTGTGCAA -ACGGAAATGTCGGTGTGTGAGGAA -ACGGAAATGTCGGTGTGTCAGGTA -ACGGAAATGTCGGTGTGTGACTCT -ACGGAAATGTCGGTGTGTAGTCCT -ACGGAAATGTCGGTGTGTTAAGCC -ACGGAAATGTCGGTGTGTATAGCC -ACGGAAATGTCGGTGTGTTAACCG -ACGGAAATGTCGGTGTGTATGCCA -ACGGAAATGTCGGTGCTAGGAAAC -ACGGAAATGTCGGTGCTAAACACC -ACGGAAATGTCGGTGCTAATCGAG -ACGGAAATGTCGGTGCTACTCCTT -ACGGAAATGTCGGTGCTACCTGTT -ACGGAAATGTCGGTGCTACGGTTT -ACGGAAATGTCGGTGCTAGTGGTT -ACGGAAATGTCGGTGCTAGCCTTT -ACGGAAATGTCGGTGCTAGGTCTT -ACGGAAATGTCGGTGCTAACGCTT -ACGGAAATGTCGGTGCTAAGCGTT -ACGGAAATGTCGGTGCTATTCGTC -ACGGAAATGTCGGTGCTATCTCTC -ACGGAAATGTCGGTGCTATGGATC -ACGGAAATGTCGGTGCTACACTTC -ACGGAAATGTCGGTGCTAGTACTC -ACGGAAATGTCGGTGCTAGATGTC -ACGGAAATGTCGGTGCTAACAGTC -ACGGAAATGTCGGTGCTATTGCTG -ACGGAAATGTCGGTGCTATCCATG -ACGGAAATGTCGGTGCTATGTGTG -ACGGAAATGTCGGTGCTACTAGTG -ACGGAAATGTCGGTGCTACATCTG -ACGGAAATGTCGGTGCTAGAGTTG -ACGGAAATGTCGGTGCTAAGACTG -ACGGAAATGTCGGTGCTATCGGTA -ACGGAAATGTCGGTGCTATGCCTA -ACGGAAATGTCGGTGCTACCACTA -ACGGAAATGTCGGTGCTAGGAGTA -ACGGAAATGTCGGTGCTATCGTCT -ACGGAAATGTCGGTGCTATGCACT -ACGGAAATGTCGGTGCTACTGACT -ACGGAAATGTCGGTGCTACAACCT -ACGGAAATGTCGGTGCTAGCTACT -ACGGAAATGTCGGTGCTAGGATCT -ACGGAAATGTCGGTGCTAAAGGCT -ACGGAAATGTCGGTGCTATCAACC -ACGGAAATGTCGGTGCTATGTTCC -ACGGAAATGTCGGTGCTAATTCCC -ACGGAAATGTCGGTGCTATTCTCG -ACGGAAATGTCGGTGCTATAGACG -ACGGAAATGTCGGTGCTAGTAACG -ACGGAAATGTCGGTGCTAACTTCG -ACGGAAATGTCGGTGCTATACGCA -ACGGAAATGTCGGTGCTACTTGCA -ACGGAAATGTCGGTGCTACGAACA -ACGGAAATGTCGGTGCTACAGTCA -ACGGAAATGTCGGTGCTAGATCCA -ACGGAAATGTCGGTGCTAACGACA -ACGGAAATGTCGGTGCTAAGCTCA -ACGGAAATGTCGGTGCTATCACGT -ACGGAAATGTCGGTGCTACGTAGT -ACGGAAATGTCGGTGCTAGTCAGT -ACGGAAATGTCGGTGCTAGAAGGT -ACGGAAATGTCGGTGCTAAACCGT -ACGGAAATGTCGGTGCTATTGTGC -ACGGAAATGTCGGTGCTACTAAGC -ACGGAAATGTCGGTGCTAACTAGC -ACGGAAATGTCGGTGCTAAGATGC -ACGGAAATGTCGGTGCTATGAAGG -ACGGAAATGTCGGTGCTACAATGG -ACGGAAATGTCGGTGCTAATGAGG -ACGGAAATGTCGGTGCTAAATGGG -ACGGAAATGTCGGTGCTATCCTGA -ACGGAAATGTCGGTGCTATAGCGA -ACGGAAATGTCGGTGCTACACAGA -ACGGAAATGTCGGTGCTAGCAAGA -ACGGAAATGTCGGTGCTAGGTTGA -ACGGAAATGTCGGTGCTATCCGAT -ACGGAAATGTCGGTGCTATGGCAT -ACGGAAATGTCGGTGCTACGAGAT -ACGGAAATGTCGGTGCTATACCAC -ACGGAAATGTCGGTGCTACAGAAC -ACGGAAATGTCGGTGCTAGTCTAC -ACGGAAATGTCGGTGCTAACGTAC -ACGGAAATGTCGGTGCTAAGTGAC -ACGGAAATGTCGGTGCTACTGTAG -ACGGAAATGTCGGTGCTACCTAAG -ACGGAAATGTCGGTGCTAGTTCAG -ACGGAAATGTCGGTGCTAGCATAG -ACGGAAATGTCGGTGCTAGACAAG -ACGGAAATGTCGGTGCTAAAGCAG -ACGGAAATGTCGGTGCTACGTCAA -ACGGAAATGTCGGTGCTAGCTGAA -ACGGAAATGTCGGTGCTAAGTACG -ACGGAAATGTCGGTGCTAATCCGA -ACGGAAATGTCGGTGCTAATGGGA -ACGGAAATGTCGGTGCTAGTGCAA -ACGGAAATGTCGGTGCTAGAGGAA -ACGGAAATGTCGGTGCTACAGGTA -ACGGAAATGTCGGTGCTAGACTCT -ACGGAAATGTCGGTGCTAAGTCCT -ACGGAAATGTCGGTGCTATAAGCC -ACGGAAATGTCGGTGCTAATAGCC -ACGGAAATGTCGGTGCTATAACCG -ACGGAAATGTCGGTGCTAATGCCA -ACGGAAATGTCGCTGCATGGAAAC -ACGGAAATGTCGCTGCATAACACC -ACGGAAATGTCGCTGCATATCGAG -ACGGAAATGTCGCTGCATCTCCTT -ACGGAAATGTCGCTGCATCCTGTT -ACGGAAATGTCGCTGCATCGGTTT -ACGGAAATGTCGCTGCATGTGGTT -ACGGAAATGTCGCTGCATGCCTTT -ACGGAAATGTCGCTGCATGGTCTT -ACGGAAATGTCGCTGCATACGCTT -ACGGAAATGTCGCTGCATAGCGTT -ACGGAAATGTCGCTGCATTTCGTC -ACGGAAATGTCGCTGCATTCTCTC -ACGGAAATGTCGCTGCATTGGATC -ACGGAAATGTCGCTGCATCACTTC -ACGGAAATGTCGCTGCATGTACTC -ACGGAAATGTCGCTGCATGATGTC -ACGGAAATGTCGCTGCATACAGTC -ACGGAAATGTCGCTGCATTTGCTG -ACGGAAATGTCGCTGCATTCCATG -ACGGAAATGTCGCTGCATTGTGTG -ACGGAAATGTCGCTGCATCTAGTG -ACGGAAATGTCGCTGCATCATCTG -ACGGAAATGTCGCTGCATGAGTTG -ACGGAAATGTCGCTGCATAGACTG -ACGGAAATGTCGCTGCATTCGGTA -ACGGAAATGTCGCTGCATTGCCTA -ACGGAAATGTCGCTGCATCCACTA -ACGGAAATGTCGCTGCATGGAGTA -ACGGAAATGTCGCTGCATTCGTCT -ACGGAAATGTCGCTGCATTGCACT -ACGGAAATGTCGCTGCATCTGACT -ACGGAAATGTCGCTGCATCAACCT -ACGGAAATGTCGCTGCATGCTACT -ACGGAAATGTCGCTGCATGGATCT -ACGGAAATGTCGCTGCATAAGGCT -ACGGAAATGTCGCTGCATTCAACC -ACGGAAATGTCGCTGCATTGTTCC -ACGGAAATGTCGCTGCATATTCCC -ACGGAAATGTCGCTGCATTTCTCG -ACGGAAATGTCGCTGCATTAGACG -ACGGAAATGTCGCTGCATGTAACG -ACGGAAATGTCGCTGCATACTTCG -ACGGAAATGTCGCTGCATTACGCA -ACGGAAATGTCGCTGCATCTTGCA -ACGGAAATGTCGCTGCATCGAACA -ACGGAAATGTCGCTGCATCAGTCA -ACGGAAATGTCGCTGCATGATCCA -ACGGAAATGTCGCTGCATACGACA -ACGGAAATGTCGCTGCATAGCTCA -ACGGAAATGTCGCTGCATTCACGT -ACGGAAATGTCGCTGCATCGTAGT -ACGGAAATGTCGCTGCATGTCAGT -ACGGAAATGTCGCTGCATGAAGGT -ACGGAAATGTCGCTGCATAACCGT -ACGGAAATGTCGCTGCATTTGTGC -ACGGAAATGTCGCTGCATCTAAGC -ACGGAAATGTCGCTGCATACTAGC -ACGGAAATGTCGCTGCATAGATGC -ACGGAAATGTCGCTGCATTGAAGG -ACGGAAATGTCGCTGCATCAATGG -ACGGAAATGTCGCTGCATATGAGG -ACGGAAATGTCGCTGCATAATGGG -ACGGAAATGTCGCTGCATTCCTGA -ACGGAAATGTCGCTGCATTAGCGA -ACGGAAATGTCGCTGCATCACAGA -ACGGAAATGTCGCTGCATGCAAGA -ACGGAAATGTCGCTGCATGGTTGA -ACGGAAATGTCGCTGCATTCCGAT -ACGGAAATGTCGCTGCATTGGCAT -ACGGAAATGTCGCTGCATCGAGAT -ACGGAAATGTCGCTGCATTACCAC -ACGGAAATGTCGCTGCATCAGAAC -ACGGAAATGTCGCTGCATGTCTAC -ACGGAAATGTCGCTGCATACGTAC -ACGGAAATGTCGCTGCATAGTGAC -ACGGAAATGTCGCTGCATCTGTAG -ACGGAAATGTCGCTGCATCCTAAG -ACGGAAATGTCGCTGCATGTTCAG -ACGGAAATGTCGCTGCATGCATAG -ACGGAAATGTCGCTGCATGACAAG -ACGGAAATGTCGCTGCATAAGCAG -ACGGAAATGTCGCTGCATCGTCAA -ACGGAAATGTCGCTGCATGCTGAA -ACGGAAATGTCGCTGCATAGTACG -ACGGAAATGTCGCTGCATATCCGA -ACGGAAATGTCGCTGCATATGGGA -ACGGAAATGTCGCTGCATGTGCAA -ACGGAAATGTCGCTGCATGAGGAA -ACGGAAATGTCGCTGCATCAGGTA -ACGGAAATGTCGCTGCATGACTCT -ACGGAAATGTCGCTGCATAGTCCT -ACGGAAATGTCGCTGCATTAAGCC -ACGGAAATGTCGCTGCATATAGCC -ACGGAAATGTCGCTGCATTAACCG -ACGGAAATGTCGCTGCATATGCCA -ACGGAAATGTCGTTGGAGGGAAAC -ACGGAAATGTCGTTGGAGAACACC -ACGGAAATGTCGTTGGAGATCGAG -ACGGAAATGTCGTTGGAGCTCCTT -ACGGAAATGTCGTTGGAGCCTGTT -ACGGAAATGTCGTTGGAGCGGTTT -ACGGAAATGTCGTTGGAGGTGGTT -ACGGAAATGTCGTTGGAGGCCTTT -ACGGAAATGTCGTTGGAGGGTCTT -ACGGAAATGTCGTTGGAGACGCTT -ACGGAAATGTCGTTGGAGAGCGTT -ACGGAAATGTCGTTGGAGTTCGTC -ACGGAAATGTCGTTGGAGTCTCTC -ACGGAAATGTCGTTGGAGTGGATC -ACGGAAATGTCGTTGGAGCACTTC -ACGGAAATGTCGTTGGAGGTACTC -ACGGAAATGTCGTTGGAGGATGTC -ACGGAAATGTCGTTGGAGACAGTC -ACGGAAATGTCGTTGGAGTTGCTG -ACGGAAATGTCGTTGGAGTCCATG -ACGGAAATGTCGTTGGAGTGTGTG -ACGGAAATGTCGTTGGAGCTAGTG -ACGGAAATGTCGTTGGAGCATCTG -ACGGAAATGTCGTTGGAGGAGTTG -ACGGAAATGTCGTTGGAGAGACTG -ACGGAAATGTCGTTGGAGTCGGTA -ACGGAAATGTCGTTGGAGTGCCTA -ACGGAAATGTCGTTGGAGCCACTA -ACGGAAATGTCGTTGGAGGGAGTA -ACGGAAATGTCGTTGGAGTCGTCT -ACGGAAATGTCGTTGGAGTGCACT -ACGGAAATGTCGTTGGAGCTGACT -ACGGAAATGTCGTTGGAGCAACCT -ACGGAAATGTCGTTGGAGGCTACT -ACGGAAATGTCGTTGGAGGGATCT -ACGGAAATGTCGTTGGAGAAGGCT -ACGGAAATGTCGTTGGAGTCAACC -ACGGAAATGTCGTTGGAGTGTTCC -ACGGAAATGTCGTTGGAGATTCCC -ACGGAAATGTCGTTGGAGTTCTCG -ACGGAAATGTCGTTGGAGTAGACG -ACGGAAATGTCGTTGGAGGTAACG -ACGGAAATGTCGTTGGAGACTTCG -ACGGAAATGTCGTTGGAGTACGCA -ACGGAAATGTCGTTGGAGCTTGCA -ACGGAAATGTCGTTGGAGCGAACA -ACGGAAATGTCGTTGGAGCAGTCA -ACGGAAATGTCGTTGGAGGATCCA -ACGGAAATGTCGTTGGAGACGACA -ACGGAAATGTCGTTGGAGAGCTCA -ACGGAAATGTCGTTGGAGTCACGT -ACGGAAATGTCGTTGGAGCGTAGT -ACGGAAATGTCGTTGGAGGTCAGT -ACGGAAATGTCGTTGGAGGAAGGT -ACGGAAATGTCGTTGGAGAACCGT -ACGGAAATGTCGTTGGAGTTGTGC -ACGGAAATGTCGTTGGAGCTAAGC -ACGGAAATGTCGTTGGAGACTAGC -ACGGAAATGTCGTTGGAGAGATGC -ACGGAAATGTCGTTGGAGTGAAGG -ACGGAAATGTCGTTGGAGCAATGG -ACGGAAATGTCGTTGGAGATGAGG -ACGGAAATGTCGTTGGAGAATGGG -ACGGAAATGTCGTTGGAGTCCTGA -ACGGAAATGTCGTTGGAGTAGCGA -ACGGAAATGTCGTTGGAGCACAGA -ACGGAAATGTCGTTGGAGGCAAGA -ACGGAAATGTCGTTGGAGGGTTGA -ACGGAAATGTCGTTGGAGTCCGAT -ACGGAAATGTCGTTGGAGTGGCAT -ACGGAAATGTCGTTGGAGCGAGAT -ACGGAAATGTCGTTGGAGTACCAC -ACGGAAATGTCGTTGGAGCAGAAC -ACGGAAATGTCGTTGGAGGTCTAC -ACGGAAATGTCGTTGGAGACGTAC -ACGGAAATGTCGTTGGAGAGTGAC -ACGGAAATGTCGTTGGAGCTGTAG -ACGGAAATGTCGTTGGAGCCTAAG -ACGGAAATGTCGTTGGAGGTTCAG -ACGGAAATGTCGTTGGAGGCATAG -ACGGAAATGTCGTTGGAGGACAAG -ACGGAAATGTCGTTGGAGAAGCAG -ACGGAAATGTCGTTGGAGCGTCAA -ACGGAAATGTCGTTGGAGGCTGAA -ACGGAAATGTCGTTGGAGAGTACG -ACGGAAATGTCGTTGGAGATCCGA -ACGGAAATGTCGTTGGAGATGGGA -ACGGAAATGTCGTTGGAGGTGCAA -ACGGAAATGTCGTTGGAGGAGGAA -ACGGAAATGTCGTTGGAGCAGGTA -ACGGAAATGTCGTTGGAGGACTCT -ACGGAAATGTCGTTGGAGAGTCCT -ACGGAAATGTCGTTGGAGTAAGCC -ACGGAAATGTCGTTGGAGATAGCC -ACGGAAATGTCGTTGGAGTAACCG -ACGGAAATGTCGTTGGAGATGCCA -ACGGAAATGTCGCTGAGAGGAAAC -ACGGAAATGTCGCTGAGAAACACC -ACGGAAATGTCGCTGAGAATCGAG -ACGGAAATGTCGCTGAGACTCCTT -ACGGAAATGTCGCTGAGACCTGTT -ACGGAAATGTCGCTGAGACGGTTT -ACGGAAATGTCGCTGAGAGTGGTT -ACGGAAATGTCGCTGAGAGCCTTT -ACGGAAATGTCGCTGAGAGGTCTT -ACGGAAATGTCGCTGAGAACGCTT -ACGGAAATGTCGCTGAGAAGCGTT -ACGGAAATGTCGCTGAGATTCGTC -ACGGAAATGTCGCTGAGATCTCTC -ACGGAAATGTCGCTGAGATGGATC -ACGGAAATGTCGCTGAGACACTTC -ACGGAAATGTCGCTGAGAGTACTC -ACGGAAATGTCGCTGAGAGATGTC -ACGGAAATGTCGCTGAGAACAGTC -ACGGAAATGTCGCTGAGATTGCTG -ACGGAAATGTCGCTGAGATCCATG -ACGGAAATGTCGCTGAGATGTGTG -ACGGAAATGTCGCTGAGACTAGTG -ACGGAAATGTCGCTGAGACATCTG -ACGGAAATGTCGCTGAGAGAGTTG -ACGGAAATGTCGCTGAGAAGACTG -ACGGAAATGTCGCTGAGATCGGTA -ACGGAAATGTCGCTGAGATGCCTA -ACGGAAATGTCGCTGAGACCACTA -ACGGAAATGTCGCTGAGAGGAGTA -ACGGAAATGTCGCTGAGATCGTCT -ACGGAAATGTCGCTGAGATGCACT -ACGGAAATGTCGCTGAGACTGACT -ACGGAAATGTCGCTGAGACAACCT -ACGGAAATGTCGCTGAGAGCTACT -ACGGAAATGTCGCTGAGAGGATCT -ACGGAAATGTCGCTGAGAAAGGCT -ACGGAAATGTCGCTGAGATCAACC -ACGGAAATGTCGCTGAGATGTTCC -ACGGAAATGTCGCTGAGAATTCCC -ACGGAAATGTCGCTGAGATTCTCG -ACGGAAATGTCGCTGAGATAGACG -ACGGAAATGTCGCTGAGAGTAACG -ACGGAAATGTCGCTGAGAACTTCG -ACGGAAATGTCGCTGAGATACGCA -ACGGAAATGTCGCTGAGACTTGCA -ACGGAAATGTCGCTGAGACGAACA -ACGGAAATGTCGCTGAGACAGTCA -ACGGAAATGTCGCTGAGAGATCCA -ACGGAAATGTCGCTGAGAACGACA -ACGGAAATGTCGCTGAGAAGCTCA -ACGGAAATGTCGCTGAGATCACGT -ACGGAAATGTCGCTGAGACGTAGT -ACGGAAATGTCGCTGAGAGTCAGT -ACGGAAATGTCGCTGAGAGAAGGT -ACGGAAATGTCGCTGAGAAACCGT -ACGGAAATGTCGCTGAGATTGTGC -ACGGAAATGTCGCTGAGACTAAGC -ACGGAAATGTCGCTGAGAACTAGC -ACGGAAATGTCGCTGAGAAGATGC -ACGGAAATGTCGCTGAGATGAAGG -ACGGAAATGTCGCTGAGACAATGG -ACGGAAATGTCGCTGAGAATGAGG -ACGGAAATGTCGCTGAGAAATGGG -ACGGAAATGTCGCTGAGATCCTGA -ACGGAAATGTCGCTGAGATAGCGA -ACGGAAATGTCGCTGAGACACAGA -ACGGAAATGTCGCTGAGAGCAAGA -ACGGAAATGTCGCTGAGAGGTTGA -ACGGAAATGTCGCTGAGATCCGAT -ACGGAAATGTCGCTGAGATGGCAT -ACGGAAATGTCGCTGAGACGAGAT -ACGGAAATGTCGCTGAGATACCAC -ACGGAAATGTCGCTGAGACAGAAC -ACGGAAATGTCGCTGAGAGTCTAC -ACGGAAATGTCGCTGAGAACGTAC -ACGGAAATGTCGCTGAGAAGTGAC -ACGGAAATGTCGCTGAGACTGTAG -ACGGAAATGTCGCTGAGACCTAAG -ACGGAAATGTCGCTGAGAGTTCAG -ACGGAAATGTCGCTGAGAGCATAG -ACGGAAATGTCGCTGAGAGACAAG -ACGGAAATGTCGCTGAGAAAGCAG -ACGGAAATGTCGCTGAGACGTCAA -ACGGAAATGTCGCTGAGAGCTGAA -ACGGAAATGTCGCTGAGAAGTACG -ACGGAAATGTCGCTGAGAATCCGA -ACGGAAATGTCGCTGAGAATGGGA -ACGGAAATGTCGCTGAGAGTGCAA -ACGGAAATGTCGCTGAGAGAGGAA -ACGGAAATGTCGCTGAGACAGGTA -ACGGAAATGTCGCTGAGAGACTCT -ACGGAAATGTCGCTGAGAAGTCCT -ACGGAAATGTCGCTGAGATAAGCC -ACGGAAATGTCGCTGAGAATAGCC -ACGGAAATGTCGCTGAGATAACCG -ACGGAAATGTCGCTGAGAATGCCA -ACGGAAATGTCGGTATCGGGAAAC -ACGGAAATGTCGGTATCGAACACC -ACGGAAATGTCGGTATCGATCGAG -ACGGAAATGTCGGTATCGCTCCTT -ACGGAAATGTCGGTATCGCCTGTT -ACGGAAATGTCGGTATCGCGGTTT -ACGGAAATGTCGGTATCGGTGGTT -ACGGAAATGTCGGTATCGGCCTTT -ACGGAAATGTCGGTATCGGGTCTT -ACGGAAATGTCGGTATCGACGCTT -ACGGAAATGTCGGTATCGAGCGTT -ACGGAAATGTCGGTATCGTTCGTC -ACGGAAATGTCGGTATCGTCTCTC -ACGGAAATGTCGGTATCGTGGATC -ACGGAAATGTCGGTATCGCACTTC -ACGGAAATGTCGGTATCGGTACTC -ACGGAAATGTCGGTATCGGATGTC -ACGGAAATGTCGGTATCGACAGTC -ACGGAAATGTCGGTATCGTTGCTG -ACGGAAATGTCGGTATCGTCCATG -ACGGAAATGTCGGTATCGTGTGTG -ACGGAAATGTCGGTATCGCTAGTG -ACGGAAATGTCGGTATCGCATCTG -ACGGAAATGTCGGTATCGGAGTTG -ACGGAAATGTCGGTATCGAGACTG -ACGGAAATGTCGGTATCGTCGGTA -ACGGAAATGTCGGTATCGTGCCTA -ACGGAAATGTCGGTATCGCCACTA -ACGGAAATGTCGGTATCGGGAGTA -ACGGAAATGTCGGTATCGTCGTCT -ACGGAAATGTCGGTATCGTGCACT -ACGGAAATGTCGGTATCGCTGACT -ACGGAAATGTCGGTATCGCAACCT -ACGGAAATGTCGGTATCGGCTACT -ACGGAAATGTCGGTATCGGGATCT -ACGGAAATGTCGGTATCGAAGGCT -ACGGAAATGTCGGTATCGTCAACC -ACGGAAATGTCGGTATCGTGTTCC -ACGGAAATGTCGGTATCGATTCCC -ACGGAAATGTCGGTATCGTTCTCG -ACGGAAATGTCGGTATCGTAGACG -ACGGAAATGTCGGTATCGGTAACG -ACGGAAATGTCGGTATCGACTTCG -ACGGAAATGTCGGTATCGTACGCA -ACGGAAATGTCGGTATCGCTTGCA -ACGGAAATGTCGGTATCGCGAACA -ACGGAAATGTCGGTATCGCAGTCA -ACGGAAATGTCGGTATCGGATCCA -ACGGAAATGTCGGTATCGACGACA -ACGGAAATGTCGGTATCGAGCTCA -ACGGAAATGTCGGTATCGTCACGT -ACGGAAATGTCGGTATCGCGTAGT -ACGGAAATGTCGGTATCGGTCAGT -ACGGAAATGTCGGTATCGGAAGGT -ACGGAAATGTCGGTATCGAACCGT -ACGGAAATGTCGGTATCGTTGTGC -ACGGAAATGTCGGTATCGCTAAGC -ACGGAAATGTCGGTATCGACTAGC -ACGGAAATGTCGGTATCGAGATGC -ACGGAAATGTCGGTATCGTGAAGG -ACGGAAATGTCGGTATCGCAATGG -ACGGAAATGTCGGTATCGATGAGG -ACGGAAATGTCGGTATCGAATGGG -ACGGAAATGTCGGTATCGTCCTGA -ACGGAAATGTCGGTATCGTAGCGA -ACGGAAATGTCGGTATCGCACAGA -ACGGAAATGTCGGTATCGGCAAGA -ACGGAAATGTCGGTATCGGGTTGA -ACGGAAATGTCGGTATCGTCCGAT -ACGGAAATGTCGGTATCGTGGCAT -ACGGAAATGTCGGTATCGCGAGAT -ACGGAAATGTCGGTATCGTACCAC -ACGGAAATGTCGGTATCGCAGAAC -ACGGAAATGTCGGTATCGGTCTAC -ACGGAAATGTCGGTATCGACGTAC -ACGGAAATGTCGGTATCGAGTGAC -ACGGAAATGTCGGTATCGCTGTAG -ACGGAAATGTCGGTATCGCCTAAG -ACGGAAATGTCGGTATCGGTTCAG -ACGGAAATGTCGGTATCGGCATAG -ACGGAAATGTCGGTATCGGACAAG -ACGGAAATGTCGGTATCGAAGCAG -ACGGAAATGTCGGTATCGCGTCAA -ACGGAAATGTCGGTATCGGCTGAA -ACGGAAATGTCGGTATCGAGTACG -ACGGAAATGTCGGTATCGATCCGA -ACGGAAATGTCGGTATCGATGGGA -ACGGAAATGTCGGTATCGGTGCAA -ACGGAAATGTCGGTATCGGAGGAA -ACGGAAATGTCGGTATCGCAGGTA -ACGGAAATGTCGGTATCGGACTCT -ACGGAAATGTCGGTATCGAGTCCT -ACGGAAATGTCGGTATCGTAAGCC -ACGGAAATGTCGGTATCGATAGCC -ACGGAAATGTCGGTATCGTAACCG -ACGGAAATGTCGGTATCGATGCCA -ACGGAAATGTCGCTATGCGGAAAC -ACGGAAATGTCGCTATGCAACACC -ACGGAAATGTCGCTATGCATCGAG -ACGGAAATGTCGCTATGCCTCCTT -ACGGAAATGTCGCTATGCCCTGTT -ACGGAAATGTCGCTATGCCGGTTT -ACGGAAATGTCGCTATGCGTGGTT -ACGGAAATGTCGCTATGCGCCTTT -ACGGAAATGTCGCTATGCGGTCTT -ACGGAAATGTCGCTATGCACGCTT -ACGGAAATGTCGCTATGCAGCGTT -ACGGAAATGTCGCTATGCTTCGTC -ACGGAAATGTCGCTATGCTCTCTC -ACGGAAATGTCGCTATGCTGGATC -ACGGAAATGTCGCTATGCCACTTC -ACGGAAATGTCGCTATGCGTACTC -ACGGAAATGTCGCTATGCGATGTC -ACGGAAATGTCGCTATGCACAGTC -ACGGAAATGTCGCTATGCTTGCTG -ACGGAAATGTCGCTATGCTCCATG -ACGGAAATGTCGCTATGCTGTGTG -ACGGAAATGTCGCTATGCCTAGTG -ACGGAAATGTCGCTATGCCATCTG -ACGGAAATGTCGCTATGCGAGTTG -ACGGAAATGTCGCTATGCAGACTG -ACGGAAATGTCGCTATGCTCGGTA -ACGGAAATGTCGCTATGCTGCCTA -ACGGAAATGTCGCTATGCCCACTA -ACGGAAATGTCGCTATGCGGAGTA -ACGGAAATGTCGCTATGCTCGTCT -ACGGAAATGTCGCTATGCTGCACT -ACGGAAATGTCGCTATGCCTGACT -ACGGAAATGTCGCTATGCCAACCT -ACGGAAATGTCGCTATGCGCTACT -ACGGAAATGTCGCTATGCGGATCT -ACGGAAATGTCGCTATGCAAGGCT -ACGGAAATGTCGCTATGCTCAACC -ACGGAAATGTCGCTATGCTGTTCC -ACGGAAATGTCGCTATGCATTCCC -ACGGAAATGTCGCTATGCTTCTCG -ACGGAAATGTCGCTATGCTAGACG -ACGGAAATGTCGCTATGCGTAACG -ACGGAAATGTCGCTATGCACTTCG -ACGGAAATGTCGCTATGCTACGCA -ACGGAAATGTCGCTATGCCTTGCA -ACGGAAATGTCGCTATGCCGAACA -ACGGAAATGTCGCTATGCCAGTCA -ACGGAAATGTCGCTATGCGATCCA -ACGGAAATGTCGCTATGCACGACA -ACGGAAATGTCGCTATGCAGCTCA -ACGGAAATGTCGCTATGCTCACGT -ACGGAAATGTCGCTATGCCGTAGT -ACGGAAATGTCGCTATGCGTCAGT -ACGGAAATGTCGCTATGCGAAGGT -ACGGAAATGTCGCTATGCAACCGT -ACGGAAATGTCGCTATGCTTGTGC -ACGGAAATGTCGCTATGCCTAAGC -ACGGAAATGTCGCTATGCACTAGC -ACGGAAATGTCGCTATGCAGATGC -ACGGAAATGTCGCTATGCTGAAGG -ACGGAAATGTCGCTATGCCAATGG -ACGGAAATGTCGCTATGCATGAGG -ACGGAAATGTCGCTATGCAATGGG -ACGGAAATGTCGCTATGCTCCTGA -ACGGAAATGTCGCTATGCTAGCGA -ACGGAAATGTCGCTATGCCACAGA -ACGGAAATGTCGCTATGCGCAAGA -ACGGAAATGTCGCTATGCGGTTGA -ACGGAAATGTCGCTATGCTCCGAT -ACGGAAATGTCGCTATGCTGGCAT -ACGGAAATGTCGCTATGCCGAGAT -ACGGAAATGTCGCTATGCTACCAC -ACGGAAATGTCGCTATGCCAGAAC -ACGGAAATGTCGCTATGCGTCTAC -ACGGAAATGTCGCTATGCACGTAC -ACGGAAATGTCGCTATGCAGTGAC -ACGGAAATGTCGCTATGCCTGTAG -ACGGAAATGTCGCTATGCCCTAAG -ACGGAAATGTCGCTATGCGTTCAG -ACGGAAATGTCGCTATGCGCATAG -ACGGAAATGTCGCTATGCGACAAG -ACGGAAATGTCGCTATGCAAGCAG -ACGGAAATGTCGCTATGCCGTCAA -ACGGAAATGTCGCTATGCGCTGAA -ACGGAAATGTCGCTATGCAGTACG -ACGGAAATGTCGCTATGCATCCGA -ACGGAAATGTCGCTATGCATGGGA -ACGGAAATGTCGCTATGCGTGCAA -ACGGAAATGTCGCTATGCGAGGAA -ACGGAAATGTCGCTATGCCAGGTA -ACGGAAATGTCGCTATGCGACTCT -ACGGAAATGTCGCTATGCAGTCCT -ACGGAAATGTCGCTATGCTAAGCC -ACGGAAATGTCGCTATGCATAGCC -ACGGAAATGTCGCTATGCTAACCG -ACGGAAATGTCGCTATGCATGCCA -ACGGAAATGTCGCTACCAGGAAAC -ACGGAAATGTCGCTACCAAACACC -ACGGAAATGTCGCTACCAATCGAG -ACGGAAATGTCGCTACCACTCCTT -ACGGAAATGTCGCTACCACCTGTT -ACGGAAATGTCGCTACCACGGTTT -ACGGAAATGTCGCTACCAGTGGTT -ACGGAAATGTCGCTACCAGCCTTT -ACGGAAATGTCGCTACCAGGTCTT -ACGGAAATGTCGCTACCAACGCTT -ACGGAAATGTCGCTACCAAGCGTT -ACGGAAATGTCGCTACCATTCGTC -ACGGAAATGTCGCTACCATCTCTC -ACGGAAATGTCGCTACCATGGATC -ACGGAAATGTCGCTACCACACTTC -ACGGAAATGTCGCTACCAGTACTC -ACGGAAATGTCGCTACCAGATGTC -ACGGAAATGTCGCTACCAACAGTC -ACGGAAATGTCGCTACCATTGCTG -ACGGAAATGTCGCTACCATCCATG -ACGGAAATGTCGCTACCATGTGTG -ACGGAAATGTCGCTACCACTAGTG -ACGGAAATGTCGCTACCACATCTG -ACGGAAATGTCGCTACCAGAGTTG -ACGGAAATGTCGCTACCAAGACTG -ACGGAAATGTCGCTACCATCGGTA -ACGGAAATGTCGCTACCATGCCTA -ACGGAAATGTCGCTACCACCACTA -ACGGAAATGTCGCTACCAGGAGTA -ACGGAAATGTCGCTACCATCGTCT -ACGGAAATGTCGCTACCATGCACT -ACGGAAATGTCGCTACCACTGACT -ACGGAAATGTCGCTACCACAACCT -ACGGAAATGTCGCTACCAGCTACT -ACGGAAATGTCGCTACCAGGATCT -ACGGAAATGTCGCTACCAAAGGCT -ACGGAAATGTCGCTACCATCAACC -ACGGAAATGTCGCTACCATGTTCC -ACGGAAATGTCGCTACCAATTCCC -ACGGAAATGTCGCTACCATTCTCG -ACGGAAATGTCGCTACCATAGACG -ACGGAAATGTCGCTACCAGTAACG -ACGGAAATGTCGCTACCAACTTCG -ACGGAAATGTCGCTACCATACGCA -ACGGAAATGTCGCTACCACTTGCA -ACGGAAATGTCGCTACCACGAACA -ACGGAAATGTCGCTACCACAGTCA -ACGGAAATGTCGCTACCAGATCCA -ACGGAAATGTCGCTACCAACGACA -ACGGAAATGTCGCTACCAAGCTCA -ACGGAAATGTCGCTACCATCACGT -ACGGAAATGTCGCTACCACGTAGT -ACGGAAATGTCGCTACCAGTCAGT -ACGGAAATGTCGCTACCAGAAGGT -ACGGAAATGTCGCTACCAAACCGT -ACGGAAATGTCGCTACCATTGTGC -ACGGAAATGTCGCTACCACTAAGC -ACGGAAATGTCGCTACCAACTAGC -ACGGAAATGTCGCTACCAAGATGC -ACGGAAATGTCGCTACCATGAAGG -ACGGAAATGTCGCTACCACAATGG -ACGGAAATGTCGCTACCAATGAGG -ACGGAAATGTCGCTACCAAATGGG -ACGGAAATGTCGCTACCATCCTGA -ACGGAAATGTCGCTACCATAGCGA -ACGGAAATGTCGCTACCACACAGA -ACGGAAATGTCGCTACCAGCAAGA -ACGGAAATGTCGCTACCAGGTTGA -ACGGAAATGTCGCTACCATCCGAT -ACGGAAATGTCGCTACCATGGCAT -ACGGAAATGTCGCTACCACGAGAT -ACGGAAATGTCGCTACCATACCAC -ACGGAAATGTCGCTACCACAGAAC -ACGGAAATGTCGCTACCAGTCTAC -ACGGAAATGTCGCTACCAACGTAC -ACGGAAATGTCGCTACCAAGTGAC -ACGGAAATGTCGCTACCACTGTAG -ACGGAAATGTCGCTACCACCTAAG -ACGGAAATGTCGCTACCAGTTCAG -ACGGAAATGTCGCTACCAGCATAG -ACGGAAATGTCGCTACCAGACAAG -ACGGAAATGTCGCTACCAAAGCAG -ACGGAAATGTCGCTACCACGTCAA -ACGGAAATGTCGCTACCAGCTGAA -ACGGAAATGTCGCTACCAAGTACG -ACGGAAATGTCGCTACCAATCCGA -ACGGAAATGTCGCTACCAATGGGA -ACGGAAATGTCGCTACCAGTGCAA -ACGGAAATGTCGCTACCAGAGGAA -ACGGAAATGTCGCTACCACAGGTA -ACGGAAATGTCGCTACCAGACTCT -ACGGAAATGTCGCTACCAAGTCCT -ACGGAAATGTCGCTACCATAAGCC -ACGGAAATGTCGCTACCAATAGCC -ACGGAAATGTCGCTACCATAACCG -ACGGAAATGTCGCTACCAATGCCA -ACGGAAATGTCGGTAGGAGGAAAC -ACGGAAATGTCGGTAGGAAACACC -ACGGAAATGTCGGTAGGAATCGAG -ACGGAAATGTCGGTAGGACTCCTT -ACGGAAATGTCGGTAGGACCTGTT -ACGGAAATGTCGGTAGGACGGTTT -ACGGAAATGTCGGTAGGAGTGGTT -ACGGAAATGTCGGTAGGAGCCTTT -ACGGAAATGTCGGTAGGAGGTCTT -ACGGAAATGTCGGTAGGAACGCTT -ACGGAAATGTCGGTAGGAAGCGTT -ACGGAAATGTCGGTAGGATTCGTC -ACGGAAATGTCGGTAGGATCTCTC -ACGGAAATGTCGGTAGGATGGATC -ACGGAAATGTCGGTAGGACACTTC -ACGGAAATGTCGGTAGGAGTACTC -ACGGAAATGTCGGTAGGAGATGTC -ACGGAAATGTCGGTAGGAACAGTC -ACGGAAATGTCGGTAGGATTGCTG -ACGGAAATGTCGGTAGGATCCATG -ACGGAAATGTCGGTAGGATGTGTG -ACGGAAATGTCGGTAGGACTAGTG -ACGGAAATGTCGGTAGGACATCTG -ACGGAAATGTCGGTAGGAGAGTTG -ACGGAAATGTCGGTAGGAAGACTG -ACGGAAATGTCGGTAGGATCGGTA -ACGGAAATGTCGGTAGGATGCCTA -ACGGAAATGTCGGTAGGACCACTA -ACGGAAATGTCGGTAGGAGGAGTA -ACGGAAATGTCGGTAGGATCGTCT -ACGGAAATGTCGGTAGGATGCACT -ACGGAAATGTCGGTAGGACTGACT -ACGGAAATGTCGGTAGGACAACCT -ACGGAAATGTCGGTAGGAGCTACT -ACGGAAATGTCGGTAGGAGGATCT -ACGGAAATGTCGGTAGGAAAGGCT -ACGGAAATGTCGGTAGGATCAACC -ACGGAAATGTCGGTAGGATGTTCC -ACGGAAATGTCGGTAGGAATTCCC -ACGGAAATGTCGGTAGGATTCTCG -ACGGAAATGTCGGTAGGATAGACG -ACGGAAATGTCGGTAGGAGTAACG -ACGGAAATGTCGGTAGGAACTTCG -ACGGAAATGTCGGTAGGATACGCA -ACGGAAATGTCGGTAGGACTTGCA -ACGGAAATGTCGGTAGGACGAACA -ACGGAAATGTCGGTAGGACAGTCA -ACGGAAATGTCGGTAGGAGATCCA -ACGGAAATGTCGGTAGGAACGACA -ACGGAAATGTCGGTAGGAAGCTCA -ACGGAAATGTCGGTAGGATCACGT -ACGGAAATGTCGGTAGGACGTAGT -ACGGAAATGTCGGTAGGAGTCAGT -ACGGAAATGTCGGTAGGAGAAGGT -ACGGAAATGTCGGTAGGAAACCGT -ACGGAAATGTCGGTAGGATTGTGC -ACGGAAATGTCGGTAGGACTAAGC -ACGGAAATGTCGGTAGGAACTAGC -ACGGAAATGTCGGTAGGAAGATGC -ACGGAAATGTCGGTAGGATGAAGG -ACGGAAATGTCGGTAGGACAATGG -ACGGAAATGTCGGTAGGAATGAGG -ACGGAAATGTCGGTAGGAAATGGG -ACGGAAATGTCGGTAGGATCCTGA -ACGGAAATGTCGGTAGGATAGCGA -ACGGAAATGTCGGTAGGACACAGA -ACGGAAATGTCGGTAGGAGCAAGA -ACGGAAATGTCGGTAGGAGGTTGA -ACGGAAATGTCGGTAGGATCCGAT -ACGGAAATGTCGGTAGGATGGCAT -ACGGAAATGTCGGTAGGACGAGAT -ACGGAAATGTCGGTAGGATACCAC -ACGGAAATGTCGGTAGGACAGAAC -ACGGAAATGTCGGTAGGAGTCTAC -ACGGAAATGTCGGTAGGAACGTAC -ACGGAAATGTCGGTAGGAAGTGAC -ACGGAAATGTCGGTAGGACTGTAG -ACGGAAATGTCGGTAGGACCTAAG -ACGGAAATGTCGGTAGGAGTTCAG -ACGGAAATGTCGGTAGGAGCATAG -ACGGAAATGTCGGTAGGAGACAAG -ACGGAAATGTCGGTAGGAAAGCAG -ACGGAAATGTCGGTAGGACGTCAA -ACGGAAATGTCGGTAGGAGCTGAA -ACGGAAATGTCGGTAGGAAGTACG -ACGGAAATGTCGGTAGGAATCCGA -ACGGAAATGTCGGTAGGAATGGGA -ACGGAAATGTCGGTAGGAGTGCAA -ACGGAAATGTCGGTAGGAGAGGAA -ACGGAAATGTCGGTAGGACAGGTA -ACGGAAATGTCGGTAGGAGACTCT -ACGGAAATGTCGGTAGGAAGTCCT -ACGGAAATGTCGGTAGGATAAGCC -ACGGAAATGTCGGTAGGAATAGCC -ACGGAAATGTCGGTAGGATAACCG -ACGGAAATGTCGGTAGGAATGCCA -ACGGAAATGTCGTCTTCGGGAAAC -ACGGAAATGTCGTCTTCGAACACC -ACGGAAATGTCGTCTTCGATCGAG -ACGGAAATGTCGTCTTCGCTCCTT -ACGGAAATGTCGTCTTCGCCTGTT -ACGGAAATGTCGTCTTCGCGGTTT -ACGGAAATGTCGTCTTCGGTGGTT -ACGGAAATGTCGTCTTCGGCCTTT -ACGGAAATGTCGTCTTCGGGTCTT -ACGGAAATGTCGTCTTCGACGCTT -ACGGAAATGTCGTCTTCGAGCGTT -ACGGAAATGTCGTCTTCGTTCGTC -ACGGAAATGTCGTCTTCGTCTCTC -ACGGAAATGTCGTCTTCGTGGATC -ACGGAAATGTCGTCTTCGCACTTC -ACGGAAATGTCGTCTTCGGTACTC -ACGGAAATGTCGTCTTCGGATGTC -ACGGAAATGTCGTCTTCGACAGTC -ACGGAAATGTCGTCTTCGTTGCTG -ACGGAAATGTCGTCTTCGTCCATG -ACGGAAATGTCGTCTTCGTGTGTG -ACGGAAATGTCGTCTTCGCTAGTG -ACGGAAATGTCGTCTTCGCATCTG -ACGGAAATGTCGTCTTCGGAGTTG -ACGGAAATGTCGTCTTCGAGACTG -ACGGAAATGTCGTCTTCGTCGGTA -ACGGAAATGTCGTCTTCGTGCCTA -ACGGAAATGTCGTCTTCGCCACTA -ACGGAAATGTCGTCTTCGGGAGTA -ACGGAAATGTCGTCTTCGTCGTCT -ACGGAAATGTCGTCTTCGTGCACT -ACGGAAATGTCGTCTTCGCTGACT -ACGGAAATGTCGTCTTCGCAACCT -ACGGAAATGTCGTCTTCGGCTACT -ACGGAAATGTCGTCTTCGGGATCT -ACGGAAATGTCGTCTTCGAAGGCT -ACGGAAATGTCGTCTTCGTCAACC -ACGGAAATGTCGTCTTCGTGTTCC -ACGGAAATGTCGTCTTCGATTCCC -ACGGAAATGTCGTCTTCGTTCTCG -ACGGAAATGTCGTCTTCGTAGACG -ACGGAAATGTCGTCTTCGGTAACG -ACGGAAATGTCGTCTTCGACTTCG -ACGGAAATGTCGTCTTCGTACGCA -ACGGAAATGTCGTCTTCGCTTGCA -ACGGAAATGTCGTCTTCGCGAACA -ACGGAAATGTCGTCTTCGCAGTCA -ACGGAAATGTCGTCTTCGGATCCA -ACGGAAATGTCGTCTTCGACGACA -ACGGAAATGTCGTCTTCGAGCTCA -ACGGAAATGTCGTCTTCGTCACGT -ACGGAAATGTCGTCTTCGCGTAGT -ACGGAAATGTCGTCTTCGGTCAGT -ACGGAAATGTCGTCTTCGGAAGGT -ACGGAAATGTCGTCTTCGAACCGT -ACGGAAATGTCGTCTTCGTTGTGC -ACGGAAATGTCGTCTTCGCTAAGC -ACGGAAATGTCGTCTTCGACTAGC -ACGGAAATGTCGTCTTCGAGATGC -ACGGAAATGTCGTCTTCGTGAAGG -ACGGAAATGTCGTCTTCGCAATGG -ACGGAAATGTCGTCTTCGATGAGG -ACGGAAATGTCGTCTTCGAATGGG -ACGGAAATGTCGTCTTCGTCCTGA -ACGGAAATGTCGTCTTCGTAGCGA -ACGGAAATGTCGTCTTCGCACAGA -ACGGAAATGTCGTCTTCGGCAAGA -ACGGAAATGTCGTCTTCGGGTTGA -ACGGAAATGTCGTCTTCGTCCGAT -ACGGAAATGTCGTCTTCGTGGCAT -ACGGAAATGTCGTCTTCGCGAGAT -ACGGAAATGTCGTCTTCGTACCAC -ACGGAAATGTCGTCTTCGCAGAAC -ACGGAAATGTCGTCTTCGGTCTAC -ACGGAAATGTCGTCTTCGACGTAC -ACGGAAATGTCGTCTTCGAGTGAC -ACGGAAATGTCGTCTTCGCTGTAG -ACGGAAATGTCGTCTTCGCCTAAG -ACGGAAATGTCGTCTTCGGTTCAG -ACGGAAATGTCGTCTTCGGCATAG -ACGGAAATGTCGTCTTCGGACAAG -ACGGAAATGTCGTCTTCGAAGCAG -ACGGAAATGTCGTCTTCGCGTCAA -ACGGAAATGTCGTCTTCGGCTGAA -ACGGAAATGTCGTCTTCGAGTACG -ACGGAAATGTCGTCTTCGATCCGA -ACGGAAATGTCGTCTTCGATGGGA -ACGGAAATGTCGTCTTCGGTGCAA -ACGGAAATGTCGTCTTCGGAGGAA -ACGGAAATGTCGTCTTCGCAGGTA -ACGGAAATGTCGTCTTCGGACTCT -ACGGAAATGTCGTCTTCGAGTCCT -ACGGAAATGTCGTCTTCGTAAGCC -ACGGAAATGTCGTCTTCGATAGCC -ACGGAAATGTCGTCTTCGTAACCG -ACGGAAATGTCGTCTTCGATGCCA -ACGGAAATGTCGACTTGCGGAAAC -ACGGAAATGTCGACTTGCAACACC -ACGGAAATGTCGACTTGCATCGAG -ACGGAAATGTCGACTTGCCTCCTT -ACGGAAATGTCGACTTGCCCTGTT -ACGGAAATGTCGACTTGCCGGTTT -ACGGAAATGTCGACTTGCGTGGTT -ACGGAAATGTCGACTTGCGCCTTT -ACGGAAATGTCGACTTGCGGTCTT -ACGGAAATGTCGACTTGCACGCTT -ACGGAAATGTCGACTTGCAGCGTT -ACGGAAATGTCGACTTGCTTCGTC -ACGGAAATGTCGACTTGCTCTCTC -ACGGAAATGTCGACTTGCTGGATC -ACGGAAATGTCGACTTGCCACTTC -ACGGAAATGTCGACTTGCGTACTC -ACGGAAATGTCGACTTGCGATGTC -ACGGAAATGTCGACTTGCACAGTC -ACGGAAATGTCGACTTGCTTGCTG -ACGGAAATGTCGACTTGCTCCATG -ACGGAAATGTCGACTTGCTGTGTG -ACGGAAATGTCGACTTGCCTAGTG -ACGGAAATGTCGACTTGCCATCTG -ACGGAAATGTCGACTTGCGAGTTG -ACGGAAATGTCGACTTGCAGACTG -ACGGAAATGTCGACTTGCTCGGTA -ACGGAAATGTCGACTTGCTGCCTA -ACGGAAATGTCGACTTGCCCACTA -ACGGAAATGTCGACTTGCGGAGTA -ACGGAAATGTCGACTTGCTCGTCT -ACGGAAATGTCGACTTGCTGCACT -ACGGAAATGTCGACTTGCCTGACT -ACGGAAATGTCGACTTGCCAACCT -ACGGAAATGTCGACTTGCGCTACT -ACGGAAATGTCGACTTGCGGATCT -ACGGAAATGTCGACTTGCAAGGCT -ACGGAAATGTCGACTTGCTCAACC -ACGGAAATGTCGACTTGCTGTTCC -ACGGAAATGTCGACTTGCATTCCC -ACGGAAATGTCGACTTGCTTCTCG -ACGGAAATGTCGACTTGCTAGACG -ACGGAAATGTCGACTTGCGTAACG -ACGGAAATGTCGACTTGCACTTCG -ACGGAAATGTCGACTTGCTACGCA -ACGGAAATGTCGACTTGCCTTGCA -ACGGAAATGTCGACTTGCCGAACA -ACGGAAATGTCGACTTGCCAGTCA -ACGGAAATGTCGACTTGCGATCCA -ACGGAAATGTCGACTTGCACGACA -ACGGAAATGTCGACTTGCAGCTCA -ACGGAAATGTCGACTTGCTCACGT -ACGGAAATGTCGACTTGCCGTAGT -ACGGAAATGTCGACTTGCGTCAGT -ACGGAAATGTCGACTTGCGAAGGT -ACGGAAATGTCGACTTGCAACCGT -ACGGAAATGTCGACTTGCTTGTGC -ACGGAAATGTCGACTTGCCTAAGC -ACGGAAATGTCGACTTGCACTAGC -ACGGAAATGTCGACTTGCAGATGC -ACGGAAATGTCGACTTGCTGAAGG -ACGGAAATGTCGACTTGCCAATGG -ACGGAAATGTCGACTTGCATGAGG -ACGGAAATGTCGACTTGCAATGGG -ACGGAAATGTCGACTTGCTCCTGA -ACGGAAATGTCGACTTGCTAGCGA -ACGGAAATGTCGACTTGCCACAGA -ACGGAAATGTCGACTTGCGCAAGA -ACGGAAATGTCGACTTGCGGTTGA -ACGGAAATGTCGACTTGCTCCGAT -ACGGAAATGTCGACTTGCTGGCAT -ACGGAAATGTCGACTTGCCGAGAT -ACGGAAATGTCGACTTGCTACCAC -ACGGAAATGTCGACTTGCCAGAAC -ACGGAAATGTCGACTTGCGTCTAC -ACGGAAATGTCGACTTGCACGTAC -ACGGAAATGTCGACTTGCAGTGAC -ACGGAAATGTCGACTTGCCTGTAG -ACGGAAATGTCGACTTGCCCTAAG -ACGGAAATGTCGACTTGCGTTCAG -ACGGAAATGTCGACTTGCGCATAG -ACGGAAATGTCGACTTGCGACAAG -ACGGAAATGTCGACTTGCAAGCAG -ACGGAAATGTCGACTTGCCGTCAA -ACGGAAATGTCGACTTGCGCTGAA -ACGGAAATGTCGACTTGCAGTACG -ACGGAAATGTCGACTTGCATCCGA -ACGGAAATGTCGACTTGCATGGGA -ACGGAAATGTCGACTTGCGTGCAA -ACGGAAATGTCGACTTGCGAGGAA -ACGGAAATGTCGACTTGCCAGGTA -ACGGAAATGTCGACTTGCGACTCT -ACGGAAATGTCGACTTGCAGTCCT -ACGGAAATGTCGACTTGCTAAGCC -ACGGAAATGTCGACTTGCATAGCC -ACGGAAATGTCGACTTGCTAACCG -ACGGAAATGTCGACTTGCATGCCA -ACGGAAATGTCGACTCTGGGAAAC -ACGGAAATGTCGACTCTGAACACC -ACGGAAATGTCGACTCTGATCGAG -ACGGAAATGTCGACTCTGCTCCTT -ACGGAAATGTCGACTCTGCCTGTT -ACGGAAATGTCGACTCTGCGGTTT -ACGGAAATGTCGACTCTGGTGGTT -ACGGAAATGTCGACTCTGGCCTTT -ACGGAAATGTCGACTCTGGGTCTT -ACGGAAATGTCGACTCTGACGCTT -ACGGAAATGTCGACTCTGAGCGTT -ACGGAAATGTCGACTCTGTTCGTC -ACGGAAATGTCGACTCTGTCTCTC -ACGGAAATGTCGACTCTGTGGATC -ACGGAAATGTCGACTCTGCACTTC -ACGGAAATGTCGACTCTGGTACTC -ACGGAAATGTCGACTCTGGATGTC -ACGGAAATGTCGACTCTGACAGTC -ACGGAAATGTCGACTCTGTTGCTG -ACGGAAATGTCGACTCTGTCCATG -ACGGAAATGTCGACTCTGTGTGTG -ACGGAAATGTCGACTCTGCTAGTG -ACGGAAATGTCGACTCTGCATCTG -ACGGAAATGTCGACTCTGGAGTTG -ACGGAAATGTCGACTCTGAGACTG -ACGGAAATGTCGACTCTGTCGGTA -ACGGAAATGTCGACTCTGTGCCTA -ACGGAAATGTCGACTCTGCCACTA -ACGGAAATGTCGACTCTGGGAGTA -ACGGAAATGTCGACTCTGTCGTCT -ACGGAAATGTCGACTCTGTGCACT -ACGGAAATGTCGACTCTGCTGACT -ACGGAAATGTCGACTCTGCAACCT -ACGGAAATGTCGACTCTGGCTACT -ACGGAAATGTCGACTCTGGGATCT -ACGGAAATGTCGACTCTGAAGGCT -ACGGAAATGTCGACTCTGTCAACC -ACGGAAATGTCGACTCTGTGTTCC -ACGGAAATGTCGACTCTGATTCCC -ACGGAAATGTCGACTCTGTTCTCG -ACGGAAATGTCGACTCTGTAGACG -ACGGAAATGTCGACTCTGGTAACG -ACGGAAATGTCGACTCTGACTTCG -ACGGAAATGTCGACTCTGTACGCA -ACGGAAATGTCGACTCTGCTTGCA -ACGGAAATGTCGACTCTGCGAACA -ACGGAAATGTCGACTCTGCAGTCA -ACGGAAATGTCGACTCTGGATCCA -ACGGAAATGTCGACTCTGACGACA -ACGGAAATGTCGACTCTGAGCTCA -ACGGAAATGTCGACTCTGTCACGT -ACGGAAATGTCGACTCTGCGTAGT -ACGGAAATGTCGACTCTGGTCAGT -ACGGAAATGTCGACTCTGGAAGGT -ACGGAAATGTCGACTCTGAACCGT -ACGGAAATGTCGACTCTGTTGTGC -ACGGAAATGTCGACTCTGCTAAGC -ACGGAAATGTCGACTCTGACTAGC -ACGGAAATGTCGACTCTGAGATGC -ACGGAAATGTCGACTCTGTGAAGG -ACGGAAATGTCGACTCTGCAATGG -ACGGAAATGTCGACTCTGATGAGG -ACGGAAATGTCGACTCTGAATGGG -ACGGAAATGTCGACTCTGTCCTGA -ACGGAAATGTCGACTCTGTAGCGA -ACGGAAATGTCGACTCTGCACAGA -ACGGAAATGTCGACTCTGGCAAGA -ACGGAAATGTCGACTCTGGGTTGA -ACGGAAATGTCGACTCTGTCCGAT -ACGGAAATGTCGACTCTGTGGCAT -ACGGAAATGTCGACTCTGCGAGAT -ACGGAAATGTCGACTCTGTACCAC -ACGGAAATGTCGACTCTGCAGAAC -ACGGAAATGTCGACTCTGGTCTAC -ACGGAAATGTCGACTCTGACGTAC -ACGGAAATGTCGACTCTGAGTGAC -ACGGAAATGTCGACTCTGCTGTAG -ACGGAAATGTCGACTCTGCCTAAG -ACGGAAATGTCGACTCTGGTTCAG -ACGGAAATGTCGACTCTGGCATAG -ACGGAAATGTCGACTCTGGACAAG -ACGGAAATGTCGACTCTGAAGCAG -ACGGAAATGTCGACTCTGCGTCAA -ACGGAAATGTCGACTCTGGCTGAA -ACGGAAATGTCGACTCTGAGTACG -ACGGAAATGTCGACTCTGATCCGA -ACGGAAATGTCGACTCTGATGGGA -ACGGAAATGTCGACTCTGGTGCAA -ACGGAAATGTCGACTCTGGAGGAA -ACGGAAATGTCGACTCTGCAGGTA -ACGGAAATGTCGACTCTGGACTCT -ACGGAAATGTCGACTCTGAGTCCT -ACGGAAATGTCGACTCTGTAAGCC -ACGGAAATGTCGACTCTGATAGCC -ACGGAAATGTCGACTCTGTAACCG -ACGGAAATGTCGACTCTGATGCCA -ACGGAAATGTCGCCTCAAGGAAAC -ACGGAAATGTCGCCTCAAAACACC -ACGGAAATGTCGCCTCAAATCGAG -ACGGAAATGTCGCCTCAACTCCTT -ACGGAAATGTCGCCTCAACCTGTT -ACGGAAATGTCGCCTCAACGGTTT -ACGGAAATGTCGCCTCAAGTGGTT -ACGGAAATGTCGCCTCAAGCCTTT -ACGGAAATGTCGCCTCAAGGTCTT -ACGGAAATGTCGCCTCAAACGCTT -ACGGAAATGTCGCCTCAAAGCGTT -ACGGAAATGTCGCCTCAATTCGTC -ACGGAAATGTCGCCTCAATCTCTC -ACGGAAATGTCGCCTCAATGGATC -ACGGAAATGTCGCCTCAACACTTC -ACGGAAATGTCGCCTCAAGTACTC -ACGGAAATGTCGCCTCAAGATGTC -ACGGAAATGTCGCCTCAAACAGTC -ACGGAAATGTCGCCTCAATTGCTG -ACGGAAATGTCGCCTCAATCCATG -ACGGAAATGTCGCCTCAATGTGTG -ACGGAAATGTCGCCTCAACTAGTG -ACGGAAATGTCGCCTCAACATCTG -ACGGAAATGTCGCCTCAAGAGTTG -ACGGAAATGTCGCCTCAAAGACTG -ACGGAAATGTCGCCTCAATCGGTA -ACGGAAATGTCGCCTCAATGCCTA -ACGGAAATGTCGCCTCAACCACTA -ACGGAAATGTCGCCTCAAGGAGTA -ACGGAAATGTCGCCTCAATCGTCT -ACGGAAATGTCGCCTCAATGCACT -ACGGAAATGTCGCCTCAACTGACT -ACGGAAATGTCGCCTCAACAACCT -ACGGAAATGTCGCCTCAAGCTACT -ACGGAAATGTCGCCTCAAGGATCT -ACGGAAATGTCGCCTCAAAAGGCT -ACGGAAATGTCGCCTCAATCAACC -ACGGAAATGTCGCCTCAATGTTCC -ACGGAAATGTCGCCTCAAATTCCC -ACGGAAATGTCGCCTCAATTCTCG -ACGGAAATGTCGCCTCAATAGACG -ACGGAAATGTCGCCTCAAGTAACG -ACGGAAATGTCGCCTCAAACTTCG -ACGGAAATGTCGCCTCAATACGCA -ACGGAAATGTCGCCTCAACTTGCA -ACGGAAATGTCGCCTCAACGAACA -ACGGAAATGTCGCCTCAACAGTCA -ACGGAAATGTCGCCTCAAGATCCA -ACGGAAATGTCGCCTCAAACGACA -ACGGAAATGTCGCCTCAAAGCTCA -ACGGAAATGTCGCCTCAATCACGT -ACGGAAATGTCGCCTCAACGTAGT -ACGGAAATGTCGCCTCAAGTCAGT -ACGGAAATGTCGCCTCAAGAAGGT -ACGGAAATGTCGCCTCAAAACCGT -ACGGAAATGTCGCCTCAATTGTGC -ACGGAAATGTCGCCTCAACTAAGC -ACGGAAATGTCGCCTCAAACTAGC -ACGGAAATGTCGCCTCAAAGATGC -ACGGAAATGTCGCCTCAATGAAGG -ACGGAAATGTCGCCTCAACAATGG -ACGGAAATGTCGCCTCAAATGAGG -ACGGAAATGTCGCCTCAAAATGGG -ACGGAAATGTCGCCTCAATCCTGA -ACGGAAATGTCGCCTCAATAGCGA -ACGGAAATGTCGCCTCAACACAGA -ACGGAAATGTCGCCTCAAGCAAGA -ACGGAAATGTCGCCTCAAGGTTGA -ACGGAAATGTCGCCTCAATCCGAT -ACGGAAATGTCGCCTCAATGGCAT -ACGGAAATGTCGCCTCAACGAGAT -ACGGAAATGTCGCCTCAATACCAC -ACGGAAATGTCGCCTCAACAGAAC -ACGGAAATGTCGCCTCAAGTCTAC -ACGGAAATGTCGCCTCAAACGTAC -ACGGAAATGTCGCCTCAAAGTGAC -ACGGAAATGTCGCCTCAACTGTAG -ACGGAAATGTCGCCTCAACCTAAG -ACGGAAATGTCGCCTCAAGTTCAG -ACGGAAATGTCGCCTCAAGCATAG -ACGGAAATGTCGCCTCAAGACAAG -ACGGAAATGTCGCCTCAAAAGCAG -ACGGAAATGTCGCCTCAACGTCAA -ACGGAAATGTCGCCTCAAGCTGAA -ACGGAAATGTCGCCTCAAAGTACG -ACGGAAATGTCGCCTCAAATCCGA -ACGGAAATGTCGCCTCAAATGGGA -ACGGAAATGTCGCCTCAAGTGCAA -ACGGAAATGTCGCCTCAAGAGGAA -ACGGAAATGTCGCCTCAACAGGTA -ACGGAAATGTCGCCTCAAGACTCT -ACGGAAATGTCGCCTCAAAGTCCT -ACGGAAATGTCGCCTCAATAAGCC -ACGGAAATGTCGCCTCAAATAGCC -ACGGAAATGTCGCCTCAATAACCG -ACGGAAATGTCGCCTCAAATGCCA -ACGGAAATGTCGACTGCTGGAAAC -ACGGAAATGTCGACTGCTAACACC -ACGGAAATGTCGACTGCTATCGAG -ACGGAAATGTCGACTGCTCTCCTT -ACGGAAATGTCGACTGCTCCTGTT -ACGGAAATGTCGACTGCTCGGTTT -ACGGAAATGTCGACTGCTGTGGTT -ACGGAAATGTCGACTGCTGCCTTT -ACGGAAATGTCGACTGCTGGTCTT -ACGGAAATGTCGACTGCTACGCTT -ACGGAAATGTCGACTGCTAGCGTT -ACGGAAATGTCGACTGCTTTCGTC -ACGGAAATGTCGACTGCTTCTCTC -ACGGAAATGTCGACTGCTTGGATC -ACGGAAATGTCGACTGCTCACTTC -ACGGAAATGTCGACTGCTGTACTC -ACGGAAATGTCGACTGCTGATGTC -ACGGAAATGTCGACTGCTACAGTC -ACGGAAATGTCGACTGCTTTGCTG -ACGGAAATGTCGACTGCTTCCATG -ACGGAAATGTCGACTGCTTGTGTG -ACGGAAATGTCGACTGCTCTAGTG -ACGGAAATGTCGACTGCTCATCTG -ACGGAAATGTCGACTGCTGAGTTG -ACGGAAATGTCGACTGCTAGACTG -ACGGAAATGTCGACTGCTTCGGTA -ACGGAAATGTCGACTGCTTGCCTA -ACGGAAATGTCGACTGCTCCACTA -ACGGAAATGTCGACTGCTGGAGTA -ACGGAAATGTCGACTGCTTCGTCT -ACGGAAATGTCGACTGCTTGCACT -ACGGAAATGTCGACTGCTCTGACT -ACGGAAATGTCGACTGCTCAACCT -ACGGAAATGTCGACTGCTGCTACT -ACGGAAATGTCGACTGCTGGATCT -ACGGAAATGTCGACTGCTAAGGCT -ACGGAAATGTCGACTGCTTCAACC -ACGGAAATGTCGACTGCTTGTTCC -ACGGAAATGTCGACTGCTATTCCC -ACGGAAATGTCGACTGCTTTCTCG -ACGGAAATGTCGACTGCTTAGACG -ACGGAAATGTCGACTGCTGTAACG -ACGGAAATGTCGACTGCTACTTCG -ACGGAAATGTCGACTGCTTACGCA -ACGGAAATGTCGACTGCTCTTGCA -ACGGAAATGTCGACTGCTCGAACA -ACGGAAATGTCGACTGCTCAGTCA -ACGGAAATGTCGACTGCTGATCCA -ACGGAAATGTCGACTGCTACGACA -ACGGAAATGTCGACTGCTAGCTCA -ACGGAAATGTCGACTGCTTCACGT -ACGGAAATGTCGACTGCTCGTAGT -ACGGAAATGTCGACTGCTGTCAGT -ACGGAAATGTCGACTGCTGAAGGT -ACGGAAATGTCGACTGCTAACCGT -ACGGAAATGTCGACTGCTTTGTGC -ACGGAAATGTCGACTGCTCTAAGC -ACGGAAATGTCGACTGCTACTAGC -ACGGAAATGTCGACTGCTAGATGC -ACGGAAATGTCGACTGCTTGAAGG -ACGGAAATGTCGACTGCTCAATGG -ACGGAAATGTCGACTGCTATGAGG -ACGGAAATGTCGACTGCTAATGGG -ACGGAAATGTCGACTGCTTCCTGA -ACGGAAATGTCGACTGCTTAGCGA -ACGGAAATGTCGACTGCTCACAGA -ACGGAAATGTCGACTGCTGCAAGA -ACGGAAATGTCGACTGCTGGTTGA -ACGGAAATGTCGACTGCTTCCGAT -ACGGAAATGTCGACTGCTTGGCAT -ACGGAAATGTCGACTGCTCGAGAT -ACGGAAATGTCGACTGCTTACCAC -ACGGAAATGTCGACTGCTCAGAAC -ACGGAAATGTCGACTGCTGTCTAC -ACGGAAATGTCGACTGCTACGTAC -ACGGAAATGTCGACTGCTAGTGAC -ACGGAAATGTCGACTGCTCTGTAG -ACGGAAATGTCGACTGCTCCTAAG -ACGGAAATGTCGACTGCTGTTCAG -ACGGAAATGTCGACTGCTGCATAG -ACGGAAATGTCGACTGCTGACAAG -ACGGAAATGTCGACTGCTAAGCAG -ACGGAAATGTCGACTGCTCGTCAA -ACGGAAATGTCGACTGCTGCTGAA -ACGGAAATGTCGACTGCTAGTACG -ACGGAAATGTCGACTGCTATCCGA -ACGGAAATGTCGACTGCTATGGGA -ACGGAAATGTCGACTGCTGTGCAA -ACGGAAATGTCGACTGCTGAGGAA -ACGGAAATGTCGACTGCTCAGGTA -ACGGAAATGTCGACTGCTGACTCT -ACGGAAATGTCGACTGCTAGTCCT -ACGGAAATGTCGACTGCTTAAGCC -ACGGAAATGTCGACTGCTATAGCC -ACGGAAATGTCGACTGCTTAACCG -ACGGAAATGTCGACTGCTATGCCA -ACGGAAATGTCGTCTGGAGGAAAC -ACGGAAATGTCGTCTGGAAACACC -ACGGAAATGTCGTCTGGAATCGAG -ACGGAAATGTCGTCTGGACTCCTT -ACGGAAATGTCGTCTGGACCTGTT -ACGGAAATGTCGTCTGGACGGTTT -ACGGAAATGTCGTCTGGAGTGGTT -ACGGAAATGTCGTCTGGAGCCTTT -ACGGAAATGTCGTCTGGAGGTCTT -ACGGAAATGTCGTCTGGAACGCTT -ACGGAAATGTCGTCTGGAAGCGTT -ACGGAAATGTCGTCTGGATTCGTC -ACGGAAATGTCGTCTGGATCTCTC -ACGGAAATGTCGTCTGGATGGATC -ACGGAAATGTCGTCTGGACACTTC -ACGGAAATGTCGTCTGGAGTACTC -ACGGAAATGTCGTCTGGAGATGTC -ACGGAAATGTCGTCTGGAACAGTC -ACGGAAATGTCGTCTGGATTGCTG -ACGGAAATGTCGTCTGGATCCATG -ACGGAAATGTCGTCTGGATGTGTG -ACGGAAATGTCGTCTGGACTAGTG -ACGGAAATGTCGTCTGGACATCTG -ACGGAAATGTCGTCTGGAGAGTTG -ACGGAAATGTCGTCTGGAAGACTG -ACGGAAATGTCGTCTGGATCGGTA -ACGGAAATGTCGTCTGGATGCCTA -ACGGAAATGTCGTCTGGACCACTA -ACGGAAATGTCGTCTGGAGGAGTA -ACGGAAATGTCGTCTGGATCGTCT -ACGGAAATGTCGTCTGGATGCACT -ACGGAAATGTCGTCTGGACTGACT -ACGGAAATGTCGTCTGGACAACCT -ACGGAAATGTCGTCTGGAGCTACT -ACGGAAATGTCGTCTGGAGGATCT -ACGGAAATGTCGTCTGGAAAGGCT -ACGGAAATGTCGTCTGGATCAACC -ACGGAAATGTCGTCTGGATGTTCC -ACGGAAATGTCGTCTGGAATTCCC -ACGGAAATGTCGTCTGGATTCTCG -ACGGAAATGTCGTCTGGATAGACG -ACGGAAATGTCGTCTGGAGTAACG -ACGGAAATGTCGTCTGGAACTTCG -ACGGAAATGTCGTCTGGATACGCA -ACGGAAATGTCGTCTGGACTTGCA -ACGGAAATGTCGTCTGGACGAACA -ACGGAAATGTCGTCTGGACAGTCA -ACGGAAATGTCGTCTGGAGATCCA -ACGGAAATGTCGTCTGGAACGACA -ACGGAAATGTCGTCTGGAAGCTCA -ACGGAAATGTCGTCTGGATCACGT -ACGGAAATGTCGTCTGGACGTAGT -ACGGAAATGTCGTCTGGAGTCAGT -ACGGAAATGTCGTCTGGAGAAGGT -ACGGAAATGTCGTCTGGAAACCGT -ACGGAAATGTCGTCTGGATTGTGC -ACGGAAATGTCGTCTGGACTAAGC -ACGGAAATGTCGTCTGGAACTAGC -ACGGAAATGTCGTCTGGAAGATGC -ACGGAAATGTCGTCTGGATGAAGG -ACGGAAATGTCGTCTGGACAATGG -ACGGAAATGTCGTCTGGAATGAGG -ACGGAAATGTCGTCTGGAAATGGG -ACGGAAATGTCGTCTGGATCCTGA -ACGGAAATGTCGTCTGGATAGCGA -ACGGAAATGTCGTCTGGACACAGA -ACGGAAATGTCGTCTGGAGCAAGA -ACGGAAATGTCGTCTGGAGGTTGA -ACGGAAATGTCGTCTGGATCCGAT -ACGGAAATGTCGTCTGGATGGCAT -ACGGAAATGTCGTCTGGACGAGAT -ACGGAAATGTCGTCTGGATACCAC -ACGGAAATGTCGTCTGGACAGAAC -ACGGAAATGTCGTCTGGAGTCTAC -ACGGAAATGTCGTCTGGAACGTAC -ACGGAAATGTCGTCTGGAAGTGAC -ACGGAAATGTCGTCTGGACTGTAG -ACGGAAATGTCGTCTGGACCTAAG -ACGGAAATGTCGTCTGGAGTTCAG -ACGGAAATGTCGTCTGGAGCATAG -ACGGAAATGTCGTCTGGAGACAAG -ACGGAAATGTCGTCTGGAAAGCAG -ACGGAAATGTCGTCTGGACGTCAA -ACGGAAATGTCGTCTGGAGCTGAA -ACGGAAATGTCGTCTGGAAGTACG -ACGGAAATGTCGTCTGGAATCCGA -ACGGAAATGTCGTCTGGAATGGGA -ACGGAAATGTCGTCTGGAGTGCAA -ACGGAAATGTCGTCTGGAGAGGAA -ACGGAAATGTCGTCTGGACAGGTA -ACGGAAATGTCGTCTGGAGACTCT -ACGGAAATGTCGTCTGGAAGTCCT -ACGGAAATGTCGTCTGGATAAGCC -ACGGAAATGTCGTCTGGAATAGCC -ACGGAAATGTCGTCTGGATAACCG -ACGGAAATGTCGTCTGGAATGCCA -ACGGAAATGTCGGCTAAGGGAAAC -ACGGAAATGTCGGCTAAGAACACC -ACGGAAATGTCGGCTAAGATCGAG -ACGGAAATGTCGGCTAAGCTCCTT -ACGGAAATGTCGGCTAAGCCTGTT -ACGGAAATGTCGGCTAAGCGGTTT -ACGGAAATGTCGGCTAAGGTGGTT -ACGGAAATGTCGGCTAAGGCCTTT -ACGGAAATGTCGGCTAAGGGTCTT -ACGGAAATGTCGGCTAAGACGCTT -ACGGAAATGTCGGCTAAGAGCGTT -ACGGAAATGTCGGCTAAGTTCGTC -ACGGAAATGTCGGCTAAGTCTCTC -ACGGAAATGTCGGCTAAGTGGATC -ACGGAAATGTCGGCTAAGCACTTC -ACGGAAATGTCGGCTAAGGTACTC -ACGGAAATGTCGGCTAAGGATGTC -ACGGAAATGTCGGCTAAGACAGTC -ACGGAAATGTCGGCTAAGTTGCTG -ACGGAAATGTCGGCTAAGTCCATG -ACGGAAATGTCGGCTAAGTGTGTG -ACGGAAATGTCGGCTAAGCTAGTG -ACGGAAATGTCGGCTAAGCATCTG -ACGGAAATGTCGGCTAAGGAGTTG -ACGGAAATGTCGGCTAAGAGACTG -ACGGAAATGTCGGCTAAGTCGGTA -ACGGAAATGTCGGCTAAGTGCCTA -ACGGAAATGTCGGCTAAGCCACTA -ACGGAAATGTCGGCTAAGGGAGTA -ACGGAAATGTCGGCTAAGTCGTCT -ACGGAAATGTCGGCTAAGTGCACT -ACGGAAATGTCGGCTAAGCTGACT -ACGGAAATGTCGGCTAAGCAACCT -ACGGAAATGTCGGCTAAGGCTACT -ACGGAAATGTCGGCTAAGGGATCT -ACGGAAATGTCGGCTAAGAAGGCT -ACGGAAATGTCGGCTAAGTCAACC -ACGGAAATGTCGGCTAAGTGTTCC -ACGGAAATGTCGGCTAAGATTCCC -ACGGAAATGTCGGCTAAGTTCTCG -ACGGAAATGTCGGCTAAGTAGACG -ACGGAAATGTCGGCTAAGGTAACG -ACGGAAATGTCGGCTAAGACTTCG -ACGGAAATGTCGGCTAAGTACGCA -ACGGAAATGTCGGCTAAGCTTGCA -ACGGAAATGTCGGCTAAGCGAACA -ACGGAAATGTCGGCTAAGCAGTCA -ACGGAAATGTCGGCTAAGGATCCA -ACGGAAATGTCGGCTAAGACGACA -ACGGAAATGTCGGCTAAGAGCTCA -ACGGAAATGTCGGCTAAGTCACGT -ACGGAAATGTCGGCTAAGCGTAGT -ACGGAAATGTCGGCTAAGGTCAGT -ACGGAAATGTCGGCTAAGGAAGGT -ACGGAAATGTCGGCTAAGAACCGT -ACGGAAATGTCGGCTAAGTTGTGC -ACGGAAATGTCGGCTAAGCTAAGC -ACGGAAATGTCGGCTAAGACTAGC -ACGGAAATGTCGGCTAAGAGATGC -ACGGAAATGTCGGCTAAGTGAAGG -ACGGAAATGTCGGCTAAGCAATGG -ACGGAAATGTCGGCTAAGATGAGG -ACGGAAATGTCGGCTAAGAATGGG -ACGGAAATGTCGGCTAAGTCCTGA -ACGGAAATGTCGGCTAAGTAGCGA -ACGGAAATGTCGGCTAAGCACAGA -ACGGAAATGTCGGCTAAGGCAAGA -ACGGAAATGTCGGCTAAGGGTTGA -ACGGAAATGTCGGCTAAGTCCGAT -ACGGAAATGTCGGCTAAGTGGCAT -ACGGAAATGTCGGCTAAGCGAGAT -ACGGAAATGTCGGCTAAGTACCAC -ACGGAAATGTCGGCTAAGCAGAAC -ACGGAAATGTCGGCTAAGGTCTAC -ACGGAAATGTCGGCTAAGACGTAC -ACGGAAATGTCGGCTAAGAGTGAC -ACGGAAATGTCGGCTAAGCTGTAG -ACGGAAATGTCGGCTAAGCCTAAG -ACGGAAATGTCGGCTAAGGTTCAG -ACGGAAATGTCGGCTAAGGCATAG -ACGGAAATGTCGGCTAAGGACAAG -ACGGAAATGTCGGCTAAGAAGCAG -ACGGAAATGTCGGCTAAGCGTCAA -ACGGAAATGTCGGCTAAGGCTGAA -ACGGAAATGTCGGCTAAGAGTACG -ACGGAAATGTCGGCTAAGATCCGA -ACGGAAATGTCGGCTAAGATGGGA -ACGGAAATGTCGGCTAAGGTGCAA -ACGGAAATGTCGGCTAAGGAGGAA -ACGGAAATGTCGGCTAAGCAGGTA -ACGGAAATGTCGGCTAAGGACTCT -ACGGAAATGTCGGCTAAGAGTCCT -ACGGAAATGTCGGCTAAGTAAGCC -ACGGAAATGTCGGCTAAGATAGCC -ACGGAAATGTCGGCTAAGTAACCG -ACGGAAATGTCGGCTAAGATGCCA -ACGGAAATGTCGACCTCAGGAAAC -ACGGAAATGTCGACCTCAAACACC -ACGGAAATGTCGACCTCAATCGAG -ACGGAAATGTCGACCTCACTCCTT -ACGGAAATGTCGACCTCACCTGTT -ACGGAAATGTCGACCTCACGGTTT -ACGGAAATGTCGACCTCAGTGGTT -ACGGAAATGTCGACCTCAGCCTTT -ACGGAAATGTCGACCTCAGGTCTT -ACGGAAATGTCGACCTCAACGCTT -ACGGAAATGTCGACCTCAAGCGTT -ACGGAAATGTCGACCTCATTCGTC -ACGGAAATGTCGACCTCATCTCTC -ACGGAAATGTCGACCTCATGGATC -ACGGAAATGTCGACCTCACACTTC -ACGGAAATGTCGACCTCAGTACTC -ACGGAAATGTCGACCTCAGATGTC -ACGGAAATGTCGACCTCAACAGTC -ACGGAAATGTCGACCTCATTGCTG -ACGGAAATGTCGACCTCATCCATG -ACGGAAATGTCGACCTCATGTGTG -ACGGAAATGTCGACCTCACTAGTG -ACGGAAATGTCGACCTCACATCTG -ACGGAAATGTCGACCTCAGAGTTG -ACGGAAATGTCGACCTCAAGACTG -ACGGAAATGTCGACCTCATCGGTA -ACGGAAATGTCGACCTCATGCCTA -ACGGAAATGTCGACCTCACCACTA -ACGGAAATGTCGACCTCAGGAGTA -ACGGAAATGTCGACCTCATCGTCT -ACGGAAATGTCGACCTCATGCACT -ACGGAAATGTCGACCTCACTGACT -ACGGAAATGTCGACCTCACAACCT -ACGGAAATGTCGACCTCAGCTACT -ACGGAAATGTCGACCTCAGGATCT -ACGGAAATGTCGACCTCAAAGGCT -ACGGAAATGTCGACCTCATCAACC -ACGGAAATGTCGACCTCATGTTCC -ACGGAAATGTCGACCTCAATTCCC -ACGGAAATGTCGACCTCATTCTCG -ACGGAAATGTCGACCTCATAGACG -ACGGAAATGTCGACCTCAGTAACG -ACGGAAATGTCGACCTCAACTTCG -ACGGAAATGTCGACCTCATACGCA -ACGGAAATGTCGACCTCACTTGCA -ACGGAAATGTCGACCTCACGAACA -ACGGAAATGTCGACCTCACAGTCA -ACGGAAATGTCGACCTCAGATCCA -ACGGAAATGTCGACCTCAACGACA -ACGGAAATGTCGACCTCAAGCTCA -ACGGAAATGTCGACCTCATCACGT -ACGGAAATGTCGACCTCACGTAGT -ACGGAAATGTCGACCTCAGTCAGT -ACGGAAATGTCGACCTCAGAAGGT -ACGGAAATGTCGACCTCAAACCGT -ACGGAAATGTCGACCTCATTGTGC -ACGGAAATGTCGACCTCACTAAGC -ACGGAAATGTCGACCTCAACTAGC -ACGGAAATGTCGACCTCAAGATGC -ACGGAAATGTCGACCTCATGAAGG -ACGGAAATGTCGACCTCACAATGG -ACGGAAATGTCGACCTCAATGAGG -ACGGAAATGTCGACCTCAAATGGG -ACGGAAATGTCGACCTCATCCTGA -ACGGAAATGTCGACCTCATAGCGA -ACGGAAATGTCGACCTCACACAGA -ACGGAAATGTCGACCTCAGCAAGA -ACGGAAATGTCGACCTCAGGTTGA -ACGGAAATGTCGACCTCATCCGAT -ACGGAAATGTCGACCTCATGGCAT -ACGGAAATGTCGACCTCACGAGAT -ACGGAAATGTCGACCTCATACCAC -ACGGAAATGTCGACCTCACAGAAC -ACGGAAATGTCGACCTCAGTCTAC -ACGGAAATGTCGACCTCAACGTAC -ACGGAAATGTCGACCTCAAGTGAC -ACGGAAATGTCGACCTCACTGTAG -ACGGAAATGTCGACCTCACCTAAG -ACGGAAATGTCGACCTCAGTTCAG -ACGGAAATGTCGACCTCAGCATAG -ACGGAAATGTCGACCTCAGACAAG -ACGGAAATGTCGACCTCAAAGCAG -ACGGAAATGTCGACCTCACGTCAA -ACGGAAATGTCGACCTCAGCTGAA -ACGGAAATGTCGACCTCAAGTACG -ACGGAAATGTCGACCTCAATCCGA -ACGGAAATGTCGACCTCAATGGGA -ACGGAAATGTCGACCTCAGTGCAA -ACGGAAATGTCGACCTCAGAGGAA -ACGGAAATGTCGACCTCACAGGTA -ACGGAAATGTCGACCTCAGACTCT -ACGGAAATGTCGACCTCAAGTCCT -ACGGAAATGTCGACCTCATAAGCC -ACGGAAATGTCGACCTCAATAGCC -ACGGAAATGTCGACCTCATAACCG -ACGGAAATGTCGACCTCAATGCCA -ACGGAAATGTCGTCCTGTGGAAAC -ACGGAAATGTCGTCCTGTAACACC -ACGGAAATGTCGTCCTGTATCGAG -ACGGAAATGTCGTCCTGTCTCCTT -ACGGAAATGTCGTCCTGTCCTGTT -ACGGAAATGTCGTCCTGTCGGTTT -ACGGAAATGTCGTCCTGTGTGGTT -ACGGAAATGTCGTCCTGTGCCTTT -ACGGAAATGTCGTCCTGTGGTCTT -ACGGAAATGTCGTCCTGTACGCTT -ACGGAAATGTCGTCCTGTAGCGTT -ACGGAAATGTCGTCCTGTTTCGTC -ACGGAAATGTCGTCCTGTTCTCTC -ACGGAAATGTCGTCCTGTTGGATC -ACGGAAATGTCGTCCTGTCACTTC -ACGGAAATGTCGTCCTGTGTACTC -ACGGAAATGTCGTCCTGTGATGTC -ACGGAAATGTCGTCCTGTACAGTC -ACGGAAATGTCGTCCTGTTTGCTG -ACGGAAATGTCGTCCTGTTCCATG -ACGGAAATGTCGTCCTGTTGTGTG -ACGGAAATGTCGTCCTGTCTAGTG -ACGGAAATGTCGTCCTGTCATCTG -ACGGAAATGTCGTCCTGTGAGTTG -ACGGAAATGTCGTCCTGTAGACTG -ACGGAAATGTCGTCCTGTTCGGTA -ACGGAAATGTCGTCCTGTTGCCTA -ACGGAAATGTCGTCCTGTCCACTA -ACGGAAATGTCGTCCTGTGGAGTA -ACGGAAATGTCGTCCTGTTCGTCT -ACGGAAATGTCGTCCTGTTGCACT -ACGGAAATGTCGTCCTGTCTGACT -ACGGAAATGTCGTCCTGTCAACCT -ACGGAAATGTCGTCCTGTGCTACT -ACGGAAATGTCGTCCTGTGGATCT -ACGGAAATGTCGTCCTGTAAGGCT -ACGGAAATGTCGTCCTGTTCAACC -ACGGAAATGTCGTCCTGTTGTTCC -ACGGAAATGTCGTCCTGTATTCCC -ACGGAAATGTCGTCCTGTTTCTCG -ACGGAAATGTCGTCCTGTTAGACG -ACGGAAATGTCGTCCTGTGTAACG -ACGGAAATGTCGTCCTGTACTTCG -ACGGAAATGTCGTCCTGTTACGCA -ACGGAAATGTCGTCCTGTCTTGCA -ACGGAAATGTCGTCCTGTCGAACA -ACGGAAATGTCGTCCTGTCAGTCA -ACGGAAATGTCGTCCTGTGATCCA -ACGGAAATGTCGTCCTGTACGACA -ACGGAAATGTCGTCCTGTAGCTCA -ACGGAAATGTCGTCCTGTTCACGT -ACGGAAATGTCGTCCTGTCGTAGT -ACGGAAATGTCGTCCTGTGTCAGT -ACGGAAATGTCGTCCTGTGAAGGT -ACGGAAATGTCGTCCTGTAACCGT -ACGGAAATGTCGTCCTGTTTGTGC -ACGGAAATGTCGTCCTGTCTAAGC -ACGGAAATGTCGTCCTGTACTAGC -ACGGAAATGTCGTCCTGTAGATGC -ACGGAAATGTCGTCCTGTTGAAGG -ACGGAAATGTCGTCCTGTCAATGG -ACGGAAATGTCGTCCTGTATGAGG -ACGGAAATGTCGTCCTGTAATGGG -ACGGAAATGTCGTCCTGTTCCTGA -ACGGAAATGTCGTCCTGTTAGCGA -ACGGAAATGTCGTCCTGTCACAGA -ACGGAAATGTCGTCCTGTGCAAGA -ACGGAAATGTCGTCCTGTGGTTGA -ACGGAAATGTCGTCCTGTTCCGAT -ACGGAAATGTCGTCCTGTTGGCAT -ACGGAAATGTCGTCCTGTCGAGAT -ACGGAAATGTCGTCCTGTTACCAC -ACGGAAATGTCGTCCTGTCAGAAC -ACGGAAATGTCGTCCTGTGTCTAC -ACGGAAATGTCGTCCTGTACGTAC -ACGGAAATGTCGTCCTGTAGTGAC -ACGGAAATGTCGTCCTGTCTGTAG -ACGGAAATGTCGTCCTGTCCTAAG -ACGGAAATGTCGTCCTGTGTTCAG -ACGGAAATGTCGTCCTGTGCATAG -ACGGAAATGTCGTCCTGTGACAAG -ACGGAAATGTCGTCCTGTAAGCAG -ACGGAAATGTCGTCCTGTCGTCAA -ACGGAAATGTCGTCCTGTGCTGAA -ACGGAAATGTCGTCCTGTAGTACG -ACGGAAATGTCGTCCTGTATCCGA -ACGGAAATGTCGTCCTGTATGGGA -ACGGAAATGTCGTCCTGTGTGCAA -ACGGAAATGTCGTCCTGTGAGGAA -ACGGAAATGTCGTCCTGTCAGGTA -ACGGAAATGTCGTCCTGTGACTCT -ACGGAAATGTCGTCCTGTAGTCCT -ACGGAAATGTCGTCCTGTTAAGCC -ACGGAAATGTCGTCCTGTATAGCC -ACGGAAATGTCGTCCTGTTAACCG -ACGGAAATGTCGTCCTGTATGCCA -ACGGAAATGTCGCCCATTGGAAAC -ACGGAAATGTCGCCCATTAACACC -ACGGAAATGTCGCCCATTATCGAG -ACGGAAATGTCGCCCATTCTCCTT -ACGGAAATGTCGCCCATTCCTGTT -ACGGAAATGTCGCCCATTCGGTTT -ACGGAAATGTCGCCCATTGTGGTT -ACGGAAATGTCGCCCATTGCCTTT -ACGGAAATGTCGCCCATTGGTCTT -ACGGAAATGTCGCCCATTACGCTT -ACGGAAATGTCGCCCATTAGCGTT -ACGGAAATGTCGCCCATTTTCGTC -ACGGAAATGTCGCCCATTTCTCTC -ACGGAAATGTCGCCCATTTGGATC -ACGGAAATGTCGCCCATTCACTTC -ACGGAAATGTCGCCCATTGTACTC -ACGGAAATGTCGCCCATTGATGTC -ACGGAAATGTCGCCCATTACAGTC -ACGGAAATGTCGCCCATTTTGCTG -ACGGAAATGTCGCCCATTTCCATG -ACGGAAATGTCGCCCATTTGTGTG -ACGGAAATGTCGCCCATTCTAGTG -ACGGAAATGTCGCCCATTCATCTG -ACGGAAATGTCGCCCATTGAGTTG -ACGGAAATGTCGCCCATTAGACTG -ACGGAAATGTCGCCCATTTCGGTA -ACGGAAATGTCGCCCATTTGCCTA -ACGGAAATGTCGCCCATTCCACTA -ACGGAAATGTCGCCCATTGGAGTA -ACGGAAATGTCGCCCATTTCGTCT -ACGGAAATGTCGCCCATTTGCACT -ACGGAAATGTCGCCCATTCTGACT -ACGGAAATGTCGCCCATTCAACCT -ACGGAAATGTCGCCCATTGCTACT -ACGGAAATGTCGCCCATTGGATCT -ACGGAAATGTCGCCCATTAAGGCT -ACGGAAATGTCGCCCATTTCAACC -ACGGAAATGTCGCCCATTTGTTCC -ACGGAAATGTCGCCCATTATTCCC -ACGGAAATGTCGCCCATTTTCTCG -ACGGAAATGTCGCCCATTTAGACG -ACGGAAATGTCGCCCATTGTAACG -ACGGAAATGTCGCCCATTACTTCG -ACGGAAATGTCGCCCATTTACGCA -ACGGAAATGTCGCCCATTCTTGCA -ACGGAAATGTCGCCCATTCGAACA -ACGGAAATGTCGCCCATTCAGTCA -ACGGAAATGTCGCCCATTGATCCA -ACGGAAATGTCGCCCATTACGACA -ACGGAAATGTCGCCCATTAGCTCA -ACGGAAATGTCGCCCATTTCACGT -ACGGAAATGTCGCCCATTCGTAGT -ACGGAAATGTCGCCCATTGTCAGT -ACGGAAATGTCGCCCATTGAAGGT -ACGGAAATGTCGCCCATTAACCGT -ACGGAAATGTCGCCCATTTTGTGC -ACGGAAATGTCGCCCATTCTAAGC -ACGGAAATGTCGCCCATTACTAGC -ACGGAAATGTCGCCCATTAGATGC -ACGGAAATGTCGCCCATTTGAAGG -ACGGAAATGTCGCCCATTCAATGG -ACGGAAATGTCGCCCATTATGAGG -ACGGAAATGTCGCCCATTAATGGG -ACGGAAATGTCGCCCATTTCCTGA -ACGGAAATGTCGCCCATTTAGCGA -ACGGAAATGTCGCCCATTCACAGA -ACGGAAATGTCGCCCATTGCAAGA -ACGGAAATGTCGCCCATTGGTTGA -ACGGAAATGTCGCCCATTTCCGAT -ACGGAAATGTCGCCCATTTGGCAT -ACGGAAATGTCGCCCATTCGAGAT -ACGGAAATGTCGCCCATTTACCAC -ACGGAAATGTCGCCCATTCAGAAC -ACGGAAATGTCGCCCATTGTCTAC -ACGGAAATGTCGCCCATTACGTAC -ACGGAAATGTCGCCCATTAGTGAC -ACGGAAATGTCGCCCATTCTGTAG -ACGGAAATGTCGCCCATTCCTAAG -ACGGAAATGTCGCCCATTGTTCAG -ACGGAAATGTCGCCCATTGCATAG -ACGGAAATGTCGCCCATTGACAAG -ACGGAAATGTCGCCCATTAAGCAG -ACGGAAATGTCGCCCATTCGTCAA -ACGGAAATGTCGCCCATTGCTGAA -ACGGAAATGTCGCCCATTAGTACG -ACGGAAATGTCGCCCATTATCCGA -ACGGAAATGTCGCCCATTATGGGA -ACGGAAATGTCGCCCATTGTGCAA -ACGGAAATGTCGCCCATTGAGGAA -ACGGAAATGTCGCCCATTCAGGTA -ACGGAAATGTCGCCCATTGACTCT -ACGGAAATGTCGCCCATTAGTCCT -ACGGAAATGTCGCCCATTTAAGCC -ACGGAAATGTCGCCCATTATAGCC -ACGGAAATGTCGCCCATTTAACCG -ACGGAAATGTCGCCCATTATGCCA -ACGGAAATGTCGTCGTTCGGAAAC -ACGGAAATGTCGTCGTTCAACACC -ACGGAAATGTCGTCGTTCATCGAG -ACGGAAATGTCGTCGTTCCTCCTT -ACGGAAATGTCGTCGTTCCCTGTT -ACGGAAATGTCGTCGTTCCGGTTT -ACGGAAATGTCGTCGTTCGTGGTT -ACGGAAATGTCGTCGTTCGCCTTT -ACGGAAATGTCGTCGTTCGGTCTT -ACGGAAATGTCGTCGTTCACGCTT -ACGGAAATGTCGTCGTTCAGCGTT -ACGGAAATGTCGTCGTTCTTCGTC -ACGGAAATGTCGTCGTTCTCTCTC -ACGGAAATGTCGTCGTTCTGGATC -ACGGAAATGTCGTCGTTCCACTTC -ACGGAAATGTCGTCGTTCGTACTC -ACGGAAATGTCGTCGTTCGATGTC -ACGGAAATGTCGTCGTTCACAGTC -ACGGAAATGTCGTCGTTCTTGCTG -ACGGAAATGTCGTCGTTCTCCATG -ACGGAAATGTCGTCGTTCTGTGTG -ACGGAAATGTCGTCGTTCCTAGTG -ACGGAAATGTCGTCGTTCCATCTG -ACGGAAATGTCGTCGTTCGAGTTG -ACGGAAATGTCGTCGTTCAGACTG -ACGGAAATGTCGTCGTTCTCGGTA -ACGGAAATGTCGTCGTTCTGCCTA -ACGGAAATGTCGTCGTTCCCACTA -ACGGAAATGTCGTCGTTCGGAGTA -ACGGAAATGTCGTCGTTCTCGTCT -ACGGAAATGTCGTCGTTCTGCACT -ACGGAAATGTCGTCGTTCCTGACT -ACGGAAATGTCGTCGTTCCAACCT -ACGGAAATGTCGTCGTTCGCTACT -ACGGAAATGTCGTCGTTCGGATCT -ACGGAAATGTCGTCGTTCAAGGCT -ACGGAAATGTCGTCGTTCTCAACC -ACGGAAATGTCGTCGTTCTGTTCC -ACGGAAATGTCGTCGTTCATTCCC -ACGGAAATGTCGTCGTTCTTCTCG -ACGGAAATGTCGTCGTTCTAGACG -ACGGAAATGTCGTCGTTCGTAACG -ACGGAAATGTCGTCGTTCACTTCG -ACGGAAATGTCGTCGTTCTACGCA -ACGGAAATGTCGTCGTTCCTTGCA -ACGGAAATGTCGTCGTTCCGAACA -ACGGAAATGTCGTCGTTCCAGTCA -ACGGAAATGTCGTCGTTCGATCCA -ACGGAAATGTCGTCGTTCACGACA -ACGGAAATGTCGTCGTTCAGCTCA -ACGGAAATGTCGTCGTTCTCACGT -ACGGAAATGTCGTCGTTCCGTAGT -ACGGAAATGTCGTCGTTCGTCAGT -ACGGAAATGTCGTCGTTCGAAGGT -ACGGAAATGTCGTCGTTCAACCGT -ACGGAAATGTCGTCGTTCTTGTGC -ACGGAAATGTCGTCGTTCCTAAGC -ACGGAAATGTCGTCGTTCACTAGC -ACGGAAATGTCGTCGTTCAGATGC -ACGGAAATGTCGTCGTTCTGAAGG -ACGGAAATGTCGTCGTTCCAATGG -ACGGAAATGTCGTCGTTCATGAGG -ACGGAAATGTCGTCGTTCAATGGG -ACGGAAATGTCGTCGTTCTCCTGA -ACGGAAATGTCGTCGTTCTAGCGA -ACGGAAATGTCGTCGTTCCACAGA -ACGGAAATGTCGTCGTTCGCAAGA -ACGGAAATGTCGTCGTTCGGTTGA -ACGGAAATGTCGTCGTTCTCCGAT -ACGGAAATGTCGTCGTTCTGGCAT -ACGGAAATGTCGTCGTTCCGAGAT -ACGGAAATGTCGTCGTTCTACCAC -ACGGAAATGTCGTCGTTCCAGAAC -ACGGAAATGTCGTCGTTCGTCTAC -ACGGAAATGTCGTCGTTCACGTAC -ACGGAAATGTCGTCGTTCAGTGAC -ACGGAAATGTCGTCGTTCCTGTAG -ACGGAAATGTCGTCGTTCCCTAAG -ACGGAAATGTCGTCGTTCGTTCAG -ACGGAAATGTCGTCGTTCGCATAG -ACGGAAATGTCGTCGTTCGACAAG -ACGGAAATGTCGTCGTTCAAGCAG -ACGGAAATGTCGTCGTTCCGTCAA -ACGGAAATGTCGTCGTTCGCTGAA -ACGGAAATGTCGTCGTTCAGTACG -ACGGAAATGTCGTCGTTCATCCGA -ACGGAAATGTCGTCGTTCATGGGA -ACGGAAATGTCGTCGTTCGTGCAA -ACGGAAATGTCGTCGTTCGAGGAA -ACGGAAATGTCGTCGTTCCAGGTA -ACGGAAATGTCGTCGTTCGACTCT -ACGGAAATGTCGTCGTTCAGTCCT -ACGGAAATGTCGTCGTTCTAAGCC -ACGGAAATGTCGTCGTTCATAGCC -ACGGAAATGTCGTCGTTCTAACCG -ACGGAAATGTCGTCGTTCATGCCA -ACGGAAATGTCGACGTAGGGAAAC -ACGGAAATGTCGACGTAGAACACC -ACGGAAATGTCGACGTAGATCGAG -ACGGAAATGTCGACGTAGCTCCTT -ACGGAAATGTCGACGTAGCCTGTT -ACGGAAATGTCGACGTAGCGGTTT -ACGGAAATGTCGACGTAGGTGGTT -ACGGAAATGTCGACGTAGGCCTTT -ACGGAAATGTCGACGTAGGGTCTT -ACGGAAATGTCGACGTAGACGCTT -ACGGAAATGTCGACGTAGAGCGTT -ACGGAAATGTCGACGTAGTTCGTC -ACGGAAATGTCGACGTAGTCTCTC -ACGGAAATGTCGACGTAGTGGATC -ACGGAAATGTCGACGTAGCACTTC -ACGGAAATGTCGACGTAGGTACTC -ACGGAAATGTCGACGTAGGATGTC -ACGGAAATGTCGACGTAGACAGTC -ACGGAAATGTCGACGTAGTTGCTG -ACGGAAATGTCGACGTAGTCCATG -ACGGAAATGTCGACGTAGTGTGTG -ACGGAAATGTCGACGTAGCTAGTG -ACGGAAATGTCGACGTAGCATCTG -ACGGAAATGTCGACGTAGGAGTTG -ACGGAAATGTCGACGTAGAGACTG -ACGGAAATGTCGACGTAGTCGGTA -ACGGAAATGTCGACGTAGTGCCTA -ACGGAAATGTCGACGTAGCCACTA -ACGGAAATGTCGACGTAGGGAGTA -ACGGAAATGTCGACGTAGTCGTCT -ACGGAAATGTCGACGTAGTGCACT -ACGGAAATGTCGACGTAGCTGACT -ACGGAAATGTCGACGTAGCAACCT -ACGGAAATGTCGACGTAGGCTACT -ACGGAAATGTCGACGTAGGGATCT -ACGGAAATGTCGACGTAGAAGGCT -ACGGAAATGTCGACGTAGTCAACC -ACGGAAATGTCGACGTAGTGTTCC -ACGGAAATGTCGACGTAGATTCCC -ACGGAAATGTCGACGTAGTTCTCG -ACGGAAATGTCGACGTAGTAGACG -ACGGAAATGTCGACGTAGGTAACG -ACGGAAATGTCGACGTAGACTTCG -ACGGAAATGTCGACGTAGTACGCA -ACGGAAATGTCGACGTAGCTTGCA -ACGGAAATGTCGACGTAGCGAACA -ACGGAAATGTCGACGTAGCAGTCA -ACGGAAATGTCGACGTAGGATCCA -ACGGAAATGTCGACGTAGACGACA -ACGGAAATGTCGACGTAGAGCTCA -ACGGAAATGTCGACGTAGTCACGT -ACGGAAATGTCGACGTAGCGTAGT -ACGGAAATGTCGACGTAGGTCAGT -ACGGAAATGTCGACGTAGGAAGGT -ACGGAAATGTCGACGTAGAACCGT -ACGGAAATGTCGACGTAGTTGTGC -ACGGAAATGTCGACGTAGCTAAGC -ACGGAAATGTCGACGTAGACTAGC -ACGGAAATGTCGACGTAGAGATGC -ACGGAAATGTCGACGTAGTGAAGG -ACGGAAATGTCGACGTAGCAATGG -ACGGAAATGTCGACGTAGATGAGG -ACGGAAATGTCGACGTAGAATGGG -ACGGAAATGTCGACGTAGTCCTGA -ACGGAAATGTCGACGTAGTAGCGA -ACGGAAATGTCGACGTAGCACAGA -ACGGAAATGTCGACGTAGGCAAGA -ACGGAAATGTCGACGTAGGGTTGA -ACGGAAATGTCGACGTAGTCCGAT -ACGGAAATGTCGACGTAGTGGCAT -ACGGAAATGTCGACGTAGCGAGAT -ACGGAAATGTCGACGTAGTACCAC -ACGGAAATGTCGACGTAGCAGAAC -ACGGAAATGTCGACGTAGGTCTAC -ACGGAAATGTCGACGTAGACGTAC -ACGGAAATGTCGACGTAGAGTGAC -ACGGAAATGTCGACGTAGCTGTAG -ACGGAAATGTCGACGTAGCCTAAG -ACGGAAATGTCGACGTAGGTTCAG -ACGGAAATGTCGACGTAGGCATAG -ACGGAAATGTCGACGTAGGACAAG -ACGGAAATGTCGACGTAGAAGCAG -ACGGAAATGTCGACGTAGCGTCAA -ACGGAAATGTCGACGTAGGCTGAA -ACGGAAATGTCGACGTAGAGTACG -ACGGAAATGTCGACGTAGATCCGA -ACGGAAATGTCGACGTAGATGGGA -ACGGAAATGTCGACGTAGGTGCAA -ACGGAAATGTCGACGTAGGAGGAA -ACGGAAATGTCGACGTAGCAGGTA -ACGGAAATGTCGACGTAGGACTCT -ACGGAAATGTCGACGTAGAGTCCT -ACGGAAATGTCGACGTAGTAAGCC -ACGGAAATGTCGACGTAGATAGCC -ACGGAAATGTCGACGTAGTAACCG -ACGGAAATGTCGACGTAGATGCCA -ACGGAAATGTCGACGGTAGGAAAC -ACGGAAATGTCGACGGTAAACACC -ACGGAAATGTCGACGGTAATCGAG -ACGGAAATGTCGACGGTACTCCTT -ACGGAAATGTCGACGGTACCTGTT -ACGGAAATGTCGACGGTACGGTTT -ACGGAAATGTCGACGGTAGTGGTT -ACGGAAATGTCGACGGTAGCCTTT -ACGGAAATGTCGACGGTAGGTCTT -ACGGAAATGTCGACGGTAACGCTT -ACGGAAATGTCGACGGTAAGCGTT -ACGGAAATGTCGACGGTATTCGTC -ACGGAAATGTCGACGGTATCTCTC -ACGGAAATGTCGACGGTATGGATC -ACGGAAATGTCGACGGTACACTTC -ACGGAAATGTCGACGGTAGTACTC -ACGGAAATGTCGACGGTAGATGTC -ACGGAAATGTCGACGGTAACAGTC -ACGGAAATGTCGACGGTATTGCTG -ACGGAAATGTCGACGGTATCCATG -ACGGAAATGTCGACGGTATGTGTG -ACGGAAATGTCGACGGTACTAGTG -ACGGAAATGTCGACGGTACATCTG -ACGGAAATGTCGACGGTAGAGTTG -ACGGAAATGTCGACGGTAAGACTG -ACGGAAATGTCGACGGTATCGGTA -ACGGAAATGTCGACGGTATGCCTA -ACGGAAATGTCGACGGTACCACTA -ACGGAAATGTCGACGGTAGGAGTA -ACGGAAATGTCGACGGTATCGTCT -ACGGAAATGTCGACGGTATGCACT -ACGGAAATGTCGACGGTACTGACT -ACGGAAATGTCGACGGTACAACCT -ACGGAAATGTCGACGGTAGCTACT -ACGGAAATGTCGACGGTAGGATCT -ACGGAAATGTCGACGGTAAAGGCT -ACGGAAATGTCGACGGTATCAACC -ACGGAAATGTCGACGGTATGTTCC -ACGGAAATGTCGACGGTAATTCCC -ACGGAAATGTCGACGGTATTCTCG -ACGGAAATGTCGACGGTATAGACG -ACGGAAATGTCGACGGTAGTAACG -ACGGAAATGTCGACGGTAACTTCG -ACGGAAATGTCGACGGTATACGCA -ACGGAAATGTCGACGGTACTTGCA -ACGGAAATGTCGACGGTACGAACA -ACGGAAATGTCGACGGTACAGTCA -ACGGAAATGTCGACGGTAGATCCA -ACGGAAATGTCGACGGTAACGACA -ACGGAAATGTCGACGGTAAGCTCA -ACGGAAATGTCGACGGTATCACGT -ACGGAAATGTCGACGGTACGTAGT -ACGGAAATGTCGACGGTAGTCAGT -ACGGAAATGTCGACGGTAGAAGGT -ACGGAAATGTCGACGGTAAACCGT -ACGGAAATGTCGACGGTATTGTGC -ACGGAAATGTCGACGGTACTAAGC -ACGGAAATGTCGACGGTAACTAGC -ACGGAAATGTCGACGGTAAGATGC -ACGGAAATGTCGACGGTATGAAGG -ACGGAAATGTCGACGGTACAATGG -ACGGAAATGTCGACGGTAATGAGG -ACGGAAATGTCGACGGTAAATGGG -ACGGAAATGTCGACGGTATCCTGA -ACGGAAATGTCGACGGTATAGCGA -ACGGAAATGTCGACGGTACACAGA -ACGGAAATGTCGACGGTAGCAAGA -ACGGAAATGTCGACGGTAGGTTGA -ACGGAAATGTCGACGGTATCCGAT -ACGGAAATGTCGACGGTATGGCAT -ACGGAAATGTCGACGGTACGAGAT -ACGGAAATGTCGACGGTATACCAC -ACGGAAATGTCGACGGTACAGAAC -ACGGAAATGTCGACGGTAGTCTAC -ACGGAAATGTCGACGGTAACGTAC -ACGGAAATGTCGACGGTAAGTGAC -ACGGAAATGTCGACGGTACTGTAG -ACGGAAATGTCGACGGTACCTAAG -ACGGAAATGTCGACGGTAGTTCAG -ACGGAAATGTCGACGGTAGCATAG -ACGGAAATGTCGACGGTAGACAAG -ACGGAAATGTCGACGGTAAAGCAG -ACGGAAATGTCGACGGTACGTCAA -ACGGAAATGTCGACGGTAGCTGAA -ACGGAAATGTCGACGGTAAGTACG -ACGGAAATGTCGACGGTAATCCGA -ACGGAAATGTCGACGGTAATGGGA -ACGGAAATGTCGACGGTAGTGCAA -ACGGAAATGTCGACGGTAGAGGAA -ACGGAAATGTCGACGGTACAGGTA -ACGGAAATGTCGACGGTAGACTCT -ACGGAAATGTCGACGGTAAGTCCT -ACGGAAATGTCGACGGTATAAGCC -ACGGAAATGTCGACGGTAATAGCC -ACGGAAATGTCGACGGTATAACCG -ACGGAAATGTCGACGGTAATGCCA -ACGGAAATGTCGTCGACTGGAAAC -ACGGAAATGTCGTCGACTAACACC -ACGGAAATGTCGTCGACTATCGAG -ACGGAAATGTCGTCGACTCTCCTT -ACGGAAATGTCGTCGACTCCTGTT -ACGGAAATGTCGTCGACTCGGTTT -ACGGAAATGTCGTCGACTGTGGTT -ACGGAAATGTCGTCGACTGCCTTT -ACGGAAATGTCGTCGACTGGTCTT -ACGGAAATGTCGTCGACTACGCTT -ACGGAAATGTCGTCGACTAGCGTT -ACGGAAATGTCGTCGACTTTCGTC -ACGGAAATGTCGTCGACTTCTCTC -ACGGAAATGTCGTCGACTTGGATC -ACGGAAATGTCGTCGACTCACTTC -ACGGAAATGTCGTCGACTGTACTC -ACGGAAATGTCGTCGACTGATGTC -ACGGAAATGTCGTCGACTACAGTC -ACGGAAATGTCGTCGACTTTGCTG -ACGGAAATGTCGTCGACTTCCATG -ACGGAAATGTCGTCGACTTGTGTG -ACGGAAATGTCGTCGACTCTAGTG -ACGGAAATGTCGTCGACTCATCTG -ACGGAAATGTCGTCGACTGAGTTG -ACGGAAATGTCGTCGACTAGACTG -ACGGAAATGTCGTCGACTTCGGTA -ACGGAAATGTCGTCGACTTGCCTA -ACGGAAATGTCGTCGACTCCACTA -ACGGAAATGTCGTCGACTGGAGTA -ACGGAAATGTCGTCGACTTCGTCT -ACGGAAATGTCGTCGACTTGCACT -ACGGAAATGTCGTCGACTCTGACT -ACGGAAATGTCGTCGACTCAACCT -ACGGAAATGTCGTCGACTGCTACT -ACGGAAATGTCGTCGACTGGATCT -ACGGAAATGTCGTCGACTAAGGCT -ACGGAAATGTCGTCGACTTCAACC -ACGGAAATGTCGTCGACTTGTTCC -ACGGAAATGTCGTCGACTATTCCC -ACGGAAATGTCGTCGACTTTCTCG -ACGGAAATGTCGTCGACTTAGACG -ACGGAAATGTCGTCGACTGTAACG -ACGGAAATGTCGTCGACTACTTCG -ACGGAAATGTCGTCGACTTACGCA -ACGGAAATGTCGTCGACTCTTGCA -ACGGAAATGTCGTCGACTCGAACA -ACGGAAATGTCGTCGACTCAGTCA -ACGGAAATGTCGTCGACTGATCCA -ACGGAAATGTCGTCGACTACGACA -ACGGAAATGTCGTCGACTAGCTCA -ACGGAAATGTCGTCGACTTCACGT -ACGGAAATGTCGTCGACTCGTAGT -ACGGAAATGTCGTCGACTGTCAGT -ACGGAAATGTCGTCGACTGAAGGT -ACGGAAATGTCGTCGACTAACCGT -ACGGAAATGTCGTCGACTTTGTGC -ACGGAAATGTCGTCGACTCTAAGC -ACGGAAATGTCGTCGACTACTAGC -ACGGAAATGTCGTCGACTAGATGC -ACGGAAATGTCGTCGACTTGAAGG -ACGGAAATGTCGTCGACTCAATGG -ACGGAAATGTCGTCGACTATGAGG -ACGGAAATGTCGTCGACTAATGGG -ACGGAAATGTCGTCGACTTCCTGA -ACGGAAATGTCGTCGACTTAGCGA -ACGGAAATGTCGTCGACTCACAGA -ACGGAAATGTCGTCGACTGCAAGA -ACGGAAATGTCGTCGACTGGTTGA -ACGGAAATGTCGTCGACTTCCGAT -ACGGAAATGTCGTCGACTTGGCAT -ACGGAAATGTCGTCGACTCGAGAT -ACGGAAATGTCGTCGACTTACCAC -ACGGAAATGTCGTCGACTCAGAAC -ACGGAAATGTCGTCGACTGTCTAC -ACGGAAATGTCGTCGACTACGTAC -ACGGAAATGTCGTCGACTAGTGAC -ACGGAAATGTCGTCGACTCTGTAG -ACGGAAATGTCGTCGACTCCTAAG -ACGGAAATGTCGTCGACTGTTCAG -ACGGAAATGTCGTCGACTGCATAG -ACGGAAATGTCGTCGACTGACAAG -ACGGAAATGTCGTCGACTAAGCAG -ACGGAAATGTCGTCGACTCGTCAA -ACGGAAATGTCGTCGACTGCTGAA -ACGGAAATGTCGTCGACTAGTACG -ACGGAAATGTCGTCGACTATCCGA -ACGGAAATGTCGTCGACTATGGGA -ACGGAAATGTCGTCGACTGTGCAA -ACGGAAATGTCGTCGACTGAGGAA -ACGGAAATGTCGTCGACTCAGGTA -ACGGAAATGTCGTCGACTGACTCT -ACGGAAATGTCGTCGACTAGTCCT -ACGGAAATGTCGTCGACTTAAGCC -ACGGAAATGTCGTCGACTATAGCC -ACGGAAATGTCGTCGACTTAACCG -ACGGAAATGTCGTCGACTATGCCA -ACGGAAATGTCGGCATACGGAAAC -ACGGAAATGTCGGCATACAACACC -ACGGAAATGTCGGCATACATCGAG -ACGGAAATGTCGGCATACCTCCTT -ACGGAAATGTCGGCATACCCTGTT -ACGGAAATGTCGGCATACCGGTTT -ACGGAAATGTCGGCATACGTGGTT -ACGGAAATGTCGGCATACGCCTTT -ACGGAAATGTCGGCATACGGTCTT -ACGGAAATGTCGGCATACACGCTT -ACGGAAATGTCGGCATACAGCGTT -ACGGAAATGTCGGCATACTTCGTC -ACGGAAATGTCGGCATACTCTCTC -ACGGAAATGTCGGCATACTGGATC -ACGGAAATGTCGGCATACCACTTC -ACGGAAATGTCGGCATACGTACTC -ACGGAAATGTCGGCATACGATGTC -ACGGAAATGTCGGCATACACAGTC -ACGGAAATGTCGGCATACTTGCTG -ACGGAAATGTCGGCATACTCCATG -ACGGAAATGTCGGCATACTGTGTG -ACGGAAATGTCGGCATACCTAGTG -ACGGAAATGTCGGCATACCATCTG -ACGGAAATGTCGGCATACGAGTTG -ACGGAAATGTCGGCATACAGACTG -ACGGAAATGTCGGCATACTCGGTA -ACGGAAATGTCGGCATACTGCCTA -ACGGAAATGTCGGCATACCCACTA -ACGGAAATGTCGGCATACGGAGTA -ACGGAAATGTCGGCATACTCGTCT -ACGGAAATGTCGGCATACTGCACT -ACGGAAATGTCGGCATACCTGACT -ACGGAAATGTCGGCATACCAACCT -ACGGAAATGTCGGCATACGCTACT -ACGGAAATGTCGGCATACGGATCT -ACGGAAATGTCGGCATACAAGGCT -ACGGAAATGTCGGCATACTCAACC -ACGGAAATGTCGGCATACTGTTCC -ACGGAAATGTCGGCATACATTCCC -ACGGAAATGTCGGCATACTTCTCG -ACGGAAATGTCGGCATACTAGACG -ACGGAAATGTCGGCATACGTAACG -ACGGAAATGTCGGCATACACTTCG -ACGGAAATGTCGGCATACTACGCA -ACGGAAATGTCGGCATACCTTGCA -ACGGAAATGTCGGCATACCGAACA -ACGGAAATGTCGGCATACCAGTCA -ACGGAAATGTCGGCATACGATCCA -ACGGAAATGTCGGCATACACGACA -ACGGAAATGTCGGCATACAGCTCA -ACGGAAATGTCGGCATACTCACGT -ACGGAAATGTCGGCATACCGTAGT -ACGGAAATGTCGGCATACGTCAGT -ACGGAAATGTCGGCATACGAAGGT -ACGGAAATGTCGGCATACAACCGT -ACGGAAATGTCGGCATACTTGTGC -ACGGAAATGTCGGCATACCTAAGC -ACGGAAATGTCGGCATACACTAGC -ACGGAAATGTCGGCATACAGATGC -ACGGAAATGTCGGCATACTGAAGG -ACGGAAATGTCGGCATACCAATGG -ACGGAAATGTCGGCATACATGAGG -ACGGAAATGTCGGCATACAATGGG -ACGGAAATGTCGGCATACTCCTGA -ACGGAAATGTCGGCATACTAGCGA -ACGGAAATGTCGGCATACCACAGA -ACGGAAATGTCGGCATACGCAAGA -ACGGAAATGTCGGCATACGGTTGA -ACGGAAATGTCGGCATACTCCGAT -ACGGAAATGTCGGCATACTGGCAT -ACGGAAATGTCGGCATACCGAGAT -ACGGAAATGTCGGCATACTACCAC -ACGGAAATGTCGGCATACCAGAAC -ACGGAAATGTCGGCATACGTCTAC -ACGGAAATGTCGGCATACACGTAC -ACGGAAATGTCGGCATACAGTGAC -ACGGAAATGTCGGCATACCTGTAG -ACGGAAATGTCGGCATACCCTAAG -ACGGAAATGTCGGCATACGTTCAG -ACGGAAATGTCGGCATACGCATAG -ACGGAAATGTCGGCATACGACAAG -ACGGAAATGTCGGCATACAAGCAG -ACGGAAATGTCGGCATACCGTCAA -ACGGAAATGTCGGCATACGCTGAA -ACGGAAATGTCGGCATACAGTACG -ACGGAAATGTCGGCATACATCCGA -ACGGAAATGTCGGCATACATGGGA -ACGGAAATGTCGGCATACGTGCAA -ACGGAAATGTCGGCATACGAGGAA -ACGGAAATGTCGGCATACCAGGTA -ACGGAAATGTCGGCATACGACTCT -ACGGAAATGTCGGCATACAGTCCT -ACGGAAATGTCGGCATACTAAGCC -ACGGAAATGTCGGCATACATAGCC -ACGGAAATGTCGGCATACTAACCG -ACGGAAATGTCGGCATACATGCCA -ACGGAAATGTCGGCACTTGGAAAC -ACGGAAATGTCGGCACTTAACACC -ACGGAAATGTCGGCACTTATCGAG -ACGGAAATGTCGGCACTTCTCCTT -ACGGAAATGTCGGCACTTCCTGTT -ACGGAAATGTCGGCACTTCGGTTT -ACGGAAATGTCGGCACTTGTGGTT -ACGGAAATGTCGGCACTTGCCTTT -ACGGAAATGTCGGCACTTGGTCTT -ACGGAAATGTCGGCACTTACGCTT -ACGGAAATGTCGGCACTTAGCGTT -ACGGAAATGTCGGCACTTTTCGTC -ACGGAAATGTCGGCACTTTCTCTC -ACGGAAATGTCGGCACTTTGGATC -ACGGAAATGTCGGCACTTCACTTC -ACGGAAATGTCGGCACTTGTACTC -ACGGAAATGTCGGCACTTGATGTC -ACGGAAATGTCGGCACTTACAGTC -ACGGAAATGTCGGCACTTTTGCTG -ACGGAAATGTCGGCACTTTCCATG -ACGGAAATGTCGGCACTTTGTGTG -ACGGAAATGTCGGCACTTCTAGTG -ACGGAAATGTCGGCACTTCATCTG -ACGGAAATGTCGGCACTTGAGTTG -ACGGAAATGTCGGCACTTAGACTG -ACGGAAATGTCGGCACTTTCGGTA -ACGGAAATGTCGGCACTTTGCCTA -ACGGAAATGTCGGCACTTCCACTA -ACGGAAATGTCGGCACTTGGAGTA -ACGGAAATGTCGGCACTTTCGTCT -ACGGAAATGTCGGCACTTTGCACT -ACGGAAATGTCGGCACTTCTGACT -ACGGAAATGTCGGCACTTCAACCT -ACGGAAATGTCGGCACTTGCTACT -ACGGAAATGTCGGCACTTGGATCT -ACGGAAATGTCGGCACTTAAGGCT -ACGGAAATGTCGGCACTTTCAACC -ACGGAAATGTCGGCACTTTGTTCC -ACGGAAATGTCGGCACTTATTCCC -ACGGAAATGTCGGCACTTTTCTCG -ACGGAAATGTCGGCACTTTAGACG -ACGGAAATGTCGGCACTTGTAACG -ACGGAAATGTCGGCACTTACTTCG -ACGGAAATGTCGGCACTTTACGCA -ACGGAAATGTCGGCACTTCTTGCA -ACGGAAATGTCGGCACTTCGAACA -ACGGAAATGTCGGCACTTCAGTCA -ACGGAAATGTCGGCACTTGATCCA -ACGGAAATGTCGGCACTTACGACA -ACGGAAATGTCGGCACTTAGCTCA -ACGGAAATGTCGGCACTTTCACGT -ACGGAAATGTCGGCACTTCGTAGT -ACGGAAATGTCGGCACTTGTCAGT -ACGGAAATGTCGGCACTTGAAGGT -ACGGAAATGTCGGCACTTAACCGT -ACGGAAATGTCGGCACTTTTGTGC -ACGGAAATGTCGGCACTTCTAAGC -ACGGAAATGTCGGCACTTACTAGC -ACGGAAATGTCGGCACTTAGATGC -ACGGAAATGTCGGCACTTTGAAGG -ACGGAAATGTCGGCACTTCAATGG -ACGGAAATGTCGGCACTTATGAGG -ACGGAAATGTCGGCACTTAATGGG -ACGGAAATGTCGGCACTTTCCTGA -ACGGAAATGTCGGCACTTTAGCGA -ACGGAAATGTCGGCACTTCACAGA -ACGGAAATGTCGGCACTTGCAAGA -ACGGAAATGTCGGCACTTGGTTGA -ACGGAAATGTCGGCACTTTCCGAT -ACGGAAATGTCGGCACTTTGGCAT -ACGGAAATGTCGGCACTTCGAGAT -ACGGAAATGTCGGCACTTTACCAC -ACGGAAATGTCGGCACTTCAGAAC -ACGGAAATGTCGGCACTTGTCTAC -ACGGAAATGTCGGCACTTACGTAC -ACGGAAATGTCGGCACTTAGTGAC -ACGGAAATGTCGGCACTTCTGTAG -ACGGAAATGTCGGCACTTCCTAAG -ACGGAAATGTCGGCACTTGTTCAG -ACGGAAATGTCGGCACTTGCATAG -ACGGAAATGTCGGCACTTGACAAG -ACGGAAATGTCGGCACTTAAGCAG -ACGGAAATGTCGGCACTTCGTCAA -ACGGAAATGTCGGCACTTGCTGAA -ACGGAAATGTCGGCACTTAGTACG -ACGGAAATGTCGGCACTTATCCGA -ACGGAAATGTCGGCACTTATGGGA -ACGGAAATGTCGGCACTTGTGCAA -ACGGAAATGTCGGCACTTGAGGAA -ACGGAAATGTCGGCACTTCAGGTA -ACGGAAATGTCGGCACTTGACTCT -ACGGAAATGTCGGCACTTAGTCCT -ACGGAAATGTCGGCACTTTAAGCC -ACGGAAATGTCGGCACTTATAGCC -ACGGAAATGTCGGCACTTTAACCG -ACGGAAATGTCGGCACTTATGCCA -ACGGAAATGTCGACACGAGGAAAC -ACGGAAATGTCGACACGAAACACC -ACGGAAATGTCGACACGAATCGAG -ACGGAAATGTCGACACGACTCCTT -ACGGAAATGTCGACACGACCTGTT -ACGGAAATGTCGACACGACGGTTT -ACGGAAATGTCGACACGAGTGGTT -ACGGAAATGTCGACACGAGCCTTT -ACGGAAATGTCGACACGAGGTCTT -ACGGAAATGTCGACACGAACGCTT -ACGGAAATGTCGACACGAAGCGTT -ACGGAAATGTCGACACGATTCGTC -ACGGAAATGTCGACACGATCTCTC -ACGGAAATGTCGACACGATGGATC -ACGGAAATGTCGACACGACACTTC -ACGGAAATGTCGACACGAGTACTC -ACGGAAATGTCGACACGAGATGTC -ACGGAAATGTCGACACGAACAGTC -ACGGAAATGTCGACACGATTGCTG -ACGGAAATGTCGACACGATCCATG -ACGGAAATGTCGACACGATGTGTG -ACGGAAATGTCGACACGACTAGTG -ACGGAAATGTCGACACGACATCTG -ACGGAAATGTCGACACGAGAGTTG -ACGGAAATGTCGACACGAAGACTG -ACGGAAATGTCGACACGATCGGTA -ACGGAAATGTCGACACGATGCCTA -ACGGAAATGTCGACACGACCACTA -ACGGAAATGTCGACACGAGGAGTA -ACGGAAATGTCGACACGATCGTCT -ACGGAAATGTCGACACGATGCACT -ACGGAAATGTCGACACGACTGACT -ACGGAAATGTCGACACGACAACCT -ACGGAAATGTCGACACGAGCTACT -ACGGAAATGTCGACACGAGGATCT -ACGGAAATGTCGACACGAAAGGCT -ACGGAAATGTCGACACGATCAACC -ACGGAAATGTCGACACGATGTTCC -ACGGAAATGTCGACACGAATTCCC -ACGGAAATGTCGACACGATTCTCG -ACGGAAATGTCGACACGATAGACG -ACGGAAATGTCGACACGAGTAACG -ACGGAAATGTCGACACGAACTTCG -ACGGAAATGTCGACACGATACGCA -ACGGAAATGTCGACACGACTTGCA -ACGGAAATGTCGACACGACGAACA -ACGGAAATGTCGACACGACAGTCA -ACGGAAATGTCGACACGAGATCCA -ACGGAAATGTCGACACGAACGACA -ACGGAAATGTCGACACGAAGCTCA -ACGGAAATGTCGACACGATCACGT -ACGGAAATGTCGACACGACGTAGT -ACGGAAATGTCGACACGAGTCAGT -ACGGAAATGTCGACACGAGAAGGT -ACGGAAATGTCGACACGAAACCGT -ACGGAAATGTCGACACGATTGTGC -ACGGAAATGTCGACACGACTAAGC -ACGGAAATGTCGACACGAACTAGC -ACGGAAATGTCGACACGAAGATGC -ACGGAAATGTCGACACGATGAAGG -ACGGAAATGTCGACACGACAATGG -ACGGAAATGTCGACACGAATGAGG -ACGGAAATGTCGACACGAAATGGG -ACGGAAATGTCGACACGATCCTGA -ACGGAAATGTCGACACGATAGCGA -ACGGAAATGTCGACACGACACAGA -ACGGAAATGTCGACACGAGCAAGA -ACGGAAATGTCGACACGAGGTTGA -ACGGAAATGTCGACACGATCCGAT -ACGGAAATGTCGACACGATGGCAT -ACGGAAATGTCGACACGACGAGAT -ACGGAAATGTCGACACGATACCAC -ACGGAAATGTCGACACGACAGAAC -ACGGAAATGTCGACACGAGTCTAC -ACGGAAATGTCGACACGAACGTAC -ACGGAAATGTCGACACGAAGTGAC -ACGGAAATGTCGACACGACTGTAG -ACGGAAATGTCGACACGACCTAAG -ACGGAAATGTCGACACGAGTTCAG -ACGGAAATGTCGACACGAGCATAG -ACGGAAATGTCGACACGAGACAAG -ACGGAAATGTCGACACGAAAGCAG -ACGGAAATGTCGACACGACGTCAA -ACGGAAATGTCGACACGAGCTGAA -ACGGAAATGTCGACACGAAGTACG -ACGGAAATGTCGACACGAATCCGA -ACGGAAATGTCGACACGAATGGGA -ACGGAAATGTCGACACGAGTGCAA -ACGGAAATGTCGACACGAGAGGAA -ACGGAAATGTCGACACGACAGGTA -ACGGAAATGTCGACACGAGACTCT -ACGGAAATGTCGACACGAAGTCCT -ACGGAAATGTCGACACGATAAGCC -ACGGAAATGTCGACACGAATAGCC -ACGGAAATGTCGACACGATAACCG -ACGGAAATGTCGACACGAATGCCA -ACGGAAATGTCGTCACAGGGAAAC -ACGGAAATGTCGTCACAGAACACC -ACGGAAATGTCGTCACAGATCGAG -ACGGAAATGTCGTCACAGCTCCTT -ACGGAAATGTCGTCACAGCCTGTT -ACGGAAATGTCGTCACAGCGGTTT -ACGGAAATGTCGTCACAGGTGGTT -ACGGAAATGTCGTCACAGGCCTTT -ACGGAAATGTCGTCACAGGGTCTT -ACGGAAATGTCGTCACAGACGCTT -ACGGAAATGTCGTCACAGAGCGTT -ACGGAAATGTCGTCACAGTTCGTC -ACGGAAATGTCGTCACAGTCTCTC -ACGGAAATGTCGTCACAGTGGATC -ACGGAAATGTCGTCACAGCACTTC -ACGGAAATGTCGTCACAGGTACTC -ACGGAAATGTCGTCACAGGATGTC -ACGGAAATGTCGTCACAGACAGTC -ACGGAAATGTCGTCACAGTTGCTG -ACGGAAATGTCGTCACAGTCCATG -ACGGAAATGTCGTCACAGTGTGTG -ACGGAAATGTCGTCACAGCTAGTG -ACGGAAATGTCGTCACAGCATCTG -ACGGAAATGTCGTCACAGGAGTTG -ACGGAAATGTCGTCACAGAGACTG -ACGGAAATGTCGTCACAGTCGGTA -ACGGAAATGTCGTCACAGTGCCTA -ACGGAAATGTCGTCACAGCCACTA -ACGGAAATGTCGTCACAGGGAGTA -ACGGAAATGTCGTCACAGTCGTCT -ACGGAAATGTCGTCACAGTGCACT -ACGGAAATGTCGTCACAGCTGACT -ACGGAAATGTCGTCACAGCAACCT -ACGGAAATGTCGTCACAGGCTACT -ACGGAAATGTCGTCACAGGGATCT -ACGGAAATGTCGTCACAGAAGGCT -ACGGAAATGTCGTCACAGTCAACC -ACGGAAATGTCGTCACAGTGTTCC -ACGGAAATGTCGTCACAGATTCCC -ACGGAAATGTCGTCACAGTTCTCG -ACGGAAATGTCGTCACAGTAGACG -ACGGAAATGTCGTCACAGGTAACG -ACGGAAATGTCGTCACAGACTTCG -ACGGAAATGTCGTCACAGTACGCA -ACGGAAATGTCGTCACAGCTTGCA -ACGGAAATGTCGTCACAGCGAACA -ACGGAAATGTCGTCACAGCAGTCA -ACGGAAATGTCGTCACAGGATCCA -ACGGAAATGTCGTCACAGACGACA -ACGGAAATGTCGTCACAGAGCTCA -ACGGAAATGTCGTCACAGTCACGT -ACGGAAATGTCGTCACAGCGTAGT -ACGGAAATGTCGTCACAGGTCAGT -ACGGAAATGTCGTCACAGGAAGGT -ACGGAAATGTCGTCACAGAACCGT -ACGGAAATGTCGTCACAGTTGTGC -ACGGAAATGTCGTCACAGCTAAGC -ACGGAAATGTCGTCACAGACTAGC -ACGGAAATGTCGTCACAGAGATGC -ACGGAAATGTCGTCACAGTGAAGG -ACGGAAATGTCGTCACAGCAATGG -ACGGAAATGTCGTCACAGATGAGG -ACGGAAATGTCGTCACAGAATGGG -ACGGAAATGTCGTCACAGTCCTGA -ACGGAAATGTCGTCACAGTAGCGA -ACGGAAATGTCGTCACAGCACAGA -ACGGAAATGTCGTCACAGGCAAGA -ACGGAAATGTCGTCACAGGGTTGA -ACGGAAATGTCGTCACAGTCCGAT -ACGGAAATGTCGTCACAGTGGCAT -ACGGAAATGTCGTCACAGCGAGAT -ACGGAAATGTCGTCACAGTACCAC -ACGGAAATGTCGTCACAGCAGAAC -ACGGAAATGTCGTCACAGGTCTAC -ACGGAAATGTCGTCACAGACGTAC -ACGGAAATGTCGTCACAGAGTGAC -ACGGAAATGTCGTCACAGCTGTAG -ACGGAAATGTCGTCACAGCCTAAG -ACGGAAATGTCGTCACAGGTTCAG -ACGGAAATGTCGTCACAGGCATAG -ACGGAAATGTCGTCACAGGACAAG -ACGGAAATGTCGTCACAGAAGCAG -ACGGAAATGTCGTCACAGCGTCAA -ACGGAAATGTCGTCACAGGCTGAA -ACGGAAATGTCGTCACAGAGTACG -ACGGAAATGTCGTCACAGATCCGA -ACGGAAATGTCGTCACAGATGGGA -ACGGAAATGTCGTCACAGGTGCAA -ACGGAAATGTCGTCACAGGAGGAA -ACGGAAATGTCGTCACAGCAGGTA -ACGGAAATGTCGTCACAGGACTCT -ACGGAAATGTCGTCACAGAGTCCT -ACGGAAATGTCGTCACAGTAAGCC -ACGGAAATGTCGTCACAGATAGCC -ACGGAAATGTCGTCACAGTAACCG -ACGGAAATGTCGTCACAGATGCCA -ACGGAAATGTCGCCAGATGGAAAC -ACGGAAATGTCGCCAGATAACACC -ACGGAAATGTCGCCAGATATCGAG -ACGGAAATGTCGCCAGATCTCCTT -ACGGAAATGTCGCCAGATCCTGTT -ACGGAAATGTCGCCAGATCGGTTT -ACGGAAATGTCGCCAGATGTGGTT -ACGGAAATGTCGCCAGATGCCTTT -ACGGAAATGTCGCCAGATGGTCTT -ACGGAAATGTCGCCAGATACGCTT -ACGGAAATGTCGCCAGATAGCGTT -ACGGAAATGTCGCCAGATTTCGTC -ACGGAAATGTCGCCAGATTCTCTC -ACGGAAATGTCGCCAGATTGGATC -ACGGAAATGTCGCCAGATCACTTC -ACGGAAATGTCGCCAGATGTACTC -ACGGAAATGTCGCCAGATGATGTC -ACGGAAATGTCGCCAGATACAGTC -ACGGAAATGTCGCCAGATTTGCTG -ACGGAAATGTCGCCAGATTCCATG -ACGGAAATGTCGCCAGATTGTGTG -ACGGAAATGTCGCCAGATCTAGTG -ACGGAAATGTCGCCAGATCATCTG -ACGGAAATGTCGCCAGATGAGTTG -ACGGAAATGTCGCCAGATAGACTG -ACGGAAATGTCGCCAGATTCGGTA -ACGGAAATGTCGCCAGATTGCCTA -ACGGAAATGTCGCCAGATCCACTA -ACGGAAATGTCGCCAGATGGAGTA -ACGGAAATGTCGCCAGATTCGTCT -ACGGAAATGTCGCCAGATTGCACT -ACGGAAATGTCGCCAGATCTGACT -ACGGAAATGTCGCCAGATCAACCT -ACGGAAATGTCGCCAGATGCTACT -ACGGAAATGTCGCCAGATGGATCT -ACGGAAATGTCGCCAGATAAGGCT -ACGGAAATGTCGCCAGATTCAACC -ACGGAAATGTCGCCAGATTGTTCC -ACGGAAATGTCGCCAGATATTCCC -ACGGAAATGTCGCCAGATTTCTCG -ACGGAAATGTCGCCAGATTAGACG -ACGGAAATGTCGCCAGATGTAACG -ACGGAAATGTCGCCAGATACTTCG -ACGGAAATGTCGCCAGATTACGCA -ACGGAAATGTCGCCAGATCTTGCA -ACGGAAATGTCGCCAGATCGAACA -ACGGAAATGTCGCCAGATCAGTCA -ACGGAAATGTCGCCAGATGATCCA -ACGGAAATGTCGCCAGATACGACA -ACGGAAATGTCGCCAGATAGCTCA -ACGGAAATGTCGCCAGATTCACGT -ACGGAAATGTCGCCAGATCGTAGT -ACGGAAATGTCGCCAGATGTCAGT -ACGGAAATGTCGCCAGATGAAGGT -ACGGAAATGTCGCCAGATAACCGT -ACGGAAATGTCGCCAGATTTGTGC -ACGGAAATGTCGCCAGATCTAAGC -ACGGAAATGTCGCCAGATACTAGC -ACGGAAATGTCGCCAGATAGATGC -ACGGAAATGTCGCCAGATTGAAGG -ACGGAAATGTCGCCAGATCAATGG -ACGGAAATGTCGCCAGATATGAGG -ACGGAAATGTCGCCAGATAATGGG -ACGGAAATGTCGCCAGATTCCTGA -ACGGAAATGTCGCCAGATTAGCGA -ACGGAAATGTCGCCAGATCACAGA -ACGGAAATGTCGCCAGATGCAAGA -ACGGAAATGTCGCCAGATGGTTGA -ACGGAAATGTCGCCAGATTCCGAT -ACGGAAATGTCGCCAGATTGGCAT -ACGGAAATGTCGCCAGATCGAGAT -ACGGAAATGTCGCCAGATTACCAC -ACGGAAATGTCGCCAGATCAGAAC -ACGGAAATGTCGCCAGATGTCTAC -ACGGAAATGTCGCCAGATACGTAC -ACGGAAATGTCGCCAGATAGTGAC -ACGGAAATGTCGCCAGATCTGTAG -ACGGAAATGTCGCCAGATCCTAAG -ACGGAAATGTCGCCAGATGTTCAG -ACGGAAATGTCGCCAGATGCATAG -ACGGAAATGTCGCCAGATGACAAG -ACGGAAATGTCGCCAGATAAGCAG -ACGGAAATGTCGCCAGATCGTCAA -ACGGAAATGTCGCCAGATGCTGAA -ACGGAAATGTCGCCAGATAGTACG -ACGGAAATGTCGCCAGATATCCGA -ACGGAAATGTCGCCAGATATGGGA -ACGGAAATGTCGCCAGATGTGCAA -ACGGAAATGTCGCCAGATGAGGAA -ACGGAAATGTCGCCAGATCAGGTA -ACGGAAATGTCGCCAGATGACTCT -ACGGAAATGTCGCCAGATAGTCCT -ACGGAAATGTCGCCAGATTAAGCC -ACGGAAATGTCGCCAGATATAGCC -ACGGAAATGTCGCCAGATTAACCG -ACGGAAATGTCGCCAGATATGCCA -ACGGAAATGTCGACAACGGGAAAC -ACGGAAATGTCGACAACGAACACC -ACGGAAATGTCGACAACGATCGAG -ACGGAAATGTCGACAACGCTCCTT -ACGGAAATGTCGACAACGCCTGTT -ACGGAAATGTCGACAACGCGGTTT -ACGGAAATGTCGACAACGGTGGTT -ACGGAAATGTCGACAACGGCCTTT -ACGGAAATGTCGACAACGGGTCTT -ACGGAAATGTCGACAACGACGCTT -ACGGAAATGTCGACAACGAGCGTT -ACGGAAATGTCGACAACGTTCGTC -ACGGAAATGTCGACAACGTCTCTC -ACGGAAATGTCGACAACGTGGATC -ACGGAAATGTCGACAACGCACTTC -ACGGAAATGTCGACAACGGTACTC -ACGGAAATGTCGACAACGGATGTC -ACGGAAATGTCGACAACGACAGTC -ACGGAAATGTCGACAACGTTGCTG -ACGGAAATGTCGACAACGTCCATG -ACGGAAATGTCGACAACGTGTGTG -ACGGAAATGTCGACAACGCTAGTG -ACGGAAATGTCGACAACGCATCTG -ACGGAAATGTCGACAACGGAGTTG -ACGGAAATGTCGACAACGAGACTG -ACGGAAATGTCGACAACGTCGGTA -ACGGAAATGTCGACAACGTGCCTA -ACGGAAATGTCGACAACGCCACTA -ACGGAAATGTCGACAACGGGAGTA -ACGGAAATGTCGACAACGTCGTCT -ACGGAAATGTCGACAACGTGCACT -ACGGAAATGTCGACAACGCTGACT -ACGGAAATGTCGACAACGCAACCT -ACGGAAATGTCGACAACGGCTACT -ACGGAAATGTCGACAACGGGATCT -ACGGAAATGTCGACAACGAAGGCT -ACGGAAATGTCGACAACGTCAACC -ACGGAAATGTCGACAACGTGTTCC -ACGGAAATGTCGACAACGATTCCC -ACGGAAATGTCGACAACGTTCTCG -ACGGAAATGTCGACAACGTAGACG -ACGGAAATGTCGACAACGGTAACG -ACGGAAATGTCGACAACGACTTCG -ACGGAAATGTCGACAACGTACGCA -ACGGAAATGTCGACAACGCTTGCA -ACGGAAATGTCGACAACGCGAACA -ACGGAAATGTCGACAACGCAGTCA -ACGGAAATGTCGACAACGGATCCA -ACGGAAATGTCGACAACGACGACA -ACGGAAATGTCGACAACGAGCTCA -ACGGAAATGTCGACAACGTCACGT -ACGGAAATGTCGACAACGCGTAGT -ACGGAAATGTCGACAACGGTCAGT -ACGGAAATGTCGACAACGGAAGGT -ACGGAAATGTCGACAACGAACCGT -ACGGAAATGTCGACAACGTTGTGC -ACGGAAATGTCGACAACGCTAAGC -ACGGAAATGTCGACAACGACTAGC -ACGGAAATGTCGACAACGAGATGC -ACGGAAATGTCGACAACGTGAAGG -ACGGAAATGTCGACAACGCAATGG -ACGGAAATGTCGACAACGATGAGG -ACGGAAATGTCGACAACGAATGGG -ACGGAAATGTCGACAACGTCCTGA -ACGGAAATGTCGACAACGTAGCGA -ACGGAAATGTCGACAACGCACAGA -ACGGAAATGTCGACAACGGCAAGA -ACGGAAATGTCGACAACGGGTTGA -ACGGAAATGTCGACAACGTCCGAT -ACGGAAATGTCGACAACGTGGCAT -ACGGAAATGTCGACAACGCGAGAT -ACGGAAATGTCGACAACGTACCAC -ACGGAAATGTCGACAACGCAGAAC -ACGGAAATGTCGACAACGGTCTAC -ACGGAAATGTCGACAACGACGTAC -ACGGAAATGTCGACAACGAGTGAC -ACGGAAATGTCGACAACGCTGTAG -ACGGAAATGTCGACAACGCCTAAG -ACGGAAATGTCGACAACGGTTCAG -ACGGAAATGTCGACAACGGCATAG -ACGGAAATGTCGACAACGGACAAG -ACGGAAATGTCGACAACGAAGCAG -ACGGAAATGTCGACAACGCGTCAA -ACGGAAATGTCGACAACGGCTGAA -ACGGAAATGTCGACAACGAGTACG -ACGGAAATGTCGACAACGATCCGA -ACGGAAATGTCGACAACGATGGGA -ACGGAAATGTCGACAACGGTGCAA -ACGGAAATGTCGACAACGGAGGAA -ACGGAAATGTCGACAACGCAGGTA -ACGGAAATGTCGACAACGGACTCT -ACGGAAATGTCGACAACGAGTCCT -ACGGAAATGTCGACAACGTAAGCC -ACGGAAATGTCGACAACGATAGCC -ACGGAAATGTCGACAACGTAACCG -ACGGAAATGTCGACAACGATGCCA -ACGGAAATGTCGTCAAGCGGAAAC -ACGGAAATGTCGTCAAGCAACACC -ACGGAAATGTCGTCAAGCATCGAG -ACGGAAATGTCGTCAAGCCTCCTT -ACGGAAATGTCGTCAAGCCCTGTT -ACGGAAATGTCGTCAAGCCGGTTT -ACGGAAATGTCGTCAAGCGTGGTT -ACGGAAATGTCGTCAAGCGCCTTT -ACGGAAATGTCGTCAAGCGGTCTT -ACGGAAATGTCGTCAAGCACGCTT -ACGGAAATGTCGTCAAGCAGCGTT -ACGGAAATGTCGTCAAGCTTCGTC -ACGGAAATGTCGTCAAGCTCTCTC -ACGGAAATGTCGTCAAGCTGGATC -ACGGAAATGTCGTCAAGCCACTTC -ACGGAAATGTCGTCAAGCGTACTC -ACGGAAATGTCGTCAAGCGATGTC -ACGGAAATGTCGTCAAGCACAGTC -ACGGAAATGTCGTCAAGCTTGCTG -ACGGAAATGTCGTCAAGCTCCATG -ACGGAAATGTCGTCAAGCTGTGTG -ACGGAAATGTCGTCAAGCCTAGTG -ACGGAAATGTCGTCAAGCCATCTG -ACGGAAATGTCGTCAAGCGAGTTG -ACGGAAATGTCGTCAAGCAGACTG -ACGGAAATGTCGTCAAGCTCGGTA -ACGGAAATGTCGTCAAGCTGCCTA -ACGGAAATGTCGTCAAGCCCACTA -ACGGAAATGTCGTCAAGCGGAGTA -ACGGAAATGTCGTCAAGCTCGTCT -ACGGAAATGTCGTCAAGCTGCACT -ACGGAAATGTCGTCAAGCCTGACT -ACGGAAATGTCGTCAAGCCAACCT -ACGGAAATGTCGTCAAGCGCTACT -ACGGAAATGTCGTCAAGCGGATCT -ACGGAAATGTCGTCAAGCAAGGCT -ACGGAAATGTCGTCAAGCTCAACC -ACGGAAATGTCGTCAAGCTGTTCC -ACGGAAATGTCGTCAAGCATTCCC -ACGGAAATGTCGTCAAGCTTCTCG -ACGGAAATGTCGTCAAGCTAGACG -ACGGAAATGTCGTCAAGCGTAACG -ACGGAAATGTCGTCAAGCACTTCG -ACGGAAATGTCGTCAAGCTACGCA -ACGGAAATGTCGTCAAGCCTTGCA -ACGGAAATGTCGTCAAGCCGAACA -ACGGAAATGTCGTCAAGCCAGTCA -ACGGAAATGTCGTCAAGCGATCCA -ACGGAAATGTCGTCAAGCACGACA -ACGGAAATGTCGTCAAGCAGCTCA -ACGGAAATGTCGTCAAGCTCACGT -ACGGAAATGTCGTCAAGCCGTAGT -ACGGAAATGTCGTCAAGCGTCAGT -ACGGAAATGTCGTCAAGCGAAGGT -ACGGAAATGTCGTCAAGCAACCGT -ACGGAAATGTCGTCAAGCTTGTGC -ACGGAAATGTCGTCAAGCCTAAGC -ACGGAAATGTCGTCAAGCACTAGC -ACGGAAATGTCGTCAAGCAGATGC -ACGGAAATGTCGTCAAGCTGAAGG -ACGGAAATGTCGTCAAGCCAATGG -ACGGAAATGTCGTCAAGCATGAGG -ACGGAAATGTCGTCAAGCAATGGG -ACGGAAATGTCGTCAAGCTCCTGA -ACGGAAATGTCGTCAAGCTAGCGA -ACGGAAATGTCGTCAAGCCACAGA -ACGGAAATGTCGTCAAGCGCAAGA -ACGGAAATGTCGTCAAGCGGTTGA -ACGGAAATGTCGTCAAGCTCCGAT -ACGGAAATGTCGTCAAGCTGGCAT -ACGGAAATGTCGTCAAGCCGAGAT -ACGGAAATGTCGTCAAGCTACCAC -ACGGAAATGTCGTCAAGCCAGAAC -ACGGAAATGTCGTCAAGCGTCTAC -ACGGAAATGTCGTCAAGCACGTAC -ACGGAAATGTCGTCAAGCAGTGAC -ACGGAAATGTCGTCAAGCCTGTAG -ACGGAAATGTCGTCAAGCCCTAAG -ACGGAAATGTCGTCAAGCGTTCAG -ACGGAAATGTCGTCAAGCGCATAG -ACGGAAATGTCGTCAAGCGACAAG -ACGGAAATGTCGTCAAGCAAGCAG -ACGGAAATGTCGTCAAGCCGTCAA -ACGGAAATGTCGTCAAGCGCTGAA -ACGGAAATGTCGTCAAGCAGTACG -ACGGAAATGTCGTCAAGCATCCGA -ACGGAAATGTCGTCAAGCATGGGA -ACGGAAATGTCGTCAAGCGTGCAA -ACGGAAATGTCGTCAAGCGAGGAA -ACGGAAATGTCGTCAAGCCAGGTA -ACGGAAATGTCGTCAAGCGACTCT -ACGGAAATGTCGTCAAGCAGTCCT -ACGGAAATGTCGTCAAGCTAAGCC -ACGGAAATGTCGTCAAGCATAGCC -ACGGAAATGTCGTCAAGCTAACCG -ACGGAAATGTCGTCAAGCATGCCA -ACGGAAATGTCGCGTTCAGGAAAC -ACGGAAATGTCGCGTTCAAACACC -ACGGAAATGTCGCGTTCAATCGAG -ACGGAAATGTCGCGTTCACTCCTT -ACGGAAATGTCGCGTTCACCTGTT -ACGGAAATGTCGCGTTCACGGTTT -ACGGAAATGTCGCGTTCAGTGGTT -ACGGAAATGTCGCGTTCAGCCTTT -ACGGAAATGTCGCGTTCAGGTCTT -ACGGAAATGTCGCGTTCAACGCTT -ACGGAAATGTCGCGTTCAAGCGTT -ACGGAAATGTCGCGTTCATTCGTC -ACGGAAATGTCGCGTTCATCTCTC -ACGGAAATGTCGCGTTCATGGATC -ACGGAAATGTCGCGTTCACACTTC -ACGGAAATGTCGCGTTCAGTACTC -ACGGAAATGTCGCGTTCAGATGTC -ACGGAAATGTCGCGTTCAACAGTC -ACGGAAATGTCGCGTTCATTGCTG -ACGGAAATGTCGCGTTCATCCATG -ACGGAAATGTCGCGTTCATGTGTG -ACGGAAATGTCGCGTTCACTAGTG -ACGGAAATGTCGCGTTCACATCTG -ACGGAAATGTCGCGTTCAGAGTTG -ACGGAAATGTCGCGTTCAAGACTG -ACGGAAATGTCGCGTTCATCGGTA -ACGGAAATGTCGCGTTCATGCCTA -ACGGAAATGTCGCGTTCACCACTA -ACGGAAATGTCGCGTTCAGGAGTA -ACGGAAATGTCGCGTTCATCGTCT -ACGGAAATGTCGCGTTCATGCACT -ACGGAAATGTCGCGTTCACTGACT -ACGGAAATGTCGCGTTCACAACCT -ACGGAAATGTCGCGTTCAGCTACT -ACGGAAATGTCGCGTTCAGGATCT -ACGGAAATGTCGCGTTCAAAGGCT -ACGGAAATGTCGCGTTCATCAACC -ACGGAAATGTCGCGTTCATGTTCC -ACGGAAATGTCGCGTTCAATTCCC -ACGGAAATGTCGCGTTCATTCTCG -ACGGAAATGTCGCGTTCATAGACG -ACGGAAATGTCGCGTTCAGTAACG -ACGGAAATGTCGCGTTCAACTTCG -ACGGAAATGTCGCGTTCATACGCA -ACGGAAATGTCGCGTTCACTTGCA -ACGGAAATGTCGCGTTCACGAACA -ACGGAAATGTCGCGTTCACAGTCA -ACGGAAATGTCGCGTTCAGATCCA -ACGGAAATGTCGCGTTCAACGACA -ACGGAAATGTCGCGTTCAAGCTCA -ACGGAAATGTCGCGTTCATCACGT -ACGGAAATGTCGCGTTCACGTAGT -ACGGAAATGTCGCGTTCAGTCAGT -ACGGAAATGTCGCGTTCAGAAGGT -ACGGAAATGTCGCGTTCAAACCGT -ACGGAAATGTCGCGTTCATTGTGC -ACGGAAATGTCGCGTTCACTAAGC -ACGGAAATGTCGCGTTCAACTAGC -ACGGAAATGTCGCGTTCAAGATGC -ACGGAAATGTCGCGTTCATGAAGG -ACGGAAATGTCGCGTTCACAATGG -ACGGAAATGTCGCGTTCAATGAGG -ACGGAAATGTCGCGTTCAAATGGG -ACGGAAATGTCGCGTTCATCCTGA -ACGGAAATGTCGCGTTCATAGCGA -ACGGAAATGTCGCGTTCACACAGA -ACGGAAATGTCGCGTTCAGCAAGA -ACGGAAATGTCGCGTTCAGGTTGA -ACGGAAATGTCGCGTTCATCCGAT -ACGGAAATGTCGCGTTCATGGCAT -ACGGAAATGTCGCGTTCACGAGAT -ACGGAAATGTCGCGTTCATACCAC -ACGGAAATGTCGCGTTCACAGAAC -ACGGAAATGTCGCGTTCAGTCTAC -ACGGAAATGTCGCGTTCAACGTAC -ACGGAAATGTCGCGTTCAAGTGAC -ACGGAAATGTCGCGTTCACTGTAG -ACGGAAATGTCGCGTTCACCTAAG -ACGGAAATGTCGCGTTCAGTTCAG -ACGGAAATGTCGCGTTCAGCATAG -ACGGAAATGTCGCGTTCAGACAAG -ACGGAAATGTCGCGTTCAAAGCAG -ACGGAAATGTCGCGTTCACGTCAA -ACGGAAATGTCGCGTTCAGCTGAA -ACGGAAATGTCGCGTTCAAGTACG -ACGGAAATGTCGCGTTCAATCCGA -ACGGAAATGTCGCGTTCAATGGGA -ACGGAAATGTCGCGTTCAGTGCAA -ACGGAAATGTCGCGTTCAGAGGAA -ACGGAAATGTCGCGTTCACAGGTA -ACGGAAATGTCGCGTTCAGACTCT -ACGGAAATGTCGCGTTCAAGTCCT -ACGGAAATGTCGCGTTCATAAGCC -ACGGAAATGTCGCGTTCAATAGCC -ACGGAAATGTCGCGTTCATAACCG -ACGGAAATGTCGCGTTCAATGCCA -ACGGAAATGTCGAGTCGTGGAAAC -ACGGAAATGTCGAGTCGTAACACC -ACGGAAATGTCGAGTCGTATCGAG -ACGGAAATGTCGAGTCGTCTCCTT -ACGGAAATGTCGAGTCGTCCTGTT -ACGGAAATGTCGAGTCGTCGGTTT -ACGGAAATGTCGAGTCGTGTGGTT -ACGGAAATGTCGAGTCGTGCCTTT -ACGGAAATGTCGAGTCGTGGTCTT -ACGGAAATGTCGAGTCGTACGCTT -ACGGAAATGTCGAGTCGTAGCGTT -ACGGAAATGTCGAGTCGTTTCGTC -ACGGAAATGTCGAGTCGTTCTCTC -ACGGAAATGTCGAGTCGTTGGATC -ACGGAAATGTCGAGTCGTCACTTC -ACGGAAATGTCGAGTCGTGTACTC -ACGGAAATGTCGAGTCGTGATGTC -ACGGAAATGTCGAGTCGTACAGTC -ACGGAAATGTCGAGTCGTTTGCTG -ACGGAAATGTCGAGTCGTTCCATG -ACGGAAATGTCGAGTCGTTGTGTG -ACGGAAATGTCGAGTCGTCTAGTG -ACGGAAATGTCGAGTCGTCATCTG -ACGGAAATGTCGAGTCGTGAGTTG -ACGGAAATGTCGAGTCGTAGACTG -ACGGAAATGTCGAGTCGTTCGGTA -ACGGAAATGTCGAGTCGTTGCCTA -ACGGAAATGTCGAGTCGTCCACTA -ACGGAAATGTCGAGTCGTGGAGTA -ACGGAAATGTCGAGTCGTTCGTCT -ACGGAAATGTCGAGTCGTTGCACT -ACGGAAATGTCGAGTCGTCTGACT -ACGGAAATGTCGAGTCGTCAACCT -ACGGAAATGTCGAGTCGTGCTACT -ACGGAAATGTCGAGTCGTGGATCT -ACGGAAATGTCGAGTCGTAAGGCT -ACGGAAATGTCGAGTCGTTCAACC -ACGGAAATGTCGAGTCGTTGTTCC -ACGGAAATGTCGAGTCGTATTCCC -ACGGAAATGTCGAGTCGTTTCTCG -ACGGAAATGTCGAGTCGTTAGACG -ACGGAAATGTCGAGTCGTGTAACG -ACGGAAATGTCGAGTCGTACTTCG -ACGGAAATGTCGAGTCGTTACGCA -ACGGAAATGTCGAGTCGTCTTGCA -ACGGAAATGTCGAGTCGTCGAACA -ACGGAAATGTCGAGTCGTCAGTCA -ACGGAAATGTCGAGTCGTGATCCA -ACGGAAATGTCGAGTCGTACGACA -ACGGAAATGTCGAGTCGTAGCTCA -ACGGAAATGTCGAGTCGTTCACGT -ACGGAAATGTCGAGTCGTCGTAGT -ACGGAAATGTCGAGTCGTGTCAGT -ACGGAAATGTCGAGTCGTGAAGGT -ACGGAAATGTCGAGTCGTAACCGT -ACGGAAATGTCGAGTCGTTTGTGC -ACGGAAATGTCGAGTCGTCTAAGC -ACGGAAATGTCGAGTCGTACTAGC -ACGGAAATGTCGAGTCGTAGATGC -ACGGAAATGTCGAGTCGTTGAAGG -ACGGAAATGTCGAGTCGTCAATGG -ACGGAAATGTCGAGTCGTATGAGG -ACGGAAATGTCGAGTCGTAATGGG -ACGGAAATGTCGAGTCGTTCCTGA -ACGGAAATGTCGAGTCGTTAGCGA -ACGGAAATGTCGAGTCGTCACAGA -ACGGAAATGTCGAGTCGTGCAAGA -ACGGAAATGTCGAGTCGTGGTTGA -ACGGAAATGTCGAGTCGTTCCGAT -ACGGAAATGTCGAGTCGTTGGCAT -ACGGAAATGTCGAGTCGTCGAGAT -ACGGAAATGTCGAGTCGTTACCAC -ACGGAAATGTCGAGTCGTCAGAAC -ACGGAAATGTCGAGTCGTGTCTAC -ACGGAAATGTCGAGTCGTACGTAC -ACGGAAATGTCGAGTCGTAGTGAC -ACGGAAATGTCGAGTCGTCTGTAG -ACGGAAATGTCGAGTCGTCCTAAG -ACGGAAATGTCGAGTCGTGTTCAG -ACGGAAATGTCGAGTCGTGCATAG -ACGGAAATGTCGAGTCGTGACAAG -ACGGAAATGTCGAGTCGTAAGCAG -ACGGAAATGTCGAGTCGTCGTCAA -ACGGAAATGTCGAGTCGTGCTGAA -ACGGAAATGTCGAGTCGTAGTACG -ACGGAAATGTCGAGTCGTATCCGA -ACGGAAATGTCGAGTCGTATGGGA -ACGGAAATGTCGAGTCGTGTGCAA -ACGGAAATGTCGAGTCGTGAGGAA -ACGGAAATGTCGAGTCGTCAGGTA -ACGGAAATGTCGAGTCGTGACTCT -ACGGAAATGTCGAGTCGTAGTCCT -ACGGAAATGTCGAGTCGTTAAGCC -ACGGAAATGTCGAGTCGTATAGCC -ACGGAAATGTCGAGTCGTTAACCG -ACGGAAATGTCGAGTCGTATGCCA -ACGGAAATGTCGAGTGTCGGAAAC -ACGGAAATGTCGAGTGTCAACACC -ACGGAAATGTCGAGTGTCATCGAG -ACGGAAATGTCGAGTGTCCTCCTT -ACGGAAATGTCGAGTGTCCCTGTT -ACGGAAATGTCGAGTGTCCGGTTT -ACGGAAATGTCGAGTGTCGTGGTT -ACGGAAATGTCGAGTGTCGCCTTT -ACGGAAATGTCGAGTGTCGGTCTT -ACGGAAATGTCGAGTGTCACGCTT -ACGGAAATGTCGAGTGTCAGCGTT -ACGGAAATGTCGAGTGTCTTCGTC -ACGGAAATGTCGAGTGTCTCTCTC -ACGGAAATGTCGAGTGTCTGGATC -ACGGAAATGTCGAGTGTCCACTTC -ACGGAAATGTCGAGTGTCGTACTC -ACGGAAATGTCGAGTGTCGATGTC -ACGGAAATGTCGAGTGTCACAGTC -ACGGAAATGTCGAGTGTCTTGCTG -ACGGAAATGTCGAGTGTCTCCATG -ACGGAAATGTCGAGTGTCTGTGTG -ACGGAAATGTCGAGTGTCCTAGTG -ACGGAAATGTCGAGTGTCCATCTG -ACGGAAATGTCGAGTGTCGAGTTG -ACGGAAATGTCGAGTGTCAGACTG -ACGGAAATGTCGAGTGTCTCGGTA -ACGGAAATGTCGAGTGTCTGCCTA -ACGGAAATGTCGAGTGTCCCACTA -ACGGAAATGTCGAGTGTCGGAGTA -ACGGAAATGTCGAGTGTCTCGTCT -ACGGAAATGTCGAGTGTCTGCACT -ACGGAAATGTCGAGTGTCCTGACT -ACGGAAATGTCGAGTGTCCAACCT -ACGGAAATGTCGAGTGTCGCTACT -ACGGAAATGTCGAGTGTCGGATCT -ACGGAAATGTCGAGTGTCAAGGCT -ACGGAAATGTCGAGTGTCTCAACC -ACGGAAATGTCGAGTGTCTGTTCC -ACGGAAATGTCGAGTGTCATTCCC -ACGGAAATGTCGAGTGTCTTCTCG -ACGGAAATGTCGAGTGTCTAGACG -ACGGAAATGTCGAGTGTCGTAACG -ACGGAAATGTCGAGTGTCACTTCG -ACGGAAATGTCGAGTGTCTACGCA -ACGGAAATGTCGAGTGTCCTTGCA -ACGGAAATGTCGAGTGTCCGAACA -ACGGAAATGTCGAGTGTCCAGTCA -ACGGAAATGTCGAGTGTCGATCCA -ACGGAAATGTCGAGTGTCACGACA -ACGGAAATGTCGAGTGTCAGCTCA -ACGGAAATGTCGAGTGTCTCACGT -ACGGAAATGTCGAGTGTCCGTAGT -ACGGAAATGTCGAGTGTCGTCAGT -ACGGAAATGTCGAGTGTCGAAGGT -ACGGAAATGTCGAGTGTCAACCGT -ACGGAAATGTCGAGTGTCTTGTGC -ACGGAAATGTCGAGTGTCCTAAGC -ACGGAAATGTCGAGTGTCACTAGC -ACGGAAATGTCGAGTGTCAGATGC -ACGGAAATGTCGAGTGTCTGAAGG -ACGGAAATGTCGAGTGTCCAATGG -ACGGAAATGTCGAGTGTCATGAGG -ACGGAAATGTCGAGTGTCAATGGG -ACGGAAATGTCGAGTGTCTCCTGA -ACGGAAATGTCGAGTGTCTAGCGA -ACGGAAATGTCGAGTGTCCACAGA -ACGGAAATGTCGAGTGTCGCAAGA -ACGGAAATGTCGAGTGTCGGTTGA -ACGGAAATGTCGAGTGTCTCCGAT -ACGGAAATGTCGAGTGTCTGGCAT -ACGGAAATGTCGAGTGTCCGAGAT -ACGGAAATGTCGAGTGTCTACCAC -ACGGAAATGTCGAGTGTCCAGAAC -ACGGAAATGTCGAGTGTCGTCTAC -ACGGAAATGTCGAGTGTCACGTAC -ACGGAAATGTCGAGTGTCAGTGAC -ACGGAAATGTCGAGTGTCCTGTAG -ACGGAAATGTCGAGTGTCCCTAAG -ACGGAAATGTCGAGTGTCGTTCAG -ACGGAAATGTCGAGTGTCGCATAG -ACGGAAATGTCGAGTGTCGACAAG -ACGGAAATGTCGAGTGTCAAGCAG -ACGGAAATGTCGAGTGTCCGTCAA -ACGGAAATGTCGAGTGTCGCTGAA -ACGGAAATGTCGAGTGTCAGTACG -ACGGAAATGTCGAGTGTCATCCGA -ACGGAAATGTCGAGTGTCATGGGA -ACGGAAATGTCGAGTGTCGTGCAA -ACGGAAATGTCGAGTGTCGAGGAA -ACGGAAATGTCGAGTGTCCAGGTA -ACGGAAATGTCGAGTGTCGACTCT -ACGGAAATGTCGAGTGTCAGTCCT -ACGGAAATGTCGAGTGTCTAAGCC -ACGGAAATGTCGAGTGTCATAGCC -ACGGAAATGTCGAGTGTCTAACCG -ACGGAAATGTCGAGTGTCATGCCA -ACGGAAATGTCGGGTGAAGGAAAC -ACGGAAATGTCGGGTGAAAACACC -ACGGAAATGTCGGGTGAAATCGAG -ACGGAAATGTCGGGTGAACTCCTT -ACGGAAATGTCGGGTGAACCTGTT -ACGGAAATGTCGGGTGAACGGTTT -ACGGAAATGTCGGGTGAAGTGGTT -ACGGAAATGTCGGGTGAAGCCTTT -ACGGAAATGTCGGGTGAAGGTCTT -ACGGAAATGTCGGGTGAAACGCTT -ACGGAAATGTCGGGTGAAAGCGTT -ACGGAAATGTCGGGTGAATTCGTC -ACGGAAATGTCGGGTGAATCTCTC -ACGGAAATGTCGGGTGAATGGATC -ACGGAAATGTCGGGTGAACACTTC -ACGGAAATGTCGGGTGAAGTACTC -ACGGAAATGTCGGGTGAAGATGTC -ACGGAAATGTCGGGTGAAACAGTC -ACGGAAATGTCGGGTGAATTGCTG -ACGGAAATGTCGGGTGAATCCATG -ACGGAAATGTCGGGTGAATGTGTG -ACGGAAATGTCGGGTGAACTAGTG -ACGGAAATGTCGGGTGAACATCTG -ACGGAAATGTCGGGTGAAGAGTTG -ACGGAAATGTCGGGTGAAAGACTG -ACGGAAATGTCGGGTGAATCGGTA -ACGGAAATGTCGGGTGAATGCCTA -ACGGAAATGTCGGGTGAACCACTA -ACGGAAATGTCGGGTGAAGGAGTA -ACGGAAATGTCGGGTGAATCGTCT -ACGGAAATGTCGGGTGAATGCACT -ACGGAAATGTCGGGTGAACTGACT -ACGGAAATGTCGGGTGAACAACCT -ACGGAAATGTCGGGTGAAGCTACT -ACGGAAATGTCGGGTGAAGGATCT -ACGGAAATGTCGGGTGAAAAGGCT -ACGGAAATGTCGGGTGAATCAACC -ACGGAAATGTCGGGTGAATGTTCC -ACGGAAATGTCGGGTGAAATTCCC -ACGGAAATGTCGGGTGAATTCTCG -ACGGAAATGTCGGGTGAATAGACG -ACGGAAATGTCGGGTGAAGTAACG -ACGGAAATGTCGGGTGAAACTTCG -ACGGAAATGTCGGGTGAATACGCA -ACGGAAATGTCGGGTGAACTTGCA -ACGGAAATGTCGGGTGAACGAACA -ACGGAAATGTCGGGTGAACAGTCA -ACGGAAATGTCGGGTGAAGATCCA -ACGGAAATGTCGGGTGAAACGACA -ACGGAAATGTCGGGTGAAAGCTCA -ACGGAAATGTCGGGTGAATCACGT -ACGGAAATGTCGGGTGAACGTAGT -ACGGAAATGTCGGGTGAAGTCAGT -ACGGAAATGTCGGGTGAAGAAGGT -ACGGAAATGTCGGGTGAAAACCGT -ACGGAAATGTCGGGTGAATTGTGC -ACGGAAATGTCGGGTGAACTAAGC -ACGGAAATGTCGGGTGAAACTAGC -ACGGAAATGTCGGGTGAAAGATGC -ACGGAAATGTCGGGTGAATGAAGG -ACGGAAATGTCGGGTGAACAATGG -ACGGAAATGTCGGGTGAAATGAGG -ACGGAAATGTCGGGTGAAAATGGG -ACGGAAATGTCGGGTGAATCCTGA -ACGGAAATGTCGGGTGAATAGCGA -ACGGAAATGTCGGGTGAACACAGA -ACGGAAATGTCGGGTGAAGCAAGA -ACGGAAATGTCGGGTGAAGGTTGA -ACGGAAATGTCGGGTGAATCCGAT -ACGGAAATGTCGGGTGAATGGCAT -ACGGAAATGTCGGGTGAACGAGAT -ACGGAAATGTCGGGTGAATACCAC -ACGGAAATGTCGGGTGAACAGAAC -ACGGAAATGTCGGGTGAAGTCTAC -ACGGAAATGTCGGGTGAAACGTAC -ACGGAAATGTCGGGTGAAAGTGAC -ACGGAAATGTCGGGTGAACTGTAG -ACGGAAATGTCGGGTGAACCTAAG -ACGGAAATGTCGGGTGAAGTTCAG -ACGGAAATGTCGGGTGAAGCATAG -ACGGAAATGTCGGGTGAAGACAAG -ACGGAAATGTCGGGTGAAAAGCAG -ACGGAAATGTCGGGTGAACGTCAA -ACGGAAATGTCGGGTGAAGCTGAA -ACGGAAATGTCGGGTGAAAGTACG -ACGGAAATGTCGGGTGAAATCCGA -ACGGAAATGTCGGGTGAAATGGGA -ACGGAAATGTCGGGTGAAGTGCAA -ACGGAAATGTCGGGTGAAGAGGAA -ACGGAAATGTCGGGTGAACAGGTA -ACGGAAATGTCGGGTGAAGACTCT -ACGGAAATGTCGGGTGAAAGTCCT -ACGGAAATGTCGGGTGAATAAGCC -ACGGAAATGTCGGGTGAAATAGCC -ACGGAAATGTCGGGTGAATAACCG -ACGGAAATGTCGGGTGAAATGCCA -ACGGAAATGTCGCGTAACGGAAAC -ACGGAAATGTCGCGTAACAACACC -ACGGAAATGTCGCGTAACATCGAG -ACGGAAATGTCGCGTAACCTCCTT -ACGGAAATGTCGCGTAACCCTGTT -ACGGAAATGTCGCGTAACCGGTTT -ACGGAAATGTCGCGTAACGTGGTT -ACGGAAATGTCGCGTAACGCCTTT -ACGGAAATGTCGCGTAACGGTCTT -ACGGAAATGTCGCGTAACACGCTT -ACGGAAATGTCGCGTAACAGCGTT -ACGGAAATGTCGCGTAACTTCGTC -ACGGAAATGTCGCGTAACTCTCTC -ACGGAAATGTCGCGTAACTGGATC -ACGGAAATGTCGCGTAACCACTTC -ACGGAAATGTCGCGTAACGTACTC -ACGGAAATGTCGCGTAACGATGTC -ACGGAAATGTCGCGTAACACAGTC -ACGGAAATGTCGCGTAACTTGCTG -ACGGAAATGTCGCGTAACTCCATG -ACGGAAATGTCGCGTAACTGTGTG -ACGGAAATGTCGCGTAACCTAGTG -ACGGAAATGTCGCGTAACCATCTG -ACGGAAATGTCGCGTAACGAGTTG -ACGGAAATGTCGCGTAACAGACTG -ACGGAAATGTCGCGTAACTCGGTA -ACGGAAATGTCGCGTAACTGCCTA -ACGGAAATGTCGCGTAACCCACTA -ACGGAAATGTCGCGTAACGGAGTA -ACGGAAATGTCGCGTAACTCGTCT -ACGGAAATGTCGCGTAACTGCACT -ACGGAAATGTCGCGTAACCTGACT -ACGGAAATGTCGCGTAACCAACCT -ACGGAAATGTCGCGTAACGCTACT -ACGGAAATGTCGCGTAACGGATCT -ACGGAAATGTCGCGTAACAAGGCT -ACGGAAATGTCGCGTAACTCAACC -ACGGAAATGTCGCGTAACTGTTCC -ACGGAAATGTCGCGTAACATTCCC -ACGGAAATGTCGCGTAACTTCTCG -ACGGAAATGTCGCGTAACTAGACG -ACGGAAATGTCGCGTAACGTAACG -ACGGAAATGTCGCGTAACACTTCG -ACGGAAATGTCGCGTAACTACGCA -ACGGAAATGTCGCGTAACCTTGCA -ACGGAAATGTCGCGTAACCGAACA -ACGGAAATGTCGCGTAACCAGTCA -ACGGAAATGTCGCGTAACGATCCA -ACGGAAATGTCGCGTAACACGACA -ACGGAAATGTCGCGTAACAGCTCA -ACGGAAATGTCGCGTAACTCACGT -ACGGAAATGTCGCGTAACCGTAGT -ACGGAAATGTCGCGTAACGTCAGT -ACGGAAATGTCGCGTAACGAAGGT -ACGGAAATGTCGCGTAACAACCGT -ACGGAAATGTCGCGTAACTTGTGC -ACGGAAATGTCGCGTAACCTAAGC -ACGGAAATGTCGCGTAACACTAGC -ACGGAAATGTCGCGTAACAGATGC -ACGGAAATGTCGCGTAACTGAAGG -ACGGAAATGTCGCGTAACCAATGG -ACGGAAATGTCGCGTAACATGAGG -ACGGAAATGTCGCGTAACAATGGG -ACGGAAATGTCGCGTAACTCCTGA -ACGGAAATGTCGCGTAACTAGCGA -ACGGAAATGTCGCGTAACCACAGA -ACGGAAATGTCGCGTAACGCAAGA -ACGGAAATGTCGCGTAACGGTTGA -ACGGAAATGTCGCGTAACTCCGAT -ACGGAAATGTCGCGTAACTGGCAT -ACGGAAATGTCGCGTAACCGAGAT -ACGGAAATGTCGCGTAACTACCAC -ACGGAAATGTCGCGTAACCAGAAC -ACGGAAATGTCGCGTAACGTCTAC -ACGGAAATGTCGCGTAACACGTAC -ACGGAAATGTCGCGTAACAGTGAC -ACGGAAATGTCGCGTAACCTGTAG -ACGGAAATGTCGCGTAACCCTAAG -ACGGAAATGTCGCGTAACGTTCAG -ACGGAAATGTCGCGTAACGCATAG -ACGGAAATGTCGCGTAACGACAAG -ACGGAAATGTCGCGTAACAAGCAG -ACGGAAATGTCGCGTAACCGTCAA -ACGGAAATGTCGCGTAACGCTGAA -ACGGAAATGTCGCGTAACAGTACG -ACGGAAATGTCGCGTAACATCCGA -ACGGAAATGTCGCGTAACATGGGA -ACGGAAATGTCGCGTAACGTGCAA -ACGGAAATGTCGCGTAACGAGGAA -ACGGAAATGTCGCGTAACCAGGTA -ACGGAAATGTCGCGTAACGACTCT -ACGGAAATGTCGCGTAACAGTCCT -ACGGAAATGTCGCGTAACTAAGCC -ACGGAAATGTCGCGTAACATAGCC -ACGGAAATGTCGCGTAACTAACCG -ACGGAAATGTCGCGTAACATGCCA -ACGGAAATGTCGTGCTTGGGAAAC -ACGGAAATGTCGTGCTTGAACACC -ACGGAAATGTCGTGCTTGATCGAG -ACGGAAATGTCGTGCTTGCTCCTT -ACGGAAATGTCGTGCTTGCCTGTT -ACGGAAATGTCGTGCTTGCGGTTT -ACGGAAATGTCGTGCTTGGTGGTT -ACGGAAATGTCGTGCTTGGCCTTT -ACGGAAATGTCGTGCTTGGGTCTT -ACGGAAATGTCGTGCTTGACGCTT -ACGGAAATGTCGTGCTTGAGCGTT -ACGGAAATGTCGTGCTTGTTCGTC -ACGGAAATGTCGTGCTTGTCTCTC -ACGGAAATGTCGTGCTTGTGGATC -ACGGAAATGTCGTGCTTGCACTTC -ACGGAAATGTCGTGCTTGGTACTC -ACGGAAATGTCGTGCTTGGATGTC -ACGGAAATGTCGTGCTTGACAGTC -ACGGAAATGTCGTGCTTGTTGCTG -ACGGAAATGTCGTGCTTGTCCATG -ACGGAAATGTCGTGCTTGTGTGTG -ACGGAAATGTCGTGCTTGCTAGTG -ACGGAAATGTCGTGCTTGCATCTG -ACGGAAATGTCGTGCTTGGAGTTG -ACGGAAATGTCGTGCTTGAGACTG -ACGGAAATGTCGTGCTTGTCGGTA -ACGGAAATGTCGTGCTTGTGCCTA -ACGGAAATGTCGTGCTTGCCACTA -ACGGAAATGTCGTGCTTGGGAGTA -ACGGAAATGTCGTGCTTGTCGTCT -ACGGAAATGTCGTGCTTGTGCACT -ACGGAAATGTCGTGCTTGCTGACT -ACGGAAATGTCGTGCTTGCAACCT -ACGGAAATGTCGTGCTTGGCTACT -ACGGAAATGTCGTGCTTGGGATCT -ACGGAAATGTCGTGCTTGAAGGCT -ACGGAAATGTCGTGCTTGTCAACC -ACGGAAATGTCGTGCTTGTGTTCC -ACGGAAATGTCGTGCTTGATTCCC -ACGGAAATGTCGTGCTTGTTCTCG -ACGGAAATGTCGTGCTTGTAGACG -ACGGAAATGTCGTGCTTGGTAACG -ACGGAAATGTCGTGCTTGACTTCG -ACGGAAATGTCGTGCTTGTACGCA -ACGGAAATGTCGTGCTTGCTTGCA -ACGGAAATGTCGTGCTTGCGAACA -ACGGAAATGTCGTGCTTGCAGTCA -ACGGAAATGTCGTGCTTGGATCCA -ACGGAAATGTCGTGCTTGACGACA -ACGGAAATGTCGTGCTTGAGCTCA -ACGGAAATGTCGTGCTTGTCACGT -ACGGAAATGTCGTGCTTGCGTAGT -ACGGAAATGTCGTGCTTGGTCAGT -ACGGAAATGTCGTGCTTGGAAGGT -ACGGAAATGTCGTGCTTGAACCGT -ACGGAAATGTCGTGCTTGTTGTGC -ACGGAAATGTCGTGCTTGCTAAGC -ACGGAAATGTCGTGCTTGACTAGC -ACGGAAATGTCGTGCTTGAGATGC -ACGGAAATGTCGTGCTTGTGAAGG -ACGGAAATGTCGTGCTTGCAATGG -ACGGAAATGTCGTGCTTGATGAGG -ACGGAAATGTCGTGCTTGAATGGG -ACGGAAATGTCGTGCTTGTCCTGA -ACGGAAATGTCGTGCTTGTAGCGA -ACGGAAATGTCGTGCTTGCACAGA -ACGGAAATGTCGTGCTTGGCAAGA -ACGGAAATGTCGTGCTTGGGTTGA -ACGGAAATGTCGTGCTTGTCCGAT -ACGGAAATGTCGTGCTTGTGGCAT -ACGGAAATGTCGTGCTTGCGAGAT -ACGGAAATGTCGTGCTTGTACCAC -ACGGAAATGTCGTGCTTGCAGAAC -ACGGAAATGTCGTGCTTGGTCTAC -ACGGAAATGTCGTGCTTGACGTAC -ACGGAAATGTCGTGCTTGAGTGAC -ACGGAAATGTCGTGCTTGCTGTAG -ACGGAAATGTCGTGCTTGCCTAAG -ACGGAAATGTCGTGCTTGGTTCAG -ACGGAAATGTCGTGCTTGGCATAG -ACGGAAATGTCGTGCTTGGACAAG -ACGGAAATGTCGTGCTTGAAGCAG -ACGGAAATGTCGTGCTTGCGTCAA -ACGGAAATGTCGTGCTTGGCTGAA -ACGGAAATGTCGTGCTTGAGTACG -ACGGAAATGTCGTGCTTGATCCGA -ACGGAAATGTCGTGCTTGATGGGA -ACGGAAATGTCGTGCTTGGTGCAA -ACGGAAATGTCGTGCTTGGAGGAA -ACGGAAATGTCGTGCTTGCAGGTA -ACGGAAATGTCGTGCTTGGACTCT -ACGGAAATGTCGTGCTTGAGTCCT -ACGGAAATGTCGTGCTTGTAAGCC -ACGGAAATGTCGTGCTTGATAGCC -ACGGAAATGTCGTGCTTGTAACCG -ACGGAAATGTCGTGCTTGATGCCA -ACGGAAATGTCGAGCCTAGGAAAC -ACGGAAATGTCGAGCCTAAACACC -ACGGAAATGTCGAGCCTAATCGAG -ACGGAAATGTCGAGCCTACTCCTT -ACGGAAATGTCGAGCCTACCTGTT -ACGGAAATGTCGAGCCTACGGTTT -ACGGAAATGTCGAGCCTAGTGGTT -ACGGAAATGTCGAGCCTAGCCTTT -ACGGAAATGTCGAGCCTAGGTCTT -ACGGAAATGTCGAGCCTAACGCTT -ACGGAAATGTCGAGCCTAAGCGTT -ACGGAAATGTCGAGCCTATTCGTC -ACGGAAATGTCGAGCCTATCTCTC -ACGGAAATGTCGAGCCTATGGATC -ACGGAAATGTCGAGCCTACACTTC -ACGGAAATGTCGAGCCTAGTACTC -ACGGAAATGTCGAGCCTAGATGTC -ACGGAAATGTCGAGCCTAACAGTC -ACGGAAATGTCGAGCCTATTGCTG -ACGGAAATGTCGAGCCTATCCATG -ACGGAAATGTCGAGCCTATGTGTG -ACGGAAATGTCGAGCCTACTAGTG -ACGGAAATGTCGAGCCTACATCTG -ACGGAAATGTCGAGCCTAGAGTTG -ACGGAAATGTCGAGCCTAAGACTG -ACGGAAATGTCGAGCCTATCGGTA -ACGGAAATGTCGAGCCTATGCCTA -ACGGAAATGTCGAGCCTACCACTA -ACGGAAATGTCGAGCCTAGGAGTA -ACGGAAATGTCGAGCCTATCGTCT -ACGGAAATGTCGAGCCTATGCACT -ACGGAAATGTCGAGCCTACTGACT -ACGGAAATGTCGAGCCTACAACCT -ACGGAAATGTCGAGCCTAGCTACT -ACGGAAATGTCGAGCCTAGGATCT -ACGGAAATGTCGAGCCTAAAGGCT -ACGGAAATGTCGAGCCTATCAACC -ACGGAAATGTCGAGCCTATGTTCC -ACGGAAATGTCGAGCCTAATTCCC -ACGGAAATGTCGAGCCTATTCTCG -ACGGAAATGTCGAGCCTATAGACG -ACGGAAATGTCGAGCCTAGTAACG -ACGGAAATGTCGAGCCTAACTTCG -ACGGAAATGTCGAGCCTATACGCA -ACGGAAATGTCGAGCCTACTTGCA -ACGGAAATGTCGAGCCTACGAACA -ACGGAAATGTCGAGCCTACAGTCA -ACGGAAATGTCGAGCCTAGATCCA -ACGGAAATGTCGAGCCTAACGACA -ACGGAAATGTCGAGCCTAAGCTCA -ACGGAAATGTCGAGCCTATCACGT -ACGGAAATGTCGAGCCTACGTAGT -ACGGAAATGTCGAGCCTAGTCAGT -ACGGAAATGTCGAGCCTAGAAGGT -ACGGAAATGTCGAGCCTAAACCGT -ACGGAAATGTCGAGCCTATTGTGC -ACGGAAATGTCGAGCCTACTAAGC -ACGGAAATGTCGAGCCTAACTAGC -ACGGAAATGTCGAGCCTAAGATGC -ACGGAAATGTCGAGCCTATGAAGG -ACGGAAATGTCGAGCCTACAATGG -ACGGAAATGTCGAGCCTAATGAGG -ACGGAAATGTCGAGCCTAAATGGG -ACGGAAATGTCGAGCCTATCCTGA -ACGGAAATGTCGAGCCTATAGCGA -ACGGAAATGTCGAGCCTACACAGA -ACGGAAATGTCGAGCCTAGCAAGA -ACGGAAATGTCGAGCCTAGGTTGA -ACGGAAATGTCGAGCCTATCCGAT -ACGGAAATGTCGAGCCTATGGCAT -ACGGAAATGTCGAGCCTACGAGAT -ACGGAAATGTCGAGCCTATACCAC -ACGGAAATGTCGAGCCTACAGAAC -ACGGAAATGTCGAGCCTAGTCTAC -ACGGAAATGTCGAGCCTAACGTAC -ACGGAAATGTCGAGCCTAAGTGAC -ACGGAAATGTCGAGCCTACTGTAG -ACGGAAATGTCGAGCCTACCTAAG -ACGGAAATGTCGAGCCTAGTTCAG -ACGGAAATGTCGAGCCTAGCATAG -ACGGAAATGTCGAGCCTAGACAAG -ACGGAAATGTCGAGCCTAAAGCAG -ACGGAAATGTCGAGCCTACGTCAA -ACGGAAATGTCGAGCCTAGCTGAA -ACGGAAATGTCGAGCCTAAGTACG -ACGGAAATGTCGAGCCTAATCCGA -ACGGAAATGTCGAGCCTAATGGGA -ACGGAAATGTCGAGCCTAGTGCAA -ACGGAAATGTCGAGCCTAGAGGAA -ACGGAAATGTCGAGCCTACAGGTA -ACGGAAATGTCGAGCCTAGACTCT -ACGGAAATGTCGAGCCTAAGTCCT -ACGGAAATGTCGAGCCTATAAGCC -ACGGAAATGTCGAGCCTAATAGCC -ACGGAAATGTCGAGCCTATAACCG -ACGGAAATGTCGAGCCTAATGCCA -ACGGAAATGTCGAGCACTGGAAAC -ACGGAAATGTCGAGCACTAACACC -ACGGAAATGTCGAGCACTATCGAG -ACGGAAATGTCGAGCACTCTCCTT -ACGGAAATGTCGAGCACTCCTGTT -ACGGAAATGTCGAGCACTCGGTTT -ACGGAAATGTCGAGCACTGTGGTT -ACGGAAATGTCGAGCACTGCCTTT -ACGGAAATGTCGAGCACTGGTCTT -ACGGAAATGTCGAGCACTACGCTT -ACGGAAATGTCGAGCACTAGCGTT -ACGGAAATGTCGAGCACTTTCGTC -ACGGAAATGTCGAGCACTTCTCTC -ACGGAAATGTCGAGCACTTGGATC -ACGGAAATGTCGAGCACTCACTTC -ACGGAAATGTCGAGCACTGTACTC -ACGGAAATGTCGAGCACTGATGTC -ACGGAAATGTCGAGCACTACAGTC -ACGGAAATGTCGAGCACTTTGCTG -ACGGAAATGTCGAGCACTTCCATG -ACGGAAATGTCGAGCACTTGTGTG -ACGGAAATGTCGAGCACTCTAGTG -ACGGAAATGTCGAGCACTCATCTG -ACGGAAATGTCGAGCACTGAGTTG -ACGGAAATGTCGAGCACTAGACTG -ACGGAAATGTCGAGCACTTCGGTA -ACGGAAATGTCGAGCACTTGCCTA -ACGGAAATGTCGAGCACTCCACTA -ACGGAAATGTCGAGCACTGGAGTA -ACGGAAATGTCGAGCACTTCGTCT -ACGGAAATGTCGAGCACTTGCACT -ACGGAAATGTCGAGCACTCTGACT -ACGGAAATGTCGAGCACTCAACCT -ACGGAAATGTCGAGCACTGCTACT -ACGGAAATGTCGAGCACTGGATCT -ACGGAAATGTCGAGCACTAAGGCT -ACGGAAATGTCGAGCACTTCAACC -ACGGAAATGTCGAGCACTTGTTCC -ACGGAAATGTCGAGCACTATTCCC -ACGGAAATGTCGAGCACTTTCTCG -ACGGAAATGTCGAGCACTTAGACG -ACGGAAATGTCGAGCACTGTAACG -ACGGAAATGTCGAGCACTACTTCG -ACGGAAATGTCGAGCACTTACGCA -ACGGAAATGTCGAGCACTCTTGCA -ACGGAAATGTCGAGCACTCGAACA -ACGGAAATGTCGAGCACTCAGTCA -ACGGAAATGTCGAGCACTGATCCA -ACGGAAATGTCGAGCACTACGACA -ACGGAAATGTCGAGCACTAGCTCA -ACGGAAATGTCGAGCACTTCACGT -ACGGAAATGTCGAGCACTCGTAGT -ACGGAAATGTCGAGCACTGTCAGT -ACGGAAATGTCGAGCACTGAAGGT -ACGGAAATGTCGAGCACTAACCGT -ACGGAAATGTCGAGCACTTTGTGC -ACGGAAATGTCGAGCACTCTAAGC -ACGGAAATGTCGAGCACTACTAGC -ACGGAAATGTCGAGCACTAGATGC -ACGGAAATGTCGAGCACTTGAAGG -ACGGAAATGTCGAGCACTCAATGG -ACGGAAATGTCGAGCACTATGAGG -ACGGAAATGTCGAGCACTAATGGG -ACGGAAATGTCGAGCACTTCCTGA -ACGGAAATGTCGAGCACTTAGCGA -ACGGAAATGTCGAGCACTCACAGA -ACGGAAATGTCGAGCACTGCAAGA -ACGGAAATGTCGAGCACTGGTTGA -ACGGAAATGTCGAGCACTTCCGAT -ACGGAAATGTCGAGCACTTGGCAT -ACGGAAATGTCGAGCACTCGAGAT -ACGGAAATGTCGAGCACTTACCAC -ACGGAAATGTCGAGCACTCAGAAC -ACGGAAATGTCGAGCACTGTCTAC -ACGGAAATGTCGAGCACTACGTAC -ACGGAAATGTCGAGCACTAGTGAC -ACGGAAATGTCGAGCACTCTGTAG -ACGGAAATGTCGAGCACTCCTAAG -ACGGAAATGTCGAGCACTGTTCAG -ACGGAAATGTCGAGCACTGCATAG -ACGGAAATGTCGAGCACTGACAAG -ACGGAAATGTCGAGCACTAAGCAG -ACGGAAATGTCGAGCACTCGTCAA -ACGGAAATGTCGAGCACTGCTGAA -ACGGAAATGTCGAGCACTAGTACG -ACGGAAATGTCGAGCACTATCCGA -ACGGAAATGTCGAGCACTATGGGA -ACGGAAATGTCGAGCACTGTGCAA -ACGGAAATGTCGAGCACTGAGGAA -ACGGAAATGTCGAGCACTCAGGTA -ACGGAAATGTCGAGCACTGACTCT -ACGGAAATGTCGAGCACTAGTCCT -ACGGAAATGTCGAGCACTTAAGCC -ACGGAAATGTCGAGCACTATAGCC -ACGGAAATGTCGAGCACTTAACCG -ACGGAAATGTCGAGCACTATGCCA -ACGGAAATGTCGTGCAGAGGAAAC -ACGGAAATGTCGTGCAGAAACACC -ACGGAAATGTCGTGCAGAATCGAG -ACGGAAATGTCGTGCAGACTCCTT -ACGGAAATGTCGTGCAGACCTGTT -ACGGAAATGTCGTGCAGACGGTTT -ACGGAAATGTCGTGCAGAGTGGTT -ACGGAAATGTCGTGCAGAGCCTTT -ACGGAAATGTCGTGCAGAGGTCTT -ACGGAAATGTCGTGCAGAACGCTT -ACGGAAATGTCGTGCAGAAGCGTT -ACGGAAATGTCGTGCAGATTCGTC -ACGGAAATGTCGTGCAGATCTCTC -ACGGAAATGTCGTGCAGATGGATC -ACGGAAATGTCGTGCAGACACTTC -ACGGAAATGTCGTGCAGAGTACTC -ACGGAAATGTCGTGCAGAGATGTC -ACGGAAATGTCGTGCAGAACAGTC -ACGGAAATGTCGTGCAGATTGCTG -ACGGAAATGTCGTGCAGATCCATG -ACGGAAATGTCGTGCAGATGTGTG -ACGGAAATGTCGTGCAGACTAGTG -ACGGAAATGTCGTGCAGACATCTG -ACGGAAATGTCGTGCAGAGAGTTG -ACGGAAATGTCGTGCAGAAGACTG -ACGGAAATGTCGTGCAGATCGGTA -ACGGAAATGTCGTGCAGATGCCTA -ACGGAAATGTCGTGCAGACCACTA -ACGGAAATGTCGTGCAGAGGAGTA -ACGGAAATGTCGTGCAGATCGTCT -ACGGAAATGTCGTGCAGATGCACT -ACGGAAATGTCGTGCAGACTGACT -ACGGAAATGTCGTGCAGACAACCT -ACGGAAATGTCGTGCAGAGCTACT -ACGGAAATGTCGTGCAGAGGATCT -ACGGAAATGTCGTGCAGAAAGGCT -ACGGAAATGTCGTGCAGATCAACC -ACGGAAATGTCGTGCAGATGTTCC -ACGGAAATGTCGTGCAGAATTCCC -ACGGAAATGTCGTGCAGATTCTCG -ACGGAAATGTCGTGCAGATAGACG -ACGGAAATGTCGTGCAGAGTAACG -ACGGAAATGTCGTGCAGAACTTCG -ACGGAAATGTCGTGCAGATACGCA -ACGGAAATGTCGTGCAGACTTGCA -ACGGAAATGTCGTGCAGACGAACA -ACGGAAATGTCGTGCAGACAGTCA -ACGGAAATGTCGTGCAGAGATCCA -ACGGAAATGTCGTGCAGAACGACA -ACGGAAATGTCGTGCAGAAGCTCA -ACGGAAATGTCGTGCAGATCACGT -ACGGAAATGTCGTGCAGACGTAGT -ACGGAAATGTCGTGCAGAGTCAGT -ACGGAAATGTCGTGCAGAGAAGGT -ACGGAAATGTCGTGCAGAAACCGT -ACGGAAATGTCGTGCAGATTGTGC -ACGGAAATGTCGTGCAGACTAAGC -ACGGAAATGTCGTGCAGAACTAGC -ACGGAAATGTCGTGCAGAAGATGC -ACGGAAATGTCGTGCAGATGAAGG -ACGGAAATGTCGTGCAGACAATGG -ACGGAAATGTCGTGCAGAATGAGG -ACGGAAATGTCGTGCAGAAATGGG -ACGGAAATGTCGTGCAGATCCTGA -ACGGAAATGTCGTGCAGATAGCGA -ACGGAAATGTCGTGCAGACACAGA -ACGGAAATGTCGTGCAGAGCAAGA -ACGGAAATGTCGTGCAGAGGTTGA -ACGGAAATGTCGTGCAGATCCGAT -ACGGAAATGTCGTGCAGATGGCAT -ACGGAAATGTCGTGCAGACGAGAT -ACGGAAATGTCGTGCAGATACCAC -ACGGAAATGTCGTGCAGACAGAAC -ACGGAAATGTCGTGCAGAGTCTAC -ACGGAAATGTCGTGCAGAACGTAC -ACGGAAATGTCGTGCAGAAGTGAC -ACGGAAATGTCGTGCAGACTGTAG -ACGGAAATGTCGTGCAGACCTAAG -ACGGAAATGTCGTGCAGAGTTCAG -ACGGAAATGTCGTGCAGAGCATAG -ACGGAAATGTCGTGCAGAGACAAG -ACGGAAATGTCGTGCAGAAAGCAG -ACGGAAATGTCGTGCAGACGTCAA -ACGGAAATGTCGTGCAGAGCTGAA -ACGGAAATGTCGTGCAGAAGTACG -ACGGAAATGTCGTGCAGAATCCGA -ACGGAAATGTCGTGCAGAATGGGA -ACGGAAATGTCGTGCAGAGTGCAA -ACGGAAATGTCGTGCAGAGAGGAA -ACGGAAATGTCGTGCAGACAGGTA -ACGGAAATGTCGTGCAGAGACTCT -ACGGAAATGTCGTGCAGAAGTCCT -ACGGAAATGTCGTGCAGATAAGCC -ACGGAAATGTCGTGCAGAATAGCC -ACGGAAATGTCGTGCAGATAACCG -ACGGAAATGTCGTGCAGAATGCCA -ACGGAAATGTCGAGGTGAGGAAAC -ACGGAAATGTCGAGGTGAAACACC -ACGGAAATGTCGAGGTGAATCGAG -ACGGAAATGTCGAGGTGACTCCTT -ACGGAAATGTCGAGGTGACCTGTT -ACGGAAATGTCGAGGTGACGGTTT -ACGGAAATGTCGAGGTGAGTGGTT -ACGGAAATGTCGAGGTGAGCCTTT -ACGGAAATGTCGAGGTGAGGTCTT -ACGGAAATGTCGAGGTGAACGCTT -ACGGAAATGTCGAGGTGAAGCGTT -ACGGAAATGTCGAGGTGATTCGTC -ACGGAAATGTCGAGGTGATCTCTC -ACGGAAATGTCGAGGTGATGGATC -ACGGAAATGTCGAGGTGACACTTC -ACGGAAATGTCGAGGTGAGTACTC -ACGGAAATGTCGAGGTGAGATGTC -ACGGAAATGTCGAGGTGAACAGTC -ACGGAAATGTCGAGGTGATTGCTG -ACGGAAATGTCGAGGTGATCCATG -ACGGAAATGTCGAGGTGATGTGTG -ACGGAAATGTCGAGGTGACTAGTG -ACGGAAATGTCGAGGTGACATCTG -ACGGAAATGTCGAGGTGAGAGTTG -ACGGAAATGTCGAGGTGAAGACTG -ACGGAAATGTCGAGGTGATCGGTA -ACGGAAATGTCGAGGTGATGCCTA -ACGGAAATGTCGAGGTGACCACTA -ACGGAAATGTCGAGGTGAGGAGTA -ACGGAAATGTCGAGGTGATCGTCT -ACGGAAATGTCGAGGTGATGCACT -ACGGAAATGTCGAGGTGACTGACT -ACGGAAATGTCGAGGTGACAACCT -ACGGAAATGTCGAGGTGAGCTACT -ACGGAAATGTCGAGGTGAGGATCT -ACGGAAATGTCGAGGTGAAAGGCT -ACGGAAATGTCGAGGTGATCAACC -ACGGAAATGTCGAGGTGATGTTCC -ACGGAAATGTCGAGGTGAATTCCC -ACGGAAATGTCGAGGTGATTCTCG -ACGGAAATGTCGAGGTGATAGACG -ACGGAAATGTCGAGGTGAGTAACG -ACGGAAATGTCGAGGTGAACTTCG -ACGGAAATGTCGAGGTGATACGCA -ACGGAAATGTCGAGGTGACTTGCA -ACGGAAATGTCGAGGTGACGAACA -ACGGAAATGTCGAGGTGACAGTCA -ACGGAAATGTCGAGGTGAGATCCA -ACGGAAATGTCGAGGTGAACGACA -ACGGAAATGTCGAGGTGAAGCTCA -ACGGAAATGTCGAGGTGATCACGT -ACGGAAATGTCGAGGTGACGTAGT -ACGGAAATGTCGAGGTGAGTCAGT -ACGGAAATGTCGAGGTGAGAAGGT -ACGGAAATGTCGAGGTGAAACCGT -ACGGAAATGTCGAGGTGATTGTGC -ACGGAAATGTCGAGGTGACTAAGC -ACGGAAATGTCGAGGTGAACTAGC -ACGGAAATGTCGAGGTGAAGATGC -ACGGAAATGTCGAGGTGATGAAGG -ACGGAAATGTCGAGGTGACAATGG -ACGGAAATGTCGAGGTGAATGAGG -ACGGAAATGTCGAGGTGAAATGGG -ACGGAAATGTCGAGGTGATCCTGA -ACGGAAATGTCGAGGTGATAGCGA -ACGGAAATGTCGAGGTGACACAGA -ACGGAAATGTCGAGGTGAGCAAGA -ACGGAAATGTCGAGGTGAGGTTGA -ACGGAAATGTCGAGGTGATCCGAT -ACGGAAATGTCGAGGTGATGGCAT -ACGGAAATGTCGAGGTGACGAGAT -ACGGAAATGTCGAGGTGATACCAC -ACGGAAATGTCGAGGTGACAGAAC -ACGGAAATGTCGAGGTGAGTCTAC -ACGGAAATGTCGAGGTGAACGTAC -ACGGAAATGTCGAGGTGAAGTGAC -ACGGAAATGTCGAGGTGACTGTAG -ACGGAAATGTCGAGGTGACCTAAG -ACGGAAATGTCGAGGTGAGTTCAG -ACGGAAATGTCGAGGTGAGCATAG -ACGGAAATGTCGAGGTGAGACAAG -ACGGAAATGTCGAGGTGAAAGCAG -ACGGAAATGTCGAGGTGACGTCAA -ACGGAAATGTCGAGGTGAGCTGAA -ACGGAAATGTCGAGGTGAAGTACG -ACGGAAATGTCGAGGTGAATCCGA -ACGGAAATGTCGAGGTGAATGGGA -ACGGAAATGTCGAGGTGAGTGCAA -ACGGAAATGTCGAGGTGAGAGGAA -ACGGAAATGTCGAGGTGACAGGTA -ACGGAAATGTCGAGGTGAGACTCT -ACGGAAATGTCGAGGTGAAGTCCT -ACGGAAATGTCGAGGTGATAAGCC -ACGGAAATGTCGAGGTGAATAGCC -ACGGAAATGTCGAGGTGATAACCG -ACGGAAATGTCGAGGTGAATGCCA -ACGGAAATGTCGTGGCAAGGAAAC -ACGGAAATGTCGTGGCAAAACACC -ACGGAAATGTCGTGGCAAATCGAG -ACGGAAATGTCGTGGCAACTCCTT -ACGGAAATGTCGTGGCAACCTGTT -ACGGAAATGTCGTGGCAACGGTTT -ACGGAAATGTCGTGGCAAGTGGTT -ACGGAAATGTCGTGGCAAGCCTTT -ACGGAAATGTCGTGGCAAGGTCTT -ACGGAAATGTCGTGGCAAACGCTT -ACGGAAATGTCGTGGCAAAGCGTT -ACGGAAATGTCGTGGCAATTCGTC -ACGGAAATGTCGTGGCAATCTCTC -ACGGAAATGTCGTGGCAATGGATC -ACGGAAATGTCGTGGCAACACTTC -ACGGAAATGTCGTGGCAAGTACTC -ACGGAAATGTCGTGGCAAGATGTC -ACGGAAATGTCGTGGCAAACAGTC -ACGGAAATGTCGTGGCAATTGCTG -ACGGAAATGTCGTGGCAATCCATG -ACGGAAATGTCGTGGCAATGTGTG -ACGGAAATGTCGTGGCAACTAGTG -ACGGAAATGTCGTGGCAACATCTG -ACGGAAATGTCGTGGCAAGAGTTG -ACGGAAATGTCGTGGCAAAGACTG -ACGGAAATGTCGTGGCAATCGGTA -ACGGAAATGTCGTGGCAATGCCTA -ACGGAAATGTCGTGGCAACCACTA -ACGGAAATGTCGTGGCAAGGAGTA -ACGGAAATGTCGTGGCAATCGTCT -ACGGAAATGTCGTGGCAATGCACT -ACGGAAATGTCGTGGCAACTGACT -ACGGAAATGTCGTGGCAACAACCT -ACGGAAATGTCGTGGCAAGCTACT -ACGGAAATGTCGTGGCAAGGATCT -ACGGAAATGTCGTGGCAAAAGGCT -ACGGAAATGTCGTGGCAATCAACC -ACGGAAATGTCGTGGCAATGTTCC -ACGGAAATGTCGTGGCAAATTCCC -ACGGAAATGTCGTGGCAATTCTCG -ACGGAAATGTCGTGGCAATAGACG -ACGGAAATGTCGTGGCAAGTAACG -ACGGAAATGTCGTGGCAAACTTCG -ACGGAAATGTCGTGGCAATACGCA -ACGGAAATGTCGTGGCAACTTGCA -ACGGAAATGTCGTGGCAACGAACA -ACGGAAATGTCGTGGCAACAGTCA -ACGGAAATGTCGTGGCAAGATCCA -ACGGAAATGTCGTGGCAAACGACA -ACGGAAATGTCGTGGCAAAGCTCA -ACGGAAATGTCGTGGCAATCACGT -ACGGAAATGTCGTGGCAACGTAGT -ACGGAAATGTCGTGGCAAGTCAGT -ACGGAAATGTCGTGGCAAGAAGGT -ACGGAAATGTCGTGGCAAAACCGT -ACGGAAATGTCGTGGCAATTGTGC -ACGGAAATGTCGTGGCAACTAAGC -ACGGAAATGTCGTGGCAAACTAGC -ACGGAAATGTCGTGGCAAAGATGC -ACGGAAATGTCGTGGCAATGAAGG -ACGGAAATGTCGTGGCAACAATGG -ACGGAAATGTCGTGGCAAATGAGG -ACGGAAATGTCGTGGCAAAATGGG -ACGGAAATGTCGTGGCAATCCTGA -ACGGAAATGTCGTGGCAATAGCGA -ACGGAAATGTCGTGGCAACACAGA -ACGGAAATGTCGTGGCAAGCAAGA -ACGGAAATGTCGTGGCAAGGTTGA -ACGGAAATGTCGTGGCAATCCGAT -ACGGAAATGTCGTGGCAATGGCAT -ACGGAAATGTCGTGGCAACGAGAT -ACGGAAATGTCGTGGCAATACCAC -ACGGAAATGTCGTGGCAACAGAAC -ACGGAAATGTCGTGGCAAGTCTAC -ACGGAAATGTCGTGGCAAACGTAC -ACGGAAATGTCGTGGCAAAGTGAC -ACGGAAATGTCGTGGCAACTGTAG -ACGGAAATGTCGTGGCAACCTAAG -ACGGAAATGTCGTGGCAAGTTCAG -ACGGAAATGTCGTGGCAAGCATAG -ACGGAAATGTCGTGGCAAGACAAG -ACGGAAATGTCGTGGCAAAAGCAG -ACGGAAATGTCGTGGCAACGTCAA -ACGGAAATGTCGTGGCAAGCTGAA -ACGGAAATGTCGTGGCAAAGTACG -ACGGAAATGTCGTGGCAAATCCGA -ACGGAAATGTCGTGGCAAATGGGA -ACGGAAATGTCGTGGCAAGTGCAA -ACGGAAATGTCGTGGCAAGAGGAA -ACGGAAATGTCGTGGCAACAGGTA -ACGGAAATGTCGTGGCAAGACTCT -ACGGAAATGTCGTGGCAAAGTCCT -ACGGAAATGTCGTGGCAATAAGCC -ACGGAAATGTCGTGGCAAATAGCC -ACGGAAATGTCGTGGCAATAACCG -ACGGAAATGTCGTGGCAAATGCCA -ACGGAAATGTCGAGGATGGGAAAC -ACGGAAATGTCGAGGATGAACACC -ACGGAAATGTCGAGGATGATCGAG -ACGGAAATGTCGAGGATGCTCCTT -ACGGAAATGTCGAGGATGCCTGTT -ACGGAAATGTCGAGGATGCGGTTT -ACGGAAATGTCGAGGATGGTGGTT -ACGGAAATGTCGAGGATGGCCTTT -ACGGAAATGTCGAGGATGGGTCTT -ACGGAAATGTCGAGGATGACGCTT -ACGGAAATGTCGAGGATGAGCGTT -ACGGAAATGTCGAGGATGTTCGTC -ACGGAAATGTCGAGGATGTCTCTC -ACGGAAATGTCGAGGATGTGGATC -ACGGAAATGTCGAGGATGCACTTC -ACGGAAATGTCGAGGATGGTACTC -ACGGAAATGTCGAGGATGGATGTC -ACGGAAATGTCGAGGATGACAGTC -ACGGAAATGTCGAGGATGTTGCTG -ACGGAAATGTCGAGGATGTCCATG -ACGGAAATGTCGAGGATGTGTGTG -ACGGAAATGTCGAGGATGCTAGTG -ACGGAAATGTCGAGGATGCATCTG -ACGGAAATGTCGAGGATGGAGTTG -ACGGAAATGTCGAGGATGAGACTG -ACGGAAATGTCGAGGATGTCGGTA -ACGGAAATGTCGAGGATGTGCCTA -ACGGAAATGTCGAGGATGCCACTA -ACGGAAATGTCGAGGATGGGAGTA -ACGGAAATGTCGAGGATGTCGTCT -ACGGAAATGTCGAGGATGTGCACT -ACGGAAATGTCGAGGATGCTGACT -ACGGAAATGTCGAGGATGCAACCT -ACGGAAATGTCGAGGATGGCTACT -ACGGAAATGTCGAGGATGGGATCT -ACGGAAATGTCGAGGATGAAGGCT -ACGGAAATGTCGAGGATGTCAACC -ACGGAAATGTCGAGGATGTGTTCC -ACGGAAATGTCGAGGATGATTCCC -ACGGAAATGTCGAGGATGTTCTCG -ACGGAAATGTCGAGGATGTAGACG -ACGGAAATGTCGAGGATGGTAACG -ACGGAAATGTCGAGGATGACTTCG -ACGGAAATGTCGAGGATGTACGCA -ACGGAAATGTCGAGGATGCTTGCA -ACGGAAATGTCGAGGATGCGAACA -ACGGAAATGTCGAGGATGCAGTCA -ACGGAAATGTCGAGGATGGATCCA -ACGGAAATGTCGAGGATGACGACA -ACGGAAATGTCGAGGATGAGCTCA -ACGGAAATGTCGAGGATGTCACGT -ACGGAAATGTCGAGGATGCGTAGT -ACGGAAATGTCGAGGATGGTCAGT -ACGGAAATGTCGAGGATGGAAGGT -ACGGAAATGTCGAGGATGAACCGT -ACGGAAATGTCGAGGATGTTGTGC -ACGGAAATGTCGAGGATGCTAAGC -ACGGAAATGTCGAGGATGACTAGC -ACGGAAATGTCGAGGATGAGATGC -ACGGAAATGTCGAGGATGTGAAGG -ACGGAAATGTCGAGGATGCAATGG -ACGGAAATGTCGAGGATGATGAGG -ACGGAAATGTCGAGGATGAATGGG -ACGGAAATGTCGAGGATGTCCTGA -ACGGAAATGTCGAGGATGTAGCGA -ACGGAAATGTCGAGGATGCACAGA -ACGGAAATGTCGAGGATGGCAAGA -ACGGAAATGTCGAGGATGGGTTGA -ACGGAAATGTCGAGGATGTCCGAT -ACGGAAATGTCGAGGATGTGGCAT -ACGGAAATGTCGAGGATGCGAGAT -ACGGAAATGTCGAGGATGTACCAC -ACGGAAATGTCGAGGATGCAGAAC -ACGGAAATGTCGAGGATGGTCTAC -ACGGAAATGTCGAGGATGACGTAC -ACGGAAATGTCGAGGATGAGTGAC -ACGGAAATGTCGAGGATGCTGTAG -ACGGAAATGTCGAGGATGCCTAAG -ACGGAAATGTCGAGGATGGTTCAG -ACGGAAATGTCGAGGATGGCATAG -ACGGAAATGTCGAGGATGGACAAG -ACGGAAATGTCGAGGATGAAGCAG -ACGGAAATGTCGAGGATGCGTCAA -ACGGAAATGTCGAGGATGGCTGAA -ACGGAAATGTCGAGGATGAGTACG -ACGGAAATGTCGAGGATGATCCGA -ACGGAAATGTCGAGGATGATGGGA -ACGGAAATGTCGAGGATGGTGCAA -ACGGAAATGTCGAGGATGGAGGAA -ACGGAAATGTCGAGGATGCAGGTA -ACGGAAATGTCGAGGATGGACTCT -ACGGAAATGTCGAGGATGAGTCCT -ACGGAAATGTCGAGGATGTAAGCC -ACGGAAATGTCGAGGATGATAGCC -ACGGAAATGTCGAGGATGTAACCG -ACGGAAATGTCGAGGATGATGCCA -ACGGAAATGTCGGGGAATGGAAAC -ACGGAAATGTCGGGGAATAACACC -ACGGAAATGTCGGGGAATATCGAG -ACGGAAATGTCGGGGAATCTCCTT -ACGGAAATGTCGGGGAATCCTGTT -ACGGAAATGTCGGGGAATCGGTTT -ACGGAAATGTCGGGGAATGTGGTT -ACGGAAATGTCGGGGAATGCCTTT -ACGGAAATGTCGGGGAATGGTCTT -ACGGAAATGTCGGGGAATACGCTT -ACGGAAATGTCGGGGAATAGCGTT -ACGGAAATGTCGGGGAATTTCGTC -ACGGAAATGTCGGGGAATTCTCTC -ACGGAAATGTCGGGGAATTGGATC -ACGGAAATGTCGGGGAATCACTTC -ACGGAAATGTCGGGGAATGTACTC -ACGGAAATGTCGGGGAATGATGTC -ACGGAAATGTCGGGGAATACAGTC -ACGGAAATGTCGGGGAATTTGCTG -ACGGAAATGTCGGGGAATTCCATG -ACGGAAATGTCGGGGAATTGTGTG -ACGGAAATGTCGGGGAATCTAGTG -ACGGAAATGTCGGGGAATCATCTG -ACGGAAATGTCGGGGAATGAGTTG -ACGGAAATGTCGGGGAATAGACTG -ACGGAAATGTCGGGGAATTCGGTA -ACGGAAATGTCGGGGAATTGCCTA -ACGGAAATGTCGGGGAATCCACTA -ACGGAAATGTCGGGGAATGGAGTA -ACGGAAATGTCGGGGAATTCGTCT -ACGGAAATGTCGGGGAATTGCACT -ACGGAAATGTCGGGGAATCTGACT -ACGGAAATGTCGGGGAATCAACCT -ACGGAAATGTCGGGGAATGCTACT -ACGGAAATGTCGGGGAATGGATCT -ACGGAAATGTCGGGGAATAAGGCT -ACGGAAATGTCGGGGAATTCAACC -ACGGAAATGTCGGGGAATTGTTCC -ACGGAAATGTCGGGGAATATTCCC -ACGGAAATGTCGGGGAATTTCTCG -ACGGAAATGTCGGGGAATTAGACG -ACGGAAATGTCGGGGAATGTAACG -ACGGAAATGTCGGGGAATACTTCG -ACGGAAATGTCGGGGAATTACGCA -ACGGAAATGTCGGGGAATCTTGCA -ACGGAAATGTCGGGGAATCGAACA -ACGGAAATGTCGGGGAATCAGTCA -ACGGAAATGTCGGGGAATGATCCA -ACGGAAATGTCGGGGAATACGACA -ACGGAAATGTCGGGGAATAGCTCA -ACGGAAATGTCGGGGAATTCACGT -ACGGAAATGTCGGGGAATCGTAGT -ACGGAAATGTCGGGGAATGTCAGT -ACGGAAATGTCGGGGAATGAAGGT -ACGGAAATGTCGGGGAATAACCGT -ACGGAAATGTCGGGGAATTTGTGC -ACGGAAATGTCGGGGAATCTAAGC -ACGGAAATGTCGGGGAATACTAGC -ACGGAAATGTCGGGGAATAGATGC -ACGGAAATGTCGGGGAATTGAAGG -ACGGAAATGTCGGGGAATCAATGG -ACGGAAATGTCGGGGAATATGAGG -ACGGAAATGTCGGGGAATAATGGG -ACGGAAATGTCGGGGAATTCCTGA -ACGGAAATGTCGGGGAATTAGCGA -ACGGAAATGTCGGGGAATCACAGA -ACGGAAATGTCGGGGAATGCAAGA -ACGGAAATGTCGGGGAATGGTTGA -ACGGAAATGTCGGGGAATTCCGAT -ACGGAAATGTCGGGGAATTGGCAT -ACGGAAATGTCGGGGAATCGAGAT -ACGGAAATGTCGGGGAATTACCAC -ACGGAAATGTCGGGGAATCAGAAC -ACGGAAATGTCGGGGAATGTCTAC -ACGGAAATGTCGGGGAATACGTAC -ACGGAAATGTCGGGGAATAGTGAC -ACGGAAATGTCGGGGAATCTGTAG -ACGGAAATGTCGGGGAATCCTAAG -ACGGAAATGTCGGGGAATGTTCAG -ACGGAAATGTCGGGGAATGCATAG -ACGGAAATGTCGGGGAATGACAAG -ACGGAAATGTCGGGGAATAAGCAG -ACGGAAATGTCGGGGAATCGTCAA -ACGGAAATGTCGGGGAATGCTGAA -ACGGAAATGTCGGGGAATAGTACG -ACGGAAATGTCGGGGAATATCCGA -ACGGAAATGTCGGGGAATATGGGA -ACGGAAATGTCGGGGAATGTGCAA -ACGGAAATGTCGGGGAATGAGGAA -ACGGAAATGTCGGGGAATCAGGTA -ACGGAAATGTCGGGGAATGACTCT -ACGGAAATGTCGGGGAATAGTCCT -ACGGAAATGTCGGGGAATTAAGCC -ACGGAAATGTCGGGGAATATAGCC -ACGGAAATGTCGGGGAATTAACCG -ACGGAAATGTCGGGGAATATGCCA -ACGGAAATGTCGTGATCCGGAAAC -ACGGAAATGTCGTGATCCAACACC -ACGGAAATGTCGTGATCCATCGAG -ACGGAAATGTCGTGATCCCTCCTT -ACGGAAATGTCGTGATCCCCTGTT -ACGGAAATGTCGTGATCCCGGTTT -ACGGAAATGTCGTGATCCGTGGTT -ACGGAAATGTCGTGATCCGCCTTT -ACGGAAATGTCGTGATCCGGTCTT -ACGGAAATGTCGTGATCCACGCTT -ACGGAAATGTCGTGATCCAGCGTT -ACGGAAATGTCGTGATCCTTCGTC -ACGGAAATGTCGTGATCCTCTCTC -ACGGAAATGTCGTGATCCTGGATC -ACGGAAATGTCGTGATCCCACTTC -ACGGAAATGTCGTGATCCGTACTC -ACGGAAATGTCGTGATCCGATGTC -ACGGAAATGTCGTGATCCACAGTC -ACGGAAATGTCGTGATCCTTGCTG -ACGGAAATGTCGTGATCCTCCATG -ACGGAAATGTCGTGATCCTGTGTG -ACGGAAATGTCGTGATCCCTAGTG -ACGGAAATGTCGTGATCCCATCTG -ACGGAAATGTCGTGATCCGAGTTG -ACGGAAATGTCGTGATCCAGACTG -ACGGAAATGTCGTGATCCTCGGTA -ACGGAAATGTCGTGATCCTGCCTA -ACGGAAATGTCGTGATCCCCACTA -ACGGAAATGTCGTGATCCGGAGTA -ACGGAAATGTCGTGATCCTCGTCT -ACGGAAATGTCGTGATCCTGCACT -ACGGAAATGTCGTGATCCCTGACT -ACGGAAATGTCGTGATCCCAACCT -ACGGAAATGTCGTGATCCGCTACT -ACGGAAATGTCGTGATCCGGATCT -ACGGAAATGTCGTGATCCAAGGCT -ACGGAAATGTCGTGATCCTCAACC -ACGGAAATGTCGTGATCCTGTTCC -ACGGAAATGTCGTGATCCATTCCC -ACGGAAATGTCGTGATCCTTCTCG -ACGGAAATGTCGTGATCCTAGACG -ACGGAAATGTCGTGATCCGTAACG -ACGGAAATGTCGTGATCCACTTCG -ACGGAAATGTCGTGATCCTACGCA -ACGGAAATGTCGTGATCCCTTGCA -ACGGAAATGTCGTGATCCCGAACA -ACGGAAATGTCGTGATCCCAGTCA -ACGGAAATGTCGTGATCCGATCCA -ACGGAAATGTCGTGATCCACGACA -ACGGAAATGTCGTGATCCAGCTCA -ACGGAAATGTCGTGATCCTCACGT -ACGGAAATGTCGTGATCCCGTAGT -ACGGAAATGTCGTGATCCGTCAGT -ACGGAAATGTCGTGATCCGAAGGT -ACGGAAATGTCGTGATCCAACCGT -ACGGAAATGTCGTGATCCTTGTGC -ACGGAAATGTCGTGATCCCTAAGC -ACGGAAATGTCGTGATCCACTAGC -ACGGAAATGTCGTGATCCAGATGC -ACGGAAATGTCGTGATCCTGAAGG -ACGGAAATGTCGTGATCCCAATGG -ACGGAAATGTCGTGATCCATGAGG -ACGGAAATGTCGTGATCCAATGGG -ACGGAAATGTCGTGATCCTCCTGA -ACGGAAATGTCGTGATCCTAGCGA -ACGGAAATGTCGTGATCCCACAGA -ACGGAAATGTCGTGATCCGCAAGA -ACGGAAATGTCGTGATCCGGTTGA -ACGGAAATGTCGTGATCCTCCGAT -ACGGAAATGTCGTGATCCTGGCAT -ACGGAAATGTCGTGATCCCGAGAT -ACGGAAATGTCGTGATCCTACCAC -ACGGAAATGTCGTGATCCCAGAAC -ACGGAAATGTCGTGATCCGTCTAC -ACGGAAATGTCGTGATCCACGTAC -ACGGAAATGTCGTGATCCAGTGAC -ACGGAAATGTCGTGATCCCTGTAG -ACGGAAATGTCGTGATCCCCTAAG -ACGGAAATGTCGTGATCCGTTCAG -ACGGAAATGTCGTGATCCGCATAG -ACGGAAATGTCGTGATCCGACAAG -ACGGAAATGTCGTGATCCAAGCAG -ACGGAAATGTCGTGATCCCGTCAA -ACGGAAATGTCGTGATCCGCTGAA -ACGGAAATGTCGTGATCCAGTACG -ACGGAAATGTCGTGATCCATCCGA -ACGGAAATGTCGTGATCCATGGGA -ACGGAAATGTCGTGATCCGTGCAA -ACGGAAATGTCGTGATCCGAGGAA -ACGGAAATGTCGTGATCCCAGGTA -ACGGAAATGTCGTGATCCGACTCT -ACGGAAATGTCGTGATCCAGTCCT -ACGGAAATGTCGTGATCCTAAGCC -ACGGAAATGTCGTGATCCATAGCC -ACGGAAATGTCGTGATCCTAACCG -ACGGAAATGTCGTGATCCATGCCA -ACGGAAATGTCGCGATAGGGAAAC -ACGGAAATGTCGCGATAGAACACC -ACGGAAATGTCGCGATAGATCGAG -ACGGAAATGTCGCGATAGCTCCTT -ACGGAAATGTCGCGATAGCCTGTT -ACGGAAATGTCGCGATAGCGGTTT -ACGGAAATGTCGCGATAGGTGGTT -ACGGAAATGTCGCGATAGGCCTTT -ACGGAAATGTCGCGATAGGGTCTT -ACGGAAATGTCGCGATAGACGCTT -ACGGAAATGTCGCGATAGAGCGTT -ACGGAAATGTCGCGATAGTTCGTC -ACGGAAATGTCGCGATAGTCTCTC -ACGGAAATGTCGCGATAGTGGATC -ACGGAAATGTCGCGATAGCACTTC -ACGGAAATGTCGCGATAGGTACTC -ACGGAAATGTCGCGATAGGATGTC -ACGGAAATGTCGCGATAGACAGTC -ACGGAAATGTCGCGATAGTTGCTG -ACGGAAATGTCGCGATAGTCCATG -ACGGAAATGTCGCGATAGTGTGTG -ACGGAAATGTCGCGATAGCTAGTG -ACGGAAATGTCGCGATAGCATCTG -ACGGAAATGTCGCGATAGGAGTTG -ACGGAAATGTCGCGATAGAGACTG -ACGGAAATGTCGCGATAGTCGGTA -ACGGAAATGTCGCGATAGTGCCTA -ACGGAAATGTCGCGATAGCCACTA -ACGGAAATGTCGCGATAGGGAGTA -ACGGAAATGTCGCGATAGTCGTCT -ACGGAAATGTCGCGATAGTGCACT -ACGGAAATGTCGCGATAGCTGACT -ACGGAAATGTCGCGATAGCAACCT -ACGGAAATGTCGCGATAGGCTACT -ACGGAAATGTCGCGATAGGGATCT -ACGGAAATGTCGCGATAGAAGGCT -ACGGAAATGTCGCGATAGTCAACC -ACGGAAATGTCGCGATAGTGTTCC -ACGGAAATGTCGCGATAGATTCCC -ACGGAAATGTCGCGATAGTTCTCG -ACGGAAATGTCGCGATAGTAGACG -ACGGAAATGTCGCGATAGGTAACG -ACGGAAATGTCGCGATAGACTTCG -ACGGAAATGTCGCGATAGTACGCA -ACGGAAATGTCGCGATAGCTTGCA -ACGGAAATGTCGCGATAGCGAACA -ACGGAAATGTCGCGATAGCAGTCA -ACGGAAATGTCGCGATAGGATCCA -ACGGAAATGTCGCGATAGACGACA -ACGGAAATGTCGCGATAGAGCTCA -ACGGAAATGTCGCGATAGTCACGT -ACGGAAATGTCGCGATAGCGTAGT -ACGGAAATGTCGCGATAGGTCAGT -ACGGAAATGTCGCGATAGGAAGGT -ACGGAAATGTCGCGATAGAACCGT -ACGGAAATGTCGCGATAGTTGTGC -ACGGAAATGTCGCGATAGCTAAGC -ACGGAAATGTCGCGATAGACTAGC -ACGGAAATGTCGCGATAGAGATGC -ACGGAAATGTCGCGATAGTGAAGG -ACGGAAATGTCGCGATAGCAATGG -ACGGAAATGTCGCGATAGATGAGG -ACGGAAATGTCGCGATAGAATGGG -ACGGAAATGTCGCGATAGTCCTGA -ACGGAAATGTCGCGATAGTAGCGA -ACGGAAATGTCGCGATAGCACAGA -ACGGAAATGTCGCGATAGGCAAGA -ACGGAAATGTCGCGATAGGGTTGA -ACGGAAATGTCGCGATAGTCCGAT -ACGGAAATGTCGCGATAGTGGCAT -ACGGAAATGTCGCGATAGCGAGAT -ACGGAAATGTCGCGATAGTACCAC -ACGGAAATGTCGCGATAGCAGAAC -ACGGAAATGTCGCGATAGGTCTAC -ACGGAAATGTCGCGATAGACGTAC -ACGGAAATGTCGCGATAGAGTGAC -ACGGAAATGTCGCGATAGCTGTAG -ACGGAAATGTCGCGATAGCCTAAG -ACGGAAATGTCGCGATAGGTTCAG -ACGGAAATGTCGCGATAGGCATAG -ACGGAAATGTCGCGATAGGACAAG -ACGGAAATGTCGCGATAGAAGCAG -ACGGAAATGTCGCGATAGCGTCAA -ACGGAAATGTCGCGATAGGCTGAA -ACGGAAATGTCGCGATAGAGTACG -ACGGAAATGTCGCGATAGATCCGA -ACGGAAATGTCGCGATAGATGGGA -ACGGAAATGTCGCGATAGGTGCAA -ACGGAAATGTCGCGATAGGAGGAA -ACGGAAATGTCGCGATAGCAGGTA -ACGGAAATGTCGCGATAGGACTCT -ACGGAAATGTCGCGATAGAGTCCT -ACGGAAATGTCGCGATAGTAAGCC -ACGGAAATGTCGCGATAGATAGCC -ACGGAAATGTCGCGATAGTAACCG -ACGGAAATGTCGCGATAGATGCCA -ACGGAAATGTCGAGACACGGAAAC -ACGGAAATGTCGAGACACAACACC -ACGGAAATGTCGAGACACATCGAG -ACGGAAATGTCGAGACACCTCCTT -ACGGAAATGTCGAGACACCCTGTT -ACGGAAATGTCGAGACACCGGTTT -ACGGAAATGTCGAGACACGTGGTT -ACGGAAATGTCGAGACACGCCTTT -ACGGAAATGTCGAGACACGGTCTT -ACGGAAATGTCGAGACACACGCTT -ACGGAAATGTCGAGACACAGCGTT -ACGGAAATGTCGAGACACTTCGTC -ACGGAAATGTCGAGACACTCTCTC -ACGGAAATGTCGAGACACTGGATC -ACGGAAATGTCGAGACACCACTTC -ACGGAAATGTCGAGACACGTACTC -ACGGAAATGTCGAGACACGATGTC -ACGGAAATGTCGAGACACACAGTC -ACGGAAATGTCGAGACACTTGCTG -ACGGAAATGTCGAGACACTCCATG -ACGGAAATGTCGAGACACTGTGTG -ACGGAAATGTCGAGACACCTAGTG -ACGGAAATGTCGAGACACCATCTG -ACGGAAATGTCGAGACACGAGTTG -ACGGAAATGTCGAGACACAGACTG -ACGGAAATGTCGAGACACTCGGTA -ACGGAAATGTCGAGACACTGCCTA -ACGGAAATGTCGAGACACCCACTA -ACGGAAATGTCGAGACACGGAGTA -ACGGAAATGTCGAGACACTCGTCT -ACGGAAATGTCGAGACACTGCACT -ACGGAAATGTCGAGACACCTGACT -ACGGAAATGTCGAGACACCAACCT -ACGGAAATGTCGAGACACGCTACT -ACGGAAATGTCGAGACACGGATCT -ACGGAAATGTCGAGACACAAGGCT -ACGGAAATGTCGAGACACTCAACC -ACGGAAATGTCGAGACACTGTTCC -ACGGAAATGTCGAGACACATTCCC -ACGGAAATGTCGAGACACTTCTCG -ACGGAAATGTCGAGACACTAGACG -ACGGAAATGTCGAGACACGTAACG -ACGGAAATGTCGAGACACACTTCG -ACGGAAATGTCGAGACACTACGCA -ACGGAAATGTCGAGACACCTTGCA -ACGGAAATGTCGAGACACCGAACA -ACGGAAATGTCGAGACACCAGTCA -ACGGAAATGTCGAGACACGATCCA -ACGGAAATGTCGAGACACACGACA -ACGGAAATGTCGAGACACAGCTCA -ACGGAAATGTCGAGACACTCACGT -ACGGAAATGTCGAGACACCGTAGT -ACGGAAATGTCGAGACACGTCAGT -ACGGAAATGTCGAGACACGAAGGT -ACGGAAATGTCGAGACACAACCGT -ACGGAAATGTCGAGACACTTGTGC -ACGGAAATGTCGAGACACCTAAGC -ACGGAAATGTCGAGACACACTAGC -ACGGAAATGTCGAGACACAGATGC -ACGGAAATGTCGAGACACTGAAGG -ACGGAAATGTCGAGACACCAATGG -ACGGAAATGTCGAGACACATGAGG -ACGGAAATGTCGAGACACAATGGG -ACGGAAATGTCGAGACACTCCTGA -ACGGAAATGTCGAGACACTAGCGA -ACGGAAATGTCGAGACACCACAGA -ACGGAAATGTCGAGACACGCAAGA -ACGGAAATGTCGAGACACGGTTGA -ACGGAAATGTCGAGACACTCCGAT -ACGGAAATGTCGAGACACTGGCAT -ACGGAAATGTCGAGACACCGAGAT -ACGGAAATGTCGAGACACTACCAC -ACGGAAATGTCGAGACACCAGAAC -ACGGAAATGTCGAGACACGTCTAC -ACGGAAATGTCGAGACACACGTAC -ACGGAAATGTCGAGACACAGTGAC -ACGGAAATGTCGAGACACCTGTAG -ACGGAAATGTCGAGACACCCTAAG -ACGGAAATGTCGAGACACGTTCAG -ACGGAAATGTCGAGACACGCATAG -ACGGAAATGTCGAGACACGACAAG -ACGGAAATGTCGAGACACAAGCAG -ACGGAAATGTCGAGACACCGTCAA -ACGGAAATGTCGAGACACGCTGAA -ACGGAAATGTCGAGACACAGTACG -ACGGAAATGTCGAGACACATCCGA -ACGGAAATGTCGAGACACATGGGA -ACGGAAATGTCGAGACACGTGCAA -ACGGAAATGTCGAGACACGAGGAA -ACGGAAATGTCGAGACACCAGGTA -ACGGAAATGTCGAGACACGACTCT -ACGGAAATGTCGAGACACAGTCCT -ACGGAAATGTCGAGACACTAAGCC -ACGGAAATGTCGAGACACATAGCC -ACGGAAATGTCGAGACACTAACCG -ACGGAAATGTCGAGACACATGCCA -ACGGAAATGTCGAGAGCAGGAAAC -ACGGAAATGTCGAGAGCAAACACC -ACGGAAATGTCGAGAGCAATCGAG -ACGGAAATGTCGAGAGCACTCCTT -ACGGAAATGTCGAGAGCACCTGTT -ACGGAAATGTCGAGAGCACGGTTT -ACGGAAATGTCGAGAGCAGTGGTT -ACGGAAATGTCGAGAGCAGCCTTT -ACGGAAATGTCGAGAGCAGGTCTT -ACGGAAATGTCGAGAGCAACGCTT -ACGGAAATGTCGAGAGCAAGCGTT -ACGGAAATGTCGAGAGCATTCGTC -ACGGAAATGTCGAGAGCATCTCTC -ACGGAAATGTCGAGAGCATGGATC -ACGGAAATGTCGAGAGCACACTTC -ACGGAAATGTCGAGAGCAGTACTC -ACGGAAATGTCGAGAGCAGATGTC -ACGGAAATGTCGAGAGCAACAGTC -ACGGAAATGTCGAGAGCATTGCTG -ACGGAAATGTCGAGAGCATCCATG -ACGGAAATGTCGAGAGCATGTGTG -ACGGAAATGTCGAGAGCACTAGTG -ACGGAAATGTCGAGAGCACATCTG -ACGGAAATGTCGAGAGCAGAGTTG -ACGGAAATGTCGAGAGCAAGACTG -ACGGAAATGTCGAGAGCATCGGTA -ACGGAAATGTCGAGAGCATGCCTA -ACGGAAATGTCGAGAGCACCACTA -ACGGAAATGTCGAGAGCAGGAGTA -ACGGAAATGTCGAGAGCATCGTCT -ACGGAAATGTCGAGAGCATGCACT -ACGGAAATGTCGAGAGCACTGACT -ACGGAAATGTCGAGAGCACAACCT -ACGGAAATGTCGAGAGCAGCTACT -ACGGAAATGTCGAGAGCAGGATCT -ACGGAAATGTCGAGAGCAAAGGCT -ACGGAAATGTCGAGAGCATCAACC -ACGGAAATGTCGAGAGCATGTTCC -ACGGAAATGTCGAGAGCAATTCCC -ACGGAAATGTCGAGAGCATTCTCG -ACGGAAATGTCGAGAGCATAGACG -ACGGAAATGTCGAGAGCAGTAACG -ACGGAAATGTCGAGAGCAACTTCG -ACGGAAATGTCGAGAGCATACGCA -ACGGAAATGTCGAGAGCACTTGCA -ACGGAAATGTCGAGAGCACGAACA -ACGGAAATGTCGAGAGCACAGTCA -ACGGAAATGTCGAGAGCAGATCCA -ACGGAAATGTCGAGAGCAACGACA -ACGGAAATGTCGAGAGCAAGCTCA -ACGGAAATGTCGAGAGCATCACGT -ACGGAAATGTCGAGAGCACGTAGT -ACGGAAATGTCGAGAGCAGTCAGT -ACGGAAATGTCGAGAGCAGAAGGT -ACGGAAATGTCGAGAGCAAACCGT -ACGGAAATGTCGAGAGCATTGTGC -ACGGAAATGTCGAGAGCACTAAGC -ACGGAAATGTCGAGAGCAACTAGC -ACGGAAATGTCGAGAGCAAGATGC -ACGGAAATGTCGAGAGCATGAAGG -ACGGAAATGTCGAGAGCACAATGG -ACGGAAATGTCGAGAGCAATGAGG -ACGGAAATGTCGAGAGCAAATGGG -ACGGAAATGTCGAGAGCATCCTGA -ACGGAAATGTCGAGAGCATAGCGA -ACGGAAATGTCGAGAGCACACAGA -ACGGAAATGTCGAGAGCAGCAAGA -ACGGAAATGTCGAGAGCAGGTTGA -ACGGAAATGTCGAGAGCATCCGAT -ACGGAAATGTCGAGAGCATGGCAT -ACGGAAATGTCGAGAGCACGAGAT -ACGGAAATGTCGAGAGCATACCAC -ACGGAAATGTCGAGAGCACAGAAC -ACGGAAATGTCGAGAGCAGTCTAC -ACGGAAATGTCGAGAGCAACGTAC -ACGGAAATGTCGAGAGCAAGTGAC -ACGGAAATGTCGAGAGCACTGTAG -ACGGAAATGTCGAGAGCACCTAAG -ACGGAAATGTCGAGAGCAGTTCAG -ACGGAAATGTCGAGAGCAGCATAG -ACGGAAATGTCGAGAGCAGACAAG -ACGGAAATGTCGAGAGCAAAGCAG -ACGGAAATGTCGAGAGCACGTCAA -ACGGAAATGTCGAGAGCAGCTGAA -ACGGAAATGTCGAGAGCAAGTACG -ACGGAAATGTCGAGAGCAATCCGA -ACGGAAATGTCGAGAGCAATGGGA -ACGGAAATGTCGAGAGCAGTGCAA -ACGGAAATGTCGAGAGCAGAGGAA -ACGGAAATGTCGAGAGCACAGGTA -ACGGAAATGTCGAGAGCAGACTCT -ACGGAAATGTCGAGAGCAAGTCCT -ACGGAAATGTCGAGAGCATAAGCC -ACGGAAATGTCGAGAGCAATAGCC -ACGGAAATGTCGAGAGCATAACCG -ACGGAAATGTCGAGAGCAATGCCA -ACGGAAATGTCGTGAGGTGGAAAC -ACGGAAATGTCGTGAGGTAACACC -ACGGAAATGTCGTGAGGTATCGAG -ACGGAAATGTCGTGAGGTCTCCTT -ACGGAAATGTCGTGAGGTCCTGTT -ACGGAAATGTCGTGAGGTCGGTTT -ACGGAAATGTCGTGAGGTGTGGTT -ACGGAAATGTCGTGAGGTGCCTTT -ACGGAAATGTCGTGAGGTGGTCTT -ACGGAAATGTCGTGAGGTACGCTT -ACGGAAATGTCGTGAGGTAGCGTT -ACGGAAATGTCGTGAGGTTTCGTC -ACGGAAATGTCGTGAGGTTCTCTC -ACGGAAATGTCGTGAGGTTGGATC -ACGGAAATGTCGTGAGGTCACTTC -ACGGAAATGTCGTGAGGTGTACTC -ACGGAAATGTCGTGAGGTGATGTC -ACGGAAATGTCGTGAGGTACAGTC -ACGGAAATGTCGTGAGGTTTGCTG -ACGGAAATGTCGTGAGGTTCCATG -ACGGAAATGTCGTGAGGTTGTGTG -ACGGAAATGTCGTGAGGTCTAGTG -ACGGAAATGTCGTGAGGTCATCTG -ACGGAAATGTCGTGAGGTGAGTTG -ACGGAAATGTCGTGAGGTAGACTG -ACGGAAATGTCGTGAGGTTCGGTA -ACGGAAATGTCGTGAGGTTGCCTA -ACGGAAATGTCGTGAGGTCCACTA -ACGGAAATGTCGTGAGGTGGAGTA -ACGGAAATGTCGTGAGGTTCGTCT -ACGGAAATGTCGTGAGGTTGCACT -ACGGAAATGTCGTGAGGTCTGACT -ACGGAAATGTCGTGAGGTCAACCT -ACGGAAATGTCGTGAGGTGCTACT -ACGGAAATGTCGTGAGGTGGATCT -ACGGAAATGTCGTGAGGTAAGGCT -ACGGAAATGTCGTGAGGTTCAACC -ACGGAAATGTCGTGAGGTTGTTCC -ACGGAAATGTCGTGAGGTATTCCC -ACGGAAATGTCGTGAGGTTTCTCG -ACGGAAATGTCGTGAGGTTAGACG -ACGGAAATGTCGTGAGGTGTAACG -ACGGAAATGTCGTGAGGTACTTCG -ACGGAAATGTCGTGAGGTTACGCA -ACGGAAATGTCGTGAGGTCTTGCA -ACGGAAATGTCGTGAGGTCGAACA -ACGGAAATGTCGTGAGGTCAGTCA -ACGGAAATGTCGTGAGGTGATCCA -ACGGAAATGTCGTGAGGTACGACA -ACGGAAATGTCGTGAGGTAGCTCA -ACGGAAATGTCGTGAGGTTCACGT -ACGGAAATGTCGTGAGGTCGTAGT -ACGGAAATGTCGTGAGGTGTCAGT -ACGGAAATGTCGTGAGGTGAAGGT -ACGGAAATGTCGTGAGGTAACCGT -ACGGAAATGTCGTGAGGTTTGTGC -ACGGAAATGTCGTGAGGTCTAAGC -ACGGAAATGTCGTGAGGTACTAGC -ACGGAAATGTCGTGAGGTAGATGC -ACGGAAATGTCGTGAGGTTGAAGG -ACGGAAATGTCGTGAGGTCAATGG -ACGGAAATGTCGTGAGGTATGAGG -ACGGAAATGTCGTGAGGTAATGGG -ACGGAAATGTCGTGAGGTTCCTGA -ACGGAAATGTCGTGAGGTTAGCGA -ACGGAAATGTCGTGAGGTCACAGA -ACGGAAATGTCGTGAGGTGCAAGA -ACGGAAATGTCGTGAGGTGGTTGA -ACGGAAATGTCGTGAGGTTCCGAT -ACGGAAATGTCGTGAGGTTGGCAT -ACGGAAATGTCGTGAGGTCGAGAT -ACGGAAATGTCGTGAGGTTACCAC -ACGGAAATGTCGTGAGGTCAGAAC -ACGGAAATGTCGTGAGGTGTCTAC -ACGGAAATGTCGTGAGGTACGTAC -ACGGAAATGTCGTGAGGTAGTGAC -ACGGAAATGTCGTGAGGTCTGTAG -ACGGAAATGTCGTGAGGTCCTAAG -ACGGAAATGTCGTGAGGTGTTCAG -ACGGAAATGTCGTGAGGTGCATAG -ACGGAAATGTCGTGAGGTGACAAG -ACGGAAATGTCGTGAGGTAAGCAG -ACGGAAATGTCGTGAGGTCGTCAA -ACGGAAATGTCGTGAGGTGCTGAA -ACGGAAATGTCGTGAGGTAGTACG -ACGGAAATGTCGTGAGGTATCCGA -ACGGAAATGTCGTGAGGTATGGGA -ACGGAAATGTCGTGAGGTGTGCAA -ACGGAAATGTCGTGAGGTGAGGAA -ACGGAAATGTCGTGAGGTCAGGTA -ACGGAAATGTCGTGAGGTGACTCT -ACGGAAATGTCGTGAGGTAGTCCT -ACGGAAATGTCGTGAGGTTAAGCC -ACGGAAATGTCGTGAGGTATAGCC -ACGGAAATGTCGTGAGGTTAACCG -ACGGAAATGTCGTGAGGTATGCCA -ACGGAAATGTCGGATTCCGGAAAC -ACGGAAATGTCGGATTCCAACACC -ACGGAAATGTCGGATTCCATCGAG -ACGGAAATGTCGGATTCCCTCCTT -ACGGAAATGTCGGATTCCCCTGTT -ACGGAAATGTCGGATTCCCGGTTT -ACGGAAATGTCGGATTCCGTGGTT -ACGGAAATGTCGGATTCCGCCTTT -ACGGAAATGTCGGATTCCGGTCTT -ACGGAAATGTCGGATTCCACGCTT -ACGGAAATGTCGGATTCCAGCGTT -ACGGAAATGTCGGATTCCTTCGTC -ACGGAAATGTCGGATTCCTCTCTC -ACGGAAATGTCGGATTCCTGGATC -ACGGAAATGTCGGATTCCCACTTC -ACGGAAATGTCGGATTCCGTACTC -ACGGAAATGTCGGATTCCGATGTC -ACGGAAATGTCGGATTCCACAGTC -ACGGAAATGTCGGATTCCTTGCTG -ACGGAAATGTCGGATTCCTCCATG -ACGGAAATGTCGGATTCCTGTGTG -ACGGAAATGTCGGATTCCCTAGTG -ACGGAAATGTCGGATTCCCATCTG -ACGGAAATGTCGGATTCCGAGTTG -ACGGAAATGTCGGATTCCAGACTG -ACGGAAATGTCGGATTCCTCGGTA -ACGGAAATGTCGGATTCCTGCCTA -ACGGAAATGTCGGATTCCCCACTA -ACGGAAATGTCGGATTCCGGAGTA -ACGGAAATGTCGGATTCCTCGTCT -ACGGAAATGTCGGATTCCTGCACT -ACGGAAATGTCGGATTCCCTGACT -ACGGAAATGTCGGATTCCCAACCT -ACGGAAATGTCGGATTCCGCTACT -ACGGAAATGTCGGATTCCGGATCT -ACGGAAATGTCGGATTCCAAGGCT -ACGGAAATGTCGGATTCCTCAACC -ACGGAAATGTCGGATTCCTGTTCC -ACGGAAATGTCGGATTCCATTCCC -ACGGAAATGTCGGATTCCTTCTCG -ACGGAAATGTCGGATTCCTAGACG -ACGGAAATGTCGGATTCCGTAACG -ACGGAAATGTCGGATTCCACTTCG -ACGGAAATGTCGGATTCCTACGCA -ACGGAAATGTCGGATTCCCTTGCA -ACGGAAATGTCGGATTCCCGAACA -ACGGAAATGTCGGATTCCCAGTCA -ACGGAAATGTCGGATTCCGATCCA -ACGGAAATGTCGGATTCCACGACA -ACGGAAATGTCGGATTCCAGCTCA -ACGGAAATGTCGGATTCCTCACGT -ACGGAAATGTCGGATTCCCGTAGT -ACGGAAATGTCGGATTCCGTCAGT -ACGGAAATGTCGGATTCCGAAGGT -ACGGAAATGTCGGATTCCAACCGT -ACGGAAATGTCGGATTCCTTGTGC -ACGGAAATGTCGGATTCCCTAAGC -ACGGAAATGTCGGATTCCACTAGC -ACGGAAATGTCGGATTCCAGATGC -ACGGAAATGTCGGATTCCTGAAGG -ACGGAAATGTCGGATTCCCAATGG -ACGGAAATGTCGGATTCCATGAGG -ACGGAAATGTCGGATTCCAATGGG -ACGGAAATGTCGGATTCCTCCTGA -ACGGAAATGTCGGATTCCTAGCGA -ACGGAAATGTCGGATTCCCACAGA -ACGGAAATGTCGGATTCCGCAAGA -ACGGAAATGTCGGATTCCGGTTGA -ACGGAAATGTCGGATTCCTCCGAT -ACGGAAATGTCGGATTCCTGGCAT -ACGGAAATGTCGGATTCCCGAGAT -ACGGAAATGTCGGATTCCTACCAC -ACGGAAATGTCGGATTCCCAGAAC -ACGGAAATGTCGGATTCCGTCTAC -ACGGAAATGTCGGATTCCACGTAC -ACGGAAATGTCGGATTCCAGTGAC -ACGGAAATGTCGGATTCCCTGTAG -ACGGAAATGTCGGATTCCCCTAAG -ACGGAAATGTCGGATTCCGTTCAG -ACGGAAATGTCGGATTCCGCATAG -ACGGAAATGTCGGATTCCGACAAG -ACGGAAATGTCGGATTCCAAGCAG -ACGGAAATGTCGGATTCCCGTCAA -ACGGAAATGTCGGATTCCGCTGAA -ACGGAAATGTCGGATTCCAGTACG -ACGGAAATGTCGGATTCCATCCGA -ACGGAAATGTCGGATTCCATGGGA -ACGGAAATGTCGGATTCCGTGCAA -ACGGAAATGTCGGATTCCGAGGAA -ACGGAAATGTCGGATTCCCAGGTA -ACGGAAATGTCGGATTCCGACTCT -ACGGAAATGTCGGATTCCAGTCCT -ACGGAAATGTCGGATTCCTAAGCC -ACGGAAATGTCGGATTCCATAGCC -ACGGAAATGTCGGATTCCTAACCG -ACGGAAATGTCGGATTCCATGCCA -ACGGAAATGTCGCATTGGGGAAAC -ACGGAAATGTCGCATTGGAACACC -ACGGAAATGTCGCATTGGATCGAG -ACGGAAATGTCGCATTGGCTCCTT -ACGGAAATGTCGCATTGGCCTGTT -ACGGAAATGTCGCATTGGCGGTTT -ACGGAAATGTCGCATTGGGTGGTT -ACGGAAATGTCGCATTGGGCCTTT -ACGGAAATGTCGCATTGGGGTCTT -ACGGAAATGTCGCATTGGACGCTT -ACGGAAATGTCGCATTGGAGCGTT -ACGGAAATGTCGCATTGGTTCGTC -ACGGAAATGTCGCATTGGTCTCTC -ACGGAAATGTCGCATTGGTGGATC -ACGGAAATGTCGCATTGGCACTTC -ACGGAAATGTCGCATTGGGTACTC -ACGGAAATGTCGCATTGGGATGTC -ACGGAAATGTCGCATTGGACAGTC -ACGGAAATGTCGCATTGGTTGCTG -ACGGAAATGTCGCATTGGTCCATG -ACGGAAATGTCGCATTGGTGTGTG -ACGGAAATGTCGCATTGGCTAGTG -ACGGAAATGTCGCATTGGCATCTG -ACGGAAATGTCGCATTGGGAGTTG -ACGGAAATGTCGCATTGGAGACTG -ACGGAAATGTCGCATTGGTCGGTA -ACGGAAATGTCGCATTGGTGCCTA -ACGGAAATGTCGCATTGGCCACTA -ACGGAAATGTCGCATTGGGGAGTA -ACGGAAATGTCGCATTGGTCGTCT -ACGGAAATGTCGCATTGGTGCACT -ACGGAAATGTCGCATTGGCTGACT -ACGGAAATGTCGCATTGGCAACCT -ACGGAAATGTCGCATTGGGCTACT -ACGGAAATGTCGCATTGGGGATCT -ACGGAAATGTCGCATTGGAAGGCT -ACGGAAATGTCGCATTGGTCAACC -ACGGAAATGTCGCATTGGTGTTCC -ACGGAAATGTCGCATTGGATTCCC -ACGGAAATGTCGCATTGGTTCTCG -ACGGAAATGTCGCATTGGTAGACG -ACGGAAATGTCGCATTGGGTAACG -ACGGAAATGTCGCATTGGACTTCG -ACGGAAATGTCGCATTGGTACGCA -ACGGAAATGTCGCATTGGCTTGCA -ACGGAAATGTCGCATTGGCGAACA -ACGGAAATGTCGCATTGGCAGTCA -ACGGAAATGTCGCATTGGGATCCA -ACGGAAATGTCGCATTGGACGACA -ACGGAAATGTCGCATTGGAGCTCA -ACGGAAATGTCGCATTGGTCACGT -ACGGAAATGTCGCATTGGCGTAGT -ACGGAAATGTCGCATTGGGTCAGT -ACGGAAATGTCGCATTGGGAAGGT -ACGGAAATGTCGCATTGGAACCGT -ACGGAAATGTCGCATTGGTTGTGC -ACGGAAATGTCGCATTGGCTAAGC -ACGGAAATGTCGCATTGGACTAGC -ACGGAAATGTCGCATTGGAGATGC -ACGGAAATGTCGCATTGGTGAAGG -ACGGAAATGTCGCATTGGCAATGG -ACGGAAATGTCGCATTGGATGAGG -ACGGAAATGTCGCATTGGAATGGG -ACGGAAATGTCGCATTGGTCCTGA -ACGGAAATGTCGCATTGGTAGCGA -ACGGAAATGTCGCATTGGCACAGA -ACGGAAATGTCGCATTGGGCAAGA -ACGGAAATGTCGCATTGGGGTTGA -ACGGAAATGTCGCATTGGTCCGAT -ACGGAAATGTCGCATTGGTGGCAT -ACGGAAATGTCGCATTGGCGAGAT -ACGGAAATGTCGCATTGGTACCAC -ACGGAAATGTCGCATTGGCAGAAC -ACGGAAATGTCGCATTGGGTCTAC -ACGGAAATGTCGCATTGGACGTAC -ACGGAAATGTCGCATTGGAGTGAC -ACGGAAATGTCGCATTGGCTGTAG -ACGGAAATGTCGCATTGGCCTAAG -ACGGAAATGTCGCATTGGGTTCAG -ACGGAAATGTCGCATTGGGCATAG -ACGGAAATGTCGCATTGGGACAAG -ACGGAAATGTCGCATTGGAAGCAG -ACGGAAATGTCGCATTGGCGTCAA -ACGGAAATGTCGCATTGGGCTGAA -ACGGAAATGTCGCATTGGAGTACG -ACGGAAATGTCGCATTGGATCCGA -ACGGAAATGTCGCATTGGATGGGA -ACGGAAATGTCGCATTGGGTGCAA -ACGGAAATGTCGCATTGGGAGGAA -ACGGAAATGTCGCATTGGCAGGTA -ACGGAAATGTCGCATTGGGACTCT -ACGGAAATGTCGCATTGGAGTCCT -ACGGAAATGTCGCATTGGTAAGCC -ACGGAAATGTCGCATTGGATAGCC -ACGGAAATGTCGCATTGGTAACCG -ACGGAAATGTCGCATTGGATGCCA -ACGGAAATGTCGGATCGAGGAAAC -ACGGAAATGTCGGATCGAAACACC -ACGGAAATGTCGGATCGAATCGAG -ACGGAAATGTCGGATCGACTCCTT -ACGGAAATGTCGGATCGACCTGTT -ACGGAAATGTCGGATCGACGGTTT -ACGGAAATGTCGGATCGAGTGGTT -ACGGAAATGTCGGATCGAGCCTTT -ACGGAAATGTCGGATCGAGGTCTT -ACGGAAATGTCGGATCGAACGCTT -ACGGAAATGTCGGATCGAAGCGTT -ACGGAAATGTCGGATCGATTCGTC -ACGGAAATGTCGGATCGATCTCTC -ACGGAAATGTCGGATCGATGGATC -ACGGAAATGTCGGATCGACACTTC -ACGGAAATGTCGGATCGAGTACTC -ACGGAAATGTCGGATCGAGATGTC -ACGGAAATGTCGGATCGAACAGTC -ACGGAAATGTCGGATCGATTGCTG -ACGGAAATGTCGGATCGATCCATG -ACGGAAATGTCGGATCGATGTGTG -ACGGAAATGTCGGATCGACTAGTG -ACGGAAATGTCGGATCGACATCTG -ACGGAAATGTCGGATCGAGAGTTG -ACGGAAATGTCGGATCGAAGACTG -ACGGAAATGTCGGATCGATCGGTA -ACGGAAATGTCGGATCGATGCCTA -ACGGAAATGTCGGATCGACCACTA -ACGGAAATGTCGGATCGAGGAGTA -ACGGAAATGTCGGATCGATCGTCT -ACGGAAATGTCGGATCGATGCACT -ACGGAAATGTCGGATCGACTGACT -ACGGAAATGTCGGATCGACAACCT -ACGGAAATGTCGGATCGAGCTACT -ACGGAAATGTCGGATCGAGGATCT -ACGGAAATGTCGGATCGAAAGGCT -ACGGAAATGTCGGATCGATCAACC -ACGGAAATGTCGGATCGATGTTCC -ACGGAAATGTCGGATCGAATTCCC -ACGGAAATGTCGGATCGATTCTCG -ACGGAAATGTCGGATCGATAGACG -ACGGAAATGTCGGATCGAGTAACG -ACGGAAATGTCGGATCGAACTTCG -ACGGAAATGTCGGATCGATACGCA -ACGGAAATGTCGGATCGACTTGCA -ACGGAAATGTCGGATCGACGAACA -ACGGAAATGTCGGATCGACAGTCA -ACGGAAATGTCGGATCGAGATCCA -ACGGAAATGTCGGATCGAACGACA -ACGGAAATGTCGGATCGAAGCTCA -ACGGAAATGTCGGATCGATCACGT -ACGGAAATGTCGGATCGACGTAGT -ACGGAAATGTCGGATCGAGTCAGT -ACGGAAATGTCGGATCGAGAAGGT -ACGGAAATGTCGGATCGAAACCGT -ACGGAAATGTCGGATCGATTGTGC -ACGGAAATGTCGGATCGACTAAGC -ACGGAAATGTCGGATCGAACTAGC -ACGGAAATGTCGGATCGAAGATGC -ACGGAAATGTCGGATCGATGAAGG -ACGGAAATGTCGGATCGACAATGG -ACGGAAATGTCGGATCGAATGAGG -ACGGAAATGTCGGATCGAAATGGG -ACGGAAATGTCGGATCGATCCTGA -ACGGAAATGTCGGATCGATAGCGA -ACGGAAATGTCGGATCGACACAGA -ACGGAAATGTCGGATCGAGCAAGA -ACGGAAATGTCGGATCGAGGTTGA -ACGGAAATGTCGGATCGATCCGAT -ACGGAAATGTCGGATCGATGGCAT -ACGGAAATGTCGGATCGACGAGAT -ACGGAAATGTCGGATCGATACCAC -ACGGAAATGTCGGATCGACAGAAC -ACGGAAATGTCGGATCGAGTCTAC -ACGGAAATGTCGGATCGAACGTAC -ACGGAAATGTCGGATCGAAGTGAC -ACGGAAATGTCGGATCGACTGTAG -ACGGAAATGTCGGATCGACCTAAG -ACGGAAATGTCGGATCGAGTTCAG -ACGGAAATGTCGGATCGAGCATAG -ACGGAAATGTCGGATCGAGACAAG -ACGGAAATGTCGGATCGAAAGCAG -ACGGAAATGTCGGATCGACGTCAA -ACGGAAATGTCGGATCGAGCTGAA -ACGGAAATGTCGGATCGAAGTACG -ACGGAAATGTCGGATCGAATCCGA -ACGGAAATGTCGGATCGAATGGGA -ACGGAAATGTCGGATCGAGTGCAA -ACGGAAATGTCGGATCGAGAGGAA -ACGGAAATGTCGGATCGACAGGTA -ACGGAAATGTCGGATCGAGACTCT -ACGGAAATGTCGGATCGAAGTCCT -ACGGAAATGTCGGATCGATAAGCC -ACGGAAATGTCGGATCGAATAGCC -ACGGAAATGTCGGATCGATAACCG -ACGGAAATGTCGGATCGAATGCCA -ACGGAAATGTCGCACTACGGAAAC -ACGGAAATGTCGCACTACAACACC -ACGGAAATGTCGCACTACATCGAG -ACGGAAATGTCGCACTACCTCCTT -ACGGAAATGTCGCACTACCCTGTT -ACGGAAATGTCGCACTACCGGTTT -ACGGAAATGTCGCACTACGTGGTT -ACGGAAATGTCGCACTACGCCTTT -ACGGAAATGTCGCACTACGGTCTT -ACGGAAATGTCGCACTACACGCTT -ACGGAAATGTCGCACTACAGCGTT -ACGGAAATGTCGCACTACTTCGTC -ACGGAAATGTCGCACTACTCTCTC -ACGGAAATGTCGCACTACTGGATC -ACGGAAATGTCGCACTACCACTTC -ACGGAAATGTCGCACTACGTACTC -ACGGAAATGTCGCACTACGATGTC -ACGGAAATGTCGCACTACACAGTC -ACGGAAATGTCGCACTACTTGCTG -ACGGAAATGTCGCACTACTCCATG -ACGGAAATGTCGCACTACTGTGTG -ACGGAAATGTCGCACTACCTAGTG -ACGGAAATGTCGCACTACCATCTG -ACGGAAATGTCGCACTACGAGTTG -ACGGAAATGTCGCACTACAGACTG -ACGGAAATGTCGCACTACTCGGTA -ACGGAAATGTCGCACTACTGCCTA -ACGGAAATGTCGCACTACCCACTA -ACGGAAATGTCGCACTACGGAGTA -ACGGAAATGTCGCACTACTCGTCT -ACGGAAATGTCGCACTACTGCACT -ACGGAAATGTCGCACTACCTGACT -ACGGAAATGTCGCACTACCAACCT -ACGGAAATGTCGCACTACGCTACT -ACGGAAATGTCGCACTACGGATCT -ACGGAAATGTCGCACTACAAGGCT -ACGGAAATGTCGCACTACTCAACC -ACGGAAATGTCGCACTACTGTTCC -ACGGAAATGTCGCACTACATTCCC -ACGGAAATGTCGCACTACTTCTCG -ACGGAAATGTCGCACTACTAGACG -ACGGAAATGTCGCACTACGTAACG -ACGGAAATGTCGCACTACACTTCG -ACGGAAATGTCGCACTACTACGCA -ACGGAAATGTCGCACTACCTTGCA -ACGGAAATGTCGCACTACCGAACA -ACGGAAATGTCGCACTACCAGTCA -ACGGAAATGTCGCACTACGATCCA -ACGGAAATGTCGCACTACACGACA -ACGGAAATGTCGCACTACAGCTCA -ACGGAAATGTCGCACTACTCACGT -ACGGAAATGTCGCACTACCGTAGT -ACGGAAATGTCGCACTACGTCAGT -ACGGAAATGTCGCACTACGAAGGT -ACGGAAATGTCGCACTACAACCGT -ACGGAAATGTCGCACTACTTGTGC -ACGGAAATGTCGCACTACCTAAGC -ACGGAAATGTCGCACTACACTAGC -ACGGAAATGTCGCACTACAGATGC -ACGGAAATGTCGCACTACTGAAGG -ACGGAAATGTCGCACTACCAATGG -ACGGAAATGTCGCACTACATGAGG -ACGGAAATGTCGCACTACAATGGG -ACGGAAATGTCGCACTACTCCTGA -ACGGAAATGTCGCACTACTAGCGA -ACGGAAATGTCGCACTACCACAGA -ACGGAAATGTCGCACTACGCAAGA -ACGGAAATGTCGCACTACGGTTGA -ACGGAAATGTCGCACTACTCCGAT -ACGGAAATGTCGCACTACTGGCAT -ACGGAAATGTCGCACTACCGAGAT -ACGGAAATGTCGCACTACTACCAC -ACGGAAATGTCGCACTACCAGAAC -ACGGAAATGTCGCACTACGTCTAC -ACGGAAATGTCGCACTACACGTAC -ACGGAAATGTCGCACTACAGTGAC -ACGGAAATGTCGCACTACCTGTAG -ACGGAAATGTCGCACTACCCTAAG -ACGGAAATGTCGCACTACGTTCAG -ACGGAAATGTCGCACTACGCATAG -ACGGAAATGTCGCACTACGACAAG -ACGGAAATGTCGCACTACAAGCAG -ACGGAAATGTCGCACTACCGTCAA -ACGGAAATGTCGCACTACGCTGAA -ACGGAAATGTCGCACTACAGTACG -ACGGAAATGTCGCACTACATCCGA -ACGGAAATGTCGCACTACATGGGA -ACGGAAATGTCGCACTACGTGCAA -ACGGAAATGTCGCACTACGAGGAA -ACGGAAATGTCGCACTACCAGGTA -ACGGAAATGTCGCACTACGACTCT -ACGGAAATGTCGCACTACAGTCCT -ACGGAAATGTCGCACTACTAAGCC -ACGGAAATGTCGCACTACATAGCC -ACGGAAATGTCGCACTACTAACCG -ACGGAAATGTCGCACTACATGCCA -ACGGAAATGTCGAACCAGGGAAAC -ACGGAAATGTCGAACCAGAACACC -ACGGAAATGTCGAACCAGATCGAG -ACGGAAATGTCGAACCAGCTCCTT -ACGGAAATGTCGAACCAGCCTGTT -ACGGAAATGTCGAACCAGCGGTTT -ACGGAAATGTCGAACCAGGTGGTT -ACGGAAATGTCGAACCAGGCCTTT -ACGGAAATGTCGAACCAGGGTCTT -ACGGAAATGTCGAACCAGACGCTT -ACGGAAATGTCGAACCAGAGCGTT -ACGGAAATGTCGAACCAGTTCGTC -ACGGAAATGTCGAACCAGTCTCTC -ACGGAAATGTCGAACCAGTGGATC -ACGGAAATGTCGAACCAGCACTTC -ACGGAAATGTCGAACCAGGTACTC -ACGGAAATGTCGAACCAGGATGTC -ACGGAAATGTCGAACCAGACAGTC -ACGGAAATGTCGAACCAGTTGCTG -ACGGAAATGTCGAACCAGTCCATG -ACGGAAATGTCGAACCAGTGTGTG -ACGGAAATGTCGAACCAGCTAGTG -ACGGAAATGTCGAACCAGCATCTG -ACGGAAATGTCGAACCAGGAGTTG -ACGGAAATGTCGAACCAGAGACTG -ACGGAAATGTCGAACCAGTCGGTA -ACGGAAATGTCGAACCAGTGCCTA -ACGGAAATGTCGAACCAGCCACTA -ACGGAAATGTCGAACCAGGGAGTA -ACGGAAATGTCGAACCAGTCGTCT -ACGGAAATGTCGAACCAGTGCACT -ACGGAAATGTCGAACCAGCTGACT -ACGGAAATGTCGAACCAGCAACCT -ACGGAAATGTCGAACCAGGCTACT -ACGGAAATGTCGAACCAGGGATCT -ACGGAAATGTCGAACCAGAAGGCT -ACGGAAATGTCGAACCAGTCAACC -ACGGAAATGTCGAACCAGTGTTCC -ACGGAAATGTCGAACCAGATTCCC -ACGGAAATGTCGAACCAGTTCTCG -ACGGAAATGTCGAACCAGTAGACG -ACGGAAATGTCGAACCAGGTAACG -ACGGAAATGTCGAACCAGACTTCG -ACGGAAATGTCGAACCAGTACGCA -ACGGAAATGTCGAACCAGCTTGCA -ACGGAAATGTCGAACCAGCGAACA -ACGGAAATGTCGAACCAGCAGTCA -ACGGAAATGTCGAACCAGGATCCA -ACGGAAATGTCGAACCAGACGACA -ACGGAAATGTCGAACCAGAGCTCA -ACGGAAATGTCGAACCAGTCACGT -ACGGAAATGTCGAACCAGCGTAGT -ACGGAAATGTCGAACCAGGTCAGT -ACGGAAATGTCGAACCAGGAAGGT -ACGGAAATGTCGAACCAGAACCGT -ACGGAAATGTCGAACCAGTTGTGC -ACGGAAATGTCGAACCAGCTAAGC -ACGGAAATGTCGAACCAGACTAGC -ACGGAAATGTCGAACCAGAGATGC -ACGGAAATGTCGAACCAGTGAAGG -ACGGAAATGTCGAACCAGCAATGG -ACGGAAATGTCGAACCAGATGAGG -ACGGAAATGTCGAACCAGAATGGG -ACGGAAATGTCGAACCAGTCCTGA -ACGGAAATGTCGAACCAGTAGCGA -ACGGAAATGTCGAACCAGCACAGA -ACGGAAATGTCGAACCAGGCAAGA -ACGGAAATGTCGAACCAGGGTTGA -ACGGAAATGTCGAACCAGTCCGAT -ACGGAAATGTCGAACCAGTGGCAT -ACGGAAATGTCGAACCAGCGAGAT -ACGGAAATGTCGAACCAGTACCAC -ACGGAAATGTCGAACCAGCAGAAC -ACGGAAATGTCGAACCAGGTCTAC -ACGGAAATGTCGAACCAGACGTAC -ACGGAAATGTCGAACCAGAGTGAC -ACGGAAATGTCGAACCAGCTGTAG -ACGGAAATGTCGAACCAGCCTAAG -ACGGAAATGTCGAACCAGGTTCAG -ACGGAAATGTCGAACCAGGCATAG -ACGGAAATGTCGAACCAGGACAAG -ACGGAAATGTCGAACCAGAAGCAG -ACGGAAATGTCGAACCAGCGTCAA -ACGGAAATGTCGAACCAGGCTGAA -ACGGAAATGTCGAACCAGAGTACG -ACGGAAATGTCGAACCAGATCCGA -ACGGAAATGTCGAACCAGATGGGA -ACGGAAATGTCGAACCAGGTGCAA -ACGGAAATGTCGAACCAGGAGGAA -ACGGAAATGTCGAACCAGCAGGTA -ACGGAAATGTCGAACCAGGACTCT -ACGGAAATGTCGAACCAGAGTCCT -ACGGAAATGTCGAACCAGTAAGCC -ACGGAAATGTCGAACCAGATAGCC -ACGGAAATGTCGAACCAGTAACCG -ACGGAAATGTCGAACCAGATGCCA -ACGGAAATGTCGTACGTCGGAAAC -ACGGAAATGTCGTACGTCAACACC -ACGGAAATGTCGTACGTCATCGAG -ACGGAAATGTCGTACGTCCTCCTT -ACGGAAATGTCGTACGTCCCTGTT -ACGGAAATGTCGTACGTCCGGTTT -ACGGAAATGTCGTACGTCGTGGTT -ACGGAAATGTCGTACGTCGCCTTT -ACGGAAATGTCGTACGTCGGTCTT -ACGGAAATGTCGTACGTCACGCTT -ACGGAAATGTCGTACGTCAGCGTT -ACGGAAATGTCGTACGTCTTCGTC -ACGGAAATGTCGTACGTCTCTCTC -ACGGAAATGTCGTACGTCTGGATC -ACGGAAATGTCGTACGTCCACTTC -ACGGAAATGTCGTACGTCGTACTC -ACGGAAATGTCGTACGTCGATGTC -ACGGAAATGTCGTACGTCACAGTC -ACGGAAATGTCGTACGTCTTGCTG -ACGGAAATGTCGTACGTCTCCATG -ACGGAAATGTCGTACGTCTGTGTG -ACGGAAATGTCGTACGTCCTAGTG -ACGGAAATGTCGTACGTCCATCTG -ACGGAAATGTCGTACGTCGAGTTG -ACGGAAATGTCGTACGTCAGACTG -ACGGAAATGTCGTACGTCTCGGTA -ACGGAAATGTCGTACGTCTGCCTA -ACGGAAATGTCGTACGTCCCACTA -ACGGAAATGTCGTACGTCGGAGTA -ACGGAAATGTCGTACGTCTCGTCT -ACGGAAATGTCGTACGTCTGCACT -ACGGAAATGTCGTACGTCCTGACT -ACGGAAATGTCGTACGTCCAACCT -ACGGAAATGTCGTACGTCGCTACT -ACGGAAATGTCGTACGTCGGATCT -ACGGAAATGTCGTACGTCAAGGCT -ACGGAAATGTCGTACGTCTCAACC -ACGGAAATGTCGTACGTCTGTTCC -ACGGAAATGTCGTACGTCATTCCC -ACGGAAATGTCGTACGTCTTCTCG -ACGGAAATGTCGTACGTCTAGACG -ACGGAAATGTCGTACGTCGTAACG -ACGGAAATGTCGTACGTCACTTCG -ACGGAAATGTCGTACGTCTACGCA -ACGGAAATGTCGTACGTCCTTGCA -ACGGAAATGTCGTACGTCCGAACA -ACGGAAATGTCGTACGTCCAGTCA -ACGGAAATGTCGTACGTCGATCCA -ACGGAAATGTCGTACGTCACGACA -ACGGAAATGTCGTACGTCAGCTCA -ACGGAAATGTCGTACGTCTCACGT -ACGGAAATGTCGTACGTCCGTAGT -ACGGAAATGTCGTACGTCGTCAGT -ACGGAAATGTCGTACGTCGAAGGT -ACGGAAATGTCGTACGTCAACCGT -ACGGAAATGTCGTACGTCTTGTGC -ACGGAAATGTCGTACGTCCTAAGC -ACGGAAATGTCGTACGTCACTAGC -ACGGAAATGTCGTACGTCAGATGC -ACGGAAATGTCGTACGTCTGAAGG -ACGGAAATGTCGTACGTCCAATGG -ACGGAAATGTCGTACGTCATGAGG -ACGGAAATGTCGTACGTCAATGGG -ACGGAAATGTCGTACGTCTCCTGA -ACGGAAATGTCGTACGTCTAGCGA -ACGGAAATGTCGTACGTCCACAGA -ACGGAAATGTCGTACGTCGCAAGA -ACGGAAATGTCGTACGTCGGTTGA -ACGGAAATGTCGTACGTCTCCGAT -ACGGAAATGTCGTACGTCTGGCAT -ACGGAAATGTCGTACGTCCGAGAT -ACGGAAATGTCGTACGTCTACCAC -ACGGAAATGTCGTACGTCCAGAAC -ACGGAAATGTCGTACGTCGTCTAC -ACGGAAATGTCGTACGTCACGTAC -ACGGAAATGTCGTACGTCAGTGAC -ACGGAAATGTCGTACGTCCTGTAG -ACGGAAATGTCGTACGTCCCTAAG -ACGGAAATGTCGTACGTCGTTCAG -ACGGAAATGTCGTACGTCGCATAG -ACGGAAATGTCGTACGTCGACAAG -ACGGAAATGTCGTACGTCAAGCAG -ACGGAAATGTCGTACGTCCGTCAA -ACGGAAATGTCGTACGTCGCTGAA -ACGGAAATGTCGTACGTCAGTACG -ACGGAAATGTCGTACGTCATCCGA -ACGGAAATGTCGTACGTCATGGGA -ACGGAAATGTCGTACGTCGTGCAA -ACGGAAATGTCGTACGTCGAGGAA -ACGGAAATGTCGTACGTCCAGGTA -ACGGAAATGTCGTACGTCGACTCT -ACGGAAATGTCGTACGTCAGTCCT -ACGGAAATGTCGTACGTCTAAGCC -ACGGAAATGTCGTACGTCATAGCC -ACGGAAATGTCGTACGTCTAACCG -ACGGAAATGTCGTACGTCATGCCA -ACGGAAATGTCGTACACGGGAAAC -ACGGAAATGTCGTACACGAACACC -ACGGAAATGTCGTACACGATCGAG -ACGGAAATGTCGTACACGCTCCTT -ACGGAAATGTCGTACACGCCTGTT -ACGGAAATGTCGTACACGCGGTTT -ACGGAAATGTCGTACACGGTGGTT -ACGGAAATGTCGTACACGGCCTTT -ACGGAAATGTCGTACACGGGTCTT -ACGGAAATGTCGTACACGACGCTT -ACGGAAATGTCGTACACGAGCGTT -ACGGAAATGTCGTACACGTTCGTC -ACGGAAATGTCGTACACGTCTCTC -ACGGAAATGTCGTACACGTGGATC -ACGGAAATGTCGTACACGCACTTC -ACGGAAATGTCGTACACGGTACTC -ACGGAAATGTCGTACACGGATGTC -ACGGAAATGTCGTACACGACAGTC -ACGGAAATGTCGTACACGTTGCTG -ACGGAAATGTCGTACACGTCCATG -ACGGAAATGTCGTACACGTGTGTG -ACGGAAATGTCGTACACGCTAGTG -ACGGAAATGTCGTACACGCATCTG -ACGGAAATGTCGTACACGGAGTTG -ACGGAAATGTCGTACACGAGACTG -ACGGAAATGTCGTACACGTCGGTA -ACGGAAATGTCGTACACGTGCCTA -ACGGAAATGTCGTACACGCCACTA -ACGGAAATGTCGTACACGGGAGTA -ACGGAAATGTCGTACACGTCGTCT -ACGGAAATGTCGTACACGTGCACT -ACGGAAATGTCGTACACGCTGACT -ACGGAAATGTCGTACACGCAACCT -ACGGAAATGTCGTACACGGCTACT -ACGGAAATGTCGTACACGGGATCT -ACGGAAATGTCGTACACGAAGGCT -ACGGAAATGTCGTACACGTCAACC -ACGGAAATGTCGTACACGTGTTCC -ACGGAAATGTCGTACACGATTCCC -ACGGAAATGTCGTACACGTTCTCG -ACGGAAATGTCGTACACGTAGACG -ACGGAAATGTCGTACACGGTAACG -ACGGAAATGTCGTACACGACTTCG -ACGGAAATGTCGTACACGTACGCA -ACGGAAATGTCGTACACGCTTGCA -ACGGAAATGTCGTACACGCGAACA -ACGGAAATGTCGTACACGCAGTCA -ACGGAAATGTCGTACACGGATCCA -ACGGAAATGTCGTACACGACGACA -ACGGAAATGTCGTACACGAGCTCA -ACGGAAATGTCGTACACGTCACGT -ACGGAAATGTCGTACACGCGTAGT -ACGGAAATGTCGTACACGGTCAGT -ACGGAAATGTCGTACACGGAAGGT -ACGGAAATGTCGTACACGAACCGT -ACGGAAATGTCGTACACGTTGTGC -ACGGAAATGTCGTACACGCTAAGC -ACGGAAATGTCGTACACGACTAGC -ACGGAAATGTCGTACACGAGATGC -ACGGAAATGTCGTACACGTGAAGG -ACGGAAATGTCGTACACGCAATGG -ACGGAAATGTCGTACACGATGAGG -ACGGAAATGTCGTACACGAATGGG -ACGGAAATGTCGTACACGTCCTGA -ACGGAAATGTCGTACACGTAGCGA -ACGGAAATGTCGTACACGCACAGA -ACGGAAATGTCGTACACGGCAAGA -ACGGAAATGTCGTACACGGGTTGA -ACGGAAATGTCGTACACGTCCGAT -ACGGAAATGTCGTACACGTGGCAT -ACGGAAATGTCGTACACGCGAGAT -ACGGAAATGTCGTACACGTACCAC -ACGGAAATGTCGTACACGCAGAAC -ACGGAAATGTCGTACACGGTCTAC -ACGGAAATGTCGTACACGACGTAC -ACGGAAATGTCGTACACGAGTGAC -ACGGAAATGTCGTACACGCTGTAG -ACGGAAATGTCGTACACGCCTAAG -ACGGAAATGTCGTACACGGTTCAG -ACGGAAATGTCGTACACGGCATAG -ACGGAAATGTCGTACACGGACAAG -ACGGAAATGTCGTACACGAAGCAG -ACGGAAATGTCGTACACGCGTCAA -ACGGAAATGTCGTACACGGCTGAA -ACGGAAATGTCGTACACGAGTACG -ACGGAAATGTCGTACACGATCCGA -ACGGAAATGTCGTACACGATGGGA -ACGGAAATGTCGTACACGGTGCAA -ACGGAAATGTCGTACACGGAGGAA -ACGGAAATGTCGTACACGCAGGTA -ACGGAAATGTCGTACACGGACTCT -ACGGAAATGTCGTACACGAGTCCT -ACGGAAATGTCGTACACGTAAGCC -ACGGAAATGTCGTACACGATAGCC -ACGGAAATGTCGTACACGTAACCG -ACGGAAATGTCGTACACGATGCCA -ACGGAAATGTCGGACAGTGGAAAC -ACGGAAATGTCGGACAGTAACACC -ACGGAAATGTCGGACAGTATCGAG -ACGGAAATGTCGGACAGTCTCCTT -ACGGAAATGTCGGACAGTCCTGTT -ACGGAAATGTCGGACAGTCGGTTT -ACGGAAATGTCGGACAGTGTGGTT -ACGGAAATGTCGGACAGTGCCTTT -ACGGAAATGTCGGACAGTGGTCTT -ACGGAAATGTCGGACAGTACGCTT -ACGGAAATGTCGGACAGTAGCGTT -ACGGAAATGTCGGACAGTTTCGTC -ACGGAAATGTCGGACAGTTCTCTC -ACGGAAATGTCGGACAGTTGGATC -ACGGAAATGTCGGACAGTCACTTC -ACGGAAATGTCGGACAGTGTACTC -ACGGAAATGTCGGACAGTGATGTC -ACGGAAATGTCGGACAGTACAGTC -ACGGAAATGTCGGACAGTTTGCTG -ACGGAAATGTCGGACAGTTCCATG -ACGGAAATGTCGGACAGTTGTGTG -ACGGAAATGTCGGACAGTCTAGTG -ACGGAAATGTCGGACAGTCATCTG -ACGGAAATGTCGGACAGTGAGTTG -ACGGAAATGTCGGACAGTAGACTG -ACGGAAATGTCGGACAGTTCGGTA -ACGGAAATGTCGGACAGTTGCCTA -ACGGAAATGTCGGACAGTCCACTA -ACGGAAATGTCGGACAGTGGAGTA -ACGGAAATGTCGGACAGTTCGTCT -ACGGAAATGTCGGACAGTTGCACT -ACGGAAATGTCGGACAGTCTGACT -ACGGAAATGTCGGACAGTCAACCT -ACGGAAATGTCGGACAGTGCTACT -ACGGAAATGTCGGACAGTGGATCT -ACGGAAATGTCGGACAGTAAGGCT -ACGGAAATGTCGGACAGTTCAACC -ACGGAAATGTCGGACAGTTGTTCC -ACGGAAATGTCGGACAGTATTCCC -ACGGAAATGTCGGACAGTTTCTCG -ACGGAAATGTCGGACAGTTAGACG -ACGGAAATGTCGGACAGTGTAACG -ACGGAAATGTCGGACAGTACTTCG -ACGGAAATGTCGGACAGTTACGCA -ACGGAAATGTCGGACAGTCTTGCA -ACGGAAATGTCGGACAGTCGAACA -ACGGAAATGTCGGACAGTCAGTCA -ACGGAAATGTCGGACAGTGATCCA -ACGGAAATGTCGGACAGTACGACA -ACGGAAATGTCGGACAGTAGCTCA -ACGGAAATGTCGGACAGTTCACGT -ACGGAAATGTCGGACAGTCGTAGT -ACGGAAATGTCGGACAGTGTCAGT -ACGGAAATGTCGGACAGTGAAGGT -ACGGAAATGTCGGACAGTAACCGT -ACGGAAATGTCGGACAGTTTGTGC -ACGGAAATGTCGGACAGTCTAAGC -ACGGAAATGTCGGACAGTACTAGC -ACGGAAATGTCGGACAGTAGATGC -ACGGAAATGTCGGACAGTTGAAGG -ACGGAAATGTCGGACAGTCAATGG -ACGGAAATGTCGGACAGTATGAGG -ACGGAAATGTCGGACAGTAATGGG -ACGGAAATGTCGGACAGTTCCTGA -ACGGAAATGTCGGACAGTTAGCGA -ACGGAAATGTCGGACAGTCACAGA -ACGGAAATGTCGGACAGTGCAAGA -ACGGAAATGTCGGACAGTGGTTGA -ACGGAAATGTCGGACAGTTCCGAT -ACGGAAATGTCGGACAGTTGGCAT -ACGGAAATGTCGGACAGTCGAGAT -ACGGAAATGTCGGACAGTTACCAC -ACGGAAATGTCGGACAGTCAGAAC -ACGGAAATGTCGGACAGTGTCTAC -ACGGAAATGTCGGACAGTACGTAC -ACGGAAATGTCGGACAGTAGTGAC -ACGGAAATGTCGGACAGTCTGTAG -ACGGAAATGTCGGACAGTCCTAAG -ACGGAAATGTCGGACAGTGTTCAG -ACGGAAATGTCGGACAGTGCATAG -ACGGAAATGTCGGACAGTGACAAG -ACGGAAATGTCGGACAGTAAGCAG -ACGGAAATGTCGGACAGTCGTCAA -ACGGAAATGTCGGACAGTGCTGAA -ACGGAAATGTCGGACAGTAGTACG -ACGGAAATGTCGGACAGTATCCGA -ACGGAAATGTCGGACAGTATGGGA -ACGGAAATGTCGGACAGTGTGCAA -ACGGAAATGTCGGACAGTGAGGAA -ACGGAAATGTCGGACAGTCAGGTA -ACGGAAATGTCGGACAGTGACTCT -ACGGAAATGTCGGACAGTAGTCCT -ACGGAAATGTCGGACAGTTAAGCC -ACGGAAATGTCGGACAGTATAGCC -ACGGAAATGTCGGACAGTTAACCG -ACGGAAATGTCGGACAGTATGCCA -ACGGAAATGTCGTAGCTGGGAAAC -ACGGAAATGTCGTAGCTGAACACC -ACGGAAATGTCGTAGCTGATCGAG -ACGGAAATGTCGTAGCTGCTCCTT -ACGGAAATGTCGTAGCTGCCTGTT -ACGGAAATGTCGTAGCTGCGGTTT -ACGGAAATGTCGTAGCTGGTGGTT -ACGGAAATGTCGTAGCTGGCCTTT -ACGGAAATGTCGTAGCTGGGTCTT -ACGGAAATGTCGTAGCTGACGCTT -ACGGAAATGTCGTAGCTGAGCGTT -ACGGAAATGTCGTAGCTGTTCGTC -ACGGAAATGTCGTAGCTGTCTCTC -ACGGAAATGTCGTAGCTGTGGATC -ACGGAAATGTCGTAGCTGCACTTC -ACGGAAATGTCGTAGCTGGTACTC -ACGGAAATGTCGTAGCTGGATGTC -ACGGAAATGTCGTAGCTGACAGTC -ACGGAAATGTCGTAGCTGTTGCTG -ACGGAAATGTCGTAGCTGTCCATG -ACGGAAATGTCGTAGCTGTGTGTG -ACGGAAATGTCGTAGCTGCTAGTG -ACGGAAATGTCGTAGCTGCATCTG -ACGGAAATGTCGTAGCTGGAGTTG -ACGGAAATGTCGTAGCTGAGACTG -ACGGAAATGTCGTAGCTGTCGGTA -ACGGAAATGTCGTAGCTGTGCCTA -ACGGAAATGTCGTAGCTGCCACTA -ACGGAAATGTCGTAGCTGGGAGTA -ACGGAAATGTCGTAGCTGTCGTCT -ACGGAAATGTCGTAGCTGTGCACT -ACGGAAATGTCGTAGCTGCTGACT -ACGGAAATGTCGTAGCTGCAACCT -ACGGAAATGTCGTAGCTGGCTACT -ACGGAAATGTCGTAGCTGGGATCT -ACGGAAATGTCGTAGCTGAAGGCT -ACGGAAATGTCGTAGCTGTCAACC -ACGGAAATGTCGTAGCTGTGTTCC -ACGGAAATGTCGTAGCTGATTCCC -ACGGAAATGTCGTAGCTGTTCTCG -ACGGAAATGTCGTAGCTGTAGACG -ACGGAAATGTCGTAGCTGGTAACG -ACGGAAATGTCGTAGCTGACTTCG -ACGGAAATGTCGTAGCTGTACGCA -ACGGAAATGTCGTAGCTGCTTGCA -ACGGAAATGTCGTAGCTGCGAACA -ACGGAAATGTCGTAGCTGCAGTCA -ACGGAAATGTCGTAGCTGGATCCA -ACGGAAATGTCGTAGCTGACGACA -ACGGAAATGTCGTAGCTGAGCTCA -ACGGAAATGTCGTAGCTGTCACGT -ACGGAAATGTCGTAGCTGCGTAGT -ACGGAAATGTCGTAGCTGGTCAGT -ACGGAAATGTCGTAGCTGGAAGGT -ACGGAAATGTCGTAGCTGAACCGT -ACGGAAATGTCGTAGCTGTTGTGC -ACGGAAATGTCGTAGCTGCTAAGC -ACGGAAATGTCGTAGCTGACTAGC -ACGGAAATGTCGTAGCTGAGATGC -ACGGAAATGTCGTAGCTGTGAAGG -ACGGAAATGTCGTAGCTGCAATGG -ACGGAAATGTCGTAGCTGATGAGG -ACGGAAATGTCGTAGCTGAATGGG -ACGGAAATGTCGTAGCTGTCCTGA -ACGGAAATGTCGTAGCTGTAGCGA -ACGGAAATGTCGTAGCTGCACAGA -ACGGAAATGTCGTAGCTGGCAAGA -ACGGAAATGTCGTAGCTGGGTTGA -ACGGAAATGTCGTAGCTGTCCGAT -ACGGAAATGTCGTAGCTGTGGCAT -ACGGAAATGTCGTAGCTGCGAGAT -ACGGAAATGTCGTAGCTGTACCAC -ACGGAAATGTCGTAGCTGCAGAAC -ACGGAAATGTCGTAGCTGGTCTAC -ACGGAAATGTCGTAGCTGACGTAC -ACGGAAATGTCGTAGCTGAGTGAC -ACGGAAATGTCGTAGCTGCTGTAG -ACGGAAATGTCGTAGCTGCCTAAG -ACGGAAATGTCGTAGCTGGTTCAG -ACGGAAATGTCGTAGCTGGCATAG -ACGGAAATGTCGTAGCTGGACAAG -ACGGAAATGTCGTAGCTGAAGCAG -ACGGAAATGTCGTAGCTGCGTCAA -ACGGAAATGTCGTAGCTGGCTGAA -ACGGAAATGTCGTAGCTGAGTACG -ACGGAAATGTCGTAGCTGATCCGA -ACGGAAATGTCGTAGCTGATGGGA -ACGGAAATGTCGTAGCTGGTGCAA -ACGGAAATGTCGTAGCTGGAGGAA -ACGGAAATGTCGTAGCTGCAGGTA -ACGGAAATGTCGTAGCTGGACTCT -ACGGAAATGTCGTAGCTGAGTCCT -ACGGAAATGTCGTAGCTGTAAGCC -ACGGAAATGTCGTAGCTGATAGCC -ACGGAAATGTCGTAGCTGTAACCG -ACGGAAATGTCGTAGCTGATGCCA -ACGGAAATGTCGAAGCCTGGAAAC -ACGGAAATGTCGAAGCCTAACACC -ACGGAAATGTCGAAGCCTATCGAG -ACGGAAATGTCGAAGCCTCTCCTT -ACGGAAATGTCGAAGCCTCCTGTT -ACGGAAATGTCGAAGCCTCGGTTT -ACGGAAATGTCGAAGCCTGTGGTT -ACGGAAATGTCGAAGCCTGCCTTT -ACGGAAATGTCGAAGCCTGGTCTT -ACGGAAATGTCGAAGCCTACGCTT -ACGGAAATGTCGAAGCCTAGCGTT -ACGGAAATGTCGAAGCCTTTCGTC -ACGGAAATGTCGAAGCCTTCTCTC -ACGGAAATGTCGAAGCCTTGGATC -ACGGAAATGTCGAAGCCTCACTTC -ACGGAAATGTCGAAGCCTGTACTC -ACGGAAATGTCGAAGCCTGATGTC -ACGGAAATGTCGAAGCCTACAGTC -ACGGAAATGTCGAAGCCTTTGCTG -ACGGAAATGTCGAAGCCTTCCATG -ACGGAAATGTCGAAGCCTTGTGTG -ACGGAAATGTCGAAGCCTCTAGTG -ACGGAAATGTCGAAGCCTCATCTG -ACGGAAATGTCGAAGCCTGAGTTG -ACGGAAATGTCGAAGCCTAGACTG -ACGGAAATGTCGAAGCCTTCGGTA -ACGGAAATGTCGAAGCCTTGCCTA -ACGGAAATGTCGAAGCCTCCACTA -ACGGAAATGTCGAAGCCTGGAGTA -ACGGAAATGTCGAAGCCTTCGTCT -ACGGAAATGTCGAAGCCTTGCACT -ACGGAAATGTCGAAGCCTCTGACT -ACGGAAATGTCGAAGCCTCAACCT -ACGGAAATGTCGAAGCCTGCTACT -ACGGAAATGTCGAAGCCTGGATCT -ACGGAAATGTCGAAGCCTAAGGCT -ACGGAAATGTCGAAGCCTTCAACC -ACGGAAATGTCGAAGCCTTGTTCC -ACGGAAATGTCGAAGCCTATTCCC -ACGGAAATGTCGAAGCCTTTCTCG -ACGGAAATGTCGAAGCCTTAGACG -ACGGAAATGTCGAAGCCTGTAACG -ACGGAAATGTCGAAGCCTACTTCG -ACGGAAATGTCGAAGCCTTACGCA -ACGGAAATGTCGAAGCCTCTTGCA -ACGGAAATGTCGAAGCCTCGAACA -ACGGAAATGTCGAAGCCTCAGTCA -ACGGAAATGTCGAAGCCTGATCCA -ACGGAAATGTCGAAGCCTACGACA -ACGGAAATGTCGAAGCCTAGCTCA -ACGGAAATGTCGAAGCCTTCACGT -ACGGAAATGTCGAAGCCTCGTAGT -ACGGAAATGTCGAAGCCTGTCAGT -ACGGAAATGTCGAAGCCTGAAGGT -ACGGAAATGTCGAAGCCTAACCGT -ACGGAAATGTCGAAGCCTTTGTGC -ACGGAAATGTCGAAGCCTCTAAGC -ACGGAAATGTCGAAGCCTACTAGC -ACGGAAATGTCGAAGCCTAGATGC -ACGGAAATGTCGAAGCCTTGAAGG -ACGGAAATGTCGAAGCCTCAATGG -ACGGAAATGTCGAAGCCTATGAGG -ACGGAAATGTCGAAGCCTAATGGG -ACGGAAATGTCGAAGCCTTCCTGA -ACGGAAATGTCGAAGCCTTAGCGA -ACGGAAATGTCGAAGCCTCACAGA -ACGGAAATGTCGAAGCCTGCAAGA -ACGGAAATGTCGAAGCCTGGTTGA -ACGGAAATGTCGAAGCCTTCCGAT -ACGGAAATGTCGAAGCCTTGGCAT -ACGGAAATGTCGAAGCCTCGAGAT -ACGGAAATGTCGAAGCCTTACCAC -ACGGAAATGTCGAAGCCTCAGAAC -ACGGAAATGTCGAAGCCTGTCTAC -ACGGAAATGTCGAAGCCTACGTAC -ACGGAAATGTCGAAGCCTAGTGAC -ACGGAAATGTCGAAGCCTCTGTAG -ACGGAAATGTCGAAGCCTCCTAAG -ACGGAAATGTCGAAGCCTGTTCAG -ACGGAAATGTCGAAGCCTGCATAG -ACGGAAATGTCGAAGCCTGACAAG -ACGGAAATGTCGAAGCCTAAGCAG -ACGGAAATGTCGAAGCCTCGTCAA -ACGGAAATGTCGAAGCCTGCTGAA -ACGGAAATGTCGAAGCCTAGTACG -ACGGAAATGTCGAAGCCTATCCGA -ACGGAAATGTCGAAGCCTATGGGA -ACGGAAATGTCGAAGCCTGTGCAA -ACGGAAATGTCGAAGCCTGAGGAA -ACGGAAATGTCGAAGCCTCAGGTA -ACGGAAATGTCGAAGCCTGACTCT -ACGGAAATGTCGAAGCCTAGTCCT -ACGGAAATGTCGAAGCCTTAAGCC -ACGGAAATGTCGAAGCCTATAGCC -ACGGAAATGTCGAAGCCTTAACCG -ACGGAAATGTCGAAGCCTATGCCA -ACGGAAATGTCGCAGGTTGGAAAC -ACGGAAATGTCGCAGGTTAACACC -ACGGAAATGTCGCAGGTTATCGAG -ACGGAAATGTCGCAGGTTCTCCTT -ACGGAAATGTCGCAGGTTCCTGTT -ACGGAAATGTCGCAGGTTCGGTTT -ACGGAAATGTCGCAGGTTGTGGTT -ACGGAAATGTCGCAGGTTGCCTTT -ACGGAAATGTCGCAGGTTGGTCTT -ACGGAAATGTCGCAGGTTACGCTT -ACGGAAATGTCGCAGGTTAGCGTT -ACGGAAATGTCGCAGGTTTTCGTC -ACGGAAATGTCGCAGGTTTCTCTC -ACGGAAATGTCGCAGGTTTGGATC -ACGGAAATGTCGCAGGTTCACTTC -ACGGAAATGTCGCAGGTTGTACTC -ACGGAAATGTCGCAGGTTGATGTC -ACGGAAATGTCGCAGGTTACAGTC -ACGGAAATGTCGCAGGTTTTGCTG -ACGGAAATGTCGCAGGTTTCCATG -ACGGAAATGTCGCAGGTTTGTGTG -ACGGAAATGTCGCAGGTTCTAGTG -ACGGAAATGTCGCAGGTTCATCTG -ACGGAAATGTCGCAGGTTGAGTTG -ACGGAAATGTCGCAGGTTAGACTG -ACGGAAATGTCGCAGGTTTCGGTA -ACGGAAATGTCGCAGGTTTGCCTA -ACGGAAATGTCGCAGGTTCCACTA -ACGGAAATGTCGCAGGTTGGAGTA -ACGGAAATGTCGCAGGTTTCGTCT -ACGGAAATGTCGCAGGTTTGCACT -ACGGAAATGTCGCAGGTTCTGACT -ACGGAAATGTCGCAGGTTCAACCT -ACGGAAATGTCGCAGGTTGCTACT -ACGGAAATGTCGCAGGTTGGATCT -ACGGAAATGTCGCAGGTTAAGGCT -ACGGAAATGTCGCAGGTTTCAACC -ACGGAAATGTCGCAGGTTTGTTCC -ACGGAAATGTCGCAGGTTATTCCC -ACGGAAATGTCGCAGGTTTTCTCG -ACGGAAATGTCGCAGGTTTAGACG -ACGGAAATGTCGCAGGTTGTAACG -ACGGAAATGTCGCAGGTTACTTCG -ACGGAAATGTCGCAGGTTTACGCA -ACGGAAATGTCGCAGGTTCTTGCA -ACGGAAATGTCGCAGGTTCGAACA -ACGGAAATGTCGCAGGTTCAGTCA -ACGGAAATGTCGCAGGTTGATCCA -ACGGAAATGTCGCAGGTTACGACA -ACGGAAATGTCGCAGGTTAGCTCA -ACGGAAATGTCGCAGGTTTCACGT -ACGGAAATGTCGCAGGTTCGTAGT -ACGGAAATGTCGCAGGTTGTCAGT -ACGGAAATGTCGCAGGTTGAAGGT -ACGGAAATGTCGCAGGTTAACCGT -ACGGAAATGTCGCAGGTTTTGTGC -ACGGAAATGTCGCAGGTTCTAAGC -ACGGAAATGTCGCAGGTTACTAGC -ACGGAAATGTCGCAGGTTAGATGC -ACGGAAATGTCGCAGGTTTGAAGG -ACGGAAATGTCGCAGGTTCAATGG -ACGGAAATGTCGCAGGTTATGAGG -ACGGAAATGTCGCAGGTTAATGGG -ACGGAAATGTCGCAGGTTTCCTGA -ACGGAAATGTCGCAGGTTTAGCGA -ACGGAAATGTCGCAGGTTCACAGA -ACGGAAATGTCGCAGGTTGCAAGA -ACGGAAATGTCGCAGGTTGGTTGA -ACGGAAATGTCGCAGGTTTCCGAT -ACGGAAATGTCGCAGGTTTGGCAT -ACGGAAATGTCGCAGGTTCGAGAT -ACGGAAATGTCGCAGGTTTACCAC -ACGGAAATGTCGCAGGTTCAGAAC -ACGGAAATGTCGCAGGTTGTCTAC -ACGGAAATGTCGCAGGTTACGTAC -ACGGAAATGTCGCAGGTTAGTGAC -ACGGAAATGTCGCAGGTTCTGTAG -ACGGAAATGTCGCAGGTTCCTAAG -ACGGAAATGTCGCAGGTTGTTCAG -ACGGAAATGTCGCAGGTTGCATAG -ACGGAAATGTCGCAGGTTGACAAG -ACGGAAATGTCGCAGGTTAAGCAG -ACGGAAATGTCGCAGGTTCGTCAA -ACGGAAATGTCGCAGGTTGCTGAA -ACGGAAATGTCGCAGGTTAGTACG -ACGGAAATGTCGCAGGTTATCCGA -ACGGAAATGTCGCAGGTTATGGGA -ACGGAAATGTCGCAGGTTGTGCAA -ACGGAAATGTCGCAGGTTGAGGAA -ACGGAAATGTCGCAGGTTCAGGTA -ACGGAAATGTCGCAGGTTGACTCT -ACGGAAATGTCGCAGGTTAGTCCT -ACGGAAATGTCGCAGGTTTAAGCC -ACGGAAATGTCGCAGGTTATAGCC -ACGGAAATGTCGCAGGTTTAACCG -ACGGAAATGTCGCAGGTTATGCCA -ACGGAAATGTCGTAGGCAGGAAAC -ACGGAAATGTCGTAGGCAAACACC -ACGGAAATGTCGTAGGCAATCGAG -ACGGAAATGTCGTAGGCACTCCTT -ACGGAAATGTCGTAGGCACCTGTT -ACGGAAATGTCGTAGGCACGGTTT -ACGGAAATGTCGTAGGCAGTGGTT -ACGGAAATGTCGTAGGCAGCCTTT -ACGGAAATGTCGTAGGCAGGTCTT -ACGGAAATGTCGTAGGCAACGCTT -ACGGAAATGTCGTAGGCAAGCGTT -ACGGAAATGTCGTAGGCATTCGTC -ACGGAAATGTCGTAGGCATCTCTC -ACGGAAATGTCGTAGGCATGGATC -ACGGAAATGTCGTAGGCACACTTC -ACGGAAATGTCGTAGGCAGTACTC -ACGGAAATGTCGTAGGCAGATGTC -ACGGAAATGTCGTAGGCAACAGTC -ACGGAAATGTCGTAGGCATTGCTG -ACGGAAATGTCGTAGGCATCCATG -ACGGAAATGTCGTAGGCATGTGTG -ACGGAAATGTCGTAGGCACTAGTG -ACGGAAATGTCGTAGGCACATCTG -ACGGAAATGTCGTAGGCAGAGTTG -ACGGAAATGTCGTAGGCAAGACTG -ACGGAAATGTCGTAGGCATCGGTA -ACGGAAATGTCGTAGGCATGCCTA -ACGGAAATGTCGTAGGCACCACTA -ACGGAAATGTCGTAGGCAGGAGTA -ACGGAAATGTCGTAGGCATCGTCT -ACGGAAATGTCGTAGGCATGCACT -ACGGAAATGTCGTAGGCACTGACT -ACGGAAATGTCGTAGGCACAACCT -ACGGAAATGTCGTAGGCAGCTACT -ACGGAAATGTCGTAGGCAGGATCT -ACGGAAATGTCGTAGGCAAAGGCT -ACGGAAATGTCGTAGGCATCAACC -ACGGAAATGTCGTAGGCATGTTCC -ACGGAAATGTCGTAGGCAATTCCC -ACGGAAATGTCGTAGGCATTCTCG -ACGGAAATGTCGTAGGCATAGACG -ACGGAAATGTCGTAGGCAGTAACG -ACGGAAATGTCGTAGGCAACTTCG -ACGGAAATGTCGTAGGCATACGCA -ACGGAAATGTCGTAGGCACTTGCA -ACGGAAATGTCGTAGGCACGAACA -ACGGAAATGTCGTAGGCACAGTCA -ACGGAAATGTCGTAGGCAGATCCA -ACGGAAATGTCGTAGGCAACGACA -ACGGAAATGTCGTAGGCAAGCTCA -ACGGAAATGTCGTAGGCATCACGT -ACGGAAATGTCGTAGGCACGTAGT -ACGGAAATGTCGTAGGCAGTCAGT -ACGGAAATGTCGTAGGCAGAAGGT -ACGGAAATGTCGTAGGCAAACCGT -ACGGAAATGTCGTAGGCATTGTGC -ACGGAAATGTCGTAGGCACTAAGC -ACGGAAATGTCGTAGGCAACTAGC -ACGGAAATGTCGTAGGCAAGATGC -ACGGAAATGTCGTAGGCATGAAGG -ACGGAAATGTCGTAGGCACAATGG -ACGGAAATGTCGTAGGCAATGAGG -ACGGAAATGTCGTAGGCAAATGGG -ACGGAAATGTCGTAGGCATCCTGA -ACGGAAATGTCGTAGGCATAGCGA -ACGGAAATGTCGTAGGCACACAGA -ACGGAAATGTCGTAGGCAGCAAGA -ACGGAAATGTCGTAGGCAGGTTGA -ACGGAAATGTCGTAGGCATCCGAT -ACGGAAATGTCGTAGGCATGGCAT -ACGGAAATGTCGTAGGCACGAGAT -ACGGAAATGTCGTAGGCATACCAC -ACGGAAATGTCGTAGGCACAGAAC -ACGGAAATGTCGTAGGCAGTCTAC -ACGGAAATGTCGTAGGCAACGTAC -ACGGAAATGTCGTAGGCAAGTGAC -ACGGAAATGTCGTAGGCACTGTAG -ACGGAAATGTCGTAGGCACCTAAG -ACGGAAATGTCGTAGGCAGTTCAG -ACGGAAATGTCGTAGGCAGCATAG -ACGGAAATGTCGTAGGCAGACAAG -ACGGAAATGTCGTAGGCAAAGCAG -ACGGAAATGTCGTAGGCACGTCAA -ACGGAAATGTCGTAGGCAGCTGAA -ACGGAAATGTCGTAGGCAAGTACG -ACGGAAATGTCGTAGGCAATCCGA -ACGGAAATGTCGTAGGCAATGGGA -ACGGAAATGTCGTAGGCAGTGCAA -ACGGAAATGTCGTAGGCAGAGGAA -ACGGAAATGTCGTAGGCACAGGTA -ACGGAAATGTCGTAGGCAGACTCT -ACGGAAATGTCGTAGGCAAGTCCT -ACGGAAATGTCGTAGGCATAAGCC -ACGGAAATGTCGTAGGCAATAGCC -ACGGAAATGTCGTAGGCATAACCG -ACGGAAATGTCGTAGGCAATGCCA -ACGGAAATGTCGAAGGACGGAAAC -ACGGAAATGTCGAAGGACAACACC -ACGGAAATGTCGAAGGACATCGAG -ACGGAAATGTCGAAGGACCTCCTT -ACGGAAATGTCGAAGGACCCTGTT -ACGGAAATGTCGAAGGACCGGTTT -ACGGAAATGTCGAAGGACGTGGTT -ACGGAAATGTCGAAGGACGCCTTT -ACGGAAATGTCGAAGGACGGTCTT -ACGGAAATGTCGAAGGACACGCTT -ACGGAAATGTCGAAGGACAGCGTT -ACGGAAATGTCGAAGGACTTCGTC -ACGGAAATGTCGAAGGACTCTCTC -ACGGAAATGTCGAAGGACTGGATC -ACGGAAATGTCGAAGGACCACTTC -ACGGAAATGTCGAAGGACGTACTC -ACGGAAATGTCGAAGGACGATGTC -ACGGAAATGTCGAAGGACACAGTC -ACGGAAATGTCGAAGGACTTGCTG -ACGGAAATGTCGAAGGACTCCATG -ACGGAAATGTCGAAGGACTGTGTG -ACGGAAATGTCGAAGGACCTAGTG -ACGGAAATGTCGAAGGACCATCTG -ACGGAAATGTCGAAGGACGAGTTG -ACGGAAATGTCGAAGGACAGACTG -ACGGAAATGTCGAAGGACTCGGTA -ACGGAAATGTCGAAGGACTGCCTA -ACGGAAATGTCGAAGGACCCACTA -ACGGAAATGTCGAAGGACGGAGTA -ACGGAAATGTCGAAGGACTCGTCT -ACGGAAATGTCGAAGGACTGCACT -ACGGAAATGTCGAAGGACCTGACT -ACGGAAATGTCGAAGGACCAACCT -ACGGAAATGTCGAAGGACGCTACT -ACGGAAATGTCGAAGGACGGATCT -ACGGAAATGTCGAAGGACAAGGCT -ACGGAAATGTCGAAGGACTCAACC -ACGGAAATGTCGAAGGACTGTTCC -ACGGAAATGTCGAAGGACATTCCC -ACGGAAATGTCGAAGGACTTCTCG -ACGGAAATGTCGAAGGACTAGACG -ACGGAAATGTCGAAGGACGTAACG -ACGGAAATGTCGAAGGACACTTCG -ACGGAAATGTCGAAGGACTACGCA -ACGGAAATGTCGAAGGACCTTGCA -ACGGAAATGTCGAAGGACCGAACA -ACGGAAATGTCGAAGGACCAGTCA -ACGGAAATGTCGAAGGACGATCCA -ACGGAAATGTCGAAGGACACGACA -ACGGAAATGTCGAAGGACAGCTCA -ACGGAAATGTCGAAGGACTCACGT -ACGGAAATGTCGAAGGACCGTAGT -ACGGAAATGTCGAAGGACGTCAGT -ACGGAAATGTCGAAGGACGAAGGT -ACGGAAATGTCGAAGGACAACCGT -ACGGAAATGTCGAAGGACTTGTGC -ACGGAAATGTCGAAGGACCTAAGC -ACGGAAATGTCGAAGGACACTAGC -ACGGAAATGTCGAAGGACAGATGC -ACGGAAATGTCGAAGGACTGAAGG -ACGGAAATGTCGAAGGACCAATGG -ACGGAAATGTCGAAGGACATGAGG -ACGGAAATGTCGAAGGACAATGGG -ACGGAAATGTCGAAGGACTCCTGA -ACGGAAATGTCGAAGGACTAGCGA -ACGGAAATGTCGAAGGACCACAGA -ACGGAAATGTCGAAGGACGCAAGA -ACGGAAATGTCGAAGGACGGTTGA -ACGGAAATGTCGAAGGACTCCGAT -ACGGAAATGTCGAAGGACTGGCAT -ACGGAAATGTCGAAGGACCGAGAT -ACGGAAATGTCGAAGGACTACCAC -ACGGAAATGTCGAAGGACCAGAAC -ACGGAAATGTCGAAGGACGTCTAC -ACGGAAATGTCGAAGGACACGTAC -ACGGAAATGTCGAAGGACAGTGAC -ACGGAAATGTCGAAGGACCTGTAG -ACGGAAATGTCGAAGGACCCTAAG -ACGGAAATGTCGAAGGACGTTCAG -ACGGAAATGTCGAAGGACGCATAG -ACGGAAATGTCGAAGGACGACAAG -ACGGAAATGTCGAAGGACAAGCAG -ACGGAAATGTCGAAGGACCGTCAA -ACGGAAATGTCGAAGGACGCTGAA -ACGGAAATGTCGAAGGACAGTACG -ACGGAAATGTCGAAGGACATCCGA -ACGGAAATGTCGAAGGACATGGGA -ACGGAAATGTCGAAGGACGTGCAA -ACGGAAATGTCGAAGGACGAGGAA -ACGGAAATGTCGAAGGACCAGGTA -ACGGAAATGTCGAAGGACGACTCT -ACGGAAATGTCGAAGGACAGTCCT -ACGGAAATGTCGAAGGACTAAGCC -ACGGAAATGTCGAAGGACATAGCC -ACGGAAATGTCGAAGGACTAACCG -ACGGAAATGTCGAAGGACATGCCA -ACGGAAATGTCGCAGAAGGGAAAC -ACGGAAATGTCGCAGAAGAACACC -ACGGAAATGTCGCAGAAGATCGAG -ACGGAAATGTCGCAGAAGCTCCTT -ACGGAAATGTCGCAGAAGCCTGTT -ACGGAAATGTCGCAGAAGCGGTTT -ACGGAAATGTCGCAGAAGGTGGTT -ACGGAAATGTCGCAGAAGGCCTTT -ACGGAAATGTCGCAGAAGGGTCTT -ACGGAAATGTCGCAGAAGACGCTT -ACGGAAATGTCGCAGAAGAGCGTT -ACGGAAATGTCGCAGAAGTTCGTC -ACGGAAATGTCGCAGAAGTCTCTC -ACGGAAATGTCGCAGAAGTGGATC -ACGGAAATGTCGCAGAAGCACTTC -ACGGAAATGTCGCAGAAGGTACTC -ACGGAAATGTCGCAGAAGGATGTC -ACGGAAATGTCGCAGAAGACAGTC -ACGGAAATGTCGCAGAAGTTGCTG -ACGGAAATGTCGCAGAAGTCCATG -ACGGAAATGTCGCAGAAGTGTGTG -ACGGAAATGTCGCAGAAGCTAGTG -ACGGAAATGTCGCAGAAGCATCTG -ACGGAAATGTCGCAGAAGGAGTTG -ACGGAAATGTCGCAGAAGAGACTG -ACGGAAATGTCGCAGAAGTCGGTA -ACGGAAATGTCGCAGAAGTGCCTA -ACGGAAATGTCGCAGAAGCCACTA -ACGGAAATGTCGCAGAAGGGAGTA -ACGGAAATGTCGCAGAAGTCGTCT -ACGGAAATGTCGCAGAAGTGCACT -ACGGAAATGTCGCAGAAGCTGACT -ACGGAAATGTCGCAGAAGCAACCT -ACGGAAATGTCGCAGAAGGCTACT -ACGGAAATGTCGCAGAAGGGATCT -ACGGAAATGTCGCAGAAGAAGGCT -ACGGAAATGTCGCAGAAGTCAACC -ACGGAAATGTCGCAGAAGTGTTCC -ACGGAAATGTCGCAGAAGATTCCC -ACGGAAATGTCGCAGAAGTTCTCG -ACGGAAATGTCGCAGAAGTAGACG -ACGGAAATGTCGCAGAAGGTAACG -ACGGAAATGTCGCAGAAGACTTCG -ACGGAAATGTCGCAGAAGTACGCA -ACGGAAATGTCGCAGAAGCTTGCA -ACGGAAATGTCGCAGAAGCGAACA -ACGGAAATGTCGCAGAAGCAGTCA -ACGGAAATGTCGCAGAAGGATCCA -ACGGAAATGTCGCAGAAGACGACA -ACGGAAATGTCGCAGAAGAGCTCA -ACGGAAATGTCGCAGAAGTCACGT -ACGGAAATGTCGCAGAAGCGTAGT -ACGGAAATGTCGCAGAAGGTCAGT -ACGGAAATGTCGCAGAAGGAAGGT -ACGGAAATGTCGCAGAAGAACCGT -ACGGAAATGTCGCAGAAGTTGTGC -ACGGAAATGTCGCAGAAGCTAAGC -ACGGAAATGTCGCAGAAGACTAGC -ACGGAAATGTCGCAGAAGAGATGC -ACGGAAATGTCGCAGAAGTGAAGG -ACGGAAATGTCGCAGAAGCAATGG -ACGGAAATGTCGCAGAAGATGAGG -ACGGAAATGTCGCAGAAGAATGGG -ACGGAAATGTCGCAGAAGTCCTGA -ACGGAAATGTCGCAGAAGTAGCGA -ACGGAAATGTCGCAGAAGCACAGA -ACGGAAATGTCGCAGAAGGCAAGA -ACGGAAATGTCGCAGAAGGGTTGA -ACGGAAATGTCGCAGAAGTCCGAT -ACGGAAATGTCGCAGAAGTGGCAT -ACGGAAATGTCGCAGAAGCGAGAT -ACGGAAATGTCGCAGAAGTACCAC -ACGGAAATGTCGCAGAAGCAGAAC -ACGGAAATGTCGCAGAAGGTCTAC -ACGGAAATGTCGCAGAAGACGTAC -ACGGAAATGTCGCAGAAGAGTGAC -ACGGAAATGTCGCAGAAGCTGTAG -ACGGAAATGTCGCAGAAGCCTAAG -ACGGAAATGTCGCAGAAGGTTCAG -ACGGAAATGTCGCAGAAGGCATAG -ACGGAAATGTCGCAGAAGGACAAG -ACGGAAATGTCGCAGAAGAAGCAG -ACGGAAATGTCGCAGAAGCGTCAA -ACGGAAATGTCGCAGAAGGCTGAA -ACGGAAATGTCGCAGAAGAGTACG -ACGGAAATGTCGCAGAAGATCCGA -ACGGAAATGTCGCAGAAGATGGGA -ACGGAAATGTCGCAGAAGGTGCAA -ACGGAAATGTCGCAGAAGGAGGAA -ACGGAAATGTCGCAGAAGCAGGTA -ACGGAAATGTCGCAGAAGGACTCT -ACGGAAATGTCGCAGAAGAGTCCT -ACGGAAATGTCGCAGAAGTAAGCC -ACGGAAATGTCGCAGAAGATAGCC -ACGGAAATGTCGCAGAAGTAACCG -ACGGAAATGTCGCAGAAGATGCCA -ACGGAAATGTCGCAACGTGGAAAC -ACGGAAATGTCGCAACGTAACACC -ACGGAAATGTCGCAACGTATCGAG -ACGGAAATGTCGCAACGTCTCCTT -ACGGAAATGTCGCAACGTCCTGTT -ACGGAAATGTCGCAACGTCGGTTT -ACGGAAATGTCGCAACGTGTGGTT -ACGGAAATGTCGCAACGTGCCTTT -ACGGAAATGTCGCAACGTGGTCTT -ACGGAAATGTCGCAACGTACGCTT -ACGGAAATGTCGCAACGTAGCGTT -ACGGAAATGTCGCAACGTTTCGTC -ACGGAAATGTCGCAACGTTCTCTC -ACGGAAATGTCGCAACGTTGGATC -ACGGAAATGTCGCAACGTCACTTC -ACGGAAATGTCGCAACGTGTACTC -ACGGAAATGTCGCAACGTGATGTC -ACGGAAATGTCGCAACGTACAGTC -ACGGAAATGTCGCAACGTTTGCTG -ACGGAAATGTCGCAACGTTCCATG -ACGGAAATGTCGCAACGTTGTGTG -ACGGAAATGTCGCAACGTCTAGTG -ACGGAAATGTCGCAACGTCATCTG -ACGGAAATGTCGCAACGTGAGTTG -ACGGAAATGTCGCAACGTAGACTG -ACGGAAATGTCGCAACGTTCGGTA -ACGGAAATGTCGCAACGTTGCCTA -ACGGAAATGTCGCAACGTCCACTA -ACGGAAATGTCGCAACGTGGAGTA -ACGGAAATGTCGCAACGTTCGTCT -ACGGAAATGTCGCAACGTTGCACT -ACGGAAATGTCGCAACGTCTGACT -ACGGAAATGTCGCAACGTCAACCT -ACGGAAATGTCGCAACGTGCTACT -ACGGAAATGTCGCAACGTGGATCT -ACGGAAATGTCGCAACGTAAGGCT -ACGGAAATGTCGCAACGTTCAACC -ACGGAAATGTCGCAACGTTGTTCC -ACGGAAATGTCGCAACGTATTCCC -ACGGAAATGTCGCAACGTTTCTCG -ACGGAAATGTCGCAACGTTAGACG -ACGGAAATGTCGCAACGTGTAACG -ACGGAAATGTCGCAACGTACTTCG -ACGGAAATGTCGCAACGTTACGCA -ACGGAAATGTCGCAACGTCTTGCA -ACGGAAATGTCGCAACGTCGAACA -ACGGAAATGTCGCAACGTCAGTCA -ACGGAAATGTCGCAACGTGATCCA -ACGGAAATGTCGCAACGTACGACA -ACGGAAATGTCGCAACGTAGCTCA -ACGGAAATGTCGCAACGTTCACGT -ACGGAAATGTCGCAACGTCGTAGT -ACGGAAATGTCGCAACGTGTCAGT -ACGGAAATGTCGCAACGTGAAGGT -ACGGAAATGTCGCAACGTAACCGT -ACGGAAATGTCGCAACGTTTGTGC -ACGGAAATGTCGCAACGTCTAAGC -ACGGAAATGTCGCAACGTACTAGC -ACGGAAATGTCGCAACGTAGATGC -ACGGAAATGTCGCAACGTTGAAGG -ACGGAAATGTCGCAACGTCAATGG -ACGGAAATGTCGCAACGTATGAGG -ACGGAAATGTCGCAACGTAATGGG -ACGGAAATGTCGCAACGTTCCTGA -ACGGAAATGTCGCAACGTTAGCGA -ACGGAAATGTCGCAACGTCACAGA -ACGGAAATGTCGCAACGTGCAAGA -ACGGAAATGTCGCAACGTGGTTGA -ACGGAAATGTCGCAACGTTCCGAT -ACGGAAATGTCGCAACGTTGGCAT -ACGGAAATGTCGCAACGTCGAGAT -ACGGAAATGTCGCAACGTTACCAC -ACGGAAATGTCGCAACGTCAGAAC -ACGGAAATGTCGCAACGTGTCTAC -ACGGAAATGTCGCAACGTACGTAC -ACGGAAATGTCGCAACGTAGTGAC -ACGGAAATGTCGCAACGTCTGTAG -ACGGAAATGTCGCAACGTCCTAAG -ACGGAAATGTCGCAACGTGTTCAG -ACGGAAATGTCGCAACGTGCATAG -ACGGAAATGTCGCAACGTGACAAG -ACGGAAATGTCGCAACGTAAGCAG -ACGGAAATGTCGCAACGTCGTCAA -ACGGAAATGTCGCAACGTGCTGAA -ACGGAAATGTCGCAACGTAGTACG -ACGGAAATGTCGCAACGTATCCGA -ACGGAAATGTCGCAACGTATGGGA -ACGGAAATGTCGCAACGTGTGCAA -ACGGAAATGTCGCAACGTGAGGAA -ACGGAAATGTCGCAACGTCAGGTA -ACGGAAATGTCGCAACGTGACTCT -ACGGAAATGTCGCAACGTAGTCCT -ACGGAAATGTCGCAACGTTAAGCC -ACGGAAATGTCGCAACGTATAGCC -ACGGAAATGTCGCAACGTTAACCG -ACGGAAATGTCGCAACGTATGCCA -ACGGAAATGTCGGAAGCTGGAAAC -ACGGAAATGTCGGAAGCTAACACC -ACGGAAATGTCGGAAGCTATCGAG -ACGGAAATGTCGGAAGCTCTCCTT -ACGGAAATGTCGGAAGCTCCTGTT -ACGGAAATGTCGGAAGCTCGGTTT -ACGGAAATGTCGGAAGCTGTGGTT -ACGGAAATGTCGGAAGCTGCCTTT -ACGGAAATGTCGGAAGCTGGTCTT -ACGGAAATGTCGGAAGCTACGCTT -ACGGAAATGTCGGAAGCTAGCGTT -ACGGAAATGTCGGAAGCTTTCGTC -ACGGAAATGTCGGAAGCTTCTCTC -ACGGAAATGTCGGAAGCTTGGATC -ACGGAAATGTCGGAAGCTCACTTC -ACGGAAATGTCGGAAGCTGTACTC -ACGGAAATGTCGGAAGCTGATGTC -ACGGAAATGTCGGAAGCTACAGTC -ACGGAAATGTCGGAAGCTTTGCTG -ACGGAAATGTCGGAAGCTTCCATG -ACGGAAATGTCGGAAGCTTGTGTG -ACGGAAATGTCGGAAGCTCTAGTG -ACGGAAATGTCGGAAGCTCATCTG -ACGGAAATGTCGGAAGCTGAGTTG -ACGGAAATGTCGGAAGCTAGACTG -ACGGAAATGTCGGAAGCTTCGGTA -ACGGAAATGTCGGAAGCTTGCCTA -ACGGAAATGTCGGAAGCTCCACTA -ACGGAAATGTCGGAAGCTGGAGTA -ACGGAAATGTCGGAAGCTTCGTCT -ACGGAAATGTCGGAAGCTTGCACT -ACGGAAATGTCGGAAGCTCTGACT -ACGGAAATGTCGGAAGCTCAACCT -ACGGAAATGTCGGAAGCTGCTACT -ACGGAAATGTCGGAAGCTGGATCT -ACGGAAATGTCGGAAGCTAAGGCT -ACGGAAATGTCGGAAGCTTCAACC -ACGGAAATGTCGGAAGCTTGTTCC -ACGGAAATGTCGGAAGCTATTCCC -ACGGAAATGTCGGAAGCTTTCTCG -ACGGAAATGTCGGAAGCTTAGACG -ACGGAAATGTCGGAAGCTGTAACG -ACGGAAATGTCGGAAGCTACTTCG -ACGGAAATGTCGGAAGCTTACGCA -ACGGAAATGTCGGAAGCTCTTGCA -ACGGAAATGTCGGAAGCTCGAACA -ACGGAAATGTCGGAAGCTCAGTCA -ACGGAAATGTCGGAAGCTGATCCA -ACGGAAATGTCGGAAGCTACGACA -ACGGAAATGTCGGAAGCTAGCTCA -ACGGAAATGTCGGAAGCTTCACGT -ACGGAAATGTCGGAAGCTCGTAGT -ACGGAAATGTCGGAAGCTGTCAGT -ACGGAAATGTCGGAAGCTGAAGGT -ACGGAAATGTCGGAAGCTAACCGT -ACGGAAATGTCGGAAGCTTTGTGC -ACGGAAATGTCGGAAGCTCTAAGC -ACGGAAATGTCGGAAGCTACTAGC -ACGGAAATGTCGGAAGCTAGATGC -ACGGAAATGTCGGAAGCTTGAAGG -ACGGAAATGTCGGAAGCTCAATGG -ACGGAAATGTCGGAAGCTATGAGG -ACGGAAATGTCGGAAGCTAATGGG -ACGGAAATGTCGGAAGCTTCCTGA -ACGGAAATGTCGGAAGCTTAGCGA -ACGGAAATGTCGGAAGCTCACAGA -ACGGAAATGTCGGAAGCTGCAAGA -ACGGAAATGTCGGAAGCTGGTTGA -ACGGAAATGTCGGAAGCTTCCGAT -ACGGAAATGTCGGAAGCTTGGCAT -ACGGAAATGTCGGAAGCTCGAGAT -ACGGAAATGTCGGAAGCTTACCAC -ACGGAAATGTCGGAAGCTCAGAAC -ACGGAAATGTCGGAAGCTGTCTAC -ACGGAAATGTCGGAAGCTACGTAC -ACGGAAATGTCGGAAGCTAGTGAC -ACGGAAATGTCGGAAGCTCTGTAG -ACGGAAATGTCGGAAGCTCCTAAG -ACGGAAATGTCGGAAGCTGTTCAG -ACGGAAATGTCGGAAGCTGCATAG -ACGGAAATGTCGGAAGCTGACAAG -ACGGAAATGTCGGAAGCTAAGCAG -ACGGAAATGTCGGAAGCTCGTCAA -ACGGAAATGTCGGAAGCTGCTGAA -ACGGAAATGTCGGAAGCTAGTACG -ACGGAAATGTCGGAAGCTATCCGA -ACGGAAATGTCGGAAGCTATGGGA -ACGGAAATGTCGGAAGCTGTGCAA -ACGGAAATGTCGGAAGCTGAGGAA -ACGGAAATGTCGGAAGCTCAGGTA -ACGGAAATGTCGGAAGCTGACTCT -ACGGAAATGTCGGAAGCTAGTCCT -ACGGAAATGTCGGAAGCTTAAGCC -ACGGAAATGTCGGAAGCTATAGCC -ACGGAAATGTCGGAAGCTTAACCG -ACGGAAATGTCGGAAGCTATGCCA -ACGGAAATGTCGACGAGTGGAAAC -ACGGAAATGTCGACGAGTAACACC -ACGGAAATGTCGACGAGTATCGAG -ACGGAAATGTCGACGAGTCTCCTT -ACGGAAATGTCGACGAGTCCTGTT -ACGGAAATGTCGACGAGTCGGTTT -ACGGAAATGTCGACGAGTGTGGTT -ACGGAAATGTCGACGAGTGCCTTT -ACGGAAATGTCGACGAGTGGTCTT -ACGGAAATGTCGACGAGTACGCTT -ACGGAAATGTCGACGAGTAGCGTT -ACGGAAATGTCGACGAGTTTCGTC -ACGGAAATGTCGACGAGTTCTCTC -ACGGAAATGTCGACGAGTTGGATC -ACGGAAATGTCGACGAGTCACTTC -ACGGAAATGTCGACGAGTGTACTC -ACGGAAATGTCGACGAGTGATGTC -ACGGAAATGTCGACGAGTACAGTC -ACGGAAATGTCGACGAGTTTGCTG -ACGGAAATGTCGACGAGTTCCATG -ACGGAAATGTCGACGAGTTGTGTG -ACGGAAATGTCGACGAGTCTAGTG -ACGGAAATGTCGACGAGTCATCTG -ACGGAAATGTCGACGAGTGAGTTG -ACGGAAATGTCGACGAGTAGACTG -ACGGAAATGTCGACGAGTTCGGTA -ACGGAAATGTCGACGAGTTGCCTA -ACGGAAATGTCGACGAGTCCACTA -ACGGAAATGTCGACGAGTGGAGTA -ACGGAAATGTCGACGAGTTCGTCT -ACGGAAATGTCGACGAGTTGCACT -ACGGAAATGTCGACGAGTCTGACT -ACGGAAATGTCGACGAGTCAACCT -ACGGAAATGTCGACGAGTGCTACT -ACGGAAATGTCGACGAGTGGATCT -ACGGAAATGTCGACGAGTAAGGCT -ACGGAAATGTCGACGAGTTCAACC -ACGGAAATGTCGACGAGTTGTTCC -ACGGAAATGTCGACGAGTATTCCC -ACGGAAATGTCGACGAGTTTCTCG -ACGGAAATGTCGACGAGTTAGACG -ACGGAAATGTCGACGAGTGTAACG -ACGGAAATGTCGACGAGTACTTCG -ACGGAAATGTCGACGAGTTACGCA -ACGGAAATGTCGACGAGTCTTGCA -ACGGAAATGTCGACGAGTCGAACA -ACGGAAATGTCGACGAGTCAGTCA -ACGGAAATGTCGACGAGTGATCCA -ACGGAAATGTCGACGAGTACGACA -ACGGAAATGTCGACGAGTAGCTCA -ACGGAAATGTCGACGAGTTCACGT -ACGGAAATGTCGACGAGTCGTAGT -ACGGAAATGTCGACGAGTGTCAGT -ACGGAAATGTCGACGAGTGAAGGT -ACGGAAATGTCGACGAGTAACCGT -ACGGAAATGTCGACGAGTTTGTGC -ACGGAAATGTCGACGAGTCTAAGC -ACGGAAATGTCGACGAGTACTAGC -ACGGAAATGTCGACGAGTAGATGC -ACGGAAATGTCGACGAGTTGAAGG -ACGGAAATGTCGACGAGTCAATGG -ACGGAAATGTCGACGAGTATGAGG -ACGGAAATGTCGACGAGTAATGGG -ACGGAAATGTCGACGAGTTCCTGA -ACGGAAATGTCGACGAGTTAGCGA -ACGGAAATGTCGACGAGTCACAGA -ACGGAAATGTCGACGAGTGCAAGA -ACGGAAATGTCGACGAGTGGTTGA -ACGGAAATGTCGACGAGTTCCGAT -ACGGAAATGTCGACGAGTTGGCAT -ACGGAAATGTCGACGAGTCGAGAT -ACGGAAATGTCGACGAGTTACCAC -ACGGAAATGTCGACGAGTCAGAAC -ACGGAAATGTCGACGAGTGTCTAC -ACGGAAATGTCGACGAGTACGTAC -ACGGAAATGTCGACGAGTAGTGAC -ACGGAAATGTCGACGAGTCTGTAG -ACGGAAATGTCGACGAGTCCTAAG -ACGGAAATGTCGACGAGTGTTCAG -ACGGAAATGTCGACGAGTGCATAG -ACGGAAATGTCGACGAGTGACAAG -ACGGAAATGTCGACGAGTAAGCAG -ACGGAAATGTCGACGAGTCGTCAA -ACGGAAATGTCGACGAGTGCTGAA -ACGGAAATGTCGACGAGTAGTACG -ACGGAAATGTCGACGAGTATCCGA -ACGGAAATGTCGACGAGTATGGGA -ACGGAAATGTCGACGAGTGTGCAA -ACGGAAATGTCGACGAGTGAGGAA -ACGGAAATGTCGACGAGTCAGGTA -ACGGAAATGTCGACGAGTGACTCT -ACGGAAATGTCGACGAGTAGTCCT -ACGGAAATGTCGACGAGTTAAGCC -ACGGAAATGTCGACGAGTATAGCC -ACGGAAATGTCGACGAGTTAACCG -ACGGAAATGTCGACGAGTATGCCA -ACGGAAATGTCGCGAATCGGAAAC -ACGGAAATGTCGCGAATCAACACC -ACGGAAATGTCGCGAATCATCGAG -ACGGAAATGTCGCGAATCCTCCTT -ACGGAAATGTCGCGAATCCCTGTT -ACGGAAATGTCGCGAATCCGGTTT -ACGGAAATGTCGCGAATCGTGGTT -ACGGAAATGTCGCGAATCGCCTTT -ACGGAAATGTCGCGAATCGGTCTT -ACGGAAATGTCGCGAATCACGCTT -ACGGAAATGTCGCGAATCAGCGTT -ACGGAAATGTCGCGAATCTTCGTC -ACGGAAATGTCGCGAATCTCTCTC -ACGGAAATGTCGCGAATCTGGATC -ACGGAAATGTCGCGAATCCACTTC -ACGGAAATGTCGCGAATCGTACTC -ACGGAAATGTCGCGAATCGATGTC -ACGGAAATGTCGCGAATCACAGTC -ACGGAAATGTCGCGAATCTTGCTG -ACGGAAATGTCGCGAATCTCCATG -ACGGAAATGTCGCGAATCTGTGTG -ACGGAAATGTCGCGAATCCTAGTG -ACGGAAATGTCGCGAATCCATCTG -ACGGAAATGTCGCGAATCGAGTTG -ACGGAAATGTCGCGAATCAGACTG -ACGGAAATGTCGCGAATCTCGGTA -ACGGAAATGTCGCGAATCTGCCTA -ACGGAAATGTCGCGAATCCCACTA -ACGGAAATGTCGCGAATCGGAGTA -ACGGAAATGTCGCGAATCTCGTCT -ACGGAAATGTCGCGAATCTGCACT -ACGGAAATGTCGCGAATCCTGACT -ACGGAAATGTCGCGAATCCAACCT -ACGGAAATGTCGCGAATCGCTACT -ACGGAAATGTCGCGAATCGGATCT -ACGGAAATGTCGCGAATCAAGGCT -ACGGAAATGTCGCGAATCTCAACC -ACGGAAATGTCGCGAATCTGTTCC -ACGGAAATGTCGCGAATCATTCCC -ACGGAAATGTCGCGAATCTTCTCG -ACGGAAATGTCGCGAATCTAGACG -ACGGAAATGTCGCGAATCGTAACG -ACGGAAATGTCGCGAATCACTTCG -ACGGAAATGTCGCGAATCTACGCA -ACGGAAATGTCGCGAATCCTTGCA -ACGGAAATGTCGCGAATCCGAACA -ACGGAAATGTCGCGAATCCAGTCA -ACGGAAATGTCGCGAATCGATCCA -ACGGAAATGTCGCGAATCACGACA -ACGGAAATGTCGCGAATCAGCTCA -ACGGAAATGTCGCGAATCTCACGT -ACGGAAATGTCGCGAATCCGTAGT -ACGGAAATGTCGCGAATCGTCAGT -ACGGAAATGTCGCGAATCGAAGGT -ACGGAAATGTCGCGAATCAACCGT -ACGGAAATGTCGCGAATCTTGTGC -ACGGAAATGTCGCGAATCCTAAGC -ACGGAAATGTCGCGAATCACTAGC -ACGGAAATGTCGCGAATCAGATGC -ACGGAAATGTCGCGAATCTGAAGG -ACGGAAATGTCGCGAATCCAATGG -ACGGAAATGTCGCGAATCATGAGG -ACGGAAATGTCGCGAATCAATGGG -ACGGAAATGTCGCGAATCTCCTGA -ACGGAAATGTCGCGAATCTAGCGA -ACGGAAATGTCGCGAATCCACAGA -ACGGAAATGTCGCGAATCGCAAGA -ACGGAAATGTCGCGAATCGGTTGA -ACGGAAATGTCGCGAATCTCCGAT -ACGGAAATGTCGCGAATCTGGCAT -ACGGAAATGTCGCGAATCCGAGAT -ACGGAAATGTCGCGAATCTACCAC -ACGGAAATGTCGCGAATCCAGAAC -ACGGAAATGTCGCGAATCGTCTAC -ACGGAAATGTCGCGAATCACGTAC -ACGGAAATGTCGCGAATCAGTGAC -ACGGAAATGTCGCGAATCCTGTAG -ACGGAAATGTCGCGAATCCCTAAG -ACGGAAATGTCGCGAATCGTTCAG -ACGGAAATGTCGCGAATCGCATAG -ACGGAAATGTCGCGAATCGACAAG -ACGGAAATGTCGCGAATCAAGCAG -ACGGAAATGTCGCGAATCCGTCAA -ACGGAAATGTCGCGAATCGCTGAA -ACGGAAATGTCGCGAATCAGTACG -ACGGAAATGTCGCGAATCATCCGA -ACGGAAATGTCGCGAATCATGGGA -ACGGAAATGTCGCGAATCGTGCAA -ACGGAAATGTCGCGAATCGAGGAA -ACGGAAATGTCGCGAATCCAGGTA -ACGGAAATGTCGCGAATCGACTCT -ACGGAAATGTCGCGAATCAGTCCT -ACGGAAATGTCGCGAATCTAAGCC -ACGGAAATGTCGCGAATCATAGCC -ACGGAAATGTCGCGAATCTAACCG -ACGGAAATGTCGCGAATCATGCCA -ACGGAAATGTCGGGAATGGGAAAC -ACGGAAATGTCGGGAATGAACACC -ACGGAAATGTCGGGAATGATCGAG -ACGGAAATGTCGGGAATGCTCCTT -ACGGAAATGTCGGGAATGCCTGTT -ACGGAAATGTCGGGAATGCGGTTT -ACGGAAATGTCGGGAATGGTGGTT -ACGGAAATGTCGGGAATGGCCTTT -ACGGAAATGTCGGGAATGGGTCTT -ACGGAAATGTCGGGAATGACGCTT -ACGGAAATGTCGGGAATGAGCGTT -ACGGAAATGTCGGGAATGTTCGTC -ACGGAAATGTCGGGAATGTCTCTC -ACGGAAATGTCGGGAATGTGGATC -ACGGAAATGTCGGGAATGCACTTC -ACGGAAATGTCGGGAATGGTACTC -ACGGAAATGTCGGGAATGGATGTC -ACGGAAATGTCGGGAATGACAGTC -ACGGAAATGTCGGGAATGTTGCTG -ACGGAAATGTCGGGAATGTCCATG -ACGGAAATGTCGGGAATGTGTGTG -ACGGAAATGTCGGGAATGCTAGTG -ACGGAAATGTCGGGAATGCATCTG -ACGGAAATGTCGGGAATGGAGTTG -ACGGAAATGTCGGGAATGAGACTG -ACGGAAATGTCGGGAATGTCGGTA -ACGGAAATGTCGGGAATGTGCCTA -ACGGAAATGTCGGGAATGCCACTA -ACGGAAATGTCGGGAATGGGAGTA -ACGGAAATGTCGGGAATGTCGTCT -ACGGAAATGTCGGGAATGTGCACT -ACGGAAATGTCGGGAATGCTGACT -ACGGAAATGTCGGGAATGCAACCT -ACGGAAATGTCGGGAATGGCTACT -ACGGAAATGTCGGGAATGGGATCT -ACGGAAATGTCGGGAATGAAGGCT -ACGGAAATGTCGGGAATGTCAACC -ACGGAAATGTCGGGAATGTGTTCC -ACGGAAATGTCGGGAATGATTCCC -ACGGAAATGTCGGGAATGTTCTCG -ACGGAAATGTCGGGAATGTAGACG -ACGGAAATGTCGGGAATGGTAACG -ACGGAAATGTCGGGAATGACTTCG -ACGGAAATGTCGGGAATGTACGCA -ACGGAAATGTCGGGAATGCTTGCA -ACGGAAATGTCGGGAATGCGAACA -ACGGAAATGTCGGGAATGCAGTCA -ACGGAAATGTCGGGAATGGATCCA -ACGGAAATGTCGGGAATGACGACA -ACGGAAATGTCGGGAATGAGCTCA -ACGGAAATGTCGGGAATGTCACGT -ACGGAAATGTCGGGAATGCGTAGT -ACGGAAATGTCGGGAATGGTCAGT -ACGGAAATGTCGGGAATGGAAGGT -ACGGAAATGTCGGGAATGAACCGT -ACGGAAATGTCGGGAATGTTGTGC -ACGGAAATGTCGGGAATGCTAAGC -ACGGAAATGTCGGGAATGACTAGC -ACGGAAATGTCGGGAATGAGATGC -ACGGAAATGTCGGGAATGTGAAGG -ACGGAAATGTCGGGAATGCAATGG -ACGGAAATGTCGGGAATGATGAGG -ACGGAAATGTCGGGAATGAATGGG -ACGGAAATGTCGGGAATGTCCTGA -ACGGAAATGTCGGGAATGTAGCGA -ACGGAAATGTCGGGAATGCACAGA -ACGGAAATGTCGGGAATGGCAAGA -ACGGAAATGTCGGGAATGGGTTGA -ACGGAAATGTCGGGAATGTCCGAT -ACGGAAATGTCGGGAATGTGGCAT -ACGGAAATGTCGGGAATGCGAGAT -ACGGAAATGTCGGGAATGTACCAC -ACGGAAATGTCGGGAATGCAGAAC -ACGGAAATGTCGGGAATGGTCTAC -ACGGAAATGTCGGGAATGACGTAC -ACGGAAATGTCGGGAATGAGTGAC -ACGGAAATGTCGGGAATGCTGTAG -ACGGAAATGTCGGGAATGCCTAAG -ACGGAAATGTCGGGAATGGTTCAG -ACGGAAATGTCGGGAATGGCATAG -ACGGAAATGTCGGGAATGGACAAG -ACGGAAATGTCGGGAATGAAGCAG -ACGGAAATGTCGGGAATGCGTCAA -ACGGAAATGTCGGGAATGGCTGAA -ACGGAAATGTCGGGAATGAGTACG -ACGGAAATGTCGGGAATGATCCGA -ACGGAAATGTCGGGAATGATGGGA -ACGGAAATGTCGGGAATGGTGCAA -ACGGAAATGTCGGGAATGGAGGAA -ACGGAAATGTCGGGAATGCAGGTA -ACGGAAATGTCGGGAATGGACTCT -ACGGAAATGTCGGGAATGAGTCCT -ACGGAAATGTCGGGAATGTAAGCC -ACGGAAATGTCGGGAATGATAGCC -ACGGAAATGTCGGGAATGTAACCG -ACGGAAATGTCGGGAATGATGCCA -ACGGAAATGTCGCAAGTGGGAAAC -ACGGAAATGTCGCAAGTGAACACC -ACGGAAATGTCGCAAGTGATCGAG -ACGGAAATGTCGCAAGTGCTCCTT -ACGGAAATGTCGCAAGTGCCTGTT -ACGGAAATGTCGCAAGTGCGGTTT -ACGGAAATGTCGCAAGTGGTGGTT -ACGGAAATGTCGCAAGTGGCCTTT -ACGGAAATGTCGCAAGTGGGTCTT -ACGGAAATGTCGCAAGTGACGCTT -ACGGAAATGTCGCAAGTGAGCGTT -ACGGAAATGTCGCAAGTGTTCGTC -ACGGAAATGTCGCAAGTGTCTCTC -ACGGAAATGTCGCAAGTGTGGATC -ACGGAAATGTCGCAAGTGCACTTC -ACGGAAATGTCGCAAGTGGTACTC -ACGGAAATGTCGCAAGTGGATGTC -ACGGAAATGTCGCAAGTGACAGTC -ACGGAAATGTCGCAAGTGTTGCTG -ACGGAAATGTCGCAAGTGTCCATG -ACGGAAATGTCGCAAGTGTGTGTG -ACGGAAATGTCGCAAGTGCTAGTG -ACGGAAATGTCGCAAGTGCATCTG -ACGGAAATGTCGCAAGTGGAGTTG -ACGGAAATGTCGCAAGTGAGACTG -ACGGAAATGTCGCAAGTGTCGGTA -ACGGAAATGTCGCAAGTGTGCCTA -ACGGAAATGTCGCAAGTGCCACTA -ACGGAAATGTCGCAAGTGGGAGTA -ACGGAAATGTCGCAAGTGTCGTCT -ACGGAAATGTCGCAAGTGTGCACT -ACGGAAATGTCGCAAGTGCTGACT -ACGGAAATGTCGCAAGTGCAACCT -ACGGAAATGTCGCAAGTGGCTACT -ACGGAAATGTCGCAAGTGGGATCT -ACGGAAATGTCGCAAGTGAAGGCT -ACGGAAATGTCGCAAGTGTCAACC -ACGGAAATGTCGCAAGTGTGTTCC -ACGGAAATGTCGCAAGTGATTCCC -ACGGAAATGTCGCAAGTGTTCTCG -ACGGAAATGTCGCAAGTGTAGACG -ACGGAAATGTCGCAAGTGGTAACG -ACGGAAATGTCGCAAGTGACTTCG -ACGGAAATGTCGCAAGTGTACGCA -ACGGAAATGTCGCAAGTGCTTGCA -ACGGAAATGTCGCAAGTGCGAACA -ACGGAAATGTCGCAAGTGCAGTCA -ACGGAAATGTCGCAAGTGGATCCA -ACGGAAATGTCGCAAGTGACGACA -ACGGAAATGTCGCAAGTGAGCTCA -ACGGAAATGTCGCAAGTGTCACGT -ACGGAAATGTCGCAAGTGCGTAGT -ACGGAAATGTCGCAAGTGGTCAGT -ACGGAAATGTCGCAAGTGGAAGGT -ACGGAAATGTCGCAAGTGAACCGT -ACGGAAATGTCGCAAGTGTTGTGC -ACGGAAATGTCGCAAGTGCTAAGC -ACGGAAATGTCGCAAGTGACTAGC -ACGGAAATGTCGCAAGTGAGATGC -ACGGAAATGTCGCAAGTGTGAAGG -ACGGAAATGTCGCAAGTGCAATGG -ACGGAAATGTCGCAAGTGATGAGG -ACGGAAATGTCGCAAGTGAATGGG -ACGGAAATGTCGCAAGTGTCCTGA -ACGGAAATGTCGCAAGTGTAGCGA -ACGGAAATGTCGCAAGTGCACAGA -ACGGAAATGTCGCAAGTGGCAAGA -ACGGAAATGTCGCAAGTGGGTTGA -ACGGAAATGTCGCAAGTGTCCGAT -ACGGAAATGTCGCAAGTGTGGCAT -ACGGAAATGTCGCAAGTGCGAGAT -ACGGAAATGTCGCAAGTGTACCAC -ACGGAAATGTCGCAAGTGCAGAAC -ACGGAAATGTCGCAAGTGGTCTAC -ACGGAAATGTCGCAAGTGACGTAC -ACGGAAATGTCGCAAGTGAGTGAC -ACGGAAATGTCGCAAGTGCTGTAG -ACGGAAATGTCGCAAGTGCCTAAG -ACGGAAATGTCGCAAGTGGTTCAG -ACGGAAATGTCGCAAGTGGCATAG -ACGGAAATGTCGCAAGTGGACAAG -ACGGAAATGTCGCAAGTGAAGCAG -ACGGAAATGTCGCAAGTGCGTCAA -ACGGAAATGTCGCAAGTGGCTGAA -ACGGAAATGTCGCAAGTGAGTACG -ACGGAAATGTCGCAAGTGATCCGA -ACGGAAATGTCGCAAGTGATGGGA -ACGGAAATGTCGCAAGTGGTGCAA -ACGGAAATGTCGCAAGTGGAGGAA -ACGGAAATGTCGCAAGTGCAGGTA -ACGGAAATGTCGCAAGTGGACTCT -ACGGAAATGTCGCAAGTGAGTCCT -ACGGAAATGTCGCAAGTGTAAGCC -ACGGAAATGTCGCAAGTGATAGCC -ACGGAAATGTCGCAAGTGTAACCG -ACGGAAATGTCGCAAGTGATGCCA -ACGGAAATGTCGGAAGAGGGAAAC -ACGGAAATGTCGGAAGAGAACACC -ACGGAAATGTCGGAAGAGATCGAG -ACGGAAATGTCGGAAGAGCTCCTT -ACGGAAATGTCGGAAGAGCCTGTT -ACGGAAATGTCGGAAGAGCGGTTT -ACGGAAATGTCGGAAGAGGTGGTT -ACGGAAATGTCGGAAGAGGCCTTT -ACGGAAATGTCGGAAGAGGGTCTT -ACGGAAATGTCGGAAGAGACGCTT -ACGGAAATGTCGGAAGAGAGCGTT -ACGGAAATGTCGGAAGAGTTCGTC -ACGGAAATGTCGGAAGAGTCTCTC -ACGGAAATGTCGGAAGAGTGGATC -ACGGAAATGTCGGAAGAGCACTTC -ACGGAAATGTCGGAAGAGGTACTC -ACGGAAATGTCGGAAGAGGATGTC -ACGGAAATGTCGGAAGAGACAGTC -ACGGAAATGTCGGAAGAGTTGCTG -ACGGAAATGTCGGAAGAGTCCATG -ACGGAAATGTCGGAAGAGTGTGTG -ACGGAAATGTCGGAAGAGCTAGTG -ACGGAAATGTCGGAAGAGCATCTG -ACGGAAATGTCGGAAGAGGAGTTG -ACGGAAATGTCGGAAGAGAGACTG -ACGGAAATGTCGGAAGAGTCGGTA -ACGGAAATGTCGGAAGAGTGCCTA -ACGGAAATGTCGGAAGAGCCACTA -ACGGAAATGTCGGAAGAGGGAGTA -ACGGAAATGTCGGAAGAGTCGTCT -ACGGAAATGTCGGAAGAGTGCACT -ACGGAAATGTCGGAAGAGCTGACT -ACGGAAATGTCGGAAGAGCAACCT -ACGGAAATGTCGGAAGAGGCTACT -ACGGAAATGTCGGAAGAGGGATCT -ACGGAAATGTCGGAAGAGAAGGCT -ACGGAAATGTCGGAAGAGTCAACC -ACGGAAATGTCGGAAGAGTGTTCC -ACGGAAATGTCGGAAGAGATTCCC -ACGGAAATGTCGGAAGAGTTCTCG -ACGGAAATGTCGGAAGAGTAGACG -ACGGAAATGTCGGAAGAGGTAACG -ACGGAAATGTCGGAAGAGACTTCG -ACGGAAATGTCGGAAGAGTACGCA -ACGGAAATGTCGGAAGAGCTTGCA -ACGGAAATGTCGGAAGAGCGAACA -ACGGAAATGTCGGAAGAGCAGTCA -ACGGAAATGTCGGAAGAGGATCCA -ACGGAAATGTCGGAAGAGACGACA -ACGGAAATGTCGGAAGAGAGCTCA -ACGGAAATGTCGGAAGAGTCACGT -ACGGAAATGTCGGAAGAGCGTAGT -ACGGAAATGTCGGAAGAGGTCAGT -ACGGAAATGTCGGAAGAGGAAGGT -ACGGAAATGTCGGAAGAGAACCGT -ACGGAAATGTCGGAAGAGTTGTGC -ACGGAAATGTCGGAAGAGCTAAGC -ACGGAAATGTCGGAAGAGACTAGC -ACGGAAATGTCGGAAGAGAGATGC -ACGGAAATGTCGGAAGAGTGAAGG -ACGGAAATGTCGGAAGAGCAATGG -ACGGAAATGTCGGAAGAGATGAGG -ACGGAAATGTCGGAAGAGAATGGG -ACGGAAATGTCGGAAGAGTCCTGA -ACGGAAATGTCGGAAGAGTAGCGA -ACGGAAATGTCGGAAGAGCACAGA -ACGGAAATGTCGGAAGAGGCAAGA -ACGGAAATGTCGGAAGAGGGTTGA -ACGGAAATGTCGGAAGAGTCCGAT -ACGGAAATGTCGGAAGAGTGGCAT -ACGGAAATGTCGGAAGAGCGAGAT -ACGGAAATGTCGGAAGAGTACCAC -ACGGAAATGTCGGAAGAGCAGAAC -ACGGAAATGTCGGAAGAGGTCTAC -ACGGAAATGTCGGAAGAGACGTAC -ACGGAAATGTCGGAAGAGAGTGAC -ACGGAAATGTCGGAAGAGCTGTAG -ACGGAAATGTCGGAAGAGCCTAAG -ACGGAAATGTCGGAAGAGGTTCAG -ACGGAAATGTCGGAAGAGGCATAG -ACGGAAATGTCGGAAGAGGACAAG -ACGGAAATGTCGGAAGAGAAGCAG -ACGGAAATGTCGGAAGAGCGTCAA -ACGGAAATGTCGGAAGAGGCTGAA -ACGGAAATGTCGGAAGAGAGTACG -ACGGAAATGTCGGAAGAGATCCGA -ACGGAAATGTCGGAAGAGATGGGA -ACGGAAATGTCGGAAGAGGTGCAA -ACGGAAATGTCGGAAGAGGAGGAA -ACGGAAATGTCGGAAGAGCAGGTA -ACGGAAATGTCGGAAGAGGACTCT -ACGGAAATGTCGGAAGAGAGTCCT -ACGGAAATGTCGGAAGAGTAAGCC -ACGGAAATGTCGGAAGAGATAGCC -ACGGAAATGTCGGAAGAGTAACCG -ACGGAAATGTCGGAAGAGATGCCA -ACGGAAATGTCGGTACAGGGAAAC -ACGGAAATGTCGGTACAGAACACC -ACGGAAATGTCGGTACAGATCGAG -ACGGAAATGTCGGTACAGCTCCTT -ACGGAAATGTCGGTACAGCCTGTT -ACGGAAATGTCGGTACAGCGGTTT -ACGGAAATGTCGGTACAGGTGGTT -ACGGAAATGTCGGTACAGGCCTTT -ACGGAAATGTCGGTACAGGGTCTT -ACGGAAATGTCGGTACAGACGCTT -ACGGAAATGTCGGTACAGAGCGTT -ACGGAAATGTCGGTACAGTTCGTC -ACGGAAATGTCGGTACAGTCTCTC -ACGGAAATGTCGGTACAGTGGATC -ACGGAAATGTCGGTACAGCACTTC -ACGGAAATGTCGGTACAGGTACTC -ACGGAAATGTCGGTACAGGATGTC -ACGGAAATGTCGGTACAGACAGTC -ACGGAAATGTCGGTACAGTTGCTG -ACGGAAATGTCGGTACAGTCCATG -ACGGAAATGTCGGTACAGTGTGTG -ACGGAAATGTCGGTACAGCTAGTG -ACGGAAATGTCGGTACAGCATCTG -ACGGAAATGTCGGTACAGGAGTTG -ACGGAAATGTCGGTACAGAGACTG -ACGGAAATGTCGGTACAGTCGGTA -ACGGAAATGTCGGTACAGTGCCTA -ACGGAAATGTCGGTACAGCCACTA -ACGGAAATGTCGGTACAGGGAGTA -ACGGAAATGTCGGTACAGTCGTCT -ACGGAAATGTCGGTACAGTGCACT -ACGGAAATGTCGGTACAGCTGACT -ACGGAAATGTCGGTACAGCAACCT -ACGGAAATGTCGGTACAGGCTACT -ACGGAAATGTCGGTACAGGGATCT -ACGGAAATGTCGGTACAGAAGGCT -ACGGAAATGTCGGTACAGTCAACC -ACGGAAATGTCGGTACAGTGTTCC -ACGGAAATGTCGGTACAGATTCCC -ACGGAAATGTCGGTACAGTTCTCG -ACGGAAATGTCGGTACAGTAGACG -ACGGAAATGTCGGTACAGGTAACG -ACGGAAATGTCGGTACAGACTTCG -ACGGAAATGTCGGTACAGTACGCA -ACGGAAATGTCGGTACAGCTTGCA -ACGGAAATGTCGGTACAGCGAACA -ACGGAAATGTCGGTACAGCAGTCA -ACGGAAATGTCGGTACAGGATCCA -ACGGAAATGTCGGTACAGACGACA -ACGGAAATGTCGGTACAGAGCTCA -ACGGAAATGTCGGTACAGTCACGT -ACGGAAATGTCGGTACAGCGTAGT -ACGGAAATGTCGGTACAGGTCAGT -ACGGAAATGTCGGTACAGGAAGGT -ACGGAAATGTCGGTACAGAACCGT -ACGGAAATGTCGGTACAGTTGTGC -ACGGAAATGTCGGTACAGCTAAGC -ACGGAAATGTCGGTACAGACTAGC -ACGGAAATGTCGGTACAGAGATGC -ACGGAAATGTCGGTACAGTGAAGG -ACGGAAATGTCGGTACAGCAATGG -ACGGAAATGTCGGTACAGATGAGG -ACGGAAATGTCGGTACAGAATGGG -ACGGAAATGTCGGTACAGTCCTGA -ACGGAAATGTCGGTACAGTAGCGA -ACGGAAATGTCGGTACAGCACAGA -ACGGAAATGTCGGTACAGGCAAGA -ACGGAAATGTCGGTACAGGGTTGA -ACGGAAATGTCGGTACAGTCCGAT -ACGGAAATGTCGGTACAGTGGCAT -ACGGAAATGTCGGTACAGCGAGAT -ACGGAAATGTCGGTACAGTACCAC -ACGGAAATGTCGGTACAGCAGAAC -ACGGAAATGTCGGTACAGGTCTAC -ACGGAAATGTCGGTACAGACGTAC -ACGGAAATGTCGGTACAGAGTGAC -ACGGAAATGTCGGTACAGCTGTAG -ACGGAAATGTCGGTACAGCCTAAG -ACGGAAATGTCGGTACAGGTTCAG -ACGGAAATGTCGGTACAGGCATAG -ACGGAAATGTCGGTACAGGACAAG -ACGGAAATGTCGGTACAGAAGCAG -ACGGAAATGTCGGTACAGCGTCAA -ACGGAAATGTCGGTACAGGCTGAA -ACGGAAATGTCGGTACAGAGTACG -ACGGAAATGTCGGTACAGATCCGA -ACGGAAATGTCGGTACAGATGGGA -ACGGAAATGTCGGTACAGGTGCAA -ACGGAAATGTCGGTACAGGAGGAA -ACGGAAATGTCGGTACAGCAGGTA -ACGGAAATGTCGGTACAGGACTCT -ACGGAAATGTCGGTACAGAGTCCT -ACGGAAATGTCGGTACAGTAAGCC -ACGGAAATGTCGGTACAGATAGCC -ACGGAAATGTCGGTACAGTAACCG -ACGGAAATGTCGGTACAGATGCCA -ACGGAAATGTCGTCTGACGGAAAC -ACGGAAATGTCGTCTGACAACACC -ACGGAAATGTCGTCTGACATCGAG -ACGGAAATGTCGTCTGACCTCCTT -ACGGAAATGTCGTCTGACCCTGTT -ACGGAAATGTCGTCTGACCGGTTT -ACGGAAATGTCGTCTGACGTGGTT -ACGGAAATGTCGTCTGACGCCTTT -ACGGAAATGTCGTCTGACGGTCTT -ACGGAAATGTCGTCTGACACGCTT -ACGGAAATGTCGTCTGACAGCGTT -ACGGAAATGTCGTCTGACTTCGTC -ACGGAAATGTCGTCTGACTCTCTC -ACGGAAATGTCGTCTGACTGGATC -ACGGAAATGTCGTCTGACCACTTC -ACGGAAATGTCGTCTGACGTACTC -ACGGAAATGTCGTCTGACGATGTC -ACGGAAATGTCGTCTGACACAGTC -ACGGAAATGTCGTCTGACTTGCTG -ACGGAAATGTCGTCTGACTCCATG -ACGGAAATGTCGTCTGACTGTGTG -ACGGAAATGTCGTCTGACCTAGTG -ACGGAAATGTCGTCTGACCATCTG -ACGGAAATGTCGTCTGACGAGTTG -ACGGAAATGTCGTCTGACAGACTG -ACGGAAATGTCGTCTGACTCGGTA -ACGGAAATGTCGTCTGACTGCCTA -ACGGAAATGTCGTCTGACCCACTA -ACGGAAATGTCGTCTGACGGAGTA -ACGGAAATGTCGTCTGACTCGTCT -ACGGAAATGTCGTCTGACTGCACT -ACGGAAATGTCGTCTGACCTGACT -ACGGAAATGTCGTCTGACCAACCT -ACGGAAATGTCGTCTGACGCTACT -ACGGAAATGTCGTCTGACGGATCT -ACGGAAATGTCGTCTGACAAGGCT -ACGGAAATGTCGTCTGACTCAACC -ACGGAAATGTCGTCTGACTGTTCC -ACGGAAATGTCGTCTGACATTCCC -ACGGAAATGTCGTCTGACTTCTCG -ACGGAAATGTCGTCTGACTAGACG -ACGGAAATGTCGTCTGACGTAACG -ACGGAAATGTCGTCTGACACTTCG -ACGGAAATGTCGTCTGACTACGCA -ACGGAAATGTCGTCTGACCTTGCA -ACGGAAATGTCGTCTGACCGAACA -ACGGAAATGTCGTCTGACCAGTCA -ACGGAAATGTCGTCTGACGATCCA -ACGGAAATGTCGTCTGACACGACA -ACGGAAATGTCGTCTGACAGCTCA -ACGGAAATGTCGTCTGACTCACGT -ACGGAAATGTCGTCTGACCGTAGT -ACGGAAATGTCGTCTGACGTCAGT -ACGGAAATGTCGTCTGACGAAGGT -ACGGAAATGTCGTCTGACAACCGT -ACGGAAATGTCGTCTGACTTGTGC -ACGGAAATGTCGTCTGACCTAAGC -ACGGAAATGTCGTCTGACACTAGC -ACGGAAATGTCGTCTGACAGATGC -ACGGAAATGTCGTCTGACTGAAGG -ACGGAAATGTCGTCTGACCAATGG -ACGGAAATGTCGTCTGACATGAGG -ACGGAAATGTCGTCTGACAATGGG -ACGGAAATGTCGTCTGACTCCTGA -ACGGAAATGTCGTCTGACTAGCGA -ACGGAAATGTCGTCTGACCACAGA -ACGGAAATGTCGTCTGACGCAAGA -ACGGAAATGTCGTCTGACGGTTGA -ACGGAAATGTCGTCTGACTCCGAT -ACGGAAATGTCGTCTGACTGGCAT -ACGGAAATGTCGTCTGACCGAGAT -ACGGAAATGTCGTCTGACTACCAC -ACGGAAATGTCGTCTGACCAGAAC -ACGGAAATGTCGTCTGACGTCTAC -ACGGAAATGTCGTCTGACACGTAC -ACGGAAATGTCGTCTGACAGTGAC -ACGGAAATGTCGTCTGACCTGTAG -ACGGAAATGTCGTCTGACCCTAAG -ACGGAAATGTCGTCTGACGTTCAG -ACGGAAATGTCGTCTGACGCATAG -ACGGAAATGTCGTCTGACGACAAG -ACGGAAATGTCGTCTGACAAGCAG -ACGGAAATGTCGTCTGACCGTCAA -ACGGAAATGTCGTCTGACGCTGAA -ACGGAAATGTCGTCTGACAGTACG -ACGGAAATGTCGTCTGACATCCGA -ACGGAAATGTCGTCTGACATGGGA -ACGGAAATGTCGTCTGACGTGCAA -ACGGAAATGTCGTCTGACGAGGAA -ACGGAAATGTCGTCTGACCAGGTA -ACGGAAATGTCGTCTGACGACTCT -ACGGAAATGTCGTCTGACAGTCCT -ACGGAAATGTCGTCTGACTAAGCC -ACGGAAATGTCGTCTGACATAGCC -ACGGAAATGTCGTCTGACTAACCG -ACGGAAATGTCGTCTGACATGCCA -ACGGAAATGTCGCCTAGTGGAAAC -ACGGAAATGTCGCCTAGTAACACC -ACGGAAATGTCGCCTAGTATCGAG -ACGGAAATGTCGCCTAGTCTCCTT -ACGGAAATGTCGCCTAGTCCTGTT -ACGGAAATGTCGCCTAGTCGGTTT -ACGGAAATGTCGCCTAGTGTGGTT -ACGGAAATGTCGCCTAGTGCCTTT -ACGGAAATGTCGCCTAGTGGTCTT -ACGGAAATGTCGCCTAGTACGCTT -ACGGAAATGTCGCCTAGTAGCGTT -ACGGAAATGTCGCCTAGTTTCGTC -ACGGAAATGTCGCCTAGTTCTCTC -ACGGAAATGTCGCCTAGTTGGATC -ACGGAAATGTCGCCTAGTCACTTC -ACGGAAATGTCGCCTAGTGTACTC -ACGGAAATGTCGCCTAGTGATGTC -ACGGAAATGTCGCCTAGTACAGTC -ACGGAAATGTCGCCTAGTTTGCTG -ACGGAAATGTCGCCTAGTTCCATG -ACGGAAATGTCGCCTAGTTGTGTG -ACGGAAATGTCGCCTAGTCTAGTG -ACGGAAATGTCGCCTAGTCATCTG -ACGGAAATGTCGCCTAGTGAGTTG -ACGGAAATGTCGCCTAGTAGACTG -ACGGAAATGTCGCCTAGTTCGGTA -ACGGAAATGTCGCCTAGTTGCCTA -ACGGAAATGTCGCCTAGTCCACTA -ACGGAAATGTCGCCTAGTGGAGTA -ACGGAAATGTCGCCTAGTTCGTCT -ACGGAAATGTCGCCTAGTTGCACT -ACGGAAATGTCGCCTAGTCTGACT -ACGGAAATGTCGCCTAGTCAACCT -ACGGAAATGTCGCCTAGTGCTACT -ACGGAAATGTCGCCTAGTGGATCT -ACGGAAATGTCGCCTAGTAAGGCT -ACGGAAATGTCGCCTAGTTCAACC -ACGGAAATGTCGCCTAGTTGTTCC -ACGGAAATGTCGCCTAGTATTCCC -ACGGAAATGTCGCCTAGTTTCTCG -ACGGAAATGTCGCCTAGTTAGACG -ACGGAAATGTCGCCTAGTGTAACG -ACGGAAATGTCGCCTAGTACTTCG -ACGGAAATGTCGCCTAGTTACGCA -ACGGAAATGTCGCCTAGTCTTGCA -ACGGAAATGTCGCCTAGTCGAACA -ACGGAAATGTCGCCTAGTCAGTCA -ACGGAAATGTCGCCTAGTGATCCA -ACGGAAATGTCGCCTAGTACGACA -ACGGAAATGTCGCCTAGTAGCTCA -ACGGAAATGTCGCCTAGTTCACGT -ACGGAAATGTCGCCTAGTCGTAGT -ACGGAAATGTCGCCTAGTGTCAGT -ACGGAAATGTCGCCTAGTGAAGGT -ACGGAAATGTCGCCTAGTAACCGT -ACGGAAATGTCGCCTAGTTTGTGC -ACGGAAATGTCGCCTAGTCTAAGC -ACGGAAATGTCGCCTAGTACTAGC -ACGGAAATGTCGCCTAGTAGATGC -ACGGAAATGTCGCCTAGTTGAAGG -ACGGAAATGTCGCCTAGTCAATGG -ACGGAAATGTCGCCTAGTATGAGG -ACGGAAATGTCGCCTAGTAATGGG -ACGGAAATGTCGCCTAGTTCCTGA -ACGGAAATGTCGCCTAGTTAGCGA -ACGGAAATGTCGCCTAGTCACAGA -ACGGAAATGTCGCCTAGTGCAAGA -ACGGAAATGTCGCCTAGTGGTTGA -ACGGAAATGTCGCCTAGTTCCGAT -ACGGAAATGTCGCCTAGTTGGCAT -ACGGAAATGTCGCCTAGTCGAGAT -ACGGAAATGTCGCCTAGTTACCAC -ACGGAAATGTCGCCTAGTCAGAAC -ACGGAAATGTCGCCTAGTGTCTAC -ACGGAAATGTCGCCTAGTACGTAC -ACGGAAATGTCGCCTAGTAGTGAC -ACGGAAATGTCGCCTAGTCTGTAG -ACGGAAATGTCGCCTAGTCCTAAG -ACGGAAATGTCGCCTAGTGTTCAG -ACGGAAATGTCGCCTAGTGCATAG -ACGGAAATGTCGCCTAGTGACAAG -ACGGAAATGTCGCCTAGTAAGCAG -ACGGAAATGTCGCCTAGTCGTCAA -ACGGAAATGTCGCCTAGTGCTGAA -ACGGAAATGTCGCCTAGTAGTACG -ACGGAAATGTCGCCTAGTATCCGA -ACGGAAATGTCGCCTAGTATGGGA -ACGGAAATGTCGCCTAGTGTGCAA -ACGGAAATGTCGCCTAGTGAGGAA -ACGGAAATGTCGCCTAGTCAGGTA -ACGGAAATGTCGCCTAGTGACTCT -ACGGAAATGTCGCCTAGTAGTCCT -ACGGAAATGTCGCCTAGTTAAGCC -ACGGAAATGTCGCCTAGTATAGCC -ACGGAAATGTCGCCTAGTTAACCG -ACGGAAATGTCGCCTAGTATGCCA -ACGGAAATGTCGGCCTAAGGAAAC -ACGGAAATGTCGGCCTAAAACACC -ACGGAAATGTCGGCCTAAATCGAG -ACGGAAATGTCGGCCTAACTCCTT -ACGGAAATGTCGGCCTAACCTGTT -ACGGAAATGTCGGCCTAACGGTTT -ACGGAAATGTCGGCCTAAGTGGTT -ACGGAAATGTCGGCCTAAGCCTTT -ACGGAAATGTCGGCCTAAGGTCTT -ACGGAAATGTCGGCCTAAACGCTT -ACGGAAATGTCGGCCTAAAGCGTT -ACGGAAATGTCGGCCTAATTCGTC -ACGGAAATGTCGGCCTAATCTCTC -ACGGAAATGTCGGCCTAATGGATC -ACGGAAATGTCGGCCTAACACTTC -ACGGAAATGTCGGCCTAAGTACTC -ACGGAAATGTCGGCCTAAGATGTC -ACGGAAATGTCGGCCTAAACAGTC -ACGGAAATGTCGGCCTAATTGCTG -ACGGAAATGTCGGCCTAATCCATG -ACGGAAATGTCGGCCTAATGTGTG -ACGGAAATGTCGGCCTAACTAGTG -ACGGAAATGTCGGCCTAACATCTG -ACGGAAATGTCGGCCTAAGAGTTG -ACGGAAATGTCGGCCTAAAGACTG -ACGGAAATGTCGGCCTAATCGGTA -ACGGAAATGTCGGCCTAATGCCTA -ACGGAAATGTCGGCCTAACCACTA -ACGGAAATGTCGGCCTAAGGAGTA -ACGGAAATGTCGGCCTAATCGTCT -ACGGAAATGTCGGCCTAATGCACT -ACGGAAATGTCGGCCTAACTGACT -ACGGAAATGTCGGCCTAACAACCT -ACGGAAATGTCGGCCTAAGCTACT -ACGGAAATGTCGGCCTAAGGATCT -ACGGAAATGTCGGCCTAAAAGGCT -ACGGAAATGTCGGCCTAATCAACC -ACGGAAATGTCGGCCTAATGTTCC -ACGGAAATGTCGGCCTAAATTCCC -ACGGAAATGTCGGCCTAATTCTCG -ACGGAAATGTCGGCCTAATAGACG -ACGGAAATGTCGGCCTAAGTAACG -ACGGAAATGTCGGCCTAAACTTCG -ACGGAAATGTCGGCCTAATACGCA -ACGGAAATGTCGGCCTAACTTGCA -ACGGAAATGTCGGCCTAACGAACA -ACGGAAATGTCGGCCTAACAGTCA -ACGGAAATGTCGGCCTAAGATCCA -ACGGAAATGTCGGCCTAAACGACA -ACGGAAATGTCGGCCTAAAGCTCA -ACGGAAATGTCGGCCTAATCACGT -ACGGAAATGTCGGCCTAACGTAGT -ACGGAAATGTCGGCCTAAGTCAGT -ACGGAAATGTCGGCCTAAGAAGGT -ACGGAAATGTCGGCCTAAAACCGT -ACGGAAATGTCGGCCTAATTGTGC -ACGGAAATGTCGGCCTAACTAAGC -ACGGAAATGTCGGCCTAAACTAGC -ACGGAAATGTCGGCCTAAAGATGC -ACGGAAATGTCGGCCTAATGAAGG -ACGGAAATGTCGGCCTAACAATGG -ACGGAAATGTCGGCCTAAATGAGG -ACGGAAATGTCGGCCTAAAATGGG -ACGGAAATGTCGGCCTAATCCTGA -ACGGAAATGTCGGCCTAATAGCGA -ACGGAAATGTCGGCCTAACACAGA -ACGGAAATGTCGGCCTAAGCAAGA -ACGGAAATGTCGGCCTAAGGTTGA -ACGGAAATGTCGGCCTAATCCGAT -ACGGAAATGTCGGCCTAATGGCAT -ACGGAAATGTCGGCCTAACGAGAT -ACGGAAATGTCGGCCTAATACCAC -ACGGAAATGTCGGCCTAACAGAAC -ACGGAAATGTCGGCCTAAGTCTAC -ACGGAAATGTCGGCCTAAACGTAC -ACGGAAATGTCGGCCTAAAGTGAC -ACGGAAATGTCGGCCTAACTGTAG -ACGGAAATGTCGGCCTAACCTAAG -ACGGAAATGTCGGCCTAAGTTCAG -ACGGAAATGTCGGCCTAAGCATAG -ACGGAAATGTCGGCCTAAGACAAG -ACGGAAATGTCGGCCTAAAAGCAG -ACGGAAATGTCGGCCTAACGTCAA -ACGGAAATGTCGGCCTAAGCTGAA -ACGGAAATGTCGGCCTAAAGTACG -ACGGAAATGTCGGCCTAAATCCGA -ACGGAAATGTCGGCCTAAATGGGA -ACGGAAATGTCGGCCTAAGTGCAA -ACGGAAATGTCGGCCTAAGAGGAA -ACGGAAATGTCGGCCTAACAGGTA -ACGGAAATGTCGGCCTAAGACTCT -ACGGAAATGTCGGCCTAAAGTCCT -ACGGAAATGTCGGCCTAATAAGCC -ACGGAAATGTCGGCCTAAATAGCC -ACGGAAATGTCGGCCTAATAACCG -ACGGAAATGTCGGCCTAAATGCCA -ACGGAAATGTCGGCCATAGGAAAC -ACGGAAATGTCGGCCATAAACACC -ACGGAAATGTCGGCCATAATCGAG -ACGGAAATGTCGGCCATACTCCTT -ACGGAAATGTCGGCCATACCTGTT -ACGGAAATGTCGGCCATACGGTTT -ACGGAAATGTCGGCCATAGTGGTT -ACGGAAATGTCGGCCATAGCCTTT -ACGGAAATGTCGGCCATAGGTCTT -ACGGAAATGTCGGCCATAACGCTT -ACGGAAATGTCGGCCATAAGCGTT -ACGGAAATGTCGGCCATATTCGTC -ACGGAAATGTCGGCCATATCTCTC -ACGGAAATGTCGGCCATATGGATC -ACGGAAATGTCGGCCATACACTTC -ACGGAAATGTCGGCCATAGTACTC -ACGGAAATGTCGGCCATAGATGTC -ACGGAAATGTCGGCCATAACAGTC -ACGGAAATGTCGGCCATATTGCTG -ACGGAAATGTCGGCCATATCCATG -ACGGAAATGTCGGCCATATGTGTG -ACGGAAATGTCGGCCATACTAGTG -ACGGAAATGTCGGCCATACATCTG -ACGGAAATGTCGGCCATAGAGTTG -ACGGAAATGTCGGCCATAAGACTG -ACGGAAATGTCGGCCATATCGGTA -ACGGAAATGTCGGCCATATGCCTA -ACGGAAATGTCGGCCATACCACTA -ACGGAAATGTCGGCCATAGGAGTA -ACGGAAATGTCGGCCATATCGTCT -ACGGAAATGTCGGCCATATGCACT -ACGGAAATGTCGGCCATACTGACT -ACGGAAATGTCGGCCATACAACCT -ACGGAAATGTCGGCCATAGCTACT -ACGGAAATGTCGGCCATAGGATCT -ACGGAAATGTCGGCCATAAAGGCT -ACGGAAATGTCGGCCATATCAACC -ACGGAAATGTCGGCCATATGTTCC -ACGGAAATGTCGGCCATAATTCCC -ACGGAAATGTCGGCCATATTCTCG -ACGGAAATGTCGGCCATATAGACG -ACGGAAATGTCGGCCATAGTAACG -ACGGAAATGTCGGCCATAACTTCG -ACGGAAATGTCGGCCATATACGCA -ACGGAAATGTCGGCCATACTTGCA -ACGGAAATGTCGGCCATACGAACA -ACGGAAATGTCGGCCATACAGTCA -ACGGAAATGTCGGCCATAGATCCA -ACGGAAATGTCGGCCATAACGACA -ACGGAAATGTCGGCCATAAGCTCA -ACGGAAATGTCGGCCATATCACGT -ACGGAAATGTCGGCCATACGTAGT -ACGGAAATGTCGGCCATAGTCAGT -ACGGAAATGTCGGCCATAGAAGGT -ACGGAAATGTCGGCCATAAACCGT -ACGGAAATGTCGGCCATATTGTGC -ACGGAAATGTCGGCCATACTAAGC -ACGGAAATGTCGGCCATAACTAGC -ACGGAAATGTCGGCCATAAGATGC -ACGGAAATGTCGGCCATATGAAGG -ACGGAAATGTCGGCCATACAATGG -ACGGAAATGTCGGCCATAATGAGG -ACGGAAATGTCGGCCATAAATGGG -ACGGAAATGTCGGCCATATCCTGA -ACGGAAATGTCGGCCATATAGCGA -ACGGAAATGTCGGCCATACACAGA -ACGGAAATGTCGGCCATAGCAAGA -ACGGAAATGTCGGCCATAGGTTGA -ACGGAAATGTCGGCCATATCCGAT -ACGGAAATGTCGGCCATATGGCAT -ACGGAAATGTCGGCCATACGAGAT -ACGGAAATGTCGGCCATATACCAC -ACGGAAATGTCGGCCATACAGAAC -ACGGAAATGTCGGCCATAGTCTAC -ACGGAAATGTCGGCCATAACGTAC -ACGGAAATGTCGGCCATAAGTGAC -ACGGAAATGTCGGCCATACTGTAG -ACGGAAATGTCGGCCATACCTAAG -ACGGAAATGTCGGCCATAGTTCAG -ACGGAAATGTCGGCCATAGCATAG -ACGGAAATGTCGGCCATAGACAAG -ACGGAAATGTCGGCCATAAAGCAG -ACGGAAATGTCGGCCATACGTCAA -ACGGAAATGTCGGCCATAGCTGAA -ACGGAAATGTCGGCCATAAGTACG -ACGGAAATGTCGGCCATAATCCGA -ACGGAAATGTCGGCCATAATGGGA -ACGGAAATGTCGGCCATAGTGCAA -ACGGAAATGTCGGCCATAGAGGAA -ACGGAAATGTCGGCCATACAGGTA -ACGGAAATGTCGGCCATAGACTCT -ACGGAAATGTCGGCCATAAGTCCT -ACGGAAATGTCGGCCATATAAGCC -ACGGAAATGTCGGCCATAATAGCC -ACGGAAATGTCGGCCATATAACCG -ACGGAAATGTCGGCCATAATGCCA -ACGGAAATGTCGCCGTAAGGAAAC -ACGGAAATGTCGCCGTAAAACACC -ACGGAAATGTCGCCGTAAATCGAG -ACGGAAATGTCGCCGTAACTCCTT -ACGGAAATGTCGCCGTAACCTGTT -ACGGAAATGTCGCCGTAACGGTTT -ACGGAAATGTCGCCGTAAGTGGTT -ACGGAAATGTCGCCGTAAGCCTTT -ACGGAAATGTCGCCGTAAGGTCTT -ACGGAAATGTCGCCGTAAACGCTT -ACGGAAATGTCGCCGTAAAGCGTT -ACGGAAATGTCGCCGTAATTCGTC -ACGGAAATGTCGCCGTAATCTCTC -ACGGAAATGTCGCCGTAATGGATC -ACGGAAATGTCGCCGTAACACTTC -ACGGAAATGTCGCCGTAAGTACTC -ACGGAAATGTCGCCGTAAGATGTC -ACGGAAATGTCGCCGTAAACAGTC -ACGGAAATGTCGCCGTAATTGCTG -ACGGAAATGTCGCCGTAATCCATG -ACGGAAATGTCGCCGTAATGTGTG -ACGGAAATGTCGCCGTAACTAGTG -ACGGAAATGTCGCCGTAACATCTG -ACGGAAATGTCGCCGTAAGAGTTG -ACGGAAATGTCGCCGTAAAGACTG -ACGGAAATGTCGCCGTAATCGGTA -ACGGAAATGTCGCCGTAATGCCTA -ACGGAAATGTCGCCGTAACCACTA -ACGGAAATGTCGCCGTAAGGAGTA -ACGGAAATGTCGCCGTAATCGTCT -ACGGAAATGTCGCCGTAATGCACT -ACGGAAATGTCGCCGTAACTGACT -ACGGAAATGTCGCCGTAACAACCT -ACGGAAATGTCGCCGTAAGCTACT -ACGGAAATGTCGCCGTAAGGATCT -ACGGAAATGTCGCCGTAAAAGGCT -ACGGAAATGTCGCCGTAATCAACC -ACGGAAATGTCGCCGTAATGTTCC -ACGGAAATGTCGCCGTAAATTCCC -ACGGAAATGTCGCCGTAATTCTCG -ACGGAAATGTCGCCGTAATAGACG -ACGGAAATGTCGCCGTAAGTAACG -ACGGAAATGTCGCCGTAAACTTCG -ACGGAAATGTCGCCGTAATACGCA -ACGGAAATGTCGCCGTAACTTGCA -ACGGAAATGTCGCCGTAACGAACA -ACGGAAATGTCGCCGTAACAGTCA -ACGGAAATGTCGCCGTAAGATCCA -ACGGAAATGTCGCCGTAAACGACA -ACGGAAATGTCGCCGTAAAGCTCA -ACGGAAATGTCGCCGTAATCACGT -ACGGAAATGTCGCCGTAACGTAGT -ACGGAAATGTCGCCGTAAGTCAGT -ACGGAAATGTCGCCGTAAGAAGGT -ACGGAAATGTCGCCGTAAAACCGT -ACGGAAATGTCGCCGTAATTGTGC -ACGGAAATGTCGCCGTAACTAAGC -ACGGAAATGTCGCCGTAAACTAGC -ACGGAAATGTCGCCGTAAAGATGC -ACGGAAATGTCGCCGTAATGAAGG -ACGGAAATGTCGCCGTAACAATGG -ACGGAAATGTCGCCGTAAATGAGG -ACGGAAATGTCGCCGTAAAATGGG -ACGGAAATGTCGCCGTAATCCTGA -ACGGAAATGTCGCCGTAATAGCGA -ACGGAAATGTCGCCGTAACACAGA -ACGGAAATGTCGCCGTAAGCAAGA -ACGGAAATGTCGCCGTAAGGTTGA -ACGGAAATGTCGCCGTAATCCGAT -ACGGAAATGTCGCCGTAATGGCAT -ACGGAAATGTCGCCGTAACGAGAT -ACGGAAATGTCGCCGTAATACCAC -ACGGAAATGTCGCCGTAACAGAAC -ACGGAAATGTCGCCGTAAGTCTAC -ACGGAAATGTCGCCGTAAACGTAC -ACGGAAATGTCGCCGTAAAGTGAC -ACGGAAATGTCGCCGTAACTGTAG -ACGGAAATGTCGCCGTAACCTAAG -ACGGAAATGTCGCCGTAAGTTCAG -ACGGAAATGTCGCCGTAAGCATAG -ACGGAAATGTCGCCGTAAGACAAG -ACGGAAATGTCGCCGTAAAAGCAG -ACGGAAATGTCGCCGTAACGTCAA -ACGGAAATGTCGCCGTAAGCTGAA -ACGGAAATGTCGCCGTAAAGTACG -ACGGAAATGTCGCCGTAAATCCGA -ACGGAAATGTCGCCGTAAATGGGA -ACGGAAATGTCGCCGTAAGTGCAA -ACGGAAATGTCGCCGTAAGAGGAA -ACGGAAATGTCGCCGTAACAGGTA -ACGGAAATGTCGCCGTAAGACTCT -ACGGAAATGTCGCCGTAAAGTCCT -ACGGAAATGTCGCCGTAATAAGCC -ACGGAAATGTCGCCGTAAATAGCC -ACGGAAATGTCGCCGTAATAACCG -ACGGAAATGTCGCCGTAAATGCCA -ACGGAAATGTCGCCAATGGGAAAC -ACGGAAATGTCGCCAATGAACACC -ACGGAAATGTCGCCAATGATCGAG -ACGGAAATGTCGCCAATGCTCCTT -ACGGAAATGTCGCCAATGCCTGTT -ACGGAAATGTCGCCAATGCGGTTT -ACGGAAATGTCGCCAATGGTGGTT -ACGGAAATGTCGCCAATGGCCTTT -ACGGAAATGTCGCCAATGGGTCTT -ACGGAAATGTCGCCAATGACGCTT -ACGGAAATGTCGCCAATGAGCGTT -ACGGAAATGTCGCCAATGTTCGTC -ACGGAAATGTCGCCAATGTCTCTC -ACGGAAATGTCGCCAATGTGGATC -ACGGAAATGTCGCCAATGCACTTC -ACGGAAATGTCGCCAATGGTACTC -ACGGAAATGTCGCCAATGGATGTC -ACGGAAATGTCGCCAATGACAGTC -ACGGAAATGTCGCCAATGTTGCTG -ACGGAAATGTCGCCAATGTCCATG -ACGGAAATGTCGCCAATGTGTGTG -ACGGAAATGTCGCCAATGCTAGTG -ACGGAAATGTCGCCAATGCATCTG -ACGGAAATGTCGCCAATGGAGTTG -ACGGAAATGTCGCCAATGAGACTG -ACGGAAATGTCGCCAATGTCGGTA -ACGGAAATGTCGCCAATGTGCCTA -ACGGAAATGTCGCCAATGCCACTA -ACGGAAATGTCGCCAATGGGAGTA -ACGGAAATGTCGCCAATGTCGTCT -ACGGAAATGTCGCCAATGTGCACT -ACGGAAATGTCGCCAATGCTGACT -ACGGAAATGTCGCCAATGCAACCT -ACGGAAATGTCGCCAATGGCTACT -ACGGAAATGTCGCCAATGGGATCT -ACGGAAATGTCGCCAATGAAGGCT -ACGGAAATGTCGCCAATGTCAACC -ACGGAAATGTCGCCAATGTGTTCC -ACGGAAATGTCGCCAATGATTCCC -ACGGAAATGTCGCCAATGTTCTCG -ACGGAAATGTCGCCAATGTAGACG -ACGGAAATGTCGCCAATGGTAACG -ACGGAAATGTCGCCAATGACTTCG -ACGGAAATGTCGCCAATGTACGCA -ACGGAAATGTCGCCAATGCTTGCA -ACGGAAATGTCGCCAATGCGAACA -ACGGAAATGTCGCCAATGCAGTCA -ACGGAAATGTCGCCAATGGATCCA -ACGGAAATGTCGCCAATGACGACA -ACGGAAATGTCGCCAATGAGCTCA -ACGGAAATGTCGCCAATGTCACGT -ACGGAAATGTCGCCAATGCGTAGT -ACGGAAATGTCGCCAATGGTCAGT -ACGGAAATGTCGCCAATGGAAGGT -ACGGAAATGTCGCCAATGAACCGT -ACGGAAATGTCGCCAATGTTGTGC -ACGGAAATGTCGCCAATGCTAAGC -ACGGAAATGTCGCCAATGACTAGC -ACGGAAATGTCGCCAATGAGATGC -ACGGAAATGTCGCCAATGTGAAGG -ACGGAAATGTCGCCAATGCAATGG -ACGGAAATGTCGCCAATGATGAGG -ACGGAAATGTCGCCAATGAATGGG -ACGGAAATGTCGCCAATGTCCTGA -ACGGAAATGTCGCCAATGTAGCGA -ACGGAAATGTCGCCAATGCACAGA -ACGGAAATGTCGCCAATGGCAAGA -ACGGAAATGTCGCCAATGGGTTGA -ACGGAAATGTCGCCAATGTCCGAT -ACGGAAATGTCGCCAATGTGGCAT -ACGGAAATGTCGCCAATGCGAGAT -ACGGAAATGTCGCCAATGTACCAC -ACGGAAATGTCGCCAATGCAGAAC -ACGGAAATGTCGCCAATGGTCTAC -ACGGAAATGTCGCCAATGACGTAC -ACGGAAATGTCGCCAATGAGTGAC -ACGGAAATGTCGCCAATGCTGTAG -ACGGAAATGTCGCCAATGCCTAAG -ACGGAAATGTCGCCAATGGTTCAG -ACGGAAATGTCGCCAATGGCATAG -ACGGAAATGTCGCCAATGGACAAG -ACGGAAATGTCGCCAATGAAGCAG -ACGGAAATGTCGCCAATGCGTCAA -ACGGAAATGTCGCCAATGGCTGAA -ACGGAAATGTCGCCAATGAGTACG -ACGGAAATGTCGCCAATGATCCGA -ACGGAAATGTCGCCAATGATGGGA -ACGGAAATGTCGCCAATGGTGCAA -ACGGAAATGTCGCCAATGGAGGAA -ACGGAAATGTCGCCAATGCAGGTA -ACGGAAATGTCGCCAATGGACTCT -ACGGAAATGTCGCCAATGAGTCCT -ACGGAAATGTCGCCAATGTAAGCC -ACGGAAATGTCGCCAATGATAGCC -ACGGAAATGTCGCCAATGTAACCG -ACGGAAATGTCGCCAATGATGCCA -ACGGAACAGTCAAACGGAGGAAAC -ACGGAACAGTCAAACGGAAACACC -ACGGAACAGTCAAACGGAATCGAG -ACGGAACAGTCAAACGGACTCCTT -ACGGAACAGTCAAACGGACCTGTT -ACGGAACAGTCAAACGGACGGTTT -ACGGAACAGTCAAACGGAGTGGTT -ACGGAACAGTCAAACGGAGCCTTT -ACGGAACAGTCAAACGGAGGTCTT -ACGGAACAGTCAAACGGAACGCTT -ACGGAACAGTCAAACGGAAGCGTT -ACGGAACAGTCAAACGGATTCGTC -ACGGAACAGTCAAACGGATCTCTC -ACGGAACAGTCAAACGGATGGATC -ACGGAACAGTCAAACGGACACTTC -ACGGAACAGTCAAACGGAGTACTC -ACGGAACAGTCAAACGGAGATGTC -ACGGAACAGTCAAACGGAACAGTC -ACGGAACAGTCAAACGGATTGCTG -ACGGAACAGTCAAACGGATCCATG -ACGGAACAGTCAAACGGATGTGTG -ACGGAACAGTCAAACGGACTAGTG -ACGGAACAGTCAAACGGACATCTG -ACGGAACAGTCAAACGGAGAGTTG -ACGGAACAGTCAAACGGAAGACTG -ACGGAACAGTCAAACGGATCGGTA -ACGGAACAGTCAAACGGATGCCTA -ACGGAACAGTCAAACGGACCACTA -ACGGAACAGTCAAACGGAGGAGTA -ACGGAACAGTCAAACGGATCGTCT -ACGGAACAGTCAAACGGATGCACT -ACGGAACAGTCAAACGGACTGACT -ACGGAACAGTCAAACGGACAACCT -ACGGAACAGTCAAACGGAGCTACT -ACGGAACAGTCAAACGGAGGATCT -ACGGAACAGTCAAACGGAAAGGCT -ACGGAACAGTCAAACGGATCAACC -ACGGAACAGTCAAACGGATGTTCC -ACGGAACAGTCAAACGGAATTCCC -ACGGAACAGTCAAACGGATTCTCG -ACGGAACAGTCAAACGGATAGACG -ACGGAACAGTCAAACGGAGTAACG -ACGGAACAGTCAAACGGAACTTCG -ACGGAACAGTCAAACGGATACGCA -ACGGAACAGTCAAACGGACTTGCA -ACGGAACAGTCAAACGGACGAACA -ACGGAACAGTCAAACGGACAGTCA -ACGGAACAGTCAAACGGAGATCCA -ACGGAACAGTCAAACGGAACGACA -ACGGAACAGTCAAACGGAAGCTCA -ACGGAACAGTCAAACGGATCACGT -ACGGAACAGTCAAACGGACGTAGT -ACGGAACAGTCAAACGGAGTCAGT -ACGGAACAGTCAAACGGAGAAGGT -ACGGAACAGTCAAACGGAAACCGT -ACGGAACAGTCAAACGGATTGTGC -ACGGAACAGTCAAACGGACTAAGC -ACGGAACAGTCAAACGGAACTAGC -ACGGAACAGTCAAACGGAAGATGC -ACGGAACAGTCAAACGGATGAAGG -ACGGAACAGTCAAACGGACAATGG -ACGGAACAGTCAAACGGAATGAGG -ACGGAACAGTCAAACGGAAATGGG -ACGGAACAGTCAAACGGATCCTGA -ACGGAACAGTCAAACGGATAGCGA -ACGGAACAGTCAAACGGACACAGA -ACGGAACAGTCAAACGGAGCAAGA -ACGGAACAGTCAAACGGAGGTTGA -ACGGAACAGTCAAACGGATCCGAT -ACGGAACAGTCAAACGGATGGCAT -ACGGAACAGTCAAACGGACGAGAT -ACGGAACAGTCAAACGGATACCAC -ACGGAACAGTCAAACGGACAGAAC -ACGGAACAGTCAAACGGAGTCTAC -ACGGAACAGTCAAACGGAACGTAC -ACGGAACAGTCAAACGGAAGTGAC -ACGGAACAGTCAAACGGACTGTAG -ACGGAACAGTCAAACGGACCTAAG -ACGGAACAGTCAAACGGAGTTCAG -ACGGAACAGTCAAACGGAGCATAG -ACGGAACAGTCAAACGGAGACAAG -ACGGAACAGTCAAACGGAAAGCAG -ACGGAACAGTCAAACGGACGTCAA -ACGGAACAGTCAAACGGAGCTGAA -ACGGAACAGTCAAACGGAAGTACG -ACGGAACAGTCAAACGGAATCCGA -ACGGAACAGTCAAACGGAATGGGA -ACGGAACAGTCAAACGGAGTGCAA -ACGGAACAGTCAAACGGAGAGGAA -ACGGAACAGTCAAACGGACAGGTA -ACGGAACAGTCAAACGGAGACTCT -ACGGAACAGTCAAACGGAAGTCCT -ACGGAACAGTCAAACGGATAAGCC -ACGGAACAGTCAAACGGAATAGCC -ACGGAACAGTCAAACGGATAACCG -ACGGAACAGTCAAACGGAATGCCA -ACGGAACAGTCAACCAACGGAAAC -ACGGAACAGTCAACCAACAACACC -ACGGAACAGTCAACCAACATCGAG -ACGGAACAGTCAACCAACCTCCTT -ACGGAACAGTCAACCAACCCTGTT -ACGGAACAGTCAACCAACCGGTTT -ACGGAACAGTCAACCAACGTGGTT -ACGGAACAGTCAACCAACGCCTTT -ACGGAACAGTCAACCAACGGTCTT -ACGGAACAGTCAACCAACACGCTT -ACGGAACAGTCAACCAACAGCGTT -ACGGAACAGTCAACCAACTTCGTC -ACGGAACAGTCAACCAACTCTCTC -ACGGAACAGTCAACCAACTGGATC -ACGGAACAGTCAACCAACCACTTC -ACGGAACAGTCAACCAACGTACTC -ACGGAACAGTCAACCAACGATGTC -ACGGAACAGTCAACCAACACAGTC -ACGGAACAGTCAACCAACTTGCTG -ACGGAACAGTCAACCAACTCCATG -ACGGAACAGTCAACCAACTGTGTG -ACGGAACAGTCAACCAACCTAGTG -ACGGAACAGTCAACCAACCATCTG -ACGGAACAGTCAACCAACGAGTTG -ACGGAACAGTCAACCAACAGACTG -ACGGAACAGTCAACCAACTCGGTA -ACGGAACAGTCAACCAACTGCCTA -ACGGAACAGTCAACCAACCCACTA -ACGGAACAGTCAACCAACGGAGTA -ACGGAACAGTCAACCAACTCGTCT -ACGGAACAGTCAACCAACTGCACT -ACGGAACAGTCAACCAACCTGACT -ACGGAACAGTCAACCAACCAACCT -ACGGAACAGTCAACCAACGCTACT -ACGGAACAGTCAACCAACGGATCT -ACGGAACAGTCAACCAACAAGGCT -ACGGAACAGTCAACCAACTCAACC -ACGGAACAGTCAACCAACTGTTCC -ACGGAACAGTCAACCAACATTCCC -ACGGAACAGTCAACCAACTTCTCG -ACGGAACAGTCAACCAACTAGACG -ACGGAACAGTCAACCAACGTAACG -ACGGAACAGTCAACCAACACTTCG -ACGGAACAGTCAACCAACTACGCA -ACGGAACAGTCAACCAACCTTGCA -ACGGAACAGTCAACCAACCGAACA -ACGGAACAGTCAACCAACCAGTCA -ACGGAACAGTCAACCAACGATCCA -ACGGAACAGTCAACCAACACGACA -ACGGAACAGTCAACCAACAGCTCA -ACGGAACAGTCAACCAACTCACGT -ACGGAACAGTCAACCAACCGTAGT -ACGGAACAGTCAACCAACGTCAGT -ACGGAACAGTCAACCAACGAAGGT -ACGGAACAGTCAACCAACAACCGT -ACGGAACAGTCAACCAACTTGTGC -ACGGAACAGTCAACCAACCTAAGC -ACGGAACAGTCAACCAACACTAGC -ACGGAACAGTCAACCAACAGATGC -ACGGAACAGTCAACCAACTGAAGG -ACGGAACAGTCAACCAACCAATGG -ACGGAACAGTCAACCAACATGAGG -ACGGAACAGTCAACCAACAATGGG -ACGGAACAGTCAACCAACTCCTGA -ACGGAACAGTCAACCAACTAGCGA -ACGGAACAGTCAACCAACCACAGA -ACGGAACAGTCAACCAACGCAAGA -ACGGAACAGTCAACCAACGGTTGA -ACGGAACAGTCAACCAACTCCGAT -ACGGAACAGTCAACCAACTGGCAT -ACGGAACAGTCAACCAACCGAGAT -ACGGAACAGTCAACCAACTACCAC -ACGGAACAGTCAACCAACCAGAAC -ACGGAACAGTCAACCAACGTCTAC -ACGGAACAGTCAACCAACACGTAC -ACGGAACAGTCAACCAACAGTGAC -ACGGAACAGTCAACCAACCTGTAG -ACGGAACAGTCAACCAACCCTAAG -ACGGAACAGTCAACCAACGTTCAG -ACGGAACAGTCAACCAACGCATAG -ACGGAACAGTCAACCAACGACAAG -ACGGAACAGTCAACCAACAAGCAG -ACGGAACAGTCAACCAACCGTCAA -ACGGAACAGTCAACCAACGCTGAA -ACGGAACAGTCAACCAACAGTACG -ACGGAACAGTCAACCAACATCCGA -ACGGAACAGTCAACCAACATGGGA -ACGGAACAGTCAACCAACGTGCAA -ACGGAACAGTCAACCAACGAGGAA -ACGGAACAGTCAACCAACCAGGTA -ACGGAACAGTCAACCAACGACTCT -ACGGAACAGTCAACCAACAGTCCT -ACGGAACAGTCAACCAACTAAGCC -ACGGAACAGTCAACCAACATAGCC -ACGGAACAGTCAACCAACTAACCG -ACGGAACAGTCAACCAACATGCCA -ACGGAACAGTCAGAGATCGGAAAC -ACGGAACAGTCAGAGATCAACACC -ACGGAACAGTCAGAGATCATCGAG -ACGGAACAGTCAGAGATCCTCCTT -ACGGAACAGTCAGAGATCCCTGTT -ACGGAACAGTCAGAGATCCGGTTT -ACGGAACAGTCAGAGATCGTGGTT -ACGGAACAGTCAGAGATCGCCTTT -ACGGAACAGTCAGAGATCGGTCTT -ACGGAACAGTCAGAGATCACGCTT -ACGGAACAGTCAGAGATCAGCGTT -ACGGAACAGTCAGAGATCTTCGTC -ACGGAACAGTCAGAGATCTCTCTC -ACGGAACAGTCAGAGATCTGGATC -ACGGAACAGTCAGAGATCCACTTC -ACGGAACAGTCAGAGATCGTACTC -ACGGAACAGTCAGAGATCGATGTC -ACGGAACAGTCAGAGATCACAGTC -ACGGAACAGTCAGAGATCTTGCTG -ACGGAACAGTCAGAGATCTCCATG -ACGGAACAGTCAGAGATCTGTGTG -ACGGAACAGTCAGAGATCCTAGTG -ACGGAACAGTCAGAGATCCATCTG -ACGGAACAGTCAGAGATCGAGTTG -ACGGAACAGTCAGAGATCAGACTG -ACGGAACAGTCAGAGATCTCGGTA -ACGGAACAGTCAGAGATCTGCCTA -ACGGAACAGTCAGAGATCCCACTA -ACGGAACAGTCAGAGATCGGAGTA -ACGGAACAGTCAGAGATCTCGTCT -ACGGAACAGTCAGAGATCTGCACT -ACGGAACAGTCAGAGATCCTGACT -ACGGAACAGTCAGAGATCCAACCT -ACGGAACAGTCAGAGATCGCTACT -ACGGAACAGTCAGAGATCGGATCT -ACGGAACAGTCAGAGATCAAGGCT -ACGGAACAGTCAGAGATCTCAACC -ACGGAACAGTCAGAGATCTGTTCC -ACGGAACAGTCAGAGATCATTCCC -ACGGAACAGTCAGAGATCTTCTCG -ACGGAACAGTCAGAGATCTAGACG -ACGGAACAGTCAGAGATCGTAACG -ACGGAACAGTCAGAGATCACTTCG -ACGGAACAGTCAGAGATCTACGCA -ACGGAACAGTCAGAGATCCTTGCA -ACGGAACAGTCAGAGATCCGAACA -ACGGAACAGTCAGAGATCCAGTCA -ACGGAACAGTCAGAGATCGATCCA -ACGGAACAGTCAGAGATCACGACA -ACGGAACAGTCAGAGATCAGCTCA -ACGGAACAGTCAGAGATCTCACGT -ACGGAACAGTCAGAGATCCGTAGT -ACGGAACAGTCAGAGATCGTCAGT -ACGGAACAGTCAGAGATCGAAGGT -ACGGAACAGTCAGAGATCAACCGT -ACGGAACAGTCAGAGATCTTGTGC -ACGGAACAGTCAGAGATCCTAAGC -ACGGAACAGTCAGAGATCACTAGC -ACGGAACAGTCAGAGATCAGATGC -ACGGAACAGTCAGAGATCTGAAGG -ACGGAACAGTCAGAGATCCAATGG -ACGGAACAGTCAGAGATCATGAGG -ACGGAACAGTCAGAGATCAATGGG -ACGGAACAGTCAGAGATCTCCTGA -ACGGAACAGTCAGAGATCTAGCGA -ACGGAACAGTCAGAGATCCACAGA -ACGGAACAGTCAGAGATCGCAAGA -ACGGAACAGTCAGAGATCGGTTGA -ACGGAACAGTCAGAGATCTCCGAT -ACGGAACAGTCAGAGATCTGGCAT -ACGGAACAGTCAGAGATCCGAGAT -ACGGAACAGTCAGAGATCTACCAC -ACGGAACAGTCAGAGATCCAGAAC -ACGGAACAGTCAGAGATCGTCTAC -ACGGAACAGTCAGAGATCACGTAC -ACGGAACAGTCAGAGATCAGTGAC -ACGGAACAGTCAGAGATCCTGTAG -ACGGAACAGTCAGAGATCCCTAAG -ACGGAACAGTCAGAGATCGTTCAG -ACGGAACAGTCAGAGATCGCATAG -ACGGAACAGTCAGAGATCGACAAG -ACGGAACAGTCAGAGATCAAGCAG -ACGGAACAGTCAGAGATCCGTCAA -ACGGAACAGTCAGAGATCGCTGAA -ACGGAACAGTCAGAGATCAGTACG -ACGGAACAGTCAGAGATCATCCGA -ACGGAACAGTCAGAGATCATGGGA -ACGGAACAGTCAGAGATCGTGCAA -ACGGAACAGTCAGAGATCGAGGAA -ACGGAACAGTCAGAGATCCAGGTA -ACGGAACAGTCAGAGATCGACTCT -ACGGAACAGTCAGAGATCAGTCCT -ACGGAACAGTCAGAGATCTAAGCC -ACGGAACAGTCAGAGATCATAGCC -ACGGAACAGTCAGAGATCTAACCG -ACGGAACAGTCAGAGATCATGCCA -ACGGAACAGTCACTTCTCGGAAAC -ACGGAACAGTCACTTCTCAACACC -ACGGAACAGTCACTTCTCATCGAG -ACGGAACAGTCACTTCTCCTCCTT -ACGGAACAGTCACTTCTCCCTGTT -ACGGAACAGTCACTTCTCCGGTTT -ACGGAACAGTCACTTCTCGTGGTT -ACGGAACAGTCACTTCTCGCCTTT -ACGGAACAGTCACTTCTCGGTCTT -ACGGAACAGTCACTTCTCACGCTT -ACGGAACAGTCACTTCTCAGCGTT -ACGGAACAGTCACTTCTCTTCGTC -ACGGAACAGTCACTTCTCTCTCTC -ACGGAACAGTCACTTCTCTGGATC -ACGGAACAGTCACTTCTCCACTTC -ACGGAACAGTCACTTCTCGTACTC -ACGGAACAGTCACTTCTCGATGTC -ACGGAACAGTCACTTCTCACAGTC -ACGGAACAGTCACTTCTCTTGCTG -ACGGAACAGTCACTTCTCTCCATG -ACGGAACAGTCACTTCTCTGTGTG -ACGGAACAGTCACTTCTCCTAGTG -ACGGAACAGTCACTTCTCCATCTG -ACGGAACAGTCACTTCTCGAGTTG -ACGGAACAGTCACTTCTCAGACTG -ACGGAACAGTCACTTCTCTCGGTA -ACGGAACAGTCACTTCTCTGCCTA -ACGGAACAGTCACTTCTCCCACTA -ACGGAACAGTCACTTCTCGGAGTA -ACGGAACAGTCACTTCTCTCGTCT -ACGGAACAGTCACTTCTCTGCACT -ACGGAACAGTCACTTCTCCTGACT -ACGGAACAGTCACTTCTCCAACCT -ACGGAACAGTCACTTCTCGCTACT -ACGGAACAGTCACTTCTCGGATCT -ACGGAACAGTCACTTCTCAAGGCT -ACGGAACAGTCACTTCTCTCAACC -ACGGAACAGTCACTTCTCTGTTCC -ACGGAACAGTCACTTCTCATTCCC -ACGGAACAGTCACTTCTCTTCTCG -ACGGAACAGTCACTTCTCTAGACG -ACGGAACAGTCACTTCTCGTAACG -ACGGAACAGTCACTTCTCACTTCG -ACGGAACAGTCACTTCTCTACGCA -ACGGAACAGTCACTTCTCCTTGCA -ACGGAACAGTCACTTCTCCGAACA -ACGGAACAGTCACTTCTCCAGTCA -ACGGAACAGTCACTTCTCGATCCA -ACGGAACAGTCACTTCTCACGACA -ACGGAACAGTCACTTCTCAGCTCA -ACGGAACAGTCACTTCTCTCACGT -ACGGAACAGTCACTTCTCCGTAGT -ACGGAACAGTCACTTCTCGTCAGT -ACGGAACAGTCACTTCTCGAAGGT -ACGGAACAGTCACTTCTCAACCGT -ACGGAACAGTCACTTCTCTTGTGC -ACGGAACAGTCACTTCTCCTAAGC -ACGGAACAGTCACTTCTCACTAGC -ACGGAACAGTCACTTCTCAGATGC -ACGGAACAGTCACTTCTCTGAAGG -ACGGAACAGTCACTTCTCCAATGG -ACGGAACAGTCACTTCTCATGAGG -ACGGAACAGTCACTTCTCAATGGG -ACGGAACAGTCACTTCTCTCCTGA -ACGGAACAGTCACTTCTCTAGCGA -ACGGAACAGTCACTTCTCCACAGA -ACGGAACAGTCACTTCTCGCAAGA -ACGGAACAGTCACTTCTCGGTTGA -ACGGAACAGTCACTTCTCTCCGAT -ACGGAACAGTCACTTCTCTGGCAT -ACGGAACAGTCACTTCTCCGAGAT -ACGGAACAGTCACTTCTCTACCAC -ACGGAACAGTCACTTCTCCAGAAC -ACGGAACAGTCACTTCTCGTCTAC -ACGGAACAGTCACTTCTCACGTAC -ACGGAACAGTCACTTCTCAGTGAC -ACGGAACAGTCACTTCTCCTGTAG -ACGGAACAGTCACTTCTCCCTAAG -ACGGAACAGTCACTTCTCGTTCAG -ACGGAACAGTCACTTCTCGCATAG -ACGGAACAGTCACTTCTCGACAAG -ACGGAACAGTCACTTCTCAAGCAG -ACGGAACAGTCACTTCTCCGTCAA -ACGGAACAGTCACTTCTCGCTGAA -ACGGAACAGTCACTTCTCAGTACG -ACGGAACAGTCACTTCTCATCCGA -ACGGAACAGTCACTTCTCATGGGA -ACGGAACAGTCACTTCTCGTGCAA -ACGGAACAGTCACTTCTCGAGGAA -ACGGAACAGTCACTTCTCCAGGTA -ACGGAACAGTCACTTCTCGACTCT -ACGGAACAGTCACTTCTCAGTCCT -ACGGAACAGTCACTTCTCTAAGCC -ACGGAACAGTCACTTCTCATAGCC -ACGGAACAGTCACTTCTCTAACCG -ACGGAACAGTCACTTCTCATGCCA -ACGGAACAGTCAGTTCCTGGAAAC -ACGGAACAGTCAGTTCCTAACACC -ACGGAACAGTCAGTTCCTATCGAG -ACGGAACAGTCAGTTCCTCTCCTT -ACGGAACAGTCAGTTCCTCCTGTT -ACGGAACAGTCAGTTCCTCGGTTT -ACGGAACAGTCAGTTCCTGTGGTT -ACGGAACAGTCAGTTCCTGCCTTT -ACGGAACAGTCAGTTCCTGGTCTT -ACGGAACAGTCAGTTCCTACGCTT -ACGGAACAGTCAGTTCCTAGCGTT -ACGGAACAGTCAGTTCCTTTCGTC -ACGGAACAGTCAGTTCCTTCTCTC -ACGGAACAGTCAGTTCCTTGGATC -ACGGAACAGTCAGTTCCTCACTTC -ACGGAACAGTCAGTTCCTGTACTC -ACGGAACAGTCAGTTCCTGATGTC -ACGGAACAGTCAGTTCCTACAGTC -ACGGAACAGTCAGTTCCTTTGCTG -ACGGAACAGTCAGTTCCTTCCATG -ACGGAACAGTCAGTTCCTTGTGTG -ACGGAACAGTCAGTTCCTCTAGTG -ACGGAACAGTCAGTTCCTCATCTG -ACGGAACAGTCAGTTCCTGAGTTG -ACGGAACAGTCAGTTCCTAGACTG -ACGGAACAGTCAGTTCCTTCGGTA -ACGGAACAGTCAGTTCCTTGCCTA -ACGGAACAGTCAGTTCCTCCACTA -ACGGAACAGTCAGTTCCTGGAGTA -ACGGAACAGTCAGTTCCTTCGTCT -ACGGAACAGTCAGTTCCTTGCACT -ACGGAACAGTCAGTTCCTCTGACT -ACGGAACAGTCAGTTCCTCAACCT -ACGGAACAGTCAGTTCCTGCTACT -ACGGAACAGTCAGTTCCTGGATCT -ACGGAACAGTCAGTTCCTAAGGCT -ACGGAACAGTCAGTTCCTTCAACC -ACGGAACAGTCAGTTCCTTGTTCC -ACGGAACAGTCAGTTCCTATTCCC -ACGGAACAGTCAGTTCCTTTCTCG -ACGGAACAGTCAGTTCCTTAGACG -ACGGAACAGTCAGTTCCTGTAACG -ACGGAACAGTCAGTTCCTACTTCG -ACGGAACAGTCAGTTCCTTACGCA -ACGGAACAGTCAGTTCCTCTTGCA -ACGGAACAGTCAGTTCCTCGAACA -ACGGAACAGTCAGTTCCTCAGTCA -ACGGAACAGTCAGTTCCTGATCCA -ACGGAACAGTCAGTTCCTACGACA -ACGGAACAGTCAGTTCCTAGCTCA -ACGGAACAGTCAGTTCCTTCACGT -ACGGAACAGTCAGTTCCTCGTAGT -ACGGAACAGTCAGTTCCTGTCAGT -ACGGAACAGTCAGTTCCTGAAGGT -ACGGAACAGTCAGTTCCTAACCGT -ACGGAACAGTCAGTTCCTTTGTGC -ACGGAACAGTCAGTTCCTCTAAGC -ACGGAACAGTCAGTTCCTACTAGC -ACGGAACAGTCAGTTCCTAGATGC -ACGGAACAGTCAGTTCCTTGAAGG -ACGGAACAGTCAGTTCCTCAATGG -ACGGAACAGTCAGTTCCTATGAGG -ACGGAACAGTCAGTTCCTAATGGG -ACGGAACAGTCAGTTCCTTCCTGA -ACGGAACAGTCAGTTCCTTAGCGA -ACGGAACAGTCAGTTCCTCACAGA -ACGGAACAGTCAGTTCCTGCAAGA -ACGGAACAGTCAGTTCCTGGTTGA -ACGGAACAGTCAGTTCCTTCCGAT -ACGGAACAGTCAGTTCCTTGGCAT -ACGGAACAGTCAGTTCCTCGAGAT -ACGGAACAGTCAGTTCCTTACCAC -ACGGAACAGTCAGTTCCTCAGAAC -ACGGAACAGTCAGTTCCTGTCTAC -ACGGAACAGTCAGTTCCTACGTAC -ACGGAACAGTCAGTTCCTAGTGAC -ACGGAACAGTCAGTTCCTCTGTAG -ACGGAACAGTCAGTTCCTCCTAAG -ACGGAACAGTCAGTTCCTGTTCAG -ACGGAACAGTCAGTTCCTGCATAG -ACGGAACAGTCAGTTCCTGACAAG -ACGGAACAGTCAGTTCCTAAGCAG -ACGGAACAGTCAGTTCCTCGTCAA -ACGGAACAGTCAGTTCCTGCTGAA -ACGGAACAGTCAGTTCCTAGTACG -ACGGAACAGTCAGTTCCTATCCGA -ACGGAACAGTCAGTTCCTATGGGA -ACGGAACAGTCAGTTCCTGTGCAA -ACGGAACAGTCAGTTCCTGAGGAA -ACGGAACAGTCAGTTCCTCAGGTA -ACGGAACAGTCAGTTCCTGACTCT -ACGGAACAGTCAGTTCCTAGTCCT -ACGGAACAGTCAGTTCCTTAAGCC -ACGGAACAGTCAGTTCCTATAGCC -ACGGAACAGTCAGTTCCTTAACCG -ACGGAACAGTCAGTTCCTATGCCA -ACGGAACAGTCATTTCGGGGAAAC -ACGGAACAGTCATTTCGGAACACC -ACGGAACAGTCATTTCGGATCGAG -ACGGAACAGTCATTTCGGCTCCTT -ACGGAACAGTCATTTCGGCCTGTT -ACGGAACAGTCATTTCGGCGGTTT -ACGGAACAGTCATTTCGGGTGGTT -ACGGAACAGTCATTTCGGGCCTTT -ACGGAACAGTCATTTCGGGGTCTT -ACGGAACAGTCATTTCGGACGCTT -ACGGAACAGTCATTTCGGAGCGTT -ACGGAACAGTCATTTCGGTTCGTC -ACGGAACAGTCATTTCGGTCTCTC -ACGGAACAGTCATTTCGGTGGATC -ACGGAACAGTCATTTCGGCACTTC -ACGGAACAGTCATTTCGGGTACTC -ACGGAACAGTCATTTCGGGATGTC -ACGGAACAGTCATTTCGGACAGTC -ACGGAACAGTCATTTCGGTTGCTG -ACGGAACAGTCATTTCGGTCCATG -ACGGAACAGTCATTTCGGTGTGTG -ACGGAACAGTCATTTCGGCTAGTG -ACGGAACAGTCATTTCGGCATCTG -ACGGAACAGTCATTTCGGGAGTTG -ACGGAACAGTCATTTCGGAGACTG -ACGGAACAGTCATTTCGGTCGGTA -ACGGAACAGTCATTTCGGTGCCTA -ACGGAACAGTCATTTCGGCCACTA -ACGGAACAGTCATTTCGGGGAGTA -ACGGAACAGTCATTTCGGTCGTCT -ACGGAACAGTCATTTCGGTGCACT -ACGGAACAGTCATTTCGGCTGACT -ACGGAACAGTCATTTCGGCAACCT -ACGGAACAGTCATTTCGGGCTACT -ACGGAACAGTCATTTCGGGGATCT -ACGGAACAGTCATTTCGGAAGGCT -ACGGAACAGTCATTTCGGTCAACC -ACGGAACAGTCATTTCGGTGTTCC -ACGGAACAGTCATTTCGGATTCCC -ACGGAACAGTCATTTCGGTTCTCG -ACGGAACAGTCATTTCGGTAGACG -ACGGAACAGTCATTTCGGGTAACG -ACGGAACAGTCATTTCGGACTTCG -ACGGAACAGTCATTTCGGTACGCA -ACGGAACAGTCATTTCGGCTTGCA -ACGGAACAGTCATTTCGGCGAACA -ACGGAACAGTCATTTCGGCAGTCA -ACGGAACAGTCATTTCGGGATCCA -ACGGAACAGTCATTTCGGACGACA -ACGGAACAGTCATTTCGGAGCTCA -ACGGAACAGTCATTTCGGTCACGT -ACGGAACAGTCATTTCGGCGTAGT -ACGGAACAGTCATTTCGGGTCAGT -ACGGAACAGTCATTTCGGGAAGGT -ACGGAACAGTCATTTCGGAACCGT -ACGGAACAGTCATTTCGGTTGTGC -ACGGAACAGTCATTTCGGCTAAGC -ACGGAACAGTCATTTCGGACTAGC -ACGGAACAGTCATTTCGGAGATGC -ACGGAACAGTCATTTCGGTGAAGG -ACGGAACAGTCATTTCGGCAATGG -ACGGAACAGTCATTTCGGATGAGG -ACGGAACAGTCATTTCGGAATGGG -ACGGAACAGTCATTTCGGTCCTGA -ACGGAACAGTCATTTCGGTAGCGA -ACGGAACAGTCATTTCGGCACAGA -ACGGAACAGTCATTTCGGGCAAGA -ACGGAACAGTCATTTCGGGGTTGA -ACGGAACAGTCATTTCGGTCCGAT -ACGGAACAGTCATTTCGGTGGCAT -ACGGAACAGTCATTTCGGCGAGAT -ACGGAACAGTCATTTCGGTACCAC -ACGGAACAGTCATTTCGGCAGAAC -ACGGAACAGTCATTTCGGGTCTAC -ACGGAACAGTCATTTCGGACGTAC -ACGGAACAGTCATTTCGGAGTGAC -ACGGAACAGTCATTTCGGCTGTAG -ACGGAACAGTCATTTCGGCCTAAG -ACGGAACAGTCATTTCGGGTTCAG -ACGGAACAGTCATTTCGGGCATAG -ACGGAACAGTCATTTCGGGACAAG -ACGGAACAGTCATTTCGGAAGCAG -ACGGAACAGTCATTTCGGCGTCAA -ACGGAACAGTCATTTCGGGCTGAA -ACGGAACAGTCATTTCGGAGTACG -ACGGAACAGTCATTTCGGATCCGA -ACGGAACAGTCATTTCGGATGGGA -ACGGAACAGTCATTTCGGGTGCAA -ACGGAACAGTCATTTCGGGAGGAA -ACGGAACAGTCATTTCGGCAGGTA -ACGGAACAGTCATTTCGGGACTCT -ACGGAACAGTCATTTCGGAGTCCT -ACGGAACAGTCATTTCGGTAAGCC -ACGGAACAGTCATTTCGGATAGCC -ACGGAACAGTCATTTCGGTAACCG -ACGGAACAGTCATTTCGGATGCCA -ACGGAACAGTCAGTTGTGGGAAAC -ACGGAACAGTCAGTTGTGAACACC -ACGGAACAGTCAGTTGTGATCGAG -ACGGAACAGTCAGTTGTGCTCCTT -ACGGAACAGTCAGTTGTGCCTGTT -ACGGAACAGTCAGTTGTGCGGTTT -ACGGAACAGTCAGTTGTGGTGGTT -ACGGAACAGTCAGTTGTGGCCTTT -ACGGAACAGTCAGTTGTGGGTCTT -ACGGAACAGTCAGTTGTGACGCTT -ACGGAACAGTCAGTTGTGAGCGTT -ACGGAACAGTCAGTTGTGTTCGTC -ACGGAACAGTCAGTTGTGTCTCTC -ACGGAACAGTCAGTTGTGTGGATC -ACGGAACAGTCAGTTGTGCACTTC -ACGGAACAGTCAGTTGTGGTACTC -ACGGAACAGTCAGTTGTGGATGTC -ACGGAACAGTCAGTTGTGACAGTC -ACGGAACAGTCAGTTGTGTTGCTG -ACGGAACAGTCAGTTGTGTCCATG -ACGGAACAGTCAGTTGTGTGTGTG -ACGGAACAGTCAGTTGTGCTAGTG -ACGGAACAGTCAGTTGTGCATCTG -ACGGAACAGTCAGTTGTGGAGTTG -ACGGAACAGTCAGTTGTGAGACTG -ACGGAACAGTCAGTTGTGTCGGTA -ACGGAACAGTCAGTTGTGTGCCTA -ACGGAACAGTCAGTTGTGCCACTA -ACGGAACAGTCAGTTGTGGGAGTA -ACGGAACAGTCAGTTGTGTCGTCT -ACGGAACAGTCAGTTGTGTGCACT -ACGGAACAGTCAGTTGTGCTGACT -ACGGAACAGTCAGTTGTGCAACCT -ACGGAACAGTCAGTTGTGGCTACT -ACGGAACAGTCAGTTGTGGGATCT -ACGGAACAGTCAGTTGTGAAGGCT -ACGGAACAGTCAGTTGTGTCAACC -ACGGAACAGTCAGTTGTGTGTTCC -ACGGAACAGTCAGTTGTGATTCCC -ACGGAACAGTCAGTTGTGTTCTCG -ACGGAACAGTCAGTTGTGTAGACG -ACGGAACAGTCAGTTGTGGTAACG -ACGGAACAGTCAGTTGTGACTTCG -ACGGAACAGTCAGTTGTGTACGCA -ACGGAACAGTCAGTTGTGCTTGCA -ACGGAACAGTCAGTTGTGCGAACA -ACGGAACAGTCAGTTGTGCAGTCA -ACGGAACAGTCAGTTGTGGATCCA -ACGGAACAGTCAGTTGTGACGACA -ACGGAACAGTCAGTTGTGAGCTCA -ACGGAACAGTCAGTTGTGTCACGT -ACGGAACAGTCAGTTGTGCGTAGT -ACGGAACAGTCAGTTGTGGTCAGT -ACGGAACAGTCAGTTGTGGAAGGT -ACGGAACAGTCAGTTGTGAACCGT -ACGGAACAGTCAGTTGTGTTGTGC -ACGGAACAGTCAGTTGTGCTAAGC -ACGGAACAGTCAGTTGTGACTAGC -ACGGAACAGTCAGTTGTGAGATGC -ACGGAACAGTCAGTTGTGTGAAGG -ACGGAACAGTCAGTTGTGCAATGG -ACGGAACAGTCAGTTGTGATGAGG -ACGGAACAGTCAGTTGTGAATGGG -ACGGAACAGTCAGTTGTGTCCTGA -ACGGAACAGTCAGTTGTGTAGCGA -ACGGAACAGTCAGTTGTGCACAGA -ACGGAACAGTCAGTTGTGGCAAGA -ACGGAACAGTCAGTTGTGGGTTGA -ACGGAACAGTCAGTTGTGTCCGAT -ACGGAACAGTCAGTTGTGTGGCAT -ACGGAACAGTCAGTTGTGCGAGAT -ACGGAACAGTCAGTTGTGTACCAC -ACGGAACAGTCAGTTGTGCAGAAC -ACGGAACAGTCAGTTGTGGTCTAC -ACGGAACAGTCAGTTGTGACGTAC -ACGGAACAGTCAGTTGTGAGTGAC -ACGGAACAGTCAGTTGTGCTGTAG -ACGGAACAGTCAGTTGTGCCTAAG -ACGGAACAGTCAGTTGTGGTTCAG -ACGGAACAGTCAGTTGTGGCATAG -ACGGAACAGTCAGTTGTGGACAAG -ACGGAACAGTCAGTTGTGAAGCAG -ACGGAACAGTCAGTTGTGCGTCAA -ACGGAACAGTCAGTTGTGGCTGAA -ACGGAACAGTCAGTTGTGAGTACG -ACGGAACAGTCAGTTGTGATCCGA -ACGGAACAGTCAGTTGTGATGGGA -ACGGAACAGTCAGTTGTGGTGCAA -ACGGAACAGTCAGTTGTGGAGGAA -ACGGAACAGTCAGTTGTGCAGGTA -ACGGAACAGTCAGTTGTGGACTCT -ACGGAACAGTCAGTTGTGAGTCCT -ACGGAACAGTCAGTTGTGTAAGCC -ACGGAACAGTCAGTTGTGATAGCC -ACGGAACAGTCAGTTGTGTAACCG -ACGGAACAGTCAGTTGTGATGCCA -ACGGAACAGTCATTTGCCGGAAAC -ACGGAACAGTCATTTGCCAACACC -ACGGAACAGTCATTTGCCATCGAG -ACGGAACAGTCATTTGCCCTCCTT -ACGGAACAGTCATTTGCCCCTGTT -ACGGAACAGTCATTTGCCCGGTTT -ACGGAACAGTCATTTGCCGTGGTT -ACGGAACAGTCATTTGCCGCCTTT -ACGGAACAGTCATTTGCCGGTCTT -ACGGAACAGTCATTTGCCACGCTT -ACGGAACAGTCATTTGCCAGCGTT -ACGGAACAGTCATTTGCCTTCGTC -ACGGAACAGTCATTTGCCTCTCTC -ACGGAACAGTCATTTGCCTGGATC -ACGGAACAGTCATTTGCCCACTTC -ACGGAACAGTCATTTGCCGTACTC -ACGGAACAGTCATTTGCCGATGTC -ACGGAACAGTCATTTGCCACAGTC -ACGGAACAGTCATTTGCCTTGCTG -ACGGAACAGTCATTTGCCTCCATG -ACGGAACAGTCATTTGCCTGTGTG -ACGGAACAGTCATTTGCCCTAGTG -ACGGAACAGTCATTTGCCCATCTG -ACGGAACAGTCATTTGCCGAGTTG -ACGGAACAGTCATTTGCCAGACTG -ACGGAACAGTCATTTGCCTCGGTA -ACGGAACAGTCATTTGCCTGCCTA -ACGGAACAGTCATTTGCCCCACTA -ACGGAACAGTCATTTGCCGGAGTA -ACGGAACAGTCATTTGCCTCGTCT -ACGGAACAGTCATTTGCCTGCACT -ACGGAACAGTCATTTGCCCTGACT -ACGGAACAGTCATTTGCCCAACCT -ACGGAACAGTCATTTGCCGCTACT -ACGGAACAGTCATTTGCCGGATCT -ACGGAACAGTCATTTGCCAAGGCT -ACGGAACAGTCATTTGCCTCAACC -ACGGAACAGTCATTTGCCTGTTCC -ACGGAACAGTCATTTGCCATTCCC -ACGGAACAGTCATTTGCCTTCTCG -ACGGAACAGTCATTTGCCTAGACG -ACGGAACAGTCATTTGCCGTAACG -ACGGAACAGTCATTTGCCACTTCG -ACGGAACAGTCATTTGCCTACGCA -ACGGAACAGTCATTTGCCCTTGCA -ACGGAACAGTCATTTGCCCGAACA -ACGGAACAGTCATTTGCCCAGTCA -ACGGAACAGTCATTTGCCGATCCA -ACGGAACAGTCATTTGCCACGACA -ACGGAACAGTCATTTGCCAGCTCA -ACGGAACAGTCATTTGCCTCACGT -ACGGAACAGTCATTTGCCCGTAGT -ACGGAACAGTCATTTGCCGTCAGT -ACGGAACAGTCATTTGCCGAAGGT -ACGGAACAGTCATTTGCCAACCGT -ACGGAACAGTCATTTGCCTTGTGC -ACGGAACAGTCATTTGCCCTAAGC -ACGGAACAGTCATTTGCCACTAGC -ACGGAACAGTCATTTGCCAGATGC -ACGGAACAGTCATTTGCCTGAAGG -ACGGAACAGTCATTTGCCCAATGG -ACGGAACAGTCATTTGCCATGAGG -ACGGAACAGTCATTTGCCAATGGG -ACGGAACAGTCATTTGCCTCCTGA -ACGGAACAGTCATTTGCCTAGCGA -ACGGAACAGTCATTTGCCCACAGA -ACGGAACAGTCATTTGCCGCAAGA -ACGGAACAGTCATTTGCCGGTTGA -ACGGAACAGTCATTTGCCTCCGAT -ACGGAACAGTCATTTGCCTGGCAT -ACGGAACAGTCATTTGCCCGAGAT -ACGGAACAGTCATTTGCCTACCAC -ACGGAACAGTCATTTGCCCAGAAC -ACGGAACAGTCATTTGCCGTCTAC -ACGGAACAGTCATTTGCCACGTAC -ACGGAACAGTCATTTGCCAGTGAC -ACGGAACAGTCATTTGCCCTGTAG -ACGGAACAGTCATTTGCCCCTAAG -ACGGAACAGTCATTTGCCGTTCAG -ACGGAACAGTCATTTGCCGCATAG -ACGGAACAGTCATTTGCCGACAAG -ACGGAACAGTCATTTGCCAAGCAG -ACGGAACAGTCATTTGCCCGTCAA -ACGGAACAGTCATTTGCCGCTGAA -ACGGAACAGTCATTTGCCAGTACG -ACGGAACAGTCATTTGCCATCCGA -ACGGAACAGTCATTTGCCATGGGA -ACGGAACAGTCATTTGCCGTGCAA -ACGGAACAGTCATTTGCCGAGGAA -ACGGAACAGTCATTTGCCCAGGTA -ACGGAACAGTCATTTGCCGACTCT -ACGGAACAGTCATTTGCCAGTCCT -ACGGAACAGTCATTTGCCTAAGCC -ACGGAACAGTCATTTGCCATAGCC -ACGGAACAGTCATTTGCCTAACCG -ACGGAACAGTCATTTGCCATGCCA -ACGGAACAGTCACTTGGTGGAAAC -ACGGAACAGTCACTTGGTAACACC -ACGGAACAGTCACTTGGTATCGAG -ACGGAACAGTCACTTGGTCTCCTT -ACGGAACAGTCACTTGGTCCTGTT -ACGGAACAGTCACTTGGTCGGTTT -ACGGAACAGTCACTTGGTGTGGTT -ACGGAACAGTCACTTGGTGCCTTT -ACGGAACAGTCACTTGGTGGTCTT -ACGGAACAGTCACTTGGTACGCTT -ACGGAACAGTCACTTGGTAGCGTT -ACGGAACAGTCACTTGGTTTCGTC -ACGGAACAGTCACTTGGTTCTCTC -ACGGAACAGTCACTTGGTTGGATC -ACGGAACAGTCACTTGGTCACTTC -ACGGAACAGTCACTTGGTGTACTC -ACGGAACAGTCACTTGGTGATGTC -ACGGAACAGTCACTTGGTACAGTC -ACGGAACAGTCACTTGGTTTGCTG -ACGGAACAGTCACTTGGTTCCATG -ACGGAACAGTCACTTGGTTGTGTG -ACGGAACAGTCACTTGGTCTAGTG -ACGGAACAGTCACTTGGTCATCTG -ACGGAACAGTCACTTGGTGAGTTG -ACGGAACAGTCACTTGGTAGACTG -ACGGAACAGTCACTTGGTTCGGTA -ACGGAACAGTCACTTGGTTGCCTA -ACGGAACAGTCACTTGGTCCACTA -ACGGAACAGTCACTTGGTGGAGTA -ACGGAACAGTCACTTGGTTCGTCT -ACGGAACAGTCACTTGGTTGCACT -ACGGAACAGTCACTTGGTCTGACT -ACGGAACAGTCACTTGGTCAACCT -ACGGAACAGTCACTTGGTGCTACT -ACGGAACAGTCACTTGGTGGATCT -ACGGAACAGTCACTTGGTAAGGCT -ACGGAACAGTCACTTGGTTCAACC -ACGGAACAGTCACTTGGTTGTTCC -ACGGAACAGTCACTTGGTATTCCC -ACGGAACAGTCACTTGGTTTCTCG -ACGGAACAGTCACTTGGTTAGACG -ACGGAACAGTCACTTGGTGTAACG -ACGGAACAGTCACTTGGTACTTCG -ACGGAACAGTCACTTGGTTACGCA -ACGGAACAGTCACTTGGTCTTGCA -ACGGAACAGTCACTTGGTCGAACA -ACGGAACAGTCACTTGGTCAGTCA -ACGGAACAGTCACTTGGTGATCCA -ACGGAACAGTCACTTGGTACGACA -ACGGAACAGTCACTTGGTAGCTCA -ACGGAACAGTCACTTGGTTCACGT -ACGGAACAGTCACTTGGTCGTAGT -ACGGAACAGTCACTTGGTGTCAGT -ACGGAACAGTCACTTGGTGAAGGT -ACGGAACAGTCACTTGGTAACCGT -ACGGAACAGTCACTTGGTTTGTGC -ACGGAACAGTCACTTGGTCTAAGC -ACGGAACAGTCACTTGGTACTAGC -ACGGAACAGTCACTTGGTAGATGC -ACGGAACAGTCACTTGGTTGAAGG -ACGGAACAGTCACTTGGTCAATGG -ACGGAACAGTCACTTGGTATGAGG -ACGGAACAGTCACTTGGTAATGGG -ACGGAACAGTCACTTGGTTCCTGA -ACGGAACAGTCACTTGGTTAGCGA -ACGGAACAGTCACTTGGTCACAGA -ACGGAACAGTCACTTGGTGCAAGA -ACGGAACAGTCACTTGGTGGTTGA -ACGGAACAGTCACTTGGTTCCGAT -ACGGAACAGTCACTTGGTTGGCAT -ACGGAACAGTCACTTGGTCGAGAT -ACGGAACAGTCACTTGGTTACCAC -ACGGAACAGTCACTTGGTCAGAAC -ACGGAACAGTCACTTGGTGTCTAC -ACGGAACAGTCACTTGGTACGTAC -ACGGAACAGTCACTTGGTAGTGAC -ACGGAACAGTCACTTGGTCTGTAG -ACGGAACAGTCACTTGGTCCTAAG -ACGGAACAGTCACTTGGTGTTCAG -ACGGAACAGTCACTTGGTGCATAG -ACGGAACAGTCACTTGGTGACAAG -ACGGAACAGTCACTTGGTAAGCAG -ACGGAACAGTCACTTGGTCGTCAA -ACGGAACAGTCACTTGGTGCTGAA -ACGGAACAGTCACTTGGTAGTACG -ACGGAACAGTCACTTGGTATCCGA -ACGGAACAGTCACTTGGTATGGGA -ACGGAACAGTCACTTGGTGTGCAA -ACGGAACAGTCACTTGGTGAGGAA -ACGGAACAGTCACTTGGTCAGGTA -ACGGAACAGTCACTTGGTGACTCT -ACGGAACAGTCACTTGGTAGTCCT -ACGGAACAGTCACTTGGTTAAGCC -ACGGAACAGTCACTTGGTATAGCC -ACGGAACAGTCACTTGGTTAACCG -ACGGAACAGTCACTTGGTATGCCA -ACGGAACAGTCACTTACGGGAAAC -ACGGAACAGTCACTTACGAACACC -ACGGAACAGTCACTTACGATCGAG -ACGGAACAGTCACTTACGCTCCTT -ACGGAACAGTCACTTACGCCTGTT -ACGGAACAGTCACTTACGCGGTTT -ACGGAACAGTCACTTACGGTGGTT -ACGGAACAGTCACTTACGGCCTTT -ACGGAACAGTCACTTACGGGTCTT -ACGGAACAGTCACTTACGACGCTT -ACGGAACAGTCACTTACGAGCGTT -ACGGAACAGTCACTTACGTTCGTC -ACGGAACAGTCACTTACGTCTCTC -ACGGAACAGTCACTTACGTGGATC -ACGGAACAGTCACTTACGCACTTC -ACGGAACAGTCACTTACGGTACTC -ACGGAACAGTCACTTACGGATGTC -ACGGAACAGTCACTTACGACAGTC -ACGGAACAGTCACTTACGTTGCTG -ACGGAACAGTCACTTACGTCCATG -ACGGAACAGTCACTTACGTGTGTG -ACGGAACAGTCACTTACGCTAGTG -ACGGAACAGTCACTTACGCATCTG -ACGGAACAGTCACTTACGGAGTTG -ACGGAACAGTCACTTACGAGACTG -ACGGAACAGTCACTTACGTCGGTA -ACGGAACAGTCACTTACGTGCCTA -ACGGAACAGTCACTTACGCCACTA -ACGGAACAGTCACTTACGGGAGTA -ACGGAACAGTCACTTACGTCGTCT -ACGGAACAGTCACTTACGTGCACT -ACGGAACAGTCACTTACGCTGACT -ACGGAACAGTCACTTACGCAACCT -ACGGAACAGTCACTTACGGCTACT -ACGGAACAGTCACTTACGGGATCT -ACGGAACAGTCACTTACGAAGGCT -ACGGAACAGTCACTTACGTCAACC -ACGGAACAGTCACTTACGTGTTCC -ACGGAACAGTCACTTACGATTCCC -ACGGAACAGTCACTTACGTTCTCG -ACGGAACAGTCACTTACGTAGACG -ACGGAACAGTCACTTACGGTAACG -ACGGAACAGTCACTTACGACTTCG -ACGGAACAGTCACTTACGTACGCA -ACGGAACAGTCACTTACGCTTGCA -ACGGAACAGTCACTTACGCGAACA -ACGGAACAGTCACTTACGCAGTCA -ACGGAACAGTCACTTACGGATCCA -ACGGAACAGTCACTTACGACGACA -ACGGAACAGTCACTTACGAGCTCA -ACGGAACAGTCACTTACGTCACGT -ACGGAACAGTCACTTACGCGTAGT -ACGGAACAGTCACTTACGGTCAGT -ACGGAACAGTCACTTACGGAAGGT -ACGGAACAGTCACTTACGAACCGT -ACGGAACAGTCACTTACGTTGTGC -ACGGAACAGTCACTTACGCTAAGC -ACGGAACAGTCACTTACGACTAGC -ACGGAACAGTCACTTACGAGATGC -ACGGAACAGTCACTTACGTGAAGG -ACGGAACAGTCACTTACGCAATGG -ACGGAACAGTCACTTACGATGAGG -ACGGAACAGTCACTTACGAATGGG -ACGGAACAGTCACTTACGTCCTGA -ACGGAACAGTCACTTACGTAGCGA -ACGGAACAGTCACTTACGCACAGA -ACGGAACAGTCACTTACGGCAAGA -ACGGAACAGTCACTTACGGGTTGA -ACGGAACAGTCACTTACGTCCGAT -ACGGAACAGTCACTTACGTGGCAT -ACGGAACAGTCACTTACGCGAGAT -ACGGAACAGTCACTTACGTACCAC -ACGGAACAGTCACTTACGCAGAAC -ACGGAACAGTCACTTACGGTCTAC -ACGGAACAGTCACTTACGACGTAC -ACGGAACAGTCACTTACGAGTGAC -ACGGAACAGTCACTTACGCTGTAG -ACGGAACAGTCACTTACGCCTAAG -ACGGAACAGTCACTTACGGTTCAG -ACGGAACAGTCACTTACGGCATAG -ACGGAACAGTCACTTACGGACAAG -ACGGAACAGTCACTTACGAAGCAG -ACGGAACAGTCACTTACGCGTCAA -ACGGAACAGTCACTTACGGCTGAA -ACGGAACAGTCACTTACGAGTACG -ACGGAACAGTCACTTACGATCCGA -ACGGAACAGTCACTTACGATGGGA -ACGGAACAGTCACTTACGGTGCAA -ACGGAACAGTCACTTACGGAGGAA -ACGGAACAGTCACTTACGCAGGTA -ACGGAACAGTCACTTACGGACTCT -ACGGAACAGTCACTTACGAGTCCT -ACGGAACAGTCACTTACGTAAGCC -ACGGAACAGTCACTTACGATAGCC -ACGGAACAGTCACTTACGTAACCG -ACGGAACAGTCACTTACGATGCCA -ACGGAACAGTCAGTTAGCGGAAAC -ACGGAACAGTCAGTTAGCAACACC -ACGGAACAGTCAGTTAGCATCGAG -ACGGAACAGTCAGTTAGCCTCCTT -ACGGAACAGTCAGTTAGCCCTGTT -ACGGAACAGTCAGTTAGCCGGTTT -ACGGAACAGTCAGTTAGCGTGGTT -ACGGAACAGTCAGTTAGCGCCTTT -ACGGAACAGTCAGTTAGCGGTCTT -ACGGAACAGTCAGTTAGCACGCTT -ACGGAACAGTCAGTTAGCAGCGTT -ACGGAACAGTCAGTTAGCTTCGTC -ACGGAACAGTCAGTTAGCTCTCTC -ACGGAACAGTCAGTTAGCTGGATC -ACGGAACAGTCAGTTAGCCACTTC -ACGGAACAGTCAGTTAGCGTACTC -ACGGAACAGTCAGTTAGCGATGTC -ACGGAACAGTCAGTTAGCACAGTC -ACGGAACAGTCAGTTAGCTTGCTG -ACGGAACAGTCAGTTAGCTCCATG -ACGGAACAGTCAGTTAGCTGTGTG -ACGGAACAGTCAGTTAGCCTAGTG -ACGGAACAGTCAGTTAGCCATCTG -ACGGAACAGTCAGTTAGCGAGTTG -ACGGAACAGTCAGTTAGCAGACTG -ACGGAACAGTCAGTTAGCTCGGTA -ACGGAACAGTCAGTTAGCTGCCTA -ACGGAACAGTCAGTTAGCCCACTA -ACGGAACAGTCAGTTAGCGGAGTA -ACGGAACAGTCAGTTAGCTCGTCT -ACGGAACAGTCAGTTAGCTGCACT -ACGGAACAGTCAGTTAGCCTGACT -ACGGAACAGTCAGTTAGCCAACCT -ACGGAACAGTCAGTTAGCGCTACT -ACGGAACAGTCAGTTAGCGGATCT -ACGGAACAGTCAGTTAGCAAGGCT -ACGGAACAGTCAGTTAGCTCAACC -ACGGAACAGTCAGTTAGCTGTTCC -ACGGAACAGTCAGTTAGCATTCCC -ACGGAACAGTCAGTTAGCTTCTCG -ACGGAACAGTCAGTTAGCTAGACG -ACGGAACAGTCAGTTAGCGTAACG -ACGGAACAGTCAGTTAGCACTTCG -ACGGAACAGTCAGTTAGCTACGCA -ACGGAACAGTCAGTTAGCCTTGCA -ACGGAACAGTCAGTTAGCCGAACA -ACGGAACAGTCAGTTAGCCAGTCA -ACGGAACAGTCAGTTAGCGATCCA -ACGGAACAGTCAGTTAGCACGACA -ACGGAACAGTCAGTTAGCAGCTCA -ACGGAACAGTCAGTTAGCTCACGT -ACGGAACAGTCAGTTAGCCGTAGT -ACGGAACAGTCAGTTAGCGTCAGT -ACGGAACAGTCAGTTAGCGAAGGT -ACGGAACAGTCAGTTAGCAACCGT -ACGGAACAGTCAGTTAGCTTGTGC -ACGGAACAGTCAGTTAGCCTAAGC -ACGGAACAGTCAGTTAGCACTAGC -ACGGAACAGTCAGTTAGCAGATGC -ACGGAACAGTCAGTTAGCTGAAGG -ACGGAACAGTCAGTTAGCCAATGG -ACGGAACAGTCAGTTAGCATGAGG -ACGGAACAGTCAGTTAGCAATGGG -ACGGAACAGTCAGTTAGCTCCTGA -ACGGAACAGTCAGTTAGCTAGCGA -ACGGAACAGTCAGTTAGCCACAGA -ACGGAACAGTCAGTTAGCGCAAGA -ACGGAACAGTCAGTTAGCGGTTGA -ACGGAACAGTCAGTTAGCTCCGAT -ACGGAACAGTCAGTTAGCTGGCAT -ACGGAACAGTCAGTTAGCCGAGAT -ACGGAACAGTCAGTTAGCTACCAC -ACGGAACAGTCAGTTAGCCAGAAC -ACGGAACAGTCAGTTAGCGTCTAC -ACGGAACAGTCAGTTAGCACGTAC -ACGGAACAGTCAGTTAGCAGTGAC -ACGGAACAGTCAGTTAGCCTGTAG -ACGGAACAGTCAGTTAGCCCTAAG -ACGGAACAGTCAGTTAGCGTTCAG -ACGGAACAGTCAGTTAGCGCATAG -ACGGAACAGTCAGTTAGCGACAAG -ACGGAACAGTCAGTTAGCAAGCAG -ACGGAACAGTCAGTTAGCCGTCAA -ACGGAACAGTCAGTTAGCGCTGAA -ACGGAACAGTCAGTTAGCAGTACG -ACGGAACAGTCAGTTAGCATCCGA -ACGGAACAGTCAGTTAGCATGGGA -ACGGAACAGTCAGTTAGCGTGCAA -ACGGAACAGTCAGTTAGCGAGGAA -ACGGAACAGTCAGTTAGCCAGGTA -ACGGAACAGTCAGTTAGCGACTCT -ACGGAACAGTCAGTTAGCAGTCCT -ACGGAACAGTCAGTTAGCTAAGCC -ACGGAACAGTCAGTTAGCATAGCC -ACGGAACAGTCAGTTAGCTAACCG -ACGGAACAGTCAGTTAGCATGCCA -ACGGAACAGTCAGTCTTCGGAAAC -ACGGAACAGTCAGTCTTCAACACC -ACGGAACAGTCAGTCTTCATCGAG -ACGGAACAGTCAGTCTTCCTCCTT -ACGGAACAGTCAGTCTTCCCTGTT -ACGGAACAGTCAGTCTTCCGGTTT -ACGGAACAGTCAGTCTTCGTGGTT -ACGGAACAGTCAGTCTTCGCCTTT -ACGGAACAGTCAGTCTTCGGTCTT -ACGGAACAGTCAGTCTTCACGCTT -ACGGAACAGTCAGTCTTCAGCGTT -ACGGAACAGTCAGTCTTCTTCGTC -ACGGAACAGTCAGTCTTCTCTCTC -ACGGAACAGTCAGTCTTCTGGATC -ACGGAACAGTCAGTCTTCCACTTC -ACGGAACAGTCAGTCTTCGTACTC -ACGGAACAGTCAGTCTTCGATGTC -ACGGAACAGTCAGTCTTCACAGTC -ACGGAACAGTCAGTCTTCTTGCTG -ACGGAACAGTCAGTCTTCTCCATG -ACGGAACAGTCAGTCTTCTGTGTG -ACGGAACAGTCAGTCTTCCTAGTG -ACGGAACAGTCAGTCTTCCATCTG -ACGGAACAGTCAGTCTTCGAGTTG -ACGGAACAGTCAGTCTTCAGACTG -ACGGAACAGTCAGTCTTCTCGGTA -ACGGAACAGTCAGTCTTCTGCCTA -ACGGAACAGTCAGTCTTCCCACTA -ACGGAACAGTCAGTCTTCGGAGTA -ACGGAACAGTCAGTCTTCTCGTCT -ACGGAACAGTCAGTCTTCTGCACT -ACGGAACAGTCAGTCTTCCTGACT -ACGGAACAGTCAGTCTTCCAACCT -ACGGAACAGTCAGTCTTCGCTACT -ACGGAACAGTCAGTCTTCGGATCT -ACGGAACAGTCAGTCTTCAAGGCT -ACGGAACAGTCAGTCTTCTCAACC -ACGGAACAGTCAGTCTTCTGTTCC -ACGGAACAGTCAGTCTTCATTCCC -ACGGAACAGTCAGTCTTCTTCTCG -ACGGAACAGTCAGTCTTCTAGACG -ACGGAACAGTCAGTCTTCGTAACG -ACGGAACAGTCAGTCTTCACTTCG -ACGGAACAGTCAGTCTTCTACGCA -ACGGAACAGTCAGTCTTCCTTGCA -ACGGAACAGTCAGTCTTCCGAACA -ACGGAACAGTCAGTCTTCCAGTCA -ACGGAACAGTCAGTCTTCGATCCA -ACGGAACAGTCAGTCTTCACGACA -ACGGAACAGTCAGTCTTCAGCTCA -ACGGAACAGTCAGTCTTCTCACGT -ACGGAACAGTCAGTCTTCCGTAGT -ACGGAACAGTCAGTCTTCGTCAGT -ACGGAACAGTCAGTCTTCGAAGGT -ACGGAACAGTCAGTCTTCAACCGT -ACGGAACAGTCAGTCTTCTTGTGC -ACGGAACAGTCAGTCTTCCTAAGC -ACGGAACAGTCAGTCTTCACTAGC -ACGGAACAGTCAGTCTTCAGATGC -ACGGAACAGTCAGTCTTCTGAAGG -ACGGAACAGTCAGTCTTCCAATGG -ACGGAACAGTCAGTCTTCATGAGG -ACGGAACAGTCAGTCTTCAATGGG -ACGGAACAGTCAGTCTTCTCCTGA -ACGGAACAGTCAGTCTTCTAGCGA -ACGGAACAGTCAGTCTTCCACAGA -ACGGAACAGTCAGTCTTCGCAAGA -ACGGAACAGTCAGTCTTCGGTTGA -ACGGAACAGTCAGTCTTCTCCGAT -ACGGAACAGTCAGTCTTCTGGCAT -ACGGAACAGTCAGTCTTCCGAGAT -ACGGAACAGTCAGTCTTCTACCAC -ACGGAACAGTCAGTCTTCCAGAAC -ACGGAACAGTCAGTCTTCGTCTAC -ACGGAACAGTCAGTCTTCACGTAC -ACGGAACAGTCAGTCTTCAGTGAC -ACGGAACAGTCAGTCTTCCTGTAG -ACGGAACAGTCAGTCTTCCCTAAG -ACGGAACAGTCAGTCTTCGTTCAG -ACGGAACAGTCAGTCTTCGCATAG -ACGGAACAGTCAGTCTTCGACAAG -ACGGAACAGTCAGTCTTCAAGCAG -ACGGAACAGTCAGTCTTCCGTCAA -ACGGAACAGTCAGTCTTCGCTGAA -ACGGAACAGTCAGTCTTCAGTACG -ACGGAACAGTCAGTCTTCATCCGA -ACGGAACAGTCAGTCTTCATGGGA -ACGGAACAGTCAGTCTTCGTGCAA -ACGGAACAGTCAGTCTTCGAGGAA -ACGGAACAGTCAGTCTTCCAGGTA -ACGGAACAGTCAGTCTTCGACTCT -ACGGAACAGTCAGTCTTCAGTCCT -ACGGAACAGTCAGTCTTCTAAGCC -ACGGAACAGTCAGTCTTCATAGCC -ACGGAACAGTCAGTCTTCTAACCG -ACGGAACAGTCAGTCTTCATGCCA -ACGGAACAGTCACTCTCTGGAAAC -ACGGAACAGTCACTCTCTAACACC -ACGGAACAGTCACTCTCTATCGAG -ACGGAACAGTCACTCTCTCTCCTT -ACGGAACAGTCACTCTCTCCTGTT -ACGGAACAGTCACTCTCTCGGTTT -ACGGAACAGTCACTCTCTGTGGTT -ACGGAACAGTCACTCTCTGCCTTT -ACGGAACAGTCACTCTCTGGTCTT -ACGGAACAGTCACTCTCTACGCTT -ACGGAACAGTCACTCTCTAGCGTT -ACGGAACAGTCACTCTCTTTCGTC -ACGGAACAGTCACTCTCTTCTCTC -ACGGAACAGTCACTCTCTTGGATC -ACGGAACAGTCACTCTCTCACTTC -ACGGAACAGTCACTCTCTGTACTC -ACGGAACAGTCACTCTCTGATGTC -ACGGAACAGTCACTCTCTACAGTC -ACGGAACAGTCACTCTCTTTGCTG -ACGGAACAGTCACTCTCTTCCATG -ACGGAACAGTCACTCTCTTGTGTG -ACGGAACAGTCACTCTCTCTAGTG -ACGGAACAGTCACTCTCTCATCTG -ACGGAACAGTCACTCTCTGAGTTG -ACGGAACAGTCACTCTCTAGACTG -ACGGAACAGTCACTCTCTTCGGTA -ACGGAACAGTCACTCTCTTGCCTA -ACGGAACAGTCACTCTCTCCACTA -ACGGAACAGTCACTCTCTGGAGTA -ACGGAACAGTCACTCTCTTCGTCT -ACGGAACAGTCACTCTCTTGCACT -ACGGAACAGTCACTCTCTCTGACT -ACGGAACAGTCACTCTCTCAACCT -ACGGAACAGTCACTCTCTGCTACT -ACGGAACAGTCACTCTCTGGATCT -ACGGAACAGTCACTCTCTAAGGCT -ACGGAACAGTCACTCTCTTCAACC -ACGGAACAGTCACTCTCTTGTTCC -ACGGAACAGTCACTCTCTATTCCC -ACGGAACAGTCACTCTCTTTCTCG -ACGGAACAGTCACTCTCTTAGACG -ACGGAACAGTCACTCTCTGTAACG -ACGGAACAGTCACTCTCTACTTCG -ACGGAACAGTCACTCTCTTACGCA -ACGGAACAGTCACTCTCTCTTGCA -ACGGAACAGTCACTCTCTCGAACA -ACGGAACAGTCACTCTCTCAGTCA -ACGGAACAGTCACTCTCTGATCCA -ACGGAACAGTCACTCTCTACGACA -ACGGAACAGTCACTCTCTAGCTCA -ACGGAACAGTCACTCTCTTCACGT -ACGGAACAGTCACTCTCTCGTAGT -ACGGAACAGTCACTCTCTGTCAGT -ACGGAACAGTCACTCTCTGAAGGT -ACGGAACAGTCACTCTCTAACCGT -ACGGAACAGTCACTCTCTTTGTGC -ACGGAACAGTCACTCTCTCTAAGC -ACGGAACAGTCACTCTCTACTAGC -ACGGAACAGTCACTCTCTAGATGC -ACGGAACAGTCACTCTCTTGAAGG -ACGGAACAGTCACTCTCTCAATGG -ACGGAACAGTCACTCTCTATGAGG -ACGGAACAGTCACTCTCTAATGGG -ACGGAACAGTCACTCTCTTCCTGA -ACGGAACAGTCACTCTCTTAGCGA -ACGGAACAGTCACTCTCTCACAGA -ACGGAACAGTCACTCTCTGCAAGA -ACGGAACAGTCACTCTCTGGTTGA -ACGGAACAGTCACTCTCTTCCGAT -ACGGAACAGTCACTCTCTTGGCAT -ACGGAACAGTCACTCTCTCGAGAT -ACGGAACAGTCACTCTCTTACCAC -ACGGAACAGTCACTCTCTCAGAAC -ACGGAACAGTCACTCTCTGTCTAC -ACGGAACAGTCACTCTCTACGTAC -ACGGAACAGTCACTCTCTAGTGAC -ACGGAACAGTCACTCTCTCTGTAG -ACGGAACAGTCACTCTCTCCTAAG -ACGGAACAGTCACTCTCTGTTCAG -ACGGAACAGTCACTCTCTGCATAG -ACGGAACAGTCACTCTCTGACAAG -ACGGAACAGTCACTCTCTAAGCAG -ACGGAACAGTCACTCTCTCGTCAA -ACGGAACAGTCACTCTCTGCTGAA -ACGGAACAGTCACTCTCTAGTACG -ACGGAACAGTCACTCTCTATCCGA -ACGGAACAGTCACTCTCTATGGGA -ACGGAACAGTCACTCTCTGTGCAA -ACGGAACAGTCACTCTCTGAGGAA -ACGGAACAGTCACTCTCTCAGGTA -ACGGAACAGTCACTCTCTGACTCT -ACGGAACAGTCACTCTCTAGTCCT -ACGGAACAGTCACTCTCTTAAGCC -ACGGAACAGTCACTCTCTATAGCC -ACGGAACAGTCACTCTCTTAACCG -ACGGAACAGTCACTCTCTATGCCA -ACGGAACAGTCAATCTGGGGAAAC -ACGGAACAGTCAATCTGGAACACC -ACGGAACAGTCAATCTGGATCGAG -ACGGAACAGTCAATCTGGCTCCTT -ACGGAACAGTCAATCTGGCCTGTT -ACGGAACAGTCAATCTGGCGGTTT -ACGGAACAGTCAATCTGGGTGGTT -ACGGAACAGTCAATCTGGGCCTTT -ACGGAACAGTCAATCTGGGGTCTT -ACGGAACAGTCAATCTGGACGCTT -ACGGAACAGTCAATCTGGAGCGTT -ACGGAACAGTCAATCTGGTTCGTC -ACGGAACAGTCAATCTGGTCTCTC -ACGGAACAGTCAATCTGGTGGATC -ACGGAACAGTCAATCTGGCACTTC -ACGGAACAGTCAATCTGGGTACTC -ACGGAACAGTCAATCTGGGATGTC -ACGGAACAGTCAATCTGGACAGTC -ACGGAACAGTCAATCTGGTTGCTG -ACGGAACAGTCAATCTGGTCCATG -ACGGAACAGTCAATCTGGTGTGTG -ACGGAACAGTCAATCTGGCTAGTG -ACGGAACAGTCAATCTGGCATCTG -ACGGAACAGTCAATCTGGGAGTTG -ACGGAACAGTCAATCTGGAGACTG -ACGGAACAGTCAATCTGGTCGGTA -ACGGAACAGTCAATCTGGTGCCTA -ACGGAACAGTCAATCTGGCCACTA -ACGGAACAGTCAATCTGGGGAGTA -ACGGAACAGTCAATCTGGTCGTCT -ACGGAACAGTCAATCTGGTGCACT -ACGGAACAGTCAATCTGGCTGACT -ACGGAACAGTCAATCTGGCAACCT -ACGGAACAGTCAATCTGGGCTACT -ACGGAACAGTCAATCTGGGGATCT -ACGGAACAGTCAATCTGGAAGGCT -ACGGAACAGTCAATCTGGTCAACC -ACGGAACAGTCAATCTGGTGTTCC -ACGGAACAGTCAATCTGGATTCCC -ACGGAACAGTCAATCTGGTTCTCG -ACGGAACAGTCAATCTGGTAGACG -ACGGAACAGTCAATCTGGGTAACG -ACGGAACAGTCAATCTGGACTTCG -ACGGAACAGTCAATCTGGTACGCA -ACGGAACAGTCAATCTGGCTTGCA -ACGGAACAGTCAATCTGGCGAACA -ACGGAACAGTCAATCTGGCAGTCA -ACGGAACAGTCAATCTGGGATCCA -ACGGAACAGTCAATCTGGACGACA -ACGGAACAGTCAATCTGGAGCTCA -ACGGAACAGTCAATCTGGTCACGT -ACGGAACAGTCAATCTGGCGTAGT -ACGGAACAGTCAATCTGGGTCAGT -ACGGAACAGTCAATCTGGGAAGGT -ACGGAACAGTCAATCTGGAACCGT -ACGGAACAGTCAATCTGGTTGTGC -ACGGAACAGTCAATCTGGCTAAGC -ACGGAACAGTCAATCTGGACTAGC -ACGGAACAGTCAATCTGGAGATGC -ACGGAACAGTCAATCTGGTGAAGG -ACGGAACAGTCAATCTGGCAATGG -ACGGAACAGTCAATCTGGATGAGG -ACGGAACAGTCAATCTGGAATGGG -ACGGAACAGTCAATCTGGTCCTGA -ACGGAACAGTCAATCTGGTAGCGA -ACGGAACAGTCAATCTGGCACAGA -ACGGAACAGTCAATCTGGGCAAGA -ACGGAACAGTCAATCTGGGGTTGA -ACGGAACAGTCAATCTGGTCCGAT -ACGGAACAGTCAATCTGGTGGCAT -ACGGAACAGTCAATCTGGCGAGAT -ACGGAACAGTCAATCTGGTACCAC -ACGGAACAGTCAATCTGGCAGAAC -ACGGAACAGTCAATCTGGGTCTAC -ACGGAACAGTCAATCTGGACGTAC -ACGGAACAGTCAATCTGGAGTGAC -ACGGAACAGTCAATCTGGCTGTAG -ACGGAACAGTCAATCTGGCCTAAG -ACGGAACAGTCAATCTGGGTTCAG -ACGGAACAGTCAATCTGGGCATAG -ACGGAACAGTCAATCTGGGACAAG -ACGGAACAGTCAATCTGGAAGCAG -ACGGAACAGTCAATCTGGCGTCAA -ACGGAACAGTCAATCTGGGCTGAA -ACGGAACAGTCAATCTGGAGTACG -ACGGAACAGTCAATCTGGATCCGA -ACGGAACAGTCAATCTGGATGGGA -ACGGAACAGTCAATCTGGGTGCAA -ACGGAACAGTCAATCTGGGAGGAA -ACGGAACAGTCAATCTGGCAGGTA -ACGGAACAGTCAATCTGGGACTCT -ACGGAACAGTCAATCTGGAGTCCT -ACGGAACAGTCAATCTGGTAAGCC -ACGGAACAGTCAATCTGGATAGCC -ACGGAACAGTCAATCTGGTAACCG -ACGGAACAGTCAATCTGGATGCCA -ACGGAACAGTCATTCCACGGAAAC -ACGGAACAGTCATTCCACAACACC -ACGGAACAGTCATTCCACATCGAG -ACGGAACAGTCATTCCACCTCCTT -ACGGAACAGTCATTCCACCCTGTT -ACGGAACAGTCATTCCACCGGTTT -ACGGAACAGTCATTCCACGTGGTT -ACGGAACAGTCATTCCACGCCTTT -ACGGAACAGTCATTCCACGGTCTT -ACGGAACAGTCATTCCACACGCTT -ACGGAACAGTCATTCCACAGCGTT -ACGGAACAGTCATTCCACTTCGTC -ACGGAACAGTCATTCCACTCTCTC -ACGGAACAGTCATTCCACTGGATC -ACGGAACAGTCATTCCACCACTTC -ACGGAACAGTCATTCCACGTACTC -ACGGAACAGTCATTCCACGATGTC -ACGGAACAGTCATTCCACACAGTC -ACGGAACAGTCATTCCACTTGCTG -ACGGAACAGTCATTCCACTCCATG -ACGGAACAGTCATTCCACTGTGTG -ACGGAACAGTCATTCCACCTAGTG -ACGGAACAGTCATTCCACCATCTG -ACGGAACAGTCATTCCACGAGTTG -ACGGAACAGTCATTCCACAGACTG -ACGGAACAGTCATTCCACTCGGTA -ACGGAACAGTCATTCCACTGCCTA -ACGGAACAGTCATTCCACCCACTA -ACGGAACAGTCATTCCACGGAGTA -ACGGAACAGTCATTCCACTCGTCT -ACGGAACAGTCATTCCACTGCACT -ACGGAACAGTCATTCCACCTGACT -ACGGAACAGTCATTCCACCAACCT -ACGGAACAGTCATTCCACGCTACT -ACGGAACAGTCATTCCACGGATCT -ACGGAACAGTCATTCCACAAGGCT -ACGGAACAGTCATTCCACTCAACC -ACGGAACAGTCATTCCACTGTTCC -ACGGAACAGTCATTCCACATTCCC -ACGGAACAGTCATTCCACTTCTCG -ACGGAACAGTCATTCCACTAGACG -ACGGAACAGTCATTCCACGTAACG -ACGGAACAGTCATTCCACACTTCG -ACGGAACAGTCATTCCACTACGCA -ACGGAACAGTCATTCCACCTTGCA -ACGGAACAGTCATTCCACCGAACA -ACGGAACAGTCATTCCACCAGTCA -ACGGAACAGTCATTCCACGATCCA -ACGGAACAGTCATTCCACACGACA -ACGGAACAGTCATTCCACAGCTCA -ACGGAACAGTCATTCCACTCACGT -ACGGAACAGTCATTCCACCGTAGT -ACGGAACAGTCATTCCACGTCAGT -ACGGAACAGTCATTCCACGAAGGT -ACGGAACAGTCATTCCACAACCGT -ACGGAACAGTCATTCCACTTGTGC -ACGGAACAGTCATTCCACCTAAGC -ACGGAACAGTCATTCCACACTAGC -ACGGAACAGTCATTCCACAGATGC -ACGGAACAGTCATTCCACTGAAGG -ACGGAACAGTCATTCCACCAATGG -ACGGAACAGTCATTCCACATGAGG -ACGGAACAGTCATTCCACAATGGG -ACGGAACAGTCATTCCACTCCTGA -ACGGAACAGTCATTCCACTAGCGA -ACGGAACAGTCATTCCACCACAGA -ACGGAACAGTCATTCCACGCAAGA -ACGGAACAGTCATTCCACGGTTGA -ACGGAACAGTCATTCCACTCCGAT -ACGGAACAGTCATTCCACTGGCAT -ACGGAACAGTCATTCCACCGAGAT -ACGGAACAGTCATTCCACTACCAC -ACGGAACAGTCATTCCACCAGAAC -ACGGAACAGTCATTCCACGTCTAC -ACGGAACAGTCATTCCACACGTAC -ACGGAACAGTCATTCCACAGTGAC -ACGGAACAGTCATTCCACCTGTAG -ACGGAACAGTCATTCCACCCTAAG -ACGGAACAGTCATTCCACGTTCAG -ACGGAACAGTCATTCCACGCATAG -ACGGAACAGTCATTCCACGACAAG -ACGGAACAGTCATTCCACAAGCAG -ACGGAACAGTCATTCCACCGTCAA -ACGGAACAGTCATTCCACGCTGAA -ACGGAACAGTCATTCCACAGTACG -ACGGAACAGTCATTCCACATCCGA -ACGGAACAGTCATTCCACATGGGA -ACGGAACAGTCATTCCACGTGCAA -ACGGAACAGTCATTCCACGAGGAA -ACGGAACAGTCATTCCACCAGGTA -ACGGAACAGTCATTCCACGACTCT -ACGGAACAGTCATTCCACAGTCCT -ACGGAACAGTCATTCCACTAAGCC -ACGGAACAGTCATTCCACATAGCC -ACGGAACAGTCATTCCACTAACCG -ACGGAACAGTCATTCCACATGCCA -ACGGAACAGTCACTCGTAGGAAAC -ACGGAACAGTCACTCGTAAACACC -ACGGAACAGTCACTCGTAATCGAG -ACGGAACAGTCACTCGTACTCCTT -ACGGAACAGTCACTCGTACCTGTT -ACGGAACAGTCACTCGTACGGTTT -ACGGAACAGTCACTCGTAGTGGTT -ACGGAACAGTCACTCGTAGCCTTT -ACGGAACAGTCACTCGTAGGTCTT -ACGGAACAGTCACTCGTAACGCTT -ACGGAACAGTCACTCGTAAGCGTT -ACGGAACAGTCACTCGTATTCGTC -ACGGAACAGTCACTCGTATCTCTC -ACGGAACAGTCACTCGTATGGATC -ACGGAACAGTCACTCGTACACTTC -ACGGAACAGTCACTCGTAGTACTC -ACGGAACAGTCACTCGTAGATGTC -ACGGAACAGTCACTCGTAACAGTC -ACGGAACAGTCACTCGTATTGCTG -ACGGAACAGTCACTCGTATCCATG -ACGGAACAGTCACTCGTATGTGTG -ACGGAACAGTCACTCGTACTAGTG -ACGGAACAGTCACTCGTACATCTG -ACGGAACAGTCACTCGTAGAGTTG -ACGGAACAGTCACTCGTAAGACTG -ACGGAACAGTCACTCGTATCGGTA -ACGGAACAGTCACTCGTATGCCTA -ACGGAACAGTCACTCGTACCACTA -ACGGAACAGTCACTCGTAGGAGTA -ACGGAACAGTCACTCGTATCGTCT -ACGGAACAGTCACTCGTATGCACT -ACGGAACAGTCACTCGTACTGACT -ACGGAACAGTCACTCGTACAACCT -ACGGAACAGTCACTCGTAGCTACT -ACGGAACAGTCACTCGTAGGATCT -ACGGAACAGTCACTCGTAAAGGCT -ACGGAACAGTCACTCGTATCAACC -ACGGAACAGTCACTCGTATGTTCC -ACGGAACAGTCACTCGTAATTCCC -ACGGAACAGTCACTCGTATTCTCG -ACGGAACAGTCACTCGTATAGACG -ACGGAACAGTCACTCGTAGTAACG -ACGGAACAGTCACTCGTAACTTCG -ACGGAACAGTCACTCGTATACGCA -ACGGAACAGTCACTCGTACTTGCA -ACGGAACAGTCACTCGTACGAACA -ACGGAACAGTCACTCGTACAGTCA -ACGGAACAGTCACTCGTAGATCCA -ACGGAACAGTCACTCGTAACGACA -ACGGAACAGTCACTCGTAAGCTCA -ACGGAACAGTCACTCGTATCACGT -ACGGAACAGTCACTCGTACGTAGT -ACGGAACAGTCACTCGTAGTCAGT -ACGGAACAGTCACTCGTAGAAGGT -ACGGAACAGTCACTCGTAAACCGT -ACGGAACAGTCACTCGTATTGTGC -ACGGAACAGTCACTCGTACTAAGC -ACGGAACAGTCACTCGTAACTAGC -ACGGAACAGTCACTCGTAAGATGC -ACGGAACAGTCACTCGTATGAAGG -ACGGAACAGTCACTCGTACAATGG -ACGGAACAGTCACTCGTAATGAGG -ACGGAACAGTCACTCGTAAATGGG -ACGGAACAGTCACTCGTATCCTGA -ACGGAACAGTCACTCGTATAGCGA -ACGGAACAGTCACTCGTACACAGA -ACGGAACAGTCACTCGTAGCAAGA -ACGGAACAGTCACTCGTAGGTTGA -ACGGAACAGTCACTCGTATCCGAT -ACGGAACAGTCACTCGTATGGCAT -ACGGAACAGTCACTCGTACGAGAT -ACGGAACAGTCACTCGTATACCAC -ACGGAACAGTCACTCGTACAGAAC -ACGGAACAGTCACTCGTAGTCTAC -ACGGAACAGTCACTCGTAACGTAC -ACGGAACAGTCACTCGTAAGTGAC -ACGGAACAGTCACTCGTACTGTAG -ACGGAACAGTCACTCGTACCTAAG -ACGGAACAGTCACTCGTAGTTCAG -ACGGAACAGTCACTCGTAGCATAG -ACGGAACAGTCACTCGTAGACAAG -ACGGAACAGTCACTCGTAAAGCAG -ACGGAACAGTCACTCGTACGTCAA -ACGGAACAGTCACTCGTAGCTGAA -ACGGAACAGTCACTCGTAAGTACG -ACGGAACAGTCACTCGTAATCCGA -ACGGAACAGTCACTCGTAATGGGA -ACGGAACAGTCACTCGTAGTGCAA -ACGGAACAGTCACTCGTAGAGGAA -ACGGAACAGTCACTCGTACAGGTA -ACGGAACAGTCACTCGTAGACTCT -ACGGAACAGTCACTCGTAAGTCCT -ACGGAACAGTCACTCGTATAAGCC -ACGGAACAGTCACTCGTAATAGCC -ACGGAACAGTCACTCGTATAACCG -ACGGAACAGTCACTCGTAATGCCA -ACGGAACAGTCAGTCGATGGAAAC -ACGGAACAGTCAGTCGATAACACC -ACGGAACAGTCAGTCGATATCGAG -ACGGAACAGTCAGTCGATCTCCTT -ACGGAACAGTCAGTCGATCCTGTT -ACGGAACAGTCAGTCGATCGGTTT -ACGGAACAGTCAGTCGATGTGGTT -ACGGAACAGTCAGTCGATGCCTTT -ACGGAACAGTCAGTCGATGGTCTT -ACGGAACAGTCAGTCGATACGCTT -ACGGAACAGTCAGTCGATAGCGTT -ACGGAACAGTCAGTCGATTTCGTC -ACGGAACAGTCAGTCGATTCTCTC -ACGGAACAGTCAGTCGATTGGATC -ACGGAACAGTCAGTCGATCACTTC -ACGGAACAGTCAGTCGATGTACTC -ACGGAACAGTCAGTCGATGATGTC -ACGGAACAGTCAGTCGATACAGTC -ACGGAACAGTCAGTCGATTTGCTG -ACGGAACAGTCAGTCGATTCCATG -ACGGAACAGTCAGTCGATTGTGTG -ACGGAACAGTCAGTCGATCTAGTG -ACGGAACAGTCAGTCGATCATCTG -ACGGAACAGTCAGTCGATGAGTTG -ACGGAACAGTCAGTCGATAGACTG -ACGGAACAGTCAGTCGATTCGGTA -ACGGAACAGTCAGTCGATTGCCTA -ACGGAACAGTCAGTCGATCCACTA -ACGGAACAGTCAGTCGATGGAGTA -ACGGAACAGTCAGTCGATTCGTCT -ACGGAACAGTCAGTCGATTGCACT -ACGGAACAGTCAGTCGATCTGACT -ACGGAACAGTCAGTCGATCAACCT -ACGGAACAGTCAGTCGATGCTACT -ACGGAACAGTCAGTCGATGGATCT -ACGGAACAGTCAGTCGATAAGGCT -ACGGAACAGTCAGTCGATTCAACC -ACGGAACAGTCAGTCGATTGTTCC -ACGGAACAGTCAGTCGATATTCCC -ACGGAACAGTCAGTCGATTTCTCG -ACGGAACAGTCAGTCGATTAGACG -ACGGAACAGTCAGTCGATGTAACG -ACGGAACAGTCAGTCGATACTTCG -ACGGAACAGTCAGTCGATTACGCA -ACGGAACAGTCAGTCGATCTTGCA -ACGGAACAGTCAGTCGATCGAACA -ACGGAACAGTCAGTCGATCAGTCA -ACGGAACAGTCAGTCGATGATCCA -ACGGAACAGTCAGTCGATACGACA -ACGGAACAGTCAGTCGATAGCTCA -ACGGAACAGTCAGTCGATTCACGT -ACGGAACAGTCAGTCGATCGTAGT -ACGGAACAGTCAGTCGATGTCAGT -ACGGAACAGTCAGTCGATGAAGGT -ACGGAACAGTCAGTCGATAACCGT -ACGGAACAGTCAGTCGATTTGTGC -ACGGAACAGTCAGTCGATCTAAGC -ACGGAACAGTCAGTCGATACTAGC -ACGGAACAGTCAGTCGATAGATGC -ACGGAACAGTCAGTCGATTGAAGG -ACGGAACAGTCAGTCGATCAATGG -ACGGAACAGTCAGTCGATATGAGG -ACGGAACAGTCAGTCGATAATGGG -ACGGAACAGTCAGTCGATTCCTGA -ACGGAACAGTCAGTCGATTAGCGA -ACGGAACAGTCAGTCGATCACAGA -ACGGAACAGTCAGTCGATGCAAGA -ACGGAACAGTCAGTCGATGGTTGA -ACGGAACAGTCAGTCGATTCCGAT -ACGGAACAGTCAGTCGATTGGCAT -ACGGAACAGTCAGTCGATCGAGAT -ACGGAACAGTCAGTCGATTACCAC -ACGGAACAGTCAGTCGATCAGAAC -ACGGAACAGTCAGTCGATGTCTAC -ACGGAACAGTCAGTCGATACGTAC -ACGGAACAGTCAGTCGATAGTGAC -ACGGAACAGTCAGTCGATCTGTAG -ACGGAACAGTCAGTCGATCCTAAG -ACGGAACAGTCAGTCGATGTTCAG -ACGGAACAGTCAGTCGATGCATAG -ACGGAACAGTCAGTCGATGACAAG -ACGGAACAGTCAGTCGATAAGCAG -ACGGAACAGTCAGTCGATCGTCAA -ACGGAACAGTCAGTCGATGCTGAA -ACGGAACAGTCAGTCGATAGTACG -ACGGAACAGTCAGTCGATATCCGA -ACGGAACAGTCAGTCGATATGGGA -ACGGAACAGTCAGTCGATGTGCAA -ACGGAACAGTCAGTCGATGAGGAA -ACGGAACAGTCAGTCGATCAGGTA -ACGGAACAGTCAGTCGATGACTCT -ACGGAACAGTCAGTCGATAGTCCT -ACGGAACAGTCAGTCGATTAAGCC -ACGGAACAGTCAGTCGATATAGCC -ACGGAACAGTCAGTCGATTAACCG -ACGGAACAGTCAGTCGATATGCCA -ACGGAACAGTCAGTCACAGGAAAC -ACGGAACAGTCAGTCACAAACACC -ACGGAACAGTCAGTCACAATCGAG -ACGGAACAGTCAGTCACACTCCTT -ACGGAACAGTCAGTCACACCTGTT -ACGGAACAGTCAGTCACACGGTTT -ACGGAACAGTCAGTCACAGTGGTT -ACGGAACAGTCAGTCACAGCCTTT -ACGGAACAGTCAGTCACAGGTCTT -ACGGAACAGTCAGTCACAACGCTT -ACGGAACAGTCAGTCACAAGCGTT -ACGGAACAGTCAGTCACATTCGTC -ACGGAACAGTCAGTCACATCTCTC -ACGGAACAGTCAGTCACATGGATC -ACGGAACAGTCAGTCACACACTTC -ACGGAACAGTCAGTCACAGTACTC -ACGGAACAGTCAGTCACAGATGTC -ACGGAACAGTCAGTCACAACAGTC -ACGGAACAGTCAGTCACATTGCTG -ACGGAACAGTCAGTCACATCCATG -ACGGAACAGTCAGTCACATGTGTG -ACGGAACAGTCAGTCACACTAGTG -ACGGAACAGTCAGTCACACATCTG -ACGGAACAGTCAGTCACAGAGTTG -ACGGAACAGTCAGTCACAAGACTG -ACGGAACAGTCAGTCACATCGGTA -ACGGAACAGTCAGTCACATGCCTA -ACGGAACAGTCAGTCACACCACTA -ACGGAACAGTCAGTCACAGGAGTA -ACGGAACAGTCAGTCACATCGTCT -ACGGAACAGTCAGTCACATGCACT -ACGGAACAGTCAGTCACACTGACT -ACGGAACAGTCAGTCACACAACCT -ACGGAACAGTCAGTCACAGCTACT -ACGGAACAGTCAGTCACAGGATCT -ACGGAACAGTCAGTCACAAAGGCT -ACGGAACAGTCAGTCACATCAACC -ACGGAACAGTCAGTCACATGTTCC -ACGGAACAGTCAGTCACAATTCCC -ACGGAACAGTCAGTCACATTCTCG -ACGGAACAGTCAGTCACATAGACG -ACGGAACAGTCAGTCACAGTAACG -ACGGAACAGTCAGTCACAACTTCG -ACGGAACAGTCAGTCACATACGCA -ACGGAACAGTCAGTCACACTTGCA -ACGGAACAGTCAGTCACACGAACA -ACGGAACAGTCAGTCACACAGTCA -ACGGAACAGTCAGTCACAGATCCA -ACGGAACAGTCAGTCACAACGACA -ACGGAACAGTCAGTCACAAGCTCA -ACGGAACAGTCAGTCACATCACGT -ACGGAACAGTCAGTCACACGTAGT -ACGGAACAGTCAGTCACAGTCAGT -ACGGAACAGTCAGTCACAGAAGGT -ACGGAACAGTCAGTCACAAACCGT -ACGGAACAGTCAGTCACATTGTGC -ACGGAACAGTCAGTCACACTAAGC -ACGGAACAGTCAGTCACAACTAGC -ACGGAACAGTCAGTCACAAGATGC -ACGGAACAGTCAGTCACATGAAGG -ACGGAACAGTCAGTCACACAATGG -ACGGAACAGTCAGTCACAATGAGG -ACGGAACAGTCAGTCACAAATGGG -ACGGAACAGTCAGTCACATCCTGA -ACGGAACAGTCAGTCACATAGCGA -ACGGAACAGTCAGTCACACACAGA -ACGGAACAGTCAGTCACAGCAAGA -ACGGAACAGTCAGTCACAGGTTGA -ACGGAACAGTCAGTCACATCCGAT -ACGGAACAGTCAGTCACATGGCAT -ACGGAACAGTCAGTCACACGAGAT -ACGGAACAGTCAGTCACATACCAC -ACGGAACAGTCAGTCACACAGAAC -ACGGAACAGTCAGTCACAGTCTAC -ACGGAACAGTCAGTCACAACGTAC -ACGGAACAGTCAGTCACAAGTGAC -ACGGAACAGTCAGTCACACTGTAG -ACGGAACAGTCAGTCACACCTAAG -ACGGAACAGTCAGTCACAGTTCAG -ACGGAACAGTCAGTCACAGCATAG -ACGGAACAGTCAGTCACAGACAAG -ACGGAACAGTCAGTCACAAAGCAG -ACGGAACAGTCAGTCACACGTCAA -ACGGAACAGTCAGTCACAGCTGAA -ACGGAACAGTCAGTCACAAGTACG -ACGGAACAGTCAGTCACAATCCGA -ACGGAACAGTCAGTCACAATGGGA -ACGGAACAGTCAGTCACAGTGCAA -ACGGAACAGTCAGTCACAGAGGAA -ACGGAACAGTCAGTCACACAGGTA -ACGGAACAGTCAGTCACAGACTCT -ACGGAACAGTCAGTCACAAGTCCT -ACGGAACAGTCAGTCACATAAGCC -ACGGAACAGTCAGTCACAATAGCC -ACGGAACAGTCAGTCACATAACCG -ACGGAACAGTCAGTCACAATGCCA -ACGGAACAGTCACTGTTGGGAAAC -ACGGAACAGTCACTGTTGAACACC -ACGGAACAGTCACTGTTGATCGAG -ACGGAACAGTCACTGTTGCTCCTT -ACGGAACAGTCACTGTTGCCTGTT -ACGGAACAGTCACTGTTGCGGTTT -ACGGAACAGTCACTGTTGGTGGTT -ACGGAACAGTCACTGTTGGCCTTT -ACGGAACAGTCACTGTTGGGTCTT -ACGGAACAGTCACTGTTGACGCTT -ACGGAACAGTCACTGTTGAGCGTT -ACGGAACAGTCACTGTTGTTCGTC -ACGGAACAGTCACTGTTGTCTCTC -ACGGAACAGTCACTGTTGTGGATC -ACGGAACAGTCACTGTTGCACTTC -ACGGAACAGTCACTGTTGGTACTC -ACGGAACAGTCACTGTTGGATGTC -ACGGAACAGTCACTGTTGACAGTC -ACGGAACAGTCACTGTTGTTGCTG -ACGGAACAGTCACTGTTGTCCATG -ACGGAACAGTCACTGTTGTGTGTG -ACGGAACAGTCACTGTTGCTAGTG -ACGGAACAGTCACTGTTGCATCTG -ACGGAACAGTCACTGTTGGAGTTG -ACGGAACAGTCACTGTTGAGACTG -ACGGAACAGTCACTGTTGTCGGTA -ACGGAACAGTCACTGTTGTGCCTA -ACGGAACAGTCACTGTTGCCACTA -ACGGAACAGTCACTGTTGGGAGTA -ACGGAACAGTCACTGTTGTCGTCT -ACGGAACAGTCACTGTTGTGCACT -ACGGAACAGTCACTGTTGCTGACT -ACGGAACAGTCACTGTTGCAACCT -ACGGAACAGTCACTGTTGGCTACT -ACGGAACAGTCACTGTTGGGATCT -ACGGAACAGTCACTGTTGAAGGCT -ACGGAACAGTCACTGTTGTCAACC -ACGGAACAGTCACTGTTGTGTTCC -ACGGAACAGTCACTGTTGATTCCC -ACGGAACAGTCACTGTTGTTCTCG -ACGGAACAGTCACTGTTGTAGACG -ACGGAACAGTCACTGTTGGTAACG -ACGGAACAGTCACTGTTGACTTCG -ACGGAACAGTCACTGTTGTACGCA -ACGGAACAGTCACTGTTGCTTGCA -ACGGAACAGTCACTGTTGCGAACA -ACGGAACAGTCACTGTTGCAGTCA -ACGGAACAGTCACTGTTGGATCCA -ACGGAACAGTCACTGTTGACGACA -ACGGAACAGTCACTGTTGAGCTCA -ACGGAACAGTCACTGTTGTCACGT -ACGGAACAGTCACTGTTGCGTAGT -ACGGAACAGTCACTGTTGGTCAGT -ACGGAACAGTCACTGTTGGAAGGT -ACGGAACAGTCACTGTTGAACCGT -ACGGAACAGTCACTGTTGTTGTGC -ACGGAACAGTCACTGTTGCTAAGC -ACGGAACAGTCACTGTTGACTAGC -ACGGAACAGTCACTGTTGAGATGC -ACGGAACAGTCACTGTTGTGAAGG -ACGGAACAGTCACTGTTGCAATGG -ACGGAACAGTCACTGTTGATGAGG -ACGGAACAGTCACTGTTGAATGGG -ACGGAACAGTCACTGTTGTCCTGA -ACGGAACAGTCACTGTTGTAGCGA -ACGGAACAGTCACTGTTGCACAGA -ACGGAACAGTCACTGTTGGCAAGA -ACGGAACAGTCACTGTTGGGTTGA -ACGGAACAGTCACTGTTGTCCGAT -ACGGAACAGTCACTGTTGTGGCAT -ACGGAACAGTCACTGTTGCGAGAT -ACGGAACAGTCACTGTTGTACCAC -ACGGAACAGTCACTGTTGCAGAAC -ACGGAACAGTCACTGTTGGTCTAC -ACGGAACAGTCACTGTTGACGTAC -ACGGAACAGTCACTGTTGAGTGAC -ACGGAACAGTCACTGTTGCTGTAG -ACGGAACAGTCACTGTTGCCTAAG -ACGGAACAGTCACTGTTGGTTCAG -ACGGAACAGTCACTGTTGGCATAG -ACGGAACAGTCACTGTTGGACAAG -ACGGAACAGTCACTGTTGAAGCAG -ACGGAACAGTCACTGTTGCGTCAA -ACGGAACAGTCACTGTTGGCTGAA -ACGGAACAGTCACTGTTGAGTACG -ACGGAACAGTCACTGTTGATCCGA -ACGGAACAGTCACTGTTGATGGGA -ACGGAACAGTCACTGTTGGTGCAA -ACGGAACAGTCACTGTTGGAGGAA -ACGGAACAGTCACTGTTGCAGGTA -ACGGAACAGTCACTGTTGGACTCT -ACGGAACAGTCACTGTTGAGTCCT -ACGGAACAGTCACTGTTGTAAGCC -ACGGAACAGTCACTGTTGATAGCC -ACGGAACAGTCACTGTTGTAACCG -ACGGAACAGTCACTGTTGATGCCA -ACGGAACAGTCAATGTCCGGAAAC -ACGGAACAGTCAATGTCCAACACC -ACGGAACAGTCAATGTCCATCGAG -ACGGAACAGTCAATGTCCCTCCTT -ACGGAACAGTCAATGTCCCCTGTT -ACGGAACAGTCAATGTCCCGGTTT -ACGGAACAGTCAATGTCCGTGGTT -ACGGAACAGTCAATGTCCGCCTTT -ACGGAACAGTCAATGTCCGGTCTT -ACGGAACAGTCAATGTCCACGCTT -ACGGAACAGTCAATGTCCAGCGTT -ACGGAACAGTCAATGTCCTTCGTC -ACGGAACAGTCAATGTCCTCTCTC -ACGGAACAGTCAATGTCCTGGATC -ACGGAACAGTCAATGTCCCACTTC -ACGGAACAGTCAATGTCCGTACTC -ACGGAACAGTCAATGTCCGATGTC -ACGGAACAGTCAATGTCCACAGTC -ACGGAACAGTCAATGTCCTTGCTG -ACGGAACAGTCAATGTCCTCCATG -ACGGAACAGTCAATGTCCTGTGTG -ACGGAACAGTCAATGTCCCTAGTG -ACGGAACAGTCAATGTCCCATCTG -ACGGAACAGTCAATGTCCGAGTTG -ACGGAACAGTCAATGTCCAGACTG -ACGGAACAGTCAATGTCCTCGGTA -ACGGAACAGTCAATGTCCTGCCTA -ACGGAACAGTCAATGTCCCCACTA -ACGGAACAGTCAATGTCCGGAGTA -ACGGAACAGTCAATGTCCTCGTCT -ACGGAACAGTCAATGTCCTGCACT -ACGGAACAGTCAATGTCCCTGACT -ACGGAACAGTCAATGTCCCAACCT -ACGGAACAGTCAATGTCCGCTACT -ACGGAACAGTCAATGTCCGGATCT -ACGGAACAGTCAATGTCCAAGGCT -ACGGAACAGTCAATGTCCTCAACC -ACGGAACAGTCAATGTCCTGTTCC -ACGGAACAGTCAATGTCCATTCCC -ACGGAACAGTCAATGTCCTTCTCG -ACGGAACAGTCAATGTCCTAGACG -ACGGAACAGTCAATGTCCGTAACG -ACGGAACAGTCAATGTCCACTTCG -ACGGAACAGTCAATGTCCTACGCA -ACGGAACAGTCAATGTCCCTTGCA -ACGGAACAGTCAATGTCCCGAACA -ACGGAACAGTCAATGTCCCAGTCA -ACGGAACAGTCAATGTCCGATCCA -ACGGAACAGTCAATGTCCACGACA -ACGGAACAGTCAATGTCCAGCTCA -ACGGAACAGTCAATGTCCTCACGT -ACGGAACAGTCAATGTCCCGTAGT -ACGGAACAGTCAATGTCCGTCAGT -ACGGAACAGTCAATGTCCGAAGGT -ACGGAACAGTCAATGTCCAACCGT -ACGGAACAGTCAATGTCCTTGTGC -ACGGAACAGTCAATGTCCCTAAGC -ACGGAACAGTCAATGTCCACTAGC -ACGGAACAGTCAATGTCCAGATGC -ACGGAACAGTCAATGTCCTGAAGG -ACGGAACAGTCAATGTCCCAATGG -ACGGAACAGTCAATGTCCATGAGG -ACGGAACAGTCAATGTCCAATGGG -ACGGAACAGTCAATGTCCTCCTGA -ACGGAACAGTCAATGTCCTAGCGA -ACGGAACAGTCAATGTCCCACAGA -ACGGAACAGTCAATGTCCGCAAGA -ACGGAACAGTCAATGTCCGGTTGA -ACGGAACAGTCAATGTCCTCCGAT -ACGGAACAGTCAATGTCCTGGCAT -ACGGAACAGTCAATGTCCCGAGAT -ACGGAACAGTCAATGTCCTACCAC -ACGGAACAGTCAATGTCCCAGAAC -ACGGAACAGTCAATGTCCGTCTAC -ACGGAACAGTCAATGTCCACGTAC -ACGGAACAGTCAATGTCCAGTGAC -ACGGAACAGTCAATGTCCCTGTAG -ACGGAACAGTCAATGTCCCCTAAG -ACGGAACAGTCAATGTCCGTTCAG -ACGGAACAGTCAATGTCCGCATAG -ACGGAACAGTCAATGTCCGACAAG -ACGGAACAGTCAATGTCCAAGCAG -ACGGAACAGTCAATGTCCCGTCAA -ACGGAACAGTCAATGTCCGCTGAA -ACGGAACAGTCAATGTCCAGTACG -ACGGAACAGTCAATGTCCATCCGA -ACGGAACAGTCAATGTCCATGGGA -ACGGAACAGTCAATGTCCGTGCAA -ACGGAACAGTCAATGTCCGAGGAA -ACGGAACAGTCAATGTCCCAGGTA -ACGGAACAGTCAATGTCCGACTCT -ACGGAACAGTCAATGTCCAGTCCT -ACGGAACAGTCAATGTCCTAAGCC -ACGGAACAGTCAATGTCCATAGCC -ACGGAACAGTCAATGTCCTAACCG -ACGGAACAGTCAATGTCCATGCCA -ACGGAACAGTCAGTGTGTGGAAAC -ACGGAACAGTCAGTGTGTAACACC -ACGGAACAGTCAGTGTGTATCGAG -ACGGAACAGTCAGTGTGTCTCCTT -ACGGAACAGTCAGTGTGTCCTGTT -ACGGAACAGTCAGTGTGTCGGTTT -ACGGAACAGTCAGTGTGTGTGGTT -ACGGAACAGTCAGTGTGTGCCTTT -ACGGAACAGTCAGTGTGTGGTCTT -ACGGAACAGTCAGTGTGTACGCTT -ACGGAACAGTCAGTGTGTAGCGTT -ACGGAACAGTCAGTGTGTTTCGTC -ACGGAACAGTCAGTGTGTTCTCTC -ACGGAACAGTCAGTGTGTTGGATC -ACGGAACAGTCAGTGTGTCACTTC -ACGGAACAGTCAGTGTGTGTACTC -ACGGAACAGTCAGTGTGTGATGTC -ACGGAACAGTCAGTGTGTACAGTC -ACGGAACAGTCAGTGTGTTTGCTG -ACGGAACAGTCAGTGTGTTCCATG -ACGGAACAGTCAGTGTGTTGTGTG -ACGGAACAGTCAGTGTGTCTAGTG -ACGGAACAGTCAGTGTGTCATCTG -ACGGAACAGTCAGTGTGTGAGTTG -ACGGAACAGTCAGTGTGTAGACTG -ACGGAACAGTCAGTGTGTTCGGTA -ACGGAACAGTCAGTGTGTTGCCTA -ACGGAACAGTCAGTGTGTCCACTA -ACGGAACAGTCAGTGTGTGGAGTA -ACGGAACAGTCAGTGTGTTCGTCT -ACGGAACAGTCAGTGTGTTGCACT -ACGGAACAGTCAGTGTGTCTGACT -ACGGAACAGTCAGTGTGTCAACCT -ACGGAACAGTCAGTGTGTGCTACT -ACGGAACAGTCAGTGTGTGGATCT -ACGGAACAGTCAGTGTGTAAGGCT -ACGGAACAGTCAGTGTGTTCAACC -ACGGAACAGTCAGTGTGTTGTTCC -ACGGAACAGTCAGTGTGTATTCCC -ACGGAACAGTCAGTGTGTTTCTCG -ACGGAACAGTCAGTGTGTTAGACG -ACGGAACAGTCAGTGTGTGTAACG -ACGGAACAGTCAGTGTGTACTTCG -ACGGAACAGTCAGTGTGTTACGCA -ACGGAACAGTCAGTGTGTCTTGCA -ACGGAACAGTCAGTGTGTCGAACA -ACGGAACAGTCAGTGTGTCAGTCA -ACGGAACAGTCAGTGTGTGATCCA -ACGGAACAGTCAGTGTGTACGACA -ACGGAACAGTCAGTGTGTAGCTCA -ACGGAACAGTCAGTGTGTTCACGT -ACGGAACAGTCAGTGTGTCGTAGT -ACGGAACAGTCAGTGTGTGTCAGT -ACGGAACAGTCAGTGTGTGAAGGT -ACGGAACAGTCAGTGTGTAACCGT -ACGGAACAGTCAGTGTGTTTGTGC -ACGGAACAGTCAGTGTGTCTAAGC -ACGGAACAGTCAGTGTGTACTAGC -ACGGAACAGTCAGTGTGTAGATGC -ACGGAACAGTCAGTGTGTTGAAGG -ACGGAACAGTCAGTGTGTCAATGG -ACGGAACAGTCAGTGTGTATGAGG -ACGGAACAGTCAGTGTGTAATGGG -ACGGAACAGTCAGTGTGTTCCTGA -ACGGAACAGTCAGTGTGTTAGCGA -ACGGAACAGTCAGTGTGTCACAGA -ACGGAACAGTCAGTGTGTGCAAGA -ACGGAACAGTCAGTGTGTGGTTGA -ACGGAACAGTCAGTGTGTTCCGAT -ACGGAACAGTCAGTGTGTTGGCAT -ACGGAACAGTCAGTGTGTCGAGAT -ACGGAACAGTCAGTGTGTTACCAC -ACGGAACAGTCAGTGTGTCAGAAC -ACGGAACAGTCAGTGTGTGTCTAC -ACGGAACAGTCAGTGTGTACGTAC -ACGGAACAGTCAGTGTGTAGTGAC -ACGGAACAGTCAGTGTGTCTGTAG -ACGGAACAGTCAGTGTGTCCTAAG -ACGGAACAGTCAGTGTGTGTTCAG -ACGGAACAGTCAGTGTGTGCATAG -ACGGAACAGTCAGTGTGTGACAAG -ACGGAACAGTCAGTGTGTAAGCAG -ACGGAACAGTCAGTGTGTCGTCAA -ACGGAACAGTCAGTGTGTGCTGAA -ACGGAACAGTCAGTGTGTAGTACG -ACGGAACAGTCAGTGTGTATCCGA -ACGGAACAGTCAGTGTGTATGGGA -ACGGAACAGTCAGTGTGTGTGCAA -ACGGAACAGTCAGTGTGTGAGGAA -ACGGAACAGTCAGTGTGTCAGGTA -ACGGAACAGTCAGTGTGTGACTCT -ACGGAACAGTCAGTGTGTAGTCCT -ACGGAACAGTCAGTGTGTTAAGCC -ACGGAACAGTCAGTGTGTATAGCC -ACGGAACAGTCAGTGTGTTAACCG -ACGGAACAGTCAGTGTGTATGCCA -ACGGAACAGTCAGTGCTAGGAAAC -ACGGAACAGTCAGTGCTAAACACC -ACGGAACAGTCAGTGCTAATCGAG -ACGGAACAGTCAGTGCTACTCCTT -ACGGAACAGTCAGTGCTACCTGTT -ACGGAACAGTCAGTGCTACGGTTT -ACGGAACAGTCAGTGCTAGTGGTT -ACGGAACAGTCAGTGCTAGCCTTT -ACGGAACAGTCAGTGCTAGGTCTT -ACGGAACAGTCAGTGCTAACGCTT -ACGGAACAGTCAGTGCTAAGCGTT -ACGGAACAGTCAGTGCTATTCGTC -ACGGAACAGTCAGTGCTATCTCTC -ACGGAACAGTCAGTGCTATGGATC -ACGGAACAGTCAGTGCTACACTTC -ACGGAACAGTCAGTGCTAGTACTC -ACGGAACAGTCAGTGCTAGATGTC -ACGGAACAGTCAGTGCTAACAGTC -ACGGAACAGTCAGTGCTATTGCTG -ACGGAACAGTCAGTGCTATCCATG -ACGGAACAGTCAGTGCTATGTGTG -ACGGAACAGTCAGTGCTACTAGTG -ACGGAACAGTCAGTGCTACATCTG -ACGGAACAGTCAGTGCTAGAGTTG -ACGGAACAGTCAGTGCTAAGACTG -ACGGAACAGTCAGTGCTATCGGTA -ACGGAACAGTCAGTGCTATGCCTA -ACGGAACAGTCAGTGCTACCACTA -ACGGAACAGTCAGTGCTAGGAGTA -ACGGAACAGTCAGTGCTATCGTCT -ACGGAACAGTCAGTGCTATGCACT -ACGGAACAGTCAGTGCTACTGACT -ACGGAACAGTCAGTGCTACAACCT -ACGGAACAGTCAGTGCTAGCTACT -ACGGAACAGTCAGTGCTAGGATCT -ACGGAACAGTCAGTGCTAAAGGCT -ACGGAACAGTCAGTGCTATCAACC -ACGGAACAGTCAGTGCTATGTTCC -ACGGAACAGTCAGTGCTAATTCCC -ACGGAACAGTCAGTGCTATTCTCG -ACGGAACAGTCAGTGCTATAGACG -ACGGAACAGTCAGTGCTAGTAACG -ACGGAACAGTCAGTGCTAACTTCG -ACGGAACAGTCAGTGCTATACGCA -ACGGAACAGTCAGTGCTACTTGCA -ACGGAACAGTCAGTGCTACGAACA -ACGGAACAGTCAGTGCTACAGTCA -ACGGAACAGTCAGTGCTAGATCCA -ACGGAACAGTCAGTGCTAACGACA -ACGGAACAGTCAGTGCTAAGCTCA -ACGGAACAGTCAGTGCTATCACGT -ACGGAACAGTCAGTGCTACGTAGT -ACGGAACAGTCAGTGCTAGTCAGT -ACGGAACAGTCAGTGCTAGAAGGT -ACGGAACAGTCAGTGCTAAACCGT -ACGGAACAGTCAGTGCTATTGTGC -ACGGAACAGTCAGTGCTACTAAGC -ACGGAACAGTCAGTGCTAACTAGC -ACGGAACAGTCAGTGCTAAGATGC -ACGGAACAGTCAGTGCTATGAAGG -ACGGAACAGTCAGTGCTACAATGG -ACGGAACAGTCAGTGCTAATGAGG -ACGGAACAGTCAGTGCTAAATGGG -ACGGAACAGTCAGTGCTATCCTGA -ACGGAACAGTCAGTGCTATAGCGA -ACGGAACAGTCAGTGCTACACAGA -ACGGAACAGTCAGTGCTAGCAAGA -ACGGAACAGTCAGTGCTAGGTTGA -ACGGAACAGTCAGTGCTATCCGAT -ACGGAACAGTCAGTGCTATGGCAT -ACGGAACAGTCAGTGCTACGAGAT -ACGGAACAGTCAGTGCTATACCAC -ACGGAACAGTCAGTGCTACAGAAC -ACGGAACAGTCAGTGCTAGTCTAC -ACGGAACAGTCAGTGCTAACGTAC -ACGGAACAGTCAGTGCTAAGTGAC -ACGGAACAGTCAGTGCTACTGTAG -ACGGAACAGTCAGTGCTACCTAAG -ACGGAACAGTCAGTGCTAGTTCAG -ACGGAACAGTCAGTGCTAGCATAG -ACGGAACAGTCAGTGCTAGACAAG -ACGGAACAGTCAGTGCTAAAGCAG -ACGGAACAGTCAGTGCTACGTCAA -ACGGAACAGTCAGTGCTAGCTGAA -ACGGAACAGTCAGTGCTAAGTACG -ACGGAACAGTCAGTGCTAATCCGA -ACGGAACAGTCAGTGCTAATGGGA -ACGGAACAGTCAGTGCTAGTGCAA -ACGGAACAGTCAGTGCTAGAGGAA -ACGGAACAGTCAGTGCTACAGGTA -ACGGAACAGTCAGTGCTAGACTCT -ACGGAACAGTCAGTGCTAAGTCCT -ACGGAACAGTCAGTGCTATAAGCC -ACGGAACAGTCAGTGCTAATAGCC -ACGGAACAGTCAGTGCTATAACCG -ACGGAACAGTCAGTGCTAATGCCA -ACGGAACAGTCACTGCATGGAAAC -ACGGAACAGTCACTGCATAACACC -ACGGAACAGTCACTGCATATCGAG -ACGGAACAGTCACTGCATCTCCTT -ACGGAACAGTCACTGCATCCTGTT -ACGGAACAGTCACTGCATCGGTTT -ACGGAACAGTCACTGCATGTGGTT -ACGGAACAGTCACTGCATGCCTTT -ACGGAACAGTCACTGCATGGTCTT -ACGGAACAGTCACTGCATACGCTT -ACGGAACAGTCACTGCATAGCGTT -ACGGAACAGTCACTGCATTTCGTC -ACGGAACAGTCACTGCATTCTCTC -ACGGAACAGTCACTGCATTGGATC -ACGGAACAGTCACTGCATCACTTC -ACGGAACAGTCACTGCATGTACTC -ACGGAACAGTCACTGCATGATGTC -ACGGAACAGTCACTGCATACAGTC -ACGGAACAGTCACTGCATTTGCTG -ACGGAACAGTCACTGCATTCCATG -ACGGAACAGTCACTGCATTGTGTG -ACGGAACAGTCACTGCATCTAGTG -ACGGAACAGTCACTGCATCATCTG -ACGGAACAGTCACTGCATGAGTTG -ACGGAACAGTCACTGCATAGACTG -ACGGAACAGTCACTGCATTCGGTA -ACGGAACAGTCACTGCATTGCCTA -ACGGAACAGTCACTGCATCCACTA -ACGGAACAGTCACTGCATGGAGTA -ACGGAACAGTCACTGCATTCGTCT -ACGGAACAGTCACTGCATTGCACT -ACGGAACAGTCACTGCATCTGACT -ACGGAACAGTCACTGCATCAACCT -ACGGAACAGTCACTGCATGCTACT -ACGGAACAGTCACTGCATGGATCT -ACGGAACAGTCACTGCATAAGGCT -ACGGAACAGTCACTGCATTCAACC -ACGGAACAGTCACTGCATTGTTCC -ACGGAACAGTCACTGCATATTCCC -ACGGAACAGTCACTGCATTTCTCG -ACGGAACAGTCACTGCATTAGACG -ACGGAACAGTCACTGCATGTAACG -ACGGAACAGTCACTGCATACTTCG -ACGGAACAGTCACTGCATTACGCA -ACGGAACAGTCACTGCATCTTGCA -ACGGAACAGTCACTGCATCGAACA -ACGGAACAGTCACTGCATCAGTCA -ACGGAACAGTCACTGCATGATCCA -ACGGAACAGTCACTGCATACGACA -ACGGAACAGTCACTGCATAGCTCA -ACGGAACAGTCACTGCATTCACGT -ACGGAACAGTCACTGCATCGTAGT -ACGGAACAGTCACTGCATGTCAGT -ACGGAACAGTCACTGCATGAAGGT -ACGGAACAGTCACTGCATAACCGT -ACGGAACAGTCACTGCATTTGTGC -ACGGAACAGTCACTGCATCTAAGC -ACGGAACAGTCACTGCATACTAGC -ACGGAACAGTCACTGCATAGATGC -ACGGAACAGTCACTGCATTGAAGG -ACGGAACAGTCACTGCATCAATGG -ACGGAACAGTCACTGCATATGAGG -ACGGAACAGTCACTGCATAATGGG -ACGGAACAGTCACTGCATTCCTGA -ACGGAACAGTCACTGCATTAGCGA -ACGGAACAGTCACTGCATCACAGA -ACGGAACAGTCACTGCATGCAAGA -ACGGAACAGTCACTGCATGGTTGA -ACGGAACAGTCACTGCATTCCGAT -ACGGAACAGTCACTGCATTGGCAT -ACGGAACAGTCACTGCATCGAGAT -ACGGAACAGTCACTGCATTACCAC -ACGGAACAGTCACTGCATCAGAAC -ACGGAACAGTCACTGCATGTCTAC -ACGGAACAGTCACTGCATACGTAC -ACGGAACAGTCACTGCATAGTGAC -ACGGAACAGTCACTGCATCTGTAG -ACGGAACAGTCACTGCATCCTAAG -ACGGAACAGTCACTGCATGTTCAG -ACGGAACAGTCACTGCATGCATAG -ACGGAACAGTCACTGCATGACAAG -ACGGAACAGTCACTGCATAAGCAG -ACGGAACAGTCACTGCATCGTCAA -ACGGAACAGTCACTGCATGCTGAA -ACGGAACAGTCACTGCATAGTACG -ACGGAACAGTCACTGCATATCCGA -ACGGAACAGTCACTGCATATGGGA -ACGGAACAGTCACTGCATGTGCAA -ACGGAACAGTCACTGCATGAGGAA -ACGGAACAGTCACTGCATCAGGTA -ACGGAACAGTCACTGCATGACTCT -ACGGAACAGTCACTGCATAGTCCT -ACGGAACAGTCACTGCATTAAGCC -ACGGAACAGTCACTGCATATAGCC -ACGGAACAGTCACTGCATTAACCG -ACGGAACAGTCACTGCATATGCCA -ACGGAACAGTCATTGGAGGGAAAC -ACGGAACAGTCATTGGAGAACACC -ACGGAACAGTCATTGGAGATCGAG -ACGGAACAGTCATTGGAGCTCCTT -ACGGAACAGTCATTGGAGCCTGTT -ACGGAACAGTCATTGGAGCGGTTT -ACGGAACAGTCATTGGAGGTGGTT -ACGGAACAGTCATTGGAGGCCTTT -ACGGAACAGTCATTGGAGGGTCTT -ACGGAACAGTCATTGGAGACGCTT -ACGGAACAGTCATTGGAGAGCGTT -ACGGAACAGTCATTGGAGTTCGTC -ACGGAACAGTCATTGGAGTCTCTC -ACGGAACAGTCATTGGAGTGGATC -ACGGAACAGTCATTGGAGCACTTC -ACGGAACAGTCATTGGAGGTACTC -ACGGAACAGTCATTGGAGGATGTC -ACGGAACAGTCATTGGAGACAGTC -ACGGAACAGTCATTGGAGTTGCTG -ACGGAACAGTCATTGGAGTCCATG -ACGGAACAGTCATTGGAGTGTGTG -ACGGAACAGTCATTGGAGCTAGTG -ACGGAACAGTCATTGGAGCATCTG -ACGGAACAGTCATTGGAGGAGTTG -ACGGAACAGTCATTGGAGAGACTG -ACGGAACAGTCATTGGAGTCGGTA -ACGGAACAGTCATTGGAGTGCCTA -ACGGAACAGTCATTGGAGCCACTA -ACGGAACAGTCATTGGAGGGAGTA -ACGGAACAGTCATTGGAGTCGTCT -ACGGAACAGTCATTGGAGTGCACT -ACGGAACAGTCATTGGAGCTGACT -ACGGAACAGTCATTGGAGCAACCT -ACGGAACAGTCATTGGAGGCTACT -ACGGAACAGTCATTGGAGGGATCT -ACGGAACAGTCATTGGAGAAGGCT -ACGGAACAGTCATTGGAGTCAACC -ACGGAACAGTCATTGGAGTGTTCC -ACGGAACAGTCATTGGAGATTCCC -ACGGAACAGTCATTGGAGTTCTCG -ACGGAACAGTCATTGGAGTAGACG -ACGGAACAGTCATTGGAGGTAACG -ACGGAACAGTCATTGGAGACTTCG -ACGGAACAGTCATTGGAGTACGCA -ACGGAACAGTCATTGGAGCTTGCA -ACGGAACAGTCATTGGAGCGAACA -ACGGAACAGTCATTGGAGCAGTCA -ACGGAACAGTCATTGGAGGATCCA -ACGGAACAGTCATTGGAGACGACA -ACGGAACAGTCATTGGAGAGCTCA -ACGGAACAGTCATTGGAGTCACGT -ACGGAACAGTCATTGGAGCGTAGT -ACGGAACAGTCATTGGAGGTCAGT -ACGGAACAGTCATTGGAGGAAGGT -ACGGAACAGTCATTGGAGAACCGT -ACGGAACAGTCATTGGAGTTGTGC -ACGGAACAGTCATTGGAGCTAAGC -ACGGAACAGTCATTGGAGACTAGC -ACGGAACAGTCATTGGAGAGATGC -ACGGAACAGTCATTGGAGTGAAGG -ACGGAACAGTCATTGGAGCAATGG -ACGGAACAGTCATTGGAGATGAGG -ACGGAACAGTCATTGGAGAATGGG -ACGGAACAGTCATTGGAGTCCTGA -ACGGAACAGTCATTGGAGTAGCGA -ACGGAACAGTCATTGGAGCACAGA -ACGGAACAGTCATTGGAGGCAAGA -ACGGAACAGTCATTGGAGGGTTGA -ACGGAACAGTCATTGGAGTCCGAT -ACGGAACAGTCATTGGAGTGGCAT -ACGGAACAGTCATTGGAGCGAGAT -ACGGAACAGTCATTGGAGTACCAC -ACGGAACAGTCATTGGAGCAGAAC -ACGGAACAGTCATTGGAGGTCTAC -ACGGAACAGTCATTGGAGACGTAC -ACGGAACAGTCATTGGAGAGTGAC -ACGGAACAGTCATTGGAGCTGTAG -ACGGAACAGTCATTGGAGCCTAAG -ACGGAACAGTCATTGGAGGTTCAG -ACGGAACAGTCATTGGAGGCATAG -ACGGAACAGTCATTGGAGGACAAG -ACGGAACAGTCATTGGAGAAGCAG -ACGGAACAGTCATTGGAGCGTCAA -ACGGAACAGTCATTGGAGGCTGAA -ACGGAACAGTCATTGGAGAGTACG -ACGGAACAGTCATTGGAGATCCGA -ACGGAACAGTCATTGGAGATGGGA -ACGGAACAGTCATTGGAGGTGCAA -ACGGAACAGTCATTGGAGGAGGAA -ACGGAACAGTCATTGGAGCAGGTA -ACGGAACAGTCATTGGAGGACTCT -ACGGAACAGTCATTGGAGAGTCCT -ACGGAACAGTCATTGGAGTAAGCC -ACGGAACAGTCATTGGAGATAGCC -ACGGAACAGTCATTGGAGTAACCG -ACGGAACAGTCATTGGAGATGCCA -ACGGAACAGTCACTGAGAGGAAAC -ACGGAACAGTCACTGAGAAACACC -ACGGAACAGTCACTGAGAATCGAG -ACGGAACAGTCACTGAGACTCCTT -ACGGAACAGTCACTGAGACCTGTT -ACGGAACAGTCACTGAGACGGTTT -ACGGAACAGTCACTGAGAGTGGTT -ACGGAACAGTCACTGAGAGCCTTT -ACGGAACAGTCACTGAGAGGTCTT -ACGGAACAGTCACTGAGAACGCTT -ACGGAACAGTCACTGAGAAGCGTT -ACGGAACAGTCACTGAGATTCGTC -ACGGAACAGTCACTGAGATCTCTC -ACGGAACAGTCACTGAGATGGATC -ACGGAACAGTCACTGAGACACTTC -ACGGAACAGTCACTGAGAGTACTC -ACGGAACAGTCACTGAGAGATGTC -ACGGAACAGTCACTGAGAACAGTC -ACGGAACAGTCACTGAGATTGCTG -ACGGAACAGTCACTGAGATCCATG -ACGGAACAGTCACTGAGATGTGTG -ACGGAACAGTCACTGAGACTAGTG -ACGGAACAGTCACTGAGACATCTG -ACGGAACAGTCACTGAGAGAGTTG -ACGGAACAGTCACTGAGAAGACTG -ACGGAACAGTCACTGAGATCGGTA -ACGGAACAGTCACTGAGATGCCTA -ACGGAACAGTCACTGAGACCACTA -ACGGAACAGTCACTGAGAGGAGTA -ACGGAACAGTCACTGAGATCGTCT -ACGGAACAGTCACTGAGATGCACT -ACGGAACAGTCACTGAGACTGACT -ACGGAACAGTCACTGAGACAACCT -ACGGAACAGTCACTGAGAGCTACT -ACGGAACAGTCACTGAGAGGATCT -ACGGAACAGTCACTGAGAAAGGCT -ACGGAACAGTCACTGAGATCAACC -ACGGAACAGTCACTGAGATGTTCC -ACGGAACAGTCACTGAGAATTCCC -ACGGAACAGTCACTGAGATTCTCG -ACGGAACAGTCACTGAGATAGACG -ACGGAACAGTCACTGAGAGTAACG -ACGGAACAGTCACTGAGAACTTCG -ACGGAACAGTCACTGAGATACGCA -ACGGAACAGTCACTGAGACTTGCA -ACGGAACAGTCACTGAGACGAACA -ACGGAACAGTCACTGAGACAGTCA -ACGGAACAGTCACTGAGAGATCCA -ACGGAACAGTCACTGAGAACGACA -ACGGAACAGTCACTGAGAAGCTCA -ACGGAACAGTCACTGAGATCACGT -ACGGAACAGTCACTGAGACGTAGT -ACGGAACAGTCACTGAGAGTCAGT -ACGGAACAGTCACTGAGAGAAGGT -ACGGAACAGTCACTGAGAAACCGT -ACGGAACAGTCACTGAGATTGTGC -ACGGAACAGTCACTGAGACTAAGC -ACGGAACAGTCACTGAGAACTAGC -ACGGAACAGTCACTGAGAAGATGC -ACGGAACAGTCACTGAGATGAAGG -ACGGAACAGTCACTGAGACAATGG -ACGGAACAGTCACTGAGAATGAGG -ACGGAACAGTCACTGAGAAATGGG -ACGGAACAGTCACTGAGATCCTGA -ACGGAACAGTCACTGAGATAGCGA -ACGGAACAGTCACTGAGACACAGA -ACGGAACAGTCACTGAGAGCAAGA -ACGGAACAGTCACTGAGAGGTTGA -ACGGAACAGTCACTGAGATCCGAT -ACGGAACAGTCACTGAGATGGCAT -ACGGAACAGTCACTGAGACGAGAT -ACGGAACAGTCACTGAGATACCAC -ACGGAACAGTCACTGAGACAGAAC -ACGGAACAGTCACTGAGAGTCTAC -ACGGAACAGTCACTGAGAACGTAC -ACGGAACAGTCACTGAGAAGTGAC -ACGGAACAGTCACTGAGACTGTAG -ACGGAACAGTCACTGAGACCTAAG -ACGGAACAGTCACTGAGAGTTCAG -ACGGAACAGTCACTGAGAGCATAG -ACGGAACAGTCACTGAGAGACAAG -ACGGAACAGTCACTGAGAAAGCAG -ACGGAACAGTCACTGAGACGTCAA -ACGGAACAGTCACTGAGAGCTGAA -ACGGAACAGTCACTGAGAAGTACG -ACGGAACAGTCACTGAGAATCCGA -ACGGAACAGTCACTGAGAATGGGA -ACGGAACAGTCACTGAGAGTGCAA -ACGGAACAGTCACTGAGAGAGGAA -ACGGAACAGTCACTGAGACAGGTA -ACGGAACAGTCACTGAGAGACTCT -ACGGAACAGTCACTGAGAAGTCCT -ACGGAACAGTCACTGAGATAAGCC -ACGGAACAGTCACTGAGAATAGCC -ACGGAACAGTCACTGAGATAACCG -ACGGAACAGTCACTGAGAATGCCA -ACGGAACAGTCAGTATCGGGAAAC -ACGGAACAGTCAGTATCGAACACC -ACGGAACAGTCAGTATCGATCGAG -ACGGAACAGTCAGTATCGCTCCTT -ACGGAACAGTCAGTATCGCCTGTT -ACGGAACAGTCAGTATCGCGGTTT -ACGGAACAGTCAGTATCGGTGGTT -ACGGAACAGTCAGTATCGGCCTTT -ACGGAACAGTCAGTATCGGGTCTT -ACGGAACAGTCAGTATCGACGCTT -ACGGAACAGTCAGTATCGAGCGTT -ACGGAACAGTCAGTATCGTTCGTC -ACGGAACAGTCAGTATCGTCTCTC -ACGGAACAGTCAGTATCGTGGATC -ACGGAACAGTCAGTATCGCACTTC -ACGGAACAGTCAGTATCGGTACTC -ACGGAACAGTCAGTATCGGATGTC -ACGGAACAGTCAGTATCGACAGTC -ACGGAACAGTCAGTATCGTTGCTG -ACGGAACAGTCAGTATCGTCCATG -ACGGAACAGTCAGTATCGTGTGTG -ACGGAACAGTCAGTATCGCTAGTG -ACGGAACAGTCAGTATCGCATCTG -ACGGAACAGTCAGTATCGGAGTTG -ACGGAACAGTCAGTATCGAGACTG -ACGGAACAGTCAGTATCGTCGGTA -ACGGAACAGTCAGTATCGTGCCTA -ACGGAACAGTCAGTATCGCCACTA -ACGGAACAGTCAGTATCGGGAGTA -ACGGAACAGTCAGTATCGTCGTCT -ACGGAACAGTCAGTATCGTGCACT -ACGGAACAGTCAGTATCGCTGACT -ACGGAACAGTCAGTATCGCAACCT -ACGGAACAGTCAGTATCGGCTACT -ACGGAACAGTCAGTATCGGGATCT -ACGGAACAGTCAGTATCGAAGGCT -ACGGAACAGTCAGTATCGTCAACC -ACGGAACAGTCAGTATCGTGTTCC -ACGGAACAGTCAGTATCGATTCCC -ACGGAACAGTCAGTATCGTTCTCG -ACGGAACAGTCAGTATCGTAGACG -ACGGAACAGTCAGTATCGGTAACG -ACGGAACAGTCAGTATCGACTTCG -ACGGAACAGTCAGTATCGTACGCA -ACGGAACAGTCAGTATCGCTTGCA -ACGGAACAGTCAGTATCGCGAACA -ACGGAACAGTCAGTATCGCAGTCA -ACGGAACAGTCAGTATCGGATCCA -ACGGAACAGTCAGTATCGACGACA -ACGGAACAGTCAGTATCGAGCTCA -ACGGAACAGTCAGTATCGTCACGT -ACGGAACAGTCAGTATCGCGTAGT -ACGGAACAGTCAGTATCGGTCAGT -ACGGAACAGTCAGTATCGGAAGGT -ACGGAACAGTCAGTATCGAACCGT -ACGGAACAGTCAGTATCGTTGTGC -ACGGAACAGTCAGTATCGCTAAGC -ACGGAACAGTCAGTATCGACTAGC -ACGGAACAGTCAGTATCGAGATGC -ACGGAACAGTCAGTATCGTGAAGG -ACGGAACAGTCAGTATCGCAATGG -ACGGAACAGTCAGTATCGATGAGG -ACGGAACAGTCAGTATCGAATGGG -ACGGAACAGTCAGTATCGTCCTGA -ACGGAACAGTCAGTATCGTAGCGA -ACGGAACAGTCAGTATCGCACAGA -ACGGAACAGTCAGTATCGGCAAGA -ACGGAACAGTCAGTATCGGGTTGA -ACGGAACAGTCAGTATCGTCCGAT -ACGGAACAGTCAGTATCGTGGCAT -ACGGAACAGTCAGTATCGCGAGAT -ACGGAACAGTCAGTATCGTACCAC -ACGGAACAGTCAGTATCGCAGAAC -ACGGAACAGTCAGTATCGGTCTAC -ACGGAACAGTCAGTATCGACGTAC -ACGGAACAGTCAGTATCGAGTGAC -ACGGAACAGTCAGTATCGCTGTAG -ACGGAACAGTCAGTATCGCCTAAG -ACGGAACAGTCAGTATCGGTTCAG -ACGGAACAGTCAGTATCGGCATAG -ACGGAACAGTCAGTATCGGACAAG -ACGGAACAGTCAGTATCGAAGCAG -ACGGAACAGTCAGTATCGCGTCAA -ACGGAACAGTCAGTATCGGCTGAA -ACGGAACAGTCAGTATCGAGTACG -ACGGAACAGTCAGTATCGATCCGA -ACGGAACAGTCAGTATCGATGGGA -ACGGAACAGTCAGTATCGGTGCAA -ACGGAACAGTCAGTATCGGAGGAA -ACGGAACAGTCAGTATCGCAGGTA -ACGGAACAGTCAGTATCGGACTCT -ACGGAACAGTCAGTATCGAGTCCT -ACGGAACAGTCAGTATCGTAAGCC -ACGGAACAGTCAGTATCGATAGCC -ACGGAACAGTCAGTATCGTAACCG -ACGGAACAGTCAGTATCGATGCCA -ACGGAACAGTCACTATGCGGAAAC -ACGGAACAGTCACTATGCAACACC -ACGGAACAGTCACTATGCATCGAG -ACGGAACAGTCACTATGCCTCCTT -ACGGAACAGTCACTATGCCCTGTT -ACGGAACAGTCACTATGCCGGTTT -ACGGAACAGTCACTATGCGTGGTT -ACGGAACAGTCACTATGCGCCTTT -ACGGAACAGTCACTATGCGGTCTT -ACGGAACAGTCACTATGCACGCTT -ACGGAACAGTCACTATGCAGCGTT -ACGGAACAGTCACTATGCTTCGTC -ACGGAACAGTCACTATGCTCTCTC -ACGGAACAGTCACTATGCTGGATC -ACGGAACAGTCACTATGCCACTTC -ACGGAACAGTCACTATGCGTACTC -ACGGAACAGTCACTATGCGATGTC -ACGGAACAGTCACTATGCACAGTC -ACGGAACAGTCACTATGCTTGCTG -ACGGAACAGTCACTATGCTCCATG -ACGGAACAGTCACTATGCTGTGTG -ACGGAACAGTCACTATGCCTAGTG -ACGGAACAGTCACTATGCCATCTG -ACGGAACAGTCACTATGCGAGTTG -ACGGAACAGTCACTATGCAGACTG -ACGGAACAGTCACTATGCTCGGTA -ACGGAACAGTCACTATGCTGCCTA -ACGGAACAGTCACTATGCCCACTA -ACGGAACAGTCACTATGCGGAGTA -ACGGAACAGTCACTATGCTCGTCT -ACGGAACAGTCACTATGCTGCACT -ACGGAACAGTCACTATGCCTGACT -ACGGAACAGTCACTATGCCAACCT -ACGGAACAGTCACTATGCGCTACT -ACGGAACAGTCACTATGCGGATCT -ACGGAACAGTCACTATGCAAGGCT -ACGGAACAGTCACTATGCTCAACC -ACGGAACAGTCACTATGCTGTTCC -ACGGAACAGTCACTATGCATTCCC -ACGGAACAGTCACTATGCTTCTCG -ACGGAACAGTCACTATGCTAGACG -ACGGAACAGTCACTATGCGTAACG -ACGGAACAGTCACTATGCACTTCG -ACGGAACAGTCACTATGCTACGCA -ACGGAACAGTCACTATGCCTTGCA -ACGGAACAGTCACTATGCCGAACA -ACGGAACAGTCACTATGCCAGTCA -ACGGAACAGTCACTATGCGATCCA -ACGGAACAGTCACTATGCACGACA -ACGGAACAGTCACTATGCAGCTCA -ACGGAACAGTCACTATGCTCACGT -ACGGAACAGTCACTATGCCGTAGT -ACGGAACAGTCACTATGCGTCAGT -ACGGAACAGTCACTATGCGAAGGT -ACGGAACAGTCACTATGCAACCGT -ACGGAACAGTCACTATGCTTGTGC -ACGGAACAGTCACTATGCCTAAGC -ACGGAACAGTCACTATGCACTAGC -ACGGAACAGTCACTATGCAGATGC -ACGGAACAGTCACTATGCTGAAGG -ACGGAACAGTCACTATGCCAATGG -ACGGAACAGTCACTATGCATGAGG -ACGGAACAGTCACTATGCAATGGG -ACGGAACAGTCACTATGCTCCTGA -ACGGAACAGTCACTATGCTAGCGA -ACGGAACAGTCACTATGCCACAGA -ACGGAACAGTCACTATGCGCAAGA -ACGGAACAGTCACTATGCGGTTGA -ACGGAACAGTCACTATGCTCCGAT -ACGGAACAGTCACTATGCTGGCAT -ACGGAACAGTCACTATGCCGAGAT -ACGGAACAGTCACTATGCTACCAC -ACGGAACAGTCACTATGCCAGAAC -ACGGAACAGTCACTATGCGTCTAC -ACGGAACAGTCACTATGCACGTAC -ACGGAACAGTCACTATGCAGTGAC -ACGGAACAGTCACTATGCCTGTAG -ACGGAACAGTCACTATGCCCTAAG -ACGGAACAGTCACTATGCGTTCAG -ACGGAACAGTCACTATGCGCATAG -ACGGAACAGTCACTATGCGACAAG -ACGGAACAGTCACTATGCAAGCAG -ACGGAACAGTCACTATGCCGTCAA -ACGGAACAGTCACTATGCGCTGAA -ACGGAACAGTCACTATGCAGTACG -ACGGAACAGTCACTATGCATCCGA -ACGGAACAGTCACTATGCATGGGA -ACGGAACAGTCACTATGCGTGCAA -ACGGAACAGTCACTATGCGAGGAA -ACGGAACAGTCACTATGCCAGGTA -ACGGAACAGTCACTATGCGACTCT -ACGGAACAGTCACTATGCAGTCCT -ACGGAACAGTCACTATGCTAAGCC -ACGGAACAGTCACTATGCATAGCC -ACGGAACAGTCACTATGCTAACCG -ACGGAACAGTCACTATGCATGCCA -ACGGAACAGTCACTACCAGGAAAC -ACGGAACAGTCACTACCAAACACC -ACGGAACAGTCACTACCAATCGAG -ACGGAACAGTCACTACCACTCCTT -ACGGAACAGTCACTACCACCTGTT -ACGGAACAGTCACTACCACGGTTT -ACGGAACAGTCACTACCAGTGGTT -ACGGAACAGTCACTACCAGCCTTT -ACGGAACAGTCACTACCAGGTCTT -ACGGAACAGTCACTACCAACGCTT -ACGGAACAGTCACTACCAAGCGTT -ACGGAACAGTCACTACCATTCGTC -ACGGAACAGTCACTACCATCTCTC -ACGGAACAGTCACTACCATGGATC -ACGGAACAGTCACTACCACACTTC -ACGGAACAGTCACTACCAGTACTC -ACGGAACAGTCACTACCAGATGTC -ACGGAACAGTCACTACCAACAGTC -ACGGAACAGTCACTACCATTGCTG -ACGGAACAGTCACTACCATCCATG -ACGGAACAGTCACTACCATGTGTG -ACGGAACAGTCACTACCACTAGTG -ACGGAACAGTCACTACCACATCTG -ACGGAACAGTCACTACCAGAGTTG -ACGGAACAGTCACTACCAAGACTG -ACGGAACAGTCACTACCATCGGTA -ACGGAACAGTCACTACCATGCCTA -ACGGAACAGTCACTACCACCACTA -ACGGAACAGTCACTACCAGGAGTA -ACGGAACAGTCACTACCATCGTCT -ACGGAACAGTCACTACCATGCACT -ACGGAACAGTCACTACCACTGACT -ACGGAACAGTCACTACCACAACCT -ACGGAACAGTCACTACCAGCTACT -ACGGAACAGTCACTACCAGGATCT -ACGGAACAGTCACTACCAAAGGCT -ACGGAACAGTCACTACCATCAACC -ACGGAACAGTCACTACCATGTTCC -ACGGAACAGTCACTACCAATTCCC -ACGGAACAGTCACTACCATTCTCG -ACGGAACAGTCACTACCATAGACG -ACGGAACAGTCACTACCAGTAACG -ACGGAACAGTCACTACCAACTTCG -ACGGAACAGTCACTACCATACGCA -ACGGAACAGTCACTACCACTTGCA -ACGGAACAGTCACTACCACGAACA -ACGGAACAGTCACTACCACAGTCA -ACGGAACAGTCACTACCAGATCCA -ACGGAACAGTCACTACCAACGACA -ACGGAACAGTCACTACCAAGCTCA -ACGGAACAGTCACTACCATCACGT -ACGGAACAGTCACTACCACGTAGT -ACGGAACAGTCACTACCAGTCAGT -ACGGAACAGTCACTACCAGAAGGT -ACGGAACAGTCACTACCAAACCGT -ACGGAACAGTCACTACCATTGTGC -ACGGAACAGTCACTACCACTAAGC -ACGGAACAGTCACTACCAACTAGC -ACGGAACAGTCACTACCAAGATGC -ACGGAACAGTCACTACCATGAAGG -ACGGAACAGTCACTACCACAATGG -ACGGAACAGTCACTACCAATGAGG -ACGGAACAGTCACTACCAAATGGG -ACGGAACAGTCACTACCATCCTGA -ACGGAACAGTCACTACCATAGCGA -ACGGAACAGTCACTACCACACAGA -ACGGAACAGTCACTACCAGCAAGA -ACGGAACAGTCACTACCAGGTTGA -ACGGAACAGTCACTACCATCCGAT -ACGGAACAGTCACTACCATGGCAT -ACGGAACAGTCACTACCACGAGAT -ACGGAACAGTCACTACCATACCAC -ACGGAACAGTCACTACCACAGAAC -ACGGAACAGTCACTACCAGTCTAC -ACGGAACAGTCACTACCAACGTAC -ACGGAACAGTCACTACCAAGTGAC -ACGGAACAGTCACTACCACTGTAG -ACGGAACAGTCACTACCACCTAAG -ACGGAACAGTCACTACCAGTTCAG -ACGGAACAGTCACTACCAGCATAG -ACGGAACAGTCACTACCAGACAAG -ACGGAACAGTCACTACCAAAGCAG -ACGGAACAGTCACTACCACGTCAA -ACGGAACAGTCACTACCAGCTGAA -ACGGAACAGTCACTACCAAGTACG -ACGGAACAGTCACTACCAATCCGA -ACGGAACAGTCACTACCAATGGGA -ACGGAACAGTCACTACCAGTGCAA -ACGGAACAGTCACTACCAGAGGAA -ACGGAACAGTCACTACCACAGGTA -ACGGAACAGTCACTACCAGACTCT -ACGGAACAGTCACTACCAAGTCCT -ACGGAACAGTCACTACCATAAGCC -ACGGAACAGTCACTACCAATAGCC -ACGGAACAGTCACTACCATAACCG -ACGGAACAGTCACTACCAATGCCA -ACGGAACAGTCAGTAGGAGGAAAC -ACGGAACAGTCAGTAGGAAACACC -ACGGAACAGTCAGTAGGAATCGAG -ACGGAACAGTCAGTAGGACTCCTT -ACGGAACAGTCAGTAGGACCTGTT -ACGGAACAGTCAGTAGGACGGTTT -ACGGAACAGTCAGTAGGAGTGGTT -ACGGAACAGTCAGTAGGAGCCTTT -ACGGAACAGTCAGTAGGAGGTCTT -ACGGAACAGTCAGTAGGAACGCTT -ACGGAACAGTCAGTAGGAAGCGTT -ACGGAACAGTCAGTAGGATTCGTC -ACGGAACAGTCAGTAGGATCTCTC -ACGGAACAGTCAGTAGGATGGATC -ACGGAACAGTCAGTAGGACACTTC -ACGGAACAGTCAGTAGGAGTACTC -ACGGAACAGTCAGTAGGAGATGTC -ACGGAACAGTCAGTAGGAACAGTC -ACGGAACAGTCAGTAGGATTGCTG -ACGGAACAGTCAGTAGGATCCATG -ACGGAACAGTCAGTAGGATGTGTG -ACGGAACAGTCAGTAGGACTAGTG -ACGGAACAGTCAGTAGGACATCTG -ACGGAACAGTCAGTAGGAGAGTTG -ACGGAACAGTCAGTAGGAAGACTG -ACGGAACAGTCAGTAGGATCGGTA -ACGGAACAGTCAGTAGGATGCCTA -ACGGAACAGTCAGTAGGACCACTA -ACGGAACAGTCAGTAGGAGGAGTA -ACGGAACAGTCAGTAGGATCGTCT -ACGGAACAGTCAGTAGGATGCACT -ACGGAACAGTCAGTAGGACTGACT -ACGGAACAGTCAGTAGGACAACCT -ACGGAACAGTCAGTAGGAGCTACT -ACGGAACAGTCAGTAGGAGGATCT -ACGGAACAGTCAGTAGGAAAGGCT -ACGGAACAGTCAGTAGGATCAACC -ACGGAACAGTCAGTAGGATGTTCC -ACGGAACAGTCAGTAGGAATTCCC -ACGGAACAGTCAGTAGGATTCTCG -ACGGAACAGTCAGTAGGATAGACG -ACGGAACAGTCAGTAGGAGTAACG -ACGGAACAGTCAGTAGGAACTTCG -ACGGAACAGTCAGTAGGATACGCA -ACGGAACAGTCAGTAGGACTTGCA -ACGGAACAGTCAGTAGGACGAACA -ACGGAACAGTCAGTAGGACAGTCA -ACGGAACAGTCAGTAGGAGATCCA -ACGGAACAGTCAGTAGGAACGACA -ACGGAACAGTCAGTAGGAAGCTCA -ACGGAACAGTCAGTAGGATCACGT -ACGGAACAGTCAGTAGGACGTAGT -ACGGAACAGTCAGTAGGAGTCAGT -ACGGAACAGTCAGTAGGAGAAGGT -ACGGAACAGTCAGTAGGAAACCGT -ACGGAACAGTCAGTAGGATTGTGC -ACGGAACAGTCAGTAGGACTAAGC -ACGGAACAGTCAGTAGGAACTAGC -ACGGAACAGTCAGTAGGAAGATGC -ACGGAACAGTCAGTAGGATGAAGG -ACGGAACAGTCAGTAGGACAATGG -ACGGAACAGTCAGTAGGAATGAGG -ACGGAACAGTCAGTAGGAAATGGG -ACGGAACAGTCAGTAGGATCCTGA -ACGGAACAGTCAGTAGGATAGCGA -ACGGAACAGTCAGTAGGACACAGA -ACGGAACAGTCAGTAGGAGCAAGA -ACGGAACAGTCAGTAGGAGGTTGA -ACGGAACAGTCAGTAGGATCCGAT -ACGGAACAGTCAGTAGGATGGCAT -ACGGAACAGTCAGTAGGACGAGAT -ACGGAACAGTCAGTAGGATACCAC -ACGGAACAGTCAGTAGGACAGAAC -ACGGAACAGTCAGTAGGAGTCTAC -ACGGAACAGTCAGTAGGAACGTAC -ACGGAACAGTCAGTAGGAAGTGAC -ACGGAACAGTCAGTAGGACTGTAG -ACGGAACAGTCAGTAGGACCTAAG -ACGGAACAGTCAGTAGGAGTTCAG -ACGGAACAGTCAGTAGGAGCATAG -ACGGAACAGTCAGTAGGAGACAAG -ACGGAACAGTCAGTAGGAAAGCAG -ACGGAACAGTCAGTAGGACGTCAA -ACGGAACAGTCAGTAGGAGCTGAA -ACGGAACAGTCAGTAGGAAGTACG -ACGGAACAGTCAGTAGGAATCCGA -ACGGAACAGTCAGTAGGAATGGGA -ACGGAACAGTCAGTAGGAGTGCAA -ACGGAACAGTCAGTAGGAGAGGAA -ACGGAACAGTCAGTAGGACAGGTA -ACGGAACAGTCAGTAGGAGACTCT -ACGGAACAGTCAGTAGGAAGTCCT -ACGGAACAGTCAGTAGGATAAGCC -ACGGAACAGTCAGTAGGAATAGCC -ACGGAACAGTCAGTAGGATAACCG -ACGGAACAGTCAGTAGGAATGCCA -ACGGAACAGTCATCTTCGGGAAAC -ACGGAACAGTCATCTTCGAACACC -ACGGAACAGTCATCTTCGATCGAG -ACGGAACAGTCATCTTCGCTCCTT -ACGGAACAGTCATCTTCGCCTGTT -ACGGAACAGTCATCTTCGCGGTTT -ACGGAACAGTCATCTTCGGTGGTT -ACGGAACAGTCATCTTCGGCCTTT -ACGGAACAGTCATCTTCGGGTCTT -ACGGAACAGTCATCTTCGACGCTT -ACGGAACAGTCATCTTCGAGCGTT -ACGGAACAGTCATCTTCGTTCGTC -ACGGAACAGTCATCTTCGTCTCTC -ACGGAACAGTCATCTTCGTGGATC -ACGGAACAGTCATCTTCGCACTTC -ACGGAACAGTCATCTTCGGTACTC -ACGGAACAGTCATCTTCGGATGTC -ACGGAACAGTCATCTTCGACAGTC -ACGGAACAGTCATCTTCGTTGCTG -ACGGAACAGTCATCTTCGTCCATG -ACGGAACAGTCATCTTCGTGTGTG -ACGGAACAGTCATCTTCGCTAGTG -ACGGAACAGTCATCTTCGCATCTG -ACGGAACAGTCATCTTCGGAGTTG -ACGGAACAGTCATCTTCGAGACTG -ACGGAACAGTCATCTTCGTCGGTA -ACGGAACAGTCATCTTCGTGCCTA -ACGGAACAGTCATCTTCGCCACTA -ACGGAACAGTCATCTTCGGGAGTA -ACGGAACAGTCATCTTCGTCGTCT -ACGGAACAGTCATCTTCGTGCACT -ACGGAACAGTCATCTTCGCTGACT -ACGGAACAGTCATCTTCGCAACCT -ACGGAACAGTCATCTTCGGCTACT -ACGGAACAGTCATCTTCGGGATCT -ACGGAACAGTCATCTTCGAAGGCT -ACGGAACAGTCATCTTCGTCAACC -ACGGAACAGTCATCTTCGTGTTCC -ACGGAACAGTCATCTTCGATTCCC -ACGGAACAGTCATCTTCGTTCTCG -ACGGAACAGTCATCTTCGTAGACG -ACGGAACAGTCATCTTCGGTAACG -ACGGAACAGTCATCTTCGACTTCG -ACGGAACAGTCATCTTCGTACGCA -ACGGAACAGTCATCTTCGCTTGCA -ACGGAACAGTCATCTTCGCGAACA -ACGGAACAGTCATCTTCGCAGTCA -ACGGAACAGTCATCTTCGGATCCA -ACGGAACAGTCATCTTCGACGACA -ACGGAACAGTCATCTTCGAGCTCA -ACGGAACAGTCATCTTCGTCACGT -ACGGAACAGTCATCTTCGCGTAGT -ACGGAACAGTCATCTTCGGTCAGT -ACGGAACAGTCATCTTCGGAAGGT -ACGGAACAGTCATCTTCGAACCGT -ACGGAACAGTCATCTTCGTTGTGC -ACGGAACAGTCATCTTCGCTAAGC -ACGGAACAGTCATCTTCGACTAGC -ACGGAACAGTCATCTTCGAGATGC -ACGGAACAGTCATCTTCGTGAAGG -ACGGAACAGTCATCTTCGCAATGG -ACGGAACAGTCATCTTCGATGAGG -ACGGAACAGTCATCTTCGAATGGG -ACGGAACAGTCATCTTCGTCCTGA -ACGGAACAGTCATCTTCGTAGCGA -ACGGAACAGTCATCTTCGCACAGA -ACGGAACAGTCATCTTCGGCAAGA -ACGGAACAGTCATCTTCGGGTTGA -ACGGAACAGTCATCTTCGTCCGAT -ACGGAACAGTCATCTTCGTGGCAT -ACGGAACAGTCATCTTCGCGAGAT -ACGGAACAGTCATCTTCGTACCAC -ACGGAACAGTCATCTTCGCAGAAC -ACGGAACAGTCATCTTCGGTCTAC -ACGGAACAGTCATCTTCGACGTAC -ACGGAACAGTCATCTTCGAGTGAC -ACGGAACAGTCATCTTCGCTGTAG -ACGGAACAGTCATCTTCGCCTAAG -ACGGAACAGTCATCTTCGGTTCAG -ACGGAACAGTCATCTTCGGCATAG -ACGGAACAGTCATCTTCGGACAAG -ACGGAACAGTCATCTTCGAAGCAG -ACGGAACAGTCATCTTCGCGTCAA -ACGGAACAGTCATCTTCGGCTGAA -ACGGAACAGTCATCTTCGAGTACG -ACGGAACAGTCATCTTCGATCCGA -ACGGAACAGTCATCTTCGATGGGA -ACGGAACAGTCATCTTCGGTGCAA -ACGGAACAGTCATCTTCGGAGGAA -ACGGAACAGTCATCTTCGCAGGTA -ACGGAACAGTCATCTTCGGACTCT -ACGGAACAGTCATCTTCGAGTCCT -ACGGAACAGTCATCTTCGTAAGCC -ACGGAACAGTCATCTTCGATAGCC -ACGGAACAGTCATCTTCGTAACCG -ACGGAACAGTCATCTTCGATGCCA -ACGGAACAGTCAACTTGCGGAAAC -ACGGAACAGTCAACTTGCAACACC -ACGGAACAGTCAACTTGCATCGAG -ACGGAACAGTCAACTTGCCTCCTT -ACGGAACAGTCAACTTGCCCTGTT -ACGGAACAGTCAACTTGCCGGTTT -ACGGAACAGTCAACTTGCGTGGTT -ACGGAACAGTCAACTTGCGCCTTT -ACGGAACAGTCAACTTGCGGTCTT -ACGGAACAGTCAACTTGCACGCTT -ACGGAACAGTCAACTTGCAGCGTT -ACGGAACAGTCAACTTGCTTCGTC -ACGGAACAGTCAACTTGCTCTCTC -ACGGAACAGTCAACTTGCTGGATC -ACGGAACAGTCAACTTGCCACTTC -ACGGAACAGTCAACTTGCGTACTC -ACGGAACAGTCAACTTGCGATGTC -ACGGAACAGTCAACTTGCACAGTC -ACGGAACAGTCAACTTGCTTGCTG -ACGGAACAGTCAACTTGCTCCATG -ACGGAACAGTCAACTTGCTGTGTG -ACGGAACAGTCAACTTGCCTAGTG -ACGGAACAGTCAACTTGCCATCTG -ACGGAACAGTCAACTTGCGAGTTG -ACGGAACAGTCAACTTGCAGACTG -ACGGAACAGTCAACTTGCTCGGTA -ACGGAACAGTCAACTTGCTGCCTA -ACGGAACAGTCAACTTGCCCACTA -ACGGAACAGTCAACTTGCGGAGTA -ACGGAACAGTCAACTTGCTCGTCT -ACGGAACAGTCAACTTGCTGCACT -ACGGAACAGTCAACTTGCCTGACT -ACGGAACAGTCAACTTGCCAACCT -ACGGAACAGTCAACTTGCGCTACT -ACGGAACAGTCAACTTGCGGATCT -ACGGAACAGTCAACTTGCAAGGCT -ACGGAACAGTCAACTTGCTCAACC -ACGGAACAGTCAACTTGCTGTTCC -ACGGAACAGTCAACTTGCATTCCC -ACGGAACAGTCAACTTGCTTCTCG -ACGGAACAGTCAACTTGCTAGACG -ACGGAACAGTCAACTTGCGTAACG -ACGGAACAGTCAACTTGCACTTCG -ACGGAACAGTCAACTTGCTACGCA -ACGGAACAGTCAACTTGCCTTGCA -ACGGAACAGTCAACTTGCCGAACA -ACGGAACAGTCAACTTGCCAGTCA -ACGGAACAGTCAACTTGCGATCCA -ACGGAACAGTCAACTTGCACGACA -ACGGAACAGTCAACTTGCAGCTCA -ACGGAACAGTCAACTTGCTCACGT -ACGGAACAGTCAACTTGCCGTAGT -ACGGAACAGTCAACTTGCGTCAGT -ACGGAACAGTCAACTTGCGAAGGT -ACGGAACAGTCAACTTGCAACCGT -ACGGAACAGTCAACTTGCTTGTGC -ACGGAACAGTCAACTTGCCTAAGC -ACGGAACAGTCAACTTGCACTAGC -ACGGAACAGTCAACTTGCAGATGC -ACGGAACAGTCAACTTGCTGAAGG -ACGGAACAGTCAACTTGCCAATGG -ACGGAACAGTCAACTTGCATGAGG -ACGGAACAGTCAACTTGCAATGGG -ACGGAACAGTCAACTTGCTCCTGA -ACGGAACAGTCAACTTGCTAGCGA -ACGGAACAGTCAACTTGCCACAGA -ACGGAACAGTCAACTTGCGCAAGA -ACGGAACAGTCAACTTGCGGTTGA -ACGGAACAGTCAACTTGCTCCGAT -ACGGAACAGTCAACTTGCTGGCAT -ACGGAACAGTCAACTTGCCGAGAT -ACGGAACAGTCAACTTGCTACCAC -ACGGAACAGTCAACTTGCCAGAAC -ACGGAACAGTCAACTTGCGTCTAC -ACGGAACAGTCAACTTGCACGTAC -ACGGAACAGTCAACTTGCAGTGAC -ACGGAACAGTCAACTTGCCTGTAG -ACGGAACAGTCAACTTGCCCTAAG -ACGGAACAGTCAACTTGCGTTCAG -ACGGAACAGTCAACTTGCGCATAG -ACGGAACAGTCAACTTGCGACAAG -ACGGAACAGTCAACTTGCAAGCAG -ACGGAACAGTCAACTTGCCGTCAA -ACGGAACAGTCAACTTGCGCTGAA -ACGGAACAGTCAACTTGCAGTACG -ACGGAACAGTCAACTTGCATCCGA -ACGGAACAGTCAACTTGCATGGGA -ACGGAACAGTCAACTTGCGTGCAA -ACGGAACAGTCAACTTGCGAGGAA -ACGGAACAGTCAACTTGCCAGGTA -ACGGAACAGTCAACTTGCGACTCT -ACGGAACAGTCAACTTGCAGTCCT -ACGGAACAGTCAACTTGCTAAGCC -ACGGAACAGTCAACTTGCATAGCC -ACGGAACAGTCAACTTGCTAACCG -ACGGAACAGTCAACTTGCATGCCA -ACGGAACAGTCAACTCTGGGAAAC -ACGGAACAGTCAACTCTGAACACC -ACGGAACAGTCAACTCTGATCGAG -ACGGAACAGTCAACTCTGCTCCTT -ACGGAACAGTCAACTCTGCCTGTT -ACGGAACAGTCAACTCTGCGGTTT -ACGGAACAGTCAACTCTGGTGGTT -ACGGAACAGTCAACTCTGGCCTTT -ACGGAACAGTCAACTCTGGGTCTT -ACGGAACAGTCAACTCTGACGCTT -ACGGAACAGTCAACTCTGAGCGTT -ACGGAACAGTCAACTCTGTTCGTC -ACGGAACAGTCAACTCTGTCTCTC -ACGGAACAGTCAACTCTGTGGATC -ACGGAACAGTCAACTCTGCACTTC -ACGGAACAGTCAACTCTGGTACTC -ACGGAACAGTCAACTCTGGATGTC -ACGGAACAGTCAACTCTGACAGTC -ACGGAACAGTCAACTCTGTTGCTG -ACGGAACAGTCAACTCTGTCCATG -ACGGAACAGTCAACTCTGTGTGTG -ACGGAACAGTCAACTCTGCTAGTG -ACGGAACAGTCAACTCTGCATCTG -ACGGAACAGTCAACTCTGGAGTTG -ACGGAACAGTCAACTCTGAGACTG -ACGGAACAGTCAACTCTGTCGGTA -ACGGAACAGTCAACTCTGTGCCTA -ACGGAACAGTCAACTCTGCCACTA -ACGGAACAGTCAACTCTGGGAGTA -ACGGAACAGTCAACTCTGTCGTCT -ACGGAACAGTCAACTCTGTGCACT -ACGGAACAGTCAACTCTGCTGACT -ACGGAACAGTCAACTCTGCAACCT -ACGGAACAGTCAACTCTGGCTACT -ACGGAACAGTCAACTCTGGGATCT -ACGGAACAGTCAACTCTGAAGGCT -ACGGAACAGTCAACTCTGTCAACC -ACGGAACAGTCAACTCTGTGTTCC -ACGGAACAGTCAACTCTGATTCCC -ACGGAACAGTCAACTCTGTTCTCG -ACGGAACAGTCAACTCTGTAGACG -ACGGAACAGTCAACTCTGGTAACG -ACGGAACAGTCAACTCTGACTTCG -ACGGAACAGTCAACTCTGTACGCA -ACGGAACAGTCAACTCTGCTTGCA -ACGGAACAGTCAACTCTGCGAACA -ACGGAACAGTCAACTCTGCAGTCA -ACGGAACAGTCAACTCTGGATCCA -ACGGAACAGTCAACTCTGACGACA -ACGGAACAGTCAACTCTGAGCTCA -ACGGAACAGTCAACTCTGTCACGT -ACGGAACAGTCAACTCTGCGTAGT -ACGGAACAGTCAACTCTGGTCAGT -ACGGAACAGTCAACTCTGGAAGGT -ACGGAACAGTCAACTCTGAACCGT -ACGGAACAGTCAACTCTGTTGTGC -ACGGAACAGTCAACTCTGCTAAGC -ACGGAACAGTCAACTCTGACTAGC -ACGGAACAGTCAACTCTGAGATGC -ACGGAACAGTCAACTCTGTGAAGG -ACGGAACAGTCAACTCTGCAATGG -ACGGAACAGTCAACTCTGATGAGG -ACGGAACAGTCAACTCTGAATGGG -ACGGAACAGTCAACTCTGTCCTGA -ACGGAACAGTCAACTCTGTAGCGA -ACGGAACAGTCAACTCTGCACAGA -ACGGAACAGTCAACTCTGGCAAGA -ACGGAACAGTCAACTCTGGGTTGA -ACGGAACAGTCAACTCTGTCCGAT -ACGGAACAGTCAACTCTGTGGCAT -ACGGAACAGTCAACTCTGCGAGAT -ACGGAACAGTCAACTCTGTACCAC -ACGGAACAGTCAACTCTGCAGAAC -ACGGAACAGTCAACTCTGGTCTAC -ACGGAACAGTCAACTCTGACGTAC -ACGGAACAGTCAACTCTGAGTGAC -ACGGAACAGTCAACTCTGCTGTAG -ACGGAACAGTCAACTCTGCCTAAG -ACGGAACAGTCAACTCTGGTTCAG -ACGGAACAGTCAACTCTGGCATAG -ACGGAACAGTCAACTCTGGACAAG -ACGGAACAGTCAACTCTGAAGCAG -ACGGAACAGTCAACTCTGCGTCAA -ACGGAACAGTCAACTCTGGCTGAA -ACGGAACAGTCAACTCTGAGTACG -ACGGAACAGTCAACTCTGATCCGA -ACGGAACAGTCAACTCTGATGGGA -ACGGAACAGTCAACTCTGGTGCAA -ACGGAACAGTCAACTCTGGAGGAA -ACGGAACAGTCAACTCTGCAGGTA -ACGGAACAGTCAACTCTGGACTCT -ACGGAACAGTCAACTCTGAGTCCT -ACGGAACAGTCAACTCTGTAAGCC -ACGGAACAGTCAACTCTGATAGCC -ACGGAACAGTCAACTCTGTAACCG -ACGGAACAGTCAACTCTGATGCCA -ACGGAACAGTCACCTCAAGGAAAC -ACGGAACAGTCACCTCAAAACACC -ACGGAACAGTCACCTCAAATCGAG -ACGGAACAGTCACCTCAACTCCTT -ACGGAACAGTCACCTCAACCTGTT -ACGGAACAGTCACCTCAACGGTTT -ACGGAACAGTCACCTCAAGTGGTT -ACGGAACAGTCACCTCAAGCCTTT -ACGGAACAGTCACCTCAAGGTCTT -ACGGAACAGTCACCTCAAACGCTT -ACGGAACAGTCACCTCAAAGCGTT -ACGGAACAGTCACCTCAATTCGTC -ACGGAACAGTCACCTCAATCTCTC -ACGGAACAGTCACCTCAATGGATC -ACGGAACAGTCACCTCAACACTTC -ACGGAACAGTCACCTCAAGTACTC -ACGGAACAGTCACCTCAAGATGTC -ACGGAACAGTCACCTCAAACAGTC -ACGGAACAGTCACCTCAATTGCTG -ACGGAACAGTCACCTCAATCCATG -ACGGAACAGTCACCTCAATGTGTG -ACGGAACAGTCACCTCAACTAGTG -ACGGAACAGTCACCTCAACATCTG -ACGGAACAGTCACCTCAAGAGTTG -ACGGAACAGTCACCTCAAAGACTG -ACGGAACAGTCACCTCAATCGGTA -ACGGAACAGTCACCTCAATGCCTA -ACGGAACAGTCACCTCAACCACTA -ACGGAACAGTCACCTCAAGGAGTA -ACGGAACAGTCACCTCAATCGTCT -ACGGAACAGTCACCTCAATGCACT -ACGGAACAGTCACCTCAACTGACT -ACGGAACAGTCACCTCAACAACCT -ACGGAACAGTCACCTCAAGCTACT -ACGGAACAGTCACCTCAAGGATCT -ACGGAACAGTCACCTCAAAAGGCT -ACGGAACAGTCACCTCAATCAACC -ACGGAACAGTCACCTCAATGTTCC -ACGGAACAGTCACCTCAAATTCCC -ACGGAACAGTCACCTCAATTCTCG -ACGGAACAGTCACCTCAATAGACG -ACGGAACAGTCACCTCAAGTAACG -ACGGAACAGTCACCTCAAACTTCG -ACGGAACAGTCACCTCAATACGCA -ACGGAACAGTCACCTCAACTTGCA -ACGGAACAGTCACCTCAACGAACA -ACGGAACAGTCACCTCAACAGTCA -ACGGAACAGTCACCTCAAGATCCA -ACGGAACAGTCACCTCAAACGACA -ACGGAACAGTCACCTCAAAGCTCA -ACGGAACAGTCACCTCAATCACGT -ACGGAACAGTCACCTCAACGTAGT -ACGGAACAGTCACCTCAAGTCAGT -ACGGAACAGTCACCTCAAGAAGGT -ACGGAACAGTCACCTCAAAACCGT -ACGGAACAGTCACCTCAATTGTGC -ACGGAACAGTCACCTCAACTAAGC -ACGGAACAGTCACCTCAAACTAGC -ACGGAACAGTCACCTCAAAGATGC -ACGGAACAGTCACCTCAATGAAGG -ACGGAACAGTCACCTCAACAATGG -ACGGAACAGTCACCTCAAATGAGG -ACGGAACAGTCACCTCAAAATGGG -ACGGAACAGTCACCTCAATCCTGA -ACGGAACAGTCACCTCAATAGCGA -ACGGAACAGTCACCTCAACACAGA -ACGGAACAGTCACCTCAAGCAAGA -ACGGAACAGTCACCTCAAGGTTGA -ACGGAACAGTCACCTCAATCCGAT -ACGGAACAGTCACCTCAATGGCAT -ACGGAACAGTCACCTCAACGAGAT -ACGGAACAGTCACCTCAATACCAC -ACGGAACAGTCACCTCAACAGAAC -ACGGAACAGTCACCTCAAGTCTAC -ACGGAACAGTCACCTCAAACGTAC -ACGGAACAGTCACCTCAAAGTGAC -ACGGAACAGTCACCTCAACTGTAG -ACGGAACAGTCACCTCAACCTAAG -ACGGAACAGTCACCTCAAGTTCAG -ACGGAACAGTCACCTCAAGCATAG -ACGGAACAGTCACCTCAAGACAAG -ACGGAACAGTCACCTCAAAAGCAG -ACGGAACAGTCACCTCAACGTCAA -ACGGAACAGTCACCTCAAGCTGAA -ACGGAACAGTCACCTCAAAGTACG -ACGGAACAGTCACCTCAAATCCGA -ACGGAACAGTCACCTCAAATGGGA -ACGGAACAGTCACCTCAAGTGCAA -ACGGAACAGTCACCTCAAGAGGAA -ACGGAACAGTCACCTCAACAGGTA -ACGGAACAGTCACCTCAAGACTCT -ACGGAACAGTCACCTCAAAGTCCT -ACGGAACAGTCACCTCAATAAGCC -ACGGAACAGTCACCTCAAATAGCC -ACGGAACAGTCACCTCAATAACCG -ACGGAACAGTCACCTCAAATGCCA -ACGGAACAGTCAACTGCTGGAAAC -ACGGAACAGTCAACTGCTAACACC -ACGGAACAGTCAACTGCTATCGAG -ACGGAACAGTCAACTGCTCTCCTT -ACGGAACAGTCAACTGCTCCTGTT -ACGGAACAGTCAACTGCTCGGTTT -ACGGAACAGTCAACTGCTGTGGTT -ACGGAACAGTCAACTGCTGCCTTT -ACGGAACAGTCAACTGCTGGTCTT -ACGGAACAGTCAACTGCTACGCTT -ACGGAACAGTCAACTGCTAGCGTT -ACGGAACAGTCAACTGCTTTCGTC -ACGGAACAGTCAACTGCTTCTCTC -ACGGAACAGTCAACTGCTTGGATC -ACGGAACAGTCAACTGCTCACTTC -ACGGAACAGTCAACTGCTGTACTC -ACGGAACAGTCAACTGCTGATGTC -ACGGAACAGTCAACTGCTACAGTC -ACGGAACAGTCAACTGCTTTGCTG -ACGGAACAGTCAACTGCTTCCATG -ACGGAACAGTCAACTGCTTGTGTG -ACGGAACAGTCAACTGCTCTAGTG -ACGGAACAGTCAACTGCTCATCTG -ACGGAACAGTCAACTGCTGAGTTG -ACGGAACAGTCAACTGCTAGACTG -ACGGAACAGTCAACTGCTTCGGTA -ACGGAACAGTCAACTGCTTGCCTA -ACGGAACAGTCAACTGCTCCACTA -ACGGAACAGTCAACTGCTGGAGTA -ACGGAACAGTCAACTGCTTCGTCT -ACGGAACAGTCAACTGCTTGCACT -ACGGAACAGTCAACTGCTCTGACT -ACGGAACAGTCAACTGCTCAACCT -ACGGAACAGTCAACTGCTGCTACT -ACGGAACAGTCAACTGCTGGATCT -ACGGAACAGTCAACTGCTAAGGCT -ACGGAACAGTCAACTGCTTCAACC -ACGGAACAGTCAACTGCTTGTTCC -ACGGAACAGTCAACTGCTATTCCC -ACGGAACAGTCAACTGCTTTCTCG -ACGGAACAGTCAACTGCTTAGACG -ACGGAACAGTCAACTGCTGTAACG -ACGGAACAGTCAACTGCTACTTCG -ACGGAACAGTCAACTGCTTACGCA -ACGGAACAGTCAACTGCTCTTGCA -ACGGAACAGTCAACTGCTCGAACA -ACGGAACAGTCAACTGCTCAGTCA -ACGGAACAGTCAACTGCTGATCCA -ACGGAACAGTCAACTGCTACGACA -ACGGAACAGTCAACTGCTAGCTCA -ACGGAACAGTCAACTGCTTCACGT -ACGGAACAGTCAACTGCTCGTAGT -ACGGAACAGTCAACTGCTGTCAGT -ACGGAACAGTCAACTGCTGAAGGT -ACGGAACAGTCAACTGCTAACCGT -ACGGAACAGTCAACTGCTTTGTGC -ACGGAACAGTCAACTGCTCTAAGC -ACGGAACAGTCAACTGCTACTAGC -ACGGAACAGTCAACTGCTAGATGC -ACGGAACAGTCAACTGCTTGAAGG -ACGGAACAGTCAACTGCTCAATGG -ACGGAACAGTCAACTGCTATGAGG -ACGGAACAGTCAACTGCTAATGGG -ACGGAACAGTCAACTGCTTCCTGA -ACGGAACAGTCAACTGCTTAGCGA -ACGGAACAGTCAACTGCTCACAGA -ACGGAACAGTCAACTGCTGCAAGA -ACGGAACAGTCAACTGCTGGTTGA -ACGGAACAGTCAACTGCTTCCGAT -ACGGAACAGTCAACTGCTTGGCAT -ACGGAACAGTCAACTGCTCGAGAT -ACGGAACAGTCAACTGCTTACCAC -ACGGAACAGTCAACTGCTCAGAAC -ACGGAACAGTCAACTGCTGTCTAC -ACGGAACAGTCAACTGCTACGTAC -ACGGAACAGTCAACTGCTAGTGAC -ACGGAACAGTCAACTGCTCTGTAG -ACGGAACAGTCAACTGCTCCTAAG -ACGGAACAGTCAACTGCTGTTCAG -ACGGAACAGTCAACTGCTGCATAG -ACGGAACAGTCAACTGCTGACAAG -ACGGAACAGTCAACTGCTAAGCAG -ACGGAACAGTCAACTGCTCGTCAA -ACGGAACAGTCAACTGCTGCTGAA -ACGGAACAGTCAACTGCTAGTACG -ACGGAACAGTCAACTGCTATCCGA -ACGGAACAGTCAACTGCTATGGGA -ACGGAACAGTCAACTGCTGTGCAA -ACGGAACAGTCAACTGCTGAGGAA -ACGGAACAGTCAACTGCTCAGGTA -ACGGAACAGTCAACTGCTGACTCT -ACGGAACAGTCAACTGCTAGTCCT -ACGGAACAGTCAACTGCTTAAGCC -ACGGAACAGTCAACTGCTATAGCC -ACGGAACAGTCAACTGCTTAACCG -ACGGAACAGTCAACTGCTATGCCA -ACGGAACAGTCATCTGGAGGAAAC -ACGGAACAGTCATCTGGAAACACC -ACGGAACAGTCATCTGGAATCGAG -ACGGAACAGTCATCTGGACTCCTT -ACGGAACAGTCATCTGGACCTGTT -ACGGAACAGTCATCTGGACGGTTT -ACGGAACAGTCATCTGGAGTGGTT -ACGGAACAGTCATCTGGAGCCTTT -ACGGAACAGTCATCTGGAGGTCTT -ACGGAACAGTCATCTGGAACGCTT -ACGGAACAGTCATCTGGAAGCGTT -ACGGAACAGTCATCTGGATTCGTC -ACGGAACAGTCATCTGGATCTCTC -ACGGAACAGTCATCTGGATGGATC -ACGGAACAGTCATCTGGACACTTC -ACGGAACAGTCATCTGGAGTACTC -ACGGAACAGTCATCTGGAGATGTC -ACGGAACAGTCATCTGGAACAGTC -ACGGAACAGTCATCTGGATTGCTG -ACGGAACAGTCATCTGGATCCATG -ACGGAACAGTCATCTGGATGTGTG -ACGGAACAGTCATCTGGACTAGTG -ACGGAACAGTCATCTGGACATCTG -ACGGAACAGTCATCTGGAGAGTTG -ACGGAACAGTCATCTGGAAGACTG -ACGGAACAGTCATCTGGATCGGTA -ACGGAACAGTCATCTGGATGCCTA -ACGGAACAGTCATCTGGACCACTA -ACGGAACAGTCATCTGGAGGAGTA -ACGGAACAGTCATCTGGATCGTCT -ACGGAACAGTCATCTGGATGCACT -ACGGAACAGTCATCTGGACTGACT -ACGGAACAGTCATCTGGACAACCT -ACGGAACAGTCATCTGGAGCTACT -ACGGAACAGTCATCTGGAGGATCT -ACGGAACAGTCATCTGGAAAGGCT -ACGGAACAGTCATCTGGATCAACC -ACGGAACAGTCATCTGGATGTTCC -ACGGAACAGTCATCTGGAATTCCC -ACGGAACAGTCATCTGGATTCTCG -ACGGAACAGTCATCTGGATAGACG -ACGGAACAGTCATCTGGAGTAACG -ACGGAACAGTCATCTGGAACTTCG -ACGGAACAGTCATCTGGATACGCA -ACGGAACAGTCATCTGGACTTGCA -ACGGAACAGTCATCTGGACGAACA -ACGGAACAGTCATCTGGACAGTCA -ACGGAACAGTCATCTGGAGATCCA -ACGGAACAGTCATCTGGAACGACA -ACGGAACAGTCATCTGGAAGCTCA -ACGGAACAGTCATCTGGATCACGT -ACGGAACAGTCATCTGGACGTAGT -ACGGAACAGTCATCTGGAGTCAGT -ACGGAACAGTCATCTGGAGAAGGT -ACGGAACAGTCATCTGGAAACCGT -ACGGAACAGTCATCTGGATTGTGC -ACGGAACAGTCATCTGGACTAAGC -ACGGAACAGTCATCTGGAACTAGC -ACGGAACAGTCATCTGGAAGATGC -ACGGAACAGTCATCTGGATGAAGG -ACGGAACAGTCATCTGGACAATGG -ACGGAACAGTCATCTGGAATGAGG -ACGGAACAGTCATCTGGAAATGGG -ACGGAACAGTCATCTGGATCCTGA -ACGGAACAGTCATCTGGATAGCGA -ACGGAACAGTCATCTGGACACAGA -ACGGAACAGTCATCTGGAGCAAGA -ACGGAACAGTCATCTGGAGGTTGA -ACGGAACAGTCATCTGGATCCGAT -ACGGAACAGTCATCTGGATGGCAT -ACGGAACAGTCATCTGGACGAGAT -ACGGAACAGTCATCTGGATACCAC -ACGGAACAGTCATCTGGACAGAAC -ACGGAACAGTCATCTGGAGTCTAC -ACGGAACAGTCATCTGGAACGTAC -ACGGAACAGTCATCTGGAAGTGAC -ACGGAACAGTCATCTGGACTGTAG -ACGGAACAGTCATCTGGACCTAAG -ACGGAACAGTCATCTGGAGTTCAG -ACGGAACAGTCATCTGGAGCATAG -ACGGAACAGTCATCTGGAGACAAG -ACGGAACAGTCATCTGGAAAGCAG -ACGGAACAGTCATCTGGACGTCAA -ACGGAACAGTCATCTGGAGCTGAA -ACGGAACAGTCATCTGGAAGTACG -ACGGAACAGTCATCTGGAATCCGA -ACGGAACAGTCATCTGGAATGGGA -ACGGAACAGTCATCTGGAGTGCAA -ACGGAACAGTCATCTGGAGAGGAA -ACGGAACAGTCATCTGGACAGGTA -ACGGAACAGTCATCTGGAGACTCT -ACGGAACAGTCATCTGGAAGTCCT -ACGGAACAGTCATCTGGATAAGCC -ACGGAACAGTCATCTGGAATAGCC -ACGGAACAGTCATCTGGATAACCG -ACGGAACAGTCATCTGGAATGCCA -ACGGAACAGTCAGCTAAGGGAAAC -ACGGAACAGTCAGCTAAGAACACC -ACGGAACAGTCAGCTAAGATCGAG -ACGGAACAGTCAGCTAAGCTCCTT -ACGGAACAGTCAGCTAAGCCTGTT -ACGGAACAGTCAGCTAAGCGGTTT -ACGGAACAGTCAGCTAAGGTGGTT -ACGGAACAGTCAGCTAAGGCCTTT -ACGGAACAGTCAGCTAAGGGTCTT -ACGGAACAGTCAGCTAAGACGCTT -ACGGAACAGTCAGCTAAGAGCGTT -ACGGAACAGTCAGCTAAGTTCGTC -ACGGAACAGTCAGCTAAGTCTCTC -ACGGAACAGTCAGCTAAGTGGATC -ACGGAACAGTCAGCTAAGCACTTC -ACGGAACAGTCAGCTAAGGTACTC -ACGGAACAGTCAGCTAAGGATGTC -ACGGAACAGTCAGCTAAGACAGTC -ACGGAACAGTCAGCTAAGTTGCTG -ACGGAACAGTCAGCTAAGTCCATG -ACGGAACAGTCAGCTAAGTGTGTG -ACGGAACAGTCAGCTAAGCTAGTG -ACGGAACAGTCAGCTAAGCATCTG -ACGGAACAGTCAGCTAAGGAGTTG -ACGGAACAGTCAGCTAAGAGACTG -ACGGAACAGTCAGCTAAGTCGGTA -ACGGAACAGTCAGCTAAGTGCCTA -ACGGAACAGTCAGCTAAGCCACTA -ACGGAACAGTCAGCTAAGGGAGTA -ACGGAACAGTCAGCTAAGTCGTCT -ACGGAACAGTCAGCTAAGTGCACT -ACGGAACAGTCAGCTAAGCTGACT -ACGGAACAGTCAGCTAAGCAACCT -ACGGAACAGTCAGCTAAGGCTACT -ACGGAACAGTCAGCTAAGGGATCT -ACGGAACAGTCAGCTAAGAAGGCT -ACGGAACAGTCAGCTAAGTCAACC -ACGGAACAGTCAGCTAAGTGTTCC -ACGGAACAGTCAGCTAAGATTCCC -ACGGAACAGTCAGCTAAGTTCTCG -ACGGAACAGTCAGCTAAGTAGACG -ACGGAACAGTCAGCTAAGGTAACG -ACGGAACAGTCAGCTAAGACTTCG -ACGGAACAGTCAGCTAAGTACGCA -ACGGAACAGTCAGCTAAGCTTGCA -ACGGAACAGTCAGCTAAGCGAACA -ACGGAACAGTCAGCTAAGCAGTCA -ACGGAACAGTCAGCTAAGGATCCA -ACGGAACAGTCAGCTAAGACGACA -ACGGAACAGTCAGCTAAGAGCTCA -ACGGAACAGTCAGCTAAGTCACGT -ACGGAACAGTCAGCTAAGCGTAGT -ACGGAACAGTCAGCTAAGGTCAGT -ACGGAACAGTCAGCTAAGGAAGGT -ACGGAACAGTCAGCTAAGAACCGT -ACGGAACAGTCAGCTAAGTTGTGC -ACGGAACAGTCAGCTAAGCTAAGC -ACGGAACAGTCAGCTAAGACTAGC -ACGGAACAGTCAGCTAAGAGATGC -ACGGAACAGTCAGCTAAGTGAAGG -ACGGAACAGTCAGCTAAGCAATGG -ACGGAACAGTCAGCTAAGATGAGG -ACGGAACAGTCAGCTAAGAATGGG -ACGGAACAGTCAGCTAAGTCCTGA -ACGGAACAGTCAGCTAAGTAGCGA -ACGGAACAGTCAGCTAAGCACAGA -ACGGAACAGTCAGCTAAGGCAAGA -ACGGAACAGTCAGCTAAGGGTTGA -ACGGAACAGTCAGCTAAGTCCGAT -ACGGAACAGTCAGCTAAGTGGCAT -ACGGAACAGTCAGCTAAGCGAGAT -ACGGAACAGTCAGCTAAGTACCAC -ACGGAACAGTCAGCTAAGCAGAAC -ACGGAACAGTCAGCTAAGGTCTAC -ACGGAACAGTCAGCTAAGACGTAC -ACGGAACAGTCAGCTAAGAGTGAC -ACGGAACAGTCAGCTAAGCTGTAG -ACGGAACAGTCAGCTAAGCCTAAG -ACGGAACAGTCAGCTAAGGTTCAG -ACGGAACAGTCAGCTAAGGCATAG -ACGGAACAGTCAGCTAAGGACAAG -ACGGAACAGTCAGCTAAGAAGCAG -ACGGAACAGTCAGCTAAGCGTCAA -ACGGAACAGTCAGCTAAGGCTGAA -ACGGAACAGTCAGCTAAGAGTACG -ACGGAACAGTCAGCTAAGATCCGA -ACGGAACAGTCAGCTAAGATGGGA -ACGGAACAGTCAGCTAAGGTGCAA -ACGGAACAGTCAGCTAAGGAGGAA -ACGGAACAGTCAGCTAAGCAGGTA -ACGGAACAGTCAGCTAAGGACTCT -ACGGAACAGTCAGCTAAGAGTCCT -ACGGAACAGTCAGCTAAGTAAGCC -ACGGAACAGTCAGCTAAGATAGCC -ACGGAACAGTCAGCTAAGTAACCG -ACGGAACAGTCAGCTAAGATGCCA -ACGGAACAGTCAACCTCAGGAAAC -ACGGAACAGTCAACCTCAAACACC -ACGGAACAGTCAACCTCAATCGAG -ACGGAACAGTCAACCTCACTCCTT -ACGGAACAGTCAACCTCACCTGTT -ACGGAACAGTCAACCTCACGGTTT -ACGGAACAGTCAACCTCAGTGGTT -ACGGAACAGTCAACCTCAGCCTTT -ACGGAACAGTCAACCTCAGGTCTT -ACGGAACAGTCAACCTCAACGCTT -ACGGAACAGTCAACCTCAAGCGTT -ACGGAACAGTCAACCTCATTCGTC -ACGGAACAGTCAACCTCATCTCTC -ACGGAACAGTCAACCTCATGGATC -ACGGAACAGTCAACCTCACACTTC -ACGGAACAGTCAACCTCAGTACTC -ACGGAACAGTCAACCTCAGATGTC -ACGGAACAGTCAACCTCAACAGTC -ACGGAACAGTCAACCTCATTGCTG -ACGGAACAGTCAACCTCATCCATG -ACGGAACAGTCAACCTCATGTGTG -ACGGAACAGTCAACCTCACTAGTG -ACGGAACAGTCAACCTCACATCTG -ACGGAACAGTCAACCTCAGAGTTG -ACGGAACAGTCAACCTCAAGACTG -ACGGAACAGTCAACCTCATCGGTA -ACGGAACAGTCAACCTCATGCCTA -ACGGAACAGTCAACCTCACCACTA -ACGGAACAGTCAACCTCAGGAGTA -ACGGAACAGTCAACCTCATCGTCT -ACGGAACAGTCAACCTCATGCACT -ACGGAACAGTCAACCTCACTGACT -ACGGAACAGTCAACCTCACAACCT -ACGGAACAGTCAACCTCAGCTACT -ACGGAACAGTCAACCTCAGGATCT -ACGGAACAGTCAACCTCAAAGGCT -ACGGAACAGTCAACCTCATCAACC -ACGGAACAGTCAACCTCATGTTCC -ACGGAACAGTCAACCTCAATTCCC -ACGGAACAGTCAACCTCATTCTCG -ACGGAACAGTCAACCTCATAGACG -ACGGAACAGTCAACCTCAGTAACG -ACGGAACAGTCAACCTCAACTTCG -ACGGAACAGTCAACCTCATACGCA -ACGGAACAGTCAACCTCACTTGCA -ACGGAACAGTCAACCTCACGAACA -ACGGAACAGTCAACCTCACAGTCA -ACGGAACAGTCAACCTCAGATCCA -ACGGAACAGTCAACCTCAACGACA -ACGGAACAGTCAACCTCAAGCTCA -ACGGAACAGTCAACCTCATCACGT -ACGGAACAGTCAACCTCACGTAGT -ACGGAACAGTCAACCTCAGTCAGT -ACGGAACAGTCAACCTCAGAAGGT -ACGGAACAGTCAACCTCAAACCGT -ACGGAACAGTCAACCTCATTGTGC -ACGGAACAGTCAACCTCACTAAGC -ACGGAACAGTCAACCTCAACTAGC -ACGGAACAGTCAACCTCAAGATGC -ACGGAACAGTCAACCTCATGAAGG -ACGGAACAGTCAACCTCACAATGG -ACGGAACAGTCAACCTCAATGAGG -ACGGAACAGTCAACCTCAAATGGG -ACGGAACAGTCAACCTCATCCTGA -ACGGAACAGTCAACCTCATAGCGA -ACGGAACAGTCAACCTCACACAGA -ACGGAACAGTCAACCTCAGCAAGA -ACGGAACAGTCAACCTCAGGTTGA -ACGGAACAGTCAACCTCATCCGAT -ACGGAACAGTCAACCTCATGGCAT -ACGGAACAGTCAACCTCACGAGAT -ACGGAACAGTCAACCTCATACCAC -ACGGAACAGTCAACCTCACAGAAC -ACGGAACAGTCAACCTCAGTCTAC -ACGGAACAGTCAACCTCAACGTAC -ACGGAACAGTCAACCTCAAGTGAC -ACGGAACAGTCAACCTCACTGTAG -ACGGAACAGTCAACCTCACCTAAG -ACGGAACAGTCAACCTCAGTTCAG -ACGGAACAGTCAACCTCAGCATAG -ACGGAACAGTCAACCTCAGACAAG -ACGGAACAGTCAACCTCAAAGCAG -ACGGAACAGTCAACCTCACGTCAA -ACGGAACAGTCAACCTCAGCTGAA -ACGGAACAGTCAACCTCAAGTACG -ACGGAACAGTCAACCTCAATCCGA -ACGGAACAGTCAACCTCAATGGGA -ACGGAACAGTCAACCTCAGTGCAA -ACGGAACAGTCAACCTCAGAGGAA -ACGGAACAGTCAACCTCACAGGTA -ACGGAACAGTCAACCTCAGACTCT -ACGGAACAGTCAACCTCAAGTCCT -ACGGAACAGTCAACCTCATAAGCC -ACGGAACAGTCAACCTCAATAGCC -ACGGAACAGTCAACCTCATAACCG -ACGGAACAGTCAACCTCAATGCCA -ACGGAACAGTCATCCTGTGGAAAC -ACGGAACAGTCATCCTGTAACACC -ACGGAACAGTCATCCTGTATCGAG -ACGGAACAGTCATCCTGTCTCCTT -ACGGAACAGTCATCCTGTCCTGTT -ACGGAACAGTCATCCTGTCGGTTT -ACGGAACAGTCATCCTGTGTGGTT -ACGGAACAGTCATCCTGTGCCTTT -ACGGAACAGTCATCCTGTGGTCTT -ACGGAACAGTCATCCTGTACGCTT -ACGGAACAGTCATCCTGTAGCGTT -ACGGAACAGTCATCCTGTTTCGTC -ACGGAACAGTCATCCTGTTCTCTC -ACGGAACAGTCATCCTGTTGGATC -ACGGAACAGTCATCCTGTCACTTC -ACGGAACAGTCATCCTGTGTACTC -ACGGAACAGTCATCCTGTGATGTC -ACGGAACAGTCATCCTGTACAGTC -ACGGAACAGTCATCCTGTTTGCTG -ACGGAACAGTCATCCTGTTCCATG -ACGGAACAGTCATCCTGTTGTGTG -ACGGAACAGTCATCCTGTCTAGTG -ACGGAACAGTCATCCTGTCATCTG -ACGGAACAGTCATCCTGTGAGTTG -ACGGAACAGTCATCCTGTAGACTG -ACGGAACAGTCATCCTGTTCGGTA -ACGGAACAGTCATCCTGTTGCCTA -ACGGAACAGTCATCCTGTCCACTA -ACGGAACAGTCATCCTGTGGAGTA -ACGGAACAGTCATCCTGTTCGTCT -ACGGAACAGTCATCCTGTTGCACT -ACGGAACAGTCATCCTGTCTGACT -ACGGAACAGTCATCCTGTCAACCT -ACGGAACAGTCATCCTGTGCTACT -ACGGAACAGTCATCCTGTGGATCT -ACGGAACAGTCATCCTGTAAGGCT -ACGGAACAGTCATCCTGTTCAACC -ACGGAACAGTCATCCTGTTGTTCC -ACGGAACAGTCATCCTGTATTCCC -ACGGAACAGTCATCCTGTTTCTCG -ACGGAACAGTCATCCTGTTAGACG -ACGGAACAGTCATCCTGTGTAACG -ACGGAACAGTCATCCTGTACTTCG -ACGGAACAGTCATCCTGTTACGCA -ACGGAACAGTCATCCTGTCTTGCA -ACGGAACAGTCATCCTGTCGAACA -ACGGAACAGTCATCCTGTCAGTCA -ACGGAACAGTCATCCTGTGATCCA -ACGGAACAGTCATCCTGTACGACA -ACGGAACAGTCATCCTGTAGCTCA -ACGGAACAGTCATCCTGTTCACGT -ACGGAACAGTCATCCTGTCGTAGT -ACGGAACAGTCATCCTGTGTCAGT -ACGGAACAGTCATCCTGTGAAGGT -ACGGAACAGTCATCCTGTAACCGT -ACGGAACAGTCATCCTGTTTGTGC -ACGGAACAGTCATCCTGTCTAAGC -ACGGAACAGTCATCCTGTACTAGC -ACGGAACAGTCATCCTGTAGATGC -ACGGAACAGTCATCCTGTTGAAGG -ACGGAACAGTCATCCTGTCAATGG -ACGGAACAGTCATCCTGTATGAGG -ACGGAACAGTCATCCTGTAATGGG -ACGGAACAGTCATCCTGTTCCTGA -ACGGAACAGTCATCCTGTTAGCGA -ACGGAACAGTCATCCTGTCACAGA -ACGGAACAGTCATCCTGTGCAAGA -ACGGAACAGTCATCCTGTGGTTGA -ACGGAACAGTCATCCTGTTCCGAT -ACGGAACAGTCATCCTGTTGGCAT -ACGGAACAGTCATCCTGTCGAGAT -ACGGAACAGTCATCCTGTTACCAC -ACGGAACAGTCATCCTGTCAGAAC -ACGGAACAGTCATCCTGTGTCTAC -ACGGAACAGTCATCCTGTACGTAC -ACGGAACAGTCATCCTGTAGTGAC -ACGGAACAGTCATCCTGTCTGTAG -ACGGAACAGTCATCCTGTCCTAAG -ACGGAACAGTCATCCTGTGTTCAG -ACGGAACAGTCATCCTGTGCATAG -ACGGAACAGTCATCCTGTGACAAG -ACGGAACAGTCATCCTGTAAGCAG -ACGGAACAGTCATCCTGTCGTCAA -ACGGAACAGTCATCCTGTGCTGAA -ACGGAACAGTCATCCTGTAGTACG -ACGGAACAGTCATCCTGTATCCGA -ACGGAACAGTCATCCTGTATGGGA -ACGGAACAGTCATCCTGTGTGCAA -ACGGAACAGTCATCCTGTGAGGAA -ACGGAACAGTCATCCTGTCAGGTA -ACGGAACAGTCATCCTGTGACTCT -ACGGAACAGTCATCCTGTAGTCCT -ACGGAACAGTCATCCTGTTAAGCC -ACGGAACAGTCATCCTGTATAGCC -ACGGAACAGTCATCCTGTTAACCG -ACGGAACAGTCATCCTGTATGCCA -ACGGAACAGTCACCCATTGGAAAC -ACGGAACAGTCACCCATTAACACC -ACGGAACAGTCACCCATTATCGAG -ACGGAACAGTCACCCATTCTCCTT -ACGGAACAGTCACCCATTCCTGTT -ACGGAACAGTCACCCATTCGGTTT -ACGGAACAGTCACCCATTGTGGTT -ACGGAACAGTCACCCATTGCCTTT -ACGGAACAGTCACCCATTGGTCTT -ACGGAACAGTCACCCATTACGCTT -ACGGAACAGTCACCCATTAGCGTT -ACGGAACAGTCACCCATTTTCGTC -ACGGAACAGTCACCCATTTCTCTC -ACGGAACAGTCACCCATTTGGATC -ACGGAACAGTCACCCATTCACTTC -ACGGAACAGTCACCCATTGTACTC -ACGGAACAGTCACCCATTGATGTC -ACGGAACAGTCACCCATTACAGTC -ACGGAACAGTCACCCATTTTGCTG -ACGGAACAGTCACCCATTTCCATG -ACGGAACAGTCACCCATTTGTGTG -ACGGAACAGTCACCCATTCTAGTG -ACGGAACAGTCACCCATTCATCTG -ACGGAACAGTCACCCATTGAGTTG -ACGGAACAGTCACCCATTAGACTG -ACGGAACAGTCACCCATTTCGGTA -ACGGAACAGTCACCCATTTGCCTA -ACGGAACAGTCACCCATTCCACTA -ACGGAACAGTCACCCATTGGAGTA -ACGGAACAGTCACCCATTTCGTCT -ACGGAACAGTCACCCATTTGCACT -ACGGAACAGTCACCCATTCTGACT -ACGGAACAGTCACCCATTCAACCT -ACGGAACAGTCACCCATTGCTACT -ACGGAACAGTCACCCATTGGATCT -ACGGAACAGTCACCCATTAAGGCT -ACGGAACAGTCACCCATTTCAACC -ACGGAACAGTCACCCATTTGTTCC -ACGGAACAGTCACCCATTATTCCC -ACGGAACAGTCACCCATTTTCTCG -ACGGAACAGTCACCCATTTAGACG -ACGGAACAGTCACCCATTGTAACG -ACGGAACAGTCACCCATTACTTCG -ACGGAACAGTCACCCATTTACGCA -ACGGAACAGTCACCCATTCTTGCA -ACGGAACAGTCACCCATTCGAACA -ACGGAACAGTCACCCATTCAGTCA -ACGGAACAGTCACCCATTGATCCA -ACGGAACAGTCACCCATTACGACA -ACGGAACAGTCACCCATTAGCTCA -ACGGAACAGTCACCCATTTCACGT -ACGGAACAGTCACCCATTCGTAGT -ACGGAACAGTCACCCATTGTCAGT -ACGGAACAGTCACCCATTGAAGGT -ACGGAACAGTCACCCATTAACCGT -ACGGAACAGTCACCCATTTTGTGC -ACGGAACAGTCACCCATTCTAAGC -ACGGAACAGTCACCCATTACTAGC -ACGGAACAGTCACCCATTAGATGC -ACGGAACAGTCACCCATTTGAAGG -ACGGAACAGTCACCCATTCAATGG -ACGGAACAGTCACCCATTATGAGG -ACGGAACAGTCACCCATTAATGGG -ACGGAACAGTCACCCATTTCCTGA -ACGGAACAGTCACCCATTTAGCGA -ACGGAACAGTCACCCATTCACAGA -ACGGAACAGTCACCCATTGCAAGA -ACGGAACAGTCACCCATTGGTTGA -ACGGAACAGTCACCCATTTCCGAT -ACGGAACAGTCACCCATTTGGCAT -ACGGAACAGTCACCCATTCGAGAT -ACGGAACAGTCACCCATTTACCAC -ACGGAACAGTCACCCATTCAGAAC -ACGGAACAGTCACCCATTGTCTAC -ACGGAACAGTCACCCATTACGTAC -ACGGAACAGTCACCCATTAGTGAC -ACGGAACAGTCACCCATTCTGTAG -ACGGAACAGTCACCCATTCCTAAG -ACGGAACAGTCACCCATTGTTCAG -ACGGAACAGTCACCCATTGCATAG -ACGGAACAGTCACCCATTGACAAG -ACGGAACAGTCACCCATTAAGCAG -ACGGAACAGTCACCCATTCGTCAA -ACGGAACAGTCACCCATTGCTGAA -ACGGAACAGTCACCCATTAGTACG -ACGGAACAGTCACCCATTATCCGA -ACGGAACAGTCACCCATTATGGGA -ACGGAACAGTCACCCATTGTGCAA -ACGGAACAGTCACCCATTGAGGAA -ACGGAACAGTCACCCATTCAGGTA -ACGGAACAGTCACCCATTGACTCT -ACGGAACAGTCACCCATTAGTCCT -ACGGAACAGTCACCCATTTAAGCC -ACGGAACAGTCACCCATTATAGCC -ACGGAACAGTCACCCATTTAACCG -ACGGAACAGTCACCCATTATGCCA -ACGGAACAGTCATCGTTCGGAAAC -ACGGAACAGTCATCGTTCAACACC -ACGGAACAGTCATCGTTCATCGAG -ACGGAACAGTCATCGTTCCTCCTT -ACGGAACAGTCATCGTTCCCTGTT -ACGGAACAGTCATCGTTCCGGTTT -ACGGAACAGTCATCGTTCGTGGTT -ACGGAACAGTCATCGTTCGCCTTT -ACGGAACAGTCATCGTTCGGTCTT -ACGGAACAGTCATCGTTCACGCTT -ACGGAACAGTCATCGTTCAGCGTT -ACGGAACAGTCATCGTTCTTCGTC -ACGGAACAGTCATCGTTCTCTCTC -ACGGAACAGTCATCGTTCTGGATC -ACGGAACAGTCATCGTTCCACTTC -ACGGAACAGTCATCGTTCGTACTC -ACGGAACAGTCATCGTTCGATGTC -ACGGAACAGTCATCGTTCACAGTC -ACGGAACAGTCATCGTTCTTGCTG -ACGGAACAGTCATCGTTCTCCATG -ACGGAACAGTCATCGTTCTGTGTG -ACGGAACAGTCATCGTTCCTAGTG -ACGGAACAGTCATCGTTCCATCTG -ACGGAACAGTCATCGTTCGAGTTG -ACGGAACAGTCATCGTTCAGACTG -ACGGAACAGTCATCGTTCTCGGTA -ACGGAACAGTCATCGTTCTGCCTA -ACGGAACAGTCATCGTTCCCACTA -ACGGAACAGTCATCGTTCGGAGTA -ACGGAACAGTCATCGTTCTCGTCT -ACGGAACAGTCATCGTTCTGCACT -ACGGAACAGTCATCGTTCCTGACT -ACGGAACAGTCATCGTTCCAACCT -ACGGAACAGTCATCGTTCGCTACT -ACGGAACAGTCATCGTTCGGATCT -ACGGAACAGTCATCGTTCAAGGCT -ACGGAACAGTCATCGTTCTCAACC -ACGGAACAGTCATCGTTCTGTTCC -ACGGAACAGTCATCGTTCATTCCC -ACGGAACAGTCATCGTTCTTCTCG -ACGGAACAGTCATCGTTCTAGACG -ACGGAACAGTCATCGTTCGTAACG -ACGGAACAGTCATCGTTCACTTCG -ACGGAACAGTCATCGTTCTACGCA -ACGGAACAGTCATCGTTCCTTGCA -ACGGAACAGTCATCGTTCCGAACA -ACGGAACAGTCATCGTTCCAGTCA -ACGGAACAGTCATCGTTCGATCCA -ACGGAACAGTCATCGTTCACGACA -ACGGAACAGTCATCGTTCAGCTCA -ACGGAACAGTCATCGTTCTCACGT -ACGGAACAGTCATCGTTCCGTAGT -ACGGAACAGTCATCGTTCGTCAGT -ACGGAACAGTCATCGTTCGAAGGT -ACGGAACAGTCATCGTTCAACCGT -ACGGAACAGTCATCGTTCTTGTGC -ACGGAACAGTCATCGTTCCTAAGC -ACGGAACAGTCATCGTTCACTAGC -ACGGAACAGTCATCGTTCAGATGC -ACGGAACAGTCATCGTTCTGAAGG -ACGGAACAGTCATCGTTCCAATGG -ACGGAACAGTCATCGTTCATGAGG -ACGGAACAGTCATCGTTCAATGGG -ACGGAACAGTCATCGTTCTCCTGA -ACGGAACAGTCATCGTTCTAGCGA -ACGGAACAGTCATCGTTCCACAGA -ACGGAACAGTCATCGTTCGCAAGA -ACGGAACAGTCATCGTTCGGTTGA -ACGGAACAGTCATCGTTCTCCGAT -ACGGAACAGTCATCGTTCTGGCAT -ACGGAACAGTCATCGTTCCGAGAT -ACGGAACAGTCATCGTTCTACCAC -ACGGAACAGTCATCGTTCCAGAAC -ACGGAACAGTCATCGTTCGTCTAC -ACGGAACAGTCATCGTTCACGTAC -ACGGAACAGTCATCGTTCAGTGAC -ACGGAACAGTCATCGTTCCTGTAG -ACGGAACAGTCATCGTTCCCTAAG -ACGGAACAGTCATCGTTCGTTCAG -ACGGAACAGTCATCGTTCGCATAG -ACGGAACAGTCATCGTTCGACAAG -ACGGAACAGTCATCGTTCAAGCAG -ACGGAACAGTCATCGTTCCGTCAA -ACGGAACAGTCATCGTTCGCTGAA -ACGGAACAGTCATCGTTCAGTACG -ACGGAACAGTCATCGTTCATCCGA -ACGGAACAGTCATCGTTCATGGGA -ACGGAACAGTCATCGTTCGTGCAA -ACGGAACAGTCATCGTTCGAGGAA -ACGGAACAGTCATCGTTCCAGGTA -ACGGAACAGTCATCGTTCGACTCT -ACGGAACAGTCATCGTTCAGTCCT -ACGGAACAGTCATCGTTCTAAGCC -ACGGAACAGTCATCGTTCATAGCC -ACGGAACAGTCATCGTTCTAACCG -ACGGAACAGTCATCGTTCATGCCA -ACGGAACAGTCAACGTAGGGAAAC -ACGGAACAGTCAACGTAGAACACC -ACGGAACAGTCAACGTAGATCGAG -ACGGAACAGTCAACGTAGCTCCTT -ACGGAACAGTCAACGTAGCCTGTT -ACGGAACAGTCAACGTAGCGGTTT -ACGGAACAGTCAACGTAGGTGGTT -ACGGAACAGTCAACGTAGGCCTTT -ACGGAACAGTCAACGTAGGGTCTT -ACGGAACAGTCAACGTAGACGCTT -ACGGAACAGTCAACGTAGAGCGTT -ACGGAACAGTCAACGTAGTTCGTC -ACGGAACAGTCAACGTAGTCTCTC -ACGGAACAGTCAACGTAGTGGATC -ACGGAACAGTCAACGTAGCACTTC -ACGGAACAGTCAACGTAGGTACTC -ACGGAACAGTCAACGTAGGATGTC -ACGGAACAGTCAACGTAGACAGTC -ACGGAACAGTCAACGTAGTTGCTG -ACGGAACAGTCAACGTAGTCCATG -ACGGAACAGTCAACGTAGTGTGTG -ACGGAACAGTCAACGTAGCTAGTG -ACGGAACAGTCAACGTAGCATCTG -ACGGAACAGTCAACGTAGGAGTTG -ACGGAACAGTCAACGTAGAGACTG -ACGGAACAGTCAACGTAGTCGGTA -ACGGAACAGTCAACGTAGTGCCTA -ACGGAACAGTCAACGTAGCCACTA -ACGGAACAGTCAACGTAGGGAGTA -ACGGAACAGTCAACGTAGTCGTCT -ACGGAACAGTCAACGTAGTGCACT -ACGGAACAGTCAACGTAGCTGACT -ACGGAACAGTCAACGTAGCAACCT -ACGGAACAGTCAACGTAGGCTACT -ACGGAACAGTCAACGTAGGGATCT -ACGGAACAGTCAACGTAGAAGGCT -ACGGAACAGTCAACGTAGTCAACC -ACGGAACAGTCAACGTAGTGTTCC -ACGGAACAGTCAACGTAGATTCCC -ACGGAACAGTCAACGTAGTTCTCG -ACGGAACAGTCAACGTAGTAGACG -ACGGAACAGTCAACGTAGGTAACG -ACGGAACAGTCAACGTAGACTTCG -ACGGAACAGTCAACGTAGTACGCA -ACGGAACAGTCAACGTAGCTTGCA -ACGGAACAGTCAACGTAGCGAACA -ACGGAACAGTCAACGTAGCAGTCA -ACGGAACAGTCAACGTAGGATCCA -ACGGAACAGTCAACGTAGACGACA -ACGGAACAGTCAACGTAGAGCTCA -ACGGAACAGTCAACGTAGTCACGT -ACGGAACAGTCAACGTAGCGTAGT -ACGGAACAGTCAACGTAGGTCAGT -ACGGAACAGTCAACGTAGGAAGGT -ACGGAACAGTCAACGTAGAACCGT -ACGGAACAGTCAACGTAGTTGTGC -ACGGAACAGTCAACGTAGCTAAGC -ACGGAACAGTCAACGTAGACTAGC -ACGGAACAGTCAACGTAGAGATGC -ACGGAACAGTCAACGTAGTGAAGG -ACGGAACAGTCAACGTAGCAATGG -ACGGAACAGTCAACGTAGATGAGG -ACGGAACAGTCAACGTAGAATGGG -ACGGAACAGTCAACGTAGTCCTGA -ACGGAACAGTCAACGTAGTAGCGA -ACGGAACAGTCAACGTAGCACAGA -ACGGAACAGTCAACGTAGGCAAGA -ACGGAACAGTCAACGTAGGGTTGA -ACGGAACAGTCAACGTAGTCCGAT -ACGGAACAGTCAACGTAGTGGCAT -ACGGAACAGTCAACGTAGCGAGAT -ACGGAACAGTCAACGTAGTACCAC -ACGGAACAGTCAACGTAGCAGAAC -ACGGAACAGTCAACGTAGGTCTAC -ACGGAACAGTCAACGTAGACGTAC -ACGGAACAGTCAACGTAGAGTGAC -ACGGAACAGTCAACGTAGCTGTAG -ACGGAACAGTCAACGTAGCCTAAG -ACGGAACAGTCAACGTAGGTTCAG -ACGGAACAGTCAACGTAGGCATAG -ACGGAACAGTCAACGTAGGACAAG -ACGGAACAGTCAACGTAGAAGCAG -ACGGAACAGTCAACGTAGCGTCAA -ACGGAACAGTCAACGTAGGCTGAA -ACGGAACAGTCAACGTAGAGTACG -ACGGAACAGTCAACGTAGATCCGA -ACGGAACAGTCAACGTAGATGGGA -ACGGAACAGTCAACGTAGGTGCAA -ACGGAACAGTCAACGTAGGAGGAA -ACGGAACAGTCAACGTAGCAGGTA -ACGGAACAGTCAACGTAGGACTCT -ACGGAACAGTCAACGTAGAGTCCT -ACGGAACAGTCAACGTAGTAAGCC -ACGGAACAGTCAACGTAGATAGCC -ACGGAACAGTCAACGTAGTAACCG -ACGGAACAGTCAACGTAGATGCCA -ACGGAACAGTCAACGGTAGGAAAC -ACGGAACAGTCAACGGTAAACACC -ACGGAACAGTCAACGGTAATCGAG -ACGGAACAGTCAACGGTACTCCTT -ACGGAACAGTCAACGGTACCTGTT -ACGGAACAGTCAACGGTACGGTTT -ACGGAACAGTCAACGGTAGTGGTT -ACGGAACAGTCAACGGTAGCCTTT -ACGGAACAGTCAACGGTAGGTCTT -ACGGAACAGTCAACGGTAACGCTT -ACGGAACAGTCAACGGTAAGCGTT -ACGGAACAGTCAACGGTATTCGTC -ACGGAACAGTCAACGGTATCTCTC -ACGGAACAGTCAACGGTATGGATC -ACGGAACAGTCAACGGTACACTTC -ACGGAACAGTCAACGGTAGTACTC -ACGGAACAGTCAACGGTAGATGTC -ACGGAACAGTCAACGGTAACAGTC -ACGGAACAGTCAACGGTATTGCTG -ACGGAACAGTCAACGGTATCCATG -ACGGAACAGTCAACGGTATGTGTG -ACGGAACAGTCAACGGTACTAGTG -ACGGAACAGTCAACGGTACATCTG -ACGGAACAGTCAACGGTAGAGTTG -ACGGAACAGTCAACGGTAAGACTG -ACGGAACAGTCAACGGTATCGGTA -ACGGAACAGTCAACGGTATGCCTA -ACGGAACAGTCAACGGTACCACTA -ACGGAACAGTCAACGGTAGGAGTA -ACGGAACAGTCAACGGTATCGTCT -ACGGAACAGTCAACGGTATGCACT -ACGGAACAGTCAACGGTACTGACT -ACGGAACAGTCAACGGTACAACCT -ACGGAACAGTCAACGGTAGCTACT -ACGGAACAGTCAACGGTAGGATCT -ACGGAACAGTCAACGGTAAAGGCT -ACGGAACAGTCAACGGTATCAACC -ACGGAACAGTCAACGGTATGTTCC -ACGGAACAGTCAACGGTAATTCCC -ACGGAACAGTCAACGGTATTCTCG -ACGGAACAGTCAACGGTATAGACG -ACGGAACAGTCAACGGTAGTAACG -ACGGAACAGTCAACGGTAACTTCG -ACGGAACAGTCAACGGTATACGCA -ACGGAACAGTCAACGGTACTTGCA -ACGGAACAGTCAACGGTACGAACA -ACGGAACAGTCAACGGTACAGTCA -ACGGAACAGTCAACGGTAGATCCA -ACGGAACAGTCAACGGTAACGACA -ACGGAACAGTCAACGGTAAGCTCA -ACGGAACAGTCAACGGTATCACGT -ACGGAACAGTCAACGGTACGTAGT -ACGGAACAGTCAACGGTAGTCAGT -ACGGAACAGTCAACGGTAGAAGGT -ACGGAACAGTCAACGGTAAACCGT -ACGGAACAGTCAACGGTATTGTGC -ACGGAACAGTCAACGGTACTAAGC -ACGGAACAGTCAACGGTAACTAGC -ACGGAACAGTCAACGGTAAGATGC -ACGGAACAGTCAACGGTATGAAGG -ACGGAACAGTCAACGGTACAATGG -ACGGAACAGTCAACGGTAATGAGG -ACGGAACAGTCAACGGTAAATGGG -ACGGAACAGTCAACGGTATCCTGA -ACGGAACAGTCAACGGTATAGCGA -ACGGAACAGTCAACGGTACACAGA -ACGGAACAGTCAACGGTAGCAAGA -ACGGAACAGTCAACGGTAGGTTGA -ACGGAACAGTCAACGGTATCCGAT -ACGGAACAGTCAACGGTATGGCAT -ACGGAACAGTCAACGGTACGAGAT -ACGGAACAGTCAACGGTATACCAC -ACGGAACAGTCAACGGTACAGAAC -ACGGAACAGTCAACGGTAGTCTAC -ACGGAACAGTCAACGGTAACGTAC -ACGGAACAGTCAACGGTAAGTGAC -ACGGAACAGTCAACGGTACTGTAG -ACGGAACAGTCAACGGTACCTAAG -ACGGAACAGTCAACGGTAGTTCAG -ACGGAACAGTCAACGGTAGCATAG -ACGGAACAGTCAACGGTAGACAAG -ACGGAACAGTCAACGGTAAAGCAG -ACGGAACAGTCAACGGTACGTCAA -ACGGAACAGTCAACGGTAGCTGAA -ACGGAACAGTCAACGGTAAGTACG -ACGGAACAGTCAACGGTAATCCGA -ACGGAACAGTCAACGGTAATGGGA -ACGGAACAGTCAACGGTAGTGCAA -ACGGAACAGTCAACGGTAGAGGAA -ACGGAACAGTCAACGGTACAGGTA -ACGGAACAGTCAACGGTAGACTCT -ACGGAACAGTCAACGGTAAGTCCT -ACGGAACAGTCAACGGTATAAGCC -ACGGAACAGTCAACGGTAATAGCC -ACGGAACAGTCAACGGTATAACCG -ACGGAACAGTCAACGGTAATGCCA -ACGGAACAGTCATCGACTGGAAAC -ACGGAACAGTCATCGACTAACACC -ACGGAACAGTCATCGACTATCGAG -ACGGAACAGTCATCGACTCTCCTT -ACGGAACAGTCATCGACTCCTGTT -ACGGAACAGTCATCGACTCGGTTT -ACGGAACAGTCATCGACTGTGGTT -ACGGAACAGTCATCGACTGCCTTT -ACGGAACAGTCATCGACTGGTCTT -ACGGAACAGTCATCGACTACGCTT -ACGGAACAGTCATCGACTAGCGTT -ACGGAACAGTCATCGACTTTCGTC -ACGGAACAGTCATCGACTTCTCTC -ACGGAACAGTCATCGACTTGGATC -ACGGAACAGTCATCGACTCACTTC -ACGGAACAGTCATCGACTGTACTC -ACGGAACAGTCATCGACTGATGTC -ACGGAACAGTCATCGACTACAGTC -ACGGAACAGTCATCGACTTTGCTG -ACGGAACAGTCATCGACTTCCATG -ACGGAACAGTCATCGACTTGTGTG -ACGGAACAGTCATCGACTCTAGTG -ACGGAACAGTCATCGACTCATCTG -ACGGAACAGTCATCGACTGAGTTG -ACGGAACAGTCATCGACTAGACTG -ACGGAACAGTCATCGACTTCGGTA -ACGGAACAGTCATCGACTTGCCTA -ACGGAACAGTCATCGACTCCACTA -ACGGAACAGTCATCGACTGGAGTA -ACGGAACAGTCATCGACTTCGTCT -ACGGAACAGTCATCGACTTGCACT -ACGGAACAGTCATCGACTCTGACT -ACGGAACAGTCATCGACTCAACCT -ACGGAACAGTCATCGACTGCTACT -ACGGAACAGTCATCGACTGGATCT -ACGGAACAGTCATCGACTAAGGCT -ACGGAACAGTCATCGACTTCAACC -ACGGAACAGTCATCGACTTGTTCC -ACGGAACAGTCATCGACTATTCCC -ACGGAACAGTCATCGACTTTCTCG -ACGGAACAGTCATCGACTTAGACG -ACGGAACAGTCATCGACTGTAACG -ACGGAACAGTCATCGACTACTTCG -ACGGAACAGTCATCGACTTACGCA -ACGGAACAGTCATCGACTCTTGCA -ACGGAACAGTCATCGACTCGAACA -ACGGAACAGTCATCGACTCAGTCA -ACGGAACAGTCATCGACTGATCCA -ACGGAACAGTCATCGACTACGACA -ACGGAACAGTCATCGACTAGCTCA -ACGGAACAGTCATCGACTTCACGT -ACGGAACAGTCATCGACTCGTAGT -ACGGAACAGTCATCGACTGTCAGT -ACGGAACAGTCATCGACTGAAGGT -ACGGAACAGTCATCGACTAACCGT -ACGGAACAGTCATCGACTTTGTGC -ACGGAACAGTCATCGACTCTAAGC -ACGGAACAGTCATCGACTACTAGC -ACGGAACAGTCATCGACTAGATGC -ACGGAACAGTCATCGACTTGAAGG -ACGGAACAGTCATCGACTCAATGG -ACGGAACAGTCATCGACTATGAGG -ACGGAACAGTCATCGACTAATGGG -ACGGAACAGTCATCGACTTCCTGA -ACGGAACAGTCATCGACTTAGCGA -ACGGAACAGTCATCGACTCACAGA -ACGGAACAGTCATCGACTGCAAGA -ACGGAACAGTCATCGACTGGTTGA -ACGGAACAGTCATCGACTTCCGAT -ACGGAACAGTCATCGACTTGGCAT -ACGGAACAGTCATCGACTCGAGAT -ACGGAACAGTCATCGACTTACCAC -ACGGAACAGTCATCGACTCAGAAC -ACGGAACAGTCATCGACTGTCTAC -ACGGAACAGTCATCGACTACGTAC -ACGGAACAGTCATCGACTAGTGAC -ACGGAACAGTCATCGACTCTGTAG -ACGGAACAGTCATCGACTCCTAAG -ACGGAACAGTCATCGACTGTTCAG -ACGGAACAGTCATCGACTGCATAG -ACGGAACAGTCATCGACTGACAAG -ACGGAACAGTCATCGACTAAGCAG -ACGGAACAGTCATCGACTCGTCAA -ACGGAACAGTCATCGACTGCTGAA -ACGGAACAGTCATCGACTAGTACG -ACGGAACAGTCATCGACTATCCGA -ACGGAACAGTCATCGACTATGGGA -ACGGAACAGTCATCGACTGTGCAA -ACGGAACAGTCATCGACTGAGGAA -ACGGAACAGTCATCGACTCAGGTA -ACGGAACAGTCATCGACTGACTCT -ACGGAACAGTCATCGACTAGTCCT -ACGGAACAGTCATCGACTTAAGCC -ACGGAACAGTCATCGACTATAGCC -ACGGAACAGTCATCGACTTAACCG -ACGGAACAGTCATCGACTATGCCA -ACGGAACAGTCAGCATACGGAAAC -ACGGAACAGTCAGCATACAACACC -ACGGAACAGTCAGCATACATCGAG -ACGGAACAGTCAGCATACCTCCTT -ACGGAACAGTCAGCATACCCTGTT -ACGGAACAGTCAGCATACCGGTTT -ACGGAACAGTCAGCATACGTGGTT -ACGGAACAGTCAGCATACGCCTTT -ACGGAACAGTCAGCATACGGTCTT -ACGGAACAGTCAGCATACACGCTT -ACGGAACAGTCAGCATACAGCGTT -ACGGAACAGTCAGCATACTTCGTC -ACGGAACAGTCAGCATACTCTCTC -ACGGAACAGTCAGCATACTGGATC -ACGGAACAGTCAGCATACCACTTC -ACGGAACAGTCAGCATACGTACTC -ACGGAACAGTCAGCATACGATGTC -ACGGAACAGTCAGCATACACAGTC -ACGGAACAGTCAGCATACTTGCTG -ACGGAACAGTCAGCATACTCCATG -ACGGAACAGTCAGCATACTGTGTG -ACGGAACAGTCAGCATACCTAGTG -ACGGAACAGTCAGCATACCATCTG -ACGGAACAGTCAGCATACGAGTTG -ACGGAACAGTCAGCATACAGACTG -ACGGAACAGTCAGCATACTCGGTA -ACGGAACAGTCAGCATACTGCCTA -ACGGAACAGTCAGCATACCCACTA -ACGGAACAGTCAGCATACGGAGTA -ACGGAACAGTCAGCATACTCGTCT -ACGGAACAGTCAGCATACTGCACT -ACGGAACAGTCAGCATACCTGACT -ACGGAACAGTCAGCATACCAACCT -ACGGAACAGTCAGCATACGCTACT -ACGGAACAGTCAGCATACGGATCT -ACGGAACAGTCAGCATACAAGGCT -ACGGAACAGTCAGCATACTCAACC -ACGGAACAGTCAGCATACTGTTCC -ACGGAACAGTCAGCATACATTCCC -ACGGAACAGTCAGCATACTTCTCG -ACGGAACAGTCAGCATACTAGACG -ACGGAACAGTCAGCATACGTAACG -ACGGAACAGTCAGCATACACTTCG -ACGGAACAGTCAGCATACTACGCA -ACGGAACAGTCAGCATACCTTGCA -ACGGAACAGTCAGCATACCGAACA -ACGGAACAGTCAGCATACCAGTCA -ACGGAACAGTCAGCATACGATCCA -ACGGAACAGTCAGCATACACGACA -ACGGAACAGTCAGCATACAGCTCA -ACGGAACAGTCAGCATACTCACGT -ACGGAACAGTCAGCATACCGTAGT -ACGGAACAGTCAGCATACGTCAGT -ACGGAACAGTCAGCATACGAAGGT -ACGGAACAGTCAGCATACAACCGT -ACGGAACAGTCAGCATACTTGTGC -ACGGAACAGTCAGCATACCTAAGC -ACGGAACAGTCAGCATACACTAGC -ACGGAACAGTCAGCATACAGATGC -ACGGAACAGTCAGCATACTGAAGG -ACGGAACAGTCAGCATACCAATGG -ACGGAACAGTCAGCATACATGAGG -ACGGAACAGTCAGCATACAATGGG -ACGGAACAGTCAGCATACTCCTGA -ACGGAACAGTCAGCATACTAGCGA -ACGGAACAGTCAGCATACCACAGA -ACGGAACAGTCAGCATACGCAAGA -ACGGAACAGTCAGCATACGGTTGA -ACGGAACAGTCAGCATACTCCGAT -ACGGAACAGTCAGCATACTGGCAT -ACGGAACAGTCAGCATACCGAGAT -ACGGAACAGTCAGCATACTACCAC -ACGGAACAGTCAGCATACCAGAAC -ACGGAACAGTCAGCATACGTCTAC -ACGGAACAGTCAGCATACACGTAC -ACGGAACAGTCAGCATACAGTGAC -ACGGAACAGTCAGCATACCTGTAG -ACGGAACAGTCAGCATACCCTAAG -ACGGAACAGTCAGCATACGTTCAG -ACGGAACAGTCAGCATACGCATAG -ACGGAACAGTCAGCATACGACAAG -ACGGAACAGTCAGCATACAAGCAG -ACGGAACAGTCAGCATACCGTCAA -ACGGAACAGTCAGCATACGCTGAA -ACGGAACAGTCAGCATACAGTACG -ACGGAACAGTCAGCATACATCCGA -ACGGAACAGTCAGCATACATGGGA -ACGGAACAGTCAGCATACGTGCAA -ACGGAACAGTCAGCATACGAGGAA -ACGGAACAGTCAGCATACCAGGTA -ACGGAACAGTCAGCATACGACTCT -ACGGAACAGTCAGCATACAGTCCT -ACGGAACAGTCAGCATACTAAGCC -ACGGAACAGTCAGCATACATAGCC -ACGGAACAGTCAGCATACTAACCG -ACGGAACAGTCAGCATACATGCCA -ACGGAACAGTCAGCACTTGGAAAC -ACGGAACAGTCAGCACTTAACACC -ACGGAACAGTCAGCACTTATCGAG -ACGGAACAGTCAGCACTTCTCCTT -ACGGAACAGTCAGCACTTCCTGTT -ACGGAACAGTCAGCACTTCGGTTT -ACGGAACAGTCAGCACTTGTGGTT -ACGGAACAGTCAGCACTTGCCTTT -ACGGAACAGTCAGCACTTGGTCTT -ACGGAACAGTCAGCACTTACGCTT -ACGGAACAGTCAGCACTTAGCGTT -ACGGAACAGTCAGCACTTTTCGTC -ACGGAACAGTCAGCACTTTCTCTC -ACGGAACAGTCAGCACTTTGGATC -ACGGAACAGTCAGCACTTCACTTC -ACGGAACAGTCAGCACTTGTACTC -ACGGAACAGTCAGCACTTGATGTC -ACGGAACAGTCAGCACTTACAGTC -ACGGAACAGTCAGCACTTTTGCTG -ACGGAACAGTCAGCACTTTCCATG -ACGGAACAGTCAGCACTTTGTGTG -ACGGAACAGTCAGCACTTCTAGTG -ACGGAACAGTCAGCACTTCATCTG -ACGGAACAGTCAGCACTTGAGTTG -ACGGAACAGTCAGCACTTAGACTG -ACGGAACAGTCAGCACTTTCGGTA -ACGGAACAGTCAGCACTTTGCCTA -ACGGAACAGTCAGCACTTCCACTA -ACGGAACAGTCAGCACTTGGAGTA -ACGGAACAGTCAGCACTTTCGTCT -ACGGAACAGTCAGCACTTTGCACT -ACGGAACAGTCAGCACTTCTGACT -ACGGAACAGTCAGCACTTCAACCT -ACGGAACAGTCAGCACTTGCTACT -ACGGAACAGTCAGCACTTGGATCT -ACGGAACAGTCAGCACTTAAGGCT -ACGGAACAGTCAGCACTTTCAACC -ACGGAACAGTCAGCACTTTGTTCC -ACGGAACAGTCAGCACTTATTCCC -ACGGAACAGTCAGCACTTTTCTCG -ACGGAACAGTCAGCACTTTAGACG -ACGGAACAGTCAGCACTTGTAACG -ACGGAACAGTCAGCACTTACTTCG -ACGGAACAGTCAGCACTTTACGCA -ACGGAACAGTCAGCACTTCTTGCA -ACGGAACAGTCAGCACTTCGAACA -ACGGAACAGTCAGCACTTCAGTCA -ACGGAACAGTCAGCACTTGATCCA -ACGGAACAGTCAGCACTTACGACA -ACGGAACAGTCAGCACTTAGCTCA -ACGGAACAGTCAGCACTTTCACGT -ACGGAACAGTCAGCACTTCGTAGT -ACGGAACAGTCAGCACTTGTCAGT -ACGGAACAGTCAGCACTTGAAGGT -ACGGAACAGTCAGCACTTAACCGT -ACGGAACAGTCAGCACTTTTGTGC -ACGGAACAGTCAGCACTTCTAAGC -ACGGAACAGTCAGCACTTACTAGC -ACGGAACAGTCAGCACTTAGATGC -ACGGAACAGTCAGCACTTTGAAGG -ACGGAACAGTCAGCACTTCAATGG -ACGGAACAGTCAGCACTTATGAGG -ACGGAACAGTCAGCACTTAATGGG -ACGGAACAGTCAGCACTTTCCTGA -ACGGAACAGTCAGCACTTTAGCGA -ACGGAACAGTCAGCACTTCACAGA -ACGGAACAGTCAGCACTTGCAAGA -ACGGAACAGTCAGCACTTGGTTGA -ACGGAACAGTCAGCACTTTCCGAT -ACGGAACAGTCAGCACTTTGGCAT -ACGGAACAGTCAGCACTTCGAGAT -ACGGAACAGTCAGCACTTTACCAC -ACGGAACAGTCAGCACTTCAGAAC -ACGGAACAGTCAGCACTTGTCTAC -ACGGAACAGTCAGCACTTACGTAC -ACGGAACAGTCAGCACTTAGTGAC -ACGGAACAGTCAGCACTTCTGTAG -ACGGAACAGTCAGCACTTCCTAAG -ACGGAACAGTCAGCACTTGTTCAG -ACGGAACAGTCAGCACTTGCATAG -ACGGAACAGTCAGCACTTGACAAG -ACGGAACAGTCAGCACTTAAGCAG -ACGGAACAGTCAGCACTTCGTCAA -ACGGAACAGTCAGCACTTGCTGAA -ACGGAACAGTCAGCACTTAGTACG -ACGGAACAGTCAGCACTTATCCGA -ACGGAACAGTCAGCACTTATGGGA -ACGGAACAGTCAGCACTTGTGCAA -ACGGAACAGTCAGCACTTGAGGAA -ACGGAACAGTCAGCACTTCAGGTA -ACGGAACAGTCAGCACTTGACTCT -ACGGAACAGTCAGCACTTAGTCCT -ACGGAACAGTCAGCACTTTAAGCC -ACGGAACAGTCAGCACTTATAGCC -ACGGAACAGTCAGCACTTTAACCG -ACGGAACAGTCAGCACTTATGCCA -ACGGAACAGTCAACACGAGGAAAC -ACGGAACAGTCAACACGAAACACC -ACGGAACAGTCAACACGAATCGAG -ACGGAACAGTCAACACGACTCCTT -ACGGAACAGTCAACACGACCTGTT -ACGGAACAGTCAACACGACGGTTT -ACGGAACAGTCAACACGAGTGGTT -ACGGAACAGTCAACACGAGCCTTT -ACGGAACAGTCAACACGAGGTCTT -ACGGAACAGTCAACACGAACGCTT -ACGGAACAGTCAACACGAAGCGTT -ACGGAACAGTCAACACGATTCGTC -ACGGAACAGTCAACACGATCTCTC -ACGGAACAGTCAACACGATGGATC -ACGGAACAGTCAACACGACACTTC -ACGGAACAGTCAACACGAGTACTC -ACGGAACAGTCAACACGAGATGTC -ACGGAACAGTCAACACGAACAGTC -ACGGAACAGTCAACACGATTGCTG -ACGGAACAGTCAACACGATCCATG -ACGGAACAGTCAACACGATGTGTG -ACGGAACAGTCAACACGACTAGTG -ACGGAACAGTCAACACGACATCTG -ACGGAACAGTCAACACGAGAGTTG -ACGGAACAGTCAACACGAAGACTG -ACGGAACAGTCAACACGATCGGTA -ACGGAACAGTCAACACGATGCCTA -ACGGAACAGTCAACACGACCACTA -ACGGAACAGTCAACACGAGGAGTA -ACGGAACAGTCAACACGATCGTCT -ACGGAACAGTCAACACGATGCACT -ACGGAACAGTCAACACGACTGACT -ACGGAACAGTCAACACGACAACCT -ACGGAACAGTCAACACGAGCTACT -ACGGAACAGTCAACACGAGGATCT -ACGGAACAGTCAACACGAAAGGCT -ACGGAACAGTCAACACGATCAACC -ACGGAACAGTCAACACGATGTTCC -ACGGAACAGTCAACACGAATTCCC -ACGGAACAGTCAACACGATTCTCG -ACGGAACAGTCAACACGATAGACG -ACGGAACAGTCAACACGAGTAACG -ACGGAACAGTCAACACGAACTTCG -ACGGAACAGTCAACACGATACGCA -ACGGAACAGTCAACACGACTTGCA -ACGGAACAGTCAACACGACGAACA -ACGGAACAGTCAACACGACAGTCA -ACGGAACAGTCAACACGAGATCCA -ACGGAACAGTCAACACGAACGACA -ACGGAACAGTCAACACGAAGCTCA -ACGGAACAGTCAACACGATCACGT -ACGGAACAGTCAACACGACGTAGT -ACGGAACAGTCAACACGAGTCAGT -ACGGAACAGTCAACACGAGAAGGT -ACGGAACAGTCAACACGAAACCGT -ACGGAACAGTCAACACGATTGTGC -ACGGAACAGTCAACACGACTAAGC -ACGGAACAGTCAACACGAACTAGC -ACGGAACAGTCAACACGAAGATGC -ACGGAACAGTCAACACGATGAAGG -ACGGAACAGTCAACACGACAATGG -ACGGAACAGTCAACACGAATGAGG -ACGGAACAGTCAACACGAAATGGG -ACGGAACAGTCAACACGATCCTGA -ACGGAACAGTCAACACGATAGCGA -ACGGAACAGTCAACACGACACAGA -ACGGAACAGTCAACACGAGCAAGA -ACGGAACAGTCAACACGAGGTTGA -ACGGAACAGTCAACACGATCCGAT -ACGGAACAGTCAACACGATGGCAT -ACGGAACAGTCAACACGACGAGAT -ACGGAACAGTCAACACGATACCAC -ACGGAACAGTCAACACGACAGAAC -ACGGAACAGTCAACACGAGTCTAC -ACGGAACAGTCAACACGAACGTAC -ACGGAACAGTCAACACGAAGTGAC -ACGGAACAGTCAACACGACTGTAG -ACGGAACAGTCAACACGACCTAAG -ACGGAACAGTCAACACGAGTTCAG -ACGGAACAGTCAACACGAGCATAG -ACGGAACAGTCAACACGAGACAAG -ACGGAACAGTCAACACGAAAGCAG -ACGGAACAGTCAACACGACGTCAA -ACGGAACAGTCAACACGAGCTGAA -ACGGAACAGTCAACACGAAGTACG -ACGGAACAGTCAACACGAATCCGA -ACGGAACAGTCAACACGAATGGGA -ACGGAACAGTCAACACGAGTGCAA -ACGGAACAGTCAACACGAGAGGAA -ACGGAACAGTCAACACGACAGGTA -ACGGAACAGTCAACACGAGACTCT -ACGGAACAGTCAACACGAAGTCCT -ACGGAACAGTCAACACGATAAGCC -ACGGAACAGTCAACACGAATAGCC -ACGGAACAGTCAACACGATAACCG -ACGGAACAGTCAACACGAATGCCA -ACGGAACAGTCATCACAGGGAAAC -ACGGAACAGTCATCACAGAACACC -ACGGAACAGTCATCACAGATCGAG -ACGGAACAGTCATCACAGCTCCTT -ACGGAACAGTCATCACAGCCTGTT -ACGGAACAGTCATCACAGCGGTTT -ACGGAACAGTCATCACAGGTGGTT -ACGGAACAGTCATCACAGGCCTTT -ACGGAACAGTCATCACAGGGTCTT -ACGGAACAGTCATCACAGACGCTT -ACGGAACAGTCATCACAGAGCGTT -ACGGAACAGTCATCACAGTTCGTC -ACGGAACAGTCATCACAGTCTCTC -ACGGAACAGTCATCACAGTGGATC -ACGGAACAGTCATCACAGCACTTC -ACGGAACAGTCATCACAGGTACTC -ACGGAACAGTCATCACAGGATGTC -ACGGAACAGTCATCACAGACAGTC -ACGGAACAGTCATCACAGTTGCTG -ACGGAACAGTCATCACAGTCCATG -ACGGAACAGTCATCACAGTGTGTG -ACGGAACAGTCATCACAGCTAGTG -ACGGAACAGTCATCACAGCATCTG -ACGGAACAGTCATCACAGGAGTTG -ACGGAACAGTCATCACAGAGACTG -ACGGAACAGTCATCACAGTCGGTA -ACGGAACAGTCATCACAGTGCCTA -ACGGAACAGTCATCACAGCCACTA -ACGGAACAGTCATCACAGGGAGTA -ACGGAACAGTCATCACAGTCGTCT -ACGGAACAGTCATCACAGTGCACT -ACGGAACAGTCATCACAGCTGACT -ACGGAACAGTCATCACAGCAACCT -ACGGAACAGTCATCACAGGCTACT -ACGGAACAGTCATCACAGGGATCT -ACGGAACAGTCATCACAGAAGGCT -ACGGAACAGTCATCACAGTCAACC -ACGGAACAGTCATCACAGTGTTCC -ACGGAACAGTCATCACAGATTCCC -ACGGAACAGTCATCACAGTTCTCG -ACGGAACAGTCATCACAGTAGACG -ACGGAACAGTCATCACAGGTAACG -ACGGAACAGTCATCACAGACTTCG -ACGGAACAGTCATCACAGTACGCA -ACGGAACAGTCATCACAGCTTGCA -ACGGAACAGTCATCACAGCGAACA -ACGGAACAGTCATCACAGCAGTCA -ACGGAACAGTCATCACAGGATCCA -ACGGAACAGTCATCACAGACGACA -ACGGAACAGTCATCACAGAGCTCA -ACGGAACAGTCATCACAGTCACGT -ACGGAACAGTCATCACAGCGTAGT -ACGGAACAGTCATCACAGGTCAGT -ACGGAACAGTCATCACAGGAAGGT -ACGGAACAGTCATCACAGAACCGT -ACGGAACAGTCATCACAGTTGTGC -ACGGAACAGTCATCACAGCTAAGC -ACGGAACAGTCATCACAGACTAGC -ACGGAACAGTCATCACAGAGATGC -ACGGAACAGTCATCACAGTGAAGG -ACGGAACAGTCATCACAGCAATGG -ACGGAACAGTCATCACAGATGAGG -ACGGAACAGTCATCACAGAATGGG -ACGGAACAGTCATCACAGTCCTGA -ACGGAACAGTCATCACAGTAGCGA -ACGGAACAGTCATCACAGCACAGA -ACGGAACAGTCATCACAGGCAAGA -ACGGAACAGTCATCACAGGGTTGA -ACGGAACAGTCATCACAGTCCGAT -ACGGAACAGTCATCACAGTGGCAT -ACGGAACAGTCATCACAGCGAGAT -ACGGAACAGTCATCACAGTACCAC -ACGGAACAGTCATCACAGCAGAAC -ACGGAACAGTCATCACAGGTCTAC -ACGGAACAGTCATCACAGACGTAC -ACGGAACAGTCATCACAGAGTGAC -ACGGAACAGTCATCACAGCTGTAG -ACGGAACAGTCATCACAGCCTAAG -ACGGAACAGTCATCACAGGTTCAG -ACGGAACAGTCATCACAGGCATAG -ACGGAACAGTCATCACAGGACAAG -ACGGAACAGTCATCACAGAAGCAG -ACGGAACAGTCATCACAGCGTCAA -ACGGAACAGTCATCACAGGCTGAA -ACGGAACAGTCATCACAGAGTACG -ACGGAACAGTCATCACAGATCCGA -ACGGAACAGTCATCACAGATGGGA -ACGGAACAGTCATCACAGGTGCAA -ACGGAACAGTCATCACAGGAGGAA -ACGGAACAGTCATCACAGCAGGTA -ACGGAACAGTCATCACAGGACTCT -ACGGAACAGTCATCACAGAGTCCT -ACGGAACAGTCATCACAGTAAGCC -ACGGAACAGTCATCACAGATAGCC -ACGGAACAGTCATCACAGTAACCG -ACGGAACAGTCATCACAGATGCCA -ACGGAACAGTCACCAGATGGAAAC -ACGGAACAGTCACCAGATAACACC -ACGGAACAGTCACCAGATATCGAG -ACGGAACAGTCACCAGATCTCCTT -ACGGAACAGTCACCAGATCCTGTT -ACGGAACAGTCACCAGATCGGTTT -ACGGAACAGTCACCAGATGTGGTT -ACGGAACAGTCACCAGATGCCTTT -ACGGAACAGTCACCAGATGGTCTT -ACGGAACAGTCACCAGATACGCTT -ACGGAACAGTCACCAGATAGCGTT -ACGGAACAGTCACCAGATTTCGTC -ACGGAACAGTCACCAGATTCTCTC -ACGGAACAGTCACCAGATTGGATC -ACGGAACAGTCACCAGATCACTTC -ACGGAACAGTCACCAGATGTACTC -ACGGAACAGTCACCAGATGATGTC -ACGGAACAGTCACCAGATACAGTC -ACGGAACAGTCACCAGATTTGCTG -ACGGAACAGTCACCAGATTCCATG -ACGGAACAGTCACCAGATTGTGTG -ACGGAACAGTCACCAGATCTAGTG -ACGGAACAGTCACCAGATCATCTG -ACGGAACAGTCACCAGATGAGTTG -ACGGAACAGTCACCAGATAGACTG -ACGGAACAGTCACCAGATTCGGTA -ACGGAACAGTCACCAGATTGCCTA -ACGGAACAGTCACCAGATCCACTA -ACGGAACAGTCACCAGATGGAGTA -ACGGAACAGTCACCAGATTCGTCT -ACGGAACAGTCACCAGATTGCACT -ACGGAACAGTCACCAGATCTGACT -ACGGAACAGTCACCAGATCAACCT -ACGGAACAGTCACCAGATGCTACT -ACGGAACAGTCACCAGATGGATCT -ACGGAACAGTCACCAGATAAGGCT -ACGGAACAGTCACCAGATTCAACC -ACGGAACAGTCACCAGATTGTTCC -ACGGAACAGTCACCAGATATTCCC -ACGGAACAGTCACCAGATTTCTCG -ACGGAACAGTCACCAGATTAGACG -ACGGAACAGTCACCAGATGTAACG -ACGGAACAGTCACCAGATACTTCG -ACGGAACAGTCACCAGATTACGCA -ACGGAACAGTCACCAGATCTTGCA -ACGGAACAGTCACCAGATCGAACA -ACGGAACAGTCACCAGATCAGTCA -ACGGAACAGTCACCAGATGATCCA -ACGGAACAGTCACCAGATACGACA -ACGGAACAGTCACCAGATAGCTCA -ACGGAACAGTCACCAGATTCACGT -ACGGAACAGTCACCAGATCGTAGT -ACGGAACAGTCACCAGATGTCAGT -ACGGAACAGTCACCAGATGAAGGT -ACGGAACAGTCACCAGATAACCGT -ACGGAACAGTCACCAGATTTGTGC -ACGGAACAGTCACCAGATCTAAGC -ACGGAACAGTCACCAGATACTAGC -ACGGAACAGTCACCAGATAGATGC -ACGGAACAGTCACCAGATTGAAGG -ACGGAACAGTCACCAGATCAATGG -ACGGAACAGTCACCAGATATGAGG -ACGGAACAGTCACCAGATAATGGG -ACGGAACAGTCACCAGATTCCTGA -ACGGAACAGTCACCAGATTAGCGA -ACGGAACAGTCACCAGATCACAGA -ACGGAACAGTCACCAGATGCAAGA -ACGGAACAGTCACCAGATGGTTGA -ACGGAACAGTCACCAGATTCCGAT -ACGGAACAGTCACCAGATTGGCAT -ACGGAACAGTCACCAGATCGAGAT -ACGGAACAGTCACCAGATTACCAC -ACGGAACAGTCACCAGATCAGAAC -ACGGAACAGTCACCAGATGTCTAC -ACGGAACAGTCACCAGATACGTAC -ACGGAACAGTCACCAGATAGTGAC -ACGGAACAGTCACCAGATCTGTAG -ACGGAACAGTCACCAGATCCTAAG -ACGGAACAGTCACCAGATGTTCAG -ACGGAACAGTCACCAGATGCATAG -ACGGAACAGTCACCAGATGACAAG -ACGGAACAGTCACCAGATAAGCAG -ACGGAACAGTCACCAGATCGTCAA -ACGGAACAGTCACCAGATGCTGAA -ACGGAACAGTCACCAGATAGTACG -ACGGAACAGTCACCAGATATCCGA -ACGGAACAGTCACCAGATATGGGA -ACGGAACAGTCACCAGATGTGCAA -ACGGAACAGTCACCAGATGAGGAA -ACGGAACAGTCACCAGATCAGGTA -ACGGAACAGTCACCAGATGACTCT -ACGGAACAGTCACCAGATAGTCCT -ACGGAACAGTCACCAGATTAAGCC -ACGGAACAGTCACCAGATATAGCC -ACGGAACAGTCACCAGATTAACCG -ACGGAACAGTCACCAGATATGCCA -ACGGAACAGTCAACAACGGGAAAC -ACGGAACAGTCAACAACGAACACC -ACGGAACAGTCAACAACGATCGAG -ACGGAACAGTCAACAACGCTCCTT -ACGGAACAGTCAACAACGCCTGTT -ACGGAACAGTCAACAACGCGGTTT -ACGGAACAGTCAACAACGGTGGTT -ACGGAACAGTCAACAACGGCCTTT -ACGGAACAGTCAACAACGGGTCTT -ACGGAACAGTCAACAACGACGCTT -ACGGAACAGTCAACAACGAGCGTT -ACGGAACAGTCAACAACGTTCGTC -ACGGAACAGTCAACAACGTCTCTC -ACGGAACAGTCAACAACGTGGATC -ACGGAACAGTCAACAACGCACTTC -ACGGAACAGTCAACAACGGTACTC -ACGGAACAGTCAACAACGGATGTC -ACGGAACAGTCAACAACGACAGTC -ACGGAACAGTCAACAACGTTGCTG -ACGGAACAGTCAACAACGTCCATG -ACGGAACAGTCAACAACGTGTGTG -ACGGAACAGTCAACAACGCTAGTG -ACGGAACAGTCAACAACGCATCTG -ACGGAACAGTCAACAACGGAGTTG -ACGGAACAGTCAACAACGAGACTG -ACGGAACAGTCAACAACGTCGGTA -ACGGAACAGTCAACAACGTGCCTA -ACGGAACAGTCAACAACGCCACTA -ACGGAACAGTCAACAACGGGAGTA -ACGGAACAGTCAACAACGTCGTCT -ACGGAACAGTCAACAACGTGCACT -ACGGAACAGTCAACAACGCTGACT -ACGGAACAGTCAACAACGCAACCT -ACGGAACAGTCAACAACGGCTACT -ACGGAACAGTCAACAACGGGATCT -ACGGAACAGTCAACAACGAAGGCT -ACGGAACAGTCAACAACGTCAACC -ACGGAACAGTCAACAACGTGTTCC -ACGGAACAGTCAACAACGATTCCC -ACGGAACAGTCAACAACGTTCTCG -ACGGAACAGTCAACAACGTAGACG -ACGGAACAGTCAACAACGGTAACG -ACGGAACAGTCAACAACGACTTCG -ACGGAACAGTCAACAACGTACGCA -ACGGAACAGTCAACAACGCTTGCA -ACGGAACAGTCAACAACGCGAACA -ACGGAACAGTCAACAACGCAGTCA -ACGGAACAGTCAACAACGGATCCA -ACGGAACAGTCAACAACGACGACA -ACGGAACAGTCAACAACGAGCTCA -ACGGAACAGTCAACAACGTCACGT -ACGGAACAGTCAACAACGCGTAGT -ACGGAACAGTCAACAACGGTCAGT -ACGGAACAGTCAACAACGGAAGGT -ACGGAACAGTCAACAACGAACCGT -ACGGAACAGTCAACAACGTTGTGC -ACGGAACAGTCAACAACGCTAAGC -ACGGAACAGTCAACAACGACTAGC -ACGGAACAGTCAACAACGAGATGC -ACGGAACAGTCAACAACGTGAAGG -ACGGAACAGTCAACAACGCAATGG -ACGGAACAGTCAACAACGATGAGG -ACGGAACAGTCAACAACGAATGGG -ACGGAACAGTCAACAACGTCCTGA -ACGGAACAGTCAACAACGTAGCGA -ACGGAACAGTCAACAACGCACAGA -ACGGAACAGTCAACAACGGCAAGA -ACGGAACAGTCAACAACGGGTTGA -ACGGAACAGTCAACAACGTCCGAT -ACGGAACAGTCAACAACGTGGCAT -ACGGAACAGTCAACAACGCGAGAT -ACGGAACAGTCAACAACGTACCAC -ACGGAACAGTCAACAACGCAGAAC -ACGGAACAGTCAACAACGGTCTAC -ACGGAACAGTCAACAACGACGTAC -ACGGAACAGTCAACAACGAGTGAC -ACGGAACAGTCAACAACGCTGTAG -ACGGAACAGTCAACAACGCCTAAG -ACGGAACAGTCAACAACGGTTCAG -ACGGAACAGTCAACAACGGCATAG -ACGGAACAGTCAACAACGGACAAG -ACGGAACAGTCAACAACGAAGCAG -ACGGAACAGTCAACAACGCGTCAA -ACGGAACAGTCAACAACGGCTGAA -ACGGAACAGTCAACAACGAGTACG -ACGGAACAGTCAACAACGATCCGA -ACGGAACAGTCAACAACGATGGGA -ACGGAACAGTCAACAACGGTGCAA -ACGGAACAGTCAACAACGGAGGAA -ACGGAACAGTCAACAACGCAGGTA -ACGGAACAGTCAACAACGGACTCT -ACGGAACAGTCAACAACGAGTCCT -ACGGAACAGTCAACAACGTAAGCC -ACGGAACAGTCAACAACGATAGCC -ACGGAACAGTCAACAACGTAACCG -ACGGAACAGTCAACAACGATGCCA -ACGGAACAGTCATCAAGCGGAAAC -ACGGAACAGTCATCAAGCAACACC -ACGGAACAGTCATCAAGCATCGAG -ACGGAACAGTCATCAAGCCTCCTT -ACGGAACAGTCATCAAGCCCTGTT -ACGGAACAGTCATCAAGCCGGTTT -ACGGAACAGTCATCAAGCGTGGTT -ACGGAACAGTCATCAAGCGCCTTT -ACGGAACAGTCATCAAGCGGTCTT -ACGGAACAGTCATCAAGCACGCTT -ACGGAACAGTCATCAAGCAGCGTT -ACGGAACAGTCATCAAGCTTCGTC -ACGGAACAGTCATCAAGCTCTCTC -ACGGAACAGTCATCAAGCTGGATC -ACGGAACAGTCATCAAGCCACTTC -ACGGAACAGTCATCAAGCGTACTC -ACGGAACAGTCATCAAGCGATGTC -ACGGAACAGTCATCAAGCACAGTC -ACGGAACAGTCATCAAGCTTGCTG -ACGGAACAGTCATCAAGCTCCATG -ACGGAACAGTCATCAAGCTGTGTG -ACGGAACAGTCATCAAGCCTAGTG -ACGGAACAGTCATCAAGCCATCTG -ACGGAACAGTCATCAAGCGAGTTG -ACGGAACAGTCATCAAGCAGACTG -ACGGAACAGTCATCAAGCTCGGTA -ACGGAACAGTCATCAAGCTGCCTA -ACGGAACAGTCATCAAGCCCACTA -ACGGAACAGTCATCAAGCGGAGTA -ACGGAACAGTCATCAAGCTCGTCT -ACGGAACAGTCATCAAGCTGCACT -ACGGAACAGTCATCAAGCCTGACT -ACGGAACAGTCATCAAGCCAACCT -ACGGAACAGTCATCAAGCGCTACT -ACGGAACAGTCATCAAGCGGATCT -ACGGAACAGTCATCAAGCAAGGCT -ACGGAACAGTCATCAAGCTCAACC -ACGGAACAGTCATCAAGCTGTTCC -ACGGAACAGTCATCAAGCATTCCC -ACGGAACAGTCATCAAGCTTCTCG -ACGGAACAGTCATCAAGCTAGACG -ACGGAACAGTCATCAAGCGTAACG -ACGGAACAGTCATCAAGCACTTCG -ACGGAACAGTCATCAAGCTACGCA -ACGGAACAGTCATCAAGCCTTGCA -ACGGAACAGTCATCAAGCCGAACA -ACGGAACAGTCATCAAGCCAGTCA -ACGGAACAGTCATCAAGCGATCCA -ACGGAACAGTCATCAAGCACGACA -ACGGAACAGTCATCAAGCAGCTCA -ACGGAACAGTCATCAAGCTCACGT -ACGGAACAGTCATCAAGCCGTAGT -ACGGAACAGTCATCAAGCGTCAGT -ACGGAACAGTCATCAAGCGAAGGT -ACGGAACAGTCATCAAGCAACCGT -ACGGAACAGTCATCAAGCTTGTGC -ACGGAACAGTCATCAAGCCTAAGC -ACGGAACAGTCATCAAGCACTAGC -ACGGAACAGTCATCAAGCAGATGC -ACGGAACAGTCATCAAGCTGAAGG -ACGGAACAGTCATCAAGCCAATGG -ACGGAACAGTCATCAAGCATGAGG -ACGGAACAGTCATCAAGCAATGGG -ACGGAACAGTCATCAAGCTCCTGA -ACGGAACAGTCATCAAGCTAGCGA -ACGGAACAGTCATCAAGCCACAGA -ACGGAACAGTCATCAAGCGCAAGA -ACGGAACAGTCATCAAGCGGTTGA -ACGGAACAGTCATCAAGCTCCGAT -ACGGAACAGTCATCAAGCTGGCAT -ACGGAACAGTCATCAAGCCGAGAT -ACGGAACAGTCATCAAGCTACCAC -ACGGAACAGTCATCAAGCCAGAAC -ACGGAACAGTCATCAAGCGTCTAC -ACGGAACAGTCATCAAGCACGTAC -ACGGAACAGTCATCAAGCAGTGAC -ACGGAACAGTCATCAAGCCTGTAG -ACGGAACAGTCATCAAGCCCTAAG -ACGGAACAGTCATCAAGCGTTCAG -ACGGAACAGTCATCAAGCGCATAG -ACGGAACAGTCATCAAGCGACAAG -ACGGAACAGTCATCAAGCAAGCAG -ACGGAACAGTCATCAAGCCGTCAA -ACGGAACAGTCATCAAGCGCTGAA -ACGGAACAGTCATCAAGCAGTACG -ACGGAACAGTCATCAAGCATCCGA -ACGGAACAGTCATCAAGCATGGGA -ACGGAACAGTCATCAAGCGTGCAA -ACGGAACAGTCATCAAGCGAGGAA -ACGGAACAGTCATCAAGCCAGGTA -ACGGAACAGTCATCAAGCGACTCT -ACGGAACAGTCATCAAGCAGTCCT -ACGGAACAGTCATCAAGCTAAGCC -ACGGAACAGTCATCAAGCATAGCC -ACGGAACAGTCATCAAGCTAACCG -ACGGAACAGTCATCAAGCATGCCA -ACGGAACAGTCACGTTCAGGAAAC -ACGGAACAGTCACGTTCAAACACC -ACGGAACAGTCACGTTCAATCGAG -ACGGAACAGTCACGTTCACTCCTT -ACGGAACAGTCACGTTCACCTGTT -ACGGAACAGTCACGTTCACGGTTT -ACGGAACAGTCACGTTCAGTGGTT -ACGGAACAGTCACGTTCAGCCTTT -ACGGAACAGTCACGTTCAGGTCTT -ACGGAACAGTCACGTTCAACGCTT -ACGGAACAGTCACGTTCAAGCGTT -ACGGAACAGTCACGTTCATTCGTC -ACGGAACAGTCACGTTCATCTCTC -ACGGAACAGTCACGTTCATGGATC -ACGGAACAGTCACGTTCACACTTC -ACGGAACAGTCACGTTCAGTACTC -ACGGAACAGTCACGTTCAGATGTC -ACGGAACAGTCACGTTCAACAGTC -ACGGAACAGTCACGTTCATTGCTG -ACGGAACAGTCACGTTCATCCATG -ACGGAACAGTCACGTTCATGTGTG -ACGGAACAGTCACGTTCACTAGTG -ACGGAACAGTCACGTTCACATCTG -ACGGAACAGTCACGTTCAGAGTTG -ACGGAACAGTCACGTTCAAGACTG -ACGGAACAGTCACGTTCATCGGTA -ACGGAACAGTCACGTTCATGCCTA -ACGGAACAGTCACGTTCACCACTA -ACGGAACAGTCACGTTCAGGAGTA -ACGGAACAGTCACGTTCATCGTCT -ACGGAACAGTCACGTTCATGCACT -ACGGAACAGTCACGTTCACTGACT -ACGGAACAGTCACGTTCACAACCT -ACGGAACAGTCACGTTCAGCTACT -ACGGAACAGTCACGTTCAGGATCT -ACGGAACAGTCACGTTCAAAGGCT -ACGGAACAGTCACGTTCATCAACC -ACGGAACAGTCACGTTCATGTTCC -ACGGAACAGTCACGTTCAATTCCC -ACGGAACAGTCACGTTCATTCTCG -ACGGAACAGTCACGTTCATAGACG -ACGGAACAGTCACGTTCAGTAACG -ACGGAACAGTCACGTTCAACTTCG -ACGGAACAGTCACGTTCATACGCA -ACGGAACAGTCACGTTCACTTGCA -ACGGAACAGTCACGTTCACGAACA -ACGGAACAGTCACGTTCACAGTCA -ACGGAACAGTCACGTTCAGATCCA -ACGGAACAGTCACGTTCAACGACA -ACGGAACAGTCACGTTCAAGCTCA -ACGGAACAGTCACGTTCATCACGT -ACGGAACAGTCACGTTCACGTAGT -ACGGAACAGTCACGTTCAGTCAGT -ACGGAACAGTCACGTTCAGAAGGT -ACGGAACAGTCACGTTCAAACCGT -ACGGAACAGTCACGTTCATTGTGC -ACGGAACAGTCACGTTCACTAAGC -ACGGAACAGTCACGTTCAACTAGC -ACGGAACAGTCACGTTCAAGATGC -ACGGAACAGTCACGTTCATGAAGG -ACGGAACAGTCACGTTCACAATGG -ACGGAACAGTCACGTTCAATGAGG -ACGGAACAGTCACGTTCAAATGGG -ACGGAACAGTCACGTTCATCCTGA -ACGGAACAGTCACGTTCATAGCGA -ACGGAACAGTCACGTTCACACAGA -ACGGAACAGTCACGTTCAGCAAGA -ACGGAACAGTCACGTTCAGGTTGA -ACGGAACAGTCACGTTCATCCGAT -ACGGAACAGTCACGTTCATGGCAT -ACGGAACAGTCACGTTCACGAGAT -ACGGAACAGTCACGTTCATACCAC -ACGGAACAGTCACGTTCACAGAAC -ACGGAACAGTCACGTTCAGTCTAC -ACGGAACAGTCACGTTCAACGTAC -ACGGAACAGTCACGTTCAAGTGAC -ACGGAACAGTCACGTTCACTGTAG -ACGGAACAGTCACGTTCACCTAAG -ACGGAACAGTCACGTTCAGTTCAG -ACGGAACAGTCACGTTCAGCATAG -ACGGAACAGTCACGTTCAGACAAG -ACGGAACAGTCACGTTCAAAGCAG -ACGGAACAGTCACGTTCACGTCAA -ACGGAACAGTCACGTTCAGCTGAA -ACGGAACAGTCACGTTCAAGTACG -ACGGAACAGTCACGTTCAATCCGA -ACGGAACAGTCACGTTCAATGGGA -ACGGAACAGTCACGTTCAGTGCAA -ACGGAACAGTCACGTTCAGAGGAA -ACGGAACAGTCACGTTCACAGGTA -ACGGAACAGTCACGTTCAGACTCT -ACGGAACAGTCACGTTCAAGTCCT -ACGGAACAGTCACGTTCATAAGCC -ACGGAACAGTCACGTTCAATAGCC -ACGGAACAGTCACGTTCATAACCG -ACGGAACAGTCACGTTCAATGCCA -ACGGAACAGTCAAGTCGTGGAAAC -ACGGAACAGTCAAGTCGTAACACC -ACGGAACAGTCAAGTCGTATCGAG -ACGGAACAGTCAAGTCGTCTCCTT -ACGGAACAGTCAAGTCGTCCTGTT -ACGGAACAGTCAAGTCGTCGGTTT -ACGGAACAGTCAAGTCGTGTGGTT -ACGGAACAGTCAAGTCGTGCCTTT -ACGGAACAGTCAAGTCGTGGTCTT -ACGGAACAGTCAAGTCGTACGCTT -ACGGAACAGTCAAGTCGTAGCGTT -ACGGAACAGTCAAGTCGTTTCGTC -ACGGAACAGTCAAGTCGTTCTCTC -ACGGAACAGTCAAGTCGTTGGATC -ACGGAACAGTCAAGTCGTCACTTC -ACGGAACAGTCAAGTCGTGTACTC -ACGGAACAGTCAAGTCGTGATGTC -ACGGAACAGTCAAGTCGTACAGTC -ACGGAACAGTCAAGTCGTTTGCTG -ACGGAACAGTCAAGTCGTTCCATG -ACGGAACAGTCAAGTCGTTGTGTG -ACGGAACAGTCAAGTCGTCTAGTG -ACGGAACAGTCAAGTCGTCATCTG -ACGGAACAGTCAAGTCGTGAGTTG -ACGGAACAGTCAAGTCGTAGACTG -ACGGAACAGTCAAGTCGTTCGGTA -ACGGAACAGTCAAGTCGTTGCCTA -ACGGAACAGTCAAGTCGTCCACTA -ACGGAACAGTCAAGTCGTGGAGTA -ACGGAACAGTCAAGTCGTTCGTCT -ACGGAACAGTCAAGTCGTTGCACT -ACGGAACAGTCAAGTCGTCTGACT -ACGGAACAGTCAAGTCGTCAACCT -ACGGAACAGTCAAGTCGTGCTACT -ACGGAACAGTCAAGTCGTGGATCT -ACGGAACAGTCAAGTCGTAAGGCT -ACGGAACAGTCAAGTCGTTCAACC -ACGGAACAGTCAAGTCGTTGTTCC -ACGGAACAGTCAAGTCGTATTCCC -ACGGAACAGTCAAGTCGTTTCTCG -ACGGAACAGTCAAGTCGTTAGACG -ACGGAACAGTCAAGTCGTGTAACG -ACGGAACAGTCAAGTCGTACTTCG -ACGGAACAGTCAAGTCGTTACGCA -ACGGAACAGTCAAGTCGTCTTGCA -ACGGAACAGTCAAGTCGTCGAACA -ACGGAACAGTCAAGTCGTCAGTCA -ACGGAACAGTCAAGTCGTGATCCA -ACGGAACAGTCAAGTCGTACGACA -ACGGAACAGTCAAGTCGTAGCTCA -ACGGAACAGTCAAGTCGTTCACGT -ACGGAACAGTCAAGTCGTCGTAGT -ACGGAACAGTCAAGTCGTGTCAGT -ACGGAACAGTCAAGTCGTGAAGGT -ACGGAACAGTCAAGTCGTAACCGT -ACGGAACAGTCAAGTCGTTTGTGC -ACGGAACAGTCAAGTCGTCTAAGC -ACGGAACAGTCAAGTCGTACTAGC -ACGGAACAGTCAAGTCGTAGATGC -ACGGAACAGTCAAGTCGTTGAAGG -ACGGAACAGTCAAGTCGTCAATGG -ACGGAACAGTCAAGTCGTATGAGG -ACGGAACAGTCAAGTCGTAATGGG -ACGGAACAGTCAAGTCGTTCCTGA -ACGGAACAGTCAAGTCGTTAGCGA -ACGGAACAGTCAAGTCGTCACAGA -ACGGAACAGTCAAGTCGTGCAAGA -ACGGAACAGTCAAGTCGTGGTTGA -ACGGAACAGTCAAGTCGTTCCGAT -ACGGAACAGTCAAGTCGTTGGCAT -ACGGAACAGTCAAGTCGTCGAGAT -ACGGAACAGTCAAGTCGTTACCAC -ACGGAACAGTCAAGTCGTCAGAAC -ACGGAACAGTCAAGTCGTGTCTAC -ACGGAACAGTCAAGTCGTACGTAC -ACGGAACAGTCAAGTCGTAGTGAC -ACGGAACAGTCAAGTCGTCTGTAG -ACGGAACAGTCAAGTCGTCCTAAG -ACGGAACAGTCAAGTCGTGTTCAG -ACGGAACAGTCAAGTCGTGCATAG -ACGGAACAGTCAAGTCGTGACAAG -ACGGAACAGTCAAGTCGTAAGCAG -ACGGAACAGTCAAGTCGTCGTCAA -ACGGAACAGTCAAGTCGTGCTGAA -ACGGAACAGTCAAGTCGTAGTACG -ACGGAACAGTCAAGTCGTATCCGA -ACGGAACAGTCAAGTCGTATGGGA -ACGGAACAGTCAAGTCGTGTGCAA -ACGGAACAGTCAAGTCGTGAGGAA -ACGGAACAGTCAAGTCGTCAGGTA -ACGGAACAGTCAAGTCGTGACTCT -ACGGAACAGTCAAGTCGTAGTCCT -ACGGAACAGTCAAGTCGTTAAGCC -ACGGAACAGTCAAGTCGTATAGCC -ACGGAACAGTCAAGTCGTTAACCG -ACGGAACAGTCAAGTCGTATGCCA -ACGGAACAGTCAAGTGTCGGAAAC -ACGGAACAGTCAAGTGTCAACACC -ACGGAACAGTCAAGTGTCATCGAG -ACGGAACAGTCAAGTGTCCTCCTT -ACGGAACAGTCAAGTGTCCCTGTT -ACGGAACAGTCAAGTGTCCGGTTT -ACGGAACAGTCAAGTGTCGTGGTT -ACGGAACAGTCAAGTGTCGCCTTT -ACGGAACAGTCAAGTGTCGGTCTT -ACGGAACAGTCAAGTGTCACGCTT -ACGGAACAGTCAAGTGTCAGCGTT -ACGGAACAGTCAAGTGTCTTCGTC -ACGGAACAGTCAAGTGTCTCTCTC -ACGGAACAGTCAAGTGTCTGGATC -ACGGAACAGTCAAGTGTCCACTTC -ACGGAACAGTCAAGTGTCGTACTC -ACGGAACAGTCAAGTGTCGATGTC -ACGGAACAGTCAAGTGTCACAGTC -ACGGAACAGTCAAGTGTCTTGCTG -ACGGAACAGTCAAGTGTCTCCATG -ACGGAACAGTCAAGTGTCTGTGTG -ACGGAACAGTCAAGTGTCCTAGTG -ACGGAACAGTCAAGTGTCCATCTG -ACGGAACAGTCAAGTGTCGAGTTG -ACGGAACAGTCAAGTGTCAGACTG -ACGGAACAGTCAAGTGTCTCGGTA -ACGGAACAGTCAAGTGTCTGCCTA -ACGGAACAGTCAAGTGTCCCACTA -ACGGAACAGTCAAGTGTCGGAGTA -ACGGAACAGTCAAGTGTCTCGTCT -ACGGAACAGTCAAGTGTCTGCACT -ACGGAACAGTCAAGTGTCCTGACT -ACGGAACAGTCAAGTGTCCAACCT -ACGGAACAGTCAAGTGTCGCTACT -ACGGAACAGTCAAGTGTCGGATCT -ACGGAACAGTCAAGTGTCAAGGCT -ACGGAACAGTCAAGTGTCTCAACC -ACGGAACAGTCAAGTGTCTGTTCC -ACGGAACAGTCAAGTGTCATTCCC -ACGGAACAGTCAAGTGTCTTCTCG -ACGGAACAGTCAAGTGTCTAGACG -ACGGAACAGTCAAGTGTCGTAACG -ACGGAACAGTCAAGTGTCACTTCG -ACGGAACAGTCAAGTGTCTACGCA -ACGGAACAGTCAAGTGTCCTTGCA -ACGGAACAGTCAAGTGTCCGAACA -ACGGAACAGTCAAGTGTCCAGTCA -ACGGAACAGTCAAGTGTCGATCCA -ACGGAACAGTCAAGTGTCACGACA -ACGGAACAGTCAAGTGTCAGCTCA -ACGGAACAGTCAAGTGTCTCACGT -ACGGAACAGTCAAGTGTCCGTAGT -ACGGAACAGTCAAGTGTCGTCAGT -ACGGAACAGTCAAGTGTCGAAGGT -ACGGAACAGTCAAGTGTCAACCGT -ACGGAACAGTCAAGTGTCTTGTGC -ACGGAACAGTCAAGTGTCCTAAGC -ACGGAACAGTCAAGTGTCACTAGC -ACGGAACAGTCAAGTGTCAGATGC -ACGGAACAGTCAAGTGTCTGAAGG -ACGGAACAGTCAAGTGTCCAATGG -ACGGAACAGTCAAGTGTCATGAGG -ACGGAACAGTCAAGTGTCAATGGG -ACGGAACAGTCAAGTGTCTCCTGA -ACGGAACAGTCAAGTGTCTAGCGA -ACGGAACAGTCAAGTGTCCACAGA -ACGGAACAGTCAAGTGTCGCAAGA -ACGGAACAGTCAAGTGTCGGTTGA -ACGGAACAGTCAAGTGTCTCCGAT -ACGGAACAGTCAAGTGTCTGGCAT -ACGGAACAGTCAAGTGTCCGAGAT -ACGGAACAGTCAAGTGTCTACCAC -ACGGAACAGTCAAGTGTCCAGAAC -ACGGAACAGTCAAGTGTCGTCTAC -ACGGAACAGTCAAGTGTCACGTAC -ACGGAACAGTCAAGTGTCAGTGAC -ACGGAACAGTCAAGTGTCCTGTAG -ACGGAACAGTCAAGTGTCCCTAAG -ACGGAACAGTCAAGTGTCGTTCAG -ACGGAACAGTCAAGTGTCGCATAG -ACGGAACAGTCAAGTGTCGACAAG -ACGGAACAGTCAAGTGTCAAGCAG -ACGGAACAGTCAAGTGTCCGTCAA -ACGGAACAGTCAAGTGTCGCTGAA -ACGGAACAGTCAAGTGTCAGTACG -ACGGAACAGTCAAGTGTCATCCGA -ACGGAACAGTCAAGTGTCATGGGA -ACGGAACAGTCAAGTGTCGTGCAA -ACGGAACAGTCAAGTGTCGAGGAA -ACGGAACAGTCAAGTGTCCAGGTA -ACGGAACAGTCAAGTGTCGACTCT -ACGGAACAGTCAAGTGTCAGTCCT -ACGGAACAGTCAAGTGTCTAAGCC -ACGGAACAGTCAAGTGTCATAGCC -ACGGAACAGTCAAGTGTCTAACCG -ACGGAACAGTCAAGTGTCATGCCA -ACGGAACAGTCAGGTGAAGGAAAC -ACGGAACAGTCAGGTGAAAACACC -ACGGAACAGTCAGGTGAAATCGAG -ACGGAACAGTCAGGTGAACTCCTT -ACGGAACAGTCAGGTGAACCTGTT -ACGGAACAGTCAGGTGAACGGTTT -ACGGAACAGTCAGGTGAAGTGGTT -ACGGAACAGTCAGGTGAAGCCTTT -ACGGAACAGTCAGGTGAAGGTCTT -ACGGAACAGTCAGGTGAAACGCTT -ACGGAACAGTCAGGTGAAAGCGTT -ACGGAACAGTCAGGTGAATTCGTC -ACGGAACAGTCAGGTGAATCTCTC -ACGGAACAGTCAGGTGAATGGATC -ACGGAACAGTCAGGTGAACACTTC -ACGGAACAGTCAGGTGAAGTACTC -ACGGAACAGTCAGGTGAAGATGTC -ACGGAACAGTCAGGTGAAACAGTC -ACGGAACAGTCAGGTGAATTGCTG -ACGGAACAGTCAGGTGAATCCATG -ACGGAACAGTCAGGTGAATGTGTG -ACGGAACAGTCAGGTGAACTAGTG -ACGGAACAGTCAGGTGAACATCTG -ACGGAACAGTCAGGTGAAGAGTTG -ACGGAACAGTCAGGTGAAAGACTG -ACGGAACAGTCAGGTGAATCGGTA -ACGGAACAGTCAGGTGAATGCCTA -ACGGAACAGTCAGGTGAACCACTA -ACGGAACAGTCAGGTGAAGGAGTA -ACGGAACAGTCAGGTGAATCGTCT -ACGGAACAGTCAGGTGAATGCACT -ACGGAACAGTCAGGTGAACTGACT -ACGGAACAGTCAGGTGAACAACCT -ACGGAACAGTCAGGTGAAGCTACT -ACGGAACAGTCAGGTGAAGGATCT -ACGGAACAGTCAGGTGAAAAGGCT -ACGGAACAGTCAGGTGAATCAACC -ACGGAACAGTCAGGTGAATGTTCC -ACGGAACAGTCAGGTGAAATTCCC -ACGGAACAGTCAGGTGAATTCTCG -ACGGAACAGTCAGGTGAATAGACG -ACGGAACAGTCAGGTGAAGTAACG -ACGGAACAGTCAGGTGAAACTTCG -ACGGAACAGTCAGGTGAATACGCA -ACGGAACAGTCAGGTGAACTTGCA -ACGGAACAGTCAGGTGAACGAACA -ACGGAACAGTCAGGTGAACAGTCA -ACGGAACAGTCAGGTGAAGATCCA -ACGGAACAGTCAGGTGAAACGACA -ACGGAACAGTCAGGTGAAAGCTCA -ACGGAACAGTCAGGTGAATCACGT -ACGGAACAGTCAGGTGAACGTAGT -ACGGAACAGTCAGGTGAAGTCAGT -ACGGAACAGTCAGGTGAAGAAGGT -ACGGAACAGTCAGGTGAAAACCGT -ACGGAACAGTCAGGTGAATTGTGC -ACGGAACAGTCAGGTGAACTAAGC -ACGGAACAGTCAGGTGAAACTAGC -ACGGAACAGTCAGGTGAAAGATGC -ACGGAACAGTCAGGTGAATGAAGG -ACGGAACAGTCAGGTGAACAATGG -ACGGAACAGTCAGGTGAAATGAGG -ACGGAACAGTCAGGTGAAAATGGG -ACGGAACAGTCAGGTGAATCCTGA -ACGGAACAGTCAGGTGAATAGCGA -ACGGAACAGTCAGGTGAACACAGA -ACGGAACAGTCAGGTGAAGCAAGA -ACGGAACAGTCAGGTGAAGGTTGA -ACGGAACAGTCAGGTGAATCCGAT -ACGGAACAGTCAGGTGAATGGCAT -ACGGAACAGTCAGGTGAACGAGAT -ACGGAACAGTCAGGTGAATACCAC -ACGGAACAGTCAGGTGAACAGAAC -ACGGAACAGTCAGGTGAAGTCTAC -ACGGAACAGTCAGGTGAAACGTAC -ACGGAACAGTCAGGTGAAAGTGAC -ACGGAACAGTCAGGTGAACTGTAG -ACGGAACAGTCAGGTGAACCTAAG -ACGGAACAGTCAGGTGAAGTTCAG -ACGGAACAGTCAGGTGAAGCATAG -ACGGAACAGTCAGGTGAAGACAAG -ACGGAACAGTCAGGTGAAAAGCAG -ACGGAACAGTCAGGTGAACGTCAA -ACGGAACAGTCAGGTGAAGCTGAA -ACGGAACAGTCAGGTGAAAGTACG -ACGGAACAGTCAGGTGAAATCCGA -ACGGAACAGTCAGGTGAAATGGGA -ACGGAACAGTCAGGTGAAGTGCAA -ACGGAACAGTCAGGTGAAGAGGAA -ACGGAACAGTCAGGTGAACAGGTA -ACGGAACAGTCAGGTGAAGACTCT -ACGGAACAGTCAGGTGAAAGTCCT -ACGGAACAGTCAGGTGAATAAGCC -ACGGAACAGTCAGGTGAAATAGCC -ACGGAACAGTCAGGTGAATAACCG -ACGGAACAGTCAGGTGAAATGCCA -ACGGAACAGTCACGTAACGGAAAC -ACGGAACAGTCACGTAACAACACC -ACGGAACAGTCACGTAACATCGAG -ACGGAACAGTCACGTAACCTCCTT -ACGGAACAGTCACGTAACCCTGTT -ACGGAACAGTCACGTAACCGGTTT -ACGGAACAGTCACGTAACGTGGTT -ACGGAACAGTCACGTAACGCCTTT -ACGGAACAGTCACGTAACGGTCTT -ACGGAACAGTCACGTAACACGCTT -ACGGAACAGTCACGTAACAGCGTT -ACGGAACAGTCACGTAACTTCGTC -ACGGAACAGTCACGTAACTCTCTC -ACGGAACAGTCACGTAACTGGATC -ACGGAACAGTCACGTAACCACTTC -ACGGAACAGTCACGTAACGTACTC -ACGGAACAGTCACGTAACGATGTC -ACGGAACAGTCACGTAACACAGTC -ACGGAACAGTCACGTAACTTGCTG -ACGGAACAGTCACGTAACTCCATG -ACGGAACAGTCACGTAACTGTGTG -ACGGAACAGTCACGTAACCTAGTG -ACGGAACAGTCACGTAACCATCTG -ACGGAACAGTCACGTAACGAGTTG -ACGGAACAGTCACGTAACAGACTG -ACGGAACAGTCACGTAACTCGGTA -ACGGAACAGTCACGTAACTGCCTA -ACGGAACAGTCACGTAACCCACTA -ACGGAACAGTCACGTAACGGAGTA -ACGGAACAGTCACGTAACTCGTCT -ACGGAACAGTCACGTAACTGCACT -ACGGAACAGTCACGTAACCTGACT -ACGGAACAGTCACGTAACCAACCT -ACGGAACAGTCACGTAACGCTACT -ACGGAACAGTCACGTAACGGATCT -ACGGAACAGTCACGTAACAAGGCT -ACGGAACAGTCACGTAACTCAACC -ACGGAACAGTCACGTAACTGTTCC -ACGGAACAGTCACGTAACATTCCC -ACGGAACAGTCACGTAACTTCTCG -ACGGAACAGTCACGTAACTAGACG -ACGGAACAGTCACGTAACGTAACG -ACGGAACAGTCACGTAACACTTCG -ACGGAACAGTCACGTAACTACGCA -ACGGAACAGTCACGTAACCTTGCA -ACGGAACAGTCACGTAACCGAACA -ACGGAACAGTCACGTAACCAGTCA -ACGGAACAGTCACGTAACGATCCA -ACGGAACAGTCACGTAACACGACA -ACGGAACAGTCACGTAACAGCTCA -ACGGAACAGTCACGTAACTCACGT -ACGGAACAGTCACGTAACCGTAGT -ACGGAACAGTCACGTAACGTCAGT -ACGGAACAGTCACGTAACGAAGGT -ACGGAACAGTCACGTAACAACCGT -ACGGAACAGTCACGTAACTTGTGC -ACGGAACAGTCACGTAACCTAAGC -ACGGAACAGTCACGTAACACTAGC -ACGGAACAGTCACGTAACAGATGC -ACGGAACAGTCACGTAACTGAAGG -ACGGAACAGTCACGTAACCAATGG -ACGGAACAGTCACGTAACATGAGG -ACGGAACAGTCACGTAACAATGGG -ACGGAACAGTCACGTAACTCCTGA -ACGGAACAGTCACGTAACTAGCGA -ACGGAACAGTCACGTAACCACAGA -ACGGAACAGTCACGTAACGCAAGA -ACGGAACAGTCACGTAACGGTTGA -ACGGAACAGTCACGTAACTCCGAT -ACGGAACAGTCACGTAACTGGCAT -ACGGAACAGTCACGTAACCGAGAT -ACGGAACAGTCACGTAACTACCAC -ACGGAACAGTCACGTAACCAGAAC -ACGGAACAGTCACGTAACGTCTAC -ACGGAACAGTCACGTAACACGTAC -ACGGAACAGTCACGTAACAGTGAC -ACGGAACAGTCACGTAACCTGTAG -ACGGAACAGTCACGTAACCCTAAG -ACGGAACAGTCACGTAACGTTCAG -ACGGAACAGTCACGTAACGCATAG -ACGGAACAGTCACGTAACGACAAG -ACGGAACAGTCACGTAACAAGCAG -ACGGAACAGTCACGTAACCGTCAA -ACGGAACAGTCACGTAACGCTGAA -ACGGAACAGTCACGTAACAGTACG -ACGGAACAGTCACGTAACATCCGA -ACGGAACAGTCACGTAACATGGGA -ACGGAACAGTCACGTAACGTGCAA -ACGGAACAGTCACGTAACGAGGAA -ACGGAACAGTCACGTAACCAGGTA -ACGGAACAGTCACGTAACGACTCT -ACGGAACAGTCACGTAACAGTCCT -ACGGAACAGTCACGTAACTAAGCC -ACGGAACAGTCACGTAACATAGCC -ACGGAACAGTCACGTAACTAACCG -ACGGAACAGTCACGTAACATGCCA -ACGGAACAGTCATGCTTGGGAAAC -ACGGAACAGTCATGCTTGAACACC -ACGGAACAGTCATGCTTGATCGAG -ACGGAACAGTCATGCTTGCTCCTT -ACGGAACAGTCATGCTTGCCTGTT -ACGGAACAGTCATGCTTGCGGTTT -ACGGAACAGTCATGCTTGGTGGTT -ACGGAACAGTCATGCTTGGCCTTT -ACGGAACAGTCATGCTTGGGTCTT -ACGGAACAGTCATGCTTGACGCTT -ACGGAACAGTCATGCTTGAGCGTT -ACGGAACAGTCATGCTTGTTCGTC -ACGGAACAGTCATGCTTGTCTCTC -ACGGAACAGTCATGCTTGTGGATC -ACGGAACAGTCATGCTTGCACTTC -ACGGAACAGTCATGCTTGGTACTC -ACGGAACAGTCATGCTTGGATGTC -ACGGAACAGTCATGCTTGACAGTC -ACGGAACAGTCATGCTTGTTGCTG -ACGGAACAGTCATGCTTGTCCATG -ACGGAACAGTCATGCTTGTGTGTG -ACGGAACAGTCATGCTTGCTAGTG -ACGGAACAGTCATGCTTGCATCTG -ACGGAACAGTCATGCTTGGAGTTG -ACGGAACAGTCATGCTTGAGACTG -ACGGAACAGTCATGCTTGTCGGTA -ACGGAACAGTCATGCTTGTGCCTA -ACGGAACAGTCATGCTTGCCACTA -ACGGAACAGTCATGCTTGGGAGTA -ACGGAACAGTCATGCTTGTCGTCT -ACGGAACAGTCATGCTTGTGCACT -ACGGAACAGTCATGCTTGCTGACT -ACGGAACAGTCATGCTTGCAACCT -ACGGAACAGTCATGCTTGGCTACT -ACGGAACAGTCATGCTTGGGATCT -ACGGAACAGTCATGCTTGAAGGCT -ACGGAACAGTCATGCTTGTCAACC -ACGGAACAGTCATGCTTGTGTTCC -ACGGAACAGTCATGCTTGATTCCC -ACGGAACAGTCATGCTTGTTCTCG -ACGGAACAGTCATGCTTGTAGACG -ACGGAACAGTCATGCTTGGTAACG -ACGGAACAGTCATGCTTGACTTCG -ACGGAACAGTCATGCTTGTACGCA -ACGGAACAGTCATGCTTGCTTGCA -ACGGAACAGTCATGCTTGCGAACA -ACGGAACAGTCATGCTTGCAGTCA -ACGGAACAGTCATGCTTGGATCCA -ACGGAACAGTCATGCTTGACGACA -ACGGAACAGTCATGCTTGAGCTCA -ACGGAACAGTCATGCTTGTCACGT -ACGGAACAGTCATGCTTGCGTAGT -ACGGAACAGTCATGCTTGGTCAGT -ACGGAACAGTCATGCTTGGAAGGT -ACGGAACAGTCATGCTTGAACCGT -ACGGAACAGTCATGCTTGTTGTGC -ACGGAACAGTCATGCTTGCTAAGC -ACGGAACAGTCATGCTTGACTAGC -ACGGAACAGTCATGCTTGAGATGC -ACGGAACAGTCATGCTTGTGAAGG -ACGGAACAGTCATGCTTGCAATGG -ACGGAACAGTCATGCTTGATGAGG -ACGGAACAGTCATGCTTGAATGGG -ACGGAACAGTCATGCTTGTCCTGA -ACGGAACAGTCATGCTTGTAGCGA -ACGGAACAGTCATGCTTGCACAGA -ACGGAACAGTCATGCTTGGCAAGA -ACGGAACAGTCATGCTTGGGTTGA -ACGGAACAGTCATGCTTGTCCGAT -ACGGAACAGTCATGCTTGTGGCAT -ACGGAACAGTCATGCTTGCGAGAT -ACGGAACAGTCATGCTTGTACCAC -ACGGAACAGTCATGCTTGCAGAAC -ACGGAACAGTCATGCTTGGTCTAC -ACGGAACAGTCATGCTTGACGTAC -ACGGAACAGTCATGCTTGAGTGAC -ACGGAACAGTCATGCTTGCTGTAG -ACGGAACAGTCATGCTTGCCTAAG -ACGGAACAGTCATGCTTGGTTCAG -ACGGAACAGTCATGCTTGGCATAG -ACGGAACAGTCATGCTTGGACAAG -ACGGAACAGTCATGCTTGAAGCAG -ACGGAACAGTCATGCTTGCGTCAA -ACGGAACAGTCATGCTTGGCTGAA -ACGGAACAGTCATGCTTGAGTACG -ACGGAACAGTCATGCTTGATCCGA -ACGGAACAGTCATGCTTGATGGGA -ACGGAACAGTCATGCTTGGTGCAA -ACGGAACAGTCATGCTTGGAGGAA -ACGGAACAGTCATGCTTGCAGGTA -ACGGAACAGTCATGCTTGGACTCT -ACGGAACAGTCATGCTTGAGTCCT -ACGGAACAGTCATGCTTGTAAGCC -ACGGAACAGTCATGCTTGATAGCC -ACGGAACAGTCATGCTTGTAACCG -ACGGAACAGTCATGCTTGATGCCA -ACGGAACAGTCAAGCCTAGGAAAC -ACGGAACAGTCAAGCCTAAACACC -ACGGAACAGTCAAGCCTAATCGAG -ACGGAACAGTCAAGCCTACTCCTT -ACGGAACAGTCAAGCCTACCTGTT -ACGGAACAGTCAAGCCTACGGTTT -ACGGAACAGTCAAGCCTAGTGGTT -ACGGAACAGTCAAGCCTAGCCTTT -ACGGAACAGTCAAGCCTAGGTCTT -ACGGAACAGTCAAGCCTAACGCTT -ACGGAACAGTCAAGCCTAAGCGTT -ACGGAACAGTCAAGCCTATTCGTC -ACGGAACAGTCAAGCCTATCTCTC -ACGGAACAGTCAAGCCTATGGATC -ACGGAACAGTCAAGCCTACACTTC -ACGGAACAGTCAAGCCTAGTACTC -ACGGAACAGTCAAGCCTAGATGTC -ACGGAACAGTCAAGCCTAACAGTC -ACGGAACAGTCAAGCCTATTGCTG -ACGGAACAGTCAAGCCTATCCATG -ACGGAACAGTCAAGCCTATGTGTG -ACGGAACAGTCAAGCCTACTAGTG -ACGGAACAGTCAAGCCTACATCTG -ACGGAACAGTCAAGCCTAGAGTTG -ACGGAACAGTCAAGCCTAAGACTG -ACGGAACAGTCAAGCCTATCGGTA -ACGGAACAGTCAAGCCTATGCCTA -ACGGAACAGTCAAGCCTACCACTA -ACGGAACAGTCAAGCCTAGGAGTA -ACGGAACAGTCAAGCCTATCGTCT -ACGGAACAGTCAAGCCTATGCACT -ACGGAACAGTCAAGCCTACTGACT -ACGGAACAGTCAAGCCTACAACCT -ACGGAACAGTCAAGCCTAGCTACT -ACGGAACAGTCAAGCCTAGGATCT -ACGGAACAGTCAAGCCTAAAGGCT -ACGGAACAGTCAAGCCTATCAACC -ACGGAACAGTCAAGCCTATGTTCC -ACGGAACAGTCAAGCCTAATTCCC -ACGGAACAGTCAAGCCTATTCTCG -ACGGAACAGTCAAGCCTATAGACG -ACGGAACAGTCAAGCCTAGTAACG -ACGGAACAGTCAAGCCTAACTTCG -ACGGAACAGTCAAGCCTATACGCA -ACGGAACAGTCAAGCCTACTTGCA -ACGGAACAGTCAAGCCTACGAACA -ACGGAACAGTCAAGCCTACAGTCA -ACGGAACAGTCAAGCCTAGATCCA -ACGGAACAGTCAAGCCTAACGACA -ACGGAACAGTCAAGCCTAAGCTCA -ACGGAACAGTCAAGCCTATCACGT -ACGGAACAGTCAAGCCTACGTAGT -ACGGAACAGTCAAGCCTAGTCAGT -ACGGAACAGTCAAGCCTAGAAGGT -ACGGAACAGTCAAGCCTAAACCGT -ACGGAACAGTCAAGCCTATTGTGC -ACGGAACAGTCAAGCCTACTAAGC -ACGGAACAGTCAAGCCTAACTAGC -ACGGAACAGTCAAGCCTAAGATGC -ACGGAACAGTCAAGCCTATGAAGG -ACGGAACAGTCAAGCCTACAATGG -ACGGAACAGTCAAGCCTAATGAGG -ACGGAACAGTCAAGCCTAAATGGG -ACGGAACAGTCAAGCCTATCCTGA -ACGGAACAGTCAAGCCTATAGCGA -ACGGAACAGTCAAGCCTACACAGA -ACGGAACAGTCAAGCCTAGCAAGA -ACGGAACAGTCAAGCCTAGGTTGA -ACGGAACAGTCAAGCCTATCCGAT -ACGGAACAGTCAAGCCTATGGCAT -ACGGAACAGTCAAGCCTACGAGAT -ACGGAACAGTCAAGCCTATACCAC -ACGGAACAGTCAAGCCTACAGAAC -ACGGAACAGTCAAGCCTAGTCTAC -ACGGAACAGTCAAGCCTAACGTAC -ACGGAACAGTCAAGCCTAAGTGAC -ACGGAACAGTCAAGCCTACTGTAG -ACGGAACAGTCAAGCCTACCTAAG -ACGGAACAGTCAAGCCTAGTTCAG -ACGGAACAGTCAAGCCTAGCATAG -ACGGAACAGTCAAGCCTAGACAAG -ACGGAACAGTCAAGCCTAAAGCAG -ACGGAACAGTCAAGCCTACGTCAA -ACGGAACAGTCAAGCCTAGCTGAA -ACGGAACAGTCAAGCCTAAGTACG -ACGGAACAGTCAAGCCTAATCCGA -ACGGAACAGTCAAGCCTAATGGGA -ACGGAACAGTCAAGCCTAGTGCAA -ACGGAACAGTCAAGCCTAGAGGAA -ACGGAACAGTCAAGCCTACAGGTA -ACGGAACAGTCAAGCCTAGACTCT -ACGGAACAGTCAAGCCTAAGTCCT -ACGGAACAGTCAAGCCTATAAGCC -ACGGAACAGTCAAGCCTAATAGCC -ACGGAACAGTCAAGCCTATAACCG -ACGGAACAGTCAAGCCTAATGCCA -ACGGAACAGTCAAGCACTGGAAAC -ACGGAACAGTCAAGCACTAACACC -ACGGAACAGTCAAGCACTATCGAG -ACGGAACAGTCAAGCACTCTCCTT -ACGGAACAGTCAAGCACTCCTGTT -ACGGAACAGTCAAGCACTCGGTTT -ACGGAACAGTCAAGCACTGTGGTT -ACGGAACAGTCAAGCACTGCCTTT -ACGGAACAGTCAAGCACTGGTCTT -ACGGAACAGTCAAGCACTACGCTT -ACGGAACAGTCAAGCACTAGCGTT -ACGGAACAGTCAAGCACTTTCGTC -ACGGAACAGTCAAGCACTTCTCTC -ACGGAACAGTCAAGCACTTGGATC -ACGGAACAGTCAAGCACTCACTTC -ACGGAACAGTCAAGCACTGTACTC -ACGGAACAGTCAAGCACTGATGTC -ACGGAACAGTCAAGCACTACAGTC -ACGGAACAGTCAAGCACTTTGCTG -ACGGAACAGTCAAGCACTTCCATG -ACGGAACAGTCAAGCACTTGTGTG -ACGGAACAGTCAAGCACTCTAGTG -ACGGAACAGTCAAGCACTCATCTG -ACGGAACAGTCAAGCACTGAGTTG -ACGGAACAGTCAAGCACTAGACTG -ACGGAACAGTCAAGCACTTCGGTA -ACGGAACAGTCAAGCACTTGCCTA -ACGGAACAGTCAAGCACTCCACTA -ACGGAACAGTCAAGCACTGGAGTA -ACGGAACAGTCAAGCACTTCGTCT -ACGGAACAGTCAAGCACTTGCACT -ACGGAACAGTCAAGCACTCTGACT -ACGGAACAGTCAAGCACTCAACCT -ACGGAACAGTCAAGCACTGCTACT -ACGGAACAGTCAAGCACTGGATCT -ACGGAACAGTCAAGCACTAAGGCT -ACGGAACAGTCAAGCACTTCAACC -ACGGAACAGTCAAGCACTTGTTCC -ACGGAACAGTCAAGCACTATTCCC -ACGGAACAGTCAAGCACTTTCTCG -ACGGAACAGTCAAGCACTTAGACG -ACGGAACAGTCAAGCACTGTAACG -ACGGAACAGTCAAGCACTACTTCG -ACGGAACAGTCAAGCACTTACGCA -ACGGAACAGTCAAGCACTCTTGCA -ACGGAACAGTCAAGCACTCGAACA -ACGGAACAGTCAAGCACTCAGTCA -ACGGAACAGTCAAGCACTGATCCA -ACGGAACAGTCAAGCACTACGACA -ACGGAACAGTCAAGCACTAGCTCA -ACGGAACAGTCAAGCACTTCACGT -ACGGAACAGTCAAGCACTCGTAGT -ACGGAACAGTCAAGCACTGTCAGT -ACGGAACAGTCAAGCACTGAAGGT -ACGGAACAGTCAAGCACTAACCGT -ACGGAACAGTCAAGCACTTTGTGC -ACGGAACAGTCAAGCACTCTAAGC -ACGGAACAGTCAAGCACTACTAGC -ACGGAACAGTCAAGCACTAGATGC -ACGGAACAGTCAAGCACTTGAAGG -ACGGAACAGTCAAGCACTCAATGG -ACGGAACAGTCAAGCACTATGAGG -ACGGAACAGTCAAGCACTAATGGG -ACGGAACAGTCAAGCACTTCCTGA -ACGGAACAGTCAAGCACTTAGCGA -ACGGAACAGTCAAGCACTCACAGA -ACGGAACAGTCAAGCACTGCAAGA -ACGGAACAGTCAAGCACTGGTTGA -ACGGAACAGTCAAGCACTTCCGAT -ACGGAACAGTCAAGCACTTGGCAT -ACGGAACAGTCAAGCACTCGAGAT -ACGGAACAGTCAAGCACTTACCAC -ACGGAACAGTCAAGCACTCAGAAC -ACGGAACAGTCAAGCACTGTCTAC -ACGGAACAGTCAAGCACTACGTAC -ACGGAACAGTCAAGCACTAGTGAC -ACGGAACAGTCAAGCACTCTGTAG -ACGGAACAGTCAAGCACTCCTAAG -ACGGAACAGTCAAGCACTGTTCAG -ACGGAACAGTCAAGCACTGCATAG -ACGGAACAGTCAAGCACTGACAAG -ACGGAACAGTCAAGCACTAAGCAG -ACGGAACAGTCAAGCACTCGTCAA -ACGGAACAGTCAAGCACTGCTGAA -ACGGAACAGTCAAGCACTAGTACG -ACGGAACAGTCAAGCACTATCCGA -ACGGAACAGTCAAGCACTATGGGA -ACGGAACAGTCAAGCACTGTGCAA -ACGGAACAGTCAAGCACTGAGGAA -ACGGAACAGTCAAGCACTCAGGTA -ACGGAACAGTCAAGCACTGACTCT -ACGGAACAGTCAAGCACTAGTCCT -ACGGAACAGTCAAGCACTTAAGCC -ACGGAACAGTCAAGCACTATAGCC -ACGGAACAGTCAAGCACTTAACCG -ACGGAACAGTCAAGCACTATGCCA -ACGGAACAGTCATGCAGAGGAAAC -ACGGAACAGTCATGCAGAAACACC -ACGGAACAGTCATGCAGAATCGAG -ACGGAACAGTCATGCAGACTCCTT -ACGGAACAGTCATGCAGACCTGTT -ACGGAACAGTCATGCAGACGGTTT -ACGGAACAGTCATGCAGAGTGGTT -ACGGAACAGTCATGCAGAGCCTTT -ACGGAACAGTCATGCAGAGGTCTT -ACGGAACAGTCATGCAGAACGCTT -ACGGAACAGTCATGCAGAAGCGTT -ACGGAACAGTCATGCAGATTCGTC -ACGGAACAGTCATGCAGATCTCTC -ACGGAACAGTCATGCAGATGGATC -ACGGAACAGTCATGCAGACACTTC -ACGGAACAGTCATGCAGAGTACTC -ACGGAACAGTCATGCAGAGATGTC -ACGGAACAGTCATGCAGAACAGTC -ACGGAACAGTCATGCAGATTGCTG -ACGGAACAGTCATGCAGATCCATG -ACGGAACAGTCATGCAGATGTGTG -ACGGAACAGTCATGCAGACTAGTG -ACGGAACAGTCATGCAGACATCTG -ACGGAACAGTCATGCAGAGAGTTG -ACGGAACAGTCATGCAGAAGACTG -ACGGAACAGTCATGCAGATCGGTA -ACGGAACAGTCATGCAGATGCCTA -ACGGAACAGTCATGCAGACCACTA -ACGGAACAGTCATGCAGAGGAGTA -ACGGAACAGTCATGCAGATCGTCT -ACGGAACAGTCATGCAGATGCACT -ACGGAACAGTCATGCAGACTGACT -ACGGAACAGTCATGCAGACAACCT -ACGGAACAGTCATGCAGAGCTACT -ACGGAACAGTCATGCAGAGGATCT -ACGGAACAGTCATGCAGAAAGGCT -ACGGAACAGTCATGCAGATCAACC -ACGGAACAGTCATGCAGATGTTCC -ACGGAACAGTCATGCAGAATTCCC -ACGGAACAGTCATGCAGATTCTCG -ACGGAACAGTCATGCAGATAGACG -ACGGAACAGTCATGCAGAGTAACG -ACGGAACAGTCATGCAGAACTTCG -ACGGAACAGTCATGCAGATACGCA -ACGGAACAGTCATGCAGACTTGCA -ACGGAACAGTCATGCAGACGAACA -ACGGAACAGTCATGCAGACAGTCA -ACGGAACAGTCATGCAGAGATCCA -ACGGAACAGTCATGCAGAACGACA -ACGGAACAGTCATGCAGAAGCTCA -ACGGAACAGTCATGCAGATCACGT -ACGGAACAGTCATGCAGACGTAGT -ACGGAACAGTCATGCAGAGTCAGT -ACGGAACAGTCATGCAGAGAAGGT -ACGGAACAGTCATGCAGAAACCGT -ACGGAACAGTCATGCAGATTGTGC -ACGGAACAGTCATGCAGACTAAGC -ACGGAACAGTCATGCAGAACTAGC -ACGGAACAGTCATGCAGAAGATGC -ACGGAACAGTCATGCAGATGAAGG -ACGGAACAGTCATGCAGACAATGG -ACGGAACAGTCATGCAGAATGAGG -ACGGAACAGTCATGCAGAAATGGG -ACGGAACAGTCATGCAGATCCTGA -ACGGAACAGTCATGCAGATAGCGA -ACGGAACAGTCATGCAGACACAGA -ACGGAACAGTCATGCAGAGCAAGA -ACGGAACAGTCATGCAGAGGTTGA -ACGGAACAGTCATGCAGATCCGAT -ACGGAACAGTCATGCAGATGGCAT -ACGGAACAGTCATGCAGACGAGAT -ACGGAACAGTCATGCAGATACCAC -ACGGAACAGTCATGCAGACAGAAC -ACGGAACAGTCATGCAGAGTCTAC -ACGGAACAGTCATGCAGAACGTAC -ACGGAACAGTCATGCAGAAGTGAC -ACGGAACAGTCATGCAGACTGTAG -ACGGAACAGTCATGCAGACCTAAG -ACGGAACAGTCATGCAGAGTTCAG -ACGGAACAGTCATGCAGAGCATAG -ACGGAACAGTCATGCAGAGACAAG -ACGGAACAGTCATGCAGAAAGCAG -ACGGAACAGTCATGCAGACGTCAA -ACGGAACAGTCATGCAGAGCTGAA -ACGGAACAGTCATGCAGAAGTACG -ACGGAACAGTCATGCAGAATCCGA -ACGGAACAGTCATGCAGAATGGGA -ACGGAACAGTCATGCAGAGTGCAA -ACGGAACAGTCATGCAGAGAGGAA -ACGGAACAGTCATGCAGACAGGTA -ACGGAACAGTCATGCAGAGACTCT -ACGGAACAGTCATGCAGAAGTCCT -ACGGAACAGTCATGCAGATAAGCC -ACGGAACAGTCATGCAGAATAGCC -ACGGAACAGTCATGCAGATAACCG -ACGGAACAGTCATGCAGAATGCCA -ACGGAACAGTCAAGGTGAGGAAAC -ACGGAACAGTCAAGGTGAAACACC -ACGGAACAGTCAAGGTGAATCGAG -ACGGAACAGTCAAGGTGACTCCTT -ACGGAACAGTCAAGGTGACCTGTT -ACGGAACAGTCAAGGTGACGGTTT -ACGGAACAGTCAAGGTGAGTGGTT -ACGGAACAGTCAAGGTGAGCCTTT -ACGGAACAGTCAAGGTGAGGTCTT -ACGGAACAGTCAAGGTGAACGCTT -ACGGAACAGTCAAGGTGAAGCGTT -ACGGAACAGTCAAGGTGATTCGTC -ACGGAACAGTCAAGGTGATCTCTC -ACGGAACAGTCAAGGTGATGGATC -ACGGAACAGTCAAGGTGACACTTC -ACGGAACAGTCAAGGTGAGTACTC -ACGGAACAGTCAAGGTGAGATGTC -ACGGAACAGTCAAGGTGAACAGTC -ACGGAACAGTCAAGGTGATTGCTG -ACGGAACAGTCAAGGTGATCCATG -ACGGAACAGTCAAGGTGATGTGTG -ACGGAACAGTCAAGGTGACTAGTG -ACGGAACAGTCAAGGTGACATCTG -ACGGAACAGTCAAGGTGAGAGTTG -ACGGAACAGTCAAGGTGAAGACTG -ACGGAACAGTCAAGGTGATCGGTA -ACGGAACAGTCAAGGTGATGCCTA -ACGGAACAGTCAAGGTGACCACTA -ACGGAACAGTCAAGGTGAGGAGTA -ACGGAACAGTCAAGGTGATCGTCT -ACGGAACAGTCAAGGTGATGCACT -ACGGAACAGTCAAGGTGACTGACT -ACGGAACAGTCAAGGTGACAACCT -ACGGAACAGTCAAGGTGAGCTACT -ACGGAACAGTCAAGGTGAGGATCT -ACGGAACAGTCAAGGTGAAAGGCT -ACGGAACAGTCAAGGTGATCAACC -ACGGAACAGTCAAGGTGATGTTCC -ACGGAACAGTCAAGGTGAATTCCC -ACGGAACAGTCAAGGTGATTCTCG -ACGGAACAGTCAAGGTGATAGACG -ACGGAACAGTCAAGGTGAGTAACG -ACGGAACAGTCAAGGTGAACTTCG -ACGGAACAGTCAAGGTGATACGCA -ACGGAACAGTCAAGGTGACTTGCA -ACGGAACAGTCAAGGTGACGAACA -ACGGAACAGTCAAGGTGACAGTCA -ACGGAACAGTCAAGGTGAGATCCA -ACGGAACAGTCAAGGTGAACGACA -ACGGAACAGTCAAGGTGAAGCTCA -ACGGAACAGTCAAGGTGATCACGT -ACGGAACAGTCAAGGTGACGTAGT -ACGGAACAGTCAAGGTGAGTCAGT -ACGGAACAGTCAAGGTGAGAAGGT -ACGGAACAGTCAAGGTGAAACCGT -ACGGAACAGTCAAGGTGATTGTGC -ACGGAACAGTCAAGGTGACTAAGC -ACGGAACAGTCAAGGTGAACTAGC -ACGGAACAGTCAAGGTGAAGATGC -ACGGAACAGTCAAGGTGATGAAGG -ACGGAACAGTCAAGGTGACAATGG -ACGGAACAGTCAAGGTGAATGAGG -ACGGAACAGTCAAGGTGAAATGGG -ACGGAACAGTCAAGGTGATCCTGA -ACGGAACAGTCAAGGTGATAGCGA -ACGGAACAGTCAAGGTGACACAGA -ACGGAACAGTCAAGGTGAGCAAGA -ACGGAACAGTCAAGGTGAGGTTGA -ACGGAACAGTCAAGGTGATCCGAT -ACGGAACAGTCAAGGTGATGGCAT -ACGGAACAGTCAAGGTGACGAGAT -ACGGAACAGTCAAGGTGATACCAC -ACGGAACAGTCAAGGTGACAGAAC -ACGGAACAGTCAAGGTGAGTCTAC -ACGGAACAGTCAAGGTGAACGTAC -ACGGAACAGTCAAGGTGAAGTGAC -ACGGAACAGTCAAGGTGACTGTAG -ACGGAACAGTCAAGGTGACCTAAG -ACGGAACAGTCAAGGTGAGTTCAG -ACGGAACAGTCAAGGTGAGCATAG -ACGGAACAGTCAAGGTGAGACAAG -ACGGAACAGTCAAGGTGAAAGCAG -ACGGAACAGTCAAGGTGACGTCAA -ACGGAACAGTCAAGGTGAGCTGAA -ACGGAACAGTCAAGGTGAAGTACG -ACGGAACAGTCAAGGTGAATCCGA -ACGGAACAGTCAAGGTGAATGGGA -ACGGAACAGTCAAGGTGAGTGCAA -ACGGAACAGTCAAGGTGAGAGGAA -ACGGAACAGTCAAGGTGACAGGTA -ACGGAACAGTCAAGGTGAGACTCT -ACGGAACAGTCAAGGTGAAGTCCT -ACGGAACAGTCAAGGTGATAAGCC -ACGGAACAGTCAAGGTGAATAGCC -ACGGAACAGTCAAGGTGATAACCG -ACGGAACAGTCAAGGTGAATGCCA -ACGGAACAGTCATGGCAAGGAAAC -ACGGAACAGTCATGGCAAAACACC -ACGGAACAGTCATGGCAAATCGAG -ACGGAACAGTCATGGCAACTCCTT -ACGGAACAGTCATGGCAACCTGTT -ACGGAACAGTCATGGCAACGGTTT -ACGGAACAGTCATGGCAAGTGGTT -ACGGAACAGTCATGGCAAGCCTTT -ACGGAACAGTCATGGCAAGGTCTT -ACGGAACAGTCATGGCAAACGCTT -ACGGAACAGTCATGGCAAAGCGTT -ACGGAACAGTCATGGCAATTCGTC -ACGGAACAGTCATGGCAATCTCTC -ACGGAACAGTCATGGCAATGGATC -ACGGAACAGTCATGGCAACACTTC -ACGGAACAGTCATGGCAAGTACTC -ACGGAACAGTCATGGCAAGATGTC -ACGGAACAGTCATGGCAAACAGTC -ACGGAACAGTCATGGCAATTGCTG -ACGGAACAGTCATGGCAATCCATG -ACGGAACAGTCATGGCAATGTGTG -ACGGAACAGTCATGGCAACTAGTG -ACGGAACAGTCATGGCAACATCTG -ACGGAACAGTCATGGCAAGAGTTG -ACGGAACAGTCATGGCAAAGACTG -ACGGAACAGTCATGGCAATCGGTA -ACGGAACAGTCATGGCAATGCCTA -ACGGAACAGTCATGGCAACCACTA -ACGGAACAGTCATGGCAAGGAGTA -ACGGAACAGTCATGGCAATCGTCT -ACGGAACAGTCATGGCAATGCACT -ACGGAACAGTCATGGCAACTGACT -ACGGAACAGTCATGGCAACAACCT -ACGGAACAGTCATGGCAAGCTACT -ACGGAACAGTCATGGCAAGGATCT -ACGGAACAGTCATGGCAAAAGGCT -ACGGAACAGTCATGGCAATCAACC -ACGGAACAGTCATGGCAATGTTCC -ACGGAACAGTCATGGCAAATTCCC -ACGGAACAGTCATGGCAATTCTCG -ACGGAACAGTCATGGCAATAGACG -ACGGAACAGTCATGGCAAGTAACG -ACGGAACAGTCATGGCAAACTTCG -ACGGAACAGTCATGGCAATACGCA -ACGGAACAGTCATGGCAACTTGCA -ACGGAACAGTCATGGCAACGAACA -ACGGAACAGTCATGGCAACAGTCA -ACGGAACAGTCATGGCAAGATCCA -ACGGAACAGTCATGGCAAACGACA -ACGGAACAGTCATGGCAAAGCTCA -ACGGAACAGTCATGGCAATCACGT -ACGGAACAGTCATGGCAACGTAGT -ACGGAACAGTCATGGCAAGTCAGT -ACGGAACAGTCATGGCAAGAAGGT -ACGGAACAGTCATGGCAAAACCGT -ACGGAACAGTCATGGCAATTGTGC -ACGGAACAGTCATGGCAACTAAGC -ACGGAACAGTCATGGCAAACTAGC -ACGGAACAGTCATGGCAAAGATGC -ACGGAACAGTCATGGCAATGAAGG -ACGGAACAGTCATGGCAACAATGG -ACGGAACAGTCATGGCAAATGAGG -ACGGAACAGTCATGGCAAAATGGG -ACGGAACAGTCATGGCAATCCTGA -ACGGAACAGTCATGGCAATAGCGA -ACGGAACAGTCATGGCAACACAGA -ACGGAACAGTCATGGCAAGCAAGA -ACGGAACAGTCATGGCAAGGTTGA -ACGGAACAGTCATGGCAATCCGAT -ACGGAACAGTCATGGCAATGGCAT -ACGGAACAGTCATGGCAACGAGAT -ACGGAACAGTCATGGCAATACCAC -ACGGAACAGTCATGGCAACAGAAC -ACGGAACAGTCATGGCAAGTCTAC -ACGGAACAGTCATGGCAAACGTAC -ACGGAACAGTCATGGCAAAGTGAC -ACGGAACAGTCATGGCAACTGTAG -ACGGAACAGTCATGGCAACCTAAG -ACGGAACAGTCATGGCAAGTTCAG -ACGGAACAGTCATGGCAAGCATAG -ACGGAACAGTCATGGCAAGACAAG -ACGGAACAGTCATGGCAAAAGCAG -ACGGAACAGTCATGGCAACGTCAA -ACGGAACAGTCATGGCAAGCTGAA -ACGGAACAGTCATGGCAAAGTACG -ACGGAACAGTCATGGCAAATCCGA -ACGGAACAGTCATGGCAAATGGGA -ACGGAACAGTCATGGCAAGTGCAA -ACGGAACAGTCATGGCAAGAGGAA -ACGGAACAGTCATGGCAACAGGTA -ACGGAACAGTCATGGCAAGACTCT -ACGGAACAGTCATGGCAAAGTCCT -ACGGAACAGTCATGGCAATAAGCC -ACGGAACAGTCATGGCAAATAGCC -ACGGAACAGTCATGGCAATAACCG -ACGGAACAGTCATGGCAAATGCCA -ACGGAACAGTCAAGGATGGGAAAC -ACGGAACAGTCAAGGATGAACACC -ACGGAACAGTCAAGGATGATCGAG -ACGGAACAGTCAAGGATGCTCCTT -ACGGAACAGTCAAGGATGCCTGTT -ACGGAACAGTCAAGGATGCGGTTT -ACGGAACAGTCAAGGATGGTGGTT -ACGGAACAGTCAAGGATGGCCTTT -ACGGAACAGTCAAGGATGGGTCTT -ACGGAACAGTCAAGGATGACGCTT -ACGGAACAGTCAAGGATGAGCGTT -ACGGAACAGTCAAGGATGTTCGTC -ACGGAACAGTCAAGGATGTCTCTC -ACGGAACAGTCAAGGATGTGGATC -ACGGAACAGTCAAGGATGCACTTC -ACGGAACAGTCAAGGATGGTACTC -ACGGAACAGTCAAGGATGGATGTC -ACGGAACAGTCAAGGATGACAGTC -ACGGAACAGTCAAGGATGTTGCTG -ACGGAACAGTCAAGGATGTCCATG -ACGGAACAGTCAAGGATGTGTGTG -ACGGAACAGTCAAGGATGCTAGTG -ACGGAACAGTCAAGGATGCATCTG -ACGGAACAGTCAAGGATGGAGTTG -ACGGAACAGTCAAGGATGAGACTG -ACGGAACAGTCAAGGATGTCGGTA -ACGGAACAGTCAAGGATGTGCCTA -ACGGAACAGTCAAGGATGCCACTA -ACGGAACAGTCAAGGATGGGAGTA -ACGGAACAGTCAAGGATGTCGTCT -ACGGAACAGTCAAGGATGTGCACT -ACGGAACAGTCAAGGATGCTGACT -ACGGAACAGTCAAGGATGCAACCT -ACGGAACAGTCAAGGATGGCTACT -ACGGAACAGTCAAGGATGGGATCT -ACGGAACAGTCAAGGATGAAGGCT -ACGGAACAGTCAAGGATGTCAACC -ACGGAACAGTCAAGGATGTGTTCC -ACGGAACAGTCAAGGATGATTCCC -ACGGAACAGTCAAGGATGTTCTCG -ACGGAACAGTCAAGGATGTAGACG -ACGGAACAGTCAAGGATGGTAACG -ACGGAACAGTCAAGGATGACTTCG -ACGGAACAGTCAAGGATGTACGCA -ACGGAACAGTCAAGGATGCTTGCA -ACGGAACAGTCAAGGATGCGAACA -ACGGAACAGTCAAGGATGCAGTCA -ACGGAACAGTCAAGGATGGATCCA -ACGGAACAGTCAAGGATGACGACA -ACGGAACAGTCAAGGATGAGCTCA -ACGGAACAGTCAAGGATGTCACGT -ACGGAACAGTCAAGGATGCGTAGT -ACGGAACAGTCAAGGATGGTCAGT -ACGGAACAGTCAAGGATGGAAGGT -ACGGAACAGTCAAGGATGAACCGT -ACGGAACAGTCAAGGATGTTGTGC -ACGGAACAGTCAAGGATGCTAAGC -ACGGAACAGTCAAGGATGACTAGC -ACGGAACAGTCAAGGATGAGATGC -ACGGAACAGTCAAGGATGTGAAGG -ACGGAACAGTCAAGGATGCAATGG -ACGGAACAGTCAAGGATGATGAGG -ACGGAACAGTCAAGGATGAATGGG -ACGGAACAGTCAAGGATGTCCTGA -ACGGAACAGTCAAGGATGTAGCGA -ACGGAACAGTCAAGGATGCACAGA -ACGGAACAGTCAAGGATGGCAAGA -ACGGAACAGTCAAGGATGGGTTGA -ACGGAACAGTCAAGGATGTCCGAT -ACGGAACAGTCAAGGATGTGGCAT -ACGGAACAGTCAAGGATGCGAGAT -ACGGAACAGTCAAGGATGTACCAC -ACGGAACAGTCAAGGATGCAGAAC -ACGGAACAGTCAAGGATGGTCTAC -ACGGAACAGTCAAGGATGACGTAC -ACGGAACAGTCAAGGATGAGTGAC -ACGGAACAGTCAAGGATGCTGTAG -ACGGAACAGTCAAGGATGCCTAAG -ACGGAACAGTCAAGGATGGTTCAG -ACGGAACAGTCAAGGATGGCATAG -ACGGAACAGTCAAGGATGGACAAG -ACGGAACAGTCAAGGATGAAGCAG -ACGGAACAGTCAAGGATGCGTCAA -ACGGAACAGTCAAGGATGGCTGAA -ACGGAACAGTCAAGGATGAGTACG -ACGGAACAGTCAAGGATGATCCGA -ACGGAACAGTCAAGGATGATGGGA -ACGGAACAGTCAAGGATGGTGCAA -ACGGAACAGTCAAGGATGGAGGAA -ACGGAACAGTCAAGGATGCAGGTA -ACGGAACAGTCAAGGATGGACTCT -ACGGAACAGTCAAGGATGAGTCCT -ACGGAACAGTCAAGGATGTAAGCC -ACGGAACAGTCAAGGATGATAGCC -ACGGAACAGTCAAGGATGTAACCG -ACGGAACAGTCAAGGATGATGCCA -ACGGAACAGTCAGGGAATGGAAAC -ACGGAACAGTCAGGGAATAACACC -ACGGAACAGTCAGGGAATATCGAG -ACGGAACAGTCAGGGAATCTCCTT -ACGGAACAGTCAGGGAATCCTGTT -ACGGAACAGTCAGGGAATCGGTTT -ACGGAACAGTCAGGGAATGTGGTT -ACGGAACAGTCAGGGAATGCCTTT -ACGGAACAGTCAGGGAATGGTCTT -ACGGAACAGTCAGGGAATACGCTT -ACGGAACAGTCAGGGAATAGCGTT -ACGGAACAGTCAGGGAATTTCGTC -ACGGAACAGTCAGGGAATTCTCTC -ACGGAACAGTCAGGGAATTGGATC -ACGGAACAGTCAGGGAATCACTTC -ACGGAACAGTCAGGGAATGTACTC -ACGGAACAGTCAGGGAATGATGTC -ACGGAACAGTCAGGGAATACAGTC -ACGGAACAGTCAGGGAATTTGCTG -ACGGAACAGTCAGGGAATTCCATG -ACGGAACAGTCAGGGAATTGTGTG -ACGGAACAGTCAGGGAATCTAGTG -ACGGAACAGTCAGGGAATCATCTG -ACGGAACAGTCAGGGAATGAGTTG -ACGGAACAGTCAGGGAATAGACTG -ACGGAACAGTCAGGGAATTCGGTA -ACGGAACAGTCAGGGAATTGCCTA -ACGGAACAGTCAGGGAATCCACTA -ACGGAACAGTCAGGGAATGGAGTA -ACGGAACAGTCAGGGAATTCGTCT -ACGGAACAGTCAGGGAATTGCACT -ACGGAACAGTCAGGGAATCTGACT -ACGGAACAGTCAGGGAATCAACCT -ACGGAACAGTCAGGGAATGCTACT -ACGGAACAGTCAGGGAATGGATCT -ACGGAACAGTCAGGGAATAAGGCT -ACGGAACAGTCAGGGAATTCAACC -ACGGAACAGTCAGGGAATTGTTCC -ACGGAACAGTCAGGGAATATTCCC -ACGGAACAGTCAGGGAATTTCTCG -ACGGAACAGTCAGGGAATTAGACG -ACGGAACAGTCAGGGAATGTAACG -ACGGAACAGTCAGGGAATACTTCG -ACGGAACAGTCAGGGAATTACGCA -ACGGAACAGTCAGGGAATCTTGCA -ACGGAACAGTCAGGGAATCGAACA -ACGGAACAGTCAGGGAATCAGTCA -ACGGAACAGTCAGGGAATGATCCA -ACGGAACAGTCAGGGAATACGACA -ACGGAACAGTCAGGGAATAGCTCA -ACGGAACAGTCAGGGAATTCACGT -ACGGAACAGTCAGGGAATCGTAGT -ACGGAACAGTCAGGGAATGTCAGT -ACGGAACAGTCAGGGAATGAAGGT -ACGGAACAGTCAGGGAATAACCGT -ACGGAACAGTCAGGGAATTTGTGC -ACGGAACAGTCAGGGAATCTAAGC -ACGGAACAGTCAGGGAATACTAGC -ACGGAACAGTCAGGGAATAGATGC -ACGGAACAGTCAGGGAATTGAAGG -ACGGAACAGTCAGGGAATCAATGG -ACGGAACAGTCAGGGAATATGAGG -ACGGAACAGTCAGGGAATAATGGG -ACGGAACAGTCAGGGAATTCCTGA -ACGGAACAGTCAGGGAATTAGCGA -ACGGAACAGTCAGGGAATCACAGA -ACGGAACAGTCAGGGAATGCAAGA -ACGGAACAGTCAGGGAATGGTTGA -ACGGAACAGTCAGGGAATTCCGAT -ACGGAACAGTCAGGGAATTGGCAT -ACGGAACAGTCAGGGAATCGAGAT -ACGGAACAGTCAGGGAATTACCAC -ACGGAACAGTCAGGGAATCAGAAC -ACGGAACAGTCAGGGAATGTCTAC -ACGGAACAGTCAGGGAATACGTAC -ACGGAACAGTCAGGGAATAGTGAC -ACGGAACAGTCAGGGAATCTGTAG -ACGGAACAGTCAGGGAATCCTAAG -ACGGAACAGTCAGGGAATGTTCAG -ACGGAACAGTCAGGGAATGCATAG -ACGGAACAGTCAGGGAATGACAAG -ACGGAACAGTCAGGGAATAAGCAG -ACGGAACAGTCAGGGAATCGTCAA -ACGGAACAGTCAGGGAATGCTGAA -ACGGAACAGTCAGGGAATAGTACG -ACGGAACAGTCAGGGAATATCCGA -ACGGAACAGTCAGGGAATATGGGA -ACGGAACAGTCAGGGAATGTGCAA -ACGGAACAGTCAGGGAATGAGGAA -ACGGAACAGTCAGGGAATCAGGTA -ACGGAACAGTCAGGGAATGACTCT -ACGGAACAGTCAGGGAATAGTCCT -ACGGAACAGTCAGGGAATTAAGCC -ACGGAACAGTCAGGGAATATAGCC -ACGGAACAGTCAGGGAATTAACCG -ACGGAACAGTCAGGGAATATGCCA -ACGGAACAGTCATGATCCGGAAAC -ACGGAACAGTCATGATCCAACACC -ACGGAACAGTCATGATCCATCGAG -ACGGAACAGTCATGATCCCTCCTT -ACGGAACAGTCATGATCCCCTGTT -ACGGAACAGTCATGATCCCGGTTT -ACGGAACAGTCATGATCCGTGGTT -ACGGAACAGTCATGATCCGCCTTT -ACGGAACAGTCATGATCCGGTCTT -ACGGAACAGTCATGATCCACGCTT -ACGGAACAGTCATGATCCAGCGTT -ACGGAACAGTCATGATCCTTCGTC -ACGGAACAGTCATGATCCTCTCTC -ACGGAACAGTCATGATCCTGGATC -ACGGAACAGTCATGATCCCACTTC -ACGGAACAGTCATGATCCGTACTC -ACGGAACAGTCATGATCCGATGTC -ACGGAACAGTCATGATCCACAGTC -ACGGAACAGTCATGATCCTTGCTG -ACGGAACAGTCATGATCCTCCATG -ACGGAACAGTCATGATCCTGTGTG -ACGGAACAGTCATGATCCCTAGTG -ACGGAACAGTCATGATCCCATCTG -ACGGAACAGTCATGATCCGAGTTG -ACGGAACAGTCATGATCCAGACTG -ACGGAACAGTCATGATCCTCGGTA -ACGGAACAGTCATGATCCTGCCTA -ACGGAACAGTCATGATCCCCACTA -ACGGAACAGTCATGATCCGGAGTA -ACGGAACAGTCATGATCCTCGTCT -ACGGAACAGTCATGATCCTGCACT -ACGGAACAGTCATGATCCCTGACT -ACGGAACAGTCATGATCCCAACCT -ACGGAACAGTCATGATCCGCTACT -ACGGAACAGTCATGATCCGGATCT -ACGGAACAGTCATGATCCAAGGCT -ACGGAACAGTCATGATCCTCAACC -ACGGAACAGTCATGATCCTGTTCC -ACGGAACAGTCATGATCCATTCCC -ACGGAACAGTCATGATCCTTCTCG -ACGGAACAGTCATGATCCTAGACG -ACGGAACAGTCATGATCCGTAACG -ACGGAACAGTCATGATCCACTTCG -ACGGAACAGTCATGATCCTACGCA -ACGGAACAGTCATGATCCCTTGCA -ACGGAACAGTCATGATCCCGAACA -ACGGAACAGTCATGATCCCAGTCA -ACGGAACAGTCATGATCCGATCCA -ACGGAACAGTCATGATCCACGACA -ACGGAACAGTCATGATCCAGCTCA -ACGGAACAGTCATGATCCTCACGT -ACGGAACAGTCATGATCCCGTAGT -ACGGAACAGTCATGATCCGTCAGT -ACGGAACAGTCATGATCCGAAGGT -ACGGAACAGTCATGATCCAACCGT -ACGGAACAGTCATGATCCTTGTGC -ACGGAACAGTCATGATCCCTAAGC -ACGGAACAGTCATGATCCACTAGC -ACGGAACAGTCATGATCCAGATGC -ACGGAACAGTCATGATCCTGAAGG -ACGGAACAGTCATGATCCCAATGG -ACGGAACAGTCATGATCCATGAGG -ACGGAACAGTCATGATCCAATGGG -ACGGAACAGTCATGATCCTCCTGA -ACGGAACAGTCATGATCCTAGCGA -ACGGAACAGTCATGATCCCACAGA -ACGGAACAGTCATGATCCGCAAGA -ACGGAACAGTCATGATCCGGTTGA -ACGGAACAGTCATGATCCTCCGAT -ACGGAACAGTCATGATCCTGGCAT -ACGGAACAGTCATGATCCCGAGAT -ACGGAACAGTCATGATCCTACCAC -ACGGAACAGTCATGATCCCAGAAC -ACGGAACAGTCATGATCCGTCTAC -ACGGAACAGTCATGATCCACGTAC -ACGGAACAGTCATGATCCAGTGAC -ACGGAACAGTCATGATCCCTGTAG -ACGGAACAGTCATGATCCCCTAAG -ACGGAACAGTCATGATCCGTTCAG -ACGGAACAGTCATGATCCGCATAG -ACGGAACAGTCATGATCCGACAAG -ACGGAACAGTCATGATCCAAGCAG -ACGGAACAGTCATGATCCCGTCAA -ACGGAACAGTCATGATCCGCTGAA -ACGGAACAGTCATGATCCAGTACG -ACGGAACAGTCATGATCCATCCGA -ACGGAACAGTCATGATCCATGGGA -ACGGAACAGTCATGATCCGTGCAA -ACGGAACAGTCATGATCCGAGGAA -ACGGAACAGTCATGATCCCAGGTA -ACGGAACAGTCATGATCCGACTCT -ACGGAACAGTCATGATCCAGTCCT -ACGGAACAGTCATGATCCTAAGCC -ACGGAACAGTCATGATCCATAGCC -ACGGAACAGTCATGATCCTAACCG -ACGGAACAGTCATGATCCATGCCA -ACGGAACAGTCACGATAGGGAAAC -ACGGAACAGTCACGATAGAACACC -ACGGAACAGTCACGATAGATCGAG -ACGGAACAGTCACGATAGCTCCTT -ACGGAACAGTCACGATAGCCTGTT -ACGGAACAGTCACGATAGCGGTTT -ACGGAACAGTCACGATAGGTGGTT -ACGGAACAGTCACGATAGGCCTTT -ACGGAACAGTCACGATAGGGTCTT -ACGGAACAGTCACGATAGACGCTT -ACGGAACAGTCACGATAGAGCGTT -ACGGAACAGTCACGATAGTTCGTC -ACGGAACAGTCACGATAGTCTCTC -ACGGAACAGTCACGATAGTGGATC -ACGGAACAGTCACGATAGCACTTC -ACGGAACAGTCACGATAGGTACTC -ACGGAACAGTCACGATAGGATGTC -ACGGAACAGTCACGATAGACAGTC -ACGGAACAGTCACGATAGTTGCTG -ACGGAACAGTCACGATAGTCCATG -ACGGAACAGTCACGATAGTGTGTG -ACGGAACAGTCACGATAGCTAGTG -ACGGAACAGTCACGATAGCATCTG -ACGGAACAGTCACGATAGGAGTTG -ACGGAACAGTCACGATAGAGACTG -ACGGAACAGTCACGATAGTCGGTA -ACGGAACAGTCACGATAGTGCCTA -ACGGAACAGTCACGATAGCCACTA -ACGGAACAGTCACGATAGGGAGTA -ACGGAACAGTCACGATAGTCGTCT -ACGGAACAGTCACGATAGTGCACT -ACGGAACAGTCACGATAGCTGACT -ACGGAACAGTCACGATAGCAACCT -ACGGAACAGTCACGATAGGCTACT -ACGGAACAGTCACGATAGGGATCT -ACGGAACAGTCACGATAGAAGGCT -ACGGAACAGTCACGATAGTCAACC -ACGGAACAGTCACGATAGTGTTCC -ACGGAACAGTCACGATAGATTCCC -ACGGAACAGTCACGATAGTTCTCG -ACGGAACAGTCACGATAGTAGACG -ACGGAACAGTCACGATAGGTAACG -ACGGAACAGTCACGATAGACTTCG -ACGGAACAGTCACGATAGTACGCA -ACGGAACAGTCACGATAGCTTGCA -ACGGAACAGTCACGATAGCGAACA -ACGGAACAGTCACGATAGCAGTCA -ACGGAACAGTCACGATAGGATCCA -ACGGAACAGTCACGATAGACGACA -ACGGAACAGTCACGATAGAGCTCA -ACGGAACAGTCACGATAGTCACGT -ACGGAACAGTCACGATAGCGTAGT -ACGGAACAGTCACGATAGGTCAGT -ACGGAACAGTCACGATAGGAAGGT -ACGGAACAGTCACGATAGAACCGT -ACGGAACAGTCACGATAGTTGTGC -ACGGAACAGTCACGATAGCTAAGC -ACGGAACAGTCACGATAGACTAGC -ACGGAACAGTCACGATAGAGATGC -ACGGAACAGTCACGATAGTGAAGG -ACGGAACAGTCACGATAGCAATGG -ACGGAACAGTCACGATAGATGAGG -ACGGAACAGTCACGATAGAATGGG -ACGGAACAGTCACGATAGTCCTGA -ACGGAACAGTCACGATAGTAGCGA -ACGGAACAGTCACGATAGCACAGA -ACGGAACAGTCACGATAGGCAAGA -ACGGAACAGTCACGATAGGGTTGA -ACGGAACAGTCACGATAGTCCGAT -ACGGAACAGTCACGATAGTGGCAT -ACGGAACAGTCACGATAGCGAGAT -ACGGAACAGTCACGATAGTACCAC -ACGGAACAGTCACGATAGCAGAAC -ACGGAACAGTCACGATAGGTCTAC -ACGGAACAGTCACGATAGACGTAC -ACGGAACAGTCACGATAGAGTGAC -ACGGAACAGTCACGATAGCTGTAG -ACGGAACAGTCACGATAGCCTAAG -ACGGAACAGTCACGATAGGTTCAG -ACGGAACAGTCACGATAGGCATAG -ACGGAACAGTCACGATAGGACAAG -ACGGAACAGTCACGATAGAAGCAG -ACGGAACAGTCACGATAGCGTCAA -ACGGAACAGTCACGATAGGCTGAA -ACGGAACAGTCACGATAGAGTACG -ACGGAACAGTCACGATAGATCCGA -ACGGAACAGTCACGATAGATGGGA -ACGGAACAGTCACGATAGGTGCAA -ACGGAACAGTCACGATAGGAGGAA -ACGGAACAGTCACGATAGCAGGTA -ACGGAACAGTCACGATAGGACTCT -ACGGAACAGTCACGATAGAGTCCT -ACGGAACAGTCACGATAGTAAGCC -ACGGAACAGTCACGATAGATAGCC -ACGGAACAGTCACGATAGTAACCG -ACGGAACAGTCACGATAGATGCCA -ACGGAACAGTCAAGACACGGAAAC -ACGGAACAGTCAAGACACAACACC -ACGGAACAGTCAAGACACATCGAG -ACGGAACAGTCAAGACACCTCCTT -ACGGAACAGTCAAGACACCCTGTT -ACGGAACAGTCAAGACACCGGTTT -ACGGAACAGTCAAGACACGTGGTT -ACGGAACAGTCAAGACACGCCTTT -ACGGAACAGTCAAGACACGGTCTT -ACGGAACAGTCAAGACACACGCTT -ACGGAACAGTCAAGACACAGCGTT -ACGGAACAGTCAAGACACTTCGTC -ACGGAACAGTCAAGACACTCTCTC -ACGGAACAGTCAAGACACTGGATC -ACGGAACAGTCAAGACACCACTTC -ACGGAACAGTCAAGACACGTACTC -ACGGAACAGTCAAGACACGATGTC -ACGGAACAGTCAAGACACACAGTC -ACGGAACAGTCAAGACACTTGCTG -ACGGAACAGTCAAGACACTCCATG -ACGGAACAGTCAAGACACTGTGTG -ACGGAACAGTCAAGACACCTAGTG -ACGGAACAGTCAAGACACCATCTG -ACGGAACAGTCAAGACACGAGTTG -ACGGAACAGTCAAGACACAGACTG -ACGGAACAGTCAAGACACTCGGTA -ACGGAACAGTCAAGACACTGCCTA -ACGGAACAGTCAAGACACCCACTA -ACGGAACAGTCAAGACACGGAGTA -ACGGAACAGTCAAGACACTCGTCT -ACGGAACAGTCAAGACACTGCACT -ACGGAACAGTCAAGACACCTGACT -ACGGAACAGTCAAGACACCAACCT -ACGGAACAGTCAAGACACGCTACT -ACGGAACAGTCAAGACACGGATCT -ACGGAACAGTCAAGACACAAGGCT -ACGGAACAGTCAAGACACTCAACC -ACGGAACAGTCAAGACACTGTTCC -ACGGAACAGTCAAGACACATTCCC -ACGGAACAGTCAAGACACTTCTCG -ACGGAACAGTCAAGACACTAGACG -ACGGAACAGTCAAGACACGTAACG -ACGGAACAGTCAAGACACACTTCG -ACGGAACAGTCAAGACACTACGCA -ACGGAACAGTCAAGACACCTTGCA -ACGGAACAGTCAAGACACCGAACA -ACGGAACAGTCAAGACACCAGTCA -ACGGAACAGTCAAGACACGATCCA -ACGGAACAGTCAAGACACACGACA -ACGGAACAGTCAAGACACAGCTCA -ACGGAACAGTCAAGACACTCACGT -ACGGAACAGTCAAGACACCGTAGT -ACGGAACAGTCAAGACACGTCAGT -ACGGAACAGTCAAGACACGAAGGT -ACGGAACAGTCAAGACACAACCGT -ACGGAACAGTCAAGACACTTGTGC -ACGGAACAGTCAAGACACCTAAGC -ACGGAACAGTCAAGACACACTAGC -ACGGAACAGTCAAGACACAGATGC -ACGGAACAGTCAAGACACTGAAGG -ACGGAACAGTCAAGACACCAATGG -ACGGAACAGTCAAGACACATGAGG -ACGGAACAGTCAAGACACAATGGG -ACGGAACAGTCAAGACACTCCTGA -ACGGAACAGTCAAGACACTAGCGA -ACGGAACAGTCAAGACACCACAGA -ACGGAACAGTCAAGACACGCAAGA -ACGGAACAGTCAAGACACGGTTGA -ACGGAACAGTCAAGACACTCCGAT -ACGGAACAGTCAAGACACTGGCAT -ACGGAACAGTCAAGACACCGAGAT -ACGGAACAGTCAAGACACTACCAC -ACGGAACAGTCAAGACACCAGAAC -ACGGAACAGTCAAGACACGTCTAC -ACGGAACAGTCAAGACACACGTAC -ACGGAACAGTCAAGACACAGTGAC -ACGGAACAGTCAAGACACCTGTAG -ACGGAACAGTCAAGACACCCTAAG -ACGGAACAGTCAAGACACGTTCAG -ACGGAACAGTCAAGACACGCATAG -ACGGAACAGTCAAGACACGACAAG -ACGGAACAGTCAAGACACAAGCAG -ACGGAACAGTCAAGACACCGTCAA -ACGGAACAGTCAAGACACGCTGAA -ACGGAACAGTCAAGACACAGTACG -ACGGAACAGTCAAGACACATCCGA -ACGGAACAGTCAAGACACATGGGA -ACGGAACAGTCAAGACACGTGCAA -ACGGAACAGTCAAGACACGAGGAA -ACGGAACAGTCAAGACACCAGGTA -ACGGAACAGTCAAGACACGACTCT -ACGGAACAGTCAAGACACAGTCCT -ACGGAACAGTCAAGACACTAAGCC -ACGGAACAGTCAAGACACATAGCC -ACGGAACAGTCAAGACACTAACCG -ACGGAACAGTCAAGACACATGCCA -ACGGAACAGTCAAGAGCAGGAAAC -ACGGAACAGTCAAGAGCAAACACC -ACGGAACAGTCAAGAGCAATCGAG -ACGGAACAGTCAAGAGCACTCCTT -ACGGAACAGTCAAGAGCACCTGTT -ACGGAACAGTCAAGAGCACGGTTT -ACGGAACAGTCAAGAGCAGTGGTT -ACGGAACAGTCAAGAGCAGCCTTT -ACGGAACAGTCAAGAGCAGGTCTT -ACGGAACAGTCAAGAGCAACGCTT -ACGGAACAGTCAAGAGCAAGCGTT -ACGGAACAGTCAAGAGCATTCGTC -ACGGAACAGTCAAGAGCATCTCTC -ACGGAACAGTCAAGAGCATGGATC -ACGGAACAGTCAAGAGCACACTTC -ACGGAACAGTCAAGAGCAGTACTC -ACGGAACAGTCAAGAGCAGATGTC -ACGGAACAGTCAAGAGCAACAGTC -ACGGAACAGTCAAGAGCATTGCTG -ACGGAACAGTCAAGAGCATCCATG -ACGGAACAGTCAAGAGCATGTGTG -ACGGAACAGTCAAGAGCACTAGTG -ACGGAACAGTCAAGAGCACATCTG -ACGGAACAGTCAAGAGCAGAGTTG -ACGGAACAGTCAAGAGCAAGACTG -ACGGAACAGTCAAGAGCATCGGTA -ACGGAACAGTCAAGAGCATGCCTA -ACGGAACAGTCAAGAGCACCACTA -ACGGAACAGTCAAGAGCAGGAGTA -ACGGAACAGTCAAGAGCATCGTCT -ACGGAACAGTCAAGAGCATGCACT -ACGGAACAGTCAAGAGCACTGACT -ACGGAACAGTCAAGAGCACAACCT -ACGGAACAGTCAAGAGCAGCTACT -ACGGAACAGTCAAGAGCAGGATCT -ACGGAACAGTCAAGAGCAAAGGCT -ACGGAACAGTCAAGAGCATCAACC -ACGGAACAGTCAAGAGCATGTTCC -ACGGAACAGTCAAGAGCAATTCCC -ACGGAACAGTCAAGAGCATTCTCG -ACGGAACAGTCAAGAGCATAGACG -ACGGAACAGTCAAGAGCAGTAACG -ACGGAACAGTCAAGAGCAACTTCG -ACGGAACAGTCAAGAGCATACGCA -ACGGAACAGTCAAGAGCACTTGCA -ACGGAACAGTCAAGAGCACGAACA -ACGGAACAGTCAAGAGCACAGTCA -ACGGAACAGTCAAGAGCAGATCCA -ACGGAACAGTCAAGAGCAACGACA -ACGGAACAGTCAAGAGCAAGCTCA -ACGGAACAGTCAAGAGCATCACGT -ACGGAACAGTCAAGAGCACGTAGT -ACGGAACAGTCAAGAGCAGTCAGT -ACGGAACAGTCAAGAGCAGAAGGT -ACGGAACAGTCAAGAGCAAACCGT -ACGGAACAGTCAAGAGCATTGTGC -ACGGAACAGTCAAGAGCACTAAGC -ACGGAACAGTCAAGAGCAACTAGC -ACGGAACAGTCAAGAGCAAGATGC -ACGGAACAGTCAAGAGCATGAAGG -ACGGAACAGTCAAGAGCACAATGG -ACGGAACAGTCAAGAGCAATGAGG -ACGGAACAGTCAAGAGCAAATGGG -ACGGAACAGTCAAGAGCATCCTGA -ACGGAACAGTCAAGAGCATAGCGA -ACGGAACAGTCAAGAGCACACAGA -ACGGAACAGTCAAGAGCAGCAAGA -ACGGAACAGTCAAGAGCAGGTTGA -ACGGAACAGTCAAGAGCATCCGAT -ACGGAACAGTCAAGAGCATGGCAT -ACGGAACAGTCAAGAGCACGAGAT -ACGGAACAGTCAAGAGCATACCAC -ACGGAACAGTCAAGAGCACAGAAC -ACGGAACAGTCAAGAGCAGTCTAC -ACGGAACAGTCAAGAGCAACGTAC -ACGGAACAGTCAAGAGCAAGTGAC -ACGGAACAGTCAAGAGCACTGTAG -ACGGAACAGTCAAGAGCACCTAAG -ACGGAACAGTCAAGAGCAGTTCAG -ACGGAACAGTCAAGAGCAGCATAG -ACGGAACAGTCAAGAGCAGACAAG -ACGGAACAGTCAAGAGCAAAGCAG -ACGGAACAGTCAAGAGCACGTCAA -ACGGAACAGTCAAGAGCAGCTGAA -ACGGAACAGTCAAGAGCAAGTACG -ACGGAACAGTCAAGAGCAATCCGA -ACGGAACAGTCAAGAGCAATGGGA -ACGGAACAGTCAAGAGCAGTGCAA -ACGGAACAGTCAAGAGCAGAGGAA -ACGGAACAGTCAAGAGCACAGGTA -ACGGAACAGTCAAGAGCAGACTCT -ACGGAACAGTCAAGAGCAAGTCCT -ACGGAACAGTCAAGAGCATAAGCC -ACGGAACAGTCAAGAGCAATAGCC -ACGGAACAGTCAAGAGCATAACCG -ACGGAACAGTCAAGAGCAATGCCA -ACGGAACAGTCATGAGGTGGAAAC -ACGGAACAGTCATGAGGTAACACC -ACGGAACAGTCATGAGGTATCGAG -ACGGAACAGTCATGAGGTCTCCTT -ACGGAACAGTCATGAGGTCCTGTT -ACGGAACAGTCATGAGGTCGGTTT -ACGGAACAGTCATGAGGTGTGGTT -ACGGAACAGTCATGAGGTGCCTTT -ACGGAACAGTCATGAGGTGGTCTT -ACGGAACAGTCATGAGGTACGCTT -ACGGAACAGTCATGAGGTAGCGTT -ACGGAACAGTCATGAGGTTTCGTC -ACGGAACAGTCATGAGGTTCTCTC -ACGGAACAGTCATGAGGTTGGATC -ACGGAACAGTCATGAGGTCACTTC -ACGGAACAGTCATGAGGTGTACTC -ACGGAACAGTCATGAGGTGATGTC -ACGGAACAGTCATGAGGTACAGTC -ACGGAACAGTCATGAGGTTTGCTG -ACGGAACAGTCATGAGGTTCCATG -ACGGAACAGTCATGAGGTTGTGTG -ACGGAACAGTCATGAGGTCTAGTG -ACGGAACAGTCATGAGGTCATCTG -ACGGAACAGTCATGAGGTGAGTTG -ACGGAACAGTCATGAGGTAGACTG -ACGGAACAGTCATGAGGTTCGGTA -ACGGAACAGTCATGAGGTTGCCTA -ACGGAACAGTCATGAGGTCCACTA -ACGGAACAGTCATGAGGTGGAGTA -ACGGAACAGTCATGAGGTTCGTCT -ACGGAACAGTCATGAGGTTGCACT -ACGGAACAGTCATGAGGTCTGACT -ACGGAACAGTCATGAGGTCAACCT -ACGGAACAGTCATGAGGTGCTACT -ACGGAACAGTCATGAGGTGGATCT -ACGGAACAGTCATGAGGTAAGGCT -ACGGAACAGTCATGAGGTTCAACC -ACGGAACAGTCATGAGGTTGTTCC -ACGGAACAGTCATGAGGTATTCCC -ACGGAACAGTCATGAGGTTTCTCG -ACGGAACAGTCATGAGGTTAGACG -ACGGAACAGTCATGAGGTGTAACG -ACGGAACAGTCATGAGGTACTTCG -ACGGAACAGTCATGAGGTTACGCA -ACGGAACAGTCATGAGGTCTTGCA -ACGGAACAGTCATGAGGTCGAACA -ACGGAACAGTCATGAGGTCAGTCA -ACGGAACAGTCATGAGGTGATCCA -ACGGAACAGTCATGAGGTACGACA -ACGGAACAGTCATGAGGTAGCTCA -ACGGAACAGTCATGAGGTTCACGT -ACGGAACAGTCATGAGGTCGTAGT -ACGGAACAGTCATGAGGTGTCAGT -ACGGAACAGTCATGAGGTGAAGGT -ACGGAACAGTCATGAGGTAACCGT -ACGGAACAGTCATGAGGTTTGTGC -ACGGAACAGTCATGAGGTCTAAGC -ACGGAACAGTCATGAGGTACTAGC -ACGGAACAGTCATGAGGTAGATGC -ACGGAACAGTCATGAGGTTGAAGG -ACGGAACAGTCATGAGGTCAATGG -ACGGAACAGTCATGAGGTATGAGG -ACGGAACAGTCATGAGGTAATGGG -ACGGAACAGTCATGAGGTTCCTGA -ACGGAACAGTCATGAGGTTAGCGA -ACGGAACAGTCATGAGGTCACAGA -ACGGAACAGTCATGAGGTGCAAGA -ACGGAACAGTCATGAGGTGGTTGA -ACGGAACAGTCATGAGGTTCCGAT -ACGGAACAGTCATGAGGTTGGCAT -ACGGAACAGTCATGAGGTCGAGAT -ACGGAACAGTCATGAGGTTACCAC -ACGGAACAGTCATGAGGTCAGAAC -ACGGAACAGTCATGAGGTGTCTAC -ACGGAACAGTCATGAGGTACGTAC -ACGGAACAGTCATGAGGTAGTGAC -ACGGAACAGTCATGAGGTCTGTAG -ACGGAACAGTCATGAGGTCCTAAG -ACGGAACAGTCATGAGGTGTTCAG -ACGGAACAGTCATGAGGTGCATAG -ACGGAACAGTCATGAGGTGACAAG -ACGGAACAGTCATGAGGTAAGCAG -ACGGAACAGTCATGAGGTCGTCAA -ACGGAACAGTCATGAGGTGCTGAA -ACGGAACAGTCATGAGGTAGTACG -ACGGAACAGTCATGAGGTATCCGA -ACGGAACAGTCATGAGGTATGGGA -ACGGAACAGTCATGAGGTGTGCAA -ACGGAACAGTCATGAGGTGAGGAA -ACGGAACAGTCATGAGGTCAGGTA -ACGGAACAGTCATGAGGTGACTCT -ACGGAACAGTCATGAGGTAGTCCT -ACGGAACAGTCATGAGGTTAAGCC -ACGGAACAGTCATGAGGTATAGCC -ACGGAACAGTCATGAGGTTAACCG -ACGGAACAGTCATGAGGTATGCCA -ACGGAACAGTCAGATTCCGGAAAC -ACGGAACAGTCAGATTCCAACACC -ACGGAACAGTCAGATTCCATCGAG -ACGGAACAGTCAGATTCCCTCCTT -ACGGAACAGTCAGATTCCCCTGTT -ACGGAACAGTCAGATTCCCGGTTT -ACGGAACAGTCAGATTCCGTGGTT -ACGGAACAGTCAGATTCCGCCTTT -ACGGAACAGTCAGATTCCGGTCTT -ACGGAACAGTCAGATTCCACGCTT -ACGGAACAGTCAGATTCCAGCGTT -ACGGAACAGTCAGATTCCTTCGTC -ACGGAACAGTCAGATTCCTCTCTC -ACGGAACAGTCAGATTCCTGGATC -ACGGAACAGTCAGATTCCCACTTC -ACGGAACAGTCAGATTCCGTACTC -ACGGAACAGTCAGATTCCGATGTC -ACGGAACAGTCAGATTCCACAGTC -ACGGAACAGTCAGATTCCTTGCTG -ACGGAACAGTCAGATTCCTCCATG -ACGGAACAGTCAGATTCCTGTGTG -ACGGAACAGTCAGATTCCCTAGTG -ACGGAACAGTCAGATTCCCATCTG -ACGGAACAGTCAGATTCCGAGTTG -ACGGAACAGTCAGATTCCAGACTG -ACGGAACAGTCAGATTCCTCGGTA -ACGGAACAGTCAGATTCCTGCCTA -ACGGAACAGTCAGATTCCCCACTA -ACGGAACAGTCAGATTCCGGAGTA -ACGGAACAGTCAGATTCCTCGTCT -ACGGAACAGTCAGATTCCTGCACT -ACGGAACAGTCAGATTCCCTGACT -ACGGAACAGTCAGATTCCCAACCT -ACGGAACAGTCAGATTCCGCTACT -ACGGAACAGTCAGATTCCGGATCT -ACGGAACAGTCAGATTCCAAGGCT -ACGGAACAGTCAGATTCCTCAACC -ACGGAACAGTCAGATTCCTGTTCC -ACGGAACAGTCAGATTCCATTCCC -ACGGAACAGTCAGATTCCTTCTCG -ACGGAACAGTCAGATTCCTAGACG -ACGGAACAGTCAGATTCCGTAACG -ACGGAACAGTCAGATTCCACTTCG -ACGGAACAGTCAGATTCCTACGCA -ACGGAACAGTCAGATTCCCTTGCA -ACGGAACAGTCAGATTCCCGAACA -ACGGAACAGTCAGATTCCCAGTCA -ACGGAACAGTCAGATTCCGATCCA -ACGGAACAGTCAGATTCCACGACA -ACGGAACAGTCAGATTCCAGCTCA -ACGGAACAGTCAGATTCCTCACGT -ACGGAACAGTCAGATTCCCGTAGT -ACGGAACAGTCAGATTCCGTCAGT -ACGGAACAGTCAGATTCCGAAGGT -ACGGAACAGTCAGATTCCAACCGT -ACGGAACAGTCAGATTCCTTGTGC -ACGGAACAGTCAGATTCCCTAAGC -ACGGAACAGTCAGATTCCACTAGC -ACGGAACAGTCAGATTCCAGATGC -ACGGAACAGTCAGATTCCTGAAGG -ACGGAACAGTCAGATTCCCAATGG -ACGGAACAGTCAGATTCCATGAGG -ACGGAACAGTCAGATTCCAATGGG -ACGGAACAGTCAGATTCCTCCTGA -ACGGAACAGTCAGATTCCTAGCGA -ACGGAACAGTCAGATTCCCACAGA -ACGGAACAGTCAGATTCCGCAAGA -ACGGAACAGTCAGATTCCGGTTGA -ACGGAACAGTCAGATTCCTCCGAT -ACGGAACAGTCAGATTCCTGGCAT -ACGGAACAGTCAGATTCCCGAGAT -ACGGAACAGTCAGATTCCTACCAC -ACGGAACAGTCAGATTCCCAGAAC -ACGGAACAGTCAGATTCCGTCTAC -ACGGAACAGTCAGATTCCACGTAC -ACGGAACAGTCAGATTCCAGTGAC -ACGGAACAGTCAGATTCCCTGTAG -ACGGAACAGTCAGATTCCCCTAAG -ACGGAACAGTCAGATTCCGTTCAG -ACGGAACAGTCAGATTCCGCATAG -ACGGAACAGTCAGATTCCGACAAG -ACGGAACAGTCAGATTCCAAGCAG -ACGGAACAGTCAGATTCCCGTCAA -ACGGAACAGTCAGATTCCGCTGAA -ACGGAACAGTCAGATTCCAGTACG -ACGGAACAGTCAGATTCCATCCGA -ACGGAACAGTCAGATTCCATGGGA -ACGGAACAGTCAGATTCCGTGCAA -ACGGAACAGTCAGATTCCGAGGAA -ACGGAACAGTCAGATTCCCAGGTA -ACGGAACAGTCAGATTCCGACTCT -ACGGAACAGTCAGATTCCAGTCCT -ACGGAACAGTCAGATTCCTAAGCC -ACGGAACAGTCAGATTCCATAGCC -ACGGAACAGTCAGATTCCTAACCG -ACGGAACAGTCAGATTCCATGCCA -ACGGAACAGTCACATTGGGGAAAC -ACGGAACAGTCACATTGGAACACC -ACGGAACAGTCACATTGGATCGAG -ACGGAACAGTCACATTGGCTCCTT -ACGGAACAGTCACATTGGCCTGTT -ACGGAACAGTCACATTGGCGGTTT -ACGGAACAGTCACATTGGGTGGTT -ACGGAACAGTCACATTGGGCCTTT -ACGGAACAGTCACATTGGGGTCTT -ACGGAACAGTCACATTGGACGCTT -ACGGAACAGTCACATTGGAGCGTT -ACGGAACAGTCACATTGGTTCGTC -ACGGAACAGTCACATTGGTCTCTC -ACGGAACAGTCACATTGGTGGATC -ACGGAACAGTCACATTGGCACTTC -ACGGAACAGTCACATTGGGTACTC -ACGGAACAGTCACATTGGGATGTC -ACGGAACAGTCACATTGGACAGTC -ACGGAACAGTCACATTGGTTGCTG -ACGGAACAGTCACATTGGTCCATG -ACGGAACAGTCACATTGGTGTGTG -ACGGAACAGTCACATTGGCTAGTG -ACGGAACAGTCACATTGGCATCTG -ACGGAACAGTCACATTGGGAGTTG -ACGGAACAGTCACATTGGAGACTG -ACGGAACAGTCACATTGGTCGGTA -ACGGAACAGTCACATTGGTGCCTA -ACGGAACAGTCACATTGGCCACTA -ACGGAACAGTCACATTGGGGAGTA -ACGGAACAGTCACATTGGTCGTCT -ACGGAACAGTCACATTGGTGCACT -ACGGAACAGTCACATTGGCTGACT -ACGGAACAGTCACATTGGCAACCT -ACGGAACAGTCACATTGGGCTACT -ACGGAACAGTCACATTGGGGATCT -ACGGAACAGTCACATTGGAAGGCT -ACGGAACAGTCACATTGGTCAACC -ACGGAACAGTCACATTGGTGTTCC -ACGGAACAGTCACATTGGATTCCC -ACGGAACAGTCACATTGGTTCTCG -ACGGAACAGTCACATTGGTAGACG -ACGGAACAGTCACATTGGGTAACG -ACGGAACAGTCACATTGGACTTCG -ACGGAACAGTCACATTGGTACGCA -ACGGAACAGTCACATTGGCTTGCA -ACGGAACAGTCACATTGGCGAACA -ACGGAACAGTCACATTGGCAGTCA -ACGGAACAGTCACATTGGGATCCA -ACGGAACAGTCACATTGGACGACA -ACGGAACAGTCACATTGGAGCTCA -ACGGAACAGTCACATTGGTCACGT -ACGGAACAGTCACATTGGCGTAGT -ACGGAACAGTCACATTGGGTCAGT -ACGGAACAGTCACATTGGGAAGGT -ACGGAACAGTCACATTGGAACCGT -ACGGAACAGTCACATTGGTTGTGC -ACGGAACAGTCACATTGGCTAAGC -ACGGAACAGTCACATTGGACTAGC -ACGGAACAGTCACATTGGAGATGC -ACGGAACAGTCACATTGGTGAAGG -ACGGAACAGTCACATTGGCAATGG -ACGGAACAGTCACATTGGATGAGG -ACGGAACAGTCACATTGGAATGGG -ACGGAACAGTCACATTGGTCCTGA -ACGGAACAGTCACATTGGTAGCGA -ACGGAACAGTCACATTGGCACAGA -ACGGAACAGTCACATTGGGCAAGA -ACGGAACAGTCACATTGGGGTTGA -ACGGAACAGTCACATTGGTCCGAT -ACGGAACAGTCACATTGGTGGCAT -ACGGAACAGTCACATTGGCGAGAT -ACGGAACAGTCACATTGGTACCAC -ACGGAACAGTCACATTGGCAGAAC -ACGGAACAGTCACATTGGGTCTAC -ACGGAACAGTCACATTGGACGTAC -ACGGAACAGTCACATTGGAGTGAC -ACGGAACAGTCACATTGGCTGTAG -ACGGAACAGTCACATTGGCCTAAG -ACGGAACAGTCACATTGGGTTCAG -ACGGAACAGTCACATTGGGCATAG -ACGGAACAGTCACATTGGGACAAG -ACGGAACAGTCACATTGGAAGCAG -ACGGAACAGTCACATTGGCGTCAA -ACGGAACAGTCACATTGGGCTGAA -ACGGAACAGTCACATTGGAGTACG -ACGGAACAGTCACATTGGATCCGA -ACGGAACAGTCACATTGGATGGGA -ACGGAACAGTCACATTGGGTGCAA -ACGGAACAGTCACATTGGGAGGAA -ACGGAACAGTCACATTGGCAGGTA -ACGGAACAGTCACATTGGGACTCT -ACGGAACAGTCACATTGGAGTCCT -ACGGAACAGTCACATTGGTAAGCC -ACGGAACAGTCACATTGGATAGCC -ACGGAACAGTCACATTGGTAACCG -ACGGAACAGTCACATTGGATGCCA -ACGGAACAGTCAGATCGAGGAAAC -ACGGAACAGTCAGATCGAAACACC -ACGGAACAGTCAGATCGAATCGAG -ACGGAACAGTCAGATCGACTCCTT -ACGGAACAGTCAGATCGACCTGTT -ACGGAACAGTCAGATCGACGGTTT -ACGGAACAGTCAGATCGAGTGGTT -ACGGAACAGTCAGATCGAGCCTTT -ACGGAACAGTCAGATCGAGGTCTT -ACGGAACAGTCAGATCGAACGCTT -ACGGAACAGTCAGATCGAAGCGTT -ACGGAACAGTCAGATCGATTCGTC -ACGGAACAGTCAGATCGATCTCTC -ACGGAACAGTCAGATCGATGGATC -ACGGAACAGTCAGATCGACACTTC -ACGGAACAGTCAGATCGAGTACTC -ACGGAACAGTCAGATCGAGATGTC -ACGGAACAGTCAGATCGAACAGTC -ACGGAACAGTCAGATCGATTGCTG -ACGGAACAGTCAGATCGATCCATG -ACGGAACAGTCAGATCGATGTGTG -ACGGAACAGTCAGATCGACTAGTG -ACGGAACAGTCAGATCGACATCTG -ACGGAACAGTCAGATCGAGAGTTG -ACGGAACAGTCAGATCGAAGACTG -ACGGAACAGTCAGATCGATCGGTA -ACGGAACAGTCAGATCGATGCCTA -ACGGAACAGTCAGATCGACCACTA -ACGGAACAGTCAGATCGAGGAGTA -ACGGAACAGTCAGATCGATCGTCT -ACGGAACAGTCAGATCGATGCACT -ACGGAACAGTCAGATCGACTGACT -ACGGAACAGTCAGATCGACAACCT -ACGGAACAGTCAGATCGAGCTACT -ACGGAACAGTCAGATCGAGGATCT -ACGGAACAGTCAGATCGAAAGGCT -ACGGAACAGTCAGATCGATCAACC -ACGGAACAGTCAGATCGATGTTCC -ACGGAACAGTCAGATCGAATTCCC -ACGGAACAGTCAGATCGATTCTCG -ACGGAACAGTCAGATCGATAGACG -ACGGAACAGTCAGATCGAGTAACG -ACGGAACAGTCAGATCGAACTTCG -ACGGAACAGTCAGATCGATACGCA -ACGGAACAGTCAGATCGACTTGCA -ACGGAACAGTCAGATCGACGAACA -ACGGAACAGTCAGATCGACAGTCA -ACGGAACAGTCAGATCGAGATCCA -ACGGAACAGTCAGATCGAACGACA -ACGGAACAGTCAGATCGAAGCTCA -ACGGAACAGTCAGATCGATCACGT -ACGGAACAGTCAGATCGACGTAGT -ACGGAACAGTCAGATCGAGTCAGT -ACGGAACAGTCAGATCGAGAAGGT -ACGGAACAGTCAGATCGAAACCGT -ACGGAACAGTCAGATCGATTGTGC -ACGGAACAGTCAGATCGACTAAGC -ACGGAACAGTCAGATCGAACTAGC -ACGGAACAGTCAGATCGAAGATGC -ACGGAACAGTCAGATCGATGAAGG -ACGGAACAGTCAGATCGACAATGG -ACGGAACAGTCAGATCGAATGAGG -ACGGAACAGTCAGATCGAAATGGG -ACGGAACAGTCAGATCGATCCTGA -ACGGAACAGTCAGATCGATAGCGA -ACGGAACAGTCAGATCGACACAGA -ACGGAACAGTCAGATCGAGCAAGA -ACGGAACAGTCAGATCGAGGTTGA -ACGGAACAGTCAGATCGATCCGAT -ACGGAACAGTCAGATCGATGGCAT -ACGGAACAGTCAGATCGACGAGAT -ACGGAACAGTCAGATCGATACCAC -ACGGAACAGTCAGATCGACAGAAC -ACGGAACAGTCAGATCGAGTCTAC -ACGGAACAGTCAGATCGAACGTAC -ACGGAACAGTCAGATCGAAGTGAC -ACGGAACAGTCAGATCGACTGTAG -ACGGAACAGTCAGATCGACCTAAG -ACGGAACAGTCAGATCGAGTTCAG -ACGGAACAGTCAGATCGAGCATAG -ACGGAACAGTCAGATCGAGACAAG -ACGGAACAGTCAGATCGAAAGCAG -ACGGAACAGTCAGATCGACGTCAA -ACGGAACAGTCAGATCGAGCTGAA -ACGGAACAGTCAGATCGAAGTACG -ACGGAACAGTCAGATCGAATCCGA -ACGGAACAGTCAGATCGAATGGGA -ACGGAACAGTCAGATCGAGTGCAA -ACGGAACAGTCAGATCGAGAGGAA -ACGGAACAGTCAGATCGACAGGTA -ACGGAACAGTCAGATCGAGACTCT -ACGGAACAGTCAGATCGAAGTCCT -ACGGAACAGTCAGATCGATAAGCC -ACGGAACAGTCAGATCGAATAGCC -ACGGAACAGTCAGATCGATAACCG -ACGGAACAGTCAGATCGAATGCCA -ACGGAACAGTCACACTACGGAAAC -ACGGAACAGTCACACTACAACACC -ACGGAACAGTCACACTACATCGAG -ACGGAACAGTCACACTACCTCCTT -ACGGAACAGTCACACTACCCTGTT -ACGGAACAGTCACACTACCGGTTT -ACGGAACAGTCACACTACGTGGTT -ACGGAACAGTCACACTACGCCTTT -ACGGAACAGTCACACTACGGTCTT -ACGGAACAGTCACACTACACGCTT -ACGGAACAGTCACACTACAGCGTT -ACGGAACAGTCACACTACTTCGTC -ACGGAACAGTCACACTACTCTCTC -ACGGAACAGTCACACTACTGGATC -ACGGAACAGTCACACTACCACTTC -ACGGAACAGTCACACTACGTACTC -ACGGAACAGTCACACTACGATGTC -ACGGAACAGTCACACTACACAGTC -ACGGAACAGTCACACTACTTGCTG -ACGGAACAGTCACACTACTCCATG -ACGGAACAGTCACACTACTGTGTG -ACGGAACAGTCACACTACCTAGTG -ACGGAACAGTCACACTACCATCTG -ACGGAACAGTCACACTACGAGTTG -ACGGAACAGTCACACTACAGACTG -ACGGAACAGTCACACTACTCGGTA -ACGGAACAGTCACACTACTGCCTA -ACGGAACAGTCACACTACCCACTA -ACGGAACAGTCACACTACGGAGTA -ACGGAACAGTCACACTACTCGTCT -ACGGAACAGTCACACTACTGCACT -ACGGAACAGTCACACTACCTGACT -ACGGAACAGTCACACTACCAACCT -ACGGAACAGTCACACTACGCTACT -ACGGAACAGTCACACTACGGATCT -ACGGAACAGTCACACTACAAGGCT -ACGGAACAGTCACACTACTCAACC -ACGGAACAGTCACACTACTGTTCC -ACGGAACAGTCACACTACATTCCC -ACGGAACAGTCACACTACTTCTCG -ACGGAACAGTCACACTACTAGACG -ACGGAACAGTCACACTACGTAACG -ACGGAACAGTCACACTACACTTCG -ACGGAACAGTCACACTACTACGCA -ACGGAACAGTCACACTACCTTGCA -ACGGAACAGTCACACTACCGAACA -ACGGAACAGTCACACTACCAGTCA -ACGGAACAGTCACACTACGATCCA -ACGGAACAGTCACACTACACGACA -ACGGAACAGTCACACTACAGCTCA -ACGGAACAGTCACACTACTCACGT -ACGGAACAGTCACACTACCGTAGT -ACGGAACAGTCACACTACGTCAGT -ACGGAACAGTCACACTACGAAGGT -ACGGAACAGTCACACTACAACCGT -ACGGAACAGTCACACTACTTGTGC -ACGGAACAGTCACACTACCTAAGC -ACGGAACAGTCACACTACACTAGC -ACGGAACAGTCACACTACAGATGC -ACGGAACAGTCACACTACTGAAGG -ACGGAACAGTCACACTACCAATGG -ACGGAACAGTCACACTACATGAGG -ACGGAACAGTCACACTACAATGGG -ACGGAACAGTCACACTACTCCTGA -ACGGAACAGTCACACTACTAGCGA -ACGGAACAGTCACACTACCACAGA -ACGGAACAGTCACACTACGCAAGA -ACGGAACAGTCACACTACGGTTGA -ACGGAACAGTCACACTACTCCGAT -ACGGAACAGTCACACTACTGGCAT -ACGGAACAGTCACACTACCGAGAT -ACGGAACAGTCACACTACTACCAC -ACGGAACAGTCACACTACCAGAAC -ACGGAACAGTCACACTACGTCTAC -ACGGAACAGTCACACTACACGTAC -ACGGAACAGTCACACTACAGTGAC -ACGGAACAGTCACACTACCTGTAG -ACGGAACAGTCACACTACCCTAAG -ACGGAACAGTCACACTACGTTCAG -ACGGAACAGTCACACTACGCATAG -ACGGAACAGTCACACTACGACAAG -ACGGAACAGTCACACTACAAGCAG -ACGGAACAGTCACACTACCGTCAA -ACGGAACAGTCACACTACGCTGAA -ACGGAACAGTCACACTACAGTACG -ACGGAACAGTCACACTACATCCGA -ACGGAACAGTCACACTACATGGGA -ACGGAACAGTCACACTACGTGCAA -ACGGAACAGTCACACTACGAGGAA -ACGGAACAGTCACACTACCAGGTA -ACGGAACAGTCACACTACGACTCT -ACGGAACAGTCACACTACAGTCCT -ACGGAACAGTCACACTACTAAGCC -ACGGAACAGTCACACTACATAGCC -ACGGAACAGTCACACTACTAACCG -ACGGAACAGTCACACTACATGCCA -ACGGAACAGTCAAACCAGGGAAAC -ACGGAACAGTCAAACCAGAACACC -ACGGAACAGTCAAACCAGATCGAG -ACGGAACAGTCAAACCAGCTCCTT -ACGGAACAGTCAAACCAGCCTGTT -ACGGAACAGTCAAACCAGCGGTTT -ACGGAACAGTCAAACCAGGTGGTT -ACGGAACAGTCAAACCAGGCCTTT -ACGGAACAGTCAAACCAGGGTCTT -ACGGAACAGTCAAACCAGACGCTT -ACGGAACAGTCAAACCAGAGCGTT -ACGGAACAGTCAAACCAGTTCGTC -ACGGAACAGTCAAACCAGTCTCTC -ACGGAACAGTCAAACCAGTGGATC -ACGGAACAGTCAAACCAGCACTTC -ACGGAACAGTCAAACCAGGTACTC -ACGGAACAGTCAAACCAGGATGTC -ACGGAACAGTCAAACCAGACAGTC -ACGGAACAGTCAAACCAGTTGCTG -ACGGAACAGTCAAACCAGTCCATG -ACGGAACAGTCAAACCAGTGTGTG -ACGGAACAGTCAAACCAGCTAGTG -ACGGAACAGTCAAACCAGCATCTG -ACGGAACAGTCAAACCAGGAGTTG -ACGGAACAGTCAAACCAGAGACTG -ACGGAACAGTCAAACCAGTCGGTA -ACGGAACAGTCAAACCAGTGCCTA -ACGGAACAGTCAAACCAGCCACTA -ACGGAACAGTCAAACCAGGGAGTA -ACGGAACAGTCAAACCAGTCGTCT -ACGGAACAGTCAAACCAGTGCACT -ACGGAACAGTCAAACCAGCTGACT -ACGGAACAGTCAAACCAGCAACCT -ACGGAACAGTCAAACCAGGCTACT -ACGGAACAGTCAAACCAGGGATCT -ACGGAACAGTCAAACCAGAAGGCT -ACGGAACAGTCAAACCAGTCAACC -ACGGAACAGTCAAACCAGTGTTCC -ACGGAACAGTCAAACCAGATTCCC -ACGGAACAGTCAAACCAGTTCTCG -ACGGAACAGTCAAACCAGTAGACG -ACGGAACAGTCAAACCAGGTAACG -ACGGAACAGTCAAACCAGACTTCG -ACGGAACAGTCAAACCAGTACGCA -ACGGAACAGTCAAACCAGCTTGCA -ACGGAACAGTCAAACCAGCGAACA -ACGGAACAGTCAAACCAGCAGTCA -ACGGAACAGTCAAACCAGGATCCA -ACGGAACAGTCAAACCAGACGACA -ACGGAACAGTCAAACCAGAGCTCA -ACGGAACAGTCAAACCAGTCACGT -ACGGAACAGTCAAACCAGCGTAGT -ACGGAACAGTCAAACCAGGTCAGT -ACGGAACAGTCAAACCAGGAAGGT -ACGGAACAGTCAAACCAGAACCGT -ACGGAACAGTCAAACCAGTTGTGC -ACGGAACAGTCAAACCAGCTAAGC -ACGGAACAGTCAAACCAGACTAGC -ACGGAACAGTCAAACCAGAGATGC -ACGGAACAGTCAAACCAGTGAAGG -ACGGAACAGTCAAACCAGCAATGG -ACGGAACAGTCAAACCAGATGAGG -ACGGAACAGTCAAACCAGAATGGG -ACGGAACAGTCAAACCAGTCCTGA -ACGGAACAGTCAAACCAGTAGCGA -ACGGAACAGTCAAACCAGCACAGA -ACGGAACAGTCAAACCAGGCAAGA -ACGGAACAGTCAAACCAGGGTTGA -ACGGAACAGTCAAACCAGTCCGAT -ACGGAACAGTCAAACCAGTGGCAT -ACGGAACAGTCAAACCAGCGAGAT -ACGGAACAGTCAAACCAGTACCAC -ACGGAACAGTCAAACCAGCAGAAC -ACGGAACAGTCAAACCAGGTCTAC -ACGGAACAGTCAAACCAGACGTAC -ACGGAACAGTCAAACCAGAGTGAC -ACGGAACAGTCAAACCAGCTGTAG -ACGGAACAGTCAAACCAGCCTAAG -ACGGAACAGTCAAACCAGGTTCAG -ACGGAACAGTCAAACCAGGCATAG -ACGGAACAGTCAAACCAGGACAAG -ACGGAACAGTCAAACCAGAAGCAG -ACGGAACAGTCAAACCAGCGTCAA -ACGGAACAGTCAAACCAGGCTGAA -ACGGAACAGTCAAACCAGAGTACG -ACGGAACAGTCAAACCAGATCCGA -ACGGAACAGTCAAACCAGATGGGA -ACGGAACAGTCAAACCAGGTGCAA -ACGGAACAGTCAAACCAGGAGGAA -ACGGAACAGTCAAACCAGCAGGTA -ACGGAACAGTCAAACCAGGACTCT -ACGGAACAGTCAAACCAGAGTCCT -ACGGAACAGTCAAACCAGTAAGCC -ACGGAACAGTCAAACCAGATAGCC -ACGGAACAGTCAAACCAGTAACCG -ACGGAACAGTCAAACCAGATGCCA -ACGGAACAGTCATACGTCGGAAAC -ACGGAACAGTCATACGTCAACACC -ACGGAACAGTCATACGTCATCGAG -ACGGAACAGTCATACGTCCTCCTT -ACGGAACAGTCATACGTCCCTGTT -ACGGAACAGTCATACGTCCGGTTT -ACGGAACAGTCATACGTCGTGGTT -ACGGAACAGTCATACGTCGCCTTT -ACGGAACAGTCATACGTCGGTCTT -ACGGAACAGTCATACGTCACGCTT -ACGGAACAGTCATACGTCAGCGTT -ACGGAACAGTCATACGTCTTCGTC -ACGGAACAGTCATACGTCTCTCTC -ACGGAACAGTCATACGTCTGGATC -ACGGAACAGTCATACGTCCACTTC -ACGGAACAGTCATACGTCGTACTC -ACGGAACAGTCATACGTCGATGTC -ACGGAACAGTCATACGTCACAGTC -ACGGAACAGTCATACGTCTTGCTG -ACGGAACAGTCATACGTCTCCATG -ACGGAACAGTCATACGTCTGTGTG -ACGGAACAGTCATACGTCCTAGTG -ACGGAACAGTCATACGTCCATCTG -ACGGAACAGTCATACGTCGAGTTG -ACGGAACAGTCATACGTCAGACTG -ACGGAACAGTCATACGTCTCGGTA -ACGGAACAGTCATACGTCTGCCTA -ACGGAACAGTCATACGTCCCACTA -ACGGAACAGTCATACGTCGGAGTA -ACGGAACAGTCATACGTCTCGTCT -ACGGAACAGTCATACGTCTGCACT -ACGGAACAGTCATACGTCCTGACT -ACGGAACAGTCATACGTCCAACCT -ACGGAACAGTCATACGTCGCTACT -ACGGAACAGTCATACGTCGGATCT -ACGGAACAGTCATACGTCAAGGCT -ACGGAACAGTCATACGTCTCAACC -ACGGAACAGTCATACGTCTGTTCC -ACGGAACAGTCATACGTCATTCCC -ACGGAACAGTCATACGTCTTCTCG -ACGGAACAGTCATACGTCTAGACG -ACGGAACAGTCATACGTCGTAACG -ACGGAACAGTCATACGTCACTTCG -ACGGAACAGTCATACGTCTACGCA -ACGGAACAGTCATACGTCCTTGCA -ACGGAACAGTCATACGTCCGAACA -ACGGAACAGTCATACGTCCAGTCA -ACGGAACAGTCATACGTCGATCCA -ACGGAACAGTCATACGTCACGACA -ACGGAACAGTCATACGTCAGCTCA -ACGGAACAGTCATACGTCTCACGT -ACGGAACAGTCATACGTCCGTAGT -ACGGAACAGTCATACGTCGTCAGT -ACGGAACAGTCATACGTCGAAGGT -ACGGAACAGTCATACGTCAACCGT -ACGGAACAGTCATACGTCTTGTGC -ACGGAACAGTCATACGTCCTAAGC -ACGGAACAGTCATACGTCACTAGC -ACGGAACAGTCATACGTCAGATGC -ACGGAACAGTCATACGTCTGAAGG -ACGGAACAGTCATACGTCCAATGG -ACGGAACAGTCATACGTCATGAGG -ACGGAACAGTCATACGTCAATGGG -ACGGAACAGTCATACGTCTCCTGA -ACGGAACAGTCATACGTCTAGCGA -ACGGAACAGTCATACGTCCACAGA -ACGGAACAGTCATACGTCGCAAGA -ACGGAACAGTCATACGTCGGTTGA -ACGGAACAGTCATACGTCTCCGAT -ACGGAACAGTCATACGTCTGGCAT -ACGGAACAGTCATACGTCCGAGAT -ACGGAACAGTCATACGTCTACCAC -ACGGAACAGTCATACGTCCAGAAC -ACGGAACAGTCATACGTCGTCTAC -ACGGAACAGTCATACGTCACGTAC -ACGGAACAGTCATACGTCAGTGAC -ACGGAACAGTCATACGTCCTGTAG -ACGGAACAGTCATACGTCCCTAAG -ACGGAACAGTCATACGTCGTTCAG -ACGGAACAGTCATACGTCGCATAG -ACGGAACAGTCATACGTCGACAAG -ACGGAACAGTCATACGTCAAGCAG -ACGGAACAGTCATACGTCCGTCAA -ACGGAACAGTCATACGTCGCTGAA -ACGGAACAGTCATACGTCAGTACG -ACGGAACAGTCATACGTCATCCGA -ACGGAACAGTCATACGTCATGGGA -ACGGAACAGTCATACGTCGTGCAA -ACGGAACAGTCATACGTCGAGGAA -ACGGAACAGTCATACGTCCAGGTA -ACGGAACAGTCATACGTCGACTCT -ACGGAACAGTCATACGTCAGTCCT -ACGGAACAGTCATACGTCTAAGCC -ACGGAACAGTCATACGTCATAGCC -ACGGAACAGTCATACGTCTAACCG -ACGGAACAGTCATACGTCATGCCA -ACGGAACAGTCATACACGGGAAAC -ACGGAACAGTCATACACGAACACC -ACGGAACAGTCATACACGATCGAG -ACGGAACAGTCATACACGCTCCTT -ACGGAACAGTCATACACGCCTGTT -ACGGAACAGTCATACACGCGGTTT -ACGGAACAGTCATACACGGTGGTT -ACGGAACAGTCATACACGGCCTTT -ACGGAACAGTCATACACGGGTCTT -ACGGAACAGTCATACACGACGCTT -ACGGAACAGTCATACACGAGCGTT -ACGGAACAGTCATACACGTTCGTC -ACGGAACAGTCATACACGTCTCTC -ACGGAACAGTCATACACGTGGATC -ACGGAACAGTCATACACGCACTTC -ACGGAACAGTCATACACGGTACTC -ACGGAACAGTCATACACGGATGTC -ACGGAACAGTCATACACGACAGTC -ACGGAACAGTCATACACGTTGCTG -ACGGAACAGTCATACACGTCCATG -ACGGAACAGTCATACACGTGTGTG -ACGGAACAGTCATACACGCTAGTG -ACGGAACAGTCATACACGCATCTG -ACGGAACAGTCATACACGGAGTTG -ACGGAACAGTCATACACGAGACTG -ACGGAACAGTCATACACGTCGGTA -ACGGAACAGTCATACACGTGCCTA -ACGGAACAGTCATACACGCCACTA -ACGGAACAGTCATACACGGGAGTA -ACGGAACAGTCATACACGTCGTCT -ACGGAACAGTCATACACGTGCACT -ACGGAACAGTCATACACGCTGACT -ACGGAACAGTCATACACGCAACCT -ACGGAACAGTCATACACGGCTACT -ACGGAACAGTCATACACGGGATCT -ACGGAACAGTCATACACGAAGGCT -ACGGAACAGTCATACACGTCAACC -ACGGAACAGTCATACACGTGTTCC -ACGGAACAGTCATACACGATTCCC -ACGGAACAGTCATACACGTTCTCG -ACGGAACAGTCATACACGTAGACG -ACGGAACAGTCATACACGGTAACG -ACGGAACAGTCATACACGACTTCG -ACGGAACAGTCATACACGTACGCA -ACGGAACAGTCATACACGCTTGCA -ACGGAACAGTCATACACGCGAACA -ACGGAACAGTCATACACGCAGTCA -ACGGAACAGTCATACACGGATCCA -ACGGAACAGTCATACACGACGACA -ACGGAACAGTCATACACGAGCTCA -ACGGAACAGTCATACACGTCACGT -ACGGAACAGTCATACACGCGTAGT -ACGGAACAGTCATACACGGTCAGT -ACGGAACAGTCATACACGGAAGGT -ACGGAACAGTCATACACGAACCGT -ACGGAACAGTCATACACGTTGTGC -ACGGAACAGTCATACACGCTAAGC -ACGGAACAGTCATACACGACTAGC -ACGGAACAGTCATACACGAGATGC -ACGGAACAGTCATACACGTGAAGG -ACGGAACAGTCATACACGCAATGG -ACGGAACAGTCATACACGATGAGG -ACGGAACAGTCATACACGAATGGG -ACGGAACAGTCATACACGTCCTGA -ACGGAACAGTCATACACGTAGCGA -ACGGAACAGTCATACACGCACAGA -ACGGAACAGTCATACACGGCAAGA -ACGGAACAGTCATACACGGGTTGA -ACGGAACAGTCATACACGTCCGAT -ACGGAACAGTCATACACGTGGCAT -ACGGAACAGTCATACACGCGAGAT -ACGGAACAGTCATACACGTACCAC -ACGGAACAGTCATACACGCAGAAC -ACGGAACAGTCATACACGGTCTAC -ACGGAACAGTCATACACGACGTAC -ACGGAACAGTCATACACGAGTGAC -ACGGAACAGTCATACACGCTGTAG -ACGGAACAGTCATACACGCCTAAG -ACGGAACAGTCATACACGGTTCAG -ACGGAACAGTCATACACGGCATAG -ACGGAACAGTCATACACGGACAAG -ACGGAACAGTCATACACGAAGCAG -ACGGAACAGTCATACACGCGTCAA -ACGGAACAGTCATACACGGCTGAA -ACGGAACAGTCATACACGAGTACG -ACGGAACAGTCATACACGATCCGA -ACGGAACAGTCATACACGATGGGA -ACGGAACAGTCATACACGGTGCAA -ACGGAACAGTCATACACGGAGGAA -ACGGAACAGTCATACACGCAGGTA -ACGGAACAGTCATACACGGACTCT -ACGGAACAGTCATACACGAGTCCT -ACGGAACAGTCATACACGTAAGCC -ACGGAACAGTCATACACGATAGCC -ACGGAACAGTCATACACGTAACCG -ACGGAACAGTCATACACGATGCCA -ACGGAACAGTCAGACAGTGGAAAC -ACGGAACAGTCAGACAGTAACACC -ACGGAACAGTCAGACAGTATCGAG -ACGGAACAGTCAGACAGTCTCCTT -ACGGAACAGTCAGACAGTCCTGTT -ACGGAACAGTCAGACAGTCGGTTT -ACGGAACAGTCAGACAGTGTGGTT -ACGGAACAGTCAGACAGTGCCTTT -ACGGAACAGTCAGACAGTGGTCTT -ACGGAACAGTCAGACAGTACGCTT -ACGGAACAGTCAGACAGTAGCGTT -ACGGAACAGTCAGACAGTTTCGTC -ACGGAACAGTCAGACAGTTCTCTC -ACGGAACAGTCAGACAGTTGGATC -ACGGAACAGTCAGACAGTCACTTC -ACGGAACAGTCAGACAGTGTACTC -ACGGAACAGTCAGACAGTGATGTC -ACGGAACAGTCAGACAGTACAGTC -ACGGAACAGTCAGACAGTTTGCTG -ACGGAACAGTCAGACAGTTCCATG -ACGGAACAGTCAGACAGTTGTGTG -ACGGAACAGTCAGACAGTCTAGTG -ACGGAACAGTCAGACAGTCATCTG -ACGGAACAGTCAGACAGTGAGTTG -ACGGAACAGTCAGACAGTAGACTG -ACGGAACAGTCAGACAGTTCGGTA -ACGGAACAGTCAGACAGTTGCCTA -ACGGAACAGTCAGACAGTCCACTA -ACGGAACAGTCAGACAGTGGAGTA -ACGGAACAGTCAGACAGTTCGTCT -ACGGAACAGTCAGACAGTTGCACT -ACGGAACAGTCAGACAGTCTGACT -ACGGAACAGTCAGACAGTCAACCT -ACGGAACAGTCAGACAGTGCTACT -ACGGAACAGTCAGACAGTGGATCT -ACGGAACAGTCAGACAGTAAGGCT -ACGGAACAGTCAGACAGTTCAACC -ACGGAACAGTCAGACAGTTGTTCC -ACGGAACAGTCAGACAGTATTCCC -ACGGAACAGTCAGACAGTTTCTCG -ACGGAACAGTCAGACAGTTAGACG -ACGGAACAGTCAGACAGTGTAACG -ACGGAACAGTCAGACAGTACTTCG -ACGGAACAGTCAGACAGTTACGCA -ACGGAACAGTCAGACAGTCTTGCA -ACGGAACAGTCAGACAGTCGAACA -ACGGAACAGTCAGACAGTCAGTCA -ACGGAACAGTCAGACAGTGATCCA -ACGGAACAGTCAGACAGTACGACA -ACGGAACAGTCAGACAGTAGCTCA -ACGGAACAGTCAGACAGTTCACGT -ACGGAACAGTCAGACAGTCGTAGT -ACGGAACAGTCAGACAGTGTCAGT -ACGGAACAGTCAGACAGTGAAGGT -ACGGAACAGTCAGACAGTAACCGT -ACGGAACAGTCAGACAGTTTGTGC -ACGGAACAGTCAGACAGTCTAAGC -ACGGAACAGTCAGACAGTACTAGC -ACGGAACAGTCAGACAGTAGATGC -ACGGAACAGTCAGACAGTTGAAGG -ACGGAACAGTCAGACAGTCAATGG -ACGGAACAGTCAGACAGTATGAGG -ACGGAACAGTCAGACAGTAATGGG -ACGGAACAGTCAGACAGTTCCTGA -ACGGAACAGTCAGACAGTTAGCGA -ACGGAACAGTCAGACAGTCACAGA -ACGGAACAGTCAGACAGTGCAAGA -ACGGAACAGTCAGACAGTGGTTGA -ACGGAACAGTCAGACAGTTCCGAT -ACGGAACAGTCAGACAGTTGGCAT -ACGGAACAGTCAGACAGTCGAGAT -ACGGAACAGTCAGACAGTTACCAC -ACGGAACAGTCAGACAGTCAGAAC -ACGGAACAGTCAGACAGTGTCTAC -ACGGAACAGTCAGACAGTACGTAC -ACGGAACAGTCAGACAGTAGTGAC -ACGGAACAGTCAGACAGTCTGTAG -ACGGAACAGTCAGACAGTCCTAAG -ACGGAACAGTCAGACAGTGTTCAG -ACGGAACAGTCAGACAGTGCATAG -ACGGAACAGTCAGACAGTGACAAG -ACGGAACAGTCAGACAGTAAGCAG -ACGGAACAGTCAGACAGTCGTCAA -ACGGAACAGTCAGACAGTGCTGAA -ACGGAACAGTCAGACAGTAGTACG -ACGGAACAGTCAGACAGTATCCGA -ACGGAACAGTCAGACAGTATGGGA -ACGGAACAGTCAGACAGTGTGCAA -ACGGAACAGTCAGACAGTGAGGAA -ACGGAACAGTCAGACAGTCAGGTA -ACGGAACAGTCAGACAGTGACTCT -ACGGAACAGTCAGACAGTAGTCCT -ACGGAACAGTCAGACAGTTAAGCC -ACGGAACAGTCAGACAGTATAGCC -ACGGAACAGTCAGACAGTTAACCG -ACGGAACAGTCAGACAGTATGCCA -ACGGAACAGTCATAGCTGGGAAAC -ACGGAACAGTCATAGCTGAACACC -ACGGAACAGTCATAGCTGATCGAG -ACGGAACAGTCATAGCTGCTCCTT -ACGGAACAGTCATAGCTGCCTGTT -ACGGAACAGTCATAGCTGCGGTTT -ACGGAACAGTCATAGCTGGTGGTT -ACGGAACAGTCATAGCTGGCCTTT -ACGGAACAGTCATAGCTGGGTCTT -ACGGAACAGTCATAGCTGACGCTT -ACGGAACAGTCATAGCTGAGCGTT -ACGGAACAGTCATAGCTGTTCGTC -ACGGAACAGTCATAGCTGTCTCTC -ACGGAACAGTCATAGCTGTGGATC -ACGGAACAGTCATAGCTGCACTTC -ACGGAACAGTCATAGCTGGTACTC -ACGGAACAGTCATAGCTGGATGTC -ACGGAACAGTCATAGCTGACAGTC -ACGGAACAGTCATAGCTGTTGCTG -ACGGAACAGTCATAGCTGTCCATG -ACGGAACAGTCATAGCTGTGTGTG -ACGGAACAGTCATAGCTGCTAGTG -ACGGAACAGTCATAGCTGCATCTG -ACGGAACAGTCATAGCTGGAGTTG -ACGGAACAGTCATAGCTGAGACTG -ACGGAACAGTCATAGCTGTCGGTA -ACGGAACAGTCATAGCTGTGCCTA -ACGGAACAGTCATAGCTGCCACTA -ACGGAACAGTCATAGCTGGGAGTA -ACGGAACAGTCATAGCTGTCGTCT -ACGGAACAGTCATAGCTGTGCACT -ACGGAACAGTCATAGCTGCTGACT -ACGGAACAGTCATAGCTGCAACCT -ACGGAACAGTCATAGCTGGCTACT -ACGGAACAGTCATAGCTGGGATCT -ACGGAACAGTCATAGCTGAAGGCT -ACGGAACAGTCATAGCTGTCAACC -ACGGAACAGTCATAGCTGTGTTCC -ACGGAACAGTCATAGCTGATTCCC -ACGGAACAGTCATAGCTGTTCTCG -ACGGAACAGTCATAGCTGTAGACG -ACGGAACAGTCATAGCTGGTAACG -ACGGAACAGTCATAGCTGACTTCG -ACGGAACAGTCATAGCTGTACGCA -ACGGAACAGTCATAGCTGCTTGCA -ACGGAACAGTCATAGCTGCGAACA -ACGGAACAGTCATAGCTGCAGTCA -ACGGAACAGTCATAGCTGGATCCA -ACGGAACAGTCATAGCTGACGACA -ACGGAACAGTCATAGCTGAGCTCA -ACGGAACAGTCATAGCTGTCACGT -ACGGAACAGTCATAGCTGCGTAGT -ACGGAACAGTCATAGCTGGTCAGT -ACGGAACAGTCATAGCTGGAAGGT -ACGGAACAGTCATAGCTGAACCGT -ACGGAACAGTCATAGCTGTTGTGC -ACGGAACAGTCATAGCTGCTAAGC -ACGGAACAGTCATAGCTGACTAGC -ACGGAACAGTCATAGCTGAGATGC -ACGGAACAGTCATAGCTGTGAAGG -ACGGAACAGTCATAGCTGCAATGG -ACGGAACAGTCATAGCTGATGAGG -ACGGAACAGTCATAGCTGAATGGG -ACGGAACAGTCATAGCTGTCCTGA -ACGGAACAGTCATAGCTGTAGCGA -ACGGAACAGTCATAGCTGCACAGA -ACGGAACAGTCATAGCTGGCAAGA -ACGGAACAGTCATAGCTGGGTTGA -ACGGAACAGTCATAGCTGTCCGAT -ACGGAACAGTCATAGCTGTGGCAT -ACGGAACAGTCATAGCTGCGAGAT -ACGGAACAGTCATAGCTGTACCAC -ACGGAACAGTCATAGCTGCAGAAC -ACGGAACAGTCATAGCTGGTCTAC -ACGGAACAGTCATAGCTGACGTAC -ACGGAACAGTCATAGCTGAGTGAC -ACGGAACAGTCATAGCTGCTGTAG -ACGGAACAGTCATAGCTGCCTAAG -ACGGAACAGTCATAGCTGGTTCAG -ACGGAACAGTCATAGCTGGCATAG -ACGGAACAGTCATAGCTGGACAAG -ACGGAACAGTCATAGCTGAAGCAG -ACGGAACAGTCATAGCTGCGTCAA -ACGGAACAGTCATAGCTGGCTGAA -ACGGAACAGTCATAGCTGAGTACG -ACGGAACAGTCATAGCTGATCCGA -ACGGAACAGTCATAGCTGATGGGA -ACGGAACAGTCATAGCTGGTGCAA -ACGGAACAGTCATAGCTGGAGGAA -ACGGAACAGTCATAGCTGCAGGTA -ACGGAACAGTCATAGCTGGACTCT -ACGGAACAGTCATAGCTGAGTCCT -ACGGAACAGTCATAGCTGTAAGCC -ACGGAACAGTCATAGCTGATAGCC -ACGGAACAGTCATAGCTGTAACCG -ACGGAACAGTCATAGCTGATGCCA -ACGGAACAGTCAAAGCCTGGAAAC -ACGGAACAGTCAAAGCCTAACACC -ACGGAACAGTCAAAGCCTATCGAG -ACGGAACAGTCAAAGCCTCTCCTT -ACGGAACAGTCAAAGCCTCCTGTT -ACGGAACAGTCAAAGCCTCGGTTT -ACGGAACAGTCAAAGCCTGTGGTT -ACGGAACAGTCAAAGCCTGCCTTT -ACGGAACAGTCAAAGCCTGGTCTT -ACGGAACAGTCAAAGCCTACGCTT -ACGGAACAGTCAAAGCCTAGCGTT -ACGGAACAGTCAAAGCCTTTCGTC -ACGGAACAGTCAAAGCCTTCTCTC -ACGGAACAGTCAAAGCCTTGGATC -ACGGAACAGTCAAAGCCTCACTTC -ACGGAACAGTCAAAGCCTGTACTC -ACGGAACAGTCAAAGCCTGATGTC -ACGGAACAGTCAAAGCCTACAGTC -ACGGAACAGTCAAAGCCTTTGCTG -ACGGAACAGTCAAAGCCTTCCATG -ACGGAACAGTCAAAGCCTTGTGTG -ACGGAACAGTCAAAGCCTCTAGTG -ACGGAACAGTCAAAGCCTCATCTG -ACGGAACAGTCAAAGCCTGAGTTG -ACGGAACAGTCAAAGCCTAGACTG -ACGGAACAGTCAAAGCCTTCGGTA -ACGGAACAGTCAAAGCCTTGCCTA -ACGGAACAGTCAAAGCCTCCACTA -ACGGAACAGTCAAAGCCTGGAGTA -ACGGAACAGTCAAAGCCTTCGTCT -ACGGAACAGTCAAAGCCTTGCACT -ACGGAACAGTCAAAGCCTCTGACT -ACGGAACAGTCAAAGCCTCAACCT -ACGGAACAGTCAAAGCCTGCTACT -ACGGAACAGTCAAAGCCTGGATCT -ACGGAACAGTCAAAGCCTAAGGCT -ACGGAACAGTCAAAGCCTTCAACC -ACGGAACAGTCAAAGCCTTGTTCC -ACGGAACAGTCAAAGCCTATTCCC -ACGGAACAGTCAAAGCCTTTCTCG -ACGGAACAGTCAAAGCCTTAGACG -ACGGAACAGTCAAAGCCTGTAACG -ACGGAACAGTCAAAGCCTACTTCG -ACGGAACAGTCAAAGCCTTACGCA -ACGGAACAGTCAAAGCCTCTTGCA -ACGGAACAGTCAAAGCCTCGAACA -ACGGAACAGTCAAAGCCTCAGTCA -ACGGAACAGTCAAAGCCTGATCCA -ACGGAACAGTCAAAGCCTACGACA -ACGGAACAGTCAAAGCCTAGCTCA -ACGGAACAGTCAAAGCCTTCACGT -ACGGAACAGTCAAAGCCTCGTAGT -ACGGAACAGTCAAAGCCTGTCAGT -ACGGAACAGTCAAAGCCTGAAGGT -ACGGAACAGTCAAAGCCTAACCGT -ACGGAACAGTCAAAGCCTTTGTGC -ACGGAACAGTCAAAGCCTCTAAGC -ACGGAACAGTCAAAGCCTACTAGC -ACGGAACAGTCAAAGCCTAGATGC -ACGGAACAGTCAAAGCCTTGAAGG -ACGGAACAGTCAAAGCCTCAATGG -ACGGAACAGTCAAAGCCTATGAGG -ACGGAACAGTCAAAGCCTAATGGG -ACGGAACAGTCAAAGCCTTCCTGA -ACGGAACAGTCAAAGCCTTAGCGA -ACGGAACAGTCAAAGCCTCACAGA -ACGGAACAGTCAAAGCCTGCAAGA -ACGGAACAGTCAAAGCCTGGTTGA -ACGGAACAGTCAAAGCCTTCCGAT -ACGGAACAGTCAAAGCCTTGGCAT -ACGGAACAGTCAAAGCCTCGAGAT -ACGGAACAGTCAAAGCCTTACCAC -ACGGAACAGTCAAAGCCTCAGAAC -ACGGAACAGTCAAAGCCTGTCTAC -ACGGAACAGTCAAAGCCTACGTAC -ACGGAACAGTCAAAGCCTAGTGAC -ACGGAACAGTCAAAGCCTCTGTAG -ACGGAACAGTCAAAGCCTCCTAAG -ACGGAACAGTCAAAGCCTGTTCAG -ACGGAACAGTCAAAGCCTGCATAG -ACGGAACAGTCAAAGCCTGACAAG -ACGGAACAGTCAAAGCCTAAGCAG -ACGGAACAGTCAAAGCCTCGTCAA -ACGGAACAGTCAAAGCCTGCTGAA -ACGGAACAGTCAAAGCCTAGTACG -ACGGAACAGTCAAAGCCTATCCGA -ACGGAACAGTCAAAGCCTATGGGA -ACGGAACAGTCAAAGCCTGTGCAA -ACGGAACAGTCAAAGCCTGAGGAA -ACGGAACAGTCAAAGCCTCAGGTA -ACGGAACAGTCAAAGCCTGACTCT -ACGGAACAGTCAAAGCCTAGTCCT -ACGGAACAGTCAAAGCCTTAAGCC -ACGGAACAGTCAAAGCCTATAGCC -ACGGAACAGTCAAAGCCTTAACCG -ACGGAACAGTCAAAGCCTATGCCA -ACGGAACAGTCACAGGTTGGAAAC -ACGGAACAGTCACAGGTTAACACC -ACGGAACAGTCACAGGTTATCGAG -ACGGAACAGTCACAGGTTCTCCTT -ACGGAACAGTCACAGGTTCCTGTT -ACGGAACAGTCACAGGTTCGGTTT -ACGGAACAGTCACAGGTTGTGGTT -ACGGAACAGTCACAGGTTGCCTTT -ACGGAACAGTCACAGGTTGGTCTT -ACGGAACAGTCACAGGTTACGCTT -ACGGAACAGTCACAGGTTAGCGTT -ACGGAACAGTCACAGGTTTTCGTC -ACGGAACAGTCACAGGTTTCTCTC -ACGGAACAGTCACAGGTTTGGATC -ACGGAACAGTCACAGGTTCACTTC -ACGGAACAGTCACAGGTTGTACTC -ACGGAACAGTCACAGGTTGATGTC -ACGGAACAGTCACAGGTTACAGTC -ACGGAACAGTCACAGGTTTTGCTG -ACGGAACAGTCACAGGTTTCCATG -ACGGAACAGTCACAGGTTTGTGTG -ACGGAACAGTCACAGGTTCTAGTG -ACGGAACAGTCACAGGTTCATCTG -ACGGAACAGTCACAGGTTGAGTTG -ACGGAACAGTCACAGGTTAGACTG -ACGGAACAGTCACAGGTTTCGGTA -ACGGAACAGTCACAGGTTTGCCTA -ACGGAACAGTCACAGGTTCCACTA -ACGGAACAGTCACAGGTTGGAGTA -ACGGAACAGTCACAGGTTTCGTCT -ACGGAACAGTCACAGGTTTGCACT -ACGGAACAGTCACAGGTTCTGACT -ACGGAACAGTCACAGGTTCAACCT -ACGGAACAGTCACAGGTTGCTACT -ACGGAACAGTCACAGGTTGGATCT -ACGGAACAGTCACAGGTTAAGGCT -ACGGAACAGTCACAGGTTTCAACC -ACGGAACAGTCACAGGTTTGTTCC -ACGGAACAGTCACAGGTTATTCCC -ACGGAACAGTCACAGGTTTTCTCG -ACGGAACAGTCACAGGTTTAGACG -ACGGAACAGTCACAGGTTGTAACG -ACGGAACAGTCACAGGTTACTTCG -ACGGAACAGTCACAGGTTTACGCA -ACGGAACAGTCACAGGTTCTTGCA -ACGGAACAGTCACAGGTTCGAACA -ACGGAACAGTCACAGGTTCAGTCA -ACGGAACAGTCACAGGTTGATCCA -ACGGAACAGTCACAGGTTACGACA -ACGGAACAGTCACAGGTTAGCTCA -ACGGAACAGTCACAGGTTTCACGT -ACGGAACAGTCACAGGTTCGTAGT -ACGGAACAGTCACAGGTTGTCAGT -ACGGAACAGTCACAGGTTGAAGGT -ACGGAACAGTCACAGGTTAACCGT -ACGGAACAGTCACAGGTTTTGTGC -ACGGAACAGTCACAGGTTCTAAGC -ACGGAACAGTCACAGGTTACTAGC -ACGGAACAGTCACAGGTTAGATGC -ACGGAACAGTCACAGGTTTGAAGG -ACGGAACAGTCACAGGTTCAATGG -ACGGAACAGTCACAGGTTATGAGG -ACGGAACAGTCACAGGTTAATGGG -ACGGAACAGTCACAGGTTTCCTGA -ACGGAACAGTCACAGGTTTAGCGA -ACGGAACAGTCACAGGTTCACAGA -ACGGAACAGTCACAGGTTGCAAGA -ACGGAACAGTCACAGGTTGGTTGA -ACGGAACAGTCACAGGTTTCCGAT -ACGGAACAGTCACAGGTTTGGCAT -ACGGAACAGTCACAGGTTCGAGAT -ACGGAACAGTCACAGGTTTACCAC -ACGGAACAGTCACAGGTTCAGAAC -ACGGAACAGTCACAGGTTGTCTAC -ACGGAACAGTCACAGGTTACGTAC -ACGGAACAGTCACAGGTTAGTGAC -ACGGAACAGTCACAGGTTCTGTAG -ACGGAACAGTCACAGGTTCCTAAG -ACGGAACAGTCACAGGTTGTTCAG -ACGGAACAGTCACAGGTTGCATAG -ACGGAACAGTCACAGGTTGACAAG -ACGGAACAGTCACAGGTTAAGCAG -ACGGAACAGTCACAGGTTCGTCAA -ACGGAACAGTCACAGGTTGCTGAA -ACGGAACAGTCACAGGTTAGTACG -ACGGAACAGTCACAGGTTATCCGA -ACGGAACAGTCACAGGTTATGGGA -ACGGAACAGTCACAGGTTGTGCAA -ACGGAACAGTCACAGGTTGAGGAA -ACGGAACAGTCACAGGTTCAGGTA -ACGGAACAGTCACAGGTTGACTCT -ACGGAACAGTCACAGGTTAGTCCT -ACGGAACAGTCACAGGTTTAAGCC -ACGGAACAGTCACAGGTTATAGCC -ACGGAACAGTCACAGGTTTAACCG -ACGGAACAGTCACAGGTTATGCCA -ACGGAACAGTCATAGGCAGGAAAC -ACGGAACAGTCATAGGCAAACACC -ACGGAACAGTCATAGGCAATCGAG -ACGGAACAGTCATAGGCACTCCTT -ACGGAACAGTCATAGGCACCTGTT -ACGGAACAGTCATAGGCACGGTTT -ACGGAACAGTCATAGGCAGTGGTT -ACGGAACAGTCATAGGCAGCCTTT -ACGGAACAGTCATAGGCAGGTCTT -ACGGAACAGTCATAGGCAACGCTT -ACGGAACAGTCATAGGCAAGCGTT -ACGGAACAGTCATAGGCATTCGTC -ACGGAACAGTCATAGGCATCTCTC -ACGGAACAGTCATAGGCATGGATC -ACGGAACAGTCATAGGCACACTTC -ACGGAACAGTCATAGGCAGTACTC -ACGGAACAGTCATAGGCAGATGTC -ACGGAACAGTCATAGGCAACAGTC -ACGGAACAGTCATAGGCATTGCTG -ACGGAACAGTCATAGGCATCCATG -ACGGAACAGTCATAGGCATGTGTG -ACGGAACAGTCATAGGCACTAGTG -ACGGAACAGTCATAGGCACATCTG -ACGGAACAGTCATAGGCAGAGTTG -ACGGAACAGTCATAGGCAAGACTG -ACGGAACAGTCATAGGCATCGGTA -ACGGAACAGTCATAGGCATGCCTA -ACGGAACAGTCATAGGCACCACTA -ACGGAACAGTCATAGGCAGGAGTA -ACGGAACAGTCATAGGCATCGTCT -ACGGAACAGTCATAGGCATGCACT -ACGGAACAGTCATAGGCACTGACT -ACGGAACAGTCATAGGCACAACCT -ACGGAACAGTCATAGGCAGCTACT -ACGGAACAGTCATAGGCAGGATCT -ACGGAACAGTCATAGGCAAAGGCT -ACGGAACAGTCATAGGCATCAACC -ACGGAACAGTCATAGGCATGTTCC -ACGGAACAGTCATAGGCAATTCCC -ACGGAACAGTCATAGGCATTCTCG -ACGGAACAGTCATAGGCATAGACG -ACGGAACAGTCATAGGCAGTAACG -ACGGAACAGTCATAGGCAACTTCG -ACGGAACAGTCATAGGCATACGCA -ACGGAACAGTCATAGGCACTTGCA -ACGGAACAGTCATAGGCACGAACA -ACGGAACAGTCATAGGCACAGTCA -ACGGAACAGTCATAGGCAGATCCA -ACGGAACAGTCATAGGCAACGACA -ACGGAACAGTCATAGGCAAGCTCA -ACGGAACAGTCATAGGCATCACGT -ACGGAACAGTCATAGGCACGTAGT -ACGGAACAGTCATAGGCAGTCAGT -ACGGAACAGTCATAGGCAGAAGGT -ACGGAACAGTCATAGGCAAACCGT -ACGGAACAGTCATAGGCATTGTGC -ACGGAACAGTCATAGGCACTAAGC -ACGGAACAGTCATAGGCAACTAGC -ACGGAACAGTCATAGGCAAGATGC -ACGGAACAGTCATAGGCATGAAGG -ACGGAACAGTCATAGGCACAATGG -ACGGAACAGTCATAGGCAATGAGG -ACGGAACAGTCATAGGCAAATGGG -ACGGAACAGTCATAGGCATCCTGA -ACGGAACAGTCATAGGCATAGCGA -ACGGAACAGTCATAGGCACACAGA -ACGGAACAGTCATAGGCAGCAAGA -ACGGAACAGTCATAGGCAGGTTGA -ACGGAACAGTCATAGGCATCCGAT -ACGGAACAGTCATAGGCATGGCAT -ACGGAACAGTCATAGGCACGAGAT -ACGGAACAGTCATAGGCATACCAC -ACGGAACAGTCATAGGCACAGAAC -ACGGAACAGTCATAGGCAGTCTAC -ACGGAACAGTCATAGGCAACGTAC -ACGGAACAGTCATAGGCAAGTGAC -ACGGAACAGTCATAGGCACTGTAG -ACGGAACAGTCATAGGCACCTAAG -ACGGAACAGTCATAGGCAGTTCAG -ACGGAACAGTCATAGGCAGCATAG -ACGGAACAGTCATAGGCAGACAAG -ACGGAACAGTCATAGGCAAAGCAG -ACGGAACAGTCATAGGCACGTCAA -ACGGAACAGTCATAGGCAGCTGAA -ACGGAACAGTCATAGGCAAGTACG -ACGGAACAGTCATAGGCAATCCGA -ACGGAACAGTCATAGGCAATGGGA -ACGGAACAGTCATAGGCAGTGCAA -ACGGAACAGTCATAGGCAGAGGAA -ACGGAACAGTCATAGGCACAGGTA -ACGGAACAGTCATAGGCAGACTCT -ACGGAACAGTCATAGGCAAGTCCT -ACGGAACAGTCATAGGCATAAGCC -ACGGAACAGTCATAGGCAATAGCC -ACGGAACAGTCATAGGCATAACCG -ACGGAACAGTCATAGGCAATGCCA -ACGGAACAGTCAAAGGACGGAAAC -ACGGAACAGTCAAAGGACAACACC -ACGGAACAGTCAAAGGACATCGAG -ACGGAACAGTCAAAGGACCTCCTT -ACGGAACAGTCAAAGGACCCTGTT -ACGGAACAGTCAAAGGACCGGTTT -ACGGAACAGTCAAAGGACGTGGTT -ACGGAACAGTCAAAGGACGCCTTT -ACGGAACAGTCAAAGGACGGTCTT -ACGGAACAGTCAAAGGACACGCTT -ACGGAACAGTCAAAGGACAGCGTT -ACGGAACAGTCAAAGGACTTCGTC -ACGGAACAGTCAAAGGACTCTCTC -ACGGAACAGTCAAAGGACTGGATC -ACGGAACAGTCAAAGGACCACTTC -ACGGAACAGTCAAAGGACGTACTC -ACGGAACAGTCAAAGGACGATGTC -ACGGAACAGTCAAAGGACACAGTC -ACGGAACAGTCAAAGGACTTGCTG -ACGGAACAGTCAAAGGACTCCATG -ACGGAACAGTCAAAGGACTGTGTG -ACGGAACAGTCAAAGGACCTAGTG -ACGGAACAGTCAAAGGACCATCTG -ACGGAACAGTCAAAGGACGAGTTG -ACGGAACAGTCAAAGGACAGACTG -ACGGAACAGTCAAAGGACTCGGTA -ACGGAACAGTCAAAGGACTGCCTA -ACGGAACAGTCAAAGGACCCACTA -ACGGAACAGTCAAAGGACGGAGTA -ACGGAACAGTCAAAGGACTCGTCT -ACGGAACAGTCAAAGGACTGCACT -ACGGAACAGTCAAAGGACCTGACT -ACGGAACAGTCAAAGGACCAACCT -ACGGAACAGTCAAAGGACGCTACT -ACGGAACAGTCAAAGGACGGATCT -ACGGAACAGTCAAAGGACAAGGCT -ACGGAACAGTCAAAGGACTCAACC -ACGGAACAGTCAAAGGACTGTTCC -ACGGAACAGTCAAAGGACATTCCC -ACGGAACAGTCAAAGGACTTCTCG -ACGGAACAGTCAAAGGACTAGACG -ACGGAACAGTCAAAGGACGTAACG -ACGGAACAGTCAAAGGACACTTCG -ACGGAACAGTCAAAGGACTACGCA -ACGGAACAGTCAAAGGACCTTGCA -ACGGAACAGTCAAAGGACCGAACA -ACGGAACAGTCAAAGGACCAGTCA -ACGGAACAGTCAAAGGACGATCCA -ACGGAACAGTCAAAGGACACGACA -ACGGAACAGTCAAAGGACAGCTCA -ACGGAACAGTCAAAGGACTCACGT -ACGGAACAGTCAAAGGACCGTAGT -ACGGAACAGTCAAAGGACGTCAGT -ACGGAACAGTCAAAGGACGAAGGT -ACGGAACAGTCAAAGGACAACCGT -ACGGAACAGTCAAAGGACTTGTGC -ACGGAACAGTCAAAGGACCTAAGC -ACGGAACAGTCAAAGGACACTAGC -ACGGAACAGTCAAAGGACAGATGC -ACGGAACAGTCAAAGGACTGAAGG -ACGGAACAGTCAAAGGACCAATGG -ACGGAACAGTCAAAGGACATGAGG -ACGGAACAGTCAAAGGACAATGGG -ACGGAACAGTCAAAGGACTCCTGA -ACGGAACAGTCAAAGGACTAGCGA -ACGGAACAGTCAAAGGACCACAGA -ACGGAACAGTCAAAGGACGCAAGA -ACGGAACAGTCAAAGGACGGTTGA -ACGGAACAGTCAAAGGACTCCGAT -ACGGAACAGTCAAAGGACTGGCAT -ACGGAACAGTCAAAGGACCGAGAT -ACGGAACAGTCAAAGGACTACCAC -ACGGAACAGTCAAAGGACCAGAAC -ACGGAACAGTCAAAGGACGTCTAC -ACGGAACAGTCAAAGGACACGTAC -ACGGAACAGTCAAAGGACAGTGAC -ACGGAACAGTCAAAGGACCTGTAG -ACGGAACAGTCAAAGGACCCTAAG -ACGGAACAGTCAAAGGACGTTCAG -ACGGAACAGTCAAAGGACGCATAG -ACGGAACAGTCAAAGGACGACAAG -ACGGAACAGTCAAAGGACAAGCAG -ACGGAACAGTCAAAGGACCGTCAA -ACGGAACAGTCAAAGGACGCTGAA -ACGGAACAGTCAAAGGACAGTACG -ACGGAACAGTCAAAGGACATCCGA -ACGGAACAGTCAAAGGACATGGGA -ACGGAACAGTCAAAGGACGTGCAA -ACGGAACAGTCAAAGGACGAGGAA -ACGGAACAGTCAAAGGACCAGGTA -ACGGAACAGTCAAAGGACGACTCT -ACGGAACAGTCAAAGGACAGTCCT -ACGGAACAGTCAAAGGACTAAGCC -ACGGAACAGTCAAAGGACATAGCC -ACGGAACAGTCAAAGGACTAACCG -ACGGAACAGTCAAAGGACATGCCA -ACGGAACAGTCACAGAAGGGAAAC -ACGGAACAGTCACAGAAGAACACC -ACGGAACAGTCACAGAAGATCGAG -ACGGAACAGTCACAGAAGCTCCTT -ACGGAACAGTCACAGAAGCCTGTT -ACGGAACAGTCACAGAAGCGGTTT -ACGGAACAGTCACAGAAGGTGGTT -ACGGAACAGTCACAGAAGGCCTTT -ACGGAACAGTCACAGAAGGGTCTT -ACGGAACAGTCACAGAAGACGCTT -ACGGAACAGTCACAGAAGAGCGTT -ACGGAACAGTCACAGAAGTTCGTC -ACGGAACAGTCACAGAAGTCTCTC -ACGGAACAGTCACAGAAGTGGATC -ACGGAACAGTCACAGAAGCACTTC -ACGGAACAGTCACAGAAGGTACTC -ACGGAACAGTCACAGAAGGATGTC -ACGGAACAGTCACAGAAGACAGTC -ACGGAACAGTCACAGAAGTTGCTG -ACGGAACAGTCACAGAAGTCCATG -ACGGAACAGTCACAGAAGTGTGTG -ACGGAACAGTCACAGAAGCTAGTG -ACGGAACAGTCACAGAAGCATCTG -ACGGAACAGTCACAGAAGGAGTTG -ACGGAACAGTCACAGAAGAGACTG -ACGGAACAGTCACAGAAGTCGGTA -ACGGAACAGTCACAGAAGTGCCTA -ACGGAACAGTCACAGAAGCCACTA -ACGGAACAGTCACAGAAGGGAGTA -ACGGAACAGTCACAGAAGTCGTCT -ACGGAACAGTCACAGAAGTGCACT -ACGGAACAGTCACAGAAGCTGACT -ACGGAACAGTCACAGAAGCAACCT -ACGGAACAGTCACAGAAGGCTACT -ACGGAACAGTCACAGAAGGGATCT -ACGGAACAGTCACAGAAGAAGGCT -ACGGAACAGTCACAGAAGTCAACC -ACGGAACAGTCACAGAAGTGTTCC -ACGGAACAGTCACAGAAGATTCCC -ACGGAACAGTCACAGAAGTTCTCG -ACGGAACAGTCACAGAAGTAGACG -ACGGAACAGTCACAGAAGGTAACG -ACGGAACAGTCACAGAAGACTTCG -ACGGAACAGTCACAGAAGTACGCA -ACGGAACAGTCACAGAAGCTTGCA -ACGGAACAGTCACAGAAGCGAACA -ACGGAACAGTCACAGAAGCAGTCA -ACGGAACAGTCACAGAAGGATCCA -ACGGAACAGTCACAGAAGACGACA -ACGGAACAGTCACAGAAGAGCTCA -ACGGAACAGTCACAGAAGTCACGT -ACGGAACAGTCACAGAAGCGTAGT -ACGGAACAGTCACAGAAGGTCAGT -ACGGAACAGTCACAGAAGGAAGGT -ACGGAACAGTCACAGAAGAACCGT -ACGGAACAGTCACAGAAGTTGTGC -ACGGAACAGTCACAGAAGCTAAGC -ACGGAACAGTCACAGAAGACTAGC -ACGGAACAGTCACAGAAGAGATGC -ACGGAACAGTCACAGAAGTGAAGG -ACGGAACAGTCACAGAAGCAATGG -ACGGAACAGTCACAGAAGATGAGG -ACGGAACAGTCACAGAAGAATGGG -ACGGAACAGTCACAGAAGTCCTGA -ACGGAACAGTCACAGAAGTAGCGA -ACGGAACAGTCACAGAAGCACAGA -ACGGAACAGTCACAGAAGGCAAGA -ACGGAACAGTCACAGAAGGGTTGA -ACGGAACAGTCACAGAAGTCCGAT -ACGGAACAGTCACAGAAGTGGCAT -ACGGAACAGTCACAGAAGCGAGAT -ACGGAACAGTCACAGAAGTACCAC -ACGGAACAGTCACAGAAGCAGAAC -ACGGAACAGTCACAGAAGGTCTAC -ACGGAACAGTCACAGAAGACGTAC -ACGGAACAGTCACAGAAGAGTGAC -ACGGAACAGTCACAGAAGCTGTAG -ACGGAACAGTCACAGAAGCCTAAG -ACGGAACAGTCACAGAAGGTTCAG -ACGGAACAGTCACAGAAGGCATAG -ACGGAACAGTCACAGAAGGACAAG -ACGGAACAGTCACAGAAGAAGCAG -ACGGAACAGTCACAGAAGCGTCAA -ACGGAACAGTCACAGAAGGCTGAA -ACGGAACAGTCACAGAAGAGTACG -ACGGAACAGTCACAGAAGATCCGA -ACGGAACAGTCACAGAAGATGGGA -ACGGAACAGTCACAGAAGGTGCAA -ACGGAACAGTCACAGAAGGAGGAA -ACGGAACAGTCACAGAAGCAGGTA -ACGGAACAGTCACAGAAGGACTCT -ACGGAACAGTCACAGAAGAGTCCT -ACGGAACAGTCACAGAAGTAAGCC -ACGGAACAGTCACAGAAGATAGCC -ACGGAACAGTCACAGAAGTAACCG -ACGGAACAGTCACAGAAGATGCCA -ACGGAACAGTCACAACGTGGAAAC -ACGGAACAGTCACAACGTAACACC -ACGGAACAGTCACAACGTATCGAG -ACGGAACAGTCACAACGTCTCCTT -ACGGAACAGTCACAACGTCCTGTT -ACGGAACAGTCACAACGTCGGTTT -ACGGAACAGTCACAACGTGTGGTT -ACGGAACAGTCACAACGTGCCTTT -ACGGAACAGTCACAACGTGGTCTT -ACGGAACAGTCACAACGTACGCTT -ACGGAACAGTCACAACGTAGCGTT -ACGGAACAGTCACAACGTTTCGTC -ACGGAACAGTCACAACGTTCTCTC -ACGGAACAGTCACAACGTTGGATC -ACGGAACAGTCACAACGTCACTTC -ACGGAACAGTCACAACGTGTACTC -ACGGAACAGTCACAACGTGATGTC -ACGGAACAGTCACAACGTACAGTC -ACGGAACAGTCACAACGTTTGCTG -ACGGAACAGTCACAACGTTCCATG -ACGGAACAGTCACAACGTTGTGTG -ACGGAACAGTCACAACGTCTAGTG -ACGGAACAGTCACAACGTCATCTG -ACGGAACAGTCACAACGTGAGTTG -ACGGAACAGTCACAACGTAGACTG -ACGGAACAGTCACAACGTTCGGTA -ACGGAACAGTCACAACGTTGCCTA -ACGGAACAGTCACAACGTCCACTA -ACGGAACAGTCACAACGTGGAGTA -ACGGAACAGTCACAACGTTCGTCT -ACGGAACAGTCACAACGTTGCACT -ACGGAACAGTCACAACGTCTGACT -ACGGAACAGTCACAACGTCAACCT -ACGGAACAGTCACAACGTGCTACT -ACGGAACAGTCACAACGTGGATCT -ACGGAACAGTCACAACGTAAGGCT -ACGGAACAGTCACAACGTTCAACC -ACGGAACAGTCACAACGTTGTTCC -ACGGAACAGTCACAACGTATTCCC -ACGGAACAGTCACAACGTTTCTCG -ACGGAACAGTCACAACGTTAGACG -ACGGAACAGTCACAACGTGTAACG -ACGGAACAGTCACAACGTACTTCG -ACGGAACAGTCACAACGTTACGCA -ACGGAACAGTCACAACGTCTTGCA -ACGGAACAGTCACAACGTCGAACA -ACGGAACAGTCACAACGTCAGTCA -ACGGAACAGTCACAACGTGATCCA -ACGGAACAGTCACAACGTACGACA -ACGGAACAGTCACAACGTAGCTCA -ACGGAACAGTCACAACGTTCACGT -ACGGAACAGTCACAACGTCGTAGT -ACGGAACAGTCACAACGTGTCAGT -ACGGAACAGTCACAACGTGAAGGT -ACGGAACAGTCACAACGTAACCGT -ACGGAACAGTCACAACGTTTGTGC -ACGGAACAGTCACAACGTCTAAGC -ACGGAACAGTCACAACGTACTAGC -ACGGAACAGTCACAACGTAGATGC -ACGGAACAGTCACAACGTTGAAGG -ACGGAACAGTCACAACGTCAATGG -ACGGAACAGTCACAACGTATGAGG -ACGGAACAGTCACAACGTAATGGG -ACGGAACAGTCACAACGTTCCTGA -ACGGAACAGTCACAACGTTAGCGA -ACGGAACAGTCACAACGTCACAGA -ACGGAACAGTCACAACGTGCAAGA -ACGGAACAGTCACAACGTGGTTGA -ACGGAACAGTCACAACGTTCCGAT -ACGGAACAGTCACAACGTTGGCAT -ACGGAACAGTCACAACGTCGAGAT -ACGGAACAGTCACAACGTTACCAC -ACGGAACAGTCACAACGTCAGAAC -ACGGAACAGTCACAACGTGTCTAC -ACGGAACAGTCACAACGTACGTAC -ACGGAACAGTCACAACGTAGTGAC -ACGGAACAGTCACAACGTCTGTAG -ACGGAACAGTCACAACGTCCTAAG -ACGGAACAGTCACAACGTGTTCAG -ACGGAACAGTCACAACGTGCATAG -ACGGAACAGTCACAACGTGACAAG -ACGGAACAGTCACAACGTAAGCAG -ACGGAACAGTCACAACGTCGTCAA -ACGGAACAGTCACAACGTGCTGAA -ACGGAACAGTCACAACGTAGTACG -ACGGAACAGTCACAACGTATCCGA -ACGGAACAGTCACAACGTATGGGA -ACGGAACAGTCACAACGTGTGCAA -ACGGAACAGTCACAACGTGAGGAA -ACGGAACAGTCACAACGTCAGGTA -ACGGAACAGTCACAACGTGACTCT -ACGGAACAGTCACAACGTAGTCCT -ACGGAACAGTCACAACGTTAAGCC -ACGGAACAGTCACAACGTATAGCC -ACGGAACAGTCACAACGTTAACCG -ACGGAACAGTCACAACGTATGCCA -ACGGAACAGTCAGAAGCTGGAAAC -ACGGAACAGTCAGAAGCTAACACC -ACGGAACAGTCAGAAGCTATCGAG -ACGGAACAGTCAGAAGCTCTCCTT -ACGGAACAGTCAGAAGCTCCTGTT -ACGGAACAGTCAGAAGCTCGGTTT -ACGGAACAGTCAGAAGCTGTGGTT -ACGGAACAGTCAGAAGCTGCCTTT -ACGGAACAGTCAGAAGCTGGTCTT -ACGGAACAGTCAGAAGCTACGCTT -ACGGAACAGTCAGAAGCTAGCGTT -ACGGAACAGTCAGAAGCTTTCGTC -ACGGAACAGTCAGAAGCTTCTCTC -ACGGAACAGTCAGAAGCTTGGATC -ACGGAACAGTCAGAAGCTCACTTC -ACGGAACAGTCAGAAGCTGTACTC -ACGGAACAGTCAGAAGCTGATGTC -ACGGAACAGTCAGAAGCTACAGTC -ACGGAACAGTCAGAAGCTTTGCTG -ACGGAACAGTCAGAAGCTTCCATG -ACGGAACAGTCAGAAGCTTGTGTG -ACGGAACAGTCAGAAGCTCTAGTG -ACGGAACAGTCAGAAGCTCATCTG -ACGGAACAGTCAGAAGCTGAGTTG -ACGGAACAGTCAGAAGCTAGACTG -ACGGAACAGTCAGAAGCTTCGGTA -ACGGAACAGTCAGAAGCTTGCCTA -ACGGAACAGTCAGAAGCTCCACTA -ACGGAACAGTCAGAAGCTGGAGTA -ACGGAACAGTCAGAAGCTTCGTCT -ACGGAACAGTCAGAAGCTTGCACT -ACGGAACAGTCAGAAGCTCTGACT -ACGGAACAGTCAGAAGCTCAACCT -ACGGAACAGTCAGAAGCTGCTACT -ACGGAACAGTCAGAAGCTGGATCT -ACGGAACAGTCAGAAGCTAAGGCT -ACGGAACAGTCAGAAGCTTCAACC -ACGGAACAGTCAGAAGCTTGTTCC -ACGGAACAGTCAGAAGCTATTCCC -ACGGAACAGTCAGAAGCTTTCTCG -ACGGAACAGTCAGAAGCTTAGACG -ACGGAACAGTCAGAAGCTGTAACG -ACGGAACAGTCAGAAGCTACTTCG -ACGGAACAGTCAGAAGCTTACGCA -ACGGAACAGTCAGAAGCTCTTGCA -ACGGAACAGTCAGAAGCTCGAACA -ACGGAACAGTCAGAAGCTCAGTCA -ACGGAACAGTCAGAAGCTGATCCA -ACGGAACAGTCAGAAGCTACGACA -ACGGAACAGTCAGAAGCTAGCTCA -ACGGAACAGTCAGAAGCTTCACGT -ACGGAACAGTCAGAAGCTCGTAGT -ACGGAACAGTCAGAAGCTGTCAGT -ACGGAACAGTCAGAAGCTGAAGGT -ACGGAACAGTCAGAAGCTAACCGT -ACGGAACAGTCAGAAGCTTTGTGC -ACGGAACAGTCAGAAGCTCTAAGC -ACGGAACAGTCAGAAGCTACTAGC -ACGGAACAGTCAGAAGCTAGATGC -ACGGAACAGTCAGAAGCTTGAAGG -ACGGAACAGTCAGAAGCTCAATGG -ACGGAACAGTCAGAAGCTATGAGG -ACGGAACAGTCAGAAGCTAATGGG -ACGGAACAGTCAGAAGCTTCCTGA -ACGGAACAGTCAGAAGCTTAGCGA -ACGGAACAGTCAGAAGCTCACAGA -ACGGAACAGTCAGAAGCTGCAAGA -ACGGAACAGTCAGAAGCTGGTTGA -ACGGAACAGTCAGAAGCTTCCGAT -ACGGAACAGTCAGAAGCTTGGCAT -ACGGAACAGTCAGAAGCTCGAGAT -ACGGAACAGTCAGAAGCTTACCAC -ACGGAACAGTCAGAAGCTCAGAAC -ACGGAACAGTCAGAAGCTGTCTAC -ACGGAACAGTCAGAAGCTACGTAC -ACGGAACAGTCAGAAGCTAGTGAC -ACGGAACAGTCAGAAGCTCTGTAG -ACGGAACAGTCAGAAGCTCCTAAG -ACGGAACAGTCAGAAGCTGTTCAG -ACGGAACAGTCAGAAGCTGCATAG -ACGGAACAGTCAGAAGCTGACAAG -ACGGAACAGTCAGAAGCTAAGCAG -ACGGAACAGTCAGAAGCTCGTCAA -ACGGAACAGTCAGAAGCTGCTGAA -ACGGAACAGTCAGAAGCTAGTACG -ACGGAACAGTCAGAAGCTATCCGA -ACGGAACAGTCAGAAGCTATGGGA -ACGGAACAGTCAGAAGCTGTGCAA -ACGGAACAGTCAGAAGCTGAGGAA -ACGGAACAGTCAGAAGCTCAGGTA -ACGGAACAGTCAGAAGCTGACTCT -ACGGAACAGTCAGAAGCTAGTCCT -ACGGAACAGTCAGAAGCTTAAGCC -ACGGAACAGTCAGAAGCTATAGCC -ACGGAACAGTCAGAAGCTTAACCG -ACGGAACAGTCAGAAGCTATGCCA -ACGGAACAGTCAACGAGTGGAAAC -ACGGAACAGTCAACGAGTAACACC -ACGGAACAGTCAACGAGTATCGAG -ACGGAACAGTCAACGAGTCTCCTT -ACGGAACAGTCAACGAGTCCTGTT -ACGGAACAGTCAACGAGTCGGTTT -ACGGAACAGTCAACGAGTGTGGTT -ACGGAACAGTCAACGAGTGCCTTT -ACGGAACAGTCAACGAGTGGTCTT -ACGGAACAGTCAACGAGTACGCTT -ACGGAACAGTCAACGAGTAGCGTT -ACGGAACAGTCAACGAGTTTCGTC -ACGGAACAGTCAACGAGTTCTCTC -ACGGAACAGTCAACGAGTTGGATC -ACGGAACAGTCAACGAGTCACTTC -ACGGAACAGTCAACGAGTGTACTC -ACGGAACAGTCAACGAGTGATGTC -ACGGAACAGTCAACGAGTACAGTC -ACGGAACAGTCAACGAGTTTGCTG -ACGGAACAGTCAACGAGTTCCATG -ACGGAACAGTCAACGAGTTGTGTG -ACGGAACAGTCAACGAGTCTAGTG -ACGGAACAGTCAACGAGTCATCTG -ACGGAACAGTCAACGAGTGAGTTG -ACGGAACAGTCAACGAGTAGACTG -ACGGAACAGTCAACGAGTTCGGTA -ACGGAACAGTCAACGAGTTGCCTA -ACGGAACAGTCAACGAGTCCACTA -ACGGAACAGTCAACGAGTGGAGTA -ACGGAACAGTCAACGAGTTCGTCT -ACGGAACAGTCAACGAGTTGCACT -ACGGAACAGTCAACGAGTCTGACT -ACGGAACAGTCAACGAGTCAACCT -ACGGAACAGTCAACGAGTGCTACT -ACGGAACAGTCAACGAGTGGATCT -ACGGAACAGTCAACGAGTAAGGCT -ACGGAACAGTCAACGAGTTCAACC -ACGGAACAGTCAACGAGTTGTTCC -ACGGAACAGTCAACGAGTATTCCC -ACGGAACAGTCAACGAGTTTCTCG -ACGGAACAGTCAACGAGTTAGACG -ACGGAACAGTCAACGAGTGTAACG -ACGGAACAGTCAACGAGTACTTCG -ACGGAACAGTCAACGAGTTACGCA -ACGGAACAGTCAACGAGTCTTGCA -ACGGAACAGTCAACGAGTCGAACA -ACGGAACAGTCAACGAGTCAGTCA -ACGGAACAGTCAACGAGTGATCCA -ACGGAACAGTCAACGAGTACGACA -ACGGAACAGTCAACGAGTAGCTCA -ACGGAACAGTCAACGAGTTCACGT -ACGGAACAGTCAACGAGTCGTAGT -ACGGAACAGTCAACGAGTGTCAGT -ACGGAACAGTCAACGAGTGAAGGT -ACGGAACAGTCAACGAGTAACCGT -ACGGAACAGTCAACGAGTTTGTGC -ACGGAACAGTCAACGAGTCTAAGC -ACGGAACAGTCAACGAGTACTAGC -ACGGAACAGTCAACGAGTAGATGC -ACGGAACAGTCAACGAGTTGAAGG -ACGGAACAGTCAACGAGTCAATGG -ACGGAACAGTCAACGAGTATGAGG -ACGGAACAGTCAACGAGTAATGGG -ACGGAACAGTCAACGAGTTCCTGA -ACGGAACAGTCAACGAGTTAGCGA -ACGGAACAGTCAACGAGTCACAGA -ACGGAACAGTCAACGAGTGCAAGA -ACGGAACAGTCAACGAGTGGTTGA -ACGGAACAGTCAACGAGTTCCGAT -ACGGAACAGTCAACGAGTTGGCAT -ACGGAACAGTCAACGAGTCGAGAT -ACGGAACAGTCAACGAGTTACCAC -ACGGAACAGTCAACGAGTCAGAAC -ACGGAACAGTCAACGAGTGTCTAC -ACGGAACAGTCAACGAGTACGTAC -ACGGAACAGTCAACGAGTAGTGAC -ACGGAACAGTCAACGAGTCTGTAG -ACGGAACAGTCAACGAGTCCTAAG -ACGGAACAGTCAACGAGTGTTCAG -ACGGAACAGTCAACGAGTGCATAG -ACGGAACAGTCAACGAGTGACAAG -ACGGAACAGTCAACGAGTAAGCAG -ACGGAACAGTCAACGAGTCGTCAA -ACGGAACAGTCAACGAGTGCTGAA -ACGGAACAGTCAACGAGTAGTACG -ACGGAACAGTCAACGAGTATCCGA -ACGGAACAGTCAACGAGTATGGGA -ACGGAACAGTCAACGAGTGTGCAA -ACGGAACAGTCAACGAGTGAGGAA -ACGGAACAGTCAACGAGTCAGGTA -ACGGAACAGTCAACGAGTGACTCT -ACGGAACAGTCAACGAGTAGTCCT -ACGGAACAGTCAACGAGTTAAGCC -ACGGAACAGTCAACGAGTATAGCC -ACGGAACAGTCAACGAGTTAACCG -ACGGAACAGTCAACGAGTATGCCA -ACGGAACAGTCACGAATCGGAAAC -ACGGAACAGTCACGAATCAACACC -ACGGAACAGTCACGAATCATCGAG -ACGGAACAGTCACGAATCCTCCTT -ACGGAACAGTCACGAATCCCTGTT -ACGGAACAGTCACGAATCCGGTTT -ACGGAACAGTCACGAATCGTGGTT -ACGGAACAGTCACGAATCGCCTTT -ACGGAACAGTCACGAATCGGTCTT -ACGGAACAGTCACGAATCACGCTT -ACGGAACAGTCACGAATCAGCGTT -ACGGAACAGTCACGAATCTTCGTC -ACGGAACAGTCACGAATCTCTCTC -ACGGAACAGTCACGAATCTGGATC -ACGGAACAGTCACGAATCCACTTC -ACGGAACAGTCACGAATCGTACTC -ACGGAACAGTCACGAATCGATGTC -ACGGAACAGTCACGAATCACAGTC -ACGGAACAGTCACGAATCTTGCTG -ACGGAACAGTCACGAATCTCCATG -ACGGAACAGTCACGAATCTGTGTG -ACGGAACAGTCACGAATCCTAGTG -ACGGAACAGTCACGAATCCATCTG -ACGGAACAGTCACGAATCGAGTTG -ACGGAACAGTCACGAATCAGACTG -ACGGAACAGTCACGAATCTCGGTA -ACGGAACAGTCACGAATCTGCCTA -ACGGAACAGTCACGAATCCCACTA -ACGGAACAGTCACGAATCGGAGTA -ACGGAACAGTCACGAATCTCGTCT -ACGGAACAGTCACGAATCTGCACT -ACGGAACAGTCACGAATCCTGACT -ACGGAACAGTCACGAATCCAACCT -ACGGAACAGTCACGAATCGCTACT -ACGGAACAGTCACGAATCGGATCT -ACGGAACAGTCACGAATCAAGGCT -ACGGAACAGTCACGAATCTCAACC -ACGGAACAGTCACGAATCTGTTCC -ACGGAACAGTCACGAATCATTCCC -ACGGAACAGTCACGAATCTTCTCG -ACGGAACAGTCACGAATCTAGACG -ACGGAACAGTCACGAATCGTAACG -ACGGAACAGTCACGAATCACTTCG -ACGGAACAGTCACGAATCTACGCA -ACGGAACAGTCACGAATCCTTGCA -ACGGAACAGTCACGAATCCGAACA -ACGGAACAGTCACGAATCCAGTCA -ACGGAACAGTCACGAATCGATCCA -ACGGAACAGTCACGAATCACGACA -ACGGAACAGTCACGAATCAGCTCA -ACGGAACAGTCACGAATCTCACGT -ACGGAACAGTCACGAATCCGTAGT -ACGGAACAGTCACGAATCGTCAGT -ACGGAACAGTCACGAATCGAAGGT -ACGGAACAGTCACGAATCAACCGT -ACGGAACAGTCACGAATCTTGTGC -ACGGAACAGTCACGAATCCTAAGC -ACGGAACAGTCACGAATCACTAGC -ACGGAACAGTCACGAATCAGATGC -ACGGAACAGTCACGAATCTGAAGG -ACGGAACAGTCACGAATCCAATGG -ACGGAACAGTCACGAATCATGAGG -ACGGAACAGTCACGAATCAATGGG -ACGGAACAGTCACGAATCTCCTGA -ACGGAACAGTCACGAATCTAGCGA -ACGGAACAGTCACGAATCCACAGA -ACGGAACAGTCACGAATCGCAAGA -ACGGAACAGTCACGAATCGGTTGA -ACGGAACAGTCACGAATCTCCGAT -ACGGAACAGTCACGAATCTGGCAT -ACGGAACAGTCACGAATCCGAGAT -ACGGAACAGTCACGAATCTACCAC -ACGGAACAGTCACGAATCCAGAAC -ACGGAACAGTCACGAATCGTCTAC -ACGGAACAGTCACGAATCACGTAC -ACGGAACAGTCACGAATCAGTGAC -ACGGAACAGTCACGAATCCTGTAG -ACGGAACAGTCACGAATCCCTAAG -ACGGAACAGTCACGAATCGTTCAG -ACGGAACAGTCACGAATCGCATAG -ACGGAACAGTCACGAATCGACAAG -ACGGAACAGTCACGAATCAAGCAG -ACGGAACAGTCACGAATCCGTCAA -ACGGAACAGTCACGAATCGCTGAA -ACGGAACAGTCACGAATCAGTACG -ACGGAACAGTCACGAATCATCCGA -ACGGAACAGTCACGAATCATGGGA -ACGGAACAGTCACGAATCGTGCAA -ACGGAACAGTCACGAATCGAGGAA -ACGGAACAGTCACGAATCCAGGTA -ACGGAACAGTCACGAATCGACTCT -ACGGAACAGTCACGAATCAGTCCT -ACGGAACAGTCACGAATCTAAGCC -ACGGAACAGTCACGAATCATAGCC -ACGGAACAGTCACGAATCTAACCG -ACGGAACAGTCACGAATCATGCCA -ACGGAACAGTCAGGAATGGGAAAC -ACGGAACAGTCAGGAATGAACACC -ACGGAACAGTCAGGAATGATCGAG -ACGGAACAGTCAGGAATGCTCCTT -ACGGAACAGTCAGGAATGCCTGTT -ACGGAACAGTCAGGAATGCGGTTT -ACGGAACAGTCAGGAATGGTGGTT -ACGGAACAGTCAGGAATGGCCTTT -ACGGAACAGTCAGGAATGGGTCTT -ACGGAACAGTCAGGAATGACGCTT -ACGGAACAGTCAGGAATGAGCGTT -ACGGAACAGTCAGGAATGTTCGTC -ACGGAACAGTCAGGAATGTCTCTC -ACGGAACAGTCAGGAATGTGGATC -ACGGAACAGTCAGGAATGCACTTC -ACGGAACAGTCAGGAATGGTACTC -ACGGAACAGTCAGGAATGGATGTC -ACGGAACAGTCAGGAATGACAGTC -ACGGAACAGTCAGGAATGTTGCTG -ACGGAACAGTCAGGAATGTCCATG -ACGGAACAGTCAGGAATGTGTGTG -ACGGAACAGTCAGGAATGCTAGTG -ACGGAACAGTCAGGAATGCATCTG -ACGGAACAGTCAGGAATGGAGTTG -ACGGAACAGTCAGGAATGAGACTG -ACGGAACAGTCAGGAATGTCGGTA -ACGGAACAGTCAGGAATGTGCCTA -ACGGAACAGTCAGGAATGCCACTA -ACGGAACAGTCAGGAATGGGAGTA -ACGGAACAGTCAGGAATGTCGTCT -ACGGAACAGTCAGGAATGTGCACT -ACGGAACAGTCAGGAATGCTGACT -ACGGAACAGTCAGGAATGCAACCT -ACGGAACAGTCAGGAATGGCTACT -ACGGAACAGTCAGGAATGGGATCT -ACGGAACAGTCAGGAATGAAGGCT -ACGGAACAGTCAGGAATGTCAACC -ACGGAACAGTCAGGAATGTGTTCC -ACGGAACAGTCAGGAATGATTCCC -ACGGAACAGTCAGGAATGTTCTCG -ACGGAACAGTCAGGAATGTAGACG -ACGGAACAGTCAGGAATGGTAACG -ACGGAACAGTCAGGAATGACTTCG -ACGGAACAGTCAGGAATGTACGCA -ACGGAACAGTCAGGAATGCTTGCA -ACGGAACAGTCAGGAATGCGAACA -ACGGAACAGTCAGGAATGCAGTCA -ACGGAACAGTCAGGAATGGATCCA -ACGGAACAGTCAGGAATGACGACA -ACGGAACAGTCAGGAATGAGCTCA -ACGGAACAGTCAGGAATGTCACGT -ACGGAACAGTCAGGAATGCGTAGT -ACGGAACAGTCAGGAATGGTCAGT -ACGGAACAGTCAGGAATGGAAGGT -ACGGAACAGTCAGGAATGAACCGT -ACGGAACAGTCAGGAATGTTGTGC -ACGGAACAGTCAGGAATGCTAAGC -ACGGAACAGTCAGGAATGACTAGC -ACGGAACAGTCAGGAATGAGATGC -ACGGAACAGTCAGGAATGTGAAGG -ACGGAACAGTCAGGAATGCAATGG -ACGGAACAGTCAGGAATGATGAGG -ACGGAACAGTCAGGAATGAATGGG -ACGGAACAGTCAGGAATGTCCTGA -ACGGAACAGTCAGGAATGTAGCGA -ACGGAACAGTCAGGAATGCACAGA -ACGGAACAGTCAGGAATGGCAAGA -ACGGAACAGTCAGGAATGGGTTGA -ACGGAACAGTCAGGAATGTCCGAT -ACGGAACAGTCAGGAATGTGGCAT -ACGGAACAGTCAGGAATGCGAGAT -ACGGAACAGTCAGGAATGTACCAC -ACGGAACAGTCAGGAATGCAGAAC -ACGGAACAGTCAGGAATGGTCTAC -ACGGAACAGTCAGGAATGACGTAC -ACGGAACAGTCAGGAATGAGTGAC -ACGGAACAGTCAGGAATGCTGTAG -ACGGAACAGTCAGGAATGCCTAAG -ACGGAACAGTCAGGAATGGTTCAG -ACGGAACAGTCAGGAATGGCATAG -ACGGAACAGTCAGGAATGGACAAG -ACGGAACAGTCAGGAATGAAGCAG -ACGGAACAGTCAGGAATGCGTCAA -ACGGAACAGTCAGGAATGGCTGAA -ACGGAACAGTCAGGAATGAGTACG -ACGGAACAGTCAGGAATGATCCGA -ACGGAACAGTCAGGAATGATGGGA -ACGGAACAGTCAGGAATGGTGCAA -ACGGAACAGTCAGGAATGGAGGAA -ACGGAACAGTCAGGAATGCAGGTA -ACGGAACAGTCAGGAATGGACTCT -ACGGAACAGTCAGGAATGAGTCCT -ACGGAACAGTCAGGAATGTAAGCC -ACGGAACAGTCAGGAATGATAGCC -ACGGAACAGTCAGGAATGTAACCG -ACGGAACAGTCAGGAATGATGCCA -ACGGAACAGTCACAAGTGGGAAAC -ACGGAACAGTCACAAGTGAACACC -ACGGAACAGTCACAAGTGATCGAG -ACGGAACAGTCACAAGTGCTCCTT -ACGGAACAGTCACAAGTGCCTGTT -ACGGAACAGTCACAAGTGCGGTTT -ACGGAACAGTCACAAGTGGTGGTT -ACGGAACAGTCACAAGTGGCCTTT -ACGGAACAGTCACAAGTGGGTCTT -ACGGAACAGTCACAAGTGACGCTT -ACGGAACAGTCACAAGTGAGCGTT -ACGGAACAGTCACAAGTGTTCGTC -ACGGAACAGTCACAAGTGTCTCTC -ACGGAACAGTCACAAGTGTGGATC -ACGGAACAGTCACAAGTGCACTTC -ACGGAACAGTCACAAGTGGTACTC -ACGGAACAGTCACAAGTGGATGTC -ACGGAACAGTCACAAGTGACAGTC -ACGGAACAGTCACAAGTGTTGCTG -ACGGAACAGTCACAAGTGTCCATG -ACGGAACAGTCACAAGTGTGTGTG -ACGGAACAGTCACAAGTGCTAGTG -ACGGAACAGTCACAAGTGCATCTG -ACGGAACAGTCACAAGTGGAGTTG -ACGGAACAGTCACAAGTGAGACTG -ACGGAACAGTCACAAGTGTCGGTA -ACGGAACAGTCACAAGTGTGCCTA -ACGGAACAGTCACAAGTGCCACTA -ACGGAACAGTCACAAGTGGGAGTA -ACGGAACAGTCACAAGTGTCGTCT -ACGGAACAGTCACAAGTGTGCACT -ACGGAACAGTCACAAGTGCTGACT -ACGGAACAGTCACAAGTGCAACCT -ACGGAACAGTCACAAGTGGCTACT -ACGGAACAGTCACAAGTGGGATCT -ACGGAACAGTCACAAGTGAAGGCT -ACGGAACAGTCACAAGTGTCAACC -ACGGAACAGTCACAAGTGTGTTCC -ACGGAACAGTCACAAGTGATTCCC -ACGGAACAGTCACAAGTGTTCTCG -ACGGAACAGTCACAAGTGTAGACG -ACGGAACAGTCACAAGTGGTAACG -ACGGAACAGTCACAAGTGACTTCG -ACGGAACAGTCACAAGTGTACGCA -ACGGAACAGTCACAAGTGCTTGCA -ACGGAACAGTCACAAGTGCGAACA -ACGGAACAGTCACAAGTGCAGTCA -ACGGAACAGTCACAAGTGGATCCA -ACGGAACAGTCACAAGTGACGACA -ACGGAACAGTCACAAGTGAGCTCA -ACGGAACAGTCACAAGTGTCACGT -ACGGAACAGTCACAAGTGCGTAGT -ACGGAACAGTCACAAGTGGTCAGT -ACGGAACAGTCACAAGTGGAAGGT -ACGGAACAGTCACAAGTGAACCGT -ACGGAACAGTCACAAGTGTTGTGC -ACGGAACAGTCACAAGTGCTAAGC -ACGGAACAGTCACAAGTGACTAGC -ACGGAACAGTCACAAGTGAGATGC -ACGGAACAGTCACAAGTGTGAAGG -ACGGAACAGTCACAAGTGCAATGG -ACGGAACAGTCACAAGTGATGAGG -ACGGAACAGTCACAAGTGAATGGG -ACGGAACAGTCACAAGTGTCCTGA -ACGGAACAGTCACAAGTGTAGCGA -ACGGAACAGTCACAAGTGCACAGA -ACGGAACAGTCACAAGTGGCAAGA -ACGGAACAGTCACAAGTGGGTTGA -ACGGAACAGTCACAAGTGTCCGAT -ACGGAACAGTCACAAGTGTGGCAT -ACGGAACAGTCACAAGTGCGAGAT -ACGGAACAGTCACAAGTGTACCAC -ACGGAACAGTCACAAGTGCAGAAC -ACGGAACAGTCACAAGTGGTCTAC -ACGGAACAGTCACAAGTGACGTAC -ACGGAACAGTCACAAGTGAGTGAC -ACGGAACAGTCACAAGTGCTGTAG -ACGGAACAGTCACAAGTGCCTAAG -ACGGAACAGTCACAAGTGGTTCAG -ACGGAACAGTCACAAGTGGCATAG -ACGGAACAGTCACAAGTGGACAAG -ACGGAACAGTCACAAGTGAAGCAG -ACGGAACAGTCACAAGTGCGTCAA -ACGGAACAGTCACAAGTGGCTGAA -ACGGAACAGTCACAAGTGAGTACG -ACGGAACAGTCACAAGTGATCCGA -ACGGAACAGTCACAAGTGATGGGA -ACGGAACAGTCACAAGTGGTGCAA -ACGGAACAGTCACAAGTGGAGGAA -ACGGAACAGTCACAAGTGCAGGTA -ACGGAACAGTCACAAGTGGACTCT -ACGGAACAGTCACAAGTGAGTCCT -ACGGAACAGTCACAAGTGTAAGCC -ACGGAACAGTCACAAGTGATAGCC -ACGGAACAGTCACAAGTGTAACCG -ACGGAACAGTCACAAGTGATGCCA -ACGGAACAGTCAGAAGAGGGAAAC -ACGGAACAGTCAGAAGAGAACACC -ACGGAACAGTCAGAAGAGATCGAG -ACGGAACAGTCAGAAGAGCTCCTT -ACGGAACAGTCAGAAGAGCCTGTT -ACGGAACAGTCAGAAGAGCGGTTT -ACGGAACAGTCAGAAGAGGTGGTT -ACGGAACAGTCAGAAGAGGCCTTT -ACGGAACAGTCAGAAGAGGGTCTT -ACGGAACAGTCAGAAGAGACGCTT -ACGGAACAGTCAGAAGAGAGCGTT -ACGGAACAGTCAGAAGAGTTCGTC -ACGGAACAGTCAGAAGAGTCTCTC -ACGGAACAGTCAGAAGAGTGGATC -ACGGAACAGTCAGAAGAGCACTTC -ACGGAACAGTCAGAAGAGGTACTC -ACGGAACAGTCAGAAGAGGATGTC -ACGGAACAGTCAGAAGAGACAGTC -ACGGAACAGTCAGAAGAGTTGCTG -ACGGAACAGTCAGAAGAGTCCATG -ACGGAACAGTCAGAAGAGTGTGTG -ACGGAACAGTCAGAAGAGCTAGTG -ACGGAACAGTCAGAAGAGCATCTG -ACGGAACAGTCAGAAGAGGAGTTG -ACGGAACAGTCAGAAGAGAGACTG -ACGGAACAGTCAGAAGAGTCGGTA -ACGGAACAGTCAGAAGAGTGCCTA -ACGGAACAGTCAGAAGAGCCACTA -ACGGAACAGTCAGAAGAGGGAGTA -ACGGAACAGTCAGAAGAGTCGTCT -ACGGAACAGTCAGAAGAGTGCACT -ACGGAACAGTCAGAAGAGCTGACT -ACGGAACAGTCAGAAGAGCAACCT -ACGGAACAGTCAGAAGAGGCTACT -ACGGAACAGTCAGAAGAGGGATCT -ACGGAACAGTCAGAAGAGAAGGCT -ACGGAACAGTCAGAAGAGTCAACC -ACGGAACAGTCAGAAGAGTGTTCC -ACGGAACAGTCAGAAGAGATTCCC -ACGGAACAGTCAGAAGAGTTCTCG -ACGGAACAGTCAGAAGAGTAGACG -ACGGAACAGTCAGAAGAGGTAACG -ACGGAACAGTCAGAAGAGACTTCG -ACGGAACAGTCAGAAGAGTACGCA -ACGGAACAGTCAGAAGAGCTTGCA -ACGGAACAGTCAGAAGAGCGAACA -ACGGAACAGTCAGAAGAGCAGTCA -ACGGAACAGTCAGAAGAGGATCCA -ACGGAACAGTCAGAAGAGACGACA -ACGGAACAGTCAGAAGAGAGCTCA -ACGGAACAGTCAGAAGAGTCACGT -ACGGAACAGTCAGAAGAGCGTAGT -ACGGAACAGTCAGAAGAGGTCAGT -ACGGAACAGTCAGAAGAGGAAGGT -ACGGAACAGTCAGAAGAGAACCGT -ACGGAACAGTCAGAAGAGTTGTGC -ACGGAACAGTCAGAAGAGCTAAGC -ACGGAACAGTCAGAAGAGACTAGC -ACGGAACAGTCAGAAGAGAGATGC -ACGGAACAGTCAGAAGAGTGAAGG -ACGGAACAGTCAGAAGAGCAATGG -ACGGAACAGTCAGAAGAGATGAGG -ACGGAACAGTCAGAAGAGAATGGG -ACGGAACAGTCAGAAGAGTCCTGA -ACGGAACAGTCAGAAGAGTAGCGA -ACGGAACAGTCAGAAGAGCACAGA -ACGGAACAGTCAGAAGAGGCAAGA -ACGGAACAGTCAGAAGAGGGTTGA -ACGGAACAGTCAGAAGAGTCCGAT -ACGGAACAGTCAGAAGAGTGGCAT -ACGGAACAGTCAGAAGAGCGAGAT -ACGGAACAGTCAGAAGAGTACCAC -ACGGAACAGTCAGAAGAGCAGAAC -ACGGAACAGTCAGAAGAGGTCTAC -ACGGAACAGTCAGAAGAGACGTAC -ACGGAACAGTCAGAAGAGAGTGAC -ACGGAACAGTCAGAAGAGCTGTAG -ACGGAACAGTCAGAAGAGCCTAAG -ACGGAACAGTCAGAAGAGGTTCAG -ACGGAACAGTCAGAAGAGGCATAG -ACGGAACAGTCAGAAGAGGACAAG -ACGGAACAGTCAGAAGAGAAGCAG -ACGGAACAGTCAGAAGAGCGTCAA -ACGGAACAGTCAGAAGAGGCTGAA -ACGGAACAGTCAGAAGAGAGTACG -ACGGAACAGTCAGAAGAGATCCGA -ACGGAACAGTCAGAAGAGATGGGA -ACGGAACAGTCAGAAGAGGTGCAA -ACGGAACAGTCAGAAGAGGAGGAA -ACGGAACAGTCAGAAGAGCAGGTA -ACGGAACAGTCAGAAGAGGACTCT -ACGGAACAGTCAGAAGAGAGTCCT -ACGGAACAGTCAGAAGAGTAAGCC -ACGGAACAGTCAGAAGAGATAGCC -ACGGAACAGTCAGAAGAGTAACCG -ACGGAACAGTCAGAAGAGATGCCA -ACGGAACAGTCAGTACAGGGAAAC -ACGGAACAGTCAGTACAGAACACC -ACGGAACAGTCAGTACAGATCGAG -ACGGAACAGTCAGTACAGCTCCTT -ACGGAACAGTCAGTACAGCCTGTT -ACGGAACAGTCAGTACAGCGGTTT -ACGGAACAGTCAGTACAGGTGGTT -ACGGAACAGTCAGTACAGGCCTTT -ACGGAACAGTCAGTACAGGGTCTT -ACGGAACAGTCAGTACAGACGCTT -ACGGAACAGTCAGTACAGAGCGTT -ACGGAACAGTCAGTACAGTTCGTC -ACGGAACAGTCAGTACAGTCTCTC -ACGGAACAGTCAGTACAGTGGATC -ACGGAACAGTCAGTACAGCACTTC -ACGGAACAGTCAGTACAGGTACTC -ACGGAACAGTCAGTACAGGATGTC -ACGGAACAGTCAGTACAGACAGTC -ACGGAACAGTCAGTACAGTTGCTG -ACGGAACAGTCAGTACAGTCCATG -ACGGAACAGTCAGTACAGTGTGTG -ACGGAACAGTCAGTACAGCTAGTG -ACGGAACAGTCAGTACAGCATCTG -ACGGAACAGTCAGTACAGGAGTTG -ACGGAACAGTCAGTACAGAGACTG -ACGGAACAGTCAGTACAGTCGGTA -ACGGAACAGTCAGTACAGTGCCTA -ACGGAACAGTCAGTACAGCCACTA -ACGGAACAGTCAGTACAGGGAGTA -ACGGAACAGTCAGTACAGTCGTCT -ACGGAACAGTCAGTACAGTGCACT -ACGGAACAGTCAGTACAGCTGACT -ACGGAACAGTCAGTACAGCAACCT -ACGGAACAGTCAGTACAGGCTACT -ACGGAACAGTCAGTACAGGGATCT -ACGGAACAGTCAGTACAGAAGGCT -ACGGAACAGTCAGTACAGTCAACC -ACGGAACAGTCAGTACAGTGTTCC -ACGGAACAGTCAGTACAGATTCCC -ACGGAACAGTCAGTACAGTTCTCG -ACGGAACAGTCAGTACAGTAGACG -ACGGAACAGTCAGTACAGGTAACG -ACGGAACAGTCAGTACAGACTTCG -ACGGAACAGTCAGTACAGTACGCA -ACGGAACAGTCAGTACAGCTTGCA -ACGGAACAGTCAGTACAGCGAACA -ACGGAACAGTCAGTACAGCAGTCA -ACGGAACAGTCAGTACAGGATCCA -ACGGAACAGTCAGTACAGACGACA -ACGGAACAGTCAGTACAGAGCTCA -ACGGAACAGTCAGTACAGTCACGT -ACGGAACAGTCAGTACAGCGTAGT -ACGGAACAGTCAGTACAGGTCAGT -ACGGAACAGTCAGTACAGGAAGGT -ACGGAACAGTCAGTACAGAACCGT -ACGGAACAGTCAGTACAGTTGTGC -ACGGAACAGTCAGTACAGCTAAGC -ACGGAACAGTCAGTACAGACTAGC -ACGGAACAGTCAGTACAGAGATGC -ACGGAACAGTCAGTACAGTGAAGG -ACGGAACAGTCAGTACAGCAATGG -ACGGAACAGTCAGTACAGATGAGG -ACGGAACAGTCAGTACAGAATGGG -ACGGAACAGTCAGTACAGTCCTGA -ACGGAACAGTCAGTACAGTAGCGA -ACGGAACAGTCAGTACAGCACAGA -ACGGAACAGTCAGTACAGGCAAGA -ACGGAACAGTCAGTACAGGGTTGA -ACGGAACAGTCAGTACAGTCCGAT -ACGGAACAGTCAGTACAGTGGCAT -ACGGAACAGTCAGTACAGCGAGAT -ACGGAACAGTCAGTACAGTACCAC -ACGGAACAGTCAGTACAGCAGAAC -ACGGAACAGTCAGTACAGGTCTAC -ACGGAACAGTCAGTACAGACGTAC -ACGGAACAGTCAGTACAGAGTGAC -ACGGAACAGTCAGTACAGCTGTAG -ACGGAACAGTCAGTACAGCCTAAG -ACGGAACAGTCAGTACAGGTTCAG -ACGGAACAGTCAGTACAGGCATAG -ACGGAACAGTCAGTACAGGACAAG -ACGGAACAGTCAGTACAGAAGCAG -ACGGAACAGTCAGTACAGCGTCAA -ACGGAACAGTCAGTACAGGCTGAA -ACGGAACAGTCAGTACAGAGTACG -ACGGAACAGTCAGTACAGATCCGA -ACGGAACAGTCAGTACAGATGGGA -ACGGAACAGTCAGTACAGGTGCAA -ACGGAACAGTCAGTACAGGAGGAA -ACGGAACAGTCAGTACAGCAGGTA -ACGGAACAGTCAGTACAGGACTCT -ACGGAACAGTCAGTACAGAGTCCT -ACGGAACAGTCAGTACAGTAAGCC -ACGGAACAGTCAGTACAGATAGCC -ACGGAACAGTCAGTACAGTAACCG -ACGGAACAGTCAGTACAGATGCCA -ACGGAACAGTCATCTGACGGAAAC -ACGGAACAGTCATCTGACAACACC -ACGGAACAGTCATCTGACATCGAG -ACGGAACAGTCATCTGACCTCCTT -ACGGAACAGTCATCTGACCCTGTT -ACGGAACAGTCATCTGACCGGTTT -ACGGAACAGTCATCTGACGTGGTT -ACGGAACAGTCATCTGACGCCTTT -ACGGAACAGTCATCTGACGGTCTT -ACGGAACAGTCATCTGACACGCTT -ACGGAACAGTCATCTGACAGCGTT -ACGGAACAGTCATCTGACTTCGTC -ACGGAACAGTCATCTGACTCTCTC -ACGGAACAGTCATCTGACTGGATC -ACGGAACAGTCATCTGACCACTTC -ACGGAACAGTCATCTGACGTACTC -ACGGAACAGTCATCTGACGATGTC -ACGGAACAGTCATCTGACACAGTC -ACGGAACAGTCATCTGACTTGCTG -ACGGAACAGTCATCTGACTCCATG -ACGGAACAGTCATCTGACTGTGTG -ACGGAACAGTCATCTGACCTAGTG -ACGGAACAGTCATCTGACCATCTG -ACGGAACAGTCATCTGACGAGTTG -ACGGAACAGTCATCTGACAGACTG -ACGGAACAGTCATCTGACTCGGTA -ACGGAACAGTCATCTGACTGCCTA -ACGGAACAGTCATCTGACCCACTA -ACGGAACAGTCATCTGACGGAGTA -ACGGAACAGTCATCTGACTCGTCT -ACGGAACAGTCATCTGACTGCACT -ACGGAACAGTCATCTGACCTGACT -ACGGAACAGTCATCTGACCAACCT -ACGGAACAGTCATCTGACGCTACT -ACGGAACAGTCATCTGACGGATCT -ACGGAACAGTCATCTGACAAGGCT -ACGGAACAGTCATCTGACTCAACC -ACGGAACAGTCATCTGACTGTTCC -ACGGAACAGTCATCTGACATTCCC -ACGGAACAGTCATCTGACTTCTCG -ACGGAACAGTCATCTGACTAGACG -ACGGAACAGTCATCTGACGTAACG -ACGGAACAGTCATCTGACACTTCG -ACGGAACAGTCATCTGACTACGCA -ACGGAACAGTCATCTGACCTTGCA -ACGGAACAGTCATCTGACCGAACA -ACGGAACAGTCATCTGACCAGTCA -ACGGAACAGTCATCTGACGATCCA -ACGGAACAGTCATCTGACACGACA -ACGGAACAGTCATCTGACAGCTCA -ACGGAACAGTCATCTGACTCACGT -ACGGAACAGTCATCTGACCGTAGT -ACGGAACAGTCATCTGACGTCAGT -ACGGAACAGTCATCTGACGAAGGT -ACGGAACAGTCATCTGACAACCGT -ACGGAACAGTCATCTGACTTGTGC -ACGGAACAGTCATCTGACCTAAGC -ACGGAACAGTCATCTGACACTAGC -ACGGAACAGTCATCTGACAGATGC -ACGGAACAGTCATCTGACTGAAGG -ACGGAACAGTCATCTGACCAATGG -ACGGAACAGTCATCTGACATGAGG -ACGGAACAGTCATCTGACAATGGG -ACGGAACAGTCATCTGACTCCTGA -ACGGAACAGTCATCTGACTAGCGA -ACGGAACAGTCATCTGACCACAGA -ACGGAACAGTCATCTGACGCAAGA -ACGGAACAGTCATCTGACGGTTGA -ACGGAACAGTCATCTGACTCCGAT -ACGGAACAGTCATCTGACTGGCAT -ACGGAACAGTCATCTGACCGAGAT -ACGGAACAGTCATCTGACTACCAC -ACGGAACAGTCATCTGACCAGAAC -ACGGAACAGTCATCTGACGTCTAC -ACGGAACAGTCATCTGACACGTAC -ACGGAACAGTCATCTGACAGTGAC -ACGGAACAGTCATCTGACCTGTAG -ACGGAACAGTCATCTGACCCTAAG -ACGGAACAGTCATCTGACGTTCAG -ACGGAACAGTCATCTGACGCATAG -ACGGAACAGTCATCTGACGACAAG -ACGGAACAGTCATCTGACAAGCAG -ACGGAACAGTCATCTGACCGTCAA -ACGGAACAGTCATCTGACGCTGAA -ACGGAACAGTCATCTGACAGTACG -ACGGAACAGTCATCTGACATCCGA -ACGGAACAGTCATCTGACATGGGA -ACGGAACAGTCATCTGACGTGCAA -ACGGAACAGTCATCTGACGAGGAA -ACGGAACAGTCATCTGACCAGGTA -ACGGAACAGTCATCTGACGACTCT -ACGGAACAGTCATCTGACAGTCCT -ACGGAACAGTCATCTGACTAAGCC -ACGGAACAGTCATCTGACATAGCC -ACGGAACAGTCATCTGACTAACCG -ACGGAACAGTCATCTGACATGCCA -ACGGAACAGTCACCTAGTGGAAAC -ACGGAACAGTCACCTAGTAACACC -ACGGAACAGTCACCTAGTATCGAG -ACGGAACAGTCACCTAGTCTCCTT -ACGGAACAGTCACCTAGTCCTGTT -ACGGAACAGTCACCTAGTCGGTTT -ACGGAACAGTCACCTAGTGTGGTT -ACGGAACAGTCACCTAGTGCCTTT -ACGGAACAGTCACCTAGTGGTCTT -ACGGAACAGTCACCTAGTACGCTT -ACGGAACAGTCACCTAGTAGCGTT -ACGGAACAGTCACCTAGTTTCGTC -ACGGAACAGTCACCTAGTTCTCTC -ACGGAACAGTCACCTAGTTGGATC -ACGGAACAGTCACCTAGTCACTTC -ACGGAACAGTCACCTAGTGTACTC -ACGGAACAGTCACCTAGTGATGTC -ACGGAACAGTCACCTAGTACAGTC -ACGGAACAGTCACCTAGTTTGCTG -ACGGAACAGTCACCTAGTTCCATG -ACGGAACAGTCACCTAGTTGTGTG -ACGGAACAGTCACCTAGTCTAGTG -ACGGAACAGTCACCTAGTCATCTG -ACGGAACAGTCACCTAGTGAGTTG -ACGGAACAGTCACCTAGTAGACTG -ACGGAACAGTCACCTAGTTCGGTA -ACGGAACAGTCACCTAGTTGCCTA -ACGGAACAGTCACCTAGTCCACTA -ACGGAACAGTCACCTAGTGGAGTA -ACGGAACAGTCACCTAGTTCGTCT -ACGGAACAGTCACCTAGTTGCACT -ACGGAACAGTCACCTAGTCTGACT -ACGGAACAGTCACCTAGTCAACCT -ACGGAACAGTCACCTAGTGCTACT -ACGGAACAGTCACCTAGTGGATCT -ACGGAACAGTCACCTAGTAAGGCT -ACGGAACAGTCACCTAGTTCAACC -ACGGAACAGTCACCTAGTTGTTCC -ACGGAACAGTCACCTAGTATTCCC -ACGGAACAGTCACCTAGTTTCTCG -ACGGAACAGTCACCTAGTTAGACG -ACGGAACAGTCACCTAGTGTAACG -ACGGAACAGTCACCTAGTACTTCG -ACGGAACAGTCACCTAGTTACGCA -ACGGAACAGTCACCTAGTCTTGCA -ACGGAACAGTCACCTAGTCGAACA -ACGGAACAGTCACCTAGTCAGTCA -ACGGAACAGTCACCTAGTGATCCA -ACGGAACAGTCACCTAGTACGACA -ACGGAACAGTCACCTAGTAGCTCA -ACGGAACAGTCACCTAGTTCACGT -ACGGAACAGTCACCTAGTCGTAGT -ACGGAACAGTCACCTAGTGTCAGT -ACGGAACAGTCACCTAGTGAAGGT -ACGGAACAGTCACCTAGTAACCGT -ACGGAACAGTCACCTAGTTTGTGC -ACGGAACAGTCACCTAGTCTAAGC -ACGGAACAGTCACCTAGTACTAGC -ACGGAACAGTCACCTAGTAGATGC -ACGGAACAGTCACCTAGTTGAAGG -ACGGAACAGTCACCTAGTCAATGG -ACGGAACAGTCACCTAGTATGAGG -ACGGAACAGTCACCTAGTAATGGG -ACGGAACAGTCACCTAGTTCCTGA -ACGGAACAGTCACCTAGTTAGCGA -ACGGAACAGTCACCTAGTCACAGA -ACGGAACAGTCACCTAGTGCAAGA -ACGGAACAGTCACCTAGTGGTTGA -ACGGAACAGTCACCTAGTTCCGAT -ACGGAACAGTCACCTAGTTGGCAT -ACGGAACAGTCACCTAGTCGAGAT -ACGGAACAGTCACCTAGTTACCAC -ACGGAACAGTCACCTAGTCAGAAC -ACGGAACAGTCACCTAGTGTCTAC -ACGGAACAGTCACCTAGTACGTAC -ACGGAACAGTCACCTAGTAGTGAC -ACGGAACAGTCACCTAGTCTGTAG -ACGGAACAGTCACCTAGTCCTAAG -ACGGAACAGTCACCTAGTGTTCAG -ACGGAACAGTCACCTAGTGCATAG -ACGGAACAGTCACCTAGTGACAAG -ACGGAACAGTCACCTAGTAAGCAG -ACGGAACAGTCACCTAGTCGTCAA -ACGGAACAGTCACCTAGTGCTGAA -ACGGAACAGTCACCTAGTAGTACG -ACGGAACAGTCACCTAGTATCCGA -ACGGAACAGTCACCTAGTATGGGA -ACGGAACAGTCACCTAGTGTGCAA -ACGGAACAGTCACCTAGTGAGGAA -ACGGAACAGTCACCTAGTCAGGTA -ACGGAACAGTCACCTAGTGACTCT -ACGGAACAGTCACCTAGTAGTCCT -ACGGAACAGTCACCTAGTTAAGCC -ACGGAACAGTCACCTAGTATAGCC -ACGGAACAGTCACCTAGTTAACCG -ACGGAACAGTCACCTAGTATGCCA -ACGGAACAGTCAGCCTAAGGAAAC -ACGGAACAGTCAGCCTAAAACACC -ACGGAACAGTCAGCCTAAATCGAG -ACGGAACAGTCAGCCTAACTCCTT -ACGGAACAGTCAGCCTAACCTGTT -ACGGAACAGTCAGCCTAACGGTTT -ACGGAACAGTCAGCCTAAGTGGTT -ACGGAACAGTCAGCCTAAGCCTTT -ACGGAACAGTCAGCCTAAGGTCTT -ACGGAACAGTCAGCCTAAACGCTT -ACGGAACAGTCAGCCTAAAGCGTT -ACGGAACAGTCAGCCTAATTCGTC -ACGGAACAGTCAGCCTAATCTCTC -ACGGAACAGTCAGCCTAATGGATC -ACGGAACAGTCAGCCTAACACTTC -ACGGAACAGTCAGCCTAAGTACTC -ACGGAACAGTCAGCCTAAGATGTC -ACGGAACAGTCAGCCTAAACAGTC -ACGGAACAGTCAGCCTAATTGCTG -ACGGAACAGTCAGCCTAATCCATG -ACGGAACAGTCAGCCTAATGTGTG -ACGGAACAGTCAGCCTAACTAGTG -ACGGAACAGTCAGCCTAACATCTG -ACGGAACAGTCAGCCTAAGAGTTG -ACGGAACAGTCAGCCTAAAGACTG -ACGGAACAGTCAGCCTAATCGGTA -ACGGAACAGTCAGCCTAATGCCTA -ACGGAACAGTCAGCCTAACCACTA -ACGGAACAGTCAGCCTAAGGAGTA -ACGGAACAGTCAGCCTAATCGTCT -ACGGAACAGTCAGCCTAATGCACT -ACGGAACAGTCAGCCTAACTGACT -ACGGAACAGTCAGCCTAACAACCT -ACGGAACAGTCAGCCTAAGCTACT -ACGGAACAGTCAGCCTAAGGATCT -ACGGAACAGTCAGCCTAAAAGGCT -ACGGAACAGTCAGCCTAATCAACC -ACGGAACAGTCAGCCTAATGTTCC -ACGGAACAGTCAGCCTAAATTCCC -ACGGAACAGTCAGCCTAATTCTCG -ACGGAACAGTCAGCCTAATAGACG -ACGGAACAGTCAGCCTAAGTAACG -ACGGAACAGTCAGCCTAAACTTCG -ACGGAACAGTCAGCCTAATACGCA -ACGGAACAGTCAGCCTAACTTGCA -ACGGAACAGTCAGCCTAACGAACA -ACGGAACAGTCAGCCTAACAGTCA -ACGGAACAGTCAGCCTAAGATCCA -ACGGAACAGTCAGCCTAAACGACA -ACGGAACAGTCAGCCTAAAGCTCA -ACGGAACAGTCAGCCTAATCACGT -ACGGAACAGTCAGCCTAACGTAGT -ACGGAACAGTCAGCCTAAGTCAGT -ACGGAACAGTCAGCCTAAGAAGGT -ACGGAACAGTCAGCCTAAAACCGT -ACGGAACAGTCAGCCTAATTGTGC -ACGGAACAGTCAGCCTAACTAAGC -ACGGAACAGTCAGCCTAAACTAGC -ACGGAACAGTCAGCCTAAAGATGC -ACGGAACAGTCAGCCTAATGAAGG -ACGGAACAGTCAGCCTAACAATGG -ACGGAACAGTCAGCCTAAATGAGG -ACGGAACAGTCAGCCTAAAATGGG -ACGGAACAGTCAGCCTAATCCTGA -ACGGAACAGTCAGCCTAATAGCGA -ACGGAACAGTCAGCCTAACACAGA -ACGGAACAGTCAGCCTAAGCAAGA -ACGGAACAGTCAGCCTAAGGTTGA -ACGGAACAGTCAGCCTAATCCGAT -ACGGAACAGTCAGCCTAATGGCAT -ACGGAACAGTCAGCCTAACGAGAT -ACGGAACAGTCAGCCTAATACCAC -ACGGAACAGTCAGCCTAACAGAAC -ACGGAACAGTCAGCCTAAGTCTAC -ACGGAACAGTCAGCCTAAACGTAC -ACGGAACAGTCAGCCTAAAGTGAC -ACGGAACAGTCAGCCTAACTGTAG -ACGGAACAGTCAGCCTAACCTAAG -ACGGAACAGTCAGCCTAAGTTCAG -ACGGAACAGTCAGCCTAAGCATAG -ACGGAACAGTCAGCCTAAGACAAG -ACGGAACAGTCAGCCTAAAAGCAG -ACGGAACAGTCAGCCTAACGTCAA -ACGGAACAGTCAGCCTAAGCTGAA -ACGGAACAGTCAGCCTAAAGTACG -ACGGAACAGTCAGCCTAAATCCGA -ACGGAACAGTCAGCCTAAATGGGA -ACGGAACAGTCAGCCTAAGTGCAA -ACGGAACAGTCAGCCTAAGAGGAA -ACGGAACAGTCAGCCTAACAGGTA -ACGGAACAGTCAGCCTAAGACTCT -ACGGAACAGTCAGCCTAAAGTCCT -ACGGAACAGTCAGCCTAATAAGCC -ACGGAACAGTCAGCCTAAATAGCC -ACGGAACAGTCAGCCTAATAACCG -ACGGAACAGTCAGCCTAAATGCCA -ACGGAACAGTCAGCCATAGGAAAC -ACGGAACAGTCAGCCATAAACACC -ACGGAACAGTCAGCCATAATCGAG -ACGGAACAGTCAGCCATACTCCTT -ACGGAACAGTCAGCCATACCTGTT -ACGGAACAGTCAGCCATACGGTTT -ACGGAACAGTCAGCCATAGTGGTT -ACGGAACAGTCAGCCATAGCCTTT -ACGGAACAGTCAGCCATAGGTCTT -ACGGAACAGTCAGCCATAACGCTT -ACGGAACAGTCAGCCATAAGCGTT -ACGGAACAGTCAGCCATATTCGTC -ACGGAACAGTCAGCCATATCTCTC -ACGGAACAGTCAGCCATATGGATC -ACGGAACAGTCAGCCATACACTTC -ACGGAACAGTCAGCCATAGTACTC -ACGGAACAGTCAGCCATAGATGTC -ACGGAACAGTCAGCCATAACAGTC -ACGGAACAGTCAGCCATATTGCTG -ACGGAACAGTCAGCCATATCCATG -ACGGAACAGTCAGCCATATGTGTG -ACGGAACAGTCAGCCATACTAGTG -ACGGAACAGTCAGCCATACATCTG -ACGGAACAGTCAGCCATAGAGTTG -ACGGAACAGTCAGCCATAAGACTG -ACGGAACAGTCAGCCATATCGGTA -ACGGAACAGTCAGCCATATGCCTA -ACGGAACAGTCAGCCATACCACTA -ACGGAACAGTCAGCCATAGGAGTA -ACGGAACAGTCAGCCATATCGTCT -ACGGAACAGTCAGCCATATGCACT -ACGGAACAGTCAGCCATACTGACT -ACGGAACAGTCAGCCATACAACCT -ACGGAACAGTCAGCCATAGCTACT -ACGGAACAGTCAGCCATAGGATCT -ACGGAACAGTCAGCCATAAAGGCT -ACGGAACAGTCAGCCATATCAACC -ACGGAACAGTCAGCCATATGTTCC -ACGGAACAGTCAGCCATAATTCCC -ACGGAACAGTCAGCCATATTCTCG -ACGGAACAGTCAGCCATATAGACG -ACGGAACAGTCAGCCATAGTAACG -ACGGAACAGTCAGCCATAACTTCG -ACGGAACAGTCAGCCATATACGCA -ACGGAACAGTCAGCCATACTTGCA -ACGGAACAGTCAGCCATACGAACA -ACGGAACAGTCAGCCATACAGTCA -ACGGAACAGTCAGCCATAGATCCA -ACGGAACAGTCAGCCATAACGACA -ACGGAACAGTCAGCCATAAGCTCA -ACGGAACAGTCAGCCATATCACGT -ACGGAACAGTCAGCCATACGTAGT -ACGGAACAGTCAGCCATAGTCAGT -ACGGAACAGTCAGCCATAGAAGGT -ACGGAACAGTCAGCCATAAACCGT -ACGGAACAGTCAGCCATATTGTGC -ACGGAACAGTCAGCCATACTAAGC -ACGGAACAGTCAGCCATAACTAGC -ACGGAACAGTCAGCCATAAGATGC -ACGGAACAGTCAGCCATATGAAGG -ACGGAACAGTCAGCCATACAATGG -ACGGAACAGTCAGCCATAATGAGG -ACGGAACAGTCAGCCATAAATGGG -ACGGAACAGTCAGCCATATCCTGA -ACGGAACAGTCAGCCATATAGCGA -ACGGAACAGTCAGCCATACACAGA -ACGGAACAGTCAGCCATAGCAAGA -ACGGAACAGTCAGCCATAGGTTGA -ACGGAACAGTCAGCCATATCCGAT -ACGGAACAGTCAGCCATATGGCAT -ACGGAACAGTCAGCCATACGAGAT -ACGGAACAGTCAGCCATATACCAC -ACGGAACAGTCAGCCATACAGAAC -ACGGAACAGTCAGCCATAGTCTAC -ACGGAACAGTCAGCCATAACGTAC -ACGGAACAGTCAGCCATAAGTGAC -ACGGAACAGTCAGCCATACTGTAG -ACGGAACAGTCAGCCATACCTAAG -ACGGAACAGTCAGCCATAGTTCAG -ACGGAACAGTCAGCCATAGCATAG -ACGGAACAGTCAGCCATAGACAAG -ACGGAACAGTCAGCCATAAAGCAG -ACGGAACAGTCAGCCATACGTCAA -ACGGAACAGTCAGCCATAGCTGAA -ACGGAACAGTCAGCCATAAGTACG -ACGGAACAGTCAGCCATAATCCGA -ACGGAACAGTCAGCCATAATGGGA -ACGGAACAGTCAGCCATAGTGCAA -ACGGAACAGTCAGCCATAGAGGAA -ACGGAACAGTCAGCCATACAGGTA -ACGGAACAGTCAGCCATAGACTCT -ACGGAACAGTCAGCCATAAGTCCT -ACGGAACAGTCAGCCATATAAGCC -ACGGAACAGTCAGCCATAATAGCC -ACGGAACAGTCAGCCATATAACCG -ACGGAACAGTCAGCCATAATGCCA -ACGGAACAGTCACCGTAAGGAAAC -ACGGAACAGTCACCGTAAAACACC -ACGGAACAGTCACCGTAAATCGAG -ACGGAACAGTCACCGTAACTCCTT -ACGGAACAGTCACCGTAACCTGTT -ACGGAACAGTCACCGTAACGGTTT -ACGGAACAGTCACCGTAAGTGGTT -ACGGAACAGTCACCGTAAGCCTTT -ACGGAACAGTCACCGTAAGGTCTT -ACGGAACAGTCACCGTAAACGCTT -ACGGAACAGTCACCGTAAAGCGTT -ACGGAACAGTCACCGTAATTCGTC -ACGGAACAGTCACCGTAATCTCTC -ACGGAACAGTCACCGTAATGGATC -ACGGAACAGTCACCGTAACACTTC -ACGGAACAGTCACCGTAAGTACTC -ACGGAACAGTCACCGTAAGATGTC -ACGGAACAGTCACCGTAAACAGTC -ACGGAACAGTCACCGTAATTGCTG -ACGGAACAGTCACCGTAATCCATG -ACGGAACAGTCACCGTAATGTGTG -ACGGAACAGTCACCGTAACTAGTG -ACGGAACAGTCACCGTAACATCTG -ACGGAACAGTCACCGTAAGAGTTG -ACGGAACAGTCACCGTAAAGACTG -ACGGAACAGTCACCGTAATCGGTA -ACGGAACAGTCACCGTAATGCCTA -ACGGAACAGTCACCGTAACCACTA -ACGGAACAGTCACCGTAAGGAGTA -ACGGAACAGTCACCGTAATCGTCT -ACGGAACAGTCACCGTAATGCACT -ACGGAACAGTCACCGTAACTGACT -ACGGAACAGTCACCGTAACAACCT -ACGGAACAGTCACCGTAAGCTACT -ACGGAACAGTCACCGTAAGGATCT -ACGGAACAGTCACCGTAAAAGGCT -ACGGAACAGTCACCGTAATCAACC -ACGGAACAGTCACCGTAATGTTCC -ACGGAACAGTCACCGTAAATTCCC -ACGGAACAGTCACCGTAATTCTCG -ACGGAACAGTCACCGTAATAGACG -ACGGAACAGTCACCGTAAGTAACG -ACGGAACAGTCACCGTAAACTTCG -ACGGAACAGTCACCGTAATACGCA -ACGGAACAGTCACCGTAACTTGCA -ACGGAACAGTCACCGTAACGAACA -ACGGAACAGTCACCGTAACAGTCA -ACGGAACAGTCACCGTAAGATCCA -ACGGAACAGTCACCGTAAACGACA -ACGGAACAGTCACCGTAAAGCTCA -ACGGAACAGTCACCGTAATCACGT -ACGGAACAGTCACCGTAACGTAGT -ACGGAACAGTCACCGTAAGTCAGT -ACGGAACAGTCACCGTAAGAAGGT -ACGGAACAGTCACCGTAAAACCGT -ACGGAACAGTCACCGTAATTGTGC -ACGGAACAGTCACCGTAACTAAGC -ACGGAACAGTCACCGTAAACTAGC -ACGGAACAGTCACCGTAAAGATGC -ACGGAACAGTCACCGTAATGAAGG -ACGGAACAGTCACCGTAACAATGG -ACGGAACAGTCACCGTAAATGAGG -ACGGAACAGTCACCGTAAAATGGG -ACGGAACAGTCACCGTAATCCTGA -ACGGAACAGTCACCGTAATAGCGA -ACGGAACAGTCACCGTAACACAGA -ACGGAACAGTCACCGTAAGCAAGA -ACGGAACAGTCACCGTAAGGTTGA -ACGGAACAGTCACCGTAATCCGAT -ACGGAACAGTCACCGTAATGGCAT -ACGGAACAGTCACCGTAACGAGAT -ACGGAACAGTCACCGTAATACCAC -ACGGAACAGTCACCGTAACAGAAC -ACGGAACAGTCACCGTAAGTCTAC -ACGGAACAGTCACCGTAAACGTAC -ACGGAACAGTCACCGTAAAGTGAC -ACGGAACAGTCACCGTAACTGTAG -ACGGAACAGTCACCGTAACCTAAG -ACGGAACAGTCACCGTAAGTTCAG -ACGGAACAGTCACCGTAAGCATAG -ACGGAACAGTCACCGTAAGACAAG -ACGGAACAGTCACCGTAAAAGCAG -ACGGAACAGTCACCGTAACGTCAA -ACGGAACAGTCACCGTAAGCTGAA -ACGGAACAGTCACCGTAAAGTACG -ACGGAACAGTCACCGTAAATCCGA -ACGGAACAGTCACCGTAAATGGGA -ACGGAACAGTCACCGTAAGTGCAA -ACGGAACAGTCACCGTAAGAGGAA -ACGGAACAGTCACCGTAACAGGTA -ACGGAACAGTCACCGTAAGACTCT -ACGGAACAGTCACCGTAAAGTCCT -ACGGAACAGTCACCGTAATAAGCC -ACGGAACAGTCACCGTAAATAGCC -ACGGAACAGTCACCGTAATAACCG -ACGGAACAGTCACCGTAAATGCCA -ACGGAACAGTCACCAATGGGAAAC -ACGGAACAGTCACCAATGAACACC -ACGGAACAGTCACCAATGATCGAG -ACGGAACAGTCACCAATGCTCCTT -ACGGAACAGTCACCAATGCCTGTT -ACGGAACAGTCACCAATGCGGTTT -ACGGAACAGTCACCAATGGTGGTT -ACGGAACAGTCACCAATGGCCTTT -ACGGAACAGTCACCAATGGGTCTT -ACGGAACAGTCACCAATGACGCTT -ACGGAACAGTCACCAATGAGCGTT -ACGGAACAGTCACCAATGTTCGTC -ACGGAACAGTCACCAATGTCTCTC -ACGGAACAGTCACCAATGTGGATC -ACGGAACAGTCACCAATGCACTTC -ACGGAACAGTCACCAATGGTACTC -ACGGAACAGTCACCAATGGATGTC -ACGGAACAGTCACCAATGACAGTC -ACGGAACAGTCACCAATGTTGCTG -ACGGAACAGTCACCAATGTCCATG -ACGGAACAGTCACCAATGTGTGTG -ACGGAACAGTCACCAATGCTAGTG -ACGGAACAGTCACCAATGCATCTG -ACGGAACAGTCACCAATGGAGTTG -ACGGAACAGTCACCAATGAGACTG -ACGGAACAGTCACCAATGTCGGTA -ACGGAACAGTCACCAATGTGCCTA -ACGGAACAGTCACCAATGCCACTA -ACGGAACAGTCACCAATGGGAGTA -ACGGAACAGTCACCAATGTCGTCT -ACGGAACAGTCACCAATGTGCACT -ACGGAACAGTCACCAATGCTGACT -ACGGAACAGTCACCAATGCAACCT -ACGGAACAGTCACCAATGGCTACT -ACGGAACAGTCACCAATGGGATCT -ACGGAACAGTCACCAATGAAGGCT -ACGGAACAGTCACCAATGTCAACC -ACGGAACAGTCACCAATGTGTTCC -ACGGAACAGTCACCAATGATTCCC -ACGGAACAGTCACCAATGTTCTCG -ACGGAACAGTCACCAATGTAGACG -ACGGAACAGTCACCAATGGTAACG -ACGGAACAGTCACCAATGACTTCG -ACGGAACAGTCACCAATGTACGCA -ACGGAACAGTCACCAATGCTTGCA -ACGGAACAGTCACCAATGCGAACA -ACGGAACAGTCACCAATGCAGTCA -ACGGAACAGTCACCAATGGATCCA -ACGGAACAGTCACCAATGACGACA -ACGGAACAGTCACCAATGAGCTCA -ACGGAACAGTCACCAATGTCACGT -ACGGAACAGTCACCAATGCGTAGT -ACGGAACAGTCACCAATGGTCAGT -ACGGAACAGTCACCAATGGAAGGT -ACGGAACAGTCACCAATGAACCGT -ACGGAACAGTCACCAATGTTGTGC -ACGGAACAGTCACCAATGCTAAGC -ACGGAACAGTCACCAATGACTAGC -ACGGAACAGTCACCAATGAGATGC -ACGGAACAGTCACCAATGTGAAGG -ACGGAACAGTCACCAATGCAATGG -ACGGAACAGTCACCAATGATGAGG -ACGGAACAGTCACCAATGAATGGG -ACGGAACAGTCACCAATGTCCTGA -ACGGAACAGTCACCAATGTAGCGA -ACGGAACAGTCACCAATGCACAGA -ACGGAACAGTCACCAATGGCAAGA -ACGGAACAGTCACCAATGGGTTGA -ACGGAACAGTCACCAATGTCCGAT -ACGGAACAGTCACCAATGTGGCAT -ACGGAACAGTCACCAATGCGAGAT -ACGGAACAGTCACCAATGTACCAC -ACGGAACAGTCACCAATGCAGAAC -ACGGAACAGTCACCAATGGTCTAC -ACGGAACAGTCACCAATGACGTAC -ACGGAACAGTCACCAATGAGTGAC -ACGGAACAGTCACCAATGCTGTAG -ACGGAACAGTCACCAATGCCTAAG -ACGGAACAGTCACCAATGGTTCAG -ACGGAACAGTCACCAATGGCATAG -ACGGAACAGTCACCAATGGACAAG -ACGGAACAGTCACCAATGAAGCAG -ACGGAACAGTCACCAATGCGTCAA -ACGGAACAGTCACCAATGGCTGAA -ACGGAACAGTCACCAATGAGTACG -ACGGAACAGTCACCAATGATCCGA -ACGGAACAGTCACCAATGATGGGA -ACGGAACAGTCACCAATGGTGCAA -ACGGAACAGTCACCAATGGAGGAA -ACGGAACAGTCACCAATGCAGGTA -ACGGAACAGTCACCAATGGACTCT -ACGGAACAGTCACCAATGAGTCCT -ACGGAACAGTCACCAATGTAAGCC -ACGGAACAGTCACCAATGATAGCC -ACGGAACAGTCACCAATGTAACCG -ACGGAACAGTCACCAATGATGCCA -ACGGAATGCTGTAACGGAGGAAAC -ACGGAATGCTGTAACGGAAACACC -ACGGAATGCTGTAACGGAATCGAG -ACGGAATGCTGTAACGGACTCCTT -ACGGAATGCTGTAACGGACCTGTT -ACGGAATGCTGTAACGGACGGTTT -ACGGAATGCTGTAACGGAGTGGTT -ACGGAATGCTGTAACGGAGCCTTT -ACGGAATGCTGTAACGGAGGTCTT -ACGGAATGCTGTAACGGAACGCTT -ACGGAATGCTGTAACGGAAGCGTT -ACGGAATGCTGTAACGGATTCGTC -ACGGAATGCTGTAACGGATCTCTC -ACGGAATGCTGTAACGGATGGATC -ACGGAATGCTGTAACGGACACTTC -ACGGAATGCTGTAACGGAGTACTC -ACGGAATGCTGTAACGGAGATGTC -ACGGAATGCTGTAACGGAACAGTC -ACGGAATGCTGTAACGGATTGCTG -ACGGAATGCTGTAACGGATCCATG -ACGGAATGCTGTAACGGATGTGTG -ACGGAATGCTGTAACGGACTAGTG -ACGGAATGCTGTAACGGACATCTG -ACGGAATGCTGTAACGGAGAGTTG -ACGGAATGCTGTAACGGAAGACTG -ACGGAATGCTGTAACGGATCGGTA -ACGGAATGCTGTAACGGATGCCTA -ACGGAATGCTGTAACGGACCACTA -ACGGAATGCTGTAACGGAGGAGTA -ACGGAATGCTGTAACGGATCGTCT -ACGGAATGCTGTAACGGATGCACT -ACGGAATGCTGTAACGGACTGACT -ACGGAATGCTGTAACGGACAACCT -ACGGAATGCTGTAACGGAGCTACT -ACGGAATGCTGTAACGGAGGATCT -ACGGAATGCTGTAACGGAAAGGCT -ACGGAATGCTGTAACGGATCAACC -ACGGAATGCTGTAACGGATGTTCC -ACGGAATGCTGTAACGGAATTCCC -ACGGAATGCTGTAACGGATTCTCG -ACGGAATGCTGTAACGGATAGACG -ACGGAATGCTGTAACGGAGTAACG -ACGGAATGCTGTAACGGAACTTCG -ACGGAATGCTGTAACGGATACGCA -ACGGAATGCTGTAACGGACTTGCA -ACGGAATGCTGTAACGGACGAACA -ACGGAATGCTGTAACGGACAGTCA -ACGGAATGCTGTAACGGAGATCCA -ACGGAATGCTGTAACGGAACGACA -ACGGAATGCTGTAACGGAAGCTCA -ACGGAATGCTGTAACGGATCACGT -ACGGAATGCTGTAACGGACGTAGT -ACGGAATGCTGTAACGGAGTCAGT -ACGGAATGCTGTAACGGAGAAGGT -ACGGAATGCTGTAACGGAAACCGT -ACGGAATGCTGTAACGGATTGTGC -ACGGAATGCTGTAACGGACTAAGC -ACGGAATGCTGTAACGGAACTAGC -ACGGAATGCTGTAACGGAAGATGC -ACGGAATGCTGTAACGGATGAAGG -ACGGAATGCTGTAACGGACAATGG -ACGGAATGCTGTAACGGAATGAGG -ACGGAATGCTGTAACGGAAATGGG -ACGGAATGCTGTAACGGATCCTGA -ACGGAATGCTGTAACGGATAGCGA -ACGGAATGCTGTAACGGACACAGA -ACGGAATGCTGTAACGGAGCAAGA -ACGGAATGCTGTAACGGAGGTTGA -ACGGAATGCTGTAACGGATCCGAT -ACGGAATGCTGTAACGGATGGCAT -ACGGAATGCTGTAACGGACGAGAT -ACGGAATGCTGTAACGGATACCAC -ACGGAATGCTGTAACGGACAGAAC -ACGGAATGCTGTAACGGAGTCTAC -ACGGAATGCTGTAACGGAACGTAC -ACGGAATGCTGTAACGGAAGTGAC -ACGGAATGCTGTAACGGACTGTAG -ACGGAATGCTGTAACGGACCTAAG -ACGGAATGCTGTAACGGAGTTCAG -ACGGAATGCTGTAACGGAGCATAG -ACGGAATGCTGTAACGGAGACAAG -ACGGAATGCTGTAACGGAAAGCAG -ACGGAATGCTGTAACGGACGTCAA -ACGGAATGCTGTAACGGAGCTGAA -ACGGAATGCTGTAACGGAAGTACG -ACGGAATGCTGTAACGGAATCCGA -ACGGAATGCTGTAACGGAATGGGA -ACGGAATGCTGTAACGGAGTGCAA -ACGGAATGCTGTAACGGAGAGGAA -ACGGAATGCTGTAACGGACAGGTA -ACGGAATGCTGTAACGGAGACTCT -ACGGAATGCTGTAACGGAAGTCCT -ACGGAATGCTGTAACGGATAAGCC -ACGGAATGCTGTAACGGAATAGCC -ACGGAATGCTGTAACGGATAACCG -ACGGAATGCTGTAACGGAATGCCA -ACGGAATGCTGTACCAACGGAAAC -ACGGAATGCTGTACCAACAACACC -ACGGAATGCTGTACCAACATCGAG -ACGGAATGCTGTACCAACCTCCTT -ACGGAATGCTGTACCAACCCTGTT -ACGGAATGCTGTACCAACCGGTTT -ACGGAATGCTGTACCAACGTGGTT -ACGGAATGCTGTACCAACGCCTTT -ACGGAATGCTGTACCAACGGTCTT -ACGGAATGCTGTACCAACACGCTT -ACGGAATGCTGTACCAACAGCGTT -ACGGAATGCTGTACCAACTTCGTC -ACGGAATGCTGTACCAACTCTCTC -ACGGAATGCTGTACCAACTGGATC -ACGGAATGCTGTACCAACCACTTC -ACGGAATGCTGTACCAACGTACTC -ACGGAATGCTGTACCAACGATGTC -ACGGAATGCTGTACCAACACAGTC -ACGGAATGCTGTACCAACTTGCTG -ACGGAATGCTGTACCAACTCCATG -ACGGAATGCTGTACCAACTGTGTG -ACGGAATGCTGTACCAACCTAGTG -ACGGAATGCTGTACCAACCATCTG -ACGGAATGCTGTACCAACGAGTTG -ACGGAATGCTGTACCAACAGACTG -ACGGAATGCTGTACCAACTCGGTA -ACGGAATGCTGTACCAACTGCCTA -ACGGAATGCTGTACCAACCCACTA -ACGGAATGCTGTACCAACGGAGTA -ACGGAATGCTGTACCAACTCGTCT -ACGGAATGCTGTACCAACTGCACT -ACGGAATGCTGTACCAACCTGACT -ACGGAATGCTGTACCAACCAACCT -ACGGAATGCTGTACCAACGCTACT -ACGGAATGCTGTACCAACGGATCT -ACGGAATGCTGTACCAACAAGGCT -ACGGAATGCTGTACCAACTCAACC -ACGGAATGCTGTACCAACTGTTCC -ACGGAATGCTGTACCAACATTCCC -ACGGAATGCTGTACCAACTTCTCG -ACGGAATGCTGTACCAACTAGACG -ACGGAATGCTGTACCAACGTAACG -ACGGAATGCTGTACCAACACTTCG -ACGGAATGCTGTACCAACTACGCA -ACGGAATGCTGTACCAACCTTGCA -ACGGAATGCTGTACCAACCGAACA -ACGGAATGCTGTACCAACCAGTCA -ACGGAATGCTGTACCAACGATCCA -ACGGAATGCTGTACCAACACGACA -ACGGAATGCTGTACCAACAGCTCA -ACGGAATGCTGTACCAACTCACGT -ACGGAATGCTGTACCAACCGTAGT -ACGGAATGCTGTACCAACGTCAGT -ACGGAATGCTGTACCAACGAAGGT -ACGGAATGCTGTACCAACAACCGT -ACGGAATGCTGTACCAACTTGTGC -ACGGAATGCTGTACCAACCTAAGC -ACGGAATGCTGTACCAACACTAGC -ACGGAATGCTGTACCAACAGATGC -ACGGAATGCTGTACCAACTGAAGG -ACGGAATGCTGTACCAACCAATGG -ACGGAATGCTGTACCAACATGAGG -ACGGAATGCTGTACCAACAATGGG -ACGGAATGCTGTACCAACTCCTGA -ACGGAATGCTGTACCAACTAGCGA -ACGGAATGCTGTACCAACCACAGA -ACGGAATGCTGTACCAACGCAAGA -ACGGAATGCTGTACCAACGGTTGA -ACGGAATGCTGTACCAACTCCGAT -ACGGAATGCTGTACCAACTGGCAT -ACGGAATGCTGTACCAACCGAGAT -ACGGAATGCTGTACCAACTACCAC -ACGGAATGCTGTACCAACCAGAAC -ACGGAATGCTGTACCAACGTCTAC -ACGGAATGCTGTACCAACACGTAC -ACGGAATGCTGTACCAACAGTGAC -ACGGAATGCTGTACCAACCTGTAG -ACGGAATGCTGTACCAACCCTAAG -ACGGAATGCTGTACCAACGTTCAG -ACGGAATGCTGTACCAACGCATAG -ACGGAATGCTGTACCAACGACAAG -ACGGAATGCTGTACCAACAAGCAG -ACGGAATGCTGTACCAACCGTCAA -ACGGAATGCTGTACCAACGCTGAA -ACGGAATGCTGTACCAACAGTACG -ACGGAATGCTGTACCAACATCCGA -ACGGAATGCTGTACCAACATGGGA -ACGGAATGCTGTACCAACGTGCAA -ACGGAATGCTGTACCAACGAGGAA -ACGGAATGCTGTACCAACCAGGTA -ACGGAATGCTGTACCAACGACTCT -ACGGAATGCTGTACCAACAGTCCT -ACGGAATGCTGTACCAACTAAGCC -ACGGAATGCTGTACCAACATAGCC -ACGGAATGCTGTACCAACTAACCG -ACGGAATGCTGTACCAACATGCCA -ACGGAATGCTGTGAGATCGGAAAC -ACGGAATGCTGTGAGATCAACACC -ACGGAATGCTGTGAGATCATCGAG -ACGGAATGCTGTGAGATCCTCCTT -ACGGAATGCTGTGAGATCCCTGTT -ACGGAATGCTGTGAGATCCGGTTT -ACGGAATGCTGTGAGATCGTGGTT -ACGGAATGCTGTGAGATCGCCTTT -ACGGAATGCTGTGAGATCGGTCTT -ACGGAATGCTGTGAGATCACGCTT -ACGGAATGCTGTGAGATCAGCGTT -ACGGAATGCTGTGAGATCTTCGTC -ACGGAATGCTGTGAGATCTCTCTC -ACGGAATGCTGTGAGATCTGGATC -ACGGAATGCTGTGAGATCCACTTC -ACGGAATGCTGTGAGATCGTACTC -ACGGAATGCTGTGAGATCGATGTC -ACGGAATGCTGTGAGATCACAGTC -ACGGAATGCTGTGAGATCTTGCTG -ACGGAATGCTGTGAGATCTCCATG -ACGGAATGCTGTGAGATCTGTGTG -ACGGAATGCTGTGAGATCCTAGTG -ACGGAATGCTGTGAGATCCATCTG -ACGGAATGCTGTGAGATCGAGTTG -ACGGAATGCTGTGAGATCAGACTG -ACGGAATGCTGTGAGATCTCGGTA -ACGGAATGCTGTGAGATCTGCCTA -ACGGAATGCTGTGAGATCCCACTA -ACGGAATGCTGTGAGATCGGAGTA -ACGGAATGCTGTGAGATCTCGTCT -ACGGAATGCTGTGAGATCTGCACT -ACGGAATGCTGTGAGATCCTGACT -ACGGAATGCTGTGAGATCCAACCT -ACGGAATGCTGTGAGATCGCTACT -ACGGAATGCTGTGAGATCGGATCT -ACGGAATGCTGTGAGATCAAGGCT -ACGGAATGCTGTGAGATCTCAACC -ACGGAATGCTGTGAGATCTGTTCC -ACGGAATGCTGTGAGATCATTCCC -ACGGAATGCTGTGAGATCTTCTCG -ACGGAATGCTGTGAGATCTAGACG -ACGGAATGCTGTGAGATCGTAACG -ACGGAATGCTGTGAGATCACTTCG -ACGGAATGCTGTGAGATCTACGCA -ACGGAATGCTGTGAGATCCTTGCA -ACGGAATGCTGTGAGATCCGAACA -ACGGAATGCTGTGAGATCCAGTCA -ACGGAATGCTGTGAGATCGATCCA -ACGGAATGCTGTGAGATCACGACA -ACGGAATGCTGTGAGATCAGCTCA -ACGGAATGCTGTGAGATCTCACGT -ACGGAATGCTGTGAGATCCGTAGT -ACGGAATGCTGTGAGATCGTCAGT -ACGGAATGCTGTGAGATCGAAGGT -ACGGAATGCTGTGAGATCAACCGT -ACGGAATGCTGTGAGATCTTGTGC -ACGGAATGCTGTGAGATCCTAAGC -ACGGAATGCTGTGAGATCACTAGC -ACGGAATGCTGTGAGATCAGATGC -ACGGAATGCTGTGAGATCTGAAGG -ACGGAATGCTGTGAGATCCAATGG -ACGGAATGCTGTGAGATCATGAGG -ACGGAATGCTGTGAGATCAATGGG -ACGGAATGCTGTGAGATCTCCTGA -ACGGAATGCTGTGAGATCTAGCGA -ACGGAATGCTGTGAGATCCACAGA -ACGGAATGCTGTGAGATCGCAAGA -ACGGAATGCTGTGAGATCGGTTGA -ACGGAATGCTGTGAGATCTCCGAT -ACGGAATGCTGTGAGATCTGGCAT -ACGGAATGCTGTGAGATCCGAGAT -ACGGAATGCTGTGAGATCTACCAC -ACGGAATGCTGTGAGATCCAGAAC -ACGGAATGCTGTGAGATCGTCTAC -ACGGAATGCTGTGAGATCACGTAC -ACGGAATGCTGTGAGATCAGTGAC -ACGGAATGCTGTGAGATCCTGTAG -ACGGAATGCTGTGAGATCCCTAAG -ACGGAATGCTGTGAGATCGTTCAG -ACGGAATGCTGTGAGATCGCATAG -ACGGAATGCTGTGAGATCGACAAG -ACGGAATGCTGTGAGATCAAGCAG -ACGGAATGCTGTGAGATCCGTCAA -ACGGAATGCTGTGAGATCGCTGAA -ACGGAATGCTGTGAGATCAGTACG -ACGGAATGCTGTGAGATCATCCGA -ACGGAATGCTGTGAGATCATGGGA -ACGGAATGCTGTGAGATCGTGCAA -ACGGAATGCTGTGAGATCGAGGAA -ACGGAATGCTGTGAGATCCAGGTA -ACGGAATGCTGTGAGATCGACTCT -ACGGAATGCTGTGAGATCAGTCCT -ACGGAATGCTGTGAGATCTAAGCC -ACGGAATGCTGTGAGATCATAGCC -ACGGAATGCTGTGAGATCTAACCG -ACGGAATGCTGTGAGATCATGCCA -ACGGAATGCTGTCTTCTCGGAAAC -ACGGAATGCTGTCTTCTCAACACC -ACGGAATGCTGTCTTCTCATCGAG -ACGGAATGCTGTCTTCTCCTCCTT -ACGGAATGCTGTCTTCTCCCTGTT -ACGGAATGCTGTCTTCTCCGGTTT -ACGGAATGCTGTCTTCTCGTGGTT -ACGGAATGCTGTCTTCTCGCCTTT -ACGGAATGCTGTCTTCTCGGTCTT -ACGGAATGCTGTCTTCTCACGCTT -ACGGAATGCTGTCTTCTCAGCGTT -ACGGAATGCTGTCTTCTCTTCGTC -ACGGAATGCTGTCTTCTCTCTCTC -ACGGAATGCTGTCTTCTCTGGATC -ACGGAATGCTGTCTTCTCCACTTC -ACGGAATGCTGTCTTCTCGTACTC -ACGGAATGCTGTCTTCTCGATGTC -ACGGAATGCTGTCTTCTCACAGTC -ACGGAATGCTGTCTTCTCTTGCTG -ACGGAATGCTGTCTTCTCTCCATG -ACGGAATGCTGTCTTCTCTGTGTG -ACGGAATGCTGTCTTCTCCTAGTG -ACGGAATGCTGTCTTCTCCATCTG -ACGGAATGCTGTCTTCTCGAGTTG -ACGGAATGCTGTCTTCTCAGACTG -ACGGAATGCTGTCTTCTCTCGGTA -ACGGAATGCTGTCTTCTCTGCCTA -ACGGAATGCTGTCTTCTCCCACTA -ACGGAATGCTGTCTTCTCGGAGTA -ACGGAATGCTGTCTTCTCTCGTCT -ACGGAATGCTGTCTTCTCTGCACT -ACGGAATGCTGTCTTCTCCTGACT -ACGGAATGCTGTCTTCTCCAACCT -ACGGAATGCTGTCTTCTCGCTACT -ACGGAATGCTGTCTTCTCGGATCT -ACGGAATGCTGTCTTCTCAAGGCT -ACGGAATGCTGTCTTCTCTCAACC -ACGGAATGCTGTCTTCTCTGTTCC -ACGGAATGCTGTCTTCTCATTCCC -ACGGAATGCTGTCTTCTCTTCTCG -ACGGAATGCTGTCTTCTCTAGACG -ACGGAATGCTGTCTTCTCGTAACG -ACGGAATGCTGTCTTCTCACTTCG -ACGGAATGCTGTCTTCTCTACGCA -ACGGAATGCTGTCTTCTCCTTGCA -ACGGAATGCTGTCTTCTCCGAACA -ACGGAATGCTGTCTTCTCCAGTCA -ACGGAATGCTGTCTTCTCGATCCA -ACGGAATGCTGTCTTCTCACGACA -ACGGAATGCTGTCTTCTCAGCTCA -ACGGAATGCTGTCTTCTCTCACGT -ACGGAATGCTGTCTTCTCCGTAGT -ACGGAATGCTGTCTTCTCGTCAGT -ACGGAATGCTGTCTTCTCGAAGGT -ACGGAATGCTGTCTTCTCAACCGT -ACGGAATGCTGTCTTCTCTTGTGC -ACGGAATGCTGTCTTCTCCTAAGC -ACGGAATGCTGTCTTCTCACTAGC -ACGGAATGCTGTCTTCTCAGATGC -ACGGAATGCTGTCTTCTCTGAAGG -ACGGAATGCTGTCTTCTCCAATGG -ACGGAATGCTGTCTTCTCATGAGG -ACGGAATGCTGTCTTCTCAATGGG -ACGGAATGCTGTCTTCTCTCCTGA -ACGGAATGCTGTCTTCTCTAGCGA -ACGGAATGCTGTCTTCTCCACAGA -ACGGAATGCTGTCTTCTCGCAAGA -ACGGAATGCTGTCTTCTCGGTTGA -ACGGAATGCTGTCTTCTCTCCGAT -ACGGAATGCTGTCTTCTCTGGCAT -ACGGAATGCTGTCTTCTCCGAGAT -ACGGAATGCTGTCTTCTCTACCAC -ACGGAATGCTGTCTTCTCCAGAAC -ACGGAATGCTGTCTTCTCGTCTAC -ACGGAATGCTGTCTTCTCACGTAC -ACGGAATGCTGTCTTCTCAGTGAC -ACGGAATGCTGTCTTCTCCTGTAG -ACGGAATGCTGTCTTCTCCCTAAG -ACGGAATGCTGTCTTCTCGTTCAG -ACGGAATGCTGTCTTCTCGCATAG -ACGGAATGCTGTCTTCTCGACAAG -ACGGAATGCTGTCTTCTCAAGCAG -ACGGAATGCTGTCTTCTCCGTCAA -ACGGAATGCTGTCTTCTCGCTGAA -ACGGAATGCTGTCTTCTCAGTACG -ACGGAATGCTGTCTTCTCATCCGA -ACGGAATGCTGTCTTCTCATGGGA -ACGGAATGCTGTCTTCTCGTGCAA -ACGGAATGCTGTCTTCTCGAGGAA -ACGGAATGCTGTCTTCTCCAGGTA -ACGGAATGCTGTCTTCTCGACTCT -ACGGAATGCTGTCTTCTCAGTCCT -ACGGAATGCTGTCTTCTCTAAGCC -ACGGAATGCTGTCTTCTCATAGCC -ACGGAATGCTGTCTTCTCTAACCG -ACGGAATGCTGTCTTCTCATGCCA -ACGGAATGCTGTGTTCCTGGAAAC -ACGGAATGCTGTGTTCCTAACACC -ACGGAATGCTGTGTTCCTATCGAG -ACGGAATGCTGTGTTCCTCTCCTT -ACGGAATGCTGTGTTCCTCCTGTT -ACGGAATGCTGTGTTCCTCGGTTT -ACGGAATGCTGTGTTCCTGTGGTT -ACGGAATGCTGTGTTCCTGCCTTT -ACGGAATGCTGTGTTCCTGGTCTT -ACGGAATGCTGTGTTCCTACGCTT -ACGGAATGCTGTGTTCCTAGCGTT -ACGGAATGCTGTGTTCCTTTCGTC -ACGGAATGCTGTGTTCCTTCTCTC -ACGGAATGCTGTGTTCCTTGGATC -ACGGAATGCTGTGTTCCTCACTTC -ACGGAATGCTGTGTTCCTGTACTC -ACGGAATGCTGTGTTCCTGATGTC -ACGGAATGCTGTGTTCCTACAGTC -ACGGAATGCTGTGTTCCTTTGCTG -ACGGAATGCTGTGTTCCTTCCATG -ACGGAATGCTGTGTTCCTTGTGTG -ACGGAATGCTGTGTTCCTCTAGTG -ACGGAATGCTGTGTTCCTCATCTG -ACGGAATGCTGTGTTCCTGAGTTG -ACGGAATGCTGTGTTCCTAGACTG -ACGGAATGCTGTGTTCCTTCGGTA -ACGGAATGCTGTGTTCCTTGCCTA -ACGGAATGCTGTGTTCCTCCACTA -ACGGAATGCTGTGTTCCTGGAGTA -ACGGAATGCTGTGTTCCTTCGTCT -ACGGAATGCTGTGTTCCTTGCACT -ACGGAATGCTGTGTTCCTCTGACT -ACGGAATGCTGTGTTCCTCAACCT -ACGGAATGCTGTGTTCCTGCTACT -ACGGAATGCTGTGTTCCTGGATCT -ACGGAATGCTGTGTTCCTAAGGCT -ACGGAATGCTGTGTTCCTTCAACC -ACGGAATGCTGTGTTCCTTGTTCC -ACGGAATGCTGTGTTCCTATTCCC -ACGGAATGCTGTGTTCCTTTCTCG -ACGGAATGCTGTGTTCCTTAGACG -ACGGAATGCTGTGTTCCTGTAACG -ACGGAATGCTGTGTTCCTACTTCG -ACGGAATGCTGTGTTCCTTACGCA -ACGGAATGCTGTGTTCCTCTTGCA -ACGGAATGCTGTGTTCCTCGAACA -ACGGAATGCTGTGTTCCTCAGTCA -ACGGAATGCTGTGTTCCTGATCCA -ACGGAATGCTGTGTTCCTACGACA -ACGGAATGCTGTGTTCCTAGCTCA -ACGGAATGCTGTGTTCCTTCACGT -ACGGAATGCTGTGTTCCTCGTAGT -ACGGAATGCTGTGTTCCTGTCAGT -ACGGAATGCTGTGTTCCTGAAGGT -ACGGAATGCTGTGTTCCTAACCGT -ACGGAATGCTGTGTTCCTTTGTGC -ACGGAATGCTGTGTTCCTCTAAGC -ACGGAATGCTGTGTTCCTACTAGC -ACGGAATGCTGTGTTCCTAGATGC -ACGGAATGCTGTGTTCCTTGAAGG -ACGGAATGCTGTGTTCCTCAATGG -ACGGAATGCTGTGTTCCTATGAGG -ACGGAATGCTGTGTTCCTAATGGG -ACGGAATGCTGTGTTCCTTCCTGA -ACGGAATGCTGTGTTCCTTAGCGA -ACGGAATGCTGTGTTCCTCACAGA -ACGGAATGCTGTGTTCCTGCAAGA -ACGGAATGCTGTGTTCCTGGTTGA -ACGGAATGCTGTGTTCCTTCCGAT -ACGGAATGCTGTGTTCCTTGGCAT -ACGGAATGCTGTGTTCCTCGAGAT -ACGGAATGCTGTGTTCCTTACCAC -ACGGAATGCTGTGTTCCTCAGAAC -ACGGAATGCTGTGTTCCTGTCTAC -ACGGAATGCTGTGTTCCTACGTAC -ACGGAATGCTGTGTTCCTAGTGAC -ACGGAATGCTGTGTTCCTCTGTAG -ACGGAATGCTGTGTTCCTCCTAAG -ACGGAATGCTGTGTTCCTGTTCAG -ACGGAATGCTGTGTTCCTGCATAG -ACGGAATGCTGTGTTCCTGACAAG -ACGGAATGCTGTGTTCCTAAGCAG -ACGGAATGCTGTGTTCCTCGTCAA -ACGGAATGCTGTGTTCCTGCTGAA -ACGGAATGCTGTGTTCCTAGTACG -ACGGAATGCTGTGTTCCTATCCGA -ACGGAATGCTGTGTTCCTATGGGA -ACGGAATGCTGTGTTCCTGTGCAA -ACGGAATGCTGTGTTCCTGAGGAA -ACGGAATGCTGTGTTCCTCAGGTA -ACGGAATGCTGTGTTCCTGACTCT -ACGGAATGCTGTGTTCCTAGTCCT -ACGGAATGCTGTGTTCCTTAAGCC -ACGGAATGCTGTGTTCCTATAGCC -ACGGAATGCTGTGTTCCTTAACCG -ACGGAATGCTGTGTTCCTATGCCA -ACGGAATGCTGTTTTCGGGGAAAC -ACGGAATGCTGTTTTCGGAACACC -ACGGAATGCTGTTTTCGGATCGAG -ACGGAATGCTGTTTTCGGCTCCTT -ACGGAATGCTGTTTTCGGCCTGTT -ACGGAATGCTGTTTTCGGCGGTTT -ACGGAATGCTGTTTTCGGGTGGTT -ACGGAATGCTGTTTTCGGGCCTTT -ACGGAATGCTGTTTTCGGGGTCTT -ACGGAATGCTGTTTTCGGACGCTT -ACGGAATGCTGTTTTCGGAGCGTT -ACGGAATGCTGTTTTCGGTTCGTC -ACGGAATGCTGTTTTCGGTCTCTC -ACGGAATGCTGTTTTCGGTGGATC -ACGGAATGCTGTTTTCGGCACTTC -ACGGAATGCTGTTTTCGGGTACTC -ACGGAATGCTGTTTTCGGGATGTC -ACGGAATGCTGTTTTCGGACAGTC -ACGGAATGCTGTTTTCGGTTGCTG -ACGGAATGCTGTTTTCGGTCCATG -ACGGAATGCTGTTTTCGGTGTGTG -ACGGAATGCTGTTTTCGGCTAGTG -ACGGAATGCTGTTTTCGGCATCTG -ACGGAATGCTGTTTTCGGGAGTTG -ACGGAATGCTGTTTTCGGAGACTG -ACGGAATGCTGTTTTCGGTCGGTA -ACGGAATGCTGTTTTCGGTGCCTA -ACGGAATGCTGTTTTCGGCCACTA -ACGGAATGCTGTTTTCGGGGAGTA -ACGGAATGCTGTTTTCGGTCGTCT -ACGGAATGCTGTTTTCGGTGCACT -ACGGAATGCTGTTTTCGGCTGACT -ACGGAATGCTGTTTTCGGCAACCT -ACGGAATGCTGTTTTCGGGCTACT -ACGGAATGCTGTTTTCGGGGATCT -ACGGAATGCTGTTTTCGGAAGGCT -ACGGAATGCTGTTTTCGGTCAACC -ACGGAATGCTGTTTTCGGTGTTCC -ACGGAATGCTGTTTTCGGATTCCC -ACGGAATGCTGTTTTCGGTTCTCG -ACGGAATGCTGTTTTCGGTAGACG -ACGGAATGCTGTTTTCGGGTAACG -ACGGAATGCTGTTTTCGGACTTCG -ACGGAATGCTGTTTTCGGTACGCA -ACGGAATGCTGTTTTCGGCTTGCA -ACGGAATGCTGTTTTCGGCGAACA -ACGGAATGCTGTTTTCGGCAGTCA -ACGGAATGCTGTTTTCGGGATCCA -ACGGAATGCTGTTTTCGGACGACA -ACGGAATGCTGTTTTCGGAGCTCA -ACGGAATGCTGTTTTCGGTCACGT -ACGGAATGCTGTTTTCGGCGTAGT -ACGGAATGCTGTTTTCGGGTCAGT -ACGGAATGCTGTTTTCGGGAAGGT -ACGGAATGCTGTTTTCGGAACCGT -ACGGAATGCTGTTTTCGGTTGTGC -ACGGAATGCTGTTTTCGGCTAAGC -ACGGAATGCTGTTTTCGGACTAGC -ACGGAATGCTGTTTTCGGAGATGC -ACGGAATGCTGTTTTCGGTGAAGG -ACGGAATGCTGTTTTCGGCAATGG -ACGGAATGCTGTTTTCGGATGAGG -ACGGAATGCTGTTTTCGGAATGGG -ACGGAATGCTGTTTTCGGTCCTGA -ACGGAATGCTGTTTTCGGTAGCGA -ACGGAATGCTGTTTTCGGCACAGA -ACGGAATGCTGTTTTCGGGCAAGA -ACGGAATGCTGTTTTCGGGGTTGA -ACGGAATGCTGTTTTCGGTCCGAT -ACGGAATGCTGTTTTCGGTGGCAT -ACGGAATGCTGTTTTCGGCGAGAT -ACGGAATGCTGTTTTCGGTACCAC -ACGGAATGCTGTTTTCGGCAGAAC -ACGGAATGCTGTTTTCGGGTCTAC -ACGGAATGCTGTTTTCGGACGTAC -ACGGAATGCTGTTTTCGGAGTGAC -ACGGAATGCTGTTTTCGGCTGTAG -ACGGAATGCTGTTTTCGGCCTAAG -ACGGAATGCTGTTTTCGGGTTCAG -ACGGAATGCTGTTTTCGGGCATAG -ACGGAATGCTGTTTTCGGGACAAG -ACGGAATGCTGTTTTCGGAAGCAG -ACGGAATGCTGTTTTCGGCGTCAA -ACGGAATGCTGTTTTCGGGCTGAA -ACGGAATGCTGTTTTCGGAGTACG -ACGGAATGCTGTTTTCGGATCCGA -ACGGAATGCTGTTTTCGGATGGGA -ACGGAATGCTGTTTTCGGGTGCAA -ACGGAATGCTGTTTTCGGGAGGAA -ACGGAATGCTGTTTTCGGCAGGTA -ACGGAATGCTGTTTTCGGGACTCT -ACGGAATGCTGTTTTCGGAGTCCT -ACGGAATGCTGTTTTCGGTAAGCC -ACGGAATGCTGTTTTCGGATAGCC -ACGGAATGCTGTTTTCGGTAACCG -ACGGAATGCTGTTTTCGGATGCCA -ACGGAATGCTGTGTTGTGGGAAAC -ACGGAATGCTGTGTTGTGAACACC -ACGGAATGCTGTGTTGTGATCGAG -ACGGAATGCTGTGTTGTGCTCCTT -ACGGAATGCTGTGTTGTGCCTGTT -ACGGAATGCTGTGTTGTGCGGTTT -ACGGAATGCTGTGTTGTGGTGGTT -ACGGAATGCTGTGTTGTGGCCTTT -ACGGAATGCTGTGTTGTGGGTCTT -ACGGAATGCTGTGTTGTGACGCTT -ACGGAATGCTGTGTTGTGAGCGTT -ACGGAATGCTGTGTTGTGTTCGTC -ACGGAATGCTGTGTTGTGTCTCTC -ACGGAATGCTGTGTTGTGTGGATC -ACGGAATGCTGTGTTGTGCACTTC -ACGGAATGCTGTGTTGTGGTACTC -ACGGAATGCTGTGTTGTGGATGTC -ACGGAATGCTGTGTTGTGACAGTC -ACGGAATGCTGTGTTGTGTTGCTG -ACGGAATGCTGTGTTGTGTCCATG -ACGGAATGCTGTGTTGTGTGTGTG -ACGGAATGCTGTGTTGTGCTAGTG -ACGGAATGCTGTGTTGTGCATCTG -ACGGAATGCTGTGTTGTGGAGTTG -ACGGAATGCTGTGTTGTGAGACTG -ACGGAATGCTGTGTTGTGTCGGTA -ACGGAATGCTGTGTTGTGTGCCTA -ACGGAATGCTGTGTTGTGCCACTA -ACGGAATGCTGTGTTGTGGGAGTA -ACGGAATGCTGTGTTGTGTCGTCT -ACGGAATGCTGTGTTGTGTGCACT -ACGGAATGCTGTGTTGTGCTGACT -ACGGAATGCTGTGTTGTGCAACCT -ACGGAATGCTGTGTTGTGGCTACT -ACGGAATGCTGTGTTGTGGGATCT -ACGGAATGCTGTGTTGTGAAGGCT -ACGGAATGCTGTGTTGTGTCAACC -ACGGAATGCTGTGTTGTGTGTTCC -ACGGAATGCTGTGTTGTGATTCCC -ACGGAATGCTGTGTTGTGTTCTCG -ACGGAATGCTGTGTTGTGTAGACG -ACGGAATGCTGTGTTGTGGTAACG -ACGGAATGCTGTGTTGTGACTTCG -ACGGAATGCTGTGTTGTGTACGCA -ACGGAATGCTGTGTTGTGCTTGCA -ACGGAATGCTGTGTTGTGCGAACA -ACGGAATGCTGTGTTGTGCAGTCA -ACGGAATGCTGTGTTGTGGATCCA -ACGGAATGCTGTGTTGTGACGACA -ACGGAATGCTGTGTTGTGAGCTCA -ACGGAATGCTGTGTTGTGTCACGT -ACGGAATGCTGTGTTGTGCGTAGT -ACGGAATGCTGTGTTGTGGTCAGT -ACGGAATGCTGTGTTGTGGAAGGT -ACGGAATGCTGTGTTGTGAACCGT -ACGGAATGCTGTGTTGTGTTGTGC -ACGGAATGCTGTGTTGTGCTAAGC -ACGGAATGCTGTGTTGTGACTAGC -ACGGAATGCTGTGTTGTGAGATGC -ACGGAATGCTGTGTTGTGTGAAGG -ACGGAATGCTGTGTTGTGCAATGG -ACGGAATGCTGTGTTGTGATGAGG -ACGGAATGCTGTGTTGTGAATGGG -ACGGAATGCTGTGTTGTGTCCTGA -ACGGAATGCTGTGTTGTGTAGCGA -ACGGAATGCTGTGTTGTGCACAGA -ACGGAATGCTGTGTTGTGGCAAGA -ACGGAATGCTGTGTTGTGGGTTGA -ACGGAATGCTGTGTTGTGTCCGAT -ACGGAATGCTGTGTTGTGTGGCAT -ACGGAATGCTGTGTTGTGCGAGAT -ACGGAATGCTGTGTTGTGTACCAC -ACGGAATGCTGTGTTGTGCAGAAC -ACGGAATGCTGTGTTGTGGTCTAC -ACGGAATGCTGTGTTGTGACGTAC -ACGGAATGCTGTGTTGTGAGTGAC -ACGGAATGCTGTGTTGTGCTGTAG -ACGGAATGCTGTGTTGTGCCTAAG -ACGGAATGCTGTGTTGTGGTTCAG -ACGGAATGCTGTGTTGTGGCATAG -ACGGAATGCTGTGTTGTGGACAAG -ACGGAATGCTGTGTTGTGAAGCAG -ACGGAATGCTGTGTTGTGCGTCAA -ACGGAATGCTGTGTTGTGGCTGAA -ACGGAATGCTGTGTTGTGAGTACG -ACGGAATGCTGTGTTGTGATCCGA -ACGGAATGCTGTGTTGTGATGGGA -ACGGAATGCTGTGTTGTGGTGCAA -ACGGAATGCTGTGTTGTGGAGGAA -ACGGAATGCTGTGTTGTGCAGGTA -ACGGAATGCTGTGTTGTGGACTCT -ACGGAATGCTGTGTTGTGAGTCCT -ACGGAATGCTGTGTTGTGTAAGCC -ACGGAATGCTGTGTTGTGATAGCC -ACGGAATGCTGTGTTGTGTAACCG -ACGGAATGCTGTGTTGTGATGCCA -ACGGAATGCTGTTTTGCCGGAAAC -ACGGAATGCTGTTTTGCCAACACC -ACGGAATGCTGTTTTGCCATCGAG -ACGGAATGCTGTTTTGCCCTCCTT -ACGGAATGCTGTTTTGCCCCTGTT -ACGGAATGCTGTTTTGCCCGGTTT -ACGGAATGCTGTTTTGCCGTGGTT -ACGGAATGCTGTTTTGCCGCCTTT -ACGGAATGCTGTTTTGCCGGTCTT -ACGGAATGCTGTTTTGCCACGCTT -ACGGAATGCTGTTTTGCCAGCGTT -ACGGAATGCTGTTTTGCCTTCGTC -ACGGAATGCTGTTTTGCCTCTCTC -ACGGAATGCTGTTTTGCCTGGATC -ACGGAATGCTGTTTTGCCCACTTC -ACGGAATGCTGTTTTGCCGTACTC -ACGGAATGCTGTTTTGCCGATGTC -ACGGAATGCTGTTTTGCCACAGTC -ACGGAATGCTGTTTTGCCTTGCTG -ACGGAATGCTGTTTTGCCTCCATG -ACGGAATGCTGTTTTGCCTGTGTG -ACGGAATGCTGTTTTGCCCTAGTG -ACGGAATGCTGTTTTGCCCATCTG -ACGGAATGCTGTTTTGCCGAGTTG -ACGGAATGCTGTTTTGCCAGACTG -ACGGAATGCTGTTTTGCCTCGGTA -ACGGAATGCTGTTTTGCCTGCCTA -ACGGAATGCTGTTTTGCCCCACTA -ACGGAATGCTGTTTTGCCGGAGTA -ACGGAATGCTGTTTTGCCTCGTCT -ACGGAATGCTGTTTTGCCTGCACT -ACGGAATGCTGTTTTGCCCTGACT -ACGGAATGCTGTTTTGCCCAACCT -ACGGAATGCTGTTTTGCCGCTACT -ACGGAATGCTGTTTTGCCGGATCT -ACGGAATGCTGTTTTGCCAAGGCT -ACGGAATGCTGTTTTGCCTCAACC -ACGGAATGCTGTTTTGCCTGTTCC -ACGGAATGCTGTTTTGCCATTCCC -ACGGAATGCTGTTTTGCCTTCTCG -ACGGAATGCTGTTTTGCCTAGACG -ACGGAATGCTGTTTTGCCGTAACG -ACGGAATGCTGTTTTGCCACTTCG -ACGGAATGCTGTTTTGCCTACGCA -ACGGAATGCTGTTTTGCCCTTGCA -ACGGAATGCTGTTTTGCCCGAACA -ACGGAATGCTGTTTTGCCCAGTCA -ACGGAATGCTGTTTTGCCGATCCA -ACGGAATGCTGTTTTGCCACGACA -ACGGAATGCTGTTTTGCCAGCTCA -ACGGAATGCTGTTTTGCCTCACGT -ACGGAATGCTGTTTTGCCCGTAGT -ACGGAATGCTGTTTTGCCGTCAGT -ACGGAATGCTGTTTTGCCGAAGGT -ACGGAATGCTGTTTTGCCAACCGT -ACGGAATGCTGTTTTGCCTTGTGC -ACGGAATGCTGTTTTGCCCTAAGC -ACGGAATGCTGTTTTGCCACTAGC -ACGGAATGCTGTTTTGCCAGATGC -ACGGAATGCTGTTTTGCCTGAAGG -ACGGAATGCTGTTTTGCCCAATGG -ACGGAATGCTGTTTTGCCATGAGG -ACGGAATGCTGTTTTGCCAATGGG -ACGGAATGCTGTTTTGCCTCCTGA -ACGGAATGCTGTTTTGCCTAGCGA -ACGGAATGCTGTTTTGCCCACAGA -ACGGAATGCTGTTTTGCCGCAAGA -ACGGAATGCTGTTTTGCCGGTTGA -ACGGAATGCTGTTTTGCCTCCGAT -ACGGAATGCTGTTTTGCCTGGCAT -ACGGAATGCTGTTTTGCCCGAGAT -ACGGAATGCTGTTTTGCCTACCAC -ACGGAATGCTGTTTTGCCCAGAAC -ACGGAATGCTGTTTTGCCGTCTAC -ACGGAATGCTGTTTTGCCACGTAC -ACGGAATGCTGTTTTGCCAGTGAC -ACGGAATGCTGTTTTGCCCTGTAG -ACGGAATGCTGTTTTGCCCCTAAG -ACGGAATGCTGTTTTGCCGTTCAG -ACGGAATGCTGTTTTGCCGCATAG -ACGGAATGCTGTTTTGCCGACAAG -ACGGAATGCTGTTTTGCCAAGCAG -ACGGAATGCTGTTTTGCCCGTCAA -ACGGAATGCTGTTTTGCCGCTGAA -ACGGAATGCTGTTTTGCCAGTACG -ACGGAATGCTGTTTTGCCATCCGA -ACGGAATGCTGTTTTGCCATGGGA -ACGGAATGCTGTTTTGCCGTGCAA -ACGGAATGCTGTTTTGCCGAGGAA -ACGGAATGCTGTTTTGCCCAGGTA -ACGGAATGCTGTTTTGCCGACTCT -ACGGAATGCTGTTTTGCCAGTCCT -ACGGAATGCTGTTTTGCCTAAGCC -ACGGAATGCTGTTTTGCCATAGCC -ACGGAATGCTGTTTTGCCTAACCG -ACGGAATGCTGTTTTGCCATGCCA -ACGGAATGCTGTCTTGGTGGAAAC -ACGGAATGCTGTCTTGGTAACACC -ACGGAATGCTGTCTTGGTATCGAG -ACGGAATGCTGTCTTGGTCTCCTT -ACGGAATGCTGTCTTGGTCCTGTT -ACGGAATGCTGTCTTGGTCGGTTT -ACGGAATGCTGTCTTGGTGTGGTT -ACGGAATGCTGTCTTGGTGCCTTT -ACGGAATGCTGTCTTGGTGGTCTT -ACGGAATGCTGTCTTGGTACGCTT -ACGGAATGCTGTCTTGGTAGCGTT -ACGGAATGCTGTCTTGGTTTCGTC -ACGGAATGCTGTCTTGGTTCTCTC -ACGGAATGCTGTCTTGGTTGGATC -ACGGAATGCTGTCTTGGTCACTTC -ACGGAATGCTGTCTTGGTGTACTC -ACGGAATGCTGTCTTGGTGATGTC -ACGGAATGCTGTCTTGGTACAGTC -ACGGAATGCTGTCTTGGTTTGCTG -ACGGAATGCTGTCTTGGTTCCATG -ACGGAATGCTGTCTTGGTTGTGTG -ACGGAATGCTGTCTTGGTCTAGTG -ACGGAATGCTGTCTTGGTCATCTG -ACGGAATGCTGTCTTGGTGAGTTG -ACGGAATGCTGTCTTGGTAGACTG -ACGGAATGCTGTCTTGGTTCGGTA -ACGGAATGCTGTCTTGGTTGCCTA -ACGGAATGCTGTCTTGGTCCACTA -ACGGAATGCTGTCTTGGTGGAGTA -ACGGAATGCTGTCTTGGTTCGTCT -ACGGAATGCTGTCTTGGTTGCACT -ACGGAATGCTGTCTTGGTCTGACT -ACGGAATGCTGTCTTGGTCAACCT -ACGGAATGCTGTCTTGGTGCTACT -ACGGAATGCTGTCTTGGTGGATCT -ACGGAATGCTGTCTTGGTAAGGCT -ACGGAATGCTGTCTTGGTTCAACC -ACGGAATGCTGTCTTGGTTGTTCC -ACGGAATGCTGTCTTGGTATTCCC -ACGGAATGCTGTCTTGGTTTCTCG -ACGGAATGCTGTCTTGGTTAGACG -ACGGAATGCTGTCTTGGTGTAACG -ACGGAATGCTGTCTTGGTACTTCG -ACGGAATGCTGTCTTGGTTACGCA -ACGGAATGCTGTCTTGGTCTTGCA -ACGGAATGCTGTCTTGGTCGAACA -ACGGAATGCTGTCTTGGTCAGTCA -ACGGAATGCTGTCTTGGTGATCCA -ACGGAATGCTGTCTTGGTACGACA -ACGGAATGCTGTCTTGGTAGCTCA -ACGGAATGCTGTCTTGGTTCACGT -ACGGAATGCTGTCTTGGTCGTAGT -ACGGAATGCTGTCTTGGTGTCAGT -ACGGAATGCTGTCTTGGTGAAGGT -ACGGAATGCTGTCTTGGTAACCGT -ACGGAATGCTGTCTTGGTTTGTGC -ACGGAATGCTGTCTTGGTCTAAGC -ACGGAATGCTGTCTTGGTACTAGC -ACGGAATGCTGTCTTGGTAGATGC -ACGGAATGCTGTCTTGGTTGAAGG -ACGGAATGCTGTCTTGGTCAATGG -ACGGAATGCTGTCTTGGTATGAGG -ACGGAATGCTGTCTTGGTAATGGG -ACGGAATGCTGTCTTGGTTCCTGA -ACGGAATGCTGTCTTGGTTAGCGA -ACGGAATGCTGTCTTGGTCACAGA -ACGGAATGCTGTCTTGGTGCAAGA -ACGGAATGCTGTCTTGGTGGTTGA -ACGGAATGCTGTCTTGGTTCCGAT -ACGGAATGCTGTCTTGGTTGGCAT -ACGGAATGCTGTCTTGGTCGAGAT -ACGGAATGCTGTCTTGGTTACCAC -ACGGAATGCTGTCTTGGTCAGAAC -ACGGAATGCTGTCTTGGTGTCTAC -ACGGAATGCTGTCTTGGTACGTAC -ACGGAATGCTGTCTTGGTAGTGAC -ACGGAATGCTGTCTTGGTCTGTAG -ACGGAATGCTGTCTTGGTCCTAAG -ACGGAATGCTGTCTTGGTGTTCAG -ACGGAATGCTGTCTTGGTGCATAG -ACGGAATGCTGTCTTGGTGACAAG -ACGGAATGCTGTCTTGGTAAGCAG -ACGGAATGCTGTCTTGGTCGTCAA -ACGGAATGCTGTCTTGGTGCTGAA -ACGGAATGCTGTCTTGGTAGTACG -ACGGAATGCTGTCTTGGTATCCGA -ACGGAATGCTGTCTTGGTATGGGA -ACGGAATGCTGTCTTGGTGTGCAA -ACGGAATGCTGTCTTGGTGAGGAA -ACGGAATGCTGTCTTGGTCAGGTA -ACGGAATGCTGTCTTGGTGACTCT -ACGGAATGCTGTCTTGGTAGTCCT -ACGGAATGCTGTCTTGGTTAAGCC -ACGGAATGCTGTCTTGGTATAGCC -ACGGAATGCTGTCTTGGTTAACCG -ACGGAATGCTGTCTTGGTATGCCA -ACGGAATGCTGTCTTACGGGAAAC -ACGGAATGCTGTCTTACGAACACC -ACGGAATGCTGTCTTACGATCGAG -ACGGAATGCTGTCTTACGCTCCTT -ACGGAATGCTGTCTTACGCCTGTT -ACGGAATGCTGTCTTACGCGGTTT -ACGGAATGCTGTCTTACGGTGGTT -ACGGAATGCTGTCTTACGGCCTTT -ACGGAATGCTGTCTTACGGGTCTT -ACGGAATGCTGTCTTACGACGCTT -ACGGAATGCTGTCTTACGAGCGTT -ACGGAATGCTGTCTTACGTTCGTC -ACGGAATGCTGTCTTACGTCTCTC -ACGGAATGCTGTCTTACGTGGATC -ACGGAATGCTGTCTTACGCACTTC -ACGGAATGCTGTCTTACGGTACTC -ACGGAATGCTGTCTTACGGATGTC -ACGGAATGCTGTCTTACGACAGTC -ACGGAATGCTGTCTTACGTTGCTG -ACGGAATGCTGTCTTACGTCCATG -ACGGAATGCTGTCTTACGTGTGTG -ACGGAATGCTGTCTTACGCTAGTG -ACGGAATGCTGTCTTACGCATCTG -ACGGAATGCTGTCTTACGGAGTTG -ACGGAATGCTGTCTTACGAGACTG -ACGGAATGCTGTCTTACGTCGGTA -ACGGAATGCTGTCTTACGTGCCTA -ACGGAATGCTGTCTTACGCCACTA -ACGGAATGCTGTCTTACGGGAGTA -ACGGAATGCTGTCTTACGTCGTCT -ACGGAATGCTGTCTTACGTGCACT -ACGGAATGCTGTCTTACGCTGACT -ACGGAATGCTGTCTTACGCAACCT -ACGGAATGCTGTCTTACGGCTACT -ACGGAATGCTGTCTTACGGGATCT -ACGGAATGCTGTCTTACGAAGGCT -ACGGAATGCTGTCTTACGTCAACC -ACGGAATGCTGTCTTACGTGTTCC -ACGGAATGCTGTCTTACGATTCCC -ACGGAATGCTGTCTTACGTTCTCG -ACGGAATGCTGTCTTACGTAGACG -ACGGAATGCTGTCTTACGGTAACG -ACGGAATGCTGTCTTACGACTTCG -ACGGAATGCTGTCTTACGTACGCA -ACGGAATGCTGTCTTACGCTTGCA -ACGGAATGCTGTCTTACGCGAACA -ACGGAATGCTGTCTTACGCAGTCA -ACGGAATGCTGTCTTACGGATCCA -ACGGAATGCTGTCTTACGACGACA -ACGGAATGCTGTCTTACGAGCTCA -ACGGAATGCTGTCTTACGTCACGT -ACGGAATGCTGTCTTACGCGTAGT -ACGGAATGCTGTCTTACGGTCAGT -ACGGAATGCTGTCTTACGGAAGGT -ACGGAATGCTGTCTTACGAACCGT -ACGGAATGCTGTCTTACGTTGTGC -ACGGAATGCTGTCTTACGCTAAGC -ACGGAATGCTGTCTTACGACTAGC -ACGGAATGCTGTCTTACGAGATGC -ACGGAATGCTGTCTTACGTGAAGG -ACGGAATGCTGTCTTACGCAATGG -ACGGAATGCTGTCTTACGATGAGG -ACGGAATGCTGTCTTACGAATGGG -ACGGAATGCTGTCTTACGTCCTGA -ACGGAATGCTGTCTTACGTAGCGA -ACGGAATGCTGTCTTACGCACAGA -ACGGAATGCTGTCTTACGGCAAGA -ACGGAATGCTGTCTTACGGGTTGA -ACGGAATGCTGTCTTACGTCCGAT -ACGGAATGCTGTCTTACGTGGCAT -ACGGAATGCTGTCTTACGCGAGAT -ACGGAATGCTGTCTTACGTACCAC -ACGGAATGCTGTCTTACGCAGAAC -ACGGAATGCTGTCTTACGGTCTAC -ACGGAATGCTGTCTTACGACGTAC -ACGGAATGCTGTCTTACGAGTGAC -ACGGAATGCTGTCTTACGCTGTAG -ACGGAATGCTGTCTTACGCCTAAG -ACGGAATGCTGTCTTACGGTTCAG -ACGGAATGCTGTCTTACGGCATAG -ACGGAATGCTGTCTTACGGACAAG -ACGGAATGCTGTCTTACGAAGCAG -ACGGAATGCTGTCTTACGCGTCAA -ACGGAATGCTGTCTTACGGCTGAA -ACGGAATGCTGTCTTACGAGTACG -ACGGAATGCTGTCTTACGATCCGA -ACGGAATGCTGTCTTACGATGGGA -ACGGAATGCTGTCTTACGGTGCAA -ACGGAATGCTGTCTTACGGAGGAA -ACGGAATGCTGTCTTACGCAGGTA -ACGGAATGCTGTCTTACGGACTCT -ACGGAATGCTGTCTTACGAGTCCT -ACGGAATGCTGTCTTACGTAAGCC -ACGGAATGCTGTCTTACGATAGCC -ACGGAATGCTGTCTTACGTAACCG -ACGGAATGCTGTCTTACGATGCCA -ACGGAATGCTGTGTTAGCGGAAAC -ACGGAATGCTGTGTTAGCAACACC -ACGGAATGCTGTGTTAGCATCGAG -ACGGAATGCTGTGTTAGCCTCCTT -ACGGAATGCTGTGTTAGCCCTGTT -ACGGAATGCTGTGTTAGCCGGTTT -ACGGAATGCTGTGTTAGCGTGGTT -ACGGAATGCTGTGTTAGCGCCTTT -ACGGAATGCTGTGTTAGCGGTCTT -ACGGAATGCTGTGTTAGCACGCTT -ACGGAATGCTGTGTTAGCAGCGTT -ACGGAATGCTGTGTTAGCTTCGTC -ACGGAATGCTGTGTTAGCTCTCTC -ACGGAATGCTGTGTTAGCTGGATC -ACGGAATGCTGTGTTAGCCACTTC -ACGGAATGCTGTGTTAGCGTACTC -ACGGAATGCTGTGTTAGCGATGTC -ACGGAATGCTGTGTTAGCACAGTC -ACGGAATGCTGTGTTAGCTTGCTG -ACGGAATGCTGTGTTAGCTCCATG -ACGGAATGCTGTGTTAGCTGTGTG -ACGGAATGCTGTGTTAGCCTAGTG -ACGGAATGCTGTGTTAGCCATCTG -ACGGAATGCTGTGTTAGCGAGTTG -ACGGAATGCTGTGTTAGCAGACTG -ACGGAATGCTGTGTTAGCTCGGTA -ACGGAATGCTGTGTTAGCTGCCTA -ACGGAATGCTGTGTTAGCCCACTA -ACGGAATGCTGTGTTAGCGGAGTA -ACGGAATGCTGTGTTAGCTCGTCT -ACGGAATGCTGTGTTAGCTGCACT -ACGGAATGCTGTGTTAGCCTGACT -ACGGAATGCTGTGTTAGCCAACCT -ACGGAATGCTGTGTTAGCGCTACT -ACGGAATGCTGTGTTAGCGGATCT -ACGGAATGCTGTGTTAGCAAGGCT -ACGGAATGCTGTGTTAGCTCAACC -ACGGAATGCTGTGTTAGCTGTTCC -ACGGAATGCTGTGTTAGCATTCCC -ACGGAATGCTGTGTTAGCTTCTCG -ACGGAATGCTGTGTTAGCTAGACG -ACGGAATGCTGTGTTAGCGTAACG -ACGGAATGCTGTGTTAGCACTTCG -ACGGAATGCTGTGTTAGCTACGCA -ACGGAATGCTGTGTTAGCCTTGCA -ACGGAATGCTGTGTTAGCCGAACA -ACGGAATGCTGTGTTAGCCAGTCA -ACGGAATGCTGTGTTAGCGATCCA -ACGGAATGCTGTGTTAGCACGACA -ACGGAATGCTGTGTTAGCAGCTCA -ACGGAATGCTGTGTTAGCTCACGT -ACGGAATGCTGTGTTAGCCGTAGT -ACGGAATGCTGTGTTAGCGTCAGT -ACGGAATGCTGTGTTAGCGAAGGT -ACGGAATGCTGTGTTAGCAACCGT -ACGGAATGCTGTGTTAGCTTGTGC -ACGGAATGCTGTGTTAGCCTAAGC -ACGGAATGCTGTGTTAGCACTAGC -ACGGAATGCTGTGTTAGCAGATGC -ACGGAATGCTGTGTTAGCTGAAGG -ACGGAATGCTGTGTTAGCCAATGG -ACGGAATGCTGTGTTAGCATGAGG -ACGGAATGCTGTGTTAGCAATGGG -ACGGAATGCTGTGTTAGCTCCTGA -ACGGAATGCTGTGTTAGCTAGCGA -ACGGAATGCTGTGTTAGCCACAGA -ACGGAATGCTGTGTTAGCGCAAGA -ACGGAATGCTGTGTTAGCGGTTGA -ACGGAATGCTGTGTTAGCTCCGAT -ACGGAATGCTGTGTTAGCTGGCAT -ACGGAATGCTGTGTTAGCCGAGAT -ACGGAATGCTGTGTTAGCTACCAC -ACGGAATGCTGTGTTAGCCAGAAC -ACGGAATGCTGTGTTAGCGTCTAC -ACGGAATGCTGTGTTAGCACGTAC -ACGGAATGCTGTGTTAGCAGTGAC -ACGGAATGCTGTGTTAGCCTGTAG -ACGGAATGCTGTGTTAGCCCTAAG -ACGGAATGCTGTGTTAGCGTTCAG -ACGGAATGCTGTGTTAGCGCATAG -ACGGAATGCTGTGTTAGCGACAAG -ACGGAATGCTGTGTTAGCAAGCAG -ACGGAATGCTGTGTTAGCCGTCAA -ACGGAATGCTGTGTTAGCGCTGAA -ACGGAATGCTGTGTTAGCAGTACG -ACGGAATGCTGTGTTAGCATCCGA -ACGGAATGCTGTGTTAGCATGGGA -ACGGAATGCTGTGTTAGCGTGCAA -ACGGAATGCTGTGTTAGCGAGGAA -ACGGAATGCTGTGTTAGCCAGGTA -ACGGAATGCTGTGTTAGCGACTCT -ACGGAATGCTGTGTTAGCAGTCCT -ACGGAATGCTGTGTTAGCTAAGCC -ACGGAATGCTGTGTTAGCATAGCC -ACGGAATGCTGTGTTAGCTAACCG -ACGGAATGCTGTGTTAGCATGCCA -ACGGAATGCTGTGTCTTCGGAAAC -ACGGAATGCTGTGTCTTCAACACC -ACGGAATGCTGTGTCTTCATCGAG -ACGGAATGCTGTGTCTTCCTCCTT -ACGGAATGCTGTGTCTTCCCTGTT -ACGGAATGCTGTGTCTTCCGGTTT -ACGGAATGCTGTGTCTTCGTGGTT -ACGGAATGCTGTGTCTTCGCCTTT -ACGGAATGCTGTGTCTTCGGTCTT -ACGGAATGCTGTGTCTTCACGCTT -ACGGAATGCTGTGTCTTCAGCGTT -ACGGAATGCTGTGTCTTCTTCGTC -ACGGAATGCTGTGTCTTCTCTCTC -ACGGAATGCTGTGTCTTCTGGATC -ACGGAATGCTGTGTCTTCCACTTC -ACGGAATGCTGTGTCTTCGTACTC -ACGGAATGCTGTGTCTTCGATGTC -ACGGAATGCTGTGTCTTCACAGTC -ACGGAATGCTGTGTCTTCTTGCTG -ACGGAATGCTGTGTCTTCTCCATG -ACGGAATGCTGTGTCTTCTGTGTG -ACGGAATGCTGTGTCTTCCTAGTG -ACGGAATGCTGTGTCTTCCATCTG -ACGGAATGCTGTGTCTTCGAGTTG -ACGGAATGCTGTGTCTTCAGACTG -ACGGAATGCTGTGTCTTCTCGGTA -ACGGAATGCTGTGTCTTCTGCCTA -ACGGAATGCTGTGTCTTCCCACTA -ACGGAATGCTGTGTCTTCGGAGTA -ACGGAATGCTGTGTCTTCTCGTCT -ACGGAATGCTGTGTCTTCTGCACT -ACGGAATGCTGTGTCTTCCTGACT -ACGGAATGCTGTGTCTTCCAACCT -ACGGAATGCTGTGTCTTCGCTACT -ACGGAATGCTGTGTCTTCGGATCT -ACGGAATGCTGTGTCTTCAAGGCT -ACGGAATGCTGTGTCTTCTCAACC -ACGGAATGCTGTGTCTTCTGTTCC -ACGGAATGCTGTGTCTTCATTCCC -ACGGAATGCTGTGTCTTCTTCTCG -ACGGAATGCTGTGTCTTCTAGACG -ACGGAATGCTGTGTCTTCGTAACG -ACGGAATGCTGTGTCTTCACTTCG -ACGGAATGCTGTGTCTTCTACGCA -ACGGAATGCTGTGTCTTCCTTGCA -ACGGAATGCTGTGTCTTCCGAACA -ACGGAATGCTGTGTCTTCCAGTCA -ACGGAATGCTGTGTCTTCGATCCA -ACGGAATGCTGTGTCTTCACGACA -ACGGAATGCTGTGTCTTCAGCTCA -ACGGAATGCTGTGTCTTCTCACGT -ACGGAATGCTGTGTCTTCCGTAGT -ACGGAATGCTGTGTCTTCGTCAGT -ACGGAATGCTGTGTCTTCGAAGGT -ACGGAATGCTGTGTCTTCAACCGT -ACGGAATGCTGTGTCTTCTTGTGC -ACGGAATGCTGTGTCTTCCTAAGC -ACGGAATGCTGTGTCTTCACTAGC -ACGGAATGCTGTGTCTTCAGATGC -ACGGAATGCTGTGTCTTCTGAAGG -ACGGAATGCTGTGTCTTCCAATGG -ACGGAATGCTGTGTCTTCATGAGG -ACGGAATGCTGTGTCTTCAATGGG -ACGGAATGCTGTGTCTTCTCCTGA -ACGGAATGCTGTGTCTTCTAGCGA -ACGGAATGCTGTGTCTTCCACAGA -ACGGAATGCTGTGTCTTCGCAAGA -ACGGAATGCTGTGTCTTCGGTTGA -ACGGAATGCTGTGTCTTCTCCGAT -ACGGAATGCTGTGTCTTCTGGCAT -ACGGAATGCTGTGTCTTCCGAGAT -ACGGAATGCTGTGTCTTCTACCAC -ACGGAATGCTGTGTCTTCCAGAAC -ACGGAATGCTGTGTCTTCGTCTAC -ACGGAATGCTGTGTCTTCACGTAC -ACGGAATGCTGTGTCTTCAGTGAC -ACGGAATGCTGTGTCTTCCTGTAG -ACGGAATGCTGTGTCTTCCCTAAG -ACGGAATGCTGTGTCTTCGTTCAG -ACGGAATGCTGTGTCTTCGCATAG -ACGGAATGCTGTGTCTTCGACAAG -ACGGAATGCTGTGTCTTCAAGCAG -ACGGAATGCTGTGTCTTCCGTCAA -ACGGAATGCTGTGTCTTCGCTGAA -ACGGAATGCTGTGTCTTCAGTACG -ACGGAATGCTGTGTCTTCATCCGA -ACGGAATGCTGTGTCTTCATGGGA -ACGGAATGCTGTGTCTTCGTGCAA -ACGGAATGCTGTGTCTTCGAGGAA -ACGGAATGCTGTGTCTTCCAGGTA -ACGGAATGCTGTGTCTTCGACTCT -ACGGAATGCTGTGTCTTCAGTCCT -ACGGAATGCTGTGTCTTCTAAGCC -ACGGAATGCTGTGTCTTCATAGCC -ACGGAATGCTGTGTCTTCTAACCG -ACGGAATGCTGTGTCTTCATGCCA -ACGGAATGCTGTCTCTCTGGAAAC -ACGGAATGCTGTCTCTCTAACACC -ACGGAATGCTGTCTCTCTATCGAG -ACGGAATGCTGTCTCTCTCTCCTT -ACGGAATGCTGTCTCTCTCCTGTT -ACGGAATGCTGTCTCTCTCGGTTT -ACGGAATGCTGTCTCTCTGTGGTT -ACGGAATGCTGTCTCTCTGCCTTT -ACGGAATGCTGTCTCTCTGGTCTT -ACGGAATGCTGTCTCTCTACGCTT -ACGGAATGCTGTCTCTCTAGCGTT -ACGGAATGCTGTCTCTCTTTCGTC -ACGGAATGCTGTCTCTCTTCTCTC -ACGGAATGCTGTCTCTCTTGGATC -ACGGAATGCTGTCTCTCTCACTTC -ACGGAATGCTGTCTCTCTGTACTC -ACGGAATGCTGTCTCTCTGATGTC -ACGGAATGCTGTCTCTCTACAGTC -ACGGAATGCTGTCTCTCTTTGCTG -ACGGAATGCTGTCTCTCTTCCATG -ACGGAATGCTGTCTCTCTTGTGTG -ACGGAATGCTGTCTCTCTCTAGTG -ACGGAATGCTGTCTCTCTCATCTG -ACGGAATGCTGTCTCTCTGAGTTG -ACGGAATGCTGTCTCTCTAGACTG -ACGGAATGCTGTCTCTCTTCGGTA -ACGGAATGCTGTCTCTCTTGCCTA -ACGGAATGCTGTCTCTCTCCACTA -ACGGAATGCTGTCTCTCTGGAGTA -ACGGAATGCTGTCTCTCTTCGTCT -ACGGAATGCTGTCTCTCTTGCACT -ACGGAATGCTGTCTCTCTCTGACT -ACGGAATGCTGTCTCTCTCAACCT -ACGGAATGCTGTCTCTCTGCTACT -ACGGAATGCTGTCTCTCTGGATCT -ACGGAATGCTGTCTCTCTAAGGCT -ACGGAATGCTGTCTCTCTTCAACC -ACGGAATGCTGTCTCTCTTGTTCC -ACGGAATGCTGTCTCTCTATTCCC -ACGGAATGCTGTCTCTCTTTCTCG -ACGGAATGCTGTCTCTCTTAGACG -ACGGAATGCTGTCTCTCTGTAACG -ACGGAATGCTGTCTCTCTACTTCG -ACGGAATGCTGTCTCTCTTACGCA -ACGGAATGCTGTCTCTCTCTTGCA -ACGGAATGCTGTCTCTCTCGAACA -ACGGAATGCTGTCTCTCTCAGTCA -ACGGAATGCTGTCTCTCTGATCCA -ACGGAATGCTGTCTCTCTACGACA -ACGGAATGCTGTCTCTCTAGCTCA -ACGGAATGCTGTCTCTCTTCACGT -ACGGAATGCTGTCTCTCTCGTAGT -ACGGAATGCTGTCTCTCTGTCAGT -ACGGAATGCTGTCTCTCTGAAGGT -ACGGAATGCTGTCTCTCTAACCGT -ACGGAATGCTGTCTCTCTTTGTGC -ACGGAATGCTGTCTCTCTCTAAGC -ACGGAATGCTGTCTCTCTACTAGC -ACGGAATGCTGTCTCTCTAGATGC -ACGGAATGCTGTCTCTCTTGAAGG -ACGGAATGCTGTCTCTCTCAATGG -ACGGAATGCTGTCTCTCTATGAGG -ACGGAATGCTGTCTCTCTAATGGG -ACGGAATGCTGTCTCTCTTCCTGA -ACGGAATGCTGTCTCTCTTAGCGA -ACGGAATGCTGTCTCTCTCACAGA -ACGGAATGCTGTCTCTCTGCAAGA -ACGGAATGCTGTCTCTCTGGTTGA -ACGGAATGCTGTCTCTCTTCCGAT -ACGGAATGCTGTCTCTCTTGGCAT -ACGGAATGCTGTCTCTCTCGAGAT -ACGGAATGCTGTCTCTCTTACCAC -ACGGAATGCTGTCTCTCTCAGAAC -ACGGAATGCTGTCTCTCTGTCTAC -ACGGAATGCTGTCTCTCTACGTAC -ACGGAATGCTGTCTCTCTAGTGAC -ACGGAATGCTGTCTCTCTCTGTAG -ACGGAATGCTGTCTCTCTCCTAAG -ACGGAATGCTGTCTCTCTGTTCAG -ACGGAATGCTGTCTCTCTGCATAG -ACGGAATGCTGTCTCTCTGACAAG -ACGGAATGCTGTCTCTCTAAGCAG -ACGGAATGCTGTCTCTCTCGTCAA -ACGGAATGCTGTCTCTCTGCTGAA -ACGGAATGCTGTCTCTCTAGTACG -ACGGAATGCTGTCTCTCTATCCGA -ACGGAATGCTGTCTCTCTATGGGA -ACGGAATGCTGTCTCTCTGTGCAA -ACGGAATGCTGTCTCTCTGAGGAA -ACGGAATGCTGTCTCTCTCAGGTA -ACGGAATGCTGTCTCTCTGACTCT -ACGGAATGCTGTCTCTCTAGTCCT -ACGGAATGCTGTCTCTCTTAAGCC -ACGGAATGCTGTCTCTCTATAGCC -ACGGAATGCTGTCTCTCTTAACCG -ACGGAATGCTGTCTCTCTATGCCA -ACGGAATGCTGTATCTGGGGAAAC -ACGGAATGCTGTATCTGGAACACC -ACGGAATGCTGTATCTGGATCGAG -ACGGAATGCTGTATCTGGCTCCTT -ACGGAATGCTGTATCTGGCCTGTT -ACGGAATGCTGTATCTGGCGGTTT -ACGGAATGCTGTATCTGGGTGGTT -ACGGAATGCTGTATCTGGGCCTTT -ACGGAATGCTGTATCTGGGGTCTT -ACGGAATGCTGTATCTGGACGCTT -ACGGAATGCTGTATCTGGAGCGTT -ACGGAATGCTGTATCTGGTTCGTC -ACGGAATGCTGTATCTGGTCTCTC -ACGGAATGCTGTATCTGGTGGATC -ACGGAATGCTGTATCTGGCACTTC -ACGGAATGCTGTATCTGGGTACTC -ACGGAATGCTGTATCTGGGATGTC -ACGGAATGCTGTATCTGGACAGTC -ACGGAATGCTGTATCTGGTTGCTG -ACGGAATGCTGTATCTGGTCCATG -ACGGAATGCTGTATCTGGTGTGTG -ACGGAATGCTGTATCTGGCTAGTG -ACGGAATGCTGTATCTGGCATCTG -ACGGAATGCTGTATCTGGGAGTTG -ACGGAATGCTGTATCTGGAGACTG -ACGGAATGCTGTATCTGGTCGGTA -ACGGAATGCTGTATCTGGTGCCTA -ACGGAATGCTGTATCTGGCCACTA -ACGGAATGCTGTATCTGGGGAGTA -ACGGAATGCTGTATCTGGTCGTCT -ACGGAATGCTGTATCTGGTGCACT -ACGGAATGCTGTATCTGGCTGACT -ACGGAATGCTGTATCTGGCAACCT -ACGGAATGCTGTATCTGGGCTACT -ACGGAATGCTGTATCTGGGGATCT -ACGGAATGCTGTATCTGGAAGGCT -ACGGAATGCTGTATCTGGTCAACC -ACGGAATGCTGTATCTGGTGTTCC -ACGGAATGCTGTATCTGGATTCCC -ACGGAATGCTGTATCTGGTTCTCG -ACGGAATGCTGTATCTGGTAGACG -ACGGAATGCTGTATCTGGGTAACG -ACGGAATGCTGTATCTGGACTTCG -ACGGAATGCTGTATCTGGTACGCA -ACGGAATGCTGTATCTGGCTTGCA -ACGGAATGCTGTATCTGGCGAACA -ACGGAATGCTGTATCTGGCAGTCA -ACGGAATGCTGTATCTGGGATCCA -ACGGAATGCTGTATCTGGACGACA -ACGGAATGCTGTATCTGGAGCTCA -ACGGAATGCTGTATCTGGTCACGT -ACGGAATGCTGTATCTGGCGTAGT -ACGGAATGCTGTATCTGGGTCAGT -ACGGAATGCTGTATCTGGGAAGGT -ACGGAATGCTGTATCTGGAACCGT -ACGGAATGCTGTATCTGGTTGTGC -ACGGAATGCTGTATCTGGCTAAGC -ACGGAATGCTGTATCTGGACTAGC -ACGGAATGCTGTATCTGGAGATGC -ACGGAATGCTGTATCTGGTGAAGG -ACGGAATGCTGTATCTGGCAATGG -ACGGAATGCTGTATCTGGATGAGG -ACGGAATGCTGTATCTGGAATGGG -ACGGAATGCTGTATCTGGTCCTGA -ACGGAATGCTGTATCTGGTAGCGA -ACGGAATGCTGTATCTGGCACAGA -ACGGAATGCTGTATCTGGGCAAGA -ACGGAATGCTGTATCTGGGGTTGA -ACGGAATGCTGTATCTGGTCCGAT -ACGGAATGCTGTATCTGGTGGCAT -ACGGAATGCTGTATCTGGCGAGAT -ACGGAATGCTGTATCTGGTACCAC -ACGGAATGCTGTATCTGGCAGAAC -ACGGAATGCTGTATCTGGGTCTAC -ACGGAATGCTGTATCTGGACGTAC -ACGGAATGCTGTATCTGGAGTGAC -ACGGAATGCTGTATCTGGCTGTAG -ACGGAATGCTGTATCTGGCCTAAG -ACGGAATGCTGTATCTGGGTTCAG -ACGGAATGCTGTATCTGGGCATAG -ACGGAATGCTGTATCTGGGACAAG -ACGGAATGCTGTATCTGGAAGCAG -ACGGAATGCTGTATCTGGCGTCAA -ACGGAATGCTGTATCTGGGCTGAA -ACGGAATGCTGTATCTGGAGTACG -ACGGAATGCTGTATCTGGATCCGA -ACGGAATGCTGTATCTGGATGGGA -ACGGAATGCTGTATCTGGGTGCAA -ACGGAATGCTGTATCTGGGAGGAA -ACGGAATGCTGTATCTGGCAGGTA -ACGGAATGCTGTATCTGGGACTCT -ACGGAATGCTGTATCTGGAGTCCT -ACGGAATGCTGTATCTGGTAAGCC -ACGGAATGCTGTATCTGGATAGCC -ACGGAATGCTGTATCTGGTAACCG -ACGGAATGCTGTATCTGGATGCCA -ACGGAATGCTGTTTCCACGGAAAC -ACGGAATGCTGTTTCCACAACACC -ACGGAATGCTGTTTCCACATCGAG -ACGGAATGCTGTTTCCACCTCCTT -ACGGAATGCTGTTTCCACCCTGTT -ACGGAATGCTGTTTCCACCGGTTT -ACGGAATGCTGTTTCCACGTGGTT -ACGGAATGCTGTTTCCACGCCTTT -ACGGAATGCTGTTTCCACGGTCTT -ACGGAATGCTGTTTCCACACGCTT -ACGGAATGCTGTTTCCACAGCGTT -ACGGAATGCTGTTTCCACTTCGTC -ACGGAATGCTGTTTCCACTCTCTC -ACGGAATGCTGTTTCCACTGGATC -ACGGAATGCTGTTTCCACCACTTC -ACGGAATGCTGTTTCCACGTACTC -ACGGAATGCTGTTTCCACGATGTC -ACGGAATGCTGTTTCCACACAGTC -ACGGAATGCTGTTTCCACTTGCTG -ACGGAATGCTGTTTCCACTCCATG -ACGGAATGCTGTTTCCACTGTGTG -ACGGAATGCTGTTTCCACCTAGTG -ACGGAATGCTGTTTCCACCATCTG -ACGGAATGCTGTTTCCACGAGTTG -ACGGAATGCTGTTTCCACAGACTG -ACGGAATGCTGTTTCCACTCGGTA -ACGGAATGCTGTTTCCACTGCCTA -ACGGAATGCTGTTTCCACCCACTA -ACGGAATGCTGTTTCCACGGAGTA -ACGGAATGCTGTTTCCACTCGTCT -ACGGAATGCTGTTTCCACTGCACT -ACGGAATGCTGTTTCCACCTGACT -ACGGAATGCTGTTTCCACCAACCT -ACGGAATGCTGTTTCCACGCTACT -ACGGAATGCTGTTTCCACGGATCT -ACGGAATGCTGTTTCCACAAGGCT -ACGGAATGCTGTTTCCACTCAACC -ACGGAATGCTGTTTCCACTGTTCC -ACGGAATGCTGTTTCCACATTCCC -ACGGAATGCTGTTTCCACTTCTCG -ACGGAATGCTGTTTCCACTAGACG -ACGGAATGCTGTTTCCACGTAACG -ACGGAATGCTGTTTCCACACTTCG -ACGGAATGCTGTTTCCACTACGCA -ACGGAATGCTGTTTCCACCTTGCA -ACGGAATGCTGTTTCCACCGAACA -ACGGAATGCTGTTTCCACCAGTCA -ACGGAATGCTGTTTCCACGATCCA -ACGGAATGCTGTTTCCACACGACA -ACGGAATGCTGTTTCCACAGCTCA -ACGGAATGCTGTTTCCACTCACGT -ACGGAATGCTGTTTCCACCGTAGT -ACGGAATGCTGTTTCCACGTCAGT -ACGGAATGCTGTTTCCACGAAGGT -ACGGAATGCTGTTTCCACAACCGT -ACGGAATGCTGTTTCCACTTGTGC -ACGGAATGCTGTTTCCACCTAAGC -ACGGAATGCTGTTTCCACACTAGC -ACGGAATGCTGTTTCCACAGATGC -ACGGAATGCTGTTTCCACTGAAGG -ACGGAATGCTGTTTCCACCAATGG -ACGGAATGCTGTTTCCACATGAGG -ACGGAATGCTGTTTCCACAATGGG -ACGGAATGCTGTTTCCACTCCTGA -ACGGAATGCTGTTTCCACTAGCGA -ACGGAATGCTGTTTCCACCACAGA -ACGGAATGCTGTTTCCACGCAAGA -ACGGAATGCTGTTTCCACGGTTGA -ACGGAATGCTGTTTCCACTCCGAT -ACGGAATGCTGTTTCCACTGGCAT -ACGGAATGCTGTTTCCACCGAGAT -ACGGAATGCTGTTTCCACTACCAC -ACGGAATGCTGTTTCCACCAGAAC -ACGGAATGCTGTTTCCACGTCTAC -ACGGAATGCTGTTTCCACACGTAC -ACGGAATGCTGTTTCCACAGTGAC -ACGGAATGCTGTTTCCACCTGTAG -ACGGAATGCTGTTTCCACCCTAAG -ACGGAATGCTGTTTCCACGTTCAG -ACGGAATGCTGTTTCCACGCATAG -ACGGAATGCTGTTTCCACGACAAG -ACGGAATGCTGTTTCCACAAGCAG -ACGGAATGCTGTTTCCACCGTCAA -ACGGAATGCTGTTTCCACGCTGAA -ACGGAATGCTGTTTCCACAGTACG -ACGGAATGCTGTTTCCACATCCGA -ACGGAATGCTGTTTCCACATGGGA -ACGGAATGCTGTTTCCACGTGCAA -ACGGAATGCTGTTTCCACGAGGAA -ACGGAATGCTGTTTCCACCAGGTA -ACGGAATGCTGTTTCCACGACTCT -ACGGAATGCTGTTTCCACAGTCCT -ACGGAATGCTGTTTCCACTAAGCC -ACGGAATGCTGTTTCCACATAGCC -ACGGAATGCTGTTTCCACTAACCG -ACGGAATGCTGTTTCCACATGCCA -ACGGAATGCTGTCTCGTAGGAAAC -ACGGAATGCTGTCTCGTAAACACC -ACGGAATGCTGTCTCGTAATCGAG -ACGGAATGCTGTCTCGTACTCCTT -ACGGAATGCTGTCTCGTACCTGTT -ACGGAATGCTGTCTCGTACGGTTT -ACGGAATGCTGTCTCGTAGTGGTT -ACGGAATGCTGTCTCGTAGCCTTT -ACGGAATGCTGTCTCGTAGGTCTT -ACGGAATGCTGTCTCGTAACGCTT -ACGGAATGCTGTCTCGTAAGCGTT -ACGGAATGCTGTCTCGTATTCGTC -ACGGAATGCTGTCTCGTATCTCTC -ACGGAATGCTGTCTCGTATGGATC -ACGGAATGCTGTCTCGTACACTTC -ACGGAATGCTGTCTCGTAGTACTC -ACGGAATGCTGTCTCGTAGATGTC -ACGGAATGCTGTCTCGTAACAGTC -ACGGAATGCTGTCTCGTATTGCTG -ACGGAATGCTGTCTCGTATCCATG -ACGGAATGCTGTCTCGTATGTGTG -ACGGAATGCTGTCTCGTACTAGTG -ACGGAATGCTGTCTCGTACATCTG -ACGGAATGCTGTCTCGTAGAGTTG -ACGGAATGCTGTCTCGTAAGACTG -ACGGAATGCTGTCTCGTATCGGTA -ACGGAATGCTGTCTCGTATGCCTA -ACGGAATGCTGTCTCGTACCACTA -ACGGAATGCTGTCTCGTAGGAGTA -ACGGAATGCTGTCTCGTATCGTCT -ACGGAATGCTGTCTCGTATGCACT -ACGGAATGCTGTCTCGTACTGACT -ACGGAATGCTGTCTCGTACAACCT -ACGGAATGCTGTCTCGTAGCTACT -ACGGAATGCTGTCTCGTAGGATCT -ACGGAATGCTGTCTCGTAAAGGCT -ACGGAATGCTGTCTCGTATCAACC -ACGGAATGCTGTCTCGTATGTTCC -ACGGAATGCTGTCTCGTAATTCCC -ACGGAATGCTGTCTCGTATTCTCG -ACGGAATGCTGTCTCGTATAGACG -ACGGAATGCTGTCTCGTAGTAACG -ACGGAATGCTGTCTCGTAACTTCG -ACGGAATGCTGTCTCGTATACGCA -ACGGAATGCTGTCTCGTACTTGCA -ACGGAATGCTGTCTCGTACGAACA -ACGGAATGCTGTCTCGTACAGTCA -ACGGAATGCTGTCTCGTAGATCCA -ACGGAATGCTGTCTCGTAACGACA -ACGGAATGCTGTCTCGTAAGCTCA -ACGGAATGCTGTCTCGTATCACGT -ACGGAATGCTGTCTCGTACGTAGT -ACGGAATGCTGTCTCGTAGTCAGT -ACGGAATGCTGTCTCGTAGAAGGT -ACGGAATGCTGTCTCGTAAACCGT -ACGGAATGCTGTCTCGTATTGTGC -ACGGAATGCTGTCTCGTACTAAGC -ACGGAATGCTGTCTCGTAACTAGC -ACGGAATGCTGTCTCGTAAGATGC -ACGGAATGCTGTCTCGTATGAAGG -ACGGAATGCTGTCTCGTACAATGG -ACGGAATGCTGTCTCGTAATGAGG -ACGGAATGCTGTCTCGTAAATGGG -ACGGAATGCTGTCTCGTATCCTGA -ACGGAATGCTGTCTCGTATAGCGA -ACGGAATGCTGTCTCGTACACAGA -ACGGAATGCTGTCTCGTAGCAAGA -ACGGAATGCTGTCTCGTAGGTTGA -ACGGAATGCTGTCTCGTATCCGAT -ACGGAATGCTGTCTCGTATGGCAT -ACGGAATGCTGTCTCGTACGAGAT -ACGGAATGCTGTCTCGTATACCAC -ACGGAATGCTGTCTCGTACAGAAC -ACGGAATGCTGTCTCGTAGTCTAC -ACGGAATGCTGTCTCGTAACGTAC -ACGGAATGCTGTCTCGTAAGTGAC -ACGGAATGCTGTCTCGTACTGTAG -ACGGAATGCTGTCTCGTACCTAAG -ACGGAATGCTGTCTCGTAGTTCAG -ACGGAATGCTGTCTCGTAGCATAG -ACGGAATGCTGTCTCGTAGACAAG -ACGGAATGCTGTCTCGTAAAGCAG -ACGGAATGCTGTCTCGTACGTCAA -ACGGAATGCTGTCTCGTAGCTGAA -ACGGAATGCTGTCTCGTAAGTACG -ACGGAATGCTGTCTCGTAATCCGA -ACGGAATGCTGTCTCGTAATGGGA -ACGGAATGCTGTCTCGTAGTGCAA -ACGGAATGCTGTCTCGTAGAGGAA -ACGGAATGCTGTCTCGTACAGGTA -ACGGAATGCTGTCTCGTAGACTCT -ACGGAATGCTGTCTCGTAAGTCCT -ACGGAATGCTGTCTCGTATAAGCC -ACGGAATGCTGTCTCGTAATAGCC -ACGGAATGCTGTCTCGTATAACCG -ACGGAATGCTGTCTCGTAATGCCA -ACGGAATGCTGTGTCGATGGAAAC -ACGGAATGCTGTGTCGATAACACC -ACGGAATGCTGTGTCGATATCGAG -ACGGAATGCTGTGTCGATCTCCTT -ACGGAATGCTGTGTCGATCCTGTT -ACGGAATGCTGTGTCGATCGGTTT -ACGGAATGCTGTGTCGATGTGGTT -ACGGAATGCTGTGTCGATGCCTTT -ACGGAATGCTGTGTCGATGGTCTT -ACGGAATGCTGTGTCGATACGCTT -ACGGAATGCTGTGTCGATAGCGTT -ACGGAATGCTGTGTCGATTTCGTC -ACGGAATGCTGTGTCGATTCTCTC -ACGGAATGCTGTGTCGATTGGATC -ACGGAATGCTGTGTCGATCACTTC -ACGGAATGCTGTGTCGATGTACTC -ACGGAATGCTGTGTCGATGATGTC -ACGGAATGCTGTGTCGATACAGTC -ACGGAATGCTGTGTCGATTTGCTG -ACGGAATGCTGTGTCGATTCCATG -ACGGAATGCTGTGTCGATTGTGTG -ACGGAATGCTGTGTCGATCTAGTG -ACGGAATGCTGTGTCGATCATCTG -ACGGAATGCTGTGTCGATGAGTTG -ACGGAATGCTGTGTCGATAGACTG -ACGGAATGCTGTGTCGATTCGGTA -ACGGAATGCTGTGTCGATTGCCTA -ACGGAATGCTGTGTCGATCCACTA -ACGGAATGCTGTGTCGATGGAGTA -ACGGAATGCTGTGTCGATTCGTCT -ACGGAATGCTGTGTCGATTGCACT -ACGGAATGCTGTGTCGATCTGACT -ACGGAATGCTGTGTCGATCAACCT -ACGGAATGCTGTGTCGATGCTACT -ACGGAATGCTGTGTCGATGGATCT -ACGGAATGCTGTGTCGATAAGGCT -ACGGAATGCTGTGTCGATTCAACC -ACGGAATGCTGTGTCGATTGTTCC -ACGGAATGCTGTGTCGATATTCCC -ACGGAATGCTGTGTCGATTTCTCG -ACGGAATGCTGTGTCGATTAGACG -ACGGAATGCTGTGTCGATGTAACG -ACGGAATGCTGTGTCGATACTTCG -ACGGAATGCTGTGTCGATTACGCA -ACGGAATGCTGTGTCGATCTTGCA -ACGGAATGCTGTGTCGATCGAACA -ACGGAATGCTGTGTCGATCAGTCA -ACGGAATGCTGTGTCGATGATCCA -ACGGAATGCTGTGTCGATACGACA -ACGGAATGCTGTGTCGATAGCTCA -ACGGAATGCTGTGTCGATTCACGT -ACGGAATGCTGTGTCGATCGTAGT -ACGGAATGCTGTGTCGATGTCAGT -ACGGAATGCTGTGTCGATGAAGGT -ACGGAATGCTGTGTCGATAACCGT -ACGGAATGCTGTGTCGATTTGTGC -ACGGAATGCTGTGTCGATCTAAGC -ACGGAATGCTGTGTCGATACTAGC -ACGGAATGCTGTGTCGATAGATGC -ACGGAATGCTGTGTCGATTGAAGG -ACGGAATGCTGTGTCGATCAATGG -ACGGAATGCTGTGTCGATATGAGG -ACGGAATGCTGTGTCGATAATGGG -ACGGAATGCTGTGTCGATTCCTGA -ACGGAATGCTGTGTCGATTAGCGA -ACGGAATGCTGTGTCGATCACAGA -ACGGAATGCTGTGTCGATGCAAGA -ACGGAATGCTGTGTCGATGGTTGA -ACGGAATGCTGTGTCGATTCCGAT -ACGGAATGCTGTGTCGATTGGCAT -ACGGAATGCTGTGTCGATCGAGAT -ACGGAATGCTGTGTCGATTACCAC -ACGGAATGCTGTGTCGATCAGAAC -ACGGAATGCTGTGTCGATGTCTAC -ACGGAATGCTGTGTCGATACGTAC -ACGGAATGCTGTGTCGATAGTGAC -ACGGAATGCTGTGTCGATCTGTAG -ACGGAATGCTGTGTCGATCCTAAG -ACGGAATGCTGTGTCGATGTTCAG -ACGGAATGCTGTGTCGATGCATAG -ACGGAATGCTGTGTCGATGACAAG -ACGGAATGCTGTGTCGATAAGCAG -ACGGAATGCTGTGTCGATCGTCAA -ACGGAATGCTGTGTCGATGCTGAA -ACGGAATGCTGTGTCGATAGTACG -ACGGAATGCTGTGTCGATATCCGA -ACGGAATGCTGTGTCGATATGGGA -ACGGAATGCTGTGTCGATGTGCAA -ACGGAATGCTGTGTCGATGAGGAA -ACGGAATGCTGTGTCGATCAGGTA -ACGGAATGCTGTGTCGATGACTCT -ACGGAATGCTGTGTCGATAGTCCT -ACGGAATGCTGTGTCGATTAAGCC -ACGGAATGCTGTGTCGATATAGCC -ACGGAATGCTGTGTCGATTAACCG -ACGGAATGCTGTGTCGATATGCCA -ACGGAATGCTGTGTCACAGGAAAC -ACGGAATGCTGTGTCACAAACACC -ACGGAATGCTGTGTCACAATCGAG -ACGGAATGCTGTGTCACACTCCTT -ACGGAATGCTGTGTCACACCTGTT -ACGGAATGCTGTGTCACACGGTTT -ACGGAATGCTGTGTCACAGTGGTT -ACGGAATGCTGTGTCACAGCCTTT -ACGGAATGCTGTGTCACAGGTCTT -ACGGAATGCTGTGTCACAACGCTT -ACGGAATGCTGTGTCACAAGCGTT -ACGGAATGCTGTGTCACATTCGTC -ACGGAATGCTGTGTCACATCTCTC -ACGGAATGCTGTGTCACATGGATC -ACGGAATGCTGTGTCACACACTTC -ACGGAATGCTGTGTCACAGTACTC -ACGGAATGCTGTGTCACAGATGTC -ACGGAATGCTGTGTCACAACAGTC -ACGGAATGCTGTGTCACATTGCTG -ACGGAATGCTGTGTCACATCCATG -ACGGAATGCTGTGTCACATGTGTG -ACGGAATGCTGTGTCACACTAGTG -ACGGAATGCTGTGTCACACATCTG -ACGGAATGCTGTGTCACAGAGTTG -ACGGAATGCTGTGTCACAAGACTG -ACGGAATGCTGTGTCACATCGGTA -ACGGAATGCTGTGTCACATGCCTA -ACGGAATGCTGTGTCACACCACTA -ACGGAATGCTGTGTCACAGGAGTA -ACGGAATGCTGTGTCACATCGTCT -ACGGAATGCTGTGTCACATGCACT -ACGGAATGCTGTGTCACACTGACT -ACGGAATGCTGTGTCACACAACCT -ACGGAATGCTGTGTCACAGCTACT -ACGGAATGCTGTGTCACAGGATCT -ACGGAATGCTGTGTCACAAAGGCT -ACGGAATGCTGTGTCACATCAACC -ACGGAATGCTGTGTCACATGTTCC -ACGGAATGCTGTGTCACAATTCCC -ACGGAATGCTGTGTCACATTCTCG -ACGGAATGCTGTGTCACATAGACG -ACGGAATGCTGTGTCACAGTAACG -ACGGAATGCTGTGTCACAACTTCG -ACGGAATGCTGTGTCACATACGCA -ACGGAATGCTGTGTCACACTTGCA -ACGGAATGCTGTGTCACACGAACA -ACGGAATGCTGTGTCACACAGTCA -ACGGAATGCTGTGTCACAGATCCA -ACGGAATGCTGTGTCACAACGACA -ACGGAATGCTGTGTCACAAGCTCA -ACGGAATGCTGTGTCACATCACGT -ACGGAATGCTGTGTCACACGTAGT -ACGGAATGCTGTGTCACAGTCAGT -ACGGAATGCTGTGTCACAGAAGGT -ACGGAATGCTGTGTCACAAACCGT -ACGGAATGCTGTGTCACATTGTGC -ACGGAATGCTGTGTCACACTAAGC -ACGGAATGCTGTGTCACAACTAGC -ACGGAATGCTGTGTCACAAGATGC -ACGGAATGCTGTGTCACATGAAGG -ACGGAATGCTGTGTCACACAATGG -ACGGAATGCTGTGTCACAATGAGG -ACGGAATGCTGTGTCACAAATGGG -ACGGAATGCTGTGTCACATCCTGA -ACGGAATGCTGTGTCACATAGCGA -ACGGAATGCTGTGTCACACACAGA -ACGGAATGCTGTGTCACAGCAAGA -ACGGAATGCTGTGTCACAGGTTGA -ACGGAATGCTGTGTCACATCCGAT -ACGGAATGCTGTGTCACATGGCAT -ACGGAATGCTGTGTCACACGAGAT -ACGGAATGCTGTGTCACATACCAC -ACGGAATGCTGTGTCACACAGAAC -ACGGAATGCTGTGTCACAGTCTAC -ACGGAATGCTGTGTCACAACGTAC -ACGGAATGCTGTGTCACAAGTGAC -ACGGAATGCTGTGTCACACTGTAG -ACGGAATGCTGTGTCACACCTAAG -ACGGAATGCTGTGTCACAGTTCAG -ACGGAATGCTGTGTCACAGCATAG -ACGGAATGCTGTGTCACAGACAAG -ACGGAATGCTGTGTCACAAAGCAG -ACGGAATGCTGTGTCACACGTCAA -ACGGAATGCTGTGTCACAGCTGAA -ACGGAATGCTGTGTCACAAGTACG -ACGGAATGCTGTGTCACAATCCGA -ACGGAATGCTGTGTCACAATGGGA -ACGGAATGCTGTGTCACAGTGCAA -ACGGAATGCTGTGTCACAGAGGAA -ACGGAATGCTGTGTCACACAGGTA -ACGGAATGCTGTGTCACAGACTCT -ACGGAATGCTGTGTCACAAGTCCT -ACGGAATGCTGTGTCACATAAGCC -ACGGAATGCTGTGTCACAATAGCC -ACGGAATGCTGTGTCACATAACCG -ACGGAATGCTGTGTCACAATGCCA -ACGGAATGCTGTCTGTTGGGAAAC -ACGGAATGCTGTCTGTTGAACACC -ACGGAATGCTGTCTGTTGATCGAG -ACGGAATGCTGTCTGTTGCTCCTT -ACGGAATGCTGTCTGTTGCCTGTT -ACGGAATGCTGTCTGTTGCGGTTT -ACGGAATGCTGTCTGTTGGTGGTT -ACGGAATGCTGTCTGTTGGCCTTT -ACGGAATGCTGTCTGTTGGGTCTT -ACGGAATGCTGTCTGTTGACGCTT -ACGGAATGCTGTCTGTTGAGCGTT -ACGGAATGCTGTCTGTTGTTCGTC -ACGGAATGCTGTCTGTTGTCTCTC -ACGGAATGCTGTCTGTTGTGGATC -ACGGAATGCTGTCTGTTGCACTTC -ACGGAATGCTGTCTGTTGGTACTC -ACGGAATGCTGTCTGTTGGATGTC -ACGGAATGCTGTCTGTTGACAGTC -ACGGAATGCTGTCTGTTGTTGCTG -ACGGAATGCTGTCTGTTGTCCATG -ACGGAATGCTGTCTGTTGTGTGTG -ACGGAATGCTGTCTGTTGCTAGTG -ACGGAATGCTGTCTGTTGCATCTG -ACGGAATGCTGTCTGTTGGAGTTG -ACGGAATGCTGTCTGTTGAGACTG -ACGGAATGCTGTCTGTTGTCGGTA -ACGGAATGCTGTCTGTTGTGCCTA -ACGGAATGCTGTCTGTTGCCACTA -ACGGAATGCTGTCTGTTGGGAGTA -ACGGAATGCTGTCTGTTGTCGTCT -ACGGAATGCTGTCTGTTGTGCACT -ACGGAATGCTGTCTGTTGCTGACT -ACGGAATGCTGTCTGTTGCAACCT -ACGGAATGCTGTCTGTTGGCTACT -ACGGAATGCTGTCTGTTGGGATCT -ACGGAATGCTGTCTGTTGAAGGCT -ACGGAATGCTGTCTGTTGTCAACC -ACGGAATGCTGTCTGTTGTGTTCC -ACGGAATGCTGTCTGTTGATTCCC -ACGGAATGCTGTCTGTTGTTCTCG -ACGGAATGCTGTCTGTTGTAGACG -ACGGAATGCTGTCTGTTGGTAACG -ACGGAATGCTGTCTGTTGACTTCG -ACGGAATGCTGTCTGTTGTACGCA -ACGGAATGCTGTCTGTTGCTTGCA -ACGGAATGCTGTCTGTTGCGAACA -ACGGAATGCTGTCTGTTGCAGTCA -ACGGAATGCTGTCTGTTGGATCCA -ACGGAATGCTGTCTGTTGACGACA -ACGGAATGCTGTCTGTTGAGCTCA -ACGGAATGCTGTCTGTTGTCACGT -ACGGAATGCTGTCTGTTGCGTAGT -ACGGAATGCTGTCTGTTGGTCAGT -ACGGAATGCTGTCTGTTGGAAGGT -ACGGAATGCTGTCTGTTGAACCGT -ACGGAATGCTGTCTGTTGTTGTGC -ACGGAATGCTGTCTGTTGCTAAGC -ACGGAATGCTGTCTGTTGACTAGC -ACGGAATGCTGTCTGTTGAGATGC -ACGGAATGCTGTCTGTTGTGAAGG -ACGGAATGCTGTCTGTTGCAATGG -ACGGAATGCTGTCTGTTGATGAGG -ACGGAATGCTGTCTGTTGAATGGG -ACGGAATGCTGTCTGTTGTCCTGA -ACGGAATGCTGTCTGTTGTAGCGA -ACGGAATGCTGTCTGTTGCACAGA -ACGGAATGCTGTCTGTTGGCAAGA -ACGGAATGCTGTCTGTTGGGTTGA -ACGGAATGCTGTCTGTTGTCCGAT -ACGGAATGCTGTCTGTTGTGGCAT -ACGGAATGCTGTCTGTTGCGAGAT -ACGGAATGCTGTCTGTTGTACCAC -ACGGAATGCTGTCTGTTGCAGAAC -ACGGAATGCTGTCTGTTGGTCTAC -ACGGAATGCTGTCTGTTGACGTAC -ACGGAATGCTGTCTGTTGAGTGAC -ACGGAATGCTGTCTGTTGCTGTAG -ACGGAATGCTGTCTGTTGCCTAAG -ACGGAATGCTGTCTGTTGGTTCAG -ACGGAATGCTGTCTGTTGGCATAG -ACGGAATGCTGTCTGTTGGACAAG -ACGGAATGCTGTCTGTTGAAGCAG -ACGGAATGCTGTCTGTTGCGTCAA -ACGGAATGCTGTCTGTTGGCTGAA -ACGGAATGCTGTCTGTTGAGTACG -ACGGAATGCTGTCTGTTGATCCGA -ACGGAATGCTGTCTGTTGATGGGA -ACGGAATGCTGTCTGTTGGTGCAA -ACGGAATGCTGTCTGTTGGAGGAA -ACGGAATGCTGTCTGTTGCAGGTA -ACGGAATGCTGTCTGTTGGACTCT -ACGGAATGCTGTCTGTTGAGTCCT -ACGGAATGCTGTCTGTTGTAAGCC -ACGGAATGCTGTCTGTTGATAGCC -ACGGAATGCTGTCTGTTGTAACCG -ACGGAATGCTGTCTGTTGATGCCA -ACGGAATGCTGTATGTCCGGAAAC -ACGGAATGCTGTATGTCCAACACC -ACGGAATGCTGTATGTCCATCGAG -ACGGAATGCTGTATGTCCCTCCTT -ACGGAATGCTGTATGTCCCCTGTT -ACGGAATGCTGTATGTCCCGGTTT -ACGGAATGCTGTATGTCCGTGGTT -ACGGAATGCTGTATGTCCGCCTTT -ACGGAATGCTGTATGTCCGGTCTT -ACGGAATGCTGTATGTCCACGCTT -ACGGAATGCTGTATGTCCAGCGTT -ACGGAATGCTGTATGTCCTTCGTC -ACGGAATGCTGTATGTCCTCTCTC -ACGGAATGCTGTATGTCCTGGATC -ACGGAATGCTGTATGTCCCACTTC -ACGGAATGCTGTATGTCCGTACTC -ACGGAATGCTGTATGTCCGATGTC -ACGGAATGCTGTATGTCCACAGTC -ACGGAATGCTGTATGTCCTTGCTG -ACGGAATGCTGTATGTCCTCCATG -ACGGAATGCTGTATGTCCTGTGTG -ACGGAATGCTGTATGTCCCTAGTG -ACGGAATGCTGTATGTCCCATCTG -ACGGAATGCTGTATGTCCGAGTTG -ACGGAATGCTGTATGTCCAGACTG -ACGGAATGCTGTATGTCCTCGGTA -ACGGAATGCTGTATGTCCTGCCTA -ACGGAATGCTGTATGTCCCCACTA -ACGGAATGCTGTATGTCCGGAGTA -ACGGAATGCTGTATGTCCTCGTCT -ACGGAATGCTGTATGTCCTGCACT -ACGGAATGCTGTATGTCCCTGACT -ACGGAATGCTGTATGTCCCAACCT -ACGGAATGCTGTATGTCCGCTACT -ACGGAATGCTGTATGTCCGGATCT -ACGGAATGCTGTATGTCCAAGGCT -ACGGAATGCTGTATGTCCTCAACC -ACGGAATGCTGTATGTCCTGTTCC -ACGGAATGCTGTATGTCCATTCCC -ACGGAATGCTGTATGTCCTTCTCG -ACGGAATGCTGTATGTCCTAGACG -ACGGAATGCTGTATGTCCGTAACG -ACGGAATGCTGTATGTCCACTTCG -ACGGAATGCTGTATGTCCTACGCA -ACGGAATGCTGTATGTCCCTTGCA -ACGGAATGCTGTATGTCCCGAACA -ACGGAATGCTGTATGTCCCAGTCA -ACGGAATGCTGTATGTCCGATCCA -ACGGAATGCTGTATGTCCACGACA -ACGGAATGCTGTATGTCCAGCTCA -ACGGAATGCTGTATGTCCTCACGT -ACGGAATGCTGTATGTCCCGTAGT -ACGGAATGCTGTATGTCCGTCAGT -ACGGAATGCTGTATGTCCGAAGGT -ACGGAATGCTGTATGTCCAACCGT -ACGGAATGCTGTATGTCCTTGTGC -ACGGAATGCTGTATGTCCCTAAGC -ACGGAATGCTGTATGTCCACTAGC -ACGGAATGCTGTATGTCCAGATGC -ACGGAATGCTGTATGTCCTGAAGG -ACGGAATGCTGTATGTCCCAATGG -ACGGAATGCTGTATGTCCATGAGG -ACGGAATGCTGTATGTCCAATGGG -ACGGAATGCTGTATGTCCTCCTGA -ACGGAATGCTGTATGTCCTAGCGA -ACGGAATGCTGTATGTCCCACAGA -ACGGAATGCTGTATGTCCGCAAGA -ACGGAATGCTGTATGTCCGGTTGA -ACGGAATGCTGTATGTCCTCCGAT -ACGGAATGCTGTATGTCCTGGCAT -ACGGAATGCTGTATGTCCCGAGAT -ACGGAATGCTGTATGTCCTACCAC -ACGGAATGCTGTATGTCCCAGAAC -ACGGAATGCTGTATGTCCGTCTAC -ACGGAATGCTGTATGTCCACGTAC -ACGGAATGCTGTATGTCCAGTGAC -ACGGAATGCTGTATGTCCCTGTAG -ACGGAATGCTGTATGTCCCCTAAG -ACGGAATGCTGTATGTCCGTTCAG -ACGGAATGCTGTATGTCCGCATAG -ACGGAATGCTGTATGTCCGACAAG -ACGGAATGCTGTATGTCCAAGCAG -ACGGAATGCTGTATGTCCCGTCAA -ACGGAATGCTGTATGTCCGCTGAA -ACGGAATGCTGTATGTCCAGTACG -ACGGAATGCTGTATGTCCATCCGA -ACGGAATGCTGTATGTCCATGGGA -ACGGAATGCTGTATGTCCGTGCAA -ACGGAATGCTGTATGTCCGAGGAA -ACGGAATGCTGTATGTCCCAGGTA -ACGGAATGCTGTATGTCCGACTCT -ACGGAATGCTGTATGTCCAGTCCT -ACGGAATGCTGTATGTCCTAAGCC -ACGGAATGCTGTATGTCCATAGCC -ACGGAATGCTGTATGTCCTAACCG -ACGGAATGCTGTATGTCCATGCCA -ACGGAATGCTGTGTGTGTGGAAAC -ACGGAATGCTGTGTGTGTAACACC -ACGGAATGCTGTGTGTGTATCGAG -ACGGAATGCTGTGTGTGTCTCCTT -ACGGAATGCTGTGTGTGTCCTGTT -ACGGAATGCTGTGTGTGTCGGTTT -ACGGAATGCTGTGTGTGTGTGGTT -ACGGAATGCTGTGTGTGTGCCTTT -ACGGAATGCTGTGTGTGTGGTCTT -ACGGAATGCTGTGTGTGTACGCTT -ACGGAATGCTGTGTGTGTAGCGTT -ACGGAATGCTGTGTGTGTTTCGTC -ACGGAATGCTGTGTGTGTTCTCTC -ACGGAATGCTGTGTGTGTTGGATC -ACGGAATGCTGTGTGTGTCACTTC -ACGGAATGCTGTGTGTGTGTACTC -ACGGAATGCTGTGTGTGTGATGTC -ACGGAATGCTGTGTGTGTACAGTC -ACGGAATGCTGTGTGTGTTTGCTG -ACGGAATGCTGTGTGTGTTCCATG -ACGGAATGCTGTGTGTGTTGTGTG -ACGGAATGCTGTGTGTGTCTAGTG -ACGGAATGCTGTGTGTGTCATCTG -ACGGAATGCTGTGTGTGTGAGTTG -ACGGAATGCTGTGTGTGTAGACTG -ACGGAATGCTGTGTGTGTTCGGTA -ACGGAATGCTGTGTGTGTTGCCTA -ACGGAATGCTGTGTGTGTCCACTA -ACGGAATGCTGTGTGTGTGGAGTA -ACGGAATGCTGTGTGTGTTCGTCT -ACGGAATGCTGTGTGTGTTGCACT -ACGGAATGCTGTGTGTGTCTGACT -ACGGAATGCTGTGTGTGTCAACCT -ACGGAATGCTGTGTGTGTGCTACT -ACGGAATGCTGTGTGTGTGGATCT -ACGGAATGCTGTGTGTGTAAGGCT -ACGGAATGCTGTGTGTGTTCAACC -ACGGAATGCTGTGTGTGTTGTTCC -ACGGAATGCTGTGTGTGTATTCCC -ACGGAATGCTGTGTGTGTTTCTCG -ACGGAATGCTGTGTGTGTTAGACG -ACGGAATGCTGTGTGTGTGTAACG -ACGGAATGCTGTGTGTGTACTTCG -ACGGAATGCTGTGTGTGTTACGCA -ACGGAATGCTGTGTGTGTCTTGCA -ACGGAATGCTGTGTGTGTCGAACA -ACGGAATGCTGTGTGTGTCAGTCA -ACGGAATGCTGTGTGTGTGATCCA -ACGGAATGCTGTGTGTGTACGACA -ACGGAATGCTGTGTGTGTAGCTCA -ACGGAATGCTGTGTGTGTTCACGT -ACGGAATGCTGTGTGTGTCGTAGT -ACGGAATGCTGTGTGTGTGTCAGT -ACGGAATGCTGTGTGTGTGAAGGT -ACGGAATGCTGTGTGTGTAACCGT -ACGGAATGCTGTGTGTGTTTGTGC -ACGGAATGCTGTGTGTGTCTAAGC -ACGGAATGCTGTGTGTGTACTAGC -ACGGAATGCTGTGTGTGTAGATGC -ACGGAATGCTGTGTGTGTTGAAGG -ACGGAATGCTGTGTGTGTCAATGG -ACGGAATGCTGTGTGTGTATGAGG -ACGGAATGCTGTGTGTGTAATGGG -ACGGAATGCTGTGTGTGTTCCTGA -ACGGAATGCTGTGTGTGTTAGCGA -ACGGAATGCTGTGTGTGTCACAGA -ACGGAATGCTGTGTGTGTGCAAGA -ACGGAATGCTGTGTGTGTGGTTGA -ACGGAATGCTGTGTGTGTTCCGAT -ACGGAATGCTGTGTGTGTTGGCAT -ACGGAATGCTGTGTGTGTCGAGAT -ACGGAATGCTGTGTGTGTTACCAC -ACGGAATGCTGTGTGTGTCAGAAC -ACGGAATGCTGTGTGTGTGTCTAC -ACGGAATGCTGTGTGTGTACGTAC -ACGGAATGCTGTGTGTGTAGTGAC -ACGGAATGCTGTGTGTGTCTGTAG -ACGGAATGCTGTGTGTGTCCTAAG -ACGGAATGCTGTGTGTGTGTTCAG -ACGGAATGCTGTGTGTGTGCATAG -ACGGAATGCTGTGTGTGTGACAAG -ACGGAATGCTGTGTGTGTAAGCAG -ACGGAATGCTGTGTGTGTCGTCAA -ACGGAATGCTGTGTGTGTGCTGAA -ACGGAATGCTGTGTGTGTAGTACG -ACGGAATGCTGTGTGTGTATCCGA -ACGGAATGCTGTGTGTGTATGGGA -ACGGAATGCTGTGTGTGTGTGCAA -ACGGAATGCTGTGTGTGTGAGGAA -ACGGAATGCTGTGTGTGTCAGGTA -ACGGAATGCTGTGTGTGTGACTCT -ACGGAATGCTGTGTGTGTAGTCCT -ACGGAATGCTGTGTGTGTTAAGCC -ACGGAATGCTGTGTGTGTATAGCC -ACGGAATGCTGTGTGTGTTAACCG -ACGGAATGCTGTGTGTGTATGCCA -ACGGAATGCTGTGTGCTAGGAAAC -ACGGAATGCTGTGTGCTAAACACC -ACGGAATGCTGTGTGCTAATCGAG -ACGGAATGCTGTGTGCTACTCCTT -ACGGAATGCTGTGTGCTACCTGTT -ACGGAATGCTGTGTGCTACGGTTT -ACGGAATGCTGTGTGCTAGTGGTT -ACGGAATGCTGTGTGCTAGCCTTT -ACGGAATGCTGTGTGCTAGGTCTT -ACGGAATGCTGTGTGCTAACGCTT -ACGGAATGCTGTGTGCTAAGCGTT -ACGGAATGCTGTGTGCTATTCGTC -ACGGAATGCTGTGTGCTATCTCTC -ACGGAATGCTGTGTGCTATGGATC -ACGGAATGCTGTGTGCTACACTTC -ACGGAATGCTGTGTGCTAGTACTC -ACGGAATGCTGTGTGCTAGATGTC -ACGGAATGCTGTGTGCTAACAGTC -ACGGAATGCTGTGTGCTATTGCTG -ACGGAATGCTGTGTGCTATCCATG -ACGGAATGCTGTGTGCTATGTGTG -ACGGAATGCTGTGTGCTACTAGTG -ACGGAATGCTGTGTGCTACATCTG -ACGGAATGCTGTGTGCTAGAGTTG -ACGGAATGCTGTGTGCTAAGACTG -ACGGAATGCTGTGTGCTATCGGTA -ACGGAATGCTGTGTGCTATGCCTA -ACGGAATGCTGTGTGCTACCACTA -ACGGAATGCTGTGTGCTAGGAGTA -ACGGAATGCTGTGTGCTATCGTCT -ACGGAATGCTGTGTGCTATGCACT -ACGGAATGCTGTGTGCTACTGACT -ACGGAATGCTGTGTGCTACAACCT -ACGGAATGCTGTGTGCTAGCTACT -ACGGAATGCTGTGTGCTAGGATCT -ACGGAATGCTGTGTGCTAAAGGCT -ACGGAATGCTGTGTGCTATCAACC -ACGGAATGCTGTGTGCTATGTTCC -ACGGAATGCTGTGTGCTAATTCCC -ACGGAATGCTGTGTGCTATTCTCG -ACGGAATGCTGTGTGCTATAGACG -ACGGAATGCTGTGTGCTAGTAACG -ACGGAATGCTGTGTGCTAACTTCG -ACGGAATGCTGTGTGCTATACGCA -ACGGAATGCTGTGTGCTACTTGCA -ACGGAATGCTGTGTGCTACGAACA -ACGGAATGCTGTGTGCTACAGTCA -ACGGAATGCTGTGTGCTAGATCCA -ACGGAATGCTGTGTGCTAACGACA -ACGGAATGCTGTGTGCTAAGCTCA -ACGGAATGCTGTGTGCTATCACGT -ACGGAATGCTGTGTGCTACGTAGT -ACGGAATGCTGTGTGCTAGTCAGT -ACGGAATGCTGTGTGCTAGAAGGT -ACGGAATGCTGTGTGCTAAACCGT -ACGGAATGCTGTGTGCTATTGTGC -ACGGAATGCTGTGTGCTACTAAGC -ACGGAATGCTGTGTGCTAACTAGC -ACGGAATGCTGTGTGCTAAGATGC -ACGGAATGCTGTGTGCTATGAAGG -ACGGAATGCTGTGTGCTACAATGG -ACGGAATGCTGTGTGCTAATGAGG -ACGGAATGCTGTGTGCTAAATGGG -ACGGAATGCTGTGTGCTATCCTGA -ACGGAATGCTGTGTGCTATAGCGA -ACGGAATGCTGTGTGCTACACAGA -ACGGAATGCTGTGTGCTAGCAAGA -ACGGAATGCTGTGTGCTAGGTTGA -ACGGAATGCTGTGTGCTATCCGAT -ACGGAATGCTGTGTGCTATGGCAT -ACGGAATGCTGTGTGCTACGAGAT -ACGGAATGCTGTGTGCTATACCAC -ACGGAATGCTGTGTGCTACAGAAC -ACGGAATGCTGTGTGCTAGTCTAC -ACGGAATGCTGTGTGCTAACGTAC -ACGGAATGCTGTGTGCTAAGTGAC -ACGGAATGCTGTGTGCTACTGTAG -ACGGAATGCTGTGTGCTACCTAAG -ACGGAATGCTGTGTGCTAGTTCAG -ACGGAATGCTGTGTGCTAGCATAG -ACGGAATGCTGTGTGCTAGACAAG -ACGGAATGCTGTGTGCTAAAGCAG -ACGGAATGCTGTGTGCTACGTCAA -ACGGAATGCTGTGTGCTAGCTGAA -ACGGAATGCTGTGTGCTAAGTACG -ACGGAATGCTGTGTGCTAATCCGA -ACGGAATGCTGTGTGCTAATGGGA -ACGGAATGCTGTGTGCTAGTGCAA -ACGGAATGCTGTGTGCTAGAGGAA -ACGGAATGCTGTGTGCTACAGGTA -ACGGAATGCTGTGTGCTAGACTCT -ACGGAATGCTGTGTGCTAAGTCCT -ACGGAATGCTGTGTGCTATAAGCC -ACGGAATGCTGTGTGCTAATAGCC -ACGGAATGCTGTGTGCTATAACCG -ACGGAATGCTGTGTGCTAATGCCA -ACGGAATGCTGTCTGCATGGAAAC -ACGGAATGCTGTCTGCATAACACC -ACGGAATGCTGTCTGCATATCGAG -ACGGAATGCTGTCTGCATCTCCTT -ACGGAATGCTGTCTGCATCCTGTT -ACGGAATGCTGTCTGCATCGGTTT -ACGGAATGCTGTCTGCATGTGGTT -ACGGAATGCTGTCTGCATGCCTTT -ACGGAATGCTGTCTGCATGGTCTT -ACGGAATGCTGTCTGCATACGCTT -ACGGAATGCTGTCTGCATAGCGTT -ACGGAATGCTGTCTGCATTTCGTC -ACGGAATGCTGTCTGCATTCTCTC -ACGGAATGCTGTCTGCATTGGATC -ACGGAATGCTGTCTGCATCACTTC -ACGGAATGCTGTCTGCATGTACTC -ACGGAATGCTGTCTGCATGATGTC -ACGGAATGCTGTCTGCATACAGTC -ACGGAATGCTGTCTGCATTTGCTG -ACGGAATGCTGTCTGCATTCCATG -ACGGAATGCTGTCTGCATTGTGTG -ACGGAATGCTGTCTGCATCTAGTG -ACGGAATGCTGTCTGCATCATCTG -ACGGAATGCTGTCTGCATGAGTTG -ACGGAATGCTGTCTGCATAGACTG -ACGGAATGCTGTCTGCATTCGGTA -ACGGAATGCTGTCTGCATTGCCTA -ACGGAATGCTGTCTGCATCCACTA -ACGGAATGCTGTCTGCATGGAGTA -ACGGAATGCTGTCTGCATTCGTCT -ACGGAATGCTGTCTGCATTGCACT -ACGGAATGCTGTCTGCATCTGACT -ACGGAATGCTGTCTGCATCAACCT -ACGGAATGCTGTCTGCATGCTACT -ACGGAATGCTGTCTGCATGGATCT -ACGGAATGCTGTCTGCATAAGGCT -ACGGAATGCTGTCTGCATTCAACC -ACGGAATGCTGTCTGCATTGTTCC -ACGGAATGCTGTCTGCATATTCCC -ACGGAATGCTGTCTGCATTTCTCG -ACGGAATGCTGTCTGCATTAGACG -ACGGAATGCTGTCTGCATGTAACG -ACGGAATGCTGTCTGCATACTTCG -ACGGAATGCTGTCTGCATTACGCA -ACGGAATGCTGTCTGCATCTTGCA -ACGGAATGCTGTCTGCATCGAACA -ACGGAATGCTGTCTGCATCAGTCA -ACGGAATGCTGTCTGCATGATCCA -ACGGAATGCTGTCTGCATACGACA -ACGGAATGCTGTCTGCATAGCTCA -ACGGAATGCTGTCTGCATTCACGT -ACGGAATGCTGTCTGCATCGTAGT -ACGGAATGCTGTCTGCATGTCAGT -ACGGAATGCTGTCTGCATGAAGGT -ACGGAATGCTGTCTGCATAACCGT -ACGGAATGCTGTCTGCATTTGTGC -ACGGAATGCTGTCTGCATCTAAGC -ACGGAATGCTGTCTGCATACTAGC -ACGGAATGCTGTCTGCATAGATGC -ACGGAATGCTGTCTGCATTGAAGG -ACGGAATGCTGTCTGCATCAATGG -ACGGAATGCTGTCTGCATATGAGG -ACGGAATGCTGTCTGCATAATGGG -ACGGAATGCTGTCTGCATTCCTGA -ACGGAATGCTGTCTGCATTAGCGA -ACGGAATGCTGTCTGCATCACAGA -ACGGAATGCTGTCTGCATGCAAGA -ACGGAATGCTGTCTGCATGGTTGA -ACGGAATGCTGTCTGCATTCCGAT -ACGGAATGCTGTCTGCATTGGCAT -ACGGAATGCTGTCTGCATCGAGAT -ACGGAATGCTGTCTGCATTACCAC -ACGGAATGCTGTCTGCATCAGAAC -ACGGAATGCTGTCTGCATGTCTAC -ACGGAATGCTGTCTGCATACGTAC -ACGGAATGCTGTCTGCATAGTGAC -ACGGAATGCTGTCTGCATCTGTAG -ACGGAATGCTGTCTGCATCCTAAG -ACGGAATGCTGTCTGCATGTTCAG -ACGGAATGCTGTCTGCATGCATAG -ACGGAATGCTGTCTGCATGACAAG -ACGGAATGCTGTCTGCATAAGCAG -ACGGAATGCTGTCTGCATCGTCAA -ACGGAATGCTGTCTGCATGCTGAA -ACGGAATGCTGTCTGCATAGTACG -ACGGAATGCTGTCTGCATATCCGA -ACGGAATGCTGTCTGCATATGGGA -ACGGAATGCTGTCTGCATGTGCAA -ACGGAATGCTGTCTGCATGAGGAA -ACGGAATGCTGTCTGCATCAGGTA -ACGGAATGCTGTCTGCATGACTCT -ACGGAATGCTGTCTGCATAGTCCT -ACGGAATGCTGTCTGCATTAAGCC -ACGGAATGCTGTCTGCATATAGCC -ACGGAATGCTGTCTGCATTAACCG -ACGGAATGCTGTCTGCATATGCCA -ACGGAATGCTGTTTGGAGGGAAAC -ACGGAATGCTGTTTGGAGAACACC -ACGGAATGCTGTTTGGAGATCGAG -ACGGAATGCTGTTTGGAGCTCCTT -ACGGAATGCTGTTTGGAGCCTGTT -ACGGAATGCTGTTTGGAGCGGTTT -ACGGAATGCTGTTTGGAGGTGGTT -ACGGAATGCTGTTTGGAGGCCTTT -ACGGAATGCTGTTTGGAGGGTCTT -ACGGAATGCTGTTTGGAGACGCTT -ACGGAATGCTGTTTGGAGAGCGTT -ACGGAATGCTGTTTGGAGTTCGTC -ACGGAATGCTGTTTGGAGTCTCTC -ACGGAATGCTGTTTGGAGTGGATC -ACGGAATGCTGTTTGGAGCACTTC -ACGGAATGCTGTTTGGAGGTACTC -ACGGAATGCTGTTTGGAGGATGTC -ACGGAATGCTGTTTGGAGACAGTC -ACGGAATGCTGTTTGGAGTTGCTG -ACGGAATGCTGTTTGGAGTCCATG -ACGGAATGCTGTTTGGAGTGTGTG -ACGGAATGCTGTTTGGAGCTAGTG -ACGGAATGCTGTTTGGAGCATCTG -ACGGAATGCTGTTTGGAGGAGTTG -ACGGAATGCTGTTTGGAGAGACTG -ACGGAATGCTGTTTGGAGTCGGTA -ACGGAATGCTGTTTGGAGTGCCTA -ACGGAATGCTGTTTGGAGCCACTA -ACGGAATGCTGTTTGGAGGGAGTA -ACGGAATGCTGTTTGGAGTCGTCT -ACGGAATGCTGTTTGGAGTGCACT -ACGGAATGCTGTTTGGAGCTGACT -ACGGAATGCTGTTTGGAGCAACCT -ACGGAATGCTGTTTGGAGGCTACT -ACGGAATGCTGTTTGGAGGGATCT -ACGGAATGCTGTTTGGAGAAGGCT -ACGGAATGCTGTTTGGAGTCAACC -ACGGAATGCTGTTTGGAGTGTTCC -ACGGAATGCTGTTTGGAGATTCCC -ACGGAATGCTGTTTGGAGTTCTCG -ACGGAATGCTGTTTGGAGTAGACG -ACGGAATGCTGTTTGGAGGTAACG -ACGGAATGCTGTTTGGAGACTTCG -ACGGAATGCTGTTTGGAGTACGCA -ACGGAATGCTGTTTGGAGCTTGCA -ACGGAATGCTGTTTGGAGCGAACA -ACGGAATGCTGTTTGGAGCAGTCA -ACGGAATGCTGTTTGGAGGATCCA -ACGGAATGCTGTTTGGAGACGACA -ACGGAATGCTGTTTGGAGAGCTCA -ACGGAATGCTGTTTGGAGTCACGT -ACGGAATGCTGTTTGGAGCGTAGT -ACGGAATGCTGTTTGGAGGTCAGT -ACGGAATGCTGTTTGGAGGAAGGT -ACGGAATGCTGTTTGGAGAACCGT -ACGGAATGCTGTTTGGAGTTGTGC -ACGGAATGCTGTTTGGAGCTAAGC -ACGGAATGCTGTTTGGAGACTAGC -ACGGAATGCTGTTTGGAGAGATGC -ACGGAATGCTGTTTGGAGTGAAGG -ACGGAATGCTGTTTGGAGCAATGG -ACGGAATGCTGTTTGGAGATGAGG -ACGGAATGCTGTTTGGAGAATGGG -ACGGAATGCTGTTTGGAGTCCTGA -ACGGAATGCTGTTTGGAGTAGCGA -ACGGAATGCTGTTTGGAGCACAGA -ACGGAATGCTGTTTGGAGGCAAGA -ACGGAATGCTGTTTGGAGGGTTGA -ACGGAATGCTGTTTGGAGTCCGAT -ACGGAATGCTGTTTGGAGTGGCAT -ACGGAATGCTGTTTGGAGCGAGAT -ACGGAATGCTGTTTGGAGTACCAC -ACGGAATGCTGTTTGGAGCAGAAC -ACGGAATGCTGTTTGGAGGTCTAC -ACGGAATGCTGTTTGGAGACGTAC -ACGGAATGCTGTTTGGAGAGTGAC -ACGGAATGCTGTTTGGAGCTGTAG -ACGGAATGCTGTTTGGAGCCTAAG -ACGGAATGCTGTTTGGAGGTTCAG -ACGGAATGCTGTTTGGAGGCATAG -ACGGAATGCTGTTTGGAGGACAAG -ACGGAATGCTGTTTGGAGAAGCAG -ACGGAATGCTGTTTGGAGCGTCAA -ACGGAATGCTGTTTGGAGGCTGAA -ACGGAATGCTGTTTGGAGAGTACG -ACGGAATGCTGTTTGGAGATCCGA -ACGGAATGCTGTTTGGAGATGGGA -ACGGAATGCTGTTTGGAGGTGCAA -ACGGAATGCTGTTTGGAGGAGGAA -ACGGAATGCTGTTTGGAGCAGGTA -ACGGAATGCTGTTTGGAGGACTCT -ACGGAATGCTGTTTGGAGAGTCCT -ACGGAATGCTGTTTGGAGTAAGCC -ACGGAATGCTGTTTGGAGATAGCC -ACGGAATGCTGTTTGGAGTAACCG -ACGGAATGCTGTTTGGAGATGCCA -ACGGAATGCTGTCTGAGAGGAAAC -ACGGAATGCTGTCTGAGAAACACC -ACGGAATGCTGTCTGAGAATCGAG -ACGGAATGCTGTCTGAGACTCCTT -ACGGAATGCTGTCTGAGACCTGTT -ACGGAATGCTGTCTGAGACGGTTT -ACGGAATGCTGTCTGAGAGTGGTT -ACGGAATGCTGTCTGAGAGCCTTT -ACGGAATGCTGTCTGAGAGGTCTT -ACGGAATGCTGTCTGAGAACGCTT -ACGGAATGCTGTCTGAGAAGCGTT -ACGGAATGCTGTCTGAGATTCGTC -ACGGAATGCTGTCTGAGATCTCTC -ACGGAATGCTGTCTGAGATGGATC -ACGGAATGCTGTCTGAGACACTTC -ACGGAATGCTGTCTGAGAGTACTC -ACGGAATGCTGTCTGAGAGATGTC -ACGGAATGCTGTCTGAGAACAGTC -ACGGAATGCTGTCTGAGATTGCTG -ACGGAATGCTGTCTGAGATCCATG -ACGGAATGCTGTCTGAGATGTGTG -ACGGAATGCTGTCTGAGACTAGTG -ACGGAATGCTGTCTGAGACATCTG -ACGGAATGCTGTCTGAGAGAGTTG -ACGGAATGCTGTCTGAGAAGACTG -ACGGAATGCTGTCTGAGATCGGTA -ACGGAATGCTGTCTGAGATGCCTA -ACGGAATGCTGTCTGAGACCACTA -ACGGAATGCTGTCTGAGAGGAGTA -ACGGAATGCTGTCTGAGATCGTCT -ACGGAATGCTGTCTGAGATGCACT -ACGGAATGCTGTCTGAGACTGACT -ACGGAATGCTGTCTGAGACAACCT -ACGGAATGCTGTCTGAGAGCTACT -ACGGAATGCTGTCTGAGAGGATCT -ACGGAATGCTGTCTGAGAAAGGCT -ACGGAATGCTGTCTGAGATCAACC -ACGGAATGCTGTCTGAGATGTTCC -ACGGAATGCTGTCTGAGAATTCCC -ACGGAATGCTGTCTGAGATTCTCG -ACGGAATGCTGTCTGAGATAGACG -ACGGAATGCTGTCTGAGAGTAACG -ACGGAATGCTGTCTGAGAACTTCG -ACGGAATGCTGTCTGAGATACGCA -ACGGAATGCTGTCTGAGACTTGCA -ACGGAATGCTGTCTGAGACGAACA -ACGGAATGCTGTCTGAGACAGTCA -ACGGAATGCTGTCTGAGAGATCCA -ACGGAATGCTGTCTGAGAACGACA -ACGGAATGCTGTCTGAGAAGCTCA -ACGGAATGCTGTCTGAGATCACGT -ACGGAATGCTGTCTGAGACGTAGT -ACGGAATGCTGTCTGAGAGTCAGT -ACGGAATGCTGTCTGAGAGAAGGT -ACGGAATGCTGTCTGAGAAACCGT -ACGGAATGCTGTCTGAGATTGTGC -ACGGAATGCTGTCTGAGACTAAGC -ACGGAATGCTGTCTGAGAACTAGC -ACGGAATGCTGTCTGAGAAGATGC -ACGGAATGCTGTCTGAGATGAAGG -ACGGAATGCTGTCTGAGACAATGG -ACGGAATGCTGTCTGAGAATGAGG -ACGGAATGCTGTCTGAGAAATGGG -ACGGAATGCTGTCTGAGATCCTGA -ACGGAATGCTGTCTGAGATAGCGA -ACGGAATGCTGTCTGAGACACAGA -ACGGAATGCTGTCTGAGAGCAAGA -ACGGAATGCTGTCTGAGAGGTTGA -ACGGAATGCTGTCTGAGATCCGAT -ACGGAATGCTGTCTGAGATGGCAT -ACGGAATGCTGTCTGAGACGAGAT -ACGGAATGCTGTCTGAGATACCAC -ACGGAATGCTGTCTGAGACAGAAC -ACGGAATGCTGTCTGAGAGTCTAC -ACGGAATGCTGTCTGAGAACGTAC -ACGGAATGCTGTCTGAGAAGTGAC -ACGGAATGCTGTCTGAGACTGTAG -ACGGAATGCTGTCTGAGACCTAAG -ACGGAATGCTGTCTGAGAGTTCAG -ACGGAATGCTGTCTGAGAGCATAG -ACGGAATGCTGTCTGAGAGACAAG -ACGGAATGCTGTCTGAGAAAGCAG -ACGGAATGCTGTCTGAGACGTCAA -ACGGAATGCTGTCTGAGAGCTGAA -ACGGAATGCTGTCTGAGAAGTACG -ACGGAATGCTGTCTGAGAATCCGA -ACGGAATGCTGTCTGAGAATGGGA -ACGGAATGCTGTCTGAGAGTGCAA -ACGGAATGCTGTCTGAGAGAGGAA -ACGGAATGCTGTCTGAGACAGGTA -ACGGAATGCTGTCTGAGAGACTCT -ACGGAATGCTGTCTGAGAAGTCCT -ACGGAATGCTGTCTGAGATAAGCC -ACGGAATGCTGTCTGAGAATAGCC -ACGGAATGCTGTCTGAGATAACCG -ACGGAATGCTGTCTGAGAATGCCA -ACGGAATGCTGTGTATCGGGAAAC -ACGGAATGCTGTGTATCGAACACC -ACGGAATGCTGTGTATCGATCGAG -ACGGAATGCTGTGTATCGCTCCTT -ACGGAATGCTGTGTATCGCCTGTT -ACGGAATGCTGTGTATCGCGGTTT -ACGGAATGCTGTGTATCGGTGGTT -ACGGAATGCTGTGTATCGGCCTTT -ACGGAATGCTGTGTATCGGGTCTT -ACGGAATGCTGTGTATCGACGCTT -ACGGAATGCTGTGTATCGAGCGTT -ACGGAATGCTGTGTATCGTTCGTC -ACGGAATGCTGTGTATCGTCTCTC -ACGGAATGCTGTGTATCGTGGATC -ACGGAATGCTGTGTATCGCACTTC -ACGGAATGCTGTGTATCGGTACTC -ACGGAATGCTGTGTATCGGATGTC -ACGGAATGCTGTGTATCGACAGTC -ACGGAATGCTGTGTATCGTTGCTG -ACGGAATGCTGTGTATCGTCCATG -ACGGAATGCTGTGTATCGTGTGTG -ACGGAATGCTGTGTATCGCTAGTG -ACGGAATGCTGTGTATCGCATCTG -ACGGAATGCTGTGTATCGGAGTTG -ACGGAATGCTGTGTATCGAGACTG -ACGGAATGCTGTGTATCGTCGGTA -ACGGAATGCTGTGTATCGTGCCTA -ACGGAATGCTGTGTATCGCCACTA -ACGGAATGCTGTGTATCGGGAGTA -ACGGAATGCTGTGTATCGTCGTCT -ACGGAATGCTGTGTATCGTGCACT -ACGGAATGCTGTGTATCGCTGACT -ACGGAATGCTGTGTATCGCAACCT -ACGGAATGCTGTGTATCGGCTACT -ACGGAATGCTGTGTATCGGGATCT -ACGGAATGCTGTGTATCGAAGGCT -ACGGAATGCTGTGTATCGTCAACC -ACGGAATGCTGTGTATCGTGTTCC -ACGGAATGCTGTGTATCGATTCCC -ACGGAATGCTGTGTATCGTTCTCG -ACGGAATGCTGTGTATCGTAGACG -ACGGAATGCTGTGTATCGGTAACG -ACGGAATGCTGTGTATCGACTTCG -ACGGAATGCTGTGTATCGTACGCA -ACGGAATGCTGTGTATCGCTTGCA -ACGGAATGCTGTGTATCGCGAACA -ACGGAATGCTGTGTATCGCAGTCA -ACGGAATGCTGTGTATCGGATCCA -ACGGAATGCTGTGTATCGACGACA -ACGGAATGCTGTGTATCGAGCTCA -ACGGAATGCTGTGTATCGTCACGT -ACGGAATGCTGTGTATCGCGTAGT -ACGGAATGCTGTGTATCGGTCAGT -ACGGAATGCTGTGTATCGGAAGGT -ACGGAATGCTGTGTATCGAACCGT -ACGGAATGCTGTGTATCGTTGTGC -ACGGAATGCTGTGTATCGCTAAGC -ACGGAATGCTGTGTATCGACTAGC -ACGGAATGCTGTGTATCGAGATGC -ACGGAATGCTGTGTATCGTGAAGG -ACGGAATGCTGTGTATCGCAATGG -ACGGAATGCTGTGTATCGATGAGG -ACGGAATGCTGTGTATCGAATGGG -ACGGAATGCTGTGTATCGTCCTGA -ACGGAATGCTGTGTATCGTAGCGA -ACGGAATGCTGTGTATCGCACAGA -ACGGAATGCTGTGTATCGGCAAGA -ACGGAATGCTGTGTATCGGGTTGA -ACGGAATGCTGTGTATCGTCCGAT -ACGGAATGCTGTGTATCGTGGCAT -ACGGAATGCTGTGTATCGCGAGAT -ACGGAATGCTGTGTATCGTACCAC -ACGGAATGCTGTGTATCGCAGAAC -ACGGAATGCTGTGTATCGGTCTAC -ACGGAATGCTGTGTATCGACGTAC -ACGGAATGCTGTGTATCGAGTGAC -ACGGAATGCTGTGTATCGCTGTAG -ACGGAATGCTGTGTATCGCCTAAG -ACGGAATGCTGTGTATCGGTTCAG -ACGGAATGCTGTGTATCGGCATAG -ACGGAATGCTGTGTATCGGACAAG -ACGGAATGCTGTGTATCGAAGCAG -ACGGAATGCTGTGTATCGCGTCAA -ACGGAATGCTGTGTATCGGCTGAA -ACGGAATGCTGTGTATCGAGTACG -ACGGAATGCTGTGTATCGATCCGA -ACGGAATGCTGTGTATCGATGGGA -ACGGAATGCTGTGTATCGGTGCAA -ACGGAATGCTGTGTATCGGAGGAA -ACGGAATGCTGTGTATCGCAGGTA -ACGGAATGCTGTGTATCGGACTCT -ACGGAATGCTGTGTATCGAGTCCT -ACGGAATGCTGTGTATCGTAAGCC -ACGGAATGCTGTGTATCGATAGCC -ACGGAATGCTGTGTATCGTAACCG -ACGGAATGCTGTGTATCGATGCCA -ACGGAATGCTGTCTATGCGGAAAC -ACGGAATGCTGTCTATGCAACACC -ACGGAATGCTGTCTATGCATCGAG -ACGGAATGCTGTCTATGCCTCCTT -ACGGAATGCTGTCTATGCCCTGTT -ACGGAATGCTGTCTATGCCGGTTT -ACGGAATGCTGTCTATGCGTGGTT -ACGGAATGCTGTCTATGCGCCTTT -ACGGAATGCTGTCTATGCGGTCTT -ACGGAATGCTGTCTATGCACGCTT -ACGGAATGCTGTCTATGCAGCGTT -ACGGAATGCTGTCTATGCTTCGTC -ACGGAATGCTGTCTATGCTCTCTC -ACGGAATGCTGTCTATGCTGGATC -ACGGAATGCTGTCTATGCCACTTC -ACGGAATGCTGTCTATGCGTACTC -ACGGAATGCTGTCTATGCGATGTC -ACGGAATGCTGTCTATGCACAGTC -ACGGAATGCTGTCTATGCTTGCTG -ACGGAATGCTGTCTATGCTCCATG -ACGGAATGCTGTCTATGCTGTGTG -ACGGAATGCTGTCTATGCCTAGTG -ACGGAATGCTGTCTATGCCATCTG -ACGGAATGCTGTCTATGCGAGTTG -ACGGAATGCTGTCTATGCAGACTG -ACGGAATGCTGTCTATGCTCGGTA -ACGGAATGCTGTCTATGCTGCCTA -ACGGAATGCTGTCTATGCCCACTA -ACGGAATGCTGTCTATGCGGAGTA -ACGGAATGCTGTCTATGCTCGTCT -ACGGAATGCTGTCTATGCTGCACT -ACGGAATGCTGTCTATGCCTGACT -ACGGAATGCTGTCTATGCCAACCT -ACGGAATGCTGTCTATGCGCTACT -ACGGAATGCTGTCTATGCGGATCT -ACGGAATGCTGTCTATGCAAGGCT -ACGGAATGCTGTCTATGCTCAACC -ACGGAATGCTGTCTATGCTGTTCC -ACGGAATGCTGTCTATGCATTCCC -ACGGAATGCTGTCTATGCTTCTCG -ACGGAATGCTGTCTATGCTAGACG -ACGGAATGCTGTCTATGCGTAACG -ACGGAATGCTGTCTATGCACTTCG -ACGGAATGCTGTCTATGCTACGCA -ACGGAATGCTGTCTATGCCTTGCA -ACGGAATGCTGTCTATGCCGAACA -ACGGAATGCTGTCTATGCCAGTCA -ACGGAATGCTGTCTATGCGATCCA -ACGGAATGCTGTCTATGCACGACA -ACGGAATGCTGTCTATGCAGCTCA -ACGGAATGCTGTCTATGCTCACGT -ACGGAATGCTGTCTATGCCGTAGT -ACGGAATGCTGTCTATGCGTCAGT -ACGGAATGCTGTCTATGCGAAGGT -ACGGAATGCTGTCTATGCAACCGT -ACGGAATGCTGTCTATGCTTGTGC -ACGGAATGCTGTCTATGCCTAAGC -ACGGAATGCTGTCTATGCACTAGC -ACGGAATGCTGTCTATGCAGATGC -ACGGAATGCTGTCTATGCTGAAGG -ACGGAATGCTGTCTATGCCAATGG -ACGGAATGCTGTCTATGCATGAGG -ACGGAATGCTGTCTATGCAATGGG -ACGGAATGCTGTCTATGCTCCTGA -ACGGAATGCTGTCTATGCTAGCGA -ACGGAATGCTGTCTATGCCACAGA -ACGGAATGCTGTCTATGCGCAAGA -ACGGAATGCTGTCTATGCGGTTGA -ACGGAATGCTGTCTATGCTCCGAT -ACGGAATGCTGTCTATGCTGGCAT -ACGGAATGCTGTCTATGCCGAGAT -ACGGAATGCTGTCTATGCTACCAC -ACGGAATGCTGTCTATGCCAGAAC -ACGGAATGCTGTCTATGCGTCTAC -ACGGAATGCTGTCTATGCACGTAC -ACGGAATGCTGTCTATGCAGTGAC -ACGGAATGCTGTCTATGCCTGTAG -ACGGAATGCTGTCTATGCCCTAAG -ACGGAATGCTGTCTATGCGTTCAG -ACGGAATGCTGTCTATGCGCATAG -ACGGAATGCTGTCTATGCGACAAG -ACGGAATGCTGTCTATGCAAGCAG -ACGGAATGCTGTCTATGCCGTCAA -ACGGAATGCTGTCTATGCGCTGAA -ACGGAATGCTGTCTATGCAGTACG -ACGGAATGCTGTCTATGCATCCGA -ACGGAATGCTGTCTATGCATGGGA -ACGGAATGCTGTCTATGCGTGCAA -ACGGAATGCTGTCTATGCGAGGAA -ACGGAATGCTGTCTATGCCAGGTA -ACGGAATGCTGTCTATGCGACTCT -ACGGAATGCTGTCTATGCAGTCCT -ACGGAATGCTGTCTATGCTAAGCC -ACGGAATGCTGTCTATGCATAGCC -ACGGAATGCTGTCTATGCTAACCG -ACGGAATGCTGTCTATGCATGCCA -ACGGAATGCTGTCTACCAGGAAAC -ACGGAATGCTGTCTACCAAACACC -ACGGAATGCTGTCTACCAATCGAG -ACGGAATGCTGTCTACCACTCCTT -ACGGAATGCTGTCTACCACCTGTT -ACGGAATGCTGTCTACCACGGTTT -ACGGAATGCTGTCTACCAGTGGTT -ACGGAATGCTGTCTACCAGCCTTT -ACGGAATGCTGTCTACCAGGTCTT -ACGGAATGCTGTCTACCAACGCTT -ACGGAATGCTGTCTACCAAGCGTT -ACGGAATGCTGTCTACCATTCGTC -ACGGAATGCTGTCTACCATCTCTC -ACGGAATGCTGTCTACCATGGATC -ACGGAATGCTGTCTACCACACTTC -ACGGAATGCTGTCTACCAGTACTC -ACGGAATGCTGTCTACCAGATGTC -ACGGAATGCTGTCTACCAACAGTC -ACGGAATGCTGTCTACCATTGCTG -ACGGAATGCTGTCTACCATCCATG -ACGGAATGCTGTCTACCATGTGTG -ACGGAATGCTGTCTACCACTAGTG -ACGGAATGCTGTCTACCACATCTG -ACGGAATGCTGTCTACCAGAGTTG -ACGGAATGCTGTCTACCAAGACTG -ACGGAATGCTGTCTACCATCGGTA -ACGGAATGCTGTCTACCATGCCTA -ACGGAATGCTGTCTACCACCACTA -ACGGAATGCTGTCTACCAGGAGTA -ACGGAATGCTGTCTACCATCGTCT -ACGGAATGCTGTCTACCATGCACT -ACGGAATGCTGTCTACCACTGACT -ACGGAATGCTGTCTACCACAACCT -ACGGAATGCTGTCTACCAGCTACT -ACGGAATGCTGTCTACCAGGATCT -ACGGAATGCTGTCTACCAAAGGCT -ACGGAATGCTGTCTACCATCAACC -ACGGAATGCTGTCTACCATGTTCC -ACGGAATGCTGTCTACCAATTCCC -ACGGAATGCTGTCTACCATTCTCG -ACGGAATGCTGTCTACCATAGACG -ACGGAATGCTGTCTACCAGTAACG -ACGGAATGCTGTCTACCAACTTCG -ACGGAATGCTGTCTACCATACGCA -ACGGAATGCTGTCTACCACTTGCA -ACGGAATGCTGTCTACCACGAACA -ACGGAATGCTGTCTACCACAGTCA -ACGGAATGCTGTCTACCAGATCCA -ACGGAATGCTGTCTACCAACGACA -ACGGAATGCTGTCTACCAAGCTCA -ACGGAATGCTGTCTACCATCACGT -ACGGAATGCTGTCTACCACGTAGT -ACGGAATGCTGTCTACCAGTCAGT -ACGGAATGCTGTCTACCAGAAGGT -ACGGAATGCTGTCTACCAAACCGT -ACGGAATGCTGTCTACCATTGTGC -ACGGAATGCTGTCTACCACTAAGC -ACGGAATGCTGTCTACCAACTAGC -ACGGAATGCTGTCTACCAAGATGC -ACGGAATGCTGTCTACCATGAAGG -ACGGAATGCTGTCTACCACAATGG -ACGGAATGCTGTCTACCAATGAGG -ACGGAATGCTGTCTACCAAATGGG -ACGGAATGCTGTCTACCATCCTGA -ACGGAATGCTGTCTACCATAGCGA -ACGGAATGCTGTCTACCACACAGA -ACGGAATGCTGTCTACCAGCAAGA -ACGGAATGCTGTCTACCAGGTTGA -ACGGAATGCTGTCTACCATCCGAT -ACGGAATGCTGTCTACCATGGCAT -ACGGAATGCTGTCTACCACGAGAT -ACGGAATGCTGTCTACCATACCAC -ACGGAATGCTGTCTACCACAGAAC -ACGGAATGCTGTCTACCAGTCTAC -ACGGAATGCTGTCTACCAACGTAC -ACGGAATGCTGTCTACCAAGTGAC -ACGGAATGCTGTCTACCACTGTAG -ACGGAATGCTGTCTACCACCTAAG -ACGGAATGCTGTCTACCAGTTCAG -ACGGAATGCTGTCTACCAGCATAG -ACGGAATGCTGTCTACCAGACAAG -ACGGAATGCTGTCTACCAAAGCAG -ACGGAATGCTGTCTACCACGTCAA -ACGGAATGCTGTCTACCAGCTGAA -ACGGAATGCTGTCTACCAAGTACG -ACGGAATGCTGTCTACCAATCCGA -ACGGAATGCTGTCTACCAATGGGA -ACGGAATGCTGTCTACCAGTGCAA -ACGGAATGCTGTCTACCAGAGGAA -ACGGAATGCTGTCTACCACAGGTA -ACGGAATGCTGTCTACCAGACTCT -ACGGAATGCTGTCTACCAAGTCCT -ACGGAATGCTGTCTACCATAAGCC -ACGGAATGCTGTCTACCAATAGCC -ACGGAATGCTGTCTACCATAACCG -ACGGAATGCTGTCTACCAATGCCA -ACGGAATGCTGTGTAGGAGGAAAC -ACGGAATGCTGTGTAGGAAACACC -ACGGAATGCTGTGTAGGAATCGAG -ACGGAATGCTGTGTAGGACTCCTT -ACGGAATGCTGTGTAGGACCTGTT -ACGGAATGCTGTGTAGGACGGTTT -ACGGAATGCTGTGTAGGAGTGGTT -ACGGAATGCTGTGTAGGAGCCTTT -ACGGAATGCTGTGTAGGAGGTCTT -ACGGAATGCTGTGTAGGAACGCTT -ACGGAATGCTGTGTAGGAAGCGTT -ACGGAATGCTGTGTAGGATTCGTC -ACGGAATGCTGTGTAGGATCTCTC -ACGGAATGCTGTGTAGGATGGATC -ACGGAATGCTGTGTAGGACACTTC -ACGGAATGCTGTGTAGGAGTACTC -ACGGAATGCTGTGTAGGAGATGTC -ACGGAATGCTGTGTAGGAACAGTC -ACGGAATGCTGTGTAGGATTGCTG -ACGGAATGCTGTGTAGGATCCATG -ACGGAATGCTGTGTAGGATGTGTG -ACGGAATGCTGTGTAGGACTAGTG -ACGGAATGCTGTGTAGGACATCTG -ACGGAATGCTGTGTAGGAGAGTTG -ACGGAATGCTGTGTAGGAAGACTG -ACGGAATGCTGTGTAGGATCGGTA -ACGGAATGCTGTGTAGGATGCCTA -ACGGAATGCTGTGTAGGACCACTA -ACGGAATGCTGTGTAGGAGGAGTA -ACGGAATGCTGTGTAGGATCGTCT -ACGGAATGCTGTGTAGGATGCACT -ACGGAATGCTGTGTAGGACTGACT -ACGGAATGCTGTGTAGGACAACCT -ACGGAATGCTGTGTAGGAGCTACT -ACGGAATGCTGTGTAGGAGGATCT -ACGGAATGCTGTGTAGGAAAGGCT -ACGGAATGCTGTGTAGGATCAACC -ACGGAATGCTGTGTAGGATGTTCC -ACGGAATGCTGTGTAGGAATTCCC -ACGGAATGCTGTGTAGGATTCTCG -ACGGAATGCTGTGTAGGATAGACG -ACGGAATGCTGTGTAGGAGTAACG -ACGGAATGCTGTGTAGGAACTTCG -ACGGAATGCTGTGTAGGATACGCA -ACGGAATGCTGTGTAGGACTTGCA -ACGGAATGCTGTGTAGGACGAACA -ACGGAATGCTGTGTAGGACAGTCA -ACGGAATGCTGTGTAGGAGATCCA -ACGGAATGCTGTGTAGGAACGACA -ACGGAATGCTGTGTAGGAAGCTCA -ACGGAATGCTGTGTAGGATCACGT -ACGGAATGCTGTGTAGGACGTAGT -ACGGAATGCTGTGTAGGAGTCAGT -ACGGAATGCTGTGTAGGAGAAGGT -ACGGAATGCTGTGTAGGAAACCGT -ACGGAATGCTGTGTAGGATTGTGC -ACGGAATGCTGTGTAGGACTAAGC -ACGGAATGCTGTGTAGGAACTAGC -ACGGAATGCTGTGTAGGAAGATGC -ACGGAATGCTGTGTAGGATGAAGG -ACGGAATGCTGTGTAGGACAATGG -ACGGAATGCTGTGTAGGAATGAGG -ACGGAATGCTGTGTAGGAAATGGG -ACGGAATGCTGTGTAGGATCCTGA -ACGGAATGCTGTGTAGGATAGCGA -ACGGAATGCTGTGTAGGACACAGA -ACGGAATGCTGTGTAGGAGCAAGA -ACGGAATGCTGTGTAGGAGGTTGA -ACGGAATGCTGTGTAGGATCCGAT -ACGGAATGCTGTGTAGGATGGCAT -ACGGAATGCTGTGTAGGACGAGAT -ACGGAATGCTGTGTAGGATACCAC -ACGGAATGCTGTGTAGGACAGAAC -ACGGAATGCTGTGTAGGAGTCTAC -ACGGAATGCTGTGTAGGAACGTAC -ACGGAATGCTGTGTAGGAAGTGAC -ACGGAATGCTGTGTAGGACTGTAG -ACGGAATGCTGTGTAGGACCTAAG -ACGGAATGCTGTGTAGGAGTTCAG -ACGGAATGCTGTGTAGGAGCATAG -ACGGAATGCTGTGTAGGAGACAAG -ACGGAATGCTGTGTAGGAAAGCAG -ACGGAATGCTGTGTAGGACGTCAA -ACGGAATGCTGTGTAGGAGCTGAA -ACGGAATGCTGTGTAGGAAGTACG -ACGGAATGCTGTGTAGGAATCCGA -ACGGAATGCTGTGTAGGAATGGGA -ACGGAATGCTGTGTAGGAGTGCAA -ACGGAATGCTGTGTAGGAGAGGAA -ACGGAATGCTGTGTAGGACAGGTA -ACGGAATGCTGTGTAGGAGACTCT -ACGGAATGCTGTGTAGGAAGTCCT -ACGGAATGCTGTGTAGGATAAGCC -ACGGAATGCTGTGTAGGAATAGCC -ACGGAATGCTGTGTAGGATAACCG -ACGGAATGCTGTGTAGGAATGCCA -ACGGAATGCTGTTCTTCGGGAAAC -ACGGAATGCTGTTCTTCGAACACC -ACGGAATGCTGTTCTTCGATCGAG -ACGGAATGCTGTTCTTCGCTCCTT -ACGGAATGCTGTTCTTCGCCTGTT -ACGGAATGCTGTTCTTCGCGGTTT -ACGGAATGCTGTTCTTCGGTGGTT -ACGGAATGCTGTTCTTCGGCCTTT -ACGGAATGCTGTTCTTCGGGTCTT -ACGGAATGCTGTTCTTCGACGCTT -ACGGAATGCTGTTCTTCGAGCGTT -ACGGAATGCTGTTCTTCGTTCGTC -ACGGAATGCTGTTCTTCGTCTCTC -ACGGAATGCTGTTCTTCGTGGATC -ACGGAATGCTGTTCTTCGCACTTC -ACGGAATGCTGTTCTTCGGTACTC -ACGGAATGCTGTTCTTCGGATGTC -ACGGAATGCTGTTCTTCGACAGTC -ACGGAATGCTGTTCTTCGTTGCTG -ACGGAATGCTGTTCTTCGTCCATG -ACGGAATGCTGTTCTTCGTGTGTG -ACGGAATGCTGTTCTTCGCTAGTG -ACGGAATGCTGTTCTTCGCATCTG -ACGGAATGCTGTTCTTCGGAGTTG -ACGGAATGCTGTTCTTCGAGACTG -ACGGAATGCTGTTCTTCGTCGGTA -ACGGAATGCTGTTCTTCGTGCCTA -ACGGAATGCTGTTCTTCGCCACTA -ACGGAATGCTGTTCTTCGGGAGTA -ACGGAATGCTGTTCTTCGTCGTCT -ACGGAATGCTGTTCTTCGTGCACT -ACGGAATGCTGTTCTTCGCTGACT -ACGGAATGCTGTTCTTCGCAACCT -ACGGAATGCTGTTCTTCGGCTACT -ACGGAATGCTGTTCTTCGGGATCT -ACGGAATGCTGTTCTTCGAAGGCT -ACGGAATGCTGTTCTTCGTCAACC -ACGGAATGCTGTTCTTCGTGTTCC -ACGGAATGCTGTTCTTCGATTCCC -ACGGAATGCTGTTCTTCGTTCTCG -ACGGAATGCTGTTCTTCGTAGACG -ACGGAATGCTGTTCTTCGGTAACG -ACGGAATGCTGTTCTTCGACTTCG -ACGGAATGCTGTTCTTCGTACGCA -ACGGAATGCTGTTCTTCGCTTGCA -ACGGAATGCTGTTCTTCGCGAACA -ACGGAATGCTGTTCTTCGCAGTCA -ACGGAATGCTGTTCTTCGGATCCA -ACGGAATGCTGTTCTTCGACGACA -ACGGAATGCTGTTCTTCGAGCTCA -ACGGAATGCTGTTCTTCGTCACGT -ACGGAATGCTGTTCTTCGCGTAGT -ACGGAATGCTGTTCTTCGGTCAGT -ACGGAATGCTGTTCTTCGGAAGGT -ACGGAATGCTGTTCTTCGAACCGT -ACGGAATGCTGTTCTTCGTTGTGC -ACGGAATGCTGTTCTTCGCTAAGC -ACGGAATGCTGTTCTTCGACTAGC -ACGGAATGCTGTTCTTCGAGATGC -ACGGAATGCTGTTCTTCGTGAAGG -ACGGAATGCTGTTCTTCGCAATGG -ACGGAATGCTGTTCTTCGATGAGG -ACGGAATGCTGTTCTTCGAATGGG -ACGGAATGCTGTTCTTCGTCCTGA -ACGGAATGCTGTTCTTCGTAGCGA -ACGGAATGCTGTTCTTCGCACAGA -ACGGAATGCTGTTCTTCGGCAAGA -ACGGAATGCTGTTCTTCGGGTTGA -ACGGAATGCTGTTCTTCGTCCGAT -ACGGAATGCTGTTCTTCGTGGCAT -ACGGAATGCTGTTCTTCGCGAGAT -ACGGAATGCTGTTCTTCGTACCAC -ACGGAATGCTGTTCTTCGCAGAAC -ACGGAATGCTGTTCTTCGGTCTAC -ACGGAATGCTGTTCTTCGACGTAC -ACGGAATGCTGTTCTTCGAGTGAC -ACGGAATGCTGTTCTTCGCTGTAG -ACGGAATGCTGTTCTTCGCCTAAG -ACGGAATGCTGTTCTTCGGTTCAG -ACGGAATGCTGTTCTTCGGCATAG -ACGGAATGCTGTTCTTCGGACAAG -ACGGAATGCTGTTCTTCGAAGCAG -ACGGAATGCTGTTCTTCGCGTCAA -ACGGAATGCTGTTCTTCGGCTGAA -ACGGAATGCTGTTCTTCGAGTACG -ACGGAATGCTGTTCTTCGATCCGA -ACGGAATGCTGTTCTTCGATGGGA -ACGGAATGCTGTTCTTCGGTGCAA -ACGGAATGCTGTTCTTCGGAGGAA -ACGGAATGCTGTTCTTCGCAGGTA -ACGGAATGCTGTTCTTCGGACTCT -ACGGAATGCTGTTCTTCGAGTCCT -ACGGAATGCTGTTCTTCGTAAGCC -ACGGAATGCTGTTCTTCGATAGCC -ACGGAATGCTGTTCTTCGTAACCG -ACGGAATGCTGTTCTTCGATGCCA -ACGGAATGCTGTACTTGCGGAAAC -ACGGAATGCTGTACTTGCAACACC -ACGGAATGCTGTACTTGCATCGAG -ACGGAATGCTGTACTTGCCTCCTT -ACGGAATGCTGTACTTGCCCTGTT -ACGGAATGCTGTACTTGCCGGTTT -ACGGAATGCTGTACTTGCGTGGTT -ACGGAATGCTGTACTTGCGCCTTT -ACGGAATGCTGTACTTGCGGTCTT -ACGGAATGCTGTACTTGCACGCTT -ACGGAATGCTGTACTTGCAGCGTT -ACGGAATGCTGTACTTGCTTCGTC -ACGGAATGCTGTACTTGCTCTCTC -ACGGAATGCTGTACTTGCTGGATC -ACGGAATGCTGTACTTGCCACTTC -ACGGAATGCTGTACTTGCGTACTC -ACGGAATGCTGTACTTGCGATGTC -ACGGAATGCTGTACTTGCACAGTC -ACGGAATGCTGTACTTGCTTGCTG -ACGGAATGCTGTACTTGCTCCATG -ACGGAATGCTGTACTTGCTGTGTG -ACGGAATGCTGTACTTGCCTAGTG -ACGGAATGCTGTACTTGCCATCTG -ACGGAATGCTGTACTTGCGAGTTG -ACGGAATGCTGTACTTGCAGACTG -ACGGAATGCTGTACTTGCTCGGTA -ACGGAATGCTGTACTTGCTGCCTA -ACGGAATGCTGTACTTGCCCACTA -ACGGAATGCTGTACTTGCGGAGTA -ACGGAATGCTGTACTTGCTCGTCT -ACGGAATGCTGTACTTGCTGCACT -ACGGAATGCTGTACTTGCCTGACT -ACGGAATGCTGTACTTGCCAACCT -ACGGAATGCTGTACTTGCGCTACT -ACGGAATGCTGTACTTGCGGATCT -ACGGAATGCTGTACTTGCAAGGCT -ACGGAATGCTGTACTTGCTCAACC -ACGGAATGCTGTACTTGCTGTTCC -ACGGAATGCTGTACTTGCATTCCC -ACGGAATGCTGTACTTGCTTCTCG -ACGGAATGCTGTACTTGCTAGACG -ACGGAATGCTGTACTTGCGTAACG -ACGGAATGCTGTACTTGCACTTCG -ACGGAATGCTGTACTTGCTACGCA -ACGGAATGCTGTACTTGCCTTGCA -ACGGAATGCTGTACTTGCCGAACA -ACGGAATGCTGTACTTGCCAGTCA -ACGGAATGCTGTACTTGCGATCCA -ACGGAATGCTGTACTTGCACGACA -ACGGAATGCTGTACTTGCAGCTCA -ACGGAATGCTGTACTTGCTCACGT -ACGGAATGCTGTACTTGCCGTAGT -ACGGAATGCTGTACTTGCGTCAGT -ACGGAATGCTGTACTTGCGAAGGT -ACGGAATGCTGTACTTGCAACCGT -ACGGAATGCTGTACTTGCTTGTGC -ACGGAATGCTGTACTTGCCTAAGC -ACGGAATGCTGTACTTGCACTAGC -ACGGAATGCTGTACTTGCAGATGC -ACGGAATGCTGTACTTGCTGAAGG -ACGGAATGCTGTACTTGCCAATGG -ACGGAATGCTGTACTTGCATGAGG -ACGGAATGCTGTACTTGCAATGGG -ACGGAATGCTGTACTTGCTCCTGA -ACGGAATGCTGTACTTGCTAGCGA -ACGGAATGCTGTACTTGCCACAGA -ACGGAATGCTGTACTTGCGCAAGA -ACGGAATGCTGTACTTGCGGTTGA -ACGGAATGCTGTACTTGCTCCGAT -ACGGAATGCTGTACTTGCTGGCAT -ACGGAATGCTGTACTTGCCGAGAT -ACGGAATGCTGTACTTGCTACCAC -ACGGAATGCTGTACTTGCCAGAAC -ACGGAATGCTGTACTTGCGTCTAC -ACGGAATGCTGTACTTGCACGTAC -ACGGAATGCTGTACTTGCAGTGAC -ACGGAATGCTGTACTTGCCTGTAG -ACGGAATGCTGTACTTGCCCTAAG -ACGGAATGCTGTACTTGCGTTCAG -ACGGAATGCTGTACTTGCGCATAG -ACGGAATGCTGTACTTGCGACAAG -ACGGAATGCTGTACTTGCAAGCAG -ACGGAATGCTGTACTTGCCGTCAA -ACGGAATGCTGTACTTGCGCTGAA -ACGGAATGCTGTACTTGCAGTACG -ACGGAATGCTGTACTTGCATCCGA -ACGGAATGCTGTACTTGCATGGGA -ACGGAATGCTGTACTTGCGTGCAA -ACGGAATGCTGTACTTGCGAGGAA -ACGGAATGCTGTACTTGCCAGGTA -ACGGAATGCTGTACTTGCGACTCT -ACGGAATGCTGTACTTGCAGTCCT -ACGGAATGCTGTACTTGCTAAGCC -ACGGAATGCTGTACTTGCATAGCC -ACGGAATGCTGTACTTGCTAACCG -ACGGAATGCTGTACTTGCATGCCA -ACGGAATGCTGTACTCTGGGAAAC -ACGGAATGCTGTACTCTGAACACC -ACGGAATGCTGTACTCTGATCGAG -ACGGAATGCTGTACTCTGCTCCTT -ACGGAATGCTGTACTCTGCCTGTT -ACGGAATGCTGTACTCTGCGGTTT -ACGGAATGCTGTACTCTGGTGGTT -ACGGAATGCTGTACTCTGGCCTTT -ACGGAATGCTGTACTCTGGGTCTT -ACGGAATGCTGTACTCTGACGCTT -ACGGAATGCTGTACTCTGAGCGTT -ACGGAATGCTGTACTCTGTTCGTC -ACGGAATGCTGTACTCTGTCTCTC -ACGGAATGCTGTACTCTGTGGATC -ACGGAATGCTGTACTCTGCACTTC -ACGGAATGCTGTACTCTGGTACTC -ACGGAATGCTGTACTCTGGATGTC -ACGGAATGCTGTACTCTGACAGTC -ACGGAATGCTGTACTCTGTTGCTG -ACGGAATGCTGTACTCTGTCCATG -ACGGAATGCTGTACTCTGTGTGTG -ACGGAATGCTGTACTCTGCTAGTG -ACGGAATGCTGTACTCTGCATCTG -ACGGAATGCTGTACTCTGGAGTTG -ACGGAATGCTGTACTCTGAGACTG -ACGGAATGCTGTACTCTGTCGGTA -ACGGAATGCTGTACTCTGTGCCTA -ACGGAATGCTGTACTCTGCCACTA -ACGGAATGCTGTACTCTGGGAGTA -ACGGAATGCTGTACTCTGTCGTCT -ACGGAATGCTGTACTCTGTGCACT -ACGGAATGCTGTACTCTGCTGACT -ACGGAATGCTGTACTCTGCAACCT -ACGGAATGCTGTACTCTGGCTACT -ACGGAATGCTGTACTCTGGGATCT -ACGGAATGCTGTACTCTGAAGGCT -ACGGAATGCTGTACTCTGTCAACC -ACGGAATGCTGTACTCTGTGTTCC -ACGGAATGCTGTACTCTGATTCCC -ACGGAATGCTGTACTCTGTTCTCG -ACGGAATGCTGTACTCTGTAGACG -ACGGAATGCTGTACTCTGGTAACG -ACGGAATGCTGTACTCTGACTTCG -ACGGAATGCTGTACTCTGTACGCA -ACGGAATGCTGTACTCTGCTTGCA -ACGGAATGCTGTACTCTGCGAACA -ACGGAATGCTGTACTCTGCAGTCA -ACGGAATGCTGTACTCTGGATCCA -ACGGAATGCTGTACTCTGACGACA -ACGGAATGCTGTACTCTGAGCTCA -ACGGAATGCTGTACTCTGTCACGT -ACGGAATGCTGTACTCTGCGTAGT -ACGGAATGCTGTACTCTGGTCAGT -ACGGAATGCTGTACTCTGGAAGGT -ACGGAATGCTGTACTCTGAACCGT -ACGGAATGCTGTACTCTGTTGTGC -ACGGAATGCTGTACTCTGCTAAGC -ACGGAATGCTGTACTCTGACTAGC -ACGGAATGCTGTACTCTGAGATGC -ACGGAATGCTGTACTCTGTGAAGG -ACGGAATGCTGTACTCTGCAATGG -ACGGAATGCTGTACTCTGATGAGG -ACGGAATGCTGTACTCTGAATGGG -ACGGAATGCTGTACTCTGTCCTGA -ACGGAATGCTGTACTCTGTAGCGA -ACGGAATGCTGTACTCTGCACAGA -ACGGAATGCTGTACTCTGGCAAGA -ACGGAATGCTGTACTCTGGGTTGA -ACGGAATGCTGTACTCTGTCCGAT -ACGGAATGCTGTACTCTGTGGCAT -ACGGAATGCTGTACTCTGCGAGAT -ACGGAATGCTGTACTCTGTACCAC -ACGGAATGCTGTACTCTGCAGAAC -ACGGAATGCTGTACTCTGGTCTAC -ACGGAATGCTGTACTCTGACGTAC -ACGGAATGCTGTACTCTGAGTGAC -ACGGAATGCTGTACTCTGCTGTAG -ACGGAATGCTGTACTCTGCCTAAG -ACGGAATGCTGTACTCTGGTTCAG -ACGGAATGCTGTACTCTGGCATAG -ACGGAATGCTGTACTCTGGACAAG -ACGGAATGCTGTACTCTGAAGCAG -ACGGAATGCTGTACTCTGCGTCAA -ACGGAATGCTGTACTCTGGCTGAA -ACGGAATGCTGTACTCTGAGTACG -ACGGAATGCTGTACTCTGATCCGA -ACGGAATGCTGTACTCTGATGGGA -ACGGAATGCTGTACTCTGGTGCAA -ACGGAATGCTGTACTCTGGAGGAA -ACGGAATGCTGTACTCTGCAGGTA -ACGGAATGCTGTACTCTGGACTCT -ACGGAATGCTGTACTCTGAGTCCT -ACGGAATGCTGTACTCTGTAAGCC -ACGGAATGCTGTACTCTGATAGCC -ACGGAATGCTGTACTCTGTAACCG -ACGGAATGCTGTACTCTGATGCCA -ACGGAATGCTGTCCTCAAGGAAAC -ACGGAATGCTGTCCTCAAAACACC -ACGGAATGCTGTCCTCAAATCGAG -ACGGAATGCTGTCCTCAACTCCTT -ACGGAATGCTGTCCTCAACCTGTT -ACGGAATGCTGTCCTCAACGGTTT -ACGGAATGCTGTCCTCAAGTGGTT -ACGGAATGCTGTCCTCAAGCCTTT -ACGGAATGCTGTCCTCAAGGTCTT -ACGGAATGCTGTCCTCAAACGCTT -ACGGAATGCTGTCCTCAAAGCGTT -ACGGAATGCTGTCCTCAATTCGTC -ACGGAATGCTGTCCTCAATCTCTC -ACGGAATGCTGTCCTCAATGGATC -ACGGAATGCTGTCCTCAACACTTC -ACGGAATGCTGTCCTCAAGTACTC -ACGGAATGCTGTCCTCAAGATGTC -ACGGAATGCTGTCCTCAAACAGTC -ACGGAATGCTGTCCTCAATTGCTG -ACGGAATGCTGTCCTCAATCCATG -ACGGAATGCTGTCCTCAATGTGTG -ACGGAATGCTGTCCTCAACTAGTG -ACGGAATGCTGTCCTCAACATCTG -ACGGAATGCTGTCCTCAAGAGTTG -ACGGAATGCTGTCCTCAAAGACTG -ACGGAATGCTGTCCTCAATCGGTA -ACGGAATGCTGTCCTCAATGCCTA -ACGGAATGCTGTCCTCAACCACTA -ACGGAATGCTGTCCTCAAGGAGTA -ACGGAATGCTGTCCTCAATCGTCT -ACGGAATGCTGTCCTCAATGCACT -ACGGAATGCTGTCCTCAACTGACT -ACGGAATGCTGTCCTCAACAACCT -ACGGAATGCTGTCCTCAAGCTACT -ACGGAATGCTGTCCTCAAGGATCT -ACGGAATGCTGTCCTCAAAAGGCT -ACGGAATGCTGTCCTCAATCAACC -ACGGAATGCTGTCCTCAATGTTCC -ACGGAATGCTGTCCTCAAATTCCC -ACGGAATGCTGTCCTCAATTCTCG -ACGGAATGCTGTCCTCAATAGACG -ACGGAATGCTGTCCTCAAGTAACG -ACGGAATGCTGTCCTCAAACTTCG -ACGGAATGCTGTCCTCAATACGCA -ACGGAATGCTGTCCTCAACTTGCA -ACGGAATGCTGTCCTCAACGAACA -ACGGAATGCTGTCCTCAACAGTCA -ACGGAATGCTGTCCTCAAGATCCA -ACGGAATGCTGTCCTCAAACGACA -ACGGAATGCTGTCCTCAAAGCTCA -ACGGAATGCTGTCCTCAATCACGT -ACGGAATGCTGTCCTCAACGTAGT -ACGGAATGCTGTCCTCAAGTCAGT -ACGGAATGCTGTCCTCAAGAAGGT -ACGGAATGCTGTCCTCAAAACCGT -ACGGAATGCTGTCCTCAATTGTGC -ACGGAATGCTGTCCTCAACTAAGC -ACGGAATGCTGTCCTCAAACTAGC -ACGGAATGCTGTCCTCAAAGATGC -ACGGAATGCTGTCCTCAATGAAGG -ACGGAATGCTGTCCTCAACAATGG -ACGGAATGCTGTCCTCAAATGAGG -ACGGAATGCTGTCCTCAAAATGGG -ACGGAATGCTGTCCTCAATCCTGA -ACGGAATGCTGTCCTCAATAGCGA -ACGGAATGCTGTCCTCAACACAGA -ACGGAATGCTGTCCTCAAGCAAGA -ACGGAATGCTGTCCTCAAGGTTGA -ACGGAATGCTGTCCTCAATCCGAT -ACGGAATGCTGTCCTCAATGGCAT -ACGGAATGCTGTCCTCAACGAGAT -ACGGAATGCTGTCCTCAATACCAC -ACGGAATGCTGTCCTCAACAGAAC -ACGGAATGCTGTCCTCAAGTCTAC -ACGGAATGCTGTCCTCAAACGTAC -ACGGAATGCTGTCCTCAAAGTGAC -ACGGAATGCTGTCCTCAACTGTAG -ACGGAATGCTGTCCTCAACCTAAG -ACGGAATGCTGTCCTCAAGTTCAG -ACGGAATGCTGTCCTCAAGCATAG -ACGGAATGCTGTCCTCAAGACAAG -ACGGAATGCTGTCCTCAAAAGCAG -ACGGAATGCTGTCCTCAACGTCAA -ACGGAATGCTGTCCTCAAGCTGAA -ACGGAATGCTGTCCTCAAAGTACG -ACGGAATGCTGTCCTCAAATCCGA -ACGGAATGCTGTCCTCAAATGGGA -ACGGAATGCTGTCCTCAAGTGCAA -ACGGAATGCTGTCCTCAAGAGGAA -ACGGAATGCTGTCCTCAACAGGTA -ACGGAATGCTGTCCTCAAGACTCT -ACGGAATGCTGTCCTCAAAGTCCT -ACGGAATGCTGTCCTCAATAAGCC -ACGGAATGCTGTCCTCAAATAGCC -ACGGAATGCTGTCCTCAATAACCG -ACGGAATGCTGTCCTCAAATGCCA -ACGGAATGCTGTACTGCTGGAAAC -ACGGAATGCTGTACTGCTAACACC -ACGGAATGCTGTACTGCTATCGAG -ACGGAATGCTGTACTGCTCTCCTT -ACGGAATGCTGTACTGCTCCTGTT -ACGGAATGCTGTACTGCTCGGTTT -ACGGAATGCTGTACTGCTGTGGTT -ACGGAATGCTGTACTGCTGCCTTT -ACGGAATGCTGTACTGCTGGTCTT -ACGGAATGCTGTACTGCTACGCTT -ACGGAATGCTGTACTGCTAGCGTT -ACGGAATGCTGTACTGCTTTCGTC -ACGGAATGCTGTACTGCTTCTCTC -ACGGAATGCTGTACTGCTTGGATC -ACGGAATGCTGTACTGCTCACTTC -ACGGAATGCTGTACTGCTGTACTC -ACGGAATGCTGTACTGCTGATGTC -ACGGAATGCTGTACTGCTACAGTC -ACGGAATGCTGTACTGCTTTGCTG -ACGGAATGCTGTACTGCTTCCATG -ACGGAATGCTGTACTGCTTGTGTG -ACGGAATGCTGTACTGCTCTAGTG -ACGGAATGCTGTACTGCTCATCTG -ACGGAATGCTGTACTGCTGAGTTG -ACGGAATGCTGTACTGCTAGACTG -ACGGAATGCTGTACTGCTTCGGTA -ACGGAATGCTGTACTGCTTGCCTA -ACGGAATGCTGTACTGCTCCACTA -ACGGAATGCTGTACTGCTGGAGTA -ACGGAATGCTGTACTGCTTCGTCT -ACGGAATGCTGTACTGCTTGCACT -ACGGAATGCTGTACTGCTCTGACT -ACGGAATGCTGTACTGCTCAACCT -ACGGAATGCTGTACTGCTGCTACT -ACGGAATGCTGTACTGCTGGATCT -ACGGAATGCTGTACTGCTAAGGCT -ACGGAATGCTGTACTGCTTCAACC -ACGGAATGCTGTACTGCTTGTTCC -ACGGAATGCTGTACTGCTATTCCC -ACGGAATGCTGTACTGCTTTCTCG -ACGGAATGCTGTACTGCTTAGACG -ACGGAATGCTGTACTGCTGTAACG -ACGGAATGCTGTACTGCTACTTCG -ACGGAATGCTGTACTGCTTACGCA -ACGGAATGCTGTACTGCTCTTGCA -ACGGAATGCTGTACTGCTCGAACA -ACGGAATGCTGTACTGCTCAGTCA -ACGGAATGCTGTACTGCTGATCCA -ACGGAATGCTGTACTGCTACGACA -ACGGAATGCTGTACTGCTAGCTCA -ACGGAATGCTGTACTGCTTCACGT -ACGGAATGCTGTACTGCTCGTAGT -ACGGAATGCTGTACTGCTGTCAGT -ACGGAATGCTGTACTGCTGAAGGT -ACGGAATGCTGTACTGCTAACCGT -ACGGAATGCTGTACTGCTTTGTGC -ACGGAATGCTGTACTGCTCTAAGC -ACGGAATGCTGTACTGCTACTAGC -ACGGAATGCTGTACTGCTAGATGC -ACGGAATGCTGTACTGCTTGAAGG -ACGGAATGCTGTACTGCTCAATGG -ACGGAATGCTGTACTGCTATGAGG -ACGGAATGCTGTACTGCTAATGGG -ACGGAATGCTGTACTGCTTCCTGA -ACGGAATGCTGTACTGCTTAGCGA -ACGGAATGCTGTACTGCTCACAGA -ACGGAATGCTGTACTGCTGCAAGA -ACGGAATGCTGTACTGCTGGTTGA -ACGGAATGCTGTACTGCTTCCGAT -ACGGAATGCTGTACTGCTTGGCAT -ACGGAATGCTGTACTGCTCGAGAT -ACGGAATGCTGTACTGCTTACCAC -ACGGAATGCTGTACTGCTCAGAAC -ACGGAATGCTGTACTGCTGTCTAC -ACGGAATGCTGTACTGCTACGTAC -ACGGAATGCTGTACTGCTAGTGAC -ACGGAATGCTGTACTGCTCTGTAG -ACGGAATGCTGTACTGCTCCTAAG -ACGGAATGCTGTACTGCTGTTCAG -ACGGAATGCTGTACTGCTGCATAG -ACGGAATGCTGTACTGCTGACAAG -ACGGAATGCTGTACTGCTAAGCAG -ACGGAATGCTGTACTGCTCGTCAA -ACGGAATGCTGTACTGCTGCTGAA -ACGGAATGCTGTACTGCTAGTACG -ACGGAATGCTGTACTGCTATCCGA -ACGGAATGCTGTACTGCTATGGGA -ACGGAATGCTGTACTGCTGTGCAA -ACGGAATGCTGTACTGCTGAGGAA -ACGGAATGCTGTACTGCTCAGGTA -ACGGAATGCTGTACTGCTGACTCT -ACGGAATGCTGTACTGCTAGTCCT -ACGGAATGCTGTACTGCTTAAGCC -ACGGAATGCTGTACTGCTATAGCC -ACGGAATGCTGTACTGCTTAACCG -ACGGAATGCTGTACTGCTATGCCA -ACGGAATGCTGTTCTGGAGGAAAC -ACGGAATGCTGTTCTGGAAACACC -ACGGAATGCTGTTCTGGAATCGAG -ACGGAATGCTGTTCTGGACTCCTT -ACGGAATGCTGTTCTGGACCTGTT -ACGGAATGCTGTTCTGGACGGTTT -ACGGAATGCTGTTCTGGAGTGGTT -ACGGAATGCTGTTCTGGAGCCTTT -ACGGAATGCTGTTCTGGAGGTCTT -ACGGAATGCTGTTCTGGAACGCTT -ACGGAATGCTGTTCTGGAAGCGTT -ACGGAATGCTGTTCTGGATTCGTC -ACGGAATGCTGTTCTGGATCTCTC -ACGGAATGCTGTTCTGGATGGATC -ACGGAATGCTGTTCTGGACACTTC -ACGGAATGCTGTTCTGGAGTACTC -ACGGAATGCTGTTCTGGAGATGTC -ACGGAATGCTGTTCTGGAACAGTC -ACGGAATGCTGTTCTGGATTGCTG -ACGGAATGCTGTTCTGGATCCATG -ACGGAATGCTGTTCTGGATGTGTG -ACGGAATGCTGTTCTGGACTAGTG -ACGGAATGCTGTTCTGGACATCTG -ACGGAATGCTGTTCTGGAGAGTTG -ACGGAATGCTGTTCTGGAAGACTG -ACGGAATGCTGTTCTGGATCGGTA -ACGGAATGCTGTTCTGGATGCCTA -ACGGAATGCTGTTCTGGACCACTA -ACGGAATGCTGTTCTGGAGGAGTA -ACGGAATGCTGTTCTGGATCGTCT -ACGGAATGCTGTTCTGGATGCACT -ACGGAATGCTGTTCTGGACTGACT -ACGGAATGCTGTTCTGGACAACCT -ACGGAATGCTGTTCTGGAGCTACT -ACGGAATGCTGTTCTGGAGGATCT -ACGGAATGCTGTTCTGGAAAGGCT -ACGGAATGCTGTTCTGGATCAACC -ACGGAATGCTGTTCTGGATGTTCC -ACGGAATGCTGTTCTGGAATTCCC -ACGGAATGCTGTTCTGGATTCTCG -ACGGAATGCTGTTCTGGATAGACG -ACGGAATGCTGTTCTGGAGTAACG -ACGGAATGCTGTTCTGGAACTTCG -ACGGAATGCTGTTCTGGATACGCA -ACGGAATGCTGTTCTGGACTTGCA -ACGGAATGCTGTTCTGGACGAACA -ACGGAATGCTGTTCTGGACAGTCA -ACGGAATGCTGTTCTGGAGATCCA -ACGGAATGCTGTTCTGGAACGACA -ACGGAATGCTGTTCTGGAAGCTCA -ACGGAATGCTGTTCTGGATCACGT -ACGGAATGCTGTTCTGGACGTAGT -ACGGAATGCTGTTCTGGAGTCAGT -ACGGAATGCTGTTCTGGAGAAGGT -ACGGAATGCTGTTCTGGAAACCGT -ACGGAATGCTGTTCTGGATTGTGC -ACGGAATGCTGTTCTGGACTAAGC -ACGGAATGCTGTTCTGGAACTAGC -ACGGAATGCTGTTCTGGAAGATGC -ACGGAATGCTGTTCTGGATGAAGG -ACGGAATGCTGTTCTGGACAATGG -ACGGAATGCTGTTCTGGAATGAGG -ACGGAATGCTGTTCTGGAAATGGG -ACGGAATGCTGTTCTGGATCCTGA -ACGGAATGCTGTTCTGGATAGCGA -ACGGAATGCTGTTCTGGACACAGA -ACGGAATGCTGTTCTGGAGCAAGA -ACGGAATGCTGTTCTGGAGGTTGA -ACGGAATGCTGTTCTGGATCCGAT -ACGGAATGCTGTTCTGGATGGCAT -ACGGAATGCTGTTCTGGACGAGAT -ACGGAATGCTGTTCTGGATACCAC -ACGGAATGCTGTTCTGGACAGAAC -ACGGAATGCTGTTCTGGAGTCTAC -ACGGAATGCTGTTCTGGAACGTAC -ACGGAATGCTGTTCTGGAAGTGAC -ACGGAATGCTGTTCTGGACTGTAG -ACGGAATGCTGTTCTGGACCTAAG -ACGGAATGCTGTTCTGGAGTTCAG -ACGGAATGCTGTTCTGGAGCATAG -ACGGAATGCTGTTCTGGAGACAAG -ACGGAATGCTGTTCTGGAAAGCAG -ACGGAATGCTGTTCTGGACGTCAA -ACGGAATGCTGTTCTGGAGCTGAA -ACGGAATGCTGTTCTGGAAGTACG -ACGGAATGCTGTTCTGGAATCCGA -ACGGAATGCTGTTCTGGAATGGGA -ACGGAATGCTGTTCTGGAGTGCAA -ACGGAATGCTGTTCTGGAGAGGAA -ACGGAATGCTGTTCTGGACAGGTA -ACGGAATGCTGTTCTGGAGACTCT -ACGGAATGCTGTTCTGGAAGTCCT -ACGGAATGCTGTTCTGGATAAGCC -ACGGAATGCTGTTCTGGAATAGCC -ACGGAATGCTGTTCTGGATAACCG -ACGGAATGCTGTTCTGGAATGCCA -ACGGAATGCTGTGCTAAGGGAAAC -ACGGAATGCTGTGCTAAGAACACC -ACGGAATGCTGTGCTAAGATCGAG -ACGGAATGCTGTGCTAAGCTCCTT -ACGGAATGCTGTGCTAAGCCTGTT -ACGGAATGCTGTGCTAAGCGGTTT -ACGGAATGCTGTGCTAAGGTGGTT -ACGGAATGCTGTGCTAAGGCCTTT -ACGGAATGCTGTGCTAAGGGTCTT -ACGGAATGCTGTGCTAAGACGCTT -ACGGAATGCTGTGCTAAGAGCGTT -ACGGAATGCTGTGCTAAGTTCGTC -ACGGAATGCTGTGCTAAGTCTCTC -ACGGAATGCTGTGCTAAGTGGATC -ACGGAATGCTGTGCTAAGCACTTC -ACGGAATGCTGTGCTAAGGTACTC -ACGGAATGCTGTGCTAAGGATGTC -ACGGAATGCTGTGCTAAGACAGTC -ACGGAATGCTGTGCTAAGTTGCTG -ACGGAATGCTGTGCTAAGTCCATG -ACGGAATGCTGTGCTAAGTGTGTG -ACGGAATGCTGTGCTAAGCTAGTG -ACGGAATGCTGTGCTAAGCATCTG -ACGGAATGCTGTGCTAAGGAGTTG -ACGGAATGCTGTGCTAAGAGACTG -ACGGAATGCTGTGCTAAGTCGGTA -ACGGAATGCTGTGCTAAGTGCCTA -ACGGAATGCTGTGCTAAGCCACTA -ACGGAATGCTGTGCTAAGGGAGTA -ACGGAATGCTGTGCTAAGTCGTCT -ACGGAATGCTGTGCTAAGTGCACT -ACGGAATGCTGTGCTAAGCTGACT -ACGGAATGCTGTGCTAAGCAACCT -ACGGAATGCTGTGCTAAGGCTACT -ACGGAATGCTGTGCTAAGGGATCT -ACGGAATGCTGTGCTAAGAAGGCT -ACGGAATGCTGTGCTAAGTCAACC -ACGGAATGCTGTGCTAAGTGTTCC -ACGGAATGCTGTGCTAAGATTCCC -ACGGAATGCTGTGCTAAGTTCTCG -ACGGAATGCTGTGCTAAGTAGACG -ACGGAATGCTGTGCTAAGGTAACG -ACGGAATGCTGTGCTAAGACTTCG -ACGGAATGCTGTGCTAAGTACGCA -ACGGAATGCTGTGCTAAGCTTGCA -ACGGAATGCTGTGCTAAGCGAACA -ACGGAATGCTGTGCTAAGCAGTCA -ACGGAATGCTGTGCTAAGGATCCA -ACGGAATGCTGTGCTAAGACGACA -ACGGAATGCTGTGCTAAGAGCTCA -ACGGAATGCTGTGCTAAGTCACGT -ACGGAATGCTGTGCTAAGCGTAGT -ACGGAATGCTGTGCTAAGGTCAGT -ACGGAATGCTGTGCTAAGGAAGGT -ACGGAATGCTGTGCTAAGAACCGT -ACGGAATGCTGTGCTAAGTTGTGC -ACGGAATGCTGTGCTAAGCTAAGC -ACGGAATGCTGTGCTAAGACTAGC -ACGGAATGCTGTGCTAAGAGATGC -ACGGAATGCTGTGCTAAGTGAAGG -ACGGAATGCTGTGCTAAGCAATGG -ACGGAATGCTGTGCTAAGATGAGG -ACGGAATGCTGTGCTAAGAATGGG -ACGGAATGCTGTGCTAAGTCCTGA -ACGGAATGCTGTGCTAAGTAGCGA -ACGGAATGCTGTGCTAAGCACAGA -ACGGAATGCTGTGCTAAGGCAAGA -ACGGAATGCTGTGCTAAGGGTTGA -ACGGAATGCTGTGCTAAGTCCGAT -ACGGAATGCTGTGCTAAGTGGCAT -ACGGAATGCTGTGCTAAGCGAGAT -ACGGAATGCTGTGCTAAGTACCAC -ACGGAATGCTGTGCTAAGCAGAAC -ACGGAATGCTGTGCTAAGGTCTAC -ACGGAATGCTGTGCTAAGACGTAC -ACGGAATGCTGTGCTAAGAGTGAC -ACGGAATGCTGTGCTAAGCTGTAG -ACGGAATGCTGTGCTAAGCCTAAG -ACGGAATGCTGTGCTAAGGTTCAG -ACGGAATGCTGTGCTAAGGCATAG -ACGGAATGCTGTGCTAAGGACAAG -ACGGAATGCTGTGCTAAGAAGCAG -ACGGAATGCTGTGCTAAGCGTCAA -ACGGAATGCTGTGCTAAGGCTGAA -ACGGAATGCTGTGCTAAGAGTACG -ACGGAATGCTGTGCTAAGATCCGA -ACGGAATGCTGTGCTAAGATGGGA -ACGGAATGCTGTGCTAAGGTGCAA -ACGGAATGCTGTGCTAAGGAGGAA -ACGGAATGCTGTGCTAAGCAGGTA -ACGGAATGCTGTGCTAAGGACTCT -ACGGAATGCTGTGCTAAGAGTCCT -ACGGAATGCTGTGCTAAGTAAGCC -ACGGAATGCTGTGCTAAGATAGCC -ACGGAATGCTGTGCTAAGTAACCG -ACGGAATGCTGTGCTAAGATGCCA -ACGGAATGCTGTACCTCAGGAAAC -ACGGAATGCTGTACCTCAAACACC -ACGGAATGCTGTACCTCAATCGAG -ACGGAATGCTGTACCTCACTCCTT -ACGGAATGCTGTACCTCACCTGTT -ACGGAATGCTGTACCTCACGGTTT -ACGGAATGCTGTACCTCAGTGGTT -ACGGAATGCTGTACCTCAGCCTTT -ACGGAATGCTGTACCTCAGGTCTT -ACGGAATGCTGTACCTCAACGCTT -ACGGAATGCTGTACCTCAAGCGTT -ACGGAATGCTGTACCTCATTCGTC -ACGGAATGCTGTACCTCATCTCTC -ACGGAATGCTGTACCTCATGGATC -ACGGAATGCTGTACCTCACACTTC -ACGGAATGCTGTACCTCAGTACTC -ACGGAATGCTGTACCTCAGATGTC -ACGGAATGCTGTACCTCAACAGTC -ACGGAATGCTGTACCTCATTGCTG -ACGGAATGCTGTACCTCATCCATG -ACGGAATGCTGTACCTCATGTGTG -ACGGAATGCTGTACCTCACTAGTG -ACGGAATGCTGTACCTCACATCTG -ACGGAATGCTGTACCTCAGAGTTG -ACGGAATGCTGTACCTCAAGACTG -ACGGAATGCTGTACCTCATCGGTA -ACGGAATGCTGTACCTCATGCCTA -ACGGAATGCTGTACCTCACCACTA -ACGGAATGCTGTACCTCAGGAGTA -ACGGAATGCTGTACCTCATCGTCT -ACGGAATGCTGTACCTCATGCACT -ACGGAATGCTGTACCTCACTGACT -ACGGAATGCTGTACCTCACAACCT -ACGGAATGCTGTACCTCAGCTACT -ACGGAATGCTGTACCTCAGGATCT -ACGGAATGCTGTACCTCAAAGGCT -ACGGAATGCTGTACCTCATCAACC -ACGGAATGCTGTACCTCATGTTCC -ACGGAATGCTGTACCTCAATTCCC -ACGGAATGCTGTACCTCATTCTCG -ACGGAATGCTGTACCTCATAGACG -ACGGAATGCTGTACCTCAGTAACG -ACGGAATGCTGTACCTCAACTTCG -ACGGAATGCTGTACCTCATACGCA -ACGGAATGCTGTACCTCACTTGCA -ACGGAATGCTGTACCTCACGAACA -ACGGAATGCTGTACCTCACAGTCA -ACGGAATGCTGTACCTCAGATCCA -ACGGAATGCTGTACCTCAACGACA -ACGGAATGCTGTACCTCAAGCTCA -ACGGAATGCTGTACCTCATCACGT -ACGGAATGCTGTACCTCACGTAGT -ACGGAATGCTGTACCTCAGTCAGT -ACGGAATGCTGTACCTCAGAAGGT -ACGGAATGCTGTACCTCAAACCGT -ACGGAATGCTGTACCTCATTGTGC -ACGGAATGCTGTACCTCACTAAGC -ACGGAATGCTGTACCTCAACTAGC -ACGGAATGCTGTACCTCAAGATGC -ACGGAATGCTGTACCTCATGAAGG -ACGGAATGCTGTACCTCACAATGG -ACGGAATGCTGTACCTCAATGAGG -ACGGAATGCTGTACCTCAAATGGG -ACGGAATGCTGTACCTCATCCTGA -ACGGAATGCTGTACCTCATAGCGA -ACGGAATGCTGTACCTCACACAGA -ACGGAATGCTGTACCTCAGCAAGA -ACGGAATGCTGTACCTCAGGTTGA -ACGGAATGCTGTACCTCATCCGAT -ACGGAATGCTGTACCTCATGGCAT -ACGGAATGCTGTACCTCACGAGAT -ACGGAATGCTGTACCTCATACCAC -ACGGAATGCTGTACCTCACAGAAC -ACGGAATGCTGTACCTCAGTCTAC -ACGGAATGCTGTACCTCAACGTAC -ACGGAATGCTGTACCTCAAGTGAC -ACGGAATGCTGTACCTCACTGTAG -ACGGAATGCTGTACCTCACCTAAG -ACGGAATGCTGTACCTCAGTTCAG -ACGGAATGCTGTACCTCAGCATAG -ACGGAATGCTGTACCTCAGACAAG -ACGGAATGCTGTACCTCAAAGCAG -ACGGAATGCTGTACCTCACGTCAA -ACGGAATGCTGTACCTCAGCTGAA -ACGGAATGCTGTACCTCAAGTACG -ACGGAATGCTGTACCTCAATCCGA -ACGGAATGCTGTACCTCAATGGGA -ACGGAATGCTGTACCTCAGTGCAA -ACGGAATGCTGTACCTCAGAGGAA -ACGGAATGCTGTACCTCACAGGTA -ACGGAATGCTGTACCTCAGACTCT -ACGGAATGCTGTACCTCAAGTCCT -ACGGAATGCTGTACCTCATAAGCC -ACGGAATGCTGTACCTCAATAGCC -ACGGAATGCTGTACCTCATAACCG -ACGGAATGCTGTACCTCAATGCCA -ACGGAATGCTGTTCCTGTGGAAAC -ACGGAATGCTGTTCCTGTAACACC -ACGGAATGCTGTTCCTGTATCGAG -ACGGAATGCTGTTCCTGTCTCCTT -ACGGAATGCTGTTCCTGTCCTGTT -ACGGAATGCTGTTCCTGTCGGTTT -ACGGAATGCTGTTCCTGTGTGGTT -ACGGAATGCTGTTCCTGTGCCTTT -ACGGAATGCTGTTCCTGTGGTCTT -ACGGAATGCTGTTCCTGTACGCTT -ACGGAATGCTGTTCCTGTAGCGTT -ACGGAATGCTGTTCCTGTTTCGTC -ACGGAATGCTGTTCCTGTTCTCTC -ACGGAATGCTGTTCCTGTTGGATC -ACGGAATGCTGTTCCTGTCACTTC -ACGGAATGCTGTTCCTGTGTACTC -ACGGAATGCTGTTCCTGTGATGTC -ACGGAATGCTGTTCCTGTACAGTC -ACGGAATGCTGTTCCTGTTTGCTG -ACGGAATGCTGTTCCTGTTCCATG -ACGGAATGCTGTTCCTGTTGTGTG -ACGGAATGCTGTTCCTGTCTAGTG -ACGGAATGCTGTTCCTGTCATCTG -ACGGAATGCTGTTCCTGTGAGTTG -ACGGAATGCTGTTCCTGTAGACTG -ACGGAATGCTGTTCCTGTTCGGTA -ACGGAATGCTGTTCCTGTTGCCTA -ACGGAATGCTGTTCCTGTCCACTA -ACGGAATGCTGTTCCTGTGGAGTA -ACGGAATGCTGTTCCTGTTCGTCT -ACGGAATGCTGTTCCTGTTGCACT -ACGGAATGCTGTTCCTGTCTGACT -ACGGAATGCTGTTCCTGTCAACCT -ACGGAATGCTGTTCCTGTGCTACT -ACGGAATGCTGTTCCTGTGGATCT -ACGGAATGCTGTTCCTGTAAGGCT -ACGGAATGCTGTTCCTGTTCAACC -ACGGAATGCTGTTCCTGTTGTTCC -ACGGAATGCTGTTCCTGTATTCCC -ACGGAATGCTGTTCCTGTTTCTCG -ACGGAATGCTGTTCCTGTTAGACG -ACGGAATGCTGTTCCTGTGTAACG -ACGGAATGCTGTTCCTGTACTTCG -ACGGAATGCTGTTCCTGTTACGCA -ACGGAATGCTGTTCCTGTCTTGCA -ACGGAATGCTGTTCCTGTCGAACA -ACGGAATGCTGTTCCTGTCAGTCA -ACGGAATGCTGTTCCTGTGATCCA -ACGGAATGCTGTTCCTGTACGACA -ACGGAATGCTGTTCCTGTAGCTCA -ACGGAATGCTGTTCCTGTTCACGT -ACGGAATGCTGTTCCTGTCGTAGT -ACGGAATGCTGTTCCTGTGTCAGT -ACGGAATGCTGTTCCTGTGAAGGT -ACGGAATGCTGTTCCTGTAACCGT -ACGGAATGCTGTTCCTGTTTGTGC -ACGGAATGCTGTTCCTGTCTAAGC -ACGGAATGCTGTTCCTGTACTAGC -ACGGAATGCTGTTCCTGTAGATGC -ACGGAATGCTGTTCCTGTTGAAGG -ACGGAATGCTGTTCCTGTCAATGG -ACGGAATGCTGTTCCTGTATGAGG -ACGGAATGCTGTTCCTGTAATGGG -ACGGAATGCTGTTCCTGTTCCTGA -ACGGAATGCTGTTCCTGTTAGCGA -ACGGAATGCTGTTCCTGTCACAGA -ACGGAATGCTGTTCCTGTGCAAGA -ACGGAATGCTGTTCCTGTGGTTGA -ACGGAATGCTGTTCCTGTTCCGAT -ACGGAATGCTGTTCCTGTTGGCAT -ACGGAATGCTGTTCCTGTCGAGAT -ACGGAATGCTGTTCCTGTTACCAC -ACGGAATGCTGTTCCTGTCAGAAC -ACGGAATGCTGTTCCTGTGTCTAC -ACGGAATGCTGTTCCTGTACGTAC -ACGGAATGCTGTTCCTGTAGTGAC -ACGGAATGCTGTTCCTGTCTGTAG -ACGGAATGCTGTTCCTGTCCTAAG -ACGGAATGCTGTTCCTGTGTTCAG -ACGGAATGCTGTTCCTGTGCATAG -ACGGAATGCTGTTCCTGTGACAAG -ACGGAATGCTGTTCCTGTAAGCAG -ACGGAATGCTGTTCCTGTCGTCAA -ACGGAATGCTGTTCCTGTGCTGAA -ACGGAATGCTGTTCCTGTAGTACG -ACGGAATGCTGTTCCTGTATCCGA -ACGGAATGCTGTTCCTGTATGGGA -ACGGAATGCTGTTCCTGTGTGCAA -ACGGAATGCTGTTCCTGTGAGGAA -ACGGAATGCTGTTCCTGTCAGGTA -ACGGAATGCTGTTCCTGTGACTCT -ACGGAATGCTGTTCCTGTAGTCCT -ACGGAATGCTGTTCCTGTTAAGCC -ACGGAATGCTGTTCCTGTATAGCC -ACGGAATGCTGTTCCTGTTAACCG -ACGGAATGCTGTTCCTGTATGCCA -ACGGAATGCTGTCCCATTGGAAAC -ACGGAATGCTGTCCCATTAACACC -ACGGAATGCTGTCCCATTATCGAG -ACGGAATGCTGTCCCATTCTCCTT -ACGGAATGCTGTCCCATTCCTGTT -ACGGAATGCTGTCCCATTCGGTTT -ACGGAATGCTGTCCCATTGTGGTT -ACGGAATGCTGTCCCATTGCCTTT -ACGGAATGCTGTCCCATTGGTCTT -ACGGAATGCTGTCCCATTACGCTT -ACGGAATGCTGTCCCATTAGCGTT -ACGGAATGCTGTCCCATTTTCGTC -ACGGAATGCTGTCCCATTTCTCTC -ACGGAATGCTGTCCCATTTGGATC -ACGGAATGCTGTCCCATTCACTTC -ACGGAATGCTGTCCCATTGTACTC -ACGGAATGCTGTCCCATTGATGTC -ACGGAATGCTGTCCCATTACAGTC -ACGGAATGCTGTCCCATTTTGCTG -ACGGAATGCTGTCCCATTTCCATG -ACGGAATGCTGTCCCATTTGTGTG -ACGGAATGCTGTCCCATTCTAGTG -ACGGAATGCTGTCCCATTCATCTG -ACGGAATGCTGTCCCATTGAGTTG -ACGGAATGCTGTCCCATTAGACTG -ACGGAATGCTGTCCCATTTCGGTA -ACGGAATGCTGTCCCATTTGCCTA -ACGGAATGCTGTCCCATTCCACTA -ACGGAATGCTGTCCCATTGGAGTA -ACGGAATGCTGTCCCATTTCGTCT -ACGGAATGCTGTCCCATTTGCACT -ACGGAATGCTGTCCCATTCTGACT -ACGGAATGCTGTCCCATTCAACCT -ACGGAATGCTGTCCCATTGCTACT -ACGGAATGCTGTCCCATTGGATCT -ACGGAATGCTGTCCCATTAAGGCT -ACGGAATGCTGTCCCATTTCAACC -ACGGAATGCTGTCCCATTTGTTCC -ACGGAATGCTGTCCCATTATTCCC -ACGGAATGCTGTCCCATTTTCTCG -ACGGAATGCTGTCCCATTTAGACG -ACGGAATGCTGTCCCATTGTAACG -ACGGAATGCTGTCCCATTACTTCG -ACGGAATGCTGTCCCATTTACGCA -ACGGAATGCTGTCCCATTCTTGCA -ACGGAATGCTGTCCCATTCGAACA -ACGGAATGCTGTCCCATTCAGTCA -ACGGAATGCTGTCCCATTGATCCA -ACGGAATGCTGTCCCATTACGACA -ACGGAATGCTGTCCCATTAGCTCA -ACGGAATGCTGTCCCATTTCACGT -ACGGAATGCTGTCCCATTCGTAGT -ACGGAATGCTGTCCCATTGTCAGT -ACGGAATGCTGTCCCATTGAAGGT -ACGGAATGCTGTCCCATTAACCGT -ACGGAATGCTGTCCCATTTTGTGC -ACGGAATGCTGTCCCATTCTAAGC -ACGGAATGCTGTCCCATTACTAGC -ACGGAATGCTGTCCCATTAGATGC -ACGGAATGCTGTCCCATTTGAAGG -ACGGAATGCTGTCCCATTCAATGG -ACGGAATGCTGTCCCATTATGAGG -ACGGAATGCTGTCCCATTAATGGG -ACGGAATGCTGTCCCATTTCCTGA -ACGGAATGCTGTCCCATTTAGCGA -ACGGAATGCTGTCCCATTCACAGA -ACGGAATGCTGTCCCATTGCAAGA -ACGGAATGCTGTCCCATTGGTTGA -ACGGAATGCTGTCCCATTTCCGAT -ACGGAATGCTGTCCCATTTGGCAT -ACGGAATGCTGTCCCATTCGAGAT -ACGGAATGCTGTCCCATTTACCAC -ACGGAATGCTGTCCCATTCAGAAC -ACGGAATGCTGTCCCATTGTCTAC -ACGGAATGCTGTCCCATTACGTAC -ACGGAATGCTGTCCCATTAGTGAC -ACGGAATGCTGTCCCATTCTGTAG -ACGGAATGCTGTCCCATTCCTAAG -ACGGAATGCTGTCCCATTGTTCAG -ACGGAATGCTGTCCCATTGCATAG -ACGGAATGCTGTCCCATTGACAAG -ACGGAATGCTGTCCCATTAAGCAG -ACGGAATGCTGTCCCATTCGTCAA -ACGGAATGCTGTCCCATTGCTGAA -ACGGAATGCTGTCCCATTAGTACG -ACGGAATGCTGTCCCATTATCCGA -ACGGAATGCTGTCCCATTATGGGA -ACGGAATGCTGTCCCATTGTGCAA -ACGGAATGCTGTCCCATTGAGGAA -ACGGAATGCTGTCCCATTCAGGTA -ACGGAATGCTGTCCCATTGACTCT -ACGGAATGCTGTCCCATTAGTCCT -ACGGAATGCTGTCCCATTTAAGCC -ACGGAATGCTGTCCCATTATAGCC -ACGGAATGCTGTCCCATTTAACCG -ACGGAATGCTGTCCCATTATGCCA -ACGGAATGCTGTTCGTTCGGAAAC -ACGGAATGCTGTTCGTTCAACACC -ACGGAATGCTGTTCGTTCATCGAG -ACGGAATGCTGTTCGTTCCTCCTT -ACGGAATGCTGTTCGTTCCCTGTT -ACGGAATGCTGTTCGTTCCGGTTT -ACGGAATGCTGTTCGTTCGTGGTT -ACGGAATGCTGTTCGTTCGCCTTT -ACGGAATGCTGTTCGTTCGGTCTT -ACGGAATGCTGTTCGTTCACGCTT -ACGGAATGCTGTTCGTTCAGCGTT -ACGGAATGCTGTTCGTTCTTCGTC -ACGGAATGCTGTTCGTTCTCTCTC -ACGGAATGCTGTTCGTTCTGGATC -ACGGAATGCTGTTCGTTCCACTTC -ACGGAATGCTGTTCGTTCGTACTC -ACGGAATGCTGTTCGTTCGATGTC -ACGGAATGCTGTTCGTTCACAGTC -ACGGAATGCTGTTCGTTCTTGCTG -ACGGAATGCTGTTCGTTCTCCATG -ACGGAATGCTGTTCGTTCTGTGTG -ACGGAATGCTGTTCGTTCCTAGTG -ACGGAATGCTGTTCGTTCCATCTG -ACGGAATGCTGTTCGTTCGAGTTG -ACGGAATGCTGTTCGTTCAGACTG -ACGGAATGCTGTTCGTTCTCGGTA -ACGGAATGCTGTTCGTTCTGCCTA -ACGGAATGCTGTTCGTTCCCACTA -ACGGAATGCTGTTCGTTCGGAGTA -ACGGAATGCTGTTCGTTCTCGTCT -ACGGAATGCTGTTCGTTCTGCACT -ACGGAATGCTGTTCGTTCCTGACT -ACGGAATGCTGTTCGTTCCAACCT -ACGGAATGCTGTTCGTTCGCTACT -ACGGAATGCTGTTCGTTCGGATCT -ACGGAATGCTGTTCGTTCAAGGCT -ACGGAATGCTGTTCGTTCTCAACC -ACGGAATGCTGTTCGTTCTGTTCC -ACGGAATGCTGTTCGTTCATTCCC -ACGGAATGCTGTTCGTTCTTCTCG -ACGGAATGCTGTTCGTTCTAGACG -ACGGAATGCTGTTCGTTCGTAACG -ACGGAATGCTGTTCGTTCACTTCG -ACGGAATGCTGTTCGTTCTACGCA -ACGGAATGCTGTTCGTTCCTTGCA -ACGGAATGCTGTTCGTTCCGAACA -ACGGAATGCTGTTCGTTCCAGTCA -ACGGAATGCTGTTCGTTCGATCCA -ACGGAATGCTGTTCGTTCACGACA -ACGGAATGCTGTTCGTTCAGCTCA -ACGGAATGCTGTTCGTTCTCACGT -ACGGAATGCTGTTCGTTCCGTAGT -ACGGAATGCTGTTCGTTCGTCAGT -ACGGAATGCTGTTCGTTCGAAGGT -ACGGAATGCTGTTCGTTCAACCGT -ACGGAATGCTGTTCGTTCTTGTGC -ACGGAATGCTGTTCGTTCCTAAGC -ACGGAATGCTGTTCGTTCACTAGC -ACGGAATGCTGTTCGTTCAGATGC -ACGGAATGCTGTTCGTTCTGAAGG -ACGGAATGCTGTTCGTTCCAATGG -ACGGAATGCTGTTCGTTCATGAGG -ACGGAATGCTGTTCGTTCAATGGG -ACGGAATGCTGTTCGTTCTCCTGA -ACGGAATGCTGTTCGTTCTAGCGA -ACGGAATGCTGTTCGTTCCACAGA -ACGGAATGCTGTTCGTTCGCAAGA -ACGGAATGCTGTTCGTTCGGTTGA -ACGGAATGCTGTTCGTTCTCCGAT -ACGGAATGCTGTTCGTTCTGGCAT -ACGGAATGCTGTTCGTTCCGAGAT -ACGGAATGCTGTTCGTTCTACCAC -ACGGAATGCTGTTCGTTCCAGAAC -ACGGAATGCTGTTCGTTCGTCTAC -ACGGAATGCTGTTCGTTCACGTAC -ACGGAATGCTGTTCGTTCAGTGAC -ACGGAATGCTGTTCGTTCCTGTAG -ACGGAATGCTGTTCGTTCCCTAAG -ACGGAATGCTGTTCGTTCGTTCAG -ACGGAATGCTGTTCGTTCGCATAG -ACGGAATGCTGTTCGTTCGACAAG -ACGGAATGCTGTTCGTTCAAGCAG -ACGGAATGCTGTTCGTTCCGTCAA -ACGGAATGCTGTTCGTTCGCTGAA -ACGGAATGCTGTTCGTTCAGTACG -ACGGAATGCTGTTCGTTCATCCGA -ACGGAATGCTGTTCGTTCATGGGA -ACGGAATGCTGTTCGTTCGTGCAA -ACGGAATGCTGTTCGTTCGAGGAA -ACGGAATGCTGTTCGTTCCAGGTA -ACGGAATGCTGTTCGTTCGACTCT -ACGGAATGCTGTTCGTTCAGTCCT -ACGGAATGCTGTTCGTTCTAAGCC -ACGGAATGCTGTTCGTTCATAGCC -ACGGAATGCTGTTCGTTCTAACCG -ACGGAATGCTGTTCGTTCATGCCA -ACGGAATGCTGTACGTAGGGAAAC -ACGGAATGCTGTACGTAGAACACC -ACGGAATGCTGTACGTAGATCGAG -ACGGAATGCTGTACGTAGCTCCTT -ACGGAATGCTGTACGTAGCCTGTT -ACGGAATGCTGTACGTAGCGGTTT -ACGGAATGCTGTACGTAGGTGGTT -ACGGAATGCTGTACGTAGGCCTTT -ACGGAATGCTGTACGTAGGGTCTT -ACGGAATGCTGTACGTAGACGCTT -ACGGAATGCTGTACGTAGAGCGTT -ACGGAATGCTGTACGTAGTTCGTC -ACGGAATGCTGTACGTAGTCTCTC -ACGGAATGCTGTACGTAGTGGATC -ACGGAATGCTGTACGTAGCACTTC -ACGGAATGCTGTACGTAGGTACTC -ACGGAATGCTGTACGTAGGATGTC -ACGGAATGCTGTACGTAGACAGTC -ACGGAATGCTGTACGTAGTTGCTG -ACGGAATGCTGTACGTAGTCCATG -ACGGAATGCTGTACGTAGTGTGTG -ACGGAATGCTGTACGTAGCTAGTG -ACGGAATGCTGTACGTAGCATCTG -ACGGAATGCTGTACGTAGGAGTTG -ACGGAATGCTGTACGTAGAGACTG -ACGGAATGCTGTACGTAGTCGGTA -ACGGAATGCTGTACGTAGTGCCTA -ACGGAATGCTGTACGTAGCCACTA -ACGGAATGCTGTACGTAGGGAGTA -ACGGAATGCTGTACGTAGTCGTCT -ACGGAATGCTGTACGTAGTGCACT -ACGGAATGCTGTACGTAGCTGACT -ACGGAATGCTGTACGTAGCAACCT -ACGGAATGCTGTACGTAGGCTACT -ACGGAATGCTGTACGTAGGGATCT -ACGGAATGCTGTACGTAGAAGGCT -ACGGAATGCTGTACGTAGTCAACC -ACGGAATGCTGTACGTAGTGTTCC -ACGGAATGCTGTACGTAGATTCCC -ACGGAATGCTGTACGTAGTTCTCG -ACGGAATGCTGTACGTAGTAGACG -ACGGAATGCTGTACGTAGGTAACG -ACGGAATGCTGTACGTAGACTTCG -ACGGAATGCTGTACGTAGTACGCA -ACGGAATGCTGTACGTAGCTTGCA -ACGGAATGCTGTACGTAGCGAACA -ACGGAATGCTGTACGTAGCAGTCA -ACGGAATGCTGTACGTAGGATCCA -ACGGAATGCTGTACGTAGACGACA -ACGGAATGCTGTACGTAGAGCTCA -ACGGAATGCTGTACGTAGTCACGT -ACGGAATGCTGTACGTAGCGTAGT -ACGGAATGCTGTACGTAGGTCAGT -ACGGAATGCTGTACGTAGGAAGGT -ACGGAATGCTGTACGTAGAACCGT -ACGGAATGCTGTACGTAGTTGTGC -ACGGAATGCTGTACGTAGCTAAGC -ACGGAATGCTGTACGTAGACTAGC -ACGGAATGCTGTACGTAGAGATGC -ACGGAATGCTGTACGTAGTGAAGG -ACGGAATGCTGTACGTAGCAATGG -ACGGAATGCTGTACGTAGATGAGG -ACGGAATGCTGTACGTAGAATGGG -ACGGAATGCTGTACGTAGTCCTGA -ACGGAATGCTGTACGTAGTAGCGA -ACGGAATGCTGTACGTAGCACAGA -ACGGAATGCTGTACGTAGGCAAGA -ACGGAATGCTGTACGTAGGGTTGA -ACGGAATGCTGTACGTAGTCCGAT -ACGGAATGCTGTACGTAGTGGCAT -ACGGAATGCTGTACGTAGCGAGAT -ACGGAATGCTGTACGTAGTACCAC -ACGGAATGCTGTACGTAGCAGAAC -ACGGAATGCTGTACGTAGGTCTAC -ACGGAATGCTGTACGTAGACGTAC -ACGGAATGCTGTACGTAGAGTGAC -ACGGAATGCTGTACGTAGCTGTAG -ACGGAATGCTGTACGTAGCCTAAG -ACGGAATGCTGTACGTAGGTTCAG -ACGGAATGCTGTACGTAGGCATAG -ACGGAATGCTGTACGTAGGACAAG -ACGGAATGCTGTACGTAGAAGCAG -ACGGAATGCTGTACGTAGCGTCAA -ACGGAATGCTGTACGTAGGCTGAA -ACGGAATGCTGTACGTAGAGTACG -ACGGAATGCTGTACGTAGATCCGA -ACGGAATGCTGTACGTAGATGGGA -ACGGAATGCTGTACGTAGGTGCAA -ACGGAATGCTGTACGTAGGAGGAA -ACGGAATGCTGTACGTAGCAGGTA -ACGGAATGCTGTACGTAGGACTCT -ACGGAATGCTGTACGTAGAGTCCT -ACGGAATGCTGTACGTAGTAAGCC -ACGGAATGCTGTACGTAGATAGCC -ACGGAATGCTGTACGTAGTAACCG -ACGGAATGCTGTACGTAGATGCCA -ACGGAATGCTGTACGGTAGGAAAC -ACGGAATGCTGTACGGTAAACACC -ACGGAATGCTGTACGGTAATCGAG -ACGGAATGCTGTACGGTACTCCTT -ACGGAATGCTGTACGGTACCTGTT -ACGGAATGCTGTACGGTACGGTTT -ACGGAATGCTGTACGGTAGTGGTT -ACGGAATGCTGTACGGTAGCCTTT -ACGGAATGCTGTACGGTAGGTCTT -ACGGAATGCTGTACGGTAACGCTT -ACGGAATGCTGTACGGTAAGCGTT -ACGGAATGCTGTACGGTATTCGTC -ACGGAATGCTGTACGGTATCTCTC -ACGGAATGCTGTACGGTATGGATC -ACGGAATGCTGTACGGTACACTTC -ACGGAATGCTGTACGGTAGTACTC -ACGGAATGCTGTACGGTAGATGTC -ACGGAATGCTGTACGGTAACAGTC -ACGGAATGCTGTACGGTATTGCTG -ACGGAATGCTGTACGGTATCCATG -ACGGAATGCTGTACGGTATGTGTG -ACGGAATGCTGTACGGTACTAGTG -ACGGAATGCTGTACGGTACATCTG -ACGGAATGCTGTACGGTAGAGTTG -ACGGAATGCTGTACGGTAAGACTG -ACGGAATGCTGTACGGTATCGGTA -ACGGAATGCTGTACGGTATGCCTA -ACGGAATGCTGTACGGTACCACTA -ACGGAATGCTGTACGGTAGGAGTA -ACGGAATGCTGTACGGTATCGTCT -ACGGAATGCTGTACGGTATGCACT -ACGGAATGCTGTACGGTACTGACT -ACGGAATGCTGTACGGTACAACCT -ACGGAATGCTGTACGGTAGCTACT -ACGGAATGCTGTACGGTAGGATCT -ACGGAATGCTGTACGGTAAAGGCT -ACGGAATGCTGTACGGTATCAACC -ACGGAATGCTGTACGGTATGTTCC -ACGGAATGCTGTACGGTAATTCCC -ACGGAATGCTGTACGGTATTCTCG -ACGGAATGCTGTACGGTATAGACG -ACGGAATGCTGTACGGTAGTAACG -ACGGAATGCTGTACGGTAACTTCG -ACGGAATGCTGTACGGTATACGCA -ACGGAATGCTGTACGGTACTTGCA -ACGGAATGCTGTACGGTACGAACA -ACGGAATGCTGTACGGTACAGTCA -ACGGAATGCTGTACGGTAGATCCA -ACGGAATGCTGTACGGTAACGACA -ACGGAATGCTGTACGGTAAGCTCA -ACGGAATGCTGTACGGTATCACGT -ACGGAATGCTGTACGGTACGTAGT -ACGGAATGCTGTACGGTAGTCAGT -ACGGAATGCTGTACGGTAGAAGGT -ACGGAATGCTGTACGGTAAACCGT -ACGGAATGCTGTACGGTATTGTGC -ACGGAATGCTGTACGGTACTAAGC -ACGGAATGCTGTACGGTAACTAGC -ACGGAATGCTGTACGGTAAGATGC -ACGGAATGCTGTACGGTATGAAGG -ACGGAATGCTGTACGGTACAATGG -ACGGAATGCTGTACGGTAATGAGG -ACGGAATGCTGTACGGTAAATGGG -ACGGAATGCTGTACGGTATCCTGA -ACGGAATGCTGTACGGTATAGCGA -ACGGAATGCTGTACGGTACACAGA -ACGGAATGCTGTACGGTAGCAAGA -ACGGAATGCTGTACGGTAGGTTGA -ACGGAATGCTGTACGGTATCCGAT -ACGGAATGCTGTACGGTATGGCAT -ACGGAATGCTGTACGGTACGAGAT -ACGGAATGCTGTACGGTATACCAC -ACGGAATGCTGTACGGTACAGAAC -ACGGAATGCTGTACGGTAGTCTAC -ACGGAATGCTGTACGGTAACGTAC -ACGGAATGCTGTACGGTAAGTGAC -ACGGAATGCTGTACGGTACTGTAG -ACGGAATGCTGTACGGTACCTAAG -ACGGAATGCTGTACGGTAGTTCAG -ACGGAATGCTGTACGGTAGCATAG -ACGGAATGCTGTACGGTAGACAAG -ACGGAATGCTGTACGGTAAAGCAG -ACGGAATGCTGTACGGTACGTCAA -ACGGAATGCTGTACGGTAGCTGAA -ACGGAATGCTGTACGGTAAGTACG -ACGGAATGCTGTACGGTAATCCGA -ACGGAATGCTGTACGGTAATGGGA -ACGGAATGCTGTACGGTAGTGCAA -ACGGAATGCTGTACGGTAGAGGAA -ACGGAATGCTGTACGGTACAGGTA -ACGGAATGCTGTACGGTAGACTCT -ACGGAATGCTGTACGGTAAGTCCT -ACGGAATGCTGTACGGTATAAGCC -ACGGAATGCTGTACGGTAATAGCC -ACGGAATGCTGTACGGTATAACCG -ACGGAATGCTGTACGGTAATGCCA -ACGGAATGCTGTTCGACTGGAAAC -ACGGAATGCTGTTCGACTAACACC -ACGGAATGCTGTTCGACTATCGAG -ACGGAATGCTGTTCGACTCTCCTT -ACGGAATGCTGTTCGACTCCTGTT -ACGGAATGCTGTTCGACTCGGTTT -ACGGAATGCTGTTCGACTGTGGTT -ACGGAATGCTGTTCGACTGCCTTT -ACGGAATGCTGTTCGACTGGTCTT -ACGGAATGCTGTTCGACTACGCTT -ACGGAATGCTGTTCGACTAGCGTT -ACGGAATGCTGTTCGACTTTCGTC -ACGGAATGCTGTTCGACTTCTCTC -ACGGAATGCTGTTCGACTTGGATC -ACGGAATGCTGTTCGACTCACTTC -ACGGAATGCTGTTCGACTGTACTC -ACGGAATGCTGTTCGACTGATGTC -ACGGAATGCTGTTCGACTACAGTC -ACGGAATGCTGTTCGACTTTGCTG -ACGGAATGCTGTTCGACTTCCATG -ACGGAATGCTGTTCGACTTGTGTG -ACGGAATGCTGTTCGACTCTAGTG -ACGGAATGCTGTTCGACTCATCTG -ACGGAATGCTGTTCGACTGAGTTG -ACGGAATGCTGTTCGACTAGACTG -ACGGAATGCTGTTCGACTTCGGTA -ACGGAATGCTGTTCGACTTGCCTA -ACGGAATGCTGTTCGACTCCACTA -ACGGAATGCTGTTCGACTGGAGTA -ACGGAATGCTGTTCGACTTCGTCT -ACGGAATGCTGTTCGACTTGCACT -ACGGAATGCTGTTCGACTCTGACT -ACGGAATGCTGTTCGACTCAACCT -ACGGAATGCTGTTCGACTGCTACT -ACGGAATGCTGTTCGACTGGATCT -ACGGAATGCTGTTCGACTAAGGCT -ACGGAATGCTGTTCGACTTCAACC -ACGGAATGCTGTTCGACTTGTTCC -ACGGAATGCTGTTCGACTATTCCC -ACGGAATGCTGTTCGACTTTCTCG -ACGGAATGCTGTTCGACTTAGACG -ACGGAATGCTGTTCGACTGTAACG -ACGGAATGCTGTTCGACTACTTCG -ACGGAATGCTGTTCGACTTACGCA -ACGGAATGCTGTTCGACTCTTGCA -ACGGAATGCTGTTCGACTCGAACA -ACGGAATGCTGTTCGACTCAGTCA -ACGGAATGCTGTTCGACTGATCCA -ACGGAATGCTGTTCGACTACGACA -ACGGAATGCTGTTCGACTAGCTCA -ACGGAATGCTGTTCGACTTCACGT -ACGGAATGCTGTTCGACTCGTAGT -ACGGAATGCTGTTCGACTGTCAGT -ACGGAATGCTGTTCGACTGAAGGT -ACGGAATGCTGTTCGACTAACCGT -ACGGAATGCTGTTCGACTTTGTGC -ACGGAATGCTGTTCGACTCTAAGC -ACGGAATGCTGTTCGACTACTAGC -ACGGAATGCTGTTCGACTAGATGC -ACGGAATGCTGTTCGACTTGAAGG -ACGGAATGCTGTTCGACTCAATGG -ACGGAATGCTGTTCGACTATGAGG -ACGGAATGCTGTTCGACTAATGGG -ACGGAATGCTGTTCGACTTCCTGA -ACGGAATGCTGTTCGACTTAGCGA -ACGGAATGCTGTTCGACTCACAGA -ACGGAATGCTGTTCGACTGCAAGA -ACGGAATGCTGTTCGACTGGTTGA -ACGGAATGCTGTTCGACTTCCGAT -ACGGAATGCTGTTCGACTTGGCAT -ACGGAATGCTGTTCGACTCGAGAT -ACGGAATGCTGTTCGACTTACCAC -ACGGAATGCTGTTCGACTCAGAAC -ACGGAATGCTGTTCGACTGTCTAC -ACGGAATGCTGTTCGACTACGTAC -ACGGAATGCTGTTCGACTAGTGAC -ACGGAATGCTGTTCGACTCTGTAG -ACGGAATGCTGTTCGACTCCTAAG -ACGGAATGCTGTTCGACTGTTCAG -ACGGAATGCTGTTCGACTGCATAG -ACGGAATGCTGTTCGACTGACAAG -ACGGAATGCTGTTCGACTAAGCAG -ACGGAATGCTGTTCGACTCGTCAA -ACGGAATGCTGTTCGACTGCTGAA -ACGGAATGCTGTTCGACTAGTACG -ACGGAATGCTGTTCGACTATCCGA -ACGGAATGCTGTTCGACTATGGGA -ACGGAATGCTGTTCGACTGTGCAA -ACGGAATGCTGTTCGACTGAGGAA -ACGGAATGCTGTTCGACTCAGGTA -ACGGAATGCTGTTCGACTGACTCT -ACGGAATGCTGTTCGACTAGTCCT -ACGGAATGCTGTTCGACTTAAGCC -ACGGAATGCTGTTCGACTATAGCC -ACGGAATGCTGTTCGACTTAACCG -ACGGAATGCTGTTCGACTATGCCA -ACGGAATGCTGTGCATACGGAAAC -ACGGAATGCTGTGCATACAACACC -ACGGAATGCTGTGCATACATCGAG -ACGGAATGCTGTGCATACCTCCTT -ACGGAATGCTGTGCATACCCTGTT -ACGGAATGCTGTGCATACCGGTTT -ACGGAATGCTGTGCATACGTGGTT -ACGGAATGCTGTGCATACGCCTTT -ACGGAATGCTGTGCATACGGTCTT -ACGGAATGCTGTGCATACACGCTT -ACGGAATGCTGTGCATACAGCGTT -ACGGAATGCTGTGCATACTTCGTC -ACGGAATGCTGTGCATACTCTCTC -ACGGAATGCTGTGCATACTGGATC -ACGGAATGCTGTGCATACCACTTC -ACGGAATGCTGTGCATACGTACTC -ACGGAATGCTGTGCATACGATGTC -ACGGAATGCTGTGCATACACAGTC -ACGGAATGCTGTGCATACTTGCTG -ACGGAATGCTGTGCATACTCCATG -ACGGAATGCTGTGCATACTGTGTG -ACGGAATGCTGTGCATACCTAGTG -ACGGAATGCTGTGCATACCATCTG -ACGGAATGCTGTGCATACGAGTTG -ACGGAATGCTGTGCATACAGACTG -ACGGAATGCTGTGCATACTCGGTA -ACGGAATGCTGTGCATACTGCCTA -ACGGAATGCTGTGCATACCCACTA -ACGGAATGCTGTGCATACGGAGTA -ACGGAATGCTGTGCATACTCGTCT -ACGGAATGCTGTGCATACTGCACT -ACGGAATGCTGTGCATACCTGACT -ACGGAATGCTGTGCATACCAACCT -ACGGAATGCTGTGCATACGCTACT -ACGGAATGCTGTGCATACGGATCT -ACGGAATGCTGTGCATACAAGGCT -ACGGAATGCTGTGCATACTCAACC -ACGGAATGCTGTGCATACTGTTCC -ACGGAATGCTGTGCATACATTCCC -ACGGAATGCTGTGCATACTTCTCG -ACGGAATGCTGTGCATACTAGACG -ACGGAATGCTGTGCATACGTAACG -ACGGAATGCTGTGCATACACTTCG -ACGGAATGCTGTGCATACTACGCA -ACGGAATGCTGTGCATACCTTGCA -ACGGAATGCTGTGCATACCGAACA -ACGGAATGCTGTGCATACCAGTCA -ACGGAATGCTGTGCATACGATCCA -ACGGAATGCTGTGCATACACGACA -ACGGAATGCTGTGCATACAGCTCA -ACGGAATGCTGTGCATACTCACGT -ACGGAATGCTGTGCATACCGTAGT -ACGGAATGCTGTGCATACGTCAGT -ACGGAATGCTGTGCATACGAAGGT -ACGGAATGCTGTGCATACAACCGT -ACGGAATGCTGTGCATACTTGTGC -ACGGAATGCTGTGCATACCTAAGC -ACGGAATGCTGTGCATACACTAGC -ACGGAATGCTGTGCATACAGATGC -ACGGAATGCTGTGCATACTGAAGG -ACGGAATGCTGTGCATACCAATGG -ACGGAATGCTGTGCATACATGAGG -ACGGAATGCTGTGCATACAATGGG -ACGGAATGCTGTGCATACTCCTGA -ACGGAATGCTGTGCATACTAGCGA -ACGGAATGCTGTGCATACCACAGA -ACGGAATGCTGTGCATACGCAAGA -ACGGAATGCTGTGCATACGGTTGA -ACGGAATGCTGTGCATACTCCGAT -ACGGAATGCTGTGCATACTGGCAT -ACGGAATGCTGTGCATACCGAGAT -ACGGAATGCTGTGCATACTACCAC -ACGGAATGCTGTGCATACCAGAAC -ACGGAATGCTGTGCATACGTCTAC -ACGGAATGCTGTGCATACACGTAC -ACGGAATGCTGTGCATACAGTGAC -ACGGAATGCTGTGCATACCTGTAG -ACGGAATGCTGTGCATACCCTAAG -ACGGAATGCTGTGCATACGTTCAG -ACGGAATGCTGTGCATACGCATAG -ACGGAATGCTGTGCATACGACAAG -ACGGAATGCTGTGCATACAAGCAG -ACGGAATGCTGTGCATACCGTCAA -ACGGAATGCTGTGCATACGCTGAA -ACGGAATGCTGTGCATACAGTACG -ACGGAATGCTGTGCATACATCCGA -ACGGAATGCTGTGCATACATGGGA -ACGGAATGCTGTGCATACGTGCAA -ACGGAATGCTGTGCATACGAGGAA -ACGGAATGCTGTGCATACCAGGTA -ACGGAATGCTGTGCATACGACTCT -ACGGAATGCTGTGCATACAGTCCT -ACGGAATGCTGTGCATACTAAGCC -ACGGAATGCTGTGCATACATAGCC -ACGGAATGCTGTGCATACTAACCG -ACGGAATGCTGTGCATACATGCCA -ACGGAATGCTGTGCACTTGGAAAC -ACGGAATGCTGTGCACTTAACACC -ACGGAATGCTGTGCACTTATCGAG -ACGGAATGCTGTGCACTTCTCCTT -ACGGAATGCTGTGCACTTCCTGTT -ACGGAATGCTGTGCACTTCGGTTT -ACGGAATGCTGTGCACTTGTGGTT -ACGGAATGCTGTGCACTTGCCTTT -ACGGAATGCTGTGCACTTGGTCTT -ACGGAATGCTGTGCACTTACGCTT -ACGGAATGCTGTGCACTTAGCGTT -ACGGAATGCTGTGCACTTTTCGTC -ACGGAATGCTGTGCACTTTCTCTC -ACGGAATGCTGTGCACTTTGGATC -ACGGAATGCTGTGCACTTCACTTC -ACGGAATGCTGTGCACTTGTACTC -ACGGAATGCTGTGCACTTGATGTC -ACGGAATGCTGTGCACTTACAGTC -ACGGAATGCTGTGCACTTTTGCTG -ACGGAATGCTGTGCACTTTCCATG -ACGGAATGCTGTGCACTTTGTGTG -ACGGAATGCTGTGCACTTCTAGTG -ACGGAATGCTGTGCACTTCATCTG -ACGGAATGCTGTGCACTTGAGTTG -ACGGAATGCTGTGCACTTAGACTG -ACGGAATGCTGTGCACTTTCGGTA -ACGGAATGCTGTGCACTTTGCCTA -ACGGAATGCTGTGCACTTCCACTA -ACGGAATGCTGTGCACTTGGAGTA -ACGGAATGCTGTGCACTTTCGTCT -ACGGAATGCTGTGCACTTTGCACT -ACGGAATGCTGTGCACTTCTGACT -ACGGAATGCTGTGCACTTCAACCT -ACGGAATGCTGTGCACTTGCTACT -ACGGAATGCTGTGCACTTGGATCT -ACGGAATGCTGTGCACTTAAGGCT -ACGGAATGCTGTGCACTTTCAACC -ACGGAATGCTGTGCACTTTGTTCC -ACGGAATGCTGTGCACTTATTCCC -ACGGAATGCTGTGCACTTTTCTCG -ACGGAATGCTGTGCACTTTAGACG -ACGGAATGCTGTGCACTTGTAACG -ACGGAATGCTGTGCACTTACTTCG -ACGGAATGCTGTGCACTTTACGCA -ACGGAATGCTGTGCACTTCTTGCA -ACGGAATGCTGTGCACTTCGAACA -ACGGAATGCTGTGCACTTCAGTCA -ACGGAATGCTGTGCACTTGATCCA -ACGGAATGCTGTGCACTTACGACA -ACGGAATGCTGTGCACTTAGCTCA -ACGGAATGCTGTGCACTTTCACGT -ACGGAATGCTGTGCACTTCGTAGT -ACGGAATGCTGTGCACTTGTCAGT -ACGGAATGCTGTGCACTTGAAGGT -ACGGAATGCTGTGCACTTAACCGT -ACGGAATGCTGTGCACTTTTGTGC -ACGGAATGCTGTGCACTTCTAAGC -ACGGAATGCTGTGCACTTACTAGC -ACGGAATGCTGTGCACTTAGATGC -ACGGAATGCTGTGCACTTTGAAGG -ACGGAATGCTGTGCACTTCAATGG -ACGGAATGCTGTGCACTTATGAGG -ACGGAATGCTGTGCACTTAATGGG -ACGGAATGCTGTGCACTTTCCTGA -ACGGAATGCTGTGCACTTTAGCGA -ACGGAATGCTGTGCACTTCACAGA -ACGGAATGCTGTGCACTTGCAAGA -ACGGAATGCTGTGCACTTGGTTGA -ACGGAATGCTGTGCACTTTCCGAT -ACGGAATGCTGTGCACTTTGGCAT -ACGGAATGCTGTGCACTTCGAGAT -ACGGAATGCTGTGCACTTTACCAC -ACGGAATGCTGTGCACTTCAGAAC -ACGGAATGCTGTGCACTTGTCTAC -ACGGAATGCTGTGCACTTACGTAC -ACGGAATGCTGTGCACTTAGTGAC -ACGGAATGCTGTGCACTTCTGTAG -ACGGAATGCTGTGCACTTCCTAAG -ACGGAATGCTGTGCACTTGTTCAG -ACGGAATGCTGTGCACTTGCATAG -ACGGAATGCTGTGCACTTGACAAG -ACGGAATGCTGTGCACTTAAGCAG -ACGGAATGCTGTGCACTTCGTCAA -ACGGAATGCTGTGCACTTGCTGAA -ACGGAATGCTGTGCACTTAGTACG -ACGGAATGCTGTGCACTTATCCGA -ACGGAATGCTGTGCACTTATGGGA -ACGGAATGCTGTGCACTTGTGCAA -ACGGAATGCTGTGCACTTGAGGAA -ACGGAATGCTGTGCACTTCAGGTA -ACGGAATGCTGTGCACTTGACTCT -ACGGAATGCTGTGCACTTAGTCCT -ACGGAATGCTGTGCACTTTAAGCC -ACGGAATGCTGTGCACTTATAGCC -ACGGAATGCTGTGCACTTTAACCG -ACGGAATGCTGTGCACTTATGCCA -ACGGAATGCTGTACACGAGGAAAC -ACGGAATGCTGTACACGAAACACC -ACGGAATGCTGTACACGAATCGAG -ACGGAATGCTGTACACGACTCCTT -ACGGAATGCTGTACACGACCTGTT -ACGGAATGCTGTACACGACGGTTT -ACGGAATGCTGTACACGAGTGGTT -ACGGAATGCTGTACACGAGCCTTT -ACGGAATGCTGTACACGAGGTCTT -ACGGAATGCTGTACACGAACGCTT -ACGGAATGCTGTACACGAAGCGTT -ACGGAATGCTGTACACGATTCGTC -ACGGAATGCTGTACACGATCTCTC -ACGGAATGCTGTACACGATGGATC -ACGGAATGCTGTACACGACACTTC -ACGGAATGCTGTACACGAGTACTC -ACGGAATGCTGTACACGAGATGTC -ACGGAATGCTGTACACGAACAGTC -ACGGAATGCTGTACACGATTGCTG -ACGGAATGCTGTACACGATCCATG -ACGGAATGCTGTACACGATGTGTG -ACGGAATGCTGTACACGACTAGTG -ACGGAATGCTGTACACGACATCTG -ACGGAATGCTGTACACGAGAGTTG -ACGGAATGCTGTACACGAAGACTG -ACGGAATGCTGTACACGATCGGTA -ACGGAATGCTGTACACGATGCCTA -ACGGAATGCTGTACACGACCACTA -ACGGAATGCTGTACACGAGGAGTA -ACGGAATGCTGTACACGATCGTCT -ACGGAATGCTGTACACGATGCACT -ACGGAATGCTGTACACGACTGACT -ACGGAATGCTGTACACGACAACCT -ACGGAATGCTGTACACGAGCTACT -ACGGAATGCTGTACACGAGGATCT -ACGGAATGCTGTACACGAAAGGCT -ACGGAATGCTGTACACGATCAACC -ACGGAATGCTGTACACGATGTTCC -ACGGAATGCTGTACACGAATTCCC -ACGGAATGCTGTACACGATTCTCG -ACGGAATGCTGTACACGATAGACG -ACGGAATGCTGTACACGAGTAACG -ACGGAATGCTGTACACGAACTTCG -ACGGAATGCTGTACACGATACGCA -ACGGAATGCTGTACACGACTTGCA -ACGGAATGCTGTACACGACGAACA -ACGGAATGCTGTACACGACAGTCA -ACGGAATGCTGTACACGAGATCCA -ACGGAATGCTGTACACGAACGACA -ACGGAATGCTGTACACGAAGCTCA -ACGGAATGCTGTACACGATCACGT -ACGGAATGCTGTACACGACGTAGT -ACGGAATGCTGTACACGAGTCAGT -ACGGAATGCTGTACACGAGAAGGT -ACGGAATGCTGTACACGAAACCGT -ACGGAATGCTGTACACGATTGTGC -ACGGAATGCTGTACACGACTAAGC -ACGGAATGCTGTACACGAACTAGC -ACGGAATGCTGTACACGAAGATGC -ACGGAATGCTGTACACGATGAAGG -ACGGAATGCTGTACACGACAATGG -ACGGAATGCTGTACACGAATGAGG -ACGGAATGCTGTACACGAAATGGG -ACGGAATGCTGTACACGATCCTGA -ACGGAATGCTGTACACGATAGCGA -ACGGAATGCTGTACACGACACAGA -ACGGAATGCTGTACACGAGCAAGA -ACGGAATGCTGTACACGAGGTTGA -ACGGAATGCTGTACACGATCCGAT -ACGGAATGCTGTACACGATGGCAT -ACGGAATGCTGTACACGACGAGAT -ACGGAATGCTGTACACGATACCAC -ACGGAATGCTGTACACGACAGAAC -ACGGAATGCTGTACACGAGTCTAC -ACGGAATGCTGTACACGAACGTAC -ACGGAATGCTGTACACGAAGTGAC -ACGGAATGCTGTACACGACTGTAG -ACGGAATGCTGTACACGACCTAAG -ACGGAATGCTGTACACGAGTTCAG -ACGGAATGCTGTACACGAGCATAG -ACGGAATGCTGTACACGAGACAAG -ACGGAATGCTGTACACGAAAGCAG -ACGGAATGCTGTACACGACGTCAA -ACGGAATGCTGTACACGAGCTGAA -ACGGAATGCTGTACACGAAGTACG -ACGGAATGCTGTACACGAATCCGA -ACGGAATGCTGTACACGAATGGGA -ACGGAATGCTGTACACGAGTGCAA -ACGGAATGCTGTACACGAGAGGAA -ACGGAATGCTGTACACGACAGGTA -ACGGAATGCTGTACACGAGACTCT -ACGGAATGCTGTACACGAAGTCCT -ACGGAATGCTGTACACGATAAGCC -ACGGAATGCTGTACACGAATAGCC -ACGGAATGCTGTACACGATAACCG -ACGGAATGCTGTACACGAATGCCA -ACGGAATGCTGTTCACAGGGAAAC -ACGGAATGCTGTTCACAGAACACC -ACGGAATGCTGTTCACAGATCGAG -ACGGAATGCTGTTCACAGCTCCTT -ACGGAATGCTGTTCACAGCCTGTT -ACGGAATGCTGTTCACAGCGGTTT -ACGGAATGCTGTTCACAGGTGGTT -ACGGAATGCTGTTCACAGGCCTTT -ACGGAATGCTGTTCACAGGGTCTT -ACGGAATGCTGTTCACAGACGCTT -ACGGAATGCTGTTCACAGAGCGTT -ACGGAATGCTGTTCACAGTTCGTC -ACGGAATGCTGTTCACAGTCTCTC -ACGGAATGCTGTTCACAGTGGATC -ACGGAATGCTGTTCACAGCACTTC -ACGGAATGCTGTTCACAGGTACTC -ACGGAATGCTGTTCACAGGATGTC -ACGGAATGCTGTTCACAGACAGTC -ACGGAATGCTGTTCACAGTTGCTG -ACGGAATGCTGTTCACAGTCCATG -ACGGAATGCTGTTCACAGTGTGTG -ACGGAATGCTGTTCACAGCTAGTG -ACGGAATGCTGTTCACAGCATCTG -ACGGAATGCTGTTCACAGGAGTTG -ACGGAATGCTGTTCACAGAGACTG -ACGGAATGCTGTTCACAGTCGGTA -ACGGAATGCTGTTCACAGTGCCTA -ACGGAATGCTGTTCACAGCCACTA -ACGGAATGCTGTTCACAGGGAGTA -ACGGAATGCTGTTCACAGTCGTCT -ACGGAATGCTGTTCACAGTGCACT -ACGGAATGCTGTTCACAGCTGACT -ACGGAATGCTGTTCACAGCAACCT -ACGGAATGCTGTTCACAGGCTACT -ACGGAATGCTGTTCACAGGGATCT -ACGGAATGCTGTTCACAGAAGGCT -ACGGAATGCTGTTCACAGTCAACC -ACGGAATGCTGTTCACAGTGTTCC -ACGGAATGCTGTTCACAGATTCCC -ACGGAATGCTGTTCACAGTTCTCG -ACGGAATGCTGTTCACAGTAGACG -ACGGAATGCTGTTCACAGGTAACG -ACGGAATGCTGTTCACAGACTTCG -ACGGAATGCTGTTCACAGTACGCA -ACGGAATGCTGTTCACAGCTTGCA -ACGGAATGCTGTTCACAGCGAACA -ACGGAATGCTGTTCACAGCAGTCA -ACGGAATGCTGTTCACAGGATCCA -ACGGAATGCTGTTCACAGACGACA -ACGGAATGCTGTTCACAGAGCTCA -ACGGAATGCTGTTCACAGTCACGT -ACGGAATGCTGTTCACAGCGTAGT -ACGGAATGCTGTTCACAGGTCAGT -ACGGAATGCTGTTCACAGGAAGGT -ACGGAATGCTGTTCACAGAACCGT -ACGGAATGCTGTTCACAGTTGTGC -ACGGAATGCTGTTCACAGCTAAGC -ACGGAATGCTGTTCACAGACTAGC -ACGGAATGCTGTTCACAGAGATGC -ACGGAATGCTGTTCACAGTGAAGG -ACGGAATGCTGTTCACAGCAATGG -ACGGAATGCTGTTCACAGATGAGG -ACGGAATGCTGTTCACAGAATGGG -ACGGAATGCTGTTCACAGTCCTGA -ACGGAATGCTGTTCACAGTAGCGA -ACGGAATGCTGTTCACAGCACAGA -ACGGAATGCTGTTCACAGGCAAGA -ACGGAATGCTGTTCACAGGGTTGA -ACGGAATGCTGTTCACAGTCCGAT -ACGGAATGCTGTTCACAGTGGCAT -ACGGAATGCTGTTCACAGCGAGAT -ACGGAATGCTGTTCACAGTACCAC -ACGGAATGCTGTTCACAGCAGAAC -ACGGAATGCTGTTCACAGGTCTAC -ACGGAATGCTGTTCACAGACGTAC -ACGGAATGCTGTTCACAGAGTGAC -ACGGAATGCTGTTCACAGCTGTAG -ACGGAATGCTGTTCACAGCCTAAG -ACGGAATGCTGTTCACAGGTTCAG -ACGGAATGCTGTTCACAGGCATAG -ACGGAATGCTGTTCACAGGACAAG -ACGGAATGCTGTTCACAGAAGCAG -ACGGAATGCTGTTCACAGCGTCAA -ACGGAATGCTGTTCACAGGCTGAA -ACGGAATGCTGTTCACAGAGTACG -ACGGAATGCTGTTCACAGATCCGA -ACGGAATGCTGTTCACAGATGGGA -ACGGAATGCTGTTCACAGGTGCAA -ACGGAATGCTGTTCACAGGAGGAA -ACGGAATGCTGTTCACAGCAGGTA -ACGGAATGCTGTTCACAGGACTCT -ACGGAATGCTGTTCACAGAGTCCT -ACGGAATGCTGTTCACAGTAAGCC -ACGGAATGCTGTTCACAGATAGCC -ACGGAATGCTGTTCACAGTAACCG -ACGGAATGCTGTTCACAGATGCCA -ACGGAATGCTGTCCAGATGGAAAC -ACGGAATGCTGTCCAGATAACACC -ACGGAATGCTGTCCAGATATCGAG -ACGGAATGCTGTCCAGATCTCCTT -ACGGAATGCTGTCCAGATCCTGTT -ACGGAATGCTGTCCAGATCGGTTT -ACGGAATGCTGTCCAGATGTGGTT -ACGGAATGCTGTCCAGATGCCTTT -ACGGAATGCTGTCCAGATGGTCTT -ACGGAATGCTGTCCAGATACGCTT -ACGGAATGCTGTCCAGATAGCGTT -ACGGAATGCTGTCCAGATTTCGTC -ACGGAATGCTGTCCAGATTCTCTC -ACGGAATGCTGTCCAGATTGGATC -ACGGAATGCTGTCCAGATCACTTC -ACGGAATGCTGTCCAGATGTACTC -ACGGAATGCTGTCCAGATGATGTC -ACGGAATGCTGTCCAGATACAGTC -ACGGAATGCTGTCCAGATTTGCTG -ACGGAATGCTGTCCAGATTCCATG -ACGGAATGCTGTCCAGATTGTGTG -ACGGAATGCTGTCCAGATCTAGTG -ACGGAATGCTGTCCAGATCATCTG -ACGGAATGCTGTCCAGATGAGTTG -ACGGAATGCTGTCCAGATAGACTG -ACGGAATGCTGTCCAGATTCGGTA -ACGGAATGCTGTCCAGATTGCCTA -ACGGAATGCTGTCCAGATCCACTA -ACGGAATGCTGTCCAGATGGAGTA -ACGGAATGCTGTCCAGATTCGTCT -ACGGAATGCTGTCCAGATTGCACT -ACGGAATGCTGTCCAGATCTGACT -ACGGAATGCTGTCCAGATCAACCT -ACGGAATGCTGTCCAGATGCTACT -ACGGAATGCTGTCCAGATGGATCT -ACGGAATGCTGTCCAGATAAGGCT -ACGGAATGCTGTCCAGATTCAACC -ACGGAATGCTGTCCAGATTGTTCC -ACGGAATGCTGTCCAGATATTCCC -ACGGAATGCTGTCCAGATTTCTCG -ACGGAATGCTGTCCAGATTAGACG -ACGGAATGCTGTCCAGATGTAACG -ACGGAATGCTGTCCAGATACTTCG -ACGGAATGCTGTCCAGATTACGCA -ACGGAATGCTGTCCAGATCTTGCA -ACGGAATGCTGTCCAGATCGAACA -ACGGAATGCTGTCCAGATCAGTCA -ACGGAATGCTGTCCAGATGATCCA -ACGGAATGCTGTCCAGATACGACA -ACGGAATGCTGTCCAGATAGCTCA -ACGGAATGCTGTCCAGATTCACGT -ACGGAATGCTGTCCAGATCGTAGT -ACGGAATGCTGTCCAGATGTCAGT -ACGGAATGCTGTCCAGATGAAGGT -ACGGAATGCTGTCCAGATAACCGT -ACGGAATGCTGTCCAGATTTGTGC -ACGGAATGCTGTCCAGATCTAAGC -ACGGAATGCTGTCCAGATACTAGC -ACGGAATGCTGTCCAGATAGATGC -ACGGAATGCTGTCCAGATTGAAGG -ACGGAATGCTGTCCAGATCAATGG -ACGGAATGCTGTCCAGATATGAGG -ACGGAATGCTGTCCAGATAATGGG -ACGGAATGCTGTCCAGATTCCTGA -ACGGAATGCTGTCCAGATTAGCGA -ACGGAATGCTGTCCAGATCACAGA -ACGGAATGCTGTCCAGATGCAAGA -ACGGAATGCTGTCCAGATGGTTGA -ACGGAATGCTGTCCAGATTCCGAT -ACGGAATGCTGTCCAGATTGGCAT -ACGGAATGCTGTCCAGATCGAGAT -ACGGAATGCTGTCCAGATTACCAC -ACGGAATGCTGTCCAGATCAGAAC -ACGGAATGCTGTCCAGATGTCTAC -ACGGAATGCTGTCCAGATACGTAC -ACGGAATGCTGTCCAGATAGTGAC -ACGGAATGCTGTCCAGATCTGTAG -ACGGAATGCTGTCCAGATCCTAAG -ACGGAATGCTGTCCAGATGTTCAG -ACGGAATGCTGTCCAGATGCATAG -ACGGAATGCTGTCCAGATGACAAG -ACGGAATGCTGTCCAGATAAGCAG -ACGGAATGCTGTCCAGATCGTCAA -ACGGAATGCTGTCCAGATGCTGAA -ACGGAATGCTGTCCAGATAGTACG -ACGGAATGCTGTCCAGATATCCGA -ACGGAATGCTGTCCAGATATGGGA -ACGGAATGCTGTCCAGATGTGCAA -ACGGAATGCTGTCCAGATGAGGAA -ACGGAATGCTGTCCAGATCAGGTA -ACGGAATGCTGTCCAGATGACTCT -ACGGAATGCTGTCCAGATAGTCCT -ACGGAATGCTGTCCAGATTAAGCC -ACGGAATGCTGTCCAGATATAGCC -ACGGAATGCTGTCCAGATTAACCG -ACGGAATGCTGTCCAGATATGCCA -ACGGAATGCTGTACAACGGGAAAC -ACGGAATGCTGTACAACGAACACC -ACGGAATGCTGTACAACGATCGAG -ACGGAATGCTGTACAACGCTCCTT -ACGGAATGCTGTACAACGCCTGTT -ACGGAATGCTGTACAACGCGGTTT -ACGGAATGCTGTACAACGGTGGTT -ACGGAATGCTGTACAACGGCCTTT -ACGGAATGCTGTACAACGGGTCTT -ACGGAATGCTGTACAACGACGCTT -ACGGAATGCTGTACAACGAGCGTT -ACGGAATGCTGTACAACGTTCGTC -ACGGAATGCTGTACAACGTCTCTC -ACGGAATGCTGTACAACGTGGATC -ACGGAATGCTGTACAACGCACTTC -ACGGAATGCTGTACAACGGTACTC -ACGGAATGCTGTACAACGGATGTC -ACGGAATGCTGTACAACGACAGTC -ACGGAATGCTGTACAACGTTGCTG -ACGGAATGCTGTACAACGTCCATG -ACGGAATGCTGTACAACGTGTGTG -ACGGAATGCTGTACAACGCTAGTG -ACGGAATGCTGTACAACGCATCTG -ACGGAATGCTGTACAACGGAGTTG -ACGGAATGCTGTACAACGAGACTG -ACGGAATGCTGTACAACGTCGGTA -ACGGAATGCTGTACAACGTGCCTA -ACGGAATGCTGTACAACGCCACTA -ACGGAATGCTGTACAACGGGAGTA -ACGGAATGCTGTACAACGTCGTCT -ACGGAATGCTGTACAACGTGCACT -ACGGAATGCTGTACAACGCTGACT -ACGGAATGCTGTACAACGCAACCT -ACGGAATGCTGTACAACGGCTACT -ACGGAATGCTGTACAACGGGATCT -ACGGAATGCTGTACAACGAAGGCT -ACGGAATGCTGTACAACGTCAACC -ACGGAATGCTGTACAACGTGTTCC -ACGGAATGCTGTACAACGATTCCC -ACGGAATGCTGTACAACGTTCTCG -ACGGAATGCTGTACAACGTAGACG -ACGGAATGCTGTACAACGGTAACG -ACGGAATGCTGTACAACGACTTCG -ACGGAATGCTGTACAACGTACGCA -ACGGAATGCTGTACAACGCTTGCA -ACGGAATGCTGTACAACGCGAACA -ACGGAATGCTGTACAACGCAGTCA -ACGGAATGCTGTACAACGGATCCA -ACGGAATGCTGTACAACGACGACA -ACGGAATGCTGTACAACGAGCTCA -ACGGAATGCTGTACAACGTCACGT -ACGGAATGCTGTACAACGCGTAGT -ACGGAATGCTGTACAACGGTCAGT -ACGGAATGCTGTACAACGGAAGGT -ACGGAATGCTGTACAACGAACCGT -ACGGAATGCTGTACAACGTTGTGC -ACGGAATGCTGTACAACGCTAAGC -ACGGAATGCTGTACAACGACTAGC -ACGGAATGCTGTACAACGAGATGC -ACGGAATGCTGTACAACGTGAAGG -ACGGAATGCTGTACAACGCAATGG -ACGGAATGCTGTACAACGATGAGG -ACGGAATGCTGTACAACGAATGGG -ACGGAATGCTGTACAACGTCCTGA -ACGGAATGCTGTACAACGTAGCGA -ACGGAATGCTGTACAACGCACAGA -ACGGAATGCTGTACAACGGCAAGA -ACGGAATGCTGTACAACGGGTTGA -ACGGAATGCTGTACAACGTCCGAT -ACGGAATGCTGTACAACGTGGCAT -ACGGAATGCTGTACAACGCGAGAT -ACGGAATGCTGTACAACGTACCAC -ACGGAATGCTGTACAACGCAGAAC -ACGGAATGCTGTACAACGGTCTAC -ACGGAATGCTGTACAACGACGTAC -ACGGAATGCTGTACAACGAGTGAC -ACGGAATGCTGTACAACGCTGTAG -ACGGAATGCTGTACAACGCCTAAG -ACGGAATGCTGTACAACGGTTCAG -ACGGAATGCTGTACAACGGCATAG -ACGGAATGCTGTACAACGGACAAG -ACGGAATGCTGTACAACGAAGCAG -ACGGAATGCTGTACAACGCGTCAA -ACGGAATGCTGTACAACGGCTGAA -ACGGAATGCTGTACAACGAGTACG -ACGGAATGCTGTACAACGATCCGA -ACGGAATGCTGTACAACGATGGGA -ACGGAATGCTGTACAACGGTGCAA -ACGGAATGCTGTACAACGGAGGAA -ACGGAATGCTGTACAACGCAGGTA -ACGGAATGCTGTACAACGGACTCT -ACGGAATGCTGTACAACGAGTCCT -ACGGAATGCTGTACAACGTAAGCC -ACGGAATGCTGTACAACGATAGCC -ACGGAATGCTGTACAACGTAACCG -ACGGAATGCTGTACAACGATGCCA -ACGGAATGCTGTTCAAGCGGAAAC -ACGGAATGCTGTTCAAGCAACACC -ACGGAATGCTGTTCAAGCATCGAG -ACGGAATGCTGTTCAAGCCTCCTT -ACGGAATGCTGTTCAAGCCCTGTT -ACGGAATGCTGTTCAAGCCGGTTT -ACGGAATGCTGTTCAAGCGTGGTT -ACGGAATGCTGTTCAAGCGCCTTT -ACGGAATGCTGTTCAAGCGGTCTT -ACGGAATGCTGTTCAAGCACGCTT -ACGGAATGCTGTTCAAGCAGCGTT -ACGGAATGCTGTTCAAGCTTCGTC -ACGGAATGCTGTTCAAGCTCTCTC -ACGGAATGCTGTTCAAGCTGGATC -ACGGAATGCTGTTCAAGCCACTTC -ACGGAATGCTGTTCAAGCGTACTC -ACGGAATGCTGTTCAAGCGATGTC -ACGGAATGCTGTTCAAGCACAGTC -ACGGAATGCTGTTCAAGCTTGCTG -ACGGAATGCTGTTCAAGCTCCATG -ACGGAATGCTGTTCAAGCTGTGTG -ACGGAATGCTGTTCAAGCCTAGTG -ACGGAATGCTGTTCAAGCCATCTG -ACGGAATGCTGTTCAAGCGAGTTG -ACGGAATGCTGTTCAAGCAGACTG -ACGGAATGCTGTTCAAGCTCGGTA -ACGGAATGCTGTTCAAGCTGCCTA -ACGGAATGCTGTTCAAGCCCACTA -ACGGAATGCTGTTCAAGCGGAGTA -ACGGAATGCTGTTCAAGCTCGTCT -ACGGAATGCTGTTCAAGCTGCACT -ACGGAATGCTGTTCAAGCCTGACT -ACGGAATGCTGTTCAAGCCAACCT -ACGGAATGCTGTTCAAGCGCTACT -ACGGAATGCTGTTCAAGCGGATCT -ACGGAATGCTGTTCAAGCAAGGCT -ACGGAATGCTGTTCAAGCTCAACC -ACGGAATGCTGTTCAAGCTGTTCC -ACGGAATGCTGTTCAAGCATTCCC -ACGGAATGCTGTTCAAGCTTCTCG -ACGGAATGCTGTTCAAGCTAGACG -ACGGAATGCTGTTCAAGCGTAACG -ACGGAATGCTGTTCAAGCACTTCG -ACGGAATGCTGTTCAAGCTACGCA -ACGGAATGCTGTTCAAGCCTTGCA -ACGGAATGCTGTTCAAGCCGAACA -ACGGAATGCTGTTCAAGCCAGTCA -ACGGAATGCTGTTCAAGCGATCCA -ACGGAATGCTGTTCAAGCACGACA -ACGGAATGCTGTTCAAGCAGCTCA -ACGGAATGCTGTTCAAGCTCACGT -ACGGAATGCTGTTCAAGCCGTAGT -ACGGAATGCTGTTCAAGCGTCAGT -ACGGAATGCTGTTCAAGCGAAGGT -ACGGAATGCTGTTCAAGCAACCGT -ACGGAATGCTGTTCAAGCTTGTGC -ACGGAATGCTGTTCAAGCCTAAGC -ACGGAATGCTGTTCAAGCACTAGC -ACGGAATGCTGTTCAAGCAGATGC -ACGGAATGCTGTTCAAGCTGAAGG -ACGGAATGCTGTTCAAGCCAATGG -ACGGAATGCTGTTCAAGCATGAGG -ACGGAATGCTGTTCAAGCAATGGG -ACGGAATGCTGTTCAAGCTCCTGA -ACGGAATGCTGTTCAAGCTAGCGA -ACGGAATGCTGTTCAAGCCACAGA -ACGGAATGCTGTTCAAGCGCAAGA -ACGGAATGCTGTTCAAGCGGTTGA -ACGGAATGCTGTTCAAGCTCCGAT -ACGGAATGCTGTTCAAGCTGGCAT -ACGGAATGCTGTTCAAGCCGAGAT -ACGGAATGCTGTTCAAGCTACCAC -ACGGAATGCTGTTCAAGCCAGAAC -ACGGAATGCTGTTCAAGCGTCTAC -ACGGAATGCTGTTCAAGCACGTAC -ACGGAATGCTGTTCAAGCAGTGAC -ACGGAATGCTGTTCAAGCCTGTAG -ACGGAATGCTGTTCAAGCCCTAAG -ACGGAATGCTGTTCAAGCGTTCAG -ACGGAATGCTGTTCAAGCGCATAG -ACGGAATGCTGTTCAAGCGACAAG -ACGGAATGCTGTTCAAGCAAGCAG -ACGGAATGCTGTTCAAGCCGTCAA -ACGGAATGCTGTTCAAGCGCTGAA -ACGGAATGCTGTTCAAGCAGTACG -ACGGAATGCTGTTCAAGCATCCGA -ACGGAATGCTGTTCAAGCATGGGA -ACGGAATGCTGTTCAAGCGTGCAA -ACGGAATGCTGTTCAAGCGAGGAA -ACGGAATGCTGTTCAAGCCAGGTA -ACGGAATGCTGTTCAAGCGACTCT -ACGGAATGCTGTTCAAGCAGTCCT -ACGGAATGCTGTTCAAGCTAAGCC -ACGGAATGCTGTTCAAGCATAGCC -ACGGAATGCTGTTCAAGCTAACCG -ACGGAATGCTGTTCAAGCATGCCA -ACGGAATGCTGTCGTTCAGGAAAC -ACGGAATGCTGTCGTTCAAACACC -ACGGAATGCTGTCGTTCAATCGAG -ACGGAATGCTGTCGTTCACTCCTT -ACGGAATGCTGTCGTTCACCTGTT -ACGGAATGCTGTCGTTCACGGTTT -ACGGAATGCTGTCGTTCAGTGGTT -ACGGAATGCTGTCGTTCAGCCTTT -ACGGAATGCTGTCGTTCAGGTCTT -ACGGAATGCTGTCGTTCAACGCTT -ACGGAATGCTGTCGTTCAAGCGTT -ACGGAATGCTGTCGTTCATTCGTC -ACGGAATGCTGTCGTTCATCTCTC -ACGGAATGCTGTCGTTCATGGATC -ACGGAATGCTGTCGTTCACACTTC -ACGGAATGCTGTCGTTCAGTACTC -ACGGAATGCTGTCGTTCAGATGTC -ACGGAATGCTGTCGTTCAACAGTC -ACGGAATGCTGTCGTTCATTGCTG -ACGGAATGCTGTCGTTCATCCATG -ACGGAATGCTGTCGTTCATGTGTG -ACGGAATGCTGTCGTTCACTAGTG -ACGGAATGCTGTCGTTCACATCTG -ACGGAATGCTGTCGTTCAGAGTTG -ACGGAATGCTGTCGTTCAAGACTG -ACGGAATGCTGTCGTTCATCGGTA -ACGGAATGCTGTCGTTCATGCCTA -ACGGAATGCTGTCGTTCACCACTA -ACGGAATGCTGTCGTTCAGGAGTA -ACGGAATGCTGTCGTTCATCGTCT -ACGGAATGCTGTCGTTCATGCACT -ACGGAATGCTGTCGTTCACTGACT -ACGGAATGCTGTCGTTCACAACCT -ACGGAATGCTGTCGTTCAGCTACT -ACGGAATGCTGTCGTTCAGGATCT -ACGGAATGCTGTCGTTCAAAGGCT -ACGGAATGCTGTCGTTCATCAACC -ACGGAATGCTGTCGTTCATGTTCC -ACGGAATGCTGTCGTTCAATTCCC -ACGGAATGCTGTCGTTCATTCTCG -ACGGAATGCTGTCGTTCATAGACG -ACGGAATGCTGTCGTTCAGTAACG -ACGGAATGCTGTCGTTCAACTTCG -ACGGAATGCTGTCGTTCATACGCA -ACGGAATGCTGTCGTTCACTTGCA -ACGGAATGCTGTCGTTCACGAACA -ACGGAATGCTGTCGTTCACAGTCA -ACGGAATGCTGTCGTTCAGATCCA -ACGGAATGCTGTCGTTCAACGACA -ACGGAATGCTGTCGTTCAAGCTCA -ACGGAATGCTGTCGTTCATCACGT -ACGGAATGCTGTCGTTCACGTAGT -ACGGAATGCTGTCGTTCAGTCAGT -ACGGAATGCTGTCGTTCAGAAGGT -ACGGAATGCTGTCGTTCAAACCGT -ACGGAATGCTGTCGTTCATTGTGC -ACGGAATGCTGTCGTTCACTAAGC -ACGGAATGCTGTCGTTCAACTAGC -ACGGAATGCTGTCGTTCAAGATGC -ACGGAATGCTGTCGTTCATGAAGG -ACGGAATGCTGTCGTTCACAATGG -ACGGAATGCTGTCGTTCAATGAGG -ACGGAATGCTGTCGTTCAAATGGG -ACGGAATGCTGTCGTTCATCCTGA -ACGGAATGCTGTCGTTCATAGCGA -ACGGAATGCTGTCGTTCACACAGA -ACGGAATGCTGTCGTTCAGCAAGA -ACGGAATGCTGTCGTTCAGGTTGA -ACGGAATGCTGTCGTTCATCCGAT -ACGGAATGCTGTCGTTCATGGCAT -ACGGAATGCTGTCGTTCACGAGAT -ACGGAATGCTGTCGTTCATACCAC -ACGGAATGCTGTCGTTCACAGAAC -ACGGAATGCTGTCGTTCAGTCTAC -ACGGAATGCTGTCGTTCAACGTAC -ACGGAATGCTGTCGTTCAAGTGAC -ACGGAATGCTGTCGTTCACTGTAG -ACGGAATGCTGTCGTTCACCTAAG -ACGGAATGCTGTCGTTCAGTTCAG -ACGGAATGCTGTCGTTCAGCATAG -ACGGAATGCTGTCGTTCAGACAAG -ACGGAATGCTGTCGTTCAAAGCAG -ACGGAATGCTGTCGTTCACGTCAA -ACGGAATGCTGTCGTTCAGCTGAA -ACGGAATGCTGTCGTTCAAGTACG -ACGGAATGCTGTCGTTCAATCCGA -ACGGAATGCTGTCGTTCAATGGGA -ACGGAATGCTGTCGTTCAGTGCAA -ACGGAATGCTGTCGTTCAGAGGAA -ACGGAATGCTGTCGTTCACAGGTA -ACGGAATGCTGTCGTTCAGACTCT -ACGGAATGCTGTCGTTCAAGTCCT -ACGGAATGCTGTCGTTCATAAGCC -ACGGAATGCTGTCGTTCAATAGCC -ACGGAATGCTGTCGTTCATAACCG -ACGGAATGCTGTCGTTCAATGCCA -ACGGAATGCTGTAGTCGTGGAAAC -ACGGAATGCTGTAGTCGTAACACC -ACGGAATGCTGTAGTCGTATCGAG -ACGGAATGCTGTAGTCGTCTCCTT -ACGGAATGCTGTAGTCGTCCTGTT -ACGGAATGCTGTAGTCGTCGGTTT -ACGGAATGCTGTAGTCGTGTGGTT -ACGGAATGCTGTAGTCGTGCCTTT -ACGGAATGCTGTAGTCGTGGTCTT -ACGGAATGCTGTAGTCGTACGCTT -ACGGAATGCTGTAGTCGTAGCGTT -ACGGAATGCTGTAGTCGTTTCGTC -ACGGAATGCTGTAGTCGTTCTCTC -ACGGAATGCTGTAGTCGTTGGATC -ACGGAATGCTGTAGTCGTCACTTC -ACGGAATGCTGTAGTCGTGTACTC -ACGGAATGCTGTAGTCGTGATGTC -ACGGAATGCTGTAGTCGTACAGTC -ACGGAATGCTGTAGTCGTTTGCTG -ACGGAATGCTGTAGTCGTTCCATG -ACGGAATGCTGTAGTCGTTGTGTG -ACGGAATGCTGTAGTCGTCTAGTG -ACGGAATGCTGTAGTCGTCATCTG -ACGGAATGCTGTAGTCGTGAGTTG -ACGGAATGCTGTAGTCGTAGACTG -ACGGAATGCTGTAGTCGTTCGGTA -ACGGAATGCTGTAGTCGTTGCCTA -ACGGAATGCTGTAGTCGTCCACTA -ACGGAATGCTGTAGTCGTGGAGTA -ACGGAATGCTGTAGTCGTTCGTCT -ACGGAATGCTGTAGTCGTTGCACT -ACGGAATGCTGTAGTCGTCTGACT -ACGGAATGCTGTAGTCGTCAACCT -ACGGAATGCTGTAGTCGTGCTACT -ACGGAATGCTGTAGTCGTGGATCT -ACGGAATGCTGTAGTCGTAAGGCT -ACGGAATGCTGTAGTCGTTCAACC -ACGGAATGCTGTAGTCGTTGTTCC -ACGGAATGCTGTAGTCGTATTCCC -ACGGAATGCTGTAGTCGTTTCTCG -ACGGAATGCTGTAGTCGTTAGACG -ACGGAATGCTGTAGTCGTGTAACG -ACGGAATGCTGTAGTCGTACTTCG -ACGGAATGCTGTAGTCGTTACGCA -ACGGAATGCTGTAGTCGTCTTGCA -ACGGAATGCTGTAGTCGTCGAACA -ACGGAATGCTGTAGTCGTCAGTCA -ACGGAATGCTGTAGTCGTGATCCA -ACGGAATGCTGTAGTCGTACGACA -ACGGAATGCTGTAGTCGTAGCTCA -ACGGAATGCTGTAGTCGTTCACGT -ACGGAATGCTGTAGTCGTCGTAGT -ACGGAATGCTGTAGTCGTGTCAGT -ACGGAATGCTGTAGTCGTGAAGGT -ACGGAATGCTGTAGTCGTAACCGT -ACGGAATGCTGTAGTCGTTTGTGC -ACGGAATGCTGTAGTCGTCTAAGC -ACGGAATGCTGTAGTCGTACTAGC -ACGGAATGCTGTAGTCGTAGATGC -ACGGAATGCTGTAGTCGTTGAAGG -ACGGAATGCTGTAGTCGTCAATGG -ACGGAATGCTGTAGTCGTATGAGG -ACGGAATGCTGTAGTCGTAATGGG -ACGGAATGCTGTAGTCGTTCCTGA -ACGGAATGCTGTAGTCGTTAGCGA -ACGGAATGCTGTAGTCGTCACAGA -ACGGAATGCTGTAGTCGTGCAAGA -ACGGAATGCTGTAGTCGTGGTTGA -ACGGAATGCTGTAGTCGTTCCGAT -ACGGAATGCTGTAGTCGTTGGCAT -ACGGAATGCTGTAGTCGTCGAGAT -ACGGAATGCTGTAGTCGTTACCAC -ACGGAATGCTGTAGTCGTCAGAAC -ACGGAATGCTGTAGTCGTGTCTAC -ACGGAATGCTGTAGTCGTACGTAC -ACGGAATGCTGTAGTCGTAGTGAC -ACGGAATGCTGTAGTCGTCTGTAG -ACGGAATGCTGTAGTCGTCCTAAG -ACGGAATGCTGTAGTCGTGTTCAG -ACGGAATGCTGTAGTCGTGCATAG -ACGGAATGCTGTAGTCGTGACAAG -ACGGAATGCTGTAGTCGTAAGCAG -ACGGAATGCTGTAGTCGTCGTCAA -ACGGAATGCTGTAGTCGTGCTGAA -ACGGAATGCTGTAGTCGTAGTACG -ACGGAATGCTGTAGTCGTATCCGA -ACGGAATGCTGTAGTCGTATGGGA -ACGGAATGCTGTAGTCGTGTGCAA -ACGGAATGCTGTAGTCGTGAGGAA -ACGGAATGCTGTAGTCGTCAGGTA -ACGGAATGCTGTAGTCGTGACTCT -ACGGAATGCTGTAGTCGTAGTCCT -ACGGAATGCTGTAGTCGTTAAGCC -ACGGAATGCTGTAGTCGTATAGCC -ACGGAATGCTGTAGTCGTTAACCG -ACGGAATGCTGTAGTCGTATGCCA -ACGGAATGCTGTAGTGTCGGAAAC -ACGGAATGCTGTAGTGTCAACACC -ACGGAATGCTGTAGTGTCATCGAG -ACGGAATGCTGTAGTGTCCTCCTT -ACGGAATGCTGTAGTGTCCCTGTT -ACGGAATGCTGTAGTGTCCGGTTT -ACGGAATGCTGTAGTGTCGTGGTT -ACGGAATGCTGTAGTGTCGCCTTT -ACGGAATGCTGTAGTGTCGGTCTT -ACGGAATGCTGTAGTGTCACGCTT -ACGGAATGCTGTAGTGTCAGCGTT -ACGGAATGCTGTAGTGTCTTCGTC -ACGGAATGCTGTAGTGTCTCTCTC -ACGGAATGCTGTAGTGTCTGGATC -ACGGAATGCTGTAGTGTCCACTTC -ACGGAATGCTGTAGTGTCGTACTC -ACGGAATGCTGTAGTGTCGATGTC -ACGGAATGCTGTAGTGTCACAGTC -ACGGAATGCTGTAGTGTCTTGCTG -ACGGAATGCTGTAGTGTCTCCATG -ACGGAATGCTGTAGTGTCTGTGTG -ACGGAATGCTGTAGTGTCCTAGTG -ACGGAATGCTGTAGTGTCCATCTG -ACGGAATGCTGTAGTGTCGAGTTG -ACGGAATGCTGTAGTGTCAGACTG -ACGGAATGCTGTAGTGTCTCGGTA -ACGGAATGCTGTAGTGTCTGCCTA -ACGGAATGCTGTAGTGTCCCACTA -ACGGAATGCTGTAGTGTCGGAGTA -ACGGAATGCTGTAGTGTCTCGTCT -ACGGAATGCTGTAGTGTCTGCACT -ACGGAATGCTGTAGTGTCCTGACT -ACGGAATGCTGTAGTGTCCAACCT -ACGGAATGCTGTAGTGTCGCTACT -ACGGAATGCTGTAGTGTCGGATCT -ACGGAATGCTGTAGTGTCAAGGCT -ACGGAATGCTGTAGTGTCTCAACC -ACGGAATGCTGTAGTGTCTGTTCC -ACGGAATGCTGTAGTGTCATTCCC -ACGGAATGCTGTAGTGTCTTCTCG -ACGGAATGCTGTAGTGTCTAGACG -ACGGAATGCTGTAGTGTCGTAACG -ACGGAATGCTGTAGTGTCACTTCG -ACGGAATGCTGTAGTGTCTACGCA -ACGGAATGCTGTAGTGTCCTTGCA -ACGGAATGCTGTAGTGTCCGAACA -ACGGAATGCTGTAGTGTCCAGTCA -ACGGAATGCTGTAGTGTCGATCCA -ACGGAATGCTGTAGTGTCACGACA -ACGGAATGCTGTAGTGTCAGCTCA -ACGGAATGCTGTAGTGTCTCACGT -ACGGAATGCTGTAGTGTCCGTAGT -ACGGAATGCTGTAGTGTCGTCAGT -ACGGAATGCTGTAGTGTCGAAGGT -ACGGAATGCTGTAGTGTCAACCGT -ACGGAATGCTGTAGTGTCTTGTGC -ACGGAATGCTGTAGTGTCCTAAGC -ACGGAATGCTGTAGTGTCACTAGC -ACGGAATGCTGTAGTGTCAGATGC -ACGGAATGCTGTAGTGTCTGAAGG -ACGGAATGCTGTAGTGTCCAATGG -ACGGAATGCTGTAGTGTCATGAGG -ACGGAATGCTGTAGTGTCAATGGG -ACGGAATGCTGTAGTGTCTCCTGA -ACGGAATGCTGTAGTGTCTAGCGA -ACGGAATGCTGTAGTGTCCACAGA -ACGGAATGCTGTAGTGTCGCAAGA -ACGGAATGCTGTAGTGTCGGTTGA -ACGGAATGCTGTAGTGTCTCCGAT -ACGGAATGCTGTAGTGTCTGGCAT -ACGGAATGCTGTAGTGTCCGAGAT -ACGGAATGCTGTAGTGTCTACCAC -ACGGAATGCTGTAGTGTCCAGAAC -ACGGAATGCTGTAGTGTCGTCTAC -ACGGAATGCTGTAGTGTCACGTAC -ACGGAATGCTGTAGTGTCAGTGAC -ACGGAATGCTGTAGTGTCCTGTAG -ACGGAATGCTGTAGTGTCCCTAAG -ACGGAATGCTGTAGTGTCGTTCAG -ACGGAATGCTGTAGTGTCGCATAG -ACGGAATGCTGTAGTGTCGACAAG -ACGGAATGCTGTAGTGTCAAGCAG -ACGGAATGCTGTAGTGTCCGTCAA -ACGGAATGCTGTAGTGTCGCTGAA -ACGGAATGCTGTAGTGTCAGTACG -ACGGAATGCTGTAGTGTCATCCGA -ACGGAATGCTGTAGTGTCATGGGA -ACGGAATGCTGTAGTGTCGTGCAA -ACGGAATGCTGTAGTGTCGAGGAA -ACGGAATGCTGTAGTGTCCAGGTA -ACGGAATGCTGTAGTGTCGACTCT -ACGGAATGCTGTAGTGTCAGTCCT -ACGGAATGCTGTAGTGTCTAAGCC -ACGGAATGCTGTAGTGTCATAGCC -ACGGAATGCTGTAGTGTCTAACCG -ACGGAATGCTGTAGTGTCATGCCA -ACGGAATGCTGTGGTGAAGGAAAC -ACGGAATGCTGTGGTGAAAACACC -ACGGAATGCTGTGGTGAAATCGAG -ACGGAATGCTGTGGTGAACTCCTT -ACGGAATGCTGTGGTGAACCTGTT -ACGGAATGCTGTGGTGAACGGTTT -ACGGAATGCTGTGGTGAAGTGGTT -ACGGAATGCTGTGGTGAAGCCTTT -ACGGAATGCTGTGGTGAAGGTCTT -ACGGAATGCTGTGGTGAAACGCTT -ACGGAATGCTGTGGTGAAAGCGTT -ACGGAATGCTGTGGTGAATTCGTC -ACGGAATGCTGTGGTGAATCTCTC -ACGGAATGCTGTGGTGAATGGATC -ACGGAATGCTGTGGTGAACACTTC -ACGGAATGCTGTGGTGAAGTACTC -ACGGAATGCTGTGGTGAAGATGTC -ACGGAATGCTGTGGTGAAACAGTC -ACGGAATGCTGTGGTGAATTGCTG -ACGGAATGCTGTGGTGAATCCATG -ACGGAATGCTGTGGTGAATGTGTG -ACGGAATGCTGTGGTGAACTAGTG -ACGGAATGCTGTGGTGAACATCTG -ACGGAATGCTGTGGTGAAGAGTTG -ACGGAATGCTGTGGTGAAAGACTG -ACGGAATGCTGTGGTGAATCGGTA -ACGGAATGCTGTGGTGAATGCCTA -ACGGAATGCTGTGGTGAACCACTA -ACGGAATGCTGTGGTGAAGGAGTA -ACGGAATGCTGTGGTGAATCGTCT -ACGGAATGCTGTGGTGAATGCACT -ACGGAATGCTGTGGTGAACTGACT -ACGGAATGCTGTGGTGAACAACCT -ACGGAATGCTGTGGTGAAGCTACT -ACGGAATGCTGTGGTGAAGGATCT -ACGGAATGCTGTGGTGAAAAGGCT -ACGGAATGCTGTGGTGAATCAACC -ACGGAATGCTGTGGTGAATGTTCC -ACGGAATGCTGTGGTGAAATTCCC -ACGGAATGCTGTGGTGAATTCTCG -ACGGAATGCTGTGGTGAATAGACG -ACGGAATGCTGTGGTGAAGTAACG -ACGGAATGCTGTGGTGAAACTTCG -ACGGAATGCTGTGGTGAATACGCA -ACGGAATGCTGTGGTGAACTTGCA -ACGGAATGCTGTGGTGAACGAACA -ACGGAATGCTGTGGTGAACAGTCA -ACGGAATGCTGTGGTGAAGATCCA -ACGGAATGCTGTGGTGAAACGACA -ACGGAATGCTGTGGTGAAAGCTCA -ACGGAATGCTGTGGTGAATCACGT -ACGGAATGCTGTGGTGAACGTAGT -ACGGAATGCTGTGGTGAAGTCAGT -ACGGAATGCTGTGGTGAAGAAGGT -ACGGAATGCTGTGGTGAAAACCGT -ACGGAATGCTGTGGTGAATTGTGC -ACGGAATGCTGTGGTGAACTAAGC -ACGGAATGCTGTGGTGAAACTAGC -ACGGAATGCTGTGGTGAAAGATGC -ACGGAATGCTGTGGTGAATGAAGG -ACGGAATGCTGTGGTGAACAATGG -ACGGAATGCTGTGGTGAAATGAGG -ACGGAATGCTGTGGTGAAAATGGG -ACGGAATGCTGTGGTGAATCCTGA -ACGGAATGCTGTGGTGAATAGCGA -ACGGAATGCTGTGGTGAACACAGA -ACGGAATGCTGTGGTGAAGCAAGA -ACGGAATGCTGTGGTGAAGGTTGA -ACGGAATGCTGTGGTGAATCCGAT -ACGGAATGCTGTGGTGAATGGCAT -ACGGAATGCTGTGGTGAACGAGAT -ACGGAATGCTGTGGTGAATACCAC -ACGGAATGCTGTGGTGAACAGAAC -ACGGAATGCTGTGGTGAAGTCTAC -ACGGAATGCTGTGGTGAAACGTAC -ACGGAATGCTGTGGTGAAAGTGAC -ACGGAATGCTGTGGTGAACTGTAG -ACGGAATGCTGTGGTGAACCTAAG -ACGGAATGCTGTGGTGAAGTTCAG -ACGGAATGCTGTGGTGAAGCATAG -ACGGAATGCTGTGGTGAAGACAAG -ACGGAATGCTGTGGTGAAAAGCAG -ACGGAATGCTGTGGTGAACGTCAA -ACGGAATGCTGTGGTGAAGCTGAA -ACGGAATGCTGTGGTGAAAGTACG -ACGGAATGCTGTGGTGAAATCCGA -ACGGAATGCTGTGGTGAAATGGGA -ACGGAATGCTGTGGTGAAGTGCAA -ACGGAATGCTGTGGTGAAGAGGAA -ACGGAATGCTGTGGTGAACAGGTA -ACGGAATGCTGTGGTGAAGACTCT -ACGGAATGCTGTGGTGAAAGTCCT -ACGGAATGCTGTGGTGAATAAGCC -ACGGAATGCTGTGGTGAAATAGCC -ACGGAATGCTGTGGTGAATAACCG -ACGGAATGCTGTGGTGAAATGCCA -ACGGAATGCTGTCGTAACGGAAAC -ACGGAATGCTGTCGTAACAACACC -ACGGAATGCTGTCGTAACATCGAG -ACGGAATGCTGTCGTAACCTCCTT -ACGGAATGCTGTCGTAACCCTGTT -ACGGAATGCTGTCGTAACCGGTTT -ACGGAATGCTGTCGTAACGTGGTT -ACGGAATGCTGTCGTAACGCCTTT -ACGGAATGCTGTCGTAACGGTCTT -ACGGAATGCTGTCGTAACACGCTT -ACGGAATGCTGTCGTAACAGCGTT -ACGGAATGCTGTCGTAACTTCGTC -ACGGAATGCTGTCGTAACTCTCTC -ACGGAATGCTGTCGTAACTGGATC -ACGGAATGCTGTCGTAACCACTTC -ACGGAATGCTGTCGTAACGTACTC -ACGGAATGCTGTCGTAACGATGTC -ACGGAATGCTGTCGTAACACAGTC -ACGGAATGCTGTCGTAACTTGCTG -ACGGAATGCTGTCGTAACTCCATG -ACGGAATGCTGTCGTAACTGTGTG -ACGGAATGCTGTCGTAACCTAGTG -ACGGAATGCTGTCGTAACCATCTG -ACGGAATGCTGTCGTAACGAGTTG -ACGGAATGCTGTCGTAACAGACTG -ACGGAATGCTGTCGTAACTCGGTA -ACGGAATGCTGTCGTAACTGCCTA -ACGGAATGCTGTCGTAACCCACTA -ACGGAATGCTGTCGTAACGGAGTA -ACGGAATGCTGTCGTAACTCGTCT -ACGGAATGCTGTCGTAACTGCACT -ACGGAATGCTGTCGTAACCTGACT -ACGGAATGCTGTCGTAACCAACCT -ACGGAATGCTGTCGTAACGCTACT -ACGGAATGCTGTCGTAACGGATCT -ACGGAATGCTGTCGTAACAAGGCT -ACGGAATGCTGTCGTAACTCAACC -ACGGAATGCTGTCGTAACTGTTCC -ACGGAATGCTGTCGTAACATTCCC -ACGGAATGCTGTCGTAACTTCTCG -ACGGAATGCTGTCGTAACTAGACG -ACGGAATGCTGTCGTAACGTAACG -ACGGAATGCTGTCGTAACACTTCG -ACGGAATGCTGTCGTAACTACGCA -ACGGAATGCTGTCGTAACCTTGCA -ACGGAATGCTGTCGTAACCGAACA -ACGGAATGCTGTCGTAACCAGTCA -ACGGAATGCTGTCGTAACGATCCA -ACGGAATGCTGTCGTAACACGACA -ACGGAATGCTGTCGTAACAGCTCA -ACGGAATGCTGTCGTAACTCACGT -ACGGAATGCTGTCGTAACCGTAGT -ACGGAATGCTGTCGTAACGTCAGT -ACGGAATGCTGTCGTAACGAAGGT -ACGGAATGCTGTCGTAACAACCGT -ACGGAATGCTGTCGTAACTTGTGC -ACGGAATGCTGTCGTAACCTAAGC -ACGGAATGCTGTCGTAACACTAGC -ACGGAATGCTGTCGTAACAGATGC -ACGGAATGCTGTCGTAACTGAAGG -ACGGAATGCTGTCGTAACCAATGG -ACGGAATGCTGTCGTAACATGAGG -ACGGAATGCTGTCGTAACAATGGG -ACGGAATGCTGTCGTAACTCCTGA -ACGGAATGCTGTCGTAACTAGCGA -ACGGAATGCTGTCGTAACCACAGA -ACGGAATGCTGTCGTAACGCAAGA -ACGGAATGCTGTCGTAACGGTTGA -ACGGAATGCTGTCGTAACTCCGAT -ACGGAATGCTGTCGTAACTGGCAT -ACGGAATGCTGTCGTAACCGAGAT -ACGGAATGCTGTCGTAACTACCAC -ACGGAATGCTGTCGTAACCAGAAC -ACGGAATGCTGTCGTAACGTCTAC -ACGGAATGCTGTCGTAACACGTAC -ACGGAATGCTGTCGTAACAGTGAC -ACGGAATGCTGTCGTAACCTGTAG -ACGGAATGCTGTCGTAACCCTAAG -ACGGAATGCTGTCGTAACGTTCAG -ACGGAATGCTGTCGTAACGCATAG -ACGGAATGCTGTCGTAACGACAAG -ACGGAATGCTGTCGTAACAAGCAG -ACGGAATGCTGTCGTAACCGTCAA -ACGGAATGCTGTCGTAACGCTGAA -ACGGAATGCTGTCGTAACAGTACG -ACGGAATGCTGTCGTAACATCCGA -ACGGAATGCTGTCGTAACATGGGA -ACGGAATGCTGTCGTAACGTGCAA -ACGGAATGCTGTCGTAACGAGGAA -ACGGAATGCTGTCGTAACCAGGTA -ACGGAATGCTGTCGTAACGACTCT -ACGGAATGCTGTCGTAACAGTCCT -ACGGAATGCTGTCGTAACTAAGCC -ACGGAATGCTGTCGTAACATAGCC -ACGGAATGCTGTCGTAACTAACCG -ACGGAATGCTGTCGTAACATGCCA -ACGGAATGCTGTTGCTTGGGAAAC -ACGGAATGCTGTTGCTTGAACACC -ACGGAATGCTGTTGCTTGATCGAG -ACGGAATGCTGTTGCTTGCTCCTT -ACGGAATGCTGTTGCTTGCCTGTT -ACGGAATGCTGTTGCTTGCGGTTT -ACGGAATGCTGTTGCTTGGTGGTT -ACGGAATGCTGTTGCTTGGCCTTT -ACGGAATGCTGTTGCTTGGGTCTT -ACGGAATGCTGTTGCTTGACGCTT -ACGGAATGCTGTTGCTTGAGCGTT -ACGGAATGCTGTTGCTTGTTCGTC -ACGGAATGCTGTTGCTTGTCTCTC -ACGGAATGCTGTTGCTTGTGGATC -ACGGAATGCTGTTGCTTGCACTTC -ACGGAATGCTGTTGCTTGGTACTC -ACGGAATGCTGTTGCTTGGATGTC -ACGGAATGCTGTTGCTTGACAGTC -ACGGAATGCTGTTGCTTGTTGCTG -ACGGAATGCTGTTGCTTGTCCATG -ACGGAATGCTGTTGCTTGTGTGTG -ACGGAATGCTGTTGCTTGCTAGTG -ACGGAATGCTGTTGCTTGCATCTG -ACGGAATGCTGTTGCTTGGAGTTG -ACGGAATGCTGTTGCTTGAGACTG -ACGGAATGCTGTTGCTTGTCGGTA -ACGGAATGCTGTTGCTTGTGCCTA -ACGGAATGCTGTTGCTTGCCACTA -ACGGAATGCTGTTGCTTGGGAGTA -ACGGAATGCTGTTGCTTGTCGTCT -ACGGAATGCTGTTGCTTGTGCACT -ACGGAATGCTGTTGCTTGCTGACT -ACGGAATGCTGTTGCTTGCAACCT -ACGGAATGCTGTTGCTTGGCTACT -ACGGAATGCTGTTGCTTGGGATCT -ACGGAATGCTGTTGCTTGAAGGCT -ACGGAATGCTGTTGCTTGTCAACC -ACGGAATGCTGTTGCTTGTGTTCC -ACGGAATGCTGTTGCTTGATTCCC -ACGGAATGCTGTTGCTTGTTCTCG -ACGGAATGCTGTTGCTTGTAGACG -ACGGAATGCTGTTGCTTGGTAACG -ACGGAATGCTGTTGCTTGACTTCG -ACGGAATGCTGTTGCTTGTACGCA -ACGGAATGCTGTTGCTTGCTTGCA -ACGGAATGCTGTTGCTTGCGAACA -ACGGAATGCTGTTGCTTGCAGTCA -ACGGAATGCTGTTGCTTGGATCCA -ACGGAATGCTGTTGCTTGACGACA -ACGGAATGCTGTTGCTTGAGCTCA -ACGGAATGCTGTTGCTTGTCACGT -ACGGAATGCTGTTGCTTGCGTAGT -ACGGAATGCTGTTGCTTGGTCAGT -ACGGAATGCTGTTGCTTGGAAGGT -ACGGAATGCTGTTGCTTGAACCGT -ACGGAATGCTGTTGCTTGTTGTGC -ACGGAATGCTGTTGCTTGCTAAGC -ACGGAATGCTGTTGCTTGACTAGC -ACGGAATGCTGTTGCTTGAGATGC -ACGGAATGCTGTTGCTTGTGAAGG -ACGGAATGCTGTTGCTTGCAATGG -ACGGAATGCTGTTGCTTGATGAGG -ACGGAATGCTGTTGCTTGAATGGG -ACGGAATGCTGTTGCTTGTCCTGA -ACGGAATGCTGTTGCTTGTAGCGA -ACGGAATGCTGTTGCTTGCACAGA -ACGGAATGCTGTTGCTTGGCAAGA -ACGGAATGCTGTTGCTTGGGTTGA -ACGGAATGCTGTTGCTTGTCCGAT -ACGGAATGCTGTTGCTTGTGGCAT -ACGGAATGCTGTTGCTTGCGAGAT -ACGGAATGCTGTTGCTTGTACCAC -ACGGAATGCTGTTGCTTGCAGAAC -ACGGAATGCTGTTGCTTGGTCTAC -ACGGAATGCTGTTGCTTGACGTAC -ACGGAATGCTGTTGCTTGAGTGAC -ACGGAATGCTGTTGCTTGCTGTAG -ACGGAATGCTGTTGCTTGCCTAAG -ACGGAATGCTGTTGCTTGGTTCAG -ACGGAATGCTGTTGCTTGGCATAG -ACGGAATGCTGTTGCTTGGACAAG -ACGGAATGCTGTTGCTTGAAGCAG -ACGGAATGCTGTTGCTTGCGTCAA -ACGGAATGCTGTTGCTTGGCTGAA -ACGGAATGCTGTTGCTTGAGTACG -ACGGAATGCTGTTGCTTGATCCGA -ACGGAATGCTGTTGCTTGATGGGA -ACGGAATGCTGTTGCTTGGTGCAA -ACGGAATGCTGTTGCTTGGAGGAA -ACGGAATGCTGTTGCTTGCAGGTA -ACGGAATGCTGTTGCTTGGACTCT -ACGGAATGCTGTTGCTTGAGTCCT -ACGGAATGCTGTTGCTTGTAAGCC -ACGGAATGCTGTTGCTTGATAGCC -ACGGAATGCTGTTGCTTGTAACCG -ACGGAATGCTGTTGCTTGATGCCA -ACGGAATGCTGTAGCCTAGGAAAC -ACGGAATGCTGTAGCCTAAACACC -ACGGAATGCTGTAGCCTAATCGAG -ACGGAATGCTGTAGCCTACTCCTT -ACGGAATGCTGTAGCCTACCTGTT -ACGGAATGCTGTAGCCTACGGTTT -ACGGAATGCTGTAGCCTAGTGGTT -ACGGAATGCTGTAGCCTAGCCTTT -ACGGAATGCTGTAGCCTAGGTCTT -ACGGAATGCTGTAGCCTAACGCTT -ACGGAATGCTGTAGCCTAAGCGTT -ACGGAATGCTGTAGCCTATTCGTC -ACGGAATGCTGTAGCCTATCTCTC -ACGGAATGCTGTAGCCTATGGATC -ACGGAATGCTGTAGCCTACACTTC -ACGGAATGCTGTAGCCTAGTACTC -ACGGAATGCTGTAGCCTAGATGTC -ACGGAATGCTGTAGCCTAACAGTC -ACGGAATGCTGTAGCCTATTGCTG -ACGGAATGCTGTAGCCTATCCATG -ACGGAATGCTGTAGCCTATGTGTG -ACGGAATGCTGTAGCCTACTAGTG -ACGGAATGCTGTAGCCTACATCTG -ACGGAATGCTGTAGCCTAGAGTTG -ACGGAATGCTGTAGCCTAAGACTG -ACGGAATGCTGTAGCCTATCGGTA -ACGGAATGCTGTAGCCTATGCCTA -ACGGAATGCTGTAGCCTACCACTA -ACGGAATGCTGTAGCCTAGGAGTA -ACGGAATGCTGTAGCCTATCGTCT -ACGGAATGCTGTAGCCTATGCACT -ACGGAATGCTGTAGCCTACTGACT -ACGGAATGCTGTAGCCTACAACCT -ACGGAATGCTGTAGCCTAGCTACT -ACGGAATGCTGTAGCCTAGGATCT -ACGGAATGCTGTAGCCTAAAGGCT -ACGGAATGCTGTAGCCTATCAACC -ACGGAATGCTGTAGCCTATGTTCC -ACGGAATGCTGTAGCCTAATTCCC -ACGGAATGCTGTAGCCTATTCTCG -ACGGAATGCTGTAGCCTATAGACG -ACGGAATGCTGTAGCCTAGTAACG -ACGGAATGCTGTAGCCTAACTTCG -ACGGAATGCTGTAGCCTATACGCA -ACGGAATGCTGTAGCCTACTTGCA -ACGGAATGCTGTAGCCTACGAACA -ACGGAATGCTGTAGCCTACAGTCA -ACGGAATGCTGTAGCCTAGATCCA -ACGGAATGCTGTAGCCTAACGACA -ACGGAATGCTGTAGCCTAAGCTCA -ACGGAATGCTGTAGCCTATCACGT -ACGGAATGCTGTAGCCTACGTAGT -ACGGAATGCTGTAGCCTAGTCAGT -ACGGAATGCTGTAGCCTAGAAGGT -ACGGAATGCTGTAGCCTAAACCGT -ACGGAATGCTGTAGCCTATTGTGC -ACGGAATGCTGTAGCCTACTAAGC -ACGGAATGCTGTAGCCTAACTAGC -ACGGAATGCTGTAGCCTAAGATGC -ACGGAATGCTGTAGCCTATGAAGG -ACGGAATGCTGTAGCCTACAATGG -ACGGAATGCTGTAGCCTAATGAGG -ACGGAATGCTGTAGCCTAAATGGG -ACGGAATGCTGTAGCCTATCCTGA -ACGGAATGCTGTAGCCTATAGCGA -ACGGAATGCTGTAGCCTACACAGA -ACGGAATGCTGTAGCCTAGCAAGA -ACGGAATGCTGTAGCCTAGGTTGA -ACGGAATGCTGTAGCCTATCCGAT -ACGGAATGCTGTAGCCTATGGCAT -ACGGAATGCTGTAGCCTACGAGAT -ACGGAATGCTGTAGCCTATACCAC -ACGGAATGCTGTAGCCTACAGAAC -ACGGAATGCTGTAGCCTAGTCTAC -ACGGAATGCTGTAGCCTAACGTAC -ACGGAATGCTGTAGCCTAAGTGAC -ACGGAATGCTGTAGCCTACTGTAG -ACGGAATGCTGTAGCCTACCTAAG -ACGGAATGCTGTAGCCTAGTTCAG -ACGGAATGCTGTAGCCTAGCATAG -ACGGAATGCTGTAGCCTAGACAAG -ACGGAATGCTGTAGCCTAAAGCAG -ACGGAATGCTGTAGCCTACGTCAA -ACGGAATGCTGTAGCCTAGCTGAA -ACGGAATGCTGTAGCCTAAGTACG -ACGGAATGCTGTAGCCTAATCCGA -ACGGAATGCTGTAGCCTAATGGGA -ACGGAATGCTGTAGCCTAGTGCAA -ACGGAATGCTGTAGCCTAGAGGAA -ACGGAATGCTGTAGCCTACAGGTA -ACGGAATGCTGTAGCCTAGACTCT -ACGGAATGCTGTAGCCTAAGTCCT -ACGGAATGCTGTAGCCTATAAGCC -ACGGAATGCTGTAGCCTAATAGCC -ACGGAATGCTGTAGCCTATAACCG -ACGGAATGCTGTAGCCTAATGCCA -ACGGAATGCTGTAGCACTGGAAAC -ACGGAATGCTGTAGCACTAACACC -ACGGAATGCTGTAGCACTATCGAG -ACGGAATGCTGTAGCACTCTCCTT -ACGGAATGCTGTAGCACTCCTGTT -ACGGAATGCTGTAGCACTCGGTTT -ACGGAATGCTGTAGCACTGTGGTT -ACGGAATGCTGTAGCACTGCCTTT -ACGGAATGCTGTAGCACTGGTCTT -ACGGAATGCTGTAGCACTACGCTT -ACGGAATGCTGTAGCACTAGCGTT -ACGGAATGCTGTAGCACTTTCGTC -ACGGAATGCTGTAGCACTTCTCTC -ACGGAATGCTGTAGCACTTGGATC -ACGGAATGCTGTAGCACTCACTTC -ACGGAATGCTGTAGCACTGTACTC -ACGGAATGCTGTAGCACTGATGTC -ACGGAATGCTGTAGCACTACAGTC -ACGGAATGCTGTAGCACTTTGCTG -ACGGAATGCTGTAGCACTTCCATG -ACGGAATGCTGTAGCACTTGTGTG -ACGGAATGCTGTAGCACTCTAGTG -ACGGAATGCTGTAGCACTCATCTG -ACGGAATGCTGTAGCACTGAGTTG -ACGGAATGCTGTAGCACTAGACTG -ACGGAATGCTGTAGCACTTCGGTA -ACGGAATGCTGTAGCACTTGCCTA -ACGGAATGCTGTAGCACTCCACTA -ACGGAATGCTGTAGCACTGGAGTA -ACGGAATGCTGTAGCACTTCGTCT -ACGGAATGCTGTAGCACTTGCACT -ACGGAATGCTGTAGCACTCTGACT -ACGGAATGCTGTAGCACTCAACCT -ACGGAATGCTGTAGCACTGCTACT -ACGGAATGCTGTAGCACTGGATCT -ACGGAATGCTGTAGCACTAAGGCT -ACGGAATGCTGTAGCACTTCAACC -ACGGAATGCTGTAGCACTTGTTCC -ACGGAATGCTGTAGCACTATTCCC -ACGGAATGCTGTAGCACTTTCTCG -ACGGAATGCTGTAGCACTTAGACG -ACGGAATGCTGTAGCACTGTAACG -ACGGAATGCTGTAGCACTACTTCG -ACGGAATGCTGTAGCACTTACGCA -ACGGAATGCTGTAGCACTCTTGCA -ACGGAATGCTGTAGCACTCGAACA -ACGGAATGCTGTAGCACTCAGTCA -ACGGAATGCTGTAGCACTGATCCA -ACGGAATGCTGTAGCACTACGACA -ACGGAATGCTGTAGCACTAGCTCA -ACGGAATGCTGTAGCACTTCACGT -ACGGAATGCTGTAGCACTCGTAGT -ACGGAATGCTGTAGCACTGTCAGT -ACGGAATGCTGTAGCACTGAAGGT -ACGGAATGCTGTAGCACTAACCGT -ACGGAATGCTGTAGCACTTTGTGC -ACGGAATGCTGTAGCACTCTAAGC -ACGGAATGCTGTAGCACTACTAGC -ACGGAATGCTGTAGCACTAGATGC -ACGGAATGCTGTAGCACTTGAAGG -ACGGAATGCTGTAGCACTCAATGG -ACGGAATGCTGTAGCACTATGAGG -ACGGAATGCTGTAGCACTAATGGG -ACGGAATGCTGTAGCACTTCCTGA -ACGGAATGCTGTAGCACTTAGCGA -ACGGAATGCTGTAGCACTCACAGA -ACGGAATGCTGTAGCACTGCAAGA -ACGGAATGCTGTAGCACTGGTTGA -ACGGAATGCTGTAGCACTTCCGAT -ACGGAATGCTGTAGCACTTGGCAT -ACGGAATGCTGTAGCACTCGAGAT -ACGGAATGCTGTAGCACTTACCAC -ACGGAATGCTGTAGCACTCAGAAC -ACGGAATGCTGTAGCACTGTCTAC -ACGGAATGCTGTAGCACTACGTAC -ACGGAATGCTGTAGCACTAGTGAC -ACGGAATGCTGTAGCACTCTGTAG -ACGGAATGCTGTAGCACTCCTAAG -ACGGAATGCTGTAGCACTGTTCAG -ACGGAATGCTGTAGCACTGCATAG -ACGGAATGCTGTAGCACTGACAAG -ACGGAATGCTGTAGCACTAAGCAG -ACGGAATGCTGTAGCACTCGTCAA -ACGGAATGCTGTAGCACTGCTGAA -ACGGAATGCTGTAGCACTAGTACG -ACGGAATGCTGTAGCACTATCCGA -ACGGAATGCTGTAGCACTATGGGA -ACGGAATGCTGTAGCACTGTGCAA -ACGGAATGCTGTAGCACTGAGGAA -ACGGAATGCTGTAGCACTCAGGTA -ACGGAATGCTGTAGCACTGACTCT -ACGGAATGCTGTAGCACTAGTCCT -ACGGAATGCTGTAGCACTTAAGCC -ACGGAATGCTGTAGCACTATAGCC -ACGGAATGCTGTAGCACTTAACCG -ACGGAATGCTGTAGCACTATGCCA -ACGGAATGCTGTTGCAGAGGAAAC -ACGGAATGCTGTTGCAGAAACACC -ACGGAATGCTGTTGCAGAATCGAG -ACGGAATGCTGTTGCAGACTCCTT -ACGGAATGCTGTTGCAGACCTGTT -ACGGAATGCTGTTGCAGACGGTTT -ACGGAATGCTGTTGCAGAGTGGTT -ACGGAATGCTGTTGCAGAGCCTTT -ACGGAATGCTGTTGCAGAGGTCTT -ACGGAATGCTGTTGCAGAACGCTT -ACGGAATGCTGTTGCAGAAGCGTT -ACGGAATGCTGTTGCAGATTCGTC -ACGGAATGCTGTTGCAGATCTCTC -ACGGAATGCTGTTGCAGATGGATC -ACGGAATGCTGTTGCAGACACTTC -ACGGAATGCTGTTGCAGAGTACTC -ACGGAATGCTGTTGCAGAGATGTC -ACGGAATGCTGTTGCAGAACAGTC -ACGGAATGCTGTTGCAGATTGCTG -ACGGAATGCTGTTGCAGATCCATG -ACGGAATGCTGTTGCAGATGTGTG -ACGGAATGCTGTTGCAGACTAGTG -ACGGAATGCTGTTGCAGACATCTG -ACGGAATGCTGTTGCAGAGAGTTG -ACGGAATGCTGTTGCAGAAGACTG -ACGGAATGCTGTTGCAGATCGGTA -ACGGAATGCTGTTGCAGATGCCTA -ACGGAATGCTGTTGCAGACCACTA -ACGGAATGCTGTTGCAGAGGAGTA -ACGGAATGCTGTTGCAGATCGTCT -ACGGAATGCTGTTGCAGATGCACT -ACGGAATGCTGTTGCAGACTGACT -ACGGAATGCTGTTGCAGACAACCT -ACGGAATGCTGTTGCAGAGCTACT -ACGGAATGCTGTTGCAGAGGATCT -ACGGAATGCTGTTGCAGAAAGGCT -ACGGAATGCTGTTGCAGATCAACC -ACGGAATGCTGTTGCAGATGTTCC -ACGGAATGCTGTTGCAGAATTCCC -ACGGAATGCTGTTGCAGATTCTCG -ACGGAATGCTGTTGCAGATAGACG -ACGGAATGCTGTTGCAGAGTAACG -ACGGAATGCTGTTGCAGAACTTCG -ACGGAATGCTGTTGCAGATACGCA -ACGGAATGCTGTTGCAGACTTGCA -ACGGAATGCTGTTGCAGACGAACA -ACGGAATGCTGTTGCAGACAGTCA -ACGGAATGCTGTTGCAGAGATCCA -ACGGAATGCTGTTGCAGAACGACA -ACGGAATGCTGTTGCAGAAGCTCA -ACGGAATGCTGTTGCAGATCACGT -ACGGAATGCTGTTGCAGACGTAGT -ACGGAATGCTGTTGCAGAGTCAGT -ACGGAATGCTGTTGCAGAGAAGGT -ACGGAATGCTGTTGCAGAAACCGT -ACGGAATGCTGTTGCAGATTGTGC -ACGGAATGCTGTTGCAGACTAAGC -ACGGAATGCTGTTGCAGAACTAGC -ACGGAATGCTGTTGCAGAAGATGC -ACGGAATGCTGTTGCAGATGAAGG -ACGGAATGCTGTTGCAGACAATGG -ACGGAATGCTGTTGCAGAATGAGG -ACGGAATGCTGTTGCAGAAATGGG -ACGGAATGCTGTTGCAGATCCTGA -ACGGAATGCTGTTGCAGATAGCGA -ACGGAATGCTGTTGCAGACACAGA -ACGGAATGCTGTTGCAGAGCAAGA -ACGGAATGCTGTTGCAGAGGTTGA -ACGGAATGCTGTTGCAGATCCGAT -ACGGAATGCTGTTGCAGATGGCAT -ACGGAATGCTGTTGCAGACGAGAT -ACGGAATGCTGTTGCAGATACCAC -ACGGAATGCTGTTGCAGACAGAAC -ACGGAATGCTGTTGCAGAGTCTAC -ACGGAATGCTGTTGCAGAACGTAC -ACGGAATGCTGTTGCAGAAGTGAC -ACGGAATGCTGTTGCAGACTGTAG -ACGGAATGCTGTTGCAGACCTAAG -ACGGAATGCTGTTGCAGAGTTCAG -ACGGAATGCTGTTGCAGAGCATAG -ACGGAATGCTGTTGCAGAGACAAG -ACGGAATGCTGTTGCAGAAAGCAG -ACGGAATGCTGTTGCAGACGTCAA -ACGGAATGCTGTTGCAGAGCTGAA -ACGGAATGCTGTTGCAGAAGTACG -ACGGAATGCTGTTGCAGAATCCGA -ACGGAATGCTGTTGCAGAATGGGA -ACGGAATGCTGTTGCAGAGTGCAA -ACGGAATGCTGTTGCAGAGAGGAA -ACGGAATGCTGTTGCAGACAGGTA -ACGGAATGCTGTTGCAGAGACTCT -ACGGAATGCTGTTGCAGAAGTCCT -ACGGAATGCTGTTGCAGATAAGCC -ACGGAATGCTGTTGCAGAATAGCC -ACGGAATGCTGTTGCAGATAACCG -ACGGAATGCTGTTGCAGAATGCCA -ACGGAATGCTGTAGGTGAGGAAAC -ACGGAATGCTGTAGGTGAAACACC -ACGGAATGCTGTAGGTGAATCGAG -ACGGAATGCTGTAGGTGACTCCTT -ACGGAATGCTGTAGGTGACCTGTT -ACGGAATGCTGTAGGTGACGGTTT -ACGGAATGCTGTAGGTGAGTGGTT -ACGGAATGCTGTAGGTGAGCCTTT -ACGGAATGCTGTAGGTGAGGTCTT -ACGGAATGCTGTAGGTGAACGCTT -ACGGAATGCTGTAGGTGAAGCGTT -ACGGAATGCTGTAGGTGATTCGTC -ACGGAATGCTGTAGGTGATCTCTC -ACGGAATGCTGTAGGTGATGGATC -ACGGAATGCTGTAGGTGACACTTC -ACGGAATGCTGTAGGTGAGTACTC -ACGGAATGCTGTAGGTGAGATGTC -ACGGAATGCTGTAGGTGAACAGTC -ACGGAATGCTGTAGGTGATTGCTG -ACGGAATGCTGTAGGTGATCCATG -ACGGAATGCTGTAGGTGATGTGTG -ACGGAATGCTGTAGGTGACTAGTG -ACGGAATGCTGTAGGTGACATCTG -ACGGAATGCTGTAGGTGAGAGTTG -ACGGAATGCTGTAGGTGAAGACTG -ACGGAATGCTGTAGGTGATCGGTA -ACGGAATGCTGTAGGTGATGCCTA -ACGGAATGCTGTAGGTGACCACTA -ACGGAATGCTGTAGGTGAGGAGTA -ACGGAATGCTGTAGGTGATCGTCT -ACGGAATGCTGTAGGTGATGCACT -ACGGAATGCTGTAGGTGACTGACT -ACGGAATGCTGTAGGTGACAACCT -ACGGAATGCTGTAGGTGAGCTACT -ACGGAATGCTGTAGGTGAGGATCT -ACGGAATGCTGTAGGTGAAAGGCT -ACGGAATGCTGTAGGTGATCAACC -ACGGAATGCTGTAGGTGATGTTCC -ACGGAATGCTGTAGGTGAATTCCC -ACGGAATGCTGTAGGTGATTCTCG -ACGGAATGCTGTAGGTGATAGACG -ACGGAATGCTGTAGGTGAGTAACG -ACGGAATGCTGTAGGTGAACTTCG -ACGGAATGCTGTAGGTGATACGCA -ACGGAATGCTGTAGGTGACTTGCA -ACGGAATGCTGTAGGTGACGAACA -ACGGAATGCTGTAGGTGACAGTCA -ACGGAATGCTGTAGGTGAGATCCA -ACGGAATGCTGTAGGTGAACGACA -ACGGAATGCTGTAGGTGAAGCTCA -ACGGAATGCTGTAGGTGATCACGT -ACGGAATGCTGTAGGTGACGTAGT -ACGGAATGCTGTAGGTGAGTCAGT -ACGGAATGCTGTAGGTGAGAAGGT -ACGGAATGCTGTAGGTGAAACCGT -ACGGAATGCTGTAGGTGATTGTGC -ACGGAATGCTGTAGGTGACTAAGC -ACGGAATGCTGTAGGTGAACTAGC -ACGGAATGCTGTAGGTGAAGATGC -ACGGAATGCTGTAGGTGATGAAGG -ACGGAATGCTGTAGGTGACAATGG -ACGGAATGCTGTAGGTGAATGAGG -ACGGAATGCTGTAGGTGAAATGGG -ACGGAATGCTGTAGGTGATCCTGA -ACGGAATGCTGTAGGTGATAGCGA -ACGGAATGCTGTAGGTGACACAGA -ACGGAATGCTGTAGGTGAGCAAGA -ACGGAATGCTGTAGGTGAGGTTGA -ACGGAATGCTGTAGGTGATCCGAT -ACGGAATGCTGTAGGTGATGGCAT -ACGGAATGCTGTAGGTGACGAGAT -ACGGAATGCTGTAGGTGATACCAC -ACGGAATGCTGTAGGTGACAGAAC -ACGGAATGCTGTAGGTGAGTCTAC -ACGGAATGCTGTAGGTGAACGTAC -ACGGAATGCTGTAGGTGAAGTGAC -ACGGAATGCTGTAGGTGACTGTAG -ACGGAATGCTGTAGGTGACCTAAG -ACGGAATGCTGTAGGTGAGTTCAG -ACGGAATGCTGTAGGTGAGCATAG -ACGGAATGCTGTAGGTGAGACAAG -ACGGAATGCTGTAGGTGAAAGCAG -ACGGAATGCTGTAGGTGACGTCAA -ACGGAATGCTGTAGGTGAGCTGAA -ACGGAATGCTGTAGGTGAAGTACG -ACGGAATGCTGTAGGTGAATCCGA -ACGGAATGCTGTAGGTGAATGGGA -ACGGAATGCTGTAGGTGAGTGCAA -ACGGAATGCTGTAGGTGAGAGGAA -ACGGAATGCTGTAGGTGACAGGTA -ACGGAATGCTGTAGGTGAGACTCT -ACGGAATGCTGTAGGTGAAGTCCT -ACGGAATGCTGTAGGTGATAAGCC -ACGGAATGCTGTAGGTGAATAGCC -ACGGAATGCTGTAGGTGATAACCG -ACGGAATGCTGTAGGTGAATGCCA -ACGGAATGCTGTTGGCAAGGAAAC -ACGGAATGCTGTTGGCAAAACACC -ACGGAATGCTGTTGGCAAATCGAG -ACGGAATGCTGTTGGCAACTCCTT -ACGGAATGCTGTTGGCAACCTGTT -ACGGAATGCTGTTGGCAACGGTTT -ACGGAATGCTGTTGGCAAGTGGTT -ACGGAATGCTGTTGGCAAGCCTTT -ACGGAATGCTGTTGGCAAGGTCTT -ACGGAATGCTGTTGGCAAACGCTT -ACGGAATGCTGTTGGCAAAGCGTT -ACGGAATGCTGTTGGCAATTCGTC -ACGGAATGCTGTTGGCAATCTCTC -ACGGAATGCTGTTGGCAATGGATC -ACGGAATGCTGTTGGCAACACTTC -ACGGAATGCTGTTGGCAAGTACTC -ACGGAATGCTGTTGGCAAGATGTC -ACGGAATGCTGTTGGCAAACAGTC -ACGGAATGCTGTTGGCAATTGCTG -ACGGAATGCTGTTGGCAATCCATG -ACGGAATGCTGTTGGCAATGTGTG -ACGGAATGCTGTTGGCAACTAGTG -ACGGAATGCTGTTGGCAACATCTG -ACGGAATGCTGTTGGCAAGAGTTG -ACGGAATGCTGTTGGCAAAGACTG -ACGGAATGCTGTTGGCAATCGGTA -ACGGAATGCTGTTGGCAATGCCTA -ACGGAATGCTGTTGGCAACCACTA -ACGGAATGCTGTTGGCAAGGAGTA -ACGGAATGCTGTTGGCAATCGTCT -ACGGAATGCTGTTGGCAATGCACT -ACGGAATGCTGTTGGCAACTGACT -ACGGAATGCTGTTGGCAACAACCT -ACGGAATGCTGTTGGCAAGCTACT -ACGGAATGCTGTTGGCAAGGATCT -ACGGAATGCTGTTGGCAAAAGGCT -ACGGAATGCTGTTGGCAATCAACC -ACGGAATGCTGTTGGCAATGTTCC -ACGGAATGCTGTTGGCAAATTCCC -ACGGAATGCTGTTGGCAATTCTCG -ACGGAATGCTGTTGGCAATAGACG -ACGGAATGCTGTTGGCAAGTAACG -ACGGAATGCTGTTGGCAAACTTCG -ACGGAATGCTGTTGGCAATACGCA -ACGGAATGCTGTTGGCAACTTGCA -ACGGAATGCTGTTGGCAACGAACA -ACGGAATGCTGTTGGCAACAGTCA -ACGGAATGCTGTTGGCAAGATCCA -ACGGAATGCTGTTGGCAAACGACA -ACGGAATGCTGTTGGCAAAGCTCA -ACGGAATGCTGTTGGCAATCACGT -ACGGAATGCTGTTGGCAACGTAGT -ACGGAATGCTGTTGGCAAGTCAGT -ACGGAATGCTGTTGGCAAGAAGGT -ACGGAATGCTGTTGGCAAAACCGT -ACGGAATGCTGTTGGCAATTGTGC -ACGGAATGCTGTTGGCAACTAAGC -ACGGAATGCTGTTGGCAAACTAGC -ACGGAATGCTGTTGGCAAAGATGC -ACGGAATGCTGTTGGCAATGAAGG -ACGGAATGCTGTTGGCAACAATGG -ACGGAATGCTGTTGGCAAATGAGG -ACGGAATGCTGTTGGCAAAATGGG -ACGGAATGCTGTTGGCAATCCTGA -ACGGAATGCTGTTGGCAATAGCGA -ACGGAATGCTGTTGGCAACACAGA -ACGGAATGCTGTTGGCAAGCAAGA -ACGGAATGCTGTTGGCAAGGTTGA -ACGGAATGCTGTTGGCAATCCGAT -ACGGAATGCTGTTGGCAATGGCAT -ACGGAATGCTGTTGGCAACGAGAT -ACGGAATGCTGTTGGCAATACCAC -ACGGAATGCTGTTGGCAACAGAAC -ACGGAATGCTGTTGGCAAGTCTAC -ACGGAATGCTGTTGGCAAACGTAC -ACGGAATGCTGTTGGCAAAGTGAC -ACGGAATGCTGTTGGCAACTGTAG -ACGGAATGCTGTTGGCAACCTAAG -ACGGAATGCTGTTGGCAAGTTCAG -ACGGAATGCTGTTGGCAAGCATAG -ACGGAATGCTGTTGGCAAGACAAG -ACGGAATGCTGTTGGCAAAAGCAG -ACGGAATGCTGTTGGCAACGTCAA -ACGGAATGCTGTTGGCAAGCTGAA -ACGGAATGCTGTTGGCAAAGTACG -ACGGAATGCTGTTGGCAAATCCGA -ACGGAATGCTGTTGGCAAATGGGA -ACGGAATGCTGTTGGCAAGTGCAA -ACGGAATGCTGTTGGCAAGAGGAA -ACGGAATGCTGTTGGCAACAGGTA -ACGGAATGCTGTTGGCAAGACTCT -ACGGAATGCTGTTGGCAAAGTCCT -ACGGAATGCTGTTGGCAATAAGCC -ACGGAATGCTGTTGGCAAATAGCC -ACGGAATGCTGTTGGCAATAACCG -ACGGAATGCTGTTGGCAAATGCCA -ACGGAATGCTGTAGGATGGGAAAC -ACGGAATGCTGTAGGATGAACACC -ACGGAATGCTGTAGGATGATCGAG -ACGGAATGCTGTAGGATGCTCCTT -ACGGAATGCTGTAGGATGCCTGTT -ACGGAATGCTGTAGGATGCGGTTT -ACGGAATGCTGTAGGATGGTGGTT -ACGGAATGCTGTAGGATGGCCTTT -ACGGAATGCTGTAGGATGGGTCTT -ACGGAATGCTGTAGGATGACGCTT -ACGGAATGCTGTAGGATGAGCGTT -ACGGAATGCTGTAGGATGTTCGTC -ACGGAATGCTGTAGGATGTCTCTC -ACGGAATGCTGTAGGATGTGGATC -ACGGAATGCTGTAGGATGCACTTC -ACGGAATGCTGTAGGATGGTACTC -ACGGAATGCTGTAGGATGGATGTC -ACGGAATGCTGTAGGATGACAGTC -ACGGAATGCTGTAGGATGTTGCTG -ACGGAATGCTGTAGGATGTCCATG -ACGGAATGCTGTAGGATGTGTGTG -ACGGAATGCTGTAGGATGCTAGTG -ACGGAATGCTGTAGGATGCATCTG -ACGGAATGCTGTAGGATGGAGTTG -ACGGAATGCTGTAGGATGAGACTG -ACGGAATGCTGTAGGATGTCGGTA -ACGGAATGCTGTAGGATGTGCCTA -ACGGAATGCTGTAGGATGCCACTA -ACGGAATGCTGTAGGATGGGAGTA -ACGGAATGCTGTAGGATGTCGTCT -ACGGAATGCTGTAGGATGTGCACT -ACGGAATGCTGTAGGATGCTGACT -ACGGAATGCTGTAGGATGCAACCT -ACGGAATGCTGTAGGATGGCTACT -ACGGAATGCTGTAGGATGGGATCT -ACGGAATGCTGTAGGATGAAGGCT -ACGGAATGCTGTAGGATGTCAACC -ACGGAATGCTGTAGGATGTGTTCC -ACGGAATGCTGTAGGATGATTCCC -ACGGAATGCTGTAGGATGTTCTCG -ACGGAATGCTGTAGGATGTAGACG -ACGGAATGCTGTAGGATGGTAACG -ACGGAATGCTGTAGGATGACTTCG -ACGGAATGCTGTAGGATGTACGCA -ACGGAATGCTGTAGGATGCTTGCA -ACGGAATGCTGTAGGATGCGAACA -ACGGAATGCTGTAGGATGCAGTCA -ACGGAATGCTGTAGGATGGATCCA -ACGGAATGCTGTAGGATGACGACA -ACGGAATGCTGTAGGATGAGCTCA -ACGGAATGCTGTAGGATGTCACGT -ACGGAATGCTGTAGGATGCGTAGT -ACGGAATGCTGTAGGATGGTCAGT -ACGGAATGCTGTAGGATGGAAGGT -ACGGAATGCTGTAGGATGAACCGT -ACGGAATGCTGTAGGATGTTGTGC -ACGGAATGCTGTAGGATGCTAAGC -ACGGAATGCTGTAGGATGACTAGC -ACGGAATGCTGTAGGATGAGATGC -ACGGAATGCTGTAGGATGTGAAGG -ACGGAATGCTGTAGGATGCAATGG -ACGGAATGCTGTAGGATGATGAGG -ACGGAATGCTGTAGGATGAATGGG -ACGGAATGCTGTAGGATGTCCTGA -ACGGAATGCTGTAGGATGTAGCGA -ACGGAATGCTGTAGGATGCACAGA -ACGGAATGCTGTAGGATGGCAAGA -ACGGAATGCTGTAGGATGGGTTGA -ACGGAATGCTGTAGGATGTCCGAT -ACGGAATGCTGTAGGATGTGGCAT -ACGGAATGCTGTAGGATGCGAGAT -ACGGAATGCTGTAGGATGTACCAC -ACGGAATGCTGTAGGATGCAGAAC -ACGGAATGCTGTAGGATGGTCTAC -ACGGAATGCTGTAGGATGACGTAC -ACGGAATGCTGTAGGATGAGTGAC -ACGGAATGCTGTAGGATGCTGTAG -ACGGAATGCTGTAGGATGCCTAAG -ACGGAATGCTGTAGGATGGTTCAG -ACGGAATGCTGTAGGATGGCATAG -ACGGAATGCTGTAGGATGGACAAG -ACGGAATGCTGTAGGATGAAGCAG -ACGGAATGCTGTAGGATGCGTCAA -ACGGAATGCTGTAGGATGGCTGAA -ACGGAATGCTGTAGGATGAGTACG -ACGGAATGCTGTAGGATGATCCGA -ACGGAATGCTGTAGGATGATGGGA -ACGGAATGCTGTAGGATGGTGCAA -ACGGAATGCTGTAGGATGGAGGAA -ACGGAATGCTGTAGGATGCAGGTA -ACGGAATGCTGTAGGATGGACTCT -ACGGAATGCTGTAGGATGAGTCCT -ACGGAATGCTGTAGGATGTAAGCC -ACGGAATGCTGTAGGATGATAGCC -ACGGAATGCTGTAGGATGTAACCG -ACGGAATGCTGTAGGATGATGCCA -ACGGAATGCTGTGGGAATGGAAAC -ACGGAATGCTGTGGGAATAACACC -ACGGAATGCTGTGGGAATATCGAG -ACGGAATGCTGTGGGAATCTCCTT -ACGGAATGCTGTGGGAATCCTGTT -ACGGAATGCTGTGGGAATCGGTTT -ACGGAATGCTGTGGGAATGTGGTT -ACGGAATGCTGTGGGAATGCCTTT -ACGGAATGCTGTGGGAATGGTCTT -ACGGAATGCTGTGGGAATACGCTT -ACGGAATGCTGTGGGAATAGCGTT -ACGGAATGCTGTGGGAATTTCGTC -ACGGAATGCTGTGGGAATTCTCTC -ACGGAATGCTGTGGGAATTGGATC -ACGGAATGCTGTGGGAATCACTTC -ACGGAATGCTGTGGGAATGTACTC -ACGGAATGCTGTGGGAATGATGTC -ACGGAATGCTGTGGGAATACAGTC -ACGGAATGCTGTGGGAATTTGCTG -ACGGAATGCTGTGGGAATTCCATG -ACGGAATGCTGTGGGAATTGTGTG -ACGGAATGCTGTGGGAATCTAGTG -ACGGAATGCTGTGGGAATCATCTG -ACGGAATGCTGTGGGAATGAGTTG -ACGGAATGCTGTGGGAATAGACTG -ACGGAATGCTGTGGGAATTCGGTA -ACGGAATGCTGTGGGAATTGCCTA -ACGGAATGCTGTGGGAATCCACTA -ACGGAATGCTGTGGGAATGGAGTA -ACGGAATGCTGTGGGAATTCGTCT -ACGGAATGCTGTGGGAATTGCACT -ACGGAATGCTGTGGGAATCTGACT -ACGGAATGCTGTGGGAATCAACCT -ACGGAATGCTGTGGGAATGCTACT -ACGGAATGCTGTGGGAATGGATCT -ACGGAATGCTGTGGGAATAAGGCT -ACGGAATGCTGTGGGAATTCAACC -ACGGAATGCTGTGGGAATTGTTCC -ACGGAATGCTGTGGGAATATTCCC -ACGGAATGCTGTGGGAATTTCTCG -ACGGAATGCTGTGGGAATTAGACG -ACGGAATGCTGTGGGAATGTAACG -ACGGAATGCTGTGGGAATACTTCG -ACGGAATGCTGTGGGAATTACGCA -ACGGAATGCTGTGGGAATCTTGCA -ACGGAATGCTGTGGGAATCGAACA -ACGGAATGCTGTGGGAATCAGTCA -ACGGAATGCTGTGGGAATGATCCA -ACGGAATGCTGTGGGAATACGACA -ACGGAATGCTGTGGGAATAGCTCA -ACGGAATGCTGTGGGAATTCACGT -ACGGAATGCTGTGGGAATCGTAGT -ACGGAATGCTGTGGGAATGTCAGT -ACGGAATGCTGTGGGAATGAAGGT -ACGGAATGCTGTGGGAATAACCGT -ACGGAATGCTGTGGGAATTTGTGC -ACGGAATGCTGTGGGAATCTAAGC -ACGGAATGCTGTGGGAATACTAGC -ACGGAATGCTGTGGGAATAGATGC -ACGGAATGCTGTGGGAATTGAAGG -ACGGAATGCTGTGGGAATCAATGG -ACGGAATGCTGTGGGAATATGAGG -ACGGAATGCTGTGGGAATAATGGG -ACGGAATGCTGTGGGAATTCCTGA -ACGGAATGCTGTGGGAATTAGCGA -ACGGAATGCTGTGGGAATCACAGA -ACGGAATGCTGTGGGAATGCAAGA -ACGGAATGCTGTGGGAATGGTTGA -ACGGAATGCTGTGGGAATTCCGAT -ACGGAATGCTGTGGGAATTGGCAT -ACGGAATGCTGTGGGAATCGAGAT -ACGGAATGCTGTGGGAATTACCAC -ACGGAATGCTGTGGGAATCAGAAC -ACGGAATGCTGTGGGAATGTCTAC -ACGGAATGCTGTGGGAATACGTAC -ACGGAATGCTGTGGGAATAGTGAC -ACGGAATGCTGTGGGAATCTGTAG -ACGGAATGCTGTGGGAATCCTAAG -ACGGAATGCTGTGGGAATGTTCAG -ACGGAATGCTGTGGGAATGCATAG -ACGGAATGCTGTGGGAATGACAAG -ACGGAATGCTGTGGGAATAAGCAG -ACGGAATGCTGTGGGAATCGTCAA -ACGGAATGCTGTGGGAATGCTGAA -ACGGAATGCTGTGGGAATAGTACG -ACGGAATGCTGTGGGAATATCCGA -ACGGAATGCTGTGGGAATATGGGA -ACGGAATGCTGTGGGAATGTGCAA -ACGGAATGCTGTGGGAATGAGGAA -ACGGAATGCTGTGGGAATCAGGTA -ACGGAATGCTGTGGGAATGACTCT -ACGGAATGCTGTGGGAATAGTCCT -ACGGAATGCTGTGGGAATTAAGCC -ACGGAATGCTGTGGGAATATAGCC -ACGGAATGCTGTGGGAATTAACCG -ACGGAATGCTGTGGGAATATGCCA -ACGGAATGCTGTTGATCCGGAAAC -ACGGAATGCTGTTGATCCAACACC -ACGGAATGCTGTTGATCCATCGAG -ACGGAATGCTGTTGATCCCTCCTT -ACGGAATGCTGTTGATCCCCTGTT -ACGGAATGCTGTTGATCCCGGTTT -ACGGAATGCTGTTGATCCGTGGTT -ACGGAATGCTGTTGATCCGCCTTT -ACGGAATGCTGTTGATCCGGTCTT -ACGGAATGCTGTTGATCCACGCTT -ACGGAATGCTGTTGATCCAGCGTT -ACGGAATGCTGTTGATCCTTCGTC -ACGGAATGCTGTTGATCCTCTCTC -ACGGAATGCTGTTGATCCTGGATC -ACGGAATGCTGTTGATCCCACTTC -ACGGAATGCTGTTGATCCGTACTC -ACGGAATGCTGTTGATCCGATGTC -ACGGAATGCTGTTGATCCACAGTC -ACGGAATGCTGTTGATCCTTGCTG -ACGGAATGCTGTTGATCCTCCATG -ACGGAATGCTGTTGATCCTGTGTG -ACGGAATGCTGTTGATCCCTAGTG -ACGGAATGCTGTTGATCCCATCTG -ACGGAATGCTGTTGATCCGAGTTG -ACGGAATGCTGTTGATCCAGACTG -ACGGAATGCTGTTGATCCTCGGTA -ACGGAATGCTGTTGATCCTGCCTA -ACGGAATGCTGTTGATCCCCACTA -ACGGAATGCTGTTGATCCGGAGTA -ACGGAATGCTGTTGATCCTCGTCT -ACGGAATGCTGTTGATCCTGCACT -ACGGAATGCTGTTGATCCCTGACT -ACGGAATGCTGTTGATCCCAACCT -ACGGAATGCTGTTGATCCGCTACT -ACGGAATGCTGTTGATCCGGATCT -ACGGAATGCTGTTGATCCAAGGCT -ACGGAATGCTGTTGATCCTCAACC -ACGGAATGCTGTTGATCCTGTTCC -ACGGAATGCTGTTGATCCATTCCC -ACGGAATGCTGTTGATCCTTCTCG -ACGGAATGCTGTTGATCCTAGACG -ACGGAATGCTGTTGATCCGTAACG -ACGGAATGCTGTTGATCCACTTCG -ACGGAATGCTGTTGATCCTACGCA -ACGGAATGCTGTTGATCCCTTGCA -ACGGAATGCTGTTGATCCCGAACA -ACGGAATGCTGTTGATCCCAGTCA -ACGGAATGCTGTTGATCCGATCCA -ACGGAATGCTGTTGATCCACGACA -ACGGAATGCTGTTGATCCAGCTCA -ACGGAATGCTGTTGATCCTCACGT -ACGGAATGCTGTTGATCCCGTAGT -ACGGAATGCTGTTGATCCGTCAGT -ACGGAATGCTGTTGATCCGAAGGT -ACGGAATGCTGTTGATCCAACCGT -ACGGAATGCTGTTGATCCTTGTGC -ACGGAATGCTGTTGATCCCTAAGC -ACGGAATGCTGTTGATCCACTAGC -ACGGAATGCTGTTGATCCAGATGC -ACGGAATGCTGTTGATCCTGAAGG -ACGGAATGCTGTTGATCCCAATGG -ACGGAATGCTGTTGATCCATGAGG -ACGGAATGCTGTTGATCCAATGGG -ACGGAATGCTGTTGATCCTCCTGA -ACGGAATGCTGTTGATCCTAGCGA -ACGGAATGCTGTTGATCCCACAGA -ACGGAATGCTGTTGATCCGCAAGA -ACGGAATGCTGTTGATCCGGTTGA -ACGGAATGCTGTTGATCCTCCGAT -ACGGAATGCTGTTGATCCTGGCAT -ACGGAATGCTGTTGATCCCGAGAT -ACGGAATGCTGTTGATCCTACCAC -ACGGAATGCTGTTGATCCCAGAAC -ACGGAATGCTGTTGATCCGTCTAC -ACGGAATGCTGTTGATCCACGTAC -ACGGAATGCTGTTGATCCAGTGAC -ACGGAATGCTGTTGATCCCTGTAG -ACGGAATGCTGTTGATCCCCTAAG -ACGGAATGCTGTTGATCCGTTCAG -ACGGAATGCTGTTGATCCGCATAG -ACGGAATGCTGTTGATCCGACAAG -ACGGAATGCTGTTGATCCAAGCAG -ACGGAATGCTGTTGATCCCGTCAA -ACGGAATGCTGTTGATCCGCTGAA -ACGGAATGCTGTTGATCCAGTACG -ACGGAATGCTGTTGATCCATCCGA -ACGGAATGCTGTTGATCCATGGGA -ACGGAATGCTGTTGATCCGTGCAA -ACGGAATGCTGTTGATCCGAGGAA -ACGGAATGCTGTTGATCCCAGGTA -ACGGAATGCTGTTGATCCGACTCT -ACGGAATGCTGTTGATCCAGTCCT -ACGGAATGCTGTTGATCCTAAGCC -ACGGAATGCTGTTGATCCATAGCC -ACGGAATGCTGTTGATCCTAACCG -ACGGAATGCTGTTGATCCATGCCA -ACGGAATGCTGTCGATAGGGAAAC -ACGGAATGCTGTCGATAGAACACC -ACGGAATGCTGTCGATAGATCGAG -ACGGAATGCTGTCGATAGCTCCTT -ACGGAATGCTGTCGATAGCCTGTT -ACGGAATGCTGTCGATAGCGGTTT -ACGGAATGCTGTCGATAGGTGGTT -ACGGAATGCTGTCGATAGGCCTTT -ACGGAATGCTGTCGATAGGGTCTT -ACGGAATGCTGTCGATAGACGCTT -ACGGAATGCTGTCGATAGAGCGTT -ACGGAATGCTGTCGATAGTTCGTC -ACGGAATGCTGTCGATAGTCTCTC -ACGGAATGCTGTCGATAGTGGATC -ACGGAATGCTGTCGATAGCACTTC -ACGGAATGCTGTCGATAGGTACTC -ACGGAATGCTGTCGATAGGATGTC -ACGGAATGCTGTCGATAGACAGTC -ACGGAATGCTGTCGATAGTTGCTG -ACGGAATGCTGTCGATAGTCCATG -ACGGAATGCTGTCGATAGTGTGTG -ACGGAATGCTGTCGATAGCTAGTG -ACGGAATGCTGTCGATAGCATCTG -ACGGAATGCTGTCGATAGGAGTTG -ACGGAATGCTGTCGATAGAGACTG -ACGGAATGCTGTCGATAGTCGGTA -ACGGAATGCTGTCGATAGTGCCTA -ACGGAATGCTGTCGATAGCCACTA -ACGGAATGCTGTCGATAGGGAGTA -ACGGAATGCTGTCGATAGTCGTCT -ACGGAATGCTGTCGATAGTGCACT -ACGGAATGCTGTCGATAGCTGACT -ACGGAATGCTGTCGATAGCAACCT -ACGGAATGCTGTCGATAGGCTACT -ACGGAATGCTGTCGATAGGGATCT -ACGGAATGCTGTCGATAGAAGGCT -ACGGAATGCTGTCGATAGTCAACC -ACGGAATGCTGTCGATAGTGTTCC -ACGGAATGCTGTCGATAGATTCCC -ACGGAATGCTGTCGATAGTTCTCG -ACGGAATGCTGTCGATAGTAGACG -ACGGAATGCTGTCGATAGGTAACG -ACGGAATGCTGTCGATAGACTTCG -ACGGAATGCTGTCGATAGTACGCA -ACGGAATGCTGTCGATAGCTTGCA -ACGGAATGCTGTCGATAGCGAACA -ACGGAATGCTGTCGATAGCAGTCA -ACGGAATGCTGTCGATAGGATCCA -ACGGAATGCTGTCGATAGACGACA -ACGGAATGCTGTCGATAGAGCTCA -ACGGAATGCTGTCGATAGTCACGT -ACGGAATGCTGTCGATAGCGTAGT -ACGGAATGCTGTCGATAGGTCAGT -ACGGAATGCTGTCGATAGGAAGGT -ACGGAATGCTGTCGATAGAACCGT -ACGGAATGCTGTCGATAGTTGTGC -ACGGAATGCTGTCGATAGCTAAGC -ACGGAATGCTGTCGATAGACTAGC -ACGGAATGCTGTCGATAGAGATGC -ACGGAATGCTGTCGATAGTGAAGG -ACGGAATGCTGTCGATAGCAATGG -ACGGAATGCTGTCGATAGATGAGG -ACGGAATGCTGTCGATAGAATGGG -ACGGAATGCTGTCGATAGTCCTGA -ACGGAATGCTGTCGATAGTAGCGA -ACGGAATGCTGTCGATAGCACAGA -ACGGAATGCTGTCGATAGGCAAGA -ACGGAATGCTGTCGATAGGGTTGA -ACGGAATGCTGTCGATAGTCCGAT -ACGGAATGCTGTCGATAGTGGCAT -ACGGAATGCTGTCGATAGCGAGAT -ACGGAATGCTGTCGATAGTACCAC -ACGGAATGCTGTCGATAGCAGAAC -ACGGAATGCTGTCGATAGGTCTAC -ACGGAATGCTGTCGATAGACGTAC -ACGGAATGCTGTCGATAGAGTGAC -ACGGAATGCTGTCGATAGCTGTAG -ACGGAATGCTGTCGATAGCCTAAG -ACGGAATGCTGTCGATAGGTTCAG -ACGGAATGCTGTCGATAGGCATAG -ACGGAATGCTGTCGATAGGACAAG -ACGGAATGCTGTCGATAGAAGCAG -ACGGAATGCTGTCGATAGCGTCAA -ACGGAATGCTGTCGATAGGCTGAA -ACGGAATGCTGTCGATAGAGTACG -ACGGAATGCTGTCGATAGATCCGA -ACGGAATGCTGTCGATAGATGGGA -ACGGAATGCTGTCGATAGGTGCAA -ACGGAATGCTGTCGATAGGAGGAA -ACGGAATGCTGTCGATAGCAGGTA -ACGGAATGCTGTCGATAGGACTCT -ACGGAATGCTGTCGATAGAGTCCT -ACGGAATGCTGTCGATAGTAAGCC -ACGGAATGCTGTCGATAGATAGCC -ACGGAATGCTGTCGATAGTAACCG -ACGGAATGCTGTCGATAGATGCCA -ACGGAATGCTGTAGACACGGAAAC -ACGGAATGCTGTAGACACAACACC -ACGGAATGCTGTAGACACATCGAG -ACGGAATGCTGTAGACACCTCCTT -ACGGAATGCTGTAGACACCCTGTT -ACGGAATGCTGTAGACACCGGTTT -ACGGAATGCTGTAGACACGTGGTT -ACGGAATGCTGTAGACACGCCTTT -ACGGAATGCTGTAGACACGGTCTT -ACGGAATGCTGTAGACACACGCTT -ACGGAATGCTGTAGACACAGCGTT -ACGGAATGCTGTAGACACTTCGTC -ACGGAATGCTGTAGACACTCTCTC -ACGGAATGCTGTAGACACTGGATC -ACGGAATGCTGTAGACACCACTTC -ACGGAATGCTGTAGACACGTACTC -ACGGAATGCTGTAGACACGATGTC -ACGGAATGCTGTAGACACACAGTC -ACGGAATGCTGTAGACACTTGCTG -ACGGAATGCTGTAGACACTCCATG -ACGGAATGCTGTAGACACTGTGTG -ACGGAATGCTGTAGACACCTAGTG -ACGGAATGCTGTAGACACCATCTG -ACGGAATGCTGTAGACACGAGTTG -ACGGAATGCTGTAGACACAGACTG -ACGGAATGCTGTAGACACTCGGTA -ACGGAATGCTGTAGACACTGCCTA -ACGGAATGCTGTAGACACCCACTA -ACGGAATGCTGTAGACACGGAGTA -ACGGAATGCTGTAGACACTCGTCT -ACGGAATGCTGTAGACACTGCACT -ACGGAATGCTGTAGACACCTGACT -ACGGAATGCTGTAGACACCAACCT -ACGGAATGCTGTAGACACGCTACT -ACGGAATGCTGTAGACACGGATCT -ACGGAATGCTGTAGACACAAGGCT -ACGGAATGCTGTAGACACTCAACC -ACGGAATGCTGTAGACACTGTTCC -ACGGAATGCTGTAGACACATTCCC -ACGGAATGCTGTAGACACTTCTCG -ACGGAATGCTGTAGACACTAGACG -ACGGAATGCTGTAGACACGTAACG -ACGGAATGCTGTAGACACACTTCG -ACGGAATGCTGTAGACACTACGCA -ACGGAATGCTGTAGACACCTTGCA -ACGGAATGCTGTAGACACCGAACA -ACGGAATGCTGTAGACACCAGTCA -ACGGAATGCTGTAGACACGATCCA -ACGGAATGCTGTAGACACACGACA -ACGGAATGCTGTAGACACAGCTCA -ACGGAATGCTGTAGACACTCACGT -ACGGAATGCTGTAGACACCGTAGT -ACGGAATGCTGTAGACACGTCAGT -ACGGAATGCTGTAGACACGAAGGT -ACGGAATGCTGTAGACACAACCGT -ACGGAATGCTGTAGACACTTGTGC -ACGGAATGCTGTAGACACCTAAGC -ACGGAATGCTGTAGACACACTAGC -ACGGAATGCTGTAGACACAGATGC -ACGGAATGCTGTAGACACTGAAGG -ACGGAATGCTGTAGACACCAATGG -ACGGAATGCTGTAGACACATGAGG -ACGGAATGCTGTAGACACAATGGG -ACGGAATGCTGTAGACACTCCTGA -ACGGAATGCTGTAGACACTAGCGA -ACGGAATGCTGTAGACACCACAGA -ACGGAATGCTGTAGACACGCAAGA -ACGGAATGCTGTAGACACGGTTGA -ACGGAATGCTGTAGACACTCCGAT -ACGGAATGCTGTAGACACTGGCAT -ACGGAATGCTGTAGACACCGAGAT -ACGGAATGCTGTAGACACTACCAC -ACGGAATGCTGTAGACACCAGAAC -ACGGAATGCTGTAGACACGTCTAC -ACGGAATGCTGTAGACACACGTAC -ACGGAATGCTGTAGACACAGTGAC -ACGGAATGCTGTAGACACCTGTAG -ACGGAATGCTGTAGACACCCTAAG -ACGGAATGCTGTAGACACGTTCAG -ACGGAATGCTGTAGACACGCATAG -ACGGAATGCTGTAGACACGACAAG -ACGGAATGCTGTAGACACAAGCAG -ACGGAATGCTGTAGACACCGTCAA -ACGGAATGCTGTAGACACGCTGAA -ACGGAATGCTGTAGACACAGTACG -ACGGAATGCTGTAGACACATCCGA -ACGGAATGCTGTAGACACATGGGA -ACGGAATGCTGTAGACACGTGCAA -ACGGAATGCTGTAGACACGAGGAA -ACGGAATGCTGTAGACACCAGGTA -ACGGAATGCTGTAGACACGACTCT -ACGGAATGCTGTAGACACAGTCCT -ACGGAATGCTGTAGACACTAAGCC -ACGGAATGCTGTAGACACATAGCC -ACGGAATGCTGTAGACACTAACCG -ACGGAATGCTGTAGACACATGCCA -ACGGAATGCTGTAGAGCAGGAAAC -ACGGAATGCTGTAGAGCAAACACC -ACGGAATGCTGTAGAGCAATCGAG -ACGGAATGCTGTAGAGCACTCCTT -ACGGAATGCTGTAGAGCACCTGTT -ACGGAATGCTGTAGAGCACGGTTT -ACGGAATGCTGTAGAGCAGTGGTT -ACGGAATGCTGTAGAGCAGCCTTT -ACGGAATGCTGTAGAGCAGGTCTT -ACGGAATGCTGTAGAGCAACGCTT -ACGGAATGCTGTAGAGCAAGCGTT -ACGGAATGCTGTAGAGCATTCGTC -ACGGAATGCTGTAGAGCATCTCTC -ACGGAATGCTGTAGAGCATGGATC -ACGGAATGCTGTAGAGCACACTTC -ACGGAATGCTGTAGAGCAGTACTC -ACGGAATGCTGTAGAGCAGATGTC -ACGGAATGCTGTAGAGCAACAGTC -ACGGAATGCTGTAGAGCATTGCTG -ACGGAATGCTGTAGAGCATCCATG -ACGGAATGCTGTAGAGCATGTGTG -ACGGAATGCTGTAGAGCACTAGTG -ACGGAATGCTGTAGAGCACATCTG -ACGGAATGCTGTAGAGCAGAGTTG -ACGGAATGCTGTAGAGCAAGACTG -ACGGAATGCTGTAGAGCATCGGTA -ACGGAATGCTGTAGAGCATGCCTA -ACGGAATGCTGTAGAGCACCACTA -ACGGAATGCTGTAGAGCAGGAGTA -ACGGAATGCTGTAGAGCATCGTCT -ACGGAATGCTGTAGAGCATGCACT -ACGGAATGCTGTAGAGCACTGACT -ACGGAATGCTGTAGAGCACAACCT -ACGGAATGCTGTAGAGCAGCTACT -ACGGAATGCTGTAGAGCAGGATCT -ACGGAATGCTGTAGAGCAAAGGCT -ACGGAATGCTGTAGAGCATCAACC -ACGGAATGCTGTAGAGCATGTTCC -ACGGAATGCTGTAGAGCAATTCCC -ACGGAATGCTGTAGAGCATTCTCG -ACGGAATGCTGTAGAGCATAGACG -ACGGAATGCTGTAGAGCAGTAACG -ACGGAATGCTGTAGAGCAACTTCG -ACGGAATGCTGTAGAGCATACGCA -ACGGAATGCTGTAGAGCACTTGCA -ACGGAATGCTGTAGAGCACGAACA -ACGGAATGCTGTAGAGCACAGTCA -ACGGAATGCTGTAGAGCAGATCCA -ACGGAATGCTGTAGAGCAACGACA -ACGGAATGCTGTAGAGCAAGCTCA -ACGGAATGCTGTAGAGCATCACGT -ACGGAATGCTGTAGAGCACGTAGT -ACGGAATGCTGTAGAGCAGTCAGT -ACGGAATGCTGTAGAGCAGAAGGT -ACGGAATGCTGTAGAGCAAACCGT -ACGGAATGCTGTAGAGCATTGTGC -ACGGAATGCTGTAGAGCACTAAGC -ACGGAATGCTGTAGAGCAACTAGC -ACGGAATGCTGTAGAGCAAGATGC -ACGGAATGCTGTAGAGCATGAAGG -ACGGAATGCTGTAGAGCACAATGG -ACGGAATGCTGTAGAGCAATGAGG -ACGGAATGCTGTAGAGCAAATGGG -ACGGAATGCTGTAGAGCATCCTGA -ACGGAATGCTGTAGAGCATAGCGA -ACGGAATGCTGTAGAGCACACAGA -ACGGAATGCTGTAGAGCAGCAAGA -ACGGAATGCTGTAGAGCAGGTTGA -ACGGAATGCTGTAGAGCATCCGAT -ACGGAATGCTGTAGAGCATGGCAT -ACGGAATGCTGTAGAGCACGAGAT -ACGGAATGCTGTAGAGCATACCAC -ACGGAATGCTGTAGAGCACAGAAC -ACGGAATGCTGTAGAGCAGTCTAC -ACGGAATGCTGTAGAGCAACGTAC -ACGGAATGCTGTAGAGCAAGTGAC -ACGGAATGCTGTAGAGCACTGTAG -ACGGAATGCTGTAGAGCACCTAAG -ACGGAATGCTGTAGAGCAGTTCAG -ACGGAATGCTGTAGAGCAGCATAG -ACGGAATGCTGTAGAGCAGACAAG -ACGGAATGCTGTAGAGCAAAGCAG -ACGGAATGCTGTAGAGCACGTCAA -ACGGAATGCTGTAGAGCAGCTGAA -ACGGAATGCTGTAGAGCAAGTACG -ACGGAATGCTGTAGAGCAATCCGA -ACGGAATGCTGTAGAGCAATGGGA -ACGGAATGCTGTAGAGCAGTGCAA -ACGGAATGCTGTAGAGCAGAGGAA -ACGGAATGCTGTAGAGCACAGGTA -ACGGAATGCTGTAGAGCAGACTCT -ACGGAATGCTGTAGAGCAAGTCCT -ACGGAATGCTGTAGAGCATAAGCC -ACGGAATGCTGTAGAGCAATAGCC -ACGGAATGCTGTAGAGCATAACCG -ACGGAATGCTGTAGAGCAATGCCA -ACGGAATGCTGTTGAGGTGGAAAC -ACGGAATGCTGTTGAGGTAACACC -ACGGAATGCTGTTGAGGTATCGAG -ACGGAATGCTGTTGAGGTCTCCTT -ACGGAATGCTGTTGAGGTCCTGTT -ACGGAATGCTGTTGAGGTCGGTTT -ACGGAATGCTGTTGAGGTGTGGTT -ACGGAATGCTGTTGAGGTGCCTTT -ACGGAATGCTGTTGAGGTGGTCTT -ACGGAATGCTGTTGAGGTACGCTT -ACGGAATGCTGTTGAGGTAGCGTT -ACGGAATGCTGTTGAGGTTTCGTC -ACGGAATGCTGTTGAGGTTCTCTC -ACGGAATGCTGTTGAGGTTGGATC -ACGGAATGCTGTTGAGGTCACTTC -ACGGAATGCTGTTGAGGTGTACTC -ACGGAATGCTGTTGAGGTGATGTC -ACGGAATGCTGTTGAGGTACAGTC -ACGGAATGCTGTTGAGGTTTGCTG -ACGGAATGCTGTTGAGGTTCCATG -ACGGAATGCTGTTGAGGTTGTGTG -ACGGAATGCTGTTGAGGTCTAGTG -ACGGAATGCTGTTGAGGTCATCTG -ACGGAATGCTGTTGAGGTGAGTTG -ACGGAATGCTGTTGAGGTAGACTG -ACGGAATGCTGTTGAGGTTCGGTA -ACGGAATGCTGTTGAGGTTGCCTA -ACGGAATGCTGTTGAGGTCCACTA -ACGGAATGCTGTTGAGGTGGAGTA -ACGGAATGCTGTTGAGGTTCGTCT -ACGGAATGCTGTTGAGGTTGCACT -ACGGAATGCTGTTGAGGTCTGACT -ACGGAATGCTGTTGAGGTCAACCT -ACGGAATGCTGTTGAGGTGCTACT -ACGGAATGCTGTTGAGGTGGATCT -ACGGAATGCTGTTGAGGTAAGGCT -ACGGAATGCTGTTGAGGTTCAACC -ACGGAATGCTGTTGAGGTTGTTCC -ACGGAATGCTGTTGAGGTATTCCC -ACGGAATGCTGTTGAGGTTTCTCG -ACGGAATGCTGTTGAGGTTAGACG -ACGGAATGCTGTTGAGGTGTAACG -ACGGAATGCTGTTGAGGTACTTCG -ACGGAATGCTGTTGAGGTTACGCA -ACGGAATGCTGTTGAGGTCTTGCA -ACGGAATGCTGTTGAGGTCGAACA -ACGGAATGCTGTTGAGGTCAGTCA -ACGGAATGCTGTTGAGGTGATCCA -ACGGAATGCTGTTGAGGTACGACA -ACGGAATGCTGTTGAGGTAGCTCA -ACGGAATGCTGTTGAGGTTCACGT -ACGGAATGCTGTTGAGGTCGTAGT -ACGGAATGCTGTTGAGGTGTCAGT -ACGGAATGCTGTTGAGGTGAAGGT -ACGGAATGCTGTTGAGGTAACCGT -ACGGAATGCTGTTGAGGTTTGTGC -ACGGAATGCTGTTGAGGTCTAAGC -ACGGAATGCTGTTGAGGTACTAGC -ACGGAATGCTGTTGAGGTAGATGC -ACGGAATGCTGTTGAGGTTGAAGG -ACGGAATGCTGTTGAGGTCAATGG -ACGGAATGCTGTTGAGGTATGAGG -ACGGAATGCTGTTGAGGTAATGGG -ACGGAATGCTGTTGAGGTTCCTGA -ACGGAATGCTGTTGAGGTTAGCGA -ACGGAATGCTGTTGAGGTCACAGA -ACGGAATGCTGTTGAGGTGCAAGA -ACGGAATGCTGTTGAGGTGGTTGA -ACGGAATGCTGTTGAGGTTCCGAT -ACGGAATGCTGTTGAGGTTGGCAT -ACGGAATGCTGTTGAGGTCGAGAT -ACGGAATGCTGTTGAGGTTACCAC -ACGGAATGCTGTTGAGGTCAGAAC -ACGGAATGCTGTTGAGGTGTCTAC -ACGGAATGCTGTTGAGGTACGTAC -ACGGAATGCTGTTGAGGTAGTGAC -ACGGAATGCTGTTGAGGTCTGTAG -ACGGAATGCTGTTGAGGTCCTAAG -ACGGAATGCTGTTGAGGTGTTCAG -ACGGAATGCTGTTGAGGTGCATAG -ACGGAATGCTGTTGAGGTGACAAG -ACGGAATGCTGTTGAGGTAAGCAG -ACGGAATGCTGTTGAGGTCGTCAA -ACGGAATGCTGTTGAGGTGCTGAA -ACGGAATGCTGTTGAGGTAGTACG -ACGGAATGCTGTTGAGGTATCCGA -ACGGAATGCTGTTGAGGTATGGGA -ACGGAATGCTGTTGAGGTGTGCAA -ACGGAATGCTGTTGAGGTGAGGAA -ACGGAATGCTGTTGAGGTCAGGTA -ACGGAATGCTGTTGAGGTGACTCT -ACGGAATGCTGTTGAGGTAGTCCT -ACGGAATGCTGTTGAGGTTAAGCC -ACGGAATGCTGTTGAGGTATAGCC -ACGGAATGCTGTTGAGGTTAACCG -ACGGAATGCTGTTGAGGTATGCCA -ACGGAATGCTGTGATTCCGGAAAC -ACGGAATGCTGTGATTCCAACACC -ACGGAATGCTGTGATTCCATCGAG -ACGGAATGCTGTGATTCCCTCCTT -ACGGAATGCTGTGATTCCCCTGTT -ACGGAATGCTGTGATTCCCGGTTT -ACGGAATGCTGTGATTCCGTGGTT -ACGGAATGCTGTGATTCCGCCTTT -ACGGAATGCTGTGATTCCGGTCTT -ACGGAATGCTGTGATTCCACGCTT -ACGGAATGCTGTGATTCCAGCGTT -ACGGAATGCTGTGATTCCTTCGTC -ACGGAATGCTGTGATTCCTCTCTC -ACGGAATGCTGTGATTCCTGGATC -ACGGAATGCTGTGATTCCCACTTC -ACGGAATGCTGTGATTCCGTACTC -ACGGAATGCTGTGATTCCGATGTC -ACGGAATGCTGTGATTCCACAGTC -ACGGAATGCTGTGATTCCTTGCTG -ACGGAATGCTGTGATTCCTCCATG -ACGGAATGCTGTGATTCCTGTGTG -ACGGAATGCTGTGATTCCCTAGTG -ACGGAATGCTGTGATTCCCATCTG -ACGGAATGCTGTGATTCCGAGTTG -ACGGAATGCTGTGATTCCAGACTG -ACGGAATGCTGTGATTCCTCGGTA -ACGGAATGCTGTGATTCCTGCCTA -ACGGAATGCTGTGATTCCCCACTA -ACGGAATGCTGTGATTCCGGAGTA -ACGGAATGCTGTGATTCCTCGTCT -ACGGAATGCTGTGATTCCTGCACT -ACGGAATGCTGTGATTCCCTGACT -ACGGAATGCTGTGATTCCCAACCT -ACGGAATGCTGTGATTCCGCTACT -ACGGAATGCTGTGATTCCGGATCT -ACGGAATGCTGTGATTCCAAGGCT -ACGGAATGCTGTGATTCCTCAACC -ACGGAATGCTGTGATTCCTGTTCC -ACGGAATGCTGTGATTCCATTCCC -ACGGAATGCTGTGATTCCTTCTCG -ACGGAATGCTGTGATTCCTAGACG -ACGGAATGCTGTGATTCCGTAACG -ACGGAATGCTGTGATTCCACTTCG -ACGGAATGCTGTGATTCCTACGCA -ACGGAATGCTGTGATTCCCTTGCA -ACGGAATGCTGTGATTCCCGAACA -ACGGAATGCTGTGATTCCCAGTCA -ACGGAATGCTGTGATTCCGATCCA -ACGGAATGCTGTGATTCCACGACA -ACGGAATGCTGTGATTCCAGCTCA -ACGGAATGCTGTGATTCCTCACGT -ACGGAATGCTGTGATTCCCGTAGT -ACGGAATGCTGTGATTCCGTCAGT -ACGGAATGCTGTGATTCCGAAGGT -ACGGAATGCTGTGATTCCAACCGT -ACGGAATGCTGTGATTCCTTGTGC -ACGGAATGCTGTGATTCCCTAAGC -ACGGAATGCTGTGATTCCACTAGC -ACGGAATGCTGTGATTCCAGATGC -ACGGAATGCTGTGATTCCTGAAGG -ACGGAATGCTGTGATTCCCAATGG -ACGGAATGCTGTGATTCCATGAGG -ACGGAATGCTGTGATTCCAATGGG -ACGGAATGCTGTGATTCCTCCTGA -ACGGAATGCTGTGATTCCTAGCGA -ACGGAATGCTGTGATTCCCACAGA -ACGGAATGCTGTGATTCCGCAAGA -ACGGAATGCTGTGATTCCGGTTGA -ACGGAATGCTGTGATTCCTCCGAT -ACGGAATGCTGTGATTCCTGGCAT -ACGGAATGCTGTGATTCCCGAGAT -ACGGAATGCTGTGATTCCTACCAC -ACGGAATGCTGTGATTCCCAGAAC -ACGGAATGCTGTGATTCCGTCTAC -ACGGAATGCTGTGATTCCACGTAC -ACGGAATGCTGTGATTCCAGTGAC -ACGGAATGCTGTGATTCCCTGTAG -ACGGAATGCTGTGATTCCCCTAAG -ACGGAATGCTGTGATTCCGTTCAG -ACGGAATGCTGTGATTCCGCATAG -ACGGAATGCTGTGATTCCGACAAG -ACGGAATGCTGTGATTCCAAGCAG -ACGGAATGCTGTGATTCCCGTCAA -ACGGAATGCTGTGATTCCGCTGAA -ACGGAATGCTGTGATTCCAGTACG -ACGGAATGCTGTGATTCCATCCGA -ACGGAATGCTGTGATTCCATGGGA -ACGGAATGCTGTGATTCCGTGCAA -ACGGAATGCTGTGATTCCGAGGAA -ACGGAATGCTGTGATTCCCAGGTA -ACGGAATGCTGTGATTCCGACTCT -ACGGAATGCTGTGATTCCAGTCCT -ACGGAATGCTGTGATTCCTAAGCC -ACGGAATGCTGTGATTCCATAGCC -ACGGAATGCTGTGATTCCTAACCG -ACGGAATGCTGTGATTCCATGCCA -ACGGAATGCTGTCATTGGGGAAAC -ACGGAATGCTGTCATTGGAACACC -ACGGAATGCTGTCATTGGATCGAG -ACGGAATGCTGTCATTGGCTCCTT -ACGGAATGCTGTCATTGGCCTGTT -ACGGAATGCTGTCATTGGCGGTTT -ACGGAATGCTGTCATTGGGTGGTT -ACGGAATGCTGTCATTGGGCCTTT -ACGGAATGCTGTCATTGGGGTCTT -ACGGAATGCTGTCATTGGACGCTT -ACGGAATGCTGTCATTGGAGCGTT -ACGGAATGCTGTCATTGGTTCGTC -ACGGAATGCTGTCATTGGTCTCTC -ACGGAATGCTGTCATTGGTGGATC -ACGGAATGCTGTCATTGGCACTTC -ACGGAATGCTGTCATTGGGTACTC -ACGGAATGCTGTCATTGGGATGTC -ACGGAATGCTGTCATTGGACAGTC -ACGGAATGCTGTCATTGGTTGCTG -ACGGAATGCTGTCATTGGTCCATG -ACGGAATGCTGTCATTGGTGTGTG -ACGGAATGCTGTCATTGGCTAGTG -ACGGAATGCTGTCATTGGCATCTG -ACGGAATGCTGTCATTGGGAGTTG -ACGGAATGCTGTCATTGGAGACTG -ACGGAATGCTGTCATTGGTCGGTA -ACGGAATGCTGTCATTGGTGCCTA -ACGGAATGCTGTCATTGGCCACTA -ACGGAATGCTGTCATTGGGGAGTA -ACGGAATGCTGTCATTGGTCGTCT -ACGGAATGCTGTCATTGGTGCACT -ACGGAATGCTGTCATTGGCTGACT -ACGGAATGCTGTCATTGGCAACCT -ACGGAATGCTGTCATTGGGCTACT -ACGGAATGCTGTCATTGGGGATCT -ACGGAATGCTGTCATTGGAAGGCT -ACGGAATGCTGTCATTGGTCAACC -ACGGAATGCTGTCATTGGTGTTCC -ACGGAATGCTGTCATTGGATTCCC -ACGGAATGCTGTCATTGGTTCTCG -ACGGAATGCTGTCATTGGTAGACG -ACGGAATGCTGTCATTGGGTAACG -ACGGAATGCTGTCATTGGACTTCG -ACGGAATGCTGTCATTGGTACGCA -ACGGAATGCTGTCATTGGCTTGCA -ACGGAATGCTGTCATTGGCGAACA -ACGGAATGCTGTCATTGGCAGTCA -ACGGAATGCTGTCATTGGGATCCA -ACGGAATGCTGTCATTGGACGACA -ACGGAATGCTGTCATTGGAGCTCA -ACGGAATGCTGTCATTGGTCACGT -ACGGAATGCTGTCATTGGCGTAGT -ACGGAATGCTGTCATTGGGTCAGT -ACGGAATGCTGTCATTGGGAAGGT -ACGGAATGCTGTCATTGGAACCGT -ACGGAATGCTGTCATTGGTTGTGC -ACGGAATGCTGTCATTGGCTAAGC -ACGGAATGCTGTCATTGGACTAGC -ACGGAATGCTGTCATTGGAGATGC -ACGGAATGCTGTCATTGGTGAAGG -ACGGAATGCTGTCATTGGCAATGG -ACGGAATGCTGTCATTGGATGAGG -ACGGAATGCTGTCATTGGAATGGG -ACGGAATGCTGTCATTGGTCCTGA -ACGGAATGCTGTCATTGGTAGCGA -ACGGAATGCTGTCATTGGCACAGA -ACGGAATGCTGTCATTGGGCAAGA -ACGGAATGCTGTCATTGGGGTTGA -ACGGAATGCTGTCATTGGTCCGAT -ACGGAATGCTGTCATTGGTGGCAT -ACGGAATGCTGTCATTGGCGAGAT -ACGGAATGCTGTCATTGGTACCAC -ACGGAATGCTGTCATTGGCAGAAC -ACGGAATGCTGTCATTGGGTCTAC -ACGGAATGCTGTCATTGGACGTAC -ACGGAATGCTGTCATTGGAGTGAC -ACGGAATGCTGTCATTGGCTGTAG -ACGGAATGCTGTCATTGGCCTAAG -ACGGAATGCTGTCATTGGGTTCAG -ACGGAATGCTGTCATTGGGCATAG -ACGGAATGCTGTCATTGGGACAAG -ACGGAATGCTGTCATTGGAAGCAG -ACGGAATGCTGTCATTGGCGTCAA -ACGGAATGCTGTCATTGGGCTGAA -ACGGAATGCTGTCATTGGAGTACG -ACGGAATGCTGTCATTGGATCCGA -ACGGAATGCTGTCATTGGATGGGA -ACGGAATGCTGTCATTGGGTGCAA -ACGGAATGCTGTCATTGGGAGGAA -ACGGAATGCTGTCATTGGCAGGTA -ACGGAATGCTGTCATTGGGACTCT -ACGGAATGCTGTCATTGGAGTCCT -ACGGAATGCTGTCATTGGTAAGCC -ACGGAATGCTGTCATTGGATAGCC -ACGGAATGCTGTCATTGGTAACCG -ACGGAATGCTGTCATTGGATGCCA -ACGGAATGCTGTGATCGAGGAAAC -ACGGAATGCTGTGATCGAAACACC -ACGGAATGCTGTGATCGAATCGAG -ACGGAATGCTGTGATCGACTCCTT -ACGGAATGCTGTGATCGACCTGTT -ACGGAATGCTGTGATCGACGGTTT -ACGGAATGCTGTGATCGAGTGGTT -ACGGAATGCTGTGATCGAGCCTTT -ACGGAATGCTGTGATCGAGGTCTT -ACGGAATGCTGTGATCGAACGCTT -ACGGAATGCTGTGATCGAAGCGTT -ACGGAATGCTGTGATCGATTCGTC -ACGGAATGCTGTGATCGATCTCTC -ACGGAATGCTGTGATCGATGGATC -ACGGAATGCTGTGATCGACACTTC -ACGGAATGCTGTGATCGAGTACTC -ACGGAATGCTGTGATCGAGATGTC -ACGGAATGCTGTGATCGAACAGTC -ACGGAATGCTGTGATCGATTGCTG -ACGGAATGCTGTGATCGATCCATG -ACGGAATGCTGTGATCGATGTGTG -ACGGAATGCTGTGATCGACTAGTG -ACGGAATGCTGTGATCGACATCTG -ACGGAATGCTGTGATCGAGAGTTG -ACGGAATGCTGTGATCGAAGACTG -ACGGAATGCTGTGATCGATCGGTA -ACGGAATGCTGTGATCGATGCCTA -ACGGAATGCTGTGATCGACCACTA -ACGGAATGCTGTGATCGAGGAGTA -ACGGAATGCTGTGATCGATCGTCT -ACGGAATGCTGTGATCGATGCACT -ACGGAATGCTGTGATCGACTGACT -ACGGAATGCTGTGATCGACAACCT -ACGGAATGCTGTGATCGAGCTACT -ACGGAATGCTGTGATCGAGGATCT -ACGGAATGCTGTGATCGAAAGGCT -ACGGAATGCTGTGATCGATCAACC -ACGGAATGCTGTGATCGATGTTCC -ACGGAATGCTGTGATCGAATTCCC -ACGGAATGCTGTGATCGATTCTCG -ACGGAATGCTGTGATCGATAGACG -ACGGAATGCTGTGATCGAGTAACG -ACGGAATGCTGTGATCGAACTTCG -ACGGAATGCTGTGATCGATACGCA -ACGGAATGCTGTGATCGACTTGCA -ACGGAATGCTGTGATCGACGAACA -ACGGAATGCTGTGATCGACAGTCA -ACGGAATGCTGTGATCGAGATCCA -ACGGAATGCTGTGATCGAACGACA -ACGGAATGCTGTGATCGAAGCTCA -ACGGAATGCTGTGATCGATCACGT -ACGGAATGCTGTGATCGACGTAGT -ACGGAATGCTGTGATCGAGTCAGT -ACGGAATGCTGTGATCGAGAAGGT -ACGGAATGCTGTGATCGAAACCGT -ACGGAATGCTGTGATCGATTGTGC -ACGGAATGCTGTGATCGACTAAGC -ACGGAATGCTGTGATCGAACTAGC -ACGGAATGCTGTGATCGAAGATGC -ACGGAATGCTGTGATCGATGAAGG -ACGGAATGCTGTGATCGACAATGG -ACGGAATGCTGTGATCGAATGAGG -ACGGAATGCTGTGATCGAAATGGG -ACGGAATGCTGTGATCGATCCTGA -ACGGAATGCTGTGATCGATAGCGA -ACGGAATGCTGTGATCGACACAGA -ACGGAATGCTGTGATCGAGCAAGA -ACGGAATGCTGTGATCGAGGTTGA -ACGGAATGCTGTGATCGATCCGAT -ACGGAATGCTGTGATCGATGGCAT -ACGGAATGCTGTGATCGACGAGAT -ACGGAATGCTGTGATCGATACCAC -ACGGAATGCTGTGATCGACAGAAC -ACGGAATGCTGTGATCGAGTCTAC -ACGGAATGCTGTGATCGAACGTAC -ACGGAATGCTGTGATCGAAGTGAC -ACGGAATGCTGTGATCGACTGTAG -ACGGAATGCTGTGATCGACCTAAG -ACGGAATGCTGTGATCGAGTTCAG -ACGGAATGCTGTGATCGAGCATAG -ACGGAATGCTGTGATCGAGACAAG -ACGGAATGCTGTGATCGAAAGCAG -ACGGAATGCTGTGATCGACGTCAA -ACGGAATGCTGTGATCGAGCTGAA -ACGGAATGCTGTGATCGAAGTACG -ACGGAATGCTGTGATCGAATCCGA -ACGGAATGCTGTGATCGAATGGGA -ACGGAATGCTGTGATCGAGTGCAA -ACGGAATGCTGTGATCGAGAGGAA -ACGGAATGCTGTGATCGACAGGTA -ACGGAATGCTGTGATCGAGACTCT -ACGGAATGCTGTGATCGAAGTCCT -ACGGAATGCTGTGATCGATAAGCC -ACGGAATGCTGTGATCGAATAGCC -ACGGAATGCTGTGATCGATAACCG -ACGGAATGCTGTGATCGAATGCCA -ACGGAATGCTGTCACTACGGAAAC -ACGGAATGCTGTCACTACAACACC -ACGGAATGCTGTCACTACATCGAG -ACGGAATGCTGTCACTACCTCCTT -ACGGAATGCTGTCACTACCCTGTT -ACGGAATGCTGTCACTACCGGTTT -ACGGAATGCTGTCACTACGTGGTT -ACGGAATGCTGTCACTACGCCTTT -ACGGAATGCTGTCACTACGGTCTT -ACGGAATGCTGTCACTACACGCTT -ACGGAATGCTGTCACTACAGCGTT -ACGGAATGCTGTCACTACTTCGTC -ACGGAATGCTGTCACTACTCTCTC -ACGGAATGCTGTCACTACTGGATC -ACGGAATGCTGTCACTACCACTTC -ACGGAATGCTGTCACTACGTACTC -ACGGAATGCTGTCACTACGATGTC -ACGGAATGCTGTCACTACACAGTC -ACGGAATGCTGTCACTACTTGCTG -ACGGAATGCTGTCACTACTCCATG -ACGGAATGCTGTCACTACTGTGTG -ACGGAATGCTGTCACTACCTAGTG -ACGGAATGCTGTCACTACCATCTG -ACGGAATGCTGTCACTACGAGTTG -ACGGAATGCTGTCACTACAGACTG -ACGGAATGCTGTCACTACTCGGTA -ACGGAATGCTGTCACTACTGCCTA -ACGGAATGCTGTCACTACCCACTA -ACGGAATGCTGTCACTACGGAGTA -ACGGAATGCTGTCACTACTCGTCT -ACGGAATGCTGTCACTACTGCACT -ACGGAATGCTGTCACTACCTGACT -ACGGAATGCTGTCACTACCAACCT -ACGGAATGCTGTCACTACGCTACT -ACGGAATGCTGTCACTACGGATCT -ACGGAATGCTGTCACTACAAGGCT -ACGGAATGCTGTCACTACTCAACC -ACGGAATGCTGTCACTACTGTTCC -ACGGAATGCTGTCACTACATTCCC -ACGGAATGCTGTCACTACTTCTCG -ACGGAATGCTGTCACTACTAGACG -ACGGAATGCTGTCACTACGTAACG -ACGGAATGCTGTCACTACACTTCG -ACGGAATGCTGTCACTACTACGCA -ACGGAATGCTGTCACTACCTTGCA -ACGGAATGCTGTCACTACCGAACA -ACGGAATGCTGTCACTACCAGTCA -ACGGAATGCTGTCACTACGATCCA -ACGGAATGCTGTCACTACACGACA -ACGGAATGCTGTCACTACAGCTCA -ACGGAATGCTGTCACTACTCACGT -ACGGAATGCTGTCACTACCGTAGT -ACGGAATGCTGTCACTACGTCAGT -ACGGAATGCTGTCACTACGAAGGT -ACGGAATGCTGTCACTACAACCGT -ACGGAATGCTGTCACTACTTGTGC -ACGGAATGCTGTCACTACCTAAGC -ACGGAATGCTGTCACTACACTAGC -ACGGAATGCTGTCACTACAGATGC -ACGGAATGCTGTCACTACTGAAGG -ACGGAATGCTGTCACTACCAATGG -ACGGAATGCTGTCACTACATGAGG -ACGGAATGCTGTCACTACAATGGG -ACGGAATGCTGTCACTACTCCTGA -ACGGAATGCTGTCACTACTAGCGA -ACGGAATGCTGTCACTACCACAGA -ACGGAATGCTGTCACTACGCAAGA -ACGGAATGCTGTCACTACGGTTGA -ACGGAATGCTGTCACTACTCCGAT -ACGGAATGCTGTCACTACTGGCAT -ACGGAATGCTGTCACTACCGAGAT -ACGGAATGCTGTCACTACTACCAC -ACGGAATGCTGTCACTACCAGAAC -ACGGAATGCTGTCACTACGTCTAC -ACGGAATGCTGTCACTACACGTAC -ACGGAATGCTGTCACTACAGTGAC -ACGGAATGCTGTCACTACCTGTAG -ACGGAATGCTGTCACTACCCTAAG -ACGGAATGCTGTCACTACGTTCAG -ACGGAATGCTGTCACTACGCATAG -ACGGAATGCTGTCACTACGACAAG -ACGGAATGCTGTCACTACAAGCAG -ACGGAATGCTGTCACTACCGTCAA -ACGGAATGCTGTCACTACGCTGAA -ACGGAATGCTGTCACTACAGTACG -ACGGAATGCTGTCACTACATCCGA -ACGGAATGCTGTCACTACATGGGA -ACGGAATGCTGTCACTACGTGCAA -ACGGAATGCTGTCACTACGAGGAA -ACGGAATGCTGTCACTACCAGGTA -ACGGAATGCTGTCACTACGACTCT -ACGGAATGCTGTCACTACAGTCCT -ACGGAATGCTGTCACTACTAAGCC -ACGGAATGCTGTCACTACATAGCC -ACGGAATGCTGTCACTACTAACCG -ACGGAATGCTGTCACTACATGCCA -ACGGAATGCTGTAACCAGGGAAAC -ACGGAATGCTGTAACCAGAACACC -ACGGAATGCTGTAACCAGATCGAG -ACGGAATGCTGTAACCAGCTCCTT -ACGGAATGCTGTAACCAGCCTGTT -ACGGAATGCTGTAACCAGCGGTTT -ACGGAATGCTGTAACCAGGTGGTT -ACGGAATGCTGTAACCAGGCCTTT -ACGGAATGCTGTAACCAGGGTCTT -ACGGAATGCTGTAACCAGACGCTT -ACGGAATGCTGTAACCAGAGCGTT -ACGGAATGCTGTAACCAGTTCGTC -ACGGAATGCTGTAACCAGTCTCTC -ACGGAATGCTGTAACCAGTGGATC -ACGGAATGCTGTAACCAGCACTTC -ACGGAATGCTGTAACCAGGTACTC -ACGGAATGCTGTAACCAGGATGTC -ACGGAATGCTGTAACCAGACAGTC -ACGGAATGCTGTAACCAGTTGCTG -ACGGAATGCTGTAACCAGTCCATG -ACGGAATGCTGTAACCAGTGTGTG -ACGGAATGCTGTAACCAGCTAGTG -ACGGAATGCTGTAACCAGCATCTG -ACGGAATGCTGTAACCAGGAGTTG -ACGGAATGCTGTAACCAGAGACTG -ACGGAATGCTGTAACCAGTCGGTA -ACGGAATGCTGTAACCAGTGCCTA -ACGGAATGCTGTAACCAGCCACTA -ACGGAATGCTGTAACCAGGGAGTA -ACGGAATGCTGTAACCAGTCGTCT -ACGGAATGCTGTAACCAGTGCACT -ACGGAATGCTGTAACCAGCTGACT -ACGGAATGCTGTAACCAGCAACCT -ACGGAATGCTGTAACCAGGCTACT -ACGGAATGCTGTAACCAGGGATCT -ACGGAATGCTGTAACCAGAAGGCT -ACGGAATGCTGTAACCAGTCAACC -ACGGAATGCTGTAACCAGTGTTCC -ACGGAATGCTGTAACCAGATTCCC -ACGGAATGCTGTAACCAGTTCTCG -ACGGAATGCTGTAACCAGTAGACG -ACGGAATGCTGTAACCAGGTAACG -ACGGAATGCTGTAACCAGACTTCG -ACGGAATGCTGTAACCAGTACGCA -ACGGAATGCTGTAACCAGCTTGCA -ACGGAATGCTGTAACCAGCGAACA -ACGGAATGCTGTAACCAGCAGTCA -ACGGAATGCTGTAACCAGGATCCA -ACGGAATGCTGTAACCAGACGACA -ACGGAATGCTGTAACCAGAGCTCA -ACGGAATGCTGTAACCAGTCACGT -ACGGAATGCTGTAACCAGCGTAGT -ACGGAATGCTGTAACCAGGTCAGT -ACGGAATGCTGTAACCAGGAAGGT -ACGGAATGCTGTAACCAGAACCGT -ACGGAATGCTGTAACCAGTTGTGC -ACGGAATGCTGTAACCAGCTAAGC -ACGGAATGCTGTAACCAGACTAGC -ACGGAATGCTGTAACCAGAGATGC -ACGGAATGCTGTAACCAGTGAAGG -ACGGAATGCTGTAACCAGCAATGG -ACGGAATGCTGTAACCAGATGAGG -ACGGAATGCTGTAACCAGAATGGG -ACGGAATGCTGTAACCAGTCCTGA -ACGGAATGCTGTAACCAGTAGCGA -ACGGAATGCTGTAACCAGCACAGA -ACGGAATGCTGTAACCAGGCAAGA -ACGGAATGCTGTAACCAGGGTTGA -ACGGAATGCTGTAACCAGTCCGAT -ACGGAATGCTGTAACCAGTGGCAT -ACGGAATGCTGTAACCAGCGAGAT -ACGGAATGCTGTAACCAGTACCAC -ACGGAATGCTGTAACCAGCAGAAC -ACGGAATGCTGTAACCAGGTCTAC -ACGGAATGCTGTAACCAGACGTAC -ACGGAATGCTGTAACCAGAGTGAC -ACGGAATGCTGTAACCAGCTGTAG -ACGGAATGCTGTAACCAGCCTAAG -ACGGAATGCTGTAACCAGGTTCAG -ACGGAATGCTGTAACCAGGCATAG -ACGGAATGCTGTAACCAGGACAAG -ACGGAATGCTGTAACCAGAAGCAG -ACGGAATGCTGTAACCAGCGTCAA -ACGGAATGCTGTAACCAGGCTGAA -ACGGAATGCTGTAACCAGAGTACG -ACGGAATGCTGTAACCAGATCCGA -ACGGAATGCTGTAACCAGATGGGA -ACGGAATGCTGTAACCAGGTGCAA -ACGGAATGCTGTAACCAGGAGGAA -ACGGAATGCTGTAACCAGCAGGTA -ACGGAATGCTGTAACCAGGACTCT -ACGGAATGCTGTAACCAGAGTCCT -ACGGAATGCTGTAACCAGTAAGCC -ACGGAATGCTGTAACCAGATAGCC -ACGGAATGCTGTAACCAGTAACCG -ACGGAATGCTGTAACCAGATGCCA -ACGGAATGCTGTTACGTCGGAAAC -ACGGAATGCTGTTACGTCAACACC -ACGGAATGCTGTTACGTCATCGAG -ACGGAATGCTGTTACGTCCTCCTT -ACGGAATGCTGTTACGTCCCTGTT -ACGGAATGCTGTTACGTCCGGTTT -ACGGAATGCTGTTACGTCGTGGTT -ACGGAATGCTGTTACGTCGCCTTT -ACGGAATGCTGTTACGTCGGTCTT -ACGGAATGCTGTTACGTCACGCTT -ACGGAATGCTGTTACGTCAGCGTT -ACGGAATGCTGTTACGTCTTCGTC -ACGGAATGCTGTTACGTCTCTCTC -ACGGAATGCTGTTACGTCTGGATC -ACGGAATGCTGTTACGTCCACTTC -ACGGAATGCTGTTACGTCGTACTC -ACGGAATGCTGTTACGTCGATGTC -ACGGAATGCTGTTACGTCACAGTC -ACGGAATGCTGTTACGTCTTGCTG -ACGGAATGCTGTTACGTCTCCATG -ACGGAATGCTGTTACGTCTGTGTG -ACGGAATGCTGTTACGTCCTAGTG -ACGGAATGCTGTTACGTCCATCTG -ACGGAATGCTGTTACGTCGAGTTG -ACGGAATGCTGTTACGTCAGACTG -ACGGAATGCTGTTACGTCTCGGTA -ACGGAATGCTGTTACGTCTGCCTA -ACGGAATGCTGTTACGTCCCACTA -ACGGAATGCTGTTACGTCGGAGTA -ACGGAATGCTGTTACGTCTCGTCT -ACGGAATGCTGTTACGTCTGCACT -ACGGAATGCTGTTACGTCCTGACT -ACGGAATGCTGTTACGTCCAACCT -ACGGAATGCTGTTACGTCGCTACT -ACGGAATGCTGTTACGTCGGATCT -ACGGAATGCTGTTACGTCAAGGCT -ACGGAATGCTGTTACGTCTCAACC -ACGGAATGCTGTTACGTCTGTTCC -ACGGAATGCTGTTACGTCATTCCC -ACGGAATGCTGTTACGTCTTCTCG -ACGGAATGCTGTTACGTCTAGACG -ACGGAATGCTGTTACGTCGTAACG -ACGGAATGCTGTTACGTCACTTCG -ACGGAATGCTGTTACGTCTACGCA -ACGGAATGCTGTTACGTCCTTGCA -ACGGAATGCTGTTACGTCCGAACA -ACGGAATGCTGTTACGTCCAGTCA -ACGGAATGCTGTTACGTCGATCCA -ACGGAATGCTGTTACGTCACGACA -ACGGAATGCTGTTACGTCAGCTCA -ACGGAATGCTGTTACGTCTCACGT -ACGGAATGCTGTTACGTCCGTAGT -ACGGAATGCTGTTACGTCGTCAGT -ACGGAATGCTGTTACGTCGAAGGT -ACGGAATGCTGTTACGTCAACCGT -ACGGAATGCTGTTACGTCTTGTGC -ACGGAATGCTGTTACGTCCTAAGC -ACGGAATGCTGTTACGTCACTAGC -ACGGAATGCTGTTACGTCAGATGC -ACGGAATGCTGTTACGTCTGAAGG -ACGGAATGCTGTTACGTCCAATGG -ACGGAATGCTGTTACGTCATGAGG -ACGGAATGCTGTTACGTCAATGGG -ACGGAATGCTGTTACGTCTCCTGA -ACGGAATGCTGTTACGTCTAGCGA -ACGGAATGCTGTTACGTCCACAGA -ACGGAATGCTGTTACGTCGCAAGA -ACGGAATGCTGTTACGTCGGTTGA -ACGGAATGCTGTTACGTCTCCGAT -ACGGAATGCTGTTACGTCTGGCAT -ACGGAATGCTGTTACGTCCGAGAT -ACGGAATGCTGTTACGTCTACCAC -ACGGAATGCTGTTACGTCCAGAAC -ACGGAATGCTGTTACGTCGTCTAC -ACGGAATGCTGTTACGTCACGTAC -ACGGAATGCTGTTACGTCAGTGAC -ACGGAATGCTGTTACGTCCTGTAG -ACGGAATGCTGTTACGTCCCTAAG -ACGGAATGCTGTTACGTCGTTCAG -ACGGAATGCTGTTACGTCGCATAG -ACGGAATGCTGTTACGTCGACAAG -ACGGAATGCTGTTACGTCAAGCAG -ACGGAATGCTGTTACGTCCGTCAA -ACGGAATGCTGTTACGTCGCTGAA -ACGGAATGCTGTTACGTCAGTACG -ACGGAATGCTGTTACGTCATCCGA -ACGGAATGCTGTTACGTCATGGGA -ACGGAATGCTGTTACGTCGTGCAA -ACGGAATGCTGTTACGTCGAGGAA -ACGGAATGCTGTTACGTCCAGGTA -ACGGAATGCTGTTACGTCGACTCT -ACGGAATGCTGTTACGTCAGTCCT -ACGGAATGCTGTTACGTCTAAGCC -ACGGAATGCTGTTACGTCATAGCC -ACGGAATGCTGTTACGTCTAACCG -ACGGAATGCTGTTACGTCATGCCA -ACGGAATGCTGTTACACGGGAAAC -ACGGAATGCTGTTACACGAACACC -ACGGAATGCTGTTACACGATCGAG -ACGGAATGCTGTTACACGCTCCTT -ACGGAATGCTGTTACACGCCTGTT -ACGGAATGCTGTTACACGCGGTTT -ACGGAATGCTGTTACACGGTGGTT -ACGGAATGCTGTTACACGGCCTTT -ACGGAATGCTGTTACACGGGTCTT -ACGGAATGCTGTTACACGACGCTT -ACGGAATGCTGTTACACGAGCGTT -ACGGAATGCTGTTACACGTTCGTC -ACGGAATGCTGTTACACGTCTCTC -ACGGAATGCTGTTACACGTGGATC -ACGGAATGCTGTTACACGCACTTC -ACGGAATGCTGTTACACGGTACTC -ACGGAATGCTGTTACACGGATGTC -ACGGAATGCTGTTACACGACAGTC -ACGGAATGCTGTTACACGTTGCTG -ACGGAATGCTGTTACACGTCCATG -ACGGAATGCTGTTACACGTGTGTG -ACGGAATGCTGTTACACGCTAGTG -ACGGAATGCTGTTACACGCATCTG -ACGGAATGCTGTTACACGGAGTTG -ACGGAATGCTGTTACACGAGACTG -ACGGAATGCTGTTACACGTCGGTA -ACGGAATGCTGTTACACGTGCCTA -ACGGAATGCTGTTACACGCCACTA -ACGGAATGCTGTTACACGGGAGTA -ACGGAATGCTGTTACACGTCGTCT -ACGGAATGCTGTTACACGTGCACT -ACGGAATGCTGTTACACGCTGACT -ACGGAATGCTGTTACACGCAACCT -ACGGAATGCTGTTACACGGCTACT -ACGGAATGCTGTTACACGGGATCT -ACGGAATGCTGTTACACGAAGGCT -ACGGAATGCTGTTACACGTCAACC -ACGGAATGCTGTTACACGTGTTCC -ACGGAATGCTGTTACACGATTCCC -ACGGAATGCTGTTACACGTTCTCG -ACGGAATGCTGTTACACGTAGACG -ACGGAATGCTGTTACACGGTAACG -ACGGAATGCTGTTACACGACTTCG -ACGGAATGCTGTTACACGTACGCA -ACGGAATGCTGTTACACGCTTGCA -ACGGAATGCTGTTACACGCGAACA -ACGGAATGCTGTTACACGCAGTCA -ACGGAATGCTGTTACACGGATCCA -ACGGAATGCTGTTACACGACGACA -ACGGAATGCTGTTACACGAGCTCA -ACGGAATGCTGTTACACGTCACGT -ACGGAATGCTGTTACACGCGTAGT -ACGGAATGCTGTTACACGGTCAGT -ACGGAATGCTGTTACACGGAAGGT -ACGGAATGCTGTTACACGAACCGT -ACGGAATGCTGTTACACGTTGTGC -ACGGAATGCTGTTACACGCTAAGC -ACGGAATGCTGTTACACGACTAGC -ACGGAATGCTGTTACACGAGATGC -ACGGAATGCTGTTACACGTGAAGG -ACGGAATGCTGTTACACGCAATGG -ACGGAATGCTGTTACACGATGAGG -ACGGAATGCTGTTACACGAATGGG -ACGGAATGCTGTTACACGTCCTGA -ACGGAATGCTGTTACACGTAGCGA -ACGGAATGCTGTTACACGCACAGA -ACGGAATGCTGTTACACGGCAAGA -ACGGAATGCTGTTACACGGGTTGA -ACGGAATGCTGTTACACGTCCGAT -ACGGAATGCTGTTACACGTGGCAT -ACGGAATGCTGTTACACGCGAGAT -ACGGAATGCTGTTACACGTACCAC -ACGGAATGCTGTTACACGCAGAAC -ACGGAATGCTGTTACACGGTCTAC -ACGGAATGCTGTTACACGACGTAC -ACGGAATGCTGTTACACGAGTGAC -ACGGAATGCTGTTACACGCTGTAG -ACGGAATGCTGTTACACGCCTAAG -ACGGAATGCTGTTACACGGTTCAG -ACGGAATGCTGTTACACGGCATAG -ACGGAATGCTGTTACACGGACAAG -ACGGAATGCTGTTACACGAAGCAG -ACGGAATGCTGTTACACGCGTCAA -ACGGAATGCTGTTACACGGCTGAA -ACGGAATGCTGTTACACGAGTACG -ACGGAATGCTGTTACACGATCCGA -ACGGAATGCTGTTACACGATGGGA -ACGGAATGCTGTTACACGGTGCAA -ACGGAATGCTGTTACACGGAGGAA -ACGGAATGCTGTTACACGCAGGTA -ACGGAATGCTGTTACACGGACTCT -ACGGAATGCTGTTACACGAGTCCT -ACGGAATGCTGTTACACGTAAGCC -ACGGAATGCTGTTACACGATAGCC -ACGGAATGCTGTTACACGTAACCG -ACGGAATGCTGTTACACGATGCCA -ACGGAATGCTGTGACAGTGGAAAC -ACGGAATGCTGTGACAGTAACACC -ACGGAATGCTGTGACAGTATCGAG -ACGGAATGCTGTGACAGTCTCCTT -ACGGAATGCTGTGACAGTCCTGTT -ACGGAATGCTGTGACAGTCGGTTT -ACGGAATGCTGTGACAGTGTGGTT -ACGGAATGCTGTGACAGTGCCTTT -ACGGAATGCTGTGACAGTGGTCTT -ACGGAATGCTGTGACAGTACGCTT -ACGGAATGCTGTGACAGTAGCGTT -ACGGAATGCTGTGACAGTTTCGTC -ACGGAATGCTGTGACAGTTCTCTC -ACGGAATGCTGTGACAGTTGGATC -ACGGAATGCTGTGACAGTCACTTC -ACGGAATGCTGTGACAGTGTACTC -ACGGAATGCTGTGACAGTGATGTC -ACGGAATGCTGTGACAGTACAGTC -ACGGAATGCTGTGACAGTTTGCTG -ACGGAATGCTGTGACAGTTCCATG -ACGGAATGCTGTGACAGTTGTGTG -ACGGAATGCTGTGACAGTCTAGTG -ACGGAATGCTGTGACAGTCATCTG -ACGGAATGCTGTGACAGTGAGTTG -ACGGAATGCTGTGACAGTAGACTG -ACGGAATGCTGTGACAGTTCGGTA -ACGGAATGCTGTGACAGTTGCCTA -ACGGAATGCTGTGACAGTCCACTA -ACGGAATGCTGTGACAGTGGAGTA -ACGGAATGCTGTGACAGTTCGTCT -ACGGAATGCTGTGACAGTTGCACT -ACGGAATGCTGTGACAGTCTGACT -ACGGAATGCTGTGACAGTCAACCT -ACGGAATGCTGTGACAGTGCTACT -ACGGAATGCTGTGACAGTGGATCT -ACGGAATGCTGTGACAGTAAGGCT -ACGGAATGCTGTGACAGTTCAACC -ACGGAATGCTGTGACAGTTGTTCC -ACGGAATGCTGTGACAGTATTCCC -ACGGAATGCTGTGACAGTTTCTCG -ACGGAATGCTGTGACAGTTAGACG -ACGGAATGCTGTGACAGTGTAACG -ACGGAATGCTGTGACAGTACTTCG -ACGGAATGCTGTGACAGTTACGCA -ACGGAATGCTGTGACAGTCTTGCA -ACGGAATGCTGTGACAGTCGAACA -ACGGAATGCTGTGACAGTCAGTCA -ACGGAATGCTGTGACAGTGATCCA -ACGGAATGCTGTGACAGTACGACA -ACGGAATGCTGTGACAGTAGCTCA -ACGGAATGCTGTGACAGTTCACGT -ACGGAATGCTGTGACAGTCGTAGT -ACGGAATGCTGTGACAGTGTCAGT -ACGGAATGCTGTGACAGTGAAGGT -ACGGAATGCTGTGACAGTAACCGT -ACGGAATGCTGTGACAGTTTGTGC -ACGGAATGCTGTGACAGTCTAAGC -ACGGAATGCTGTGACAGTACTAGC -ACGGAATGCTGTGACAGTAGATGC -ACGGAATGCTGTGACAGTTGAAGG -ACGGAATGCTGTGACAGTCAATGG -ACGGAATGCTGTGACAGTATGAGG -ACGGAATGCTGTGACAGTAATGGG -ACGGAATGCTGTGACAGTTCCTGA -ACGGAATGCTGTGACAGTTAGCGA -ACGGAATGCTGTGACAGTCACAGA -ACGGAATGCTGTGACAGTGCAAGA -ACGGAATGCTGTGACAGTGGTTGA -ACGGAATGCTGTGACAGTTCCGAT -ACGGAATGCTGTGACAGTTGGCAT -ACGGAATGCTGTGACAGTCGAGAT -ACGGAATGCTGTGACAGTTACCAC -ACGGAATGCTGTGACAGTCAGAAC -ACGGAATGCTGTGACAGTGTCTAC -ACGGAATGCTGTGACAGTACGTAC -ACGGAATGCTGTGACAGTAGTGAC -ACGGAATGCTGTGACAGTCTGTAG -ACGGAATGCTGTGACAGTCCTAAG -ACGGAATGCTGTGACAGTGTTCAG -ACGGAATGCTGTGACAGTGCATAG -ACGGAATGCTGTGACAGTGACAAG -ACGGAATGCTGTGACAGTAAGCAG -ACGGAATGCTGTGACAGTCGTCAA -ACGGAATGCTGTGACAGTGCTGAA -ACGGAATGCTGTGACAGTAGTACG -ACGGAATGCTGTGACAGTATCCGA -ACGGAATGCTGTGACAGTATGGGA -ACGGAATGCTGTGACAGTGTGCAA -ACGGAATGCTGTGACAGTGAGGAA -ACGGAATGCTGTGACAGTCAGGTA -ACGGAATGCTGTGACAGTGACTCT -ACGGAATGCTGTGACAGTAGTCCT -ACGGAATGCTGTGACAGTTAAGCC -ACGGAATGCTGTGACAGTATAGCC -ACGGAATGCTGTGACAGTTAACCG -ACGGAATGCTGTGACAGTATGCCA -ACGGAATGCTGTTAGCTGGGAAAC -ACGGAATGCTGTTAGCTGAACACC -ACGGAATGCTGTTAGCTGATCGAG -ACGGAATGCTGTTAGCTGCTCCTT -ACGGAATGCTGTTAGCTGCCTGTT -ACGGAATGCTGTTAGCTGCGGTTT -ACGGAATGCTGTTAGCTGGTGGTT -ACGGAATGCTGTTAGCTGGCCTTT -ACGGAATGCTGTTAGCTGGGTCTT -ACGGAATGCTGTTAGCTGACGCTT -ACGGAATGCTGTTAGCTGAGCGTT -ACGGAATGCTGTTAGCTGTTCGTC -ACGGAATGCTGTTAGCTGTCTCTC -ACGGAATGCTGTTAGCTGTGGATC -ACGGAATGCTGTTAGCTGCACTTC -ACGGAATGCTGTTAGCTGGTACTC -ACGGAATGCTGTTAGCTGGATGTC -ACGGAATGCTGTTAGCTGACAGTC -ACGGAATGCTGTTAGCTGTTGCTG -ACGGAATGCTGTTAGCTGTCCATG -ACGGAATGCTGTTAGCTGTGTGTG -ACGGAATGCTGTTAGCTGCTAGTG -ACGGAATGCTGTTAGCTGCATCTG -ACGGAATGCTGTTAGCTGGAGTTG -ACGGAATGCTGTTAGCTGAGACTG -ACGGAATGCTGTTAGCTGTCGGTA -ACGGAATGCTGTTAGCTGTGCCTA -ACGGAATGCTGTTAGCTGCCACTA -ACGGAATGCTGTTAGCTGGGAGTA -ACGGAATGCTGTTAGCTGTCGTCT -ACGGAATGCTGTTAGCTGTGCACT -ACGGAATGCTGTTAGCTGCTGACT -ACGGAATGCTGTTAGCTGCAACCT -ACGGAATGCTGTTAGCTGGCTACT -ACGGAATGCTGTTAGCTGGGATCT -ACGGAATGCTGTTAGCTGAAGGCT -ACGGAATGCTGTTAGCTGTCAACC -ACGGAATGCTGTTAGCTGTGTTCC -ACGGAATGCTGTTAGCTGATTCCC -ACGGAATGCTGTTAGCTGTTCTCG -ACGGAATGCTGTTAGCTGTAGACG -ACGGAATGCTGTTAGCTGGTAACG -ACGGAATGCTGTTAGCTGACTTCG -ACGGAATGCTGTTAGCTGTACGCA -ACGGAATGCTGTTAGCTGCTTGCA -ACGGAATGCTGTTAGCTGCGAACA -ACGGAATGCTGTTAGCTGCAGTCA -ACGGAATGCTGTTAGCTGGATCCA -ACGGAATGCTGTTAGCTGACGACA -ACGGAATGCTGTTAGCTGAGCTCA -ACGGAATGCTGTTAGCTGTCACGT -ACGGAATGCTGTTAGCTGCGTAGT -ACGGAATGCTGTTAGCTGGTCAGT -ACGGAATGCTGTTAGCTGGAAGGT -ACGGAATGCTGTTAGCTGAACCGT -ACGGAATGCTGTTAGCTGTTGTGC -ACGGAATGCTGTTAGCTGCTAAGC -ACGGAATGCTGTTAGCTGACTAGC -ACGGAATGCTGTTAGCTGAGATGC -ACGGAATGCTGTTAGCTGTGAAGG -ACGGAATGCTGTTAGCTGCAATGG -ACGGAATGCTGTTAGCTGATGAGG -ACGGAATGCTGTTAGCTGAATGGG -ACGGAATGCTGTTAGCTGTCCTGA -ACGGAATGCTGTTAGCTGTAGCGA -ACGGAATGCTGTTAGCTGCACAGA -ACGGAATGCTGTTAGCTGGCAAGA -ACGGAATGCTGTTAGCTGGGTTGA -ACGGAATGCTGTTAGCTGTCCGAT -ACGGAATGCTGTTAGCTGTGGCAT -ACGGAATGCTGTTAGCTGCGAGAT -ACGGAATGCTGTTAGCTGTACCAC -ACGGAATGCTGTTAGCTGCAGAAC -ACGGAATGCTGTTAGCTGGTCTAC -ACGGAATGCTGTTAGCTGACGTAC -ACGGAATGCTGTTAGCTGAGTGAC -ACGGAATGCTGTTAGCTGCTGTAG -ACGGAATGCTGTTAGCTGCCTAAG -ACGGAATGCTGTTAGCTGGTTCAG -ACGGAATGCTGTTAGCTGGCATAG -ACGGAATGCTGTTAGCTGGACAAG -ACGGAATGCTGTTAGCTGAAGCAG -ACGGAATGCTGTTAGCTGCGTCAA -ACGGAATGCTGTTAGCTGGCTGAA -ACGGAATGCTGTTAGCTGAGTACG -ACGGAATGCTGTTAGCTGATCCGA -ACGGAATGCTGTTAGCTGATGGGA -ACGGAATGCTGTTAGCTGGTGCAA -ACGGAATGCTGTTAGCTGGAGGAA -ACGGAATGCTGTTAGCTGCAGGTA -ACGGAATGCTGTTAGCTGGACTCT -ACGGAATGCTGTTAGCTGAGTCCT -ACGGAATGCTGTTAGCTGTAAGCC -ACGGAATGCTGTTAGCTGATAGCC -ACGGAATGCTGTTAGCTGTAACCG -ACGGAATGCTGTTAGCTGATGCCA -ACGGAATGCTGTAAGCCTGGAAAC -ACGGAATGCTGTAAGCCTAACACC -ACGGAATGCTGTAAGCCTATCGAG -ACGGAATGCTGTAAGCCTCTCCTT -ACGGAATGCTGTAAGCCTCCTGTT -ACGGAATGCTGTAAGCCTCGGTTT -ACGGAATGCTGTAAGCCTGTGGTT -ACGGAATGCTGTAAGCCTGCCTTT -ACGGAATGCTGTAAGCCTGGTCTT -ACGGAATGCTGTAAGCCTACGCTT -ACGGAATGCTGTAAGCCTAGCGTT -ACGGAATGCTGTAAGCCTTTCGTC -ACGGAATGCTGTAAGCCTTCTCTC -ACGGAATGCTGTAAGCCTTGGATC -ACGGAATGCTGTAAGCCTCACTTC -ACGGAATGCTGTAAGCCTGTACTC -ACGGAATGCTGTAAGCCTGATGTC -ACGGAATGCTGTAAGCCTACAGTC -ACGGAATGCTGTAAGCCTTTGCTG -ACGGAATGCTGTAAGCCTTCCATG -ACGGAATGCTGTAAGCCTTGTGTG -ACGGAATGCTGTAAGCCTCTAGTG -ACGGAATGCTGTAAGCCTCATCTG -ACGGAATGCTGTAAGCCTGAGTTG -ACGGAATGCTGTAAGCCTAGACTG -ACGGAATGCTGTAAGCCTTCGGTA -ACGGAATGCTGTAAGCCTTGCCTA -ACGGAATGCTGTAAGCCTCCACTA -ACGGAATGCTGTAAGCCTGGAGTA -ACGGAATGCTGTAAGCCTTCGTCT -ACGGAATGCTGTAAGCCTTGCACT -ACGGAATGCTGTAAGCCTCTGACT -ACGGAATGCTGTAAGCCTCAACCT -ACGGAATGCTGTAAGCCTGCTACT -ACGGAATGCTGTAAGCCTGGATCT -ACGGAATGCTGTAAGCCTAAGGCT -ACGGAATGCTGTAAGCCTTCAACC -ACGGAATGCTGTAAGCCTTGTTCC -ACGGAATGCTGTAAGCCTATTCCC -ACGGAATGCTGTAAGCCTTTCTCG -ACGGAATGCTGTAAGCCTTAGACG -ACGGAATGCTGTAAGCCTGTAACG -ACGGAATGCTGTAAGCCTACTTCG -ACGGAATGCTGTAAGCCTTACGCA -ACGGAATGCTGTAAGCCTCTTGCA -ACGGAATGCTGTAAGCCTCGAACA -ACGGAATGCTGTAAGCCTCAGTCA -ACGGAATGCTGTAAGCCTGATCCA -ACGGAATGCTGTAAGCCTACGACA -ACGGAATGCTGTAAGCCTAGCTCA -ACGGAATGCTGTAAGCCTTCACGT -ACGGAATGCTGTAAGCCTCGTAGT -ACGGAATGCTGTAAGCCTGTCAGT -ACGGAATGCTGTAAGCCTGAAGGT -ACGGAATGCTGTAAGCCTAACCGT -ACGGAATGCTGTAAGCCTTTGTGC -ACGGAATGCTGTAAGCCTCTAAGC -ACGGAATGCTGTAAGCCTACTAGC -ACGGAATGCTGTAAGCCTAGATGC -ACGGAATGCTGTAAGCCTTGAAGG -ACGGAATGCTGTAAGCCTCAATGG -ACGGAATGCTGTAAGCCTATGAGG -ACGGAATGCTGTAAGCCTAATGGG -ACGGAATGCTGTAAGCCTTCCTGA -ACGGAATGCTGTAAGCCTTAGCGA -ACGGAATGCTGTAAGCCTCACAGA -ACGGAATGCTGTAAGCCTGCAAGA -ACGGAATGCTGTAAGCCTGGTTGA -ACGGAATGCTGTAAGCCTTCCGAT -ACGGAATGCTGTAAGCCTTGGCAT -ACGGAATGCTGTAAGCCTCGAGAT -ACGGAATGCTGTAAGCCTTACCAC -ACGGAATGCTGTAAGCCTCAGAAC -ACGGAATGCTGTAAGCCTGTCTAC -ACGGAATGCTGTAAGCCTACGTAC -ACGGAATGCTGTAAGCCTAGTGAC -ACGGAATGCTGTAAGCCTCTGTAG -ACGGAATGCTGTAAGCCTCCTAAG -ACGGAATGCTGTAAGCCTGTTCAG -ACGGAATGCTGTAAGCCTGCATAG -ACGGAATGCTGTAAGCCTGACAAG -ACGGAATGCTGTAAGCCTAAGCAG -ACGGAATGCTGTAAGCCTCGTCAA -ACGGAATGCTGTAAGCCTGCTGAA -ACGGAATGCTGTAAGCCTAGTACG -ACGGAATGCTGTAAGCCTATCCGA -ACGGAATGCTGTAAGCCTATGGGA -ACGGAATGCTGTAAGCCTGTGCAA -ACGGAATGCTGTAAGCCTGAGGAA -ACGGAATGCTGTAAGCCTCAGGTA -ACGGAATGCTGTAAGCCTGACTCT -ACGGAATGCTGTAAGCCTAGTCCT -ACGGAATGCTGTAAGCCTTAAGCC -ACGGAATGCTGTAAGCCTATAGCC -ACGGAATGCTGTAAGCCTTAACCG -ACGGAATGCTGTAAGCCTATGCCA -ACGGAATGCTGTCAGGTTGGAAAC -ACGGAATGCTGTCAGGTTAACACC -ACGGAATGCTGTCAGGTTATCGAG -ACGGAATGCTGTCAGGTTCTCCTT -ACGGAATGCTGTCAGGTTCCTGTT -ACGGAATGCTGTCAGGTTCGGTTT -ACGGAATGCTGTCAGGTTGTGGTT -ACGGAATGCTGTCAGGTTGCCTTT -ACGGAATGCTGTCAGGTTGGTCTT -ACGGAATGCTGTCAGGTTACGCTT -ACGGAATGCTGTCAGGTTAGCGTT -ACGGAATGCTGTCAGGTTTTCGTC -ACGGAATGCTGTCAGGTTTCTCTC -ACGGAATGCTGTCAGGTTTGGATC -ACGGAATGCTGTCAGGTTCACTTC -ACGGAATGCTGTCAGGTTGTACTC -ACGGAATGCTGTCAGGTTGATGTC -ACGGAATGCTGTCAGGTTACAGTC -ACGGAATGCTGTCAGGTTTTGCTG -ACGGAATGCTGTCAGGTTTCCATG -ACGGAATGCTGTCAGGTTTGTGTG -ACGGAATGCTGTCAGGTTCTAGTG -ACGGAATGCTGTCAGGTTCATCTG -ACGGAATGCTGTCAGGTTGAGTTG -ACGGAATGCTGTCAGGTTAGACTG -ACGGAATGCTGTCAGGTTTCGGTA -ACGGAATGCTGTCAGGTTTGCCTA -ACGGAATGCTGTCAGGTTCCACTA -ACGGAATGCTGTCAGGTTGGAGTA -ACGGAATGCTGTCAGGTTTCGTCT -ACGGAATGCTGTCAGGTTTGCACT -ACGGAATGCTGTCAGGTTCTGACT -ACGGAATGCTGTCAGGTTCAACCT -ACGGAATGCTGTCAGGTTGCTACT -ACGGAATGCTGTCAGGTTGGATCT -ACGGAATGCTGTCAGGTTAAGGCT -ACGGAATGCTGTCAGGTTTCAACC -ACGGAATGCTGTCAGGTTTGTTCC -ACGGAATGCTGTCAGGTTATTCCC -ACGGAATGCTGTCAGGTTTTCTCG -ACGGAATGCTGTCAGGTTTAGACG -ACGGAATGCTGTCAGGTTGTAACG -ACGGAATGCTGTCAGGTTACTTCG -ACGGAATGCTGTCAGGTTTACGCA -ACGGAATGCTGTCAGGTTCTTGCA -ACGGAATGCTGTCAGGTTCGAACA -ACGGAATGCTGTCAGGTTCAGTCA -ACGGAATGCTGTCAGGTTGATCCA -ACGGAATGCTGTCAGGTTACGACA -ACGGAATGCTGTCAGGTTAGCTCA -ACGGAATGCTGTCAGGTTTCACGT -ACGGAATGCTGTCAGGTTCGTAGT -ACGGAATGCTGTCAGGTTGTCAGT -ACGGAATGCTGTCAGGTTGAAGGT -ACGGAATGCTGTCAGGTTAACCGT -ACGGAATGCTGTCAGGTTTTGTGC -ACGGAATGCTGTCAGGTTCTAAGC -ACGGAATGCTGTCAGGTTACTAGC -ACGGAATGCTGTCAGGTTAGATGC -ACGGAATGCTGTCAGGTTTGAAGG -ACGGAATGCTGTCAGGTTCAATGG -ACGGAATGCTGTCAGGTTATGAGG -ACGGAATGCTGTCAGGTTAATGGG -ACGGAATGCTGTCAGGTTTCCTGA -ACGGAATGCTGTCAGGTTTAGCGA -ACGGAATGCTGTCAGGTTCACAGA -ACGGAATGCTGTCAGGTTGCAAGA -ACGGAATGCTGTCAGGTTGGTTGA -ACGGAATGCTGTCAGGTTTCCGAT -ACGGAATGCTGTCAGGTTTGGCAT -ACGGAATGCTGTCAGGTTCGAGAT -ACGGAATGCTGTCAGGTTTACCAC -ACGGAATGCTGTCAGGTTCAGAAC -ACGGAATGCTGTCAGGTTGTCTAC -ACGGAATGCTGTCAGGTTACGTAC -ACGGAATGCTGTCAGGTTAGTGAC -ACGGAATGCTGTCAGGTTCTGTAG -ACGGAATGCTGTCAGGTTCCTAAG -ACGGAATGCTGTCAGGTTGTTCAG -ACGGAATGCTGTCAGGTTGCATAG -ACGGAATGCTGTCAGGTTGACAAG -ACGGAATGCTGTCAGGTTAAGCAG -ACGGAATGCTGTCAGGTTCGTCAA -ACGGAATGCTGTCAGGTTGCTGAA -ACGGAATGCTGTCAGGTTAGTACG -ACGGAATGCTGTCAGGTTATCCGA -ACGGAATGCTGTCAGGTTATGGGA -ACGGAATGCTGTCAGGTTGTGCAA -ACGGAATGCTGTCAGGTTGAGGAA -ACGGAATGCTGTCAGGTTCAGGTA -ACGGAATGCTGTCAGGTTGACTCT -ACGGAATGCTGTCAGGTTAGTCCT -ACGGAATGCTGTCAGGTTTAAGCC -ACGGAATGCTGTCAGGTTATAGCC -ACGGAATGCTGTCAGGTTTAACCG -ACGGAATGCTGTCAGGTTATGCCA -ACGGAATGCTGTTAGGCAGGAAAC -ACGGAATGCTGTTAGGCAAACACC -ACGGAATGCTGTTAGGCAATCGAG -ACGGAATGCTGTTAGGCACTCCTT -ACGGAATGCTGTTAGGCACCTGTT -ACGGAATGCTGTTAGGCACGGTTT -ACGGAATGCTGTTAGGCAGTGGTT -ACGGAATGCTGTTAGGCAGCCTTT -ACGGAATGCTGTTAGGCAGGTCTT -ACGGAATGCTGTTAGGCAACGCTT -ACGGAATGCTGTTAGGCAAGCGTT -ACGGAATGCTGTTAGGCATTCGTC -ACGGAATGCTGTTAGGCATCTCTC -ACGGAATGCTGTTAGGCATGGATC -ACGGAATGCTGTTAGGCACACTTC -ACGGAATGCTGTTAGGCAGTACTC -ACGGAATGCTGTTAGGCAGATGTC -ACGGAATGCTGTTAGGCAACAGTC -ACGGAATGCTGTTAGGCATTGCTG -ACGGAATGCTGTTAGGCATCCATG -ACGGAATGCTGTTAGGCATGTGTG -ACGGAATGCTGTTAGGCACTAGTG -ACGGAATGCTGTTAGGCACATCTG -ACGGAATGCTGTTAGGCAGAGTTG -ACGGAATGCTGTTAGGCAAGACTG -ACGGAATGCTGTTAGGCATCGGTA -ACGGAATGCTGTTAGGCATGCCTA -ACGGAATGCTGTTAGGCACCACTA -ACGGAATGCTGTTAGGCAGGAGTA -ACGGAATGCTGTTAGGCATCGTCT -ACGGAATGCTGTTAGGCATGCACT -ACGGAATGCTGTTAGGCACTGACT -ACGGAATGCTGTTAGGCACAACCT -ACGGAATGCTGTTAGGCAGCTACT -ACGGAATGCTGTTAGGCAGGATCT -ACGGAATGCTGTTAGGCAAAGGCT -ACGGAATGCTGTTAGGCATCAACC -ACGGAATGCTGTTAGGCATGTTCC -ACGGAATGCTGTTAGGCAATTCCC -ACGGAATGCTGTTAGGCATTCTCG -ACGGAATGCTGTTAGGCATAGACG -ACGGAATGCTGTTAGGCAGTAACG -ACGGAATGCTGTTAGGCAACTTCG -ACGGAATGCTGTTAGGCATACGCA -ACGGAATGCTGTTAGGCACTTGCA -ACGGAATGCTGTTAGGCACGAACA -ACGGAATGCTGTTAGGCACAGTCA -ACGGAATGCTGTTAGGCAGATCCA -ACGGAATGCTGTTAGGCAACGACA -ACGGAATGCTGTTAGGCAAGCTCA -ACGGAATGCTGTTAGGCATCACGT -ACGGAATGCTGTTAGGCACGTAGT -ACGGAATGCTGTTAGGCAGTCAGT -ACGGAATGCTGTTAGGCAGAAGGT -ACGGAATGCTGTTAGGCAAACCGT -ACGGAATGCTGTTAGGCATTGTGC -ACGGAATGCTGTTAGGCACTAAGC -ACGGAATGCTGTTAGGCAACTAGC -ACGGAATGCTGTTAGGCAAGATGC -ACGGAATGCTGTTAGGCATGAAGG -ACGGAATGCTGTTAGGCACAATGG -ACGGAATGCTGTTAGGCAATGAGG -ACGGAATGCTGTTAGGCAAATGGG -ACGGAATGCTGTTAGGCATCCTGA -ACGGAATGCTGTTAGGCATAGCGA -ACGGAATGCTGTTAGGCACACAGA -ACGGAATGCTGTTAGGCAGCAAGA -ACGGAATGCTGTTAGGCAGGTTGA -ACGGAATGCTGTTAGGCATCCGAT -ACGGAATGCTGTTAGGCATGGCAT -ACGGAATGCTGTTAGGCACGAGAT -ACGGAATGCTGTTAGGCATACCAC -ACGGAATGCTGTTAGGCACAGAAC -ACGGAATGCTGTTAGGCAGTCTAC -ACGGAATGCTGTTAGGCAACGTAC -ACGGAATGCTGTTAGGCAAGTGAC -ACGGAATGCTGTTAGGCACTGTAG -ACGGAATGCTGTTAGGCACCTAAG -ACGGAATGCTGTTAGGCAGTTCAG -ACGGAATGCTGTTAGGCAGCATAG -ACGGAATGCTGTTAGGCAGACAAG -ACGGAATGCTGTTAGGCAAAGCAG -ACGGAATGCTGTTAGGCACGTCAA -ACGGAATGCTGTTAGGCAGCTGAA -ACGGAATGCTGTTAGGCAAGTACG -ACGGAATGCTGTTAGGCAATCCGA -ACGGAATGCTGTTAGGCAATGGGA -ACGGAATGCTGTTAGGCAGTGCAA -ACGGAATGCTGTTAGGCAGAGGAA -ACGGAATGCTGTTAGGCACAGGTA -ACGGAATGCTGTTAGGCAGACTCT -ACGGAATGCTGTTAGGCAAGTCCT -ACGGAATGCTGTTAGGCATAAGCC -ACGGAATGCTGTTAGGCAATAGCC -ACGGAATGCTGTTAGGCATAACCG -ACGGAATGCTGTTAGGCAATGCCA -ACGGAATGCTGTAAGGACGGAAAC -ACGGAATGCTGTAAGGACAACACC -ACGGAATGCTGTAAGGACATCGAG -ACGGAATGCTGTAAGGACCTCCTT -ACGGAATGCTGTAAGGACCCTGTT -ACGGAATGCTGTAAGGACCGGTTT -ACGGAATGCTGTAAGGACGTGGTT -ACGGAATGCTGTAAGGACGCCTTT -ACGGAATGCTGTAAGGACGGTCTT -ACGGAATGCTGTAAGGACACGCTT -ACGGAATGCTGTAAGGACAGCGTT -ACGGAATGCTGTAAGGACTTCGTC -ACGGAATGCTGTAAGGACTCTCTC -ACGGAATGCTGTAAGGACTGGATC -ACGGAATGCTGTAAGGACCACTTC -ACGGAATGCTGTAAGGACGTACTC -ACGGAATGCTGTAAGGACGATGTC -ACGGAATGCTGTAAGGACACAGTC -ACGGAATGCTGTAAGGACTTGCTG -ACGGAATGCTGTAAGGACTCCATG -ACGGAATGCTGTAAGGACTGTGTG -ACGGAATGCTGTAAGGACCTAGTG -ACGGAATGCTGTAAGGACCATCTG -ACGGAATGCTGTAAGGACGAGTTG -ACGGAATGCTGTAAGGACAGACTG -ACGGAATGCTGTAAGGACTCGGTA -ACGGAATGCTGTAAGGACTGCCTA -ACGGAATGCTGTAAGGACCCACTA -ACGGAATGCTGTAAGGACGGAGTA -ACGGAATGCTGTAAGGACTCGTCT -ACGGAATGCTGTAAGGACTGCACT -ACGGAATGCTGTAAGGACCTGACT -ACGGAATGCTGTAAGGACCAACCT -ACGGAATGCTGTAAGGACGCTACT -ACGGAATGCTGTAAGGACGGATCT -ACGGAATGCTGTAAGGACAAGGCT -ACGGAATGCTGTAAGGACTCAACC -ACGGAATGCTGTAAGGACTGTTCC -ACGGAATGCTGTAAGGACATTCCC -ACGGAATGCTGTAAGGACTTCTCG -ACGGAATGCTGTAAGGACTAGACG -ACGGAATGCTGTAAGGACGTAACG -ACGGAATGCTGTAAGGACACTTCG -ACGGAATGCTGTAAGGACTACGCA -ACGGAATGCTGTAAGGACCTTGCA -ACGGAATGCTGTAAGGACCGAACA -ACGGAATGCTGTAAGGACCAGTCA -ACGGAATGCTGTAAGGACGATCCA -ACGGAATGCTGTAAGGACACGACA -ACGGAATGCTGTAAGGACAGCTCA -ACGGAATGCTGTAAGGACTCACGT -ACGGAATGCTGTAAGGACCGTAGT -ACGGAATGCTGTAAGGACGTCAGT -ACGGAATGCTGTAAGGACGAAGGT -ACGGAATGCTGTAAGGACAACCGT -ACGGAATGCTGTAAGGACTTGTGC -ACGGAATGCTGTAAGGACCTAAGC -ACGGAATGCTGTAAGGACACTAGC -ACGGAATGCTGTAAGGACAGATGC -ACGGAATGCTGTAAGGACTGAAGG -ACGGAATGCTGTAAGGACCAATGG -ACGGAATGCTGTAAGGACATGAGG -ACGGAATGCTGTAAGGACAATGGG -ACGGAATGCTGTAAGGACTCCTGA -ACGGAATGCTGTAAGGACTAGCGA -ACGGAATGCTGTAAGGACCACAGA -ACGGAATGCTGTAAGGACGCAAGA -ACGGAATGCTGTAAGGACGGTTGA -ACGGAATGCTGTAAGGACTCCGAT -ACGGAATGCTGTAAGGACTGGCAT -ACGGAATGCTGTAAGGACCGAGAT -ACGGAATGCTGTAAGGACTACCAC -ACGGAATGCTGTAAGGACCAGAAC -ACGGAATGCTGTAAGGACGTCTAC -ACGGAATGCTGTAAGGACACGTAC -ACGGAATGCTGTAAGGACAGTGAC -ACGGAATGCTGTAAGGACCTGTAG -ACGGAATGCTGTAAGGACCCTAAG -ACGGAATGCTGTAAGGACGTTCAG -ACGGAATGCTGTAAGGACGCATAG -ACGGAATGCTGTAAGGACGACAAG -ACGGAATGCTGTAAGGACAAGCAG -ACGGAATGCTGTAAGGACCGTCAA -ACGGAATGCTGTAAGGACGCTGAA -ACGGAATGCTGTAAGGACAGTACG -ACGGAATGCTGTAAGGACATCCGA -ACGGAATGCTGTAAGGACATGGGA -ACGGAATGCTGTAAGGACGTGCAA -ACGGAATGCTGTAAGGACGAGGAA -ACGGAATGCTGTAAGGACCAGGTA -ACGGAATGCTGTAAGGACGACTCT -ACGGAATGCTGTAAGGACAGTCCT -ACGGAATGCTGTAAGGACTAAGCC -ACGGAATGCTGTAAGGACATAGCC -ACGGAATGCTGTAAGGACTAACCG -ACGGAATGCTGTAAGGACATGCCA -ACGGAATGCTGTCAGAAGGGAAAC -ACGGAATGCTGTCAGAAGAACACC -ACGGAATGCTGTCAGAAGATCGAG -ACGGAATGCTGTCAGAAGCTCCTT -ACGGAATGCTGTCAGAAGCCTGTT -ACGGAATGCTGTCAGAAGCGGTTT -ACGGAATGCTGTCAGAAGGTGGTT -ACGGAATGCTGTCAGAAGGCCTTT -ACGGAATGCTGTCAGAAGGGTCTT -ACGGAATGCTGTCAGAAGACGCTT -ACGGAATGCTGTCAGAAGAGCGTT -ACGGAATGCTGTCAGAAGTTCGTC -ACGGAATGCTGTCAGAAGTCTCTC -ACGGAATGCTGTCAGAAGTGGATC -ACGGAATGCTGTCAGAAGCACTTC -ACGGAATGCTGTCAGAAGGTACTC -ACGGAATGCTGTCAGAAGGATGTC -ACGGAATGCTGTCAGAAGACAGTC -ACGGAATGCTGTCAGAAGTTGCTG -ACGGAATGCTGTCAGAAGTCCATG -ACGGAATGCTGTCAGAAGTGTGTG -ACGGAATGCTGTCAGAAGCTAGTG -ACGGAATGCTGTCAGAAGCATCTG -ACGGAATGCTGTCAGAAGGAGTTG -ACGGAATGCTGTCAGAAGAGACTG -ACGGAATGCTGTCAGAAGTCGGTA -ACGGAATGCTGTCAGAAGTGCCTA -ACGGAATGCTGTCAGAAGCCACTA -ACGGAATGCTGTCAGAAGGGAGTA -ACGGAATGCTGTCAGAAGTCGTCT -ACGGAATGCTGTCAGAAGTGCACT -ACGGAATGCTGTCAGAAGCTGACT -ACGGAATGCTGTCAGAAGCAACCT -ACGGAATGCTGTCAGAAGGCTACT -ACGGAATGCTGTCAGAAGGGATCT -ACGGAATGCTGTCAGAAGAAGGCT -ACGGAATGCTGTCAGAAGTCAACC -ACGGAATGCTGTCAGAAGTGTTCC -ACGGAATGCTGTCAGAAGATTCCC -ACGGAATGCTGTCAGAAGTTCTCG -ACGGAATGCTGTCAGAAGTAGACG -ACGGAATGCTGTCAGAAGGTAACG -ACGGAATGCTGTCAGAAGACTTCG -ACGGAATGCTGTCAGAAGTACGCA -ACGGAATGCTGTCAGAAGCTTGCA -ACGGAATGCTGTCAGAAGCGAACA -ACGGAATGCTGTCAGAAGCAGTCA -ACGGAATGCTGTCAGAAGGATCCA -ACGGAATGCTGTCAGAAGACGACA -ACGGAATGCTGTCAGAAGAGCTCA -ACGGAATGCTGTCAGAAGTCACGT -ACGGAATGCTGTCAGAAGCGTAGT -ACGGAATGCTGTCAGAAGGTCAGT -ACGGAATGCTGTCAGAAGGAAGGT -ACGGAATGCTGTCAGAAGAACCGT -ACGGAATGCTGTCAGAAGTTGTGC -ACGGAATGCTGTCAGAAGCTAAGC -ACGGAATGCTGTCAGAAGACTAGC -ACGGAATGCTGTCAGAAGAGATGC -ACGGAATGCTGTCAGAAGTGAAGG -ACGGAATGCTGTCAGAAGCAATGG -ACGGAATGCTGTCAGAAGATGAGG -ACGGAATGCTGTCAGAAGAATGGG -ACGGAATGCTGTCAGAAGTCCTGA -ACGGAATGCTGTCAGAAGTAGCGA -ACGGAATGCTGTCAGAAGCACAGA -ACGGAATGCTGTCAGAAGGCAAGA -ACGGAATGCTGTCAGAAGGGTTGA -ACGGAATGCTGTCAGAAGTCCGAT -ACGGAATGCTGTCAGAAGTGGCAT -ACGGAATGCTGTCAGAAGCGAGAT -ACGGAATGCTGTCAGAAGTACCAC -ACGGAATGCTGTCAGAAGCAGAAC -ACGGAATGCTGTCAGAAGGTCTAC -ACGGAATGCTGTCAGAAGACGTAC -ACGGAATGCTGTCAGAAGAGTGAC -ACGGAATGCTGTCAGAAGCTGTAG -ACGGAATGCTGTCAGAAGCCTAAG -ACGGAATGCTGTCAGAAGGTTCAG -ACGGAATGCTGTCAGAAGGCATAG -ACGGAATGCTGTCAGAAGGACAAG -ACGGAATGCTGTCAGAAGAAGCAG -ACGGAATGCTGTCAGAAGCGTCAA -ACGGAATGCTGTCAGAAGGCTGAA -ACGGAATGCTGTCAGAAGAGTACG -ACGGAATGCTGTCAGAAGATCCGA -ACGGAATGCTGTCAGAAGATGGGA -ACGGAATGCTGTCAGAAGGTGCAA -ACGGAATGCTGTCAGAAGGAGGAA -ACGGAATGCTGTCAGAAGCAGGTA -ACGGAATGCTGTCAGAAGGACTCT -ACGGAATGCTGTCAGAAGAGTCCT -ACGGAATGCTGTCAGAAGTAAGCC -ACGGAATGCTGTCAGAAGATAGCC -ACGGAATGCTGTCAGAAGTAACCG -ACGGAATGCTGTCAGAAGATGCCA -ACGGAATGCTGTCAACGTGGAAAC -ACGGAATGCTGTCAACGTAACACC -ACGGAATGCTGTCAACGTATCGAG -ACGGAATGCTGTCAACGTCTCCTT -ACGGAATGCTGTCAACGTCCTGTT -ACGGAATGCTGTCAACGTCGGTTT -ACGGAATGCTGTCAACGTGTGGTT -ACGGAATGCTGTCAACGTGCCTTT -ACGGAATGCTGTCAACGTGGTCTT -ACGGAATGCTGTCAACGTACGCTT -ACGGAATGCTGTCAACGTAGCGTT -ACGGAATGCTGTCAACGTTTCGTC -ACGGAATGCTGTCAACGTTCTCTC -ACGGAATGCTGTCAACGTTGGATC -ACGGAATGCTGTCAACGTCACTTC -ACGGAATGCTGTCAACGTGTACTC -ACGGAATGCTGTCAACGTGATGTC -ACGGAATGCTGTCAACGTACAGTC -ACGGAATGCTGTCAACGTTTGCTG -ACGGAATGCTGTCAACGTTCCATG -ACGGAATGCTGTCAACGTTGTGTG -ACGGAATGCTGTCAACGTCTAGTG -ACGGAATGCTGTCAACGTCATCTG -ACGGAATGCTGTCAACGTGAGTTG -ACGGAATGCTGTCAACGTAGACTG -ACGGAATGCTGTCAACGTTCGGTA -ACGGAATGCTGTCAACGTTGCCTA -ACGGAATGCTGTCAACGTCCACTA -ACGGAATGCTGTCAACGTGGAGTA -ACGGAATGCTGTCAACGTTCGTCT -ACGGAATGCTGTCAACGTTGCACT -ACGGAATGCTGTCAACGTCTGACT -ACGGAATGCTGTCAACGTCAACCT -ACGGAATGCTGTCAACGTGCTACT -ACGGAATGCTGTCAACGTGGATCT -ACGGAATGCTGTCAACGTAAGGCT -ACGGAATGCTGTCAACGTTCAACC -ACGGAATGCTGTCAACGTTGTTCC -ACGGAATGCTGTCAACGTATTCCC -ACGGAATGCTGTCAACGTTTCTCG -ACGGAATGCTGTCAACGTTAGACG -ACGGAATGCTGTCAACGTGTAACG -ACGGAATGCTGTCAACGTACTTCG -ACGGAATGCTGTCAACGTTACGCA -ACGGAATGCTGTCAACGTCTTGCA -ACGGAATGCTGTCAACGTCGAACA -ACGGAATGCTGTCAACGTCAGTCA -ACGGAATGCTGTCAACGTGATCCA -ACGGAATGCTGTCAACGTACGACA -ACGGAATGCTGTCAACGTAGCTCA -ACGGAATGCTGTCAACGTTCACGT -ACGGAATGCTGTCAACGTCGTAGT -ACGGAATGCTGTCAACGTGTCAGT -ACGGAATGCTGTCAACGTGAAGGT -ACGGAATGCTGTCAACGTAACCGT -ACGGAATGCTGTCAACGTTTGTGC -ACGGAATGCTGTCAACGTCTAAGC -ACGGAATGCTGTCAACGTACTAGC -ACGGAATGCTGTCAACGTAGATGC -ACGGAATGCTGTCAACGTTGAAGG -ACGGAATGCTGTCAACGTCAATGG -ACGGAATGCTGTCAACGTATGAGG -ACGGAATGCTGTCAACGTAATGGG -ACGGAATGCTGTCAACGTTCCTGA -ACGGAATGCTGTCAACGTTAGCGA -ACGGAATGCTGTCAACGTCACAGA -ACGGAATGCTGTCAACGTGCAAGA -ACGGAATGCTGTCAACGTGGTTGA -ACGGAATGCTGTCAACGTTCCGAT -ACGGAATGCTGTCAACGTTGGCAT -ACGGAATGCTGTCAACGTCGAGAT -ACGGAATGCTGTCAACGTTACCAC -ACGGAATGCTGTCAACGTCAGAAC -ACGGAATGCTGTCAACGTGTCTAC -ACGGAATGCTGTCAACGTACGTAC -ACGGAATGCTGTCAACGTAGTGAC -ACGGAATGCTGTCAACGTCTGTAG -ACGGAATGCTGTCAACGTCCTAAG -ACGGAATGCTGTCAACGTGTTCAG -ACGGAATGCTGTCAACGTGCATAG -ACGGAATGCTGTCAACGTGACAAG -ACGGAATGCTGTCAACGTAAGCAG -ACGGAATGCTGTCAACGTCGTCAA -ACGGAATGCTGTCAACGTGCTGAA -ACGGAATGCTGTCAACGTAGTACG -ACGGAATGCTGTCAACGTATCCGA -ACGGAATGCTGTCAACGTATGGGA -ACGGAATGCTGTCAACGTGTGCAA -ACGGAATGCTGTCAACGTGAGGAA -ACGGAATGCTGTCAACGTCAGGTA -ACGGAATGCTGTCAACGTGACTCT -ACGGAATGCTGTCAACGTAGTCCT -ACGGAATGCTGTCAACGTTAAGCC -ACGGAATGCTGTCAACGTATAGCC -ACGGAATGCTGTCAACGTTAACCG -ACGGAATGCTGTCAACGTATGCCA -ACGGAATGCTGTGAAGCTGGAAAC -ACGGAATGCTGTGAAGCTAACACC -ACGGAATGCTGTGAAGCTATCGAG -ACGGAATGCTGTGAAGCTCTCCTT -ACGGAATGCTGTGAAGCTCCTGTT -ACGGAATGCTGTGAAGCTCGGTTT -ACGGAATGCTGTGAAGCTGTGGTT -ACGGAATGCTGTGAAGCTGCCTTT -ACGGAATGCTGTGAAGCTGGTCTT -ACGGAATGCTGTGAAGCTACGCTT -ACGGAATGCTGTGAAGCTAGCGTT -ACGGAATGCTGTGAAGCTTTCGTC -ACGGAATGCTGTGAAGCTTCTCTC -ACGGAATGCTGTGAAGCTTGGATC -ACGGAATGCTGTGAAGCTCACTTC -ACGGAATGCTGTGAAGCTGTACTC -ACGGAATGCTGTGAAGCTGATGTC -ACGGAATGCTGTGAAGCTACAGTC -ACGGAATGCTGTGAAGCTTTGCTG -ACGGAATGCTGTGAAGCTTCCATG -ACGGAATGCTGTGAAGCTTGTGTG -ACGGAATGCTGTGAAGCTCTAGTG -ACGGAATGCTGTGAAGCTCATCTG -ACGGAATGCTGTGAAGCTGAGTTG -ACGGAATGCTGTGAAGCTAGACTG -ACGGAATGCTGTGAAGCTTCGGTA -ACGGAATGCTGTGAAGCTTGCCTA -ACGGAATGCTGTGAAGCTCCACTA -ACGGAATGCTGTGAAGCTGGAGTA -ACGGAATGCTGTGAAGCTTCGTCT -ACGGAATGCTGTGAAGCTTGCACT -ACGGAATGCTGTGAAGCTCTGACT -ACGGAATGCTGTGAAGCTCAACCT -ACGGAATGCTGTGAAGCTGCTACT -ACGGAATGCTGTGAAGCTGGATCT -ACGGAATGCTGTGAAGCTAAGGCT -ACGGAATGCTGTGAAGCTTCAACC -ACGGAATGCTGTGAAGCTTGTTCC -ACGGAATGCTGTGAAGCTATTCCC -ACGGAATGCTGTGAAGCTTTCTCG -ACGGAATGCTGTGAAGCTTAGACG -ACGGAATGCTGTGAAGCTGTAACG -ACGGAATGCTGTGAAGCTACTTCG -ACGGAATGCTGTGAAGCTTACGCA -ACGGAATGCTGTGAAGCTCTTGCA -ACGGAATGCTGTGAAGCTCGAACA -ACGGAATGCTGTGAAGCTCAGTCA -ACGGAATGCTGTGAAGCTGATCCA -ACGGAATGCTGTGAAGCTACGACA -ACGGAATGCTGTGAAGCTAGCTCA -ACGGAATGCTGTGAAGCTTCACGT -ACGGAATGCTGTGAAGCTCGTAGT -ACGGAATGCTGTGAAGCTGTCAGT -ACGGAATGCTGTGAAGCTGAAGGT -ACGGAATGCTGTGAAGCTAACCGT -ACGGAATGCTGTGAAGCTTTGTGC -ACGGAATGCTGTGAAGCTCTAAGC -ACGGAATGCTGTGAAGCTACTAGC -ACGGAATGCTGTGAAGCTAGATGC -ACGGAATGCTGTGAAGCTTGAAGG -ACGGAATGCTGTGAAGCTCAATGG -ACGGAATGCTGTGAAGCTATGAGG -ACGGAATGCTGTGAAGCTAATGGG -ACGGAATGCTGTGAAGCTTCCTGA -ACGGAATGCTGTGAAGCTTAGCGA -ACGGAATGCTGTGAAGCTCACAGA -ACGGAATGCTGTGAAGCTGCAAGA -ACGGAATGCTGTGAAGCTGGTTGA -ACGGAATGCTGTGAAGCTTCCGAT -ACGGAATGCTGTGAAGCTTGGCAT -ACGGAATGCTGTGAAGCTCGAGAT -ACGGAATGCTGTGAAGCTTACCAC -ACGGAATGCTGTGAAGCTCAGAAC -ACGGAATGCTGTGAAGCTGTCTAC -ACGGAATGCTGTGAAGCTACGTAC -ACGGAATGCTGTGAAGCTAGTGAC -ACGGAATGCTGTGAAGCTCTGTAG -ACGGAATGCTGTGAAGCTCCTAAG -ACGGAATGCTGTGAAGCTGTTCAG -ACGGAATGCTGTGAAGCTGCATAG -ACGGAATGCTGTGAAGCTGACAAG -ACGGAATGCTGTGAAGCTAAGCAG -ACGGAATGCTGTGAAGCTCGTCAA -ACGGAATGCTGTGAAGCTGCTGAA -ACGGAATGCTGTGAAGCTAGTACG -ACGGAATGCTGTGAAGCTATCCGA -ACGGAATGCTGTGAAGCTATGGGA -ACGGAATGCTGTGAAGCTGTGCAA -ACGGAATGCTGTGAAGCTGAGGAA -ACGGAATGCTGTGAAGCTCAGGTA -ACGGAATGCTGTGAAGCTGACTCT -ACGGAATGCTGTGAAGCTAGTCCT -ACGGAATGCTGTGAAGCTTAAGCC -ACGGAATGCTGTGAAGCTATAGCC -ACGGAATGCTGTGAAGCTTAACCG -ACGGAATGCTGTGAAGCTATGCCA -ACGGAATGCTGTACGAGTGGAAAC -ACGGAATGCTGTACGAGTAACACC -ACGGAATGCTGTACGAGTATCGAG -ACGGAATGCTGTACGAGTCTCCTT -ACGGAATGCTGTACGAGTCCTGTT -ACGGAATGCTGTACGAGTCGGTTT -ACGGAATGCTGTACGAGTGTGGTT -ACGGAATGCTGTACGAGTGCCTTT -ACGGAATGCTGTACGAGTGGTCTT -ACGGAATGCTGTACGAGTACGCTT -ACGGAATGCTGTACGAGTAGCGTT -ACGGAATGCTGTACGAGTTTCGTC -ACGGAATGCTGTACGAGTTCTCTC -ACGGAATGCTGTACGAGTTGGATC -ACGGAATGCTGTACGAGTCACTTC -ACGGAATGCTGTACGAGTGTACTC -ACGGAATGCTGTACGAGTGATGTC -ACGGAATGCTGTACGAGTACAGTC -ACGGAATGCTGTACGAGTTTGCTG -ACGGAATGCTGTACGAGTTCCATG -ACGGAATGCTGTACGAGTTGTGTG -ACGGAATGCTGTACGAGTCTAGTG -ACGGAATGCTGTACGAGTCATCTG -ACGGAATGCTGTACGAGTGAGTTG -ACGGAATGCTGTACGAGTAGACTG -ACGGAATGCTGTACGAGTTCGGTA -ACGGAATGCTGTACGAGTTGCCTA -ACGGAATGCTGTACGAGTCCACTA -ACGGAATGCTGTACGAGTGGAGTA -ACGGAATGCTGTACGAGTTCGTCT -ACGGAATGCTGTACGAGTTGCACT -ACGGAATGCTGTACGAGTCTGACT -ACGGAATGCTGTACGAGTCAACCT -ACGGAATGCTGTACGAGTGCTACT -ACGGAATGCTGTACGAGTGGATCT -ACGGAATGCTGTACGAGTAAGGCT -ACGGAATGCTGTACGAGTTCAACC -ACGGAATGCTGTACGAGTTGTTCC -ACGGAATGCTGTACGAGTATTCCC -ACGGAATGCTGTACGAGTTTCTCG -ACGGAATGCTGTACGAGTTAGACG -ACGGAATGCTGTACGAGTGTAACG -ACGGAATGCTGTACGAGTACTTCG -ACGGAATGCTGTACGAGTTACGCA -ACGGAATGCTGTACGAGTCTTGCA -ACGGAATGCTGTACGAGTCGAACA -ACGGAATGCTGTACGAGTCAGTCA -ACGGAATGCTGTACGAGTGATCCA -ACGGAATGCTGTACGAGTACGACA -ACGGAATGCTGTACGAGTAGCTCA -ACGGAATGCTGTACGAGTTCACGT -ACGGAATGCTGTACGAGTCGTAGT -ACGGAATGCTGTACGAGTGTCAGT -ACGGAATGCTGTACGAGTGAAGGT -ACGGAATGCTGTACGAGTAACCGT -ACGGAATGCTGTACGAGTTTGTGC -ACGGAATGCTGTACGAGTCTAAGC -ACGGAATGCTGTACGAGTACTAGC -ACGGAATGCTGTACGAGTAGATGC -ACGGAATGCTGTACGAGTTGAAGG -ACGGAATGCTGTACGAGTCAATGG -ACGGAATGCTGTACGAGTATGAGG -ACGGAATGCTGTACGAGTAATGGG -ACGGAATGCTGTACGAGTTCCTGA -ACGGAATGCTGTACGAGTTAGCGA -ACGGAATGCTGTACGAGTCACAGA -ACGGAATGCTGTACGAGTGCAAGA -ACGGAATGCTGTACGAGTGGTTGA -ACGGAATGCTGTACGAGTTCCGAT -ACGGAATGCTGTACGAGTTGGCAT -ACGGAATGCTGTACGAGTCGAGAT -ACGGAATGCTGTACGAGTTACCAC -ACGGAATGCTGTACGAGTCAGAAC -ACGGAATGCTGTACGAGTGTCTAC -ACGGAATGCTGTACGAGTACGTAC -ACGGAATGCTGTACGAGTAGTGAC -ACGGAATGCTGTACGAGTCTGTAG -ACGGAATGCTGTACGAGTCCTAAG -ACGGAATGCTGTACGAGTGTTCAG -ACGGAATGCTGTACGAGTGCATAG -ACGGAATGCTGTACGAGTGACAAG -ACGGAATGCTGTACGAGTAAGCAG -ACGGAATGCTGTACGAGTCGTCAA -ACGGAATGCTGTACGAGTGCTGAA -ACGGAATGCTGTACGAGTAGTACG -ACGGAATGCTGTACGAGTATCCGA -ACGGAATGCTGTACGAGTATGGGA -ACGGAATGCTGTACGAGTGTGCAA -ACGGAATGCTGTACGAGTGAGGAA -ACGGAATGCTGTACGAGTCAGGTA -ACGGAATGCTGTACGAGTGACTCT -ACGGAATGCTGTACGAGTAGTCCT -ACGGAATGCTGTACGAGTTAAGCC -ACGGAATGCTGTACGAGTATAGCC -ACGGAATGCTGTACGAGTTAACCG -ACGGAATGCTGTACGAGTATGCCA -ACGGAATGCTGTCGAATCGGAAAC -ACGGAATGCTGTCGAATCAACACC -ACGGAATGCTGTCGAATCATCGAG -ACGGAATGCTGTCGAATCCTCCTT -ACGGAATGCTGTCGAATCCCTGTT -ACGGAATGCTGTCGAATCCGGTTT -ACGGAATGCTGTCGAATCGTGGTT -ACGGAATGCTGTCGAATCGCCTTT -ACGGAATGCTGTCGAATCGGTCTT -ACGGAATGCTGTCGAATCACGCTT -ACGGAATGCTGTCGAATCAGCGTT -ACGGAATGCTGTCGAATCTTCGTC -ACGGAATGCTGTCGAATCTCTCTC -ACGGAATGCTGTCGAATCTGGATC -ACGGAATGCTGTCGAATCCACTTC -ACGGAATGCTGTCGAATCGTACTC -ACGGAATGCTGTCGAATCGATGTC -ACGGAATGCTGTCGAATCACAGTC -ACGGAATGCTGTCGAATCTTGCTG -ACGGAATGCTGTCGAATCTCCATG -ACGGAATGCTGTCGAATCTGTGTG -ACGGAATGCTGTCGAATCCTAGTG -ACGGAATGCTGTCGAATCCATCTG -ACGGAATGCTGTCGAATCGAGTTG -ACGGAATGCTGTCGAATCAGACTG -ACGGAATGCTGTCGAATCTCGGTA -ACGGAATGCTGTCGAATCTGCCTA -ACGGAATGCTGTCGAATCCCACTA -ACGGAATGCTGTCGAATCGGAGTA -ACGGAATGCTGTCGAATCTCGTCT -ACGGAATGCTGTCGAATCTGCACT -ACGGAATGCTGTCGAATCCTGACT -ACGGAATGCTGTCGAATCCAACCT -ACGGAATGCTGTCGAATCGCTACT -ACGGAATGCTGTCGAATCGGATCT -ACGGAATGCTGTCGAATCAAGGCT -ACGGAATGCTGTCGAATCTCAACC -ACGGAATGCTGTCGAATCTGTTCC -ACGGAATGCTGTCGAATCATTCCC -ACGGAATGCTGTCGAATCTTCTCG -ACGGAATGCTGTCGAATCTAGACG -ACGGAATGCTGTCGAATCGTAACG -ACGGAATGCTGTCGAATCACTTCG -ACGGAATGCTGTCGAATCTACGCA -ACGGAATGCTGTCGAATCCTTGCA -ACGGAATGCTGTCGAATCCGAACA -ACGGAATGCTGTCGAATCCAGTCA -ACGGAATGCTGTCGAATCGATCCA -ACGGAATGCTGTCGAATCACGACA -ACGGAATGCTGTCGAATCAGCTCA -ACGGAATGCTGTCGAATCTCACGT -ACGGAATGCTGTCGAATCCGTAGT -ACGGAATGCTGTCGAATCGTCAGT -ACGGAATGCTGTCGAATCGAAGGT -ACGGAATGCTGTCGAATCAACCGT -ACGGAATGCTGTCGAATCTTGTGC -ACGGAATGCTGTCGAATCCTAAGC -ACGGAATGCTGTCGAATCACTAGC -ACGGAATGCTGTCGAATCAGATGC -ACGGAATGCTGTCGAATCTGAAGG -ACGGAATGCTGTCGAATCCAATGG -ACGGAATGCTGTCGAATCATGAGG -ACGGAATGCTGTCGAATCAATGGG -ACGGAATGCTGTCGAATCTCCTGA -ACGGAATGCTGTCGAATCTAGCGA -ACGGAATGCTGTCGAATCCACAGA -ACGGAATGCTGTCGAATCGCAAGA -ACGGAATGCTGTCGAATCGGTTGA -ACGGAATGCTGTCGAATCTCCGAT -ACGGAATGCTGTCGAATCTGGCAT -ACGGAATGCTGTCGAATCCGAGAT -ACGGAATGCTGTCGAATCTACCAC -ACGGAATGCTGTCGAATCCAGAAC -ACGGAATGCTGTCGAATCGTCTAC -ACGGAATGCTGTCGAATCACGTAC -ACGGAATGCTGTCGAATCAGTGAC -ACGGAATGCTGTCGAATCCTGTAG -ACGGAATGCTGTCGAATCCCTAAG -ACGGAATGCTGTCGAATCGTTCAG -ACGGAATGCTGTCGAATCGCATAG -ACGGAATGCTGTCGAATCGACAAG -ACGGAATGCTGTCGAATCAAGCAG -ACGGAATGCTGTCGAATCCGTCAA -ACGGAATGCTGTCGAATCGCTGAA -ACGGAATGCTGTCGAATCAGTACG -ACGGAATGCTGTCGAATCATCCGA -ACGGAATGCTGTCGAATCATGGGA -ACGGAATGCTGTCGAATCGTGCAA -ACGGAATGCTGTCGAATCGAGGAA -ACGGAATGCTGTCGAATCCAGGTA -ACGGAATGCTGTCGAATCGACTCT -ACGGAATGCTGTCGAATCAGTCCT -ACGGAATGCTGTCGAATCTAAGCC -ACGGAATGCTGTCGAATCATAGCC -ACGGAATGCTGTCGAATCTAACCG -ACGGAATGCTGTCGAATCATGCCA -ACGGAATGCTGTGGAATGGGAAAC -ACGGAATGCTGTGGAATGAACACC -ACGGAATGCTGTGGAATGATCGAG -ACGGAATGCTGTGGAATGCTCCTT -ACGGAATGCTGTGGAATGCCTGTT -ACGGAATGCTGTGGAATGCGGTTT -ACGGAATGCTGTGGAATGGTGGTT -ACGGAATGCTGTGGAATGGCCTTT -ACGGAATGCTGTGGAATGGGTCTT -ACGGAATGCTGTGGAATGACGCTT -ACGGAATGCTGTGGAATGAGCGTT -ACGGAATGCTGTGGAATGTTCGTC -ACGGAATGCTGTGGAATGTCTCTC -ACGGAATGCTGTGGAATGTGGATC -ACGGAATGCTGTGGAATGCACTTC -ACGGAATGCTGTGGAATGGTACTC -ACGGAATGCTGTGGAATGGATGTC -ACGGAATGCTGTGGAATGACAGTC -ACGGAATGCTGTGGAATGTTGCTG -ACGGAATGCTGTGGAATGTCCATG -ACGGAATGCTGTGGAATGTGTGTG -ACGGAATGCTGTGGAATGCTAGTG -ACGGAATGCTGTGGAATGCATCTG -ACGGAATGCTGTGGAATGGAGTTG -ACGGAATGCTGTGGAATGAGACTG -ACGGAATGCTGTGGAATGTCGGTA -ACGGAATGCTGTGGAATGTGCCTA -ACGGAATGCTGTGGAATGCCACTA -ACGGAATGCTGTGGAATGGGAGTA -ACGGAATGCTGTGGAATGTCGTCT -ACGGAATGCTGTGGAATGTGCACT -ACGGAATGCTGTGGAATGCTGACT -ACGGAATGCTGTGGAATGCAACCT -ACGGAATGCTGTGGAATGGCTACT -ACGGAATGCTGTGGAATGGGATCT -ACGGAATGCTGTGGAATGAAGGCT -ACGGAATGCTGTGGAATGTCAACC -ACGGAATGCTGTGGAATGTGTTCC -ACGGAATGCTGTGGAATGATTCCC -ACGGAATGCTGTGGAATGTTCTCG -ACGGAATGCTGTGGAATGTAGACG -ACGGAATGCTGTGGAATGGTAACG -ACGGAATGCTGTGGAATGACTTCG -ACGGAATGCTGTGGAATGTACGCA -ACGGAATGCTGTGGAATGCTTGCA -ACGGAATGCTGTGGAATGCGAACA -ACGGAATGCTGTGGAATGCAGTCA -ACGGAATGCTGTGGAATGGATCCA -ACGGAATGCTGTGGAATGACGACA -ACGGAATGCTGTGGAATGAGCTCA -ACGGAATGCTGTGGAATGTCACGT -ACGGAATGCTGTGGAATGCGTAGT -ACGGAATGCTGTGGAATGGTCAGT -ACGGAATGCTGTGGAATGGAAGGT -ACGGAATGCTGTGGAATGAACCGT -ACGGAATGCTGTGGAATGTTGTGC -ACGGAATGCTGTGGAATGCTAAGC -ACGGAATGCTGTGGAATGACTAGC -ACGGAATGCTGTGGAATGAGATGC -ACGGAATGCTGTGGAATGTGAAGG -ACGGAATGCTGTGGAATGCAATGG -ACGGAATGCTGTGGAATGATGAGG -ACGGAATGCTGTGGAATGAATGGG -ACGGAATGCTGTGGAATGTCCTGA -ACGGAATGCTGTGGAATGTAGCGA -ACGGAATGCTGTGGAATGCACAGA -ACGGAATGCTGTGGAATGGCAAGA -ACGGAATGCTGTGGAATGGGTTGA -ACGGAATGCTGTGGAATGTCCGAT -ACGGAATGCTGTGGAATGTGGCAT -ACGGAATGCTGTGGAATGCGAGAT -ACGGAATGCTGTGGAATGTACCAC -ACGGAATGCTGTGGAATGCAGAAC -ACGGAATGCTGTGGAATGGTCTAC -ACGGAATGCTGTGGAATGACGTAC -ACGGAATGCTGTGGAATGAGTGAC -ACGGAATGCTGTGGAATGCTGTAG -ACGGAATGCTGTGGAATGCCTAAG -ACGGAATGCTGTGGAATGGTTCAG -ACGGAATGCTGTGGAATGGCATAG -ACGGAATGCTGTGGAATGGACAAG -ACGGAATGCTGTGGAATGAAGCAG -ACGGAATGCTGTGGAATGCGTCAA -ACGGAATGCTGTGGAATGGCTGAA -ACGGAATGCTGTGGAATGAGTACG -ACGGAATGCTGTGGAATGATCCGA -ACGGAATGCTGTGGAATGATGGGA -ACGGAATGCTGTGGAATGGTGCAA -ACGGAATGCTGTGGAATGGAGGAA -ACGGAATGCTGTGGAATGCAGGTA -ACGGAATGCTGTGGAATGGACTCT -ACGGAATGCTGTGGAATGAGTCCT -ACGGAATGCTGTGGAATGTAAGCC -ACGGAATGCTGTGGAATGATAGCC -ACGGAATGCTGTGGAATGTAACCG -ACGGAATGCTGTGGAATGATGCCA -ACGGAATGCTGTCAAGTGGGAAAC -ACGGAATGCTGTCAAGTGAACACC -ACGGAATGCTGTCAAGTGATCGAG -ACGGAATGCTGTCAAGTGCTCCTT -ACGGAATGCTGTCAAGTGCCTGTT -ACGGAATGCTGTCAAGTGCGGTTT -ACGGAATGCTGTCAAGTGGTGGTT -ACGGAATGCTGTCAAGTGGCCTTT -ACGGAATGCTGTCAAGTGGGTCTT -ACGGAATGCTGTCAAGTGACGCTT -ACGGAATGCTGTCAAGTGAGCGTT -ACGGAATGCTGTCAAGTGTTCGTC -ACGGAATGCTGTCAAGTGTCTCTC -ACGGAATGCTGTCAAGTGTGGATC -ACGGAATGCTGTCAAGTGCACTTC -ACGGAATGCTGTCAAGTGGTACTC -ACGGAATGCTGTCAAGTGGATGTC -ACGGAATGCTGTCAAGTGACAGTC -ACGGAATGCTGTCAAGTGTTGCTG -ACGGAATGCTGTCAAGTGTCCATG -ACGGAATGCTGTCAAGTGTGTGTG -ACGGAATGCTGTCAAGTGCTAGTG -ACGGAATGCTGTCAAGTGCATCTG -ACGGAATGCTGTCAAGTGGAGTTG -ACGGAATGCTGTCAAGTGAGACTG -ACGGAATGCTGTCAAGTGTCGGTA -ACGGAATGCTGTCAAGTGTGCCTA -ACGGAATGCTGTCAAGTGCCACTA -ACGGAATGCTGTCAAGTGGGAGTA -ACGGAATGCTGTCAAGTGTCGTCT -ACGGAATGCTGTCAAGTGTGCACT -ACGGAATGCTGTCAAGTGCTGACT -ACGGAATGCTGTCAAGTGCAACCT -ACGGAATGCTGTCAAGTGGCTACT -ACGGAATGCTGTCAAGTGGGATCT -ACGGAATGCTGTCAAGTGAAGGCT -ACGGAATGCTGTCAAGTGTCAACC -ACGGAATGCTGTCAAGTGTGTTCC -ACGGAATGCTGTCAAGTGATTCCC -ACGGAATGCTGTCAAGTGTTCTCG -ACGGAATGCTGTCAAGTGTAGACG -ACGGAATGCTGTCAAGTGGTAACG -ACGGAATGCTGTCAAGTGACTTCG -ACGGAATGCTGTCAAGTGTACGCA -ACGGAATGCTGTCAAGTGCTTGCA -ACGGAATGCTGTCAAGTGCGAACA -ACGGAATGCTGTCAAGTGCAGTCA -ACGGAATGCTGTCAAGTGGATCCA -ACGGAATGCTGTCAAGTGACGACA -ACGGAATGCTGTCAAGTGAGCTCA -ACGGAATGCTGTCAAGTGTCACGT -ACGGAATGCTGTCAAGTGCGTAGT -ACGGAATGCTGTCAAGTGGTCAGT -ACGGAATGCTGTCAAGTGGAAGGT -ACGGAATGCTGTCAAGTGAACCGT -ACGGAATGCTGTCAAGTGTTGTGC -ACGGAATGCTGTCAAGTGCTAAGC -ACGGAATGCTGTCAAGTGACTAGC -ACGGAATGCTGTCAAGTGAGATGC -ACGGAATGCTGTCAAGTGTGAAGG -ACGGAATGCTGTCAAGTGCAATGG -ACGGAATGCTGTCAAGTGATGAGG -ACGGAATGCTGTCAAGTGAATGGG -ACGGAATGCTGTCAAGTGTCCTGA -ACGGAATGCTGTCAAGTGTAGCGA -ACGGAATGCTGTCAAGTGCACAGA -ACGGAATGCTGTCAAGTGGCAAGA -ACGGAATGCTGTCAAGTGGGTTGA -ACGGAATGCTGTCAAGTGTCCGAT -ACGGAATGCTGTCAAGTGTGGCAT -ACGGAATGCTGTCAAGTGCGAGAT -ACGGAATGCTGTCAAGTGTACCAC -ACGGAATGCTGTCAAGTGCAGAAC -ACGGAATGCTGTCAAGTGGTCTAC -ACGGAATGCTGTCAAGTGACGTAC -ACGGAATGCTGTCAAGTGAGTGAC -ACGGAATGCTGTCAAGTGCTGTAG -ACGGAATGCTGTCAAGTGCCTAAG -ACGGAATGCTGTCAAGTGGTTCAG -ACGGAATGCTGTCAAGTGGCATAG -ACGGAATGCTGTCAAGTGGACAAG -ACGGAATGCTGTCAAGTGAAGCAG -ACGGAATGCTGTCAAGTGCGTCAA -ACGGAATGCTGTCAAGTGGCTGAA -ACGGAATGCTGTCAAGTGAGTACG -ACGGAATGCTGTCAAGTGATCCGA -ACGGAATGCTGTCAAGTGATGGGA -ACGGAATGCTGTCAAGTGGTGCAA -ACGGAATGCTGTCAAGTGGAGGAA -ACGGAATGCTGTCAAGTGCAGGTA -ACGGAATGCTGTCAAGTGGACTCT -ACGGAATGCTGTCAAGTGAGTCCT -ACGGAATGCTGTCAAGTGTAAGCC -ACGGAATGCTGTCAAGTGATAGCC -ACGGAATGCTGTCAAGTGTAACCG -ACGGAATGCTGTCAAGTGATGCCA -ACGGAATGCTGTGAAGAGGGAAAC -ACGGAATGCTGTGAAGAGAACACC -ACGGAATGCTGTGAAGAGATCGAG -ACGGAATGCTGTGAAGAGCTCCTT -ACGGAATGCTGTGAAGAGCCTGTT -ACGGAATGCTGTGAAGAGCGGTTT -ACGGAATGCTGTGAAGAGGTGGTT -ACGGAATGCTGTGAAGAGGCCTTT -ACGGAATGCTGTGAAGAGGGTCTT -ACGGAATGCTGTGAAGAGACGCTT -ACGGAATGCTGTGAAGAGAGCGTT -ACGGAATGCTGTGAAGAGTTCGTC -ACGGAATGCTGTGAAGAGTCTCTC -ACGGAATGCTGTGAAGAGTGGATC -ACGGAATGCTGTGAAGAGCACTTC -ACGGAATGCTGTGAAGAGGTACTC -ACGGAATGCTGTGAAGAGGATGTC -ACGGAATGCTGTGAAGAGACAGTC -ACGGAATGCTGTGAAGAGTTGCTG -ACGGAATGCTGTGAAGAGTCCATG -ACGGAATGCTGTGAAGAGTGTGTG -ACGGAATGCTGTGAAGAGCTAGTG -ACGGAATGCTGTGAAGAGCATCTG -ACGGAATGCTGTGAAGAGGAGTTG -ACGGAATGCTGTGAAGAGAGACTG -ACGGAATGCTGTGAAGAGTCGGTA -ACGGAATGCTGTGAAGAGTGCCTA -ACGGAATGCTGTGAAGAGCCACTA -ACGGAATGCTGTGAAGAGGGAGTA -ACGGAATGCTGTGAAGAGTCGTCT -ACGGAATGCTGTGAAGAGTGCACT -ACGGAATGCTGTGAAGAGCTGACT -ACGGAATGCTGTGAAGAGCAACCT -ACGGAATGCTGTGAAGAGGCTACT -ACGGAATGCTGTGAAGAGGGATCT -ACGGAATGCTGTGAAGAGAAGGCT -ACGGAATGCTGTGAAGAGTCAACC -ACGGAATGCTGTGAAGAGTGTTCC -ACGGAATGCTGTGAAGAGATTCCC -ACGGAATGCTGTGAAGAGTTCTCG -ACGGAATGCTGTGAAGAGTAGACG -ACGGAATGCTGTGAAGAGGTAACG -ACGGAATGCTGTGAAGAGACTTCG -ACGGAATGCTGTGAAGAGTACGCA -ACGGAATGCTGTGAAGAGCTTGCA -ACGGAATGCTGTGAAGAGCGAACA -ACGGAATGCTGTGAAGAGCAGTCA -ACGGAATGCTGTGAAGAGGATCCA -ACGGAATGCTGTGAAGAGACGACA -ACGGAATGCTGTGAAGAGAGCTCA -ACGGAATGCTGTGAAGAGTCACGT -ACGGAATGCTGTGAAGAGCGTAGT -ACGGAATGCTGTGAAGAGGTCAGT -ACGGAATGCTGTGAAGAGGAAGGT -ACGGAATGCTGTGAAGAGAACCGT -ACGGAATGCTGTGAAGAGTTGTGC -ACGGAATGCTGTGAAGAGCTAAGC -ACGGAATGCTGTGAAGAGACTAGC -ACGGAATGCTGTGAAGAGAGATGC -ACGGAATGCTGTGAAGAGTGAAGG -ACGGAATGCTGTGAAGAGCAATGG -ACGGAATGCTGTGAAGAGATGAGG -ACGGAATGCTGTGAAGAGAATGGG -ACGGAATGCTGTGAAGAGTCCTGA -ACGGAATGCTGTGAAGAGTAGCGA -ACGGAATGCTGTGAAGAGCACAGA -ACGGAATGCTGTGAAGAGGCAAGA -ACGGAATGCTGTGAAGAGGGTTGA -ACGGAATGCTGTGAAGAGTCCGAT -ACGGAATGCTGTGAAGAGTGGCAT -ACGGAATGCTGTGAAGAGCGAGAT -ACGGAATGCTGTGAAGAGTACCAC -ACGGAATGCTGTGAAGAGCAGAAC -ACGGAATGCTGTGAAGAGGTCTAC -ACGGAATGCTGTGAAGAGACGTAC -ACGGAATGCTGTGAAGAGAGTGAC -ACGGAATGCTGTGAAGAGCTGTAG -ACGGAATGCTGTGAAGAGCCTAAG -ACGGAATGCTGTGAAGAGGTTCAG -ACGGAATGCTGTGAAGAGGCATAG -ACGGAATGCTGTGAAGAGGACAAG -ACGGAATGCTGTGAAGAGAAGCAG -ACGGAATGCTGTGAAGAGCGTCAA -ACGGAATGCTGTGAAGAGGCTGAA -ACGGAATGCTGTGAAGAGAGTACG -ACGGAATGCTGTGAAGAGATCCGA -ACGGAATGCTGTGAAGAGATGGGA -ACGGAATGCTGTGAAGAGGTGCAA -ACGGAATGCTGTGAAGAGGAGGAA -ACGGAATGCTGTGAAGAGCAGGTA -ACGGAATGCTGTGAAGAGGACTCT -ACGGAATGCTGTGAAGAGAGTCCT -ACGGAATGCTGTGAAGAGTAAGCC -ACGGAATGCTGTGAAGAGATAGCC -ACGGAATGCTGTGAAGAGTAACCG -ACGGAATGCTGTGAAGAGATGCCA -ACGGAATGCTGTGTACAGGGAAAC -ACGGAATGCTGTGTACAGAACACC -ACGGAATGCTGTGTACAGATCGAG -ACGGAATGCTGTGTACAGCTCCTT -ACGGAATGCTGTGTACAGCCTGTT -ACGGAATGCTGTGTACAGCGGTTT -ACGGAATGCTGTGTACAGGTGGTT -ACGGAATGCTGTGTACAGGCCTTT -ACGGAATGCTGTGTACAGGGTCTT -ACGGAATGCTGTGTACAGACGCTT -ACGGAATGCTGTGTACAGAGCGTT -ACGGAATGCTGTGTACAGTTCGTC -ACGGAATGCTGTGTACAGTCTCTC -ACGGAATGCTGTGTACAGTGGATC -ACGGAATGCTGTGTACAGCACTTC -ACGGAATGCTGTGTACAGGTACTC -ACGGAATGCTGTGTACAGGATGTC -ACGGAATGCTGTGTACAGACAGTC -ACGGAATGCTGTGTACAGTTGCTG -ACGGAATGCTGTGTACAGTCCATG -ACGGAATGCTGTGTACAGTGTGTG -ACGGAATGCTGTGTACAGCTAGTG -ACGGAATGCTGTGTACAGCATCTG -ACGGAATGCTGTGTACAGGAGTTG -ACGGAATGCTGTGTACAGAGACTG -ACGGAATGCTGTGTACAGTCGGTA -ACGGAATGCTGTGTACAGTGCCTA -ACGGAATGCTGTGTACAGCCACTA -ACGGAATGCTGTGTACAGGGAGTA -ACGGAATGCTGTGTACAGTCGTCT -ACGGAATGCTGTGTACAGTGCACT -ACGGAATGCTGTGTACAGCTGACT -ACGGAATGCTGTGTACAGCAACCT -ACGGAATGCTGTGTACAGGCTACT -ACGGAATGCTGTGTACAGGGATCT -ACGGAATGCTGTGTACAGAAGGCT -ACGGAATGCTGTGTACAGTCAACC -ACGGAATGCTGTGTACAGTGTTCC -ACGGAATGCTGTGTACAGATTCCC -ACGGAATGCTGTGTACAGTTCTCG -ACGGAATGCTGTGTACAGTAGACG -ACGGAATGCTGTGTACAGGTAACG -ACGGAATGCTGTGTACAGACTTCG -ACGGAATGCTGTGTACAGTACGCA -ACGGAATGCTGTGTACAGCTTGCA -ACGGAATGCTGTGTACAGCGAACA -ACGGAATGCTGTGTACAGCAGTCA -ACGGAATGCTGTGTACAGGATCCA -ACGGAATGCTGTGTACAGACGACA -ACGGAATGCTGTGTACAGAGCTCA -ACGGAATGCTGTGTACAGTCACGT -ACGGAATGCTGTGTACAGCGTAGT -ACGGAATGCTGTGTACAGGTCAGT -ACGGAATGCTGTGTACAGGAAGGT -ACGGAATGCTGTGTACAGAACCGT -ACGGAATGCTGTGTACAGTTGTGC -ACGGAATGCTGTGTACAGCTAAGC -ACGGAATGCTGTGTACAGACTAGC -ACGGAATGCTGTGTACAGAGATGC -ACGGAATGCTGTGTACAGTGAAGG -ACGGAATGCTGTGTACAGCAATGG -ACGGAATGCTGTGTACAGATGAGG -ACGGAATGCTGTGTACAGAATGGG -ACGGAATGCTGTGTACAGTCCTGA -ACGGAATGCTGTGTACAGTAGCGA -ACGGAATGCTGTGTACAGCACAGA -ACGGAATGCTGTGTACAGGCAAGA -ACGGAATGCTGTGTACAGGGTTGA -ACGGAATGCTGTGTACAGTCCGAT -ACGGAATGCTGTGTACAGTGGCAT -ACGGAATGCTGTGTACAGCGAGAT -ACGGAATGCTGTGTACAGTACCAC -ACGGAATGCTGTGTACAGCAGAAC -ACGGAATGCTGTGTACAGGTCTAC -ACGGAATGCTGTGTACAGACGTAC -ACGGAATGCTGTGTACAGAGTGAC -ACGGAATGCTGTGTACAGCTGTAG -ACGGAATGCTGTGTACAGCCTAAG -ACGGAATGCTGTGTACAGGTTCAG -ACGGAATGCTGTGTACAGGCATAG -ACGGAATGCTGTGTACAGGACAAG -ACGGAATGCTGTGTACAGAAGCAG -ACGGAATGCTGTGTACAGCGTCAA -ACGGAATGCTGTGTACAGGCTGAA -ACGGAATGCTGTGTACAGAGTACG -ACGGAATGCTGTGTACAGATCCGA -ACGGAATGCTGTGTACAGATGGGA -ACGGAATGCTGTGTACAGGTGCAA -ACGGAATGCTGTGTACAGGAGGAA -ACGGAATGCTGTGTACAGCAGGTA -ACGGAATGCTGTGTACAGGACTCT -ACGGAATGCTGTGTACAGAGTCCT -ACGGAATGCTGTGTACAGTAAGCC -ACGGAATGCTGTGTACAGATAGCC -ACGGAATGCTGTGTACAGTAACCG -ACGGAATGCTGTGTACAGATGCCA -ACGGAATGCTGTTCTGACGGAAAC -ACGGAATGCTGTTCTGACAACACC -ACGGAATGCTGTTCTGACATCGAG -ACGGAATGCTGTTCTGACCTCCTT -ACGGAATGCTGTTCTGACCCTGTT -ACGGAATGCTGTTCTGACCGGTTT -ACGGAATGCTGTTCTGACGTGGTT -ACGGAATGCTGTTCTGACGCCTTT -ACGGAATGCTGTTCTGACGGTCTT -ACGGAATGCTGTTCTGACACGCTT -ACGGAATGCTGTTCTGACAGCGTT -ACGGAATGCTGTTCTGACTTCGTC -ACGGAATGCTGTTCTGACTCTCTC -ACGGAATGCTGTTCTGACTGGATC -ACGGAATGCTGTTCTGACCACTTC -ACGGAATGCTGTTCTGACGTACTC -ACGGAATGCTGTTCTGACGATGTC -ACGGAATGCTGTTCTGACACAGTC -ACGGAATGCTGTTCTGACTTGCTG -ACGGAATGCTGTTCTGACTCCATG -ACGGAATGCTGTTCTGACTGTGTG -ACGGAATGCTGTTCTGACCTAGTG -ACGGAATGCTGTTCTGACCATCTG -ACGGAATGCTGTTCTGACGAGTTG -ACGGAATGCTGTTCTGACAGACTG -ACGGAATGCTGTTCTGACTCGGTA -ACGGAATGCTGTTCTGACTGCCTA -ACGGAATGCTGTTCTGACCCACTA -ACGGAATGCTGTTCTGACGGAGTA -ACGGAATGCTGTTCTGACTCGTCT -ACGGAATGCTGTTCTGACTGCACT -ACGGAATGCTGTTCTGACCTGACT -ACGGAATGCTGTTCTGACCAACCT -ACGGAATGCTGTTCTGACGCTACT -ACGGAATGCTGTTCTGACGGATCT -ACGGAATGCTGTTCTGACAAGGCT -ACGGAATGCTGTTCTGACTCAACC -ACGGAATGCTGTTCTGACTGTTCC -ACGGAATGCTGTTCTGACATTCCC -ACGGAATGCTGTTCTGACTTCTCG -ACGGAATGCTGTTCTGACTAGACG -ACGGAATGCTGTTCTGACGTAACG -ACGGAATGCTGTTCTGACACTTCG -ACGGAATGCTGTTCTGACTACGCA -ACGGAATGCTGTTCTGACCTTGCA -ACGGAATGCTGTTCTGACCGAACA -ACGGAATGCTGTTCTGACCAGTCA -ACGGAATGCTGTTCTGACGATCCA -ACGGAATGCTGTTCTGACACGACA -ACGGAATGCTGTTCTGACAGCTCA -ACGGAATGCTGTTCTGACTCACGT -ACGGAATGCTGTTCTGACCGTAGT -ACGGAATGCTGTTCTGACGTCAGT -ACGGAATGCTGTTCTGACGAAGGT -ACGGAATGCTGTTCTGACAACCGT -ACGGAATGCTGTTCTGACTTGTGC -ACGGAATGCTGTTCTGACCTAAGC -ACGGAATGCTGTTCTGACACTAGC -ACGGAATGCTGTTCTGACAGATGC -ACGGAATGCTGTTCTGACTGAAGG -ACGGAATGCTGTTCTGACCAATGG -ACGGAATGCTGTTCTGACATGAGG -ACGGAATGCTGTTCTGACAATGGG -ACGGAATGCTGTTCTGACTCCTGA -ACGGAATGCTGTTCTGACTAGCGA -ACGGAATGCTGTTCTGACCACAGA -ACGGAATGCTGTTCTGACGCAAGA -ACGGAATGCTGTTCTGACGGTTGA -ACGGAATGCTGTTCTGACTCCGAT -ACGGAATGCTGTTCTGACTGGCAT -ACGGAATGCTGTTCTGACCGAGAT -ACGGAATGCTGTTCTGACTACCAC -ACGGAATGCTGTTCTGACCAGAAC -ACGGAATGCTGTTCTGACGTCTAC -ACGGAATGCTGTTCTGACACGTAC -ACGGAATGCTGTTCTGACAGTGAC -ACGGAATGCTGTTCTGACCTGTAG -ACGGAATGCTGTTCTGACCCTAAG -ACGGAATGCTGTTCTGACGTTCAG -ACGGAATGCTGTTCTGACGCATAG -ACGGAATGCTGTTCTGACGACAAG -ACGGAATGCTGTTCTGACAAGCAG -ACGGAATGCTGTTCTGACCGTCAA -ACGGAATGCTGTTCTGACGCTGAA -ACGGAATGCTGTTCTGACAGTACG -ACGGAATGCTGTTCTGACATCCGA -ACGGAATGCTGTTCTGACATGGGA -ACGGAATGCTGTTCTGACGTGCAA -ACGGAATGCTGTTCTGACGAGGAA -ACGGAATGCTGTTCTGACCAGGTA -ACGGAATGCTGTTCTGACGACTCT -ACGGAATGCTGTTCTGACAGTCCT -ACGGAATGCTGTTCTGACTAAGCC -ACGGAATGCTGTTCTGACATAGCC -ACGGAATGCTGTTCTGACTAACCG -ACGGAATGCTGTTCTGACATGCCA -ACGGAATGCTGTCCTAGTGGAAAC -ACGGAATGCTGTCCTAGTAACACC -ACGGAATGCTGTCCTAGTATCGAG -ACGGAATGCTGTCCTAGTCTCCTT -ACGGAATGCTGTCCTAGTCCTGTT -ACGGAATGCTGTCCTAGTCGGTTT -ACGGAATGCTGTCCTAGTGTGGTT -ACGGAATGCTGTCCTAGTGCCTTT -ACGGAATGCTGTCCTAGTGGTCTT -ACGGAATGCTGTCCTAGTACGCTT -ACGGAATGCTGTCCTAGTAGCGTT -ACGGAATGCTGTCCTAGTTTCGTC -ACGGAATGCTGTCCTAGTTCTCTC -ACGGAATGCTGTCCTAGTTGGATC -ACGGAATGCTGTCCTAGTCACTTC -ACGGAATGCTGTCCTAGTGTACTC -ACGGAATGCTGTCCTAGTGATGTC -ACGGAATGCTGTCCTAGTACAGTC -ACGGAATGCTGTCCTAGTTTGCTG -ACGGAATGCTGTCCTAGTTCCATG -ACGGAATGCTGTCCTAGTTGTGTG -ACGGAATGCTGTCCTAGTCTAGTG -ACGGAATGCTGTCCTAGTCATCTG -ACGGAATGCTGTCCTAGTGAGTTG -ACGGAATGCTGTCCTAGTAGACTG -ACGGAATGCTGTCCTAGTTCGGTA -ACGGAATGCTGTCCTAGTTGCCTA -ACGGAATGCTGTCCTAGTCCACTA -ACGGAATGCTGTCCTAGTGGAGTA -ACGGAATGCTGTCCTAGTTCGTCT -ACGGAATGCTGTCCTAGTTGCACT -ACGGAATGCTGTCCTAGTCTGACT -ACGGAATGCTGTCCTAGTCAACCT -ACGGAATGCTGTCCTAGTGCTACT -ACGGAATGCTGTCCTAGTGGATCT -ACGGAATGCTGTCCTAGTAAGGCT -ACGGAATGCTGTCCTAGTTCAACC -ACGGAATGCTGTCCTAGTTGTTCC -ACGGAATGCTGTCCTAGTATTCCC -ACGGAATGCTGTCCTAGTTTCTCG -ACGGAATGCTGTCCTAGTTAGACG -ACGGAATGCTGTCCTAGTGTAACG -ACGGAATGCTGTCCTAGTACTTCG -ACGGAATGCTGTCCTAGTTACGCA -ACGGAATGCTGTCCTAGTCTTGCA -ACGGAATGCTGTCCTAGTCGAACA -ACGGAATGCTGTCCTAGTCAGTCA -ACGGAATGCTGTCCTAGTGATCCA -ACGGAATGCTGTCCTAGTACGACA -ACGGAATGCTGTCCTAGTAGCTCA -ACGGAATGCTGTCCTAGTTCACGT -ACGGAATGCTGTCCTAGTCGTAGT -ACGGAATGCTGTCCTAGTGTCAGT -ACGGAATGCTGTCCTAGTGAAGGT -ACGGAATGCTGTCCTAGTAACCGT -ACGGAATGCTGTCCTAGTTTGTGC -ACGGAATGCTGTCCTAGTCTAAGC -ACGGAATGCTGTCCTAGTACTAGC -ACGGAATGCTGTCCTAGTAGATGC -ACGGAATGCTGTCCTAGTTGAAGG -ACGGAATGCTGTCCTAGTCAATGG -ACGGAATGCTGTCCTAGTATGAGG -ACGGAATGCTGTCCTAGTAATGGG -ACGGAATGCTGTCCTAGTTCCTGA -ACGGAATGCTGTCCTAGTTAGCGA -ACGGAATGCTGTCCTAGTCACAGA -ACGGAATGCTGTCCTAGTGCAAGA -ACGGAATGCTGTCCTAGTGGTTGA -ACGGAATGCTGTCCTAGTTCCGAT -ACGGAATGCTGTCCTAGTTGGCAT -ACGGAATGCTGTCCTAGTCGAGAT -ACGGAATGCTGTCCTAGTTACCAC -ACGGAATGCTGTCCTAGTCAGAAC -ACGGAATGCTGTCCTAGTGTCTAC -ACGGAATGCTGTCCTAGTACGTAC -ACGGAATGCTGTCCTAGTAGTGAC -ACGGAATGCTGTCCTAGTCTGTAG -ACGGAATGCTGTCCTAGTCCTAAG -ACGGAATGCTGTCCTAGTGTTCAG -ACGGAATGCTGTCCTAGTGCATAG -ACGGAATGCTGTCCTAGTGACAAG -ACGGAATGCTGTCCTAGTAAGCAG -ACGGAATGCTGTCCTAGTCGTCAA -ACGGAATGCTGTCCTAGTGCTGAA -ACGGAATGCTGTCCTAGTAGTACG -ACGGAATGCTGTCCTAGTATCCGA -ACGGAATGCTGTCCTAGTATGGGA -ACGGAATGCTGTCCTAGTGTGCAA -ACGGAATGCTGTCCTAGTGAGGAA -ACGGAATGCTGTCCTAGTCAGGTA -ACGGAATGCTGTCCTAGTGACTCT -ACGGAATGCTGTCCTAGTAGTCCT -ACGGAATGCTGTCCTAGTTAAGCC -ACGGAATGCTGTCCTAGTATAGCC -ACGGAATGCTGTCCTAGTTAACCG -ACGGAATGCTGTCCTAGTATGCCA -ACGGAATGCTGTGCCTAAGGAAAC -ACGGAATGCTGTGCCTAAAACACC -ACGGAATGCTGTGCCTAAATCGAG -ACGGAATGCTGTGCCTAACTCCTT -ACGGAATGCTGTGCCTAACCTGTT -ACGGAATGCTGTGCCTAACGGTTT -ACGGAATGCTGTGCCTAAGTGGTT -ACGGAATGCTGTGCCTAAGCCTTT -ACGGAATGCTGTGCCTAAGGTCTT -ACGGAATGCTGTGCCTAAACGCTT -ACGGAATGCTGTGCCTAAAGCGTT -ACGGAATGCTGTGCCTAATTCGTC -ACGGAATGCTGTGCCTAATCTCTC -ACGGAATGCTGTGCCTAATGGATC -ACGGAATGCTGTGCCTAACACTTC -ACGGAATGCTGTGCCTAAGTACTC -ACGGAATGCTGTGCCTAAGATGTC -ACGGAATGCTGTGCCTAAACAGTC -ACGGAATGCTGTGCCTAATTGCTG -ACGGAATGCTGTGCCTAATCCATG -ACGGAATGCTGTGCCTAATGTGTG -ACGGAATGCTGTGCCTAACTAGTG -ACGGAATGCTGTGCCTAACATCTG -ACGGAATGCTGTGCCTAAGAGTTG -ACGGAATGCTGTGCCTAAAGACTG -ACGGAATGCTGTGCCTAATCGGTA -ACGGAATGCTGTGCCTAATGCCTA -ACGGAATGCTGTGCCTAACCACTA -ACGGAATGCTGTGCCTAAGGAGTA -ACGGAATGCTGTGCCTAATCGTCT -ACGGAATGCTGTGCCTAATGCACT -ACGGAATGCTGTGCCTAACTGACT -ACGGAATGCTGTGCCTAACAACCT -ACGGAATGCTGTGCCTAAGCTACT -ACGGAATGCTGTGCCTAAGGATCT -ACGGAATGCTGTGCCTAAAAGGCT -ACGGAATGCTGTGCCTAATCAACC -ACGGAATGCTGTGCCTAATGTTCC -ACGGAATGCTGTGCCTAAATTCCC -ACGGAATGCTGTGCCTAATTCTCG -ACGGAATGCTGTGCCTAATAGACG -ACGGAATGCTGTGCCTAAGTAACG -ACGGAATGCTGTGCCTAAACTTCG -ACGGAATGCTGTGCCTAATACGCA -ACGGAATGCTGTGCCTAACTTGCA -ACGGAATGCTGTGCCTAACGAACA -ACGGAATGCTGTGCCTAACAGTCA -ACGGAATGCTGTGCCTAAGATCCA -ACGGAATGCTGTGCCTAAACGACA -ACGGAATGCTGTGCCTAAAGCTCA -ACGGAATGCTGTGCCTAATCACGT -ACGGAATGCTGTGCCTAACGTAGT -ACGGAATGCTGTGCCTAAGTCAGT -ACGGAATGCTGTGCCTAAGAAGGT -ACGGAATGCTGTGCCTAAAACCGT -ACGGAATGCTGTGCCTAATTGTGC -ACGGAATGCTGTGCCTAACTAAGC -ACGGAATGCTGTGCCTAAACTAGC -ACGGAATGCTGTGCCTAAAGATGC -ACGGAATGCTGTGCCTAATGAAGG -ACGGAATGCTGTGCCTAACAATGG -ACGGAATGCTGTGCCTAAATGAGG -ACGGAATGCTGTGCCTAAAATGGG -ACGGAATGCTGTGCCTAATCCTGA -ACGGAATGCTGTGCCTAATAGCGA -ACGGAATGCTGTGCCTAACACAGA -ACGGAATGCTGTGCCTAAGCAAGA -ACGGAATGCTGTGCCTAAGGTTGA -ACGGAATGCTGTGCCTAATCCGAT -ACGGAATGCTGTGCCTAATGGCAT -ACGGAATGCTGTGCCTAACGAGAT -ACGGAATGCTGTGCCTAATACCAC -ACGGAATGCTGTGCCTAACAGAAC -ACGGAATGCTGTGCCTAAGTCTAC -ACGGAATGCTGTGCCTAAACGTAC -ACGGAATGCTGTGCCTAAAGTGAC -ACGGAATGCTGTGCCTAACTGTAG -ACGGAATGCTGTGCCTAACCTAAG -ACGGAATGCTGTGCCTAAGTTCAG -ACGGAATGCTGTGCCTAAGCATAG -ACGGAATGCTGTGCCTAAGACAAG -ACGGAATGCTGTGCCTAAAAGCAG -ACGGAATGCTGTGCCTAACGTCAA -ACGGAATGCTGTGCCTAAGCTGAA -ACGGAATGCTGTGCCTAAAGTACG -ACGGAATGCTGTGCCTAAATCCGA -ACGGAATGCTGTGCCTAAATGGGA -ACGGAATGCTGTGCCTAAGTGCAA -ACGGAATGCTGTGCCTAAGAGGAA -ACGGAATGCTGTGCCTAACAGGTA -ACGGAATGCTGTGCCTAAGACTCT -ACGGAATGCTGTGCCTAAAGTCCT -ACGGAATGCTGTGCCTAATAAGCC -ACGGAATGCTGTGCCTAAATAGCC -ACGGAATGCTGTGCCTAATAACCG -ACGGAATGCTGTGCCTAAATGCCA -ACGGAATGCTGTGCCATAGGAAAC -ACGGAATGCTGTGCCATAAACACC -ACGGAATGCTGTGCCATAATCGAG -ACGGAATGCTGTGCCATACTCCTT -ACGGAATGCTGTGCCATACCTGTT -ACGGAATGCTGTGCCATACGGTTT -ACGGAATGCTGTGCCATAGTGGTT -ACGGAATGCTGTGCCATAGCCTTT -ACGGAATGCTGTGCCATAGGTCTT -ACGGAATGCTGTGCCATAACGCTT -ACGGAATGCTGTGCCATAAGCGTT -ACGGAATGCTGTGCCATATTCGTC -ACGGAATGCTGTGCCATATCTCTC -ACGGAATGCTGTGCCATATGGATC -ACGGAATGCTGTGCCATACACTTC -ACGGAATGCTGTGCCATAGTACTC -ACGGAATGCTGTGCCATAGATGTC -ACGGAATGCTGTGCCATAACAGTC -ACGGAATGCTGTGCCATATTGCTG -ACGGAATGCTGTGCCATATCCATG -ACGGAATGCTGTGCCATATGTGTG -ACGGAATGCTGTGCCATACTAGTG -ACGGAATGCTGTGCCATACATCTG -ACGGAATGCTGTGCCATAGAGTTG -ACGGAATGCTGTGCCATAAGACTG -ACGGAATGCTGTGCCATATCGGTA -ACGGAATGCTGTGCCATATGCCTA -ACGGAATGCTGTGCCATACCACTA -ACGGAATGCTGTGCCATAGGAGTA -ACGGAATGCTGTGCCATATCGTCT -ACGGAATGCTGTGCCATATGCACT -ACGGAATGCTGTGCCATACTGACT -ACGGAATGCTGTGCCATACAACCT -ACGGAATGCTGTGCCATAGCTACT -ACGGAATGCTGTGCCATAGGATCT -ACGGAATGCTGTGCCATAAAGGCT -ACGGAATGCTGTGCCATATCAACC -ACGGAATGCTGTGCCATATGTTCC -ACGGAATGCTGTGCCATAATTCCC -ACGGAATGCTGTGCCATATTCTCG -ACGGAATGCTGTGCCATATAGACG -ACGGAATGCTGTGCCATAGTAACG -ACGGAATGCTGTGCCATAACTTCG -ACGGAATGCTGTGCCATATACGCA -ACGGAATGCTGTGCCATACTTGCA -ACGGAATGCTGTGCCATACGAACA -ACGGAATGCTGTGCCATACAGTCA -ACGGAATGCTGTGCCATAGATCCA -ACGGAATGCTGTGCCATAACGACA -ACGGAATGCTGTGCCATAAGCTCA -ACGGAATGCTGTGCCATATCACGT -ACGGAATGCTGTGCCATACGTAGT -ACGGAATGCTGTGCCATAGTCAGT -ACGGAATGCTGTGCCATAGAAGGT -ACGGAATGCTGTGCCATAAACCGT -ACGGAATGCTGTGCCATATTGTGC -ACGGAATGCTGTGCCATACTAAGC -ACGGAATGCTGTGCCATAACTAGC -ACGGAATGCTGTGCCATAAGATGC -ACGGAATGCTGTGCCATATGAAGG -ACGGAATGCTGTGCCATACAATGG -ACGGAATGCTGTGCCATAATGAGG -ACGGAATGCTGTGCCATAAATGGG -ACGGAATGCTGTGCCATATCCTGA -ACGGAATGCTGTGCCATATAGCGA -ACGGAATGCTGTGCCATACACAGA -ACGGAATGCTGTGCCATAGCAAGA -ACGGAATGCTGTGCCATAGGTTGA -ACGGAATGCTGTGCCATATCCGAT -ACGGAATGCTGTGCCATATGGCAT -ACGGAATGCTGTGCCATACGAGAT -ACGGAATGCTGTGCCATATACCAC -ACGGAATGCTGTGCCATACAGAAC -ACGGAATGCTGTGCCATAGTCTAC -ACGGAATGCTGTGCCATAACGTAC -ACGGAATGCTGTGCCATAAGTGAC -ACGGAATGCTGTGCCATACTGTAG -ACGGAATGCTGTGCCATACCTAAG -ACGGAATGCTGTGCCATAGTTCAG -ACGGAATGCTGTGCCATAGCATAG -ACGGAATGCTGTGCCATAGACAAG -ACGGAATGCTGTGCCATAAAGCAG -ACGGAATGCTGTGCCATACGTCAA -ACGGAATGCTGTGCCATAGCTGAA -ACGGAATGCTGTGCCATAAGTACG -ACGGAATGCTGTGCCATAATCCGA -ACGGAATGCTGTGCCATAATGGGA -ACGGAATGCTGTGCCATAGTGCAA -ACGGAATGCTGTGCCATAGAGGAA -ACGGAATGCTGTGCCATACAGGTA -ACGGAATGCTGTGCCATAGACTCT -ACGGAATGCTGTGCCATAAGTCCT -ACGGAATGCTGTGCCATATAAGCC -ACGGAATGCTGTGCCATAATAGCC -ACGGAATGCTGTGCCATATAACCG -ACGGAATGCTGTGCCATAATGCCA -ACGGAATGCTGTCCGTAAGGAAAC -ACGGAATGCTGTCCGTAAAACACC -ACGGAATGCTGTCCGTAAATCGAG -ACGGAATGCTGTCCGTAACTCCTT -ACGGAATGCTGTCCGTAACCTGTT -ACGGAATGCTGTCCGTAACGGTTT -ACGGAATGCTGTCCGTAAGTGGTT -ACGGAATGCTGTCCGTAAGCCTTT -ACGGAATGCTGTCCGTAAGGTCTT -ACGGAATGCTGTCCGTAAACGCTT -ACGGAATGCTGTCCGTAAAGCGTT -ACGGAATGCTGTCCGTAATTCGTC -ACGGAATGCTGTCCGTAATCTCTC -ACGGAATGCTGTCCGTAATGGATC -ACGGAATGCTGTCCGTAACACTTC -ACGGAATGCTGTCCGTAAGTACTC -ACGGAATGCTGTCCGTAAGATGTC -ACGGAATGCTGTCCGTAAACAGTC -ACGGAATGCTGTCCGTAATTGCTG -ACGGAATGCTGTCCGTAATCCATG -ACGGAATGCTGTCCGTAATGTGTG -ACGGAATGCTGTCCGTAACTAGTG -ACGGAATGCTGTCCGTAACATCTG -ACGGAATGCTGTCCGTAAGAGTTG -ACGGAATGCTGTCCGTAAAGACTG -ACGGAATGCTGTCCGTAATCGGTA -ACGGAATGCTGTCCGTAATGCCTA -ACGGAATGCTGTCCGTAACCACTA -ACGGAATGCTGTCCGTAAGGAGTA -ACGGAATGCTGTCCGTAATCGTCT -ACGGAATGCTGTCCGTAATGCACT -ACGGAATGCTGTCCGTAACTGACT -ACGGAATGCTGTCCGTAACAACCT -ACGGAATGCTGTCCGTAAGCTACT -ACGGAATGCTGTCCGTAAGGATCT -ACGGAATGCTGTCCGTAAAAGGCT -ACGGAATGCTGTCCGTAATCAACC -ACGGAATGCTGTCCGTAATGTTCC -ACGGAATGCTGTCCGTAAATTCCC -ACGGAATGCTGTCCGTAATTCTCG -ACGGAATGCTGTCCGTAATAGACG -ACGGAATGCTGTCCGTAAGTAACG -ACGGAATGCTGTCCGTAAACTTCG -ACGGAATGCTGTCCGTAATACGCA -ACGGAATGCTGTCCGTAACTTGCA -ACGGAATGCTGTCCGTAACGAACA -ACGGAATGCTGTCCGTAACAGTCA -ACGGAATGCTGTCCGTAAGATCCA -ACGGAATGCTGTCCGTAAACGACA -ACGGAATGCTGTCCGTAAAGCTCA -ACGGAATGCTGTCCGTAATCACGT -ACGGAATGCTGTCCGTAACGTAGT -ACGGAATGCTGTCCGTAAGTCAGT -ACGGAATGCTGTCCGTAAGAAGGT -ACGGAATGCTGTCCGTAAAACCGT -ACGGAATGCTGTCCGTAATTGTGC -ACGGAATGCTGTCCGTAACTAAGC -ACGGAATGCTGTCCGTAAACTAGC -ACGGAATGCTGTCCGTAAAGATGC -ACGGAATGCTGTCCGTAATGAAGG -ACGGAATGCTGTCCGTAACAATGG -ACGGAATGCTGTCCGTAAATGAGG -ACGGAATGCTGTCCGTAAAATGGG -ACGGAATGCTGTCCGTAATCCTGA -ACGGAATGCTGTCCGTAATAGCGA -ACGGAATGCTGTCCGTAACACAGA -ACGGAATGCTGTCCGTAAGCAAGA -ACGGAATGCTGTCCGTAAGGTTGA -ACGGAATGCTGTCCGTAATCCGAT -ACGGAATGCTGTCCGTAATGGCAT -ACGGAATGCTGTCCGTAACGAGAT -ACGGAATGCTGTCCGTAATACCAC -ACGGAATGCTGTCCGTAACAGAAC -ACGGAATGCTGTCCGTAAGTCTAC -ACGGAATGCTGTCCGTAAACGTAC -ACGGAATGCTGTCCGTAAAGTGAC -ACGGAATGCTGTCCGTAACTGTAG -ACGGAATGCTGTCCGTAACCTAAG -ACGGAATGCTGTCCGTAAGTTCAG -ACGGAATGCTGTCCGTAAGCATAG -ACGGAATGCTGTCCGTAAGACAAG -ACGGAATGCTGTCCGTAAAAGCAG -ACGGAATGCTGTCCGTAACGTCAA -ACGGAATGCTGTCCGTAAGCTGAA -ACGGAATGCTGTCCGTAAAGTACG -ACGGAATGCTGTCCGTAAATCCGA -ACGGAATGCTGTCCGTAAATGGGA -ACGGAATGCTGTCCGTAAGTGCAA -ACGGAATGCTGTCCGTAAGAGGAA -ACGGAATGCTGTCCGTAACAGGTA -ACGGAATGCTGTCCGTAAGACTCT -ACGGAATGCTGTCCGTAAAGTCCT -ACGGAATGCTGTCCGTAATAAGCC -ACGGAATGCTGTCCGTAAATAGCC -ACGGAATGCTGTCCGTAATAACCG -ACGGAATGCTGTCCGTAAATGCCA -ACGGAATGCTGTCCAATGGGAAAC -ACGGAATGCTGTCCAATGAACACC -ACGGAATGCTGTCCAATGATCGAG -ACGGAATGCTGTCCAATGCTCCTT -ACGGAATGCTGTCCAATGCCTGTT -ACGGAATGCTGTCCAATGCGGTTT -ACGGAATGCTGTCCAATGGTGGTT -ACGGAATGCTGTCCAATGGCCTTT -ACGGAATGCTGTCCAATGGGTCTT -ACGGAATGCTGTCCAATGACGCTT -ACGGAATGCTGTCCAATGAGCGTT -ACGGAATGCTGTCCAATGTTCGTC -ACGGAATGCTGTCCAATGTCTCTC -ACGGAATGCTGTCCAATGTGGATC -ACGGAATGCTGTCCAATGCACTTC -ACGGAATGCTGTCCAATGGTACTC -ACGGAATGCTGTCCAATGGATGTC -ACGGAATGCTGTCCAATGACAGTC -ACGGAATGCTGTCCAATGTTGCTG -ACGGAATGCTGTCCAATGTCCATG -ACGGAATGCTGTCCAATGTGTGTG -ACGGAATGCTGTCCAATGCTAGTG -ACGGAATGCTGTCCAATGCATCTG -ACGGAATGCTGTCCAATGGAGTTG -ACGGAATGCTGTCCAATGAGACTG -ACGGAATGCTGTCCAATGTCGGTA -ACGGAATGCTGTCCAATGTGCCTA -ACGGAATGCTGTCCAATGCCACTA -ACGGAATGCTGTCCAATGGGAGTA -ACGGAATGCTGTCCAATGTCGTCT -ACGGAATGCTGTCCAATGTGCACT -ACGGAATGCTGTCCAATGCTGACT -ACGGAATGCTGTCCAATGCAACCT -ACGGAATGCTGTCCAATGGCTACT -ACGGAATGCTGTCCAATGGGATCT -ACGGAATGCTGTCCAATGAAGGCT -ACGGAATGCTGTCCAATGTCAACC -ACGGAATGCTGTCCAATGTGTTCC -ACGGAATGCTGTCCAATGATTCCC -ACGGAATGCTGTCCAATGTTCTCG -ACGGAATGCTGTCCAATGTAGACG -ACGGAATGCTGTCCAATGGTAACG -ACGGAATGCTGTCCAATGACTTCG -ACGGAATGCTGTCCAATGTACGCA -ACGGAATGCTGTCCAATGCTTGCA -ACGGAATGCTGTCCAATGCGAACA -ACGGAATGCTGTCCAATGCAGTCA -ACGGAATGCTGTCCAATGGATCCA -ACGGAATGCTGTCCAATGACGACA -ACGGAATGCTGTCCAATGAGCTCA -ACGGAATGCTGTCCAATGTCACGT -ACGGAATGCTGTCCAATGCGTAGT -ACGGAATGCTGTCCAATGGTCAGT -ACGGAATGCTGTCCAATGGAAGGT -ACGGAATGCTGTCCAATGAACCGT -ACGGAATGCTGTCCAATGTTGTGC -ACGGAATGCTGTCCAATGCTAAGC -ACGGAATGCTGTCCAATGACTAGC -ACGGAATGCTGTCCAATGAGATGC -ACGGAATGCTGTCCAATGTGAAGG -ACGGAATGCTGTCCAATGCAATGG -ACGGAATGCTGTCCAATGATGAGG -ACGGAATGCTGTCCAATGAATGGG -ACGGAATGCTGTCCAATGTCCTGA -ACGGAATGCTGTCCAATGTAGCGA -ACGGAATGCTGTCCAATGCACAGA -ACGGAATGCTGTCCAATGGCAAGA -ACGGAATGCTGTCCAATGGGTTGA -ACGGAATGCTGTCCAATGTCCGAT -ACGGAATGCTGTCCAATGTGGCAT -ACGGAATGCTGTCCAATGCGAGAT -ACGGAATGCTGTCCAATGTACCAC -ACGGAATGCTGTCCAATGCAGAAC -ACGGAATGCTGTCCAATGGTCTAC -ACGGAATGCTGTCCAATGACGTAC -ACGGAATGCTGTCCAATGAGTGAC -ACGGAATGCTGTCCAATGCTGTAG -ACGGAATGCTGTCCAATGCCTAAG -ACGGAATGCTGTCCAATGGTTCAG -ACGGAATGCTGTCCAATGGCATAG -ACGGAATGCTGTCCAATGGACAAG -ACGGAATGCTGTCCAATGAAGCAG -ACGGAATGCTGTCCAATGCGTCAA -ACGGAATGCTGTCCAATGGCTGAA -ACGGAATGCTGTCCAATGAGTACG -ACGGAATGCTGTCCAATGATCCGA -ACGGAATGCTGTCCAATGATGGGA -ACGGAATGCTGTCCAATGGTGCAA -ACGGAATGCTGTCCAATGGAGGAA -ACGGAATGCTGTCCAATGCAGGTA -ACGGAATGCTGTCCAATGGACTCT -ACGGAATGCTGTCCAATGAGTCCT -ACGGAATGCTGTCCAATGTAAGCC -ACGGAATGCTGTCCAATGATAGCC -ACGGAATGCTGTCCAATGTAACCG -ACGGAATGCTGTCCAATGATGCCA -ACGGAACCATGTAACGGAGGAAAC -ACGGAACCATGTAACGGAAACACC -ACGGAACCATGTAACGGAATCGAG -ACGGAACCATGTAACGGACTCCTT -ACGGAACCATGTAACGGACCTGTT -ACGGAACCATGTAACGGACGGTTT -ACGGAACCATGTAACGGAGTGGTT -ACGGAACCATGTAACGGAGCCTTT -ACGGAACCATGTAACGGAGGTCTT -ACGGAACCATGTAACGGAACGCTT -ACGGAACCATGTAACGGAAGCGTT -ACGGAACCATGTAACGGATTCGTC -ACGGAACCATGTAACGGATCTCTC -ACGGAACCATGTAACGGATGGATC -ACGGAACCATGTAACGGACACTTC -ACGGAACCATGTAACGGAGTACTC -ACGGAACCATGTAACGGAGATGTC -ACGGAACCATGTAACGGAACAGTC -ACGGAACCATGTAACGGATTGCTG -ACGGAACCATGTAACGGATCCATG -ACGGAACCATGTAACGGATGTGTG -ACGGAACCATGTAACGGACTAGTG -ACGGAACCATGTAACGGACATCTG -ACGGAACCATGTAACGGAGAGTTG -ACGGAACCATGTAACGGAAGACTG -ACGGAACCATGTAACGGATCGGTA -ACGGAACCATGTAACGGATGCCTA -ACGGAACCATGTAACGGACCACTA -ACGGAACCATGTAACGGAGGAGTA -ACGGAACCATGTAACGGATCGTCT -ACGGAACCATGTAACGGATGCACT -ACGGAACCATGTAACGGACTGACT -ACGGAACCATGTAACGGACAACCT -ACGGAACCATGTAACGGAGCTACT -ACGGAACCATGTAACGGAGGATCT -ACGGAACCATGTAACGGAAAGGCT -ACGGAACCATGTAACGGATCAACC -ACGGAACCATGTAACGGATGTTCC -ACGGAACCATGTAACGGAATTCCC -ACGGAACCATGTAACGGATTCTCG -ACGGAACCATGTAACGGATAGACG -ACGGAACCATGTAACGGAGTAACG -ACGGAACCATGTAACGGAACTTCG -ACGGAACCATGTAACGGATACGCA -ACGGAACCATGTAACGGACTTGCA -ACGGAACCATGTAACGGACGAACA -ACGGAACCATGTAACGGACAGTCA -ACGGAACCATGTAACGGAGATCCA -ACGGAACCATGTAACGGAACGACA -ACGGAACCATGTAACGGAAGCTCA -ACGGAACCATGTAACGGATCACGT -ACGGAACCATGTAACGGACGTAGT -ACGGAACCATGTAACGGAGTCAGT -ACGGAACCATGTAACGGAGAAGGT -ACGGAACCATGTAACGGAAACCGT -ACGGAACCATGTAACGGATTGTGC -ACGGAACCATGTAACGGACTAAGC -ACGGAACCATGTAACGGAACTAGC -ACGGAACCATGTAACGGAAGATGC -ACGGAACCATGTAACGGATGAAGG -ACGGAACCATGTAACGGACAATGG -ACGGAACCATGTAACGGAATGAGG -ACGGAACCATGTAACGGAAATGGG -ACGGAACCATGTAACGGATCCTGA -ACGGAACCATGTAACGGATAGCGA -ACGGAACCATGTAACGGACACAGA -ACGGAACCATGTAACGGAGCAAGA -ACGGAACCATGTAACGGAGGTTGA -ACGGAACCATGTAACGGATCCGAT -ACGGAACCATGTAACGGATGGCAT -ACGGAACCATGTAACGGACGAGAT -ACGGAACCATGTAACGGATACCAC -ACGGAACCATGTAACGGACAGAAC -ACGGAACCATGTAACGGAGTCTAC -ACGGAACCATGTAACGGAACGTAC -ACGGAACCATGTAACGGAAGTGAC -ACGGAACCATGTAACGGACTGTAG -ACGGAACCATGTAACGGACCTAAG -ACGGAACCATGTAACGGAGTTCAG -ACGGAACCATGTAACGGAGCATAG -ACGGAACCATGTAACGGAGACAAG -ACGGAACCATGTAACGGAAAGCAG -ACGGAACCATGTAACGGACGTCAA -ACGGAACCATGTAACGGAGCTGAA -ACGGAACCATGTAACGGAAGTACG -ACGGAACCATGTAACGGAATCCGA -ACGGAACCATGTAACGGAATGGGA -ACGGAACCATGTAACGGAGTGCAA -ACGGAACCATGTAACGGAGAGGAA -ACGGAACCATGTAACGGACAGGTA -ACGGAACCATGTAACGGAGACTCT -ACGGAACCATGTAACGGAAGTCCT -ACGGAACCATGTAACGGATAAGCC -ACGGAACCATGTAACGGAATAGCC -ACGGAACCATGTAACGGATAACCG -ACGGAACCATGTAACGGAATGCCA -ACGGAACCATGTACCAACGGAAAC -ACGGAACCATGTACCAACAACACC -ACGGAACCATGTACCAACATCGAG -ACGGAACCATGTACCAACCTCCTT -ACGGAACCATGTACCAACCCTGTT -ACGGAACCATGTACCAACCGGTTT -ACGGAACCATGTACCAACGTGGTT -ACGGAACCATGTACCAACGCCTTT -ACGGAACCATGTACCAACGGTCTT -ACGGAACCATGTACCAACACGCTT -ACGGAACCATGTACCAACAGCGTT -ACGGAACCATGTACCAACTTCGTC -ACGGAACCATGTACCAACTCTCTC -ACGGAACCATGTACCAACTGGATC -ACGGAACCATGTACCAACCACTTC -ACGGAACCATGTACCAACGTACTC -ACGGAACCATGTACCAACGATGTC -ACGGAACCATGTACCAACACAGTC -ACGGAACCATGTACCAACTTGCTG -ACGGAACCATGTACCAACTCCATG -ACGGAACCATGTACCAACTGTGTG -ACGGAACCATGTACCAACCTAGTG -ACGGAACCATGTACCAACCATCTG -ACGGAACCATGTACCAACGAGTTG -ACGGAACCATGTACCAACAGACTG -ACGGAACCATGTACCAACTCGGTA -ACGGAACCATGTACCAACTGCCTA -ACGGAACCATGTACCAACCCACTA -ACGGAACCATGTACCAACGGAGTA -ACGGAACCATGTACCAACTCGTCT -ACGGAACCATGTACCAACTGCACT -ACGGAACCATGTACCAACCTGACT -ACGGAACCATGTACCAACCAACCT -ACGGAACCATGTACCAACGCTACT -ACGGAACCATGTACCAACGGATCT -ACGGAACCATGTACCAACAAGGCT -ACGGAACCATGTACCAACTCAACC -ACGGAACCATGTACCAACTGTTCC -ACGGAACCATGTACCAACATTCCC -ACGGAACCATGTACCAACTTCTCG -ACGGAACCATGTACCAACTAGACG -ACGGAACCATGTACCAACGTAACG -ACGGAACCATGTACCAACACTTCG -ACGGAACCATGTACCAACTACGCA -ACGGAACCATGTACCAACCTTGCA -ACGGAACCATGTACCAACCGAACA -ACGGAACCATGTACCAACCAGTCA -ACGGAACCATGTACCAACGATCCA -ACGGAACCATGTACCAACACGACA -ACGGAACCATGTACCAACAGCTCA -ACGGAACCATGTACCAACTCACGT -ACGGAACCATGTACCAACCGTAGT -ACGGAACCATGTACCAACGTCAGT -ACGGAACCATGTACCAACGAAGGT -ACGGAACCATGTACCAACAACCGT -ACGGAACCATGTACCAACTTGTGC -ACGGAACCATGTACCAACCTAAGC -ACGGAACCATGTACCAACACTAGC -ACGGAACCATGTACCAACAGATGC -ACGGAACCATGTACCAACTGAAGG -ACGGAACCATGTACCAACCAATGG -ACGGAACCATGTACCAACATGAGG -ACGGAACCATGTACCAACAATGGG -ACGGAACCATGTACCAACTCCTGA -ACGGAACCATGTACCAACTAGCGA -ACGGAACCATGTACCAACCACAGA -ACGGAACCATGTACCAACGCAAGA -ACGGAACCATGTACCAACGGTTGA -ACGGAACCATGTACCAACTCCGAT -ACGGAACCATGTACCAACTGGCAT -ACGGAACCATGTACCAACCGAGAT -ACGGAACCATGTACCAACTACCAC -ACGGAACCATGTACCAACCAGAAC -ACGGAACCATGTACCAACGTCTAC -ACGGAACCATGTACCAACACGTAC -ACGGAACCATGTACCAACAGTGAC -ACGGAACCATGTACCAACCTGTAG -ACGGAACCATGTACCAACCCTAAG -ACGGAACCATGTACCAACGTTCAG -ACGGAACCATGTACCAACGCATAG -ACGGAACCATGTACCAACGACAAG -ACGGAACCATGTACCAACAAGCAG -ACGGAACCATGTACCAACCGTCAA -ACGGAACCATGTACCAACGCTGAA -ACGGAACCATGTACCAACAGTACG -ACGGAACCATGTACCAACATCCGA -ACGGAACCATGTACCAACATGGGA -ACGGAACCATGTACCAACGTGCAA -ACGGAACCATGTACCAACGAGGAA -ACGGAACCATGTACCAACCAGGTA -ACGGAACCATGTACCAACGACTCT -ACGGAACCATGTACCAACAGTCCT -ACGGAACCATGTACCAACTAAGCC -ACGGAACCATGTACCAACATAGCC -ACGGAACCATGTACCAACTAACCG -ACGGAACCATGTACCAACATGCCA -ACGGAACCATGTGAGATCGGAAAC -ACGGAACCATGTGAGATCAACACC -ACGGAACCATGTGAGATCATCGAG -ACGGAACCATGTGAGATCCTCCTT -ACGGAACCATGTGAGATCCCTGTT -ACGGAACCATGTGAGATCCGGTTT -ACGGAACCATGTGAGATCGTGGTT -ACGGAACCATGTGAGATCGCCTTT -ACGGAACCATGTGAGATCGGTCTT -ACGGAACCATGTGAGATCACGCTT -ACGGAACCATGTGAGATCAGCGTT -ACGGAACCATGTGAGATCTTCGTC -ACGGAACCATGTGAGATCTCTCTC -ACGGAACCATGTGAGATCTGGATC -ACGGAACCATGTGAGATCCACTTC -ACGGAACCATGTGAGATCGTACTC -ACGGAACCATGTGAGATCGATGTC -ACGGAACCATGTGAGATCACAGTC -ACGGAACCATGTGAGATCTTGCTG -ACGGAACCATGTGAGATCTCCATG -ACGGAACCATGTGAGATCTGTGTG -ACGGAACCATGTGAGATCCTAGTG -ACGGAACCATGTGAGATCCATCTG -ACGGAACCATGTGAGATCGAGTTG -ACGGAACCATGTGAGATCAGACTG -ACGGAACCATGTGAGATCTCGGTA -ACGGAACCATGTGAGATCTGCCTA -ACGGAACCATGTGAGATCCCACTA -ACGGAACCATGTGAGATCGGAGTA -ACGGAACCATGTGAGATCTCGTCT -ACGGAACCATGTGAGATCTGCACT -ACGGAACCATGTGAGATCCTGACT -ACGGAACCATGTGAGATCCAACCT -ACGGAACCATGTGAGATCGCTACT -ACGGAACCATGTGAGATCGGATCT -ACGGAACCATGTGAGATCAAGGCT -ACGGAACCATGTGAGATCTCAACC -ACGGAACCATGTGAGATCTGTTCC -ACGGAACCATGTGAGATCATTCCC -ACGGAACCATGTGAGATCTTCTCG -ACGGAACCATGTGAGATCTAGACG -ACGGAACCATGTGAGATCGTAACG -ACGGAACCATGTGAGATCACTTCG -ACGGAACCATGTGAGATCTACGCA -ACGGAACCATGTGAGATCCTTGCA -ACGGAACCATGTGAGATCCGAACA -ACGGAACCATGTGAGATCCAGTCA -ACGGAACCATGTGAGATCGATCCA -ACGGAACCATGTGAGATCACGACA -ACGGAACCATGTGAGATCAGCTCA -ACGGAACCATGTGAGATCTCACGT -ACGGAACCATGTGAGATCCGTAGT -ACGGAACCATGTGAGATCGTCAGT -ACGGAACCATGTGAGATCGAAGGT -ACGGAACCATGTGAGATCAACCGT -ACGGAACCATGTGAGATCTTGTGC -ACGGAACCATGTGAGATCCTAAGC -ACGGAACCATGTGAGATCACTAGC -ACGGAACCATGTGAGATCAGATGC -ACGGAACCATGTGAGATCTGAAGG -ACGGAACCATGTGAGATCCAATGG -ACGGAACCATGTGAGATCATGAGG -ACGGAACCATGTGAGATCAATGGG -ACGGAACCATGTGAGATCTCCTGA -ACGGAACCATGTGAGATCTAGCGA -ACGGAACCATGTGAGATCCACAGA -ACGGAACCATGTGAGATCGCAAGA -ACGGAACCATGTGAGATCGGTTGA -ACGGAACCATGTGAGATCTCCGAT -ACGGAACCATGTGAGATCTGGCAT -ACGGAACCATGTGAGATCCGAGAT -ACGGAACCATGTGAGATCTACCAC -ACGGAACCATGTGAGATCCAGAAC -ACGGAACCATGTGAGATCGTCTAC -ACGGAACCATGTGAGATCACGTAC -ACGGAACCATGTGAGATCAGTGAC -ACGGAACCATGTGAGATCCTGTAG -ACGGAACCATGTGAGATCCCTAAG -ACGGAACCATGTGAGATCGTTCAG -ACGGAACCATGTGAGATCGCATAG -ACGGAACCATGTGAGATCGACAAG -ACGGAACCATGTGAGATCAAGCAG -ACGGAACCATGTGAGATCCGTCAA -ACGGAACCATGTGAGATCGCTGAA -ACGGAACCATGTGAGATCAGTACG -ACGGAACCATGTGAGATCATCCGA -ACGGAACCATGTGAGATCATGGGA -ACGGAACCATGTGAGATCGTGCAA -ACGGAACCATGTGAGATCGAGGAA -ACGGAACCATGTGAGATCCAGGTA -ACGGAACCATGTGAGATCGACTCT -ACGGAACCATGTGAGATCAGTCCT -ACGGAACCATGTGAGATCTAAGCC -ACGGAACCATGTGAGATCATAGCC -ACGGAACCATGTGAGATCTAACCG -ACGGAACCATGTGAGATCATGCCA -ACGGAACCATGTCTTCTCGGAAAC -ACGGAACCATGTCTTCTCAACACC -ACGGAACCATGTCTTCTCATCGAG -ACGGAACCATGTCTTCTCCTCCTT -ACGGAACCATGTCTTCTCCCTGTT -ACGGAACCATGTCTTCTCCGGTTT -ACGGAACCATGTCTTCTCGTGGTT -ACGGAACCATGTCTTCTCGCCTTT -ACGGAACCATGTCTTCTCGGTCTT -ACGGAACCATGTCTTCTCACGCTT -ACGGAACCATGTCTTCTCAGCGTT -ACGGAACCATGTCTTCTCTTCGTC -ACGGAACCATGTCTTCTCTCTCTC -ACGGAACCATGTCTTCTCTGGATC -ACGGAACCATGTCTTCTCCACTTC -ACGGAACCATGTCTTCTCGTACTC -ACGGAACCATGTCTTCTCGATGTC -ACGGAACCATGTCTTCTCACAGTC -ACGGAACCATGTCTTCTCTTGCTG -ACGGAACCATGTCTTCTCTCCATG -ACGGAACCATGTCTTCTCTGTGTG -ACGGAACCATGTCTTCTCCTAGTG -ACGGAACCATGTCTTCTCCATCTG -ACGGAACCATGTCTTCTCGAGTTG -ACGGAACCATGTCTTCTCAGACTG -ACGGAACCATGTCTTCTCTCGGTA -ACGGAACCATGTCTTCTCTGCCTA -ACGGAACCATGTCTTCTCCCACTA -ACGGAACCATGTCTTCTCGGAGTA -ACGGAACCATGTCTTCTCTCGTCT -ACGGAACCATGTCTTCTCTGCACT -ACGGAACCATGTCTTCTCCTGACT -ACGGAACCATGTCTTCTCCAACCT -ACGGAACCATGTCTTCTCGCTACT -ACGGAACCATGTCTTCTCGGATCT -ACGGAACCATGTCTTCTCAAGGCT -ACGGAACCATGTCTTCTCTCAACC -ACGGAACCATGTCTTCTCTGTTCC -ACGGAACCATGTCTTCTCATTCCC -ACGGAACCATGTCTTCTCTTCTCG -ACGGAACCATGTCTTCTCTAGACG -ACGGAACCATGTCTTCTCGTAACG -ACGGAACCATGTCTTCTCACTTCG -ACGGAACCATGTCTTCTCTACGCA -ACGGAACCATGTCTTCTCCTTGCA -ACGGAACCATGTCTTCTCCGAACA -ACGGAACCATGTCTTCTCCAGTCA -ACGGAACCATGTCTTCTCGATCCA -ACGGAACCATGTCTTCTCACGACA -ACGGAACCATGTCTTCTCAGCTCA -ACGGAACCATGTCTTCTCTCACGT -ACGGAACCATGTCTTCTCCGTAGT -ACGGAACCATGTCTTCTCGTCAGT -ACGGAACCATGTCTTCTCGAAGGT -ACGGAACCATGTCTTCTCAACCGT -ACGGAACCATGTCTTCTCTTGTGC -ACGGAACCATGTCTTCTCCTAAGC -ACGGAACCATGTCTTCTCACTAGC -ACGGAACCATGTCTTCTCAGATGC -ACGGAACCATGTCTTCTCTGAAGG -ACGGAACCATGTCTTCTCCAATGG -ACGGAACCATGTCTTCTCATGAGG -ACGGAACCATGTCTTCTCAATGGG -ACGGAACCATGTCTTCTCTCCTGA -ACGGAACCATGTCTTCTCTAGCGA -ACGGAACCATGTCTTCTCCACAGA -ACGGAACCATGTCTTCTCGCAAGA -ACGGAACCATGTCTTCTCGGTTGA -ACGGAACCATGTCTTCTCTCCGAT -ACGGAACCATGTCTTCTCTGGCAT -ACGGAACCATGTCTTCTCCGAGAT -ACGGAACCATGTCTTCTCTACCAC -ACGGAACCATGTCTTCTCCAGAAC -ACGGAACCATGTCTTCTCGTCTAC -ACGGAACCATGTCTTCTCACGTAC -ACGGAACCATGTCTTCTCAGTGAC -ACGGAACCATGTCTTCTCCTGTAG -ACGGAACCATGTCTTCTCCCTAAG -ACGGAACCATGTCTTCTCGTTCAG -ACGGAACCATGTCTTCTCGCATAG -ACGGAACCATGTCTTCTCGACAAG -ACGGAACCATGTCTTCTCAAGCAG -ACGGAACCATGTCTTCTCCGTCAA -ACGGAACCATGTCTTCTCGCTGAA -ACGGAACCATGTCTTCTCAGTACG -ACGGAACCATGTCTTCTCATCCGA -ACGGAACCATGTCTTCTCATGGGA -ACGGAACCATGTCTTCTCGTGCAA -ACGGAACCATGTCTTCTCGAGGAA -ACGGAACCATGTCTTCTCCAGGTA -ACGGAACCATGTCTTCTCGACTCT -ACGGAACCATGTCTTCTCAGTCCT -ACGGAACCATGTCTTCTCTAAGCC -ACGGAACCATGTCTTCTCATAGCC -ACGGAACCATGTCTTCTCTAACCG -ACGGAACCATGTCTTCTCATGCCA -ACGGAACCATGTGTTCCTGGAAAC -ACGGAACCATGTGTTCCTAACACC -ACGGAACCATGTGTTCCTATCGAG -ACGGAACCATGTGTTCCTCTCCTT -ACGGAACCATGTGTTCCTCCTGTT -ACGGAACCATGTGTTCCTCGGTTT -ACGGAACCATGTGTTCCTGTGGTT -ACGGAACCATGTGTTCCTGCCTTT -ACGGAACCATGTGTTCCTGGTCTT -ACGGAACCATGTGTTCCTACGCTT -ACGGAACCATGTGTTCCTAGCGTT -ACGGAACCATGTGTTCCTTTCGTC -ACGGAACCATGTGTTCCTTCTCTC -ACGGAACCATGTGTTCCTTGGATC -ACGGAACCATGTGTTCCTCACTTC -ACGGAACCATGTGTTCCTGTACTC -ACGGAACCATGTGTTCCTGATGTC -ACGGAACCATGTGTTCCTACAGTC -ACGGAACCATGTGTTCCTTTGCTG -ACGGAACCATGTGTTCCTTCCATG -ACGGAACCATGTGTTCCTTGTGTG -ACGGAACCATGTGTTCCTCTAGTG -ACGGAACCATGTGTTCCTCATCTG -ACGGAACCATGTGTTCCTGAGTTG -ACGGAACCATGTGTTCCTAGACTG -ACGGAACCATGTGTTCCTTCGGTA -ACGGAACCATGTGTTCCTTGCCTA -ACGGAACCATGTGTTCCTCCACTA -ACGGAACCATGTGTTCCTGGAGTA -ACGGAACCATGTGTTCCTTCGTCT -ACGGAACCATGTGTTCCTTGCACT -ACGGAACCATGTGTTCCTCTGACT -ACGGAACCATGTGTTCCTCAACCT -ACGGAACCATGTGTTCCTGCTACT -ACGGAACCATGTGTTCCTGGATCT -ACGGAACCATGTGTTCCTAAGGCT -ACGGAACCATGTGTTCCTTCAACC -ACGGAACCATGTGTTCCTTGTTCC -ACGGAACCATGTGTTCCTATTCCC -ACGGAACCATGTGTTCCTTTCTCG -ACGGAACCATGTGTTCCTTAGACG -ACGGAACCATGTGTTCCTGTAACG -ACGGAACCATGTGTTCCTACTTCG -ACGGAACCATGTGTTCCTTACGCA -ACGGAACCATGTGTTCCTCTTGCA -ACGGAACCATGTGTTCCTCGAACA -ACGGAACCATGTGTTCCTCAGTCA -ACGGAACCATGTGTTCCTGATCCA -ACGGAACCATGTGTTCCTACGACA -ACGGAACCATGTGTTCCTAGCTCA -ACGGAACCATGTGTTCCTTCACGT -ACGGAACCATGTGTTCCTCGTAGT -ACGGAACCATGTGTTCCTGTCAGT -ACGGAACCATGTGTTCCTGAAGGT -ACGGAACCATGTGTTCCTAACCGT -ACGGAACCATGTGTTCCTTTGTGC -ACGGAACCATGTGTTCCTCTAAGC -ACGGAACCATGTGTTCCTACTAGC -ACGGAACCATGTGTTCCTAGATGC -ACGGAACCATGTGTTCCTTGAAGG -ACGGAACCATGTGTTCCTCAATGG -ACGGAACCATGTGTTCCTATGAGG -ACGGAACCATGTGTTCCTAATGGG -ACGGAACCATGTGTTCCTTCCTGA -ACGGAACCATGTGTTCCTTAGCGA -ACGGAACCATGTGTTCCTCACAGA -ACGGAACCATGTGTTCCTGCAAGA -ACGGAACCATGTGTTCCTGGTTGA -ACGGAACCATGTGTTCCTTCCGAT -ACGGAACCATGTGTTCCTTGGCAT -ACGGAACCATGTGTTCCTCGAGAT -ACGGAACCATGTGTTCCTTACCAC -ACGGAACCATGTGTTCCTCAGAAC -ACGGAACCATGTGTTCCTGTCTAC -ACGGAACCATGTGTTCCTACGTAC -ACGGAACCATGTGTTCCTAGTGAC -ACGGAACCATGTGTTCCTCTGTAG -ACGGAACCATGTGTTCCTCCTAAG -ACGGAACCATGTGTTCCTGTTCAG -ACGGAACCATGTGTTCCTGCATAG -ACGGAACCATGTGTTCCTGACAAG -ACGGAACCATGTGTTCCTAAGCAG -ACGGAACCATGTGTTCCTCGTCAA -ACGGAACCATGTGTTCCTGCTGAA -ACGGAACCATGTGTTCCTAGTACG -ACGGAACCATGTGTTCCTATCCGA -ACGGAACCATGTGTTCCTATGGGA -ACGGAACCATGTGTTCCTGTGCAA -ACGGAACCATGTGTTCCTGAGGAA -ACGGAACCATGTGTTCCTCAGGTA -ACGGAACCATGTGTTCCTGACTCT -ACGGAACCATGTGTTCCTAGTCCT -ACGGAACCATGTGTTCCTTAAGCC -ACGGAACCATGTGTTCCTATAGCC -ACGGAACCATGTGTTCCTTAACCG -ACGGAACCATGTGTTCCTATGCCA -ACGGAACCATGTTTTCGGGGAAAC -ACGGAACCATGTTTTCGGAACACC -ACGGAACCATGTTTTCGGATCGAG -ACGGAACCATGTTTTCGGCTCCTT -ACGGAACCATGTTTTCGGCCTGTT -ACGGAACCATGTTTTCGGCGGTTT -ACGGAACCATGTTTTCGGGTGGTT -ACGGAACCATGTTTTCGGGCCTTT -ACGGAACCATGTTTTCGGGGTCTT -ACGGAACCATGTTTTCGGACGCTT -ACGGAACCATGTTTTCGGAGCGTT -ACGGAACCATGTTTTCGGTTCGTC -ACGGAACCATGTTTTCGGTCTCTC -ACGGAACCATGTTTTCGGTGGATC -ACGGAACCATGTTTTCGGCACTTC -ACGGAACCATGTTTTCGGGTACTC -ACGGAACCATGTTTTCGGGATGTC -ACGGAACCATGTTTTCGGACAGTC -ACGGAACCATGTTTTCGGTTGCTG -ACGGAACCATGTTTTCGGTCCATG -ACGGAACCATGTTTTCGGTGTGTG -ACGGAACCATGTTTTCGGCTAGTG -ACGGAACCATGTTTTCGGCATCTG -ACGGAACCATGTTTTCGGGAGTTG -ACGGAACCATGTTTTCGGAGACTG -ACGGAACCATGTTTTCGGTCGGTA -ACGGAACCATGTTTTCGGTGCCTA -ACGGAACCATGTTTTCGGCCACTA -ACGGAACCATGTTTTCGGGGAGTA -ACGGAACCATGTTTTCGGTCGTCT -ACGGAACCATGTTTTCGGTGCACT -ACGGAACCATGTTTTCGGCTGACT -ACGGAACCATGTTTTCGGCAACCT -ACGGAACCATGTTTTCGGGCTACT -ACGGAACCATGTTTTCGGGGATCT -ACGGAACCATGTTTTCGGAAGGCT -ACGGAACCATGTTTTCGGTCAACC -ACGGAACCATGTTTTCGGTGTTCC -ACGGAACCATGTTTTCGGATTCCC -ACGGAACCATGTTTTCGGTTCTCG -ACGGAACCATGTTTTCGGTAGACG -ACGGAACCATGTTTTCGGGTAACG -ACGGAACCATGTTTTCGGACTTCG -ACGGAACCATGTTTTCGGTACGCA -ACGGAACCATGTTTTCGGCTTGCA -ACGGAACCATGTTTTCGGCGAACA -ACGGAACCATGTTTTCGGCAGTCA -ACGGAACCATGTTTTCGGGATCCA -ACGGAACCATGTTTTCGGACGACA -ACGGAACCATGTTTTCGGAGCTCA -ACGGAACCATGTTTTCGGTCACGT -ACGGAACCATGTTTTCGGCGTAGT -ACGGAACCATGTTTTCGGGTCAGT -ACGGAACCATGTTTTCGGGAAGGT -ACGGAACCATGTTTTCGGAACCGT -ACGGAACCATGTTTTCGGTTGTGC -ACGGAACCATGTTTTCGGCTAAGC -ACGGAACCATGTTTTCGGACTAGC -ACGGAACCATGTTTTCGGAGATGC -ACGGAACCATGTTTTCGGTGAAGG -ACGGAACCATGTTTTCGGCAATGG -ACGGAACCATGTTTTCGGATGAGG -ACGGAACCATGTTTTCGGAATGGG -ACGGAACCATGTTTTCGGTCCTGA -ACGGAACCATGTTTTCGGTAGCGA -ACGGAACCATGTTTTCGGCACAGA -ACGGAACCATGTTTTCGGGCAAGA -ACGGAACCATGTTTTCGGGGTTGA -ACGGAACCATGTTTTCGGTCCGAT -ACGGAACCATGTTTTCGGTGGCAT -ACGGAACCATGTTTTCGGCGAGAT -ACGGAACCATGTTTTCGGTACCAC -ACGGAACCATGTTTTCGGCAGAAC -ACGGAACCATGTTTTCGGGTCTAC -ACGGAACCATGTTTTCGGACGTAC -ACGGAACCATGTTTTCGGAGTGAC -ACGGAACCATGTTTTCGGCTGTAG -ACGGAACCATGTTTTCGGCCTAAG -ACGGAACCATGTTTTCGGGTTCAG -ACGGAACCATGTTTTCGGGCATAG -ACGGAACCATGTTTTCGGGACAAG -ACGGAACCATGTTTTCGGAAGCAG -ACGGAACCATGTTTTCGGCGTCAA -ACGGAACCATGTTTTCGGGCTGAA -ACGGAACCATGTTTTCGGAGTACG -ACGGAACCATGTTTTCGGATCCGA -ACGGAACCATGTTTTCGGATGGGA -ACGGAACCATGTTTTCGGGTGCAA -ACGGAACCATGTTTTCGGGAGGAA -ACGGAACCATGTTTTCGGCAGGTA -ACGGAACCATGTTTTCGGGACTCT -ACGGAACCATGTTTTCGGAGTCCT -ACGGAACCATGTTTTCGGTAAGCC -ACGGAACCATGTTTTCGGATAGCC -ACGGAACCATGTTTTCGGTAACCG -ACGGAACCATGTTTTCGGATGCCA -ACGGAACCATGTGTTGTGGGAAAC -ACGGAACCATGTGTTGTGAACACC -ACGGAACCATGTGTTGTGATCGAG -ACGGAACCATGTGTTGTGCTCCTT -ACGGAACCATGTGTTGTGCCTGTT -ACGGAACCATGTGTTGTGCGGTTT -ACGGAACCATGTGTTGTGGTGGTT -ACGGAACCATGTGTTGTGGCCTTT -ACGGAACCATGTGTTGTGGGTCTT -ACGGAACCATGTGTTGTGACGCTT -ACGGAACCATGTGTTGTGAGCGTT -ACGGAACCATGTGTTGTGTTCGTC -ACGGAACCATGTGTTGTGTCTCTC -ACGGAACCATGTGTTGTGTGGATC -ACGGAACCATGTGTTGTGCACTTC -ACGGAACCATGTGTTGTGGTACTC -ACGGAACCATGTGTTGTGGATGTC -ACGGAACCATGTGTTGTGACAGTC -ACGGAACCATGTGTTGTGTTGCTG -ACGGAACCATGTGTTGTGTCCATG -ACGGAACCATGTGTTGTGTGTGTG -ACGGAACCATGTGTTGTGCTAGTG -ACGGAACCATGTGTTGTGCATCTG -ACGGAACCATGTGTTGTGGAGTTG -ACGGAACCATGTGTTGTGAGACTG -ACGGAACCATGTGTTGTGTCGGTA -ACGGAACCATGTGTTGTGTGCCTA -ACGGAACCATGTGTTGTGCCACTA -ACGGAACCATGTGTTGTGGGAGTA -ACGGAACCATGTGTTGTGTCGTCT -ACGGAACCATGTGTTGTGTGCACT -ACGGAACCATGTGTTGTGCTGACT -ACGGAACCATGTGTTGTGCAACCT -ACGGAACCATGTGTTGTGGCTACT -ACGGAACCATGTGTTGTGGGATCT -ACGGAACCATGTGTTGTGAAGGCT -ACGGAACCATGTGTTGTGTCAACC -ACGGAACCATGTGTTGTGTGTTCC -ACGGAACCATGTGTTGTGATTCCC -ACGGAACCATGTGTTGTGTTCTCG -ACGGAACCATGTGTTGTGTAGACG -ACGGAACCATGTGTTGTGGTAACG -ACGGAACCATGTGTTGTGACTTCG -ACGGAACCATGTGTTGTGTACGCA -ACGGAACCATGTGTTGTGCTTGCA -ACGGAACCATGTGTTGTGCGAACA -ACGGAACCATGTGTTGTGCAGTCA -ACGGAACCATGTGTTGTGGATCCA -ACGGAACCATGTGTTGTGACGACA -ACGGAACCATGTGTTGTGAGCTCA -ACGGAACCATGTGTTGTGTCACGT -ACGGAACCATGTGTTGTGCGTAGT -ACGGAACCATGTGTTGTGGTCAGT -ACGGAACCATGTGTTGTGGAAGGT -ACGGAACCATGTGTTGTGAACCGT -ACGGAACCATGTGTTGTGTTGTGC -ACGGAACCATGTGTTGTGCTAAGC -ACGGAACCATGTGTTGTGACTAGC -ACGGAACCATGTGTTGTGAGATGC -ACGGAACCATGTGTTGTGTGAAGG -ACGGAACCATGTGTTGTGCAATGG -ACGGAACCATGTGTTGTGATGAGG -ACGGAACCATGTGTTGTGAATGGG -ACGGAACCATGTGTTGTGTCCTGA -ACGGAACCATGTGTTGTGTAGCGA -ACGGAACCATGTGTTGTGCACAGA -ACGGAACCATGTGTTGTGGCAAGA -ACGGAACCATGTGTTGTGGGTTGA -ACGGAACCATGTGTTGTGTCCGAT -ACGGAACCATGTGTTGTGTGGCAT -ACGGAACCATGTGTTGTGCGAGAT -ACGGAACCATGTGTTGTGTACCAC -ACGGAACCATGTGTTGTGCAGAAC -ACGGAACCATGTGTTGTGGTCTAC -ACGGAACCATGTGTTGTGACGTAC -ACGGAACCATGTGTTGTGAGTGAC -ACGGAACCATGTGTTGTGCTGTAG -ACGGAACCATGTGTTGTGCCTAAG -ACGGAACCATGTGTTGTGGTTCAG -ACGGAACCATGTGTTGTGGCATAG -ACGGAACCATGTGTTGTGGACAAG -ACGGAACCATGTGTTGTGAAGCAG -ACGGAACCATGTGTTGTGCGTCAA -ACGGAACCATGTGTTGTGGCTGAA -ACGGAACCATGTGTTGTGAGTACG -ACGGAACCATGTGTTGTGATCCGA -ACGGAACCATGTGTTGTGATGGGA -ACGGAACCATGTGTTGTGGTGCAA -ACGGAACCATGTGTTGTGGAGGAA -ACGGAACCATGTGTTGTGCAGGTA -ACGGAACCATGTGTTGTGGACTCT -ACGGAACCATGTGTTGTGAGTCCT -ACGGAACCATGTGTTGTGTAAGCC -ACGGAACCATGTGTTGTGATAGCC -ACGGAACCATGTGTTGTGTAACCG -ACGGAACCATGTGTTGTGATGCCA -ACGGAACCATGTTTTGCCGGAAAC -ACGGAACCATGTTTTGCCAACACC -ACGGAACCATGTTTTGCCATCGAG -ACGGAACCATGTTTTGCCCTCCTT -ACGGAACCATGTTTTGCCCCTGTT -ACGGAACCATGTTTTGCCCGGTTT -ACGGAACCATGTTTTGCCGTGGTT -ACGGAACCATGTTTTGCCGCCTTT -ACGGAACCATGTTTTGCCGGTCTT -ACGGAACCATGTTTTGCCACGCTT -ACGGAACCATGTTTTGCCAGCGTT -ACGGAACCATGTTTTGCCTTCGTC -ACGGAACCATGTTTTGCCTCTCTC -ACGGAACCATGTTTTGCCTGGATC -ACGGAACCATGTTTTGCCCACTTC -ACGGAACCATGTTTTGCCGTACTC -ACGGAACCATGTTTTGCCGATGTC -ACGGAACCATGTTTTGCCACAGTC -ACGGAACCATGTTTTGCCTTGCTG -ACGGAACCATGTTTTGCCTCCATG -ACGGAACCATGTTTTGCCTGTGTG -ACGGAACCATGTTTTGCCCTAGTG -ACGGAACCATGTTTTGCCCATCTG -ACGGAACCATGTTTTGCCGAGTTG -ACGGAACCATGTTTTGCCAGACTG -ACGGAACCATGTTTTGCCTCGGTA -ACGGAACCATGTTTTGCCTGCCTA -ACGGAACCATGTTTTGCCCCACTA -ACGGAACCATGTTTTGCCGGAGTA -ACGGAACCATGTTTTGCCTCGTCT -ACGGAACCATGTTTTGCCTGCACT -ACGGAACCATGTTTTGCCCTGACT -ACGGAACCATGTTTTGCCCAACCT -ACGGAACCATGTTTTGCCGCTACT -ACGGAACCATGTTTTGCCGGATCT -ACGGAACCATGTTTTGCCAAGGCT -ACGGAACCATGTTTTGCCTCAACC -ACGGAACCATGTTTTGCCTGTTCC -ACGGAACCATGTTTTGCCATTCCC -ACGGAACCATGTTTTGCCTTCTCG -ACGGAACCATGTTTTGCCTAGACG -ACGGAACCATGTTTTGCCGTAACG -ACGGAACCATGTTTTGCCACTTCG -ACGGAACCATGTTTTGCCTACGCA -ACGGAACCATGTTTTGCCCTTGCA -ACGGAACCATGTTTTGCCCGAACA -ACGGAACCATGTTTTGCCCAGTCA -ACGGAACCATGTTTTGCCGATCCA -ACGGAACCATGTTTTGCCACGACA -ACGGAACCATGTTTTGCCAGCTCA -ACGGAACCATGTTTTGCCTCACGT -ACGGAACCATGTTTTGCCCGTAGT -ACGGAACCATGTTTTGCCGTCAGT -ACGGAACCATGTTTTGCCGAAGGT -ACGGAACCATGTTTTGCCAACCGT -ACGGAACCATGTTTTGCCTTGTGC -ACGGAACCATGTTTTGCCCTAAGC -ACGGAACCATGTTTTGCCACTAGC -ACGGAACCATGTTTTGCCAGATGC -ACGGAACCATGTTTTGCCTGAAGG -ACGGAACCATGTTTTGCCCAATGG -ACGGAACCATGTTTTGCCATGAGG -ACGGAACCATGTTTTGCCAATGGG -ACGGAACCATGTTTTGCCTCCTGA -ACGGAACCATGTTTTGCCTAGCGA -ACGGAACCATGTTTTGCCCACAGA -ACGGAACCATGTTTTGCCGCAAGA -ACGGAACCATGTTTTGCCGGTTGA -ACGGAACCATGTTTTGCCTCCGAT -ACGGAACCATGTTTTGCCTGGCAT -ACGGAACCATGTTTTGCCCGAGAT -ACGGAACCATGTTTTGCCTACCAC -ACGGAACCATGTTTTGCCCAGAAC -ACGGAACCATGTTTTGCCGTCTAC -ACGGAACCATGTTTTGCCACGTAC -ACGGAACCATGTTTTGCCAGTGAC -ACGGAACCATGTTTTGCCCTGTAG -ACGGAACCATGTTTTGCCCCTAAG -ACGGAACCATGTTTTGCCGTTCAG -ACGGAACCATGTTTTGCCGCATAG -ACGGAACCATGTTTTGCCGACAAG -ACGGAACCATGTTTTGCCAAGCAG -ACGGAACCATGTTTTGCCCGTCAA -ACGGAACCATGTTTTGCCGCTGAA -ACGGAACCATGTTTTGCCAGTACG -ACGGAACCATGTTTTGCCATCCGA -ACGGAACCATGTTTTGCCATGGGA -ACGGAACCATGTTTTGCCGTGCAA -ACGGAACCATGTTTTGCCGAGGAA -ACGGAACCATGTTTTGCCCAGGTA -ACGGAACCATGTTTTGCCGACTCT -ACGGAACCATGTTTTGCCAGTCCT -ACGGAACCATGTTTTGCCTAAGCC -ACGGAACCATGTTTTGCCATAGCC -ACGGAACCATGTTTTGCCTAACCG -ACGGAACCATGTTTTGCCATGCCA -ACGGAACCATGTCTTGGTGGAAAC -ACGGAACCATGTCTTGGTAACACC -ACGGAACCATGTCTTGGTATCGAG -ACGGAACCATGTCTTGGTCTCCTT -ACGGAACCATGTCTTGGTCCTGTT -ACGGAACCATGTCTTGGTCGGTTT -ACGGAACCATGTCTTGGTGTGGTT -ACGGAACCATGTCTTGGTGCCTTT -ACGGAACCATGTCTTGGTGGTCTT -ACGGAACCATGTCTTGGTACGCTT -ACGGAACCATGTCTTGGTAGCGTT -ACGGAACCATGTCTTGGTTTCGTC -ACGGAACCATGTCTTGGTTCTCTC -ACGGAACCATGTCTTGGTTGGATC -ACGGAACCATGTCTTGGTCACTTC -ACGGAACCATGTCTTGGTGTACTC -ACGGAACCATGTCTTGGTGATGTC -ACGGAACCATGTCTTGGTACAGTC -ACGGAACCATGTCTTGGTTTGCTG -ACGGAACCATGTCTTGGTTCCATG -ACGGAACCATGTCTTGGTTGTGTG -ACGGAACCATGTCTTGGTCTAGTG -ACGGAACCATGTCTTGGTCATCTG -ACGGAACCATGTCTTGGTGAGTTG -ACGGAACCATGTCTTGGTAGACTG -ACGGAACCATGTCTTGGTTCGGTA -ACGGAACCATGTCTTGGTTGCCTA -ACGGAACCATGTCTTGGTCCACTA -ACGGAACCATGTCTTGGTGGAGTA -ACGGAACCATGTCTTGGTTCGTCT -ACGGAACCATGTCTTGGTTGCACT -ACGGAACCATGTCTTGGTCTGACT -ACGGAACCATGTCTTGGTCAACCT -ACGGAACCATGTCTTGGTGCTACT -ACGGAACCATGTCTTGGTGGATCT -ACGGAACCATGTCTTGGTAAGGCT -ACGGAACCATGTCTTGGTTCAACC -ACGGAACCATGTCTTGGTTGTTCC -ACGGAACCATGTCTTGGTATTCCC -ACGGAACCATGTCTTGGTTTCTCG -ACGGAACCATGTCTTGGTTAGACG -ACGGAACCATGTCTTGGTGTAACG -ACGGAACCATGTCTTGGTACTTCG -ACGGAACCATGTCTTGGTTACGCA -ACGGAACCATGTCTTGGTCTTGCA -ACGGAACCATGTCTTGGTCGAACA -ACGGAACCATGTCTTGGTCAGTCA -ACGGAACCATGTCTTGGTGATCCA -ACGGAACCATGTCTTGGTACGACA -ACGGAACCATGTCTTGGTAGCTCA -ACGGAACCATGTCTTGGTTCACGT -ACGGAACCATGTCTTGGTCGTAGT -ACGGAACCATGTCTTGGTGTCAGT -ACGGAACCATGTCTTGGTGAAGGT -ACGGAACCATGTCTTGGTAACCGT -ACGGAACCATGTCTTGGTTTGTGC -ACGGAACCATGTCTTGGTCTAAGC -ACGGAACCATGTCTTGGTACTAGC -ACGGAACCATGTCTTGGTAGATGC -ACGGAACCATGTCTTGGTTGAAGG -ACGGAACCATGTCTTGGTCAATGG -ACGGAACCATGTCTTGGTATGAGG -ACGGAACCATGTCTTGGTAATGGG -ACGGAACCATGTCTTGGTTCCTGA -ACGGAACCATGTCTTGGTTAGCGA -ACGGAACCATGTCTTGGTCACAGA -ACGGAACCATGTCTTGGTGCAAGA -ACGGAACCATGTCTTGGTGGTTGA -ACGGAACCATGTCTTGGTTCCGAT -ACGGAACCATGTCTTGGTTGGCAT -ACGGAACCATGTCTTGGTCGAGAT -ACGGAACCATGTCTTGGTTACCAC -ACGGAACCATGTCTTGGTCAGAAC -ACGGAACCATGTCTTGGTGTCTAC -ACGGAACCATGTCTTGGTACGTAC -ACGGAACCATGTCTTGGTAGTGAC -ACGGAACCATGTCTTGGTCTGTAG -ACGGAACCATGTCTTGGTCCTAAG -ACGGAACCATGTCTTGGTGTTCAG -ACGGAACCATGTCTTGGTGCATAG -ACGGAACCATGTCTTGGTGACAAG -ACGGAACCATGTCTTGGTAAGCAG -ACGGAACCATGTCTTGGTCGTCAA -ACGGAACCATGTCTTGGTGCTGAA -ACGGAACCATGTCTTGGTAGTACG -ACGGAACCATGTCTTGGTATCCGA -ACGGAACCATGTCTTGGTATGGGA -ACGGAACCATGTCTTGGTGTGCAA -ACGGAACCATGTCTTGGTGAGGAA -ACGGAACCATGTCTTGGTCAGGTA -ACGGAACCATGTCTTGGTGACTCT -ACGGAACCATGTCTTGGTAGTCCT -ACGGAACCATGTCTTGGTTAAGCC -ACGGAACCATGTCTTGGTATAGCC -ACGGAACCATGTCTTGGTTAACCG -ACGGAACCATGTCTTGGTATGCCA -ACGGAACCATGTCTTACGGGAAAC -ACGGAACCATGTCTTACGAACACC -ACGGAACCATGTCTTACGATCGAG -ACGGAACCATGTCTTACGCTCCTT -ACGGAACCATGTCTTACGCCTGTT -ACGGAACCATGTCTTACGCGGTTT -ACGGAACCATGTCTTACGGTGGTT -ACGGAACCATGTCTTACGGCCTTT -ACGGAACCATGTCTTACGGGTCTT -ACGGAACCATGTCTTACGACGCTT -ACGGAACCATGTCTTACGAGCGTT -ACGGAACCATGTCTTACGTTCGTC -ACGGAACCATGTCTTACGTCTCTC -ACGGAACCATGTCTTACGTGGATC -ACGGAACCATGTCTTACGCACTTC -ACGGAACCATGTCTTACGGTACTC -ACGGAACCATGTCTTACGGATGTC -ACGGAACCATGTCTTACGACAGTC -ACGGAACCATGTCTTACGTTGCTG -ACGGAACCATGTCTTACGTCCATG -ACGGAACCATGTCTTACGTGTGTG -ACGGAACCATGTCTTACGCTAGTG -ACGGAACCATGTCTTACGCATCTG -ACGGAACCATGTCTTACGGAGTTG -ACGGAACCATGTCTTACGAGACTG -ACGGAACCATGTCTTACGTCGGTA -ACGGAACCATGTCTTACGTGCCTA -ACGGAACCATGTCTTACGCCACTA -ACGGAACCATGTCTTACGGGAGTA -ACGGAACCATGTCTTACGTCGTCT -ACGGAACCATGTCTTACGTGCACT -ACGGAACCATGTCTTACGCTGACT -ACGGAACCATGTCTTACGCAACCT -ACGGAACCATGTCTTACGGCTACT -ACGGAACCATGTCTTACGGGATCT -ACGGAACCATGTCTTACGAAGGCT -ACGGAACCATGTCTTACGTCAACC -ACGGAACCATGTCTTACGTGTTCC -ACGGAACCATGTCTTACGATTCCC -ACGGAACCATGTCTTACGTTCTCG -ACGGAACCATGTCTTACGTAGACG -ACGGAACCATGTCTTACGGTAACG -ACGGAACCATGTCTTACGACTTCG -ACGGAACCATGTCTTACGTACGCA -ACGGAACCATGTCTTACGCTTGCA -ACGGAACCATGTCTTACGCGAACA -ACGGAACCATGTCTTACGCAGTCA -ACGGAACCATGTCTTACGGATCCA -ACGGAACCATGTCTTACGACGACA -ACGGAACCATGTCTTACGAGCTCA -ACGGAACCATGTCTTACGTCACGT -ACGGAACCATGTCTTACGCGTAGT -ACGGAACCATGTCTTACGGTCAGT -ACGGAACCATGTCTTACGGAAGGT -ACGGAACCATGTCTTACGAACCGT -ACGGAACCATGTCTTACGTTGTGC -ACGGAACCATGTCTTACGCTAAGC -ACGGAACCATGTCTTACGACTAGC -ACGGAACCATGTCTTACGAGATGC -ACGGAACCATGTCTTACGTGAAGG -ACGGAACCATGTCTTACGCAATGG -ACGGAACCATGTCTTACGATGAGG -ACGGAACCATGTCTTACGAATGGG -ACGGAACCATGTCTTACGTCCTGA -ACGGAACCATGTCTTACGTAGCGA -ACGGAACCATGTCTTACGCACAGA -ACGGAACCATGTCTTACGGCAAGA -ACGGAACCATGTCTTACGGGTTGA -ACGGAACCATGTCTTACGTCCGAT -ACGGAACCATGTCTTACGTGGCAT -ACGGAACCATGTCTTACGCGAGAT -ACGGAACCATGTCTTACGTACCAC -ACGGAACCATGTCTTACGCAGAAC -ACGGAACCATGTCTTACGGTCTAC -ACGGAACCATGTCTTACGACGTAC -ACGGAACCATGTCTTACGAGTGAC -ACGGAACCATGTCTTACGCTGTAG -ACGGAACCATGTCTTACGCCTAAG -ACGGAACCATGTCTTACGGTTCAG -ACGGAACCATGTCTTACGGCATAG -ACGGAACCATGTCTTACGGACAAG -ACGGAACCATGTCTTACGAAGCAG -ACGGAACCATGTCTTACGCGTCAA -ACGGAACCATGTCTTACGGCTGAA -ACGGAACCATGTCTTACGAGTACG -ACGGAACCATGTCTTACGATCCGA -ACGGAACCATGTCTTACGATGGGA -ACGGAACCATGTCTTACGGTGCAA -ACGGAACCATGTCTTACGGAGGAA -ACGGAACCATGTCTTACGCAGGTA -ACGGAACCATGTCTTACGGACTCT -ACGGAACCATGTCTTACGAGTCCT -ACGGAACCATGTCTTACGTAAGCC -ACGGAACCATGTCTTACGATAGCC -ACGGAACCATGTCTTACGTAACCG -ACGGAACCATGTCTTACGATGCCA -ACGGAACCATGTGTTAGCGGAAAC -ACGGAACCATGTGTTAGCAACACC -ACGGAACCATGTGTTAGCATCGAG -ACGGAACCATGTGTTAGCCTCCTT -ACGGAACCATGTGTTAGCCCTGTT -ACGGAACCATGTGTTAGCCGGTTT -ACGGAACCATGTGTTAGCGTGGTT -ACGGAACCATGTGTTAGCGCCTTT -ACGGAACCATGTGTTAGCGGTCTT -ACGGAACCATGTGTTAGCACGCTT -ACGGAACCATGTGTTAGCAGCGTT -ACGGAACCATGTGTTAGCTTCGTC -ACGGAACCATGTGTTAGCTCTCTC -ACGGAACCATGTGTTAGCTGGATC -ACGGAACCATGTGTTAGCCACTTC -ACGGAACCATGTGTTAGCGTACTC -ACGGAACCATGTGTTAGCGATGTC -ACGGAACCATGTGTTAGCACAGTC -ACGGAACCATGTGTTAGCTTGCTG -ACGGAACCATGTGTTAGCTCCATG -ACGGAACCATGTGTTAGCTGTGTG -ACGGAACCATGTGTTAGCCTAGTG -ACGGAACCATGTGTTAGCCATCTG -ACGGAACCATGTGTTAGCGAGTTG -ACGGAACCATGTGTTAGCAGACTG -ACGGAACCATGTGTTAGCTCGGTA -ACGGAACCATGTGTTAGCTGCCTA -ACGGAACCATGTGTTAGCCCACTA -ACGGAACCATGTGTTAGCGGAGTA -ACGGAACCATGTGTTAGCTCGTCT -ACGGAACCATGTGTTAGCTGCACT -ACGGAACCATGTGTTAGCCTGACT -ACGGAACCATGTGTTAGCCAACCT -ACGGAACCATGTGTTAGCGCTACT -ACGGAACCATGTGTTAGCGGATCT -ACGGAACCATGTGTTAGCAAGGCT -ACGGAACCATGTGTTAGCTCAACC -ACGGAACCATGTGTTAGCTGTTCC -ACGGAACCATGTGTTAGCATTCCC -ACGGAACCATGTGTTAGCTTCTCG -ACGGAACCATGTGTTAGCTAGACG -ACGGAACCATGTGTTAGCGTAACG -ACGGAACCATGTGTTAGCACTTCG -ACGGAACCATGTGTTAGCTACGCA -ACGGAACCATGTGTTAGCCTTGCA -ACGGAACCATGTGTTAGCCGAACA -ACGGAACCATGTGTTAGCCAGTCA -ACGGAACCATGTGTTAGCGATCCA -ACGGAACCATGTGTTAGCACGACA -ACGGAACCATGTGTTAGCAGCTCA -ACGGAACCATGTGTTAGCTCACGT -ACGGAACCATGTGTTAGCCGTAGT -ACGGAACCATGTGTTAGCGTCAGT -ACGGAACCATGTGTTAGCGAAGGT -ACGGAACCATGTGTTAGCAACCGT -ACGGAACCATGTGTTAGCTTGTGC -ACGGAACCATGTGTTAGCCTAAGC -ACGGAACCATGTGTTAGCACTAGC -ACGGAACCATGTGTTAGCAGATGC -ACGGAACCATGTGTTAGCTGAAGG -ACGGAACCATGTGTTAGCCAATGG -ACGGAACCATGTGTTAGCATGAGG -ACGGAACCATGTGTTAGCAATGGG -ACGGAACCATGTGTTAGCTCCTGA -ACGGAACCATGTGTTAGCTAGCGA -ACGGAACCATGTGTTAGCCACAGA -ACGGAACCATGTGTTAGCGCAAGA -ACGGAACCATGTGTTAGCGGTTGA -ACGGAACCATGTGTTAGCTCCGAT -ACGGAACCATGTGTTAGCTGGCAT -ACGGAACCATGTGTTAGCCGAGAT -ACGGAACCATGTGTTAGCTACCAC -ACGGAACCATGTGTTAGCCAGAAC -ACGGAACCATGTGTTAGCGTCTAC -ACGGAACCATGTGTTAGCACGTAC -ACGGAACCATGTGTTAGCAGTGAC -ACGGAACCATGTGTTAGCCTGTAG -ACGGAACCATGTGTTAGCCCTAAG -ACGGAACCATGTGTTAGCGTTCAG -ACGGAACCATGTGTTAGCGCATAG -ACGGAACCATGTGTTAGCGACAAG -ACGGAACCATGTGTTAGCAAGCAG -ACGGAACCATGTGTTAGCCGTCAA -ACGGAACCATGTGTTAGCGCTGAA -ACGGAACCATGTGTTAGCAGTACG -ACGGAACCATGTGTTAGCATCCGA -ACGGAACCATGTGTTAGCATGGGA -ACGGAACCATGTGTTAGCGTGCAA -ACGGAACCATGTGTTAGCGAGGAA -ACGGAACCATGTGTTAGCCAGGTA -ACGGAACCATGTGTTAGCGACTCT -ACGGAACCATGTGTTAGCAGTCCT -ACGGAACCATGTGTTAGCTAAGCC -ACGGAACCATGTGTTAGCATAGCC -ACGGAACCATGTGTTAGCTAACCG -ACGGAACCATGTGTTAGCATGCCA -ACGGAACCATGTGTCTTCGGAAAC -ACGGAACCATGTGTCTTCAACACC -ACGGAACCATGTGTCTTCATCGAG -ACGGAACCATGTGTCTTCCTCCTT -ACGGAACCATGTGTCTTCCCTGTT -ACGGAACCATGTGTCTTCCGGTTT -ACGGAACCATGTGTCTTCGTGGTT -ACGGAACCATGTGTCTTCGCCTTT -ACGGAACCATGTGTCTTCGGTCTT -ACGGAACCATGTGTCTTCACGCTT -ACGGAACCATGTGTCTTCAGCGTT -ACGGAACCATGTGTCTTCTTCGTC -ACGGAACCATGTGTCTTCTCTCTC -ACGGAACCATGTGTCTTCTGGATC -ACGGAACCATGTGTCTTCCACTTC -ACGGAACCATGTGTCTTCGTACTC -ACGGAACCATGTGTCTTCGATGTC -ACGGAACCATGTGTCTTCACAGTC -ACGGAACCATGTGTCTTCTTGCTG -ACGGAACCATGTGTCTTCTCCATG -ACGGAACCATGTGTCTTCTGTGTG -ACGGAACCATGTGTCTTCCTAGTG -ACGGAACCATGTGTCTTCCATCTG -ACGGAACCATGTGTCTTCGAGTTG -ACGGAACCATGTGTCTTCAGACTG -ACGGAACCATGTGTCTTCTCGGTA -ACGGAACCATGTGTCTTCTGCCTA -ACGGAACCATGTGTCTTCCCACTA -ACGGAACCATGTGTCTTCGGAGTA -ACGGAACCATGTGTCTTCTCGTCT -ACGGAACCATGTGTCTTCTGCACT -ACGGAACCATGTGTCTTCCTGACT -ACGGAACCATGTGTCTTCCAACCT -ACGGAACCATGTGTCTTCGCTACT -ACGGAACCATGTGTCTTCGGATCT -ACGGAACCATGTGTCTTCAAGGCT -ACGGAACCATGTGTCTTCTCAACC -ACGGAACCATGTGTCTTCTGTTCC -ACGGAACCATGTGTCTTCATTCCC -ACGGAACCATGTGTCTTCTTCTCG -ACGGAACCATGTGTCTTCTAGACG -ACGGAACCATGTGTCTTCGTAACG -ACGGAACCATGTGTCTTCACTTCG -ACGGAACCATGTGTCTTCTACGCA -ACGGAACCATGTGTCTTCCTTGCA -ACGGAACCATGTGTCTTCCGAACA -ACGGAACCATGTGTCTTCCAGTCA -ACGGAACCATGTGTCTTCGATCCA -ACGGAACCATGTGTCTTCACGACA -ACGGAACCATGTGTCTTCAGCTCA -ACGGAACCATGTGTCTTCTCACGT -ACGGAACCATGTGTCTTCCGTAGT -ACGGAACCATGTGTCTTCGTCAGT -ACGGAACCATGTGTCTTCGAAGGT -ACGGAACCATGTGTCTTCAACCGT -ACGGAACCATGTGTCTTCTTGTGC -ACGGAACCATGTGTCTTCCTAAGC -ACGGAACCATGTGTCTTCACTAGC -ACGGAACCATGTGTCTTCAGATGC -ACGGAACCATGTGTCTTCTGAAGG -ACGGAACCATGTGTCTTCCAATGG -ACGGAACCATGTGTCTTCATGAGG -ACGGAACCATGTGTCTTCAATGGG -ACGGAACCATGTGTCTTCTCCTGA -ACGGAACCATGTGTCTTCTAGCGA -ACGGAACCATGTGTCTTCCACAGA -ACGGAACCATGTGTCTTCGCAAGA -ACGGAACCATGTGTCTTCGGTTGA -ACGGAACCATGTGTCTTCTCCGAT -ACGGAACCATGTGTCTTCTGGCAT -ACGGAACCATGTGTCTTCCGAGAT -ACGGAACCATGTGTCTTCTACCAC -ACGGAACCATGTGTCTTCCAGAAC -ACGGAACCATGTGTCTTCGTCTAC -ACGGAACCATGTGTCTTCACGTAC -ACGGAACCATGTGTCTTCAGTGAC -ACGGAACCATGTGTCTTCCTGTAG -ACGGAACCATGTGTCTTCCCTAAG -ACGGAACCATGTGTCTTCGTTCAG -ACGGAACCATGTGTCTTCGCATAG -ACGGAACCATGTGTCTTCGACAAG -ACGGAACCATGTGTCTTCAAGCAG -ACGGAACCATGTGTCTTCCGTCAA -ACGGAACCATGTGTCTTCGCTGAA -ACGGAACCATGTGTCTTCAGTACG -ACGGAACCATGTGTCTTCATCCGA -ACGGAACCATGTGTCTTCATGGGA -ACGGAACCATGTGTCTTCGTGCAA -ACGGAACCATGTGTCTTCGAGGAA -ACGGAACCATGTGTCTTCCAGGTA -ACGGAACCATGTGTCTTCGACTCT -ACGGAACCATGTGTCTTCAGTCCT -ACGGAACCATGTGTCTTCTAAGCC -ACGGAACCATGTGTCTTCATAGCC -ACGGAACCATGTGTCTTCTAACCG -ACGGAACCATGTGTCTTCATGCCA -ACGGAACCATGTCTCTCTGGAAAC -ACGGAACCATGTCTCTCTAACACC -ACGGAACCATGTCTCTCTATCGAG -ACGGAACCATGTCTCTCTCTCCTT -ACGGAACCATGTCTCTCTCCTGTT -ACGGAACCATGTCTCTCTCGGTTT -ACGGAACCATGTCTCTCTGTGGTT -ACGGAACCATGTCTCTCTGCCTTT -ACGGAACCATGTCTCTCTGGTCTT -ACGGAACCATGTCTCTCTACGCTT -ACGGAACCATGTCTCTCTAGCGTT -ACGGAACCATGTCTCTCTTTCGTC -ACGGAACCATGTCTCTCTTCTCTC -ACGGAACCATGTCTCTCTTGGATC -ACGGAACCATGTCTCTCTCACTTC -ACGGAACCATGTCTCTCTGTACTC -ACGGAACCATGTCTCTCTGATGTC -ACGGAACCATGTCTCTCTACAGTC -ACGGAACCATGTCTCTCTTTGCTG -ACGGAACCATGTCTCTCTTCCATG -ACGGAACCATGTCTCTCTTGTGTG -ACGGAACCATGTCTCTCTCTAGTG -ACGGAACCATGTCTCTCTCATCTG -ACGGAACCATGTCTCTCTGAGTTG -ACGGAACCATGTCTCTCTAGACTG -ACGGAACCATGTCTCTCTTCGGTA -ACGGAACCATGTCTCTCTTGCCTA -ACGGAACCATGTCTCTCTCCACTA -ACGGAACCATGTCTCTCTGGAGTA -ACGGAACCATGTCTCTCTTCGTCT -ACGGAACCATGTCTCTCTTGCACT -ACGGAACCATGTCTCTCTCTGACT -ACGGAACCATGTCTCTCTCAACCT -ACGGAACCATGTCTCTCTGCTACT -ACGGAACCATGTCTCTCTGGATCT -ACGGAACCATGTCTCTCTAAGGCT -ACGGAACCATGTCTCTCTTCAACC -ACGGAACCATGTCTCTCTTGTTCC -ACGGAACCATGTCTCTCTATTCCC -ACGGAACCATGTCTCTCTTTCTCG -ACGGAACCATGTCTCTCTTAGACG -ACGGAACCATGTCTCTCTGTAACG -ACGGAACCATGTCTCTCTACTTCG -ACGGAACCATGTCTCTCTTACGCA -ACGGAACCATGTCTCTCTCTTGCA -ACGGAACCATGTCTCTCTCGAACA -ACGGAACCATGTCTCTCTCAGTCA -ACGGAACCATGTCTCTCTGATCCA -ACGGAACCATGTCTCTCTACGACA -ACGGAACCATGTCTCTCTAGCTCA -ACGGAACCATGTCTCTCTTCACGT -ACGGAACCATGTCTCTCTCGTAGT -ACGGAACCATGTCTCTCTGTCAGT -ACGGAACCATGTCTCTCTGAAGGT -ACGGAACCATGTCTCTCTAACCGT -ACGGAACCATGTCTCTCTTTGTGC -ACGGAACCATGTCTCTCTCTAAGC -ACGGAACCATGTCTCTCTACTAGC -ACGGAACCATGTCTCTCTAGATGC -ACGGAACCATGTCTCTCTTGAAGG -ACGGAACCATGTCTCTCTCAATGG -ACGGAACCATGTCTCTCTATGAGG -ACGGAACCATGTCTCTCTAATGGG -ACGGAACCATGTCTCTCTTCCTGA -ACGGAACCATGTCTCTCTTAGCGA -ACGGAACCATGTCTCTCTCACAGA -ACGGAACCATGTCTCTCTGCAAGA -ACGGAACCATGTCTCTCTGGTTGA -ACGGAACCATGTCTCTCTTCCGAT -ACGGAACCATGTCTCTCTTGGCAT -ACGGAACCATGTCTCTCTCGAGAT -ACGGAACCATGTCTCTCTTACCAC -ACGGAACCATGTCTCTCTCAGAAC -ACGGAACCATGTCTCTCTGTCTAC -ACGGAACCATGTCTCTCTACGTAC -ACGGAACCATGTCTCTCTAGTGAC -ACGGAACCATGTCTCTCTCTGTAG -ACGGAACCATGTCTCTCTCCTAAG -ACGGAACCATGTCTCTCTGTTCAG -ACGGAACCATGTCTCTCTGCATAG -ACGGAACCATGTCTCTCTGACAAG -ACGGAACCATGTCTCTCTAAGCAG -ACGGAACCATGTCTCTCTCGTCAA -ACGGAACCATGTCTCTCTGCTGAA -ACGGAACCATGTCTCTCTAGTACG -ACGGAACCATGTCTCTCTATCCGA -ACGGAACCATGTCTCTCTATGGGA -ACGGAACCATGTCTCTCTGTGCAA -ACGGAACCATGTCTCTCTGAGGAA -ACGGAACCATGTCTCTCTCAGGTA -ACGGAACCATGTCTCTCTGACTCT -ACGGAACCATGTCTCTCTAGTCCT -ACGGAACCATGTCTCTCTTAAGCC -ACGGAACCATGTCTCTCTATAGCC -ACGGAACCATGTCTCTCTTAACCG -ACGGAACCATGTCTCTCTATGCCA -ACGGAACCATGTATCTGGGGAAAC -ACGGAACCATGTATCTGGAACACC -ACGGAACCATGTATCTGGATCGAG -ACGGAACCATGTATCTGGCTCCTT -ACGGAACCATGTATCTGGCCTGTT -ACGGAACCATGTATCTGGCGGTTT -ACGGAACCATGTATCTGGGTGGTT -ACGGAACCATGTATCTGGGCCTTT -ACGGAACCATGTATCTGGGGTCTT -ACGGAACCATGTATCTGGACGCTT -ACGGAACCATGTATCTGGAGCGTT -ACGGAACCATGTATCTGGTTCGTC -ACGGAACCATGTATCTGGTCTCTC -ACGGAACCATGTATCTGGTGGATC -ACGGAACCATGTATCTGGCACTTC -ACGGAACCATGTATCTGGGTACTC -ACGGAACCATGTATCTGGGATGTC -ACGGAACCATGTATCTGGACAGTC -ACGGAACCATGTATCTGGTTGCTG -ACGGAACCATGTATCTGGTCCATG -ACGGAACCATGTATCTGGTGTGTG -ACGGAACCATGTATCTGGCTAGTG -ACGGAACCATGTATCTGGCATCTG -ACGGAACCATGTATCTGGGAGTTG -ACGGAACCATGTATCTGGAGACTG -ACGGAACCATGTATCTGGTCGGTA -ACGGAACCATGTATCTGGTGCCTA -ACGGAACCATGTATCTGGCCACTA -ACGGAACCATGTATCTGGGGAGTA -ACGGAACCATGTATCTGGTCGTCT -ACGGAACCATGTATCTGGTGCACT -ACGGAACCATGTATCTGGCTGACT -ACGGAACCATGTATCTGGCAACCT -ACGGAACCATGTATCTGGGCTACT -ACGGAACCATGTATCTGGGGATCT -ACGGAACCATGTATCTGGAAGGCT -ACGGAACCATGTATCTGGTCAACC -ACGGAACCATGTATCTGGTGTTCC -ACGGAACCATGTATCTGGATTCCC -ACGGAACCATGTATCTGGTTCTCG -ACGGAACCATGTATCTGGTAGACG -ACGGAACCATGTATCTGGGTAACG -ACGGAACCATGTATCTGGACTTCG -ACGGAACCATGTATCTGGTACGCA -ACGGAACCATGTATCTGGCTTGCA -ACGGAACCATGTATCTGGCGAACA -ACGGAACCATGTATCTGGCAGTCA -ACGGAACCATGTATCTGGGATCCA -ACGGAACCATGTATCTGGACGACA -ACGGAACCATGTATCTGGAGCTCA -ACGGAACCATGTATCTGGTCACGT -ACGGAACCATGTATCTGGCGTAGT -ACGGAACCATGTATCTGGGTCAGT -ACGGAACCATGTATCTGGGAAGGT -ACGGAACCATGTATCTGGAACCGT -ACGGAACCATGTATCTGGTTGTGC -ACGGAACCATGTATCTGGCTAAGC -ACGGAACCATGTATCTGGACTAGC -ACGGAACCATGTATCTGGAGATGC -ACGGAACCATGTATCTGGTGAAGG -ACGGAACCATGTATCTGGCAATGG -ACGGAACCATGTATCTGGATGAGG -ACGGAACCATGTATCTGGAATGGG -ACGGAACCATGTATCTGGTCCTGA -ACGGAACCATGTATCTGGTAGCGA -ACGGAACCATGTATCTGGCACAGA -ACGGAACCATGTATCTGGGCAAGA -ACGGAACCATGTATCTGGGGTTGA -ACGGAACCATGTATCTGGTCCGAT -ACGGAACCATGTATCTGGTGGCAT -ACGGAACCATGTATCTGGCGAGAT -ACGGAACCATGTATCTGGTACCAC -ACGGAACCATGTATCTGGCAGAAC -ACGGAACCATGTATCTGGGTCTAC -ACGGAACCATGTATCTGGACGTAC -ACGGAACCATGTATCTGGAGTGAC -ACGGAACCATGTATCTGGCTGTAG -ACGGAACCATGTATCTGGCCTAAG -ACGGAACCATGTATCTGGGTTCAG -ACGGAACCATGTATCTGGGCATAG -ACGGAACCATGTATCTGGGACAAG -ACGGAACCATGTATCTGGAAGCAG -ACGGAACCATGTATCTGGCGTCAA -ACGGAACCATGTATCTGGGCTGAA -ACGGAACCATGTATCTGGAGTACG -ACGGAACCATGTATCTGGATCCGA -ACGGAACCATGTATCTGGATGGGA -ACGGAACCATGTATCTGGGTGCAA -ACGGAACCATGTATCTGGGAGGAA -ACGGAACCATGTATCTGGCAGGTA -ACGGAACCATGTATCTGGGACTCT -ACGGAACCATGTATCTGGAGTCCT -ACGGAACCATGTATCTGGTAAGCC -ACGGAACCATGTATCTGGATAGCC -ACGGAACCATGTATCTGGTAACCG -ACGGAACCATGTATCTGGATGCCA -ACGGAACCATGTTTCCACGGAAAC -ACGGAACCATGTTTCCACAACACC -ACGGAACCATGTTTCCACATCGAG -ACGGAACCATGTTTCCACCTCCTT -ACGGAACCATGTTTCCACCCTGTT -ACGGAACCATGTTTCCACCGGTTT -ACGGAACCATGTTTCCACGTGGTT -ACGGAACCATGTTTCCACGCCTTT -ACGGAACCATGTTTCCACGGTCTT -ACGGAACCATGTTTCCACACGCTT -ACGGAACCATGTTTCCACAGCGTT -ACGGAACCATGTTTCCACTTCGTC -ACGGAACCATGTTTCCACTCTCTC -ACGGAACCATGTTTCCACTGGATC -ACGGAACCATGTTTCCACCACTTC -ACGGAACCATGTTTCCACGTACTC -ACGGAACCATGTTTCCACGATGTC -ACGGAACCATGTTTCCACACAGTC -ACGGAACCATGTTTCCACTTGCTG -ACGGAACCATGTTTCCACTCCATG -ACGGAACCATGTTTCCACTGTGTG -ACGGAACCATGTTTCCACCTAGTG -ACGGAACCATGTTTCCACCATCTG -ACGGAACCATGTTTCCACGAGTTG -ACGGAACCATGTTTCCACAGACTG -ACGGAACCATGTTTCCACTCGGTA -ACGGAACCATGTTTCCACTGCCTA -ACGGAACCATGTTTCCACCCACTA -ACGGAACCATGTTTCCACGGAGTA -ACGGAACCATGTTTCCACTCGTCT -ACGGAACCATGTTTCCACTGCACT -ACGGAACCATGTTTCCACCTGACT -ACGGAACCATGTTTCCACCAACCT -ACGGAACCATGTTTCCACGCTACT -ACGGAACCATGTTTCCACGGATCT -ACGGAACCATGTTTCCACAAGGCT -ACGGAACCATGTTTCCACTCAACC -ACGGAACCATGTTTCCACTGTTCC -ACGGAACCATGTTTCCACATTCCC -ACGGAACCATGTTTCCACTTCTCG -ACGGAACCATGTTTCCACTAGACG -ACGGAACCATGTTTCCACGTAACG -ACGGAACCATGTTTCCACACTTCG -ACGGAACCATGTTTCCACTACGCA -ACGGAACCATGTTTCCACCTTGCA -ACGGAACCATGTTTCCACCGAACA -ACGGAACCATGTTTCCACCAGTCA -ACGGAACCATGTTTCCACGATCCA -ACGGAACCATGTTTCCACACGACA -ACGGAACCATGTTTCCACAGCTCA -ACGGAACCATGTTTCCACTCACGT -ACGGAACCATGTTTCCACCGTAGT -ACGGAACCATGTTTCCACGTCAGT -ACGGAACCATGTTTCCACGAAGGT -ACGGAACCATGTTTCCACAACCGT -ACGGAACCATGTTTCCACTTGTGC -ACGGAACCATGTTTCCACCTAAGC -ACGGAACCATGTTTCCACACTAGC -ACGGAACCATGTTTCCACAGATGC -ACGGAACCATGTTTCCACTGAAGG -ACGGAACCATGTTTCCACCAATGG -ACGGAACCATGTTTCCACATGAGG -ACGGAACCATGTTTCCACAATGGG -ACGGAACCATGTTTCCACTCCTGA -ACGGAACCATGTTTCCACTAGCGA -ACGGAACCATGTTTCCACCACAGA -ACGGAACCATGTTTCCACGCAAGA -ACGGAACCATGTTTCCACGGTTGA -ACGGAACCATGTTTCCACTCCGAT -ACGGAACCATGTTTCCACTGGCAT -ACGGAACCATGTTTCCACCGAGAT -ACGGAACCATGTTTCCACTACCAC -ACGGAACCATGTTTCCACCAGAAC -ACGGAACCATGTTTCCACGTCTAC -ACGGAACCATGTTTCCACACGTAC -ACGGAACCATGTTTCCACAGTGAC -ACGGAACCATGTTTCCACCTGTAG -ACGGAACCATGTTTCCACCCTAAG -ACGGAACCATGTTTCCACGTTCAG -ACGGAACCATGTTTCCACGCATAG -ACGGAACCATGTTTCCACGACAAG -ACGGAACCATGTTTCCACAAGCAG -ACGGAACCATGTTTCCACCGTCAA -ACGGAACCATGTTTCCACGCTGAA -ACGGAACCATGTTTCCACAGTACG -ACGGAACCATGTTTCCACATCCGA -ACGGAACCATGTTTCCACATGGGA -ACGGAACCATGTTTCCACGTGCAA -ACGGAACCATGTTTCCACGAGGAA -ACGGAACCATGTTTCCACCAGGTA -ACGGAACCATGTTTCCACGACTCT -ACGGAACCATGTTTCCACAGTCCT -ACGGAACCATGTTTCCACTAAGCC -ACGGAACCATGTTTCCACATAGCC -ACGGAACCATGTTTCCACTAACCG -ACGGAACCATGTTTCCACATGCCA -ACGGAACCATGTCTCGTAGGAAAC -ACGGAACCATGTCTCGTAAACACC -ACGGAACCATGTCTCGTAATCGAG -ACGGAACCATGTCTCGTACTCCTT -ACGGAACCATGTCTCGTACCTGTT -ACGGAACCATGTCTCGTACGGTTT -ACGGAACCATGTCTCGTAGTGGTT -ACGGAACCATGTCTCGTAGCCTTT -ACGGAACCATGTCTCGTAGGTCTT -ACGGAACCATGTCTCGTAACGCTT -ACGGAACCATGTCTCGTAAGCGTT -ACGGAACCATGTCTCGTATTCGTC -ACGGAACCATGTCTCGTATCTCTC -ACGGAACCATGTCTCGTATGGATC -ACGGAACCATGTCTCGTACACTTC -ACGGAACCATGTCTCGTAGTACTC -ACGGAACCATGTCTCGTAGATGTC -ACGGAACCATGTCTCGTAACAGTC -ACGGAACCATGTCTCGTATTGCTG -ACGGAACCATGTCTCGTATCCATG -ACGGAACCATGTCTCGTATGTGTG -ACGGAACCATGTCTCGTACTAGTG -ACGGAACCATGTCTCGTACATCTG -ACGGAACCATGTCTCGTAGAGTTG -ACGGAACCATGTCTCGTAAGACTG -ACGGAACCATGTCTCGTATCGGTA -ACGGAACCATGTCTCGTATGCCTA -ACGGAACCATGTCTCGTACCACTA -ACGGAACCATGTCTCGTAGGAGTA -ACGGAACCATGTCTCGTATCGTCT -ACGGAACCATGTCTCGTATGCACT -ACGGAACCATGTCTCGTACTGACT -ACGGAACCATGTCTCGTACAACCT -ACGGAACCATGTCTCGTAGCTACT -ACGGAACCATGTCTCGTAGGATCT -ACGGAACCATGTCTCGTAAAGGCT -ACGGAACCATGTCTCGTATCAACC -ACGGAACCATGTCTCGTATGTTCC -ACGGAACCATGTCTCGTAATTCCC -ACGGAACCATGTCTCGTATTCTCG -ACGGAACCATGTCTCGTATAGACG -ACGGAACCATGTCTCGTAGTAACG -ACGGAACCATGTCTCGTAACTTCG -ACGGAACCATGTCTCGTATACGCA -ACGGAACCATGTCTCGTACTTGCA -ACGGAACCATGTCTCGTACGAACA -ACGGAACCATGTCTCGTACAGTCA -ACGGAACCATGTCTCGTAGATCCA -ACGGAACCATGTCTCGTAACGACA -ACGGAACCATGTCTCGTAAGCTCA -ACGGAACCATGTCTCGTATCACGT -ACGGAACCATGTCTCGTACGTAGT -ACGGAACCATGTCTCGTAGTCAGT -ACGGAACCATGTCTCGTAGAAGGT -ACGGAACCATGTCTCGTAAACCGT -ACGGAACCATGTCTCGTATTGTGC -ACGGAACCATGTCTCGTACTAAGC -ACGGAACCATGTCTCGTAACTAGC -ACGGAACCATGTCTCGTAAGATGC -ACGGAACCATGTCTCGTATGAAGG -ACGGAACCATGTCTCGTACAATGG -ACGGAACCATGTCTCGTAATGAGG -ACGGAACCATGTCTCGTAAATGGG -ACGGAACCATGTCTCGTATCCTGA -ACGGAACCATGTCTCGTATAGCGA -ACGGAACCATGTCTCGTACACAGA -ACGGAACCATGTCTCGTAGCAAGA -ACGGAACCATGTCTCGTAGGTTGA -ACGGAACCATGTCTCGTATCCGAT -ACGGAACCATGTCTCGTATGGCAT -ACGGAACCATGTCTCGTACGAGAT -ACGGAACCATGTCTCGTATACCAC -ACGGAACCATGTCTCGTACAGAAC -ACGGAACCATGTCTCGTAGTCTAC -ACGGAACCATGTCTCGTAACGTAC -ACGGAACCATGTCTCGTAAGTGAC -ACGGAACCATGTCTCGTACTGTAG -ACGGAACCATGTCTCGTACCTAAG -ACGGAACCATGTCTCGTAGTTCAG -ACGGAACCATGTCTCGTAGCATAG -ACGGAACCATGTCTCGTAGACAAG -ACGGAACCATGTCTCGTAAAGCAG -ACGGAACCATGTCTCGTACGTCAA -ACGGAACCATGTCTCGTAGCTGAA -ACGGAACCATGTCTCGTAAGTACG -ACGGAACCATGTCTCGTAATCCGA -ACGGAACCATGTCTCGTAATGGGA -ACGGAACCATGTCTCGTAGTGCAA -ACGGAACCATGTCTCGTAGAGGAA -ACGGAACCATGTCTCGTACAGGTA -ACGGAACCATGTCTCGTAGACTCT -ACGGAACCATGTCTCGTAAGTCCT -ACGGAACCATGTCTCGTATAAGCC -ACGGAACCATGTCTCGTAATAGCC -ACGGAACCATGTCTCGTATAACCG -ACGGAACCATGTCTCGTAATGCCA -ACGGAACCATGTGTCGATGGAAAC -ACGGAACCATGTGTCGATAACACC -ACGGAACCATGTGTCGATATCGAG -ACGGAACCATGTGTCGATCTCCTT -ACGGAACCATGTGTCGATCCTGTT -ACGGAACCATGTGTCGATCGGTTT -ACGGAACCATGTGTCGATGTGGTT -ACGGAACCATGTGTCGATGCCTTT -ACGGAACCATGTGTCGATGGTCTT -ACGGAACCATGTGTCGATACGCTT -ACGGAACCATGTGTCGATAGCGTT -ACGGAACCATGTGTCGATTTCGTC -ACGGAACCATGTGTCGATTCTCTC -ACGGAACCATGTGTCGATTGGATC -ACGGAACCATGTGTCGATCACTTC -ACGGAACCATGTGTCGATGTACTC -ACGGAACCATGTGTCGATGATGTC -ACGGAACCATGTGTCGATACAGTC -ACGGAACCATGTGTCGATTTGCTG -ACGGAACCATGTGTCGATTCCATG -ACGGAACCATGTGTCGATTGTGTG -ACGGAACCATGTGTCGATCTAGTG -ACGGAACCATGTGTCGATCATCTG -ACGGAACCATGTGTCGATGAGTTG -ACGGAACCATGTGTCGATAGACTG -ACGGAACCATGTGTCGATTCGGTA -ACGGAACCATGTGTCGATTGCCTA -ACGGAACCATGTGTCGATCCACTA -ACGGAACCATGTGTCGATGGAGTA -ACGGAACCATGTGTCGATTCGTCT -ACGGAACCATGTGTCGATTGCACT -ACGGAACCATGTGTCGATCTGACT -ACGGAACCATGTGTCGATCAACCT -ACGGAACCATGTGTCGATGCTACT -ACGGAACCATGTGTCGATGGATCT -ACGGAACCATGTGTCGATAAGGCT -ACGGAACCATGTGTCGATTCAACC -ACGGAACCATGTGTCGATTGTTCC -ACGGAACCATGTGTCGATATTCCC -ACGGAACCATGTGTCGATTTCTCG -ACGGAACCATGTGTCGATTAGACG -ACGGAACCATGTGTCGATGTAACG -ACGGAACCATGTGTCGATACTTCG -ACGGAACCATGTGTCGATTACGCA -ACGGAACCATGTGTCGATCTTGCA -ACGGAACCATGTGTCGATCGAACA -ACGGAACCATGTGTCGATCAGTCA -ACGGAACCATGTGTCGATGATCCA -ACGGAACCATGTGTCGATACGACA -ACGGAACCATGTGTCGATAGCTCA -ACGGAACCATGTGTCGATTCACGT -ACGGAACCATGTGTCGATCGTAGT -ACGGAACCATGTGTCGATGTCAGT -ACGGAACCATGTGTCGATGAAGGT -ACGGAACCATGTGTCGATAACCGT -ACGGAACCATGTGTCGATTTGTGC -ACGGAACCATGTGTCGATCTAAGC -ACGGAACCATGTGTCGATACTAGC -ACGGAACCATGTGTCGATAGATGC -ACGGAACCATGTGTCGATTGAAGG -ACGGAACCATGTGTCGATCAATGG -ACGGAACCATGTGTCGATATGAGG -ACGGAACCATGTGTCGATAATGGG -ACGGAACCATGTGTCGATTCCTGA -ACGGAACCATGTGTCGATTAGCGA -ACGGAACCATGTGTCGATCACAGA -ACGGAACCATGTGTCGATGCAAGA -ACGGAACCATGTGTCGATGGTTGA -ACGGAACCATGTGTCGATTCCGAT -ACGGAACCATGTGTCGATTGGCAT -ACGGAACCATGTGTCGATCGAGAT -ACGGAACCATGTGTCGATTACCAC -ACGGAACCATGTGTCGATCAGAAC -ACGGAACCATGTGTCGATGTCTAC -ACGGAACCATGTGTCGATACGTAC -ACGGAACCATGTGTCGATAGTGAC -ACGGAACCATGTGTCGATCTGTAG -ACGGAACCATGTGTCGATCCTAAG -ACGGAACCATGTGTCGATGTTCAG -ACGGAACCATGTGTCGATGCATAG -ACGGAACCATGTGTCGATGACAAG -ACGGAACCATGTGTCGATAAGCAG -ACGGAACCATGTGTCGATCGTCAA -ACGGAACCATGTGTCGATGCTGAA -ACGGAACCATGTGTCGATAGTACG -ACGGAACCATGTGTCGATATCCGA -ACGGAACCATGTGTCGATATGGGA -ACGGAACCATGTGTCGATGTGCAA -ACGGAACCATGTGTCGATGAGGAA -ACGGAACCATGTGTCGATCAGGTA -ACGGAACCATGTGTCGATGACTCT -ACGGAACCATGTGTCGATAGTCCT -ACGGAACCATGTGTCGATTAAGCC -ACGGAACCATGTGTCGATATAGCC -ACGGAACCATGTGTCGATTAACCG -ACGGAACCATGTGTCGATATGCCA -ACGGAACCATGTGTCACAGGAAAC -ACGGAACCATGTGTCACAAACACC -ACGGAACCATGTGTCACAATCGAG -ACGGAACCATGTGTCACACTCCTT -ACGGAACCATGTGTCACACCTGTT -ACGGAACCATGTGTCACACGGTTT -ACGGAACCATGTGTCACAGTGGTT -ACGGAACCATGTGTCACAGCCTTT -ACGGAACCATGTGTCACAGGTCTT -ACGGAACCATGTGTCACAACGCTT -ACGGAACCATGTGTCACAAGCGTT -ACGGAACCATGTGTCACATTCGTC -ACGGAACCATGTGTCACATCTCTC -ACGGAACCATGTGTCACATGGATC -ACGGAACCATGTGTCACACACTTC -ACGGAACCATGTGTCACAGTACTC -ACGGAACCATGTGTCACAGATGTC -ACGGAACCATGTGTCACAACAGTC -ACGGAACCATGTGTCACATTGCTG -ACGGAACCATGTGTCACATCCATG -ACGGAACCATGTGTCACATGTGTG -ACGGAACCATGTGTCACACTAGTG -ACGGAACCATGTGTCACACATCTG -ACGGAACCATGTGTCACAGAGTTG -ACGGAACCATGTGTCACAAGACTG -ACGGAACCATGTGTCACATCGGTA -ACGGAACCATGTGTCACATGCCTA -ACGGAACCATGTGTCACACCACTA -ACGGAACCATGTGTCACAGGAGTA -ACGGAACCATGTGTCACATCGTCT -ACGGAACCATGTGTCACATGCACT -ACGGAACCATGTGTCACACTGACT -ACGGAACCATGTGTCACACAACCT -ACGGAACCATGTGTCACAGCTACT -ACGGAACCATGTGTCACAGGATCT -ACGGAACCATGTGTCACAAAGGCT -ACGGAACCATGTGTCACATCAACC -ACGGAACCATGTGTCACATGTTCC -ACGGAACCATGTGTCACAATTCCC -ACGGAACCATGTGTCACATTCTCG -ACGGAACCATGTGTCACATAGACG -ACGGAACCATGTGTCACAGTAACG -ACGGAACCATGTGTCACAACTTCG -ACGGAACCATGTGTCACATACGCA -ACGGAACCATGTGTCACACTTGCA -ACGGAACCATGTGTCACACGAACA -ACGGAACCATGTGTCACACAGTCA -ACGGAACCATGTGTCACAGATCCA -ACGGAACCATGTGTCACAACGACA -ACGGAACCATGTGTCACAAGCTCA -ACGGAACCATGTGTCACATCACGT -ACGGAACCATGTGTCACACGTAGT -ACGGAACCATGTGTCACAGTCAGT -ACGGAACCATGTGTCACAGAAGGT -ACGGAACCATGTGTCACAAACCGT -ACGGAACCATGTGTCACATTGTGC -ACGGAACCATGTGTCACACTAAGC -ACGGAACCATGTGTCACAACTAGC -ACGGAACCATGTGTCACAAGATGC -ACGGAACCATGTGTCACATGAAGG -ACGGAACCATGTGTCACACAATGG -ACGGAACCATGTGTCACAATGAGG -ACGGAACCATGTGTCACAAATGGG -ACGGAACCATGTGTCACATCCTGA -ACGGAACCATGTGTCACATAGCGA -ACGGAACCATGTGTCACACACAGA -ACGGAACCATGTGTCACAGCAAGA -ACGGAACCATGTGTCACAGGTTGA -ACGGAACCATGTGTCACATCCGAT -ACGGAACCATGTGTCACATGGCAT -ACGGAACCATGTGTCACACGAGAT -ACGGAACCATGTGTCACATACCAC -ACGGAACCATGTGTCACACAGAAC -ACGGAACCATGTGTCACAGTCTAC -ACGGAACCATGTGTCACAACGTAC -ACGGAACCATGTGTCACAAGTGAC -ACGGAACCATGTGTCACACTGTAG -ACGGAACCATGTGTCACACCTAAG -ACGGAACCATGTGTCACAGTTCAG -ACGGAACCATGTGTCACAGCATAG -ACGGAACCATGTGTCACAGACAAG -ACGGAACCATGTGTCACAAAGCAG -ACGGAACCATGTGTCACACGTCAA -ACGGAACCATGTGTCACAGCTGAA -ACGGAACCATGTGTCACAAGTACG -ACGGAACCATGTGTCACAATCCGA -ACGGAACCATGTGTCACAATGGGA -ACGGAACCATGTGTCACAGTGCAA -ACGGAACCATGTGTCACAGAGGAA -ACGGAACCATGTGTCACACAGGTA -ACGGAACCATGTGTCACAGACTCT -ACGGAACCATGTGTCACAAGTCCT -ACGGAACCATGTGTCACATAAGCC -ACGGAACCATGTGTCACAATAGCC -ACGGAACCATGTGTCACATAACCG -ACGGAACCATGTGTCACAATGCCA -ACGGAACCATGTCTGTTGGGAAAC -ACGGAACCATGTCTGTTGAACACC -ACGGAACCATGTCTGTTGATCGAG -ACGGAACCATGTCTGTTGCTCCTT -ACGGAACCATGTCTGTTGCCTGTT -ACGGAACCATGTCTGTTGCGGTTT -ACGGAACCATGTCTGTTGGTGGTT -ACGGAACCATGTCTGTTGGCCTTT -ACGGAACCATGTCTGTTGGGTCTT -ACGGAACCATGTCTGTTGACGCTT -ACGGAACCATGTCTGTTGAGCGTT -ACGGAACCATGTCTGTTGTTCGTC -ACGGAACCATGTCTGTTGTCTCTC -ACGGAACCATGTCTGTTGTGGATC -ACGGAACCATGTCTGTTGCACTTC -ACGGAACCATGTCTGTTGGTACTC -ACGGAACCATGTCTGTTGGATGTC -ACGGAACCATGTCTGTTGACAGTC -ACGGAACCATGTCTGTTGTTGCTG -ACGGAACCATGTCTGTTGTCCATG -ACGGAACCATGTCTGTTGTGTGTG -ACGGAACCATGTCTGTTGCTAGTG -ACGGAACCATGTCTGTTGCATCTG -ACGGAACCATGTCTGTTGGAGTTG -ACGGAACCATGTCTGTTGAGACTG -ACGGAACCATGTCTGTTGTCGGTA -ACGGAACCATGTCTGTTGTGCCTA -ACGGAACCATGTCTGTTGCCACTA -ACGGAACCATGTCTGTTGGGAGTA -ACGGAACCATGTCTGTTGTCGTCT -ACGGAACCATGTCTGTTGTGCACT -ACGGAACCATGTCTGTTGCTGACT -ACGGAACCATGTCTGTTGCAACCT -ACGGAACCATGTCTGTTGGCTACT -ACGGAACCATGTCTGTTGGGATCT -ACGGAACCATGTCTGTTGAAGGCT -ACGGAACCATGTCTGTTGTCAACC -ACGGAACCATGTCTGTTGTGTTCC -ACGGAACCATGTCTGTTGATTCCC -ACGGAACCATGTCTGTTGTTCTCG -ACGGAACCATGTCTGTTGTAGACG -ACGGAACCATGTCTGTTGGTAACG -ACGGAACCATGTCTGTTGACTTCG -ACGGAACCATGTCTGTTGTACGCA -ACGGAACCATGTCTGTTGCTTGCA -ACGGAACCATGTCTGTTGCGAACA -ACGGAACCATGTCTGTTGCAGTCA -ACGGAACCATGTCTGTTGGATCCA -ACGGAACCATGTCTGTTGACGACA -ACGGAACCATGTCTGTTGAGCTCA -ACGGAACCATGTCTGTTGTCACGT -ACGGAACCATGTCTGTTGCGTAGT -ACGGAACCATGTCTGTTGGTCAGT -ACGGAACCATGTCTGTTGGAAGGT -ACGGAACCATGTCTGTTGAACCGT -ACGGAACCATGTCTGTTGTTGTGC -ACGGAACCATGTCTGTTGCTAAGC -ACGGAACCATGTCTGTTGACTAGC -ACGGAACCATGTCTGTTGAGATGC -ACGGAACCATGTCTGTTGTGAAGG -ACGGAACCATGTCTGTTGCAATGG -ACGGAACCATGTCTGTTGATGAGG -ACGGAACCATGTCTGTTGAATGGG -ACGGAACCATGTCTGTTGTCCTGA -ACGGAACCATGTCTGTTGTAGCGA -ACGGAACCATGTCTGTTGCACAGA -ACGGAACCATGTCTGTTGGCAAGA -ACGGAACCATGTCTGTTGGGTTGA -ACGGAACCATGTCTGTTGTCCGAT -ACGGAACCATGTCTGTTGTGGCAT -ACGGAACCATGTCTGTTGCGAGAT -ACGGAACCATGTCTGTTGTACCAC -ACGGAACCATGTCTGTTGCAGAAC -ACGGAACCATGTCTGTTGGTCTAC -ACGGAACCATGTCTGTTGACGTAC -ACGGAACCATGTCTGTTGAGTGAC -ACGGAACCATGTCTGTTGCTGTAG -ACGGAACCATGTCTGTTGCCTAAG -ACGGAACCATGTCTGTTGGTTCAG -ACGGAACCATGTCTGTTGGCATAG -ACGGAACCATGTCTGTTGGACAAG -ACGGAACCATGTCTGTTGAAGCAG -ACGGAACCATGTCTGTTGCGTCAA -ACGGAACCATGTCTGTTGGCTGAA -ACGGAACCATGTCTGTTGAGTACG -ACGGAACCATGTCTGTTGATCCGA -ACGGAACCATGTCTGTTGATGGGA -ACGGAACCATGTCTGTTGGTGCAA -ACGGAACCATGTCTGTTGGAGGAA -ACGGAACCATGTCTGTTGCAGGTA -ACGGAACCATGTCTGTTGGACTCT -ACGGAACCATGTCTGTTGAGTCCT -ACGGAACCATGTCTGTTGTAAGCC -ACGGAACCATGTCTGTTGATAGCC -ACGGAACCATGTCTGTTGTAACCG -ACGGAACCATGTCTGTTGATGCCA -ACGGAACCATGTATGTCCGGAAAC -ACGGAACCATGTATGTCCAACACC -ACGGAACCATGTATGTCCATCGAG -ACGGAACCATGTATGTCCCTCCTT -ACGGAACCATGTATGTCCCCTGTT -ACGGAACCATGTATGTCCCGGTTT -ACGGAACCATGTATGTCCGTGGTT -ACGGAACCATGTATGTCCGCCTTT -ACGGAACCATGTATGTCCGGTCTT -ACGGAACCATGTATGTCCACGCTT -ACGGAACCATGTATGTCCAGCGTT -ACGGAACCATGTATGTCCTTCGTC -ACGGAACCATGTATGTCCTCTCTC -ACGGAACCATGTATGTCCTGGATC -ACGGAACCATGTATGTCCCACTTC -ACGGAACCATGTATGTCCGTACTC -ACGGAACCATGTATGTCCGATGTC -ACGGAACCATGTATGTCCACAGTC -ACGGAACCATGTATGTCCTTGCTG -ACGGAACCATGTATGTCCTCCATG -ACGGAACCATGTATGTCCTGTGTG -ACGGAACCATGTATGTCCCTAGTG -ACGGAACCATGTATGTCCCATCTG -ACGGAACCATGTATGTCCGAGTTG -ACGGAACCATGTATGTCCAGACTG -ACGGAACCATGTATGTCCTCGGTA -ACGGAACCATGTATGTCCTGCCTA -ACGGAACCATGTATGTCCCCACTA -ACGGAACCATGTATGTCCGGAGTA -ACGGAACCATGTATGTCCTCGTCT -ACGGAACCATGTATGTCCTGCACT -ACGGAACCATGTATGTCCCTGACT -ACGGAACCATGTATGTCCCAACCT -ACGGAACCATGTATGTCCGCTACT -ACGGAACCATGTATGTCCGGATCT -ACGGAACCATGTATGTCCAAGGCT -ACGGAACCATGTATGTCCTCAACC -ACGGAACCATGTATGTCCTGTTCC -ACGGAACCATGTATGTCCATTCCC -ACGGAACCATGTATGTCCTTCTCG -ACGGAACCATGTATGTCCTAGACG -ACGGAACCATGTATGTCCGTAACG -ACGGAACCATGTATGTCCACTTCG -ACGGAACCATGTATGTCCTACGCA -ACGGAACCATGTATGTCCCTTGCA -ACGGAACCATGTATGTCCCGAACA -ACGGAACCATGTATGTCCCAGTCA -ACGGAACCATGTATGTCCGATCCA -ACGGAACCATGTATGTCCACGACA -ACGGAACCATGTATGTCCAGCTCA -ACGGAACCATGTATGTCCTCACGT -ACGGAACCATGTATGTCCCGTAGT -ACGGAACCATGTATGTCCGTCAGT -ACGGAACCATGTATGTCCGAAGGT -ACGGAACCATGTATGTCCAACCGT -ACGGAACCATGTATGTCCTTGTGC -ACGGAACCATGTATGTCCCTAAGC -ACGGAACCATGTATGTCCACTAGC -ACGGAACCATGTATGTCCAGATGC -ACGGAACCATGTATGTCCTGAAGG -ACGGAACCATGTATGTCCCAATGG -ACGGAACCATGTATGTCCATGAGG -ACGGAACCATGTATGTCCAATGGG -ACGGAACCATGTATGTCCTCCTGA -ACGGAACCATGTATGTCCTAGCGA -ACGGAACCATGTATGTCCCACAGA -ACGGAACCATGTATGTCCGCAAGA -ACGGAACCATGTATGTCCGGTTGA -ACGGAACCATGTATGTCCTCCGAT -ACGGAACCATGTATGTCCTGGCAT -ACGGAACCATGTATGTCCCGAGAT -ACGGAACCATGTATGTCCTACCAC -ACGGAACCATGTATGTCCCAGAAC -ACGGAACCATGTATGTCCGTCTAC -ACGGAACCATGTATGTCCACGTAC -ACGGAACCATGTATGTCCAGTGAC -ACGGAACCATGTATGTCCCTGTAG -ACGGAACCATGTATGTCCCCTAAG -ACGGAACCATGTATGTCCGTTCAG -ACGGAACCATGTATGTCCGCATAG -ACGGAACCATGTATGTCCGACAAG -ACGGAACCATGTATGTCCAAGCAG -ACGGAACCATGTATGTCCCGTCAA -ACGGAACCATGTATGTCCGCTGAA -ACGGAACCATGTATGTCCAGTACG -ACGGAACCATGTATGTCCATCCGA -ACGGAACCATGTATGTCCATGGGA -ACGGAACCATGTATGTCCGTGCAA -ACGGAACCATGTATGTCCGAGGAA -ACGGAACCATGTATGTCCCAGGTA -ACGGAACCATGTATGTCCGACTCT -ACGGAACCATGTATGTCCAGTCCT -ACGGAACCATGTATGTCCTAAGCC -ACGGAACCATGTATGTCCATAGCC -ACGGAACCATGTATGTCCTAACCG -ACGGAACCATGTATGTCCATGCCA -ACGGAACCATGTGTGTGTGGAAAC -ACGGAACCATGTGTGTGTAACACC -ACGGAACCATGTGTGTGTATCGAG -ACGGAACCATGTGTGTGTCTCCTT -ACGGAACCATGTGTGTGTCCTGTT -ACGGAACCATGTGTGTGTCGGTTT -ACGGAACCATGTGTGTGTGTGGTT -ACGGAACCATGTGTGTGTGCCTTT -ACGGAACCATGTGTGTGTGGTCTT -ACGGAACCATGTGTGTGTACGCTT -ACGGAACCATGTGTGTGTAGCGTT -ACGGAACCATGTGTGTGTTTCGTC -ACGGAACCATGTGTGTGTTCTCTC -ACGGAACCATGTGTGTGTTGGATC -ACGGAACCATGTGTGTGTCACTTC -ACGGAACCATGTGTGTGTGTACTC -ACGGAACCATGTGTGTGTGATGTC -ACGGAACCATGTGTGTGTACAGTC -ACGGAACCATGTGTGTGTTTGCTG -ACGGAACCATGTGTGTGTTCCATG -ACGGAACCATGTGTGTGTTGTGTG -ACGGAACCATGTGTGTGTCTAGTG -ACGGAACCATGTGTGTGTCATCTG -ACGGAACCATGTGTGTGTGAGTTG -ACGGAACCATGTGTGTGTAGACTG -ACGGAACCATGTGTGTGTTCGGTA -ACGGAACCATGTGTGTGTTGCCTA -ACGGAACCATGTGTGTGTCCACTA -ACGGAACCATGTGTGTGTGGAGTA -ACGGAACCATGTGTGTGTTCGTCT -ACGGAACCATGTGTGTGTTGCACT -ACGGAACCATGTGTGTGTCTGACT -ACGGAACCATGTGTGTGTCAACCT -ACGGAACCATGTGTGTGTGCTACT -ACGGAACCATGTGTGTGTGGATCT -ACGGAACCATGTGTGTGTAAGGCT -ACGGAACCATGTGTGTGTTCAACC -ACGGAACCATGTGTGTGTTGTTCC -ACGGAACCATGTGTGTGTATTCCC -ACGGAACCATGTGTGTGTTTCTCG -ACGGAACCATGTGTGTGTTAGACG -ACGGAACCATGTGTGTGTGTAACG -ACGGAACCATGTGTGTGTACTTCG -ACGGAACCATGTGTGTGTTACGCA -ACGGAACCATGTGTGTGTCTTGCA -ACGGAACCATGTGTGTGTCGAACA -ACGGAACCATGTGTGTGTCAGTCA -ACGGAACCATGTGTGTGTGATCCA -ACGGAACCATGTGTGTGTACGACA -ACGGAACCATGTGTGTGTAGCTCA -ACGGAACCATGTGTGTGTTCACGT -ACGGAACCATGTGTGTGTCGTAGT -ACGGAACCATGTGTGTGTGTCAGT -ACGGAACCATGTGTGTGTGAAGGT -ACGGAACCATGTGTGTGTAACCGT -ACGGAACCATGTGTGTGTTTGTGC -ACGGAACCATGTGTGTGTCTAAGC -ACGGAACCATGTGTGTGTACTAGC -ACGGAACCATGTGTGTGTAGATGC -ACGGAACCATGTGTGTGTTGAAGG -ACGGAACCATGTGTGTGTCAATGG -ACGGAACCATGTGTGTGTATGAGG -ACGGAACCATGTGTGTGTAATGGG -ACGGAACCATGTGTGTGTTCCTGA -ACGGAACCATGTGTGTGTTAGCGA -ACGGAACCATGTGTGTGTCACAGA -ACGGAACCATGTGTGTGTGCAAGA -ACGGAACCATGTGTGTGTGGTTGA -ACGGAACCATGTGTGTGTTCCGAT -ACGGAACCATGTGTGTGTTGGCAT -ACGGAACCATGTGTGTGTCGAGAT -ACGGAACCATGTGTGTGTTACCAC -ACGGAACCATGTGTGTGTCAGAAC -ACGGAACCATGTGTGTGTGTCTAC -ACGGAACCATGTGTGTGTACGTAC -ACGGAACCATGTGTGTGTAGTGAC -ACGGAACCATGTGTGTGTCTGTAG -ACGGAACCATGTGTGTGTCCTAAG -ACGGAACCATGTGTGTGTGTTCAG -ACGGAACCATGTGTGTGTGCATAG -ACGGAACCATGTGTGTGTGACAAG -ACGGAACCATGTGTGTGTAAGCAG -ACGGAACCATGTGTGTGTCGTCAA -ACGGAACCATGTGTGTGTGCTGAA -ACGGAACCATGTGTGTGTAGTACG -ACGGAACCATGTGTGTGTATCCGA -ACGGAACCATGTGTGTGTATGGGA -ACGGAACCATGTGTGTGTGTGCAA -ACGGAACCATGTGTGTGTGAGGAA -ACGGAACCATGTGTGTGTCAGGTA -ACGGAACCATGTGTGTGTGACTCT -ACGGAACCATGTGTGTGTAGTCCT -ACGGAACCATGTGTGTGTTAAGCC -ACGGAACCATGTGTGTGTATAGCC -ACGGAACCATGTGTGTGTTAACCG -ACGGAACCATGTGTGTGTATGCCA -ACGGAACCATGTGTGCTAGGAAAC -ACGGAACCATGTGTGCTAAACACC -ACGGAACCATGTGTGCTAATCGAG -ACGGAACCATGTGTGCTACTCCTT -ACGGAACCATGTGTGCTACCTGTT -ACGGAACCATGTGTGCTACGGTTT -ACGGAACCATGTGTGCTAGTGGTT -ACGGAACCATGTGTGCTAGCCTTT -ACGGAACCATGTGTGCTAGGTCTT -ACGGAACCATGTGTGCTAACGCTT -ACGGAACCATGTGTGCTAAGCGTT -ACGGAACCATGTGTGCTATTCGTC -ACGGAACCATGTGTGCTATCTCTC -ACGGAACCATGTGTGCTATGGATC -ACGGAACCATGTGTGCTACACTTC -ACGGAACCATGTGTGCTAGTACTC -ACGGAACCATGTGTGCTAGATGTC -ACGGAACCATGTGTGCTAACAGTC -ACGGAACCATGTGTGCTATTGCTG -ACGGAACCATGTGTGCTATCCATG -ACGGAACCATGTGTGCTATGTGTG -ACGGAACCATGTGTGCTACTAGTG -ACGGAACCATGTGTGCTACATCTG -ACGGAACCATGTGTGCTAGAGTTG -ACGGAACCATGTGTGCTAAGACTG -ACGGAACCATGTGTGCTATCGGTA -ACGGAACCATGTGTGCTATGCCTA -ACGGAACCATGTGTGCTACCACTA -ACGGAACCATGTGTGCTAGGAGTA -ACGGAACCATGTGTGCTATCGTCT -ACGGAACCATGTGTGCTATGCACT -ACGGAACCATGTGTGCTACTGACT -ACGGAACCATGTGTGCTACAACCT -ACGGAACCATGTGTGCTAGCTACT -ACGGAACCATGTGTGCTAGGATCT -ACGGAACCATGTGTGCTAAAGGCT -ACGGAACCATGTGTGCTATCAACC -ACGGAACCATGTGTGCTATGTTCC -ACGGAACCATGTGTGCTAATTCCC -ACGGAACCATGTGTGCTATTCTCG -ACGGAACCATGTGTGCTATAGACG -ACGGAACCATGTGTGCTAGTAACG -ACGGAACCATGTGTGCTAACTTCG -ACGGAACCATGTGTGCTATACGCA -ACGGAACCATGTGTGCTACTTGCA -ACGGAACCATGTGTGCTACGAACA -ACGGAACCATGTGTGCTACAGTCA -ACGGAACCATGTGTGCTAGATCCA -ACGGAACCATGTGTGCTAACGACA -ACGGAACCATGTGTGCTAAGCTCA -ACGGAACCATGTGTGCTATCACGT -ACGGAACCATGTGTGCTACGTAGT -ACGGAACCATGTGTGCTAGTCAGT -ACGGAACCATGTGTGCTAGAAGGT -ACGGAACCATGTGTGCTAAACCGT -ACGGAACCATGTGTGCTATTGTGC -ACGGAACCATGTGTGCTACTAAGC -ACGGAACCATGTGTGCTAACTAGC -ACGGAACCATGTGTGCTAAGATGC -ACGGAACCATGTGTGCTATGAAGG -ACGGAACCATGTGTGCTACAATGG -ACGGAACCATGTGTGCTAATGAGG -ACGGAACCATGTGTGCTAAATGGG -ACGGAACCATGTGTGCTATCCTGA -ACGGAACCATGTGTGCTATAGCGA -ACGGAACCATGTGTGCTACACAGA -ACGGAACCATGTGTGCTAGCAAGA -ACGGAACCATGTGTGCTAGGTTGA -ACGGAACCATGTGTGCTATCCGAT -ACGGAACCATGTGTGCTATGGCAT -ACGGAACCATGTGTGCTACGAGAT -ACGGAACCATGTGTGCTATACCAC -ACGGAACCATGTGTGCTACAGAAC -ACGGAACCATGTGTGCTAGTCTAC -ACGGAACCATGTGTGCTAACGTAC -ACGGAACCATGTGTGCTAAGTGAC -ACGGAACCATGTGTGCTACTGTAG -ACGGAACCATGTGTGCTACCTAAG -ACGGAACCATGTGTGCTAGTTCAG -ACGGAACCATGTGTGCTAGCATAG -ACGGAACCATGTGTGCTAGACAAG -ACGGAACCATGTGTGCTAAAGCAG -ACGGAACCATGTGTGCTACGTCAA -ACGGAACCATGTGTGCTAGCTGAA -ACGGAACCATGTGTGCTAAGTACG -ACGGAACCATGTGTGCTAATCCGA -ACGGAACCATGTGTGCTAATGGGA -ACGGAACCATGTGTGCTAGTGCAA -ACGGAACCATGTGTGCTAGAGGAA -ACGGAACCATGTGTGCTACAGGTA -ACGGAACCATGTGTGCTAGACTCT -ACGGAACCATGTGTGCTAAGTCCT -ACGGAACCATGTGTGCTATAAGCC -ACGGAACCATGTGTGCTAATAGCC -ACGGAACCATGTGTGCTATAACCG -ACGGAACCATGTGTGCTAATGCCA -ACGGAACCATGTCTGCATGGAAAC -ACGGAACCATGTCTGCATAACACC -ACGGAACCATGTCTGCATATCGAG -ACGGAACCATGTCTGCATCTCCTT -ACGGAACCATGTCTGCATCCTGTT -ACGGAACCATGTCTGCATCGGTTT -ACGGAACCATGTCTGCATGTGGTT -ACGGAACCATGTCTGCATGCCTTT -ACGGAACCATGTCTGCATGGTCTT -ACGGAACCATGTCTGCATACGCTT -ACGGAACCATGTCTGCATAGCGTT -ACGGAACCATGTCTGCATTTCGTC -ACGGAACCATGTCTGCATTCTCTC -ACGGAACCATGTCTGCATTGGATC -ACGGAACCATGTCTGCATCACTTC -ACGGAACCATGTCTGCATGTACTC -ACGGAACCATGTCTGCATGATGTC -ACGGAACCATGTCTGCATACAGTC -ACGGAACCATGTCTGCATTTGCTG -ACGGAACCATGTCTGCATTCCATG -ACGGAACCATGTCTGCATTGTGTG -ACGGAACCATGTCTGCATCTAGTG -ACGGAACCATGTCTGCATCATCTG -ACGGAACCATGTCTGCATGAGTTG -ACGGAACCATGTCTGCATAGACTG -ACGGAACCATGTCTGCATTCGGTA -ACGGAACCATGTCTGCATTGCCTA -ACGGAACCATGTCTGCATCCACTA -ACGGAACCATGTCTGCATGGAGTA -ACGGAACCATGTCTGCATTCGTCT -ACGGAACCATGTCTGCATTGCACT -ACGGAACCATGTCTGCATCTGACT -ACGGAACCATGTCTGCATCAACCT -ACGGAACCATGTCTGCATGCTACT -ACGGAACCATGTCTGCATGGATCT -ACGGAACCATGTCTGCATAAGGCT -ACGGAACCATGTCTGCATTCAACC -ACGGAACCATGTCTGCATTGTTCC -ACGGAACCATGTCTGCATATTCCC -ACGGAACCATGTCTGCATTTCTCG -ACGGAACCATGTCTGCATTAGACG -ACGGAACCATGTCTGCATGTAACG -ACGGAACCATGTCTGCATACTTCG -ACGGAACCATGTCTGCATTACGCA -ACGGAACCATGTCTGCATCTTGCA -ACGGAACCATGTCTGCATCGAACA -ACGGAACCATGTCTGCATCAGTCA -ACGGAACCATGTCTGCATGATCCA -ACGGAACCATGTCTGCATACGACA -ACGGAACCATGTCTGCATAGCTCA -ACGGAACCATGTCTGCATTCACGT -ACGGAACCATGTCTGCATCGTAGT -ACGGAACCATGTCTGCATGTCAGT -ACGGAACCATGTCTGCATGAAGGT -ACGGAACCATGTCTGCATAACCGT -ACGGAACCATGTCTGCATTTGTGC -ACGGAACCATGTCTGCATCTAAGC -ACGGAACCATGTCTGCATACTAGC -ACGGAACCATGTCTGCATAGATGC -ACGGAACCATGTCTGCATTGAAGG -ACGGAACCATGTCTGCATCAATGG -ACGGAACCATGTCTGCATATGAGG -ACGGAACCATGTCTGCATAATGGG -ACGGAACCATGTCTGCATTCCTGA -ACGGAACCATGTCTGCATTAGCGA -ACGGAACCATGTCTGCATCACAGA -ACGGAACCATGTCTGCATGCAAGA -ACGGAACCATGTCTGCATGGTTGA -ACGGAACCATGTCTGCATTCCGAT -ACGGAACCATGTCTGCATTGGCAT -ACGGAACCATGTCTGCATCGAGAT -ACGGAACCATGTCTGCATTACCAC -ACGGAACCATGTCTGCATCAGAAC -ACGGAACCATGTCTGCATGTCTAC -ACGGAACCATGTCTGCATACGTAC -ACGGAACCATGTCTGCATAGTGAC -ACGGAACCATGTCTGCATCTGTAG -ACGGAACCATGTCTGCATCCTAAG -ACGGAACCATGTCTGCATGTTCAG -ACGGAACCATGTCTGCATGCATAG -ACGGAACCATGTCTGCATGACAAG -ACGGAACCATGTCTGCATAAGCAG -ACGGAACCATGTCTGCATCGTCAA -ACGGAACCATGTCTGCATGCTGAA -ACGGAACCATGTCTGCATAGTACG -ACGGAACCATGTCTGCATATCCGA -ACGGAACCATGTCTGCATATGGGA -ACGGAACCATGTCTGCATGTGCAA -ACGGAACCATGTCTGCATGAGGAA -ACGGAACCATGTCTGCATCAGGTA -ACGGAACCATGTCTGCATGACTCT -ACGGAACCATGTCTGCATAGTCCT -ACGGAACCATGTCTGCATTAAGCC -ACGGAACCATGTCTGCATATAGCC -ACGGAACCATGTCTGCATTAACCG -ACGGAACCATGTCTGCATATGCCA -ACGGAACCATGTTTGGAGGGAAAC -ACGGAACCATGTTTGGAGAACACC -ACGGAACCATGTTTGGAGATCGAG -ACGGAACCATGTTTGGAGCTCCTT -ACGGAACCATGTTTGGAGCCTGTT -ACGGAACCATGTTTGGAGCGGTTT -ACGGAACCATGTTTGGAGGTGGTT -ACGGAACCATGTTTGGAGGCCTTT -ACGGAACCATGTTTGGAGGGTCTT -ACGGAACCATGTTTGGAGACGCTT -ACGGAACCATGTTTGGAGAGCGTT -ACGGAACCATGTTTGGAGTTCGTC -ACGGAACCATGTTTGGAGTCTCTC -ACGGAACCATGTTTGGAGTGGATC -ACGGAACCATGTTTGGAGCACTTC -ACGGAACCATGTTTGGAGGTACTC -ACGGAACCATGTTTGGAGGATGTC -ACGGAACCATGTTTGGAGACAGTC -ACGGAACCATGTTTGGAGTTGCTG -ACGGAACCATGTTTGGAGTCCATG -ACGGAACCATGTTTGGAGTGTGTG -ACGGAACCATGTTTGGAGCTAGTG -ACGGAACCATGTTTGGAGCATCTG -ACGGAACCATGTTTGGAGGAGTTG -ACGGAACCATGTTTGGAGAGACTG -ACGGAACCATGTTTGGAGTCGGTA -ACGGAACCATGTTTGGAGTGCCTA -ACGGAACCATGTTTGGAGCCACTA -ACGGAACCATGTTTGGAGGGAGTA -ACGGAACCATGTTTGGAGTCGTCT -ACGGAACCATGTTTGGAGTGCACT -ACGGAACCATGTTTGGAGCTGACT -ACGGAACCATGTTTGGAGCAACCT -ACGGAACCATGTTTGGAGGCTACT -ACGGAACCATGTTTGGAGGGATCT -ACGGAACCATGTTTGGAGAAGGCT -ACGGAACCATGTTTGGAGTCAACC -ACGGAACCATGTTTGGAGTGTTCC -ACGGAACCATGTTTGGAGATTCCC -ACGGAACCATGTTTGGAGTTCTCG -ACGGAACCATGTTTGGAGTAGACG -ACGGAACCATGTTTGGAGGTAACG -ACGGAACCATGTTTGGAGACTTCG -ACGGAACCATGTTTGGAGTACGCA -ACGGAACCATGTTTGGAGCTTGCA -ACGGAACCATGTTTGGAGCGAACA -ACGGAACCATGTTTGGAGCAGTCA -ACGGAACCATGTTTGGAGGATCCA -ACGGAACCATGTTTGGAGACGACA -ACGGAACCATGTTTGGAGAGCTCA -ACGGAACCATGTTTGGAGTCACGT -ACGGAACCATGTTTGGAGCGTAGT -ACGGAACCATGTTTGGAGGTCAGT -ACGGAACCATGTTTGGAGGAAGGT -ACGGAACCATGTTTGGAGAACCGT -ACGGAACCATGTTTGGAGTTGTGC -ACGGAACCATGTTTGGAGCTAAGC -ACGGAACCATGTTTGGAGACTAGC -ACGGAACCATGTTTGGAGAGATGC -ACGGAACCATGTTTGGAGTGAAGG -ACGGAACCATGTTTGGAGCAATGG -ACGGAACCATGTTTGGAGATGAGG -ACGGAACCATGTTTGGAGAATGGG -ACGGAACCATGTTTGGAGTCCTGA -ACGGAACCATGTTTGGAGTAGCGA -ACGGAACCATGTTTGGAGCACAGA -ACGGAACCATGTTTGGAGGCAAGA -ACGGAACCATGTTTGGAGGGTTGA -ACGGAACCATGTTTGGAGTCCGAT -ACGGAACCATGTTTGGAGTGGCAT -ACGGAACCATGTTTGGAGCGAGAT -ACGGAACCATGTTTGGAGTACCAC -ACGGAACCATGTTTGGAGCAGAAC -ACGGAACCATGTTTGGAGGTCTAC -ACGGAACCATGTTTGGAGACGTAC -ACGGAACCATGTTTGGAGAGTGAC -ACGGAACCATGTTTGGAGCTGTAG -ACGGAACCATGTTTGGAGCCTAAG -ACGGAACCATGTTTGGAGGTTCAG -ACGGAACCATGTTTGGAGGCATAG -ACGGAACCATGTTTGGAGGACAAG -ACGGAACCATGTTTGGAGAAGCAG -ACGGAACCATGTTTGGAGCGTCAA -ACGGAACCATGTTTGGAGGCTGAA -ACGGAACCATGTTTGGAGAGTACG -ACGGAACCATGTTTGGAGATCCGA -ACGGAACCATGTTTGGAGATGGGA -ACGGAACCATGTTTGGAGGTGCAA -ACGGAACCATGTTTGGAGGAGGAA -ACGGAACCATGTTTGGAGCAGGTA -ACGGAACCATGTTTGGAGGACTCT -ACGGAACCATGTTTGGAGAGTCCT -ACGGAACCATGTTTGGAGTAAGCC -ACGGAACCATGTTTGGAGATAGCC -ACGGAACCATGTTTGGAGTAACCG -ACGGAACCATGTTTGGAGATGCCA -ACGGAACCATGTCTGAGAGGAAAC -ACGGAACCATGTCTGAGAAACACC -ACGGAACCATGTCTGAGAATCGAG -ACGGAACCATGTCTGAGACTCCTT -ACGGAACCATGTCTGAGACCTGTT -ACGGAACCATGTCTGAGACGGTTT -ACGGAACCATGTCTGAGAGTGGTT -ACGGAACCATGTCTGAGAGCCTTT -ACGGAACCATGTCTGAGAGGTCTT -ACGGAACCATGTCTGAGAACGCTT -ACGGAACCATGTCTGAGAAGCGTT -ACGGAACCATGTCTGAGATTCGTC -ACGGAACCATGTCTGAGATCTCTC -ACGGAACCATGTCTGAGATGGATC -ACGGAACCATGTCTGAGACACTTC -ACGGAACCATGTCTGAGAGTACTC -ACGGAACCATGTCTGAGAGATGTC -ACGGAACCATGTCTGAGAACAGTC -ACGGAACCATGTCTGAGATTGCTG -ACGGAACCATGTCTGAGATCCATG -ACGGAACCATGTCTGAGATGTGTG -ACGGAACCATGTCTGAGACTAGTG -ACGGAACCATGTCTGAGACATCTG -ACGGAACCATGTCTGAGAGAGTTG -ACGGAACCATGTCTGAGAAGACTG -ACGGAACCATGTCTGAGATCGGTA -ACGGAACCATGTCTGAGATGCCTA -ACGGAACCATGTCTGAGACCACTA -ACGGAACCATGTCTGAGAGGAGTA -ACGGAACCATGTCTGAGATCGTCT -ACGGAACCATGTCTGAGATGCACT -ACGGAACCATGTCTGAGACTGACT -ACGGAACCATGTCTGAGACAACCT -ACGGAACCATGTCTGAGAGCTACT -ACGGAACCATGTCTGAGAGGATCT -ACGGAACCATGTCTGAGAAAGGCT -ACGGAACCATGTCTGAGATCAACC -ACGGAACCATGTCTGAGATGTTCC -ACGGAACCATGTCTGAGAATTCCC -ACGGAACCATGTCTGAGATTCTCG -ACGGAACCATGTCTGAGATAGACG -ACGGAACCATGTCTGAGAGTAACG -ACGGAACCATGTCTGAGAACTTCG -ACGGAACCATGTCTGAGATACGCA -ACGGAACCATGTCTGAGACTTGCA -ACGGAACCATGTCTGAGACGAACA -ACGGAACCATGTCTGAGACAGTCA -ACGGAACCATGTCTGAGAGATCCA -ACGGAACCATGTCTGAGAACGACA -ACGGAACCATGTCTGAGAAGCTCA -ACGGAACCATGTCTGAGATCACGT -ACGGAACCATGTCTGAGACGTAGT -ACGGAACCATGTCTGAGAGTCAGT -ACGGAACCATGTCTGAGAGAAGGT -ACGGAACCATGTCTGAGAAACCGT -ACGGAACCATGTCTGAGATTGTGC -ACGGAACCATGTCTGAGACTAAGC -ACGGAACCATGTCTGAGAACTAGC -ACGGAACCATGTCTGAGAAGATGC -ACGGAACCATGTCTGAGATGAAGG -ACGGAACCATGTCTGAGACAATGG -ACGGAACCATGTCTGAGAATGAGG -ACGGAACCATGTCTGAGAAATGGG -ACGGAACCATGTCTGAGATCCTGA -ACGGAACCATGTCTGAGATAGCGA -ACGGAACCATGTCTGAGACACAGA -ACGGAACCATGTCTGAGAGCAAGA -ACGGAACCATGTCTGAGAGGTTGA -ACGGAACCATGTCTGAGATCCGAT -ACGGAACCATGTCTGAGATGGCAT -ACGGAACCATGTCTGAGACGAGAT -ACGGAACCATGTCTGAGATACCAC -ACGGAACCATGTCTGAGACAGAAC -ACGGAACCATGTCTGAGAGTCTAC -ACGGAACCATGTCTGAGAACGTAC -ACGGAACCATGTCTGAGAAGTGAC -ACGGAACCATGTCTGAGACTGTAG -ACGGAACCATGTCTGAGACCTAAG -ACGGAACCATGTCTGAGAGTTCAG -ACGGAACCATGTCTGAGAGCATAG -ACGGAACCATGTCTGAGAGACAAG -ACGGAACCATGTCTGAGAAAGCAG -ACGGAACCATGTCTGAGACGTCAA -ACGGAACCATGTCTGAGAGCTGAA -ACGGAACCATGTCTGAGAAGTACG -ACGGAACCATGTCTGAGAATCCGA -ACGGAACCATGTCTGAGAATGGGA -ACGGAACCATGTCTGAGAGTGCAA -ACGGAACCATGTCTGAGAGAGGAA -ACGGAACCATGTCTGAGACAGGTA -ACGGAACCATGTCTGAGAGACTCT -ACGGAACCATGTCTGAGAAGTCCT -ACGGAACCATGTCTGAGATAAGCC -ACGGAACCATGTCTGAGAATAGCC -ACGGAACCATGTCTGAGATAACCG -ACGGAACCATGTCTGAGAATGCCA -ACGGAACCATGTGTATCGGGAAAC -ACGGAACCATGTGTATCGAACACC -ACGGAACCATGTGTATCGATCGAG -ACGGAACCATGTGTATCGCTCCTT -ACGGAACCATGTGTATCGCCTGTT -ACGGAACCATGTGTATCGCGGTTT -ACGGAACCATGTGTATCGGTGGTT -ACGGAACCATGTGTATCGGCCTTT -ACGGAACCATGTGTATCGGGTCTT -ACGGAACCATGTGTATCGACGCTT -ACGGAACCATGTGTATCGAGCGTT -ACGGAACCATGTGTATCGTTCGTC -ACGGAACCATGTGTATCGTCTCTC -ACGGAACCATGTGTATCGTGGATC -ACGGAACCATGTGTATCGCACTTC -ACGGAACCATGTGTATCGGTACTC -ACGGAACCATGTGTATCGGATGTC -ACGGAACCATGTGTATCGACAGTC -ACGGAACCATGTGTATCGTTGCTG -ACGGAACCATGTGTATCGTCCATG -ACGGAACCATGTGTATCGTGTGTG -ACGGAACCATGTGTATCGCTAGTG -ACGGAACCATGTGTATCGCATCTG -ACGGAACCATGTGTATCGGAGTTG -ACGGAACCATGTGTATCGAGACTG -ACGGAACCATGTGTATCGTCGGTA -ACGGAACCATGTGTATCGTGCCTA -ACGGAACCATGTGTATCGCCACTA -ACGGAACCATGTGTATCGGGAGTA -ACGGAACCATGTGTATCGTCGTCT -ACGGAACCATGTGTATCGTGCACT -ACGGAACCATGTGTATCGCTGACT -ACGGAACCATGTGTATCGCAACCT -ACGGAACCATGTGTATCGGCTACT -ACGGAACCATGTGTATCGGGATCT -ACGGAACCATGTGTATCGAAGGCT -ACGGAACCATGTGTATCGTCAACC -ACGGAACCATGTGTATCGTGTTCC -ACGGAACCATGTGTATCGATTCCC -ACGGAACCATGTGTATCGTTCTCG -ACGGAACCATGTGTATCGTAGACG -ACGGAACCATGTGTATCGGTAACG -ACGGAACCATGTGTATCGACTTCG -ACGGAACCATGTGTATCGTACGCA -ACGGAACCATGTGTATCGCTTGCA -ACGGAACCATGTGTATCGCGAACA -ACGGAACCATGTGTATCGCAGTCA -ACGGAACCATGTGTATCGGATCCA -ACGGAACCATGTGTATCGACGACA -ACGGAACCATGTGTATCGAGCTCA -ACGGAACCATGTGTATCGTCACGT -ACGGAACCATGTGTATCGCGTAGT -ACGGAACCATGTGTATCGGTCAGT -ACGGAACCATGTGTATCGGAAGGT -ACGGAACCATGTGTATCGAACCGT -ACGGAACCATGTGTATCGTTGTGC -ACGGAACCATGTGTATCGCTAAGC -ACGGAACCATGTGTATCGACTAGC -ACGGAACCATGTGTATCGAGATGC -ACGGAACCATGTGTATCGTGAAGG -ACGGAACCATGTGTATCGCAATGG -ACGGAACCATGTGTATCGATGAGG -ACGGAACCATGTGTATCGAATGGG -ACGGAACCATGTGTATCGTCCTGA -ACGGAACCATGTGTATCGTAGCGA -ACGGAACCATGTGTATCGCACAGA -ACGGAACCATGTGTATCGGCAAGA -ACGGAACCATGTGTATCGGGTTGA -ACGGAACCATGTGTATCGTCCGAT -ACGGAACCATGTGTATCGTGGCAT -ACGGAACCATGTGTATCGCGAGAT -ACGGAACCATGTGTATCGTACCAC -ACGGAACCATGTGTATCGCAGAAC -ACGGAACCATGTGTATCGGTCTAC -ACGGAACCATGTGTATCGACGTAC -ACGGAACCATGTGTATCGAGTGAC -ACGGAACCATGTGTATCGCTGTAG -ACGGAACCATGTGTATCGCCTAAG -ACGGAACCATGTGTATCGGTTCAG -ACGGAACCATGTGTATCGGCATAG -ACGGAACCATGTGTATCGGACAAG -ACGGAACCATGTGTATCGAAGCAG -ACGGAACCATGTGTATCGCGTCAA -ACGGAACCATGTGTATCGGCTGAA -ACGGAACCATGTGTATCGAGTACG -ACGGAACCATGTGTATCGATCCGA -ACGGAACCATGTGTATCGATGGGA -ACGGAACCATGTGTATCGGTGCAA -ACGGAACCATGTGTATCGGAGGAA -ACGGAACCATGTGTATCGCAGGTA -ACGGAACCATGTGTATCGGACTCT -ACGGAACCATGTGTATCGAGTCCT -ACGGAACCATGTGTATCGTAAGCC -ACGGAACCATGTGTATCGATAGCC -ACGGAACCATGTGTATCGTAACCG -ACGGAACCATGTGTATCGATGCCA -ACGGAACCATGTCTATGCGGAAAC -ACGGAACCATGTCTATGCAACACC -ACGGAACCATGTCTATGCATCGAG -ACGGAACCATGTCTATGCCTCCTT -ACGGAACCATGTCTATGCCCTGTT -ACGGAACCATGTCTATGCCGGTTT -ACGGAACCATGTCTATGCGTGGTT -ACGGAACCATGTCTATGCGCCTTT -ACGGAACCATGTCTATGCGGTCTT -ACGGAACCATGTCTATGCACGCTT -ACGGAACCATGTCTATGCAGCGTT -ACGGAACCATGTCTATGCTTCGTC -ACGGAACCATGTCTATGCTCTCTC -ACGGAACCATGTCTATGCTGGATC -ACGGAACCATGTCTATGCCACTTC -ACGGAACCATGTCTATGCGTACTC -ACGGAACCATGTCTATGCGATGTC -ACGGAACCATGTCTATGCACAGTC -ACGGAACCATGTCTATGCTTGCTG -ACGGAACCATGTCTATGCTCCATG -ACGGAACCATGTCTATGCTGTGTG -ACGGAACCATGTCTATGCCTAGTG -ACGGAACCATGTCTATGCCATCTG -ACGGAACCATGTCTATGCGAGTTG -ACGGAACCATGTCTATGCAGACTG -ACGGAACCATGTCTATGCTCGGTA -ACGGAACCATGTCTATGCTGCCTA -ACGGAACCATGTCTATGCCCACTA -ACGGAACCATGTCTATGCGGAGTA -ACGGAACCATGTCTATGCTCGTCT -ACGGAACCATGTCTATGCTGCACT -ACGGAACCATGTCTATGCCTGACT -ACGGAACCATGTCTATGCCAACCT -ACGGAACCATGTCTATGCGCTACT -ACGGAACCATGTCTATGCGGATCT -ACGGAACCATGTCTATGCAAGGCT -ACGGAACCATGTCTATGCTCAACC -ACGGAACCATGTCTATGCTGTTCC -ACGGAACCATGTCTATGCATTCCC -ACGGAACCATGTCTATGCTTCTCG -ACGGAACCATGTCTATGCTAGACG -ACGGAACCATGTCTATGCGTAACG -ACGGAACCATGTCTATGCACTTCG -ACGGAACCATGTCTATGCTACGCA -ACGGAACCATGTCTATGCCTTGCA -ACGGAACCATGTCTATGCCGAACA -ACGGAACCATGTCTATGCCAGTCA -ACGGAACCATGTCTATGCGATCCA -ACGGAACCATGTCTATGCACGACA -ACGGAACCATGTCTATGCAGCTCA -ACGGAACCATGTCTATGCTCACGT -ACGGAACCATGTCTATGCCGTAGT -ACGGAACCATGTCTATGCGTCAGT -ACGGAACCATGTCTATGCGAAGGT -ACGGAACCATGTCTATGCAACCGT -ACGGAACCATGTCTATGCTTGTGC -ACGGAACCATGTCTATGCCTAAGC -ACGGAACCATGTCTATGCACTAGC -ACGGAACCATGTCTATGCAGATGC -ACGGAACCATGTCTATGCTGAAGG -ACGGAACCATGTCTATGCCAATGG -ACGGAACCATGTCTATGCATGAGG -ACGGAACCATGTCTATGCAATGGG -ACGGAACCATGTCTATGCTCCTGA -ACGGAACCATGTCTATGCTAGCGA -ACGGAACCATGTCTATGCCACAGA -ACGGAACCATGTCTATGCGCAAGA -ACGGAACCATGTCTATGCGGTTGA -ACGGAACCATGTCTATGCTCCGAT -ACGGAACCATGTCTATGCTGGCAT -ACGGAACCATGTCTATGCCGAGAT -ACGGAACCATGTCTATGCTACCAC -ACGGAACCATGTCTATGCCAGAAC -ACGGAACCATGTCTATGCGTCTAC -ACGGAACCATGTCTATGCACGTAC -ACGGAACCATGTCTATGCAGTGAC -ACGGAACCATGTCTATGCCTGTAG -ACGGAACCATGTCTATGCCCTAAG -ACGGAACCATGTCTATGCGTTCAG -ACGGAACCATGTCTATGCGCATAG -ACGGAACCATGTCTATGCGACAAG -ACGGAACCATGTCTATGCAAGCAG -ACGGAACCATGTCTATGCCGTCAA -ACGGAACCATGTCTATGCGCTGAA -ACGGAACCATGTCTATGCAGTACG -ACGGAACCATGTCTATGCATCCGA -ACGGAACCATGTCTATGCATGGGA -ACGGAACCATGTCTATGCGTGCAA -ACGGAACCATGTCTATGCGAGGAA -ACGGAACCATGTCTATGCCAGGTA -ACGGAACCATGTCTATGCGACTCT -ACGGAACCATGTCTATGCAGTCCT -ACGGAACCATGTCTATGCTAAGCC -ACGGAACCATGTCTATGCATAGCC -ACGGAACCATGTCTATGCTAACCG -ACGGAACCATGTCTATGCATGCCA -ACGGAACCATGTCTACCAGGAAAC -ACGGAACCATGTCTACCAAACACC -ACGGAACCATGTCTACCAATCGAG -ACGGAACCATGTCTACCACTCCTT -ACGGAACCATGTCTACCACCTGTT -ACGGAACCATGTCTACCACGGTTT -ACGGAACCATGTCTACCAGTGGTT -ACGGAACCATGTCTACCAGCCTTT -ACGGAACCATGTCTACCAGGTCTT -ACGGAACCATGTCTACCAACGCTT -ACGGAACCATGTCTACCAAGCGTT -ACGGAACCATGTCTACCATTCGTC -ACGGAACCATGTCTACCATCTCTC -ACGGAACCATGTCTACCATGGATC -ACGGAACCATGTCTACCACACTTC -ACGGAACCATGTCTACCAGTACTC -ACGGAACCATGTCTACCAGATGTC -ACGGAACCATGTCTACCAACAGTC -ACGGAACCATGTCTACCATTGCTG -ACGGAACCATGTCTACCATCCATG -ACGGAACCATGTCTACCATGTGTG -ACGGAACCATGTCTACCACTAGTG -ACGGAACCATGTCTACCACATCTG -ACGGAACCATGTCTACCAGAGTTG -ACGGAACCATGTCTACCAAGACTG -ACGGAACCATGTCTACCATCGGTA -ACGGAACCATGTCTACCATGCCTA -ACGGAACCATGTCTACCACCACTA -ACGGAACCATGTCTACCAGGAGTA -ACGGAACCATGTCTACCATCGTCT -ACGGAACCATGTCTACCATGCACT -ACGGAACCATGTCTACCACTGACT -ACGGAACCATGTCTACCACAACCT -ACGGAACCATGTCTACCAGCTACT -ACGGAACCATGTCTACCAGGATCT -ACGGAACCATGTCTACCAAAGGCT -ACGGAACCATGTCTACCATCAACC -ACGGAACCATGTCTACCATGTTCC -ACGGAACCATGTCTACCAATTCCC -ACGGAACCATGTCTACCATTCTCG -ACGGAACCATGTCTACCATAGACG -ACGGAACCATGTCTACCAGTAACG -ACGGAACCATGTCTACCAACTTCG -ACGGAACCATGTCTACCATACGCA -ACGGAACCATGTCTACCACTTGCA -ACGGAACCATGTCTACCACGAACA -ACGGAACCATGTCTACCACAGTCA -ACGGAACCATGTCTACCAGATCCA -ACGGAACCATGTCTACCAACGACA -ACGGAACCATGTCTACCAAGCTCA -ACGGAACCATGTCTACCATCACGT -ACGGAACCATGTCTACCACGTAGT -ACGGAACCATGTCTACCAGTCAGT -ACGGAACCATGTCTACCAGAAGGT -ACGGAACCATGTCTACCAAACCGT -ACGGAACCATGTCTACCATTGTGC -ACGGAACCATGTCTACCACTAAGC -ACGGAACCATGTCTACCAACTAGC -ACGGAACCATGTCTACCAAGATGC -ACGGAACCATGTCTACCATGAAGG -ACGGAACCATGTCTACCACAATGG -ACGGAACCATGTCTACCAATGAGG -ACGGAACCATGTCTACCAAATGGG -ACGGAACCATGTCTACCATCCTGA -ACGGAACCATGTCTACCATAGCGA -ACGGAACCATGTCTACCACACAGA -ACGGAACCATGTCTACCAGCAAGA -ACGGAACCATGTCTACCAGGTTGA -ACGGAACCATGTCTACCATCCGAT -ACGGAACCATGTCTACCATGGCAT -ACGGAACCATGTCTACCACGAGAT -ACGGAACCATGTCTACCATACCAC -ACGGAACCATGTCTACCACAGAAC -ACGGAACCATGTCTACCAGTCTAC -ACGGAACCATGTCTACCAACGTAC -ACGGAACCATGTCTACCAAGTGAC -ACGGAACCATGTCTACCACTGTAG -ACGGAACCATGTCTACCACCTAAG -ACGGAACCATGTCTACCAGTTCAG -ACGGAACCATGTCTACCAGCATAG -ACGGAACCATGTCTACCAGACAAG -ACGGAACCATGTCTACCAAAGCAG -ACGGAACCATGTCTACCACGTCAA -ACGGAACCATGTCTACCAGCTGAA -ACGGAACCATGTCTACCAAGTACG -ACGGAACCATGTCTACCAATCCGA -ACGGAACCATGTCTACCAATGGGA -ACGGAACCATGTCTACCAGTGCAA -ACGGAACCATGTCTACCAGAGGAA -ACGGAACCATGTCTACCACAGGTA -ACGGAACCATGTCTACCAGACTCT -ACGGAACCATGTCTACCAAGTCCT -ACGGAACCATGTCTACCATAAGCC -ACGGAACCATGTCTACCAATAGCC -ACGGAACCATGTCTACCATAACCG -ACGGAACCATGTCTACCAATGCCA -ACGGAACCATGTGTAGGAGGAAAC -ACGGAACCATGTGTAGGAAACACC -ACGGAACCATGTGTAGGAATCGAG -ACGGAACCATGTGTAGGACTCCTT -ACGGAACCATGTGTAGGACCTGTT -ACGGAACCATGTGTAGGACGGTTT -ACGGAACCATGTGTAGGAGTGGTT -ACGGAACCATGTGTAGGAGCCTTT -ACGGAACCATGTGTAGGAGGTCTT -ACGGAACCATGTGTAGGAACGCTT -ACGGAACCATGTGTAGGAAGCGTT -ACGGAACCATGTGTAGGATTCGTC -ACGGAACCATGTGTAGGATCTCTC -ACGGAACCATGTGTAGGATGGATC -ACGGAACCATGTGTAGGACACTTC -ACGGAACCATGTGTAGGAGTACTC -ACGGAACCATGTGTAGGAGATGTC -ACGGAACCATGTGTAGGAACAGTC -ACGGAACCATGTGTAGGATTGCTG -ACGGAACCATGTGTAGGATCCATG -ACGGAACCATGTGTAGGATGTGTG -ACGGAACCATGTGTAGGACTAGTG -ACGGAACCATGTGTAGGACATCTG -ACGGAACCATGTGTAGGAGAGTTG -ACGGAACCATGTGTAGGAAGACTG -ACGGAACCATGTGTAGGATCGGTA -ACGGAACCATGTGTAGGATGCCTA -ACGGAACCATGTGTAGGACCACTA -ACGGAACCATGTGTAGGAGGAGTA -ACGGAACCATGTGTAGGATCGTCT -ACGGAACCATGTGTAGGATGCACT -ACGGAACCATGTGTAGGACTGACT -ACGGAACCATGTGTAGGACAACCT -ACGGAACCATGTGTAGGAGCTACT -ACGGAACCATGTGTAGGAGGATCT -ACGGAACCATGTGTAGGAAAGGCT -ACGGAACCATGTGTAGGATCAACC -ACGGAACCATGTGTAGGATGTTCC -ACGGAACCATGTGTAGGAATTCCC -ACGGAACCATGTGTAGGATTCTCG -ACGGAACCATGTGTAGGATAGACG -ACGGAACCATGTGTAGGAGTAACG -ACGGAACCATGTGTAGGAACTTCG -ACGGAACCATGTGTAGGATACGCA -ACGGAACCATGTGTAGGACTTGCA -ACGGAACCATGTGTAGGACGAACA -ACGGAACCATGTGTAGGACAGTCA -ACGGAACCATGTGTAGGAGATCCA -ACGGAACCATGTGTAGGAACGACA -ACGGAACCATGTGTAGGAAGCTCA -ACGGAACCATGTGTAGGATCACGT -ACGGAACCATGTGTAGGACGTAGT -ACGGAACCATGTGTAGGAGTCAGT -ACGGAACCATGTGTAGGAGAAGGT -ACGGAACCATGTGTAGGAAACCGT -ACGGAACCATGTGTAGGATTGTGC -ACGGAACCATGTGTAGGACTAAGC -ACGGAACCATGTGTAGGAACTAGC -ACGGAACCATGTGTAGGAAGATGC -ACGGAACCATGTGTAGGATGAAGG -ACGGAACCATGTGTAGGACAATGG -ACGGAACCATGTGTAGGAATGAGG -ACGGAACCATGTGTAGGAAATGGG -ACGGAACCATGTGTAGGATCCTGA -ACGGAACCATGTGTAGGATAGCGA -ACGGAACCATGTGTAGGACACAGA -ACGGAACCATGTGTAGGAGCAAGA -ACGGAACCATGTGTAGGAGGTTGA -ACGGAACCATGTGTAGGATCCGAT -ACGGAACCATGTGTAGGATGGCAT -ACGGAACCATGTGTAGGACGAGAT -ACGGAACCATGTGTAGGATACCAC -ACGGAACCATGTGTAGGACAGAAC -ACGGAACCATGTGTAGGAGTCTAC -ACGGAACCATGTGTAGGAACGTAC -ACGGAACCATGTGTAGGAAGTGAC -ACGGAACCATGTGTAGGACTGTAG -ACGGAACCATGTGTAGGACCTAAG -ACGGAACCATGTGTAGGAGTTCAG -ACGGAACCATGTGTAGGAGCATAG -ACGGAACCATGTGTAGGAGACAAG -ACGGAACCATGTGTAGGAAAGCAG -ACGGAACCATGTGTAGGACGTCAA -ACGGAACCATGTGTAGGAGCTGAA -ACGGAACCATGTGTAGGAAGTACG -ACGGAACCATGTGTAGGAATCCGA -ACGGAACCATGTGTAGGAATGGGA -ACGGAACCATGTGTAGGAGTGCAA -ACGGAACCATGTGTAGGAGAGGAA -ACGGAACCATGTGTAGGACAGGTA -ACGGAACCATGTGTAGGAGACTCT -ACGGAACCATGTGTAGGAAGTCCT -ACGGAACCATGTGTAGGATAAGCC -ACGGAACCATGTGTAGGAATAGCC -ACGGAACCATGTGTAGGATAACCG -ACGGAACCATGTGTAGGAATGCCA -ACGGAACCATGTTCTTCGGGAAAC -ACGGAACCATGTTCTTCGAACACC -ACGGAACCATGTTCTTCGATCGAG -ACGGAACCATGTTCTTCGCTCCTT -ACGGAACCATGTTCTTCGCCTGTT -ACGGAACCATGTTCTTCGCGGTTT -ACGGAACCATGTTCTTCGGTGGTT -ACGGAACCATGTTCTTCGGCCTTT -ACGGAACCATGTTCTTCGGGTCTT -ACGGAACCATGTTCTTCGACGCTT -ACGGAACCATGTTCTTCGAGCGTT -ACGGAACCATGTTCTTCGTTCGTC -ACGGAACCATGTTCTTCGTCTCTC -ACGGAACCATGTTCTTCGTGGATC -ACGGAACCATGTTCTTCGCACTTC -ACGGAACCATGTTCTTCGGTACTC -ACGGAACCATGTTCTTCGGATGTC -ACGGAACCATGTTCTTCGACAGTC -ACGGAACCATGTTCTTCGTTGCTG -ACGGAACCATGTTCTTCGTCCATG -ACGGAACCATGTTCTTCGTGTGTG -ACGGAACCATGTTCTTCGCTAGTG -ACGGAACCATGTTCTTCGCATCTG -ACGGAACCATGTTCTTCGGAGTTG -ACGGAACCATGTTCTTCGAGACTG -ACGGAACCATGTTCTTCGTCGGTA -ACGGAACCATGTTCTTCGTGCCTA -ACGGAACCATGTTCTTCGCCACTA -ACGGAACCATGTTCTTCGGGAGTA -ACGGAACCATGTTCTTCGTCGTCT -ACGGAACCATGTTCTTCGTGCACT -ACGGAACCATGTTCTTCGCTGACT -ACGGAACCATGTTCTTCGCAACCT -ACGGAACCATGTTCTTCGGCTACT -ACGGAACCATGTTCTTCGGGATCT -ACGGAACCATGTTCTTCGAAGGCT -ACGGAACCATGTTCTTCGTCAACC -ACGGAACCATGTTCTTCGTGTTCC -ACGGAACCATGTTCTTCGATTCCC -ACGGAACCATGTTCTTCGTTCTCG -ACGGAACCATGTTCTTCGTAGACG -ACGGAACCATGTTCTTCGGTAACG -ACGGAACCATGTTCTTCGACTTCG -ACGGAACCATGTTCTTCGTACGCA -ACGGAACCATGTTCTTCGCTTGCA -ACGGAACCATGTTCTTCGCGAACA -ACGGAACCATGTTCTTCGCAGTCA -ACGGAACCATGTTCTTCGGATCCA -ACGGAACCATGTTCTTCGACGACA -ACGGAACCATGTTCTTCGAGCTCA -ACGGAACCATGTTCTTCGTCACGT -ACGGAACCATGTTCTTCGCGTAGT -ACGGAACCATGTTCTTCGGTCAGT -ACGGAACCATGTTCTTCGGAAGGT -ACGGAACCATGTTCTTCGAACCGT -ACGGAACCATGTTCTTCGTTGTGC -ACGGAACCATGTTCTTCGCTAAGC -ACGGAACCATGTTCTTCGACTAGC -ACGGAACCATGTTCTTCGAGATGC -ACGGAACCATGTTCTTCGTGAAGG -ACGGAACCATGTTCTTCGCAATGG -ACGGAACCATGTTCTTCGATGAGG -ACGGAACCATGTTCTTCGAATGGG -ACGGAACCATGTTCTTCGTCCTGA -ACGGAACCATGTTCTTCGTAGCGA -ACGGAACCATGTTCTTCGCACAGA -ACGGAACCATGTTCTTCGGCAAGA -ACGGAACCATGTTCTTCGGGTTGA -ACGGAACCATGTTCTTCGTCCGAT -ACGGAACCATGTTCTTCGTGGCAT -ACGGAACCATGTTCTTCGCGAGAT -ACGGAACCATGTTCTTCGTACCAC -ACGGAACCATGTTCTTCGCAGAAC -ACGGAACCATGTTCTTCGGTCTAC -ACGGAACCATGTTCTTCGACGTAC -ACGGAACCATGTTCTTCGAGTGAC -ACGGAACCATGTTCTTCGCTGTAG -ACGGAACCATGTTCTTCGCCTAAG -ACGGAACCATGTTCTTCGGTTCAG -ACGGAACCATGTTCTTCGGCATAG -ACGGAACCATGTTCTTCGGACAAG -ACGGAACCATGTTCTTCGAAGCAG -ACGGAACCATGTTCTTCGCGTCAA -ACGGAACCATGTTCTTCGGCTGAA -ACGGAACCATGTTCTTCGAGTACG -ACGGAACCATGTTCTTCGATCCGA -ACGGAACCATGTTCTTCGATGGGA -ACGGAACCATGTTCTTCGGTGCAA -ACGGAACCATGTTCTTCGGAGGAA -ACGGAACCATGTTCTTCGCAGGTA -ACGGAACCATGTTCTTCGGACTCT -ACGGAACCATGTTCTTCGAGTCCT -ACGGAACCATGTTCTTCGTAAGCC -ACGGAACCATGTTCTTCGATAGCC -ACGGAACCATGTTCTTCGTAACCG -ACGGAACCATGTTCTTCGATGCCA -ACGGAACCATGTACTTGCGGAAAC -ACGGAACCATGTACTTGCAACACC -ACGGAACCATGTACTTGCATCGAG -ACGGAACCATGTACTTGCCTCCTT -ACGGAACCATGTACTTGCCCTGTT -ACGGAACCATGTACTTGCCGGTTT -ACGGAACCATGTACTTGCGTGGTT -ACGGAACCATGTACTTGCGCCTTT -ACGGAACCATGTACTTGCGGTCTT -ACGGAACCATGTACTTGCACGCTT -ACGGAACCATGTACTTGCAGCGTT -ACGGAACCATGTACTTGCTTCGTC -ACGGAACCATGTACTTGCTCTCTC -ACGGAACCATGTACTTGCTGGATC -ACGGAACCATGTACTTGCCACTTC -ACGGAACCATGTACTTGCGTACTC -ACGGAACCATGTACTTGCGATGTC -ACGGAACCATGTACTTGCACAGTC -ACGGAACCATGTACTTGCTTGCTG -ACGGAACCATGTACTTGCTCCATG -ACGGAACCATGTACTTGCTGTGTG -ACGGAACCATGTACTTGCCTAGTG -ACGGAACCATGTACTTGCCATCTG -ACGGAACCATGTACTTGCGAGTTG -ACGGAACCATGTACTTGCAGACTG -ACGGAACCATGTACTTGCTCGGTA -ACGGAACCATGTACTTGCTGCCTA -ACGGAACCATGTACTTGCCCACTA -ACGGAACCATGTACTTGCGGAGTA -ACGGAACCATGTACTTGCTCGTCT -ACGGAACCATGTACTTGCTGCACT -ACGGAACCATGTACTTGCCTGACT -ACGGAACCATGTACTTGCCAACCT -ACGGAACCATGTACTTGCGCTACT -ACGGAACCATGTACTTGCGGATCT -ACGGAACCATGTACTTGCAAGGCT -ACGGAACCATGTACTTGCTCAACC -ACGGAACCATGTACTTGCTGTTCC -ACGGAACCATGTACTTGCATTCCC -ACGGAACCATGTACTTGCTTCTCG -ACGGAACCATGTACTTGCTAGACG -ACGGAACCATGTACTTGCGTAACG -ACGGAACCATGTACTTGCACTTCG -ACGGAACCATGTACTTGCTACGCA -ACGGAACCATGTACTTGCCTTGCA -ACGGAACCATGTACTTGCCGAACA -ACGGAACCATGTACTTGCCAGTCA -ACGGAACCATGTACTTGCGATCCA -ACGGAACCATGTACTTGCACGACA -ACGGAACCATGTACTTGCAGCTCA -ACGGAACCATGTACTTGCTCACGT -ACGGAACCATGTACTTGCCGTAGT -ACGGAACCATGTACTTGCGTCAGT -ACGGAACCATGTACTTGCGAAGGT -ACGGAACCATGTACTTGCAACCGT -ACGGAACCATGTACTTGCTTGTGC -ACGGAACCATGTACTTGCCTAAGC -ACGGAACCATGTACTTGCACTAGC -ACGGAACCATGTACTTGCAGATGC -ACGGAACCATGTACTTGCTGAAGG -ACGGAACCATGTACTTGCCAATGG -ACGGAACCATGTACTTGCATGAGG -ACGGAACCATGTACTTGCAATGGG -ACGGAACCATGTACTTGCTCCTGA -ACGGAACCATGTACTTGCTAGCGA -ACGGAACCATGTACTTGCCACAGA -ACGGAACCATGTACTTGCGCAAGA -ACGGAACCATGTACTTGCGGTTGA -ACGGAACCATGTACTTGCTCCGAT -ACGGAACCATGTACTTGCTGGCAT -ACGGAACCATGTACTTGCCGAGAT -ACGGAACCATGTACTTGCTACCAC -ACGGAACCATGTACTTGCCAGAAC -ACGGAACCATGTACTTGCGTCTAC -ACGGAACCATGTACTTGCACGTAC -ACGGAACCATGTACTTGCAGTGAC -ACGGAACCATGTACTTGCCTGTAG -ACGGAACCATGTACTTGCCCTAAG -ACGGAACCATGTACTTGCGTTCAG -ACGGAACCATGTACTTGCGCATAG -ACGGAACCATGTACTTGCGACAAG -ACGGAACCATGTACTTGCAAGCAG -ACGGAACCATGTACTTGCCGTCAA -ACGGAACCATGTACTTGCGCTGAA -ACGGAACCATGTACTTGCAGTACG -ACGGAACCATGTACTTGCATCCGA -ACGGAACCATGTACTTGCATGGGA -ACGGAACCATGTACTTGCGTGCAA -ACGGAACCATGTACTTGCGAGGAA -ACGGAACCATGTACTTGCCAGGTA -ACGGAACCATGTACTTGCGACTCT -ACGGAACCATGTACTTGCAGTCCT -ACGGAACCATGTACTTGCTAAGCC -ACGGAACCATGTACTTGCATAGCC -ACGGAACCATGTACTTGCTAACCG -ACGGAACCATGTACTTGCATGCCA -ACGGAACCATGTACTCTGGGAAAC -ACGGAACCATGTACTCTGAACACC -ACGGAACCATGTACTCTGATCGAG -ACGGAACCATGTACTCTGCTCCTT -ACGGAACCATGTACTCTGCCTGTT -ACGGAACCATGTACTCTGCGGTTT -ACGGAACCATGTACTCTGGTGGTT -ACGGAACCATGTACTCTGGCCTTT -ACGGAACCATGTACTCTGGGTCTT -ACGGAACCATGTACTCTGACGCTT -ACGGAACCATGTACTCTGAGCGTT -ACGGAACCATGTACTCTGTTCGTC -ACGGAACCATGTACTCTGTCTCTC -ACGGAACCATGTACTCTGTGGATC -ACGGAACCATGTACTCTGCACTTC -ACGGAACCATGTACTCTGGTACTC -ACGGAACCATGTACTCTGGATGTC -ACGGAACCATGTACTCTGACAGTC -ACGGAACCATGTACTCTGTTGCTG -ACGGAACCATGTACTCTGTCCATG -ACGGAACCATGTACTCTGTGTGTG -ACGGAACCATGTACTCTGCTAGTG -ACGGAACCATGTACTCTGCATCTG -ACGGAACCATGTACTCTGGAGTTG -ACGGAACCATGTACTCTGAGACTG -ACGGAACCATGTACTCTGTCGGTA -ACGGAACCATGTACTCTGTGCCTA -ACGGAACCATGTACTCTGCCACTA -ACGGAACCATGTACTCTGGGAGTA -ACGGAACCATGTACTCTGTCGTCT -ACGGAACCATGTACTCTGTGCACT -ACGGAACCATGTACTCTGCTGACT -ACGGAACCATGTACTCTGCAACCT -ACGGAACCATGTACTCTGGCTACT -ACGGAACCATGTACTCTGGGATCT -ACGGAACCATGTACTCTGAAGGCT -ACGGAACCATGTACTCTGTCAACC -ACGGAACCATGTACTCTGTGTTCC -ACGGAACCATGTACTCTGATTCCC -ACGGAACCATGTACTCTGTTCTCG -ACGGAACCATGTACTCTGTAGACG -ACGGAACCATGTACTCTGGTAACG -ACGGAACCATGTACTCTGACTTCG -ACGGAACCATGTACTCTGTACGCA -ACGGAACCATGTACTCTGCTTGCA -ACGGAACCATGTACTCTGCGAACA -ACGGAACCATGTACTCTGCAGTCA -ACGGAACCATGTACTCTGGATCCA -ACGGAACCATGTACTCTGACGACA -ACGGAACCATGTACTCTGAGCTCA -ACGGAACCATGTACTCTGTCACGT -ACGGAACCATGTACTCTGCGTAGT -ACGGAACCATGTACTCTGGTCAGT -ACGGAACCATGTACTCTGGAAGGT -ACGGAACCATGTACTCTGAACCGT -ACGGAACCATGTACTCTGTTGTGC -ACGGAACCATGTACTCTGCTAAGC -ACGGAACCATGTACTCTGACTAGC -ACGGAACCATGTACTCTGAGATGC -ACGGAACCATGTACTCTGTGAAGG -ACGGAACCATGTACTCTGCAATGG -ACGGAACCATGTACTCTGATGAGG -ACGGAACCATGTACTCTGAATGGG -ACGGAACCATGTACTCTGTCCTGA -ACGGAACCATGTACTCTGTAGCGA -ACGGAACCATGTACTCTGCACAGA -ACGGAACCATGTACTCTGGCAAGA -ACGGAACCATGTACTCTGGGTTGA -ACGGAACCATGTACTCTGTCCGAT -ACGGAACCATGTACTCTGTGGCAT -ACGGAACCATGTACTCTGCGAGAT -ACGGAACCATGTACTCTGTACCAC -ACGGAACCATGTACTCTGCAGAAC -ACGGAACCATGTACTCTGGTCTAC -ACGGAACCATGTACTCTGACGTAC -ACGGAACCATGTACTCTGAGTGAC -ACGGAACCATGTACTCTGCTGTAG -ACGGAACCATGTACTCTGCCTAAG -ACGGAACCATGTACTCTGGTTCAG -ACGGAACCATGTACTCTGGCATAG -ACGGAACCATGTACTCTGGACAAG -ACGGAACCATGTACTCTGAAGCAG -ACGGAACCATGTACTCTGCGTCAA -ACGGAACCATGTACTCTGGCTGAA -ACGGAACCATGTACTCTGAGTACG -ACGGAACCATGTACTCTGATCCGA -ACGGAACCATGTACTCTGATGGGA -ACGGAACCATGTACTCTGGTGCAA -ACGGAACCATGTACTCTGGAGGAA -ACGGAACCATGTACTCTGCAGGTA -ACGGAACCATGTACTCTGGACTCT -ACGGAACCATGTACTCTGAGTCCT -ACGGAACCATGTACTCTGTAAGCC -ACGGAACCATGTACTCTGATAGCC -ACGGAACCATGTACTCTGTAACCG -ACGGAACCATGTACTCTGATGCCA -ACGGAACCATGTCCTCAAGGAAAC -ACGGAACCATGTCCTCAAAACACC -ACGGAACCATGTCCTCAAATCGAG -ACGGAACCATGTCCTCAACTCCTT -ACGGAACCATGTCCTCAACCTGTT -ACGGAACCATGTCCTCAACGGTTT -ACGGAACCATGTCCTCAAGTGGTT -ACGGAACCATGTCCTCAAGCCTTT -ACGGAACCATGTCCTCAAGGTCTT -ACGGAACCATGTCCTCAAACGCTT -ACGGAACCATGTCCTCAAAGCGTT -ACGGAACCATGTCCTCAATTCGTC -ACGGAACCATGTCCTCAATCTCTC -ACGGAACCATGTCCTCAATGGATC -ACGGAACCATGTCCTCAACACTTC -ACGGAACCATGTCCTCAAGTACTC -ACGGAACCATGTCCTCAAGATGTC -ACGGAACCATGTCCTCAAACAGTC -ACGGAACCATGTCCTCAATTGCTG -ACGGAACCATGTCCTCAATCCATG -ACGGAACCATGTCCTCAATGTGTG -ACGGAACCATGTCCTCAACTAGTG -ACGGAACCATGTCCTCAACATCTG -ACGGAACCATGTCCTCAAGAGTTG -ACGGAACCATGTCCTCAAAGACTG -ACGGAACCATGTCCTCAATCGGTA -ACGGAACCATGTCCTCAATGCCTA -ACGGAACCATGTCCTCAACCACTA -ACGGAACCATGTCCTCAAGGAGTA -ACGGAACCATGTCCTCAATCGTCT -ACGGAACCATGTCCTCAATGCACT -ACGGAACCATGTCCTCAACTGACT -ACGGAACCATGTCCTCAACAACCT -ACGGAACCATGTCCTCAAGCTACT -ACGGAACCATGTCCTCAAGGATCT -ACGGAACCATGTCCTCAAAAGGCT -ACGGAACCATGTCCTCAATCAACC -ACGGAACCATGTCCTCAATGTTCC -ACGGAACCATGTCCTCAAATTCCC -ACGGAACCATGTCCTCAATTCTCG -ACGGAACCATGTCCTCAATAGACG -ACGGAACCATGTCCTCAAGTAACG -ACGGAACCATGTCCTCAAACTTCG -ACGGAACCATGTCCTCAATACGCA -ACGGAACCATGTCCTCAACTTGCA -ACGGAACCATGTCCTCAACGAACA -ACGGAACCATGTCCTCAACAGTCA -ACGGAACCATGTCCTCAAGATCCA -ACGGAACCATGTCCTCAAACGACA -ACGGAACCATGTCCTCAAAGCTCA -ACGGAACCATGTCCTCAATCACGT -ACGGAACCATGTCCTCAACGTAGT -ACGGAACCATGTCCTCAAGTCAGT -ACGGAACCATGTCCTCAAGAAGGT -ACGGAACCATGTCCTCAAAACCGT -ACGGAACCATGTCCTCAATTGTGC -ACGGAACCATGTCCTCAACTAAGC -ACGGAACCATGTCCTCAAACTAGC -ACGGAACCATGTCCTCAAAGATGC -ACGGAACCATGTCCTCAATGAAGG -ACGGAACCATGTCCTCAACAATGG -ACGGAACCATGTCCTCAAATGAGG -ACGGAACCATGTCCTCAAAATGGG -ACGGAACCATGTCCTCAATCCTGA -ACGGAACCATGTCCTCAATAGCGA -ACGGAACCATGTCCTCAACACAGA -ACGGAACCATGTCCTCAAGCAAGA -ACGGAACCATGTCCTCAAGGTTGA -ACGGAACCATGTCCTCAATCCGAT -ACGGAACCATGTCCTCAATGGCAT -ACGGAACCATGTCCTCAACGAGAT -ACGGAACCATGTCCTCAATACCAC -ACGGAACCATGTCCTCAACAGAAC -ACGGAACCATGTCCTCAAGTCTAC -ACGGAACCATGTCCTCAAACGTAC -ACGGAACCATGTCCTCAAAGTGAC -ACGGAACCATGTCCTCAACTGTAG -ACGGAACCATGTCCTCAACCTAAG -ACGGAACCATGTCCTCAAGTTCAG -ACGGAACCATGTCCTCAAGCATAG -ACGGAACCATGTCCTCAAGACAAG -ACGGAACCATGTCCTCAAAAGCAG -ACGGAACCATGTCCTCAACGTCAA -ACGGAACCATGTCCTCAAGCTGAA -ACGGAACCATGTCCTCAAAGTACG -ACGGAACCATGTCCTCAAATCCGA -ACGGAACCATGTCCTCAAATGGGA -ACGGAACCATGTCCTCAAGTGCAA -ACGGAACCATGTCCTCAAGAGGAA -ACGGAACCATGTCCTCAACAGGTA -ACGGAACCATGTCCTCAAGACTCT -ACGGAACCATGTCCTCAAAGTCCT -ACGGAACCATGTCCTCAATAAGCC -ACGGAACCATGTCCTCAAATAGCC -ACGGAACCATGTCCTCAATAACCG -ACGGAACCATGTCCTCAAATGCCA -ACGGAACCATGTACTGCTGGAAAC -ACGGAACCATGTACTGCTAACACC -ACGGAACCATGTACTGCTATCGAG -ACGGAACCATGTACTGCTCTCCTT -ACGGAACCATGTACTGCTCCTGTT -ACGGAACCATGTACTGCTCGGTTT -ACGGAACCATGTACTGCTGTGGTT -ACGGAACCATGTACTGCTGCCTTT -ACGGAACCATGTACTGCTGGTCTT -ACGGAACCATGTACTGCTACGCTT -ACGGAACCATGTACTGCTAGCGTT -ACGGAACCATGTACTGCTTTCGTC -ACGGAACCATGTACTGCTTCTCTC -ACGGAACCATGTACTGCTTGGATC -ACGGAACCATGTACTGCTCACTTC -ACGGAACCATGTACTGCTGTACTC -ACGGAACCATGTACTGCTGATGTC -ACGGAACCATGTACTGCTACAGTC -ACGGAACCATGTACTGCTTTGCTG -ACGGAACCATGTACTGCTTCCATG -ACGGAACCATGTACTGCTTGTGTG -ACGGAACCATGTACTGCTCTAGTG -ACGGAACCATGTACTGCTCATCTG -ACGGAACCATGTACTGCTGAGTTG -ACGGAACCATGTACTGCTAGACTG -ACGGAACCATGTACTGCTTCGGTA -ACGGAACCATGTACTGCTTGCCTA -ACGGAACCATGTACTGCTCCACTA -ACGGAACCATGTACTGCTGGAGTA -ACGGAACCATGTACTGCTTCGTCT -ACGGAACCATGTACTGCTTGCACT -ACGGAACCATGTACTGCTCTGACT -ACGGAACCATGTACTGCTCAACCT -ACGGAACCATGTACTGCTGCTACT -ACGGAACCATGTACTGCTGGATCT -ACGGAACCATGTACTGCTAAGGCT -ACGGAACCATGTACTGCTTCAACC -ACGGAACCATGTACTGCTTGTTCC -ACGGAACCATGTACTGCTATTCCC -ACGGAACCATGTACTGCTTTCTCG -ACGGAACCATGTACTGCTTAGACG -ACGGAACCATGTACTGCTGTAACG -ACGGAACCATGTACTGCTACTTCG -ACGGAACCATGTACTGCTTACGCA -ACGGAACCATGTACTGCTCTTGCA -ACGGAACCATGTACTGCTCGAACA -ACGGAACCATGTACTGCTCAGTCA -ACGGAACCATGTACTGCTGATCCA -ACGGAACCATGTACTGCTACGACA -ACGGAACCATGTACTGCTAGCTCA -ACGGAACCATGTACTGCTTCACGT -ACGGAACCATGTACTGCTCGTAGT -ACGGAACCATGTACTGCTGTCAGT -ACGGAACCATGTACTGCTGAAGGT -ACGGAACCATGTACTGCTAACCGT -ACGGAACCATGTACTGCTTTGTGC -ACGGAACCATGTACTGCTCTAAGC -ACGGAACCATGTACTGCTACTAGC -ACGGAACCATGTACTGCTAGATGC -ACGGAACCATGTACTGCTTGAAGG -ACGGAACCATGTACTGCTCAATGG -ACGGAACCATGTACTGCTATGAGG -ACGGAACCATGTACTGCTAATGGG -ACGGAACCATGTACTGCTTCCTGA -ACGGAACCATGTACTGCTTAGCGA -ACGGAACCATGTACTGCTCACAGA -ACGGAACCATGTACTGCTGCAAGA -ACGGAACCATGTACTGCTGGTTGA -ACGGAACCATGTACTGCTTCCGAT -ACGGAACCATGTACTGCTTGGCAT -ACGGAACCATGTACTGCTCGAGAT -ACGGAACCATGTACTGCTTACCAC -ACGGAACCATGTACTGCTCAGAAC -ACGGAACCATGTACTGCTGTCTAC -ACGGAACCATGTACTGCTACGTAC -ACGGAACCATGTACTGCTAGTGAC -ACGGAACCATGTACTGCTCTGTAG -ACGGAACCATGTACTGCTCCTAAG -ACGGAACCATGTACTGCTGTTCAG -ACGGAACCATGTACTGCTGCATAG -ACGGAACCATGTACTGCTGACAAG -ACGGAACCATGTACTGCTAAGCAG -ACGGAACCATGTACTGCTCGTCAA -ACGGAACCATGTACTGCTGCTGAA -ACGGAACCATGTACTGCTAGTACG -ACGGAACCATGTACTGCTATCCGA -ACGGAACCATGTACTGCTATGGGA -ACGGAACCATGTACTGCTGTGCAA -ACGGAACCATGTACTGCTGAGGAA -ACGGAACCATGTACTGCTCAGGTA -ACGGAACCATGTACTGCTGACTCT -ACGGAACCATGTACTGCTAGTCCT -ACGGAACCATGTACTGCTTAAGCC -ACGGAACCATGTACTGCTATAGCC -ACGGAACCATGTACTGCTTAACCG -ACGGAACCATGTACTGCTATGCCA -ACGGAACCATGTTCTGGAGGAAAC -ACGGAACCATGTTCTGGAAACACC -ACGGAACCATGTTCTGGAATCGAG -ACGGAACCATGTTCTGGACTCCTT -ACGGAACCATGTTCTGGACCTGTT -ACGGAACCATGTTCTGGACGGTTT -ACGGAACCATGTTCTGGAGTGGTT -ACGGAACCATGTTCTGGAGCCTTT -ACGGAACCATGTTCTGGAGGTCTT -ACGGAACCATGTTCTGGAACGCTT -ACGGAACCATGTTCTGGAAGCGTT -ACGGAACCATGTTCTGGATTCGTC -ACGGAACCATGTTCTGGATCTCTC -ACGGAACCATGTTCTGGATGGATC -ACGGAACCATGTTCTGGACACTTC -ACGGAACCATGTTCTGGAGTACTC -ACGGAACCATGTTCTGGAGATGTC -ACGGAACCATGTTCTGGAACAGTC -ACGGAACCATGTTCTGGATTGCTG -ACGGAACCATGTTCTGGATCCATG -ACGGAACCATGTTCTGGATGTGTG -ACGGAACCATGTTCTGGACTAGTG -ACGGAACCATGTTCTGGACATCTG -ACGGAACCATGTTCTGGAGAGTTG -ACGGAACCATGTTCTGGAAGACTG -ACGGAACCATGTTCTGGATCGGTA -ACGGAACCATGTTCTGGATGCCTA -ACGGAACCATGTTCTGGACCACTA -ACGGAACCATGTTCTGGAGGAGTA -ACGGAACCATGTTCTGGATCGTCT -ACGGAACCATGTTCTGGATGCACT -ACGGAACCATGTTCTGGACTGACT -ACGGAACCATGTTCTGGACAACCT -ACGGAACCATGTTCTGGAGCTACT -ACGGAACCATGTTCTGGAGGATCT -ACGGAACCATGTTCTGGAAAGGCT -ACGGAACCATGTTCTGGATCAACC -ACGGAACCATGTTCTGGATGTTCC -ACGGAACCATGTTCTGGAATTCCC -ACGGAACCATGTTCTGGATTCTCG -ACGGAACCATGTTCTGGATAGACG -ACGGAACCATGTTCTGGAGTAACG -ACGGAACCATGTTCTGGAACTTCG -ACGGAACCATGTTCTGGATACGCA -ACGGAACCATGTTCTGGACTTGCA -ACGGAACCATGTTCTGGACGAACA -ACGGAACCATGTTCTGGACAGTCA -ACGGAACCATGTTCTGGAGATCCA -ACGGAACCATGTTCTGGAACGACA -ACGGAACCATGTTCTGGAAGCTCA -ACGGAACCATGTTCTGGATCACGT -ACGGAACCATGTTCTGGACGTAGT -ACGGAACCATGTTCTGGAGTCAGT -ACGGAACCATGTTCTGGAGAAGGT -ACGGAACCATGTTCTGGAAACCGT -ACGGAACCATGTTCTGGATTGTGC -ACGGAACCATGTTCTGGACTAAGC -ACGGAACCATGTTCTGGAACTAGC -ACGGAACCATGTTCTGGAAGATGC -ACGGAACCATGTTCTGGATGAAGG -ACGGAACCATGTTCTGGACAATGG -ACGGAACCATGTTCTGGAATGAGG -ACGGAACCATGTTCTGGAAATGGG -ACGGAACCATGTTCTGGATCCTGA -ACGGAACCATGTTCTGGATAGCGA -ACGGAACCATGTTCTGGACACAGA -ACGGAACCATGTTCTGGAGCAAGA -ACGGAACCATGTTCTGGAGGTTGA -ACGGAACCATGTTCTGGATCCGAT -ACGGAACCATGTTCTGGATGGCAT -ACGGAACCATGTTCTGGACGAGAT -ACGGAACCATGTTCTGGATACCAC -ACGGAACCATGTTCTGGACAGAAC -ACGGAACCATGTTCTGGAGTCTAC -ACGGAACCATGTTCTGGAACGTAC -ACGGAACCATGTTCTGGAAGTGAC -ACGGAACCATGTTCTGGACTGTAG -ACGGAACCATGTTCTGGACCTAAG -ACGGAACCATGTTCTGGAGTTCAG -ACGGAACCATGTTCTGGAGCATAG -ACGGAACCATGTTCTGGAGACAAG -ACGGAACCATGTTCTGGAAAGCAG -ACGGAACCATGTTCTGGACGTCAA -ACGGAACCATGTTCTGGAGCTGAA -ACGGAACCATGTTCTGGAAGTACG -ACGGAACCATGTTCTGGAATCCGA -ACGGAACCATGTTCTGGAATGGGA -ACGGAACCATGTTCTGGAGTGCAA -ACGGAACCATGTTCTGGAGAGGAA -ACGGAACCATGTTCTGGACAGGTA -ACGGAACCATGTTCTGGAGACTCT -ACGGAACCATGTTCTGGAAGTCCT -ACGGAACCATGTTCTGGATAAGCC -ACGGAACCATGTTCTGGAATAGCC -ACGGAACCATGTTCTGGATAACCG -ACGGAACCATGTTCTGGAATGCCA -ACGGAACCATGTGCTAAGGGAAAC -ACGGAACCATGTGCTAAGAACACC -ACGGAACCATGTGCTAAGATCGAG -ACGGAACCATGTGCTAAGCTCCTT -ACGGAACCATGTGCTAAGCCTGTT -ACGGAACCATGTGCTAAGCGGTTT -ACGGAACCATGTGCTAAGGTGGTT -ACGGAACCATGTGCTAAGGCCTTT -ACGGAACCATGTGCTAAGGGTCTT -ACGGAACCATGTGCTAAGACGCTT -ACGGAACCATGTGCTAAGAGCGTT -ACGGAACCATGTGCTAAGTTCGTC -ACGGAACCATGTGCTAAGTCTCTC -ACGGAACCATGTGCTAAGTGGATC -ACGGAACCATGTGCTAAGCACTTC -ACGGAACCATGTGCTAAGGTACTC -ACGGAACCATGTGCTAAGGATGTC -ACGGAACCATGTGCTAAGACAGTC -ACGGAACCATGTGCTAAGTTGCTG -ACGGAACCATGTGCTAAGTCCATG -ACGGAACCATGTGCTAAGTGTGTG -ACGGAACCATGTGCTAAGCTAGTG -ACGGAACCATGTGCTAAGCATCTG -ACGGAACCATGTGCTAAGGAGTTG -ACGGAACCATGTGCTAAGAGACTG -ACGGAACCATGTGCTAAGTCGGTA -ACGGAACCATGTGCTAAGTGCCTA -ACGGAACCATGTGCTAAGCCACTA -ACGGAACCATGTGCTAAGGGAGTA -ACGGAACCATGTGCTAAGTCGTCT -ACGGAACCATGTGCTAAGTGCACT -ACGGAACCATGTGCTAAGCTGACT -ACGGAACCATGTGCTAAGCAACCT -ACGGAACCATGTGCTAAGGCTACT -ACGGAACCATGTGCTAAGGGATCT -ACGGAACCATGTGCTAAGAAGGCT -ACGGAACCATGTGCTAAGTCAACC -ACGGAACCATGTGCTAAGTGTTCC -ACGGAACCATGTGCTAAGATTCCC -ACGGAACCATGTGCTAAGTTCTCG -ACGGAACCATGTGCTAAGTAGACG -ACGGAACCATGTGCTAAGGTAACG -ACGGAACCATGTGCTAAGACTTCG -ACGGAACCATGTGCTAAGTACGCA -ACGGAACCATGTGCTAAGCTTGCA -ACGGAACCATGTGCTAAGCGAACA -ACGGAACCATGTGCTAAGCAGTCA -ACGGAACCATGTGCTAAGGATCCA -ACGGAACCATGTGCTAAGACGACA -ACGGAACCATGTGCTAAGAGCTCA -ACGGAACCATGTGCTAAGTCACGT -ACGGAACCATGTGCTAAGCGTAGT -ACGGAACCATGTGCTAAGGTCAGT -ACGGAACCATGTGCTAAGGAAGGT -ACGGAACCATGTGCTAAGAACCGT -ACGGAACCATGTGCTAAGTTGTGC -ACGGAACCATGTGCTAAGCTAAGC -ACGGAACCATGTGCTAAGACTAGC -ACGGAACCATGTGCTAAGAGATGC -ACGGAACCATGTGCTAAGTGAAGG -ACGGAACCATGTGCTAAGCAATGG -ACGGAACCATGTGCTAAGATGAGG -ACGGAACCATGTGCTAAGAATGGG -ACGGAACCATGTGCTAAGTCCTGA -ACGGAACCATGTGCTAAGTAGCGA -ACGGAACCATGTGCTAAGCACAGA -ACGGAACCATGTGCTAAGGCAAGA -ACGGAACCATGTGCTAAGGGTTGA -ACGGAACCATGTGCTAAGTCCGAT -ACGGAACCATGTGCTAAGTGGCAT -ACGGAACCATGTGCTAAGCGAGAT -ACGGAACCATGTGCTAAGTACCAC -ACGGAACCATGTGCTAAGCAGAAC -ACGGAACCATGTGCTAAGGTCTAC -ACGGAACCATGTGCTAAGACGTAC -ACGGAACCATGTGCTAAGAGTGAC -ACGGAACCATGTGCTAAGCTGTAG -ACGGAACCATGTGCTAAGCCTAAG -ACGGAACCATGTGCTAAGGTTCAG -ACGGAACCATGTGCTAAGGCATAG -ACGGAACCATGTGCTAAGGACAAG -ACGGAACCATGTGCTAAGAAGCAG -ACGGAACCATGTGCTAAGCGTCAA -ACGGAACCATGTGCTAAGGCTGAA -ACGGAACCATGTGCTAAGAGTACG -ACGGAACCATGTGCTAAGATCCGA -ACGGAACCATGTGCTAAGATGGGA -ACGGAACCATGTGCTAAGGTGCAA -ACGGAACCATGTGCTAAGGAGGAA -ACGGAACCATGTGCTAAGCAGGTA -ACGGAACCATGTGCTAAGGACTCT -ACGGAACCATGTGCTAAGAGTCCT -ACGGAACCATGTGCTAAGTAAGCC -ACGGAACCATGTGCTAAGATAGCC -ACGGAACCATGTGCTAAGTAACCG -ACGGAACCATGTGCTAAGATGCCA -ACGGAACCATGTACCTCAGGAAAC -ACGGAACCATGTACCTCAAACACC -ACGGAACCATGTACCTCAATCGAG -ACGGAACCATGTACCTCACTCCTT -ACGGAACCATGTACCTCACCTGTT -ACGGAACCATGTACCTCACGGTTT -ACGGAACCATGTACCTCAGTGGTT -ACGGAACCATGTACCTCAGCCTTT -ACGGAACCATGTACCTCAGGTCTT -ACGGAACCATGTACCTCAACGCTT -ACGGAACCATGTACCTCAAGCGTT -ACGGAACCATGTACCTCATTCGTC -ACGGAACCATGTACCTCATCTCTC -ACGGAACCATGTACCTCATGGATC -ACGGAACCATGTACCTCACACTTC -ACGGAACCATGTACCTCAGTACTC -ACGGAACCATGTACCTCAGATGTC -ACGGAACCATGTACCTCAACAGTC -ACGGAACCATGTACCTCATTGCTG -ACGGAACCATGTACCTCATCCATG -ACGGAACCATGTACCTCATGTGTG -ACGGAACCATGTACCTCACTAGTG -ACGGAACCATGTACCTCACATCTG -ACGGAACCATGTACCTCAGAGTTG -ACGGAACCATGTACCTCAAGACTG -ACGGAACCATGTACCTCATCGGTA -ACGGAACCATGTACCTCATGCCTA -ACGGAACCATGTACCTCACCACTA -ACGGAACCATGTACCTCAGGAGTA -ACGGAACCATGTACCTCATCGTCT -ACGGAACCATGTACCTCATGCACT -ACGGAACCATGTACCTCACTGACT -ACGGAACCATGTACCTCACAACCT -ACGGAACCATGTACCTCAGCTACT -ACGGAACCATGTACCTCAGGATCT -ACGGAACCATGTACCTCAAAGGCT -ACGGAACCATGTACCTCATCAACC -ACGGAACCATGTACCTCATGTTCC -ACGGAACCATGTACCTCAATTCCC -ACGGAACCATGTACCTCATTCTCG -ACGGAACCATGTACCTCATAGACG -ACGGAACCATGTACCTCAGTAACG -ACGGAACCATGTACCTCAACTTCG -ACGGAACCATGTACCTCATACGCA -ACGGAACCATGTACCTCACTTGCA -ACGGAACCATGTACCTCACGAACA -ACGGAACCATGTACCTCACAGTCA -ACGGAACCATGTACCTCAGATCCA -ACGGAACCATGTACCTCAACGACA -ACGGAACCATGTACCTCAAGCTCA -ACGGAACCATGTACCTCATCACGT -ACGGAACCATGTACCTCACGTAGT -ACGGAACCATGTACCTCAGTCAGT -ACGGAACCATGTACCTCAGAAGGT -ACGGAACCATGTACCTCAAACCGT -ACGGAACCATGTACCTCATTGTGC -ACGGAACCATGTACCTCACTAAGC -ACGGAACCATGTACCTCAACTAGC -ACGGAACCATGTACCTCAAGATGC -ACGGAACCATGTACCTCATGAAGG -ACGGAACCATGTACCTCACAATGG -ACGGAACCATGTACCTCAATGAGG -ACGGAACCATGTACCTCAAATGGG -ACGGAACCATGTACCTCATCCTGA -ACGGAACCATGTACCTCATAGCGA -ACGGAACCATGTACCTCACACAGA -ACGGAACCATGTACCTCAGCAAGA -ACGGAACCATGTACCTCAGGTTGA -ACGGAACCATGTACCTCATCCGAT -ACGGAACCATGTACCTCATGGCAT -ACGGAACCATGTACCTCACGAGAT -ACGGAACCATGTACCTCATACCAC -ACGGAACCATGTACCTCACAGAAC -ACGGAACCATGTACCTCAGTCTAC -ACGGAACCATGTACCTCAACGTAC -ACGGAACCATGTACCTCAAGTGAC -ACGGAACCATGTACCTCACTGTAG -ACGGAACCATGTACCTCACCTAAG -ACGGAACCATGTACCTCAGTTCAG -ACGGAACCATGTACCTCAGCATAG -ACGGAACCATGTACCTCAGACAAG -ACGGAACCATGTACCTCAAAGCAG -ACGGAACCATGTACCTCACGTCAA -ACGGAACCATGTACCTCAGCTGAA -ACGGAACCATGTACCTCAAGTACG -ACGGAACCATGTACCTCAATCCGA -ACGGAACCATGTACCTCAATGGGA -ACGGAACCATGTACCTCAGTGCAA -ACGGAACCATGTACCTCAGAGGAA -ACGGAACCATGTACCTCACAGGTA -ACGGAACCATGTACCTCAGACTCT -ACGGAACCATGTACCTCAAGTCCT -ACGGAACCATGTACCTCATAAGCC -ACGGAACCATGTACCTCAATAGCC -ACGGAACCATGTACCTCATAACCG -ACGGAACCATGTACCTCAATGCCA -ACGGAACCATGTTCCTGTGGAAAC -ACGGAACCATGTTCCTGTAACACC -ACGGAACCATGTTCCTGTATCGAG -ACGGAACCATGTTCCTGTCTCCTT -ACGGAACCATGTTCCTGTCCTGTT -ACGGAACCATGTTCCTGTCGGTTT -ACGGAACCATGTTCCTGTGTGGTT -ACGGAACCATGTTCCTGTGCCTTT -ACGGAACCATGTTCCTGTGGTCTT -ACGGAACCATGTTCCTGTACGCTT -ACGGAACCATGTTCCTGTAGCGTT -ACGGAACCATGTTCCTGTTTCGTC -ACGGAACCATGTTCCTGTTCTCTC -ACGGAACCATGTTCCTGTTGGATC -ACGGAACCATGTTCCTGTCACTTC -ACGGAACCATGTTCCTGTGTACTC -ACGGAACCATGTTCCTGTGATGTC -ACGGAACCATGTTCCTGTACAGTC -ACGGAACCATGTTCCTGTTTGCTG -ACGGAACCATGTTCCTGTTCCATG -ACGGAACCATGTTCCTGTTGTGTG -ACGGAACCATGTTCCTGTCTAGTG -ACGGAACCATGTTCCTGTCATCTG -ACGGAACCATGTTCCTGTGAGTTG -ACGGAACCATGTTCCTGTAGACTG -ACGGAACCATGTTCCTGTTCGGTA -ACGGAACCATGTTCCTGTTGCCTA -ACGGAACCATGTTCCTGTCCACTA -ACGGAACCATGTTCCTGTGGAGTA -ACGGAACCATGTTCCTGTTCGTCT -ACGGAACCATGTTCCTGTTGCACT -ACGGAACCATGTTCCTGTCTGACT -ACGGAACCATGTTCCTGTCAACCT -ACGGAACCATGTTCCTGTGCTACT -ACGGAACCATGTTCCTGTGGATCT -ACGGAACCATGTTCCTGTAAGGCT -ACGGAACCATGTTCCTGTTCAACC -ACGGAACCATGTTCCTGTTGTTCC -ACGGAACCATGTTCCTGTATTCCC -ACGGAACCATGTTCCTGTTTCTCG -ACGGAACCATGTTCCTGTTAGACG -ACGGAACCATGTTCCTGTGTAACG -ACGGAACCATGTTCCTGTACTTCG -ACGGAACCATGTTCCTGTTACGCA -ACGGAACCATGTTCCTGTCTTGCA -ACGGAACCATGTTCCTGTCGAACA -ACGGAACCATGTTCCTGTCAGTCA -ACGGAACCATGTTCCTGTGATCCA -ACGGAACCATGTTCCTGTACGACA -ACGGAACCATGTTCCTGTAGCTCA -ACGGAACCATGTTCCTGTTCACGT -ACGGAACCATGTTCCTGTCGTAGT -ACGGAACCATGTTCCTGTGTCAGT -ACGGAACCATGTTCCTGTGAAGGT -ACGGAACCATGTTCCTGTAACCGT -ACGGAACCATGTTCCTGTTTGTGC -ACGGAACCATGTTCCTGTCTAAGC -ACGGAACCATGTTCCTGTACTAGC -ACGGAACCATGTTCCTGTAGATGC -ACGGAACCATGTTCCTGTTGAAGG -ACGGAACCATGTTCCTGTCAATGG -ACGGAACCATGTTCCTGTATGAGG -ACGGAACCATGTTCCTGTAATGGG -ACGGAACCATGTTCCTGTTCCTGA -ACGGAACCATGTTCCTGTTAGCGA -ACGGAACCATGTTCCTGTCACAGA -ACGGAACCATGTTCCTGTGCAAGA -ACGGAACCATGTTCCTGTGGTTGA -ACGGAACCATGTTCCTGTTCCGAT -ACGGAACCATGTTCCTGTTGGCAT -ACGGAACCATGTTCCTGTCGAGAT -ACGGAACCATGTTCCTGTTACCAC -ACGGAACCATGTTCCTGTCAGAAC -ACGGAACCATGTTCCTGTGTCTAC -ACGGAACCATGTTCCTGTACGTAC -ACGGAACCATGTTCCTGTAGTGAC -ACGGAACCATGTTCCTGTCTGTAG -ACGGAACCATGTTCCTGTCCTAAG -ACGGAACCATGTTCCTGTGTTCAG -ACGGAACCATGTTCCTGTGCATAG -ACGGAACCATGTTCCTGTGACAAG -ACGGAACCATGTTCCTGTAAGCAG -ACGGAACCATGTTCCTGTCGTCAA -ACGGAACCATGTTCCTGTGCTGAA -ACGGAACCATGTTCCTGTAGTACG -ACGGAACCATGTTCCTGTATCCGA -ACGGAACCATGTTCCTGTATGGGA -ACGGAACCATGTTCCTGTGTGCAA -ACGGAACCATGTTCCTGTGAGGAA -ACGGAACCATGTTCCTGTCAGGTA -ACGGAACCATGTTCCTGTGACTCT -ACGGAACCATGTTCCTGTAGTCCT -ACGGAACCATGTTCCTGTTAAGCC -ACGGAACCATGTTCCTGTATAGCC -ACGGAACCATGTTCCTGTTAACCG -ACGGAACCATGTTCCTGTATGCCA -ACGGAACCATGTCCCATTGGAAAC -ACGGAACCATGTCCCATTAACACC -ACGGAACCATGTCCCATTATCGAG -ACGGAACCATGTCCCATTCTCCTT -ACGGAACCATGTCCCATTCCTGTT -ACGGAACCATGTCCCATTCGGTTT -ACGGAACCATGTCCCATTGTGGTT -ACGGAACCATGTCCCATTGCCTTT -ACGGAACCATGTCCCATTGGTCTT -ACGGAACCATGTCCCATTACGCTT -ACGGAACCATGTCCCATTAGCGTT -ACGGAACCATGTCCCATTTTCGTC -ACGGAACCATGTCCCATTTCTCTC -ACGGAACCATGTCCCATTTGGATC -ACGGAACCATGTCCCATTCACTTC -ACGGAACCATGTCCCATTGTACTC -ACGGAACCATGTCCCATTGATGTC -ACGGAACCATGTCCCATTACAGTC -ACGGAACCATGTCCCATTTTGCTG -ACGGAACCATGTCCCATTTCCATG -ACGGAACCATGTCCCATTTGTGTG -ACGGAACCATGTCCCATTCTAGTG -ACGGAACCATGTCCCATTCATCTG -ACGGAACCATGTCCCATTGAGTTG -ACGGAACCATGTCCCATTAGACTG -ACGGAACCATGTCCCATTTCGGTA -ACGGAACCATGTCCCATTTGCCTA -ACGGAACCATGTCCCATTCCACTA -ACGGAACCATGTCCCATTGGAGTA -ACGGAACCATGTCCCATTTCGTCT -ACGGAACCATGTCCCATTTGCACT -ACGGAACCATGTCCCATTCTGACT -ACGGAACCATGTCCCATTCAACCT -ACGGAACCATGTCCCATTGCTACT -ACGGAACCATGTCCCATTGGATCT -ACGGAACCATGTCCCATTAAGGCT -ACGGAACCATGTCCCATTTCAACC -ACGGAACCATGTCCCATTTGTTCC -ACGGAACCATGTCCCATTATTCCC -ACGGAACCATGTCCCATTTTCTCG -ACGGAACCATGTCCCATTTAGACG -ACGGAACCATGTCCCATTGTAACG -ACGGAACCATGTCCCATTACTTCG -ACGGAACCATGTCCCATTTACGCA -ACGGAACCATGTCCCATTCTTGCA -ACGGAACCATGTCCCATTCGAACA -ACGGAACCATGTCCCATTCAGTCA -ACGGAACCATGTCCCATTGATCCA -ACGGAACCATGTCCCATTACGACA -ACGGAACCATGTCCCATTAGCTCA -ACGGAACCATGTCCCATTTCACGT -ACGGAACCATGTCCCATTCGTAGT -ACGGAACCATGTCCCATTGTCAGT -ACGGAACCATGTCCCATTGAAGGT -ACGGAACCATGTCCCATTAACCGT -ACGGAACCATGTCCCATTTTGTGC -ACGGAACCATGTCCCATTCTAAGC -ACGGAACCATGTCCCATTACTAGC -ACGGAACCATGTCCCATTAGATGC -ACGGAACCATGTCCCATTTGAAGG -ACGGAACCATGTCCCATTCAATGG -ACGGAACCATGTCCCATTATGAGG -ACGGAACCATGTCCCATTAATGGG -ACGGAACCATGTCCCATTTCCTGA -ACGGAACCATGTCCCATTTAGCGA -ACGGAACCATGTCCCATTCACAGA -ACGGAACCATGTCCCATTGCAAGA -ACGGAACCATGTCCCATTGGTTGA -ACGGAACCATGTCCCATTTCCGAT -ACGGAACCATGTCCCATTTGGCAT -ACGGAACCATGTCCCATTCGAGAT -ACGGAACCATGTCCCATTTACCAC -ACGGAACCATGTCCCATTCAGAAC -ACGGAACCATGTCCCATTGTCTAC -ACGGAACCATGTCCCATTACGTAC -ACGGAACCATGTCCCATTAGTGAC -ACGGAACCATGTCCCATTCTGTAG -ACGGAACCATGTCCCATTCCTAAG -ACGGAACCATGTCCCATTGTTCAG -ACGGAACCATGTCCCATTGCATAG -ACGGAACCATGTCCCATTGACAAG -ACGGAACCATGTCCCATTAAGCAG -ACGGAACCATGTCCCATTCGTCAA -ACGGAACCATGTCCCATTGCTGAA -ACGGAACCATGTCCCATTAGTACG -ACGGAACCATGTCCCATTATCCGA -ACGGAACCATGTCCCATTATGGGA -ACGGAACCATGTCCCATTGTGCAA -ACGGAACCATGTCCCATTGAGGAA -ACGGAACCATGTCCCATTCAGGTA -ACGGAACCATGTCCCATTGACTCT -ACGGAACCATGTCCCATTAGTCCT -ACGGAACCATGTCCCATTTAAGCC -ACGGAACCATGTCCCATTATAGCC -ACGGAACCATGTCCCATTTAACCG -ACGGAACCATGTCCCATTATGCCA -ACGGAACCATGTTCGTTCGGAAAC -ACGGAACCATGTTCGTTCAACACC -ACGGAACCATGTTCGTTCATCGAG -ACGGAACCATGTTCGTTCCTCCTT -ACGGAACCATGTTCGTTCCCTGTT -ACGGAACCATGTTCGTTCCGGTTT -ACGGAACCATGTTCGTTCGTGGTT -ACGGAACCATGTTCGTTCGCCTTT -ACGGAACCATGTTCGTTCGGTCTT -ACGGAACCATGTTCGTTCACGCTT -ACGGAACCATGTTCGTTCAGCGTT -ACGGAACCATGTTCGTTCTTCGTC -ACGGAACCATGTTCGTTCTCTCTC -ACGGAACCATGTTCGTTCTGGATC -ACGGAACCATGTTCGTTCCACTTC -ACGGAACCATGTTCGTTCGTACTC -ACGGAACCATGTTCGTTCGATGTC -ACGGAACCATGTTCGTTCACAGTC -ACGGAACCATGTTCGTTCTTGCTG -ACGGAACCATGTTCGTTCTCCATG -ACGGAACCATGTTCGTTCTGTGTG -ACGGAACCATGTTCGTTCCTAGTG -ACGGAACCATGTTCGTTCCATCTG -ACGGAACCATGTTCGTTCGAGTTG -ACGGAACCATGTTCGTTCAGACTG -ACGGAACCATGTTCGTTCTCGGTA -ACGGAACCATGTTCGTTCTGCCTA -ACGGAACCATGTTCGTTCCCACTA -ACGGAACCATGTTCGTTCGGAGTA -ACGGAACCATGTTCGTTCTCGTCT -ACGGAACCATGTTCGTTCTGCACT -ACGGAACCATGTTCGTTCCTGACT -ACGGAACCATGTTCGTTCCAACCT -ACGGAACCATGTTCGTTCGCTACT -ACGGAACCATGTTCGTTCGGATCT -ACGGAACCATGTTCGTTCAAGGCT -ACGGAACCATGTTCGTTCTCAACC -ACGGAACCATGTTCGTTCTGTTCC -ACGGAACCATGTTCGTTCATTCCC -ACGGAACCATGTTCGTTCTTCTCG -ACGGAACCATGTTCGTTCTAGACG -ACGGAACCATGTTCGTTCGTAACG -ACGGAACCATGTTCGTTCACTTCG -ACGGAACCATGTTCGTTCTACGCA -ACGGAACCATGTTCGTTCCTTGCA -ACGGAACCATGTTCGTTCCGAACA -ACGGAACCATGTTCGTTCCAGTCA -ACGGAACCATGTTCGTTCGATCCA -ACGGAACCATGTTCGTTCACGACA -ACGGAACCATGTTCGTTCAGCTCA -ACGGAACCATGTTCGTTCTCACGT -ACGGAACCATGTTCGTTCCGTAGT -ACGGAACCATGTTCGTTCGTCAGT -ACGGAACCATGTTCGTTCGAAGGT -ACGGAACCATGTTCGTTCAACCGT -ACGGAACCATGTTCGTTCTTGTGC -ACGGAACCATGTTCGTTCCTAAGC -ACGGAACCATGTTCGTTCACTAGC -ACGGAACCATGTTCGTTCAGATGC -ACGGAACCATGTTCGTTCTGAAGG -ACGGAACCATGTTCGTTCCAATGG -ACGGAACCATGTTCGTTCATGAGG -ACGGAACCATGTTCGTTCAATGGG -ACGGAACCATGTTCGTTCTCCTGA -ACGGAACCATGTTCGTTCTAGCGA -ACGGAACCATGTTCGTTCCACAGA -ACGGAACCATGTTCGTTCGCAAGA -ACGGAACCATGTTCGTTCGGTTGA -ACGGAACCATGTTCGTTCTCCGAT -ACGGAACCATGTTCGTTCTGGCAT -ACGGAACCATGTTCGTTCCGAGAT -ACGGAACCATGTTCGTTCTACCAC -ACGGAACCATGTTCGTTCCAGAAC -ACGGAACCATGTTCGTTCGTCTAC -ACGGAACCATGTTCGTTCACGTAC -ACGGAACCATGTTCGTTCAGTGAC -ACGGAACCATGTTCGTTCCTGTAG -ACGGAACCATGTTCGTTCCCTAAG -ACGGAACCATGTTCGTTCGTTCAG -ACGGAACCATGTTCGTTCGCATAG -ACGGAACCATGTTCGTTCGACAAG -ACGGAACCATGTTCGTTCAAGCAG -ACGGAACCATGTTCGTTCCGTCAA -ACGGAACCATGTTCGTTCGCTGAA -ACGGAACCATGTTCGTTCAGTACG -ACGGAACCATGTTCGTTCATCCGA -ACGGAACCATGTTCGTTCATGGGA -ACGGAACCATGTTCGTTCGTGCAA -ACGGAACCATGTTCGTTCGAGGAA -ACGGAACCATGTTCGTTCCAGGTA -ACGGAACCATGTTCGTTCGACTCT -ACGGAACCATGTTCGTTCAGTCCT -ACGGAACCATGTTCGTTCTAAGCC -ACGGAACCATGTTCGTTCATAGCC -ACGGAACCATGTTCGTTCTAACCG -ACGGAACCATGTTCGTTCATGCCA -ACGGAACCATGTACGTAGGGAAAC -ACGGAACCATGTACGTAGAACACC -ACGGAACCATGTACGTAGATCGAG -ACGGAACCATGTACGTAGCTCCTT -ACGGAACCATGTACGTAGCCTGTT -ACGGAACCATGTACGTAGCGGTTT -ACGGAACCATGTACGTAGGTGGTT -ACGGAACCATGTACGTAGGCCTTT -ACGGAACCATGTACGTAGGGTCTT -ACGGAACCATGTACGTAGACGCTT -ACGGAACCATGTACGTAGAGCGTT -ACGGAACCATGTACGTAGTTCGTC -ACGGAACCATGTACGTAGTCTCTC -ACGGAACCATGTACGTAGTGGATC -ACGGAACCATGTACGTAGCACTTC -ACGGAACCATGTACGTAGGTACTC -ACGGAACCATGTACGTAGGATGTC -ACGGAACCATGTACGTAGACAGTC -ACGGAACCATGTACGTAGTTGCTG -ACGGAACCATGTACGTAGTCCATG -ACGGAACCATGTACGTAGTGTGTG -ACGGAACCATGTACGTAGCTAGTG -ACGGAACCATGTACGTAGCATCTG -ACGGAACCATGTACGTAGGAGTTG -ACGGAACCATGTACGTAGAGACTG -ACGGAACCATGTACGTAGTCGGTA -ACGGAACCATGTACGTAGTGCCTA -ACGGAACCATGTACGTAGCCACTA -ACGGAACCATGTACGTAGGGAGTA -ACGGAACCATGTACGTAGTCGTCT -ACGGAACCATGTACGTAGTGCACT -ACGGAACCATGTACGTAGCTGACT -ACGGAACCATGTACGTAGCAACCT -ACGGAACCATGTACGTAGGCTACT -ACGGAACCATGTACGTAGGGATCT -ACGGAACCATGTACGTAGAAGGCT -ACGGAACCATGTACGTAGTCAACC -ACGGAACCATGTACGTAGTGTTCC -ACGGAACCATGTACGTAGATTCCC -ACGGAACCATGTACGTAGTTCTCG -ACGGAACCATGTACGTAGTAGACG -ACGGAACCATGTACGTAGGTAACG -ACGGAACCATGTACGTAGACTTCG -ACGGAACCATGTACGTAGTACGCA -ACGGAACCATGTACGTAGCTTGCA -ACGGAACCATGTACGTAGCGAACA -ACGGAACCATGTACGTAGCAGTCA -ACGGAACCATGTACGTAGGATCCA -ACGGAACCATGTACGTAGACGACA -ACGGAACCATGTACGTAGAGCTCA -ACGGAACCATGTACGTAGTCACGT -ACGGAACCATGTACGTAGCGTAGT -ACGGAACCATGTACGTAGGTCAGT -ACGGAACCATGTACGTAGGAAGGT -ACGGAACCATGTACGTAGAACCGT -ACGGAACCATGTACGTAGTTGTGC -ACGGAACCATGTACGTAGCTAAGC -ACGGAACCATGTACGTAGACTAGC -ACGGAACCATGTACGTAGAGATGC -ACGGAACCATGTACGTAGTGAAGG -ACGGAACCATGTACGTAGCAATGG -ACGGAACCATGTACGTAGATGAGG -ACGGAACCATGTACGTAGAATGGG -ACGGAACCATGTACGTAGTCCTGA -ACGGAACCATGTACGTAGTAGCGA -ACGGAACCATGTACGTAGCACAGA -ACGGAACCATGTACGTAGGCAAGA -ACGGAACCATGTACGTAGGGTTGA -ACGGAACCATGTACGTAGTCCGAT -ACGGAACCATGTACGTAGTGGCAT -ACGGAACCATGTACGTAGCGAGAT -ACGGAACCATGTACGTAGTACCAC -ACGGAACCATGTACGTAGCAGAAC -ACGGAACCATGTACGTAGGTCTAC -ACGGAACCATGTACGTAGACGTAC -ACGGAACCATGTACGTAGAGTGAC -ACGGAACCATGTACGTAGCTGTAG -ACGGAACCATGTACGTAGCCTAAG -ACGGAACCATGTACGTAGGTTCAG -ACGGAACCATGTACGTAGGCATAG -ACGGAACCATGTACGTAGGACAAG -ACGGAACCATGTACGTAGAAGCAG -ACGGAACCATGTACGTAGCGTCAA -ACGGAACCATGTACGTAGGCTGAA -ACGGAACCATGTACGTAGAGTACG -ACGGAACCATGTACGTAGATCCGA -ACGGAACCATGTACGTAGATGGGA -ACGGAACCATGTACGTAGGTGCAA -ACGGAACCATGTACGTAGGAGGAA -ACGGAACCATGTACGTAGCAGGTA -ACGGAACCATGTACGTAGGACTCT -ACGGAACCATGTACGTAGAGTCCT -ACGGAACCATGTACGTAGTAAGCC -ACGGAACCATGTACGTAGATAGCC -ACGGAACCATGTACGTAGTAACCG -ACGGAACCATGTACGTAGATGCCA -ACGGAACCATGTACGGTAGGAAAC -ACGGAACCATGTACGGTAAACACC -ACGGAACCATGTACGGTAATCGAG -ACGGAACCATGTACGGTACTCCTT -ACGGAACCATGTACGGTACCTGTT -ACGGAACCATGTACGGTACGGTTT -ACGGAACCATGTACGGTAGTGGTT -ACGGAACCATGTACGGTAGCCTTT -ACGGAACCATGTACGGTAGGTCTT -ACGGAACCATGTACGGTAACGCTT -ACGGAACCATGTACGGTAAGCGTT -ACGGAACCATGTACGGTATTCGTC -ACGGAACCATGTACGGTATCTCTC -ACGGAACCATGTACGGTATGGATC -ACGGAACCATGTACGGTACACTTC -ACGGAACCATGTACGGTAGTACTC -ACGGAACCATGTACGGTAGATGTC -ACGGAACCATGTACGGTAACAGTC -ACGGAACCATGTACGGTATTGCTG -ACGGAACCATGTACGGTATCCATG -ACGGAACCATGTACGGTATGTGTG -ACGGAACCATGTACGGTACTAGTG -ACGGAACCATGTACGGTACATCTG -ACGGAACCATGTACGGTAGAGTTG -ACGGAACCATGTACGGTAAGACTG -ACGGAACCATGTACGGTATCGGTA -ACGGAACCATGTACGGTATGCCTA -ACGGAACCATGTACGGTACCACTA -ACGGAACCATGTACGGTAGGAGTA -ACGGAACCATGTACGGTATCGTCT -ACGGAACCATGTACGGTATGCACT -ACGGAACCATGTACGGTACTGACT -ACGGAACCATGTACGGTACAACCT -ACGGAACCATGTACGGTAGCTACT -ACGGAACCATGTACGGTAGGATCT -ACGGAACCATGTACGGTAAAGGCT -ACGGAACCATGTACGGTATCAACC -ACGGAACCATGTACGGTATGTTCC -ACGGAACCATGTACGGTAATTCCC -ACGGAACCATGTACGGTATTCTCG -ACGGAACCATGTACGGTATAGACG -ACGGAACCATGTACGGTAGTAACG -ACGGAACCATGTACGGTAACTTCG -ACGGAACCATGTACGGTATACGCA -ACGGAACCATGTACGGTACTTGCA -ACGGAACCATGTACGGTACGAACA -ACGGAACCATGTACGGTACAGTCA -ACGGAACCATGTACGGTAGATCCA -ACGGAACCATGTACGGTAACGACA -ACGGAACCATGTACGGTAAGCTCA -ACGGAACCATGTACGGTATCACGT -ACGGAACCATGTACGGTACGTAGT -ACGGAACCATGTACGGTAGTCAGT -ACGGAACCATGTACGGTAGAAGGT -ACGGAACCATGTACGGTAAACCGT -ACGGAACCATGTACGGTATTGTGC -ACGGAACCATGTACGGTACTAAGC -ACGGAACCATGTACGGTAACTAGC -ACGGAACCATGTACGGTAAGATGC -ACGGAACCATGTACGGTATGAAGG -ACGGAACCATGTACGGTACAATGG -ACGGAACCATGTACGGTAATGAGG -ACGGAACCATGTACGGTAAATGGG -ACGGAACCATGTACGGTATCCTGA -ACGGAACCATGTACGGTATAGCGA -ACGGAACCATGTACGGTACACAGA -ACGGAACCATGTACGGTAGCAAGA -ACGGAACCATGTACGGTAGGTTGA -ACGGAACCATGTACGGTATCCGAT -ACGGAACCATGTACGGTATGGCAT -ACGGAACCATGTACGGTACGAGAT -ACGGAACCATGTACGGTATACCAC -ACGGAACCATGTACGGTACAGAAC -ACGGAACCATGTACGGTAGTCTAC -ACGGAACCATGTACGGTAACGTAC -ACGGAACCATGTACGGTAAGTGAC -ACGGAACCATGTACGGTACTGTAG -ACGGAACCATGTACGGTACCTAAG -ACGGAACCATGTACGGTAGTTCAG -ACGGAACCATGTACGGTAGCATAG -ACGGAACCATGTACGGTAGACAAG -ACGGAACCATGTACGGTAAAGCAG -ACGGAACCATGTACGGTACGTCAA -ACGGAACCATGTACGGTAGCTGAA -ACGGAACCATGTACGGTAAGTACG -ACGGAACCATGTACGGTAATCCGA -ACGGAACCATGTACGGTAATGGGA -ACGGAACCATGTACGGTAGTGCAA -ACGGAACCATGTACGGTAGAGGAA -ACGGAACCATGTACGGTACAGGTA -ACGGAACCATGTACGGTAGACTCT -ACGGAACCATGTACGGTAAGTCCT -ACGGAACCATGTACGGTATAAGCC -ACGGAACCATGTACGGTAATAGCC -ACGGAACCATGTACGGTATAACCG -ACGGAACCATGTACGGTAATGCCA -ACGGAACCATGTTCGACTGGAAAC -ACGGAACCATGTTCGACTAACACC -ACGGAACCATGTTCGACTATCGAG -ACGGAACCATGTTCGACTCTCCTT -ACGGAACCATGTTCGACTCCTGTT -ACGGAACCATGTTCGACTCGGTTT -ACGGAACCATGTTCGACTGTGGTT -ACGGAACCATGTTCGACTGCCTTT -ACGGAACCATGTTCGACTGGTCTT -ACGGAACCATGTTCGACTACGCTT -ACGGAACCATGTTCGACTAGCGTT -ACGGAACCATGTTCGACTTTCGTC -ACGGAACCATGTTCGACTTCTCTC -ACGGAACCATGTTCGACTTGGATC -ACGGAACCATGTTCGACTCACTTC -ACGGAACCATGTTCGACTGTACTC -ACGGAACCATGTTCGACTGATGTC -ACGGAACCATGTTCGACTACAGTC -ACGGAACCATGTTCGACTTTGCTG -ACGGAACCATGTTCGACTTCCATG -ACGGAACCATGTTCGACTTGTGTG -ACGGAACCATGTTCGACTCTAGTG -ACGGAACCATGTTCGACTCATCTG -ACGGAACCATGTTCGACTGAGTTG -ACGGAACCATGTTCGACTAGACTG -ACGGAACCATGTTCGACTTCGGTA -ACGGAACCATGTTCGACTTGCCTA -ACGGAACCATGTTCGACTCCACTA -ACGGAACCATGTTCGACTGGAGTA -ACGGAACCATGTTCGACTTCGTCT -ACGGAACCATGTTCGACTTGCACT -ACGGAACCATGTTCGACTCTGACT -ACGGAACCATGTTCGACTCAACCT -ACGGAACCATGTTCGACTGCTACT -ACGGAACCATGTTCGACTGGATCT -ACGGAACCATGTTCGACTAAGGCT -ACGGAACCATGTTCGACTTCAACC -ACGGAACCATGTTCGACTTGTTCC -ACGGAACCATGTTCGACTATTCCC -ACGGAACCATGTTCGACTTTCTCG -ACGGAACCATGTTCGACTTAGACG -ACGGAACCATGTTCGACTGTAACG -ACGGAACCATGTTCGACTACTTCG -ACGGAACCATGTTCGACTTACGCA -ACGGAACCATGTTCGACTCTTGCA -ACGGAACCATGTTCGACTCGAACA -ACGGAACCATGTTCGACTCAGTCA -ACGGAACCATGTTCGACTGATCCA -ACGGAACCATGTTCGACTACGACA -ACGGAACCATGTTCGACTAGCTCA -ACGGAACCATGTTCGACTTCACGT -ACGGAACCATGTTCGACTCGTAGT -ACGGAACCATGTTCGACTGTCAGT -ACGGAACCATGTTCGACTGAAGGT -ACGGAACCATGTTCGACTAACCGT -ACGGAACCATGTTCGACTTTGTGC -ACGGAACCATGTTCGACTCTAAGC -ACGGAACCATGTTCGACTACTAGC -ACGGAACCATGTTCGACTAGATGC -ACGGAACCATGTTCGACTTGAAGG -ACGGAACCATGTTCGACTCAATGG -ACGGAACCATGTTCGACTATGAGG -ACGGAACCATGTTCGACTAATGGG -ACGGAACCATGTTCGACTTCCTGA -ACGGAACCATGTTCGACTTAGCGA -ACGGAACCATGTTCGACTCACAGA -ACGGAACCATGTTCGACTGCAAGA -ACGGAACCATGTTCGACTGGTTGA -ACGGAACCATGTTCGACTTCCGAT -ACGGAACCATGTTCGACTTGGCAT -ACGGAACCATGTTCGACTCGAGAT -ACGGAACCATGTTCGACTTACCAC -ACGGAACCATGTTCGACTCAGAAC -ACGGAACCATGTTCGACTGTCTAC -ACGGAACCATGTTCGACTACGTAC -ACGGAACCATGTTCGACTAGTGAC -ACGGAACCATGTTCGACTCTGTAG -ACGGAACCATGTTCGACTCCTAAG -ACGGAACCATGTTCGACTGTTCAG -ACGGAACCATGTTCGACTGCATAG -ACGGAACCATGTTCGACTGACAAG -ACGGAACCATGTTCGACTAAGCAG -ACGGAACCATGTTCGACTCGTCAA -ACGGAACCATGTTCGACTGCTGAA -ACGGAACCATGTTCGACTAGTACG -ACGGAACCATGTTCGACTATCCGA -ACGGAACCATGTTCGACTATGGGA -ACGGAACCATGTTCGACTGTGCAA -ACGGAACCATGTTCGACTGAGGAA -ACGGAACCATGTTCGACTCAGGTA -ACGGAACCATGTTCGACTGACTCT -ACGGAACCATGTTCGACTAGTCCT -ACGGAACCATGTTCGACTTAAGCC -ACGGAACCATGTTCGACTATAGCC -ACGGAACCATGTTCGACTTAACCG -ACGGAACCATGTTCGACTATGCCA -ACGGAACCATGTGCATACGGAAAC -ACGGAACCATGTGCATACAACACC -ACGGAACCATGTGCATACATCGAG -ACGGAACCATGTGCATACCTCCTT -ACGGAACCATGTGCATACCCTGTT -ACGGAACCATGTGCATACCGGTTT -ACGGAACCATGTGCATACGTGGTT -ACGGAACCATGTGCATACGCCTTT -ACGGAACCATGTGCATACGGTCTT -ACGGAACCATGTGCATACACGCTT -ACGGAACCATGTGCATACAGCGTT -ACGGAACCATGTGCATACTTCGTC -ACGGAACCATGTGCATACTCTCTC -ACGGAACCATGTGCATACTGGATC -ACGGAACCATGTGCATACCACTTC -ACGGAACCATGTGCATACGTACTC -ACGGAACCATGTGCATACGATGTC -ACGGAACCATGTGCATACACAGTC -ACGGAACCATGTGCATACTTGCTG -ACGGAACCATGTGCATACTCCATG -ACGGAACCATGTGCATACTGTGTG -ACGGAACCATGTGCATACCTAGTG -ACGGAACCATGTGCATACCATCTG -ACGGAACCATGTGCATACGAGTTG -ACGGAACCATGTGCATACAGACTG -ACGGAACCATGTGCATACTCGGTA -ACGGAACCATGTGCATACTGCCTA -ACGGAACCATGTGCATACCCACTA -ACGGAACCATGTGCATACGGAGTA -ACGGAACCATGTGCATACTCGTCT -ACGGAACCATGTGCATACTGCACT -ACGGAACCATGTGCATACCTGACT -ACGGAACCATGTGCATACCAACCT -ACGGAACCATGTGCATACGCTACT -ACGGAACCATGTGCATACGGATCT -ACGGAACCATGTGCATACAAGGCT -ACGGAACCATGTGCATACTCAACC -ACGGAACCATGTGCATACTGTTCC -ACGGAACCATGTGCATACATTCCC -ACGGAACCATGTGCATACTTCTCG -ACGGAACCATGTGCATACTAGACG -ACGGAACCATGTGCATACGTAACG -ACGGAACCATGTGCATACACTTCG -ACGGAACCATGTGCATACTACGCA -ACGGAACCATGTGCATACCTTGCA -ACGGAACCATGTGCATACCGAACA -ACGGAACCATGTGCATACCAGTCA -ACGGAACCATGTGCATACGATCCA -ACGGAACCATGTGCATACACGACA -ACGGAACCATGTGCATACAGCTCA -ACGGAACCATGTGCATACTCACGT -ACGGAACCATGTGCATACCGTAGT -ACGGAACCATGTGCATACGTCAGT -ACGGAACCATGTGCATACGAAGGT -ACGGAACCATGTGCATACAACCGT -ACGGAACCATGTGCATACTTGTGC -ACGGAACCATGTGCATACCTAAGC -ACGGAACCATGTGCATACACTAGC -ACGGAACCATGTGCATACAGATGC -ACGGAACCATGTGCATACTGAAGG -ACGGAACCATGTGCATACCAATGG -ACGGAACCATGTGCATACATGAGG -ACGGAACCATGTGCATACAATGGG -ACGGAACCATGTGCATACTCCTGA -ACGGAACCATGTGCATACTAGCGA -ACGGAACCATGTGCATACCACAGA -ACGGAACCATGTGCATACGCAAGA -ACGGAACCATGTGCATACGGTTGA -ACGGAACCATGTGCATACTCCGAT -ACGGAACCATGTGCATACTGGCAT -ACGGAACCATGTGCATACCGAGAT -ACGGAACCATGTGCATACTACCAC -ACGGAACCATGTGCATACCAGAAC -ACGGAACCATGTGCATACGTCTAC -ACGGAACCATGTGCATACACGTAC -ACGGAACCATGTGCATACAGTGAC -ACGGAACCATGTGCATACCTGTAG -ACGGAACCATGTGCATACCCTAAG -ACGGAACCATGTGCATACGTTCAG -ACGGAACCATGTGCATACGCATAG -ACGGAACCATGTGCATACGACAAG -ACGGAACCATGTGCATACAAGCAG -ACGGAACCATGTGCATACCGTCAA -ACGGAACCATGTGCATACGCTGAA -ACGGAACCATGTGCATACAGTACG -ACGGAACCATGTGCATACATCCGA -ACGGAACCATGTGCATACATGGGA -ACGGAACCATGTGCATACGTGCAA -ACGGAACCATGTGCATACGAGGAA -ACGGAACCATGTGCATACCAGGTA -ACGGAACCATGTGCATACGACTCT -ACGGAACCATGTGCATACAGTCCT -ACGGAACCATGTGCATACTAAGCC -ACGGAACCATGTGCATACATAGCC -ACGGAACCATGTGCATACTAACCG -ACGGAACCATGTGCATACATGCCA -ACGGAACCATGTGCACTTGGAAAC -ACGGAACCATGTGCACTTAACACC -ACGGAACCATGTGCACTTATCGAG -ACGGAACCATGTGCACTTCTCCTT -ACGGAACCATGTGCACTTCCTGTT -ACGGAACCATGTGCACTTCGGTTT -ACGGAACCATGTGCACTTGTGGTT -ACGGAACCATGTGCACTTGCCTTT -ACGGAACCATGTGCACTTGGTCTT -ACGGAACCATGTGCACTTACGCTT -ACGGAACCATGTGCACTTAGCGTT -ACGGAACCATGTGCACTTTTCGTC -ACGGAACCATGTGCACTTTCTCTC -ACGGAACCATGTGCACTTTGGATC -ACGGAACCATGTGCACTTCACTTC -ACGGAACCATGTGCACTTGTACTC -ACGGAACCATGTGCACTTGATGTC -ACGGAACCATGTGCACTTACAGTC -ACGGAACCATGTGCACTTTTGCTG -ACGGAACCATGTGCACTTTCCATG -ACGGAACCATGTGCACTTTGTGTG -ACGGAACCATGTGCACTTCTAGTG -ACGGAACCATGTGCACTTCATCTG -ACGGAACCATGTGCACTTGAGTTG -ACGGAACCATGTGCACTTAGACTG -ACGGAACCATGTGCACTTTCGGTA -ACGGAACCATGTGCACTTTGCCTA -ACGGAACCATGTGCACTTCCACTA -ACGGAACCATGTGCACTTGGAGTA -ACGGAACCATGTGCACTTTCGTCT -ACGGAACCATGTGCACTTTGCACT -ACGGAACCATGTGCACTTCTGACT -ACGGAACCATGTGCACTTCAACCT -ACGGAACCATGTGCACTTGCTACT -ACGGAACCATGTGCACTTGGATCT -ACGGAACCATGTGCACTTAAGGCT -ACGGAACCATGTGCACTTTCAACC -ACGGAACCATGTGCACTTTGTTCC -ACGGAACCATGTGCACTTATTCCC -ACGGAACCATGTGCACTTTTCTCG -ACGGAACCATGTGCACTTTAGACG -ACGGAACCATGTGCACTTGTAACG -ACGGAACCATGTGCACTTACTTCG -ACGGAACCATGTGCACTTTACGCA -ACGGAACCATGTGCACTTCTTGCA -ACGGAACCATGTGCACTTCGAACA -ACGGAACCATGTGCACTTCAGTCA -ACGGAACCATGTGCACTTGATCCA -ACGGAACCATGTGCACTTACGACA -ACGGAACCATGTGCACTTAGCTCA -ACGGAACCATGTGCACTTTCACGT -ACGGAACCATGTGCACTTCGTAGT -ACGGAACCATGTGCACTTGTCAGT -ACGGAACCATGTGCACTTGAAGGT -ACGGAACCATGTGCACTTAACCGT -ACGGAACCATGTGCACTTTTGTGC -ACGGAACCATGTGCACTTCTAAGC -ACGGAACCATGTGCACTTACTAGC -ACGGAACCATGTGCACTTAGATGC -ACGGAACCATGTGCACTTTGAAGG -ACGGAACCATGTGCACTTCAATGG -ACGGAACCATGTGCACTTATGAGG -ACGGAACCATGTGCACTTAATGGG -ACGGAACCATGTGCACTTTCCTGA -ACGGAACCATGTGCACTTTAGCGA -ACGGAACCATGTGCACTTCACAGA -ACGGAACCATGTGCACTTGCAAGA -ACGGAACCATGTGCACTTGGTTGA -ACGGAACCATGTGCACTTTCCGAT -ACGGAACCATGTGCACTTTGGCAT -ACGGAACCATGTGCACTTCGAGAT -ACGGAACCATGTGCACTTTACCAC -ACGGAACCATGTGCACTTCAGAAC -ACGGAACCATGTGCACTTGTCTAC -ACGGAACCATGTGCACTTACGTAC -ACGGAACCATGTGCACTTAGTGAC -ACGGAACCATGTGCACTTCTGTAG -ACGGAACCATGTGCACTTCCTAAG -ACGGAACCATGTGCACTTGTTCAG -ACGGAACCATGTGCACTTGCATAG -ACGGAACCATGTGCACTTGACAAG -ACGGAACCATGTGCACTTAAGCAG -ACGGAACCATGTGCACTTCGTCAA -ACGGAACCATGTGCACTTGCTGAA -ACGGAACCATGTGCACTTAGTACG -ACGGAACCATGTGCACTTATCCGA -ACGGAACCATGTGCACTTATGGGA -ACGGAACCATGTGCACTTGTGCAA -ACGGAACCATGTGCACTTGAGGAA -ACGGAACCATGTGCACTTCAGGTA -ACGGAACCATGTGCACTTGACTCT -ACGGAACCATGTGCACTTAGTCCT -ACGGAACCATGTGCACTTTAAGCC -ACGGAACCATGTGCACTTATAGCC -ACGGAACCATGTGCACTTTAACCG -ACGGAACCATGTGCACTTATGCCA -ACGGAACCATGTACACGAGGAAAC -ACGGAACCATGTACACGAAACACC -ACGGAACCATGTACACGAATCGAG -ACGGAACCATGTACACGACTCCTT -ACGGAACCATGTACACGACCTGTT -ACGGAACCATGTACACGACGGTTT -ACGGAACCATGTACACGAGTGGTT -ACGGAACCATGTACACGAGCCTTT -ACGGAACCATGTACACGAGGTCTT -ACGGAACCATGTACACGAACGCTT -ACGGAACCATGTACACGAAGCGTT -ACGGAACCATGTACACGATTCGTC -ACGGAACCATGTACACGATCTCTC -ACGGAACCATGTACACGATGGATC -ACGGAACCATGTACACGACACTTC -ACGGAACCATGTACACGAGTACTC -ACGGAACCATGTACACGAGATGTC -ACGGAACCATGTACACGAACAGTC -ACGGAACCATGTACACGATTGCTG -ACGGAACCATGTACACGATCCATG -ACGGAACCATGTACACGATGTGTG -ACGGAACCATGTACACGACTAGTG -ACGGAACCATGTACACGACATCTG -ACGGAACCATGTACACGAGAGTTG -ACGGAACCATGTACACGAAGACTG -ACGGAACCATGTACACGATCGGTA -ACGGAACCATGTACACGATGCCTA -ACGGAACCATGTACACGACCACTA -ACGGAACCATGTACACGAGGAGTA -ACGGAACCATGTACACGATCGTCT -ACGGAACCATGTACACGATGCACT -ACGGAACCATGTACACGACTGACT -ACGGAACCATGTACACGACAACCT -ACGGAACCATGTACACGAGCTACT -ACGGAACCATGTACACGAGGATCT -ACGGAACCATGTACACGAAAGGCT -ACGGAACCATGTACACGATCAACC -ACGGAACCATGTACACGATGTTCC -ACGGAACCATGTACACGAATTCCC -ACGGAACCATGTACACGATTCTCG -ACGGAACCATGTACACGATAGACG -ACGGAACCATGTACACGAGTAACG -ACGGAACCATGTACACGAACTTCG -ACGGAACCATGTACACGATACGCA -ACGGAACCATGTACACGACTTGCA -ACGGAACCATGTACACGACGAACA -ACGGAACCATGTACACGACAGTCA -ACGGAACCATGTACACGAGATCCA -ACGGAACCATGTACACGAACGACA -ACGGAACCATGTACACGAAGCTCA -ACGGAACCATGTACACGATCACGT -ACGGAACCATGTACACGACGTAGT -ACGGAACCATGTACACGAGTCAGT -ACGGAACCATGTACACGAGAAGGT -ACGGAACCATGTACACGAAACCGT -ACGGAACCATGTACACGATTGTGC -ACGGAACCATGTACACGACTAAGC -ACGGAACCATGTACACGAACTAGC -ACGGAACCATGTACACGAAGATGC -ACGGAACCATGTACACGATGAAGG -ACGGAACCATGTACACGACAATGG -ACGGAACCATGTACACGAATGAGG -ACGGAACCATGTACACGAAATGGG -ACGGAACCATGTACACGATCCTGA -ACGGAACCATGTACACGATAGCGA -ACGGAACCATGTACACGACACAGA -ACGGAACCATGTACACGAGCAAGA -ACGGAACCATGTACACGAGGTTGA -ACGGAACCATGTACACGATCCGAT -ACGGAACCATGTACACGATGGCAT -ACGGAACCATGTACACGACGAGAT -ACGGAACCATGTACACGATACCAC -ACGGAACCATGTACACGACAGAAC -ACGGAACCATGTACACGAGTCTAC -ACGGAACCATGTACACGAACGTAC -ACGGAACCATGTACACGAAGTGAC -ACGGAACCATGTACACGACTGTAG -ACGGAACCATGTACACGACCTAAG -ACGGAACCATGTACACGAGTTCAG -ACGGAACCATGTACACGAGCATAG -ACGGAACCATGTACACGAGACAAG -ACGGAACCATGTACACGAAAGCAG -ACGGAACCATGTACACGACGTCAA -ACGGAACCATGTACACGAGCTGAA -ACGGAACCATGTACACGAAGTACG -ACGGAACCATGTACACGAATCCGA -ACGGAACCATGTACACGAATGGGA -ACGGAACCATGTACACGAGTGCAA -ACGGAACCATGTACACGAGAGGAA -ACGGAACCATGTACACGACAGGTA -ACGGAACCATGTACACGAGACTCT -ACGGAACCATGTACACGAAGTCCT -ACGGAACCATGTACACGATAAGCC -ACGGAACCATGTACACGAATAGCC -ACGGAACCATGTACACGATAACCG -ACGGAACCATGTACACGAATGCCA -ACGGAACCATGTTCACAGGGAAAC -ACGGAACCATGTTCACAGAACACC -ACGGAACCATGTTCACAGATCGAG -ACGGAACCATGTTCACAGCTCCTT -ACGGAACCATGTTCACAGCCTGTT -ACGGAACCATGTTCACAGCGGTTT -ACGGAACCATGTTCACAGGTGGTT -ACGGAACCATGTTCACAGGCCTTT -ACGGAACCATGTTCACAGGGTCTT -ACGGAACCATGTTCACAGACGCTT -ACGGAACCATGTTCACAGAGCGTT -ACGGAACCATGTTCACAGTTCGTC -ACGGAACCATGTTCACAGTCTCTC -ACGGAACCATGTTCACAGTGGATC -ACGGAACCATGTTCACAGCACTTC -ACGGAACCATGTTCACAGGTACTC -ACGGAACCATGTTCACAGGATGTC -ACGGAACCATGTTCACAGACAGTC -ACGGAACCATGTTCACAGTTGCTG -ACGGAACCATGTTCACAGTCCATG -ACGGAACCATGTTCACAGTGTGTG -ACGGAACCATGTTCACAGCTAGTG -ACGGAACCATGTTCACAGCATCTG -ACGGAACCATGTTCACAGGAGTTG -ACGGAACCATGTTCACAGAGACTG -ACGGAACCATGTTCACAGTCGGTA -ACGGAACCATGTTCACAGTGCCTA -ACGGAACCATGTTCACAGCCACTA -ACGGAACCATGTTCACAGGGAGTA -ACGGAACCATGTTCACAGTCGTCT -ACGGAACCATGTTCACAGTGCACT -ACGGAACCATGTTCACAGCTGACT -ACGGAACCATGTTCACAGCAACCT -ACGGAACCATGTTCACAGGCTACT -ACGGAACCATGTTCACAGGGATCT -ACGGAACCATGTTCACAGAAGGCT -ACGGAACCATGTTCACAGTCAACC -ACGGAACCATGTTCACAGTGTTCC -ACGGAACCATGTTCACAGATTCCC -ACGGAACCATGTTCACAGTTCTCG -ACGGAACCATGTTCACAGTAGACG -ACGGAACCATGTTCACAGGTAACG -ACGGAACCATGTTCACAGACTTCG -ACGGAACCATGTTCACAGTACGCA -ACGGAACCATGTTCACAGCTTGCA -ACGGAACCATGTTCACAGCGAACA -ACGGAACCATGTTCACAGCAGTCA -ACGGAACCATGTTCACAGGATCCA -ACGGAACCATGTTCACAGACGACA -ACGGAACCATGTTCACAGAGCTCA -ACGGAACCATGTTCACAGTCACGT -ACGGAACCATGTTCACAGCGTAGT -ACGGAACCATGTTCACAGGTCAGT -ACGGAACCATGTTCACAGGAAGGT -ACGGAACCATGTTCACAGAACCGT -ACGGAACCATGTTCACAGTTGTGC -ACGGAACCATGTTCACAGCTAAGC -ACGGAACCATGTTCACAGACTAGC -ACGGAACCATGTTCACAGAGATGC -ACGGAACCATGTTCACAGTGAAGG -ACGGAACCATGTTCACAGCAATGG -ACGGAACCATGTTCACAGATGAGG -ACGGAACCATGTTCACAGAATGGG -ACGGAACCATGTTCACAGTCCTGA -ACGGAACCATGTTCACAGTAGCGA -ACGGAACCATGTTCACAGCACAGA -ACGGAACCATGTTCACAGGCAAGA -ACGGAACCATGTTCACAGGGTTGA -ACGGAACCATGTTCACAGTCCGAT -ACGGAACCATGTTCACAGTGGCAT -ACGGAACCATGTTCACAGCGAGAT -ACGGAACCATGTTCACAGTACCAC -ACGGAACCATGTTCACAGCAGAAC -ACGGAACCATGTTCACAGGTCTAC -ACGGAACCATGTTCACAGACGTAC -ACGGAACCATGTTCACAGAGTGAC -ACGGAACCATGTTCACAGCTGTAG -ACGGAACCATGTTCACAGCCTAAG -ACGGAACCATGTTCACAGGTTCAG -ACGGAACCATGTTCACAGGCATAG -ACGGAACCATGTTCACAGGACAAG -ACGGAACCATGTTCACAGAAGCAG -ACGGAACCATGTTCACAGCGTCAA -ACGGAACCATGTTCACAGGCTGAA -ACGGAACCATGTTCACAGAGTACG -ACGGAACCATGTTCACAGATCCGA -ACGGAACCATGTTCACAGATGGGA -ACGGAACCATGTTCACAGGTGCAA -ACGGAACCATGTTCACAGGAGGAA -ACGGAACCATGTTCACAGCAGGTA -ACGGAACCATGTTCACAGGACTCT -ACGGAACCATGTTCACAGAGTCCT -ACGGAACCATGTTCACAGTAAGCC -ACGGAACCATGTTCACAGATAGCC -ACGGAACCATGTTCACAGTAACCG -ACGGAACCATGTTCACAGATGCCA -ACGGAACCATGTCCAGATGGAAAC -ACGGAACCATGTCCAGATAACACC -ACGGAACCATGTCCAGATATCGAG -ACGGAACCATGTCCAGATCTCCTT -ACGGAACCATGTCCAGATCCTGTT -ACGGAACCATGTCCAGATCGGTTT -ACGGAACCATGTCCAGATGTGGTT -ACGGAACCATGTCCAGATGCCTTT -ACGGAACCATGTCCAGATGGTCTT -ACGGAACCATGTCCAGATACGCTT -ACGGAACCATGTCCAGATAGCGTT -ACGGAACCATGTCCAGATTTCGTC -ACGGAACCATGTCCAGATTCTCTC -ACGGAACCATGTCCAGATTGGATC -ACGGAACCATGTCCAGATCACTTC -ACGGAACCATGTCCAGATGTACTC -ACGGAACCATGTCCAGATGATGTC -ACGGAACCATGTCCAGATACAGTC -ACGGAACCATGTCCAGATTTGCTG -ACGGAACCATGTCCAGATTCCATG -ACGGAACCATGTCCAGATTGTGTG -ACGGAACCATGTCCAGATCTAGTG -ACGGAACCATGTCCAGATCATCTG -ACGGAACCATGTCCAGATGAGTTG -ACGGAACCATGTCCAGATAGACTG -ACGGAACCATGTCCAGATTCGGTA -ACGGAACCATGTCCAGATTGCCTA -ACGGAACCATGTCCAGATCCACTA -ACGGAACCATGTCCAGATGGAGTA -ACGGAACCATGTCCAGATTCGTCT -ACGGAACCATGTCCAGATTGCACT -ACGGAACCATGTCCAGATCTGACT -ACGGAACCATGTCCAGATCAACCT -ACGGAACCATGTCCAGATGCTACT -ACGGAACCATGTCCAGATGGATCT -ACGGAACCATGTCCAGATAAGGCT -ACGGAACCATGTCCAGATTCAACC -ACGGAACCATGTCCAGATTGTTCC -ACGGAACCATGTCCAGATATTCCC -ACGGAACCATGTCCAGATTTCTCG -ACGGAACCATGTCCAGATTAGACG -ACGGAACCATGTCCAGATGTAACG -ACGGAACCATGTCCAGATACTTCG -ACGGAACCATGTCCAGATTACGCA -ACGGAACCATGTCCAGATCTTGCA -ACGGAACCATGTCCAGATCGAACA -ACGGAACCATGTCCAGATCAGTCA -ACGGAACCATGTCCAGATGATCCA -ACGGAACCATGTCCAGATACGACA -ACGGAACCATGTCCAGATAGCTCA -ACGGAACCATGTCCAGATTCACGT -ACGGAACCATGTCCAGATCGTAGT -ACGGAACCATGTCCAGATGTCAGT -ACGGAACCATGTCCAGATGAAGGT -ACGGAACCATGTCCAGATAACCGT -ACGGAACCATGTCCAGATTTGTGC -ACGGAACCATGTCCAGATCTAAGC -ACGGAACCATGTCCAGATACTAGC -ACGGAACCATGTCCAGATAGATGC -ACGGAACCATGTCCAGATTGAAGG -ACGGAACCATGTCCAGATCAATGG -ACGGAACCATGTCCAGATATGAGG -ACGGAACCATGTCCAGATAATGGG -ACGGAACCATGTCCAGATTCCTGA -ACGGAACCATGTCCAGATTAGCGA -ACGGAACCATGTCCAGATCACAGA -ACGGAACCATGTCCAGATGCAAGA -ACGGAACCATGTCCAGATGGTTGA -ACGGAACCATGTCCAGATTCCGAT -ACGGAACCATGTCCAGATTGGCAT -ACGGAACCATGTCCAGATCGAGAT -ACGGAACCATGTCCAGATTACCAC -ACGGAACCATGTCCAGATCAGAAC -ACGGAACCATGTCCAGATGTCTAC -ACGGAACCATGTCCAGATACGTAC -ACGGAACCATGTCCAGATAGTGAC -ACGGAACCATGTCCAGATCTGTAG -ACGGAACCATGTCCAGATCCTAAG -ACGGAACCATGTCCAGATGTTCAG -ACGGAACCATGTCCAGATGCATAG -ACGGAACCATGTCCAGATGACAAG -ACGGAACCATGTCCAGATAAGCAG -ACGGAACCATGTCCAGATCGTCAA -ACGGAACCATGTCCAGATGCTGAA -ACGGAACCATGTCCAGATAGTACG -ACGGAACCATGTCCAGATATCCGA -ACGGAACCATGTCCAGATATGGGA -ACGGAACCATGTCCAGATGTGCAA -ACGGAACCATGTCCAGATGAGGAA -ACGGAACCATGTCCAGATCAGGTA -ACGGAACCATGTCCAGATGACTCT -ACGGAACCATGTCCAGATAGTCCT -ACGGAACCATGTCCAGATTAAGCC -ACGGAACCATGTCCAGATATAGCC -ACGGAACCATGTCCAGATTAACCG -ACGGAACCATGTCCAGATATGCCA -ACGGAACCATGTACAACGGGAAAC -ACGGAACCATGTACAACGAACACC -ACGGAACCATGTACAACGATCGAG -ACGGAACCATGTACAACGCTCCTT -ACGGAACCATGTACAACGCCTGTT -ACGGAACCATGTACAACGCGGTTT -ACGGAACCATGTACAACGGTGGTT -ACGGAACCATGTACAACGGCCTTT -ACGGAACCATGTACAACGGGTCTT -ACGGAACCATGTACAACGACGCTT -ACGGAACCATGTACAACGAGCGTT -ACGGAACCATGTACAACGTTCGTC -ACGGAACCATGTACAACGTCTCTC -ACGGAACCATGTACAACGTGGATC -ACGGAACCATGTACAACGCACTTC -ACGGAACCATGTACAACGGTACTC -ACGGAACCATGTACAACGGATGTC -ACGGAACCATGTACAACGACAGTC -ACGGAACCATGTACAACGTTGCTG -ACGGAACCATGTACAACGTCCATG -ACGGAACCATGTACAACGTGTGTG -ACGGAACCATGTACAACGCTAGTG -ACGGAACCATGTACAACGCATCTG -ACGGAACCATGTACAACGGAGTTG -ACGGAACCATGTACAACGAGACTG -ACGGAACCATGTACAACGTCGGTA -ACGGAACCATGTACAACGTGCCTA -ACGGAACCATGTACAACGCCACTA -ACGGAACCATGTACAACGGGAGTA -ACGGAACCATGTACAACGTCGTCT -ACGGAACCATGTACAACGTGCACT -ACGGAACCATGTACAACGCTGACT -ACGGAACCATGTACAACGCAACCT -ACGGAACCATGTACAACGGCTACT -ACGGAACCATGTACAACGGGATCT -ACGGAACCATGTACAACGAAGGCT -ACGGAACCATGTACAACGTCAACC -ACGGAACCATGTACAACGTGTTCC -ACGGAACCATGTACAACGATTCCC -ACGGAACCATGTACAACGTTCTCG -ACGGAACCATGTACAACGTAGACG -ACGGAACCATGTACAACGGTAACG -ACGGAACCATGTACAACGACTTCG -ACGGAACCATGTACAACGTACGCA -ACGGAACCATGTACAACGCTTGCA -ACGGAACCATGTACAACGCGAACA -ACGGAACCATGTACAACGCAGTCA -ACGGAACCATGTACAACGGATCCA -ACGGAACCATGTACAACGACGACA -ACGGAACCATGTACAACGAGCTCA -ACGGAACCATGTACAACGTCACGT -ACGGAACCATGTACAACGCGTAGT -ACGGAACCATGTACAACGGTCAGT -ACGGAACCATGTACAACGGAAGGT -ACGGAACCATGTACAACGAACCGT -ACGGAACCATGTACAACGTTGTGC -ACGGAACCATGTACAACGCTAAGC -ACGGAACCATGTACAACGACTAGC -ACGGAACCATGTACAACGAGATGC -ACGGAACCATGTACAACGTGAAGG -ACGGAACCATGTACAACGCAATGG -ACGGAACCATGTACAACGATGAGG -ACGGAACCATGTACAACGAATGGG -ACGGAACCATGTACAACGTCCTGA -ACGGAACCATGTACAACGTAGCGA -ACGGAACCATGTACAACGCACAGA -ACGGAACCATGTACAACGGCAAGA -ACGGAACCATGTACAACGGGTTGA -ACGGAACCATGTACAACGTCCGAT -ACGGAACCATGTACAACGTGGCAT -ACGGAACCATGTACAACGCGAGAT -ACGGAACCATGTACAACGTACCAC -ACGGAACCATGTACAACGCAGAAC -ACGGAACCATGTACAACGGTCTAC -ACGGAACCATGTACAACGACGTAC -ACGGAACCATGTACAACGAGTGAC -ACGGAACCATGTACAACGCTGTAG -ACGGAACCATGTACAACGCCTAAG -ACGGAACCATGTACAACGGTTCAG -ACGGAACCATGTACAACGGCATAG -ACGGAACCATGTACAACGGACAAG -ACGGAACCATGTACAACGAAGCAG -ACGGAACCATGTACAACGCGTCAA -ACGGAACCATGTACAACGGCTGAA -ACGGAACCATGTACAACGAGTACG -ACGGAACCATGTACAACGATCCGA -ACGGAACCATGTACAACGATGGGA -ACGGAACCATGTACAACGGTGCAA -ACGGAACCATGTACAACGGAGGAA -ACGGAACCATGTACAACGCAGGTA -ACGGAACCATGTACAACGGACTCT -ACGGAACCATGTACAACGAGTCCT -ACGGAACCATGTACAACGTAAGCC -ACGGAACCATGTACAACGATAGCC -ACGGAACCATGTACAACGTAACCG -ACGGAACCATGTACAACGATGCCA -ACGGAACCATGTTCAAGCGGAAAC -ACGGAACCATGTTCAAGCAACACC -ACGGAACCATGTTCAAGCATCGAG -ACGGAACCATGTTCAAGCCTCCTT -ACGGAACCATGTTCAAGCCCTGTT -ACGGAACCATGTTCAAGCCGGTTT -ACGGAACCATGTTCAAGCGTGGTT -ACGGAACCATGTTCAAGCGCCTTT -ACGGAACCATGTTCAAGCGGTCTT -ACGGAACCATGTTCAAGCACGCTT -ACGGAACCATGTTCAAGCAGCGTT -ACGGAACCATGTTCAAGCTTCGTC -ACGGAACCATGTTCAAGCTCTCTC -ACGGAACCATGTTCAAGCTGGATC -ACGGAACCATGTTCAAGCCACTTC -ACGGAACCATGTTCAAGCGTACTC -ACGGAACCATGTTCAAGCGATGTC -ACGGAACCATGTTCAAGCACAGTC -ACGGAACCATGTTCAAGCTTGCTG -ACGGAACCATGTTCAAGCTCCATG -ACGGAACCATGTTCAAGCTGTGTG -ACGGAACCATGTTCAAGCCTAGTG -ACGGAACCATGTTCAAGCCATCTG -ACGGAACCATGTTCAAGCGAGTTG -ACGGAACCATGTTCAAGCAGACTG -ACGGAACCATGTTCAAGCTCGGTA -ACGGAACCATGTTCAAGCTGCCTA -ACGGAACCATGTTCAAGCCCACTA -ACGGAACCATGTTCAAGCGGAGTA -ACGGAACCATGTTCAAGCTCGTCT -ACGGAACCATGTTCAAGCTGCACT -ACGGAACCATGTTCAAGCCTGACT -ACGGAACCATGTTCAAGCCAACCT -ACGGAACCATGTTCAAGCGCTACT -ACGGAACCATGTTCAAGCGGATCT -ACGGAACCATGTTCAAGCAAGGCT -ACGGAACCATGTTCAAGCTCAACC -ACGGAACCATGTTCAAGCTGTTCC -ACGGAACCATGTTCAAGCATTCCC -ACGGAACCATGTTCAAGCTTCTCG -ACGGAACCATGTTCAAGCTAGACG -ACGGAACCATGTTCAAGCGTAACG -ACGGAACCATGTTCAAGCACTTCG -ACGGAACCATGTTCAAGCTACGCA -ACGGAACCATGTTCAAGCCTTGCA -ACGGAACCATGTTCAAGCCGAACA -ACGGAACCATGTTCAAGCCAGTCA -ACGGAACCATGTTCAAGCGATCCA -ACGGAACCATGTTCAAGCACGACA -ACGGAACCATGTTCAAGCAGCTCA -ACGGAACCATGTTCAAGCTCACGT -ACGGAACCATGTTCAAGCCGTAGT -ACGGAACCATGTTCAAGCGTCAGT -ACGGAACCATGTTCAAGCGAAGGT -ACGGAACCATGTTCAAGCAACCGT -ACGGAACCATGTTCAAGCTTGTGC -ACGGAACCATGTTCAAGCCTAAGC -ACGGAACCATGTTCAAGCACTAGC -ACGGAACCATGTTCAAGCAGATGC -ACGGAACCATGTTCAAGCTGAAGG -ACGGAACCATGTTCAAGCCAATGG -ACGGAACCATGTTCAAGCATGAGG -ACGGAACCATGTTCAAGCAATGGG -ACGGAACCATGTTCAAGCTCCTGA -ACGGAACCATGTTCAAGCTAGCGA -ACGGAACCATGTTCAAGCCACAGA -ACGGAACCATGTTCAAGCGCAAGA -ACGGAACCATGTTCAAGCGGTTGA -ACGGAACCATGTTCAAGCTCCGAT -ACGGAACCATGTTCAAGCTGGCAT -ACGGAACCATGTTCAAGCCGAGAT -ACGGAACCATGTTCAAGCTACCAC -ACGGAACCATGTTCAAGCCAGAAC -ACGGAACCATGTTCAAGCGTCTAC -ACGGAACCATGTTCAAGCACGTAC -ACGGAACCATGTTCAAGCAGTGAC -ACGGAACCATGTTCAAGCCTGTAG -ACGGAACCATGTTCAAGCCCTAAG -ACGGAACCATGTTCAAGCGTTCAG -ACGGAACCATGTTCAAGCGCATAG -ACGGAACCATGTTCAAGCGACAAG -ACGGAACCATGTTCAAGCAAGCAG -ACGGAACCATGTTCAAGCCGTCAA -ACGGAACCATGTTCAAGCGCTGAA -ACGGAACCATGTTCAAGCAGTACG -ACGGAACCATGTTCAAGCATCCGA -ACGGAACCATGTTCAAGCATGGGA -ACGGAACCATGTTCAAGCGTGCAA -ACGGAACCATGTTCAAGCGAGGAA -ACGGAACCATGTTCAAGCCAGGTA -ACGGAACCATGTTCAAGCGACTCT -ACGGAACCATGTTCAAGCAGTCCT -ACGGAACCATGTTCAAGCTAAGCC -ACGGAACCATGTTCAAGCATAGCC -ACGGAACCATGTTCAAGCTAACCG -ACGGAACCATGTTCAAGCATGCCA -ACGGAACCATGTCGTTCAGGAAAC -ACGGAACCATGTCGTTCAAACACC -ACGGAACCATGTCGTTCAATCGAG -ACGGAACCATGTCGTTCACTCCTT -ACGGAACCATGTCGTTCACCTGTT -ACGGAACCATGTCGTTCACGGTTT -ACGGAACCATGTCGTTCAGTGGTT -ACGGAACCATGTCGTTCAGCCTTT -ACGGAACCATGTCGTTCAGGTCTT -ACGGAACCATGTCGTTCAACGCTT -ACGGAACCATGTCGTTCAAGCGTT -ACGGAACCATGTCGTTCATTCGTC -ACGGAACCATGTCGTTCATCTCTC -ACGGAACCATGTCGTTCATGGATC -ACGGAACCATGTCGTTCACACTTC -ACGGAACCATGTCGTTCAGTACTC -ACGGAACCATGTCGTTCAGATGTC -ACGGAACCATGTCGTTCAACAGTC -ACGGAACCATGTCGTTCATTGCTG -ACGGAACCATGTCGTTCATCCATG -ACGGAACCATGTCGTTCATGTGTG -ACGGAACCATGTCGTTCACTAGTG -ACGGAACCATGTCGTTCACATCTG -ACGGAACCATGTCGTTCAGAGTTG -ACGGAACCATGTCGTTCAAGACTG -ACGGAACCATGTCGTTCATCGGTA -ACGGAACCATGTCGTTCATGCCTA -ACGGAACCATGTCGTTCACCACTA -ACGGAACCATGTCGTTCAGGAGTA -ACGGAACCATGTCGTTCATCGTCT -ACGGAACCATGTCGTTCATGCACT -ACGGAACCATGTCGTTCACTGACT -ACGGAACCATGTCGTTCACAACCT -ACGGAACCATGTCGTTCAGCTACT -ACGGAACCATGTCGTTCAGGATCT -ACGGAACCATGTCGTTCAAAGGCT -ACGGAACCATGTCGTTCATCAACC -ACGGAACCATGTCGTTCATGTTCC -ACGGAACCATGTCGTTCAATTCCC -ACGGAACCATGTCGTTCATTCTCG -ACGGAACCATGTCGTTCATAGACG -ACGGAACCATGTCGTTCAGTAACG -ACGGAACCATGTCGTTCAACTTCG -ACGGAACCATGTCGTTCATACGCA -ACGGAACCATGTCGTTCACTTGCA -ACGGAACCATGTCGTTCACGAACA -ACGGAACCATGTCGTTCACAGTCA -ACGGAACCATGTCGTTCAGATCCA -ACGGAACCATGTCGTTCAACGACA -ACGGAACCATGTCGTTCAAGCTCA -ACGGAACCATGTCGTTCATCACGT -ACGGAACCATGTCGTTCACGTAGT -ACGGAACCATGTCGTTCAGTCAGT -ACGGAACCATGTCGTTCAGAAGGT -ACGGAACCATGTCGTTCAAACCGT -ACGGAACCATGTCGTTCATTGTGC -ACGGAACCATGTCGTTCACTAAGC -ACGGAACCATGTCGTTCAACTAGC -ACGGAACCATGTCGTTCAAGATGC -ACGGAACCATGTCGTTCATGAAGG -ACGGAACCATGTCGTTCACAATGG -ACGGAACCATGTCGTTCAATGAGG -ACGGAACCATGTCGTTCAAATGGG -ACGGAACCATGTCGTTCATCCTGA -ACGGAACCATGTCGTTCATAGCGA -ACGGAACCATGTCGTTCACACAGA -ACGGAACCATGTCGTTCAGCAAGA -ACGGAACCATGTCGTTCAGGTTGA -ACGGAACCATGTCGTTCATCCGAT -ACGGAACCATGTCGTTCATGGCAT -ACGGAACCATGTCGTTCACGAGAT -ACGGAACCATGTCGTTCATACCAC -ACGGAACCATGTCGTTCACAGAAC -ACGGAACCATGTCGTTCAGTCTAC -ACGGAACCATGTCGTTCAACGTAC -ACGGAACCATGTCGTTCAAGTGAC -ACGGAACCATGTCGTTCACTGTAG -ACGGAACCATGTCGTTCACCTAAG -ACGGAACCATGTCGTTCAGTTCAG -ACGGAACCATGTCGTTCAGCATAG -ACGGAACCATGTCGTTCAGACAAG -ACGGAACCATGTCGTTCAAAGCAG -ACGGAACCATGTCGTTCACGTCAA -ACGGAACCATGTCGTTCAGCTGAA -ACGGAACCATGTCGTTCAAGTACG -ACGGAACCATGTCGTTCAATCCGA -ACGGAACCATGTCGTTCAATGGGA -ACGGAACCATGTCGTTCAGTGCAA -ACGGAACCATGTCGTTCAGAGGAA -ACGGAACCATGTCGTTCACAGGTA -ACGGAACCATGTCGTTCAGACTCT -ACGGAACCATGTCGTTCAAGTCCT -ACGGAACCATGTCGTTCATAAGCC -ACGGAACCATGTCGTTCAATAGCC -ACGGAACCATGTCGTTCATAACCG -ACGGAACCATGTCGTTCAATGCCA -ACGGAACCATGTAGTCGTGGAAAC -ACGGAACCATGTAGTCGTAACACC -ACGGAACCATGTAGTCGTATCGAG -ACGGAACCATGTAGTCGTCTCCTT -ACGGAACCATGTAGTCGTCCTGTT -ACGGAACCATGTAGTCGTCGGTTT -ACGGAACCATGTAGTCGTGTGGTT -ACGGAACCATGTAGTCGTGCCTTT -ACGGAACCATGTAGTCGTGGTCTT -ACGGAACCATGTAGTCGTACGCTT -ACGGAACCATGTAGTCGTAGCGTT -ACGGAACCATGTAGTCGTTTCGTC -ACGGAACCATGTAGTCGTTCTCTC -ACGGAACCATGTAGTCGTTGGATC -ACGGAACCATGTAGTCGTCACTTC -ACGGAACCATGTAGTCGTGTACTC -ACGGAACCATGTAGTCGTGATGTC -ACGGAACCATGTAGTCGTACAGTC -ACGGAACCATGTAGTCGTTTGCTG -ACGGAACCATGTAGTCGTTCCATG -ACGGAACCATGTAGTCGTTGTGTG -ACGGAACCATGTAGTCGTCTAGTG -ACGGAACCATGTAGTCGTCATCTG -ACGGAACCATGTAGTCGTGAGTTG -ACGGAACCATGTAGTCGTAGACTG -ACGGAACCATGTAGTCGTTCGGTA -ACGGAACCATGTAGTCGTTGCCTA -ACGGAACCATGTAGTCGTCCACTA -ACGGAACCATGTAGTCGTGGAGTA -ACGGAACCATGTAGTCGTTCGTCT -ACGGAACCATGTAGTCGTTGCACT -ACGGAACCATGTAGTCGTCTGACT -ACGGAACCATGTAGTCGTCAACCT -ACGGAACCATGTAGTCGTGCTACT -ACGGAACCATGTAGTCGTGGATCT -ACGGAACCATGTAGTCGTAAGGCT -ACGGAACCATGTAGTCGTTCAACC -ACGGAACCATGTAGTCGTTGTTCC -ACGGAACCATGTAGTCGTATTCCC -ACGGAACCATGTAGTCGTTTCTCG -ACGGAACCATGTAGTCGTTAGACG -ACGGAACCATGTAGTCGTGTAACG -ACGGAACCATGTAGTCGTACTTCG -ACGGAACCATGTAGTCGTTACGCA -ACGGAACCATGTAGTCGTCTTGCA -ACGGAACCATGTAGTCGTCGAACA -ACGGAACCATGTAGTCGTCAGTCA -ACGGAACCATGTAGTCGTGATCCA -ACGGAACCATGTAGTCGTACGACA -ACGGAACCATGTAGTCGTAGCTCA -ACGGAACCATGTAGTCGTTCACGT -ACGGAACCATGTAGTCGTCGTAGT -ACGGAACCATGTAGTCGTGTCAGT -ACGGAACCATGTAGTCGTGAAGGT -ACGGAACCATGTAGTCGTAACCGT -ACGGAACCATGTAGTCGTTTGTGC -ACGGAACCATGTAGTCGTCTAAGC -ACGGAACCATGTAGTCGTACTAGC -ACGGAACCATGTAGTCGTAGATGC -ACGGAACCATGTAGTCGTTGAAGG -ACGGAACCATGTAGTCGTCAATGG -ACGGAACCATGTAGTCGTATGAGG -ACGGAACCATGTAGTCGTAATGGG -ACGGAACCATGTAGTCGTTCCTGA -ACGGAACCATGTAGTCGTTAGCGA -ACGGAACCATGTAGTCGTCACAGA -ACGGAACCATGTAGTCGTGCAAGA -ACGGAACCATGTAGTCGTGGTTGA -ACGGAACCATGTAGTCGTTCCGAT -ACGGAACCATGTAGTCGTTGGCAT -ACGGAACCATGTAGTCGTCGAGAT -ACGGAACCATGTAGTCGTTACCAC -ACGGAACCATGTAGTCGTCAGAAC -ACGGAACCATGTAGTCGTGTCTAC -ACGGAACCATGTAGTCGTACGTAC -ACGGAACCATGTAGTCGTAGTGAC -ACGGAACCATGTAGTCGTCTGTAG -ACGGAACCATGTAGTCGTCCTAAG -ACGGAACCATGTAGTCGTGTTCAG -ACGGAACCATGTAGTCGTGCATAG -ACGGAACCATGTAGTCGTGACAAG -ACGGAACCATGTAGTCGTAAGCAG -ACGGAACCATGTAGTCGTCGTCAA -ACGGAACCATGTAGTCGTGCTGAA -ACGGAACCATGTAGTCGTAGTACG -ACGGAACCATGTAGTCGTATCCGA -ACGGAACCATGTAGTCGTATGGGA -ACGGAACCATGTAGTCGTGTGCAA -ACGGAACCATGTAGTCGTGAGGAA -ACGGAACCATGTAGTCGTCAGGTA -ACGGAACCATGTAGTCGTGACTCT -ACGGAACCATGTAGTCGTAGTCCT -ACGGAACCATGTAGTCGTTAAGCC -ACGGAACCATGTAGTCGTATAGCC -ACGGAACCATGTAGTCGTTAACCG -ACGGAACCATGTAGTCGTATGCCA -ACGGAACCATGTAGTGTCGGAAAC -ACGGAACCATGTAGTGTCAACACC -ACGGAACCATGTAGTGTCATCGAG -ACGGAACCATGTAGTGTCCTCCTT -ACGGAACCATGTAGTGTCCCTGTT -ACGGAACCATGTAGTGTCCGGTTT -ACGGAACCATGTAGTGTCGTGGTT -ACGGAACCATGTAGTGTCGCCTTT -ACGGAACCATGTAGTGTCGGTCTT -ACGGAACCATGTAGTGTCACGCTT -ACGGAACCATGTAGTGTCAGCGTT -ACGGAACCATGTAGTGTCTTCGTC -ACGGAACCATGTAGTGTCTCTCTC -ACGGAACCATGTAGTGTCTGGATC -ACGGAACCATGTAGTGTCCACTTC -ACGGAACCATGTAGTGTCGTACTC -ACGGAACCATGTAGTGTCGATGTC -ACGGAACCATGTAGTGTCACAGTC -ACGGAACCATGTAGTGTCTTGCTG -ACGGAACCATGTAGTGTCTCCATG -ACGGAACCATGTAGTGTCTGTGTG -ACGGAACCATGTAGTGTCCTAGTG -ACGGAACCATGTAGTGTCCATCTG -ACGGAACCATGTAGTGTCGAGTTG -ACGGAACCATGTAGTGTCAGACTG -ACGGAACCATGTAGTGTCTCGGTA -ACGGAACCATGTAGTGTCTGCCTA -ACGGAACCATGTAGTGTCCCACTA -ACGGAACCATGTAGTGTCGGAGTA -ACGGAACCATGTAGTGTCTCGTCT -ACGGAACCATGTAGTGTCTGCACT -ACGGAACCATGTAGTGTCCTGACT -ACGGAACCATGTAGTGTCCAACCT -ACGGAACCATGTAGTGTCGCTACT -ACGGAACCATGTAGTGTCGGATCT -ACGGAACCATGTAGTGTCAAGGCT -ACGGAACCATGTAGTGTCTCAACC -ACGGAACCATGTAGTGTCTGTTCC -ACGGAACCATGTAGTGTCATTCCC -ACGGAACCATGTAGTGTCTTCTCG -ACGGAACCATGTAGTGTCTAGACG -ACGGAACCATGTAGTGTCGTAACG -ACGGAACCATGTAGTGTCACTTCG -ACGGAACCATGTAGTGTCTACGCA -ACGGAACCATGTAGTGTCCTTGCA -ACGGAACCATGTAGTGTCCGAACA -ACGGAACCATGTAGTGTCCAGTCA -ACGGAACCATGTAGTGTCGATCCA -ACGGAACCATGTAGTGTCACGACA -ACGGAACCATGTAGTGTCAGCTCA -ACGGAACCATGTAGTGTCTCACGT -ACGGAACCATGTAGTGTCCGTAGT -ACGGAACCATGTAGTGTCGTCAGT -ACGGAACCATGTAGTGTCGAAGGT -ACGGAACCATGTAGTGTCAACCGT -ACGGAACCATGTAGTGTCTTGTGC -ACGGAACCATGTAGTGTCCTAAGC -ACGGAACCATGTAGTGTCACTAGC -ACGGAACCATGTAGTGTCAGATGC -ACGGAACCATGTAGTGTCTGAAGG -ACGGAACCATGTAGTGTCCAATGG -ACGGAACCATGTAGTGTCATGAGG -ACGGAACCATGTAGTGTCAATGGG -ACGGAACCATGTAGTGTCTCCTGA -ACGGAACCATGTAGTGTCTAGCGA -ACGGAACCATGTAGTGTCCACAGA -ACGGAACCATGTAGTGTCGCAAGA -ACGGAACCATGTAGTGTCGGTTGA -ACGGAACCATGTAGTGTCTCCGAT -ACGGAACCATGTAGTGTCTGGCAT -ACGGAACCATGTAGTGTCCGAGAT -ACGGAACCATGTAGTGTCTACCAC -ACGGAACCATGTAGTGTCCAGAAC -ACGGAACCATGTAGTGTCGTCTAC -ACGGAACCATGTAGTGTCACGTAC -ACGGAACCATGTAGTGTCAGTGAC -ACGGAACCATGTAGTGTCCTGTAG -ACGGAACCATGTAGTGTCCCTAAG -ACGGAACCATGTAGTGTCGTTCAG -ACGGAACCATGTAGTGTCGCATAG -ACGGAACCATGTAGTGTCGACAAG -ACGGAACCATGTAGTGTCAAGCAG -ACGGAACCATGTAGTGTCCGTCAA -ACGGAACCATGTAGTGTCGCTGAA -ACGGAACCATGTAGTGTCAGTACG -ACGGAACCATGTAGTGTCATCCGA -ACGGAACCATGTAGTGTCATGGGA -ACGGAACCATGTAGTGTCGTGCAA -ACGGAACCATGTAGTGTCGAGGAA -ACGGAACCATGTAGTGTCCAGGTA -ACGGAACCATGTAGTGTCGACTCT -ACGGAACCATGTAGTGTCAGTCCT -ACGGAACCATGTAGTGTCTAAGCC -ACGGAACCATGTAGTGTCATAGCC -ACGGAACCATGTAGTGTCTAACCG -ACGGAACCATGTAGTGTCATGCCA -ACGGAACCATGTGGTGAAGGAAAC -ACGGAACCATGTGGTGAAAACACC -ACGGAACCATGTGGTGAAATCGAG -ACGGAACCATGTGGTGAACTCCTT -ACGGAACCATGTGGTGAACCTGTT -ACGGAACCATGTGGTGAACGGTTT -ACGGAACCATGTGGTGAAGTGGTT -ACGGAACCATGTGGTGAAGCCTTT -ACGGAACCATGTGGTGAAGGTCTT -ACGGAACCATGTGGTGAAACGCTT -ACGGAACCATGTGGTGAAAGCGTT -ACGGAACCATGTGGTGAATTCGTC -ACGGAACCATGTGGTGAATCTCTC -ACGGAACCATGTGGTGAATGGATC -ACGGAACCATGTGGTGAACACTTC -ACGGAACCATGTGGTGAAGTACTC -ACGGAACCATGTGGTGAAGATGTC -ACGGAACCATGTGGTGAAACAGTC -ACGGAACCATGTGGTGAATTGCTG -ACGGAACCATGTGGTGAATCCATG -ACGGAACCATGTGGTGAATGTGTG -ACGGAACCATGTGGTGAACTAGTG -ACGGAACCATGTGGTGAACATCTG -ACGGAACCATGTGGTGAAGAGTTG -ACGGAACCATGTGGTGAAAGACTG -ACGGAACCATGTGGTGAATCGGTA -ACGGAACCATGTGGTGAATGCCTA -ACGGAACCATGTGGTGAACCACTA -ACGGAACCATGTGGTGAAGGAGTA -ACGGAACCATGTGGTGAATCGTCT -ACGGAACCATGTGGTGAATGCACT -ACGGAACCATGTGGTGAACTGACT -ACGGAACCATGTGGTGAACAACCT -ACGGAACCATGTGGTGAAGCTACT -ACGGAACCATGTGGTGAAGGATCT -ACGGAACCATGTGGTGAAAAGGCT -ACGGAACCATGTGGTGAATCAACC -ACGGAACCATGTGGTGAATGTTCC -ACGGAACCATGTGGTGAAATTCCC -ACGGAACCATGTGGTGAATTCTCG -ACGGAACCATGTGGTGAATAGACG -ACGGAACCATGTGGTGAAGTAACG -ACGGAACCATGTGGTGAAACTTCG -ACGGAACCATGTGGTGAATACGCA -ACGGAACCATGTGGTGAACTTGCA -ACGGAACCATGTGGTGAACGAACA -ACGGAACCATGTGGTGAACAGTCA -ACGGAACCATGTGGTGAAGATCCA -ACGGAACCATGTGGTGAAACGACA -ACGGAACCATGTGGTGAAAGCTCA -ACGGAACCATGTGGTGAATCACGT -ACGGAACCATGTGGTGAACGTAGT -ACGGAACCATGTGGTGAAGTCAGT -ACGGAACCATGTGGTGAAGAAGGT -ACGGAACCATGTGGTGAAAACCGT -ACGGAACCATGTGGTGAATTGTGC -ACGGAACCATGTGGTGAACTAAGC -ACGGAACCATGTGGTGAAACTAGC -ACGGAACCATGTGGTGAAAGATGC -ACGGAACCATGTGGTGAATGAAGG -ACGGAACCATGTGGTGAACAATGG -ACGGAACCATGTGGTGAAATGAGG -ACGGAACCATGTGGTGAAAATGGG -ACGGAACCATGTGGTGAATCCTGA -ACGGAACCATGTGGTGAATAGCGA -ACGGAACCATGTGGTGAACACAGA -ACGGAACCATGTGGTGAAGCAAGA -ACGGAACCATGTGGTGAAGGTTGA -ACGGAACCATGTGGTGAATCCGAT -ACGGAACCATGTGGTGAATGGCAT -ACGGAACCATGTGGTGAACGAGAT -ACGGAACCATGTGGTGAATACCAC -ACGGAACCATGTGGTGAACAGAAC -ACGGAACCATGTGGTGAAGTCTAC -ACGGAACCATGTGGTGAAACGTAC -ACGGAACCATGTGGTGAAAGTGAC -ACGGAACCATGTGGTGAACTGTAG -ACGGAACCATGTGGTGAACCTAAG -ACGGAACCATGTGGTGAAGTTCAG -ACGGAACCATGTGGTGAAGCATAG -ACGGAACCATGTGGTGAAGACAAG -ACGGAACCATGTGGTGAAAAGCAG -ACGGAACCATGTGGTGAACGTCAA -ACGGAACCATGTGGTGAAGCTGAA -ACGGAACCATGTGGTGAAAGTACG -ACGGAACCATGTGGTGAAATCCGA -ACGGAACCATGTGGTGAAATGGGA -ACGGAACCATGTGGTGAAGTGCAA -ACGGAACCATGTGGTGAAGAGGAA -ACGGAACCATGTGGTGAACAGGTA -ACGGAACCATGTGGTGAAGACTCT -ACGGAACCATGTGGTGAAAGTCCT -ACGGAACCATGTGGTGAATAAGCC -ACGGAACCATGTGGTGAAATAGCC -ACGGAACCATGTGGTGAATAACCG -ACGGAACCATGTGGTGAAATGCCA -ACGGAACCATGTCGTAACGGAAAC -ACGGAACCATGTCGTAACAACACC -ACGGAACCATGTCGTAACATCGAG -ACGGAACCATGTCGTAACCTCCTT -ACGGAACCATGTCGTAACCCTGTT -ACGGAACCATGTCGTAACCGGTTT -ACGGAACCATGTCGTAACGTGGTT -ACGGAACCATGTCGTAACGCCTTT -ACGGAACCATGTCGTAACGGTCTT -ACGGAACCATGTCGTAACACGCTT -ACGGAACCATGTCGTAACAGCGTT -ACGGAACCATGTCGTAACTTCGTC -ACGGAACCATGTCGTAACTCTCTC -ACGGAACCATGTCGTAACTGGATC -ACGGAACCATGTCGTAACCACTTC -ACGGAACCATGTCGTAACGTACTC -ACGGAACCATGTCGTAACGATGTC -ACGGAACCATGTCGTAACACAGTC -ACGGAACCATGTCGTAACTTGCTG -ACGGAACCATGTCGTAACTCCATG -ACGGAACCATGTCGTAACTGTGTG -ACGGAACCATGTCGTAACCTAGTG -ACGGAACCATGTCGTAACCATCTG -ACGGAACCATGTCGTAACGAGTTG -ACGGAACCATGTCGTAACAGACTG -ACGGAACCATGTCGTAACTCGGTA -ACGGAACCATGTCGTAACTGCCTA -ACGGAACCATGTCGTAACCCACTA -ACGGAACCATGTCGTAACGGAGTA -ACGGAACCATGTCGTAACTCGTCT -ACGGAACCATGTCGTAACTGCACT -ACGGAACCATGTCGTAACCTGACT -ACGGAACCATGTCGTAACCAACCT -ACGGAACCATGTCGTAACGCTACT -ACGGAACCATGTCGTAACGGATCT -ACGGAACCATGTCGTAACAAGGCT -ACGGAACCATGTCGTAACTCAACC -ACGGAACCATGTCGTAACTGTTCC -ACGGAACCATGTCGTAACATTCCC -ACGGAACCATGTCGTAACTTCTCG -ACGGAACCATGTCGTAACTAGACG -ACGGAACCATGTCGTAACGTAACG -ACGGAACCATGTCGTAACACTTCG -ACGGAACCATGTCGTAACTACGCA -ACGGAACCATGTCGTAACCTTGCA -ACGGAACCATGTCGTAACCGAACA -ACGGAACCATGTCGTAACCAGTCA -ACGGAACCATGTCGTAACGATCCA -ACGGAACCATGTCGTAACACGACA -ACGGAACCATGTCGTAACAGCTCA -ACGGAACCATGTCGTAACTCACGT -ACGGAACCATGTCGTAACCGTAGT -ACGGAACCATGTCGTAACGTCAGT -ACGGAACCATGTCGTAACGAAGGT -ACGGAACCATGTCGTAACAACCGT -ACGGAACCATGTCGTAACTTGTGC -ACGGAACCATGTCGTAACCTAAGC -ACGGAACCATGTCGTAACACTAGC -ACGGAACCATGTCGTAACAGATGC -ACGGAACCATGTCGTAACTGAAGG -ACGGAACCATGTCGTAACCAATGG -ACGGAACCATGTCGTAACATGAGG -ACGGAACCATGTCGTAACAATGGG -ACGGAACCATGTCGTAACTCCTGA -ACGGAACCATGTCGTAACTAGCGA -ACGGAACCATGTCGTAACCACAGA -ACGGAACCATGTCGTAACGCAAGA -ACGGAACCATGTCGTAACGGTTGA -ACGGAACCATGTCGTAACTCCGAT -ACGGAACCATGTCGTAACTGGCAT -ACGGAACCATGTCGTAACCGAGAT -ACGGAACCATGTCGTAACTACCAC -ACGGAACCATGTCGTAACCAGAAC -ACGGAACCATGTCGTAACGTCTAC -ACGGAACCATGTCGTAACACGTAC -ACGGAACCATGTCGTAACAGTGAC -ACGGAACCATGTCGTAACCTGTAG -ACGGAACCATGTCGTAACCCTAAG -ACGGAACCATGTCGTAACGTTCAG -ACGGAACCATGTCGTAACGCATAG -ACGGAACCATGTCGTAACGACAAG -ACGGAACCATGTCGTAACAAGCAG -ACGGAACCATGTCGTAACCGTCAA -ACGGAACCATGTCGTAACGCTGAA -ACGGAACCATGTCGTAACAGTACG -ACGGAACCATGTCGTAACATCCGA -ACGGAACCATGTCGTAACATGGGA -ACGGAACCATGTCGTAACGTGCAA -ACGGAACCATGTCGTAACGAGGAA -ACGGAACCATGTCGTAACCAGGTA -ACGGAACCATGTCGTAACGACTCT -ACGGAACCATGTCGTAACAGTCCT -ACGGAACCATGTCGTAACTAAGCC -ACGGAACCATGTCGTAACATAGCC -ACGGAACCATGTCGTAACTAACCG -ACGGAACCATGTCGTAACATGCCA -ACGGAACCATGTTGCTTGGGAAAC -ACGGAACCATGTTGCTTGAACACC -ACGGAACCATGTTGCTTGATCGAG -ACGGAACCATGTTGCTTGCTCCTT -ACGGAACCATGTTGCTTGCCTGTT -ACGGAACCATGTTGCTTGCGGTTT -ACGGAACCATGTTGCTTGGTGGTT -ACGGAACCATGTTGCTTGGCCTTT -ACGGAACCATGTTGCTTGGGTCTT -ACGGAACCATGTTGCTTGACGCTT -ACGGAACCATGTTGCTTGAGCGTT -ACGGAACCATGTTGCTTGTTCGTC -ACGGAACCATGTTGCTTGTCTCTC -ACGGAACCATGTTGCTTGTGGATC -ACGGAACCATGTTGCTTGCACTTC -ACGGAACCATGTTGCTTGGTACTC -ACGGAACCATGTTGCTTGGATGTC -ACGGAACCATGTTGCTTGACAGTC -ACGGAACCATGTTGCTTGTTGCTG -ACGGAACCATGTTGCTTGTCCATG -ACGGAACCATGTTGCTTGTGTGTG -ACGGAACCATGTTGCTTGCTAGTG -ACGGAACCATGTTGCTTGCATCTG -ACGGAACCATGTTGCTTGGAGTTG -ACGGAACCATGTTGCTTGAGACTG -ACGGAACCATGTTGCTTGTCGGTA -ACGGAACCATGTTGCTTGTGCCTA -ACGGAACCATGTTGCTTGCCACTA -ACGGAACCATGTTGCTTGGGAGTA -ACGGAACCATGTTGCTTGTCGTCT -ACGGAACCATGTTGCTTGTGCACT -ACGGAACCATGTTGCTTGCTGACT -ACGGAACCATGTTGCTTGCAACCT -ACGGAACCATGTTGCTTGGCTACT -ACGGAACCATGTTGCTTGGGATCT -ACGGAACCATGTTGCTTGAAGGCT -ACGGAACCATGTTGCTTGTCAACC -ACGGAACCATGTTGCTTGTGTTCC -ACGGAACCATGTTGCTTGATTCCC -ACGGAACCATGTTGCTTGTTCTCG -ACGGAACCATGTTGCTTGTAGACG -ACGGAACCATGTTGCTTGGTAACG -ACGGAACCATGTTGCTTGACTTCG -ACGGAACCATGTTGCTTGTACGCA -ACGGAACCATGTTGCTTGCTTGCA -ACGGAACCATGTTGCTTGCGAACA -ACGGAACCATGTTGCTTGCAGTCA -ACGGAACCATGTTGCTTGGATCCA -ACGGAACCATGTTGCTTGACGACA -ACGGAACCATGTTGCTTGAGCTCA -ACGGAACCATGTTGCTTGTCACGT -ACGGAACCATGTTGCTTGCGTAGT -ACGGAACCATGTTGCTTGGTCAGT -ACGGAACCATGTTGCTTGGAAGGT -ACGGAACCATGTTGCTTGAACCGT -ACGGAACCATGTTGCTTGTTGTGC -ACGGAACCATGTTGCTTGCTAAGC -ACGGAACCATGTTGCTTGACTAGC -ACGGAACCATGTTGCTTGAGATGC -ACGGAACCATGTTGCTTGTGAAGG -ACGGAACCATGTTGCTTGCAATGG -ACGGAACCATGTTGCTTGATGAGG -ACGGAACCATGTTGCTTGAATGGG -ACGGAACCATGTTGCTTGTCCTGA -ACGGAACCATGTTGCTTGTAGCGA -ACGGAACCATGTTGCTTGCACAGA -ACGGAACCATGTTGCTTGGCAAGA -ACGGAACCATGTTGCTTGGGTTGA -ACGGAACCATGTTGCTTGTCCGAT -ACGGAACCATGTTGCTTGTGGCAT -ACGGAACCATGTTGCTTGCGAGAT -ACGGAACCATGTTGCTTGTACCAC -ACGGAACCATGTTGCTTGCAGAAC -ACGGAACCATGTTGCTTGGTCTAC -ACGGAACCATGTTGCTTGACGTAC -ACGGAACCATGTTGCTTGAGTGAC -ACGGAACCATGTTGCTTGCTGTAG -ACGGAACCATGTTGCTTGCCTAAG -ACGGAACCATGTTGCTTGGTTCAG -ACGGAACCATGTTGCTTGGCATAG -ACGGAACCATGTTGCTTGGACAAG -ACGGAACCATGTTGCTTGAAGCAG -ACGGAACCATGTTGCTTGCGTCAA -ACGGAACCATGTTGCTTGGCTGAA -ACGGAACCATGTTGCTTGAGTACG -ACGGAACCATGTTGCTTGATCCGA -ACGGAACCATGTTGCTTGATGGGA -ACGGAACCATGTTGCTTGGTGCAA -ACGGAACCATGTTGCTTGGAGGAA -ACGGAACCATGTTGCTTGCAGGTA -ACGGAACCATGTTGCTTGGACTCT -ACGGAACCATGTTGCTTGAGTCCT -ACGGAACCATGTTGCTTGTAAGCC -ACGGAACCATGTTGCTTGATAGCC -ACGGAACCATGTTGCTTGTAACCG -ACGGAACCATGTTGCTTGATGCCA -ACGGAACCATGTAGCCTAGGAAAC -ACGGAACCATGTAGCCTAAACACC -ACGGAACCATGTAGCCTAATCGAG -ACGGAACCATGTAGCCTACTCCTT -ACGGAACCATGTAGCCTACCTGTT -ACGGAACCATGTAGCCTACGGTTT -ACGGAACCATGTAGCCTAGTGGTT -ACGGAACCATGTAGCCTAGCCTTT -ACGGAACCATGTAGCCTAGGTCTT -ACGGAACCATGTAGCCTAACGCTT -ACGGAACCATGTAGCCTAAGCGTT -ACGGAACCATGTAGCCTATTCGTC -ACGGAACCATGTAGCCTATCTCTC -ACGGAACCATGTAGCCTATGGATC -ACGGAACCATGTAGCCTACACTTC -ACGGAACCATGTAGCCTAGTACTC -ACGGAACCATGTAGCCTAGATGTC -ACGGAACCATGTAGCCTAACAGTC -ACGGAACCATGTAGCCTATTGCTG -ACGGAACCATGTAGCCTATCCATG -ACGGAACCATGTAGCCTATGTGTG -ACGGAACCATGTAGCCTACTAGTG -ACGGAACCATGTAGCCTACATCTG -ACGGAACCATGTAGCCTAGAGTTG -ACGGAACCATGTAGCCTAAGACTG -ACGGAACCATGTAGCCTATCGGTA -ACGGAACCATGTAGCCTATGCCTA -ACGGAACCATGTAGCCTACCACTA -ACGGAACCATGTAGCCTAGGAGTA -ACGGAACCATGTAGCCTATCGTCT -ACGGAACCATGTAGCCTATGCACT -ACGGAACCATGTAGCCTACTGACT -ACGGAACCATGTAGCCTACAACCT -ACGGAACCATGTAGCCTAGCTACT -ACGGAACCATGTAGCCTAGGATCT -ACGGAACCATGTAGCCTAAAGGCT -ACGGAACCATGTAGCCTATCAACC -ACGGAACCATGTAGCCTATGTTCC -ACGGAACCATGTAGCCTAATTCCC -ACGGAACCATGTAGCCTATTCTCG -ACGGAACCATGTAGCCTATAGACG -ACGGAACCATGTAGCCTAGTAACG -ACGGAACCATGTAGCCTAACTTCG -ACGGAACCATGTAGCCTATACGCA -ACGGAACCATGTAGCCTACTTGCA -ACGGAACCATGTAGCCTACGAACA -ACGGAACCATGTAGCCTACAGTCA -ACGGAACCATGTAGCCTAGATCCA -ACGGAACCATGTAGCCTAACGACA -ACGGAACCATGTAGCCTAAGCTCA -ACGGAACCATGTAGCCTATCACGT -ACGGAACCATGTAGCCTACGTAGT -ACGGAACCATGTAGCCTAGTCAGT -ACGGAACCATGTAGCCTAGAAGGT -ACGGAACCATGTAGCCTAAACCGT -ACGGAACCATGTAGCCTATTGTGC -ACGGAACCATGTAGCCTACTAAGC -ACGGAACCATGTAGCCTAACTAGC -ACGGAACCATGTAGCCTAAGATGC -ACGGAACCATGTAGCCTATGAAGG -ACGGAACCATGTAGCCTACAATGG -ACGGAACCATGTAGCCTAATGAGG -ACGGAACCATGTAGCCTAAATGGG -ACGGAACCATGTAGCCTATCCTGA -ACGGAACCATGTAGCCTATAGCGA -ACGGAACCATGTAGCCTACACAGA -ACGGAACCATGTAGCCTAGCAAGA -ACGGAACCATGTAGCCTAGGTTGA -ACGGAACCATGTAGCCTATCCGAT -ACGGAACCATGTAGCCTATGGCAT -ACGGAACCATGTAGCCTACGAGAT -ACGGAACCATGTAGCCTATACCAC -ACGGAACCATGTAGCCTACAGAAC -ACGGAACCATGTAGCCTAGTCTAC -ACGGAACCATGTAGCCTAACGTAC -ACGGAACCATGTAGCCTAAGTGAC -ACGGAACCATGTAGCCTACTGTAG -ACGGAACCATGTAGCCTACCTAAG -ACGGAACCATGTAGCCTAGTTCAG -ACGGAACCATGTAGCCTAGCATAG -ACGGAACCATGTAGCCTAGACAAG -ACGGAACCATGTAGCCTAAAGCAG -ACGGAACCATGTAGCCTACGTCAA -ACGGAACCATGTAGCCTAGCTGAA -ACGGAACCATGTAGCCTAAGTACG -ACGGAACCATGTAGCCTAATCCGA -ACGGAACCATGTAGCCTAATGGGA -ACGGAACCATGTAGCCTAGTGCAA -ACGGAACCATGTAGCCTAGAGGAA -ACGGAACCATGTAGCCTACAGGTA -ACGGAACCATGTAGCCTAGACTCT -ACGGAACCATGTAGCCTAAGTCCT -ACGGAACCATGTAGCCTATAAGCC -ACGGAACCATGTAGCCTAATAGCC -ACGGAACCATGTAGCCTATAACCG -ACGGAACCATGTAGCCTAATGCCA -ACGGAACCATGTAGCACTGGAAAC -ACGGAACCATGTAGCACTAACACC -ACGGAACCATGTAGCACTATCGAG -ACGGAACCATGTAGCACTCTCCTT -ACGGAACCATGTAGCACTCCTGTT -ACGGAACCATGTAGCACTCGGTTT -ACGGAACCATGTAGCACTGTGGTT -ACGGAACCATGTAGCACTGCCTTT -ACGGAACCATGTAGCACTGGTCTT -ACGGAACCATGTAGCACTACGCTT -ACGGAACCATGTAGCACTAGCGTT -ACGGAACCATGTAGCACTTTCGTC -ACGGAACCATGTAGCACTTCTCTC -ACGGAACCATGTAGCACTTGGATC -ACGGAACCATGTAGCACTCACTTC -ACGGAACCATGTAGCACTGTACTC -ACGGAACCATGTAGCACTGATGTC -ACGGAACCATGTAGCACTACAGTC -ACGGAACCATGTAGCACTTTGCTG -ACGGAACCATGTAGCACTTCCATG -ACGGAACCATGTAGCACTTGTGTG -ACGGAACCATGTAGCACTCTAGTG -ACGGAACCATGTAGCACTCATCTG -ACGGAACCATGTAGCACTGAGTTG -ACGGAACCATGTAGCACTAGACTG -ACGGAACCATGTAGCACTTCGGTA -ACGGAACCATGTAGCACTTGCCTA -ACGGAACCATGTAGCACTCCACTA -ACGGAACCATGTAGCACTGGAGTA -ACGGAACCATGTAGCACTTCGTCT -ACGGAACCATGTAGCACTTGCACT -ACGGAACCATGTAGCACTCTGACT -ACGGAACCATGTAGCACTCAACCT -ACGGAACCATGTAGCACTGCTACT -ACGGAACCATGTAGCACTGGATCT -ACGGAACCATGTAGCACTAAGGCT -ACGGAACCATGTAGCACTTCAACC -ACGGAACCATGTAGCACTTGTTCC -ACGGAACCATGTAGCACTATTCCC -ACGGAACCATGTAGCACTTTCTCG -ACGGAACCATGTAGCACTTAGACG -ACGGAACCATGTAGCACTGTAACG -ACGGAACCATGTAGCACTACTTCG -ACGGAACCATGTAGCACTTACGCA -ACGGAACCATGTAGCACTCTTGCA -ACGGAACCATGTAGCACTCGAACA -ACGGAACCATGTAGCACTCAGTCA -ACGGAACCATGTAGCACTGATCCA -ACGGAACCATGTAGCACTACGACA -ACGGAACCATGTAGCACTAGCTCA -ACGGAACCATGTAGCACTTCACGT -ACGGAACCATGTAGCACTCGTAGT -ACGGAACCATGTAGCACTGTCAGT -ACGGAACCATGTAGCACTGAAGGT -ACGGAACCATGTAGCACTAACCGT -ACGGAACCATGTAGCACTTTGTGC -ACGGAACCATGTAGCACTCTAAGC -ACGGAACCATGTAGCACTACTAGC -ACGGAACCATGTAGCACTAGATGC -ACGGAACCATGTAGCACTTGAAGG -ACGGAACCATGTAGCACTCAATGG -ACGGAACCATGTAGCACTATGAGG -ACGGAACCATGTAGCACTAATGGG -ACGGAACCATGTAGCACTTCCTGA -ACGGAACCATGTAGCACTTAGCGA -ACGGAACCATGTAGCACTCACAGA -ACGGAACCATGTAGCACTGCAAGA -ACGGAACCATGTAGCACTGGTTGA -ACGGAACCATGTAGCACTTCCGAT -ACGGAACCATGTAGCACTTGGCAT -ACGGAACCATGTAGCACTCGAGAT -ACGGAACCATGTAGCACTTACCAC -ACGGAACCATGTAGCACTCAGAAC -ACGGAACCATGTAGCACTGTCTAC -ACGGAACCATGTAGCACTACGTAC -ACGGAACCATGTAGCACTAGTGAC -ACGGAACCATGTAGCACTCTGTAG -ACGGAACCATGTAGCACTCCTAAG -ACGGAACCATGTAGCACTGTTCAG -ACGGAACCATGTAGCACTGCATAG -ACGGAACCATGTAGCACTGACAAG -ACGGAACCATGTAGCACTAAGCAG -ACGGAACCATGTAGCACTCGTCAA -ACGGAACCATGTAGCACTGCTGAA -ACGGAACCATGTAGCACTAGTACG -ACGGAACCATGTAGCACTATCCGA -ACGGAACCATGTAGCACTATGGGA -ACGGAACCATGTAGCACTGTGCAA -ACGGAACCATGTAGCACTGAGGAA -ACGGAACCATGTAGCACTCAGGTA -ACGGAACCATGTAGCACTGACTCT -ACGGAACCATGTAGCACTAGTCCT -ACGGAACCATGTAGCACTTAAGCC -ACGGAACCATGTAGCACTATAGCC -ACGGAACCATGTAGCACTTAACCG -ACGGAACCATGTAGCACTATGCCA -ACGGAACCATGTTGCAGAGGAAAC -ACGGAACCATGTTGCAGAAACACC -ACGGAACCATGTTGCAGAATCGAG -ACGGAACCATGTTGCAGACTCCTT -ACGGAACCATGTTGCAGACCTGTT -ACGGAACCATGTTGCAGACGGTTT -ACGGAACCATGTTGCAGAGTGGTT -ACGGAACCATGTTGCAGAGCCTTT -ACGGAACCATGTTGCAGAGGTCTT -ACGGAACCATGTTGCAGAACGCTT -ACGGAACCATGTTGCAGAAGCGTT -ACGGAACCATGTTGCAGATTCGTC -ACGGAACCATGTTGCAGATCTCTC -ACGGAACCATGTTGCAGATGGATC -ACGGAACCATGTTGCAGACACTTC -ACGGAACCATGTTGCAGAGTACTC -ACGGAACCATGTTGCAGAGATGTC -ACGGAACCATGTTGCAGAACAGTC -ACGGAACCATGTTGCAGATTGCTG -ACGGAACCATGTTGCAGATCCATG -ACGGAACCATGTTGCAGATGTGTG -ACGGAACCATGTTGCAGACTAGTG -ACGGAACCATGTTGCAGACATCTG -ACGGAACCATGTTGCAGAGAGTTG -ACGGAACCATGTTGCAGAAGACTG -ACGGAACCATGTTGCAGATCGGTA -ACGGAACCATGTTGCAGATGCCTA -ACGGAACCATGTTGCAGACCACTA -ACGGAACCATGTTGCAGAGGAGTA -ACGGAACCATGTTGCAGATCGTCT -ACGGAACCATGTTGCAGATGCACT -ACGGAACCATGTTGCAGACTGACT -ACGGAACCATGTTGCAGACAACCT -ACGGAACCATGTTGCAGAGCTACT -ACGGAACCATGTTGCAGAGGATCT -ACGGAACCATGTTGCAGAAAGGCT -ACGGAACCATGTTGCAGATCAACC -ACGGAACCATGTTGCAGATGTTCC -ACGGAACCATGTTGCAGAATTCCC -ACGGAACCATGTTGCAGATTCTCG -ACGGAACCATGTTGCAGATAGACG -ACGGAACCATGTTGCAGAGTAACG -ACGGAACCATGTTGCAGAACTTCG -ACGGAACCATGTTGCAGATACGCA -ACGGAACCATGTTGCAGACTTGCA -ACGGAACCATGTTGCAGACGAACA -ACGGAACCATGTTGCAGACAGTCA -ACGGAACCATGTTGCAGAGATCCA -ACGGAACCATGTTGCAGAACGACA -ACGGAACCATGTTGCAGAAGCTCA -ACGGAACCATGTTGCAGATCACGT -ACGGAACCATGTTGCAGACGTAGT -ACGGAACCATGTTGCAGAGTCAGT -ACGGAACCATGTTGCAGAGAAGGT -ACGGAACCATGTTGCAGAAACCGT -ACGGAACCATGTTGCAGATTGTGC -ACGGAACCATGTTGCAGACTAAGC -ACGGAACCATGTTGCAGAACTAGC -ACGGAACCATGTTGCAGAAGATGC -ACGGAACCATGTTGCAGATGAAGG -ACGGAACCATGTTGCAGACAATGG -ACGGAACCATGTTGCAGAATGAGG -ACGGAACCATGTTGCAGAAATGGG -ACGGAACCATGTTGCAGATCCTGA -ACGGAACCATGTTGCAGATAGCGA -ACGGAACCATGTTGCAGACACAGA -ACGGAACCATGTTGCAGAGCAAGA -ACGGAACCATGTTGCAGAGGTTGA -ACGGAACCATGTTGCAGATCCGAT -ACGGAACCATGTTGCAGATGGCAT -ACGGAACCATGTTGCAGACGAGAT -ACGGAACCATGTTGCAGATACCAC -ACGGAACCATGTTGCAGACAGAAC -ACGGAACCATGTTGCAGAGTCTAC -ACGGAACCATGTTGCAGAACGTAC -ACGGAACCATGTTGCAGAAGTGAC -ACGGAACCATGTTGCAGACTGTAG -ACGGAACCATGTTGCAGACCTAAG -ACGGAACCATGTTGCAGAGTTCAG -ACGGAACCATGTTGCAGAGCATAG -ACGGAACCATGTTGCAGAGACAAG -ACGGAACCATGTTGCAGAAAGCAG -ACGGAACCATGTTGCAGACGTCAA -ACGGAACCATGTTGCAGAGCTGAA -ACGGAACCATGTTGCAGAAGTACG -ACGGAACCATGTTGCAGAATCCGA -ACGGAACCATGTTGCAGAATGGGA -ACGGAACCATGTTGCAGAGTGCAA -ACGGAACCATGTTGCAGAGAGGAA -ACGGAACCATGTTGCAGACAGGTA -ACGGAACCATGTTGCAGAGACTCT -ACGGAACCATGTTGCAGAAGTCCT -ACGGAACCATGTTGCAGATAAGCC -ACGGAACCATGTTGCAGAATAGCC -ACGGAACCATGTTGCAGATAACCG -ACGGAACCATGTTGCAGAATGCCA -ACGGAACCATGTAGGTGAGGAAAC -ACGGAACCATGTAGGTGAAACACC -ACGGAACCATGTAGGTGAATCGAG -ACGGAACCATGTAGGTGACTCCTT -ACGGAACCATGTAGGTGACCTGTT -ACGGAACCATGTAGGTGACGGTTT -ACGGAACCATGTAGGTGAGTGGTT -ACGGAACCATGTAGGTGAGCCTTT -ACGGAACCATGTAGGTGAGGTCTT -ACGGAACCATGTAGGTGAACGCTT -ACGGAACCATGTAGGTGAAGCGTT -ACGGAACCATGTAGGTGATTCGTC -ACGGAACCATGTAGGTGATCTCTC -ACGGAACCATGTAGGTGATGGATC -ACGGAACCATGTAGGTGACACTTC -ACGGAACCATGTAGGTGAGTACTC -ACGGAACCATGTAGGTGAGATGTC -ACGGAACCATGTAGGTGAACAGTC -ACGGAACCATGTAGGTGATTGCTG -ACGGAACCATGTAGGTGATCCATG -ACGGAACCATGTAGGTGATGTGTG -ACGGAACCATGTAGGTGACTAGTG -ACGGAACCATGTAGGTGACATCTG -ACGGAACCATGTAGGTGAGAGTTG -ACGGAACCATGTAGGTGAAGACTG -ACGGAACCATGTAGGTGATCGGTA -ACGGAACCATGTAGGTGATGCCTA -ACGGAACCATGTAGGTGACCACTA -ACGGAACCATGTAGGTGAGGAGTA -ACGGAACCATGTAGGTGATCGTCT -ACGGAACCATGTAGGTGATGCACT -ACGGAACCATGTAGGTGACTGACT -ACGGAACCATGTAGGTGACAACCT -ACGGAACCATGTAGGTGAGCTACT -ACGGAACCATGTAGGTGAGGATCT -ACGGAACCATGTAGGTGAAAGGCT -ACGGAACCATGTAGGTGATCAACC -ACGGAACCATGTAGGTGATGTTCC -ACGGAACCATGTAGGTGAATTCCC -ACGGAACCATGTAGGTGATTCTCG -ACGGAACCATGTAGGTGATAGACG -ACGGAACCATGTAGGTGAGTAACG -ACGGAACCATGTAGGTGAACTTCG -ACGGAACCATGTAGGTGATACGCA -ACGGAACCATGTAGGTGACTTGCA -ACGGAACCATGTAGGTGACGAACA -ACGGAACCATGTAGGTGACAGTCA -ACGGAACCATGTAGGTGAGATCCA -ACGGAACCATGTAGGTGAACGACA -ACGGAACCATGTAGGTGAAGCTCA -ACGGAACCATGTAGGTGATCACGT -ACGGAACCATGTAGGTGACGTAGT -ACGGAACCATGTAGGTGAGTCAGT -ACGGAACCATGTAGGTGAGAAGGT -ACGGAACCATGTAGGTGAAACCGT -ACGGAACCATGTAGGTGATTGTGC -ACGGAACCATGTAGGTGACTAAGC -ACGGAACCATGTAGGTGAACTAGC -ACGGAACCATGTAGGTGAAGATGC -ACGGAACCATGTAGGTGATGAAGG -ACGGAACCATGTAGGTGACAATGG -ACGGAACCATGTAGGTGAATGAGG -ACGGAACCATGTAGGTGAAATGGG -ACGGAACCATGTAGGTGATCCTGA -ACGGAACCATGTAGGTGATAGCGA -ACGGAACCATGTAGGTGACACAGA -ACGGAACCATGTAGGTGAGCAAGA -ACGGAACCATGTAGGTGAGGTTGA -ACGGAACCATGTAGGTGATCCGAT -ACGGAACCATGTAGGTGATGGCAT -ACGGAACCATGTAGGTGACGAGAT -ACGGAACCATGTAGGTGATACCAC -ACGGAACCATGTAGGTGACAGAAC -ACGGAACCATGTAGGTGAGTCTAC -ACGGAACCATGTAGGTGAACGTAC -ACGGAACCATGTAGGTGAAGTGAC -ACGGAACCATGTAGGTGACTGTAG -ACGGAACCATGTAGGTGACCTAAG -ACGGAACCATGTAGGTGAGTTCAG -ACGGAACCATGTAGGTGAGCATAG -ACGGAACCATGTAGGTGAGACAAG -ACGGAACCATGTAGGTGAAAGCAG -ACGGAACCATGTAGGTGACGTCAA -ACGGAACCATGTAGGTGAGCTGAA -ACGGAACCATGTAGGTGAAGTACG -ACGGAACCATGTAGGTGAATCCGA -ACGGAACCATGTAGGTGAATGGGA -ACGGAACCATGTAGGTGAGTGCAA -ACGGAACCATGTAGGTGAGAGGAA -ACGGAACCATGTAGGTGACAGGTA -ACGGAACCATGTAGGTGAGACTCT -ACGGAACCATGTAGGTGAAGTCCT -ACGGAACCATGTAGGTGATAAGCC -ACGGAACCATGTAGGTGAATAGCC -ACGGAACCATGTAGGTGATAACCG -ACGGAACCATGTAGGTGAATGCCA -ACGGAACCATGTTGGCAAGGAAAC -ACGGAACCATGTTGGCAAAACACC -ACGGAACCATGTTGGCAAATCGAG -ACGGAACCATGTTGGCAACTCCTT -ACGGAACCATGTTGGCAACCTGTT -ACGGAACCATGTTGGCAACGGTTT -ACGGAACCATGTTGGCAAGTGGTT -ACGGAACCATGTTGGCAAGCCTTT -ACGGAACCATGTTGGCAAGGTCTT -ACGGAACCATGTTGGCAAACGCTT -ACGGAACCATGTTGGCAAAGCGTT -ACGGAACCATGTTGGCAATTCGTC -ACGGAACCATGTTGGCAATCTCTC -ACGGAACCATGTTGGCAATGGATC -ACGGAACCATGTTGGCAACACTTC -ACGGAACCATGTTGGCAAGTACTC -ACGGAACCATGTTGGCAAGATGTC -ACGGAACCATGTTGGCAAACAGTC -ACGGAACCATGTTGGCAATTGCTG -ACGGAACCATGTTGGCAATCCATG -ACGGAACCATGTTGGCAATGTGTG -ACGGAACCATGTTGGCAACTAGTG -ACGGAACCATGTTGGCAACATCTG -ACGGAACCATGTTGGCAAGAGTTG -ACGGAACCATGTTGGCAAAGACTG -ACGGAACCATGTTGGCAATCGGTA -ACGGAACCATGTTGGCAATGCCTA -ACGGAACCATGTTGGCAACCACTA -ACGGAACCATGTTGGCAAGGAGTA -ACGGAACCATGTTGGCAATCGTCT -ACGGAACCATGTTGGCAATGCACT -ACGGAACCATGTTGGCAACTGACT -ACGGAACCATGTTGGCAACAACCT -ACGGAACCATGTTGGCAAGCTACT -ACGGAACCATGTTGGCAAGGATCT -ACGGAACCATGTTGGCAAAAGGCT -ACGGAACCATGTTGGCAATCAACC -ACGGAACCATGTTGGCAATGTTCC -ACGGAACCATGTTGGCAAATTCCC -ACGGAACCATGTTGGCAATTCTCG -ACGGAACCATGTTGGCAATAGACG -ACGGAACCATGTTGGCAAGTAACG -ACGGAACCATGTTGGCAAACTTCG -ACGGAACCATGTTGGCAATACGCA -ACGGAACCATGTTGGCAACTTGCA -ACGGAACCATGTTGGCAACGAACA -ACGGAACCATGTTGGCAACAGTCA -ACGGAACCATGTTGGCAAGATCCA -ACGGAACCATGTTGGCAAACGACA -ACGGAACCATGTTGGCAAAGCTCA -ACGGAACCATGTTGGCAATCACGT -ACGGAACCATGTTGGCAACGTAGT -ACGGAACCATGTTGGCAAGTCAGT -ACGGAACCATGTTGGCAAGAAGGT -ACGGAACCATGTTGGCAAAACCGT -ACGGAACCATGTTGGCAATTGTGC -ACGGAACCATGTTGGCAACTAAGC -ACGGAACCATGTTGGCAAACTAGC -ACGGAACCATGTTGGCAAAGATGC -ACGGAACCATGTTGGCAATGAAGG -ACGGAACCATGTTGGCAACAATGG -ACGGAACCATGTTGGCAAATGAGG -ACGGAACCATGTTGGCAAAATGGG -ACGGAACCATGTTGGCAATCCTGA -ACGGAACCATGTTGGCAATAGCGA -ACGGAACCATGTTGGCAACACAGA -ACGGAACCATGTTGGCAAGCAAGA -ACGGAACCATGTTGGCAAGGTTGA -ACGGAACCATGTTGGCAATCCGAT -ACGGAACCATGTTGGCAATGGCAT -ACGGAACCATGTTGGCAACGAGAT -ACGGAACCATGTTGGCAATACCAC -ACGGAACCATGTTGGCAACAGAAC -ACGGAACCATGTTGGCAAGTCTAC -ACGGAACCATGTTGGCAAACGTAC -ACGGAACCATGTTGGCAAAGTGAC -ACGGAACCATGTTGGCAACTGTAG -ACGGAACCATGTTGGCAACCTAAG -ACGGAACCATGTTGGCAAGTTCAG -ACGGAACCATGTTGGCAAGCATAG -ACGGAACCATGTTGGCAAGACAAG -ACGGAACCATGTTGGCAAAAGCAG -ACGGAACCATGTTGGCAACGTCAA -ACGGAACCATGTTGGCAAGCTGAA -ACGGAACCATGTTGGCAAAGTACG -ACGGAACCATGTTGGCAAATCCGA -ACGGAACCATGTTGGCAAATGGGA -ACGGAACCATGTTGGCAAGTGCAA -ACGGAACCATGTTGGCAAGAGGAA -ACGGAACCATGTTGGCAACAGGTA -ACGGAACCATGTTGGCAAGACTCT -ACGGAACCATGTTGGCAAAGTCCT -ACGGAACCATGTTGGCAATAAGCC -ACGGAACCATGTTGGCAAATAGCC -ACGGAACCATGTTGGCAATAACCG -ACGGAACCATGTTGGCAAATGCCA -ACGGAACCATGTAGGATGGGAAAC -ACGGAACCATGTAGGATGAACACC -ACGGAACCATGTAGGATGATCGAG -ACGGAACCATGTAGGATGCTCCTT -ACGGAACCATGTAGGATGCCTGTT -ACGGAACCATGTAGGATGCGGTTT -ACGGAACCATGTAGGATGGTGGTT -ACGGAACCATGTAGGATGGCCTTT -ACGGAACCATGTAGGATGGGTCTT -ACGGAACCATGTAGGATGACGCTT -ACGGAACCATGTAGGATGAGCGTT -ACGGAACCATGTAGGATGTTCGTC -ACGGAACCATGTAGGATGTCTCTC -ACGGAACCATGTAGGATGTGGATC -ACGGAACCATGTAGGATGCACTTC -ACGGAACCATGTAGGATGGTACTC -ACGGAACCATGTAGGATGGATGTC -ACGGAACCATGTAGGATGACAGTC -ACGGAACCATGTAGGATGTTGCTG -ACGGAACCATGTAGGATGTCCATG -ACGGAACCATGTAGGATGTGTGTG -ACGGAACCATGTAGGATGCTAGTG -ACGGAACCATGTAGGATGCATCTG -ACGGAACCATGTAGGATGGAGTTG -ACGGAACCATGTAGGATGAGACTG -ACGGAACCATGTAGGATGTCGGTA -ACGGAACCATGTAGGATGTGCCTA -ACGGAACCATGTAGGATGCCACTA -ACGGAACCATGTAGGATGGGAGTA -ACGGAACCATGTAGGATGTCGTCT -ACGGAACCATGTAGGATGTGCACT -ACGGAACCATGTAGGATGCTGACT -ACGGAACCATGTAGGATGCAACCT -ACGGAACCATGTAGGATGGCTACT -ACGGAACCATGTAGGATGGGATCT -ACGGAACCATGTAGGATGAAGGCT -ACGGAACCATGTAGGATGTCAACC -ACGGAACCATGTAGGATGTGTTCC -ACGGAACCATGTAGGATGATTCCC -ACGGAACCATGTAGGATGTTCTCG -ACGGAACCATGTAGGATGTAGACG -ACGGAACCATGTAGGATGGTAACG -ACGGAACCATGTAGGATGACTTCG -ACGGAACCATGTAGGATGTACGCA -ACGGAACCATGTAGGATGCTTGCA -ACGGAACCATGTAGGATGCGAACA -ACGGAACCATGTAGGATGCAGTCA -ACGGAACCATGTAGGATGGATCCA -ACGGAACCATGTAGGATGACGACA -ACGGAACCATGTAGGATGAGCTCA -ACGGAACCATGTAGGATGTCACGT -ACGGAACCATGTAGGATGCGTAGT -ACGGAACCATGTAGGATGGTCAGT -ACGGAACCATGTAGGATGGAAGGT -ACGGAACCATGTAGGATGAACCGT -ACGGAACCATGTAGGATGTTGTGC -ACGGAACCATGTAGGATGCTAAGC -ACGGAACCATGTAGGATGACTAGC -ACGGAACCATGTAGGATGAGATGC -ACGGAACCATGTAGGATGTGAAGG -ACGGAACCATGTAGGATGCAATGG -ACGGAACCATGTAGGATGATGAGG -ACGGAACCATGTAGGATGAATGGG -ACGGAACCATGTAGGATGTCCTGA -ACGGAACCATGTAGGATGTAGCGA -ACGGAACCATGTAGGATGCACAGA -ACGGAACCATGTAGGATGGCAAGA -ACGGAACCATGTAGGATGGGTTGA -ACGGAACCATGTAGGATGTCCGAT -ACGGAACCATGTAGGATGTGGCAT -ACGGAACCATGTAGGATGCGAGAT -ACGGAACCATGTAGGATGTACCAC -ACGGAACCATGTAGGATGCAGAAC -ACGGAACCATGTAGGATGGTCTAC -ACGGAACCATGTAGGATGACGTAC -ACGGAACCATGTAGGATGAGTGAC -ACGGAACCATGTAGGATGCTGTAG -ACGGAACCATGTAGGATGCCTAAG -ACGGAACCATGTAGGATGGTTCAG -ACGGAACCATGTAGGATGGCATAG -ACGGAACCATGTAGGATGGACAAG -ACGGAACCATGTAGGATGAAGCAG -ACGGAACCATGTAGGATGCGTCAA -ACGGAACCATGTAGGATGGCTGAA -ACGGAACCATGTAGGATGAGTACG -ACGGAACCATGTAGGATGATCCGA -ACGGAACCATGTAGGATGATGGGA -ACGGAACCATGTAGGATGGTGCAA -ACGGAACCATGTAGGATGGAGGAA -ACGGAACCATGTAGGATGCAGGTA -ACGGAACCATGTAGGATGGACTCT -ACGGAACCATGTAGGATGAGTCCT -ACGGAACCATGTAGGATGTAAGCC -ACGGAACCATGTAGGATGATAGCC -ACGGAACCATGTAGGATGTAACCG -ACGGAACCATGTAGGATGATGCCA -ACGGAACCATGTGGGAATGGAAAC -ACGGAACCATGTGGGAATAACACC -ACGGAACCATGTGGGAATATCGAG -ACGGAACCATGTGGGAATCTCCTT -ACGGAACCATGTGGGAATCCTGTT -ACGGAACCATGTGGGAATCGGTTT -ACGGAACCATGTGGGAATGTGGTT -ACGGAACCATGTGGGAATGCCTTT -ACGGAACCATGTGGGAATGGTCTT -ACGGAACCATGTGGGAATACGCTT -ACGGAACCATGTGGGAATAGCGTT -ACGGAACCATGTGGGAATTTCGTC -ACGGAACCATGTGGGAATTCTCTC -ACGGAACCATGTGGGAATTGGATC -ACGGAACCATGTGGGAATCACTTC -ACGGAACCATGTGGGAATGTACTC -ACGGAACCATGTGGGAATGATGTC -ACGGAACCATGTGGGAATACAGTC -ACGGAACCATGTGGGAATTTGCTG -ACGGAACCATGTGGGAATTCCATG -ACGGAACCATGTGGGAATTGTGTG -ACGGAACCATGTGGGAATCTAGTG -ACGGAACCATGTGGGAATCATCTG -ACGGAACCATGTGGGAATGAGTTG -ACGGAACCATGTGGGAATAGACTG -ACGGAACCATGTGGGAATTCGGTA -ACGGAACCATGTGGGAATTGCCTA -ACGGAACCATGTGGGAATCCACTA -ACGGAACCATGTGGGAATGGAGTA -ACGGAACCATGTGGGAATTCGTCT -ACGGAACCATGTGGGAATTGCACT -ACGGAACCATGTGGGAATCTGACT -ACGGAACCATGTGGGAATCAACCT -ACGGAACCATGTGGGAATGCTACT -ACGGAACCATGTGGGAATGGATCT -ACGGAACCATGTGGGAATAAGGCT -ACGGAACCATGTGGGAATTCAACC -ACGGAACCATGTGGGAATTGTTCC -ACGGAACCATGTGGGAATATTCCC -ACGGAACCATGTGGGAATTTCTCG -ACGGAACCATGTGGGAATTAGACG -ACGGAACCATGTGGGAATGTAACG -ACGGAACCATGTGGGAATACTTCG -ACGGAACCATGTGGGAATTACGCA -ACGGAACCATGTGGGAATCTTGCA -ACGGAACCATGTGGGAATCGAACA -ACGGAACCATGTGGGAATCAGTCA -ACGGAACCATGTGGGAATGATCCA -ACGGAACCATGTGGGAATACGACA -ACGGAACCATGTGGGAATAGCTCA -ACGGAACCATGTGGGAATTCACGT -ACGGAACCATGTGGGAATCGTAGT -ACGGAACCATGTGGGAATGTCAGT -ACGGAACCATGTGGGAATGAAGGT -ACGGAACCATGTGGGAATAACCGT -ACGGAACCATGTGGGAATTTGTGC -ACGGAACCATGTGGGAATCTAAGC -ACGGAACCATGTGGGAATACTAGC -ACGGAACCATGTGGGAATAGATGC -ACGGAACCATGTGGGAATTGAAGG -ACGGAACCATGTGGGAATCAATGG -ACGGAACCATGTGGGAATATGAGG -ACGGAACCATGTGGGAATAATGGG -ACGGAACCATGTGGGAATTCCTGA -ACGGAACCATGTGGGAATTAGCGA -ACGGAACCATGTGGGAATCACAGA -ACGGAACCATGTGGGAATGCAAGA -ACGGAACCATGTGGGAATGGTTGA -ACGGAACCATGTGGGAATTCCGAT -ACGGAACCATGTGGGAATTGGCAT -ACGGAACCATGTGGGAATCGAGAT -ACGGAACCATGTGGGAATTACCAC -ACGGAACCATGTGGGAATCAGAAC -ACGGAACCATGTGGGAATGTCTAC -ACGGAACCATGTGGGAATACGTAC -ACGGAACCATGTGGGAATAGTGAC -ACGGAACCATGTGGGAATCTGTAG -ACGGAACCATGTGGGAATCCTAAG -ACGGAACCATGTGGGAATGTTCAG -ACGGAACCATGTGGGAATGCATAG -ACGGAACCATGTGGGAATGACAAG -ACGGAACCATGTGGGAATAAGCAG -ACGGAACCATGTGGGAATCGTCAA -ACGGAACCATGTGGGAATGCTGAA -ACGGAACCATGTGGGAATAGTACG -ACGGAACCATGTGGGAATATCCGA -ACGGAACCATGTGGGAATATGGGA -ACGGAACCATGTGGGAATGTGCAA -ACGGAACCATGTGGGAATGAGGAA -ACGGAACCATGTGGGAATCAGGTA -ACGGAACCATGTGGGAATGACTCT -ACGGAACCATGTGGGAATAGTCCT -ACGGAACCATGTGGGAATTAAGCC -ACGGAACCATGTGGGAATATAGCC -ACGGAACCATGTGGGAATTAACCG -ACGGAACCATGTGGGAATATGCCA -ACGGAACCATGTTGATCCGGAAAC -ACGGAACCATGTTGATCCAACACC -ACGGAACCATGTTGATCCATCGAG -ACGGAACCATGTTGATCCCTCCTT -ACGGAACCATGTTGATCCCCTGTT -ACGGAACCATGTTGATCCCGGTTT -ACGGAACCATGTTGATCCGTGGTT -ACGGAACCATGTTGATCCGCCTTT -ACGGAACCATGTTGATCCGGTCTT -ACGGAACCATGTTGATCCACGCTT -ACGGAACCATGTTGATCCAGCGTT -ACGGAACCATGTTGATCCTTCGTC -ACGGAACCATGTTGATCCTCTCTC -ACGGAACCATGTTGATCCTGGATC -ACGGAACCATGTTGATCCCACTTC -ACGGAACCATGTTGATCCGTACTC -ACGGAACCATGTTGATCCGATGTC -ACGGAACCATGTTGATCCACAGTC -ACGGAACCATGTTGATCCTTGCTG -ACGGAACCATGTTGATCCTCCATG -ACGGAACCATGTTGATCCTGTGTG -ACGGAACCATGTTGATCCCTAGTG -ACGGAACCATGTTGATCCCATCTG -ACGGAACCATGTTGATCCGAGTTG -ACGGAACCATGTTGATCCAGACTG -ACGGAACCATGTTGATCCTCGGTA -ACGGAACCATGTTGATCCTGCCTA -ACGGAACCATGTTGATCCCCACTA -ACGGAACCATGTTGATCCGGAGTA -ACGGAACCATGTTGATCCTCGTCT -ACGGAACCATGTTGATCCTGCACT -ACGGAACCATGTTGATCCCTGACT -ACGGAACCATGTTGATCCCAACCT -ACGGAACCATGTTGATCCGCTACT -ACGGAACCATGTTGATCCGGATCT -ACGGAACCATGTTGATCCAAGGCT -ACGGAACCATGTTGATCCTCAACC -ACGGAACCATGTTGATCCTGTTCC -ACGGAACCATGTTGATCCATTCCC -ACGGAACCATGTTGATCCTTCTCG -ACGGAACCATGTTGATCCTAGACG -ACGGAACCATGTTGATCCGTAACG -ACGGAACCATGTTGATCCACTTCG -ACGGAACCATGTTGATCCTACGCA -ACGGAACCATGTTGATCCCTTGCA -ACGGAACCATGTTGATCCCGAACA -ACGGAACCATGTTGATCCCAGTCA -ACGGAACCATGTTGATCCGATCCA -ACGGAACCATGTTGATCCACGACA -ACGGAACCATGTTGATCCAGCTCA -ACGGAACCATGTTGATCCTCACGT -ACGGAACCATGTTGATCCCGTAGT -ACGGAACCATGTTGATCCGTCAGT -ACGGAACCATGTTGATCCGAAGGT -ACGGAACCATGTTGATCCAACCGT -ACGGAACCATGTTGATCCTTGTGC -ACGGAACCATGTTGATCCCTAAGC -ACGGAACCATGTTGATCCACTAGC -ACGGAACCATGTTGATCCAGATGC -ACGGAACCATGTTGATCCTGAAGG -ACGGAACCATGTTGATCCCAATGG -ACGGAACCATGTTGATCCATGAGG -ACGGAACCATGTTGATCCAATGGG -ACGGAACCATGTTGATCCTCCTGA -ACGGAACCATGTTGATCCTAGCGA -ACGGAACCATGTTGATCCCACAGA -ACGGAACCATGTTGATCCGCAAGA -ACGGAACCATGTTGATCCGGTTGA -ACGGAACCATGTTGATCCTCCGAT -ACGGAACCATGTTGATCCTGGCAT -ACGGAACCATGTTGATCCCGAGAT -ACGGAACCATGTTGATCCTACCAC -ACGGAACCATGTTGATCCCAGAAC -ACGGAACCATGTTGATCCGTCTAC -ACGGAACCATGTTGATCCACGTAC -ACGGAACCATGTTGATCCAGTGAC -ACGGAACCATGTTGATCCCTGTAG -ACGGAACCATGTTGATCCCCTAAG -ACGGAACCATGTTGATCCGTTCAG -ACGGAACCATGTTGATCCGCATAG -ACGGAACCATGTTGATCCGACAAG -ACGGAACCATGTTGATCCAAGCAG -ACGGAACCATGTTGATCCCGTCAA -ACGGAACCATGTTGATCCGCTGAA -ACGGAACCATGTTGATCCAGTACG -ACGGAACCATGTTGATCCATCCGA -ACGGAACCATGTTGATCCATGGGA -ACGGAACCATGTTGATCCGTGCAA -ACGGAACCATGTTGATCCGAGGAA -ACGGAACCATGTTGATCCCAGGTA -ACGGAACCATGTTGATCCGACTCT -ACGGAACCATGTTGATCCAGTCCT -ACGGAACCATGTTGATCCTAAGCC -ACGGAACCATGTTGATCCATAGCC -ACGGAACCATGTTGATCCTAACCG -ACGGAACCATGTTGATCCATGCCA -ACGGAACCATGTCGATAGGGAAAC -ACGGAACCATGTCGATAGAACACC -ACGGAACCATGTCGATAGATCGAG -ACGGAACCATGTCGATAGCTCCTT -ACGGAACCATGTCGATAGCCTGTT -ACGGAACCATGTCGATAGCGGTTT -ACGGAACCATGTCGATAGGTGGTT -ACGGAACCATGTCGATAGGCCTTT -ACGGAACCATGTCGATAGGGTCTT -ACGGAACCATGTCGATAGACGCTT -ACGGAACCATGTCGATAGAGCGTT -ACGGAACCATGTCGATAGTTCGTC -ACGGAACCATGTCGATAGTCTCTC -ACGGAACCATGTCGATAGTGGATC -ACGGAACCATGTCGATAGCACTTC -ACGGAACCATGTCGATAGGTACTC -ACGGAACCATGTCGATAGGATGTC -ACGGAACCATGTCGATAGACAGTC -ACGGAACCATGTCGATAGTTGCTG -ACGGAACCATGTCGATAGTCCATG -ACGGAACCATGTCGATAGTGTGTG -ACGGAACCATGTCGATAGCTAGTG -ACGGAACCATGTCGATAGCATCTG -ACGGAACCATGTCGATAGGAGTTG -ACGGAACCATGTCGATAGAGACTG -ACGGAACCATGTCGATAGTCGGTA -ACGGAACCATGTCGATAGTGCCTA -ACGGAACCATGTCGATAGCCACTA -ACGGAACCATGTCGATAGGGAGTA -ACGGAACCATGTCGATAGTCGTCT -ACGGAACCATGTCGATAGTGCACT -ACGGAACCATGTCGATAGCTGACT -ACGGAACCATGTCGATAGCAACCT -ACGGAACCATGTCGATAGGCTACT -ACGGAACCATGTCGATAGGGATCT -ACGGAACCATGTCGATAGAAGGCT -ACGGAACCATGTCGATAGTCAACC -ACGGAACCATGTCGATAGTGTTCC -ACGGAACCATGTCGATAGATTCCC -ACGGAACCATGTCGATAGTTCTCG -ACGGAACCATGTCGATAGTAGACG -ACGGAACCATGTCGATAGGTAACG -ACGGAACCATGTCGATAGACTTCG -ACGGAACCATGTCGATAGTACGCA -ACGGAACCATGTCGATAGCTTGCA -ACGGAACCATGTCGATAGCGAACA -ACGGAACCATGTCGATAGCAGTCA -ACGGAACCATGTCGATAGGATCCA -ACGGAACCATGTCGATAGACGACA -ACGGAACCATGTCGATAGAGCTCA -ACGGAACCATGTCGATAGTCACGT -ACGGAACCATGTCGATAGCGTAGT -ACGGAACCATGTCGATAGGTCAGT -ACGGAACCATGTCGATAGGAAGGT -ACGGAACCATGTCGATAGAACCGT -ACGGAACCATGTCGATAGTTGTGC -ACGGAACCATGTCGATAGCTAAGC -ACGGAACCATGTCGATAGACTAGC -ACGGAACCATGTCGATAGAGATGC -ACGGAACCATGTCGATAGTGAAGG -ACGGAACCATGTCGATAGCAATGG -ACGGAACCATGTCGATAGATGAGG -ACGGAACCATGTCGATAGAATGGG -ACGGAACCATGTCGATAGTCCTGA -ACGGAACCATGTCGATAGTAGCGA -ACGGAACCATGTCGATAGCACAGA -ACGGAACCATGTCGATAGGCAAGA -ACGGAACCATGTCGATAGGGTTGA -ACGGAACCATGTCGATAGTCCGAT -ACGGAACCATGTCGATAGTGGCAT -ACGGAACCATGTCGATAGCGAGAT -ACGGAACCATGTCGATAGTACCAC -ACGGAACCATGTCGATAGCAGAAC -ACGGAACCATGTCGATAGGTCTAC -ACGGAACCATGTCGATAGACGTAC -ACGGAACCATGTCGATAGAGTGAC -ACGGAACCATGTCGATAGCTGTAG -ACGGAACCATGTCGATAGCCTAAG -ACGGAACCATGTCGATAGGTTCAG -ACGGAACCATGTCGATAGGCATAG -ACGGAACCATGTCGATAGGACAAG -ACGGAACCATGTCGATAGAAGCAG -ACGGAACCATGTCGATAGCGTCAA -ACGGAACCATGTCGATAGGCTGAA -ACGGAACCATGTCGATAGAGTACG -ACGGAACCATGTCGATAGATCCGA -ACGGAACCATGTCGATAGATGGGA -ACGGAACCATGTCGATAGGTGCAA -ACGGAACCATGTCGATAGGAGGAA -ACGGAACCATGTCGATAGCAGGTA -ACGGAACCATGTCGATAGGACTCT -ACGGAACCATGTCGATAGAGTCCT -ACGGAACCATGTCGATAGTAAGCC -ACGGAACCATGTCGATAGATAGCC -ACGGAACCATGTCGATAGTAACCG -ACGGAACCATGTCGATAGATGCCA -ACGGAACCATGTAGACACGGAAAC -ACGGAACCATGTAGACACAACACC -ACGGAACCATGTAGACACATCGAG -ACGGAACCATGTAGACACCTCCTT -ACGGAACCATGTAGACACCCTGTT -ACGGAACCATGTAGACACCGGTTT -ACGGAACCATGTAGACACGTGGTT -ACGGAACCATGTAGACACGCCTTT -ACGGAACCATGTAGACACGGTCTT -ACGGAACCATGTAGACACACGCTT -ACGGAACCATGTAGACACAGCGTT -ACGGAACCATGTAGACACTTCGTC -ACGGAACCATGTAGACACTCTCTC -ACGGAACCATGTAGACACTGGATC -ACGGAACCATGTAGACACCACTTC -ACGGAACCATGTAGACACGTACTC -ACGGAACCATGTAGACACGATGTC -ACGGAACCATGTAGACACACAGTC -ACGGAACCATGTAGACACTTGCTG -ACGGAACCATGTAGACACTCCATG -ACGGAACCATGTAGACACTGTGTG -ACGGAACCATGTAGACACCTAGTG -ACGGAACCATGTAGACACCATCTG -ACGGAACCATGTAGACACGAGTTG -ACGGAACCATGTAGACACAGACTG -ACGGAACCATGTAGACACTCGGTA -ACGGAACCATGTAGACACTGCCTA -ACGGAACCATGTAGACACCCACTA -ACGGAACCATGTAGACACGGAGTA -ACGGAACCATGTAGACACTCGTCT -ACGGAACCATGTAGACACTGCACT -ACGGAACCATGTAGACACCTGACT -ACGGAACCATGTAGACACCAACCT -ACGGAACCATGTAGACACGCTACT -ACGGAACCATGTAGACACGGATCT -ACGGAACCATGTAGACACAAGGCT -ACGGAACCATGTAGACACTCAACC -ACGGAACCATGTAGACACTGTTCC -ACGGAACCATGTAGACACATTCCC -ACGGAACCATGTAGACACTTCTCG -ACGGAACCATGTAGACACTAGACG -ACGGAACCATGTAGACACGTAACG -ACGGAACCATGTAGACACACTTCG -ACGGAACCATGTAGACACTACGCA -ACGGAACCATGTAGACACCTTGCA -ACGGAACCATGTAGACACCGAACA -ACGGAACCATGTAGACACCAGTCA -ACGGAACCATGTAGACACGATCCA -ACGGAACCATGTAGACACACGACA -ACGGAACCATGTAGACACAGCTCA -ACGGAACCATGTAGACACTCACGT -ACGGAACCATGTAGACACCGTAGT -ACGGAACCATGTAGACACGTCAGT -ACGGAACCATGTAGACACGAAGGT -ACGGAACCATGTAGACACAACCGT -ACGGAACCATGTAGACACTTGTGC -ACGGAACCATGTAGACACCTAAGC -ACGGAACCATGTAGACACACTAGC -ACGGAACCATGTAGACACAGATGC -ACGGAACCATGTAGACACTGAAGG -ACGGAACCATGTAGACACCAATGG -ACGGAACCATGTAGACACATGAGG -ACGGAACCATGTAGACACAATGGG -ACGGAACCATGTAGACACTCCTGA -ACGGAACCATGTAGACACTAGCGA -ACGGAACCATGTAGACACCACAGA -ACGGAACCATGTAGACACGCAAGA -ACGGAACCATGTAGACACGGTTGA -ACGGAACCATGTAGACACTCCGAT -ACGGAACCATGTAGACACTGGCAT -ACGGAACCATGTAGACACCGAGAT -ACGGAACCATGTAGACACTACCAC -ACGGAACCATGTAGACACCAGAAC -ACGGAACCATGTAGACACGTCTAC -ACGGAACCATGTAGACACACGTAC -ACGGAACCATGTAGACACAGTGAC -ACGGAACCATGTAGACACCTGTAG -ACGGAACCATGTAGACACCCTAAG -ACGGAACCATGTAGACACGTTCAG -ACGGAACCATGTAGACACGCATAG -ACGGAACCATGTAGACACGACAAG -ACGGAACCATGTAGACACAAGCAG -ACGGAACCATGTAGACACCGTCAA -ACGGAACCATGTAGACACGCTGAA -ACGGAACCATGTAGACACAGTACG -ACGGAACCATGTAGACACATCCGA -ACGGAACCATGTAGACACATGGGA -ACGGAACCATGTAGACACGTGCAA -ACGGAACCATGTAGACACGAGGAA -ACGGAACCATGTAGACACCAGGTA -ACGGAACCATGTAGACACGACTCT -ACGGAACCATGTAGACACAGTCCT -ACGGAACCATGTAGACACTAAGCC -ACGGAACCATGTAGACACATAGCC -ACGGAACCATGTAGACACTAACCG -ACGGAACCATGTAGACACATGCCA -ACGGAACCATGTAGAGCAGGAAAC -ACGGAACCATGTAGAGCAAACACC -ACGGAACCATGTAGAGCAATCGAG -ACGGAACCATGTAGAGCACTCCTT -ACGGAACCATGTAGAGCACCTGTT -ACGGAACCATGTAGAGCACGGTTT -ACGGAACCATGTAGAGCAGTGGTT -ACGGAACCATGTAGAGCAGCCTTT -ACGGAACCATGTAGAGCAGGTCTT -ACGGAACCATGTAGAGCAACGCTT -ACGGAACCATGTAGAGCAAGCGTT -ACGGAACCATGTAGAGCATTCGTC -ACGGAACCATGTAGAGCATCTCTC -ACGGAACCATGTAGAGCATGGATC -ACGGAACCATGTAGAGCACACTTC -ACGGAACCATGTAGAGCAGTACTC -ACGGAACCATGTAGAGCAGATGTC -ACGGAACCATGTAGAGCAACAGTC -ACGGAACCATGTAGAGCATTGCTG -ACGGAACCATGTAGAGCATCCATG -ACGGAACCATGTAGAGCATGTGTG -ACGGAACCATGTAGAGCACTAGTG -ACGGAACCATGTAGAGCACATCTG -ACGGAACCATGTAGAGCAGAGTTG -ACGGAACCATGTAGAGCAAGACTG -ACGGAACCATGTAGAGCATCGGTA -ACGGAACCATGTAGAGCATGCCTA -ACGGAACCATGTAGAGCACCACTA -ACGGAACCATGTAGAGCAGGAGTA -ACGGAACCATGTAGAGCATCGTCT -ACGGAACCATGTAGAGCATGCACT -ACGGAACCATGTAGAGCACTGACT -ACGGAACCATGTAGAGCACAACCT -ACGGAACCATGTAGAGCAGCTACT -ACGGAACCATGTAGAGCAGGATCT -ACGGAACCATGTAGAGCAAAGGCT -ACGGAACCATGTAGAGCATCAACC -ACGGAACCATGTAGAGCATGTTCC -ACGGAACCATGTAGAGCAATTCCC -ACGGAACCATGTAGAGCATTCTCG -ACGGAACCATGTAGAGCATAGACG -ACGGAACCATGTAGAGCAGTAACG -ACGGAACCATGTAGAGCAACTTCG -ACGGAACCATGTAGAGCATACGCA -ACGGAACCATGTAGAGCACTTGCA -ACGGAACCATGTAGAGCACGAACA -ACGGAACCATGTAGAGCACAGTCA -ACGGAACCATGTAGAGCAGATCCA -ACGGAACCATGTAGAGCAACGACA -ACGGAACCATGTAGAGCAAGCTCA -ACGGAACCATGTAGAGCATCACGT -ACGGAACCATGTAGAGCACGTAGT -ACGGAACCATGTAGAGCAGTCAGT -ACGGAACCATGTAGAGCAGAAGGT -ACGGAACCATGTAGAGCAAACCGT -ACGGAACCATGTAGAGCATTGTGC -ACGGAACCATGTAGAGCACTAAGC -ACGGAACCATGTAGAGCAACTAGC -ACGGAACCATGTAGAGCAAGATGC -ACGGAACCATGTAGAGCATGAAGG -ACGGAACCATGTAGAGCACAATGG -ACGGAACCATGTAGAGCAATGAGG -ACGGAACCATGTAGAGCAAATGGG -ACGGAACCATGTAGAGCATCCTGA -ACGGAACCATGTAGAGCATAGCGA -ACGGAACCATGTAGAGCACACAGA -ACGGAACCATGTAGAGCAGCAAGA -ACGGAACCATGTAGAGCAGGTTGA -ACGGAACCATGTAGAGCATCCGAT -ACGGAACCATGTAGAGCATGGCAT -ACGGAACCATGTAGAGCACGAGAT -ACGGAACCATGTAGAGCATACCAC -ACGGAACCATGTAGAGCACAGAAC -ACGGAACCATGTAGAGCAGTCTAC -ACGGAACCATGTAGAGCAACGTAC -ACGGAACCATGTAGAGCAAGTGAC -ACGGAACCATGTAGAGCACTGTAG -ACGGAACCATGTAGAGCACCTAAG -ACGGAACCATGTAGAGCAGTTCAG -ACGGAACCATGTAGAGCAGCATAG -ACGGAACCATGTAGAGCAGACAAG -ACGGAACCATGTAGAGCAAAGCAG -ACGGAACCATGTAGAGCACGTCAA -ACGGAACCATGTAGAGCAGCTGAA -ACGGAACCATGTAGAGCAAGTACG -ACGGAACCATGTAGAGCAATCCGA -ACGGAACCATGTAGAGCAATGGGA -ACGGAACCATGTAGAGCAGTGCAA -ACGGAACCATGTAGAGCAGAGGAA -ACGGAACCATGTAGAGCACAGGTA -ACGGAACCATGTAGAGCAGACTCT -ACGGAACCATGTAGAGCAAGTCCT -ACGGAACCATGTAGAGCATAAGCC -ACGGAACCATGTAGAGCAATAGCC -ACGGAACCATGTAGAGCATAACCG -ACGGAACCATGTAGAGCAATGCCA -ACGGAACCATGTTGAGGTGGAAAC -ACGGAACCATGTTGAGGTAACACC -ACGGAACCATGTTGAGGTATCGAG -ACGGAACCATGTTGAGGTCTCCTT -ACGGAACCATGTTGAGGTCCTGTT -ACGGAACCATGTTGAGGTCGGTTT -ACGGAACCATGTTGAGGTGTGGTT -ACGGAACCATGTTGAGGTGCCTTT -ACGGAACCATGTTGAGGTGGTCTT -ACGGAACCATGTTGAGGTACGCTT -ACGGAACCATGTTGAGGTAGCGTT -ACGGAACCATGTTGAGGTTTCGTC -ACGGAACCATGTTGAGGTTCTCTC -ACGGAACCATGTTGAGGTTGGATC -ACGGAACCATGTTGAGGTCACTTC -ACGGAACCATGTTGAGGTGTACTC -ACGGAACCATGTTGAGGTGATGTC -ACGGAACCATGTTGAGGTACAGTC -ACGGAACCATGTTGAGGTTTGCTG -ACGGAACCATGTTGAGGTTCCATG -ACGGAACCATGTTGAGGTTGTGTG -ACGGAACCATGTTGAGGTCTAGTG -ACGGAACCATGTTGAGGTCATCTG -ACGGAACCATGTTGAGGTGAGTTG -ACGGAACCATGTTGAGGTAGACTG -ACGGAACCATGTTGAGGTTCGGTA -ACGGAACCATGTTGAGGTTGCCTA -ACGGAACCATGTTGAGGTCCACTA -ACGGAACCATGTTGAGGTGGAGTA -ACGGAACCATGTTGAGGTTCGTCT -ACGGAACCATGTTGAGGTTGCACT -ACGGAACCATGTTGAGGTCTGACT -ACGGAACCATGTTGAGGTCAACCT -ACGGAACCATGTTGAGGTGCTACT -ACGGAACCATGTTGAGGTGGATCT -ACGGAACCATGTTGAGGTAAGGCT -ACGGAACCATGTTGAGGTTCAACC -ACGGAACCATGTTGAGGTTGTTCC -ACGGAACCATGTTGAGGTATTCCC -ACGGAACCATGTTGAGGTTTCTCG -ACGGAACCATGTTGAGGTTAGACG -ACGGAACCATGTTGAGGTGTAACG -ACGGAACCATGTTGAGGTACTTCG -ACGGAACCATGTTGAGGTTACGCA -ACGGAACCATGTTGAGGTCTTGCA -ACGGAACCATGTTGAGGTCGAACA -ACGGAACCATGTTGAGGTCAGTCA -ACGGAACCATGTTGAGGTGATCCA -ACGGAACCATGTTGAGGTACGACA -ACGGAACCATGTTGAGGTAGCTCA -ACGGAACCATGTTGAGGTTCACGT -ACGGAACCATGTTGAGGTCGTAGT -ACGGAACCATGTTGAGGTGTCAGT -ACGGAACCATGTTGAGGTGAAGGT -ACGGAACCATGTTGAGGTAACCGT -ACGGAACCATGTTGAGGTTTGTGC -ACGGAACCATGTTGAGGTCTAAGC -ACGGAACCATGTTGAGGTACTAGC -ACGGAACCATGTTGAGGTAGATGC -ACGGAACCATGTTGAGGTTGAAGG -ACGGAACCATGTTGAGGTCAATGG -ACGGAACCATGTTGAGGTATGAGG -ACGGAACCATGTTGAGGTAATGGG -ACGGAACCATGTTGAGGTTCCTGA -ACGGAACCATGTTGAGGTTAGCGA -ACGGAACCATGTTGAGGTCACAGA -ACGGAACCATGTTGAGGTGCAAGA -ACGGAACCATGTTGAGGTGGTTGA -ACGGAACCATGTTGAGGTTCCGAT -ACGGAACCATGTTGAGGTTGGCAT -ACGGAACCATGTTGAGGTCGAGAT -ACGGAACCATGTTGAGGTTACCAC -ACGGAACCATGTTGAGGTCAGAAC -ACGGAACCATGTTGAGGTGTCTAC -ACGGAACCATGTTGAGGTACGTAC -ACGGAACCATGTTGAGGTAGTGAC -ACGGAACCATGTTGAGGTCTGTAG -ACGGAACCATGTTGAGGTCCTAAG -ACGGAACCATGTTGAGGTGTTCAG -ACGGAACCATGTTGAGGTGCATAG -ACGGAACCATGTTGAGGTGACAAG -ACGGAACCATGTTGAGGTAAGCAG -ACGGAACCATGTTGAGGTCGTCAA -ACGGAACCATGTTGAGGTGCTGAA -ACGGAACCATGTTGAGGTAGTACG -ACGGAACCATGTTGAGGTATCCGA -ACGGAACCATGTTGAGGTATGGGA -ACGGAACCATGTTGAGGTGTGCAA -ACGGAACCATGTTGAGGTGAGGAA -ACGGAACCATGTTGAGGTCAGGTA -ACGGAACCATGTTGAGGTGACTCT -ACGGAACCATGTTGAGGTAGTCCT -ACGGAACCATGTTGAGGTTAAGCC -ACGGAACCATGTTGAGGTATAGCC -ACGGAACCATGTTGAGGTTAACCG -ACGGAACCATGTTGAGGTATGCCA -ACGGAACCATGTGATTCCGGAAAC -ACGGAACCATGTGATTCCAACACC -ACGGAACCATGTGATTCCATCGAG -ACGGAACCATGTGATTCCCTCCTT -ACGGAACCATGTGATTCCCCTGTT -ACGGAACCATGTGATTCCCGGTTT -ACGGAACCATGTGATTCCGTGGTT -ACGGAACCATGTGATTCCGCCTTT -ACGGAACCATGTGATTCCGGTCTT -ACGGAACCATGTGATTCCACGCTT -ACGGAACCATGTGATTCCAGCGTT -ACGGAACCATGTGATTCCTTCGTC -ACGGAACCATGTGATTCCTCTCTC -ACGGAACCATGTGATTCCTGGATC -ACGGAACCATGTGATTCCCACTTC -ACGGAACCATGTGATTCCGTACTC -ACGGAACCATGTGATTCCGATGTC -ACGGAACCATGTGATTCCACAGTC -ACGGAACCATGTGATTCCTTGCTG -ACGGAACCATGTGATTCCTCCATG -ACGGAACCATGTGATTCCTGTGTG -ACGGAACCATGTGATTCCCTAGTG -ACGGAACCATGTGATTCCCATCTG -ACGGAACCATGTGATTCCGAGTTG -ACGGAACCATGTGATTCCAGACTG -ACGGAACCATGTGATTCCTCGGTA -ACGGAACCATGTGATTCCTGCCTA -ACGGAACCATGTGATTCCCCACTA -ACGGAACCATGTGATTCCGGAGTA -ACGGAACCATGTGATTCCTCGTCT -ACGGAACCATGTGATTCCTGCACT -ACGGAACCATGTGATTCCCTGACT -ACGGAACCATGTGATTCCCAACCT -ACGGAACCATGTGATTCCGCTACT -ACGGAACCATGTGATTCCGGATCT -ACGGAACCATGTGATTCCAAGGCT -ACGGAACCATGTGATTCCTCAACC -ACGGAACCATGTGATTCCTGTTCC -ACGGAACCATGTGATTCCATTCCC -ACGGAACCATGTGATTCCTTCTCG -ACGGAACCATGTGATTCCTAGACG -ACGGAACCATGTGATTCCGTAACG -ACGGAACCATGTGATTCCACTTCG -ACGGAACCATGTGATTCCTACGCA -ACGGAACCATGTGATTCCCTTGCA -ACGGAACCATGTGATTCCCGAACA -ACGGAACCATGTGATTCCCAGTCA -ACGGAACCATGTGATTCCGATCCA -ACGGAACCATGTGATTCCACGACA -ACGGAACCATGTGATTCCAGCTCA -ACGGAACCATGTGATTCCTCACGT -ACGGAACCATGTGATTCCCGTAGT -ACGGAACCATGTGATTCCGTCAGT -ACGGAACCATGTGATTCCGAAGGT -ACGGAACCATGTGATTCCAACCGT -ACGGAACCATGTGATTCCTTGTGC -ACGGAACCATGTGATTCCCTAAGC -ACGGAACCATGTGATTCCACTAGC -ACGGAACCATGTGATTCCAGATGC -ACGGAACCATGTGATTCCTGAAGG -ACGGAACCATGTGATTCCCAATGG -ACGGAACCATGTGATTCCATGAGG -ACGGAACCATGTGATTCCAATGGG -ACGGAACCATGTGATTCCTCCTGA -ACGGAACCATGTGATTCCTAGCGA -ACGGAACCATGTGATTCCCACAGA -ACGGAACCATGTGATTCCGCAAGA -ACGGAACCATGTGATTCCGGTTGA -ACGGAACCATGTGATTCCTCCGAT -ACGGAACCATGTGATTCCTGGCAT -ACGGAACCATGTGATTCCCGAGAT -ACGGAACCATGTGATTCCTACCAC -ACGGAACCATGTGATTCCCAGAAC -ACGGAACCATGTGATTCCGTCTAC -ACGGAACCATGTGATTCCACGTAC -ACGGAACCATGTGATTCCAGTGAC -ACGGAACCATGTGATTCCCTGTAG -ACGGAACCATGTGATTCCCCTAAG -ACGGAACCATGTGATTCCGTTCAG -ACGGAACCATGTGATTCCGCATAG -ACGGAACCATGTGATTCCGACAAG -ACGGAACCATGTGATTCCAAGCAG -ACGGAACCATGTGATTCCCGTCAA -ACGGAACCATGTGATTCCGCTGAA -ACGGAACCATGTGATTCCAGTACG -ACGGAACCATGTGATTCCATCCGA -ACGGAACCATGTGATTCCATGGGA -ACGGAACCATGTGATTCCGTGCAA -ACGGAACCATGTGATTCCGAGGAA -ACGGAACCATGTGATTCCCAGGTA -ACGGAACCATGTGATTCCGACTCT -ACGGAACCATGTGATTCCAGTCCT -ACGGAACCATGTGATTCCTAAGCC -ACGGAACCATGTGATTCCATAGCC -ACGGAACCATGTGATTCCTAACCG -ACGGAACCATGTGATTCCATGCCA -ACGGAACCATGTCATTGGGGAAAC -ACGGAACCATGTCATTGGAACACC -ACGGAACCATGTCATTGGATCGAG -ACGGAACCATGTCATTGGCTCCTT -ACGGAACCATGTCATTGGCCTGTT -ACGGAACCATGTCATTGGCGGTTT -ACGGAACCATGTCATTGGGTGGTT -ACGGAACCATGTCATTGGGCCTTT -ACGGAACCATGTCATTGGGGTCTT -ACGGAACCATGTCATTGGACGCTT -ACGGAACCATGTCATTGGAGCGTT -ACGGAACCATGTCATTGGTTCGTC -ACGGAACCATGTCATTGGTCTCTC -ACGGAACCATGTCATTGGTGGATC -ACGGAACCATGTCATTGGCACTTC -ACGGAACCATGTCATTGGGTACTC -ACGGAACCATGTCATTGGGATGTC -ACGGAACCATGTCATTGGACAGTC -ACGGAACCATGTCATTGGTTGCTG -ACGGAACCATGTCATTGGTCCATG -ACGGAACCATGTCATTGGTGTGTG -ACGGAACCATGTCATTGGCTAGTG -ACGGAACCATGTCATTGGCATCTG -ACGGAACCATGTCATTGGGAGTTG -ACGGAACCATGTCATTGGAGACTG -ACGGAACCATGTCATTGGTCGGTA -ACGGAACCATGTCATTGGTGCCTA -ACGGAACCATGTCATTGGCCACTA -ACGGAACCATGTCATTGGGGAGTA -ACGGAACCATGTCATTGGTCGTCT -ACGGAACCATGTCATTGGTGCACT -ACGGAACCATGTCATTGGCTGACT -ACGGAACCATGTCATTGGCAACCT -ACGGAACCATGTCATTGGGCTACT -ACGGAACCATGTCATTGGGGATCT -ACGGAACCATGTCATTGGAAGGCT -ACGGAACCATGTCATTGGTCAACC -ACGGAACCATGTCATTGGTGTTCC -ACGGAACCATGTCATTGGATTCCC -ACGGAACCATGTCATTGGTTCTCG -ACGGAACCATGTCATTGGTAGACG -ACGGAACCATGTCATTGGGTAACG -ACGGAACCATGTCATTGGACTTCG -ACGGAACCATGTCATTGGTACGCA -ACGGAACCATGTCATTGGCTTGCA -ACGGAACCATGTCATTGGCGAACA -ACGGAACCATGTCATTGGCAGTCA -ACGGAACCATGTCATTGGGATCCA -ACGGAACCATGTCATTGGACGACA -ACGGAACCATGTCATTGGAGCTCA -ACGGAACCATGTCATTGGTCACGT -ACGGAACCATGTCATTGGCGTAGT -ACGGAACCATGTCATTGGGTCAGT -ACGGAACCATGTCATTGGGAAGGT -ACGGAACCATGTCATTGGAACCGT -ACGGAACCATGTCATTGGTTGTGC -ACGGAACCATGTCATTGGCTAAGC -ACGGAACCATGTCATTGGACTAGC -ACGGAACCATGTCATTGGAGATGC -ACGGAACCATGTCATTGGTGAAGG -ACGGAACCATGTCATTGGCAATGG -ACGGAACCATGTCATTGGATGAGG -ACGGAACCATGTCATTGGAATGGG -ACGGAACCATGTCATTGGTCCTGA -ACGGAACCATGTCATTGGTAGCGA -ACGGAACCATGTCATTGGCACAGA -ACGGAACCATGTCATTGGGCAAGA -ACGGAACCATGTCATTGGGGTTGA -ACGGAACCATGTCATTGGTCCGAT -ACGGAACCATGTCATTGGTGGCAT -ACGGAACCATGTCATTGGCGAGAT -ACGGAACCATGTCATTGGTACCAC -ACGGAACCATGTCATTGGCAGAAC -ACGGAACCATGTCATTGGGTCTAC -ACGGAACCATGTCATTGGACGTAC -ACGGAACCATGTCATTGGAGTGAC -ACGGAACCATGTCATTGGCTGTAG -ACGGAACCATGTCATTGGCCTAAG -ACGGAACCATGTCATTGGGTTCAG -ACGGAACCATGTCATTGGGCATAG -ACGGAACCATGTCATTGGGACAAG -ACGGAACCATGTCATTGGAAGCAG -ACGGAACCATGTCATTGGCGTCAA -ACGGAACCATGTCATTGGGCTGAA -ACGGAACCATGTCATTGGAGTACG -ACGGAACCATGTCATTGGATCCGA -ACGGAACCATGTCATTGGATGGGA -ACGGAACCATGTCATTGGGTGCAA -ACGGAACCATGTCATTGGGAGGAA -ACGGAACCATGTCATTGGCAGGTA -ACGGAACCATGTCATTGGGACTCT -ACGGAACCATGTCATTGGAGTCCT -ACGGAACCATGTCATTGGTAAGCC -ACGGAACCATGTCATTGGATAGCC -ACGGAACCATGTCATTGGTAACCG -ACGGAACCATGTCATTGGATGCCA -ACGGAACCATGTGATCGAGGAAAC -ACGGAACCATGTGATCGAAACACC -ACGGAACCATGTGATCGAATCGAG -ACGGAACCATGTGATCGACTCCTT -ACGGAACCATGTGATCGACCTGTT -ACGGAACCATGTGATCGACGGTTT -ACGGAACCATGTGATCGAGTGGTT -ACGGAACCATGTGATCGAGCCTTT -ACGGAACCATGTGATCGAGGTCTT -ACGGAACCATGTGATCGAACGCTT -ACGGAACCATGTGATCGAAGCGTT -ACGGAACCATGTGATCGATTCGTC -ACGGAACCATGTGATCGATCTCTC -ACGGAACCATGTGATCGATGGATC -ACGGAACCATGTGATCGACACTTC -ACGGAACCATGTGATCGAGTACTC -ACGGAACCATGTGATCGAGATGTC -ACGGAACCATGTGATCGAACAGTC -ACGGAACCATGTGATCGATTGCTG -ACGGAACCATGTGATCGATCCATG -ACGGAACCATGTGATCGATGTGTG -ACGGAACCATGTGATCGACTAGTG -ACGGAACCATGTGATCGACATCTG -ACGGAACCATGTGATCGAGAGTTG -ACGGAACCATGTGATCGAAGACTG -ACGGAACCATGTGATCGATCGGTA -ACGGAACCATGTGATCGATGCCTA -ACGGAACCATGTGATCGACCACTA -ACGGAACCATGTGATCGAGGAGTA -ACGGAACCATGTGATCGATCGTCT -ACGGAACCATGTGATCGATGCACT -ACGGAACCATGTGATCGACTGACT -ACGGAACCATGTGATCGACAACCT -ACGGAACCATGTGATCGAGCTACT -ACGGAACCATGTGATCGAGGATCT -ACGGAACCATGTGATCGAAAGGCT -ACGGAACCATGTGATCGATCAACC -ACGGAACCATGTGATCGATGTTCC -ACGGAACCATGTGATCGAATTCCC -ACGGAACCATGTGATCGATTCTCG -ACGGAACCATGTGATCGATAGACG -ACGGAACCATGTGATCGAGTAACG -ACGGAACCATGTGATCGAACTTCG -ACGGAACCATGTGATCGATACGCA -ACGGAACCATGTGATCGACTTGCA -ACGGAACCATGTGATCGACGAACA -ACGGAACCATGTGATCGACAGTCA -ACGGAACCATGTGATCGAGATCCA -ACGGAACCATGTGATCGAACGACA -ACGGAACCATGTGATCGAAGCTCA -ACGGAACCATGTGATCGATCACGT -ACGGAACCATGTGATCGACGTAGT -ACGGAACCATGTGATCGAGTCAGT -ACGGAACCATGTGATCGAGAAGGT -ACGGAACCATGTGATCGAAACCGT -ACGGAACCATGTGATCGATTGTGC -ACGGAACCATGTGATCGACTAAGC -ACGGAACCATGTGATCGAACTAGC -ACGGAACCATGTGATCGAAGATGC -ACGGAACCATGTGATCGATGAAGG -ACGGAACCATGTGATCGACAATGG -ACGGAACCATGTGATCGAATGAGG -ACGGAACCATGTGATCGAAATGGG -ACGGAACCATGTGATCGATCCTGA -ACGGAACCATGTGATCGATAGCGA -ACGGAACCATGTGATCGACACAGA -ACGGAACCATGTGATCGAGCAAGA -ACGGAACCATGTGATCGAGGTTGA -ACGGAACCATGTGATCGATCCGAT -ACGGAACCATGTGATCGATGGCAT -ACGGAACCATGTGATCGACGAGAT -ACGGAACCATGTGATCGATACCAC -ACGGAACCATGTGATCGACAGAAC -ACGGAACCATGTGATCGAGTCTAC -ACGGAACCATGTGATCGAACGTAC -ACGGAACCATGTGATCGAAGTGAC -ACGGAACCATGTGATCGACTGTAG -ACGGAACCATGTGATCGACCTAAG -ACGGAACCATGTGATCGAGTTCAG -ACGGAACCATGTGATCGAGCATAG -ACGGAACCATGTGATCGAGACAAG -ACGGAACCATGTGATCGAAAGCAG -ACGGAACCATGTGATCGACGTCAA -ACGGAACCATGTGATCGAGCTGAA -ACGGAACCATGTGATCGAAGTACG -ACGGAACCATGTGATCGAATCCGA -ACGGAACCATGTGATCGAATGGGA -ACGGAACCATGTGATCGAGTGCAA -ACGGAACCATGTGATCGAGAGGAA -ACGGAACCATGTGATCGACAGGTA -ACGGAACCATGTGATCGAGACTCT -ACGGAACCATGTGATCGAAGTCCT -ACGGAACCATGTGATCGATAAGCC -ACGGAACCATGTGATCGAATAGCC -ACGGAACCATGTGATCGATAACCG -ACGGAACCATGTGATCGAATGCCA -ACGGAACCATGTCACTACGGAAAC -ACGGAACCATGTCACTACAACACC -ACGGAACCATGTCACTACATCGAG -ACGGAACCATGTCACTACCTCCTT -ACGGAACCATGTCACTACCCTGTT -ACGGAACCATGTCACTACCGGTTT -ACGGAACCATGTCACTACGTGGTT -ACGGAACCATGTCACTACGCCTTT -ACGGAACCATGTCACTACGGTCTT -ACGGAACCATGTCACTACACGCTT -ACGGAACCATGTCACTACAGCGTT -ACGGAACCATGTCACTACTTCGTC -ACGGAACCATGTCACTACTCTCTC -ACGGAACCATGTCACTACTGGATC -ACGGAACCATGTCACTACCACTTC -ACGGAACCATGTCACTACGTACTC -ACGGAACCATGTCACTACGATGTC -ACGGAACCATGTCACTACACAGTC -ACGGAACCATGTCACTACTTGCTG -ACGGAACCATGTCACTACTCCATG -ACGGAACCATGTCACTACTGTGTG -ACGGAACCATGTCACTACCTAGTG -ACGGAACCATGTCACTACCATCTG -ACGGAACCATGTCACTACGAGTTG -ACGGAACCATGTCACTACAGACTG -ACGGAACCATGTCACTACTCGGTA -ACGGAACCATGTCACTACTGCCTA -ACGGAACCATGTCACTACCCACTA -ACGGAACCATGTCACTACGGAGTA -ACGGAACCATGTCACTACTCGTCT -ACGGAACCATGTCACTACTGCACT -ACGGAACCATGTCACTACCTGACT -ACGGAACCATGTCACTACCAACCT -ACGGAACCATGTCACTACGCTACT -ACGGAACCATGTCACTACGGATCT -ACGGAACCATGTCACTACAAGGCT -ACGGAACCATGTCACTACTCAACC -ACGGAACCATGTCACTACTGTTCC -ACGGAACCATGTCACTACATTCCC -ACGGAACCATGTCACTACTTCTCG -ACGGAACCATGTCACTACTAGACG -ACGGAACCATGTCACTACGTAACG -ACGGAACCATGTCACTACACTTCG -ACGGAACCATGTCACTACTACGCA -ACGGAACCATGTCACTACCTTGCA -ACGGAACCATGTCACTACCGAACA -ACGGAACCATGTCACTACCAGTCA -ACGGAACCATGTCACTACGATCCA -ACGGAACCATGTCACTACACGACA -ACGGAACCATGTCACTACAGCTCA -ACGGAACCATGTCACTACTCACGT -ACGGAACCATGTCACTACCGTAGT -ACGGAACCATGTCACTACGTCAGT -ACGGAACCATGTCACTACGAAGGT -ACGGAACCATGTCACTACAACCGT -ACGGAACCATGTCACTACTTGTGC -ACGGAACCATGTCACTACCTAAGC -ACGGAACCATGTCACTACACTAGC -ACGGAACCATGTCACTACAGATGC -ACGGAACCATGTCACTACTGAAGG -ACGGAACCATGTCACTACCAATGG -ACGGAACCATGTCACTACATGAGG -ACGGAACCATGTCACTACAATGGG -ACGGAACCATGTCACTACTCCTGA -ACGGAACCATGTCACTACTAGCGA -ACGGAACCATGTCACTACCACAGA -ACGGAACCATGTCACTACGCAAGA -ACGGAACCATGTCACTACGGTTGA -ACGGAACCATGTCACTACTCCGAT -ACGGAACCATGTCACTACTGGCAT -ACGGAACCATGTCACTACCGAGAT -ACGGAACCATGTCACTACTACCAC -ACGGAACCATGTCACTACCAGAAC -ACGGAACCATGTCACTACGTCTAC -ACGGAACCATGTCACTACACGTAC -ACGGAACCATGTCACTACAGTGAC -ACGGAACCATGTCACTACCTGTAG -ACGGAACCATGTCACTACCCTAAG -ACGGAACCATGTCACTACGTTCAG -ACGGAACCATGTCACTACGCATAG -ACGGAACCATGTCACTACGACAAG -ACGGAACCATGTCACTACAAGCAG -ACGGAACCATGTCACTACCGTCAA -ACGGAACCATGTCACTACGCTGAA -ACGGAACCATGTCACTACAGTACG -ACGGAACCATGTCACTACATCCGA -ACGGAACCATGTCACTACATGGGA -ACGGAACCATGTCACTACGTGCAA -ACGGAACCATGTCACTACGAGGAA -ACGGAACCATGTCACTACCAGGTA -ACGGAACCATGTCACTACGACTCT -ACGGAACCATGTCACTACAGTCCT -ACGGAACCATGTCACTACTAAGCC -ACGGAACCATGTCACTACATAGCC -ACGGAACCATGTCACTACTAACCG -ACGGAACCATGTCACTACATGCCA -ACGGAACCATGTAACCAGGGAAAC -ACGGAACCATGTAACCAGAACACC -ACGGAACCATGTAACCAGATCGAG -ACGGAACCATGTAACCAGCTCCTT -ACGGAACCATGTAACCAGCCTGTT -ACGGAACCATGTAACCAGCGGTTT -ACGGAACCATGTAACCAGGTGGTT -ACGGAACCATGTAACCAGGCCTTT -ACGGAACCATGTAACCAGGGTCTT -ACGGAACCATGTAACCAGACGCTT -ACGGAACCATGTAACCAGAGCGTT -ACGGAACCATGTAACCAGTTCGTC -ACGGAACCATGTAACCAGTCTCTC -ACGGAACCATGTAACCAGTGGATC -ACGGAACCATGTAACCAGCACTTC -ACGGAACCATGTAACCAGGTACTC -ACGGAACCATGTAACCAGGATGTC -ACGGAACCATGTAACCAGACAGTC -ACGGAACCATGTAACCAGTTGCTG -ACGGAACCATGTAACCAGTCCATG -ACGGAACCATGTAACCAGTGTGTG -ACGGAACCATGTAACCAGCTAGTG -ACGGAACCATGTAACCAGCATCTG -ACGGAACCATGTAACCAGGAGTTG -ACGGAACCATGTAACCAGAGACTG -ACGGAACCATGTAACCAGTCGGTA -ACGGAACCATGTAACCAGTGCCTA -ACGGAACCATGTAACCAGCCACTA -ACGGAACCATGTAACCAGGGAGTA -ACGGAACCATGTAACCAGTCGTCT -ACGGAACCATGTAACCAGTGCACT -ACGGAACCATGTAACCAGCTGACT -ACGGAACCATGTAACCAGCAACCT -ACGGAACCATGTAACCAGGCTACT -ACGGAACCATGTAACCAGGGATCT -ACGGAACCATGTAACCAGAAGGCT -ACGGAACCATGTAACCAGTCAACC -ACGGAACCATGTAACCAGTGTTCC -ACGGAACCATGTAACCAGATTCCC -ACGGAACCATGTAACCAGTTCTCG -ACGGAACCATGTAACCAGTAGACG -ACGGAACCATGTAACCAGGTAACG -ACGGAACCATGTAACCAGACTTCG -ACGGAACCATGTAACCAGTACGCA -ACGGAACCATGTAACCAGCTTGCA -ACGGAACCATGTAACCAGCGAACA -ACGGAACCATGTAACCAGCAGTCA -ACGGAACCATGTAACCAGGATCCA -ACGGAACCATGTAACCAGACGACA -ACGGAACCATGTAACCAGAGCTCA -ACGGAACCATGTAACCAGTCACGT -ACGGAACCATGTAACCAGCGTAGT -ACGGAACCATGTAACCAGGTCAGT -ACGGAACCATGTAACCAGGAAGGT -ACGGAACCATGTAACCAGAACCGT -ACGGAACCATGTAACCAGTTGTGC -ACGGAACCATGTAACCAGCTAAGC -ACGGAACCATGTAACCAGACTAGC -ACGGAACCATGTAACCAGAGATGC -ACGGAACCATGTAACCAGTGAAGG -ACGGAACCATGTAACCAGCAATGG -ACGGAACCATGTAACCAGATGAGG -ACGGAACCATGTAACCAGAATGGG -ACGGAACCATGTAACCAGTCCTGA -ACGGAACCATGTAACCAGTAGCGA -ACGGAACCATGTAACCAGCACAGA -ACGGAACCATGTAACCAGGCAAGA -ACGGAACCATGTAACCAGGGTTGA -ACGGAACCATGTAACCAGTCCGAT -ACGGAACCATGTAACCAGTGGCAT -ACGGAACCATGTAACCAGCGAGAT -ACGGAACCATGTAACCAGTACCAC -ACGGAACCATGTAACCAGCAGAAC -ACGGAACCATGTAACCAGGTCTAC -ACGGAACCATGTAACCAGACGTAC -ACGGAACCATGTAACCAGAGTGAC -ACGGAACCATGTAACCAGCTGTAG -ACGGAACCATGTAACCAGCCTAAG -ACGGAACCATGTAACCAGGTTCAG -ACGGAACCATGTAACCAGGCATAG -ACGGAACCATGTAACCAGGACAAG -ACGGAACCATGTAACCAGAAGCAG -ACGGAACCATGTAACCAGCGTCAA -ACGGAACCATGTAACCAGGCTGAA -ACGGAACCATGTAACCAGAGTACG -ACGGAACCATGTAACCAGATCCGA -ACGGAACCATGTAACCAGATGGGA -ACGGAACCATGTAACCAGGTGCAA -ACGGAACCATGTAACCAGGAGGAA -ACGGAACCATGTAACCAGCAGGTA -ACGGAACCATGTAACCAGGACTCT -ACGGAACCATGTAACCAGAGTCCT -ACGGAACCATGTAACCAGTAAGCC -ACGGAACCATGTAACCAGATAGCC -ACGGAACCATGTAACCAGTAACCG -ACGGAACCATGTAACCAGATGCCA -ACGGAACCATGTTACGTCGGAAAC -ACGGAACCATGTTACGTCAACACC -ACGGAACCATGTTACGTCATCGAG -ACGGAACCATGTTACGTCCTCCTT -ACGGAACCATGTTACGTCCCTGTT -ACGGAACCATGTTACGTCCGGTTT -ACGGAACCATGTTACGTCGTGGTT -ACGGAACCATGTTACGTCGCCTTT -ACGGAACCATGTTACGTCGGTCTT -ACGGAACCATGTTACGTCACGCTT -ACGGAACCATGTTACGTCAGCGTT -ACGGAACCATGTTACGTCTTCGTC -ACGGAACCATGTTACGTCTCTCTC -ACGGAACCATGTTACGTCTGGATC -ACGGAACCATGTTACGTCCACTTC -ACGGAACCATGTTACGTCGTACTC -ACGGAACCATGTTACGTCGATGTC -ACGGAACCATGTTACGTCACAGTC -ACGGAACCATGTTACGTCTTGCTG -ACGGAACCATGTTACGTCTCCATG -ACGGAACCATGTTACGTCTGTGTG -ACGGAACCATGTTACGTCCTAGTG -ACGGAACCATGTTACGTCCATCTG -ACGGAACCATGTTACGTCGAGTTG -ACGGAACCATGTTACGTCAGACTG -ACGGAACCATGTTACGTCTCGGTA -ACGGAACCATGTTACGTCTGCCTA -ACGGAACCATGTTACGTCCCACTA -ACGGAACCATGTTACGTCGGAGTA -ACGGAACCATGTTACGTCTCGTCT -ACGGAACCATGTTACGTCTGCACT -ACGGAACCATGTTACGTCCTGACT -ACGGAACCATGTTACGTCCAACCT -ACGGAACCATGTTACGTCGCTACT -ACGGAACCATGTTACGTCGGATCT -ACGGAACCATGTTACGTCAAGGCT -ACGGAACCATGTTACGTCTCAACC -ACGGAACCATGTTACGTCTGTTCC -ACGGAACCATGTTACGTCATTCCC -ACGGAACCATGTTACGTCTTCTCG -ACGGAACCATGTTACGTCTAGACG -ACGGAACCATGTTACGTCGTAACG -ACGGAACCATGTTACGTCACTTCG -ACGGAACCATGTTACGTCTACGCA -ACGGAACCATGTTACGTCCTTGCA -ACGGAACCATGTTACGTCCGAACA -ACGGAACCATGTTACGTCCAGTCA -ACGGAACCATGTTACGTCGATCCA -ACGGAACCATGTTACGTCACGACA -ACGGAACCATGTTACGTCAGCTCA -ACGGAACCATGTTACGTCTCACGT -ACGGAACCATGTTACGTCCGTAGT -ACGGAACCATGTTACGTCGTCAGT -ACGGAACCATGTTACGTCGAAGGT -ACGGAACCATGTTACGTCAACCGT -ACGGAACCATGTTACGTCTTGTGC -ACGGAACCATGTTACGTCCTAAGC -ACGGAACCATGTTACGTCACTAGC -ACGGAACCATGTTACGTCAGATGC -ACGGAACCATGTTACGTCTGAAGG -ACGGAACCATGTTACGTCCAATGG -ACGGAACCATGTTACGTCATGAGG -ACGGAACCATGTTACGTCAATGGG -ACGGAACCATGTTACGTCTCCTGA -ACGGAACCATGTTACGTCTAGCGA -ACGGAACCATGTTACGTCCACAGA -ACGGAACCATGTTACGTCGCAAGA -ACGGAACCATGTTACGTCGGTTGA -ACGGAACCATGTTACGTCTCCGAT -ACGGAACCATGTTACGTCTGGCAT -ACGGAACCATGTTACGTCCGAGAT -ACGGAACCATGTTACGTCTACCAC -ACGGAACCATGTTACGTCCAGAAC -ACGGAACCATGTTACGTCGTCTAC -ACGGAACCATGTTACGTCACGTAC -ACGGAACCATGTTACGTCAGTGAC -ACGGAACCATGTTACGTCCTGTAG -ACGGAACCATGTTACGTCCCTAAG -ACGGAACCATGTTACGTCGTTCAG -ACGGAACCATGTTACGTCGCATAG -ACGGAACCATGTTACGTCGACAAG -ACGGAACCATGTTACGTCAAGCAG -ACGGAACCATGTTACGTCCGTCAA -ACGGAACCATGTTACGTCGCTGAA -ACGGAACCATGTTACGTCAGTACG -ACGGAACCATGTTACGTCATCCGA -ACGGAACCATGTTACGTCATGGGA -ACGGAACCATGTTACGTCGTGCAA -ACGGAACCATGTTACGTCGAGGAA -ACGGAACCATGTTACGTCCAGGTA -ACGGAACCATGTTACGTCGACTCT -ACGGAACCATGTTACGTCAGTCCT -ACGGAACCATGTTACGTCTAAGCC -ACGGAACCATGTTACGTCATAGCC -ACGGAACCATGTTACGTCTAACCG -ACGGAACCATGTTACGTCATGCCA -ACGGAACCATGTTACACGGGAAAC -ACGGAACCATGTTACACGAACACC -ACGGAACCATGTTACACGATCGAG -ACGGAACCATGTTACACGCTCCTT -ACGGAACCATGTTACACGCCTGTT -ACGGAACCATGTTACACGCGGTTT -ACGGAACCATGTTACACGGTGGTT -ACGGAACCATGTTACACGGCCTTT -ACGGAACCATGTTACACGGGTCTT -ACGGAACCATGTTACACGACGCTT -ACGGAACCATGTTACACGAGCGTT -ACGGAACCATGTTACACGTTCGTC -ACGGAACCATGTTACACGTCTCTC -ACGGAACCATGTTACACGTGGATC -ACGGAACCATGTTACACGCACTTC -ACGGAACCATGTTACACGGTACTC -ACGGAACCATGTTACACGGATGTC -ACGGAACCATGTTACACGACAGTC -ACGGAACCATGTTACACGTTGCTG -ACGGAACCATGTTACACGTCCATG -ACGGAACCATGTTACACGTGTGTG -ACGGAACCATGTTACACGCTAGTG -ACGGAACCATGTTACACGCATCTG -ACGGAACCATGTTACACGGAGTTG -ACGGAACCATGTTACACGAGACTG -ACGGAACCATGTTACACGTCGGTA -ACGGAACCATGTTACACGTGCCTA -ACGGAACCATGTTACACGCCACTA -ACGGAACCATGTTACACGGGAGTA -ACGGAACCATGTTACACGTCGTCT -ACGGAACCATGTTACACGTGCACT -ACGGAACCATGTTACACGCTGACT -ACGGAACCATGTTACACGCAACCT -ACGGAACCATGTTACACGGCTACT -ACGGAACCATGTTACACGGGATCT -ACGGAACCATGTTACACGAAGGCT -ACGGAACCATGTTACACGTCAACC -ACGGAACCATGTTACACGTGTTCC -ACGGAACCATGTTACACGATTCCC -ACGGAACCATGTTACACGTTCTCG -ACGGAACCATGTTACACGTAGACG -ACGGAACCATGTTACACGGTAACG -ACGGAACCATGTTACACGACTTCG -ACGGAACCATGTTACACGTACGCA -ACGGAACCATGTTACACGCTTGCA -ACGGAACCATGTTACACGCGAACA -ACGGAACCATGTTACACGCAGTCA -ACGGAACCATGTTACACGGATCCA -ACGGAACCATGTTACACGACGACA -ACGGAACCATGTTACACGAGCTCA -ACGGAACCATGTTACACGTCACGT -ACGGAACCATGTTACACGCGTAGT -ACGGAACCATGTTACACGGTCAGT -ACGGAACCATGTTACACGGAAGGT -ACGGAACCATGTTACACGAACCGT -ACGGAACCATGTTACACGTTGTGC -ACGGAACCATGTTACACGCTAAGC -ACGGAACCATGTTACACGACTAGC -ACGGAACCATGTTACACGAGATGC -ACGGAACCATGTTACACGTGAAGG -ACGGAACCATGTTACACGCAATGG -ACGGAACCATGTTACACGATGAGG -ACGGAACCATGTTACACGAATGGG -ACGGAACCATGTTACACGTCCTGA -ACGGAACCATGTTACACGTAGCGA -ACGGAACCATGTTACACGCACAGA -ACGGAACCATGTTACACGGCAAGA -ACGGAACCATGTTACACGGGTTGA -ACGGAACCATGTTACACGTCCGAT -ACGGAACCATGTTACACGTGGCAT -ACGGAACCATGTTACACGCGAGAT -ACGGAACCATGTTACACGTACCAC -ACGGAACCATGTTACACGCAGAAC -ACGGAACCATGTTACACGGTCTAC -ACGGAACCATGTTACACGACGTAC -ACGGAACCATGTTACACGAGTGAC -ACGGAACCATGTTACACGCTGTAG -ACGGAACCATGTTACACGCCTAAG -ACGGAACCATGTTACACGGTTCAG -ACGGAACCATGTTACACGGCATAG -ACGGAACCATGTTACACGGACAAG -ACGGAACCATGTTACACGAAGCAG -ACGGAACCATGTTACACGCGTCAA -ACGGAACCATGTTACACGGCTGAA -ACGGAACCATGTTACACGAGTACG -ACGGAACCATGTTACACGATCCGA -ACGGAACCATGTTACACGATGGGA -ACGGAACCATGTTACACGGTGCAA -ACGGAACCATGTTACACGGAGGAA -ACGGAACCATGTTACACGCAGGTA -ACGGAACCATGTTACACGGACTCT -ACGGAACCATGTTACACGAGTCCT -ACGGAACCATGTTACACGTAAGCC -ACGGAACCATGTTACACGATAGCC -ACGGAACCATGTTACACGTAACCG -ACGGAACCATGTTACACGATGCCA -ACGGAACCATGTGACAGTGGAAAC -ACGGAACCATGTGACAGTAACACC -ACGGAACCATGTGACAGTATCGAG -ACGGAACCATGTGACAGTCTCCTT -ACGGAACCATGTGACAGTCCTGTT -ACGGAACCATGTGACAGTCGGTTT -ACGGAACCATGTGACAGTGTGGTT -ACGGAACCATGTGACAGTGCCTTT -ACGGAACCATGTGACAGTGGTCTT -ACGGAACCATGTGACAGTACGCTT -ACGGAACCATGTGACAGTAGCGTT -ACGGAACCATGTGACAGTTTCGTC -ACGGAACCATGTGACAGTTCTCTC -ACGGAACCATGTGACAGTTGGATC -ACGGAACCATGTGACAGTCACTTC -ACGGAACCATGTGACAGTGTACTC -ACGGAACCATGTGACAGTGATGTC -ACGGAACCATGTGACAGTACAGTC -ACGGAACCATGTGACAGTTTGCTG -ACGGAACCATGTGACAGTTCCATG -ACGGAACCATGTGACAGTTGTGTG -ACGGAACCATGTGACAGTCTAGTG -ACGGAACCATGTGACAGTCATCTG -ACGGAACCATGTGACAGTGAGTTG -ACGGAACCATGTGACAGTAGACTG -ACGGAACCATGTGACAGTTCGGTA -ACGGAACCATGTGACAGTTGCCTA -ACGGAACCATGTGACAGTCCACTA -ACGGAACCATGTGACAGTGGAGTA -ACGGAACCATGTGACAGTTCGTCT -ACGGAACCATGTGACAGTTGCACT -ACGGAACCATGTGACAGTCTGACT -ACGGAACCATGTGACAGTCAACCT -ACGGAACCATGTGACAGTGCTACT -ACGGAACCATGTGACAGTGGATCT -ACGGAACCATGTGACAGTAAGGCT -ACGGAACCATGTGACAGTTCAACC -ACGGAACCATGTGACAGTTGTTCC -ACGGAACCATGTGACAGTATTCCC -ACGGAACCATGTGACAGTTTCTCG -ACGGAACCATGTGACAGTTAGACG -ACGGAACCATGTGACAGTGTAACG -ACGGAACCATGTGACAGTACTTCG -ACGGAACCATGTGACAGTTACGCA -ACGGAACCATGTGACAGTCTTGCA -ACGGAACCATGTGACAGTCGAACA -ACGGAACCATGTGACAGTCAGTCA -ACGGAACCATGTGACAGTGATCCA -ACGGAACCATGTGACAGTACGACA -ACGGAACCATGTGACAGTAGCTCA -ACGGAACCATGTGACAGTTCACGT -ACGGAACCATGTGACAGTCGTAGT -ACGGAACCATGTGACAGTGTCAGT -ACGGAACCATGTGACAGTGAAGGT -ACGGAACCATGTGACAGTAACCGT -ACGGAACCATGTGACAGTTTGTGC -ACGGAACCATGTGACAGTCTAAGC -ACGGAACCATGTGACAGTACTAGC -ACGGAACCATGTGACAGTAGATGC -ACGGAACCATGTGACAGTTGAAGG -ACGGAACCATGTGACAGTCAATGG -ACGGAACCATGTGACAGTATGAGG -ACGGAACCATGTGACAGTAATGGG -ACGGAACCATGTGACAGTTCCTGA -ACGGAACCATGTGACAGTTAGCGA -ACGGAACCATGTGACAGTCACAGA -ACGGAACCATGTGACAGTGCAAGA -ACGGAACCATGTGACAGTGGTTGA -ACGGAACCATGTGACAGTTCCGAT -ACGGAACCATGTGACAGTTGGCAT -ACGGAACCATGTGACAGTCGAGAT -ACGGAACCATGTGACAGTTACCAC -ACGGAACCATGTGACAGTCAGAAC -ACGGAACCATGTGACAGTGTCTAC -ACGGAACCATGTGACAGTACGTAC -ACGGAACCATGTGACAGTAGTGAC -ACGGAACCATGTGACAGTCTGTAG -ACGGAACCATGTGACAGTCCTAAG -ACGGAACCATGTGACAGTGTTCAG -ACGGAACCATGTGACAGTGCATAG -ACGGAACCATGTGACAGTGACAAG -ACGGAACCATGTGACAGTAAGCAG -ACGGAACCATGTGACAGTCGTCAA -ACGGAACCATGTGACAGTGCTGAA -ACGGAACCATGTGACAGTAGTACG -ACGGAACCATGTGACAGTATCCGA -ACGGAACCATGTGACAGTATGGGA -ACGGAACCATGTGACAGTGTGCAA -ACGGAACCATGTGACAGTGAGGAA -ACGGAACCATGTGACAGTCAGGTA -ACGGAACCATGTGACAGTGACTCT -ACGGAACCATGTGACAGTAGTCCT -ACGGAACCATGTGACAGTTAAGCC -ACGGAACCATGTGACAGTATAGCC -ACGGAACCATGTGACAGTTAACCG -ACGGAACCATGTGACAGTATGCCA -ACGGAACCATGTTAGCTGGGAAAC -ACGGAACCATGTTAGCTGAACACC -ACGGAACCATGTTAGCTGATCGAG -ACGGAACCATGTTAGCTGCTCCTT -ACGGAACCATGTTAGCTGCCTGTT -ACGGAACCATGTTAGCTGCGGTTT -ACGGAACCATGTTAGCTGGTGGTT -ACGGAACCATGTTAGCTGGCCTTT -ACGGAACCATGTTAGCTGGGTCTT -ACGGAACCATGTTAGCTGACGCTT -ACGGAACCATGTTAGCTGAGCGTT -ACGGAACCATGTTAGCTGTTCGTC -ACGGAACCATGTTAGCTGTCTCTC -ACGGAACCATGTTAGCTGTGGATC -ACGGAACCATGTTAGCTGCACTTC -ACGGAACCATGTTAGCTGGTACTC -ACGGAACCATGTTAGCTGGATGTC -ACGGAACCATGTTAGCTGACAGTC -ACGGAACCATGTTAGCTGTTGCTG -ACGGAACCATGTTAGCTGTCCATG -ACGGAACCATGTTAGCTGTGTGTG -ACGGAACCATGTTAGCTGCTAGTG -ACGGAACCATGTTAGCTGCATCTG -ACGGAACCATGTTAGCTGGAGTTG -ACGGAACCATGTTAGCTGAGACTG -ACGGAACCATGTTAGCTGTCGGTA -ACGGAACCATGTTAGCTGTGCCTA -ACGGAACCATGTTAGCTGCCACTA -ACGGAACCATGTTAGCTGGGAGTA -ACGGAACCATGTTAGCTGTCGTCT -ACGGAACCATGTTAGCTGTGCACT -ACGGAACCATGTTAGCTGCTGACT -ACGGAACCATGTTAGCTGCAACCT -ACGGAACCATGTTAGCTGGCTACT -ACGGAACCATGTTAGCTGGGATCT -ACGGAACCATGTTAGCTGAAGGCT -ACGGAACCATGTTAGCTGTCAACC -ACGGAACCATGTTAGCTGTGTTCC -ACGGAACCATGTTAGCTGATTCCC -ACGGAACCATGTTAGCTGTTCTCG -ACGGAACCATGTTAGCTGTAGACG -ACGGAACCATGTTAGCTGGTAACG -ACGGAACCATGTTAGCTGACTTCG -ACGGAACCATGTTAGCTGTACGCA -ACGGAACCATGTTAGCTGCTTGCA -ACGGAACCATGTTAGCTGCGAACA -ACGGAACCATGTTAGCTGCAGTCA -ACGGAACCATGTTAGCTGGATCCA -ACGGAACCATGTTAGCTGACGACA -ACGGAACCATGTTAGCTGAGCTCA -ACGGAACCATGTTAGCTGTCACGT -ACGGAACCATGTTAGCTGCGTAGT -ACGGAACCATGTTAGCTGGTCAGT -ACGGAACCATGTTAGCTGGAAGGT -ACGGAACCATGTTAGCTGAACCGT -ACGGAACCATGTTAGCTGTTGTGC -ACGGAACCATGTTAGCTGCTAAGC -ACGGAACCATGTTAGCTGACTAGC -ACGGAACCATGTTAGCTGAGATGC -ACGGAACCATGTTAGCTGTGAAGG -ACGGAACCATGTTAGCTGCAATGG -ACGGAACCATGTTAGCTGATGAGG -ACGGAACCATGTTAGCTGAATGGG -ACGGAACCATGTTAGCTGTCCTGA -ACGGAACCATGTTAGCTGTAGCGA -ACGGAACCATGTTAGCTGCACAGA -ACGGAACCATGTTAGCTGGCAAGA -ACGGAACCATGTTAGCTGGGTTGA -ACGGAACCATGTTAGCTGTCCGAT -ACGGAACCATGTTAGCTGTGGCAT -ACGGAACCATGTTAGCTGCGAGAT -ACGGAACCATGTTAGCTGTACCAC -ACGGAACCATGTTAGCTGCAGAAC -ACGGAACCATGTTAGCTGGTCTAC -ACGGAACCATGTTAGCTGACGTAC -ACGGAACCATGTTAGCTGAGTGAC -ACGGAACCATGTTAGCTGCTGTAG -ACGGAACCATGTTAGCTGCCTAAG -ACGGAACCATGTTAGCTGGTTCAG -ACGGAACCATGTTAGCTGGCATAG -ACGGAACCATGTTAGCTGGACAAG -ACGGAACCATGTTAGCTGAAGCAG -ACGGAACCATGTTAGCTGCGTCAA -ACGGAACCATGTTAGCTGGCTGAA -ACGGAACCATGTTAGCTGAGTACG -ACGGAACCATGTTAGCTGATCCGA -ACGGAACCATGTTAGCTGATGGGA -ACGGAACCATGTTAGCTGGTGCAA -ACGGAACCATGTTAGCTGGAGGAA -ACGGAACCATGTTAGCTGCAGGTA -ACGGAACCATGTTAGCTGGACTCT -ACGGAACCATGTTAGCTGAGTCCT -ACGGAACCATGTTAGCTGTAAGCC -ACGGAACCATGTTAGCTGATAGCC -ACGGAACCATGTTAGCTGTAACCG -ACGGAACCATGTTAGCTGATGCCA -ACGGAACCATGTAAGCCTGGAAAC -ACGGAACCATGTAAGCCTAACACC -ACGGAACCATGTAAGCCTATCGAG -ACGGAACCATGTAAGCCTCTCCTT -ACGGAACCATGTAAGCCTCCTGTT -ACGGAACCATGTAAGCCTCGGTTT -ACGGAACCATGTAAGCCTGTGGTT -ACGGAACCATGTAAGCCTGCCTTT -ACGGAACCATGTAAGCCTGGTCTT -ACGGAACCATGTAAGCCTACGCTT -ACGGAACCATGTAAGCCTAGCGTT -ACGGAACCATGTAAGCCTTTCGTC -ACGGAACCATGTAAGCCTTCTCTC -ACGGAACCATGTAAGCCTTGGATC -ACGGAACCATGTAAGCCTCACTTC -ACGGAACCATGTAAGCCTGTACTC -ACGGAACCATGTAAGCCTGATGTC -ACGGAACCATGTAAGCCTACAGTC -ACGGAACCATGTAAGCCTTTGCTG -ACGGAACCATGTAAGCCTTCCATG -ACGGAACCATGTAAGCCTTGTGTG -ACGGAACCATGTAAGCCTCTAGTG -ACGGAACCATGTAAGCCTCATCTG -ACGGAACCATGTAAGCCTGAGTTG -ACGGAACCATGTAAGCCTAGACTG -ACGGAACCATGTAAGCCTTCGGTA -ACGGAACCATGTAAGCCTTGCCTA -ACGGAACCATGTAAGCCTCCACTA -ACGGAACCATGTAAGCCTGGAGTA -ACGGAACCATGTAAGCCTTCGTCT -ACGGAACCATGTAAGCCTTGCACT -ACGGAACCATGTAAGCCTCTGACT -ACGGAACCATGTAAGCCTCAACCT -ACGGAACCATGTAAGCCTGCTACT -ACGGAACCATGTAAGCCTGGATCT -ACGGAACCATGTAAGCCTAAGGCT -ACGGAACCATGTAAGCCTTCAACC -ACGGAACCATGTAAGCCTTGTTCC -ACGGAACCATGTAAGCCTATTCCC -ACGGAACCATGTAAGCCTTTCTCG -ACGGAACCATGTAAGCCTTAGACG -ACGGAACCATGTAAGCCTGTAACG -ACGGAACCATGTAAGCCTACTTCG -ACGGAACCATGTAAGCCTTACGCA -ACGGAACCATGTAAGCCTCTTGCA -ACGGAACCATGTAAGCCTCGAACA -ACGGAACCATGTAAGCCTCAGTCA -ACGGAACCATGTAAGCCTGATCCA -ACGGAACCATGTAAGCCTACGACA -ACGGAACCATGTAAGCCTAGCTCA -ACGGAACCATGTAAGCCTTCACGT -ACGGAACCATGTAAGCCTCGTAGT -ACGGAACCATGTAAGCCTGTCAGT -ACGGAACCATGTAAGCCTGAAGGT -ACGGAACCATGTAAGCCTAACCGT -ACGGAACCATGTAAGCCTTTGTGC -ACGGAACCATGTAAGCCTCTAAGC -ACGGAACCATGTAAGCCTACTAGC -ACGGAACCATGTAAGCCTAGATGC -ACGGAACCATGTAAGCCTTGAAGG -ACGGAACCATGTAAGCCTCAATGG -ACGGAACCATGTAAGCCTATGAGG -ACGGAACCATGTAAGCCTAATGGG -ACGGAACCATGTAAGCCTTCCTGA -ACGGAACCATGTAAGCCTTAGCGA -ACGGAACCATGTAAGCCTCACAGA -ACGGAACCATGTAAGCCTGCAAGA -ACGGAACCATGTAAGCCTGGTTGA -ACGGAACCATGTAAGCCTTCCGAT -ACGGAACCATGTAAGCCTTGGCAT -ACGGAACCATGTAAGCCTCGAGAT -ACGGAACCATGTAAGCCTTACCAC -ACGGAACCATGTAAGCCTCAGAAC -ACGGAACCATGTAAGCCTGTCTAC -ACGGAACCATGTAAGCCTACGTAC -ACGGAACCATGTAAGCCTAGTGAC -ACGGAACCATGTAAGCCTCTGTAG -ACGGAACCATGTAAGCCTCCTAAG -ACGGAACCATGTAAGCCTGTTCAG -ACGGAACCATGTAAGCCTGCATAG -ACGGAACCATGTAAGCCTGACAAG -ACGGAACCATGTAAGCCTAAGCAG -ACGGAACCATGTAAGCCTCGTCAA -ACGGAACCATGTAAGCCTGCTGAA -ACGGAACCATGTAAGCCTAGTACG -ACGGAACCATGTAAGCCTATCCGA -ACGGAACCATGTAAGCCTATGGGA -ACGGAACCATGTAAGCCTGTGCAA -ACGGAACCATGTAAGCCTGAGGAA -ACGGAACCATGTAAGCCTCAGGTA -ACGGAACCATGTAAGCCTGACTCT -ACGGAACCATGTAAGCCTAGTCCT -ACGGAACCATGTAAGCCTTAAGCC -ACGGAACCATGTAAGCCTATAGCC -ACGGAACCATGTAAGCCTTAACCG -ACGGAACCATGTAAGCCTATGCCA -ACGGAACCATGTCAGGTTGGAAAC -ACGGAACCATGTCAGGTTAACACC -ACGGAACCATGTCAGGTTATCGAG -ACGGAACCATGTCAGGTTCTCCTT -ACGGAACCATGTCAGGTTCCTGTT -ACGGAACCATGTCAGGTTCGGTTT -ACGGAACCATGTCAGGTTGTGGTT -ACGGAACCATGTCAGGTTGCCTTT -ACGGAACCATGTCAGGTTGGTCTT -ACGGAACCATGTCAGGTTACGCTT -ACGGAACCATGTCAGGTTAGCGTT -ACGGAACCATGTCAGGTTTTCGTC -ACGGAACCATGTCAGGTTTCTCTC -ACGGAACCATGTCAGGTTTGGATC -ACGGAACCATGTCAGGTTCACTTC -ACGGAACCATGTCAGGTTGTACTC -ACGGAACCATGTCAGGTTGATGTC -ACGGAACCATGTCAGGTTACAGTC -ACGGAACCATGTCAGGTTTTGCTG -ACGGAACCATGTCAGGTTTCCATG -ACGGAACCATGTCAGGTTTGTGTG -ACGGAACCATGTCAGGTTCTAGTG -ACGGAACCATGTCAGGTTCATCTG -ACGGAACCATGTCAGGTTGAGTTG -ACGGAACCATGTCAGGTTAGACTG -ACGGAACCATGTCAGGTTTCGGTA -ACGGAACCATGTCAGGTTTGCCTA -ACGGAACCATGTCAGGTTCCACTA -ACGGAACCATGTCAGGTTGGAGTA -ACGGAACCATGTCAGGTTTCGTCT -ACGGAACCATGTCAGGTTTGCACT -ACGGAACCATGTCAGGTTCTGACT -ACGGAACCATGTCAGGTTCAACCT -ACGGAACCATGTCAGGTTGCTACT -ACGGAACCATGTCAGGTTGGATCT -ACGGAACCATGTCAGGTTAAGGCT -ACGGAACCATGTCAGGTTTCAACC -ACGGAACCATGTCAGGTTTGTTCC -ACGGAACCATGTCAGGTTATTCCC -ACGGAACCATGTCAGGTTTTCTCG -ACGGAACCATGTCAGGTTTAGACG -ACGGAACCATGTCAGGTTGTAACG -ACGGAACCATGTCAGGTTACTTCG -ACGGAACCATGTCAGGTTTACGCA -ACGGAACCATGTCAGGTTCTTGCA -ACGGAACCATGTCAGGTTCGAACA -ACGGAACCATGTCAGGTTCAGTCA -ACGGAACCATGTCAGGTTGATCCA -ACGGAACCATGTCAGGTTACGACA -ACGGAACCATGTCAGGTTAGCTCA -ACGGAACCATGTCAGGTTTCACGT -ACGGAACCATGTCAGGTTCGTAGT -ACGGAACCATGTCAGGTTGTCAGT -ACGGAACCATGTCAGGTTGAAGGT -ACGGAACCATGTCAGGTTAACCGT -ACGGAACCATGTCAGGTTTTGTGC -ACGGAACCATGTCAGGTTCTAAGC -ACGGAACCATGTCAGGTTACTAGC -ACGGAACCATGTCAGGTTAGATGC -ACGGAACCATGTCAGGTTTGAAGG -ACGGAACCATGTCAGGTTCAATGG -ACGGAACCATGTCAGGTTATGAGG -ACGGAACCATGTCAGGTTAATGGG -ACGGAACCATGTCAGGTTTCCTGA -ACGGAACCATGTCAGGTTTAGCGA -ACGGAACCATGTCAGGTTCACAGA -ACGGAACCATGTCAGGTTGCAAGA -ACGGAACCATGTCAGGTTGGTTGA -ACGGAACCATGTCAGGTTTCCGAT -ACGGAACCATGTCAGGTTTGGCAT -ACGGAACCATGTCAGGTTCGAGAT -ACGGAACCATGTCAGGTTTACCAC -ACGGAACCATGTCAGGTTCAGAAC -ACGGAACCATGTCAGGTTGTCTAC -ACGGAACCATGTCAGGTTACGTAC -ACGGAACCATGTCAGGTTAGTGAC -ACGGAACCATGTCAGGTTCTGTAG -ACGGAACCATGTCAGGTTCCTAAG -ACGGAACCATGTCAGGTTGTTCAG -ACGGAACCATGTCAGGTTGCATAG -ACGGAACCATGTCAGGTTGACAAG -ACGGAACCATGTCAGGTTAAGCAG -ACGGAACCATGTCAGGTTCGTCAA -ACGGAACCATGTCAGGTTGCTGAA -ACGGAACCATGTCAGGTTAGTACG -ACGGAACCATGTCAGGTTATCCGA -ACGGAACCATGTCAGGTTATGGGA -ACGGAACCATGTCAGGTTGTGCAA -ACGGAACCATGTCAGGTTGAGGAA -ACGGAACCATGTCAGGTTCAGGTA -ACGGAACCATGTCAGGTTGACTCT -ACGGAACCATGTCAGGTTAGTCCT -ACGGAACCATGTCAGGTTTAAGCC -ACGGAACCATGTCAGGTTATAGCC -ACGGAACCATGTCAGGTTTAACCG -ACGGAACCATGTCAGGTTATGCCA -ACGGAACCATGTTAGGCAGGAAAC -ACGGAACCATGTTAGGCAAACACC -ACGGAACCATGTTAGGCAATCGAG -ACGGAACCATGTTAGGCACTCCTT -ACGGAACCATGTTAGGCACCTGTT -ACGGAACCATGTTAGGCACGGTTT -ACGGAACCATGTTAGGCAGTGGTT -ACGGAACCATGTTAGGCAGCCTTT -ACGGAACCATGTTAGGCAGGTCTT -ACGGAACCATGTTAGGCAACGCTT -ACGGAACCATGTTAGGCAAGCGTT -ACGGAACCATGTTAGGCATTCGTC -ACGGAACCATGTTAGGCATCTCTC -ACGGAACCATGTTAGGCATGGATC -ACGGAACCATGTTAGGCACACTTC -ACGGAACCATGTTAGGCAGTACTC -ACGGAACCATGTTAGGCAGATGTC -ACGGAACCATGTTAGGCAACAGTC -ACGGAACCATGTTAGGCATTGCTG -ACGGAACCATGTTAGGCATCCATG -ACGGAACCATGTTAGGCATGTGTG -ACGGAACCATGTTAGGCACTAGTG -ACGGAACCATGTTAGGCACATCTG -ACGGAACCATGTTAGGCAGAGTTG -ACGGAACCATGTTAGGCAAGACTG -ACGGAACCATGTTAGGCATCGGTA -ACGGAACCATGTTAGGCATGCCTA -ACGGAACCATGTTAGGCACCACTA -ACGGAACCATGTTAGGCAGGAGTA -ACGGAACCATGTTAGGCATCGTCT -ACGGAACCATGTTAGGCATGCACT -ACGGAACCATGTTAGGCACTGACT -ACGGAACCATGTTAGGCACAACCT -ACGGAACCATGTTAGGCAGCTACT -ACGGAACCATGTTAGGCAGGATCT -ACGGAACCATGTTAGGCAAAGGCT -ACGGAACCATGTTAGGCATCAACC -ACGGAACCATGTTAGGCATGTTCC -ACGGAACCATGTTAGGCAATTCCC -ACGGAACCATGTTAGGCATTCTCG -ACGGAACCATGTTAGGCATAGACG -ACGGAACCATGTTAGGCAGTAACG -ACGGAACCATGTTAGGCAACTTCG -ACGGAACCATGTTAGGCATACGCA -ACGGAACCATGTTAGGCACTTGCA -ACGGAACCATGTTAGGCACGAACA -ACGGAACCATGTTAGGCACAGTCA -ACGGAACCATGTTAGGCAGATCCA -ACGGAACCATGTTAGGCAACGACA -ACGGAACCATGTTAGGCAAGCTCA -ACGGAACCATGTTAGGCATCACGT -ACGGAACCATGTTAGGCACGTAGT -ACGGAACCATGTTAGGCAGTCAGT -ACGGAACCATGTTAGGCAGAAGGT -ACGGAACCATGTTAGGCAAACCGT -ACGGAACCATGTTAGGCATTGTGC -ACGGAACCATGTTAGGCACTAAGC -ACGGAACCATGTTAGGCAACTAGC -ACGGAACCATGTTAGGCAAGATGC -ACGGAACCATGTTAGGCATGAAGG -ACGGAACCATGTTAGGCACAATGG -ACGGAACCATGTTAGGCAATGAGG -ACGGAACCATGTTAGGCAAATGGG -ACGGAACCATGTTAGGCATCCTGA -ACGGAACCATGTTAGGCATAGCGA -ACGGAACCATGTTAGGCACACAGA -ACGGAACCATGTTAGGCAGCAAGA -ACGGAACCATGTTAGGCAGGTTGA -ACGGAACCATGTTAGGCATCCGAT -ACGGAACCATGTTAGGCATGGCAT -ACGGAACCATGTTAGGCACGAGAT -ACGGAACCATGTTAGGCATACCAC -ACGGAACCATGTTAGGCACAGAAC -ACGGAACCATGTTAGGCAGTCTAC -ACGGAACCATGTTAGGCAACGTAC -ACGGAACCATGTTAGGCAAGTGAC -ACGGAACCATGTTAGGCACTGTAG -ACGGAACCATGTTAGGCACCTAAG -ACGGAACCATGTTAGGCAGTTCAG -ACGGAACCATGTTAGGCAGCATAG -ACGGAACCATGTTAGGCAGACAAG -ACGGAACCATGTTAGGCAAAGCAG -ACGGAACCATGTTAGGCACGTCAA -ACGGAACCATGTTAGGCAGCTGAA -ACGGAACCATGTTAGGCAAGTACG -ACGGAACCATGTTAGGCAATCCGA -ACGGAACCATGTTAGGCAATGGGA -ACGGAACCATGTTAGGCAGTGCAA -ACGGAACCATGTTAGGCAGAGGAA -ACGGAACCATGTTAGGCACAGGTA -ACGGAACCATGTTAGGCAGACTCT -ACGGAACCATGTTAGGCAAGTCCT -ACGGAACCATGTTAGGCATAAGCC -ACGGAACCATGTTAGGCAATAGCC -ACGGAACCATGTTAGGCATAACCG -ACGGAACCATGTTAGGCAATGCCA -ACGGAACCATGTAAGGACGGAAAC -ACGGAACCATGTAAGGACAACACC -ACGGAACCATGTAAGGACATCGAG -ACGGAACCATGTAAGGACCTCCTT -ACGGAACCATGTAAGGACCCTGTT -ACGGAACCATGTAAGGACCGGTTT -ACGGAACCATGTAAGGACGTGGTT -ACGGAACCATGTAAGGACGCCTTT -ACGGAACCATGTAAGGACGGTCTT -ACGGAACCATGTAAGGACACGCTT -ACGGAACCATGTAAGGACAGCGTT -ACGGAACCATGTAAGGACTTCGTC -ACGGAACCATGTAAGGACTCTCTC -ACGGAACCATGTAAGGACTGGATC -ACGGAACCATGTAAGGACCACTTC -ACGGAACCATGTAAGGACGTACTC -ACGGAACCATGTAAGGACGATGTC -ACGGAACCATGTAAGGACACAGTC -ACGGAACCATGTAAGGACTTGCTG -ACGGAACCATGTAAGGACTCCATG -ACGGAACCATGTAAGGACTGTGTG -ACGGAACCATGTAAGGACCTAGTG -ACGGAACCATGTAAGGACCATCTG -ACGGAACCATGTAAGGACGAGTTG -ACGGAACCATGTAAGGACAGACTG -ACGGAACCATGTAAGGACTCGGTA -ACGGAACCATGTAAGGACTGCCTA -ACGGAACCATGTAAGGACCCACTA -ACGGAACCATGTAAGGACGGAGTA -ACGGAACCATGTAAGGACTCGTCT -ACGGAACCATGTAAGGACTGCACT -ACGGAACCATGTAAGGACCTGACT -ACGGAACCATGTAAGGACCAACCT -ACGGAACCATGTAAGGACGCTACT -ACGGAACCATGTAAGGACGGATCT -ACGGAACCATGTAAGGACAAGGCT -ACGGAACCATGTAAGGACTCAACC -ACGGAACCATGTAAGGACTGTTCC -ACGGAACCATGTAAGGACATTCCC -ACGGAACCATGTAAGGACTTCTCG -ACGGAACCATGTAAGGACTAGACG -ACGGAACCATGTAAGGACGTAACG -ACGGAACCATGTAAGGACACTTCG -ACGGAACCATGTAAGGACTACGCA -ACGGAACCATGTAAGGACCTTGCA -ACGGAACCATGTAAGGACCGAACA -ACGGAACCATGTAAGGACCAGTCA -ACGGAACCATGTAAGGACGATCCA -ACGGAACCATGTAAGGACACGACA -ACGGAACCATGTAAGGACAGCTCA -ACGGAACCATGTAAGGACTCACGT -ACGGAACCATGTAAGGACCGTAGT -ACGGAACCATGTAAGGACGTCAGT -ACGGAACCATGTAAGGACGAAGGT -ACGGAACCATGTAAGGACAACCGT -ACGGAACCATGTAAGGACTTGTGC -ACGGAACCATGTAAGGACCTAAGC -ACGGAACCATGTAAGGACACTAGC -ACGGAACCATGTAAGGACAGATGC -ACGGAACCATGTAAGGACTGAAGG -ACGGAACCATGTAAGGACCAATGG -ACGGAACCATGTAAGGACATGAGG -ACGGAACCATGTAAGGACAATGGG -ACGGAACCATGTAAGGACTCCTGA -ACGGAACCATGTAAGGACTAGCGA -ACGGAACCATGTAAGGACCACAGA -ACGGAACCATGTAAGGACGCAAGA -ACGGAACCATGTAAGGACGGTTGA -ACGGAACCATGTAAGGACTCCGAT -ACGGAACCATGTAAGGACTGGCAT -ACGGAACCATGTAAGGACCGAGAT -ACGGAACCATGTAAGGACTACCAC -ACGGAACCATGTAAGGACCAGAAC -ACGGAACCATGTAAGGACGTCTAC -ACGGAACCATGTAAGGACACGTAC -ACGGAACCATGTAAGGACAGTGAC -ACGGAACCATGTAAGGACCTGTAG -ACGGAACCATGTAAGGACCCTAAG -ACGGAACCATGTAAGGACGTTCAG -ACGGAACCATGTAAGGACGCATAG -ACGGAACCATGTAAGGACGACAAG -ACGGAACCATGTAAGGACAAGCAG -ACGGAACCATGTAAGGACCGTCAA -ACGGAACCATGTAAGGACGCTGAA -ACGGAACCATGTAAGGACAGTACG -ACGGAACCATGTAAGGACATCCGA -ACGGAACCATGTAAGGACATGGGA -ACGGAACCATGTAAGGACGTGCAA -ACGGAACCATGTAAGGACGAGGAA -ACGGAACCATGTAAGGACCAGGTA -ACGGAACCATGTAAGGACGACTCT -ACGGAACCATGTAAGGACAGTCCT -ACGGAACCATGTAAGGACTAAGCC -ACGGAACCATGTAAGGACATAGCC -ACGGAACCATGTAAGGACTAACCG -ACGGAACCATGTAAGGACATGCCA -ACGGAACCATGTCAGAAGGGAAAC -ACGGAACCATGTCAGAAGAACACC -ACGGAACCATGTCAGAAGATCGAG -ACGGAACCATGTCAGAAGCTCCTT -ACGGAACCATGTCAGAAGCCTGTT -ACGGAACCATGTCAGAAGCGGTTT -ACGGAACCATGTCAGAAGGTGGTT -ACGGAACCATGTCAGAAGGCCTTT -ACGGAACCATGTCAGAAGGGTCTT -ACGGAACCATGTCAGAAGACGCTT -ACGGAACCATGTCAGAAGAGCGTT -ACGGAACCATGTCAGAAGTTCGTC -ACGGAACCATGTCAGAAGTCTCTC -ACGGAACCATGTCAGAAGTGGATC -ACGGAACCATGTCAGAAGCACTTC -ACGGAACCATGTCAGAAGGTACTC -ACGGAACCATGTCAGAAGGATGTC -ACGGAACCATGTCAGAAGACAGTC -ACGGAACCATGTCAGAAGTTGCTG -ACGGAACCATGTCAGAAGTCCATG -ACGGAACCATGTCAGAAGTGTGTG -ACGGAACCATGTCAGAAGCTAGTG -ACGGAACCATGTCAGAAGCATCTG -ACGGAACCATGTCAGAAGGAGTTG -ACGGAACCATGTCAGAAGAGACTG -ACGGAACCATGTCAGAAGTCGGTA -ACGGAACCATGTCAGAAGTGCCTA -ACGGAACCATGTCAGAAGCCACTA -ACGGAACCATGTCAGAAGGGAGTA -ACGGAACCATGTCAGAAGTCGTCT -ACGGAACCATGTCAGAAGTGCACT -ACGGAACCATGTCAGAAGCTGACT -ACGGAACCATGTCAGAAGCAACCT -ACGGAACCATGTCAGAAGGCTACT -ACGGAACCATGTCAGAAGGGATCT -ACGGAACCATGTCAGAAGAAGGCT -ACGGAACCATGTCAGAAGTCAACC -ACGGAACCATGTCAGAAGTGTTCC -ACGGAACCATGTCAGAAGATTCCC -ACGGAACCATGTCAGAAGTTCTCG -ACGGAACCATGTCAGAAGTAGACG -ACGGAACCATGTCAGAAGGTAACG -ACGGAACCATGTCAGAAGACTTCG -ACGGAACCATGTCAGAAGTACGCA -ACGGAACCATGTCAGAAGCTTGCA -ACGGAACCATGTCAGAAGCGAACA -ACGGAACCATGTCAGAAGCAGTCA -ACGGAACCATGTCAGAAGGATCCA -ACGGAACCATGTCAGAAGACGACA -ACGGAACCATGTCAGAAGAGCTCA -ACGGAACCATGTCAGAAGTCACGT -ACGGAACCATGTCAGAAGCGTAGT -ACGGAACCATGTCAGAAGGTCAGT -ACGGAACCATGTCAGAAGGAAGGT -ACGGAACCATGTCAGAAGAACCGT -ACGGAACCATGTCAGAAGTTGTGC -ACGGAACCATGTCAGAAGCTAAGC -ACGGAACCATGTCAGAAGACTAGC -ACGGAACCATGTCAGAAGAGATGC -ACGGAACCATGTCAGAAGTGAAGG -ACGGAACCATGTCAGAAGCAATGG -ACGGAACCATGTCAGAAGATGAGG -ACGGAACCATGTCAGAAGAATGGG -ACGGAACCATGTCAGAAGTCCTGA -ACGGAACCATGTCAGAAGTAGCGA -ACGGAACCATGTCAGAAGCACAGA -ACGGAACCATGTCAGAAGGCAAGA -ACGGAACCATGTCAGAAGGGTTGA -ACGGAACCATGTCAGAAGTCCGAT -ACGGAACCATGTCAGAAGTGGCAT -ACGGAACCATGTCAGAAGCGAGAT -ACGGAACCATGTCAGAAGTACCAC -ACGGAACCATGTCAGAAGCAGAAC -ACGGAACCATGTCAGAAGGTCTAC -ACGGAACCATGTCAGAAGACGTAC -ACGGAACCATGTCAGAAGAGTGAC -ACGGAACCATGTCAGAAGCTGTAG -ACGGAACCATGTCAGAAGCCTAAG -ACGGAACCATGTCAGAAGGTTCAG -ACGGAACCATGTCAGAAGGCATAG -ACGGAACCATGTCAGAAGGACAAG -ACGGAACCATGTCAGAAGAAGCAG -ACGGAACCATGTCAGAAGCGTCAA -ACGGAACCATGTCAGAAGGCTGAA -ACGGAACCATGTCAGAAGAGTACG -ACGGAACCATGTCAGAAGATCCGA -ACGGAACCATGTCAGAAGATGGGA -ACGGAACCATGTCAGAAGGTGCAA -ACGGAACCATGTCAGAAGGAGGAA -ACGGAACCATGTCAGAAGCAGGTA -ACGGAACCATGTCAGAAGGACTCT -ACGGAACCATGTCAGAAGAGTCCT -ACGGAACCATGTCAGAAGTAAGCC -ACGGAACCATGTCAGAAGATAGCC -ACGGAACCATGTCAGAAGTAACCG -ACGGAACCATGTCAGAAGATGCCA -ACGGAACCATGTCAACGTGGAAAC -ACGGAACCATGTCAACGTAACACC -ACGGAACCATGTCAACGTATCGAG -ACGGAACCATGTCAACGTCTCCTT -ACGGAACCATGTCAACGTCCTGTT -ACGGAACCATGTCAACGTCGGTTT -ACGGAACCATGTCAACGTGTGGTT -ACGGAACCATGTCAACGTGCCTTT -ACGGAACCATGTCAACGTGGTCTT -ACGGAACCATGTCAACGTACGCTT -ACGGAACCATGTCAACGTAGCGTT -ACGGAACCATGTCAACGTTTCGTC -ACGGAACCATGTCAACGTTCTCTC -ACGGAACCATGTCAACGTTGGATC -ACGGAACCATGTCAACGTCACTTC -ACGGAACCATGTCAACGTGTACTC -ACGGAACCATGTCAACGTGATGTC -ACGGAACCATGTCAACGTACAGTC -ACGGAACCATGTCAACGTTTGCTG -ACGGAACCATGTCAACGTTCCATG -ACGGAACCATGTCAACGTTGTGTG -ACGGAACCATGTCAACGTCTAGTG -ACGGAACCATGTCAACGTCATCTG -ACGGAACCATGTCAACGTGAGTTG -ACGGAACCATGTCAACGTAGACTG -ACGGAACCATGTCAACGTTCGGTA -ACGGAACCATGTCAACGTTGCCTA -ACGGAACCATGTCAACGTCCACTA -ACGGAACCATGTCAACGTGGAGTA -ACGGAACCATGTCAACGTTCGTCT -ACGGAACCATGTCAACGTTGCACT -ACGGAACCATGTCAACGTCTGACT -ACGGAACCATGTCAACGTCAACCT -ACGGAACCATGTCAACGTGCTACT -ACGGAACCATGTCAACGTGGATCT -ACGGAACCATGTCAACGTAAGGCT -ACGGAACCATGTCAACGTTCAACC -ACGGAACCATGTCAACGTTGTTCC -ACGGAACCATGTCAACGTATTCCC -ACGGAACCATGTCAACGTTTCTCG -ACGGAACCATGTCAACGTTAGACG -ACGGAACCATGTCAACGTGTAACG -ACGGAACCATGTCAACGTACTTCG -ACGGAACCATGTCAACGTTACGCA -ACGGAACCATGTCAACGTCTTGCA -ACGGAACCATGTCAACGTCGAACA -ACGGAACCATGTCAACGTCAGTCA -ACGGAACCATGTCAACGTGATCCA -ACGGAACCATGTCAACGTACGACA -ACGGAACCATGTCAACGTAGCTCA -ACGGAACCATGTCAACGTTCACGT -ACGGAACCATGTCAACGTCGTAGT -ACGGAACCATGTCAACGTGTCAGT -ACGGAACCATGTCAACGTGAAGGT -ACGGAACCATGTCAACGTAACCGT -ACGGAACCATGTCAACGTTTGTGC -ACGGAACCATGTCAACGTCTAAGC -ACGGAACCATGTCAACGTACTAGC -ACGGAACCATGTCAACGTAGATGC -ACGGAACCATGTCAACGTTGAAGG -ACGGAACCATGTCAACGTCAATGG -ACGGAACCATGTCAACGTATGAGG -ACGGAACCATGTCAACGTAATGGG -ACGGAACCATGTCAACGTTCCTGA -ACGGAACCATGTCAACGTTAGCGA -ACGGAACCATGTCAACGTCACAGA -ACGGAACCATGTCAACGTGCAAGA -ACGGAACCATGTCAACGTGGTTGA -ACGGAACCATGTCAACGTTCCGAT -ACGGAACCATGTCAACGTTGGCAT -ACGGAACCATGTCAACGTCGAGAT -ACGGAACCATGTCAACGTTACCAC -ACGGAACCATGTCAACGTCAGAAC -ACGGAACCATGTCAACGTGTCTAC -ACGGAACCATGTCAACGTACGTAC -ACGGAACCATGTCAACGTAGTGAC -ACGGAACCATGTCAACGTCTGTAG -ACGGAACCATGTCAACGTCCTAAG -ACGGAACCATGTCAACGTGTTCAG -ACGGAACCATGTCAACGTGCATAG -ACGGAACCATGTCAACGTGACAAG -ACGGAACCATGTCAACGTAAGCAG -ACGGAACCATGTCAACGTCGTCAA -ACGGAACCATGTCAACGTGCTGAA -ACGGAACCATGTCAACGTAGTACG -ACGGAACCATGTCAACGTATCCGA -ACGGAACCATGTCAACGTATGGGA -ACGGAACCATGTCAACGTGTGCAA -ACGGAACCATGTCAACGTGAGGAA -ACGGAACCATGTCAACGTCAGGTA -ACGGAACCATGTCAACGTGACTCT -ACGGAACCATGTCAACGTAGTCCT -ACGGAACCATGTCAACGTTAAGCC -ACGGAACCATGTCAACGTATAGCC -ACGGAACCATGTCAACGTTAACCG -ACGGAACCATGTCAACGTATGCCA -ACGGAACCATGTGAAGCTGGAAAC -ACGGAACCATGTGAAGCTAACACC -ACGGAACCATGTGAAGCTATCGAG -ACGGAACCATGTGAAGCTCTCCTT -ACGGAACCATGTGAAGCTCCTGTT -ACGGAACCATGTGAAGCTCGGTTT -ACGGAACCATGTGAAGCTGTGGTT -ACGGAACCATGTGAAGCTGCCTTT -ACGGAACCATGTGAAGCTGGTCTT -ACGGAACCATGTGAAGCTACGCTT -ACGGAACCATGTGAAGCTAGCGTT -ACGGAACCATGTGAAGCTTTCGTC -ACGGAACCATGTGAAGCTTCTCTC -ACGGAACCATGTGAAGCTTGGATC -ACGGAACCATGTGAAGCTCACTTC -ACGGAACCATGTGAAGCTGTACTC -ACGGAACCATGTGAAGCTGATGTC -ACGGAACCATGTGAAGCTACAGTC -ACGGAACCATGTGAAGCTTTGCTG -ACGGAACCATGTGAAGCTTCCATG -ACGGAACCATGTGAAGCTTGTGTG -ACGGAACCATGTGAAGCTCTAGTG -ACGGAACCATGTGAAGCTCATCTG -ACGGAACCATGTGAAGCTGAGTTG -ACGGAACCATGTGAAGCTAGACTG -ACGGAACCATGTGAAGCTTCGGTA -ACGGAACCATGTGAAGCTTGCCTA -ACGGAACCATGTGAAGCTCCACTA -ACGGAACCATGTGAAGCTGGAGTA -ACGGAACCATGTGAAGCTTCGTCT -ACGGAACCATGTGAAGCTTGCACT -ACGGAACCATGTGAAGCTCTGACT -ACGGAACCATGTGAAGCTCAACCT -ACGGAACCATGTGAAGCTGCTACT -ACGGAACCATGTGAAGCTGGATCT -ACGGAACCATGTGAAGCTAAGGCT -ACGGAACCATGTGAAGCTTCAACC -ACGGAACCATGTGAAGCTTGTTCC -ACGGAACCATGTGAAGCTATTCCC -ACGGAACCATGTGAAGCTTTCTCG -ACGGAACCATGTGAAGCTTAGACG -ACGGAACCATGTGAAGCTGTAACG -ACGGAACCATGTGAAGCTACTTCG -ACGGAACCATGTGAAGCTTACGCA -ACGGAACCATGTGAAGCTCTTGCA -ACGGAACCATGTGAAGCTCGAACA -ACGGAACCATGTGAAGCTCAGTCA -ACGGAACCATGTGAAGCTGATCCA -ACGGAACCATGTGAAGCTACGACA -ACGGAACCATGTGAAGCTAGCTCA -ACGGAACCATGTGAAGCTTCACGT -ACGGAACCATGTGAAGCTCGTAGT -ACGGAACCATGTGAAGCTGTCAGT -ACGGAACCATGTGAAGCTGAAGGT -ACGGAACCATGTGAAGCTAACCGT -ACGGAACCATGTGAAGCTTTGTGC -ACGGAACCATGTGAAGCTCTAAGC -ACGGAACCATGTGAAGCTACTAGC -ACGGAACCATGTGAAGCTAGATGC -ACGGAACCATGTGAAGCTTGAAGG -ACGGAACCATGTGAAGCTCAATGG -ACGGAACCATGTGAAGCTATGAGG -ACGGAACCATGTGAAGCTAATGGG -ACGGAACCATGTGAAGCTTCCTGA -ACGGAACCATGTGAAGCTTAGCGA -ACGGAACCATGTGAAGCTCACAGA -ACGGAACCATGTGAAGCTGCAAGA -ACGGAACCATGTGAAGCTGGTTGA -ACGGAACCATGTGAAGCTTCCGAT -ACGGAACCATGTGAAGCTTGGCAT -ACGGAACCATGTGAAGCTCGAGAT -ACGGAACCATGTGAAGCTTACCAC -ACGGAACCATGTGAAGCTCAGAAC -ACGGAACCATGTGAAGCTGTCTAC -ACGGAACCATGTGAAGCTACGTAC -ACGGAACCATGTGAAGCTAGTGAC -ACGGAACCATGTGAAGCTCTGTAG -ACGGAACCATGTGAAGCTCCTAAG -ACGGAACCATGTGAAGCTGTTCAG -ACGGAACCATGTGAAGCTGCATAG -ACGGAACCATGTGAAGCTGACAAG -ACGGAACCATGTGAAGCTAAGCAG -ACGGAACCATGTGAAGCTCGTCAA -ACGGAACCATGTGAAGCTGCTGAA -ACGGAACCATGTGAAGCTAGTACG -ACGGAACCATGTGAAGCTATCCGA -ACGGAACCATGTGAAGCTATGGGA -ACGGAACCATGTGAAGCTGTGCAA -ACGGAACCATGTGAAGCTGAGGAA -ACGGAACCATGTGAAGCTCAGGTA -ACGGAACCATGTGAAGCTGACTCT -ACGGAACCATGTGAAGCTAGTCCT -ACGGAACCATGTGAAGCTTAAGCC -ACGGAACCATGTGAAGCTATAGCC -ACGGAACCATGTGAAGCTTAACCG -ACGGAACCATGTGAAGCTATGCCA -ACGGAACCATGTACGAGTGGAAAC -ACGGAACCATGTACGAGTAACACC -ACGGAACCATGTACGAGTATCGAG -ACGGAACCATGTACGAGTCTCCTT -ACGGAACCATGTACGAGTCCTGTT -ACGGAACCATGTACGAGTCGGTTT -ACGGAACCATGTACGAGTGTGGTT -ACGGAACCATGTACGAGTGCCTTT -ACGGAACCATGTACGAGTGGTCTT -ACGGAACCATGTACGAGTACGCTT -ACGGAACCATGTACGAGTAGCGTT -ACGGAACCATGTACGAGTTTCGTC -ACGGAACCATGTACGAGTTCTCTC -ACGGAACCATGTACGAGTTGGATC -ACGGAACCATGTACGAGTCACTTC -ACGGAACCATGTACGAGTGTACTC -ACGGAACCATGTACGAGTGATGTC -ACGGAACCATGTACGAGTACAGTC -ACGGAACCATGTACGAGTTTGCTG -ACGGAACCATGTACGAGTTCCATG -ACGGAACCATGTACGAGTTGTGTG -ACGGAACCATGTACGAGTCTAGTG -ACGGAACCATGTACGAGTCATCTG -ACGGAACCATGTACGAGTGAGTTG -ACGGAACCATGTACGAGTAGACTG -ACGGAACCATGTACGAGTTCGGTA -ACGGAACCATGTACGAGTTGCCTA -ACGGAACCATGTACGAGTCCACTA -ACGGAACCATGTACGAGTGGAGTA -ACGGAACCATGTACGAGTTCGTCT -ACGGAACCATGTACGAGTTGCACT -ACGGAACCATGTACGAGTCTGACT -ACGGAACCATGTACGAGTCAACCT -ACGGAACCATGTACGAGTGCTACT -ACGGAACCATGTACGAGTGGATCT -ACGGAACCATGTACGAGTAAGGCT -ACGGAACCATGTACGAGTTCAACC -ACGGAACCATGTACGAGTTGTTCC -ACGGAACCATGTACGAGTATTCCC -ACGGAACCATGTACGAGTTTCTCG -ACGGAACCATGTACGAGTTAGACG -ACGGAACCATGTACGAGTGTAACG -ACGGAACCATGTACGAGTACTTCG -ACGGAACCATGTACGAGTTACGCA -ACGGAACCATGTACGAGTCTTGCA -ACGGAACCATGTACGAGTCGAACA -ACGGAACCATGTACGAGTCAGTCA -ACGGAACCATGTACGAGTGATCCA -ACGGAACCATGTACGAGTACGACA -ACGGAACCATGTACGAGTAGCTCA -ACGGAACCATGTACGAGTTCACGT -ACGGAACCATGTACGAGTCGTAGT -ACGGAACCATGTACGAGTGTCAGT -ACGGAACCATGTACGAGTGAAGGT -ACGGAACCATGTACGAGTAACCGT -ACGGAACCATGTACGAGTTTGTGC -ACGGAACCATGTACGAGTCTAAGC -ACGGAACCATGTACGAGTACTAGC -ACGGAACCATGTACGAGTAGATGC -ACGGAACCATGTACGAGTTGAAGG -ACGGAACCATGTACGAGTCAATGG -ACGGAACCATGTACGAGTATGAGG -ACGGAACCATGTACGAGTAATGGG -ACGGAACCATGTACGAGTTCCTGA -ACGGAACCATGTACGAGTTAGCGA -ACGGAACCATGTACGAGTCACAGA -ACGGAACCATGTACGAGTGCAAGA -ACGGAACCATGTACGAGTGGTTGA -ACGGAACCATGTACGAGTTCCGAT -ACGGAACCATGTACGAGTTGGCAT -ACGGAACCATGTACGAGTCGAGAT -ACGGAACCATGTACGAGTTACCAC -ACGGAACCATGTACGAGTCAGAAC -ACGGAACCATGTACGAGTGTCTAC -ACGGAACCATGTACGAGTACGTAC -ACGGAACCATGTACGAGTAGTGAC -ACGGAACCATGTACGAGTCTGTAG -ACGGAACCATGTACGAGTCCTAAG -ACGGAACCATGTACGAGTGTTCAG -ACGGAACCATGTACGAGTGCATAG -ACGGAACCATGTACGAGTGACAAG -ACGGAACCATGTACGAGTAAGCAG -ACGGAACCATGTACGAGTCGTCAA -ACGGAACCATGTACGAGTGCTGAA -ACGGAACCATGTACGAGTAGTACG -ACGGAACCATGTACGAGTATCCGA -ACGGAACCATGTACGAGTATGGGA -ACGGAACCATGTACGAGTGTGCAA -ACGGAACCATGTACGAGTGAGGAA -ACGGAACCATGTACGAGTCAGGTA -ACGGAACCATGTACGAGTGACTCT -ACGGAACCATGTACGAGTAGTCCT -ACGGAACCATGTACGAGTTAAGCC -ACGGAACCATGTACGAGTATAGCC -ACGGAACCATGTACGAGTTAACCG -ACGGAACCATGTACGAGTATGCCA -ACGGAACCATGTCGAATCGGAAAC -ACGGAACCATGTCGAATCAACACC -ACGGAACCATGTCGAATCATCGAG -ACGGAACCATGTCGAATCCTCCTT -ACGGAACCATGTCGAATCCCTGTT -ACGGAACCATGTCGAATCCGGTTT -ACGGAACCATGTCGAATCGTGGTT -ACGGAACCATGTCGAATCGCCTTT -ACGGAACCATGTCGAATCGGTCTT -ACGGAACCATGTCGAATCACGCTT -ACGGAACCATGTCGAATCAGCGTT -ACGGAACCATGTCGAATCTTCGTC -ACGGAACCATGTCGAATCTCTCTC -ACGGAACCATGTCGAATCTGGATC -ACGGAACCATGTCGAATCCACTTC -ACGGAACCATGTCGAATCGTACTC -ACGGAACCATGTCGAATCGATGTC -ACGGAACCATGTCGAATCACAGTC -ACGGAACCATGTCGAATCTTGCTG -ACGGAACCATGTCGAATCTCCATG -ACGGAACCATGTCGAATCTGTGTG -ACGGAACCATGTCGAATCCTAGTG -ACGGAACCATGTCGAATCCATCTG -ACGGAACCATGTCGAATCGAGTTG -ACGGAACCATGTCGAATCAGACTG -ACGGAACCATGTCGAATCTCGGTA -ACGGAACCATGTCGAATCTGCCTA -ACGGAACCATGTCGAATCCCACTA -ACGGAACCATGTCGAATCGGAGTA -ACGGAACCATGTCGAATCTCGTCT -ACGGAACCATGTCGAATCTGCACT -ACGGAACCATGTCGAATCCTGACT -ACGGAACCATGTCGAATCCAACCT -ACGGAACCATGTCGAATCGCTACT -ACGGAACCATGTCGAATCGGATCT -ACGGAACCATGTCGAATCAAGGCT -ACGGAACCATGTCGAATCTCAACC -ACGGAACCATGTCGAATCTGTTCC -ACGGAACCATGTCGAATCATTCCC -ACGGAACCATGTCGAATCTTCTCG -ACGGAACCATGTCGAATCTAGACG -ACGGAACCATGTCGAATCGTAACG -ACGGAACCATGTCGAATCACTTCG -ACGGAACCATGTCGAATCTACGCA -ACGGAACCATGTCGAATCCTTGCA -ACGGAACCATGTCGAATCCGAACA -ACGGAACCATGTCGAATCCAGTCA -ACGGAACCATGTCGAATCGATCCA -ACGGAACCATGTCGAATCACGACA -ACGGAACCATGTCGAATCAGCTCA -ACGGAACCATGTCGAATCTCACGT -ACGGAACCATGTCGAATCCGTAGT -ACGGAACCATGTCGAATCGTCAGT -ACGGAACCATGTCGAATCGAAGGT -ACGGAACCATGTCGAATCAACCGT -ACGGAACCATGTCGAATCTTGTGC -ACGGAACCATGTCGAATCCTAAGC -ACGGAACCATGTCGAATCACTAGC -ACGGAACCATGTCGAATCAGATGC -ACGGAACCATGTCGAATCTGAAGG -ACGGAACCATGTCGAATCCAATGG -ACGGAACCATGTCGAATCATGAGG -ACGGAACCATGTCGAATCAATGGG -ACGGAACCATGTCGAATCTCCTGA -ACGGAACCATGTCGAATCTAGCGA -ACGGAACCATGTCGAATCCACAGA -ACGGAACCATGTCGAATCGCAAGA -ACGGAACCATGTCGAATCGGTTGA -ACGGAACCATGTCGAATCTCCGAT -ACGGAACCATGTCGAATCTGGCAT -ACGGAACCATGTCGAATCCGAGAT -ACGGAACCATGTCGAATCTACCAC -ACGGAACCATGTCGAATCCAGAAC -ACGGAACCATGTCGAATCGTCTAC -ACGGAACCATGTCGAATCACGTAC -ACGGAACCATGTCGAATCAGTGAC -ACGGAACCATGTCGAATCCTGTAG -ACGGAACCATGTCGAATCCCTAAG -ACGGAACCATGTCGAATCGTTCAG -ACGGAACCATGTCGAATCGCATAG -ACGGAACCATGTCGAATCGACAAG -ACGGAACCATGTCGAATCAAGCAG -ACGGAACCATGTCGAATCCGTCAA -ACGGAACCATGTCGAATCGCTGAA -ACGGAACCATGTCGAATCAGTACG -ACGGAACCATGTCGAATCATCCGA -ACGGAACCATGTCGAATCATGGGA -ACGGAACCATGTCGAATCGTGCAA -ACGGAACCATGTCGAATCGAGGAA -ACGGAACCATGTCGAATCCAGGTA -ACGGAACCATGTCGAATCGACTCT -ACGGAACCATGTCGAATCAGTCCT -ACGGAACCATGTCGAATCTAAGCC -ACGGAACCATGTCGAATCATAGCC -ACGGAACCATGTCGAATCTAACCG -ACGGAACCATGTCGAATCATGCCA -ACGGAACCATGTGGAATGGGAAAC -ACGGAACCATGTGGAATGAACACC -ACGGAACCATGTGGAATGATCGAG -ACGGAACCATGTGGAATGCTCCTT -ACGGAACCATGTGGAATGCCTGTT -ACGGAACCATGTGGAATGCGGTTT -ACGGAACCATGTGGAATGGTGGTT -ACGGAACCATGTGGAATGGCCTTT -ACGGAACCATGTGGAATGGGTCTT -ACGGAACCATGTGGAATGACGCTT -ACGGAACCATGTGGAATGAGCGTT -ACGGAACCATGTGGAATGTTCGTC -ACGGAACCATGTGGAATGTCTCTC -ACGGAACCATGTGGAATGTGGATC -ACGGAACCATGTGGAATGCACTTC -ACGGAACCATGTGGAATGGTACTC -ACGGAACCATGTGGAATGGATGTC -ACGGAACCATGTGGAATGACAGTC -ACGGAACCATGTGGAATGTTGCTG -ACGGAACCATGTGGAATGTCCATG -ACGGAACCATGTGGAATGTGTGTG -ACGGAACCATGTGGAATGCTAGTG -ACGGAACCATGTGGAATGCATCTG -ACGGAACCATGTGGAATGGAGTTG -ACGGAACCATGTGGAATGAGACTG -ACGGAACCATGTGGAATGTCGGTA -ACGGAACCATGTGGAATGTGCCTA -ACGGAACCATGTGGAATGCCACTA -ACGGAACCATGTGGAATGGGAGTA -ACGGAACCATGTGGAATGTCGTCT -ACGGAACCATGTGGAATGTGCACT -ACGGAACCATGTGGAATGCTGACT -ACGGAACCATGTGGAATGCAACCT -ACGGAACCATGTGGAATGGCTACT -ACGGAACCATGTGGAATGGGATCT -ACGGAACCATGTGGAATGAAGGCT -ACGGAACCATGTGGAATGTCAACC -ACGGAACCATGTGGAATGTGTTCC -ACGGAACCATGTGGAATGATTCCC -ACGGAACCATGTGGAATGTTCTCG -ACGGAACCATGTGGAATGTAGACG -ACGGAACCATGTGGAATGGTAACG -ACGGAACCATGTGGAATGACTTCG -ACGGAACCATGTGGAATGTACGCA -ACGGAACCATGTGGAATGCTTGCA -ACGGAACCATGTGGAATGCGAACA -ACGGAACCATGTGGAATGCAGTCA -ACGGAACCATGTGGAATGGATCCA -ACGGAACCATGTGGAATGACGACA -ACGGAACCATGTGGAATGAGCTCA -ACGGAACCATGTGGAATGTCACGT -ACGGAACCATGTGGAATGCGTAGT -ACGGAACCATGTGGAATGGTCAGT -ACGGAACCATGTGGAATGGAAGGT -ACGGAACCATGTGGAATGAACCGT -ACGGAACCATGTGGAATGTTGTGC -ACGGAACCATGTGGAATGCTAAGC -ACGGAACCATGTGGAATGACTAGC -ACGGAACCATGTGGAATGAGATGC -ACGGAACCATGTGGAATGTGAAGG -ACGGAACCATGTGGAATGCAATGG -ACGGAACCATGTGGAATGATGAGG -ACGGAACCATGTGGAATGAATGGG -ACGGAACCATGTGGAATGTCCTGA -ACGGAACCATGTGGAATGTAGCGA -ACGGAACCATGTGGAATGCACAGA -ACGGAACCATGTGGAATGGCAAGA -ACGGAACCATGTGGAATGGGTTGA -ACGGAACCATGTGGAATGTCCGAT -ACGGAACCATGTGGAATGTGGCAT -ACGGAACCATGTGGAATGCGAGAT -ACGGAACCATGTGGAATGTACCAC -ACGGAACCATGTGGAATGCAGAAC -ACGGAACCATGTGGAATGGTCTAC -ACGGAACCATGTGGAATGACGTAC -ACGGAACCATGTGGAATGAGTGAC -ACGGAACCATGTGGAATGCTGTAG -ACGGAACCATGTGGAATGCCTAAG -ACGGAACCATGTGGAATGGTTCAG -ACGGAACCATGTGGAATGGCATAG -ACGGAACCATGTGGAATGGACAAG -ACGGAACCATGTGGAATGAAGCAG -ACGGAACCATGTGGAATGCGTCAA -ACGGAACCATGTGGAATGGCTGAA -ACGGAACCATGTGGAATGAGTACG -ACGGAACCATGTGGAATGATCCGA -ACGGAACCATGTGGAATGATGGGA -ACGGAACCATGTGGAATGGTGCAA -ACGGAACCATGTGGAATGGAGGAA -ACGGAACCATGTGGAATGCAGGTA -ACGGAACCATGTGGAATGGACTCT -ACGGAACCATGTGGAATGAGTCCT -ACGGAACCATGTGGAATGTAAGCC -ACGGAACCATGTGGAATGATAGCC -ACGGAACCATGTGGAATGTAACCG -ACGGAACCATGTGGAATGATGCCA -ACGGAACCATGTCAAGTGGGAAAC -ACGGAACCATGTCAAGTGAACACC -ACGGAACCATGTCAAGTGATCGAG -ACGGAACCATGTCAAGTGCTCCTT -ACGGAACCATGTCAAGTGCCTGTT -ACGGAACCATGTCAAGTGCGGTTT -ACGGAACCATGTCAAGTGGTGGTT -ACGGAACCATGTCAAGTGGCCTTT -ACGGAACCATGTCAAGTGGGTCTT -ACGGAACCATGTCAAGTGACGCTT -ACGGAACCATGTCAAGTGAGCGTT -ACGGAACCATGTCAAGTGTTCGTC -ACGGAACCATGTCAAGTGTCTCTC -ACGGAACCATGTCAAGTGTGGATC -ACGGAACCATGTCAAGTGCACTTC -ACGGAACCATGTCAAGTGGTACTC -ACGGAACCATGTCAAGTGGATGTC -ACGGAACCATGTCAAGTGACAGTC -ACGGAACCATGTCAAGTGTTGCTG -ACGGAACCATGTCAAGTGTCCATG -ACGGAACCATGTCAAGTGTGTGTG -ACGGAACCATGTCAAGTGCTAGTG -ACGGAACCATGTCAAGTGCATCTG -ACGGAACCATGTCAAGTGGAGTTG -ACGGAACCATGTCAAGTGAGACTG -ACGGAACCATGTCAAGTGTCGGTA -ACGGAACCATGTCAAGTGTGCCTA -ACGGAACCATGTCAAGTGCCACTA -ACGGAACCATGTCAAGTGGGAGTA -ACGGAACCATGTCAAGTGTCGTCT -ACGGAACCATGTCAAGTGTGCACT -ACGGAACCATGTCAAGTGCTGACT -ACGGAACCATGTCAAGTGCAACCT -ACGGAACCATGTCAAGTGGCTACT -ACGGAACCATGTCAAGTGGGATCT -ACGGAACCATGTCAAGTGAAGGCT -ACGGAACCATGTCAAGTGTCAACC -ACGGAACCATGTCAAGTGTGTTCC -ACGGAACCATGTCAAGTGATTCCC -ACGGAACCATGTCAAGTGTTCTCG -ACGGAACCATGTCAAGTGTAGACG -ACGGAACCATGTCAAGTGGTAACG -ACGGAACCATGTCAAGTGACTTCG -ACGGAACCATGTCAAGTGTACGCA -ACGGAACCATGTCAAGTGCTTGCA -ACGGAACCATGTCAAGTGCGAACA -ACGGAACCATGTCAAGTGCAGTCA -ACGGAACCATGTCAAGTGGATCCA -ACGGAACCATGTCAAGTGACGACA -ACGGAACCATGTCAAGTGAGCTCA -ACGGAACCATGTCAAGTGTCACGT -ACGGAACCATGTCAAGTGCGTAGT -ACGGAACCATGTCAAGTGGTCAGT -ACGGAACCATGTCAAGTGGAAGGT -ACGGAACCATGTCAAGTGAACCGT -ACGGAACCATGTCAAGTGTTGTGC -ACGGAACCATGTCAAGTGCTAAGC -ACGGAACCATGTCAAGTGACTAGC -ACGGAACCATGTCAAGTGAGATGC -ACGGAACCATGTCAAGTGTGAAGG -ACGGAACCATGTCAAGTGCAATGG -ACGGAACCATGTCAAGTGATGAGG -ACGGAACCATGTCAAGTGAATGGG -ACGGAACCATGTCAAGTGTCCTGA -ACGGAACCATGTCAAGTGTAGCGA -ACGGAACCATGTCAAGTGCACAGA -ACGGAACCATGTCAAGTGGCAAGA -ACGGAACCATGTCAAGTGGGTTGA -ACGGAACCATGTCAAGTGTCCGAT -ACGGAACCATGTCAAGTGTGGCAT -ACGGAACCATGTCAAGTGCGAGAT -ACGGAACCATGTCAAGTGTACCAC -ACGGAACCATGTCAAGTGCAGAAC -ACGGAACCATGTCAAGTGGTCTAC -ACGGAACCATGTCAAGTGACGTAC -ACGGAACCATGTCAAGTGAGTGAC -ACGGAACCATGTCAAGTGCTGTAG -ACGGAACCATGTCAAGTGCCTAAG -ACGGAACCATGTCAAGTGGTTCAG -ACGGAACCATGTCAAGTGGCATAG -ACGGAACCATGTCAAGTGGACAAG -ACGGAACCATGTCAAGTGAAGCAG -ACGGAACCATGTCAAGTGCGTCAA -ACGGAACCATGTCAAGTGGCTGAA -ACGGAACCATGTCAAGTGAGTACG -ACGGAACCATGTCAAGTGATCCGA -ACGGAACCATGTCAAGTGATGGGA -ACGGAACCATGTCAAGTGGTGCAA -ACGGAACCATGTCAAGTGGAGGAA -ACGGAACCATGTCAAGTGCAGGTA -ACGGAACCATGTCAAGTGGACTCT -ACGGAACCATGTCAAGTGAGTCCT -ACGGAACCATGTCAAGTGTAAGCC -ACGGAACCATGTCAAGTGATAGCC -ACGGAACCATGTCAAGTGTAACCG -ACGGAACCATGTCAAGTGATGCCA -ACGGAACCATGTGAAGAGGGAAAC -ACGGAACCATGTGAAGAGAACACC -ACGGAACCATGTGAAGAGATCGAG -ACGGAACCATGTGAAGAGCTCCTT -ACGGAACCATGTGAAGAGCCTGTT -ACGGAACCATGTGAAGAGCGGTTT -ACGGAACCATGTGAAGAGGTGGTT -ACGGAACCATGTGAAGAGGCCTTT -ACGGAACCATGTGAAGAGGGTCTT -ACGGAACCATGTGAAGAGACGCTT -ACGGAACCATGTGAAGAGAGCGTT -ACGGAACCATGTGAAGAGTTCGTC -ACGGAACCATGTGAAGAGTCTCTC -ACGGAACCATGTGAAGAGTGGATC -ACGGAACCATGTGAAGAGCACTTC -ACGGAACCATGTGAAGAGGTACTC -ACGGAACCATGTGAAGAGGATGTC -ACGGAACCATGTGAAGAGACAGTC -ACGGAACCATGTGAAGAGTTGCTG -ACGGAACCATGTGAAGAGTCCATG -ACGGAACCATGTGAAGAGTGTGTG -ACGGAACCATGTGAAGAGCTAGTG -ACGGAACCATGTGAAGAGCATCTG -ACGGAACCATGTGAAGAGGAGTTG -ACGGAACCATGTGAAGAGAGACTG -ACGGAACCATGTGAAGAGTCGGTA -ACGGAACCATGTGAAGAGTGCCTA -ACGGAACCATGTGAAGAGCCACTA -ACGGAACCATGTGAAGAGGGAGTA -ACGGAACCATGTGAAGAGTCGTCT -ACGGAACCATGTGAAGAGTGCACT -ACGGAACCATGTGAAGAGCTGACT -ACGGAACCATGTGAAGAGCAACCT -ACGGAACCATGTGAAGAGGCTACT -ACGGAACCATGTGAAGAGGGATCT -ACGGAACCATGTGAAGAGAAGGCT -ACGGAACCATGTGAAGAGTCAACC -ACGGAACCATGTGAAGAGTGTTCC -ACGGAACCATGTGAAGAGATTCCC -ACGGAACCATGTGAAGAGTTCTCG -ACGGAACCATGTGAAGAGTAGACG -ACGGAACCATGTGAAGAGGTAACG -ACGGAACCATGTGAAGAGACTTCG -ACGGAACCATGTGAAGAGTACGCA -ACGGAACCATGTGAAGAGCTTGCA -ACGGAACCATGTGAAGAGCGAACA -ACGGAACCATGTGAAGAGCAGTCA -ACGGAACCATGTGAAGAGGATCCA -ACGGAACCATGTGAAGAGACGACA -ACGGAACCATGTGAAGAGAGCTCA -ACGGAACCATGTGAAGAGTCACGT -ACGGAACCATGTGAAGAGCGTAGT -ACGGAACCATGTGAAGAGGTCAGT -ACGGAACCATGTGAAGAGGAAGGT -ACGGAACCATGTGAAGAGAACCGT -ACGGAACCATGTGAAGAGTTGTGC -ACGGAACCATGTGAAGAGCTAAGC -ACGGAACCATGTGAAGAGACTAGC -ACGGAACCATGTGAAGAGAGATGC -ACGGAACCATGTGAAGAGTGAAGG -ACGGAACCATGTGAAGAGCAATGG -ACGGAACCATGTGAAGAGATGAGG -ACGGAACCATGTGAAGAGAATGGG -ACGGAACCATGTGAAGAGTCCTGA -ACGGAACCATGTGAAGAGTAGCGA -ACGGAACCATGTGAAGAGCACAGA -ACGGAACCATGTGAAGAGGCAAGA -ACGGAACCATGTGAAGAGGGTTGA -ACGGAACCATGTGAAGAGTCCGAT -ACGGAACCATGTGAAGAGTGGCAT -ACGGAACCATGTGAAGAGCGAGAT -ACGGAACCATGTGAAGAGTACCAC -ACGGAACCATGTGAAGAGCAGAAC -ACGGAACCATGTGAAGAGGTCTAC -ACGGAACCATGTGAAGAGACGTAC -ACGGAACCATGTGAAGAGAGTGAC -ACGGAACCATGTGAAGAGCTGTAG -ACGGAACCATGTGAAGAGCCTAAG -ACGGAACCATGTGAAGAGGTTCAG -ACGGAACCATGTGAAGAGGCATAG -ACGGAACCATGTGAAGAGGACAAG -ACGGAACCATGTGAAGAGAAGCAG -ACGGAACCATGTGAAGAGCGTCAA -ACGGAACCATGTGAAGAGGCTGAA -ACGGAACCATGTGAAGAGAGTACG -ACGGAACCATGTGAAGAGATCCGA -ACGGAACCATGTGAAGAGATGGGA -ACGGAACCATGTGAAGAGGTGCAA -ACGGAACCATGTGAAGAGGAGGAA -ACGGAACCATGTGAAGAGCAGGTA -ACGGAACCATGTGAAGAGGACTCT -ACGGAACCATGTGAAGAGAGTCCT -ACGGAACCATGTGAAGAGTAAGCC -ACGGAACCATGTGAAGAGATAGCC -ACGGAACCATGTGAAGAGTAACCG -ACGGAACCATGTGAAGAGATGCCA -ACGGAACCATGTGTACAGGGAAAC -ACGGAACCATGTGTACAGAACACC -ACGGAACCATGTGTACAGATCGAG -ACGGAACCATGTGTACAGCTCCTT -ACGGAACCATGTGTACAGCCTGTT -ACGGAACCATGTGTACAGCGGTTT -ACGGAACCATGTGTACAGGTGGTT -ACGGAACCATGTGTACAGGCCTTT -ACGGAACCATGTGTACAGGGTCTT -ACGGAACCATGTGTACAGACGCTT -ACGGAACCATGTGTACAGAGCGTT -ACGGAACCATGTGTACAGTTCGTC -ACGGAACCATGTGTACAGTCTCTC -ACGGAACCATGTGTACAGTGGATC -ACGGAACCATGTGTACAGCACTTC -ACGGAACCATGTGTACAGGTACTC -ACGGAACCATGTGTACAGGATGTC -ACGGAACCATGTGTACAGACAGTC -ACGGAACCATGTGTACAGTTGCTG -ACGGAACCATGTGTACAGTCCATG -ACGGAACCATGTGTACAGTGTGTG -ACGGAACCATGTGTACAGCTAGTG -ACGGAACCATGTGTACAGCATCTG -ACGGAACCATGTGTACAGGAGTTG -ACGGAACCATGTGTACAGAGACTG -ACGGAACCATGTGTACAGTCGGTA -ACGGAACCATGTGTACAGTGCCTA -ACGGAACCATGTGTACAGCCACTA -ACGGAACCATGTGTACAGGGAGTA -ACGGAACCATGTGTACAGTCGTCT -ACGGAACCATGTGTACAGTGCACT -ACGGAACCATGTGTACAGCTGACT -ACGGAACCATGTGTACAGCAACCT -ACGGAACCATGTGTACAGGCTACT -ACGGAACCATGTGTACAGGGATCT -ACGGAACCATGTGTACAGAAGGCT -ACGGAACCATGTGTACAGTCAACC -ACGGAACCATGTGTACAGTGTTCC -ACGGAACCATGTGTACAGATTCCC -ACGGAACCATGTGTACAGTTCTCG -ACGGAACCATGTGTACAGTAGACG -ACGGAACCATGTGTACAGGTAACG -ACGGAACCATGTGTACAGACTTCG -ACGGAACCATGTGTACAGTACGCA -ACGGAACCATGTGTACAGCTTGCA -ACGGAACCATGTGTACAGCGAACA -ACGGAACCATGTGTACAGCAGTCA -ACGGAACCATGTGTACAGGATCCA -ACGGAACCATGTGTACAGACGACA -ACGGAACCATGTGTACAGAGCTCA -ACGGAACCATGTGTACAGTCACGT -ACGGAACCATGTGTACAGCGTAGT -ACGGAACCATGTGTACAGGTCAGT -ACGGAACCATGTGTACAGGAAGGT -ACGGAACCATGTGTACAGAACCGT -ACGGAACCATGTGTACAGTTGTGC -ACGGAACCATGTGTACAGCTAAGC -ACGGAACCATGTGTACAGACTAGC -ACGGAACCATGTGTACAGAGATGC -ACGGAACCATGTGTACAGTGAAGG -ACGGAACCATGTGTACAGCAATGG -ACGGAACCATGTGTACAGATGAGG -ACGGAACCATGTGTACAGAATGGG -ACGGAACCATGTGTACAGTCCTGA -ACGGAACCATGTGTACAGTAGCGA -ACGGAACCATGTGTACAGCACAGA -ACGGAACCATGTGTACAGGCAAGA -ACGGAACCATGTGTACAGGGTTGA -ACGGAACCATGTGTACAGTCCGAT -ACGGAACCATGTGTACAGTGGCAT -ACGGAACCATGTGTACAGCGAGAT -ACGGAACCATGTGTACAGTACCAC -ACGGAACCATGTGTACAGCAGAAC -ACGGAACCATGTGTACAGGTCTAC -ACGGAACCATGTGTACAGACGTAC -ACGGAACCATGTGTACAGAGTGAC -ACGGAACCATGTGTACAGCTGTAG -ACGGAACCATGTGTACAGCCTAAG -ACGGAACCATGTGTACAGGTTCAG -ACGGAACCATGTGTACAGGCATAG -ACGGAACCATGTGTACAGGACAAG -ACGGAACCATGTGTACAGAAGCAG -ACGGAACCATGTGTACAGCGTCAA -ACGGAACCATGTGTACAGGCTGAA -ACGGAACCATGTGTACAGAGTACG -ACGGAACCATGTGTACAGATCCGA -ACGGAACCATGTGTACAGATGGGA -ACGGAACCATGTGTACAGGTGCAA -ACGGAACCATGTGTACAGGAGGAA -ACGGAACCATGTGTACAGCAGGTA -ACGGAACCATGTGTACAGGACTCT -ACGGAACCATGTGTACAGAGTCCT -ACGGAACCATGTGTACAGTAAGCC -ACGGAACCATGTGTACAGATAGCC -ACGGAACCATGTGTACAGTAACCG -ACGGAACCATGTGTACAGATGCCA -ACGGAACCATGTTCTGACGGAAAC -ACGGAACCATGTTCTGACAACACC -ACGGAACCATGTTCTGACATCGAG -ACGGAACCATGTTCTGACCTCCTT -ACGGAACCATGTTCTGACCCTGTT -ACGGAACCATGTTCTGACCGGTTT -ACGGAACCATGTTCTGACGTGGTT -ACGGAACCATGTTCTGACGCCTTT -ACGGAACCATGTTCTGACGGTCTT -ACGGAACCATGTTCTGACACGCTT -ACGGAACCATGTTCTGACAGCGTT -ACGGAACCATGTTCTGACTTCGTC -ACGGAACCATGTTCTGACTCTCTC -ACGGAACCATGTTCTGACTGGATC -ACGGAACCATGTTCTGACCACTTC -ACGGAACCATGTTCTGACGTACTC -ACGGAACCATGTTCTGACGATGTC -ACGGAACCATGTTCTGACACAGTC -ACGGAACCATGTTCTGACTTGCTG -ACGGAACCATGTTCTGACTCCATG -ACGGAACCATGTTCTGACTGTGTG -ACGGAACCATGTTCTGACCTAGTG -ACGGAACCATGTTCTGACCATCTG -ACGGAACCATGTTCTGACGAGTTG -ACGGAACCATGTTCTGACAGACTG -ACGGAACCATGTTCTGACTCGGTA -ACGGAACCATGTTCTGACTGCCTA -ACGGAACCATGTTCTGACCCACTA -ACGGAACCATGTTCTGACGGAGTA -ACGGAACCATGTTCTGACTCGTCT -ACGGAACCATGTTCTGACTGCACT -ACGGAACCATGTTCTGACCTGACT -ACGGAACCATGTTCTGACCAACCT -ACGGAACCATGTTCTGACGCTACT -ACGGAACCATGTTCTGACGGATCT -ACGGAACCATGTTCTGACAAGGCT -ACGGAACCATGTTCTGACTCAACC -ACGGAACCATGTTCTGACTGTTCC -ACGGAACCATGTTCTGACATTCCC -ACGGAACCATGTTCTGACTTCTCG -ACGGAACCATGTTCTGACTAGACG -ACGGAACCATGTTCTGACGTAACG -ACGGAACCATGTTCTGACACTTCG -ACGGAACCATGTTCTGACTACGCA -ACGGAACCATGTTCTGACCTTGCA -ACGGAACCATGTTCTGACCGAACA -ACGGAACCATGTTCTGACCAGTCA -ACGGAACCATGTTCTGACGATCCA -ACGGAACCATGTTCTGACACGACA -ACGGAACCATGTTCTGACAGCTCA -ACGGAACCATGTTCTGACTCACGT -ACGGAACCATGTTCTGACCGTAGT -ACGGAACCATGTTCTGACGTCAGT -ACGGAACCATGTTCTGACGAAGGT -ACGGAACCATGTTCTGACAACCGT -ACGGAACCATGTTCTGACTTGTGC -ACGGAACCATGTTCTGACCTAAGC -ACGGAACCATGTTCTGACACTAGC -ACGGAACCATGTTCTGACAGATGC -ACGGAACCATGTTCTGACTGAAGG -ACGGAACCATGTTCTGACCAATGG -ACGGAACCATGTTCTGACATGAGG -ACGGAACCATGTTCTGACAATGGG -ACGGAACCATGTTCTGACTCCTGA -ACGGAACCATGTTCTGACTAGCGA -ACGGAACCATGTTCTGACCACAGA -ACGGAACCATGTTCTGACGCAAGA -ACGGAACCATGTTCTGACGGTTGA -ACGGAACCATGTTCTGACTCCGAT -ACGGAACCATGTTCTGACTGGCAT -ACGGAACCATGTTCTGACCGAGAT -ACGGAACCATGTTCTGACTACCAC -ACGGAACCATGTTCTGACCAGAAC -ACGGAACCATGTTCTGACGTCTAC -ACGGAACCATGTTCTGACACGTAC -ACGGAACCATGTTCTGACAGTGAC -ACGGAACCATGTTCTGACCTGTAG -ACGGAACCATGTTCTGACCCTAAG -ACGGAACCATGTTCTGACGTTCAG -ACGGAACCATGTTCTGACGCATAG -ACGGAACCATGTTCTGACGACAAG -ACGGAACCATGTTCTGACAAGCAG -ACGGAACCATGTTCTGACCGTCAA -ACGGAACCATGTTCTGACGCTGAA -ACGGAACCATGTTCTGACAGTACG -ACGGAACCATGTTCTGACATCCGA -ACGGAACCATGTTCTGACATGGGA -ACGGAACCATGTTCTGACGTGCAA -ACGGAACCATGTTCTGACGAGGAA -ACGGAACCATGTTCTGACCAGGTA -ACGGAACCATGTTCTGACGACTCT -ACGGAACCATGTTCTGACAGTCCT -ACGGAACCATGTTCTGACTAAGCC -ACGGAACCATGTTCTGACATAGCC -ACGGAACCATGTTCTGACTAACCG -ACGGAACCATGTTCTGACATGCCA -ACGGAACCATGTCCTAGTGGAAAC -ACGGAACCATGTCCTAGTAACACC -ACGGAACCATGTCCTAGTATCGAG -ACGGAACCATGTCCTAGTCTCCTT -ACGGAACCATGTCCTAGTCCTGTT -ACGGAACCATGTCCTAGTCGGTTT -ACGGAACCATGTCCTAGTGTGGTT -ACGGAACCATGTCCTAGTGCCTTT -ACGGAACCATGTCCTAGTGGTCTT -ACGGAACCATGTCCTAGTACGCTT -ACGGAACCATGTCCTAGTAGCGTT -ACGGAACCATGTCCTAGTTTCGTC -ACGGAACCATGTCCTAGTTCTCTC -ACGGAACCATGTCCTAGTTGGATC -ACGGAACCATGTCCTAGTCACTTC -ACGGAACCATGTCCTAGTGTACTC -ACGGAACCATGTCCTAGTGATGTC -ACGGAACCATGTCCTAGTACAGTC -ACGGAACCATGTCCTAGTTTGCTG -ACGGAACCATGTCCTAGTTCCATG -ACGGAACCATGTCCTAGTTGTGTG -ACGGAACCATGTCCTAGTCTAGTG -ACGGAACCATGTCCTAGTCATCTG -ACGGAACCATGTCCTAGTGAGTTG -ACGGAACCATGTCCTAGTAGACTG -ACGGAACCATGTCCTAGTTCGGTA -ACGGAACCATGTCCTAGTTGCCTA -ACGGAACCATGTCCTAGTCCACTA -ACGGAACCATGTCCTAGTGGAGTA -ACGGAACCATGTCCTAGTTCGTCT -ACGGAACCATGTCCTAGTTGCACT -ACGGAACCATGTCCTAGTCTGACT -ACGGAACCATGTCCTAGTCAACCT -ACGGAACCATGTCCTAGTGCTACT -ACGGAACCATGTCCTAGTGGATCT -ACGGAACCATGTCCTAGTAAGGCT -ACGGAACCATGTCCTAGTTCAACC -ACGGAACCATGTCCTAGTTGTTCC -ACGGAACCATGTCCTAGTATTCCC -ACGGAACCATGTCCTAGTTTCTCG -ACGGAACCATGTCCTAGTTAGACG -ACGGAACCATGTCCTAGTGTAACG -ACGGAACCATGTCCTAGTACTTCG -ACGGAACCATGTCCTAGTTACGCA -ACGGAACCATGTCCTAGTCTTGCA -ACGGAACCATGTCCTAGTCGAACA -ACGGAACCATGTCCTAGTCAGTCA -ACGGAACCATGTCCTAGTGATCCA -ACGGAACCATGTCCTAGTACGACA -ACGGAACCATGTCCTAGTAGCTCA -ACGGAACCATGTCCTAGTTCACGT -ACGGAACCATGTCCTAGTCGTAGT -ACGGAACCATGTCCTAGTGTCAGT -ACGGAACCATGTCCTAGTGAAGGT -ACGGAACCATGTCCTAGTAACCGT -ACGGAACCATGTCCTAGTTTGTGC -ACGGAACCATGTCCTAGTCTAAGC -ACGGAACCATGTCCTAGTACTAGC -ACGGAACCATGTCCTAGTAGATGC -ACGGAACCATGTCCTAGTTGAAGG -ACGGAACCATGTCCTAGTCAATGG -ACGGAACCATGTCCTAGTATGAGG -ACGGAACCATGTCCTAGTAATGGG -ACGGAACCATGTCCTAGTTCCTGA -ACGGAACCATGTCCTAGTTAGCGA -ACGGAACCATGTCCTAGTCACAGA -ACGGAACCATGTCCTAGTGCAAGA -ACGGAACCATGTCCTAGTGGTTGA -ACGGAACCATGTCCTAGTTCCGAT -ACGGAACCATGTCCTAGTTGGCAT -ACGGAACCATGTCCTAGTCGAGAT -ACGGAACCATGTCCTAGTTACCAC -ACGGAACCATGTCCTAGTCAGAAC -ACGGAACCATGTCCTAGTGTCTAC -ACGGAACCATGTCCTAGTACGTAC -ACGGAACCATGTCCTAGTAGTGAC -ACGGAACCATGTCCTAGTCTGTAG -ACGGAACCATGTCCTAGTCCTAAG -ACGGAACCATGTCCTAGTGTTCAG -ACGGAACCATGTCCTAGTGCATAG -ACGGAACCATGTCCTAGTGACAAG -ACGGAACCATGTCCTAGTAAGCAG -ACGGAACCATGTCCTAGTCGTCAA -ACGGAACCATGTCCTAGTGCTGAA -ACGGAACCATGTCCTAGTAGTACG -ACGGAACCATGTCCTAGTATCCGA -ACGGAACCATGTCCTAGTATGGGA -ACGGAACCATGTCCTAGTGTGCAA -ACGGAACCATGTCCTAGTGAGGAA -ACGGAACCATGTCCTAGTCAGGTA -ACGGAACCATGTCCTAGTGACTCT -ACGGAACCATGTCCTAGTAGTCCT -ACGGAACCATGTCCTAGTTAAGCC -ACGGAACCATGTCCTAGTATAGCC -ACGGAACCATGTCCTAGTTAACCG -ACGGAACCATGTCCTAGTATGCCA -ACGGAACCATGTGCCTAAGGAAAC -ACGGAACCATGTGCCTAAAACACC -ACGGAACCATGTGCCTAAATCGAG -ACGGAACCATGTGCCTAACTCCTT -ACGGAACCATGTGCCTAACCTGTT -ACGGAACCATGTGCCTAACGGTTT -ACGGAACCATGTGCCTAAGTGGTT -ACGGAACCATGTGCCTAAGCCTTT -ACGGAACCATGTGCCTAAGGTCTT -ACGGAACCATGTGCCTAAACGCTT -ACGGAACCATGTGCCTAAAGCGTT -ACGGAACCATGTGCCTAATTCGTC -ACGGAACCATGTGCCTAATCTCTC -ACGGAACCATGTGCCTAATGGATC -ACGGAACCATGTGCCTAACACTTC -ACGGAACCATGTGCCTAAGTACTC -ACGGAACCATGTGCCTAAGATGTC -ACGGAACCATGTGCCTAAACAGTC -ACGGAACCATGTGCCTAATTGCTG -ACGGAACCATGTGCCTAATCCATG -ACGGAACCATGTGCCTAATGTGTG -ACGGAACCATGTGCCTAACTAGTG -ACGGAACCATGTGCCTAACATCTG -ACGGAACCATGTGCCTAAGAGTTG -ACGGAACCATGTGCCTAAAGACTG -ACGGAACCATGTGCCTAATCGGTA -ACGGAACCATGTGCCTAATGCCTA -ACGGAACCATGTGCCTAACCACTA -ACGGAACCATGTGCCTAAGGAGTA -ACGGAACCATGTGCCTAATCGTCT -ACGGAACCATGTGCCTAATGCACT -ACGGAACCATGTGCCTAACTGACT -ACGGAACCATGTGCCTAACAACCT -ACGGAACCATGTGCCTAAGCTACT -ACGGAACCATGTGCCTAAGGATCT -ACGGAACCATGTGCCTAAAAGGCT -ACGGAACCATGTGCCTAATCAACC -ACGGAACCATGTGCCTAATGTTCC -ACGGAACCATGTGCCTAAATTCCC -ACGGAACCATGTGCCTAATTCTCG -ACGGAACCATGTGCCTAATAGACG -ACGGAACCATGTGCCTAAGTAACG -ACGGAACCATGTGCCTAAACTTCG -ACGGAACCATGTGCCTAATACGCA -ACGGAACCATGTGCCTAACTTGCA -ACGGAACCATGTGCCTAACGAACA -ACGGAACCATGTGCCTAACAGTCA -ACGGAACCATGTGCCTAAGATCCA -ACGGAACCATGTGCCTAAACGACA -ACGGAACCATGTGCCTAAAGCTCA -ACGGAACCATGTGCCTAATCACGT -ACGGAACCATGTGCCTAACGTAGT -ACGGAACCATGTGCCTAAGTCAGT -ACGGAACCATGTGCCTAAGAAGGT -ACGGAACCATGTGCCTAAAACCGT -ACGGAACCATGTGCCTAATTGTGC -ACGGAACCATGTGCCTAACTAAGC -ACGGAACCATGTGCCTAAACTAGC -ACGGAACCATGTGCCTAAAGATGC -ACGGAACCATGTGCCTAATGAAGG -ACGGAACCATGTGCCTAACAATGG -ACGGAACCATGTGCCTAAATGAGG -ACGGAACCATGTGCCTAAAATGGG -ACGGAACCATGTGCCTAATCCTGA -ACGGAACCATGTGCCTAATAGCGA -ACGGAACCATGTGCCTAACACAGA -ACGGAACCATGTGCCTAAGCAAGA -ACGGAACCATGTGCCTAAGGTTGA -ACGGAACCATGTGCCTAATCCGAT -ACGGAACCATGTGCCTAATGGCAT -ACGGAACCATGTGCCTAACGAGAT -ACGGAACCATGTGCCTAATACCAC -ACGGAACCATGTGCCTAACAGAAC -ACGGAACCATGTGCCTAAGTCTAC -ACGGAACCATGTGCCTAAACGTAC -ACGGAACCATGTGCCTAAAGTGAC -ACGGAACCATGTGCCTAACTGTAG -ACGGAACCATGTGCCTAACCTAAG -ACGGAACCATGTGCCTAAGTTCAG -ACGGAACCATGTGCCTAAGCATAG -ACGGAACCATGTGCCTAAGACAAG -ACGGAACCATGTGCCTAAAAGCAG -ACGGAACCATGTGCCTAACGTCAA -ACGGAACCATGTGCCTAAGCTGAA -ACGGAACCATGTGCCTAAAGTACG -ACGGAACCATGTGCCTAAATCCGA -ACGGAACCATGTGCCTAAATGGGA -ACGGAACCATGTGCCTAAGTGCAA -ACGGAACCATGTGCCTAAGAGGAA -ACGGAACCATGTGCCTAACAGGTA -ACGGAACCATGTGCCTAAGACTCT -ACGGAACCATGTGCCTAAAGTCCT -ACGGAACCATGTGCCTAATAAGCC -ACGGAACCATGTGCCTAAATAGCC -ACGGAACCATGTGCCTAATAACCG -ACGGAACCATGTGCCTAAATGCCA -ACGGAACCATGTGCCATAGGAAAC -ACGGAACCATGTGCCATAAACACC -ACGGAACCATGTGCCATAATCGAG -ACGGAACCATGTGCCATACTCCTT -ACGGAACCATGTGCCATACCTGTT -ACGGAACCATGTGCCATACGGTTT -ACGGAACCATGTGCCATAGTGGTT -ACGGAACCATGTGCCATAGCCTTT -ACGGAACCATGTGCCATAGGTCTT -ACGGAACCATGTGCCATAACGCTT -ACGGAACCATGTGCCATAAGCGTT -ACGGAACCATGTGCCATATTCGTC -ACGGAACCATGTGCCATATCTCTC -ACGGAACCATGTGCCATATGGATC -ACGGAACCATGTGCCATACACTTC -ACGGAACCATGTGCCATAGTACTC -ACGGAACCATGTGCCATAGATGTC -ACGGAACCATGTGCCATAACAGTC -ACGGAACCATGTGCCATATTGCTG -ACGGAACCATGTGCCATATCCATG -ACGGAACCATGTGCCATATGTGTG -ACGGAACCATGTGCCATACTAGTG -ACGGAACCATGTGCCATACATCTG -ACGGAACCATGTGCCATAGAGTTG -ACGGAACCATGTGCCATAAGACTG -ACGGAACCATGTGCCATATCGGTA -ACGGAACCATGTGCCATATGCCTA -ACGGAACCATGTGCCATACCACTA -ACGGAACCATGTGCCATAGGAGTA -ACGGAACCATGTGCCATATCGTCT -ACGGAACCATGTGCCATATGCACT -ACGGAACCATGTGCCATACTGACT -ACGGAACCATGTGCCATACAACCT -ACGGAACCATGTGCCATAGCTACT -ACGGAACCATGTGCCATAGGATCT -ACGGAACCATGTGCCATAAAGGCT -ACGGAACCATGTGCCATATCAACC -ACGGAACCATGTGCCATATGTTCC -ACGGAACCATGTGCCATAATTCCC -ACGGAACCATGTGCCATATTCTCG -ACGGAACCATGTGCCATATAGACG -ACGGAACCATGTGCCATAGTAACG -ACGGAACCATGTGCCATAACTTCG -ACGGAACCATGTGCCATATACGCA -ACGGAACCATGTGCCATACTTGCA -ACGGAACCATGTGCCATACGAACA -ACGGAACCATGTGCCATACAGTCA -ACGGAACCATGTGCCATAGATCCA -ACGGAACCATGTGCCATAACGACA -ACGGAACCATGTGCCATAAGCTCA -ACGGAACCATGTGCCATATCACGT -ACGGAACCATGTGCCATACGTAGT -ACGGAACCATGTGCCATAGTCAGT -ACGGAACCATGTGCCATAGAAGGT -ACGGAACCATGTGCCATAAACCGT -ACGGAACCATGTGCCATATTGTGC -ACGGAACCATGTGCCATACTAAGC -ACGGAACCATGTGCCATAACTAGC -ACGGAACCATGTGCCATAAGATGC -ACGGAACCATGTGCCATATGAAGG -ACGGAACCATGTGCCATACAATGG -ACGGAACCATGTGCCATAATGAGG -ACGGAACCATGTGCCATAAATGGG -ACGGAACCATGTGCCATATCCTGA -ACGGAACCATGTGCCATATAGCGA -ACGGAACCATGTGCCATACACAGA -ACGGAACCATGTGCCATAGCAAGA -ACGGAACCATGTGCCATAGGTTGA -ACGGAACCATGTGCCATATCCGAT -ACGGAACCATGTGCCATATGGCAT -ACGGAACCATGTGCCATACGAGAT -ACGGAACCATGTGCCATATACCAC -ACGGAACCATGTGCCATACAGAAC -ACGGAACCATGTGCCATAGTCTAC -ACGGAACCATGTGCCATAACGTAC -ACGGAACCATGTGCCATAAGTGAC -ACGGAACCATGTGCCATACTGTAG -ACGGAACCATGTGCCATACCTAAG -ACGGAACCATGTGCCATAGTTCAG -ACGGAACCATGTGCCATAGCATAG -ACGGAACCATGTGCCATAGACAAG -ACGGAACCATGTGCCATAAAGCAG -ACGGAACCATGTGCCATACGTCAA -ACGGAACCATGTGCCATAGCTGAA -ACGGAACCATGTGCCATAAGTACG -ACGGAACCATGTGCCATAATCCGA -ACGGAACCATGTGCCATAATGGGA -ACGGAACCATGTGCCATAGTGCAA -ACGGAACCATGTGCCATAGAGGAA -ACGGAACCATGTGCCATACAGGTA -ACGGAACCATGTGCCATAGACTCT -ACGGAACCATGTGCCATAAGTCCT -ACGGAACCATGTGCCATATAAGCC -ACGGAACCATGTGCCATAATAGCC -ACGGAACCATGTGCCATATAACCG -ACGGAACCATGTGCCATAATGCCA -ACGGAACCATGTCCGTAAGGAAAC -ACGGAACCATGTCCGTAAAACACC -ACGGAACCATGTCCGTAAATCGAG -ACGGAACCATGTCCGTAACTCCTT -ACGGAACCATGTCCGTAACCTGTT -ACGGAACCATGTCCGTAACGGTTT -ACGGAACCATGTCCGTAAGTGGTT -ACGGAACCATGTCCGTAAGCCTTT -ACGGAACCATGTCCGTAAGGTCTT -ACGGAACCATGTCCGTAAACGCTT -ACGGAACCATGTCCGTAAAGCGTT -ACGGAACCATGTCCGTAATTCGTC -ACGGAACCATGTCCGTAATCTCTC -ACGGAACCATGTCCGTAATGGATC -ACGGAACCATGTCCGTAACACTTC -ACGGAACCATGTCCGTAAGTACTC -ACGGAACCATGTCCGTAAGATGTC -ACGGAACCATGTCCGTAAACAGTC -ACGGAACCATGTCCGTAATTGCTG -ACGGAACCATGTCCGTAATCCATG -ACGGAACCATGTCCGTAATGTGTG -ACGGAACCATGTCCGTAACTAGTG -ACGGAACCATGTCCGTAACATCTG -ACGGAACCATGTCCGTAAGAGTTG -ACGGAACCATGTCCGTAAAGACTG -ACGGAACCATGTCCGTAATCGGTA -ACGGAACCATGTCCGTAATGCCTA -ACGGAACCATGTCCGTAACCACTA -ACGGAACCATGTCCGTAAGGAGTA -ACGGAACCATGTCCGTAATCGTCT -ACGGAACCATGTCCGTAATGCACT -ACGGAACCATGTCCGTAACTGACT -ACGGAACCATGTCCGTAACAACCT -ACGGAACCATGTCCGTAAGCTACT -ACGGAACCATGTCCGTAAGGATCT -ACGGAACCATGTCCGTAAAAGGCT -ACGGAACCATGTCCGTAATCAACC -ACGGAACCATGTCCGTAATGTTCC -ACGGAACCATGTCCGTAAATTCCC -ACGGAACCATGTCCGTAATTCTCG -ACGGAACCATGTCCGTAATAGACG -ACGGAACCATGTCCGTAAGTAACG -ACGGAACCATGTCCGTAAACTTCG -ACGGAACCATGTCCGTAATACGCA -ACGGAACCATGTCCGTAACTTGCA -ACGGAACCATGTCCGTAACGAACA -ACGGAACCATGTCCGTAACAGTCA -ACGGAACCATGTCCGTAAGATCCA -ACGGAACCATGTCCGTAAACGACA -ACGGAACCATGTCCGTAAAGCTCA -ACGGAACCATGTCCGTAATCACGT -ACGGAACCATGTCCGTAACGTAGT -ACGGAACCATGTCCGTAAGTCAGT -ACGGAACCATGTCCGTAAGAAGGT -ACGGAACCATGTCCGTAAAACCGT -ACGGAACCATGTCCGTAATTGTGC -ACGGAACCATGTCCGTAACTAAGC -ACGGAACCATGTCCGTAAACTAGC -ACGGAACCATGTCCGTAAAGATGC -ACGGAACCATGTCCGTAATGAAGG -ACGGAACCATGTCCGTAACAATGG -ACGGAACCATGTCCGTAAATGAGG -ACGGAACCATGTCCGTAAAATGGG -ACGGAACCATGTCCGTAATCCTGA -ACGGAACCATGTCCGTAATAGCGA -ACGGAACCATGTCCGTAACACAGA -ACGGAACCATGTCCGTAAGCAAGA -ACGGAACCATGTCCGTAAGGTTGA -ACGGAACCATGTCCGTAATCCGAT -ACGGAACCATGTCCGTAATGGCAT -ACGGAACCATGTCCGTAACGAGAT -ACGGAACCATGTCCGTAATACCAC -ACGGAACCATGTCCGTAACAGAAC -ACGGAACCATGTCCGTAAGTCTAC -ACGGAACCATGTCCGTAAACGTAC -ACGGAACCATGTCCGTAAAGTGAC -ACGGAACCATGTCCGTAACTGTAG -ACGGAACCATGTCCGTAACCTAAG -ACGGAACCATGTCCGTAAGTTCAG -ACGGAACCATGTCCGTAAGCATAG -ACGGAACCATGTCCGTAAGACAAG -ACGGAACCATGTCCGTAAAAGCAG -ACGGAACCATGTCCGTAACGTCAA -ACGGAACCATGTCCGTAAGCTGAA -ACGGAACCATGTCCGTAAAGTACG -ACGGAACCATGTCCGTAAATCCGA -ACGGAACCATGTCCGTAAATGGGA -ACGGAACCATGTCCGTAAGTGCAA -ACGGAACCATGTCCGTAAGAGGAA -ACGGAACCATGTCCGTAACAGGTA -ACGGAACCATGTCCGTAAGACTCT -ACGGAACCATGTCCGTAAAGTCCT -ACGGAACCATGTCCGTAATAAGCC -ACGGAACCATGTCCGTAAATAGCC -ACGGAACCATGTCCGTAATAACCG -ACGGAACCATGTCCGTAAATGCCA -ACGGAACCATGTCCAATGGGAAAC -ACGGAACCATGTCCAATGAACACC -ACGGAACCATGTCCAATGATCGAG -ACGGAACCATGTCCAATGCTCCTT -ACGGAACCATGTCCAATGCCTGTT -ACGGAACCATGTCCAATGCGGTTT -ACGGAACCATGTCCAATGGTGGTT -ACGGAACCATGTCCAATGGCCTTT -ACGGAACCATGTCCAATGGGTCTT -ACGGAACCATGTCCAATGACGCTT -ACGGAACCATGTCCAATGAGCGTT -ACGGAACCATGTCCAATGTTCGTC -ACGGAACCATGTCCAATGTCTCTC -ACGGAACCATGTCCAATGTGGATC -ACGGAACCATGTCCAATGCACTTC -ACGGAACCATGTCCAATGGTACTC -ACGGAACCATGTCCAATGGATGTC -ACGGAACCATGTCCAATGACAGTC -ACGGAACCATGTCCAATGTTGCTG -ACGGAACCATGTCCAATGTCCATG -ACGGAACCATGTCCAATGTGTGTG -ACGGAACCATGTCCAATGCTAGTG -ACGGAACCATGTCCAATGCATCTG -ACGGAACCATGTCCAATGGAGTTG -ACGGAACCATGTCCAATGAGACTG -ACGGAACCATGTCCAATGTCGGTA -ACGGAACCATGTCCAATGTGCCTA -ACGGAACCATGTCCAATGCCACTA -ACGGAACCATGTCCAATGGGAGTA -ACGGAACCATGTCCAATGTCGTCT -ACGGAACCATGTCCAATGTGCACT -ACGGAACCATGTCCAATGCTGACT -ACGGAACCATGTCCAATGCAACCT -ACGGAACCATGTCCAATGGCTACT -ACGGAACCATGTCCAATGGGATCT -ACGGAACCATGTCCAATGAAGGCT -ACGGAACCATGTCCAATGTCAACC -ACGGAACCATGTCCAATGTGTTCC -ACGGAACCATGTCCAATGATTCCC -ACGGAACCATGTCCAATGTTCTCG -ACGGAACCATGTCCAATGTAGACG -ACGGAACCATGTCCAATGGTAACG -ACGGAACCATGTCCAATGACTTCG -ACGGAACCATGTCCAATGTACGCA -ACGGAACCATGTCCAATGCTTGCA -ACGGAACCATGTCCAATGCGAACA -ACGGAACCATGTCCAATGCAGTCA -ACGGAACCATGTCCAATGGATCCA -ACGGAACCATGTCCAATGACGACA -ACGGAACCATGTCCAATGAGCTCA -ACGGAACCATGTCCAATGTCACGT -ACGGAACCATGTCCAATGCGTAGT -ACGGAACCATGTCCAATGGTCAGT -ACGGAACCATGTCCAATGGAAGGT -ACGGAACCATGTCCAATGAACCGT -ACGGAACCATGTCCAATGTTGTGC -ACGGAACCATGTCCAATGCTAAGC -ACGGAACCATGTCCAATGACTAGC -ACGGAACCATGTCCAATGAGATGC -ACGGAACCATGTCCAATGTGAAGG -ACGGAACCATGTCCAATGCAATGG -ACGGAACCATGTCCAATGATGAGG -ACGGAACCATGTCCAATGAATGGG -ACGGAACCATGTCCAATGTCCTGA -ACGGAACCATGTCCAATGTAGCGA -ACGGAACCATGTCCAATGCACAGA -ACGGAACCATGTCCAATGGCAAGA -ACGGAACCATGTCCAATGGGTTGA -ACGGAACCATGTCCAATGTCCGAT -ACGGAACCATGTCCAATGTGGCAT -ACGGAACCATGTCCAATGCGAGAT -ACGGAACCATGTCCAATGTACCAC -ACGGAACCATGTCCAATGCAGAAC -ACGGAACCATGTCCAATGGTCTAC -ACGGAACCATGTCCAATGACGTAC -ACGGAACCATGTCCAATGAGTGAC -ACGGAACCATGTCCAATGCTGTAG -ACGGAACCATGTCCAATGCCTAAG -ACGGAACCATGTCCAATGGTTCAG -ACGGAACCATGTCCAATGGCATAG -ACGGAACCATGTCCAATGGACAAG -ACGGAACCATGTCCAATGAAGCAG -ACGGAACCATGTCCAATGCGTCAA -ACGGAACCATGTCCAATGGCTGAA -ACGGAACCATGTCCAATGAGTACG -ACGGAACCATGTCCAATGATCCGA -ACGGAACCATGTCCAATGATGGGA -ACGGAACCATGTCCAATGGTGCAA -ACGGAACCATGTCCAATGGAGGAA -ACGGAACCATGTCCAATGCAGGTA -ACGGAACCATGTCCAATGGACTCT -ACGGAACCATGTCCAATGAGTCCT -ACGGAACCATGTCCAATGTAAGCC -ACGGAACCATGTCCAATGATAGCC -ACGGAACCATGTCCAATGTAACCG -ACGGAACCATGTCCAATGATGCCA -ACGGAAGTGTGTAACGGAGGAAAC -ACGGAAGTGTGTAACGGAAACACC -ACGGAAGTGTGTAACGGAATCGAG -ACGGAAGTGTGTAACGGACTCCTT -ACGGAAGTGTGTAACGGACCTGTT -ACGGAAGTGTGTAACGGACGGTTT -ACGGAAGTGTGTAACGGAGTGGTT -ACGGAAGTGTGTAACGGAGCCTTT -ACGGAAGTGTGTAACGGAGGTCTT -ACGGAAGTGTGTAACGGAACGCTT -ACGGAAGTGTGTAACGGAAGCGTT -ACGGAAGTGTGTAACGGATTCGTC -ACGGAAGTGTGTAACGGATCTCTC -ACGGAAGTGTGTAACGGATGGATC -ACGGAAGTGTGTAACGGACACTTC -ACGGAAGTGTGTAACGGAGTACTC -ACGGAAGTGTGTAACGGAGATGTC -ACGGAAGTGTGTAACGGAACAGTC -ACGGAAGTGTGTAACGGATTGCTG -ACGGAAGTGTGTAACGGATCCATG -ACGGAAGTGTGTAACGGATGTGTG -ACGGAAGTGTGTAACGGACTAGTG -ACGGAAGTGTGTAACGGACATCTG -ACGGAAGTGTGTAACGGAGAGTTG -ACGGAAGTGTGTAACGGAAGACTG -ACGGAAGTGTGTAACGGATCGGTA -ACGGAAGTGTGTAACGGATGCCTA -ACGGAAGTGTGTAACGGACCACTA -ACGGAAGTGTGTAACGGAGGAGTA -ACGGAAGTGTGTAACGGATCGTCT -ACGGAAGTGTGTAACGGATGCACT -ACGGAAGTGTGTAACGGACTGACT -ACGGAAGTGTGTAACGGACAACCT -ACGGAAGTGTGTAACGGAGCTACT -ACGGAAGTGTGTAACGGAGGATCT -ACGGAAGTGTGTAACGGAAAGGCT -ACGGAAGTGTGTAACGGATCAACC -ACGGAAGTGTGTAACGGATGTTCC -ACGGAAGTGTGTAACGGAATTCCC -ACGGAAGTGTGTAACGGATTCTCG -ACGGAAGTGTGTAACGGATAGACG -ACGGAAGTGTGTAACGGAGTAACG -ACGGAAGTGTGTAACGGAACTTCG -ACGGAAGTGTGTAACGGATACGCA -ACGGAAGTGTGTAACGGACTTGCA -ACGGAAGTGTGTAACGGACGAACA -ACGGAAGTGTGTAACGGACAGTCA -ACGGAAGTGTGTAACGGAGATCCA -ACGGAAGTGTGTAACGGAACGACA -ACGGAAGTGTGTAACGGAAGCTCA -ACGGAAGTGTGTAACGGATCACGT -ACGGAAGTGTGTAACGGACGTAGT -ACGGAAGTGTGTAACGGAGTCAGT -ACGGAAGTGTGTAACGGAGAAGGT -ACGGAAGTGTGTAACGGAAACCGT -ACGGAAGTGTGTAACGGATTGTGC -ACGGAAGTGTGTAACGGACTAAGC -ACGGAAGTGTGTAACGGAACTAGC -ACGGAAGTGTGTAACGGAAGATGC -ACGGAAGTGTGTAACGGATGAAGG -ACGGAAGTGTGTAACGGACAATGG -ACGGAAGTGTGTAACGGAATGAGG -ACGGAAGTGTGTAACGGAAATGGG -ACGGAAGTGTGTAACGGATCCTGA -ACGGAAGTGTGTAACGGATAGCGA -ACGGAAGTGTGTAACGGACACAGA -ACGGAAGTGTGTAACGGAGCAAGA -ACGGAAGTGTGTAACGGAGGTTGA -ACGGAAGTGTGTAACGGATCCGAT -ACGGAAGTGTGTAACGGATGGCAT -ACGGAAGTGTGTAACGGACGAGAT -ACGGAAGTGTGTAACGGATACCAC -ACGGAAGTGTGTAACGGACAGAAC -ACGGAAGTGTGTAACGGAGTCTAC -ACGGAAGTGTGTAACGGAACGTAC -ACGGAAGTGTGTAACGGAAGTGAC -ACGGAAGTGTGTAACGGACTGTAG -ACGGAAGTGTGTAACGGACCTAAG -ACGGAAGTGTGTAACGGAGTTCAG -ACGGAAGTGTGTAACGGAGCATAG -ACGGAAGTGTGTAACGGAGACAAG -ACGGAAGTGTGTAACGGAAAGCAG -ACGGAAGTGTGTAACGGACGTCAA -ACGGAAGTGTGTAACGGAGCTGAA -ACGGAAGTGTGTAACGGAAGTACG -ACGGAAGTGTGTAACGGAATCCGA -ACGGAAGTGTGTAACGGAATGGGA -ACGGAAGTGTGTAACGGAGTGCAA -ACGGAAGTGTGTAACGGAGAGGAA -ACGGAAGTGTGTAACGGACAGGTA -ACGGAAGTGTGTAACGGAGACTCT -ACGGAAGTGTGTAACGGAAGTCCT -ACGGAAGTGTGTAACGGATAAGCC -ACGGAAGTGTGTAACGGAATAGCC -ACGGAAGTGTGTAACGGATAACCG -ACGGAAGTGTGTAACGGAATGCCA -ACGGAAGTGTGTACCAACGGAAAC -ACGGAAGTGTGTACCAACAACACC -ACGGAAGTGTGTACCAACATCGAG -ACGGAAGTGTGTACCAACCTCCTT -ACGGAAGTGTGTACCAACCCTGTT -ACGGAAGTGTGTACCAACCGGTTT -ACGGAAGTGTGTACCAACGTGGTT -ACGGAAGTGTGTACCAACGCCTTT -ACGGAAGTGTGTACCAACGGTCTT -ACGGAAGTGTGTACCAACACGCTT -ACGGAAGTGTGTACCAACAGCGTT -ACGGAAGTGTGTACCAACTTCGTC -ACGGAAGTGTGTACCAACTCTCTC -ACGGAAGTGTGTACCAACTGGATC -ACGGAAGTGTGTACCAACCACTTC -ACGGAAGTGTGTACCAACGTACTC -ACGGAAGTGTGTACCAACGATGTC -ACGGAAGTGTGTACCAACACAGTC -ACGGAAGTGTGTACCAACTTGCTG -ACGGAAGTGTGTACCAACTCCATG -ACGGAAGTGTGTACCAACTGTGTG -ACGGAAGTGTGTACCAACCTAGTG -ACGGAAGTGTGTACCAACCATCTG -ACGGAAGTGTGTACCAACGAGTTG -ACGGAAGTGTGTACCAACAGACTG -ACGGAAGTGTGTACCAACTCGGTA -ACGGAAGTGTGTACCAACTGCCTA -ACGGAAGTGTGTACCAACCCACTA -ACGGAAGTGTGTACCAACGGAGTA -ACGGAAGTGTGTACCAACTCGTCT -ACGGAAGTGTGTACCAACTGCACT -ACGGAAGTGTGTACCAACCTGACT -ACGGAAGTGTGTACCAACCAACCT -ACGGAAGTGTGTACCAACGCTACT -ACGGAAGTGTGTACCAACGGATCT -ACGGAAGTGTGTACCAACAAGGCT -ACGGAAGTGTGTACCAACTCAACC -ACGGAAGTGTGTACCAACTGTTCC -ACGGAAGTGTGTACCAACATTCCC -ACGGAAGTGTGTACCAACTTCTCG -ACGGAAGTGTGTACCAACTAGACG -ACGGAAGTGTGTACCAACGTAACG -ACGGAAGTGTGTACCAACACTTCG -ACGGAAGTGTGTACCAACTACGCA -ACGGAAGTGTGTACCAACCTTGCA -ACGGAAGTGTGTACCAACCGAACA -ACGGAAGTGTGTACCAACCAGTCA -ACGGAAGTGTGTACCAACGATCCA -ACGGAAGTGTGTACCAACACGACA -ACGGAAGTGTGTACCAACAGCTCA -ACGGAAGTGTGTACCAACTCACGT -ACGGAAGTGTGTACCAACCGTAGT -ACGGAAGTGTGTACCAACGTCAGT -ACGGAAGTGTGTACCAACGAAGGT -ACGGAAGTGTGTACCAACAACCGT -ACGGAAGTGTGTACCAACTTGTGC -ACGGAAGTGTGTACCAACCTAAGC -ACGGAAGTGTGTACCAACACTAGC -ACGGAAGTGTGTACCAACAGATGC -ACGGAAGTGTGTACCAACTGAAGG -ACGGAAGTGTGTACCAACCAATGG -ACGGAAGTGTGTACCAACATGAGG -ACGGAAGTGTGTACCAACAATGGG -ACGGAAGTGTGTACCAACTCCTGA -ACGGAAGTGTGTACCAACTAGCGA -ACGGAAGTGTGTACCAACCACAGA -ACGGAAGTGTGTACCAACGCAAGA -ACGGAAGTGTGTACCAACGGTTGA -ACGGAAGTGTGTACCAACTCCGAT -ACGGAAGTGTGTACCAACTGGCAT -ACGGAAGTGTGTACCAACCGAGAT -ACGGAAGTGTGTACCAACTACCAC -ACGGAAGTGTGTACCAACCAGAAC -ACGGAAGTGTGTACCAACGTCTAC -ACGGAAGTGTGTACCAACACGTAC -ACGGAAGTGTGTACCAACAGTGAC -ACGGAAGTGTGTACCAACCTGTAG -ACGGAAGTGTGTACCAACCCTAAG -ACGGAAGTGTGTACCAACGTTCAG -ACGGAAGTGTGTACCAACGCATAG -ACGGAAGTGTGTACCAACGACAAG -ACGGAAGTGTGTACCAACAAGCAG -ACGGAAGTGTGTACCAACCGTCAA -ACGGAAGTGTGTACCAACGCTGAA -ACGGAAGTGTGTACCAACAGTACG -ACGGAAGTGTGTACCAACATCCGA -ACGGAAGTGTGTACCAACATGGGA -ACGGAAGTGTGTACCAACGTGCAA -ACGGAAGTGTGTACCAACGAGGAA -ACGGAAGTGTGTACCAACCAGGTA -ACGGAAGTGTGTACCAACGACTCT -ACGGAAGTGTGTACCAACAGTCCT -ACGGAAGTGTGTACCAACTAAGCC -ACGGAAGTGTGTACCAACATAGCC -ACGGAAGTGTGTACCAACTAACCG -ACGGAAGTGTGTACCAACATGCCA -ACGGAAGTGTGTGAGATCGGAAAC -ACGGAAGTGTGTGAGATCAACACC -ACGGAAGTGTGTGAGATCATCGAG -ACGGAAGTGTGTGAGATCCTCCTT -ACGGAAGTGTGTGAGATCCCTGTT -ACGGAAGTGTGTGAGATCCGGTTT -ACGGAAGTGTGTGAGATCGTGGTT -ACGGAAGTGTGTGAGATCGCCTTT -ACGGAAGTGTGTGAGATCGGTCTT -ACGGAAGTGTGTGAGATCACGCTT -ACGGAAGTGTGTGAGATCAGCGTT -ACGGAAGTGTGTGAGATCTTCGTC -ACGGAAGTGTGTGAGATCTCTCTC -ACGGAAGTGTGTGAGATCTGGATC -ACGGAAGTGTGTGAGATCCACTTC -ACGGAAGTGTGTGAGATCGTACTC -ACGGAAGTGTGTGAGATCGATGTC -ACGGAAGTGTGTGAGATCACAGTC -ACGGAAGTGTGTGAGATCTTGCTG -ACGGAAGTGTGTGAGATCTCCATG -ACGGAAGTGTGTGAGATCTGTGTG -ACGGAAGTGTGTGAGATCCTAGTG -ACGGAAGTGTGTGAGATCCATCTG -ACGGAAGTGTGTGAGATCGAGTTG -ACGGAAGTGTGTGAGATCAGACTG -ACGGAAGTGTGTGAGATCTCGGTA -ACGGAAGTGTGTGAGATCTGCCTA -ACGGAAGTGTGTGAGATCCCACTA -ACGGAAGTGTGTGAGATCGGAGTA -ACGGAAGTGTGTGAGATCTCGTCT -ACGGAAGTGTGTGAGATCTGCACT -ACGGAAGTGTGTGAGATCCTGACT -ACGGAAGTGTGTGAGATCCAACCT -ACGGAAGTGTGTGAGATCGCTACT -ACGGAAGTGTGTGAGATCGGATCT -ACGGAAGTGTGTGAGATCAAGGCT -ACGGAAGTGTGTGAGATCTCAACC -ACGGAAGTGTGTGAGATCTGTTCC -ACGGAAGTGTGTGAGATCATTCCC -ACGGAAGTGTGTGAGATCTTCTCG -ACGGAAGTGTGTGAGATCTAGACG -ACGGAAGTGTGTGAGATCGTAACG -ACGGAAGTGTGTGAGATCACTTCG -ACGGAAGTGTGTGAGATCTACGCA -ACGGAAGTGTGTGAGATCCTTGCA -ACGGAAGTGTGTGAGATCCGAACA -ACGGAAGTGTGTGAGATCCAGTCA -ACGGAAGTGTGTGAGATCGATCCA -ACGGAAGTGTGTGAGATCACGACA -ACGGAAGTGTGTGAGATCAGCTCA -ACGGAAGTGTGTGAGATCTCACGT -ACGGAAGTGTGTGAGATCCGTAGT -ACGGAAGTGTGTGAGATCGTCAGT -ACGGAAGTGTGTGAGATCGAAGGT -ACGGAAGTGTGTGAGATCAACCGT -ACGGAAGTGTGTGAGATCTTGTGC -ACGGAAGTGTGTGAGATCCTAAGC -ACGGAAGTGTGTGAGATCACTAGC -ACGGAAGTGTGTGAGATCAGATGC -ACGGAAGTGTGTGAGATCTGAAGG -ACGGAAGTGTGTGAGATCCAATGG -ACGGAAGTGTGTGAGATCATGAGG -ACGGAAGTGTGTGAGATCAATGGG -ACGGAAGTGTGTGAGATCTCCTGA -ACGGAAGTGTGTGAGATCTAGCGA -ACGGAAGTGTGTGAGATCCACAGA -ACGGAAGTGTGTGAGATCGCAAGA -ACGGAAGTGTGTGAGATCGGTTGA -ACGGAAGTGTGTGAGATCTCCGAT -ACGGAAGTGTGTGAGATCTGGCAT -ACGGAAGTGTGTGAGATCCGAGAT -ACGGAAGTGTGTGAGATCTACCAC -ACGGAAGTGTGTGAGATCCAGAAC -ACGGAAGTGTGTGAGATCGTCTAC -ACGGAAGTGTGTGAGATCACGTAC -ACGGAAGTGTGTGAGATCAGTGAC -ACGGAAGTGTGTGAGATCCTGTAG -ACGGAAGTGTGTGAGATCCCTAAG -ACGGAAGTGTGTGAGATCGTTCAG -ACGGAAGTGTGTGAGATCGCATAG -ACGGAAGTGTGTGAGATCGACAAG -ACGGAAGTGTGTGAGATCAAGCAG -ACGGAAGTGTGTGAGATCCGTCAA -ACGGAAGTGTGTGAGATCGCTGAA -ACGGAAGTGTGTGAGATCAGTACG -ACGGAAGTGTGTGAGATCATCCGA -ACGGAAGTGTGTGAGATCATGGGA -ACGGAAGTGTGTGAGATCGTGCAA -ACGGAAGTGTGTGAGATCGAGGAA -ACGGAAGTGTGTGAGATCCAGGTA -ACGGAAGTGTGTGAGATCGACTCT -ACGGAAGTGTGTGAGATCAGTCCT -ACGGAAGTGTGTGAGATCTAAGCC -ACGGAAGTGTGTGAGATCATAGCC -ACGGAAGTGTGTGAGATCTAACCG -ACGGAAGTGTGTGAGATCATGCCA -ACGGAAGTGTGTCTTCTCGGAAAC -ACGGAAGTGTGTCTTCTCAACACC -ACGGAAGTGTGTCTTCTCATCGAG -ACGGAAGTGTGTCTTCTCCTCCTT -ACGGAAGTGTGTCTTCTCCCTGTT -ACGGAAGTGTGTCTTCTCCGGTTT -ACGGAAGTGTGTCTTCTCGTGGTT -ACGGAAGTGTGTCTTCTCGCCTTT -ACGGAAGTGTGTCTTCTCGGTCTT -ACGGAAGTGTGTCTTCTCACGCTT -ACGGAAGTGTGTCTTCTCAGCGTT -ACGGAAGTGTGTCTTCTCTTCGTC -ACGGAAGTGTGTCTTCTCTCTCTC -ACGGAAGTGTGTCTTCTCTGGATC -ACGGAAGTGTGTCTTCTCCACTTC -ACGGAAGTGTGTCTTCTCGTACTC -ACGGAAGTGTGTCTTCTCGATGTC -ACGGAAGTGTGTCTTCTCACAGTC -ACGGAAGTGTGTCTTCTCTTGCTG -ACGGAAGTGTGTCTTCTCTCCATG -ACGGAAGTGTGTCTTCTCTGTGTG -ACGGAAGTGTGTCTTCTCCTAGTG -ACGGAAGTGTGTCTTCTCCATCTG -ACGGAAGTGTGTCTTCTCGAGTTG -ACGGAAGTGTGTCTTCTCAGACTG -ACGGAAGTGTGTCTTCTCTCGGTA -ACGGAAGTGTGTCTTCTCTGCCTA -ACGGAAGTGTGTCTTCTCCCACTA -ACGGAAGTGTGTCTTCTCGGAGTA -ACGGAAGTGTGTCTTCTCTCGTCT -ACGGAAGTGTGTCTTCTCTGCACT -ACGGAAGTGTGTCTTCTCCTGACT -ACGGAAGTGTGTCTTCTCCAACCT -ACGGAAGTGTGTCTTCTCGCTACT -ACGGAAGTGTGTCTTCTCGGATCT -ACGGAAGTGTGTCTTCTCAAGGCT -ACGGAAGTGTGTCTTCTCTCAACC -ACGGAAGTGTGTCTTCTCTGTTCC -ACGGAAGTGTGTCTTCTCATTCCC -ACGGAAGTGTGTCTTCTCTTCTCG -ACGGAAGTGTGTCTTCTCTAGACG -ACGGAAGTGTGTCTTCTCGTAACG -ACGGAAGTGTGTCTTCTCACTTCG -ACGGAAGTGTGTCTTCTCTACGCA -ACGGAAGTGTGTCTTCTCCTTGCA -ACGGAAGTGTGTCTTCTCCGAACA -ACGGAAGTGTGTCTTCTCCAGTCA -ACGGAAGTGTGTCTTCTCGATCCA -ACGGAAGTGTGTCTTCTCACGACA -ACGGAAGTGTGTCTTCTCAGCTCA -ACGGAAGTGTGTCTTCTCTCACGT -ACGGAAGTGTGTCTTCTCCGTAGT -ACGGAAGTGTGTCTTCTCGTCAGT -ACGGAAGTGTGTCTTCTCGAAGGT -ACGGAAGTGTGTCTTCTCAACCGT -ACGGAAGTGTGTCTTCTCTTGTGC -ACGGAAGTGTGTCTTCTCCTAAGC -ACGGAAGTGTGTCTTCTCACTAGC -ACGGAAGTGTGTCTTCTCAGATGC -ACGGAAGTGTGTCTTCTCTGAAGG -ACGGAAGTGTGTCTTCTCCAATGG -ACGGAAGTGTGTCTTCTCATGAGG -ACGGAAGTGTGTCTTCTCAATGGG -ACGGAAGTGTGTCTTCTCTCCTGA -ACGGAAGTGTGTCTTCTCTAGCGA -ACGGAAGTGTGTCTTCTCCACAGA -ACGGAAGTGTGTCTTCTCGCAAGA -ACGGAAGTGTGTCTTCTCGGTTGA -ACGGAAGTGTGTCTTCTCTCCGAT -ACGGAAGTGTGTCTTCTCTGGCAT -ACGGAAGTGTGTCTTCTCCGAGAT -ACGGAAGTGTGTCTTCTCTACCAC -ACGGAAGTGTGTCTTCTCCAGAAC -ACGGAAGTGTGTCTTCTCGTCTAC -ACGGAAGTGTGTCTTCTCACGTAC -ACGGAAGTGTGTCTTCTCAGTGAC -ACGGAAGTGTGTCTTCTCCTGTAG -ACGGAAGTGTGTCTTCTCCCTAAG -ACGGAAGTGTGTCTTCTCGTTCAG -ACGGAAGTGTGTCTTCTCGCATAG -ACGGAAGTGTGTCTTCTCGACAAG -ACGGAAGTGTGTCTTCTCAAGCAG -ACGGAAGTGTGTCTTCTCCGTCAA -ACGGAAGTGTGTCTTCTCGCTGAA -ACGGAAGTGTGTCTTCTCAGTACG -ACGGAAGTGTGTCTTCTCATCCGA -ACGGAAGTGTGTCTTCTCATGGGA -ACGGAAGTGTGTCTTCTCGTGCAA -ACGGAAGTGTGTCTTCTCGAGGAA -ACGGAAGTGTGTCTTCTCCAGGTA -ACGGAAGTGTGTCTTCTCGACTCT -ACGGAAGTGTGTCTTCTCAGTCCT -ACGGAAGTGTGTCTTCTCTAAGCC -ACGGAAGTGTGTCTTCTCATAGCC -ACGGAAGTGTGTCTTCTCTAACCG -ACGGAAGTGTGTCTTCTCATGCCA -ACGGAAGTGTGTGTTCCTGGAAAC -ACGGAAGTGTGTGTTCCTAACACC -ACGGAAGTGTGTGTTCCTATCGAG -ACGGAAGTGTGTGTTCCTCTCCTT -ACGGAAGTGTGTGTTCCTCCTGTT -ACGGAAGTGTGTGTTCCTCGGTTT -ACGGAAGTGTGTGTTCCTGTGGTT -ACGGAAGTGTGTGTTCCTGCCTTT -ACGGAAGTGTGTGTTCCTGGTCTT -ACGGAAGTGTGTGTTCCTACGCTT -ACGGAAGTGTGTGTTCCTAGCGTT -ACGGAAGTGTGTGTTCCTTTCGTC -ACGGAAGTGTGTGTTCCTTCTCTC -ACGGAAGTGTGTGTTCCTTGGATC -ACGGAAGTGTGTGTTCCTCACTTC -ACGGAAGTGTGTGTTCCTGTACTC -ACGGAAGTGTGTGTTCCTGATGTC -ACGGAAGTGTGTGTTCCTACAGTC -ACGGAAGTGTGTGTTCCTTTGCTG -ACGGAAGTGTGTGTTCCTTCCATG -ACGGAAGTGTGTGTTCCTTGTGTG -ACGGAAGTGTGTGTTCCTCTAGTG -ACGGAAGTGTGTGTTCCTCATCTG -ACGGAAGTGTGTGTTCCTGAGTTG -ACGGAAGTGTGTGTTCCTAGACTG -ACGGAAGTGTGTGTTCCTTCGGTA -ACGGAAGTGTGTGTTCCTTGCCTA -ACGGAAGTGTGTGTTCCTCCACTA -ACGGAAGTGTGTGTTCCTGGAGTA -ACGGAAGTGTGTGTTCCTTCGTCT -ACGGAAGTGTGTGTTCCTTGCACT -ACGGAAGTGTGTGTTCCTCTGACT -ACGGAAGTGTGTGTTCCTCAACCT -ACGGAAGTGTGTGTTCCTGCTACT -ACGGAAGTGTGTGTTCCTGGATCT -ACGGAAGTGTGTGTTCCTAAGGCT -ACGGAAGTGTGTGTTCCTTCAACC -ACGGAAGTGTGTGTTCCTTGTTCC -ACGGAAGTGTGTGTTCCTATTCCC -ACGGAAGTGTGTGTTCCTTTCTCG -ACGGAAGTGTGTGTTCCTTAGACG -ACGGAAGTGTGTGTTCCTGTAACG -ACGGAAGTGTGTGTTCCTACTTCG -ACGGAAGTGTGTGTTCCTTACGCA -ACGGAAGTGTGTGTTCCTCTTGCA -ACGGAAGTGTGTGTTCCTCGAACA -ACGGAAGTGTGTGTTCCTCAGTCA -ACGGAAGTGTGTGTTCCTGATCCA -ACGGAAGTGTGTGTTCCTACGACA -ACGGAAGTGTGTGTTCCTAGCTCA -ACGGAAGTGTGTGTTCCTTCACGT -ACGGAAGTGTGTGTTCCTCGTAGT -ACGGAAGTGTGTGTTCCTGTCAGT -ACGGAAGTGTGTGTTCCTGAAGGT -ACGGAAGTGTGTGTTCCTAACCGT -ACGGAAGTGTGTGTTCCTTTGTGC -ACGGAAGTGTGTGTTCCTCTAAGC -ACGGAAGTGTGTGTTCCTACTAGC -ACGGAAGTGTGTGTTCCTAGATGC -ACGGAAGTGTGTGTTCCTTGAAGG -ACGGAAGTGTGTGTTCCTCAATGG -ACGGAAGTGTGTGTTCCTATGAGG -ACGGAAGTGTGTGTTCCTAATGGG -ACGGAAGTGTGTGTTCCTTCCTGA -ACGGAAGTGTGTGTTCCTTAGCGA -ACGGAAGTGTGTGTTCCTCACAGA -ACGGAAGTGTGTGTTCCTGCAAGA -ACGGAAGTGTGTGTTCCTGGTTGA -ACGGAAGTGTGTGTTCCTTCCGAT -ACGGAAGTGTGTGTTCCTTGGCAT -ACGGAAGTGTGTGTTCCTCGAGAT -ACGGAAGTGTGTGTTCCTTACCAC -ACGGAAGTGTGTGTTCCTCAGAAC -ACGGAAGTGTGTGTTCCTGTCTAC -ACGGAAGTGTGTGTTCCTACGTAC -ACGGAAGTGTGTGTTCCTAGTGAC -ACGGAAGTGTGTGTTCCTCTGTAG -ACGGAAGTGTGTGTTCCTCCTAAG -ACGGAAGTGTGTGTTCCTGTTCAG -ACGGAAGTGTGTGTTCCTGCATAG -ACGGAAGTGTGTGTTCCTGACAAG -ACGGAAGTGTGTGTTCCTAAGCAG -ACGGAAGTGTGTGTTCCTCGTCAA -ACGGAAGTGTGTGTTCCTGCTGAA -ACGGAAGTGTGTGTTCCTAGTACG -ACGGAAGTGTGTGTTCCTATCCGA -ACGGAAGTGTGTGTTCCTATGGGA -ACGGAAGTGTGTGTTCCTGTGCAA -ACGGAAGTGTGTGTTCCTGAGGAA -ACGGAAGTGTGTGTTCCTCAGGTA -ACGGAAGTGTGTGTTCCTGACTCT -ACGGAAGTGTGTGTTCCTAGTCCT -ACGGAAGTGTGTGTTCCTTAAGCC -ACGGAAGTGTGTGTTCCTATAGCC -ACGGAAGTGTGTGTTCCTTAACCG -ACGGAAGTGTGTGTTCCTATGCCA -ACGGAAGTGTGTTTTCGGGGAAAC -ACGGAAGTGTGTTTTCGGAACACC -ACGGAAGTGTGTTTTCGGATCGAG -ACGGAAGTGTGTTTTCGGCTCCTT -ACGGAAGTGTGTTTTCGGCCTGTT -ACGGAAGTGTGTTTTCGGCGGTTT -ACGGAAGTGTGTTTTCGGGTGGTT -ACGGAAGTGTGTTTTCGGGCCTTT -ACGGAAGTGTGTTTTCGGGGTCTT -ACGGAAGTGTGTTTTCGGACGCTT -ACGGAAGTGTGTTTTCGGAGCGTT -ACGGAAGTGTGTTTTCGGTTCGTC -ACGGAAGTGTGTTTTCGGTCTCTC -ACGGAAGTGTGTTTTCGGTGGATC -ACGGAAGTGTGTTTTCGGCACTTC -ACGGAAGTGTGTTTTCGGGTACTC -ACGGAAGTGTGTTTTCGGGATGTC -ACGGAAGTGTGTTTTCGGACAGTC -ACGGAAGTGTGTTTTCGGTTGCTG -ACGGAAGTGTGTTTTCGGTCCATG -ACGGAAGTGTGTTTTCGGTGTGTG -ACGGAAGTGTGTTTTCGGCTAGTG -ACGGAAGTGTGTTTTCGGCATCTG -ACGGAAGTGTGTTTTCGGGAGTTG -ACGGAAGTGTGTTTTCGGAGACTG -ACGGAAGTGTGTTTTCGGTCGGTA -ACGGAAGTGTGTTTTCGGTGCCTA -ACGGAAGTGTGTTTTCGGCCACTA -ACGGAAGTGTGTTTTCGGGGAGTA -ACGGAAGTGTGTTTTCGGTCGTCT -ACGGAAGTGTGTTTTCGGTGCACT -ACGGAAGTGTGTTTTCGGCTGACT -ACGGAAGTGTGTTTTCGGCAACCT -ACGGAAGTGTGTTTTCGGGCTACT -ACGGAAGTGTGTTTTCGGGGATCT -ACGGAAGTGTGTTTTCGGAAGGCT -ACGGAAGTGTGTTTTCGGTCAACC -ACGGAAGTGTGTTTTCGGTGTTCC -ACGGAAGTGTGTTTTCGGATTCCC -ACGGAAGTGTGTTTTCGGTTCTCG -ACGGAAGTGTGTTTTCGGTAGACG -ACGGAAGTGTGTTTTCGGGTAACG -ACGGAAGTGTGTTTTCGGACTTCG -ACGGAAGTGTGTTTTCGGTACGCA -ACGGAAGTGTGTTTTCGGCTTGCA -ACGGAAGTGTGTTTTCGGCGAACA -ACGGAAGTGTGTTTTCGGCAGTCA -ACGGAAGTGTGTTTTCGGGATCCA -ACGGAAGTGTGTTTTCGGACGACA -ACGGAAGTGTGTTTTCGGAGCTCA -ACGGAAGTGTGTTTTCGGTCACGT -ACGGAAGTGTGTTTTCGGCGTAGT -ACGGAAGTGTGTTTTCGGGTCAGT -ACGGAAGTGTGTTTTCGGGAAGGT -ACGGAAGTGTGTTTTCGGAACCGT -ACGGAAGTGTGTTTTCGGTTGTGC -ACGGAAGTGTGTTTTCGGCTAAGC -ACGGAAGTGTGTTTTCGGACTAGC -ACGGAAGTGTGTTTTCGGAGATGC -ACGGAAGTGTGTTTTCGGTGAAGG -ACGGAAGTGTGTTTTCGGCAATGG -ACGGAAGTGTGTTTTCGGATGAGG -ACGGAAGTGTGTTTTCGGAATGGG -ACGGAAGTGTGTTTTCGGTCCTGA -ACGGAAGTGTGTTTTCGGTAGCGA -ACGGAAGTGTGTTTTCGGCACAGA -ACGGAAGTGTGTTTTCGGGCAAGA -ACGGAAGTGTGTTTTCGGGGTTGA -ACGGAAGTGTGTTTTCGGTCCGAT -ACGGAAGTGTGTTTTCGGTGGCAT -ACGGAAGTGTGTTTTCGGCGAGAT -ACGGAAGTGTGTTTTCGGTACCAC -ACGGAAGTGTGTTTTCGGCAGAAC -ACGGAAGTGTGTTTTCGGGTCTAC -ACGGAAGTGTGTTTTCGGACGTAC -ACGGAAGTGTGTTTTCGGAGTGAC -ACGGAAGTGTGTTTTCGGCTGTAG -ACGGAAGTGTGTTTTCGGCCTAAG -ACGGAAGTGTGTTTTCGGGTTCAG -ACGGAAGTGTGTTTTCGGGCATAG -ACGGAAGTGTGTTTTCGGGACAAG -ACGGAAGTGTGTTTTCGGAAGCAG -ACGGAAGTGTGTTTTCGGCGTCAA -ACGGAAGTGTGTTTTCGGGCTGAA -ACGGAAGTGTGTTTTCGGAGTACG -ACGGAAGTGTGTTTTCGGATCCGA -ACGGAAGTGTGTTTTCGGATGGGA -ACGGAAGTGTGTTTTCGGGTGCAA -ACGGAAGTGTGTTTTCGGGAGGAA -ACGGAAGTGTGTTTTCGGCAGGTA -ACGGAAGTGTGTTTTCGGGACTCT -ACGGAAGTGTGTTTTCGGAGTCCT -ACGGAAGTGTGTTTTCGGTAAGCC -ACGGAAGTGTGTTTTCGGATAGCC -ACGGAAGTGTGTTTTCGGTAACCG -ACGGAAGTGTGTTTTCGGATGCCA -ACGGAAGTGTGTGTTGTGGGAAAC -ACGGAAGTGTGTGTTGTGAACACC -ACGGAAGTGTGTGTTGTGATCGAG -ACGGAAGTGTGTGTTGTGCTCCTT -ACGGAAGTGTGTGTTGTGCCTGTT -ACGGAAGTGTGTGTTGTGCGGTTT -ACGGAAGTGTGTGTTGTGGTGGTT -ACGGAAGTGTGTGTTGTGGCCTTT -ACGGAAGTGTGTGTTGTGGGTCTT -ACGGAAGTGTGTGTTGTGACGCTT -ACGGAAGTGTGTGTTGTGAGCGTT -ACGGAAGTGTGTGTTGTGTTCGTC -ACGGAAGTGTGTGTTGTGTCTCTC -ACGGAAGTGTGTGTTGTGTGGATC -ACGGAAGTGTGTGTTGTGCACTTC -ACGGAAGTGTGTGTTGTGGTACTC -ACGGAAGTGTGTGTTGTGGATGTC -ACGGAAGTGTGTGTTGTGACAGTC -ACGGAAGTGTGTGTTGTGTTGCTG -ACGGAAGTGTGTGTTGTGTCCATG -ACGGAAGTGTGTGTTGTGTGTGTG -ACGGAAGTGTGTGTTGTGCTAGTG -ACGGAAGTGTGTGTTGTGCATCTG -ACGGAAGTGTGTGTTGTGGAGTTG -ACGGAAGTGTGTGTTGTGAGACTG -ACGGAAGTGTGTGTTGTGTCGGTA -ACGGAAGTGTGTGTTGTGTGCCTA -ACGGAAGTGTGTGTTGTGCCACTA -ACGGAAGTGTGTGTTGTGGGAGTA -ACGGAAGTGTGTGTTGTGTCGTCT -ACGGAAGTGTGTGTTGTGTGCACT -ACGGAAGTGTGTGTTGTGCTGACT -ACGGAAGTGTGTGTTGTGCAACCT -ACGGAAGTGTGTGTTGTGGCTACT -ACGGAAGTGTGTGTTGTGGGATCT -ACGGAAGTGTGTGTTGTGAAGGCT -ACGGAAGTGTGTGTTGTGTCAACC -ACGGAAGTGTGTGTTGTGTGTTCC -ACGGAAGTGTGTGTTGTGATTCCC -ACGGAAGTGTGTGTTGTGTTCTCG -ACGGAAGTGTGTGTTGTGTAGACG -ACGGAAGTGTGTGTTGTGGTAACG -ACGGAAGTGTGTGTTGTGACTTCG -ACGGAAGTGTGTGTTGTGTACGCA -ACGGAAGTGTGTGTTGTGCTTGCA -ACGGAAGTGTGTGTTGTGCGAACA -ACGGAAGTGTGTGTTGTGCAGTCA -ACGGAAGTGTGTGTTGTGGATCCA -ACGGAAGTGTGTGTTGTGACGACA -ACGGAAGTGTGTGTTGTGAGCTCA -ACGGAAGTGTGTGTTGTGTCACGT -ACGGAAGTGTGTGTTGTGCGTAGT -ACGGAAGTGTGTGTTGTGGTCAGT -ACGGAAGTGTGTGTTGTGGAAGGT -ACGGAAGTGTGTGTTGTGAACCGT -ACGGAAGTGTGTGTTGTGTTGTGC -ACGGAAGTGTGTGTTGTGCTAAGC -ACGGAAGTGTGTGTTGTGACTAGC -ACGGAAGTGTGTGTTGTGAGATGC -ACGGAAGTGTGTGTTGTGTGAAGG -ACGGAAGTGTGTGTTGTGCAATGG -ACGGAAGTGTGTGTTGTGATGAGG -ACGGAAGTGTGTGTTGTGAATGGG -ACGGAAGTGTGTGTTGTGTCCTGA -ACGGAAGTGTGTGTTGTGTAGCGA -ACGGAAGTGTGTGTTGTGCACAGA -ACGGAAGTGTGTGTTGTGGCAAGA -ACGGAAGTGTGTGTTGTGGGTTGA -ACGGAAGTGTGTGTTGTGTCCGAT -ACGGAAGTGTGTGTTGTGTGGCAT -ACGGAAGTGTGTGTTGTGCGAGAT -ACGGAAGTGTGTGTTGTGTACCAC -ACGGAAGTGTGTGTTGTGCAGAAC -ACGGAAGTGTGTGTTGTGGTCTAC -ACGGAAGTGTGTGTTGTGACGTAC -ACGGAAGTGTGTGTTGTGAGTGAC -ACGGAAGTGTGTGTTGTGCTGTAG -ACGGAAGTGTGTGTTGTGCCTAAG -ACGGAAGTGTGTGTTGTGGTTCAG -ACGGAAGTGTGTGTTGTGGCATAG -ACGGAAGTGTGTGTTGTGGACAAG -ACGGAAGTGTGTGTTGTGAAGCAG -ACGGAAGTGTGTGTTGTGCGTCAA -ACGGAAGTGTGTGTTGTGGCTGAA -ACGGAAGTGTGTGTTGTGAGTACG -ACGGAAGTGTGTGTTGTGATCCGA -ACGGAAGTGTGTGTTGTGATGGGA -ACGGAAGTGTGTGTTGTGGTGCAA -ACGGAAGTGTGTGTTGTGGAGGAA -ACGGAAGTGTGTGTTGTGCAGGTA -ACGGAAGTGTGTGTTGTGGACTCT -ACGGAAGTGTGTGTTGTGAGTCCT -ACGGAAGTGTGTGTTGTGTAAGCC -ACGGAAGTGTGTGTTGTGATAGCC -ACGGAAGTGTGTGTTGTGTAACCG -ACGGAAGTGTGTGTTGTGATGCCA -ACGGAAGTGTGTTTTGCCGGAAAC -ACGGAAGTGTGTTTTGCCAACACC -ACGGAAGTGTGTTTTGCCATCGAG -ACGGAAGTGTGTTTTGCCCTCCTT -ACGGAAGTGTGTTTTGCCCCTGTT -ACGGAAGTGTGTTTTGCCCGGTTT -ACGGAAGTGTGTTTTGCCGTGGTT -ACGGAAGTGTGTTTTGCCGCCTTT -ACGGAAGTGTGTTTTGCCGGTCTT -ACGGAAGTGTGTTTTGCCACGCTT -ACGGAAGTGTGTTTTGCCAGCGTT -ACGGAAGTGTGTTTTGCCTTCGTC -ACGGAAGTGTGTTTTGCCTCTCTC -ACGGAAGTGTGTTTTGCCTGGATC -ACGGAAGTGTGTTTTGCCCACTTC -ACGGAAGTGTGTTTTGCCGTACTC -ACGGAAGTGTGTTTTGCCGATGTC -ACGGAAGTGTGTTTTGCCACAGTC -ACGGAAGTGTGTTTTGCCTTGCTG -ACGGAAGTGTGTTTTGCCTCCATG -ACGGAAGTGTGTTTTGCCTGTGTG -ACGGAAGTGTGTTTTGCCCTAGTG -ACGGAAGTGTGTTTTGCCCATCTG -ACGGAAGTGTGTTTTGCCGAGTTG -ACGGAAGTGTGTTTTGCCAGACTG -ACGGAAGTGTGTTTTGCCTCGGTA -ACGGAAGTGTGTTTTGCCTGCCTA -ACGGAAGTGTGTTTTGCCCCACTA -ACGGAAGTGTGTTTTGCCGGAGTA -ACGGAAGTGTGTTTTGCCTCGTCT -ACGGAAGTGTGTTTTGCCTGCACT -ACGGAAGTGTGTTTTGCCCTGACT -ACGGAAGTGTGTTTTGCCCAACCT -ACGGAAGTGTGTTTTGCCGCTACT -ACGGAAGTGTGTTTTGCCGGATCT -ACGGAAGTGTGTTTTGCCAAGGCT -ACGGAAGTGTGTTTTGCCTCAACC -ACGGAAGTGTGTTTTGCCTGTTCC -ACGGAAGTGTGTTTTGCCATTCCC -ACGGAAGTGTGTTTTGCCTTCTCG -ACGGAAGTGTGTTTTGCCTAGACG -ACGGAAGTGTGTTTTGCCGTAACG -ACGGAAGTGTGTTTTGCCACTTCG -ACGGAAGTGTGTTTTGCCTACGCA -ACGGAAGTGTGTTTTGCCCTTGCA -ACGGAAGTGTGTTTTGCCCGAACA -ACGGAAGTGTGTTTTGCCCAGTCA -ACGGAAGTGTGTTTTGCCGATCCA -ACGGAAGTGTGTTTTGCCACGACA -ACGGAAGTGTGTTTTGCCAGCTCA -ACGGAAGTGTGTTTTGCCTCACGT -ACGGAAGTGTGTTTTGCCCGTAGT -ACGGAAGTGTGTTTTGCCGTCAGT -ACGGAAGTGTGTTTTGCCGAAGGT -ACGGAAGTGTGTTTTGCCAACCGT -ACGGAAGTGTGTTTTGCCTTGTGC -ACGGAAGTGTGTTTTGCCCTAAGC -ACGGAAGTGTGTTTTGCCACTAGC -ACGGAAGTGTGTTTTGCCAGATGC -ACGGAAGTGTGTTTTGCCTGAAGG -ACGGAAGTGTGTTTTGCCCAATGG -ACGGAAGTGTGTTTTGCCATGAGG -ACGGAAGTGTGTTTTGCCAATGGG -ACGGAAGTGTGTTTTGCCTCCTGA -ACGGAAGTGTGTTTTGCCTAGCGA -ACGGAAGTGTGTTTTGCCCACAGA -ACGGAAGTGTGTTTTGCCGCAAGA -ACGGAAGTGTGTTTTGCCGGTTGA -ACGGAAGTGTGTTTTGCCTCCGAT -ACGGAAGTGTGTTTTGCCTGGCAT -ACGGAAGTGTGTTTTGCCCGAGAT -ACGGAAGTGTGTTTTGCCTACCAC -ACGGAAGTGTGTTTTGCCCAGAAC -ACGGAAGTGTGTTTTGCCGTCTAC -ACGGAAGTGTGTTTTGCCACGTAC -ACGGAAGTGTGTTTTGCCAGTGAC -ACGGAAGTGTGTTTTGCCCTGTAG -ACGGAAGTGTGTTTTGCCCCTAAG -ACGGAAGTGTGTTTTGCCGTTCAG -ACGGAAGTGTGTTTTGCCGCATAG -ACGGAAGTGTGTTTTGCCGACAAG -ACGGAAGTGTGTTTTGCCAAGCAG -ACGGAAGTGTGTTTTGCCCGTCAA -ACGGAAGTGTGTTTTGCCGCTGAA -ACGGAAGTGTGTTTTGCCAGTACG -ACGGAAGTGTGTTTTGCCATCCGA -ACGGAAGTGTGTTTTGCCATGGGA -ACGGAAGTGTGTTTTGCCGTGCAA -ACGGAAGTGTGTTTTGCCGAGGAA -ACGGAAGTGTGTTTTGCCCAGGTA -ACGGAAGTGTGTTTTGCCGACTCT -ACGGAAGTGTGTTTTGCCAGTCCT -ACGGAAGTGTGTTTTGCCTAAGCC -ACGGAAGTGTGTTTTGCCATAGCC -ACGGAAGTGTGTTTTGCCTAACCG -ACGGAAGTGTGTTTTGCCATGCCA -ACGGAAGTGTGTCTTGGTGGAAAC -ACGGAAGTGTGTCTTGGTAACACC -ACGGAAGTGTGTCTTGGTATCGAG -ACGGAAGTGTGTCTTGGTCTCCTT -ACGGAAGTGTGTCTTGGTCCTGTT -ACGGAAGTGTGTCTTGGTCGGTTT -ACGGAAGTGTGTCTTGGTGTGGTT -ACGGAAGTGTGTCTTGGTGCCTTT -ACGGAAGTGTGTCTTGGTGGTCTT -ACGGAAGTGTGTCTTGGTACGCTT -ACGGAAGTGTGTCTTGGTAGCGTT -ACGGAAGTGTGTCTTGGTTTCGTC -ACGGAAGTGTGTCTTGGTTCTCTC -ACGGAAGTGTGTCTTGGTTGGATC -ACGGAAGTGTGTCTTGGTCACTTC -ACGGAAGTGTGTCTTGGTGTACTC -ACGGAAGTGTGTCTTGGTGATGTC -ACGGAAGTGTGTCTTGGTACAGTC -ACGGAAGTGTGTCTTGGTTTGCTG -ACGGAAGTGTGTCTTGGTTCCATG -ACGGAAGTGTGTCTTGGTTGTGTG -ACGGAAGTGTGTCTTGGTCTAGTG -ACGGAAGTGTGTCTTGGTCATCTG -ACGGAAGTGTGTCTTGGTGAGTTG -ACGGAAGTGTGTCTTGGTAGACTG -ACGGAAGTGTGTCTTGGTTCGGTA -ACGGAAGTGTGTCTTGGTTGCCTA -ACGGAAGTGTGTCTTGGTCCACTA -ACGGAAGTGTGTCTTGGTGGAGTA -ACGGAAGTGTGTCTTGGTTCGTCT -ACGGAAGTGTGTCTTGGTTGCACT -ACGGAAGTGTGTCTTGGTCTGACT -ACGGAAGTGTGTCTTGGTCAACCT -ACGGAAGTGTGTCTTGGTGCTACT -ACGGAAGTGTGTCTTGGTGGATCT -ACGGAAGTGTGTCTTGGTAAGGCT -ACGGAAGTGTGTCTTGGTTCAACC -ACGGAAGTGTGTCTTGGTTGTTCC -ACGGAAGTGTGTCTTGGTATTCCC -ACGGAAGTGTGTCTTGGTTTCTCG -ACGGAAGTGTGTCTTGGTTAGACG -ACGGAAGTGTGTCTTGGTGTAACG -ACGGAAGTGTGTCTTGGTACTTCG -ACGGAAGTGTGTCTTGGTTACGCA -ACGGAAGTGTGTCTTGGTCTTGCA -ACGGAAGTGTGTCTTGGTCGAACA -ACGGAAGTGTGTCTTGGTCAGTCA -ACGGAAGTGTGTCTTGGTGATCCA -ACGGAAGTGTGTCTTGGTACGACA -ACGGAAGTGTGTCTTGGTAGCTCA -ACGGAAGTGTGTCTTGGTTCACGT -ACGGAAGTGTGTCTTGGTCGTAGT -ACGGAAGTGTGTCTTGGTGTCAGT -ACGGAAGTGTGTCTTGGTGAAGGT -ACGGAAGTGTGTCTTGGTAACCGT -ACGGAAGTGTGTCTTGGTTTGTGC -ACGGAAGTGTGTCTTGGTCTAAGC -ACGGAAGTGTGTCTTGGTACTAGC -ACGGAAGTGTGTCTTGGTAGATGC -ACGGAAGTGTGTCTTGGTTGAAGG -ACGGAAGTGTGTCTTGGTCAATGG -ACGGAAGTGTGTCTTGGTATGAGG -ACGGAAGTGTGTCTTGGTAATGGG -ACGGAAGTGTGTCTTGGTTCCTGA -ACGGAAGTGTGTCTTGGTTAGCGA -ACGGAAGTGTGTCTTGGTCACAGA -ACGGAAGTGTGTCTTGGTGCAAGA -ACGGAAGTGTGTCTTGGTGGTTGA -ACGGAAGTGTGTCTTGGTTCCGAT -ACGGAAGTGTGTCTTGGTTGGCAT -ACGGAAGTGTGTCTTGGTCGAGAT -ACGGAAGTGTGTCTTGGTTACCAC -ACGGAAGTGTGTCTTGGTCAGAAC -ACGGAAGTGTGTCTTGGTGTCTAC -ACGGAAGTGTGTCTTGGTACGTAC -ACGGAAGTGTGTCTTGGTAGTGAC -ACGGAAGTGTGTCTTGGTCTGTAG -ACGGAAGTGTGTCTTGGTCCTAAG -ACGGAAGTGTGTCTTGGTGTTCAG -ACGGAAGTGTGTCTTGGTGCATAG -ACGGAAGTGTGTCTTGGTGACAAG -ACGGAAGTGTGTCTTGGTAAGCAG -ACGGAAGTGTGTCTTGGTCGTCAA -ACGGAAGTGTGTCTTGGTGCTGAA -ACGGAAGTGTGTCTTGGTAGTACG -ACGGAAGTGTGTCTTGGTATCCGA -ACGGAAGTGTGTCTTGGTATGGGA -ACGGAAGTGTGTCTTGGTGTGCAA -ACGGAAGTGTGTCTTGGTGAGGAA -ACGGAAGTGTGTCTTGGTCAGGTA -ACGGAAGTGTGTCTTGGTGACTCT -ACGGAAGTGTGTCTTGGTAGTCCT -ACGGAAGTGTGTCTTGGTTAAGCC -ACGGAAGTGTGTCTTGGTATAGCC -ACGGAAGTGTGTCTTGGTTAACCG -ACGGAAGTGTGTCTTGGTATGCCA -ACGGAAGTGTGTCTTACGGGAAAC -ACGGAAGTGTGTCTTACGAACACC -ACGGAAGTGTGTCTTACGATCGAG -ACGGAAGTGTGTCTTACGCTCCTT -ACGGAAGTGTGTCTTACGCCTGTT -ACGGAAGTGTGTCTTACGCGGTTT -ACGGAAGTGTGTCTTACGGTGGTT -ACGGAAGTGTGTCTTACGGCCTTT -ACGGAAGTGTGTCTTACGGGTCTT -ACGGAAGTGTGTCTTACGACGCTT -ACGGAAGTGTGTCTTACGAGCGTT -ACGGAAGTGTGTCTTACGTTCGTC -ACGGAAGTGTGTCTTACGTCTCTC -ACGGAAGTGTGTCTTACGTGGATC -ACGGAAGTGTGTCTTACGCACTTC -ACGGAAGTGTGTCTTACGGTACTC -ACGGAAGTGTGTCTTACGGATGTC -ACGGAAGTGTGTCTTACGACAGTC -ACGGAAGTGTGTCTTACGTTGCTG -ACGGAAGTGTGTCTTACGTCCATG -ACGGAAGTGTGTCTTACGTGTGTG -ACGGAAGTGTGTCTTACGCTAGTG -ACGGAAGTGTGTCTTACGCATCTG -ACGGAAGTGTGTCTTACGGAGTTG -ACGGAAGTGTGTCTTACGAGACTG -ACGGAAGTGTGTCTTACGTCGGTA -ACGGAAGTGTGTCTTACGTGCCTA -ACGGAAGTGTGTCTTACGCCACTA -ACGGAAGTGTGTCTTACGGGAGTA -ACGGAAGTGTGTCTTACGTCGTCT -ACGGAAGTGTGTCTTACGTGCACT -ACGGAAGTGTGTCTTACGCTGACT -ACGGAAGTGTGTCTTACGCAACCT -ACGGAAGTGTGTCTTACGGCTACT -ACGGAAGTGTGTCTTACGGGATCT -ACGGAAGTGTGTCTTACGAAGGCT -ACGGAAGTGTGTCTTACGTCAACC -ACGGAAGTGTGTCTTACGTGTTCC -ACGGAAGTGTGTCTTACGATTCCC -ACGGAAGTGTGTCTTACGTTCTCG -ACGGAAGTGTGTCTTACGTAGACG -ACGGAAGTGTGTCTTACGGTAACG -ACGGAAGTGTGTCTTACGACTTCG -ACGGAAGTGTGTCTTACGTACGCA -ACGGAAGTGTGTCTTACGCTTGCA -ACGGAAGTGTGTCTTACGCGAACA -ACGGAAGTGTGTCTTACGCAGTCA -ACGGAAGTGTGTCTTACGGATCCA -ACGGAAGTGTGTCTTACGACGACA -ACGGAAGTGTGTCTTACGAGCTCA -ACGGAAGTGTGTCTTACGTCACGT -ACGGAAGTGTGTCTTACGCGTAGT -ACGGAAGTGTGTCTTACGGTCAGT -ACGGAAGTGTGTCTTACGGAAGGT -ACGGAAGTGTGTCTTACGAACCGT -ACGGAAGTGTGTCTTACGTTGTGC -ACGGAAGTGTGTCTTACGCTAAGC -ACGGAAGTGTGTCTTACGACTAGC -ACGGAAGTGTGTCTTACGAGATGC -ACGGAAGTGTGTCTTACGTGAAGG -ACGGAAGTGTGTCTTACGCAATGG -ACGGAAGTGTGTCTTACGATGAGG -ACGGAAGTGTGTCTTACGAATGGG -ACGGAAGTGTGTCTTACGTCCTGA -ACGGAAGTGTGTCTTACGTAGCGA -ACGGAAGTGTGTCTTACGCACAGA -ACGGAAGTGTGTCTTACGGCAAGA -ACGGAAGTGTGTCTTACGGGTTGA -ACGGAAGTGTGTCTTACGTCCGAT -ACGGAAGTGTGTCTTACGTGGCAT -ACGGAAGTGTGTCTTACGCGAGAT -ACGGAAGTGTGTCTTACGTACCAC -ACGGAAGTGTGTCTTACGCAGAAC -ACGGAAGTGTGTCTTACGGTCTAC -ACGGAAGTGTGTCTTACGACGTAC -ACGGAAGTGTGTCTTACGAGTGAC -ACGGAAGTGTGTCTTACGCTGTAG -ACGGAAGTGTGTCTTACGCCTAAG -ACGGAAGTGTGTCTTACGGTTCAG -ACGGAAGTGTGTCTTACGGCATAG -ACGGAAGTGTGTCTTACGGACAAG -ACGGAAGTGTGTCTTACGAAGCAG -ACGGAAGTGTGTCTTACGCGTCAA -ACGGAAGTGTGTCTTACGGCTGAA -ACGGAAGTGTGTCTTACGAGTACG -ACGGAAGTGTGTCTTACGATCCGA -ACGGAAGTGTGTCTTACGATGGGA -ACGGAAGTGTGTCTTACGGTGCAA -ACGGAAGTGTGTCTTACGGAGGAA -ACGGAAGTGTGTCTTACGCAGGTA -ACGGAAGTGTGTCTTACGGACTCT -ACGGAAGTGTGTCTTACGAGTCCT -ACGGAAGTGTGTCTTACGTAAGCC -ACGGAAGTGTGTCTTACGATAGCC -ACGGAAGTGTGTCTTACGTAACCG -ACGGAAGTGTGTCTTACGATGCCA -ACGGAAGTGTGTGTTAGCGGAAAC -ACGGAAGTGTGTGTTAGCAACACC -ACGGAAGTGTGTGTTAGCATCGAG -ACGGAAGTGTGTGTTAGCCTCCTT -ACGGAAGTGTGTGTTAGCCCTGTT -ACGGAAGTGTGTGTTAGCCGGTTT -ACGGAAGTGTGTGTTAGCGTGGTT -ACGGAAGTGTGTGTTAGCGCCTTT -ACGGAAGTGTGTGTTAGCGGTCTT -ACGGAAGTGTGTGTTAGCACGCTT -ACGGAAGTGTGTGTTAGCAGCGTT -ACGGAAGTGTGTGTTAGCTTCGTC -ACGGAAGTGTGTGTTAGCTCTCTC -ACGGAAGTGTGTGTTAGCTGGATC -ACGGAAGTGTGTGTTAGCCACTTC -ACGGAAGTGTGTGTTAGCGTACTC -ACGGAAGTGTGTGTTAGCGATGTC -ACGGAAGTGTGTGTTAGCACAGTC -ACGGAAGTGTGTGTTAGCTTGCTG -ACGGAAGTGTGTGTTAGCTCCATG -ACGGAAGTGTGTGTTAGCTGTGTG -ACGGAAGTGTGTGTTAGCCTAGTG -ACGGAAGTGTGTGTTAGCCATCTG -ACGGAAGTGTGTGTTAGCGAGTTG -ACGGAAGTGTGTGTTAGCAGACTG -ACGGAAGTGTGTGTTAGCTCGGTA -ACGGAAGTGTGTGTTAGCTGCCTA -ACGGAAGTGTGTGTTAGCCCACTA -ACGGAAGTGTGTGTTAGCGGAGTA -ACGGAAGTGTGTGTTAGCTCGTCT -ACGGAAGTGTGTGTTAGCTGCACT -ACGGAAGTGTGTGTTAGCCTGACT -ACGGAAGTGTGTGTTAGCCAACCT -ACGGAAGTGTGTGTTAGCGCTACT -ACGGAAGTGTGTGTTAGCGGATCT -ACGGAAGTGTGTGTTAGCAAGGCT -ACGGAAGTGTGTGTTAGCTCAACC -ACGGAAGTGTGTGTTAGCTGTTCC -ACGGAAGTGTGTGTTAGCATTCCC -ACGGAAGTGTGTGTTAGCTTCTCG -ACGGAAGTGTGTGTTAGCTAGACG -ACGGAAGTGTGTGTTAGCGTAACG -ACGGAAGTGTGTGTTAGCACTTCG -ACGGAAGTGTGTGTTAGCTACGCA -ACGGAAGTGTGTGTTAGCCTTGCA -ACGGAAGTGTGTGTTAGCCGAACA -ACGGAAGTGTGTGTTAGCCAGTCA -ACGGAAGTGTGTGTTAGCGATCCA -ACGGAAGTGTGTGTTAGCACGACA -ACGGAAGTGTGTGTTAGCAGCTCA -ACGGAAGTGTGTGTTAGCTCACGT -ACGGAAGTGTGTGTTAGCCGTAGT -ACGGAAGTGTGTGTTAGCGTCAGT -ACGGAAGTGTGTGTTAGCGAAGGT -ACGGAAGTGTGTGTTAGCAACCGT -ACGGAAGTGTGTGTTAGCTTGTGC -ACGGAAGTGTGTGTTAGCCTAAGC -ACGGAAGTGTGTGTTAGCACTAGC -ACGGAAGTGTGTGTTAGCAGATGC -ACGGAAGTGTGTGTTAGCTGAAGG -ACGGAAGTGTGTGTTAGCCAATGG -ACGGAAGTGTGTGTTAGCATGAGG -ACGGAAGTGTGTGTTAGCAATGGG -ACGGAAGTGTGTGTTAGCTCCTGA -ACGGAAGTGTGTGTTAGCTAGCGA -ACGGAAGTGTGTGTTAGCCACAGA -ACGGAAGTGTGTGTTAGCGCAAGA -ACGGAAGTGTGTGTTAGCGGTTGA -ACGGAAGTGTGTGTTAGCTCCGAT -ACGGAAGTGTGTGTTAGCTGGCAT -ACGGAAGTGTGTGTTAGCCGAGAT -ACGGAAGTGTGTGTTAGCTACCAC -ACGGAAGTGTGTGTTAGCCAGAAC -ACGGAAGTGTGTGTTAGCGTCTAC -ACGGAAGTGTGTGTTAGCACGTAC -ACGGAAGTGTGTGTTAGCAGTGAC -ACGGAAGTGTGTGTTAGCCTGTAG -ACGGAAGTGTGTGTTAGCCCTAAG -ACGGAAGTGTGTGTTAGCGTTCAG -ACGGAAGTGTGTGTTAGCGCATAG -ACGGAAGTGTGTGTTAGCGACAAG -ACGGAAGTGTGTGTTAGCAAGCAG -ACGGAAGTGTGTGTTAGCCGTCAA -ACGGAAGTGTGTGTTAGCGCTGAA -ACGGAAGTGTGTGTTAGCAGTACG -ACGGAAGTGTGTGTTAGCATCCGA -ACGGAAGTGTGTGTTAGCATGGGA -ACGGAAGTGTGTGTTAGCGTGCAA -ACGGAAGTGTGTGTTAGCGAGGAA -ACGGAAGTGTGTGTTAGCCAGGTA -ACGGAAGTGTGTGTTAGCGACTCT -ACGGAAGTGTGTGTTAGCAGTCCT -ACGGAAGTGTGTGTTAGCTAAGCC -ACGGAAGTGTGTGTTAGCATAGCC -ACGGAAGTGTGTGTTAGCTAACCG -ACGGAAGTGTGTGTTAGCATGCCA -ACGGAAGTGTGTGTCTTCGGAAAC -ACGGAAGTGTGTGTCTTCAACACC -ACGGAAGTGTGTGTCTTCATCGAG -ACGGAAGTGTGTGTCTTCCTCCTT -ACGGAAGTGTGTGTCTTCCCTGTT -ACGGAAGTGTGTGTCTTCCGGTTT -ACGGAAGTGTGTGTCTTCGTGGTT -ACGGAAGTGTGTGTCTTCGCCTTT -ACGGAAGTGTGTGTCTTCGGTCTT -ACGGAAGTGTGTGTCTTCACGCTT -ACGGAAGTGTGTGTCTTCAGCGTT -ACGGAAGTGTGTGTCTTCTTCGTC -ACGGAAGTGTGTGTCTTCTCTCTC -ACGGAAGTGTGTGTCTTCTGGATC -ACGGAAGTGTGTGTCTTCCACTTC -ACGGAAGTGTGTGTCTTCGTACTC -ACGGAAGTGTGTGTCTTCGATGTC -ACGGAAGTGTGTGTCTTCACAGTC -ACGGAAGTGTGTGTCTTCTTGCTG -ACGGAAGTGTGTGTCTTCTCCATG -ACGGAAGTGTGTGTCTTCTGTGTG -ACGGAAGTGTGTGTCTTCCTAGTG -ACGGAAGTGTGTGTCTTCCATCTG -ACGGAAGTGTGTGTCTTCGAGTTG -ACGGAAGTGTGTGTCTTCAGACTG -ACGGAAGTGTGTGTCTTCTCGGTA -ACGGAAGTGTGTGTCTTCTGCCTA -ACGGAAGTGTGTGTCTTCCCACTA -ACGGAAGTGTGTGTCTTCGGAGTA -ACGGAAGTGTGTGTCTTCTCGTCT -ACGGAAGTGTGTGTCTTCTGCACT -ACGGAAGTGTGTGTCTTCCTGACT -ACGGAAGTGTGTGTCTTCCAACCT -ACGGAAGTGTGTGTCTTCGCTACT -ACGGAAGTGTGTGTCTTCGGATCT -ACGGAAGTGTGTGTCTTCAAGGCT -ACGGAAGTGTGTGTCTTCTCAACC -ACGGAAGTGTGTGTCTTCTGTTCC -ACGGAAGTGTGTGTCTTCATTCCC -ACGGAAGTGTGTGTCTTCTTCTCG -ACGGAAGTGTGTGTCTTCTAGACG -ACGGAAGTGTGTGTCTTCGTAACG -ACGGAAGTGTGTGTCTTCACTTCG -ACGGAAGTGTGTGTCTTCTACGCA -ACGGAAGTGTGTGTCTTCCTTGCA -ACGGAAGTGTGTGTCTTCCGAACA -ACGGAAGTGTGTGTCTTCCAGTCA -ACGGAAGTGTGTGTCTTCGATCCA -ACGGAAGTGTGTGTCTTCACGACA -ACGGAAGTGTGTGTCTTCAGCTCA -ACGGAAGTGTGTGTCTTCTCACGT -ACGGAAGTGTGTGTCTTCCGTAGT -ACGGAAGTGTGTGTCTTCGTCAGT -ACGGAAGTGTGTGTCTTCGAAGGT -ACGGAAGTGTGTGTCTTCAACCGT -ACGGAAGTGTGTGTCTTCTTGTGC -ACGGAAGTGTGTGTCTTCCTAAGC -ACGGAAGTGTGTGTCTTCACTAGC -ACGGAAGTGTGTGTCTTCAGATGC -ACGGAAGTGTGTGTCTTCTGAAGG -ACGGAAGTGTGTGTCTTCCAATGG -ACGGAAGTGTGTGTCTTCATGAGG -ACGGAAGTGTGTGTCTTCAATGGG -ACGGAAGTGTGTGTCTTCTCCTGA -ACGGAAGTGTGTGTCTTCTAGCGA -ACGGAAGTGTGTGTCTTCCACAGA -ACGGAAGTGTGTGTCTTCGCAAGA -ACGGAAGTGTGTGTCTTCGGTTGA -ACGGAAGTGTGTGTCTTCTCCGAT -ACGGAAGTGTGTGTCTTCTGGCAT -ACGGAAGTGTGTGTCTTCCGAGAT -ACGGAAGTGTGTGTCTTCTACCAC -ACGGAAGTGTGTGTCTTCCAGAAC -ACGGAAGTGTGTGTCTTCGTCTAC -ACGGAAGTGTGTGTCTTCACGTAC -ACGGAAGTGTGTGTCTTCAGTGAC -ACGGAAGTGTGTGTCTTCCTGTAG -ACGGAAGTGTGTGTCTTCCCTAAG -ACGGAAGTGTGTGTCTTCGTTCAG -ACGGAAGTGTGTGTCTTCGCATAG -ACGGAAGTGTGTGTCTTCGACAAG -ACGGAAGTGTGTGTCTTCAAGCAG -ACGGAAGTGTGTGTCTTCCGTCAA -ACGGAAGTGTGTGTCTTCGCTGAA -ACGGAAGTGTGTGTCTTCAGTACG -ACGGAAGTGTGTGTCTTCATCCGA -ACGGAAGTGTGTGTCTTCATGGGA -ACGGAAGTGTGTGTCTTCGTGCAA -ACGGAAGTGTGTGTCTTCGAGGAA -ACGGAAGTGTGTGTCTTCCAGGTA -ACGGAAGTGTGTGTCTTCGACTCT -ACGGAAGTGTGTGTCTTCAGTCCT -ACGGAAGTGTGTGTCTTCTAAGCC -ACGGAAGTGTGTGTCTTCATAGCC -ACGGAAGTGTGTGTCTTCTAACCG -ACGGAAGTGTGTGTCTTCATGCCA -ACGGAAGTGTGTCTCTCTGGAAAC -ACGGAAGTGTGTCTCTCTAACACC -ACGGAAGTGTGTCTCTCTATCGAG -ACGGAAGTGTGTCTCTCTCTCCTT -ACGGAAGTGTGTCTCTCTCCTGTT -ACGGAAGTGTGTCTCTCTCGGTTT -ACGGAAGTGTGTCTCTCTGTGGTT -ACGGAAGTGTGTCTCTCTGCCTTT -ACGGAAGTGTGTCTCTCTGGTCTT -ACGGAAGTGTGTCTCTCTACGCTT -ACGGAAGTGTGTCTCTCTAGCGTT -ACGGAAGTGTGTCTCTCTTTCGTC -ACGGAAGTGTGTCTCTCTTCTCTC -ACGGAAGTGTGTCTCTCTTGGATC -ACGGAAGTGTGTCTCTCTCACTTC -ACGGAAGTGTGTCTCTCTGTACTC -ACGGAAGTGTGTCTCTCTGATGTC -ACGGAAGTGTGTCTCTCTACAGTC -ACGGAAGTGTGTCTCTCTTTGCTG -ACGGAAGTGTGTCTCTCTTCCATG -ACGGAAGTGTGTCTCTCTTGTGTG -ACGGAAGTGTGTCTCTCTCTAGTG -ACGGAAGTGTGTCTCTCTCATCTG -ACGGAAGTGTGTCTCTCTGAGTTG -ACGGAAGTGTGTCTCTCTAGACTG -ACGGAAGTGTGTCTCTCTTCGGTA -ACGGAAGTGTGTCTCTCTTGCCTA -ACGGAAGTGTGTCTCTCTCCACTA -ACGGAAGTGTGTCTCTCTGGAGTA -ACGGAAGTGTGTCTCTCTTCGTCT -ACGGAAGTGTGTCTCTCTTGCACT -ACGGAAGTGTGTCTCTCTCTGACT -ACGGAAGTGTGTCTCTCTCAACCT -ACGGAAGTGTGTCTCTCTGCTACT -ACGGAAGTGTGTCTCTCTGGATCT -ACGGAAGTGTGTCTCTCTAAGGCT -ACGGAAGTGTGTCTCTCTTCAACC -ACGGAAGTGTGTCTCTCTTGTTCC -ACGGAAGTGTGTCTCTCTATTCCC -ACGGAAGTGTGTCTCTCTTTCTCG -ACGGAAGTGTGTCTCTCTTAGACG -ACGGAAGTGTGTCTCTCTGTAACG -ACGGAAGTGTGTCTCTCTACTTCG -ACGGAAGTGTGTCTCTCTTACGCA -ACGGAAGTGTGTCTCTCTCTTGCA -ACGGAAGTGTGTCTCTCTCGAACA -ACGGAAGTGTGTCTCTCTCAGTCA -ACGGAAGTGTGTCTCTCTGATCCA -ACGGAAGTGTGTCTCTCTACGACA -ACGGAAGTGTGTCTCTCTAGCTCA -ACGGAAGTGTGTCTCTCTTCACGT -ACGGAAGTGTGTCTCTCTCGTAGT -ACGGAAGTGTGTCTCTCTGTCAGT -ACGGAAGTGTGTCTCTCTGAAGGT -ACGGAAGTGTGTCTCTCTAACCGT -ACGGAAGTGTGTCTCTCTTTGTGC -ACGGAAGTGTGTCTCTCTCTAAGC -ACGGAAGTGTGTCTCTCTACTAGC -ACGGAAGTGTGTCTCTCTAGATGC -ACGGAAGTGTGTCTCTCTTGAAGG -ACGGAAGTGTGTCTCTCTCAATGG -ACGGAAGTGTGTCTCTCTATGAGG -ACGGAAGTGTGTCTCTCTAATGGG -ACGGAAGTGTGTCTCTCTTCCTGA -ACGGAAGTGTGTCTCTCTTAGCGA -ACGGAAGTGTGTCTCTCTCACAGA -ACGGAAGTGTGTCTCTCTGCAAGA -ACGGAAGTGTGTCTCTCTGGTTGA -ACGGAAGTGTGTCTCTCTTCCGAT -ACGGAAGTGTGTCTCTCTTGGCAT -ACGGAAGTGTGTCTCTCTCGAGAT -ACGGAAGTGTGTCTCTCTTACCAC -ACGGAAGTGTGTCTCTCTCAGAAC -ACGGAAGTGTGTCTCTCTGTCTAC -ACGGAAGTGTGTCTCTCTACGTAC -ACGGAAGTGTGTCTCTCTAGTGAC -ACGGAAGTGTGTCTCTCTCTGTAG -ACGGAAGTGTGTCTCTCTCCTAAG -ACGGAAGTGTGTCTCTCTGTTCAG -ACGGAAGTGTGTCTCTCTGCATAG -ACGGAAGTGTGTCTCTCTGACAAG -ACGGAAGTGTGTCTCTCTAAGCAG -ACGGAAGTGTGTCTCTCTCGTCAA -ACGGAAGTGTGTCTCTCTGCTGAA -ACGGAAGTGTGTCTCTCTAGTACG -ACGGAAGTGTGTCTCTCTATCCGA -ACGGAAGTGTGTCTCTCTATGGGA -ACGGAAGTGTGTCTCTCTGTGCAA -ACGGAAGTGTGTCTCTCTGAGGAA -ACGGAAGTGTGTCTCTCTCAGGTA -ACGGAAGTGTGTCTCTCTGACTCT -ACGGAAGTGTGTCTCTCTAGTCCT -ACGGAAGTGTGTCTCTCTTAAGCC -ACGGAAGTGTGTCTCTCTATAGCC -ACGGAAGTGTGTCTCTCTTAACCG -ACGGAAGTGTGTCTCTCTATGCCA -ACGGAAGTGTGTATCTGGGGAAAC -ACGGAAGTGTGTATCTGGAACACC -ACGGAAGTGTGTATCTGGATCGAG -ACGGAAGTGTGTATCTGGCTCCTT -ACGGAAGTGTGTATCTGGCCTGTT -ACGGAAGTGTGTATCTGGCGGTTT -ACGGAAGTGTGTATCTGGGTGGTT -ACGGAAGTGTGTATCTGGGCCTTT -ACGGAAGTGTGTATCTGGGGTCTT -ACGGAAGTGTGTATCTGGACGCTT -ACGGAAGTGTGTATCTGGAGCGTT -ACGGAAGTGTGTATCTGGTTCGTC -ACGGAAGTGTGTATCTGGTCTCTC -ACGGAAGTGTGTATCTGGTGGATC -ACGGAAGTGTGTATCTGGCACTTC -ACGGAAGTGTGTATCTGGGTACTC -ACGGAAGTGTGTATCTGGGATGTC -ACGGAAGTGTGTATCTGGACAGTC -ACGGAAGTGTGTATCTGGTTGCTG -ACGGAAGTGTGTATCTGGTCCATG -ACGGAAGTGTGTATCTGGTGTGTG -ACGGAAGTGTGTATCTGGCTAGTG -ACGGAAGTGTGTATCTGGCATCTG -ACGGAAGTGTGTATCTGGGAGTTG -ACGGAAGTGTGTATCTGGAGACTG -ACGGAAGTGTGTATCTGGTCGGTA -ACGGAAGTGTGTATCTGGTGCCTA -ACGGAAGTGTGTATCTGGCCACTA -ACGGAAGTGTGTATCTGGGGAGTA -ACGGAAGTGTGTATCTGGTCGTCT -ACGGAAGTGTGTATCTGGTGCACT -ACGGAAGTGTGTATCTGGCTGACT -ACGGAAGTGTGTATCTGGCAACCT -ACGGAAGTGTGTATCTGGGCTACT -ACGGAAGTGTGTATCTGGGGATCT -ACGGAAGTGTGTATCTGGAAGGCT -ACGGAAGTGTGTATCTGGTCAACC -ACGGAAGTGTGTATCTGGTGTTCC -ACGGAAGTGTGTATCTGGATTCCC -ACGGAAGTGTGTATCTGGTTCTCG -ACGGAAGTGTGTATCTGGTAGACG -ACGGAAGTGTGTATCTGGGTAACG -ACGGAAGTGTGTATCTGGACTTCG -ACGGAAGTGTGTATCTGGTACGCA -ACGGAAGTGTGTATCTGGCTTGCA -ACGGAAGTGTGTATCTGGCGAACA -ACGGAAGTGTGTATCTGGCAGTCA -ACGGAAGTGTGTATCTGGGATCCA -ACGGAAGTGTGTATCTGGACGACA -ACGGAAGTGTGTATCTGGAGCTCA -ACGGAAGTGTGTATCTGGTCACGT -ACGGAAGTGTGTATCTGGCGTAGT -ACGGAAGTGTGTATCTGGGTCAGT -ACGGAAGTGTGTATCTGGGAAGGT -ACGGAAGTGTGTATCTGGAACCGT -ACGGAAGTGTGTATCTGGTTGTGC -ACGGAAGTGTGTATCTGGCTAAGC -ACGGAAGTGTGTATCTGGACTAGC -ACGGAAGTGTGTATCTGGAGATGC -ACGGAAGTGTGTATCTGGTGAAGG -ACGGAAGTGTGTATCTGGCAATGG -ACGGAAGTGTGTATCTGGATGAGG -ACGGAAGTGTGTATCTGGAATGGG -ACGGAAGTGTGTATCTGGTCCTGA -ACGGAAGTGTGTATCTGGTAGCGA -ACGGAAGTGTGTATCTGGCACAGA -ACGGAAGTGTGTATCTGGGCAAGA -ACGGAAGTGTGTATCTGGGGTTGA -ACGGAAGTGTGTATCTGGTCCGAT -ACGGAAGTGTGTATCTGGTGGCAT -ACGGAAGTGTGTATCTGGCGAGAT -ACGGAAGTGTGTATCTGGTACCAC -ACGGAAGTGTGTATCTGGCAGAAC -ACGGAAGTGTGTATCTGGGTCTAC -ACGGAAGTGTGTATCTGGACGTAC -ACGGAAGTGTGTATCTGGAGTGAC -ACGGAAGTGTGTATCTGGCTGTAG -ACGGAAGTGTGTATCTGGCCTAAG -ACGGAAGTGTGTATCTGGGTTCAG -ACGGAAGTGTGTATCTGGGCATAG -ACGGAAGTGTGTATCTGGGACAAG -ACGGAAGTGTGTATCTGGAAGCAG -ACGGAAGTGTGTATCTGGCGTCAA -ACGGAAGTGTGTATCTGGGCTGAA -ACGGAAGTGTGTATCTGGAGTACG -ACGGAAGTGTGTATCTGGATCCGA -ACGGAAGTGTGTATCTGGATGGGA -ACGGAAGTGTGTATCTGGGTGCAA -ACGGAAGTGTGTATCTGGGAGGAA -ACGGAAGTGTGTATCTGGCAGGTA -ACGGAAGTGTGTATCTGGGACTCT -ACGGAAGTGTGTATCTGGAGTCCT -ACGGAAGTGTGTATCTGGTAAGCC -ACGGAAGTGTGTATCTGGATAGCC -ACGGAAGTGTGTATCTGGTAACCG -ACGGAAGTGTGTATCTGGATGCCA -ACGGAAGTGTGTTTCCACGGAAAC -ACGGAAGTGTGTTTCCACAACACC -ACGGAAGTGTGTTTCCACATCGAG -ACGGAAGTGTGTTTCCACCTCCTT -ACGGAAGTGTGTTTCCACCCTGTT -ACGGAAGTGTGTTTCCACCGGTTT -ACGGAAGTGTGTTTCCACGTGGTT -ACGGAAGTGTGTTTCCACGCCTTT -ACGGAAGTGTGTTTCCACGGTCTT -ACGGAAGTGTGTTTCCACACGCTT -ACGGAAGTGTGTTTCCACAGCGTT -ACGGAAGTGTGTTTCCACTTCGTC -ACGGAAGTGTGTTTCCACTCTCTC -ACGGAAGTGTGTTTCCACTGGATC -ACGGAAGTGTGTTTCCACCACTTC -ACGGAAGTGTGTTTCCACGTACTC -ACGGAAGTGTGTTTCCACGATGTC -ACGGAAGTGTGTTTCCACACAGTC -ACGGAAGTGTGTTTCCACTTGCTG -ACGGAAGTGTGTTTCCACTCCATG -ACGGAAGTGTGTTTCCACTGTGTG -ACGGAAGTGTGTTTCCACCTAGTG -ACGGAAGTGTGTTTCCACCATCTG -ACGGAAGTGTGTTTCCACGAGTTG -ACGGAAGTGTGTTTCCACAGACTG -ACGGAAGTGTGTTTCCACTCGGTA -ACGGAAGTGTGTTTCCACTGCCTA -ACGGAAGTGTGTTTCCACCCACTA -ACGGAAGTGTGTTTCCACGGAGTA -ACGGAAGTGTGTTTCCACTCGTCT -ACGGAAGTGTGTTTCCACTGCACT -ACGGAAGTGTGTTTCCACCTGACT -ACGGAAGTGTGTTTCCACCAACCT -ACGGAAGTGTGTTTCCACGCTACT -ACGGAAGTGTGTTTCCACGGATCT -ACGGAAGTGTGTTTCCACAAGGCT -ACGGAAGTGTGTTTCCACTCAACC -ACGGAAGTGTGTTTCCACTGTTCC -ACGGAAGTGTGTTTCCACATTCCC -ACGGAAGTGTGTTTCCACTTCTCG -ACGGAAGTGTGTTTCCACTAGACG -ACGGAAGTGTGTTTCCACGTAACG -ACGGAAGTGTGTTTCCACACTTCG -ACGGAAGTGTGTTTCCACTACGCA -ACGGAAGTGTGTTTCCACCTTGCA -ACGGAAGTGTGTTTCCACCGAACA -ACGGAAGTGTGTTTCCACCAGTCA -ACGGAAGTGTGTTTCCACGATCCA -ACGGAAGTGTGTTTCCACACGACA -ACGGAAGTGTGTTTCCACAGCTCA -ACGGAAGTGTGTTTCCACTCACGT -ACGGAAGTGTGTTTCCACCGTAGT -ACGGAAGTGTGTTTCCACGTCAGT -ACGGAAGTGTGTTTCCACGAAGGT -ACGGAAGTGTGTTTCCACAACCGT -ACGGAAGTGTGTTTCCACTTGTGC -ACGGAAGTGTGTTTCCACCTAAGC -ACGGAAGTGTGTTTCCACACTAGC -ACGGAAGTGTGTTTCCACAGATGC -ACGGAAGTGTGTTTCCACTGAAGG -ACGGAAGTGTGTTTCCACCAATGG -ACGGAAGTGTGTTTCCACATGAGG -ACGGAAGTGTGTTTCCACAATGGG -ACGGAAGTGTGTTTCCACTCCTGA -ACGGAAGTGTGTTTCCACTAGCGA -ACGGAAGTGTGTTTCCACCACAGA -ACGGAAGTGTGTTTCCACGCAAGA -ACGGAAGTGTGTTTCCACGGTTGA -ACGGAAGTGTGTTTCCACTCCGAT -ACGGAAGTGTGTTTCCACTGGCAT -ACGGAAGTGTGTTTCCACCGAGAT -ACGGAAGTGTGTTTCCACTACCAC -ACGGAAGTGTGTTTCCACCAGAAC -ACGGAAGTGTGTTTCCACGTCTAC -ACGGAAGTGTGTTTCCACACGTAC -ACGGAAGTGTGTTTCCACAGTGAC -ACGGAAGTGTGTTTCCACCTGTAG -ACGGAAGTGTGTTTCCACCCTAAG -ACGGAAGTGTGTTTCCACGTTCAG -ACGGAAGTGTGTTTCCACGCATAG -ACGGAAGTGTGTTTCCACGACAAG -ACGGAAGTGTGTTTCCACAAGCAG -ACGGAAGTGTGTTTCCACCGTCAA -ACGGAAGTGTGTTTCCACGCTGAA -ACGGAAGTGTGTTTCCACAGTACG -ACGGAAGTGTGTTTCCACATCCGA -ACGGAAGTGTGTTTCCACATGGGA -ACGGAAGTGTGTTTCCACGTGCAA -ACGGAAGTGTGTTTCCACGAGGAA -ACGGAAGTGTGTTTCCACCAGGTA -ACGGAAGTGTGTTTCCACGACTCT -ACGGAAGTGTGTTTCCACAGTCCT -ACGGAAGTGTGTTTCCACTAAGCC -ACGGAAGTGTGTTTCCACATAGCC -ACGGAAGTGTGTTTCCACTAACCG -ACGGAAGTGTGTTTCCACATGCCA -ACGGAAGTGTGTCTCGTAGGAAAC -ACGGAAGTGTGTCTCGTAAACACC -ACGGAAGTGTGTCTCGTAATCGAG -ACGGAAGTGTGTCTCGTACTCCTT -ACGGAAGTGTGTCTCGTACCTGTT -ACGGAAGTGTGTCTCGTACGGTTT -ACGGAAGTGTGTCTCGTAGTGGTT -ACGGAAGTGTGTCTCGTAGCCTTT -ACGGAAGTGTGTCTCGTAGGTCTT -ACGGAAGTGTGTCTCGTAACGCTT -ACGGAAGTGTGTCTCGTAAGCGTT -ACGGAAGTGTGTCTCGTATTCGTC -ACGGAAGTGTGTCTCGTATCTCTC -ACGGAAGTGTGTCTCGTATGGATC -ACGGAAGTGTGTCTCGTACACTTC -ACGGAAGTGTGTCTCGTAGTACTC -ACGGAAGTGTGTCTCGTAGATGTC -ACGGAAGTGTGTCTCGTAACAGTC -ACGGAAGTGTGTCTCGTATTGCTG -ACGGAAGTGTGTCTCGTATCCATG -ACGGAAGTGTGTCTCGTATGTGTG -ACGGAAGTGTGTCTCGTACTAGTG -ACGGAAGTGTGTCTCGTACATCTG -ACGGAAGTGTGTCTCGTAGAGTTG -ACGGAAGTGTGTCTCGTAAGACTG -ACGGAAGTGTGTCTCGTATCGGTA -ACGGAAGTGTGTCTCGTATGCCTA -ACGGAAGTGTGTCTCGTACCACTA -ACGGAAGTGTGTCTCGTAGGAGTA -ACGGAAGTGTGTCTCGTATCGTCT -ACGGAAGTGTGTCTCGTATGCACT -ACGGAAGTGTGTCTCGTACTGACT -ACGGAAGTGTGTCTCGTACAACCT -ACGGAAGTGTGTCTCGTAGCTACT -ACGGAAGTGTGTCTCGTAGGATCT -ACGGAAGTGTGTCTCGTAAAGGCT -ACGGAAGTGTGTCTCGTATCAACC -ACGGAAGTGTGTCTCGTATGTTCC -ACGGAAGTGTGTCTCGTAATTCCC -ACGGAAGTGTGTCTCGTATTCTCG -ACGGAAGTGTGTCTCGTATAGACG -ACGGAAGTGTGTCTCGTAGTAACG -ACGGAAGTGTGTCTCGTAACTTCG -ACGGAAGTGTGTCTCGTATACGCA -ACGGAAGTGTGTCTCGTACTTGCA -ACGGAAGTGTGTCTCGTACGAACA -ACGGAAGTGTGTCTCGTACAGTCA -ACGGAAGTGTGTCTCGTAGATCCA -ACGGAAGTGTGTCTCGTAACGACA -ACGGAAGTGTGTCTCGTAAGCTCA -ACGGAAGTGTGTCTCGTATCACGT -ACGGAAGTGTGTCTCGTACGTAGT -ACGGAAGTGTGTCTCGTAGTCAGT -ACGGAAGTGTGTCTCGTAGAAGGT -ACGGAAGTGTGTCTCGTAAACCGT -ACGGAAGTGTGTCTCGTATTGTGC -ACGGAAGTGTGTCTCGTACTAAGC -ACGGAAGTGTGTCTCGTAACTAGC -ACGGAAGTGTGTCTCGTAAGATGC -ACGGAAGTGTGTCTCGTATGAAGG -ACGGAAGTGTGTCTCGTACAATGG -ACGGAAGTGTGTCTCGTAATGAGG -ACGGAAGTGTGTCTCGTAAATGGG -ACGGAAGTGTGTCTCGTATCCTGA -ACGGAAGTGTGTCTCGTATAGCGA -ACGGAAGTGTGTCTCGTACACAGA -ACGGAAGTGTGTCTCGTAGCAAGA -ACGGAAGTGTGTCTCGTAGGTTGA -ACGGAAGTGTGTCTCGTATCCGAT -ACGGAAGTGTGTCTCGTATGGCAT -ACGGAAGTGTGTCTCGTACGAGAT -ACGGAAGTGTGTCTCGTATACCAC -ACGGAAGTGTGTCTCGTACAGAAC -ACGGAAGTGTGTCTCGTAGTCTAC -ACGGAAGTGTGTCTCGTAACGTAC -ACGGAAGTGTGTCTCGTAAGTGAC -ACGGAAGTGTGTCTCGTACTGTAG -ACGGAAGTGTGTCTCGTACCTAAG -ACGGAAGTGTGTCTCGTAGTTCAG -ACGGAAGTGTGTCTCGTAGCATAG -ACGGAAGTGTGTCTCGTAGACAAG -ACGGAAGTGTGTCTCGTAAAGCAG -ACGGAAGTGTGTCTCGTACGTCAA -ACGGAAGTGTGTCTCGTAGCTGAA -ACGGAAGTGTGTCTCGTAAGTACG -ACGGAAGTGTGTCTCGTAATCCGA -ACGGAAGTGTGTCTCGTAATGGGA -ACGGAAGTGTGTCTCGTAGTGCAA -ACGGAAGTGTGTCTCGTAGAGGAA -ACGGAAGTGTGTCTCGTACAGGTA -ACGGAAGTGTGTCTCGTAGACTCT -ACGGAAGTGTGTCTCGTAAGTCCT -ACGGAAGTGTGTCTCGTATAAGCC -ACGGAAGTGTGTCTCGTAATAGCC -ACGGAAGTGTGTCTCGTATAACCG -ACGGAAGTGTGTCTCGTAATGCCA -ACGGAAGTGTGTGTCGATGGAAAC -ACGGAAGTGTGTGTCGATAACACC -ACGGAAGTGTGTGTCGATATCGAG -ACGGAAGTGTGTGTCGATCTCCTT -ACGGAAGTGTGTGTCGATCCTGTT -ACGGAAGTGTGTGTCGATCGGTTT -ACGGAAGTGTGTGTCGATGTGGTT -ACGGAAGTGTGTGTCGATGCCTTT -ACGGAAGTGTGTGTCGATGGTCTT -ACGGAAGTGTGTGTCGATACGCTT -ACGGAAGTGTGTGTCGATAGCGTT -ACGGAAGTGTGTGTCGATTTCGTC -ACGGAAGTGTGTGTCGATTCTCTC -ACGGAAGTGTGTGTCGATTGGATC -ACGGAAGTGTGTGTCGATCACTTC -ACGGAAGTGTGTGTCGATGTACTC -ACGGAAGTGTGTGTCGATGATGTC -ACGGAAGTGTGTGTCGATACAGTC -ACGGAAGTGTGTGTCGATTTGCTG -ACGGAAGTGTGTGTCGATTCCATG -ACGGAAGTGTGTGTCGATTGTGTG -ACGGAAGTGTGTGTCGATCTAGTG -ACGGAAGTGTGTGTCGATCATCTG -ACGGAAGTGTGTGTCGATGAGTTG -ACGGAAGTGTGTGTCGATAGACTG -ACGGAAGTGTGTGTCGATTCGGTA -ACGGAAGTGTGTGTCGATTGCCTA -ACGGAAGTGTGTGTCGATCCACTA -ACGGAAGTGTGTGTCGATGGAGTA -ACGGAAGTGTGTGTCGATTCGTCT -ACGGAAGTGTGTGTCGATTGCACT -ACGGAAGTGTGTGTCGATCTGACT -ACGGAAGTGTGTGTCGATCAACCT -ACGGAAGTGTGTGTCGATGCTACT -ACGGAAGTGTGTGTCGATGGATCT -ACGGAAGTGTGTGTCGATAAGGCT -ACGGAAGTGTGTGTCGATTCAACC -ACGGAAGTGTGTGTCGATTGTTCC -ACGGAAGTGTGTGTCGATATTCCC -ACGGAAGTGTGTGTCGATTTCTCG -ACGGAAGTGTGTGTCGATTAGACG -ACGGAAGTGTGTGTCGATGTAACG -ACGGAAGTGTGTGTCGATACTTCG -ACGGAAGTGTGTGTCGATTACGCA -ACGGAAGTGTGTGTCGATCTTGCA -ACGGAAGTGTGTGTCGATCGAACA -ACGGAAGTGTGTGTCGATCAGTCA -ACGGAAGTGTGTGTCGATGATCCA -ACGGAAGTGTGTGTCGATACGACA -ACGGAAGTGTGTGTCGATAGCTCA -ACGGAAGTGTGTGTCGATTCACGT -ACGGAAGTGTGTGTCGATCGTAGT -ACGGAAGTGTGTGTCGATGTCAGT -ACGGAAGTGTGTGTCGATGAAGGT -ACGGAAGTGTGTGTCGATAACCGT -ACGGAAGTGTGTGTCGATTTGTGC -ACGGAAGTGTGTGTCGATCTAAGC -ACGGAAGTGTGTGTCGATACTAGC -ACGGAAGTGTGTGTCGATAGATGC -ACGGAAGTGTGTGTCGATTGAAGG -ACGGAAGTGTGTGTCGATCAATGG -ACGGAAGTGTGTGTCGATATGAGG -ACGGAAGTGTGTGTCGATAATGGG -ACGGAAGTGTGTGTCGATTCCTGA -ACGGAAGTGTGTGTCGATTAGCGA -ACGGAAGTGTGTGTCGATCACAGA -ACGGAAGTGTGTGTCGATGCAAGA -ACGGAAGTGTGTGTCGATGGTTGA -ACGGAAGTGTGTGTCGATTCCGAT -ACGGAAGTGTGTGTCGATTGGCAT -ACGGAAGTGTGTGTCGATCGAGAT -ACGGAAGTGTGTGTCGATTACCAC -ACGGAAGTGTGTGTCGATCAGAAC -ACGGAAGTGTGTGTCGATGTCTAC -ACGGAAGTGTGTGTCGATACGTAC -ACGGAAGTGTGTGTCGATAGTGAC -ACGGAAGTGTGTGTCGATCTGTAG -ACGGAAGTGTGTGTCGATCCTAAG -ACGGAAGTGTGTGTCGATGTTCAG -ACGGAAGTGTGTGTCGATGCATAG -ACGGAAGTGTGTGTCGATGACAAG -ACGGAAGTGTGTGTCGATAAGCAG -ACGGAAGTGTGTGTCGATCGTCAA -ACGGAAGTGTGTGTCGATGCTGAA -ACGGAAGTGTGTGTCGATAGTACG -ACGGAAGTGTGTGTCGATATCCGA -ACGGAAGTGTGTGTCGATATGGGA -ACGGAAGTGTGTGTCGATGTGCAA -ACGGAAGTGTGTGTCGATGAGGAA -ACGGAAGTGTGTGTCGATCAGGTA -ACGGAAGTGTGTGTCGATGACTCT -ACGGAAGTGTGTGTCGATAGTCCT -ACGGAAGTGTGTGTCGATTAAGCC -ACGGAAGTGTGTGTCGATATAGCC -ACGGAAGTGTGTGTCGATTAACCG -ACGGAAGTGTGTGTCGATATGCCA -ACGGAAGTGTGTGTCACAGGAAAC -ACGGAAGTGTGTGTCACAAACACC -ACGGAAGTGTGTGTCACAATCGAG -ACGGAAGTGTGTGTCACACTCCTT -ACGGAAGTGTGTGTCACACCTGTT -ACGGAAGTGTGTGTCACACGGTTT -ACGGAAGTGTGTGTCACAGTGGTT -ACGGAAGTGTGTGTCACAGCCTTT -ACGGAAGTGTGTGTCACAGGTCTT -ACGGAAGTGTGTGTCACAACGCTT -ACGGAAGTGTGTGTCACAAGCGTT -ACGGAAGTGTGTGTCACATTCGTC -ACGGAAGTGTGTGTCACATCTCTC -ACGGAAGTGTGTGTCACATGGATC -ACGGAAGTGTGTGTCACACACTTC -ACGGAAGTGTGTGTCACAGTACTC -ACGGAAGTGTGTGTCACAGATGTC -ACGGAAGTGTGTGTCACAACAGTC -ACGGAAGTGTGTGTCACATTGCTG -ACGGAAGTGTGTGTCACATCCATG -ACGGAAGTGTGTGTCACATGTGTG -ACGGAAGTGTGTGTCACACTAGTG -ACGGAAGTGTGTGTCACACATCTG -ACGGAAGTGTGTGTCACAGAGTTG -ACGGAAGTGTGTGTCACAAGACTG -ACGGAAGTGTGTGTCACATCGGTA -ACGGAAGTGTGTGTCACATGCCTA -ACGGAAGTGTGTGTCACACCACTA -ACGGAAGTGTGTGTCACAGGAGTA -ACGGAAGTGTGTGTCACATCGTCT -ACGGAAGTGTGTGTCACATGCACT -ACGGAAGTGTGTGTCACACTGACT -ACGGAAGTGTGTGTCACACAACCT -ACGGAAGTGTGTGTCACAGCTACT -ACGGAAGTGTGTGTCACAGGATCT -ACGGAAGTGTGTGTCACAAAGGCT -ACGGAAGTGTGTGTCACATCAACC -ACGGAAGTGTGTGTCACATGTTCC -ACGGAAGTGTGTGTCACAATTCCC -ACGGAAGTGTGTGTCACATTCTCG -ACGGAAGTGTGTGTCACATAGACG -ACGGAAGTGTGTGTCACAGTAACG -ACGGAAGTGTGTGTCACAACTTCG -ACGGAAGTGTGTGTCACATACGCA -ACGGAAGTGTGTGTCACACTTGCA -ACGGAAGTGTGTGTCACACGAACA -ACGGAAGTGTGTGTCACACAGTCA -ACGGAAGTGTGTGTCACAGATCCA -ACGGAAGTGTGTGTCACAACGACA -ACGGAAGTGTGTGTCACAAGCTCA -ACGGAAGTGTGTGTCACATCACGT -ACGGAAGTGTGTGTCACACGTAGT -ACGGAAGTGTGTGTCACAGTCAGT -ACGGAAGTGTGTGTCACAGAAGGT -ACGGAAGTGTGTGTCACAAACCGT -ACGGAAGTGTGTGTCACATTGTGC -ACGGAAGTGTGTGTCACACTAAGC -ACGGAAGTGTGTGTCACAACTAGC -ACGGAAGTGTGTGTCACAAGATGC -ACGGAAGTGTGTGTCACATGAAGG -ACGGAAGTGTGTGTCACACAATGG -ACGGAAGTGTGTGTCACAATGAGG -ACGGAAGTGTGTGTCACAAATGGG -ACGGAAGTGTGTGTCACATCCTGA -ACGGAAGTGTGTGTCACATAGCGA -ACGGAAGTGTGTGTCACACACAGA -ACGGAAGTGTGTGTCACAGCAAGA -ACGGAAGTGTGTGTCACAGGTTGA -ACGGAAGTGTGTGTCACATCCGAT -ACGGAAGTGTGTGTCACATGGCAT -ACGGAAGTGTGTGTCACACGAGAT -ACGGAAGTGTGTGTCACATACCAC -ACGGAAGTGTGTGTCACACAGAAC -ACGGAAGTGTGTGTCACAGTCTAC -ACGGAAGTGTGTGTCACAACGTAC -ACGGAAGTGTGTGTCACAAGTGAC -ACGGAAGTGTGTGTCACACTGTAG -ACGGAAGTGTGTGTCACACCTAAG -ACGGAAGTGTGTGTCACAGTTCAG -ACGGAAGTGTGTGTCACAGCATAG -ACGGAAGTGTGTGTCACAGACAAG -ACGGAAGTGTGTGTCACAAAGCAG -ACGGAAGTGTGTGTCACACGTCAA -ACGGAAGTGTGTGTCACAGCTGAA -ACGGAAGTGTGTGTCACAAGTACG -ACGGAAGTGTGTGTCACAATCCGA -ACGGAAGTGTGTGTCACAATGGGA -ACGGAAGTGTGTGTCACAGTGCAA -ACGGAAGTGTGTGTCACAGAGGAA -ACGGAAGTGTGTGTCACACAGGTA -ACGGAAGTGTGTGTCACAGACTCT -ACGGAAGTGTGTGTCACAAGTCCT -ACGGAAGTGTGTGTCACATAAGCC -ACGGAAGTGTGTGTCACAATAGCC -ACGGAAGTGTGTGTCACATAACCG -ACGGAAGTGTGTGTCACAATGCCA -ACGGAAGTGTGTCTGTTGGGAAAC -ACGGAAGTGTGTCTGTTGAACACC -ACGGAAGTGTGTCTGTTGATCGAG -ACGGAAGTGTGTCTGTTGCTCCTT -ACGGAAGTGTGTCTGTTGCCTGTT -ACGGAAGTGTGTCTGTTGCGGTTT -ACGGAAGTGTGTCTGTTGGTGGTT -ACGGAAGTGTGTCTGTTGGCCTTT -ACGGAAGTGTGTCTGTTGGGTCTT -ACGGAAGTGTGTCTGTTGACGCTT -ACGGAAGTGTGTCTGTTGAGCGTT -ACGGAAGTGTGTCTGTTGTTCGTC -ACGGAAGTGTGTCTGTTGTCTCTC -ACGGAAGTGTGTCTGTTGTGGATC -ACGGAAGTGTGTCTGTTGCACTTC -ACGGAAGTGTGTCTGTTGGTACTC -ACGGAAGTGTGTCTGTTGGATGTC -ACGGAAGTGTGTCTGTTGACAGTC -ACGGAAGTGTGTCTGTTGTTGCTG -ACGGAAGTGTGTCTGTTGTCCATG -ACGGAAGTGTGTCTGTTGTGTGTG -ACGGAAGTGTGTCTGTTGCTAGTG -ACGGAAGTGTGTCTGTTGCATCTG -ACGGAAGTGTGTCTGTTGGAGTTG -ACGGAAGTGTGTCTGTTGAGACTG -ACGGAAGTGTGTCTGTTGTCGGTA -ACGGAAGTGTGTCTGTTGTGCCTA -ACGGAAGTGTGTCTGTTGCCACTA -ACGGAAGTGTGTCTGTTGGGAGTA -ACGGAAGTGTGTCTGTTGTCGTCT -ACGGAAGTGTGTCTGTTGTGCACT -ACGGAAGTGTGTCTGTTGCTGACT -ACGGAAGTGTGTCTGTTGCAACCT -ACGGAAGTGTGTCTGTTGGCTACT -ACGGAAGTGTGTCTGTTGGGATCT -ACGGAAGTGTGTCTGTTGAAGGCT -ACGGAAGTGTGTCTGTTGTCAACC -ACGGAAGTGTGTCTGTTGTGTTCC -ACGGAAGTGTGTCTGTTGATTCCC -ACGGAAGTGTGTCTGTTGTTCTCG -ACGGAAGTGTGTCTGTTGTAGACG -ACGGAAGTGTGTCTGTTGGTAACG -ACGGAAGTGTGTCTGTTGACTTCG -ACGGAAGTGTGTCTGTTGTACGCA -ACGGAAGTGTGTCTGTTGCTTGCA -ACGGAAGTGTGTCTGTTGCGAACA -ACGGAAGTGTGTCTGTTGCAGTCA -ACGGAAGTGTGTCTGTTGGATCCA -ACGGAAGTGTGTCTGTTGACGACA -ACGGAAGTGTGTCTGTTGAGCTCA -ACGGAAGTGTGTCTGTTGTCACGT -ACGGAAGTGTGTCTGTTGCGTAGT -ACGGAAGTGTGTCTGTTGGTCAGT -ACGGAAGTGTGTCTGTTGGAAGGT -ACGGAAGTGTGTCTGTTGAACCGT -ACGGAAGTGTGTCTGTTGTTGTGC -ACGGAAGTGTGTCTGTTGCTAAGC -ACGGAAGTGTGTCTGTTGACTAGC -ACGGAAGTGTGTCTGTTGAGATGC -ACGGAAGTGTGTCTGTTGTGAAGG -ACGGAAGTGTGTCTGTTGCAATGG -ACGGAAGTGTGTCTGTTGATGAGG -ACGGAAGTGTGTCTGTTGAATGGG -ACGGAAGTGTGTCTGTTGTCCTGA -ACGGAAGTGTGTCTGTTGTAGCGA -ACGGAAGTGTGTCTGTTGCACAGA -ACGGAAGTGTGTCTGTTGGCAAGA -ACGGAAGTGTGTCTGTTGGGTTGA -ACGGAAGTGTGTCTGTTGTCCGAT -ACGGAAGTGTGTCTGTTGTGGCAT -ACGGAAGTGTGTCTGTTGCGAGAT -ACGGAAGTGTGTCTGTTGTACCAC -ACGGAAGTGTGTCTGTTGCAGAAC -ACGGAAGTGTGTCTGTTGGTCTAC -ACGGAAGTGTGTCTGTTGACGTAC -ACGGAAGTGTGTCTGTTGAGTGAC -ACGGAAGTGTGTCTGTTGCTGTAG -ACGGAAGTGTGTCTGTTGCCTAAG -ACGGAAGTGTGTCTGTTGGTTCAG -ACGGAAGTGTGTCTGTTGGCATAG -ACGGAAGTGTGTCTGTTGGACAAG -ACGGAAGTGTGTCTGTTGAAGCAG -ACGGAAGTGTGTCTGTTGCGTCAA -ACGGAAGTGTGTCTGTTGGCTGAA -ACGGAAGTGTGTCTGTTGAGTACG -ACGGAAGTGTGTCTGTTGATCCGA -ACGGAAGTGTGTCTGTTGATGGGA -ACGGAAGTGTGTCTGTTGGTGCAA -ACGGAAGTGTGTCTGTTGGAGGAA -ACGGAAGTGTGTCTGTTGCAGGTA -ACGGAAGTGTGTCTGTTGGACTCT -ACGGAAGTGTGTCTGTTGAGTCCT -ACGGAAGTGTGTCTGTTGTAAGCC -ACGGAAGTGTGTCTGTTGATAGCC -ACGGAAGTGTGTCTGTTGTAACCG -ACGGAAGTGTGTCTGTTGATGCCA -ACGGAAGTGTGTATGTCCGGAAAC -ACGGAAGTGTGTATGTCCAACACC -ACGGAAGTGTGTATGTCCATCGAG -ACGGAAGTGTGTATGTCCCTCCTT -ACGGAAGTGTGTATGTCCCCTGTT -ACGGAAGTGTGTATGTCCCGGTTT -ACGGAAGTGTGTATGTCCGTGGTT -ACGGAAGTGTGTATGTCCGCCTTT -ACGGAAGTGTGTATGTCCGGTCTT -ACGGAAGTGTGTATGTCCACGCTT -ACGGAAGTGTGTATGTCCAGCGTT -ACGGAAGTGTGTATGTCCTTCGTC -ACGGAAGTGTGTATGTCCTCTCTC -ACGGAAGTGTGTATGTCCTGGATC -ACGGAAGTGTGTATGTCCCACTTC -ACGGAAGTGTGTATGTCCGTACTC -ACGGAAGTGTGTATGTCCGATGTC -ACGGAAGTGTGTATGTCCACAGTC -ACGGAAGTGTGTATGTCCTTGCTG -ACGGAAGTGTGTATGTCCTCCATG -ACGGAAGTGTGTATGTCCTGTGTG -ACGGAAGTGTGTATGTCCCTAGTG -ACGGAAGTGTGTATGTCCCATCTG -ACGGAAGTGTGTATGTCCGAGTTG -ACGGAAGTGTGTATGTCCAGACTG -ACGGAAGTGTGTATGTCCTCGGTA -ACGGAAGTGTGTATGTCCTGCCTA -ACGGAAGTGTGTATGTCCCCACTA -ACGGAAGTGTGTATGTCCGGAGTA -ACGGAAGTGTGTATGTCCTCGTCT -ACGGAAGTGTGTATGTCCTGCACT -ACGGAAGTGTGTATGTCCCTGACT -ACGGAAGTGTGTATGTCCCAACCT -ACGGAAGTGTGTATGTCCGCTACT -ACGGAAGTGTGTATGTCCGGATCT -ACGGAAGTGTGTATGTCCAAGGCT -ACGGAAGTGTGTATGTCCTCAACC -ACGGAAGTGTGTATGTCCTGTTCC -ACGGAAGTGTGTATGTCCATTCCC -ACGGAAGTGTGTATGTCCTTCTCG -ACGGAAGTGTGTATGTCCTAGACG -ACGGAAGTGTGTATGTCCGTAACG -ACGGAAGTGTGTATGTCCACTTCG -ACGGAAGTGTGTATGTCCTACGCA -ACGGAAGTGTGTATGTCCCTTGCA -ACGGAAGTGTGTATGTCCCGAACA -ACGGAAGTGTGTATGTCCCAGTCA -ACGGAAGTGTGTATGTCCGATCCA -ACGGAAGTGTGTATGTCCACGACA -ACGGAAGTGTGTATGTCCAGCTCA -ACGGAAGTGTGTATGTCCTCACGT -ACGGAAGTGTGTATGTCCCGTAGT -ACGGAAGTGTGTATGTCCGTCAGT -ACGGAAGTGTGTATGTCCGAAGGT -ACGGAAGTGTGTATGTCCAACCGT -ACGGAAGTGTGTATGTCCTTGTGC -ACGGAAGTGTGTATGTCCCTAAGC -ACGGAAGTGTGTATGTCCACTAGC -ACGGAAGTGTGTATGTCCAGATGC -ACGGAAGTGTGTATGTCCTGAAGG -ACGGAAGTGTGTATGTCCCAATGG -ACGGAAGTGTGTATGTCCATGAGG -ACGGAAGTGTGTATGTCCAATGGG -ACGGAAGTGTGTATGTCCTCCTGA -ACGGAAGTGTGTATGTCCTAGCGA -ACGGAAGTGTGTATGTCCCACAGA -ACGGAAGTGTGTATGTCCGCAAGA -ACGGAAGTGTGTATGTCCGGTTGA -ACGGAAGTGTGTATGTCCTCCGAT -ACGGAAGTGTGTATGTCCTGGCAT -ACGGAAGTGTGTATGTCCCGAGAT -ACGGAAGTGTGTATGTCCTACCAC -ACGGAAGTGTGTATGTCCCAGAAC -ACGGAAGTGTGTATGTCCGTCTAC -ACGGAAGTGTGTATGTCCACGTAC -ACGGAAGTGTGTATGTCCAGTGAC -ACGGAAGTGTGTATGTCCCTGTAG -ACGGAAGTGTGTATGTCCCCTAAG -ACGGAAGTGTGTATGTCCGTTCAG -ACGGAAGTGTGTATGTCCGCATAG -ACGGAAGTGTGTATGTCCGACAAG -ACGGAAGTGTGTATGTCCAAGCAG -ACGGAAGTGTGTATGTCCCGTCAA -ACGGAAGTGTGTATGTCCGCTGAA -ACGGAAGTGTGTATGTCCAGTACG -ACGGAAGTGTGTATGTCCATCCGA -ACGGAAGTGTGTATGTCCATGGGA -ACGGAAGTGTGTATGTCCGTGCAA -ACGGAAGTGTGTATGTCCGAGGAA -ACGGAAGTGTGTATGTCCCAGGTA -ACGGAAGTGTGTATGTCCGACTCT -ACGGAAGTGTGTATGTCCAGTCCT -ACGGAAGTGTGTATGTCCTAAGCC -ACGGAAGTGTGTATGTCCATAGCC -ACGGAAGTGTGTATGTCCTAACCG -ACGGAAGTGTGTATGTCCATGCCA -ACGGAAGTGTGTGTGTGTGGAAAC -ACGGAAGTGTGTGTGTGTAACACC -ACGGAAGTGTGTGTGTGTATCGAG -ACGGAAGTGTGTGTGTGTCTCCTT -ACGGAAGTGTGTGTGTGTCCTGTT -ACGGAAGTGTGTGTGTGTCGGTTT -ACGGAAGTGTGTGTGTGTGTGGTT -ACGGAAGTGTGTGTGTGTGCCTTT -ACGGAAGTGTGTGTGTGTGGTCTT -ACGGAAGTGTGTGTGTGTACGCTT -ACGGAAGTGTGTGTGTGTAGCGTT -ACGGAAGTGTGTGTGTGTTTCGTC -ACGGAAGTGTGTGTGTGTTCTCTC -ACGGAAGTGTGTGTGTGTTGGATC -ACGGAAGTGTGTGTGTGTCACTTC -ACGGAAGTGTGTGTGTGTGTACTC -ACGGAAGTGTGTGTGTGTGATGTC -ACGGAAGTGTGTGTGTGTACAGTC -ACGGAAGTGTGTGTGTGTTTGCTG -ACGGAAGTGTGTGTGTGTTCCATG -ACGGAAGTGTGTGTGTGTTGTGTG -ACGGAAGTGTGTGTGTGTCTAGTG -ACGGAAGTGTGTGTGTGTCATCTG -ACGGAAGTGTGTGTGTGTGAGTTG -ACGGAAGTGTGTGTGTGTAGACTG -ACGGAAGTGTGTGTGTGTTCGGTA -ACGGAAGTGTGTGTGTGTTGCCTA -ACGGAAGTGTGTGTGTGTCCACTA -ACGGAAGTGTGTGTGTGTGGAGTA -ACGGAAGTGTGTGTGTGTTCGTCT -ACGGAAGTGTGTGTGTGTTGCACT -ACGGAAGTGTGTGTGTGTCTGACT -ACGGAAGTGTGTGTGTGTCAACCT -ACGGAAGTGTGTGTGTGTGCTACT -ACGGAAGTGTGTGTGTGTGGATCT -ACGGAAGTGTGTGTGTGTAAGGCT -ACGGAAGTGTGTGTGTGTTCAACC -ACGGAAGTGTGTGTGTGTTGTTCC -ACGGAAGTGTGTGTGTGTATTCCC -ACGGAAGTGTGTGTGTGTTTCTCG -ACGGAAGTGTGTGTGTGTTAGACG -ACGGAAGTGTGTGTGTGTGTAACG -ACGGAAGTGTGTGTGTGTACTTCG -ACGGAAGTGTGTGTGTGTTACGCA -ACGGAAGTGTGTGTGTGTCTTGCA -ACGGAAGTGTGTGTGTGTCGAACA -ACGGAAGTGTGTGTGTGTCAGTCA -ACGGAAGTGTGTGTGTGTGATCCA -ACGGAAGTGTGTGTGTGTACGACA -ACGGAAGTGTGTGTGTGTAGCTCA -ACGGAAGTGTGTGTGTGTTCACGT -ACGGAAGTGTGTGTGTGTCGTAGT -ACGGAAGTGTGTGTGTGTGTCAGT -ACGGAAGTGTGTGTGTGTGAAGGT -ACGGAAGTGTGTGTGTGTAACCGT -ACGGAAGTGTGTGTGTGTTTGTGC -ACGGAAGTGTGTGTGTGTCTAAGC -ACGGAAGTGTGTGTGTGTACTAGC -ACGGAAGTGTGTGTGTGTAGATGC -ACGGAAGTGTGTGTGTGTTGAAGG -ACGGAAGTGTGTGTGTGTCAATGG -ACGGAAGTGTGTGTGTGTATGAGG -ACGGAAGTGTGTGTGTGTAATGGG -ACGGAAGTGTGTGTGTGTTCCTGA -ACGGAAGTGTGTGTGTGTTAGCGA -ACGGAAGTGTGTGTGTGTCACAGA -ACGGAAGTGTGTGTGTGTGCAAGA -ACGGAAGTGTGTGTGTGTGGTTGA -ACGGAAGTGTGTGTGTGTTCCGAT -ACGGAAGTGTGTGTGTGTTGGCAT -ACGGAAGTGTGTGTGTGTCGAGAT -ACGGAAGTGTGTGTGTGTTACCAC -ACGGAAGTGTGTGTGTGTCAGAAC -ACGGAAGTGTGTGTGTGTGTCTAC -ACGGAAGTGTGTGTGTGTACGTAC -ACGGAAGTGTGTGTGTGTAGTGAC -ACGGAAGTGTGTGTGTGTCTGTAG -ACGGAAGTGTGTGTGTGTCCTAAG -ACGGAAGTGTGTGTGTGTGTTCAG -ACGGAAGTGTGTGTGTGTGCATAG -ACGGAAGTGTGTGTGTGTGACAAG -ACGGAAGTGTGTGTGTGTAAGCAG -ACGGAAGTGTGTGTGTGTCGTCAA -ACGGAAGTGTGTGTGTGTGCTGAA -ACGGAAGTGTGTGTGTGTAGTACG -ACGGAAGTGTGTGTGTGTATCCGA -ACGGAAGTGTGTGTGTGTATGGGA -ACGGAAGTGTGTGTGTGTGTGCAA -ACGGAAGTGTGTGTGTGTGAGGAA -ACGGAAGTGTGTGTGTGTCAGGTA -ACGGAAGTGTGTGTGTGTGACTCT -ACGGAAGTGTGTGTGTGTAGTCCT -ACGGAAGTGTGTGTGTGTTAAGCC -ACGGAAGTGTGTGTGTGTATAGCC -ACGGAAGTGTGTGTGTGTTAACCG -ACGGAAGTGTGTGTGTGTATGCCA -ACGGAAGTGTGTGTGCTAGGAAAC -ACGGAAGTGTGTGTGCTAAACACC -ACGGAAGTGTGTGTGCTAATCGAG -ACGGAAGTGTGTGTGCTACTCCTT -ACGGAAGTGTGTGTGCTACCTGTT -ACGGAAGTGTGTGTGCTACGGTTT -ACGGAAGTGTGTGTGCTAGTGGTT -ACGGAAGTGTGTGTGCTAGCCTTT -ACGGAAGTGTGTGTGCTAGGTCTT -ACGGAAGTGTGTGTGCTAACGCTT -ACGGAAGTGTGTGTGCTAAGCGTT -ACGGAAGTGTGTGTGCTATTCGTC -ACGGAAGTGTGTGTGCTATCTCTC -ACGGAAGTGTGTGTGCTATGGATC -ACGGAAGTGTGTGTGCTACACTTC -ACGGAAGTGTGTGTGCTAGTACTC -ACGGAAGTGTGTGTGCTAGATGTC -ACGGAAGTGTGTGTGCTAACAGTC -ACGGAAGTGTGTGTGCTATTGCTG -ACGGAAGTGTGTGTGCTATCCATG -ACGGAAGTGTGTGTGCTATGTGTG -ACGGAAGTGTGTGTGCTACTAGTG -ACGGAAGTGTGTGTGCTACATCTG -ACGGAAGTGTGTGTGCTAGAGTTG -ACGGAAGTGTGTGTGCTAAGACTG -ACGGAAGTGTGTGTGCTATCGGTA -ACGGAAGTGTGTGTGCTATGCCTA -ACGGAAGTGTGTGTGCTACCACTA -ACGGAAGTGTGTGTGCTAGGAGTA -ACGGAAGTGTGTGTGCTATCGTCT -ACGGAAGTGTGTGTGCTATGCACT -ACGGAAGTGTGTGTGCTACTGACT -ACGGAAGTGTGTGTGCTACAACCT -ACGGAAGTGTGTGTGCTAGCTACT -ACGGAAGTGTGTGTGCTAGGATCT -ACGGAAGTGTGTGTGCTAAAGGCT -ACGGAAGTGTGTGTGCTATCAACC -ACGGAAGTGTGTGTGCTATGTTCC -ACGGAAGTGTGTGTGCTAATTCCC -ACGGAAGTGTGTGTGCTATTCTCG -ACGGAAGTGTGTGTGCTATAGACG -ACGGAAGTGTGTGTGCTAGTAACG -ACGGAAGTGTGTGTGCTAACTTCG -ACGGAAGTGTGTGTGCTATACGCA -ACGGAAGTGTGTGTGCTACTTGCA -ACGGAAGTGTGTGTGCTACGAACA -ACGGAAGTGTGTGTGCTACAGTCA -ACGGAAGTGTGTGTGCTAGATCCA -ACGGAAGTGTGTGTGCTAACGACA -ACGGAAGTGTGTGTGCTAAGCTCA -ACGGAAGTGTGTGTGCTATCACGT -ACGGAAGTGTGTGTGCTACGTAGT -ACGGAAGTGTGTGTGCTAGTCAGT -ACGGAAGTGTGTGTGCTAGAAGGT -ACGGAAGTGTGTGTGCTAAACCGT -ACGGAAGTGTGTGTGCTATTGTGC -ACGGAAGTGTGTGTGCTACTAAGC -ACGGAAGTGTGTGTGCTAACTAGC -ACGGAAGTGTGTGTGCTAAGATGC -ACGGAAGTGTGTGTGCTATGAAGG -ACGGAAGTGTGTGTGCTACAATGG -ACGGAAGTGTGTGTGCTAATGAGG -ACGGAAGTGTGTGTGCTAAATGGG -ACGGAAGTGTGTGTGCTATCCTGA -ACGGAAGTGTGTGTGCTATAGCGA -ACGGAAGTGTGTGTGCTACACAGA -ACGGAAGTGTGTGTGCTAGCAAGA -ACGGAAGTGTGTGTGCTAGGTTGA -ACGGAAGTGTGTGTGCTATCCGAT -ACGGAAGTGTGTGTGCTATGGCAT -ACGGAAGTGTGTGTGCTACGAGAT -ACGGAAGTGTGTGTGCTATACCAC -ACGGAAGTGTGTGTGCTACAGAAC -ACGGAAGTGTGTGTGCTAGTCTAC -ACGGAAGTGTGTGTGCTAACGTAC -ACGGAAGTGTGTGTGCTAAGTGAC -ACGGAAGTGTGTGTGCTACTGTAG -ACGGAAGTGTGTGTGCTACCTAAG -ACGGAAGTGTGTGTGCTAGTTCAG -ACGGAAGTGTGTGTGCTAGCATAG -ACGGAAGTGTGTGTGCTAGACAAG -ACGGAAGTGTGTGTGCTAAAGCAG -ACGGAAGTGTGTGTGCTACGTCAA -ACGGAAGTGTGTGTGCTAGCTGAA -ACGGAAGTGTGTGTGCTAAGTACG -ACGGAAGTGTGTGTGCTAATCCGA -ACGGAAGTGTGTGTGCTAATGGGA -ACGGAAGTGTGTGTGCTAGTGCAA -ACGGAAGTGTGTGTGCTAGAGGAA -ACGGAAGTGTGTGTGCTACAGGTA -ACGGAAGTGTGTGTGCTAGACTCT -ACGGAAGTGTGTGTGCTAAGTCCT -ACGGAAGTGTGTGTGCTATAAGCC -ACGGAAGTGTGTGTGCTAATAGCC -ACGGAAGTGTGTGTGCTATAACCG -ACGGAAGTGTGTGTGCTAATGCCA -ACGGAAGTGTGTCTGCATGGAAAC -ACGGAAGTGTGTCTGCATAACACC -ACGGAAGTGTGTCTGCATATCGAG -ACGGAAGTGTGTCTGCATCTCCTT -ACGGAAGTGTGTCTGCATCCTGTT -ACGGAAGTGTGTCTGCATCGGTTT -ACGGAAGTGTGTCTGCATGTGGTT -ACGGAAGTGTGTCTGCATGCCTTT -ACGGAAGTGTGTCTGCATGGTCTT -ACGGAAGTGTGTCTGCATACGCTT -ACGGAAGTGTGTCTGCATAGCGTT -ACGGAAGTGTGTCTGCATTTCGTC -ACGGAAGTGTGTCTGCATTCTCTC -ACGGAAGTGTGTCTGCATTGGATC -ACGGAAGTGTGTCTGCATCACTTC -ACGGAAGTGTGTCTGCATGTACTC -ACGGAAGTGTGTCTGCATGATGTC -ACGGAAGTGTGTCTGCATACAGTC -ACGGAAGTGTGTCTGCATTTGCTG -ACGGAAGTGTGTCTGCATTCCATG -ACGGAAGTGTGTCTGCATTGTGTG -ACGGAAGTGTGTCTGCATCTAGTG -ACGGAAGTGTGTCTGCATCATCTG -ACGGAAGTGTGTCTGCATGAGTTG -ACGGAAGTGTGTCTGCATAGACTG -ACGGAAGTGTGTCTGCATTCGGTA -ACGGAAGTGTGTCTGCATTGCCTA -ACGGAAGTGTGTCTGCATCCACTA -ACGGAAGTGTGTCTGCATGGAGTA -ACGGAAGTGTGTCTGCATTCGTCT -ACGGAAGTGTGTCTGCATTGCACT -ACGGAAGTGTGTCTGCATCTGACT -ACGGAAGTGTGTCTGCATCAACCT -ACGGAAGTGTGTCTGCATGCTACT -ACGGAAGTGTGTCTGCATGGATCT -ACGGAAGTGTGTCTGCATAAGGCT -ACGGAAGTGTGTCTGCATTCAACC -ACGGAAGTGTGTCTGCATTGTTCC -ACGGAAGTGTGTCTGCATATTCCC -ACGGAAGTGTGTCTGCATTTCTCG -ACGGAAGTGTGTCTGCATTAGACG -ACGGAAGTGTGTCTGCATGTAACG -ACGGAAGTGTGTCTGCATACTTCG -ACGGAAGTGTGTCTGCATTACGCA -ACGGAAGTGTGTCTGCATCTTGCA -ACGGAAGTGTGTCTGCATCGAACA -ACGGAAGTGTGTCTGCATCAGTCA -ACGGAAGTGTGTCTGCATGATCCA -ACGGAAGTGTGTCTGCATACGACA -ACGGAAGTGTGTCTGCATAGCTCA -ACGGAAGTGTGTCTGCATTCACGT -ACGGAAGTGTGTCTGCATCGTAGT -ACGGAAGTGTGTCTGCATGTCAGT -ACGGAAGTGTGTCTGCATGAAGGT -ACGGAAGTGTGTCTGCATAACCGT -ACGGAAGTGTGTCTGCATTTGTGC -ACGGAAGTGTGTCTGCATCTAAGC -ACGGAAGTGTGTCTGCATACTAGC -ACGGAAGTGTGTCTGCATAGATGC -ACGGAAGTGTGTCTGCATTGAAGG -ACGGAAGTGTGTCTGCATCAATGG -ACGGAAGTGTGTCTGCATATGAGG -ACGGAAGTGTGTCTGCATAATGGG -ACGGAAGTGTGTCTGCATTCCTGA -ACGGAAGTGTGTCTGCATTAGCGA -ACGGAAGTGTGTCTGCATCACAGA -ACGGAAGTGTGTCTGCATGCAAGA -ACGGAAGTGTGTCTGCATGGTTGA -ACGGAAGTGTGTCTGCATTCCGAT -ACGGAAGTGTGTCTGCATTGGCAT -ACGGAAGTGTGTCTGCATCGAGAT -ACGGAAGTGTGTCTGCATTACCAC -ACGGAAGTGTGTCTGCATCAGAAC -ACGGAAGTGTGTCTGCATGTCTAC -ACGGAAGTGTGTCTGCATACGTAC -ACGGAAGTGTGTCTGCATAGTGAC -ACGGAAGTGTGTCTGCATCTGTAG -ACGGAAGTGTGTCTGCATCCTAAG -ACGGAAGTGTGTCTGCATGTTCAG -ACGGAAGTGTGTCTGCATGCATAG -ACGGAAGTGTGTCTGCATGACAAG -ACGGAAGTGTGTCTGCATAAGCAG -ACGGAAGTGTGTCTGCATCGTCAA -ACGGAAGTGTGTCTGCATGCTGAA -ACGGAAGTGTGTCTGCATAGTACG -ACGGAAGTGTGTCTGCATATCCGA -ACGGAAGTGTGTCTGCATATGGGA -ACGGAAGTGTGTCTGCATGTGCAA -ACGGAAGTGTGTCTGCATGAGGAA -ACGGAAGTGTGTCTGCATCAGGTA -ACGGAAGTGTGTCTGCATGACTCT -ACGGAAGTGTGTCTGCATAGTCCT -ACGGAAGTGTGTCTGCATTAAGCC -ACGGAAGTGTGTCTGCATATAGCC -ACGGAAGTGTGTCTGCATTAACCG -ACGGAAGTGTGTCTGCATATGCCA -ACGGAAGTGTGTTTGGAGGGAAAC -ACGGAAGTGTGTTTGGAGAACACC -ACGGAAGTGTGTTTGGAGATCGAG -ACGGAAGTGTGTTTGGAGCTCCTT -ACGGAAGTGTGTTTGGAGCCTGTT -ACGGAAGTGTGTTTGGAGCGGTTT -ACGGAAGTGTGTTTGGAGGTGGTT -ACGGAAGTGTGTTTGGAGGCCTTT -ACGGAAGTGTGTTTGGAGGGTCTT -ACGGAAGTGTGTTTGGAGACGCTT -ACGGAAGTGTGTTTGGAGAGCGTT -ACGGAAGTGTGTTTGGAGTTCGTC -ACGGAAGTGTGTTTGGAGTCTCTC -ACGGAAGTGTGTTTGGAGTGGATC -ACGGAAGTGTGTTTGGAGCACTTC -ACGGAAGTGTGTTTGGAGGTACTC -ACGGAAGTGTGTTTGGAGGATGTC -ACGGAAGTGTGTTTGGAGACAGTC -ACGGAAGTGTGTTTGGAGTTGCTG -ACGGAAGTGTGTTTGGAGTCCATG -ACGGAAGTGTGTTTGGAGTGTGTG -ACGGAAGTGTGTTTGGAGCTAGTG -ACGGAAGTGTGTTTGGAGCATCTG -ACGGAAGTGTGTTTGGAGGAGTTG -ACGGAAGTGTGTTTGGAGAGACTG -ACGGAAGTGTGTTTGGAGTCGGTA -ACGGAAGTGTGTTTGGAGTGCCTA -ACGGAAGTGTGTTTGGAGCCACTA -ACGGAAGTGTGTTTGGAGGGAGTA -ACGGAAGTGTGTTTGGAGTCGTCT -ACGGAAGTGTGTTTGGAGTGCACT -ACGGAAGTGTGTTTGGAGCTGACT -ACGGAAGTGTGTTTGGAGCAACCT -ACGGAAGTGTGTTTGGAGGCTACT -ACGGAAGTGTGTTTGGAGGGATCT -ACGGAAGTGTGTTTGGAGAAGGCT -ACGGAAGTGTGTTTGGAGTCAACC -ACGGAAGTGTGTTTGGAGTGTTCC -ACGGAAGTGTGTTTGGAGATTCCC -ACGGAAGTGTGTTTGGAGTTCTCG -ACGGAAGTGTGTTTGGAGTAGACG -ACGGAAGTGTGTTTGGAGGTAACG -ACGGAAGTGTGTTTGGAGACTTCG -ACGGAAGTGTGTTTGGAGTACGCA -ACGGAAGTGTGTTTGGAGCTTGCA -ACGGAAGTGTGTTTGGAGCGAACA -ACGGAAGTGTGTTTGGAGCAGTCA -ACGGAAGTGTGTTTGGAGGATCCA -ACGGAAGTGTGTTTGGAGACGACA -ACGGAAGTGTGTTTGGAGAGCTCA -ACGGAAGTGTGTTTGGAGTCACGT -ACGGAAGTGTGTTTGGAGCGTAGT -ACGGAAGTGTGTTTGGAGGTCAGT -ACGGAAGTGTGTTTGGAGGAAGGT -ACGGAAGTGTGTTTGGAGAACCGT -ACGGAAGTGTGTTTGGAGTTGTGC -ACGGAAGTGTGTTTGGAGCTAAGC -ACGGAAGTGTGTTTGGAGACTAGC -ACGGAAGTGTGTTTGGAGAGATGC -ACGGAAGTGTGTTTGGAGTGAAGG -ACGGAAGTGTGTTTGGAGCAATGG -ACGGAAGTGTGTTTGGAGATGAGG -ACGGAAGTGTGTTTGGAGAATGGG -ACGGAAGTGTGTTTGGAGTCCTGA -ACGGAAGTGTGTTTGGAGTAGCGA -ACGGAAGTGTGTTTGGAGCACAGA -ACGGAAGTGTGTTTGGAGGCAAGA -ACGGAAGTGTGTTTGGAGGGTTGA -ACGGAAGTGTGTTTGGAGTCCGAT -ACGGAAGTGTGTTTGGAGTGGCAT -ACGGAAGTGTGTTTGGAGCGAGAT -ACGGAAGTGTGTTTGGAGTACCAC -ACGGAAGTGTGTTTGGAGCAGAAC -ACGGAAGTGTGTTTGGAGGTCTAC -ACGGAAGTGTGTTTGGAGACGTAC -ACGGAAGTGTGTTTGGAGAGTGAC -ACGGAAGTGTGTTTGGAGCTGTAG -ACGGAAGTGTGTTTGGAGCCTAAG -ACGGAAGTGTGTTTGGAGGTTCAG -ACGGAAGTGTGTTTGGAGGCATAG -ACGGAAGTGTGTTTGGAGGACAAG -ACGGAAGTGTGTTTGGAGAAGCAG -ACGGAAGTGTGTTTGGAGCGTCAA -ACGGAAGTGTGTTTGGAGGCTGAA -ACGGAAGTGTGTTTGGAGAGTACG -ACGGAAGTGTGTTTGGAGATCCGA -ACGGAAGTGTGTTTGGAGATGGGA -ACGGAAGTGTGTTTGGAGGTGCAA -ACGGAAGTGTGTTTGGAGGAGGAA -ACGGAAGTGTGTTTGGAGCAGGTA -ACGGAAGTGTGTTTGGAGGACTCT -ACGGAAGTGTGTTTGGAGAGTCCT -ACGGAAGTGTGTTTGGAGTAAGCC -ACGGAAGTGTGTTTGGAGATAGCC -ACGGAAGTGTGTTTGGAGTAACCG -ACGGAAGTGTGTTTGGAGATGCCA -ACGGAAGTGTGTCTGAGAGGAAAC -ACGGAAGTGTGTCTGAGAAACACC -ACGGAAGTGTGTCTGAGAATCGAG -ACGGAAGTGTGTCTGAGACTCCTT -ACGGAAGTGTGTCTGAGACCTGTT -ACGGAAGTGTGTCTGAGACGGTTT -ACGGAAGTGTGTCTGAGAGTGGTT -ACGGAAGTGTGTCTGAGAGCCTTT -ACGGAAGTGTGTCTGAGAGGTCTT -ACGGAAGTGTGTCTGAGAACGCTT -ACGGAAGTGTGTCTGAGAAGCGTT -ACGGAAGTGTGTCTGAGATTCGTC -ACGGAAGTGTGTCTGAGATCTCTC -ACGGAAGTGTGTCTGAGATGGATC -ACGGAAGTGTGTCTGAGACACTTC -ACGGAAGTGTGTCTGAGAGTACTC -ACGGAAGTGTGTCTGAGAGATGTC -ACGGAAGTGTGTCTGAGAACAGTC -ACGGAAGTGTGTCTGAGATTGCTG -ACGGAAGTGTGTCTGAGATCCATG -ACGGAAGTGTGTCTGAGATGTGTG -ACGGAAGTGTGTCTGAGACTAGTG -ACGGAAGTGTGTCTGAGACATCTG -ACGGAAGTGTGTCTGAGAGAGTTG -ACGGAAGTGTGTCTGAGAAGACTG -ACGGAAGTGTGTCTGAGATCGGTA -ACGGAAGTGTGTCTGAGATGCCTA -ACGGAAGTGTGTCTGAGACCACTA -ACGGAAGTGTGTCTGAGAGGAGTA -ACGGAAGTGTGTCTGAGATCGTCT -ACGGAAGTGTGTCTGAGATGCACT -ACGGAAGTGTGTCTGAGACTGACT -ACGGAAGTGTGTCTGAGACAACCT -ACGGAAGTGTGTCTGAGAGCTACT -ACGGAAGTGTGTCTGAGAGGATCT -ACGGAAGTGTGTCTGAGAAAGGCT -ACGGAAGTGTGTCTGAGATCAACC -ACGGAAGTGTGTCTGAGATGTTCC -ACGGAAGTGTGTCTGAGAATTCCC -ACGGAAGTGTGTCTGAGATTCTCG -ACGGAAGTGTGTCTGAGATAGACG -ACGGAAGTGTGTCTGAGAGTAACG -ACGGAAGTGTGTCTGAGAACTTCG -ACGGAAGTGTGTCTGAGATACGCA -ACGGAAGTGTGTCTGAGACTTGCA -ACGGAAGTGTGTCTGAGACGAACA -ACGGAAGTGTGTCTGAGACAGTCA -ACGGAAGTGTGTCTGAGAGATCCA -ACGGAAGTGTGTCTGAGAACGACA -ACGGAAGTGTGTCTGAGAAGCTCA -ACGGAAGTGTGTCTGAGATCACGT -ACGGAAGTGTGTCTGAGACGTAGT -ACGGAAGTGTGTCTGAGAGTCAGT -ACGGAAGTGTGTCTGAGAGAAGGT -ACGGAAGTGTGTCTGAGAAACCGT -ACGGAAGTGTGTCTGAGATTGTGC -ACGGAAGTGTGTCTGAGACTAAGC -ACGGAAGTGTGTCTGAGAACTAGC -ACGGAAGTGTGTCTGAGAAGATGC -ACGGAAGTGTGTCTGAGATGAAGG -ACGGAAGTGTGTCTGAGACAATGG -ACGGAAGTGTGTCTGAGAATGAGG -ACGGAAGTGTGTCTGAGAAATGGG -ACGGAAGTGTGTCTGAGATCCTGA -ACGGAAGTGTGTCTGAGATAGCGA -ACGGAAGTGTGTCTGAGACACAGA -ACGGAAGTGTGTCTGAGAGCAAGA -ACGGAAGTGTGTCTGAGAGGTTGA -ACGGAAGTGTGTCTGAGATCCGAT -ACGGAAGTGTGTCTGAGATGGCAT -ACGGAAGTGTGTCTGAGACGAGAT -ACGGAAGTGTGTCTGAGATACCAC -ACGGAAGTGTGTCTGAGACAGAAC -ACGGAAGTGTGTCTGAGAGTCTAC -ACGGAAGTGTGTCTGAGAACGTAC -ACGGAAGTGTGTCTGAGAAGTGAC -ACGGAAGTGTGTCTGAGACTGTAG -ACGGAAGTGTGTCTGAGACCTAAG -ACGGAAGTGTGTCTGAGAGTTCAG -ACGGAAGTGTGTCTGAGAGCATAG -ACGGAAGTGTGTCTGAGAGACAAG -ACGGAAGTGTGTCTGAGAAAGCAG -ACGGAAGTGTGTCTGAGACGTCAA -ACGGAAGTGTGTCTGAGAGCTGAA -ACGGAAGTGTGTCTGAGAAGTACG -ACGGAAGTGTGTCTGAGAATCCGA -ACGGAAGTGTGTCTGAGAATGGGA -ACGGAAGTGTGTCTGAGAGTGCAA -ACGGAAGTGTGTCTGAGAGAGGAA -ACGGAAGTGTGTCTGAGACAGGTA -ACGGAAGTGTGTCTGAGAGACTCT -ACGGAAGTGTGTCTGAGAAGTCCT -ACGGAAGTGTGTCTGAGATAAGCC -ACGGAAGTGTGTCTGAGAATAGCC -ACGGAAGTGTGTCTGAGATAACCG -ACGGAAGTGTGTCTGAGAATGCCA -ACGGAAGTGTGTGTATCGGGAAAC -ACGGAAGTGTGTGTATCGAACACC -ACGGAAGTGTGTGTATCGATCGAG -ACGGAAGTGTGTGTATCGCTCCTT -ACGGAAGTGTGTGTATCGCCTGTT -ACGGAAGTGTGTGTATCGCGGTTT -ACGGAAGTGTGTGTATCGGTGGTT -ACGGAAGTGTGTGTATCGGCCTTT -ACGGAAGTGTGTGTATCGGGTCTT -ACGGAAGTGTGTGTATCGACGCTT -ACGGAAGTGTGTGTATCGAGCGTT -ACGGAAGTGTGTGTATCGTTCGTC -ACGGAAGTGTGTGTATCGTCTCTC -ACGGAAGTGTGTGTATCGTGGATC -ACGGAAGTGTGTGTATCGCACTTC -ACGGAAGTGTGTGTATCGGTACTC -ACGGAAGTGTGTGTATCGGATGTC -ACGGAAGTGTGTGTATCGACAGTC -ACGGAAGTGTGTGTATCGTTGCTG -ACGGAAGTGTGTGTATCGTCCATG -ACGGAAGTGTGTGTATCGTGTGTG -ACGGAAGTGTGTGTATCGCTAGTG -ACGGAAGTGTGTGTATCGCATCTG -ACGGAAGTGTGTGTATCGGAGTTG -ACGGAAGTGTGTGTATCGAGACTG -ACGGAAGTGTGTGTATCGTCGGTA -ACGGAAGTGTGTGTATCGTGCCTA -ACGGAAGTGTGTGTATCGCCACTA -ACGGAAGTGTGTGTATCGGGAGTA -ACGGAAGTGTGTGTATCGTCGTCT -ACGGAAGTGTGTGTATCGTGCACT -ACGGAAGTGTGTGTATCGCTGACT -ACGGAAGTGTGTGTATCGCAACCT -ACGGAAGTGTGTGTATCGGCTACT -ACGGAAGTGTGTGTATCGGGATCT -ACGGAAGTGTGTGTATCGAAGGCT -ACGGAAGTGTGTGTATCGTCAACC -ACGGAAGTGTGTGTATCGTGTTCC -ACGGAAGTGTGTGTATCGATTCCC -ACGGAAGTGTGTGTATCGTTCTCG -ACGGAAGTGTGTGTATCGTAGACG -ACGGAAGTGTGTGTATCGGTAACG -ACGGAAGTGTGTGTATCGACTTCG -ACGGAAGTGTGTGTATCGTACGCA -ACGGAAGTGTGTGTATCGCTTGCA -ACGGAAGTGTGTGTATCGCGAACA -ACGGAAGTGTGTGTATCGCAGTCA -ACGGAAGTGTGTGTATCGGATCCA -ACGGAAGTGTGTGTATCGACGACA -ACGGAAGTGTGTGTATCGAGCTCA -ACGGAAGTGTGTGTATCGTCACGT -ACGGAAGTGTGTGTATCGCGTAGT -ACGGAAGTGTGTGTATCGGTCAGT -ACGGAAGTGTGTGTATCGGAAGGT -ACGGAAGTGTGTGTATCGAACCGT -ACGGAAGTGTGTGTATCGTTGTGC -ACGGAAGTGTGTGTATCGCTAAGC -ACGGAAGTGTGTGTATCGACTAGC -ACGGAAGTGTGTGTATCGAGATGC -ACGGAAGTGTGTGTATCGTGAAGG -ACGGAAGTGTGTGTATCGCAATGG -ACGGAAGTGTGTGTATCGATGAGG -ACGGAAGTGTGTGTATCGAATGGG -ACGGAAGTGTGTGTATCGTCCTGA -ACGGAAGTGTGTGTATCGTAGCGA -ACGGAAGTGTGTGTATCGCACAGA -ACGGAAGTGTGTGTATCGGCAAGA -ACGGAAGTGTGTGTATCGGGTTGA -ACGGAAGTGTGTGTATCGTCCGAT -ACGGAAGTGTGTGTATCGTGGCAT -ACGGAAGTGTGTGTATCGCGAGAT -ACGGAAGTGTGTGTATCGTACCAC -ACGGAAGTGTGTGTATCGCAGAAC -ACGGAAGTGTGTGTATCGGTCTAC -ACGGAAGTGTGTGTATCGACGTAC -ACGGAAGTGTGTGTATCGAGTGAC -ACGGAAGTGTGTGTATCGCTGTAG -ACGGAAGTGTGTGTATCGCCTAAG -ACGGAAGTGTGTGTATCGGTTCAG -ACGGAAGTGTGTGTATCGGCATAG -ACGGAAGTGTGTGTATCGGACAAG -ACGGAAGTGTGTGTATCGAAGCAG -ACGGAAGTGTGTGTATCGCGTCAA -ACGGAAGTGTGTGTATCGGCTGAA -ACGGAAGTGTGTGTATCGAGTACG -ACGGAAGTGTGTGTATCGATCCGA -ACGGAAGTGTGTGTATCGATGGGA -ACGGAAGTGTGTGTATCGGTGCAA -ACGGAAGTGTGTGTATCGGAGGAA -ACGGAAGTGTGTGTATCGCAGGTA -ACGGAAGTGTGTGTATCGGACTCT -ACGGAAGTGTGTGTATCGAGTCCT -ACGGAAGTGTGTGTATCGTAAGCC -ACGGAAGTGTGTGTATCGATAGCC -ACGGAAGTGTGTGTATCGTAACCG -ACGGAAGTGTGTGTATCGATGCCA -ACGGAAGTGTGTCTATGCGGAAAC -ACGGAAGTGTGTCTATGCAACACC -ACGGAAGTGTGTCTATGCATCGAG -ACGGAAGTGTGTCTATGCCTCCTT -ACGGAAGTGTGTCTATGCCCTGTT -ACGGAAGTGTGTCTATGCCGGTTT -ACGGAAGTGTGTCTATGCGTGGTT -ACGGAAGTGTGTCTATGCGCCTTT -ACGGAAGTGTGTCTATGCGGTCTT -ACGGAAGTGTGTCTATGCACGCTT -ACGGAAGTGTGTCTATGCAGCGTT -ACGGAAGTGTGTCTATGCTTCGTC -ACGGAAGTGTGTCTATGCTCTCTC -ACGGAAGTGTGTCTATGCTGGATC -ACGGAAGTGTGTCTATGCCACTTC -ACGGAAGTGTGTCTATGCGTACTC -ACGGAAGTGTGTCTATGCGATGTC -ACGGAAGTGTGTCTATGCACAGTC -ACGGAAGTGTGTCTATGCTTGCTG -ACGGAAGTGTGTCTATGCTCCATG -ACGGAAGTGTGTCTATGCTGTGTG -ACGGAAGTGTGTCTATGCCTAGTG -ACGGAAGTGTGTCTATGCCATCTG -ACGGAAGTGTGTCTATGCGAGTTG -ACGGAAGTGTGTCTATGCAGACTG -ACGGAAGTGTGTCTATGCTCGGTA -ACGGAAGTGTGTCTATGCTGCCTA -ACGGAAGTGTGTCTATGCCCACTA -ACGGAAGTGTGTCTATGCGGAGTA -ACGGAAGTGTGTCTATGCTCGTCT -ACGGAAGTGTGTCTATGCTGCACT -ACGGAAGTGTGTCTATGCCTGACT -ACGGAAGTGTGTCTATGCCAACCT -ACGGAAGTGTGTCTATGCGCTACT -ACGGAAGTGTGTCTATGCGGATCT -ACGGAAGTGTGTCTATGCAAGGCT -ACGGAAGTGTGTCTATGCTCAACC -ACGGAAGTGTGTCTATGCTGTTCC -ACGGAAGTGTGTCTATGCATTCCC -ACGGAAGTGTGTCTATGCTTCTCG -ACGGAAGTGTGTCTATGCTAGACG -ACGGAAGTGTGTCTATGCGTAACG -ACGGAAGTGTGTCTATGCACTTCG -ACGGAAGTGTGTCTATGCTACGCA -ACGGAAGTGTGTCTATGCCTTGCA -ACGGAAGTGTGTCTATGCCGAACA -ACGGAAGTGTGTCTATGCCAGTCA -ACGGAAGTGTGTCTATGCGATCCA -ACGGAAGTGTGTCTATGCACGACA -ACGGAAGTGTGTCTATGCAGCTCA -ACGGAAGTGTGTCTATGCTCACGT -ACGGAAGTGTGTCTATGCCGTAGT -ACGGAAGTGTGTCTATGCGTCAGT -ACGGAAGTGTGTCTATGCGAAGGT -ACGGAAGTGTGTCTATGCAACCGT -ACGGAAGTGTGTCTATGCTTGTGC -ACGGAAGTGTGTCTATGCCTAAGC -ACGGAAGTGTGTCTATGCACTAGC -ACGGAAGTGTGTCTATGCAGATGC -ACGGAAGTGTGTCTATGCTGAAGG -ACGGAAGTGTGTCTATGCCAATGG -ACGGAAGTGTGTCTATGCATGAGG -ACGGAAGTGTGTCTATGCAATGGG -ACGGAAGTGTGTCTATGCTCCTGA -ACGGAAGTGTGTCTATGCTAGCGA -ACGGAAGTGTGTCTATGCCACAGA -ACGGAAGTGTGTCTATGCGCAAGA -ACGGAAGTGTGTCTATGCGGTTGA -ACGGAAGTGTGTCTATGCTCCGAT -ACGGAAGTGTGTCTATGCTGGCAT -ACGGAAGTGTGTCTATGCCGAGAT -ACGGAAGTGTGTCTATGCTACCAC -ACGGAAGTGTGTCTATGCCAGAAC -ACGGAAGTGTGTCTATGCGTCTAC -ACGGAAGTGTGTCTATGCACGTAC -ACGGAAGTGTGTCTATGCAGTGAC -ACGGAAGTGTGTCTATGCCTGTAG -ACGGAAGTGTGTCTATGCCCTAAG -ACGGAAGTGTGTCTATGCGTTCAG -ACGGAAGTGTGTCTATGCGCATAG -ACGGAAGTGTGTCTATGCGACAAG -ACGGAAGTGTGTCTATGCAAGCAG -ACGGAAGTGTGTCTATGCCGTCAA -ACGGAAGTGTGTCTATGCGCTGAA -ACGGAAGTGTGTCTATGCAGTACG -ACGGAAGTGTGTCTATGCATCCGA -ACGGAAGTGTGTCTATGCATGGGA -ACGGAAGTGTGTCTATGCGTGCAA -ACGGAAGTGTGTCTATGCGAGGAA -ACGGAAGTGTGTCTATGCCAGGTA -ACGGAAGTGTGTCTATGCGACTCT -ACGGAAGTGTGTCTATGCAGTCCT -ACGGAAGTGTGTCTATGCTAAGCC -ACGGAAGTGTGTCTATGCATAGCC -ACGGAAGTGTGTCTATGCTAACCG -ACGGAAGTGTGTCTATGCATGCCA -ACGGAAGTGTGTCTACCAGGAAAC -ACGGAAGTGTGTCTACCAAACACC -ACGGAAGTGTGTCTACCAATCGAG -ACGGAAGTGTGTCTACCACTCCTT -ACGGAAGTGTGTCTACCACCTGTT -ACGGAAGTGTGTCTACCACGGTTT -ACGGAAGTGTGTCTACCAGTGGTT -ACGGAAGTGTGTCTACCAGCCTTT -ACGGAAGTGTGTCTACCAGGTCTT -ACGGAAGTGTGTCTACCAACGCTT -ACGGAAGTGTGTCTACCAAGCGTT -ACGGAAGTGTGTCTACCATTCGTC -ACGGAAGTGTGTCTACCATCTCTC -ACGGAAGTGTGTCTACCATGGATC -ACGGAAGTGTGTCTACCACACTTC -ACGGAAGTGTGTCTACCAGTACTC -ACGGAAGTGTGTCTACCAGATGTC -ACGGAAGTGTGTCTACCAACAGTC -ACGGAAGTGTGTCTACCATTGCTG -ACGGAAGTGTGTCTACCATCCATG -ACGGAAGTGTGTCTACCATGTGTG -ACGGAAGTGTGTCTACCACTAGTG -ACGGAAGTGTGTCTACCACATCTG -ACGGAAGTGTGTCTACCAGAGTTG -ACGGAAGTGTGTCTACCAAGACTG -ACGGAAGTGTGTCTACCATCGGTA -ACGGAAGTGTGTCTACCATGCCTA -ACGGAAGTGTGTCTACCACCACTA -ACGGAAGTGTGTCTACCAGGAGTA -ACGGAAGTGTGTCTACCATCGTCT -ACGGAAGTGTGTCTACCATGCACT -ACGGAAGTGTGTCTACCACTGACT -ACGGAAGTGTGTCTACCACAACCT -ACGGAAGTGTGTCTACCAGCTACT -ACGGAAGTGTGTCTACCAGGATCT -ACGGAAGTGTGTCTACCAAAGGCT -ACGGAAGTGTGTCTACCATCAACC -ACGGAAGTGTGTCTACCATGTTCC -ACGGAAGTGTGTCTACCAATTCCC -ACGGAAGTGTGTCTACCATTCTCG -ACGGAAGTGTGTCTACCATAGACG -ACGGAAGTGTGTCTACCAGTAACG -ACGGAAGTGTGTCTACCAACTTCG -ACGGAAGTGTGTCTACCATACGCA -ACGGAAGTGTGTCTACCACTTGCA -ACGGAAGTGTGTCTACCACGAACA -ACGGAAGTGTGTCTACCACAGTCA -ACGGAAGTGTGTCTACCAGATCCA -ACGGAAGTGTGTCTACCAACGACA -ACGGAAGTGTGTCTACCAAGCTCA -ACGGAAGTGTGTCTACCATCACGT -ACGGAAGTGTGTCTACCACGTAGT -ACGGAAGTGTGTCTACCAGTCAGT -ACGGAAGTGTGTCTACCAGAAGGT -ACGGAAGTGTGTCTACCAAACCGT -ACGGAAGTGTGTCTACCATTGTGC -ACGGAAGTGTGTCTACCACTAAGC -ACGGAAGTGTGTCTACCAACTAGC -ACGGAAGTGTGTCTACCAAGATGC -ACGGAAGTGTGTCTACCATGAAGG -ACGGAAGTGTGTCTACCACAATGG -ACGGAAGTGTGTCTACCAATGAGG -ACGGAAGTGTGTCTACCAAATGGG -ACGGAAGTGTGTCTACCATCCTGA -ACGGAAGTGTGTCTACCATAGCGA -ACGGAAGTGTGTCTACCACACAGA -ACGGAAGTGTGTCTACCAGCAAGA -ACGGAAGTGTGTCTACCAGGTTGA -ACGGAAGTGTGTCTACCATCCGAT -ACGGAAGTGTGTCTACCATGGCAT -ACGGAAGTGTGTCTACCACGAGAT -ACGGAAGTGTGTCTACCATACCAC -ACGGAAGTGTGTCTACCACAGAAC -ACGGAAGTGTGTCTACCAGTCTAC -ACGGAAGTGTGTCTACCAACGTAC -ACGGAAGTGTGTCTACCAAGTGAC -ACGGAAGTGTGTCTACCACTGTAG -ACGGAAGTGTGTCTACCACCTAAG -ACGGAAGTGTGTCTACCAGTTCAG -ACGGAAGTGTGTCTACCAGCATAG -ACGGAAGTGTGTCTACCAGACAAG -ACGGAAGTGTGTCTACCAAAGCAG -ACGGAAGTGTGTCTACCACGTCAA -ACGGAAGTGTGTCTACCAGCTGAA -ACGGAAGTGTGTCTACCAAGTACG -ACGGAAGTGTGTCTACCAATCCGA -ACGGAAGTGTGTCTACCAATGGGA -ACGGAAGTGTGTCTACCAGTGCAA -ACGGAAGTGTGTCTACCAGAGGAA -ACGGAAGTGTGTCTACCACAGGTA -ACGGAAGTGTGTCTACCAGACTCT -ACGGAAGTGTGTCTACCAAGTCCT -ACGGAAGTGTGTCTACCATAAGCC -ACGGAAGTGTGTCTACCAATAGCC -ACGGAAGTGTGTCTACCATAACCG -ACGGAAGTGTGTCTACCAATGCCA -ACGGAAGTGTGTGTAGGAGGAAAC -ACGGAAGTGTGTGTAGGAAACACC -ACGGAAGTGTGTGTAGGAATCGAG -ACGGAAGTGTGTGTAGGACTCCTT -ACGGAAGTGTGTGTAGGACCTGTT -ACGGAAGTGTGTGTAGGACGGTTT -ACGGAAGTGTGTGTAGGAGTGGTT -ACGGAAGTGTGTGTAGGAGCCTTT -ACGGAAGTGTGTGTAGGAGGTCTT -ACGGAAGTGTGTGTAGGAACGCTT -ACGGAAGTGTGTGTAGGAAGCGTT -ACGGAAGTGTGTGTAGGATTCGTC -ACGGAAGTGTGTGTAGGATCTCTC -ACGGAAGTGTGTGTAGGATGGATC -ACGGAAGTGTGTGTAGGACACTTC -ACGGAAGTGTGTGTAGGAGTACTC -ACGGAAGTGTGTGTAGGAGATGTC -ACGGAAGTGTGTGTAGGAACAGTC -ACGGAAGTGTGTGTAGGATTGCTG -ACGGAAGTGTGTGTAGGATCCATG -ACGGAAGTGTGTGTAGGATGTGTG -ACGGAAGTGTGTGTAGGACTAGTG -ACGGAAGTGTGTGTAGGACATCTG -ACGGAAGTGTGTGTAGGAGAGTTG -ACGGAAGTGTGTGTAGGAAGACTG -ACGGAAGTGTGTGTAGGATCGGTA -ACGGAAGTGTGTGTAGGATGCCTA -ACGGAAGTGTGTGTAGGACCACTA -ACGGAAGTGTGTGTAGGAGGAGTA -ACGGAAGTGTGTGTAGGATCGTCT -ACGGAAGTGTGTGTAGGATGCACT -ACGGAAGTGTGTGTAGGACTGACT -ACGGAAGTGTGTGTAGGACAACCT -ACGGAAGTGTGTGTAGGAGCTACT -ACGGAAGTGTGTGTAGGAGGATCT -ACGGAAGTGTGTGTAGGAAAGGCT -ACGGAAGTGTGTGTAGGATCAACC -ACGGAAGTGTGTGTAGGATGTTCC -ACGGAAGTGTGTGTAGGAATTCCC -ACGGAAGTGTGTGTAGGATTCTCG -ACGGAAGTGTGTGTAGGATAGACG -ACGGAAGTGTGTGTAGGAGTAACG -ACGGAAGTGTGTGTAGGAACTTCG -ACGGAAGTGTGTGTAGGATACGCA -ACGGAAGTGTGTGTAGGACTTGCA -ACGGAAGTGTGTGTAGGACGAACA -ACGGAAGTGTGTGTAGGACAGTCA -ACGGAAGTGTGTGTAGGAGATCCA -ACGGAAGTGTGTGTAGGAACGACA -ACGGAAGTGTGTGTAGGAAGCTCA -ACGGAAGTGTGTGTAGGATCACGT -ACGGAAGTGTGTGTAGGACGTAGT -ACGGAAGTGTGTGTAGGAGTCAGT -ACGGAAGTGTGTGTAGGAGAAGGT -ACGGAAGTGTGTGTAGGAAACCGT -ACGGAAGTGTGTGTAGGATTGTGC -ACGGAAGTGTGTGTAGGACTAAGC -ACGGAAGTGTGTGTAGGAACTAGC -ACGGAAGTGTGTGTAGGAAGATGC -ACGGAAGTGTGTGTAGGATGAAGG -ACGGAAGTGTGTGTAGGACAATGG -ACGGAAGTGTGTGTAGGAATGAGG -ACGGAAGTGTGTGTAGGAAATGGG -ACGGAAGTGTGTGTAGGATCCTGA -ACGGAAGTGTGTGTAGGATAGCGA -ACGGAAGTGTGTGTAGGACACAGA -ACGGAAGTGTGTGTAGGAGCAAGA -ACGGAAGTGTGTGTAGGAGGTTGA -ACGGAAGTGTGTGTAGGATCCGAT -ACGGAAGTGTGTGTAGGATGGCAT -ACGGAAGTGTGTGTAGGACGAGAT -ACGGAAGTGTGTGTAGGATACCAC -ACGGAAGTGTGTGTAGGACAGAAC -ACGGAAGTGTGTGTAGGAGTCTAC -ACGGAAGTGTGTGTAGGAACGTAC -ACGGAAGTGTGTGTAGGAAGTGAC -ACGGAAGTGTGTGTAGGACTGTAG -ACGGAAGTGTGTGTAGGACCTAAG -ACGGAAGTGTGTGTAGGAGTTCAG -ACGGAAGTGTGTGTAGGAGCATAG -ACGGAAGTGTGTGTAGGAGACAAG -ACGGAAGTGTGTGTAGGAAAGCAG -ACGGAAGTGTGTGTAGGACGTCAA -ACGGAAGTGTGTGTAGGAGCTGAA -ACGGAAGTGTGTGTAGGAAGTACG -ACGGAAGTGTGTGTAGGAATCCGA -ACGGAAGTGTGTGTAGGAATGGGA -ACGGAAGTGTGTGTAGGAGTGCAA -ACGGAAGTGTGTGTAGGAGAGGAA -ACGGAAGTGTGTGTAGGACAGGTA -ACGGAAGTGTGTGTAGGAGACTCT -ACGGAAGTGTGTGTAGGAAGTCCT -ACGGAAGTGTGTGTAGGATAAGCC -ACGGAAGTGTGTGTAGGAATAGCC -ACGGAAGTGTGTGTAGGATAACCG -ACGGAAGTGTGTGTAGGAATGCCA -ACGGAAGTGTGTTCTTCGGGAAAC -ACGGAAGTGTGTTCTTCGAACACC -ACGGAAGTGTGTTCTTCGATCGAG -ACGGAAGTGTGTTCTTCGCTCCTT -ACGGAAGTGTGTTCTTCGCCTGTT -ACGGAAGTGTGTTCTTCGCGGTTT -ACGGAAGTGTGTTCTTCGGTGGTT -ACGGAAGTGTGTTCTTCGGCCTTT -ACGGAAGTGTGTTCTTCGGGTCTT -ACGGAAGTGTGTTCTTCGACGCTT -ACGGAAGTGTGTTCTTCGAGCGTT -ACGGAAGTGTGTTCTTCGTTCGTC -ACGGAAGTGTGTTCTTCGTCTCTC -ACGGAAGTGTGTTCTTCGTGGATC -ACGGAAGTGTGTTCTTCGCACTTC -ACGGAAGTGTGTTCTTCGGTACTC -ACGGAAGTGTGTTCTTCGGATGTC -ACGGAAGTGTGTTCTTCGACAGTC -ACGGAAGTGTGTTCTTCGTTGCTG -ACGGAAGTGTGTTCTTCGTCCATG -ACGGAAGTGTGTTCTTCGTGTGTG -ACGGAAGTGTGTTCTTCGCTAGTG -ACGGAAGTGTGTTCTTCGCATCTG -ACGGAAGTGTGTTCTTCGGAGTTG -ACGGAAGTGTGTTCTTCGAGACTG -ACGGAAGTGTGTTCTTCGTCGGTA -ACGGAAGTGTGTTCTTCGTGCCTA -ACGGAAGTGTGTTCTTCGCCACTA -ACGGAAGTGTGTTCTTCGGGAGTA -ACGGAAGTGTGTTCTTCGTCGTCT -ACGGAAGTGTGTTCTTCGTGCACT -ACGGAAGTGTGTTCTTCGCTGACT -ACGGAAGTGTGTTCTTCGCAACCT -ACGGAAGTGTGTTCTTCGGCTACT -ACGGAAGTGTGTTCTTCGGGATCT -ACGGAAGTGTGTTCTTCGAAGGCT -ACGGAAGTGTGTTCTTCGTCAACC -ACGGAAGTGTGTTCTTCGTGTTCC -ACGGAAGTGTGTTCTTCGATTCCC -ACGGAAGTGTGTTCTTCGTTCTCG -ACGGAAGTGTGTTCTTCGTAGACG -ACGGAAGTGTGTTCTTCGGTAACG -ACGGAAGTGTGTTCTTCGACTTCG -ACGGAAGTGTGTTCTTCGTACGCA -ACGGAAGTGTGTTCTTCGCTTGCA -ACGGAAGTGTGTTCTTCGCGAACA -ACGGAAGTGTGTTCTTCGCAGTCA -ACGGAAGTGTGTTCTTCGGATCCA -ACGGAAGTGTGTTCTTCGACGACA -ACGGAAGTGTGTTCTTCGAGCTCA -ACGGAAGTGTGTTCTTCGTCACGT -ACGGAAGTGTGTTCTTCGCGTAGT -ACGGAAGTGTGTTCTTCGGTCAGT -ACGGAAGTGTGTTCTTCGGAAGGT -ACGGAAGTGTGTTCTTCGAACCGT -ACGGAAGTGTGTTCTTCGTTGTGC -ACGGAAGTGTGTTCTTCGCTAAGC -ACGGAAGTGTGTTCTTCGACTAGC -ACGGAAGTGTGTTCTTCGAGATGC -ACGGAAGTGTGTTCTTCGTGAAGG -ACGGAAGTGTGTTCTTCGCAATGG -ACGGAAGTGTGTTCTTCGATGAGG -ACGGAAGTGTGTTCTTCGAATGGG -ACGGAAGTGTGTTCTTCGTCCTGA -ACGGAAGTGTGTTCTTCGTAGCGA -ACGGAAGTGTGTTCTTCGCACAGA -ACGGAAGTGTGTTCTTCGGCAAGA -ACGGAAGTGTGTTCTTCGGGTTGA -ACGGAAGTGTGTTCTTCGTCCGAT -ACGGAAGTGTGTTCTTCGTGGCAT -ACGGAAGTGTGTTCTTCGCGAGAT -ACGGAAGTGTGTTCTTCGTACCAC -ACGGAAGTGTGTTCTTCGCAGAAC -ACGGAAGTGTGTTCTTCGGTCTAC -ACGGAAGTGTGTTCTTCGACGTAC -ACGGAAGTGTGTTCTTCGAGTGAC -ACGGAAGTGTGTTCTTCGCTGTAG -ACGGAAGTGTGTTCTTCGCCTAAG -ACGGAAGTGTGTTCTTCGGTTCAG -ACGGAAGTGTGTTCTTCGGCATAG -ACGGAAGTGTGTTCTTCGGACAAG -ACGGAAGTGTGTTCTTCGAAGCAG -ACGGAAGTGTGTTCTTCGCGTCAA -ACGGAAGTGTGTTCTTCGGCTGAA -ACGGAAGTGTGTTCTTCGAGTACG -ACGGAAGTGTGTTCTTCGATCCGA -ACGGAAGTGTGTTCTTCGATGGGA -ACGGAAGTGTGTTCTTCGGTGCAA -ACGGAAGTGTGTTCTTCGGAGGAA -ACGGAAGTGTGTTCTTCGCAGGTA -ACGGAAGTGTGTTCTTCGGACTCT -ACGGAAGTGTGTTCTTCGAGTCCT -ACGGAAGTGTGTTCTTCGTAAGCC -ACGGAAGTGTGTTCTTCGATAGCC -ACGGAAGTGTGTTCTTCGTAACCG -ACGGAAGTGTGTTCTTCGATGCCA -ACGGAAGTGTGTACTTGCGGAAAC -ACGGAAGTGTGTACTTGCAACACC -ACGGAAGTGTGTACTTGCATCGAG -ACGGAAGTGTGTACTTGCCTCCTT -ACGGAAGTGTGTACTTGCCCTGTT -ACGGAAGTGTGTACTTGCCGGTTT -ACGGAAGTGTGTACTTGCGTGGTT -ACGGAAGTGTGTACTTGCGCCTTT -ACGGAAGTGTGTACTTGCGGTCTT -ACGGAAGTGTGTACTTGCACGCTT -ACGGAAGTGTGTACTTGCAGCGTT -ACGGAAGTGTGTACTTGCTTCGTC -ACGGAAGTGTGTACTTGCTCTCTC -ACGGAAGTGTGTACTTGCTGGATC -ACGGAAGTGTGTACTTGCCACTTC -ACGGAAGTGTGTACTTGCGTACTC -ACGGAAGTGTGTACTTGCGATGTC -ACGGAAGTGTGTACTTGCACAGTC -ACGGAAGTGTGTACTTGCTTGCTG -ACGGAAGTGTGTACTTGCTCCATG -ACGGAAGTGTGTACTTGCTGTGTG -ACGGAAGTGTGTACTTGCCTAGTG -ACGGAAGTGTGTACTTGCCATCTG -ACGGAAGTGTGTACTTGCGAGTTG -ACGGAAGTGTGTACTTGCAGACTG -ACGGAAGTGTGTACTTGCTCGGTA -ACGGAAGTGTGTACTTGCTGCCTA -ACGGAAGTGTGTACTTGCCCACTA -ACGGAAGTGTGTACTTGCGGAGTA -ACGGAAGTGTGTACTTGCTCGTCT -ACGGAAGTGTGTACTTGCTGCACT -ACGGAAGTGTGTACTTGCCTGACT -ACGGAAGTGTGTACTTGCCAACCT -ACGGAAGTGTGTACTTGCGCTACT -ACGGAAGTGTGTACTTGCGGATCT -ACGGAAGTGTGTACTTGCAAGGCT -ACGGAAGTGTGTACTTGCTCAACC -ACGGAAGTGTGTACTTGCTGTTCC -ACGGAAGTGTGTACTTGCATTCCC -ACGGAAGTGTGTACTTGCTTCTCG -ACGGAAGTGTGTACTTGCTAGACG -ACGGAAGTGTGTACTTGCGTAACG -ACGGAAGTGTGTACTTGCACTTCG -ACGGAAGTGTGTACTTGCTACGCA -ACGGAAGTGTGTACTTGCCTTGCA -ACGGAAGTGTGTACTTGCCGAACA -ACGGAAGTGTGTACTTGCCAGTCA -ACGGAAGTGTGTACTTGCGATCCA -ACGGAAGTGTGTACTTGCACGACA -ACGGAAGTGTGTACTTGCAGCTCA -ACGGAAGTGTGTACTTGCTCACGT -ACGGAAGTGTGTACTTGCCGTAGT -ACGGAAGTGTGTACTTGCGTCAGT -ACGGAAGTGTGTACTTGCGAAGGT -ACGGAAGTGTGTACTTGCAACCGT -ACGGAAGTGTGTACTTGCTTGTGC -ACGGAAGTGTGTACTTGCCTAAGC -ACGGAAGTGTGTACTTGCACTAGC -ACGGAAGTGTGTACTTGCAGATGC -ACGGAAGTGTGTACTTGCTGAAGG -ACGGAAGTGTGTACTTGCCAATGG -ACGGAAGTGTGTACTTGCATGAGG -ACGGAAGTGTGTACTTGCAATGGG -ACGGAAGTGTGTACTTGCTCCTGA -ACGGAAGTGTGTACTTGCTAGCGA -ACGGAAGTGTGTACTTGCCACAGA -ACGGAAGTGTGTACTTGCGCAAGA -ACGGAAGTGTGTACTTGCGGTTGA -ACGGAAGTGTGTACTTGCTCCGAT -ACGGAAGTGTGTACTTGCTGGCAT -ACGGAAGTGTGTACTTGCCGAGAT -ACGGAAGTGTGTACTTGCTACCAC -ACGGAAGTGTGTACTTGCCAGAAC -ACGGAAGTGTGTACTTGCGTCTAC -ACGGAAGTGTGTACTTGCACGTAC -ACGGAAGTGTGTACTTGCAGTGAC -ACGGAAGTGTGTACTTGCCTGTAG -ACGGAAGTGTGTACTTGCCCTAAG -ACGGAAGTGTGTACTTGCGTTCAG -ACGGAAGTGTGTACTTGCGCATAG -ACGGAAGTGTGTACTTGCGACAAG -ACGGAAGTGTGTACTTGCAAGCAG -ACGGAAGTGTGTACTTGCCGTCAA -ACGGAAGTGTGTACTTGCGCTGAA -ACGGAAGTGTGTACTTGCAGTACG -ACGGAAGTGTGTACTTGCATCCGA -ACGGAAGTGTGTACTTGCATGGGA -ACGGAAGTGTGTACTTGCGTGCAA -ACGGAAGTGTGTACTTGCGAGGAA -ACGGAAGTGTGTACTTGCCAGGTA -ACGGAAGTGTGTACTTGCGACTCT -ACGGAAGTGTGTACTTGCAGTCCT -ACGGAAGTGTGTACTTGCTAAGCC -ACGGAAGTGTGTACTTGCATAGCC -ACGGAAGTGTGTACTTGCTAACCG -ACGGAAGTGTGTACTTGCATGCCA -ACGGAAGTGTGTACTCTGGGAAAC -ACGGAAGTGTGTACTCTGAACACC -ACGGAAGTGTGTACTCTGATCGAG -ACGGAAGTGTGTACTCTGCTCCTT -ACGGAAGTGTGTACTCTGCCTGTT -ACGGAAGTGTGTACTCTGCGGTTT -ACGGAAGTGTGTACTCTGGTGGTT -ACGGAAGTGTGTACTCTGGCCTTT -ACGGAAGTGTGTACTCTGGGTCTT -ACGGAAGTGTGTACTCTGACGCTT -ACGGAAGTGTGTACTCTGAGCGTT -ACGGAAGTGTGTACTCTGTTCGTC -ACGGAAGTGTGTACTCTGTCTCTC -ACGGAAGTGTGTACTCTGTGGATC -ACGGAAGTGTGTACTCTGCACTTC -ACGGAAGTGTGTACTCTGGTACTC -ACGGAAGTGTGTACTCTGGATGTC -ACGGAAGTGTGTACTCTGACAGTC -ACGGAAGTGTGTACTCTGTTGCTG -ACGGAAGTGTGTACTCTGTCCATG -ACGGAAGTGTGTACTCTGTGTGTG -ACGGAAGTGTGTACTCTGCTAGTG -ACGGAAGTGTGTACTCTGCATCTG -ACGGAAGTGTGTACTCTGGAGTTG -ACGGAAGTGTGTACTCTGAGACTG -ACGGAAGTGTGTACTCTGTCGGTA -ACGGAAGTGTGTACTCTGTGCCTA -ACGGAAGTGTGTACTCTGCCACTA -ACGGAAGTGTGTACTCTGGGAGTA -ACGGAAGTGTGTACTCTGTCGTCT -ACGGAAGTGTGTACTCTGTGCACT -ACGGAAGTGTGTACTCTGCTGACT -ACGGAAGTGTGTACTCTGCAACCT -ACGGAAGTGTGTACTCTGGCTACT -ACGGAAGTGTGTACTCTGGGATCT -ACGGAAGTGTGTACTCTGAAGGCT -ACGGAAGTGTGTACTCTGTCAACC -ACGGAAGTGTGTACTCTGTGTTCC -ACGGAAGTGTGTACTCTGATTCCC -ACGGAAGTGTGTACTCTGTTCTCG -ACGGAAGTGTGTACTCTGTAGACG -ACGGAAGTGTGTACTCTGGTAACG -ACGGAAGTGTGTACTCTGACTTCG -ACGGAAGTGTGTACTCTGTACGCA -ACGGAAGTGTGTACTCTGCTTGCA -ACGGAAGTGTGTACTCTGCGAACA -ACGGAAGTGTGTACTCTGCAGTCA -ACGGAAGTGTGTACTCTGGATCCA -ACGGAAGTGTGTACTCTGACGACA -ACGGAAGTGTGTACTCTGAGCTCA -ACGGAAGTGTGTACTCTGTCACGT -ACGGAAGTGTGTACTCTGCGTAGT -ACGGAAGTGTGTACTCTGGTCAGT -ACGGAAGTGTGTACTCTGGAAGGT -ACGGAAGTGTGTACTCTGAACCGT -ACGGAAGTGTGTACTCTGTTGTGC -ACGGAAGTGTGTACTCTGCTAAGC -ACGGAAGTGTGTACTCTGACTAGC -ACGGAAGTGTGTACTCTGAGATGC -ACGGAAGTGTGTACTCTGTGAAGG -ACGGAAGTGTGTACTCTGCAATGG -ACGGAAGTGTGTACTCTGATGAGG -ACGGAAGTGTGTACTCTGAATGGG -ACGGAAGTGTGTACTCTGTCCTGA -ACGGAAGTGTGTACTCTGTAGCGA -ACGGAAGTGTGTACTCTGCACAGA -ACGGAAGTGTGTACTCTGGCAAGA -ACGGAAGTGTGTACTCTGGGTTGA -ACGGAAGTGTGTACTCTGTCCGAT -ACGGAAGTGTGTACTCTGTGGCAT -ACGGAAGTGTGTACTCTGCGAGAT -ACGGAAGTGTGTACTCTGTACCAC -ACGGAAGTGTGTACTCTGCAGAAC -ACGGAAGTGTGTACTCTGGTCTAC -ACGGAAGTGTGTACTCTGACGTAC -ACGGAAGTGTGTACTCTGAGTGAC -ACGGAAGTGTGTACTCTGCTGTAG -ACGGAAGTGTGTACTCTGCCTAAG -ACGGAAGTGTGTACTCTGGTTCAG -ACGGAAGTGTGTACTCTGGCATAG -ACGGAAGTGTGTACTCTGGACAAG -ACGGAAGTGTGTACTCTGAAGCAG -ACGGAAGTGTGTACTCTGCGTCAA -ACGGAAGTGTGTACTCTGGCTGAA -ACGGAAGTGTGTACTCTGAGTACG -ACGGAAGTGTGTACTCTGATCCGA -ACGGAAGTGTGTACTCTGATGGGA -ACGGAAGTGTGTACTCTGGTGCAA -ACGGAAGTGTGTACTCTGGAGGAA -ACGGAAGTGTGTACTCTGCAGGTA -ACGGAAGTGTGTACTCTGGACTCT -ACGGAAGTGTGTACTCTGAGTCCT -ACGGAAGTGTGTACTCTGTAAGCC -ACGGAAGTGTGTACTCTGATAGCC -ACGGAAGTGTGTACTCTGTAACCG -ACGGAAGTGTGTACTCTGATGCCA -ACGGAAGTGTGTCCTCAAGGAAAC -ACGGAAGTGTGTCCTCAAAACACC -ACGGAAGTGTGTCCTCAAATCGAG -ACGGAAGTGTGTCCTCAACTCCTT -ACGGAAGTGTGTCCTCAACCTGTT -ACGGAAGTGTGTCCTCAACGGTTT -ACGGAAGTGTGTCCTCAAGTGGTT -ACGGAAGTGTGTCCTCAAGCCTTT -ACGGAAGTGTGTCCTCAAGGTCTT -ACGGAAGTGTGTCCTCAAACGCTT -ACGGAAGTGTGTCCTCAAAGCGTT -ACGGAAGTGTGTCCTCAATTCGTC -ACGGAAGTGTGTCCTCAATCTCTC -ACGGAAGTGTGTCCTCAATGGATC -ACGGAAGTGTGTCCTCAACACTTC -ACGGAAGTGTGTCCTCAAGTACTC -ACGGAAGTGTGTCCTCAAGATGTC -ACGGAAGTGTGTCCTCAAACAGTC -ACGGAAGTGTGTCCTCAATTGCTG -ACGGAAGTGTGTCCTCAATCCATG -ACGGAAGTGTGTCCTCAATGTGTG -ACGGAAGTGTGTCCTCAACTAGTG -ACGGAAGTGTGTCCTCAACATCTG -ACGGAAGTGTGTCCTCAAGAGTTG -ACGGAAGTGTGTCCTCAAAGACTG -ACGGAAGTGTGTCCTCAATCGGTA -ACGGAAGTGTGTCCTCAATGCCTA -ACGGAAGTGTGTCCTCAACCACTA -ACGGAAGTGTGTCCTCAAGGAGTA -ACGGAAGTGTGTCCTCAATCGTCT -ACGGAAGTGTGTCCTCAATGCACT -ACGGAAGTGTGTCCTCAACTGACT -ACGGAAGTGTGTCCTCAACAACCT -ACGGAAGTGTGTCCTCAAGCTACT -ACGGAAGTGTGTCCTCAAGGATCT -ACGGAAGTGTGTCCTCAAAAGGCT -ACGGAAGTGTGTCCTCAATCAACC -ACGGAAGTGTGTCCTCAATGTTCC -ACGGAAGTGTGTCCTCAAATTCCC -ACGGAAGTGTGTCCTCAATTCTCG -ACGGAAGTGTGTCCTCAATAGACG -ACGGAAGTGTGTCCTCAAGTAACG -ACGGAAGTGTGTCCTCAAACTTCG -ACGGAAGTGTGTCCTCAATACGCA -ACGGAAGTGTGTCCTCAACTTGCA -ACGGAAGTGTGTCCTCAACGAACA -ACGGAAGTGTGTCCTCAACAGTCA -ACGGAAGTGTGTCCTCAAGATCCA -ACGGAAGTGTGTCCTCAAACGACA -ACGGAAGTGTGTCCTCAAAGCTCA -ACGGAAGTGTGTCCTCAATCACGT -ACGGAAGTGTGTCCTCAACGTAGT -ACGGAAGTGTGTCCTCAAGTCAGT -ACGGAAGTGTGTCCTCAAGAAGGT -ACGGAAGTGTGTCCTCAAAACCGT -ACGGAAGTGTGTCCTCAATTGTGC -ACGGAAGTGTGTCCTCAACTAAGC -ACGGAAGTGTGTCCTCAAACTAGC -ACGGAAGTGTGTCCTCAAAGATGC -ACGGAAGTGTGTCCTCAATGAAGG -ACGGAAGTGTGTCCTCAACAATGG -ACGGAAGTGTGTCCTCAAATGAGG -ACGGAAGTGTGTCCTCAAAATGGG -ACGGAAGTGTGTCCTCAATCCTGA -ACGGAAGTGTGTCCTCAATAGCGA -ACGGAAGTGTGTCCTCAACACAGA -ACGGAAGTGTGTCCTCAAGCAAGA -ACGGAAGTGTGTCCTCAAGGTTGA -ACGGAAGTGTGTCCTCAATCCGAT -ACGGAAGTGTGTCCTCAATGGCAT -ACGGAAGTGTGTCCTCAACGAGAT -ACGGAAGTGTGTCCTCAATACCAC -ACGGAAGTGTGTCCTCAACAGAAC -ACGGAAGTGTGTCCTCAAGTCTAC -ACGGAAGTGTGTCCTCAAACGTAC -ACGGAAGTGTGTCCTCAAAGTGAC -ACGGAAGTGTGTCCTCAACTGTAG -ACGGAAGTGTGTCCTCAACCTAAG -ACGGAAGTGTGTCCTCAAGTTCAG -ACGGAAGTGTGTCCTCAAGCATAG -ACGGAAGTGTGTCCTCAAGACAAG -ACGGAAGTGTGTCCTCAAAAGCAG -ACGGAAGTGTGTCCTCAACGTCAA -ACGGAAGTGTGTCCTCAAGCTGAA -ACGGAAGTGTGTCCTCAAAGTACG -ACGGAAGTGTGTCCTCAAATCCGA -ACGGAAGTGTGTCCTCAAATGGGA -ACGGAAGTGTGTCCTCAAGTGCAA -ACGGAAGTGTGTCCTCAAGAGGAA -ACGGAAGTGTGTCCTCAACAGGTA -ACGGAAGTGTGTCCTCAAGACTCT -ACGGAAGTGTGTCCTCAAAGTCCT -ACGGAAGTGTGTCCTCAATAAGCC -ACGGAAGTGTGTCCTCAAATAGCC -ACGGAAGTGTGTCCTCAATAACCG -ACGGAAGTGTGTCCTCAAATGCCA -ACGGAAGTGTGTACTGCTGGAAAC -ACGGAAGTGTGTACTGCTAACACC -ACGGAAGTGTGTACTGCTATCGAG -ACGGAAGTGTGTACTGCTCTCCTT -ACGGAAGTGTGTACTGCTCCTGTT -ACGGAAGTGTGTACTGCTCGGTTT -ACGGAAGTGTGTACTGCTGTGGTT -ACGGAAGTGTGTACTGCTGCCTTT -ACGGAAGTGTGTACTGCTGGTCTT -ACGGAAGTGTGTACTGCTACGCTT -ACGGAAGTGTGTACTGCTAGCGTT -ACGGAAGTGTGTACTGCTTTCGTC -ACGGAAGTGTGTACTGCTTCTCTC -ACGGAAGTGTGTACTGCTTGGATC -ACGGAAGTGTGTACTGCTCACTTC -ACGGAAGTGTGTACTGCTGTACTC -ACGGAAGTGTGTACTGCTGATGTC -ACGGAAGTGTGTACTGCTACAGTC -ACGGAAGTGTGTACTGCTTTGCTG -ACGGAAGTGTGTACTGCTTCCATG -ACGGAAGTGTGTACTGCTTGTGTG -ACGGAAGTGTGTACTGCTCTAGTG -ACGGAAGTGTGTACTGCTCATCTG -ACGGAAGTGTGTACTGCTGAGTTG -ACGGAAGTGTGTACTGCTAGACTG -ACGGAAGTGTGTACTGCTTCGGTA -ACGGAAGTGTGTACTGCTTGCCTA -ACGGAAGTGTGTACTGCTCCACTA -ACGGAAGTGTGTACTGCTGGAGTA -ACGGAAGTGTGTACTGCTTCGTCT -ACGGAAGTGTGTACTGCTTGCACT -ACGGAAGTGTGTACTGCTCTGACT -ACGGAAGTGTGTACTGCTCAACCT -ACGGAAGTGTGTACTGCTGCTACT -ACGGAAGTGTGTACTGCTGGATCT -ACGGAAGTGTGTACTGCTAAGGCT -ACGGAAGTGTGTACTGCTTCAACC -ACGGAAGTGTGTACTGCTTGTTCC -ACGGAAGTGTGTACTGCTATTCCC -ACGGAAGTGTGTACTGCTTTCTCG -ACGGAAGTGTGTACTGCTTAGACG -ACGGAAGTGTGTACTGCTGTAACG -ACGGAAGTGTGTACTGCTACTTCG -ACGGAAGTGTGTACTGCTTACGCA -ACGGAAGTGTGTACTGCTCTTGCA -ACGGAAGTGTGTACTGCTCGAACA -ACGGAAGTGTGTACTGCTCAGTCA -ACGGAAGTGTGTACTGCTGATCCA -ACGGAAGTGTGTACTGCTACGACA -ACGGAAGTGTGTACTGCTAGCTCA -ACGGAAGTGTGTACTGCTTCACGT -ACGGAAGTGTGTACTGCTCGTAGT -ACGGAAGTGTGTACTGCTGTCAGT -ACGGAAGTGTGTACTGCTGAAGGT -ACGGAAGTGTGTACTGCTAACCGT -ACGGAAGTGTGTACTGCTTTGTGC -ACGGAAGTGTGTACTGCTCTAAGC -ACGGAAGTGTGTACTGCTACTAGC -ACGGAAGTGTGTACTGCTAGATGC -ACGGAAGTGTGTACTGCTTGAAGG -ACGGAAGTGTGTACTGCTCAATGG -ACGGAAGTGTGTACTGCTATGAGG -ACGGAAGTGTGTACTGCTAATGGG -ACGGAAGTGTGTACTGCTTCCTGA -ACGGAAGTGTGTACTGCTTAGCGA -ACGGAAGTGTGTACTGCTCACAGA -ACGGAAGTGTGTACTGCTGCAAGA -ACGGAAGTGTGTACTGCTGGTTGA -ACGGAAGTGTGTACTGCTTCCGAT -ACGGAAGTGTGTACTGCTTGGCAT -ACGGAAGTGTGTACTGCTCGAGAT -ACGGAAGTGTGTACTGCTTACCAC -ACGGAAGTGTGTACTGCTCAGAAC -ACGGAAGTGTGTACTGCTGTCTAC -ACGGAAGTGTGTACTGCTACGTAC -ACGGAAGTGTGTACTGCTAGTGAC -ACGGAAGTGTGTACTGCTCTGTAG -ACGGAAGTGTGTACTGCTCCTAAG -ACGGAAGTGTGTACTGCTGTTCAG -ACGGAAGTGTGTACTGCTGCATAG -ACGGAAGTGTGTACTGCTGACAAG -ACGGAAGTGTGTACTGCTAAGCAG -ACGGAAGTGTGTACTGCTCGTCAA -ACGGAAGTGTGTACTGCTGCTGAA -ACGGAAGTGTGTACTGCTAGTACG -ACGGAAGTGTGTACTGCTATCCGA -ACGGAAGTGTGTACTGCTATGGGA -ACGGAAGTGTGTACTGCTGTGCAA -ACGGAAGTGTGTACTGCTGAGGAA -ACGGAAGTGTGTACTGCTCAGGTA -ACGGAAGTGTGTACTGCTGACTCT -ACGGAAGTGTGTACTGCTAGTCCT -ACGGAAGTGTGTACTGCTTAAGCC -ACGGAAGTGTGTACTGCTATAGCC -ACGGAAGTGTGTACTGCTTAACCG -ACGGAAGTGTGTACTGCTATGCCA -ACGGAAGTGTGTTCTGGAGGAAAC -ACGGAAGTGTGTTCTGGAAACACC -ACGGAAGTGTGTTCTGGAATCGAG -ACGGAAGTGTGTTCTGGACTCCTT -ACGGAAGTGTGTTCTGGACCTGTT -ACGGAAGTGTGTTCTGGACGGTTT -ACGGAAGTGTGTTCTGGAGTGGTT -ACGGAAGTGTGTTCTGGAGCCTTT -ACGGAAGTGTGTTCTGGAGGTCTT -ACGGAAGTGTGTTCTGGAACGCTT -ACGGAAGTGTGTTCTGGAAGCGTT -ACGGAAGTGTGTTCTGGATTCGTC -ACGGAAGTGTGTTCTGGATCTCTC -ACGGAAGTGTGTTCTGGATGGATC -ACGGAAGTGTGTTCTGGACACTTC -ACGGAAGTGTGTTCTGGAGTACTC -ACGGAAGTGTGTTCTGGAGATGTC -ACGGAAGTGTGTTCTGGAACAGTC -ACGGAAGTGTGTTCTGGATTGCTG -ACGGAAGTGTGTTCTGGATCCATG -ACGGAAGTGTGTTCTGGATGTGTG -ACGGAAGTGTGTTCTGGACTAGTG -ACGGAAGTGTGTTCTGGACATCTG -ACGGAAGTGTGTTCTGGAGAGTTG -ACGGAAGTGTGTTCTGGAAGACTG -ACGGAAGTGTGTTCTGGATCGGTA -ACGGAAGTGTGTTCTGGATGCCTA -ACGGAAGTGTGTTCTGGACCACTA -ACGGAAGTGTGTTCTGGAGGAGTA -ACGGAAGTGTGTTCTGGATCGTCT -ACGGAAGTGTGTTCTGGATGCACT -ACGGAAGTGTGTTCTGGACTGACT -ACGGAAGTGTGTTCTGGACAACCT -ACGGAAGTGTGTTCTGGAGCTACT -ACGGAAGTGTGTTCTGGAGGATCT -ACGGAAGTGTGTTCTGGAAAGGCT -ACGGAAGTGTGTTCTGGATCAACC -ACGGAAGTGTGTTCTGGATGTTCC -ACGGAAGTGTGTTCTGGAATTCCC -ACGGAAGTGTGTTCTGGATTCTCG -ACGGAAGTGTGTTCTGGATAGACG -ACGGAAGTGTGTTCTGGAGTAACG -ACGGAAGTGTGTTCTGGAACTTCG -ACGGAAGTGTGTTCTGGATACGCA -ACGGAAGTGTGTTCTGGACTTGCA -ACGGAAGTGTGTTCTGGACGAACA -ACGGAAGTGTGTTCTGGACAGTCA -ACGGAAGTGTGTTCTGGAGATCCA -ACGGAAGTGTGTTCTGGAACGACA -ACGGAAGTGTGTTCTGGAAGCTCA -ACGGAAGTGTGTTCTGGATCACGT -ACGGAAGTGTGTTCTGGACGTAGT -ACGGAAGTGTGTTCTGGAGTCAGT -ACGGAAGTGTGTTCTGGAGAAGGT -ACGGAAGTGTGTTCTGGAAACCGT -ACGGAAGTGTGTTCTGGATTGTGC -ACGGAAGTGTGTTCTGGACTAAGC -ACGGAAGTGTGTTCTGGAACTAGC -ACGGAAGTGTGTTCTGGAAGATGC -ACGGAAGTGTGTTCTGGATGAAGG -ACGGAAGTGTGTTCTGGACAATGG -ACGGAAGTGTGTTCTGGAATGAGG -ACGGAAGTGTGTTCTGGAAATGGG -ACGGAAGTGTGTTCTGGATCCTGA -ACGGAAGTGTGTTCTGGATAGCGA -ACGGAAGTGTGTTCTGGACACAGA -ACGGAAGTGTGTTCTGGAGCAAGA -ACGGAAGTGTGTTCTGGAGGTTGA -ACGGAAGTGTGTTCTGGATCCGAT -ACGGAAGTGTGTTCTGGATGGCAT -ACGGAAGTGTGTTCTGGACGAGAT -ACGGAAGTGTGTTCTGGATACCAC -ACGGAAGTGTGTTCTGGACAGAAC -ACGGAAGTGTGTTCTGGAGTCTAC -ACGGAAGTGTGTTCTGGAACGTAC -ACGGAAGTGTGTTCTGGAAGTGAC -ACGGAAGTGTGTTCTGGACTGTAG -ACGGAAGTGTGTTCTGGACCTAAG -ACGGAAGTGTGTTCTGGAGTTCAG -ACGGAAGTGTGTTCTGGAGCATAG -ACGGAAGTGTGTTCTGGAGACAAG -ACGGAAGTGTGTTCTGGAAAGCAG -ACGGAAGTGTGTTCTGGACGTCAA -ACGGAAGTGTGTTCTGGAGCTGAA -ACGGAAGTGTGTTCTGGAAGTACG -ACGGAAGTGTGTTCTGGAATCCGA -ACGGAAGTGTGTTCTGGAATGGGA -ACGGAAGTGTGTTCTGGAGTGCAA -ACGGAAGTGTGTTCTGGAGAGGAA -ACGGAAGTGTGTTCTGGACAGGTA -ACGGAAGTGTGTTCTGGAGACTCT -ACGGAAGTGTGTTCTGGAAGTCCT -ACGGAAGTGTGTTCTGGATAAGCC -ACGGAAGTGTGTTCTGGAATAGCC -ACGGAAGTGTGTTCTGGATAACCG -ACGGAAGTGTGTTCTGGAATGCCA -ACGGAAGTGTGTGCTAAGGGAAAC -ACGGAAGTGTGTGCTAAGAACACC -ACGGAAGTGTGTGCTAAGATCGAG -ACGGAAGTGTGTGCTAAGCTCCTT -ACGGAAGTGTGTGCTAAGCCTGTT -ACGGAAGTGTGTGCTAAGCGGTTT -ACGGAAGTGTGTGCTAAGGTGGTT -ACGGAAGTGTGTGCTAAGGCCTTT -ACGGAAGTGTGTGCTAAGGGTCTT -ACGGAAGTGTGTGCTAAGACGCTT -ACGGAAGTGTGTGCTAAGAGCGTT -ACGGAAGTGTGTGCTAAGTTCGTC -ACGGAAGTGTGTGCTAAGTCTCTC -ACGGAAGTGTGTGCTAAGTGGATC -ACGGAAGTGTGTGCTAAGCACTTC -ACGGAAGTGTGTGCTAAGGTACTC -ACGGAAGTGTGTGCTAAGGATGTC -ACGGAAGTGTGTGCTAAGACAGTC -ACGGAAGTGTGTGCTAAGTTGCTG -ACGGAAGTGTGTGCTAAGTCCATG -ACGGAAGTGTGTGCTAAGTGTGTG -ACGGAAGTGTGTGCTAAGCTAGTG -ACGGAAGTGTGTGCTAAGCATCTG -ACGGAAGTGTGTGCTAAGGAGTTG -ACGGAAGTGTGTGCTAAGAGACTG -ACGGAAGTGTGTGCTAAGTCGGTA -ACGGAAGTGTGTGCTAAGTGCCTA -ACGGAAGTGTGTGCTAAGCCACTA -ACGGAAGTGTGTGCTAAGGGAGTA -ACGGAAGTGTGTGCTAAGTCGTCT -ACGGAAGTGTGTGCTAAGTGCACT -ACGGAAGTGTGTGCTAAGCTGACT -ACGGAAGTGTGTGCTAAGCAACCT -ACGGAAGTGTGTGCTAAGGCTACT -ACGGAAGTGTGTGCTAAGGGATCT -ACGGAAGTGTGTGCTAAGAAGGCT -ACGGAAGTGTGTGCTAAGTCAACC -ACGGAAGTGTGTGCTAAGTGTTCC -ACGGAAGTGTGTGCTAAGATTCCC -ACGGAAGTGTGTGCTAAGTTCTCG -ACGGAAGTGTGTGCTAAGTAGACG -ACGGAAGTGTGTGCTAAGGTAACG -ACGGAAGTGTGTGCTAAGACTTCG -ACGGAAGTGTGTGCTAAGTACGCA -ACGGAAGTGTGTGCTAAGCTTGCA -ACGGAAGTGTGTGCTAAGCGAACA -ACGGAAGTGTGTGCTAAGCAGTCA -ACGGAAGTGTGTGCTAAGGATCCA -ACGGAAGTGTGTGCTAAGACGACA -ACGGAAGTGTGTGCTAAGAGCTCA -ACGGAAGTGTGTGCTAAGTCACGT -ACGGAAGTGTGTGCTAAGCGTAGT -ACGGAAGTGTGTGCTAAGGTCAGT -ACGGAAGTGTGTGCTAAGGAAGGT -ACGGAAGTGTGTGCTAAGAACCGT -ACGGAAGTGTGTGCTAAGTTGTGC -ACGGAAGTGTGTGCTAAGCTAAGC -ACGGAAGTGTGTGCTAAGACTAGC -ACGGAAGTGTGTGCTAAGAGATGC -ACGGAAGTGTGTGCTAAGTGAAGG -ACGGAAGTGTGTGCTAAGCAATGG -ACGGAAGTGTGTGCTAAGATGAGG -ACGGAAGTGTGTGCTAAGAATGGG -ACGGAAGTGTGTGCTAAGTCCTGA -ACGGAAGTGTGTGCTAAGTAGCGA -ACGGAAGTGTGTGCTAAGCACAGA -ACGGAAGTGTGTGCTAAGGCAAGA -ACGGAAGTGTGTGCTAAGGGTTGA -ACGGAAGTGTGTGCTAAGTCCGAT -ACGGAAGTGTGTGCTAAGTGGCAT -ACGGAAGTGTGTGCTAAGCGAGAT -ACGGAAGTGTGTGCTAAGTACCAC -ACGGAAGTGTGTGCTAAGCAGAAC -ACGGAAGTGTGTGCTAAGGTCTAC -ACGGAAGTGTGTGCTAAGACGTAC -ACGGAAGTGTGTGCTAAGAGTGAC -ACGGAAGTGTGTGCTAAGCTGTAG -ACGGAAGTGTGTGCTAAGCCTAAG -ACGGAAGTGTGTGCTAAGGTTCAG -ACGGAAGTGTGTGCTAAGGCATAG -ACGGAAGTGTGTGCTAAGGACAAG -ACGGAAGTGTGTGCTAAGAAGCAG -ACGGAAGTGTGTGCTAAGCGTCAA -ACGGAAGTGTGTGCTAAGGCTGAA -ACGGAAGTGTGTGCTAAGAGTACG -ACGGAAGTGTGTGCTAAGATCCGA -ACGGAAGTGTGTGCTAAGATGGGA -ACGGAAGTGTGTGCTAAGGTGCAA -ACGGAAGTGTGTGCTAAGGAGGAA -ACGGAAGTGTGTGCTAAGCAGGTA -ACGGAAGTGTGTGCTAAGGACTCT -ACGGAAGTGTGTGCTAAGAGTCCT -ACGGAAGTGTGTGCTAAGTAAGCC -ACGGAAGTGTGTGCTAAGATAGCC -ACGGAAGTGTGTGCTAAGTAACCG -ACGGAAGTGTGTGCTAAGATGCCA -ACGGAAGTGTGTACCTCAGGAAAC -ACGGAAGTGTGTACCTCAAACACC -ACGGAAGTGTGTACCTCAATCGAG -ACGGAAGTGTGTACCTCACTCCTT -ACGGAAGTGTGTACCTCACCTGTT -ACGGAAGTGTGTACCTCACGGTTT -ACGGAAGTGTGTACCTCAGTGGTT -ACGGAAGTGTGTACCTCAGCCTTT -ACGGAAGTGTGTACCTCAGGTCTT -ACGGAAGTGTGTACCTCAACGCTT -ACGGAAGTGTGTACCTCAAGCGTT -ACGGAAGTGTGTACCTCATTCGTC -ACGGAAGTGTGTACCTCATCTCTC -ACGGAAGTGTGTACCTCATGGATC -ACGGAAGTGTGTACCTCACACTTC -ACGGAAGTGTGTACCTCAGTACTC -ACGGAAGTGTGTACCTCAGATGTC -ACGGAAGTGTGTACCTCAACAGTC -ACGGAAGTGTGTACCTCATTGCTG -ACGGAAGTGTGTACCTCATCCATG -ACGGAAGTGTGTACCTCATGTGTG -ACGGAAGTGTGTACCTCACTAGTG -ACGGAAGTGTGTACCTCACATCTG -ACGGAAGTGTGTACCTCAGAGTTG -ACGGAAGTGTGTACCTCAAGACTG -ACGGAAGTGTGTACCTCATCGGTA -ACGGAAGTGTGTACCTCATGCCTA -ACGGAAGTGTGTACCTCACCACTA -ACGGAAGTGTGTACCTCAGGAGTA -ACGGAAGTGTGTACCTCATCGTCT -ACGGAAGTGTGTACCTCATGCACT -ACGGAAGTGTGTACCTCACTGACT -ACGGAAGTGTGTACCTCACAACCT -ACGGAAGTGTGTACCTCAGCTACT -ACGGAAGTGTGTACCTCAGGATCT -ACGGAAGTGTGTACCTCAAAGGCT -ACGGAAGTGTGTACCTCATCAACC -ACGGAAGTGTGTACCTCATGTTCC -ACGGAAGTGTGTACCTCAATTCCC -ACGGAAGTGTGTACCTCATTCTCG -ACGGAAGTGTGTACCTCATAGACG -ACGGAAGTGTGTACCTCAGTAACG -ACGGAAGTGTGTACCTCAACTTCG -ACGGAAGTGTGTACCTCATACGCA -ACGGAAGTGTGTACCTCACTTGCA -ACGGAAGTGTGTACCTCACGAACA -ACGGAAGTGTGTACCTCACAGTCA -ACGGAAGTGTGTACCTCAGATCCA -ACGGAAGTGTGTACCTCAACGACA -ACGGAAGTGTGTACCTCAAGCTCA -ACGGAAGTGTGTACCTCATCACGT -ACGGAAGTGTGTACCTCACGTAGT -ACGGAAGTGTGTACCTCAGTCAGT -ACGGAAGTGTGTACCTCAGAAGGT -ACGGAAGTGTGTACCTCAAACCGT -ACGGAAGTGTGTACCTCATTGTGC -ACGGAAGTGTGTACCTCACTAAGC -ACGGAAGTGTGTACCTCAACTAGC -ACGGAAGTGTGTACCTCAAGATGC -ACGGAAGTGTGTACCTCATGAAGG -ACGGAAGTGTGTACCTCACAATGG -ACGGAAGTGTGTACCTCAATGAGG -ACGGAAGTGTGTACCTCAAATGGG -ACGGAAGTGTGTACCTCATCCTGA -ACGGAAGTGTGTACCTCATAGCGA -ACGGAAGTGTGTACCTCACACAGA -ACGGAAGTGTGTACCTCAGCAAGA -ACGGAAGTGTGTACCTCAGGTTGA -ACGGAAGTGTGTACCTCATCCGAT -ACGGAAGTGTGTACCTCATGGCAT -ACGGAAGTGTGTACCTCACGAGAT -ACGGAAGTGTGTACCTCATACCAC -ACGGAAGTGTGTACCTCACAGAAC -ACGGAAGTGTGTACCTCAGTCTAC -ACGGAAGTGTGTACCTCAACGTAC -ACGGAAGTGTGTACCTCAAGTGAC -ACGGAAGTGTGTACCTCACTGTAG -ACGGAAGTGTGTACCTCACCTAAG -ACGGAAGTGTGTACCTCAGTTCAG -ACGGAAGTGTGTACCTCAGCATAG -ACGGAAGTGTGTACCTCAGACAAG -ACGGAAGTGTGTACCTCAAAGCAG -ACGGAAGTGTGTACCTCACGTCAA -ACGGAAGTGTGTACCTCAGCTGAA -ACGGAAGTGTGTACCTCAAGTACG -ACGGAAGTGTGTACCTCAATCCGA -ACGGAAGTGTGTACCTCAATGGGA -ACGGAAGTGTGTACCTCAGTGCAA -ACGGAAGTGTGTACCTCAGAGGAA -ACGGAAGTGTGTACCTCACAGGTA -ACGGAAGTGTGTACCTCAGACTCT -ACGGAAGTGTGTACCTCAAGTCCT -ACGGAAGTGTGTACCTCATAAGCC -ACGGAAGTGTGTACCTCAATAGCC -ACGGAAGTGTGTACCTCATAACCG -ACGGAAGTGTGTACCTCAATGCCA -ACGGAAGTGTGTTCCTGTGGAAAC -ACGGAAGTGTGTTCCTGTAACACC -ACGGAAGTGTGTTCCTGTATCGAG -ACGGAAGTGTGTTCCTGTCTCCTT -ACGGAAGTGTGTTCCTGTCCTGTT -ACGGAAGTGTGTTCCTGTCGGTTT -ACGGAAGTGTGTTCCTGTGTGGTT -ACGGAAGTGTGTTCCTGTGCCTTT -ACGGAAGTGTGTTCCTGTGGTCTT -ACGGAAGTGTGTTCCTGTACGCTT -ACGGAAGTGTGTTCCTGTAGCGTT -ACGGAAGTGTGTTCCTGTTTCGTC -ACGGAAGTGTGTTCCTGTTCTCTC -ACGGAAGTGTGTTCCTGTTGGATC -ACGGAAGTGTGTTCCTGTCACTTC -ACGGAAGTGTGTTCCTGTGTACTC -ACGGAAGTGTGTTCCTGTGATGTC -ACGGAAGTGTGTTCCTGTACAGTC -ACGGAAGTGTGTTCCTGTTTGCTG -ACGGAAGTGTGTTCCTGTTCCATG -ACGGAAGTGTGTTCCTGTTGTGTG -ACGGAAGTGTGTTCCTGTCTAGTG -ACGGAAGTGTGTTCCTGTCATCTG -ACGGAAGTGTGTTCCTGTGAGTTG -ACGGAAGTGTGTTCCTGTAGACTG -ACGGAAGTGTGTTCCTGTTCGGTA -ACGGAAGTGTGTTCCTGTTGCCTA -ACGGAAGTGTGTTCCTGTCCACTA -ACGGAAGTGTGTTCCTGTGGAGTA -ACGGAAGTGTGTTCCTGTTCGTCT -ACGGAAGTGTGTTCCTGTTGCACT -ACGGAAGTGTGTTCCTGTCTGACT -ACGGAAGTGTGTTCCTGTCAACCT -ACGGAAGTGTGTTCCTGTGCTACT -ACGGAAGTGTGTTCCTGTGGATCT -ACGGAAGTGTGTTCCTGTAAGGCT -ACGGAAGTGTGTTCCTGTTCAACC -ACGGAAGTGTGTTCCTGTTGTTCC -ACGGAAGTGTGTTCCTGTATTCCC -ACGGAAGTGTGTTCCTGTTTCTCG -ACGGAAGTGTGTTCCTGTTAGACG -ACGGAAGTGTGTTCCTGTGTAACG -ACGGAAGTGTGTTCCTGTACTTCG -ACGGAAGTGTGTTCCTGTTACGCA -ACGGAAGTGTGTTCCTGTCTTGCA -ACGGAAGTGTGTTCCTGTCGAACA -ACGGAAGTGTGTTCCTGTCAGTCA -ACGGAAGTGTGTTCCTGTGATCCA -ACGGAAGTGTGTTCCTGTACGACA -ACGGAAGTGTGTTCCTGTAGCTCA -ACGGAAGTGTGTTCCTGTTCACGT -ACGGAAGTGTGTTCCTGTCGTAGT -ACGGAAGTGTGTTCCTGTGTCAGT -ACGGAAGTGTGTTCCTGTGAAGGT -ACGGAAGTGTGTTCCTGTAACCGT -ACGGAAGTGTGTTCCTGTTTGTGC -ACGGAAGTGTGTTCCTGTCTAAGC -ACGGAAGTGTGTTCCTGTACTAGC -ACGGAAGTGTGTTCCTGTAGATGC -ACGGAAGTGTGTTCCTGTTGAAGG -ACGGAAGTGTGTTCCTGTCAATGG -ACGGAAGTGTGTTCCTGTATGAGG -ACGGAAGTGTGTTCCTGTAATGGG -ACGGAAGTGTGTTCCTGTTCCTGA -ACGGAAGTGTGTTCCTGTTAGCGA -ACGGAAGTGTGTTCCTGTCACAGA -ACGGAAGTGTGTTCCTGTGCAAGA -ACGGAAGTGTGTTCCTGTGGTTGA -ACGGAAGTGTGTTCCTGTTCCGAT -ACGGAAGTGTGTTCCTGTTGGCAT -ACGGAAGTGTGTTCCTGTCGAGAT -ACGGAAGTGTGTTCCTGTTACCAC -ACGGAAGTGTGTTCCTGTCAGAAC -ACGGAAGTGTGTTCCTGTGTCTAC -ACGGAAGTGTGTTCCTGTACGTAC -ACGGAAGTGTGTTCCTGTAGTGAC -ACGGAAGTGTGTTCCTGTCTGTAG -ACGGAAGTGTGTTCCTGTCCTAAG -ACGGAAGTGTGTTCCTGTGTTCAG -ACGGAAGTGTGTTCCTGTGCATAG -ACGGAAGTGTGTTCCTGTGACAAG -ACGGAAGTGTGTTCCTGTAAGCAG -ACGGAAGTGTGTTCCTGTCGTCAA -ACGGAAGTGTGTTCCTGTGCTGAA -ACGGAAGTGTGTTCCTGTAGTACG -ACGGAAGTGTGTTCCTGTATCCGA -ACGGAAGTGTGTTCCTGTATGGGA -ACGGAAGTGTGTTCCTGTGTGCAA -ACGGAAGTGTGTTCCTGTGAGGAA -ACGGAAGTGTGTTCCTGTCAGGTA -ACGGAAGTGTGTTCCTGTGACTCT -ACGGAAGTGTGTTCCTGTAGTCCT -ACGGAAGTGTGTTCCTGTTAAGCC -ACGGAAGTGTGTTCCTGTATAGCC -ACGGAAGTGTGTTCCTGTTAACCG -ACGGAAGTGTGTTCCTGTATGCCA -ACGGAAGTGTGTCCCATTGGAAAC -ACGGAAGTGTGTCCCATTAACACC -ACGGAAGTGTGTCCCATTATCGAG -ACGGAAGTGTGTCCCATTCTCCTT -ACGGAAGTGTGTCCCATTCCTGTT -ACGGAAGTGTGTCCCATTCGGTTT -ACGGAAGTGTGTCCCATTGTGGTT -ACGGAAGTGTGTCCCATTGCCTTT -ACGGAAGTGTGTCCCATTGGTCTT -ACGGAAGTGTGTCCCATTACGCTT -ACGGAAGTGTGTCCCATTAGCGTT -ACGGAAGTGTGTCCCATTTTCGTC -ACGGAAGTGTGTCCCATTTCTCTC -ACGGAAGTGTGTCCCATTTGGATC -ACGGAAGTGTGTCCCATTCACTTC -ACGGAAGTGTGTCCCATTGTACTC -ACGGAAGTGTGTCCCATTGATGTC -ACGGAAGTGTGTCCCATTACAGTC -ACGGAAGTGTGTCCCATTTTGCTG -ACGGAAGTGTGTCCCATTTCCATG -ACGGAAGTGTGTCCCATTTGTGTG -ACGGAAGTGTGTCCCATTCTAGTG -ACGGAAGTGTGTCCCATTCATCTG -ACGGAAGTGTGTCCCATTGAGTTG -ACGGAAGTGTGTCCCATTAGACTG -ACGGAAGTGTGTCCCATTTCGGTA -ACGGAAGTGTGTCCCATTTGCCTA -ACGGAAGTGTGTCCCATTCCACTA -ACGGAAGTGTGTCCCATTGGAGTA -ACGGAAGTGTGTCCCATTTCGTCT -ACGGAAGTGTGTCCCATTTGCACT -ACGGAAGTGTGTCCCATTCTGACT -ACGGAAGTGTGTCCCATTCAACCT -ACGGAAGTGTGTCCCATTGCTACT -ACGGAAGTGTGTCCCATTGGATCT -ACGGAAGTGTGTCCCATTAAGGCT -ACGGAAGTGTGTCCCATTTCAACC -ACGGAAGTGTGTCCCATTTGTTCC -ACGGAAGTGTGTCCCATTATTCCC -ACGGAAGTGTGTCCCATTTTCTCG -ACGGAAGTGTGTCCCATTTAGACG -ACGGAAGTGTGTCCCATTGTAACG -ACGGAAGTGTGTCCCATTACTTCG -ACGGAAGTGTGTCCCATTTACGCA -ACGGAAGTGTGTCCCATTCTTGCA -ACGGAAGTGTGTCCCATTCGAACA -ACGGAAGTGTGTCCCATTCAGTCA -ACGGAAGTGTGTCCCATTGATCCA -ACGGAAGTGTGTCCCATTACGACA -ACGGAAGTGTGTCCCATTAGCTCA -ACGGAAGTGTGTCCCATTTCACGT -ACGGAAGTGTGTCCCATTCGTAGT -ACGGAAGTGTGTCCCATTGTCAGT -ACGGAAGTGTGTCCCATTGAAGGT -ACGGAAGTGTGTCCCATTAACCGT -ACGGAAGTGTGTCCCATTTTGTGC -ACGGAAGTGTGTCCCATTCTAAGC -ACGGAAGTGTGTCCCATTACTAGC -ACGGAAGTGTGTCCCATTAGATGC -ACGGAAGTGTGTCCCATTTGAAGG -ACGGAAGTGTGTCCCATTCAATGG -ACGGAAGTGTGTCCCATTATGAGG -ACGGAAGTGTGTCCCATTAATGGG -ACGGAAGTGTGTCCCATTTCCTGA -ACGGAAGTGTGTCCCATTTAGCGA -ACGGAAGTGTGTCCCATTCACAGA -ACGGAAGTGTGTCCCATTGCAAGA -ACGGAAGTGTGTCCCATTGGTTGA -ACGGAAGTGTGTCCCATTTCCGAT -ACGGAAGTGTGTCCCATTTGGCAT -ACGGAAGTGTGTCCCATTCGAGAT -ACGGAAGTGTGTCCCATTTACCAC -ACGGAAGTGTGTCCCATTCAGAAC -ACGGAAGTGTGTCCCATTGTCTAC -ACGGAAGTGTGTCCCATTACGTAC -ACGGAAGTGTGTCCCATTAGTGAC -ACGGAAGTGTGTCCCATTCTGTAG -ACGGAAGTGTGTCCCATTCCTAAG -ACGGAAGTGTGTCCCATTGTTCAG -ACGGAAGTGTGTCCCATTGCATAG -ACGGAAGTGTGTCCCATTGACAAG -ACGGAAGTGTGTCCCATTAAGCAG -ACGGAAGTGTGTCCCATTCGTCAA -ACGGAAGTGTGTCCCATTGCTGAA -ACGGAAGTGTGTCCCATTAGTACG -ACGGAAGTGTGTCCCATTATCCGA -ACGGAAGTGTGTCCCATTATGGGA -ACGGAAGTGTGTCCCATTGTGCAA -ACGGAAGTGTGTCCCATTGAGGAA -ACGGAAGTGTGTCCCATTCAGGTA -ACGGAAGTGTGTCCCATTGACTCT -ACGGAAGTGTGTCCCATTAGTCCT -ACGGAAGTGTGTCCCATTTAAGCC -ACGGAAGTGTGTCCCATTATAGCC -ACGGAAGTGTGTCCCATTTAACCG -ACGGAAGTGTGTCCCATTATGCCA -ACGGAAGTGTGTTCGTTCGGAAAC -ACGGAAGTGTGTTCGTTCAACACC -ACGGAAGTGTGTTCGTTCATCGAG -ACGGAAGTGTGTTCGTTCCTCCTT -ACGGAAGTGTGTTCGTTCCCTGTT -ACGGAAGTGTGTTCGTTCCGGTTT -ACGGAAGTGTGTTCGTTCGTGGTT -ACGGAAGTGTGTTCGTTCGCCTTT -ACGGAAGTGTGTTCGTTCGGTCTT -ACGGAAGTGTGTTCGTTCACGCTT -ACGGAAGTGTGTTCGTTCAGCGTT -ACGGAAGTGTGTTCGTTCTTCGTC -ACGGAAGTGTGTTCGTTCTCTCTC -ACGGAAGTGTGTTCGTTCTGGATC -ACGGAAGTGTGTTCGTTCCACTTC -ACGGAAGTGTGTTCGTTCGTACTC -ACGGAAGTGTGTTCGTTCGATGTC -ACGGAAGTGTGTTCGTTCACAGTC -ACGGAAGTGTGTTCGTTCTTGCTG -ACGGAAGTGTGTTCGTTCTCCATG -ACGGAAGTGTGTTCGTTCTGTGTG -ACGGAAGTGTGTTCGTTCCTAGTG -ACGGAAGTGTGTTCGTTCCATCTG -ACGGAAGTGTGTTCGTTCGAGTTG -ACGGAAGTGTGTTCGTTCAGACTG -ACGGAAGTGTGTTCGTTCTCGGTA -ACGGAAGTGTGTTCGTTCTGCCTA -ACGGAAGTGTGTTCGTTCCCACTA -ACGGAAGTGTGTTCGTTCGGAGTA -ACGGAAGTGTGTTCGTTCTCGTCT -ACGGAAGTGTGTTCGTTCTGCACT -ACGGAAGTGTGTTCGTTCCTGACT -ACGGAAGTGTGTTCGTTCCAACCT -ACGGAAGTGTGTTCGTTCGCTACT -ACGGAAGTGTGTTCGTTCGGATCT -ACGGAAGTGTGTTCGTTCAAGGCT -ACGGAAGTGTGTTCGTTCTCAACC -ACGGAAGTGTGTTCGTTCTGTTCC -ACGGAAGTGTGTTCGTTCATTCCC -ACGGAAGTGTGTTCGTTCTTCTCG -ACGGAAGTGTGTTCGTTCTAGACG -ACGGAAGTGTGTTCGTTCGTAACG -ACGGAAGTGTGTTCGTTCACTTCG -ACGGAAGTGTGTTCGTTCTACGCA -ACGGAAGTGTGTTCGTTCCTTGCA -ACGGAAGTGTGTTCGTTCCGAACA -ACGGAAGTGTGTTCGTTCCAGTCA -ACGGAAGTGTGTTCGTTCGATCCA -ACGGAAGTGTGTTCGTTCACGACA -ACGGAAGTGTGTTCGTTCAGCTCA -ACGGAAGTGTGTTCGTTCTCACGT -ACGGAAGTGTGTTCGTTCCGTAGT -ACGGAAGTGTGTTCGTTCGTCAGT -ACGGAAGTGTGTTCGTTCGAAGGT -ACGGAAGTGTGTTCGTTCAACCGT -ACGGAAGTGTGTTCGTTCTTGTGC -ACGGAAGTGTGTTCGTTCCTAAGC -ACGGAAGTGTGTTCGTTCACTAGC -ACGGAAGTGTGTTCGTTCAGATGC -ACGGAAGTGTGTTCGTTCTGAAGG -ACGGAAGTGTGTTCGTTCCAATGG -ACGGAAGTGTGTTCGTTCATGAGG -ACGGAAGTGTGTTCGTTCAATGGG -ACGGAAGTGTGTTCGTTCTCCTGA -ACGGAAGTGTGTTCGTTCTAGCGA -ACGGAAGTGTGTTCGTTCCACAGA -ACGGAAGTGTGTTCGTTCGCAAGA -ACGGAAGTGTGTTCGTTCGGTTGA -ACGGAAGTGTGTTCGTTCTCCGAT -ACGGAAGTGTGTTCGTTCTGGCAT -ACGGAAGTGTGTTCGTTCCGAGAT -ACGGAAGTGTGTTCGTTCTACCAC -ACGGAAGTGTGTTCGTTCCAGAAC -ACGGAAGTGTGTTCGTTCGTCTAC -ACGGAAGTGTGTTCGTTCACGTAC -ACGGAAGTGTGTTCGTTCAGTGAC -ACGGAAGTGTGTTCGTTCCTGTAG -ACGGAAGTGTGTTCGTTCCCTAAG -ACGGAAGTGTGTTCGTTCGTTCAG -ACGGAAGTGTGTTCGTTCGCATAG -ACGGAAGTGTGTTCGTTCGACAAG -ACGGAAGTGTGTTCGTTCAAGCAG -ACGGAAGTGTGTTCGTTCCGTCAA -ACGGAAGTGTGTTCGTTCGCTGAA -ACGGAAGTGTGTTCGTTCAGTACG -ACGGAAGTGTGTTCGTTCATCCGA -ACGGAAGTGTGTTCGTTCATGGGA -ACGGAAGTGTGTTCGTTCGTGCAA -ACGGAAGTGTGTTCGTTCGAGGAA -ACGGAAGTGTGTTCGTTCCAGGTA -ACGGAAGTGTGTTCGTTCGACTCT -ACGGAAGTGTGTTCGTTCAGTCCT -ACGGAAGTGTGTTCGTTCTAAGCC -ACGGAAGTGTGTTCGTTCATAGCC -ACGGAAGTGTGTTCGTTCTAACCG -ACGGAAGTGTGTTCGTTCATGCCA -ACGGAAGTGTGTACGTAGGGAAAC -ACGGAAGTGTGTACGTAGAACACC -ACGGAAGTGTGTACGTAGATCGAG -ACGGAAGTGTGTACGTAGCTCCTT -ACGGAAGTGTGTACGTAGCCTGTT -ACGGAAGTGTGTACGTAGCGGTTT -ACGGAAGTGTGTACGTAGGTGGTT -ACGGAAGTGTGTACGTAGGCCTTT -ACGGAAGTGTGTACGTAGGGTCTT -ACGGAAGTGTGTACGTAGACGCTT -ACGGAAGTGTGTACGTAGAGCGTT -ACGGAAGTGTGTACGTAGTTCGTC -ACGGAAGTGTGTACGTAGTCTCTC -ACGGAAGTGTGTACGTAGTGGATC -ACGGAAGTGTGTACGTAGCACTTC -ACGGAAGTGTGTACGTAGGTACTC -ACGGAAGTGTGTACGTAGGATGTC -ACGGAAGTGTGTACGTAGACAGTC -ACGGAAGTGTGTACGTAGTTGCTG -ACGGAAGTGTGTACGTAGTCCATG -ACGGAAGTGTGTACGTAGTGTGTG -ACGGAAGTGTGTACGTAGCTAGTG -ACGGAAGTGTGTACGTAGCATCTG -ACGGAAGTGTGTACGTAGGAGTTG -ACGGAAGTGTGTACGTAGAGACTG -ACGGAAGTGTGTACGTAGTCGGTA -ACGGAAGTGTGTACGTAGTGCCTA -ACGGAAGTGTGTACGTAGCCACTA -ACGGAAGTGTGTACGTAGGGAGTA -ACGGAAGTGTGTACGTAGTCGTCT -ACGGAAGTGTGTACGTAGTGCACT -ACGGAAGTGTGTACGTAGCTGACT -ACGGAAGTGTGTACGTAGCAACCT -ACGGAAGTGTGTACGTAGGCTACT -ACGGAAGTGTGTACGTAGGGATCT -ACGGAAGTGTGTACGTAGAAGGCT -ACGGAAGTGTGTACGTAGTCAACC -ACGGAAGTGTGTACGTAGTGTTCC -ACGGAAGTGTGTACGTAGATTCCC -ACGGAAGTGTGTACGTAGTTCTCG -ACGGAAGTGTGTACGTAGTAGACG -ACGGAAGTGTGTACGTAGGTAACG -ACGGAAGTGTGTACGTAGACTTCG -ACGGAAGTGTGTACGTAGTACGCA -ACGGAAGTGTGTACGTAGCTTGCA -ACGGAAGTGTGTACGTAGCGAACA -ACGGAAGTGTGTACGTAGCAGTCA -ACGGAAGTGTGTACGTAGGATCCA -ACGGAAGTGTGTACGTAGACGACA -ACGGAAGTGTGTACGTAGAGCTCA -ACGGAAGTGTGTACGTAGTCACGT -ACGGAAGTGTGTACGTAGCGTAGT -ACGGAAGTGTGTACGTAGGTCAGT -ACGGAAGTGTGTACGTAGGAAGGT -ACGGAAGTGTGTACGTAGAACCGT -ACGGAAGTGTGTACGTAGTTGTGC -ACGGAAGTGTGTACGTAGCTAAGC -ACGGAAGTGTGTACGTAGACTAGC -ACGGAAGTGTGTACGTAGAGATGC -ACGGAAGTGTGTACGTAGTGAAGG -ACGGAAGTGTGTACGTAGCAATGG -ACGGAAGTGTGTACGTAGATGAGG -ACGGAAGTGTGTACGTAGAATGGG -ACGGAAGTGTGTACGTAGTCCTGA -ACGGAAGTGTGTACGTAGTAGCGA -ACGGAAGTGTGTACGTAGCACAGA -ACGGAAGTGTGTACGTAGGCAAGA -ACGGAAGTGTGTACGTAGGGTTGA -ACGGAAGTGTGTACGTAGTCCGAT -ACGGAAGTGTGTACGTAGTGGCAT -ACGGAAGTGTGTACGTAGCGAGAT -ACGGAAGTGTGTACGTAGTACCAC -ACGGAAGTGTGTACGTAGCAGAAC -ACGGAAGTGTGTACGTAGGTCTAC -ACGGAAGTGTGTACGTAGACGTAC -ACGGAAGTGTGTACGTAGAGTGAC -ACGGAAGTGTGTACGTAGCTGTAG -ACGGAAGTGTGTACGTAGCCTAAG -ACGGAAGTGTGTACGTAGGTTCAG -ACGGAAGTGTGTACGTAGGCATAG -ACGGAAGTGTGTACGTAGGACAAG -ACGGAAGTGTGTACGTAGAAGCAG -ACGGAAGTGTGTACGTAGCGTCAA -ACGGAAGTGTGTACGTAGGCTGAA -ACGGAAGTGTGTACGTAGAGTACG -ACGGAAGTGTGTACGTAGATCCGA -ACGGAAGTGTGTACGTAGATGGGA -ACGGAAGTGTGTACGTAGGTGCAA -ACGGAAGTGTGTACGTAGGAGGAA -ACGGAAGTGTGTACGTAGCAGGTA -ACGGAAGTGTGTACGTAGGACTCT -ACGGAAGTGTGTACGTAGAGTCCT -ACGGAAGTGTGTACGTAGTAAGCC -ACGGAAGTGTGTACGTAGATAGCC -ACGGAAGTGTGTACGTAGTAACCG -ACGGAAGTGTGTACGTAGATGCCA -ACGGAAGTGTGTACGGTAGGAAAC -ACGGAAGTGTGTACGGTAAACACC -ACGGAAGTGTGTACGGTAATCGAG -ACGGAAGTGTGTACGGTACTCCTT -ACGGAAGTGTGTACGGTACCTGTT -ACGGAAGTGTGTACGGTACGGTTT -ACGGAAGTGTGTACGGTAGTGGTT -ACGGAAGTGTGTACGGTAGCCTTT -ACGGAAGTGTGTACGGTAGGTCTT -ACGGAAGTGTGTACGGTAACGCTT -ACGGAAGTGTGTACGGTAAGCGTT -ACGGAAGTGTGTACGGTATTCGTC -ACGGAAGTGTGTACGGTATCTCTC -ACGGAAGTGTGTACGGTATGGATC -ACGGAAGTGTGTACGGTACACTTC -ACGGAAGTGTGTACGGTAGTACTC -ACGGAAGTGTGTACGGTAGATGTC -ACGGAAGTGTGTACGGTAACAGTC -ACGGAAGTGTGTACGGTATTGCTG -ACGGAAGTGTGTACGGTATCCATG -ACGGAAGTGTGTACGGTATGTGTG -ACGGAAGTGTGTACGGTACTAGTG -ACGGAAGTGTGTACGGTACATCTG -ACGGAAGTGTGTACGGTAGAGTTG -ACGGAAGTGTGTACGGTAAGACTG -ACGGAAGTGTGTACGGTATCGGTA -ACGGAAGTGTGTACGGTATGCCTA -ACGGAAGTGTGTACGGTACCACTA -ACGGAAGTGTGTACGGTAGGAGTA -ACGGAAGTGTGTACGGTATCGTCT -ACGGAAGTGTGTACGGTATGCACT -ACGGAAGTGTGTACGGTACTGACT -ACGGAAGTGTGTACGGTACAACCT -ACGGAAGTGTGTACGGTAGCTACT -ACGGAAGTGTGTACGGTAGGATCT -ACGGAAGTGTGTACGGTAAAGGCT -ACGGAAGTGTGTACGGTATCAACC -ACGGAAGTGTGTACGGTATGTTCC -ACGGAAGTGTGTACGGTAATTCCC -ACGGAAGTGTGTACGGTATTCTCG -ACGGAAGTGTGTACGGTATAGACG -ACGGAAGTGTGTACGGTAGTAACG -ACGGAAGTGTGTACGGTAACTTCG -ACGGAAGTGTGTACGGTATACGCA -ACGGAAGTGTGTACGGTACTTGCA -ACGGAAGTGTGTACGGTACGAACA -ACGGAAGTGTGTACGGTACAGTCA -ACGGAAGTGTGTACGGTAGATCCA -ACGGAAGTGTGTACGGTAACGACA -ACGGAAGTGTGTACGGTAAGCTCA -ACGGAAGTGTGTACGGTATCACGT -ACGGAAGTGTGTACGGTACGTAGT -ACGGAAGTGTGTACGGTAGTCAGT -ACGGAAGTGTGTACGGTAGAAGGT -ACGGAAGTGTGTACGGTAAACCGT -ACGGAAGTGTGTACGGTATTGTGC -ACGGAAGTGTGTACGGTACTAAGC -ACGGAAGTGTGTACGGTAACTAGC -ACGGAAGTGTGTACGGTAAGATGC -ACGGAAGTGTGTACGGTATGAAGG -ACGGAAGTGTGTACGGTACAATGG -ACGGAAGTGTGTACGGTAATGAGG -ACGGAAGTGTGTACGGTAAATGGG -ACGGAAGTGTGTACGGTATCCTGA -ACGGAAGTGTGTACGGTATAGCGA -ACGGAAGTGTGTACGGTACACAGA -ACGGAAGTGTGTACGGTAGCAAGA -ACGGAAGTGTGTACGGTAGGTTGA -ACGGAAGTGTGTACGGTATCCGAT -ACGGAAGTGTGTACGGTATGGCAT -ACGGAAGTGTGTACGGTACGAGAT -ACGGAAGTGTGTACGGTATACCAC -ACGGAAGTGTGTACGGTACAGAAC -ACGGAAGTGTGTACGGTAGTCTAC -ACGGAAGTGTGTACGGTAACGTAC -ACGGAAGTGTGTACGGTAAGTGAC -ACGGAAGTGTGTACGGTACTGTAG -ACGGAAGTGTGTACGGTACCTAAG -ACGGAAGTGTGTACGGTAGTTCAG -ACGGAAGTGTGTACGGTAGCATAG -ACGGAAGTGTGTACGGTAGACAAG -ACGGAAGTGTGTACGGTAAAGCAG -ACGGAAGTGTGTACGGTACGTCAA -ACGGAAGTGTGTACGGTAGCTGAA -ACGGAAGTGTGTACGGTAAGTACG -ACGGAAGTGTGTACGGTAATCCGA -ACGGAAGTGTGTACGGTAATGGGA -ACGGAAGTGTGTACGGTAGTGCAA -ACGGAAGTGTGTACGGTAGAGGAA -ACGGAAGTGTGTACGGTACAGGTA -ACGGAAGTGTGTACGGTAGACTCT -ACGGAAGTGTGTACGGTAAGTCCT -ACGGAAGTGTGTACGGTATAAGCC -ACGGAAGTGTGTACGGTAATAGCC -ACGGAAGTGTGTACGGTATAACCG -ACGGAAGTGTGTACGGTAATGCCA -ACGGAAGTGTGTTCGACTGGAAAC -ACGGAAGTGTGTTCGACTAACACC -ACGGAAGTGTGTTCGACTATCGAG -ACGGAAGTGTGTTCGACTCTCCTT -ACGGAAGTGTGTTCGACTCCTGTT -ACGGAAGTGTGTTCGACTCGGTTT -ACGGAAGTGTGTTCGACTGTGGTT -ACGGAAGTGTGTTCGACTGCCTTT -ACGGAAGTGTGTTCGACTGGTCTT -ACGGAAGTGTGTTCGACTACGCTT -ACGGAAGTGTGTTCGACTAGCGTT -ACGGAAGTGTGTTCGACTTTCGTC -ACGGAAGTGTGTTCGACTTCTCTC -ACGGAAGTGTGTTCGACTTGGATC -ACGGAAGTGTGTTCGACTCACTTC -ACGGAAGTGTGTTCGACTGTACTC -ACGGAAGTGTGTTCGACTGATGTC -ACGGAAGTGTGTTCGACTACAGTC -ACGGAAGTGTGTTCGACTTTGCTG -ACGGAAGTGTGTTCGACTTCCATG -ACGGAAGTGTGTTCGACTTGTGTG -ACGGAAGTGTGTTCGACTCTAGTG -ACGGAAGTGTGTTCGACTCATCTG -ACGGAAGTGTGTTCGACTGAGTTG -ACGGAAGTGTGTTCGACTAGACTG -ACGGAAGTGTGTTCGACTTCGGTA -ACGGAAGTGTGTTCGACTTGCCTA -ACGGAAGTGTGTTCGACTCCACTA -ACGGAAGTGTGTTCGACTGGAGTA -ACGGAAGTGTGTTCGACTTCGTCT -ACGGAAGTGTGTTCGACTTGCACT -ACGGAAGTGTGTTCGACTCTGACT -ACGGAAGTGTGTTCGACTCAACCT -ACGGAAGTGTGTTCGACTGCTACT -ACGGAAGTGTGTTCGACTGGATCT -ACGGAAGTGTGTTCGACTAAGGCT -ACGGAAGTGTGTTCGACTTCAACC -ACGGAAGTGTGTTCGACTTGTTCC -ACGGAAGTGTGTTCGACTATTCCC -ACGGAAGTGTGTTCGACTTTCTCG -ACGGAAGTGTGTTCGACTTAGACG -ACGGAAGTGTGTTCGACTGTAACG -ACGGAAGTGTGTTCGACTACTTCG -ACGGAAGTGTGTTCGACTTACGCA -ACGGAAGTGTGTTCGACTCTTGCA -ACGGAAGTGTGTTCGACTCGAACA -ACGGAAGTGTGTTCGACTCAGTCA -ACGGAAGTGTGTTCGACTGATCCA -ACGGAAGTGTGTTCGACTACGACA -ACGGAAGTGTGTTCGACTAGCTCA -ACGGAAGTGTGTTCGACTTCACGT -ACGGAAGTGTGTTCGACTCGTAGT -ACGGAAGTGTGTTCGACTGTCAGT -ACGGAAGTGTGTTCGACTGAAGGT -ACGGAAGTGTGTTCGACTAACCGT -ACGGAAGTGTGTTCGACTTTGTGC -ACGGAAGTGTGTTCGACTCTAAGC -ACGGAAGTGTGTTCGACTACTAGC -ACGGAAGTGTGTTCGACTAGATGC -ACGGAAGTGTGTTCGACTTGAAGG -ACGGAAGTGTGTTCGACTCAATGG -ACGGAAGTGTGTTCGACTATGAGG -ACGGAAGTGTGTTCGACTAATGGG -ACGGAAGTGTGTTCGACTTCCTGA -ACGGAAGTGTGTTCGACTTAGCGA -ACGGAAGTGTGTTCGACTCACAGA -ACGGAAGTGTGTTCGACTGCAAGA -ACGGAAGTGTGTTCGACTGGTTGA -ACGGAAGTGTGTTCGACTTCCGAT -ACGGAAGTGTGTTCGACTTGGCAT -ACGGAAGTGTGTTCGACTCGAGAT -ACGGAAGTGTGTTCGACTTACCAC -ACGGAAGTGTGTTCGACTCAGAAC -ACGGAAGTGTGTTCGACTGTCTAC -ACGGAAGTGTGTTCGACTACGTAC -ACGGAAGTGTGTTCGACTAGTGAC -ACGGAAGTGTGTTCGACTCTGTAG -ACGGAAGTGTGTTCGACTCCTAAG -ACGGAAGTGTGTTCGACTGTTCAG -ACGGAAGTGTGTTCGACTGCATAG -ACGGAAGTGTGTTCGACTGACAAG -ACGGAAGTGTGTTCGACTAAGCAG -ACGGAAGTGTGTTCGACTCGTCAA -ACGGAAGTGTGTTCGACTGCTGAA -ACGGAAGTGTGTTCGACTAGTACG -ACGGAAGTGTGTTCGACTATCCGA -ACGGAAGTGTGTTCGACTATGGGA -ACGGAAGTGTGTTCGACTGTGCAA -ACGGAAGTGTGTTCGACTGAGGAA -ACGGAAGTGTGTTCGACTCAGGTA -ACGGAAGTGTGTTCGACTGACTCT -ACGGAAGTGTGTTCGACTAGTCCT -ACGGAAGTGTGTTCGACTTAAGCC -ACGGAAGTGTGTTCGACTATAGCC -ACGGAAGTGTGTTCGACTTAACCG -ACGGAAGTGTGTTCGACTATGCCA -ACGGAAGTGTGTGCATACGGAAAC -ACGGAAGTGTGTGCATACAACACC -ACGGAAGTGTGTGCATACATCGAG -ACGGAAGTGTGTGCATACCTCCTT -ACGGAAGTGTGTGCATACCCTGTT -ACGGAAGTGTGTGCATACCGGTTT -ACGGAAGTGTGTGCATACGTGGTT -ACGGAAGTGTGTGCATACGCCTTT -ACGGAAGTGTGTGCATACGGTCTT -ACGGAAGTGTGTGCATACACGCTT -ACGGAAGTGTGTGCATACAGCGTT -ACGGAAGTGTGTGCATACTTCGTC -ACGGAAGTGTGTGCATACTCTCTC -ACGGAAGTGTGTGCATACTGGATC -ACGGAAGTGTGTGCATACCACTTC -ACGGAAGTGTGTGCATACGTACTC -ACGGAAGTGTGTGCATACGATGTC -ACGGAAGTGTGTGCATACACAGTC -ACGGAAGTGTGTGCATACTTGCTG -ACGGAAGTGTGTGCATACTCCATG -ACGGAAGTGTGTGCATACTGTGTG -ACGGAAGTGTGTGCATACCTAGTG -ACGGAAGTGTGTGCATACCATCTG -ACGGAAGTGTGTGCATACGAGTTG -ACGGAAGTGTGTGCATACAGACTG -ACGGAAGTGTGTGCATACTCGGTA -ACGGAAGTGTGTGCATACTGCCTA -ACGGAAGTGTGTGCATACCCACTA -ACGGAAGTGTGTGCATACGGAGTA -ACGGAAGTGTGTGCATACTCGTCT -ACGGAAGTGTGTGCATACTGCACT -ACGGAAGTGTGTGCATACCTGACT -ACGGAAGTGTGTGCATACCAACCT -ACGGAAGTGTGTGCATACGCTACT -ACGGAAGTGTGTGCATACGGATCT -ACGGAAGTGTGTGCATACAAGGCT -ACGGAAGTGTGTGCATACTCAACC -ACGGAAGTGTGTGCATACTGTTCC -ACGGAAGTGTGTGCATACATTCCC -ACGGAAGTGTGTGCATACTTCTCG -ACGGAAGTGTGTGCATACTAGACG -ACGGAAGTGTGTGCATACGTAACG -ACGGAAGTGTGTGCATACACTTCG -ACGGAAGTGTGTGCATACTACGCA -ACGGAAGTGTGTGCATACCTTGCA -ACGGAAGTGTGTGCATACCGAACA -ACGGAAGTGTGTGCATACCAGTCA -ACGGAAGTGTGTGCATACGATCCA -ACGGAAGTGTGTGCATACACGACA -ACGGAAGTGTGTGCATACAGCTCA -ACGGAAGTGTGTGCATACTCACGT -ACGGAAGTGTGTGCATACCGTAGT -ACGGAAGTGTGTGCATACGTCAGT -ACGGAAGTGTGTGCATACGAAGGT -ACGGAAGTGTGTGCATACAACCGT -ACGGAAGTGTGTGCATACTTGTGC -ACGGAAGTGTGTGCATACCTAAGC -ACGGAAGTGTGTGCATACACTAGC -ACGGAAGTGTGTGCATACAGATGC -ACGGAAGTGTGTGCATACTGAAGG -ACGGAAGTGTGTGCATACCAATGG -ACGGAAGTGTGTGCATACATGAGG -ACGGAAGTGTGTGCATACAATGGG -ACGGAAGTGTGTGCATACTCCTGA -ACGGAAGTGTGTGCATACTAGCGA -ACGGAAGTGTGTGCATACCACAGA -ACGGAAGTGTGTGCATACGCAAGA -ACGGAAGTGTGTGCATACGGTTGA -ACGGAAGTGTGTGCATACTCCGAT -ACGGAAGTGTGTGCATACTGGCAT -ACGGAAGTGTGTGCATACCGAGAT -ACGGAAGTGTGTGCATACTACCAC -ACGGAAGTGTGTGCATACCAGAAC -ACGGAAGTGTGTGCATACGTCTAC -ACGGAAGTGTGTGCATACACGTAC -ACGGAAGTGTGTGCATACAGTGAC -ACGGAAGTGTGTGCATACCTGTAG -ACGGAAGTGTGTGCATACCCTAAG -ACGGAAGTGTGTGCATACGTTCAG -ACGGAAGTGTGTGCATACGCATAG -ACGGAAGTGTGTGCATACGACAAG -ACGGAAGTGTGTGCATACAAGCAG -ACGGAAGTGTGTGCATACCGTCAA -ACGGAAGTGTGTGCATACGCTGAA -ACGGAAGTGTGTGCATACAGTACG -ACGGAAGTGTGTGCATACATCCGA -ACGGAAGTGTGTGCATACATGGGA -ACGGAAGTGTGTGCATACGTGCAA -ACGGAAGTGTGTGCATACGAGGAA -ACGGAAGTGTGTGCATACCAGGTA -ACGGAAGTGTGTGCATACGACTCT -ACGGAAGTGTGTGCATACAGTCCT -ACGGAAGTGTGTGCATACTAAGCC -ACGGAAGTGTGTGCATACATAGCC -ACGGAAGTGTGTGCATACTAACCG -ACGGAAGTGTGTGCATACATGCCA -ACGGAAGTGTGTGCACTTGGAAAC -ACGGAAGTGTGTGCACTTAACACC -ACGGAAGTGTGTGCACTTATCGAG -ACGGAAGTGTGTGCACTTCTCCTT -ACGGAAGTGTGTGCACTTCCTGTT -ACGGAAGTGTGTGCACTTCGGTTT -ACGGAAGTGTGTGCACTTGTGGTT -ACGGAAGTGTGTGCACTTGCCTTT -ACGGAAGTGTGTGCACTTGGTCTT -ACGGAAGTGTGTGCACTTACGCTT -ACGGAAGTGTGTGCACTTAGCGTT -ACGGAAGTGTGTGCACTTTTCGTC -ACGGAAGTGTGTGCACTTTCTCTC -ACGGAAGTGTGTGCACTTTGGATC -ACGGAAGTGTGTGCACTTCACTTC -ACGGAAGTGTGTGCACTTGTACTC -ACGGAAGTGTGTGCACTTGATGTC -ACGGAAGTGTGTGCACTTACAGTC -ACGGAAGTGTGTGCACTTTTGCTG -ACGGAAGTGTGTGCACTTTCCATG -ACGGAAGTGTGTGCACTTTGTGTG -ACGGAAGTGTGTGCACTTCTAGTG -ACGGAAGTGTGTGCACTTCATCTG -ACGGAAGTGTGTGCACTTGAGTTG -ACGGAAGTGTGTGCACTTAGACTG -ACGGAAGTGTGTGCACTTTCGGTA -ACGGAAGTGTGTGCACTTTGCCTA -ACGGAAGTGTGTGCACTTCCACTA -ACGGAAGTGTGTGCACTTGGAGTA -ACGGAAGTGTGTGCACTTTCGTCT -ACGGAAGTGTGTGCACTTTGCACT -ACGGAAGTGTGTGCACTTCTGACT -ACGGAAGTGTGTGCACTTCAACCT -ACGGAAGTGTGTGCACTTGCTACT -ACGGAAGTGTGTGCACTTGGATCT -ACGGAAGTGTGTGCACTTAAGGCT -ACGGAAGTGTGTGCACTTTCAACC -ACGGAAGTGTGTGCACTTTGTTCC -ACGGAAGTGTGTGCACTTATTCCC -ACGGAAGTGTGTGCACTTTTCTCG -ACGGAAGTGTGTGCACTTTAGACG -ACGGAAGTGTGTGCACTTGTAACG -ACGGAAGTGTGTGCACTTACTTCG -ACGGAAGTGTGTGCACTTTACGCA -ACGGAAGTGTGTGCACTTCTTGCA -ACGGAAGTGTGTGCACTTCGAACA -ACGGAAGTGTGTGCACTTCAGTCA -ACGGAAGTGTGTGCACTTGATCCA -ACGGAAGTGTGTGCACTTACGACA -ACGGAAGTGTGTGCACTTAGCTCA -ACGGAAGTGTGTGCACTTTCACGT -ACGGAAGTGTGTGCACTTCGTAGT -ACGGAAGTGTGTGCACTTGTCAGT -ACGGAAGTGTGTGCACTTGAAGGT -ACGGAAGTGTGTGCACTTAACCGT -ACGGAAGTGTGTGCACTTTTGTGC -ACGGAAGTGTGTGCACTTCTAAGC -ACGGAAGTGTGTGCACTTACTAGC -ACGGAAGTGTGTGCACTTAGATGC -ACGGAAGTGTGTGCACTTTGAAGG -ACGGAAGTGTGTGCACTTCAATGG -ACGGAAGTGTGTGCACTTATGAGG -ACGGAAGTGTGTGCACTTAATGGG -ACGGAAGTGTGTGCACTTTCCTGA -ACGGAAGTGTGTGCACTTTAGCGA -ACGGAAGTGTGTGCACTTCACAGA -ACGGAAGTGTGTGCACTTGCAAGA -ACGGAAGTGTGTGCACTTGGTTGA -ACGGAAGTGTGTGCACTTTCCGAT -ACGGAAGTGTGTGCACTTTGGCAT -ACGGAAGTGTGTGCACTTCGAGAT -ACGGAAGTGTGTGCACTTTACCAC -ACGGAAGTGTGTGCACTTCAGAAC -ACGGAAGTGTGTGCACTTGTCTAC -ACGGAAGTGTGTGCACTTACGTAC -ACGGAAGTGTGTGCACTTAGTGAC -ACGGAAGTGTGTGCACTTCTGTAG -ACGGAAGTGTGTGCACTTCCTAAG -ACGGAAGTGTGTGCACTTGTTCAG -ACGGAAGTGTGTGCACTTGCATAG -ACGGAAGTGTGTGCACTTGACAAG -ACGGAAGTGTGTGCACTTAAGCAG -ACGGAAGTGTGTGCACTTCGTCAA -ACGGAAGTGTGTGCACTTGCTGAA -ACGGAAGTGTGTGCACTTAGTACG -ACGGAAGTGTGTGCACTTATCCGA -ACGGAAGTGTGTGCACTTATGGGA -ACGGAAGTGTGTGCACTTGTGCAA -ACGGAAGTGTGTGCACTTGAGGAA -ACGGAAGTGTGTGCACTTCAGGTA -ACGGAAGTGTGTGCACTTGACTCT -ACGGAAGTGTGTGCACTTAGTCCT -ACGGAAGTGTGTGCACTTTAAGCC -ACGGAAGTGTGTGCACTTATAGCC -ACGGAAGTGTGTGCACTTTAACCG -ACGGAAGTGTGTGCACTTATGCCA -ACGGAAGTGTGTACACGAGGAAAC -ACGGAAGTGTGTACACGAAACACC -ACGGAAGTGTGTACACGAATCGAG -ACGGAAGTGTGTACACGACTCCTT -ACGGAAGTGTGTACACGACCTGTT -ACGGAAGTGTGTACACGACGGTTT -ACGGAAGTGTGTACACGAGTGGTT -ACGGAAGTGTGTACACGAGCCTTT -ACGGAAGTGTGTACACGAGGTCTT -ACGGAAGTGTGTACACGAACGCTT -ACGGAAGTGTGTACACGAAGCGTT -ACGGAAGTGTGTACACGATTCGTC -ACGGAAGTGTGTACACGATCTCTC -ACGGAAGTGTGTACACGATGGATC -ACGGAAGTGTGTACACGACACTTC -ACGGAAGTGTGTACACGAGTACTC -ACGGAAGTGTGTACACGAGATGTC -ACGGAAGTGTGTACACGAACAGTC -ACGGAAGTGTGTACACGATTGCTG -ACGGAAGTGTGTACACGATCCATG -ACGGAAGTGTGTACACGATGTGTG -ACGGAAGTGTGTACACGACTAGTG -ACGGAAGTGTGTACACGACATCTG -ACGGAAGTGTGTACACGAGAGTTG -ACGGAAGTGTGTACACGAAGACTG -ACGGAAGTGTGTACACGATCGGTA -ACGGAAGTGTGTACACGATGCCTA -ACGGAAGTGTGTACACGACCACTA -ACGGAAGTGTGTACACGAGGAGTA -ACGGAAGTGTGTACACGATCGTCT -ACGGAAGTGTGTACACGATGCACT -ACGGAAGTGTGTACACGACTGACT -ACGGAAGTGTGTACACGACAACCT -ACGGAAGTGTGTACACGAGCTACT -ACGGAAGTGTGTACACGAGGATCT -ACGGAAGTGTGTACACGAAAGGCT -ACGGAAGTGTGTACACGATCAACC -ACGGAAGTGTGTACACGATGTTCC -ACGGAAGTGTGTACACGAATTCCC -ACGGAAGTGTGTACACGATTCTCG -ACGGAAGTGTGTACACGATAGACG -ACGGAAGTGTGTACACGAGTAACG -ACGGAAGTGTGTACACGAACTTCG -ACGGAAGTGTGTACACGATACGCA -ACGGAAGTGTGTACACGACTTGCA -ACGGAAGTGTGTACACGACGAACA -ACGGAAGTGTGTACACGACAGTCA -ACGGAAGTGTGTACACGAGATCCA -ACGGAAGTGTGTACACGAACGACA -ACGGAAGTGTGTACACGAAGCTCA -ACGGAAGTGTGTACACGATCACGT -ACGGAAGTGTGTACACGACGTAGT -ACGGAAGTGTGTACACGAGTCAGT -ACGGAAGTGTGTACACGAGAAGGT -ACGGAAGTGTGTACACGAAACCGT -ACGGAAGTGTGTACACGATTGTGC -ACGGAAGTGTGTACACGACTAAGC -ACGGAAGTGTGTACACGAACTAGC -ACGGAAGTGTGTACACGAAGATGC -ACGGAAGTGTGTACACGATGAAGG -ACGGAAGTGTGTACACGACAATGG -ACGGAAGTGTGTACACGAATGAGG -ACGGAAGTGTGTACACGAAATGGG -ACGGAAGTGTGTACACGATCCTGA -ACGGAAGTGTGTACACGATAGCGA -ACGGAAGTGTGTACACGACACAGA -ACGGAAGTGTGTACACGAGCAAGA -ACGGAAGTGTGTACACGAGGTTGA -ACGGAAGTGTGTACACGATCCGAT -ACGGAAGTGTGTACACGATGGCAT -ACGGAAGTGTGTACACGACGAGAT -ACGGAAGTGTGTACACGATACCAC -ACGGAAGTGTGTACACGACAGAAC -ACGGAAGTGTGTACACGAGTCTAC -ACGGAAGTGTGTACACGAACGTAC -ACGGAAGTGTGTACACGAAGTGAC -ACGGAAGTGTGTACACGACTGTAG -ACGGAAGTGTGTACACGACCTAAG -ACGGAAGTGTGTACACGAGTTCAG -ACGGAAGTGTGTACACGAGCATAG -ACGGAAGTGTGTACACGAGACAAG -ACGGAAGTGTGTACACGAAAGCAG -ACGGAAGTGTGTACACGACGTCAA -ACGGAAGTGTGTACACGAGCTGAA -ACGGAAGTGTGTACACGAAGTACG -ACGGAAGTGTGTACACGAATCCGA -ACGGAAGTGTGTACACGAATGGGA -ACGGAAGTGTGTACACGAGTGCAA -ACGGAAGTGTGTACACGAGAGGAA -ACGGAAGTGTGTACACGACAGGTA -ACGGAAGTGTGTACACGAGACTCT -ACGGAAGTGTGTACACGAAGTCCT -ACGGAAGTGTGTACACGATAAGCC -ACGGAAGTGTGTACACGAATAGCC -ACGGAAGTGTGTACACGATAACCG -ACGGAAGTGTGTACACGAATGCCA -ACGGAAGTGTGTTCACAGGGAAAC -ACGGAAGTGTGTTCACAGAACACC -ACGGAAGTGTGTTCACAGATCGAG -ACGGAAGTGTGTTCACAGCTCCTT -ACGGAAGTGTGTTCACAGCCTGTT -ACGGAAGTGTGTTCACAGCGGTTT -ACGGAAGTGTGTTCACAGGTGGTT -ACGGAAGTGTGTTCACAGGCCTTT -ACGGAAGTGTGTTCACAGGGTCTT -ACGGAAGTGTGTTCACAGACGCTT -ACGGAAGTGTGTTCACAGAGCGTT -ACGGAAGTGTGTTCACAGTTCGTC -ACGGAAGTGTGTTCACAGTCTCTC -ACGGAAGTGTGTTCACAGTGGATC -ACGGAAGTGTGTTCACAGCACTTC -ACGGAAGTGTGTTCACAGGTACTC -ACGGAAGTGTGTTCACAGGATGTC -ACGGAAGTGTGTTCACAGACAGTC -ACGGAAGTGTGTTCACAGTTGCTG -ACGGAAGTGTGTTCACAGTCCATG -ACGGAAGTGTGTTCACAGTGTGTG -ACGGAAGTGTGTTCACAGCTAGTG -ACGGAAGTGTGTTCACAGCATCTG -ACGGAAGTGTGTTCACAGGAGTTG -ACGGAAGTGTGTTCACAGAGACTG -ACGGAAGTGTGTTCACAGTCGGTA -ACGGAAGTGTGTTCACAGTGCCTA -ACGGAAGTGTGTTCACAGCCACTA -ACGGAAGTGTGTTCACAGGGAGTA -ACGGAAGTGTGTTCACAGTCGTCT -ACGGAAGTGTGTTCACAGTGCACT -ACGGAAGTGTGTTCACAGCTGACT -ACGGAAGTGTGTTCACAGCAACCT -ACGGAAGTGTGTTCACAGGCTACT -ACGGAAGTGTGTTCACAGGGATCT -ACGGAAGTGTGTTCACAGAAGGCT -ACGGAAGTGTGTTCACAGTCAACC -ACGGAAGTGTGTTCACAGTGTTCC -ACGGAAGTGTGTTCACAGATTCCC -ACGGAAGTGTGTTCACAGTTCTCG -ACGGAAGTGTGTTCACAGTAGACG -ACGGAAGTGTGTTCACAGGTAACG -ACGGAAGTGTGTTCACAGACTTCG -ACGGAAGTGTGTTCACAGTACGCA -ACGGAAGTGTGTTCACAGCTTGCA -ACGGAAGTGTGTTCACAGCGAACA -ACGGAAGTGTGTTCACAGCAGTCA -ACGGAAGTGTGTTCACAGGATCCA -ACGGAAGTGTGTTCACAGACGACA -ACGGAAGTGTGTTCACAGAGCTCA -ACGGAAGTGTGTTCACAGTCACGT -ACGGAAGTGTGTTCACAGCGTAGT -ACGGAAGTGTGTTCACAGGTCAGT -ACGGAAGTGTGTTCACAGGAAGGT -ACGGAAGTGTGTTCACAGAACCGT -ACGGAAGTGTGTTCACAGTTGTGC -ACGGAAGTGTGTTCACAGCTAAGC -ACGGAAGTGTGTTCACAGACTAGC -ACGGAAGTGTGTTCACAGAGATGC -ACGGAAGTGTGTTCACAGTGAAGG -ACGGAAGTGTGTTCACAGCAATGG -ACGGAAGTGTGTTCACAGATGAGG -ACGGAAGTGTGTTCACAGAATGGG -ACGGAAGTGTGTTCACAGTCCTGA -ACGGAAGTGTGTTCACAGTAGCGA -ACGGAAGTGTGTTCACAGCACAGA -ACGGAAGTGTGTTCACAGGCAAGA -ACGGAAGTGTGTTCACAGGGTTGA -ACGGAAGTGTGTTCACAGTCCGAT -ACGGAAGTGTGTTCACAGTGGCAT -ACGGAAGTGTGTTCACAGCGAGAT -ACGGAAGTGTGTTCACAGTACCAC -ACGGAAGTGTGTTCACAGCAGAAC -ACGGAAGTGTGTTCACAGGTCTAC -ACGGAAGTGTGTTCACAGACGTAC -ACGGAAGTGTGTTCACAGAGTGAC -ACGGAAGTGTGTTCACAGCTGTAG -ACGGAAGTGTGTTCACAGCCTAAG -ACGGAAGTGTGTTCACAGGTTCAG -ACGGAAGTGTGTTCACAGGCATAG -ACGGAAGTGTGTTCACAGGACAAG -ACGGAAGTGTGTTCACAGAAGCAG -ACGGAAGTGTGTTCACAGCGTCAA -ACGGAAGTGTGTTCACAGGCTGAA -ACGGAAGTGTGTTCACAGAGTACG -ACGGAAGTGTGTTCACAGATCCGA -ACGGAAGTGTGTTCACAGATGGGA -ACGGAAGTGTGTTCACAGGTGCAA -ACGGAAGTGTGTTCACAGGAGGAA -ACGGAAGTGTGTTCACAGCAGGTA -ACGGAAGTGTGTTCACAGGACTCT -ACGGAAGTGTGTTCACAGAGTCCT -ACGGAAGTGTGTTCACAGTAAGCC -ACGGAAGTGTGTTCACAGATAGCC -ACGGAAGTGTGTTCACAGTAACCG -ACGGAAGTGTGTTCACAGATGCCA -ACGGAAGTGTGTCCAGATGGAAAC -ACGGAAGTGTGTCCAGATAACACC -ACGGAAGTGTGTCCAGATATCGAG -ACGGAAGTGTGTCCAGATCTCCTT -ACGGAAGTGTGTCCAGATCCTGTT -ACGGAAGTGTGTCCAGATCGGTTT -ACGGAAGTGTGTCCAGATGTGGTT -ACGGAAGTGTGTCCAGATGCCTTT -ACGGAAGTGTGTCCAGATGGTCTT -ACGGAAGTGTGTCCAGATACGCTT -ACGGAAGTGTGTCCAGATAGCGTT -ACGGAAGTGTGTCCAGATTTCGTC -ACGGAAGTGTGTCCAGATTCTCTC -ACGGAAGTGTGTCCAGATTGGATC -ACGGAAGTGTGTCCAGATCACTTC -ACGGAAGTGTGTCCAGATGTACTC -ACGGAAGTGTGTCCAGATGATGTC -ACGGAAGTGTGTCCAGATACAGTC -ACGGAAGTGTGTCCAGATTTGCTG -ACGGAAGTGTGTCCAGATTCCATG -ACGGAAGTGTGTCCAGATTGTGTG -ACGGAAGTGTGTCCAGATCTAGTG -ACGGAAGTGTGTCCAGATCATCTG -ACGGAAGTGTGTCCAGATGAGTTG -ACGGAAGTGTGTCCAGATAGACTG -ACGGAAGTGTGTCCAGATTCGGTA -ACGGAAGTGTGTCCAGATTGCCTA -ACGGAAGTGTGTCCAGATCCACTA -ACGGAAGTGTGTCCAGATGGAGTA -ACGGAAGTGTGTCCAGATTCGTCT -ACGGAAGTGTGTCCAGATTGCACT -ACGGAAGTGTGTCCAGATCTGACT -ACGGAAGTGTGTCCAGATCAACCT -ACGGAAGTGTGTCCAGATGCTACT -ACGGAAGTGTGTCCAGATGGATCT -ACGGAAGTGTGTCCAGATAAGGCT -ACGGAAGTGTGTCCAGATTCAACC -ACGGAAGTGTGTCCAGATTGTTCC -ACGGAAGTGTGTCCAGATATTCCC -ACGGAAGTGTGTCCAGATTTCTCG -ACGGAAGTGTGTCCAGATTAGACG -ACGGAAGTGTGTCCAGATGTAACG -ACGGAAGTGTGTCCAGATACTTCG -ACGGAAGTGTGTCCAGATTACGCA -ACGGAAGTGTGTCCAGATCTTGCA -ACGGAAGTGTGTCCAGATCGAACA -ACGGAAGTGTGTCCAGATCAGTCA -ACGGAAGTGTGTCCAGATGATCCA -ACGGAAGTGTGTCCAGATACGACA -ACGGAAGTGTGTCCAGATAGCTCA -ACGGAAGTGTGTCCAGATTCACGT -ACGGAAGTGTGTCCAGATCGTAGT -ACGGAAGTGTGTCCAGATGTCAGT -ACGGAAGTGTGTCCAGATGAAGGT -ACGGAAGTGTGTCCAGATAACCGT -ACGGAAGTGTGTCCAGATTTGTGC -ACGGAAGTGTGTCCAGATCTAAGC -ACGGAAGTGTGTCCAGATACTAGC -ACGGAAGTGTGTCCAGATAGATGC -ACGGAAGTGTGTCCAGATTGAAGG -ACGGAAGTGTGTCCAGATCAATGG -ACGGAAGTGTGTCCAGATATGAGG -ACGGAAGTGTGTCCAGATAATGGG -ACGGAAGTGTGTCCAGATTCCTGA -ACGGAAGTGTGTCCAGATTAGCGA -ACGGAAGTGTGTCCAGATCACAGA -ACGGAAGTGTGTCCAGATGCAAGA -ACGGAAGTGTGTCCAGATGGTTGA -ACGGAAGTGTGTCCAGATTCCGAT -ACGGAAGTGTGTCCAGATTGGCAT -ACGGAAGTGTGTCCAGATCGAGAT -ACGGAAGTGTGTCCAGATTACCAC -ACGGAAGTGTGTCCAGATCAGAAC -ACGGAAGTGTGTCCAGATGTCTAC -ACGGAAGTGTGTCCAGATACGTAC -ACGGAAGTGTGTCCAGATAGTGAC -ACGGAAGTGTGTCCAGATCTGTAG -ACGGAAGTGTGTCCAGATCCTAAG -ACGGAAGTGTGTCCAGATGTTCAG -ACGGAAGTGTGTCCAGATGCATAG -ACGGAAGTGTGTCCAGATGACAAG -ACGGAAGTGTGTCCAGATAAGCAG -ACGGAAGTGTGTCCAGATCGTCAA -ACGGAAGTGTGTCCAGATGCTGAA -ACGGAAGTGTGTCCAGATAGTACG -ACGGAAGTGTGTCCAGATATCCGA -ACGGAAGTGTGTCCAGATATGGGA -ACGGAAGTGTGTCCAGATGTGCAA -ACGGAAGTGTGTCCAGATGAGGAA -ACGGAAGTGTGTCCAGATCAGGTA -ACGGAAGTGTGTCCAGATGACTCT -ACGGAAGTGTGTCCAGATAGTCCT -ACGGAAGTGTGTCCAGATTAAGCC -ACGGAAGTGTGTCCAGATATAGCC -ACGGAAGTGTGTCCAGATTAACCG -ACGGAAGTGTGTCCAGATATGCCA -ACGGAAGTGTGTACAACGGGAAAC -ACGGAAGTGTGTACAACGAACACC -ACGGAAGTGTGTACAACGATCGAG -ACGGAAGTGTGTACAACGCTCCTT -ACGGAAGTGTGTACAACGCCTGTT -ACGGAAGTGTGTACAACGCGGTTT -ACGGAAGTGTGTACAACGGTGGTT -ACGGAAGTGTGTACAACGGCCTTT -ACGGAAGTGTGTACAACGGGTCTT -ACGGAAGTGTGTACAACGACGCTT -ACGGAAGTGTGTACAACGAGCGTT -ACGGAAGTGTGTACAACGTTCGTC -ACGGAAGTGTGTACAACGTCTCTC -ACGGAAGTGTGTACAACGTGGATC -ACGGAAGTGTGTACAACGCACTTC -ACGGAAGTGTGTACAACGGTACTC -ACGGAAGTGTGTACAACGGATGTC -ACGGAAGTGTGTACAACGACAGTC -ACGGAAGTGTGTACAACGTTGCTG -ACGGAAGTGTGTACAACGTCCATG -ACGGAAGTGTGTACAACGTGTGTG -ACGGAAGTGTGTACAACGCTAGTG -ACGGAAGTGTGTACAACGCATCTG -ACGGAAGTGTGTACAACGGAGTTG -ACGGAAGTGTGTACAACGAGACTG -ACGGAAGTGTGTACAACGTCGGTA -ACGGAAGTGTGTACAACGTGCCTA -ACGGAAGTGTGTACAACGCCACTA -ACGGAAGTGTGTACAACGGGAGTA -ACGGAAGTGTGTACAACGTCGTCT -ACGGAAGTGTGTACAACGTGCACT -ACGGAAGTGTGTACAACGCTGACT -ACGGAAGTGTGTACAACGCAACCT -ACGGAAGTGTGTACAACGGCTACT -ACGGAAGTGTGTACAACGGGATCT -ACGGAAGTGTGTACAACGAAGGCT -ACGGAAGTGTGTACAACGTCAACC -ACGGAAGTGTGTACAACGTGTTCC -ACGGAAGTGTGTACAACGATTCCC -ACGGAAGTGTGTACAACGTTCTCG -ACGGAAGTGTGTACAACGTAGACG -ACGGAAGTGTGTACAACGGTAACG -ACGGAAGTGTGTACAACGACTTCG -ACGGAAGTGTGTACAACGTACGCA -ACGGAAGTGTGTACAACGCTTGCA -ACGGAAGTGTGTACAACGCGAACA -ACGGAAGTGTGTACAACGCAGTCA -ACGGAAGTGTGTACAACGGATCCA -ACGGAAGTGTGTACAACGACGACA -ACGGAAGTGTGTACAACGAGCTCA -ACGGAAGTGTGTACAACGTCACGT -ACGGAAGTGTGTACAACGCGTAGT -ACGGAAGTGTGTACAACGGTCAGT -ACGGAAGTGTGTACAACGGAAGGT -ACGGAAGTGTGTACAACGAACCGT -ACGGAAGTGTGTACAACGTTGTGC -ACGGAAGTGTGTACAACGCTAAGC -ACGGAAGTGTGTACAACGACTAGC -ACGGAAGTGTGTACAACGAGATGC -ACGGAAGTGTGTACAACGTGAAGG -ACGGAAGTGTGTACAACGCAATGG -ACGGAAGTGTGTACAACGATGAGG -ACGGAAGTGTGTACAACGAATGGG -ACGGAAGTGTGTACAACGTCCTGA -ACGGAAGTGTGTACAACGTAGCGA -ACGGAAGTGTGTACAACGCACAGA -ACGGAAGTGTGTACAACGGCAAGA -ACGGAAGTGTGTACAACGGGTTGA -ACGGAAGTGTGTACAACGTCCGAT -ACGGAAGTGTGTACAACGTGGCAT -ACGGAAGTGTGTACAACGCGAGAT -ACGGAAGTGTGTACAACGTACCAC -ACGGAAGTGTGTACAACGCAGAAC -ACGGAAGTGTGTACAACGGTCTAC -ACGGAAGTGTGTACAACGACGTAC -ACGGAAGTGTGTACAACGAGTGAC -ACGGAAGTGTGTACAACGCTGTAG -ACGGAAGTGTGTACAACGCCTAAG -ACGGAAGTGTGTACAACGGTTCAG -ACGGAAGTGTGTACAACGGCATAG -ACGGAAGTGTGTACAACGGACAAG -ACGGAAGTGTGTACAACGAAGCAG -ACGGAAGTGTGTACAACGCGTCAA -ACGGAAGTGTGTACAACGGCTGAA -ACGGAAGTGTGTACAACGAGTACG -ACGGAAGTGTGTACAACGATCCGA -ACGGAAGTGTGTACAACGATGGGA -ACGGAAGTGTGTACAACGGTGCAA -ACGGAAGTGTGTACAACGGAGGAA -ACGGAAGTGTGTACAACGCAGGTA -ACGGAAGTGTGTACAACGGACTCT -ACGGAAGTGTGTACAACGAGTCCT -ACGGAAGTGTGTACAACGTAAGCC -ACGGAAGTGTGTACAACGATAGCC -ACGGAAGTGTGTACAACGTAACCG -ACGGAAGTGTGTACAACGATGCCA -ACGGAAGTGTGTTCAAGCGGAAAC -ACGGAAGTGTGTTCAAGCAACACC -ACGGAAGTGTGTTCAAGCATCGAG -ACGGAAGTGTGTTCAAGCCTCCTT -ACGGAAGTGTGTTCAAGCCCTGTT -ACGGAAGTGTGTTCAAGCCGGTTT -ACGGAAGTGTGTTCAAGCGTGGTT -ACGGAAGTGTGTTCAAGCGCCTTT -ACGGAAGTGTGTTCAAGCGGTCTT -ACGGAAGTGTGTTCAAGCACGCTT -ACGGAAGTGTGTTCAAGCAGCGTT -ACGGAAGTGTGTTCAAGCTTCGTC -ACGGAAGTGTGTTCAAGCTCTCTC -ACGGAAGTGTGTTCAAGCTGGATC -ACGGAAGTGTGTTCAAGCCACTTC -ACGGAAGTGTGTTCAAGCGTACTC -ACGGAAGTGTGTTCAAGCGATGTC -ACGGAAGTGTGTTCAAGCACAGTC -ACGGAAGTGTGTTCAAGCTTGCTG -ACGGAAGTGTGTTCAAGCTCCATG -ACGGAAGTGTGTTCAAGCTGTGTG -ACGGAAGTGTGTTCAAGCCTAGTG -ACGGAAGTGTGTTCAAGCCATCTG -ACGGAAGTGTGTTCAAGCGAGTTG -ACGGAAGTGTGTTCAAGCAGACTG -ACGGAAGTGTGTTCAAGCTCGGTA -ACGGAAGTGTGTTCAAGCTGCCTA -ACGGAAGTGTGTTCAAGCCCACTA -ACGGAAGTGTGTTCAAGCGGAGTA -ACGGAAGTGTGTTCAAGCTCGTCT -ACGGAAGTGTGTTCAAGCTGCACT -ACGGAAGTGTGTTCAAGCCTGACT -ACGGAAGTGTGTTCAAGCCAACCT -ACGGAAGTGTGTTCAAGCGCTACT -ACGGAAGTGTGTTCAAGCGGATCT -ACGGAAGTGTGTTCAAGCAAGGCT -ACGGAAGTGTGTTCAAGCTCAACC -ACGGAAGTGTGTTCAAGCTGTTCC -ACGGAAGTGTGTTCAAGCATTCCC -ACGGAAGTGTGTTCAAGCTTCTCG -ACGGAAGTGTGTTCAAGCTAGACG -ACGGAAGTGTGTTCAAGCGTAACG -ACGGAAGTGTGTTCAAGCACTTCG -ACGGAAGTGTGTTCAAGCTACGCA -ACGGAAGTGTGTTCAAGCCTTGCA -ACGGAAGTGTGTTCAAGCCGAACA -ACGGAAGTGTGTTCAAGCCAGTCA -ACGGAAGTGTGTTCAAGCGATCCA -ACGGAAGTGTGTTCAAGCACGACA -ACGGAAGTGTGTTCAAGCAGCTCA -ACGGAAGTGTGTTCAAGCTCACGT -ACGGAAGTGTGTTCAAGCCGTAGT -ACGGAAGTGTGTTCAAGCGTCAGT -ACGGAAGTGTGTTCAAGCGAAGGT -ACGGAAGTGTGTTCAAGCAACCGT -ACGGAAGTGTGTTCAAGCTTGTGC -ACGGAAGTGTGTTCAAGCCTAAGC -ACGGAAGTGTGTTCAAGCACTAGC -ACGGAAGTGTGTTCAAGCAGATGC -ACGGAAGTGTGTTCAAGCTGAAGG -ACGGAAGTGTGTTCAAGCCAATGG -ACGGAAGTGTGTTCAAGCATGAGG -ACGGAAGTGTGTTCAAGCAATGGG -ACGGAAGTGTGTTCAAGCTCCTGA -ACGGAAGTGTGTTCAAGCTAGCGA -ACGGAAGTGTGTTCAAGCCACAGA -ACGGAAGTGTGTTCAAGCGCAAGA -ACGGAAGTGTGTTCAAGCGGTTGA -ACGGAAGTGTGTTCAAGCTCCGAT -ACGGAAGTGTGTTCAAGCTGGCAT -ACGGAAGTGTGTTCAAGCCGAGAT -ACGGAAGTGTGTTCAAGCTACCAC -ACGGAAGTGTGTTCAAGCCAGAAC -ACGGAAGTGTGTTCAAGCGTCTAC -ACGGAAGTGTGTTCAAGCACGTAC -ACGGAAGTGTGTTCAAGCAGTGAC -ACGGAAGTGTGTTCAAGCCTGTAG -ACGGAAGTGTGTTCAAGCCCTAAG -ACGGAAGTGTGTTCAAGCGTTCAG -ACGGAAGTGTGTTCAAGCGCATAG -ACGGAAGTGTGTTCAAGCGACAAG -ACGGAAGTGTGTTCAAGCAAGCAG -ACGGAAGTGTGTTCAAGCCGTCAA -ACGGAAGTGTGTTCAAGCGCTGAA -ACGGAAGTGTGTTCAAGCAGTACG -ACGGAAGTGTGTTCAAGCATCCGA -ACGGAAGTGTGTTCAAGCATGGGA -ACGGAAGTGTGTTCAAGCGTGCAA -ACGGAAGTGTGTTCAAGCGAGGAA -ACGGAAGTGTGTTCAAGCCAGGTA -ACGGAAGTGTGTTCAAGCGACTCT -ACGGAAGTGTGTTCAAGCAGTCCT -ACGGAAGTGTGTTCAAGCTAAGCC -ACGGAAGTGTGTTCAAGCATAGCC -ACGGAAGTGTGTTCAAGCTAACCG -ACGGAAGTGTGTTCAAGCATGCCA -ACGGAAGTGTGTCGTTCAGGAAAC -ACGGAAGTGTGTCGTTCAAACACC -ACGGAAGTGTGTCGTTCAATCGAG -ACGGAAGTGTGTCGTTCACTCCTT -ACGGAAGTGTGTCGTTCACCTGTT -ACGGAAGTGTGTCGTTCACGGTTT -ACGGAAGTGTGTCGTTCAGTGGTT -ACGGAAGTGTGTCGTTCAGCCTTT -ACGGAAGTGTGTCGTTCAGGTCTT -ACGGAAGTGTGTCGTTCAACGCTT -ACGGAAGTGTGTCGTTCAAGCGTT -ACGGAAGTGTGTCGTTCATTCGTC -ACGGAAGTGTGTCGTTCATCTCTC -ACGGAAGTGTGTCGTTCATGGATC -ACGGAAGTGTGTCGTTCACACTTC -ACGGAAGTGTGTCGTTCAGTACTC -ACGGAAGTGTGTCGTTCAGATGTC -ACGGAAGTGTGTCGTTCAACAGTC -ACGGAAGTGTGTCGTTCATTGCTG -ACGGAAGTGTGTCGTTCATCCATG -ACGGAAGTGTGTCGTTCATGTGTG -ACGGAAGTGTGTCGTTCACTAGTG -ACGGAAGTGTGTCGTTCACATCTG -ACGGAAGTGTGTCGTTCAGAGTTG -ACGGAAGTGTGTCGTTCAAGACTG -ACGGAAGTGTGTCGTTCATCGGTA -ACGGAAGTGTGTCGTTCATGCCTA -ACGGAAGTGTGTCGTTCACCACTA -ACGGAAGTGTGTCGTTCAGGAGTA -ACGGAAGTGTGTCGTTCATCGTCT -ACGGAAGTGTGTCGTTCATGCACT -ACGGAAGTGTGTCGTTCACTGACT -ACGGAAGTGTGTCGTTCACAACCT -ACGGAAGTGTGTCGTTCAGCTACT -ACGGAAGTGTGTCGTTCAGGATCT -ACGGAAGTGTGTCGTTCAAAGGCT -ACGGAAGTGTGTCGTTCATCAACC -ACGGAAGTGTGTCGTTCATGTTCC -ACGGAAGTGTGTCGTTCAATTCCC -ACGGAAGTGTGTCGTTCATTCTCG -ACGGAAGTGTGTCGTTCATAGACG -ACGGAAGTGTGTCGTTCAGTAACG -ACGGAAGTGTGTCGTTCAACTTCG -ACGGAAGTGTGTCGTTCATACGCA -ACGGAAGTGTGTCGTTCACTTGCA -ACGGAAGTGTGTCGTTCACGAACA -ACGGAAGTGTGTCGTTCACAGTCA -ACGGAAGTGTGTCGTTCAGATCCA -ACGGAAGTGTGTCGTTCAACGACA -ACGGAAGTGTGTCGTTCAAGCTCA -ACGGAAGTGTGTCGTTCATCACGT -ACGGAAGTGTGTCGTTCACGTAGT -ACGGAAGTGTGTCGTTCAGTCAGT -ACGGAAGTGTGTCGTTCAGAAGGT -ACGGAAGTGTGTCGTTCAAACCGT -ACGGAAGTGTGTCGTTCATTGTGC -ACGGAAGTGTGTCGTTCACTAAGC -ACGGAAGTGTGTCGTTCAACTAGC -ACGGAAGTGTGTCGTTCAAGATGC -ACGGAAGTGTGTCGTTCATGAAGG -ACGGAAGTGTGTCGTTCACAATGG -ACGGAAGTGTGTCGTTCAATGAGG -ACGGAAGTGTGTCGTTCAAATGGG -ACGGAAGTGTGTCGTTCATCCTGA -ACGGAAGTGTGTCGTTCATAGCGA -ACGGAAGTGTGTCGTTCACACAGA -ACGGAAGTGTGTCGTTCAGCAAGA -ACGGAAGTGTGTCGTTCAGGTTGA -ACGGAAGTGTGTCGTTCATCCGAT -ACGGAAGTGTGTCGTTCATGGCAT -ACGGAAGTGTGTCGTTCACGAGAT -ACGGAAGTGTGTCGTTCATACCAC -ACGGAAGTGTGTCGTTCACAGAAC -ACGGAAGTGTGTCGTTCAGTCTAC -ACGGAAGTGTGTCGTTCAACGTAC -ACGGAAGTGTGTCGTTCAAGTGAC -ACGGAAGTGTGTCGTTCACTGTAG -ACGGAAGTGTGTCGTTCACCTAAG -ACGGAAGTGTGTCGTTCAGTTCAG -ACGGAAGTGTGTCGTTCAGCATAG -ACGGAAGTGTGTCGTTCAGACAAG -ACGGAAGTGTGTCGTTCAAAGCAG -ACGGAAGTGTGTCGTTCACGTCAA -ACGGAAGTGTGTCGTTCAGCTGAA -ACGGAAGTGTGTCGTTCAAGTACG -ACGGAAGTGTGTCGTTCAATCCGA -ACGGAAGTGTGTCGTTCAATGGGA -ACGGAAGTGTGTCGTTCAGTGCAA -ACGGAAGTGTGTCGTTCAGAGGAA -ACGGAAGTGTGTCGTTCACAGGTA -ACGGAAGTGTGTCGTTCAGACTCT -ACGGAAGTGTGTCGTTCAAGTCCT -ACGGAAGTGTGTCGTTCATAAGCC -ACGGAAGTGTGTCGTTCAATAGCC -ACGGAAGTGTGTCGTTCATAACCG -ACGGAAGTGTGTCGTTCAATGCCA -ACGGAAGTGTGTAGTCGTGGAAAC -ACGGAAGTGTGTAGTCGTAACACC -ACGGAAGTGTGTAGTCGTATCGAG -ACGGAAGTGTGTAGTCGTCTCCTT -ACGGAAGTGTGTAGTCGTCCTGTT -ACGGAAGTGTGTAGTCGTCGGTTT -ACGGAAGTGTGTAGTCGTGTGGTT -ACGGAAGTGTGTAGTCGTGCCTTT -ACGGAAGTGTGTAGTCGTGGTCTT -ACGGAAGTGTGTAGTCGTACGCTT -ACGGAAGTGTGTAGTCGTAGCGTT -ACGGAAGTGTGTAGTCGTTTCGTC -ACGGAAGTGTGTAGTCGTTCTCTC -ACGGAAGTGTGTAGTCGTTGGATC -ACGGAAGTGTGTAGTCGTCACTTC -ACGGAAGTGTGTAGTCGTGTACTC -ACGGAAGTGTGTAGTCGTGATGTC -ACGGAAGTGTGTAGTCGTACAGTC -ACGGAAGTGTGTAGTCGTTTGCTG -ACGGAAGTGTGTAGTCGTTCCATG -ACGGAAGTGTGTAGTCGTTGTGTG -ACGGAAGTGTGTAGTCGTCTAGTG -ACGGAAGTGTGTAGTCGTCATCTG -ACGGAAGTGTGTAGTCGTGAGTTG -ACGGAAGTGTGTAGTCGTAGACTG -ACGGAAGTGTGTAGTCGTTCGGTA -ACGGAAGTGTGTAGTCGTTGCCTA -ACGGAAGTGTGTAGTCGTCCACTA -ACGGAAGTGTGTAGTCGTGGAGTA -ACGGAAGTGTGTAGTCGTTCGTCT -ACGGAAGTGTGTAGTCGTTGCACT -ACGGAAGTGTGTAGTCGTCTGACT -ACGGAAGTGTGTAGTCGTCAACCT -ACGGAAGTGTGTAGTCGTGCTACT -ACGGAAGTGTGTAGTCGTGGATCT -ACGGAAGTGTGTAGTCGTAAGGCT -ACGGAAGTGTGTAGTCGTTCAACC -ACGGAAGTGTGTAGTCGTTGTTCC -ACGGAAGTGTGTAGTCGTATTCCC -ACGGAAGTGTGTAGTCGTTTCTCG -ACGGAAGTGTGTAGTCGTTAGACG -ACGGAAGTGTGTAGTCGTGTAACG -ACGGAAGTGTGTAGTCGTACTTCG -ACGGAAGTGTGTAGTCGTTACGCA -ACGGAAGTGTGTAGTCGTCTTGCA -ACGGAAGTGTGTAGTCGTCGAACA -ACGGAAGTGTGTAGTCGTCAGTCA -ACGGAAGTGTGTAGTCGTGATCCA -ACGGAAGTGTGTAGTCGTACGACA -ACGGAAGTGTGTAGTCGTAGCTCA -ACGGAAGTGTGTAGTCGTTCACGT -ACGGAAGTGTGTAGTCGTCGTAGT -ACGGAAGTGTGTAGTCGTGTCAGT -ACGGAAGTGTGTAGTCGTGAAGGT -ACGGAAGTGTGTAGTCGTAACCGT -ACGGAAGTGTGTAGTCGTTTGTGC -ACGGAAGTGTGTAGTCGTCTAAGC -ACGGAAGTGTGTAGTCGTACTAGC -ACGGAAGTGTGTAGTCGTAGATGC -ACGGAAGTGTGTAGTCGTTGAAGG -ACGGAAGTGTGTAGTCGTCAATGG -ACGGAAGTGTGTAGTCGTATGAGG -ACGGAAGTGTGTAGTCGTAATGGG -ACGGAAGTGTGTAGTCGTTCCTGA -ACGGAAGTGTGTAGTCGTTAGCGA -ACGGAAGTGTGTAGTCGTCACAGA -ACGGAAGTGTGTAGTCGTGCAAGA -ACGGAAGTGTGTAGTCGTGGTTGA -ACGGAAGTGTGTAGTCGTTCCGAT -ACGGAAGTGTGTAGTCGTTGGCAT -ACGGAAGTGTGTAGTCGTCGAGAT -ACGGAAGTGTGTAGTCGTTACCAC -ACGGAAGTGTGTAGTCGTCAGAAC -ACGGAAGTGTGTAGTCGTGTCTAC -ACGGAAGTGTGTAGTCGTACGTAC -ACGGAAGTGTGTAGTCGTAGTGAC -ACGGAAGTGTGTAGTCGTCTGTAG -ACGGAAGTGTGTAGTCGTCCTAAG -ACGGAAGTGTGTAGTCGTGTTCAG -ACGGAAGTGTGTAGTCGTGCATAG -ACGGAAGTGTGTAGTCGTGACAAG -ACGGAAGTGTGTAGTCGTAAGCAG -ACGGAAGTGTGTAGTCGTCGTCAA -ACGGAAGTGTGTAGTCGTGCTGAA -ACGGAAGTGTGTAGTCGTAGTACG -ACGGAAGTGTGTAGTCGTATCCGA -ACGGAAGTGTGTAGTCGTATGGGA -ACGGAAGTGTGTAGTCGTGTGCAA -ACGGAAGTGTGTAGTCGTGAGGAA -ACGGAAGTGTGTAGTCGTCAGGTA -ACGGAAGTGTGTAGTCGTGACTCT -ACGGAAGTGTGTAGTCGTAGTCCT -ACGGAAGTGTGTAGTCGTTAAGCC -ACGGAAGTGTGTAGTCGTATAGCC -ACGGAAGTGTGTAGTCGTTAACCG -ACGGAAGTGTGTAGTCGTATGCCA -ACGGAAGTGTGTAGTGTCGGAAAC -ACGGAAGTGTGTAGTGTCAACACC -ACGGAAGTGTGTAGTGTCATCGAG -ACGGAAGTGTGTAGTGTCCTCCTT -ACGGAAGTGTGTAGTGTCCCTGTT -ACGGAAGTGTGTAGTGTCCGGTTT -ACGGAAGTGTGTAGTGTCGTGGTT -ACGGAAGTGTGTAGTGTCGCCTTT -ACGGAAGTGTGTAGTGTCGGTCTT -ACGGAAGTGTGTAGTGTCACGCTT -ACGGAAGTGTGTAGTGTCAGCGTT -ACGGAAGTGTGTAGTGTCTTCGTC -ACGGAAGTGTGTAGTGTCTCTCTC -ACGGAAGTGTGTAGTGTCTGGATC -ACGGAAGTGTGTAGTGTCCACTTC -ACGGAAGTGTGTAGTGTCGTACTC -ACGGAAGTGTGTAGTGTCGATGTC -ACGGAAGTGTGTAGTGTCACAGTC -ACGGAAGTGTGTAGTGTCTTGCTG -ACGGAAGTGTGTAGTGTCTCCATG -ACGGAAGTGTGTAGTGTCTGTGTG -ACGGAAGTGTGTAGTGTCCTAGTG -ACGGAAGTGTGTAGTGTCCATCTG -ACGGAAGTGTGTAGTGTCGAGTTG -ACGGAAGTGTGTAGTGTCAGACTG -ACGGAAGTGTGTAGTGTCTCGGTA -ACGGAAGTGTGTAGTGTCTGCCTA -ACGGAAGTGTGTAGTGTCCCACTA -ACGGAAGTGTGTAGTGTCGGAGTA -ACGGAAGTGTGTAGTGTCTCGTCT -ACGGAAGTGTGTAGTGTCTGCACT -ACGGAAGTGTGTAGTGTCCTGACT -ACGGAAGTGTGTAGTGTCCAACCT -ACGGAAGTGTGTAGTGTCGCTACT -ACGGAAGTGTGTAGTGTCGGATCT -ACGGAAGTGTGTAGTGTCAAGGCT -ACGGAAGTGTGTAGTGTCTCAACC -ACGGAAGTGTGTAGTGTCTGTTCC -ACGGAAGTGTGTAGTGTCATTCCC -ACGGAAGTGTGTAGTGTCTTCTCG -ACGGAAGTGTGTAGTGTCTAGACG -ACGGAAGTGTGTAGTGTCGTAACG -ACGGAAGTGTGTAGTGTCACTTCG -ACGGAAGTGTGTAGTGTCTACGCA -ACGGAAGTGTGTAGTGTCCTTGCA -ACGGAAGTGTGTAGTGTCCGAACA -ACGGAAGTGTGTAGTGTCCAGTCA -ACGGAAGTGTGTAGTGTCGATCCA -ACGGAAGTGTGTAGTGTCACGACA -ACGGAAGTGTGTAGTGTCAGCTCA -ACGGAAGTGTGTAGTGTCTCACGT -ACGGAAGTGTGTAGTGTCCGTAGT -ACGGAAGTGTGTAGTGTCGTCAGT -ACGGAAGTGTGTAGTGTCGAAGGT -ACGGAAGTGTGTAGTGTCAACCGT -ACGGAAGTGTGTAGTGTCTTGTGC -ACGGAAGTGTGTAGTGTCCTAAGC -ACGGAAGTGTGTAGTGTCACTAGC -ACGGAAGTGTGTAGTGTCAGATGC -ACGGAAGTGTGTAGTGTCTGAAGG -ACGGAAGTGTGTAGTGTCCAATGG -ACGGAAGTGTGTAGTGTCATGAGG -ACGGAAGTGTGTAGTGTCAATGGG -ACGGAAGTGTGTAGTGTCTCCTGA -ACGGAAGTGTGTAGTGTCTAGCGA -ACGGAAGTGTGTAGTGTCCACAGA -ACGGAAGTGTGTAGTGTCGCAAGA -ACGGAAGTGTGTAGTGTCGGTTGA -ACGGAAGTGTGTAGTGTCTCCGAT -ACGGAAGTGTGTAGTGTCTGGCAT -ACGGAAGTGTGTAGTGTCCGAGAT -ACGGAAGTGTGTAGTGTCTACCAC -ACGGAAGTGTGTAGTGTCCAGAAC -ACGGAAGTGTGTAGTGTCGTCTAC -ACGGAAGTGTGTAGTGTCACGTAC -ACGGAAGTGTGTAGTGTCAGTGAC -ACGGAAGTGTGTAGTGTCCTGTAG -ACGGAAGTGTGTAGTGTCCCTAAG -ACGGAAGTGTGTAGTGTCGTTCAG -ACGGAAGTGTGTAGTGTCGCATAG -ACGGAAGTGTGTAGTGTCGACAAG -ACGGAAGTGTGTAGTGTCAAGCAG -ACGGAAGTGTGTAGTGTCCGTCAA -ACGGAAGTGTGTAGTGTCGCTGAA -ACGGAAGTGTGTAGTGTCAGTACG -ACGGAAGTGTGTAGTGTCATCCGA -ACGGAAGTGTGTAGTGTCATGGGA -ACGGAAGTGTGTAGTGTCGTGCAA -ACGGAAGTGTGTAGTGTCGAGGAA -ACGGAAGTGTGTAGTGTCCAGGTA -ACGGAAGTGTGTAGTGTCGACTCT -ACGGAAGTGTGTAGTGTCAGTCCT -ACGGAAGTGTGTAGTGTCTAAGCC -ACGGAAGTGTGTAGTGTCATAGCC -ACGGAAGTGTGTAGTGTCTAACCG -ACGGAAGTGTGTAGTGTCATGCCA -ACGGAAGTGTGTGGTGAAGGAAAC -ACGGAAGTGTGTGGTGAAAACACC -ACGGAAGTGTGTGGTGAAATCGAG -ACGGAAGTGTGTGGTGAACTCCTT -ACGGAAGTGTGTGGTGAACCTGTT -ACGGAAGTGTGTGGTGAACGGTTT -ACGGAAGTGTGTGGTGAAGTGGTT -ACGGAAGTGTGTGGTGAAGCCTTT -ACGGAAGTGTGTGGTGAAGGTCTT -ACGGAAGTGTGTGGTGAAACGCTT -ACGGAAGTGTGTGGTGAAAGCGTT -ACGGAAGTGTGTGGTGAATTCGTC -ACGGAAGTGTGTGGTGAATCTCTC -ACGGAAGTGTGTGGTGAATGGATC -ACGGAAGTGTGTGGTGAACACTTC -ACGGAAGTGTGTGGTGAAGTACTC -ACGGAAGTGTGTGGTGAAGATGTC -ACGGAAGTGTGTGGTGAAACAGTC -ACGGAAGTGTGTGGTGAATTGCTG -ACGGAAGTGTGTGGTGAATCCATG -ACGGAAGTGTGTGGTGAATGTGTG -ACGGAAGTGTGTGGTGAACTAGTG -ACGGAAGTGTGTGGTGAACATCTG -ACGGAAGTGTGTGGTGAAGAGTTG -ACGGAAGTGTGTGGTGAAAGACTG -ACGGAAGTGTGTGGTGAATCGGTA -ACGGAAGTGTGTGGTGAATGCCTA -ACGGAAGTGTGTGGTGAACCACTA -ACGGAAGTGTGTGGTGAAGGAGTA -ACGGAAGTGTGTGGTGAATCGTCT -ACGGAAGTGTGTGGTGAATGCACT -ACGGAAGTGTGTGGTGAACTGACT -ACGGAAGTGTGTGGTGAACAACCT -ACGGAAGTGTGTGGTGAAGCTACT -ACGGAAGTGTGTGGTGAAGGATCT -ACGGAAGTGTGTGGTGAAAAGGCT -ACGGAAGTGTGTGGTGAATCAACC -ACGGAAGTGTGTGGTGAATGTTCC -ACGGAAGTGTGTGGTGAAATTCCC -ACGGAAGTGTGTGGTGAATTCTCG -ACGGAAGTGTGTGGTGAATAGACG -ACGGAAGTGTGTGGTGAAGTAACG -ACGGAAGTGTGTGGTGAAACTTCG -ACGGAAGTGTGTGGTGAATACGCA -ACGGAAGTGTGTGGTGAACTTGCA -ACGGAAGTGTGTGGTGAACGAACA -ACGGAAGTGTGTGGTGAACAGTCA -ACGGAAGTGTGTGGTGAAGATCCA -ACGGAAGTGTGTGGTGAAACGACA -ACGGAAGTGTGTGGTGAAAGCTCA -ACGGAAGTGTGTGGTGAATCACGT -ACGGAAGTGTGTGGTGAACGTAGT -ACGGAAGTGTGTGGTGAAGTCAGT -ACGGAAGTGTGTGGTGAAGAAGGT -ACGGAAGTGTGTGGTGAAAACCGT -ACGGAAGTGTGTGGTGAATTGTGC -ACGGAAGTGTGTGGTGAACTAAGC -ACGGAAGTGTGTGGTGAAACTAGC -ACGGAAGTGTGTGGTGAAAGATGC -ACGGAAGTGTGTGGTGAATGAAGG -ACGGAAGTGTGTGGTGAACAATGG -ACGGAAGTGTGTGGTGAAATGAGG -ACGGAAGTGTGTGGTGAAAATGGG -ACGGAAGTGTGTGGTGAATCCTGA -ACGGAAGTGTGTGGTGAATAGCGA -ACGGAAGTGTGTGGTGAACACAGA -ACGGAAGTGTGTGGTGAAGCAAGA -ACGGAAGTGTGTGGTGAAGGTTGA -ACGGAAGTGTGTGGTGAATCCGAT -ACGGAAGTGTGTGGTGAATGGCAT -ACGGAAGTGTGTGGTGAACGAGAT -ACGGAAGTGTGTGGTGAATACCAC -ACGGAAGTGTGTGGTGAACAGAAC -ACGGAAGTGTGTGGTGAAGTCTAC -ACGGAAGTGTGTGGTGAAACGTAC -ACGGAAGTGTGTGGTGAAAGTGAC -ACGGAAGTGTGTGGTGAACTGTAG -ACGGAAGTGTGTGGTGAACCTAAG -ACGGAAGTGTGTGGTGAAGTTCAG -ACGGAAGTGTGTGGTGAAGCATAG -ACGGAAGTGTGTGGTGAAGACAAG -ACGGAAGTGTGTGGTGAAAAGCAG -ACGGAAGTGTGTGGTGAACGTCAA -ACGGAAGTGTGTGGTGAAGCTGAA -ACGGAAGTGTGTGGTGAAAGTACG -ACGGAAGTGTGTGGTGAAATCCGA -ACGGAAGTGTGTGGTGAAATGGGA -ACGGAAGTGTGTGGTGAAGTGCAA -ACGGAAGTGTGTGGTGAAGAGGAA -ACGGAAGTGTGTGGTGAACAGGTA -ACGGAAGTGTGTGGTGAAGACTCT -ACGGAAGTGTGTGGTGAAAGTCCT -ACGGAAGTGTGTGGTGAATAAGCC -ACGGAAGTGTGTGGTGAAATAGCC -ACGGAAGTGTGTGGTGAATAACCG -ACGGAAGTGTGTGGTGAAATGCCA -ACGGAAGTGTGTCGTAACGGAAAC -ACGGAAGTGTGTCGTAACAACACC -ACGGAAGTGTGTCGTAACATCGAG -ACGGAAGTGTGTCGTAACCTCCTT -ACGGAAGTGTGTCGTAACCCTGTT -ACGGAAGTGTGTCGTAACCGGTTT -ACGGAAGTGTGTCGTAACGTGGTT -ACGGAAGTGTGTCGTAACGCCTTT -ACGGAAGTGTGTCGTAACGGTCTT -ACGGAAGTGTGTCGTAACACGCTT -ACGGAAGTGTGTCGTAACAGCGTT -ACGGAAGTGTGTCGTAACTTCGTC -ACGGAAGTGTGTCGTAACTCTCTC -ACGGAAGTGTGTCGTAACTGGATC -ACGGAAGTGTGTCGTAACCACTTC -ACGGAAGTGTGTCGTAACGTACTC -ACGGAAGTGTGTCGTAACGATGTC -ACGGAAGTGTGTCGTAACACAGTC -ACGGAAGTGTGTCGTAACTTGCTG -ACGGAAGTGTGTCGTAACTCCATG -ACGGAAGTGTGTCGTAACTGTGTG -ACGGAAGTGTGTCGTAACCTAGTG -ACGGAAGTGTGTCGTAACCATCTG -ACGGAAGTGTGTCGTAACGAGTTG -ACGGAAGTGTGTCGTAACAGACTG -ACGGAAGTGTGTCGTAACTCGGTA -ACGGAAGTGTGTCGTAACTGCCTA -ACGGAAGTGTGTCGTAACCCACTA -ACGGAAGTGTGTCGTAACGGAGTA -ACGGAAGTGTGTCGTAACTCGTCT -ACGGAAGTGTGTCGTAACTGCACT -ACGGAAGTGTGTCGTAACCTGACT -ACGGAAGTGTGTCGTAACCAACCT -ACGGAAGTGTGTCGTAACGCTACT -ACGGAAGTGTGTCGTAACGGATCT -ACGGAAGTGTGTCGTAACAAGGCT -ACGGAAGTGTGTCGTAACTCAACC -ACGGAAGTGTGTCGTAACTGTTCC -ACGGAAGTGTGTCGTAACATTCCC -ACGGAAGTGTGTCGTAACTTCTCG -ACGGAAGTGTGTCGTAACTAGACG -ACGGAAGTGTGTCGTAACGTAACG -ACGGAAGTGTGTCGTAACACTTCG -ACGGAAGTGTGTCGTAACTACGCA -ACGGAAGTGTGTCGTAACCTTGCA -ACGGAAGTGTGTCGTAACCGAACA -ACGGAAGTGTGTCGTAACCAGTCA -ACGGAAGTGTGTCGTAACGATCCA -ACGGAAGTGTGTCGTAACACGACA -ACGGAAGTGTGTCGTAACAGCTCA -ACGGAAGTGTGTCGTAACTCACGT -ACGGAAGTGTGTCGTAACCGTAGT -ACGGAAGTGTGTCGTAACGTCAGT -ACGGAAGTGTGTCGTAACGAAGGT -ACGGAAGTGTGTCGTAACAACCGT -ACGGAAGTGTGTCGTAACTTGTGC -ACGGAAGTGTGTCGTAACCTAAGC -ACGGAAGTGTGTCGTAACACTAGC -ACGGAAGTGTGTCGTAACAGATGC -ACGGAAGTGTGTCGTAACTGAAGG -ACGGAAGTGTGTCGTAACCAATGG -ACGGAAGTGTGTCGTAACATGAGG -ACGGAAGTGTGTCGTAACAATGGG -ACGGAAGTGTGTCGTAACTCCTGA -ACGGAAGTGTGTCGTAACTAGCGA -ACGGAAGTGTGTCGTAACCACAGA -ACGGAAGTGTGTCGTAACGCAAGA -ACGGAAGTGTGTCGTAACGGTTGA -ACGGAAGTGTGTCGTAACTCCGAT -ACGGAAGTGTGTCGTAACTGGCAT -ACGGAAGTGTGTCGTAACCGAGAT -ACGGAAGTGTGTCGTAACTACCAC -ACGGAAGTGTGTCGTAACCAGAAC -ACGGAAGTGTGTCGTAACGTCTAC -ACGGAAGTGTGTCGTAACACGTAC -ACGGAAGTGTGTCGTAACAGTGAC -ACGGAAGTGTGTCGTAACCTGTAG -ACGGAAGTGTGTCGTAACCCTAAG -ACGGAAGTGTGTCGTAACGTTCAG -ACGGAAGTGTGTCGTAACGCATAG -ACGGAAGTGTGTCGTAACGACAAG -ACGGAAGTGTGTCGTAACAAGCAG -ACGGAAGTGTGTCGTAACCGTCAA -ACGGAAGTGTGTCGTAACGCTGAA -ACGGAAGTGTGTCGTAACAGTACG -ACGGAAGTGTGTCGTAACATCCGA -ACGGAAGTGTGTCGTAACATGGGA -ACGGAAGTGTGTCGTAACGTGCAA -ACGGAAGTGTGTCGTAACGAGGAA -ACGGAAGTGTGTCGTAACCAGGTA -ACGGAAGTGTGTCGTAACGACTCT -ACGGAAGTGTGTCGTAACAGTCCT -ACGGAAGTGTGTCGTAACTAAGCC -ACGGAAGTGTGTCGTAACATAGCC -ACGGAAGTGTGTCGTAACTAACCG -ACGGAAGTGTGTCGTAACATGCCA -ACGGAAGTGTGTTGCTTGGGAAAC -ACGGAAGTGTGTTGCTTGAACACC -ACGGAAGTGTGTTGCTTGATCGAG -ACGGAAGTGTGTTGCTTGCTCCTT -ACGGAAGTGTGTTGCTTGCCTGTT -ACGGAAGTGTGTTGCTTGCGGTTT -ACGGAAGTGTGTTGCTTGGTGGTT -ACGGAAGTGTGTTGCTTGGCCTTT -ACGGAAGTGTGTTGCTTGGGTCTT -ACGGAAGTGTGTTGCTTGACGCTT -ACGGAAGTGTGTTGCTTGAGCGTT -ACGGAAGTGTGTTGCTTGTTCGTC -ACGGAAGTGTGTTGCTTGTCTCTC -ACGGAAGTGTGTTGCTTGTGGATC -ACGGAAGTGTGTTGCTTGCACTTC -ACGGAAGTGTGTTGCTTGGTACTC -ACGGAAGTGTGTTGCTTGGATGTC -ACGGAAGTGTGTTGCTTGACAGTC -ACGGAAGTGTGTTGCTTGTTGCTG -ACGGAAGTGTGTTGCTTGTCCATG -ACGGAAGTGTGTTGCTTGTGTGTG -ACGGAAGTGTGTTGCTTGCTAGTG -ACGGAAGTGTGTTGCTTGCATCTG -ACGGAAGTGTGTTGCTTGGAGTTG -ACGGAAGTGTGTTGCTTGAGACTG -ACGGAAGTGTGTTGCTTGTCGGTA -ACGGAAGTGTGTTGCTTGTGCCTA -ACGGAAGTGTGTTGCTTGCCACTA -ACGGAAGTGTGTTGCTTGGGAGTA -ACGGAAGTGTGTTGCTTGTCGTCT -ACGGAAGTGTGTTGCTTGTGCACT -ACGGAAGTGTGTTGCTTGCTGACT -ACGGAAGTGTGTTGCTTGCAACCT -ACGGAAGTGTGTTGCTTGGCTACT -ACGGAAGTGTGTTGCTTGGGATCT -ACGGAAGTGTGTTGCTTGAAGGCT -ACGGAAGTGTGTTGCTTGTCAACC -ACGGAAGTGTGTTGCTTGTGTTCC -ACGGAAGTGTGTTGCTTGATTCCC -ACGGAAGTGTGTTGCTTGTTCTCG -ACGGAAGTGTGTTGCTTGTAGACG -ACGGAAGTGTGTTGCTTGGTAACG -ACGGAAGTGTGTTGCTTGACTTCG -ACGGAAGTGTGTTGCTTGTACGCA -ACGGAAGTGTGTTGCTTGCTTGCA -ACGGAAGTGTGTTGCTTGCGAACA -ACGGAAGTGTGTTGCTTGCAGTCA -ACGGAAGTGTGTTGCTTGGATCCA -ACGGAAGTGTGTTGCTTGACGACA -ACGGAAGTGTGTTGCTTGAGCTCA -ACGGAAGTGTGTTGCTTGTCACGT -ACGGAAGTGTGTTGCTTGCGTAGT -ACGGAAGTGTGTTGCTTGGTCAGT -ACGGAAGTGTGTTGCTTGGAAGGT -ACGGAAGTGTGTTGCTTGAACCGT -ACGGAAGTGTGTTGCTTGTTGTGC -ACGGAAGTGTGTTGCTTGCTAAGC -ACGGAAGTGTGTTGCTTGACTAGC -ACGGAAGTGTGTTGCTTGAGATGC -ACGGAAGTGTGTTGCTTGTGAAGG -ACGGAAGTGTGTTGCTTGCAATGG -ACGGAAGTGTGTTGCTTGATGAGG -ACGGAAGTGTGTTGCTTGAATGGG -ACGGAAGTGTGTTGCTTGTCCTGA -ACGGAAGTGTGTTGCTTGTAGCGA -ACGGAAGTGTGTTGCTTGCACAGA -ACGGAAGTGTGTTGCTTGGCAAGA -ACGGAAGTGTGTTGCTTGGGTTGA -ACGGAAGTGTGTTGCTTGTCCGAT -ACGGAAGTGTGTTGCTTGTGGCAT -ACGGAAGTGTGTTGCTTGCGAGAT -ACGGAAGTGTGTTGCTTGTACCAC -ACGGAAGTGTGTTGCTTGCAGAAC -ACGGAAGTGTGTTGCTTGGTCTAC -ACGGAAGTGTGTTGCTTGACGTAC -ACGGAAGTGTGTTGCTTGAGTGAC -ACGGAAGTGTGTTGCTTGCTGTAG -ACGGAAGTGTGTTGCTTGCCTAAG -ACGGAAGTGTGTTGCTTGGTTCAG -ACGGAAGTGTGTTGCTTGGCATAG -ACGGAAGTGTGTTGCTTGGACAAG -ACGGAAGTGTGTTGCTTGAAGCAG -ACGGAAGTGTGTTGCTTGCGTCAA -ACGGAAGTGTGTTGCTTGGCTGAA -ACGGAAGTGTGTTGCTTGAGTACG -ACGGAAGTGTGTTGCTTGATCCGA -ACGGAAGTGTGTTGCTTGATGGGA -ACGGAAGTGTGTTGCTTGGTGCAA -ACGGAAGTGTGTTGCTTGGAGGAA -ACGGAAGTGTGTTGCTTGCAGGTA -ACGGAAGTGTGTTGCTTGGACTCT -ACGGAAGTGTGTTGCTTGAGTCCT -ACGGAAGTGTGTTGCTTGTAAGCC -ACGGAAGTGTGTTGCTTGATAGCC -ACGGAAGTGTGTTGCTTGTAACCG -ACGGAAGTGTGTTGCTTGATGCCA -ACGGAAGTGTGTAGCCTAGGAAAC -ACGGAAGTGTGTAGCCTAAACACC -ACGGAAGTGTGTAGCCTAATCGAG -ACGGAAGTGTGTAGCCTACTCCTT -ACGGAAGTGTGTAGCCTACCTGTT -ACGGAAGTGTGTAGCCTACGGTTT -ACGGAAGTGTGTAGCCTAGTGGTT -ACGGAAGTGTGTAGCCTAGCCTTT -ACGGAAGTGTGTAGCCTAGGTCTT -ACGGAAGTGTGTAGCCTAACGCTT -ACGGAAGTGTGTAGCCTAAGCGTT -ACGGAAGTGTGTAGCCTATTCGTC -ACGGAAGTGTGTAGCCTATCTCTC -ACGGAAGTGTGTAGCCTATGGATC -ACGGAAGTGTGTAGCCTACACTTC -ACGGAAGTGTGTAGCCTAGTACTC -ACGGAAGTGTGTAGCCTAGATGTC -ACGGAAGTGTGTAGCCTAACAGTC -ACGGAAGTGTGTAGCCTATTGCTG -ACGGAAGTGTGTAGCCTATCCATG -ACGGAAGTGTGTAGCCTATGTGTG -ACGGAAGTGTGTAGCCTACTAGTG -ACGGAAGTGTGTAGCCTACATCTG -ACGGAAGTGTGTAGCCTAGAGTTG -ACGGAAGTGTGTAGCCTAAGACTG -ACGGAAGTGTGTAGCCTATCGGTA -ACGGAAGTGTGTAGCCTATGCCTA -ACGGAAGTGTGTAGCCTACCACTA -ACGGAAGTGTGTAGCCTAGGAGTA -ACGGAAGTGTGTAGCCTATCGTCT -ACGGAAGTGTGTAGCCTATGCACT -ACGGAAGTGTGTAGCCTACTGACT -ACGGAAGTGTGTAGCCTACAACCT -ACGGAAGTGTGTAGCCTAGCTACT -ACGGAAGTGTGTAGCCTAGGATCT -ACGGAAGTGTGTAGCCTAAAGGCT -ACGGAAGTGTGTAGCCTATCAACC -ACGGAAGTGTGTAGCCTATGTTCC -ACGGAAGTGTGTAGCCTAATTCCC -ACGGAAGTGTGTAGCCTATTCTCG -ACGGAAGTGTGTAGCCTATAGACG -ACGGAAGTGTGTAGCCTAGTAACG -ACGGAAGTGTGTAGCCTAACTTCG -ACGGAAGTGTGTAGCCTATACGCA -ACGGAAGTGTGTAGCCTACTTGCA -ACGGAAGTGTGTAGCCTACGAACA -ACGGAAGTGTGTAGCCTACAGTCA -ACGGAAGTGTGTAGCCTAGATCCA -ACGGAAGTGTGTAGCCTAACGACA -ACGGAAGTGTGTAGCCTAAGCTCA -ACGGAAGTGTGTAGCCTATCACGT -ACGGAAGTGTGTAGCCTACGTAGT -ACGGAAGTGTGTAGCCTAGTCAGT -ACGGAAGTGTGTAGCCTAGAAGGT -ACGGAAGTGTGTAGCCTAAACCGT -ACGGAAGTGTGTAGCCTATTGTGC -ACGGAAGTGTGTAGCCTACTAAGC -ACGGAAGTGTGTAGCCTAACTAGC -ACGGAAGTGTGTAGCCTAAGATGC -ACGGAAGTGTGTAGCCTATGAAGG -ACGGAAGTGTGTAGCCTACAATGG -ACGGAAGTGTGTAGCCTAATGAGG -ACGGAAGTGTGTAGCCTAAATGGG -ACGGAAGTGTGTAGCCTATCCTGA -ACGGAAGTGTGTAGCCTATAGCGA -ACGGAAGTGTGTAGCCTACACAGA -ACGGAAGTGTGTAGCCTAGCAAGA -ACGGAAGTGTGTAGCCTAGGTTGA -ACGGAAGTGTGTAGCCTATCCGAT -ACGGAAGTGTGTAGCCTATGGCAT -ACGGAAGTGTGTAGCCTACGAGAT -ACGGAAGTGTGTAGCCTATACCAC -ACGGAAGTGTGTAGCCTACAGAAC -ACGGAAGTGTGTAGCCTAGTCTAC -ACGGAAGTGTGTAGCCTAACGTAC -ACGGAAGTGTGTAGCCTAAGTGAC -ACGGAAGTGTGTAGCCTACTGTAG -ACGGAAGTGTGTAGCCTACCTAAG -ACGGAAGTGTGTAGCCTAGTTCAG -ACGGAAGTGTGTAGCCTAGCATAG -ACGGAAGTGTGTAGCCTAGACAAG -ACGGAAGTGTGTAGCCTAAAGCAG -ACGGAAGTGTGTAGCCTACGTCAA -ACGGAAGTGTGTAGCCTAGCTGAA -ACGGAAGTGTGTAGCCTAAGTACG -ACGGAAGTGTGTAGCCTAATCCGA -ACGGAAGTGTGTAGCCTAATGGGA -ACGGAAGTGTGTAGCCTAGTGCAA -ACGGAAGTGTGTAGCCTAGAGGAA -ACGGAAGTGTGTAGCCTACAGGTA -ACGGAAGTGTGTAGCCTAGACTCT -ACGGAAGTGTGTAGCCTAAGTCCT -ACGGAAGTGTGTAGCCTATAAGCC -ACGGAAGTGTGTAGCCTAATAGCC -ACGGAAGTGTGTAGCCTATAACCG -ACGGAAGTGTGTAGCCTAATGCCA -ACGGAAGTGTGTAGCACTGGAAAC -ACGGAAGTGTGTAGCACTAACACC -ACGGAAGTGTGTAGCACTATCGAG -ACGGAAGTGTGTAGCACTCTCCTT -ACGGAAGTGTGTAGCACTCCTGTT -ACGGAAGTGTGTAGCACTCGGTTT -ACGGAAGTGTGTAGCACTGTGGTT -ACGGAAGTGTGTAGCACTGCCTTT -ACGGAAGTGTGTAGCACTGGTCTT -ACGGAAGTGTGTAGCACTACGCTT -ACGGAAGTGTGTAGCACTAGCGTT -ACGGAAGTGTGTAGCACTTTCGTC -ACGGAAGTGTGTAGCACTTCTCTC -ACGGAAGTGTGTAGCACTTGGATC -ACGGAAGTGTGTAGCACTCACTTC -ACGGAAGTGTGTAGCACTGTACTC -ACGGAAGTGTGTAGCACTGATGTC -ACGGAAGTGTGTAGCACTACAGTC -ACGGAAGTGTGTAGCACTTTGCTG -ACGGAAGTGTGTAGCACTTCCATG -ACGGAAGTGTGTAGCACTTGTGTG -ACGGAAGTGTGTAGCACTCTAGTG -ACGGAAGTGTGTAGCACTCATCTG -ACGGAAGTGTGTAGCACTGAGTTG -ACGGAAGTGTGTAGCACTAGACTG -ACGGAAGTGTGTAGCACTTCGGTA -ACGGAAGTGTGTAGCACTTGCCTA -ACGGAAGTGTGTAGCACTCCACTA -ACGGAAGTGTGTAGCACTGGAGTA -ACGGAAGTGTGTAGCACTTCGTCT -ACGGAAGTGTGTAGCACTTGCACT -ACGGAAGTGTGTAGCACTCTGACT -ACGGAAGTGTGTAGCACTCAACCT -ACGGAAGTGTGTAGCACTGCTACT -ACGGAAGTGTGTAGCACTGGATCT -ACGGAAGTGTGTAGCACTAAGGCT -ACGGAAGTGTGTAGCACTTCAACC -ACGGAAGTGTGTAGCACTTGTTCC -ACGGAAGTGTGTAGCACTATTCCC -ACGGAAGTGTGTAGCACTTTCTCG -ACGGAAGTGTGTAGCACTTAGACG -ACGGAAGTGTGTAGCACTGTAACG -ACGGAAGTGTGTAGCACTACTTCG -ACGGAAGTGTGTAGCACTTACGCA -ACGGAAGTGTGTAGCACTCTTGCA -ACGGAAGTGTGTAGCACTCGAACA -ACGGAAGTGTGTAGCACTCAGTCA -ACGGAAGTGTGTAGCACTGATCCA -ACGGAAGTGTGTAGCACTACGACA -ACGGAAGTGTGTAGCACTAGCTCA -ACGGAAGTGTGTAGCACTTCACGT -ACGGAAGTGTGTAGCACTCGTAGT -ACGGAAGTGTGTAGCACTGTCAGT -ACGGAAGTGTGTAGCACTGAAGGT -ACGGAAGTGTGTAGCACTAACCGT -ACGGAAGTGTGTAGCACTTTGTGC -ACGGAAGTGTGTAGCACTCTAAGC -ACGGAAGTGTGTAGCACTACTAGC -ACGGAAGTGTGTAGCACTAGATGC -ACGGAAGTGTGTAGCACTTGAAGG -ACGGAAGTGTGTAGCACTCAATGG -ACGGAAGTGTGTAGCACTATGAGG -ACGGAAGTGTGTAGCACTAATGGG -ACGGAAGTGTGTAGCACTTCCTGA -ACGGAAGTGTGTAGCACTTAGCGA -ACGGAAGTGTGTAGCACTCACAGA -ACGGAAGTGTGTAGCACTGCAAGA -ACGGAAGTGTGTAGCACTGGTTGA -ACGGAAGTGTGTAGCACTTCCGAT -ACGGAAGTGTGTAGCACTTGGCAT -ACGGAAGTGTGTAGCACTCGAGAT -ACGGAAGTGTGTAGCACTTACCAC -ACGGAAGTGTGTAGCACTCAGAAC -ACGGAAGTGTGTAGCACTGTCTAC -ACGGAAGTGTGTAGCACTACGTAC -ACGGAAGTGTGTAGCACTAGTGAC -ACGGAAGTGTGTAGCACTCTGTAG -ACGGAAGTGTGTAGCACTCCTAAG -ACGGAAGTGTGTAGCACTGTTCAG -ACGGAAGTGTGTAGCACTGCATAG -ACGGAAGTGTGTAGCACTGACAAG -ACGGAAGTGTGTAGCACTAAGCAG -ACGGAAGTGTGTAGCACTCGTCAA -ACGGAAGTGTGTAGCACTGCTGAA -ACGGAAGTGTGTAGCACTAGTACG -ACGGAAGTGTGTAGCACTATCCGA -ACGGAAGTGTGTAGCACTATGGGA -ACGGAAGTGTGTAGCACTGTGCAA -ACGGAAGTGTGTAGCACTGAGGAA -ACGGAAGTGTGTAGCACTCAGGTA -ACGGAAGTGTGTAGCACTGACTCT -ACGGAAGTGTGTAGCACTAGTCCT -ACGGAAGTGTGTAGCACTTAAGCC -ACGGAAGTGTGTAGCACTATAGCC -ACGGAAGTGTGTAGCACTTAACCG -ACGGAAGTGTGTAGCACTATGCCA -ACGGAAGTGTGTTGCAGAGGAAAC -ACGGAAGTGTGTTGCAGAAACACC -ACGGAAGTGTGTTGCAGAATCGAG -ACGGAAGTGTGTTGCAGACTCCTT -ACGGAAGTGTGTTGCAGACCTGTT -ACGGAAGTGTGTTGCAGACGGTTT -ACGGAAGTGTGTTGCAGAGTGGTT -ACGGAAGTGTGTTGCAGAGCCTTT -ACGGAAGTGTGTTGCAGAGGTCTT -ACGGAAGTGTGTTGCAGAACGCTT -ACGGAAGTGTGTTGCAGAAGCGTT -ACGGAAGTGTGTTGCAGATTCGTC -ACGGAAGTGTGTTGCAGATCTCTC -ACGGAAGTGTGTTGCAGATGGATC -ACGGAAGTGTGTTGCAGACACTTC -ACGGAAGTGTGTTGCAGAGTACTC -ACGGAAGTGTGTTGCAGAGATGTC -ACGGAAGTGTGTTGCAGAACAGTC -ACGGAAGTGTGTTGCAGATTGCTG -ACGGAAGTGTGTTGCAGATCCATG -ACGGAAGTGTGTTGCAGATGTGTG -ACGGAAGTGTGTTGCAGACTAGTG -ACGGAAGTGTGTTGCAGACATCTG -ACGGAAGTGTGTTGCAGAGAGTTG -ACGGAAGTGTGTTGCAGAAGACTG -ACGGAAGTGTGTTGCAGATCGGTA -ACGGAAGTGTGTTGCAGATGCCTA -ACGGAAGTGTGTTGCAGACCACTA -ACGGAAGTGTGTTGCAGAGGAGTA -ACGGAAGTGTGTTGCAGATCGTCT -ACGGAAGTGTGTTGCAGATGCACT -ACGGAAGTGTGTTGCAGACTGACT -ACGGAAGTGTGTTGCAGACAACCT -ACGGAAGTGTGTTGCAGAGCTACT -ACGGAAGTGTGTTGCAGAGGATCT -ACGGAAGTGTGTTGCAGAAAGGCT -ACGGAAGTGTGTTGCAGATCAACC -ACGGAAGTGTGTTGCAGATGTTCC -ACGGAAGTGTGTTGCAGAATTCCC -ACGGAAGTGTGTTGCAGATTCTCG -ACGGAAGTGTGTTGCAGATAGACG -ACGGAAGTGTGTTGCAGAGTAACG -ACGGAAGTGTGTTGCAGAACTTCG -ACGGAAGTGTGTTGCAGATACGCA -ACGGAAGTGTGTTGCAGACTTGCA -ACGGAAGTGTGTTGCAGACGAACA -ACGGAAGTGTGTTGCAGACAGTCA -ACGGAAGTGTGTTGCAGAGATCCA -ACGGAAGTGTGTTGCAGAACGACA -ACGGAAGTGTGTTGCAGAAGCTCA -ACGGAAGTGTGTTGCAGATCACGT -ACGGAAGTGTGTTGCAGACGTAGT -ACGGAAGTGTGTTGCAGAGTCAGT -ACGGAAGTGTGTTGCAGAGAAGGT -ACGGAAGTGTGTTGCAGAAACCGT -ACGGAAGTGTGTTGCAGATTGTGC -ACGGAAGTGTGTTGCAGACTAAGC -ACGGAAGTGTGTTGCAGAACTAGC -ACGGAAGTGTGTTGCAGAAGATGC -ACGGAAGTGTGTTGCAGATGAAGG -ACGGAAGTGTGTTGCAGACAATGG -ACGGAAGTGTGTTGCAGAATGAGG -ACGGAAGTGTGTTGCAGAAATGGG -ACGGAAGTGTGTTGCAGATCCTGA -ACGGAAGTGTGTTGCAGATAGCGA -ACGGAAGTGTGTTGCAGACACAGA -ACGGAAGTGTGTTGCAGAGCAAGA -ACGGAAGTGTGTTGCAGAGGTTGA -ACGGAAGTGTGTTGCAGATCCGAT -ACGGAAGTGTGTTGCAGATGGCAT -ACGGAAGTGTGTTGCAGACGAGAT -ACGGAAGTGTGTTGCAGATACCAC -ACGGAAGTGTGTTGCAGACAGAAC -ACGGAAGTGTGTTGCAGAGTCTAC -ACGGAAGTGTGTTGCAGAACGTAC -ACGGAAGTGTGTTGCAGAAGTGAC -ACGGAAGTGTGTTGCAGACTGTAG -ACGGAAGTGTGTTGCAGACCTAAG -ACGGAAGTGTGTTGCAGAGTTCAG -ACGGAAGTGTGTTGCAGAGCATAG -ACGGAAGTGTGTTGCAGAGACAAG -ACGGAAGTGTGTTGCAGAAAGCAG -ACGGAAGTGTGTTGCAGACGTCAA -ACGGAAGTGTGTTGCAGAGCTGAA -ACGGAAGTGTGTTGCAGAAGTACG -ACGGAAGTGTGTTGCAGAATCCGA -ACGGAAGTGTGTTGCAGAATGGGA -ACGGAAGTGTGTTGCAGAGTGCAA -ACGGAAGTGTGTTGCAGAGAGGAA -ACGGAAGTGTGTTGCAGACAGGTA -ACGGAAGTGTGTTGCAGAGACTCT -ACGGAAGTGTGTTGCAGAAGTCCT -ACGGAAGTGTGTTGCAGATAAGCC -ACGGAAGTGTGTTGCAGAATAGCC -ACGGAAGTGTGTTGCAGATAACCG -ACGGAAGTGTGTTGCAGAATGCCA -ACGGAAGTGTGTAGGTGAGGAAAC -ACGGAAGTGTGTAGGTGAAACACC -ACGGAAGTGTGTAGGTGAATCGAG -ACGGAAGTGTGTAGGTGACTCCTT -ACGGAAGTGTGTAGGTGACCTGTT -ACGGAAGTGTGTAGGTGACGGTTT -ACGGAAGTGTGTAGGTGAGTGGTT -ACGGAAGTGTGTAGGTGAGCCTTT -ACGGAAGTGTGTAGGTGAGGTCTT -ACGGAAGTGTGTAGGTGAACGCTT -ACGGAAGTGTGTAGGTGAAGCGTT -ACGGAAGTGTGTAGGTGATTCGTC -ACGGAAGTGTGTAGGTGATCTCTC -ACGGAAGTGTGTAGGTGATGGATC -ACGGAAGTGTGTAGGTGACACTTC -ACGGAAGTGTGTAGGTGAGTACTC -ACGGAAGTGTGTAGGTGAGATGTC -ACGGAAGTGTGTAGGTGAACAGTC -ACGGAAGTGTGTAGGTGATTGCTG -ACGGAAGTGTGTAGGTGATCCATG -ACGGAAGTGTGTAGGTGATGTGTG -ACGGAAGTGTGTAGGTGACTAGTG -ACGGAAGTGTGTAGGTGACATCTG -ACGGAAGTGTGTAGGTGAGAGTTG -ACGGAAGTGTGTAGGTGAAGACTG -ACGGAAGTGTGTAGGTGATCGGTA -ACGGAAGTGTGTAGGTGATGCCTA -ACGGAAGTGTGTAGGTGACCACTA -ACGGAAGTGTGTAGGTGAGGAGTA -ACGGAAGTGTGTAGGTGATCGTCT -ACGGAAGTGTGTAGGTGATGCACT -ACGGAAGTGTGTAGGTGACTGACT -ACGGAAGTGTGTAGGTGACAACCT -ACGGAAGTGTGTAGGTGAGCTACT -ACGGAAGTGTGTAGGTGAGGATCT -ACGGAAGTGTGTAGGTGAAAGGCT -ACGGAAGTGTGTAGGTGATCAACC -ACGGAAGTGTGTAGGTGATGTTCC -ACGGAAGTGTGTAGGTGAATTCCC -ACGGAAGTGTGTAGGTGATTCTCG -ACGGAAGTGTGTAGGTGATAGACG -ACGGAAGTGTGTAGGTGAGTAACG -ACGGAAGTGTGTAGGTGAACTTCG -ACGGAAGTGTGTAGGTGATACGCA -ACGGAAGTGTGTAGGTGACTTGCA -ACGGAAGTGTGTAGGTGACGAACA -ACGGAAGTGTGTAGGTGACAGTCA -ACGGAAGTGTGTAGGTGAGATCCA -ACGGAAGTGTGTAGGTGAACGACA -ACGGAAGTGTGTAGGTGAAGCTCA -ACGGAAGTGTGTAGGTGATCACGT -ACGGAAGTGTGTAGGTGACGTAGT -ACGGAAGTGTGTAGGTGAGTCAGT -ACGGAAGTGTGTAGGTGAGAAGGT -ACGGAAGTGTGTAGGTGAAACCGT -ACGGAAGTGTGTAGGTGATTGTGC -ACGGAAGTGTGTAGGTGACTAAGC -ACGGAAGTGTGTAGGTGAACTAGC -ACGGAAGTGTGTAGGTGAAGATGC -ACGGAAGTGTGTAGGTGATGAAGG -ACGGAAGTGTGTAGGTGACAATGG -ACGGAAGTGTGTAGGTGAATGAGG -ACGGAAGTGTGTAGGTGAAATGGG -ACGGAAGTGTGTAGGTGATCCTGA -ACGGAAGTGTGTAGGTGATAGCGA -ACGGAAGTGTGTAGGTGACACAGA -ACGGAAGTGTGTAGGTGAGCAAGA -ACGGAAGTGTGTAGGTGAGGTTGA -ACGGAAGTGTGTAGGTGATCCGAT -ACGGAAGTGTGTAGGTGATGGCAT -ACGGAAGTGTGTAGGTGACGAGAT -ACGGAAGTGTGTAGGTGATACCAC -ACGGAAGTGTGTAGGTGACAGAAC -ACGGAAGTGTGTAGGTGAGTCTAC -ACGGAAGTGTGTAGGTGAACGTAC -ACGGAAGTGTGTAGGTGAAGTGAC -ACGGAAGTGTGTAGGTGACTGTAG -ACGGAAGTGTGTAGGTGACCTAAG -ACGGAAGTGTGTAGGTGAGTTCAG -ACGGAAGTGTGTAGGTGAGCATAG -ACGGAAGTGTGTAGGTGAGACAAG -ACGGAAGTGTGTAGGTGAAAGCAG -ACGGAAGTGTGTAGGTGACGTCAA -ACGGAAGTGTGTAGGTGAGCTGAA -ACGGAAGTGTGTAGGTGAAGTACG -ACGGAAGTGTGTAGGTGAATCCGA -ACGGAAGTGTGTAGGTGAATGGGA -ACGGAAGTGTGTAGGTGAGTGCAA -ACGGAAGTGTGTAGGTGAGAGGAA -ACGGAAGTGTGTAGGTGACAGGTA -ACGGAAGTGTGTAGGTGAGACTCT -ACGGAAGTGTGTAGGTGAAGTCCT -ACGGAAGTGTGTAGGTGATAAGCC -ACGGAAGTGTGTAGGTGAATAGCC -ACGGAAGTGTGTAGGTGATAACCG -ACGGAAGTGTGTAGGTGAATGCCA -ACGGAAGTGTGTTGGCAAGGAAAC -ACGGAAGTGTGTTGGCAAAACACC -ACGGAAGTGTGTTGGCAAATCGAG -ACGGAAGTGTGTTGGCAACTCCTT -ACGGAAGTGTGTTGGCAACCTGTT -ACGGAAGTGTGTTGGCAACGGTTT -ACGGAAGTGTGTTGGCAAGTGGTT -ACGGAAGTGTGTTGGCAAGCCTTT -ACGGAAGTGTGTTGGCAAGGTCTT -ACGGAAGTGTGTTGGCAAACGCTT -ACGGAAGTGTGTTGGCAAAGCGTT -ACGGAAGTGTGTTGGCAATTCGTC -ACGGAAGTGTGTTGGCAATCTCTC -ACGGAAGTGTGTTGGCAATGGATC -ACGGAAGTGTGTTGGCAACACTTC -ACGGAAGTGTGTTGGCAAGTACTC -ACGGAAGTGTGTTGGCAAGATGTC -ACGGAAGTGTGTTGGCAAACAGTC -ACGGAAGTGTGTTGGCAATTGCTG -ACGGAAGTGTGTTGGCAATCCATG -ACGGAAGTGTGTTGGCAATGTGTG -ACGGAAGTGTGTTGGCAACTAGTG -ACGGAAGTGTGTTGGCAACATCTG -ACGGAAGTGTGTTGGCAAGAGTTG -ACGGAAGTGTGTTGGCAAAGACTG -ACGGAAGTGTGTTGGCAATCGGTA -ACGGAAGTGTGTTGGCAATGCCTA -ACGGAAGTGTGTTGGCAACCACTA -ACGGAAGTGTGTTGGCAAGGAGTA -ACGGAAGTGTGTTGGCAATCGTCT -ACGGAAGTGTGTTGGCAATGCACT -ACGGAAGTGTGTTGGCAACTGACT -ACGGAAGTGTGTTGGCAACAACCT -ACGGAAGTGTGTTGGCAAGCTACT -ACGGAAGTGTGTTGGCAAGGATCT -ACGGAAGTGTGTTGGCAAAAGGCT -ACGGAAGTGTGTTGGCAATCAACC -ACGGAAGTGTGTTGGCAATGTTCC -ACGGAAGTGTGTTGGCAAATTCCC -ACGGAAGTGTGTTGGCAATTCTCG -ACGGAAGTGTGTTGGCAATAGACG -ACGGAAGTGTGTTGGCAAGTAACG -ACGGAAGTGTGTTGGCAAACTTCG -ACGGAAGTGTGTTGGCAATACGCA -ACGGAAGTGTGTTGGCAACTTGCA -ACGGAAGTGTGTTGGCAACGAACA -ACGGAAGTGTGTTGGCAACAGTCA -ACGGAAGTGTGTTGGCAAGATCCA -ACGGAAGTGTGTTGGCAAACGACA -ACGGAAGTGTGTTGGCAAAGCTCA -ACGGAAGTGTGTTGGCAATCACGT -ACGGAAGTGTGTTGGCAACGTAGT -ACGGAAGTGTGTTGGCAAGTCAGT -ACGGAAGTGTGTTGGCAAGAAGGT -ACGGAAGTGTGTTGGCAAAACCGT -ACGGAAGTGTGTTGGCAATTGTGC -ACGGAAGTGTGTTGGCAACTAAGC -ACGGAAGTGTGTTGGCAAACTAGC -ACGGAAGTGTGTTGGCAAAGATGC -ACGGAAGTGTGTTGGCAATGAAGG -ACGGAAGTGTGTTGGCAACAATGG -ACGGAAGTGTGTTGGCAAATGAGG -ACGGAAGTGTGTTGGCAAAATGGG -ACGGAAGTGTGTTGGCAATCCTGA -ACGGAAGTGTGTTGGCAATAGCGA -ACGGAAGTGTGTTGGCAACACAGA -ACGGAAGTGTGTTGGCAAGCAAGA -ACGGAAGTGTGTTGGCAAGGTTGA -ACGGAAGTGTGTTGGCAATCCGAT -ACGGAAGTGTGTTGGCAATGGCAT -ACGGAAGTGTGTTGGCAACGAGAT -ACGGAAGTGTGTTGGCAATACCAC -ACGGAAGTGTGTTGGCAACAGAAC -ACGGAAGTGTGTTGGCAAGTCTAC -ACGGAAGTGTGTTGGCAAACGTAC -ACGGAAGTGTGTTGGCAAAGTGAC -ACGGAAGTGTGTTGGCAACTGTAG -ACGGAAGTGTGTTGGCAACCTAAG -ACGGAAGTGTGTTGGCAAGTTCAG -ACGGAAGTGTGTTGGCAAGCATAG -ACGGAAGTGTGTTGGCAAGACAAG -ACGGAAGTGTGTTGGCAAAAGCAG -ACGGAAGTGTGTTGGCAACGTCAA -ACGGAAGTGTGTTGGCAAGCTGAA -ACGGAAGTGTGTTGGCAAAGTACG -ACGGAAGTGTGTTGGCAAATCCGA -ACGGAAGTGTGTTGGCAAATGGGA -ACGGAAGTGTGTTGGCAAGTGCAA -ACGGAAGTGTGTTGGCAAGAGGAA -ACGGAAGTGTGTTGGCAACAGGTA -ACGGAAGTGTGTTGGCAAGACTCT -ACGGAAGTGTGTTGGCAAAGTCCT -ACGGAAGTGTGTTGGCAATAAGCC -ACGGAAGTGTGTTGGCAAATAGCC -ACGGAAGTGTGTTGGCAATAACCG -ACGGAAGTGTGTTGGCAAATGCCA -ACGGAAGTGTGTAGGATGGGAAAC -ACGGAAGTGTGTAGGATGAACACC -ACGGAAGTGTGTAGGATGATCGAG -ACGGAAGTGTGTAGGATGCTCCTT -ACGGAAGTGTGTAGGATGCCTGTT -ACGGAAGTGTGTAGGATGCGGTTT -ACGGAAGTGTGTAGGATGGTGGTT -ACGGAAGTGTGTAGGATGGCCTTT -ACGGAAGTGTGTAGGATGGGTCTT -ACGGAAGTGTGTAGGATGACGCTT -ACGGAAGTGTGTAGGATGAGCGTT -ACGGAAGTGTGTAGGATGTTCGTC -ACGGAAGTGTGTAGGATGTCTCTC -ACGGAAGTGTGTAGGATGTGGATC -ACGGAAGTGTGTAGGATGCACTTC -ACGGAAGTGTGTAGGATGGTACTC -ACGGAAGTGTGTAGGATGGATGTC -ACGGAAGTGTGTAGGATGACAGTC -ACGGAAGTGTGTAGGATGTTGCTG -ACGGAAGTGTGTAGGATGTCCATG -ACGGAAGTGTGTAGGATGTGTGTG -ACGGAAGTGTGTAGGATGCTAGTG -ACGGAAGTGTGTAGGATGCATCTG -ACGGAAGTGTGTAGGATGGAGTTG -ACGGAAGTGTGTAGGATGAGACTG -ACGGAAGTGTGTAGGATGTCGGTA -ACGGAAGTGTGTAGGATGTGCCTA -ACGGAAGTGTGTAGGATGCCACTA -ACGGAAGTGTGTAGGATGGGAGTA -ACGGAAGTGTGTAGGATGTCGTCT -ACGGAAGTGTGTAGGATGTGCACT -ACGGAAGTGTGTAGGATGCTGACT -ACGGAAGTGTGTAGGATGCAACCT -ACGGAAGTGTGTAGGATGGCTACT -ACGGAAGTGTGTAGGATGGGATCT -ACGGAAGTGTGTAGGATGAAGGCT -ACGGAAGTGTGTAGGATGTCAACC -ACGGAAGTGTGTAGGATGTGTTCC -ACGGAAGTGTGTAGGATGATTCCC -ACGGAAGTGTGTAGGATGTTCTCG -ACGGAAGTGTGTAGGATGTAGACG -ACGGAAGTGTGTAGGATGGTAACG -ACGGAAGTGTGTAGGATGACTTCG -ACGGAAGTGTGTAGGATGTACGCA -ACGGAAGTGTGTAGGATGCTTGCA -ACGGAAGTGTGTAGGATGCGAACA -ACGGAAGTGTGTAGGATGCAGTCA -ACGGAAGTGTGTAGGATGGATCCA -ACGGAAGTGTGTAGGATGACGACA -ACGGAAGTGTGTAGGATGAGCTCA -ACGGAAGTGTGTAGGATGTCACGT -ACGGAAGTGTGTAGGATGCGTAGT -ACGGAAGTGTGTAGGATGGTCAGT -ACGGAAGTGTGTAGGATGGAAGGT -ACGGAAGTGTGTAGGATGAACCGT -ACGGAAGTGTGTAGGATGTTGTGC -ACGGAAGTGTGTAGGATGCTAAGC -ACGGAAGTGTGTAGGATGACTAGC -ACGGAAGTGTGTAGGATGAGATGC -ACGGAAGTGTGTAGGATGTGAAGG -ACGGAAGTGTGTAGGATGCAATGG -ACGGAAGTGTGTAGGATGATGAGG -ACGGAAGTGTGTAGGATGAATGGG -ACGGAAGTGTGTAGGATGTCCTGA -ACGGAAGTGTGTAGGATGTAGCGA -ACGGAAGTGTGTAGGATGCACAGA -ACGGAAGTGTGTAGGATGGCAAGA -ACGGAAGTGTGTAGGATGGGTTGA -ACGGAAGTGTGTAGGATGTCCGAT -ACGGAAGTGTGTAGGATGTGGCAT -ACGGAAGTGTGTAGGATGCGAGAT -ACGGAAGTGTGTAGGATGTACCAC -ACGGAAGTGTGTAGGATGCAGAAC -ACGGAAGTGTGTAGGATGGTCTAC -ACGGAAGTGTGTAGGATGACGTAC -ACGGAAGTGTGTAGGATGAGTGAC -ACGGAAGTGTGTAGGATGCTGTAG -ACGGAAGTGTGTAGGATGCCTAAG -ACGGAAGTGTGTAGGATGGTTCAG -ACGGAAGTGTGTAGGATGGCATAG -ACGGAAGTGTGTAGGATGGACAAG -ACGGAAGTGTGTAGGATGAAGCAG -ACGGAAGTGTGTAGGATGCGTCAA -ACGGAAGTGTGTAGGATGGCTGAA -ACGGAAGTGTGTAGGATGAGTACG -ACGGAAGTGTGTAGGATGATCCGA -ACGGAAGTGTGTAGGATGATGGGA -ACGGAAGTGTGTAGGATGGTGCAA -ACGGAAGTGTGTAGGATGGAGGAA -ACGGAAGTGTGTAGGATGCAGGTA -ACGGAAGTGTGTAGGATGGACTCT -ACGGAAGTGTGTAGGATGAGTCCT -ACGGAAGTGTGTAGGATGTAAGCC -ACGGAAGTGTGTAGGATGATAGCC -ACGGAAGTGTGTAGGATGTAACCG -ACGGAAGTGTGTAGGATGATGCCA -ACGGAAGTGTGTGGGAATGGAAAC -ACGGAAGTGTGTGGGAATAACACC -ACGGAAGTGTGTGGGAATATCGAG -ACGGAAGTGTGTGGGAATCTCCTT -ACGGAAGTGTGTGGGAATCCTGTT -ACGGAAGTGTGTGGGAATCGGTTT -ACGGAAGTGTGTGGGAATGTGGTT -ACGGAAGTGTGTGGGAATGCCTTT -ACGGAAGTGTGTGGGAATGGTCTT -ACGGAAGTGTGTGGGAATACGCTT -ACGGAAGTGTGTGGGAATAGCGTT -ACGGAAGTGTGTGGGAATTTCGTC -ACGGAAGTGTGTGGGAATTCTCTC -ACGGAAGTGTGTGGGAATTGGATC -ACGGAAGTGTGTGGGAATCACTTC -ACGGAAGTGTGTGGGAATGTACTC -ACGGAAGTGTGTGGGAATGATGTC -ACGGAAGTGTGTGGGAATACAGTC -ACGGAAGTGTGTGGGAATTTGCTG -ACGGAAGTGTGTGGGAATTCCATG -ACGGAAGTGTGTGGGAATTGTGTG -ACGGAAGTGTGTGGGAATCTAGTG -ACGGAAGTGTGTGGGAATCATCTG -ACGGAAGTGTGTGGGAATGAGTTG -ACGGAAGTGTGTGGGAATAGACTG -ACGGAAGTGTGTGGGAATTCGGTA -ACGGAAGTGTGTGGGAATTGCCTA -ACGGAAGTGTGTGGGAATCCACTA -ACGGAAGTGTGTGGGAATGGAGTA -ACGGAAGTGTGTGGGAATTCGTCT -ACGGAAGTGTGTGGGAATTGCACT -ACGGAAGTGTGTGGGAATCTGACT -ACGGAAGTGTGTGGGAATCAACCT -ACGGAAGTGTGTGGGAATGCTACT -ACGGAAGTGTGTGGGAATGGATCT -ACGGAAGTGTGTGGGAATAAGGCT -ACGGAAGTGTGTGGGAATTCAACC -ACGGAAGTGTGTGGGAATTGTTCC -ACGGAAGTGTGTGGGAATATTCCC -ACGGAAGTGTGTGGGAATTTCTCG -ACGGAAGTGTGTGGGAATTAGACG -ACGGAAGTGTGTGGGAATGTAACG -ACGGAAGTGTGTGGGAATACTTCG -ACGGAAGTGTGTGGGAATTACGCA -ACGGAAGTGTGTGGGAATCTTGCA -ACGGAAGTGTGTGGGAATCGAACA -ACGGAAGTGTGTGGGAATCAGTCA -ACGGAAGTGTGTGGGAATGATCCA -ACGGAAGTGTGTGGGAATACGACA -ACGGAAGTGTGTGGGAATAGCTCA -ACGGAAGTGTGTGGGAATTCACGT -ACGGAAGTGTGTGGGAATCGTAGT -ACGGAAGTGTGTGGGAATGTCAGT -ACGGAAGTGTGTGGGAATGAAGGT -ACGGAAGTGTGTGGGAATAACCGT -ACGGAAGTGTGTGGGAATTTGTGC -ACGGAAGTGTGTGGGAATCTAAGC -ACGGAAGTGTGTGGGAATACTAGC -ACGGAAGTGTGTGGGAATAGATGC -ACGGAAGTGTGTGGGAATTGAAGG -ACGGAAGTGTGTGGGAATCAATGG -ACGGAAGTGTGTGGGAATATGAGG -ACGGAAGTGTGTGGGAATAATGGG -ACGGAAGTGTGTGGGAATTCCTGA -ACGGAAGTGTGTGGGAATTAGCGA -ACGGAAGTGTGTGGGAATCACAGA -ACGGAAGTGTGTGGGAATGCAAGA -ACGGAAGTGTGTGGGAATGGTTGA -ACGGAAGTGTGTGGGAATTCCGAT -ACGGAAGTGTGTGGGAATTGGCAT -ACGGAAGTGTGTGGGAATCGAGAT -ACGGAAGTGTGTGGGAATTACCAC -ACGGAAGTGTGTGGGAATCAGAAC -ACGGAAGTGTGTGGGAATGTCTAC -ACGGAAGTGTGTGGGAATACGTAC -ACGGAAGTGTGTGGGAATAGTGAC -ACGGAAGTGTGTGGGAATCTGTAG -ACGGAAGTGTGTGGGAATCCTAAG -ACGGAAGTGTGTGGGAATGTTCAG -ACGGAAGTGTGTGGGAATGCATAG -ACGGAAGTGTGTGGGAATGACAAG -ACGGAAGTGTGTGGGAATAAGCAG -ACGGAAGTGTGTGGGAATCGTCAA -ACGGAAGTGTGTGGGAATGCTGAA -ACGGAAGTGTGTGGGAATAGTACG -ACGGAAGTGTGTGGGAATATCCGA -ACGGAAGTGTGTGGGAATATGGGA -ACGGAAGTGTGTGGGAATGTGCAA -ACGGAAGTGTGTGGGAATGAGGAA -ACGGAAGTGTGTGGGAATCAGGTA -ACGGAAGTGTGTGGGAATGACTCT -ACGGAAGTGTGTGGGAATAGTCCT -ACGGAAGTGTGTGGGAATTAAGCC -ACGGAAGTGTGTGGGAATATAGCC -ACGGAAGTGTGTGGGAATTAACCG -ACGGAAGTGTGTGGGAATATGCCA -ACGGAAGTGTGTTGATCCGGAAAC -ACGGAAGTGTGTTGATCCAACACC -ACGGAAGTGTGTTGATCCATCGAG -ACGGAAGTGTGTTGATCCCTCCTT -ACGGAAGTGTGTTGATCCCCTGTT -ACGGAAGTGTGTTGATCCCGGTTT -ACGGAAGTGTGTTGATCCGTGGTT -ACGGAAGTGTGTTGATCCGCCTTT -ACGGAAGTGTGTTGATCCGGTCTT -ACGGAAGTGTGTTGATCCACGCTT -ACGGAAGTGTGTTGATCCAGCGTT -ACGGAAGTGTGTTGATCCTTCGTC -ACGGAAGTGTGTTGATCCTCTCTC -ACGGAAGTGTGTTGATCCTGGATC -ACGGAAGTGTGTTGATCCCACTTC -ACGGAAGTGTGTTGATCCGTACTC -ACGGAAGTGTGTTGATCCGATGTC -ACGGAAGTGTGTTGATCCACAGTC -ACGGAAGTGTGTTGATCCTTGCTG -ACGGAAGTGTGTTGATCCTCCATG -ACGGAAGTGTGTTGATCCTGTGTG -ACGGAAGTGTGTTGATCCCTAGTG -ACGGAAGTGTGTTGATCCCATCTG -ACGGAAGTGTGTTGATCCGAGTTG -ACGGAAGTGTGTTGATCCAGACTG -ACGGAAGTGTGTTGATCCTCGGTA -ACGGAAGTGTGTTGATCCTGCCTA -ACGGAAGTGTGTTGATCCCCACTA -ACGGAAGTGTGTTGATCCGGAGTA -ACGGAAGTGTGTTGATCCTCGTCT -ACGGAAGTGTGTTGATCCTGCACT -ACGGAAGTGTGTTGATCCCTGACT -ACGGAAGTGTGTTGATCCCAACCT -ACGGAAGTGTGTTGATCCGCTACT -ACGGAAGTGTGTTGATCCGGATCT -ACGGAAGTGTGTTGATCCAAGGCT -ACGGAAGTGTGTTGATCCTCAACC -ACGGAAGTGTGTTGATCCTGTTCC -ACGGAAGTGTGTTGATCCATTCCC -ACGGAAGTGTGTTGATCCTTCTCG -ACGGAAGTGTGTTGATCCTAGACG -ACGGAAGTGTGTTGATCCGTAACG -ACGGAAGTGTGTTGATCCACTTCG -ACGGAAGTGTGTTGATCCTACGCA -ACGGAAGTGTGTTGATCCCTTGCA -ACGGAAGTGTGTTGATCCCGAACA -ACGGAAGTGTGTTGATCCCAGTCA -ACGGAAGTGTGTTGATCCGATCCA -ACGGAAGTGTGTTGATCCACGACA -ACGGAAGTGTGTTGATCCAGCTCA -ACGGAAGTGTGTTGATCCTCACGT -ACGGAAGTGTGTTGATCCCGTAGT -ACGGAAGTGTGTTGATCCGTCAGT -ACGGAAGTGTGTTGATCCGAAGGT -ACGGAAGTGTGTTGATCCAACCGT -ACGGAAGTGTGTTGATCCTTGTGC -ACGGAAGTGTGTTGATCCCTAAGC -ACGGAAGTGTGTTGATCCACTAGC -ACGGAAGTGTGTTGATCCAGATGC -ACGGAAGTGTGTTGATCCTGAAGG -ACGGAAGTGTGTTGATCCCAATGG -ACGGAAGTGTGTTGATCCATGAGG -ACGGAAGTGTGTTGATCCAATGGG -ACGGAAGTGTGTTGATCCTCCTGA -ACGGAAGTGTGTTGATCCTAGCGA -ACGGAAGTGTGTTGATCCCACAGA -ACGGAAGTGTGTTGATCCGCAAGA -ACGGAAGTGTGTTGATCCGGTTGA -ACGGAAGTGTGTTGATCCTCCGAT -ACGGAAGTGTGTTGATCCTGGCAT -ACGGAAGTGTGTTGATCCCGAGAT -ACGGAAGTGTGTTGATCCTACCAC -ACGGAAGTGTGTTGATCCCAGAAC -ACGGAAGTGTGTTGATCCGTCTAC -ACGGAAGTGTGTTGATCCACGTAC -ACGGAAGTGTGTTGATCCAGTGAC -ACGGAAGTGTGTTGATCCCTGTAG -ACGGAAGTGTGTTGATCCCCTAAG -ACGGAAGTGTGTTGATCCGTTCAG -ACGGAAGTGTGTTGATCCGCATAG -ACGGAAGTGTGTTGATCCGACAAG -ACGGAAGTGTGTTGATCCAAGCAG -ACGGAAGTGTGTTGATCCCGTCAA -ACGGAAGTGTGTTGATCCGCTGAA -ACGGAAGTGTGTTGATCCAGTACG -ACGGAAGTGTGTTGATCCATCCGA -ACGGAAGTGTGTTGATCCATGGGA -ACGGAAGTGTGTTGATCCGTGCAA -ACGGAAGTGTGTTGATCCGAGGAA -ACGGAAGTGTGTTGATCCCAGGTA -ACGGAAGTGTGTTGATCCGACTCT -ACGGAAGTGTGTTGATCCAGTCCT -ACGGAAGTGTGTTGATCCTAAGCC -ACGGAAGTGTGTTGATCCATAGCC -ACGGAAGTGTGTTGATCCTAACCG -ACGGAAGTGTGTTGATCCATGCCA -ACGGAAGTGTGTCGATAGGGAAAC -ACGGAAGTGTGTCGATAGAACACC -ACGGAAGTGTGTCGATAGATCGAG -ACGGAAGTGTGTCGATAGCTCCTT -ACGGAAGTGTGTCGATAGCCTGTT -ACGGAAGTGTGTCGATAGCGGTTT -ACGGAAGTGTGTCGATAGGTGGTT -ACGGAAGTGTGTCGATAGGCCTTT -ACGGAAGTGTGTCGATAGGGTCTT -ACGGAAGTGTGTCGATAGACGCTT -ACGGAAGTGTGTCGATAGAGCGTT -ACGGAAGTGTGTCGATAGTTCGTC -ACGGAAGTGTGTCGATAGTCTCTC -ACGGAAGTGTGTCGATAGTGGATC -ACGGAAGTGTGTCGATAGCACTTC -ACGGAAGTGTGTCGATAGGTACTC -ACGGAAGTGTGTCGATAGGATGTC -ACGGAAGTGTGTCGATAGACAGTC -ACGGAAGTGTGTCGATAGTTGCTG -ACGGAAGTGTGTCGATAGTCCATG -ACGGAAGTGTGTCGATAGTGTGTG -ACGGAAGTGTGTCGATAGCTAGTG -ACGGAAGTGTGTCGATAGCATCTG -ACGGAAGTGTGTCGATAGGAGTTG -ACGGAAGTGTGTCGATAGAGACTG -ACGGAAGTGTGTCGATAGTCGGTA -ACGGAAGTGTGTCGATAGTGCCTA -ACGGAAGTGTGTCGATAGCCACTA -ACGGAAGTGTGTCGATAGGGAGTA -ACGGAAGTGTGTCGATAGTCGTCT -ACGGAAGTGTGTCGATAGTGCACT -ACGGAAGTGTGTCGATAGCTGACT -ACGGAAGTGTGTCGATAGCAACCT -ACGGAAGTGTGTCGATAGGCTACT -ACGGAAGTGTGTCGATAGGGATCT -ACGGAAGTGTGTCGATAGAAGGCT -ACGGAAGTGTGTCGATAGTCAACC -ACGGAAGTGTGTCGATAGTGTTCC -ACGGAAGTGTGTCGATAGATTCCC -ACGGAAGTGTGTCGATAGTTCTCG -ACGGAAGTGTGTCGATAGTAGACG -ACGGAAGTGTGTCGATAGGTAACG -ACGGAAGTGTGTCGATAGACTTCG -ACGGAAGTGTGTCGATAGTACGCA -ACGGAAGTGTGTCGATAGCTTGCA -ACGGAAGTGTGTCGATAGCGAACA -ACGGAAGTGTGTCGATAGCAGTCA -ACGGAAGTGTGTCGATAGGATCCA -ACGGAAGTGTGTCGATAGACGACA -ACGGAAGTGTGTCGATAGAGCTCA -ACGGAAGTGTGTCGATAGTCACGT -ACGGAAGTGTGTCGATAGCGTAGT -ACGGAAGTGTGTCGATAGGTCAGT -ACGGAAGTGTGTCGATAGGAAGGT -ACGGAAGTGTGTCGATAGAACCGT -ACGGAAGTGTGTCGATAGTTGTGC -ACGGAAGTGTGTCGATAGCTAAGC -ACGGAAGTGTGTCGATAGACTAGC -ACGGAAGTGTGTCGATAGAGATGC -ACGGAAGTGTGTCGATAGTGAAGG -ACGGAAGTGTGTCGATAGCAATGG -ACGGAAGTGTGTCGATAGATGAGG -ACGGAAGTGTGTCGATAGAATGGG -ACGGAAGTGTGTCGATAGTCCTGA -ACGGAAGTGTGTCGATAGTAGCGA -ACGGAAGTGTGTCGATAGCACAGA -ACGGAAGTGTGTCGATAGGCAAGA -ACGGAAGTGTGTCGATAGGGTTGA -ACGGAAGTGTGTCGATAGTCCGAT -ACGGAAGTGTGTCGATAGTGGCAT -ACGGAAGTGTGTCGATAGCGAGAT -ACGGAAGTGTGTCGATAGTACCAC -ACGGAAGTGTGTCGATAGCAGAAC -ACGGAAGTGTGTCGATAGGTCTAC -ACGGAAGTGTGTCGATAGACGTAC -ACGGAAGTGTGTCGATAGAGTGAC -ACGGAAGTGTGTCGATAGCTGTAG -ACGGAAGTGTGTCGATAGCCTAAG -ACGGAAGTGTGTCGATAGGTTCAG -ACGGAAGTGTGTCGATAGGCATAG -ACGGAAGTGTGTCGATAGGACAAG -ACGGAAGTGTGTCGATAGAAGCAG -ACGGAAGTGTGTCGATAGCGTCAA -ACGGAAGTGTGTCGATAGGCTGAA -ACGGAAGTGTGTCGATAGAGTACG -ACGGAAGTGTGTCGATAGATCCGA -ACGGAAGTGTGTCGATAGATGGGA -ACGGAAGTGTGTCGATAGGTGCAA -ACGGAAGTGTGTCGATAGGAGGAA -ACGGAAGTGTGTCGATAGCAGGTA -ACGGAAGTGTGTCGATAGGACTCT -ACGGAAGTGTGTCGATAGAGTCCT -ACGGAAGTGTGTCGATAGTAAGCC -ACGGAAGTGTGTCGATAGATAGCC -ACGGAAGTGTGTCGATAGTAACCG -ACGGAAGTGTGTCGATAGATGCCA -ACGGAAGTGTGTAGACACGGAAAC -ACGGAAGTGTGTAGACACAACACC -ACGGAAGTGTGTAGACACATCGAG -ACGGAAGTGTGTAGACACCTCCTT -ACGGAAGTGTGTAGACACCCTGTT -ACGGAAGTGTGTAGACACCGGTTT -ACGGAAGTGTGTAGACACGTGGTT -ACGGAAGTGTGTAGACACGCCTTT -ACGGAAGTGTGTAGACACGGTCTT -ACGGAAGTGTGTAGACACACGCTT -ACGGAAGTGTGTAGACACAGCGTT -ACGGAAGTGTGTAGACACTTCGTC -ACGGAAGTGTGTAGACACTCTCTC -ACGGAAGTGTGTAGACACTGGATC -ACGGAAGTGTGTAGACACCACTTC -ACGGAAGTGTGTAGACACGTACTC -ACGGAAGTGTGTAGACACGATGTC -ACGGAAGTGTGTAGACACACAGTC -ACGGAAGTGTGTAGACACTTGCTG -ACGGAAGTGTGTAGACACTCCATG -ACGGAAGTGTGTAGACACTGTGTG -ACGGAAGTGTGTAGACACCTAGTG -ACGGAAGTGTGTAGACACCATCTG -ACGGAAGTGTGTAGACACGAGTTG -ACGGAAGTGTGTAGACACAGACTG -ACGGAAGTGTGTAGACACTCGGTA -ACGGAAGTGTGTAGACACTGCCTA -ACGGAAGTGTGTAGACACCCACTA -ACGGAAGTGTGTAGACACGGAGTA -ACGGAAGTGTGTAGACACTCGTCT -ACGGAAGTGTGTAGACACTGCACT -ACGGAAGTGTGTAGACACCTGACT -ACGGAAGTGTGTAGACACCAACCT -ACGGAAGTGTGTAGACACGCTACT -ACGGAAGTGTGTAGACACGGATCT -ACGGAAGTGTGTAGACACAAGGCT -ACGGAAGTGTGTAGACACTCAACC -ACGGAAGTGTGTAGACACTGTTCC -ACGGAAGTGTGTAGACACATTCCC -ACGGAAGTGTGTAGACACTTCTCG -ACGGAAGTGTGTAGACACTAGACG -ACGGAAGTGTGTAGACACGTAACG -ACGGAAGTGTGTAGACACACTTCG -ACGGAAGTGTGTAGACACTACGCA -ACGGAAGTGTGTAGACACCTTGCA -ACGGAAGTGTGTAGACACCGAACA -ACGGAAGTGTGTAGACACCAGTCA -ACGGAAGTGTGTAGACACGATCCA -ACGGAAGTGTGTAGACACACGACA -ACGGAAGTGTGTAGACACAGCTCA -ACGGAAGTGTGTAGACACTCACGT -ACGGAAGTGTGTAGACACCGTAGT -ACGGAAGTGTGTAGACACGTCAGT -ACGGAAGTGTGTAGACACGAAGGT -ACGGAAGTGTGTAGACACAACCGT -ACGGAAGTGTGTAGACACTTGTGC -ACGGAAGTGTGTAGACACCTAAGC -ACGGAAGTGTGTAGACACACTAGC -ACGGAAGTGTGTAGACACAGATGC -ACGGAAGTGTGTAGACACTGAAGG -ACGGAAGTGTGTAGACACCAATGG -ACGGAAGTGTGTAGACACATGAGG -ACGGAAGTGTGTAGACACAATGGG -ACGGAAGTGTGTAGACACTCCTGA -ACGGAAGTGTGTAGACACTAGCGA -ACGGAAGTGTGTAGACACCACAGA -ACGGAAGTGTGTAGACACGCAAGA -ACGGAAGTGTGTAGACACGGTTGA -ACGGAAGTGTGTAGACACTCCGAT -ACGGAAGTGTGTAGACACTGGCAT -ACGGAAGTGTGTAGACACCGAGAT -ACGGAAGTGTGTAGACACTACCAC -ACGGAAGTGTGTAGACACCAGAAC -ACGGAAGTGTGTAGACACGTCTAC -ACGGAAGTGTGTAGACACACGTAC -ACGGAAGTGTGTAGACACAGTGAC -ACGGAAGTGTGTAGACACCTGTAG -ACGGAAGTGTGTAGACACCCTAAG -ACGGAAGTGTGTAGACACGTTCAG -ACGGAAGTGTGTAGACACGCATAG -ACGGAAGTGTGTAGACACGACAAG -ACGGAAGTGTGTAGACACAAGCAG -ACGGAAGTGTGTAGACACCGTCAA -ACGGAAGTGTGTAGACACGCTGAA -ACGGAAGTGTGTAGACACAGTACG -ACGGAAGTGTGTAGACACATCCGA -ACGGAAGTGTGTAGACACATGGGA -ACGGAAGTGTGTAGACACGTGCAA -ACGGAAGTGTGTAGACACGAGGAA -ACGGAAGTGTGTAGACACCAGGTA -ACGGAAGTGTGTAGACACGACTCT -ACGGAAGTGTGTAGACACAGTCCT -ACGGAAGTGTGTAGACACTAAGCC -ACGGAAGTGTGTAGACACATAGCC -ACGGAAGTGTGTAGACACTAACCG -ACGGAAGTGTGTAGACACATGCCA -ACGGAAGTGTGTAGAGCAGGAAAC -ACGGAAGTGTGTAGAGCAAACACC -ACGGAAGTGTGTAGAGCAATCGAG -ACGGAAGTGTGTAGAGCACTCCTT -ACGGAAGTGTGTAGAGCACCTGTT -ACGGAAGTGTGTAGAGCACGGTTT -ACGGAAGTGTGTAGAGCAGTGGTT -ACGGAAGTGTGTAGAGCAGCCTTT -ACGGAAGTGTGTAGAGCAGGTCTT -ACGGAAGTGTGTAGAGCAACGCTT -ACGGAAGTGTGTAGAGCAAGCGTT -ACGGAAGTGTGTAGAGCATTCGTC -ACGGAAGTGTGTAGAGCATCTCTC -ACGGAAGTGTGTAGAGCATGGATC -ACGGAAGTGTGTAGAGCACACTTC -ACGGAAGTGTGTAGAGCAGTACTC -ACGGAAGTGTGTAGAGCAGATGTC -ACGGAAGTGTGTAGAGCAACAGTC -ACGGAAGTGTGTAGAGCATTGCTG -ACGGAAGTGTGTAGAGCATCCATG -ACGGAAGTGTGTAGAGCATGTGTG -ACGGAAGTGTGTAGAGCACTAGTG -ACGGAAGTGTGTAGAGCACATCTG -ACGGAAGTGTGTAGAGCAGAGTTG -ACGGAAGTGTGTAGAGCAAGACTG -ACGGAAGTGTGTAGAGCATCGGTA -ACGGAAGTGTGTAGAGCATGCCTA -ACGGAAGTGTGTAGAGCACCACTA -ACGGAAGTGTGTAGAGCAGGAGTA -ACGGAAGTGTGTAGAGCATCGTCT -ACGGAAGTGTGTAGAGCATGCACT -ACGGAAGTGTGTAGAGCACTGACT -ACGGAAGTGTGTAGAGCACAACCT -ACGGAAGTGTGTAGAGCAGCTACT -ACGGAAGTGTGTAGAGCAGGATCT -ACGGAAGTGTGTAGAGCAAAGGCT -ACGGAAGTGTGTAGAGCATCAACC -ACGGAAGTGTGTAGAGCATGTTCC -ACGGAAGTGTGTAGAGCAATTCCC -ACGGAAGTGTGTAGAGCATTCTCG -ACGGAAGTGTGTAGAGCATAGACG -ACGGAAGTGTGTAGAGCAGTAACG -ACGGAAGTGTGTAGAGCAACTTCG -ACGGAAGTGTGTAGAGCATACGCA -ACGGAAGTGTGTAGAGCACTTGCA -ACGGAAGTGTGTAGAGCACGAACA -ACGGAAGTGTGTAGAGCACAGTCA -ACGGAAGTGTGTAGAGCAGATCCA -ACGGAAGTGTGTAGAGCAACGACA -ACGGAAGTGTGTAGAGCAAGCTCA -ACGGAAGTGTGTAGAGCATCACGT -ACGGAAGTGTGTAGAGCACGTAGT -ACGGAAGTGTGTAGAGCAGTCAGT -ACGGAAGTGTGTAGAGCAGAAGGT -ACGGAAGTGTGTAGAGCAAACCGT -ACGGAAGTGTGTAGAGCATTGTGC -ACGGAAGTGTGTAGAGCACTAAGC -ACGGAAGTGTGTAGAGCAACTAGC -ACGGAAGTGTGTAGAGCAAGATGC -ACGGAAGTGTGTAGAGCATGAAGG -ACGGAAGTGTGTAGAGCACAATGG -ACGGAAGTGTGTAGAGCAATGAGG -ACGGAAGTGTGTAGAGCAAATGGG -ACGGAAGTGTGTAGAGCATCCTGA -ACGGAAGTGTGTAGAGCATAGCGA -ACGGAAGTGTGTAGAGCACACAGA -ACGGAAGTGTGTAGAGCAGCAAGA -ACGGAAGTGTGTAGAGCAGGTTGA -ACGGAAGTGTGTAGAGCATCCGAT -ACGGAAGTGTGTAGAGCATGGCAT -ACGGAAGTGTGTAGAGCACGAGAT -ACGGAAGTGTGTAGAGCATACCAC -ACGGAAGTGTGTAGAGCACAGAAC -ACGGAAGTGTGTAGAGCAGTCTAC -ACGGAAGTGTGTAGAGCAACGTAC -ACGGAAGTGTGTAGAGCAAGTGAC -ACGGAAGTGTGTAGAGCACTGTAG -ACGGAAGTGTGTAGAGCACCTAAG -ACGGAAGTGTGTAGAGCAGTTCAG -ACGGAAGTGTGTAGAGCAGCATAG -ACGGAAGTGTGTAGAGCAGACAAG -ACGGAAGTGTGTAGAGCAAAGCAG -ACGGAAGTGTGTAGAGCACGTCAA -ACGGAAGTGTGTAGAGCAGCTGAA -ACGGAAGTGTGTAGAGCAAGTACG -ACGGAAGTGTGTAGAGCAATCCGA -ACGGAAGTGTGTAGAGCAATGGGA -ACGGAAGTGTGTAGAGCAGTGCAA -ACGGAAGTGTGTAGAGCAGAGGAA -ACGGAAGTGTGTAGAGCACAGGTA -ACGGAAGTGTGTAGAGCAGACTCT -ACGGAAGTGTGTAGAGCAAGTCCT -ACGGAAGTGTGTAGAGCATAAGCC -ACGGAAGTGTGTAGAGCAATAGCC -ACGGAAGTGTGTAGAGCATAACCG -ACGGAAGTGTGTAGAGCAATGCCA -ACGGAAGTGTGTTGAGGTGGAAAC -ACGGAAGTGTGTTGAGGTAACACC -ACGGAAGTGTGTTGAGGTATCGAG -ACGGAAGTGTGTTGAGGTCTCCTT -ACGGAAGTGTGTTGAGGTCCTGTT -ACGGAAGTGTGTTGAGGTCGGTTT -ACGGAAGTGTGTTGAGGTGTGGTT -ACGGAAGTGTGTTGAGGTGCCTTT -ACGGAAGTGTGTTGAGGTGGTCTT -ACGGAAGTGTGTTGAGGTACGCTT -ACGGAAGTGTGTTGAGGTAGCGTT -ACGGAAGTGTGTTGAGGTTTCGTC -ACGGAAGTGTGTTGAGGTTCTCTC -ACGGAAGTGTGTTGAGGTTGGATC -ACGGAAGTGTGTTGAGGTCACTTC -ACGGAAGTGTGTTGAGGTGTACTC -ACGGAAGTGTGTTGAGGTGATGTC -ACGGAAGTGTGTTGAGGTACAGTC -ACGGAAGTGTGTTGAGGTTTGCTG -ACGGAAGTGTGTTGAGGTTCCATG -ACGGAAGTGTGTTGAGGTTGTGTG -ACGGAAGTGTGTTGAGGTCTAGTG -ACGGAAGTGTGTTGAGGTCATCTG -ACGGAAGTGTGTTGAGGTGAGTTG -ACGGAAGTGTGTTGAGGTAGACTG -ACGGAAGTGTGTTGAGGTTCGGTA -ACGGAAGTGTGTTGAGGTTGCCTA -ACGGAAGTGTGTTGAGGTCCACTA -ACGGAAGTGTGTTGAGGTGGAGTA -ACGGAAGTGTGTTGAGGTTCGTCT -ACGGAAGTGTGTTGAGGTTGCACT -ACGGAAGTGTGTTGAGGTCTGACT -ACGGAAGTGTGTTGAGGTCAACCT -ACGGAAGTGTGTTGAGGTGCTACT -ACGGAAGTGTGTTGAGGTGGATCT -ACGGAAGTGTGTTGAGGTAAGGCT -ACGGAAGTGTGTTGAGGTTCAACC -ACGGAAGTGTGTTGAGGTTGTTCC -ACGGAAGTGTGTTGAGGTATTCCC -ACGGAAGTGTGTTGAGGTTTCTCG -ACGGAAGTGTGTTGAGGTTAGACG -ACGGAAGTGTGTTGAGGTGTAACG -ACGGAAGTGTGTTGAGGTACTTCG -ACGGAAGTGTGTTGAGGTTACGCA -ACGGAAGTGTGTTGAGGTCTTGCA -ACGGAAGTGTGTTGAGGTCGAACA -ACGGAAGTGTGTTGAGGTCAGTCA -ACGGAAGTGTGTTGAGGTGATCCA -ACGGAAGTGTGTTGAGGTACGACA -ACGGAAGTGTGTTGAGGTAGCTCA -ACGGAAGTGTGTTGAGGTTCACGT -ACGGAAGTGTGTTGAGGTCGTAGT -ACGGAAGTGTGTTGAGGTGTCAGT -ACGGAAGTGTGTTGAGGTGAAGGT -ACGGAAGTGTGTTGAGGTAACCGT -ACGGAAGTGTGTTGAGGTTTGTGC -ACGGAAGTGTGTTGAGGTCTAAGC -ACGGAAGTGTGTTGAGGTACTAGC -ACGGAAGTGTGTTGAGGTAGATGC -ACGGAAGTGTGTTGAGGTTGAAGG -ACGGAAGTGTGTTGAGGTCAATGG -ACGGAAGTGTGTTGAGGTATGAGG -ACGGAAGTGTGTTGAGGTAATGGG -ACGGAAGTGTGTTGAGGTTCCTGA -ACGGAAGTGTGTTGAGGTTAGCGA -ACGGAAGTGTGTTGAGGTCACAGA -ACGGAAGTGTGTTGAGGTGCAAGA -ACGGAAGTGTGTTGAGGTGGTTGA -ACGGAAGTGTGTTGAGGTTCCGAT -ACGGAAGTGTGTTGAGGTTGGCAT -ACGGAAGTGTGTTGAGGTCGAGAT -ACGGAAGTGTGTTGAGGTTACCAC -ACGGAAGTGTGTTGAGGTCAGAAC -ACGGAAGTGTGTTGAGGTGTCTAC -ACGGAAGTGTGTTGAGGTACGTAC -ACGGAAGTGTGTTGAGGTAGTGAC -ACGGAAGTGTGTTGAGGTCTGTAG -ACGGAAGTGTGTTGAGGTCCTAAG -ACGGAAGTGTGTTGAGGTGTTCAG -ACGGAAGTGTGTTGAGGTGCATAG -ACGGAAGTGTGTTGAGGTGACAAG -ACGGAAGTGTGTTGAGGTAAGCAG -ACGGAAGTGTGTTGAGGTCGTCAA -ACGGAAGTGTGTTGAGGTGCTGAA -ACGGAAGTGTGTTGAGGTAGTACG -ACGGAAGTGTGTTGAGGTATCCGA -ACGGAAGTGTGTTGAGGTATGGGA -ACGGAAGTGTGTTGAGGTGTGCAA -ACGGAAGTGTGTTGAGGTGAGGAA -ACGGAAGTGTGTTGAGGTCAGGTA -ACGGAAGTGTGTTGAGGTGACTCT -ACGGAAGTGTGTTGAGGTAGTCCT -ACGGAAGTGTGTTGAGGTTAAGCC -ACGGAAGTGTGTTGAGGTATAGCC -ACGGAAGTGTGTTGAGGTTAACCG -ACGGAAGTGTGTTGAGGTATGCCA -ACGGAAGTGTGTGATTCCGGAAAC -ACGGAAGTGTGTGATTCCAACACC -ACGGAAGTGTGTGATTCCATCGAG -ACGGAAGTGTGTGATTCCCTCCTT -ACGGAAGTGTGTGATTCCCCTGTT -ACGGAAGTGTGTGATTCCCGGTTT -ACGGAAGTGTGTGATTCCGTGGTT -ACGGAAGTGTGTGATTCCGCCTTT -ACGGAAGTGTGTGATTCCGGTCTT -ACGGAAGTGTGTGATTCCACGCTT -ACGGAAGTGTGTGATTCCAGCGTT -ACGGAAGTGTGTGATTCCTTCGTC -ACGGAAGTGTGTGATTCCTCTCTC -ACGGAAGTGTGTGATTCCTGGATC -ACGGAAGTGTGTGATTCCCACTTC -ACGGAAGTGTGTGATTCCGTACTC -ACGGAAGTGTGTGATTCCGATGTC -ACGGAAGTGTGTGATTCCACAGTC -ACGGAAGTGTGTGATTCCTTGCTG -ACGGAAGTGTGTGATTCCTCCATG -ACGGAAGTGTGTGATTCCTGTGTG -ACGGAAGTGTGTGATTCCCTAGTG -ACGGAAGTGTGTGATTCCCATCTG -ACGGAAGTGTGTGATTCCGAGTTG -ACGGAAGTGTGTGATTCCAGACTG -ACGGAAGTGTGTGATTCCTCGGTA -ACGGAAGTGTGTGATTCCTGCCTA -ACGGAAGTGTGTGATTCCCCACTA -ACGGAAGTGTGTGATTCCGGAGTA -ACGGAAGTGTGTGATTCCTCGTCT -ACGGAAGTGTGTGATTCCTGCACT -ACGGAAGTGTGTGATTCCCTGACT -ACGGAAGTGTGTGATTCCCAACCT -ACGGAAGTGTGTGATTCCGCTACT -ACGGAAGTGTGTGATTCCGGATCT -ACGGAAGTGTGTGATTCCAAGGCT -ACGGAAGTGTGTGATTCCTCAACC -ACGGAAGTGTGTGATTCCTGTTCC -ACGGAAGTGTGTGATTCCATTCCC -ACGGAAGTGTGTGATTCCTTCTCG -ACGGAAGTGTGTGATTCCTAGACG -ACGGAAGTGTGTGATTCCGTAACG -ACGGAAGTGTGTGATTCCACTTCG -ACGGAAGTGTGTGATTCCTACGCA -ACGGAAGTGTGTGATTCCCTTGCA -ACGGAAGTGTGTGATTCCCGAACA -ACGGAAGTGTGTGATTCCCAGTCA -ACGGAAGTGTGTGATTCCGATCCA -ACGGAAGTGTGTGATTCCACGACA -ACGGAAGTGTGTGATTCCAGCTCA -ACGGAAGTGTGTGATTCCTCACGT -ACGGAAGTGTGTGATTCCCGTAGT -ACGGAAGTGTGTGATTCCGTCAGT -ACGGAAGTGTGTGATTCCGAAGGT -ACGGAAGTGTGTGATTCCAACCGT -ACGGAAGTGTGTGATTCCTTGTGC -ACGGAAGTGTGTGATTCCCTAAGC -ACGGAAGTGTGTGATTCCACTAGC -ACGGAAGTGTGTGATTCCAGATGC -ACGGAAGTGTGTGATTCCTGAAGG -ACGGAAGTGTGTGATTCCCAATGG -ACGGAAGTGTGTGATTCCATGAGG -ACGGAAGTGTGTGATTCCAATGGG -ACGGAAGTGTGTGATTCCTCCTGA -ACGGAAGTGTGTGATTCCTAGCGA -ACGGAAGTGTGTGATTCCCACAGA -ACGGAAGTGTGTGATTCCGCAAGA -ACGGAAGTGTGTGATTCCGGTTGA -ACGGAAGTGTGTGATTCCTCCGAT -ACGGAAGTGTGTGATTCCTGGCAT -ACGGAAGTGTGTGATTCCCGAGAT -ACGGAAGTGTGTGATTCCTACCAC -ACGGAAGTGTGTGATTCCCAGAAC -ACGGAAGTGTGTGATTCCGTCTAC -ACGGAAGTGTGTGATTCCACGTAC -ACGGAAGTGTGTGATTCCAGTGAC -ACGGAAGTGTGTGATTCCCTGTAG -ACGGAAGTGTGTGATTCCCCTAAG -ACGGAAGTGTGTGATTCCGTTCAG -ACGGAAGTGTGTGATTCCGCATAG -ACGGAAGTGTGTGATTCCGACAAG -ACGGAAGTGTGTGATTCCAAGCAG -ACGGAAGTGTGTGATTCCCGTCAA -ACGGAAGTGTGTGATTCCGCTGAA -ACGGAAGTGTGTGATTCCAGTACG -ACGGAAGTGTGTGATTCCATCCGA -ACGGAAGTGTGTGATTCCATGGGA -ACGGAAGTGTGTGATTCCGTGCAA -ACGGAAGTGTGTGATTCCGAGGAA -ACGGAAGTGTGTGATTCCCAGGTA -ACGGAAGTGTGTGATTCCGACTCT -ACGGAAGTGTGTGATTCCAGTCCT -ACGGAAGTGTGTGATTCCTAAGCC -ACGGAAGTGTGTGATTCCATAGCC -ACGGAAGTGTGTGATTCCTAACCG -ACGGAAGTGTGTGATTCCATGCCA -ACGGAAGTGTGTCATTGGGGAAAC -ACGGAAGTGTGTCATTGGAACACC -ACGGAAGTGTGTCATTGGATCGAG -ACGGAAGTGTGTCATTGGCTCCTT -ACGGAAGTGTGTCATTGGCCTGTT -ACGGAAGTGTGTCATTGGCGGTTT -ACGGAAGTGTGTCATTGGGTGGTT -ACGGAAGTGTGTCATTGGGCCTTT -ACGGAAGTGTGTCATTGGGGTCTT -ACGGAAGTGTGTCATTGGACGCTT -ACGGAAGTGTGTCATTGGAGCGTT -ACGGAAGTGTGTCATTGGTTCGTC -ACGGAAGTGTGTCATTGGTCTCTC -ACGGAAGTGTGTCATTGGTGGATC -ACGGAAGTGTGTCATTGGCACTTC -ACGGAAGTGTGTCATTGGGTACTC -ACGGAAGTGTGTCATTGGGATGTC -ACGGAAGTGTGTCATTGGACAGTC -ACGGAAGTGTGTCATTGGTTGCTG -ACGGAAGTGTGTCATTGGTCCATG -ACGGAAGTGTGTCATTGGTGTGTG -ACGGAAGTGTGTCATTGGCTAGTG -ACGGAAGTGTGTCATTGGCATCTG -ACGGAAGTGTGTCATTGGGAGTTG -ACGGAAGTGTGTCATTGGAGACTG -ACGGAAGTGTGTCATTGGTCGGTA -ACGGAAGTGTGTCATTGGTGCCTA -ACGGAAGTGTGTCATTGGCCACTA -ACGGAAGTGTGTCATTGGGGAGTA -ACGGAAGTGTGTCATTGGTCGTCT -ACGGAAGTGTGTCATTGGTGCACT -ACGGAAGTGTGTCATTGGCTGACT -ACGGAAGTGTGTCATTGGCAACCT -ACGGAAGTGTGTCATTGGGCTACT -ACGGAAGTGTGTCATTGGGGATCT -ACGGAAGTGTGTCATTGGAAGGCT -ACGGAAGTGTGTCATTGGTCAACC -ACGGAAGTGTGTCATTGGTGTTCC -ACGGAAGTGTGTCATTGGATTCCC -ACGGAAGTGTGTCATTGGTTCTCG -ACGGAAGTGTGTCATTGGTAGACG -ACGGAAGTGTGTCATTGGGTAACG -ACGGAAGTGTGTCATTGGACTTCG -ACGGAAGTGTGTCATTGGTACGCA -ACGGAAGTGTGTCATTGGCTTGCA -ACGGAAGTGTGTCATTGGCGAACA -ACGGAAGTGTGTCATTGGCAGTCA -ACGGAAGTGTGTCATTGGGATCCA -ACGGAAGTGTGTCATTGGACGACA -ACGGAAGTGTGTCATTGGAGCTCA -ACGGAAGTGTGTCATTGGTCACGT -ACGGAAGTGTGTCATTGGCGTAGT -ACGGAAGTGTGTCATTGGGTCAGT -ACGGAAGTGTGTCATTGGGAAGGT -ACGGAAGTGTGTCATTGGAACCGT -ACGGAAGTGTGTCATTGGTTGTGC -ACGGAAGTGTGTCATTGGCTAAGC -ACGGAAGTGTGTCATTGGACTAGC -ACGGAAGTGTGTCATTGGAGATGC -ACGGAAGTGTGTCATTGGTGAAGG -ACGGAAGTGTGTCATTGGCAATGG -ACGGAAGTGTGTCATTGGATGAGG -ACGGAAGTGTGTCATTGGAATGGG -ACGGAAGTGTGTCATTGGTCCTGA -ACGGAAGTGTGTCATTGGTAGCGA -ACGGAAGTGTGTCATTGGCACAGA -ACGGAAGTGTGTCATTGGGCAAGA -ACGGAAGTGTGTCATTGGGGTTGA -ACGGAAGTGTGTCATTGGTCCGAT -ACGGAAGTGTGTCATTGGTGGCAT -ACGGAAGTGTGTCATTGGCGAGAT -ACGGAAGTGTGTCATTGGTACCAC -ACGGAAGTGTGTCATTGGCAGAAC -ACGGAAGTGTGTCATTGGGTCTAC -ACGGAAGTGTGTCATTGGACGTAC -ACGGAAGTGTGTCATTGGAGTGAC -ACGGAAGTGTGTCATTGGCTGTAG -ACGGAAGTGTGTCATTGGCCTAAG -ACGGAAGTGTGTCATTGGGTTCAG -ACGGAAGTGTGTCATTGGGCATAG -ACGGAAGTGTGTCATTGGGACAAG -ACGGAAGTGTGTCATTGGAAGCAG -ACGGAAGTGTGTCATTGGCGTCAA -ACGGAAGTGTGTCATTGGGCTGAA -ACGGAAGTGTGTCATTGGAGTACG -ACGGAAGTGTGTCATTGGATCCGA -ACGGAAGTGTGTCATTGGATGGGA -ACGGAAGTGTGTCATTGGGTGCAA -ACGGAAGTGTGTCATTGGGAGGAA -ACGGAAGTGTGTCATTGGCAGGTA -ACGGAAGTGTGTCATTGGGACTCT -ACGGAAGTGTGTCATTGGAGTCCT -ACGGAAGTGTGTCATTGGTAAGCC -ACGGAAGTGTGTCATTGGATAGCC -ACGGAAGTGTGTCATTGGTAACCG -ACGGAAGTGTGTCATTGGATGCCA -ACGGAAGTGTGTGATCGAGGAAAC -ACGGAAGTGTGTGATCGAAACACC -ACGGAAGTGTGTGATCGAATCGAG -ACGGAAGTGTGTGATCGACTCCTT -ACGGAAGTGTGTGATCGACCTGTT -ACGGAAGTGTGTGATCGACGGTTT -ACGGAAGTGTGTGATCGAGTGGTT -ACGGAAGTGTGTGATCGAGCCTTT -ACGGAAGTGTGTGATCGAGGTCTT -ACGGAAGTGTGTGATCGAACGCTT -ACGGAAGTGTGTGATCGAAGCGTT -ACGGAAGTGTGTGATCGATTCGTC -ACGGAAGTGTGTGATCGATCTCTC -ACGGAAGTGTGTGATCGATGGATC -ACGGAAGTGTGTGATCGACACTTC -ACGGAAGTGTGTGATCGAGTACTC -ACGGAAGTGTGTGATCGAGATGTC -ACGGAAGTGTGTGATCGAACAGTC -ACGGAAGTGTGTGATCGATTGCTG -ACGGAAGTGTGTGATCGATCCATG -ACGGAAGTGTGTGATCGATGTGTG -ACGGAAGTGTGTGATCGACTAGTG -ACGGAAGTGTGTGATCGACATCTG -ACGGAAGTGTGTGATCGAGAGTTG -ACGGAAGTGTGTGATCGAAGACTG -ACGGAAGTGTGTGATCGATCGGTA -ACGGAAGTGTGTGATCGATGCCTA -ACGGAAGTGTGTGATCGACCACTA -ACGGAAGTGTGTGATCGAGGAGTA -ACGGAAGTGTGTGATCGATCGTCT -ACGGAAGTGTGTGATCGATGCACT -ACGGAAGTGTGTGATCGACTGACT -ACGGAAGTGTGTGATCGACAACCT -ACGGAAGTGTGTGATCGAGCTACT -ACGGAAGTGTGTGATCGAGGATCT -ACGGAAGTGTGTGATCGAAAGGCT -ACGGAAGTGTGTGATCGATCAACC -ACGGAAGTGTGTGATCGATGTTCC -ACGGAAGTGTGTGATCGAATTCCC -ACGGAAGTGTGTGATCGATTCTCG -ACGGAAGTGTGTGATCGATAGACG -ACGGAAGTGTGTGATCGAGTAACG -ACGGAAGTGTGTGATCGAACTTCG -ACGGAAGTGTGTGATCGATACGCA -ACGGAAGTGTGTGATCGACTTGCA -ACGGAAGTGTGTGATCGACGAACA -ACGGAAGTGTGTGATCGACAGTCA -ACGGAAGTGTGTGATCGAGATCCA -ACGGAAGTGTGTGATCGAACGACA -ACGGAAGTGTGTGATCGAAGCTCA -ACGGAAGTGTGTGATCGATCACGT -ACGGAAGTGTGTGATCGACGTAGT -ACGGAAGTGTGTGATCGAGTCAGT -ACGGAAGTGTGTGATCGAGAAGGT -ACGGAAGTGTGTGATCGAAACCGT -ACGGAAGTGTGTGATCGATTGTGC -ACGGAAGTGTGTGATCGACTAAGC -ACGGAAGTGTGTGATCGAACTAGC -ACGGAAGTGTGTGATCGAAGATGC -ACGGAAGTGTGTGATCGATGAAGG -ACGGAAGTGTGTGATCGACAATGG -ACGGAAGTGTGTGATCGAATGAGG -ACGGAAGTGTGTGATCGAAATGGG -ACGGAAGTGTGTGATCGATCCTGA -ACGGAAGTGTGTGATCGATAGCGA -ACGGAAGTGTGTGATCGACACAGA -ACGGAAGTGTGTGATCGAGCAAGA -ACGGAAGTGTGTGATCGAGGTTGA -ACGGAAGTGTGTGATCGATCCGAT -ACGGAAGTGTGTGATCGATGGCAT -ACGGAAGTGTGTGATCGACGAGAT -ACGGAAGTGTGTGATCGATACCAC -ACGGAAGTGTGTGATCGACAGAAC -ACGGAAGTGTGTGATCGAGTCTAC -ACGGAAGTGTGTGATCGAACGTAC -ACGGAAGTGTGTGATCGAAGTGAC -ACGGAAGTGTGTGATCGACTGTAG -ACGGAAGTGTGTGATCGACCTAAG -ACGGAAGTGTGTGATCGAGTTCAG -ACGGAAGTGTGTGATCGAGCATAG -ACGGAAGTGTGTGATCGAGACAAG -ACGGAAGTGTGTGATCGAAAGCAG -ACGGAAGTGTGTGATCGACGTCAA -ACGGAAGTGTGTGATCGAGCTGAA -ACGGAAGTGTGTGATCGAAGTACG -ACGGAAGTGTGTGATCGAATCCGA -ACGGAAGTGTGTGATCGAATGGGA -ACGGAAGTGTGTGATCGAGTGCAA -ACGGAAGTGTGTGATCGAGAGGAA -ACGGAAGTGTGTGATCGACAGGTA -ACGGAAGTGTGTGATCGAGACTCT -ACGGAAGTGTGTGATCGAAGTCCT -ACGGAAGTGTGTGATCGATAAGCC -ACGGAAGTGTGTGATCGAATAGCC -ACGGAAGTGTGTGATCGATAACCG -ACGGAAGTGTGTGATCGAATGCCA -ACGGAAGTGTGTCACTACGGAAAC -ACGGAAGTGTGTCACTACAACACC -ACGGAAGTGTGTCACTACATCGAG -ACGGAAGTGTGTCACTACCTCCTT -ACGGAAGTGTGTCACTACCCTGTT -ACGGAAGTGTGTCACTACCGGTTT -ACGGAAGTGTGTCACTACGTGGTT -ACGGAAGTGTGTCACTACGCCTTT -ACGGAAGTGTGTCACTACGGTCTT -ACGGAAGTGTGTCACTACACGCTT -ACGGAAGTGTGTCACTACAGCGTT -ACGGAAGTGTGTCACTACTTCGTC -ACGGAAGTGTGTCACTACTCTCTC -ACGGAAGTGTGTCACTACTGGATC -ACGGAAGTGTGTCACTACCACTTC -ACGGAAGTGTGTCACTACGTACTC -ACGGAAGTGTGTCACTACGATGTC -ACGGAAGTGTGTCACTACACAGTC -ACGGAAGTGTGTCACTACTTGCTG -ACGGAAGTGTGTCACTACTCCATG -ACGGAAGTGTGTCACTACTGTGTG -ACGGAAGTGTGTCACTACCTAGTG -ACGGAAGTGTGTCACTACCATCTG -ACGGAAGTGTGTCACTACGAGTTG -ACGGAAGTGTGTCACTACAGACTG -ACGGAAGTGTGTCACTACTCGGTA -ACGGAAGTGTGTCACTACTGCCTA -ACGGAAGTGTGTCACTACCCACTA -ACGGAAGTGTGTCACTACGGAGTA -ACGGAAGTGTGTCACTACTCGTCT -ACGGAAGTGTGTCACTACTGCACT -ACGGAAGTGTGTCACTACCTGACT -ACGGAAGTGTGTCACTACCAACCT -ACGGAAGTGTGTCACTACGCTACT -ACGGAAGTGTGTCACTACGGATCT -ACGGAAGTGTGTCACTACAAGGCT -ACGGAAGTGTGTCACTACTCAACC -ACGGAAGTGTGTCACTACTGTTCC -ACGGAAGTGTGTCACTACATTCCC -ACGGAAGTGTGTCACTACTTCTCG -ACGGAAGTGTGTCACTACTAGACG -ACGGAAGTGTGTCACTACGTAACG -ACGGAAGTGTGTCACTACACTTCG -ACGGAAGTGTGTCACTACTACGCA -ACGGAAGTGTGTCACTACCTTGCA -ACGGAAGTGTGTCACTACCGAACA -ACGGAAGTGTGTCACTACCAGTCA -ACGGAAGTGTGTCACTACGATCCA -ACGGAAGTGTGTCACTACACGACA -ACGGAAGTGTGTCACTACAGCTCA -ACGGAAGTGTGTCACTACTCACGT -ACGGAAGTGTGTCACTACCGTAGT -ACGGAAGTGTGTCACTACGTCAGT -ACGGAAGTGTGTCACTACGAAGGT -ACGGAAGTGTGTCACTACAACCGT -ACGGAAGTGTGTCACTACTTGTGC -ACGGAAGTGTGTCACTACCTAAGC -ACGGAAGTGTGTCACTACACTAGC -ACGGAAGTGTGTCACTACAGATGC -ACGGAAGTGTGTCACTACTGAAGG -ACGGAAGTGTGTCACTACCAATGG -ACGGAAGTGTGTCACTACATGAGG -ACGGAAGTGTGTCACTACAATGGG -ACGGAAGTGTGTCACTACTCCTGA -ACGGAAGTGTGTCACTACTAGCGA -ACGGAAGTGTGTCACTACCACAGA -ACGGAAGTGTGTCACTACGCAAGA -ACGGAAGTGTGTCACTACGGTTGA -ACGGAAGTGTGTCACTACTCCGAT -ACGGAAGTGTGTCACTACTGGCAT -ACGGAAGTGTGTCACTACCGAGAT -ACGGAAGTGTGTCACTACTACCAC -ACGGAAGTGTGTCACTACCAGAAC -ACGGAAGTGTGTCACTACGTCTAC -ACGGAAGTGTGTCACTACACGTAC -ACGGAAGTGTGTCACTACAGTGAC -ACGGAAGTGTGTCACTACCTGTAG -ACGGAAGTGTGTCACTACCCTAAG -ACGGAAGTGTGTCACTACGTTCAG -ACGGAAGTGTGTCACTACGCATAG -ACGGAAGTGTGTCACTACGACAAG -ACGGAAGTGTGTCACTACAAGCAG -ACGGAAGTGTGTCACTACCGTCAA -ACGGAAGTGTGTCACTACGCTGAA -ACGGAAGTGTGTCACTACAGTACG -ACGGAAGTGTGTCACTACATCCGA -ACGGAAGTGTGTCACTACATGGGA -ACGGAAGTGTGTCACTACGTGCAA -ACGGAAGTGTGTCACTACGAGGAA -ACGGAAGTGTGTCACTACCAGGTA -ACGGAAGTGTGTCACTACGACTCT -ACGGAAGTGTGTCACTACAGTCCT -ACGGAAGTGTGTCACTACTAAGCC -ACGGAAGTGTGTCACTACATAGCC -ACGGAAGTGTGTCACTACTAACCG -ACGGAAGTGTGTCACTACATGCCA -ACGGAAGTGTGTAACCAGGGAAAC -ACGGAAGTGTGTAACCAGAACACC -ACGGAAGTGTGTAACCAGATCGAG -ACGGAAGTGTGTAACCAGCTCCTT -ACGGAAGTGTGTAACCAGCCTGTT -ACGGAAGTGTGTAACCAGCGGTTT -ACGGAAGTGTGTAACCAGGTGGTT -ACGGAAGTGTGTAACCAGGCCTTT -ACGGAAGTGTGTAACCAGGGTCTT -ACGGAAGTGTGTAACCAGACGCTT -ACGGAAGTGTGTAACCAGAGCGTT -ACGGAAGTGTGTAACCAGTTCGTC -ACGGAAGTGTGTAACCAGTCTCTC -ACGGAAGTGTGTAACCAGTGGATC -ACGGAAGTGTGTAACCAGCACTTC -ACGGAAGTGTGTAACCAGGTACTC -ACGGAAGTGTGTAACCAGGATGTC -ACGGAAGTGTGTAACCAGACAGTC -ACGGAAGTGTGTAACCAGTTGCTG -ACGGAAGTGTGTAACCAGTCCATG -ACGGAAGTGTGTAACCAGTGTGTG -ACGGAAGTGTGTAACCAGCTAGTG -ACGGAAGTGTGTAACCAGCATCTG -ACGGAAGTGTGTAACCAGGAGTTG -ACGGAAGTGTGTAACCAGAGACTG -ACGGAAGTGTGTAACCAGTCGGTA -ACGGAAGTGTGTAACCAGTGCCTA -ACGGAAGTGTGTAACCAGCCACTA -ACGGAAGTGTGTAACCAGGGAGTA -ACGGAAGTGTGTAACCAGTCGTCT -ACGGAAGTGTGTAACCAGTGCACT -ACGGAAGTGTGTAACCAGCTGACT -ACGGAAGTGTGTAACCAGCAACCT -ACGGAAGTGTGTAACCAGGCTACT -ACGGAAGTGTGTAACCAGGGATCT -ACGGAAGTGTGTAACCAGAAGGCT -ACGGAAGTGTGTAACCAGTCAACC -ACGGAAGTGTGTAACCAGTGTTCC -ACGGAAGTGTGTAACCAGATTCCC -ACGGAAGTGTGTAACCAGTTCTCG -ACGGAAGTGTGTAACCAGTAGACG -ACGGAAGTGTGTAACCAGGTAACG -ACGGAAGTGTGTAACCAGACTTCG -ACGGAAGTGTGTAACCAGTACGCA -ACGGAAGTGTGTAACCAGCTTGCA -ACGGAAGTGTGTAACCAGCGAACA -ACGGAAGTGTGTAACCAGCAGTCA -ACGGAAGTGTGTAACCAGGATCCA -ACGGAAGTGTGTAACCAGACGACA -ACGGAAGTGTGTAACCAGAGCTCA -ACGGAAGTGTGTAACCAGTCACGT -ACGGAAGTGTGTAACCAGCGTAGT -ACGGAAGTGTGTAACCAGGTCAGT -ACGGAAGTGTGTAACCAGGAAGGT -ACGGAAGTGTGTAACCAGAACCGT -ACGGAAGTGTGTAACCAGTTGTGC -ACGGAAGTGTGTAACCAGCTAAGC -ACGGAAGTGTGTAACCAGACTAGC -ACGGAAGTGTGTAACCAGAGATGC -ACGGAAGTGTGTAACCAGTGAAGG -ACGGAAGTGTGTAACCAGCAATGG -ACGGAAGTGTGTAACCAGATGAGG -ACGGAAGTGTGTAACCAGAATGGG -ACGGAAGTGTGTAACCAGTCCTGA -ACGGAAGTGTGTAACCAGTAGCGA -ACGGAAGTGTGTAACCAGCACAGA -ACGGAAGTGTGTAACCAGGCAAGA -ACGGAAGTGTGTAACCAGGGTTGA -ACGGAAGTGTGTAACCAGTCCGAT -ACGGAAGTGTGTAACCAGTGGCAT -ACGGAAGTGTGTAACCAGCGAGAT -ACGGAAGTGTGTAACCAGTACCAC -ACGGAAGTGTGTAACCAGCAGAAC -ACGGAAGTGTGTAACCAGGTCTAC -ACGGAAGTGTGTAACCAGACGTAC -ACGGAAGTGTGTAACCAGAGTGAC -ACGGAAGTGTGTAACCAGCTGTAG -ACGGAAGTGTGTAACCAGCCTAAG -ACGGAAGTGTGTAACCAGGTTCAG -ACGGAAGTGTGTAACCAGGCATAG -ACGGAAGTGTGTAACCAGGACAAG -ACGGAAGTGTGTAACCAGAAGCAG -ACGGAAGTGTGTAACCAGCGTCAA -ACGGAAGTGTGTAACCAGGCTGAA -ACGGAAGTGTGTAACCAGAGTACG -ACGGAAGTGTGTAACCAGATCCGA -ACGGAAGTGTGTAACCAGATGGGA -ACGGAAGTGTGTAACCAGGTGCAA -ACGGAAGTGTGTAACCAGGAGGAA -ACGGAAGTGTGTAACCAGCAGGTA -ACGGAAGTGTGTAACCAGGACTCT -ACGGAAGTGTGTAACCAGAGTCCT -ACGGAAGTGTGTAACCAGTAAGCC -ACGGAAGTGTGTAACCAGATAGCC -ACGGAAGTGTGTAACCAGTAACCG -ACGGAAGTGTGTAACCAGATGCCA -ACGGAAGTGTGTTACGTCGGAAAC -ACGGAAGTGTGTTACGTCAACACC -ACGGAAGTGTGTTACGTCATCGAG -ACGGAAGTGTGTTACGTCCTCCTT -ACGGAAGTGTGTTACGTCCCTGTT -ACGGAAGTGTGTTACGTCCGGTTT -ACGGAAGTGTGTTACGTCGTGGTT -ACGGAAGTGTGTTACGTCGCCTTT -ACGGAAGTGTGTTACGTCGGTCTT -ACGGAAGTGTGTTACGTCACGCTT -ACGGAAGTGTGTTACGTCAGCGTT -ACGGAAGTGTGTTACGTCTTCGTC -ACGGAAGTGTGTTACGTCTCTCTC -ACGGAAGTGTGTTACGTCTGGATC -ACGGAAGTGTGTTACGTCCACTTC -ACGGAAGTGTGTTACGTCGTACTC -ACGGAAGTGTGTTACGTCGATGTC -ACGGAAGTGTGTTACGTCACAGTC -ACGGAAGTGTGTTACGTCTTGCTG -ACGGAAGTGTGTTACGTCTCCATG -ACGGAAGTGTGTTACGTCTGTGTG -ACGGAAGTGTGTTACGTCCTAGTG -ACGGAAGTGTGTTACGTCCATCTG -ACGGAAGTGTGTTACGTCGAGTTG -ACGGAAGTGTGTTACGTCAGACTG -ACGGAAGTGTGTTACGTCTCGGTA -ACGGAAGTGTGTTACGTCTGCCTA -ACGGAAGTGTGTTACGTCCCACTA -ACGGAAGTGTGTTACGTCGGAGTA -ACGGAAGTGTGTTACGTCTCGTCT -ACGGAAGTGTGTTACGTCTGCACT -ACGGAAGTGTGTTACGTCCTGACT -ACGGAAGTGTGTTACGTCCAACCT -ACGGAAGTGTGTTACGTCGCTACT -ACGGAAGTGTGTTACGTCGGATCT -ACGGAAGTGTGTTACGTCAAGGCT -ACGGAAGTGTGTTACGTCTCAACC -ACGGAAGTGTGTTACGTCTGTTCC -ACGGAAGTGTGTTACGTCATTCCC -ACGGAAGTGTGTTACGTCTTCTCG -ACGGAAGTGTGTTACGTCTAGACG -ACGGAAGTGTGTTACGTCGTAACG -ACGGAAGTGTGTTACGTCACTTCG -ACGGAAGTGTGTTACGTCTACGCA -ACGGAAGTGTGTTACGTCCTTGCA -ACGGAAGTGTGTTACGTCCGAACA -ACGGAAGTGTGTTACGTCCAGTCA -ACGGAAGTGTGTTACGTCGATCCA -ACGGAAGTGTGTTACGTCACGACA -ACGGAAGTGTGTTACGTCAGCTCA -ACGGAAGTGTGTTACGTCTCACGT -ACGGAAGTGTGTTACGTCCGTAGT -ACGGAAGTGTGTTACGTCGTCAGT -ACGGAAGTGTGTTACGTCGAAGGT -ACGGAAGTGTGTTACGTCAACCGT -ACGGAAGTGTGTTACGTCTTGTGC -ACGGAAGTGTGTTACGTCCTAAGC -ACGGAAGTGTGTTACGTCACTAGC -ACGGAAGTGTGTTACGTCAGATGC -ACGGAAGTGTGTTACGTCTGAAGG -ACGGAAGTGTGTTACGTCCAATGG -ACGGAAGTGTGTTACGTCATGAGG -ACGGAAGTGTGTTACGTCAATGGG -ACGGAAGTGTGTTACGTCTCCTGA -ACGGAAGTGTGTTACGTCTAGCGA -ACGGAAGTGTGTTACGTCCACAGA -ACGGAAGTGTGTTACGTCGCAAGA -ACGGAAGTGTGTTACGTCGGTTGA -ACGGAAGTGTGTTACGTCTCCGAT -ACGGAAGTGTGTTACGTCTGGCAT -ACGGAAGTGTGTTACGTCCGAGAT -ACGGAAGTGTGTTACGTCTACCAC -ACGGAAGTGTGTTACGTCCAGAAC -ACGGAAGTGTGTTACGTCGTCTAC -ACGGAAGTGTGTTACGTCACGTAC -ACGGAAGTGTGTTACGTCAGTGAC -ACGGAAGTGTGTTACGTCCTGTAG -ACGGAAGTGTGTTACGTCCCTAAG -ACGGAAGTGTGTTACGTCGTTCAG -ACGGAAGTGTGTTACGTCGCATAG -ACGGAAGTGTGTTACGTCGACAAG -ACGGAAGTGTGTTACGTCAAGCAG -ACGGAAGTGTGTTACGTCCGTCAA -ACGGAAGTGTGTTACGTCGCTGAA -ACGGAAGTGTGTTACGTCAGTACG -ACGGAAGTGTGTTACGTCATCCGA -ACGGAAGTGTGTTACGTCATGGGA -ACGGAAGTGTGTTACGTCGTGCAA -ACGGAAGTGTGTTACGTCGAGGAA -ACGGAAGTGTGTTACGTCCAGGTA -ACGGAAGTGTGTTACGTCGACTCT -ACGGAAGTGTGTTACGTCAGTCCT -ACGGAAGTGTGTTACGTCTAAGCC -ACGGAAGTGTGTTACGTCATAGCC -ACGGAAGTGTGTTACGTCTAACCG -ACGGAAGTGTGTTACGTCATGCCA -ACGGAAGTGTGTTACACGGGAAAC -ACGGAAGTGTGTTACACGAACACC -ACGGAAGTGTGTTACACGATCGAG -ACGGAAGTGTGTTACACGCTCCTT -ACGGAAGTGTGTTACACGCCTGTT -ACGGAAGTGTGTTACACGCGGTTT -ACGGAAGTGTGTTACACGGTGGTT -ACGGAAGTGTGTTACACGGCCTTT -ACGGAAGTGTGTTACACGGGTCTT -ACGGAAGTGTGTTACACGACGCTT -ACGGAAGTGTGTTACACGAGCGTT -ACGGAAGTGTGTTACACGTTCGTC -ACGGAAGTGTGTTACACGTCTCTC -ACGGAAGTGTGTTACACGTGGATC -ACGGAAGTGTGTTACACGCACTTC -ACGGAAGTGTGTTACACGGTACTC -ACGGAAGTGTGTTACACGGATGTC -ACGGAAGTGTGTTACACGACAGTC -ACGGAAGTGTGTTACACGTTGCTG -ACGGAAGTGTGTTACACGTCCATG -ACGGAAGTGTGTTACACGTGTGTG -ACGGAAGTGTGTTACACGCTAGTG -ACGGAAGTGTGTTACACGCATCTG -ACGGAAGTGTGTTACACGGAGTTG -ACGGAAGTGTGTTACACGAGACTG -ACGGAAGTGTGTTACACGTCGGTA -ACGGAAGTGTGTTACACGTGCCTA -ACGGAAGTGTGTTACACGCCACTA -ACGGAAGTGTGTTACACGGGAGTA -ACGGAAGTGTGTTACACGTCGTCT -ACGGAAGTGTGTTACACGTGCACT -ACGGAAGTGTGTTACACGCTGACT -ACGGAAGTGTGTTACACGCAACCT -ACGGAAGTGTGTTACACGGCTACT -ACGGAAGTGTGTTACACGGGATCT -ACGGAAGTGTGTTACACGAAGGCT -ACGGAAGTGTGTTACACGTCAACC -ACGGAAGTGTGTTACACGTGTTCC -ACGGAAGTGTGTTACACGATTCCC -ACGGAAGTGTGTTACACGTTCTCG -ACGGAAGTGTGTTACACGTAGACG -ACGGAAGTGTGTTACACGGTAACG -ACGGAAGTGTGTTACACGACTTCG -ACGGAAGTGTGTTACACGTACGCA -ACGGAAGTGTGTTACACGCTTGCA -ACGGAAGTGTGTTACACGCGAACA -ACGGAAGTGTGTTACACGCAGTCA -ACGGAAGTGTGTTACACGGATCCA -ACGGAAGTGTGTTACACGACGACA -ACGGAAGTGTGTTACACGAGCTCA -ACGGAAGTGTGTTACACGTCACGT -ACGGAAGTGTGTTACACGCGTAGT -ACGGAAGTGTGTTACACGGTCAGT -ACGGAAGTGTGTTACACGGAAGGT -ACGGAAGTGTGTTACACGAACCGT -ACGGAAGTGTGTTACACGTTGTGC -ACGGAAGTGTGTTACACGCTAAGC -ACGGAAGTGTGTTACACGACTAGC -ACGGAAGTGTGTTACACGAGATGC -ACGGAAGTGTGTTACACGTGAAGG -ACGGAAGTGTGTTACACGCAATGG -ACGGAAGTGTGTTACACGATGAGG -ACGGAAGTGTGTTACACGAATGGG -ACGGAAGTGTGTTACACGTCCTGA -ACGGAAGTGTGTTACACGTAGCGA -ACGGAAGTGTGTTACACGCACAGA -ACGGAAGTGTGTTACACGGCAAGA -ACGGAAGTGTGTTACACGGGTTGA -ACGGAAGTGTGTTACACGTCCGAT -ACGGAAGTGTGTTACACGTGGCAT -ACGGAAGTGTGTTACACGCGAGAT -ACGGAAGTGTGTTACACGTACCAC -ACGGAAGTGTGTTACACGCAGAAC -ACGGAAGTGTGTTACACGGTCTAC -ACGGAAGTGTGTTACACGACGTAC -ACGGAAGTGTGTTACACGAGTGAC -ACGGAAGTGTGTTACACGCTGTAG -ACGGAAGTGTGTTACACGCCTAAG -ACGGAAGTGTGTTACACGGTTCAG -ACGGAAGTGTGTTACACGGCATAG -ACGGAAGTGTGTTACACGGACAAG -ACGGAAGTGTGTTACACGAAGCAG -ACGGAAGTGTGTTACACGCGTCAA -ACGGAAGTGTGTTACACGGCTGAA -ACGGAAGTGTGTTACACGAGTACG -ACGGAAGTGTGTTACACGATCCGA -ACGGAAGTGTGTTACACGATGGGA -ACGGAAGTGTGTTACACGGTGCAA -ACGGAAGTGTGTTACACGGAGGAA -ACGGAAGTGTGTTACACGCAGGTA -ACGGAAGTGTGTTACACGGACTCT -ACGGAAGTGTGTTACACGAGTCCT -ACGGAAGTGTGTTACACGTAAGCC -ACGGAAGTGTGTTACACGATAGCC -ACGGAAGTGTGTTACACGTAACCG -ACGGAAGTGTGTTACACGATGCCA -ACGGAAGTGTGTGACAGTGGAAAC -ACGGAAGTGTGTGACAGTAACACC -ACGGAAGTGTGTGACAGTATCGAG -ACGGAAGTGTGTGACAGTCTCCTT -ACGGAAGTGTGTGACAGTCCTGTT -ACGGAAGTGTGTGACAGTCGGTTT -ACGGAAGTGTGTGACAGTGTGGTT -ACGGAAGTGTGTGACAGTGCCTTT -ACGGAAGTGTGTGACAGTGGTCTT -ACGGAAGTGTGTGACAGTACGCTT -ACGGAAGTGTGTGACAGTAGCGTT -ACGGAAGTGTGTGACAGTTTCGTC -ACGGAAGTGTGTGACAGTTCTCTC -ACGGAAGTGTGTGACAGTTGGATC -ACGGAAGTGTGTGACAGTCACTTC -ACGGAAGTGTGTGACAGTGTACTC -ACGGAAGTGTGTGACAGTGATGTC -ACGGAAGTGTGTGACAGTACAGTC -ACGGAAGTGTGTGACAGTTTGCTG -ACGGAAGTGTGTGACAGTTCCATG -ACGGAAGTGTGTGACAGTTGTGTG -ACGGAAGTGTGTGACAGTCTAGTG -ACGGAAGTGTGTGACAGTCATCTG -ACGGAAGTGTGTGACAGTGAGTTG -ACGGAAGTGTGTGACAGTAGACTG -ACGGAAGTGTGTGACAGTTCGGTA -ACGGAAGTGTGTGACAGTTGCCTA -ACGGAAGTGTGTGACAGTCCACTA -ACGGAAGTGTGTGACAGTGGAGTA -ACGGAAGTGTGTGACAGTTCGTCT -ACGGAAGTGTGTGACAGTTGCACT -ACGGAAGTGTGTGACAGTCTGACT -ACGGAAGTGTGTGACAGTCAACCT -ACGGAAGTGTGTGACAGTGCTACT -ACGGAAGTGTGTGACAGTGGATCT -ACGGAAGTGTGTGACAGTAAGGCT -ACGGAAGTGTGTGACAGTTCAACC -ACGGAAGTGTGTGACAGTTGTTCC -ACGGAAGTGTGTGACAGTATTCCC -ACGGAAGTGTGTGACAGTTTCTCG -ACGGAAGTGTGTGACAGTTAGACG -ACGGAAGTGTGTGACAGTGTAACG -ACGGAAGTGTGTGACAGTACTTCG -ACGGAAGTGTGTGACAGTTACGCA -ACGGAAGTGTGTGACAGTCTTGCA -ACGGAAGTGTGTGACAGTCGAACA -ACGGAAGTGTGTGACAGTCAGTCA -ACGGAAGTGTGTGACAGTGATCCA -ACGGAAGTGTGTGACAGTACGACA -ACGGAAGTGTGTGACAGTAGCTCA -ACGGAAGTGTGTGACAGTTCACGT -ACGGAAGTGTGTGACAGTCGTAGT -ACGGAAGTGTGTGACAGTGTCAGT -ACGGAAGTGTGTGACAGTGAAGGT -ACGGAAGTGTGTGACAGTAACCGT -ACGGAAGTGTGTGACAGTTTGTGC -ACGGAAGTGTGTGACAGTCTAAGC -ACGGAAGTGTGTGACAGTACTAGC -ACGGAAGTGTGTGACAGTAGATGC -ACGGAAGTGTGTGACAGTTGAAGG -ACGGAAGTGTGTGACAGTCAATGG -ACGGAAGTGTGTGACAGTATGAGG -ACGGAAGTGTGTGACAGTAATGGG -ACGGAAGTGTGTGACAGTTCCTGA -ACGGAAGTGTGTGACAGTTAGCGA -ACGGAAGTGTGTGACAGTCACAGA -ACGGAAGTGTGTGACAGTGCAAGA -ACGGAAGTGTGTGACAGTGGTTGA -ACGGAAGTGTGTGACAGTTCCGAT -ACGGAAGTGTGTGACAGTTGGCAT -ACGGAAGTGTGTGACAGTCGAGAT -ACGGAAGTGTGTGACAGTTACCAC -ACGGAAGTGTGTGACAGTCAGAAC -ACGGAAGTGTGTGACAGTGTCTAC -ACGGAAGTGTGTGACAGTACGTAC -ACGGAAGTGTGTGACAGTAGTGAC -ACGGAAGTGTGTGACAGTCTGTAG -ACGGAAGTGTGTGACAGTCCTAAG -ACGGAAGTGTGTGACAGTGTTCAG -ACGGAAGTGTGTGACAGTGCATAG -ACGGAAGTGTGTGACAGTGACAAG -ACGGAAGTGTGTGACAGTAAGCAG -ACGGAAGTGTGTGACAGTCGTCAA -ACGGAAGTGTGTGACAGTGCTGAA -ACGGAAGTGTGTGACAGTAGTACG -ACGGAAGTGTGTGACAGTATCCGA -ACGGAAGTGTGTGACAGTATGGGA -ACGGAAGTGTGTGACAGTGTGCAA -ACGGAAGTGTGTGACAGTGAGGAA -ACGGAAGTGTGTGACAGTCAGGTA -ACGGAAGTGTGTGACAGTGACTCT -ACGGAAGTGTGTGACAGTAGTCCT -ACGGAAGTGTGTGACAGTTAAGCC -ACGGAAGTGTGTGACAGTATAGCC -ACGGAAGTGTGTGACAGTTAACCG -ACGGAAGTGTGTGACAGTATGCCA -ACGGAAGTGTGTTAGCTGGGAAAC -ACGGAAGTGTGTTAGCTGAACACC -ACGGAAGTGTGTTAGCTGATCGAG -ACGGAAGTGTGTTAGCTGCTCCTT -ACGGAAGTGTGTTAGCTGCCTGTT -ACGGAAGTGTGTTAGCTGCGGTTT -ACGGAAGTGTGTTAGCTGGTGGTT -ACGGAAGTGTGTTAGCTGGCCTTT -ACGGAAGTGTGTTAGCTGGGTCTT -ACGGAAGTGTGTTAGCTGACGCTT -ACGGAAGTGTGTTAGCTGAGCGTT -ACGGAAGTGTGTTAGCTGTTCGTC -ACGGAAGTGTGTTAGCTGTCTCTC -ACGGAAGTGTGTTAGCTGTGGATC -ACGGAAGTGTGTTAGCTGCACTTC -ACGGAAGTGTGTTAGCTGGTACTC -ACGGAAGTGTGTTAGCTGGATGTC -ACGGAAGTGTGTTAGCTGACAGTC -ACGGAAGTGTGTTAGCTGTTGCTG -ACGGAAGTGTGTTAGCTGTCCATG -ACGGAAGTGTGTTAGCTGTGTGTG -ACGGAAGTGTGTTAGCTGCTAGTG -ACGGAAGTGTGTTAGCTGCATCTG -ACGGAAGTGTGTTAGCTGGAGTTG -ACGGAAGTGTGTTAGCTGAGACTG -ACGGAAGTGTGTTAGCTGTCGGTA -ACGGAAGTGTGTTAGCTGTGCCTA -ACGGAAGTGTGTTAGCTGCCACTA -ACGGAAGTGTGTTAGCTGGGAGTA -ACGGAAGTGTGTTAGCTGTCGTCT -ACGGAAGTGTGTTAGCTGTGCACT -ACGGAAGTGTGTTAGCTGCTGACT -ACGGAAGTGTGTTAGCTGCAACCT -ACGGAAGTGTGTTAGCTGGCTACT -ACGGAAGTGTGTTAGCTGGGATCT -ACGGAAGTGTGTTAGCTGAAGGCT -ACGGAAGTGTGTTAGCTGTCAACC -ACGGAAGTGTGTTAGCTGTGTTCC -ACGGAAGTGTGTTAGCTGATTCCC -ACGGAAGTGTGTTAGCTGTTCTCG -ACGGAAGTGTGTTAGCTGTAGACG -ACGGAAGTGTGTTAGCTGGTAACG -ACGGAAGTGTGTTAGCTGACTTCG -ACGGAAGTGTGTTAGCTGTACGCA -ACGGAAGTGTGTTAGCTGCTTGCA -ACGGAAGTGTGTTAGCTGCGAACA -ACGGAAGTGTGTTAGCTGCAGTCA -ACGGAAGTGTGTTAGCTGGATCCA -ACGGAAGTGTGTTAGCTGACGACA -ACGGAAGTGTGTTAGCTGAGCTCA -ACGGAAGTGTGTTAGCTGTCACGT -ACGGAAGTGTGTTAGCTGCGTAGT -ACGGAAGTGTGTTAGCTGGTCAGT -ACGGAAGTGTGTTAGCTGGAAGGT -ACGGAAGTGTGTTAGCTGAACCGT -ACGGAAGTGTGTTAGCTGTTGTGC -ACGGAAGTGTGTTAGCTGCTAAGC -ACGGAAGTGTGTTAGCTGACTAGC -ACGGAAGTGTGTTAGCTGAGATGC -ACGGAAGTGTGTTAGCTGTGAAGG -ACGGAAGTGTGTTAGCTGCAATGG -ACGGAAGTGTGTTAGCTGATGAGG -ACGGAAGTGTGTTAGCTGAATGGG -ACGGAAGTGTGTTAGCTGTCCTGA -ACGGAAGTGTGTTAGCTGTAGCGA -ACGGAAGTGTGTTAGCTGCACAGA -ACGGAAGTGTGTTAGCTGGCAAGA -ACGGAAGTGTGTTAGCTGGGTTGA -ACGGAAGTGTGTTAGCTGTCCGAT -ACGGAAGTGTGTTAGCTGTGGCAT -ACGGAAGTGTGTTAGCTGCGAGAT -ACGGAAGTGTGTTAGCTGTACCAC -ACGGAAGTGTGTTAGCTGCAGAAC -ACGGAAGTGTGTTAGCTGGTCTAC -ACGGAAGTGTGTTAGCTGACGTAC -ACGGAAGTGTGTTAGCTGAGTGAC -ACGGAAGTGTGTTAGCTGCTGTAG -ACGGAAGTGTGTTAGCTGCCTAAG -ACGGAAGTGTGTTAGCTGGTTCAG -ACGGAAGTGTGTTAGCTGGCATAG -ACGGAAGTGTGTTAGCTGGACAAG -ACGGAAGTGTGTTAGCTGAAGCAG -ACGGAAGTGTGTTAGCTGCGTCAA -ACGGAAGTGTGTTAGCTGGCTGAA -ACGGAAGTGTGTTAGCTGAGTACG -ACGGAAGTGTGTTAGCTGATCCGA -ACGGAAGTGTGTTAGCTGATGGGA -ACGGAAGTGTGTTAGCTGGTGCAA -ACGGAAGTGTGTTAGCTGGAGGAA -ACGGAAGTGTGTTAGCTGCAGGTA -ACGGAAGTGTGTTAGCTGGACTCT -ACGGAAGTGTGTTAGCTGAGTCCT -ACGGAAGTGTGTTAGCTGTAAGCC -ACGGAAGTGTGTTAGCTGATAGCC -ACGGAAGTGTGTTAGCTGTAACCG -ACGGAAGTGTGTTAGCTGATGCCA -ACGGAAGTGTGTAAGCCTGGAAAC -ACGGAAGTGTGTAAGCCTAACACC -ACGGAAGTGTGTAAGCCTATCGAG -ACGGAAGTGTGTAAGCCTCTCCTT -ACGGAAGTGTGTAAGCCTCCTGTT -ACGGAAGTGTGTAAGCCTCGGTTT -ACGGAAGTGTGTAAGCCTGTGGTT -ACGGAAGTGTGTAAGCCTGCCTTT -ACGGAAGTGTGTAAGCCTGGTCTT -ACGGAAGTGTGTAAGCCTACGCTT -ACGGAAGTGTGTAAGCCTAGCGTT -ACGGAAGTGTGTAAGCCTTTCGTC -ACGGAAGTGTGTAAGCCTTCTCTC -ACGGAAGTGTGTAAGCCTTGGATC -ACGGAAGTGTGTAAGCCTCACTTC -ACGGAAGTGTGTAAGCCTGTACTC -ACGGAAGTGTGTAAGCCTGATGTC -ACGGAAGTGTGTAAGCCTACAGTC -ACGGAAGTGTGTAAGCCTTTGCTG -ACGGAAGTGTGTAAGCCTTCCATG -ACGGAAGTGTGTAAGCCTTGTGTG -ACGGAAGTGTGTAAGCCTCTAGTG -ACGGAAGTGTGTAAGCCTCATCTG -ACGGAAGTGTGTAAGCCTGAGTTG -ACGGAAGTGTGTAAGCCTAGACTG -ACGGAAGTGTGTAAGCCTTCGGTA -ACGGAAGTGTGTAAGCCTTGCCTA -ACGGAAGTGTGTAAGCCTCCACTA -ACGGAAGTGTGTAAGCCTGGAGTA -ACGGAAGTGTGTAAGCCTTCGTCT -ACGGAAGTGTGTAAGCCTTGCACT -ACGGAAGTGTGTAAGCCTCTGACT -ACGGAAGTGTGTAAGCCTCAACCT -ACGGAAGTGTGTAAGCCTGCTACT -ACGGAAGTGTGTAAGCCTGGATCT -ACGGAAGTGTGTAAGCCTAAGGCT -ACGGAAGTGTGTAAGCCTTCAACC -ACGGAAGTGTGTAAGCCTTGTTCC -ACGGAAGTGTGTAAGCCTATTCCC -ACGGAAGTGTGTAAGCCTTTCTCG -ACGGAAGTGTGTAAGCCTTAGACG -ACGGAAGTGTGTAAGCCTGTAACG -ACGGAAGTGTGTAAGCCTACTTCG -ACGGAAGTGTGTAAGCCTTACGCA -ACGGAAGTGTGTAAGCCTCTTGCA -ACGGAAGTGTGTAAGCCTCGAACA -ACGGAAGTGTGTAAGCCTCAGTCA -ACGGAAGTGTGTAAGCCTGATCCA -ACGGAAGTGTGTAAGCCTACGACA -ACGGAAGTGTGTAAGCCTAGCTCA -ACGGAAGTGTGTAAGCCTTCACGT -ACGGAAGTGTGTAAGCCTCGTAGT -ACGGAAGTGTGTAAGCCTGTCAGT -ACGGAAGTGTGTAAGCCTGAAGGT -ACGGAAGTGTGTAAGCCTAACCGT -ACGGAAGTGTGTAAGCCTTTGTGC -ACGGAAGTGTGTAAGCCTCTAAGC -ACGGAAGTGTGTAAGCCTACTAGC -ACGGAAGTGTGTAAGCCTAGATGC -ACGGAAGTGTGTAAGCCTTGAAGG -ACGGAAGTGTGTAAGCCTCAATGG -ACGGAAGTGTGTAAGCCTATGAGG -ACGGAAGTGTGTAAGCCTAATGGG -ACGGAAGTGTGTAAGCCTTCCTGA -ACGGAAGTGTGTAAGCCTTAGCGA -ACGGAAGTGTGTAAGCCTCACAGA -ACGGAAGTGTGTAAGCCTGCAAGA -ACGGAAGTGTGTAAGCCTGGTTGA -ACGGAAGTGTGTAAGCCTTCCGAT -ACGGAAGTGTGTAAGCCTTGGCAT -ACGGAAGTGTGTAAGCCTCGAGAT -ACGGAAGTGTGTAAGCCTTACCAC -ACGGAAGTGTGTAAGCCTCAGAAC -ACGGAAGTGTGTAAGCCTGTCTAC -ACGGAAGTGTGTAAGCCTACGTAC -ACGGAAGTGTGTAAGCCTAGTGAC -ACGGAAGTGTGTAAGCCTCTGTAG -ACGGAAGTGTGTAAGCCTCCTAAG -ACGGAAGTGTGTAAGCCTGTTCAG -ACGGAAGTGTGTAAGCCTGCATAG -ACGGAAGTGTGTAAGCCTGACAAG -ACGGAAGTGTGTAAGCCTAAGCAG -ACGGAAGTGTGTAAGCCTCGTCAA -ACGGAAGTGTGTAAGCCTGCTGAA -ACGGAAGTGTGTAAGCCTAGTACG -ACGGAAGTGTGTAAGCCTATCCGA -ACGGAAGTGTGTAAGCCTATGGGA -ACGGAAGTGTGTAAGCCTGTGCAA -ACGGAAGTGTGTAAGCCTGAGGAA -ACGGAAGTGTGTAAGCCTCAGGTA -ACGGAAGTGTGTAAGCCTGACTCT -ACGGAAGTGTGTAAGCCTAGTCCT -ACGGAAGTGTGTAAGCCTTAAGCC -ACGGAAGTGTGTAAGCCTATAGCC -ACGGAAGTGTGTAAGCCTTAACCG -ACGGAAGTGTGTAAGCCTATGCCA -ACGGAAGTGTGTCAGGTTGGAAAC -ACGGAAGTGTGTCAGGTTAACACC -ACGGAAGTGTGTCAGGTTATCGAG -ACGGAAGTGTGTCAGGTTCTCCTT -ACGGAAGTGTGTCAGGTTCCTGTT -ACGGAAGTGTGTCAGGTTCGGTTT -ACGGAAGTGTGTCAGGTTGTGGTT -ACGGAAGTGTGTCAGGTTGCCTTT -ACGGAAGTGTGTCAGGTTGGTCTT -ACGGAAGTGTGTCAGGTTACGCTT -ACGGAAGTGTGTCAGGTTAGCGTT -ACGGAAGTGTGTCAGGTTTTCGTC -ACGGAAGTGTGTCAGGTTTCTCTC -ACGGAAGTGTGTCAGGTTTGGATC -ACGGAAGTGTGTCAGGTTCACTTC -ACGGAAGTGTGTCAGGTTGTACTC -ACGGAAGTGTGTCAGGTTGATGTC -ACGGAAGTGTGTCAGGTTACAGTC -ACGGAAGTGTGTCAGGTTTTGCTG -ACGGAAGTGTGTCAGGTTTCCATG -ACGGAAGTGTGTCAGGTTTGTGTG -ACGGAAGTGTGTCAGGTTCTAGTG -ACGGAAGTGTGTCAGGTTCATCTG -ACGGAAGTGTGTCAGGTTGAGTTG -ACGGAAGTGTGTCAGGTTAGACTG -ACGGAAGTGTGTCAGGTTTCGGTA -ACGGAAGTGTGTCAGGTTTGCCTA -ACGGAAGTGTGTCAGGTTCCACTA -ACGGAAGTGTGTCAGGTTGGAGTA -ACGGAAGTGTGTCAGGTTTCGTCT -ACGGAAGTGTGTCAGGTTTGCACT -ACGGAAGTGTGTCAGGTTCTGACT -ACGGAAGTGTGTCAGGTTCAACCT -ACGGAAGTGTGTCAGGTTGCTACT -ACGGAAGTGTGTCAGGTTGGATCT -ACGGAAGTGTGTCAGGTTAAGGCT -ACGGAAGTGTGTCAGGTTTCAACC -ACGGAAGTGTGTCAGGTTTGTTCC -ACGGAAGTGTGTCAGGTTATTCCC -ACGGAAGTGTGTCAGGTTTTCTCG -ACGGAAGTGTGTCAGGTTTAGACG -ACGGAAGTGTGTCAGGTTGTAACG -ACGGAAGTGTGTCAGGTTACTTCG -ACGGAAGTGTGTCAGGTTTACGCA -ACGGAAGTGTGTCAGGTTCTTGCA -ACGGAAGTGTGTCAGGTTCGAACA -ACGGAAGTGTGTCAGGTTCAGTCA -ACGGAAGTGTGTCAGGTTGATCCA -ACGGAAGTGTGTCAGGTTACGACA -ACGGAAGTGTGTCAGGTTAGCTCA -ACGGAAGTGTGTCAGGTTTCACGT -ACGGAAGTGTGTCAGGTTCGTAGT -ACGGAAGTGTGTCAGGTTGTCAGT -ACGGAAGTGTGTCAGGTTGAAGGT -ACGGAAGTGTGTCAGGTTAACCGT -ACGGAAGTGTGTCAGGTTTTGTGC -ACGGAAGTGTGTCAGGTTCTAAGC -ACGGAAGTGTGTCAGGTTACTAGC -ACGGAAGTGTGTCAGGTTAGATGC -ACGGAAGTGTGTCAGGTTTGAAGG -ACGGAAGTGTGTCAGGTTCAATGG -ACGGAAGTGTGTCAGGTTATGAGG -ACGGAAGTGTGTCAGGTTAATGGG -ACGGAAGTGTGTCAGGTTTCCTGA -ACGGAAGTGTGTCAGGTTTAGCGA -ACGGAAGTGTGTCAGGTTCACAGA -ACGGAAGTGTGTCAGGTTGCAAGA -ACGGAAGTGTGTCAGGTTGGTTGA -ACGGAAGTGTGTCAGGTTTCCGAT -ACGGAAGTGTGTCAGGTTTGGCAT -ACGGAAGTGTGTCAGGTTCGAGAT -ACGGAAGTGTGTCAGGTTTACCAC -ACGGAAGTGTGTCAGGTTCAGAAC -ACGGAAGTGTGTCAGGTTGTCTAC -ACGGAAGTGTGTCAGGTTACGTAC -ACGGAAGTGTGTCAGGTTAGTGAC -ACGGAAGTGTGTCAGGTTCTGTAG -ACGGAAGTGTGTCAGGTTCCTAAG -ACGGAAGTGTGTCAGGTTGTTCAG -ACGGAAGTGTGTCAGGTTGCATAG -ACGGAAGTGTGTCAGGTTGACAAG -ACGGAAGTGTGTCAGGTTAAGCAG -ACGGAAGTGTGTCAGGTTCGTCAA -ACGGAAGTGTGTCAGGTTGCTGAA -ACGGAAGTGTGTCAGGTTAGTACG -ACGGAAGTGTGTCAGGTTATCCGA -ACGGAAGTGTGTCAGGTTATGGGA -ACGGAAGTGTGTCAGGTTGTGCAA -ACGGAAGTGTGTCAGGTTGAGGAA -ACGGAAGTGTGTCAGGTTCAGGTA -ACGGAAGTGTGTCAGGTTGACTCT -ACGGAAGTGTGTCAGGTTAGTCCT -ACGGAAGTGTGTCAGGTTTAAGCC -ACGGAAGTGTGTCAGGTTATAGCC -ACGGAAGTGTGTCAGGTTTAACCG -ACGGAAGTGTGTCAGGTTATGCCA -ACGGAAGTGTGTTAGGCAGGAAAC -ACGGAAGTGTGTTAGGCAAACACC -ACGGAAGTGTGTTAGGCAATCGAG -ACGGAAGTGTGTTAGGCACTCCTT -ACGGAAGTGTGTTAGGCACCTGTT -ACGGAAGTGTGTTAGGCACGGTTT -ACGGAAGTGTGTTAGGCAGTGGTT -ACGGAAGTGTGTTAGGCAGCCTTT -ACGGAAGTGTGTTAGGCAGGTCTT -ACGGAAGTGTGTTAGGCAACGCTT -ACGGAAGTGTGTTAGGCAAGCGTT -ACGGAAGTGTGTTAGGCATTCGTC -ACGGAAGTGTGTTAGGCATCTCTC -ACGGAAGTGTGTTAGGCATGGATC -ACGGAAGTGTGTTAGGCACACTTC -ACGGAAGTGTGTTAGGCAGTACTC -ACGGAAGTGTGTTAGGCAGATGTC -ACGGAAGTGTGTTAGGCAACAGTC -ACGGAAGTGTGTTAGGCATTGCTG -ACGGAAGTGTGTTAGGCATCCATG -ACGGAAGTGTGTTAGGCATGTGTG -ACGGAAGTGTGTTAGGCACTAGTG -ACGGAAGTGTGTTAGGCACATCTG -ACGGAAGTGTGTTAGGCAGAGTTG -ACGGAAGTGTGTTAGGCAAGACTG -ACGGAAGTGTGTTAGGCATCGGTA -ACGGAAGTGTGTTAGGCATGCCTA -ACGGAAGTGTGTTAGGCACCACTA -ACGGAAGTGTGTTAGGCAGGAGTA -ACGGAAGTGTGTTAGGCATCGTCT -ACGGAAGTGTGTTAGGCATGCACT -ACGGAAGTGTGTTAGGCACTGACT -ACGGAAGTGTGTTAGGCACAACCT -ACGGAAGTGTGTTAGGCAGCTACT -ACGGAAGTGTGTTAGGCAGGATCT -ACGGAAGTGTGTTAGGCAAAGGCT -ACGGAAGTGTGTTAGGCATCAACC -ACGGAAGTGTGTTAGGCATGTTCC -ACGGAAGTGTGTTAGGCAATTCCC -ACGGAAGTGTGTTAGGCATTCTCG -ACGGAAGTGTGTTAGGCATAGACG -ACGGAAGTGTGTTAGGCAGTAACG -ACGGAAGTGTGTTAGGCAACTTCG -ACGGAAGTGTGTTAGGCATACGCA -ACGGAAGTGTGTTAGGCACTTGCA -ACGGAAGTGTGTTAGGCACGAACA -ACGGAAGTGTGTTAGGCACAGTCA -ACGGAAGTGTGTTAGGCAGATCCA -ACGGAAGTGTGTTAGGCAACGACA -ACGGAAGTGTGTTAGGCAAGCTCA -ACGGAAGTGTGTTAGGCATCACGT -ACGGAAGTGTGTTAGGCACGTAGT -ACGGAAGTGTGTTAGGCAGTCAGT -ACGGAAGTGTGTTAGGCAGAAGGT -ACGGAAGTGTGTTAGGCAAACCGT -ACGGAAGTGTGTTAGGCATTGTGC -ACGGAAGTGTGTTAGGCACTAAGC -ACGGAAGTGTGTTAGGCAACTAGC -ACGGAAGTGTGTTAGGCAAGATGC -ACGGAAGTGTGTTAGGCATGAAGG -ACGGAAGTGTGTTAGGCACAATGG -ACGGAAGTGTGTTAGGCAATGAGG -ACGGAAGTGTGTTAGGCAAATGGG -ACGGAAGTGTGTTAGGCATCCTGA -ACGGAAGTGTGTTAGGCATAGCGA -ACGGAAGTGTGTTAGGCACACAGA -ACGGAAGTGTGTTAGGCAGCAAGA -ACGGAAGTGTGTTAGGCAGGTTGA -ACGGAAGTGTGTTAGGCATCCGAT -ACGGAAGTGTGTTAGGCATGGCAT -ACGGAAGTGTGTTAGGCACGAGAT -ACGGAAGTGTGTTAGGCATACCAC -ACGGAAGTGTGTTAGGCACAGAAC -ACGGAAGTGTGTTAGGCAGTCTAC -ACGGAAGTGTGTTAGGCAACGTAC -ACGGAAGTGTGTTAGGCAAGTGAC -ACGGAAGTGTGTTAGGCACTGTAG -ACGGAAGTGTGTTAGGCACCTAAG -ACGGAAGTGTGTTAGGCAGTTCAG -ACGGAAGTGTGTTAGGCAGCATAG -ACGGAAGTGTGTTAGGCAGACAAG -ACGGAAGTGTGTTAGGCAAAGCAG -ACGGAAGTGTGTTAGGCACGTCAA -ACGGAAGTGTGTTAGGCAGCTGAA -ACGGAAGTGTGTTAGGCAAGTACG -ACGGAAGTGTGTTAGGCAATCCGA -ACGGAAGTGTGTTAGGCAATGGGA -ACGGAAGTGTGTTAGGCAGTGCAA -ACGGAAGTGTGTTAGGCAGAGGAA -ACGGAAGTGTGTTAGGCACAGGTA -ACGGAAGTGTGTTAGGCAGACTCT -ACGGAAGTGTGTTAGGCAAGTCCT -ACGGAAGTGTGTTAGGCATAAGCC -ACGGAAGTGTGTTAGGCAATAGCC -ACGGAAGTGTGTTAGGCATAACCG -ACGGAAGTGTGTTAGGCAATGCCA -ACGGAAGTGTGTAAGGACGGAAAC -ACGGAAGTGTGTAAGGACAACACC -ACGGAAGTGTGTAAGGACATCGAG -ACGGAAGTGTGTAAGGACCTCCTT -ACGGAAGTGTGTAAGGACCCTGTT -ACGGAAGTGTGTAAGGACCGGTTT -ACGGAAGTGTGTAAGGACGTGGTT -ACGGAAGTGTGTAAGGACGCCTTT -ACGGAAGTGTGTAAGGACGGTCTT -ACGGAAGTGTGTAAGGACACGCTT -ACGGAAGTGTGTAAGGACAGCGTT -ACGGAAGTGTGTAAGGACTTCGTC -ACGGAAGTGTGTAAGGACTCTCTC -ACGGAAGTGTGTAAGGACTGGATC -ACGGAAGTGTGTAAGGACCACTTC -ACGGAAGTGTGTAAGGACGTACTC -ACGGAAGTGTGTAAGGACGATGTC -ACGGAAGTGTGTAAGGACACAGTC -ACGGAAGTGTGTAAGGACTTGCTG -ACGGAAGTGTGTAAGGACTCCATG -ACGGAAGTGTGTAAGGACTGTGTG -ACGGAAGTGTGTAAGGACCTAGTG -ACGGAAGTGTGTAAGGACCATCTG -ACGGAAGTGTGTAAGGACGAGTTG -ACGGAAGTGTGTAAGGACAGACTG -ACGGAAGTGTGTAAGGACTCGGTA -ACGGAAGTGTGTAAGGACTGCCTA -ACGGAAGTGTGTAAGGACCCACTA -ACGGAAGTGTGTAAGGACGGAGTA -ACGGAAGTGTGTAAGGACTCGTCT -ACGGAAGTGTGTAAGGACTGCACT -ACGGAAGTGTGTAAGGACCTGACT -ACGGAAGTGTGTAAGGACCAACCT -ACGGAAGTGTGTAAGGACGCTACT -ACGGAAGTGTGTAAGGACGGATCT -ACGGAAGTGTGTAAGGACAAGGCT -ACGGAAGTGTGTAAGGACTCAACC -ACGGAAGTGTGTAAGGACTGTTCC -ACGGAAGTGTGTAAGGACATTCCC -ACGGAAGTGTGTAAGGACTTCTCG -ACGGAAGTGTGTAAGGACTAGACG -ACGGAAGTGTGTAAGGACGTAACG -ACGGAAGTGTGTAAGGACACTTCG -ACGGAAGTGTGTAAGGACTACGCA -ACGGAAGTGTGTAAGGACCTTGCA -ACGGAAGTGTGTAAGGACCGAACA -ACGGAAGTGTGTAAGGACCAGTCA -ACGGAAGTGTGTAAGGACGATCCA -ACGGAAGTGTGTAAGGACACGACA -ACGGAAGTGTGTAAGGACAGCTCA -ACGGAAGTGTGTAAGGACTCACGT -ACGGAAGTGTGTAAGGACCGTAGT -ACGGAAGTGTGTAAGGACGTCAGT -ACGGAAGTGTGTAAGGACGAAGGT -ACGGAAGTGTGTAAGGACAACCGT -ACGGAAGTGTGTAAGGACTTGTGC -ACGGAAGTGTGTAAGGACCTAAGC -ACGGAAGTGTGTAAGGACACTAGC -ACGGAAGTGTGTAAGGACAGATGC -ACGGAAGTGTGTAAGGACTGAAGG -ACGGAAGTGTGTAAGGACCAATGG -ACGGAAGTGTGTAAGGACATGAGG -ACGGAAGTGTGTAAGGACAATGGG -ACGGAAGTGTGTAAGGACTCCTGA -ACGGAAGTGTGTAAGGACTAGCGA -ACGGAAGTGTGTAAGGACCACAGA -ACGGAAGTGTGTAAGGACGCAAGA -ACGGAAGTGTGTAAGGACGGTTGA -ACGGAAGTGTGTAAGGACTCCGAT -ACGGAAGTGTGTAAGGACTGGCAT -ACGGAAGTGTGTAAGGACCGAGAT -ACGGAAGTGTGTAAGGACTACCAC -ACGGAAGTGTGTAAGGACCAGAAC -ACGGAAGTGTGTAAGGACGTCTAC -ACGGAAGTGTGTAAGGACACGTAC -ACGGAAGTGTGTAAGGACAGTGAC -ACGGAAGTGTGTAAGGACCTGTAG -ACGGAAGTGTGTAAGGACCCTAAG -ACGGAAGTGTGTAAGGACGTTCAG -ACGGAAGTGTGTAAGGACGCATAG -ACGGAAGTGTGTAAGGACGACAAG -ACGGAAGTGTGTAAGGACAAGCAG -ACGGAAGTGTGTAAGGACCGTCAA -ACGGAAGTGTGTAAGGACGCTGAA -ACGGAAGTGTGTAAGGACAGTACG -ACGGAAGTGTGTAAGGACATCCGA -ACGGAAGTGTGTAAGGACATGGGA -ACGGAAGTGTGTAAGGACGTGCAA -ACGGAAGTGTGTAAGGACGAGGAA -ACGGAAGTGTGTAAGGACCAGGTA -ACGGAAGTGTGTAAGGACGACTCT -ACGGAAGTGTGTAAGGACAGTCCT -ACGGAAGTGTGTAAGGACTAAGCC -ACGGAAGTGTGTAAGGACATAGCC -ACGGAAGTGTGTAAGGACTAACCG -ACGGAAGTGTGTAAGGACATGCCA -ACGGAAGTGTGTCAGAAGGGAAAC -ACGGAAGTGTGTCAGAAGAACACC -ACGGAAGTGTGTCAGAAGATCGAG -ACGGAAGTGTGTCAGAAGCTCCTT -ACGGAAGTGTGTCAGAAGCCTGTT -ACGGAAGTGTGTCAGAAGCGGTTT -ACGGAAGTGTGTCAGAAGGTGGTT -ACGGAAGTGTGTCAGAAGGCCTTT -ACGGAAGTGTGTCAGAAGGGTCTT -ACGGAAGTGTGTCAGAAGACGCTT -ACGGAAGTGTGTCAGAAGAGCGTT -ACGGAAGTGTGTCAGAAGTTCGTC -ACGGAAGTGTGTCAGAAGTCTCTC -ACGGAAGTGTGTCAGAAGTGGATC -ACGGAAGTGTGTCAGAAGCACTTC -ACGGAAGTGTGTCAGAAGGTACTC -ACGGAAGTGTGTCAGAAGGATGTC -ACGGAAGTGTGTCAGAAGACAGTC -ACGGAAGTGTGTCAGAAGTTGCTG -ACGGAAGTGTGTCAGAAGTCCATG -ACGGAAGTGTGTCAGAAGTGTGTG -ACGGAAGTGTGTCAGAAGCTAGTG -ACGGAAGTGTGTCAGAAGCATCTG -ACGGAAGTGTGTCAGAAGGAGTTG -ACGGAAGTGTGTCAGAAGAGACTG -ACGGAAGTGTGTCAGAAGTCGGTA -ACGGAAGTGTGTCAGAAGTGCCTA -ACGGAAGTGTGTCAGAAGCCACTA -ACGGAAGTGTGTCAGAAGGGAGTA -ACGGAAGTGTGTCAGAAGTCGTCT -ACGGAAGTGTGTCAGAAGTGCACT -ACGGAAGTGTGTCAGAAGCTGACT -ACGGAAGTGTGTCAGAAGCAACCT -ACGGAAGTGTGTCAGAAGGCTACT -ACGGAAGTGTGTCAGAAGGGATCT -ACGGAAGTGTGTCAGAAGAAGGCT -ACGGAAGTGTGTCAGAAGTCAACC -ACGGAAGTGTGTCAGAAGTGTTCC -ACGGAAGTGTGTCAGAAGATTCCC -ACGGAAGTGTGTCAGAAGTTCTCG -ACGGAAGTGTGTCAGAAGTAGACG -ACGGAAGTGTGTCAGAAGGTAACG -ACGGAAGTGTGTCAGAAGACTTCG -ACGGAAGTGTGTCAGAAGTACGCA -ACGGAAGTGTGTCAGAAGCTTGCA -ACGGAAGTGTGTCAGAAGCGAACA -ACGGAAGTGTGTCAGAAGCAGTCA -ACGGAAGTGTGTCAGAAGGATCCA -ACGGAAGTGTGTCAGAAGACGACA -ACGGAAGTGTGTCAGAAGAGCTCA -ACGGAAGTGTGTCAGAAGTCACGT -ACGGAAGTGTGTCAGAAGCGTAGT -ACGGAAGTGTGTCAGAAGGTCAGT -ACGGAAGTGTGTCAGAAGGAAGGT -ACGGAAGTGTGTCAGAAGAACCGT -ACGGAAGTGTGTCAGAAGTTGTGC -ACGGAAGTGTGTCAGAAGCTAAGC -ACGGAAGTGTGTCAGAAGACTAGC -ACGGAAGTGTGTCAGAAGAGATGC -ACGGAAGTGTGTCAGAAGTGAAGG -ACGGAAGTGTGTCAGAAGCAATGG -ACGGAAGTGTGTCAGAAGATGAGG -ACGGAAGTGTGTCAGAAGAATGGG -ACGGAAGTGTGTCAGAAGTCCTGA -ACGGAAGTGTGTCAGAAGTAGCGA -ACGGAAGTGTGTCAGAAGCACAGA -ACGGAAGTGTGTCAGAAGGCAAGA -ACGGAAGTGTGTCAGAAGGGTTGA -ACGGAAGTGTGTCAGAAGTCCGAT -ACGGAAGTGTGTCAGAAGTGGCAT -ACGGAAGTGTGTCAGAAGCGAGAT -ACGGAAGTGTGTCAGAAGTACCAC -ACGGAAGTGTGTCAGAAGCAGAAC -ACGGAAGTGTGTCAGAAGGTCTAC -ACGGAAGTGTGTCAGAAGACGTAC -ACGGAAGTGTGTCAGAAGAGTGAC -ACGGAAGTGTGTCAGAAGCTGTAG -ACGGAAGTGTGTCAGAAGCCTAAG -ACGGAAGTGTGTCAGAAGGTTCAG -ACGGAAGTGTGTCAGAAGGCATAG -ACGGAAGTGTGTCAGAAGGACAAG -ACGGAAGTGTGTCAGAAGAAGCAG -ACGGAAGTGTGTCAGAAGCGTCAA -ACGGAAGTGTGTCAGAAGGCTGAA -ACGGAAGTGTGTCAGAAGAGTACG -ACGGAAGTGTGTCAGAAGATCCGA -ACGGAAGTGTGTCAGAAGATGGGA -ACGGAAGTGTGTCAGAAGGTGCAA -ACGGAAGTGTGTCAGAAGGAGGAA -ACGGAAGTGTGTCAGAAGCAGGTA -ACGGAAGTGTGTCAGAAGGACTCT -ACGGAAGTGTGTCAGAAGAGTCCT -ACGGAAGTGTGTCAGAAGTAAGCC -ACGGAAGTGTGTCAGAAGATAGCC -ACGGAAGTGTGTCAGAAGTAACCG -ACGGAAGTGTGTCAGAAGATGCCA -ACGGAAGTGTGTCAACGTGGAAAC -ACGGAAGTGTGTCAACGTAACACC -ACGGAAGTGTGTCAACGTATCGAG -ACGGAAGTGTGTCAACGTCTCCTT -ACGGAAGTGTGTCAACGTCCTGTT -ACGGAAGTGTGTCAACGTCGGTTT -ACGGAAGTGTGTCAACGTGTGGTT -ACGGAAGTGTGTCAACGTGCCTTT -ACGGAAGTGTGTCAACGTGGTCTT -ACGGAAGTGTGTCAACGTACGCTT -ACGGAAGTGTGTCAACGTAGCGTT -ACGGAAGTGTGTCAACGTTTCGTC -ACGGAAGTGTGTCAACGTTCTCTC -ACGGAAGTGTGTCAACGTTGGATC -ACGGAAGTGTGTCAACGTCACTTC -ACGGAAGTGTGTCAACGTGTACTC -ACGGAAGTGTGTCAACGTGATGTC -ACGGAAGTGTGTCAACGTACAGTC -ACGGAAGTGTGTCAACGTTTGCTG -ACGGAAGTGTGTCAACGTTCCATG -ACGGAAGTGTGTCAACGTTGTGTG -ACGGAAGTGTGTCAACGTCTAGTG -ACGGAAGTGTGTCAACGTCATCTG -ACGGAAGTGTGTCAACGTGAGTTG -ACGGAAGTGTGTCAACGTAGACTG -ACGGAAGTGTGTCAACGTTCGGTA -ACGGAAGTGTGTCAACGTTGCCTA -ACGGAAGTGTGTCAACGTCCACTA -ACGGAAGTGTGTCAACGTGGAGTA -ACGGAAGTGTGTCAACGTTCGTCT -ACGGAAGTGTGTCAACGTTGCACT -ACGGAAGTGTGTCAACGTCTGACT -ACGGAAGTGTGTCAACGTCAACCT -ACGGAAGTGTGTCAACGTGCTACT -ACGGAAGTGTGTCAACGTGGATCT -ACGGAAGTGTGTCAACGTAAGGCT -ACGGAAGTGTGTCAACGTTCAACC -ACGGAAGTGTGTCAACGTTGTTCC -ACGGAAGTGTGTCAACGTATTCCC -ACGGAAGTGTGTCAACGTTTCTCG -ACGGAAGTGTGTCAACGTTAGACG -ACGGAAGTGTGTCAACGTGTAACG -ACGGAAGTGTGTCAACGTACTTCG -ACGGAAGTGTGTCAACGTTACGCA -ACGGAAGTGTGTCAACGTCTTGCA -ACGGAAGTGTGTCAACGTCGAACA -ACGGAAGTGTGTCAACGTCAGTCA -ACGGAAGTGTGTCAACGTGATCCA -ACGGAAGTGTGTCAACGTACGACA -ACGGAAGTGTGTCAACGTAGCTCA -ACGGAAGTGTGTCAACGTTCACGT -ACGGAAGTGTGTCAACGTCGTAGT -ACGGAAGTGTGTCAACGTGTCAGT -ACGGAAGTGTGTCAACGTGAAGGT -ACGGAAGTGTGTCAACGTAACCGT -ACGGAAGTGTGTCAACGTTTGTGC -ACGGAAGTGTGTCAACGTCTAAGC -ACGGAAGTGTGTCAACGTACTAGC -ACGGAAGTGTGTCAACGTAGATGC -ACGGAAGTGTGTCAACGTTGAAGG -ACGGAAGTGTGTCAACGTCAATGG -ACGGAAGTGTGTCAACGTATGAGG -ACGGAAGTGTGTCAACGTAATGGG -ACGGAAGTGTGTCAACGTTCCTGA -ACGGAAGTGTGTCAACGTTAGCGA -ACGGAAGTGTGTCAACGTCACAGA -ACGGAAGTGTGTCAACGTGCAAGA -ACGGAAGTGTGTCAACGTGGTTGA -ACGGAAGTGTGTCAACGTTCCGAT -ACGGAAGTGTGTCAACGTTGGCAT -ACGGAAGTGTGTCAACGTCGAGAT -ACGGAAGTGTGTCAACGTTACCAC -ACGGAAGTGTGTCAACGTCAGAAC -ACGGAAGTGTGTCAACGTGTCTAC -ACGGAAGTGTGTCAACGTACGTAC -ACGGAAGTGTGTCAACGTAGTGAC -ACGGAAGTGTGTCAACGTCTGTAG -ACGGAAGTGTGTCAACGTCCTAAG -ACGGAAGTGTGTCAACGTGTTCAG -ACGGAAGTGTGTCAACGTGCATAG -ACGGAAGTGTGTCAACGTGACAAG -ACGGAAGTGTGTCAACGTAAGCAG -ACGGAAGTGTGTCAACGTCGTCAA -ACGGAAGTGTGTCAACGTGCTGAA -ACGGAAGTGTGTCAACGTAGTACG -ACGGAAGTGTGTCAACGTATCCGA -ACGGAAGTGTGTCAACGTATGGGA -ACGGAAGTGTGTCAACGTGTGCAA -ACGGAAGTGTGTCAACGTGAGGAA -ACGGAAGTGTGTCAACGTCAGGTA -ACGGAAGTGTGTCAACGTGACTCT -ACGGAAGTGTGTCAACGTAGTCCT -ACGGAAGTGTGTCAACGTTAAGCC -ACGGAAGTGTGTCAACGTATAGCC -ACGGAAGTGTGTCAACGTTAACCG -ACGGAAGTGTGTCAACGTATGCCA -ACGGAAGTGTGTGAAGCTGGAAAC -ACGGAAGTGTGTGAAGCTAACACC -ACGGAAGTGTGTGAAGCTATCGAG -ACGGAAGTGTGTGAAGCTCTCCTT -ACGGAAGTGTGTGAAGCTCCTGTT -ACGGAAGTGTGTGAAGCTCGGTTT -ACGGAAGTGTGTGAAGCTGTGGTT -ACGGAAGTGTGTGAAGCTGCCTTT -ACGGAAGTGTGTGAAGCTGGTCTT -ACGGAAGTGTGTGAAGCTACGCTT -ACGGAAGTGTGTGAAGCTAGCGTT -ACGGAAGTGTGTGAAGCTTTCGTC -ACGGAAGTGTGTGAAGCTTCTCTC -ACGGAAGTGTGTGAAGCTTGGATC -ACGGAAGTGTGTGAAGCTCACTTC -ACGGAAGTGTGTGAAGCTGTACTC -ACGGAAGTGTGTGAAGCTGATGTC -ACGGAAGTGTGTGAAGCTACAGTC -ACGGAAGTGTGTGAAGCTTTGCTG -ACGGAAGTGTGTGAAGCTTCCATG -ACGGAAGTGTGTGAAGCTTGTGTG -ACGGAAGTGTGTGAAGCTCTAGTG -ACGGAAGTGTGTGAAGCTCATCTG -ACGGAAGTGTGTGAAGCTGAGTTG -ACGGAAGTGTGTGAAGCTAGACTG -ACGGAAGTGTGTGAAGCTTCGGTA -ACGGAAGTGTGTGAAGCTTGCCTA -ACGGAAGTGTGTGAAGCTCCACTA -ACGGAAGTGTGTGAAGCTGGAGTA -ACGGAAGTGTGTGAAGCTTCGTCT -ACGGAAGTGTGTGAAGCTTGCACT -ACGGAAGTGTGTGAAGCTCTGACT -ACGGAAGTGTGTGAAGCTCAACCT -ACGGAAGTGTGTGAAGCTGCTACT -ACGGAAGTGTGTGAAGCTGGATCT -ACGGAAGTGTGTGAAGCTAAGGCT -ACGGAAGTGTGTGAAGCTTCAACC -ACGGAAGTGTGTGAAGCTTGTTCC -ACGGAAGTGTGTGAAGCTATTCCC -ACGGAAGTGTGTGAAGCTTTCTCG -ACGGAAGTGTGTGAAGCTTAGACG -ACGGAAGTGTGTGAAGCTGTAACG -ACGGAAGTGTGTGAAGCTACTTCG -ACGGAAGTGTGTGAAGCTTACGCA -ACGGAAGTGTGTGAAGCTCTTGCA -ACGGAAGTGTGTGAAGCTCGAACA -ACGGAAGTGTGTGAAGCTCAGTCA -ACGGAAGTGTGTGAAGCTGATCCA -ACGGAAGTGTGTGAAGCTACGACA -ACGGAAGTGTGTGAAGCTAGCTCA -ACGGAAGTGTGTGAAGCTTCACGT -ACGGAAGTGTGTGAAGCTCGTAGT -ACGGAAGTGTGTGAAGCTGTCAGT -ACGGAAGTGTGTGAAGCTGAAGGT -ACGGAAGTGTGTGAAGCTAACCGT -ACGGAAGTGTGTGAAGCTTTGTGC -ACGGAAGTGTGTGAAGCTCTAAGC -ACGGAAGTGTGTGAAGCTACTAGC -ACGGAAGTGTGTGAAGCTAGATGC -ACGGAAGTGTGTGAAGCTTGAAGG -ACGGAAGTGTGTGAAGCTCAATGG -ACGGAAGTGTGTGAAGCTATGAGG -ACGGAAGTGTGTGAAGCTAATGGG -ACGGAAGTGTGTGAAGCTTCCTGA -ACGGAAGTGTGTGAAGCTTAGCGA -ACGGAAGTGTGTGAAGCTCACAGA -ACGGAAGTGTGTGAAGCTGCAAGA -ACGGAAGTGTGTGAAGCTGGTTGA -ACGGAAGTGTGTGAAGCTTCCGAT -ACGGAAGTGTGTGAAGCTTGGCAT -ACGGAAGTGTGTGAAGCTCGAGAT -ACGGAAGTGTGTGAAGCTTACCAC -ACGGAAGTGTGTGAAGCTCAGAAC -ACGGAAGTGTGTGAAGCTGTCTAC -ACGGAAGTGTGTGAAGCTACGTAC -ACGGAAGTGTGTGAAGCTAGTGAC -ACGGAAGTGTGTGAAGCTCTGTAG -ACGGAAGTGTGTGAAGCTCCTAAG -ACGGAAGTGTGTGAAGCTGTTCAG -ACGGAAGTGTGTGAAGCTGCATAG -ACGGAAGTGTGTGAAGCTGACAAG -ACGGAAGTGTGTGAAGCTAAGCAG -ACGGAAGTGTGTGAAGCTCGTCAA -ACGGAAGTGTGTGAAGCTGCTGAA -ACGGAAGTGTGTGAAGCTAGTACG -ACGGAAGTGTGTGAAGCTATCCGA -ACGGAAGTGTGTGAAGCTATGGGA -ACGGAAGTGTGTGAAGCTGTGCAA -ACGGAAGTGTGTGAAGCTGAGGAA -ACGGAAGTGTGTGAAGCTCAGGTA -ACGGAAGTGTGTGAAGCTGACTCT -ACGGAAGTGTGTGAAGCTAGTCCT -ACGGAAGTGTGTGAAGCTTAAGCC -ACGGAAGTGTGTGAAGCTATAGCC -ACGGAAGTGTGTGAAGCTTAACCG -ACGGAAGTGTGTGAAGCTATGCCA -ACGGAAGTGTGTACGAGTGGAAAC -ACGGAAGTGTGTACGAGTAACACC -ACGGAAGTGTGTACGAGTATCGAG -ACGGAAGTGTGTACGAGTCTCCTT -ACGGAAGTGTGTACGAGTCCTGTT -ACGGAAGTGTGTACGAGTCGGTTT -ACGGAAGTGTGTACGAGTGTGGTT -ACGGAAGTGTGTACGAGTGCCTTT -ACGGAAGTGTGTACGAGTGGTCTT -ACGGAAGTGTGTACGAGTACGCTT -ACGGAAGTGTGTACGAGTAGCGTT -ACGGAAGTGTGTACGAGTTTCGTC -ACGGAAGTGTGTACGAGTTCTCTC -ACGGAAGTGTGTACGAGTTGGATC -ACGGAAGTGTGTACGAGTCACTTC -ACGGAAGTGTGTACGAGTGTACTC -ACGGAAGTGTGTACGAGTGATGTC -ACGGAAGTGTGTACGAGTACAGTC -ACGGAAGTGTGTACGAGTTTGCTG -ACGGAAGTGTGTACGAGTTCCATG -ACGGAAGTGTGTACGAGTTGTGTG -ACGGAAGTGTGTACGAGTCTAGTG -ACGGAAGTGTGTACGAGTCATCTG -ACGGAAGTGTGTACGAGTGAGTTG -ACGGAAGTGTGTACGAGTAGACTG -ACGGAAGTGTGTACGAGTTCGGTA -ACGGAAGTGTGTACGAGTTGCCTA -ACGGAAGTGTGTACGAGTCCACTA -ACGGAAGTGTGTACGAGTGGAGTA -ACGGAAGTGTGTACGAGTTCGTCT -ACGGAAGTGTGTACGAGTTGCACT -ACGGAAGTGTGTACGAGTCTGACT -ACGGAAGTGTGTACGAGTCAACCT -ACGGAAGTGTGTACGAGTGCTACT -ACGGAAGTGTGTACGAGTGGATCT -ACGGAAGTGTGTACGAGTAAGGCT -ACGGAAGTGTGTACGAGTTCAACC -ACGGAAGTGTGTACGAGTTGTTCC -ACGGAAGTGTGTACGAGTATTCCC -ACGGAAGTGTGTACGAGTTTCTCG -ACGGAAGTGTGTACGAGTTAGACG -ACGGAAGTGTGTACGAGTGTAACG -ACGGAAGTGTGTACGAGTACTTCG -ACGGAAGTGTGTACGAGTTACGCA -ACGGAAGTGTGTACGAGTCTTGCA -ACGGAAGTGTGTACGAGTCGAACA -ACGGAAGTGTGTACGAGTCAGTCA -ACGGAAGTGTGTACGAGTGATCCA -ACGGAAGTGTGTACGAGTACGACA -ACGGAAGTGTGTACGAGTAGCTCA -ACGGAAGTGTGTACGAGTTCACGT -ACGGAAGTGTGTACGAGTCGTAGT -ACGGAAGTGTGTACGAGTGTCAGT -ACGGAAGTGTGTACGAGTGAAGGT -ACGGAAGTGTGTACGAGTAACCGT -ACGGAAGTGTGTACGAGTTTGTGC -ACGGAAGTGTGTACGAGTCTAAGC -ACGGAAGTGTGTACGAGTACTAGC -ACGGAAGTGTGTACGAGTAGATGC -ACGGAAGTGTGTACGAGTTGAAGG -ACGGAAGTGTGTACGAGTCAATGG -ACGGAAGTGTGTACGAGTATGAGG -ACGGAAGTGTGTACGAGTAATGGG -ACGGAAGTGTGTACGAGTTCCTGA -ACGGAAGTGTGTACGAGTTAGCGA -ACGGAAGTGTGTACGAGTCACAGA -ACGGAAGTGTGTACGAGTGCAAGA -ACGGAAGTGTGTACGAGTGGTTGA -ACGGAAGTGTGTACGAGTTCCGAT -ACGGAAGTGTGTACGAGTTGGCAT -ACGGAAGTGTGTACGAGTCGAGAT -ACGGAAGTGTGTACGAGTTACCAC -ACGGAAGTGTGTACGAGTCAGAAC -ACGGAAGTGTGTACGAGTGTCTAC -ACGGAAGTGTGTACGAGTACGTAC -ACGGAAGTGTGTACGAGTAGTGAC -ACGGAAGTGTGTACGAGTCTGTAG -ACGGAAGTGTGTACGAGTCCTAAG -ACGGAAGTGTGTACGAGTGTTCAG -ACGGAAGTGTGTACGAGTGCATAG -ACGGAAGTGTGTACGAGTGACAAG -ACGGAAGTGTGTACGAGTAAGCAG -ACGGAAGTGTGTACGAGTCGTCAA -ACGGAAGTGTGTACGAGTGCTGAA -ACGGAAGTGTGTACGAGTAGTACG -ACGGAAGTGTGTACGAGTATCCGA -ACGGAAGTGTGTACGAGTATGGGA -ACGGAAGTGTGTACGAGTGTGCAA -ACGGAAGTGTGTACGAGTGAGGAA -ACGGAAGTGTGTACGAGTCAGGTA -ACGGAAGTGTGTACGAGTGACTCT -ACGGAAGTGTGTACGAGTAGTCCT -ACGGAAGTGTGTACGAGTTAAGCC -ACGGAAGTGTGTACGAGTATAGCC -ACGGAAGTGTGTACGAGTTAACCG -ACGGAAGTGTGTACGAGTATGCCA -ACGGAAGTGTGTCGAATCGGAAAC -ACGGAAGTGTGTCGAATCAACACC -ACGGAAGTGTGTCGAATCATCGAG -ACGGAAGTGTGTCGAATCCTCCTT -ACGGAAGTGTGTCGAATCCCTGTT -ACGGAAGTGTGTCGAATCCGGTTT -ACGGAAGTGTGTCGAATCGTGGTT -ACGGAAGTGTGTCGAATCGCCTTT -ACGGAAGTGTGTCGAATCGGTCTT -ACGGAAGTGTGTCGAATCACGCTT -ACGGAAGTGTGTCGAATCAGCGTT -ACGGAAGTGTGTCGAATCTTCGTC -ACGGAAGTGTGTCGAATCTCTCTC -ACGGAAGTGTGTCGAATCTGGATC -ACGGAAGTGTGTCGAATCCACTTC -ACGGAAGTGTGTCGAATCGTACTC -ACGGAAGTGTGTCGAATCGATGTC -ACGGAAGTGTGTCGAATCACAGTC -ACGGAAGTGTGTCGAATCTTGCTG -ACGGAAGTGTGTCGAATCTCCATG -ACGGAAGTGTGTCGAATCTGTGTG -ACGGAAGTGTGTCGAATCCTAGTG -ACGGAAGTGTGTCGAATCCATCTG -ACGGAAGTGTGTCGAATCGAGTTG -ACGGAAGTGTGTCGAATCAGACTG -ACGGAAGTGTGTCGAATCTCGGTA -ACGGAAGTGTGTCGAATCTGCCTA -ACGGAAGTGTGTCGAATCCCACTA -ACGGAAGTGTGTCGAATCGGAGTA -ACGGAAGTGTGTCGAATCTCGTCT -ACGGAAGTGTGTCGAATCTGCACT -ACGGAAGTGTGTCGAATCCTGACT -ACGGAAGTGTGTCGAATCCAACCT -ACGGAAGTGTGTCGAATCGCTACT -ACGGAAGTGTGTCGAATCGGATCT -ACGGAAGTGTGTCGAATCAAGGCT -ACGGAAGTGTGTCGAATCTCAACC -ACGGAAGTGTGTCGAATCTGTTCC -ACGGAAGTGTGTCGAATCATTCCC -ACGGAAGTGTGTCGAATCTTCTCG -ACGGAAGTGTGTCGAATCTAGACG -ACGGAAGTGTGTCGAATCGTAACG -ACGGAAGTGTGTCGAATCACTTCG -ACGGAAGTGTGTCGAATCTACGCA -ACGGAAGTGTGTCGAATCCTTGCA -ACGGAAGTGTGTCGAATCCGAACA -ACGGAAGTGTGTCGAATCCAGTCA -ACGGAAGTGTGTCGAATCGATCCA -ACGGAAGTGTGTCGAATCACGACA -ACGGAAGTGTGTCGAATCAGCTCA -ACGGAAGTGTGTCGAATCTCACGT -ACGGAAGTGTGTCGAATCCGTAGT -ACGGAAGTGTGTCGAATCGTCAGT -ACGGAAGTGTGTCGAATCGAAGGT -ACGGAAGTGTGTCGAATCAACCGT -ACGGAAGTGTGTCGAATCTTGTGC -ACGGAAGTGTGTCGAATCCTAAGC -ACGGAAGTGTGTCGAATCACTAGC -ACGGAAGTGTGTCGAATCAGATGC -ACGGAAGTGTGTCGAATCTGAAGG -ACGGAAGTGTGTCGAATCCAATGG -ACGGAAGTGTGTCGAATCATGAGG -ACGGAAGTGTGTCGAATCAATGGG -ACGGAAGTGTGTCGAATCTCCTGA -ACGGAAGTGTGTCGAATCTAGCGA -ACGGAAGTGTGTCGAATCCACAGA -ACGGAAGTGTGTCGAATCGCAAGA -ACGGAAGTGTGTCGAATCGGTTGA -ACGGAAGTGTGTCGAATCTCCGAT -ACGGAAGTGTGTCGAATCTGGCAT -ACGGAAGTGTGTCGAATCCGAGAT -ACGGAAGTGTGTCGAATCTACCAC -ACGGAAGTGTGTCGAATCCAGAAC -ACGGAAGTGTGTCGAATCGTCTAC -ACGGAAGTGTGTCGAATCACGTAC -ACGGAAGTGTGTCGAATCAGTGAC -ACGGAAGTGTGTCGAATCCTGTAG -ACGGAAGTGTGTCGAATCCCTAAG -ACGGAAGTGTGTCGAATCGTTCAG -ACGGAAGTGTGTCGAATCGCATAG -ACGGAAGTGTGTCGAATCGACAAG -ACGGAAGTGTGTCGAATCAAGCAG -ACGGAAGTGTGTCGAATCCGTCAA -ACGGAAGTGTGTCGAATCGCTGAA -ACGGAAGTGTGTCGAATCAGTACG -ACGGAAGTGTGTCGAATCATCCGA -ACGGAAGTGTGTCGAATCATGGGA -ACGGAAGTGTGTCGAATCGTGCAA -ACGGAAGTGTGTCGAATCGAGGAA -ACGGAAGTGTGTCGAATCCAGGTA -ACGGAAGTGTGTCGAATCGACTCT -ACGGAAGTGTGTCGAATCAGTCCT -ACGGAAGTGTGTCGAATCTAAGCC -ACGGAAGTGTGTCGAATCATAGCC -ACGGAAGTGTGTCGAATCTAACCG -ACGGAAGTGTGTCGAATCATGCCA -ACGGAAGTGTGTGGAATGGGAAAC -ACGGAAGTGTGTGGAATGAACACC -ACGGAAGTGTGTGGAATGATCGAG -ACGGAAGTGTGTGGAATGCTCCTT -ACGGAAGTGTGTGGAATGCCTGTT -ACGGAAGTGTGTGGAATGCGGTTT -ACGGAAGTGTGTGGAATGGTGGTT -ACGGAAGTGTGTGGAATGGCCTTT -ACGGAAGTGTGTGGAATGGGTCTT -ACGGAAGTGTGTGGAATGACGCTT -ACGGAAGTGTGTGGAATGAGCGTT -ACGGAAGTGTGTGGAATGTTCGTC -ACGGAAGTGTGTGGAATGTCTCTC -ACGGAAGTGTGTGGAATGTGGATC -ACGGAAGTGTGTGGAATGCACTTC -ACGGAAGTGTGTGGAATGGTACTC -ACGGAAGTGTGTGGAATGGATGTC -ACGGAAGTGTGTGGAATGACAGTC -ACGGAAGTGTGTGGAATGTTGCTG -ACGGAAGTGTGTGGAATGTCCATG -ACGGAAGTGTGTGGAATGTGTGTG -ACGGAAGTGTGTGGAATGCTAGTG -ACGGAAGTGTGTGGAATGCATCTG -ACGGAAGTGTGTGGAATGGAGTTG -ACGGAAGTGTGTGGAATGAGACTG -ACGGAAGTGTGTGGAATGTCGGTA -ACGGAAGTGTGTGGAATGTGCCTA -ACGGAAGTGTGTGGAATGCCACTA -ACGGAAGTGTGTGGAATGGGAGTA -ACGGAAGTGTGTGGAATGTCGTCT -ACGGAAGTGTGTGGAATGTGCACT -ACGGAAGTGTGTGGAATGCTGACT -ACGGAAGTGTGTGGAATGCAACCT -ACGGAAGTGTGTGGAATGGCTACT -ACGGAAGTGTGTGGAATGGGATCT -ACGGAAGTGTGTGGAATGAAGGCT -ACGGAAGTGTGTGGAATGTCAACC -ACGGAAGTGTGTGGAATGTGTTCC -ACGGAAGTGTGTGGAATGATTCCC -ACGGAAGTGTGTGGAATGTTCTCG -ACGGAAGTGTGTGGAATGTAGACG -ACGGAAGTGTGTGGAATGGTAACG -ACGGAAGTGTGTGGAATGACTTCG -ACGGAAGTGTGTGGAATGTACGCA -ACGGAAGTGTGTGGAATGCTTGCA -ACGGAAGTGTGTGGAATGCGAACA -ACGGAAGTGTGTGGAATGCAGTCA -ACGGAAGTGTGTGGAATGGATCCA -ACGGAAGTGTGTGGAATGACGACA -ACGGAAGTGTGTGGAATGAGCTCA -ACGGAAGTGTGTGGAATGTCACGT -ACGGAAGTGTGTGGAATGCGTAGT -ACGGAAGTGTGTGGAATGGTCAGT -ACGGAAGTGTGTGGAATGGAAGGT -ACGGAAGTGTGTGGAATGAACCGT -ACGGAAGTGTGTGGAATGTTGTGC -ACGGAAGTGTGTGGAATGCTAAGC -ACGGAAGTGTGTGGAATGACTAGC -ACGGAAGTGTGTGGAATGAGATGC -ACGGAAGTGTGTGGAATGTGAAGG -ACGGAAGTGTGTGGAATGCAATGG -ACGGAAGTGTGTGGAATGATGAGG -ACGGAAGTGTGTGGAATGAATGGG -ACGGAAGTGTGTGGAATGTCCTGA -ACGGAAGTGTGTGGAATGTAGCGA -ACGGAAGTGTGTGGAATGCACAGA -ACGGAAGTGTGTGGAATGGCAAGA -ACGGAAGTGTGTGGAATGGGTTGA -ACGGAAGTGTGTGGAATGTCCGAT -ACGGAAGTGTGTGGAATGTGGCAT -ACGGAAGTGTGTGGAATGCGAGAT -ACGGAAGTGTGTGGAATGTACCAC -ACGGAAGTGTGTGGAATGCAGAAC -ACGGAAGTGTGTGGAATGGTCTAC -ACGGAAGTGTGTGGAATGACGTAC -ACGGAAGTGTGTGGAATGAGTGAC -ACGGAAGTGTGTGGAATGCTGTAG -ACGGAAGTGTGTGGAATGCCTAAG -ACGGAAGTGTGTGGAATGGTTCAG -ACGGAAGTGTGTGGAATGGCATAG -ACGGAAGTGTGTGGAATGGACAAG -ACGGAAGTGTGTGGAATGAAGCAG -ACGGAAGTGTGTGGAATGCGTCAA -ACGGAAGTGTGTGGAATGGCTGAA -ACGGAAGTGTGTGGAATGAGTACG -ACGGAAGTGTGTGGAATGATCCGA -ACGGAAGTGTGTGGAATGATGGGA -ACGGAAGTGTGTGGAATGGTGCAA -ACGGAAGTGTGTGGAATGGAGGAA -ACGGAAGTGTGTGGAATGCAGGTA -ACGGAAGTGTGTGGAATGGACTCT -ACGGAAGTGTGTGGAATGAGTCCT -ACGGAAGTGTGTGGAATGTAAGCC -ACGGAAGTGTGTGGAATGATAGCC -ACGGAAGTGTGTGGAATGTAACCG -ACGGAAGTGTGTGGAATGATGCCA -ACGGAAGTGTGTCAAGTGGGAAAC -ACGGAAGTGTGTCAAGTGAACACC -ACGGAAGTGTGTCAAGTGATCGAG -ACGGAAGTGTGTCAAGTGCTCCTT -ACGGAAGTGTGTCAAGTGCCTGTT -ACGGAAGTGTGTCAAGTGCGGTTT -ACGGAAGTGTGTCAAGTGGTGGTT -ACGGAAGTGTGTCAAGTGGCCTTT -ACGGAAGTGTGTCAAGTGGGTCTT -ACGGAAGTGTGTCAAGTGACGCTT -ACGGAAGTGTGTCAAGTGAGCGTT -ACGGAAGTGTGTCAAGTGTTCGTC -ACGGAAGTGTGTCAAGTGTCTCTC -ACGGAAGTGTGTCAAGTGTGGATC -ACGGAAGTGTGTCAAGTGCACTTC -ACGGAAGTGTGTCAAGTGGTACTC -ACGGAAGTGTGTCAAGTGGATGTC -ACGGAAGTGTGTCAAGTGACAGTC -ACGGAAGTGTGTCAAGTGTTGCTG -ACGGAAGTGTGTCAAGTGTCCATG -ACGGAAGTGTGTCAAGTGTGTGTG -ACGGAAGTGTGTCAAGTGCTAGTG -ACGGAAGTGTGTCAAGTGCATCTG -ACGGAAGTGTGTCAAGTGGAGTTG -ACGGAAGTGTGTCAAGTGAGACTG -ACGGAAGTGTGTCAAGTGTCGGTA -ACGGAAGTGTGTCAAGTGTGCCTA -ACGGAAGTGTGTCAAGTGCCACTA -ACGGAAGTGTGTCAAGTGGGAGTA -ACGGAAGTGTGTCAAGTGTCGTCT -ACGGAAGTGTGTCAAGTGTGCACT -ACGGAAGTGTGTCAAGTGCTGACT -ACGGAAGTGTGTCAAGTGCAACCT -ACGGAAGTGTGTCAAGTGGCTACT -ACGGAAGTGTGTCAAGTGGGATCT -ACGGAAGTGTGTCAAGTGAAGGCT -ACGGAAGTGTGTCAAGTGTCAACC -ACGGAAGTGTGTCAAGTGTGTTCC -ACGGAAGTGTGTCAAGTGATTCCC -ACGGAAGTGTGTCAAGTGTTCTCG -ACGGAAGTGTGTCAAGTGTAGACG -ACGGAAGTGTGTCAAGTGGTAACG -ACGGAAGTGTGTCAAGTGACTTCG -ACGGAAGTGTGTCAAGTGTACGCA -ACGGAAGTGTGTCAAGTGCTTGCA -ACGGAAGTGTGTCAAGTGCGAACA -ACGGAAGTGTGTCAAGTGCAGTCA -ACGGAAGTGTGTCAAGTGGATCCA -ACGGAAGTGTGTCAAGTGACGACA -ACGGAAGTGTGTCAAGTGAGCTCA -ACGGAAGTGTGTCAAGTGTCACGT -ACGGAAGTGTGTCAAGTGCGTAGT -ACGGAAGTGTGTCAAGTGGTCAGT -ACGGAAGTGTGTCAAGTGGAAGGT -ACGGAAGTGTGTCAAGTGAACCGT -ACGGAAGTGTGTCAAGTGTTGTGC -ACGGAAGTGTGTCAAGTGCTAAGC -ACGGAAGTGTGTCAAGTGACTAGC -ACGGAAGTGTGTCAAGTGAGATGC -ACGGAAGTGTGTCAAGTGTGAAGG -ACGGAAGTGTGTCAAGTGCAATGG -ACGGAAGTGTGTCAAGTGATGAGG -ACGGAAGTGTGTCAAGTGAATGGG -ACGGAAGTGTGTCAAGTGTCCTGA -ACGGAAGTGTGTCAAGTGTAGCGA -ACGGAAGTGTGTCAAGTGCACAGA -ACGGAAGTGTGTCAAGTGGCAAGA -ACGGAAGTGTGTCAAGTGGGTTGA -ACGGAAGTGTGTCAAGTGTCCGAT -ACGGAAGTGTGTCAAGTGTGGCAT -ACGGAAGTGTGTCAAGTGCGAGAT -ACGGAAGTGTGTCAAGTGTACCAC -ACGGAAGTGTGTCAAGTGCAGAAC -ACGGAAGTGTGTCAAGTGGTCTAC -ACGGAAGTGTGTCAAGTGACGTAC -ACGGAAGTGTGTCAAGTGAGTGAC -ACGGAAGTGTGTCAAGTGCTGTAG -ACGGAAGTGTGTCAAGTGCCTAAG -ACGGAAGTGTGTCAAGTGGTTCAG -ACGGAAGTGTGTCAAGTGGCATAG -ACGGAAGTGTGTCAAGTGGACAAG -ACGGAAGTGTGTCAAGTGAAGCAG -ACGGAAGTGTGTCAAGTGCGTCAA -ACGGAAGTGTGTCAAGTGGCTGAA -ACGGAAGTGTGTCAAGTGAGTACG -ACGGAAGTGTGTCAAGTGATCCGA -ACGGAAGTGTGTCAAGTGATGGGA -ACGGAAGTGTGTCAAGTGGTGCAA -ACGGAAGTGTGTCAAGTGGAGGAA -ACGGAAGTGTGTCAAGTGCAGGTA -ACGGAAGTGTGTCAAGTGGACTCT -ACGGAAGTGTGTCAAGTGAGTCCT -ACGGAAGTGTGTCAAGTGTAAGCC -ACGGAAGTGTGTCAAGTGATAGCC -ACGGAAGTGTGTCAAGTGTAACCG -ACGGAAGTGTGTCAAGTGATGCCA -ACGGAAGTGTGTGAAGAGGGAAAC -ACGGAAGTGTGTGAAGAGAACACC -ACGGAAGTGTGTGAAGAGATCGAG -ACGGAAGTGTGTGAAGAGCTCCTT -ACGGAAGTGTGTGAAGAGCCTGTT -ACGGAAGTGTGTGAAGAGCGGTTT -ACGGAAGTGTGTGAAGAGGTGGTT -ACGGAAGTGTGTGAAGAGGCCTTT -ACGGAAGTGTGTGAAGAGGGTCTT -ACGGAAGTGTGTGAAGAGACGCTT -ACGGAAGTGTGTGAAGAGAGCGTT -ACGGAAGTGTGTGAAGAGTTCGTC -ACGGAAGTGTGTGAAGAGTCTCTC -ACGGAAGTGTGTGAAGAGTGGATC -ACGGAAGTGTGTGAAGAGCACTTC -ACGGAAGTGTGTGAAGAGGTACTC -ACGGAAGTGTGTGAAGAGGATGTC -ACGGAAGTGTGTGAAGAGACAGTC -ACGGAAGTGTGTGAAGAGTTGCTG -ACGGAAGTGTGTGAAGAGTCCATG -ACGGAAGTGTGTGAAGAGTGTGTG -ACGGAAGTGTGTGAAGAGCTAGTG -ACGGAAGTGTGTGAAGAGCATCTG -ACGGAAGTGTGTGAAGAGGAGTTG -ACGGAAGTGTGTGAAGAGAGACTG -ACGGAAGTGTGTGAAGAGTCGGTA -ACGGAAGTGTGTGAAGAGTGCCTA -ACGGAAGTGTGTGAAGAGCCACTA -ACGGAAGTGTGTGAAGAGGGAGTA -ACGGAAGTGTGTGAAGAGTCGTCT -ACGGAAGTGTGTGAAGAGTGCACT -ACGGAAGTGTGTGAAGAGCTGACT -ACGGAAGTGTGTGAAGAGCAACCT -ACGGAAGTGTGTGAAGAGGCTACT -ACGGAAGTGTGTGAAGAGGGATCT -ACGGAAGTGTGTGAAGAGAAGGCT -ACGGAAGTGTGTGAAGAGTCAACC -ACGGAAGTGTGTGAAGAGTGTTCC -ACGGAAGTGTGTGAAGAGATTCCC -ACGGAAGTGTGTGAAGAGTTCTCG -ACGGAAGTGTGTGAAGAGTAGACG -ACGGAAGTGTGTGAAGAGGTAACG -ACGGAAGTGTGTGAAGAGACTTCG -ACGGAAGTGTGTGAAGAGTACGCA -ACGGAAGTGTGTGAAGAGCTTGCA -ACGGAAGTGTGTGAAGAGCGAACA -ACGGAAGTGTGTGAAGAGCAGTCA -ACGGAAGTGTGTGAAGAGGATCCA -ACGGAAGTGTGTGAAGAGACGACA -ACGGAAGTGTGTGAAGAGAGCTCA -ACGGAAGTGTGTGAAGAGTCACGT -ACGGAAGTGTGTGAAGAGCGTAGT -ACGGAAGTGTGTGAAGAGGTCAGT -ACGGAAGTGTGTGAAGAGGAAGGT -ACGGAAGTGTGTGAAGAGAACCGT -ACGGAAGTGTGTGAAGAGTTGTGC -ACGGAAGTGTGTGAAGAGCTAAGC -ACGGAAGTGTGTGAAGAGACTAGC -ACGGAAGTGTGTGAAGAGAGATGC -ACGGAAGTGTGTGAAGAGTGAAGG -ACGGAAGTGTGTGAAGAGCAATGG -ACGGAAGTGTGTGAAGAGATGAGG -ACGGAAGTGTGTGAAGAGAATGGG -ACGGAAGTGTGTGAAGAGTCCTGA -ACGGAAGTGTGTGAAGAGTAGCGA -ACGGAAGTGTGTGAAGAGCACAGA -ACGGAAGTGTGTGAAGAGGCAAGA -ACGGAAGTGTGTGAAGAGGGTTGA -ACGGAAGTGTGTGAAGAGTCCGAT -ACGGAAGTGTGTGAAGAGTGGCAT -ACGGAAGTGTGTGAAGAGCGAGAT -ACGGAAGTGTGTGAAGAGTACCAC -ACGGAAGTGTGTGAAGAGCAGAAC -ACGGAAGTGTGTGAAGAGGTCTAC -ACGGAAGTGTGTGAAGAGACGTAC -ACGGAAGTGTGTGAAGAGAGTGAC -ACGGAAGTGTGTGAAGAGCTGTAG -ACGGAAGTGTGTGAAGAGCCTAAG -ACGGAAGTGTGTGAAGAGGTTCAG -ACGGAAGTGTGTGAAGAGGCATAG -ACGGAAGTGTGTGAAGAGGACAAG -ACGGAAGTGTGTGAAGAGAAGCAG -ACGGAAGTGTGTGAAGAGCGTCAA -ACGGAAGTGTGTGAAGAGGCTGAA -ACGGAAGTGTGTGAAGAGAGTACG -ACGGAAGTGTGTGAAGAGATCCGA -ACGGAAGTGTGTGAAGAGATGGGA -ACGGAAGTGTGTGAAGAGGTGCAA -ACGGAAGTGTGTGAAGAGGAGGAA -ACGGAAGTGTGTGAAGAGCAGGTA -ACGGAAGTGTGTGAAGAGGACTCT -ACGGAAGTGTGTGAAGAGAGTCCT -ACGGAAGTGTGTGAAGAGTAAGCC -ACGGAAGTGTGTGAAGAGATAGCC -ACGGAAGTGTGTGAAGAGTAACCG -ACGGAAGTGTGTGAAGAGATGCCA -ACGGAAGTGTGTGTACAGGGAAAC -ACGGAAGTGTGTGTACAGAACACC -ACGGAAGTGTGTGTACAGATCGAG -ACGGAAGTGTGTGTACAGCTCCTT -ACGGAAGTGTGTGTACAGCCTGTT -ACGGAAGTGTGTGTACAGCGGTTT -ACGGAAGTGTGTGTACAGGTGGTT -ACGGAAGTGTGTGTACAGGCCTTT -ACGGAAGTGTGTGTACAGGGTCTT -ACGGAAGTGTGTGTACAGACGCTT -ACGGAAGTGTGTGTACAGAGCGTT -ACGGAAGTGTGTGTACAGTTCGTC -ACGGAAGTGTGTGTACAGTCTCTC -ACGGAAGTGTGTGTACAGTGGATC -ACGGAAGTGTGTGTACAGCACTTC -ACGGAAGTGTGTGTACAGGTACTC -ACGGAAGTGTGTGTACAGGATGTC -ACGGAAGTGTGTGTACAGACAGTC -ACGGAAGTGTGTGTACAGTTGCTG -ACGGAAGTGTGTGTACAGTCCATG -ACGGAAGTGTGTGTACAGTGTGTG -ACGGAAGTGTGTGTACAGCTAGTG -ACGGAAGTGTGTGTACAGCATCTG -ACGGAAGTGTGTGTACAGGAGTTG -ACGGAAGTGTGTGTACAGAGACTG -ACGGAAGTGTGTGTACAGTCGGTA -ACGGAAGTGTGTGTACAGTGCCTA -ACGGAAGTGTGTGTACAGCCACTA -ACGGAAGTGTGTGTACAGGGAGTA -ACGGAAGTGTGTGTACAGTCGTCT -ACGGAAGTGTGTGTACAGTGCACT -ACGGAAGTGTGTGTACAGCTGACT -ACGGAAGTGTGTGTACAGCAACCT -ACGGAAGTGTGTGTACAGGCTACT -ACGGAAGTGTGTGTACAGGGATCT -ACGGAAGTGTGTGTACAGAAGGCT -ACGGAAGTGTGTGTACAGTCAACC -ACGGAAGTGTGTGTACAGTGTTCC -ACGGAAGTGTGTGTACAGATTCCC -ACGGAAGTGTGTGTACAGTTCTCG -ACGGAAGTGTGTGTACAGTAGACG -ACGGAAGTGTGTGTACAGGTAACG -ACGGAAGTGTGTGTACAGACTTCG -ACGGAAGTGTGTGTACAGTACGCA -ACGGAAGTGTGTGTACAGCTTGCA -ACGGAAGTGTGTGTACAGCGAACA -ACGGAAGTGTGTGTACAGCAGTCA -ACGGAAGTGTGTGTACAGGATCCA -ACGGAAGTGTGTGTACAGACGACA -ACGGAAGTGTGTGTACAGAGCTCA -ACGGAAGTGTGTGTACAGTCACGT -ACGGAAGTGTGTGTACAGCGTAGT -ACGGAAGTGTGTGTACAGGTCAGT -ACGGAAGTGTGTGTACAGGAAGGT -ACGGAAGTGTGTGTACAGAACCGT -ACGGAAGTGTGTGTACAGTTGTGC -ACGGAAGTGTGTGTACAGCTAAGC -ACGGAAGTGTGTGTACAGACTAGC -ACGGAAGTGTGTGTACAGAGATGC -ACGGAAGTGTGTGTACAGTGAAGG -ACGGAAGTGTGTGTACAGCAATGG -ACGGAAGTGTGTGTACAGATGAGG -ACGGAAGTGTGTGTACAGAATGGG -ACGGAAGTGTGTGTACAGTCCTGA -ACGGAAGTGTGTGTACAGTAGCGA -ACGGAAGTGTGTGTACAGCACAGA -ACGGAAGTGTGTGTACAGGCAAGA -ACGGAAGTGTGTGTACAGGGTTGA -ACGGAAGTGTGTGTACAGTCCGAT -ACGGAAGTGTGTGTACAGTGGCAT -ACGGAAGTGTGTGTACAGCGAGAT -ACGGAAGTGTGTGTACAGTACCAC -ACGGAAGTGTGTGTACAGCAGAAC -ACGGAAGTGTGTGTACAGGTCTAC -ACGGAAGTGTGTGTACAGACGTAC -ACGGAAGTGTGTGTACAGAGTGAC -ACGGAAGTGTGTGTACAGCTGTAG -ACGGAAGTGTGTGTACAGCCTAAG -ACGGAAGTGTGTGTACAGGTTCAG -ACGGAAGTGTGTGTACAGGCATAG -ACGGAAGTGTGTGTACAGGACAAG -ACGGAAGTGTGTGTACAGAAGCAG -ACGGAAGTGTGTGTACAGCGTCAA -ACGGAAGTGTGTGTACAGGCTGAA -ACGGAAGTGTGTGTACAGAGTACG -ACGGAAGTGTGTGTACAGATCCGA -ACGGAAGTGTGTGTACAGATGGGA -ACGGAAGTGTGTGTACAGGTGCAA -ACGGAAGTGTGTGTACAGGAGGAA -ACGGAAGTGTGTGTACAGCAGGTA -ACGGAAGTGTGTGTACAGGACTCT -ACGGAAGTGTGTGTACAGAGTCCT -ACGGAAGTGTGTGTACAGTAAGCC -ACGGAAGTGTGTGTACAGATAGCC -ACGGAAGTGTGTGTACAGTAACCG -ACGGAAGTGTGTGTACAGATGCCA -ACGGAAGTGTGTTCTGACGGAAAC -ACGGAAGTGTGTTCTGACAACACC -ACGGAAGTGTGTTCTGACATCGAG -ACGGAAGTGTGTTCTGACCTCCTT -ACGGAAGTGTGTTCTGACCCTGTT -ACGGAAGTGTGTTCTGACCGGTTT -ACGGAAGTGTGTTCTGACGTGGTT -ACGGAAGTGTGTTCTGACGCCTTT -ACGGAAGTGTGTTCTGACGGTCTT -ACGGAAGTGTGTTCTGACACGCTT -ACGGAAGTGTGTTCTGACAGCGTT -ACGGAAGTGTGTTCTGACTTCGTC -ACGGAAGTGTGTTCTGACTCTCTC -ACGGAAGTGTGTTCTGACTGGATC -ACGGAAGTGTGTTCTGACCACTTC -ACGGAAGTGTGTTCTGACGTACTC -ACGGAAGTGTGTTCTGACGATGTC -ACGGAAGTGTGTTCTGACACAGTC -ACGGAAGTGTGTTCTGACTTGCTG -ACGGAAGTGTGTTCTGACTCCATG -ACGGAAGTGTGTTCTGACTGTGTG -ACGGAAGTGTGTTCTGACCTAGTG -ACGGAAGTGTGTTCTGACCATCTG -ACGGAAGTGTGTTCTGACGAGTTG -ACGGAAGTGTGTTCTGACAGACTG -ACGGAAGTGTGTTCTGACTCGGTA -ACGGAAGTGTGTTCTGACTGCCTA -ACGGAAGTGTGTTCTGACCCACTA -ACGGAAGTGTGTTCTGACGGAGTA -ACGGAAGTGTGTTCTGACTCGTCT -ACGGAAGTGTGTTCTGACTGCACT -ACGGAAGTGTGTTCTGACCTGACT -ACGGAAGTGTGTTCTGACCAACCT -ACGGAAGTGTGTTCTGACGCTACT -ACGGAAGTGTGTTCTGACGGATCT -ACGGAAGTGTGTTCTGACAAGGCT -ACGGAAGTGTGTTCTGACTCAACC -ACGGAAGTGTGTTCTGACTGTTCC -ACGGAAGTGTGTTCTGACATTCCC -ACGGAAGTGTGTTCTGACTTCTCG -ACGGAAGTGTGTTCTGACTAGACG -ACGGAAGTGTGTTCTGACGTAACG -ACGGAAGTGTGTTCTGACACTTCG -ACGGAAGTGTGTTCTGACTACGCA -ACGGAAGTGTGTTCTGACCTTGCA -ACGGAAGTGTGTTCTGACCGAACA -ACGGAAGTGTGTTCTGACCAGTCA -ACGGAAGTGTGTTCTGACGATCCA -ACGGAAGTGTGTTCTGACACGACA -ACGGAAGTGTGTTCTGACAGCTCA -ACGGAAGTGTGTTCTGACTCACGT -ACGGAAGTGTGTTCTGACCGTAGT -ACGGAAGTGTGTTCTGACGTCAGT -ACGGAAGTGTGTTCTGACGAAGGT -ACGGAAGTGTGTTCTGACAACCGT -ACGGAAGTGTGTTCTGACTTGTGC -ACGGAAGTGTGTTCTGACCTAAGC -ACGGAAGTGTGTTCTGACACTAGC -ACGGAAGTGTGTTCTGACAGATGC -ACGGAAGTGTGTTCTGACTGAAGG -ACGGAAGTGTGTTCTGACCAATGG -ACGGAAGTGTGTTCTGACATGAGG -ACGGAAGTGTGTTCTGACAATGGG -ACGGAAGTGTGTTCTGACTCCTGA -ACGGAAGTGTGTTCTGACTAGCGA -ACGGAAGTGTGTTCTGACCACAGA -ACGGAAGTGTGTTCTGACGCAAGA -ACGGAAGTGTGTTCTGACGGTTGA -ACGGAAGTGTGTTCTGACTCCGAT -ACGGAAGTGTGTTCTGACTGGCAT -ACGGAAGTGTGTTCTGACCGAGAT -ACGGAAGTGTGTTCTGACTACCAC -ACGGAAGTGTGTTCTGACCAGAAC -ACGGAAGTGTGTTCTGACGTCTAC -ACGGAAGTGTGTTCTGACACGTAC -ACGGAAGTGTGTTCTGACAGTGAC -ACGGAAGTGTGTTCTGACCTGTAG -ACGGAAGTGTGTTCTGACCCTAAG -ACGGAAGTGTGTTCTGACGTTCAG -ACGGAAGTGTGTTCTGACGCATAG -ACGGAAGTGTGTTCTGACGACAAG -ACGGAAGTGTGTTCTGACAAGCAG -ACGGAAGTGTGTTCTGACCGTCAA -ACGGAAGTGTGTTCTGACGCTGAA -ACGGAAGTGTGTTCTGACAGTACG -ACGGAAGTGTGTTCTGACATCCGA -ACGGAAGTGTGTTCTGACATGGGA -ACGGAAGTGTGTTCTGACGTGCAA -ACGGAAGTGTGTTCTGACGAGGAA -ACGGAAGTGTGTTCTGACCAGGTA -ACGGAAGTGTGTTCTGACGACTCT -ACGGAAGTGTGTTCTGACAGTCCT -ACGGAAGTGTGTTCTGACTAAGCC -ACGGAAGTGTGTTCTGACATAGCC -ACGGAAGTGTGTTCTGACTAACCG -ACGGAAGTGTGTTCTGACATGCCA -ACGGAAGTGTGTCCTAGTGGAAAC -ACGGAAGTGTGTCCTAGTAACACC -ACGGAAGTGTGTCCTAGTATCGAG -ACGGAAGTGTGTCCTAGTCTCCTT -ACGGAAGTGTGTCCTAGTCCTGTT -ACGGAAGTGTGTCCTAGTCGGTTT -ACGGAAGTGTGTCCTAGTGTGGTT -ACGGAAGTGTGTCCTAGTGCCTTT -ACGGAAGTGTGTCCTAGTGGTCTT -ACGGAAGTGTGTCCTAGTACGCTT -ACGGAAGTGTGTCCTAGTAGCGTT -ACGGAAGTGTGTCCTAGTTTCGTC -ACGGAAGTGTGTCCTAGTTCTCTC -ACGGAAGTGTGTCCTAGTTGGATC -ACGGAAGTGTGTCCTAGTCACTTC -ACGGAAGTGTGTCCTAGTGTACTC -ACGGAAGTGTGTCCTAGTGATGTC -ACGGAAGTGTGTCCTAGTACAGTC -ACGGAAGTGTGTCCTAGTTTGCTG -ACGGAAGTGTGTCCTAGTTCCATG -ACGGAAGTGTGTCCTAGTTGTGTG -ACGGAAGTGTGTCCTAGTCTAGTG -ACGGAAGTGTGTCCTAGTCATCTG -ACGGAAGTGTGTCCTAGTGAGTTG -ACGGAAGTGTGTCCTAGTAGACTG -ACGGAAGTGTGTCCTAGTTCGGTA -ACGGAAGTGTGTCCTAGTTGCCTA -ACGGAAGTGTGTCCTAGTCCACTA -ACGGAAGTGTGTCCTAGTGGAGTA -ACGGAAGTGTGTCCTAGTTCGTCT -ACGGAAGTGTGTCCTAGTTGCACT -ACGGAAGTGTGTCCTAGTCTGACT -ACGGAAGTGTGTCCTAGTCAACCT -ACGGAAGTGTGTCCTAGTGCTACT -ACGGAAGTGTGTCCTAGTGGATCT -ACGGAAGTGTGTCCTAGTAAGGCT -ACGGAAGTGTGTCCTAGTTCAACC -ACGGAAGTGTGTCCTAGTTGTTCC -ACGGAAGTGTGTCCTAGTATTCCC -ACGGAAGTGTGTCCTAGTTTCTCG -ACGGAAGTGTGTCCTAGTTAGACG -ACGGAAGTGTGTCCTAGTGTAACG -ACGGAAGTGTGTCCTAGTACTTCG -ACGGAAGTGTGTCCTAGTTACGCA -ACGGAAGTGTGTCCTAGTCTTGCA -ACGGAAGTGTGTCCTAGTCGAACA -ACGGAAGTGTGTCCTAGTCAGTCA -ACGGAAGTGTGTCCTAGTGATCCA -ACGGAAGTGTGTCCTAGTACGACA -ACGGAAGTGTGTCCTAGTAGCTCA -ACGGAAGTGTGTCCTAGTTCACGT -ACGGAAGTGTGTCCTAGTCGTAGT -ACGGAAGTGTGTCCTAGTGTCAGT -ACGGAAGTGTGTCCTAGTGAAGGT -ACGGAAGTGTGTCCTAGTAACCGT -ACGGAAGTGTGTCCTAGTTTGTGC -ACGGAAGTGTGTCCTAGTCTAAGC -ACGGAAGTGTGTCCTAGTACTAGC -ACGGAAGTGTGTCCTAGTAGATGC -ACGGAAGTGTGTCCTAGTTGAAGG -ACGGAAGTGTGTCCTAGTCAATGG -ACGGAAGTGTGTCCTAGTATGAGG -ACGGAAGTGTGTCCTAGTAATGGG -ACGGAAGTGTGTCCTAGTTCCTGA -ACGGAAGTGTGTCCTAGTTAGCGA -ACGGAAGTGTGTCCTAGTCACAGA -ACGGAAGTGTGTCCTAGTGCAAGA -ACGGAAGTGTGTCCTAGTGGTTGA -ACGGAAGTGTGTCCTAGTTCCGAT -ACGGAAGTGTGTCCTAGTTGGCAT -ACGGAAGTGTGTCCTAGTCGAGAT -ACGGAAGTGTGTCCTAGTTACCAC -ACGGAAGTGTGTCCTAGTCAGAAC -ACGGAAGTGTGTCCTAGTGTCTAC -ACGGAAGTGTGTCCTAGTACGTAC -ACGGAAGTGTGTCCTAGTAGTGAC -ACGGAAGTGTGTCCTAGTCTGTAG -ACGGAAGTGTGTCCTAGTCCTAAG -ACGGAAGTGTGTCCTAGTGTTCAG -ACGGAAGTGTGTCCTAGTGCATAG -ACGGAAGTGTGTCCTAGTGACAAG -ACGGAAGTGTGTCCTAGTAAGCAG -ACGGAAGTGTGTCCTAGTCGTCAA -ACGGAAGTGTGTCCTAGTGCTGAA -ACGGAAGTGTGTCCTAGTAGTACG -ACGGAAGTGTGTCCTAGTATCCGA -ACGGAAGTGTGTCCTAGTATGGGA -ACGGAAGTGTGTCCTAGTGTGCAA -ACGGAAGTGTGTCCTAGTGAGGAA -ACGGAAGTGTGTCCTAGTCAGGTA -ACGGAAGTGTGTCCTAGTGACTCT -ACGGAAGTGTGTCCTAGTAGTCCT -ACGGAAGTGTGTCCTAGTTAAGCC -ACGGAAGTGTGTCCTAGTATAGCC -ACGGAAGTGTGTCCTAGTTAACCG -ACGGAAGTGTGTCCTAGTATGCCA -ACGGAAGTGTGTGCCTAAGGAAAC -ACGGAAGTGTGTGCCTAAAACACC -ACGGAAGTGTGTGCCTAAATCGAG -ACGGAAGTGTGTGCCTAACTCCTT -ACGGAAGTGTGTGCCTAACCTGTT -ACGGAAGTGTGTGCCTAACGGTTT -ACGGAAGTGTGTGCCTAAGTGGTT -ACGGAAGTGTGTGCCTAAGCCTTT -ACGGAAGTGTGTGCCTAAGGTCTT -ACGGAAGTGTGTGCCTAAACGCTT -ACGGAAGTGTGTGCCTAAAGCGTT -ACGGAAGTGTGTGCCTAATTCGTC -ACGGAAGTGTGTGCCTAATCTCTC -ACGGAAGTGTGTGCCTAATGGATC -ACGGAAGTGTGTGCCTAACACTTC -ACGGAAGTGTGTGCCTAAGTACTC -ACGGAAGTGTGTGCCTAAGATGTC -ACGGAAGTGTGTGCCTAAACAGTC -ACGGAAGTGTGTGCCTAATTGCTG -ACGGAAGTGTGTGCCTAATCCATG -ACGGAAGTGTGTGCCTAATGTGTG -ACGGAAGTGTGTGCCTAACTAGTG -ACGGAAGTGTGTGCCTAACATCTG -ACGGAAGTGTGTGCCTAAGAGTTG -ACGGAAGTGTGTGCCTAAAGACTG -ACGGAAGTGTGTGCCTAATCGGTA -ACGGAAGTGTGTGCCTAATGCCTA -ACGGAAGTGTGTGCCTAACCACTA -ACGGAAGTGTGTGCCTAAGGAGTA -ACGGAAGTGTGTGCCTAATCGTCT -ACGGAAGTGTGTGCCTAATGCACT -ACGGAAGTGTGTGCCTAACTGACT -ACGGAAGTGTGTGCCTAACAACCT -ACGGAAGTGTGTGCCTAAGCTACT -ACGGAAGTGTGTGCCTAAGGATCT -ACGGAAGTGTGTGCCTAAAAGGCT -ACGGAAGTGTGTGCCTAATCAACC -ACGGAAGTGTGTGCCTAATGTTCC -ACGGAAGTGTGTGCCTAAATTCCC -ACGGAAGTGTGTGCCTAATTCTCG -ACGGAAGTGTGTGCCTAATAGACG -ACGGAAGTGTGTGCCTAAGTAACG -ACGGAAGTGTGTGCCTAAACTTCG -ACGGAAGTGTGTGCCTAATACGCA -ACGGAAGTGTGTGCCTAACTTGCA -ACGGAAGTGTGTGCCTAACGAACA -ACGGAAGTGTGTGCCTAACAGTCA -ACGGAAGTGTGTGCCTAAGATCCA -ACGGAAGTGTGTGCCTAAACGACA -ACGGAAGTGTGTGCCTAAAGCTCA -ACGGAAGTGTGTGCCTAATCACGT -ACGGAAGTGTGTGCCTAACGTAGT -ACGGAAGTGTGTGCCTAAGTCAGT -ACGGAAGTGTGTGCCTAAGAAGGT -ACGGAAGTGTGTGCCTAAAACCGT -ACGGAAGTGTGTGCCTAATTGTGC -ACGGAAGTGTGTGCCTAACTAAGC -ACGGAAGTGTGTGCCTAAACTAGC -ACGGAAGTGTGTGCCTAAAGATGC -ACGGAAGTGTGTGCCTAATGAAGG -ACGGAAGTGTGTGCCTAACAATGG -ACGGAAGTGTGTGCCTAAATGAGG -ACGGAAGTGTGTGCCTAAAATGGG -ACGGAAGTGTGTGCCTAATCCTGA -ACGGAAGTGTGTGCCTAATAGCGA -ACGGAAGTGTGTGCCTAACACAGA -ACGGAAGTGTGTGCCTAAGCAAGA -ACGGAAGTGTGTGCCTAAGGTTGA -ACGGAAGTGTGTGCCTAATCCGAT -ACGGAAGTGTGTGCCTAATGGCAT -ACGGAAGTGTGTGCCTAACGAGAT -ACGGAAGTGTGTGCCTAATACCAC -ACGGAAGTGTGTGCCTAACAGAAC -ACGGAAGTGTGTGCCTAAGTCTAC -ACGGAAGTGTGTGCCTAAACGTAC -ACGGAAGTGTGTGCCTAAAGTGAC -ACGGAAGTGTGTGCCTAACTGTAG -ACGGAAGTGTGTGCCTAACCTAAG -ACGGAAGTGTGTGCCTAAGTTCAG -ACGGAAGTGTGTGCCTAAGCATAG -ACGGAAGTGTGTGCCTAAGACAAG -ACGGAAGTGTGTGCCTAAAAGCAG -ACGGAAGTGTGTGCCTAACGTCAA -ACGGAAGTGTGTGCCTAAGCTGAA -ACGGAAGTGTGTGCCTAAAGTACG -ACGGAAGTGTGTGCCTAAATCCGA -ACGGAAGTGTGTGCCTAAATGGGA -ACGGAAGTGTGTGCCTAAGTGCAA -ACGGAAGTGTGTGCCTAAGAGGAA -ACGGAAGTGTGTGCCTAACAGGTA -ACGGAAGTGTGTGCCTAAGACTCT -ACGGAAGTGTGTGCCTAAAGTCCT -ACGGAAGTGTGTGCCTAATAAGCC -ACGGAAGTGTGTGCCTAAATAGCC -ACGGAAGTGTGTGCCTAATAACCG -ACGGAAGTGTGTGCCTAAATGCCA -ACGGAAGTGTGTGCCATAGGAAAC -ACGGAAGTGTGTGCCATAAACACC -ACGGAAGTGTGTGCCATAATCGAG -ACGGAAGTGTGTGCCATACTCCTT -ACGGAAGTGTGTGCCATACCTGTT -ACGGAAGTGTGTGCCATACGGTTT -ACGGAAGTGTGTGCCATAGTGGTT -ACGGAAGTGTGTGCCATAGCCTTT -ACGGAAGTGTGTGCCATAGGTCTT -ACGGAAGTGTGTGCCATAACGCTT -ACGGAAGTGTGTGCCATAAGCGTT -ACGGAAGTGTGTGCCATATTCGTC -ACGGAAGTGTGTGCCATATCTCTC -ACGGAAGTGTGTGCCATATGGATC -ACGGAAGTGTGTGCCATACACTTC -ACGGAAGTGTGTGCCATAGTACTC -ACGGAAGTGTGTGCCATAGATGTC -ACGGAAGTGTGTGCCATAACAGTC -ACGGAAGTGTGTGCCATATTGCTG -ACGGAAGTGTGTGCCATATCCATG -ACGGAAGTGTGTGCCATATGTGTG -ACGGAAGTGTGTGCCATACTAGTG -ACGGAAGTGTGTGCCATACATCTG -ACGGAAGTGTGTGCCATAGAGTTG -ACGGAAGTGTGTGCCATAAGACTG -ACGGAAGTGTGTGCCATATCGGTA -ACGGAAGTGTGTGCCATATGCCTA -ACGGAAGTGTGTGCCATACCACTA -ACGGAAGTGTGTGCCATAGGAGTA -ACGGAAGTGTGTGCCATATCGTCT -ACGGAAGTGTGTGCCATATGCACT -ACGGAAGTGTGTGCCATACTGACT -ACGGAAGTGTGTGCCATACAACCT -ACGGAAGTGTGTGCCATAGCTACT -ACGGAAGTGTGTGCCATAGGATCT -ACGGAAGTGTGTGCCATAAAGGCT -ACGGAAGTGTGTGCCATATCAACC -ACGGAAGTGTGTGCCATATGTTCC -ACGGAAGTGTGTGCCATAATTCCC -ACGGAAGTGTGTGCCATATTCTCG -ACGGAAGTGTGTGCCATATAGACG -ACGGAAGTGTGTGCCATAGTAACG -ACGGAAGTGTGTGCCATAACTTCG -ACGGAAGTGTGTGCCATATACGCA -ACGGAAGTGTGTGCCATACTTGCA -ACGGAAGTGTGTGCCATACGAACA -ACGGAAGTGTGTGCCATACAGTCA -ACGGAAGTGTGTGCCATAGATCCA -ACGGAAGTGTGTGCCATAACGACA -ACGGAAGTGTGTGCCATAAGCTCA -ACGGAAGTGTGTGCCATATCACGT -ACGGAAGTGTGTGCCATACGTAGT -ACGGAAGTGTGTGCCATAGTCAGT -ACGGAAGTGTGTGCCATAGAAGGT -ACGGAAGTGTGTGCCATAAACCGT -ACGGAAGTGTGTGCCATATTGTGC -ACGGAAGTGTGTGCCATACTAAGC -ACGGAAGTGTGTGCCATAACTAGC -ACGGAAGTGTGTGCCATAAGATGC -ACGGAAGTGTGTGCCATATGAAGG -ACGGAAGTGTGTGCCATACAATGG -ACGGAAGTGTGTGCCATAATGAGG -ACGGAAGTGTGTGCCATAAATGGG -ACGGAAGTGTGTGCCATATCCTGA -ACGGAAGTGTGTGCCATATAGCGA -ACGGAAGTGTGTGCCATACACAGA -ACGGAAGTGTGTGCCATAGCAAGA -ACGGAAGTGTGTGCCATAGGTTGA -ACGGAAGTGTGTGCCATATCCGAT -ACGGAAGTGTGTGCCATATGGCAT -ACGGAAGTGTGTGCCATACGAGAT -ACGGAAGTGTGTGCCATATACCAC -ACGGAAGTGTGTGCCATACAGAAC -ACGGAAGTGTGTGCCATAGTCTAC -ACGGAAGTGTGTGCCATAACGTAC -ACGGAAGTGTGTGCCATAAGTGAC -ACGGAAGTGTGTGCCATACTGTAG -ACGGAAGTGTGTGCCATACCTAAG -ACGGAAGTGTGTGCCATAGTTCAG -ACGGAAGTGTGTGCCATAGCATAG -ACGGAAGTGTGTGCCATAGACAAG -ACGGAAGTGTGTGCCATAAAGCAG -ACGGAAGTGTGTGCCATACGTCAA -ACGGAAGTGTGTGCCATAGCTGAA -ACGGAAGTGTGTGCCATAAGTACG -ACGGAAGTGTGTGCCATAATCCGA -ACGGAAGTGTGTGCCATAATGGGA -ACGGAAGTGTGTGCCATAGTGCAA -ACGGAAGTGTGTGCCATAGAGGAA -ACGGAAGTGTGTGCCATACAGGTA -ACGGAAGTGTGTGCCATAGACTCT -ACGGAAGTGTGTGCCATAAGTCCT -ACGGAAGTGTGTGCCATATAAGCC -ACGGAAGTGTGTGCCATAATAGCC -ACGGAAGTGTGTGCCATATAACCG -ACGGAAGTGTGTGCCATAATGCCA -ACGGAAGTGTGTCCGTAAGGAAAC -ACGGAAGTGTGTCCGTAAAACACC -ACGGAAGTGTGTCCGTAAATCGAG -ACGGAAGTGTGTCCGTAACTCCTT -ACGGAAGTGTGTCCGTAACCTGTT -ACGGAAGTGTGTCCGTAACGGTTT -ACGGAAGTGTGTCCGTAAGTGGTT -ACGGAAGTGTGTCCGTAAGCCTTT -ACGGAAGTGTGTCCGTAAGGTCTT -ACGGAAGTGTGTCCGTAAACGCTT -ACGGAAGTGTGTCCGTAAAGCGTT -ACGGAAGTGTGTCCGTAATTCGTC -ACGGAAGTGTGTCCGTAATCTCTC -ACGGAAGTGTGTCCGTAATGGATC -ACGGAAGTGTGTCCGTAACACTTC -ACGGAAGTGTGTCCGTAAGTACTC -ACGGAAGTGTGTCCGTAAGATGTC -ACGGAAGTGTGTCCGTAAACAGTC -ACGGAAGTGTGTCCGTAATTGCTG -ACGGAAGTGTGTCCGTAATCCATG -ACGGAAGTGTGTCCGTAATGTGTG -ACGGAAGTGTGTCCGTAACTAGTG -ACGGAAGTGTGTCCGTAACATCTG -ACGGAAGTGTGTCCGTAAGAGTTG -ACGGAAGTGTGTCCGTAAAGACTG -ACGGAAGTGTGTCCGTAATCGGTA -ACGGAAGTGTGTCCGTAATGCCTA -ACGGAAGTGTGTCCGTAACCACTA -ACGGAAGTGTGTCCGTAAGGAGTA -ACGGAAGTGTGTCCGTAATCGTCT -ACGGAAGTGTGTCCGTAATGCACT -ACGGAAGTGTGTCCGTAACTGACT -ACGGAAGTGTGTCCGTAACAACCT -ACGGAAGTGTGTCCGTAAGCTACT -ACGGAAGTGTGTCCGTAAGGATCT -ACGGAAGTGTGTCCGTAAAAGGCT -ACGGAAGTGTGTCCGTAATCAACC -ACGGAAGTGTGTCCGTAATGTTCC -ACGGAAGTGTGTCCGTAAATTCCC -ACGGAAGTGTGTCCGTAATTCTCG -ACGGAAGTGTGTCCGTAATAGACG -ACGGAAGTGTGTCCGTAAGTAACG -ACGGAAGTGTGTCCGTAAACTTCG -ACGGAAGTGTGTCCGTAATACGCA -ACGGAAGTGTGTCCGTAACTTGCA -ACGGAAGTGTGTCCGTAACGAACA -ACGGAAGTGTGTCCGTAACAGTCA -ACGGAAGTGTGTCCGTAAGATCCA -ACGGAAGTGTGTCCGTAAACGACA -ACGGAAGTGTGTCCGTAAAGCTCA -ACGGAAGTGTGTCCGTAATCACGT -ACGGAAGTGTGTCCGTAACGTAGT -ACGGAAGTGTGTCCGTAAGTCAGT -ACGGAAGTGTGTCCGTAAGAAGGT -ACGGAAGTGTGTCCGTAAAACCGT -ACGGAAGTGTGTCCGTAATTGTGC -ACGGAAGTGTGTCCGTAACTAAGC -ACGGAAGTGTGTCCGTAAACTAGC -ACGGAAGTGTGTCCGTAAAGATGC -ACGGAAGTGTGTCCGTAATGAAGG -ACGGAAGTGTGTCCGTAACAATGG -ACGGAAGTGTGTCCGTAAATGAGG -ACGGAAGTGTGTCCGTAAAATGGG -ACGGAAGTGTGTCCGTAATCCTGA -ACGGAAGTGTGTCCGTAATAGCGA -ACGGAAGTGTGTCCGTAACACAGA -ACGGAAGTGTGTCCGTAAGCAAGA -ACGGAAGTGTGTCCGTAAGGTTGA -ACGGAAGTGTGTCCGTAATCCGAT -ACGGAAGTGTGTCCGTAATGGCAT -ACGGAAGTGTGTCCGTAACGAGAT -ACGGAAGTGTGTCCGTAATACCAC -ACGGAAGTGTGTCCGTAACAGAAC -ACGGAAGTGTGTCCGTAAGTCTAC -ACGGAAGTGTGTCCGTAAACGTAC -ACGGAAGTGTGTCCGTAAAGTGAC -ACGGAAGTGTGTCCGTAACTGTAG -ACGGAAGTGTGTCCGTAACCTAAG -ACGGAAGTGTGTCCGTAAGTTCAG -ACGGAAGTGTGTCCGTAAGCATAG -ACGGAAGTGTGTCCGTAAGACAAG -ACGGAAGTGTGTCCGTAAAAGCAG -ACGGAAGTGTGTCCGTAACGTCAA -ACGGAAGTGTGTCCGTAAGCTGAA -ACGGAAGTGTGTCCGTAAAGTACG -ACGGAAGTGTGTCCGTAAATCCGA -ACGGAAGTGTGTCCGTAAATGGGA -ACGGAAGTGTGTCCGTAAGTGCAA -ACGGAAGTGTGTCCGTAAGAGGAA -ACGGAAGTGTGTCCGTAACAGGTA -ACGGAAGTGTGTCCGTAAGACTCT -ACGGAAGTGTGTCCGTAAAGTCCT -ACGGAAGTGTGTCCGTAATAAGCC -ACGGAAGTGTGTCCGTAAATAGCC -ACGGAAGTGTGTCCGTAATAACCG -ACGGAAGTGTGTCCGTAAATGCCA -ACGGAAGTGTGTCCAATGGGAAAC -ACGGAAGTGTGTCCAATGAACACC -ACGGAAGTGTGTCCAATGATCGAG -ACGGAAGTGTGTCCAATGCTCCTT -ACGGAAGTGTGTCCAATGCCTGTT -ACGGAAGTGTGTCCAATGCGGTTT -ACGGAAGTGTGTCCAATGGTGGTT -ACGGAAGTGTGTCCAATGGCCTTT -ACGGAAGTGTGTCCAATGGGTCTT -ACGGAAGTGTGTCCAATGACGCTT -ACGGAAGTGTGTCCAATGAGCGTT -ACGGAAGTGTGTCCAATGTTCGTC -ACGGAAGTGTGTCCAATGTCTCTC -ACGGAAGTGTGTCCAATGTGGATC -ACGGAAGTGTGTCCAATGCACTTC -ACGGAAGTGTGTCCAATGGTACTC -ACGGAAGTGTGTCCAATGGATGTC -ACGGAAGTGTGTCCAATGACAGTC -ACGGAAGTGTGTCCAATGTTGCTG -ACGGAAGTGTGTCCAATGTCCATG -ACGGAAGTGTGTCCAATGTGTGTG -ACGGAAGTGTGTCCAATGCTAGTG -ACGGAAGTGTGTCCAATGCATCTG -ACGGAAGTGTGTCCAATGGAGTTG -ACGGAAGTGTGTCCAATGAGACTG -ACGGAAGTGTGTCCAATGTCGGTA -ACGGAAGTGTGTCCAATGTGCCTA -ACGGAAGTGTGTCCAATGCCACTA -ACGGAAGTGTGTCCAATGGGAGTA -ACGGAAGTGTGTCCAATGTCGTCT -ACGGAAGTGTGTCCAATGTGCACT -ACGGAAGTGTGTCCAATGCTGACT -ACGGAAGTGTGTCCAATGCAACCT -ACGGAAGTGTGTCCAATGGCTACT -ACGGAAGTGTGTCCAATGGGATCT -ACGGAAGTGTGTCCAATGAAGGCT -ACGGAAGTGTGTCCAATGTCAACC -ACGGAAGTGTGTCCAATGTGTTCC -ACGGAAGTGTGTCCAATGATTCCC -ACGGAAGTGTGTCCAATGTTCTCG -ACGGAAGTGTGTCCAATGTAGACG -ACGGAAGTGTGTCCAATGGTAACG -ACGGAAGTGTGTCCAATGACTTCG -ACGGAAGTGTGTCCAATGTACGCA -ACGGAAGTGTGTCCAATGCTTGCA -ACGGAAGTGTGTCCAATGCGAACA -ACGGAAGTGTGTCCAATGCAGTCA -ACGGAAGTGTGTCCAATGGATCCA -ACGGAAGTGTGTCCAATGACGACA -ACGGAAGTGTGTCCAATGAGCTCA -ACGGAAGTGTGTCCAATGTCACGT -ACGGAAGTGTGTCCAATGCGTAGT -ACGGAAGTGTGTCCAATGGTCAGT -ACGGAAGTGTGTCCAATGGAAGGT -ACGGAAGTGTGTCCAATGAACCGT -ACGGAAGTGTGTCCAATGTTGTGC -ACGGAAGTGTGTCCAATGCTAAGC -ACGGAAGTGTGTCCAATGACTAGC -ACGGAAGTGTGTCCAATGAGATGC -ACGGAAGTGTGTCCAATGTGAAGG -ACGGAAGTGTGTCCAATGCAATGG -ACGGAAGTGTGTCCAATGATGAGG -ACGGAAGTGTGTCCAATGAATGGG -ACGGAAGTGTGTCCAATGTCCTGA -ACGGAAGTGTGTCCAATGTAGCGA -ACGGAAGTGTGTCCAATGCACAGA -ACGGAAGTGTGTCCAATGGCAAGA -ACGGAAGTGTGTCCAATGGGTTGA -ACGGAAGTGTGTCCAATGTCCGAT -ACGGAAGTGTGTCCAATGTGGCAT -ACGGAAGTGTGTCCAATGCGAGAT -ACGGAAGTGTGTCCAATGTACCAC -ACGGAAGTGTGTCCAATGCAGAAC -ACGGAAGTGTGTCCAATGGTCTAC -ACGGAAGTGTGTCCAATGACGTAC -ACGGAAGTGTGTCCAATGAGTGAC -ACGGAAGTGTGTCCAATGCTGTAG -ACGGAAGTGTGTCCAATGCCTAAG -ACGGAAGTGTGTCCAATGGTTCAG -ACGGAAGTGTGTCCAATGGCATAG -ACGGAAGTGTGTCCAATGGACAAG -ACGGAAGTGTGTCCAATGAAGCAG -ACGGAAGTGTGTCCAATGCGTCAA -ACGGAAGTGTGTCCAATGGCTGAA -ACGGAAGTGTGTCCAATGAGTACG -ACGGAAGTGTGTCCAATGATCCGA -ACGGAAGTGTGTCCAATGATGGGA -ACGGAAGTGTGTCCAATGGTGCAA -ACGGAAGTGTGTCCAATGGAGGAA -ACGGAAGTGTGTCCAATGCAGGTA -ACGGAAGTGTGTCCAATGGACTCT -ACGGAAGTGTGTCCAATGAGTCCT -ACGGAAGTGTGTCCAATGTAAGCC -ACGGAAGTGTGTCCAATGATAGCC -ACGGAAGTGTGTCCAATGTAACCG -ACGGAAGTGTGTCCAATGATGCCA -ACGGAATAGTGCAACGGAGGAAAC -ACGGAATAGTGCAACGGAAACACC -ACGGAATAGTGCAACGGAATCGAG -ACGGAATAGTGCAACGGACTCCTT -ACGGAATAGTGCAACGGACCTGTT -ACGGAATAGTGCAACGGACGGTTT -ACGGAATAGTGCAACGGAGTGGTT -ACGGAATAGTGCAACGGAGCCTTT -ACGGAATAGTGCAACGGAGGTCTT -ACGGAATAGTGCAACGGAACGCTT -ACGGAATAGTGCAACGGAAGCGTT -ACGGAATAGTGCAACGGATTCGTC -ACGGAATAGTGCAACGGATCTCTC -ACGGAATAGTGCAACGGATGGATC -ACGGAATAGTGCAACGGACACTTC -ACGGAATAGTGCAACGGAGTACTC -ACGGAATAGTGCAACGGAGATGTC -ACGGAATAGTGCAACGGAACAGTC -ACGGAATAGTGCAACGGATTGCTG -ACGGAATAGTGCAACGGATCCATG -ACGGAATAGTGCAACGGATGTGTG -ACGGAATAGTGCAACGGACTAGTG -ACGGAATAGTGCAACGGACATCTG -ACGGAATAGTGCAACGGAGAGTTG -ACGGAATAGTGCAACGGAAGACTG -ACGGAATAGTGCAACGGATCGGTA -ACGGAATAGTGCAACGGATGCCTA -ACGGAATAGTGCAACGGACCACTA -ACGGAATAGTGCAACGGAGGAGTA -ACGGAATAGTGCAACGGATCGTCT -ACGGAATAGTGCAACGGATGCACT -ACGGAATAGTGCAACGGACTGACT -ACGGAATAGTGCAACGGACAACCT -ACGGAATAGTGCAACGGAGCTACT -ACGGAATAGTGCAACGGAGGATCT -ACGGAATAGTGCAACGGAAAGGCT -ACGGAATAGTGCAACGGATCAACC -ACGGAATAGTGCAACGGATGTTCC -ACGGAATAGTGCAACGGAATTCCC -ACGGAATAGTGCAACGGATTCTCG -ACGGAATAGTGCAACGGATAGACG -ACGGAATAGTGCAACGGAGTAACG -ACGGAATAGTGCAACGGAACTTCG -ACGGAATAGTGCAACGGATACGCA -ACGGAATAGTGCAACGGACTTGCA -ACGGAATAGTGCAACGGACGAACA -ACGGAATAGTGCAACGGACAGTCA -ACGGAATAGTGCAACGGAGATCCA -ACGGAATAGTGCAACGGAACGACA -ACGGAATAGTGCAACGGAAGCTCA -ACGGAATAGTGCAACGGATCACGT -ACGGAATAGTGCAACGGACGTAGT -ACGGAATAGTGCAACGGAGTCAGT -ACGGAATAGTGCAACGGAGAAGGT -ACGGAATAGTGCAACGGAAACCGT -ACGGAATAGTGCAACGGATTGTGC -ACGGAATAGTGCAACGGACTAAGC -ACGGAATAGTGCAACGGAACTAGC -ACGGAATAGTGCAACGGAAGATGC -ACGGAATAGTGCAACGGATGAAGG -ACGGAATAGTGCAACGGACAATGG -ACGGAATAGTGCAACGGAATGAGG -ACGGAATAGTGCAACGGAAATGGG -ACGGAATAGTGCAACGGATCCTGA -ACGGAATAGTGCAACGGATAGCGA -ACGGAATAGTGCAACGGACACAGA -ACGGAATAGTGCAACGGAGCAAGA -ACGGAATAGTGCAACGGAGGTTGA -ACGGAATAGTGCAACGGATCCGAT -ACGGAATAGTGCAACGGATGGCAT -ACGGAATAGTGCAACGGACGAGAT -ACGGAATAGTGCAACGGATACCAC -ACGGAATAGTGCAACGGACAGAAC -ACGGAATAGTGCAACGGAGTCTAC -ACGGAATAGTGCAACGGAACGTAC -ACGGAATAGTGCAACGGAAGTGAC -ACGGAATAGTGCAACGGACTGTAG -ACGGAATAGTGCAACGGACCTAAG -ACGGAATAGTGCAACGGAGTTCAG -ACGGAATAGTGCAACGGAGCATAG -ACGGAATAGTGCAACGGAGACAAG -ACGGAATAGTGCAACGGAAAGCAG -ACGGAATAGTGCAACGGACGTCAA -ACGGAATAGTGCAACGGAGCTGAA -ACGGAATAGTGCAACGGAAGTACG -ACGGAATAGTGCAACGGAATCCGA -ACGGAATAGTGCAACGGAATGGGA -ACGGAATAGTGCAACGGAGTGCAA -ACGGAATAGTGCAACGGAGAGGAA -ACGGAATAGTGCAACGGACAGGTA -ACGGAATAGTGCAACGGAGACTCT -ACGGAATAGTGCAACGGAAGTCCT -ACGGAATAGTGCAACGGATAAGCC -ACGGAATAGTGCAACGGAATAGCC -ACGGAATAGTGCAACGGATAACCG -ACGGAATAGTGCAACGGAATGCCA -ACGGAATAGTGCACCAACGGAAAC -ACGGAATAGTGCACCAACAACACC -ACGGAATAGTGCACCAACATCGAG -ACGGAATAGTGCACCAACCTCCTT -ACGGAATAGTGCACCAACCCTGTT -ACGGAATAGTGCACCAACCGGTTT -ACGGAATAGTGCACCAACGTGGTT -ACGGAATAGTGCACCAACGCCTTT -ACGGAATAGTGCACCAACGGTCTT -ACGGAATAGTGCACCAACACGCTT -ACGGAATAGTGCACCAACAGCGTT -ACGGAATAGTGCACCAACTTCGTC -ACGGAATAGTGCACCAACTCTCTC -ACGGAATAGTGCACCAACTGGATC -ACGGAATAGTGCACCAACCACTTC -ACGGAATAGTGCACCAACGTACTC -ACGGAATAGTGCACCAACGATGTC -ACGGAATAGTGCACCAACACAGTC -ACGGAATAGTGCACCAACTTGCTG -ACGGAATAGTGCACCAACTCCATG -ACGGAATAGTGCACCAACTGTGTG -ACGGAATAGTGCACCAACCTAGTG -ACGGAATAGTGCACCAACCATCTG -ACGGAATAGTGCACCAACGAGTTG -ACGGAATAGTGCACCAACAGACTG -ACGGAATAGTGCACCAACTCGGTA -ACGGAATAGTGCACCAACTGCCTA -ACGGAATAGTGCACCAACCCACTA -ACGGAATAGTGCACCAACGGAGTA -ACGGAATAGTGCACCAACTCGTCT -ACGGAATAGTGCACCAACTGCACT -ACGGAATAGTGCACCAACCTGACT -ACGGAATAGTGCACCAACCAACCT -ACGGAATAGTGCACCAACGCTACT -ACGGAATAGTGCACCAACGGATCT -ACGGAATAGTGCACCAACAAGGCT -ACGGAATAGTGCACCAACTCAACC -ACGGAATAGTGCACCAACTGTTCC -ACGGAATAGTGCACCAACATTCCC -ACGGAATAGTGCACCAACTTCTCG -ACGGAATAGTGCACCAACTAGACG -ACGGAATAGTGCACCAACGTAACG -ACGGAATAGTGCACCAACACTTCG -ACGGAATAGTGCACCAACTACGCA -ACGGAATAGTGCACCAACCTTGCA -ACGGAATAGTGCACCAACCGAACA -ACGGAATAGTGCACCAACCAGTCA -ACGGAATAGTGCACCAACGATCCA -ACGGAATAGTGCACCAACACGACA -ACGGAATAGTGCACCAACAGCTCA -ACGGAATAGTGCACCAACTCACGT -ACGGAATAGTGCACCAACCGTAGT -ACGGAATAGTGCACCAACGTCAGT -ACGGAATAGTGCACCAACGAAGGT -ACGGAATAGTGCACCAACAACCGT -ACGGAATAGTGCACCAACTTGTGC -ACGGAATAGTGCACCAACCTAAGC -ACGGAATAGTGCACCAACACTAGC -ACGGAATAGTGCACCAACAGATGC -ACGGAATAGTGCACCAACTGAAGG -ACGGAATAGTGCACCAACCAATGG -ACGGAATAGTGCACCAACATGAGG -ACGGAATAGTGCACCAACAATGGG -ACGGAATAGTGCACCAACTCCTGA -ACGGAATAGTGCACCAACTAGCGA -ACGGAATAGTGCACCAACCACAGA -ACGGAATAGTGCACCAACGCAAGA -ACGGAATAGTGCACCAACGGTTGA -ACGGAATAGTGCACCAACTCCGAT -ACGGAATAGTGCACCAACTGGCAT -ACGGAATAGTGCACCAACCGAGAT -ACGGAATAGTGCACCAACTACCAC -ACGGAATAGTGCACCAACCAGAAC -ACGGAATAGTGCACCAACGTCTAC -ACGGAATAGTGCACCAACACGTAC -ACGGAATAGTGCACCAACAGTGAC -ACGGAATAGTGCACCAACCTGTAG -ACGGAATAGTGCACCAACCCTAAG -ACGGAATAGTGCACCAACGTTCAG -ACGGAATAGTGCACCAACGCATAG -ACGGAATAGTGCACCAACGACAAG -ACGGAATAGTGCACCAACAAGCAG -ACGGAATAGTGCACCAACCGTCAA -ACGGAATAGTGCACCAACGCTGAA -ACGGAATAGTGCACCAACAGTACG -ACGGAATAGTGCACCAACATCCGA -ACGGAATAGTGCACCAACATGGGA -ACGGAATAGTGCACCAACGTGCAA -ACGGAATAGTGCACCAACGAGGAA -ACGGAATAGTGCACCAACCAGGTA -ACGGAATAGTGCACCAACGACTCT -ACGGAATAGTGCACCAACAGTCCT -ACGGAATAGTGCACCAACTAAGCC -ACGGAATAGTGCACCAACATAGCC -ACGGAATAGTGCACCAACTAACCG -ACGGAATAGTGCACCAACATGCCA -ACGGAATAGTGCGAGATCGGAAAC -ACGGAATAGTGCGAGATCAACACC -ACGGAATAGTGCGAGATCATCGAG -ACGGAATAGTGCGAGATCCTCCTT -ACGGAATAGTGCGAGATCCCTGTT -ACGGAATAGTGCGAGATCCGGTTT -ACGGAATAGTGCGAGATCGTGGTT -ACGGAATAGTGCGAGATCGCCTTT -ACGGAATAGTGCGAGATCGGTCTT -ACGGAATAGTGCGAGATCACGCTT -ACGGAATAGTGCGAGATCAGCGTT -ACGGAATAGTGCGAGATCTTCGTC -ACGGAATAGTGCGAGATCTCTCTC -ACGGAATAGTGCGAGATCTGGATC -ACGGAATAGTGCGAGATCCACTTC -ACGGAATAGTGCGAGATCGTACTC -ACGGAATAGTGCGAGATCGATGTC -ACGGAATAGTGCGAGATCACAGTC -ACGGAATAGTGCGAGATCTTGCTG -ACGGAATAGTGCGAGATCTCCATG -ACGGAATAGTGCGAGATCTGTGTG -ACGGAATAGTGCGAGATCCTAGTG -ACGGAATAGTGCGAGATCCATCTG -ACGGAATAGTGCGAGATCGAGTTG -ACGGAATAGTGCGAGATCAGACTG -ACGGAATAGTGCGAGATCTCGGTA -ACGGAATAGTGCGAGATCTGCCTA -ACGGAATAGTGCGAGATCCCACTA -ACGGAATAGTGCGAGATCGGAGTA -ACGGAATAGTGCGAGATCTCGTCT -ACGGAATAGTGCGAGATCTGCACT -ACGGAATAGTGCGAGATCCTGACT -ACGGAATAGTGCGAGATCCAACCT -ACGGAATAGTGCGAGATCGCTACT -ACGGAATAGTGCGAGATCGGATCT -ACGGAATAGTGCGAGATCAAGGCT -ACGGAATAGTGCGAGATCTCAACC -ACGGAATAGTGCGAGATCTGTTCC -ACGGAATAGTGCGAGATCATTCCC -ACGGAATAGTGCGAGATCTTCTCG -ACGGAATAGTGCGAGATCTAGACG -ACGGAATAGTGCGAGATCGTAACG -ACGGAATAGTGCGAGATCACTTCG -ACGGAATAGTGCGAGATCTACGCA -ACGGAATAGTGCGAGATCCTTGCA -ACGGAATAGTGCGAGATCCGAACA -ACGGAATAGTGCGAGATCCAGTCA -ACGGAATAGTGCGAGATCGATCCA -ACGGAATAGTGCGAGATCACGACA -ACGGAATAGTGCGAGATCAGCTCA -ACGGAATAGTGCGAGATCTCACGT -ACGGAATAGTGCGAGATCCGTAGT -ACGGAATAGTGCGAGATCGTCAGT -ACGGAATAGTGCGAGATCGAAGGT -ACGGAATAGTGCGAGATCAACCGT -ACGGAATAGTGCGAGATCTTGTGC -ACGGAATAGTGCGAGATCCTAAGC -ACGGAATAGTGCGAGATCACTAGC -ACGGAATAGTGCGAGATCAGATGC -ACGGAATAGTGCGAGATCTGAAGG -ACGGAATAGTGCGAGATCCAATGG -ACGGAATAGTGCGAGATCATGAGG -ACGGAATAGTGCGAGATCAATGGG -ACGGAATAGTGCGAGATCTCCTGA -ACGGAATAGTGCGAGATCTAGCGA -ACGGAATAGTGCGAGATCCACAGA -ACGGAATAGTGCGAGATCGCAAGA -ACGGAATAGTGCGAGATCGGTTGA -ACGGAATAGTGCGAGATCTCCGAT -ACGGAATAGTGCGAGATCTGGCAT -ACGGAATAGTGCGAGATCCGAGAT -ACGGAATAGTGCGAGATCTACCAC -ACGGAATAGTGCGAGATCCAGAAC -ACGGAATAGTGCGAGATCGTCTAC -ACGGAATAGTGCGAGATCACGTAC -ACGGAATAGTGCGAGATCAGTGAC -ACGGAATAGTGCGAGATCCTGTAG -ACGGAATAGTGCGAGATCCCTAAG -ACGGAATAGTGCGAGATCGTTCAG -ACGGAATAGTGCGAGATCGCATAG -ACGGAATAGTGCGAGATCGACAAG -ACGGAATAGTGCGAGATCAAGCAG -ACGGAATAGTGCGAGATCCGTCAA -ACGGAATAGTGCGAGATCGCTGAA -ACGGAATAGTGCGAGATCAGTACG -ACGGAATAGTGCGAGATCATCCGA -ACGGAATAGTGCGAGATCATGGGA -ACGGAATAGTGCGAGATCGTGCAA -ACGGAATAGTGCGAGATCGAGGAA -ACGGAATAGTGCGAGATCCAGGTA -ACGGAATAGTGCGAGATCGACTCT -ACGGAATAGTGCGAGATCAGTCCT -ACGGAATAGTGCGAGATCTAAGCC -ACGGAATAGTGCGAGATCATAGCC -ACGGAATAGTGCGAGATCTAACCG -ACGGAATAGTGCGAGATCATGCCA -ACGGAATAGTGCCTTCTCGGAAAC -ACGGAATAGTGCCTTCTCAACACC -ACGGAATAGTGCCTTCTCATCGAG -ACGGAATAGTGCCTTCTCCTCCTT -ACGGAATAGTGCCTTCTCCCTGTT -ACGGAATAGTGCCTTCTCCGGTTT -ACGGAATAGTGCCTTCTCGTGGTT -ACGGAATAGTGCCTTCTCGCCTTT -ACGGAATAGTGCCTTCTCGGTCTT -ACGGAATAGTGCCTTCTCACGCTT -ACGGAATAGTGCCTTCTCAGCGTT -ACGGAATAGTGCCTTCTCTTCGTC -ACGGAATAGTGCCTTCTCTCTCTC -ACGGAATAGTGCCTTCTCTGGATC -ACGGAATAGTGCCTTCTCCACTTC -ACGGAATAGTGCCTTCTCGTACTC -ACGGAATAGTGCCTTCTCGATGTC -ACGGAATAGTGCCTTCTCACAGTC -ACGGAATAGTGCCTTCTCTTGCTG -ACGGAATAGTGCCTTCTCTCCATG -ACGGAATAGTGCCTTCTCTGTGTG -ACGGAATAGTGCCTTCTCCTAGTG -ACGGAATAGTGCCTTCTCCATCTG -ACGGAATAGTGCCTTCTCGAGTTG -ACGGAATAGTGCCTTCTCAGACTG -ACGGAATAGTGCCTTCTCTCGGTA -ACGGAATAGTGCCTTCTCTGCCTA -ACGGAATAGTGCCTTCTCCCACTA -ACGGAATAGTGCCTTCTCGGAGTA -ACGGAATAGTGCCTTCTCTCGTCT -ACGGAATAGTGCCTTCTCTGCACT -ACGGAATAGTGCCTTCTCCTGACT -ACGGAATAGTGCCTTCTCCAACCT -ACGGAATAGTGCCTTCTCGCTACT -ACGGAATAGTGCCTTCTCGGATCT -ACGGAATAGTGCCTTCTCAAGGCT -ACGGAATAGTGCCTTCTCTCAACC -ACGGAATAGTGCCTTCTCTGTTCC -ACGGAATAGTGCCTTCTCATTCCC -ACGGAATAGTGCCTTCTCTTCTCG -ACGGAATAGTGCCTTCTCTAGACG -ACGGAATAGTGCCTTCTCGTAACG -ACGGAATAGTGCCTTCTCACTTCG -ACGGAATAGTGCCTTCTCTACGCA -ACGGAATAGTGCCTTCTCCTTGCA -ACGGAATAGTGCCTTCTCCGAACA -ACGGAATAGTGCCTTCTCCAGTCA -ACGGAATAGTGCCTTCTCGATCCA -ACGGAATAGTGCCTTCTCACGACA -ACGGAATAGTGCCTTCTCAGCTCA -ACGGAATAGTGCCTTCTCTCACGT -ACGGAATAGTGCCTTCTCCGTAGT -ACGGAATAGTGCCTTCTCGTCAGT -ACGGAATAGTGCCTTCTCGAAGGT -ACGGAATAGTGCCTTCTCAACCGT -ACGGAATAGTGCCTTCTCTTGTGC -ACGGAATAGTGCCTTCTCCTAAGC -ACGGAATAGTGCCTTCTCACTAGC -ACGGAATAGTGCCTTCTCAGATGC -ACGGAATAGTGCCTTCTCTGAAGG -ACGGAATAGTGCCTTCTCCAATGG -ACGGAATAGTGCCTTCTCATGAGG -ACGGAATAGTGCCTTCTCAATGGG -ACGGAATAGTGCCTTCTCTCCTGA -ACGGAATAGTGCCTTCTCTAGCGA -ACGGAATAGTGCCTTCTCCACAGA -ACGGAATAGTGCCTTCTCGCAAGA -ACGGAATAGTGCCTTCTCGGTTGA -ACGGAATAGTGCCTTCTCTCCGAT -ACGGAATAGTGCCTTCTCTGGCAT -ACGGAATAGTGCCTTCTCCGAGAT -ACGGAATAGTGCCTTCTCTACCAC -ACGGAATAGTGCCTTCTCCAGAAC -ACGGAATAGTGCCTTCTCGTCTAC -ACGGAATAGTGCCTTCTCACGTAC -ACGGAATAGTGCCTTCTCAGTGAC -ACGGAATAGTGCCTTCTCCTGTAG -ACGGAATAGTGCCTTCTCCCTAAG -ACGGAATAGTGCCTTCTCGTTCAG -ACGGAATAGTGCCTTCTCGCATAG -ACGGAATAGTGCCTTCTCGACAAG -ACGGAATAGTGCCTTCTCAAGCAG -ACGGAATAGTGCCTTCTCCGTCAA -ACGGAATAGTGCCTTCTCGCTGAA -ACGGAATAGTGCCTTCTCAGTACG -ACGGAATAGTGCCTTCTCATCCGA -ACGGAATAGTGCCTTCTCATGGGA -ACGGAATAGTGCCTTCTCGTGCAA -ACGGAATAGTGCCTTCTCGAGGAA -ACGGAATAGTGCCTTCTCCAGGTA -ACGGAATAGTGCCTTCTCGACTCT -ACGGAATAGTGCCTTCTCAGTCCT -ACGGAATAGTGCCTTCTCTAAGCC -ACGGAATAGTGCCTTCTCATAGCC -ACGGAATAGTGCCTTCTCTAACCG -ACGGAATAGTGCCTTCTCATGCCA -ACGGAATAGTGCGTTCCTGGAAAC -ACGGAATAGTGCGTTCCTAACACC -ACGGAATAGTGCGTTCCTATCGAG -ACGGAATAGTGCGTTCCTCTCCTT -ACGGAATAGTGCGTTCCTCCTGTT -ACGGAATAGTGCGTTCCTCGGTTT -ACGGAATAGTGCGTTCCTGTGGTT -ACGGAATAGTGCGTTCCTGCCTTT -ACGGAATAGTGCGTTCCTGGTCTT -ACGGAATAGTGCGTTCCTACGCTT -ACGGAATAGTGCGTTCCTAGCGTT -ACGGAATAGTGCGTTCCTTTCGTC -ACGGAATAGTGCGTTCCTTCTCTC -ACGGAATAGTGCGTTCCTTGGATC -ACGGAATAGTGCGTTCCTCACTTC -ACGGAATAGTGCGTTCCTGTACTC -ACGGAATAGTGCGTTCCTGATGTC -ACGGAATAGTGCGTTCCTACAGTC -ACGGAATAGTGCGTTCCTTTGCTG -ACGGAATAGTGCGTTCCTTCCATG -ACGGAATAGTGCGTTCCTTGTGTG -ACGGAATAGTGCGTTCCTCTAGTG -ACGGAATAGTGCGTTCCTCATCTG -ACGGAATAGTGCGTTCCTGAGTTG -ACGGAATAGTGCGTTCCTAGACTG -ACGGAATAGTGCGTTCCTTCGGTA -ACGGAATAGTGCGTTCCTTGCCTA -ACGGAATAGTGCGTTCCTCCACTA -ACGGAATAGTGCGTTCCTGGAGTA -ACGGAATAGTGCGTTCCTTCGTCT -ACGGAATAGTGCGTTCCTTGCACT -ACGGAATAGTGCGTTCCTCTGACT -ACGGAATAGTGCGTTCCTCAACCT -ACGGAATAGTGCGTTCCTGCTACT -ACGGAATAGTGCGTTCCTGGATCT -ACGGAATAGTGCGTTCCTAAGGCT -ACGGAATAGTGCGTTCCTTCAACC -ACGGAATAGTGCGTTCCTTGTTCC -ACGGAATAGTGCGTTCCTATTCCC -ACGGAATAGTGCGTTCCTTTCTCG -ACGGAATAGTGCGTTCCTTAGACG -ACGGAATAGTGCGTTCCTGTAACG -ACGGAATAGTGCGTTCCTACTTCG -ACGGAATAGTGCGTTCCTTACGCA -ACGGAATAGTGCGTTCCTCTTGCA -ACGGAATAGTGCGTTCCTCGAACA -ACGGAATAGTGCGTTCCTCAGTCA -ACGGAATAGTGCGTTCCTGATCCA -ACGGAATAGTGCGTTCCTACGACA -ACGGAATAGTGCGTTCCTAGCTCA -ACGGAATAGTGCGTTCCTTCACGT -ACGGAATAGTGCGTTCCTCGTAGT -ACGGAATAGTGCGTTCCTGTCAGT -ACGGAATAGTGCGTTCCTGAAGGT -ACGGAATAGTGCGTTCCTAACCGT -ACGGAATAGTGCGTTCCTTTGTGC -ACGGAATAGTGCGTTCCTCTAAGC -ACGGAATAGTGCGTTCCTACTAGC -ACGGAATAGTGCGTTCCTAGATGC -ACGGAATAGTGCGTTCCTTGAAGG -ACGGAATAGTGCGTTCCTCAATGG -ACGGAATAGTGCGTTCCTATGAGG -ACGGAATAGTGCGTTCCTAATGGG -ACGGAATAGTGCGTTCCTTCCTGA -ACGGAATAGTGCGTTCCTTAGCGA -ACGGAATAGTGCGTTCCTCACAGA -ACGGAATAGTGCGTTCCTGCAAGA -ACGGAATAGTGCGTTCCTGGTTGA -ACGGAATAGTGCGTTCCTTCCGAT -ACGGAATAGTGCGTTCCTTGGCAT -ACGGAATAGTGCGTTCCTCGAGAT -ACGGAATAGTGCGTTCCTTACCAC -ACGGAATAGTGCGTTCCTCAGAAC -ACGGAATAGTGCGTTCCTGTCTAC -ACGGAATAGTGCGTTCCTACGTAC -ACGGAATAGTGCGTTCCTAGTGAC -ACGGAATAGTGCGTTCCTCTGTAG -ACGGAATAGTGCGTTCCTCCTAAG -ACGGAATAGTGCGTTCCTGTTCAG -ACGGAATAGTGCGTTCCTGCATAG -ACGGAATAGTGCGTTCCTGACAAG -ACGGAATAGTGCGTTCCTAAGCAG -ACGGAATAGTGCGTTCCTCGTCAA -ACGGAATAGTGCGTTCCTGCTGAA -ACGGAATAGTGCGTTCCTAGTACG -ACGGAATAGTGCGTTCCTATCCGA -ACGGAATAGTGCGTTCCTATGGGA -ACGGAATAGTGCGTTCCTGTGCAA -ACGGAATAGTGCGTTCCTGAGGAA -ACGGAATAGTGCGTTCCTCAGGTA -ACGGAATAGTGCGTTCCTGACTCT -ACGGAATAGTGCGTTCCTAGTCCT -ACGGAATAGTGCGTTCCTTAAGCC -ACGGAATAGTGCGTTCCTATAGCC -ACGGAATAGTGCGTTCCTTAACCG -ACGGAATAGTGCGTTCCTATGCCA -ACGGAATAGTGCTTTCGGGGAAAC -ACGGAATAGTGCTTTCGGAACACC -ACGGAATAGTGCTTTCGGATCGAG -ACGGAATAGTGCTTTCGGCTCCTT -ACGGAATAGTGCTTTCGGCCTGTT -ACGGAATAGTGCTTTCGGCGGTTT -ACGGAATAGTGCTTTCGGGTGGTT -ACGGAATAGTGCTTTCGGGCCTTT -ACGGAATAGTGCTTTCGGGGTCTT -ACGGAATAGTGCTTTCGGACGCTT -ACGGAATAGTGCTTTCGGAGCGTT -ACGGAATAGTGCTTTCGGTTCGTC -ACGGAATAGTGCTTTCGGTCTCTC -ACGGAATAGTGCTTTCGGTGGATC -ACGGAATAGTGCTTTCGGCACTTC -ACGGAATAGTGCTTTCGGGTACTC -ACGGAATAGTGCTTTCGGGATGTC -ACGGAATAGTGCTTTCGGACAGTC -ACGGAATAGTGCTTTCGGTTGCTG -ACGGAATAGTGCTTTCGGTCCATG -ACGGAATAGTGCTTTCGGTGTGTG -ACGGAATAGTGCTTTCGGCTAGTG -ACGGAATAGTGCTTTCGGCATCTG -ACGGAATAGTGCTTTCGGGAGTTG -ACGGAATAGTGCTTTCGGAGACTG -ACGGAATAGTGCTTTCGGTCGGTA -ACGGAATAGTGCTTTCGGTGCCTA -ACGGAATAGTGCTTTCGGCCACTA -ACGGAATAGTGCTTTCGGGGAGTA -ACGGAATAGTGCTTTCGGTCGTCT -ACGGAATAGTGCTTTCGGTGCACT -ACGGAATAGTGCTTTCGGCTGACT -ACGGAATAGTGCTTTCGGCAACCT -ACGGAATAGTGCTTTCGGGCTACT -ACGGAATAGTGCTTTCGGGGATCT -ACGGAATAGTGCTTTCGGAAGGCT -ACGGAATAGTGCTTTCGGTCAACC -ACGGAATAGTGCTTTCGGTGTTCC -ACGGAATAGTGCTTTCGGATTCCC -ACGGAATAGTGCTTTCGGTTCTCG -ACGGAATAGTGCTTTCGGTAGACG -ACGGAATAGTGCTTTCGGGTAACG -ACGGAATAGTGCTTTCGGACTTCG -ACGGAATAGTGCTTTCGGTACGCA -ACGGAATAGTGCTTTCGGCTTGCA -ACGGAATAGTGCTTTCGGCGAACA -ACGGAATAGTGCTTTCGGCAGTCA -ACGGAATAGTGCTTTCGGGATCCA -ACGGAATAGTGCTTTCGGACGACA -ACGGAATAGTGCTTTCGGAGCTCA -ACGGAATAGTGCTTTCGGTCACGT -ACGGAATAGTGCTTTCGGCGTAGT -ACGGAATAGTGCTTTCGGGTCAGT -ACGGAATAGTGCTTTCGGGAAGGT -ACGGAATAGTGCTTTCGGAACCGT -ACGGAATAGTGCTTTCGGTTGTGC -ACGGAATAGTGCTTTCGGCTAAGC -ACGGAATAGTGCTTTCGGACTAGC -ACGGAATAGTGCTTTCGGAGATGC -ACGGAATAGTGCTTTCGGTGAAGG -ACGGAATAGTGCTTTCGGCAATGG -ACGGAATAGTGCTTTCGGATGAGG -ACGGAATAGTGCTTTCGGAATGGG -ACGGAATAGTGCTTTCGGTCCTGA -ACGGAATAGTGCTTTCGGTAGCGA -ACGGAATAGTGCTTTCGGCACAGA -ACGGAATAGTGCTTTCGGGCAAGA -ACGGAATAGTGCTTTCGGGGTTGA -ACGGAATAGTGCTTTCGGTCCGAT -ACGGAATAGTGCTTTCGGTGGCAT -ACGGAATAGTGCTTTCGGCGAGAT -ACGGAATAGTGCTTTCGGTACCAC -ACGGAATAGTGCTTTCGGCAGAAC -ACGGAATAGTGCTTTCGGGTCTAC -ACGGAATAGTGCTTTCGGACGTAC -ACGGAATAGTGCTTTCGGAGTGAC -ACGGAATAGTGCTTTCGGCTGTAG -ACGGAATAGTGCTTTCGGCCTAAG -ACGGAATAGTGCTTTCGGGTTCAG -ACGGAATAGTGCTTTCGGGCATAG -ACGGAATAGTGCTTTCGGGACAAG -ACGGAATAGTGCTTTCGGAAGCAG -ACGGAATAGTGCTTTCGGCGTCAA -ACGGAATAGTGCTTTCGGGCTGAA -ACGGAATAGTGCTTTCGGAGTACG -ACGGAATAGTGCTTTCGGATCCGA -ACGGAATAGTGCTTTCGGATGGGA -ACGGAATAGTGCTTTCGGGTGCAA -ACGGAATAGTGCTTTCGGGAGGAA -ACGGAATAGTGCTTTCGGCAGGTA -ACGGAATAGTGCTTTCGGGACTCT -ACGGAATAGTGCTTTCGGAGTCCT -ACGGAATAGTGCTTTCGGTAAGCC -ACGGAATAGTGCTTTCGGATAGCC -ACGGAATAGTGCTTTCGGTAACCG -ACGGAATAGTGCTTTCGGATGCCA -ACGGAATAGTGCGTTGTGGGAAAC -ACGGAATAGTGCGTTGTGAACACC -ACGGAATAGTGCGTTGTGATCGAG -ACGGAATAGTGCGTTGTGCTCCTT -ACGGAATAGTGCGTTGTGCCTGTT -ACGGAATAGTGCGTTGTGCGGTTT -ACGGAATAGTGCGTTGTGGTGGTT -ACGGAATAGTGCGTTGTGGCCTTT -ACGGAATAGTGCGTTGTGGGTCTT -ACGGAATAGTGCGTTGTGACGCTT -ACGGAATAGTGCGTTGTGAGCGTT -ACGGAATAGTGCGTTGTGTTCGTC -ACGGAATAGTGCGTTGTGTCTCTC -ACGGAATAGTGCGTTGTGTGGATC -ACGGAATAGTGCGTTGTGCACTTC -ACGGAATAGTGCGTTGTGGTACTC -ACGGAATAGTGCGTTGTGGATGTC -ACGGAATAGTGCGTTGTGACAGTC -ACGGAATAGTGCGTTGTGTTGCTG -ACGGAATAGTGCGTTGTGTCCATG -ACGGAATAGTGCGTTGTGTGTGTG -ACGGAATAGTGCGTTGTGCTAGTG -ACGGAATAGTGCGTTGTGCATCTG -ACGGAATAGTGCGTTGTGGAGTTG -ACGGAATAGTGCGTTGTGAGACTG -ACGGAATAGTGCGTTGTGTCGGTA -ACGGAATAGTGCGTTGTGTGCCTA -ACGGAATAGTGCGTTGTGCCACTA -ACGGAATAGTGCGTTGTGGGAGTA -ACGGAATAGTGCGTTGTGTCGTCT -ACGGAATAGTGCGTTGTGTGCACT -ACGGAATAGTGCGTTGTGCTGACT -ACGGAATAGTGCGTTGTGCAACCT -ACGGAATAGTGCGTTGTGGCTACT -ACGGAATAGTGCGTTGTGGGATCT -ACGGAATAGTGCGTTGTGAAGGCT -ACGGAATAGTGCGTTGTGTCAACC -ACGGAATAGTGCGTTGTGTGTTCC -ACGGAATAGTGCGTTGTGATTCCC -ACGGAATAGTGCGTTGTGTTCTCG -ACGGAATAGTGCGTTGTGTAGACG -ACGGAATAGTGCGTTGTGGTAACG -ACGGAATAGTGCGTTGTGACTTCG -ACGGAATAGTGCGTTGTGTACGCA -ACGGAATAGTGCGTTGTGCTTGCA -ACGGAATAGTGCGTTGTGCGAACA -ACGGAATAGTGCGTTGTGCAGTCA -ACGGAATAGTGCGTTGTGGATCCA -ACGGAATAGTGCGTTGTGACGACA -ACGGAATAGTGCGTTGTGAGCTCA -ACGGAATAGTGCGTTGTGTCACGT -ACGGAATAGTGCGTTGTGCGTAGT -ACGGAATAGTGCGTTGTGGTCAGT -ACGGAATAGTGCGTTGTGGAAGGT -ACGGAATAGTGCGTTGTGAACCGT -ACGGAATAGTGCGTTGTGTTGTGC -ACGGAATAGTGCGTTGTGCTAAGC -ACGGAATAGTGCGTTGTGACTAGC -ACGGAATAGTGCGTTGTGAGATGC -ACGGAATAGTGCGTTGTGTGAAGG -ACGGAATAGTGCGTTGTGCAATGG -ACGGAATAGTGCGTTGTGATGAGG -ACGGAATAGTGCGTTGTGAATGGG -ACGGAATAGTGCGTTGTGTCCTGA -ACGGAATAGTGCGTTGTGTAGCGA -ACGGAATAGTGCGTTGTGCACAGA -ACGGAATAGTGCGTTGTGGCAAGA -ACGGAATAGTGCGTTGTGGGTTGA -ACGGAATAGTGCGTTGTGTCCGAT -ACGGAATAGTGCGTTGTGTGGCAT -ACGGAATAGTGCGTTGTGCGAGAT -ACGGAATAGTGCGTTGTGTACCAC -ACGGAATAGTGCGTTGTGCAGAAC -ACGGAATAGTGCGTTGTGGTCTAC -ACGGAATAGTGCGTTGTGACGTAC -ACGGAATAGTGCGTTGTGAGTGAC -ACGGAATAGTGCGTTGTGCTGTAG -ACGGAATAGTGCGTTGTGCCTAAG -ACGGAATAGTGCGTTGTGGTTCAG -ACGGAATAGTGCGTTGTGGCATAG -ACGGAATAGTGCGTTGTGGACAAG -ACGGAATAGTGCGTTGTGAAGCAG -ACGGAATAGTGCGTTGTGCGTCAA -ACGGAATAGTGCGTTGTGGCTGAA -ACGGAATAGTGCGTTGTGAGTACG -ACGGAATAGTGCGTTGTGATCCGA -ACGGAATAGTGCGTTGTGATGGGA -ACGGAATAGTGCGTTGTGGTGCAA -ACGGAATAGTGCGTTGTGGAGGAA -ACGGAATAGTGCGTTGTGCAGGTA -ACGGAATAGTGCGTTGTGGACTCT -ACGGAATAGTGCGTTGTGAGTCCT -ACGGAATAGTGCGTTGTGTAAGCC -ACGGAATAGTGCGTTGTGATAGCC -ACGGAATAGTGCGTTGTGTAACCG -ACGGAATAGTGCGTTGTGATGCCA -ACGGAATAGTGCTTTGCCGGAAAC -ACGGAATAGTGCTTTGCCAACACC -ACGGAATAGTGCTTTGCCATCGAG -ACGGAATAGTGCTTTGCCCTCCTT -ACGGAATAGTGCTTTGCCCCTGTT -ACGGAATAGTGCTTTGCCCGGTTT -ACGGAATAGTGCTTTGCCGTGGTT -ACGGAATAGTGCTTTGCCGCCTTT -ACGGAATAGTGCTTTGCCGGTCTT -ACGGAATAGTGCTTTGCCACGCTT -ACGGAATAGTGCTTTGCCAGCGTT -ACGGAATAGTGCTTTGCCTTCGTC -ACGGAATAGTGCTTTGCCTCTCTC -ACGGAATAGTGCTTTGCCTGGATC -ACGGAATAGTGCTTTGCCCACTTC -ACGGAATAGTGCTTTGCCGTACTC -ACGGAATAGTGCTTTGCCGATGTC -ACGGAATAGTGCTTTGCCACAGTC -ACGGAATAGTGCTTTGCCTTGCTG -ACGGAATAGTGCTTTGCCTCCATG -ACGGAATAGTGCTTTGCCTGTGTG -ACGGAATAGTGCTTTGCCCTAGTG -ACGGAATAGTGCTTTGCCCATCTG -ACGGAATAGTGCTTTGCCGAGTTG -ACGGAATAGTGCTTTGCCAGACTG -ACGGAATAGTGCTTTGCCTCGGTA -ACGGAATAGTGCTTTGCCTGCCTA -ACGGAATAGTGCTTTGCCCCACTA -ACGGAATAGTGCTTTGCCGGAGTA -ACGGAATAGTGCTTTGCCTCGTCT -ACGGAATAGTGCTTTGCCTGCACT -ACGGAATAGTGCTTTGCCCTGACT -ACGGAATAGTGCTTTGCCCAACCT -ACGGAATAGTGCTTTGCCGCTACT -ACGGAATAGTGCTTTGCCGGATCT -ACGGAATAGTGCTTTGCCAAGGCT -ACGGAATAGTGCTTTGCCTCAACC -ACGGAATAGTGCTTTGCCTGTTCC -ACGGAATAGTGCTTTGCCATTCCC -ACGGAATAGTGCTTTGCCTTCTCG -ACGGAATAGTGCTTTGCCTAGACG -ACGGAATAGTGCTTTGCCGTAACG -ACGGAATAGTGCTTTGCCACTTCG -ACGGAATAGTGCTTTGCCTACGCA -ACGGAATAGTGCTTTGCCCTTGCA -ACGGAATAGTGCTTTGCCCGAACA -ACGGAATAGTGCTTTGCCCAGTCA -ACGGAATAGTGCTTTGCCGATCCA -ACGGAATAGTGCTTTGCCACGACA -ACGGAATAGTGCTTTGCCAGCTCA -ACGGAATAGTGCTTTGCCTCACGT -ACGGAATAGTGCTTTGCCCGTAGT -ACGGAATAGTGCTTTGCCGTCAGT -ACGGAATAGTGCTTTGCCGAAGGT -ACGGAATAGTGCTTTGCCAACCGT -ACGGAATAGTGCTTTGCCTTGTGC -ACGGAATAGTGCTTTGCCCTAAGC -ACGGAATAGTGCTTTGCCACTAGC -ACGGAATAGTGCTTTGCCAGATGC -ACGGAATAGTGCTTTGCCTGAAGG -ACGGAATAGTGCTTTGCCCAATGG -ACGGAATAGTGCTTTGCCATGAGG -ACGGAATAGTGCTTTGCCAATGGG -ACGGAATAGTGCTTTGCCTCCTGA -ACGGAATAGTGCTTTGCCTAGCGA -ACGGAATAGTGCTTTGCCCACAGA -ACGGAATAGTGCTTTGCCGCAAGA -ACGGAATAGTGCTTTGCCGGTTGA -ACGGAATAGTGCTTTGCCTCCGAT -ACGGAATAGTGCTTTGCCTGGCAT -ACGGAATAGTGCTTTGCCCGAGAT -ACGGAATAGTGCTTTGCCTACCAC -ACGGAATAGTGCTTTGCCCAGAAC -ACGGAATAGTGCTTTGCCGTCTAC -ACGGAATAGTGCTTTGCCACGTAC -ACGGAATAGTGCTTTGCCAGTGAC -ACGGAATAGTGCTTTGCCCTGTAG -ACGGAATAGTGCTTTGCCCCTAAG -ACGGAATAGTGCTTTGCCGTTCAG -ACGGAATAGTGCTTTGCCGCATAG -ACGGAATAGTGCTTTGCCGACAAG -ACGGAATAGTGCTTTGCCAAGCAG -ACGGAATAGTGCTTTGCCCGTCAA -ACGGAATAGTGCTTTGCCGCTGAA -ACGGAATAGTGCTTTGCCAGTACG -ACGGAATAGTGCTTTGCCATCCGA -ACGGAATAGTGCTTTGCCATGGGA -ACGGAATAGTGCTTTGCCGTGCAA -ACGGAATAGTGCTTTGCCGAGGAA -ACGGAATAGTGCTTTGCCCAGGTA -ACGGAATAGTGCTTTGCCGACTCT -ACGGAATAGTGCTTTGCCAGTCCT -ACGGAATAGTGCTTTGCCTAAGCC -ACGGAATAGTGCTTTGCCATAGCC -ACGGAATAGTGCTTTGCCTAACCG -ACGGAATAGTGCTTTGCCATGCCA -ACGGAATAGTGCCTTGGTGGAAAC -ACGGAATAGTGCCTTGGTAACACC -ACGGAATAGTGCCTTGGTATCGAG -ACGGAATAGTGCCTTGGTCTCCTT -ACGGAATAGTGCCTTGGTCCTGTT -ACGGAATAGTGCCTTGGTCGGTTT -ACGGAATAGTGCCTTGGTGTGGTT -ACGGAATAGTGCCTTGGTGCCTTT -ACGGAATAGTGCCTTGGTGGTCTT -ACGGAATAGTGCCTTGGTACGCTT -ACGGAATAGTGCCTTGGTAGCGTT -ACGGAATAGTGCCTTGGTTTCGTC -ACGGAATAGTGCCTTGGTTCTCTC -ACGGAATAGTGCCTTGGTTGGATC -ACGGAATAGTGCCTTGGTCACTTC -ACGGAATAGTGCCTTGGTGTACTC -ACGGAATAGTGCCTTGGTGATGTC -ACGGAATAGTGCCTTGGTACAGTC -ACGGAATAGTGCCTTGGTTTGCTG -ACGGAATAGTGCCTTGGTTCCATG -ACGGAATAGTGCCTTGGTTGTGTG -ACGGAATAGTGCCTTGGTCTAGTG -ACGGAATAGTGCCTTGGTCATCTG -ACGGAATAGTGCCTTGGTGAGTTG -ACGGAATAGTGCCTTGGTAGACTG -ACGGAATAGTGCCTTGGTTCGGTA -ACGGAATAGTGCCTTGGTTGCCTA -ACGGAATAGTGCCTTGGTCCACTA -ACGGAATAGTGCCTTGGTGGAGTA -ACGGAATAGTGCCTTGGTTCGTCT -ACGGAATAGTGCCTTGGTTGCACT -ACGGAATAGTGCCTTGGTCTGACT -ACGGAATAGTGCCTTGGTCAACCT -ACGGAATAGTGCCTTGGTGCTACT -ACGGAATAGTGCCTTGGTGGATCT -ACGGAATAGTGCCTTGGTAAGGCT -ACGGAATAGTGCCTTGGTTCAACC -ACGGAATAGTGCCTTGGTTGTTCC -ACGGAATAGTGCCTTGGTATTCCC -ACGGAATAGTGCCTTGGTTTCTCG -ACGGAATAGTGCCTTGGTTAGACG -ACGGAATAGTGCCTTGGTGTAACG -ACGGAATAGTGCCTTGGTACTTCG -ACGGAATAGTGCCTTGGTTACGCA -ACGGAATAGTGCCTTGGTCTTGCA -ACGGAATAGTGCCTTGGTCGAACA -ACGGAATAGTGCCTTGGTCAGTCA -ACGGAATAGTGCCTTGGTGATCCA -ACGGAATAGTGCCTTGGTACGACA -ACGGAATAGTGCCTTGGTAGCTCA -ACGGAATAGTGCCTTGGTTCACGT -ACGGAATAGTGCCTTGGTCGTAGT -ACGGAATAGTGCCTTGGTGTCAGT -ACGGAATAGTGCCTTGGTGAAGGT -ACGGAATAGTGCCTTGGTAACCGT -ACGGAATAGTGCCTTGGTTTGTGC -ACGGAATAGTGCCTTGGTCTAAGC -ACGGAATAGTGCCTTGGTACTAGC -ACGGAATAGTGCCTTGGTAGATGC -ACGGAATAGTGCCTTGGTTGAAGG -ACGGAATAGTGCCTTGGTCAATGG -ACGGAATAGTGCCTTGGTATGAGG -ACGGAATAGTGCCTTGGTAATGGG -ACGGAATAGTGCCTTGGTTCCTGA -ACGGAATAGTGCCTTGGTTAGCGA -ACGGAATAGTGCCTTGGTCACAGA -ACGGAATAGTGCCTTGGTGCAAGA -ACGGAATAGTGCCTTGGTGGTTGA -ACGGAATAGTGCCTTGGTTCCGAT -ACGGAATAGTGCCTTGGTTGGCAT -ACGGAATAGTGCCTTGGTCGAGAT -ACGGAATAGTGCCTTGGTTACCAC -ACGGAATAGTGCCTTGGTCAGAAC -ACGGAATAGTGCCTTGGTGTCTAC -ACGGAATAGTGCCTTGGTACGTAC -ACGGAATAGTGCCTTGGTAGTGAC -ACGGAATAGTGCCTTGGTCTGTAG -ACGGAATAGTGCCTTGGTCCTAAG -ACGGAATAGTGCCTTGGTGTTCAG -ACGGAATAGTGCCTTGGTGCATAG -ACGGAATAGTGCCTTGGTGACAAG -ACGGAATAGTGCCTTGGTAAGCAG -ACGGAATAGTGCCTTGGTCGTCAA -ACGGAATAGTGCCTTGGTGCTGAA -ACGGAATAGTGCCTTGGTAGTACG -ACGGAATAGTGCCTTGGTATCCGA -ACGGAATAGTGCCTTGGTATGGGA -ACGGAATAGTGCCTTGGTGTGCAA -ACGGAATAGTGCCTTGGTGAGGAA -ACGGAATAGTGCCTTGGTCAGGTA -ACGGAATAGTGCCTTGGTGACTCT -ACGGAATAGTGCCTTGGTAGTCCT -ACGGAATAGTGCCTTGGTTAAGCC -ACGGAATAGTGCCTTGGTATAGCC -ACGGAATAGTGCCTTGGTTAACCG -ACGGAATAGTGCCTTGGTATGCCA -ACGGAATAGTGCCTTACGGGAAAC -ACGGAATAGTGCCTTACGAACACC -ACGGAATAGTGCCTTACGATCGAG -ACGGAATAGTGCCTTACGCTCCTT -ACGGAATAGTGCCTTACGCCTGTT -ACGGAATAGTGCCTTACGCGGTTT -ACGGAATAGTGCCTTACGGTGGTT -ACGGAATAGTGCCTTACGGCCTTT -ACGGAATAGTGCCTTACGGGTCTT -ACGGAATAGTGCCTTACGACGCTT -ACGGAATAGTGCCTTACGAGCGTT -ACGGAATAGTGCCTTACGTTCGTC -ACGGAATAGTGCCTTACGTCTCTC -ACGGAATAGTGCCTTACGTGGATC -ACGGAATAGTGCCTTACGCACTTC -ACGGAATAGTGCCTTACGGTACTC -ACGGAATAGTGCCTTACGGATGTC -ACGGAATAGTGCCTTACGACAGTC -ACGGAATAGTGCCTTACGTTGCTG -ACGGAATAGTGCCTTACGTCCATG -ACGGAATAGTGCCTTACGTGTGTG -ACGGAATAGTGCCTTACGCTAGTG -ACGGAATAGTGCCTTACGCATCTG -ACGGAATAGTGCCTTACGGAGTTG -ACGGAATAGTGCCTTACGAGACTG -ACGGAATAGTGCCTTACGTCGGTA -ACGGAATAGTGCCTTACGTGCCTA -ACGGAATAGTGCCTTACGCCACTA -ACGGAATAGTGCCTTACGGGAGTA -ACGGAATAGTGCCTTACGTCGTCT -ACGGAATAGTGCCTTACGTGCACT -ACGGAATAGTGCCTTACGCTGACT -ACGGAATAGTGCCTTACGCAACCT -ACGGAATAGTGCCTTACGGCTACT -ACGGAATAGTGCCTTACGGGATCT -ACGGAATAGTGCCTTACGAAGGCT -ACGGAATAGTGCCTTACGTCAACC -ACGGAATAGTGCCTTACGTGTTCC -ACGGAATAGTGCCTTACGATTCCC -ACGGAATAGTGCCTTACGTTCTCG -ACGGAATAGTGCCTTACGTAGACG -ACGGAATAGTGCCTTACGGTAACG -ACGGAATAGTGCCTTACGACTTCG -ACGGAATAGTGCCTTACGTACGCA -ACGGAATAGTGCCTTACGCTTGCA -ACGGAATAGTGCCTTACGCGAACA -ACGGAATAGTGCCTTACGCAGTCA -ACGGAATAGTGCCTTACGGATCCA -ACGGAATAGTGCCTTACGACGACA -ACGGAATAGTGCCTTACGAGCTCA -ACGGAATAGTGCCTTACGTCACGT -ACGGAATAGTGCCTTACGCGTAGT -ACGGAATAGTGCCTTACGGTCAGT -ACGGAATAGTGCCTTACGGAAGGT -ACGGAATAGTGCCTTACGAACCGT -ACGGAATAGTGCCTTACGTTGTGC -ACGGAATAGTGCCTTACGCTAAGC -ACGGAATAGTGCCTTACGACTAGC -ACGGAATAGTGCCTTACGAGATGC -ACGGAATAGTGCCTTACGTGAAGG -ACGGAATAGTGCCTTACGCAATGG -ACGGAATAGTGCCTTACGATGAGG -ACGGAATAGTGCCTTACGAATGGG -ACGGAATAGTGCCTTACGTCCTGA -ACGGAATAGTGCCTTACGTAGCGA -ACGGAATAGTGCCTTACGCACAGA -ACGGAATAGTGCCTTACGGCAAGA -ACGGAATAGTGCCTTACGGGTTGA -ACGGAATAGTGCCTTACGTCCGAT -ACGGAATAGTGCCTTACGTGGCAT -ACGGAATAGTGCCTTACGCGAGAT -ACGGAATAGTGCCTTACGTACCAC -ACGGAATAGTGCCTTACGCAGAAC -ACGGAATAGTGCCTTACGGTCTAC -ACGGAATAGTGCCTTACGACGTAC -ACGGAATAGTGCCTTACGAGTGAC -ACGGAATAGTGCCTTACGCTGTAG -ACGGAATAGTGCCTTACGCCTAAG -ACGGAATAGTGCCTTACGGTTCAG -ACGGAATAGTGCCTTACGGCATAG -ACGGAATAGTGCCTTACGGACAAG -ACGGAATAGTGCCTTACGAAGCAG -ACGGAATAGTGCCTTACGCGTCAA -ACGGAATAGTGCCTTACGGCTGAA -ACGGAATAGTGCCTTACGAGTACG -ACGGAATAGTGCCTTACGATCCGA -ACGGAATAGTGCCTTACGATGGGA -ACGGAATAGTGCCTTACGGTGCAA -ACGGAATAGTGCCTTACGGAGGAA -ACGGAATAGTGCCTTACGCAGGTA -ACGGAATAGTGCCTTACGGACTCT -ACGGAATAGTGCCTTACGAGTCCT -ACGGAATAGTGCCTTACGTAAGCC -ACGGAATAGTGCCTTACGATAGCC -ACGGAATAGTGCCTTACGTAACCG -ACGGAATAGTGCCTTACGATGCCA -ACGGAATAGTGCGTTAGCGGAAAC -ACGGAATAGTGCGTTAGCAACACC -ACGGAATAGTGCGTTAGCATCGAG -ACGGAATAGTGCGTTAGCCTCCTT -ACGGAATAGTGCGTTAGCCCTGTT -ACGGAATAGTGCGTTAGCCGGTTT -ACGGAATAGTGCGTTAGCGTGGTT -ACGGAATAGTGCGTTAGCGCCTTT -ACGGAATAGTGCGTTAGCGGTCTT -ACGGAATAGTGCGTTAGCACGCTT -ACGGAATAGTGCGTTAGCAGCGTT -ACGGAATAGTGCGTTAGCTTCGTC -ACGGAATAGTGCGTTAGCTCTCTC -ACGGAATAGTGCGTTAGCTGGATC -ACGGAATAGTGCGTTAGCCACTTC -ACGGAATAGTGCGTTAGCGTACTC -ACGGAATAGTGCGTTAGCGATGTC -ACGGAATAGTGCGTTAGCACAGTC -ACGGAATAGTGCGTTAGCTTGCTG -ACGGAATAGTGCGTTAGCTCCATG -ACGGAATAGTGCGTTAGCTGTGTG -ACGGAATAGTGCGTTAGCCTAGTG -ACGGAATAGTGCGTTAGCCATCTG -ACGGAATAGTGCGTTAGCGAGTTG -ACGGAATAGTGCGTTAGCAGACTG -ACGGAATAGTGCGTTAGCTCGGTA -ACGGAATAGTGCGTTAGCTGCCTA -ACGGAATAGTGCGTTAGCCCACTA -ACGGAATAGTGCGTTAGCGGAGTA -ACGGAATAGTGCGTTAGCTCGTCT -ACGGAATAGTGCGTTAGCTGCACT -ACGGAATAGTGCGTTAGCCTGACT -ACGGAATAGTGCGTTAGCCAACCT -ACGGAATAGTGCGTTAGCGCTACT -ACGGAATAGTGCGTTAGCGGATCT -ACGGAATAGTGCGTTAGCAAGGCT -ACGGAATAGTGCGTTAGCTCAACC -ACGGAATAGTGCGTTAGCTGTTCC -ACGGAATAGTGCGTTAGCATTCCC -ACGGAATAGTGCGTTAGCTTCTCG -ACGGAATAGTGCGTTAGCTAGACG -ACGGAATAGTGCGTTAGCGTAACG -ACGGAATAGTGCGTTAGCACTTCG -ACGGAATAGTGCGTTAGCTACGCA -ACGGAATAGTGCGTTAGCCTTGCA -ACGGAATAGTGCGTTAGCCGAACA -ACGGAATAGTGCGTTAGCCAGTCA -ACGGAATAGTGCGTTAGCGATCCA -ACGGAATAGTGCGTTAGCACGACA -ACGGAATAGTGCGTTAGCAGCTCA -ACGGAATAGTGCGTTAGCTCACGT -ACGGAATAGTGCGTTAGCCGTAGT -ACGGAATAGTGCGTTAGCGTCAGT -ACGGAATAGTGCGTTAGCGAAGGT -ACGGAATAGTGCGTTAGCAACCGT -ACGGAATAGTGCGTTAGCTTGTGC -ACGGAATAGTGCGTTAGCCTAAGC -ACGGAATAGTGCGTTAGCACTAGC -ACGGAATAGTGCGTTAGCAGATGC -ACGGAATAGTGCGTTAGCTGAAGG -ACGGAATAGTGCGTTAGCCAATGG -ACGGAATAGTGCGTTAGCATGAGG -ACGGAATAGTGCGTTAGCAATGGG -ACGGAATAGTGCGTTAGCTCCTGA -ACGGAATAGTGCGTTAGCTAGCGA -ACGGAATAGTGCGTTAGCCACAGA -ACGGAATAGTGCGTTAGCGCAAGA -ACGGAATAGTGCGTTAGCGGTTGA -ACGGAATAGTGCGTTAGCTCCGAT -ACGGAATAGTGCGTTAGCTGGCAT -ACGGAATAGTGCGTTAGCCGAGAT -ACGGAATAGTGCGTTAGCTACCAC -ACGGAATAGTGCGTTAGCCAGAAC -ACGGAATAGTGCGTTAGCGTCTAC -ACGGAATAGTGCGTTAGCACGTAC -ACGGAATAGTGCGTTAGCAGTGAC -ACGGAATAGTGCGTTAGCCTGTAG -ACGGAATAGTGCGTTAGCCCTAAG -ACGGAATAGTGCGTTAGCGTTCAG -ACGGAATAGTGCGTTAGCGCATAG -ACGGAATAGTGCGTTAGCGACAAG -ACGGAATAGTGCGTTAGCAAGCAG -ACGGAATAGTGCGTTAGCCGTCAA -ACGGAATAGTGCGTTAGCGCTGAA -ACGGAATAGTGCGTTAGCAGTACG -ACGGAATAGTGCGTTAGCATCCGA -ACGGAATAGTGCGTTAGCATGGGA -ACGGAATAGTGCGTTAGCGTGCAA -ACGGAATAGTGCGTTAGCGAGGAA -ACGGAATAGTGCGTTAGCCAGGTA -ACGGAATAGTGCGTTAGCGACTCT -ACGGAATAGTGCGTTAGCAGTCCT -ACGGAATAGTGCGTTAGCTAAGCC -ACGGAATAGTGCGTTAGCATAGCC -ACGGAATAGTGCGTTAGCTAACCG -ACGGAATAGTGCGTTAGCATGCCA -ACGGAATAGTGCGTCTTCGGAAAC -ACGGAATAGTGCGTCTTCAACACC -ACGGAATAGTGCGTCTTCATCGAG -ACGGAATAGTGCGTCTTCCTCCTT -ACGGAATAGTGCGTCTTCCCTGTT -ACGGAATAGTGCGTCTTCCGGTTT -ACGGAATAGTGCGTCTTCGTGGTT -ACGGAATAGTGCGTCTTCGCCTTT -ACGGAATAGTGCGTCTTCGGTCTT -ACGGAATAGTGCGTCTTCACGCTT -ACGGAATAGTGCGTCTTCAGCGTT -ACGGAATAGTGCGTCTTCTTCGTC -ACGGAATAGTGCGTCTTCTCTCTC -ACGGAATAGTGCGTCTTCTGGATC -ACGGAATAGTGCGTCTTCCACTTC -ACGGAATAGTGCGTCTTCGTACTC -ACGGAATAGTGCGTCTTCGATGTC -ACGGAATAGTGCGTCTTCACAGTC -ACGGAATAGTGCGTCTTCTTGCTG -ACGGAATAGTGCGTCTTCTCCATG -ACGGAATAGTGCGTCTTCTGTGTG -ACGGAATAGTGCGTCTTCCTAGTG -ACGGAATAGTGCGTCTTCCATCTG -ACGGAATAGTGCGTCTTCGAGTTG -ACGGAATAGTGCGTCTTCAGACTG -ACGGAATAGTGCGTCTTCTCGGTA -ACGGAATAGTGCGTCTTCTGCCTA -ACGGAATAGTGCGTCTTCCCACTA -ACGGAATAGTGCGTCTTCGGAGTA -ACGGAATAGTGCGTCTTCTCGTCT -ACGGAATAGTGCGTCTTCTGCACT -ACGGAATAGTGCGTCTTCCTGACT -ACGGAATAGTGCGTCTTCCAACCT -ACGGAATAGTGCGTCTTCGCTACT -ACGGAATAGTGCGTCTTCGGATCT -ACGGAATAGTGCGTCTTCAAGGCT -ACGGAATAGTGCGTCTTCTCAACC -ACGGAATAGTGCGTCTTCTGTTCC -ACGGAATAGTGCGTCTTCATTCCC -ACGGAATAGTGCGTCTTCTTCTCG -ACGGAATAGTGCGTCTTCTAGACG -ACGGAATAGTGCGTCTTCGTAACG -ACGGAATAGTGCGTCTTCACTTCG -ACGGAATAGTGCGTCTTCTACGCA -ACGGAATAGTGCGTCTTCCTTGCA -ACGGAATAGTGCGTCTTCCGAACA -ACGGAATAGTGCGTCTTCCAGTCA -ACGGAATAGTGCGTCTTCGATCCA -ACGGAATAGTGCGTCTTCACGACA -ACGGAATAGTGCGTCTTCAGCTCA -ACGGAATAGTGCGTCTTCTCACGT -ACGGAATAGTGCGTCTTCCGTAGT -ACGGAATAGTGCGTCTTCGTCAGT -ACGGAATAGTGCGTCTTCGAAGGT -ACGGAATAGTGCGTCTTCAACCGT -ACGGAATAGTGCGTCTTCTTGTGC -ACGGAATAGTGCGTCTTCCTAAGC -ACGGAATAGTGCGTCTTCACTAGC -ACGGAATAGTGCGTCTTCAGATGC -ACGGAATAGTGCGTCTTCTGAAGG -ACGGAATAGTGCGTCTTCCAATGG -ACGGAATAGTGCGTCTTCATGAGG -ACGGAATAGTGCGTCTTCAATGGG -ACGGAATAGTGCGTCTTCTCCTGA -ACGGAATAGTGCGTCTTCTAGCGA -ACGGAATAGTGCGTCTTCCACAGA -ACGGAATAGTGCGTCTTCGCAAGA -ACGGAATAGTGCGTCTTCGGTTGA -ACGGAATAGTGCGTCTTCTCCGAT -ACGGAATAGTGCGTCTTCTGGCAT -ACGGAATAGTGCGTCTTCCGAGAT -ACGGAATAGTGCGTCTTCTACCAC -ACGGAATAGTGCGTCTTCCAGAAC -ACGGAATAGTGCGTCTTCGTCTAC -ACGGAATAGTGCGTCTTCACGTAC -ACGGAATAGTGCGTCTTCAGTGAC -ACGGAATAGTGCGTCTTCCTGTAG -ACGGAATAGTGCGTCTTCCCTAAG -ACGGAATAGTGCGTCTTCGTTCAG -ACGGAATAGTGCGTCTTCGCATAG -ACGGAATAGTGCGTCTTCGACAAG -ACGGAATAGTGCGTCTTCAAGCAG -ACGGAATAGTGCGTCTTCCGTCAA -ACGGAATAGTGCGTCTTCGCTGAA -ACGGAATAGTGCGTCTTCAGTACG -ACGGAATAGTGCGTCTTCATCCGA -ACGGAATAGTGCGTCTTCATGGGA -ACGGAATAGTGCGTCTTCGTGCAA -ACGGAATAGTGCGTCTTCGAGGAA -ACGGAATAGTGCGTCTTCCAGGTA -ACGGAATAGTGCGTCTTCGACTCT -ACGGAATAGTGCGTCTTCAGTCCT -ACGGAATAGTGCGTCTTCTAAGCC -ACGGAATAGTGCGTCTTCATAGCC -ACGGAATAGTGCGTCTTCTAACCG -ACGGAATAGTGCGTCTTCATGCCA -ACGGAATAGTGCCTCTCTGGAAAC -ACGGAATAGTGCCTCTCTAACACC -ACGGAATAGTGCCTCTCTATCGAG -ACGGAATAGTGCCTCTCTCTCCTT -ACGGAATAGTGCCTCTCTCCTGTT -ACGGAATAGTGCCTCTCTCGGTTT -ACGGAATAGTGCCTCTCTGTGGTT -ACGGAATAGTGCCTCTCTGCCTTT -ACGGAATAGTGCCTCTCTGGTCTT -ACGGAATAGTGCCTCTCTACGCTT -ACGGAATAGTGCCTCTCTAGCGTT -ACGGAATAGTGCCTCTCTTTCGTC -ACGGAATAGTGCCTCTCTTCTCTC -ACGGAATAGTGCCTCTCTTGGATC -ACGGAATAGTGCCTCTCTCACTTC -ACGGAATAGTGCCTCTCTGTACTC -ACGGAATAGTGCCTCTCTGATGTC -ACGGAATAGTGCCTCTCTACAGTC -ACGGAATAGTGCCTCTCTTTGCTG -ACGGAATAGTGCCTCTCTTCCATG -ACGGAATAGTGCCTCTCTTGTGTG -ACGGAATAGTGCCTCTCTCTAGTG -ACGGAATAGTGCCTCTCTCATCTG -ACGGAATAGTGCCTCTCTGAGTTG -ACGGAATAGTGCCTCTCTAGACTG -ACGGAATAGTGCCTCTCTTCGGTA -ACGGAATAGTGCCTCTCTTGCCTA -ACGGAATAGTGCCTCTCTCCACTA -ACGGAATAGTGCCTCTCTGGAGTA -ACGGAATAGTGCCTCTCTTCGTCT -ACGGAATAGTGCCTCTCTTGCACT -ACGGAATAGTGCCTCTCTCTGACT -ACGGAATAGTGCCTCTCTCAACCT -ACGGAATAGTGCCTCTCTGCTACT -ACGGAATAGTGCCTCTCTGGATCT -ACGGAATAGTGCCTCTCTAAGGCT -ACGGAATAGTGCCTCTCTTCAACC -ACGGAATAGTGCCTCTCTTGTTCC -ACGGAATAGTGCCTCTCTATTCCC -ACGGAATAGTGCCTCTCTTTCTCG -ACGGAATAGTGCCTCTCTTAGACG -ACGGAATAGTGCCTCTCTGTAACG -ACGGAATAGTGCCTCTCTACTTCG -ACGGAATAGTGCCTCTCTTACGCA -ACGGAATAGTGCCTCTCTCTTGCA -ACGGAATAGTGCCTCTCTCGAACA -ACGGAATAGTGCCTCTCTCAGTCA -ACGGAATAGTGCCTCTCTGATCCA -ACGGAATAGTGCCTCTCTACGACA -ACGGAATAGTGCCTCTCTAGCTCA -ACGGAATAGTGCCTCTCTTCACGT -ACGGAATAGTGCCTCTCTCGTAGT -ACGGAATAGTGCCTCTCTGTCAGT -ACGGAATAGTGCCTCTCTGAAGGT -ACGGAATAGTGCCTCTCTAACCGT -ACGGAATAGTGCCTCTCTTTGTGC -ACGGAATAGTGCCTCTCTCTAAGC -ACGGAATAGTGCCTCTCTACTAGC -ACGGAATAGTGCCTCTCTAGATGC -ACGGAATAGTGCCTCTCTTGAAGG -ACGGAATAGTGCCTCTCTCAATGG -ACGGAATAGTGCCTCTCTATGAGG -ACGGAATAGTGCCTCTCTAATGGG -ACGGAATAGTGCCTCTCTTCCTGA -ACGGAATAGTGCCTCTCTTAGCGA -ACGGAATAGTGCCTCTCTCACAGA -ACGGAATAGTGCCTCTCTGCAAGA -ACGGAATAGTGCCTCTCTGGTTGA -ACGGAATAGTGCCTCTCTTCCGAT -ACGGAATAGTGCCTCTCTTGGCAT -ACGGAATAGTGCCTCTCTCGAGAT -ACGGAATAGTGCCTCTCTTACCAC -ACGGAATAGTGCCTCTCTCAGAAC -ACGGAATAGTGCCTCTCTGTCTAC -ACGGAATAGTGCCTCTCTACGTAC -ACGGAATAGTGCCTCTCTAGTGAC -ACGGAATAGTGCCTCTCTCTGTAG -ACGGAATAGTGCCTCTCTCCTAAG -ACGGAATAGTGCCTCTCTGTTCAG -ACGGAATAGTGCCTCTCTGCATAG -ACGGAATAGTGCCTCTCTGACAAG -ACGGAATAGTGCCTCTCTAAGCAG -ACGGAATAGTGCCTCTCTCGTCAA -ACGGAATAGTGCCTCTCTGCTGAA -ACGGAATAGTGCCTCTCTAGTACG -ACGGAATAGTGCCTCTCTATCCGA -ACGGAATAGTGCCTCTCTATGGGA -ACGGAATAGTGCCTCTCTGTGCAA -ACGGAATAGTGCCTCTCTGAGGAA -ACGGAATAGTGCCTCTCTCAGGTA -ACGGAATAGTGCCTCTCTGACTCT -ACGGAATAGTGCCTCTCTAGTCCT -ACGGAATAGTGCCTCTCTTAAGCC -ACGGAATAGTGCCTCTCTATAGCC -ACGGAATAGTGCCTCTCTTAACCG -ACGGAATAGTGCCTCTCTATGCCA -ACGGAATAGTGCATCTGGGGAAAC -ACGGAATAGTGCATCTGGAACACC -ACGGAATAGTGCATCTGGATCGAG -ACGGAATAGTGCATCTGGCTCCTT -ACGGAATAGTGCATCTGGCCTGTT -ACGGAATAGTGCATCTGGCGGTTT -ACGGAATAGTGCATCTGGGTGGTT -ACGGAATAGTGCATCTGGGCCTTT -ACGGAATAGTGCATCTGGGGTCTT -ACGGAATAGTGCATCTGGACGCTT -ACGGAATAGTGCATCTGGAGCGTT -ACGGAATAGTGCATCTGGTTCGTC -ACGGAATAGTGCATCTGGTCTCTC -ACGGAATAGTGCATCTGGTGGATC -ACGGAATAGTGCATCTGGCACTTC -ACGGAATAGTGCATCTGGGTACTC -ACGGAATAGTGCATCTGGGATGTC -ACGGAATAGTGCATCTGGACAGTC -ACGGAATAGTGCATCTGGTTGCTG -ACGGAATAGTGCATCTGGTCCATG -ACGGAATAGTGCATCTGGTGTGTG -ACGGAATAGTGCATCTGGCTAGTG -ACGGAATAGTGCATCTGGCATCTG -ACGGAATAGTGCATCTGGGAGTTG -ACGGAATAGTGCATCTGGAGACTG -ACGGAATAGTGCATCTGGTCGGTA -ACGGAATAGTGCATCTGGTGCCTA -ACGGAATAGTGCATCTGGCCACTA -ACGGAATAGTGCATCTGGGGAGTA -ACGGAATAGTGCATCTGGTCGTCT -ACGGAATAGTGCATCTGGTGCACT -ACGGAATAGTGCATCTGGCTGACT -ACGGAATAGTGCATCTGGCAACCT -ACGGAATAGTGCATCTGGGCTACT -ACGGAATAGTGCATCTGGGGATCT -ACGGAATAGTGCATCTGGAAGGCT -ACGGAATAGTGCATCTGGTCAACC -ACGGAATAGTGCATCTGGTGTTCC -ACGGAATAGTGCATCTGGATTCCC -ACGGAATAGTGCATCTGGTTCTCG -ACGGAATAGTGCATCTGGTAGACG -ACGGAATAGTGCATCTGGGTAACG -ACGGAATAGTGCATCTGGACTTCG -ACGGAATAGTGCATCTGGTACGCA -ACGGAATAGTGCATCTGGCTTGCA -ACGGAATAGTGCATCTGGCGAACA -ACGGAATAGTGCATCTGGCAGTCA -ACGGAATAGTGCATCTGGGATCCA -ACGGAATAGTGCATCTGGACGACA -ACGGAATAGTGCATCTGGAGCTCA -ACGGAATAGTGCATCTGGTCACGT -ACGGAATAGTGCATCTGGCGTAGT -ACGGAATAGTGCATCTGGGTCAGT -ACGGAATAGTGCATCTGGGAAGGT -ACGGAATAGTGCATCTGGAACCGT -ACGGAATAGTGCATCTGGTTGTGC -ACGGAATAGTGCATCTGGCTAAGC -ACGGAATAGTGCATCTGGACTAGC -ACGGAATAGTGCATCTGGAGATGC -ACGGAATAGTGCATCTGGTGAAGG -ACGGAATAGTGCATCTGGCAATGG -ACGGAATAGTGCATCTGGATGAGG -ACGGAATAGTGCATCTGGAATGGG -ACGGAATAGTGCATCTGGTCCTGA -ACGGAATAGTGCATCTGGTAGCGA -ACGGAATAGTGCATCTGGCACAGA -ACGGAATAGTGCATCTGGGCAAGA -ACGGAATAGTGCATCTGGGGTTGA -ACGGAATAGTGCATCTGGTCCGAT -ACGGAATAGTGCATCTGGTGGCAT -ACGGAATAGTGCATCTGGCGAGAT -ACGGAATAGTGCATCTGGTACCAC -ACGGAATAGTGCATCTGGCAGAAC -ACGGAATAGTGCATCTGGGTCTAC -ACGGAATAGTGCATCTGGACGTAC -ACGGAATAGTGCATCTGGAGTGAC -ACGGAATAGTGCATCTGGCTGTAG -ACGGAATAGTGCATCTGGCCTAAG -ACGGAATAGTGCATCTGGGTTCAG -ACGGAATAGTGCATCTGGGCATAG -ACGGAATAGTGCATCTGGGACAAG -ACGGAATAGTGCATCTGGAAGCAG -ACGGAATAGTGCATCTGGCGTCAA -ACGGAATAGTGCATCTGGGCTGAA -ACGGAATAGTGCATCTGGAGTACG -ACGGAATAGTGCATCTGGATCCGA -ACGGAATAGTGCATCTGGATGGGA -ACGGAATAGTGCATCTGGGTGCAA -ACGGAATAGTGCATCTGGGAGGAA -ACGGAATAGTGCATCTGGCAGGTA -ACGGAATAGTGCATCTGGGACTCT -ACGGAATAGTGCATCTGGAGTCCT -ACGGAATAGTGCATCTGGTAAGCC -ACGGAATAGTGCATCTGGATAGCC -ACGGAATAGTGCATCTGGTAACCG -ACGGAATAGTGCATCTGGATGCCA -ACGGAATAGTGCTTCCACGGAAAC -ACGGAATAGTGCTTCCACAACACC -ACGGAATAGTGCTTCCACATCGAG -ACGGAATAGTGCTTCCACCTCCTT -ACGGAATAGTGCTTCCACCCTGTT -ACGGAATAGTGCTTCCACCGGTTT -ACGGAATAGTGCTTCCACGTGGTT -ACGGAATAGTGCTTCCACGCCTTT -ACGGAATAGTGCTTCCACGGTCTT -ACGGAATAGTGCTTCCACACGCTT -ACGGAATAGTGCTTCCACAGCGTT -ACGGAATAGTGCTTCCACTTCGTC -ACGGAATAGTGCTTCCACTCTCTC -ACGGAATAGTGCTTCCACTGGATC -ACGGAATAGTGCTTCCACCACTTC -ACGGAATAGTGCTTCCACGTACTC -ACGGAATAGTGCTTCCACGATGTC -ACGGAATAGTGCTTCCACACAGTC -ACGGAATAGTGCTTCCACTTGCTG -ACGGAATAGTGCTTCCACTCCATG -ACGGAATAGTGCTTCCACTGTGTG -ACGGAATAGTGCTTCCACCTAGTG -ACGGAATAGTGCTTCCACCATCTG -ACGGAATAGTGCTTCCACGAGTTG -ACGGAATAGTGCTTCCACAGACTG -ACGGAATAGTGCTTCCACTCGGTA -ACGGAATAGTGCTTCCACTGCCTA -ACGGAATAGTGCTTCCACCCACTA -ACGGAATAGTGCTTCCACGGAGTA -ACGGAATAGTGCTTCCACTCGTCT -ACGGAATAGTGCTTCCACTGCACT -ACGGAATAGTGCTTCCACCTGACT -ACGGAATAGTGCTTCCACCAACCT -ACGGAATAGTGCTTCCACGCTACT -ACGGAATAGTGCTTCCACGGATCT -ACGGAATAGTGCTTCCACAAGGCT -ACGGAATAGTGCTTCCACTCAACC -ACGGAATAGTGCTTCCACTGTTCC -ACGGAATAGTGCTTCCACATTCCC -ACGGAATAGTGCTTCCACTTCTCG -ACGGAATAGTGCTTCCACTAGACG -ACGGAATAGTGCTTCCACGTAACG -ACGGAATAGTGCTTCCACACTTCG -ACGGAATAGTGCTTCCACTACGCA -ACGGAATAGTGCTTCCACCTTGCA -ACGGAATAGTGCTTCCACCGAACA -ACGGAATAGTGCTTCCACCAGTCA -ACGGAATAGTGCTTCCACGATCCA -ACGGAATAGTGCTTCCACACGACA -ACGGAATAGTGCTTCCACAGCTCA -ACGGAATAGTGCTTCCACTCACGT -ACGGAATAGTGCTTCCACCGTAGT -ACGGAATAGTGCTTCCACGTCAGT -ACGGAATAGTGCTTCCACGAAGGT -ACGGAATAGTGCTTCCACAACCGT -ACGGAATAGTGCTTCCACTTGTGC -ACGGAATAGTGCTTCCACCTAAGC -ACGGAATAGTGCTTCCACACTAGC -ACGGAATAGTGCTTCCACAGATGC -ACGGAATAGTGCTTCCACTGAAGG -ACGGAATAGTGCTTCCACCAATGG -ACGGAATAGTGCTTCCACATGAGG -ACGGAATAGTGCTTCCACAATGGG -ACGGAATAGTGCTTCCACTCCTGA -ACGGAATAGTGCTTCCACTAGCGA -ACGGAATAGTGCTTCCACCACAGA -ACGGAATAGTGCTTCCACGCAAGA -ACGGAATAGTGCTTCCACGGTTGA -ACGGAATAGTGCTTCCACTCCGAT -ACGGAATAGTGCTTCCACTGGCAT -ACGGAATAGTGCTTCCACCGAGAT -ACGGAATAGTGCTTCCACTACCAC -ACGGAATAGTGCTTCCACCAGAAC -ACGGAATAGTGCTTCCACGTCTAC -ACGGAATAGTGCTTCCACACGTAC -ACGGAATAGTGCTTCCACAGTGAC -ACGGAATAGTGCTTCCACCTGTAG -ACGGAATAGTGCTTCCACCCTAAG -ACGGAATAGTGCTTCCACGTTCAG -ACGGAATAGTGCTTCCACGCATAG -ACGGAATAGTGCTTCCACGACAAG -ACGGAATAGTGCTTCCACAAGCAG -ACGGAATAGTGCTTCCACCGTCAA -ACGGAATAGTGCTTCCACGCTGAA -ACGGAATAGTGCTTCCACAGTACG -ACGGAATAGTGCTTCCACATCCGA -ACGGAATAGTGCTTCCACATGGGA -ACGGAATAGTGCTTCCACGTGCAA -ACGGAATAGTGCTTCCACGAGGAA -ACGGAATAGTGCTTCCACCAGGTA -ACGGAATAGTGCTTCCACGACTCT -ACGGAATAGTGCTTCCACAGTCCT -ACGGAATAGTGCTTCCACTAAGCC -ACGGAATAGTGCTTCCACATAGCC -ACGGAATAGTGCTTCCACTAACCG -ACGGAATAGTGCTTCCACATGCCA -ACGGAATAGTGCCTCGTAGGAAAC -ACGGAATAGTGCCTCGTAAACACC -ACGGAATAGTGCCTCGTAATCGAG -ACGGAATAGTGCCTCGTACTCCTT -ACGGAATAGTGCCTCGTACCTGTT -ACGGAATAGTGCCTCGTACGGTTT -ACGGAATAGTGCCTCGTAGTGGTT -ACGGAATAGTGCCTCGTAGCCTTT -ACGGAATAGTGCCTCGTAGGTCTT -ACGGAATAGTGCCTCGTAACGCTT -ACGGAATAGTGCCTCGTAAGCGTT -ACGGAATAGTGCCTCGTATTCGTC -ACGGAATAGTGCCTCGTATCTCTC -ACGGAATAGTGCCTCGTATGGATC -ACGGAATAGTGCCTCGTACACTTC -ACGGAATAGTGCCTCGTAGTACTC -ACGGAATAGTGCCTCGTAGATGTC -ACGGAATAGTGCCTCGTAACAGTC -ACGGAATAGTGCCTCGTATTGCTG -ACGGAATAGTGCCTCGTATCCATG -ACGGAATAGTGCCTCGTATGTGTG -ACGGAATAGTGCCTCGTACTAGTG -ACGGAATAGTGCCTCGTACATCTG -ACGGAATAGTGCCTCGTAGAGTTG -ACGGAATAGTGCCTCGTAAGACTG -ACGGAATAGTGCCTCGTATCGGTA -ACGGAATAGTGCCTCGTATGCCTA -ACGGAATAGTGCCTCGTACCACTA -ACGGAATAGTGCCTCGTAGGAGTA -ACGGAATAGTGCCTCGTATCGTCT -ACGGAATAGTGCCTCGTATGCACT -ACGGAATAGTGCCTCGTACTGACT -ACGGAATAGTGCCTCGTACAACCT -ACGGAATAGTGCCTCGTAGCTACT -ACGGAATAGTGCCTCGTAGGATCT -ACGGAATAGTGCCTCGTAAAGGCT -ACGGAATAGTGCCTCGTATCAACC -ACGGAATAGTGCCTCGTATGTTCC -ACGGAATAGTGCCTCGTAATTCCC -ACGGAATAGTGCCTCGTATTCTCG -ACGGAATAGTGCCTCGTATAGACG -ACGGAATAGTGCCTCGTAGTAACG -ACGGAATAGTGCCTCGTAACTTCG -ACGGAATAGTGCCTCGTATACGCA -ACGGAATAGTGCCTCGTACTTGCA -ACGGAATAGTGCCTCGTACGAACA -ACGGAATAGTGCCTCGTACAGTCA -ACGGAATAGTGCCTCGTAGATCCA -ACGGAATAGTGCCTCGTAACGACA -ACGGAATAGTGCCTCGTAAGCTCA -ACGGAATAGTGCCTCGTATCACGT -ACGGAATAGTGCCTCGTACGTAGT -ACGGAATAGTGCCTCGTAGTCAGT -ACGGAATAGTGCCTCGTAGAAGGT -ACGGAATAGTGCCTCGTAAACCGT -ACGGAATAGTGCCTCGTATTGTGC -ACGGAATAGTGCCTCGTACTAAGC -ACGGAATAGTGCCTCGTAACTAGC -ACGGAATAGTGCCTCGTAAGATGC -ACGGAATAGTGCCTCGTATGAAGG -ACGGAATAGTGCCTCGTACAATGG -ACGGAATAGTGCCTCGTAATGAGG -ACGGAATAGTGCCTCGTAAATGGG -ACGGAATAGTGCCTCGTATCCTGA -ACGGAATAGTGCCTCGTATAGCGA -ACGGAATAGTGCCTCGTACACAGA -ACGGAATAGTGCCTCGTAGCAAGA -ACGGAATAGTGCCTCGTAGGTTGA -ACGGAATAGTGCCTCGTATCCGAT -ACGGAATAGTGCCTCGTATGGCAT -ACGGAATAGTGCCTCGTACGAGAT -ACGGAATAGTGCCTCGTATACCAC -ACGGAATAGTGCCTCGTACAGAAC -ACGGAATAGTGCCTCGTAGTCTAC -ACGGAATAGTGCCTCGTAACGTAC -ACGGAATAGTGCCTCGTAAGTGAC -ACGGAATAGTGCCTCGTACTGTAG -ACGGAATAGTGCCTCGTACCTAAG -ACGGAATAGTGCCTCGTAGTTCAG -ACGGAATAGTGCCTCGTAGCATAG -ACGGAATAGTGCCTCGTAGACAAG -ACGGAATAGTGCCTCGTAAAGCAG -ACGGAATAGTGCCTCGTACGTCAA -ACGGAATAGTGCCTCGTAGCTGAA -ACGGAATAGTGCCTCGTAAGTACG -ACGGAATAGTGCCTCGTAATCCGA -ACGGAATAGTGCCTCGTAATGGGA -ACGGAATAGTGCCTCGTAGTGCAA -ACGGAATAGTGCCTCGTAGAGGAA -ACGGAATAGTGCCTCGTACAGGTA -ACGGAATAGTGCCTCGTAGACTCT -ACGGAATAGTGCCTCGTAAGTCCT -ACGGAATAGTGCCTCGTATAAGCC -ACGGAATAGTGCCTCGTAATAGCC -ACGGAATAGTGCCTCGTATAACCG -ACGGAATAGTGCCTCGTAATGCCA -ACGGAATAGTGCGTCGATGGAAAC -ACGGAATAGTGCGTCGATAACACC -ACGGAATAGTGCGTCGATATCGAG -ACGGAATAGTGCGTCGATCTCCTT -ACGGAATAGTGCGTCGATCCTGTT -ACGGAATAGTGCGTCGATCGGTTT -ACGGAATAGTGCGTCGATGTGGTT -ACGGAATAGTGCGTCGATGCCTTT -ACGGAATAGTGCGTCGATGGTCTT -ACGGAATAGTGCGTCGATACGCTT -ACGGAATAGTGCGTCGATAGCGTT -ACGGAATAGTGCGTCGATTTCGTC -ACGGAATAGTGCGTCGATTCTCTC -ACGGAATAGTGCGTCGATTGGATC -ACGGAATAGTGCGTCGATCACTTC -ACGGAATAGTGCGTCGATGTACTC -ACGGAATAGTGCGTCGATGATGTC -ACGGAATAGTGCGTCGATACAGTC -ACGGAATAGTGCGTCGATTTGCTG -ACGGAATAGTGCGTCGATTCCATG -ACGGAATAGTGCGTCGATTGTGTG -ACGGAATAGTGCGTCGATCTAGTG -ACGGAATAGTGCGTCGATCATCTG -ACGGAATAGTGCGTCGATGAGTTG -ACGGAATAGTGCGTCGATAGACTG -ACGGAATAGTGCGTCGATTCGGTA -ACGGAATAGTGCGTCGATTGCCTA -ACGGAATAGTGCGTCGATCCACTA -ACGGAATAGTGCGTCGATGGAGTA -ACGGAATAGTGCGTCGATTCGTCT -ACGGAATAGTGCGTCGATTGCACT -ACGGAATAGTGCGTCGATCTGACT -ACGGAATAGTGCGTCGATCAACCT -ACGGAATAGTGCGTCGATGCTACT -ACGGAATAGTGCGTCGATGGATCT -ACGGAATAGTGCGTCGATAAGGCT -ACGGAATAGTGCGTCGATTCAACC -ACGGAATAGTGCGTCGATTGTTCC -ACGGAATAGTGCGTCGATATTCCC -ACGGAATAGTGCGTCGATTTCTCG -ACGGAATAGTGCGTCGATTAGACG -ACGGAATAGTGCGTCGATGTAACG -ACGGAATAGTGCGTCGATACTTCG -ACGGAATAGTGCGTCGATTACGCA -ACGGAATAGTGCGTCGATCTTGCA -ACGGAATAGTGCGTCGATCGAACA -ACGGAATAGTGCGTCGATCAGTCA -ACGGAATAGTGCGTCGATGATCCA -ACGGAATAGTGCGTCGATACGACA -ACGGAATAGTGCGTCGATAGCTCA -ACGGAATAGTGCGTCGATTCACGT -ACGGAATAGTGCGTCGATCGTAGT -ACGGAATAGTGCGTCGATGTCAGT -ACGGAATAGTGCGTCGATGAAGGT -ACGGAATAGTGCGTCGATAACCGT -ACGGAATAGTGCGTCGATTTGTGC -ACGGAATAGTGCGTCGATCTAAGC -ACGGAATAGTGCGTCGATACTAGC -ACGGAATAGTGCGTCGATAGATGC -ACGGAATAGTGCGTCGATTGAAGG -ACGGAATAGTGCGTCGATCAATGG -ACGGAATAGTGCGTCGATATGAGG -ACGGAATAGTGCGTCGATAATGGG -ACGGAATAGTGCGTCGATTCCTGA -ACGGAATAGTGCGTCGATTAGCGA -ACGGAATAGTGCGTCGATCACAGA -ACGGAATAGTGCGTCGATGCAAGA -ACGGAATAGTGCGTCGATGGTTGA -ACGGAATAGTGCGTCGATTCCGAT -ACGGAATAGTGCGTCGATTGGCAT -ACGGAATAGTGCGTCGATCGAGAT -ACGGAATAGTGCGTCGATTACCAC -ACGGAATAGTGCGTCGATCAGAAC -ACGGAATAGTGCGTCGATGTCTAC -ACGGAATAGTGCGTCGATACGTAC -ACGGAATAGTGCGTCGATAGTGAC -ACGGAATAGTGCGTCGATCTGTAG -ACGGAATAGTGCGTCGATCCTAAG -ACGGAATAGTGCGTCGATGTTCAG -ACGGAATAGTGCGTCGATGCATAG -ACGGAATAGTGCGTCGATGACAAG -ACGGAATAGTGCGTCGATAAGCAG -ACGGAATAGTGCGTCGATCGTCAA -ACGGAATAGTGCGTCGATGCTGAA -ACGGAATAGTGCGTCGATAGTACG -ACGGAATAGTGCGTCGATATCCGA -ACGGAATAGTGCGTCGATATGGGA -ACGGAATAGTGCGTCGATGTGCAA -ACGGAATAGTGCGTCGATGAGGAA -ACGGAATAGTGCGTCGATCAGGTA -ACGGAATAGTGCGTCGATGACTCT -ACGGAATAGTGCGTCGATAGTCCT -ACGGAATAGTGCGTCGATTAAGCC -ACGGAATAGTGCGTCGATATAGCC -ACGGAATAGTGCGTCGATTAACCG -ACGGAATAGTGCGTCGATATGCCA -ACGGAATAGTGCGTCACAGGAAAC -ACGGAATAGTGCGTCACAAACACC -ACGGAATAGTGCGTCACAATCGAG -ACGGAATAGTGCGTCACACTCCTT -ACGGAATAGTGCGTCACACCTGTT -ACGGAATAGTGCGTCACACGGTTT -ACGGAATAGTGCGTCACAGTGGTT -ACGGAATAGTGCGTCACAGCCTTT -ACGGAATAGTGCGTCACAGGTCTT -ACGGAATAGTGCGTCACAACGCTT -ACGGAATAGTGCGTCACAAGCGTT -ACGGAATAGTGCGTCACATTCGTC -ACGGAATAGTGCGTCACATCTCTC -ACGGAATAGTGCGTCACATGGATC -ACGGAATAGTGCGTCACACACTTC -ACGGAATAGTGCGTCACAGTACTC -ACGGAATAGTGCGTCACAGATGTC -ACGGAATAGTGCGTCACAACAGTC -ACGGAATAGTGCGTCACATTGCTG -ACGGAATAGTGCGTCACATCCATG -ACGGAATAGTGCGTCACATGTGTG -ACGGAATAGTGCGTCACACTAGTG -ACGGAATAGTGCGTCACACATCTG -ACGGAATAGTGCGTCACAGAGTTG -ACGGAATAGTGCGTCACAAGACTG -ACGGAATAGTGCGTCACATCGGTA -ACGGAATAGTGCGTCACATGCCTA -ACGGAATAGTGCGTCACACCACTA -ACGGAATAGTGCGTCACAGGAGTA -ACGGAATAGTGCGTCACATCGTCT -ACGGAATAGTGCGTCACATGCACT -ACGGAATAGTGCGTCACACTGACT -ACGGAATAGTGCGTCACACAACCT -ACGGAATAGTGCGTCACAGCTACT -ACGGAATAGTGCGTCACAGGATCT -ACGGAATAGTGCGTCACAAAGGCT -ACGGAATAGTGCGTCACATCAACC -ACGGAATAGTGCGTCACATGTTCC -ACGGAATAGTGCGTCACAATTCCC -ACGGAATAGTGCGTCACATTCTCG -ACGGAATAGTGCGTCACATAGACG -ACGGAATAGTGCGTCACAGTAACG -ACGGAATAGTGCGTCACAACTTCG -ACGGAATAGTGCGTCACATACGCA -ACGGAATAGTGCGTCACACTTGCA -ACGGAATAGTGCGTCACACGAACA -ACGGAATAGTGCGTCACACAGTCA -ACGGAATAGTGCGTCACAGATCCA -ACGGAATAGTGCGTCACAACGACA -ACGGAATAGTGCGTCACAAGCTCA -ACGGAATAGTGCGTCACATCACGT -ACGGAATAGTGCGTCACACGTAGT -ACGGAATAGTGCGTCACAGTCAGT -ACGGAATAGTGCGTCACAGAAGGT -ACGGAATAGTGCGTCACAAACCGT -ACGGAATAGTGCGTCACATTGTGC -ACGGAATAGTGCGTCACACTAAGC -ACGGAATAGTGCGTCACAACTAGC -ACGGAATAGTGCGTCACAAGATGC -ACGGAATAGTGCGTCACATGAAGG -ACGGAATAGTGCGTCACACAATGG -ACGGAATAGTGCGTCACAATGAGG -ACGGAATAGTGCGTCACAAATGGG -ACGGAATAGTGCGTCACATCCTGA -ACGGAATAGTGCGTCACATAGCGA -ACGGAATAGTGCGTCACACACAGA -ACGGAATAGTGCGTCACAGCAAGA -ACGGAATAGTGCGTCACAGGTTGA -ACGGAATAGTGCGTCACATCCGAT -ACGGAATAGTGCGTCACATGGCAT -ACGGAATAGTGCGTCACACGAGAT -ACGGAATAGTGCGTCACATACCAC -ACGGAATAGTGCGTCACACAGAAC -ACGGAATAGTGCGTCACAGTCTAC -ACGGAATAGTGCGTCACAACGTAC -ACGGAATAGTGCGTCACAAGTGAC -ACGGAATAGTGCGTCACACTGTAG -ACGGAATAGTGCGTCACACCTAAG -ACGGAATAGTGCGTCACAGTTCAG -ACGGAATAGTGCGTCACAGCATAG -ACGGAATAGTGCGTCACAGACAAG -ACGGAATAGTGCGTCACAAAGCAG -ACGGAATAGTGCGTCACACGTCAA -ACGGAATAGTGCGTCACAGCTGAA -ACGGAATAGTGCGTCACAAGTACG -ACGGAATAGTGCGTCACAATCCGA -ACGGAATAGTGCGTCACAATGGGA -ACGGAATAGTGCGTCACAGTGCAA -ACGGAATAGTGCGTCACAGAGGAA -ACGGAATAGTGCGTCACACAGGTA -ACGGAATAGTGCGTCACAGACTCT -ACGGAATAGTGCGTCACAAGTCCT -ACGGAATAGTGCGTCACATAAGCC -ACGGAATAGTGCGTCACAATAGCC -ACGGAATAGTGCGTCACATAACCG -ACGGAATAGTGCGTCACAATGCCA -ACGGAATAGTGCCTGTTGGGAAAC -ACGGAATAGTGCCTGTTGAACACC -ACGGAATAGTGCCTGTTGATCGAG -ACGGAATAGTGCCTGTTGCTCCTT -ACGGAATAGTGCCTGTTGCCTGTT -ACGGAATAGTGCCTGTTGCGGTTT -ACGGAATAGTGCCTGTTGGTGGTT -ACGGAATAGTGCCTGTTGGCCTTT -ACGGAATAGTGCCTGTTGGGTCTT -ACGGAATAGTGCCTGTTGACGCTT -ACGGAATAGTGCCTGTTGAGCGTT -ACGGAATAGTGCCTGTTGTTCGTC -ACGGAATAGTGCCTGTTGTCTCTC -ACGGAATAGTGCCTGTTGTGGATC -ACGGAATAGTGCCTGTTGCACTTC -ACGGAATAGTGCCTGTTGGTACTC -ACGGAATAGTGCCTGTTGGATGTC -ACGGAATAGTGCCTGTTGACAGTC -ACGGAATAGTGCCTGTTGTTGCTG -ACGGAATAGTGCCTGTTGTCCATG -ACGGAATAGTGCCTGTTGTGTGTG -ACGGAATAGTGCCTGTTGCTAGTG -ACGGAATAGTGCCTGTTGCATCTG -ACGGAATAGTGCCTGTTGGAGTTG -ACGGAATAGTGCCTGTTGAGACTG -ACGGAATAGTGCCTGTTGTCGGTA -ACGGAATAGTGCCTGTTGTGCCTA -ACGGAATAGTGCCTGTTGCCACTA -ACGGAATAGTGCCTGTTGGGAGTA -ACGGAATAGTGCCTGTTGTCGTCT -ACGGAATAGTGCCTGTTGTGCACT -ACGGAATAGTGCCTGTTGCTGACT -ACGGAATAGTGCCTGTTGCAACCT -ACGGAATAGTGCCTGTTGGCTACT -ACGGAATAGTGCCTGTTGGGATCT -ACGGAATAGTGCCTGTTGAAGGCT -ACGGAATAGTGCCTGTTGTCAACC -ACGGAATAGTGCCTGTTGTGTTCC -ACGGAATAGTGCCTGTTGATTCCC -ACGGAATAGTGCCTGTTGTTCTCG -ACGGAATAGTGCCTGTTGTAGACG -ACGGAATAGTGCCTGTTGGTAACG -ACGGAATAGTGCCTGTTGACTTCG -ACGGAATAGTGCCTGTTGTACGCA -ACGGAATAGTGCCTGTTGCTTGCA -ACGGAATAGTGCCTGTTGCGAACA -ACGGAATAGTGCCTGTTGCAGTCA -ACGGAATAGTGCCTGTTGGATCCA -ACGGAATAGTGCCTGTTGACGACA -ACGGAATAGTGCCTGTTGAGCTCA -ACGGAATAGTGCCTGTTGTCACGT -ACGGAATAGTGCCTGTTGCGTAGT -ACGGAATAGTGCCTGTTGGTCAGT -ACGGAATAGTGCCTGTTGGAAGGT -ACGGAATAGTGCCTGTTGAACCGT -ACGGAATAGTGCCTGTTGTTGTGC -ACGGAATAGTGCCTGTTGCTAAGC -ACGGAATAGTGCCTGTTGACTAGC -ACGGAATAGTGCCTGTTGAGATGC -ACGGAATAGTGCCTGTTGTGAAGG -ACGGAATAGTGCCTGTTGCAATGG -ACGGAATAGTGCCTGTTGATGAGG -ACGGAATAGTGCCTGTTGAATGGG -ACGGAATAGTGCCTGTTGTCCTGA -ACGGAATAGTGCCTGTTGTAGCGA -ACGGAATAGTGCCTGTTGCACAGA -ACGGAATAGTGCCTGTTGGCAAGA -ACGGAATAGTGCCTGTTGGGTTGA -ACGGAATAGTGCCTGTTGTCCGAT -ACGGAATAGTGCCTGTTGTGGCAT -ACGGAATAGTGCCTGTTGCGAGAT -ACGGAATAGTGCCTGTTGTACCAC -ACGGAATAGTGCCTGTTGCAGAAC -ACGGAATAGTGCCTGTTGGTCTAC -ACGGAATAGTGCCTGTTGACGTAC -ACGGAATAGTGCCTGTTGAGTGAC -ACGGAATAGTGCCTGTTGCTGTAG -ACGGAATAGTGCCTGTTGCCTAAG -ACGGAATAGTGCCTGTTGGTTCAG -ACGGAATAGTGCCTGTTGGCATAG -ACGGAATAGTGCCTGTTGGACAAG -ACGGAATAGTGCCTGTTGAAGCAG -ACGGAATAGTGCCTGTTGCGTCAA -ACGGAATAGTGCCTGTTGGCTGAA -ACGGAATAGTGCCTGTTGAGTACG -ACGGAATAGTGCCTGTTGATCCGA -ACGGAATAGTGCCTGTTGATGGGA -ACGGAATAGTGCCTGTTGGTGCAA -ACGGAATAGTGCCTGTTGGAGGAA -ACGGAATAGTGCCTGTTGCAGGTA -ACGGAATAGTGCCTGTTGGACTCT -ACGGAATAGTGCCTGTTGAGTCCT -ACGGAATAGTGCCTGTTGTAAGCC -ACGGAATAGTGCCTGTTGATAGCC -ACGGAATAGTGCCTGTTGTAACCG -ACGGAATAGTGCCTGTTGATGCCA -ACGGAATAGTGCATGTCCGGAAAC -ACGGAATAGTGCATGTCCAACACC -ACGGAATAGTGCATGTCCATCGAG -ACGGAATAGTGCATGTCCCTCCTT -ACGGAATAGTGCATGTCCCCTGTT -ACGGAATAGTGCATGTCCCGGTTT -ACGGAATAGTGCATGTCCGTGGTT -ACGGAATAGTGCATGTCCGCCTTT -ACGGAATAGTGCATGTCCGGTCTT -ACGGAATAGTGCATGTCCACGCTT -ACGGAATAGTGCATGTCCAGCGTT -ACGGAATAGTGCATGTCCTTCGTC -ACGGAATAGTGCATGTCCTCTCTC -ACGGAATAGTGCATGTCCTGGATC -ACGGAATAGTGCATGTCCCACTTC -ACGGAATAGTGCATGTCCGTACTC -ACGGAATAGTGCATGTCCGATGTC -ACGGAATAGTGCATGTCCACAGTC -ACGGAATAGTGCATGTCCTTGCTG -ACGGAATAGTGCATGTCCTCCATG -ACGGAATAGTGCATGTCCTGTGTG -ACGGAATAGTGCATGTCCCTAGTG -ACGGAATAGTGCATGTCCCATCTG -ACGGAATAGTGCATGTCCGAGTTG -ACGGAATAGTGCATGTCCAGACTG -ACGGAATAGTGCATGTCCTCGGTA -ACGGAATAGTGCATGTCCTGCCTA -ACGGAATAGTGCATGTCCCCACTA -ACGGAATAGTGCATGTCCGGAGTA -ACGGAATAGTGCATGTCCTCGTCT -ACGGAATAGTGCATGTCCTGCACT -ACGGAATAGTGCATGTCCCTGACT -ACGGAATAGTGCATGTCCCAACCT -ACGGAATAGTGCATGTCCGCTACT -ACGGAATAGTGCATGTCCGGATCT -ACGGAATAGTGCATGTCCAAGGCT -ACGGAATAGTGCATGTCCTCAACC -ACGGAATAGTGCATGTCCTGTTCC -ACGGAATAGTGCATGTCCATTCCC -ACGGAATAGTGCATGTCCTTCTCG -ACGGAATAGTGCATGTCCTAGACG -ACGGAATAGTGCATGTCCGTAACG -ACGGAATAGTGCATGTCCACTTCG -ACGGAATAGTGCATGTCCTACGCA -ACGGAATAGTGCATGTCCCTTGCA -ACGGAATAGTGCATGTCCCGAACA -ACGGAATAGTGCATGTCCCAGTCA -ACGGAATAGTGCATGTCCGATCCA -ACGGAATAGTGCATGTCCACGACA -ACGGAATAGTGCATGTCCAGCTCA -ACGGAATAGTGCATGTCCTCACGT -ACGGAATAGTGCATGTCCCGTAGT -ACGGAATAGTGCATGTCCGTCAGT -ACGGAATAGTGCATGTCCGAAGGT -ACGGAATAGTGCATGTCCAACCGT -ACGGAATAGTGCATGTCCTTGTGC -ACGGAATAGTGCATGTCCCTAAGC -ACGGAATAGTGCATGTCCACTAGC -ACGGAATAGTGCATGTCCAGATGC -ACGGAATAGTGCATGTCCTGAAGG -ACGGAATAGTGCATGTCCCAATGG -ACGGAATAGTGCATGTCCATGAGG -ACGGAATAGTGCATGTCCAATGGG -ACGGAATAGTGCATGTCCTCCTGA -ACGGAATAGTGCATGTCCTAGCGA -ACGGAATAGTGCATGTCCCACAGA -ACGGAATAGTGCATGTCCGCAAGA -ACGGAATAGTGCATGTCCGGTTGA -ACGGAATAGTGCATGTCCTCCGAT -ACGGAATAGTGCATGTCCTGGCAT -ACGGAATAGTGCATGTCCCGAGAT -ACGGAATAGTGCATGTCCTACCAC -ACGGAATAGTGCATGTCCCAGAAC -ACGGAATAGTGCATGTCCGTCTAC -ACGGAATAGTGCATGTCCACGTAC -ACGGAATAGTGCATGTCCAGTGAC -ACGGAATAGTGCATGTCCCTGTAG -ACGGAATAGTGCATGTCCCCTAAG -ACGGAATAGTGCATGTCCGTTCAG -ACGGAATAGTGCATGTCCGCATAG -ACGGAATAGTGCATGTCCGACAAG -ACGGAATAGTGCATGTCCAAGCAG -ACGGAATAGTGCATGTCCCGTCAA -ACGGAATAGTGCATGTCCGCTGAA -ACGGAATAGTGCATGTCCAGTACG -ACGGAATAGTGCATGTCCATCCGA -ACGGAATAGTGCATGTCCATGGGA -ACGGAATAGTGCATGTCCGTGCAA -ACGGAATAGTGCATGTCCGAGGAA -ACGGAATAGTGCATGTCCCAGGTA -ACGGAATAGTGCATGTCCGACTCT -ACGGAATAGTGCATGTCCAGTCCT -ACGGAATAGTGCATGTCCTAAGCC -ACGGAATAGTGCATGTCCATAGCC -ACGGAATAGTGCATGTCCTAACCG -ACGGAATAGTGCATGTCCATGCCA -ACGGAATAGTGCGTGTGTGGAAAC -ACGGAATAGTGCGTGTGTAACACC -ACGGAATAGTGCGTGTGTATCGAG -ACGGAATAGTGCGTGTGTCTCCTT -ACGGAATAGTGCGTGTGTCCTGTT -ACGGAATAGTGCGTGTGTCGGTTT -ACGGAATAGTGCGTGTGTGTGGTT -ACGGAATAGTGCGTGTGTGCCTTT -ACGGAATAGTGCGTGTGTGGTCTT -ACGGAATAGTGCGTGTGTACGCTT -ACGGAATAGTGCGTGTGTAGCGTT -ACGGAATAGTGCGTGTGTTTCGTC -ACGGAATAGTGCGTGTGTTCTCTC -ACGGAATAGTGCGTGTGTTGGATC -ACGGAATAGTGCGTGTGTCACTTC -ACGGAATAGTGCGTGTGTGTACTC -ACGGAATAGTGCGTGTGTGATGTC -ACGGAATAGTGCGTGTGTACAGTC -ACGGAATAGTGCGTGTGTTTGCTG -ACGGAATAGTGCGTGTGTTCCATG -ACGGAATAGTGCGTGTGTTGTGTG -ACGGAATAGTGCGTGTGTCTAGTG -ACGGAATAGTGCGTGTGTCATCTG -ACGGAATAGTGCGTGTGTGAGTTG -ACGGAATAGTGCGTGTGTAGACTG -ACGGAATAGTGCGTGTGTTCGGTA -ACGGAATAGTGCGTGTGTTGCCTA -ACGGAATAGTGCGTGTGTCCACTA -ACGGAATAGTGCGTGTGTGGAGTA -ACGGAATAGTGCGTGTGTTCGTCT -ACGGAATAGTGCGTGTGTTGCACT -ACGGAATAGTGCGTGTGTCTGACT -ACGGAATAGTGCGTGTGTCAACCT -ACGGAATAGTGCGTGTGTGCTACT -ACGGAATAGTGCGTGTGTGGATCT -ACGGAATAGTGCGTGTGTAAGGCT -ACGGAATAGTGCGTGTGTTCAACC -ACGGAATAGTGCGTGTGTTGTTCC -ACGGAATAGTGCGTGTGTATTCCC -ACGGAATAGTGCGTGTGTTTCTCG -ACGGAATAGTGCGTGTGTTAGACG -ACGGAATAGTGCGTGTGTGTAACG -ACGGAATAGTGCGTGTGTACTTCG -ACGGAATAGTGCGTGTGTTACGCA -ACGGAATAGTGCGTGTGTCTTGCA -ACGGAATAGTGCGTGTGTCGAACA -ACGGAATAGTGCGTGTGTCAGTCA -ACGGAATAGTGCGTGTGTGATCCA -ACGGAATAGTGCGTGTGTACGACA -ACGGAATAGTGCGTGTGTAGCTCA -ACGGAATAGTGCGTGTGTTCACGT -ACGGAATAGTGCGTGTGTCGTAGT -ACGGAATAGTGCGTGTGTGTCAGT -ACGGAATAGTGCGTGTGTGAAGGT -ACGGAATAGTGCGTGTGTAACCGT -ACGGAATAGTGCGTGTGTTTGTGC -ACGGAATAGTGCGTGTGTCTAAGC -ACGGAATAGTGCGTGTGTACTAGC -ACGGAATAGTGCGTGTGTAGATGC -ACGGAATAGTGCGTGTGTTGAAGG -ACGGAATAGTGCGTGTGTCAATGG -ACGGAATAGTGCGTGTGTATGAGG -ACGGAATAGTGCGTGTGTAATGGG -ACGGAATAGTGCGTGTGTTCCTGA -ACGGAATAGTGCGTGTGTTAGCGA -ACGGAATAGTGCGTGTGTCACAGA -ACGGAATAGTGCGTGTGTGCAAGA -ACGGAATAGTGCGTGTGTGGTTGA -ACGGAATAGTGCGTGTGTTCCGAT -ACGGAATAGTGCGTGTGTTGGCAT -ACGGAATAGTGCGTGTGTCGAGAT -ACGGAATAGTGCGTGTGTTACCAC -ACGGAATAGTGCGTGTGTCAGAAC -ACGGAATAGTGCGTGTGTGTCTAC -ACGGAATAGTGCGTGTGTACGTAC -ACGGAATAGTGCGTGTGTAGTGAC -ACGGAATAGTGCGTGTGTCTGTAG -ACGGAATAGTGCGTGTGTCCTAAG -ACGGAATAGTGCGTGTGTGTTCAG -ACGGAATAGTGCGTGTGTGCATAG -ACGGAATAGTGCGTGTGTGACAAG -ACGGAATAGTGCGTGTGTAAGCAG -ACGGAATAGTGCGTGTGTCGTCAA -ACGGAATAGTGCGTGTGTGCTGAA -ACGGAATAGTGCGTGTGTAGTACG -ACGGAATAGTGCGTGTGTATCCGA -ACGGAATAGTGCGTGTGTATGGGA -ACGGAATAGTGCGTGTGTGTGCAA -ACGGAATAGTGCGTGTGTGAGGAA -ACGGAATAGTGCGTGTGTCAGGTA -ACGGAATAGTGCGTGTGTGACTCT -ACGGAATAGTGCGTGTGTAGTCCT -ACGGAATAGTGCGTGTGTTAAGCC -ACGGAATAGTGCGTGTGTATAGCC -ACGGAATAGTGCGTGTGTTAACCG -ACGGAATAGTGCGTGTGTATGCCA -ACGGAATAGTGCGTGCTAGGAAAC -ACGGAATAGTGCGTGCTAAACACC -ACGGAATAGTGCGTGCTAATCGAG -ACGGAATAGTGCGTGCTACTCCTT -ACGGAATAGTGCGTGCTACCTGTT -ACGGAATAGTGCGTGCTACGGTTT -ACGGAATAGTGCGTGCTAGTGGTT -ACGGAATAGTGCGTGCTAGCCTTT -ACGGAATAGTGCGTGCTAGGTCTT -ACGGAATAGTGCGTGCTAACGCTT -ACGGAATAGTGCGTGCTAAGCGTT -ACGGAATAGTGCGTGCTATTCGTC -ACGGAATAGTGCGTGCTATCTCTC -ACGGAATAGTGCGTGCTATGGATC -ACGGAATAGTGCGTGCTACACTTC -ACGGAATAGTGCGTGCTAGTACTC -ACGGAATAGTGCGTGCTAGATGTC -ACGGAATAGTGCGTGCTAACAGTC -ACGGAATAGTGCGTGCTATTGCTG -ACGGAATAGTGCGTGCTATCCATG -ACGGAATAGTGCGTGCTATGTGTG -ACGGAATAGTGCGTGCTACTAGTG -ACGGAATAGTGCGTGCTACATCTG -ACGGAATAGTGCGTGCTAGAGTTG -ACGGAATAGTGCGTGCTAAGACTG -ACGGAATAGTGCGTGCTATCGGTA -ACGGAATAGTGCGTGCTATGCCTA -ACGGAATAGTGCGTGCTACCACTA -ACGGAATAGTGCGTGCTAGGAGTA -ACGGAATAGTGCGTGCTATCGTCT -ACGGAATAGTGCGTGCTATGCACT -ACGGAATAGTGCGTGCTACTGACT -ACGGAATAGTGCGTGCTACAACCT -ACGGAATAGTGCGTGCTAGCTACT -ACGGAATAGTGCGTGCTAGGATCT -ACGGAATAGTGCGTGCTAAAGGCT -ACGGAATAGTGCGTGCTATCAACC -ACGGAATAGTGCGTGCTATGTTCC -ACGGAATAGTGCGTGCTAATTCCC -ACGGAATAGTGCGTGCTATTCTCG -ACGGAATAGTGCGTGCTATAGACG -ACGGAATAGTGCGTGCTAGTAACG -ACGGAATAGTGCGTGCTAACTTCG -ACGGAATAGTGCGTGCTATACGCA -ACGGAATAGTGCGTGCTACTTGCA -ACGGAATAGTGCGTGCTACGAACA -ACGGAATAGTGCGTGCTACAGTCA -ACGGAATAGTGCGTGCTAGATCCA -ACGGAATAGTGCGTGCTAACGACA -ACGGAATAGTGCGTGCTAAGCTCA -ACGGAATAGTGCGTGCTATCACGT -ACGGAATAGTGCGTGCTACGTAGT -ACGGAATAGTGCGTGCTAGTCAGT -ACGGAATAGTGCGTGCTAGAAGGT -ACGGAATAGTGCGTGCTAAACCGT -ACGGAATAGTGCGTGCTATTGTGC -ACGGAATAGTGCGTGCTACTAAGC -ACGGAATAGTGCGTGCTAACTAGC -ACGGAATAGTGCGTGCTAAGATGC -ACGGAATAGTGCGTGCTATGAAGG -ACGGAATAGTGCGTGCTACAATGG -ACGGAATAGTGCGTGCTAATGAGG -ACGGAATAGTGCGTGCTAAATGGG -ACGGAATAGTGCGTGCTATCCTGA -ACGGAATAGTGCGTGCTATAGCGA -ACGGAATAGTGCGTGCTACACAGA -ACGGAATAGTGCGTGCTAGCAAGA -ACGGAATAGTGCGTGCTAGGTTGA -ACGGAATAGTGCGTGCTATCCGAT -ACGGAATAGTGCGTGCTATGGCAT -ACGGAATAGTGCGTGCTACGAGAT -ACGGAATAGTGCGTGCTATACCAC -ACGGAATAGTGCGTGCTACAGAAC -ACGGAATAGTGCGTGCTAGTCTAC -ACGGAATAGTGCGTGCTAACGTAC -ACGGAATAGTGCGTGCTAAGTGAC -ACGGAATAGTGCGTGCTACTGTAG -ACGGAATAGTGCGTGCTACCTAAG -ACGGAATAGTGCGTGCTAGTTCAG -ACGGAATAGTGCGTGCTAGCATAG -ACGGAATAGTGCGTGCTAGACAAG -ACGGAATAGTGCGTGCTAAAGCAG -ACGGAATAGTGCGTGCTACGTCAA -ACGGAATAGTGCGTGCTAGCTGAA -ACGGAATAGTGCGTGCTAAGTACG -ACGGAATAGTGCGTGCTAATCCGA -ACGGAATAGTGCGTGCTAATGGGA -ACGGAATAGTGCGTGCTAGTGCAA -ACGGAATAGTGCGTGCTAGAGGAA -ACGGAATAGTGCGTGCTACAGGTA -ACGGAATAGTGCGTGCTAGACTCT -ACGGAATAGTGCGTGCTAAGTCCT -ACGGAATAGTGCGTGCTATAAGCC -ACGGAATAGTGCGTGCTAATAGCC -ACGGAATAGTGCGTGCTATAACCG -ACGGAATAGTGCGTGCTAATGCCA -ACGGAATAGTGCCTGCATGGAAAC -ACGGAATAGTGCCTGCATAACACC -ACGGAATAGTGCCTGCATATCGAG -ACGGAATAGTGCCTGCATCTCCTT -ACGGAATAGTGCCTGCATCCTGTT -ACGGAATAGTGCCTGCATCGGTTT -ACGGAATAGTGCCTGCATGTGGTT -ACGGAATAGTGCCTGCATGCCTTT -ACGGAATAGTGCCTGCATGGTCTT -ACGGAATAGTGCCTGCATACGCTT -ACGGAATAGTGCCTGCATAGCGTT -ACGGAATAGTGCCTGCATTTCGTC -ACGGAATAGTGCCTGCATTCTCTC -ACGGAATAGTGCCTGCATTGGATC -ACGGAATAGTGCCTGCATCACTTC -ACGGAATAGTGCCTGCATGTACTC -ACGGAATAGTGCCTGCATGATGTC -ACGGAATAGTGCCTGCATACAGTC -ACGGAATAGTGCCTGCATTTGCTG -ACGGAATAGTGCCTGCATTCCATG -ACGGAATAGTGCCTGCATTGTGTG -ACGGAATAGTGCCTGCATCTAGTG -ACGGAATAGTGCCTGCATCATCTG -ACGGAATAGTGCCTGCATGAGTTG -ACGGAATAGTGCCTGCATAGACTG -ACGGAATAGTGCCTGCATTCGGTA -ACGGAATAGTGCCTGCATTGCCTA -ACGGAATAGTGCCTGCATCCACTA -ACGGAATAGTGCCTGCATGGAGTA -ACGGAATAGTGCCTGCATTCGTCT -ACGGAATAGTGCCTGCATTGCACT -ACGGAATAGTGCCTGCATCTGACT -ACGGAATAGTGCCTGCATCAACCT -ACGGAATAGTGCCTGCATGCTACT -ACGGAATAGTGCCTGCATGGATCT -ACGGAATAGTGCCTGCATAAGGCT -ACGGAATAGTGCCTGCATTCAACC -ACGGAATAGTGCCTGCATTGTTCC -ACGGAATAGTGCCTGCATATTCCC -ACGGAATAGTGCCTGCATTTCTCG -ACGGAATAGTGCCTGCATTAGACG -ACGGAATAGTGCCTGCATGTAACG -ACGGAATAGTGCCTGCATACTTCG -ACGGAATAGTGCCTGCATTACGCA -ACGGAATAGTGCCTGCATCTTGCA -ACGGAATAGTGCCTGCATCGAACA -ACGGAATAGTGCCTGCATCAGTCA -ACGGAATAGTGCCTGCATGATCCA -ACGGAATAGTGCCTGCATACGACA -ACGGAATAGTGCCTGCATAGCTCA -ACGGAATAGTGCCTGCATTCACGT -ACGGAATAGTGCCTGCATCGTAGT -ACGGAATAGTGCCTGCATGTCAGT -ACGGAATAGTGCCTGCATGAAGGT -ACGGAATAGTGCCTGCATAACCGT -ACGGAATAGTGCCTGCATTTGTGC -ACGGAATAGTGCCTGCATCTAAGC -ACGGAATAGTGCCTGCATACTAGC -ACGGAATAGTGCCTGCATAGATGC -ACGGAATAGTGCCTGCATTGAAGG -ACGGAATAGTGCCTGCATCAATGG -ACGGAATAGTGCCTGCATATGAGG -ACGGAATAGTGCCTGCATAATGGG -ACGGAATAGTGCCTGCATTCCTGA -ACGGAATAGTGCCTGCATTAGCGA -ACGGAATAGTGCCTGCATCACAGA -ACGGAATAGTGCCTGCATGCAAGA -ACGGAATAGTGCCTGCATGGTTGA -ACGGAATAGTGCCTGCATTCCGAT -ACGGAATAGTGCCTGCATTGGCAT -ACGGAATAGTGCCTGCATCGAGAT -ACGGAATAGTGCCTGCATTACCAC -ACGGAATAGTGCCTGCATCAGAAC -ACGGAATAGTGCCTGCATGTCTAC -ACGGAATAGTGCCTGCATACGTAC -ACGGAATAGTGCCTGCATAGTGAC -ACGGAATAGTGCCTGCATCTGTAG -ACGGAATAGTGCCTGCATCCTAAG -ACGGAATAGTGCCTGCATGTTCAG -ACGGAATAGTGCCTGCATGCATAG -ACGGAATAGTGCCTGCATGACAAG -ACGGAATAGTGCCTGCATAAGCAG -ACGGAATAGTGCCTGCATCGTCAA -ACGGAATAGTGCCTGCATGCTGAA -ACGGAATAGTGCCTGCATAGTACG -ACGGAATAGTGCCTGCATATCCGA -ACGGAATAGTGCCTGCATATGGGA -ACGGAATAGTGCCTGCATGTGCAA -ACGGAATAGTGCCTGCATGAGGAA -ACGGAATAGTGCCTGCATCAGGTA -ACGGAATAGTGCCTGCATGACTCT -ACGGAATAGTGCCTGCATAGTCCT -ACGGAATAGTGCCTGCATTAAGCC -ACGGAATAGTGCCTGCATATAGCC -ACGGAATAGTGCCTGCATTAACCG -ACGGAATAGTGCCTGCATATGCCA -ACGGAATAGTGCTTGGAGGGAAAC -ACGGAATAGTGCTTGGAGAACACC -ACGGAATAGTGCTTGGAGATCGAG -ACGGAATAGTGCTTGGAGCTCCTT -ACGGAATAGTGCTTGGAGCCTGTT -ACGGAATAGTGCTTGGAGCGGTTT -ACGGAATAGTGCTTGGAGGTGGTT -ACGGAATAGTGCTTGGAGGCCTTT -ACGGAATAGTGCTTGGAGGGTCTT -ACGGAATAGTGCTTGGAGACGCTT -ACGGAATAGTGCTTGGAGAGCGTT -ACGGAATAGTGCTTGGAGTTCGTC -ACGGAATAGTGCTTGGAGTCTCTC -ACGGAATAGTGCTTGGAGTGGATC -ACGGAATAGTGCTTGGAGCACTTC -ACGGAATAGTGCTTGGAGGTACTC -ACGGAATAGTGCTTGGAGGATGTC -ACGGAATAGTGCTTGGAGACAGTC -ACGGAATAGTGCTTGGAGTTGCTG -ACGGAATAGTGCTTGGAGTCCATG -ACGGAATAGTGCTTGGAGTGTGTG -ACGGAATAGTGCTTGGAGCTAGTG -ACGGAATAGTGCTTGGAGCATCTG -ACGGAATAGTGCTTGGAGGAGTTG -ACGGAATAGTGCTTGGAGAGACTG -ACGGAATAGTGCTTGGAGTCGGTA -ACGGAATAGTGCTTGGAGTGCCTA -ACGGAATAGTGCTTGGAGCCACTA -ACGGAATAGTGCTTGGAGGGAGTA -ACGGAATAGTGCTTGGAGTCGTCT -ACGGAATAGTGCTTGGAGTGCACT -ACGGAATAGTGCTTGGAGCTGACT -ACGGAATAGTGCTTGGAGCAACCT -ACGGAATAGTGCTTGGAGGCTACT -ACGGAATAGTGCTTGGAGGGATCT -ACGGAATAGTGCTTGGAGAAGGCT -ACGGAATAGTGCTTGGAGTCAACC -ACGGAATAGTGCTTGGAGTGTTCC -ACGGAATAGTGCTTGGAGATTCCC -ACGGAATAGTGCTTGGAGTTCTCG -ACGGAATAGTGCTTGGAGTAGACG -ACGGAATAGTGCTTGGAGGTAACG -ACGGAATAGTGCTTGGAGACTTCG -ACGGAATAGTGCTTGGAGTACGCA -ACGGAATAGTGCTTGGAGCTTGCA -ACGGAATAGTGCTTGGAGCGAACA -ACGGAATAGTGCTTGGAGCAGTCA -ACGGAATAGTGCTTGGAGGATCCA -ACGGAATAGTGCTTGGAGACGACA -ACGGAATAGTGCTTGGAGAGCTCA -ACGGAATAGTGCTTGGAGTCACGT -ACGGAATAGTGCTTGGAGCGTAGT -ACGGAATAGTGCTTGGAGGTCAGT -ACGGAATAGTGCTTGGAGGAAGGT -ACGGAATAGTGCTTGGAGAACCGT -ACGGAATAGTGCTTGGAGTTGTGC -ACGGAATAGTGCTTGGAGCTAAGC -ACGGAATAGTGCTTGGAGACTAGC -ACGGAATAGTGCTTGGAGAGATGC -ACGGAATAGTGCTTGGAGTGAAGG -ACGGAATAGTGCTTGGAGCAATGG -ACGGAATAGTGCTTGGAGATGAGG -ACGGAATAGTGCTTGGAGAATGGG -ACGGAATAGTGCTTGGAGTCCTGA -ACGGAATAGTGCTTGGAGTAGCGA -ACGGAATAGTGCTTGGAGCACAGA -ACGGAATAGTGCTTGGAGGCAAGA -ACGGAATAGTGCTTGGAGGGTTGA -ACGGAATAGTGCTTGGAGTCCGAT -ACGGAATAGTGCTTGGAGTGGCAT -ACGGAATAGTGCTTGGAGCGAGAT -ACGGAATAGTGCTTGGAGTACCAC -ACGGAATAGTGCTTGGAGCAGAAC -ACGGAATAGTGCTTGGAGGTCTAC -ACGGAATAGTGCTTGGAGACGTAC -ACGGAATAGTGCTTGGAGAGTGAC -ACGGAATAGTGCTTGGAGCTGTAG -ACGGAATAGTGCTTGGAGCCTAAG -ACGGAATAGTGCTTGGAGGTTCAG -ACGGAATAGTGCTTGGAGGCATAG -ACGGAATAGTGCTTGGAGGACAAG -ACGGAATAGTGCTTGGAGAAGCAG -ACGGAATAGTGCTTGGAGCGTCAA -ACGGAATAGTGCTTGGAGGCTGAA -ACGGAATAGTGCTTGGAGAGTACG -ACGGAATAGTGCTTGGAGATCCGA -ACGGAATAGTGCTTGGAGATGGGA -ACGGAATAGTGCTTGGAGGTGCAA -ACGGAATAGTGCTTGGAGGAGGAA -ACGGAATAGTGCTTGGAGCAGGTA -ACGGAATAGTGCTTGGAGGACTCT -ACGGAATAGTGCTTGGAGAGTCCT -ACGGAATAGTGCTTGGAGTAAGCC -ACGGAATAGTGCTTGGAGATAGCC -ACGGAATAGTGCTTGGAGTAACCG -ACGGAATAGTGCTTGGAGATGCCA -ACGGAATAGTGCCTGAGAGGAAAC -ACGGAATAGTGCCTGAGAAACACC -ACGGAATAGTGCCTGAGAATCGAG -ACGGAATAGTGCCTGAGACTCCTT -ACGGAATAGTGCCTGAGACCTGTT -ACGGAATAGTGCCTGAGACGGTTT -ACGGAATAGTGCCTGAGAGTGGTT -ACGGAATAGTGCCTGAGAGCCTTT -ACGGAATAGTGCCTGAGAGGTCTT -ACGGAATAGTGCCTGAGAACGCTT -ACGGAATAGTGCCTGAGAAGCGTT -ACGGAATAGTGCCTGAGATTCGTC -ACGGAATAGTGCCTGAGATCTCTC -ACGGAATAGTGCCTGAGATGGATC -ACGGAATAGTGCCTGAGACACTTC -ACGGAATAGTGCCTGAGAGTACTC -ACGGAATAGTGCCTGAGAGATGTC -ACGGAATAGTGCCTGAGAACAGTC -ACGGAATAGTGCCTGAGATTGCTG -ACGGAATAGTGCCTGAGATCCATG -ACGGAATAGTGCCTGAGATGTGTG -ACGGAATAGTGCCTGAGACTAGTG -ACGGAATAGTGCCTGAGACATCTG -ACGGAATAGTGCCTGAGAGAGTTG -ACGGAATAGTGCCTGAGAAGACTG -ACGGAATAGTGCCTGAGATCGGTA -ACGGAATAGTGCCTGAGATGCCTA -ACGGAATAGTGCCTGAGACCACTA -ACGGAATAGTGCCTGAGAGGAGTA -ACGGAATAGTGCCTGAGATCGTCT -ACGGAATAGTGCCTGAGATGCACT -ACGGAATAGTGCCTGAGACTGACT -ACGGAATAGTGCCTGAGACAACCT -ACGGAATAGTGCCTGAGAGCTACT -ACGGAATAGTGCCTGAGAGGATCT -ACGGAATAGTGCCTGAGAAAGGCT -ACGGAATAGTGCCTGAGATCAACC -ACGGAATAGTGCCTGAGATGTTCC -ACGGAATAGTGCCTGAGAATTCCC -ACGGAATAGTGCCTGAGATTCTCG -ACGGAATAGTGCCTGAGATAGACG -ACGGAATAGTGCCTGAGAGTAACG -ACGGAATAGTGCCTGAGAACTTCG -ACGGAATAGTGCCTGAGATACGCA -ACGGAATAGTGCCTGAGACTTGCA -ACGGAATAGTGCCTGAGACGAACA -ACGGAATAGTGCCTGAGACAGTCA -ACGGAATAGTGCCTGAGAGATCCA -ACGGAATAGTGCCTGAGAACGACA -ACGGAATAGTGCCTGAGAAGCTCA -ACGGAATAGTGCCTGAGATCACGT -ACGGAATAGTGCCTGAGACGTAGT -ACGGAATAGTGCCTGAGAGTCAGT -ACGGAATAGTGCCTGAGAGAAGGT -ACGGAATAGTGCCTGAGAAACCGT -ACGGAATAGTGCCTGAGATTGTGC -ACGGAATAGTGCCTGAGACTAAGC -ACGGAATAGTGCCTGAGAACTAGC -ACGGAATAGTGCCTGAGAAGATGC -ACGGAATAGTGCCTGAGATGAAGG -ACGGAATAGTGCCTGAGACAATGG -ACGGAATAGTGCCTGAGAATGAGG -ACGGAATAGTGCCTGAGAAATGGG -ACGGAATAGTGCCTGAGATCCTGA -ACGGAATAGTGCCTGAGATAGCGA -ACGGAATAGTGCCTGAGACACAGA -ACGGAATAGTGCCTGAGAGCAAGA -ACGGAATAGTGCCTGAGAGGTTGA -ACGGAATAGTGCCTGAGATCCGAT -ACGGAATAGTGCCTGAGATGGCAT -ACGGAATAGTGCCTGAGACGAGAT -ACGGAATAGTGCCTGAGATACCAC -ACGGAATAGTGCCTGAGACAGAAC -ACGGAATAGTGCCTGAGAGTCTAC -ACGGAATAGTGCCTGAGAACGTAC -ACGGAATAGTGCCTGAGAAGTGAC -ACGGAATAGTGCCTGAGACTGTAG -ACGGAATAGTGCCTGAGACCTAAG -ACGGAATAGTGCCTGAGAGTTCAG -ACGGAATAGTGCCTGAGAGCATAG -ACGGAATAGTGCCTGAGAGACAAG -ACGGAATAGTGCCTGAGAAAGCAG -ACGGAATAGTGCCTGAGACGTCAA -ACGGAATAGTGCCTGAGAGCTGAA -ACGGAATAGTGCCTGAGAAGTACG -ACGGAATAGTGCCTGAGAATCCGA -ACGGAATAGTGCCTGAGAATGGGA -ACGGAATAGTGCCTGAGAGTGCAA -ACGGAATAGTGCCTGAGAGAGGAA -ACGGAATAGTGCCTGAGACAGGTA -ACGGAATAGTGCCTGAGAGACTCT -ACGGAATAGTGCCTGAGAAGTCCT -ACGGAATAGTGCCTGAGATAAGCC -ACGGAATAGTGCCTGAGAATAGCC -ACGGAATAGTGCCTGAGATAACCG -ACGGAATAGTGCCTGAGAATGCCA -ACGGAATAGTGCGTATCGGGAAAC -ACGGAATAGTGCGTATCGAACACC -ACGGAATAGTGCGTATCGATCGAG -ACGGAATAGTGCGTATCGCTCCTT -ACGGAATAGTGCGTATCGCCTGTT -ACGGAATAGTGCGTATCGCGGTTT -ACGGAATAGTGCGTATCGGTGGTT -ACGGAATAGTGCGTATCGGCCTTT -ACGGAATAGTGCGTATCGGGTCTT -ACGGAATAGTGCGTATCGACGCTT -ACGGAATAGTGCGTATCGAGCGTT -ACGGAATAGTGCGTATCGTTCGTC -ACGGAATAGTGCGTATCGTCTCTC -ACGGAATAGTGCGTATCGTGGATC -ACGGAATAGTGCGTATCGCACTTC -ACGGAATAGTGCGTATCGGTACTC -ACGGAATAGTGCGTATCGGATGTC -ACGGAATAGTGCGTATCGACAGTC -ACGGAATAGTGCGTATCGTTGCTG -ACGGAATAGTGCGTATCGTCCATG -ACGGAATAGTGCGTATCGTGTGTG -ACGGAATAGTGCGTATCGCTAGTG -ACGGAATAGTGCGTATCGCATCTG -ACGGAATAGTGCGTATCGGAGTTG -ACGGAATAGTGCGTATCGAGACTG -ACGGAATAGTGCGTATCGTCGGTA -ACGGAATAGTGCGTATCGTGCCTA -ACGGAATAGTGCGTATCGCCACTA -ACGGAATAGTGCGTATCGGGAGTA -ACGGAATAGTGCGTATCGTCGTCT -ACGGAATAGTGCGTATCGTGCACT -ACGGAATAGTGCGTATCGCTGACT -ACGGAATAGTGCGTATCGCAACCT -ACGGAATAGTGCGTATCGGCTACT -ACGGAATAGTGCGTATCGGGATCT -ACGGAATAGTGCGTATCGAAGGCT -ACGGAATAGTGCGTATCGTCAACC -ACGGAATAGTGCGTATCGTGTTCC -ACGGAATAGTGCGTATCGATTCCC -ACGGAATAGTGCGTATCGTTCTCG -ACGGAATAGTGCGTATCGTAGACG -ACGGAATAGTGCGTATCGGTAACG -ACGGAATAGTGCGTATCGACTTCG -ACGGAATAGTGCGTATCGTACGCA -ACGGAATAGTGCGTATCGCTTGCA -ACGGAATAGTGCGTATCGCGAACA -ACGGAATAGTGCGTATCGCAGTCA -ACGGAATAGTGCGTATCGGATCCA -ACGGAATAGTGCGTATCGACGACA -ACGGAATAGTGCGTATCGAGCTCA -ACGGAATAGTGCGTATCGTCACGT -ACGGAATAGTGCGTATCGCGTAGT -ACGGAATAGTGCGTATCGGTCAGT -ACGGAATAGTGCGTATCGGAAGGT -ACGGAATAGTGCGTATCGAACCGT -ACGGAATAGTGCGTATCGTTGTGC -ACGGAATAGTGCGTATCGCTAAGC -ACGGAATAGTGCGTATCGACTAGC -ACGGAATAGTGCGTATCGAGATGC -ACGGAATAGTGCGTATCGTGAAGG -ACGGAATAGTGCGTATCGCAATGG -ACGGAATAGTGCGTATCGATGAGG -ACGGAATAGTGCGTATCGAATGGG -ACGGAATAGTGCGTATCGTCCTGA -ACGGAATAGTGCGTATCGTAGCGA -ACGGAATAGTGCGTATCGCACAGA -ACGGAATAGTGCGTATCGGCAAGA -ACGGAATAGTGCGTATCGGGTTGA -ACGGAATAGTGCGTATCGTCCGAT -ACGGAATAGTGCGTATCGTGGCAT -ACGGAATAGTGCGTATCGCGAGAT -ACGGAATAGTGCGTATCGTACCAC -ACGGAATAGTGCGTATCGCAGAAC -ACGGAATAGTGCGTATCGGTCTAC -ACGGAATAGTGCGTATCGACGTAC -ACGGAATAGTGCGTATCGAGTGAC -ACGGAATAGTGCGTATCGCTGTAG -ACGGAATAGTGCGTATCGCCTAAG -ACGGAATAGTGCGTATCGGTTCAG -ACGGAATAGTGCGTATCGGCATAG -ACGGAATAGTGCGTATCGGACAAG -ACGGAATAGTGCGTATCGAAGCAG -ACGGAATAGTGCGTATCGCGTCAA -ACGGAATAGTGCGTATCGGCTGAA -ACGGAATAGTGCGTATCGAGTACG -ACGGAATAGTGCGTATCGATCCGA -ACGGAATAGTGCGTATCGATGGGA -ACGGAATAGTGCGTATCGGTGCAA -ACGGAATAGTGCGTATCGGAGGAA -ACGGAATAGTGCGTATCGCAGGTA -ACGGAATAGTGCGTATCGGACTCT -ACGGAATAGTGCGTATCGAGTCCT -ACGGAATAGTGCGTATCGTAAGCC -ACGGAATAGTGCGTATCGATAGCC -ACGGAATAGTGCGTATCGTAACCG -ACGGAATAGTGCGTATCGATGCCA -ACGGAATAGTGCCTATGCGGAAAC -ACGGAATAGTGCCTATGCAACACC -ACGGAATAGTGCCTATGCATCGAG -ACGGAATAGTGCCTATGCCTCCTT -ACGGAATAGTGCCTATGCCCTGTT -ACGGAATAGTGCCTATGCCGGTTT -ACGGAATAGTGCCTATGCGTGGTT -ACGGAATAGTGCCTATGCGCCTTT -ACGGAATAGTGCCTATGCGGTCTT -ACGGAATAGTGCCTATGCACGCTT -ACGGAATAGTGCCTATGCAGCGTT -ACGGAATAGTGCCTATGCTTCGTC -ACGGAATAGTGCCTATGCTCTCTC -ACGGAATAGTGCCTATGCTGGATC -ACGGAATAGTGCCTATGCCACTTC -ACGGAATAGTGCCTATGCGTACTC -ACGGAATAGTGCCTATGCGATGTC -ACGGAATAGTGCCTATGCACAGTC -ACGGAATAGTGCCTATGCTTGCTG -ACGGAATAGTGCCTATGCTCCATG -ACGGAATAGTGCCTATGCTGTGTG -ACGGAATAGTGCCTATGCCTAGTG -ACGGAATAGTGCCTATGCCATCTG -ACGGAATAGTGCCTATGCGAGTTG -ACGGAATAGTGCCTATGCAGACTG -ACGGAATAGTGCCTATGCTCGGTA -ACGGAATAGTGCCTATGCTGCCTA -ACGGAATAGTGCCTATGCCCACTA -ACGGAATAGTGCCTATGCGGAGTA -ACGGAATAGTGCCTATGCTCGTCT -ACGGAATAGTGCCTATGCTGCACT -ACGGAATAGTGCCTATGCCTGACT -ACGGAATAGTGCCTATGCCAACCT -ACGGAATAGTGCCTATGCGCTACT -ACGGAATAGTGCCTATGCGGATCT -ACGGAATAGTGCCTATGCAAGGCT -ACGGAATAGTGCCTATGCTCAACC -ACGGAATAGTGCCTATGCTGTTCC -ACGGAATAGTGCCTATGCATTCCC -ACGGAATAGTGCCTATGCTTCTCG -ACGGAATAGTGCCTATGCTAGACG -ACGGAATAGTGCCTATGCGTAACG -ACGGAATAGTGCCTATGCACTTCG -ACGGAATAGTGCCTATGCTACGCA -ACGGAATAGTGCCTATGCCTTGCA -ACGGAATAGTGCCTATGCCGAACA -ACGGAATAGTGCCTATGCCAGTCA -ACGGAATAGTGCCTATGCGATCCA -ACGGAATAGTGCCTATGCACGACA -ACGGAATAGTGCCTATGCAGCTCA -ACGGAATAGTGCCTATGCTCACGT -ACGGAATAGTGCCTATGCCGTAGT -ACGGAATAGTGCCTATGCGTCAGT -ACGGAATAGTGCCTATGCGAAGGT -ACGGAATAGTGCCTATGCAACCGT -ACGGAATAGTGCCTATGCTTGTGC -ACGGAATAGTGCCTATGCCTAAGC -ACGGAATAGTGCCTATGCACTAGC -ACGGAATAGTGCCTATGCAGATGC -ACGGAATAGTGCCTATGCTGAAGG -ACGGAATAGTGCCTATGCCAATGG -ACGGAATAGTGCCTATGCATGAGG -ACGGAATAGTGCCTATGCAATGGG -ACGGAATAGTGCCTATGCTCCTGA -ACGGAATAGTGCCTATGCTAGCGA -ACGGAATAGTGCCTATGCCACAGA -ACGGAATAGTGCCTATGCGCAAGA -ACGGAATAGTGCCTATGCGGTTGA -ACGGAATAGTGCCTATGCTCCGAT -ACGGAATAGTGCCTATGCTGGCAT -ACGGAATAGTGCCTATGCCGAGAT -ACGGAATAGTGCCTATGCTACCAC -ACGGAATAGTGCCTATGCCAGAAC -ACGGAATAGTGCCTATGCGTCTAC -ACGGAATAGTGCCTATGCACGTAC -ACGGAATAGTGCCTATGCAGTGAC -ACGGAATAGTGCCTATGCCTGTAG -ACGGAATAGTGCCTATGCCCTAAG -ACGGAATAGTGCCTATGCGTTCAG -ACGGAATAGTGCCTATGCGCATAG -ACGGAATAGTGCCTATGCGACAAG -ACGGAATAGTGCCTATGCAAGCAG -ACGGAATAGTGCCTATGCCGTCAA -ACGGAATAGTGCCTATGCGCTGAA -ACGGAATAGTGCCTATGCAGTACG -ACGGAATAGTGCCTATGCATCCGA -ACGGAATAGTGCCTATGCATGGGA -ACGGAATAGTGCCTATGCGTGCAA -ACGGAATAGTGCCTATGCGAGGAA -ACGGAATAGTGCCTATGCCAGGTA -ACGGAATAGTGCCTATGCGACTCT -ACGGAATAGTGCCTATGCAGTCCT -ACGGAATAGTGCCTATGCTAAGCC -ACGGAATAGTGCCTATGCATAGCC -ACGGAATAGTGCCTATGCTAACCG -ACGGAATAGTGCCTATGCATGCCA -ACGGAATAGTGCCTACCAGGAAAC -ACGGAATAGTGCCTACCAAACACC -ACGGAATAGTGCCTACCAATCGAG -ACGGAATAGTGCCTACCACTCCTT -ACGGAATAGTGCCTACCACCTGTT -ACGGAATAGTGCCTACCACGGTTT -ACGGAATAGTGCCTACCAGTGGTT -ACGGAATAGTGCCTACCAGCCTTT -ACGGAATAGTGCCTACCAGGTCTT -ACGGAATAGTGCCTACCAACGCTT -ACGGAATAGTGCCTACCAAGCGTT -ACGGAATAGTGCCTACCATTCGTC -ACGGAATAGTGCCTACCATCTCTC -ACGGAATAGTGCCTACCATGGATC -ACGGAATAGTGCCTACCACACTTC -ACGGAATAGTGCCTACCAGTACTC -ACGGAATAGTGCCTACCAGATGTC -ACGGAATAGTGCCTACCAACAGTC -ACGGAATAGTGCCTACCATTGCTG -ACGGAATAGTGCCTACCATCCATG -ACGGAATAGTGCCTACCATGTGTG -ACGGAATAGTGCCTACCACTAGTG -ACGGAATAGTGCCTACCACATCTG -ACGGAATAGTGCCTACCAGAGTTG -ACGGAATAGTGCCTACCAAGACTG -ACGGAATAGTGCCTACCATCGGTA -ACGGAATAGTGCCTACCATGCCTA -ACGGAATAGTGCCTACCACCACTA -ACGGAATAGTGCCTACCAGGAGTA -ACGGAATAGTGCCTACCATCGTCT -ACGGAATAGTGCCTACCATGCACT -ACGGAATAGTGCCTACCACTGACT -ACGGAATAGTGCCTACCACAACCT -ACGGAATAGTGCCTACCAGCTACT -ACGGAATAGTGCCTACCAGGATCT -ACGGAATAGTGCCTACCAAAGGCT -ACGGAATAGTGCCTACCATCAACC -ACGGAATAGTGCCTACCATGTTCC -ACGGAATAGTGCCTACCAATTCCC -ACGGAATAGTGCCTACCATTCTCG -ACGGAATAGTGCCTACCATAGACG -ACGGAATAGTGCCTACCAGTAACG -ACGGAATAGTGCCTACCAACTTCG -ACGGAATAGTGCCTACCATACGCA -ACGGAATAGTGCCTACCACTTGCA -ACGGAATAGTGCCTACCACGAACA -ACGGAATAGTGCCTACCACAGTCA -ACGGAATAGTGCCTACCAGATCCA -ACGGAATAGTGCCTACCAACGACA -ACGGAATAGTGCCTACCAAGCTCA -ACGGAATAGTGCCTACCATCACGT -ACGGAATAGTGCCTACCACGTAGT -ACGGAATAGTGCCTACCAGTCAGT -ACGGAATAGTGCCTACCAGAAGGT -ACGGAATAGTGCCTACCAAACCGT -ACGGAATAGTGCCTACCATTGTGC -ACGGAATAGTGCCTACCACTAAGC -ACGGAATAGTGCCTACCAACTAGC -ACGGAATAGTGCCTACCAAGATGC -ACGGAATAGTGCCTACCATGAAGG -ACGGAATAGTGCCTACCACAATGG -ACGGAATAGTGCCTACCAATGAGG -ACGGAATAGTGCCTACCAAATGGG -ACGGAATAGTGCCTACCATCCTGA -ACGGAATAGTGCCTACCATAGCGA -ACGGAATAGTGCCTACCACACAGA -ACGGAATAGTGCCTACCAGCAAGA -ACGGAATAGTGCCTACCAGGTTGA -ACGGAATAGTGCCTACCATCCGAT -ACGGAATAGTGCCTACCATGGCAT -ACGGAATAGTGCCTACCACGAGAT -ACGGAATAGTGCCTACCATACCAC -ACGGAATAGTGCCTACCACAGAAC -ACGGAATAGTGCCTACCAGTCTAC -ACGGAATAGTGCCTACCAACGTAC -ACGGAATAGTGCCTACCAAGTGAC -ACGGAATAGTGCCTACCACTGTAG -ACGGAATAGTGCCTACCACCTAAG -ACGGAATAGTGCCTACCAGTTCAG -ACGGAATAGTGCCTACCAGCATAG -ACGGAATAGTGCCTACCAGACAAG -ACGGAATAGTGCCTACCAAAGCAG -ACGGAATAGTGCCTACCACGTCAA -ACGGAATAGTGCCTACCAGCTGAA -ACGGAATAGTGCCTACCAAGTACG -ACGGAATAGTGCCTACCAATCCGA -ACGGAATAGTGCCTACCAATGGGA -ACGGAATAGTGCCTACCAGTGCAA -ACGGAATAGTGCCTACCAGAGGAA -ACGGAATAGTGCCTACCACAGGTA -ACGGAATAGTGCCTACCAGACTCT -ACGGAATAGTGCCTACCAAGTCCT -ACGGAATAGTGCCTACCATAAGCC -ACGGAATAGTGCCTACCAATAGCC -ACGGAATAGTGCCTACCATAACCG -ACGGAATAGTGCCTACCAATGCCA -ACGGAATAGTGCGTAGGAGGAAAC -ACGGAATAGTGCGTAGGAAACACC -ACGGAATAGTGCGTAGGAATCGAG -ACGGAATAGTGCGTAGGACTCCTT -ACGGAATAGTGCGTAGGACCTGTT -ACGGAATAGTGCGTAGGACGGTTT -ACGGAATAGTGCGTAGGAGTGGTT -ACGGAATAGTGCGTAGGAGCCTTT -ACGGAATAGTGCGTAGGAGGTCTT -ACGGAATAGTGCGTAGGAACGCTT -ACGGAATAGTGCGTAGGAAGCGTT -ACGGAATAGTGCGTAGGATTCGTC -ACGGAATAGTGCGTAGGATCTCTC -ACGGAATAGTGCGTAGGATGGATC -ACGGAATAGTGCGTAGGACACTTC -ACGGAATAGTGCGTAGGAGTACTC -ACGGAATAGTGCGTAGGAGATGTC -ACGGAATAGTGCGTAGGAACAGTC -ACGGAATAGTGCGTAGGATTGCTG -ACGGAATAGTGCGTAGGATCCATG -ACGGAATAGTGCGTAGGATGTGTG -ACGGAATAGTGCGTAGGACTAGTG -ACGGAATAGTGCGTAGGACATCTG -ACGGAATAGTGCGTAGGAGAGTTG -ACGGAATAGTGCGTAGGAAGACTG -ACGGAATAGTGCGTAGGATCGGTA -ACGGAATAGTGCGTAGGATGCCTA -ACGGAATAGTGCGTAGGACCACTA -ACGGAATAGTGCGTAGGAGGAGTA -ACGGAATAGTGCGTAGGATCGTCT -ACGGAATAGTGCGTAGGATGCACT -ACGGAATAGTGCGTAGGACTGACT -ACGGAATAGTGCGTAGGACAACCT -ACGGAATAGTGCGTAGGAGCTACT -ACGGAATAGTGCGTAGGAGGATCT -ACGGAATAGTGCGTAGGAAAGGCT -ACGGAATAGTGCGTAGGATCAACC -ACGGAATAGTGCGTAGGATGTTCC -ACGGAATAGTGCGTAGGAATTCCC -ACGGAATAGTGCGTAGGATTCTCG -ACGGAATAGTGCGTAGGATAGACG -ACGGAATAGTGCGTAGGAGTAACG -ACGGAATAGTGCGTAGGAACTTCG -ACGGAATAGTGCGTAGGATACGCA -ACGGAATAGTGCGTAGGACTTGCA -ACGGAATAGTGCGTAGGACGAACA -ACGGAATAGTGCGTAGGACAGTCA -ACGGAATAGTGCGTAGGAGATCCA -ACGGAATAGTGCGTAGGAACGACA -ACGGAATAGTGCGTAGGAAGCTCA -ACGGAATAGTGCGTAGGATCACGT -ACGGAATAGTGCGTAGGACGTAGT -ACGGAATAGTGCGTAGGAGTCAGT -ACGGAATAGTGCGTAGGAGAAGGT -ACGGAATAGTGCGTAGGAAACCGT -ACGGAATAGTGCGTAGGATTGTGC -ACGGAATAGTGCGTAGGACTAAGC -ACGGAATAGTGCGTAGGAACTAGC -ACGGAATAGTGCGTAGGAAGATGC -ACGGAATAGTGCGTAGGATGAAGG -ACGGAATAGTGCGTAGGACAATGG -ACGGAATAGTGCGTAGGAATGAGG -ACGGAATAGTGCGTAGGAAATGGG -ACGGAATAGTGCGTAGGATCCTGA -ACGGAATAGTGCGTAGGATAGCGA -ACGGAATAGTGCGTAGGACACAGA -ACGGAATAGTGCGTAGGAGCAAGA -ACGGAATAGTGCGTAGGAGGTTGA -ACGGAATAGTGCGTAGGATCCGAT -ACGGAATAGTGCGTAGGATGGCAT -ACGGAATAGTGCGTAGGACGAGAT -ACGGAATAGTGCGTAGGATACCAC -ACGGAATAGTGCGTAGGACAGAAC -ACGGAATAGTGCGTAGGAGTCTAC -ACGGAATAGTGCGTAGGAACGTAC -ACGGAATAGTGCGTAGGAAGTGAC -ACGGAATAGTGCGTAGGACTGTAG -ACGGAATAGTGCGTAGGACCTAAG -ACGGAATAGTGCGTAGGAGTTCAG -ACGGAATAGTGCGTAGGAGCATAG -ACGGAATAGTGCGTAGGAGACAAG -ACGGAATAGTGCGTAGGAAAGCAG -ACGGAATAGTGCGTAGGACGTCAA -ACGGAATAGTGCGTAGGAGCTGAA -ACGGAATAGTGCGTAGGAAGTACG -ACGGAATAGTGCGTAGGAATCCGA -ACGGAATAGTGCGTAGGAATGGGA -ACGGAATAGTGCGTAGGAGTGCAA -ACGGAATAGTGCGTAGGAGAGGAA -ACGGAATAGTGCGTAGGACAGGTA -ACGGAATAGTGCGTAGGAGACTCT -ACGGAATAGTGCGTAGGAAGTCCT -ACGGAATAGTGCGTAGGATAAGCC -ACGGAATAGTGCGTAGGAATAGCC -ACGGAATAGTGCGTAGGATAACCG -ACGGAATAGTGCGTAGGAATGCCA -ACGGAATAGTGCTCTTCGGGAAAC -ACGGAATAGTGCTCTTCGAACACC -ACGGAATAGTGCTCTTCGATCGAG -ACGGAATAGTGCTCTTCGCTCCTT -ACGGAATAGTGCTCTTCGCCTGTT -ACGGAATAGTGCTCTTCGCGGTTT -ACGGAATAGTGCTCTTCGGTGGTT -ACGGAATAGTGCTCTTCGGCCTTT -ACGGAATAGTGCTCTTCGGGTCTT -ACGGAATAGTGCTCTTCGACGCTT -ACGGAATAGTGCTCTTCGAGCGTT -ACGGAATAGTGCTCTTCGTTCGTC -ACGGAATAGTGCTCTTCGTCTCTC -ACGGAATAGTGCTCTTCGTGGATC -ACGGAATAGTGCTCTTCGCACTTC -ACGGAATAGTGCTCTTCGGTACTC -ACGGAATAGTGCTCTTCGGATGTC -ACGGAATAGTGCTCTTCGACAGTC -ACGGAATAGTGCTCTTCGTTGCTG -ACGGAATAGTGCTCTTCGTCCATG -ACGGAATAGTGCTCTTCGTGTGTG -ACGGAATAGTGCTCTTCGCTAGTG -ACGGAATAGTGCTCTTCGCATCTG -ACGGAATAGTGCTCTTCGGAGTTG -ACGGAATAGTGCTCTTCGAGACTG -ACGGAATAGTGCTCTTCGTCGGTA -ACGGAATAGTGCTCTTCGTGCCTA -ACGGAATAGTGCTCTTCGCCACTA -ACGGAATAGTGCTCTTCGGGAGTA -ACGGAATAGTGCTCTTCGTCGTCT -ACGGAATAGTGCTCTTCGTGCACT -ACGGAATAGTGCTCTTCGCTGACT -ACGGAATAGTGCTCTTCGCAACCT -ACGGAATAGTGCTCTTCGGCTACT -ACGGAATAGTGCTCTTCGGGATCT -ACGGAATAGTGCTCTTCGAAGGCT -ACGGAATAGTGCTCTTCGTCAACC -ACGGAATAGTGCTCTTCGTGTTCC -ACGGAATAGTGCTCTTCGATTCCC -ACGGAATAGTGCTCTTCGTTCTCG -ACGGAATAGTGCTCTTCGTAGACG -ACGGAATAGTGCTCTTCGGTAACG -ACGGAATAGTGCTCTTCGACTTCG -ACGGAATAGTGCTCTTCGTACGCA -ACGGAATAGTGCTCTTCGCTTGCA -ACGGAATAGTGCTCTTCGCGAACA -ACGGAATAGTGCTCTTCGCAGTCA -ACGGAATAGTGCTCTTCGGATCCA -ACGGAATAGTGCTCTTCGACGACA -ACGGAATAGTGCTCTTCGAGCTCA -ACGGAATAGTGCTCTTCGTCACGT -ACGGAATAGTGCTCTTCGCGTAGT -ACGGAATAGTGCTCTTCGGTCAGT -ACGGAATAGTGCTCTTCGGAAGGT -ACGGAATAGTGCTCTTCGAACCGT -ACGGAATAGTGCTCTTCGTTGTGC -ACGGAATAGTGCTCTTCGCTAAGC -ACGGAATAGTGCTCTTCGACTAGC -ACGGAATAGTGCTCTTCGAGATGC -ACGGAATAGTGCTCTTCGTGAAGG -ACGGAATAGTGCTCTTCGCAATGG -ACGGAATAGTGCTCTTCGATGAGG -ACGGAATAGTGCTCTTCGAATGGG -ACGGAATAGTGCTCTTCGTCCTGA -ACGGAATAGTGCTCTTCGTAGCGA -ACGGAATAGTGCTCTTCGCACAGA -ACGGAATAGTGCTCTTCGGCAAGA -ACGGAATAGTGCTCTTCGGGTTGA -ACGGAATAGTGCTCTTCGTCCGAT -ACGGAATAGTGCTCTTCGTGGCAT -ACGGAATAGTGCTCTTCGCGAGAT -ACGGAATAGTGCTCTTCGTACCAC -ACGGAATAGTGCTCTTCGCAGAAC -ACGGAATAGTGCTCTTCGGTCTAC -ACGGAATAGTGCTCTTCGACGTAC -ACGGAATAGTGCTCTTCGAGTGAC -ACGGAATAGTGCTCTTCGCTGTAG -ACGGAATAGTGCTCTTCGCCTAAG -ACGGAATAGTGCTCTTCGGTTCAG -ACGGAATAGTGCTCTTCGGCATAG -ACGGAATAGTGCTCTTCGGACAAG -ACGGAATAGTGCTCTTCGAAGCAG -ACGGAATAGTGCTCTTCGCGTCAA -ACGGAATAGTGCTCTTCGGCTGAA -ACGGAATAGTGCTCTTCGAGTACG -ACGGAATAGTGCTCTTCGATCCGA -ACGGAATAGTGCTCTTCGATGGGA -ACGGAATAGTGCTCTTCGGTGCAA -ACGGAATAGTGCTCTTCGGAGGAA -ACGGAATAGTGCTCTTCGCAGGTA -ACGGAATAGTGCTCTTCGGACTCT -ACGGAATAGTGCTCTTCGAGTCCT -ACGGAATAGTGCTCTTCGTAAGCC -ACGGAATAGTGCTCTTCGATAGCC -ACGGAATAGTGCTCTTCGTAACCG -ACGGAATAGTGCTCTTCGATGCCA -ACGGAATAGTGCACTTGCGGAAAC -ACGGAATAGTGCACTTGCAACACC -ACGGAATAGTGCACTTGCATCGAG -ACGGAATAGTGCACTTGCCTCCTT -ACGGAATAGTGCACTTGCCCTGTT -ACGGAATAGTGCACTTGCCGGTTT -ACGGAATAGTGCACTTGCGTGGTT -ACGGAATAGTGCACTTGCGCCTTT -ACGGAATAGTGCACTTGCGGTCTT -ACGGAATAGTGCACTTGCACGCTT -ACGGAATAGTGCACTTGCAGCGTT -ACGGAATAGTGCACTTGCTTCGTC -ACGGAATAGTGCACTTGCTCTCTC -ACGGAATAGTGCACTTGCTGGATC -ACGGAATAGTGCACTTGCCACTTC -ACGGAATAGTGCACTTGCGTACTC -ACGGAATAGTGCACTTGCGATGTC -ACGGAATAGTGCACTTGCACAGTC -ACGGAATAGTGCACTTGCTTGCTG -ACGGAATAGTGCACTTGCTCCATG -ACGGAATAGTGCACTTGCTGTGTG -ACGGAATAGTGCACTTGCCTAGTG -ACGGAATAGTGCACTTGCCATCTG -ACGGAATAGTGCACTTGCGAGTTG -ACGGAATAGTGCACTTGCAGACTG -ACGGAATAGTGCACTTGCTCGGTA -ACGGAATAGTGCACTTGCTGCCTA -ACGGAATAGTGCACTTGCCCACTA -ACGGAATAGTGCACTTGCGGAGTA -ACGGAATAGTGCACTTGCTCGTCT -ACGGAATAGTGCACTTGCTGCACT -ACGGAATAGTGCACTTGCCTGACT -ACGGAATAGTGCACTTGCCAACCT -ACGGAATAGTGCACTTGCGCTACT -ACGGAATAGTGCACTTGCGGATCT -ACGGAATAGTGCACTTGCAAGGCT -ACGGAATAGTGCACTTGCTCAACC -ACGGAATAGTGCACTTGCTGTTCC -ACGGAATAGTGCACTTGCATTCCC -ACGGAATAGTGCACTTGCTTCTCG -ACGGAATAGTGCACTTGCTAGACG -ACGGAATAGTGCACTTGCGTAACG -ACGGAATAGTGCACTTGCACTTCG -ACGGAATAGTGCACTTGCTACGCA -ACGGAATAGTGCACTTGCCTTGCA -ACGGAATAGTGCACTTGCCGAACA -ACGGAATAGTGCACTTGCCAGTCA -ACGGAATAGTGCACTTGCGATCCA -ACGGAATAGTGCACTTGCACGACA -ACGGAATAGTGCACTTGCAGCTCA -ACGGAATAGTGCACTTGCTCACGT -ACGGAATAGTGCACTTGCCGTAGT -ACGGAATAGTGCACTTGCGTCAGT -ACGGAATAGTGCACTTGCGAAGGT -ACGGAATAGTGCACTTGCAACCGT -ACGGAATAGTGCACTTGCTTGTGC -ACGGAATAGTGCACTTGCCTAAGC -ACGGAATAGTGCACTTGCACTAGC -ACGGAATAGTGCACTTGCAGATGC -ACGGAATAGTGCACTTGCTGAAGG -ACGGAATAGTGCACTTGCCAATGG -ACGGAATAGTGCACTTGCATGAGG -ACGGAATAGTGCACTTGCAATGGG -ACGGAATAGTGCACTTGCTCCTGA -ACGGAATAGTGCACTTGCTAGCGA -ACGGAATAGTGCACTTGCCACAGA -ACGGAATAGTGCACTTGCGCAAGA -ACGGAATAGTGCACTTGCGGTTGA -ACGGAATAGTGCACTTGCTCCGAT -ACGGAATAGTGCACTTGCTGGCAT -ACGGAATAGTGCACTTGCCGAGAT -ACGGAATAGTGCACTTGCTACCAC -ACGGAATAGTGCACTTGCCAGAAC -ACGGAATAGTGCACTTGCGTCTAC -ACGGAATAGTGCACTTGCACGTAC -ACGGAATAGTGCACTTGCAGTGAC -ACGGAATAGTGCACTTGCCTGTAG -ACGGAATAGTGCACTTGCCCTAAG -ACGGAATAGTGCACTTGCGTTCAG -ACGGAATAGTGCACTTGCGCATAG -ACGGAATAGTGCACTTGCGACAAG -ACGGAATAGTGCACTTGCAAGCAG -ACGGAATAGTGCACTTGCCGTCAA -ACGGAATAGTGCACTTGCGCTGAA -ACGGAATAGTGCACTTGCAGTACG -ACGGAATAGTGCACTTGCATCCGA -ACGGAATAGTGCACTTGCATGGGA -ACGGAATAGTGCACTTGCGTGCAA -ACGGAATAGTGCACTTGCGAGGAA -ACGGAATAGTGCACTTGCCAGGTA -ACGGAATAGTGCACTTGCGACTCT -ACGGAATAGTGCACTTGCAGTCCT -ACGGAATAGTGCACTTGCTAAGCC -ACGGAATAGTGCACTTGCATAGCC -ACGGAATAGTGCACTTGCTAACCG -ACGGAATAGTGCACTTGCATGCCA -ACGGAATAGTGCACTCTGGGAAAC -ACGGAATAGTGCACTCTGAACACC -ACGGAATAGTGCACTCTGATCGAG -ACGGAATAGTGCACTCTGCTCCTT -ACGGAATAGTGCACTCTGCCTGTT -ACGGAATAGTGCACTCTGCGGTTT -ACGGAATAGTGCACTCTGGTGGTT -ACGGAATAGTGCACTCTGGCCTTT -ACGGAATAGTGCACTCTGGGTCTT -ACGGAATAGTGCACTCTGACGCTT -ACGGAATAGTGCACTCTGAGCGTT -ACGGAATAGTGCACTCTGTTCGTC -ACGGAATAGTGCACTCTGTCTCTC -ACGGAATAGTGCACTCTGTGGATC -ACGGAATAGTGCACTCTGCACTTC -ACGGAATAGTGCACTCTGGTACTC -ACGGAATAGTGCACTCTGGATGTC -ACGGAATAGTGCACTCTGACAGTC -ACGGAATAGTGCACTCTGTTGCTG -ACGGAATAGTGCACTCTGTCCATG -ACGGAATAGTGCACTCTGTGTGTG -ACGGAATAGTGCACTCTGCTAGTG -ACGGAATAGTGCACTCTGCATCTG -ACGGAATAGTGCACTCTGGAGTTG -ACGGAATAGTGCACTCTGAGACTG -ACGGAATAGTGCACTCTGTCGGTA -ACGGAATAGTGCACTCTGTGCCTA -ACGGAATAGTGCACTCTGCCACTA -ACGGAATAGTGCACTCTGGGAGTA -ACGGAATAGTGCACTCTGTCGTCT -ACGGAATAGTGCACTCTGTGCACT -ACGGAATAGTGCACTCTGCTGACT -ACGGAATAGTGCACTCTGCAACCT -ACGGAATAGTGCACTCTGGCTACT -ACGGAATAGTGCACTCTGGGATCT -ACGGAATAGTGCACTCTGAAGGCT -ACGGAATAGTGCACTCTGTCAACC -ACGGAATAGTGCACTCTGTGTTCC -ACGGAATAGTGCACTCTGATTCCC -ACGGAATAGTGCACTCTGTTCTCG -ACGGAATAGTGCACTCTGTAGACG -ACGGAATAGTGCACTCTGGTAACG -ACGGAATAGTGCACTCTGACTTCG -ACGGAATAGTGCACTCTGTACGCA -ACGGAATAGTGCACTCTGCTTGCA -ACGGAATAGTGCACTCTGCGAACA -ACGGAATAGTGCACTCTGCAGTCA -ACGGAATAGTGCACTCTGGATCCA -ACGGAATAGTGCACTCTGACGACA -ACGGAATAGTGCACTCTGAGCTCA -ACGGAATAGTGCACTCTGTCACGT -ACGGAATAGTGCACTCTGCGTAGT -ACGGAATAGTGCACTCTGGTCAGT -ACGGAATAGTGCACTCTGGAAGGT -ACGGAATAGTGCACTCTGAACCGT -ACGGAATAGTGCACTCTGTTGTGC -ACGGAATAGTGCACTCTGCTAAGC -ACGGAATAGTGCACTCTGACTAGC -ACGGAATAGTGCACTCTGAGATGC -ACGGAATAGTGCACTCTGTGAAGG -ACGGAATAGTGCACTCTGCAATGG -ACGGAATAGTGCACTCTGATGAGG -ACGGAATAGTGCACTCTGAATGGG -ACGGAATAGTGCACTCTGTCCTGA -ACGGAATAGTGCACTCTGTAGCGA -ACGGAATAGTGCACTCTGCACAGA -ACGGAATAGTGCACTCTGGCAAGA -ACGGAATAGTGCACTCTGGGTTGA -ACGGAATAGTGCACTCTGTCCGAT -ACGGAATAGTGCACTCTGTGGCAT -ACGGAATAGTGCACTCTGCGAGAT -ACGGAATAGTGCACTCTGTACCAC -ACGGAATAGTGCACTCTGCAGAAC -ACGGAATAGTGCACTCTGGTCTAC -ACGGAATAGTGCACTCTGACGTAC -ACGGAATAGTGCACTCTGAGTGAC -ACGGAATAGTGCACTCTGCTGTAG -ACGGAATAGTGCACTCTGCCTAAG -ACGGAATAGTGCACTCTGGTTCAG -ACGGAATAGTGCACTCTGGCATAG -ACGGAATAGTGCACTCTGGACAAG -ACGGAATAGTGCACTCTGAAGCAG -ACGGAATAGTGCACTCTGCGTCAA -ACGGAATAGTGCACTCTGGCTGAA -ACGGAATAGTGCACTCTGAGTACG -ACGGAATAGTGCACTCTGATCCGA -ACGGAATAGTGCACTCTGATGGGA -ACGGAATAGTGCACTCTGGTGCAA -ACGGAATAGTGCACTCTGGAGGAA -ACGGAATAGTGCACTCTGCAGGTA -ACGGAATAGTGCACTCTGGACTCT -ACGGAATAGTGCACTCTGAGTCCT -ACGGAATAGTGCACTCTGTAAGCC -ACGGAATAGTGCACTCTGATAGCC -ACGGAATAGTGCACTCTGTAACCG -ACGGAATAGTGCACTCTGATGCCA -ACGGAATAGTGCCCTCAAGGAAAC -ACGGAATAGTGCCCTCAAAACACC -ACGGAATAGTGCCCTCAAATCGAG -ACGGAATAGTGCCCTCAACTCCTT -ACGGAATAGTGCCCTCAACCTGTT -ACGGAATAGTGCCCTCAACGGTTT -ACGGAATAGTGCCCTCAAGTGGTT -ACGGAATAGTGCCCTCAAGCCTTT -ACGGAATAGTGCCCTCAAGGTCTT -ACGGAATAGTGCCCTCAAACGCTT -ACGGAATAGTGCCCTCAAAGCGTT -ACGGAATAGTGCCCTCAATTCGTC -ACGGAATAGTGCCCTCAATCTCTC -ACGGAATAGTGCCCTCAATGGATC -ACGGAATAGTGCCCTCAACACTTC -ACGGAATAGTGCCCTCAAGTACTC -ACGGAATAGTGCCCTCAAGATGTC -ACGGAATAGTGCCCTCAAACAGTC -ACGGAATAGTGCCCTCAATTGCTG -ACGGAATAGTGCCCTCAATCCATG -ACGGAATAGTGCCCTCAATGTGTG -ACGGAATAGTGCCCTCAACTAGTG -ACGGAATAGTGCCCTCAACATCTG -ACGGAATAGTGCCCTCAAGAGTTG -ACGGAATAGTGCCCTCAAAGACTG -ACGGAATAGTGCCCTCAATCGGTA -ACGGAATAGTGCCCTCAATGCCTA -ACGGAATAGTGCCCTCAACCACTA -ACGGAATAGTGCCCTCAAGGAGTA -ACGGAATAGTGCCCTCAATCGTCT -ACGGAATAGTGCCCTCAATGCACT -ACGGAATAGTGCCCTCAACTGACT -ACGGAATAGTGCCCTCAACAACCT -ACGGAATAGTGCCCTCAAGCTACT -ACGGAATAGTGCCCTCAAGGATCT -ACGGAATAGTGCCCTCAAAAGGCT -ACGGAATAGTGCCCTCAATCAACC -ACGGAATAGTGCCCTCAATGTTCC -ACGGAATAGTGCCCTCAAATTCCC -ACGGAATAGTGCCCTCAATTCTCG -ACGGAATAGTGCCCTCAATAGACG -ACGGAATAGTGCCCTCAAGTAACG -ACGGAATAGTGCCCTCAAACTTCG -ACGGAATAGTGCCCTCAATACGCA -ACGGAATAGTGCCCTCAACTTGCA -ACGGAATAGTGCCCTCAACGAACA -ACGGAATAGTGCCCTCAACAGTCA -ACGGAATAGTGCCCTCAAGATCCA -ACGGAATAGTGCCCTCAAACGACA -ACGGAATAGTGCCCTCAAAGCTCA -ACGGAATAGTGCCCTCAATCACGT -ACGGAATAGTGCCCTCAACGTAGT -ACGGAATAGTGCCCTCAAGTCAGT -ACGGAATAGTGCCCTCAAGAAGGT -ACGGAATAGTGCCCTCAAAACCGT -ACGGAATAGTGCCCTCAATTGTGC -ACGGAATAGTGCCCTCAACTAAGC -ACGGAATAGTGCCCTCAAACTAGC -ACGGAATAGTGCCCTCAAAGATGC -ACGGAATAGTGCCCTCAATGAAGG -ACGGAATAGTGCCCTCAACAATGG -ACGGAATAGTGCCCTCAAATGAGG -ACGGAATAGTGCCCTCAAAATGGG -ACGGAATAGTGCCCTCAATCCTGA -ACGGAATAGTGCCCTCAATAGCGA -ACGGAATAGTGCCCTCAACACAGA -ACGGAATAGTGCCCTCAAGCAAGA -ACGGAATAGTGCCCTCAAGGTTGA -ACGGAATAGTGCCCTCAATCCGAT -ACGGAATAGTGCCCTCAATGGCAT -ACGGAATAGTGCCCTCAACGAGAT -ACGGAATAGTGCCCTCAATACCAC -ACGGAATAGTGCCCTCAACAGAAC -ACGGAATAGTGCCCTCAAGTCTAC -ACGGAATAGTGCCCTCAAACGTAC -ACGGAATAGTGCCCTCAAAGTGAC -ACGGAATAGTGCCCTCAACTGTAG -ACGGAATAGTGCCCTCAACCTAAG -ACGGAATAGTGCCCTCAAGTTCAG -ACGGAATAGTGCCCTCAAGCATAG -ACGGAATAGTGCCCTCAAGACAAG -ACGGAATAGTGCCCTCAAAAGCAG -ACGGAATAGTGCCCTCAACGTCAA -ACGGAATAGTGCCCTCAAGCTGAA -ACGGAATAGTGCCCTCAAAGTACG -ACGGAATAGTGCCCTCAAATCCGA -ACGGAATAGTGCCCTCAAATGGGA -ACGGAATAGTGCCCTCAAGTGCAA -ACGGAATAGTGCCCTCAAGAGGAA -ACGGAATAGTGCCCTCAACAGGTA -ACGGAATAGTGCCCTCAAGACTCT -ACGGAATAGTGCCCTCAAAGTCCT -ACGGAATAGTGCCCTCAATAAGCC -ACGGAATAGTGCCCTCAAATAGCC -ACGGAATAGTGCCCTCAATAACCG -ACGGAATAGTGCCCTCAAATGCCA -ACGGAATAGTGCACTGCTGGAAAC -ACGGAATAGTGCACTGCTAACACC -ACGGAATAGTGCACTGCTATCGAG -ACGGAATAGTGCACTGCTCTCCTT -ACGGAATAGTGCACTGCTCCTGTT -ACGGAATAGTGCACTGCTCGGTTT -ACGGAATAGTGCACTGCTGTGGTT -ACGGAATAGTGCACTGCTGCCTTT -ACGGAATAGTGCACTGCTGGTCTT -ACGGAATAGTGCACTGCTACGCTT -ACGGAATAGTGCACTGCTAGCGTT -ACGGAATAGTGCACTGCTTTCGTC -ACGGAATAGTGCACTGCTTCTCTC -ACGGAATAGTGCACTGCTTGGATC -ACGGAATAGTGCACTGCTCACTTC -ACGGAATAGTGCACTGCTGTACTC -ACGGAATAGTGCACTGCTGATGTC -ACGGAATAGTGCACTGCTACAGTC -ACGGAATAGTGCACTGCTTTGCTG -ACGGAATAGTGCACTGCTTCCATG -ACGGAATAGTGCACTGCTTGTGTG -ACGGAATAGTGCACTGCTCTAGTG -ACGGAATAGTGCACTGCTCATCTG -ACGGAATAGTGCACTGCTGAGTTG -ACGGAATAGTGCACTGCTAGACTG -ACGGAATAGTGCACTGCTTCGGTA -ACGGAATAGTGCACTGCTTGCCTA -ACGGAATAGTGCACTGCTCCACTA -ACGGAATAGTGCACTGCTGGAGTA -ACGGAATAGTGCACTGCTTCGTCT -ACGGAATAGTGCACTGCTTGCACT -ACGGAATAGTGCACTGCTCTGACT -ACGGAATAGTGCACTGCTCAACCT -ACGGAATAGTGCACTGCTGCTACT -ACGGAATAGTGCACTGCTGGATCT -ACGGAATAGTGCACTGCTAAGGCT -ACGGAATAGTGCACTGCTTCAACC -ACGGAATAGTGCACTGCTTGTTCC -ACGGAATAGTGCACTGCTATTCCC -ACGGAATAGTGCACTGCTTTCTCG -ACGGAATAGTGCACTGCTTAGACG -ACGGAATAGTGCACTGCTGTAACG -ACGGAATAGTGCACTGCTACTTCG -ACGGAATAGTGCACTGCTTACGCA -ACGGAATAGTGCACTGCTCTTGCA -ACGGAATAGTGCACTGCTCGAACA -ACGGAATAGTGCACTGCTCAGTCA -ACGGAATAGTGCACTGCTGATCCA -ACGGAATAGTGCACTGCTACGACA -ACGGAATAGTGCACTGCTAGCTCA -ACGGAATAGTGCACTGCTTCACGT -ACGGAATAGTGCACTGCTCGTAGT -ACGGAATAGTGCACTGCTGTCAGT -ACGGAATAGTGCACTGCTGAAGGT -ACGGAATAGTGCACTGCTAACCGT -ACGGAATAGTGCACTGCTTTGTGC -ACGGAATAGTGCACTGCTCTAAGC -ACGGAATAGTGCACTGCTACTAGC -ACGGAATAGTGCACTGCTAGATGC -ACGGAATAGTGCACTGCTTGAAGG -ACGGAATAGTGCACTGCTCAATGG -ACGGAATAGTGCACTGCTATGAGG -ACGGAATAGTGCACTGCTAATGGG -ACGGAATAGTGCACTGCTTCCTGA -ACGGAATAGTGCACTGCTTAGCGA -ACGGAATAGTGCACTGCTCACAGA -ACGGAATAGTGCACTGCTGCAAGA -ACGGAATAGTGCACTGCTGGTTGA -ACGGAATAGTGCACTGCTTCCGAT -ACGGAATAGTGCACTGCTTGGCAT -ACGGAATAGTGCACTGCTCGAGAT -ACGGAATAGTGCACTGCTTACCAC -ACGGAATAGTGCACTGCTCAGAAC -ACGGAATAGTGCACTGCTGTCTAC -ACGGAATAGTGCACTGCTACGTAC -ACGGAATAGTGCACTGCTAGTGAC -ACGGAATAGTGCACTGCTCTGTAG -ACGGAATAGTGCACTGCTCCTAAG -ACGGAATAGTGCACTGCTGTTCAG -ACGGAATAGTGCACTGCTGCATAG -ACGGAATAGTGCACTGCTGACAAG -ACGGAATAGTGCACTGCTAAGCAG -ACGGAATAGTGCACTGCTCGTCAA -ACGGAATAGTGCACTGCTGCTGAA -ACGGAATAGTGCACTGCTAGTACG -ACGGAATAGTGCACTGCTATCCGA -ACGGAATAGTGCACTGCTATGGGA -ACGGAATAGTGCACTGCTGTGCAA -ACGGAATAGTGCACTGCTGAGGAA -ACGGAATAGTGCACTGCTCAGGTA -ACGGAATAGTGCACTGCTGACTCT -ACGGAATAGTGCACTGCTAGTCCT -ACGGAATAGTGCACTGCTTAAGCC -ACGGAATAGTGCACTGCTATAGCC -ACGGAATAGTGCACTGCTTAACCG -ACGGAATAGTGCACTGCTATGCCA -ACGGAATAGTGCTCTGGAGGAAAC -ACGGAATAGTGCTCTGGAAACACC -ACGGAATAGTGCTCTGGAATCGAG -ACGGAATAGTGCTCTGGACTCCTT -ACGGAATAGTGCTCTGGACCTGTT -ACGGAATAGTGCTCTGGACGGTTT -ACGGAATAGTGCTCTGGAGTGGTT -ACGGAATAGTGCTCTGGAGCCTTT -ACGGAATAGTGCTCTGGAGGTCTT -ACGGAATAGTGCTCTGGAACGCTT -ACGGAATAGTGCTCTGGAAGCGTT -ACGGAATAGTGCTCTGGATTCGTC -ACGGAATAGTGCTCTGGATCTCTC -ACGGAATAGTGCTCTGGATGGATC -ACGGAATAGTGCTCTGGACACTTC -ACGGAATAGTGCTCTGGAGTACTC -ACGGAATAGTGCTCTGGAGATGTC -ACGGAATAGTGCTCTGGAACAGTC -ACGGAATAGTGCTCTGGATTGCTG -ACGGAATAGTGCTCTGGATCCATG -ACGGAATAGTGCTCTGGATGTGTG -ACGGAATAGTGCTCTGGACTAGTG -ACGGAATAGTGCTCTGGACATCTG -ACGGAATAGTGCTCTGGAGAGTTG -ACGGAATAGTGCTCTGGAAGACTG -ACGGAATAGTGCTCTGGATCGGTA -ACGGAATAGTGCTCTGGATGCCTA -ACGGAATAGTGCTCTGGACCACTA -ACGGAATAGTGCTCTGGAGGAGTA -ACGGAATAGTGCTCTGGATCGTCT -ACGGAATAGTGCTCTGGATGCACT -ACGGAATAGTGCTCTGGACTGACT -ACGGAATAGTGCTCTGGACAACCT -ACGGAATAGTGCTCTGGAGCTACT -ACGGAATAGTGCTCTGGAGGATCT -ACGGAATAGTGCTCTGGAAAGGCT -ACGGAATAGTGCTCTGGATCAACC -ACGGAATAGTGCTCTGGATGTTCC -ACGGAATAGTGCTCTGGAATTCCC -ACGGAATAGTGCTCTGGATTCTCG -ACGGAATAGTGCTCTGGATAGACG -ACGGAATAGTGCTCTGGAGTAACG -ACGGAATAGTGCTCTGGAACTTCG -ACGGAATAGTGCTCTGGATACGCA -ACGGAATAGTGCTCTGGACTTGCA -ACGGAATAGTGCTCTGGACGAACA -ACGGAATAGTGCTCTGGACAGTCA -ACGGAATAGTGCTCTGGAGATCCA -ACGGAATAGTGCTCTGGAACGACA -ACGGAATAGTGCTCTGGAAGCTCA -ACGGAATAGTGCTCTGGATCACGT -ACGGAATAGTGCTCTGGACGTAGT -ACGGAATAGTGCTCTGGAGTCAGT -ACGGAATAGTGCTCTGGAGAAGGT -ACGGAATAGTGCTCTGGAAACCGT -ACGGAATAGTGCTCTGGATTGTGC -ACGGAATAGTGCTCTGGACTAAGC -ACGGAATAGTGCTCTGGAACTAGC -ACGGAATAGTGCTCTGGAAGATGC -ACGGAATAGTGCTCTGGATGAAGG -ACGGAATAGTGCTCTGGACAATGG -ACGGAATAGTGCTCTGGAATGAGG -ACGGAATAGTGCTCTGGAAATGGG -ACGGAATAGTGCTCTGGATCCTGA -ACGGAATAGTGCTCTGGATAGCGA -ACGGAATAGTGCTCTGGACACAGA -ACGGAATAGTGCTCTGGAGCAAGA -ACGGAATAGTGCTCTGGAGGTTGA -ACGGAATAGTGCTCTGGATCCGAT -ACGGAATAGTGCTCTGGATGGCAT -ACGGAATAGTGCTCTGGACGAGAT -ACGGAATAGTGCTCTGGATACCAC -ACGGAATAGTGCTCTGGACAGAAC -ACGGAATAGTGCTCTGGAGTCTAC -ACGGAATAGTGCTCTGGAACGTAC -ACGGAATAGTGCTCTGGAAGTGAC -ACGGAATAGTGCTCTGGACTGTAG -ACGGAATAGTGCTCTGGACCTAAG -ACGGAATAGTGCTCTGGAGTTCAG -ACGGAATAGTGCTCTGGAGCATAG -ACGGAATAGTGCTCTGGAGACAAG -ACGGAATAGTGCTCTGGAAAGCAG -ACGGAATAGTGCTCTGGACGTCAA -ACGGAATAGTGCTCTGGAGCTGAA -ACGGAATAGTGCTCTGGAAGTACG -ACGGAATAGTGCTCTGGAATCCGA -ACGGAATAGTGCTCTGGAATGGGA -ACGGAATAGTGCTCTGGAGTGCAA -ACGGAATAGTGCTCTGGAGAGGAA -ACGGAATAGTGCTCTGGACAGGTA -ACGGAATAGTGCTCTGGAGACTCT -ACGGAATAGTGCTCTGGAAGTCCT -ACGGAATAGTGCTCTGGATAAGCC -ACGGAATAGTGCTCTGGAATAGCC -ACGGAATAGTGCTCTGGATAACCG -ACGGAATAGTGCTCTGGAATGCCA -ACGGAATAGTGCGCTAAGGGAAAC -ACGGAATAGTGCGCTAAGAACACC -ACGGAATAGTGCGCTAAGATCGAG -ACGGAATAGTGCGCTAAGCTCCTT -ACGGAATAGTGCGCTAAGCCTGTT -ACGGAATAGTGCGCTAAGCGGTTT -ACGGAATAGTGCGCTAAGGTGGTT -ACGGAATAGTGCGCTAAGGCCTTT -ACGGAATAGTGCGCTAAGGGTCTT -ACGGAATAGTGCGCTAAGACGCTT -ACGGAATAGTGCGCTAAGAGCGTT -ACGGAATAGTGCGCTAAGTTCGTC -ACGGAATAGTGCGCTAAGTCTCTC -ACGGAATAGTGCGCTAAGTGGATC -ACGGAATAGTGCGCTAAGCACTTC -ACGGAATAGTGCGCTAAGGTACTC -ACGGAATAGTGCGCTAAGGATGTC -ACGGAATAGTGCGCTAAGACAGTC -ACGGAATAGTGCGCTAAGTTGCTG -ACGGAATAGTGCGCTAAGTCCATG -ACGGAATAGTGCGCTAAGTGTGTG -ACGGAATAGTGCGCTAAGCTAGTG -ACGGAATAGTGCGCTAAGCATCTG -ACGGAATAGTGCGCTAAGGAGTTG -ACGGAATAGTGCGCTAAGAGACTG -ACGGAATAGTGCGCTAAGTCGGTA -ACGGAATAGTGCGCTAAGTGCCTA -ACGGAATAGTGCGCTAAGCCACTA -ACGGAATAGTGCGCTAAGGGAGTA -ACGGAATAGTGCGCTAAGTCGTCT -ACGGAATAGTGCGCTAAGTGCACT -ACGGAATAGTGCGCTAAGCTGACT -ACGGAATAGTGCGCTAAGCAACCT -ACGGAATAGTGCGCTAAGGCTACT -ACGGAATAGTGCGCTAAGGGATCT -ACGGAATAGTGCGCTAAGAAGGCT -ACGGAATAGTGCGCTAAGTCAACC -ACGGAATAGTGCGCTAAGTGTTCC -ACGGAATAGTGCGCTAAGATTCCC -ACGGAATAGTGCGCTAAGTTCTCG -ACGGAATAGTGCGCTAAGTAGACG -ACGGAATAGTGCGCTAAGGTAACG -ACGGAATAGTGCGCTAAGACTTCG -ACGGAATAGTGCGCTAAGTACGCA -ACGGAATAGTGCGCTAAGCTTGCA -ACGGAATAGTGCGCTAAGCGAACA -ACGGAATAGTGCGCTAAGCAGTCA -ACGGAATAGTGCGCTAAGGATCCA -ACGGAATAGTGCGCTAAGACGACA -ACGGAATAGTGCGCTAAGAGCTCA -ACGGAATAGTGCGCTAAGTCACGT -ACGGAATAGTGCGCTAAGCGTAGT -ACGGAATAGTGCGCTAAGGTCAGT -ACGGAATAGTGCGCTAAGGAAGGT -ACGGAATAGTGCGCTAAGAACCGT -ACGGAATAGTGCGCTAAGTTGTGC -ACGGAATAGTGCGCTAAGCTAAGC -ACGGAATAGTGCGCTAAGACTAGC -ACGGAATAGTGCGCTAAGAGATGC -ACGGAATAGTGCGCTAAGTGAAGG -ACGGAATAGTGCGCTAAGCAATGG -ACGGAATAGTGCGCTAAGATGAGG -ACGGAATAGTGCGCTAAGAATGGG -ACGGAATAGTGCGCTAAGTCCTGA -ACGGAATAGTGCGCTAAGTAGCGA -ACGGAATAGTGCGCTAAGCACAGA -ACGGAATAGTGCGCTAAGGCAAGA -ACGGAATAGTGCGCTAAGGGTTGA -ACGGAATAGTGCGCTAAGTCCGAT -ACGGAATAGTGCGCTAAGTGGCAT -ACGGAATAGTGCGCTAAGCGAGAT -ACGGAATAGTGCGCTAAGTACCAC -ACGGAATAGTGCGCTAAGCAGAAC -ACGGAATAGTGCGCTAAGGTCTAC -ACGGAATAGTGCGCTAAGACGTAC -ACGGAATAGTGCGCTAAGAGTGAC -ACGGAATAGTGCGCTAAGCTGTAG -ACGGAATAGTGCGCTAAGCCTAAG -ACGGAATAGTGCGCTAAGGTTCAG -ACGGAATAGTGCGCTAAGGCATAG -ACGGAATAGTGCGCTAAGGACAAG -ACGGAATAGTGCGCTAAGAAGCAG -ACGGAATAGTGCGCTAAGCGTCAA -ACGGAATAGTGCGCTAAGGCTGAA -ACGGAATAGTGCGCTAAGAGTACG -ACGGAATAGTGCGCTAAGATCCGA -ACGGAATAGTGCGCTAAGATGGGA -ACGGAATAGTGCGCTAAGGTGCAA -ACGGAATAGTGCGCTAAGGAGGAA -ACGGAATAGTGCGCTAAGCAGGTA -ACGGAATAGTGCGCTAAGGACTCT -ACGGAATAGTGCGCTAAGAGTCCT -ACGGAATAGTGCGCTAAGTAAGCC -ACGGAATAGTGCGCTAAGATAGCC -ACGGAATAGTGCGCTAAGTAACCG -ACGGAATAGTGCGCTAAGATGCCA -ACGGAATAGTGCACCTCAGGAAAC -ACGGAATAGTGCACCTCAAACACC -ACGGAATAGTGCACCTCAATCGAG -ACGGAATAGTGCACCTCACTCCTT -ACGGAATAGTGCACCTCACCTGTT -ACGGAATAGTGCACCTCACGGTTT -ACGGAATAGTGCACCTCAGTGGTT -ACGGAATAGTGCACCTCAGCCTTT -ACGGAATAGTGCACCTCAGGTCTT -ACGGAATAGTGCACCTCAACGCTT -ACGGAATAGTGCACCTCAAGCGTT -ACGGAATAGTGCACCTCATTCGTC -ACGGAATAGTGCACCTCATCTCTC -ACGGAATAGTGCACCTCATGGATC -ACGGAATAGTGCACCTCACACTTC -ACGGAATAGTGCACCTCAGTACTC -ACGGAATAGTGCACCTCAGATGTC -ACGGAATAGTGCACCTCAACAGTC -ACGGAATAGTGCACCTCATTGCTG -ACGGAATAGTGCACCTCATCCATG -ACGGAATAGTGCACCTCATGTGTG -ACGGAATAGTGCACCTCACTAGTG -ACGGAATAGTGCACCTCACATCTG -ACGGAATAGTGCACCTCAGAGTTG -ACGGAATAGTGCACCTCAAGACTG -ACGGAATAGTGCACCTCATCGGTA -ACGGAATAGTGCACCTCATGCCTA -ACGGAATAGTGCACCTCACCACTA -ACGGAATAGTGCACCTCAGGAGTA -ACGGAATAGTGCACCTCATCGTCT -ACGGAATAGTGCACCTCATGCACT -ACGGAATAGTGCACCTCACTGACT -ACGGAATAGTGCACCTCACAACCT -ACGGAATAGTGCACCTCAGCTACT -ACGGAATAGTGCACCTCAGGATCT -ACGGAATAGTGCACCTCAAAGGCT -ACGGAATAGTGCACCTCATCAACC -ACGGAATAGTGCACCTCATGTTCC -ACGGAATAGTGCACCTCAATTCCC -ACGGAATAGTGCACCTCATTCTCG -ACGGAATAGTGCACCTCATAGACG -ACGGAATAGTGCACCTCAGTAACG -ACGGAATAGTGCACCTCAACTTCG -ACGGAATAGTGCACCTCATACGCA -ACGGAATAGTGCACCTCACTTGCA -ACGGAATAGTGCACCTCACGAACA -ACGGAATAGTGCACCTCACAGTCA -ACGGAATAGTGCACCTCAGATCCA -ACGGAATAGTGCACCTCAACGACA -ACGGAATAGTGCACCTCAAGCTCA -ACGGAATAGTGCACCTCATCACGT -ACGGAATAGTGCACCTCACGTAGT -ACGGAATAGTGCACCTCAGTCAGT -ACGGAATAGTGCACCTCAGAAGGT -ACGGAATAGTGCACCTCAAACCGT -ACGGAATAGTGCACCTCATTGTGC -ACGGAATAGTGCACCTCACTAAGC -ACGGAATAGTGCACCTCAACTAGC -ACGGAATAGTGCACCTCAAGATGC -ACGGAATAGTGCACCTCATGAAGG -ACGGAATAGTGCACCTCACAATGG -ACGGAATAGTGCACCTCAATGAGG -ACGGAATAGTGCACCTCAAATGGG -ACGGAATAGTGCACCTCATCCTGA -ACGGAATAGTGCACCTCATAGCGA -ACGGAATAGTGCACCTCACACAGA -ACGGAATAGTGCACCTCAGCAAGA -ACGGAATAGTGCACCTCAGGTTGA -ACGGAATAGTGCACCTCATCCGAT -ACGGAATAGTGCACCTCATGGCAT -ACGGAATAGTGCACCTCACGAGAT -ACGGAATAGTGCACCTCATACCAC -ACGGAATAGTGCACCTCACAGAAC -ACGGAATAGTGCACCTCAGTCTAC -ACGGAATAGTGCACCTCAACGTAC -ACGGAATAGTGCACCTCAAGTGAC -ACGGAATAGTGCACCTCACTGTAG -ACGGAATAGTGCACCTCACCTAAG -ACGGAATAGTGCACCTCAGTTCAG -ACGGAATAGTGCACCTCAGCATAG -ACGGAATAGTGCACCTCAGACAAG -ACGGAATAGTGCACCTCAAAGCAG -ACGGAATAGTGCACCTCACGTCAA -ACGGAATAGTGCACCTCAGCTGAA -ACGGAATAGTGCACCTCAAGTACG -ACGGAATAGTGCACCTCAATCCGA -ACGGAATAGTGCACCTCAATGGGA -ACGGAATAGTGCACCTCAGTGCAA -ACGGAATAGTGCACCTCAGAGGAA -ACGGAATAGTGCACCTCACAGGTA -ACGGAATAGTGCACCTCAGACTCT -ACGGAATAGTGCACCTCAAGTCCT -ACGGAATAGTGCACCTCATAAGCC -ACGGAATAGTGCACCTCAATAGCC -ACGGAATAGTGCACCTCATAACCG -ACGGAATAGTGCACCTCAATGCCA -ACGGAATAGTGCTCCTGTGGAAAC -ACGGAATAGTGCTCCTGTAACACC -ACGGAATAGTGCTCCTGTATCGAG -ACGGAATAGTGCTCCTGTCTCCTT -ACGGAATAGTGCTCCTGTCCTGTT -ACGGAATAGTGCTCCTGTCGGTTT -ACGGAATAGTGCTCCTGTGTGGTT -ACGGAATAGTGCTCCTGTGCCTTT -ACGGAATAGTGCTCCTGTGGTCTT -ACGGAATAGTGCTCCTGTACGCTT -ACGGAATAGTGCTCCTGTAGCGTT -ACGGAATAGTGCTCCTGTTTCGTC -ACGGAATAGTGCTCCTGTTCTCTC -ACGGAATAGTGCTCCTGTTGGATC -ACGGAATAGTGCTCCTGTCACTTC -ACGGAATAGTGCTCCTGTGTACTC -ACGGAATAGTGCTCCTGTGATGTC -ACGGAATAGTGCTCCTGTACAGTC -ACGGAATAGTGCTCCTGTTTGCTG -ACGGAATAGTGCTCCTGTTCCATG -ACGGAATAGTGCTCCTGTTGTGTG -ACGGAATAGTGCTCCTGTCTAGTG -ACGGAATAGTGCTCCTGTCATCTG -ACGGAATAGTGCTCCTGTGAGTTG -ACGGAATAGTGCTCCTGTAGACTG -ACGGAATAGTGCTCCTGTTCGGTA -ACGGAATAGTGCTCCTGTTGCCTA -ACGGAATAGTGCTCCTGTCCACTA -ACGGAATAGTGCTCCTGTGGAGTA -ACGGAATAGTGCTCCTGTTCGTCT -ACGGAATAGTGCTCCTGTTGCACT -ACGGAATAGTGCTCCTGTCTGACT -ACGGAATAGTGCTCCTGTCAACCT -ACGGAATAGTGCTCCTGTGCTACT -ACGGAATAGTGCTCCTGTGGATCT -ACGGAATAGTGCTCCTGTAAGGCT -ACGGAATAGTGCTCCTGTTCAACC -ACGGAATAGTGCTCCTGTTGTTCC -ACGGAATAGTGCTCCTGTATTCCC -ACGGAATAGTGCTCCTGTTTCTCG -ACGGAATAGTGCTCCTGTTAGACG -ACGGAATAGTGCTCCTGTGTAACG -ACGGAATAGTGCTCCTGTACTTCG -ACGGAATAGTGCTCCTGTTACGCA -ACGGAATAGTGCTCCTGTCTTGCA -ACGGAATAGTGCTCCTGTCGAACA -ACGGAATAGTGCTCCTGTCAGTCA -ACGGAATAGTGCTCCTGTGATCCA -ACGGAATAGTGCTCCTGTACGACA -ACGGAATAGTGCTCCTGTAGCTCA -ACGGAATAGTGCTCCTGTTCACGT -ACGGAATAGTGCTCCTGTCGTAGT -ACGGAATAGTGCTCCTGTGTCAGT -ACGGAATAGTGCTCCTGTGAAGGT -ACGGAATAGTGCTCCTGTAACCGT -ACGGAATAGTGCTCCTGTTTGTGC -ACGGAATAGTGCTCCTGTCTAAGC -ACGGAATAGTGCTCCTGTACTAGC -ACGGAATAGTGCTCCTGTAGATGC -ACGGAATAGTGCTCCTGTTGAAGG -ACGGAATAGTGCTCCTGTCAATGG -ACGGAATAGTGCTCCTGTATGAGG -ACGGAATAGTGCTCCTGTAATGGG -ACGGAATAGTGCTCCTGTTCCTGA -ACGGAATAGTGCTCCTGTTAGCGA -ACGGAATAGTGCTCCTGTCACAGA -ACGGAATAGTGCTCCTGTGCAAGA -ACGGAATAGTGCTCCTGTGGTTGA -ACGGAATAGTGCTCCTGTTCCGAT -ACGGAATAGTGCTCCTGTTGGCAT -ACGGAATAGTGCTCCTGTCGAGAT -ACGGAATAGTGCTCCTGTTACCAC -ACGGAATAGTGCTCCTGTCAGAAC -ACGGAATAGTGCTCCTGTGTCTAC -ACGGAATAGTGCTCCTGTACGTAC -ACGGAATAGTGCTCCTGTAGTGAC -ACGGAATAGTGCTCCTGTCTGTAG -ACGGAATAGTGCTCCTGTCCTAAG -ACGGAATAGTGCTCCTGTGTTCAG -ACGGAATAGTGCTCCTGTGCATAG -ACGGAATAGTGCTCCTGTGACAAG -ACGGAATAGTGCTCCTGTAAGCAG -ACGGAATAGTGCTCCTGTCGTCAA -ACGGAATAGTGCTCCTGTGCTGAA -ACGGAATAGTGCTCCTGTAGTACG -ACGGAATAGTGCTCCTGTATCCGA -ACGGAATAGTGCTCCTGTATGGGA -ACGGAATAGTGCTCCTGTGTGCAA -ACGGAATAGTGCTCCTGTGAGGAA -ACGGAATAGTGCTCCTGTCAGGTA -ACGGAATAGTGCTCCTGTGACTCT -ACGGAATAGTGCTCCTGTAGTCCT -ACGGAATAGTGCTCCTGTTAAGCC -ACGGAATAGTGCTCCTGTATAGCC -ACGGAATAGTGCTCCTGTTAACCG -ACGGAATAGTGCTCCTGTATGCCA -ACGGAATAGTGCCCCATTGGAAAC -ACGGAATAGTGCCCCATTAACACC -ACGGAATAGTGCCCCATTATCGAG -ACGGAATAGTGCCCCATTCTCCTT -ACGGAATAGTGCCCCATTCCTGTT -ACGGAATAGTGCCCCATTCGGTTT -ACGGAATAGTGCCCCATTGTGGTT -ACGGAATAGTGCCCCATTGCCTTT -ACGGAATAGTGCCCCATTGGTCTT -ACGGAATAGTGCCCCATTACGCTT -ACGGAATAGTGCCCCATTAGCGTT -ACGGAATAGTGCCCCATTTTCGTC -ACGGAATAGTGCCCCATTTCTCTC -ACGGAATAGTGCCCCATTTGGATC -ACGGAATAGTGCCCCATTCACTTC -ACGGAATAGTGCCCCATTGTACTC -ACGGAATAGTGCCCCATTGATGTC -ACGGAATAGTGCCCCATTACAGTC -ACGGAATAGTGCCCCATTTTGCTG -ACGGAATAGTGCCCCATTTCCATG -ACGGAATAGTGCCCCATTTGTGTG -ACGGAATAGTGCCCCATTCTAGTG -ACGGAATAGTGCCCCATTCATCTG -ACGGAATAGTGCCCCATTGAGTTG -ACGGAATAGTGCCCCATTAGACTG -ACGGAATAGTGCCCCATTTCGGTA -ACGGAATAGTGCCCCATTTGCCTA -ACGGAATAGTGCCCCATTCCACTA -ACGGAATAGTGCCCCATTGGAGTA -ACGGAATAGTGCCCCATTTCGTCT -ACGGAATAGTGCCCCATTTGCACT -ACGGAATAGTGCCCCATTCTGACT -ACGGAATAGTGCCCCATTCAACCT -ACGGAATAGTGCCCCATTGCTACT -ACGGAATAGTGCCCCATTGGATCT -ACGGAATAGTGCCCCATTAAGGCT -ACGGAATAGTGCCCCATTTCAACC -ACGGAATAGTGCCCCATTTGTTCC -ACGGAATAGTGCCCCATTATTCCC -ACGGAATAGTGCCCCATTTTCTCG -ACGGAATAGTGCCCCATTTAGACG -ACGGAATAGTGCCCCATTGTAACG -ACGGAATAGTGCCCCATTACTTCG -ACGGAATAGTGCCCCATTTACGCA -ACGGAATAGTGCCCCATTCTTGCA -ACGGAATAGTGCCCCATTCGAACA -ACGGAATAGTGCCCCATTCAGTCA -ACGGAATAGTGCCCCATTGATCCA -ACGGAATAGTGCCCCATTACGACA -ACGGAATAGTGCCCCATTAGCTCA -ACGGAATAGTGCCCCATTTCACGT -ACGGAATAGTGCCCCATTCGTAGT -ACGGAATAGTGCCCCATTGTCAGT -ACGGAATAGTGCCCCATTGAAGGT -ACGGAATAGTGCCCCATTAACCGT -ACGGAATAGTGCCCCATTTTGTGC -ACGGAATAGTGCCCCATTCTAAGC -ACGGAATAGTGCCCCATTACTAGC -ACGGAATAGTGCCCCATTAGATGC -ACGGAATAGTGCCCCATTTGAAGG -ACGGAATAGTGCCCCATTCAATGG -ACGGAATAGTGCCCCATTATGAGG -ACGGAATAGTGCCCCATTAATGGG -ACGGAATAGTGCCCCATTTCCTGA -ACGGAATAGTGCCCCATTTAGCGA -ACGGAATAGTGCCCCATTCACAGA -ACGGAATAGTGCCCCATTGCAAGA -ACGGAATAGTGCCCCATTGGTTGA -ACGGAATAGTGCCCCATTTCCGAT -ACGGAATAGTGCCCCATTTGGCAT -ACGGAATAGTGCCCCATTCGAGAT -ACGGAATAGTGCCCCATTTACCAC -ACGGAATAGTGCCCCATTCAGAAC -ACGGAATAGTGCCCCATTGTCTAC -ACGGAATAGTGCCCCATTACGTAC -ACGGAATAGTGCCCCATTAGTGAC -ACGGAATAGTGCCCCATTCTGTAG -ACGGAATAGTGCCCCATTCCTAAG -ACGGAATAGTGCCCCATTGTTCAG -ACGGAATAGTGCCCCATTGCATAG -ACGGAATAGTGCCCCATTGACAAG -ACGGAATAGTGCCCCATTAAGCAG -ACGGAATAGTGCCCCATTCGTCAA -ACGGAATAGTGCCCCATTGCTGAA -ACGGAATAGTGCCCCATTAGTACG -ACGGAATAGTGCCCCATTATCCGA -ACGGAATAGTGCCCCATTATGGGA -ACGGAATAGTGCCCCATTGTGCAA -ACGGAATAGTGCCCCATTGAGGAA -ACGGAATAGTGCCCCATTCAGGTA -ACGGAATAGTGCCCCATTGACTCT -ACGGAATAGTGCCCCATTAGTCCT -ACGGAATAGTGCCCCATTTAAGCC -ACGGAATAGTGCCCCATTATAGCC -ACGGAATAGTGCCCCATTTAACCG -ACGGAATAGTGCCCCATTATGCCA -ACGGAATAGTGCTCGTTCGGAAAC -ACGGAATAGTGCTCGTTCAACACC -ACGGAATAGTGCTCGTTCATCGAG -ACGGAATAGTGCTCGTTCCTCCTT -ACGGAATAGTGCTCGTTCCCTGTT -ACGGAATAGTGCTCGTTCCGGTTT -ACGGAATAGTGCTCGTTCGTGGTT -ACGGAATAGTGCTCGTTCGCCTTT -ACGGAATAGTGCTCGTTCGGTCTT -ACGGAATAGTGCTCGTTCACGCTT -ACGGAATAGTGCTCGTTCAGCGTT -ACGGAATAGTGCTCGTTCTTCGTC -ACGGAATAGTGCTCGTTCTCTCTC -ACGGAATAGTGCTCGTTCTGGATC -ACGGAATAGTGCTCGTTCCACTTC -ACGGAATAGTGCTCGTTCGTACTC -ACGGAATAGTGCTCGTTCGATGTC -ACGGAATAGTGCTCGTTCACAGTC -ACGGAATAGTGCTCGTTCTTGCTG -ACGGAATAGTGCTCGTTCTCCATG -ACGGAATAGTGCTCGTTCTGTGTG -ACGGAATAGTGCTCGTTCCTAGTG -ACGGAATAGTGCTCGTTCCATCTG -ACGGAATAGTGCTCGTTCGAGTTG -ACGGAATAGTGCTCGTTCAGACTG -ACGGAATAGTGCTCGTTCTCGGTA -ACGGAATAGTGCTCGTTCTGCCTA -ACGGAATAGTGCTCGTTCCCACTA -ACGGAATAGTGCTCGTTCGGAGTA -ACGGAATAGTGCTCGTTCTCGTCT -ACGGAATAGTGCTCGTTCTGCACT -ACGGAATAGTGCTCGTTCCTGACT -ACGGAATAGTGCTCGTTCCAACCT -ACGGAATAGTGCTCGTTCGCTACT -ACGGAATAGTGCTCGTTCGGATCT -ACGGAATAGTGCTCGTTCAAGGCT -ACGGAATAGTGCTCGTTCTCAACC -ACGGAATAGTGCTCGTTCTGTTCC -ACGGAATAGTGCTCGTTCATTCCC -ACGGAATAGTGCTCGTTCTTCTCG -ACGGAATAGTGCTCGTTCTAGACG -ACGGAATAGTGCTCGTTCGTAACG -ACGGAATAGTGCTCGTTCACTTCG -ACGGAATAGTGCTCGTTCTACGCA -ACGGAATAGTGCTCGTTCCTTGCA -ACGGAATAGTGCTCGTTCCGAACA -ACGGAATAGTGCTCGTTCCAGTCA -ACGGAATAGTGCTCGTTCGATCCA -ACGGAATAGTGCTCGTTCACGACA -ACGGAATAGTGCTCGTTCAGCTCA -ACGGAATAGTGCTCGTTCTCACGT -ACGGAATAGTGCTCGTTCCGTAGT -ACGGAATAGTGCTCGTTCGTCAGT -ACGGAATAGTGCTCGTTCGAAGGT -ACGGAATAGTGCTCGTTCAACCGT -ACGGAATAGTGCTCGTTCTTGTGC -ACGGAATAGTGCTCGTTCCTAAGC -ACGGAATAGTGCTCGTTCACTAGC -ACGGAATAGTGCTCGTTCAGATGC -ACGGAATAGTGCTCGTTCTGAAGG -ACGGAATAGTGCTCGTTCCAATGG -ACGGAATAGTGCTCGTTCATGAGG -ACGGAATAGTGCTCGTTCAATGGG -ACGGAATAGTGCTCGTTCTCCTGA -ACGGAATAGTGCTCGTTCTAGCGA -ACGGAATAGTGCTCGTTCCACAGA -ACGGAATAGTGCTCGTTCGCAAGA -ACGGAATAGTGCTCGTTCGGTTGA -ACGGAATAGTGCTCGTTCTCCGAT -ACGGAATAGTGCTCGTTCTGGCAT -ACGGAATAGTGCTCGTTCCGAGAT -ACGGAATAGTGCTCGTTCTACCAC -ACGGAATAGTGCTCGTTCCAGAAC -ACGGAATAGTGCTCGTTCGTCTAC -ACGGAATAGTGCTCGTTCACGTAC -ACGGAATAGTGCTCGTTCAGTGAC -ACGGAATAGTGCTCGTTCCTGTAG -ACGGAATAGTGCTCGTTCCCTAAG -ACGGAATAGTGCTCGTTCGTTCAG -ACGGAATAGTGCTCGTTCGCATAG -ACGGAATAGTGCTCGTTCGACAAG -ACGGAATAGTGCTCGTTCAAGCAG -ACGGAATAGTGCTCGTTCCGTCAA -ACGGAATAGTGCTCGTTCGCTGAA -ACGGAATAGTGCTCGTTCAGTACG -ACGGAATAGTGCTCGTTCATCCGA -ACGGAATAGTGCTCGTTCATGGGA -ACGGAATAGTGCTCGTTCGTGCAA -ACGGAATAGTGCTCGTTCGAGGAA -ACGGAATAGTGCTCGTTCCAGGTA -ACGGAATAGTGCTCGTTCGACTCT -ACGGAATAGTGCTCGTTCAGTCCT -ACGGAATAGTGCTCGTTCTAAGCC -ACGGAATAGTGCTCGTTCATAGCC -ACGGAATAGTGCTCGTTCTAACCG -ACGGAATAGTGCTCGTTCATGCCA -ACGGAATAGTGCACGTAGGGAAAC -ACGGAATAGTGCACGTAGAACACC -ACGGAATAGTGCACGTAGATCGAG -ACGGAATAGTGCACGTAGCTCCTT -ACGGAATAGTGCACGTAGCCTGTT -ACGGAATAGTGCACGTAGCGGTTT -ACGGAATAGTGCACGTAGGTGGTT -ACGGAATAGTGCACGTAGGCCTTT -ACGGAATAGTGCACGTAGGGTCTT -ACGGAATAGTGCACGTAGACGCTT -ACGGAATAGTGCACGTAGAGCGTT -ACGGAATAGTGCACGTAGTTCGTC -ACGGAATAGTGCACGTAGTCTCTC -ACGGAATAGTGCACGTAGTGGATC -ACGGAATAGTGCACGTAGCACTTC -ACGGAATAGTGCACGTAGGTACTC -ACGGAATAGTGCACGTAGGATGTC -ACGGAATAGTGCACGTAGACAGTC -ACGGAATAGTGCACGTAGTTGCTG -ACGGAATAGTGCACGTAGTCCATG -ACGGAATAGTGCACGTAGTGTGTG -ACGGAATAGTGCACGTAGCTAGTG -ACGGAATAGTGCACGTAGCATCTG -ACGGAATAGTGCACGTAGGAGTTG -ACGGAATAGTGCACGTAGAGACTG -ACGGAATAGTGCACGTAGTCGGTA -ACGGAATAGTGCACGTAGTGCCTA -ACGGAATAGTGCACGTAGCCACTA -ACGGAATAGTGCACGTAGGGAGTA -ACGGAATAGTGCACGTAGTCGTCT -ACGGAATAGTGCACGTAGTGCACT -ACGGAATAGTGCACGTAGCTGACT -ACGGAATAGTGCACGTAGCAACCT -ACGGAATAGTGCACGTAGGCTACT -ACGGAATAGTGCACGTAGGGATCT -ACGGAATAGTGCACGTAGAAGGCT -ACGGAATAGTGCACGTAGTCAACC -ACGGAATAGTGCACGTAGTGTTCC -ACGGAATAGTGCACGTAGATTCCC -ACGGAATAGTGCACGTAGTTCTCG -ACGGAATAGTGCACGTAGTAGACG -ACGGAATAGTGCACGTAGGTAACG -ACGGAATAGTGCACGTAGACTTCG -ACGGAATAGTGCACGTAGTACGCA -ACGGAATAGTGCACGTAGCTTGCA -ACGGAATAGTGCACGTAGCGAACA -ACGGAATAGTGCACGTAGCAGTCA -ACGGAATAGTGCACGTAGGATCCA -ACGGAATAGTGCACGTAGACGACA -ACGGAATAGTGCACGTAGAGCTCA -ACGGAATAGTGCACGTAGTCACGT -ACGGAATAGTGCACGTAGCGTAGT -ACGGAATAGTGCACGTAGGTCAGT -ACGGAATAGTGCACGTAGGAAGGT -ACGGAATAGTGCACGTAGAACCGT -ACGGAATAGTGCACGTAGTTGTGC -ACGGAATAGTGCACGTAGCTAAGC -ACGGAATAGTGCACGTAGACTAGC -ACGGAATAGTGCACGTAGAGATGC -ACGGAATAGTGCACGTAGTGAAGG -ACGGAATAGTGCACGTAGCAATGG -ACGGAATAGTGCACGTAGATGAGG -ACGGAATAGTGCACGTAGAATGGG -ACGGAATAGTGCACGTAGTCCTGA -ACGGAATAGTGCACGTAGTAGCGA -ACGGAATAGTGCACGTAGCACAGA -ACGGAATAGTGCACGTAGGCAAGA -ACGGAATAGTGCACGTAGGGTTGA -ACGGAATAGTGCACGTAGTCCGAT -ACGGAATAGTGCACGTAGTGGCAT -ACGGAATAGTGCACGTAGCGAGAT -ACGGAATAGTGCACGTAGTACCAC -ACGGAATAGTGCACGTAGCAGAAC -ACGGAATAGTGCACGTAGGTCTAC -ACGGAATAGTGCACGTAGACGTAC -ACGGAATAGTGCACGTAGAGTGAC -ACGGAATAGTGCACGTAGCTGTAG -ACGGAATAGTGCACGTAGCCTAAG -ACGGAATAGTGCACGTAGGTTCAG -ACGGAATAGTGCACGTAGGCATAG -ACGGAATAGTGCACGTAGGACAAG -ACGGAATAGTGCACGTAGAAGCAG -ACGGAATAGTGCACGTAGCGTCAA -ACGGAATAGTGCACGTAGGCTGAA -ACGGAATAGTGCACGTAGAGTACG -ACGGAATAGTGCACGTAGATCCGA -ACGGAATAGTGCACGTAGATGGGA -ACGGAATAGTGCACGTAGGTGCAA -ACGGAATAGTGCACGTAGGAGGAA -ACGGAATAGTGCACGTAGCAGGTA -ACGGAATAGTGCACGTAGGACTCT -ACGGAATAGTGCACGTAGAGTCCT -ACGGAATAGTGCACGTAGTAAGCC -ACGGAATAGTGCACGTAGATAGCC -ACGGAATAGTGCACGTAGTAACCG -ACGGAATAGTGCACGTAGATGCCA -ACGGAATAGTGCACGGTAGGAAAC -ACGGAATAGTGCACGGTAAACACC -ACGGAATAGTGCACGGTAATCGAG -ACGGAATAGTGCACGGTACTCCTT -ACGGAATAGTGCACGGTACCTGTT -ACGGAATAGTGCACGGTACGGTTT -ACGGAATAGTGCACGGTAGTGGTT -ACGGAATAGTGCACGGTAGCCTTT -ACGGAATAGTGCACGGTAGGTCTT -ACGGAATAGTGCACGGTAACGCTT -ACGGAATAGTGCACGGTAAGCGTT -ACGGAATAGTGCACGGTATTCGTC -ACGGAATAGTGCACGGTATCTCTC -ACGGAATAGTGCACGGTATGGATC -ACGGAATAGTGCACGGTACACTTC -ACGGAATAGTGCACGGTAGTACTC -ACGGAATAGTGCACGGTAGATGTC -ACGGAATAGTGCACGGTAACAGTC -ACGGAATAGTGCACGGTATTGCTG -ACGGAATAGTGCACGGTATCCATG -ACGGAATAGTGCACGGTATGTGTG -ACGGAATAGTGCACGGTACTAGTG -ACGGAATAGTGCACGGTACATCTG -ACGGAATAGTGCACGGTAGAGTTG -ACGGAATAGTGCACGGTAAGACTG -ACGGAATAGTGCACGGTATCGGTA -ACGGAATAGTGCACGGTATGCCTA -ACGGAATAGTGCACGGTACCACTA -ACGGAATAGTGCACGGTAGGAGTA -ACGGAATAGTGCACGGTATCGTCT -ACGGAATAGTGCACGGTATGCACT -ACGGAATAGTGCACGGTACTGACT -ACGGAATAGTGCACGGTACAACCT -ACGGAATAGTGCACGGTAGCTACT -ACGGAATAGTGCACGGTAGGATCT -ACGGAATAGTGCACGGTAAAGGCT -ACGGAATAGTGCACGGTATCAACC -ACGGAATAGTGCACGGTATGTTCC -ACGGAATAGTGCACGGTAATTCCC -ACGGAATAGTGCACGGTATTCTCG -ACGGAATAGTGCACGGTATAGACG -ACGGAATAGTGCACGGTAGTAACG -ACGGAATAGTGCACGGTAACTTCG -ACGGAATAGTGCACGGTATACGCA -ACGGAATAGTGCACGGTACTTGCA -ACGGAATAGTGCACGGTACGAACA -ACGGAATAGTGCACGGTACAGTCA -ACGGAATAGTGCACGGTAGATCCA -ACGGAATAGTGCACGGTAACGACA -ACGGAATAGTGCACGGTAAGCTCA -ACGGAATAGTGCACGGTATCACGT -ACGGAATAGTGCACGGTACGTAGT -ACGGAATAGTGCACGGTAGTCAGT -ACGGAATAGTGCACGGTAGAAGGT -ACGGAATAGTGCACGGTAAACCGT -ACGGAATAGTGCACGGTATTGTGC -ACGGAATAGTGCACGGTACTAAGC -ACGGAATAGTGCACGGTAACTAGC -ACGGAATAGTGCACGGTAAGATGC -ACGGAATAGTGCACGGTATGAAGG -ACGGAATAGTGCACGGTACAATGG -ACGGAATAGTGCACGGTAATGAGG -ACGGAATAGTGCACGGTAAATGGG -ACGGAATAGTGCACGGTATCCTGA -ACGGAATAGTGCACGGTATAGCGA -ACGGAATAGTGCACGGTACACAGA -ACGGAATAGTGCACGGTAGCAAGA -ACGGAATAGTGCACGGTAGGTTGA -ACGGAATAGTGCACGGTATCCGAT -ACGGAATAGTGCACGGTATGGCAT -ACGGAATAGTGCACGGTACGAGAT -ACGGAATAGTGCACGGTATACCAC -ACGGAATAGTGCACGGTACAGAAC -ACGGAATAGTGCACGGTAGTCTAC -ACGGAATAGTGCACGGTAACGTAC -ACGGAATAGTGCACGGTAAGTGAC -ACGGAATAGTGCACGGTACTGTAG -ACGGAATAGTGCACGGTACCTAAG -ACGGAATAGTGCACGGTAGTTCAG -ACGGAATAGTGCACGGTAGCATAG -ACGGAATAGTGCACGGTAGACAAG -ACGGAATAGTGCACGGTAAAGCAG -ACGGAATAGTGCACGGTACGTCAA -ACGGAATAGTGCACGGTAGCTGAA -ACGGAATAGTGCACGGTAAGTACG -ACGGAATAGTGCACGGTAATCCGA -ACGGAATAGTGCACGGTAATGGGA -ACGGAATAGTGCACGGTAGTGCAA -ACGGAATAGTGCACGGTAGAGGAA -ACGGAATAGTGCACGGTACAGGTA -ACGGAATAGTGCACGGTAGACTCT -ACGGAATAGTGCACGGTAAGTCCT -ACGGAATAGTGCACGGTATAAGCC -ACGGAATAGTGCACGGTAATAGCC -ACGGAATAGTGCACGGTATAACCG -ACGGAATAGTGCACGGTAATGCCA -ACGGAATAGTGCTCGACTGGAAAC -ACGGAATAGTGCTCGACTAACACC -ACGGAATAGTGCTCGACTATCGAG -ACGGAATAGTGCTCGACTCTCCTT -ACGGAATAGTGCTCGACTCCTGTT -ACGGAATAGTGCTCGACTCGGTTT -ACGGAATAGTGCTCGACTGTGGTT -ACGGAATAGTGCTCGACTGCCTTT -ACGGAATAGTGCTCGACTGGTCTT -ACGGAATAGTGCTCGACTACGCTT -ACGGAATAGTGCTCGACTAGCGTT -ACGGAATAGTGCTCGACTTTCGTC -ACGGAATAGTGCTCGACTTCTCTC -ACGGAATAGTGCTCGACTTGGATC -ACGGAATAGTGCTCGACTCACTTC -ACGGAATAGTGCTCGACTGTACTC -ACGGAATAGTGCTCGACTGATGTC -ACGGAATAGTGCTCGACTACAGTC -ACGGAATAGTGCTCGACTTTGCTG -ACGGAATAGTGCTCGACTTCCATG -ACGGAATAGTGCTCGACTTGTGTG -ACGGAATAGTGCTCGACTCTAGTG -ACGGAATAGTGCTCGACTCATCTG -ACGGAATAGTGCTCGACTGAGTTG -ACGGAATAGTGCTCGACTAGACTG -ACGGAATAGTGCTCGACTTCGGTA -ACGGAATAGTGCTCGACTTGCCTA -ACGGAATAGTGCTCGACTCCACTA -ACGGAATAGTGCTCGACTGGAGTA -ACGGAATAGTGCTCGACTTCGTCT -ACGGAATAGTGCTCGACTTGCACT -ACGGAATAGTGCTCGACTCTGACT -ACGGAATAGTGCTCGACTCAACCT -ACGGAATAGTGCTCGACTGCTACT -ACGGAATAGTGCTCGACTGGATCT -ACGGAATAGTGCTCGACTAAGGCT -ACGGAATAGTGCTCGACTTCAACC -ACGGAATAGTGCTCGACTTGTTCC -ACGGAATAGTGCTCGACTATTCCC -ACGGAATAGTGCTCGACTTTCTCG -ACGGAATAGTGCTCGACTTAGACG -ACGGAATAGTGCTCGACTGTAACG -ACGGAATAGTGCTCGACTACTTCG -ACGGAATAGTGCTCGACTTACGCA -ACGGAATAGTGCTCGACTCTTGCA -ACGGAATAGTGCTCGACTCGAACA -ACGGAATAGTGCTCGACTCAGTCA -ACGGAATAGTGCTCGACTGATCCA -ACGGAATAGTGCTCGACTACGACA -ACGGAATAGTGCTCGACTAGCTCA -ACGGAATAGTGCTCGACTTCACGT -ACGGAATAGTGCTCGACTCGTAGT -ACGGAATAGTGCTCGACTGTCAGT -ACGGAATAGTGCTCGACTGAAGGT -ACGGAATAGTGCTCGACTAACCGT -ACGGAATAGTGCTCGACTTTGTGC -ACGGAATAGTGCTCGACTCTAAGC -ACGGAATAGTGCTCGACTACTAGC -ACGGAATAGTGCTCGACTAGATGC -ACGGAATAGTGCTCGACTTGAAGG -ACGGAATAGTGCTCGACTCAATGG -ACGGAATAGTGCTCGACTATGAGG -ACGGAATAGTGCTCGACTAATGGG -ACGGAATAGTGCTCGACTTCCTGA -ACGGAATAGTGCTCGACTTAGCGA -ACGGAATAGTGCTCGACTCACAGA -ACGGAATAGTGCTCGACTGCAAGA -ACGGAATAGTGCTCGACTGGTTGA -ACGGAATAGTGCTCGACTTCCGAT -ACGGAATAGTGCTCGACTTGGCAT -ACGGAATAGTGCTCGACTCGAGAT -ACGGAATAGTGCTCGACTTACCAC -ACGGAATAGTGCTCGACTCAGAAC -ACGGAATAGTGCTCGACTGTCTAC -ACGGAATAGTGCTCGACTACGTAC -ACGGAATAGTGCTCGACTAGTGAC -ACGGAATAGTGCTCGACTCTGTAG -ACGGAATAGTGCTCGACTCCTAAG -ACGGAATAGTGCTCGACTGTTCAG -ACGGAATAGTGCTCGACTGCATAG -ACGGAATAGTGCTCGACTGACAAG -ACGGAATAGTGCTCGACTAAGCAG -ACGGAATAGTGCTCGACTCGTCAA -ACGGAATAGTGCTCGACTGCTGAA -ACGGAATAGTGCTCGACTAGTACG -ACGGAATAGTGCTCGACTATCCGA -ACGGAATAGTGCTCGACTATGGGA -ACGGAATAGTGCTCGACTGTGCAA -ACGGAATAGTGCTCGACTGAGGAA -ACGGAATAGTGCTCGACTCAGGTA -ACGGAATAGTGCTCGACTGACTCT -ACGGAATAGTGCTCGACTAGTCCT -ACGGAATAGTGCTCGACTTAAGCC -ACGGAATAGTGCTCGACTATAGCC -ACGGAATAGTGCTCGACTTAACCG -ACGGAATAGTGCTCGACTATGCCA -ACGGAATAGTGCGCATACGGAAAC -ACGGAATAGTGCGCATACAACACC -ACGGAATAGTGCGCATACATCGAG -ACGGAATAGTGCGCATACCTCCTT -ACGGAATAGTGCGCATACCCTGTT -ACGGAATAGTGCGCATACCGGTTT -ACGGAATAGTGCGCATACGTGGTT -ACGGAATAGTGCGCATACGCCTTT -ACGGAATAGTGCGCATACGGTCTT -ACGGAATAGTGCGCATACACGCTT -ACGGAATAGTGCGCATACAGCGTT -ACGGAATAGTGCGCATACTTCGTC -ACGGAATAGTGCGCATACTCTCTC -ACGGAATAGTGCGCATACTGGATC -ACGGAATAGTGCGCATACCACTTC -ACGGAATAGTGCGCATACGTACTC -ACGGAATAGTGCGCATACGATGTC -ACGGAATAGTGCGCATACACAGTC -ACGGAATAGTGCGCATACTTGCTG -ACGGAATAGTGCGCATACTCCATG -ACGGAATAGTGCGCATACTGTGTG -ACGGAATAGTGCGCATACCTAGTG -ACGGAATAGTGCGCATACCATCTG -ACGGAATAGTGCGCATACGAGTTG -ACGGAATAGTGCGCATACAGACTG -ACGGAATAGTGCGCATACTCGGTA -ACGGAATAGTGCGCATACTGCCTA -ACGGAATAGTGCGCATACCCACTA -ACGGAATAGTGCGCATACGGAGTA -ACGGAATAGTGCGCATACTCGTCT -ACGGAATAGTGCGCATACTGCACT -ACGGAATAGTGCGCATACCTGACT -ACGGAATAGTGCGCATACCAACCT -ACGGAATAGTGCGCATACGCTACT -ACGGAATAGTGCGCATACGGATCT -ACGGAATAGTGCGCATACAAGGCT -ACGGAATAGTGCGCATACTCAACC -ACGGAATAGTGCGCATACTGTTCC -ACGGAATAGTGCGCATACATTCCC -ACGGAATAGTGCGCATACTTCTCG -ACGGAATAGTGCGCATACTAGACG -ACGGAATAGTGCGCATACGTAACG -ACGGAATAGTGCGCATACACTTCG -ACGGAATAGTGCGCATACTACGCA -ACGGAATAGTGCGCATACCTTGCA -ACGGAATAGTGCGCATACCGAACA -ACGGAATAGTGCGCATACCAGTCA -ACGGAATAGTGCGCATACGATCCA -ACGGAATAGTGCGCATACACGACA -ACGGAATAGTGCGCATACAGCTCA -ACGGAATAGTGCGCATACTCACGT -ACGGAATAGTGCGCATACCGTAGT -ACGGAATAGTGCGCATACGTCAGT -ACGGAATAGTGCGCATACGAAGGT -ACGGAATAGTGCGCATACAACCGT -ACGGAATAGTGCGCATACTTGTGC -ACGGAATAGTGCGCATACCTAAGC -ACGGAATAGTGCGCATACACTAGC -ACGGAATAGTGCGCATACAGATGC -ACGGAATAGTGCGCATACTGAAGG -ACGGAATAGTGCGCATACCAATGG -ACGGAATAGTGCGCATACATGAGG -ACGGAATAGTGCGCATACAATGGG -ACGGAATAGTGCGCATACTCCTGA -ACGGAATAGTGCGCATACTAGCGA -ACGGAATAGTGCGCATACCACAGA -ACGGAATAGTGCGCATACGCAAGA -ACGGAATAGTGCGCATACGGTTGA -ACGGAATAGTGCGCATACTCCGAT -ACGGAATAGTGCGCATACTGGCAT -ACGGAATAGTGCGCATACCGAGAT -ACGGAATAGTGCGCATACTACCAC -ACGGAATAGTGCGCATACCAGAAC -ACGGAATAGTGCGCATACGTCTAC -ACGGAATAGTGCGCATACACGTAC -ACGGAATAGTGCGCATACAGTGAC -ACGGAATAGTGCGCATACCTGTAG -ACGGAATAGTGCGCATACCCTAAG -ACGGAATAGTGCGCATACGTTCAG -ACGGAATAGTGCGCATACGCATAG -ACGGAATAGTGCGCATACGACAAG -ACGGAATAGTGCGCATACAAGCAG -ACGGAATAGTGCGCATACCGTCAA -ACGGAATAGTGCGCATACGCTGAA -ACGGAATAGTGCGCATACAGTACG -ACGGAATAGTGCGCATACATCCGA -ACGGAATAGTGCGCATACATGGGA -ACGGAATAGTGCGCATACGTGCAA -ACGGAATAGTGCGCATACGAGGAA -ACGGAATAGTGCGCATACCAGGTA -ACGGAATAGTGCGCATACGACTCT -ACGGAATAGTGCGCATACAGTCCT -ACGGAATAGTGCGCATACTAAGCC -ACGGAATAGTGCGCATACATAGCC -ACGGAATAGTGCGCATACTAACCG -ACGGAATAGTGCGCATACATGCCA -ACGGAATAGTGCGCACTTGGAAAC -ACGGAATAGTGCGCACTTAACACC -ACGGAATAGTGCGCACTTATCGAG -ACGGAATAGTGCGCACTTCTCCTT -ACGGAATAGTGCGCACTTCCTGTT -ACGGAATAGTGCGCACTTCGGTTT -ACGGAATAGTGCGCACTTGTGGTT -ACGGAATAGTGCGCACTTGCCTTT -ACGGAATAGTGCGCACTTGGTCTT -ACGGAATAGTGCGCACTTACGCTT -ACGGAATAGTGCGCACTTAGCGTT -ACGGAATAGTGCGCACTTTTCGTC -ACGGAATAGTGCGCACTTTCTCTC -ACGGAATAGTGCGCACTTTGGATC -ACGGAATAGTGCGCACTTCACTTC -ACGGAATAGTGCGCACTTGTACTC -ACGGAATAGTGCGCACTTGATGTC -ACGGAATAGTGCGCACTTACAGTC -ACGGAATAGTGCGCACTTTTGCTG -ACGGAATAGTGCGCACTTTCCATG -ACGGAATAGTGCGCACTTTGTGTG -ACGGAATAGTGCGCACTTCTAGTG -ACGGAATAGTGCGCACTTCATCTG -ACGGAATAGTGCGCACTTGAGTTG -ACGGAATAGTGCGCACTTAGACTG -ACGGAATAGTGCGCACTTTCGGTA -ACGGAATAGTGCGCACTTTGCCTA -ACGGAATAGTGCGCACTTCCACTA -ACGGAATAGTGCGCACTTGGAGTA -ACGGAATAGTGCGCACTTTCGTCT -ACGGAATAGTGCGCACTTTGCACT -ACGGAATAGTGCGCACTTCTGACT -ACGGAATAGTGCGCACTTCAACCT -ACGGAATAGTGCGCACTTGCTACT -ACGGAATAGTGCGCACTTGGATCT -ACGGAATAGTGCGCACTTAAGGCT -ACGGAATAGTGCGCACTTTCAACC -ACGGAATAGTGCGCACTTTGTTCC -ACGGAATAGTGCGCACTTATTCCC -ACGGAATAGTGCGCACTTTTCTCG -ACGGAATAGTGCGCACTTTAGACG -ACGGAATAGTGCGCACTTGTAACG -ACGGAATAGTGCGCACTTACTTCG -ACGGAATAGTGCGCACTTTACGCA -ACGGAATAGTGCGCACTTCTTGCA -ACGGAATAGTGCGCACTTCGAACA -ACGGAATAGTGCGCACTTCAGTCA -ACGGAATAGTGCGCACTTGATCCA -ACGGAATAGTGCGCACTTACGACA -ACGGAATAGTGCGCACTTAGCTCA -ACGGAATAGTGCGCACTTTCACGT -ACGGAATAGTGCGCACTTCGTAGT -ACGGAATAGTGCGCACTTGTCAGT -ACGGAATAGTGCGCACTTGAAGGT -ACGGAATAGTGCGCACTTAACCGT -ACGGAATAGTGCGCACTTTTGTGC -ACGGAATAGTGCGCACTTCTAAGC -ACGGAATAGTGCGCACTTACTAGC -ACGGAATAGTGCGCACTTAGATGC -ACGGAATAGTGCGCACTTTGAAGG -ACGGAATAGTGCGCACTTCAATGG -ACGGAATAGTGCGCACTTATGAGG -ACGGAATAGTGCGCACTTAATGGG -ACGGAATAGTGCGCACTTTCCTGA -ACGGAATAGTGCGCACTTTAGCGA -ACGGAATAGTGCGCACTTCACAGA -ACGGAATAGTGCGCACTTGCAAGA -ACGGAATAGTGCGCACTTGGTTGA -ACGGAATAGTGCGCACTTTCCGAT -ACGGAATAGTGCGCACTTTGGCAT -ACGGAATAGTGCGCACTTCGAGAT -ACGGAATAGTGCGCACTTTACCAC -ACGGAATAGTGCGCACTTCAGAAC -ACGGAATAGTGCGCACTTGTCTAC -ACGGAATAGTGCGCACTTACGTAC -ACGGAATAGTGCGCACTTAGTGAC -ACGGAATAGTGCGCACTTCTGTAG -ACGGAATAGTGCGCACTTCCTAAG -ACGGAATAGTGCGCACTTGTTCAG -ACGGAATAGTGCGCACTTGCATAG -ACGGAATAGTGCGCACTTGACAAG -ACGGAATAGTGCGCACTTAAGCAG -ACGGAATAGTGCGCACTTCGTCAA -ACGGAATAGTGCGCACTTGCTGAA -ACGGAATAGTGCGCACTTAGTACG -ACGGAATAGTGCGCACTTATCCGA -ACGGAATAGTGCGCACTTATGGGA -ACGGAATAGTGCGCACTTGTGCAA -ACGGAATAGTGCGCACTTGAGGAA -ACGGAATAGTGCGCACTTCAGGTA -ACGGAATAGTGCGCACTTGACTCT -ACGGAATAGTGCGCACTTAGTCCT -ACGGAATAGTGCGCACTTTAAGCC -ACGGAATAGTGCGCACTTATAGCC -ACGGAATAGTGCGCACTTTAACCG -ACGGAATAGTGCGCACTTATGCCA -ACGGAATAGTGCACACGAGGAAAC -ACGGAATAGTGCACACGAAACACC -ACGGAATAGTGCACACGAATCGAG -ACGGAATAGTGCACACGACTCCTT -ACGGAATAGTGCACACGACCTGTT -ACGGAATAGTGCACACGACGGTTT -ACGGAATAGTGCACACGAGTGGTT -ACGGAATAGTGCACACGAGCCTTT -ACGGAATAGTGCACACGAGGTCTT -ACGGAATAGTGCACACGAACGCTT -ACGGAATAGTGCACACGAAGCGTT -ACGGAATAGTGCACACGATTCGTC -ACGGAATAGTGCACACGATCTCTC -ACGGAATAGTGCACACGATGGATC -ACGGAATAGTGCACACGACACTTC -ACGGAATAGTGCACACGAGTACTC -ACGGAATAGTGCACACGAGATGTC -ACGGAATAGTGCACACGAACAGTC -ACGGAATAGTGCACACGATTGCTG -ACGGAATAGTGCACACGATCCATG -ACGGAATAGTGCACACGATGTGTG -ACGGAATAGTGCACACGACTAGTG -ACGGAATAGTGCACACGACATCTG -ACGGAATAGTGCACACGAGAGTTG -ACGGAATAGTGCACACGAAGACTG -ACGGAATAGTGCACACGATCGGTA -ACGGAATAGTGCACACGATGCCTA -ACGGAATAGTGCACACGACCACTA -ACGGAATAGTGCACACGAGGAGTA -ACGGAATAGTGCACACGATCGTCT -ACGGAATAGTGCACACGATGCACT -ACGGAATAGTGCACACGACTGACT -ACGGAATAGTGCACACGACAACCT -ACGGAATAGTGCACACGAGCTACT -ACGGAATAGTGCACACGAGGATCT -ACGGAATAGTGCACACGAAAGGCT -ACGGAATAGTGCACACGATCAACC -ACGGAATAGTGCACACGATGTTCC -ACGGAATAGTGCACACGAATTCCC -ACGGAATAGTGCACACGATTCTCG -ACGGAATAGTGCACACGATAGACG -ACGGAATAGTGCACACGAGTAACG -ACGGAATAGTGCACACGAACTTCG -ACGGAATAGTGCACACGATACGCA -ACGGAATAGTGCACACGACTTGCA -ACGGAATAGTGCACACGACGAACA -ACGGAATAGTGCACACGACAGTCA -ACGGAATAGTGCACACGAGATCCA -ACGGAATAGTGCACACGAACGACA -ACGGAATAGTGCACACGAAGCTCA -ACGGAATAGTGCACACGATCACGT -ACGGAATAGTGCACACGACGTAGT -ACGGAATAGTGCACACGAGTCAGT -ACGGAATAGTGCACACGAGAAGGT -ACGGAATAGTGCACACGAAACCGT -ACGGAATAGTGCACACGATTGTGC -ACGGAATAGTGCACACGACTAAGC -ACGGAATAGTGCACACGAACTAGC -ACGGAATAGTGCACACGAAGATGC -ACGGAATAGTGCACACGATGAAGG -ACGGAATAGTGCACACGACAATGG -ACGGAATAGTGCACACGAATGAGG -ACGGAATAGTGCACACGAAATGGG -ACGGAATAGTGCACACGATCCTGA -ACGGAATAGTGCACACGATAGCGA -ACGGAATAGTGCACACGACACAGA -ACGGAATAGTGCACACGAGCAAGA -ACGGAATAGTGCACACGAGGTTGA -ACGGAATAGTGCACACGATCCGAT -ACGGAATAGTGCACACGATGGCAT -ACGGAATAGTGCACACGACGAGAT -ACGGAATAGTGCACACGATACCAC -ACGGAATAGTGCACACGACAGAAC -ACGGAATAGTGCACACGAGTCTAC -ACGGAATAGTGCACACGAACGTAC -ACGGAATAGTGCACACGAAGTGAC -ACGGAATAGTGCACACGACTGTAG -ACGGAATAGTGCACACGACCTAAG -ACGGAATAGTGCACACGAGTTCAG -ACGGAATAGTGCACACGAGCATAG -ACGGAATAGTGCACACGAGACAAG -ACGGAATAGTGCACACGAAAGCAG -ACGGAATAGTGCACACGACGTCAA -ACGGAATAGTGCACACGAGCTGAA -ACGGAATAGTGCACACGAAGTACG -ACGGAATAGTGCACACGAATCCGA -ACGGAATAGTGCACACGAATGGGA -ACGGAATAGTGCACACGAGTGCAA -ACGGAATAGTGCACACGAGAGGAA -ACGGAATAGTGCACACGACAGGTA -ACGGAATAGTGCACACGAGACTCT -ACGGAATAGTGCACACGAAGTCCT -ACGGAATAGTGCACACGATAAGCC -ACGGAATAGTGCACACGAATAGCC -ACGGAATAGTGCACACGATAACCG -ACGGAATAGTGCACACGAATGCCA -ACGGAATAGTGCTCACAGGGAAAC -ACGGAATAGTGCTCACAGAACACC -ACGGAATAGTGCTCACAGATCGAG -ACGGAATAGTGCTCACAGCTCCTT -ACGGAATAGTGCTCACAGCCTGTT -ACGGAATAGTGCTCACAGCGGTTT -ACGGAATAGTGCTCACAGGTGGTT -ACGGAATAGTGCTCACAGGCCTTT -ACGGAATAGTGCTCACAGGGTCTT -ACGGAATAGTGCTCACAGACGCTT -ACGGAATAGTGCTCACAGAGCGTT -ACGGAATAGTGCTCACAGTTCGTC -ACGGAATAGTGCTCACAGTCTCTC -ACGGAATAGTGCTCACAGTGGATC -ACGGAATAGTGCTCACAGCACTTC -ACGGAATAGTGCTCACAGGTACTC -ACGGAATAGTGCTCACAGGATGTC -ACGGAATAGTGCTCACAGACAGTC -ACGGAATAGTGCTCACAGTTGCTG -ACGGAATAGTGCTCACAGTCCATG -ACGGAATAGTGCTCACAGTGTGTG -ACGGAATAGTGCTCACAGCTAGTG -ACGGAATAGTGCTCACAGCATCTG -ACGGAATAGTGCTCACAGGAGTTG -ACGGAATAGTGCTCACAGAGACTG -ACGGAATAGTGCTCACAGTCGGTA -ACGGAATAGTGCTCACAGTGCCTA -ACGGAATAGTGCTCACAGCCACTA -ACGGAATAGTGCTCACAGGGAGTA -ACGGAATAGTGCTCACAGTCGTCT -ACGGAATAGTGCTCACAGTGCACT -ACGGAATAGTGCTCACAGCTGACT -ACGGAATAGTGCTCACAGCAACCT -ACGGAATAGTGCTCACAGGCTACT -ACGGAATAGTGCTCACAGGGATCT -ACGGAATAGTGCTCACAGAAGGCT -ACGGAATAGTGCTCACAGTCAACC -ACGGAATAGTGCTCACAGTGTTCC -ACGGAATAGTGCTCACAGATTCCC -ACGGAATAGTGCTCACAGTTCTCG -ACGGAATAGTGCTCACAGTAGACG -ACGGAATAGTGCTCACAGGTAACG -ACGGAATAGTGCTCACAGACTTCG -ACGGAATAGTGCTCACAGTACGCA -ACGGAATAGTGCTCACAGCTTGCA -ACGGAATAGTGCTCACAGCGAACA -ACGGAATAGTGCTCACAGCAGTCA -ACGGAATAGTGCTCACAGGATCCA -ACGGAATAGTGCTCACAGACGACA -ACGGAATAGTGCTCACAGAGCTCA -ACGGAATAGTGCTCACAGTCACGT -ACGGAATAGTGCTCACAGCGTAGT -ACGGAATAGTGCTCACAGGTCAGT -ACGGAATAGTGCTCACAGGAAGGT -ACGGAATAGTGCTCACAGAACCGT -ACGGAATAGTGCTCACAGTTGTGC -ACGGAATAGTGCTCACAGCTAAGC -ACGGAATAGTGCTCACAGACTAGC -ACGGAATAGTGCTCACAGAGATGC -ACGGAATAGTGCTCACAGTGAAGG -ACGGAATAGTGCTCACAGCAATGG -ACGGAATAGTGCTCACAGATGAGG -ACGGAATAGTGCTCACAGAATGGG -ACGGAATAGTGCTCACAGTCCTGA -ACGGAATAGTGCTCACAGTAGCGA -ACGGAATAGTGCTCACAGCACAGA -ACGGAATAGTGCTCACAGGCAAGA -ACGGAATAGTGCTCACAGGGTTGA -ACGGAATAGTGCTCACAGTCCGAT -ACGGAATAGTGCTCACAGTGGCAT -ACGGAATAGTGCTCACAGCGAGAT -ACGGAATAGTGCTCACAGTACCAC -ACGGAATAGTGCTCACAGCAGAAC -ACGGAATAGTGCTCACAGGTCTAC -ACGGAATAGTGCTCACAGACGTAC -ACGGAATAGTGCTCACAGAGTGAC -ACGGAATAGTGCTCACAGCTGTAG -ACGGAATAGTGCTCACAGCCTAAG -ACGGAATAGTGCTCACAGGTTCAG -ACGGAATAGTGCTCACAGGCATAG -ACGGAATAGTGCTCACAGGACAAG -ACGGAATAGTGCTCACAGAAGCAG -ACGGAATAGTGCTCACAGCGTCAA -ACGGAATAGTGCTCACAGGCTGAA -ACGGAATAGTGCTCACAGAGTACG -ACGGAATAGTGCTCACAGATCCGA -ACGGAATAGTGCTCACAGATGGGA -ACGGAATAGTGCTCACAGGTGCAA -ACGGAATAGTGCTCACAGGAGGAA -ACGGAATAGTGCTCACAGCAGGTA -ACGGAATAGTGCTCACAGGACTCT -ACGGAATAGTGCTCACAGAGTCCT -ACGGAATAGTGCTCACAGTAAGCC -ACGGAATAGTGCTCACAGATAGCC -ACGGAATAGTGCTCACAGTAACCG -ACGGAATAGTGCTCACAGATGCCA -ACGGAATAGTGCCCAGATGGAAAC -ACGGAATAGTGCCCAGATAACACC -ACGGAATAGTGCCCAGATATCGAG -ACGGAATAGTGCCCAGATCTCCTT -ACGGAATAGTGCCCAGATCCTGTT -ACGGAATAGTGCCCAGATCGGTTT -ACGGAATAGTGCCCAGATGTGGTT -ACGGAATAGTGCCCAGATGCCTTT -ACGGAATAGTGCCCAGATGGTCTT -ACGGAATAGTGCCCAGATACGCTT -ACGGAATAGTGCCCAGATAGCGTT -ACGGAATAGTGCCCAGATTTCGTC -ACGGAATAGTGCCCAGATTCTCTC -ACGGAATAGTGCCCAGATTGGATC -ACGGAATAGTGCCCAGATCACTTC -ACGGAATAGTGCCCAGATGTACTC -ACGGAATAGTGCCCAGATGATGTC -ACGGAATAGTGCCCAGATACAGTC -ACGGAATAGTGCCCAGATTTGCTG -ACGGAATAGTGCCCAGATTCCATG -ACGGAATAGTGCCCAGATTGTGTG -ACGGAATAGTGCCCAGATCTAGTG -ACGGAATAGTGCCCAGATCATCTG -ACGGAATAGTGCCCAGATGAGTTG -ACGGAATAGTGCCCAGATAGACTG -ACGGAATAGTGCCCAGATTCGGTA -ACGGAATAGTGCCCAGATTGCCTA -ACGGAATAGTGCCCAGATCCACTA -ACGGAATAGTGCCCAGATGGAGTA -ACGGAATAGTGCCCAGATTCGTCT -ACGGAATAGTGCCCAGATTGCACT -ACGGAATAGTGCCCAGATCTGACT -ACGGAATAGTGCCCAGATCAACCT -ACGGAATAGTGCCCAGATGCTACT -ACGGAATAGTGCCCAGATGGATCT -ACGGAATAGTGCCCAGATAAGGCT -ACGGAATAGTGCCCAGATTCAACC -ACGGAATAGTGCCCAGATTGTTCC -ACGGAATAGTGCCCAGATATTCCC -ACGGAATAGTGCCCAGATTTCTCG -ACGGAATAGTGCCCAGATTAGACG -ACGGAATAGTGCCCAGATGTAACG -ACGGAATAGTGCCCAGATACTTCG -ACGGAATAGTGCCCAGATTACGCA -ACGGAATAGTGCCCAGATCTTGCA -ACGGAATAGTGCCCAGATCGAACA -ACGGAATAGTGCCCAGATCAGTCA -ACGGAATAGTGCCCAGATGATCCA -ACGGAATAGTGCCCAGATACGACA -ACGGAATAGTGCCCAGATAGCTCA -ACGGAATAGTGCCCAGATTCACGT -ACGGAATAGTGCCCAGATCGTAGT -ACGGAATAGTGCCCAGATGTCAGT -ACGGAATAGTGCCCAGATGAAGGT -ACGGAATAGTGCCCAGATAACCGT -ACGGAATAGTGCCCAGATTTGTGC -ACGGAATAGTGCCCAGATCTAAGC -ACGGAATAGTGCCCAGATACTAGC -ACGGAATAGTGCCCAGATAGATGC -ACGGAATAGTGCCCAGATTGAAGG -ACGGAATAGTGCCCAGATCAATGG -ACGGAATAGTGCCCAGATATGAGG -ACGGAATAGTGCCCAGATAATGGG -ACGGAATAGTGCCCAGATTCCTGA -ACGGAATAGTGCCCAGATTAGCGA -ACGGAATAGTGCCCAGATCACAGA -ACGGAATAGTGCCCAGATGCAAGA -ACGGAATAGTGCCCAGATGGTTGA -ACGGAATAGTGCCCAGATTCCGAT -ACGGAATAGTGCCCAGATTGGCAT -ACGGAATAGTGCCCAGATCGAGAT -ACGGAATAGTGCCCAGATTACCAC -ACGGAATAGTGCCCAGATCAGAAC -ACGGAATAGTGCCCAGATGTCTAC -ACGGAATAGTGCCCAGATACGTAC -ACGGAATAGTGCCCAGATAGTGAC -ACGGAATAGTGCCCAGATCTGTAG -ACGGAATAGTGCCCAGATCCTAAG -ACGGAATAGTGCCCAGATGTTCAG -ACGGAATAGTGCCCAGATGCATAG -ACGGAATAGTGCCCAGATGACAAG -ACGGAATAGTGCCCAGATAAGCAG -ACGGAATAGTGCCCAGATCGTCAA -ACGGAATAGTGCCCAGATGCTGAA -ACGGAATAGTGCCCAGATAGTACG -ACGGAATAGTGCCCAGATATCCGA -ACGGAATAGTGCCCAGATATGGGA -ACGGAATAGTGCCCAGATGTGCAA -ACGGAATAGTGCCCAGATGAGGAA -ACGGAATAGTGCCCAGATCAGGTA -ACGGAATAGTGCCCAGATGACTCT -ACGGAATAGTGCCCAGATAGTCCT -ACGGAATAGTGCCCAGATTAAGCC -ACGGAATAGTGCCCAGATATAGCC -ACGGAATAGTGCCCAGATTAACCG -ACGGAATAGTGCCCAGATATGCCA -ACGGAATAGTGCACAACGGGAAAC -ACGGAATAGTGCACAACGAACACC -ACGGAATAGTGCACAACGATCGAG -ACGGAATAGTGCACAACGCTCCTT -ACGGAATAGTGCACAACGCCTGTT -ACGGAATAGTGCACAACGCGGTTT -ACGGAATAGTGCACAACGGTGGTT -ACGGAATAGTGCACAACGGCCTTT -ACGGAATAGTGCACAACGGGTCTT -ACGGAATAGTGCACAACGACGCTT -ACGGAATAGTGCACAACGAGCGTT -ACGGAATAGTGCACAACGTTCGTC -ACGGAATAGTGCACAACGTCTCTC -ACGGAATAGTGCACAACGTGGATC -ACGGAATAGTGCACAACGCACTTC -ACGGAATAGTGCACAACGGTACTC -ACGGAATAGTGCACAACGGATGTC -ACGGAATAGTGCACAACGACAGTC -ACGGAATAGTGCACAACGTTGCTG -ACGGAATAGTGCACAACGTCCATG -ACGGAATAGTGCACAACGTGTGTG -ACGGAATAGTGCACAACGCTAGTG -ACGGAATAGTGCACAACGCATCTG -ACGGAATAGTGCACAACGGAGTTG -ACGGAATAGTGCACAACGAGACTG -ACGGAATAGTGCACAACGTCGGTA -ACGGAATAGTGCACAACGTGCCTA -ACGGAATAGTGCACAACGCCACTA -ACGGAATAGTGCACAACGGGAGTA -ACGGAATAGTGCACAACGTCGTCT -ACGGAATAGTGCACAACGTGCACT -ACGGAATAGTGCACAACGCTGACT -ACGGAATAGTGCACAACGCAACCT -ACGGAATAGTGCACAACGGCTACT -ACGGAATAGTGCACAACGGGATCT -ACGGAATAGTGCACAACGAAGGCT -ACGGAATAGTGCACAACGTCAACC -ACGGAATAGTGCACAACGTGTTCC -ACGGAATAGTGCACAACGATTCCC -ACGGAATAGTGCACAACGTTCTCG -ACGGAATAGTGCACAACGTAGACG -ACGGAATAGTGCACAACGGTAACG -ACGGAATAGTGCACAACGACTTCG -ACGGAATAGTGCACAACGTACGCA -ACGGAATAGTGCACAACGCTTGCA -ACGGAATAGTGCACAACGCGAACA -ACGGAATAGTGCACAACGCAGTCA -ACGGAATAGTGCACAACGGATCCA -ACGGAATAGTGCACAACGACGACA -ACGGAATAGTGCACAACGAGCTCA -ACGGAATAGTGCACAACGTCACGT -ACGGAATAGTGCACAACGCGTAGT -ACGGAATAGTGCACAACGGTCAGT -ACGGAATAGTGCACAACGGAAGGT -ACGGAATAGTGCACAACGAACCGT -ACGGAATAGTGCACAACGTTGTGC -ACGGAATAGTGCACAACGCTAAGC -ACGGAATAGTGCACAACGACTAGC -ACGGAATAGTGCACAACGAGATGC -ACGGAATAGTGCACAACGTGAAGG -ACGGAATAGTGCACAACGCAATGG -ACGGAATAGTGCACAACGATGAGG -ACGGAATAGTGCACAACGAATGGG -ACGGAATAGTGCACAACGTCCTGA -ACGGAATAGTGCACAACGTAGCGA -ACGGAATAGTGCACAACGCACAGA -ACGGAATAGTGCACAACGGCAAGA -ACGGAATAGTGCACAACGGGTTGA -ACGGAATAGTGCACAACGTCCGAT -ACGGAATAGTGCACAACGTGGCAT -ACGGAATAGTGCACAACGCGAGAT -ACGGAATAGTGCACAACGTACCAC -ACGGAATAGTGCACAACGCAGAAC -ACGGAATAGTGCACAACGGTCTAC -ACGGAATAGTGCACAACGACGTAC -ACGGAATAGTGCACAACGAGTGAC -ACGGAATAGTGCACAACGCTGTAG -ACGGAATAGTGCACAACGCCTAAG -ACGGAATAGTGCACAACGGTTCAG -ACGGAATAGTGCACAACGGCATAG -ACGGAATAGTGCACAACGGACAAG -ACGGAATAGTGCACAACGAAGCAG -ACGGAATAGTGCACAACGCGTCAA -ACGGAATAGTGCACAACGGCTGAA -ACGGAATAGTGCACAACGAGTACG -ACGGAATAGTGCACAACGATCCGA -ACGGAATAGTGCACAACGATGGGA -ACGGAATAGTGCACAACGGTGCAA -ACGGAATAGTGCACAACGGAGGAA -ACGGAATAGTGCACAACGCAGGTA -ACGGAATAGTGCACAACGGACTCT -ACGGAATAGTGCACAACGAGTCCT -ACGGAATAGTGCACAACGTAAGCC -ACGGAATAGTGCACAACGATAGCC -ACGGAATAGTGCACAACGTAACCG -ACGGAATAGTGCACAACGATGCCA -ACGGAATAGTGCTCAAGCGGAAAC -ACGGAATAGTGCTCAAGCAACACC -ACGGAATAGTGCTCAAGCATCGAG -ACGGAATAGTGCTCAAGCCTCCTT -ACGGAATAGTGCTCAAGCCCTGTT -ACGGAATAGTGCTCAAGCCGGTTT -ACGGAATAGTGCTCAAGCGTGGTT -ACGGAATAGTGCTCAAGCGCCTTT -ACGGAATAGTGCTCAAGCGGTCTT -ACGGAATAGTGCTCAAGCACGCTT -ACGGAATAGTGCTCAAGCAGCGTT -ACGGAATAGTGCTCAAGCTTCGTC -ACGGAATAGTGCTCAAGCTCTCTC -ACGGAATAGTGCTCAAGCTGGATC -ACGGAATAGTGCTCAAGCCACTTC -ACGGAATAGTGCTCAAGCGTACTC -ACGGAATAGTGCTCAAGCGATGTC -ACGGAATAGTGCTCAAGCACAGTC -ACGGAATAGTGCTCAAGCTTGCTG -ACGGAATAGTGCTCAAGCTCCATG -ACGGAATAGTGCTCAAGCTGTGTG -ACGGAATAGTGCTCAAGCCTAGTG -ACGGAATAGTGCTCAAGCCATCTG -ACGGAATAGTGCTCAAGCGAGTTG -ACGGAATAGTGCTCAAGCAGACTG -ACGGAATAGTGCTCAAGCTCGGTA -ACGGAATAGTGCTCAAGCTGCCTA -ACGGAATAGTGCTCAAGCCCACTA -ACGGAATAGTGCTCAAGCGGAGTA -ACGGAATAGTGCTCAAGCTCGTCT -ACGGAATAGTGCTCAAGCTGCACT -ACGGAATAGTGCTCAAGCCTGACT -ACGGAATAGTGCTCAAGCCAACCT -ACGGAATAGTGCTCAAGCGCTACT -ACGGAATAGTGCTCAAGCGGATCT -ACGGAATAGTGCTCAAGCAAGGCT -ACGGAATAGTGCTCAAGCTCAACC -ACGGAATAGTGCTCAAGCTGTTCC -ACGGAATAGTGCTCAAGCATTCCC -ACGGAATAGTGCTCAAGCTTCTCG -ACGGAATAGTGCTCAAGCTAGACG -ACGGAATAGTGCTCAAGCGTAACG -ACGGAATAGTGCTCAAGCACTTCG -ACGGAATAGTGCTCAAGCTACGCA -ACGGAATAGTGCTCAAGCCTTGCA -ACGGAATAGTGCTCAAGCCGAACA -ACGGAATAGTGCTCAAGCCAGTCA -ACGGAATAGTGCTCAAGCGATCCA -ACGGAATAGTGCTCAAGCACGACA -ACGGAATAGTGCTCAAGCAGCTCA -ACGGAATAGTGCTCAAGCTCACGT -ACGGAATAGTGCTCAAGCCGTAGT -ACGGAATAGTGCTCAAGCGTCAGT -ACGGAATAGTGCTCAAGCGAAGGT -ACGGAATAGTGCTCAAGCAACCGT -ACGGAATAGTGCTCAAGCTTGTGC -ACGGAATAGTGCTCAAGCCTAAGC -ACGGAATAGTGCTCAAGCACTAGC -ACGGAATAGTGCTCAAGCAGATGC -ACGGAATAGTGCTCAAGCTGAAGG -ACGGAATAGTGCTCAAGCCAATGG -ACGGAATAGTGCTCAAGCATGAGG -ACGGAATAGTGCTCAAGCAATGGG -ACGGAATAGTGCTCAAGCTCCTGA -ACGGAATAGTGCTCAAGCTAGCGA -ACGGAATAGTGCTCAAGCCACAGA -ACGGAATAGTGCTCAAGCGCAAGA -ACGGAATAGTGCTCAAGCGGTTGA -ACGGAATAGTGCTCAAGCTCCGAT -ACGGAATAGTGCTCAAGCTGGCAT -ACGGAATAGTGCTCAAGCCGAGAT -ACGGAATAGTGCTCAAGCTACCAC -ACGGAATAGTGCTCAAGCCAGAAC -ACGGAATAGTGCTCAAGCGTCTAC -ACGGAATAGTGCTCAAGCACGTAC -ACGGAATAGTGCTCAAGCAGTGAC -ACGGAATAGTGCTCAAGCCTGTAG -ACGGAATAGTGCTCAAGCCCTAAG -ACGGAATAGTGCTCAAGCGTTCAG -ACGGAATAGTGCTCAAGCGCATAG -ACGGAATAGTGCTCAAGCGACAAG -ACGGAATAGTGCTCAAGCAAGCAG -ACGGAATAGTGCTCAAGCCGTCAA -ACGGAATAGTGCTCAAGCGCTGAA -ACGGAATAGTGCTCAAGCAGTACG -ACGGAATAGTGCTCAAGCATCCGA -ACGGAATAGTGCTCAAGCATGGGA -ACGGAATAGTGCTCAAGCGTGCAA -ACGGAATAGTGCTCAAGCGAGGAA -ACGGAATAGTGCTCAAGCCAGGTA -ACGGAATAGTGCTCAAGCGACTCT -ACGGAATAGTGCTCAAGCAGTCCT -ACGGAATAGTGCTCAAGCTAAGCC -ACGGAATAGTGCTCAAGCATAGCC -ACGGAATAGTGCTCAAGCTAACCG -ACGGAATAGTGCTCAAGCATGCCA -ACGGAATAGTGCCGTTCAGGAAAC -ACGGAATAGTGCCGTTCAAACACC -ACGGAATAGTGCCGTTCAATCGAG -ACGGAATAGTGCCGTTCACTCCTT -ACGGAATAGTGCCGTTCACCTGTT -ACGGAATAGTGCCGTTCACGGTTT -ACGGAATAGTGCCGTTCAGTGGTT -ACGGAATAGTGCCGTTCAGCCTTT -ACGGAATAGTGCCGTTCAGGTCTT -ACGGAATAGTGCCGTTCAACGCTT -ACGGAATAGTGCCGTTCAAGCGTT -ACGGAATAGTGCCGTTCATTCGTC -ACGGAATAGTGCCGTTCATCTCTC -ACGGAATAGTGCCGTTCATGGATC -ACGGAATAGTGCCGTTCACACTTC -ACGGAATAGTGCCGTTCAGTACTC -ACGGAATAGTGCCGTTCAGATGTC -ACGGAATAGTGCCGTTCAACAGTC -ACGGAATAGTGCCGTTCATTGCTG -ACGGAATAGTGCCGTTCATCCATG -ACGGAATAGTGCCGTTCATGTGTG -ACGGAATAGTGCCGTTCACTAGTG -ACGGAATAGTGCCGTTCACATCTG -ACGGAATAGTGCCGTTCAGAGTTG -ACGGAATAGTGCCGTTCAAGACTG -ACGGAATAGTGCCGTTCATCGGTA -ACGGAATAGTGCCGTTCATGCCTA -ACGGAATAGTGCCGTTCACCACTA -ACGGAATAGTGCCGTTCAGGAGTA -ACGGAATAGTGCCGTTCATCGTCT -ACGGAATAGTGCCGTTCATGCACT -ACGGAATAGTGCCGTTCACTGACT -ACGGAATAGTGCCGTTCACAACCT -ACGGAATAGTGCCGTTCAGCTACT -ACGGAATAGTGCCGTTCAGGATCT -ACGGAATAGTGCCGTTCAAAGGCT -ACGGAATAGTGCCGTTCATCAACC -ACGGAATAGTGCCGTTCATGTTCC -ACGGAATAGTGCCGTTCAATTCCC -ACGGAATAGTGCCGTTCATTCTCG -ACGGAATAGTGCCGTTCATAGACG -ACGGAATAGTGCCGTTCAGTAACG -ACGGAATAGTGCCGTTCAACTTCG -ACGGAATAGTGCCGTTCATACGCA -ACGGAATAGTGCCGTTCACTTGCA -ACGGAATAGTGCCGTTCACGAACA -ACGGAATAGTGCCGTTCACAGTCA -ACGGAATAGTGCCGTTCAGATCCA -ACGGAATAGTGCCGTTCAACGACA -ACGGAATAGTGCCGTTCAAGCTCA -ACGGAATAGTGCCGTTCATCACGT -ACGGAATAGTGCCGTTCACGTAGT -ACGGAATAGTGCCGTTCAGTCAGT -ACGGAATAGTGCCGTTCAGAAGGT -ACGGAATAGTGCCGTTCAAACCGT -ACGGAATAGTGCCGTTCATTGTGC -ACGGAATAGTGCCGTTCACTAAGC -ACGGAATAGTGCCGTTCAACTAGC -ACGGAATAGTGCCGTTCAAGATGC -ACGGAATAGTGCCGTTCATGAAGG -ACGGAATAGTGCCGTTCACAATGG -ACGGAATAGTGCCGTTCAATGAGG -ACGGAATAGTGCCGTTCAAATGGG -ACGGAATAGTGCCGTTCATCCTGA -ACGGAATAGTGCCGTTCATAGCGA -ACGGAATAGTGCCGTTCACACAGA -ACGGAATAGTGCCGTTCAGCAAGA -ACGGAATAGTGCCGTTCAGGTTGA -ACGGAATAGTGCCGTTCATCCGAT -ACGGAATAGTGCCGTTCATGGCAT -ACGGAATAGTGCCGTTCACGAGAT -ACGGAATAGTGCCGTTCATACCAC -ACGGAATAGTGCCGTTCACAGAAC -ACGGAATAGTGCCGTTCAGTCTAC -ACGGAATAGTGCCGTTCAACGTAC -ACGGAATAGTGCCGTTCAAGTGAC -ACGGAATAGTGCCGTTCACTGTAG -ACGGAATAGTGCCGTTCACCTAAG -ACGGAATAGTGCCGTTCAGTTCAG -ACGGAATAGTGCCGTTCAGCATAG -ACGGAATAGTGCCGTTCAGACAAG -ACGGAATAGTGCCGTTCAAAGCAG -ACGGAATAGTGCCGTTCACGTCAA -ACGGAATAGTGCCGTTCAGCTGAA -ACGGAATAGTGCCGTTCAAGTACG -ACGGAATAGTGCCGTTCAATCCGA -ACGGAATAGTGCCGTTCAATGGGA -ACGGAATAGTGCCGTTCAGTGCAA -ACGGAATAGTGCCGTTCAGAGGAA -ACGGAATAGTGCCGTTCACAGGTA -ACGGAATAGTGCCGTTCAGACTCT -ACGGAATAGTGCCGTTCAAGTCCT -ACGGAATAGTGCCGTTCATAAGCC -ACGGAATAGTGCCGTTCAATAGCC -ACGGAATAGTGCCGTTCATAACCG -ACGGAATAGTGCCGTTCAATGCCA -ACGGAATAGTGCAGTCGTGGAAAC -ACGGAATAGTGCAGTCGTAACACC -ACGGAATAGTGCAGTCGTATCGAG -ACGGAATAGTGCAGTCGTCTCCTT -ACGGAATAGTGCAGTCGTCCTGTT -ACGGAATAGTGCAGTCGTCGGTTT -ACGGAATAGTGCAGTCGTGTGGTT -ACGGAATAGTGCAGTCGTGCCTTT -ACGGAATAGTGCAGTCGTGGTCTT -ACGGAATAGTGCAGTCGTACGCTT -ACGGAATAGTGCAGTCGTAGCGTT -ACGGAATAGTGCAGTCGTTTCGTC -ACGGAATAGTGCAGTCGTTCTCTC -ACGGAATAGTGCAGTCGTTGGATC -ACGGAATAGTGCAGTCGTCACTTC -ACGGAATAGTGCAGTCGTGTACTC -ACGGAATAGTGCAGTCGTGATGTC -ACGGAATAGTGCAGTCGTACAGTC -ACGGAATAGTGCAGTCGTTTGCTG -ACGGAATAGTGCAGTCGTTCCATG -ACGGAATAGTGCAGTCGTTGTGTG -ACGGAATAGTGCAGTCGTCTAGTG -ACGGAATAGTGCAGTCGTCATCTG -ACGGAATAGTGCAGTCGTGAGTTG -ACGGAATAGTGCAGTCGTAGACTG -ACGGAATAGTGCAGTCGTTCGGTA -ACGGAATAGTGCAGTCGTTGCCTA -ACGGAATAGTGCAGTCGTCCACTA -ACGGAATAGTGCAGTCGTGGAGTA -ACGGAATAGTGCAGTCGTTCGTCT -ACGGAATAGTGCAGTCGTTGCACT -ACGGAATAGTGCAGTCGTCTGACT -ACGGAATAGTGCAGTCGTCAACCT -ACGGAATAGTGCAGTCGTGCTACT -ACGGAATAGTGCAGTCGTGGATCT -ACGGAATAGTGCAGTCGTAAGGCT -ACGGAATAGTGCAGTCGTTCAACC -ACGGAATAGTGCAGTCGTTGTTCC -ACGGAATAGTGCAGTCGTATTCCC -ACGGAATAGTGCAGTCGTTTCTCG -ACGGAATAGTGCAGTCGTTAGACG -ACGGAATAGTGCAGTCGTGTAACG -ACGGAATAGTGCAGTCGTACTTCG -ACGGAATAGTGCAGTCGTTACGCA -ACGGAATAGTGCAGTCGTCTTGCA -ACGGAATAGTGCAGTCGTCGAACA -ACGGAATAGTGCAGTCGTCAGTCA -ACGGAATAGTGCAGTCGTGATCCA -ACGGAATAGTGCAGTCGTACGACA -ACGGAATAGTGCAGTCGTAGCTCA -ACGGAATAGTGCAGTCGTTCACGT -ACGGAATAGTGCAGTCGTCGTAGT -ACGGAATAGTGCAGTCGTGTCAGT -ACGGAATAGTGCAGTCGTGAAGGT -ACGGAATAGTGCAGTCGTAACCGT -ACGGAATAGTGCAGTCGTTTGTGC -ACGGAATAGTGCAGTCGTCTAAGC -ACGGAATAGTGCAGTCGTACTAGC -ACGGAATAGTGCAGTCGTAGATGC -ACGGAATAGTGCAGTCGTTGAAGG -ACGGAATAGTGCAGTCGTCAATGG -ACGGAATAGTGCAGTCGTATGAGG -ACGGAATAGTGCAGTCGTAATGGG -ACGGAATAGTGCAGTCGTTCCTGA -ACGGAATAGTGCAGTCGTTAGCGA -ACGGAATAGTGCAGTCGTCACAGA -ACGGAATAGTGCAGTCGTGCAAGA -ACGGAATAGTGCAGTCGTGGTTGA -ACGGAATAGTGCAGTCGTTCCGAT -ACGGAATAGTGCAGTCGTTGGCAT -ACGGAATAGTGCAGTCGTCGAGAT -ACGGAATAGTGCAGTCGTTACCAC -ACGGAATAGTGCAGTCGTCAGAAC -ACGGAATAGTGCAGTCGTGTCTAC -ACGGAATAGTGCAGTCGTACGTAC -ACGGAATAGTGCAGTCGTAGTGAC -ACGGAATAGTGCAGTCGTCTGTAG -ACGGAATAGTGCAGTCGTCCTAAG -ACGGAATAGTGCAGTCGTGTTCAG -ACGGAATAGTGCAGTCGTGCATAG -ACGGAATAGTGCAGTCGTGACAAG -ACGGAATAGTGCAGTCGTAAGCAG -ACGGAATAGTGCAGTCGTCGTCAA -ACGGAATAGTGCAGTCGTGCTGAA -ACGGAATAGTGCAGTCGTAGTACG -ACGGAATAGTGCAGTCGTATCCGA -ACGGAATAGTGCAGTCGTATGGGA -ACGGAATAGTGCAGTCGTGTGCAA -ACGGAATAGTGCAGTCGTGAGGAA -ACGGAATAGTGCAGTCGTCAGGTA -ACGGAATAGTGCAGTCGTGACTCT -ACGGAATAGTGCAGTCGTAGTCCT -ACGGAATAGTGCAGTCGTTAAGCC -ACGGAATAGTGCAGTCGTATAGCC -ACGGAATAGTGCAGTCGTTAACCG -ACGGAATAGTGCAGTCGTATGCCA -ACGGAATAGTGCAGTGTCGGAAAC -ACGGAATAGTGCAGTGTCAACACC -ACGGAATAGTGCAGTGTCATCGAG -ACGGAATAGTGCAGTGTCCTCCTT -ACGGAATAGTGCAGTGTCCCTGTT -ACGGAATAGTGCAGTGTCCGGTTT -ACGGAATAGTGCAGTGTCGTGGTT -ACGGAATAGTGCAGTGTCGCCTTT -ACGGAATAGTGCAGTGTCGGTCTT -ACGGAATAGTGCAGTGTCACGCTT -ACGGAATAGTGCAGTGTCAGCGTT -ACGGAATAGTGCAGTGTCTTCGTC -ACGGAATAGTGCAGTGTCTCTCTC -ACGGAATAGTGCAGTGTCTGGATC -ACGGAATAGTGCAGTGTCCACTTC -ACGGAATAGTGCAGTGTCGTACTC -ACGGAATAGTGCAGTGTCGATGTC -ACGGAATAGTGCAGTGTCACAGTC -ACGGAATAGTGCAGTGTCTTGCTG -ACGGAATAGTGCAGTGTCTCCATG -ACGGAATAGTGCAGTGTCTGTGTG -ACGGAATAGTGCAGTGTCCTAGTG -ACGGAATAGTGCAGTGTCCATCTG -ACGGAATAGTGCAGTGTCGAGTTG -ACGGAATAGTGCAGTGTCAGACTG -ACGGAATAGTGCAGTGTCTCGGTA -ACGGAATAGTGCAGTGTCTGCCTA -ACGGAATAGTGCAGTGTCCCACTA -ACGGAATAGTGCAGTGTCGGAGTA -ACGGAATAGTGCAGTGTCTCGTCT -ACGGAATAGTGCAGTGTCTGCACT -ACGGAATAGTGCAGTGTCCTGACT -ACGGAATAGTGCAGTGTCCAACCT -ACGGAATAGTGCAGTGTCGCTACT -ACGGAATAGTGCAGTGTCGGATCT -ACGGAATAGTGCAGTGTCAAGGCT -ACGGAATAGTGCAGTGTCTCAACC -ACGGAATAGTGCAGTGTCTGTTCC -ACGGAATAGTGCAGTGTCATTCCC -ACGGAATAGTGCAGTGTCTTCTCG -ACGGAATAGTGCAGTGTCTAGACG -ACGGAATAGTGCAGTGTCGTAACG -ACGGAATAGTGCAGTGTCACTTCG -ACGGAATAGTGCAGTGTCTACGCA -ACGGAATAGTGCAGTGTCCTTGCA -ACGGAATAGTGCAGTGTCCGAACA -ACGGAATAGTGCAGTGTCCAGTCA -ACGGAATAGTGCAGTGTCGATCCA -ACGGAATAGTGCAGTGTCACGACA -ACGGAATAGTGCAGTGTCAGCTCA -ACGGAATAGTGCAGTGTCTCACGT -ACGGAATAGTGCAGTGTCCGTAGT -ACGGAATAGTGCAGTGTCGTCAGT -ACGGAATAGTGCAGTGTCGAAGGT -ACGGAATAGTGCAGTGTCAACCGT -ACGGAATAGTGCAGTGTCTTGTGC -ACGGAATAGTGCAGTGTCCTAAGC -ACGGAATAGTGCAGTGTCACTAGC -ACGGAATAGTGCAGTGTCAGATGC -ACGGAATAGTGCAGTGTCTGAAGG -ACGGAATAGTGCAGTGTCCAATGG -ACGGAATAGTGCAGTGTCATGAGG -ACGGAATAGTGCAGTGTCAATGGG -ACGGAATAGTGCAGTGTCTCCTGA -ACGGAATAGTGCAGTGTCTAGCGA -ACGGAATAGTGCAGTGTCCACAGA -ACGGAATAGTGCAGTGTCGCAAGA -ACGGAATAGTGCAGTGTCGGTTGA -ACGGAATAGTGCAGTGTCTCCGAT -ACGGAATAGTGCAGTGTCTGGCAT -ACGGAATAGTGCAGTGTCCGAGAT -ACGGAATAGTGCAGTGTCTACCAC -ACGGAATAGTGCAGTGTCCAGAAC -ACGGAATAGTGCAGTGTCGTCTAC -ACGGAATAGTGCAGTGTCACGTAC -ACGGAATAGTGCAGTGTCAGTGAC -ACGGAATAGTGCAGTGTCCTGTAG -ACGGAATAGTGCAGTGTCCCTAAG -ACGGAATAGTGCAGTGTCGTTCAG -ACGGAATAGTGCAGTGTCGCATAG -ACGGAATAGTGCAGTGTCGACAAG -ACGGAATAGTGCAGTGTCAAGCAG -ACGGAATAGTGCAGTGTCCGTCAA -ACGGAATAGTGCAGTGTCGCTGAA -ACGGAATAGTGCAGTGTCAGTACG -ACGGAATAGTGCAGTGTCATCCGA -ACGGAATAGTGCAGTGTCATGGGA -ACGGAATAGTGCAGTGTCGTGCAA -ACGGAATAGTGCAGTGTCGAGGAA -ACGGAATAGTGCAGTGTCCAGGTA -ACGGAATAGTGCAGTGTCGACTCT -ACGGAATAGTGCAGTGTCAGTCCT -ACGGAATAGTGCAGTGTCTAAGCC -ACGGAATAGTGCAGTGTCATAGCC -ACGGAATAGTGCAGTGTCTAACCG -ACGGAATAGTGCAGTGTCATGCCA -ACGGAATAGTGCGGTGAAGGAAAC -ACGGAATAGTGCGGTGAAAACACC -ACGGAATAGTGCGGTGAAATCGAG -ACGGAATAGTGCGGTGAACTCCTT -ACGGAATAGTGCGGTGAACCTGTT -ACGGAATAGTGCGGTGAACGGTTT -ACGGAATAGTGCGGTGAAGTGGTT -ACGGAATAGTGCGGTGAAGCCTTT -ACGGAATAGTGCGGTGAAGGTCTT -ACGGAATAGTGCGGTGAAACGCTT -ACGGAATAGTGCGGTGAAAGCGTT -ACGGAATAGTGCGGTGAATTCGTC -ACGGAATAGTGCGGTGAATCTCTC -ACGGAATAGTGCGGTGAATGGATC -ACGGAATAGTGCGGTGAACACTTC -ACGGAATAGTGCGGTGAAGTACTC -ACGGAATAGTGCGGTGAAGATGTC -ACGGAATAGTGCGGTGAAACAGTC -ACGGAATAGTGCGGTGAATTGCTG -ACGGAATAGTGCGGTGAATCCATG -ACGGAATAGTGCGGTGAATGTGTG -ACGGAATAGTGCGGTGAACTAGTG -ACGGAATAGTGCGGTGAACATCTG -ACGGAATAGTGCGGTGAAGAGTTG -ACGGAATAGTGCGGTGAAAGACTG -ACGGAATAGTGCGGTGAATCGGTA -ACGGAATAGTGCGGTGAATGCCTA -ACGGAATAGTGCGGTGAACCACTA -ACGGAATAGTGCGGTGAAGGAGTA -ACGGAATAGTGCGGTGAATCGTCT -ACGGAATAGTGCGGTGAATGCACT -ACGGAATAGTGCGGTGAACTGACT -ACGGAATAGTGCGGTGAACAACCT -ACGGAATAGTGCGGTGAAGCTACT -ACGGAATAGTGCGGTGAAGGATCT -ACGGAATAGTGCGGTGAAAAGGCT -ACGGAATAGTGCGGTGAATCAACC -ACGGAATAGTGCGGTGAATGTTCC -ACGGAATAGTGCGGTGAAATTCCC -ACGGAATAGTGCGGTGAATTCTCG -ACGGAATAGTGCGGTGAATAGACG -ACGGAATAGTGCGGTGAAGTAACG -ACGGAATAGTGCGGTGAAACTTCG -ACGGAATAGTGCGGTGAATACGCA -ACGGAATAGTGCGGTGAACTTGCA -ACGGAATAGTGCGGTGAACGAACA -ACGGAATAGTGCGGTGAACAGTCA -ACGGAATAGTGCGGTGAAGATCCA -ACGGAATAGTGCGGTGAAACGACA -ACGGAATAGTGCGGTGAAAGCTCA -ACGGAATAGTGCGGTGAATCACGT -ACGGAATAGTGCGGTGAACGTAGT -ACGGAATAGTGCGGTGAAGTCAGT -ACGGAATAGTGCGGTGAAGAAGGT -ACGGAATAGTGCGGTGAAAACCGT -ACGGAATAGTGCGGTGAATTGTGC -ACGGAATAGTGCGGTGAACTAAGC -ACGGAATAGTGCGGTGAAACTAGC -ACGGAATAGTGCGGTGAAAGATGC -ACGGAATAGTGCGGTGAATGAAGG -ACGGAATAGTGCGGTGAACAATGG -ACGGAATAGTGCGGTGAAATGAGG -ACGGAATAGTGCGGTGAAAATGGG -ACGGAATAGTGCGGTGAATCCTGA -ACGGAATAGTGCGGTGAATAGCGA -ACGGAATAGTGCGGTGAACACAGA -ACGGAATAGTGCGGTGAAGCAAGA -ACGGAATAGTGCGGTGAAGGTTGA -ACGGAATAGTGCGGTGAATCCGAT -ACGGAATAGTGCGGTGAATGGCAT -ACGGAATAGTGCGGTGAACGAGAT -ACGGAATAGTGCGGTGAATACCAC -ACGGAATAGTGCGGTGAACAGAAC -ACGGAATAGTGCGGTGAAGTCTAC -ACGGAATAGTGCGGTGAAACGTAC -ACGGAATAGTGCGGTGAAAGTGAC -ACGGAATAGTGCGGTGAACTGTAG -ACGGAATAGTGCGGTGAACCTAAG -ACGGAATAGTGCGGTGAAGTTCAG -ACGGAATAGTGCGGTGAAGCATAG -ACGGAATAGTGCGGTGAAGACAAG -ACGGAATAGTGCGGTGAAAAGCAG -ACGGAATAGTGCGGTGAACGTCAA -ACGGAATAGTGCGGTGAAGCTGAA -ACGGAATAGTGCGGTGAAAGTACG -ACGGAATAGTGCGGTGAAATCCGA -ACGGAATAGTGCGGTGAAATGGGA -ACGGAATAGTGCGGTGAAGTGCAA -ACGGAATAGTGCGGTGAAGAGGAA -ACGGAATAGTGCGGTGAACAGGTA -ACGGAATAGTGCGGTGAAGACTCT -ACGGAATAGTGCGGTGAAAGTCCT -ACGGAATAGTGCGGTGAATAAGCC -ACGGAATAGTGCGGTGAAATAGCC -ACGGAATAGTGCGGTGAATAACCG -ACGGAATAGTGCGGTGAAATGCCA -ACGGAATAGTGCCGTAACGGAAAC -ACGGAATAGTGCCGTAACAACACC -ACGGAATAGTGCCGTAACATCGAG -ACGGAATAGTGCCGTAACCTCCTT -ACGGAATAGTGCCGTAACCCTGTT -ACGGAATAGTGCCGTAACCGGTTT -ACGGAATAGTGCCGTAACGTGGTT -ACGGAATAGTGCCGTAACGCCTTT -ACGGAATAGTGCCGTAACGGTCTT -ACGGAATAGTGCCGTAACACGCTT -ACGGAATAGTGCCGTAACAGCGTT -ACGGAATAGTGCCGTAACTTCGTC -ACGGAATAGTGCCGTAACTCTCTC -ACGGAATAGTGCCGTAACTGGATC -ACGGAATAGTGCCGTAACCACTTC -ACGGAATAGTGCCGTAACGTACTC -ACGGAATAGTGCCGTAACGATGTC -ACGGAATAGTGCCGTAACACAGTC -ACGGAATAGTGCCGTAACTTGCTG -ACGGAATAGTGCCGTAACTCCATG -ACGGAATAGTGCCGTAACTGTGTG -ACGGAATAGTGCCGTAACCTAGTG -ACGGAATAGTGCCGTAACCATCTG -ACGGAATAGTGCCGTAACGAGTTG -ACGGAATAGTGCCGTAACAGACTG -ACGGAATAGTGCCGTAACTCGGTA -ACGGAATAGTGCCGTAACTGCCTA -ACGGAATAGTGCCGTAACCCACTA -ACGGAATAGTGCCGTAACGGAGTA -ACGGAATAGTGCCGTAACTCGTCT -ACGGAATAGTGCCGTAACTGCACT -ACGGAATAGTGCCGTAACCTGACT -ACGGAATAGTGCCGTAACCAACCT -ACGGAATAGTGCCGTAACGCTACT -ACGGAATAGTGCCGTAACGGATCT -ACGGAATAGTGCCGTAACAAGGCT -ACGGAATAGTGCCGTAACTCAACC -ACGGAATAGTGCCGTAACTGTTCC -ACGGAATAGTGCCGTAACATTCCC -ACGGAATAGTGCCGTAACTTCTCG -ACGGAATAGTGCCGTAACTAGACG -ACGGAATAGTGCCGTAACGTAACG -ACGGAATAGTGCCGTAACACTTCG -ACGGAATAGTGCCGTAACTACGCA -ACGGAATAGTGCCGTAACCTTGCA -ACGGAATAGTGCCGTAACCGAACA -ACGGAATAGTGCCGTAACCAGTCA -ACGGAATAGTGCCGTAACGATCCA -ACGGAATAGTGCCGTAACACGACA -ACGGAATAGTGCCGTAACAGCTCA -ACGGAATAGTGCCGTAACTCACGT -ACGGAATAGTGCCGTAACCGTAGT -ACGGAATAGTGCCGTAACGTCAGT -ACGGAATAGTGCCGTAACGAAGGT -ACGGAATAGTGCCGTAACAACCGT -ACGGAATAGTGCCGTAACTTGTGC -ACGGAATAGTGCCGTAACCTAAGC -ACGGAATAGTGCCGTAACACTAGC -ACGGAATAGTGCCGTAACAGATGC -ACGGAATAGTGCCGTAACTGAAGG -ACGGAATAGTGCCGTAACCAATGG -ACGGAATAGTGCCGTAACATGAGG -ACGGAATAGTGCCGTAACAATGGG -ACGGAATAGTGCCGTAACTCCTGA -ACGGAATAGTGCCGTAACTAGCGA -ACGGAATAGTGCCGTAACCACAGA -ACGGAATAGTGCCGTAACGCAAGA -ACGGAATAGTGCCGTAACGGTTGA -ACGGAATAGTGCCGTAACTCCGAT -ACGGAATAGTGCCGTAACTGGCAT -ACGGAATAGTGCCGTAACCGAGAT -ACGGAATAGTGCCGTAACTACCAC -ACGGAATAGTGCCGTAACCAGAAC -ACGGAATAGTGCCGTAACGTCTAC -ACGGAATAGTGCCGTAACACGTAC -ACGGAATAGTGCCGTAACAGTGAC -ACGGAATAGTGCCGTAACCTGTAG -ACGGAATAGTGCCGTAACCCTAAG -ACGGAATAGTGCCGTAACGTTCAG -ACGGAATAGTGCCGTAACGCATAG -ACGGAATAGTGCCGTAACGACAAG -ACGGAATAGTGCCGTAACAAGCAG -ACGGAATAGTGCCGTAACCGTCAA -ACGGAATAGTGCCGTAACGCTGAA -ACGGAATAGTGCCGTAACAGTACG -ACGGAATAGTGCCGTAACATCCGA -ACGGAATAGTGCCGTAACATGGGA -ACGGAATAGTGCCGTAACGTGCAA -ACGGAATAGTGCCGTAACGAGGAA -ACGGAATAGTGCCGTAACCAGGTA -ACGGAATAGTGCCGTAACGACTCT -ACGGAATAGTGCCGTAACAGTCCT -ACGGAATAGTGCCGTAACTAAGCC -ACGGAATAGTGCCGTAACATAGCC -ACGGAATAGTGCCGTAACTAACCG -ACGGAATAGTGCCGTAACATGCCA -ACGGAATAGTGCTGCTTGGGAAAC -ACGGAATAGTGCTGCTTGAACACC -ACGGAATAGTGCTGCTTGATCGAG -ACGGAATAGTGCTGCTTGCTCCTT -ACGGAATAGTGCTGCTTGCCTGTT -ACGGAATAGTGCTGCTTGCGGTTT -ACGGAATAGTGCTGCTTGGTGGTT -ACGGAATAGTGCTGCTTGGCCTTT -ACGGAATAGTGCTGCTTGGGTCTT -ACGGAATAGTGCTGCTTGACGCTT -ACGGAATAGTGCTGCTTGAGCGTT -ACGGAATAGTGCTGCTTGTTCGTC -ACGGAATAGTGCTGCTTGTCTCTC -ACGGAATAGTGCTGCTTGTGGATC -ACGGAATAGTGCTGCTTGCACTTC -ACGGAATAGTGCTGCTTGGTACTC -ACGGAATAGTGCTGCTTGGATGTC -ACGGAATAGTGCTGCTTGACAGTC -ACGGAATAGTGCTGCTTGTTGCTG -ACGGAATAGTGCTGCTTGTCCATG -ACGGAATAGTGCTGCTTGTGTGTG -ACGGAATAGTGCTGCTTGCTAGTG -ACGGAATAGTGCTGCTTGCATCTG -ACGGAATAGTGCTGCTTGGAGTTG -ACGGAATAGTGCTGCTTGAGACTG -ACGGAATAGTGCTGCTTGTCGGTA -ACGGAATAGTGCTGCTTGTGCCTA -ACGGAATAGTGCTGCTTGCCACTA -ACGGAATAGTGCTGCTTGGGAGTA -ACGGAATAGTGCTGCTTGTCGTCT -ACGGAATAGTGCTGCTTGTGCACT -ACGGAATAGTGCTGCTTGCTGACT -ACGGAATAGTGCTGCTTGCAACCT -ACGGAATAGTGCTGCTTGGCTACT -ACGGAATAGTGCTGCTTGGGATCT -ACGGAATAGTGCTGCTTGAAGGCT -ACGGAATAGTGCTGCTTGTCAACC -ACGGAATAGTGCTGCTTGTGTTCC -ACGGAATAGTGCTGCTTGATTCCC -ACGGAATAGTGCTGCTTGTTCTCG -ACGGAATAGTGCTGCTTGTAGACG -ACGGAATAGTGCTGCTTGGTAACG -ACGGAATAGTGCTGCTTGACTTCG -ACGGAATAGTGCTGCTTGTACGCA -ACGGAATAGTGCTGCTTGCTTGCA -ACGGAATAGTGCTGCTTGCGAACA -ACGGAATAGTGCTGCTTGCAGTCA -ACGGAATAGTGCTGCTTGGATCCA -ACGGAATAGTGCTGCTTGACGACA -ACGGAATAGTGCTGCTTGAGCTCA -ACGGAATAGTGCTGCTTGTCACGT -ACGGAATAGTGCTGCTTGCGTAGT -ACGGAATAGTGCTGCTTGGTCAGT -ACGGAATAGTGCTGCTTGGAAGGT -ACGGAATAGTGCTGCTTGAACCGT -ACGGAATAGTGCTGCTTGTTGTGC -ACGGAATAGTGCTGCTTGCTAAGC -ACGGAATAGTGCTGCTTGACTAGC -ACGGAATAGTGCTGCTTGAGATGC -ACGGAATAGTGCTGCTTGTGAAGG -ACGGAATAGTGCTGCTTGCAATGG -ACGGAATAGTGCTGCTTGATGAGG -ACGGAATAGTGCTGCTTGAATGGG -ACGGAATAGTGCTGCTTGTCCTGA -ACGGAATAGTGCTGCTTGTAGCGA -ACGGAATAGTGCTGCTTGCACAGA -ACGGAATAGTGCTGCTTGGCAAGA -ACGGAATAGTGCTGCTTGGGTTGA -ACGGAATAGTGCTGCTTGTCCGAT -ACGGAATAGTGCTGCTTGTGGCAT -ACGGAATAGTGCTGCTTGCGAGAT -ACGGAATAGTGCTGCTTGTACCAC -ACGGAATAGTGCTGCTTGCAGAAC -ACGGAATAGTGCTGCTTGGTCTAC -ACGGAATAGTGCTGCTTGACGTAC -ACGGAATAGTGCTGCTTGAGTGAC -ACGGAATAGTGCTGCTTGCTGTAG -ACGGAATAGTGCTGCTTGCCTAAG -ACGGAATAGTGCTGCTTGGTTCAG -ACGGAATAGTGCTGCTTGGCATAG -ACGGAATAGTGCTGCTTGGACAAG -ACGGAATAGTGCTGCTTGAAGCAG -ACGGAATAGTGCTGCTTGCGTCAA -ACGGAATAGTGCTGCTTGGCTGAA -ACGGAATAGTGCTGCTTGAGTACG -ACGGAATAGTGCTGCTTGATCCGA -ACGGAATAGTGCTGCTTGATGGGA -ACGGAATAGTGCTGCTTGGTGCAA -ACGGAATAGTGCTGCTTGGAGGAA -ACGGAATAGTGCTGCTTGCAGGTA -ACGGAATAGTGCTGCTTGGACTCT -ACGGAATAGTGCTGCTTGAGTCCT -ACGGAATAGTGCTGCTTGTAAGCC -ACGGAATAGTGCTGCTTGATAGCC -ACGGAATAGTGCTGCTTGTAACCG -ACGGAATAGTGCTGCTTGATGCCA -ACGGAATAGTGCAGCCTAGGAAAC -ACGGAATAGTGCAGCCTAAACACC -ACGGAATAGTGCAGCCTAATCGAG -ACGGAATAGTGCAGCCTACTCCTT -ACGGAATAGTGCAGCCTACCTGTT -ACGGAATAGTGCAGCCTACGGTTT -ACGGAATAGTGCAGCCTAGTGGTT -ACGGAATAGTGCAGCCTAGCCTTT -ACGGAATAGTGCAGCCTAGGTCTT -ACGGAATAGTGCAGCCTAACGCTT -ACGGAATAGTGCAGCCTAAGCGTT -ACGGAATAGTGCAGCCTATTCGTC -ACGGAATAGTGCAGCCTATCTCTC -ACGGAATAGTGCAGCCTATGGATC -ACGGAATAGTGCAGCCTACACTTC -ACGGAATAGTGCAGCCTAGTACTC -ACGGAATAGTGCAGCCTAGATGTC -ACGGAATAGTGCAGCCTAACAGTC -ACGGAATAGTGCAGCCTATTGCTG -ACGGAATAGTGCAGCCTATCCATG -ACGGAATAGTGCAGCCTATGTGTG -ACGGAATAGTGCAGCCTACTAGTG -ACGGAATAGTGCAGCCTACATCTG -ACGGAATAGTGCAGCCTAGAGTTG -ACGGAATAGTGCAGCCTAAGACTG -ACGGAATAGTGCAGCCTATCGGTA -ACGGAATAGTGCAGCCTATGCCTA -ACGGAATAGTGCAGCCTACCACTA -ACGGAATAGTGCAGCCTAGGAGTA -ACGGAATAGTGCAGCCTATCGTCT -ACGGAATAGTGCAGCCTATGCACT -ACGGAATAGTGCAGCCTACTGACT -ACGGAATAGTGCAGCCTACAACCT -ACGGAATAGTGCAGCCTAGCTACT -ACGGAATAGTGCAGCCTAGGATCT -ACGGAATAGTGCAGCCTAAAGGCT -ACGGAATAGTGCAGCCTATCAACC -ACGGAATAGTGCAGCCTATGTTCC -ACGGAATAGTGCAGCCTAATTCCC -ACGGAATAGTGCAGCCTATTCTCG -ACGGAATAGTGCAGCCTATAGACG -ACGGAATAGTGCAGCCTAGTAACG -ACGGAATAGTGCAGCCTAACTTCG -ACGGAATAGTGCAGCCTATACGCA -ACGGAATAGTGCAGCCTACTTGCA -ACGGAATAGTGCAGCCTACGAACA -ACGGAATAGTGCAGCCTACAGTCA -ACGGAATAGTGCAGCCTAGATCCA -ACGGAATAGTGCAGCCTAACGACA -ACGGAATAGTGCAGCCTAAGCTCA -ACGGAATAGTGCAGCCTATCACGT -ACGGAATAGTGCAGCCTACGTAGT -ACGGAATAGTGCAGCCTAGTCAGT -ACGGAATAGTGCAGCCTAGAAGGT -ACGGAATAGTGCAGCCTAAACCGT -ACGGAATAGTGCAGCCTATTGTGC -ACGGAATAGTGCAGCCTACTAAGC -ACGGAATAGTGCAGCCTAACTAGC -ACGGAATAGTGCAGCCTAAGATGC -ACGGAATAGTGCAGCCTATGAAGG -ACGGAATAGTGCAGCCTACAATGG -ACGGAATAGTGCAGCCTAATGAGG -ACGGAATAGTGCAGCCTAAATGGG -ACGGAATAGTGCAGCCTATCCTGA -ACGGAATAGTGCAGCCTATAGCGA -ACGGAATAGTGCAGCCTACACAGA -ACGGAATAGTGCAGCCTAGCAAGA -ACGGAATAGTGCAGCCTAGGTTGA -ACGGAATAGTGCAGCCTATCCGAT -ACGGAATAGTGCAGCCTATGGCAT -ACGGAATAGTGCAGCCTACGAGAT -ACGGAATAGTGCAGCCTATACCAC -ACGGAATAGTGCAGCCTACAGAAC -ACGGAATAGTGCAGCCTAGTCTAC -ACGGAATAGTGCAGCCTAACGTAC -ACGGAATAGTGCAGCCTAAGTGAC -ACGGAATAGTGCAGCCTACTGTAG -ACGGAATAGTGCAGCCTACCTAAG -ACGGAATAGTGCAGCCTAGTTCAG -ACGGAATAGTGCAGCCTAGCATAG -ACGGAATAGTGCAGCCTAGACAAG -ACGGAATAGTGCAGCCTAAAGCAG -ACGGAATAGTGCAGCCTACGTCAA -ACGGAATAGTGCAGCCTAGCTGAA -ACGGAATAGTGCAGCCTAAGTACG -ACGGAATAGTGCAGCCTAATCCGA -ACGGAATAGTGCAGCCTAATGGGA -ACGGAATAGTGCAGCCTAGTGCAA -ACGGAATAGTGCAGCCTAGAGGAA -ACGGAATAGTGCAGCCTACAGGTA -ACGGAATAGTGCAGCCTAGACTCT -ACGGAATAGTGCAGCCTAAGTCCT -ACGGAATAGTGCAGCCTATAAGCC -ACGGAATAGTGCAGCCTAATAGCC -ACGGAATAGTGCAGCCTATAACCG -ACGGAATAGTGCAGCCTAATGCCA -ACGGAATAGTGCAGCACTGGAAAC -ACGGAATAGTGCAGCACTAACACC -ACGGAATAGTGCAGCACTATCGAG -ACGGAATAGTGCAGCACTCTCCTT -ACGGAATAGTGCAGCACTCCTGTT -ACGGAATAGTGCAGCACTCGGTTT -ACGGAATAGTGCAGCACTGTGGTT -ACGGAATAGTGCAGCACTGCCTTT -ACGGAATAGTGCAGCACTGGTCTT -ACGGAATAGTGCAGCACTACGCTT -ACGGAATAGTGCAGCACTAGCGTT -ACGGAATAGTGCAGCACTTTCGTC -ACGGAATAGTGCAGCACTTCTCTC -ACGGAATAGTGCAGCACTTGGATC -ACGGAATAGTGCAGCACTCACTTC -ACGGAATAGTGCAGCACTGTACTC -ACGGAATAGTGCAGCACTGATGTC -ACGGAATAGTGCAGCACTACAGTC -ACGGAATAGTGCAGCACTTTGCTG -ACGGAATAGTGCAGCACTTCCATG -ACGGAATAGTGCAGCACTTGTGTG -ACGGAATAGTGCAGCACTCTAGTG -ACGGAATAGTGCAGCACTCATCTG -ACGGAATAGTGCAGCACTGAGTTG -ACGGAATAGTGCAGCACTAGACTG -ACGGAATAGTGCAGCACTTCGGTA -ACGGAATAGTGCAGCACTTGCCTA -ACGGAATAGTGCAGCACTCCACTA -ACGGAATAGTGCAGCACTGGAGTA -ACGGAATAGTGCAGCACTTCGTCT -ACGGAATAGTGCAGCACTTGCACT -ACGGAATAGTGCAGCACTCTGACT -ACGGAATAGTGCAGCACTCAACCT -ACGGAATAGTGCAGCACTGCTACT -ACGGAATAGTGCAGCACTGGATCT -ACGGAATAGTGCAGCACTAAGGCT -ACGGAATAGTGCAGCACTTCAACC -ACGGAATAGTGCAGCACTTGTTCC -ACGGAATAGTGCAGCACTATTCCC -ACGGAATAGTGCAGCACTTTCTCG -ACGGAATAGTGCAGCACTTAGACG -ACGGAATAGTGCAGCACTGTAACG -ACGGAATAGTGCAGCACTACTTCG -ACGGAATAGTGCAGCACTTACGCA -ACGGAATAGTGCAGCACTCTTGCA -ACGGAATAGTGCAGCACTCGAACA -ACGGAATAGTGCAGCACTCAGTCA -ACGGAATAGTGCAGCACTGATCCA -ACGGAATAGTGCAGCACTACGACA -ACGGAATAGTGCAGCACTAGCTCA -ACGGAATAGTGCAGCACTTCACGT -ACGGAATAGTGCAGCACTCGTAGT -ACGGAATAGTGCAGCACTGTCAGT -ACGGAATAGTGCAGCACTGAAGGT -ACGGAATAGTGCAGCACTAACCGT -ACGGAATAGTGCAGCACTTTGTGC -ACGGAATAGTGCAGCACTCTAAGC -ACGGAATAGTGCAGCACTACTAGC -ACGGAATAGTGCAGCACTAGATGC -ACGGAATAGTGCAGCACTTGAAGG -ACGGAATAGTGCAGCACTCAATGG -ACGGAATAGTGCAGCACTATGAGG -ACGGAATAGTGCAGCACTAATGGG -ACGGAATAGTGCAGCACTTCCTGA -ACGGAATAGTGCAGCACTTAGCGA -ACGGAATAGTGCAGCACTCACAGA -ACGGAATAGTGCAGCACTGCAAGA -ACGGAATAGTGCAGCACTGGTTGA -ACGGAATAGTGCAGCACTTCCGAT -ACGGAATAGTGCAGCACTTGGCAT -ACGGAATAGTGCAGCACTCGAGAT -ACGGAATAGTGCAGCACTTACCAC -ACGGAATAGTGCAGCACTCAGAAC -ACGGAATAGTGCAGCACTGTCTAC -ACGGAATAGTGCAGCACTACGTAC -ACGGAATAGTGCAGCACTAGTGAC -ACGGAATAGTGCAGCACTCTGTAG -ACGGAATAGTGCAGCACTCCTAAG -ACGGAATAGTGCAGCACTGTTCAG -ACGGAATAGTGCAGCACTGCATAG -ACGGAATAGTGCAGCACTGACAAG -ACGGAATAGTGCAGCACTAAGCAG -ACGGAATAGTGCAGCACTCGTCAA -ACGGAATAGTGCAGCACTGCTGAA -ACGGAATAGTGCAGCACTAGTACG -ACGGAATAGTGCAGCACTATCCGA -ACGGAATAGTGCAGCACTATGGGA -ACGGAATAGTGCAGCACTGTGCAA -ACGGAATAGTGCAGCACTGAGGAA -ACGGAATAGTGCAGCACTCAGGTA -ACGGAATAGTGCAGCACTGACTCT -ACGGAATAGTGCAGCACTAGTCCT -ACGGAATAGTGCAGCACTTAAGCC -ACGGAATAGTGCAGCACTATAGCC -ACGGAATAGTGCAGCACTTAACCG -ACGGAATAGTGCAGCACTATGCCA -ACGGAATAGTGCTGCAGAGGAAAC -ACGGAATAGTGCTGCAGAAACACC -ACGGAATAGTGCTGCAGAATCGAG -ACGGAATAGTGCTGCAGACTCCTT -ACGGAATAGTGCTGCAGACCTGTT -ACGGAATAGTGCTGCAGACGGTTT -ACGGAATAGTGCTGCAGAGTGGTT -ACGGAATAGTGCTGCAGAGCCTTT -ACGGAATAGTGCTGCAGAGGTCTT -ACGGAATAGTGCTGCAGAACGCTT -ACGGAATAGTGCTGCAGAAGCGTT -ACGGAATAGTGCTGCAGATTCGTC -ACGGAATAGTGCTGCAGATCTCTC -ACGGAATAGTGCTGCAGATGGATC -ACGGAATAGTGCTGCAGACACTTC -ACGGAATAGTGCTGCAGAGTACTC -ACGGAATAGTGCTGCAGAGATGTC -ACGGAATAGTGCTGCAGAACAGTC -ACGGAATAGTGCTGCAGATTGCTG -ACGGAATAGTGCTGCAGATCCATG -ACGGAATAGTGCTGCAGATGTGTG -ACGGAATAGTGCTGCAGACTAGTG -ACGGAATAGTGCTGCAGACATCTG -ACGGAATAGTGCTGCAGAGAGTTG -ACGGAATAGTGCTGCAGAAGACTG -ACGGAATAGTGCTGCAGATCGGTA -ACGGAATAGTGCTGCAGATGCCTA -ACGGAATAGTGCTGCAGACCACTA -ACGGAATAGTGCTGCAGAGGAGTA -ACGGAATAGTGCTGCAGATCGTCT -ACGGAATAGTGCTGCAGATGCACT -ACGGAATAGTGCTGCAGACTGACT -ACGGAATAGTGCTGCAGACAACCT -ACGGAATAGTGCTGCAGAGCTACT -ACGGAATAGTGCTGCAGAGGATCT -ACGGAATAGTGCTGCAGAAAGGCT -ACGGAATAGTGCTGCAGATCAACC -ACGGAATAGTGCTGCAGATGTTCC -ACGGAATAGTGCTGCAGAATTCCC -ACGGAATAGTGCTGCAGATTCTCG -ACGGAATAGTGCTGCAGATAGACG -ACGGAATAGTGCTGCAGAGTAACG -ACGGAATAGTGCTGCAGAACTTCG -ACGGAATAGTGCTGCAGATACGCA -ACGGAATAGTGCTGCAGACTTGCA -ACGGAATAGTGCTGCAGACGAACA -ACGGAATAGTGCTGCAGACAGTCA -ACGGAATAGTGCTGCAGAGATCCA -ACGGAATAGTGCTGCAGAACGACA -ACGGAATAGTGCTGCAGAAGCTCA -ACGGAATAGTGCTGCAGATCACGT -ACGGAATAGTGCTGCAGACGTAGT -ACGGAATAGTGCTGCAGAGTCAGT -ACGGAATAGTGCTGCAGAGAAGGT -ACGGAATAGTGCTGCAGAAACCGT -ACGGAATAGTGCTGCAGATTGTGC -ACGGAATAGTGCTGCAGACTAAGC -ACGGAATAGTGCTGCAGAACTAGC -ACGGAATAGTGCTGCAGAAGATGC -ACGGAATAGTGCTGCAGATGAAGG -ACGGAATAGTGCTGCAGACAATGG -ACGGAATAGTGCTGCAGAATGAGG -ACGGAATAGTGCTGCAGAAATGGG -ACGGAATAGTGCTGCAGATCCTGA -ACGGAATAGTGCTGCAGATAGCGA -ACGGAATAGTGCTGCAGACACAGA -ACGGAATAGTGCTGCAGAGCAAGA -ACGGAATAGTGCTGCAGAGGTTGA -ACGGAATAGTGCTGCAGATCCGAT -ACGGAATAGTGCTGCAGATGGCAT -ACGGAATAGTGCTGCAGACGAGAT -ACGGAATAGTGCTGCAGATACCAC -ACGGAATAGTGCTGCAGACAGAAC -ACGGAATAGTGCTGCAGAGTCTAC -ACGGAATAGTGCTGCAGAACGTAC -ACGGAATAGTGCTGCAGAAGTGAC -ACGGAATAGTGCTGCAGACTGTAG -ACGGAATAGTGCTGCAGACCTAAG -ACGGAATAGTGCTGCAGAGTTCAG -ACGGAATAGTGCTGCAGAGCATAG -ACGGAATAGTGCTGCAGAGACAAG -ACGGAATAGTGCTGCAGAAAGCAG -ACGGAATAGTGCTGCAGACGTCAA -ACGGAATAGTGCTGCAGAGCTGAA -ACGGAATAGTGCTGCAGAAGTACG -ACGGAATAGTGCTGCAGAATCCGA -ACGGAATAGTGCTGCAGAATGGGA -ACGGAATAGTGCTGCAGAGTGCAA -ACGGAATAGTGCTGCAGAGAGGAA -ACGGAATAGTGCTGCAGACAGGTA -ACGGAATAGTGCTGCAGAGACTCT -ACGGAATAGTGCTGCAGAAGTCCT -ACGGAATAGTGCTGCAGATAAGCC -ACGGAATAGTGCTGCAGAATAGCC -ACGGAATAGTGCTGCAGATAACCG -ACGGAATAGTGCTGCAGAATGCCA -ACGGAATAGTGCAGGTGAGGAAAC -ACGGAATAGTGCAGGTGAAACACC -ACGGAATAGTGCAGGTGAATCGAG -ACGGAATAGTGCAGGTGACTCCTT -ACGGAATAGTGCAGGTGACCTGTT -ACGGAATAGTGCAGGTGACGGTTT -ACGGAATAGTGCAGGTGAGTGGTT -ACGGAATAGTGCAGGTGAGCCTTT -ACGGAATAGTGCAGGTGAGGTCTT -ACGGAATAGTGCAGGTGAACGCTT -ACGGAATAGTGCAGGTGAAGCGTT -ACGGAATAGTGCAGGTGATTCGTC -ACGGAATAGTGCAGGTGATCTCTC -ACGGAATAGTGCAGGTGATGGATC -ACGGAATAGTGCAGGTGACACTTC -ACGGAATAGTGCAGGTGAGTACTC -ACGGAATAGTGCAGGTGAGATGTC -ACGGAATAGTGCAGGTGAACAGTC -ACGGAATAGTGCAGGTGATTGCTG -ACGGAATAGTGCAGGTGATCCATG -ACGGAATAGTGCAGGTGATGTGTG -ACGGAATAGTGCAGGTGACTAGTG -ACGGAATAGTGCAGGTGACATCTG -ACGGAATAGTGCAGGTGAGAGTTG -ACGGAATAGTGCAGGTGAAGACTG -ACGGAATAGTGCAGGTGATCGGTA -ACGGAATAGTGCAGGTGATGCCTA -ACGGAATAGTGCAGGTGACCACTA -ACGGAATAGTGCAGGTGAGGAGTA -ACGGAATAGTGCAGGTGATCGTCT -ACGGAATAGTGCAGGTGATGCACT -ACGGAATAGTGCAGGTGACTGACT -ACGGAATAGTGCAGGTGACAACCT -ACGGAATAGTGCAGGTGAGCTACT -ACGGAATAGTGCAGGTGAGGATCT -ACGGAATAGTGCAGGTGAAAGGCT -ACGGAATAGTGCAGGTGATCAACC -ACGGAATAGTGCAGGTGATGTTCC -ACGGAATAGTGCAGGTGAATTCCC -ACGGAATAGTGCAGGTGATTCTCG -ACGGAATAGTGCAGGTGATAGACG -ACGGAATAGTGCAGGTGAGTAACG -ACGGAATAGTGCAGGTGAACTTCG -ACGGAATAGTGCAGGTGATACGCA -ACGGAATAGTGCAGGTGACTTGCA -ACGGAATAGTGCAGGTGACGAACA -ACGGAATAGTGCAGGTGACAGTCA -ACGGAATAGTGCAGGTGAGATCCA -ACGGAATAGTGCAGGTGAACGACA -ACGGAATAGTGCAGGTGAAGCTCA -ACGGAATAGTGCAGGTGATCACGT -ACGGAATAGTGCAGGTGACGTAGT -ACGGAATAGTGCAGGTGAGTCAGT -ACGGAATAGTGCAGGTGAGAAGGT -ACGGAATAGTGCAGGTGAAACCGT -ACGGAATAGTGCAGGTGATTGTGC -ACGGAATAGTGCAGGTGACTAAGC -ACGGAATAGTGCAGGTGAACTAGC -ACGGAATAGTGCAGGTGAAGATGC -ACGGAATAGTGCAGGTGATGAAGG -ACGGAATAGTGCAGGTGACAATGG -ACGGAATAGTGCAGGTGAATGAGG -ACGGAATAGTGCAGGTGAAATGGG -ACGGAATAGTGCAGGTGATCCTGA -ACGGAATAGTGCAGGTGATAGCGA -ACGGAATAGTGCAGGTGACACAGA -ACGGAATAGTGCAGGTGAGCAAGA -ACGGAATAGTGCAGGTGAGGTTGA -ACGGAATAGTGCAGGTGATCCGAT -ACGGAATAGTGCAGGTGATGGCAT -ACGGAATAGTGCAGGTGACGAGAT -ACGGAATAGTGCAGGTGATACCAC -ACGGAATAGTGCAGGTGACAGAAC -ACGGAATAGTGCAGGTGAGTCTAC -ACGGAATAGTGCAGGTGAACGTAC -ACGGAATAGTGCAGGTGAAGTGAC -ACGGAATAGTGCAGGTGACTGTAG -ACGGAATAGTGCAGGTGACCTAAG -ACGGAATAGTGCAGGTGAGTTCAG -ACGGAATAGTGCAGGTGAGCATAG -ACGGAATAGTGCAGGTGAGACAAG -ACGGAATAGTGCAGGTGAAAGCAG -ACGGAATAGTGCAGGTGACGTCAA -ACGGAATAGTGCAGGTGAGCTGAA -ACGGAATAGTGCAGGTGAAGTACG -ACGGAATAGTGCAGGTGAATCCGA -ACGGAATAGTGCAGGTGAATGGGA -ACGGAATAGTGCAGGTGAGTGCAA -ACGGAATAGTGCAGGTGAGAGGAA -ACGGAATAGTGCAGGTGACAGGTA -ACGGAATAGTGCAGGTGAGACTCT -ACGGAATAGTGCAGGTGAAGTCCT -ACGGAATAGTGCAGGTGATAAGCC -ACGGAATAGTGCAGGTGAATAGCC -ACGGAATAGTGCAGGTGATAACCG -ACGGAATAGTGCAGGTGAATGCCA -ACGGAATAGTGCTGGCAAGGAAAC -ACGGAATAGTGCTGGCAAAACACC -ACGGAATAGTGCTGGCAAATCGAG -ACGGAATAGTGCTGGCAACTCCTT -ACGGAATAGTGCTGGCAACCTGTT -ACGGAATAGTGCTGGCAACGGTTT -ACGGAATAGTGCTGGCAAGTGGTT -ACGGAATAGTGCTGGCAAGCCTTT -ACGGAATAGTGCTGGCAAGGTCTT -ACGGAATAGTGCTGGCAAACGCTT -ACGGAATAGTGCTGGCAAAGCGTT -ACGGAATAGTGCTGGCAATTCGTC -ACGGAATAGTGCTGGCAATCTCTC -ACGGAATAGTGCTGGCAATGGATC -ACGGAATAGTGCTGGCAACACTTC -ACGGAATAGTGCTGGCAAGTACTC -ACGGAATAGTGCTGGCAAGATGTC -ACGGAATAGTGCTGGCAAACAGTC -ACGGAATAGTGCTGGCAATTGCTG -ACGGAATAGTGCTGGCAATCCATG -ACGGAATAGTGCTGGCAATGTGTG -ACGGAATAGTGCTGGCAACTAGTG -ACGGAATAGTGCTGGCAACATCTG -ACGGAATAGTGCTGGCAAGAGTTG -ACGGAATAGTGCTGGCAAAGACTG -ACGGAATAGTGCTGGCAATCGGTA -ACGGAATAGTGCTGGCAATGCCTA -ACGGAATAGTGCTGGCAACCACTA -ACGGAATAGTGCTGGCAAGGAGTA -ACGGAATAGTGCTGGCAATCGTCT -ACGGAATAGTGCTGGCAATGCACT -ACGGAATAGTGCTGGCAACTGACT -ACGGAATAGTGCTGGCAACAACCT -ACGGAATAGTGCTGGCAAGCTACT -ACGGAATAGTGCTGGCAAGGATCT -ACGGAATAGTGCTGGCAAAAGGCT -ACGGAATAGTGCTGGCAATCAACC -ACGGAATAGTGCTGGCAATGTTCC -ACGGAATAGTGCTGGCAAATTCCC -ACGGAATAGTGCTGGCAATTCTCG -ACGGAATAGTGCTGGCAATAGACG -ACGGAATAGTGCTGGCAAGTAACG -ACGGAATAGTGCTGGCAAACTTCG -ACGGAATAGTGCTGGCAATACGCA -ACGGAATAGTGCTGGCAACTTGCA -ACGGAATAGTGCTGGCAACGAACA -ACGGAATAGTGCTGGCAACAGTCA -ACGGAATAGTGCTGGCAAGATCCA -ACGGAATAGTGCTGGCAAACGACA -ACGGAATAGTGCTGGCAAAGCTCA -ACGGAATAGTGCTGGCAATCACGT -ACGGAATAGTGCTGGCAACGTAGT -ACGGAATAGTGCTGGCAAGTCAGT -ACGGAATAGTGCTGGCAAGAAGGT -ACGGAATAGTGCTGGCAAAACCGT -ACGGAATAGTGCTGGCAATTGTGC -ACGGAATAGTGCTGGCAACTAAGC -ACGGAATAGTGCTGGCAAACTAGC -ACGGAATAGTGCTGGCAAAGATGC -ACGGAATAGTGCTGGCAATGAAGG -ACGGAATAGTGCTGGCAACAATGG -ACGGAATAGTGCTGGCAAATGAGG -ACGGAATAGTGCTGGCAAAATGGG -ACGGAATAGTGCTGGCAATCCTGA -ACGGAATAGTGCTGGCAATAGCGA -ACGGAATAGTGCTGGCAACACAGA -ACGGAATAGTGCTGGCAAGCAAGA -ACGGAATAGTGCTGGCAAGGTTGA -ACGGAATAGTGCTGGCAATCCGAT -ACGGAATAGTGCTGGCAATGGCAT -ACGGAATAGTGCTGGCAACGAGAT -ACGGAATAGTGCTGGCAATACCAC -ACGGAATAGTGCTGGCAACAGAAC -ACGGAATAGTGCTGGCAAGTCTAC -ACGGAATAGTGCTGGCAAACGTAC -ACGGAATAGTGCTGGCAAAGTGAC -ACGGAATAGTGCTGGCAACTGTAG -ACGGAATAGTGCTGGCAACCTAAG -ACGGAATAGTGCTGGCAAGTTCAG -ACGGAATAGTGCTGGCAAGCATAG -ACGGAATAGTGCTGGCAAGACAAG -ACGGAATAGTGCTGGCAAAAGCAG -ACGGAATAGTGCTGGCAACGTCAA -ACGGAATAGTGCTGGCAAGCTGAA -ACGGAATAGTGCTGGCAAAGTACG -ACGGAATAGTGCTGGCAAATCCGA -ACGGAATAGTGCTGGCAAATGGGA -ACGGAATAGTGCTGGCAAGTGCAA -ACGGAATAGTGCTGGCAAGAGGAA -ACGGAATAGTGCTGGCAACAGGTA -ACGGAATAGTGCTGGCAAGACTCT -ACGGAATAGTGCTGGCAAAGTCCT -ACGGAATAGTGCTGGCAATAAGCC -ACGGAATAGTGCTGGCAAATAGCC -ACGGAATAGTGCTGGCAATAACCG -ACGGAATAGTGCTGGCAAATGCCA -ACGGAATAGTGCAGGATGGGAAAC -ACGGAATAGTGCAGGATGAACACC -ACGGAATAGTGCAGGATGATCGAG -ACGGAATAGTGCAGGATGCTCCTT -ACGGAATAGTGCAGGATGCCTGTT -ACGGAATAGTGCAGGATGCGGTTT -ACGGAATAGTGCAGGATGGTGGTT -ACGGAATAGTGCAGGATGGCCTTT -ACGGAATAGTGCAGGATGGGTCTT -ACGGAATAGTGCAGGATGACGCTT -ACGGAATAGTGCAGGATGAGCGTT -ACGGAATAGTGCAGGATGTTCGTC -ACGGAATAGTGCAGGATGTCTCTC -ACGGAATAGTGCAGGATGTGGATC -ACGGAATAGTGCAGGATGCACTTC -ACGGAATAGTGCAGGATGGTACTC -ACGGAATAGTGCAGGATGGATGTC -ACGGAATAGTGCAGGATGACAGTC -ACGGAATAGTGCAGGATGTTGCTG -ACGGAATAGTGCAGGATGTCCATG -ACGGAATAGTGCAGGATGTGTGTG -ACGGAATAGTGCAGGATGCTAGTG -ACGGAATAGTGCAGGATGCATCTG -ACGGAATAGTGCAGGATGGAGTTG -ACGGAATAGTGCAGGATGAGACTG -ACGGAATAGTGCAGGATGTCGGTA -ACGGAATAGTGCAGGATGTGCCTA -ACGGAATAGTGCAGGATGCCACTA -ACGGAATAGTGCAGGATGGGAGTA -ACGGAATAGTGCAGGATGTCGTCT -ACGGAATAGTGCAGGATGTGCACT -ACGGAATAGTGCAGGATGCTGACT -ACGGAATAGTGCAGGATGCAACCT -ACGGAATAGTGCAGGATGGCTACT -ACGGAATAGTGCAGGATGGGATCT -ACGGAATAGTGCAGGATGAAGGCT -ACGGAATAGTGCAGGATGTCAACC -ACGGAATAGTGCAGGATGTGTTCC -ACGGAATAGTGCAGGATGATTCCC -ACGGAATAGTGCAGGATGTTCTCG -ACGGAATAGTGCAGGATGTAGACG -ACGGAATAGTGCAGGATGGTAACG -ACGGAATAGTGCAGGATGACTTCG -ACGGAATAGTGCAGGATGTACGCA -ACGGAATAGTGCAGGATGCTTGCA -ACGGAATAGTGCAGGATGCGAACA -ACGGAATAGTGCAGGATGCAGTCA -ACGGAATAGTGCAGGATGGATCCA -ACGGAATAGTGCAGGATGACGACA -ACGGAATAGTGCAGGATGAGCTCA -ACGGAATAGTGCAGGATGTCACGT -ACGGAATAGTGCAGGATGCGTAGT -ACGGAATAGTGCAGGATGGTCAGT -ACGGAATAGTGCAGGATGGAAGGT -ACGGAATAGTGCAGGATGAACCGT -ACGGAATAGTGCAGGATGTTGTGC -ACGGAATAGTGCAGGATGCTAAGC -ACGGAATAGTGCAGGATGACTAGC -ACGGAATAGTGCAGGATGAGATGC -ACGGAATAGTGCAGGATGTGAAGG -ACGGAATAGTGCAGGATGCAATGG -ACGGAATAGTGCAGGATGATGAGG -ACGGAATAGTGCAGGATGAATGGG -ACGGAATAGTGCAGGATGTCCTGA -ACGGAATAGTGCAGGATGTAGCGA -ACGGAATAGTGCAGGATGCACAGA -ACGGAATAGTGCAGGATGGCAAGA -ACGGAATAGTGCAGGATGGGTTGA -ACGGAATAGTGCAGGATGTCCGAT -ACGGAATAGTGCAGGATGTGGCAT -ACGGAATAGTGCAGGATGCGAGAT -ACGGAATAGTGCAGGATGTACCAC -ACGGAATAGTGCAGGATGCAGAAC -ACGGAATAGTGCAGGATGGTCTAC -ACGGAATAGTGCAGGATGACGTAC -ACGGAATAGTGCAGGATGAGTGAC -ACGGAATAGTGCAGGATGCTGTAG -ACGGAATAGTGCAGGATGCCTAAG -ACGGAATAGTGCAGGATGGTTCAG -ACGGAATAGTGCAGGATGGCATAG -ACGGAATAGTGCAGGATGGACAAG -ACGGAATAGTGCAGGATGAAGCAG -ACGGAATAGTGCAGGATGCGTCAA -ACGGAATAGTGCAGGATGGCTGAA -ACGGAATAGTGCAGGATGAGTACG -ACGGAATAGTGCAGGATGATCCGA -ACGGAATAGTGCAGGATGATGGGA -ACGGAATAGTGCAGGATGGTGCAA -ACGGAATAGTGCAGGATGGAGGAA -ACGGAATAGTGCAGGATGCAGGTA -ACGGAATAGTGCAGGATGGACTCT -ACGGAATAGTGCAGGATGAGTCCT -ACGGAATAGTGCAGGATGTAAGCC -ACGGAATAGTGCAGGATGATAGCC -ACGGAATAGTGCAGGATGTAACCG -ACGGAATAGTGCAGGATGATGCCA -ACGGAATAGTGCGGGAATGGAAAC -ACGGAATAGTGCGGGAATAACACC -ACGGAATAGTGCGGGAATATCGAG -ACGGAATAGTGCGGGAATCTCCTT -ACGGAATAGTGCGGGAATCCTGTT -ACGGAATAGTGCGGGAATCGGTTT -ACGGAATAGTGCGGGAATGTGGTT -ACGGAATAGTGCGGGAATGCCTTT -ACGGAATAGTGCGGGAATGGTCTT -ACGGAATAGTGCGGGAATACGCTT -ACGGAATAGTGCGGGAATAGCGTT -ACGGAATAGTGCGGGAATTTCGTC -ACGGAATAGTGCGGGAATTCTCTC -ACGGAATAGTGCGGGAATTGGATC -ACGGAATAGTGCGGGAATCACTTC -ACGGAATAGTGCGGGAATGTACTC -ACGGAATAGTGCGGGAATGATGTC -ACGGAATAGTGCGGGAATACAGTC -ACGGAATAGTGCGGGAATTTGCTG -ACGGAATAGTGCGGGAATTCCATG -ACGGAATAGTGCGGGAATTGTGTG -ACGGAATAGTGCGGGAATCTAGTG -ACGGAATAGTGCGGGAATCATCTG -ACGGAATAGTGCGGGAATGAGTTG -ACGGAATAGTGCGGGAATAGACTG -ACGGAATAGTGCGGGAATTCGGTA -ACGGAATAGTGCGGGAATTGCCTA -ACGGAATAGTGCGGGAATCCACTA -ACGGAATAGTGCGGGAATGGAGTA -ACGGAATAGTGCGGGAATTCGTCT -ACGGAATAGTGCGGGAATTGCACT -ACGGAATAGTGCGGGAATCTGACT -ACGGAATAGTGCGGGAATCAACCT -ACGGAATAGTGCGGGAATGCTACT -ACGGAATAGTGCGGGAATGGATCT -ACGGAATAGTGCGGGAATAAGGCT -ACGGAATAGTGCGGGAATTCAACC -ACGGAATAGTGCGGGAATTGTTCC -ACGGAATAGTGCGGGAATATTCCC -ACGGAATAGTGCGGGAATTTCTCG -ACGGAATAGTGCGGGAATTAGACG -ACGGAATAGTGCGGGAATGTAACG -ACGGAATAGTGCGGGAATACTTCG -ACGGAATAGTGCGGGAATTACGCA -ACGGAATAGTGCGGGAATCTTGCA -ACGGAATAGTGCGGGAATCGAACA -ACGGAATAGTGCGGGAATCAGTCA -ACGGAATAGTGCGGGAATGATCCA -ACGGAATAGTGCGGGAATACGACA -ACGGAATAGTGCGGGAATAGCTCA -ACGGAATAGTGCGGGAATTCACGT -ACGGAATAGTGCGGGAATCGTAGT -ACGGAATAGTGCGGGAATGTCAGT -ACGGAATAGTGCGGGAATGAAGGT -ACGGAATAGTGCGGGAATAACCGT -ACGGAATAGTGCGGGAATTTGTGC -ACGGAATAGTGCGGGAATCTAAGC -ACGGAATAGTGCGGGAATACTAGC -ACGGAATAGTGCGGGAATAGATGC -ACGGAATAGTGCGGGAATTGAAGG -ACGGAATAGTGCGGGAATCAATGG -ACGGAATAGTGCGGGAATATGAGG -ACGGAATAGTGCGGGAATAATGGG -ACGGAATAGTGCGGGAATTCCTGA -ACGGAATAGTGCGGGAATTAGCGA -ACGGAATAGTGCGGGAATCACAGA -ACGGAATAGTGCGGGAATGCAAGA -ACGGAATAGTGCGGGAATGGTTGA -ACGGAATAGTGCGGGAATTCCGAT -ACGGAATAGTGCGGGAATTGGCAT -ACGGAATAGTGCGGGAATCGAGAT -ACGGAATAGTGCGGGAATTACCAC -ACGGAATAGTGCGGGAATCAGAAC -ACGGAATAGTGCGGGAATGTCTAC -ACGGAATAGTGCGGGAATACGTAC -ACGGAATAGTGCGGGAATAGTGAC -ACGGAATAGTGCGGGAATCTGTAG -ACGGAATAGTGCGGGAATCCTAAG -ACGGAATAGTGCGGGAATGTTCAG -ACGGAATAGTGCGGGAATGCATAG -ACGGAATAGTGCGGGAATGACAAG -ACGGAATAGTGCGGGAATAAGCAG -ACGGAATAGTGCGGGAATCGTCAA -ACGGAATAGTGCGGGAATGCTGAA -ACGGAATAGTGCGGGAATAGTACG -ACGGAATAGTGCGGGAATATCCGA -ACGGAATAGTGCGGGAATATGGGA -ACGGAATAGTGCGGGAATGTGCAA -ACGGAATAGTGCGGGAATGAGGAA -ACGGAATAGTGCGGGAATCAGGTA -ACGGAATAGTGCGGGAATGACTCT -ACGGAATAGTGCGGGAATAGTCCT -ACGGAATAGTGCGGGAATTAAGCC -ACGGAATAGTGCGGGAATATAGCC -ACGGAATAGTGCGGGAATTAACCG -ACGGAATAGTGCGGGAATATGCCA -ACGGAATAGTGCTGATCCGGAAAC -ACGGAATAGTGCTGATCCAACACC -ACGGAATAGTGCTGATCCATCGAG -ACGGAATAGTGCTGATCCCTCCTT -ACGGAATAGTGCTGATCCCCTGTT -ACGGAATAGTGCTGATCCCGGTTT -ACGGAATAGTGCTGATCCGTGGTT -ACGGAATAGTGCTGATCCGCCTTT -ACGGAATAGTGCTGATCCGGTCTT -ACGGAATAGTGCTGATCCACGCTT -ACGGAATAGTGCTGATCCAGCGTT -ACGGAATAGTGCTGATCCTTCGTC -ACGGAATAGTGCTGATCCTCTCTC -ACGGAATAGTGCTGATCCTGGATC -ACGGAATAGTGCTGATCCCACTTC -ACGGAATAGTGCTGATCCGTACTC -ACGGAATAGTGCTGATCCGATGTC -ACGGAATAGTGCTGATCCACAGTC -ACGGAATAGTGCTGATCCTTGCTG -ACGGAATAGTGCTGATCCTCCATG -ACGGAATAGTGCTGATCCTGTGTG -ACGGAATAGTGCTGATCCCTAGTG -ACGGAATAGTGCTGATCCCATCTG -ACGGAATAGTGCTGATCCGAGTTG -ACGGAATAGTGCTGATCCAGACTG -ACGGAATAGTGCTGATCCTCGGTA -ACGGAATAGTGCTGATCCTGCCTA -ACGGAATAGTGCTGATCCCCACTA -ACGGAATAGTGCTGATCCGGAGTA -ACGGAATAGTGCTGATCCTCGTCT -ACGGAATAGTGCTGATCCTGCACT -ACGGAATAGTGCTGATCCCTGACT -ACGGAATAGTGCTGATCCCAACCT -ACGGAATAGTGCTGATCCGCTACT -ACGGAATAGTGCTGATCCGGATCT -ACGGAATAGTGCTGATCCAAGGCT -ACGGAATAGTGCTGATCCTCAACC -ACGGAATAGTGCTGATCCTGTTCC -ACGGAATAGTGCTGATCCATTCCC -ACGGAATAGTGCTGATCCTTCTCG -ACGGAATAGTGCTGATCCTAGACG -ACGGAATAGTGCTGATCCGTAACG -ACGGAATAGTGCTGATCCACTTCG -ACGGAATAGTGCTGATCCTACGCA -ACGGAATAGTGCTGATCCCTTGCA -ACGGAATAGTGCTGATCCCGAACA -ACGGAATAGTGCTGATCCCAGTCA -ACGGAATAGTGCTGATCCGATCCA -ACGGAATAGTGCTGATCCACGACA -ACGGAATAGTGCTGATCCAGCTCA -ACGGAATAGTGCTGATCCTCACGT -ACGGAATAGTGCTGATCCCGTAGT -ACGGAATAGTGCTGATCCGTCAGT -ACGGAATAGTGCTGATCCGAAGGT -ACGGAATAGTGCTGATCCAACCGT -ACGGAATAGTGCTGATCCTTGTGC -ACGGAATAGTGCTGATCCCTAAGC -ACGGAATAGTGCTGATCCACTAGC -ACGGAATAGTGCTGATCCAGATGC -ACGGAATAGTGCTGATCCTGAAGG -ACGGAATAGTGCTGATCCCAATGG -ACGGAATAGTGCTGATCCATGAGG -ACGGAATAGTGCTGATCCAATGGG -ACGGAATAGTGCTGATCCTCCTGA -ACGGAATAGTGCTGATCCTAGCGA -ACGGAATAGTGCTGATCCCACAGA -ACGGAATAGTGCTGATCCGCAAGA -ACGGAATAGTGCTGATCCGGTTGA -ACGGAATAGTGCTGATCCTCCGAT -ACGGAATAGTGCTGATCCTGGCAT -ACGGAATAGTGCTGATCCCGAGAT -ACGGAATAGTGCTGATCCTACCAC -ACGGAATAGTGCTGATCCCAGAAC -ACGGAATAGTGCTGATCCGTCTAC -ACGGAATAGTGCTGATCCACGTAC -ACGGAATAGTGCTGATCCAGTGAC -ACGGAATAGTGCTGATCCCTGTAG -ACGGAATAGTGCTGATCCCCTAAG -ACGGAATAGTGCTGATCCGTTCAG -ACGGAATAGTGCTGATCCGCATAG -ACGGAATAGTGCTGATCCGACAAG -ACGGAATAGTGCTGATCCAAGCAG -ACGGAATAGTGCTGATCCCGTCAA -ACGGAATAGTGCTGATCCGCTGAA -ACGGAATAGTGCTGATCCAGTACG -ACGGAATAGTGCTGATCCATCCGA -ACGGAATAGTGCTGATCCATGGGA -ACGGAATAGTGCTGATCCGTGCAA -ACGGAATAGTGCTGATCCGAGGAA -ACGGAATAGTGCTGATCCCAGGTA -ACGGAATAGTGCTGATCCGACTCT -ACGGAATAGTGCTGATCCAGTCCT -ACGGAATAGTGCTGATCCTAAGCC -ACGGAATAGTGCTGATCCATAGCC -ACGGAATAGTGCTGATCCTAACCG -ACGGAATAGTGCTGATCCATGCCA -ACGGAATAGTGCCGATAGGGAAAC -ACGGAATAGTGCCGATAGAACACC -ACGGAATAGTGCCGATAGATCGAG -ACGGAATAGTGCCGATAGCTCCTT -ACGGAATAGTGCCGATAGCCTGTT -ACGGAATAGTGCCGATAGCGGTTT -ACGGAATAGTGCCGATAGGTGGTT -ACGGAATAGTGCCGATAGGCCTTT -ACGGAATAGTGCCGATAGGGTCTT -ACGGAATAGTGCCGATAGACGCTT -ACGGAATAGTGCCGATAGAGCGTT -ACGGAATAGTGCCGATAGTTCGTC -ACGGAATAGTGCCGATAGTCTCTC -ACGGAATAGTGCCGATAGTGGATC -ACGGAATAGTGCCGATAGCACTTC -ACGGAATAGTGCCGATAGGTACTC -ACGGAATAGTGCCGATAGGATGTC -ACGGAATAGTGCCGATAGACAGTC -ACGGAATAGTGCCGATAGTTGCTG -ACGGAATAGTGCCGATAGTCCATG -ACGGAATAGTGCCGATAGTGTGTG -ACGGAATAGTGCCGATAGCTAGTG -ACGGAATAGTGCCGATAGCATCTG -ACGGAATAGTGCCGATAGGAGTTG -ACGGAATAGTGCCGATAGAGACTG -ACGGAATAGTGCCGATAGTCGGTA -ACGGAATAGTGCCGATAGTGCCTA -ACGGAATAGTGCCGATAGCCACTA -ACGGAATAGTGCCGATAGGGAGTA -ACGGAATAGTGCCGATAGTCGTCT -ACGGAATAGTGCCGATAGTGCACT -ACGGAATAGTGCCGATAGCTGACT -ACGGAATAGTGCCGATAGCAACCT -ACGGAATAGTGCCGATAGGCTACT -ACGGAATAGTGCCGATAGGGATCT -ACGGAATAGTGCCGATAGAAGGCT -ACGGAATAGTGCCGATAGTCAACC -ACGGAATAGTGCCGATAGTGTTCC -ACGGAATAGTGCCGATAGATTCCC -ACGGAATAGTGCCGATAGTTCTCG -ACGGAATAGTGCCGATAGTAGACG -ACGGAATAGTGCCGATAGGTAACG -ACGGAATAGTGCCGATAGACTTCG -ACGGAATAGTGCCGATAGTACGCA -ACGGAATAGTGCCGATAGCTTGCA -ACGGAATAGTGCCGATAGCGAACA -ACGGAATAGTGCCGATAGCAGTCA -ACGGAATAGTGCCGATAGGATCCA -ACGGAATAGTGCCGATAGACGACA -ACGGAATAGTGCCGATAGAGCTCA -ACGGAATAGTGCCGATAGTCACGT -ACGGAATAGTGCCGATAGCGTAGT -ACGGAATAGTGCCGATAGGTCAGT -ACGGAATAGTGCCGATAGGAAGGT -ACGGAATAGTGCCGATAGAACCGT -ACGGAATAGTGCCGATAGTTGTGC -ACGGAATAGTGCCGATAGCTAAGC -ACGGAATAGTGCCGATAGACTAGC -ACGGAATAGTGCCGATAGAGATGC -ACGGAATAGTGCCGATAGTGAAGG -ACGGAATAGTGCCGATAGCAATGG -ACGGAATAGTGCCGATAGATGAGG -ACGGAATAGTGCCGATAGAATGGG -ACGGAATAGTGCCGATAGTCCTGA -ACGGAATAGTGCCGATAGTAGCGA -ACGGAATAGTGCCGATAGCACAGA -ACGGAATAGTGCCGATAGGCAAGA -ACGGAATAGTGCCGATAGGGTTGA -ACGGAATAGTGCCGATAGTCCGAT -ACGGAATAGTGCCGATAGTGGCAT -ACGGAATAGTGCCGATAGCGAGAT -ACGGAATAGTGCCGATAGTACCAC -ACGGAATAGTGCCGATAGCAGAAC -ACGGAATAGTGCCGATAGGTCTAC -ACGGAATAGTGCCGATAGACGTAC -ACGGAATAGTGCCGATAGAGTGAC -ACGGAATAGTGCCGATAGCTGTAG -ACGGAATAGTGCCGATAGCCTAAG -ACGGAATAGTGCCGATAGGTTCAG -ACGGAATAGTGCCGATAGGCATAG -ACGGAATAGTGCCGATAGGACAAG -ACGGAATAGTGCCGATAGAAGCAG -ACGGAATAGTGCCGATAGCGTCAA -ACGGAATAGTGCCGATAGGCTGAA -ACGGAATAGTGCCGATAGAGTACG -ACGGAATAGTGCCGATAGATCCGA -ACGGAATAGTGCCGATAGATGGGA -ACGGAATAGTGCCGATAGGTGCAA -ACGGAATAGTGCCGATAGGAGGAA -ACGGAATAGTGCCGATAGCAGGTA -ACGGAATAGTGCCGATAGGACTCT -ACGGAATAGTGCCGATAGAGTCCT -ACGGAATAGTGCCGATAGTAAGCC -ACGGAATAGTGCCGATAGATAGCC -ACGGAATAGTGCCGATAGTAACCG -ACGGAATAGTGCCGATAGATGCCA -ACGGAATAGTGCAGACACGGAAAC -ACGGAATAGTGCAGACACAACACC -ACGGAATAGTGCAGACACATCGAG -ACGGAATAGTGCAGACACCTCCTT -ACGGAATAGTGCAGACACCCTGTT -ACGGAATAGTGCAGACACCGGTTT -ACGGAATAGTGCAGACACGTGGTT -ACGGAATAGTGCAGACACGCCTTT -ACGGAATAGTGCAGACACGGTCTT -ACGGAATAGTGCAGACACACGCTT -ACGGAATAGTGCAGACACAGCGTT -ACGGAATAGTGCAGACACTTCGTC -ACGGAATAGTGCAGACACTCTCTC -ACGGAATAGTGCAGACACTGGATC -ACGGAATAGTGCAGACACCACTTC -ACGGAATAGTGCAGACACGTACTC -ACGGAATAGTGCAGACACGATGTC -ACGGAATAGTGCAGACACACAGTC -ACGGAATAGTGCAGACACTTGCTG -ACGGAATAGTGCAGACACTCCATG -ACGGAATAGTGCAGACACTGTGTG -ACGGAATAGTGCAGACACCTAGTG -ACGGAATAGTGCAGACACCATCTG -ACGGAATAGTGCAGACACGAGTTG -ACGGAATAGTGCAGACACAGACTG -ACGGAATAGTGCAGACACTCGGTA -ACGGAATAGTGCAGACACTGCCTA -ACGGAATAGTGCAGACACCCACTA -ACGGAATAGTGCAGACACGGAGTA -ACGGAATAGTGCAGACACTCGTCT -ACGGAATAGTGCAGACACTGCACT -ACGGAATAGTGCAGACACCTGACT -ACGGAATAGTGCAGACACCAACCT -ACGGAATAGTGCAGACACGCTACT -ACGGAATAGTGCAGACACGGATCT -ACGGAATAGTGCAGACACAAGGCT -ACGGAATAGTGCAGACACTCAACC -ACGGAATAGTGCAGACACTGTTCC -ACGGAATAGTGCAGACACATTCCC -ACGGAATAGTGCAGACACTTCTCG -ACGGAATAGTGCAGACACTAGACG -ACGGAATAGTGCAGACACGTAACG -ACGGAATAGTGCAGACACACTTCG -ACGGAATAGTGCAGACACTACGCA -ACGGAATAGTGCAGACACCTTGCA -ACGGAATAGTGCAGACACCGAACA -ACGGAATAGTGCAGACACCAGTCA -ACGGAATAGTGCAGACACGATCCA -ACGGAATAGTGCAGACACACGACA -ACGGAATAGTGCAGACACAGCTCA -ACGGAATAGTGCAGACACTCACGT -ACGGAATAGTGCAGACACCGTAGT -ACGGAATAGTGCAGACACGTCAGT -ACGGAATAGTGCAGACACGAAGGT -ACGGAATAGTGCAGACACAACCGT -ACGGAATAGTGCAGACACTTGTGC -ACGGAATAGTGCAGACACCTAAGC -ACGGAATAGTGCAGACACACTAGC -ACGGAATAGTGCAGACACAGATGC -ACGGAATAGTGCAGACACTGAAGG -ACGGAATAGTGCAGACACCAATGG -ACGGAATAGTGCAGACACATGAGG -ACGGAATAGTGCAGACACAATGGG -ACGGAATAGTGCAGACACTCCTGA -ACGGAATAGTGCAGACACTAGCGA -ACGGAATAGTGCAGACACCACAGA -ACGGAATAGTGCAGACACGCAAGA -ACGGAATAGTGCAGACACGGTTGA -ACGGAATAGTGCAGACACTCCGAT -ACGGAATAGTGCAGACACTGGCAT -ACGGAATAGTGCAGACACCGAGAT -ACGGAATAGTGCAGACACTACCAC -ACGGAATAGTGCAGACACCAGAAC -ACGGAATAGTGCAGACACGTCTAC -ACGGAATAGTGCAGACACACGTAC -ACGGAATAGTGCAGACACAGTGAC -ACGGAATAGTGCAGACACCTGTAG -ACGGAATAGTGCAGACACCCTAAG -ACGGAATAGTGCAGACACGTTCAG -ACGGAATAGTGCAGACACGCATAG -ACGGAATAGTGCAGACACGACAAG -ACGGAATAGTGCAGACACAAGCAG -ACGGAATAGTGCAGACACCGTCAA -ACGGAATAGTGCAGACACGCTGAA -ACGGAATAGTGCAGACACAGTACG -ACGGAATAGTGCAGACACATCCGA -ACGGAATAGTGCAGACACATGGGA -ACGGAATAGTGCAGACACGTGCAA -ACGGAATAGTGCAGACACGAGGAA -ACGGAATAGTGCAGACACCAGGTA -ACGGAATAGTGCAGACACGACTCT -ACGGAATAGTGCAGACACAGTCCT -ACGGAATAGTGCAGACACTAAGCC -ACGGAATAGTGCAGACACATAGCC -ACGGAATAGTGCAGACACTAACCG -ACGGAATAGTGCAGACACATGCCA -ACGGAATAGTGCAGAGCAGGAAAC -ACGGAATAGTGCAGAGCAAACACC -ACGGAATAGTGCAGAGCAATCGAG -ACGGAATAGTGCAGAGCACTCCTT -ACGGAATAGTGCAGAGCACCTGTT -ACGGAATAGTGCAGAGCACGGTTT -ACGGAATAGTGCAGAGCAGTGGTT -ACGGAATAGTGCAGAGCAGCCTTT -ACGGAATAGTGCAGAGCAGGTCTT -ACGGAATAGTGCAGAGCAACGCTT -ACGGAATAGTGCAGAGCAAGCGTT -ACGGAATAGTGCAGAGCATTCGTC -ACGGAATAGTGCAGAGCATCTCTC -ACGGAATAGTGCAGAGCATGGATC -ACGGAATAGTGCAGAGCACACTTC -ACGGAATAGTGCAGAGCAGTACTC -ACGGAATAGTGCAGAGCAGATGTC -ACGGAATAGTGCAGAGCAACAGTC -ACGGAATAGTGCAGAGCATTGCTG -ACGGAATAGTGCAGAGCATCCATG -ACGGAATAGTGCAGAGCATGTGTG -ACGGAATAGTGCAGAGCACTAGTG -ACGGAATAGTGCAGAGCACATCTG -ACGGAATAGTGCAGAGCAGAGTTG -ACGGAATAGTGCAGAGCAAGACTG -ACGGAATAGTGCAGAGCATCGGTA -ACGGAATAGTGCAGAGCATGCCTA -ACGGAATAGTGCAGAGCACCACTA -ACGGAATAGTGCAGAGCAGGAGTA -ACGGAATAGTGCAGAGCATCGTCT -ACGGAATAGTGCAGAGCATGCACT -ACGGAATAGTGCAGAGCACTGACT -ACGGAATAGTGCAGAGCACAACCT -ACGGAATAGTGCAGAGCAGCTACT -ACGGAATAGTGCAGAGCAGGATCT -ACGGAATAGTGCAGAGCAAAGGCT -ACGGAATAGTGCAGAGCATCAACC -ACGGAATAGTGCAGAGCATGTTCC -ACGGAATAGTGCAGAGCAATTCCC -ACGGAATAGTGCAGAGCATTCTCG -ACGGAATAGTGCAGAGCATAGACG -ACGGAATAGTGCAGAGCAGTAACG -ACGGAATAGTGCAGAGCAACTTCG -ACGGAATAGTGCAGAGCATACGCA -ACGGAATAGTGCAGAGCACTTGCA -ACGGAATAGTGCAGAGCACGAACA -ACGGAATAGTGCAGAGCACAGTCA -ACGGAATAGTGCAGAGCAGATCCA -ACGGAATAGTGCAGAGCAACGACA -ACGGAATAGTGCAGAGCAAGCTCA -ACGGAATAGTGCAGAGCATCACGT -ACGGAATAGTGCAGAGCACGTAGT -ACGGAATAGTGCAGAGCAGTCAGT -ACGGAATAGTGCAGAGCAGAAGGT -ACGGAATAGTGCAGAGCAAACCGT -ACGGAATAGTGCAGAGCATTGTGC -ACGGAATAGTGCAGAGCACTAAGC -ACGGAATAGTGCAGAGCAACTAGC -ACGGAATAGTGCAGAGCAAGATGC -ACGGAATAGTGCAGAGCATGAAGG -ACGGAATAGTGCAGAGCACAATGG -ACGGAATAGTGCAGAGCAATGAGG -ACGGAATAGTGCAGAGCAAATGGG -ACGGAATAGTGCAGAGCATCCTGA -ACGGAATAGTGCAGAGCATAGCGA -ACGGAATAGTGCAGAGCACACAGA -ACGGAATAGTGCAGAGCAGCAAGA -ACGGAATAGTGCAGAGCAGGTTGA -ACGGAATAGTGCAGAGCATCCGAT -ACGGAATAGTGCAGAGCATGGCAT -ACGGAATAGTGCAGAGCACGAGAT -ACGGAATAGTGCAGAGCATACCAC -ACGGAATAGTGCAGAGCACAGAAC -ACGGAATAGTGCAGAGCAGTCTAC -ACGGAATAGTGCAGAGCAACGTAC -ACGGAATAGTGCAGAGCAAGTGAC -ACGGAATAGTGCAGAGCACTGTAG -ACGGAATAGTGCAGAGCACCTAAG -ACGGAATAGTGCAGAGCAGTTCAG -ACGGAATAGTGCAGAGCAGCATAG -ACGGAATAGTGCAGAGCAGACAAG -ACGGAATAGTGCAGAGCAAAGCAG -ACGGAATAGTGCAGAGCACGTCAA -ACGGAATAGTGCAGAGCAGCTGAA -ACGGAATAGTGCAGAGCAAGTACG -ACGGAATAGTGCAGAGCAATCCGA -ACGGAATAGTGCAGAGCAATGGGA -ACGGAATAGTGCAGAGCAGTGCAA -ACGGAATAGTGCAGAGCAGAGGAA -ACGGAATAGTGCAGAGCACAGGTA -ACGGAATAGTGCAGAGCAGACTCT -ACGGAATAGTGCAGAGCAAGTCCT -ACGGAATAGTGCAGAGCATAAGCC -ACGGAATAGTGCAGAGCAATAGCC -ACGGAATAGTGCAGAGCATAACCG -ACGGAATAGTGCAGAGCAATGCCA -ACGGAATAGTGCTGAGGTGGAAAC -ACGGAATAGTGCTGAGGTAACACC -ACGGAATAGTGCTGAGGTATCGAG -ACGGAATAGTGCTGAGGTCTCCTT -ACGGAATAGTGCTGAGGTCCTGTT -ACGGAATAGTGCTGAGGTCGGTTT -ACGGAATAGTGCTGAGGTGTGGTT -ACGGAATAGTGCTGAGGTGCCTTT -ACGGAATAGTGCTGAGGTGGTCTT -ACGGAATAGTGCTGAGGTACGCTT -ACGGAATAGTGCTGAGGTAGCGTT -ACGGAATAGTGCTGAGGTTTCGTC -ACGGAATAGTGCTGAGGTTCTCTC -ACGGAATAGTGCTGAGGTTGGATC -ACGGAATAGTGCTGAGGTCACTTC -ACGGAATAGTGCTGAGGTGTACTC -ACGGAATAGTGCTGAGGTGATGTC -ACGGAATAGTGCTGAGGTACAGTC -ACGGAATAGTGCTGAGGTTTGCTG -ACGGAATAGTGCTGAGGTTCCATG -ACGGAATAGTGCTGAGGTTGTGTG -ACGGAATAGTGCTGAGGTCTAGTG -ACGGAATAGTGCTGAGGTCATCTG -ACGGAATAGTGCTGAGGTGAGTTG -ACGGAATAGTGCTGAGGTAGACTG -ACGGAATAGTGCTGAGGTTCGGTA -ACGGAATAGTGCTGAGGTTGCCTA -ACGGAATAGTGCTGAGGTCCACTA -ACGGAATAGTGCTGAGGTGGAGTA -ACGGAATAGTGCTGAGGTTCGTCT -ACGGAATAGTGCTGAGGTTGCACT -ACGGAATAGTGCTGAGGTCTGACT -ACGGAATAGTGCTGAGGTCAACCT -ACGGAATAGTGCTGAGGTGCTACT -ACGGAATAGTGCTGAGGTGGATCT -ACGGAATAGTGCTGAGGTAAGGCT -ACGGAATAGTGCTGAGGTTCAACC -ACGGAATAGTGCTGAGGTTGTTCC -ACGGAATAGTGCTGAGGTATTCCC -ACGGAATAGTGCTGAGGTTTCTCG -ACGGAATAGTGCTGAGGTTAGACG -ACGGAATAGTGCTGAGGTGTAACG -ACGGAATAGTGCTGAGGTACTTCG -ACGGAATAGTGCTGAGGTTACGCA -ACGGAATAGTGCTGAGGTCTTGCA -ACGGAATAGTGCTGAGGTCGAACA -ACGGAATAGTGCTGAGGTCAGTCA -ACGGAATAGTGCTGAGGTGATCCA -ACGGAATAGTGCTGAGGTACGACA -ACGGAATAGTGCTGAGGTAGCTCA -ACGGAATAGTGCTGAGGTTCACGT -ACGGAATAGTGCTGAGGTCGTAGT -ACGGAATAGTGCTGAGGTGTCAGT -ACGGAATAGTGCTGAGGTGAAGGT -ACGGAATAGTGCTGAGGTAACCGT -ACGGAATAGTGCTGAGGTTTGTGC -ACGGAATAGTGCTGAGGTCTAAGC -ACGGAATAGTGCTGAGGTACTAGC -ACGGAATAGTGCTGAGGTAGATGC -ACGGAATAGTGCTGAGGTTGAAGG -ACGGAATAGTGCTGAGGTCAATGG -ACGGAATAGTGCTGAGGTATGAGG -ACGGAATAGTGCTGAGGTAATGGG -ACGGAATAGTGCTGAGGTTCCTGA -ACGGAATAGTGCTGAGGTTAGCGA -ACGGAATAGTGCTGAGGTCACAGA -ACGGAATAGTGCTGAGGTGCAAGA -ACGGAATAGTGCTGAGGTGGTTGA -ACGGAATAGTGCTGAGGTTCCGAT -ACGGAATAGTGCTGAGGTTGGCAT -ACGGAATAGTGCTGAGGTCGAGAT -ACGGAATAGTGCTGAGGTTACCAC -ACGGAATAGTGCTGAGGTCAGAAC -ACGGAATAGTGCTGAGGTGTCTAC -ACGGAATAGTGCTGAGGTACGTAC -ACGGAATAGTGCTGAGGTAGTGAC -ACGGAATAGTGCTGAGGTCTGTAG -ACGGAATAGTGCTGAGGTCCTAAG -ACGGAATAGTGCTGAGGTGTTCAG -ACGGAATAGTGCTGAGGTGCATAG -ACGGAATAGTGCTGAGGTGACAAG -ACGGAATAGTGCTGAGGTAAGCAG -ACGGAATAGTGCTGAGGTCGTCAA -ACGGAATAGTGCTGAGGTGCTGAA -ACGGAATAGTGCTGAGGTAGTACG -ACGGAATAGTGCTGAGGTATCCGA -ACGGAATAGTGCTGAGGTATGGGA -ACGGAATAGTGCTGAGGTGTGCAA -ACGGAATAGTGCTGAGGTGAGGAA -ACGGAATAGTGCTGAGGTCAGGTA -ACGGAATAGTGCTGAGGTGACTCT -ACGGAATAGTGCTGAGGTAGTCCT -ACGGAATAGTGCTGAGGTTAAGCC -ACGGAATAGTGCTGAGGTATAGCC -ACGGAATAGTGCTGAGGTTAACCG -ACGGAATAGTGCTGAGGTATGCCA -ACGGAATAGTGCGATTCCGGAAAC -ACGGAATAGTGCGATTCCAACACC -ACGGAATAGTGCGATTCCATCGAG -ACGGAATAGTGCGATTCCCTCCTT -ACGGAATAGTGCGATTCCCCTGTT -ACGGAATAGTGCGATTCCCGGTTT -ACGGAATAGTGCGATTCCGTGGTT -ACGGAATAGTGCGATTCCGCCTTT -ACGGAATAGTGCGATTCCGGTCTT -ACGGAATAGTGCGATTCCACGCTT -ACGGAATAGTGCGATTCCAGCGTT -ACGGAATAGTGCGATTCCTTCGTC -ACGGAATAGTGCGATTCCTCTCTC -ACGGAATAGTGCGATTCCTGGATC -ACGGAATAGTGCGATTCCCACTTC -ACGGAATAGTGCGATTCCGTACTC -ACGGAATAGTGCGATTCCGATGTC -ACGGAATAGTGCGATTCCACAGTC -ACGGAATAGTGCGATTCCTTGCTG -ACGGAATAGTGCGATTCCTCCATG -ACGGAATAGTGCGATTCCTGTGTG -ACGGAATAGTGCGATTCCCTAGTG -ACGGAATAGTGCGATTCCCATCTG -ACGGAATAGTGCGATTCCGAGTTG -ACGGAATAGTGCGATTCCAGACTG -ACGGAATAGTGCGATTCCTCGGTA -ACGGAATAGTGCGATTCCTGCCTA -ACGGAATAGTGCGATTCCCCACTA -ACGGAATAGTGCGATTCCGGAGTA -ACGGAATAGTGCGATTCCTCGTCT -ACGGAATAGTGCGATTCCTGCACT -ACGGAATAGTGCGATTCCCTGACT -ACGGAATAGTGCGATTCCCAACCT -ACGGAATAGTGCGATTCCGCTACT -ACGGAATAGTGCGATTCCGGATCT -ACGGAATAGTGCGATTCCAAGGCT -ACGGAATAGTGCGATTCCTCAACC -ACGGAATAGTGCGATTCCTGTTCC -ACGGAATAGTGCGATTCCATTCCC -ACGGAATAGTGCGATTCCTTCTCG -ACGGAATAGTGCGATTCCTAGACG -ACGGAATAGTGCGATTCCGTAACG -ACGGAATAGTGCGATTCCACTTCG -ACGGAATAGTGCGATTCCTACGCA -ACGGAATAGTGCGATTCCCTTGCA -ACGGAATAGTGCGATTCCCGAACA -ACGGAATAGTGCGATTCCCAGTCA -ACGGAATAGTGCGATTCCGATCCA -ACGGAATAGTGCGATTCCACGACA -ACGGAATAGTGCGATTCCAGCTCA -ACGGAATAGTGCGATTCCTCACGT -ACGGAATAGTGCGATTCCCGTAGT -ACGGAATAGTGCGATTCCGTCAGT -ACGGAATAGTGCGATTCCGAAGGT -ACGGAATAGTGCGATTCCAACCGT -ACGGAATAGTGCGATTCCTTGTGC -ACGGAATAGTGCGATTCCCTAAGC -ACGGAATAGTGCGATTCCACTAGC -ACGGAATAGTGCGATTCCAGATGC -ACGGAATAGTGCGATTCCTGAAGG -ACGGAATAGTGCGATTCCCAATGG -ACGGAATAGTGCGATTCCATGAGG -ACGGAATAGTGCGATTCCAATGGG -ACGGAATAGTGCGATTCCTCCTGA -ACGGAATAGTGCGATTCCTAGCGA -ACGGAATAGTGCGATTCCCACAGA -ACGGAATAGTGCGATTCCGCAAGA -ACGGAATAGTGCGATTCCGGTTGA -ACGGAATAGTGCGATTCCTCCGAT -ACGGAATAGTGCGATTCCTGGCAT -ACGGAATAGTGCGATTCCCGAGAT -ACGGAATAGTGCGATTCCTACCAC -ACGGAATAGTGCGATTCCCAGAAC -ACGGAATAGTGCGATTCCGTCTAC -ACGGAATAGTGCGATTCCACGTAC -ACGGAATAGTGCGATTCCAGTGAC -ACGGAATAGTGCGATTCCCTGTAG -ACGGAATAGTGCGATTCCCCTAAG -ACGGAATAGTGCGATTCCGTTCAG -ACGGAATAGTGCGATTCCGCATAG -ACGGAATAGTGCGATTCCGACAAG -ACGGAATAGTGCGATTCCAAGCAG -ACGGAATAGTGCGATTCCCGTCAA -ACGGAATAGTGCGATTCCGCTGAA -ACGGAATAGTGCGATTCCAGTACG -ACGGAATAGTGCGATTCCATCCGA -ACGGAATAGTGCGATTCCATGGGA -ACGGAATAGTGCGATTCCGTGCAA -ACGGAATAGTGCGATTCCGAGGAA -ACGGAATAGTGCGATTCCCAGGTA -ACGGAATAGTGCGATTCCGACTCT -ACGGAATAGTGCGATTCCAGTCCT -ACGGAATAGTGCGATTCCTAAGCC -ACGGAATAGTGCGATTCCATAGCC -ACGGAATAGTGCGATTCCTAACCG -ACGGAATAGTGCGATTCCATGCCA -ACGGAATAGTGCCATTGGGGAAAC -ACGGAATAGTGCCATTGGAACACC -ACGGAATAGTGCCATTGGATCGAG -ACGGAATAGTGCCATTGGCTCCTT -ACGGAATAGTGCCATTGGCCTGTT -ACGGAATAGTGCCATTGGCGGTTT -ACGGAATAGTGCCATTGGGTGGTT -ACGGAATAGTGCCATTGGGCCTTT -ACGGAATAGTGCCATTGGGGTCTT -ACGGAATAGTGCCATTGGACGCTT -ACGGAATAGTGCCATTGGAGCGTT -ACGGAATAGTGCCATTGGTTCGTC -ACGGAATAGTGCCATTGGTCTCTC -ACGGAATAGTGCCATTGGTGGATC -ACGGAATAGTGCCATTGGCACTTC -ACGGAATAGTGCCATTGGGTACTC -ACGGAATAGTGCCATTGGGATGTC -ACGGAATAGTGCCATTGGACAGTC -ACGGAATAGTGCCATTGGTTGCTG -ACGGAATAGTGCCATTGGTCCATG -ACGGAATAGTGCCATTGGTGTGTG -ACGGAATAGTGCCATTGGCTAGTG -ACGGAATAGTGCCATTGGCATCTG -ACGGAATAGTGCCATTGGGAGTTG -ACGGAATAGTGCCATTGGAGACTG -ACGGAATAGTGCCATTGGTCGGTA -ACGGAATAGTGCCATTGGTGCCTA -ACGGAATAGTGCCATTGGCCACTA -ACGGAATAGTGCCATTGGGGAGTA -ACGGAATAGTGCCATTGGTCGTCT -ACGGAATAGTGCCATTGGTGCACT -ACGGAATAGTGCCATTGGCTGACT -ACGGAATAGTGCCATTGGCAACCT -ACGGAATAGTGCCATTGGGCTACT -ACGGAATAGTGCCATTGGGGATCT -ACGGAATAGTGCCATTGGAAGGCT -ACGGAATAGTGCCATTGGTCAACC -ACGGAATAGTGCCATTGGTGTTCC -ACGGAATAGTGCCATTGGATTCCC -ACGGAATAGTGCCATTGGTTCTCG -ACGGAATAGTGCCATTGGTAGACG -ACGGAATAGTGCCATTGGGTAACG -ACGGAATAGTGCCATTGGACTTCG -ACGGAATAGTGCCATTGGTACGCA -ACGGAATAGTGCCATTGGCTTGCA -ACGGAATAGTGCCATTGGCGAACA -ACGGAATAGTGCCATTGGCAGTCA -ACGGAATAGTGCCATTGGGATCCA -ACGGAATAGTGCCATTGGACGACA -ACGGAATAGTGCCATTGGAGCTCA -ACGGAATAGTGCCATTGGTCACGT -ACGGAATAGTGCCATTGGCGTAGT -ACGGAATAGTGCCATTGGGTCAGT -ACGGAATAGTGCCATTGGGAAGGT -ACGGAATAGTGCCATTGGAACCGT -ACGGAATAGTGCCATTGGTTGTGC -ACGGAATAGTGCCATTGGCTAAGC -ACGGAATAGTGCCATTGGACTAGC -ACGGAATAGTGCCATTGGAGATGC -ACGGAATAGTGCCATTGGTGAAGG -ACGGAATAGTGCCATTGGCAATGG -ACGGAATAGTGCCATTGGATGAGG -ACGGAATAGTGCCATTGGAATGGG -ACGGAATAGTGCCATTGGTCCTGA -ACGGAATAGTGCCATTGGTAGCGA -ACGGAATAGTGCCATTGGCACAGA -ACGGAATAGTGCCATTGGGCAAGA -ACGGAATAGTGCCATTGGGGTTGA -ACGGAATAGTGCCATTGGTCCGAT -ACGGAATAGTGCCATTGGTGGCAT -ACGGAATAGTGCCATTGGCGAGAT -ACGGAATAGTGCCATTGGTACCAC -ACGGAATAGTGCCATTGGCAGAAC -ACGGAATAGTGCCATTGGGTCTAC -ACGGAATAGTGCCATTGGACGTAC -ACGGAATAGTGCCATTGGAGTGAC -ACGGAATAGTGCCATTGGCTGTAG -ACGGAATAGTGCCATTGGCCTAAG -ACGGAATAGTGCCATTGGGTTCAG -ACGGAATAGTGCCATTGGGCATAG -ACGGAATAGTGCCATTGGGACAAG -ACGGAATAGTGCCATTGGAAGCAG -ACGGAATAGTGCCATTGGCGTCAA -ACGGAATAGTGCCATTGGGCTGAA -ACGGAATAGTGCCATTGGAGTACG -ACGGAATAGTGCCATTGGATCCGA -ACGGAATAGTGCCATTGGATGGGA -ACGGAATAGTGCCATTGGGTGCAA -ACGGAATAGTGCCATTGGGAGGAA -ACGGAATAGTGCCATTGGCAGGTA -ACGGAATAGTGCCATTGGGACTCT -ACGGAATAGTGCCATTGGAGTCCT -ACGGAATAGTGCCATTGGTAAGCC -ACGGAATAGTGCCATTGGATAGCC -ACGGAATAGTGCCATTGGTAACCG -ACGGAATAGTGCCATTGGATGCCA -ACGGAATAGTGCGATCGAGGAAAC -ACGGAATAGTGCGATCGAAACACC -ACGGAATAGTGCGATCGAATCGAG -ACGGAATAGTGCGATCGACTCCTT -ACGGAATAGTGCGATCGACCTGTT -ACGGAATAGTGCGATCGACGGTTT -ACGGAATAGTGCGATCGAGTGGTT -ACGGAATAGTGCGATCGAGCCTTT -ACGGAATAGTGCGATCGAGGTCTT -ACGGAATAGTGCGATCGAACGCTT -ACGGAATAGTGCGATCGAAGCGTT -ACGGAATAGTGCGATCGATTCGTC -ACGGAATAGTGCGATCGATCTCTC -ACGGAATAGTGCGATCGATGGATC -ACGGAATAGTGCGATCGACACTTC -ACGGAATAGTGCGATCGAGTACTC -ACGGAATAGTGCGATCGAGATGTC -ACGGAATAGTGCGATCGAACAGTC -ACGGAATAGTGCGATCGATTGCTG -ACGGAATAGTGCGATCGATCCATG -ACGGAATAGTGCGATCGATGTGTG -ACGGAATAGTGCGATCGACTAGTG -ACGGAATAGTGCGATCGACATCTG -ACGGAATAGTGCGATCGAGAGTTG -ACGGAATAGTGCGATCGAAGACTG -ACGGAATAGTGCGATCGATCGGTA -ACGGAATAGTGCGATCGATGCCTA -ACGGAATAGTGCGATCGACCACTA -ACGGAATAGTGCGATCGAGGAGTA -ACGGAATAGTGCGATCGATCGTCT -ACGGAATAGTGCGATCGATGCACT -ACGGAATAGTGCGATCGACTGACT -ACGGAATAGTGCGATCGACAACCT -ACGGAATAGTGCGATCGAGCTACT -ACGGAATAGTGCGATCGAGGATCT -ACGGAATAGTGCGATCGAAAGGCT -ACGGAATAGTGCGATCGATCAACC -ACGGAATAGTGCGATCGATGTTCC -ACGGAATAGTGCGATCGAATTCCC -ACGGAATAGTGCGATCGATTCTCG -ACGGAATAGTGCGATCGATAGACG -ACGGAATAGTGCGATCGAGTAACG -ACGGAATAGTGCGATCGAACTTCG -ACGGAATAGTGCGATCGATACGCA -ACGGAATAGTGCGATCGACTTGCA -ACGGAATAGTGCGATCGACGAACA -ACGGAATAGTGCGATCGACAGTCA -ACGGAATAGTGCGATCGAGATCCA -ACGGAATAGTGCGATCGAACGACA -ACGGAATAGTGCGATCGAAGCTCA -ACGGAATAGTGCGATCGATCACGT -ACGGAATAGTGCGATCGACGTAGT -ACGGAATAGTGCGATCGAGTCAGT -ACGGAATAGTGCGATCGAGAAGGT -ACGGAATAGTGCGATCGAAACCGT -ACGGAATAGTGCGATCGATTGTGC -ACGGAATAGTGCGATCGACTAAGC -ACGGAATAGTGCGATCGAACTAGC -ACGGAATAGTGCGATCGAAGATGC -ACGGAATAGTGCGATCGATGAAGG -ACGGAATAGTGCGATCGACAATGG -ACGGAATAGTGCGATCGAATGAGG -ACGGAATAGTGCGATCGAAATGGG -ACGGAATAGTGCGATCGATCCTGA -ACGGAATAGTGCGATCGATAGCGA -ACGGAATAGTGCGATCGACACAGA -ACGGAATAGTGCGATCGAGCAAGA -ACGGAATAGTGCGATCGAGGTTGA -ACGGAATAGTGCGATCGATCCGAT -ACGGAATAGTGCGATCGATGGCAT -ACGGAATAGTGCGATCGACGAGAT -ACGGAATAGTGCGATCGATACCAC -ACGGAATAGTGCGATCGACAGAAC -ACGGAATAGTGCGATCGAGTCTAC -ACGGAATAGTGCGATCGAACGTAC -ACGGAATAGTGCGATCGAAGTGAC -ACGGAATAGTGCGATCGACTGTAG -ACGGAATAGTGCGATCGACCTAAG -ACGGAATAGTGCGATCGAGTTCAG -ACGGAATAGTGCGATCGAGCATAG -ACGGAATAGTGCGATCGAGACAAG -ACGGAATAGTGCGATCGAAAGCAG -ACGGAATAGTGCGATCGACGTCAA -ACGGAATAGTGCGATCGAGCTGAA -ACGGAATAGTGCGATCGAAGTACG -ACGGAATAGTGCGATCGAATCCGA -ACGGAATAGTGCGATCGAATGGGA -ACGGAATAGTGCGATCGAGTGCAA -ACGGAATAGTGCGATCGAGAGGAA -ACGGAATAGTGCGATCGACAGGTA -ACGGAATAGTGCGATCGAGACTCT -ACGGAATAGTGCGATCGAAGTCCT -ACGGAATAGTGCGATCGATAAGCC -ACGGAATAGTGCGATCGAATAGCC -ACGGAATAGTGCGATCGATAACCG -ACGGAATAGTGCGATCGAATGCCA -ACGGAATAGTGCCACTACGGAAAC -ACGGAATAGTGCCACTACAACACC -ACGGAATAGTGCCACTACATCGAG -ACGGAATAGTGCCACTACCTCCTT -ACGGAATAGTGCCACTACCCTGTT -ACGGAATAGTGCCACTACCGGTTT -ACGGAATAGTGCCACTACGTGGTT -ACGGAATAGTGCCACTACGCCTTT -ACGGAATAGTGCCACTACGGTCTT -ACGGAATAGTGCCACTACACGCTT -ACGGAATAGTGCCACTACAGCGTT -ACGGAATAGTGCCACTACTTCGTC -ACGGAATAGTGCCACTACTCTCTC -ACGGAATAGTGCCACTACTGGATC -ACGGAATAGTGCCACTACCACTTC -ACGGAATAGTGCCACTACGTACTC -ACGGAATAGTGCCACTACGATGTC -ACGGAATAGTGCCACTACACAGTC -ACGGAATAGTGCCACTACTTGCTG -ACGGAATAGTGCCACTACTCCATG -ACGGAATAGTGCCACTACTGTGTG -ACGGAATAGTGCCACTACCTAGTG -ACGGAATAGTGCCACTACCATCTG -ACGGAATAGTGCCACTACGAGTTG -ACGGAATAGTGCCACTACAGACTG -ACGGAATAGTGCCACTACTCGGTA -ACGGAATAGTGCCACTACTGCCTA -ACGGAATAGTGCCACTACCCACTA -ACGGAATAGTGCCACTACGGAGTA -ACGGAATAGTGCCACTACTCGTCT -ACGGAATAGTGCCACTACTGCACT -ACGGAATAGTGCCACTACCTGACT -ACGGAATAGTGCCACTACCAACCT -ACGGAATAGTGCCACTACGCTACT -ACGGAATAGTGCCACTACGGATCT -ACGGAATAGTGCCACTACAAGGCT -ACGGAATAGTGCCACTACTCAACC -ACGGAATAGTGCCACTACTGTTCC -ACGGAATAGTGCCACTACATTCCC -ACGGAATAGTGCCACTACTTCTCG -ACGGAATAGTGCCACTACTAGACG -ACGGAATAGTGCCACTACGTAACG -ACGGAATAGTGCCACTACACTTCG -ACGGAATAGTGCCACTACTACGCA -ACGGAATAGTGCCACTACCTTGCA -ACGGAATAGTGCCACTACCGAACA -ACGGAATAGTGCCACTACCAGTCA -ACGGAATAGTGCCACTACGATCCA -ACGGAATAGTGCCACTACACGACA -ACGGAATAGTGCCACTACAGCTCA -ACGGAATAGTGCCACTACTCACGT -ACGGAATAGTGCCACTACCGTAGT -ACGGAATAGTGCCACTACGTCAGT -ACGGAATAGTGCCACTACGAAGGT -ACGGAATAGTGCCACTACAACCGT -ACGGAATAGTGCCACTACTTGTGC -ACGGAATAGTGCCACTACCTAAGC -ACGGAATAGTGCCACTACACTAGC -ACGGAATAGTGCCACTACAGATGC -ACGGAATAGTGCCACTACTGAAGG -ACGGAATAGTGCCACTACCAATGG -ACGGAATAGTGCCACTACATGAGG -ACGGAATAGTGCCACTACAATGGG -ACGGAATAGTGCCACTACTCCTGA -ACGGAATAGTGCCACTACTAGCGA -ACGGAATAGTGCCACTACCACAGA -ACGGAATAGTGCCACTACGCAAGA -ACGGAATAGTGCCACTACGGTTGA -ACGGAATAGTGCCACTACTCCGAT -ACGGAATAGTGCCACTACTGGCAT -ACGGAATAGTGCCACTACCGAGAT -ACGGAATAGTGCCACTACTACCAC -ACGGAATAGTGCCACTACCAGAAC -ACGGAATAGTGCCACTACGTCTAC -ACGGAATAGTGCCACTACACGTAC -ACGGAATAGTGCCACTACAGTGAC -ACGGAATAGTGCCACTACCTGTAG -ACGGAATAGTGCCACTACCCTAAG -ACGGAATAGTGCCACTACGTTCAG -ACGGAATAGTGCCACTACGCATAG -ACGGAATAGTGCCACTACGACAAG -ACGGAATAGTGCCACTACAAGCAG -ACGGAATAGTGCCACTACCGTCAA -ACGGAATAGTGCCACTACGCTGAA -ACGGAATAGTGCCACTACAGTACG -ACGGAATAGTGCCACTACATCCGA -ACGGAATAGTGCCACTACATGGGA -ACGGAATAGTGCCACTACGTGCAA -ACGGAATAGTGCCACTACGAGGAA -ACGGAATAGTGCCACTACCAGGTA -ACGGAATAGTGCCACTACGACTCT -ACGGAATAGTGCCACTACAGTCCT -ACGGAATAGTGCCACTACTAAGCC -ACGGAATAGTGCCACTACATAGCC -ACGGAATAGTGCCACTACTAACCG -ACGGAATAGTGCCACTACATGCCA -ACGGAATAGTGCAACCAGGGAAAC -ACGGAATAGTGCAACCAGAACACC -ACGGAATAGTGCAACCAGATCGAG -ACGGAATAGTGCAACCAGCTCCTT -ACGGAATAGTGCAACCAGCCTGTT -ACGGAATAGTGCAACCAGCGGTTT -ACGGAATAGTGCAACCAGGTGGTT -ACGGAATAGTGCAACCAGGCCTTT -ACGGAATAGTGCAACCAGGGTCTT -ACGGAATAGTGCAACCAGACGCTT -ACGGAATAGTGCAACCAGAGCGTT -ACGGAATAGTGCAACCAGTTCGTC -ACGGAATAGTGCAACCAGTCTCTC -ACGGAATAGTGCAACCAGTGGATC -ACGGAATAGTGCAACCAGCACTTC -ACGGAATAGTGCAACCAGGTACTC -ACGGAATAGTGCAACCAGGATGTC -ACGGAATAGTGCAACCAGACAGTC -ACGGAATAGTGCAACCAGTTGCTG -ACGGAATAGTGCAACCAGTCCATG -ACGGAATAGTGCAACCAGTGTGTG -ACGGAATAGTGCAACCAGCTAGTG -ACGGAATAGTGCAACCAGCATCTG -ACGGAATAGTGCAACCAGGAGTTG -ACGGAATAGTGCAACCAGAGACTG -ACGGAATAGTGCAACCAGTCGGTA -ACGGAATAGTGCAACCAGTGCCTA -ACGGAATAGTGCAACCAGCCACTA -ACGGAATAGTGCAACCAGGGAGTA -ACGGAATAGTGCAACCAGTCGTCT -ACGGAATAGTGCAACCAGTGCACT -ACGGAATAGTGCAACCAGCTGACT -ACGGAATAGTGCAACCAGCAACCT -ACGGAATAGTGCAACCAGGCTACT -ACGGAATAGTGCAACCAGGGATCT -ACGGAATAGTGCAACCAGAAGGCT -ACGGAATAGTGCAACCAGTCAACC -ACGGAATAGTGCAACCAGTGTTCC -ACGGAATAGTGCAACCAGATTCCC -ACGGAATAGTGCAACCAGTTCTCG -ACGGAATAGTGCAACCAGTAGACG -ACGGAATAGTGCAACCAGGTAACG -ACGGAATAGTGCAACCAGACTTCG -ACGGAATAGTGCAACCAGTACGCA -ACGGAATAGTGCAACCAGCTTGCA -ACGGAATAGTGCAACCAGCGAACA -ACGGAATAGTGCAACCAGCAGTCA -ACGGAATAGTGCAACCAGGATCCA -ACGGAATAGTGCAACCAGACGACA -ACGGAATAGTGCAACCAGAGCTCA -ACGGAATAGTGCAACCAGTCACGT -ACGGAATAGTGCAACCAGCGTAGT -ACGGAATAGTGCAACCAGGTCAGT -ACGGAATAGTGCAACCAGGAAGGT -ACGGAATAGTGCAACCAGAACCGT -ACGGAATAGTGCAACCAGTTGTGC -ACGGAATAGTGCAACCAGCTAAGC -ACGGAATAGTGCAACCAGACTAGC -ACGGAATAGTGCAACCAGAGATGC -ACGGAATAGTGCAACCAGTGAAGG -ACGGAATAGTGCAACCAGCAATGG -ACGGAATAGTGCAACCAGATGAGG -ACGGAATAGTGCAACCAGAATGGG -ACGGAATAGTGCAACCAGTCCTGA -ACGGAATAGTGCAACCAGTAGCGA -ACGGAATAGTGCAACCAGCACAGA -ACGGAATAGTGCAACCAGGCAAGA -ACGGAATAGTGCAACCAGGGTTGA -ACGGAATAGTGCAACCAGTCCGAT -ACGGAATAGTGCAACCAGTGGCAT -ACGGAATAGTGCAACCAGCGAGAT -ACGGAATAGTGCAACCAGTACCAC -ACGGAATAGTGCAACCAGCAGAAC -ACGGAATAGTGCAACCAGGTCTAC -ACGGAATAGTGCAACCAGACGTAC -ACGGAATAGTGCAACCAGAGTGAC -ACGGAATAGTGCAACCAGCTGTAG -ACGGAATAGTGCAACCAGCCTAAG -ACGGAATAGTGCAACCAGGTTCAG -ACGGAATAGTGCAACCAGGCATAG -ACGGAATAGTGCAACCAGGACAAG -ACGGAATAGTGCAACCAGAAGCAG -ACGGAATAGTGCAACCAGCGTCAA -ACGGAATAGTGCAACCAGGCTGAA -ACGGAATAGTGCAACCAGAGTACG -ACGGAATAGTGCAACCAGATCCGA -ACGGAATAGTGCAACCAGATGGGA -ACGGAATAGTGCAACCAGGTGCAA -ACGGAATAGTGCAACCAGGAGGAA -ACGGAATAGTGCAACCAGCAGGTA -ACGGAATAGTGCAACCAGGACTCT -ACGGAATAGTGCAACCAGAGTCCT -ACGGAATAGTGCAACCAGTAAGCC -ACGGAATAGTGCAACCAGATAGCC -ACGGAATAGTGCAACCAGTAACCG -ACGGAATAGTGCAACCAGATGCCA -ACGGAATAGTGCTACGTCGGAAAC -ACGGAATAGTGCTACGTCAACACC -ACGGAATAGTGCTACGTCATCGAG -ACGGAATAGTGCTACGTCCTCCTT -ACGGAATAGTGCTACGTCCCTGTT -ACGGAATAGTGCTACGTCCGGTTT -ACGGAATAGTGCTACGTCGTGGTT -ACGGAATAGTGCTACGTCGCCTTT -ACGGAATAGTGCTACGTCGGTCTT -ACGGAATAGTGCTACGTCACGCTT -ACGGAATAGTGCTACGTCAGCGTT -ACGGAATAGTGCTACGTCTTCGTC -ACGGAATAGTGCTACGTCTCTCTC -ACGGAATAGTGCTACGTCTGGATC -ACGGAATAGTGCTACGTCCACTTC -ACGGAATAGTGCTACGTCGTACTC -ACGGAATAGTGCTACGTCGATGTC -ACGGAATAGTGCTACGTCACAGTC -ACGGAATAGTGCTACGTCTTGCTG -ACGGAATAGTGCTACGTCTCCATG -ACGGAATAGTGCTACGTCTGTGTG -ACGGAATAGTGCTACGTCCTAGTG -ACGGAATAGTGCTACGTCCATCTG -ACGGAATAGTGCTACGTCGAGTTG -ACGGAATAGTGCTACGTCAGACTG -ACGGAATAGTGCTACGTCTCGGTA -ACGGAATAGTGCTACGTCTGCCTA -ACGGAATAGTGCTACGTCCCACTA -ACGGAATAGTGCTACGTCGGAGTA -ACGGAATAGTGCTACGTCTCGTCT -ACGGAATAGTGCTACGTCTGCACT -ACGGAATAGTGCTACGTCCTGACT -ACGGAATAGTGCTACGTCCAACCT -ACGGAATAGTGCTACGTCGCTACT -ACGGAATAGTGCTACGTCGGATCT -ACGGAATAGTGCTACGTCAAGGCT -ACGGAATAGTGCTACGTCTCAACC -ACGGAATAGTGCTACGTCTGTTCC -ACGGAATAGTGCTACGTCATTCCC -ACGGAATAGTGCTACGTCTTCTCG -ACGGAATAGTGCTACGTCTAGACG -ACGGAATAGTGCTACGTCGTAACG -ACGGAATAGTGCTACGTCACTTCG -ACGGAATAGTGCTACGTCTACGCA -ACGGAATAGTGCTACGTCCTTGCA -ACGGAATAGTGCTACGTCCGAACA -ACGGAATAGTGCTACGTCCAGTCA -ACGGAATAGTGCTACGTCGATCCA -ACGGAATAGTGCTACGTCACGACA -ACGGAATAGTGCTACGTCAGCTCA -ACGGAATAGTGCTACGTCTCACGT -ACGGAATAGTGCTACGTCCGTAGT -ACGGAATAGTGCTACGTCGTCAGT -ACGGAATAGTGCTACGTCGAAGGT -ACGGAATAGTGCTACGTCAACCGT -ACGGAATAGTGCTACGTCTTGTGC -ACGGAATAGTGCTACGTCCTAAGC -ACGGAATAGTGCTACGTCACTAGC -ACGGAATAGTGCTACGTCAGATGC -ACGGAATAGTGCTACGTCTGAAGG -ACGGAATAGTGCTACGTCCAATGG -ACGGAATAGTGCTACGTCATGAGG -ACGGAATAGTGCTACGTCAATGGG -ACGGAATAGTGCTACGTCTCCTGA -ACGGAATAGTGCTACGTCTAGCGA -ACGGAATAGTGCTACGTCCACAGA -ACGGAATAGTGCTACGTCGCAAGA -ACGGAATAGTGCTACGTCGGTTGA -ACGGAATAGTGCTACGTCTCCGAT -ACGGAATAGTGCTACGTCTGGCAT -ACGGAATAGTGCTACGTCCGAGAT -ACGGAATAGTGCTACGTCTACCAC -ACGGAATAGTGCTACGTCCAGAAC -ACGGAATAGTGCTACGTCGTCTAC -ACGGAATAGTGCTACGTCACGTAC -ACGGAATAGTGCTACGTCAGTGAC -ACGGAATAGTGCTACGTCCTGTAG -ACGGAATAGTGCTACGTCCCTAAG -ACGGAATAGTGCTACGTCGTTCAG -ACGGAATAGTGCTACGTCGCATAG -ACGGAATAGTGCTACGTCGACAAG -ACGGAATAGTGCTACGTCAAGCAG -ACGGAATAGTGCTACGTCCGTCAA -ACGGAATAGTGCTACGTCGCTGAA -ACGGAATAGTGCTACGTCAGTACG -ACGGAATAGTGCTACGTCATCCGA -ACGGAATAGTGCTACGTCATGGGA -ACGGAATAGTGCTACGTCGTGCAA -ACGGAATAGTGCTACGTCGAGGAA -ACGGAATAGTGCTACGTCCAGGTA -ACGGAATAGTGCTACGTCGACTCT -ACGGAATAGTGCTACGTCAGTCCT -ACGGAATAGTGCTACGTCTAAGCC -ACGGAATAGTGCTACGTCATAGCC -ACGGAATAGTGCTACGTCTAACCG -ACGGAATAGTGCTACGTCATGCCA -ACGGAATAGTGCTACACGGGAAAC -ACGGAATAGTGCTACACGAACACC -ACGGAATAGTGCTACACGATCGAG -ACGGAATAGTGCTACACGCTCCTT -ACGGAATAGTGCTACACGCCTGTT -ACGGAATAGTGCTACACGCGGTTT -ACGGAATAGTGCTACACGGTGGTT -ACGGAATAGTGCTACACGGCCTTT -ACGGAATAGTGCTACACGGGTCTT -ACGGAATAGTGCTACACGACGCTT -ACGGAATAGTGCTACACGAGCGTT -ACGGAATAGTGCTACACGTTCGTC -ACGGAATAGTGCTACACGTCTCTC -ACGGAATAGTGCTACACGTGGATC -ACGGAATAGTGCTACACGCACTTC -ACGGAATAGTGCTACACGGTACTC -ACGGAATAGTGCTACACGGATGTC -ACGGAATAGTGCTACACGACAGTC -ACGGAATAGTGCTACACGTTGCTG -ACGGAATAGTGCTACACGTCCATG -ACGGAATAGTGCTACACGTGTGTG -ACGGAATAGTGCTACACGCTAGTG -ACGGAATAGTGCTACACGCATCTG -ACGGAATAGTGCTACACGGAGTTG -ACGGAATAGTGCTACACGAGACTG -ACGGAATAGTGCTACACGTCGGTA -ACGGAATAGTGCTACACGTGCCTA -ACGGAATAGTGCTACACGCCACTA -ACGGAATAGTGCTACACGGGAGTA -ACGGAATAGTGCTACACGTCGTCT -ACGGAATAGTGCTACACGTGCACT -ACGGAATAGTGCTACACGCTGACT -ACGGAATAGTGCTACACGCAACCT -ACGGAATAGTGCTACACGGCTACT -ACGGAATAGTGCTACACGGGATCT -ACGGAATAGTGCTACACGAAGGCT -ACGGAATAGTGCTACACGTCAACC -ACGGAATAGTGCTACACGTGTTCC -ACGGAATAGTGCTACACGATTCCC -ACGGAATAGTGCTACACGTTCTCG -ACGGAATAGTGCTACACGTAGACG -ACGGAATAGTGCTACACGGTAACG -ACGGAATAGTGCTACACGACTTCG -ACGGAATAGTGCTACACGTACGCA -ACGGAATAGTGCTACACGCTTGCA -ACGGAATAGTGCTACACGCGAACA -ACGGAATAGTGCTACACGCAGTCA -ACGGAATAGTGCTACACGGATCCA -ACGGAATAGTGCTACACGACGACA -ACGGAATAGTGCTACACGAGCTCA -ACGGAATAGTGCTACACGTCACGT -ACGGAATAGTGCTACACGCGTAGT -ACGGAATAGTGCTACACGGTCAGT -ACGGAATAGTGCTACACGGAAGGT -ACGGAATAGTGCTACACGAACCGT -ACGGAATAGTGCTACACGTTGTGC -ACGGAATAGTGCTACACGCTAAGC -ACGGAATAGTGCTACACGACTAGC -ACGGAATAGTGCTACACGAGATGC -ACGGAATAGTGCTACACGTGAAGG -ACGGAATAGTGCTACACGCAATGG -ACGGAATAGTGCTACACGATGAGG -ACGGAATAGTGCTACACGAATGGG -ACGGAATAGTGCTACACGTCCTGA -ACGGAATAGTGCTACACGTAGCGA -ACGGAATAGTGCTACACGCACAGA -ACGGAATAGTGCTACACGGCAAGA -ACGGAATAGTGCTACACGGGTTGA -ACGGAATAGTGCTACACGTCCGAT -ACGGAATAGTGCTACACGTGGCAT -ACGGAATAGTGCTACACGCGAGAT -ACGGAATAGTGCTACACGTACCAC -ACGGAATAGTGCTACACGCAGAAC -ACGGAATAGTGCTACACGGTCTAC -ACGGAATAGTGCTACACGACGTAC -ACGGAATAGTGCTACACGAGTGAC -ACGGAATAGTGCTACACGCTGTAG -ACGGAATAGTGCTACACGCCTAAG -ACGGAATAGTGCTACACGGTTCAG -ACGGAATAGTGCTACACGGCATAG -ACGGAATAGTGCTACACGGACAAG -ACGGAATAGTGCTACACGAAGCAG -ACGGAATAGTGCTACACGCGTCAA -ACGGAATAGTGCTACACGGCTGAA -ACGGAATAGTGCTACACGAGTACG -ACGGAATAGTGCTACACGATCCGA -ACGGAATAGTGCTACACGATGGGA -ACGGAATAGTGCTACACGGTGCAA -ACGGAATAGTGCTACACGGAGGAA -ACGGAATAGTGCTACACGCAGGTA -ACGGAATAGTGCTACACGGACTCT -ACGGAATAGTGCTACACGAGTCCT -ACGGAATAGTGCTACACGTAAGCC -ACGGAATAGTGCTACACGATAGCC -ACGGAATAGTGCTACACGTAACCG -ACGGAATAGTGCTACACGATGCCA -ACGGAATAGTGCGACAGTGGAAAC -ACGGAATAGTGCGACAGTAACACC -ACGGAATAGTGCGACAGTATCGAG -ACGGAATAGTGCGACAGTCTCCTT -ACGGAATAGTGCGACAGTCCTGTT -ACGGAATAGTGCGACAGTCGGTTT -ACGGAATAGTGCGACAGTGTGGTT -ACGGAATAGTGCGACAGTGCCTTT -ACGGAATAGTGCGACAGTGGTCTT -ACGGAATAGTGCGACAGTACGCTT -ACGGAATAGTGCGACAGTAGCGTT -ACGGAATAGTGCGACAGTTTCGTC -ACGGAATAGTGCGACAGTTCTCTC -ACGGAATAGTGCGACAGTTGGATC -ACGGAATAGTGCGACAGTCACTTC -ACGGAATAGTGCGACAGTGTACTC -ACGGAATAGTGCGACAGTGATGTC -ACGGAATAGTGCGACAGTACAGTC -ACGGAATAGTGCGACAGTTTGCTG -ACGGAATAGTGCGACAGTTCCATG -ACGGAATAGTGCGACAGTTGTGTG -ACGGAATAGTGCGACAGTCTAGTG -ACGGAATAGTGCGACAGTCATCTG -ACGGAATAGTGCGACAGTGAGTTG -ACGGAATAGTGCGACAGTAGACTG -ACGGAATAGTGCGACAGTTCGGTA -ACGGAATAGTGCGACAGTTGCCTA -ACGGAATAGTGCGACAGTCCACTA -ACGGAATAGTGCGACAGTGGAGTA -ACGGAATAGTGCGACAGTTCGTCT -ACGGAATAGTGCGACAGTTGCACT -ACGGAATAGTGCGACAGTCTGACT -ACGGAATAGTGCGACAGTCAACCT -ACGGAATAGTGCGACAGTGCTACT -ACGGAATAGTGCGACAGTGGATCT -ACGGAATAGTGCGACAGTAAGGCT -ACGGAATAGTGCGACAGTTCAACC -ACGGAATAGTGCGACAGTTGTTCC -ACGGAATAGTGCGACAGTATTCCC -ACGGAATAGTGCGACAGTTTCTCG -ACGGAATAGTGCGACAGTTAGACG -ACGGAATAGTGCGACAGTGTAACG -ACGGAATAGTGCGACAGTACTTCG -ACGGAATAGTGCGACAGTTACGCA -ACGGAATAGTGCGACAGTCTTGCA -ACGGAATAGTGCGACAGTCGAACA -ACGGAATAGTGCGACAGTCAGTCA -ACGGAATAGTGCGACAGTGATCCA -ACGGAATAGTGCGACAGTACGACA -ACGGAATAGTGCGACAGTAGCTCA -ACGGAATAGTGCGACAGTTCACGT -ACGGAATAGTGCGACAGTCGTAGT -ACGGAATAGTGCGACAGTGTCAGT -ACGGAATAGTGCGACAGTGAAGGT -ACGGAATAGTGCGACAGTAACCGT -ACGGAATAGTGCGACAGTTTGTGC -ACGGAATAGTGCGACAGTCTAAGC -ACGGAATAGTGCGACAGTACTAGC -ACGGAATAGTGCGACAGTAGATGC -ACGGAATAGTGCGACAGTTGAAGG -ACGGAATAGTGCGACAGTCAATGG -ACGGAATAGTGCGACAGTATGAGG -ACGGAATAGTGCGACAGTAATGGG -ACGGAATAGTGCGACAGTTCCTGA -ACGGAATAGTGCGACAGTTAGCGA -ACGGAATAGTGCGACAGTCACAGA -ACGGAATAGTGCGACAGTGCAAGA -ACGGAATAGTGCGACAGTGGTTGA -ACGGAATAGTGCGACAGTTCCGAT -ACGGAATAGTGCGACAGTTGGCAT -ACGGAATAGTGCGACAGTCGAGAT -ACGGAATAGTGCGACAGTTACCAC -ACGGAATAGTGCGACAGTCAGAAC -ACGGAATAGTGCGACAGTGTCTAC -ACGGAATAGTGCGACAGTACGTAC -ACGGAATAGTGCGACAGTAGTGAC -ACGGAATAGTGCGACAGTCTGTAG -ACGGAATAGTGCGACAGTCCTAAG -ACGGAATAGTGCGACAGTGTTCAG -ACGGAATAGTGCGACAGTGCATAG -ACGGAATAGTGCGACAGTGACAAG -ACGGAATAGTGCGACAGTAAGCAG -ACGGAATAGTGCGACAGTCGTCAA -ACGGAATAGTGCGACAGTGCTGAA -ACGGAATAGTGCGACAGTAGTACG -ACGGAATAGTGCGACAGTATCCGA -ACGGAATAGTGCGACAGTATGGGA -ACGGAATAGTGCGACAGTGTGCAA -ACGGAATAGTGCGACAGTGAGGAA -ACGGAATAGTGCGACAGTCAGGTA -ACGGAATAGTGCGACAGTGACTCT -ACGGAATAGTGCGACAGTAGTCCT -ACGGAATAGTGCGACAGTTAAGCC -ACGGAATAGTGCGACAGTATAGCC -ACGGAATAGTGCGACAGTTAACCG -ACGGAATAGTGCGACAGTATGCCA -ACGGAATAGTGCTAGCTGGGAAAC -ACGGAATAGTGCTAGCTGAACACC -ACGGAATAGTGCTAGCTGATCGAG -ACGGAATAGTGCTAGCTGCTCCTT -ACGGAATAGTGCTAGCTGCCTGTT -ACGGAATAGTGCTAGCTGCGGTTT -ACGGAATAGTGCTAGCTGGTGGTT -ACGGAATAGTGCTAGCTGGCCTTT -ACGGAATAGTGCTAGCTGGGTCTT -ACGGAATAGTGCTAGCTGACGCTT -ACGGAATAGTGCTAGCTGAGCGTT -ACGGAATAGTGCTAGCTGTTCGTC -ACGGAATAGTGCTAGCTGTCTCTC -ACGGAATAGTGCTAGCTGTGGATC -ACGGAATAGTGCTAGCTGCACTTC -ACGGAATAGTGCTAGCTGGTACTC -ACGGAATAGTGCTAGCTGGATGTC -ACGGAATAGTGCTAGCTGACAGTC -ACGGAATAGTGCTAGCTGTTGCTG -ACGGAATAGTGCTAGCTGTCCATG -ACGGAATAGTGCTAGCTGTGTGTG -ACGGAATAGTGCTAGCTGCTAGTG -ACGGAATAGTGCTAGCTGCATCTG -ACGGAATAGTGCTAGCTGGAGTTG -ACGGAATAGTGCTAGCTGAGACTG -ACGGAATAGTGCTAGCTGTCGGTA -ACGGAATAGTGCTAGCTGTGCCTA -ACGGAATAGTGCTAGCTGCCACTA -ACGGAATAGTGCTAGCTGGGAGTA -ACGGAATAGTGCTAGCTGTCGTCT -ACGGAATAGTGCTAGCTGTGCACT -ACGGAATAGTGCTAGCTGCTGACT -ACGGAATAGTGCTAGCTGCAACCT -ACGGAATAGTGCTAGCTGGCTACT -ACGGAATAGTGCTAGCTGGGATCT -ACGGAATAGTGCTAGCTGAAGGCT -ACGGAATAGTGCTAGCTGTCAACC -ACGGAATAGTGCTAGCTGTGTTCC -ACGGAATAGTGCTAGCTGATTCCC -ACGGAATAGTGCTAGCTGTTCTCG -ACGGAATAGTGCTAGCTGTAGACG -ACGGAATAGTGCTAGCTGGTAACG -ACGGAATAGTGCTAGCTGACTTCG -ACGGAATAGTGCTAGCTGTACGCA -ACGGAATAGTGCTAGCTGCTTGCA -ACGGAATAGTGCTAGCTGCGAACA -ACGGAATAGTGCTAGCTGCAGTCA -ACGGAATAGTGCTAGCTGGATCCA -ACGGAATAGTGCTAGCTGACGACA -ACGGAATAGTGCTAGCTGAGCTCA -ACGGAATAGTGCTAGCTGTCACGT -ACGGAATAGTGCTAGCTGCGTAGT -ACGGAATAGTGCTAGCTGGTCAGT -ACGGAATAGTGCTAGCTGGAAGGT -ACGGAATAGTGCTAGCTGAACCGT -ACGGAATAGTGCTAGCTGTTGTGC -ACGGAATAGTGCTAGCTGCTAAGC -ACGGAATAGTGCTAGCTGACTAGC -ACGGAATAGTGCTAGCTGAGATGC -ACGGAATAGTGCTAGCTGTGAAGG -ACGGAATAGTGCTAGCTGCAATGG -ACGGAATAGTGCTAGCTGATGAGG -ACGGAATAGTGCTAGCTGAATGGG -ACGGAATAGTGCTAGCTGTCCTGA -ACGGAATAGTGCTAGCTGTAGCGA -ACGGAATAGTGCTAGCTGCACAGA -ACGGAATAGTGCTAGCTGGCAAGA -ACGGAATAGTGCTAGCTGGGTTGA -ACGGAATAGTGCTAGCTGTCCGAT -ACGGAATAGTGCTAGCTGTGGCAT -ACGGAATAGTGCTAGCTGCGAGAT -ACGGAATAGTGCTAGCTGTACCAC -ACGGAATAGTGCTAGCTGCAGAAC -ACGGAATAGTGCTAGCTGGTCTAC -ACGGAATAGTGCTAGCTGACGTAC -ACGGAATAGTGCTAGCTGAGTGAC -ACGGAATAGTGCTAGCTGCTGTAG -ACGGAATAGTGCTAGCTGCCTAAG -ACGGAATAGTGCTAGCTGGTTCAG -ACGGAATAGTGCTAGCTGGCATAG -ACGGAATAGTGCTAGCTGGACAAG -ACGGAATAGTGCTAGCTGAAGCAG -ACGGAATAGTGCTAGCTGCGTCAA -ACGGAATAGTGCTAGCTGGCTGAA -ACGGAATAGTGCTAGCTGAGTACG -ACGGAATAGTGCTAGCTGATCCGA -ACGGAATAGTGCTAGCTGATGGGA -ACGGAATAGTGCTAGCTGGTGCAA -ACGGAATAGTGCTAGCTGGAGGAA -ACGGAATAGTGCTAGCTGCAGGTA -ACGGAATAGTGCTAGCTGGACTCT -ACGGAATAGTGCTAGCTGAGTCCT -ACGGAATAGTGCTAGCTGTAAGCC -ACGGAATAGTGCTAGCTGATAGCC -ACGGAATAGTGCTAGCTGTAACCG -ACGGAATAGTGCTAGCTGATGCCA -ACGGAATAGTGCAAGCCTGGAAAC -ACGGAATAGTGCAAGCCTAACACC -ACGGAATAGTGCAAGCCTATCGAG -ACGGAATAGTGCAAGCCTCTCCTT -ACGGAATAGTGCAAGCCTCCTGTT -ACGGAATAGTGCAAGCCTCGGTTT -ACGGAATAGTGCAAGCCTGTGGTT -ACGGAATAGTGCAAGCCTGCCTTT -ACGGAATAGTGCAAGCCTGGTCTT -ACGGAATAGTGCAAGCCTACGCTT -ACGGAATAGTGCAAGCCTAGCGTT -ACGGAATAGTGCAAGCCTTTCGTC -ACGGAATAGTGCAAGCCTTCTCTC -ACGGAATAGTGCAAGCCTTGGATC -ACGGAATAGTGCAAGCCTCACTTC -ACGGAATAGTGCAAGCCTGTACTC -ACGGAATAGTGCAAGCCTGATGTC -ACGGAATAGTGCAAGCCTACAGTC -ACGGAATAGTGCAAGCCTTTGCTG -ACGGAATAGTGCAAGCCTTCCATG -ACGGAATAGTGCAAGCCTTGTGTG -ACGGAATAGTGCAAGCCTCTAGTG -ACGGAATAGTGCAAGCCTCATCTG -ACGGAATAGTGCAAGCCTGAGTTG -ACGGAATAGTGCAAGCCTAGACTG -ACGGAATAGTGCAAGCCTTCGGTA -ACGGAATAGTGCAAGCCTTGCCTA -ACGGAATAGTGCAAGCCTCCACTA -ACGGAATAGTGCAAGCCTGGAGTA -ACGGAATAGTGCAAGCCTTCGTCT -ACGGAATAGTGCAAGCCTTGCACT -ACGGAATAGTGCAAGCCTCTGACT -ACGGAATAGTGCAAGCCTCAACCT -ACGGAATAGTGCAAGCCTGCTACT -ACGGAATAGTGCAAGCCTGGATCT -ACGGAATAGTGCAAGCCTAAGGCT -ACGGAATAGTGCAAGCCTTCAACC -ACGGAATAGTGCAAGCCTTGTTCC -ACGGAATAGTGCAAGCCTATTCCC -ACGGAATAGTGCAAGCCTTTCTCG -ACGGAATAGTGCAAGCCTTAGACG -ACGGAATAGTGCAAGCCTGTAACG -ACGGAATAGTGCAAGCCTACTTCG -ACGGAATAGTGCAAGCCTTACGCA -ACGGAATAGTGCAAGCCTCTTGCA -ACGGAATAGTGCAAGCCTCGAACA -ACGGAATAGTGCAAGCCTCAGTCA -ACGGAATAGTGCAAGCCTGATCCA -ACGGAATAGTGCAAGCCTACGACA -ACGGAATAGTGCAAGCCTAGCTCA -ACGGAATAGTGCAAGCCTTCACGT -ACGGAATAGTGCAAGCCTCGTAGT -ACGGAATAGTGCAAGCCTGTCAGT -ACGGAATAGTGCAAGCCTGAAGGT -ACGGAATAGTGCAAGCCTAACCGT -ACGGAATAGTGCAAGCCTTTGTGC -ACGGAATAGTGCAAGCCTCTAAGC -ACGGAATAGTGCAAGCCTACTAGC -ACGGAATAGTGCAAGCCTAGATGC -ACGGAATAGTGCAAGCCTTGAAGG -ACGGAATAGTGCAAGCCTCAATGG -ACGGAATAGTGCAAGCCTATGAGG -ACGGAATAGTGCAAGCCTAATGGG -ACGGAATAGTGCAAGCCTTCCTGA -ACGGAATAGTGCAAGCCTTAGCGA -ACGGAATAGTGCAAGCCTCACAGA -ACGGAATAGTGCAAGCCTGCAAGA -ACGGAATAGTGCAAGCCTGGTTGA -ACGGAATAGTGCAAGCCTTCCGAT -ACGGAATAGTGCAAGCCTTGGCAT -ACGGAATAGTGCAAGCCTCGAGAT -ACGGAATAGTGCAAGCCTTACCAC -ACGGAATAGTGCAAGCCTCAGAAC -ACGGAATAGTGCAAGCCTGTCTAC -ACGGAATAGTGCAAGCCTACGTAC -ACGGAATAGTGCAAGCCTAGTGAC -ACGGAATAGTGCAAGCCTCTGTAG -ACGGAATAGTGCAAGCCTCCTAAG -ACGGAATAGTGCAAGCCTGTTCAG -ACGGAATAGTGCAAGCCTGCATAG -ACGGAATAGTGCAAGCCTGACAAG -ACGGAATAGTGCAAGCCTAAGCAG -ACGGAATAGTGCAAGCCTCGTCAA -ACGGAATAGTGCAAGCCTGCTGAA -ACGGAATAGTGCAAGCCTAGTACG -ACGGAATAGTGCAAGCCTATCCGA -ACGGAATAGTGCAAGCCTATGGGA -ACGGAATAGTGCAAGCCTGTGCAA -ACGGAATAGTGCAAGCCTGAGGAA -ACGGAATAGTGCAAGCCTCAGGTA -ACGGAATAGTGCAAGCCTGACTCT -ACGGAATAGTGCAAGCCTAGTCCT -ACGGAATAGTGCAAGCCTTAAGCC -ACGGAATAGTGCAAGCCTATAGCC -ACGGAATAGTGCAAGCCTTAACCG -ACGGAATAGTGCAAGCCTATGCCA -ACGGAATAGTGCCAGGTTGGAAAC -ACGGAATAGTGCCAGGTTAACACC -ACGGAATAGTGCCAGGTTATCGAG -ACGGAATAGTGCCAGGTTCTCCTT -ACGGAATAGTGCCAGGTTCCTGTT -ACGGAATAGTGCCAGGTTCGGTTT -ACGGAATAGTGCCAGGTTGTGGTT -ACGGAATAGTGCCAGGTTGCCTTT -ACGGAATAGTGCCAGGTTGGTCTT -ACGGAATAGTGCCAGGTTACGCTT -ACGGAATAGTGCCAGGTTAGCGTT -ACGGAATAGTGCCAGGTTTTCGTC -ACGGAATAGTGCCAGGTTTCTCTC -ACGGAATAGTGCCAGGTTTGGATC -ACGGAATAGTGCCAGGTTCACTTC -ACGGAATAGTGCCAGGTTGTACTC -ACGGAATAGTGCCAGGTTGATGTC -ACGGAATAGTGCCAGGTTACAGTC -ACGGAATAGTGCCAGGTTTTGCTG -ACGGAATAGTGCCAGGTTTCCATG -ACGGAATAGTGCCAGGTTTGTGTG -ACGGAATAGTGCCAGGTTCTAGTG -ACGGAATAGTGCCAGGTTCATCTG -ACGGAATAGTGCCAGGTTGAGTTG -ACGGAATAGTGCCAGGTTAGACTG -ACGGAATAGTGCCAGGTTTCGGTA -ACGGAATAGTGCCAGGTTTGCCTA -ACGGAATAGTGCCAGGTTCCACTA -ACGGAATAGTGCCAGGTTGGAGTA -ACGGAATAGTGCCAGGTTTCGTCT -ACGGAATAGTGCCAGGTTTGCACT -ACGGAATAGTGCCAGGTTCTGACT -ACGGAATAGTGCCAGGTTCAACCT -ACGGAATAGTGCCAGGTTGCTACT -ACGGAATAGTGCCAGGTTGGATCT -ACGGAATAGTGCCAGGTTAAGGCT -ACGGAATAGTGCCAGGTTTCAACC -ACGGAATAGTGCCAGGTTTGTTCC -ACGGAATAGTGCCAGGTTATTCCC -ACGGAATAGTGCCAGGTTTTCTCG -ACGGAATAGTGCCAGGTTTAGACG -ACGGAATAGTGCCAGGTTGTAACG -ACGGAATAGTGCCAGGTTACTTCG -ACGGAATAGTGCCAGGTTTACGCA -ACGGAATAGTGCCAGGTTCTTGCA -ACGGAATAGTGCCAGGTTCGAACA -ACGGAATAGTGCCAGGTTCAGTCA -ACGGAATAGTGCCAGGTTGATCCA -ACGGAATAGTGCCAGGTTACGACA -ACGGAATAGTGCCAGGTTAGCTCA -ACGGAATAGTGCCAGGTTTCACGT -ACGGAATAGTGCCAGGTTCGTAGT -ACGGAATAGTGCCAGGTTGTCAGT -ACGGAATAGTGCCAGGTTGAAGGT -ACGGAATAGTGCCAGGTTAACCGT -ACGGAATAGTGCCAGGTTTTGTGC -ACGGAATAGTGCCAGGTTCTAAGC -ACGGAATAGTGCCAGGTTACTAGC -ACGGAATAGTGCCAGGTTAGATGC -ACGGAATAGTGCCAGGTTTGAAGG -ACGGAATAGTGCCAGGTTCAATGG -ACGGAATAGTGCCAGGTTATGAGG -ACGGAATAGTGCCAGGTTAATGGG -ACGGAATAGTGCCAGGTTTCCTGA -ACGGAATAGTGCCAGGTTTAGCGA -ACGGAATAGTGCCAGGTTCACAGA -ACGGAATAGTGCCAGGTTGCAAGA -ACGGAATAGTGCCAGGTTGGTTGA -ACGGAATAGTGCCAGGTTTCCGAT -ACGGAATAGTGCCAGGTTTGGCAT -ACGGAATAGTGCCAGGTTCGAGAT -ACGGAATAGTGCCAGGTTTACCAC -ACGGAATAGTGCCAGGTTCAGAAC -ACGGAATAGTGCCAGGTTGTCTAC -ACGGAATAGTGCCAGGTTACGTAC -ACGGAATAGTGCCAGGTTAGTGAC -ACGGAATAGTGCCAGGTTCTGTAG -ACGGAATAGTGCCAGGTTCCTAAG -ACGGAATAGTGCCAGGTTGTTCAG -ACGGAATAGTGCCAGGTTGCATAG -ACGGAATAGTGCCAGGTTGACAAG -ACGGAATAGTGCCAGGTTAAGCAG -ACGGAATAGTGCCAGGTTCGTCAA -ACGGAATAGTGCCAGGTTGCTGAA -ACGGAATAGTGCCAGGTTAGTACG -ACGGAATAGTGCCAGGTTATCCGA -ACGGAATAGTGCCAGGTTATGGGA -ACGGAATAGTGCCAGGTTGTGCAA -ACGGAATAGTGCCAGGTTGAGGAA -ACGGAATAGTGCCAGGTTCAGGTA -ACGGAATAGTGCCAGGTTGACTCT -ACGGAATAGTGCCAGGTTAGTCCT -ACGGAATAGTGCCAGGTTTAAGCC -ACGGAATAGTGCCAGGTTATAGCC -ACGGAATAGTGCCAGGTTTAACCG -ACGGAATAGTGCCAGGTTATGCCA -ACGGAATAGTGCTAGGCAGGAAAC -ACGGAATAGTGCTAGGCAAACACC -ACGGAATAGTGCTAGGCAATCGAG -ACGGAATAGTGCTAGGCACTCCTT -ACGGAATAGTGCTAGGCACCTGTT -ACGGAATAGTGCTAGGCACGGTTT -ACGGAATAGTGCTAGGCAGTGGTT -ACGGAATAGTGCTAGGCAGCCTTT -ACGGAATAGTGCTAGGCAGGTCTT -ACGGAATAGTGCTAGGCAACGCTT -ACGGAATAGTGCTAGGCAAGCGTT -ACGGAATAGTGCTAGGCATTCGTC -ACGGAATAGTGCTAGGCATCTCTC -ACGGAATAGTGCTAGGCATGGATC -ACGGAATAGTGCTAGGCACACTTC -ACGGAATAGTGCTAGGCAGTACTC -ACGGAATAGTGCTAGGCAGATGTC -ACGGAATAGTGCTAGGCAACAGTC -ACGGAATAGTGCTAGGCATTGCTG -ACGGAATAGTGCTAGGCATCCATG -ACGGAATAGTGCTAGGCATGTGTG -ACGGAATAGTGCTAGGCACTAGTG -ACGGAATAGTGCTAGGCACATCTG -ACGGAATAGTGCTAGGCAGAGTTG -ACGGAATAGTGCTAGGCAAGACTG -ACGGAATAGTGCTAGGCATCGGTA -ACGGAATAGTGCTAGGCATGCCTA -ACGGAATAGTGCTAGGCACCACTA -ACGGAATAGTGCTAGGCAGGAGTA -ACGGAATAGTGCTAGGCATCGTCT -ACGGAATAGTGCTAGGCATGCACT -ACGGAATAGTGCTAGGCACTGACT -ACGGAATAGTGCTAGGCACAACCT -ACGGAATAGTGCTAGGCAGCTACT -ACGGAATAGTGCTAGGCAGGATCT -ACGGAATAGTGCTAGGCAAAGGCT -ACGGAATAGTGCTAGGCATCAACC -ACGGAATAGTGCTAGGCATGTTCC -ACGGAATAGTGCTAGGCAATTCCC -ACGGAATAGTGCTAGGCATTCTCG -ACGGAATAGTGCTAGGCATAGACG -ACGGAATAGTGCTAGGCAGTAACG -ACGGAATAGTGCTAGGCAACTTCG -ACGGAATAGTGCTAGGCATACGCA -ACGGAATAGTGCTAGGCACTTGCA -ACGGAATAGTGCTAGGCACGAACA -ACGGAATAGTGCTAGGCACAGTCA -ACGGAATAGTGCTAGGCAGATCCA -ACGGAATAGTGCTAGGCAACGACA -ACGGAATAGTGCTAGGCAAGCTCA -ACGGAATAGTGCTAGGCATCACGT -ACGGAATAGTGCTAGGCACGTAGT -ACGGAATAGTGCTAGGCAGTCAGT -ACGGAATAGTGCTAGGCAGAAGGT -ACGGAATAGTGCTAGGCAAACCGT -ACGGAATAGTGCTAGGCATTGTGC -ACGGAATAGTGCTAGGCACTAAGC -ACGGAATAGTGCTAGGCAACTAGC -ACGGAATAGTGCTAGGCAAGATGC -ACGGAATAGTGCTAGGCATGAAGG -ACGGAATAGTGCTAGGCACAATGG -ACGGAATAGTGCTAGGCAATGAGG -ACGGAATAGTGCTAGGCAAATGGG -ACGGAATAGTGCTAGGCATCCTGA -ACGGAATAGTGCTAGGCATAGCGA -ACGGAATAGTGCTAGGCACACAGA -ACGGAATAGTGCTAGGCAGCAAGA -ACGGAATAGTGCTAGGCAGGTTGA -ACGGAATAGTGCTAGGCATCCGAT -ACGGAATAGTGCTAGGCATGGCAT -ACGGAATAGTGCTAGGCACGAGAT -ACGGAATAGTGCTAGGCATACCAC -ACGGAATAGTGCTAGGCACAGAAC -ACGGAATAGTGCTAGGCAGTCTAC -ACGGAATAGTGCTAGGCAACGTAC -ACGGAATAGTGCTAGGCAAGTGAC -ACGGAATAGTGCTAGGCACTGTAG -ACGGAATAGTGCTAGGCACCTAAG -ACGGAATAGTGCTAGGCAGTTCAG -ACGGAATAGTGCTAGGCAGCATAG -ACGGAATAGTGCTAGGCAGACAAG -ACGGAATAGTGCTAGGCAAAGCAG -ACGGAATAGTGCTAGGCACGTCAA -ACGGAATAGTGCTAGGCAGCTGAA -ACGGAATAGTGCTAGGCAAGTACG -ACGGAATAGTGCTAGGCAATCCGA -ACGGAATAGTGCTAGGCAATGGGA -ACGGAATAGTGCTAGGCAGTGCAA -ACGGAATAGTGCTAGGCAGAGGAA -ACGGAATAGTGCTAGGCACAGGTA -ACGGAATAGTGCTAGGCAGACTCT -ACGGAATAGTGCTAGGCAAGTCCT -ACGGAATAGTGCTAGGCATAAGCC -ACGGAATAGTGCTAGGCAATAGCC -ACGGAATAGTGCTAGGCATAACCG -ACGGAATAGTGCTAGGCAATGCCA -ACGGAATAGTGCAAGGACGGAAAC -ACGGAATAGTGCAAGGACAACACC -ACGGAATAGTGCAAGGACATCGAG -ACGGAATAGTGCAAGGACCTCCTT -ACGGAATAGTGCAAGGACCCTGTT -ACGGAATAGTGCAAGGACCGGTTT -ACGGAATAGTGCAAGGACGTGGTT -ACGGAATAGTGCAAGGACGCCTTT -ACGGAATAGTGCAAGGACGGTCTT -ACGGAATAGTGCAAGGACACGCTT -ACGGAATAGTGCAAGGACAGCGTT -ACGGAATAGTGCAAGGACTTCGTC -ACGGAATAGTGCAAGGACTCTCTC -ACGGAATAGTGCAAGGACTGGATC -ACGGAATAGTGCAAGGACCACTTC -ACGGAATAGTGCAAGGACGTACTC -ACGGAATAGTGCAAGGACGATGTC -ACGGAATAGTGCAAGGACACAGTC -ACGGAATAGTGCAAGGACTTGCTG -ACGGAATAGTGCAAGGACTCCATG -ACGGAATAGTGCAAGGACTGTGTG -ACGGAATAGTGCAAGGACCTAGTG -ACGGAATAGTGCAAGGACCATCTG -ACGGAATAGTGCAAGGACGAGTTG -ACGGAATAGTGCAAGGACAGACTG -ACGGAATAGTGCAAGGACTCGGTA -ACGGAATAGTGCAAGGACTGCCTA -ACGGAATAGTGCAAGGACCCACTA -ACGGAATAGTGCAAGGACGGAGTA -ACGGAATAGTGCAAGGACTCGTCT -ACGGAATAGTGCAAGGACTGCACT -ACGGAATAGTGCAAGGACCTGACT -ACGGAATAGTGCAAGGACCAACCT -ACGGAATAGTGCAAGGACGCTACT -ACGGAATAGTGCAAGGACGGATCT -ACGGAATAGTGCAAGGACAAGGCT -ACGGAATAGTGCAAGGACTCAACC -ACGGAATAGTGCAAGGACTGTTCC -ACGGAATAGTGCAAGGACATTCCC -ACGGAATAGTGCAAGGACTTCTCG -ACGGAATAGTGCAAGGACTAGACG -ACGGAATAGTGCAAGGACGTAACG -ACGGAATAGTGCAAGGACACTTCG -ACGGAATAGTGCAAGGACTACGCA -ACGGAATAGTGCAAGGACCTTGCA -ACGGAATAGTGCAAGGACCGAACA -ACGGAATAGTGCAAGGACCAGTCA -ACGGAATAGTGCAAGGACGATCCA -ACGGAATAGTGCAAGGACACGACA -ACGGAATAGTGCAAGGACAGCTCA -ACGGAATAGTGCAAGGACTCACGT -ACGGAATAGTGCAAGGACCGTAGT -ACGGAATAGTGCAAGGACGTCAGT -ACGGAATAGTGCAAGGACGAAGGT -ACGGAATAGTGCAAGGACAACCGT -ACGGAATAGTGCAAGGACTTGTGC -ACGGAATAGTGCAAGGACCTAAGC -ACGGAATAGTGCAAGGACACTAGC -ACGGAATAGTGCAAGGACAGATGC -ACGGAATAGTGCAAGGACTGAAGG -ACGGAATAGTGCAAGGACCAATGG -ACGGAATAGTGCAAGGACATGAGG -ACGGAATAGTGCAAGGACAATGGG -ACGGAATAGTGCAAGGACTCCTGA -ACGGAATAGTGCAAGGACTAGCGA -ACGGAATAGTGCAAGGACCACAGA -ACGGAATAGTGCAAGGACGCAAGA -ACGGAATAGTGCAAGGACGGTTGA -ACGGAATAGTGCAAGGACTCCGAT -ACGGAATAGTGCAAGGACTGGCAT -ACGGAATAGTGCAAGGACCGAGAT -ACGGAATAGTGCAAGGACTACCAC -ACGGAATAGTGCAAGGACCAGAAC -ACGGAATAGTGCAAGGACGTCTAC -ACGGAATAGTGCAAGGACACGTAC -ACGGAATAGTGCAAGGACAGTGAC -ACGGAATAGTGCAAGGACCTGTAG -ACGGAATAGTGCAAGGACCCTAAG -ACGGAATAGTGCAAGGACGTTCAG -ACGGAATAGTGCAAGGACGCATAG -ACGGAATAGTGCAAGGACGACAAG -ACGGAATAGTGCAAGGACAAGCAG -ACGGAATAGTGCAAGGACCGTCAA -ACGGAATAGTGCAAGGACGCTGAA -ACGGAATAGTGCAAGGACAGTACG -ACGGAATAGTGCAAGGACATCCGA -ACGGAATAGTGCAAGGACATGGGA -ACGGAATAGTGCAAGGACGTGCAA -ACGGAATAGTGCAAGGACGAGGAA -ACGGAATAGTGCAAGGACCAGGTA -ACGGAATAGTGCAAGGACGACTCT -ACGGAATAGTGCAAGGACAGTCCT -ACGGAATAGTGCAAGGACTAAGCC -ACGGAATAGTGCAAGGACATAGCC -ACGGAATAGTGCAAGGACTAACCG -ACGGAATAGTGCAAGGACATGCCA -ACGGAATAGTGCCAGAAGGGAAAC -ACGGAATAGTGCCAGAAGAACACC -ACGGAATAGTGCCAGAAGATCGAG -ACGGAATAGTGCCAGAAGCTCCTT -ACGGAATAGTGCCAGAAGCCTGTT -ACGGAATAGTGCCAGAAGCGGTTT -ACGGAATAGTGCCAGAAGGTGGTT -ACGGAATAGTGCCAGAAGGCCTTT -ACGGAATAGTGCCAGAAGGGTCTT -ACGGAATAGTGCCAGAAGACGCTT -ACGGAATAGTGCCAGAAGAGCGTT -ACGGAATAGTGCCAGAAGTTCGTC -ACGGAATAGTGCCAGAAGTCTCTC -ACGGAATAGTGCCAGAAGTGGATC -ACGGAATAGTGCCAGAAGCACTTC -ACGGAATAGTGCCAGAAGGTACTC -ACGGAATAGTGCCAGAAGGATGTC -ACGGAATAGTGCCAGAAGACAGTC -ACGGAATAGTGCCAGAAGTTGCTG -ACGGAATAGTGCCAGAAGTCCATG -ACGGAATAGTGCCAGAAGTGTGTG -ACGGAATAGTGCCAGAAGCTAGTG -ACGGAATAGTGCCAGAAGCATCTG -ACGGAATAGTGCCAGAAGGAGTTG -ACGGAATAGTGCCAGAAGAGACTG -ACGGAATAGTGCCAGAAGTCGGTA -ACGGAATAGTGCCAGAAGTGCCTA -ACGGAATAGTGCCAGAAGCCACTA -ACGGAATAGTGCCAGAAGGGAGTA -ACGGAATAGTGCCAGAAGTCGTCT -ACGGAATAGTGCCAGAAGTGCACT -ACGGAATAGTGCCAGAAGCTGACT -ACGGAATAGTGCCAGAAGCAACCT -ACGGAATAGTGCCAGAAGGCTACT -ACGGAATAGTGCCAGAAGGGATCT -ACGGAATAGTGCCAGAAGAAGGCT -ACGGAATAGTGCCAGAAGTCAACC -ACGGAATAGTGCCAGAAGTGTTCC -ACGGAATAGTGCCAGAAGATTCCC -ACGGAATAGTGCCAGAAGTTCTCG -ACGGAATAGTGCCAGAAGTAGACG -ACGGAATAGTGCCAGAAGGTAACG -ACGGAATAGTGCCAGAAGACTTCG -ACGGAATAGTGCCAGAAGTACGCA -ACGGAATAGTGCCAGAAGCTTGCA -ACGGAATAGTGCCAGAAGCGAACA -ACGGAATAGTGCCAGAAGCAGTCA -ACGGAATAGTGCCAGAAGGATCCA -ACGGAATAGTGCCAGAAGACGACA -ACGGAATAGTGCCAGAAGAGCTCA -ACGGAATAGTGCCAGAAGTCACGT -ACGGAATAGTGCCAGAAGCGTAGT -ACGGAATAGTGCCAGAAGGTCAGT -ACGGAATAGTGCCAGAAGGAAGGT -ACGGAATAGTGCCAGAAGAACCGT -ACGGAATAGTGCCAGAAGTTGTGC -ACGGAATAGTGCCAGAAGCTAAGC -ACGGAATAGTGCCAGAAGACTAGC -ACGGAATAGTGCCAGAAGAGATGC -ACGGAATAGTGCCAGAAGTGAAGG -ACGGAATAGTGCCAGAAGCAATGG -ACGGAATAGTGCCAGAAGATGAGG -ACGGAATAGTGCCAGAAGAATGGG -ACGGAATAGTGCCAGAAGTCCTGA -ACGGAATAGTGCCAGAAGTAGCGA -ACGGAATAGTGCCAGAAGCACAGA -ACGGAATAGTGCCAGAAGGCAAGA -ACGGAATAGTGCCAGAAGGGTTGA -ACGGAATAGTGCCAGAAGTCCGAT -ACGGAATAGTGCCAGAAGTGGCAT -ACGGAATAGTGCCAGAAGCGAGAT -ACGGAATAGTGCCAGAAGTACCAC -ACGGAATAGTGCCAGAAGCAGAAC -ACGGAATAGTGCCAGAAGGTCTAC -ACGGAATAGTGCCAGAAGACGTAC -ACGGAATAGTGCCAGAAGAGTGAC -ACGGAATAGTGCCAGAAGCTGTAG -ACGGAATAGTGCCAGAAGCCTAAG -ACGGAATAGTGCCAGAAGGTTCAG -ACGGAATAGTGCCAGAAGGCATAG -ACGGAATAGTGCCAGAAGGACAAG -ACGGAATAGTGCCAGAAGAAGCAG -ACGGAATAGTGCCAGAAGCGTCAA -ACGGAATAGTGCCAGAAGGCTGAA -ACGGAATAGTGCCAGAAGAGTACG -ACGGAATAGTGCCAGAAGATCCGA -ACGGAATAGTGCCAGAAGATGGGA -ACGGAATAGTGCCAGAAGGTGCAA -ACGGAATAGTGCCAGAAGGAGGAA -ACGGAATAGTGCCAGAAGCAGGTA -ACGGAATAGTGCCAGAAGGACTCT -ACGGAATAGTGCCAGAAGAGTCCT -ACGGAATAGTGCCAGAAGTAAGCC -ACGGAATAGTGCCAGAAGATAGCC -ACGGAATAGTGCCAGAAGTAACCG -ACGGAATAGTGCCAGAAGATGCCA -ACGGAATAGTGCCAACGTGGAAAC -ACGGAATAGTGCCAACGTAACACC -ACGGAATAGTGCCAACGTATCGAG -ACGGAATAGTGCCAACGTCTCCTT -ACGGAATAGTGCCAACGTCCTGTT -ACGGAATAGTGCCAACGTCGGTTT -ACGGAATAGTGCCAACGTGTGGTT -ACGGAATAGTGCCAACGTGCCTTT -ACGGAATAGTGCCAACGTGGTCTT -ACGGAATAGTGCCAACGTACGCTT -ACGGAATAGTGCCAACGTAGCGTT -ACGGAATAGTGCCAACGTTTCGTC -ACGGAATAGTGCCAACGTTCTCTC -ACGGAATAGTGCCAACGTTGGATC -ACGGAATAGTGCCAACGTCACTTC -ACGGAATAGTGCCAACGTGTACTC -ACGGAATAGTGCCAACGTGATGTC -ACGGAATAGTGCCAACGTACAGTC -ACGGAATAGTGCCAACGTTTGCTG -ACGGAATAGTGCCAACGTTCCATG -ACGGAATAGTGCCAACGTTGTGTG -ACGGAATAGTGCCAACGTCTAGTG -ACGGAATAGTGCCAACGTCATCTG -ACGGAATAGTGCCAACGTGAGTTG -ACGGAATAGTGCCAACGTAGACTG -ACGGAATAGTGCCAACGTTCGGTA -ACGGAATAGTGCCAACGTTGCCTA -ACGGAATAGTGCCAACGTCCACTA -ACGGAATAGTGCCAACGTGGAGTA -ACGGAATAGTGCCAACGTTCGTCT -ACGGAATAGTGCCAACGTTGCACT -ACGGAATAGTGCCAACGTCTGACT -ACGGAATAGTGCCAACGTCAACCT -ACGGAATAGTGCCAACGTGCTACT -ACGGAATAGTGCCAACGTGGATCT -ACGGAATAGTGCCAACGTAAGGCT -ACGGAATAGTGCCAACGTTCAACC -ACGGAATAGTGCCAACGTTGTTCC -ACGGAATAGTGCCAACGTATTCCC -ACGGAATAGTGCCAACGTTTCTCG -ACGGAATAGTGCCAACGTTAGACG -ACGGAATAGTGCCAACGTGTAACG -ACGGAATAGTGCCAACGTACTTCG -ACGGAATAGTGCCAACGTTACGCA -ACGGAATAGTGCCAACGTCTTGCA -ACGGAATAGTGCCAACGTCGAACA -ACGGAATAGTGCCAACGTCAGTCA -ACGGAATAGTGCCAACGTGATCCA -ACGGAATAGTGCCAACGTACGACA -ACGGAATAGTGCCAACGTAGCTCA -ACGGAATAGTGCCAACGTTCACGT -ACGGAATAGTGCCAACGTCGTAGT -ACGGAATAGTGCCAACGTGTCAGT -ACGGAATAGTGCCAACGTGAAGGT -ACGGAATAGTGCCAACGTAACCGT -ACGGAATAGTGCCAACGTTTGTGC -ACGGAATAGTGCCAACGTCTAAGC -ACGGAATAGTGCCAACGTACTAGC -ACGGAATAGTGCCAACGTAGATGC -ACGGAATAGTGCCAACGTTGAAGG -ACGGAATAGTGCCAACGTCAATGG -ACGGAATAGTGCCAACGTATGAGG -ACGGAATAGTGCCAACGTAATGGG -ACGGAATAGTGCCAACGTTCCTGA -ACGGAATAGTGCCAACGTTAGCGA -ACGGAATAGTGCCAACGTCACAGA -ACGGAATAGTGCCAACGTGCAAGA -ACGGAATAGTGCCAACGTGGTTGA -ACGGAATAGTGCCAACGTTCCGAT -ACGGAATAGTGCCAACGTTGGCAT -ACGGAATAGTGCCAACGTCGAGAT -ACGGAATAGTGCCAACGTTACCAC -ACGGAATAGTGCCAACGTCAGAAC -ACGGAATAGTGCCAACGTGTCTAC -ACGGAATAGTGCCAACGTACGTAC -ACGGAATAGTGCCAACGTAGTGAC -ACGGAATAGTGCCAACGTCTGTAG -ACGGAATAGTGCCAACGTCCTAAG -ACGGAATAGTGCCAACGTGTTCAG -ACGGAATAGTGCCAACGTGCATAG -ACGGAATAGTGCCAACGTGACAAG -ACGGAATAGTGCCAACGTAAGCAG -ACGGAATAGTGCCAACGTCGTCAA -ACGGAATAGTGCCAACGTGCTGAA -ACGGAATAGTGCCAACGTAGTACG -ACGGAATAGTGCCAACGTATCCGA -ACGGAATAGTGCCAACGTATGGGA -ACGGAATAGTGCCAACGTGTGCAA -ACGGAATAGTGCCAACGTGAGGAA -ACGGAATAGTGCCAACGTCAGGTA -ACGGAATAGTGCCAACGTGACTCT -ACGGAATAGTGCCAACGTAGTCCT -ACGGAATAGTGCCAACGTTAAGCC -ACGGAATAGTGCCAACGTATAGCC -ACGGAATAGTGCCAACGTTAACCG -ACGGAATAGTGCCAACGTATGCCA -ACGGAATAGTGCGAAGCTGGAAAC -ACGGAATAGTGCGAAGCTAACACC -ACGGAATAGTGCGAAGCTATCGAG -ACGGAATAGTGCGAAGCTCTCCTT -ACGGAATAGTGCGAAGCTCCTGTT -ACGGAATAGTGCGAAGCTCGGTTT -ACGGAATAGTGCGAAGCTGTGGTT -ACGGAATAGTGCGAAGCTGCCTTT -ACGGAATAGTGCGAAGCTGGTCTT -ACGGAATAGTGCGAAGCTACGCTT -ACGGAATAGTGCGAAGCTAGCGTT -ACGGAATAGTGCGAAGCTTTCGTC -ACGGAATAGTGCGAAGCTTCTCTC -ACGGAATAGTGCGAAGCTTGGATC -ACGGAATAGTGCGAAGCTCACTTC -ACGGAATAGTGCGAAGCTGTACTC -ACGGAATAGTGCGAAGCTGATGTC -ACGGAATAGTGCGAAGCTACAGTC -ACGGAATAGTGCGAAGCTTTGCTG -ACGGAATAGTGCGAAGCTTCCATG -ACGGAATAGTGCGAAGCTTGTGTG -ACGGAATAGTGCGAAGCTCTAGTG -ACGGAATAGTGCGAAGCTCATCTG -ACGGAATAGTGCGAAGCTGAGTTG -ACGGAATAGTGCGAAGCTAGACTG -ACGGAATAGTGCGAAGCTTCGGTA -ACGGAATAGTGCGAAGCTTGCCTA -ACGGAATAGTGCGAAGCTCCACTA -ACGGAATAGTGCGAAGCTGGAGTA -ACGGAATAGTGCGAAGCTTCGTCT -ACGGAATAGTGCGAAGCTTGCACT -ACGGAATAGTGCGAAGCTCTGACT -ACGGAATAGTGCGAAGCTCAACCT -ACGGAATAGTGCGAAGCTGCTACT -ACGGAATAGTGCGAAGCTGGATCT -ACGGAATAGTGCGAAGCTAAGGCT -ACGGAATAGTGCGAAGCTTCAACC -ACGGAATAGTGCGAAGCTTGTTCC -ACGGAATAGTGCGAAGCTATTCCC -ACGGAATAGTGCGAAGCTTTCTCG -ACGGAATAGTGCGAAGCTTAGACG -ACGGAATAGTGCGAAGCTGTAACG -ACGGAATAGTGCGAAGCTACTTCG -ACGGAATAGTGCGAAGCTTACGCA -ACGGAATAGTGCGAAGCTCTTGCA -ACGGAATAGTGCGAAGCTCGAACA -ACGGAATAGTGCGAAGCTCAGTCA -ACGGAATAGTGCGAAGCTGATCCA -ACGGAATAGTGCGAAGCTACGACA -ACGGAATAGTGCGAAGCTAGCTCA -ACGGAATAGTGCGAAGCTTCACGT -ACGGAATAGTGCGAAGCTCGTAGT -ACGGAATAGTGCGAAGCTGTCAGT -ACGGAATAGTGCGAAGCTGAAGGT -ACGGAATAGTGCGAAGCTAACCGT -ACGGAATAGTGCGAAGCTTTGTGC -ACGGAATAGTGCGAAGCTCTAAGC -ACGGAATAGTGCGAAGCTACTAGC -ACGGAATAGTGCGAAGCTAGATGC -ACGGAATAGTGCGAAGCTTGAAGG -ACGGAATAGTGCGAAGCTCAATGG -ACGGAATAGTGCGAAGCTATGAGG -ACGGAATAGTGCGAAGCTAATGGG -ACGGAATAGTGCGAAGCTTCCTGA -ACGGAATAGTGCGAAGCTTAGCGA -ACGGAATAGTGCGAAGCTCACAGA -ACGGAATAGTGCGAAGCTGCAAGA -ACGGAATAGTGCGAAGCTGGTTGA -ACGGAATAGTGCGAAGCTTCCGAT -ACGGAATAGTGCGAAGCTTGGCAT -ACGGAATAGTGCGAAGCTCGAGAT -ACGGAATAGTGCGAAGCTTACCAC -ACGGAATAGTGCGAAGCTCAGAAC -ACGGAATAGTGCGAAGCTGTCTAC -ACGGAATAGTGCGAAGCTACGTAC -ACGGAATAGTGCGAAGCTAGTGAC -ACGGAATAGTGCGAAGCTCTGTAG -ACGGAATAGTGCGAAGCTCCTAAG -ACGGAATAGTGCGAAGCTGTTCAG -ACGGAATAGTGCGAAGCTGCATAG -ACGGAATAGTGCGAAGCTGACAAG -ACGGAATAGTGCGAAGCTAAGCAG -ACGGAATAGTGCGAAGCTCGTCAA -ACGGAATAGTGCGAAGCTGCTGAA -ACGGAATAGTGCGAAGCTAGTACG -ACGGAATAGTGCGAAGCTATCCGA -ACGGAATAGTGCGAAGCTATGGGA -ACGGAATAGTGCGAAGCTGTGCAA -ACGGAATAGTGCGAAGCTGAGGAA -ACGGAATAGTGCGAAGCTCAGGTA -ACGGAATAGTGCGAAGCTGACTCT -ACGGAATAGTGCGAAGCTAGTCCT -ACGGAATAGTGCGAAGCTTAAGCC -ACGGAATAGTGCGAAGCTATAGCC -ACGGAATAGTGCGAAGCTTAACCG -ACGGAATAGTGCGAAGCTATGCCA -ACGGAATAGTGCACGAGTGGAAAC -ACGGAATAGTGCACGAGTAACACC -ACGGAATAGTGCACGAGTATCGAG -ACGGAATAGTGCACGAGTCTCCTT -ACGGAATAGTGCACGAGTCCTGTT -ACGGAATAGTGCACGAGTCGGTTT -ACGGAATAGTGCACGAGTGTGGTT -ACGGAATAGTGCACGAGTGCCTTT -ACGGAATAGTGCACGAGTGGTCTT -ACGGAATAGTGCACGAGTACGCTT -ACGGAATAGTGCACGAGTAGCGTT -ACGGAATAGTGCACGAGTTTCGTC -ACGGAATAGTGCACGAGTTCTCTC -ACGGAATAGTGCACGAGTTGGATC -ACGGAATAGTGCACGAGTCACTTC -ACGGAATAGTGCACGAGTGTACTC -ACGGAATAGTGCACGAGTGATGTC -ACGGAATAGTGCACGAGTACAGTC -ACGGAATAGTGCACGAGTTTGCTG -ACGGAATAGTGCACGAGTTCCATG -ACGGAATAGTGCACGAGTTGTGTG -ACGGAATAGTGCACGAGTCTAGTG -ACGGAATAGTGCACGAGTCATCTG -ACGGAATAGTGCACGAGTGAGTTG -ACGGAATAGTGCACGAGTAGACTG -ACGGAATAGTGCACGAGTTCGGTA -ACGGAATAGTGCACGAGTTGCCTA -ACGGAATAGTGCACGAGTCCACTA -ACGGAATAGTGCACGAGTGGAGTA -ACGGAATAGTGCACGAGTTCGTCT -ACGGAATAGTGCACGAGTTGCACT -ACGGAATAGTGCACGAGTCTGACT -ACGGAATAGTGCACGAGTCAACCT -ACGGAATAGTGCACGAGTGCTACT -ACGGAATAGTGCACGAGTGGATCT -ACGGAATAGTGCACGAGTAAGGCT -ACGGAATAGTGCACGAGTTCAACC -ACGGAATAGTGCACGAGTTGTTCC -ACGGAATAGTGCACGAGTATTCCC -ACGGAATAGTGCACGAGTTTCTCG -ACGGAATAGTGCACGAGTTAGACG -ACGGAATAGTGCACGAGTGTAACG -ACGGAATAGTGCACGAGTACTTCG -ACGGAATAGTGCACGAGTTACGCA -ACGGAATAGTGCACGAGTCTTGCA -ACGGAATAGTGCACGAGTCGAACA -ACGGAATAGTGCACGAGTCAGTCA -ACGGAATAGTGCACGAGTGATCCA -ACGGAATAGTGCACGAGTACGACA -ACGGAATAGTGCACGAGTAGCTCA -ACGGAATAGTGCACGAGTTCACGT -ACGGAATAGTGCACGAGTCGTAGT -ACGGAATAGTGCACGAGTGTCAGT -ACGGAATAGTGCACGAGTGAAGGT -ACGGAATAGTGCACGAGTAACCGT -ACGGAATAGTGCACGAGTTTGTGC -ACGGAATAGTGCACGAGTCTAAGC -ACGGAATAGTGCACGAGTACTAGC -ACGGAATAGTGCACGAGTAGATGC -ACGGAATAGTGCACGAGTTGAAGG -ACGGAATAGTGCACGAGTCAATGG -ACGGAATAGTGCACGAGTATGAGG -ACGGAATAGTGCACGAGTAATGGG -ACGGAATAGTGCACGAGTTCCTGA -ACGGAATAGTGCACGAGTTAGCGA -ACGGAATAGTGCACGAGTCACAGA -ACGGAATAGTGCACGAGTGCAAGA -ACGGAATAGTGCACGAGTGGTTGA -ACGGAATAGTGCACGAGTTCCGAT -ACGGAATAGTGCACGAGTTGGCAT -ACGGAATAGTGCACGAGTCGAGAT -ACGGAATAGTGCACGAGTTACCAC -ACGGAATAGTGCACGAGTCAGAAC -ACGGAATAGTGCACGAGTGTCTAC -ACGGAATAGTGCACGAGTACGTAC -ACGGAATAGTGCACGAGTAGTGAC -ACGGAATAGTGCACGAGTCTGTAG -ACGGAATAGTGCACGAGTCCTAAG -ACGGAATAGTGCACGAGTGTTCAG -ACGGAATAGTGCACGAGTGCATAG -ACGGAATAGTGCACGAGTGACAAG -ACGGAATAGTGCACGAGTAAGCAG -ACGGAATAGTGCACGAGTCGTCAA -ACGGAATAGTGCACGAGTGCTGAA -ACGGAATAGTGCACGAGTAGTACG -ACGGAATAGTGCACGAGTATCCGA -ACGGAATAGTGCACGAGTATGGGA -ACGGAATAGTGCACGAGTGTGCAA -ACGGAATAGTGCACGAGTGAGGAA -ACGGAATAGTGCACGAGTCAGGTA -ACGGAATAGTGCACGAGTGACTCT -ACGGAATAGTGCACGAGTAGTCCT -ACGGAATAGTGCACGAGTTAAGCC -ACGGAATAGTGCACGAGTATAGCC -ACGGAATAGTGCACGAGTTAACCG -ACGGAATAGTGCACGAGTATGCCA -ACGGAATAGTGCCGAATCGGAAAC -ACGGAATAGTGCCGAATCAACACC -ACGGAATAGTGCCGAATCATCGAG -ACGGAATAGTGCCGAATCCTCCTT -ACGGAATAGTGCCGAATCCCTGTT -ACGGAATAGTGCCGAATCCGGTTT -ACGGAATAGTGCCGAATCGTGGTT -ACGGAATAGTGCCGAATCGCCTTT -ACGGAATAGTGCCGAATCGGTCTT -ACGGAATAGTGCCGAATCACGCTT -ACGGAATAGTGCCGAATCAGCGTT -ACGGAATAGTGCCGAATCTTCGTC -ACGGAATAGTGCCGAATCTCTCTC -ACGGAATAGTGCCGAATCTGGATC -ACGGAATAGTGCCGAATCCACTTC -ACGGAATAGTGCCGAATCGTACTC -ACGGAATAGTGCCGAATCGATGTC -ACGGAATAGTGCCGAATCACAGTC -ACGGAATAGTGCCGAATCTTGCTG -ACGGAATAGTGCCGAATCTCCATG -ACGGAATAGTGCCGAATCTGTGTG -ACGGAATAGTGCCGAATCCTAGTG -ACGGAATAGTGCCGAATCCATCTG -ACGGAATAGTGCCGAATCGAGTTG -ACGGAATAGTGCCGAATCAGACTG -ACGGAATAGTGCCGAATCTCGGTA -ACGGAATAGTGCCGAATCTGCCTA -ACGGAATAGTGCCGAATCCCACTA -ACGGAATAGTGCCGAATCGGAGTA -ACGGAATAGTGCCGAATCTCGTCT -ACGGAATAGTGCCGAATCTGCACT -ACGGAATAGTGCCGAATCCTGACT -ACGGAATAGTGCCGAATCCAACCT -ACGGAATAGTGCCGAATCGCTACT -ACGGAATAGTGCCGAATCGGATCT -ACGGAATAGTGCCGAATCAAGGCT -ACGGAATAGTGCCGAATCTCAACC -ACGGAATAGTGCCGAATCTGTTCC -ACGGAATAGTGCCGAATCATTCCC -ACGGAATAGTGCCGAATCTTCTCG -ACGGAATAGTGCCGAATCTAGACG -ACGGAATAGTGCCGAATCGTAACG -ACGGAATAGTGCCGAATCACTTCG -ACGGAATAGTGCCGAATCTACGCA -ACGGAATAGTGCCGAATCCTTGCA -ACGGAATAGTGCCGAATCCGAACA -ACGGAATAGTGCCGAATCCAGTCA -ACGGAATAGTGCCGAATCGATCCA -ACGGAATAGTGCCGAATCACGACA -ACGGAATAGTGCCGAATCAGCTCA -ACGGAATAGTGCCGAATCTCACGT -ACGGAATAGTGCCGAATCCGTAGT -ACGGAATAGTGCCGAATCGTCAGT -ACGGAATAGTGCCGAATCGAAGGT -ACGGAATAGTGCCGAATCAACCGT -ACGGAATAGTGCCGAATCTTGTGC -ACGGAATAGTGCCGAATCCTAAGC -ACGGAATAGTGCCGAATCACTAGC -ACGGAATAGTGCCGAATCAGATGC -ACGGAATAGTGCCGAATCTGAAGG -ACGGAATAGTGCCGAATCCAATGG -ACGGAATAGTGCCGAATCATGAGG -ACGGAATAGTGCCGAATCAATGGG -ACGGAATAGTGCCGAATCTCCTGA -ACGGAATAGTGCCGAATCTAGCGA -ACGGAATAGTGCCGAATCCACAGA -ACGGAATAGTGCCGAATCGCAAGA -ACGGAATAGTGCCGAATCGGTTGA -ACGGAATAGTGCCGAATCTCCGAT -ACGGAATAGTGCCGAATCTGGCAT -ACGGAATAGTGCCGAATCCGAGAT -ACGGAATAGTGCCGAATCTACCAC -ACGGAATAGTGCCGAATCCAGAAC -ACGGAATAGTGCCGAATCGTCTAC -ACGGAATAGTGCCGAATCACGTAC -ACGGAATAGTGCCGAATCAGTGAC -ACGGAATAGTGCCGAATCCTGTAG -ACGGAATAGTGCCGAATCCCTAAG -ACGGAATAGTGCCGAATCGTTCAG -ACGGAATAGTGCCGAATCGCATAG -ACGGAATAGTGCCGAATCGACAAG -ACGGAATAGTGCCGAATCAAGCAG -ACGGAATAGTGCCGAATCCGTCAA -ACGGAATAGTGCCGAATCGCTGAA -ACGGAATAGTGCCGAATCAGTACG -ACGGAATAGTGCCGAATCATCCGA -ACGGAATAGTGCCGAATCATGGGA -ACGGAATAGTGCCGAATCGTGCAA -ACGGAATAGTGCCGAATCGAGGAA -ACGGAATAGTGCCGAATCCAGGTA -ACGGAATAGTGCCGAATCGACTCT -ACGGAATAGTGCCGAATCAGTCCT -ACGGAATAGTGCCGAATCTAAGCC -ACGGAATAGTGCCGAATCATAGCC -ACGGAATAGTGCCGAATCTAACCG -ACGGAATAGTGCCGAATCATGCCA -ACGGAATAGTGCGGAATGGGAAAC -ACGGAATAGTGCGGAATGAACACC -ACGGAATAGTGCGGAATGATCGAG -ACGGAATAGTGCGGAATGCTCCTT -ACGGAATAGTGCGGAATGCCTGTT -ACGGAATAGTGCGGAATGCGGTTT -ACGGAATAGTGCGGAATGGTGGTT -ACGGAATAGTGCGGAATGGCCTTT -ACGGAATAGTGCGGAATGGGTCTT -ACGGAATAGTGCGGAATGACGCTT -ACGGAATAGTGCGGAATGAGCGTT -ACGGAATAGTGCGGAATGTTCGTC -ACGGAATAGTGCGGAATGTCTCTC -ACGGAATAGTGCGGAATGTGGATC -ACGGAATAGTGCGGAATGCACTTC -ACGGAATAGTGCGGAATGGTACTC -ACGGAATAGTGCGGAATGGATGTC -ACGGAATAGTGCGGAATGACAGTC -ACGGAATAGTGCGGAATGTTGCTG -ACGGAATAGTGCGGAATGTCCATG -ACGGAATAGTGCGGAATGTGTGTG -ACGGAATAGTGCGGAATGCTAGTG -ACGGAATAGTGCGGAATGCATCTG -ACGGAATAGTGCGGAATGGAGTTG -ACGGAATAGTGCGGAATGAGACTG -ACGGAATAGTGCGGAATGTCGGTA -ACGGAATAGTGCGGAATGTGCCTA -ACGGAATAGTGCGGAATGCCACTA -ACGGAATAGTGCGGAATGGGAGTA -ACGGAATAGTGCGGAATGTCGTCT -ACGGAATAGTGCGGAATGTGCACT -ACGGAATAGTGCGGAATGCTGACT -ACGGAATAGTGCGGAATGCAACCT -ACGGAATAGTGCGGAATGGCTACT -ACGGAATAGTGCGGAATGGGATCT -ACGGAATAGTGCGGAATGAAGGCT -ACGGAATAGTGCGGAATGTCAACC -ACGGAATAGTGCGGAATGTGTTCC -ACGGAATAGTGCGGAATGATTCCC -ACGGAATAGTGCGGAATGTTCTCG -ACGGAATAGTGCGGAATGTAGACG -ACGGAATAGTGCGGAATGGTAACG -ACGGAATAGTGCGGAATGACTTCG -ACGGAATAGTGCGGAATGTACGCA -ACGGAATAGTGCGGAATGCTTGCA -ACGGAATAGTGCGGAATGCGAACA -ACGGAATAGTGCGGAATGCAGTCA -ACGGAATAGTGCGGAATGGATCCA -ACGGAATAGTGCGGAATGACGACA -ACGGAATAGTGCGGAATGAGCTCA -ACGGAATAGTGCGGAATGTCACGT -ACGGAATAGTGCGGAATGCGTAGT -ACGGAATAGTGCGGAATGGTCAGT -ACGGAATAGTGCGGAATGGAAGGT -ACGGAATAGTGCGGAATGAACCGT -ACGGAATAGTGCGGAATGTTGTGC -ACGGAATAGTGCGGAATGCTAAGC -ACGGAATAGTGCGGAATGACTAGC -ACGGAATAGTGCGGAATGAGATGC -ACGGAATAGTGCGGAATGTGAAGG -ACGGAATAGTGCGGAATGCAATGG -ACGGAATAGTGCGGAATGATGAGG -ACGGAATAGTGCGGAATGAATGGG -ACGGAATAGTGCGGAATGTCCTGA -ACGGAATAGTGCGGAATGTAGCGA -ACGGAATAGTGCGGAATGCACAGA -ACGGAATAGTGCGGAATGGCAAGA -ACGGAATAGTGCGGAATGGGTTGA -ACGGAATAGTGCGGAATGTCCGAT -ACGGAATAGTGCGGAATGTGGCAT -ACGGAATAGTGCGGAATGCGAGAT -ACGGAATAGTGCGGAATGTACCAC -ACGGAATAGTGCGGAATGCAGAAC -ACGGAATAGTGCGGAATGGTCTAC -ACGGAATAGTGCGGAATGACGTAC -ACGGAATAGTGCGGAATGAGTGAC -ACGGAATAGTGCGGAATGCTGTAG -ACGGAATAGTGCGGAATGCCTAAG -ACGGAATAGTGCGGAATGGTTCAG -ACGGAATAGTGCGGAATGGCATAG -ACGGAATAGTGCGGAATGGACAAG -ACGGAATAGTGCGGAATGAAGCAG -ACGGAATAGTGCGGAATGCGTCAA -ACGGAATAGTGCGGAATGGCTGAA -ACGGAATAGTGCGGAATGAGTACG -ACGGAATAGTGCGGAATGATCCGA -ACGGAATAGTGCGGAATGATGGGA -ACGGAATAGTGCGGAATGGTGCAA -ACGGAATAGTGCGGAATGGAGGAA -ACGGAATAGTGCGGAATGCAGGTA -ACGGAATAGTGCGGAATGGACTCT -ACGGAATAGTGCGGAATGAGTCCT -ACGGAATAGTGCGGAATGTAAGCC -ACGGAATAGTGCGGAATGATAGCC -ACGGAATAGTGCGGAATGTAACCG -ACGGAATAGTGCGGAATGATGCCA -ACGGAATAGTGCCAAGTGGGAAAC -ACGGAATAGTGCCAAGTGAACACC -ACGGAATAGTGCCAAGTGATCGAG -ACGGAATAGTGCCAAGTGCTCCTT -ACGGAATAGTGCCAAGTGCCTGTT -ACGGAATAGTGCCAAGTGCGGTTT -ACGGAATAGTGCCAAGTGGTGGTT -ACGGAATAGTGCCAAGTGGCCTTT -ACGGAATAGTGCCAAGTGGGTCTT -ACGGAATAGTGCCAAGTGACGCTT -ACGGAATAGTGCCAAGTGAGCGTT -ACGGAATAGTGCCAAGTGTTCGTC -ACGGAATAGTGCCAAGTGTCTCTC -ACGGAATAGTGCCAAGTGTGGATC -ACGGAATAGTGCCAAGTGCACTTC -ACGGAATAGTGCCAAGTGGTACTC -ACGGAATAGTGCCAAGTGGATGTC -ACGGAATAGTGCCAAGTGACAGTC -ACGGAATAGTGCCAAGTGTTGCTG -ACGGAATAGTGCCAAGTGTCCATG -ACGGAATAGTGCCAAGTGTGTGTG -ACGGAATAGTGCCAAGTGCTAGTG -ACGGAATAGTGCCAAGTGCATCTG -ACGGAATAGTGCCAAGTGGAGTTG -ACGGAATAGTGCCAAGTGAGACTG -ACGGAATAGTGCCAAGTGTCGGTA -ACGGAATAGTGCCAAGTGTGCCTA -ACGGAATAGTGCCAAGTGCCACTA -ACGGAATAGTGCCAAGTGGGAGTA -ACGGAATAGTGCCAAGTGTCGTCT -ACGGAATAGTGCCAAGTGTGCACT -ACGGAATAGTGCCAAGTGCTGACT -ACGGAATAGTGCCAAGTGCAACCT -ACGGAATAGTGCCAAGTGGCTACT -ACGGAATAGTGCCAAGTGGGATCT -ACGGAATAGTGCCAAGTGAAGGCT -ACGGAATAGTGCCAAGTGTCAACC -ACGGAATAGTGCCAAGTGTGTTCC -ACGGAATAGTGCCAAGTGATTCCC -ACGGAATAGTGCCAAGTGTTCTCG -ACGGAATAGTGCCAAGTGTAGACG -ACGGAATAGTGCCAAGTGGTAACG -ACGGAATAGTGCCAAGTGACTTCG -ACGGAATAGTGCCAAGTGTACGCA -ACGGAATAGTGCCAAGTGCTTGCA -ACGGAATAGTGCCAAGTGCGAACA -ACGGAATAGTGCCAAGTGCAGTCA -ACGGAATAGTGCCAAGTGGATCCA -ACGGAATAGTGCCAAGTGACGACA -ACGGAATAGTGCCAAGTGAGCTCA -ACGGAATAGTGCCAAGTGTCACGT -ACGGAATAGTGCCAAGTGCGTAGT -ACGGAATAGTGCCAAGTGGTCAGT -ACGGAATAGTGCCAAGTGGAAGGT -ACGGAATAGTGCCAAGTGAACCGT -ACGGAATAGTGCCAAGTGTTGTGC -ACGGAATAGTGCCAAGTGCTAAGC -ACGGAATAGTGCCAAGTGACTAGC -ACGGAATAGTGCCAAGTGAGATGC -ACGGAATAGTGCCAAGTGTGAAGG -ACGGAATAGTGCCAAGTGCAATGG -ACGGAATAGTGCCAAGTGATGAGG -ACGGAATAGTGCCAAGTGAATGGG -ACGGAATAGTGCCAAGTGTCCTGA -ACGGAATAGTGCCAAGTGTAGCGA -ACGGAATAGTGCCAAGTGCACAGA -ACGGAATAGTGCCAAGTGGCAAGA -ACGGAATAGTGCCAAGTGGGTTGA -ACGGAATAGTGCCAAGTGTCCGAT -ACGGAATAGTGCCAAGTGTGGCAT -ACGGAATAGTGCCAAGTGCGAGAT -ACGGAATAGTGCCAAGTGTACCAC -ACGGAATAGTGCCAAGTGCAGAAC -ACGGAATAGTGCCAAGTGGTCTAC -ACGGAATAGTGCCAAGTGACGTAC -ACGGAATAGTGCCAAGTGAGTGAC -ACGGAATAGTGCCAAGTGCTGTAG -ACGGAATAGTGCCAAGTGCCTAAG -ACGGAATAGTGCCAAGTGGTTCAG -ACGGAATAGTGCCAAGTGGCATAG -ACGGAATAGTGCCAAGTGGACAAG -ACGGAATAGTGCCAAGTGAAGCAG -ACGGAATAGTGCCAAGTGCGTCAA -ACGGAATAGTGCCAAGTGGCTGAA -ACGGAATAGTGCCAAGTGAGTACG -ACGGAATAGTGCCAAGTGATCCGA -ACGGAATAGTGCCAAGTGATGGGA -ACGGAATAGTGCCAAGTGGTGCAA -ACGGAATAGTGCCAAGTGGAGGAA -ACGGAATAGTGCCAAGTGCAGGTA -ACGGAATAGTGCCAAGTGGACTCT -ACGGAATAGTGCCAAGTGAGTCCT -ACGGAATAGTGCCAAGTGTAAGCC -ACGGAATAGTGCCAAGTGATAGCC -ACGGAATAGTGCCAAGTGTAACCG -ACGGAATAGTGCCAAGTGATGCCA -ACGGAATAGTGCGAAGAGGGAAAC -ACGGAATAGTGCGAAGAGAACACC -ACGGAATAGTGCGAAGAGATCGAG -ACGGAATAGTGCGAAGAGCTCCTT -ACGGAATAGTGCGAAGAGCCTGTT -ACGGAATAGTGCGAAGAGCGGTTT -ACGGAATAGTGCGAAGAGGTGGTT -ACGGAATAGTGCGAAGAGGCCTTT -ACGGAATAGTGCGAAGAGGGTCTT -ACGGAATAGTGCGAAGAGACGCTT -ACGGAATAGTGCGAAGAGAGCGTT -ACGGAATAGTGCGAAGAGTTCGTC -ACGGAATAGTGCGAAGAGTCTCTC -ACGGAATAGTGCGAAGAGTGGATC -ACGGAATAGTGCGAAGAGCACTTC -ACGGAATAGTGCGAAGAGGTACTC -ACGGAATAGTGCGAAGAGGATGTC -ACGGAATAGTGCGAAGAGACAGTC -ACGGAATAGTGCGAAGAGTTGCTG -ACGGAATAGTGCGAAGAGTCCATG -ACGGAATAGTGCGAAGAGTGTGTG -ACGGAATAGTGCGAAGAGCTAGTG -ACGGAATAGTGCGAAGAGCATCTG -ACGGAATAGTGCGAAGAGGAGTTG -ACGGAATAGTGCGAAGAGAGACTG -ACGGAATAGTGCGAAGAGTCGGTA -ACGGAATAGTGCGAAGAGTGCCTA -ACGGAATAGTGCGAAGAGCCACTA -ACGGAATAGTGCGAAGAGGGAGTA -ACGGAATAGTGCGAAGAGTCGTCT -ACGGAATAGTGCGAAGAGTGCACT -ACGGAATAGTGCGAAGAGCTGACT -ACGGAATAGTGCGAAGAGCAACCT -ACGGAATAGTGCGAAGAGGCTACT -ACGGAATAGTGCGAAGAGGGATCT -ACGGAATAGTGCGAAGAGAAGGCT -ACGGAATAGTGCGAAGAGTCAACC -ACGGAATAGTGCGAAGAGTGTTCC -ACGGAATAGTGCGAAGAGATTCCC -ACGGAATAGTGCGAAGAGTTCTCG -ACGGAATAGTGCGAAGAGTAGACG -ACGGAATAGTGCGAAGAGGTAACG -ACGGAATAGTGCGAAGAGACTTCG -ACGGAATAGTGCGAAGAGTACGCA -ACGGAATAGTGCGAAGAGCTTGCA -ACGGAATAGTGCGAAGAGCGAACA -ACGGAATAGTGCGAAGAGCAGTCA -ACGGAATAGTGCGAAGAGGATCCA -ACGGAATAGTGCGAAGAGACGACA -ACGGAATAGTGCGAAGAGAGCTCA -ACGGAATAGTGCGAAGAGTCACGT -ACGGAATAGTGCGAAGAGCGTAGT -ACGGAATAGTGCGAAGAGGTCAGT -ACGGAATAGTGCGAAGAGGAAGGT -ACGGAATAGTGCGAAGAGAACCGT -ACGGAATAGTGCGAAGAGTTGTGC -ACGGAATAGTGCGAAGAGCTAAGC -ACGGAATAGTGCGAAGAGACTAGC -ACGGAATAGTGCGAAGAGAGATGC -ACGGAATAGTGCGAAGAGTGAAGG -ACGGAATAGTGCGAAGAGCAATGG -ACGGAATAGTGCGAAGAGATGAGG -ACGGAATAGTGCGAAGAGAATGGG -ACGGAATAGTGCGAAGAGTCCTGA -ACGGAATAGTGCGAAGAGTAGCGA -ACGGAATAGTGCGAAGAGCACAGA -ACGGAATAGTGCGAAGAGGCAAGA -ACGGAATAGTGCGAAGAGGGTTGA -ACGGAATAGTGCGAAGAGTCCGAT -ACGGAATAGTGCGAAGAGTGGCAT -ACGGAATAGTGCGAAGAGCGAGAT -ACGGAATAGTGCGAAGAGTACCAC -ACGGAATAGTGCGAAGAGCAGAAC -ACGGAATAGTGCGAAGAGGTCTAC -ACGGAATAGTGCGAAGAGACGTAC -ACGGAATAGTGCGAAGAGAGTGAC -ACGGAATAGTGCGAAGAGCTGTAG -ACGGAATAGTGCGAAGAGCCTAAG -ACGGAATAGTGCGAAGAGGTTCAG -ACGGAATAGTGCGAAGAGGCATAG -ACGGAATAGTGCGAAGAGGACAAG -ACGGAATAGTGCGAAGAGAAGCAG -ACGGAATAGTGCGAAGAGCGTCAA -ACGGAATAGTGCGAAGAGGCTGAA -ACGGAATAGTGCGAAGAGAGTACG -ACGGAATAGTGCGAAGAGATCCGA -ACGGAATAGTGCGAAGAGATGGGA -ACGGAATAGTGCGAAGAGGTGCAA -ACGGAATAGTGCGAAGAGGAGGAA -ACGGAATAGTGCGAAGAGCAGGTA -ACGGAATAGTGCGAAGAGGACTCT -ACGGAATAGTGCGAAGAGAGTCCT -ACGGAATAGTGCGAAGAGTAAGCC -ACGGAATAGTGCGAAGAGATAGCC -ACGGAATAGTGCGAAGAGTAACCG -ACGGAATAGTGCGAAGAGATGCCA -ACGGAATAGTGCGTACAGGGAAAC -ACGGAATAGTGCGTACAGAACACC -ACGGAATAGTGCGTACAGATCGAG -ACGGAATAGTGCGTACAGCTCCTT -ACGGAATAGTGCGTACAGCCTGTT -ACGGAATAGTGCGTACAGCGGTTT -ACGGAATAGTGCGTACAGGTGGTT -ACGGAATAGTGCGTACAGGCCTTT -ACGGAATAGTGCGTACAGGGTCTT -ACGGAATAGTGCGTACAGACGCTT -ACGGAATAGTGCGTACAGAGCGTT -ACGGAATAGTGCGTACAGTTCGTC -ACGGAATAGTGCGTACAGTCTCTC -ACGGAATAGTGCGTACAGTGGATC -ACGGAATAGTGCGTACAGCACTTC -ACGGAATAGTGCGTACAGGTACTC -ACGGAATAGTGCGTACAGGATGTC -ACGGAATAGTGCGTACAGACAGTC -ACGGAATAGTGCGTACAGTTGCTG -ACGGAATAGTGCGTACAGTCCATG -ACGGAATAGTGCGTACAGTGTGTG -ACGGAATAGTGCGTACAGCTAGTG -ACGGAATAGTGCGTACAGCATCTG -ACGGAATAGTGCGTACAGGAGTTG -ACGGAATAGTGCGTACAGAGACTG -ACGGAATAGTGCGTACAGTCGGTA -ACGGAATAGTGCGTACAGTGCCTA -ACGGAATAGTGCGTACAGCCACTA -ACGGAATAGTGCGTACAGGGAGTA -ACGGAATAGTGCGTACAGTCGTCT -ACGGAATAGTGCGTACAGTGCACT -ACGGAATAGTGCGTACAGCTGACT -ACGGAATAGTGCGTACAGCAACCT -ACGGAATAGTGCGTACAGGCTACT -ACGGAATAGTGCGTACAGGGATCT -ACGGAATAGTGCGTACAGAAGGCT -ACGGAATAGTGCGTACAGTCAACC -ACGGAATAGTGCGTACAGTGTTCC -ACGGAATAGTGCGTACAGATTCCC -ACGGAATAGTGCGTACAGTTCTCG -ACGGAATAGTGCGTACAGTAGACG -ACGGAATAGTGCGTACAGGTAACG -ACGGAATAGTGCGTACAGACTTCG -ACGGAATAGTGCGTACAGTACGCA -ACGGAATAGTGCGTACAGCTTGCA -ACGGAATAGTGCGTACAGCGAACA -ACGGAATAGTGCGTACAGCAGTCA -ACGGAATAGTGCGTACAGGATCCA -ACGGAATAGTGCGTACAGACGACA -ACGGAATAGTGCGTACAGAGCTCA -ACGGAATAGTGCGTACAGTCACGT -ACGGAATAGTGCGTACAGCGTAGT -ACGGAATAGTGCGTACAGGTCAGT -ACGGAATAGTGCGTACAGGAAGGT -ACGGAATAGTGCGTACAGAACCGT -ACGGAATAGTGCGTACAGTTGTGC -ACGGAATAGTGCGTACAGCTAAGC -ACGGAATAGTGCGTACAGACTAGC -ACGGAATAGTGCGTACAGAGATGC -ACGGAATAGTGCGTACAGTGAAGG -ACGGAATAGTGCGTACAGCAATGG -ACGGAATAGTGCGTACAGATGAGG -ACGGAATAGTGCGTACAGAATGGG -ACGGAATAGTGCGTACAGTCCTGA -ACGGAATAGTGCGTACAGTAGCGA -ACGGAATAGTGCGTACAGCACAGA -ACGGAATAGTGCGTACAGGCAAGA -ACGGAATAGTGCGTACAGGGTTGA -ACGGAATAGTGCGTACAGTCCGAT -ACGGAATAGTGCGTACAGTGGCAT -ACGGAATAGTGCGTACAGCGAGAT -ACGGAATAGTGCGTACAGTACCAC -ACGGAATAGTGCGTACAGCAGAAC -ACGGAATAGTGCGTACAGGTCTAC -ACGGAATAGTGCGTACAGACGTAC -ACGGAATAGTGCGTACAGAGTGAC -ACGGAATAGTGCGTACAGCTGTAG -ACGGAATAGTGCGTACAGCCTAAG -ACGGAATAGTGCGTACAGGTTCAG -ACGGAATAGTGCGTACAGGCATAG -ACGGAATAGTGCGTACAGGACAAG -ACGGAATAGTGCGTACAGAAGCAG -ACGGAATAGTGCGTACAGCGTCAA -ACGGAATAGTGCGTACAGGCTGAA -ACGGAATAGTGCGTACAGAGTACG -ACGGAATAGTGCGTACAGATCCGA -ACGGAATAGTGCGTACAGATGGGA -ACGGAATAGTGCGTACAGGTGCAA -ACGGAATAGTGCGTACAGGAGGAA -ACGGAATAGTGCGTACAGCAGGTA -ACGGAATAGTGCGTACAGGACTCT -ACGGAATAGTGCGTACAGAGTCCT -ACGGAATAGTGCGTACAGTAAGCC -ACGGAATAGTGCGTACAGATAGCC -ACGGAATAGTGCGTACAGTAACCG -ACGGAATAGTGCGTACAGATGCCA -ACGGAATAGTGCTCTGACGGAAAC -ACGGAATAGTGCTCTGACAACACC -ACGGAATAGTGCTCTGACATCGAG -ACGGAATAGTGCTCTGACCTCCTT -ACGGAATAGTGCTCTGACCCTGTT -ACGGAATAGTGCTCTGACCGGTTT -ACGGAATAGTGCTCTGACGTGGTT -ACGGAATAGTGCTCTGACGCCTTT -ACGGAATAGTGCTCTGACGGTCTT -ACGGAATAGTGCTCTGACACGCTT -ACGGAATAGTGCTCTGACAGCGTT -ACGGAATAGTGCTCTGACTTCGTC -ACGGAATAGTGCTCTGACTCTCTC -ACGGAATAGTGCTCTGACTGGATC -ACGGAATAGTGCTCTGACCACTTC -ACGGAATAGTGCTCTGACGTACTC -ACGGAATAGTGCTCTGACGATGTC -ACGGAATAGTGCTCTGACACAGTC -ACGGAATAGTGCTCTGACTTGCTG -ACGGAATAGTGCTCTGACTCCATG -ACGGAATAGTGCTCTGACTGTGTG -ACGGAATAGTGCTCTGACCTAGTG -ACGGAATAGTGCTCTGACCATCTG -ACGGAATAGTGCTCTGACGAGTTG -ACGGAATAGTGCTCTGACAGACTG -ACGGAATAGTGCTCTGACTCGGTA -ACGGAATAGTGCTCTGACTGCCTA -ACGGAATAGTGCTCTGACCCACTA -ACGGAATAGTGCTCTGACGGAGTA -ACGGAATAGTGCTCTGACTCGTCT -ACGGAATAGTGCTCTGACTGCACT -ACGGAATAGTGCTCTGACCTGACT -ACGGAATAGTGCTCTGACCAACCT -ACGGAATAGTGCTCTGACGCTACT -ACGGAATAGTGCTCTGACGGATCT -ACGGAATAGTGCTCTGACAAGGCT -ACGGAATAGTGCTCTGACTCAACC -ACGGAATAGTGCTCTGACTGTTCC -ACGGAATAGTGCTCTGACATTCCC -ACGGAATAGTGCTCTGACTTCTCG -ACGGAATAGTGCTCTGACTAGACG -ACGGAATAGTGCTCTGACGTAACG -ACGGAATAGTGCTCTGACACTTCG -ACGGAATAGTGCTCTGACTACGCA -ACGGAATAGTGCTCTGACCTTGCA -ACGGAATAGTGCTCTGACCGAACA -ACGGAATAGTGCTCTGACCAGTCA -ACGGAATAGTGCTCTGACGATCCA -ACGGAATAGTGCTCTGACACGACA -ACGGAATAGTGCTCTGACAGCTCA -ACGGAATAGTGCTCTGACTCACGT -ACGGAATAGTGCTCTGACCGTAGT -ACGGAATAGTGCTCTGACGTCAGT -ACGGAATAGTGCTCTGACGAAGGT -ACGGAATAGTGCTCTGACAACCGT -ACGGAATAGTGCTCTGACTTGTGC -ACGGAATAGTGCTCTGACCTAAGC -ACGGAATAGTGCTCTGACACTAGC -ACGGAATAGTGCTCTGACAGATGC -ACGGAATAGTGCTCTGACTGAAGG -ACGGAATAGTGCTCTGACCAATGG -ACGGAATAGTGCTCTGACATGAGG -ACGGAATAGTGCTCTGACAATGGG -ACGGAATAGTGCTCTGACTCCTGA -ACGGAATAGTGCTCTGACTAGCGA -ACGGAATAGTGCTCTGACCACAGA -ACGGAATAGTGCTCTGACGCAAGA -ACGGAATAGTGCTCTGACGGTTGA -ACGGAATAGTGCTCTGACTCCGAT -ACGGAATAGTGCTCTGACTGGCAT -ACGGAATAGTGCTCTGACCGAGAT -ACGGAATAGTGCTCTGACTACCAC -ACGGAATAGTGCTCTGACCAGAAC -ACGGAATAGTGCTCTGACGTCTAC -ACGGAATAGTGCTCTGACACGTAC -ACGGAATAGTGCTCTGACAGTGAC -ACGGAATAGTGCTCTGACCTGTAG -ACGGAATAGTGCTCTGACCCTAAG -ACGGAATAGTGCTCTGACGTTCAG -ACGGAATAGTGCTCTGACGCATAG -ACGGAATAGTGCTCTGACGACAAG -ACGGAATAGTGCTCTGACAAGCAG -ACGGAATAGTGCTCTGACCGTCAA -ACGGAATAGTGCTCTGACGCTGAA -ACGGAATAGTGCTCTGACAGTACG -ACGGAATAGTGCTCTGACATCCGA -ACGGAATAGTGCTCTGACATGGGA -ACGGAATAGTGCTCTGACGTGCAA -ACGGAATAGTGCTCTGACGAGGAA -ACGGAATAGTGCTCTGACCAGGTA -ACGGAATAGTGCTCTGACGACTCT -ACGGAATAGTGCTCTGACAGTCCT -ACGGAATAGTGCTCTGACTAAGCC -ACGGAATAGTGCTCTGACATAGCC -ACGGAATAGTGCTCTGACTAACCG -ACGGAATAGTGCTCTGACATGCCA -ACGGAATAGTGCCCTAGTGGAAAC -ACGGAATAGTGCCCTAGTAACACC -ACGGAATAGTGCCCTAGTATCGAG -ACGGAATAGTGCCCTAGTCTCCTT -ACGGAATAGTGCCCTAGTCCTGTT -ACGGAATAGTGCCCTAGTCGGTTT -ACGGAATAGTGCCCTAGTGTGGTT -ACGGAATAGTGCCCTAGTGCCTTT -ACGGAATAGTGCCCTAGTGGTCTT -ACGGAATAGTGCCCTAGTACGCTT -ACGGAATAGTGCCCTAGTAGCGTT -ACGGAATAGTGCCCTAGTTTCGTC -ACGGAATAGTGCCCTAGTTCTCTC -ACGGAATAGTGCCCTAGTTGGATC -ACGGAATAGTGCCCTAGTCACTTC -ACGGAATAGTGCCCTAGTGTACTC -ACGGAATAGTGCCCTAGTGATGTC -ACGGAATAGTGCCCTAGTACAGTC -ACGGAATAGTGCCCTAGTTTGCTG -ACGGAATAGTGCCCTAGTTCCATG -ACGGAATAGTGCCCTAGTTGTGTG -ACGGAATAGTGCCCTAGTCTAGTG -ACGGAATAGTGCCCTAGTCATCTG -ACGGAATAGTGCCCTAGTGAGTTG -ACGGAATAGTGCCCTAGTAGACTG -ACGGAATAGTGCCCTAGTTCGGTA -ACGGAATAGTGCCCTAGTTGCCTA -ACGGAATAGTGCCCTAGTCCACTA -ACGGAATAGTGCCCTAGTGGAGTA -ACGGAATAGTGCCCTAGTTCGTCT -ACGGAATAGTGCCCTAGTTGCACT -ACGGAATAGTGCCCTAGTCTGACT -ACGGAATAGTGCCCTAGTCAACCT -ACGGAATAGTGCCCTAGTGCTACT -ACGGAATAGTGCCCTAGTGGATCT -ACGGAATAGTGCCCTAGTAAGGCT -ACGGAATAGTGCCCTAGTTCAACC -ACGGAATAGTGCCCTAGTTGTTCC -ACGGAATAGTGCCCTAGTATTCCC -ACGGAATAGTGCCCTAGTTTCTCG -ACGGAATAGTGCCCTAGTTAGACG -ACGGAATAGTGCCCTAGTGTAACG -ACGGAATAGTGCCCTAGTACTTCG -ACGGAATAGTGCCCTAGTTACGCA -ACGGAATAGTGCCCTAGTCTTGCA -ACGGAATAGTGCCCTAGTCGAACA -ACGGAATAGTGCCCTAGTCAGTCA -ACGGAATAGTGCCCTAGTGATCCA -ACGGAATAGTGCCCTAGTACGACA -ACGGAATAGTGCCCTAGTAGCTCA -ACGGAATAGTGCCCTAGTTCACGT -ACGGAATAGTGCCCTAGTCGTAGT -ACGGAATAGTGCCCTAGTGTCAGT -ACGGAATAGTGCCCTAGTGAAGGT -ACGGAATAGTGCCCTAGTAACCGT -ACGGAATAGTGCCCTAGTTTGTGC -ACGGAATAGTGCCCTAGTCTAAGC -ACGGAATAGTGCCCTAGTACTAGC -ACGGAATAGTGCCCTAGTAGATGC -ACGGAATAGTGCCCTAGTTGAAGG -ACGGAATAGTGCCCTAGTCAATGG -ACGGAATAGTGCCCTAGTATGAGG -ACGGAATAGTGCCCTAGTAATGGG -ACGGAATAGTGCCCTAGTTCCTGA -ACGGAATAGTGCCCTAGTTAGCGA -ACGGAATAGTGCCCTAGTCACAGA -ACGGAATAGTGCCCTAGTGCAAGA -ACGGAATAGTGCCCTAGTGGTTGA -ACGGAATAGTGCCCTAGTTCCGAT -ACGGAATAGTGCCCTAGTTGGCAT -ACGGAATAGTGCCCTAGTCGAGAT -ACGGAATAGTGCCCTAGTTACCAC -ACGGAATAGTGCCCTAGTCAGAAC -ACGGAATAGTGCCCTAGTGTCTAC -ACGGAATAGTGCCCTAGTACGTAC -ACGGAATAGTGCCCTAGTAGTGAC -ACGGAATAGTGCCCTAGTCTGTAG -ACGGAATAGTGCCCTAGTCCTAAG -ACGGAATAGTGCCCTAGTGTTCAG -ACGGAATAGTGCCCTAGTGCATAG -ACGGAATAGTGCCCTAGTGACAAG -ACGGAATAGTGCCCTAGTAAGCAG -ACGGAATAGTGCCCTAGTCGTCAA -ACGGAATAGTGCCCTAGTGCTGAA -ACGGAATAGTGCCCTAGTAGTACG -ACGGAATAGTGCCCTAGTATCCGA -ACGGAATAGTGCCCTAGTATGGGA -ACGGAATAGTGCCCTAGTGTGCAA -ACGGAATAGTGCCCTAGTGAGGAA -ACGGAATAGTGCCCTAGTCAGGTA -ACGGAATAGTGCCCTAGTGACTCT -ACGGAATAGTGCCCTAGTAGTCCT -ACGGAATAGTGCCCTAGTTAAGCC -ACGGAATAGTGCCCTAGTATAGCC -ACGGAATAGTGCCCTAGTTAACCG -ACGGAATAGTGCCCTAGTATGCCA -ACGGAATAGTGCGCCTAAGGAAAC -ACGGAATAGTGCGCCTAAAACACC -ACGGAATAGTGCGCCTAAATCGAG -ACGGAATAGTGCGCCTAACTCCTT -ACGGAATAGTGCGCCTAACCTGTT -ACGGAATAGTGCGCCTAACGGTTT -ACGGAATAGTGCGCCTAAGTGGTT -ACGGAATAGTGCGCCTAAGCCTTT -ACGGAATAGTGCGCCTAAGGTCTT -ACGGAATAGTGCGCCTAAACGCTT -ACGGAATAGTGCGCCTAAAGCGTT -ACGGAATAGTGCGCCTAATTCGTC -ACGGAATAGTGCGCCTAATCTCTC -ACGGAATAGTGCGCCTAATGGATC -ACGGAATAGTGCGCCTAACACTTC -ACGGAATAGTGCGCCTAAGTACTC -ACGGAATAGTGCGCCTAAGATGTC -ACGGAATAGTGCGCCTAAACAGTC -ACGGAATAGTGCGCCTAATTGCTG -ACGGAATAGTGCGCCTAATCCATG -ACGGAATAGTGCGCCTAATGTGTG -ACGGAATAGTGCGCCTAACTAGTG -ACGGAATAGTGCGCCTAACATCTG -ACGGAATAGTGCGCCTAAGAGTTG -ACGGAATAGTGCGCCTAAAGACTG -ACGGAATAGTGCGCCTAATCGGTA -ACGGAATAGTGCGCCTAATGCCTA -ACGGAATAGTGCGCCTAACCACTA -ACGGAATAGTGCGCCTAAGGAGTA -ACGGAATAGTGCGCCTAATCGTCT -ACGGAATAGTGCGCCTAATGCACT -ACGGAATAGTGCGCCTAACTGACT -ACGGAATAGTGCGCCTAACAACCT -ACGGAATAGTGCGCCTAAGCTACT -ACGGAATAGTGCGCCTAAGGATCT -ACGGAATAGTGCGCCTAAAAGGCT -ACGGAATAGTGCGCCTAATCAACC -ACGGAATAGTGCGCCTAATGTTCC -ACGGAATAGTGCGCCTAAATTCCC -ACGGAATAGTGCGCCTAATTCTCG -ACGGAATAGTGCGCCTAATAGACG -ACGGAATAGTGCGCCTAAGTAACG -ACGGAATAGTGCGCCTAAACTTCG -ACGGAATAGTGCGCCTAATACGCA -ACGGAATAGTGCGCCTAACTTGCA -ACGGAATAGTGCGCCTAACGAACA -ACGGAATAGTGCGCCTAACAGTCA -ACGGAATAGTGCGCCTAAGATCCA -ACGGAATAGTGCGCCTAAACGACA -ACGGAATAGTGCGCCTAAAGCTCA -ACGGAATAGTGCGCCTAATCACGT -ACGGAATAGTGCGCCTAACGTAGT -ACGGAATAGTGCGCCTAAGTCAGT -ACGGAATAGTGCGCCTAAGAAGGT -ACGGAATAGTGCGCCTAAAACCGT -ACGGAATAGTGCGCCTAATTGTGC -ACGGAATAGTGCGCCTAACTAAGC -ACGGAATAGTGCGCCTAAACTAGC -ACGGAATAGTGCGCCTAAAGATGC -ACGGAATAGTGCGCCTAATGAAGG -ACGGAATAGTGCGCCTAACAATGG -ACGGAATAGTGCGCCTAAATGAGG -ACGGAATAGTGCGCCTAAAATGGG -ACGGAATAGTGCGCCTAATCCTGA -ACGGAATAGTGCGCCTAATAGCGA -ACGGAATAGTGCGCCTAACACAGA -ACGGAATAGTGCGCCTAAGCAAGA -ACGGAATAGTGCGCCTAAGGTTGA -ACGGAATAGTGCGCCTAATCCGAT -ACGGAATAGTGCGCCTAATGGCAT -ACGGAATAGTGCGCCTAACGAGAT -ACGGAATAGTGCGCCTAATACCAC -ACGGAATAGTGCGCCTAACAGAAC -ACGGAATAGTGCGCCTAAGTCTAC -ACGGAATAGTGCGCCTAAACGTAC -ACGGAATAGTGCGCCTAAAGTGAC -ACGGAATAGTGCGCCTAACTGTAG -ACGGAATAGTGCGCCTAACCTAAG -ACGGAATAGTGCGCCTAAGTTCAG -ACGGAATAGTGCGCCTAAGCATAG -ACGGAATAGTGCGCCTAAGACAAG -ACGGAATAGTGCGCCTAAAAGCAG -ACGGAATAGTGCGCCTAACGTCAA -ACGGAATAGTGCGCCTAAGCTGAA -ACGGAATAGTGCGCCTAAAGTACG -ACGGAATAGTGCGCCTAAATCCGA -ACGGAATAGTGCGCCTAAATGGGA -ACGGAATAGTGCGCCTAAGTGCAA -ACGGAATAGTGCGCCTAAGAGGAA -ACGGAATAGTGCGCCTAACAGGTA -ACGGAATAGTGCGCCTAAGACTCT -ACGGAATAGTGCGCCTAAAGTCCT -ACGGAATAGTGCGCCTAATAAGCC -ACGGAATAGTGCGCCTAAATAGCC -ACGGAATAGTGCGCCTAATAACCG -ACGGAATAGTGCGCCTAAATGCCA -ACGGAATAGTGCGCCATAGGAAAC -ACGGAATAGTGCGCCATAAACACC -ACGGAATAGTGCGCCATAATCGAG -ACGGAATAGTGCGCCATACTCCTT -ACGGAATAGTGCGCCATACCTGTT -ACGGAATAGTGCGCCATACGGTTT -ACGGAATAGTGCGCCATAGTGGTT -ACGGAATAGTGCGCCATAGCCTTT -ACGGAATAGTGCGCCATAGGTCTT -ACGGAATAGTGCGCCATAACGCTT -ACGGAATAGTGCGCCATAAGCGTT -ACGGAATAGTGCGCCATATTCGTC -ACGGAATAGTGCGCCATATCTCTC -ACGGAATAGTGCGCCATATGGATC -ACGGAATAGTGCGCCATACACTTC -ACGGAATAGTGCGCCATAGTACTC -ACGGAATAGTGCGCCATAGATGTC -ACGGAATAGTGCGCCATAACAGTC -ACGGAATAGTGCGCCATATTGCTG -ACGGAATAGTGCGCCATATCCATG -ACGGAATAGTGCGCCATATGTGTG -ACGGAATAGTGCGCCATACTAGTG -ACGGAATAGTGCGCCATACATCTG -ACGGAATAGTGCGCCATAGAGTTG -ACGGAATAGTGCGCCATAAGACTG -ACGGAATAGTGCGCCATATCGGTA -ACGGAATAGTGCGCCATATGCCTA -ACGGAATAGTGCGCCATACCACTA -ACGGAATAGTGCGCCATAGGAGTA -ACGGAATAGTGCGCCATATCGTCT -ACGGAATAGTGCGCCATATGCACT -ACGGAATAGTGCGCCATACTGACT -ACGGAATAGTGCGCCATACAACCT -ACGGAATAGTGCGCCATAGCTACT -ACGGAATAGTGCGCCATAGGATCT -ACGGAATAGTGCGCCATAAAGGCT -ACGGAATAGTGCGCCATATCAACC -ACGGAATAGTGCGCCATATGTTCC -ACGGAATAGTGCGCCATAATTCCC -ACGGAATAGTGCGCCATATTCTCG -ACGGAATAGTGCGCCATATAGACG -ACGGAATAGTGCGCCATAGTAACG -ACGGAATAGTGCGCCATAACTTCG -ACGGAATAGTGCGCCATATACGCA -ACGGAATAGTGCGCCATACTTGCA -ACGGAATAGTGCGCCATACGAACA -ACGGAATAGTGCGCCATACAGTCA -ACGGAATAGTGCGCCATAGATCCA -ACGGAATAGTGCGCCATAACGACA -ACGGAATAGTGCGCCATAAGCTCA -ACGGAATAGTGCGCCATATCACGT -ACGGAATAGTGCGCCATACGTAGT -ACGGAATAGTGCGCCATAGTCAGT -ACGGAATAGTGCGCCATAGAAGGT -ACGGAATAGTGCGCCATAAACCGT -ACGGAATAGTGCGCCATATTGTGC -ACGGAATAGTGCGCCATACTAAGC -ACGGAATAGTGCGCCATAACTAGC -ACGGAATAGTGCGCCATAAGATGC -ACGGAATAGTGCGCCATATGAAGG -ACGGAATAGTGCGCCATACAATGG -ACGGAATAGTGCGCCATAATGAGG -ACGGAATAGTGCGCCATAAATGGG -ACGGAATAGTGCGCCATATCCTGA -ACGGAATAGTGCGCCATATAGCGA -ACGGAATAGTGCGCCATACACAGA -ACGGAATAGTGCGCCATAGCAAGA -ACGGAATAGTGCGCCATAGGTTGA -ACGGAATAGTGCGCCATATCCGAT -ACGGAATAGTGCGCCATATGGCAT -ACGGAATAGTGCGCCATACGAGAT -ACGGAATAGTGCGCCATATACCAC -ACGGAATAGTGCGCCATACAGAAC -ACGGAATAGTGCGCCATAGTCTAC -ACGGAATAGTGCGCCATAACGTAC -ACGGAATAGTGCGCCATAAGTGAC -ACGGAATAGTGCGCCATACTGTAG -ACGGAATAGTGCGCCATACCTAAG -ACGGAATAGTGCGCCATAGTTCAG -ACGGAATAGTGCGCCATAGCATAG -ACGGAATAGTGCGCCATAGACAAG -ACGGAATAGTGCGCCATAAAGCAG -ACGGAATAGTGCGCCATACGTCAA -ACGGAATAGTGCGCCATAGCTGAA -ACGGAATAGTGCGCCATAAGTACG -ACGGAATAGTGCGCCATAATCCGA -ACGGAATAGTGCGCCATAATGGGA -ACGGAATAGTGCGCCATAGTGCAA -ACGGAATAGTGCGCCATAGAGGAA -ACGGAATAGTGCGCCATACAGGTA -ACGGAATAGTGCGCCATAGACTCT -ACGGAATAGTGCGCCATAAGTCCT -ACGGAATAGTGCGCCATATAAGCC -ACGGAATAGTGCGCCATAATAGCC -ACGGAATAGTGCGCCATATAACCG -ACGGAATAGTGCGCCATAATGCCA -ACGGAATAGTGCCCGTAAGGAAAC -ACGGAATAGTGCCCGTAAAACACC -ACGGAATAGTGCCCGTAAATCGAG -ACGGAATAGTGCCCGTAACTCCTT -ACGGAATAGTGCCCGTAACCTGTT -ACGGAATAGTGCCCGTAACGGTTT -ACGGAATAGTGCCCGTAAGTGGTT -ACGGAATAGTGCCCGTAAGCCTTT -ACGGAATAGTGCCCGTAAGGTCTT -ACGGAATAGTGCCCGTAAACGCTT -ACGGAATAGTGCCCGTAAAGCGTT -ACGGAATAGTGCCCGTAATTCGTC -ACGGAATAGTGCCCGTAATCTCTC -ACGGAATAGTGCCCGTAATGGATC -ACGGAATAGTGCCCGTAACACTTC -ACGGAATAGTGCCCGTAAGTACTC -ACGGAATAGTGCCCGTAAGATGTC -ACGGAATAGTGCCCGTAAACAGTC -ACGGAATAGTGCCCGTAATTGCTG -ACGGAATAGTGCCCGTAATCCATG -ACGGAATAGTGCCCGTAATGTGTG -ACGGAATAGTGCCCGTAACTAGTG -ACGGAATAGTGCCCGTAACATCTG -ACGGAATAGTGCCCGTAAGAGTTG -ACGGAATAGTGCCCGTAAAGACTG -ACGGAATAGTGCCCGTAATCGGTA -ACGGAATAGTGCCCGTAATGCCTA -ACGGAATAGTGCCCGTAACCACTA -ACGGAATAGTGCCCGTAAGGAGTA -ACGGAATAGTGCCCGTAATCGTCT -ACGGAATAGTGCCCGTAATGCACT -ACGGAATAGTGCCCGTAACTGACT -ACGGAATAGTGCCCGTAACAACCT -ACGGAATAGTGCCCGTAAGCTACT -ACGGAATAGTGCCCGTAAGGATCT -ACGGAATAGTGCCCGTAAAAGGCT -ACGGAATAGTGCCCGTAATCAACC -ACGGAATAGTGCCCGTAATGTTCC -ACGGAATAGTGCCCGTAAATTCCC -ACGGAATAGTGCCCGTAATTCTCG -ACGGAATAGTGCCCGTAATAGACG -ACGGAATAGTGCCCGTAAGTAACG -ACGGAATAGTGCCCGTAAACTTCG -ACGGAATAGTGCCCGTAATACGCA -ACGGAATAGTGCCCGTAACTTGCA -ACGGAATAGTGCCCGTAACGAACA -ACGGAATAGTGCCCGTAACAGTCA -ACGGAATAGTGCCCGTAAGATCCA -ACGGAATAGTGCCCGTAAACGACA -ACGGAATAGTGCCCGTAAAGCTCA -ACGGAATAGTGCCCGTAATCACGT -ACGGAATAGTGCCCGTAACGTAGT -ACGGAATAGTGCCCGTAAGTCAGT -ACGGAATAGTGCCCGTAAGAAGGT -ACGGAATAGTGCCCGTAAAACCGT -ACGGAATAGTGCCCGTAATTGTGC -ACGGAATAGTGCCCGTAACTAAGC -ACGGAATAGTGCCCGTAAACTAGC -ACGGAATAGTGCCCGTAAAGATGC -ACGGAATAGTGCCCGTAATGAAGG -ACGGAATAGTGCCCGTAACAATGG -ACGGAATAGTGCCCGTAAATGAGG -ACGGAATAGTGCCCGTAAAATGGG -ACGGAATAGTGCCCGTAATCCTGA -ACGGAATAGTGCCCGTAATAGCGA -ACGGAATAGTGCCCGTAACACAGA -ACGGAATAGTGCCCGTAAGCAAGA -ACGGAATAGTGCCCGTAAGGTTGA -ACGGAATAGTGCCCGTAATCCGAT -ACGGAATAGTGCCCGTAATGGCAT -ACGGAATAGTGCCCGTAACGAGAT -ACGGAATAGTGCCCGTAATACCAC -ACGGAATAGTGCCCGTAACAGAAC -ACGGAATAGTGCCCGTAAGTCTAC -ACGGAATAGTGCCCGTAAACGTAC -ACGGAATAGTGCCCGTAAAGTGAC -ACGGAATAGTGCCCGTAACTGTAG -ACGGAATAGTGCCCGTAACCTAAG -ACGGAATAGTGCCCGTAAGTTCAG -ACGGAATAGTGCCCGTAAGCATAG -ACGGAATAGTGCCCGTAAGACAAG -ACGGAATAGTGCCCGTAAAAGCAG -ACGGAATAGTGCCCGTAACGTCAA -ACGGAATAGTGCCCGTAAGCTGAA -ACGGAATAGTGCCCGTAAAGTACG -ACGGAATAGTGCCCGTAAATCCGA -ACGGAATAGTGCCCGTAAATGGGA -ACGGAATAGTGCCCGTAAGTGCAA -ACGGAATAGTGCCCGTAAGAGGAA -ACGGAATAGTGCCCGTAACAGGTA -ACGGAATAGTGCCCGTAAGACTCT -ACGGAATAGTGCCCGTAAAGTCCT -ACGGAATAGTGCCCGTAATAAGCC -ACGGAATAGTGCCCGTAAATAGCC -ACGGAATAGTGCCCGTAATAACCG -ACGGAATAGTGCCCGTAAATGCCA -ACGGAATAGTGCCCAATGGGAAAC -ACGGAATAGTGCCCAATGAACACC -ACGGAATAGTGCCCAATGATCGAG -ACGGAATAGTGCCCAATGCTCCTT -ACGGAATAGTGCCCAATGCCTGTT -ACGGAATAGTGCCCAATGCGGTTT -ACGGAATAGTGCCCAATGGTGGTT -ACGGAATAGTGCCCAATGGCCTTT -ACGGAATAGTGCCCAATGGGTCTT -ACGGAATAGTGCCCAATGACGCTT -ACGGAATAGTGCCCAATGAGCGTT -ACGGAATAGTGCCCAATGTTCGTC -ACGGAATAGTGCCCAATGTCTCTC -ACGGAATAGTGCCCAATGTGGATC -ACGGAATAGTGCCCAATGCACTTC -ACGGAATAGTGCCCAATGGTACTC -ACGGAATAGTGCCCAATGGATGTC -ACGGAATAGTGCCCAATGACAGTC -ACGGAATAGTGCCCAATGTTGCTG -ACGGAATAGTGCCCAATGTCCATG -ACGGAATAGTGCCCAATGTGTGTG -ACGGAATAGTGCCCAATGCTAGTG -ACGGAATAGTGCCCAATGCATCTG -ACGGAATAGTGCCCAATGGAGTTG -ACGGAATAGTGCCCAATGAGACTG -ACGGAATAGTGCCCAATGTCGGTA -ACGGAATAGTGCCCAATGTGCCTA -ACGGAATAGTGCCCAATGCCACTA -ACGGAATAGTGCCCAATGGGAGTA -ACGGAATAGTGCCCAATGTCGTCT -ACGGAATAGTGCCCAATGTGCACT -ACGGAATAGTGCCCAATGCTGACT -ACGGAATAGTGCCCAATGCAACCT -ACGGAATAGTGCCCAATGGCTACT -ACGGAATAGTGCCCAATGGGATCT -ACGGAATAGTGCCCAATGAAGGCT -ACGGAATAGTGCCCAATGTCAACC -ACGGAATAGTGCCCAATGTGTTCC -ACGGAATAGTGCCCAATGATTCCC -ACGGAATAGTGCCCAATGTTCTCG -ACGGAATAGTGCCCAATGTAGACG -ACGGAATAGTGCCCAATGGTAACG -ACGGAATAGTGCCCAATGACTTCG -ACGGAATAGTGCCCAATGTACGCA -ACGGAATAGTGCCCAATGCTTGCA -ACGGAATAGTGCCCAATGCGAACA -ACGGAATAGTGCCCAATGCAGTCA -ACGGAATAGTGCCCAATGGATCCA -ACGGAATAGTGCCCAATGACGACA -ACGGAATAGTGCCCAATGAGCTCA -ACGGAATAGTGCCCAATGTCACGT -ACGGAATAGTGCCCAATGCGTAGT -ACGGAATAGTGCCCAATGGTCAGT -ACGGAATAGTGCCCAATGGAAGGT -ACGGAATAGTGCCCAATGAACCGT -ACGGAATAGTGCCCAATGTTGTGC -ACGGAATAGTGCCCAATGCTAAGC -ACGGAATAGTGCCCAATGACTAGC -ACGGAATAGTGCCCAATGAGATGC -ACGGAATAGTGCCCAATGTGAAGG -ACGGAATAGTGCCCAATGCAATGG -ACGGAATAGTGCCCAATGATGAGG -ACGGAATAGTGCCCAATGAATGGG -ACGGAATAGTGCCCAATGTCCTGA -ACGGAATAGTGCCCAATGTAGCGA -ACGGAATAGTGCCCAATGCACAGA -ACGGAATAGTGCCCAATGGCAAGA -ACGGAATAGTGCCCAATGGGTTGA -ACGGAATAGTGCCCAATGTCCGAT -ACGGAATAGTGCCCAATGTGGCAT -ACGGAATAGTGCCCAATGCGAGAT -ACGGAATAGTGCCCAATGTACCAC -ACGGAATAGTGCCCAATGCAGAAC -ACGGAATAGTGCCCAATGGTCTAC -ACGGAATAGTGCCCAATGACGTAC -ACGGAATAGTGCCCAATGAGTGAC -ACGGAATAGTGCCCAATGCTGTAG -ACGGAATAGTGCCCAATGCCTAAG -ACGGAATAGTGCCCAATGGTTCAG -ACGGAATAGTGCCCAATGGCATAG -ACGGAATAGTGCCCAATGGACAAG -ACGGAATAGTGCCCAATGAAGCAG -ACGGAATAGTGCCCAATGCGTCAA -ACGGAATAGTGCCCAATGGCTGAA -ACGGAATAGTGCCCAATGAGTACG -ACGGAATAGTGCCCAATGATCCGA -ACGGAATAGTGCCCAATGATGGGA -ACGGAATAGTGCCCAATGGTGCAA -ACGGAATAGTGCCCAATGGAGGAA -ACGGAATAGTGCCCAATGCAGGTA -ACGGAATAGTGCCCAATGGACTCT -ACGGAATAGTGCCCAATGAGTCCT -ACGGAATAGTGCCCAATGTAAGCC -ACGGAATAGTGCCCAATGATAGCC -ACGGAATAGTGCCCAATGTAACCG -ACGGAATAGTGCCCAATGATGCCA -ACGGAAATCTGCAACGGAGGAAAC -ACGGAAATCTGCAACGGAAACACC -ACGGAAATCTGCAACGGAATCGAG -ACGGAAATCTGCAACGGACTCCTT -ACGGAAATCTGCAACGGACCTGTT -ACGGAAATCTGCAACGGACGGTTT -ACGGAAATCTGCAACGGAGTGGTT -ACGGAAATCTGCAACGGAGCCTTT -ACGGAAATCTGCAACGGAGGTCTT -ACGGAAATCTGCAACGGAACGCTT -ACGGAAATCTGCAACGGAAGCGTT -ACGGAAATCTGCAACGGATTCGTC -ACGGAAATCTGCAACGGATCTCTC -ACGGAAATCTGCAACGGATGGATC -ACGGAAATCTGCAACGGACACTTC -ACGGAAATCTGCAACGGAGTACTC -ACGGAAATCTGCAACGGAGATGTC -ACGGAAATCTGCAACGGAACAGTC -ACGGAAATCTGCAACGGATTGCTG -ACGGAAATCTGCAACGGATCCATG -ACGGAAATCTGCAACGGATGTGTG -ACGGAAATCTGCAACGGACTAGTG -ACGGAAATCTGCAACGGACATCTG -ACGGAAATCTGCAACGGAGAGTTG -ACGGAAATCTGCAACGGAAGACTG -ACGGAAATCTGCAACGGATCGGTA -ACGGAAATCTGCAACGGATGCCTA -ACGGAAATCTGCAACGGACCACTA -ACGGAAATCTGCAACGGAGGAGTA -ACGGAAATCTGCAACGGATCGTCT -ACGGAAATCTGCAACGGATGCACT -ACGGAAATCTGCAACGGACTGACT -ACGGAAATCTGCAACGGACAACCT -ACGGAAATCTGCAACGGAGCTACT -ACGGAAATCTGCAACGGAGGATCT -ACGGAAATCTGCAACGGAAAGGCT -ACGGAAATCTGCAACGGATCAACC -ACGGAAATCTGCAACGGATGTTCC -ACGGAAATCTGCAACGGAATTCCC -ACGGAAATCTGCAACGGATTCTCG -ACGGAAATCTGCAACGGATAGACG -ACGGAAATCTGCAACGGAGTAACG -ACGGAAATCTGCAACGGAACTTCG -ACGGAAATCTGCAACGGATACGCA -ACGGAAATCTGCAACGGACTTGCA -ACGGAAATCTGCAACGGACGAACA -ACGGAAATCTGCAACGGACAGTCA -ACGGAAATCTGCAACGGAGATCCA -ACGGAAATCTGCAACGGAACGACA -ACGGAAATCTGCAACGGAAGCTCA -ACGGAAATCTGCAACGGATCACGT -ACGGAAATCTGCAACGGACGTAGT -ACGGAAATCTGCAACGGAGTCAGT -ACGGAAATCTGCAACGGAGAAGGT -ACGGAAATCTGCAACGGAAACCGT -ACGGAAATCTGCAACGGATTGTGC -ACGGAAATCTGCAACGGACTAAGC -ACGGAAATCTGCAACGGAACTAGC -ACGGAAATCTGCAACGGAAGATGC -ACGGAAATCTGCAACGGATGAAGG -ACGGAAATCTGCAACGGACAATGG -ACGGAAATCTGCAACGGAATGAGG -ACGGAAATCTGCAACGGAAATGGG -ACGGAAATCTGCAACGGATCCTGA -ACGGAAATCTGCAACGGATAGCGA -ACGGAAATCTGCAACGGACACAGA -ACGGAAATCTGCAACGGAGCAAGA -ACGGAAATCTGCAACGGAGGTTGA -ACGGAAATCTGCAACGGATCCGAT -ACGGAAATCTGCAACGGATGGCAT -ACGGAAATCTGCAACGGACGAGAT -ACGGAAATCTGCAACGGATACCAC -ACGGAAATCTGCAACGGACAGAAC -ACGGAAATCTGCAACGGAGTCTAC -ACGGAAATCTGCAACGGAACGTAC -ACGGAAATCTGCAACGGAAGTGAC -ACGGAAATCTGCAACGGACTGTAG -ACGGAAATCTGCAACGGACCTAAG -ACGGAAATCTGCAACGGAGTTCAG -ACGGAAATCTGCAACGGAGCATAG -ACGGAAATCTGCAACGGAGACAAG -ACGGAAATCTGCAACGGAAAGCAG -ACGGAAATCTGCAACGGACGTCAA -ACGGAAATCTGCAACGGAGCTGAA -ACGGAAATCTGCAACGGAAGTACG -ACGGAAATCTGCAACGGAATCCGA -ACGGAAATCTGCAACGGAATGGGA -ACGGAAATCTGCAACGGAGTGCAA -ACGGAAATCTGCAACGGAGAGGAA -ACGGAAATCTGCAACGGACAGGTA -ACGGAAATCTGCAACGGAGACTCT -ACGGAAATCTGCAACGGAAGTCCT -ACGGAAATCTGCAACGGATAAGCC -ACGGAAATCTGCAACGGAATAGCC -ACGGAAATCTGCAACGGATAACCG -ACGGAAATCTGCAACGGAATGCCA -ACGGAAATCTGCACCAACGGAAAC -ACGGAAATCTGCACCAACAACACC -ACGGAAATCTGCACCAACATCGAG -ACGGAAATCTGCACCAACCTCCTT -ACGGAAATCTGCACCAACCCTGTT -ACGGAAATCTGCACCAACCGGTTT -ACGGAAATCTGCACCAACGTGGTT -ACGGAAATCTGCACCAACGCCTTT -ACGGAAATCTGCACCAACGGTCTT -ACGGAAATCTGCACCAACACGCTT -ACGGAAATCTGCACCAACAGCGTT -ACGGAAATCTGCACCAACTTCGTC -ACGGAAATCTGCACCAACTCTCTC -ACGGAAATCTGCACCAACTGGATC -ACGGAAATCTGCACCAACCACTTC -ACGGAAATCTGCACCAACGTACTC -ACGGAAATCTGCACCAACGATGTC -ACGGAAATCTGCACCAACACAGTC -ACGGAAATCTGCACCAACTTGCTG -ACGGAAATCTGCACCAACTCCATG -ACGGAAATCTGCACCAACTGTGTG -ACGGAAATCTGCACCAACCTAGTG -ACGGAAATCTGCACCAACCATCTG -ACGGAAATCTGCACCAACGAGTTG -ACGGAAATCTGCACCAACAGACTG -ACGGAAATCTGCACCAACTCGGTA -ACGGAAATCTGCACCAACTGCCTA -ACGGAAATCTGCACCAACCCACTA -ACGGAAATCTGCACCAACGGAGTA -ACGGAAATCTGCACCAACTCGTCT -ACGGAAATCTGCACCAACTGCACT -ACGGAAATCTGCACCAACCTGACT -ACGGAAATCTGCACCAACCAACCT -ACGGAAATCTGCACCAACGCTACT -ACGGAAATCTGCACCAACGGATCT -ACGGAAATCTGCACCAACAAGGCT -ACGGAAATCTGCACCAACTCAACC -ACGGAAATCTGCACCAACTGTTCC -ACGGAAATCTGCACCAACATTCCC -ACGGAAATCTGCACCAACTTCTCG -ACGGAAATCTGCACCAACTAGACG -ACGGAAATCTGCACCAACGTAACG -ACGGAAATCTGCACCAACACTTCG -ACGGAAATCTGCACCAACTACGCA -ACGGAAATCTGCACCAACCTTGCA -ACGGAAATCTGCACCAACCGAACA -ACGGAAATCTGCACCAACCAGTCA -ACGGAAATCTGCACCAACGATCCA -ACGGAAATCTGCACCAACACGACA -ACGGAAATCTGCACCAACAGCTCA -ACGGAAATCTGCACCAACTCACGT -ACGGAAATCTGCACCAACCGTAGT -ACGGAAATCTGCACCAACGTCAGT -ACGGAAATCTGCACCAACGAAGGT -ACGGAAATCTGCACCAACAACCGT -ACGGAAATCTGCACCAACTTGTGC -ACGGAAATCTGCACCAACCTAAGC -ACGGAAATCTGCACCAACACTAGC -ACGGAAATCTGCACCAACAGATGC -ACGGAAATCTGCACCAACTGAAGG -ACGGAAATCTGCACCAACCAATGG -ACGGAAATCTGCACCAACATGAGG -ACGGAAATCTGCACCAACAATGGG -ACGGAAATCTGCACCAACTCCTGA -ACGGAAATCTGCACCAACTAGCGA -ACGGAAATCTGCACCAACCACAGA -ACGGAAATCTGCACCAACGCAAGA -ACGGAAATCTGCACCAACGGTTGA -ACGGAAATCTGCACCAACTCCGAT -ACGGAAATCTGCACCAACTGGCAT -ACGGAAATCTGCACCAACCGAGAT -ACGGAAATCTGCACCAACTACCAC -ACGGAAATCTGCACCAACCAGAAC -ACGGAAATCTGCACCAACGTCTAC -ACGGAAATCTGCACCAACACGTAC -ACGGAAATCTGCACCAACAGTGAC -ACGGAAATCTGCACCAACCTGTAG -ACGGAAATCTGCACCAACCCTAAG -ACGGAAATCTGCACCAACGTTCAG -ACGGAAATCTGCACCAACGCATAG -ACGGAAATCTGCACCAACGACAAG -ACGGAAATCTGCACCAACAAGCAG -ACGGAAATCTGCACCAACCGTCAA -ACGGAAATCTGCACCAACGCTGAA -ACGGAAATCTGCACCAACAGTACG -ACGGAAATCTGCACCAACATCCGA -ACGGAAATCTGCACCAACATGGGA -ACGGAAATCTGCACCAACGTGCAA -ACGGAAATCTGCACCAACGAGGAA -ACGGAAATCTGCACCAACCAGGTA -ACGGAAATCTGCACCAACGACTCT -ACGGAAATCTGCACCAACAGTCCT -ACGGAAATCTGCACCAACTAAGCC -ACGGAAATCTGCACCAACATAGCC -ACGGAAATCTGCACCAACTAACCG -ACGGAAATCTGCACCAACATGCCA -ACGGAAATCTGCGAGATCGGAAAC -ACGGAAATCTGCGAGATCAACACC -ACGGAAATCTGCGAGATCATCGAG -ACGGAAATCTGCGAGATCCTCCTT -ACGGAAATCTGCGAGATCCCTGTT -ACGGAAATCTGCGAGATCCGGTTT -ACGGAAATCTGCGAGATCGTGGTT -ACGGAAATCTGCGAGATCGCCTTT -ACGGAAATCTGCGAGATCGGTCTT -ACGGAAATCTGCGAGATCACGCTT -ACGGAAATCTGCGAGATCAGCGTT -ACGGAAATCTGCGAGATCTTCGTC -ACGGAAATCTGCGAGATCTCTCTC -ACGGAAATCTGCGAGATCTGGATC -ACGGAAATCTGCGAGATCCACTTC -ACGGAAATCTGCGAGATCGTACTC -ACGGAAATCTGCGAGATCGATGTC -ACGGAAATCTGCGAGATCACAGTC -ACGGAAATCTGCGAGATCTTGCTG -ACGGAAATCTGCGAGATCTCCATG -ACGGAAATCTGCGAGATCTGTGTG -ACGGAAATCTGCGAGATCCTAGTG -ACGGAAATCTGCGAGATCCATCTG -ACGGAAATCTGCGAGATCGAGTTG -ACGGAAATCTGCGAGATCAGACTG -ACGGAAATCTGCGAGATCTCGGTA -ACGGAAATCTGCGAGATCTGCCTA -ACGGAAATCTGCGAGATCCCACTA -ACGGAAATCTGCGAGATCGGAGTA -ACGGAAATCTGCGAGATCTCGTCT -ACGGAAATCTGCGAGATCTGCACT -ACGGAAATCTGCGAGATCCTGACT -ACGGAAATCTGCGAGATCCAACCT -ACGGAAATCTGCGAGATCGCTACT -ACGGAAATCTGCGAGATCGGATCT -ACGGAAATCTGCGAGATCAAGGCT -ACGGAAATCTGCGAGATCTCAACC -ACGGAAATCTGCGAGATCTGTTCC -ACGGAAATCTGCGAGATCATTCCC -ACGGAAATCTGCGAGATCTTCTCG -ACGGAAATCTGCGAGATCTAGACG -ACGGAAATCTGCGAGATCGTAACG -ACGGAAATCTGCGAGATCACTTCG -ACGGAAATCTGCGAGATCTACGCA -ACGGAAATCTGCGAGATCCTTGCA -ACGGAAATCTGCGAGATCCGAACA -ACGGAAATCTGCGAGATCCAGTCA -ACGGAAATCTGCGAGATCGATCCA -ACGGAAATCTGCGAGATCACGACA -ACGGAAATCTGCGAGATCAGCTCA -ACGGAAATCTGCGAGATCTCACGT -ACGGAAATCTGCGAGATCCGTAGT -ACGGAAATCTGCGAGATCGTCAGT -ACGGAAATCTGCGAGATCGAAGGT -ACGGAAATCTGCGAGATCAACCGT -ACGGAAATCTGCGAGATCTTGTGC -ACGGAAATCTGCGAGATCCTAAGC -ACGGAAATCTGCGAGATCACTAGC -ACGGAAATCTGCGAGATCAGATGC -ACGGAAATCTGCGAGATCTGAAGG -ACGGAAATCTGCGAGATCCAATGG -ACGGAAATCTGCGAGATCATGAGG -ACGGAAATCTGCGAGATCAATGGG -ACGGAAATCTGCGAGATCTCCTGA -ACGGAAATCTGCGAGATCTAGCGA -ACGGAAATCTGCGAGATCCACAGA -ACGGAAATCTGCGAGATCGCAAGA -ACGGAAATCTGCGAGATCGGTTGA -ACGGAAATCTGCGAGATCTCCGAT -ACGGAAATCTGCGAGATCTGGCAT -ACGGAAATCTGCGAGATCCGAGAT -ACGGAAATCTGCGAGATCTACCAC -ACGGAAATCTGCGAGATCCAGAAC -ACGGAAATCTGCGAGATCGTCTAC -ACGGAAATCTGCGAGATCACGTAC -ACGGAAATCTGCGAGATCAGTGAC -ACGGAAATCTGCGAGATCCTGTAG -ACGGAAATCTGCGAGATCCCTAAG -ACGGAAATCTGCGAGATCGTTCAG -ACGGAAATCTGCGAGATCGCATAG -ACGGAAATCTGCGAGATCGACAAG -ACGGAAATCTGCGAGATCAAGCAG -ACGGAAATCTGCGAGATCCGTCAA -ACGGAAATCTGCGAGATCGCTGAA -ACGGAAATCTGCGAGATCAGTACG -ACGGAAATCTGCGAGATCATCCGA -ACGGAAATCTGCGAGATCATGGGA -ACGGAAATCTGCGAGATCGTGCAA -ACGGAAATCTGCGAGATCGAGGAA -ACGGAAATCTGCGAGATCCAGGTA -ACGGAAATCTGCGAGATCGACTCT -ACGGAAATCTGCGAGATCAGTCCT -ACGGAAATCTGCGAGATCTAAGCC -ACGGAAATCTGCGAGATCATAGCC -ACGGAAATCTGCGAGATCTAACCG -ACGGAAATCTGCGAGATCATGCCA -ACGGAAATCTGCCTTCTCGGAAAC -ACGGAAATCTGCCTTCTCAACACC -ACGGAAATCTGCCTTCTCATCGAG -ACGGAAATCTGCCTTCTCCTCCTT -ACGGAAATCTGCCTTCTCCCTGTT -ACGGAAATCTGCCTTCTCCGGTTT -ACGGAAATCTGCCTTCTCGTGGTT -ACGGAAATCTGCCTTCTCGCCTTT -ACGGAAATCTGCCTTCTCGGTCTT -ACGGAAATCTGCCTTCTCACGCTT -ACGGAAATCTGCCTTCTCAGCGTT -ACGGAAATCTGCCTTCTCTTCGTC -ACGGAAATCTGCCTTCTCTCTCTC -ACGGAAATCTGCCTTCTCTGGATC -ACGGAAATCTGCCTTCTCCACTTC -ACGGAAATCTGCCTTCTCGTACTC -ACGGAAATCTGCCTTCTCGATGTC -ACGGAAATCTGCCTTCTCACAGTC -ACGGAAATCTGCCTTCTCTTGCTG -ACGGAAATCTGCCTTCTCTCCATG -ACGGAAATCTGCCTTCTCTGTGTG -ACGGAAATCTGCCTTCTCCTAGTG -ACGGAAATCTGCCTTCTCCATCTG -ACGGAAATCTGCCTTCTCGAGTTG -ACGGAAATCTGCCTTCTCAGACTG -ACGGAAATCTGCCTTCTCTCGGTA -ACGGAAATCTGCCTTCTCTGCCTA -ACGGAAATCTGCCTTCTCCCACTA -ACGGAAATCTGCCTTCTCGGAGTA -ACGGAAATCTGCCTTCTCTCGTCT -ACGGAAATCTGCCTTCTCTGCACT -ACGGAAATCTGCCTTCTCCTGACT -ACGGAAATCTGCCTTCTCCAACCT -ACGGAAATCTGCCTTCTCGCTACT -ACGGAAATCTGCCTTCTCGGATCT -ACGGAAATCTGCCTTCTCAAGGCT -ACGGAAATCTGCCTTCTCTCAACC -ACGGAAATCTGCCTTCTCTGTTCC -ACGGAAATCTGCCTTCTCATTCCC -ACGGAAATCTGCCTTCTCTTCTCG -ACGGAAATCTGCCTTCTCTAGACG -ACGGAAATCTGCCTTCTCGTAACG -ACGGAAATCTGCCTTCTCACTTCG -ACGGAAATCTGCCTTCTCTACGCA -ACGGAAATCTGCCTTCTCCTTGCA -ACGGAAATCTGCCTTCTCCGAACA -ACGGAAATCTGCCTTCTCCAGTCA -ACGGAAATCTGCCTTCTCGATCCA -ACGGAAATCTGCCTTCTCACGACA -ACGGAAATCTGCCTTCTCAGCTCA -ACGGAAATCTGCCTTCTCTCACGT -ACGGAAATCTGCCTTCTCCGTAGT -ACGGAAATCTGCCTTCTCGTCAGT -ACGGAAATCTGCCTTCTCGAAGGT -ACGGAAATCTGCCTTCTCAACCGT -ACGGAAATCTGCCTTCTCTTGTGC -ACGGAAATCTGCCTTCTCCTAAGC -ACGGAAATCTGCCTTCTCACTAGC -ACGGAAATCTGCCTTCTCAGATGC -ACGGAAATCTGCCTTCTCTGAAGG -ACGGAAATCTGCCTTCTCCAATGG -ACGGAAATCTGCCTTCTCATGAGG -ACGGAAATCTGCCTTCTCAATGGG -ACGGAAATCTGCCTTCTCTCCTGA -ACGGAAATCTGCCTTCTCTAGCGA -ACGGAAATCTGCCTTCTCCACAGA -ACGGAAATCTGCCTTCTCGCAAGA -ACGGAAATCTGCCTTCTCGGTTGA -ACGGAAATCTGCCTTCTCTCCGAT -ACGGAAATCTGCCTTCTCTGGCAT -ACGGAAATCTGCCTTCTCCGAGAT -ACGGAAATCTGCCTTCTCTACCAC -ACGGAAATCTGCCTTCTCCAGAAC -ACGGAAATCTGCCTTCTCGTCTAC -ACGGAAATCTGCCTTCTCACGTAC -ACGGAAATCTGCCTTCTCAGTGAC -ACGGAAATCTGCCTTCTCCTGTAG -ACGGAAATCTGCCTTCTCCCTAAG -ACGGAAATCTGCCTTCTCGTTCAG -ACGGAAATCTGCCTTCTCGCATAG -ACGGAAATCTGCCTTCTCGACAAG -ACGGAAATCTGCCTTCTCAAGCAG -ACGGAAATCTGCCTTCTCCGTCAA -ACGGAAATCTGCCTTCTCGCTGAA -ACGGAAATCTGCCTTCTCAGTACG -ACGGAAATCTGCCTTCTCATCCGA -ACGGAAATCTGCCTTCTCATGGGA -ACGGAAATCTGCCTTCTCGTGCAA -ACGGAAATCTGCCTTCTCGAGGAA -ACGGAAATCTGCCTTCTCCAGGTA -ACGGAAATCTGCCTTCTCGACTCT -ACGGAAATCTGCCTTCTCAGTCCT -ACGGAAATCTGCCTTCTCTAAGCC -ACGGAAATCTGCCTTCTCATAGCC -ACGGAAATCTGCCTTCTCTAACCG -ACGGAAATCTGCCTTCTCATGCCA -ACGGAAATCTGCGTTCCTGGAAAC -ACGGAAATCTGCGTTCCTAACACC -ACGGAAATCTGCGTTCCTATCGAG -ACGGAAATCTGCGTTCCTCTCCTT -ACGGAAATCTGCGTTCCTCCTGTT -ACGGAAATCTGCGTTCCTCGGTTT -ACGGAAATCTGCGTTCCTGTGGTT -ACGGAAATCTGCGTTCCTGCCTTT -ACGGAAATCTGCGTTCCTGGTCTT -ACGGAAATCTGCGTTCCTACGCTT -ACGGAAATCTGCGTTCCTAGCGTT -ACGGAAATCTGCGTTCCTTTCGTC -ACGGAAATCTGCGTTCCTTCTCTC -ACGGAAATCTGCGTTCCTTGGATC -ACGGAAATCTGCGTTCCTCACTTC -ACGGAAATCTGCGTTCCTGTACTC -ACGGAAATCTGCGTTCCTGATGTC -ACGGAAATCTGCGTTCCTACAGTC -ACGGAAATCTGCGTTCCTTTGCTG -ACGGAAATCTGCGTTCCTTCCATG -ACGGAAATCTGCGTTCCTTGTGTG -ACGGAAATCTGCGTTCCTCTAGTG -ACGGAAATCTGCGTTCCTCATCTG -ACGGAAATCTGCGTTCCTGAGTTG -ACGGAAATCTGCGTTCCTAGACTG -ACGGAAATCTGCGTTCCTTCGGTA -ACGGAAATCTGCGTTCCTTGCCTA -ACGGAAATCTGCGTTCCTCCACTA -ACGGAAATCTGCGTTCCTGGAGTA -ACGGAAATCTGCGTTCCTTCGTCT -ACGGAAATCTGCGTTCCTTGCACT -ACGGAAATCTGCGTTCCTCTGACT -ACGGAAATCTGCGTTCCTCAACCT -ACGGAAATCTGCGTTCCTGCTACT -ACGGAAATCTGCGTTCCTGGATCT -ACGGAAATCTGCGTTCCTAAGGCT -ACGGAAATCTGCGTTCCTTCAACC -ACGGAAATCTGCGTTCCTTGTTCC -ACGGAAATCTGCGTTCCTATTCCC -ACGGAAATCTGCGTTCCTTTCTCG -ACGGAAATCTGCGTTCCTTAGACG -ACGGAAATCTGCGTTCCTGTAACG -ACGGAAATCTGCGTTCCTACTTCG -ACGGAAATCTGCGTTCCTTACGCA -ACGGAAATCTGCGTTCCTCTTGCA -ACGGAAATCTGCGTTCCTCGAACA -ACGGAAATCTGCGTTCCTCAGTCA -ACGGAAATCTGCGTTCCTGATCCA -ACGGAAATCTGCGTTCCTACGACA -ACGGAAATCTGCGTTCCTAGCTCA -ACGGAAATCTGCGTTCCTTCACGT -ACGGAAATCTGCGTTCCTCGTAGT -ACGGAAATCTGCGTTCCTGTCAGT -ACGGAAATCTGCGTTCCTGAAGGT -ACGGAAATCTGCGTTCCTAACCGT -ACGGAAATCTGCGTTCCTTTGTGC -ACGGAAATCTGCGTTCCTCTAAGC -ACGGAAATCTGCGTTCCTACTAGC -ACGGAAATCTGCGTTCCTAGATGC -ACGGAAATCTGCGTTCCTTGAAGG -ACGGAAATCTGCGTTCCTCAATGG -ACGGAAATCTGCGTTCCTATGAGG -ACGGAAATCTGCGTTCCTAATGGG -ACGGAAATCTGCGTTCCTTCCTGA -ACGGAAATCTGCGTTCCTTAGCGA -ACGGAAATCTGCGTTCCTCACAGA -ACGGAAATCTGCGTTCCTGCAAGA -ACGGAAATCTGCGTTCCTGGTTGA -ACGGAAATCTGCGTTCCTTCCGAT -ACGGAAATCTGCGTTCCTTGGCAT -ACGGAAATCTGCGTTCCTCGAGAT -ACGGAAATCTGCGTTCCTTACCAC -ACGGAAATCTGCGTTCCTCAGAAC -ACGGAAATCTGCGTTCCTGTCTAC -ACGGAAATCTGCGTTCCTACGTAC -ACGGAAATCTGCGTTCCTAGTGAC -ACGGAAATCTGCGTTCCTCTGTAG -ACGGAAATCTGCGTTCCTCCTAAG -ACGGAAATCTGCGTTCCTGTTCAG -ACGGAAATCTGCGTTCCTGCATAG -ACGGAAATCTGCGTTCCTGACAAG -ACGGAAATCTGCGTTCCTAAGCAG -ACGGAAATCTGCGTTCCTCGTCAA -ACGGAAATCTGCGTTCCTGCTGAA -ACGGAAATCTGCGTTCCTAGTACG -ACGGAAATCTGCGTTCCTATCCGA -ACGGAAATCTGCGTTCCTATGGGA -ACGGAAATCTGCGTTCCTGTGCAA -ACGGAAATCTGCGTTCCTGAGGAA -ACGGAAATCTGCGTTCCTCAGGTA -ACGGAAATCTGCGTTCCTGACTCT -ACGGAAATCTGCGTTCCTAGTCCT -ACGGAAATCTGCGTTCCTTAAGCC -ACGGAAATCTGCGTTCCTATAGCC -ACGGAAATCTGCGTTCCTTAACCG -ACGGAAATCTGCGTTCCTATGCCA -ACGGAAATCTGCTTTCGGGGAAAC -ACGGAAATCTGCTTTCGGAACACC -ACGGAAATCTGCTTTCGGATCGAG -ACGGAAATCTGCTTTCGGCTCCTT -ACGGAAATCTGCTTTCGGCCTGTT -ACGGAAATCTGCTTTCGGCGGTTT -ACGGAAATCTGCTTTCGGGTGGTT -ACGGAAATCTGCTTTCGGGCCTTT -ACGGAAATCTGCTTTCGGGGTCTT -ACGGAAATCTGCTTTCGGACGCTT -ACGGAAATCTGCTTTCGGAGCGTT -ACGGAAATCTGCTTTCGGTTCGTC -ACGGAAATCTGCTTTCGGTCTCTC -ACGGAAATCTGCTTTCGGTGGATC -ACGGAAATCTGCTTTCGGCACTTC -ACGGAAATCTGCTTTCGGGTACTC -ACGGAAATCTGCTTTCGGGATGTC -ACGGAAATCTGCTTTCGGACAGTC -ACGGAAATCTGCTTTCGGTTGCTG -ACGGAAATCTGCTTTCGGTCCATG -ACGGAAATCTGCTTTCGGTGTGTG -ACGGAAATCTGCTTTCGGCTAGTG -ACGGAAATCTGCTTTCGGCATCTG -ACGGAAATCTGCTTTCGGGAGTTG -ACGGAAATCTGCTTTCGGAGACTG -ACGGAAATCTGCTTTCGGTCGGTA -ACGGAAATCTGCTTTCGGTGCCTA -ACGGAAATCTGCTTTCGGCCACTA -ACGGAAATCTGCTTTCGGGGAGTA -ACGGAAATCTGCTTTCGGTCGTCT -ACGGAAATCTGCTTTCGGTGCACT -ACGGAAATCTGCTTTCGGCTGACT -ACGGAAATCTGCTTTCGGCAACCT -ACGGAAATCTGCTTTCGGGCTACT -ACGGAAATCTGCTTTCGGGGATCT -ACGGAAATCTGCTTTCGGAAGGCT -ACGGAAATCTGCTTTCGGTCAACC -ACGGAAATCTGCTTTCGGTGTTCC -ACGGAAATCTGCTTTCGGATTCCC -ACGGAAATCTGCTTTCGGTTCTCG -ACGGAAATCTGCTTTCGGTAGACG -ACGGAAATCTGCTTTCGGGTAACG -ACGGAAATCTGCTTTCGGACTTCG -ACGGAAATCTGCTTTCGGTACGCA -ACGGAAATCTGCTTTCGGCTTGCA -ACGGAAATCTGCTTTCGGCGAACA -ACGGAAATCTGCTTTCGGCAGTCA -ACGGAAATCTGCTTTCGGGATCCA -ACGGAAATCTGCTTTCGGACGACA -ACGGAAATCTGCTTTCGGAGCTCA -ACGGAAATCTGCTTTCGGTCACGT -ACGGAAATCTGCTTTCGGCGTAGT -ACGGAAATCTGCTTTCGGGTCAGT -ACGGAAATCTGCTTTCGGGAAGGT -ACGGAAATCTGCTTTCGGAACCGT -ACGGAAATCTGCTTTCGGTTGTGC -ACGGAAATCTGCTTTCGGCTAAGC -ACGGAAATCTGCTTTCGGACTAGC -ACGGAAATCTGCTTTCGGAGATGC -ACGGAAATCTGCTTTCGGTGAAGG -ACGGAAATCTGCTTTCGGCAATGG -ACGGAAATCTGCTTTCGGATGAGG -ACGGAAATCTGCTTTCGGAATGGG -ACGGAAATCTGCTTTCGGTCCTGA -ACGGAAATCTGCTTTCGGTAGCGA -ACGGAAATCTGCTTTCGGCACAGA -ACGGAAATCTGCTTTCGGGCAAGA -ACGGAAATCTGCTTTCGGGGTTGA -ACGGAAATCTGCTTTCGGTCCGAT -ACGGAAATCTGCTTTCGGTGGCAT -ACGGAAATCTGCTTTCGGCGAGAT -ACGGAAATCTGCTTTCGGTACCAC -ACGGAAATCTGCTTTCGGCAGAAC -ACGGAAATCTGCTTTCGGGTCTAC -ACGGAAATCTGCTTTCGGACGTAC -ACGGAAATCTGCTTTCGGAGTGAC -ACGGAAATCTGCTTTCGGCTGTAG -ACGGAAATCTGCTTTCGGCCTAAG -ACGGAAATCTGCTTTCGGGTTCAG -ACGGAAATCTGCTTTCGGGCATAG -ACGGAAATCTGCTTTCGGGACAAG -ACGGAAATCTGCTTTCGGAAGCAG -ACGGAAATCTGCTTTCGGCGTCAA -ACGGAAATCTGCTTTCGGGCTGAA -ACGGAAATCTGCTTTCGGAGTACG -ACGGAAATCTGCTTTCGGATCCGA -ACGGAAATCTGCTTTCGGATGGGA -ACGGAAATCTGCTTTCGGGTGCAA -ACGGAAATCTGCTTTCGGGAGGAA -ACGGAAATCTGCTTTCGGCAGGTA -ACGGAAATCTGCTTTCGGGACTCT -ACGGAAATCTGCTTTCGGAGTCCT -ACGGAAATCTGCTTTCGGTAAGCC -ACGGAAATCTGCTTTCGGATAGCC -ACGGAAATCTGCTTTCGGTAACCG -ACGGAAATCTGCTTTCGGATGCCA -ACGGAAATCTGCGTTGTGGGAAAC -ACGGAAATCTGCGTTGTGAACACC -ACGGAAATCTGCGTTGTGATCGAG -ACGGAAATCTGCGTTGTGCTCCTT -ACGGAAATCTGCGTTGTGCCTGTT -ACGGAAATCTGCGTTGTGCGGTTT -ACGGAAATCTGCGTTGTGGTGGTT -ACGGAAATCTGCGTTGTGGCCTTT -ACGGAAATCTGCGTTGTGGGTCTT -ACGGAAATCTGCGTTGTGACGCTT -ACGGAAATCTGCGTTGTGAGCGTT -ACGGAAATCTGCGTTGTGTTCGTC -ACGGAAATCTGCGTTGTGTCTCTC -ACGGAAATCTGCGTTGTGTGGATC -ACGGAAATCTGCGTTGTGCACTTC -ACGGAAATCTGCGTTGTGGTACTC -ACGGAAATCTGCGTTGTGGATGTC -ACGGAAATCTGCGTTGTGACAGTC -ACGGAAATCTGCGTTGTGTTGCTG -ACGGAAATCTGCGTTGTGTCCATG -ACGGAAATCTGCGTTGTGTGTGTG -ACGGAAATCTGCGTTGTGCTAGTG -ACGGAAATCTGCGTTGTGCATCTG -ACGGAAATCTGCGTTGTGGAGTTG -ACGGAAATCTGCGTTGTGAGACTG -ACGGAAATCTGCGTTGTGTCGGTA -ACGGAAATCTGCGTTGTGTGCCTA -ACGGAAATCTGCGTTGTGCCACTA -ACGGAAATCTGCGTTGTGGGAGTA -ACGGAAATCTGCGTTGTGTCGTCT -ACGGAAATCTGCGTTGTGTGCACT -ACGGAAATCTGCGTTGTGCTGACT -ACGGAAATCTGCGTTGTGCAACCT -ACGGAAATCTGCGTTGTGGCTACT -ACGGAAATCTGCGTTGTGGGATCT -ACGGAAATCTGCGTTGTGAAGGCT -ACGGAAATCTGCGTTGTGTCAACC -ACGGAAATCTGCGTTGTGTGTTCC -ACGGAAATCTGCGTTGTGATTCCC -ACGGAAATCTGCGTTGTGTTCTCG -ACGGAAATCTGCGTTGTGTAGACG -ACGGAAATCTGCGTTGTGGTAACG -ACGGAAATCTGCGTTGTGACTTCG -ACGGAAATCTGCGTTGTGTACGCA -ACGGAAATCTGCGTTGTGCTTGCA -ACGGAAATCTGCGTTGTGCGAACA -ACGGAAATCTGCGTTGTGCAGTCA -ACGGAAATCTGCGTTGTGGATCCA -ACGGAAATCTGCGTTGTGACGACA -ACGGAAATCTGCGTTGTGAGCTCA -ACGGAAATCTGCGTTGTGTCACGT -ACGGAAATCTGCGTTGTGCGTAGT -ACGGAAATCTGCGTTGTGGTCAGT -ACGGAAATCTGCGTTGTGGAAGGT -ACGGAAATCTGCGTTGTGAACCGT -ACGGAAATCTGCGTTGTGTTGTGC -ACGGAAATCTGCGTTGTGCTAAGC -ACGGAAATCTGCGTTGTGACTAGC -ACGGAAATCTGCGTTGTGAGATGC -ACGGAAATCTGCGTTGTGTGAAGG -ACGGAAATCTGCGTTGTGCAATGG -ACGGAAATCTGCGTTGTGATGAGG -ACGGAAATCTGCGTTGTGAATGGG -ACGGAAATCTGCGTTGTGTCCTGA -ACGGAAATCTGCGTTGTGTAGCGA -ACGGAAATCTGCGTTGTGCACAGA -ACGGAAATCTGCGTTGTGGCAAGA -ACGGAAATCTGCGTTGTGGGTTGA -ACGGAAATCTGCGTTGTGTCCGAT -ACGGAAATCTGCGTTGTGTGGCAT -ACGGAAATCTGCGTTGTGCGAGAT -ACGGAAATCTGCGTTGTGTACCAC -ACGGAAATCTGCGTTGTGCAGAAC -ACGGAAATCTGCGTTGTGGTCTAC -ACGGAAATCTGCGTTGTGACGTAC -ACGGAAATCTGCGTTGTGAGTGAC -ACGGAAATCTGCGTTGTGCTGTAG -ACGGAAATCTGCGTTGTGCCTAAG -ACGGAAATCTGCGTTGTGGTTCAG -ACGGAAATCTGCGTTGTGGCATAG -ACGGAAATCTGCGTTGTGGACAAG -ACGGAAATCTGCGTTGTGAAGCAG -ACGGAAATCTGCGTTGTGCGTCAA -ACGGAAATCTGCGTTGTGGCTGAA -ACGGAAATCTGCGTTGTGAGTACG -ACGGAAATCTGCGTTGTGATCCGA -ACGGAAATCTGCGTTGTGATGGGA -ACGGAAATCTGCGTTGTGGTGCAA -ACGGAAATCTGCGTTGTGGAGGAA -ACGGAAATCTGCGTTGTGCAGGTA -ACGGAAATCTGCGTTGTGGACTCT -ACGGAAATCTGCGTTGTGAGTCCT -ACGGAAATCTGCGTTGTGTAAGCC -ACGGAAATCTGCGTTGTGATAGCC -ACGGAAATCTGCGTTGTGTAACCG -ACGGAAATCTGCGTTGTGATGCCA -ACGGAAATCTGCTTTGCCGGAAAC -ACGGAAATCTGCTTTGCCAACACC -ACGGAAATCTGCTTTGCCATCGAG -ACGGAAATCTGCTTTGCCCTCCTT -ACGGAAATCTGCTTTGCCCCTGTT -ACGGAAATCTGCTTTGCCCGGTTT -ACGGAAATCTGCTTTGCCGTGGTT -ACGGAAATCTGCTTTGCCGCCTTT -ACGGAAATCTGCTTTGCCGGTCTT -ACGGAAATCTGCTTTGCCACGCTT -ACGGAAATCTGCTTTGCCAGCGTT -ACGGAAATCTGCTTTGCCTTCGTC -ACGGAAATCTGCTTTGCCTCTCTC -ACGGAAATCTGCTTTGCCTGGATC -ACGGAAATCTGCTTTGCCCACTTC -ACGGAAATCTGCTTTGCCGTACTC -ACGGAAATCTGCTTTGCCGATGTC -ACGGAAATCTGCTTTGCCACAGTC -ACGGAAATCTGCTTTGCCTTGCTG -ACGGAAATCTGCTTTGCCTCCATG -ACGGAAATCTGCTTTGCCTGTGTG -ACGGAAATCTGCTTTGCCCTAGTG -ACGGAAATCTGCTTTGCCCATCTG -ACGGAAATCTGCTTTGCCGAGTTG -ACGGAAATCTGCTTTGCCAGACTG -ACGGAAATCTGCTTTGCCTCGGTA -ACGGAAATCTGCTTTGCCTGCCTA -ACGGAAATCTGCTTTGCCCCACTA -ACGGAAATCTGCTTTGCCGGAGTA -ACGGAAATCTGCTTTGCCTCGTCT -ACGGAAATCTGCTTTGCCTGCACT -ACGGAAATCTGCTTTGCCCTGACT -ACGGAAATCTGCTTTGCCCAACCT -ACGGAAATCTGCTTTGCCGCTACT -ACGGAAATCTGCTTTGCCGGATCT -ACGGAAATCTGCTTTGCCAAGGCT -ACGGAAATCTGCTTTGCCTCAACC -ACGGAAATCTGCTTTGCCTGTTCC -ACGGAAATCTGCTTTGCCATTCCC -ACGGAAATCTGCTTTGCCTTCTCG -ACGGAAATCTGCTTTGCCTAGACG -ACGGAAATCTGCTTTGCCGTAACG -ACGGAAATCTGCTTTGCCACTTCG -ACGGAAATCTGCTTTGCCTACGCA -ACGGAAATCTGCTTTGCCCTTGCA -ACGGAAATCTGCTTTGCCCGAACA -ACGGAAATCTGCTTTGCCCAGTCA -ACGGAAATCTGCTTTGCCGATCCA -ACGGAAATCTGCTTTGCCACGACA -ACGGAAATCTGCTTTGCCAGCTCA -ACGGAAATCTGCTTTGCCTCACGT -ACGGAAATCTGCTTTGCCCGTAGT -ACGGAAATCTGCTTTGCCGTCAGT -ACGGAAATCTGCTTTGCCGAAGGT -ACGGAAATCTGCTTTGCCAACCGT -ACGGAAATCTGCTTTGCCTTGTGC -ACGGAAATCTGCTTTGCCCTAAGC -ACGGAAATCTGCTTTGCCACTAGC -ACGGAAATCTGCTTTGCCAGATGC -ACGGAAATCTGCTTTGCCTGAAGG -ACGGAAATCTGCTTTGCCCAATGG -ACGGAAATCTGCTTTGCCATGAGG -ACGGAAATCTGCTTTGCCAATGGG -ACGGAAATCTGCTTTGCCTCCTGA -ACGGAAATCTGCTTTGCCTAGCGA -ACGGAAATCTGCTTTGCCCACAGA -ACGGAAATCTGCTTTGCCGCAAGA -ACGGAAATCTGCTTTGCCGGTTGA -ACGGAAATCTGCTTTGCCTCCGAT -ACGGAAATCTGCTTTGCCTGGCAT -ACGGAAATCTGCTTTGCCCGAGAT -ACGGAAATCTGCTTTGCCTACCAC -ACGGAAATCTGCTTTGCCCAGAAC -ACGGAAATCTGCTTTGCCGTCTAC -ACGGAAATCTGCTTTGCCACGTAC -ACGGAAATCTGCTTTGCCAGTGAC -ACGGAAATCTGCTTTGCCCTGTAG -ACGGAAATCTGCTTTGCCCCTAAG -ACGGAAATCTGCTTTGCCGTTCAG -ACGGAAATCTGCTTTGCCGCATAG -ACGGAAATCTGCTTTGCCGACAAG -ACGGAAATCTGCTTTGCCAAGCAG -ACGGAAATCTGCTTTGCCCGTCAA -ACGGAAATCTGCTTTGCCGCTGAA -ACGGAAATCTGCTTTGCCAGTACG -ACGGAAATCTGCTTTGCCATCCGA -ACGGAAATCTGCTTTGCCATGGGA -ACGGAAATCTGCTTTGCCGTGCAA -ACGGAAATCTGCTTTGCCGAGGAA -ACGGAAATCTGCTTTGCCCAGGTA -ACGGAAATCTGCTTTGCCGACTCT -ACGGAAATCTGCTTTGCCAGTCCT -ACGGAAATCTGCTTTGCCTAAGCC -ACGGAAATCTGCTTTGCCATAGCC -ACGGAAATCTGCTTTGCCTAACCG -ACGGAAATCTGCTTTGCCATGCCA -ACGGAAATCTGCCTTGGTGGAAAC -ACGGAAATCTGCCTTGGTAACACC -ACGGAAATCTGCCTTGGTATCGAG -ACGGAAATCTGCCTTGGTCTCCTT -ACGGAAATCTGCCTTGGTCCTGTT -ACGGAAATCTGCCTTGGTCGGTTT -ACGGAAATCTGCCTTGGTGTGGTT -ACGGAAATCTGCCTTGGTGCCTTT -ACGGAAATCTGCCTTGGTGGTCTT -ACGGAAATCTGCCTTGGTACGCTT -ACGGAAATCTGCCTTGGTAGCGTT -ACGGAAATCTGCCTTGGTTTCGTC -ACGGAAATCTGCCTTGGTTCTCTC -ACGGAAATCTGCCTTGGTTGGATC -ACGGAAATCTGCCTTGGTCACTTC -ACGGAAATCTGCCTTGGTGTACTC -ACGGAAATCTGCCTTGGTGATGTC -ACGGAAATCTGCCTTGGTACAGTC -ACGGAAATCTGCCTTGGTTTGCTG -ACGGAAATCTGCCTTGGTTCCATG -ACGGAAATCTGCCTTGGTTGTGTG -ACGGAAATCTGCCTTGGTCTAGTG -ACGGAAATCTGCCTTGGTCATCTG -ACGGAAATCTGCCTTGGTGAGTTG -ACGGAAATCTGCCTTGGTAGACTG -ACGGAAATCTGCCTTGGTTCGGTA -ACGGAAATCTGCCTTGGTTGCCTA -ACGGAAATCTGCCTTGGTCCACTA -ACGGAAATCTGCCTTGGTGGAGTA -ACGGAAATCTGCCTTGGTTCGTCT -ACGGAAATCTGCCTTGGTTGCACT -ACGGAAATCTGCCTTGGTCTGACT -ACGGAAATCTGCCTTGGTCAACCT -ACGGAAATCTGCCTTGGTGCTACT -ACGGAAATCTGCCTTGGTGGATCT -ACGGAAATCTGCCTTGGTAAGGCT -ACGGAAATCTGCCTTGGTTCAACC -ACGGAAATCTGCCTTGGTTGTTCC -ACGGAAATCTGCCTTGGTATTCCC -ACGGAAATCTGCCTTGGTTTCTCG -ACGGAAATCTGCCTTGGTTAGACG -ACGGAAATCTGCCTTGGTGTAACG -ACGGAAATCTGCCTTGGTACTTCG -ACGGAAATCTGCCTTGGTTACGCA -ACGGAAATCTGCCTTGGTCTTGCA -ACGGAAATCTGCCTTGGTCGAACA -ACGGAAATCTGCCTTGGTCAGTCA -ACGGAAATCTGCCTTGGTGATCCA -ACGGAAATCTGCCTTGGTACGACA -ACGGAAATCTGCCTTGGTAGCTCA -ACGGAAATCTGCCTTGGTTCACGT -ACGGAAATCTGCCTTGGTCGTAGT -ACGGAAATCTGCCTTGGTGTCAGT -ACGGAAATCTGCCTTGGTGAAGGT -ACGGAAATCTGCCTTGGTAACCGT -ACGGAAATCTGCCTTGGTTTGTGC -ACGGAAATCTGCCTTGGTCTAAGC -ACGGAAATCTGCCTTGGTACTAGC -ACGGAAATCTGCCTTGGTAGATGC -ACGGAAATCTGCCTTGGTTGAAGG -ACGGAAATCTGCCTTGGTCAATGG -ACGGAAATCTGCCTTGGTATGAGG -ACGGAAATCTGCCTTGGTAATGGG -ACGGAAATCTGCCTTGGTTCCTGA -ACGGAAATCTGCCTTGGTTAGCGA -ACGGAAATCTGCCTTGGTCACAGA -ACGGAAATCTGCCTTGGTGCAAGA -ACGGAAATCTGCCTTGGTGGTTGA -ACGGAAATCTGCCTTGGTTCCGAT -ACGGAAATCTGCCTTGGTTGGCAT -ACGGAAATCTGCCTTGGTCGAGAT -ACGGAAATCTGCCTTGGTTACCAC -ACGGAAATCTGCCTTGGTCAGAAC -ACGGAAATCTGCCTTGGTGTCTAC -ACGGAAATCTGCCTTGGTACGTAC -ACGGAAATCTGCCTTGGTAGTGAC -ACGGAAATCTGCCTTGGTCTGTAG -ACGGAAATCTGCCTTGGTCCTAAG -ACGGAAATCTGCCTTGGTGTTCAG -ACGGAAATCTGCCTTGGTGCATAG -ACGGAAATCTGCCTTGGTGACAAG -ACGGAAATCTGCCTTGGTAAGCAG -ACGGAAATCTGCCTTGGTCGTCAA -ACGGAAATCTGCCTTGGTGCTGAA -ACGGAAATCTGCCTTGGTAGTACG -ACGGAAATCTGCCTTGGTATCCGA -ACGGAAATCTGCCTTGGTATGGGA -ACGGAAATCTGCCTTGGTGTGCAA -ACGGAAATCTGCCTTGGTGAGGAA -ACGGAAATCTGCCTTGGTCAGGTA -ACGGAAATCTGCCTTGGTGACTCT -ACGGAAATCTGCCTTGGTAGTCCT -ACGGAAATCTGCCTTGGTTAAGCC -ACGGAAATCTGCCTTGGTATAGCC -ACGGAAATCTGCCTTGGTTAACCG -ACGGAAATCTGCCTTGGTATGCCA -ACGGAAATCTGCCTTACGGGAAAC -ACGGAAATCTGCCTTACGAACACC -ACGGAAATCTGCCTTACGATCGAG -ACGGAAATCTGCCTTACGCTCCTT -ACGGAAATCTGCCTTACGCCTGTT -ACGGAAATCTGCCTTACGCGGTTT -ACGGAAATCTGCCTTACGGTGGTT -ACGGAAATCTGCCTTACGGCCTTT -ACGGAAATCTGCCTTACGGGTCTT -ACGGAAATCTGCCTTACGACGCTT -ACGGAAATCTGCCTTACGAGCGTT -ACGGAAATCTGCCTTACGTTCGTC -ACGGAAATCTGCCTTACGTCTCTC -ACGGAAATCTGCCTTACGTGGATC -ACGGAAATCTGCCTTACGCACTTC -ACGGAAATCTGCCTTACGGTACTC -ACGGAAATCTGCCTTACGGATGTC -ACGGAAATCTGCCTTACGACAGTC -ACGGAAATCTGCCTTACGTTGCTG -ACGGAAATCTGCCTTACGTCCATG -ACGGAAATCTGCCTTACGTGTGTG -ACGGAAATCTGCCTTACGCTAGTG -ACGGAAATCTGCCTTACGCATCTG -ACGGAAATCTGCCTTACGGAGTTG -ACGGAAATCTGCCTTACGAGACTG -ACGGAAATCTGCCTTACGTCGGTA -ACGGAAATCTGCCTTACGTGCCTA -ACGGAAATCTGCCTTACGCCACTA -ACGGAAATCTGCCTTACGGGAGTA -ACGGAAATCTGCCTTACGTCGTCT -ACGGAAATCTGCCTTACGTGCACT -ACGGAAATCTGCCTTACGCTGACT -ACGGAAATCTGCCTTACGCAACCT -ACGGAAATCTGCCTTACGGCTACT -ACGGAAATCTGCCTTACGGGATCT -ACGGAAATCTGCCTTACGAAGGCT -ACGGAAATCTGCCTTACGTCAACC -ACGGAAATCTGCCTTACGTGTTCC -ACGGAAATCTGCCTTACGATTCCC -ACGGAAATCTGCCTTACGTTCTCG -ACGGAAATCTGCCTTACGTAGACG -ACGGAAATCTGCCTTACGGTAACG -ACGGAAATCTGCCTTACGACTTCG -ACGGAAATCTGCCTTACGTACGCA -ACGGAAATCTGCCTTACGCTTGCA -ACGGAAATCTGCCTTACGCGAACA -ACGGAAATCTGCCTTACGCAGTCA -ACGGAAATCTGCCTTACGGATCCA -ACGGAAATCTGCCTTACGACGACA -ACGGAAATCTGCCTTACGAGCTCA -ACGGAAATCTGCCTTACGTCACGT -ACGGAAATCTGCCTTACGCGTAGT -ACGGAAATCTGCCTTACGGTCAGT -ACGGAAATCTGCCTTACGGAAGGT -ACGGAAATCTGCCTTACGAACCGT -ACGGAAATCTGCCTTACGTTGTGC -ACGGAAATCTGCCTTACGCTAAGC -ACGGAAATCTGCCTTACGACTAGC -ACGGAAATCTGCCTTACGAGATGC -ACGGAAATCTGCCTTACGTGAAGG -ACGGAAATCTGCCTTACGCAATGG -ACGGAAATCTGCCTTACGATGAGG -ACGGAAATCTGCCTTACGAATGGG -ACGGAAATCTGCCTTACGTCCTGA -ACGGAAATCTGCCTTACGTAGCGA -ACGGAAATCTGCCTTACGCACAGA -ACGGAAATCTGCCTTACGGCAAGA -ACGGAAATCTGCCTTACGGGTTGA -ACGGAAATCTGCCTTACGTCCGAT -ACGGAAATCTGCCTTACGTGGCAT -ACGGAAATCTGCCTTACGCGAGAT -ACGGAAATCTGCCTTACGTACCAC -ACGGAAATCTGCCTTACGCAGAAC -ACGGAAATCTGCCTTACGGTCTAC -ACGGAAATCTGCCTTACGACGTAC -ACGGAAATCTGCCTTACGAGTGAC -ACGGAAATCTGCCTTACGCTGTAG -ACGGAAATCTGCCTTACGCCTAAG -ACGGAAATCTGCCTTACGGTTCAG -ACGGAAATCTGCCTTACGGCATAG -ACGGAAATCTGCCTTACGGACAAG -ACGGAAATCTGCCTTACGAAGCAG -ACGGAAATCTGCCTTACGCGTCAA -ACGGAAATCTGCCTTACGGCTGAA -ACGGAAATCTGCCTTACGAGTACG -ACGGAAATCTGCCTTACGATCCGA -ACGGAAATCTGCCTTACGATGGGA -ACGGAAATCTGCCTTACGGTGCAA -ACGGAAATCTGCCTTACGGAGGAA -ACGGAAATCTGCCTTACGCAGGTA -ACGGAAATCTGCCTTACGGACTCT -ACGGAAATCTGCCTTACGAGTCCT -ACGGAAATCTGCCTTACGTAAGCC -ACGGAAATCTGCCTTACGATAGCC -ACGGAAATCTGCCTTACGTAACCG -ACGGAAATCTGCCTTACGATGCCA -ACGGAAATCTGCGTTAGCGGAAAC -ACGGAAATCTGCGTTAGCAACACC -ACGGAAATCTGCGTTAGCATCGAG -ACGGAAATCTGCGTTAGCCTCCTT -ACGGAAATCTGCGTTAGCCCTGTT -ACGGAAATCTGCGTTAGCCGGTTT -ACGGAAATCTGCGTTAGCGTGGTT -ACGGAAATCTGCGTTAGCGCCTTT -ACGGAAATCTGCGTTAGCGGTCTT -ACGGAAATCTGCGTTAGCACGCTT -ACGGAAATCTGCGTTAGCAGCGTT -ACGGAAATCTGCGTTAGCTTCGTC -ACGGAAATCTGCGTTAGCTCTCTC -ACGGAAATCTGCGTTAGCTGGATC -ACGGAAATCTGCGTTAGCCACTTC -ACGGAAATCTGCGTTAGCGTACTC -ACGGAAATCTGCGTTAGCGATGTC -ACGGAAATCTGCGTTAGCACAGTC -ACGGAAATCTGCGTTAGCTTGCTG -ACGGAAATCTGCGTTAGCTCCATG -ACGGAAATCTGCGTTAGCTGTGTG -ACGGAAATCTGCGTTAGCCTAGTG -ACGGAAATCTGCGTTAGCCATCTG -ACGGAAATCTGCGTTAGCGAGTTG -ACGGAAATCTGCGTTAGCAGACTG -ACGGAAATCTGCGTTAGCTCGGTA -ACGGAAATCTGCGTTAGCTGCCTA -ACGGAAATCTGCGTTAGCCCACTA -ACGGAAATCTGCGTTAGCGGAGTA -ACGGAAATCTGCGTTAGCTCGTCT -ACGGAAATCTGCGTTAGCTGCACT -ACGGAAATCTGCGTTAGCCTGACT -ACGGAAATCTGCGTTAGCCAACCT -ACGGAAATCTGCGTTAGCGCTACT -ACGGAAATCTGCGTTAGCGGATCT -ACGGAAATCTGCGTTAGCAAGGCT -ACGGAAATCTGCGTTAGCTCAACC -ACGGAAATCTGCGTTAGCTGTTCC -ACGGAAATCTGCGTTAGCATTCCC -ACGGAAATCTGCGTTAGCTTCTCG -ACGGAAATCTGCGTTAGCTAGACG -ACGGAAATCTGCGTTAGCGTAACG -ACGGAAATCTGCGTTAGCACTTCG -ACGGAAATCTGCGTTAGCTACGCA -ACGGAAATCTGCGTTAGCCTTGCA -ACGGAAATCTGCGTTAGCCGAACA -ACGGAAATCTGCGTTAGCCAGTCA -ACGGAAATCTGCGTTAGCGATCCA -ACGGAAATCTGCGTTAGCACGACA -ACGGAAATCTGCGTTAGCAGCTCA -ACGGAAATCTGCGTTAGCTCACGT -ACGGAAATCTGCGTTAGCCGTAGT -ACGGAAATCTGCGTTAGCGTCAGT -ACGGAAATCTGCGTTAGCGAAGGT -ACGGAAATCTGCGTTAGCAACCGT -ACGGAAATCTGCGTTAGCTTGTGC -ACGGAAATCTGCGTTAGCCTAAGC -ACGGAAATCTGCGTTAGCACTAGC -ACGGAAATCTGCGTTAGCAGATGC -ACGGAAATCTGCGTTAGCTGAAGG -ACGGAAATCTGCGTTAGCCAATGG -ACGGAAATCTGCGTTAGCATGAGG -ACGGAAATCTGCGTTAGCAATGGG -ACGGAAATCTGCGTTAGCTCCTGA -ACGGAAATCTGCGTTAGCTAGCGA -ACGGAAATCTGCGTTAGCCACAGA -ACGGAAATCTGCGTTAGCGCAAGA -ACGGAAATCTGCGTTAGCGGTTGA -ACGGAAATCTGCGTTAGCTCCGAT -ACGGAAATCTGCGTTAGCTGGCAT -ACGGAAATCTGCGTTAGCCGAGAT -ACGGAAATCTGCGTTAGCTACCAC -ACGGAAATCTGCGTTAGCCAGAAC -ACGGAAATCTGCGTTAGCGTCTAC -ACGGAAATCTGCGTTAGCACGTAC -ACGGAAATCTGCGTTAGCAGTGAC -ACGGAAATCTGCGTTAGCCTGTAG -ACGGAAATCTGCGTTAGCCCTAAG -ACGGAAATCTGCGTTAGCGTTCAG -ACGGAAATCTGCGTTAGCGCATAG -ACGGAAATCTGCGTTAGCGACAAG -ACGGAAATCTGCGTTAGCAAGCAG -ACGGAAATCTGCGTTAGCCGTCAA -ACGGAAATCTGCGTTAGCGCTGAA -ACGGAAATCTGCGTTAGCAGTACG -ACGGAAATCTGCGTTAGCATCCGA -ACGGAAATCTGCGTTAGCATGGGA -ACGGAAATCTGCGTTAGCGTGCAA -ACGGAAATCTGCGTTAGCGAGGAA -ACGGAAATCTGCGTTAGCCAGGTA -ACGGAAATCTGCGTTAGCGACTCT -ACGGAAATCTGCGTTAGCAGTCCT -ACGGAAATCTGCGTTAGCTAAGCC -ACGGAAATCTGCGTTAGCATAGCC -ACGGAAATCTGCGTTAGCTAACCG -ACGGAAATCTGCGTTAGCATGCCA -ACGGAAATCTGCGTCTTCGGAAAC -ACGGAAATCTGCGTCTTCAACACC -ACGGAAATCTGCGTCTTCATCGAG -ACGGAAATCTGCGTCTTCCTCCTT -ACGGAAATCTGCGTCTTCCCTGTT -ACGGAAATCTGCGTCTTCCGGTTT -ACGGAAATCTGCGTCTTCGTGGTT -ACGGAAATCTGCGTCTTCGCCTTT -ACGGAAATCTGCGTCTTCGGTCTT -ACGGAAATCTGCGTCTTCACGCTT -ACGGAAATCTGCGTCTTCAGCGTT -ACGGAAATCTGCGTCTTCTTCGTC -ACGGAAATCTGCGTCTTCTCTCTC -ACGGAAATCTGCGTCTTCTGGATC -ACGGAAATCTGCGTCTTCCACTTC -ACGGAAATCTGCGTCTTCGTACTC -ACGGAAATCTGCGTCTTCGATGTC -ACGGAAATCTGCGTCTTCACAGTC -ACGGAAATCTGCGTCTTCTTGCTG -ACGGAAATCTGCGTCTTCTCCATG -ACGGAAATCTGCGTCTTCTGTGTG -ACGGAAATCTGCGTCTTCCTAGTG -ACGGAAATCTGCGTCTTCCATCTG -ACGGAAATCTGCGTCTTCGAGTTG -ACGGAAATCTGCGTCTTCAGACTG -ACGGAAATCTGCGTCTTCTCGGTA -ACGGAAATCTGCGTCTTCTGCCTA -ACGGAAATCTGCGTCTTCCCACTA -ACGGAAATCTGCGTCTTCGGAGTA -ACGGAAATCTGCGTCTTCTCGTCT -ACGGAAATCTGCGTCTTCTGCACT -ACGGAAATCTGCGTCTTCCTGACT -ACGGAAATCTGCGTCTTCCAACCT -ACGGAAATCTGCGTCTTCGCTACT -ACGGAAATCTGCGTCTTCGGATCT -ACGGAAATCTGCGTCTTCAAGGCT -ACGGAAATCTGCGTCTTCTCAACC -ACGGAAATCTGCGTCTTCTGTTCC -ACGGAAATCTGCGTCTTCATTCCC -ACGGAAATCTGCGTCTTCTTCTCG -ACGGAAATCTGCGTCTTCTAGACG -ACGGAAATCTGCGTCTTCGTAACG -ACGGAAATCTGCGTCTTCACTTCG -ACGGAAATCTGCGTCTTCTACGCA -ACGGAAATCTGCGTCTTCCTTGCA -ACGGAAATCTGCGTCTTCCGAACA -ACGGAAATCTGCGTCTTCCAGTCA -ACGGAAATCTGCGTCTTCGATCCA -ACGGAAATCTGCGTCTTCACGACA -ACGGAAATCTGCGTCTTCAGCTCA -ACGGAAATCTGCGTCTTCTCACGT -ACGGAAATCTGCGTCTTCCGTAGT -ACGGAAATCTGCGTCTTCGTCAGT -ACGGAAATCTGCGTCTTCGAAGGT -ACGGAAATCTGCGTCTTCAACCGT -ACGGAAATCTGCGTCTTCTTGTGC -ACGGAAATCTGCGTCTTCCTAAGC -ACGGAAATCTGCGTCTTCACTAGC -ACGGAAATCTGCGTCTTCAGATGC -ACGGAAATCTGCGTCTTCTGAAGG -ACGGAAATCTGCGTCTTCCAATGG -ACGGAAATCTGCGTCTTCATGAGG -ACGGAAATCTGCGTCTTCAATGGG -ACGGAAATCTGCGTCTTCTCCTGA -ACGGAAATCTGCGTCTTCTAGCGA -ACGGAAATCTGCGTCTTCCACAGA -ACGGAAATCTGCGTCTTCGCAAGA -ACGGAAATCTGCGTCTTCGGTTGA -ACGGAAATCTGCGTCTTCTCCGAT -ACGGAAATCTGCGTCTTCTGGCAT -ACGGAAATCTGCGTCTTCCGAGAT -ACGGAAATCTGCGTCTTCTACCAC -ACGGAAATCTGCGTCTTCCAGAAC -ACGGAAATCTGCGTCTTCGTCTAC -ACGGAAATCTGCGTCTTCACGTAC -ACGGAAATCTGCGTCTTCAGTGAC -ACGGAAATCTGCGTCTTCCTGTAG -ACGGAAATCTGCGTCTTCCCTAAG -ACGGAAATCTGCGTCTTCGTTCAG -ACGGAAATCTGCGTCTTCGCATAG -ACGGAAATCTGCGTCTTCGACAAG -ACGGAAATCTGCGTCTTCAAGCAG -ACGGAAATCTGCGTCTTCCGTCAA -ACGGAAATCTGCGTCTTCGCTGAA -ACGGAAATCTGCGTCTTCAGTACG -ACGGAAATCTGCGTCTTCATCCGA -ACGGAAATCTGCGTCTTCATGGGA -ACGGAAATCTGCGTCTTCGTGCAA -ACGGAAATCTGCGTCTTCGAGGAA -ACGGAAATCTGCGTCTTCCAGGTA -ACGGAAATCTGCGTCTTCGACTCT -ACGGAAATCTGCGTCTTCAGTCCT -ACGGAAATCTGCGTCTTCTAAGCC -ACGGAAATCTGCGTCTTCATAGCC -ACGGAAATCTGCGTCTTCTAACCG -ACGGAAATCTGCGTCTTCATGCCA -ACGGAAATCTGCCTCTCTGGAAAC -ACGGAAATCTGCCTCTCTAACACC -ACGGAAATCTGCCTCTCTATCGAG -ACGGAAATCTGCCTCTCTCTCCTT -ACGGAAATCTGCCTCTCTCCTGTT -ACGGAAATCTGCCTCTCTCGGTTT -ACGGAAATCTGCCTCTCTGTGGTT -ACGGAAATCTGCCTCTCTGCCTTT -ACGGAAATCTGCCTCTCTGGTCTT -ACGGAAATCTGCCTCTCTACGCTT -ACGGAAATCTGCCTCTCTAGCGTT -ACGGAAATCTGCCTCTCTTTCGTC -ACGGAAATCTGCCTCTCTTCTCTC -ACGGAAATCTGCCTCTCTTGGATC -ACGGAAATCTGCCTCTCTCACTTC -ACGGAAATCTGCCTCTCTGTACTC -ACGGAAATCTGCCTCTCTGATGTC -ACGGAAATCTGCCTCTCTACAGTC -ACGGAAATCTGCCTCTCTTTGCTG -ACGGAAATCTGCCTCTCTTCCATG -ACGGAAATCTGCCTCTCTTGTGTG -ACGGAAATCTGCCTCTCTCTAGTG -ACGGAAATCTGCCTCTCTCATCTG -ACGGAAATCTGCCTCTCTGAGTTG -ACGGAAATCTGCCTCTCTAGACTG -ACGGAAATCTGCCTCTCTTCGGTA -ACGGAAATCTGCCTCTCTTGCCTA -ACGGAAATCTGCCTCTCTCCACTA -ACGGAAATCTGCCTCTCTGGAGTA -ACGGAAATCTGCCTCTCTTCGTCT -ACGGAAATCTGCCTCTCTTGCACT -ACGGAAATCTGCCTCTCTCTGACT -ACGGAAATCTGCCTCTCTCAACCT -ACGGAAATCTGCCTCTCTGCTACT -ACGGAAATCTGCCTCTCTGGATCT -ACGGAAATCTGCCTCTCTAAGGCT -ACGGAAATCTGCCTCTCTTCAACC -ACGGAAATCTGCCTCTCTTGTTCC -ACGGAAATCTGCCTCTCTATTCCC -ACGGAAATCTGCCTCTCTTTCTCG -ACGGAAATCTGCCTCTCTTAGACG -ACGGAAATCTGCCTCTCTGTAACG -ACGGAAATCTGCCTCTCTACTTCG -ACGGAAATCTGCCTCTCTTACGCA -ACGGAAATCTGCCTCTCTCTTGCA -ACGGAAATCTGCCTCTCTCGAACA -ACGGAAATCTGCCTCTCTCAGTCA -ACGGAAATCTGCCTCTCTGATCCA -ACGGAAATCTGCCTCTCTACGACA -ACGGAAATCTGCCTCTCTAGCTCA -ACGGAAATCTGCCTCTCTTCACGT -ACGGAAATCTGCCTCTCTCGTAGT -ACGGAAATCTGCCTCTCTGTCAGT -ACGGAAATCTGCCTCTCTGAAGGT -ACGGAAATCTGCCTCTCTAACCGT -ACGGAAATCTGCCTCTCTTTGTGC -ACGGAAATCTGCCTCTCTCTAAGC -ACGGAAATCTGCCTCTCTACTAGC -ACGGAAATCTGCCTCTCTAGATGC -ACGGAAATCTGCCTCTCTTGAAGG -ACGGAAATCTGCCTCTCTCAATGG -ACGGAAATCTGCCTCTCTATGAGG -ACGGAAATCTGCCTCTCTAATGGG -ACGGAAATCTGCCTCTCTTCCTGA -ACGGAAATCTGCCTCTCTTAGCGA -ACGGAAATCTGCCTCTCTCACAGA -ACGGAAATCTGCCTCTCTGCAAGA -ACGGAAATCTGCCTCTCTGGTTGA -ACGGAAATCTGCCTCTCTTCCGAT -ACGGAAATCTGCCTCTCTTGGCAT -ACGGAAATCTGCCTCTCTCGAGAT -ACGGAAATCTGCCTCTCTTACCAC -ACGGAAATCTGCCTCTCTCAGAAC -ACGGAAATCTGCCTCTCTGTCTAC -ACGGAAATCTGCCTCTCTACGTAC -ACGGAAATCTGCCTCTCTAGTGAC -ACGGAAATCTGCCTCTCTCTGTAG -ACGGAAATCTGCCTCTCTCCTAAG -ACGGAAATCTGCCTCTCTGTTCAG -ACGGAAATCTGCCTCTCTGCATAG -ACGGAAATCTGCCTCTCTGACAAG -ACGGAAATCTGCCTCTCTAAGCAG -ACGGAAATCTGCCTCTCTCGTCAA -ACGGAAATCTGCCTCTCTGCTGAA -ACGGAAATCTGCCTCTCTAGTACG -ACGGAAATCTGCCTCTCTATCCGA -ACGGAAATCTGCCTCTCTATGGGA -ACGGAAATCTGCCTCTCTGTGCAA -ACGGAAATCTGCCTCTCTGAGGAA -ACGGAAATCTGCCTCTCTCAGGTA -ACGGAAATCTGCCTCTCTGACTCT -ACGGAAATCTGCCTCTCTAGTCCT -ACGGAAATCTGCCTCTCTTAAGCC -ACGGAAATCTGCCTCTCTATAGCC -ACGGAAATCTGCCTCTCTTAACCG -ACGGAAATCTGCCTCTCTATGCCA -ACGGAAATCTGCATCTGGGGAAAC -ACGGAAATCTGCATCTGGAACACC -ACGGAAATCTGCATCTGGATCGAG -ACGGAAATCTGCATCTGGCTCCTT -ACGGAAATCTGCATCTGGCCTGTT -ACGGAAATCTGCATCTGGCGGTTT -ACGGAAATCTGCATCTGGGTGGTT -ACGGAAATCTGCATCTGGGCCTTT -ACGGAAATCTGCATCTGGGGTCTT -ACGGAAATCTGCATCTGGACGCTT -ACGGAAATCTGCATCTGGAGCGTT -ACGGAAATCTGCATCTGGTTCGTC -ACGGAAATCTGCATCTGGTCTCTC -ACGGAAATCTGCATCTGGTGGATC -ACGGAAATCTGCATCTGGCACTTC -ACGGAAATCTGCATCTGGGTACTC -ACGGAAATCTGCATCTGGGATGTC -ACGGAAATCTGCATCTGGACAGTC -ACGGAAATCTGCATCTGGTTGCTG -ACGGAAATCTGCATCTGGTCCATG -ACGGAAATCTGCATCTGGTGTGTG -ACGGAAATCTGCATCTGGCTAGTG -ACGGAAATCTGCATCTGGCATCTG -ACGGAAATCTGCATCTGGGAGTTG -ACGGAAATCTGCATCTGGAGACTG -ACGGAAATCTGCATCTGGTCGGTA -ACGGAAATCTGCATCTGGTGCCTA -ACGGAAATCTGCATCTGGCCACTA -ACGGAAATCTGCATCTGGGGAGTA -ACGGAAATCTGCATCTGGTCGTCT -ACGGAAATCTGCATCTGGTGCACT -ACGGAAATCTGCATCTGGCTGACT -ACGGAAATCTGCATCTGGCAACCT -ACGGAAATCTGCATCTGGGCTACT -ACGGAAATCTGCATCTGGGGATCT -ACGGAAATCTGCATCTGGAAGGCT -ACGGAAATCTGCATCTGGTCAACC -ACGGAAATCTGCATCTGGTGTTCC -ACGGAAATCTGCATCTGGATTCCC -ACGGAAATCTGCATCTGGTTCTCG -ACGGAAATCTGCATCTGGTAGACG -ACGGAAATCTGCATCTGGGTAACG -ACGGAAATCTGCATCTGGACTTCG -ACGGAAATCTGCATCTGGTACGCA -ACGGAAATCTGCATCTGGCTTGCA -ACGGAAATCTGCATCTGGCGAACA -ACGGAAATCTGCATCTGGCAGTCA -ACGGAAATCTGCATCTGGGATCCA -ACGGAAATCTGCATCTGGACGACA -ACGGAAATCTGCATCTGGAGCTCA -ACGGAAATCTGCATCTGGTCACGT -ACGGAAATCTGCATCTGGCGTAGT -ACGGAAATCTGCATCTGGGTCAGT -ACGGAAATCTGCATCTGGGAAGGT -ACGGAAATCTGCATCTGGAACCGT -ACGGAAATCTGCATCTGGTTGTGC -ACGGAAATCTGCATCTGGCTAAGC -ACGGAAATCTGCATCTGGACTAGC -ACGGAAATCTGCATCTGGAGATGC -ACGGAAATCTGCATCTGGTGAAGG -ACGGAAATCTGCATCTGGCAATGG -ACGGAAATCTGCATCTGGATGAGG -ACGGAAATCTGCATCTGGAATGGG -ACGGAAATCTGCATCTGGTCCTGA -ACGGAAATCTGCATCTGGTAGCGA -ACGGAAATCTGCATCTGGCACAGA -ACGGAAATCTGCATCTGGGCAAGA -ACGGAAATCTGCATCTGGGGTTGA -ACGGAAATCTGCATCTGGTCCGAT -ACGGAAATCTGCATCTGGTGGCAT -ACGGAAATCTGCATCTGGCGAGAT -ACGGAAATCTGCATCTGGTACCAC -ACGGAAATCTGCATCTGGCAGAAC -ACGGAAATCTGCATCTGGGTCTAC -ACGGAAATCTGCATCTGGACGTAC -ACGGAAATCTGCATCTGGAGTGAC -ACGGAAATCTGCATCTGGCTGTAG -ACGGAAATCTGCATCTGGCCTAAG -ACGGAAATCTGCATCTGGGTTCAG -ACGGAAATCTGCATCTGGGCATAG -ACGGAAATCTGCATCTGGGACAAG -ACGGAAATCTGCATCTGGAAGCAG -ACGGAAATCTGCATCTGGCGTCAA -ACGGAAATCTGCATCTGGGCTGAA -ACGGAAATCTGCATCTGGAGTACG -ACGGAAATCTGCATCTGGATCCGA -ACGGAAATCTGCATCTGGATGGGA -ACGGAAATCTGCATCTGGGTGCAA -ACGGAAATCTGCATCTGGGAGGAA -ACGGAAATCTGCATCTGGCAGGTA -ACGGAAATCTGCATCTGGGACTCT -ACGGAAATCTGCATCTGGAGTCCT -ACGGAAATCTGCATCTGGTAAGCC -ACGGAAATCTGCATCTGGATAGCC -ACGGAAATCTGCATCTGGTAACCG -ACGGAAATCTGCATCTGGATGCCA -ACGGAAATCTGCTTCCACGGAAAC -ACGGAAATCTGCTTCCACAACACC -ACGGAAATCTGCTTCCACATCGAG -ACGGAAATCTGCTTCCACCTCCTT -ACGGAAATCTGCTTCCACCCTGTT -ACGGAAATCTGCTTCCACCGGTTT -ACGGAAATCTGCTTCCACGTGGTT -ACGGAAATCTGCTTCCACGCCTTT -ACGGAAATCTGCTTCCACGGTCTT -ACGGAAATCTGCTTCCACACGCTT -ACGGAAATCTGCTTCCACAGCGTT -ACGGAAATCTGCTTCCACTTCGTC -ACGGAAATCTGCTTCCACTCTCTC -ACGGAAATCTGCTTCCACTGGATC -ACGGAAATCTGCTTCCACCACTTC -ACGGAAATCTGCTTCCACGTACTC -ACGGAAATCTGCTTCCACGATGTC -ACGGAAATCTGCTTCCACACAGTC -ACGGAAATCTGCTTCCACTTGCTG -ACGGAAATCTGCTTCCACTCCATG -ACGGAAATCTGCTTCCACTGTGTG -ACGGAAATCTGCTTCCACCTAGTG -ACGGAAATCTGCTTCCACCATCTG -ACGGAAATCTGCTTCCACGAGTTG -ACGGAAATCTGCTTCCACAGACTG -ACGGAAATCTGCTTCCACTCGGTA -ACGGAAATCTGCTTCCACTGCCTA -ACGGAAATCTGCTTCCACCCACTA -ACGGAAATCTGCTTCCACGGAGTA -ACGGAAATCTGCTTCCACTCGTCT -ACGGAAATCTGCTTCCACTGCACT -ACGGAAATCTGCTTCCACCTGACT -ACGGAAATCTGCTTCCACCAACCT -ACGGAAATCTGCTTCCACGCTACT -ACGGAAATCTGCTTCCACGGATCT -ACGGAAATCTGCTTCCACAAGGCT -ACGGAAATCTGCTTCCACTCAACC -ACGGAAATCTGCTTCCACTGTTCC -ACGGAAATCTGCTTCCACATTCCC -ACGGAAATCTGCTTCCACTTCTCG -ACGGAAATCTGCTTCCACTAGACG -ACGGAAATCTGCTTCCACGTAACG -ACGGAAATCTGCTTCCACACTTCG -ACGGAAATCTGCTTCCACTACGCA -ACGGAAATCTGCTTCCACCTTGCA -ACGGAAATCTGCTTCCACCGAACA -ACGGAAATCTGCTTCCACCAGTCA -ACGGAAATCTGCTTCCACGATCCA -ACGGAAATCTGCTTCCACACGACA -ACGGAAATCTGCTTCCACAGCTCA -ACGGAAATCTGCTTCCACTCACGT -ACGGAAATCTGCTTCCACCGTAGT -ACGGAAATCTGCTTCCACGTCAGT -ACGGAAATCTGCTTCCACGAAGGT -ACGGAAATCTGCTTCCACAACCGT -ACGGAAATCTGCTTCCACTTGTGC -ACGGAAATCTGCTTCCACCTAAGC -ACGGAAATCTGCTTCCACACTAGC -ACGGAAATCTGCTTCCACAGATGC -ACGGAAATCTGCTTCCACTGAAGG -ACGGAAATCTGCTTCCACCAATGG -ACGGAAATCTGCTTCCACATGAGG -ACGGAAATCTGCTTCCACAATGGG -ACGGAAATCTGCTTCCACTCCTGA -ACGGAAATCTGCTTCCACTAGCGA -ACGGAAATCTGCTTCCACCACAGA -ACGGAAATCTGCTTCCACGCAAGA -ACGGAAATCTGCTTCCACGGTTGA -ACGGAAATCTGCTTCCACTCCGAT -ACGGAAATCTGCTTCCACTGGCAT -ACGGAAATCTGCTTCCACCGAGAT -ACGGAAATCTGCTTCCACTACCAC -ACGGAAATCTGCTTCCACCAGAAC -ACGGAAATCTGCTTCCACGTCTAC -ACGGAAATCTGCTTCCACACGTAC -ACGGAAATCTGCTTCCACAGTGAC -ACGGAAATCTGCTTCCACCTGTAG -ACGGAAATCTGCTTCCACCCTAAG -ACGGAAATCTGCTTCCACGTTCAG -ACGGAAATCTGCTTCCACGCATAG -ACGGAAATCTGCTTCCACGACAAG -ACGGAAATCTGCTTCCACAAGCAG -ACGGAAATCTGCTTCCACCGTCAA -ACGGAAATCTGCTTCCACGCTGAA -ACGGAAATCTGCTTCCACAGTACG -ACGGAAATCTGCTTCCACATCCGA -ACGGAAATCTGCTTCCACATGGGA -ACGGAAATCTGCTTCCACGTGCAA -ACGGAAATCTGCTTCCACGAGGAA -ACGGAAATCTGCTTCCACCAGGTA -ACGGAAATCTGCTTCCACGACTCT -ACGGAAATCTGCTTCCACAGTCCT -ACGGAAATCTGCTTCCACTAAGCC -ACGGAAATCTGCTTCCACATAGCC -ACGGAAATCTGCTTCCACTAACCG -ACGGAAATCTGCTTCCACATGCCA -ACGGAAATCTGCCTCGTAGGAAAC -ACGGAAATCTGCCTCGTAAACACC -ACGGAAATCTGCCTCGTAATCGAG -ACGGAAATCTGCCTCGTACTCCTT -ACGGAAATCTGCCTCGTACCTGTT -ACGGAAATCTGCCTCGTACGGTTT -ACGGAAATCTGCCTCGTAGTGGTT -ACGGAAATCTGCCTCGTAGCCTTT -ACGGAAATCTGCCTCGTAGGTCTT -ACGGAAATCTGCCTCGTAACGCTT -ACGGAAATCTGCCTCGTAAGCGTT -ACGGAAATCTGCCTCGTATTCGTC -ACGGAAATCTGCCTCGTATCTCTC -ACGGAAATCTGCCTCGTATGGATC -ACGGAAATCTGCCTCGTACACTTC -ACGGAAATCTGCCTCGTAGTACTC -ACGGAAATCTGCCTCGTAGATGTC -ACGGAAATCTGCCTCGTAACAGTC -ACGGAAATCTGCCTCGTATTGCTG -ACGGAAATCTGCCTCGTATCCATG -ACGGAAATCTGCCTCGTATGTGTG -ACGGAAATCTGCCTCGTACTAGTG -ACGGAAATCTGCCTCGTACATCTG -ACGGAAATCTGCCTCGTAGAGTTG -ACGGAAATCTGCCTCGTAAGACTG -ACGGAAATCTGCCTCGTATCGGTA -ACGGAAATCTGCCTCGTATGCCTA -ACGGAAATCTGCCTCGTACCACTA -ACGGAAATCTGCCTCGTAGGAGTA -ACGGAAATCTGCCTCGTATCGTCT -ACGGAAATCTGCCTCGTATGCACT -ACGGAAATCTGCCTCGTACTGACT -ACGGAAATCTGCCTCGTACAACCT -ACGGAAATCTGCCTCGTAGCTACT -ACGGAAATCTGCCTCGTAGGATCT -ACGGAAATCTGCCTCGTAAAGGCT -ACGGAAATCTGCCTCGTATCAACC -ACGGAAATCTGCCTCGTATGTTCC -ACGGAAATCTGCCTCGTAATTCCC -ACGGAAATCTGCCTCGTATTCTCG -ACGGAAATCTGCCTCGTATAGACG -ACGGAAATCTGCCTCGTAGTAACG -ACGGAAATCTGCCTCGTAACTTCG -ACGGAAATCTGCCTCGTATACGCA -ACGGAAATCTGCCTCGTACTTGCA -ACGGAAATCTGCCTCGTACGAACA -ACGGAAATCTGCCTCGTACAGTCA -ACGGAAATCTGCCTCGTAGATCCA -ACGGAAATCTGCCTCGTAACGACA -ACGGAAATCTGCCTCGTAAGCTCA -ACGGAAATCTGCCTCGTATCACGT -ACGGAAATCTGCCTCGTACGTAGT -ACGGAAATCTGCCTCGTAGTCAGT -ACGGAAATCTGCCTCGTAGAAGGT -ACGGAAATCTGCCTCGTAAACCGT -ACGGAAATCTGCCTCGTATTGTGC -ACGGAAATCTGCCTCGTACTAAGC -ACGGAAATCTGCCTCGTAACTAGC -ACGGAAATCTGCCTCGTAAGATGC -ACGGAAATCTGCCTCGTATGAAGG -ACGGAAATCTGCCTCGTACAATGG -ACGGAAATCTGCCTCGTAATGAGG -ACGGAAATCTGCCTCGTAAATGGG -ACGGAAATCTGCCTCGTATCCTGA -ACGGAAATCTGCCTCGTATAGCGA -ACGGAAATCTGCCTCGTACACAGA -ACGGAAATCTGCCTCGTAGCAAGA -ACGGAAATCTGCCTCGTAGGTTGA -ACGGAAATCTGCCTCGTATCCGAT -ACGGAAATCTGCCTCGTATGGCAT -ACGGAAATCTGCCTCGTACGAGAT -ACGGAAATCTGCCTCGTATACCAC -ACGGAAATCTGCCTCGTACAGAAC -ACGGAAATCTGCCTCGTAGTCTAC -ACGGAAATCTGCCTCGTAACGTAC -ACGGAAATCTGCCTCGTAAGTGAC -ACGGAAATCTGCCTCGTACTGTAG -ACGGAAATCTGCCTCGTACCTAAG -ACGGAAATCTGCCTCGTAGTTCAG -ACGGAAATCTGCCTCGTAGCATAG -ACGGAAATCTGCCTCGTAGACAAG -ACGGAAATCTGCCTCGTAAAGCAG -ACGGAAATCTGCCTCGTACGTCAA -ACGGAAATCTGCCTCGTAGCTGAA -ACGGAAATCTGCCTCGTAAGTACG -ACGGAAATCTGCCTCGTAATCCGA -ACGGAAATCTGCCTCGTAATGGGA -ACGGAAATCTGCCTCGTAGTGCAA -ACGGAAATCTGCCTCGTAGAGGAA -ACGGAAATCTGCCTCGTACAGGTA -ACGGAAATCTGCCTCGTAGACTCT -ACGGAAATCTGCCTCGTAAGTCCT -ACGGAAATCTGCCTCGTATAAGCC -ACGGAAATCTGCCTCGTAATAGCC -ACGGAAATCTGCCTCGTATAACCG -ACGGAAATCTGCCTCGTAATGCCA -ACGGAAATCTGCGTCGATGGAAAC -ACGGAAATCTGCGTCGATAACACC -ACGGAAATCTGCGTCGATATCGAG -ACGGAAATCTGCGTCGATCTCCTT -ACGGAAATCTGCGTCGATCCTGTT -ACGGAAATCTGCGTCGATCGGTTT -ACGGAAATCTGCGTCGATGTGGTT -ACGGAAATCTGCGTCGATGCCTTT -ACGGAAATCTGCGTCGATGGTCTT -ACGGAAATCTGCGTCGATACGCTT -ACGGAAATCTGCGTCGATAGCGTT -ACGGAAATCTGCGTCGATTTCGTC -ACGGAAATCTGCGTCGATTCTCTC -ACGGAAATCTGCGTCGATTGGATC -ACGGAAATCTGCGTCGATCACTTC -ACGGAAATCTGCGTCGATGTACTC -ACGGAAATCTGCGTCGATGATGTC -ACGGAAATCTGCGTCGATACAGTC -ACGGAAATCTGCGTCGATTTGCTG -ACGGAAATCTGCGTCGATTCCATG -ACGGAAATCTGCGTCGATTGTGTG -ACGGAAATCTGCGTCGATCTAGTG -ACGGAAATCTGCGTCGATCATCTG -ACGGAAATCTGCGTCGATGAGTTG -ACGGAAATCTGCGTCGATAGACTG -ACGGAAATCTGCGTCGATTCGGTA -ACGGAAATCTGCGTCGATTGCCTA -ACGGAAATCTGCGTCGATCCACTA -ACGGAAATCTGCGTCGATGGAGTA -ACGGAAATCTGCGTCGATTCGTCT -ACGGAAATCTGCGTCGATTGCACT -ACGGAAATCTGCGTCGATCTGACT -ACGGAAATCTGCGTCGATCAACCT -ACGGAAATCTGCGTCGATGCTACT -ACGGAAATCTGCGTCGATGGATCT -ACGGAAATCTGCGTCGATAAGGCT -ACGGAAATCTGCGTCGATTCAACC -ACGGAAATCTGCGTCGATTGTTCC -ACGGAAATCTGCGTCGATATTCCC -ACGGAAATCTGCGTCGATTTCTCG -ACGGAAATCTGCGTCGATTAGACG -ACGGAAATCTGCGTCGATGTAACG -ACGGAAATCTGCGTCGATACTTCG -ACGGAAATCTGCGTCGATTACGCA -ACGGAAATCTGCGTCGATCTTGCA -ACGGAAATCTGCGTCGATCGAACA -ACGGAAATCTGCGTCGATCAGTCA -ACGGAAATCTGCGTCGATGATCCA -ACGGAAATCTGCGTCGATACGACA -ACGGAAATCTGCGTCGATAGCTCA -ACGGAAATCTGCGTCGATTCACGT -ACGGAAATCTGCGTCGATCGTAGT -ACGGAAATCTGCGTCGATGTCAGT -ACGGAAATCTGCGTCGATGAAGGT -ACGGAAATCTGCGTCGATAACCGT -ACGGAAATCTGCGTCGATTTGTGC -ACGGAAATCTGCGTCGATCTAAGC -ACGGAAATCTGCGTCGATACTAGC -ACGGAAATCTGCGTCGATAGATGC -ACGGAAATCTGCGTCGATTGAAGG -ACGGAAATCTGCGTCGATCAATGG -ACGGAAATCTGCGTCGATATGAGG -ACGGAAATCTGCGTCGATAATGGG -ACGGAAATCTGCGTCGATTCCTGA -ACGGAAATCTGCGTCGATTAGCGA -ACGGAAATCTGCGTCGATCACAGA -ACGGAAATCTGCGTCGATGCAAGA -ACGGAAATCTGCGTCGATGGTTGA -ACGGAAATCTGCGTCGATTCCGAT -ACGGAAATCTGCGTCGATTGGCAT -ACGGAAATCTGCGTCGATCGAGAT -ACGGAAATCTGCGTCGATTACCAC -ACGGAAATCTGCGTCGATCAGAAC -ACGGAAATCTGCGTCGATGTCTAC -ACGGAAATCTGCGTCGATACGTAC -ACGGAAATCTGCGTCGATAGTGAC -ACGGAAATCTGCGTCGATCTGTAG -ACGGAAATCTGCGTCGATCCTAAG -ACGGAAATCTGCGTCGATGTTCAG -ACGGAAATCTGCGTCGATGCATAG -ACGGAAATCTGCGTCGATGACAAG -ACGGAAATCTGCGTCGATAAGCAG -ACGGAAATCTGCGTCGATCGTCAA -ACGGAAATCTGCGTCGATGCTGAA -ACGGAAATCTGCGTCGATAGTACG -ACGGAAATCTGCGTCGATATCCGA -ACGGAAATCTGCGTCGATATGGGA -ACGGAAATCTGCGTCGATGTGCAA -ACGGAAATCTGCGTCGATGAGGAA -ACGGAAATCTGCGTCGATCAGGTA -ACGGAAATCTGCGTCGATGACTCT -ACGGAAATCTGCGTCGATAGTCCT -ACGGAAATCTGCGTCGATTAAGCC -ACGGAAATCTGCGTCGATATAGCC -ACGGAAATCTGCGTCGATTAACCG -ACGGAAATCTGCGTCGATATGCCA -ACGGAAATCTGCGTCACAGGAAAC -ACGGAAATCTGCGTCACAAACACC -ACGGAAATCTGCGTCACAATCGAG -ACGGAAATCTGCGTCACACTCCTT -ACGGAAATCTGCGTCACACCTGTT -ACGGAAATCTGCGTCACACGGTTT -ACGGAAATCTGCGTCACAGTGGTT -ACGGAAATCTGCGTCACAGCCTTT -ACGGAAATCTGCGTCACAGGTCTT -ACGGAAATCTGCGTCACAACGCTT -ACGGAAATCTGCGTCACAAGCGTT -ACGGAAATCTGCGTCACATTCGTC -ACGGAAATCTGCGTCACATCTCTC -ACGGAAATCTGCGTCACATGGATC -ACGGAAATCTGCGTCACACACTTC -ACGGAAATCTGCGTCACAGTACTC -ACGGAAATCTGCGTCACAGATGTC -ACGGAAATCTGCGTCACAACAGTC -ACGGAAATCTGCGTCACATTGCTG -ACGGAAATCTGCGTCACATCCATG -ACGGAAATCTGCGTCACATGTGTG -ACGGAAATCTGCGTCACACTAGTG -ACGGAAATCTGCGTCACACATCTG -ACGGAAATCTGCGTCACAGAGTTG -ACGGAAATCTGCGTCACAAGACTG -ACGGAAATCTGCGTCACATCGGTA -ACGGAAATCTGCGTCACATGCCTA -ACGGAAATCTGCGTCACACCACTA -ACGGAAATCTGCGTCACAGGAGTA -ACGGAAATCTGCGTCACATCGTCT -ACGGAAATCTGCGTCACATGCACT -ACGGAAATCTGCGTCACACTGACT -ACGGAAATCTGCGTCACACAACCT -ACGGAAATCTGCGTCACAGCTACT -ACGGAAATCTGCGTCACAGGATCT -ACGGAAATCTGCGTCACAAAGGCT -ACGGAAATCTGCGTCACATCAACC -ACGGAAATCTGCGTCACATGTTCC -ACGGAAATCTGCGTCACAATTCCC -ACGGAAATCTGCGTCACATTCTCG -ACGGAAATCTGCGTCACATAGACG -ACGGAAATCTGCGTCACAGTAACG -ACGGAAATCTGCGTCACAACTTCG -ACGGAAATCTGCGTCACATACGCA -ACGGAAATCTGCGTCACACTTGCA -ACGGAAATCTGCGTCACACGAACA -ACGGAAATCTGCGTCACACAGTCA -ACGGAAATCTGCGTCACAGATCCA -ACGGAAATCTGCGTCACAACGACA -ACGGAAATCTGCGTCACAAGCTCA -ACGGAAATCTGCGTCACATCACGT -ACGGAAATCTGCGTCACACGTAGT -ACGGAAATCTGCGTCACAGTCAGT -ACGGAAATCTGCGTCACAGAAGGT -ACGGAAATCTGCGTCACAAACCGT -ACGGAAATCTGCGTCACATTGTGC -ACGGAAATCTGCGTCACACTAAGC -ACGGAAATCTGCGTCACAACTAGC -ACGGAAATCTGCGTCACAAGATGC -ACGGAAATCTGCGTCACATGAAGG -ACGGAAATCTGCGTCACACAATGG -ACGGAAATCTGCGTCACAATGAGG -ACGGAAATCTGCGTCACAAATGGG -ACGGAAATCTGCGTCACATCCTGA -ACGGAAATCTGCGTCACATAGCGA -ACGGAAATCTGCGTCACACACAGA -ACGGAAATCTGCGTCACAGCAAGA -ACGGAAATCTGCGTCACAGGTTGA -ACGGAAATCTGCGTCACATCCGAT -ACGGAAATCTGCGTCACATGGCAT -ACGGAAATCTGCGTCACACGAGAT -ACGGAAATCTGCGTCACATACCAC -ACGGAAATCTGCGTCACACAGAAC -ACGGAAATCTGCGTCACAGTCTAC -ACGGAAATCTGCGTCACAACGTAC -ACGGAAATCTGCGTCACAAGTGAC -ACGGAAATCTGCGTCACACTGTAG -ACGGAAATCTGCGTCACACCTAAG -ACGGAAATCTGCGTCACAGTTCAG -ACGGAAATCTGCGTCACAGCATAG -ACGGAAATCTGCGTCACAGACAAG -ACGGAAATCTGCGTCACAAAGCAG -ACGGAAATCTGCGTCACACGTCAA -ACGGAAATCTGCGTCACAGCTGAA -ACGGAAATCTGCGTCACAAGTACG -ACGGAAATCTGCGTCACAATCCGA -ACGGAAATCTGCGTCACAATGGGA -ACGGAAATCTGCGTCACAGTGCAA -ACGGAAATCTGCGTCACAGAGGAA -ACGGAAATCTGCGTCACACAGGTA -ACGGAAATCTGCGTCACAGACTCT -ACGGAAATCTGCGTCACAAGTCCT -ACGGAAATCTGCGTCACATAAGCC -ACGGAAATCTGCGTCACAATAGCC -ACGGAAATCTGCGTCACATAACCG -ACGGAAATCTGCGTCACAATGCCA -ACGGAAATCTGCCTGTTGGGAAAC -ACGGAAATCTGCCTGTTGAACACC -ACGGAAATCTGCCTGTTGATCGAG -ACGGAAATCTGCCTGTTGCTCCTT -ACGGAAATCTGCCTGTTGCCTGTT -ACGGAAATCTGCCTGTTGCGGTTT -ACGGAAATCTGCCTGTTGGTGGTT -ACGGAAATCTGCCTGTTGGCCTTT -ACGGAAATCTGCCTGTTGGGTCTT -ACGGAAATCTGCCTGTTGACGCTT -ACGGAAATCTGCCTGTTGAGCGTT -ACGGAAATCTGCCTGTTGTTCGTC -ACGGAAATCTGCCTGTTGTCTCTC -ACGGAAATCTGCCTGTTGTGGATC -ACGGAAATCTGCCTGTTGCACTTC -ACGGAAATCTGCCTGTTGGTACTC -ACGGAAATCTGCCTGTTGGATGTC -ACGGAAATCTGCCTGTTGACAGTC -ACGGAAATCTGCCTGTTGTTGCTG -ACGGAAATCTGCCTGTTGTCCATG -ACGGAAATCTGCCTGTTGTGTGTG -ACGGAAATCTGCCTGTTGCTAGTG -ACGGAAATCTGCCTGTTGCATCTG -ACGGAAATCTGCCTGTTGGAGTTG -ACGGAAATCTGCCTGTTGAGACTG -ACGGAAATCTGCCTGTTGTCGGTA -ACGGAAATCTGCCTGTTGTGCCTA -ACGGAAATCTGCCTGTTGCCACTA -ACGGAAATCTGCCTGTTGGGAGTA -ACGGAAATCTGCCTGTTGTCGTCT -ACGGAAATCTGCCTGTTGTGCACT -ACGGAAATCTGCCTGTTGCTGACT -ACGGAAATCTGCCTGTTGCAACCT -ACGGAAATCTGCCTGTTGGCTACT -ACGGAAATCTGCCTGTTGGGATCT -ACGGAAATCTGCCTGTTGAAGGCT -ACGGAAATCTGCCTGTTGTCAACC -ACGGAAATCTGCCTGTTGTGTTCC -ACGGAAATCTGCCTGTTGATTCCC -ACGGAAATCTGCCTGTTGTTCTCG -ACGGAAATCTGCCTGTTGTAGACG -ACGGAAATCTGCCTGTTGGTAACG -ACGGAAATCTGCCTGTTGACTTCG -ACGGAAATCTGCCTGTTGTACGCA -ACGGAAATCTGCCTGTTGCTTGCA -ACGGAAATCTGCCTGTTGCGAACA -ACGGAAATCTGCCTGTTGCAGTCA -ACGGAAATCTGCCTGTTGGATCCA -ACGGAAATCTGCCTGTTGACGACA -ACGGAAATCTGCCTGTTGAGCTCA -ACGGAAATCTGCCTGTTGTCACGT -ACGGAAATCTGCCTGTTGCGTAGT -ACGGAAATCTGCCTGTTGGTCAGT -ACGGAAATCTGCCTGTTGGAAGGT -ACGGAAATCTGCCTGTTGAACCGT -ACGGAAATCTGCCTGTTGTTGTGC -ACGGAAATCTGCCTGTTGCTAAGC -ACGGAAATCTGCCTGTTGACTAGC -ACGGAAATCTGCCTGTTGAGATGC -ACGGAAATCTGCCTGTTGTGAAGG -ACGGAAATCTGCCTGTTGCAATGG -ACGGAAATCTGCCTGTTGATGAGG -ACGGAAATCTGCCTGTTGAATGGG -ACGGAAATCTGCCTGTTGTCCTGA -ACGGAAATCTGCCTGTTGTAGCGA -ACGGAAATCTGCCTGTTGCACAGA -ACGGAAATCTGCCTGTTGGCAAGA -ACGGAAATCTGCCTGTTGGGTTGA -ACGGAAATCTGCCTGTTGTCCGAT -ACGGAAATCTGCCTGTTGTGGCAT -ACGGAAATCTGCCTGTTGCGAGAT -ACGGAAATCTGCCTGTTGTACCAC -ACGGAAATCTGCCTGTTGCAGAAC -ACGGAAATCTGCCTGTTGGTCTAC -ACGGAAATCTGCCTGTTGACGTAC -ACGGAAATCTGCCTGTTGAGTGAC -ACGGAAATCTGCCTGTTGCTGTAG -ACGGAAATCTGCCTGTTGCCTAAG -ACGGAAATCTGCCTGTTGGTTCAG -ACGGAAATCTGCCTGTTGGCATAG -ACGGAAATCTGCCTGTTGGACAAG -ACGGAAATCTGCCTGTTGAAGCAG -ACGGAAATCTGCCTGTTGCGTCAA -ACGGAAATCTGCCTGTTGGCTGAA -ACGGAAATCTGCCTGTTGAGTACG -ACGGAAATCTGCCTGTTGATCCGA -ACGGAAATCTGCCTGTTGATGGGA -ACGGAAATCTGCCTGTTGGTGCAA -ACGGAAATCTGCCTGTTGGAGGAA -ACGGAAATCTGCCTGTTGCAGGTA -ACGGAAATCTGCCTGTTGGACTCT -ACGGAAATCTGCCTGTTGAGTCCT -ACGGAAATCTGCCTGTTGTAAGCC -ACGGAAATCTGCCTGTTGATAGCC -ACGGAAATCTGCCTGTTGTAACCG -ACGGAAATCTGCCTGTTGATGCCA -ACGGAAATCTGCATGTCCGGAAAC -ACGGAAATCTGCATGTCCAACACC -ACGGAAATCTGCATGTCCATCGAG -ACGGAAATCTGCATGTCCCTCCTT -ACGGAAATCTGCATGTCCCCTGTT -ACGGAAATCTGCATGTCCCGGTTT -ACGGAAATCTGCATGTCCGTGGTT -ACGGAAATCTGCATGTCCGCCTTT -ACGGAAATCTGCATGTCCGGTCTT -ACGGAAATCTGCATGTCCACGCTT -ACGGAAATCTGCATGTCCAGCGTT -ACGGAAATCTGCATGTCCTTCGTC -ACGGAAATCTGCATGTCCTCTCTC -ACGGAAATCTGCATGTCCTGGATC -ACGGAAATCTGCATGTCCCACTTC -ACGGAAATCTGCATGTCCGTACTC -ACGGAAATCTGCATGTCCGATGTC -ACGGAAATCTGCATGTCCACAGTC -ACGGAAATCTGCATGTCCTTGCTG -ACGGAAATCTGCATGTCCTCCATG -ACGGAAATCTGCATGTCCTGTGTG -ACGGAAATCTGCATGTCCCTAGTG -ACGGAAATCTGCATGTCCCATCTG -ACGGAAATCTGCATGTCCGAGTTG -ACGGAAATCTGCATGTCCAGACTG -ACGGAAATCTGCATGTCCTCGGTA -ACGGAAATCTGCATGTCCTGCCTA -ACGGAAATCTGCATGTCCCCACTA -ACGGAAATCTGCATGTCCGGAGTA -ACGGAAATCTGCATGTCCTCGTCT -ACGGAAATCTGCATGTCCTGCACT -ACGGAAATCTGCATGTCCCTGACT -ACGGAAATCTGCATGTCCCAACCT -ACGGAAATCTGCATGTCCGCTACT -ACGGAAATCTGCATGTCCGGATCT -ACGGAAATCTGCATGTCCAAGGCT -ACGGAAATCTGCATGTCCTCAACC -ACGGAAATCTGCATGTCCTGTTCC -ACGGAAATCTGCATGTCCATTCCC -ACGGAAATCTGCATGTCCTTCTCG -ACGGAAATCTGCATGTCCTAGACG -ACGGAAATCTGCATGTCCGTAACG -ACGGAAATCTGCATGTCCACTTCG -ACGGAAATCTGCATGTCCTACGCA -ACGGAAATCTGCATGTCCCTTGCA -ACGGAAATCTGCATGTCCCGAACA -ACGGAAATCTGCATGTCCCAGTCA -ACGGAAATCTGCATGTCCGATCCA -ACGGAAATCTGCATGTCCACGACA -ACGGAAATCTGCATGTCCAGCTCA -ACGGAAATCTGCATGTCCTCACGT -ACGGAAATCTGCATGTCCCGTAGT -ACGGAAATCTGCATGTCCGTCAGT -ACGGAAATCTGCATGTCCGAAGGT -ACGGAAATCTGCATGTCCAACCGT -ACGGAAATCTGCATGTCCTTGTGC -ACGGAAATCTGCATGTCCCTAAGC -ACGGAAATCTGCATGTCCACTAGC -ACGGAAATCTGCATGTCCAGATGC -ACGGAAATCTGCATGTCCTGAAGG -ACGGAAATCTGCATGTCCCAATGG -ACGGAAATCTGCATGTCCATGAGG -ACGGAAATCTGCATGTCCAATGGG -ACGGAAATCTGCATGTCCTCCTGA -ACGGAAATCTGCATGTCCTAGCGA -ACGGAAATCTGCATGTCCCACAGA -ACGGAAATCTGCATGTCCGCAAGA -ACGGAAATCTGCATGTCCGGTTGA -ACGGAAATCTGCATGTCCTCCGAT -ACGGAAATCTGCATGTCCTGGCAT -ACGGAAATCTGCATGTCCCGAGAT -ACGGAAATCTGCATGTCCTACCAC -ACGGAAATCTGCATGTCCCAGAAC -ACGGAAATCTGCATGTCCGTCTAC -ACGGAAATCTGCATGTCCACGTAC -ACGGAAATCTGCATGTCCAGTGAC -ACGGAAATCTGCATGTCCCTGTAG -ACGGAAATCTGCATGTCCCCTAAG -ACGGAAATCTGCATGTCCGTTCAG -ACGGAAATCTGCATGTCCGCATAG -ACGGAAATCTGCATGTCCGACAAG -ACGGAAATCTGCATGTCCAAGCAG -ACGGAAATCTGCATGTCCCGTCAA -ACGGAAATCTGCATGTCCGCTGAA -ACGGAAATCTGCATGTCCAGTACG -ACGGAAATCTGCATGTCCATCCGA -ACGGAAATCTGCATGTCCATGGGA -ACGGAAATCTGCATGTCCGTGCAA -ACGGAAATCTGCATGTCCGAGGAA -ACGGAAATCTGCATGTCCCAGGTA -ACGGAAATCTGCATGTCCGACTCT -ACGGAAATCTGCATGTCCAGTCCT -ACGGAAATCTGCATGTCCTAAGCC -ACGGAAATCTGCATGTCCATAGCC -ACGGAAATCTGCATGTCCTAACCG -ACGGAAATCTGCATGTCCATGCCA -ACGGAAATCTGCGTGTGTGGAAAC -ACGGAAATCTGCGTGTGTAACACC -ACGGAAATCTGCGTGTGTATCGAG -ACGGAAATCTGCGTGTGTCTCCTT -ACGGAAATCTGCGTGTGTCCTGTT -ACGGAAATCTGCGTGTGTCGGTTT -ACGGAAATCTGCGTGTGTGTGGTT -ACGGAAATCTGCGTGTGTGCCTTT -ACGGAAATCTGCGTGTGTGGTCTT -ACGGAAATCTGCGTGTGTACGCTT -ACGGAAATCTGCGTGTGTAGCGTT -ACGGAAATCTGCGTGTGTTTCGTC -ACGGAAATCTGCGTGTGTTCTCTC -ACGGAAATCTGCGTGTGTTGGATC -ACGGAAATCTGCGTGTGTCACTTC -ACGGAAATCTGCGTGTGTGTACTC -ACGGAAATCTGCGTGTGTGATGTC -ACGGAAATCTGCGTGTGTACAGTC -ACGGAAATCTGCGTGTGTTTGCTG -ACGGAAATCTGCGTGTGTTCCATG -ACGGAAATCTGCGTGTGTTGTGTG -ACGGAAATCTGCGTGTGTCTAGTG -ACGGAAATCTGCGTGTGTCATCTG -ACGGAAATCTGCGTGTGTGAGTTG -ACGGAAATCTGCGTGTGTAGACTG -ACGGAAATCTGCGTGTGTTCGGTA -ACGGAAATCTGCGTGTGTTGCCTA -ACGGAAATCTGCGTGTGTCCACTA -ACGGAAATCTGCGTGTGTGGAGTA -ACGGAAATCTGCGTGTGTTCGTCT -ACGGAAATCTGCGTGTGTTGCACT -ACGGAAATCTGCGTGTGTCTGACT -ACGGAAATCTGCGTGTGTCAACCT -ACGGAAATCTGCGTGTGTGCTACT -ACGGAAATCTGCGTGTGTGGATCT -ACGGAAATCTGCGTGTGTAAGGCT -ACGGAAATCTGCGTGTGTTCAACC -ACGGAAATCTGCGTGTGTTGTTCC -ACGGAAATCTGCGTGTGTATTCCC -ACGGAAATCTGCGTGTGTTTCTCG -ACGGAAATCTGCGTGTGTTAGACG -ACGGAAATCTGCGTGTGTGTAACG -ACGGAAATCTGCGTGTGTACTTCG -ACGGAAATCTGCGTGTGTTACGCA -ACGGAAATCTGCGTGTGTCTTGCA -ACGGAAATCTGCGTGTGTCGAACA -ACGGAAATCTGCGTGTGTCAGTCA -ACGGAAATCTGCGTGTGTGATCCA -ACGGAAATCTGCGTGTGTACGACA -ACGGAAATCTGCGTGTGTAGCTCA -ACGGAAATCTGCGTGTGTTCACGT -ACGGAAATCTGCGTGTGTCGTAGT -ACGGAAATCTGCGTGTGTGTCAGT -ACGGAAATCTGCGTGTGTGAAGGT -ACGGAAATCTGCGTGTGTAACCGT -ACGGAAATCTGCGTGTGTTTGTGC -ACGGAAATCTGCGTGTGTCTAAGC -ACGGAAATCTGCGTGTGTACTAGC -ACGGAAATCTGCGTGTGTAGATGC -ACGGAAATCTGCGTGTGTTGAAGG -ACGGAAATCTGCGTGTGTCAATGG -ACGGAAATCTGCGTGTGTATGAGG -ACGGAAATCTGCGTGTGTAATGGG -ACGGAAATCTGCGTGTGTTCCTGA -ACGGAAATCTGCGTGTGTTAGCGA -ACGGAAATCTGCGTGTGTCACAGA -ACGGAAATCTGCGTGTGTGCAAGA -ACGGAAATCTGCGTGTGTGGTTGA -ACGGAAATCTGCGTGTGTTCCGAT -ACGGAAATCTGCGTGTGTTGGCAT -ACGGAAATCTGCGTGTGTCGAGAT -ACGGAAATCTGCGTGTGTTACCAC -ACGGAAATCTGCGTGTGTCAGAAC -ACGGAAATCTGCGTGTGTGTCTAC -ACGGAAATCTGCGTGTGTACGTAC -ACGGAAATCTGCGTGTGTAGTGAC -ACGGAAATCTGCGTGTGTCTGTAG -ACGGAAATCTGCGTGTGTCCTAAG -ACGGAAATCTGCGTGTGTGTTCAG -ACGGAAATCTGCGTGTGTGCATAG -ACGGAAATCTGCGTGTGTGACAAG -ACGGAAATCTGCGTGTGTAAGCAG -ACGGAAATCTGCGTGTGTCGTCAA -ACGGAAATCTGCGTGTGTGCTGAA -ACGGAAATCTGCGTGTGTAGTACG -ACGGAAATCTGCGTGTGTATCCGA -ACGGAAATCTGCGTGTGTATGGGA -ACGGAAATCTGCGTGTGTGTGCAA -ACGGAAATCTGCGTGTGTGAGGAA -ACGGAAATCTGCGTGTGTCAGGTA -ACGGAAATCTGCGTGTGTGACTCT -ACGGAAATCTGCGTGTGTAGTCCT -ACGGAAATCTGCGTGTGTTAAGCC -ACGGAAATCTGCGTGTGTATAGCC -ACGGAAATCTGCGTGTGTTAACCG -ACGGAAATCTGCGTGTGTATGCCA -ACGGAAATCTGCGTGCTAGGAAAC -ACGGAAATCTGCGTGCTAAACACC -ACGGAAATCTGCGTGCTAATCGAG -ACGGAAATCTGCGTGCTACTCCTT -ACGGAAATCTGCGTGCTACCTGTT -ACGGAAATCTGCGTGCTACGGTTT -ACGGAAATCTGCGTGCTAGTGGTT -ACGGAAATCTGCGTGCTAGCCTTT -ACGGAAATCTGCGTGCTAGGTCTT -ACGGAAATCTGCGTGCTAACGCTT -ACGGAAATCTGCGTGCTAAGCGTT -ACGGAAATCTGCGTGCTATTCGTC -ACGGAAATCTGCGTGCTATCTCTC -ACGGAAATCTGCGTGCTATGGATC -ACGGAAATCTGCGTGCTACACTTC -ACGGAAATCTGCGTGCTAGTACTC -ACGGAAATCTGCGTGCTAGATGTC -ACGGAAATCTGCGTGCTAACAGTC -ACGGAAATCTGCGTGCTATTGCTG -ACGGAAATCTGCGTGCTATCCATG -ACGGAAATCTGCGTGCTATGTGTG -ACGGAAATCTGCGTGCTACTAGTG -ACGGAAATCTGCGTGCTACATCTG -ACGGAAATCTGCGTGCTAGAGTTG -ACGGAAATCTGCGTGCTAAGACTG -ACGGAAATCTGCGTGCTATCGGTA -ACGGAAATCTGCGTGCTATGCCTA -ACGGAAATCTGCGTGCTACCACTA -ACGGAAATCTGCGTGCTAGGAGTA -ACGGAAATCTGCGTGCTATCGTCT -ACGGAAATCTGCGTGCTATGCACT -ACGGAAATCTGCGTGCTACTGACT -ACGGAAATCTGCGTGCTACAACCT -ACGGAAATCTGCGTGCTAGCTACT -ACGGAAATCTGCGTGCTAGGATCT -ACGGAAATCTGCGTGCTAAAGGCT -ACGGAAATCTGCGTGCTATCAACC -ACGGAAATCTGCGTGCTATGTTCC -ACGGAAATCTGCGTGCTAATTCCC -ACGGAAATCTGCGTGCTATTCTCG -ACGGAAATCTGCGTGCTATAGACG -ACGGAAATCTGCGTGCTAGTAACG -ACGGAAATCTGCGTGCTAACTTCG -ACGGAAATCTGCGTGCTATACGCA -ACGGAAATCTGCGTGCTACTTGCA -ACGGAAATCTGCGTGCTACGAACA -ACGGAAATCTGCGTGCTACAGTCA -ACGGAAATCTGCGTGCTAGATCCA -ACGGAAATCTGCGTGCTAACGACA -ACGGAAATCTGCGTGCTAAGCTCA -ACGGAAATCTGCGTGCTATCACGT -ACGGAAATCTGCGTGCTACGTAGT -ACGGAAATCTGCGTGCTAGTCAGT -ACGGAAATCTGCGTGCTAGAAGGT -ACGGAAATCTGCGTGCTAAACCGT -ACGGAAATCTGCGTGCTATTGTGC -ACGGAAATCTGCGTGCTACTAAGC -ACGGAAATCTGCGTGCTAACTAGC -ACGGAAATCTGCGTGCTAAGATGC -ACGGAAATCTGCGTGCTATGAAGG -ACGGAAATCTGCGTGCTACAATGG -ACGGAAATCTGCGTGCTAATGAGG -ACGGAAATCTGCGTGCTAAATGGG -ACGGAAATCTGCGTGCTATCCTGA -ACGGAAATCTGCGTGCTATAGCGA -ACGGAAATCTGCGTGCTACACAGA -ACGGAAATCTGCGTGCTAGCAAGA -ACGGAAATCTGCGTGCTAGGTTGA -ACGGAAATCTGCGTGCTATCCGAT -ACGGAAATCTGCGTGCTATGGCAT -ACGGAAATCTGCGTGCTACGAGAT -ACGGAAATCTGCGTGCTATACCAC -ACGGAAATCTGCGTGCTACAGAAC -ACGGAAATCTGCGTGCTAGTCTAC -ACGGAAATCTGCGTGCTAACGTAC -ACGGAAATCTGCGTGCTAAGTGAC -ACGGAAATCTGCGTGCTACTGTAG -ACGGAAATCTGCGTGCTACCTAAG -ACGGAAATCTGCGTGCTAGTTCAG -ACGGAAATCTGCGTGCTAGCATAG -ACGGAAATCTGCGTGCTAGACAAG -ACGGAAATCTGCGTGCTAAAGCAG -ACGGAAATCTGCGTGCTACGTCAA -ACGGAAATCTGCGTGCTAGCTGAA -ACGGAAATCTGCGTGCTAAGTACG -ACGGAAATCTGCGTGCTAATCCGA -ACGGAAATCTGCGTGCTAATGGGA -ACGGAAATCTGCGTGCTAGTGCAA -ACGGAAATCTGCGTGCTAGAGGAA -ACGGAAATCTGCGTGCTACAGGTA -ACGGAAATCTGCGTGCTAGACTCT -ACGGAAATCTGCGTGCTAAGTCCT -ACGGAAATCTGCGTGCTATAAGCC -ACGGAAATCTGCGTGCTAATAGCC -ACGGAAATCTGCGTGCTATAACCG -ACGGAAATCTGCGTGCTAATGCCA -ACGGAAATCTGCCTGCATGGAAAC -ACGGAAATCTGCCTGCATAACACC -ACGGAAATCTGCCTGCATATCGAG -ACGGAAATCTGCCTGCATCTCCTT -ACGGAAATCTGCCTGCATCCTGTT -ACGGAAATCTGCCTGCATCGGTTT -ACGGAAATCTGCCTGCATGTGGTT -ACGGAAATCTGCCTGCATGCCTTT -ACGGAAATCTGCCTGCATGGTCTT -ACGGAAATCTGCCTGCATACGCTT -ACGGAAATCTGCCTGCATAGCGTT -ACGGAAATCTGCCTGCATTTCGTC -ACGGAAATCTGCCTGCATTCTCTC -ACGGAAATCTGCCTGCATTGGATC -ACGGAAATCTGCCTGCATCACTTC -ACGGAAATCTGCCTGCATGTACTC -ACGGAAATCTGCCTGCATGATGTC -ACGGAAATCTGCCTGCATACAGTC -ACGGAAATCTGCCTGCATTTGCTG -ACGGAAATCTGCCTGCATTCCATG -ACGGAAATCTGCCTGCATTGTGTG -ACGGAAATCTGCCTGCATCTAGTG -ACGGAAATCTGCCTGCATCATCTG -ACGGAAATCTGCCTGCATGAGTTG -ACGGAAATCTGCCTGCATAGACTG -ACGGAAATCTGCCTGCATTCGGTA -ACGGAAATCTGCCTGCATTGCCTA -ACGGAAATCTGCCTGCATCCACTA -ACGGAAATCTGCCTGCATGGAGTA -ACGGAAATCTGCCTGCATTCGTCT -ACGGAAATCTGCCTGCATTGCACT -ACGGAAATCTGCCTGCATCTGACT -ACGGAAATCTGCCTGCATCAACCT -ACGGAAATCTGCCTGCATGCTACT -ACGGAAATCTGCCTGCATGGATCT -ACGGAAATCTGCCTGCATAAGGCT -ACGGAAATCTGCCTGCATTCAACC -ACGGAAATCTGCCTGCATTGTTCC -ACGGAAATCTGCCTGCATATTCCC -ACGGAAATCTGCCTGCATTTCTCG -ACGGAAATCTGCCTGCATTAGACG -ACGGAAATCTGCCTGCATGTAACG -ACGGAAATCTGCCTGCATACTTCG -ACGGAAATCTGCCTGCATTACGCA -ACGGAAATCTGCCTGCATCTTGCA -ACGGAAATCTGCCTGCATCGAACA -ACGGAAATCTGCCTGCATCAGTCA -ACGGAAATCTGCCTGCATGATCCA -ACGGAAATCTGCCTGCATACGACA -ACGGAAATCTGCCTGCATAGCTCA -ACGGAAATCTGCCTGCATTCACGT -ACGGAAATCTGCCTGCATCGTAGT -ACGGAAATCTGCCTGCATGTCAGT -ACGGAAATCTGCCTGCATGAAGGT -ACGGAAATCTGCCTGCATAACCGT -ACGGAAATCTGCCTGCATTTGTGC -ACGGAAATCTGCCTGCATCTAAGC -ACGGAAATCTGCCTGCATACTAGC -ACGGAAATCTGCCTGCATAGATGC -ACGGAAATCTGCCTGCATTGAAGG -ACGGAAATCTGCCTGCATCAATGG -ACGGAAATCTGCCTGCATATGAGG -ACGGAAATCTGCCTGCATAATGGG -ACGGAAATCTGCCTGCATTCCTGA -ACGGAAATCTGCCTGCATTAGCGA -ACGGAAATCTGCCTGCATCACAGA -ACGGAAATCTGCCTGCATGCAAGA -ACGGAAATCTGCCTGCATGGTTGA -ACGGAAATCTGCCTGCATTCCGAT -ACGGAAATCTGCCTGCATTGGCAT -ACGGAAATCTGCCTGCATCGAGAT -ACGGAAATCTGCCTGCATTACCAC -ACGGAAATCTGCCTGCATCAGAAC -ACGGAAATCTGCCTGCATGTCTAC -ACGGAAATCTGCCTGCATACGTAC -ACGGAAATCTGCCTGCATAGTGAC -ACGGAAATCTGCCTGCATCTGTAG -ACGGAAATCTGCCTGCATCCTAAG -ACGGAAATCTGCCTGCATGTTCAG -ACGGAAATCTGCCTGCATGCATAG -ACGGAAATCTGCCTGCATGACAAG -ACGGAAATCTGCCTGCATAAGCAG -ACGGAAATCTGCCTGCATCGTCAA -ACGGAAATCTGCCTGCATGCTGAA -ACGGAAATCTGCCTGCATAGTACG -ACGGAAATCTGCCTGCATATCCGA -ACGGAAATCTGCCTGCATATGGGA -ACGGAAATCTGCCTGCATGTGCAA -ACGGAAATCTGCCTGCATGAGGAA -ACGGAAATCTGCCTGCATCAGGTA -ACGGAAATCTGCCTGCATGACTCT -ACGGAAATCTGCCTGCATAGTCCT -ACGGAAATCTGCCTGCATTAAGCC -ACGGAAATCTGCCTGCATATAGCC -ACGGAAATCTGCCTGCATTAACCG -ACGGAAATCTGCCTGCATATGCCA -ACGGAAATCTGCTTGGAGGGAAAC -ACGGAAATCTGCTTGGAGAACACC -ACGGAAATCTGCTTGGAGATCGAG -ACGGAAATCTGCTTGGAGCTCCTT -ACGGAAATCTGCTTGGAGCCTGTT -ACGGAAATCTGCTTGGAGCGGTTT -ACGGAAATCTGCTTGGAGGTGGTT -ACGGAAATCTGCTTGGAGGCCTTT -ACGGAAATCTGCTTGGAGGGTCTT -ACGGAAATCTGCTTGGAGACGCTT -ACGGAAATCTGCTTGGAGAGCGTT -ACGGAAATCTGCTTGGAGTTCGTC -ACGGAAATCTGCTTGGAGTCTCTC -ACGGAAATCTGCTTGGAGTGGATC -ACGGAAATCTGCTTGGAGCACTTC -ACGGAAATCTGCTTGGAGGTACTC -ACGGAAATCTGCTTGGAGGATGTC -ACGGAAATCTGCTTGGAGACAGTC -ACGGAAATCTGCTTGGAGTTGCTG -ACGGAAATCTGCTTGGAGTCCATG -ACGGAAATCTGCTTGGAGTGTGTG -ACGGAAATCTGCTTGGAGCTAGTG -ACGGAAATCTGCTTGGAGCATCTG -ACGGAAATCTGCTTGGAGGAGTTG -ACGGAAATCTGCTTGGAGAGACTG -ACGGAAATCTGCTTGGAGTCGGTA -ACGGAAATCTGCTTGGAGTGCCTA -ACGGAAATCTGCTTGGAGCCACTA -ACGGAAATCTGCTTGGAGGGAGTA -ACGGAAATCTGCTTGGAGTCGTCT -ACGGAAATCTGCTTGGAGTGCACT -ACGGAAATCTGCTTGGAGCTGACT -ACGGAAATCTGCTTGGAGCAACCT -ACGGAAATCTGCTTGGAGGCTACT -ACGGAAATCTGCTTGGAGGGATCT -ACGGAAATCTGCTTGGAGAAGGCT -ACGGAAATCTGCTTGGAGTCAACC -ACGGAAATCTGCTTGGAGTGTTCC -ACGGAAATCTGCTTGGAGATTCCC -ACGGAAATCTGCTTGGAGTTCTCG -ACGGAAATCTGCTTGGAGTAGACG -ACGGAAATCTGCTTGGAGGTAACG -ACGGAAATCTGCTTGGAGACTTCG -ACGGAAATCTGCTTGGAGTACGCA -ACGGAAATCTGCTTGGAGCTTGCA -ACGGAAATCTGCTTGGAGCGAACA -ACGGAAATCTGCTTGGAGCAGTCA -ACGGAAATCTGCTTGGAGGATCCA -ACGGAAATCTGCTTGGAGACGACA -ACGGAAATCTGCTTGGAGAGCTCA -ACGGAAATCTGCTTGGAGTCACGT -ACGGAAATCTGCTTGGAGCGTAGT -ACGGAAATCTGCTTGGAGGTCAGT -ACGGAAATCTGCTTGGAGGAAGGT -ACGGAAATCTGCTTGGAGAACCGT -ACGGAAATCTGCTTGGAGTTGTGC -ACGGAAATCTGCTTGGAGCTAAGC -ACGGAAATCTGCTTGGAGACTAGC -ACGGAAATCTGCTTGGAGAGATGC -ACGGAAATCTGCTTGGAGTGAAGG -ACGGAAATCTGCTTGGAGCAATGG -ACGGAAATCTGCTTGGAGATGAGG -ACGGAAATCTGCTTGGAGAATGGG -ACGGAAATCTGCTTGGAGTCCTGA -ACGGAAATCTGCTTGGAGTAGCGA -ACGGAAATCTGCTTGGAGCACAGA -ACGGAAATCTGCTTGGAGGCAAGA -ACGGAAATCTGCTTGGAGGGTTGA -ACGGAAATCTGCTTGGAGTCCGAT -ACGGAAATCTGCTTGGAGTGGCAT -ACGGAAATCTGCTTGGAGCGAGAT -ACGGAAATCTGCTTGGAGTACCAC -ACGGAAATCTGCTTGGAGCAGAAC -ACGGAAATCTGCTTGGAGGTCTAC -ACGGAAATCTGCTTGGAGACGTAC -ACGGAAATCTGCTTGGAGAGTGAC -ACGGAAATCTGCTTGGAGCTGTAG -ACGGAAATCTGCTTGGAGCCTAAG -ACGGAAATCTGCTTGGAGGTTCAG -ACGGAAATCTGCTTGGAGGCATAG -ACGGAAATCTGCTTGGAGGACAAG -ACGGAAATCTGCTTGGAGAAGCAG -ACGGAAATCTGCTTGGAGCGTCAA -ACGGAAATCTGCTTGGAGGCTGAA -ACGGAAATCTGCTTGGAGAGTACG -ACGGAAATCTGCTTGGAGATCCGA -ACGGAAATCTGCTTGGAGATGGGA -ACGGAAATCTGCTTGGAGGTGCAA -ACGGAAATCTGCTTGGAGGAGGAA -ACGGAAATCTGCTTGGAGCAGGTA -ACGGAAATCTGCTTGGAGGACTCT -ACGGAAATCTGCTTGGAGAGTCCT -ACGGAAATCTGCTTGGAGTAAGCC -ACGGAAATCTGCTTGGAGATAGCC -ACGGAAATCTGCTTGGAGTAACCG -ACGGAAATCTGCTTGGAGATGCCA -ACGGAAATCTGCCTGAGAGGAAAC -ACGGAAATCTGCCTGAGAAACACC -ACGGAAATCTGCCTGAGAATCGAG -ACGGAAATCTGCCTGAGACTCCTT -ACGGAAATCTGCCTGAGACCTGTT -ACGGAAATCTGCCTGAGACGGTTT -ACGGAAATCTGCCTGAGAGTGGTT -ACGGAAATCTGCCTGAGAGCCTTT -ACGGAAATCTGCCTGAGAGGTCTT -ACGGAAATCTGCCTGAGAACGCTT -ACGGAAATCTGCCTGAGAAGCGTT -ACGGAAATCTGCCTGAGATTCGTC -ACGGAAATCTGCCTGAGATCTCTC -ACGGAAATCTGCCTGAGATGGATC -ACGGAAATCTGCCTGAGACACTTC -ACGGAAATCTGCCTGAGAGTACTC -ACGGAAATCTGCCTGAGAGATGTC -ACGGAAATCTGCCTGAGAACAGTC -ACGGAAATCTGCCTGAGATTGCTG -ACGGAAATCTGCCTGAGATCCATG -ACGGAAATCTGCCTGAGATGTGTG -ACGGAAATCTGCCTGAGACTAGTG -ACGGAAATCTGCCTGAGACATCTG -ACGGAAATCTGCCTGAGAGAGTTG -ACGGAAATCTGCCTGAGAAGACTG -ACGGAAATCTGCCTGAGATCGGTA -ACGGAAATCTGCCTGAGATGCCTA -ACGGAAATCTGCCTGAGACCACTA -ACGGAAATCTGCCTGAGAGGAGTA -ACGGAAATCTGCCTGAGATCGTCT -ACGGAAATCTGCCTGAGATGCACT -ACGGAAATCTGCCTGAGACTGACT -ACGGAAATCTGCCTGAGACAACCT -ACGGAAATCTGCCTGAGAGCTACT -ACGGAAATCTGCCTGAGAGGATCT -ACGGAAATCTGCCTGAGAAAGGCT -ACGGAAATCTGCCTGAGATCAACC -ACGGAAATCTGCCTGAGATGTTCC -ACGGAAATCTGCCTGAGAATTCCC -ACGGAAATCTGCCTGAGATTCTCG -ACGGAAATCTGCCTGAGATAGACG -ACGGAAATCTGCCTGAGAGTAACG -ACGGAAATCTGCCTGAGAACTTCG -ACGGAAATCTGCCTGAGATACGCA -ACGGAAATCTGCCTGAGACTTGCA -ACGGAAATCTGCCTGAGACGAACA -ACGGAAATCTGCCTGAGACAGTCA -ACGGAAATCTGCCTGAGAGATCCA -ACGGAAATCTGCCTGAGAACGACA -ACGGAAATCTGCCTGAGAAGCTCA -ACGGAAATCTGCCTGAGATCACGT -ACGGAAATCTGCCTGAGACGTAGT -ACGGAAATCTGCCTGAGAGTCAGT -ACGGAAATCTGCCTGAGAGAAGGT -ACGGAAATCTGCCTGAGAAACCGT -ACGGAAATCTGCCTGAGATTGTGC -ACGGAAATCTGCCTGAGACTAAGC -ACGGAAATCTGCCTGAGAACTAGC -ACGGAAATCTGCCTGAGAAGATGC -ACGGAAATCTGCCTGAGATGAAGG -ACGGAAATCTGCCTGAGACAATGG -ACGGAAATCTGCCTGAGAATGAGG -ACGGAAATCTGCCTGAGAAATGGG -ACGGAAATCTGCCTGAGATCCTGA -ACGGAAATCTGCCTGAGATAGCGA -ACGGAAATCTGCCTGAGACACAGA -ACGGAAATCTGCCTGAGAGCAAGA -ACGGAAATCTGCCTGAGAGGTTGA -ACGGAAATCTGCCTGAGATCCGAT -ACGGAAATCTGCCTGAGATGGCAT -ACGGAAATCTGCCTGAGACGAGAT -ACGGAAATCTGCCTGAGATACCAC -ACGGAAATCTGCCTGAGACAGAAC -ACGGAAATCTGCCTGAGAGTCTAC -ACGGAAATCTGCCTGAGAACGTAC -ACGGAAATCTGCCTGAGAAGTGAC -ACGGAAATCTGCCTGAGACTGTAG -ACGGAAATCTGCCTGAGACCTAAG -ACGGAAATCTGCCTGAGAGTTCAG -ACGGAAATCTGCCTGAGAGCATAG -ACGGAAATCTGCCTGAGAGACAAG -ACGGAAATCTGCCTGAGAAAGCAG -ACGGAAATCTGCCTGAGACGTCAA -ACGGAAATCTGCCTGAGAGCTGAA -ACGGAAATCTGCCTGAGAAGTACG -ACGGAAATCTGCCTGAGAATCCGA -ACGGAAATCTGCCTGAGAATGGGA -ACGGAAATCTGCCTGAGAGTGCAA -ACGGAAATCTGCCTGAGAGAGGAA -ACGGAAATCTGCCTGAGACAGGTA -ACGGAAATCTGCCTGAGAGACTCT -ACGGAAATCTGCCTGAGAAGTCCT -ACGGAAATCTGCCTGAGATAAGCC -ACGGAAATCTGCCTGAGAATAGCC -ACGGAAATCTGCCTGAGATAACCG -ACGGAAATCTGCCTGAGAATGCCA -ACGGAAATCTGCGTATCGGGAAAC -ACGGAAATCTGCGTATCGAACACC -ACGGAAATCTGCGTATCGATCGAG -ACGGAAATCTGCGTATCGCTCCTT -ACGGAAATCTGCGTATCGCCTGTT -ACGGAAATCTGCGTATCGCGGTTT -ACGGAAATCTGCGTATCGGTGGTT -ACGGAAATCTGCGTATCGGCCTTT -ACGGAAATCTGCGTATCGGGTCTT -ACGGAAATCTGCGTATCGACGCTT -ACGGAAATCTGCGTATCGAGCGTT -ACGGAAATCTGCGTATCGTTCGTC -ACGGAAATCTGCGTATCGTCTCTC -ACGGAAATCTGCGTATCGTGGATC -ACGGAAATCTGCGTATCGCACTTC -ACGGAAATCTGCGTATCGGTACTC -ACGGAAATCTGCGTATCGGATGTC -ACGGAAATCTGCGTATCGACAGTC -ACGGAAATCTGCGTATCGTTGCTG -ACGGAAATCTGCGTATCGTCCATG -ACGGAAATCTGCGTATCGTGTGTG -ACGGAAATCTGCGTATCGCTAGTG -ACGGAAATCTGCGTATCGCATCTG -ACGGAAATCTGCGTATCGGAGTTG -ACGGAAATCTGCGTATCGAGACTG -ACGGAAATCTGCGTATCGTCGGTA -ACGGAAATCTGCGTATCGTGCCTA -ACGGAAATCTGCGTATCGCCACTA -ACGGAAATCTGCGTATCGGGAGTA -ACGGAAATCTGCGTATCGTCGTCT -ACGGAAATCTGCGTATCGTGCACT -ACGGAAATCTGCGTATCGCTGACT -ACGGAAATCTGCGTATCGCAACCT -ACGGAAATCTGCGTATCGGCTACT -ACGGAAATCTGCGTATCGGGATCT -ACGGAAATCTGCGTATCGAAGGCT -ACGGAAATCTGCGTATCGTCAACC -ACGGAAATCTGCGTATCGTGTTCC -ACGGAAATCTGCGTATCGATTCCC -ACGGAAATCTGCGTATCGTTCTCG -ACGGAAATCTGCGTATCGTAGACG -ACGGAAATCTGCGTATCGGTAACG -ACGGAAATCTGCGTATCGACTTCG -ACGGAAATCTGCGTATCGTACGCA -ACGGAAATCTGCGTATCGCTTGCA -ACGGAAATCTGCGTATCGCGAACA -ACGGAAATCTGCGTATCGCAGTCA -ACGGAAATCTGCGTATCGGATCCA -ACGGAAATCTGCGTATCGACGACA -ACGGAAATCTGCGTATCGAGCTCA -ACGGAAATCTGCGTATCGTCACGT -ACGGAAATCTGCGTATCGCGTAGT -ACGGAAATCTGCGTATCGGTCAGT -ACGGAAATCTGCGTATCGGAAGGT -ACGGAAATCTGCGTATCGAACCGT -ACGGAAATCTGCGTATCGTTGTGC -ACGGAAATCTGCGTATCGCTAAGC -ACGGAAATCTGCGTATCGACTAGC -ACGGAAATCTGCGTATCGAGATGC -ACGGAAATCTGCGTATCGTGAAGG -ACGGAAATCTGCGTATCGCAATGG -ACGGAAATCTGCGTATCGATGAGG -ACGGAAATCTGCGTATCGAATGGG -ACGGAAATCTGCGTATCGTCCTGA -ACGGAAATCTGCGTATCGTAGCGA -ACGGAAATCTGCGTATCGCACAGA -ACGGAAATCTGCGTATCGGCAAGA -ACGGAAATCTGCGTATCGGGTTGA -ACGGAAATCTGCGTATCGTCCGAT -ACGGAAATCTGCGTATCGTGGCAT -ACGGAAATCTGCGTATCGCGAGAT -ACGGAAATCTGCGTATCGTACCAC -ACGGAAATCTGCGTATCGCAGAAC -ACGGAAATCTGCGTATCGGTCTAC -ACGGAAATCTGCGTATCGACGTAC -ACGGAAATCTGCGTATCGAGTGAC -ACGGAAATCTGCGTATCGCTGTAG -ACGGAAATCTGCGTATCGCCTAAG -ACGGAAATCTGCGTATCGGTTCAG -ACGGAAATCTGCGTATCGGCATAG -ACGGAAATCTGCGTATCGGACAAG -ACGGAAATCTGCGTATCGAAGCAG -ACGGAAATCTGCGTATCGCGTCAA -ACGGAAATCTGCGTATCGGCTGAA -ACGGAAATCTGCGTATCGAGTACG -ACGGAAATCTGCGTATCGATCCGA -ACGGAAATCTGCGTATCGATGGGA -ACGGAAATCTGCGTATCGGTGCAA -ACGGAAATCTGCGTATCGGAGGAA -ACGGAAATCTGCGTATCGCAGGTA -ACGGAAATCTGCGTATCGGACTCT -ACGGAAATCTGCGTATCGAGTCCT -ACGGAAATCTGCGTATCGTAAGCC -ACGGAAATCTGCGTATCGATAGCC -ACGGAAATCTGCGTATCGTAACCG -ACGGAAATCTGCGTATCGATGCCA -ACGGAAATCTGCCTATGCGGAAAC -ACGGAAATCTGCCTATGCAACACC -ACGGAAATCTGCCTATGCATCGAG -ACGGAAATCTGCCTATGCCTCCTT -ACGGAAATCTGCCTATGCCCTGTT -ACGGAAATCTGCCTATGCCGGTTT -ACGGAAATCTGCCTATGCGTGGTT -ACGGAAATCTGCCTATGCGCCTTT -ACGGAAATCTGCCTATGCGGTCTT -ACGGAAATCTGCCTATGCACGCTT -ACGGAAATCTGCCTATGCAGCGTT -ACGGAAATCTGCCTATGCTTCGTC -ACGGAAATCTGCCTATGCTCTCTC -ACGGAAATCTGCCTATGCTGGATC -ACGGAAATCTGCCTATGCCACTTC -ACGGAAATCTGCCTATGCGTACTC -ACGGAAATCTGCCTATGCGATGTC -ACGGAAATCTGCCTATGCACAGTC -ACGGAAATCTGCCTATGCTTGCTG -ACGGAAATCTGCCTATGCTCCATG -ACGGAAATCTGCCTATGCTGTGTG -ACGGAAATCTGCCTATGCCTAGTG -ACGGAAATCTGCCTATGCCATCTG -ACGGAAATCTGCCTATGCGAGTTG -ACGGAAATCTGCCTATGCAGACTG -ACGGAAATCTGCCTATGCTCGGTA -ACGGAAATCTGCCTATGCTGCCTA -ACGGAAATCTGCCTATGCCCACTA -ACGGAAATCTGCCTATGCGGAGTA -ACGGAAATCTGCCTATGCTCGTCT -ACGGAAATCTGCCTATGCTGCACT -ACGGAAATCTGCCTATGCCTGACT -ACGGAAATCTGCCTATGCCAACCT -ACGGAAATCTGCCTATGCGCTACT -ACGGAAATCTGCCTATGCGGATCT -ACGGAAATCTGCCTATGCAAGGCT -ACGGAAATCTGCCTATGCTCAACC -ACGGAAATCTGCCTATGCTGTTCC -ACGGAAATCTGCCTATGCATTCCC -ACGGAAATCTGCCTATGCTTCTCG -ACGGAAATCTGCCTATGCTAGACG -ACGGAAATCTGCCTATGCGTAACG -ACGGAAATCTGCCTATGCACTTCG -ACGGAAATCTGCCTATGCTACGCA -ACGGAAATCTGCCTATGCCTTGCA -ACGGAAATCTGCCTATGCCGAACA -ACGGAAATCTGCCTATGCCAGTCA -ACGGAAATCTGCCTATGCGATCCA -ACGGAAATCTGCCTATGCACGACA -ACGGAAATCTGCCTATGCAGCTCA -ACGGAAATCTGCCTATGCTCACGT -ACGGAAATCTGCCTATGCCGTAGT -ACGGAAATCTGCCTATGCGTCAGT -ACGGAAATCTGCCTATGCGAAGGT -ACGGAAATCTGCCTATGCAACCGT -ACGGAAATCTGCCTATGCTTGTGC -ACGGAAATCTGCCTATGCCTAAGC -ACGGAAATCTGCCTATGCACTAGC -ACGGAAATCTGCCTATGCAGATGC -ACGGAAATCTGCCTATGCTGAAGG -ACGGAAATCTGCCTATGCCAATGG -ACGGAAATCTGCCTATGCATGAGG -ACGGAAATCTGCCTATGCAATGGG -ACGGAAATCTGCCTATGCTCCTGA -ACGGAAATCTGCCTATGCTAGCGA -ACGGAAATCTGCCTATGCCACAGA -ACGGAAATCTGCCTATGCGCAAGA -ACGGAAATCTGCCTATGCGGTTGA -ACGGAAATCTGCCTATGCTCCGAT -ACGGAAATCTGCCTATGCTGGCAT -ACGGAAATCTGCCTATGCCGAGAT -ACGGAAATCTGCCTATGCTACCAC -ACGGAAATCTGCCTATGCCAGAAC -ACGGAAATCTGCCTATGCGTCTAC -ACGGAAATCTGCCTATGCACGTAC -ACGGAAATCTGCCTATGCAGTGAC -ACGGAAATCTGCCTATGCCTGTAG -ACGGAAATCTGCCTATGCCCTAAG -ACGGAAATCTGCCTATGCGTTCAG -ACGGAAATCTGCCTATGCGCATAG -ACGGAAATCTGCCTATGCGACAAG -ACGGAAATCTGCCTATGCAAGCAG -ACGGAAATCTGCCTATGCCGTCAA -ACGGAAATCTGCCTATGCGCTGAA -ACGGAAATCTGCCTATGCAGTACG -ACGGAAATCTGCCTATGCATCCGA -ACGGAAATCTGCCTATGCATGGGA -ACGGAAATCTGCCTATGCGTGCAA -ACGGAAATCTGCCTATGCGAGGAA -ACGGAAATCTGCCTATGCCAGGTA -ACGGAAATCTGCCTATGCGACTCT -ACGGAAATCTGCCTATGCAGTCCT -ACGGAAATCTGCCTATGCTAAGCC -ACGGAAATCTGCCTATGCATAGCC -ACGGAAATCTGCCTATGCTAACCG -ACGGAAATCTGCCTATGCATGCCA -ACGGAAATCTGCCTACCAGGAAAC -ACGGAAATCTGCCTACCAAACACC -ACGGAAATCTGCCTACCAATCGAG -ACGGAAATCTGCCTACCACTCCTT -ACGGAAATCTGCCTACCACCTGTT -ACGGAAATCTGCCTACCACGGTTT -ACGGAAATCTGCCTACCAGTGGTT -ACGGAAATCTGCCTACCAGCCTTT -ACGGAAATCTGCCTACCAGGTCTT -ACGGAAATCTGCCTACCAACGCTT -ACGGAAATCTGCCTACCAAGCGTT -ACGGAAATCTGCCTACCATTCGTC -ACGGAAATCTGCCTACCATCTCTC -ACGGAAATCTGCCTACCATGGATC -ACGGAAATCTGCCTACCACACTTC -ACGGAAATCTGCCTACCAGTACTC -ACGGAAATCTGCCTACCAGATGTC -ACGGAAATCTGCCTACCAACAGTC -ACGGAAATCTGCCTACCATTGCTG -ACGGAAATCTGCCTACCATCCATG -ACGGAAATCTGCCTACCATGTGTG -ACGGAAATCTGCCTACCACTAGTG -ACGGAAATCTGCCTACCACATCTG -ACGGAAATCTGCCTACCAGAGTTG -ACGGAAATCTGCCTACCAAGACTG -ACGGAAATCTGCCTACCATCGGTA -ACGGAAATCTGCCTACCATGCCTA -ACGGAAATCTGCCTACCACCACTA -ACGGAAATCTGCCTACCAGGAGTA -ACGGAAATCTGCCTACCATCGTCT -ACGGAAATCTGCCTACCATGCACT -ACGGAAATCTGCCTACCACTGACT -ACGGAAATCTGCCTACCACAACCT -ACGGAAATCTGCCTACCAGCTACT -ACGGAAATCTGCCTACCAGGATCT -ACGGAAATCTGCCTACCAAAGGCT -ACGGAAATCTGCCTACCATCAACC -ACGGAAATCTGCCTACCATGTTCC -ACGGAAATCTGCCTACCAATTCCC -ACGGAAATCTGCCTACCATTCTCG -ACGGAAATCTGCCTACCATAGACG -ACGGAAATCTGCCTACCAGTAACG -ACGGAAATCTGCCTACCAACTTCG -ACGGAAATCTGCCTACCATACGCA -ACGGAAATCTGCCTACCACTTGCA -ACGGAAATCTGCCTACCACGAACA -ACGGAAATCTGCCTACCACAGTCA -ACGGAAATCTGCCTACCAGATCCA -ACGGAAATCTGCCTACCAACGACA -ACGGAAATCTGCCTACCAAGCTCA -ACGGAAATCTGCCTACCATCACGT -ACGGAAATCTGCCTACCACGTAGT -ACGGAAATCTGCCTACCAGTCAGT -ACGGAAATCTGCCTACCAGAAGGT -ACGGAAATCTGCCTACCAAACCGT -ACGGAAATCTGCCTACCATTGTGC -ACGGAAATCTGCCTACCACTAAGC -ACGGAAATCTGCCTACCAACTAGC -ACGGAAATCTGCCTACCAAGATGC -ACGGAAATCTGCCTACCATGAAGG -ACGGAAATCTGCCTACCACAATGG -ACGGAAATCTGCCTACCAATGAGG -ACGGAAATCTGCCTACCAAATGGG -ACGGAAATCTGCCTACCATCCTGA -ACGGAAATCTGCCTACCATAGCGA -ACGGAAATCTGCCTACCACACAGA -ACGGAAATCTGCCTACCAGCAAGA -ACGGAAATCTGCCTACCAGGTTGA -ACGGAAATCTGCCTACCATCCGAT -ACGGAAATCTGCCTACCATGGCAT -ACGGAAATCTGCCTACCACGAGAT -ACGGAAATCTGCCTACCATACCAC -ACGGAAATCTGCCTACCACAGAAC -ACGGAAATCTGCCTACCAGTCTAC -ACGGAAATCTGCCTACCAACGTAC -ACGGAAATCTGCCTACCAAGTGAC -ACGGAAATCTGCCTACCACTGTAG -ACGGAAATCTGCCTACCACCTAAG -ACGGAAATCTGCCTACCAGTTCAG -ACGGAAATCTGCCTACCAGCATAG -ACGGAAATCTGCCTACCAGACAAG -ACGGAAATCTGCCTACCAAAGCAG -ACGGAAATCTGCCTACCACGTCAA -ACGGAAATCTGCCTACCAGCTGAA -ACGGAAATCTGCCTACCAAGTACG -ACGGAAATCTGCCTACCAATCCGA -ACGGAAATCTGCCTACCAATGGGA -ACGGAAATCTGCCTACCAGTGCAA -ACGGAAATCTGCCTACCAGAGGAA -ACGGAAATCTGCCTACCACAGGTA -ACGGAAATCTGCCTACCAGACTCT -ACGGAAATCTGCCTACCAAGTCCT -ACGGAAATCTGCCTACCATAAGCC -ACGGAAATCTGCCTACCAATAGCC -ACGGAAATCTGCCTACCATAACCG -ACGGAAATCTGCCTACCAATGCCA -ACGGAAATCTGCGTAGGAGGAAAC -ACGGAAATCTGCGTAGGAAACACC -ACGGAAATCTGCGTAGGAATCGAG -ACGGAAATCTGCGTAGGACTCCTT -ACGGAAATCTGCGTAGGACCTGTT -ACGGAAATCTGCGTAGGACGGTTT -ACGGAAATCTGCGTAGGAGTGGTT -ACGGAAATCTGCGTAGGAGCCTTT -ACGGAAATCTGCGTAGGAGGTCTT -ACGGAAATCTGCGTAGGAACGCTT -ACGGAAATCTGCGTAGGAAGCGTT -ACGGAAATCTGCGTAGGATTCGTC -ACGGAAATCTGCGTAGGATCTCTC -ACGGAAATCTGCGTAGGATGGATC -ACGGAAATCTGCGTAGGACACTTC -ACGGAAATCTGCGTAGGAGTACTC -ACGGAAATCTGCGTAGGAGATGTC -ACGGAAATCTGCGTAGGAACAGTC -ACGGAAATCTGCGTAGGATTGCTG -ACGGAAATCTGCGTAGGATCCATG -ACGGAAATCTGCGTAGGATGTGTG -ACGGAAATCTGCGTAGGACTAGTG -ACGGAAATCTGCGTAGGACATCTG -ACGGAAATCTGCGTAGGAGAGTTG -ACGGAAATCTGCGTAGGAAGACTG -ACGGAAATCTGCGTAGGATCGGTA -ACGGAAATCTGCGTAGGATGCCTA -ACGGAAATCTGCGTAGGACCACTA -ACGGAAATCTGCGTAGGAGGAGTA -ACGGAAATCTGCGTAGGATCGTCT -ACGGAAATCTGCGTAGGATGCACT -ACGGAAATCTGCGTAGGACTGACT -ACGGAAATCTGCGTAGGACAACCT -ACGGAAATCTGCGTAGGAGCTACT -ACGGAAATCTGCGTAGGAGGATCT -ACGGAAATCTGCGTAGGAAAGGCT -ACGGAAATCTGCGTAGGATCAACC -ACGGAAATCTGCGTAGGATGTTCC -ACGGAAATCTGCGTAGGAATTCCC -ACGGAAATCTGCGTAGGATTCTCG -ACGGAAATCTGCGTAGGATAGACG -ACGGAAATCTGCGTAGGAGTAACG -ACGGAAATCTGCGTAGGAACTTCG -ACGGAAATCTGCGTAGGATACGCA -ACGGAAATCTGCGTAGGACTTGCA -ACGGAAATCTGCGTAGGACGAACA -ACGGAAATCTGCGTAGGACAGTCA -ACGGAAATCTGCGTAGGAGATCCA -ACGGAAATCTGCGTAGGAACGACA -ACGGAAATCTGCGTAGGAAGCTCA -ACGGAAATCTGCGTAGGATCACGT -ACGGAAATCTGCGTAGGACGTAGT -ACGGAAATCTGCGTAGGAGTCAGT -ACGGAAATCTGCGTAGGAGAAGGT -ACGGAAATCTGCGTAGGAAACCGT -ACGGAAATCTGCGTAGGATTGTGC -ACGGAAATCTGCGTAGGACTAAGC -ACGGAAATCTGCGTAGGAACTAGC -ACGGAAATCTGCGTAGGAAGATGC -ACGGAAATCTGCGTAGGATGAAGG -ACGGAAATCTGCGTAGGACAATGG -ACGGAAATCTGCGTAGGAATGAGG -ACGGAAATCTGCGTAGGAAATGGG -ACGGAAATCTGCGTAGGATCCTGA -ACGGAAATCTGCGTAGGATAGCGA -ACGGAAATCTGCGTAGGACACAGA -ACGGAAATCTGCGTAGGAGCAAGA -ACGGAAATCTGCGTAGGAGGTTGA -ACGGAAATCTGCGTAGGATCCGAT -ACGGAAATCTGCGTAGGATGGCAT -ACGGAAATCTGCGTAGGACGAGAT -ACGGAAATCTGCGTAGGATACCAC -ACGGAAATCTGCGTAGGACAGAAC -ACGGAAATCTGCGTAGGAGTCTAC -ACGGAAATCTGCGTAGGAACGTAC -ACGGAAATCTGCGTAGGAAGTGAC -ACGGAAATCTGCGTAGGACTGTAG -ACGGAAATCTGCGTAGGACCTAAG -ACGGAAATCTGCGTAGGAGTTCAG -ACGGAAATCTGCGTAGGAGCATAG -ACGGAAATCTGCGTAGGAGACAAG -ACGGAAATCTGCGTAGGAAAGCAG -ACGGAAATCTGCGTAGGACGTCAA -ACGGAAATCTGCGTAGGAGCTGAA -ACGGAAATCTGCGTAGGAAGTACG -ACGGAAATCTGCGTAGGAATCCGA -ACGGAAATCTGCGTAGGAATGGGA -ACGGAAATCTGCGTAGGAGTGCAA -ACGGAAATCTGCGTAGGAGAGGAA -ACGGAAATCTGCGTAGGACAGGTA -ACGGAAATCTGCGTAGGAGACTCT -ACGGAAATCTGCGTAGGAAGTCCT -ACGGAAATCTGCGTAGGATAAGCC -ACGGAAATCTGCGTAGGAATAGCC -ACGGAAATCTGCGTAGGATAACCG -ACGGAAATCTGCGTAGGAATGCCA -ACGGAAATCTGCTCTTCGGGAAAC -ACGGAAATCTGCTCTTCGAACACC -ACGGAAATCTGCTCTTCGATCGAG -ACGGAAATCTGCTCTTCGCTCCTT -ACGGAAATCTGCTCTTCGCCTGTT -ACGGAAATCTGCTCTTCGCGGTTT -ACGGAAATCTGCTCTTCGGTGGTT -ACGGAAATCTGCTCTTCGGCCTTT -ACGGAAATCTGCTCTTCGGGTCTT -ACGGAAATCTGCTCTTCGACGCTT -ACGGAAATCTGCTCTTCGAGCGTT -ACGGAAATCTGCTCTTCGTTCGTC -ACGGAAATCTGCTCTTCGTCTCTC -ACGGAAATCTGCTCTTCGTGGATC -ACGGAAATCTGCTCTTCGCACTTC -ACGGAAATCTGCTCTTCGGTACTC -ACGGAAATCTGCTCTTCGGATGTC -ACGGAAATCTGCTCTTCGACAGTC -ACGGAAATCTGCTCTTCGTTGCTG -ACGGAAATCTGCTCTTCGTCCATG -ACGGAAATCTGCTCTTCGTGTGTG -ACGGAAATCTGCTCTTCGCTAGTG -ACGGAAATCTGCTCTTCGCATCTG -ACGGAAATCTGCTCTTCGGAGTTG -ACGGAAATCTGCTCTTCGAGACTG -ACGGAAATCTGCTCTTCGTCGGTA -ACGGAAATCTGCTCTTCGTGCCTA -ACGGAAATCTGCTCTTCGCCACTA -ACGGAAATCTGCTCTTCGGGAGTA -ACGGAAATCTGCTCTTCGTCGTCT -ACGGAAATCTGCTCTTCGTGCACT -ACGGAAATCTGCTCTTCGCTGACT -ACGGAAATCTGCTCTTCGCAACCT -ACGGAAATCTGCTCTTCGGCTACT -ACGGAAATCTGCTCTTCGGGATCT -ACGGAAATCTGCTCTTCGAAGGCT -ACGGAAATCTGCTCTTCGTCAACC -ACGGAAATCTGCTCTTCGTGTTCC -ACGGAAATCTGCTCTTCGATTCCC -ACGGAAATCTGCTCTTCGTTCTCG -ACGGAAATCTGCTCTTCGTAGACG -ACGGAAATCTGCTCTTCGGTAACG -ACGGAAATCTGCTCTTCGACTTCG -ACGGAAATCTGCTCTTCGTACGCA -ACGGAAATCTGCTCTTCGCTTGCA -ACGGAAATCTGCTCTTCGCGAACA -ACGGAAATCTGCTCTTCGCAGTCA -ACGGAAATCTGCTCTTCGGATCCA -ACGGAAATCTGCTCTTCGACGACA -ACGGAAATCTGCTCTTCGAGCTCA -ACGGAAATCTGCTCTTCGTCACGT -ACGGAAATCTGCTCTTCGCGTAGT -ACGGAAATCTGCTCTTCGGTCAGT -ACGGAAATCTGCTCTTCGGAAGGT -ACGGAAATCTGCTCTTCGAACCGT -ACGGAAATCTGCTCTTCGTTGTGC -ACGGAAATCTGCTCTTCGCTAAGC -ACGGAAATCTGCTCTTCGACTAGC -ACGGAAATCTGCTCTTCGAGATGC -ACGGAAATCTGCTCTTCGTGAAGG -ACGGAAATCTGCTCTTCGCAATGG -ACGGAAATCTGCTCTTCGATGAGG -ACGGAAATCTGCTCTTCGAATGGG -ACGGAAATCTGCTCTTCGTCCTGA -ACGGAAATCTGCTCTTCGTAGCGA -ACGGAAATCTGCTCTTCGCACAGA -ACGGAAATCTGCTCTTCGGCAAGA -ACGGAAATCTGCTCTTCGGGTTGA -ACGGAAATCTGCTCTTCGTCCGAT -ACGGAAATCTGCTCTTCGTGGCAT -ACGGAAATCTGCTCTTCGCGAGAT -ACGGAAATCTGCTCTTCGTACCAC -ACGGAAATCTGCTCTTCGCAGAAC -ACGGAAATCTGCTCTTCGGTCTAC -ACGGAAATCTGCTCTTCGACGTAC -ACGGAAATCTGCTCTTCGAGTGAC -ACGGAAATCTGCTCTTCGCTGTAG -ACGGAAATCTGCTCTTCGCCTAAG -ACGGAAATCTGCTCTTCGGTTCAG -ACGGAAATCTGCTCTTCGGCATAG -ACGGAAATCTGCTCTTCGGACAAG -ACGGAAATCTGCTCTTCGAAGCAG -ACGGAAATCTGCTCTTCGCGTCAA -ACGGAAATCTGCTCTTCGGCTGAA -ACGGAAATCTGCTCTTCGAGTACG -ACGGAAATCTGCTCTTCGATCCGA -ACGGAAATCTGCTCTTCGATGGGA -ACGGAAATCTGCTCTTCGGTGCAA -ACGGAAATCTGCTCTTCGGAGGAA -ACGGAAATCTGCTCTTCGCAGGTA -ACGGAAATCTGCTCTTCGGACTCT -ACGGAAATCTGCTCTTCGAGTCCT -ACGGAAATCTGCTCTTCGTAAGCC -ACGGAAATCTGCTCTTCGATAGCC -ACGGAAATCTGCTCTTCGTAACCG -ACGGAAATCTGCTCTTCGATGCCA -ACGGAAATCTGCACTTGCGGAAAC -ACGGAAATCTGCACTTGCAACACC -ACGGAAATCTGCACTTGCATCGAG -ACGGAAATCTGCACTTGCCTCCTT -ACGGAAATCTGCACTTGCCCTGTT -ACGGAAATCTGCACTTGCCGGTTT -ACGGAAATCTGCACTTGCGTGGTT -ACGGAAATCTGCACTTGCGCCTTT -ACGGAAATCTGCACTTGCGGTCTT -ACGGAAATCTGCACTTGCACGCTT -ACGGAAATCTGCACTTGCAGCGTT -ACGGAAATCTGCACTTGCTTCGTC -ACGGAAATCTGCACTTGCTCTCTC -ACGGAAATCTGCACTTGCTGGATC -ACGGAAATCTGCACTTGCCACTTC -ACGGAAATCTGCACTTGCGTACTC -ACGGAAATCTGCACTTGCGATGTC -ACGGAAATCTGCACTTGCACAGTC -ACGGAAATCTGCACTTGCTTGCTG -ACGGAAATCTGCACTTGCTCCATG -ACGGAAATCTGCACTTGCTGTGTG -ACGGAAATCTGCACTTGCCTAGTG -ACGGAAATCTGCACTTGCCATCTG -ACGGAAATCTGCACTTGCGAGTTG -ACGGAAATCTGCACTTGCAGACTG -ACGGAAATCTGCACTTGCTCGGTA -ACGGAAATCTGCACTTGCTGCCTA -ACGGAAATCTGCACTTGCCCACTA -ACGGAAATCTGCACTTGCGGAGTA -ACGGAAATCTGCACTTGCTCGTCT -ACGGAAATCTGCACTTGCTGCACT -ACGGAAATCTGCACTTGCCTGACT -ACGGAAATCTGCACTTGCCAACCT -ACGGAAATCTGCACTTGCGCTACT -ACGGAAATCTGCACTTGCGGATCT -ACGGAAATCTGCACTTGCAAGGCT -ACGGAAATCTGCACTTGCTCAACC -ACGGAAATCTGCACTTGCTGTTCC -ACGGAAATCTGCACTTGCATTCCC -ACGGAAATCTGCACTTGCTTCTCG -ACGGAAATCTGCACTTGCTAGACG -ACGGAAATCTGCACTTGCGTAACG -ACGGAAATCTGCACTTGCACTTCG -ACGGAAATCTGCACTTGCTACGCA -ACGGAAATCTGCACTTGCCTTGCA -ACGGAAATCTGCACTTGCCGAACA -ACGGAAATCTGCACTTGCCAGTCA -ACGGAAATCTGCACTTGCGATCCA -ACGGAAATCTGCACTTGCACGACA -ACGGAAATCTGCACTTGCAGCTCA -ACGGAAATCTGCACTTGCTCACGT -ACGGAAATCTGCACTTGCCGTAGT -ACGGAAATCTGCACTTGCGTCAGT -ACGGAAATCTGCACTTGCGAAGGT -ACGGAAATCTGCACTTGCAACCGT -ACGGAAATCTGCACTTGCTTGTGC -ACGGAAATCTGCACTTGCCTAAGC -ACGGAAATCTGCACTTGCACTAGC -ACGGAAATCTGCACTTGCAGATGC -ACGGAAATCTGCACTTGCTGAAGG -ACGGAAATCTGCACTTGCCAATGG -ACGGAAATCTGCACTTGCATGAGG -ACGGAAATCTGCACTTGCAATGGG -ACGGAAATCTGCACTTGCTCCTGA -ACGGAAATCTGCACTTGCTAGCGA -ACGGAAATCTGCACTTGCCACAGA -ACGGAAATCTGCACTTGCGCAAGA -ACGGAAATCTGCACTTGCGGTTGA -ACGGAAATCTGCACTTGCTCCGAT -ACGGAAATCTGCACTTGCTGGCAT -ACGGAAATCTGCACTTGCCGAGAT -ACGGAAATCTGCACTTGCTACCAC -ACGGAAATCTGCACTTGCCAGAAC -ACGGAAATCTGCACTTGCGTCTAC -ACGGAAATCTGCACTTGCACGTAC -ACGGAAATCTGCACTTGCAGTGAC -ACGGAAATCTGCACTTGCCTGTAG -ACGGAAATCTGCACTTGCCCTAAG -ACGGAAATCTGCACTTGCGTTCAG -ACGGAAATCTGCACTTGCGCATAG -ACGGAAATCTGCACTTGCGACAAG -ACGGAAATCTGCACTTGCAAGCAG -ACGGAAATCTGCACTTGCCGTCAA -ACGGAAATCTGCACTTGCGCTGAA -ACGGAAATCTGCACTTGCAGTACG -ACGGAAATCTGCACTTGCATCCGA -ACGGAAATCTGCACTTGCATGGGA -ACGGAAATCTGCACTTGCGTGCAA -ACGGAAATCTGCACTTGCGAGGAA -ACGGAAATCTGCACTTGCCAGGTA -ACGGAAATCTGCACTTGCGACTCT -ACGGAAATCTGCACTTGCAGTCCT -ACGGAAATCTGCACTTGCTAAGCC -ACGGAAATCTGCACTTGCATAGCC -ACGGAAATCTGCACTTGCTAACCG -ACGGAAATCTGCACTTGCATGCCA -ACGGAAATCTGCACTCTGGGAAAC -ACGGAAATCTGCACTCTGAACACC -ACGGAAATCTGCACTCTGATCGAG -ACGGAAATCTGCACTCTGCTCCTT -ACGGAAATCTGCACTCTGCCTGTT -ACGGAAATCTGCACTCTGCGGTTT -ACGGAAATCTGCACTCTGGTGGTT -ACGGAAATCTGCACTCTGGCCTTT -ACGGAAATCTGCACTCTGGGTCTT -ACGGAAATCTGCACTCTGACGCTT -ACGGAAATCTGCACTCTGAGCGTT -ACGGAAATCTGCACTCTGTTCGTC -ACGGAAATCTGCACTCTGTCTCTC -ACGGAAATCTGCACTCTGTGGATC -ACGGAAATCTGCACTCTGCACTTC -ACGGAAATCTGCACTCTGGTACTC -ACGGAAATCTGCACTCTGGATGTC -ACGGAAATCTGCACTCTGACAGTC -ACGGAAATCTGCACTCTGTTGCTG -ACGGAAATCTGCACTCTGTCCATG -ACGGAAATCTGCACTCTGTGTGTG -ACGGAAATCTGCACTCTGCTAGTG -ACGGAAATCTGCACTCTGCATCTG -ACGGAAATCTGCACTCTGGAGTTG -ACGGAAATCTGCACTCTGAGACTG -ACGGAAATCTGCACTCTGTCGGTA -ACGGAAATCTGCACTCTGTGCCTA -ACGGAAATCTGCACTCTGCCACTA -ACGGAAATCTGCACTCTGGGAGTA -ACGGAAATCTGCACTCTGTCGTCT -ACGGAAATCTGCACTCTGTGCACT -ACGGAAATCTGCACTCTGCTGACT -ACGGAAATCTGCACTCTGCAACCT -ACGGAAATCTGCACTCTGGCTACT -ACGGAAATCTGCACTCTGGGATCT -ACGGAAATCTGCACTCTGAAGGCT -ACGGAAATCTGCACTCTGTCAACC -ACGGAAATCTGCACTCTGTGTTCC -ACGGAAATCTGCACTCTGATTCCC -ACGGAAATCTGCACTCTGTTCTCG -ACGGAAATCTGCACTCTGTAGACG -ACGGAAATCTGCACTCTGGTAACG -ACGGAAATCTGCACTCTGACTTCG -ACGGAAATCTGCACTCTGTACGCA -ACGGAAATCTGCACTCTGCTTGCA -ACGGAAATCTGCACTCTGCGAACA -ACGGAAATCTGCACTCTGCAGTCA -ACGGAAATCTGCACTCTGGATCCA -ACGGAAATCTGCACTCTGACGACA -ACGGAAATCTGCACTCTGAGCTCA -ACGGAAATCTGCACTCTGTCACGT -ACGGAAATCTGCACTCTGCGTAGT -ACGGAAATCTGCACTCTGGTCAGT -ACGGAAATCTGCACTCTGGAAGGT -ACGGAAATCTGCACTCTGAACCGT -ACGGAAATCTGCACTCTGTTGTGC -ACGGAAATCTGCACTCTGCTAAGC -ACGGAAATCTGCACTCTGACTAGC -ACGGAAATCTGCACTCTGAGATGC -ACGGAAATCTGCACTCTGTGAAGG -ACGGAAATCTGCACTCTGCAATGG -ACGGAAATCTGCACTCTGATGAGG -ACGGAAATCTGCACTCTGAATGGG -ACGGAAATCTGCACTCTGTCCTGA -ACGGAAATCTGCACTCTGTAGCGA -ACGGAAATCTGCACTCTGCACAGA -ACGGAAATCTGCACTCTGGCAAGA -ACGGAAATCTGCACTCTGGGTTGA -ACGGAAATCTGCACTCTGTCCGAT -ACGGAAATCTGCACTCTGTGGCAT -ACGGAAATCTGCACTCTGCGAGAT -ACGGAAATCTGCACTCTGTACCAC -ACGGAAATCTGCACTCTGCAGAAC -ACGGAAATCTGCACTCTGGTCTAC -ACGGAAATCTGCACTCTGACGTAC -ACGGAAATCTGCACTCTGAGTGAC -ACGGAAATCTGCACTCTGCTGTAG -ACGGAAATCTGCACTCTGCCTAAG -ACGGAAATCTGCACTCTGGTTCAG -ACGGAAATCTGCACTCTGGCATAG -ACGGAAATCTGCACTCTGGACAAG -ACGGAAATCTGCACTCTGAAGCAG -ACGGAAATCTGCACTCTGCGTCAA -ACGGAAATCTGCACTCTGGCTGAA -ACGGAAATCTGCACTCTGAGTACG -ACGGAAATCTGCACTCTGATCCGA -ACGGAAATCTGCACTCTGATGGGA -ACGGAAATCTGCACTCTGGTGCAA -ACGGAAATCTGCACTCTGGAGGAA -ACGGAAATCTGCACTCTGCAGGTA -ACGGAAATCTGCACTCTGGACTCT -ACGGAAATCTGCACTCTGAGTCCT -ACGGAAATCTGCACTCTGTAAGCC -ACGGAAATCTGCACTCTGATAGCC -ACGGAAATCTGCACTCTGTAACCG -ACGGAAATCTGCACTCTGATGCCA -ACGGAAATCTGCCCTCAAGGAAAC -ACGGAAATCTGCCCTCAAAACACC -ACGGAAATCTGCCCTCAAATCGAG -ACGGAAATCTGCCCTCAACTCCTT -ACGGAAATCTGCCCTCAACCTGTT -ACGGAAATCTGCCCTCAACGGTTT -ACGGAAATCTGCCCTCAAGTGGTT -ACGGAAATCTGCCCTCAAGCCTTT -ACGGAAATCTGCCCTCAAGGTCTT -ACGGAAATCTGCCCTCAAACGCTT -ACGGAAATCTGCCCTCAAAGCGTT -ACGGAAATCTGCCCTCAATTCGTC -ACGGAAATCTGCCCTCAATCTCTC -ACGGAAATCTGCCCTCAATGGATC -ACGGAAATCTGCCCTCAACACTTC -ACGGAAATCTGCCCTCAAGTACTC -ACGGAAATCTGCCCTCAAGATGTC -ACGGAAATCTGCCCTCAAACAGTC -ACGGAAATCTGCCCTCAATTGCTG -ACGGAAATCTGCCCTCAATCCATG -ACGGAAATCTGCCCTCAATGTGTG -ACGGAAATCTGCCCTCAACTAGTG -ACGGAAATCTGCCCTCAACATCTG -ACGGAAATCTGCCCTCAAGAGTTG -ACGGAAATCTGCCCTCAAAGACTG -ACGGAAATCTGCCCTCAATCGGTA -ACGGAAATCTGCCCTCAATGCCTA -ACGGAAATCTGCCCTCAACCACTA -ACGGAAATCTGCCCTCAAGGAGTA -ACGGAAATCTGCCCTCAATCGTCT -ACGGAAATCTGCCCTCAATGCACT -ACGGAAATCTGCCCTCAACTGACT -ACGGAAATCTGCCCTCAACAACCT -ACGGAAATCTGCCCTCAAGCTACT -ACGGAAATCTGCCCTCAAGGATCT -ACGGAAATCTGCCCTCAAAAGGCT -ACGGAAATCTGCCCTCAATCAACC -ACGGAAATCTGCCCTCAATGTTCC -ACGGAAATCTGCCCTCAAATTCCC -ACGGAAATCTGCCCTCAATTCTCG -ACGGAAATCTGCCCTCAATAGACG -ACGGAAATCTGCCCTCAAGTAACG -ACGGAAATCTGCCCTCAAACTTCG -ACGGAAATCTGCCCTCAATACGCA -ACGGAAATCTGCCCTCAACTTGCA -ACGGAAATCTGCCCTCAACGAACA -ACGGAAATCTGCCCTCAACAGTCA -ACGGAAATCTGCCCTCAAGATCCA -ACGGAAATCTGCCCTCAAACGACA -ACGGAAATCTGCCCTCAAAGCTCA -ACGGAAATCTGCCCTCAATCACGT -ACGGAAATCTGCCCTCAACGTAGT -ACGGAAATCTGCCCTCAAGTCAGT -ACGGAAATCTGCCCTCAAGAAGGT -ACGGAAATCTGCCCTCAAAACCGT -ACGGAAATCTGCCCTCAATTGTGC -ACGGAAATCTGCCCTCAACTAAGC -ACGGAAATCTGCCCTCAAACTAGC -ACGGAAATCTGCCCTCAAAGATGC -ACGGAAATCTGCCCTCAATGAAGG -ACGGAAATCTGCCCTCAACAATGG -ACGGAAATCTGCCCTCAAATGAGG -ACGGAAATCTGCCCTCAAAATGGG -ACGGAAATCTGCCCTCAATCCTGA -ACGGAAATCTGCCCTCAATAGCGA -ACGGAAATCTGCCCTCAACACAGA -ACGGAAATCTGCCCTCAAGCAAGA -ACGGAAATCTGCCCTCAAGGTTGA -ACGGAAATCTGCCCTCAATCCGAT -ACGGAAATCTGCCCTCAATGGCAT -ACGGAAATCTGCCCTCAACGAGAT -ACGGAAATCTGCCCTCAATACCAC -ACGGAAATCTGCCCTCAACAGAAC -ACGGAAATCTGCCCTCAAGTCTAC -ACGGAAATCTGCCCTCAAACGTAC -ACGGAAATCTGCCCTCAAAGTGAC -ACGGAAATCTGCCCTCAACTGTAG -ACGGAAATCTGCCCTCAACCTAAG -ACGGAAATCTGCCCTCAAGTTCAG -ACGGAAATCTGCCCTCAAGCATAG -ACGGAAATCTGCCCTCAAGACAAG -ACGGAAATCTGCCCTCAAAAGCAG -ACGGAAATCTGCCCTCAACGTCAA -ACGGAAATCTGCCCTCAAGCTGAA -ACGGAAATCTGCCCTCAAAGTACG -ACGGAAATCTGCCCTCAAATCCGA -ACGGAAATCTGCCCTCAAATGGGA -ACGGAAATCTGCCCTCAAGTGCAA -ACGGAAATCTGCCCTCAAGAGGAA -ACGGAAATCTGCCCTCAACAGGTA -ACGGAAATCTGCCCTCAAGACTCT -ACGGAAATCTGCCCTCAAAGTCCT -ACGGAAATCTGCCCTCAATAAGCC -ACGGAAATCTGCCCTCAAATAGCC -ACGGAAATCTGCCCTCAATAACCG -ACGGAAATCTGCCCTCAAATGCCA -ACGGAAATCTGCACTGCTGGAAAC -ACGGAAATCTGCACTGCTAACACC -ACGGAAATCTGCACTGCTATCGAG -ACGGAAATCTGCACTGCTCTCCTT -ACGGAAATCTGCACTGCTCCTGTT -ACGGAAATCTGCACTGCTCGGTTT -ACGGAAATCTGCACTGCTGTGGTT -ACGGAAATCTGCACTGCTGCCTTT -ACGGAAATCTGCACTGCTGGTCTT -ACGGAAATCTGCACTGCTACGCTT -ACGGAAATCTGCACTGCTAGCGTT -ACGGAAATCTGCACTGCTTTCGTC -ACGGAAATCTGCACTGCTTCTCTC -ACGGAAATCTGCACTGCTTGGATC -ACGGAAATCTGCACTGCTCACTTC -ACGGAAATCTGCACTGCTGTACTC -ACGGAAATCTGCACTGCTGATGTC -ACGGAAATCTGCACTGCTACAGTC -ACGGAAATCTGCACTGCTTTGCTG -ACGGAAATCTGCACTGCTTCCATG -ACGGAAATCTGCACTGCTTGTGTG -ACGGAAATCTGCACTGCTCTAGTG -ACGGAAATCTGCACTGCTCATCTG -ACGGAAATCTGCACTGCTGAGTTG -ACGGAAATCTGCACTGCTAGACTG -ACGGAAATCTGCACTGCTTCGGTA -ACGGAAATCTGCACTGCTTGCCTA -ACGGAAATCTGCACTGCTCCACTA -ACGGAAATCTGCACTGCTGGAGTA -ACGGAAATCTGCACTGCTTCGTCT -ACGGAAATCTGCACTGCTTGCACT -ACGGAAATCTGCACTGCTCTGACT -ACGGAAATCTGCACTGCTCAACCT -ACGGAAATCTGCACTGCTGCTACT -ACGGAAATCTGCACTGCTGGATCT -ACGGAAATCTGCACTGCTAAGGCT -ACGGAAATCTGCACTGCTTCAACC -ACGGAAATCTGCACTGCTTGTTCC -ACGGAAATCTGCACTGCTATTCCC -ACGGAAATCTGCACTGCTTTCTCG -ACGGAAATCTGCACTGCTTAGACG -ACGGAAATCTGCACTGCTGTAACG -ACGGAAATCTGCACTGCTACTTCG -ACGGAAATCTGCACTGCTTACGCA -ACGGAAATCTGCACTGCTCTTGCA -ACGGAAATCTGCACTGCTCGAACA -ACGGAAATCTGCACTGCTCAGTCA -ACGGAAATCTGCACTGCTGATCCA -ACGGAAATCTGCACTGCTACGACA -ACGGAAATCTGCACTGCTAGCTCA -ACGGAAATCTGCACTGCTTCACGT -ACGGAAATCTGCACTGCTCGTAGT -ACGGAAATCTGCACTGCTGTCAGT -ACGGAAATCTGCACTGCTGAAGGT -ACGGAAATCTGCACTGCTAACCGT -ACGGAAATCTGCACTGCTTTGTGC -ACGGAAATCTGCACTGCTCTAAGC -ACGGAAATCTGCACTGCTACTAGC -ACGGAAATCTGCACTGCTAGATGC -ACGGAAATCTGCACTGCTTGAAGG -ACGGAAATCTGCACTGCTCAATGG -ACGGAAATCTGCACTGCTATGAGG -ACGGAAATCTGCACTGCTAATGGG -ACGGAAATCTGCACTGCTTCCTGA -ACGGAAATCTGCACTGCTTAGCGA -ACGGAAATCTGCACTGCTCACAGA -ACGGAAATCTGCACTGCTGCAAGA -ACGGAAATCTGCACTGCTGGTTGA -ACGGAAATCTGCACTGCTTCCGAT -ACGGAAATCTGCACTGCTTGGCAT -ACGGAAATCTGCACTGCTCGAGAT -ACGGAAATCTGCACTGCTTACCAC -ACGGAAATCTGCACTGCTCAGAAC -ACGGAAATCTGCACTGCTGTCTAC -ACGGAAATCTGCACTGCTACGTAC -ACGGAAATCTGCACTGCTAGTGAC -ACGGAAATCTGCACTGCTCTGTAG -ACGGAAATCTGCACTGCTCCTAAG -ACGGAAATCTGCACTGCTGTTCAG -ACGGAAATCTGCACTGCTGCATAG -ACGGAAATCTGCACTGCTGACAAG -ACGGAAATCTGCACTGCTAAGCAG -ACGGAAATCTGCACTGCTCGTCAA -ACGGAAATCTGCACTGCTGCTGAA -ACGGAAATCTGCACTGCTAGTACG -ACGGAAATCTGCACTGCTATCCGA -ACGGAAATCTGCACTGCTATGGGA -ACGGAAATCTGCACTGCTGTGCAA -ACGGAAATCTGCACTGCTGAGGAA -ACGGAAATCTGCACTGCTCAGGTA -ACGGAAATCTGCACTGCTGACTCT -ACGGAAATCTGCACTGCTAGTCCT -ACGGAAATCTGCACTGCTTAAGCC -ACGGAAATCTGCACTGCTATAGCC -ACGGAAATCTGCACTGCTTAACCG -ACGGAAATCTGCACTGCTATGCCA -ACGGAAATCTGCTCTGGAGGAAAC -ACGGAAATCTGCTCTGGAAACACC -ACGGAAATCTGCTCTGGAATCGAG -ACGGAAATCTGCTCTGGACTCCTT -ACGGAAATCTGCTCTGGACCTGTT -ACGGAAATCTGCTCTGGACGGTTT -ACGGAAATCTGCTCTGGAGTGGTT -ACGGAAATCTGCTCTGGAGCCTTT -ACGGAAATCTGCTCTGGAGGTCTT -ACGGAAATCTGCTCTGGAACGCTT -ACGGAAATCTGCTCTGGAAGCGTT -ACGGAAATCTGCTCTGGATTCGTC -ACGGAAATCTGCTCTGGATCTCTC -ACGGAAATCTGCTCTGGATGGATC -ACGGAAATCTGCTCTGGACACTTC -ACGGAAATCTGCTCTGGAGTACTC -ACGGAAATCTGCTCTGGAGATGTC -ACGGAAATCTGCTCTGGAACAGTC -ACGGAAATCTGCTCTGGATTGCTG -ACGGAAATCTGCTCTGGATCCATG -ACGGAAATCTGCTCTGGATGTGTG -ACGGAAATCTGCTCTGGACTAGTG -ACGGAAATCTGCTCTGGACATCTG -ACGGAAATCTGCTCTGGAGAGTTG -ACGGAAATCTGCTCTGGAAGACTG -ACGGAAATCTGCTCTGGATCGGTA -ACGGAAATCTGCTCTGGATGCCTA -ACGGAAATCTGCTCTGGACCACTA -ACGGAAATCTGCTCTGGAGGAGTA -ACGGAAATCTGCTCTGGATCGTCT -ACGGAAATCTGCTCTGGATGCACT -ACGGAAATCTGCTCTGGACTGACT -ACGGAAATCTGCTCTGGACAACCT -ACGGAAATCTGCTCTGGAGCTACT -ACGGAAATCTGCTCTGGAGGATCT -ACGGAAATCTGCTCTGGAAAGGCT -ACGGAAATCTGCTCTGGATCAACC -ACGGAAATCTGCTCTGGATGTTCC -ACGGAAATCTGCTCTGGAATTCCC -ACGGAAATCTGCTCTGGATTCTCG -ACGGAAATCTGCTCTGGATAGACG -ACGGAAATCTGCTCTGGAGTAACG -ACGGAAATCTGCTCTGGAACTTCG -ACGGAAATCTGCTCTGGATACGCA -ACGGAAATCTGCTCTGGACTTGCA -ACGGAAATCTGCTCTGGACGAACA -ACGGAAATCTGCTCTGGACAGTCA -ACGGAAATCTGCTCTGGAGATCCA -ACGGAAATCTGCTCTGGAACGACA -ACGGAAATCTGCTCTGGAAGCTCA -ACGGAAATCTGCTCTGGATCACGT -ACGGAAATCTGCTCTGGACGTAGT -ACGGAAATCTGCTCTGGAGTCAGT -ACGGAAATCTGCTCTGGAGAAGGT -ACGGAAATCTGCTCTGGAAACCGT -ACGGAAATCTGCTCTGGATTGTGC -ACGGAAATCTGCTCTGGACTAAGC -ACGGAAATCTGCTCTGGAACTAGC -ACGGAAATCTGCTCTGGAAGATGC -ACGGAAATCTGCTCTGGATGAAGG -ACGGAAATCTGCTCTGGACAATGG -ACGGAAATCTGCTCTGGAATGAGG -ACGGAAATCTGCTCTGGAAATGGG -ACGGAAATCTGCTCTGGATCCTGA -ACGGAAATCTGCTCTGGATAGCGA -ACGGAAATCTGCTCTGGACACAGA -ACGGAAATCTGCTCTGGAGCAAGA -ACGGAAATCTGCTCTGGAGGTTGA -ACGGAAATCTGCTCTGGATCCGAT -ACGGAAATCTGCTCTGGATGGCAT -ACGGAAATCTGCTCTGGACGAGAT -ACGGAAATCTGCTCTGGATACCAC -ACGGAAATCTGCTCTGGACAGAAC -ACGGAAATCTGCTCTGGAGTCTAC -ACGGAAATCTGCTCTGGAACGTAC -ACGGAAATCTGCTCTGGAAGTGAC -ACGGAAATCTGCTCTGGACTGTAG -ACGGAAATCTGCTCTGGACCTAAG -ACGGAAATCTGCTCTGGAGTTCAG -ACGGAAATCTGCTCTGGAGCATAG -ACGGAAATCTGCTCTGGAGACAAG -ACGGAAATCTGCTCTGGAAAGCAG -ACGGAAATCTGCTCTGGACGTCAA -ACGGAAATCTGCTCTGGAGCTGAA -ACGGAAATCTGCTCTGGAAGTACG -ACGGAAATCTGCTCTGGAATCCGA -ACGGAAATCTGCTCTGGAATGGGA -ACGGAAATCTGCTCTGGAGTGCAA -ACGGAAATCTGCTCTGGAGAGGAA -ACGGAAATCTGCTCTGGACAGGTA -ACGGAAATCTGCTCTGGAGACTCT -ACGGAAATCTGCTCTGGAAGTCCT -ACGGAAATCTGCTCTGGATAAGCC -ACGGAAATCTGCTCTGGAATAGCC -ACGGAAATCTGCTCTGGATAACCG -ACGGAAATCTGCTCTGGAATGCCA -ACGGAAATCTGCGCTAAGGGAAAC -ACGGAAATCTGCGCTAAGAACACC -ACGGAAATCTGCGCTAAGATCGAG -ACGGAAATCTGCGCTAAGCTCCTT -ACGGAAATCTGCGCTAAGCCTGTT -ACGGAAATCTGCGCTAAGCGGTTT -ACGGAAATCTGCGCTAAGGTGGTT -ACGGAAATCTGCGCTAAGGCCTTT -ACGGAAATCTGCGCTAAGGGTCTT -ACGGAAATCTGCGCTAAGACGCTT -ACGGAAATCTGCGCTAAGAGCGTT -ACGGAAATCTGCGCTAAGTTCGTC -ACGGAAATCTGCGCTAAGTCTCTC -ACGGAAATCTGCGCTAAGTGGATC -ACGGAAATCTGCGCTAAGCACTTC -ACGGAAATCTGCGCTAAGGTACTC -ACGGAAATCTGCGCTAAGGATGTC -ACGGAAATCTGCGCTAAGACAGTC -ACGGAAATCTGCGCTAAGTTGCTG -ACGGAAATCTGCGCTAAGTCCATG -ACGGAAATCTGCGCTAAGTGTGTG -ACGGAAATCTGCGCTAAGCTAGTG -ACGGAAATCTGCGCTAAGCATCTG -ACGGAAATCTGCGCTAAGGAGTTG -ACGGAAATCTGCGCTAAGAGACTG -ACGGAAATCTGCGCTAAGTCGGTA -ACGGAAATCTGCGCTAAGTGCCTA -ACGGAAATCTGCGCTAAGCCACTA -ACGGAAATCTGCGCTAAGGGAGTA -ACGGAAATCTGCGCTAAGTCGTCT -ACGGAAATCTGCGCTAAGTGCACT -ACGGAAATCTGCGCTAAGCTGACT -ACGGAAATCTGCGCTAAGCAACCT -ACGGAAATCTGCGCTAAGGCTACT -ACGGAAATCTGCGCTAAGGGATCT -ACGGAAATCTGCGCTAAGAAGGCT -ACGGAAATCTGCGCTAAGTCAACC -ACGGAAATCTGCGCTAAGTGTTCC -ACGGAAATCTGCGCTAAGATTCCC -ACGGAAATCTGCGCTAAGTTCTCG -ACGGAAATCTGCGCTAAGTAGACG -ACGGAAATCTGCGCTAAGGTAACG -ACGGAAATCTGCGCTAAGACTTCG -ACGGAAATCTGCGCTAAGTACGCA -ACGGAAATCTGCGCTAAGCTTGCA -ACGGAAATCTGCGCTAAGCGAACA -ACGGAAATCTGCGCTAAGCAGTCA -ACGGAAATCTGCGCTAAGGATCCA -ACGGAAATCTGCGCTAAGACGACA -ACGGAAATCTGCGCTAAGAGCTCA -ACGGAAATCTGCGCTAAGTCACGT -ACGGAAATCTGCGCTAAGCGTAGT -ACGGAAATCTGCGCTAAGGTCAGT -ACGGAAATCTGCGCTAAGGAAGGT -ACGGAAATCTGCGCTAAGAACCGT -ACGGAAATCTGCGCTAAGTTGTGC -ACGGAAATCTGCGCTAAGCTAAGC -ACGGAAATCTGCGCTAAGACTAGC -ACGGAAATCTGCGCTAAGAGATGC -ACGGAAATCTGCGCTAAGTGAAGG -ACGGAAATCTGCGCTAAGCAATGG -ACGGAAATCTGCGCTAAGATGAGG -ACGGAAATCTGCGCTAAGAATGGG -ACGGAAATCTGCGCTAAGTCCTGA -ACGGAAATCTGCGCTAAGTAGCGA -ACGGAAATCTGCGCTAAGCACAGA -ACGGAAATCTGCGCTAAGGCAAGA -ACGGAAATCTGCGCTAAGGGTTGA -ACGGAAATCTGCGCTAAGTCCGAT -ACGGAAATCTGCGCTAAGTGGCAT -ACGGAAATCTGCGCTAAGCGAGAT -ACGGAAATCTGCGCTAAGTACCAC -ACGGAAATCTGCGCTAAGCAGAAC -ACGGAAATCTGCGCTAAGGTCTAC -ACGGAAATCTGCGCTAAGACGTAC -ACGGAAATCTGCGCTAAGAGTGAC -ACGGAAATCTGCGCTAAGCTGTAG -ACGGAAATCTGCGCTAAGCCTAAG -ACGGAAATCTGCGCTAAGGTTCAG -ACGGAAATCTGCGCTAAGGCATAG -ACGGAAATCTGCGCTAAGGACAAG -ACGGAAATCTGCGCTAAGAAGCAG -ACGGAAATCTGCGCTAAGCGTCAA -ACGGAAATCTGCGCTAAGGCTGAA -ACGGAAATCTGCGCTAAGAGTACG -ACGGAAATCTGCGCTAAGATCCGA -ACGGAAATCTGCGCTAAGATGGGA -ACGGAAATCTGCGCTAAGGTGCAA -ACGGAAATCTGCGCTAAGGAGGAA -ACGGAAATCTGCGCTAAGCAGGTA -ACGGAAATCTGCGCTAAGGACTCT -ACGGAAATCTGCGCTAAGAGTCCT -ACGGAAATCTGCGCTAAGTAAGCC -ACGGAAATCTGCGCTAAGATAGCC -ACGGAAATCTGCGCTAAGTAACCG -ACGGAAATCTGCGCTAAGATGCCA -ACGGAAATCTGCACCTCAGGAAAC -ACGGAAATCTGCACCTCAAACACC -ACGGAAATCTGCACCTCAATCGAG -ACGGAAATCTGCACCTCACTCCTT -ACGGAAATCTGCACCTCACCTGTT -ACGGAAATCTGCACCTCACGGTTT -ACGGAAATCTGCACCTCAGTGGTT -ACGGAAATCTGCACCTCAGCCTTT -ACGGAAATCTGCACCTCAGGTCTT -ACGGAAATCTGCACCTCAACGCTT -ACGGAAATCTGCACCTCAAGCGTT -ACGGAAATCTGCACCTCATTCGTC -ACGGAAATCTGCACCTCATCTCTC -ACGGAAATCTGCACCTCATGGATC -ACGGAAATCTGCACCTCACACTTC -ACGGAAATCTGCACCTCAGTACTC -ACGGAAATCTGCACCTCAGATGTC -ACGGAAATCTGCACCTCAACAGTC -ACGGAAATCTGCACCTCATTGCTG -ACGGAAATCTGCACCTCATCCATG -ACGGAAATCTGCACCTCATGTGTG -ACGGAAATCTGCACCTCACTAGTG -ACGGAAATCTGCACCTCACATCTG -ACGGAAATCTGCACCTCAGAGTTG -ACGGAAATCTGCACCTCAAGACTG -ACGGAAATCTGCACCTCATCGGTA -ACGGAAATCTGCACCTCATGCCTA -ACGGAAATCTGCACCTCACCACTA -ACGGAAATCTGCACCTCAGGAGTA -ACGGAAATCTGCACCTCATCGTCT -ACGGAAATCTGCACCTCATGCACT -ACGGAAATCTGCACCTCACTGACT -ACGGAAATCTGCACCTCACAACCT -ACGGAAATCTGCACCTCAGCTACT -ACGGAAATCTGCACCTCAGGATCT -ACGGAAATCTGCACCTCAAAGGCT -ACGGAAATCTGCACCTCATCAACC -ACGGAAATCTGCACCTCATGTTCC -ACGGAAATCTGCACCTCAATTCCC -ACGGAAATCTGCACCTCATTCTCG -ACGGAAATCTGCACCTCATAGACG -ACGGAAATCTGCACCTCAGTAACG -ACGGAAATCTGCACCTCAACTTCG -ACGGAAATCTGCACCTCATACGCA -ACGGAAATCTGCACCTCACTTGCA -ACGGAAATCTGCACCTCACGAACA -ACGGAAATCTGCACCTCACAGTCA -ACGGAAATCTGCACCTCAGATCCA -ACGGAAATCTGCACCTCAACGACA -ACGGAAATCTGCACCTCAAGCTCA -ACGGAAATCTGCACCTCATCACGT -ACGGAAATCTGCACCTCACGTAGT -ACGGAAATCTGCACCTCAGTCAGT -ACGGAAATCTGCACCTCAGAAGGT -ACGGAAATCTGCACCTCAAACCGT -ACGGAAATCTGCACCTCATTGTGC -ACGGAAATCTGCACCTCACTAAGC -ACGGAAATCTGCACCTCAACTAGC -ACGGAAATCTGCACCTCAAGATGC -ACGGAAATCTGCACCTCATGAAGG -ACGGAAATCTGCACCTCACAATGG -ACGGAAATCTGCACCTCAATGAGG -ACGGAAATCTGCACCTCAAATGGG -ACGGAAATCTGCACCTCATCCTGA -ACGGAAATCTGCACCTCATAGCGA -ACGGAAATCTGCACCTCACACAGA -ACGGAAATCTGCACCTCAGCAAGA -ACGGAAATCTGCACCTCAGGTTGA -ACGGAAATCTGCACCTCATCCGAT -ACGGAAATCTGCACCTCATGGCAT -ACGGAAATCTGCACCTCACGAGAT -ACGGAAATCTGCACCTCATACCAC -ACGGAAATCTGCACCTCACAGAAC -ACGGAAATCTGCACCTCAGTCTAC -ACGGAAATCTGCACCTCAACGTAC -ACGGAAATCTGCACCTCAAGTGAC -ACGGAAATCTGCACCTCACTGTAG -ACGGAAATCTGCACCTCACCTAAG -ACGGAAATCTGCACCTCAGTTCAG -ACGGAAATCTGCACCTCAGCATAG -ACGGAAATCTGCACCTCAGACAAG -ACGGAAATCTGCACCTCAAAGCAG -ACGGAAATCTGCACCTCACGTCAA -ACGGAAATCTGCACCTCAGCTGAA -ACGGAAATCTGCACCTCAAGTACG -ACGGAAATCTGCACCTCAATCCGA -ACGGAAATCTGCACCTCAATGGGA -ACGGAAATCTGCACCTCAGTGCAA -ACGGAAATCTGCACCTCAGAGGAA -ACGGAAATCTGCACCTCACAGGTA -ACGGAAATCTGCACCTCAGACTCT -ACGGAAATCTGCACCTCAAGTCCT -ACGGAAATCTGCACCTCATAAGCC -ACGGAAATCTGCACCTCAATAGCC -ACGGAAATCTGCACCTCATAACCG -ACGGAAATCTGCACCTCAATGCCA -ACGGAAATCTGCTCCTGTGGAAAC -ACGGAAATCTGCTCCTGTAACACC -ACGGAAATCTGCTCCTGTATCGAG -ACGGAAATCTGCTCCTGTCTCCTT -ACGGAAATCTGCTCCTGTCCTGTT -ACGGAAATCTGCTCCTGTCGGTTT -ACGGAAATCTGCTCCTGTGTGGTT -ACGGAAATCTGCTCCTGTGCCTTT -ACGGAAATCTGCTCCTGTGGTCTT -ACGGAAATCTGCTCCTGTACGCTT -ACGGAAATCTGCTCCTGTAGCGTT -ACGGAAATCTGCTCCTGTTTCGTC -ACGGAAATCTGCTCCTGTTCTCTC -ACGGAAATCTGCTCCTGTTGGATC -ACGGAAATCTGCTCCTGTCACTTC -ACGGAAATCTGCTCCTGTGTACTC -ACGGAAATCTGCTCCTGTGATGTC -ACGGAAATCTGCTCCTGTACAGTC -ACGGAAATCTGCTCCTGTTTGCTG -ACGGAAATCTGCTCCTGTTCCATG -ACGGAAATCTGCTCCTGTTGTGTG -ACGGAAATCTGCTCCTGTCTAGTG -ACGGAAATCTGCTCCTGTCATCTG -ACGGAAATCTGCTCCTGTGAGTTG -ACGGAAATCTGCTCCTGTAGACTG -ACGGAAATCTGCTCCTGTTCGGTA -ACGGAAATCTGCTCCTGTTGCCTA -ACGGAAATCTGCTCCTGTCCACTA -ACGGAAATCTGCTCCTGTGGAGTA -ACGGAAATCTGCTCCTGTTCGTCT -ACGGAAATCTGCTCCTGTTGCACT -ACGGAAATCTGCTCCTGTCTGACT -ACGGAAATCTGCTCCTGTCAACCT -ACGGAAATCTGCTCCTGTGCTACT -ACGGAAATCTGCTCCTGTGGATCT -ACGGAAATCTGCTCCTGTAAGGCT -ACGGAAATCTGCTCCTGTTCAACC -ACGGAAATCTGCTCCTGTTGTTCC -ACGGAAATCTGCTCCTGTATTCCC -ACGGAAATCTGCTCCTGTTTCTCG -ACGGAAATCTGCTCCTGTTAGACG -ACGGAAATCTGCTCCTGTGTAACG -ACGGAAATCTGCTCCTGTACTTCG -ACGGAAATCTGCTCCTGTTACGCA -ACGGAAATCTGCTCCTGTCTTGCA -ACGGAAATCTGCTCCTGTCGAACA -ACGGAAATCTGCTCCTGTCAGTCA -ACGGAAATCTGCTCCTGTGATCCA -ACGGAAATCTGCTCCTGTACGACA -ACGGAAATCTGCTCCTGTAGCTCA -ACGGAAATCTGCTCCTGTTCACGT -ACGGAAATCTGCTCCTGTCGTAGT -ACGGAAATCTGCTCCTGTGTCAGT -ACGGAAATCTGCTCCTGTGAAGGT -ACGGAAATCTGCTCCTGTAACCGT -ACGGAAATCTGCTCCTGTTTGTGC -ACGGAAATCTGCTCCTGTCTAAGC -ACGGAAATCTGCTCCTGTACTAGC -ACGGAAATCTGCTCCTGTAGATGC -ACGGAAATCTGCTCCTGTTGAAGG -ACGGAAATCTGCTCCTGTCAATGG -ACGGAAATCTGCTCCTGTATGAGG -ACGGAAATCTGCTCCTGTAATGGG -ACGGAAATCTGCTCCTGTTCCTGA -ACGGAAATCTGCTCCTGTTAGCGA -ACGGAAATCTGCTCCTGTCACAGA -ACGGAAATCTGCTCCTGTGCAAGA -ACGGAAATCTGCTCCTGTGGTTGA -ACGGAAATCTGCTCCTGTTCCGAT -ACGGAAATCTGCTCCTGTTGGCAT -ACGGAAATCTGCTCCTGTCGAGAT -ACGGAAATCTGCTCCTGTTACCAC -ACGGAAATCTGCTCCTGTCAGAAC -ACGGAAATCTGCTCCTGTGTCTAC -ACGGAAATCTGCTCCTGTACGTAC -ACGGAAATCTGCTCCTGTAGTGAC -ACGGAAATCTGCTCCTGTCTGTAG -ACGGAAATCTGCTCCTGTCCTAAG -ACGGAAATCTGCTCCTGTGTTCAG -ACGGAAATCTGCTCCTGTGCATAG -ACGGAAATCTGCTCCTGTGACAAG -ACGGAAATCTGCTCCTGTAAGCAG -ACGGAAATCTGCTCCTGTCGTCAA -ACGGAAATCTGCTCCTGTGCTGAA -ACGGAAATCTGCTCCTGTAGTACG -ACGGAAATCTGCTCCTGTATCCGA -ACGGAAATCTGCTCCTGTATGGGA -ACGGAAATCTGCTCCTGTGTGCAA -ACGGAAATCTGCTCCTGTGAGGAA -ACGGAAATCTGCTCCTGTCAGGTA -ACGGAAATCTGCTCCTGTGACTCT -ACGGAAATCTGCTCCTGTAGTCCT -ACGGAAATCTGCTCCTGTTAAGCC -ACGGAAATCTGCTCCTGTATAGCC -ACGGAAATCTGCTCCTGTTAACCG -ACGGAAATCTGCTCCTGTATGCCA -ACGGAAATCTGCCCCATTGGAAAC -ACGGAAATCTGCCCCATTAACACC -ACGGAAATCTGCCCCATTATCGAG -ACGGAAATCTGCCCCATTCTCCTT -ACGGAAATCTGCCCCATTCCTGTT -ACGGAAATCTGCCCCATTCGGTTT -ACGGAAATCTGCCCCATTGTGGTT -ACGGAAATCTGCCCCATTGCCTTT -ACGGAAATCTGCCCCATTGGTCTT -ACGGAAATCTGCCCCATTACGCTT -ACGGAAATCTGCCCCATTAGCGTT -ACGGAAATCTGCCCCATTTTCGTC -ACGGAAATCTGCCCCATTTCTCTC -ACGGAAATCTGCCCCATTTGGATC -ACGGAAATCTGCCCCATTCACTTC -ACGGAAATCTGCCCCATTGTACTC -ACGGAAATCTGCCCCATTGATGTC -ACGGAAATCTGCCCCATTACAGTC -ACGGAAATCTGCCCCATTTTGCTG -ACGGAAATCTGCCCCATTTCCATG -ACGGAAATCTGCCCCATTTGTGTG -ACGGAAATCTGCCCCATTCTAGTG -ACGGAAATCTGCCCCATTCATCTG -ACGGAAATCTGCCCCATTGAGTTG -ACGGAAATCTGCCCCATTAGACTG -ACGGAAATCTGCCCCATTTCGGTA -ACGGAAATCTGCCCCATTTGCCTA -ACGGAAATCTGCCCCATTCCACTA -ACGGAAATCTGCCCCATTGGAGTA -ACGGAAATCTGCCCCATTTCGTCT -ACGGAAATCTGCCCCATTTGCACT -ACGGAAATCTGCCCCATTCTGACT -ACGGAAATCTGCCCCATTCAACCT -ACGGAAATCTGCCCCATTGCTACT -ACGGAAATCTGCCCCATTGGATCT -ACGGAAATCTGCCCCATTAAGGCT -ACGGAAATCTGCCCCATTTCAACC -ACGGAAATCTGCCCCATTTGTTCC -ACGGAAATCTGCCCCATTATTCCC -ACGGAAATCTGCCCCATTTTCTCG -ACGGAAATCTGCCCCATTTAGACG -ACGGAAATCTGCCCCATTGTAACG -ACGGAAATCTGCCCCATTACTTCG -ACGGAAATCTGCCCCATTTACGCA -ACGGAAATCTGCCCCATTCTTGCA -ACGGAAATCTGCCCCATTCGAACA -ACGGAAATCTGCCCCATTCAGTCA -ACGGAAATCTGCCCCATTGATCCA -ACGGAAATCTGCCCCATTACGACA -ACGGAAATCTGCCCCATTAGCTCA -ACGGAAATCTGCCCCATTTCACGT -ACGGAAATCTGCCCCATTCGTAGT -ACGGAAATCTGCCCCATTGTCAGT -ACGGAAATCTGCCCCATTGAAGGT -ACGGAAATCTGCCCCATTAACCGT -ACGGAAATCTGCCCCATTTTGTGC -ACGGAAATCTGCCCCATTCTAAGC -ACGGAAATCTGCCCCATTACTAGC -ACGGAAATCTGCCCCATTAGATGC -ACGGAAATCTGCCCCATTTGAAGG -ACGGAAATCTGCCCCATTCAATGG -ACGGAAATCTGCCCCATTATGAGG -ACGGAAATCTGCCCCATTAATGGG -ACGGAAATCTGCCCCATTTCCTGA -ACGGAAATCTGCCCCATTTAGCGA -ACGGAAATCTGCCCCATTCACAGA -ACGGAAATCTGCCCCATTGCAAGA -ACGGAAATCTGCCCCATTGGTTGA -ACGGAAATCTGCCCCATTTCCGAT -ACGGAAATCTGCCCCATTTGGCAT -ACGGAAATCTGCCCCATTCGAGAT -ACGGAAATCTGCCCCATTTACCAC -ACGGAAATCTGCCCCATTCAGAAC -ACGGAAATCTGCCCCATTGTCTAC -ACGGAAATCTGCCCCATTACGTAC -ACGGAAATCTGCCCCATTAGTGAC -ACGGAAATCTGCCCCATTCTGTAG -ACGGAAATCTGCCCCATTCCTAAG -ACGGAAATCTGCCCCATTGTTCAG -ACGGAAATCTGCCCCATTGCATAG -ACGGAAATCTGCCCCATTGACAAG -ACGGAAATCTGCCCCATTAAGCAG -ACGGAAATCTGCCCCATTCGTCAA -ACGGAAATCTGCCCCATTGCTGAA -ACGGAAATCTGCCCCATTAGTACG -ACGGAAATCTGCCCCATTATCCGA -ACGGAAATCTGCCCCATTATGGGA -ACGGAAATCTGCCCCATTGTGCAA -ACGGAAATCTGCCCCATTGAGGAA -ACGGAAATCTGCCCCATTCAGGTA -ACGGAAATCTGCCCCATTGACTCT -ACGGAAATCTGCCCCATTAGTCCT -ACGGAAATCTGCCCCATTTAAGCC -ACGGAAATCTGCCCCATTATAGCC -ACGGAAATCTGCCCCATTTAACCG -ACGGAAATCTGCCCCATTATGCCA -ACGGAAATCTGCTCGTTCGGAAAC -ACGGAAATCTGCTCGTTCAACACC -ACGGAAATCTGCTCGTTCATCGAG -ACGGAAATCTGCTCGTTCCTCCTT -ACGGAAATCTGCTCGTTCCCTGTT -ACGGAAATCTGCTCGTTCCGGTTT -ACGGAAATCTGCTCGTTCGTGGTT -ACGGAAATCTGCTCGTTCGCCTTT -ACGGAAATCTGCTCGTTCGGTCTT -ACGGAAATCTGCTCGTTCACGCTT -ACGGAAATCTGCTCGTTCAGCGTT -ACGGAAATCTGCTCGTTCTTCGTC -ACGGAAATCTGCTCGTTCTCTCTC -ACGGAAATCTGCTCGTTCTGGATC -ACGGAAATCTGCTCGTTCCACTTC -ACGGAAATCTGCTCGTTCGTACTC -ACGGAAATCTGCTCGTTCGATGTC -ACGGAAATCTGCTCGTTCACAGTC -ACGGAAATCTGCTCGTTCTTGCTG -ACGGAAATCTGCTCGTTCTCCATG -ACGGAAATCTGCTCGTTCTGTGTG -ACGGAAATCTGCTCGTTCCTAGTG -ACGGAAATCTGCTCGTTCCATCTG -ACGGAAATCTGCTCGTTCGAGTTG -ACGGAAATCTGCTCGTTCAGACTG -ACGGAAATCTGCTCGTTCTCGGTA -ACGGAAATCTGCTCGTTCTGCCTA -ACGGAAATCTGCTCGTTCCCACTA -ACGGAAATCTGCTCGTTCGGAGTA -ACGGAAATCTGCTCGTTCTCGTCT -ACGGAAATCTGCTCGTTCTGCACT -ACGGAAATCTGCTCGTTCCTGACT -ACGGAAATCTGCTCGTTCCAACCT -ACGGAAATCTGCTCGTTCGCTACT -ACGGAAATCTGCTCGTTCGGATCT -ACGGAAATCTGCTCGTTCAAGGCT -ACGGAAATCTGCTCGTTCTCAACC -ACGGAAATCTGCTCGTTCTGTTCC -ACGGAAATCTGCTCGTTCATTCCC -ACGGAAATCTGCTCGTTCTTCTCG -ACGGAAATCTGCTCGTTCTAGACG -ACGGAAATCTGCTCGTTCGTAACG -ACGGAAATCTGCTCGTTCACTTCG -ACGGAAATCTGCTCGTTCTACGCA -ACGGAAATCTGCTCGTTCCTTGCA -ACGGAAATCTGCTCGTTCCGAACA -ACGGAAATCTGCTCGTTCCAGTCA -ACGGAAATCTGCTCGTTCGATCCA -ACGGAAATCTGCTCGTTCACGACA -ACGGAAATCTGCTCGTTCAGCTCA -ACGGAAATCTGCTCGTTCTCACGT -ACGGAAATCTGCTCGTTCCGTAGT -ACGGAAATCTGCTCGTTCGTCAGT -ACGGAAATCTGCTCGTTCGAAGGT -ACGGAAATCTGCTCGTTCAACCGT -ACGGAAATCTGCTCGTTCTTGTGC -ACGGAAATCTGCTCGTTCCTAAGC -ACGGAAATCTGCTCGTTCACTAGC -ACGGAAATCTGCTCGTTCAGATGC -ACGGAAATCTGCTCGTTCTGAAGG -ACGGAAATCTGCTCGTTCCAATGG -ACGGAAATCTGCTCGTTCATGAGG -ACGGAAATCTGCTCGTTCAATGGG -ACGGAAATCTGCTCGTTCTCCTGA -ACGGAAATCTGCTCGTTCTAGCGA -ACGGAAATCTGCTCGTTCCACAGA -ACGGAAATCTGCTCGTTCGCAAGA -ACGGAAATCTGCTCGTTCGGTTGA -ACGGAAATCTGCTCGTTCTCCGAT -ACGGAAATCTGCTCGTTCTGGCAT -ACGGAAATCTGCTCGTTCCGAGAT -ACGGAAATCTGCTCGTTCTACCAC -ACGGAAATCTGCTCGTTCCAGAAC -ACGGAAATCTGCTCGTTCGTCTAC -ACGGAAATCTGCTCGTTCACGTAC -ACGGAAATCTGCTCGTTCAGTGAC -ACGGAAATCTGCTCGTTCCTGTAG -ACGGAAATCTGCTCGTTCCCTAAG -ACGGAAATCTGCTCGTTCGTTCAG -ACGGAAATCTGCTCGTTCGCATAG -ACGGAAATCTGCTCGTTCGACAAG -ACGGAAATCTGCTCGTTCAAGCAG -ACGGAAATCTGCTCGTTCCGTCAA -ACGGAAATCTGCTCGTTCGCTGAA -ACGGAAATCTGCTCGTTCAGTACG -ACGGAAATCTGCTCGTTCATCCGA -ACGGAAATCTGCTCGTTCATGGGA -ACGGAAATCTGCTCGTTCGTGCAA -ACGGAAATCTGCTCGTTCGAGGAA -ACGGAAATCTGCTCGTTCCAGGTA -ACGGAAATCTGCTCGTTCGACTCT -ACGGAAATCTGCTCGTTCAGTCCT -ACGGAAATCTGCTCGTTCTAAGCC -ACGGAAATCTGCTCGTTCATAGCC -ACGGAAATCTGCTCGTTCTAACCG -ACGGAAATCTGCTCGTTCATGCCA -ACGGAAATCTGCACGTAGGGAAAC -ACGGAAATCTGCACGTAGAACACC -ACGGAAATCTGCACGTAGATCGAG -ACGGAAATCTGCACGTAGCTCCTT -ACGGAAATCTGCACGTAGCCTGTT -ACGGAAATCTGCACGTAGCGGTTT -ACGGAAATCTGCACGTAGGTGGTT -ACGGAAATCTGCACGTAGGCCTTT -ACGGAAATCTGCACGTAGGGTCTT -ACGGAAATCTGCACGTAGACGCTT -ACGGAAATCTGCACGTAGAGCGTT -ACGGAAATCTGCACGTAGTTCGTC -ACGGAAATCTGCACGTAGTCTCTC -ACGGAAATCTGCACGTAGTGGATC -ACGGAAATCTGCACGTAGCACTTC -ACGGAAATCTGCACGTAGGTACTC -ACGGAAATCTGCACGTAGGATGTC -ACGGAAATCTGCACGTAGACAGTC -ACGGAAATCTGCACGTAGTTGCTG -ACGGAAATCTGCACGTAGTCCATG -ACGGAAATCTGCACGTAGTGTGTG -ACGGAAATCTGCACGTAGCTAGTG -ACGGAAATCTGCACGTAGCATCTG -ACGGAAATCTGCACGTAGGAGTTG -ACGGAAATCTGCACGTAGAGACTG -ACGGAAATCTGCACGTAGTCGGTA -ACGGAAATCTGCACGTAGTGCCTA -ACGGAAATCTGCACGTAGCCACTA -ACGGAAATCTGCACGTAGGGAGTA -ACGGAAATCTGCACGTAGTCGTCT -ACGGAAATCTGCACGTAGTGCACT -ACGGAAATCTGCACGTAGCTGACT -ACGGAAATCTGCACGTAGCAACCT -ACGGAAATCTGCACGTAGGCTACT -ACGGAAATCTGCACGTAGGGATCT -ACGGAAATCTGCACGTAGAAGGCT -ACGGAAATCTGCACGTAGTCAACC -ACGGAAATCTGCACGTAGTGTTCC -ACGGAAATCTGCACGTAGATTCCC -ACGGAAATCTGCACGTAGTTCTCG -ACGGAAATCTGCACGTAGTAGACG -ACGGAAATCTGCACGTAGGTAACG -ACGGAAATCTGCACGTAGACTTCG -ACGGAAATCTGCACGTAGTACGCA -ACGGAAATCTGCACGTAGCTTGCA -ACGGAAATCTGCACGTAGCGAACA -ACGGAAATCTGCACGTAGCAGTCA -ACGGAAATCTGCACGTAGGATCCA -ACGGAAATCTGCACGTAGACGACA -ACGGAAATCTGCACGTAGAGCTCA -ACGGAAATCTGCACGTAGTCACGT -ACGGAAATCTGCACGTAGCGTAGT -ACGGAAATCTGCACGTAGGTCAGT -ACGGAAATCTGCACGTAGGAAGGT -ACGGAAATCTGCACGTAGAACCGT -ACGGAAATCTGCACGTAGTTGTGC -ACGGAAATCTGCACGTAGCTAAGC -ACGGAAATCTGCACGTAGACTAGC -ACGGAAATCTGCACGTAGAGATGC -ACGGAAATCTGCACGTAGTGAAGG -ACGGAAATCTGCACGTAGCAATGG -ACGGAAATCTGCACGTAGATGAGG -ACGGAAATCTGCACGTAGAATGGG -ACGGAAATCTGCACGTAGTCCTGA -ACGGAAATCTGCACGTAGTAGCGA -ACGGAAATCTGCACGTAGCACAGA -ACGGAAATCTGCACGTAGGCAAGA -ACGGAAATCTGCACGTAGGGTTGA -ACGGAAATCTGCACGTAGTCCGAT -ACGGAAATCTGCACGTAGTGGCAT -ACGGAAATCTGCACGTAGCGAGAT -ACGGAAATCTGCACGTAGTACCAC -ACGGAAATCTGCACGTAGCAGAAC -ACGGAAATCTGCACGTAGGTCTAC -ACGGAAATCTGCACGTAGACGTAC -ACGGAAATCTGCACGTAGAGTGAC -ACGGAAATCTGCACGTAGCTGTAG -ACGGAAATCTGCACGTAGCCTAAG -ACGGAAATCTGCACGTAGGTTCAG -ACGGAAATCTGCACGTAGGCATAG -ACGGAAATCTGCACGTAGGACAAG -ACGGAAATCTGCACGTAGAAGCAG -ACGGAAATCTGCACGTAGCGTCAA -ACGGAAATCTGCACGTAGGCTGAA -ACGGAAATCTGCACGTAGAGTACG -ACGGAAATCTGCACGTAGATCCGA -ACGGAAATCTGCACGTAGATGGGA -ACGGAAATCTGCACGTAGGTGCAA -ACGGAAATCTGCACGTAGGAGGAA -ACGGAAATCTGCACGTAGCAGGTA -ACGGAAATCTGCACGTAGGACTCT -ACGGAAATCTGCACGTAGAGTCCT -ACGGAAATCTGCACGTAGTAAGCC -ACGGAAATCTGCACGTAGATAGCC -ACGGAAATCTGCACGTAGTAACCG -ACGGAAATCTGCACGTAGATGCCA -ACGGAAATCTGCACGGTAGGAAAC -ACGGAAATCTGCACGGTAAACACC -ACGGAAATCTGCACGGTAATCGAG -ACGGAAATCTGCACGGTACTCCTT -ACGGAAATCTGCACGGTACCTGTT -ACGGAAATCTGCACGGTACGGTTT -ACGGAAATCTGCACGGTAGTGGTT -ACGGAAATCTGCACGGTAGCCTTT -ACGGAAATCTGCACGGTAGGTCTT -ACGGAAATCTGCACGGTAACGCTT -ACGGAAATCTGCACGGTAAGCGTT -ACGGAAATCTGCACGGTATTCGTC -ACGGAAATCTGCACGGTATCTCTC -ACGGAAATCTGCACGGTATGGATC -ACGGAAATCTGCACGGTACACTTC -ACGGAAATCTGCACGGTAGTACTC -ACGGAAATCTGCACGGTAGATGTC -ACGGAAATCTGCACGGTAACAGTC -ACGGAAATCTGCACGGTATTGCTG -ACGGAAATCTGCACGGTATCCATG -ACGGAAATCTGCACGGTATGTGTG -ACGGAAATCTGCACGGTACTAGTG -ACGGAAATCTGCACGGTACATCTG -ACGGAAATCTGCACGGTAGAGTTG -ACGGAAATCTGCACGGTAAGACTG -ACGGAAATCTGCACGGTATCGGTA -ACGGAAATCTGCACGGTATGCCTA -ACGGAAATCTGCACGGTACCACTA -ACGGAAATCTGCACGGTAGGAGTA -ACGGAAATCTGCACGGTATCGTCT -ACGGAAATCTGCACGGTATGCACT -ACGGAAATCTGCACGGTACTGACT -ACGGAAATCTGCACGGTACAACCT -ACGGAAATCTGCACGGTAGCTACT -ACGGAAATCTGCACGGTAGGATCT -ACGGAAATCTGCACGGTAAAGGCT -ACGGAAATCTGCACGGTATCAACC -ACGGAAATCTGCACGGTATGTTCC -ACGGAAATCTGCACGGTAATTCCC -ACGGAAATCTGCACGGTATTCTCG -ACGGAAATCTGCACGGTATAGACG -ACGGAAATCTGCACGGTAGTAACG -ACGGAAATCTGCACGGTAACTTCG -ACGGAAATCTGCACGGTATACGCA -ACGGAAATCTGCACGGTACTTGCA -ACGGAAATCTGCACGGTACGAACA -ACGGAAATCTGCACGGTACAGTCA -ACGGAAATCTGCACGGTAGATCCA -ACGGAAATCTGCACGGTAACGACA -ACGGAAATCTGCACGGTAAGCTCA -ACGGAAATCTGCACGGTATCACGT -ACGGAAATCTGCACGGTACGTAGT -ACGGAAATCTGCACGGTAGTCAGT -ACGGAAATCTGCACGGTAGAAGGT -ACGGAAATCTGCACGGTAAACCGT -ACGGAAATCTGCACGGTATTGTGC -ACGGAAATCTGCACGGTACTAAGC -ACGGAAATCTGCACGGTAACTAGC -ACGGAAATCTGCACGGTAAGATGC -ACGGAAATCTGCACGGTATGAAGG -ACGGAAATCTGCACGGTACAATGG -ACGGAAATCTGCACGGTAATGAGG -ACGGAAATCTGCACGGTAAATGGG -ACGGAAATCTGCACGGTATCCTGA -ACGGAAATCTGCACGGTATAGCGA -ACGGAAATCTGCACGGTACACAGA -ACGGAAATCTGCACGGTAGCAAGA -ACGGAAATCTGCACGGTAGGTTGA -ACGGAAATCTGCACGGTATCCGAT -ACGGAAATCTGCACGGTATGGCAT -ACGGAAATCTGCACGGTACGAGAT -ACGGAAATCTGCACGGTATACCAC -ACGGAAATCTGCACGGTACAGAAC -ACGGAAATCTGCACGGTAGTCTAC -ACGGAAATCTGCACGGTAACGTAC -ACGGAAATCTGCACGGTAAGTGAC -ACGGAAATCTGCACGGTACTGTAG -ACGGAAATCTGCACGGTACCTAAG -ACGGAAATCTGCACGGTAGTTCAG -ACGGAAATCTGCACGGTAGCATAG -ACGGAAATCTGCACGGTAGACAAG -ACGGAAATCTGCACGGTAAAGCAG -ACGGAAATCTGCACGGTACGTCAA -ACGGAAATCTGCACGGTAGCTGAA -ACGGAAATCTGCACGGTAAGTACG -ACGGAAATCTGCACGGTAATCCGA -ACGGAAATCTGCACGGTAATGGGA -ACGGAAATCTGCACGGTAGTGCAA -ACGGAAATCTGCACGGTAGAGGAA -ACGGAAATCTGCACGGTACAGGTA -ACGGAAATCTGCACGGTAGACTCT -ACGGAAATCTGCACGGTAAGTCCT -ACGGAAATCTGCACGGTATAAGCC -ACGGAAATCTGCACGGTAATAGCC -ACGGAAATCTGCACGGTATAACCG -ACGGAAATCTGCACGGTAATGCCA -ACGGAAATCTGCTCGACTGGAAAC -ACGGAAATCTGCTCGACTAACACC -ACGGAAATCTGCTCGACTATCGAG -ACGGAAATCTGCTCGACTCTCCTT -ACGGAAATCTGCTCGACTCCTGTT -ACGGAAATCTGCTCGACTCGGTTT -ACGGAAATCTGCTCGACTGTGGTT -ACGGAAATCTGCTCGACTGCCTTT -ACGGAAATCTGCTCGACTGGTCTT -ACGGAAATCTGCTCGACTACGCTT -ACGGAAATCTGCTCGACTAGCGTT -ACGGAAATCTGCTCGACTTTCGTC -ACGGAAATCTGCTCGACTTCTCTC -ACGGAAATCTGCTCGACTTGGATC -ACGGAAATCTGCTCGACTCACTTC -ACGGAAATCTGCTCGACTGTACTC -ACGGAAATCTGCTCGACTGATGTC -ACGGAAATCTGCTCGACTACAGTC -ACGGAAATCTGCTCGACTTTGCTG -ACGGAAATCTGCTCGACTTCCATG -ACGGAAATCTGCTCGACTTGTGTG -ACGGAAATCTGCTCGACTCTAGTG -ACGGAAATCTGCTCGACTCATCTG -ACGGAAATCTGCTCGACTGAGTTG -ACGGAAATCTGCTCGACTAGACTG -ACGGAAATCTGCTCGACTTCGGTA -ACGGAAATCTGCTCGACTTGCCTA -ACGGAAATCTGCTCGACTCCACTA -ACGGAAATCTGCTCGACTGGAGTA -ACGGAAATCTGCTCGACTTCGTCT -ACGGAAATCTGCTCGACTTGCACT -ACGGAAATCTGCTCGACTCTGACT -ACGGAAATCTGCTCGACTCAACCT -ACGGAAATCTGCTCGACTGCTACT -ACGGAAATCTGCTCGACTGGATCT -ACGGAAATCTGCTCGACTAAGGCT -ACGGAAATCTGCTCGACTTCAACC -ACGGAAATCTGCTCGACTTGTTCC -ACGGAAATCTGCTCGACTATTCCC -ACGGAAATCTGCTCGACTTTCTCG -ACGGAAATCTGCTCGACTTAGACG -ACGGAAATCTGCTCGACTGTAACG -ACGGAAATCTGCTCGACTACTTCG -ACGGAAATCTGCTCGACTTACGCA -ACGGAAATCTGCTCGACTCTTGCA -ACGGAAATCTGCTCGACTCGAACA -ACGGAAATCTGCTCGACTCAGTCA -ACGGAAATCTGCTCGACTGATCCA -ACGGAAATCTGCTCGACTACGACA -ACGGAAATCTGCTCGACTAGCTCA -ACGGAAATCTGCTCGACTTCACGT -ACGGAAATCTGCTCGACTCGTAGT -ACGGAAATCTGCTCGACTGTCAGT -ACGGAAATCTGCTCGACTGAAGGT -ACGGAAATCTGCTCGACTAACCGT -ACGGAAATCTGCTCGACTTTGTGC -ACGGAAATCTGCTCGACTCTAAGC -ACGGAAATCTGCTCGACTACTAGC -ACGGAAATCTGCTCGACTAGATGC -ACGGAAATCTGCTCGACTTGAAGG -ACGGAAATCTGCTCGACTCAATGG -ACGGAAATCTGCTCGACTATGAGG -ACGGAAATCTGCTCGACTAATGGG -ACGGAAATCTGCTCGACTTCCTGA -ACGGAAATCTGCTCGACTTAGCGA -ACGGAAATCTGCTCGACTCACAGA -ACGGAAATCTGCTCGACTGCAAGA -ACGGAAATCTGCTCGACTGGTTGA -ACGGAAATCTGCTCGACTTCCGAT -ACGGAAATCTGCTCGACTTGGCAT -ACGGAAATCTGCTCGACTCGAGAT -ACGGAAATCTGCTCGACTTACCAC -ACGGAAATCTGCTCGACTCAGAAC -ACGGAAATCTGCTCGACTGTCTAC -ACGGAAATCTGCTCGACTACGTAC -ACGGAAATCTGCTCGACTAGTGAC -ACGGAAATCTGCTCGACTCTGTAG -ACGGAAATCTGCTCGACTCCTAAG -ACGGAAATCTGCTCGACTGTTCAG -ACGGAAATCTGCTCGACTGCATAG -ACGGAAATCTGCTCGACTGACAAG -ACGGAAATCTGCTCGACTAAGCAG -ACGGAAATCTGCTCGACTCGTCAA -ACGGAAATCTGCTCGACTGCTGAA -ACGGAAATCTGCTCGACTAGTACG -ACGGAAATCTGCTCGACTATCCGA -ACGGAAATCTGCTCGACTATGGGA -ACGGAAATCTGCTCGACTGTGCAA -ACGGAAATCTGCTCGACTGAGGAA -ACGGAAATCTGCTCGACTCAGGTA -ACGGAAATCTGCTCGACTGACTCT -ACGGAAATCTGCTCGACTAGTCCT -ACGGAAATCTGCTCGACTTAAGCC -ACGGAAATCTGCTCGACTATAGCC -ACGGAAATCTGCTCGACTTAACCG -ACGGAAATCTGCTCGACTATGCCA -ACGGAAATCTGCGCATACGGAAAC -ACGGAAATCTGCGCATACAACACC -ACGGAAATCTGCGCATACATCGAG -ACGGAAATCTGCGCATACCTCCTT -ACGGAAATCTGCGCATACCCTGTT -ACGGAAATCTGCGCATACCGGTTT -ACGGAAATCTGCGCATACGTGGTT -ACGGAAATCTGCGCATACGCCTTT -ACGGAAATCTGCGCATACGGTCTT -ACGGAAATCTGCGCATACACGCTT -ACGGAAATCTGCGCATACAGCGTT -ACGGAAATCTGCGCATACTTCGTC -ACGGAAATCTGCGCATACTCTCTC -ACGGAAATCTGCGCATACTGGATC -ACGGAAATCTGCGCATACCACTTC -ACGGAAATCTGCGCATACGTACTC -ACGGAAATCTGCGCATACGATGTC -ACGGAAATCTGCGCATACACAGTC -ACGGAAATCTGCGCATACTTGCTG -ACGGAAATCTGCGCATACTCCATG -ACGGAAATCTGCGCATACTGTGTG -ACGGAAATCTGCGCATACCTAGTG -ACGGAAATCTGCGCATACCATCTG -ACGGAAATCTGCGCATACGAGTTG -ACGGAAATCTGCGCATACAGACTG -ACGGAAATCTGCGCATACTCGGTA -ACGGAAATCTGCGCATACTGCCTA -ACGGAAATCTGCGCATACCCACTA -ACGGAAATCTGCGCATACGGAGTA -ACGGAAATCTGCGCATACTCGTCT -ACGGAAATCTGCGCATACTGCACT -ACGGAAATCTGCGCATACCTGACT -ACGGAAATCTGCGCATACCAACCT -ACGGAAATCTGCGCATACGCTACT -ACGGAAATCTGCGCATACGGATCT -ACGGAAATCTGCGCATACAAGGCT -ACGGAAATCTGCGCATACTCAACC -ACGGAAATCTGCGCATACTGTTCC -ACGGAAATCTGCGCATACATTCCC -ACGGAAATCTGCGCATACTTCTCG -ACGGAAATCTGCGCATACTAGACG -ACGGAAATCTGCGCATACGTAACG -ACGGAAATCTGCGCATACACTTCG -ACGGAAATCTGCGCATACTACGCA -ACGGAAATCTGCGCATACCTTGCA -ACGGAAATCTGCGCATACCGAACA -ACGGAAATCTGCGCATACCAGTCA -ACGGAAATCTGCGCATACGATCCA -ACGGAAATCTGCGCATACACGACA -ACGGAAATCTGCGCATACAGCTCA -ACGGAAATCTGCGCATACTCACGT -ACGGAAATCTGCGCATACCGTAGT -ACGGAAATCTGCGCATACGTCAGT -ACGGAAATCTGCGCATACGAAGGT -ACGGAAATCTGCGCATACAACCGT -ACGGAAATCTGCGCATACTTGTGC -ACGGAAATCTGCGCATACCTAAGC -ACGGAAATCTGCGCATACACTAGC -ACGGAAATCTGCGCATACAGATGC -ACGGAAATCTGCGCATACTGAAGG -ACGGAAATCTGCGCATACCAATGG -ACGGAAATCTGCGCATACATGAGG -ACGGAAATCTGCGCATACAATGGG -ACGGAAATCTGCGCATACTCCTGA -ACGGAAATCTGCGCATACTAGCGA -ACGGAAATCTGCGCATACCACAGA -ACGGAAATCTGCGCATACGCAAGA -ACGGAAATCTGCGCATACGGTTGA -ACGGAAATCTGCGCATACTCCGAT -ACGGAAATCTGCGCATACTGGCAT -ACGGAAATCTGCGCATACCGAGAT -ACGGAAATCTGCGCATACTACCAC -ACGGAAATCTGCGCATACCAGAAC -ACGGAAATCTGCGCATACGTCTAC -ACGGAAATCTGCGCATACACGTAC -ACGGAAATCTGCGCATACAGTGAC -ACGGAAATCTGCGCATACCTGTAG -ACGGAAATCTGCGCATACCCTAAG -ACGGAAATCTGCGCATACGTTCAG -ACGGAAATCTGCGCATACGCATAG -ACGGAAATCTGCGCATACGACAAG -ACGGAAATCTGCGCATACAAGCAG -ACGGAAATCTGCGCATACCGTCAA -ACGGAAATCTGCGCATACGCTGAA -ACGGAAATCTGCGCATACAGTACG -ACGGAAATCTGCGCATACATCCGA -ACGGAAATCTGCGCATACATGGGA -ACGGAAATCTGCGCATACGTGCAA -ACGGAAATCTGCGCATACGAGGAA -ACGGAAATCTGCGCATACCAGGTA -ACGGAAATCTGCGCATACGACTCT -ACGGAAATCTGCGCATACAGTCCT -ACGGAAATCTGCGCATACTAAGCC -ACGGAAATCTGCGCATACATAGCC -ACGGAAATCTGCGCATACTAACCG -ACGGAAATCTGCGCATACATGCCA -ACGGAAATCTGCGCACTTGGAAAC -ACGGAAATCTGCGCACTTAACACC -ACGGAAATCTGCGCACTTATCGAG -ACGGAAATCTGCGCACTTCTCCTT -ACGGAAATCTGCGCACTTCCTGTT -ACGGAAATCTGCGCACTTCGGTTT -ACGGAAATCTGCGCACTTGTGGTT -ACGGAAATCTGCGCACTTGCCTTT -ACGGAAATCTGCGCACTTGGTCTT -ACGGAAATCTGCGCACTTACGCTT -ACGGAAATCTGCGCACTTAGCGTT -ACGGAAATCTGCGCACTTTTCGTC -ACGGAAATCTGCGCACTTTCTCTC -ACGGAAATCTGCGCACTTTGGATC -ACGGAAATCTGCGCACTTCACTTC -ACGGAAATCTGCGCACTTGTACTC -ACGGAAATCTGCGCACTTGATGTC -ACGGAAATCTGCGCACTTACAGTC -ACGGAAATCTGCGCACTTTTGCTG -ACGGAAATCTGCGCACTTTCCATG -ACGGAAATCTGCGCACTTTGTGTG -ACGGAAATCTGCGCACTTCTAGTG -ACGGAAATCTGCGCACTTCATCTG -ACGGAAATCTGCGCACTTGAGTTG -ACGGAAATCTGCGCACTTAGACTG -ACGGAAATCTGCGCACTTTCGGTA -ACGGAAATCTGCGCACTTTGCCTA -ACGGAAATCTGCGCACTTCCACTA -ACGGAAATCTGCGCACTTGGAGTA -ACGGAAATCTGCGCACTTTCGTCT -ACGGAAATCTGCGCACTTTGCACT -ACGGAAATCTGCGCACTTCTGACT -ACGGAAATCTGCGCACTTCAACCT -ACGGAAATCTGCGCACTTGCTACT -ACGGAAATCTGCGCACTTGGATCT -ACGGAAATCTGCGCACTTAAGGCT -ACGGAAATCTGCGCACTTTCAACC -ACGGAAATCTGCGCACTTTGTTCC -ACGGAAATCTGCGCACTTATTCCC -ACGGAAATCTGCGCACTTTTCTCG -ACGGAAATCTGCGCACTTTAGACG -ACGGAAATCTGCGCACTTGTAACG -ACGGAAATCTGCGCACTTACTTCG -ACGGAAATCTGCGCACTTTACGCA -ACGGAAATCTGCGCACTTCTTGCA -ACGGAAATCTGCGCACTTCGAACA -ACGGAAATCTGCGCACTTCAGTCA -ACGGAAATCTGCGCACTTGATCCA -ACGGAAATCTGCGCACTTACGACA -ACGGAAATCTGCGCACTTAGCTCA -ACGGAAATCTGCGCACTTTCACGT -ACGGAAATCTGCGCACTTCGTAGT -ACGGAAATCTGCGCACTTGTCAGT -ACGGAAATCTGCGCACTTGAAGGT -ACGGAAATCTGCGCACTTAACCGT -ACGGAAATCTGCGCACTTTTGTGC -ACGGAAATCTGCGCACTTCTAAGC -ACGGAAATCTGCGCACTTACTAGC -ACGGAAATCTGCGCACTTAGATGC -ACGGAAATCTGCGCACTTTGAAGG -ACGGAAATCTGCGCACTTCAATGG -ACGGAAATCTGCGCACTTATGAGG -ACGGAAATCTGCGCACTTAATGGG -ACGGAAATCTGCGCACTTTCCTGA -ACGGAAATCTGCGCACTTTAGCGA -ACGGAAATCTGCGCACTTCACAGA -ACGGAAATCTGCGCACTTGCAAGA -ACGGAAATCTGCGCACTTGGTTGA -ACGGAAATCTGCGCACTTTCCGAT -ACGGAAATCTGCGCACTTTGGCAT -ACGGAAATCTGCGCACTTCGAGAT -ACGGAAATCTGCGCACTTTACCAC -ACGGAAATCTGCGCACTTCAGAAC -ACGGAAATCTGCGCACTTGTCTAC -ACGGAAATCTGCGCACTTACGTAC -ACGGAAATCTGCGCACTTAGTGAC -ACGGAAATCTGCGCACTTCTGTAG -ACGGAAATCTGCGCACTTCCTAAG -ACGGAAATCTGCGCACTTGTTCAG -ACGGAAATCTGCGCACTTGCATAG -ACGGAAATCTGCGCACTTGACAAG -ACGGAAATCTGCGCACTTAAGCAG -ACGGAAATCTGCGCACTTCGTCAA -ACGGAAATCTGCGCACTTGCTGAA -ACGGAAATCTGCGCACTTAGTACG -ACGGAAATCTGCGCACTTATCCGA -ACGGAAATCTGCGCACTTATGGGA -ACGGAAATCTGCGCACTTGTGCAA -ACGGAAATCTGCGCACTTGAGGAA -ACGGAAATCTGCGCACTTCAGGTA -ACGGAAATCTGCGCACTTGACTCT -ACGGAAATCTGCGCACTTAGTCCT -ACGGAAATCTGCGCACTTTAAGCC -ACGGAAATCTGCGCACTTATAGCC -ACGGAAATCTGCGCACTTTAACCG -ACGGAAATCTGCGCACTTATGCCA -ACGGAAATCTGCACACGAGGAAAC -ACGGAAATCTGCACACGAAACACC -ACGGAAATCTGCACACGAATCGAG -ACGGAAATCTGCACACGACTCCTT -ACGGAAATCTGCACACGACCTGTT -ACGGAAATCTGCACACGACGGTTT -ACGGAAATCTGCACACGAGTGGTT -ACGGAAATCTGCACACGAGCCTTT -ACGGAAATCTGCACACGAGGTCTT -ACGGAAATCTGCACACGAACGCTT -ACGGAAATCTGCACACGAAGCGTT -ACGGAAATCTGCACACGATTCGTC -ACGGAAATCTGCACACGATCTCTC -ACGGAAATCTGCACACGATGGATC -ACGGAAATCTGCACACGACACTTC -ACGGAAATCTGCACACGAGTACTC -ACGGAAATCTGCACACGAGATGTC -ACGGAAATCTGCACACGAACAGTC -ACGGAAATCTGCACACGATTGCTG -ACGGAAATCTGCACACGATCCATG -ACGGAAATCTGCACACGATGTGTG -ACGGAAATCTGCACACGACTAGTG -ACGGAAATCTGCACACGACATCTG -ACGGAAATCTGCACACGAGAGTTG -ACGGAAATCTGCACACGAAGACTG -ACGGAAATCTGCACACGATCGGTA -ACGGAAATCTGCACACGATGCCTA -ACGGAAATCTGCACACGACCACTA -ACGGAAATCTGCACACGAGGAGTA -ACGGAAATCTGCACACGATCGTCT -ACGGAAATCTGCACACGATGCACT -ACGGAAATCTGCACACGACTGACT -ACGGAAATCTGCACACGACAACCT -ACGGAAATCTGCACACGAGCTACT -ACGGAAATCTGCACACGAGGATCT -ACGGAAATCTGCACACGAAAGGCT -ACGGAAATCTGCACACGATCAACC -ACGGAAATCTGCACACGATGTTCC -ACGGAAATCTGCACACGAATTCCC -ACGGAAATCTGCACACGATTCTCG -ACGGAAATCTGCACACGATAGACG -ACGGAAATCTGCACACGAGTAACG -ACGGAAATCTGCACACGAACTTCG -ACGGAAATCTGCACACGATACGCA -ACGGAAATCTGCACACGACTTGCA -ACGGAAATCTGCACACGACGAACA -ACGGAAATCTGCACACGACAGTCA -ACGGAAATCTGCACACGAGATCCA -ACGGAAATCTGCACACGAACGACA -ACGGAAATCTGCACACGAAGCTCA -ACGGAAATCTGCACACGATCACGT -ACGGAAATCTGCACACGACGTAGT -ACGGAAATCTGCACACGAGTCAGT -ACGGAAATCTGCACACGAGAAGGT -ACGGAAATCTGCACACGAAACCGT -ACGGAAATCTGCACACGATTGTGC -ACGGAAATCTGCACACGACTAAGC -ACGGAAATCTGCACACGAACTAGC -ACGGAAATCTGCACACGAAGATGC -ACGGAAATCTGCACACGATGAAGG -ACGGAAATCTGCACACGACAATGG -ACGGAAATCTGCACACGAATGAGG -ACGGAAATCTGCACACGAAATGGG -ACGGAAATCTGCACACGATCCTGA -ACGGAAATCTGCACACGATAGCGA -ACGGAAATCTGCACACGACACAGA -ACGGAAATCTGCACACGAGCAAGA -ACGGAAATCTGCACACGAGGTTGA -ACGGAAATCTGCACACGATCCGAT -ACGGAAATCTGCACACGATGGCAT -ACGGAAATCTGCACACGACGAGAT -ACGGAAATCTGCACACGATACCAC -ACGGAAATCTGCACACGACAGAAC -ACGGAAATCTGCACACGAGTCTAC -ACGGAAATCTGCACACGAACGTAC -ACGGAAATCTGCACACGAAGTGAC -ACGGAAATCTGCACACGACTGTAG -ACGGAAATCTGCACACGACCTAAG -ACGGAAATCTGCACACGAGTTCAG -ACGGAAATCTGCACACGAGCATAG -ACGGAAATCTGCACACGAGACAAG -ACGGAAATCTGCACACGAAAGCAG -ACGGAAATCTGCACACGACGTCAA -ACGGAAATCTGCACACGAGCTGAA -ACGGAAATCTGCACACGAAGTACG -ACGGAAATCTGCACACGAATCCGA -ACGGAAATCTGCACACGAATGGGA -ACGGAAATCTGCACACGAGTGCAA -ACGGAAATCTGCACACGAGAGGAA -ACGGAAATCTGCACACGACAGGTA -ACGGAAATCTGCACACGAGACTCT -ACGGAAATCTGCACACGAAGTCCT -ACGGAAATCTGCACACGATAAGCC -ACGGAAATCTGCACACGAATAGCC -ACGGAAATCTGCACACGATAACCG -ACGGAAATCTGCACACGAATGCCA -ACGGAAATCTGCTCACAGGGAAAC -ACGGAAATCTGCTCACAGAACACC -ACGGAAATCTGCTCACAGATCGAG -ACGGAAATCTGCTCACAGCTCCTT -ACGGAAATCTGCTCACAGCCTGTT -ACGGAAATCTGCTCACAGCGGTTT -ACGGAAATCTGCTCACAGGTGGTT -ACGGAAATCTGCTCACAGGCCTTT -ACGGAAATCTGCTCACAGGGTCTT -ACGGAAATCTGCTCACAGACGCTT -ACGGAAATCTGCTCACAGAGCGTT -ACGGAAATCTGCTCACAGTTCGTC -ACGGAAATCTGCTCACAGTCTCTC -ACGGAAATCTGCTCACAGTGGATC -ACGGAAATCTGCTCACAGCACTTC -ACGGAAATCTGCTCACAGGTACTC -ACGGAAATCTGCTCACAGGATGTC -ACGGAAATCTGCTCACAGACAGTC -ACGGAAATCTGCTCACAGTTGCTG -ACGGAAATCTGCTCACAGTCCATG -ACGGAAATCTGCTCACAGTGTGTG -ACGGAAATCTGCTCACAGCTAGTG -ACGGAAATCTGCTCACAGCATCTG -ACGGAAATCTGCTCACAGGAGTTG -ACGGAAATCTGCTCACAGAGACTG -ACGGAAATCTGCTCACAGTCGGTA -ACGGAAATCTGCTCACAGTGCCTA -ACGGAAATCTGCTCACAGCCACTA -ACGGAAATCTGCTCACAGGGAGTA -ACGGAAATCTGCTCACAGTCGTCT -ACGGAAATCTGCTCACAGTGCACT -ACGGAAATCTGCTCACAGCTGACT -ACGGAAATCTGCTCACAGCAACCT -ACGGAAATCTGCTCACAGGCTACT -ACGGAAATCTGCTCACAGGGATCT -ACGGAAATCTGCTCACAGAAGGCT -ACGGAAATCTGCTCACAGTCAACC -ACGGAAATCTGCTCACAGTGTTCC -ACGGAAATCTGCTCACAGATTCCC -ACGGAAATCTGCTCACAGTTCTCG -ACGGAAATCTGCTCACAGTAGACG -ACGGAAATCTGCTCACAGGTAACG -ACGGAAATCTGCTCACAGACTTCG -ACGGAAATCTGCTCACAGTACGCA -ACGGAAATCTGCTCACAGCTTGCA -ACGGAAATCTGCTCACAGCGAACA -ACGGAAATCTGCTCACAGCAGTCA -ACGGAAATCTGCTCACAGGATCCA -ACGGAAATCTGCTCACAGACGACA -ACGGAAATCTGCTCACAGAGCTCA -ACGGAAATCTGCTCACAGTCACGT -ACGGAAATCTGCTCACAGCGTAGT -ACGGAAATCTGCTCACAGGTCAGT -ACGGAAATCTGCTCACAGGAAGGT -ACGGAAATCTGCTCACAGAACCGT -ACGGAAATCTGCTCACAGTTGTGC -ACGGAAATCTGCTCACAGCTAAGC -ACGGAAATCTGCTCACAGACTAGC -ACGGAAATCTGCTCACAGAGATGC -ACGGAAATCTGCTCACAGTGAAGG -ACGGAAATCTGCTCACAGCAATGG -ACGGAAATCTGCTCACAGATGAGG -ACGGAAATCTGCTCACAGAATGGG -ACGGAAATCTGCTCACAGTCCTGA -ACGGAAATCTGCTCACAGTAGCGA -ACGGAAATCTGCTCACAGCACAGA -ACGGAAATCTGCTCACAGGCAAGA -ACGGAAATCTGCTCACAGGGTTGA -ACGGAAATCTGCTCACAGTCCGAT -ACGGAAATCTGCTCACAGTGGCAT -ACGGAAATCTGCTCACAGCGAGAT -ACGGAAATCTGCTCACAGTACCAC -ACGGAAATCTGCTCACAGCAGAAC -ACGGAAATCTGCTCACAGGTCTAC -ACGGAAATCTGCTCACAGACGTAC -ACGGAAATCTGCTCACAGAGTGAC -ACGGAAATCTGCTCACAGCTGTAG -ACGGAAATCTGCTCACAGCCTAAG -ACGGAAATCTGCTCACAGGTTCAG -ACGGAAATCTGCTCACAGGCATAG -ACGGAAATCTGCTCACAGGACAAG -ACGGAAATCTGCTCACAGAAGCAG -ACGGAAATCTGCTCACAGCGTCAA -ACGGAAATCTGCTCACAGGCTGAA -ACGGAAATCTGCTCACAGAGTACG -ACGGAAATCTGCTCACAGATCCGA -ACGGAAATCTGCTCACAGATGGGA -ACGGAAATCTGCTCACAGGTGCAA -ACGGAAATCTGCTCACAGGAGGAA -ACGGAAATCTGCTCACAGCAGGTA -ACGGAAATCTGCTCACAGGACTCT -ACGGAAATCTGCTCACAGAGTCCT -ACGGAAATCTGCTCACAGTAAGCC -ACGGAAATCTGCTCACAGATAGCC -ACGGAAATCTGCTCACAGTAACCG -ACGGAAATCTGCTCACAGATGCCA -ACGGAAATCTGCCCAGATGGAAAC -ACGGAAATCTGCCCAGATAACACC -ACGGAAATCTGCCCAGATATCGAG -ACGGAAATCTGCCCAGATCTCCTT -ACGGAAATCTGCCCAGATCCTGTT -ACGGAAATCTGCCCAGATCGGTTT -ACGGAAATCTGCCCAGATGTGGTT -ACGGAAATCTGCCCAGATGCCTTT -ACGGAAATCTGCCCAGATGGTCTT -ACGGAAATCTGCCCAGATACGCTT -ACGGAAATCTGCCCAGATAGCGTT -ACGGAAATCTGCCCAGATTTCGTC -ACGGAAATCTGCCCAGATTCTCTC -ACGGAAATCTGCCCAGATTGGATC -ACGGAAATCTGCCCAGATCACTTC -ACGGAAATCTGCCCAGATGTACTC -ACGGAAATCTGCCCAGATGATGTC -ACGGAAATCTGCCCAGATACAGTC -ACGGAAATCTGCCCAGATTTGCTG -ACGGAAATCTGCCCAGATTCCATG -ACGGAAATCTGCCCAGATTGTGTG -ACGGAAATCTGCCCAGATCTAGTG -ACGGAAATCTGCCCAGATCATCTG -ACGGAAATCTGCCCAGATGAGTTG -ACGGAAATCTGCCCAGATAGACTG -ACGGAAATCTGCCCAGATTCGGTA -ACGGAAATCTGCCCAGATTGCCTA -ACGGAAATCTGCCCAGATCCACTA -ACGGAAATCTGCCCAGATGGAGTA -ACGGAAATCTGCCCAGATTCGTCT -ACGGAAATCTGCCCAGATTGCACT -ACGGAAATCTGCCCAGATCTGACT -ACGGAAATCTGCCCAGATCAACCT -ACGGAAATCTGCCCAGATGCTACT -ACGGAAATCTGCCCAGATGGATCT -ACGGAAATCTGCCCAGATAAGGCT -ACGGAAATCTGCCCAGATTCAACC -ACGGAAATCTGCCCAGATTGTTCC -ACGGAAATCTGCCCAGATATTCCC -ACGGAAATCTGCCCAGATTTCTCG -ACGGAAATCTGCCCAGATTAGACG -ACGGAAATCTGCCCAGATGTAACG -ACGGAAATCTGCCCAGATACTTCG -ACGGAAATCTGCCCAGATTACGCA -ACGGAAATCTGCCCAGATCTTGCA -ACGGAAATCTGCCCAGATCGAACA -ACGGAAATCTGCCCAGATCAGTCA -ACGGAAATCTGCCCAGATGATCCA -ACGGAAATCTGCCCAGATACGACA -ACGGAAATCTGCCCAGATAGCTCA -ACGGAAATCTGCCCAGATTCACGT -ACGGAAATCTGCCCAGATCGTAGT -ACGGAAATCTGCCCAGATGTCAGT -ACGGAAATCTGCCCAGATGAAGGT -ACGGAAATCTGCCCAGATAACCGT -ACGGAAATCTGCCCAGATTTGTGC -ACGGAAATCTGCCCAGATCTAAGC -ACGGAAATCTGCCCAGATACTAGC -ACGGAAATCTGCCCAGATAGATGC -ACGGAAATCTGCCCAGATTGAAGG -ACGGAAATCTGCCCAGATCAATGG -ACGGAAATCTGCCCAGATATGAGG -ACGGAAATCTGCCCAGATAATGGG -ACGGAAATCTGCCCAGATTCCTGA -ACGGAAATCTGCCCAGATTAGCGA -ACGGAAATCTGCCCAGATCACAGA -ACGGAAATCTGCCCAGATGCAAGA -ACGGAAATCTGCCCAGATGGTTGA -ACGGAAATCTGCCCAGATTCCGAT -ACGGAAATCTGCCCAGATTGGCAT -ACGGAAATCTGCCCAGATCGAGAT -ACGGAAATCTGCCCAGATTACCAC -ACGGAAATCTGCCCAGATCAGAAC -ACGGAAATCTGCCCAGATGTCTAC -ACGGAAATCTGCCCAGATACGTAC -ACGGAAATCTGCCCAGATAGTGAC -ACGGAAATCTGCCCAGATCTGTAG -ACGGAAATCTGCCCAGATCCTAAG -ACGGAAATCTGCCCAGATGTTCAG -ACGGAAATCTGCCCAGATGCATAG -ACGGAAATCTGCCCAGATGACAAG -ACGGAAATCTGCCCAGATAAGCAG -ACGGAAATCTGCCCAGATCGTCAA -ACGGAAATCTGCCCAGATGCTGAA -ACGGAAATCTGCCCAGATAGTACG -ACGGAAATCTGCCCAGATATCCGA -ACGGAAATCTGCCCAGATATGGGA -ACGGAAATCTGCCCAGATGTGCAA -ACGGAAATCTGCCCAGATGAGGAA -ACGGAAATCTGCCCAGATCAGGTA -ACGGAAATCTGCCCAGATGACTCT -ACGGAAATCTGCCCAGATAGTCCT -ACGGAAATCTGCCCAGATTAAGCC -ACGGAAATCTGCCCAGATATAGCC -ACGGAAATCTGCCCAGATTAACCG -ACGGAAATCTGCCCAGATATGCCA -ACGGAAATCTGCACAACGGGAAAC -ACGGAAATCTGCACAACGAACACC -ACGGAAATCTGCACAACGATCGAG -ACGGAAATCTGCACAACGCTCCTT -ACGGAAATCTGCACAACGCCTGTT -ACGGAAATCTGCACAACGCGGTTT -ACGGAAATCTGCACAACGGTGGTT -ACGGAAATCTGCACAACGGCCTTT -ACGGAAATCTGCACAACGGGTCTT -ACGGAAATCTGCACAACGACGCTT -ACGGAAATCTGCACAACGAGCGTT -ACGGAAATCTGCACAACGTTCGTC -ACGGAAATCTGCACAACGTCTCTC -ACGGAAATCTGCACAACGTGGATC -ACGGAAATCTGCACAACGCACTTC -ACGGAAATCTGCACAACGGTACTC -ACGGAAATCTGCACAACGGATGTC -ACGGAAATCTGCACAACGACAGTC -ACGGAAATCTGCACAACGTTGCTG -ACGGAAATCTGCACAACGTCCATG -ACGGAAATCTGCACAACGTGTGTG -ACGGAAATCTGCACAACGCTAGTG -ACGGAAATCTGCACAACGCATCTG -ACGGAAATCTGCACAACGGAGTTG -ACGGAAATCTGCACAACGAGACTG -ACGGAAATCTGCACAACGTCGGTA -ACGGAAATCTGCACAACGTGCCTA -ACGGAAATCTGCACAACGCCACTA -ACGGAAATCTGCACAACGGGAGTA -ACGGAAATCTGCACAACGTCGTCT -ACGGAAATCTGCACAACGTGCACT -ACGGAAATCTGCACAACGCTGACT -ACGGAAATCTGCACAACGCAACCT -ACGGAAATCTGCACAACGGCTACT -ACGGAAATCTGCACAACGGGATCT -ACGGAAATCTGCACAACGAAGGCT -ACGGAAATCTGCACAACGTCAACC -ACGGAAATCTGCACAACGTGTTCC -ACGGAAATCTGCACAACGATTCCC -ACGGAAATCTGCACAACGTTCTCG -ACGGAAATCTGCACAACGTAGACG -ACGGAAATCTGCACAACGGTAACG -ACGGAAATCTGCACAACGACTTCG -ACGGAAATCTGCACAACGTACGCA -ACGGAAATCTGCACAACGCTTGCA -ACGGAAATCTGCACAACGCGAACA -ACGGAAATCTGCACAACGCAGTCA -ACGGAAATCTGCACAACGGATCCA -ACGGAAATCTGCACAACGACGACA -ACGGAAATCTGCACAACGAGCTCA -ACGGAAATCTGCACAACGTCACGT -ACGGAAATCTGCACAACGCGTAGT -ACGGAAATCTGCACAACGGTCAGT -ACGGAAATCTGCACAACGGAAGGT -ACGGAAATCTGCACAACGAACCGT -ACGGAAATCTGCACAACGTTGTGC -ACGGAAATCTGCACAACGCTAAGC -ACGGAAATCTGCACAACGACTAGC -ACGGAAATCTGCACAACGAGATGC -ACGGAAATCTGCACAACGTGAAGG -ACGGAAATCTGCACAACGCAATGG -ACGGAAATCTGCACAACGATGAGG -ACGGAAATCTGCACAACGAATGGG -ACGGAAATCTGCACAACGTCCTGA -ACGGAAATCTGCACAACGTAGCGA -ACGGAAATCTGCACAACGCACAGA -ACGGAAATCTGCACAACGGCAAGA -ACGGAAATCTGCACAACGGGTTGA -ACGGAAATCTGCACAACGTCCGAT -ACGGAAATCTGCACAACGTGGCAT -ACGGAAATCTGCACAACGCGAGAT -ACGGAAATCTGCACAACGTACCAC -ACGGAAATCTGCACAACGCAGAAC -ACGGAAATCTGCACAACGGTCTAC -ACGGAAATCTGCACAACGACGTAC -ACGGAAATCTGCACAACGAGTGAC -ACGGAAATCTGCACAACGCTGTAG -ACGGAAATCTGCACAACGCCTAAG -ACGGAAATCTGCACAACGGTTCAG -ACGGAAATCTGCACAACGGCATAG -ACGGAAATCTGCACAACGGACAAG -ACGGAAATCTGCACAACGAAGCAG -ACGGAAATCTGCACAACGCGTCAA -ACGGAAATCTGCACAACGGCTGAA -ACGGAAATCTGCACAACGAGTACG -ACGGAAATCTGCACAACGATCCGA -ACGGAAATCTGCACAACGATGGGA -ACGGAAATCTGCACAACGGTGCAA -ACGGAAATCTGCACAACGGAGGAA -ACGGAAATCTGCACAACGCAGGTA -ACGGAAATCTGCACAACGGACTCT -ACGGAAATCTGCACAACGAGTCCT -ACGGAAATCTGCACAACGTAAGCC -ACGGAAATCTGCACAACGATAGCC -ACGGAAATCTGCACAACGTAACCG -ACGGAAATCTGCACAACGATGCCA -ACGGAAATCTGCTCAAGCGGAAAC -ACGGAAATCTGCTCAAGCAACACC -ACGGAAATCTGCTCAAGCATCGAG -ACGGAAATCTGCTCAAGCCTCCTT -ACGGAAATCTGCTCAAGCCCTGTT -ACGGAAATCTGCTCAAGCCGGTTT -ACGGAAATCTGCTCAAGCGTGGTT -ACGGAAATCTGCTCAAGCGCCTTT -ACGGAAATCTGCTCAAGCGGTCTT -ACGGAAATCTGCTCAAGCACGCTT -ACGGAAATCTGCTCAAGCAGCGTT -ACGGAAATCTGCTCAAGCTTCGTC -ACGGAAATCTGCTCAAGCTCTCTC -ACGGAAATCTGCTCAAGCTGGATC -ACGGAAATCTGCTCAAGCCACTTC -ACGGAAATCTGCTCAAGCGTACTC -ACGGAAATCTGCTCAAGCGATGTC -ACGGAAATCTGCTCAAGCACAGTC -ACGGAAATCTGCTCAAGCTTGCTG -ACGGAAATCTGCTCAAGCTCCATG -ACGGAAATCTGCTCAAGCTGTGTG -ACGGAAATCTGCTCAAGCCTAGTG -ACGGAAATCTGCTCAAGCCATCTG -ACGGAAATCTGCTCAAGCGAGTTG -ACGGAAATCTGCTCAAGCAGACTG -ACGGAAATCTGCTCAAGCTCGGTA -ACGGAAATCTGCTCAAGCTGCCTA -ACGGAAATCTGCTCAAGCCCACTA -ACGGAAATCTGCTCAAGCGGAGTA -ACGGAAATCTGCTCAAGCTCGTCT -ACGGAAATCTGCTCAAGCTGCACT -ACGGAAATCTGCTCAAGCCTGACT -ACGGAAATCTGCTCAAGCCAACCT -ACGGAAATCTGCTCAAGCGCTACT -ACGGAAATCTGCTCAAGCGGATCT -ACGGAAATCTGCTCAAGCAAGGCT -ACGGAAATCTGCTCAAGCTCAACC -ACGGAAATCTGCTCAAGCTGTTCC -ACGGAAATCTGCTCAAGCATTCCC -ACGGAAATCTGCTCAAGCTTCTCG -ACGGAAATCTGCTCAAGCTAGACG -ACGGAAATCTGCTCAAGCGTAACG -ACGGAAATCTGCTCAAGCACTTCG -ACGGAAATCTGCTCAAGCTACGCA -ACGGAAATCTGCTCAAGCCTTGCA -ACGGAAATCTGCTCAAGCCGAACA -ACGGAAATCTGCTCAAGCCAGTCA -ACGGAAATCTGCTCAAGCGATCCA -ACGGAAATCTGCTCAAGCACGACA -ACGGAAATCTGCTCAAGCAGCTCA -ACGGAAATCTGCTCAAGCTCACGT -ACGGAAATCTGCTCAAGCCGTAGT -ACGGAAATCTGCTCAAGCGTCAGT -ACGGAAATCTGCTCAAGCGAAGGT -ACGGAAATCTGCTCAAGCAACCGT -ACGGAAATCTGCTCAAGCTTGTGC -ACGGAAATCTGCTCAAGCCTAAGC -ACGGAAATCTGCTCAAGCACTAGC -ACGGAAATCTGCTCAAGCAGATGC -ACGGAAATCTGCTCAAGCTGAAGG -ACGGAAATCTGCTCAAGCCAATGG -ACGGAAATCTGCTCAAGCATGAGG -ACGGAAATCTGCTCAAGCAATGGG -ACGGAAATCTGCTCAAGCTCCTGA -ACGGAAATCTGCTCAAGCTAGCGA -ACGGAAATCTGCTCAAGCCACAGA -ACGGAAATCTGCTCAAGCGCAAGA -ACGGAAATCTGCTCAAGCGGTTGA -ACGGAAATCTGCTCAAGCTCCGAT -ACGGAAATCTGCTCAAGCTGGCAT -ACGGAAATCTGCTCAAGCCGAGAT -ACGGAAATCTGCTCAAGCTACCAC -ACGGAAATCTGCTCAAGCCAGAAC -ACGGAAATCTGCTCAAGCGTCTAC -ACGGAAATCTGCTCAAGCACGTAC -ACGGAAATCTGCTCAAGCAGTGAC -ACGGAAATCTGCTCAAGCCTGTAG -ACGGAAATCTGCTCAAGCCCTAAG -ACGGAAATCTGCTCAAGCGTTCAG -ACGGAAATCTGCTCAAGCGCATAG -ACGGAAATCTGCTCAAGCGACAAG -ACGGAAATCTGCTCAAGCAAGCAG -ACGGAAATCTGCTCAAGCCGTCAA -ACGGAAATCTGCTCAAGCGCTGAA -ACGGAAATCTGCTCAAGCAGTACG -ACGGAAATCTGCTCAAGCATCCGA -ACGGAAATCTGCTCAAGCATGGGA -ACGGAAATCTGCTCAAGCGTGCAA -ACGGAAATCTGCTCAAGCGAGGAA -ACGGAAATCTGCTCAAGCCAGGTA -ACGGAAATCTGCTCAAGCGACTCT -ACGGAAATCTGCTCAAGCAGTCCT -ACGGAAATCTGCTCAAGCTAAGCC -ACGGAAATCTGCTCAAGCATAGCC -ACGGAAATCTGCTCAAGCTAACCG -ACGGAAATCTGCTCAAGCATGCCA -ACGGAAATCTGCCGTTCAGGAAAC -ACGGAAATCTGCCGTTCAAACACC -ACGGAAATCTGCCGTTCAATCGAG -ACGGAAATCTGCCGTTCACTCCTT -ACGGAAATCTGCCGTTCACCTGTT -ACGGAAATCTGCCGTTCACGGTTT -ACGGAAATCTGCCGTTCAGTGGTT -ACGGAAATCTGCCGTTCAGCCTTT -ACGGAAATCTGCCGTTCAGGTCTT -ACGGAAATCTGCCGTTCAACGCTT -ACGGAAATCTGCCGTTCAAGCGTT -ACGGAAATCTGCCGTTCATTCGTC -ACGGAAATCTGCCGTTCATCTCTC -ACGGAAATCTGCCGTTCATGGATC -ACGGAAATCTGCCGTTCACACTTC -ACGGAAATCTGCCGTTCAGTACTC -ACGGAAATCTGCCGTTCAGATGTC -ACGGAAATCTGCCGTTCAACAGTC -ACGGAAATCTGCCGTTCATTGCTG -ACGGAAATCTGCCGTTCATCCATG -ACGGAAATCTGCCGTTCATGTGTG -ACGGAAATCTGCCGTTCACTAGTG -ACGGAAATCTGCCGTTCACATCTG -ACGGAAATCTGCCGTTCAGAGTTG -ACGGAAATCTGCCGTTCAAGACTG -ACGGAAATCTGCCGTTCATCGGTA -ACGGAAATCTGCCGTTCATGCCTA -ACGGAAATCTGCCGTTCACCACTA -ACGGAAATCTGCCGTTCAGGAGTA -ACGGAAATCTGCCGTTCATCGTCT -ACGGAAATCTGCCGTTCATGCACT -ACGGAAATCTGCCGTTCACTGACT -ACGGAAATCTGCCGTTCACAACCT -ACGGAAATCTGCCGTTCAGCTACT -ACGGAAATCTGCCGTTCAGGATCT -ACGGAAATCTGCCGTTCAAAGGCT -ACGGAAATCTGCCGTTCATCAACC -ACGGAAATCTGCCGTTCATGTTCC -ACGGAAATCTGCCGTTCAATTCCC -ACGGAAATCTGCCGTTCATTCTCG -ACGGAAATCTGCCGTTCATAGACG -ACGGAAATCTGCCGTTCAGTAACG -ACGGAAATCTGCCGTTCAACTTCG -ACGGAAATCTGCCGTTCATACGCA -ACGGAAATCTGCCGTTCACTTGCA -ACGGAAATCTGCCGTTCACGAACA -ACGGAAATCTGCCGTTCACAGTCA -ACGGAAATCTGCCGTTCAGATCCA -ACGGAAATCTGCCGTTCAACGACA -ACGGAAATCTGCCGTTCAAGCTCA -ACGGAAATCTGCCGTTCATCACGT -ACGGAAATCTGCCGTTCACGTAGT -ACGGAAATCTGCCGTTCAGTCAGT -ACGGAAATCTGCCGTTCAGAAGGT -ACGGAAATCTGCCGTTCAAACCGT -ACGGAAATCTGCCGTTCATTGTGC -ACGGAAATCTGCCGTTCACTAAGC -ACGGAAATCTGCCGTTCAACTAGC -ACGGAAATCTGCCGTTCAAGATGC -ACGGAAATCTGCCGTTCATGAAGG -ACGGAAATCTGCCGTTCACAATGG -ACGGAAATCTGCCGTTCAATGAGG -ACGGAAATCTGCCGTTCAAATGGG -ACGGAAATCTGCCGTTCATCCTGA -ACGGAAATCTGCCGTTCATAGCGA -ACGGAAATCTGCCGTTCACACAGA -ACGGAAATCTGCCGTTCAGCAAGA -ACGGAAATCTGCCGTTCAGGTTGA -ACGGAAATCTGCCGTTCATCCGAT -ACGGAAATCTGCCGTTCATGGCAT -ACGGAAATCTGCCGTTCACGAGAT -ACGGAAATCTGCCGTTCATACCAC -ACGGAAATCTGCCGTTCACAGAAC -ACGGAAATCTGCCGTTCAGTCTAC -ACGGAAATCTGCCGTTCAACGTAC -ACGGAAATCTGCCGTTCAAGTGAC -ACGGAAATCTGCCGTTCACTGTAG -ACGGAAATCTGCCGTTCACCTAAG -ACGGAAATCTGCCGTTCAGTTCAG -ACGGAAATCTGCCGTTCAGCATAG -ACGGAAATCTGCCGTTCAGACAAG -ACGGAAATCTGCCGTTCAAAGCAG -ACGGAAATCTGCCGTTCACGTCAA -ACGGAAATCTGCCGTTCAGCTGAA -ACGGAAATCTGCCGTTCAAGTACG -ACGGAAATCTGCCGTTCAATCCGA -ACGGAAATCTGCCGTTCAATGGGA -ACGGAAATCTGCCGTTCAGTGCAA -ACGGAAATCTGCCGTTCAGAGGAA -ACGGAAATCTGCCGTTCACAGGTA -ACGGAAATCTGCCGTTCAGACTCT -ACGGAAATCTGCCGTTCAAGTCCT -ACGGAAATCTGCCGTTCATAAGCC -ACGGAAATCTGCCGTTCAATAGCC -ACGGAAATCTGCCGTTCATAACCG -ACGGAAATCTGCCGTTCAATGCCA -ACGGAAATCTGCAGTCGTGGAAAC -ACGGAAATCTGCAGTCGTAACACC -ACGGAAATCTGCAGTCGTATCGAG -ACGGAAATCTGCAGTCGTCTCCTT -ACGGAAATCTGCAGTCGTCCTGTT -ACGGAAATCTGCAGTCGTCGGTTT -ACGGAAATCTGCAGTCGTGTGGTT -ACGGAAATCTGCAGTCGTGCCTTT -ACGGAAATCTGCAGTCGTGGTCTT -ACGGAAATCTGCAGTCGTACGCTT -ACGGAAATCTGCAGTCGTAGCGTT -ACGGAAATCTGCAGTCGTTTCGTC -ACGGAAATCTGCAGTCGTTCTCTC -ACGGAAATCTGCAGTCGTTGGATC -ACGGAAATCTGCAGTCGTCACTTC -ACGGAAATCTGCAGTCGTGTACTC -ACGGAAATCTGCAGTCGTGATGTC -ACGGAAATCTGCAGTCGTACAGTC -ACGGAAATCTGCAGTCGTTTGCTG -ACGGAAATCTGCAGTCGTTCCATG -ACGGAAATCTGCAGTCGTTGTGTG -ACGGAAATCTGCAGTCGTCTAGTG -ACGGAAATCTGCAGTCGTCATCTG -ACGGAAATCTGCAGTCGTGAGTTG -ACGGAAATCTGCAGTCGTAGACTG -ACGGAAATCTGCAGTCGTTCGGTA -ACGGAAATCTGCAGTCGTTGCCTA -ACGGAAATCTGCAGTCGTCCACTA -ACGGAAATCTGCAGTCGTGGAGTA -ACGGAAATCTGCAGTCGTTCGTCT -ACGGAAATCTGCAGTCGTTGCACT -ACGGAAATCTGCAGTCGTCTGACT -ACGGAAATCTGCAGTCGTCAACCT -ACGGAAATCTGCAGTCGTGCTACT -ACGGAAATCTGCAGTCGTGGATCT -ACGGAAATCTGCAGTCGTAAGGCT -ACGGAAATCTGCAGTCGTTCAACC -ACGGAAATCTGCAGTCGTTGTTCC -ACGGAAATCTGCAGTCGTATTCCC -ACGGAAATCTGCAGTCGTTTCTCG -ACGGAAATCTGCAGTCGTTAGACG -ACGGAAATCTGCAGTCGTGTAACG -ACGGAAATCTGCAGTCGTACTTCG -ACGGAAATCTGCAGTCGTTACGCA -ACGGAAATCTGCAGTCGTCTTGCA -ACGGAAATCTGCAGTCGTCGAACA -ACGGAAATCTGCAGTCGTCAGTCA -ACGGAAATCTGCAGTCGTGATCCA -ACGGAAATCTGCAGTCGTACGACA -ACGGAAATCTGCAGTCGTAGCTCA -ACGGAAATCTGCAGTCGTTCACGT -ACGGAAATCTGCAGTCGTCGTAGT -ACGGAAATCTGCAGTCGTGTCAGT -ACGGAAATCTGCAGTCGTGAAGGT -ACGGAAATCTGCAGTCGTAACCGT -ACGGAAATCTGCAGTCGTTTGTGC -ACGGAAATCTGCAGTCGTCTAAGC -ACGGAAATCTGCAGTCGTACTAGC -ACGGAAATCTGCAGTCGTAGATGC -ACGGAAATCTGCAGTCGTTGAAGG -ACGGAAATCTGCAGTCGTCAATGG -ACGGAAATCTGCAGTCGTATGAGG -ACGGAAATCTGCAGTCGTAATGGG -ACGGAAATCTGCAGTCGTTCCTGA -ACGGAAATCTGCAGTCGTTAGCGA -ACGGAAATCTGCAGTCGTCACAGA -ACGGAAATCTGCAGTCGTGCAAGA -ACGGAAATCTGCAGTCGTGGTTGA -ACGGAAATCTGCAGTCGTTCCGAT -ACGGAAATCTGCAGTCGTTGGCAT -ACGGAAATCTGCAGTCGTCGAGAT -ACGGAAATCTGCAGTCGTTACCAC -ACGGAAATCTGCAGTCGTCAGAAC -ACGGAAATCTGCAGTCGTGTCTAC -ACGGAAATCTGCAGTCGTACGTAC -ACGGAAATCTGCAGTCGTAGTGAC -ACGGAAATCTGCAGTCGTCTGTAG -ACGGAAATCTGCAGTCGTCCTAAG -ACGGAAATCTGCAGTCGTGTTCAG -ACGGAAATCTGCAGTCGTGCATAG -ACGGAAATCTGCAGTCGTGACAAG -ACGGAAATCTGCAGTCGTAAGCAG -ACGGAAATCTGCAGTCGTCGTCAA -ACGGAAATCTGCAGTCGTGCTGAA -ACGGAAATCTGCAGTCGTAGTACG -ACGGAAATCTGCAGTCGTATCCGA -ACGGAAATCTGCAGTCGTATGGGA -ACGGAAATCTGCAGTCGTGTGCAA -ACGGAAATCTGCAGTCGTGAGGAA -ACGGAAATCTGCAGTCGTCAGGTA -ACGGAAATCTGCAGTCGTGACTCT -ACGGAAATCTGCAGTCGTAGTCCT -ACGGAAATCTGCAGTCGTTAAGCC -ACGGAAATCTGCAGTCGTATAGCC -ACGGAAATCTGCAGTCGTTAACCG -ACGGAAATCTGCAGTCGTATGCCA -ACGGAAATCTGCAGTGTCGGAAAC -ACGGAAATCTGCAGTGTCAACACC -ACGGAAATCTGCAGTGTCATCGAG -ACGGAAATCTGCAGTGTCCTCCTT -ACGGAAATCTGCAGTGTCCCTGTT -ACGGAAATCTGCAGTGTCCGGTTT -ACGGAAATCTGCAGTGTCGTGGTT -ACGGAAATCTGCAGTGTCGCCTTT -ACGGAAATCTGCAGTGTCGGTCTT -ACGGAAATCTGCAGTGTCACGCTT -ACGGAAATCTGCAGTGTCAGCGTT -ACGGAAATCTGCAGTGTCTTCGTC -ACGGAAATCTGCAGTGTCTCTCTC -ACGGAAATCTGCAGTGTCTGGATC -ACGGAAATCTGCAGTGTCCACTTC -ACGGAAATCTGCAGTGTCGTACTC -ACGGAAATCTGCAGTGTCGATGTC -ACGGAAATCTGCAGTGTCACAGTC -ACGGAAATCTGCAGTGTCTTGCTG -ACGGAAATCTGCAGTGTCTCCATG -ACGGAAATCTGCAGTGTCTGTGTG -ACGGAAATCTGCAGTGTCCTAGTG -ACGGAAATCTGCAGTGTCCATCTG -ACGGAAATCTGCAGTGTCGAGTTG -ACGGAAATCTGCAGTGTCAGACTG -ACGGAAATCTGCAGTGTCTCGGTA -ACGGAAATCTGCAGTGTCTGCCTA -ACGGAAATCTGCAGTGTCCCACTA -ACGGAAATCTGCAGTGTCGGAGTA -ACGGAAATCTGCAGTGTCTCGTCT -ACGGAAATCTGCAGTGTCTGCACT -ACGGAAATCTGCAGTGTCCTGACT -ACGGAAATCTGCAGTGTCCAACCT -ACGGAAATCTGCAGTGTCGCTACT -ACGGAAATCTGCAGTGTCGGATCT -ACGGAAATCTGCAGTGTCAAGGCT -ACGGAAATCTGCAGTGTCTCAACC -ACGGAAATCTGCAGTGTCTGTTCC -ACGGAAATCTGCAGTGTCATTCCC -ACGGAAATCTGCAGTGTCTTCTCG -ACGGAAATCTGCAGTGTCTAGACG -ACGGAAATCTGCAGTGTCGTAACG -ACGGAAATCTGCAGTGTCACTTCG -ACGGAAATCTGCAGTGTCTACGCA -ACGGAAATCTGCAGTGTCCTTGCA -ACGGAAATCTGCAGTGTCCGAACA -ACGGAAATCTGCAGTGTCCAGTCA -ACGGAAATCTGCAGTGTCGATCCA -ACGGAAATCTGCAGTGTCACGACA -ACGGAAATCTGCAGTGTCAGCTCA -ACGGAAATCTGCAGTGTCTCACGT -ACGGAAATCTGCAGTGTCCGTAGT -ACGGAAATCTGCAGTGTCGTCAGT -ACGGAAATCTGCAGTGTCGAAGGT -ACGGAAATCTGCAGTGTCAACCGT -ACGGAAATCTGCAGTGTCTTGTGC -ACGGAAATCTGCAGTGTCCTAAGC -ACGGAAATCTGCAGTGTCACTAGC -ACGGAAATCTGCAGTGTCAGATGC -ACGGAAATCTGCAGTGTCTGAAGG -ACGGAAATCTGCAGTGTCCAATGG -ACGGAAATCTGCAGTGTCATGAGG -ACGGAAATCTGCAGTGTCAATGGG -ACGGAAATCTGCAGTGTCTCCTGA -ACGGAAATCTGCAGTGTCTAGCGA -ACGGAAATCTGCAGTGTCCACAGA -ACGGAAATCTGCAGTGTCGCAAGA -ACGGAAATCTGCAGTGTCGGTTGA -ACGGAAATCTGCAGTGTCTCCGAT -ACGGAAATCTGCAGTGTCTGGCAT -ACGGAAATCTGCAGTGTCCGAGAT -ACGGAAATCTGCAGTGTCTACCAC -ACGGAAATCTGCAGTGTCCAGAAC -ACGGAAATCTGCAGTGTCGTCTAC -ACGGAAATCTGCAGTGTCACGTAC -ACGGAAATCTGCAGTGTCAGTGAC -ACGGAAATCTGCAGTGTCCTGTAG -ACGGAAATCTGCAGTGTCCCTAAG -ACGGAAATCTGCAGTGTCGTTCAG -ACGGAAATCTGCAGTGTCGCATAG -ACGGAAATCTGCAGTGTCGACAAG -ACGGAAATCTGCAGTGTCAAGCAG -ACGGAAATCTGCAGTGTCCGTCAA -ACGGAAATCTGCAGTGTCGCTGAA -ACGGAAATCTGCAGTGTCAGTACG -ACGGAAATCTGCAGTGTCATCCGA -ACGGAAATCTGCAGTGTCATGGGA -ACGGAAATCTGCAGTGTCGTGCAA -ACGGAAATCTGCAGTGTCGAGGAA -ACGGAAATCTGCAGTGTCCAGGTA -ACGGAAATCTGCAGTGTCGACTCT -ACGGAAATCTGCAGTGTCAGTCCT -ACGGAAATCTGCAGTGTCTAAGCC -ACGGAAATCTGCAGTGTCATAGCC -ACGGAAATCTGCAGTGTCTAACCG -ACGGAAATCTGCAGTGTCATGCCA -ACGGAAATCTGCGGTGAAGGAAAC -ACGGAAATCTGCGGTGAAAACACC -ACGGAAATCTGCGGTGAAATCGAG -ACGGAAATCTGCGGTGAACTCCTT -ACGGAAATCTGCGGTGAACCTGTT -ACGGAAATCTGCGGTGAACGGTTT -ACGGAAATCTGCGGTGAAGTGGTT -ACGGAAATCTGCGGTGAAGCCTTT -ACGGAAATCTGCGGTGAAGGTCTT -ACGGAAATCTGCGGTGAAACGCTT -ACGGAAATCTGCGGTGAAAGCGTT -ACGGAAATCTGCGGTGAATTCGTC -ACGGAAATCTGCGGTGAATCTCTC -ACGGAAATCTGCGGTGAATGGATC -ACGGAAATCTGCGGTGAACACTTC -ACGGAAATCTGCGGTGAAGTACTC -ACGGAAATCTGCGGTGAAGATGTC -ACGGAAATCTGCGGTGAAACAGTC -ACGGAAATCTGCGGTGAATTGCTG -ACGGAAATCTGCGGTGAATCCATG -ACGGAAATCTGCGGTGAATGTGTG -ACGGAAATCTGCGGTGAACTAGTG -ACGGAAATCTGCGGTGAACATCTG -ACGGAAATCTGCGGTGAAGAGTTG -ACGGAAATCTGCGGTGAAAGACTG -ACGGAAATCTGCGGTGAATCGGTA -ACGGAAATCTGCGGTGAATGCCTA -ACGGAAATCTGCGGTGAACCACTA -ACGGAAATCTGCGGTGAAGGAGTA -ACGGAAATCTGCGGTGAATCGTCT -ACGGAAATCTGCGGTGAATGCACT -ACGGAAATCTGCGGTGAACTGACT -ACGGAAATCTGCGGTGAACAACCT -ACGGAAATCTGCGGTGAAGCTACT -ACGGAAATCTGCGGTGAAGGATCT -ACGGAAATCTGCGGTGAAAAGGCT -ACGGAAATCTGCGGTGAATCAACC -ACGGAAATCTGCGGTGAATGTTCC -ACGGAAATCTGCGGTGAAATTCCC -ACGGAAATCTGCGGTGAATTCTCG -ACGGAAATCTGCGGTGAATAGACG -ACGGAAATCTGCGGTGAAGTAACG -ACGGAAATCTGCGGTGAAACTTCG -ACGGAAATCTGCGGTGAATACGCA -ACGGAAATCTGCGGTGAACTTGCA -ACGGAAATCTGCGGTGAACGAACA -ACGGAAATCTGCGGTGAACAGTCA -ACGGAAATCTGCGGTGAAGATCCA -ACGGAAATCTGCGGTGAAACGACA -ACGGAAATCTGCGGTGAAAGCTCA -ACGGAAATCTGCGGTGAATCACGT -ACGGAAATCTGCGGTGAACGTAGT -ACGGAAATCTGCGGTGAAGTCAGT -ACGGAAATCTGCGGTGAAGAAGGT -ACGGAAATCTGCGGTGAAAACCGT -ACGGAAATCTGCGGTGAATTGTGC -ACGGAAATCTGCGGTGAACTAAGC -ACGGAAATCTGCGGTGAAACTAGC -ACGGAAATCTGCGGTGAAAGATGC -ACGGAAATCTGCGGTGAATGAAGG -ACGGAAATCTGCGGTGAACAATGG -ACGGAAATCTGCGGTGAAATGAGG -ACGGAAATCTGCGGTGAAAATGGG -ACGGAAATCTGCGGTGAATCCTGA -ACGGAAATCTGCGGTGAATAGCGA -ACGGAAATCTGCGGTGAACACAGA -ACGGAAATCTGCGGTGAAGCAAGA -ACGGAAATCTGCGGTGAAGGTTGA -ACGGAAATCTGCGGTGAATCCGAT -ACGGAAATCTGCGGTGAATGGCAT -ACGGAAATCTGCGGTGAACGAGAT -ACGGAAATCTGCGGTGAATACCAC -ACGGAAATCTGCGGTGAACAGAAC -ACGGAAATCTGCGGTGAAGTCTAC -ACGGAAATCTGCGGTGAAACGTAC -ACGGAAATCTGCGGTGAAAGTGAC -ACGGAAATCTGCGGTGAACTGTAG -ACGGAAATCTGCGGTGAACCTAAG -ACGGAAATCTGCGGTGAAGTTCAG -ACGGAAATCTGCGGTGAAGCATAG -ACGGAAATCTGCGGTGAAGACAAG -ACGGAAATCTGCGGTGAAAAGCAG -ACGGAAATCTGCGGTGAACGTCAA -ACGGAAATCTGCGGTGAAGCTGAA -ACGGAAATCTGCGGTGAAAGTACG -ACGGAAATCTGCGGTGAAATCCGA -ACGGAAATCTGCGGTGAAATGGGA -ACGGAAATCTGCGGTGAAGTGCAA -ACGGAAATCTGCGGTGAAGAGGAA -ACGGAAATCTGCGGTGAACAGGTA -ACGGAAATCTGCGGTGAAGACTCT -ACGGAAATCTGCGGTGAAAGTCCT -ACGGAAATCTGCGGTGAATAAGCC -ACGGAAATCTGCGGTGAAATAGCC -ACGGAAATCTGCGGTGAATAACCG -ACGGAAATCTGCGGTGAAATGCCA -ACGGAAATCTGCCGTAACGGAAAC -ACGGAAATCTGCCGTAACAACACC -ACGGAAATCTGCCGTAACATCGAG -ACGGAAATCTGCCGTAACCTCCTT -ACGGAAATCTGCCGTAACCCTGTT -ACGGAAATCTGCCGTAACCGGTTT -ACGGAAATCTGCCGTAACGTGGTT -ACGGAAATCTGCCGTAACGCCTTT -ACGGAAATCTGCCGTAACGGTCTT -ACGGAAATCTGCCGTAACACGCTT -ACGGAAATCTGCCGTAACAGCGTT -ACGGAAATCTGCCGTAACTTCGTC -ACGGAAATCTGCCGTAACTCTCTC -ACGGAAATCTGCCGTAACTGGATC -ACGGAAATCTGCCGTAACCACTTC -ACGGAAATCTGCCGTAACGTACTC -ACGGAAATCTGCCGTAACGATGTC -ACGGAAATCTGCCGTAACACAGTC -ACGGAAATCTGCCGTAACTTGCTG -ACGGAAATCTGCCGTAACTCCATG -ACGGAAATCTGCCGTAACTGTGTG -ACGGAAATCTGCCGTAACCTAGTG -ACGGAAATCTGCCGTAACCATCTG -ACGGAAATCTGCCGTAACGAGTTG -ACGGAAATCTGCCGTAACAGACTG -ACGGAAATCTGCCGTAACTCGGTA -ACGGAAATCTGCCGTAACTGCCTA -ACGGAAATCTGCCGTAACCCACTA -ACGGAAATCTGCCGTAACGGAGTA -ACGGAAATCTGCCGTAACTCGTCT -ACGGAAATCTGCCGTAACTGCACT -ACGGAAATCTGCCGTAACCTGACT -ACGGAAATCTGCCGTAACCAACCT -ACGGAAATCTGCCGTAACGCTACT -ACGGAAATCTGCCGTAACGGATCT -ACGGAAATCTGCCGTAACAAGGCT -ACGGAAATCTGCCGTAACTCAACC -ACGGAAATCTGCCGTAACTGTTCC -ACGGAAATCTGCCGTAACATTCCC -ACGGAAATCTGCCGTAACTTCTCG -ACGGAAATCTGCCGTAACTAGACG -ACGGAAATCTGCCGTAACGTAACG -ACGGAAATCTGCCGTAACACTTCG -ACGGAAATCTGCCGTAACTACGCA -ACGGAAATCTGCCGTAACCTTGCA -ACGGAAATCTGCCGTAACCGAACA -ACGGAAATCTGCCGTAACCAGTCA -ACGGAAATCTGCCGTAACGATCCA -ACGGAAATCTGCCGTAACACGACA -ACGGAAATCTGCCGTAACAGCTCA -ACGGAAATCTGCCGTAACTCACGT -ACGGAAATCTGCCGTAACCGTAGT -ACGGAAATCTGCCGTAACGTCAGT -ACGGAAATCTGCCGTAACGAAGGT -ACGGAAATCTGCCGTAACAACCGT -ACGGAAATCTGCCGTAACTTGTGC -ACGGAAATCTGCCGTAACCTAAGC -ACGGAAATCTGCCGTAACACTAGC -ACGGAAATCTGCCGTAACAGATGC -ACGGAAATCTGCCGTAACTGAAGG -ACGGAAATCTGCCGTAACCAATGG -ACGGAAATCTGCCGTAACATGAGG -ACGGAAATCTGCCGTAACAATGGG -ACGGAAATCTGCCGTAACTCCTGA -ACGGAAATCTGCCGTAACTAGCGA -ACGGAAATCTGCCGTAACCACAGA -ACGGAAATCTGCCGTAACGCAAGA -ACGGAAATCTGCCGTAACGGTTGA -ACGGAAATCTGCCGTAACTCCGAT -ACGGAAATCTGCCGTAACTGGCAT -ACGGAAATCTGCCGTAACCGAGAT -ACGGAAATCTGCCGTAACTACCAC -ACGGAAATCTGCCGTAACCAGAAC -ACGGAAATCTGCCGTAACGTCTAC -ACGGAAATCTGCCGTAACACGTAC -ACGGAAATCTGCCGTAACAGTGAC -ACGGAAATCTGCCGTAACCTGTAG -ACGGAAATCTGCCGTAACCCTAAG -ACGGAAATCTGCCGTAACGTTCAG -ACGGAAATCTGCCGTAACGCATAG -ACGGAAATCTGCCGTAACGACAAG -ACGGAAATCTGCCGTAACAAGCAG -ACGGAAATCTGCCGTAACCGTCAA -ACGGAAATCTGCCGTAACGCTGAA -ACGGAAATCTGCCGTAACAGTACG -ACGGAAATCTGCCGTAACATCCGA -ACGGAAATCTGCCGTAACATGGGA -ACGGAAATCTGCCGTAACGTGCAA -ACGGAAATCTGCCGTAACGAGGAA -ACGGAAATCTGCCGTAACCAGGTA -ACGGAAATCTGCCGTAACGACTCT -ACGGAAATCTGCCGTAACAGTCCT -ACGGAAATCTGCCGTAACTAAGCC -ACGGAAATCTGCCGTAACATAGCC -ACGGAAATCTGCCGTAACTAACCG -ACGGAAATCTGCCGTAACATGCCA -ACGGAAATCTGCTGCTTGGGAAAC -ACGGAAATCTGCTGCTTGAACACC -ACGGAAATCTGCTGCTTGATCGAG -ACGGAAATCTGCTGCTTGCTCCTT -ACGGAAATCTGCTGCTTGCCTGTT -ACGGAAATCTGCTGCTTGCGGTTT -ACGGAAATCTGCTGCTTGGTGGTT -ACGGAAATCTGCTGCTTGGCCTTT -ACGGAAATCTGCTGCTTGGGTCTT -ACGGAAATCTGCTGCTTGACGCTT -ACGGAAATCTGCTGCTTGAGCGTT -ACGGAAATCTGCTGCTTGTTCGTC -ACGGAAATCTGCTGCTTGTCTCTC -ACGGAAATCTGCTGCTTGTGGATC -ACGGAAATCTGCTGCTTGCACTTC -ACGGAAATCTGCTGCTTGGTACTC -ACGGAAATCTGCTGCTTGGATGTC -ACGGAAATCTGCTGCTTGACAGTC -ACGGAAATCTGCTGCTTGTTGCTG -ACGGAAATCTGCTGCTTGTCCATG -ACGGAAATCTGCTGCTTGTGTGTG -ACGGAAATCTGCTGCTTGCTAGTG -ACGGAAATCTGCTGCTTGCATCTG -ACGGAAATCTGCTGCTTGGAGTTG -ACGGAAATCTGCTGCTTGAGACTG -ACGGAAATCTGCTGCTTGTCGGTA -ACGGAAATCTGCTGCTTGTGCCTA -ACGGAAATCTGCTGCTTGCCACTA -ACGGAAATCTGCTGCTTGGGAGTA -ACGGAAATCTGCTGCTTGTCGTCT -ACGGAAATCTGCTGCTTGTGCACT -ACGGAAATCTGCTGCTTGCTGACT -ACGGAAATCTGCTGCTTGCAACCT -ACGGAAATCTGCTGCTTGGCTACT -ACGGAAATCTGCTGCTTGGGATCT -ACGGAAATCTGCTGCTTGAAGGCT -ACGGAAATCTGCTGCTTGTCAACC -ACGGAAATCTGCTGCTTGTGTTCC -ACGGAAATCTGCTGCTTGATTCCC -ACGGAAATCTGCTGCTTGTTCTCG -ACGGAAATCTGCTGCTTGTAGACG -ACGGAAATCTGCTGCTTGGTAACG -ACGGAAATCTGCTGCTTGACTTCG -ACGGAAATCTGCTGCTTGTACGCA -ACGGAAATCTGCTGCTTGCTTGCA -ACGGAAATCTGCTGCTTGCGAACA -ACGGAAATCTGCTGCTTGCAGTCA -ACGGAAATCTGCTGCTTGGATCCA -ACGGAAATCTGCTGCTTGACGACA -ACGGAAATCTGCTGCTTGAGCTCA -ACGGAAATCTGCTGCTTGTCACGT -ACGGAAATCTGCTGCTTGCGTAGT -ACGGAAATCTGCTGCTTGGTCAGT -ACGGAAATCTGCTGCTTGGAAGGT -ACGGAAATCTGCTGCTTGAACCGT -ACGGAAATCTGCTGCTTGTTGTGC -ACGGAAATCTGCTGCTTGCTAAGC -ACGGAAATCTGCTGCTTGACTAGC -ACGGAAATCTGCTGCTTGAGATGC -ACGGAAATCTGCTGCTTGTGAAGG -ACGGAAATCTGCTGCTTGCAATGG -ACGGAAATCTGCTGCTTGATGAGG -ACGGAAATCTGCTGCTTGAATGGG -ACGGAAATCTGCTGCTTGTCCTGA -ACGGAAATCTGCTGCTTGTAGCGA -ACGGAAATCTGCTGCTTGCACAGA -ACGGAAATCTGCTGCTTGGCAAGA -ACGGAAATCTGCTGCTTGGGTTGA -ACGGAAATCTGCTGCTTGTCCGAT -ACGGAAATCTGCTGCTTGTGGCAT -ACGGAAATCTGCTGCTTGCGAGAT -ACGGAAATCTGCTGCTTGTACCAC -ACGGAAATCTGCTGCTTGCAGAAC -ACGGAAATCTGCTGCTTGGTCTAC -ACGGAAATCTGCTGCTTGACGTAC -ACGGAAATCTGCTGCTTGAGTGAC -ACGGAAATCTGCTGCTTGCTGTAG -ACGGAAATCTGCTGCTTGCCTAAG -ACGGAAATCTGCTGCTTGGTTCAG -ACGGAAATCTGCTGCTTGGCATAG -ACGGAAATCTGCTGCTTGGACAAG -ACGGAAATCTGCTGCTTGAAGCAG -ACGGAAATCTGCTGCTTGCGTCAA -ACGGAAATCTGCTGCTTGGCTGAA -ACGGAAATCTGCTGCTTGAGTACG -ACGGAAATCTGCTGCTTGATCCGA -ACGGAAATCTGCTGCTTGATGGGA -ACGGAAATCTGCTGCTTGGTGCAA -ACGGAAATCTGCTGCTTGGAGGAA -ACGGAAATCTGCTGCTTGCAGGTA -ACGGAAATCTGCTGCTTGGACTCT -ACGGAAATCTGCTGCTTGAGTCCT -ACGGAAATCTGCTGCTTGTAAGCC -ACGGAAATCTGCTGCTTGATAGCC -ACGGAAATCTGCTGCTTGTAACCG -ACGGAAATCTGCTGCTTGATGCCA -ACGGAAATCTGCAGCCTAGGAAAC -ACGGAAATCTGCAGCCTAAACACC -ACGGAAATCTGCAGCCTAATCGAG -ACGGAAATCTGCAGCCTACTCCTT -ACGGAAATCTGCAGCCTACCTGTT -ACGGAAATCTGCAGCCTACGGTTT -ACGGAAATCTGCAGCCTAGTGGTT -ACGGAAATCTGCAGCCTAGCCTTT -ACGGAAATCTGCAGCCTAGGTCTT -ACGGAAATCTGCAGCCTAACGCTT -ACGGAAATCTGCAGCCTAAGCGTT -ACGGAAATCTGCAGCCTATTCGTC -ACGGAAATCTGCAGCCTATCTCTC -ACGGAAATCTGCAGCCTATGGATC -ACGGAAATCTGCAGCCTACACTTC -ACGGAAATCTGCAGCCTAGTACTC -ACGGAAATCTGCAGCCTAGATGTC -ACGGAAATCTGCAGCCTAACAGTC -ACGGAAATCTGCAGCCTATTGCTG -ACGGAAATCTGCAGCCTATCCATG -ACGGAAATCTGCAGCCTATGTGTG -ACGGAAATCTGCAGCCTACTAGTG -ACGGAAATCTGCAGCCTACATCTG -ACGGAAATCTGCAGCCTAGAGTTG -ACGGAAATCTGCAGCCTAAGACTG -ACGGAAATCTGCAGCCTATCGGTA -ACGGAAATCTGCAGCCTATGCCTA -ACGGAAATCTGCAGCCTACCACTA -ACGGAAATCTGCAGCCTAGGAGTA -ACGGAAATCTGCAGCCTATCGTCT -ACGGAAATCTGCAGCCTATGCACT -ACGGAAATCTGCAGCCTACTGACT -ACGGAAATCTGCAGCCTACAACCT -ACGGAAATCTGCAGCCTAGCTACT -ACGGAAATCTGCAGCCTAGGATCT -ACGGAAATCTGCAGCCTAAAGGCT -ACGGAAATCTGCAGCCTATCAACC -ACGGAAATCTGCAGCCTATGTTCC -ACGGAAATCTGCAGCCTAATTCCC -ACGGAAATCTGCAGCCTATTCTCG -ACGGAAATCTGCAGCCTATAGACG -ACGGAAATCTGCAGCCTAGTAACG -ACGGAAATCTGCAGCCTAACTTCG -ACGGAAATCTGCAGCCTATACGCA -ACGGAAATCTGCAGCCTACTTGCA -ACGGAAATCTGCAGCCTACGAACA -ACGGAAATCTGCAGCCTACAGTCA -ACGGAAATCTGCAGCCTAGATCCA -ACGGAAATCTGCAGCCTAACGACA -ACGGAAATCTGCAGCCTAAGCTCA -ACGGAAATCTGCAGCCTATCACGT -ACGGAAATCTGCAGCCTACGTAGT -ACGGAAATCTGCAGCCTAGTCAGT -ACGGAAATCTGCAGCCTAGAAGGT -ACGGAAATCTGCAGCCTAAACCGT -ACGGAAATCTGCAGCCTATTGTGC -ACGGAAATCTGCAGCCTACTAAGC -ACGGAAATCTGCAGCCTAACTAGC -ACGGAAATCTGCAGCCTAAGATGC -ACGGAAATCTGCAGCCTATGAAGG -ACGGAAATCTGCAGCCTACAATGG -ACGGAAATCTGCAGCCTAATGAGG -ACGGAAATCTGCAGCCTAAATGGG -ACGGAAATCTGCAGCCTATCCTGA -ACGGAAATCTGCAGCCTATAGCGA -ACGGAAATCTGCAGCCTACACAGA -ACGGAAATCTGCAGCCTAGCAAGA -ACGGAAATCTGCAGCCTAGGTTGA -ACGGAAATCTGCAGCCTATCCGAT -ACGGAAATCTGCAGCCTATGGCAT -ACGGAAATCTGCAGCCTACGAGAT -ACGGAAATCTGCAGCCTATACCAC -ACGGAAATCTGCAGCCTACAGAAC -ACGGAAATCTGCAGCCTAGTCTAC -ACGGAAATCTGCAGCCTAACGTAC -ACGGAAATCTGCAGCCTAAGTGAC -ACGGAAATCTGCAGCCTACTGTAG -ACGGAAATCTGCAGCCTACCTAAG -ACGGAAATCTGCAGCCTAGTTCAG -ACGGAAATCTGCAGCCTAGCATAG -ACGGAAATCTGCAGCCTAGACAAG -ACGGAAATCTGCAGCCTAAAGCAG -ACGGAAATCTGCAGCCTACGTCAA -ACGGAAATCTGCAGCCTAGCTGAA -ACGGAAATCTGCAGCCTAAGTACG -ACGGAAATCTGCAGCCTAATCCGA -ACGGAAATCTGCAGCCTAATGGGA -ACGGAAATCTGCAGCCTAGTGCAA -ACGGAAATCTGCAGCCTAGAGGAA -ACGGAAATCTGCAGCCTACAGGTA -ACGGAAATCTGCAGCCTAGACTCT -ACGGAAATCTGCAGCCTAAGTCCT -ACGGAAATCTGCAGCCTATAAGCC -ACGGAAATCTGCAGCCTAATAGCC -ACGGAAATCTGCAGCCTATAACCG -ACGGAAATCTGCAGCCTAATGCCA -ACGGAAATCTGCAGCACTGGAAAC -ACGGAAATCTGCAGCACTAACACC -ACGGAAATCTGCAGCACTATCGAG -ACGGAAATCTGCAGCACTCTCCTT -ACGGAAATCTGCAGCACTCCTGTT -ACGGAAATCTGCAGCACTCGGTTT -ACGGAAATCTGCAGCACTGTGGTT -ACGGAAATCTGCAGCACTGCCTTT -ACGGAAATCTGCAGCACTGGTCTT -ACGGAAATCTGCAGCACTACGCTT -ACGGAAATCTGCAGCACTAGCGTT -ACGGAAATCTGCAGCACTTTCGTC -ACGGAAATCTGCAGCACTTCTCTC -ACGGAAATCTGCAGCACTTGGATC -ACGGAAATCTGCAGCACTCACTTC -ACGGAAATCTGCAGCACTGTACTC -ACGGAAATCTGCAGCACTGATGTC -ACGGAAATCTGCAGCACTACAGTC -ACGGAAATCTGCAGCACTTTGCTG -ACGGAAATCTGCAGCACTTCCATG -ACGGAAATCTGCAGCACTTGTGTG -ACGGAAATCTGCAGCACTCTAGTG -ACGGAAATCTGCAGCACTCATCTG -ACGGAAATCTGCAGCACTGAGTTG -ACGGAAATCTGCAGCACTAGACTG -ACGGAAATCTGCAGCACTTCGGTA -ACGGAAATCTGCAGCACTTGCCTA -ACGGAAATCTGCAGCACTCCACTA -ACGGAAATCTGCAGCACTGGAGTA -ACGGAAATCTGCAGCACTTCGTCT -ACGGAAATCTGCAGCACTTGCACT -ACGGAAATCTGCAGCACTCTGACT -ACGGAAATCTGCAGCACTCAACCT -ACGGAAATCTGCAGCACTGCTACT -ACGGAAATCTGCAGCACTGGATCT -ACGGAAATCTGCAGCACTAAGGCT -ACGGAAATCTGCAGCACTTCAACC -ACGGAAATCTGCAGCACTTGTTCC -ACGGAAATCTGCAGCACTATTCCC -ACGGAAATCTGCAGCACTTTCTCG -ACGGAAATCTGCAGCACTTAGACG -ACGGAAATCTGCAGCACTGTAACG -ACGGAAATCTGCAGCACTACTTCG -ACGGAAATCTGCAGCACTTACGCA -ACGGAAATCTGCAGCACTCTTGCA -ACGGAAATCTGCAGCACTCGAACA -ACGGAAATCTGCAGCACTCAGTCA -ACGGAAATCTGCAGCACTGATCCA -ACGGAAATCTGCAGCACTACGACA -ACGGAAATCTGCAGCACTAGCTCA -ACGGAAATCTGCAGCACTTCACGT -ACGGAAATCTGCAGCACTCGTAGT -ACGGAAATCTGCAGCACTGTCAGT -ACGGAAATCTGCAGCACTGAAGGT -ACGGAAATCTGCAGCACTAACCGT -ACGGAAATCTGCAGCACTTTGTGC -ACGGAAATCTGCAGCACTCTAAGC -ACGGAAATCTGCAGCACTACTAGC -ACGGAAATCTGCAGCACTAGATGC -ACGGAAATCTGCAGCACTTGAAGG -ACGGAAATCTGCAGCACTCAATGG -ACGGAAATCTGCAGCACTATGAGG -ACGGAAATCTGCAGCACTAATGGG -ACGGAAATCTGCAGCACTTCCTGA -ACGGAAATCTGCAGCACTTAGCGA -ACGGAAATCTGCAGCACTCACAGA -ACGGAAATCTGCAGCACTGCAAGA -ACGGAAATCTGCAGCACTGGTTGA -ACGGAAATCTGCAGCACTTCCGAT -ACGGAAATCTGCAGCACTTGGCAT -ACGGAAATCTGCAGCACTCGAGAT -ACGGAAATCTGCAGCACTTACCAC -ACGGAAATCTGCAGCACTCAGAAC -ACGGAAATCTGCAGCACTGTCTAC -ACGGAAATCTGCAGCACTACGTAC -ACGGAAATCTGCAGCACTAGTGAC -ACGGAAATCTGCAGCACTCTGTAG -ACGGAAATCTGCAGCACTCCTAAG -ACGGAAATCTGCAGCACTGTTCAG -ACGGAAATCTGCAGCACTGCATAG -ACGGAAATCTGCAGCACTGACAAG -ACGGAAATCTGCAGCACTAAGCAG -ACGGAAATCTGCAGCACTCGTCAA -ACGGAAATCTGCAGCACTGCTGAA -ACGGAAATCTGCAGCACTAGTACG -ACGGAAATCTGCAGCACTATCCGA -ACGGAAATCTGCAGCACTATGGGA -ACGGAAATCTGCAGCACTGTGCAA -ACGGAAATCTGCAGCACTGAGGAA -ACGGAAATCTGCAGCACTCAGGTA -ACGGAAATCTGCAGCACTGACTCT -ACGGAAATCTGCAGCACTAGTCCT -ACGGAAATCTGCAGCACTTAAGCC -ACGGAAATCTGCAGCACTATAGCC -ACGGAAATCTGCAGCACTTAACCG -ACGGAAATCTGCAGCACTATGCCA -ACGGAAATCTGCTGCAGAGGAAAC -ACGGAAATCTGCTGCAGAAACACC -ACGGAAATCTGCTGCAGAATCGAG -ACGGAAATCTGCTGCAGACTCCTT -ACGGAAATCTGCTGCAGACCTGTT -ACGGAAATCTGCTGCAGACGGTTT -ACGGAAATCTGCTGCAGAGTGGTT -ACGGAAATCTGCTGCAGAGCCTTT -ACGGAAATCTGCTGCAGAGGTCTT -ACGGAAATCTGCTGCAGAACGCTT -ACGGAAATCTGCTGCAGAAGCGTT -ACGGAAATCTGCTGCAGATTCGTC -ACGGAAATCTGCTGCAGATCTCTC -ACGGAAATCTGCTGCAGATGGATC -ACGGAAATCTGCTGCAGACACTTC -ACGGAAATCTGCTGCAGAGTACTC -ACGGAAATCTGCTGCAGAGATGTC -ACGGAAATCTGCTGCAGAACAGTC -ACGGAAATCTGCTGCAGATTGCTG -ACGGAAATCTGCTGCAGATCCATG -ACGGAAATCTGCTGCAGATGTGTG -ACGGAAATCTGCTGCAGACTAGTG -ACGGAAATCTGCTGCAGACATCTG -ACGGAAATCTGCTGCAGAGAGTTG -ACGGAAATCTGCTGCAGAAGACTG -ACGGAAATCTGCTGCAGATCGGTA -ACGGAAATCTGCTGCAGATGCCTA -ACGGAAATCTGCTGCAGACCACTA -ACGGAAATCTGCTGCAGAGGAGTA -ACGGAAATCTGCTGCAGATCGTCT -ACGGAAATCTGCTGCAGATGCACT -ACGGAAATCTGCTGCAGACTGACT -ACGGAAATCTGCTGCAGACAACCT -ACGGAAATCTGCTGCAGAGCTACT -ACGGAAATCTGCTGCAGAGGATCT -ACGGAAATCTGCTGCAGAAAGGCT -ACGGAAATCTGCTGCAGATCAACC -ACGGAAATCTGCTGCAGATGTTCC -ACGGAAATCTGCTGCAGAATTCCC -ACGGAAATCTGCTGCAGATTCTCG -ACGGAAATCTGCTGCAGATAGACG -ACGGAAATCTGCTGCAGAGTAACG -ACGGAAATCTGCTGCAGAACTTCG -ACGGAAATCTGCTGCAGATACGCA -ACGGAAATCTGCTGCAGACTTGCA -ACGGAAATCTGCTGCAGACGAACA -ACGGAAATCTGCTGCAGACAGTCA -ACGGAAATCTGCTGCAGAGATCCA -ACGGAAATCTGCTGCAGAACGACA -ACGGAAATCTGCTGCAGAAGCTCA -ACGGAAATCTGCTGCAGATCACGT -ACGGAAATCTGCTGCAGACGTAGT -ACGGAAATCTGCTGCAGAGTCAGT -ACGGAAATCTGCTGCAGAGAAGGT -ACGGAAATCTGCTGCAGAAACCGT -ACGGAAATCTGCTGCAGATTGTGC -ACGGAAATCTGCTGCAGACTAAGC -ACGGAAATCTGCTGCAGAACTAGC -ACGGAAATCTGCTGCAGAAGATGC -ACGGAAATCTGCTGCAGATGAAGG -ACGGAAATCTGCTGCAGACAATGG -ACGGAAATCTGCTGCAGAATGAGG -ACGGAAATCTGCTGCAGAAATGGG -ACGGAAATCTGCTGCAGATCCTGA -ACGGAAATCTGCTGCAGATAGCGA -ACGGAAATCTGCTGCAGACACAGA -ACGGAAATCTGCTGCAGAGCAAGA -ACGGAAATCTGCTGCAGAGGTTGA -ACGGAAATCTGCTGCAGATCCGAT -ACGGAAATCTGCTGCAGATGGCAT -ACGGAAATCTGCTGCAGACGAGAT -ACGGAAATCTGCTGCAGATACCAC -ACGGAAATCTGCTGCAGACAGAAC -ACGGAAATCTGCTGCAGAGTCTAC -ACGGAAATCTGCTGCAGAACGTAC -ACGGAAATCTGCTGCAGAAGTGAC -ACGGAAATCTGCTGCAGACTGTAG -ACGGAAATCTGCTGCAGACCTAAG -ACGGAAATCTGCTGCAGAGTTCAG -ACGGAAATCTGCTGCAGAGCATAG -ACGGAAATCTGCTGCAGAGACAAG -ACGGAAATCTGCTGCAGAAAGCAG -ACGGAAATCTGCTGCAGACGTCAA -ACGGAAATCTGCTGCAGAGCTGAA -ACGGAAATCTGCTGCAGAAGTACG -ACGGAAATCTGCTGCAGAATCCGA -ACGGAAATCTGCTGCAGAATGGGA -ACGGAAATCTGCTGCAGAGTGCAA -ACGGAAATCTGCTGCAGAGAGGAA -ACGGAAATCTGCTGCAGACAGGTA -ACGGAAATCTGCTGCAGAGACTCT -ACGGAAATCTGCTGCAGAAGTCCT -ACGGAAATCTGCTGCAGATAAGCC -ACGGAAATCTGCTGCAGAATAGCC -ACGGAAATCTGCTGCAGATAACCG -ACGGAAATCTGCTGCAGAATGCCA -ACGGAAATCTGCAGGTGAGGAAAC -ACGGAAATCTGCAGGTGAAACACC -ACGGAAATCTGCAGGTGAATCGAG -ACGGAAATCTGCAGGTGACTCCTT -ACGGAAATCTGCAGGTGACCTGTT -ACGGAAATCTGCAGGTGACGGTTT -ACGGAAATCTGCAGGTGAGTGGTT -ACGGAAATCTGCAGGTGAGCCTTT -ACGGAAATCTGCAGGTGAGGTCTT -ACGGAAATCTGCAGGTGAACGCTT -ACGGAAATCTGCAGGTGAAGCGTT -ACGGAAATCTGCAGGTGATTCGTC -ACGGAAATCTGCAGGTGATCTCTC -ACGGAAATCTGCAGGTGATGGATC -ACGGAAATCTGCAGGTGACACTTC -ACGGAAATCTGCAGGTGAGTACTC -ACGGAAATCTGCAGGTGAGATGTC -ACGGAAATCTGCAGGTGAACAGTC -ACGGAAATCTGCAGGTGATTGCTG -ACGGAAATCTGCAGGTGATCCATG -ACGGAAATCTGCAGGTGATGTGTG -ACGGAAATCTGCAGGTGACTAGTG -ACGGAAATCTGCAGGTGACATCTG -ACGGAAATCTGCAGGTGAGAGTTG -ACGGAAATCTGCAGGTGAAGACTG -ACGGAAATCTGCAGGTGATCGGTA -ACGGAAATCTGCAGGTGATGCCTA -ACGGAAATCTGCAGGTGACCACTA -ACGGAAATCTGCAGGTGAGGAGTA -ACGGAAATCTGCAGGTGATCGTCT -ACGGAAATCTGCAGGTGATGCACT -ACGGAAATCTGCAGGTGACTGACT -ACGGAAATCTGCAGGTGACAACCT -ACGGAAATCTGCAGGTGAGCTACT -ACGGAAATCTGCAGGTGAGGATCT -ACGGAAATCTGCAGGTGAAAGGCT -ACGGAAATCTGCAGGTGATCAACC -ACGGAAATCTGCAGGTGATGTTCC -ACGGAAATCTGCAGGTGAATTCCC -ACGGAAATCTGCAGGTGATTCTCG -ACGGAAATCTGCAGGTGATAGACG -ACGGAAATCTGCAGGTGAGTAACG -ACGGAAATCTGCAGGTGAACTTCG -ACGGAAATCTGCAGGTGATACGCA -ACGGAAATCTGCAGGTGACTTGCA -ACGGAAATCTGCAGGTGACGAACA -ACGGAAATCTGCAGGTGACAGTCA -ACGGAAATCTGCAGGTGAGATCCA -ACGGAAATCTGCAGGTGAACGACA -ACGGAAATCTGCAGGTGAAGCTCA -ACGGAAATCTGCAGGTGATCACGT -ACGGAAATCTGCAGGTGACGTAGT -ACGGAAATCTGCAGGTGAGTCAGT -ACGGAAATCTGCAGGTGAGAAGGT -ACGGAAATCTGCAGGTGAAACCGT -ACGGAAATCTGCAGGTGATTGTGC -ACGGAAATCTGCAGGTGACTAAGC -ACGGAAATCTGCAGGTGAACTAGC -ACGGAAATCTGCAGGTGAAGATGC -ACGGAAATCTGCAGGTGATGAAGG -ACGGAAATCTGCAGGTGACAATGG -ACGGAAATCTGCAGGTGAATGAGG -ACGGAAATCTGCAGGTGAAATGGG -ACGGAAATCTGCAGGTGATCCTGA -ACGGAAATCTGCAGGTGATAGCGA -ACGGAAATCTGCAGGTGACACAGA -ACGGAAATCTGCAGGTGAGCAAGA -ACGGAAATCTGCAGGTGAGGTTGA -ACGGAAATCTGCAGGTGATCCGAT -ACGGAAATCTGCAGGTGATGGCAT -ACGGAAATCTGCAGGTGACGAGAT -ACGGAAATCTGCAGGTGATACCAC -ACGGAAATCTGCAGGTGACAGAAC -ACGGAAATCTGCAGGTGAGTCTAC -ACGGAAATCTGCAGGTGAACGTAC -ACGGAAATCTGCAGGTGAAGTGAC -ACGGAAATCTGCAGGTGACTGTAG -ACGGAAATCTGCAGGTGACCTAAG -ACGGAAATCTGCAGGTGAGTTCAG -ACGGAAATCTGCAGGTGAGCATAG -ACGGAAATCTGCAGGTGAGACAAG -ACGGAAATCTGCAGGTGAAAGCAG -ACGGAAATCTGCAGGTGACGTCAA -ACGGAAATCTGCAGGTGAGCTGAA -ACGGAAATCTGCAGGTGAAGTACG -ACGGAAATCTGCAGGTGAATCCGA -ACGGAAATCTGCAGGTGAATGGGA -ACGGAAATCTGCAGGTGAGTGCAA -ACGGAAATCTGCAGGTGAGAGGAA -ACGGAAATCTGCAGGTGACAGGTA -ACGGAAATCTGCAGGTGAGACTCT -ACGGAAATCTGCAGGTGAAGTCCT -ACGGAAATCTGCAGGTGATAAGCC -ACGGAAATCTGCAGGTGAATAGCC -ACGGAAATCTGCAGGTGATAACCG -ACGGAAATCTGCAGGTGAATGCCA -ACGGAAATCTGCTGGCAAGGAAAC -ACGGAAATCTGCTGGCAAAACACC -ACGGAAATCTGCTGGCAAATCGAG -ACGGAAATCTGCTGGCAACTCCTT -ACGGAAATCTGCTGGCAACCTGTT -ACGGAAATCTGCTGGCAACGGTTT -ACGGAAATCTGCTGGCAAGTGGTT -ACGGAAATCTGCTGGCAAGCCTTT -ACGGAAATCTGCTGGCAAGGTCTT -ACGGAAATCTGCTGGCAAACGCTT -ACGGAAATCTGCTGGCAAAGCGTT -ACGGAAATCTGCTGGCAATTCGTC -ACGGAAATCTGCTGGCAATCTCTC -ACGGAAATCTGCTGGCAATGGATC -ACGGAAATCTGCTGGCAACACTTC -ACGGAAATCTGCTGGCAAGTACTC -ACGGAAATCTGCTGGCAAGATGTC -ACGGAAATCTGCTGGCAAACAGTC -ACGGAAATCTGCTGGCAATTGCTG -ACGGAAATCTGCTGGCAATCCATG -ACGGAAATCTGCTGGCAATGTGTG -ACGGAAATCTGCTGGCAACTAGTG -ACGGAAATCTGCTGGCAACATCTG -ACGGAAATCTGCTGGCAAGAGTTG -ACGGAAATCTGCTGGCAAAGACTG -ACGGAAATCTGCTGGCAATCGGTA -ACGGAAATCTGCTGGCAATGCCTA -ACGGAAATCTGCTGGCAACCACTA -ACGGAAATCTGCTGGCAAGGAGTA -ACGGAAATCTGCTGGCAATCGTCT -ACGGAAATCTGCTGGCAATGCACT -ACGGAAATCTGCTGGCAACTGACT -ACGGAAATCTGCTGGCAACAACCT -ACGGAAATCTGCTGGCAAGCTACT -ACGGAAATCTGCTGGCAAGGATCT -ACGGAAATCTGCTGGCAAAAGGCT -ACGGAAATCTGCTGGCAATCAACC -ACGGAAATCTGCTGGCAATGTTCC -ACGGAAATCTGCTGGCAAATTCCC -ACGGAAATCTGCTGGCAATTCTCG -ACGGAAATCTGCTGGCAATAGACG -ACGGAAATCTGCTGGCAAGTAACG -ACGGAAATCTGCTGGCAAACTTCG -ACGGAAATCTGCTGGCAATACGCA -ACGGAAATCTGCTGGCAACTTGCA -ACGGAAATCTGCTGGCAACGAACA -ACGGAAATCTGCTGGCAACAGTCA -ACGGAAATCTGCTGGCAAGATCCA -ACGGAAATCTGCTGGCAAACGACA -ACGGAAATCTGCTGGCAAAGCTCA -ACGGAAATCTGCTGGCAATCACGT -ACGGAAATCTGCTGGCAACGTAGT -ACGGAAATCTGCTGGCAAGTCAGT -ACGGAAATCTGCTGGCAAGAAGGT -ACGGAAATCTGCTGGCAAAACCGT -ACGGAAATCTGCTGGCAATTGTGC -ACGGAAATCTGCTGGCAACTAAGC -ACGGAAATCTGCTGGCAAACTAGC -ACGGAAATCTGCTGGCAAAGATGC -ACGGAAATCTGCTGGCAATGAAGG -ACGGAAATCTGCTGGCAACAATGG -ACGGAAATCTGCTGGCAAATGAGG -ACGGAAATCTGCTGGCAAAATGGG -ACGGAAATCTGCTGGCAATCCTGA -ACGGAAATCTGCTGGCAATAGCGA -ACGGAAATCTGCTGGCAACACAGA -ACGGAAATCTGCTGGCAAGCAAGA -ACGGAAATCTGCTGGCAAGGTTGA -ACGGAAATCTGCTGGCAATCCGAT -ACGGAAATCTGCTGGCAATGGCAT -ACGGAAATCTGCTGGCAACGAGAT -ACGGAAATCTGCTGGCAATACCAC -ACGGAAATCTGCTGGCAACAGAAC -ACGGAAATCTGCTGGCAAGTCTAC -ACGGAAATCTGCTGGCAAACGTAC -ACGGAAATCTGCTGGCAAAGTGAC -ACGGAAATCTGCTGGCAACTGTAG -ACGGAAATCTGCTGGCAACCTAAG -ACGGAAATCTGCTGGCAAGTTCAG -ACGGAAATCTGCTGGCAAGCATAG -ACGGAAATCTGCTGGCAAGACAAG -ACGGAAATCTGCTGGCAAAAGCAG -ACGGAAATCTGCTGGCAACGTCAA -ACGGAAATCTGCTGGCAAGCTGAA -ACGGAAATCTGCTGGCAAAGTACG -ACGGAAATCTGCTGGCAAATCCGA -ACGGAAATCTGCTGGCAAATGGGA -ACGGAAATCTGCTGGCAAGTGCAA -ACGGAAATCTGCTGGCAAGAGGAA -ACGGAAATCTGCTGGCAACAGGTA -ACGGAAATCTGCTGGCAAGACTCT -ACGGAAATCTGCTGGCAAAGTCCT -ACGGAAATCTGCTGGCAATAAGCC -ACGGAAATCTGCTGGCAAATAGCC -ACGGAAATCTGCTGGCAATAACCG -ACGGAAATCTGCTGGCAAATGCCA -ACGGAAATCTGCAGGATGGGAAAC -ACGGAAATCTGCAGGATGAACACC -ACGGAAATCTGCAGGATGATCGAG -ACGGAAATCTGCAGGATGCTCCTT -ACGGAAATCTGCAGGATGCCTGTT -ACGGAAATCTGCAGGATGCGGTTT -ACGGAAATCTGCAGGATGGTGGTT -ACGGAAATCTGCAGGATGGCCTTT -ACGGAAATCTGCAGGATGGGTCTT -ACGGAAATCTGCAGGATGACGCTT -ACGGAAATCTGCAGGATGAGCGTT -ACGGAAATCTGCAGGATGTTCGTC -ACGGAAATCTGCAGGATGTCTCTC -ACGGAAATCTGCAGGATGTGGATC -ACGGAAATCTGCAGGATGCACTTC -ACGGAAATCTGCAGGATGGTACTC -ACGGAAATCTGCAGGATGGATGTC -ACGGAAATCTGCAGGATGACAGTC -ACGGAAATCTGCAGGATGTTGCTG -ACGGAAATCTGCAGGATGTCCATG -ACGGAAATCTGCAGGATGTGTGTG -ACGGAAATCTGCAGGATGCTAGTG -ACGGAAATCTGCAGGATGCATCTG -ACGGAAATCTGCAGGATGGAGTTG -ACGGAAATCTGCAGGATGAGACTG -ACGGAAATCTGCAGGATGTCGGTA -ACGGAAATCTGCAGGATGTGCCTA -ACGGAAATCTGCAGGATGCCACTA -ACGGAAATCTGCAGGATGGGAGTA -ACGGAAATCTGCAGGATGTCGTCT -ACGGAAATCTGCAGGATGTGCACT -ACGGAAATCTGCAGGATGCTGACT -ACGGAAATCTGCAGGATGCAACCT -ACGGAAATCTGCAGGATGGCTACT -ACGGAAATCTGCAGGATGGGATCT -ACGGAAATCTGCAGGATGAAGGCT -ACGGAAATCTGCAGGATGTCAACC -ACGGAAATCTGCAGGATGTGTTCC -ACGGAAATCTGCAGGATGATTCCC -ACGGAAATCTGCAGGATGTTCTCG -ACGGAAATCTGCAGGATGTAGACG -ACGGAAATCTGCAGGATGGTAACG -ACGGAAATCTGCAGGATGACTTCG -ACGGAAATCTGCAGGATGTACGCA -ACGGAAATCTGCAGGATGCTTGCA -ACGGAAATCTGCAGGATGCGAACA -ACGGAAATCTGCAGGATGCAGTCA -ACGGAAATCTGCAGGATGGATCCA -ACGGAAATCTGCAGGATGACGACA -ACGGAAATCTGCAGGATGAGCTCA -ACGGAAATCTGCAGGATGTCACGT -ACGGAAATCTGCAGGATGCGTAGT -ACGGAAATCTGCAGGATGGTCAGT -ACGGAAATCTGCAGGATGGAAGGT -ACGGAAATCTGCAGGATGAACCGT -ACGGAAATCTGCAGGATGTTGTGC -ACGGAAATCTGCAGGATGCTAAGC -ACGGAAATCTGCAGGATGACTAGC -ACGGAAATCTGCAGGATGAGATGC -ACGGAAATCTGCAGGATGTGAAGG -ACGGAAATCTGCAGGATGCAATGG -ACGGAAATCTGCAGGATGATGAGG -ACGGAAATCTGCAGGATGAATGGG -ACGGAAATCTGCAGGATGTCCTGA -ACGGAAATCTGCAGGATGTAGCGA -ACGGAAATCTGCAGGATGCACAGA -ACGGAAATCTGCAGGATGGCAAGA -ACGGAAATCTGCAGGATGGGTTGA -ACGGAAATCTGCAGGATGTCCGAT -ACGGAAATCTGCAGGATGTGGCAT -ACGGAAATCTGCAGGATGCGAGAT -ACGGAAATCTGCAGGATGTACCAC -ACGGAAATCTGCAGGATGCAGAAC -ACGGAAATCTGCAGGATGGTCTAC -ACGGAAATCTGCAGGATGACGTAC -ACGGAAATCTGCAGGATGAGTGAC -ACGGAAATCTGCAGGATGCTGTAG -ACGGAAATCTGCAGGATGCCTAAG -ACGGAAATCTGCAGGATGGTTCAG -ACGGAAATCTGCAGGATGGCATAG -ACGGAAATCTGCAGGATGGACAAG -ACGGAAATCTGCAGGATGAAGCAG -ACGGAAATCTGCAGGATGCGTCAA -ACGGAAATCTGCAGGATGGCTGAA -ACGGAAATCTGCAGGATGAGTACG -ACGGAAATCTGCAGGATGATCCGA -ACGGAAATCTGCAGGATGATGGGA -ACGGAAATCTGCAGGATGGTGCAA -ACGGAAATCTGCAGGATGGAGGAA -ACGGAAATCTGCAGGATGCAGGTA -ACGGAAATCTGCAGGATGGACTCT -ACGGAAATCTGCAGGATGAGTCCT -ACGGAAATCTGCAGGATGTAAGCC -ACGGAAATCTGCAGGATGATAGCC -ACGGAAATCTGCAGGATGTAACCG -ACGGAAATCTGCAGGATGATGCCA -ACGGAAATCTGCGGGAATGGAAAC -ACGGAAATCTGCGGGAATAACACC -ACGGAAATCTGCGGGAATATCGAG -ACGGAAATCTGCGGGAATCTCCTT -ACGGAAATCTGCGGGAATCCTGTT -ACGGAAATCTGCGGGAATCGGTTT -ACGGAAATCTGCGGGAATGTGGTT -ACGGAAATCTGCGGGAATGCCTTT -ACGGAAATCTGCGGGAATGGTCTT -ACGGAAATCTGCGGGAATACGCTT -ACGGAAATCTGCGGGAATAGCGTT -ACGGAAATCTGCGGGAATTTCGTC -ACGGAAATCTGCGGGAATTCTCTC -ACGGAAATCTGCGGGAATTGGATC -ACGGAAATCTGCGGGAATCACTTC -ACGGAAATCTGCGGGAATGTACTC -ACGGAAATCTGCGGGAATGATGTC -ACGGAAATCTGCGGGAATACAGTC -ACGGAAATCTGCGGGAATTTGCTG -ACGGAAATCTGCGGGAATTCCATG -ACGGAAATCTGCGGGAATTGTGTG -ACGGAAATCTGCGGGAATCTAGTG -ACGGAAATCTGCGGGAATCATCTG -ACGGAAATCTGCGGGAATGAGTTG -ACGGAAATCTGCGGGAATAGACTG -ACGGAAATCTGCGGGAATTCGGTA -ACGGAAATCTGCGGGAATTGCCTA -ACGGAAATCTGCGGGAATCCACTA -ACGGAAATCTGCGGGAATGGAGTA -ACGGAAATCTGCGGGAATTCGTCT -ACGGAAATCTGCGGGAATTGCACT -ACGGAAATCTGCGGGAATCTGACT -ACGGAAATCTGCGGGAATCAACCT -ACGGAAATCTGCGGGAATGCTACT -ACGGAAATCTGCGGGAATGGATCT -ACGGAAATCTGCGGGAATAAGGCT -ACGGAAATCTGCGGGAATTCAACC -ACGGAAATCTGCGGGAATTGTTCC -ACGGAAATCTGCGGGAATATTCCC -ACGGAAATCTGCGGGAATTTCTCG -ACGGAAATCTGCGGGAATTAGACG -ACGGAAATCTGCGGGAATGTAACG -ACGGAAATCTGCGGGAATACTTCG -ACGGAAATCTGCGGGAATTACGCA -ACGGAAATCTGCGGGAATCTTGCA -ACGGAAATCTGCGGGAATCGAACA -ACGGAAATCTGCGGGAATCAGTCA -ACGGAAATCTGCGGGAATGATCCA -ACGGAAATCTGCGGGAATACGACA -ACGGAAATCTGCGGGAATAGCTCA -ACGGAAATCTGCGGGAATTCACGT -ACGGAAATCTGCGGGAATCGTAGT -ACGGAAATCTGCGGGAATGTCAGT -ACGGAAATCTGCGGGAATGAAGGT -ACGGAAATCTGCGGGAATAACCGT -ACGGAAATCTGCGGGAATTTGTGC -ACGGAAATCTGCGGGAATCTAAGC -ACGGAAATCTGCGGGAATACTAGC -ACGGAAATCTGCGGGAATAGATGC -ACGGAAATCTGCGGGAATTGAAGG -ACGGAAATCTGCGGGAATCAATGG -ACGGAAATCTGCGGGAATATGAGG -ACGGAAATCTGCGGGAATAATGGG -ACGGAAATCTGCGGGAATTCCTGA -ACGGAAATCTGCGGGAATTAGCGA -ACGGAAATCTGCGGGAATCACAGA -ACGGAAATCTGCGGGAATGCAAGA -ACGGAAATCTGCGGGAATGGTTGA -ACGGAAATCTGCGGGAATTCCGAT -ACGGAAATCTGCGGGAATTGGCAT -ACGGAAATCTGCGGGAATCGAGAT -ACGGAAATCTGCGGGAATTACCAC -ACGGAAATCTGCGGGAATCAGAAC -ACGGAAATCTGCGGGAATGTCTAC -ACGGAAATCTGCGGGAATACGTAC -ACGGAAATCTGCGGGAATAGTGAC -ACGGAAATCTGCGGGAATCTGTAG -ACGGAAATCTGCGGGAATCCTAAG -ACGGAAATCTGCGGGAATGTTCAG -ACGGAAATCTGCGGGAATGCATAG -ACGGAAATCTGCGGGAATGACAAG -ACGGAAATCTGCGGGAATAAGCAG -ACGGAAATCTGCGGGAATCGTCAA -ACGGAAATCTGCGGGAATGCTGAA -ACGGAAATCTGCGGGAATAGTACG -ACGGAAATCTGCGGGAATATCCGA -ACGGAAATCTGCGGGAATATGGGA -ACGGAAATCTGCGGGAATGTGCAA -ACGGAAATCTGCGGGAATGAGGAA -ACGGAAATCTGCGGGAATCAGGTA -ACGGAAATCTGCGGGAATGACTCT -ACGGAAATCTGCGGGAATAGTCCT -ACGGAAATCTGCGGGAATTAAGCC -ACGGAAATCTGCGGGAATATAGCC -ACGGAAATCTGCGGGAATTAACCG -ACGGAAATCTGCGGGAATATGCCA -ACGGAAATCTGCTGATCCGGAAAC -ACGGAAATCTGCTGATCCAACACC -ACGGAAATCTGCTGATCCATCGAG -ACGGAAATCTGCTGATCCCTCCTT -ACGGAAATCTGCTGATCCCCTGTT -ACGGAAATCTGCTGATCCCGGTTT -ACGGAAATCTGCTGATCCGTGGTT -ACGGAAATCTGCTGATCCGCCTTT -ACGGAAATCTGCTGATCCGGTCTT -ACGGAAATCTGCTGATCCACGCTT -ACGGAAATCTGCTGATCCAGCGTT -ACGGAAATCTGCTGATCCTTCGTC -ACGGAAATCTGCTGATCCTCTCTC -ACGGAAATCTGCTGATCCTGGATC -ACGGAAATCTGCTGATCCCACTTC -ACGGAAATCTGCTGATCCGTACTC -ACGGAAATCTGCTGATCCGATGTC -ACGGAAATCTGCTGATCCACAGTC -ACGGAAATCTGCTGATCCTTGCTG -ACGGAAATCTGCTGATCCTCCATG -ACGGAAATCTGCTGATCCTGTGTG -ACGGAAATCTGCTGATCCCTAGTG -ACGGAAATCTGCTGATCCCATCTG -ACGGAAATCTGCTGATCCGAGTTG -ACGGAAATCTGCTGATCCAGACTG -ACGGAAATCTGCTGATCCTCGGTA -ACGGAAATCTGCTGATCCTGCCTA -ACGGAAATCTGCTGATCCCCACTA -ACGGAAATCTGCTGATCCGGAGTA -ACGGAAATCTGCTGATCCTCGTCT -ACGGAAATCTGCTGATCCTGCACT -ACGGAAATCTGCTGATCCCTGACT -ACGGAAATCTGCTGATCCCAACCT -ACGGAAATCTGCTGATCCGCTACT -ACGGAAATCTGCTGATCCGGATCT -ACGGAAATCTGCTGATCCAAGGCT -ACGGAAATCTGCTGATCCTCAACC -ACGGAAATCTGCTGATCCTGTTCC -ACGGAAATCTGCTGATCCATTCCC -ACGGAAATCTGCTGATCCTTCTCG -ACGGAAATCTGCTGATCCTAGACG -ACGGAAATCTGCTGATCCGTAACG -ACGGAAATCTGCTGATCCACTTCG -ACGGAAATCTGCTGATCCTACGCA -ACGGAAATCTGCTGATCCCTTGCA -ACGGAAATCTGCTGATCCCGAACA -ACGGAAATCTGCTGATCCCAGTCA -ACGGAAATCTGCTGATCCGATCCA -ACGGAAATCTGCTGATCCACGACA -ACGGAAATCTGCTGATCCAGCTCA -ACGGAAATCTGCTGATCCTCACGT -ACGGAAATCTGCTGATCCCGTAGT -ACGGAAATCTGCTGATCCGTCAGT -ACGGAAATCTGCTGATCCGAAGGT -ACGGAAATCTGCTGATCCAACCGT -ACGGAAATCTGCTGATCCTTGTGC -ACGGAAATCTGCTGATCCCTAAGC -ACGGAAATCTGCTGATCCACTAGC -ACGGAAATCTGCTGATCCAGATGC -ACGGAAATCTGCTGATCCTGAAGG -ACGGAAATCTGCTGATCCCAATGG -ACGGAAATCTGCTGATCCATGAGG -ACGGAAATCTGCTGATCCAATGGG -ACGGAAATCTGCTGATCCTCCTGA -ACGGAAATCTGCTGATCCTAGCGA -ACGGAAATCTGCTGATCCCACAGA -ACGGAAATCTGCTGATCCGCAAGA -ACGGAAATCTGCTGATCCGGTTGA -ACGGAAATCTGCTGATCCTCCGAT -ACGGAAATCTGCTGATCCTGGCAT -ACGGAAATCTGCTGATCCCGAGAT -ACGGAAATCTGCTGATCCTACCAC -ACGGAAATCTGCTGATCCCAGAAC -ACGGAAATCTGCTGATCCGTCTAC -ACGGAAATCTGCTGATCCACGTAC -ACGGAAATCTGCTGATCCAGTGAC -ACGGAAATCTGCTGATCCCTGTAG -ACGGAAATCTGCTGATCCCCTAAG -ACGGAAATCTGCTGATCCGTTCAG -ACGGAAATCTGCTGATCCGCATAG -ACGGAAATCTGCTGATCCGACAAG -ACGGAAATCTGCTGATCCAAGCAG -ACGGAAATCTGCTGATCCCGTCAA -ACGGAAATCTGCTGATCCGCTGAA -ACGGAAATCTGCTGATCCAGTACG -ACGGAAATCTGCTGATCCATCCGA -ACGGAAATCTGCTGATCCATGGGA -ACGGAAATCTGCTGATCCGTGCAA -ACGGAAATCTGCTGATCCGAGGAA -ACGGAAATCTGCTGATCCCAGGTA -ACGGAAATCTGCTGATCCGACTCT -ACGGAAATCTGCTGATCCAGTCCT -ACGGAAATCTGCTGATCCTAAGCC -ACGGAAATCTGCTGATCCATAGCC -ACGGAAATCTGCTGATCCTAACCG -ACGGAAATCTGCTGATCCATGCCA -ACGGAAATCTGCCGATAGGGAAAC -ACGGAAATCTGCCGATAGAACACC -ACGGAAATCTGCCGATAGATCGAG -ACGGAAATCTGCCGATAGCTCCTT -ACGGAAATCTGCCGATAGCCTGTT -ACGGAAATCTGCCGATAGCGGTTT -ACGGAAATCTGCCGATAGGTGGTT -ACGGAAATCTGCCGATAGGCCTTT -ACGGAAATCTGCCGATAGGGTCTT -ACGGAAATCTGCCGATAGACGCTT -ACGGAAATCTGCCGATAGAGCGTT -ACGGAAATCTGCCGATAGTTCGTC -ACGGAAATCTGCCGATAGTCTCTC -ACGGAAATCTGCCGATAGTGGATC -ACGGAAATCTGCCGATAGCACTTC -ACGGAAATCTGCCGATAGGTACTC -ACGGAAATCTGCCGATAGGATGTC -ACGGAAATCTGCCGATAGACAGTC -ACGGAAATCTGCCGATAGTTGCTG -ACGGAAATCTGCCGATAGTCCATG -ACGGAAATCTGCCGATAGTGTGTG -ACGGAAATCTGCCGATAGCTAGTG -ACGGAAATCTGCCGATAGCATCTG -ACGGAAATCTGCCGATAGGAGTTG -ACGGAAATCTGCCGATAGAGACTG -ACGGAAATCTGCCGATAGTCGGTA -ACGGAAATCTGCCGATAGTGCCTA -ACGGAAATCTGCCGATAGCCACTA -ACGGAAATCTGCCGATAGGGAGTA -ACGGAAATCTGCCGATAGTCGTCT -ACGGAAATCTGCCGATAGTGCACT -ACGGAAATCTGCCGATAGCTGACT -ACGGAAATCTGCCGATAGCAACCT -ACGGAAATCTGCCGATAGGCTACT -ACGGAAATCTGCCGATAGGGATCT -ACGGAAATCTGCCGATAGAAGGCT -ACGGAAATCTGCCGATAGTCAACC -ACGGAAATCTGCCGATAGTGTTCC -ACGGAAATCTGCCGATAGATTCCC -ACGGAAATCTGCCGATAGTTCTCG -ACGGAAATCTGCCGATAGTAGACG -ACGGAAATCTGCCGATAGGTAACG -ACGGAAATCTGCCGATAGACTTCG -ACGGAAATCTGCCGATAGTACGCA -ACGGAAATCTGCCGATAGCTTGCA -ACGGAAATCTGCCGATAGCGAACA -ACGGAAATCTGCCGATAGCAGTCA -ACGGAAATCTGCCGATAGGATCCA -ACGGAAATCTGCCGATAGACGACA -ACGGAAATCTGCCGATAGAGCTCA -ACGGAAATCTGCCGATAGTCACGT -ACGGAAATCTGCCGATAGCGTAGT -ACGGAAATCTGCCGATAGGTCAGT -ACGGAAATCTGCCGATAGGAAGGT -ACGGAAATCTGCCGATAGAACCGT -ACGGAAATCTGCCGATAGTTGTGC -ACGGAAATCTGCCGATAGCTAAGC -ACGGAAATCTGCCGATAGACTAGC -ACGGAAATCTGCCGATAGAGATGC -ACGGAAATCTGCCGATAGTGAAGG -ACGGAAATCTGCCGATAGCAATGG -ACGGAAATCTGCCGATAGATGAGG -ACGGAAATCTGCCGATAGAATGGG -ACGGAAATCTGCCGATAGTCCTGA -ACGGAAATCTGCCGATAGTAGCGA -ACGGAAATCTGCCGATAGCACAGA -ACGGAAATCTGCCGATAGGCAAGA -ACGGAAATCTGCCGATAGGGTTGA -ACGGAAATCTGCCGATAGTCCGAT -ACGGAAATCTGCCGATAGTGGCAT -ACGGAAATCTGCCGATAGCGAGAT -ACGGAAATCTGCCGATAGTACCAC -ACGGAAATCTGCCGATAGCAGAAC -ACGGAAATCTGCCGATAGGTCTAC -ACGGAAATCTGCCGATAGACGTAC -ACGGAAATCTGCCGATAGAGTGAC -ACGGAAATCTGCCGATAGCTGTAG -ACGGAAATCTGCCGATAGCCTAAG -ACGGAAATCTGCCGATAGGTTCAG -ACGGAAATCTGCCGATAGGCATAG -ACGGAAATCTGCCGATAGGACAAG -ACGGAAATCTGCCGATAGAAGCAG -ACGGAAATCTGCCGATAGCGTCAA -ACGGAAATCTGCCGATAGGCTGAA -ACGGAAATCTGCCGATAGAGTACG -ACGGAAATCTGCCGATAGATCCGA -ACGGAAATCTGCCGATAGATGGGA -ACGGAAATCTGCCGATAGGTGCAA -ACGGAAATCTGCCGATAGGAGGAA -ACGGAAATCTGCCGATAGCAGGTA -ACGGAAATCTGCCGATAGGACTCT -ACGGAAATCTGCCGATAGAGTCCT -ACGGAAATCTGCCGATAGTAAGCC -ACGGAAATCTGCCGATAGATAGCC -ACGGAAATCTGCCGATAGTAACCG -ACGGAAATCTGCCGATAGATGCCA -ACGGAAATCTGCAGACACGGAAAC -ACGGAAATCTGCAGACACAACACC -ACGGAAATCTGCAGACACATCGAG -ACGGAAATCTGCAGACACCTCCTT -ACGGAAATCTGCAGACACCCTGTT -ACGGAAATCTGCAGACACCGGTTT -ACGGAAATCTGCAGACACGTGGTT -ACGGAAATCTGCAGACACGCCTTT -ACGGAAATCTGCAGACACGGTCTT -ACGGAAATCTGCAGACACACGCTT -ACGGAAATCTGCAGACACAGCGTT -ACGGAAATCTGCAGACACTTCGTC -ACGGAAATCTGCAGACACTCTCTC -ACGGAAATCTGCAGACACTGGATC -ACGGAAATCTGCAGACACCACTTC -ACGGAAATCTGCAGACACGTACTC -ACGGAAATCTGCAGACACGATGTC -ACGGAAATCTGCAGACACACAGTC -ACGGAAATCTGCAGACACTTGCTG -ACGGAAATCTGCAGACACTCCATG -ACGGAAATCTGCAGACACTGTGTG -ACGGAAATCTGCAGACACCTAGTG -ACGGAAATCTGCAGACACCATCTG -ACGGAAATCTGCAGACACGAGTTG -ACGGAAATCTGCAGACACAGACTG -ACGGAAATCTGCAGACACTCGGTA -ACGGAAATCTGCAGACACTGCCTA -ACGGAAATCTGCAGACACCCACTA -ACGGAAATCTGCAGACACGGAGTA -ACGGAAATCTGCAGACACTCGTCT -ACGGAAATCTGCAGACACTGCACT -ACGGAAATCTGCAGACACCTGACT -ACGGAAATCTGCAGACACCAACCT -ACGGAAATCTGCAGACACGCTACT -ACGGAAATCTGCAGACACGGATCT -ACGGAAATCTGCAGACACAAGGCT -ACGGAAATCTGCAGACACTCAACC -ACGGAAATCTGCAGACACTGTTCC -ACGGAAATCTGCAGACACATTCCC -ACGGAAATCTGCAGACACTTCTCG -ACGGAAATCTGCAGACACTAGACG -ACGGAAATCTGCAGACACGTAACG -ACGGAAATCTGCAGACACACTTCG -ACGGAAATCTGCAGACACTACGCA -ACGGAAATCTGCAGACACCTTGCA -ACGGAAATCTGCAGACACCGAACA -ACGGAAATCTGCAGACACCAGTCA -ACGGAAATCTGCAGACACGATCCA -ACGGAAATCTGCAGACACACGACA -ACGGAAATCTGCAGACACAGCTCA -ACGGAAATCTGCAGACACTCACGT -ACGGAAATCTGCAGACACCGTAGT -ACGGAAATCTGCAGACACGTCAGT -ACGGAAATCTGCAGACACGAAGGT -ACGGAAATCTGCAGACACAACCGT -ACGGAAATCTGCAGACACTTGTGC -ACGGAAATCTGCAGACACCTAAGC -ACGGAAATCTGCAGACACACTAGC -ACGGAAATCTGCAGACACAGATGC -ACGGAAATCTGCAGACACTGAAGG -ACGGAAATCTGCAGACACCAATGG -ACGGAAATCTGCAGACACATGAGG -ACGGAAATCTGCAGACACAATGGG -ACGGAAATCTGCAGACACTCCTGA -ACGGAAATCTGCAGACACTAGCGA -ACGGAAATCTGCAGACACCACAGA -ACGGAAATCTGCAGACACGCAAGA -ACGGAAATCTGCAGACACGGTTGA -ACGGAAATCTGCAGACACTCCGAT -ACGGAAATCTGCAGACACTGGCAT -ACGGAAATCTGCAGACACCGAGAT -ACGGAAATCTGCAGACACTACCAC -ACGGAAATCTGCAGACACCAGAAC -ACGGAAATCTGCAGACACGTCTAC -ACGGAAATCTGCAGACACACGTAC -ACGGAAATCTGCAGACACAGTGAC -ACGGAAATCTGCAGACACCTGTAG -ACGGAAATCTGCAGACACCCTAAG -ACGGAAATCTGCAGACACGTTCAG -ACGGAAATCTGCAGACACGCATAG -ACGGAAATCTGCAGACACGACAAG -ACGGAAATCTGCAGACACAAGCAG -ACGGAAATCTGCAGACACCGTCAA -ACGGAAATCTGCAGACACGCTGAA -ACGGAAATCTGCAGACACAGTACG -ACGGAAATCTGCAGACACATCCGA -ACGGAAATCTGCAGACACATGGGA -ACGGAAATCTGCAGACACGTGCAA -ACGGAAATCTGCAGACACGAGGAA -ACGGAAATCTGCAGACACCAGGTA -ACGGAAATCTGCAGACACGACTCT -ACGGAAATCTGCAGACACAGTCCT -ACGGAAATCTGCAGACACTAAGCC -ACGGAAATCTGCAGACACATAGCC -ACGGAAATCTGCAGACACTAACCG -ACGGAAATCTGCAGACACATGCCA -ACGGAAATCTGCAGAGCAGGAAAC -ACGGAAATCTGCAGAGCAAACACC -ACGGAAATCTGCAGAGCAATCGAG -ACGGAAATCTGCAGAGCACTCCTT -ACGGAAATCTGCAGAGCACCTGTT -ACGGAAATCTGCAGAGCACGGTTT -ACGGAAATCTGCAGAGCAGTGGTT -ACGGAAATCTGCAGAGCAGCCTTT -ACGGAAATCTGCAGAGCAGGTCTT -ACGGAAATCTGCAGAGCAACGCTT -ACGGAAATCTGCAGAGCAAGCGTT -ACGGAAATCTGCAGAGCATTCGTC -ACGGAAATCTGCAGAGCATCTCTC -ACGGAAATCTGCAGAGCATGGATC -ACGGAAATCTGCAGAGCACACTTC -ACGGAAATCTGCAGAGCAGTACTC -ACGGAAATCTGCAGAGCAGATGTC -ACGGAAATCTGCAGAGCAACAGTC -ACGGAAATCTGCAGAGCATTGCTG -ACGGAAATCTGCAGAGCATCCATG -ACGGAAATCTGCAGAGCATGTGTG -ACGGAAATCTGCAGAGCACTAGTG -ACGGAAATCTGCAGAGCACATCTG -ACGGAAATCTGCAGAGCAGAGTTG -ACGGAAATCTGCAGAGCAAGACTG -ACGGAAATCTGCAGAGCATCGGTA -ACGGAAATCTGCAGAGCATGCCTA -ACGGAAATCTGCAGAGCACCACTA -ACGGAAATCTGCAGAGCAGGAGTA -ACGGAAATCTGCAGAGCATCGTCT -ACGGAAATCTGCAGAGCATGCACT -ACGGAAATCTGCAGAGCACTGACT -ACGGAAATCTGCAGAGCACAACCT -ACGGAAATCTGCAGAGCAGCTACT -ACGGAAATCTGCAGAGCAGGATCT -ACGGAAATCTGCAGAGCAAAGGCT -ACGGAAATCTGCAGAGCATCAACC -ACGGAAATCTGCAGAGCATGTTCC -ACGGAAATCTGCAGAGCAATTCCC -ACGGAAATCTGCAGAGCATTCTCG -ACGGAAATCTGCAGAGCATAGACG -ACGGAAATCTGCAGAGCAGTAACG -ACGGAAATCTGCAGAGCAACTTCG -ACGGAAATCTGCAGAGCATACGCA -ACGGAAATCTGCAGAGCACTTGCA -ACGGAAATCTGCAGAGCACGAACA -ACGGAAATCTGCAGAGCACAGTCA -ACGGAAATCTGCAGAGCAGATCCA -ACGGAAATCTGCAGAGCAACGACA -ACGGAAATCTGCAGAGCAAGCTCA -ACGGAAATCTGCAGAGCATCACGT -ACGGAAATCTGCAGAGCACGTAGT -ACGGAAATCTGCAGAGCAGTCAGT -ACGGAAATCTGCAGAGCAGAAGGT -ACGGAAATCTGCAGAGCAAACCGT -ACGGAAATCTGCAGAGCATTGTGC -ACGGAAATCTGCAGAGCACTAAGC -ACGGAAATCTGCAGAGCAACTAGC -ACGGAAATCTGCAGAGCAAGATGC -ACGGAAATCTGCAGAGCATGAAGG -ACGGAAATCTGCAGAGCACAATGG -ACGGAAATCTGCAGAGCAATGAGG -ACGGAAATCTGCAGAGCAAATGGG -ACGGAAATCTGCAGAGCATCCTGA -ACGGAAATCTGCAGAGCATAGCGA -ACGGAAATCTGCAGAGCACACAGA -ACGGAAATCTGCAGAGCAGCAAGA -ACGGAAATCTGCAGAGCAGGTTGA -ACGGAAATCTGCAGAGCATCCGAT -ACGGAAATCTGCAGAGCATGGCAT -ACGGAAATCTGCAGAGCACGAGAT -ACGGAAATCTGCAGAGCATACCAC -ACGGAAATCTGCAGAGCACAGAAC -ACGGAAATCTGCAGAGCAGTCTAC -ACGGAAATCTGCAGAGCAACGTAC -ACGGAAATCTGCAGAGCAAGTGAC -ACGGAAATCTGCAGAGCACTGTAG -ACGGAAATCTGCAGAGCACCTAAG -ACGGAAATCTGCAGAGCAGTTCAG -ACGGAAATCTGCAGAGCAGCATAG -ACGGAAATCTGCAGAGCAGACAAG -ACGGAAATCTGCAGAGCAAAGCAG -ACGGAAATCTGCAGAGCACGTCAA -ACGGAAATCTGCAGAGCAGCTGAA -ACGGAAATCTGCAGAGCAAGTACG -ACGGAAATCTGCAGAGCAATCCGA -ACGGAAATCTGCAGAGCAATGGGA -ACGGAAATCTGCAGAGCAGTGCAA -ACGGAAATCTGCAGAGCAGAGGAA -ACGGAAATCTGCAGAGCACAGGTA -ACGGAAATCTGCAGAGCAGACTCT -ACGGAAATCTGCAGAGCAAGTCCT -ACGGAAATCTGCAGAGCATAAGCC -ACGGAAATCTGCAGAGCAATAGCC -ACGGAAATCTGCAGAGCATAACCG -ACGGAAATCTGCAGAGCAATGCCA -ACGGAAATCTGCTGAGGTGGAAAC -ACGGAAATCTGCTGAGGTAACACC -ACGGAAATCTGCTGAGGTATCGAG -ACGGAAATCTGCTGAGGTCTCCTT -ACGGAAATCTGCTGAGGTCCTGTT -ACGGAAATCTGCTGAGGTCGGTTT -ACGGAAATCTGCTGAGGTGTGGTT -ACGGAAATCTGCTGAGGTGCCTTT -ACGGAAATCTGCTGAGGTGGTCTT -ACGGAAATCTGCTGAGGTACGCTT -ACGGAAATCTGCTGAGGTAGCGTT -ACGGAAATCTGCTGAGGTTTCGTC -ACGGAAATCTGCTGAGGTTCTCTC -ACGGAAATCTGCTGAGGTTGGATC -ACGGAAATCTGCTGAGGTCACTTC -ACGGAAATCTGCTGAGGTGTACTC -ACGGAAATCTGCTGAGGTGATGTC -ACGGAAATCTGCTGAGGTACAGTC -ACGGAAATCTGCTGAGGTTTGCTG -ACGGAAATCTGCTGAGGTTCCATG -ACGGAAATCTGCTGAGGTTGTGTG -ACGGAAATCTGCTGAGGTCTAGTG -ACGGAAATCTGCTGAGGTCATCTG -ACGGAAATCTGCTGAGGTGAGTTG -ACGGAAATCTGCTGAGGTAGACTG -ACGGAAATCTGCTGAGGTTCGGTA -ACGGAAATCTGCTGAGGTTGCCTA -ACGGAAATCTGCTGAGGTCCACTA -ACGGAAATCTGCTGAGGTGGAGTA -ACGGAAATCTGCTGAGGTTCGTCT -ACGGAAATCTGCTGAGGTTGCACT -ACGGAAATCTGCTGAGGTCTGACT -ACGGAAATCTGCTGAGGTCAACCT -ACGGAAATCTGCTGAGGTGCTACT -ACGGAAATCTGCTGAGGTGGATCT -ACGGAAATCTGCTGAGGTAAGGCT -ACGGAAATCTGCTGAGGTTCAACC -ACGGAAATCTGCTGAGGTTGTTCC -ACGGAAATCTGCTGAGGTATTCCC -ACGGAAATCTGCTGAGGTTTCTCG -ACGGAAATCTGCTGAGGTTAGACG -ACGGAAATCTGCTGAGGTGTAACG -ACGGAAATCTGCTGAGGTACTTCG -ACGGAAATCTGCTGAGGTTACGCA -ACGGAAATCTGCTGAGGTCTTGCA -ACGGAAATCTGCTGAGGTCGAACA -ACGGAAATCTGCTGAGGTCAGTCA -ACGGAAATCTGCTGAGGTGATCCA -ACGGAAATCTGCTGAGGTACGACA -ACGGAAATCTGCTGAGGTAGCTCA -ACGGAAATCTGCTGAGGTTCACGT -ACGGAAATCTGCTGAGGTCGTAGT -ACGGAAATCTGCTGAGGTGTCAGT -ACGGAAATCTGCTGAGGTGAAGGT -ACGGAAATCTGCTGAGGTAACCGT -ACGGAAATCTGCTGAGGTTTGTGC -ACGGAAATCTGCTGAGGTCTAAGC -ACGGAAATCTGCTGAGGTACTAGC -ACGGAAATCTGCTGAGGTAGATGC -ACGGAAATCTGCTGAGGTTGAAGG -ACGGAAATCTGCTGAGGTCAATGG -ACGGAAATCTGCTGAGGTATGAGG -ACGGAAATCTGCTGAGGTAATGGG -ACGGAAATCTGCTGAGGTTCCTGA -ACGGAAATCTGCTGAGGTTAGCGA -ACGGAAATCTGCTGAGGTCACAGA -ACGGAAATCTGCTGAGGTGCAAGA -ACGGAAATCTGCTGAGGTGGTTGA -ACGGAAATCTGCTGAGGTTCCGAT -ACGGAAATCTGCTGAGGTTGGCAT -ACGGAAATCTGCTGAGGTCGAGAT -ACGGAAATCTGCTGAGGTTACCAC -ACGGAAATCTGCTGAGGTCAGAAC -ACGGAAATCTGCTGAGGTGTCTAC -ACGGAAATCTGCTGAGGTACGTAC -ACGGAAATCTGCTGAGGTAGTGAC -ACGGAAATCTGCTGAGGTCTGTAG -ACGGAAATCTGCTGAGGTCCTAAG -ACGGAAATCTGCTGAGGTGTTCAG -ACGGAAATCTGCTGAGGTGCATAG -ACGGAAATCTGCTGAGGTGACAAG -ACGGAAATCTGCTGAGGTAAGCAG -ACGGAAATCTGCTGAGGTCGTCAA -ACGGAAATCTGCTGAGGTGCTGAA -ACGGAAATCTGCTGAGGTAGTACG -ACGGAAATCTGCTGAGGTATCCGA -ACGGAAATCTGCTGAGGTATGGGA -ACGGAAATCTGCTGAGGTGTGCAA -ACGGAAATCTGCTGAGGTGAGGAA -ACGGAAATCTGCTGAGGTCAGGTA -ACGGAAATCTGCTGAGGTGACTCT -ACGGAAATCTGCTGAGGTAGTCCT -ACGGAAATCTGCTGAGGTTAAGCC -ACGGAAATCTGCTGAGGTATAGCC -ACGGAAATCTGCTGAGGTTAACCG -ACGGAAATCTGCTGAGGTATGCCA -ACGGAAATCTGCGATTCCGGAAAC -ACGGAAATCTGCGATTCCAACACC -ACGGAAATCTGCGATTCCATCGAG -ACGGAAATCTGCGATTCCCTCCTT -ACGGAAATCTGCGATTCCCCTGTT -ACGGAAATCTGCGATTCCCGGTTT -ACGGAAATCTGCGATTCCGTGGTT -ACGGAAATCTGCGATTCCGCCTTT -ACGGAAATCTGCGATTCCGGTCTT -ACGGAAATCTGCGATTCCACGCTT -ACGGAAATCTGCGATTCCAGCGTT -ACGGAAATCTGCGATTCCTTCGTC -ACGGAAATCTGCGATTCCTCTCTC -ACGGAAATCTGCGATTCCTGGATC -ACGGAAATCTGCGATTCCCACTTC -ACGGAAATCTGCGATTCCGTACTC -ACGGAAATCTGCGATTCCGATGTC -ACGGAAATCTGCGATTCCACAGTC -ACGGAAATCTGCGATTCCTTGCTG -ACGGAAATCTGCGATTCCTCCATG -ACGGAAATCTGCGATTCCTGTGTG -ACGGAAATCTGCGATTCCCTAGTG -ACGGAAATCTGCGATTCCCATCTG -ACGGAAATCTGCGATTCCGAGTTG -ACGGAAATCTGCGATTCCAGACTG -ACGGAAATCTGCGATTCCTCGGTA -ACGGAAATCTGCGATTCCTGCCTA -ACGGAAATCTGCGATTCCCCACTA -ACGGAAATCTGCGATTCCGGAGTA -ACGGAAATCTGCGATTCCTCGTCT -ACGGAAATCTGCGATTCCTGCACT -ACGGAAATCTGCGATTCCCTGACT -ACGGAAATCTGCGATTCCCAACCT -ACGGAAATCTGCGATTCCGCTACT -ACGGAAATCTGCGATTCCGGATCT -ACGGAAATCTGCGATTCCAAGGCT -ACGGAAATCTGCGATTCCTCAACC -ACGGAAATCTGCGATTCCTGTTCC -ACGGAAATCTGCGATTCCATTCCC -ACGGAAATCTGCGATTCCTTCTCG -ACGGAAATCTGCGATTCCTAGACG -ACGGAAATCTGCGATTCCGTAACG -ACGGAAATCTGCGATTCCACTTCG -ACGGAAATCTGCGATTCCTACGCA -ACGGAAATCTGCGATTCCCTTGCA -ACGGAAATCTGCGATTCCCGAACA -ACGGAAATCTGCGATTCCCAGTCA -ACGGAAATCTGCGATTCCGATCCA -ACGGAAATCTGCGATTCCACGACA -ACGGAAATCTGCGATTCCAGCTCA -ACGGAAATCTGCGATTCCTCACGT -ACGGAAATCTGCGATTCCCGTAGT -ACGGAAATCTGCGATTCCGTCAGT -ACGGAAATCTGCGATTCCGAAGGT -ACGGAAATCTGCGATTCCAACCGT -ACGGAAATCTGCGATTCCTTGTGC -ACGGAAATCTGCGATTCCCTAAGC -ACGGAAATCTGCGATTCCACTAGC -ACGGAAATCTGCGATTCCAGATGC -ACGGAAATCTGCGATTCCTGAAGG -ACGGAAATCTGCGATTCCCAATGG -ACGGAAATCTGCGATTCCATGAGG -ACGGAAATCTGCGATTCCAATGGG -ACGGAAATCTGCGATTCCTCCTGA -ACGGAAATCTGCGATTCCTAGCGA -ACGGAAATCTGCGATTCCCACAGA -ACGGAAATCTGCGATTCCGCAAGA -ACGGAAATCTGCGATTCCGGTTGA -ACGGAAATCTGCGATTCCTCCGAT -ACGGAAATCTGCGATTCCTGGCAT -ACGGAAATCTGCGATTCCCGAGAT -ACGGAAATCTGCGATTCCTACCAC -ACGGAAATCTGCGATTCCCAGAAC -ACGGAAATCTGCGATTCCGTCTAC -ACGGAAATCTGCGATTCCACGTAC -ACGGAAATCTGCGATTCCAGTGAC -ACGGAAATCTGCGATTCCCTGTAG -ACGGAAATCTGCGATTCCCCTAAG -ACGGAAATCTGCGATTCCGTTCAG -ACGGAAATCTGCGATTCCGCATAG -ACGGAAATCTGCGATTCCGACAAG -ACGGAAATCTGCGATTCCAAGCAG -ACGGAAATCTGCGATTCCCGTCAA -ACGGAAATCTGCGATTCCGCTGAA -ACGGAAATCTGCGATTCCAGTACG -ACGGAAATCTGCGATTCCATCCGA -ACGGAAATCTGCGATTCCATGGGA -ACGGAAATCTGCGATTCCGTGCAA -ACGGAAATCTGCGATTCCGAGGAA -ACGGAAATCTGCGATTCCCAGGTA -ACGGAAATCTGCGATTCCGACTCT -ACGGAAATCTGCGATTCCAGTCCT -ACGGAAATCTGCGATTCCTAAGCC -ACGGAAATCTGCGATTCCATAGCC -ACGGAAATCTGCGATTCCTAACCG -ACGGAAATCTGCGATTCCATGCCA -ACGGAAATCTGCCATTGGGGAAAC -ACGGAAATCTGCCATTGGAACACC -ACGGAAATCTGCCATTGGATCGAG -ACGGAAATCTGCCATTGGCTCCTT -ACGGAAATCTGCCATTGGCCTGTT -ACGGAAATCTGCCATTGGCGGTTT -ACGGAAATCTGCCATTGGGTGGTT -ACGGAAATCTGCCATTGGGCCTTT -ACGGAAATCTGCCATTGGGGTCTT -ACGGAAATCTGCCATTGGACGCTT -ACGGAAATCTGCCATTGGAGCGTT -ACGGAAATCTGCCATTGGTTCGTC -ACGGAAATCTGCCATTGGTCTCTC -ACGGAAATCTGCCATTGGTGGATC -ACGGAAATCTGCCATTGGCACTTC -ACGGAAATCTGCCATTGGGTACTC -ACGGAAATCTGCCATTGGGATGTC -ACGGAAATCTGCCATTGGACAGTC -ACGGAAATCTGCCATTGGTTGCTG -ACGGAAATCTGCCATTGGTCCATG -ACGGAAATCTGCCATTGGTGTGTG -ACGGAAATCTGCCATTGGCTAGTG -ACGGAAATCTGCCATTGGCATCTG -ACGGAAATCTGCCATTGGGAGTTG -ACGGAAATCTGCCATTGGAGACTG -ACGGAAATCTGCCATTGGTCGGTA -ACGGAAATCTGCCATTGGTGCCTA -ACGGAAATCTGCCATTGGCCACTA -ACGGAAATCTGCCATTGGGGAGTA -ACGGAAATCTGCCATTGGTCGTCT -ACGGAAATCTGCCATTGGTGCACT -ACGGAAATCTGCCATTGGCTGACT -ACGGAAATCTGCCATTGGCAACCT -ACGGAAATCTGCCATTGGGCTACT -ACGGAAATCTGCCATTGGGGATCT -ACGGAAATCTGCCATTGGAAGGCT -ACGGAAATCTGCCATTGGTCAACC -ACGGAAATCTGCCATTGGTGTTCC -ACGGAAATCTGCCATTGGATTCCC -ACGGAAATCTGCCATTGGTTCTCG -ACGGAAATCTGCCATTGGTAGACG -ACGGAAATCTGCCATTGGGTAACG -ACGGAAATCTGCCATTGGACTTCG -ACGGAAATCTGCCATTGGTACGCA -ACGGAAATCTGCCATTGGCTTGCA -ACGGAAATCTGCCATTGGCGAACA -ACGGAAATCTGCCATTGGCAGTCA -ACGGAAATCTGCCATTGGGATCCA -ACGGAAATCTGCCATTGGACGACA -ACGGAAATCTGCCATTGGAGCTCA -ACGGAAATCTGCCATTGGTCACGT -ACGGAAATCTGCCATTGGCGTAGT -ACGGAAATCTGCCATTGGGTCAGT -ACGGAAATCTGCCATTGGGAAGGT -ACGGAAATCTGCCATTGGAACCGT -ACGGAAATCTGCCATTGGTTGTGC -ACGGAAATCTGCCATTGGCTAAGC -ACGGAAATCTGCCATTGGACTAGC -ACGGAAATCTGCCATTGGAGATGC -ACGGAAATCTGCCATTGGTGAAGG -ACGGAAATCTGCCATTGGCAATGG -ACGGAAATCTGCCATTGGATGAGG -ACGGAAATCTGCCATTGGAATGGG -ACGGAAATCTGCCATTGGTCCTGA -ACGGAAATCTGCCATTGGTAGCGA -ACGGAAATCTGCCATTGGCACAGA -ACGGAAATCTGCCATTGGGCAAGA -ACGGAAATCTGCCATTGGGGTTGA -ACGGAAATCTGCCATTGGTCCGAT -ACGGAAATCTGCCATTGGTGGCAT -ACGGAAATCTGCCATTGGCGAGAT -ACGGAAATCTGCCATTGGTACCAC -ACGGAAATCTGCCATTGGCAGAAC -ACGGAAATCTGCCATTGGGTCTAC -ACGGAAATCTGCCATTGGACGTAC -ACGGAAATCTGCCATTGGAGTGAC -ACGGAAATCTGCCATTGGCTGTAG -ACGGAAATCTGCCATTGGCCTAAG -ACGGAAATCTGCCATTGGGTTCAG -ACGGAAATCTGCCATTGGGCATAG -ACGGAAATCTGCCATTGGGACAAG -ACGGAAATCTGCCATTGGAAGCAG -ACGGAAATCTGCCATTGGCGTCAA -ACGGAAATCTGCCATTGGGCTGAA -ACGGAAATCTGCCATTGGAGTACG -ACGGAAATCTGCCATTGGATCCGA -ACGGAAATCTGCCATTGGATGGGA -ACGGAAATCTGCCATTGGGTGCAA -ACGGAAATCTGCCATTGGGAGGAA -ACGGAAATCTGCCATTGGCAGGTA -ACGGAAATCTGCCATTGGGACTCT -ACGGAAATCTGCCATTGGAGTCCT -ACGGAAATCTGCCATTGGTAAGCC -ACGGAAATCTGCCATTGGATAGCC -ACGGAAATCTGCCATTGGTAACCG -ACGGAAATCTGCCATTGGATGCCA -ACGGAAATCTGCGATCGAGGAAAC -ACGGAAATCTGCGATCGAAACACC -ACGGAAATCTGCGATCGAATCGAG -ACGGAAATCTGCGATCGACTCCTT -ACGGAAATCTGCGATCGACCTGTT -ACGGAAATCTGCGATCGACGGTTT -ACGGAAATCTGCGATCGAGTGGTT -ACGGAAATCTGCGATCGAGCCTTT -ACGGAAATCTGCGATCGAGGTCTT -ACGGAAATCTGCGATCGAACGCTT -ACGGAAATCTGCGATCGAAGCGTT -ACGGAAATCTGCGATCGATTCGTC -ACGGAAATCTGCGATCGATCTCTC -ACGGAAATCTGCGATCGATGGATC -ACGGAAATCTGCGATCGACACTTC -ACGGAAATCTGCGATCGAGTACTC -ACGGAAATCTGCGATCGAGATGTC -ACGGAAATCTGCGATCGAACAGTC -ACGGAAATCTGCGATCGATTGCTG -ACGGAAATCTGCGATCGATCCATG -ACGGAAATCTGCGATCGATGTGTG -ACGGAAATCTGCGATCGACTAGTG -ACGGAAATCTGCGATCGACATCTG -ACGGAAATCTGCGATCGAGAGTTG -ACGGAAATCTGCGATCGAAGACTG -ACGGAAATCTGCGATCGATCGGTA -ACGGAAATCTGCGATCGATGCCTA -ACGGAAATCTGCGATCGACCACTA -ACGGAAATCTGCGATCGAGGAGTA -ACGGAAATCTGCGATCGATCGTCT -ACGGAAATCTGCGATCGATGCACT -ACGGAAATCTGCGATCGACTGACT -ACGGAAATCTGCGATCGACAACCT -ACGGAAATCTGCGATCGAGCTACT -ACGGAAATCTGCGATCGAGGATCT -ACGGAAATCTGCGATCGAAAGGCT -ACGGAAATCTGCGATCGATCAACC -ACGGAAATCTGCGATCGATGTTCC -ACGGAAATCTGCGATCGAATTCCC -ACGGAAATCTGCGATCGATTCTCG -ACGGAAATCTGCGATCGATAGACG -ACGGAAATCTGCGATCGAGTAACG -ACGGAAATCTGCGATCGAACTTCG -ACGGAAATCTGCGATCGATACGCA -ACGGAAATCTGCGATCGACTTGCA -ACGGAAATCTGCGATCGACGAACA -ACGGAAATCTGCGATCGACAGTCA -ACGGAAATCTGCGATCGAGATCCA -ACGGAAATCTGCGATCGAACGACA -ACGGAAATCTGCGATCGAAGCTCA -ACGGAAATCTGCGATCGATCACGT -ACGGAAATCTGCGATCGACGTAGT -ACGGAAATCTGCGATCGAGTCAGT -ACGGAAATCTGCGATCGAGAAGGT -ACGGAAATCTGCGATCGAAACCGT -ACGGAAATCTGCGATCGATTGTGC -ACGGAAATCTGCGATCGACTAAGC -ACGGAAATCTGCGATCGAACTAGC -ACGGAAATCTGCGATCGAAGATGC -ACGGAAATCTGCGATCGATGAAGG -ACGGAAATCTGCGATCGACAATGG -ACGGAAATCTGCGATCGAATGAGG -ACGGAAATCTGCGATCGAAATGGG -ACGGAAATCTGCGATCGATCCTGA -ACGGAAATCTGCGATCGATAGCGA -ACGGAAATCTGCGATCGACACAGA -ACGGAAATCTGCGATCGAGCAAGA -ACGGAAATCTGCGATCGAGGTTGA -ACGGAAATCTGCGATCGATCCGAT -ACGGAAATCTGCGATCGATGGCAT -ACGGAAATCTGCGATCGACGAGAT -ACGGAAATCTGCGATCGATACCAC -ACGGAAATCTGCGATCGACAGAAC -ACGGAAATCTGCGATCGAGTCTAC -ACGGAAATCTGCGATCGAACGTAC -ACGGAAATCTGCGATCGAAGTGAC -ACGGAAATCTGCGATCGACTGTAG -ACGGAAATCTGCGATCGACCTAAG -ACGGAAATCTGCGATCGAGTTCAG -ACGGAAATCTGCGATCGAGCATAG -ACGGAAATCTGCGATCGAGACAAG -ACGGAAATCTGCGATCGAAAGCAG -ACGGAAATCTGCGATCGACGTCAA -ACGGAAATCTGCGATCGAGCTGAA -ACGGAAATCTGCGATCGAAGTACG -ACGGAAATCTGCGATCGAATCCGA -ACGGAAATCTGCGATCGAATGGGA -ACGGAAATCTGCGATCGAGTGCAA -ACGGAAATCTGCGATCGAGAGGAA -ACGGAAATCTGCGATCGACAGGTA -ACGGAAATCTGCGATCGAGACTCT -ACGGAAATCTGCGATCGAAGTCCT -ACGGAAATCTGCGATCGATAAGCC -ACGGAAATCTGCGATCGAATAGCC -ACGGAAATCTGCGATCGATAACCG -ACGGAAATCTGCGATCGAATGCCA -ACGGAAATCTGCCACTACGGAAAC -ACGGAAATCTGCCACTACAACACC -ACGGAAATCTGCCACTACATCGAG -ACGGAAATCTGCCACTACCTCCTT -ACGGAAATCTGCCACTACCCTGTT -ACGGAAATCTGCCACTACCGGTTT -ACGGAAATCTGCCACTACGTGGTT -ACGGAAATCTGCCACTACGCCTTT -ACGGAAATCTGCCACTACGGTCTT -ACGGAAATCTGCCACTACACGCTT -ACGGAAATCTGCCACTACAGCGTT -ACGGAAATCTGCCACTACTTCGTC -ACGGAAATCTGCCACTACTCTCTC -ACGGAAATCTGCCACTACTGGATC -ACGGAAATCTGCCACTACCACTTC -ACGGAAATCTGCCACTACGTACTC -ACGGAAATCTGCCACTACGATGTC -ACGGAAATCTGCCACTACACAGTC -ACGGAAATCTGCCACTACTTGCTG -ACGGAAATCTGCCACTACTCCATG -ACGGAAATCTGCCACTACTGTGTG -ACGGAAATCTGCCACTACCTAGTG -ACGGAAATCTGCCACTACCATCTG -ACGGAAATCTGCCACTACGAGTTG -ACGGAAATCTGCCACTACAGACTG -ACGGAAATCTGCCACTACTCGGTA -ACGGAAATCTGCCACTACTGCCTA -ACGGAAATCTGCCACTACCCACTA -ACGGAAATCTGCCACTACGGAGTA -ACGGAAATCTGCCACTACTCGTCT -ACGGAAATCTGCCACTACTGCACT -ACGGAAATCTGCCACTACCTGACT -ACGGAAATCTGCCACTACCAACCT -ACGGAAATCTGCCACTACGCTACT -ACGGAAATCTGCCACTACGGATCT -ACGGAAATCTGCCACTACAAGGCT -ACGGAAATCTGCCACTACTCAACC -ACGGAAATCTGCCACTACTGTTCC -ACGGAAATCTGCCACTACATTCCC -ACGGAAATCTGCCACTACTTCTCG -ACGGAAATCTGCCACTACTAGACG -ACGGAAATCTGCCACTACGTAACG -ACGGAAATCTGCCACTACACTTCG -ACGGAAATCTGCCACTACTACGCA -ACGGAAATCTGCCACTACCTTGCA -ACGGAAATCTGCCACTACCGAACA -ACGGAAATCTGCCACTACCAGTCA -ACGGAAATCTGCCACTACGATCCA -ACGGAAATCTGCCACTACACGACA -ACGGAAATCTGCCACTACAGCTCA -ACGGAAATCTGCCACTACTCACGT -ACGGAAATCTGCCACTACCGTAGT -ACGGAAATCTGCCACTACGTCAGT -ACGGAAATCTGCCACTACGAAGGT -ACGGAAATCTGCCACTACAACCGT -ACGGAAATCTGCCACTACTTGTGC -ACGGAAATCTGCCACTACCTAAGC -ACGGAAATCTGCCACTACACTAGC -ACGGAAATCTGCCACTACAGATGC -ACGGAAATCTGCCACTACTGAAGG -ACGGAAATCTGCCACTACCAATGG -ACGGAAATCTGCCACTACATGAGG -ACGGAAATCTGCCACTACAATGGG -ACGGAAATCTGCCACTACTCCTGA -ACGGAAATCTGCCACTACTAGCGA -ACGGAAATCTGCCACTACCACAGA -ACGGAAATCTGCCACTACGCAAGA -ACGGAAATCTGCCACTACGGTTGA -ACGGAAATCTGCCACTACTCCGAT -ACGGAAATCTGCCACTACTGGCAT -ACGGAAATCTGCCACTACCGAGAT -ACGGAAATCTGCCACTACTACCAC -ACGGAAATCTGCCACTACCAGAAC -ACGGAAATCTGCCACTACGTCTAC -ACGGAAATCTGCCACTACACGTAC -ACGGAAATCTGCCACTACAGTGAC -ACGGAAATCTGCCACTACCTGTAG -ACGGAAATCTGCCACTACCCTAAG -ACGGAAATCTGCCACTACGTTCAG -ACGGAAATCTGCCACTACGCATAG -ACGGAAATCTGCCACTACGACAAG -ACGGAAATCTGCCACTACAAGCAG -ACGGAAATCTGCCACTACCGTCAA -ACGGAAATCTGCCACTACGCTGAA -ACGGAAATCTGCCACTACAGTACG -ACGGAAATCTGCCACTACATCCGA -ACGGAAATCTGCCACTACATGGGA -ACGGAAATCTGCCACTACGTGCAA -ACGGAAATCTGCCACTACGAGGAA -ACGGAAATCTGCCACTACCAGGTA -ACGGAAATCTGCCACTACGACTCT -ACGGAAATCTGCCACTACAGTCCT -ACGGAAATCTGCCACTACTAAGCC -ACGGAAATCTGCCACTACATAGCC -ACGGAAATCTGCCACTACTAACCG -ACGGAAATCTGCCACTACATGCCA -ACGGAAATCTGCAACCAGGGAAAC -ACGGAAATCTGCAACCAGAACACC -ACGGAAATCTGCAACCAGATCGAG -ACGGAAATCTGCAACCAGCTCCTT -ACGGAAATCTGCAACCAGCCTGTT -ACGGAAATCTGCAACCAGCGGTTT -ACGGAAATCTGCAACCAGGTGGTT -ACGGAAATCTGCAACCAGGCCTTT -ACGGAAATCTGCAACCAGGGTCTT -ACGGAAATCTGCAACCAGACGCTT -ACGGAAATCTGCAACCAGAGCGTT -ACGGAAATCTGCAACCAGTTCGTC -ACGGAAATCTGCAACCAGTCTCTC -ACGGAAATCTGCAACCAGTGGATC -ACGGAAATCTGCAACCAGCACTTC -ACGGAAATCTGCAACCAGGTACTC -ACGGAAATCTGCAACCAGGATGTC -ACGGAAATCTGCAACCAGACAGTC -ACGGAAATCTGCAACCAGTTGCTG -ACGGAAATCTGCAACCAGTCCATG -ACGGAAATCTGCAACCAGTGTGTG -ACGGAAATCTGCAACCAGCTAGTG -ACGGAAATCTGCAACCAGCATCTG -ACGGAAATCTGCAACCAGGAGTTG -ACGGAAATCTGCAACCAGAGACTG -ACGGAAATCTGCAACCAGTCGGTA -ACGGAAATCTGCAACCAGTGCCTA -ACGGAAATCTGCAACCAGCCACTA -ACGGAAATCTGCAACCAGGGAGTA -ACGGAAATCTGCAACCAGTCGTCT -ACGGAAATCTGCAACCAGTGCACT -ACGGAAATCTGCAACCAGCTGACT -ACGGAAATCTGCAACCAGCAACCT -ACGGAAATCTGCAACCAGGCTACT -ACGGAAATCTGCAACCAGGGATCT -ACGGAAATCTGCAACCAGAAGGCT -ACGGAAATCTGCAACCAGTCAACC -ACGGAAATCTGCAACCAGTGTTCC -ACGGAAATCTGCAACCAGATTCCC -ACGGAAATCTGCAACCAGTTCTCG -ACGGAAATCTGCAACCAGTAGACG -ACGGAAATCTGCAACCAGGTAACG -ACGGAAATCTGCAACCAGACTTCG -ACGGAAATCTGCAACCAGTACGCA -ACGGAAATCTGCAACCAGCTTGCA -ACGGAAATCTGCAACCAGCGAACA -ACGGAAATCTGCAACCAGCAGTCA -ACGGAAATCTGCAACCAGGATCCA -ACGGAAATCTGCAACCAGACGACA -ACGGAAATCTGCAACCAGAGCTCA -ACGGAAATCTGCAACCAGTCACGT -ACGGAAATCTGCAACCAGCGTAGT -ACGGAAATCTGCAACCAGGTCAGT -ACGGAAATCTGCAACCAGGAAGGT -ACGGAAATCTGCAACCAGAACCGT -ACGGAAATCTGCAACCAGTTGTGC -ACGGAAATCTGCAACCAGCTAAGC -ACGGAAATCTGCAACCAGACTAGC -ACGGAAATCTGCAACCAGAGATGC -ACGGAAATCTGCAACCAGTGAAGG -ACGGAAATCTGCAACCAGCAATGG -ACGGAAATCTGCAACCAGATGAGG -ACGGAAATCTGCAACCAGAATGGG -ACGGAAATCTGCAACCAGTCCTGA -ACGGAAATCTGCAACCAGTAGCGA -ACGGAAATCTGCAACCAGCACAGA -ACGGAAATCTGCAACCAGGCAAGA -ACGGAAATCTGCAACCAGGGTTGA -ACGGAAATCTGCAACCAGTCCGAT -ACGGAAATCTGCAACCAGTGGCAT -ACGGAAATCTGCAACCAGCGAGAT -ACGGAAATCTGCAACCAGTACCAC -ACGGAAATCTGCAACCAGCAGAAC -ACGGAAATCTGCAACCAGGTCTAC -ACGGAAATCTGCAACCAGACGTAC -ACGGAAATCTGCAACCAGAGTGAC -ACGGAAATCTGCAACCAGCTGTAG -ACGGAAATCTGCAACCAGCCTAAG -ACGGAAATCTGCAACCAGGTTCAG -ACGGAAATCTGCAACCAGGCATAG -ACGGAAATCTGCAACCAGGACAAG -ACGGAAATCTGCAACCAGAAGCAG -ACGGAAATCTGCAACCAGCGTCAA -ACGGAAATCTGCAACCAGGCTGAA -ACGGAAATCTGCAACCAGAGTACG -ACGGAAATCTGCAACCAGATCCGA -ACGGAAATCTGCAACCAGATGGGA -ACGGAAATCTGCAACCAGGTGCAA -ACGGAAATCTGCAACCAGGAGGAA -ACGGAAATCTGCAACCAGCAGGTA -ACGGAAATCTGCAACCAGGACTCT -ACGGAAATCTGCAACCAGAGTCCT -ACGGAAATCTGCAACCAGTAAGCC -ACGGAAATCTGCAACCAGATAGCC -ACGGAAATCTGCAACCAGTAACCG -ACGGAAATCTGCAACCAGATGCCA -ACGGAAATCTGCTACGTCGGAAAC -ACGGAAATCTGCTACGTCAACACC -ACGGAAATCTGCTACGTCATCGAG -ACGGAAATCTGCTACGTCCTCCTT -ACGGAAATCTGCTACGTCCCTGTT -ACGGAAATCTGCTACGTCCGGTTT -ACGGAAATCTGCTACGTCGTGGTT -ACGGAAATCTGCTACGTCGCCTTT -ACGGAAATCTGCTACGTCGGTCTT -ACGGAAATCTGCTACGTCACGCTT -ACGGAAATCTGCTACGTCAGCGTT -ACGGAAATCTGCTACGTCTTCGTC -ACGGAAATCTGCTACGTCTCTCTC -ACGGAAATCTGCTACGTCTGGATC -ACGGAAATCTGCTACGTCCACTTC -ACGGAAATCTGCTACGTCGTACTC -ACGGAAATCTGCTACGTCGATGTC -ACGGAAATCTGCTACGTCACAGTC -ACGGAAATCTGCTACGTCTTGCTG -ACGGAAATCTGCTACGTCTCCATG -ACGGAAATCTGCTACGTCTGTGTG -ACGGAAATCTGCTACGTCCTAGTG -ACGGAAATCTGCTACGTCCATCTG -ACGGAAATCTGCTACGTCGAGTTG -ACGGAAATCTGCTACGTCAGACTG -ACGGAAATCTGCTACGTCTCGGTA -ACGGAAATCTGCTACGTCTGCCTA -ACGGAAATCTGCTACGTCCCACTA -ACGGAAATCTGCTACGTCGGAGTA -ACGGAAATCTGCTACGTCTCGTCT -ACGGAAATCTGCTACGTCTGCACT -ACGGAAATCTGCTACGTCCTGACT -ACGGAAATCTGCTACGTCCAACCT -ACGGAAATCTGCTACGTCGCTACT -ACGGAAATCTGCTACGTCGGATCT -ACGGAAATCTGCTACGTCAAGGCT -ACGGAAATCTGCTACGTCTCAACC -ACGGAAATCTGCTACGTCTGTTCC -ACGGAAATCTGCTACGTCATTCCC -ACGGAAATCTGCTACGTCTTCTCG -ACGGAAATCTGCTACGTCTAGACG -ACGGAAATCTGCTACGTCGTAACG -ACGGAAATCTGCTACGTCACTTCG -ACGGAAATCTGCTACGTCTACGCA -ACGGAAATCTGCTACGTCCTTGCA -ACGGAAATCTGCTACGTCCGAACA -ACGGAAATCTGCTACGTCCAGTCA -ACGGAAATCTGCTACGTCGATCCA -ACGGAAATCTGCTACGTCACGACA -ACGGAAATCTGCTACGTCAGCTCA -ACGGAAATCTGCTACGTCTCACGT -ACGGAAATCTGCTACGTCCGTAGT -ACGGAAATCTGCTACGTCGTCAGT -ACGGAAATCTGCTACGTCGAAGGT -ACGGAAATCTGCTACGTCAACCGT -ACGGAAATCTGCTACGTCTTGTGC -ACGGAAATCTGCTACGTCCTAAGC -ACGGAAATCTGCTACGTCACTAGC -ACGGAAATCTGCTACGTCAGATGC -ACGGAAATCTGCTACGTCTGAAGG -ACGGAAATCTGCTACGTCCAATGG -ACGGAAATCTGCTACGTCATGAGG -ACGGAAATCTGCTACGTCAATGGG -ACGGAAATCTGCTACGTCTCCTGA -ACGGAAATCTGCTACGTCTAGCGA -ACGGAAATCTGCTACGTCCACAGA -ACGGAAATCTGCTACGTCGCAAGA -ACGGAAATCTGCTACGTCGGTTGA -ACGGAAATCTGCTACGTCTCCGAT -ACGGAAATCTGCTACGTCTGGCAT -ACGGAAATCTGCTACGTCCGAGAT -ACGGAAATCTGCTACGTCTACCAC -ACGGAAATCTGCTACGTCCAGAAC -ACGGAAATCTGCTACGTCGTCTAC -ACGGAAATCTGCTACGTCACGTAC -ACGGAAATCTGCTACGTCAGTGAC -ACGGAAATCTGCTACGTCCTGTAG -ACGGAAATCTGCTACGTCCCTAAG -ACGGAAATCTGCTACGTCGTTCAG -ACGGAAATCTGCTACGTCGCATAG -ACGGAAATCTGCTACGTCGACAAG -ACGGAAATCTGCTACGTCAAGCAG -ACGGAAATCTGCTACGTCCGTCAA -ACGGAAATCTGCTACGTCGCTGAA -ACGGAAATCTGCTACGTCAGTACG -ACGGAAATCTGCTACGTCATCCGA -ACGGAAATCTGCTACGTCATGGGA -ACGGAAATCTGCTACGTCGTGCAA -ACGGAAATCTGCTACGTCGAGGAA -ACGGAAATCTGCTACGTCCAGGTA -ACGGAAATCTGCTACGTCGACTCT -ACGGAAATCTGCTACGTCAGTCCT -ACGGAAATCTGCTACGTCTAAGCC -ACGGAAATCTGCTACGTCATAGCC -ACGGAAATCTGCTACGTCTAACCG -ACGGAAATCTGCTACGTCATGCCA -ACGGAAATCTGCTACACGGGAAAC -ACGGAAATCTGCTACACGAACACC -ACGGAAATCTGCTACACGATCGAG -ACGGAAATCTGCTACACGCTCCTT -ACGGAAATCTGCTACACGCCTGTT -ACGGAAATCTGCTACACGCGGTTT -ACGGAAATCTGCTACACGGTGGTT -ACGGAAATCTGCTACACGGCCTTT -ACGGAAATCTGCTACACGGGTCTT -ACGGAAATCTGCTACACGACGCTT -ACGGAAATCTGCTACACGAGCGTT -ACGGAAATCTGCTACACGTTCGTC -ACGGAAATCTGCTACACGTCTCTC -ACGGAAATCTGCTACACGTGGATC -ACGGAAATCTGCTACACGCACTTC -ACGGAAATCTGCTACACGGTACTC -ACGGAAATCTGCTACACGGATGTC -ACGGAAATCTGCTACACGACAGTC -ACGGAAATCTGCTACACGTTGCTG -ACGGAAATCTGCTACACGTCCATG -ACGGAAATCTGCTACACGTGTGTG -ACGGAAATCTGCTACACGCTAGTG -ACGGAAATCTGCTACACGCATCTG -ACGGAAATCTGCTACACGGAGTTG -ACGGAAATCTGCTACACGAGACTG -ACGGAAATCTGCTACACGTCGGTA -ACGGAAATCTGCTACACGTGCCTA -ACGGAAATCTGCTACACGCCACTA -ACGGAAATCTGCTACACGGGAGTA -ACGGAAATCTGCTACACGTCGTCT -ACGGAAATCTGCTACACGTGCACT -ACGGAAATCTGCTACACGCTGACT -ACGGAAATCTGCTACACGCAACCT -ACGGAAATCTGCTACACGGCTACT -ACGGAAATCTGCTACACGGGATCT -ACGGAAATCTGCTACACGAAGGCT -ACGGAAATCTGCTACACGTCAACC -ACGGAAATCTGCTACACGTGTTCC -ACGGAAATCTGCTACACGATTCCC -ACGGAAATCTGCTACACGTTCTCG -ACGGAAATCTGCTACACGTAGACG -ACGGAAATCTGCTACACGGTAACG -ACGGAAATCTGCTACACGACTTCG -ACGGAAATCTGCTACACGTACGCA -ACGGAAATCTGCTACACGCTTGCA -ACGGAAATCTGCTACACGCGAACA -ACGGAAATCTGCTACACGCAGTCA -ACGGAAATCTGCTACACGGATCCA -ACGGAAATCTGCTACACGACGACA -ACGGAAATCTGCTACACGAGCTCA -ACGGAAATCTGCTACACGTCACGT -ACGGAAATCTGCTACACGCGTAGT -ACGGAAATCTGCTACACGGTCAGT -ACGGAAATCTGCTACACGGAAGGT -ACGGAAATCTGCTACACGAACCGT -ACGGAAATCTGCTACACGTTGTGC -ACGGAAATCTGCTACACGCTAAGC -ACGGAAATCTGCTACACGACTAGC -ACGGAAATCTGCTACACGAGATGC -ACGGAAATCTGCTACACGTGAAGG -ACGGAAATCTGCTACACGCAATGG -ACGGAAATCTGCTACACGATGAGG -ACGGAAATCTGCTACACGAATGGG -ACGGAAATCTGCTACACGTCCTGA -ACGGAAATCTGCTACACGTAGCGA -ACGGAAATCTGCTACACGCACAGA -ACGGAAATCTGCTACACGGCAAGA -ACGGAAATCTGCTACACGGGTTGA -ACGGAAATCTGCTACACGTCCGAT -ACGGAAATCTGCTACACGTGGCAT -ACGGAAATCTGCTACACGCGAGAT -ACGGAAATCTGCTACACGTACCAC -ACGGAAATCTGCTACACGCAGAAC -ACGGAAATCTGCTACACGGTCTAC -ACGGAAATCTGCTACACGACGTAC -ACGGAAATCTGCTACACGAGTGAC -ACGGAAATCTGCTACACGCTGTAG -ACGGAAATCTGCTACACGCCTAAG -ACGGAAATCTGCTACACGGTTCAG -ACGGAAATCTGCTACACGGCATAG -ACGGAAATCTGCTACACGGACAAG -ACGGAAATCTGCTACACGAAGCAG -ACGGAAATCTGCTACACGCGTCAA -ACGGAAATCTGCTACACGGCTGAA -ACGGAAATCTGCTACACGAGTACG -ACGGAAATCTGCTACACGATCCGA -ACGGAAATCTGCTACACGATGGGA -ACGGAAATCTGCTACACGGTGCAA -ACGGAAATCTGCTACACGGAGGAA -ACGGAAATCTGCTACACGCAGGTA -ACGGAAATCTGCTACACGGACTCT -ACGGAAATCTGCTACACGAGTCCT -ACGGAAATCTGCTACACGTAAGCC -ACGGAAATCTGCTACACGATAGCC -ACGGAAATCTGCTACACGTAACCG -ACGGAAATCTGCTACACGATGCCA -ACGGAAATCTGCGACAGTGGAAAC -ACGGAAATCTGCGACAGTAACACC -ACGGAAATCTGCGACAGTATCGAG -ACGGAAATCTGCGACAGTCTCCTT -ACGGAAATCTGCGACAGTCCTGTT -ACGGAAATCTGCGACAGTCGGTTT -ACGGAAATCTGCGACAGTGTGGTT -ACGGAAATCTGCGACAGTGCCTTT -ACGGAAATCTGCGACAGTGGTCTT -ACGGAAATCTGCGACAGTACGCTT -ACGGAAATCTGCGACAGTAGCGTT -ACGGAAATCTGCGACAGTTTCGTC -ACGGAAATCTGCGACAGTTCTCTC -ACGGAAATCTGCGACAGTTGGATC -ACGGAAATCTGCGACAGTCACTTC -ACGGAAATCTGCGACAGTGTACTC -ACGGAAATCTGCGACAGTGATGTC -ACGGAAATCTGCGACAGTACAGTC -ACGGAAATCTGCGACAGTTTGCTG -ACGGAAATCTGCGACAGTTCCATG -ACGGAAATCTGCGACAGTTGTGTG -ACGGAAATCTGCGACAGTCTAGTG -ACGGAAATCTGCGACAGTCATCTG -ACGGAAATCTGCGACAGTGAGTTG -ACGGAAATCTGCGACAGTAGACTG -ACGGAAATCTGCGACAGTTCGGTA -ACGGAAATCTGCGACAGTTGCCTA -ACGGAAATCTGCGACAGTCCACTA -ACGGAAATCTGCGACAGTGGAGTA -ACGGAAATCTGCGACAGTTCGTCT -ACGGAAATCTGCGACAGTTGCACT -ACGGAAATCTGCGACAGTCTGACT -ACGGAAATCTGCGACAGTCAACCT -ACGGAAATCTGCGACAGTGCTACT -ACGGAAATCTGCGACAGTGGATCT -ACGGAAATCTGCGACAGTAAGGCT -ACGGAAATCTGCGACAGTTCAACC -ACGGAAATCTGCGACAGTTGTTCC -ACGGAAATCTGCGACAGTATTCCC -ACGGAAATCTGCGACAGTTTCTCG -ACGGAAATCTGCGACAGTTAGACG -ACGGAAATCTGCGACAGTGTAACG -ACGGAAATCTGCGACAGTACTTCG -ACGGAAATCTGCGACAGTTACGCA -ACGGAAATCTGCGACAGTCTTGCA -ACGGAAATCTGCGACAGTCGAACA -ACGGAAATCTGCGACAGTCAGTCA -ACGGAAATCTGCGACAGTGATCCA -ACGGAAATCTGCGACAGTACGACA -ACGGAAATCTGCGACAGTAGCTCA -ACGGAAATCTGCGACAGTTCACGT -ACGGAAATCTGCGACAGTCGTAGT -ACGGAAATCTGCGACAGTGTCAGT -ACGGAAATCTGCGACAGTGAAGGT -ACGGAAATCTGCGACAGTAACCGT -ACGGAAATCTGCGACAGTTTGTGC -ACGGAAATCTGCGACAGTCTAAGC -ACGGAAATCTGCGACAGTACTAGC -ACGGAAATCTGCGACAGTAGATGC -ACGGAAATCTGCGACAGTTGAAGG -ACGGAAATCTGCGACAGTCAATGG -ACGGAAATCTGCGACAGTATGAGG -ACGGAAATCTGCGACAGTAATGGG -ACGGAAATCTGCGACAGTTCCTGA -ACGGAAATCTGCGACAGTTAGCGA -ACGGAAATCTGCGACAGTCACAGA -ACGGAAATCTGCGACAGTGCAAGA -ACGGAAATCTGCGACAGTGGTTGA -ACGGAAATCTGCGACAGTTCCGAT -ACGGAAATCTGCGACAGTTGGCAT -ACGGAAATCTGCGACAGTCGAGAT -ACGGAAATCTGCGACAGTTACCAC -ACGGAAATCTGCGACAGTCAGAAC -ACGGAAATCTGCGACAGTGTCTAC -ACGGAAATCTGCGACAGTACGTAC -ACGGAAATCTGCGACAGTAGTGAC -ACGGAAATCTGCGACAGTCTGTAG -ACGGAAATCTGCGACAGTCCTAAG -ACGGAAATCTGCGACAGTGTTCAG -ACGGAAATCTGCGACAGTGCATAG -ACGGAAATCTGCGACAGTGACAAG -ACGGAAATCTGCGACAGTAAGCAG -ACGGAAATCTGCGACAGTCGTCAA -ACGGAAATCTGCGACAGTGCTGAA -ACGGAAATCTGCGACAGTAGTACG -ACGGAAATCTGCGACAGTATCCGA -ACGGAAATCTGCGACAGTATGGGA -ACGGAAATCTGCGACAGTGTGCAA -ACGGAAATCTGCGACAGTGAGGAA -ACGGAAATCTGCGACAGTCAGGTA -ACGGAAATCTGCGACAGTGACTCT -ACGGAAATCTGCGACAGTAGTCCT -ACGGAAATCTGCGACAGTTAAGCC -ACGGAAATCTGCGACAGTATAGCC -ACGGAAATCTGCGACAGTTAACCG -ACGGAAATCTGCGACAGTATGCCA -ACGGAAATCTGCTAGCTGGGAAAC -ACGGAAATCTGCTAGCTGAACACC -ACGGAAATCTGCTAGCTGATCGAG -ACGGAAATCTGCTAGCTGCTCCTT -ACGGAAATCTGCTAGCTGCCTGTT -ACGGAAATCTGCTAGCTGCGGTTT -ACGGAAATCTGCTAGCTGGTGGTT -ACGGAAATCTGCTAGCTGGCCTTT -ACGGAAATCTGCTAGCTGGGTCTT -ACGGAAATCTGCTAGCTGACGCTT -ACGGAAATCTGCTAGCTGAGCGTT -ACGGAAATCTGCTAGCTGTTCGTC -ACGGAAATCTGCTAGCTGTCTCTC -ACGGAAATCTGCTAGCTGTGGATC -ACGGAAATCTGCTAGCTGCACTTC -ACGGAAATCTGCTAGCTGGTACTC -ACGGAAATCTGCTAGCTGGATGTC -ACGGAAATCTGCTAGCTGACAGTC -ACGGAAATCTGCTAGCTGTTGCTG -ACGGAAATCTGCTAGCTGTCCATG -ACGGAAATCTGCTAGCTGTGTGTG -ACGGAAATCTGCTAGCTGCTAGTG -ACGGAAATCTGCTAGCTGCATCTG -ACGGAAATCTGCTAGCTGGAGTTG -ACGGAAATCTGCTAGCTGAGACTG -ACGGAAATCTGCTAGCTGTCGGTA -ACGGAAATCTGCTAGCTGTGCCTA -ACGGAAATCTGCTAGCTGCCACTA -ACGGAAATCTGCTAGCTGGGAGTA -ACGGAAATCTGCTAGCTGTCGTCT -ACGGAAATCTGCTAGCTGTGCACT -ACGGAAATCTGCTAGCTGCTGACT -ACGGAAATCTGCTAGCTGCAACCT -ACGGAAATCTGCTAGCTGGCTACT -ACGGAAATCTGCTAGCTGGGATCT -ACGGAAATCTGCTAGCTGAAGGCT -ACGGAAATCTGCTAGCTGTCAACC -ACGGAAATCTGCTAGCTGTGTTCC -ACGGAAATCTGCTAGCTGATTCCC -ACGGAAATCTGCTAGCTGTTCTCG -ACGGAAATCTGCTAGCTGTAGACG -ACGGAAATCTGCTAGCTGGTAACG -ACGGAAATCTGCTAGCTGACTTCG -ACGGAAATCTGCTAGCTGTACGCA -ACGGAAATCTGCTAGCTGCTTGCA -ACGGAAATCTGCTAGCTGCGAACA -ACGGAAATCTGCTAGCTGCAGTCA -ACGGAAATCTGCTAGCTGGATCCA -ACGGAAATCTGCTAGCTGACGACA -ACGGAAATCTGCTAGCTGAGCTCA -ACGGAAATCTGCTAGCTGTCACGT -ACGGAAATCTGCTAGCTGCGTAGT -ACGGAAATCTGCTAGCTGGTCAGT -ACGGAAATCTGCTAGCTGGAAGGT -ACGGAAATCTGCTAGCTGAACCGT -ACGGAAATCTGCTAGCTGTTGTGC -ACGGAAATCTGCTAGCTGCTAAGC -ACGGAAATCTGCTAGCTGACTAGC -ACGGAAATCTGCTAGCTGAGATGC -ACGGAAATCTGCTAGCTGTGAAGG -ACGGAAATCTGCTAGCTGCAATGG -ACGGAAATCTGCTAGCTGATGAGG -ACGGAAATCTGCTAGCTGAATGGG -ACGGAAATCTGCTAGCTGTCCTGA -ACGGAAATCTGCTAGCTGTAGCGA -ACGGAAATCTGCTAGCTGCACAGA -ACGGAAATCTGCTAGCTGGCAAGA -ACGGAAATCTGCTAGCTGGGTTGA -ACGGAAATCTGCTAGCTGTCCGAT -ACGGAAATCTGCTAGCTGTGGCAT -ACGGAAATCTGCTAGCTGCGAGAT -ACGGAAATCTGCTAGCTGTACCAC -ACGGAAATCTGCTAGCTGCAGAAC -ACGGAAATCTGCTAGCTGGTCTAC -ACGGAAATCTGCTAGCTGACGTAC -ACGGAAATCTGCTAGCTGAGTGAC -ACGGAAATCTGCTAGCTGCTGTAG -ACGGAAATCTGCTAGCTGCCTAAG -ACGGAAATCTGCTAGCTGGTTCAG -ACGGAAATCTGCTAGCTGGCATAG -ACGGAAATCTGCTAGCTGGACAAG -ACGGAAATCTGCTAGCTGAAGCAG -ACGGAAATCTGCTAGCTGCGTCAA -ACGGAAATCTGCTAGCTGGCTGAA -ACGGAAATCTGCTAGCTGAGTACG -ACGGAAATCTGCTAGCTGATCCGA -ACGGAAATCTGCTAGCTGATGGGA -ACGGAAATCTGCTAGCTGGTGCAA -ACGGAAATCTGCTAGCTGGAGGAA -ACGGAAATCTGCTAGCTGCAGGTA -ACGGAAATCTGCTAGCTGGACTCT -ACGGAAATCTGCTAGCTGAGTCCT -ACGGAAATCTGCTAGCTGTAAGCC -ACGGAAATCTGCTAGCTGATAGCC -ACGGAAATCTGCTAGCTGTAACCG -ACGGAAATCTGCTAGCTGATGCCA -ACGGAAATCTGCAAGCCTGGAAAC -ACGGAAATCTGCAAGCCTAACACC -ACGGAAATCTGCAAGCCTATCGAG -ACGGAAATCTGCAAGCCTCTCCTT -ACGGAAATCTGCAAGCCTCCTGTT -ACGGAAATCTGCAAGCCTCGGTTT -ACGGAAATCTGCAAGCCTGTGGTT -ACGGAAATCTGCAAGCCTGCCTTT -ACGGAAATCTGCAAGCCTGGTCTT -ACGGAAATCTGCAAGCCTACGCTT -ACGGAAATCTGCAAGCCTAGCGTT -ACGGAAATCTGCAAGCCTTTCGTC -ACGGAAATCTGCAAGCCTTCTCTC -ACGGAAATCTGCAAGCCTTGGATC -ACGGAAATCTGCAAGCCTCACTTC -ACGGAAATCTGCAAGCCTGTACTC -ACGGAAATCTGCAAGCCTGATGTC -ACGGAAATCTGCAAGCCTACAGTC -ACGGAAATCTGCAAGCCTTTGCTG -ACGGAAATCTGCAAGCCTTCCATG -ACGGAAATCTGCAAGCCTTGTGTG -ACGGAAATCTGCAAGCCTCTAGTG -ACGGAAATCTGCAAGCCTCATCTG -ACGGAAATCTGCAAGCCTGAGTTG -ACGGAAATCTGCAAGCCTAGACTG -ACGGAAATCTGCAAGCCTTCGGTA -ACGGAAATCTGCAAGCCTTGCCTA -ACGGAAATCTGCAAGCCTCCACTA -ACGGAAATCTGCAAGCCTGGAGTA -ACGGAAATCTGCAAGCCTTCGTCT -ACGGAAATCTGCAAGCCTTGCACT -ACGGAAATCTGCAAGCCTCTGACT -ACGGAAATCTGCAAGCCTCAACCT -ACGGAAATCTGCAAGCCTGCTACT -ACGGAAATCTGCAAGCCTGGATCT -ACGGAAATCTGCAAGCCTAAGGCT -ACGGAAATCTGCAAGCCTTCAACC -ACGGAAATCTGCAAGCCTTGTTCC -ACGGAAATCTGCAAGCCTATTCCC -ACGGAAATCTGCAAGCCTTTCTCG -ACGGAAATCTGCAAGCCTTAGACG -ACGGAAATCTGCAAGCCTGTAACG -ACGGAAATCTGCAAGCCTACTTCG -ACGGAAATCTGCAAGCCTTACGCA -ACGGAAATCTGCAAGCCTCTTGCA -ACGGAAATCTGCAAGCCTCGAACA -ACGGAAATCTGCAAGCCTCAGTCA -ACGGAAATCTGCAAGCCTGATCCA -ACGGAAATCTGCAAGCCTACGACA -ACGGAAATCTGCAAGCCTAGCTCA -ACGGAAATCTGCAAGCCTTCACGT -ACGGAAATCTGCAAGCCTCGTAGT -ACGGAAATCTGCAAGCCTGTCAGT -ACGGAAATCTGCAAGCCTGAAGGT -ACGGAAATCTGCAAGCCTAACCGT -ACGGAAATCTGCAAGCCTTTGTGC -ACGGAAATCTGCAAGCCTCTAAGC -ACGGAAATCTGCAAGCCTACTAGC -ACGGAAATCTGCAAGCCTAGATGC -ACGGAAATCTGCAAGCCTTGAAGG -ACGGAAATCTGCAAGCCTCAATGG -ACGGAAATCTGCAAGCCTATGAGG -ACGGAAATCTGCAAGCCTAATGGG -ACGGAAATCTGCAAGCCTTCCTGA -ACGGAAATCTGCAAGCCTTAGCGA -ACGGAAATCTGCAAGCCTCACAGA -ACGGAAATCTGCAAGCCTGCAAGA -ACGGAAATCTGCAAGCCTGGTTGA -ACGGAAATCTGCAAGCCTTCCGAT -ACGGAAATCTGCAAGCCTTGGCAT -ACGGAAATCTGCAAGCCTCGAGAT -ACGGAAATCTGCAAGCCTTACCAC -ACGGAAATCTGCAAGCCTCAGAAC -ACGGAAATCTGCAAGCCTGTCTAC -ACGGAAATCTGCAAGCCTACGTAC -ACGGAAATCTGCAAGCCTAGTGAC -ACGGAAATCTGCAAGCCTCTGTAG -ACGGAAATCTGCAAGCCTCCTAAG -ACGGAAATCTGCAAGCCTGTTCAG -ACGGAAATCTGCAAGCCTGCATAG -ACGGAAATCTGCAAGCCTGACAAG -ACGGAAATCTGCAAGCCTAAGCAG -ACGGAAATCTGCAAGCCTCGTCAA -ACGGAAATCTGCAAGCCTGCTGAA -ACGGAAATCTGCAAGCCTAGTACG -ACGGAAATCTGCAAGCCTATCCGA -ACGGAAATCTGCAAGCCTATGGGA -ACGGAAATCTGCAAGCCTGTGCAA -ACGGAAATCTGCAAGCCTGAGGAA -ACGGAAATCTGCAAGCCTCAGGTA -ACGGAAATCTGCAAGCCTGACTCT -ACGGAAATCTGCAAGCCTAGTCCT -ACGGAAATCTGCAAGCCTTAAGCC -ACGGAAATCTGCAAGCCTATAGCC -ACGGAAATCTGCAAGCCTTAACCG -ACGGAAATCTGCAAGCCTATGCCA -ACGGAAATCTGCCAGGTTGGAAAC -ACGGAAATCTGCCAGGTTAACACC -ACGGAAATCTGCCAGGTTATCGAG -ACGGAAATCTGCCAGGTTCTCCTT -ACGGAAATCTGCCAGGTTCCTGTT -ACGGAAATCTGCCAGGTTCGGTTT -ACGGAAATCTGCCAGGTTGTGGTT -ACGGAAATCTGCCAGGTTGCCTTT -ACGGAAATCTGCCAGGTTGGTCTT -ACGGAAATCTGCCAGGTTACGCTT -ACGGAAATCTGCCAGGTTAGCGTT -ACGGAAATCTGCCAGGTTTTCGTC -ACGGAAATCTGCCAGGTTTCTCTC -ACGGAAATCTGCCAGGTTTGGATC -ACGGAAATCTGCCAGGTTCACTTC -ACGGAAATCTGCCAGGTTGTACTC -ACGGAAATCTGCCAGGTTGATGTC -ACGGAAATCTGCCAGGTTACAGTC -ACGGAAATCTGCCAGGTTTTGCTG -ACGGAAATCTGCCAGGTTTCCATG -ACGGAAATCTGCCAGGTTTGTGTG -ACGGAAATCTGCCAGGTTCTAGTG -ACGGAAATCTGCCAGGTTCATCTG -ACGGAAATCTGCCAGGTTGAGTTG -ACGGAAATCTGCCAGGTTAGACTG -ACGGAAATCTGCCAGGTTTCGGTA -ACGGAAATCTGCCAGGTTTGCCTA -ACGGAAATCTGCCAGGTTCCACTA -ACGGAAATCTGCCAGGTTGGAGTA -ACGGAAATCTGCCAGGTTTCGTCT -ACGGAAATCTGCCAGGTTTGCACT -ACGGAAATCTGCCAGGTTCTGACT -ACGGAAATCTGCCAGGTTCAACCT -ACGGAAATCTGCCAGGTTGCTACT -ACGGAAATCTGCCAGGTTGGATCT -ACGGAAATCTGCCAGGTTAAGGCT -ACGGAAATCTGCCAGGTTTCAACC -ACGGAAATCTGCCAGGTTTGTTCC -ACGGAAATCTGCCAGGTTATTCCC -ACGGAAATCTGCCAGGTTTTCTCG -ACGGAAATCTGCCAGGTTTAGACG -ACGGAAATCTGCCAGGTTGTAACG -ACGGAAATCTGCCAGGTTACTTCG -ACGGAAATCTGCCAGGTTTACGCA -ACGGAAATCTGCCAGGTTCTTGCA -ACGGAAATCTGCCAGGTTCGAACA -ACGGAAATCTGCCAGGTTCAGTCA -ACGGAAATCTGCCAGGTTGATCCA -ACGGAAATCTGCCAGGTTACGACA -ACGGAAATCTGCCAGGTTAGCTCA -ACGGAAATCTGCCAGGTTTCACGT -ACGGAAATCTGCCAGGTTCGTAGT -ACGGAAATCTGCCAGGTTGTCAGT -ACGGAAATCTGCCAGGTTGAAGGT -ACGGAAATCTGCCAGGTTAACCGT -ACGGAAATCTGCCAGGTTTTGTGC -ACGGAAATCTGCCAGGTTCTAAGC -ACGGAAATCTGCCAGGTTACTAGC -ACGGAAATCTGCCAGGTTAGATGC -ACGGAAATCTGCCAGGTTTGAAGG -ACGGAAATCTGCCAGGTTCAATGG -ACGGAAATCTGCCAGGTTATGAGG -ACGGAAATCTGCCAGGTTAATGGG -ACGGAAATCTGCCAGGTTTCCTGA -ACGGAAATCTGCCAGGTTTAGCGA -ACGGAAATCTGCCAGGTTCACAGA -ACGGAAATCTGCCAGGTTGCAAGA -ACGGAAATCTGCCAGGTTGGTTGA -ACGGAAATCTGCCAGGTTTCCGAT -ACGGAAATCTGCCAGGTTTGGCAT -ACGGAAATCTGCCAGGTTCGAGAT -ACGGAAATCTGCCAGGTTTACCAC -ACGGAAATCTGCCAGGTTCAGAAC -ACGGAAATCTGCCAGGTTGTCTAC -ACGGAAATCTGCCAGGTTACGTAC -ACGGAAATCTGCCAGGTTAGTGAC -ACGGAAATCTGCCAGGTTCTGTAG -ACGGAAATCTGCCAGGTTCCTAAG -ACGGAAATCTGCCAGGTTGTTCAG -ACGGAAATCTGCCAGGTTGCATAG -ACGGAAATCTGCCAGGTTGACAAG -ACGGAAATCTGCCAGGTTAAGCAG -ACGGAAATCTGCCAGGTTCGTCAA -ACGGAAATCTGCCAGGTTGCTGAA -ACGGAAATCTGCCAGGTTAGTACG -ACGGAAATCTGCCAGGTTATCCGA -ACGGAAATCTGCCAGGTTATGGGA -ACGGAAATCTGCCAGGTTGTGCAA -ACGGAAATCTGCCAGGTTGAGGAA -ACGGAAATCTGCCAGGTTCAGGTA -ACGGAAATCTGCCAGGTTGACTCT -ACGGAAATCTGCCAGGTTAGTCCT -ACGGAAATCTGCCAGGTTTAAGCC -ACGGAAATCTGCCAGGTTATAGCC -ACGGAAATCTGCCAGGTTTAACCG -ACGGAAATCTGCCAGGTTATGCCA -ACGGAAATCTGCTAGGCAGGAAAC -ACGGAAATCTGCTAGGCAAACACC -ACGGAAATCTGCTAGGCAATCGAG -ACGGAAATCTGCTAGGCACTCCTT -ACGGAAATCTGCTAGGCACCTGTT -ACGGAAATCTGCTAGGCACGGTTT -ACGGAAATCTGCTAGGCAGTGGTT -ACGGAAATCTGCTAGGCAGCCTTT -ACGGAAATCTGCTAGGCAGGTCTT -ACGGAAATCTGCTAGGCAACGCTT -ACGGAAATCTGCTAGGCAAGCGTT -ACGGAAATCTGCTAGGCATTCGTC -ACGGAAATCTGCTAGGCATCTCTC -ACGGAAATCTGCTAGGCATGGATC -ACGGAAATCTGCTAGGCACACTTC -ACGGAAATCTGCTAGGCAGTACTC -ACGGAAATCTGCTAGGCAGATGTC -ACGGAAATCTGCTAGGCAACAGTC -ACGGAAATCTGCTAGGCATTGCTG -ACGGAAATCTGCTAGGCATCCATG -ACGGAAATCTGCTAGGCATGTGTG -ACGGAAATCTGCTAGGCACTAGTG -ACGGAAATCTGCTAGGCACATCTG -ACGGAAATCTGCTAGGCAGAGTTG -ACGGAAATCTGCTAGGCAAGACTG -ACGGAAATCTGCTAGGCATCGGTA -ACGGAAATCTGCTAGGCATGCCTA -ACGGAAATCTGCTAGGCACCACTA -ACGGAAATCTGCTAGGCAGGAGTA -ACGGAAATCTGCTAGGCATCGTCT -ACGGAAATCTGCTAGGCATGCACT -ACGGAAATCTGCTAGGCACTGACT -ACGGAAATCTGCTAGGCACAACCT -ACGGAAATCTGCTAGGCAGCTACT -ACGGAAATCTGCTAGGCAGGATCT -ACGGAAATCTGCTAGGCAAAGGCT -ACGGAAATCTGCTAGGCATCAACC -ACGGAAATCTGCTAGGCATGTTCC -ACGGAAATCTGCTAGGCAATTCCC -ACGGAAATCTGCTAGGCATTCTCG -ACGGAAATCTGCTAGGCATAGACG -ACGGAAATCTGCTAGGCAGTAACG -ACGGAAATCTGCTAGGCAACTTCG -ACGGAAATCTGCTAGGCATACGCA -ACGGAAATCTGCTAGGCACTTGCA -ACGGAAATCTGCTAGGCACGAACA -ACGGAAATCTGCTAGGCACAGTCA -ACGGAAATCTGCTAGGCAGATCCA -ACGGAAATCTGCTAGGCAACGACA -ACGGAAATCTGCTAGGCAAGCTCA -ACGGAAATCTGCTAGGCATCACGT -ACGGAAATCTGCTAGGCACGTAGT -ACGGAAATCTGCTAGGCAGTCAGT -ACGGAAATCTGCTAGGCAGAAGGT -ACGGAAATCTGCTAGGCAAACCGT -ACGGAAATCTGCTAGGCATTGTGC -ACGGAAATCTGCTAGGCACTAAGC -ACGGAAATCTGCTAGGCAACTAGC -ACGGAAATCTGCTAGGCAAGATGC -ACGGAAATCTGCTAGGCATGAAGG -ACGGAAATCTGCTAGGCACAATGG -ACGGAAATCTGCTAGGCAATGAGG -ACGGAAATCTGCTAGGCAAATGGG -ACGGAAATCTGCTAGGCATCCTGA -ACGGAAATCTGCTAGGCATAGCGA -ACGGAAATCTGCTAGGCACACAGA -ACGGAAATCTGCTAGGCAGCAAGA -ACGGAAATCTGCTAGGCAGGTTGA -ACGGAAATCTGCTAGGCATCCGAT -ACGGAAATCTGCTAGGCATGGCAT -ACGGAAATCTGCTAGGCACGAGAT -ACGGAAATCTGCTAGGCATACCAC -ACGGAAATCTGCTAGGCACAGAAC -ACGGAAATCTGCTAGGCAGTCTAC -ACGGAAATCTGCTAGGCAACGTAC -ACGGAAATCTGCTAGGCAAGTGAC -ACGGAAATCTGCTAGGCACTGTAG -ACGGAAATCTGCTAGGCACCTAAG -ACGGAAATCTGCTAGGCAGTTCAG -ACGGAAATCTGCTAGGCAGCATAG -ACGGAAATCTGCTAGGCAGACAAG -ACGGAAATCTGCTAGGCAAAGCAG -ACGGAAATCTGCTAGGCACGTCAA -ACGGAAATCTGCTAGGCAGCTGAA -ACGGAAATCTGCTAGGCAAGTACG -ACGGAAATCTGCTAGGCAATCCGA -ACGGAAATCTGCTAGGCAATGGGA -ACGGAAATCTGCTAGGCAGTGCAA -ACGGAAATCTGCTAGGCAGAGGAA -ACGGAAATCTGCTAGGCACAGGTA -ACGGAAATCTGCTAGGCAGACTCT -ACGGAAATCTGCTAGGCAAGTCCT -ACGGAAATCTGCTAGGCATAAGCC -ACGGAAATCTGCTAGGCAATAGCC -ACGGAAATCTGCTAGGCATAACCG -ACGGAAATCTGCTAGGCAATGCCA -ACGGAAATCTGCAAGGACGGAAAC -ACGGAAATCTGCAAGGACAACACC -ACGGAAATCTGCAAGGACATCGAG -ACGGAAATCTGCAAGGACCTCCTT -ACGGAAATCTGCAAGGACCCTGTT -ACGGAAATCTGCAAGGACCGGTTT -ACGGAAATCTGCAAGGACGTGGTT -ACGGAAATCTGCAAGGACGCCTTT -ACGGAAATCTGCAAGGACGGTCTT -ACGGAAATCTGCAAGGACACGCTT -ACGGAAATCTGCAAGGACAGCGTT -ACGGAAATCTGCAAGGACTTCGTC -ACGGAAATCTGCAAGGACTCTCTC -ACGGAAATCTGCAAGGACTGGATC -ACGGAAATCTGCAAGGACCACTTC -ACGGAAATCTGCAAGGACGTACTC -ACGGAAATCTGCAAGGACGATGTC -ACGGAAATCTGCAAGGACACAGTC -ACGGAAATCTGCAAGGACTTGCTG -ACGGAAATCTGCAAGGACTCCATG -ACGGAAATCTGCAAGGACTGTGTG -ACGGAAATCTGCAAGGACCTAGTG -ACGGAAATCTGCAAGGACCATCTG -ACGGAAATCTGCAAGGACGAGTTG -ACGGAAATCTGCAAGGACAGACTG -ACGGAAATCTGCAAGGACTCGGTA -ACGGAAATCTGCAAGGACTGCCTA -ACGGAAATCTGCAAGGACCCACTA -ACGGAAATCTGCAAGGACGGAGTA -ACGGAAATCTGCAAGGACTCGTCT -ACGGAAATCTGCAAGGACTGCACT -ACGGAAATCTGCAAGGACCTGACT -ACGGAAATCTGCAAGGACCAACCT -ACGGAAATCTGCAAGGACGCTACT -ACGGAAATCTGCAAGGACGGATCT -ACGGAAATCTGCAAGGACAAGGCT -ACGGAAATCTGCAAGGACTCAACC -ACGGAAATCTGCAAGGACTGTTCC -ACGGAAATCTGCAAGGACATTCCC -ACGGAAATCTGCAAGGACTTCTCG -ACGGAAATCTGCAAGGACTAGACG -ACGGAAATCTGCAAGGACGTAACG -ACGGAAATCTGCAAGGACACTTCG -ACGGAAATCTGCAAGGACTACGCA -ACGGAAATCTGCAAGGACCTTGCA -ACGGAAATCTGCAAGGACCGAACA -ACGGAAATCTGCAAGGACCAGTCA -ACGGAAATCTGCAAGGACGATCCA -ACGGAAATCTGCAAGGACACGACA -ACGGAAATCTGCAAGGACAGCTCA -ACGGAAATCTGCAAGGACTCACGT -ACGGAAATCTGCAAGGACCGTAGT -ACGGAAATCTGCAAGGACGTCAGT -ACGGAAATCTGCAAGGACGAAGGT -ACGGAAATCTGCAAGGACAACCGT -ACGGAAATCTGCAAGGACTTGTGC -ACGGAAATCTGCAAGGACCTAAGC -ACGGAAATCTGCAAGGACACTAGC -ACGGAAATCTGCAAGGACAGATGC -ACGGAAATCTGCAAGGACTGAAGG -ACGGAAATCTGCAAGGACCAATGG -ACGGAAATCTGCAAGGACATGAGG -ACGGAAATCTGCAAGGACAATGGG -ACGGAAATCTGCAAGGACTCCTGA -ACGGAAATCTGCAAGGACTAGCGA -ACGGAAATCTGCAAGGACCACAGA -ACGGAAATCTGCAAGGACGCAAGA -ACGGAAATCTGCAAGGACGGTTGA -ACGGAAATCTGCAAGGACTCCGAT -ACGGAAATCTGCAAGGACTGGCAT -ACGGAAATCTGCAAGGACCGAGAT -ACGGAAATCTGCAAGGACTACCAC -ACGGAAATCTGCAAGGACCAGAAC -ACGGAAATCTGCAAGGACGTCTAC -ACGGAAATCTGCAAGGACACGTAC -ACGGAAATCTGCAAGGACAGTGAC -ACGGAAATCTGCAAGGACCTGTAG -ACGGAAATCTGCAAGGACCCTAAG -ACGGAAATCTGCAAGGACGTTCAG -ACGGAAATCTGCAAGGACGCATAG -ACGGAAATCTGCAAGGACGACAAG -ACGGAAATCTGCAAGGACAAGCAG -ACGGAAATCTGCAAGGACCGTCAA -ACGGAAATCTGCAAGGACGCTGAA -ACGGAAATCTGCAAGGACAGTACG -ACGGAAATCTGCAAGGACATCCGA -ACGGAAATCTGCAAGGACATGGGA -ACGGAAATCTGCAAGGACGTGCAA -ACGGAAATCTGCAAGGACGAGGAA -ACGGAAATCTGCAAGGACCAGGTA -ACGGAAATCTGCAAGGACGACTCT -ACGGAAATCTGCAAGGACAGTCCT -ACGGAAATCTGCAAGGACTAAGCC -ACGGAAATCTGCAAGGACATAGCC -ACGGAAATCTGCAAGGACTAACCG -ACGGAAATCTGCAAGGACATGCCA -ACGGAAATCTGCCAGAAGGGAAAC -ACGGAAATCTGCCAGAAGAACACC -ACGGAAATCTGCCAGAAGATCGAG -ACGGAAATCTGCCAGAAGCTCCTT -ACGGAAATCTGCCAGAAGCCTGTT -ACGGAAATCTGCCAGAAGCGGTTT -ACGGAAATCTGCCAGAAGGTGGTT -ACGGAAATCTGCCAGAAGGCCTTT -ACGGAAATCTGCCAGAAGGGTCTT -ACGGAAATCTGCCAGAAGACGCTT -ACGGAAATCTGCCAGAAGAGCGTT -ACGGAAATCTGCCAGAAGTTCGTC -ACGGAAATCTGCCAGAAGTCTCTC -ACGGAAATCTGCCAGAAGTGGATC -ACGGAAATCTGCCAGAAGCACTTC -ACGGAAATCTGCCAGAAGGTACTC -ACGGAAATCTGCCAGAAGGATGTC -ACGGAAATCTGCCAGAAGACAGTC -ACGGAAATCTGCCAGAAGTTGCTG -ACGGAAATCTGCCAGAAGTCCATG -ACGGAAATCTGCCAGAAGTGTGTG -ACGGAAATCTGCCAGAAGCTAGTG -ACGGAAATCTGCCAGAAGCATCTG -ACGGAAATCTGCCAGAAGGAGTTG -ACGGAAATCTGCCAGAAGAGACTG -ACGGAAATCTGCCAGAAGTCGGTA -ACGGAAATCTGCCAGAAGTGCCTA -ACGGAAATCTGCCAGAAGCCACTA -ACGGAAATCTGCCAGAAGGGAGTA -ACGGAAATCTGCCAGAAGTCGTCT -ACGGAAATCTGCCAGAAGTGCACT -ACGGAAATCTGCCAGAAGCTGACT -ACGGAAATCTGCCAGAAGCAACCT -ACGGAAATCTGCCAGAAGGCTACT -ACGGAAATCTGCCAGAAGGGATCT -ACGGAAATCTGCCAGAAGAAGGCT -ACGGAAATCTGCCAGAAGTCAACC -ACGGAAATCTGCCAGAAGTGTTCC -ACGGAAATCTGCCAGAAGATTCCC -ACGGAAATCTGCCAGAAGTTCTCG -ACGGAAATCTGCCAGAAGTAGACG -ACGGAAATCTGCCAGAAGGTAACG -ACGGAAATCTGCCAGAAGACTTCG -ACGGAAATCTGCCAGAAGTACGCA -ACGGAAATCTGCCAGAAGCTTGCA -ACGGAAATCTGCCAGAAGCGAACA -ACGGAAATCTGCCAGAAGCAGTCA -ACGGAAATCTGCCAGAAGGATCCA -ACGGAAATCTGCCAGAAGACGACA -ACGGAAATCTGCCAGAAGAGCTCA -ACGGAAATCTGCCAGAAGTCACGT -ACGGAAATCTGCCAGAAGCGTAGT -ACGGAAATCTGCCAGAAGGTCAGT -ACGGAAATCTGCCAGAAGGAAGGT -ACGGAAATCTGCCAGAAGAACCGT -ACGGAAATCTGCCAGAAGTTGTGC -ACGGAAATCTGCCAGAAGCTAAGC -ACGGAAATCTGCCAGAAGACTAGC -ACGGAAATCTGCCAGAAGAGATGC -ACGGAAATCTGCCAGAAGTGAAGG -ACGGAAATCTGCCAGAAGCAATGG -ACGGAAATCTGCCAGAAGATGAGG -ACGGAAATCTGCCAGAAGAATGGG -ACGGAAATCTGCCAGAAGTCCTGA -ACGGAAATCTGCCAGAAGTAGCGA -ACGGAAATCTGCCAGAAGCACAGA -ACGGAAATCTGCCAGAAGGCAAGA -ACGGAAATCTGCCAGAAGGGTTGA -ACGGAAATCTGCCAGAAGTCCGAT -ACGGAAATCTGCCAGAAGTGGCAT -ACGGAAATCTGCCAGAAGCGAGAT -ACGGAAATCTGCCAGAAGTACCAC -ACGGAAATCTGCCAGAAGCAGAAC -ACGGAAATCTGCCAGAAGGTCTAC -ACGGAAATCTGCCAGAAGACGTAC -ACGGAAATCTGCCAGAAGAGTGAC -ACGGAAATCTGCCAGAAGCTGTAG -ACGGAAATCTGCCAGAAGCCTAAG -ACGGAAATCTGCCAGAAGGTTCAG -ACGGAAATCTGCCAGAAGGCATAG -ACGGAAATCTGCCAGAAGGACAAG -ACGGAAATCTGCCAGAAGAAGCAG -ACGGAAATCTGCCAGAAGCGTCAA -ACGGAAATCTGCCAGAAGGCTGAA -ACGGAAATCTGCCAGAAGAGTACG -ACGGAAATCTGCCAGAAGATCCGA -ACGGAAATCTGCCAGAAGATGGGA -ACGGAAATCTGCCAGAAGGTGCAA -ACGGAAATCTGCCAGAAGGAGGAA -ACGGAAATCTGCCAGAAGCAGGTA -ACGGAAATCTGCCAGAAGGACTCT -ACGGAAATCTGCCAGAAGAGTCCT -ACGGAAATCTGCCAGAAGTAAGCC -ACGGAAATCTGCCAGAAGATAGCC -ACGGAAATCTGCCAGAAGTAACCG -ACGGAAATCTGCCAGAAGATGCCA -ACGGAAATCTGCCAACGTGGAAAC -ACGGAAATCTGCCAACGTAACACC -ACGGAAATCTGCCAACGTATCGAG -ACGGAAATCTGCCAACGTCTCCTT -ACGGAAATCTGCCAACGTCCTGTT -ACGGAAATCTGCCAACGTCGGTTT -ACGGAAATCTGCCAACGTGTGGTT -ACGGAAATCTGCCAACGTGCCTTT -ACGGAAATCTGCCAACGTGGTCTT -ACGGAAATCTGCCAACGTACGCTT -ACGGAAATCTGCCAACGTAGCGTT -ACGGAAATCTGCCAACGTTTCGTC -ACGGAAATCTGCCAACGTTCTCTC -ACGGAAATCTGCCAACGTTGGATC -ACGGAAATCTGCCAACGTCACTTC -ACGGAAATCTGCCAACGTGTACTC -ACGGAAATCTGCCAACGTGATGTC -ACGGAAATCTGCCAACGTACAGTC -ACGGAAATCTGCCAACGTTTGCTG -ACGGAAATCTGCCAACGTTCCATG -ACGGAAATCTGCCAACGTTGTGTG -ACGGAAATCTGCCAACGTCTAGTG -ACGGAAATCTGCCAACGTCATCTG -ACGGAAATCTGCCAACGTGAGTTG -ACGGAAATCTGCCAACGTAGACTG -ACGGAAATCTGCCAACGTTCGGTA -ACGGAAATCTGCCAACGTTGCCTA -ACGGAAATCTGCCAACGTCCACTA -ACGGAAATCTGCCAACGTGGAGTA -ACGGAAATCTGCCAACGTTCGTCT -ACGGAAATCTGCCAACGTTGCACT -ACGGAAATCTGCCAACGTCTGACT -ACGGAAATCTGCCAACGTCAACCT -ACGGAAATCTGCCAACGTGCTACT -ACGGAAATCTGCCAACGTGGATCT -ACGGAAATCTGCCAACGTAAGGCT -ACGGAAATCTGCCAACGTTCAACC -ACGGAAATCTGCCAACGTTGTTCC -ACGGAAATCTGCCAACGTATTCCC -ACGGAAATCTGCCAACGTTTCTCG -ACGGAAATCTGCCAACGTTAGACG -ACGGAAATCTGCCAACGTGTAACG -ACGGAAATCTGCCAACGTACTTCG -ACGGAAATCTGCCAACGTTACGCA -ACGGAAATCTGCCAACGTCTTGCA -ACGGAAATCTGCCAACGTCGAACA -ACGGAAATCTGCCAACGTCAGTCA -ACGGAAATCTGCCAACGTGATCCA -ACGGAAATCTGCCAACGTACGACA -ACGGAAATCTGCCAACGTAGCTCA -ACGGAAATCTGCCAACGTTCACGT -ACGGAAATCTGCCAACGTCGTAGT -ACGGAAATCTGCCAACGTGTCAGT -ACGGAAATCTGCCAACGTGAAGGT -ACGGAAATCTGCCAACGTAACCGT -ACGGAAATCTGCCAACGTTTGTGC -ACGGAAATCTGCCAACGTCTAAGC -ACGGAAATCTGCCAACGTACTAGC -ACGGAAATCTGCCAACGTAGATGC -ACGGAAATCTGCCAACGTTGAAGG -ACGGAAATCTGCCAACGTCAATGG -ACGGAAATCTGCCAACGTATGAGG -ACGGAAATCTGCCAACGTAATGGG -ACGGAAATCTGCCAACGTTCCTGA -ACGGAAATCTGCCAACGTTAGCGA -ACGGAAATCTGCCAACGTCACAGA -ACGGAAATCTGCCAACGTGCAAGA -ACGGAAATCTGCCAACGTGGTTGA -ACGGAAATCTGCCAACGTTCCGAT -ACGGAAATCTGCCAACGTTGGCAT -ACGGAAATCTGCCAACGTCGAGAT -ACGGAAATCTGCCAACGTTACCAC -ACGGAAATCTGCCAACGTCAGAAC -ACGGAAATCTGCCAACGTGTCTAC -ACGGAAATCTGCCAACGTACGTAC -ACGGAAATCTGCCAACGTAGTGAC -ACGGAAATCTGCCAACGTCTGTAG -ACGGAAATCTGCCAACGTCCTAAG -ACGGAAATCTGCCAACGTGTTCAG -ACGGAAATCTGCCAACGTGCATAG -ACGGAAATCTGCCAACGTGACAAG -ACGGAAATCTGCCAACGTAAGCAG -ACGGAAATCTGCCAACGTCGTCAA -ACGGAAATCTGCCAACGTGCTGAA -ACGGAAATCTGCCAACGTAGTACG -ACGGAAATCTGCCAACGTATCCGA -ACGGAAATCTGCCAACGTATGGGA -ACGGAAATCTGCCAACGTGTGCAA -ACGGAAATCTGCCAACGTGAGGAA -ACGGAAATCTGCCAACGTCAGGTA -ACGGAAATCTGCCAACGTGACTCT -ACGGAAATCTGCCAACGTAGTCCT -ACGGAAATCTGCCAACGTTAAGCC -ACGGAAATCTGCCAACGTATAGCC -ACGGAAATCTGCCAACGTTAACCG -ACGGAAATCTGCCAACGTATGCCA -ACGGAAATCTGCGAAGCTGGAAAC -ACGGAAATCTGCGAAGCTAACACC -ACGGAAATCTGCGAAGCTATCGAG -ACGGAAATCTGCGAAGCTCTCCTT -ACGGAAATCTGCGAAGCTCCTGTT -ACGGAAATCTGCGAAGCTCGGTTT -ACGGAAATCTGCGAAGCTGTGGTT -ACGGAAATCTGCGAAGCTGCCTTT -ACGGAAATCTGCGAAGCTGGTCTT -ACGGAAATCTGCGAAGCTACGCTT -ACGGAAATCTGCGAAGCTAGCGTT -ACGGAAATCTGCGAAGCTTTCGTC -ACGGAAATCTGCGAAGCTTCTCTC -ACGGAAATCTGCGAAGCTTGGATC -ACGGAAATCTGCGAAGCTCACTTC -ACGGAAATCTGCGAAGCTGTACTC -ACGGAAATCTGCGAAGCTGATGTC -ACGGAAATCTGCGAAGCTACAGTC -ACGGAAATCTGCGAAGCTTTGCTG -ACGGAAATCTGCGAAGCTTCCATG -ACGGAAATCTGCGAAGCTTGTGTG -ACGGAAATCTGCGAAGCTCTAGTG -ACGGAAATCTGCGAAGCTCATCTG -ACGGAAATCTGCGAAGCTGAGTTG -ACGGAAATCTGCGAAGCTAGACTG -ACGGAAATCTGCGAAGCTTCGGTA -ACGGAAATCTGCGAAGCTTGCCTA -ACGGAAATCTGCGAAGCTCCACTA -ACGGAAATCTGCGAAGCTGGAGTA -ACGGAAATCTGCGAAGCTTCGTCT -ACGGAAATCTGCGAAGCTTGCACT -ACGGAAATCTGCGAAGCTCTGACT -ACGGAAATCTGCGAAGCTCAACCT -ACGGAAATCTGCGAAGCTGCTACT -ACGGAAATCTGCGAAGCTGGATCT -ACGGAAATCTGCGAAGCTAAGGCT -ACGGAAATCTGCGAAGCTTCAACC -ACGGAAATCTGCGAAGCTTGTTCC -ACGGAAATCTGCGAAGCTATTCCC -ACGGAAATCTGCGAAGCTTTCTCG -ACGGAAATCTGCGAAGCTTAGACG -ACGGAAATCTGCGAAGCTGTAACG -ACGGAAATCTGCGAAGCTACTTCG -ACGGAAATCTGCGAAGCTTACGCA -ACGGAAATCTGCGAAGCTCTTGCA -ACGGAAATCTGCGAAGCTCGAACA -ACGGAAATCTGCGAAGCTCAGTCA -ACGGAAATCTGCGAAGCTGATCCA -ACGGAAATCTGCGAAGCTACGACA -ACGGAAATCTGCGAAGCTAGCTCA -ACGGAAATCTGCGAAGCTTCACGT -ACGGAAATCTGCGAAGCTCGTAGT -ACGGAAATCTGCGAAGCTGTCAGT -ACGGAAATCTGCGAAGCTGAAGGT -ACGGAAATCTGCGAAGCTAACCGT -ACGGAAATCTGCGAAGCTTTGTGC -ACGGAAATCTGCGAAGCTCTAAGC -ACGGAAATCTGCGAAGCTACTAGC -ACGGAAATCTGCGAAGCTAGATGC -ACGGAAATCTGCGAAGCTTGAAGG -ACGGAAATCTGCGAAGCTCAATGG -ACGGAAATCTGCGAAGCTATGAGG -ACGGAAATCTGCGAAGCTAATGGG -ACGGAAATCTGCGAAGCTTCCTGA -ACGGAAATCTGCGAAGCTTAGCGA -ACGGAAATCTGCGAAGCTCACAGA -ACGGAAATCTGCGAAGCTGCAAGA -ACGGAAATCTGCGAAGCTGGTTGA -ACGGAAATCTGCGAAGCTTCCGAT -ACGGAAATCTGCGAAGCTTGGCAT -ACGGAAATCTGCGAAGCTCGAGAT -ACGGAAATCTGCGAAGCTTACCAC -ACGGAAATCTGCGAAGCTCAGAAC -ACGGAAATCTGCGAAGCTGTCTAC -ACGGAAATCTGCGAAGCTACGTAC -ACGGAAATCTGCGAAGCTAGTGAC -ACGGAAATCTGCGAAGCTCTGTAG -ACGGAAATCTGCGAAGCTCCTAAG -ACGGAAATCTGCGAAGCTGTTCAG -ACGGAAATCTGCGAAGCTGCATAG -ACGGAAATCTGCGAAGCTGACAAG -ACGGAAATCTGCGAAGCTAAGCAG -ACGGAAATCTGCGAAGCTCGTCAA -ACGGAAATCTGCGAAGCTGCTGAA -ACGGAAATCTGCGAAGCTAGTACG -ACGGAAATCTGCGAAGCTATCCGA -ACGGAAATCTGCGAAGCTATGGGA -ACGGAAATCTGCGAAGCTGTGCAA -ACGGAAATCTGCGAAGCTGAGGAA -ACGGAAATCTGCGAAGCTCAGGTA -ACGGAAATCTGCGAAGCTGACTCT -ACGGAAATCTGCGAAGCTAGTCCT -ACGGAAATCTGCGAAGCTTAAGCC -ACGGAAATCTGCGAAGCTATAGCC -ACGGAAATCTGCGAAGCTTAACCG -ACGGAAATCTGCGAAGCTATGCCA -ACGGAAATCTGCACGAGTGGAAAC -ACGGAAATCTGCACGAGTAACACC -ACGGAAATCTGCACGAGTATCGAG -ACGGAAATCTGCACGAGTCTCCTT -ACGGAAATCTGCACGAGTCCTGTT -ACGGAAATCTGCACGAGTCGGTTT -ACGGAAATCTGCACGAGTGTGGTT -ACGGAAATCTGCACGAGTGCCTTT -ACGGAAATCTGCACGAGTGGTCTT -ACGGAAATCTGCACGAGTACGCTT -ACGGAAATCTGCACGAGTAGCGTT -ACGGAAATCTGCACGAGTTTCGTC -ACGGAAATCTGCACGAGTTCTCTC -ACGGAAATCTGCACGAGTTGGATC -ACGGAAATCTGCACGAGTCACTTC -ACGGAAATCTGCACGAGTGTACTC -ACGGAAATCTGCACGAGTGATGTC -ACGGAAATCTGCACGAGTACAGTC -ACGGAAATCTGCACGAGTTTGCTG -ACGGAAATCTGCACGAGTTCCATG -ACGGAAATCTGCACGAGTTGTGTG -ACGGAAATCTGCACGAGTCTAGTG -ACGGAAATCTGCACGAGTCATCTG -ACGGAAATCTGCACGAGTGAGTTG -ACGGAAATCTGCACGAGTAGACTG -ACGGAAATCTGCACGAGTTCGGTA -ACGGAAATCTGCACGAGTTGCCTA -ACGGAAATCTGCACGAGTCCACTA -ACGGAAATCTGCACGAGTGGAGTA -ACGGAAATCTGCACGAGTTCGTCT -ACGGAAATCTGCACGAGTTGCACT -ACGGAAATCTGCACGAGTCTGACT -ACGGAAATCTGCACGAGTCAACCT -ACGGAAATCTGCACGAGTGCTACT -ACGGAAATCTGCACGAGTGGATCT -ACGGAAATCTGCACGAGTAAGGCT -ACGGAAATCTGCACGAGTTCAACC -ACGGAAATCTGCACGAGTTGTTCC -ACGGAAATCTGCACGAGTATTCCC -ACGGAAATCTGCACGAGTTTCTCG -ACGGAAATCTGCACGAGTTAGACG -ACGGAAATCTGCACGAGTGTAACG -ACGGAAATCTGCACGAGTACTTCG -ACGGAAATCTGCACGAGTTACGCA -ACGGAAATCTGCACGAGTCTTGCA -ACGGAAATCTGCACGAGTCGAACA -ACGGAAATCTGCACGAGTCAGTCA -ACGGAAATCTGCACGAGTGATCCA -ACGGAAATCTGCACGAGTACGACA -ACGGAAATCTGCACGAGTAGCTCA -ACGGAAATCTGCACGAGTTCACGT -ACGGAAATCTGCACGAGTCGTAGT -ACGGAAATCTGCACGAGTGTCAGT -ACGGAAATCTGCACGAGTGAAGGT -ACGGAAATCTGCACGAGTAACCGT -ACGGAAATCTGCACGAGTTTGTGC -ACGGAAATCTGCACGAGTCTAAGC -ACGGAAATCTGCACGAGTACTAGC -ACGGAAATCTGCACGAGTAGATGC -ACGGAAATCTGCACGAGTTGAAGG -ACGGAAATCTGCACGAGTCAATGG -ACGGAAATCTGCACGAGTATGAGG -ACGGAAATCTGCACGAGTAATGGG -ACGGAAATCTGCACGAGTTCCTGA -ACGGAAATCTGCACGAGTTAGCGA -ACGGAAATCTGCACGAGTCACAGA -ACGGAAATCTGCACGAGTGCAAGA -ACGGAAATCTGCACGAGTGGTTGA -ACGGAAATCTGCACGAGTTCCGAT -ACGGAAATCTGCACGAGTTGGCAT -ACGGAAATCTGCACGAGTCGAGAT -ACGGAAATCTGCACGAGTTACCAC -ACGGAAATCTGCACGAGTCAGAAC -ACGGAAATCTGCACGAGTGTCTAC -ACGGAAATCTGCACGAGTACGTAC -ACGGAAATCTGCACGAGTAGTGAC -ACGGAAATCTGCACGAGTCTGTAG -ACGGAAATCTGCACGAGTCCTAAG -ACGGAAATCTGCACGAGTGTTCAG -ACGGAAATCTGCACGAGTGCATAG -ACGGAAATCTGCACGAGTGACAAG -ACGGAAATCTGCACGAGTAAGCAG -ACGGAAATCTGCACGAGTCGTCAA -ACGGAAATCTGCACGAGTGCTGAA -ACGGAAATCTGCACGAGTAGTACG -ACGGAAATCTGCACGAGTATCCGA -ACGGAAATCTGCACGAGTATGGGA -ACGGAAATCTGCACGAGTGTGCAA -ACGGAAATCTGCACGAGTGAGGAA -ACGGAAATCTGCACGAGTCAGGTA -ACGGAAATCTGCACGAGTGACTCT -ACGGAAATCTGCACGAGTAGTCCT -ACGGAAATCTGCACGAGTTAAGCC -ACGGAAATCTGCACGAGTATAGCC -ACGGAAATCTGCACGAGTTAACCG -ACGGAAATCTGCACGAGTATGCCA -ACGGAAATCTGCCGAATCGGAAAC -ACGGAAATCTGCCGAATCAACACC -ACGGAAATCTGCCGAATCATCGAG -ACGGAAATCTGCCGAATCCTCCTT -ACGGAAATCTGCCGAATCCCTGTT -ACGGAAATCTGCCGAATCCGGTTT -ACGGAAATCTGCCGAATCGTGGTT -ACGGAAATCTGCCGAATCGCCTTT -ACGGAAATCTGCCGAATCGGTCTT -ACGGAAATCTGCCGAATCACGCTT -ACGGAAATCTGCCGAATCAGCGTT -ACGGAAATCTGCCGAATCTTCGTC -ACGGAAATCTGCCGAATCTCTCTC -ACGGAAATCTGCCGAATCTGGATC -ACGGAAATCTGCCGAATCCACTTC -ACGGAAATCTGCCGAATCGTACTC -ACGGAAATCTGCCGAATCGATGTC -ACGGAAATCTGCCGAATCACAGTC -ACGGAAATCTGCCGAATCTTGCTG -ACGGAAATCTGCCGAATCTCCATG -ACGGAAATCTGCCGAATCTGTGTG -ACGGAAATCTGCCGAATCCTAGTG -ACGGAAATCTGCCGAATCCATCTG -ACGGAAATCTGCCGAATCGAGTTG -ACGGAAATCTGCCGAATCAGACTG -ACGGAAATCTGCCGAATCTCGGTA -ACGGAAATCTGCCGAATCTGCCTA -ACGGAAATCTGCCGAATCCCACTA -ACGGAAATCTGCCGAATCGGAGTA -ACGGAAATCTGCCGAATCTCGTCT -ACGGAAATCTGCCGAATCTGCACT -ACGGAAATCTGCCGAATCCTGACT -ACGGAAATCTGCCGAATCCAACCT -ACGGAAATCTGCCGAATCGCTACT -ACGGAAATCTGCCGAATCGGATCT -ACGGAAATCTGCCGAATCAAGGCT -ACGGAAATCTGCCGAATCTCAACC -ACGGAAATCTGCCGAATCTGTTCC -ACGGAAATCTGCCGAATCATTCCC -ACGGAAATCTGCCGAATCTTCTCG -ACGGAAATCTGCCGAATCTAGACG -ACGGAAATCTGCCGAATCGTAACG -ACGGAAATCTGCCGAATCACTTCG -ACGGAAATCTGCCGAATCTACGCA -ACGGAAATCTGCCGAATCCTTGCA -ACGGAAATCTGCCGAATCCGAACA -ACGGAAATCTGCCGAATCCAGTCA -ACGGAAATCTGCCGAATCGATCCA -ACGGAAATCTGCCGAATCACGACA -ACGGAAATCTGCCGAATCAGCTCA -ACGGAAATCTGCCGAATCTCACGT -ACGGAAATCTGCCGAATCCGTAGT -ACGGAAATCTGCCGAATCGTCAGT -ACGGAAATCTGCCGAATCGAAGGT -ACGGAAATCTGCCGAATCAACCGT -ACGGAAATCTGCCGAATCTTGTGC -ACGGAAATCTGCCGAATCCTAAGC -ACGGAAATCTGCCGAATCACTAGC -ACGGAAATCTGCCGAATCAGATGC -ACGGAAATCTGCCGAATCTGAAGG -ACGGAAATCTGCCGAATCCAATGG -ACGGAAATCTGCCGAATCATGAGG -ACGGAAATCTGCCGAATCAATGGG -ACGGAAATCTGCCGAATCTCCTGA -ACGGAAATCTGCCGAATCTAGCGA -ACGGAAATCTGCCGAATCCACAGA -ACGGAAATCTGCCGAATCGCAAGA -ACGGAAATCTGCCGAATCGGTTGA -ACGGAAATCTGCCGAATCTCCGAT -ACGGAAATCTGCCGAATCTGGCAT -ACGGAAATCTGCCGAATCCGAGAT -ACGGAAATCTGCCGAATCTACCAC -ACGGAAATCTGCCGAATCCAGAAC -ACGGAAATCTGCCGAATCGTCTAC -ACGGAAATCTGCCGAATCACGTAC -ACGGAAATCTGCCGAATCAGTGAC -ACGGAAATCTGCCGAATCCTGTAG -ACGGAAATCTGCCGAATCCCTAAG -ACGGAAATCTGCCGAATCGTTCAG -ACGGAAATCTGCCGAATCGCATAG -ACGGAAATCTGCCGAATCGACAAG -ACGGAAATCTGCCGAATCAAGCAG -ACGGAAATCTGCCGAATCCGTCAA -ACGGAAATCTGCCGAATCGCTGAA -ACGGAAATCTGCCGAATCAGTACG -ACGGAAATCTGCCGAATCATCCGA -ACGGAAATCTGCCGAATCATGGGA -ACGGAAATCTGCCGAATCGTGCAA -ACGGAAATCTGCCGAATCGAGGAA -ACGGAAATCTGCCGAATCCAGGTA -ACGGAAATCTGCCGAATCGACTCT -ACGGAAATCTGCCGAATCAGTCCT -ACGGAAATCTGCCGAATCTAAGCC -ACGGAAATCTGCCGAATCATAGCC -ACGGAAATCTGCCGAATCTAACCG -ACGGAAATCTGCCGAATCATGCCA -ACGGAAATCTGCGGAATGGGAAAC -ACGGAAATCTGCGGAATGAACACC -ACGGAAATCTGCGGAATGATCGAG -ACGGAAATCTGCGGAATGCTCCTT -ACGGAAATCTGCGGAATGCCTGTT -ACGGAAATCTGCGGAATGCGGTTT -ACGGAAATCTGCGGAATGGTGGTT -ACGGAAATCTGCGGAATGGCCTTT -ACGGAAATCTGCGGAATGGGTCTT -ACGGAAATCTGCGGAATGACGCTT -ACGGAAATCTGCGGAATGAGCGTT -ACGGAAATCTGCGGAATGTTCGTC -ACGGAAATCTGCGGAATGTCTCTC -ACGGAAATCTGCGGAATGTGGATC -ACGGAAATCTGCGGAATGCACTTC -ACGGAAATCTGCGGAATGGTACTC -ACGGAAATCTGCGGAATGGATGTC -ACGGAAATCTGCGGAATGACAGTC -ACGGAAATCTGCGGAATGTTGCTG -ACGGAAATCTGCGGAATGTCCATG -ACGGAAATCTGCGGAATGTGTGTG -ACGGAAATCTGCGGAATGCTAGTG -ACGGAAATCTGCGGAATGCATCTG -ACGGAAATCTGCGGAATGGAGTTG -ACGGAAATCTGCGGAATGAGACTG -ACGGAAATCTGCGGAATGTCGGTA -ACGGAAATCTGCGGAATGTGCCTA -ACGGAAATCTGCGGAATGCCACTA -ACGGAAATCTGCGGAATGGGAGTA -ACGGAAATCTGCGGAATGTCGTCT -ACGGAAATCTGCGGAATGTGCACT -ACGGAAATCTGCGGAATGCTGACT -ACGGAAATCTGCGGAATGCAACCT -ACGGAAATCTGCGGAATGGCTACT -ACGGAAATCTGCGGAATGGGATCT -ACGGAAATCTGCGGAATGAAGGCT -ACGGAAATCTGCGGAATGTCAACC -ACGGAAATCTGCGGAATGTGTTCC -ACGGAAATCTGCGGAATGATTCCC -ACGGAAATCTGCGGAATGTTCTCG -ACGGAAATCTGCGGAATGTAGACG -ACGGAAATCTGCGGAATGGTAACG -ACGGAAATCTGCGGAATGACTTCG -ACGGAAATCTGCGGAATGTACGCA -ACGGAAATCTGCGGAATGCTTGCA -ACGGAAATCTGCGGAATGCGAACA -ACGGAAATCTGCGGAATGCAGTCA -ACGGAAATCTGCGGAATGGATCCA -ACGGAAATCTGCGGAATGACGACA -ACGGAAATCTGCGGAATGAGCTCA -ACGGAAATCTGCGGAATGTCACGT -ACGGAAATCTGCGGAATGCGTAGT -ACGGAAATCTGCGGAATGGTCAGT -ACGGAAATCTGCGGAATGGAAGGT -ACGGAAATCTGCGGAATGAACCGT -ACGGAAATCTGCGGAATGTTGTGC -ACGGAAATCTGCGGAATGCTAAGC -ACGGAAATCTGCGGAATGACTAGC -ACGGAAATCTGCGGAATGAGATGC -ACGGAAATCTGCGGAATGTGAAGG -ACGGAAATCTGCGGAATGCAATGG -ACGGAAATCTGCGGAATGATGAGG -ACGGAAATCTGCGGAATGAATGGG -ACGGAAATCTGCGGAATGTCCTGA -ACGGAAATCTGCGGAATGTAGCGA -ACGGAAATCTGCGGAATGCACAGA -ACGGAAATCTGCGGAATGGCAAGA -ACGGAAATCTGCGGAATGGGTTGA -ACGGAAATCTGCGGAATGTCCGAT -ACGGAAATCTGCGGAATGTGGCAT -ACGGAAATCTGCGGAATGCGAGAT -ACGGAAATCTGCGGAATGTACCAC -ACGGAAATCTGCGGAATGCAGAAC -ACGGAAATCTGCGGAATGGTCTAC -ACGGAAATCTGCGGAATGACGTAC -ACGGAAATCTGCGGAATGAGTGAC -ACGGAAATCTGCGGAATGCTGTAG -ACGGAAATCTGCGGAATGCCTAAG -ACGGAAATCTGCGGAATGGTTCAG -ACGGAAATCTGCGGAATGGCATAG -ACGGAAATCTGCGGAATGGACAAG -ACGGAAATCTGCGGAATGAAGCAG -ACGGAAATCTGCGGAATGCGTCAA -ACGGAAATCTGCGGAATGGCTGAA -ACGGAAATCTGCGGAATGAGTACG -ACGGAAATCTGCGGAATGATCCGA -ACGGAAATCTGCGGAATGATGGGA -ACGGAAATCTGCGGAATGGTGCAA -ACGGAAATCTGCGGAATGGAGGAA -ACGGAAATCTGCGGAATGCAGGTA -ACGGAAATCTGCGGAATGGACTCT -ACGGAAATCTGCGGAATGAGTCCT -ACGGAAATCTGCGGAATGTAAGCC -ACGGAAATCTGCGGAATGATAGCC -ACGGAAATCTGCGGAATGTAACCG -ACGGAAATCTGCGGAATGATGCCA -ACGGAAATCTGCCAAGTGGGAAAC -ACGGAAATCTGCCAAGTGAACACC -ACGGAAATCTGCCAAGTGATCGAG -ACGGAAATCTGCCAAGTGCTCCTT -ACGGAAATCTGCCAAGTGCCTGTT -ACGGAAATCTGCCAAGTGCGGTTT -ACGGAAATCTGCCAAGTGGTGGTT -ACGGAAATCTGCCAAGTGGCCTTT -ACGGAAATCTGCCAAGTGGGTCTT -ACGGAAATCTGCCAAGTGACGCTT -ACGGAAATCTGCCAAGTGAGCGTT -ACGGAAATCTGCCAAGTGTTCGTC -ACGGAAATCTGCCAAGTGTCTCTC -ACGGAAATCTGCCAAGTGTGGATC -ACGGAAATCTGCCAAGTGCACTTC -ACGGAAATCTGCCAAGTGGTACTC -ACGGAAATCTGCCAAGTGGATGTC -ACGGAAATCTGCCAAGTGACAGTC -ACGGAAATCTGCCAAGTGTTGCTG -ACGGAAATCTGCCAAGTGTCCATG -ACGGAAATCTGCCAAGTGTGTGTG -ACGGAAATCTGCCAAGTGCTAGTG -ACGGAAATCTGCCAAGTGCATCTG -ACGGAAATCTGCCAAGTGGAGTTG -ACGGAAATCTGCCAAGTGAGACTG -ACGGAAATCTGCCAAGTGTCGGTA -ACGGAAATCTGCCAAGTGTGCCTA -ACGGAAATCTGCCAAGTGCCACTA -ACGGAAATCTGCCAAGTGGGAGTA -ACGGAAATCTGCCAAGTGTCGTCT -ACGGAAATCTGCCAAGTGTGCACT -ACGGAAATCTGCCAAGTGCTGACT -ACGGAAATCTGCCAAGTGCAACCT -ACGGAAATCTGCCAAGTGGCTACT -ACGGAAATCTGCCAAGTGGGATCT -ACGGAAATCTGCCAAGTGAAGGCT -ACGGAAATCTGCCAAGTGTCAACC -ACGGAAATCTGCCAAGTGTGTTCC -ACGGAAATCTGCCAAGTGATTCCC -ACGGAAATCTGCCAAGTGTTCTCG -ACGGAAATCTGCCAAGTGTAGACG -ACGGAAATCTGCCAAGTGGTAACG -ACGGAAATCTGCCAAGTGACTTCG -ACGGAAATCTGCCAAGTGTACGCA -ACGGAAATCTGCCAAGTGCTTGCA -ACGGAAATCTGCCAAGTGCGAACA -ACGGAAATCTGCCAAGTGCAGTCA -ACGGAAATCTGCCAAGTGGATCCA -ACGGAAATCTGCCAAGTGACGACA -ACGGAAATCTGCCAAGTGAGCTCA -ACGGAAATCTGCCAAGTGTCACGT -ACGGAAATCTGCCAAGTGCGTAGT -ACGGAAATCTGCCAAGTGGTCAGT -ACGGAAATCTGCCAAGTGGAAGGT -ACGGAAATCTGCCAAGTGAACCGT -ACGGAAATCTGCCAAGTGTTGTGC -ACGGAAATCTGCCAAGTGCTAAGC -ACGGAAATCTGCCAAGTGACTAGC -ACGGAAATCTGCCAAGTGAGATGC -ACGGAAATCTGCCAAGTGTGAAGG -ACGGAAATCTGCCAAGTGCAATGG -ACGGAAATCTGCCAAGTGATGAGG -ACGGAAATCTGCCAAGTGAATGGG -ACGGAAATCTGCCAAGTGTCCTGA -ACGGAAATCTGCCAAGTGTAGCGA -ACGGAAATCTGCCAAGTGCACAGA -ACGGAAATCTGCCAAGTGGCAAGA -ACGGAAATCTGCCAAGTGGGTTGA -ACGGAAATCTGCCAAGTGTCCGAT -ACGGAAATCTGCCAAGTGTGGCAT -ACGGAAATCTGCCAAGTGCGAGAT -ACGGAAATCTGCCAAGTGTACCAC -ACGGAAATCTGCCAAGTGCAGAAC -ACGGAAATCTGCCAAGTGGTCTAC -ACGGAAATCTGCCAAGTGACGTAC -ACGGAAATCTGCCAAGTGAGTGAC -ACGGAAATCTGCCAAGTGCTGTAG -ACGGAAATCTGCCAAGTGCCTAAG -ACGGAAATCTGCCAAGTGGTTCAG -ACGGAAATCTGCCAAGTGGCATAG -ACGGAAATCTGCCAAGTGGACAAG -ACGGAAATCTGCCAAGTGAAGCAG -ACGGAAATCTGCCAAGTGCGTCAA -ACGGAAATCTGCCAAGTGGCTGAA -ACGGAAATCTGCCAAGTGAGTACG -ACGGAAATCTGCCAAGTGATCCGA -ACGGAAATCTGCCAAGTGATGGGA -ACGGAAATCTGCCAAGTGGTGCAA -ACGGAAATCTGCCAAGTGGAGGAA -ACGGAAATCTGCCAAGTGCAGGTA -ACGGAAATCTGCCAAGTGGACTCT -ACGGAAATCTGCCAAGTGAGTCCT -ACGGAAATCTGCCAAGTGTAAGCC -ACGGAAATCTGCCAAGTGATAGCC -ACGGAAATCTGCCAAGTGTAACCG -ACGGAAATCTGCCAAGTGATGCCA -ACGGAAATCTGCGAAGAGGGAAAC -ACGGAAATCTGCGAAGAGAACACC -ACGGAAATCTGCGAAGAGATCGAG -ACGGAAATCTGCGAAGAGCTCCTT -ACGGAAATCTGCGAAGAGCCTGTT -ACGGAAATCTGCGAAGAGCGGTTT -ACGGAAATCTGCGAAGAGGTGGTT -ACGGAAATCTGCGAAGAGGCCTTT -ACGGAAATCTGCGAAGAGGGTCTT -ACGGAAATCTGCGAAGAGACGCTT -ACGGAAATCTGCGAAGAGAGCGTT -ACGGAAATCTGCGAAGAGTTCGTC -ACGGAAATCTGCGAAGAGTCTCTC -ACGGAAATCTGCGAAGAGTGGATC -ACGGAAATCTGCGAAGAGCACTTC -ACGGAAATCTGCGAAGAGGTACTC -ACGGAAATCTGCGAAGAGGATGTC -ACGGAAATCTGCGAAGAGACAGTC -ACGGAAATCTGCGAAGAGTTGCTG -ACGGAAATCTGCGAAGAGTCCATG -ACGGAAATCTGCGAAGAGTGTGTG -ACGGAAATCTGCGAAGAGCTAGTG -ACGGAAATCTGCGAAGAGCATCTG -ACGGAAATCTGCGAAGAGGAGTTG -ACGGAAATCTGCGAAGAGAGACTG -ACGGAAATCTGCGAAGAGTCGGTA -ACGGAAATCTGCGAAGAGTGCCTA -ACGGAAATCTGCGAAGAGCCACTA -ACGGAAATCTGCGAAGAGGGAGTA -ACGGAAATCTGCGAAGAGTCGTCT -ACGGAAATCTGCGAAGAGTGCACT -ACGGAAATCTGCGAAGAGCTGACT -ACGGAAATCTGCGAAGAGCAACCT -ACGGAAATCTGCGAAGAGGCTACT -ACGGAAATCTGCGAAGAGGGATCT -ACGGAAATCTGCGAAGAGAAGGCT -ACGGAAATCTGCGAAGAGTCAACC -ACGGAAATCTGCGAAGAGTGTTCC -ACGGAAATCTGCGAAGAGATTCCC -ACGGAAATCTGCGAAGAGTTCTCG -ACGGAAATCTGCGAAGAGTAGACG -ACGGAAATCTGCGAAGAGGTAACG -ACGGAAATCTGCGAAGAGACTTCG -ACGGAAATCTGCGAAGAGTACGCA -ACGGAAATCTGCGAAGAGCTTGCA -ACGGAAATCTGCGAAGAGCGAACA -ACGGAAATCTGCGAAGAGCAGTCA -ACGGAAATCTGCGAAGAGGATCCA -ACGGAAATCTGCGAAGAGACGACA -ACGGAAATCTGCGAAGAGAGCTCA -ACGGAAATCTGCGAAGAGTCACGT -ACGGAAATCTGCGAAGAGCGTAGT -ACGGAAATCTGCGAAGAGGTCAGT -ACGGAAATCTGCGAAGAGGAAGGT -ACGGAAATCTGCGAAGAGAACCGT -ACGGAAATCTGCGAAGAGTTGTGC -ACGGAAATCTGCGAAGAGCTAAGC -ACGGAAATCTGCGAAGAGACTAGC -ACGGAAATCTGCGAAGAGAGATGC -ACGGAAATCTGCGAAGAGTGAAGG -ACGGAAATCTGCGAAGAGCAATGG -ACGGAAATCTGCGAAGAGATGAGG -ACGGAAATCTGCGAAGAGAATGGG -ACGGAAATCTGCGAAGAGTCCTGA -ACGGAAATCTGCGAAGAGTAGCGA -ACGGAAATCTGCGAAGAGCACAGA -ACGGAAATCTGCGAAGAGGCAAGA -ACGGAAATCTGCGAAGAGGGTTGA -ACGGAAATCTGCGAAGAGTCCGAT -ACGGAAATCTGCGAAGAGTGGCAT -ACGGAAATCTGCGAAGAGCGAGAT -ACGGAAATCTGCGAAGAGTACCAC -ACGGAAATCTGCGAAGAGCAGAAC -ACGGAAATCTGCGAAGAGGTCTAC -ACGGAAATCTGCGAAGAGACGTAC -ACGGAAATCTGCGAAGAGAGTGAC -ACGGAAATCTGCGAAGAGCTGTAG -ACGGAAATCTGCGAAGAGCCTAAG -ACGGAAATCTGCGAAGAGGTTCAG -ACGGAAATCTGCGAAGAGGCATAG -ACGGAAATCTGCGAAGAGGACAAG -ACGGAAATCTGCGAAGAGAAGCAG -ACGGAAATCTGCGAAGAGCGTCAA -ACGGAAATCTGCGAAGAGGCTGAA -ACGGAAATCTGCGAAGAGAGTACG -ACGGAAATCTGCGAAGAGATCCGA -ACGGAAATCTGCGAAGAGATGGGA -ACGGAAATCTGCGAAGAGGTGCAA -ACGGAAATCTGCGAAGAGGAGGAA -ACGGAAATCTGCGAAGAGCAGGTA -ACGGAAATCTGCGAAGAGGACTCT -ACGGAAATCTGCGAAGAGAGTCCT -ACGGAAATCTGCGAAGAGTAAGCC -ACGGAAATCTGCGAAGAGATAGCC -ACGGAAATCTGCGAAGAGTAACCG -ACGGAAATCTGCGAAGAGATGCCA -ACGGAAATCTGCGTACAGGGAAAC -ACGGAAATCTGCGTACAGAACACC -ACGGAAATCTGCGTACAGATCGAG -ACGGAAATCTGCGTACAGCTCCTT -ACGGAAATCTGCGTACAGCCTGTT -ACGGAAATCTGCGTACAGCGGTTT -ACGGAAATCTGCGTACAGGTGGTT -ACGGAAATCTGCGTACAGGCCTTT -ACGGAAATCTGCGTACAGGGTCTT -ACGGAAATCTGCGTACAGACGCTT -ACGGAAATCTGCGTACAGAGCGTT -ACGGAAATCTGCGTACAGTTCGTC -ACGGAAATCTGCGTACAGTCTCTC -ACGGAAATCTGCGTACAGTGGATC -ACGGAAATCTGCGTACAGCACTTC -ACGGAAATCTGCGTACAGGTACTC -ACGGAAATCTGCGTACAGGATGTC -ACGGAAATCTGCGTACAGACAGTC -ACGGAAATCTGCGTACAGTTGCTG -ACGGAAATCTGCGTACAGTCCATG -ACGGAAATCTGCGTACAGTGTGTG -ACGGAAATCTGCGTACAGCTAGTG -ACGGAAATCTGCGTACAGCATCTG -ACGGAAATCTGCGTACAGGAGTTG -ACGGAAATCTGCGTACAGAGACTG -ACGGAAATCTGCGTACAGTCGGTA -ACGGAAATCTGCGTACAGTGCCTA -ACGGAAATCTGCGTACAGCCACTA -ACGGAAATCTGCGTACAGGGAGTA -ACGGAAATCTGCGTACAGTCGTCT -ACGGAAATCTGCGTACAGTGCACT -ACGGAAATCTGCGTACAGCTGACT -ACGGAAATCTGCGTACAGCAACCT -ACGGAAATCTGCGTACAGGCTACT -ACGGAAATCTGCGTACAGGGATCT -ACGGAAATCTGCGTACAGAAGGCT -ACGGAAATCTGCGTACAGTCAACC -ACGGAAATCTGCGTACAGTGTTCC -ACGGAAATCTGCGTACAGATTCCC -ACGGAAATCTGCGTACAGTTCTCG -ACGGAAATCTGCGTACAGTAGACG -ACGGAAATCTGCGTACAGGTAACG -ACGGAAATCTGCGTACAGACTTCG -ACGGAAATCTGCGTACAGTACGCA -ACGGAAATCTGCGTACAGCTTGCA -ACGGAAATCTGCGTACAGCGAACA -ACGGAAATCTGCGTACAGCAGTCA -ACGGAAATCTGCGTACAGGATCCA -ACGGAAATCTGCGTACAGACGACA -ACGGAAATCTGCGTACAGAGCTCA -ACGGAAATCTGCGTACAGTCACGT -ACGGAAATCTGCGTACAGCGTAGT -ACGGAAATCTGCGTACAGGTCAGT -ACGGAAATCTGCGTACAGGAAGGT -ACGGAAATCTGCGTACAGAACCGT -ACGGAAATCTGCGTACAGTTGTGC -ACGGAAATCTGCGTACAGCTAAGC -ACGGAAATCTGCGTACAGACTAGC -ACGGAAATCTGCGTACAGAGATGC -ACGGAAATCTGCGTACAGTGAAGG -ACGGAAATCTGCGTACAGCAATGG -ACGGAAATCTGCGTACAGATGAGG -ACGGAAATCTGCGTACAGAATGGG -ACGGAAATCTGCGTACAGTCCTGA -ACGGAAATCTGCGTACAGTAGCGA -ACGGAAATCTGCGTACAGCACAGA -ACGGAAATCTGCGTACAGGCAAGA -ACGGAAATCTGCGTACAGGGTTGA -ACGGAAATCTGCGTACAGTCCGAT -ACGGAAATCTGCGTACAGTGGCAT -ACGGAAATCTGCGTACAGCGAGAT -ACGGAAATCTGCGTACAGTACCAC -ACGGAAATCTGCGTACAGCAGAAC -ACGGAAATCTGCGTACAGGTCTAC -ACGGAAATCTGCGTACAGACGTAC -ACGGAAATCTGCGTACAGAGTGAC -ACGGAAATCTGCGTACAGCTGTAG -ACGGAAATCTGCGTACAGCCTAAG -ACGGAAATCTGCGTACAGGTTCAG -ACGGAAATCTGCGTACAGGCATAG -ACGGAAATCTGCGTACAGGACAAG -ACGGAAATCTGCGTACAGAAGCAG -ACGGAAATCTGCGTACAGCGTCAA -ACGGAAATCTGCGTACAGGCTGAA -ACGGAAATCTGCGTACAGAGTACG -ACGGAAATCTGCGTACAGATCCGA -ACGGAAATCTGCGTACAGATGGGA -ACGGAAATCTGCGTACAGGTGCAA -ACGGAAATCTGCGTACAGGAGGAA -ACGGAAATCTGCGTACAGCAGGTA -ACGGAAATCTGCGTACAGGACTCT -ACGGAAATCTGCGTACAGAGTCCT -ACGGAAATCTGCGTACAGTAAGCC -ACGGAAATCTGCGTACAGATAGCC -ACGGAAATCTGCGTACAGTAACCG -ACGGAAATCTGCGTACAGATGCCA -ACGGAAATCTGCTCTGACGGAAAC -ACGGAAATCTGCTCTGACAACACC -ACGGAAATCTGCTCTGACATCGAG -ACGGAAATCTGCTCTGACCTCCTT -ACGGAAATCTGCTCTGACCCTGTT -ACGGAAATCTGCTCTGACCGGTTT -ACGGAAATCTGCTCTGACGTGGTT -ACGGAAATCTGCTCTGACGCCTTT -ACGGAAATCTGCTCTGACGGTCTT -ACGGAAATCTGCTCTGACACGCTT -ACGGAAATCTGCTCTGACAGCGTT -ACGGAAATCTGCTCTGACTTCGTC -ACGGAAATCTGCTCTGACTCTCTC -ACGGAAATCTGCTCTGACTGGATC -ACGGAAATCTGCTCTGACCACTTC -ACGGAAATCTGCTCTGACGTACTC -ACGGAAATCTGCTCTGACGATGTC -ACGGAAATCTGCTCTGACACAGTC -ACGGAAATCTGCTCTGACTTGCTG -ACGGAAATCTGCTCTGACTCCATG -ACGGAAATCTGCTCTGACTGTGTG -ACGGAAATCTGCTCTGACCTAGTG -ACGGAAATCTGCTCTGACCATCTG -ACGGAAATCTGCTCTGACGAGTTG -ACGGAAATCTGCTCTGACAGACTG -ACGGAAATCTGCTCTGACTCGGTA -ACGGAAATCTGCTCTGACTGCCTA -ACGGAAATCTGCTCTGACCCACTA -ACGGAAATCTGCTCTGACGGAGTA -ACGGAAATCTGCTCTGACTCGTCT -ACGGAAATCTGCTCTGACTGCACT -ACGGAAATCTGCTCTGACCTGACT -ACGGAAATCTGCTCTGACCAACCT -ACGGAAATCTGCTCTGACGCTACT -ACGGAAATCTGCTCTGACGGATCT -ACGGAAATCTGCTCTGACAAGGCT -ACGGAAATCTGCTCTGACTCAACC -ACGGAAATCTGCTCTGACTGTTCC -ACGGAAATCTGCTCTGACATTCCC -ACGGAAATCTGCTCTGACTTCTCG -ACGGAAATCTGCTCTGACTAGACG -ACGGAAATCTGCTCTGACGTAACG -ACGGAAATCTGCTCTGACACTTCG -ACGGAAATCTGCTCTGACTACGCA -ACGGAAATCTGCTCTGACCTTGCA -ACGGAAATCTGCTCTGACCGAACA -ACGGAAATCTGCTCTGACCAGTCA -ACGGAAATCTGCTCTGACGATCCA -ACGGAAATCTGCTCTGACACGACA -ACGGAAATCTGCTCTGACAGCTCA -ACGGAAATCTGCTCTGACTCACGT -ACGGAAATCTGCTCTGACCGTAGT -ACGGAAATCTGCTCTGACGTCAGT -ACGGAAATCTGCTCTGACGAAGGT -ACGGAAATCTGCTCTGACAACCGT -ACGGAAATCTGCTCTGACTTGTGC -ACGGAAATCTGCTCTGACCTAAGC -ACGGAAATCTGCTCTGACACTAGC -ACGGAAATCTGCTCTGACAGATGC -ACGGAAATCTGCTCTGACTGAAGG -ACGGAAATCTGCTCTGACCAATGG -ACGGAAATCTGCTCTGACATGAGG -ACGGAAATCTGCTCTGACAATGGG -ACGGAAATCTGCTCTGACTCCTGA -ACGGAAATCTGCTCTGACTAGCGA -ACGGAAATCTGCTCTGACCACAGA -ACGGAAATCTGCTCTGACGCAAGA -ACGGAAATCTGCTCTGACGGTTGA -ACGGAAATCTGCTCTGACTCCGAT -ACGGAAATCTGCTCTGACTGGCAT -ACGGAAATCTGCTCTGACCGAGAT -ACGGAAATCTGCTCTGACTACCAC -ACGGAAATCTGCTCTGACCAGAAC -ACGGAAATCTGCTCTGACGTCTAC -ACGGAAATCTGCTCTGACACGTAC -ACGGAAATCTGCTCTGACAGTGAC -ACGGAAATCTGCTCTGACCTGTAG -ACGGAAATCTGCTCTGACCCTAAG -ACGGAAATCTGCTCTGACGTTCAG -ACGGAAATCTGCTCTGACGCATAG -ACGGAAATCTGCTCTGACGACAAG -ACGGAAATCTGCTCTGACAAGCAG -ACGGAAATCTGCTCTGACCGTCAA -ACGGAAATCTGCTCTGACGCTGAA -ACGGAAATCTGCTCTGACAGTACG -ACGGAAATCTGCTCTGACATCCGA -ACGGAAATCTGCTCTGACATGGGA -ACGGAAATCTGCTCTGACGTGCAA -ACGGAAATCTGCTCTGACGAGGAA -ACGGAAATCTGCTCTGACCAGGTA -ACGGAAATCTGCTCTGACGACTCT -ACGGAAATCTGCTCTGACAGTCCT -ACGGAAATCTGCTCTGACTAAGCC -ACGGAAATCTGCTCTGACATAGCC -ACGGAAATCTGCTCTGACTAACCG -ACGGAAATCTGCTCTGACATGCCA -ACGGAAATCTGCCCTAGTGGAAAC -ACGGAAATCTGCCCTAGTAACACC -ACGGAAATCTGCCCTAGTATCGAG -ACGGAAATCTGCCCTAGTCTCCTT -ACGGAAATCTGCCCTAGTCCTGTT -ACGGAAATCTGCCCTAGTCGGTTT -ACGGAAATCTGCCCTAGTGTGGTT -ACGGAAATCTGCCCTAGTGCCTTT -ACGGAAATCTGCCCTAGTGGTCTT -ACGGAAATCTGCCCTAGTACGCTT -ACGGAAATCTGCCCTAGTAGCGTT -ACGGAAATCTGCCCTAGTTTCGTC -ACGGAAATCTGCCCTAGTTCTCTC -ACGGAAATCTGCCCTAGTTGGATC -ACGGAAATCTGCCCTAGTCACTTC -ACGGAAATCTGCCCTAGTGTACTC -ACGGAAATCTGCCCTAGTGATGTC -ACGGAAATCTGCCCTAGTACAGTC -ACGGAAATCTGCCCTAGTTTGCTG -ACGGAAATCTGCCCTAGTTCCATG -ACGGAAATCTGCCCTAGTTGTGTG -ACGGAAATCTGCCCTAGTCTAGTG -ACGGAAATCTGCCCTAGTCATCTG -ACGGAAATCTGCCCTAGTGAGTTG -ACGGAAATCTGCCCTAGTAGACTG -ACGGAAATCTGCCCTAGTTCGGTA -ACGGAAATCTGCCCTAGTTGCCTA -ACGGAAATCTGCCCTAGTCCACTA -ACGGAAATCTGCCCTAGTGGAGTA -ACGGAAATCTGCCCTAGTTCGTCT -ACGGAAATCTGCCCTAGTTGCACT -ACGGAAATCTGCCCTAGTCTGACT -ACGGAAATCTGCCCTAGTCAACCT -ACGGAAATCTGCCCTAGTGCTACT -ACGGAAATCTGCCCTAGTGGATCT -ACGGAAATCTGCCCTAGTAAGGCT -ACGGAAATCTGCCCTAGTTCAACC -ACGGAAATCTGCCCTAGTTGTTCC -ACGGAAATCTGCCCTAGTATTCCC -ACGGAAATCTGCCCTAGTTTCTCG -ACGGAAATCTGCCCTAGTTAGACG -ACGGAAATCTGCCCTAGTGTAACG -ACGGAAATCTGCCCTAGTACTTCG -ACGGAAATCTGCCCTAGTTACGCA -ACGGAAATCTGCCCTAGTCTTGCA -ACGGAAATCTGCCCTAGTCGAACA -ACGGAAATCTGCCCTAGTCAGTCA -ACGGAAATCTGCCCTAGTGATCCA -ACGGAAATCTGCCCTAGTACGACA -ACGGAAATCTGCCCTAGTAGCTCA -ACGGAAATCTGCCCTAGTTCACGT -ACGGAAATCTGCCCTAGTCGTAGT -ACGGAAATCTGCCCTAGTGTCAGT -ACGGAAATCTGCCCTAGTGAAGGT -ACGGAAATCTGCCCTAGTAACCGT -ACGGAAATCTGCCCTAGTTTGTGC -ACGGAAATCTGCCCTAGTCTAAGC -ACGGAAATCTGCCCTAGTACTAGC -ACGGAAATCTGCCCTAGTAGATGC -ACGGAAATCTGCCCTAGTTGAAGG -ACGGAAATCTGCCCTAGTCAATGG -ACGGAAATCTGCCCTAGTATGAGG -ACGGAAATCTGCCCTAGTAATGGG -ACGGAAATCTGCCCTAGTTCCTGA -ACGGAAATCTGCCCTAGTTAGCGA -ACGGAAATCTGCCCTAGTCACAGA -ACGGAAATCTGCCCTAGTGCAAGA -ACGGAAATCTGCCCTAGTGGTTGA -ACGGAAATCTGCCCTAGTTCCGAT -ACGGAAATCTGCCCTAGTTGGCAT -ACGGAAATCTGCCCTAGTCGAGAT -ACGGAAATCTGCCCTAGTTACCAC -ACGGAAATCTGCCCTAGTCAGAAC -ACGGAAATCTGCCCTAGTGTCTAC -ACGGAAATCTGCCCTAGTACGTAC -ACGGAAATCTGCCCTAGTAGTGAC -ACGGAAATCTGCCCTAGTCTGTAG -ACGGAAATCTGCCCTAGTCCTAAG -ACGGAAATCTGCCCTAGTGTTCAG -ACGGAAATCTGCCCTAGTGCATAG -ACGGAAATCTGCCCTAGTGACAAG -ACGGAAATCTGCCCTAGTAAGCAG -ACGGAAATCTGCCCTAGTCGTCAA -ACGGAAATCTGCCCTAGTGCTGAA -ACGGAAATCTGCCCTAGTAGTACG -ACGGAAATCTGCCCTAGTATCCGA -ACGGAAATCTGCCCTAGTATGGGA -ACGGAAATCTGCCCTAGTGTGCAA -ACGGAAATCTGCCCTAGTGAGGAA -ACGGAAATCTGCCCTAGTCAGGTA -ACGGAAATCTGCCCTAGTGACTCT -ACGGAAATCTGCCCTAGTAGTCCT -ACGGAAATCTGCCCTAGTTAAGCC -ACGGAAATCTGCCCTAGTATAGCC -ACGGAAATCTGCCCTAGTTAACCG -ACGGAAATCTGCCCTAGTATGCCA -ACGGAAATCTGCGCCTAAGGAAAC -ACGGAAATCTGCGCCTAAAACACC -ACGGAAATCTGCGCCTAAATCGAG -ACGGAAATCTGCGCCTAACTCCTT -ACGGAAATCTGCGCCTAACCTGTT -ACGGAAATCTGCGCCTAACGGTTT -ACGGAAATCTGCGCCTAAGTGGTT -ACGGAAATCTGCGCCTAAGCCTTT -ACGGAAATCTGCGCCTAAGGTCTT -ACGGAAATCTGCGCCTAAACGCTT -ACGGAAATCTGCGCCTAAAGCGTT -ACGGAAATCTGCGCCTAATTCGTC -ACGGAAATCTGCGCCTAATCTCTC -ACGGAAATCTGCGCCTAATGGATC -ACGGAAATCTGCGCCTAACACTTC -ACGGAAATCTGCGCCTAAGTACTC -ACGGAAATCTGCGCCTAAGATGTC -ACGGAAATCTGCGCCTAAACAGTC -ACGGAAATCTGCGCCTAATTGCTG -ACGGAAATCTGCGCCTAATCCATG -ACGGAAATCTGCGCCTAATGTGTG -ACGGAAATCTGCGCCTAACTAGTG -ACGGAAATCTGCGCCTAACATCTG -ACGGAAATCTGCGCCTAAGAGTTG -ACGGAAATCTGCGCCTAAAGACTG -ACGGAAATCTGCGCCTAATCGGTA -ACGGAAATCTGCGCCTAATGCCTA -ACGGAAATCTGCGCCTAACCACTA -ACGGAAATCTGCGCCTAAGGAGTA -ACGGAAATCTGCGCCTAATCGTCT -ACGGAAATCTGCGCCTAATGCACT -ACGGAAATCTGCGCCTAACTGACT -ACGGAAATCTGCGCCTAACAACCT -ACGGAAATCTGCGCCTAAGCTACT -ACGGAAATCTGCGCCTAAGGATCT -ACGGAAATCTGCGCCTAAAAGGCT -ACGGAAATCTGCGCCTAATCAACC -ACGGAAATCTGCGCCTAATGTTCC -ACGGAAATCTGCGCCTAAATTCCC -ACGGAAATCTGCGCCTAATTCTCG -ACGGAAATCTGCGCCTAATAGACG -ACGGAAATCTGCGCCTAAGTAACG -ACGGAAATCTGCGCCTAAACTTCG -ACGGAAATCTGCGCCTAATACGCA -ACGGAAATCTGCGCCTAACTTGCA -ACGGAAATCTGCGCCTAACGAACA -ACGGAAATCTGCGCCTAACAGTCA -ACGGAAATCTGCGCCTAAGATCCA -ACGGAAATCTGCGCCTAAACGACA -ACGGAAATCTGCGCCTAAAGCTCA -ACGGAAATCTGCGCCTAATCACGT -ACGGAAATCTGCGCCTAACGTAGT -ACGGAAATCTGCGCCTAAGTCAGT -ACGGAAATCTGCGCCTAAGAAGGT -ACGGAAATCTGCGCCTAAAACCGT -ACGGAAATCTGCGCCTAATTGTGC -ACGGAAATCTGCGCCTAACTAAGC -ACGGAAATCTGCGCCTAAACTAGC -ACGGAAATCTGCGCCTAAAGATGC -ACGGAAATCTGCGCCTAATGAAGG -ACGGAAATCTGCGCCTAACAATGG -ACGGAAATCTGCGCCTAAATGAGG -ACGGAAATCTGCGCCTAAAATGGG -ACGGAAATCTGCGCCTAATCCTGA -ACGGAAATCTGCGCCTAATAGCGA -ACGGAAATCTGCGCCTAACACAGA -ACGGAAATCTGCGCCTAAGCAAGA -ACGGAAATCTGCGCCTAAGGTTGA -ACGGAAATCTGCGCCTAATCCGAT -ACGGAAATCTGCGCCTAATGGCAT -ACGGAAATCTGCGCCTAACGAGAT -ACGGAAATCTGCGCCTAATACCAC -ACGGAAATCTGCGCCTAACAGAAC -ACGGAAATCTGCGCCTAAGTCTAC -ACGGAAATCTGCGCCTAAACGTAC -ACGGAAATCTGCGCCTAAAGTGAC -ACGGAAATCTGCGCCTAACTGTAG -ACGGAAATCTGCGCCTAACCTAAG -ACGGAAATCTGCGCCTAAGTTCAG -ACGGAAATCTGCGCCTAAGCATAG -ACGGAAATCTGCGCCTAAGACAAG -ACGGAAATCTGCGCCTAAAAGCAG -ACGGAAATCTGCGCCTAACGTCAA -ACGGAAATCTGCGCCTAAGCTGAA -ACGGAAATCTGCGCCTAAAGTACG -ACGGAAATCTGCGCCTAAATCCGA -ACGGAAATCTGCGCCTAAATGGGA -ACGGAAATCTGCGCCTAAGTGCAA -ACGGAAATCTGCGCCTAAGAGGAA -ACGGAAATCTGCGCCTAACAGGTA -ACGGAAATCTGCGCCTAAGACTCT -ACGGAAATCTGCGCCTAAAGTCCT -ACGGAAATCTGCGCCTAATAAGCC -ACGGAAATCTGCGCCTAAATAGCC -ACGGAAATCTGCGCCTAATAACCG -ACGGAAATCTGCGCCTAAATGCCA -ACGGAAATCTGCGCCATAGGAAAC -ACGGAAATCTGCGCCATAAACACC -ACGGAAATCTGCGCCATAATCGAG -ACGGAAATCTGCGCCATACTCCTT -ACGGAAATCTGCGCCATACCTGTT -ACGGAAATCTGCGCCATACGGTTT -ACGGAAATCTGCGCCATAGTGGTT -ACGGAAATCTGCGCCATAGCCTTT -ACGGAAATCTGCGCCATAGGTCTT -ACGGAAATCTGCGCCATAACGCTT -ACGGAAATCTGCGCCATAAGCGTT -ACGGAAATCTGCGCCATATTCGTC -ACGGAAATCTGCGCCATATCTCTC -ACGGAAATCTGCGCCATATGGATC -ACGGAAATCTGCGCCATACACTTC -ACGGAAATCTGCGCCATAGTACTC -ACGGAAATCTGCGCCATAGATGTC -ACGGAAATCTGCGCCATAACAGTC -ACGGAAATCTGCGCCATATTGCTG -ACGGAAATCTGCGCCATATCCATG -ACGGAAATCTGCGCCATATGTGTG -ACGGAAATCTGCGCCATACTAGTG -ACGGAAATCTGCGCCATACATCTG -ACGGAAATCTGCGCCATAGAGTTG -ACGGAAATCTGCGCCATAAGACTG -ACGGAAATCTGCGCCATATCGGTA -ACGGAAATCTGCGCCATATGCCTA -ACGGAAATCTGCGCCATACCACTA -ACGGAAATCTGCGCCATAGGAGTA -ACGGAAATCTGCGCCATATCGTCT -ACGGAAATCTGCGCCATATGCACT -ACGGAAATCTGCGCCATACTGACT -ACGGAAATCTGCGCCATACAACCT -ACGGAAATCTGCGCCATAGCTACT -ACGGAAATCTGCGCCATAGGATCT -ACGGAAATCTGCGCCATAAAGGCT -ACGGAAATCTGCGCCATATCAACC -ACGGAAATCTGCGCCATATGTTCC -ACGGAAATCTGCGCCATAATTCCC -ACGGAAATCTGCGCCATATTCTCG -ACGGAAATCTGCGCCATATAGACG -ACGGAAATCTGCGCCATAGTAACG -ACGGAAATCTGCGCCATAACTTCG -ACGGAAATCTGCGCCATATACGCA -ACGGAAATCTGCGCCATACTTGCA -ACGGAAATCTGCGCCATACGAACA -ACGGAAATCTGCGCCATACAGTCA -ACGGAAATCTGCGCCATAGATCCA -ACGGAAATCTGCGCCATAACGACA -ACGGAAATCTGCGCCATAAGCTCA -ACGGAAATCTGCGCCATATCACGT -ACGGAAATCTGCGCCATACGTAGT -ACGGAAATCTGCGCCATAGTCAGT -ACGGAAATCTGCGCCATAGAAGGT -ACGGAAATCTGCGCCATAAACCGT -ACGGAAATCTGCGCCATATTGTGC -ACGGAAATCTGCGCCATACTAAGC -ACGGAAATCTGCGCCATAACTAGC -ACGGAAATCTGCGCCATAAGATGC -ACGGAAATCTGCGCCATATGAAGG -ACGGAAATCTGCGCCATACAATGG -ACGGAAATCTGCGCCATAATGAGG -ACGGAAATCTGCGCCATAAATGGG -ACGGAAATCTGCGCCATATCCTGA -ACGGAAATCTGCGCCATATAGCGA -ACGGAAATCTGCGCCATACACAGA -ACGGAAATCTGCGCCATAGCAAGA -ACGGAAATCTGCGCCATAGGTTGA -ACGGAAATCTGCGCCATATCCGAT -ACGGAAATCTGCGCCATATGGCAT -ACGGAAATCTGCGCCATACGAGAT -ACGGAAATCTGCGCCATATACCAC -ACGGAAATCTGCGCCATACAGAAC -ACGGAAATCTGCGCCATAGTCTAC -ACGGAAATCTGCGCCATAACGTAC -ACGGAAATCTGCGCCATAAGTGAC -ACGGAAATCTGCGCCATACTGTAG -ACGGAAATCTGCGCCATACCTAAG -ACGGAAATCTGCGCCATAGTTCAG -ACGGAAATCTGCGCCATAGCATAG -ACGGAAATCTGCGCCATAGACAAG -ACGGAAATCTGCGCCATAAAGCAG -ACGGAAATCTGCGCCATACGTCAA -ACGGAAATCTGCGCCATAGCTGAA -ACGGAAATCTGCGCCATAAGTACG -ACGGAAATCTGCGCCATAATCCGA -ACGGAAATCTGCGCCATAATGGGA -ACGGAAATCTGCGCCATAGTGCAA -ACGGAAATCTGCGCCATAGAGGAA -ACGGAAATCTGCGCCATACAGGTA -ACGGAAATCTGCGCCATAGACTCT -ACGGAAATCTGCGCCATAAGTCCT -ACGGAAATCTGCGCCATATAAGCC -ACGGAAATCTGCGCCATAATAGCC -ACGGAAATCTGCGCCATATAACCG -ACGGAAATCTGCGCCATAATGCCA -ACGGAAATCTGCCCGTAAGGAAAC -ACGGAAATCTGCCCGTAAAACACC -ACGGAAATCTGCCCGTAAATCGAG -ACGGAAATCTGCCCGTAACTCCTT -ACGGAAATCTGCCCGTAACCTGTT -ACGGAAATCTGCCCGTAACGGTTT -ACGGAAATCTGCCCGTAAGTGGTT -ACGGAAATCTGCCCGTAAGCCTTT -ACGGAAATCTGCCCGTAAGGTCTT -ACGGAAATCTGCCCGTAAACGCTT -ACGGAAATCTGCCCGTAAAGCGTT -ACGGAAATCTGCCCGTAATTCGTC -ACGGAAATCTGCCCGTAATCTCTC -ACGGAAATCTGCCCGTAATGGATC -ACGGAAATCTGCCCGTAACACTTC -ACGGAAATCTGCCCGTAAGTACTC -ACGGAAATCTGCCCGTAAGATGTC -ACGGAAATCTGCCCGTAAACAGTC -ACGGAAATCTGCCCGTAATTGCTG -ACGGAAATCTGCCCGTAATCCATG -ACGGAAATCTGCCCGTAATGTGTG -ACGGAAATCTGCCCGTAACTAGTG -ACGGAAATCTGCCCGTAACATCTG -ACGGAAATCTGCCCGTAAGAGTTG -ACGGAAATCTGCCCGTAAAGACTG -ACGGAAATCTGCCCGTAATCGGTA -ACGGAAATCTGCCCGTAATGCCTA -ACGGAAATCTGCCCGTAACCACTA -ACGGAAATCTGCCCGTAAGGAGTA -ACGGAAATCTGCCCGTAATCGTCT -ACGGAAATCTGCCCGTAATGCACT -ACGGAAATCTGCCCGTAACTGACT -ACGGAAATCTGCCCGTAACAACCT -ACGGAAATCTGCCCGTAAGCTACT -ACGGAAATCTGCCCGTAAGGATCT -ACGGAAATCTGCCCGTAAAAGGCT -ACGGAAATCTGCCCGTAATCAACC -ACGGAAATCTGCCCGTAATGTTCC -ACGGAAATCTGCCCGTAAATTCCC -ACGGAAATCTGCCCGTAATTCTCG -ACGGAAATCTGCCCGTAATAGACG -ACGGAAATCTGCCCGTAAGTAACG -ACGGAAATCTGCCCGTAAACTTCG -ACGGAAATCTGCCCGTAATACGCA -ACGGAAATCTGCCCGTAACTTGCA -ACGGAAATCTGCCCGTAACGAACA -ACGGAAATCTGCCCGTAACAGTCA -ACGGAAATCTGCCCGTAAGATCCA -ACGGAAATCTGCCCGTAAACGACA -ACGGAAATCTGCCCGTAAAGCTCA -ACGGAAATCTGCCCGTAATCACGT -ACGGAAATCTGCCCGTAACGTAGT -ACGGAAATCTGCCCGTAAGTCAGT -ACGGAAATCTGCCCGTAAGAAGGT -ACGGAAATCTGCCCGTAAAACCGT -ACGGAAATCTGCCCGTAATTGTGC -ACGGAAATCTGCCCGTAACTAAGC -ACGGAAATCTGCCCGTAAACTAGC -ACGGAAATCTGCCCGTAAAGATGC -ACGGAAATCTGCCCGTAATGAAGG -ACGGAAATCTGCCCGTAACAATGG -ACGGAAATCTGCCCGTAAATGAGG -ACGGAAATCTGCCCGTAAAATGGG -ACGGAAATCTGCCCGTAATCCTGA -ACGGAAATCTGCCCGTAATAGCGA -ACGGAAATCTGCCCGTAACACAGA -ACGGAAATCTGCCCGTAAGCAAGA -ACGGAAATCTGCCCGTAAGGTTGA -ACGGAAATCTGCCCGTAATCCGAT -ACGGAAATCTGCCCGTAATGGCAT -ACGGAAATCTGCCCGTAACGAGAT -ACGGAAATCTGCCCGTAATACCAC -ACGGAAATCTGCCCGTAACAGAAC -ACGGAAATCTGCCCGTAAGTCTAC -ACGGAAATCTGCCCGTAAACGTAC -ACGGAAATCTGCCCGTAAAGTGAC -ACGGAAATCTGCCCGTAACTGTAG -ACGGAAATCTGCCCGTAACCTAAG -ACGGAAATCTGCCCGTAAGTTCAG -ACGGAAATCTGCCCGTAAGCATAG -ACGGAAATCTGCCCGTAAGACAAG -ACGGAAATCTGCCCGTAAAAGCAG -ACGGAAATCTGCCCGTAACGTCAA -ACGGAAATCTGCCCGTAAGCTGAA -ACGGAAATCTGCCCGTAAAGTACG -ACGGAAATCTGCCCGTAAATCCGA -ACGGAAATCTGCCCGTAAATGGGA -ACGGAAATCTGCCCGTAAGTGCAA -ACGGAAATCTGCCCGTAAGAGGAA -ACGGAAATCTGCCCGTAACAGGTA -ACGGAAATCTGCCCGTAAGACTCT -ACGGAAATCTGCCCGTAAAGTCCT -ACGGAAATCTGCCCGTAATAAGCC -ACGGAAATCTGCCCGTAAATAGCC -ACGGAAATCTGCCCGTAATAACCG -ACGGAAATCTGCCCGTAAATGCCA -ACGGAAATCTGCCCAATGGGAAAC -ACGGAAATCTGCCCAATGAACACC -ACGGAAATCTGCCCAATGATCGAG -ACGGAAATCTGCCCAATGCTCCTT -ACGGAAATCTGCCCAATGCCTGTT -ACGGAAATCTGCCCAATGCGGTTT -ACGGAAATCTGCCCAATGGTGGTT -ACGGAAATCTGCCCAATGGCCTTT -ACGGAAATCTGCCCAATGGGTCTT -ACGGAAATCTGCCCAATGACGCTT -ACGGAAATCTGCCCAATGAGCGTT -ACGGAAATCTGCCCAATGTTCGTC -ACGGAAATCTGCCCAATGTCTCTC -ACGGAAATCTGCCCAATGTGGATC -ACGGAAATCTGCCCAATGCACTTC -ACGGAAATCTGCCCAATGGTACTC -ACGGAAATCTGCCCAATGGATGTC -ACGGAAATCTGCCCAATGACAGTC -ACGGAAATCTGCCCAATGTTGCTG -ACGGAAATCTGCCCAATGTCCATG -ACGGAAATCTGCCCAATGTGTGTG -ACGGAAATCTGCCCAATGCTAGTG -ACGGAAATCTGCCCAATGCATCTG -ACGGAAATCTGCCCAATGGAGTTG -ACGGAAATCTGCCCAATGAGACTG -ACGGAAATCTGCCCAATGTCGGTA -ACGGAAATCTGCCCAATGTGCCTA -ACGGAAATCTGCCCAATGCCACTA -ACGGAAATCTGCCCAATGGGAGTA -ACGGAAATCTGCCCAATGTCGTCT -ACGGAAATCTGCCCAATGTGCACT -ACGGAAATCTGCCCAATGCTGACT -ACGGAAATCTGCCCAATGCAACCT -ACGGAAATCTGCCCAATGGCTACT -ACGGAAATCTGCCCAATGGGATCT -ACGGAAATCTGCCCAATGAAGGCT -ACGGAAATCTGCCCAATGTCAACC -ACGGAAATCTGCCCAATGTGTTCC -ACGGAAATCTGCCCAATGATTCCC -ACGGAAATCTGCCCAATGTTCTCG -ACGGAAATCTGCCCAATGTAGACG -ACGGAAATCTGCCCAATGGTAACG -ACGGAAATCTGCCCAATGACTTCG -ACGGAAATCTGCCCAATGTACGCA -ACGGAAATCTGCCCAATGCTTGCA -ACGGAAATCTGCCCAATGCGAACA -ACGGAAATCTGCCCAATGCAGTCA -ACGGAAATCTGCCCAATGGATCCA -ACGGAAATCTGCCCAATGACGACA -ACGGAAATCTGCCCAATGAGCTCA -ACGGAAATCTGCCCAATGTCACGT -ACGGAAATCTGCCCAATGCGTAGT -ACGGAAATCTGCCCAATGGTCAGT -ACGGAAATCTGCCCAATGGAAGGT -ACGGAAATCTGCCCAATGAACCGT -ACGGAAATCTGCCCAATGTTGTGC -ACGGAAATCTGCCCAATGCTAAGC -ACGGAAATCTGCCCAATGACTAGC -ACGGAAATCTGCCCAATGAGATGC -ACGGAAATCTGCCCAATGTGAAGG -ACGGAAATCTGCCCAATGCAATGG -ACGGAAATCTGCCCAATGATGAGG -ACGGAAATCTGCCCAATGAATGGG -ACGGAAATCTGCCCAATGTCCTGA -ACGGAAATCTGCCCAATGTAGCGA -ACGGAAATCTGCCCAATGCACAGA -ACGGAAATCTGCCCAATGGCAAGA -ACGGAAATCTGCCCAATGGGTTGA -ACGGAAATCTGCCCAATGTCCGAT -ACGGAAATCTGCCCAATGTGGCAT -ACGGAAATCTGCCCAATGCGAGAT -ACGGAAATCTGCCCAATGTACCAC -ACGGAAATCTGCCCAATGCAGAAC -ACGGAAATCTGCCCAATGGTCTAC -ACGGAAATCTGCCCAATGACGTAC -ACGGAAATCTGCCCAATGAGTGAC -ACGGAAATCTGCCCAATGCTGTAG -ACGGAAATCTGCCCAATGCCTAAG -ACGGAAATCTGCCCAATGGTTCAG -ACGGAAATCTGCCCAATGGCATAG -ACGGAAATCTGCCCAATGGACAAG -ACGGAAATCTGCCCAATGAAGCAG -ACGGAAATCTGCCCAATGCGTCAA -ACGGAAATCTGCCCAATGGCTGAA -ACGGAAATCTGCCCAATGAGTACG -ACGGAAATCTGCCCAATGATCCGA -ACGGAAATCTGCCCAATGATGGGA -ACGGAAATCTGCCCAATGGTGCAA -ACGGAAATCTGCCCAATGGAGGAA -ACGGAAATCTGCCCAATGCAGGTA -ACGGAAATCTGCCCAATGGACTCT -ACGGAAATCTGCCCAATGAGTCCT -ACGGAAATCTGCCCAATGTAAGCC -ACGGAAATCTGCCCAATGATAGCC -ACGGAAATCTGCCCAATGTAACCG -ACGGAAATCTGCCCAATGATGCCA -ACGGAAAGTTGGAACGGAGGAAAC -ACGGAAAGTTGGAACGGAAACACC -ACGGAAAGTTGGAACGGAATCGAG -ACGGAAAGTTGGAACGGACTCCTT -ACGGAAAGTTGGAACGGACCTGTT -ACGGAAAGTTGGAACGGACGGTTT -ACGGAAAGTTGGAACGGAGTGGTT -ACGGAAAGTTGGAACGGAGCCTTT -ACGGAAAGTTGGAACGGAGGTCTT -ACGGAAAGTTGGAACGGAACGCTT -ACGGAAAGTTGGAACGGAAGCGTT -ACGGAAAGTTGGAACGGATTCGTC -ACGGAAAGTTGGAACGGATCTCTC -ACGGAAAGTTGGAACGGATGGATC -ACGGAAAGTTGGAACGGACACTTC -ACGGAAAGTTGGAACGGAGTACTC -ACGGAAAGTTGGAACGGAGATGTC -ACGGAAAGTTGGAACGGAACAGTC -ACGGAAAGTTGGAACGGATTGCTG -ACGGAAAGTTGGAACGGATCCATG -ACGGAAAGTTGGAACGGATGTGTG -ACGGAAAGTTGGAACGGACTAGTG -ACGGAAAGTTGGAACGGACATCTG -ACGGAAAGTTGGAACGGAGAGTTG -ACGGAAAGTTGGAACGGAAGACTG -ACGGAAAGTTGGAACGGATCGGTA -ACGGAAAGTTGGAACGGATGCCTA -ACGGAAAGTTGGAACGGACCACTA -ACGGAAAGTTGGAACGGAGGAGTA -ACGGAAAGTTGGAACGGATCGTCT -ACGGAAAGTTGGAACGGATGCACT -ACGGAAAGTTGGAACGGACTGACT -ACGGAAAGTTGGAACGGACAACCT -ACGGAAAGTTGGAACGGAGCTACT -ACGGAAAGTTGGAACGGAGGATCT -ACGGAAAGTTGGAACGGAAAGGCT -ACGGAAAGTTGGAACGGATCAACC -ACGGAAAGTTGGAACGGATGTTCC -ACGGAAAGTTGGAACGGAATTCCC -ACGGAAAGTTGGAACGGATTCTCG -ACGGAAAGTTGGAACGGATAGACG -ACGGAAAGTTGGAACGGAGTAACG -ACGGAAAGTTGGAACGGAACTTCG -ACGGAAAGTTGGAACGGATACGCA -ACGGAAAGTTGGAACGGACTTGCA -ACGGAAAGTTGGAACGGACGAACA -ACGGAAAGTTGGAACGGACAGTCA -ACGGAAAGTTGGAACGGAGATCCA -ACGGAAAGTTGGAACGGAACGACA -ACGGAAAGTTGGAACGGAAGCTCA -ACGGAAAGTTGGAACGGATCACGT -ACGGAAAGTTGGAACGGACGTAGT -ACGGAAAGTTGGAACGGAGTCAGT -ACGGAAAGTTGGAACGGAGAAGGT -ACGGAAAGTTGGAACGGAAACCGT -ACGGAAAGTTGGAACGGATTGTGC -ACGGAAAGTTGGAACGGACTAAGC -ACGGAAAGTTGGAACGGAACTAGC -ACGGAAAGTTGGAACGGAAGATGC -ACGGAAAGTTGGAACGGATGAAGG -ACGGAAAGTTGGAACGGACAATGG -ACGGAAAGTTGGAACGGAATGAGG -ACGGAAAGTTGGAACGGAAATGGG -ACGGAAAGTTGGAACGGATCCTGA -ACGGAAAGTTGGAACGGATAGCGA -ACGGAAAGTTGGAACGGACACAGA -ACGGAAAGTTGGAACGGAGCAAGA -ACGGAAAGTTGGAACGGAGGTTGA -ACGGAAAGTTGGAACGGATCCGAT -ACGGAAAGTTGGAACGGATGGCAT -ACGGAAAGTTGGAACGGACGAGAT -ACGGAAAGTTGGAACGGATACCAC -ACGGAAAGTTGGAACGGACAGAAC -ACGGAAAGTTGGAACGGAGTCTAC -ACGGAAAGTTGGAACGGAACGTAC -ACGGAAAGTTGGAACGGAAGTGAC -ACGGAAAGTTGGAACGGACTGTAG -ACGGAAAGTTGGAACGGACCTAAG -ACGGAAAGTTGGAACGGAGTTCAG -ACGGAAAGTTGGAACGGAGCATAG -ACGGAAAGTTGGAACGGAGACAAG -ACGGAAAGTTGGAACGGAAAGCAG -ACGGAAAGTTGGAACGGACGTCAA -ACGGAAAGTTGGAACGGAGCTGAA -ACGGAAAGTTGGAACGGAAGTACG -ACGGAAAGTTGGAACGGAATCCGA -ACGGAAAGTTGGAACGGAATGGGA -ACGGAAAGTTGGAACGGAGTGCAA -ACGGAAAGTTGGAACGGAGAGGAA -ACGGAAAGTTGGAACGGACAGGTA -ACGGAAAGTTGGAACGGAGACTCT -ACGGAAAGTTGGAACGGAAGTCCT -ACGGAAAGTTGGAACGGATAAGCC -ACGGAAAGTTGGAACGGAATAGCC -ACGGAAAGTTGGAACGGATAACCG -ACGGAAAGTTGGAACGGAATGCCA -ACGGAAAGTTGGACCAACGGAAAC -ACGGAAAGTTGGACCAACAACACC -ACGGAAAGTTGGACCAACATCGAG -ACGGAAAGTTGGACCAACCTCCTT -ACGGAAAGTTGGACCAACCCTGTT -ACGGAAAGTTGGACCAACCGGTTT -ACGGAAAGTTGGACCAACGTGGTT -ACGGAAAGTTGGACCAACGCCTTT -ACGGAAAGTTGGACCAACGGTCTT -ACGGAAAGTTGGACCAACACGCTT -ACGGAAAGTTGGACCAACAGCGTT -ACGGAAAGTTGGACCAACTTCGTC -ACGGAAAGTTGGACCAACTCTCTC -ACGGAAAGTTGGACCAACTGGATC -ACGGAAAGTTGGACCAACCACTTC -ACGGAAAGTTGGACCAACGTACTC -ACGGAAAGTTGGACCAACGATGTC -ACGGAAAGTTGGACCAACACAGTC -ACGGAAAGTTGGACCAACTTGCTG -ACGGAAAGTTGGACCAACTCCATG -ACGGAAAGTTGGACCAACTGTGTG -ACGGAAAGTTGGACCAACCTAGTG -ACGGAAAGTTGGACCAACCATCTG -ACGGAAAGTTGGACCAACGAGTTG -ACGGAAAGTTGGACCAACAGACTG -ACGGAAAGTTGGACCAACTCGGTA -ACGGAAAGTTGGACCAACTGCCTA -ACGGAAAGTTGGACCAACCCACTA -ACGGAAAGTTGGACCAACGGAGTA -ACGGAAAGTTGGACCAACTCGTCT -ACGGAAAGTTGGACCAACTGCACT -ACGGAAAGTTGGACCAACCTGACT -ACGGAAAGTTGGACCAACCAACCT -ACGGAAAGTTGGACCAACGCTACT -ACGGAAAGTTGGACCAACGGATCT -ACGGAAAGTTGGACCAACAAGGCT -ACGGAAAGTTGGACCAACTCAACC -ACGGAAAGTTGGACCAACTGTTCC -ACGGAAAGTTGGACCAACATTCCC -ACGGAAAGTTGGACCAACTTCTCG -ACGGAAAGTTGGACCAACTAGACG -ACGGAAAGTTGGACCAACGTAACG -ACGGAAAGTTGGACCAACACTTCG -ACGGAAAGTTGGACCAACTACGCA -ACGGAAAGTTGGACCAACCTTGCA -ACGGAAAGTTGGACCAACCGAACA -ACGGAAAGTTGGACCAACCAGTCA -ACGGAAAGTTGGACCAACGATCCA -ACGGAAAGTTGGACCAACACGACA -ACGGAAAGTTGGACCAACAGCTCA -ACGGAAAGTTGGACCAACTCACGT -ACGGAAAGTTGGACCAACCGTAGT -ACGGAAAGTTGGACCAACGTCAGT -ACGGAAAGTTGGACCAACGAAGGT -ACGGAAAGTTGGACCAACAACCGT -ACGGAAAGTTGGACCAACTTGTGC -ACGGAAAGTTGGACCAACCTAAGC -ACGGAAAGTTGGACCAACACTAGC -ACGGAAAGTTGGACCAACAGATGC -ACGGAAAGTTGGACCAACTGAAGG -ACGGAAAGTTGGACCAACCAATGG -ACGGAAAGTTGGACCAACATGAGG -ACGGAAAGTTGGACCAACAATGGG -ACGGAAAGTTGGACCAACTCCTGA -ACGGAAAGTTGGACCAACTAGCGA -ACGGAAAGTTGGACCAACCACAGA -ACGGAAAGTTGGACCAACGCAAGA -ACGGAAAGTTGGACCAACGGTTGA -ACGGAAAGTTGGACCAACTCCGAT -ACGGAAAGTTGGACCAACTGGCAT -ACGGAAAGTTGGACCAACCGAGAT -ACGGAAAGTTGGACCAACTACCAC -ACGGAAAGTTGGACCAACCAGAAC -ACGGAAAGTTGGACCAACGTCTAC -ACGGAAAGTTGGACCAACACGTAC -ACGGAAAGTTGGACCAACAGTGAC -ACGGAAAGTTGGACCAACCTGTAG -ACGGAAAGTTGGACCAACCCTAAG -ACGGAAAGTTGGACCAACGTTCAG -ACGGAAAGTTGGACCAACGCATAG -ACGGAAAGTTGGACCAACGACAAG -ACGGAAAGTTGGACCAACAAGCAG -ACGGAAAGTTGGACCAACCGTCAA -ACGGAAAGTTGGACCAACGCTGAA -ACGGAAAGTTGGACCAACAGTACG -ACGGAAAGTTGGACCAACATCCGA -ACGGAAAGTTGGACCAACATGGGA -ACGGAAAGTTGGACCAACGTGCAA -ACGGAAAGTTGGACCAACGAGGAA -ACGGAAAGTTGGACCAACCAGGTA -ACGGAAAGTTGGACCAACGACTCT -ACGGAAAGTTGGACCAACAGTCCT -ACGGAAAGTTGGACCAACTAAGCC -ACGGAAAGTTGGACCAACATAGCC -ACGGAAAGTTGGACCAACTAACCG -ACGGAAAGTTGGACCAACATGCCA -ACGGAAAGTTGGGAGATCGGAAAC -ACGGAAAGTTGGGAGATCAACACC -ACGGAAAGTTGGGAGATCATCGAG -ACGGAAAGTTGGGAGATCCTCCTT -ACGGAAAGTTGGGAGATCCCTGTT -ACGGAAAGTTGGGAGATCCGGTTT -ACGGAAAGTTGGGAGATCGTGGTT -ACGGAAAGTTGGGAGATCGCCTTT -ACGGAAAGTTGGGAGATCGGTCTT -ACGGAAAGTTGGGAGATCACGCTT -ACGGAAAGTTGGGAGATCAGCGTT -ACGGAAAGTTGGGAGATCTTCGTC -ACGGAAAGTTGGGAGATCTCTCTC -ACGGAAAGTTGGGAGATCTGGATC -ACGGAAAGTTGGGAGATCCACTTC -ACGGAAAGTTGGGAGATCGTACTC -ACGGAAAGTTGGGAGATCGATGTC -ACGGAAAGTTGGGAGATCACAGTC -ACGGAAAGTTGGGAGATCTTGCTG -ACGGAAAGTTGGGAGATCTCCATG -ACGGAAAGTTGGGAGATCTGTGTG -ACGGAAAGTTGGGAGATCCTAGTG -ACGGAAAGTTGGGAGATCCATCTG -ACGGAAAGTTGGGAGATCGAGTTG -ACGGAAAGTTGGGAGATCAGACTG -ACGGAAAGTTGGGAGATCTCGGTA -ACGGAAAGTTGGGAGATCTGCCTA -ACGGAAAGTTGGGAGATCCCACTA -ACGGAAAGTTGGGAGATCGGAGTA -ACGGAAAGTTGGGAGATCTCGTCT -ACGGAAAGTTGGGAGATCTGCACT -ACGGAAAGTTGGGAGATCCTGACT -ACGGAAAGTTGGGAGATCCAACCT -ACGGAAAGTTGGGAGATCGCTACT -ACGGAAAGTTGGGAGATCGGATCT -ACGGAAAGTTGGGAGATCAAGGCT -ACGGAAAGTTGGGAGATCTCAACC -ACGGAAAGTTGGGAGATCTGTTCC -ACGGAAAGTTGGGAGATCATTCCC -ACGGAAAGTTGGGAGATCTTCTCG -ACGGAAAGTTGGGAGATCTAGACG -ACGGAAAGTTGGGAGATCGTAACG -ACGGAAAGTTGGGAGATCACTTCG -ACGGAAAGTTGGGAGATCTACGCA -ACGGAAAGTTGGGAGATCCTTGCA -ACGGAAAGTTGGGAGATCCGAACA -ACGGAAAGTTGGGAGATCCAGTCA -ACGGAAAGTTGGGAGATCGATCCA -ACGGAAAGTTGGGAGATCACGACA -ACGGAAAGTTGGGAGATCAGCTCA -ACGGAAAGTTGGGAGATCTCACGT -ACGGAAAGTTGGGAGATCCGTAGT -ACGGAAAGTTGGGAGATCGTCAGT -ACGGAAAGTTGGGAGATCGAAGGT -ACGGAAAGTTGGGAGATCAACCGT -ACGGAAAGTTGGGAGATCTTGTGC -ACGGAAAGTTGGGAGATCCTAAGC -ACGGAAAGTTGGGAGATCACTAGC -ACGGAAAGTTGGGAGATCAGATGC -ACGGAAAGTTGGGAGATCTGAAGG -ACGGAAAGTTGGGAGATCCAATGG -ACGGAAAGTTGGGAGATCATGAGG -ACGGAAAGTTGGGAGATCAATGGG -ACGGAAAGTTGGGAGATCTCCTGA -ACGGAAAGTTGGGAGATCTAGCGA -ACGGAAAGTTGGGAGATCCACAGA -ACGGAAAGTTGGGAGATCGCAAGA -ACGGAAAGTTGGGAGATCGGTTGA -ACGGAAAGTTGGGAGATCTCCGAT -ACGGAAAGTTGGGAGATCTGGCAT -ACGGAAAGTTGGGAGATCCGAGAT -ACGGAAAGTTGGGAGATCTACCAC -ACGGAAAGTTGGGAGATCCAGAAC -ACGGAAAGTTGGGAGATCGTCTAC -ACGGAAAGTTGGGAGATCACGTAC -ACGGAAAGTTGGGAGATCAGTGAC -ACGGAAAGTTGGGAGATCCTGTAG -ACGGAAAGTTGGGAGATCCCTAAG -ACGGAAAGTTGGGAGATCGTTCAG -ACGGAAAGTTGGGAGATCGCATAG -ACGGAAAGTTGGGAGATCGACAAG -ACGGAAAGTTGGGAGATCAAGCAG -ACGGAAAGTTGGGAGATCCGTCAA -ACGGAAAGTTGGGAGATCGCTGAA -ACGGAAAGTTGGGAGATCAGTACG -ACGGAAAGTTGGGAGATCATCCGA -ACGGAAAGTTGGGAGATCATGGGA -ACGGAAAGTTGGGAGATCGTGCAA -ACGGAAAGTTGGGAGATCGAGGAA -ACGGAAAGTTGGGAGATCCAGGTA -ACGGAAAGTTGGGAGATCGACTCT -ACGGAAAGTTGGGAGATCAGTCCT -ACGGAAAGTTGGGAGATCTAAGCC -ACGGAAAGTTGGGAGATCATAGCC -ACGGAAAGTTGGGAGATCTAACCG -ACGGAAAGTTGGGAGATCATGCCA -ACGGAAAGTTGGCTTCTCGGAAAC -ACGGAAAGTTGGCTTCTCAACACC -ACGGAAAGTTGGCTTCTCATCGAG -ACGGAAAGTTGGCTTCTCCTCCTT -ACGGAAAGTTGGCTTCTCCCTGTT -ACGGAAAGTTGGCTTCTCCGGTTT -ACGGAAAGTTGGCTTCTCGTGGTT -ACGGAAAGTTGGCTTCTCGCCTTT -ACGGAAAGTTGGCTTCTCGGTCTT -ACGGAAAGTTGGCTTCTCACGCTT -ACGGAAAGTTGGCTTCTCAGCGTT -ACGGAAAGTTGGCTTCTCTTCGTC -ACGGAAAGTTGGCTTCTCTCTCTC -ACGGAAAGTTGGCTTCTCTGGATC -ACGGAAAGTTGGCTTCTCCACTTC -ACGGAAAGTTGGCTTCTCGTACTC -ACGGAAAGTTGGCTTCTCGATGTC -ACGGAAAGTTGGCTTCTCACAGTC -ACGGAAAGTTGGCTTCTCTTGCTG -ACGGAAAGTTGGCTTCTCTCCATG -ACGGAAAGTTGGCTTCTCTGTGTG -ACGGAAAGTTGGCTTCTCCTAGTG -ACGGAAAGTTGGCTTCTCCATCTG -ACGGAAAGTTGGCTTCTCGAGTTG -ACGGAAAGTTGGCTTCTCAGACTG -ACGGAAAGTTGGCTTCTCTCGGTA -ACGGAAAGTTGGCTTCTCTGCCTA -ACGGAAAGTTGGCTTCTCCCACTA -ACGGAAAGTTGGCTTCTCGGAGTA -ACGGAAAGTTGGCTTCTCTCGTCT -ACGGAAAGTTGGCTTCTCTGCACT -ACGGAAAGTTGGCTTCTCCTGACT -ACGGAAAGTTGGCTTCTCCAACCT -ACGGAAAGTTGGCTTCTCGCTACT -ACGGAAAGTTGGCTTCTCGGATCT -ACGGAAAGTTGGCTTCTCAAGGCT -ACGGAAAGTTGGCTTCTCTCAACC -ACGGAAAGTTGGCTTCTCTGTTCC -ACGGAAAGTTGGCTTCTCATTCCC -ACGGAAAGTTGGCTTCTCTTCTCG -ACGGAAAGTTGGCTTCTCTAGACG -ACGGAAAGTTGGCTTCTCGTAACG -ACGGAAAGTTGGCTTCTCACTTCG -ACGGAAAGTTGGCTTCTCTACGCA -ACGGAAAGTTGGCTTCTCCTTGCA -ACGGAAAGTTGGCTTCTCCGAACA -ACGGAAAGTTGGCTTCTCCAGTCA -ACGGAAAGTTGGCTTCTCGATCCA -ACGGAAAGTTGGCTTCTCACGACA -ACGGAAAGTTGGCTTCTCAGCTCA -ACGGAAAGTTGGCTTCTCTCACGT -ACGGAAAGTTGGCTTCTCCGTAGT -ACGGAAAGTTGGCTTCTCGTCAGT -ACGGAAAGTTGGCTTCTCGAAGGT -ACGGAAAGTTGGCTTCTCAACCGT -ACGGAAAGTTGGCTTCTCTTGTGC -ACGGAAAGTTGGCTTCTCCTAAGC -ACGGAAAGTTGGCTTCTCACTAGC -ACGGAAAGTTGGCTTCTCAGATGC -ACGGAAAGTTGGCTTCTCTGAAGG -ACGGAAAGTTGGCTTCTCCAATGG -ACGGAAAGTTGGCTTCTCATGAGG -ACGGAAAGTTGGCTTCTCAATGGG -ACGGAAAGTTGGCTTCTCTCCTGA -ACGGAAAGTTGGCTTCTCTAGCGA -ACGGAAAGTTGGCTTCTCCACAGA -ACGGAAAGTTGGCTTCTCGCAAGA -ACGGAAAGTTGGCTTCTCGGTTGA -ACGGAAAGTTGGCTTCTCTCCGAT -ACGGAAAGTTGGCTTCTCTGGCAT -ACGGAAAGTTGGCTTCTCCGAGAT -ACGGAAAGTTGGCTTCTCTACCAC -ACGGAAAGTTGGCTTCTCCAGAAC -ACGGAAAGTTGGCTTCTCGTCTAC -ACGGAAAGTTGGCTTCTCACGTAC -ACGGAAAGTTGGCTTCTCAGTGAC -ACGGAAAGTTGGCTTCTCCTGTAG -ACGGAAAGTTGGCTTCTCCCTAAG -ACGGAAAGTTGGCTTCTCGTTCAG -ACGGAAAGTTGGCTTCTCGCATAG -ACGGAAAGTTGGCTTCTCGACAAG -ACGGAAAGTTGGCTTCTCAAGCAG -ACGGAAAGTTGGCTTCTCCGTCAA -ACGGAAAGTTGGCTTCTCGCTGAA -ACGGAAAGTTGGCTTCTCAGTACG -ACGGAAAGTTGGCTTCTCATCCGA -ACGGAAAGTTGGCTTCTCATGGGA -ACGGAAAGTTGGCTTCTCGTGCAA -ACGGAAAGTTGGCTTCTCGAGGAA -ACGGAAAGTTGGCTTCTCCAGGTA -ACGGAAAGTTGGCTTCTCGACTCT -ACGGAAAGTTGGCTTCTCAGTCCT -ACGGAAAGTTGGCTTCTCTAAGCC -ACGGAAAGTTGGCTTCTCATAGCC -ACGGAAAGTTGGCTTCTCTAACCG -ACGGAAAGTTGGCTTCTCATGCCA -ACGGAAAGTTGGGTTCCTGGAAAC -ACGGAAAGTTGGGTTCCTAACACC -ACGGAAAGTTGGGTTCCTATCGAG -ACGGAAAGTTGGGTTCCTCTCCTT -ACGGAAAGTTGGGTTCCTCCTGTT -ACGGAAAGTTGGGTTCCTCGGTTT -ACGGAAAGTTGGGTTCCTGTGGTT -ACGGAAAGTTGGGTTCCTGCCTTT -ACGGAAAGTTGGGTTCCTGGTCTT -ACGGAAAGTTGGGTTCCTACGCTT -ACGGAAAGTTGGGTTCCTAGCGTT -ACGGAAAGTTGGGTTCCTTTCGTC -ACGGAAAGTTGGGTTCCTTCTCTC -ACGGAAAGTTGGGTTCCTTGGATC -ACGGAAAGTTGGGTTCCTCACTTC -ACGGAAAGTTGGGTTCCTGTACTC -ACGGAAAGTTGGGTTCCTGATGTC -ACGGAAAGTTGGGTTCCTACAGTC -ACGGAAAGTTGGGTTCCTTTGCTG -ACGGAAAGTTGGGTTCCTTCCATG -ACGGAAAGTTGGGTTCCTTGTGTG -ACGGAAAGTTGGGTTCCTCTAGTG -ACGGAAAGTTGGGTTCCTCATCTG -ACGGAAAGTTGGGTTCCTGAGTTG -ACGGAAAGTTGGGTTCCTAGACTG -ACGGAAAGTTGGGTTCCTTCGGTA -ACGGAAAGTTGGGTTCCTTGCCTA -ACGGAAAGTTGGGTTCCTCCACTA -ACGGAAAGTTGGGTTCCTGGAGTA -ACGGAAAGTTGGGTTCCTTCGTCT -ACGGAAAGTTGGGTTCCTTGCACT -ACGGAAAGTTGGGTTCCTCTGACT -ACGGAAAGTTGGGTTCCTCAACCT -ACGGAAAGTTGGGTTCCTGCTACT -ACGGAAAGTTGGGTTCCTGGATCT -ACGGAAAGTTGGGTTCCTAAGGCT -ACGGAAAGTTGGGTTCCTTCAACC -ACGGAAAGTTGGGTTCCTTGTTCC -ACGGAAAGTTGGGTTCCTATTCCC -ACGGAAAGTTGGGTTCCTTTCTCG -ACGGAAAGTTGGGTTCCTTAGACG -ACGGAAAGTTGGGTTCCTGTAACG -ACGGAAAGTTGGGTTCCTACTTCG -ACGGAAAGTTGGGTTCCTTACGCA -ACGGAAAGTTGGGTTCCTCTTGCA -ACGGAAAGTTGGGTTCCTCGAACA -ACGGAAAGTTGGGTTCCTCAGTCA -ACGGAAAGTTGGGTTCCTGATCCA -ACGGAAAGTTGGGTTCCTACGACA -ACGGAAAGTTGGGTTCCTAGCTCA -ACGGAAAGTTGGGTTCCTTCACGT -ACGGAAAGTTGGGTTCCTCGTAGT -ACGGAAAGTTGGGTTCCTGTCAGT -ACGGAAAGTTGGGTTCCTGAAGGT -ACGGAAAGTTGGGTTCCTAACCGT -ACGGAAAGTTGGGTTCCTTTGTGC -ACGGAAAGTTGGGTTCCTCTAAGC -ACGGAAAGTTGGGTTCCTACTAGC -ACGGAAAGTTGGGTTCCTAGATGC -ACGGAAAGTTGGGTTCCTTGAAGG -ACGGAAAGTTGGGTTCCTCAATGG -ACGGAAAGTTGGGTTCCTATGAGG -ACGGAAAGTTGGGTTCCTAATGGG -ACGGAAAGTTGGGTTCCTTCCTGA -ACGGAAAGTTGGGTTCCTTAGCGA -ACGGAAAGTTGGGTTCCTCACAGA -ACGGAAAGTTGGGTTCCTGCAAGA -ACGGAAAGTTGGGTTCCTGGTTGA -ACGGAAAGTTGGGTTCCTTCCGAT -ACGGAAAGTTGGGTTCCTTGGCAT -ACGGAAAGTTGGGTTCCTCGAGAT -ACGGAAAGTTGGGTTCCTTACCAC -ACGGAAAGTTGGGTTCCTCAGAAC -ACGGAAAGTTGGGTTCCTGTCTAC -ACGGAAAGTTGGGTTCCTACGTAC -ACGGAAAGTTGGGTTCCTAGTGAC -ACGGAAAGTTGGGTTCCTCTGTAG -ACGGAAAGTTGGGTTCCTCCTAAG -ACGGAAAGTTGGGTTCCTGTTCAG -ACGGAAAGTTGGGTTCCTGCATAG -ACGGAAAGTTGGGTTCCTGACAAG -ACGGAAAGTTGGGTTCCTAAGCAG -ACGGAAAGTTGGGTTCCTCGTCAA -ACGGAAAGTTGGGTTCCTGCTGAA -ACGGAAAGTTGGGTTCCTAGTACG -ACGGAAAGTTGGGTTCCTATCCGA -ACGGAAAGTTGGGTTCCTATGGGA -ACGGAAAGTTGGGTTCCTGTGCAA -ACGGAAAGTTGGGTTCCTGAGGAA -ACGGAAAGTTGGGTTCCTCAGGTA -ACGGAAAGTTGGGTTCCTGACTCT -ACGGAAAGTTGGGTTCCTAGTCCT -ACGGAAAGTTGGGTTCCTTAAGCC -ACGGAAAGTTGGGTTCCTATAGCC -ACGGAAAGTTGGGTTCCTTAACCG -ACGGAAAGTTGGGTTCCTATGCCA -ACGGAAAGTTGGTTTCGGGGAAAC -ACGGAAAGTTGGTTTCGGAACACC -ACGGAAAGTTGGTTTCGGATCGAG -ACGGAAAGTTGGTTTCGGCTCCTT -ACGGAAAGTTGGTTTCGGCCTGTT -ACGGAAAGTTGGTTTCGGCGGTTT -ACGGAAAGTTGGTTTCGGGTGGTT -ACGGAAAGTTGGTTTCGGGCCTTT -ACGGAAAGTTGGTTTCGGGGTCTT -ACGGAAAGTTGGTTTCGGACGCTT -ACGGAAAGTTGGTTTCGGAGCGTT -ACGGAAAGTTGGTTTCGGTTCGTC -ACGGAAAGTTGGTTTCGGTCTCTC -ACGGAAAGTTGGTTTCGGTGGATC -ACGGAAAGTTGGTTTCGGCACTTC -ACGGAAAGTTGGTTTCGGGTACTC -ACGGAAAGTTGGTTTCGGGATGTC -ACGGAAAGTTGGTTTCGGACAGTC -ACGGAAAGTTGGTTTCGGTTGCTG -ACGGAAAGTTGGTTTCGGTCCATG -ACGGAAAGTTGGTTTCGGTGTGTG -ACGGAAAGTTGGTTTCGGCTAGTG -ACGGAAAGTTGGTTTCGGCATCTG -ACGGAAAGTTGGTTTCGGGAGTTG -ACGGAAAGTTGGTTTCGGAGACTG -ACGGAAAGTTGGTTTCGGTCGGTA -ACGGAAAGTTGGTTTCGGTGCCTA -ACGGAAAGTTGGTTTCGGCCACTA -ACGGAAAGTTGGTTTCGGGGAGTA -ACGGAAAGTTGGTTTCGGTCGTCT -ACGGAAAGTTGGTTTCGGTGCACT -ACGGAAAGTTGGTTTCGGCTGACT -ACGGAAAGTTGGTTTCGGCAACCT -ACGGAAAGTTGGTTTCGGGCTACT -ACGGAAAGTTGGTTTCGGGGATCT -ACGGAAAGTTGGTTTCGGAAGGCT -ACGGAAAGTTGGTTTCGGTCAACC -ACGGAAAGTTGGTTTCGGTGTTCC -ACGGAAAGTTGGTTTCGGATTCCC -ACGGAAAGTTGGTTTCGGTTCTCG -ACGGAAAGTTGGTTTCGGTAGACG -ACGGAAAGTTGGTTTCGGGTAACG -ACGGAAAGTTGGTTTCGGACTTCG -ACGGAAAGTTGGTTTCGGTACGCA -ACGGAAAGTTGGTTTCGGCTTGCA -ACGGAAAGTTGGTTTCGGCGAACA -ACGGAAAGTTGGTTTCGGCAGTCA -ACGGAAAGTTGGTTTCGGGATCCA -ACGGAAAGTTGGTTTCGGACGACA -ACGGAAAGTTGGTTTCGGAGCTCA -ACGGAAAGTTGGTTTCGGTCACGT -ACGGAAAGTTGGTTTCGGCGTAGT -ACGGAAAGTTGGTTTCGGGTCAGT -ACGGAAAGTTGGTTTCGGGAAGGT -ACGGAAAGTTGGTTTCGGAACCGT -ACGGAAAGTTGGTTTCGGTTGTGC -ACGGAAAGTTGGTTTCGGCTAAGC -ACGGAAAGTTGGTTTCGGACTAGC -ACGGAAAGTTGGTTTCGGAGATGC -ACGGAAAGTTGGTTTCGGTGAAGG -ACGGAAAGTTGGTTTCGGCAATGG -ACGGAAAGTTGGTTTCGGATGAGG -ACGGAAAGTTGGTTTCGGAATGGG -ACGGAAAGTTGGTTTCGGTCCTGA -ACGGAAAGTTGGTTTCGGTAGCGA -ACGGAAAGTTGGTTTCGGCACAGA -ACGGAAAGTTGGTTTCGGGCAAGA -ACGGAAAGTTGGTTTCGGGGTTGA -ACGGAAAGTTGGTTTCGGTCCGAT -ACGGAAAGTTGGTTTCGGTGGCAT -ACGGAAAGTTGGTTTCGGCGAGAT -ACGGAAAGTTGGTTTCGGTACCAC -ACGGAAAGTTGGTTTCGGCAGAAC -ACGGAAAGTTGGTTTCGGGTCTAC -ACGGAAAGTTGGTTTCGGACGTAC -ACGGAAAGTTGGTTTCGGAGTGAC -ACGGAAAGTTGGTTTCGGCTGTAG -ACGGAAAGTTGGTTTCGGCCTAAG -ACGGAAAGTTGGTTTCGGGTTCAG -ACGGAAAGTTGGTTTCGGGCATAG -ACGGAAAGTTGGTTTCGGGACAAG -ACGGAAAGTTGGTTTCGGAAGCAG -ACGGAAAGTTGGTTTCGGCGTCAA -ACGGAAAGTTGGTTTCGGGCTGAA -ACGGAAAGTTGGTTTCGGAGTACG -ACGGAAAGTTGGTTTCGGATCCGA -ACGGAAAGTTGGTTTCGGATGGGA -ACGGAAAGTTGGTTTCGGGTGCAA -ACGGAAAGTTGGTTTCGGGAGGAA -ACGGAAAGTTGGTTTCGGCAGGTA -ACGGAAAGTTGGTTTCGGGACTCT -ACGGAAAGTTGGTTTCGGAGTCCT -ACGGAAAGTTGGTTTCGGTAAGCC -ACGGAAAGTTGGTTTCGGATAGCC -ACGGAAAGTTGGTTTCGGTAACCG -ACGGAAAGTTGGTTTCGGATGCCA -ACGGAAAGTTGGGTTGTGGGAAAC -ACGGAAAGTTGGGTTGTGAACACC -ACGGAAAGTTGGGTTGTGATCGAG -ACGGAAAGTTGGGTTGTGCTCCTT -ACGGAAAGTTGGGTTGTGCCTGTT -ACGGAAAGTTGGGTTGTGCGGTTT -ACGGAAAGTTGGGTTGTGGTGGTT -ACGGAAAGTTGGGTTGTGGCCTTT -ACGGAAAGTTGGGTTGTGGGTCTT -ACGGAAAGTTGGGTTGTGACGCTT -ACGGAAAGTTGGGTTGTGAGCGTT -ACGGAAAGTTGGGTTGTGTTCGTC -ACGGAAAGTTGGGTTGTGTCTCTC -ACGGAAAGTTGGGTTGTGTGGATC -ACGGAAAGTTGGGTTGTGCACTTC -ACGGAAAGTTGGGTTGTGGTACTC -ACGGAAAGTTGGGTTGTGGATGTC -ACGGAAAGTTGGGTTGTGACAGTC -ACGGAAAGTTGGGTTGTGTTGCTG -ACGGAAAGTTGGGTTGTGTCCATG -ACGGAAAGTTGGGTTGTGTGTGTG -ACGGAAAGTTGGGTTGTGCTAGTG -ACGGAAAGTTGGGTTGTGCATCTG -ACGGAAAGTTGGGTTGTGGAGTTG -ACGGAAAGTTGGGTTGTGAGACTG -ACGGAAAGTTGGGTTGTGTCGGTA -ACGGAAAGTTGGGTTGTGTGCCTA -ACGGAAAGTTGGGTTGTGCCACTA -ACGGAAAGTTGGGTTGTGGGAGTA -ACGGAAAGTTGGGTTGTGTCGTCT -ACGGAAAGTTGGGTTGTGTGCACT -ACGGAAAGTTGGGTTGTGCTGACT -ACGGAAAGTTGGGTTGTGCAACCT -ACGGAAAGTTGGGTTGTGGCTACT -ACGGAAAGTTGGGTTGTGGGATCT -ACGGAAAGTTGGGTTGTGAAGGCT -ACGGAAAGTTGGGTTGTGTCAACC -ACGGAAAGTTGGGTTGTGTGTTCC -ACGGAAAGTTGGGTTGTGATTCCC -ACGGAAAGTTGGGTTGTGTTCTCG -ACGGAAAGTTGGGTTGTGTAGACG -ACGGAAAGTTGGGTTGTGGTAACG -ACGGAAAGTTGGGTTGTGACTTCG -ACGGAAAGTTGGGTTGTGTACGCA -ACGGAAAGTTGGGTTGTGCTTGCA -ACGGAAAGTTGGGTTGTGCGAACA -ACGGAAAGTTGGGTTGTGCAGTCA -ACGGAAAGTTGGGTTGTGGATCCA -ACGGAAAGTTGGGTTGTGACGACA -ACGGAAAGTTGGGTTGTGAGCTCA -ACGGAAAGTTGGGTTGTGTCACGT -ACGGAAAGTTGGGTTGTGCGTAGT -ACGGAAAGTTGGGTTGTGGTCAGT -ACGGAAAGTTGGGTTGTGGAAGGT -ACGGAAAGTTGGGTTGTGAACCGT -ACGGAAAGTTGGGTTGTGTTGTGC -ACGGAAAGTTGGGTTGTGCTAAGC -ACGGAAAGTTGGGTTGTGACTAGC -ACGGAAAGTTGGGTTGTGAGATGC -ACGGAAAGTTGGGTTGTGTGAAGG -ACGGAAAGTTGGGTTGTGCAATGG -ACGGAAAGTTGGGTTGTGATGAGG -ACGGAAAGTTGGGTTGTGAATGGG -ACGGAAAGTTGGGTTGTGTCCTGA -ACGGAAAGTTGGGTTGTGTAGCGA -ACGGAAAGTTGGGTTGTGCACAGA -ACGGAAAGTTGGGTTGTGGCAAGA -ACGGAAAGTTGGGTTGTGGGTTGA -ACGGAAAGTTGGGTTGTGTCCGAT -ACGGAAAGTTGGGTTGTGTGGCAT -ACGGAAAGTTGGGTTGTGCGAGAT -ACGGAAAGTTGGGTTGTGTACCAC -ACGGAAAGTTGGGTTGTGCAGAAC -ACGGAAAGTTGGGTTGTGGTCTAC -ACGGAAAGTTGGGTTGTGACGTAC -ACGGAAAGTTGGGTTGTGAGTGAC -ACGGAAAGTTGGGTTGTGCTGTAG -ACGGAAAGTTGGGTTGTGCCTAAG -ACGGAAAGTTGGGTTGTGGTTCAG -ACGGAAAGTTGGGTTGTGGCATAG -ACGGAAAGTTGGGTTGTGGACAAG -ACGGAAAGTTGGGTTGTGAAGCAG -ACGGAAAGTTGGGTTGTGCGTCAA -ACGGAAAGTTGGGTTGTGGCTGAA -ACGGAAAGTTGGGTTGTGAGTACG -ACGGAAAGTTGGGTTGTGATCCGA -ACGGAAAGTTGGGTTGTGATGGGA -ACGGAAAGTTGGGTTGTGGTGCAA -ACGGAAAGTTGGGTTGTGGAGGAA -ACGGAAAGTTGGGTTGTGCAGGTA -ACGGAAAGTTGGGTTGTGGACTCT -ACGGAAAGTTGGGTTGTGAGTCCT -ACGGAAAGTTGGGTTGTGTAAGCC -ACGGAAAGTTGGGTTGTGATAGCC -ACGGAAAGTTGGGTTGTGTAACCG -ACGGAAAGTTGGGTTGTGATGCCA -ACGGAAAGTTGGTTTGCCGGAAAC -ACGGAAAGTTGGTTTGCCAACACC -ACGGAAAGTTGGTTTGCCATCGAG -ACGGAAAGTTGGTTTGCCCTCCTT -ACGGAAAGTTGGTTTGCCCCTGTT -ACGGAAAGTTGGTTTGCCCGGTTT -ACGGAAAGTTGGTTTGCCGTGGTT -ACGGAAAGTTGGTTTGCCGCCTTT -ACGGAAAGTTGGTTTGCCGGTCTT -ACGGAAAGTTGGTTTGCCACGCTT -ACGGAAAGTTGGTTTGCCAGCGTT -ACGGAAAGTTGGTTTGCCTTCGTC -ACGGAAAGTTGGTTTGCCTCTCTC -ACGGAAAGTTGGTTTGCCTGGATC -ACGGAAAGTTGGTTTGCCCACTTC -ACGGAAAGTTGGTTTGCCGTACTC -ACGGAAAGTTGGTTTGCCGATGTC -ACGGAAAGTTGGTTTGCCACAGTC -ACGGAAAGTTGGTTTGCCTTGCTG -ACGGAAAGTTGGTTTGCCTCCATG -ACGGAAAGTTGGTTTGCCTGTGTG -ACGGAAAGTTGGTTTGCCCTAGTG -ACGGAAAGTTGGTTTGCCCATCTG -ACGGAAAGTTGGTTTGCCGAGTTG -ACGGAAAGTTGGTTTGCCAGACTG -ACGGAAAGTTGGTTTGCCTCGGTA -ACGGAAAGTTGGTTTGCCTGCCTA -ACGGAAAGTTGGTTTGCCCCACTA -ACGGAAAGTTGGTTTGCCGGAGTA -ACGGAAAGTTGGTTTGCCTCGTCT -ACGGAAAGTTGGTTTGCCTGCACT -ACGGAAAGTTGGTTTGCCCTGACT -ACGGAAAGTTGGTTTGCCCAACCT -ACGGAAAGTTGGTTTGCCGCTACT -ACGGAAAGTTGGTTTGCCGGATCT -ACGGAAAGTTGGTTTGCCAAGGCT -ACGGAAAGTTGGTTTGCCTCAACC -ACGGAAAGTTGGTTTGCCTGTTCC -ACGGAAAGTTGGTTTGCCATTCCC -ACGGAAAGTTGGTTTGCCTTCTCG -ACGGAAAGTTGGTTTGCCTAGACG -ACGGAAAGTTGGTTTGCCGTAACG -ACGGAAAGTTGGTTTGCCACTTCG -ACGGAAAGTTGGTTTGCCTACGCA -ACGGAAAGTTGGTTTGCCCTTGCA -ACGGAAAGTTGGTTTGCCCGAACA -ACGGAAAGTTGGTTTGCCCAGTCA -ACGGAAAGTTGGTTTGCCGATCCA -ACGGAAAGTTGGTTTGCCACGACA -ACGGAAAGTTGGTTTGCCAGCTCA -ACGGAAAGTTGGTTTGCCTCACGT -ACGGAAAGTTGGTTTGCCCGTAGT -ACGGAAAGTTGGTTTGCCGTCAGT -ACGGAAAGTTGGTTTGCCGAAGGT -ACGGAAAGTTGGTTTGCCAACCGT -ACGGAAAGTTGGTTTGCCTTGTGC -ACGGAAAGTTGGTTTGCCCTAAGC -ACGGAAAGTTGGTTTGCCACTAGC -ACGGAAAGTTGGTTTGCCAGATGC -ACGGAAAGTTGGTTTGCCTGAAGG -ACGGAAAGTTGGTTTGCCCAATGG -ACGGAAAGTTGGTTTGCCATGAGG -ACGGAAAGTTGGTTTGCCAATGGG -ACGGAAAGTTGGTTTGCCTCCTGA -ACGGAAAGTTGGTTTGCCTAGCGA -ACGGAAAGTTGGTTTGCCCACAGA -ACGGAAAGTTGGTTTGCCGCAAGA -ACGGAAAGTTGGTTTGCCGGTTGA -ACGGAAAGTTGGTTTGCCTCCGAT -ACGGAAAGTTGGTTTGCCTGGCAT -ACGGAAAGTTGGTTTGCCCGAGAT -ACGGAAAGTTGGTTTGCCTACCAC -ACGGAAAGTTGGTTTGCCCAGAAC -ACGGAAAGTTGGTTTGCCGTCTAC -ACGGAAAGTTGGTTTGCCACGTAC -ACGGAAAGTTGGTTTGCCAGTGAC -ACGGAAAGTTGGTTTGCCCTGTAG -ACGGAAAGTTGGTTTGCCCCTAAG -ACGGAAAGTTGGTTTGCCGTTCAG -ACGGAAAGTTGGTTTGCCGCATAG -ACGGAAAGTTGGTTTGCCGACAAG -ACGGAAAGTTGGTTTGCCAAGCAG -ACGGAAAGTTGGTTTGCCCGTCAA -ACGGAAAGTTGGTTTGCCGCTGAA -ACGGAAAGTTGGTTTGCCAGTACG -ACGGAAAGTTGGTTTGCCATCCGA -ACGGAAAGTTGGTTTGCCATGGGA -ACGGAAAGTTGGTTTGCCGTGCAA -ACGGAAAGTTGGTTTGCCGAGGAA -ACGGAAAGTTGGTTTGCCCAGGTA -ACGGAAAGTTGGTTTGCCGACTCT -ACGGAAAGTTGGTTTGCCAGTCCT -ACGGAAAGTTGGTTTGCCTAAGCC -ACGGAAAGTTGGTTTGCCATAGCC -ACGGAAAGTTGGTTTGCCTAACCG -ACGGAAAGTTGGTTTGCCATGCCA -ACGGAAAGTTGGCTTGGTGGAAAC -ACGGAAAGTTGGCTTGGTAACACC -ACGGAAAGTTGGCTTGGTATCGAG -ACGGAAAGTTGGCTTGGTCTCCTT -ACGGAAAGTTGGCTTGGTCCTGTT -ACGGAAAGTTGGCTTGGTCGGTTT -ACGGAAAGTTGGCTTGGTGTGGTT -ACGGAAAGTTGGCTTGGTGCCTTT -ACGGAAAGTTGGCTTGGTGGTCTT -ACGGAAAGTTGGCTTGGTACGCTT -ACGGAAAGTTGGCTTGGTAGCGTT -ACGGAAAGTTGGCTTGGTTTCGTC -ACGGAAAGTTGGCTTGGTTCTCTC -ACGGAAAGTTGGCTTGGTTGGATC -ACGGAAAGTTGGCTTGGTCACTTC -ACGGAAAGTTGGCTTGGTGTACTC -ACGGAAAGTTGGCTTGGTGATGTC -ACGGAAAGTTGGCTTGGTACAGTC -ACGGAAAGTTGGCTTGGTTTGCTG -ACGGAAAGTTGGCTTGGTTCCATG -ACGGAAAGTTGGCTTGGTTGTGTG -ACGGAAAGTTGGCTTGGTCTAGTG -ACGGAAAGTTGGCTTGGTCATCTG -ACGGAAAGTTGGCTTGGTGAGTTG -ACGGAAAGTTGGCTTGGTAGACTG -ACGGAAAGTTGGCTTGGTTCGGTA -ACGGAAAGTTGGCTTGGTTGCCTA -ACGGAAAGTTGGCTTGGTCCACTA -ACGGAAAGTTGGCTTGGTGGAGTA -ACGGAAAGTTGGCTTGGTTCGTCT -ACGGAAAGTTGGCTTGGTTGCACT -ACGGAAAGTTGGCTTGGTCTGACT -ACGGAAAGTTGGCTTGGTCAACCT -ACGGAAAGTTGGCTTGGTGCTACT -ACGGAAAGTTGGCTTGGTGGATCT -ACGGAAAGTTGGCTTGGTAAGGCT -ACGGAAAGTTGGCTTGGTTCAACC -ACGGAAAGTTGGCTTGGTTGTTCC -ACGGAAAGTTGGCTTGGTATTCCC -ACGGAAAGTTGGCTTGGTTTCTCG -ACGGAAAGTTGGCTTGGTTAGACG -ACGGAAAGTTGGCTTGGTGTAACG -ACGGAAAGTTGGCTTGGTACTTCG -ACGGAAAGTTGGCTTGGTTACGCA -ACGGAAAGTTGGCTTGGTCTTGCA -ACGGAAAGTTGGCTTGGTCGAACA -ACGGAAAGTTGGCTTGGTCAGTCA -ACGGAAAGTTGGCTTGGTGATCCA -ACGGAAAGTTGGCTTGGTACGACA -ACGGAAAGTTGGCTTGGTAGCTCA -ACGGAAAGTTGGCTTGGTTCACGT -ACGGAAAGTTGGCTTGGTCGTAGT -ACGGAAAGTTGGCTTGGTGTCAGT -ACGGAAAGTTGGCTTGGTGAAGGT -ACGGAAAGTTGGCTTGGTAACCGT -ACGGAAAGTTGGCTTGGTTTGTGC -ACGGAAAGTTGGCTTGGTCTAAGC -ACGGAAAGTTGGCTTGGTACTAGC -ACGGAAAGTTGGCTTGGTAGATGC -ACGGAAAGTTGGCTTGGTTGAAGG -ACGGAAAGTTGGCTTGGTCAATGG -ACGGAAAGTTGGCTTGGTATGAGG -ACGGAAAGTTGGCTTGGTAATGGG -ACGGAAAGTTGGCTTGGTTCCTGA -ACGGAAAGTTGGCTTGGTTAGCGA -ACGGAAAGTTGGCTTGGTCACAGA -ACGGAAAGTTGGCTTGGTGCAAGA -ACGGAAAGTTGGCTTGGTGGTTGA -ACGGAAAGTTGGCTTGGTTCCGAT -ACGGAAAGTTGGCTTGGTTGGCAT -ACGGAAAGTTGGCTTGGTCGAGAT -ACGGAAAGTTGGCTTGGTTACCAC -ACGGAAAGTTGGCTTGGTCAGAAC -ACGGAAAGTTGGCTTGGTGTCTAC -ACGGAAAGTTGGCTTGGTACGTAC -ACGGAAAGTTGGCTTGGTAGTGAC -ACGGAAAGTTGGCTTGGTCTGTAG -ACGGAAAGTTGGCTTGGTCCTAAG -ACGGAAAGTTGGCTTGGTGTTCAG -ACGGAAAGTTGGCTTGGTGCATAG -ACGGAAAGTTGGCTTGGTGACAAG -ACGGAAAGTTGGCTTGGTAAGCAG -ACGGAAAGTTGGCTTGGTCGTCAA -ACGGAAAGTTGGCTTGGTGCTGAA -ACGGAAAGTTGGCTTGGTAGTACG -ACGGAAAGTTGGCTTGGTATCCGA -ACGGAAAGTTGGCTTGGTATGGGA -ACGGAAAGTTGGCTTGGTGTGCAA -ACGGAAAGTTGGCTTGGTGAGGAA -ACGGAAAGTTGGCTTGGTCAGGTA -ACGGAAAGTTGGCTTGGTGACTCT -ACGGAAAGTTGGCTTGGTAGTCCT -ACGGAAAGTTGGCTTGGTTAAGCC -ACGGAAAGTTGGCTTGGTATAGCC -ACGGAAAGTTGGCTTGGTTAACCG -ACGGAAAGTTGGCTTGGTATGCCA -ACGGAAAGTTGGCTTACGGGAAAC -ACGGAAAGTTGGCTTACGAACACC -ACGGAAAGTTGGCTTACGATCGAG -ACGGAAAGTTGGCTTACGCTCCTT -ACGGAAAGTTGGCTTACGCCTGTT -ACGGAAAGTTGGCTTACGCGGTTT -ACGGAAAGTTGGCTTACGGTGGTT -ACGGAAAGTTGGCTTACGGCCTTT -ACGGAAAGTTGGCTTACGGGTCTT -ACGGAAAGTTGGCTTACGACGCTT -ACGGAAAGTTGGCTTACGAGCGTT -ACGGAAAGTTGGCTTACGTTCGTC -ACGGAAAGTTGGCTTACGTCTCTC -ACGGAAAGTTGGCTTACGTGGATC -ACGGAAAGTTGGCTTACGCACTTC -ACGGAAAGTTGGCTTACGGTACTC -ACGGAAAGTTGGCTTACGGATGTC -ACGGAAAGTTGGCTTACGACAGTC -ACGGAAAGTTGGCTTACGTTGCTG -ACGGAAAGTTGGCTTACGTCCATG -ACGGAAAGTTGGCTTACGTGTGTG -ACGGAAAGTTGGCTTACGCTAGTG -ACGGAAAGTTGGCTTACGCATCTG -ACGGAAAGTTGGCTTACGGAGTTG -ACGGAAAGTTGGCTTACGAGACTG -ACGGAAAGTTGGCTTACGTCGGTA -ACGGAAAGTTGGCTTACGTGCCTA -ACGGAAAGTTGGCTTACGCCACTA -ACGGAAAGTTGGCTTACGGGAGTA -ACGGAAAGTTGGCTTACGTCGTCT -ACGGAAAGTTGGCTTACGTGCACT -ACGGAAAGTTGGCTTACGCTGACT -ACGGAAAGTTGGCTTACGCAACCT -ACGGAAAGTTGGCTTACGGCTACT -ACGGAAAGTTGGCTTACGGGATCT -ACGGAAAGTTGGCTTACGAAGGCT -ACGGAAAGTTGGCTTACGTCAACC -ACGGAAAGTTGGCTTACGTGTTCC -ACGGAAAGTTGGCTTACGATTCCC -ACGGAAAGTTGGCTTACGTTCTCG -ACGGAAAGTTGGCTTACGTAGACG -ACGGAAAGTTGGCTTACGGTAACG -ACGGAAAGTTGGCTTACGACTTCG -ACGGAAAGTTGGCTTACGTACGCA -ACGGAAAGTTGGCTTACGCTTGCA -ACGGAAAGTTGGCTTACGCGAACA -ACGGAAAGTTGGCTTACGCAGTCA -ACGGAAAGTTGGCTTACGGATCCA -ACGGAAAGTTGGCTTACGACGACA -ACGGAAAGTTGGCTTACGAGCTCA -ACGGAAAGTTGGCTTACGTCACGT -ACGGAAAGTTGGCTTACGCGTAGT -ACGGAAAGTTGGCTTACGGTCAGT -ACGGAAAGTTGGCTTACGGAAGGT -ACGGAAAGTTGGCTTACGAACCGT -ACGGAAAGTTGGCTTACGTTGTGC -ACGGAAAGTTGGCTTACGCTAAGC -ACGGAAAGTTGGCTTACGACTAGC -ACGGAAAGTTGGCTTACGAGATGC -ACGGAAAGTTGGCTTACGTGAAGG -ACGGAAAGTTGGCTTACGCAATGG -ACGGAAAGTTGGCTTACGATGAGG -ACGGAAAGTTGGCTTACGAATGGG -ACGGAAAGTTGGCTTACGTCCTGA -ACGGAAAGTTGGCTTACGTAGCGA -ACGGAAAGTTGGCTTACGCACAGA -ACGGAAAGTTGGCTTACGGCAAGA -ACGGAAAGTTGGCTTACGGGTTGA -ACGGAAAGTTGGCTTACGTCCGAT -ACGGAAAGTTGGCTTACGTGGCAT -ACGGAAAGTTGGCTTACGCGAGAT -ACGGAAAGTTGGCTTACGTACCAC -ACGGAAAGTTGGCTTACGCAGAAC -ACGGAAAGTTGGCTTACGGTCTAC -ACGGAAAGTTGGCTTACGACGTAC -ACGGAAAGTTGGCTTACGAGTGAC -ACGGAAAGTTGGCTTACGCTGTAG -ACGGAAAGTTGGCTTACGCCTAAG -ACGGAAAGTTGGCTTACGGTTCAG -ACGGAAAGTTGGCTTACGGCATAG -ACGGAAAGTTGGCTTACGGACAAG -ACGGAAAGTTGGCTTACGAAGCAG -ACGGAAAGTTGGCTTACGCGTCAA -ACGGAAAGTTGGCTTACGGCTGAA -ACGGAAAGTTGGCTTACGAGTACG -ACGGAAAGTTGGCTTACGATCCGA -ACGGAAAGTTGGCTTACGATGGGA -ACGGAAAGTTGGCTTACGGTGCAA -ACGGAAAGTTGGCTTACGGAGGAA -ACGGAAAGTTGGCTTACGCAGGTA -ACGGAAAGTTGGCTTACGGACTCT -ACGGAAAGTTGGCTTACGAGTCCT -ACGGAAAGTTGGCTTACGTAAGCC -ACGGAAAGTTGGCTTACGATAGCC -ACGGAAAGTTGGCTTACGTAACCG -ACGGAAAGTTGGCTTACGATGCCA -ACGGAAAGTTGGGTTAGCGGAAAC -ACGGAAAGTTGGGTTAGCAACACC -ACGGAAAGTTGGGTTAGCATCGAG -ACGGAAAGTTGGGTTAGCCTCCTT -ACGGAAAGTTGGGTTAGCCCTGTT -ACGGAAAGTTGGGTTAGCCGGTTT -ACGGAAAGTTGGGTTAGCGTGGTT -ACGGAAAGTTGGGTTAGCGCCTTT -ACGGAAAGTTGGGTTAGCGGTCTT -ACGGAAAGTTGGGTTAGCACGCTT -ACGGAAAGTTGGGTTAGCAGCGTT -ACGGAAAGTTGGGTTAGCTTCGTC -ACGGAAAGTTGGGTTAGCTCTCTC -ACGGAAAGTTGGGTTAGCTGGATC -ACGGAAAGTTGGGTTAGCCACTTC -ACGGAAAGTTGGGTTAGCGTACTC -ACGGAAAGTTGGGTTAGCGATGTC -ACGGAAAGTTGGGTTAGCACAGTC -ACGGAAAGTTGGGTTAGCTTGCTG -ACGGAAAGTTGGGTTAGCTCCATG -ACGGAAAGTTGGGTTAGCTGTGTG -ACGGAAAGTTGGGTTAGCCTAGTG -ACGGAAAGTTGGGTTAGCCATCTG -ACGGAAAGTTGGGTTAGCGAGTTG -ACGGAAAGTTGGGTTAGCAGACTG -ACGGAAAGTTGGGTTAGCTCGGTA -ACGGAAAGTTGGGTTAGCTGCCTA -ACGGAAAGTTGGGTTAGCCCACTA -ACGGAAAGTTGGGTTAGCGGAGTA -ACGGAAAGTTGGGTTAGCTCGTCT -ACGGAAAGTTGGGTTAGCTGCACT -ACGGAAAGTTGGGTTAGCCTGACT -ACGGAAAGTTGGGTTAGCCAACCT -ACGGAAAGTTGGGTTAGCGCTACT -ACGGAAAGTTGGGTTAGCGGATCT -ACGGAAAGTTGGGTTAGCAAGGCT -ACGGAAAGTTGGGTTAGCTCAACC -ACGGAAAGTTGGGTTAGCTGTTCC -ACGGAAAGTTGGGTTAGCATTCCC -ACGGAAAGTTGGGTTAGCTTCTCG -ACGGAAAGTTGGGTTAGCTAGACG -ACGGAAAGTTGGGTTAGCGTAACG -ACGGAAAGTTGGGTTAGCACTTCG -ACGGAAAGTTGGGTTAGCTACGCA -ACGGAAAGTTGGGTTAGCCTTGCA -ACGGAAAGTTGGGTTAGCCGAACA -ACGGAAAGTTGGGTTAGCCAGTCA -ACGGAAAGTTGGGTTAGCGATCCA -ACGGAAAGTTGGGTTAGCACGACA -ACGGAAAGTTGGGTTAGCAGCTCA -ACGGAAAGTTGGGTTAGCTCACGT -ACGGAAAGTTGGGTTAGCCGTAGT -ACGGAAAGTTGGGTTAGCGTCAGT -ACGGAAAGTTGGGTTAGCGAAGGT -ACGGAAAGTTGGGTTAGCAACCGT -ACGGAAAGTTGGGTTAGCTTGTGC -ACGGAAAGTTGGGTTAGCCTAAGC -ACGGAAAGTTGGGTTAGCACTAGC -ACGGAAAGTTGGGTTAGCAGATGC -ACGGAAAGTTGGGTTAGCTGAAGG -ACGGAAAGTTGGGTTAGCCAATGG -ACGGAAAGTTGGGTTAGCATGAGG -ACGGAAAGTTGGGTTAGCAATGGG -ACGGAAAGTTGGGTTAGCTCCTGA -ACGGAAAGTTGGGTTAGCTAGCGA -ACGGAAAGTTGGGTTAGCCACAGA -ACGGAAAGTTGGGTTAGCGCAAGA -ACGGAAAGTTGGGTTAGCGGTTGA -ACGGAAAGTTGGGTTAGCTCCGAT -ACGGAAAGTTGGGTTAGCTGGCAT -ACGGAAAGTTGGGTTAGCCGAGAT -ACGGAAAGTTGGGTTAGCTACCAC -ACGGAAAGTTGGGTTAGCCAGAAC -ACGGAAAGTTGGGTTAGCGTCTAC -ACGGAAAGTTGGGTTAGCACGTAC -ACGGAAAGTTGGGTTAGCAGTGAC -ACGGAAAGTTGGGTTAGCCTGTAG -ACGGAAAGTTGGGTTAGCCCTAAG -ACGGAAAGTTGGGTTAGCGTTCAG -ACGGAAAGTTGGGTTAGCGCATAG -ACGGAAAGTTGGGTTAGCGACAAG -ACGGAAAGTTGGGTTAGCAAGCAG -ACGGAAAGTTGGGTTAGCCGTCAA -ACGGAAAGTTGGGTTAGCGCTGAA -ACGGAAAGTTGGGTTAGCAGTACG -ACGGAAAGTTGGGTTAGCATCCGA -ACGGAAAGTTGGGTTAGCATGGGA -ACGGAAAGTTGGGTTAGCGTGCAA -ACGGAAAGTTGGGTTAGCGAGGAA -ACGGAAAGTTGGGTTAGCCAGGTA -ACGGAAAGTTGGGTTAGCGACTCT -ACGGAAAGTTGGGTTAGCAGTCCT -ACGGAAAGTTGGGTTAGCTAAGCC -ACGGAAAGTTGGGTTAGCATAGCC -ACGGAAAGTTGGGTTAGCTAACCG -ACGGAAAGTTGGGTTAGCATGCCA -ACGGAAAGTTGGGTCTTCGGAAAC -ACGGAAAGTTGGGTCTTCAACACC -ACGGAAAGTTGGGTCTTCATCGAG -ACGGAAAGTTGGGTCTTCCTCCTT -ACGGAAAGTTGGGTCTTCCCTGTT -ACGGAAAGTTGGGTCTTCCGGTTT -ACGGAAAGTTGGGTCTTCGTGGTT -ACGGAAAGTTGGGTCTTCGCCTTT -ACGGAAAGTTGGGTCTTCGGTCTT -ACGGAAAGTTGGGTCTTCACGCTT -ACGGAAAGTTGGGTCTTCAGCGTT -ACGGAAAGTTGGGTCTTCTTCGTC -ACGGAAAGTTGGGTCTTCTCTCTC -ACGGAAAGTTGGGTCTTCTGGATC -ACGGAAAGTTGGGTCTTCCACTTC -ACGGAAAGTTGGGTCTTCGTACTC -ACGGAAAGTTGGGTCTTCGATGTC -ACGGAAAGTTGGGTCTTCACAGTC -ACGGAAAGTTGGGTCTTCTTGCTG -ACGGAAAGTTGGGTCTTCTCCATG -ACGGAAAGTTGGGTCTTCTGTGTG -ACGGAAAGTTGGGTCTTCCTAGTG -ACGGAAAGTTGGGTCTTCCATCTG -ACGGAAAGTTGGGTCTTCGAGTTG -ACGGAAAGTTGGGTCTTCAGACTG -ACGGAAAGTTGGGTCTTCTCGGTA -ACGGAAAGTTGGGTCTTCTGCCTA -ACGGAAAGTTGGGTCTTCCCACTA -ACGGAAAGTTGGGTCTTCGGAGTA -ACGGAAAGTTGGGTCTTCTCGTCT -ACGGAAAGTTGGGTCTTCTGCACT -ACGGAAAGTTGGGTCTTCCTGACT -ACGGAAAGTTGGGTCTTCCAACCT -ACGGAAAGTTGGGTCTTCGCTACT -ACGGAAAGTTGGGTCTTCGGATCT -ACGGAAAGTTGGGTCTTCAAGGCT -ACGGAAAGTTGGGTCTTCTCAACC -ACGGAAAGTTGGGTCTTCTGTTCC -ACGGAAAGTTGGGTCTTCATTCCC -ACGGAAAGTTGGGTCTTCTTCTCG -ACGGAAAGTTGGGTCTTCTAGACG -ACGGAAAGTTGGGTCTTCGTAACG -ACGGAAAGTTGGGTCTTCACTTCG -ACGGAAAGTTGGGTCTTCTACGCA -ACGGAAAGTTGGGTCTTCCTTGCA -ACGGAAAGTTGGGTCTTCCGAACA -ACGGAAAGTTGGGTCTTCCAGTCA -ACGGAAAGTTGGGTCTTCGATCCA -ACGGAAAGTTGGGTCTTCACGACA -ACGGAAAGTTGGGTCTTCAGCTCA -ACGGAAAGTTGGGTCTTCTCACGT -ACGGAAAGTTGGGTCTTCCGTAGT -ACGGAAAGTTGGGTCTTCGTCAGT -ACGGAAAGTTGGGTCTTCGAAGGT -ACGGAAAGTTGGGTCTTCAACCGT -ACGGAAAGTTGGGTCTTCTTGTGC -ACGGAAAGTTGGGTCTTCCTAAGC -ACGGAAAGTTGGGTCTTCACTAGC -ACGGAAAGTTGGGTCTTCAGATGC -ACGGAAAGTTGGGTCTTCTGAAGG -ACGGAAAGTTGGGTCTTCCAATGG -ACGGAAAGTTGGGTCTTCATGAGG -ACGGAAAGTTGGGTCTTCAATGGG -ACGGAAAGTTGGGTCTTCTCCTGA -ACGGAAAGTTGGGTCTTCTAGCGA -ACGGAAAGTTGGGTCTTCCACAGA -ACGGAAAGTTGGGTCTTCGCAAGA -ACGGAAAGTTGGGTCTTCGGTTGA -ACGGAAAGTTGGGTCTTCTCCGAT -ACGGAAAGTTGGGTCTTCTGGCAT -ACGGAAAGTTGGGTCTTCCGAGAT -ACGGAAAGTTGGGTCTTCTACCAC -ACGGAAAGTTGGGTCTTCCAGAAC -ACGGAAAGTTGGGTCTTCGTCTAC -ACGGAAAGTTGGGTCTTCACGTAC -ACGGAAAGTTGGGTCTTCAGTGAC -ACGGAAAGTTGGGTCTTCCTGTAG -ACGGAAAGTTGGGTCTTCCCTAAG -ACGGAAAGTTGGGTCTTCGTTCAG -ACGGAAAGTTGGGTCTTCGCATAG -ACGGAAAGTTGGGTCTTCGACAAG -ACGGAAAGTTGGGTCTTCAAGCAG -ACGGAAAGTTGGGTCTTCCGTCAA -ACGGAAAGTTGGGTCTTCGCTGAA -ACGGAAAGTTGGGTCTTCAGTACG -ACGGAAAGTTGGGTCTTCATCCGA -ACGGAAAGTTGGGTCTTCATGGGA -ACGGAAAGTTGGGTCTTCGTGCAA -ACGGAAAGTTGGGTCTTCGAGGAA -ACGGAAAGTTGGGTCTTCCAGGTA -ACGGAAAGTTGGGTCTTCGACTCT -ACGGAAAGTTGGGTCTTCAGTCCT -ACGGAAAGTTGGGTCTTCTAAGCC -ACGGAAAGTTGGGTCTTCATAGCC -ACGGAAAGTTGGGTCTTCTAACCG -ACGGAAAGTTGGGTCTTCATGCCA -ACGGAAAGTTGGCTCTCTGGAAAC -ACGGAAAGTTGGCTCTCTAACACC -ACGGAAAGTTGGCTCTCTATCGAG -ACGGAAAGTTGGCTCTCTCTCCTT -ACGGAAAGTTGGCTCTCTCCTGTT -ACGGAAAGTTGGCTCTCTCGGTTT -ACGGAAAGTTGGCTCTCTGTGGTT -ACGGAAAGTTGGCTCTCTGCCTTT -ACGGAAAGTTGGCTCTCTGGTCTT -ACGGAAAGTTGGCTCTCTACGCTT -ACGGAAAGTTGGCTCTCTAGCGTT -ACGGAAAGTTGGCTCTCTTTCGTC -ACGGAAAGTTGGCTCTCTTCTCTC -ACGGAAAGTTGGCTCTCTTGGATC -ACGGAAAGTTGGCTCTCTCACTTC -ACGGAAAGTTGGCTCTCTGTACTC -ACGGAAAGTTGGCTCTCTGATGTC -ACGGAAAGTTGGCTCTCTACAGTC -ACGGAAAGTTGGCTCTCTTTGCTG -ACGGAAAGTTGGCTCTCTTCCATG -ACGGAAAGTTGGCTCTCTTGTGTG -ACGGAAAGTTGGCTCTCTCTAGTG -ACGGAAAGTTGGCTCTCTCATCTG -ACGGAAAGTTGGCTCTCTGAGTTG -ACGGAAAGTTGGCTCTCTAGACTG -ACGGAAAGTTGGCTCTCTTCGGTA -ACGGAAAGTTGGCTCTCTTGCCTA -ACGGAAAGTTGGCTCTCTCCACTA -ACGGAAAGTTGGCTCTCTGGAGTA -ACGGAAAGTTGGCTCTCTTCGTCT -ACGGAAAGTTGGCTCTCTTGCACT -ACGGAAAGTTGGCTCTCTCTGACT -ACGGAAAGTTGGCTCTCTCAACCT -ACGGAAAGTTGGCTCTCTGCTACT -ACGGAAAGTTGGCTCTCTGGATCT -ACGGAAAGTTGGCTCTCTAAGGCT -ACGGAAAGTTGGCTCTCTTCAACC -ACGGAAAGTTGGCTCTCTTGTTCC -ACGGAAAGTTGGCTCTCTATTCCC -ACGGAAAGTTGGCTCTCTTTCTCG -ACGGAAAGTTGGCTCTCTTAGACG -ACGGAAAGTTGGCTCTCTGTAACG -ACGGAAAGTTGGCTCTCTACTTCG -ACGGAAAGTTGGCTCTCTTACGCA -ACGGAAAGTTGGCTCTCTCTTGCA -ACGGAAAGTTGGCTCTCTCGAACA -ACGGAAAGTTGGCTCTCTCAGTCA -ACGGAAAGTTGGCTCTCTGATCCA -ACGGAAAGTTGGCTCTCTACGACA -ACGGAAAGTTGGCTCTCTAGCTCA -ACGGAAAGTTGGCTCTCTTCACGT -ACGGAAAGTTGGCTCTCTCGTAGT -ACGGAAAGTTGGCTCTCTGTCAGT -ACGGAAAGTTGGCTCTCTGAAGGT -ACGGAAAGTTGGCTCTCTAACCGT -ACGGAAAGTTGGCTCTCTTTGTGC -ACGGAAAGTTGGCTCTCTCTAAGC -ACGGAAAGTTGGCTCTCTACTAGC -ACGGAAAGTTGGCTCTCTAGATGC -ACGGAAAGTTGGCTCTCTTGAAGG -ACGGAAAGTTGGCTCTCTCAATGG -ACGGAAAGTTGGCTCTCTATGAGG -ACGGAAAGTTGGCTCTCTAATGGG -ACGGAAAGTTGGCTCTCTTCCTGA -ACGGAAAGTTGGCTCTCTTAGCGA -ACGGAAAGTTGGCTCTCTCACAGA -ACGGAAAGTTGGCTCTCTGCAAGA -ACGGAAAGTTGGCTCTCTGGTTGA -ACGGAAAGTTGGCTCTCTTCCGAT -ACGGAAAGTTGGCTCTCTTGGCAT -ACGGAAAGTTGGCTCTCTCGAGAT -ACGGAAAGTTGGCTCTCTTACCAC -ACGGAAAGTTGGCTCTCTCAGAAC -ACGGAAAGTTGGCTCTCTGTCTAC -ACGGAAAGTTGGCTCTCTACGTAC -ACGGAAAGTTGGCTCTCTAGTGAC -ACGGAAAGTTGGCTCTCTCTGTAG -ACGGAAAGTTGGCTCTCTCCTAAG -ACGGAAAGTTGGCTCTCTGTTCAG -ACGGAAAGTTGGCTCTCTGCATAG -ACGGAAAGTTGGCTCTCTGACAAG -ACGGAAAGTTGGCTCTCTAAGCAG -ACGGAAAGTTGGCTCTCTCGTCAA -ACGGAAAGTTGGCTCTCTGCTGAA -ACGGAAAGTTGGCTCTCTAGTACG -ACGGAAAGTTGGCTCTCTATCCGA -ACGGAAAGTTGGCTCTCTATGGGA -ACGGAAAGTTGGCTCTCTGTGCAA -ACGGAAAGTTGGCTCTCTGAGGAA -ACGGAAAGTTGGCTCTCTCAGGTA -ACGGAAAGTTGGCTCTCTGACTCT -ACGGAAAGTTGGCTCTCTAGTCCT -ACGGAAAGTTGGCTCTCTTAAGCC -ACGGAAAGTTGGCTCTCTATAGCC -ACGGAAAGTTGGCTCTCTTAACCG -ACGGAAAGTTGGCTCTCTATGCCA -ACGGAAAGTTGGATCTGGGGAAAC -ACGGAAAGTTGGATCTGGAACACC -ACGGAAAGTTGGATCTGGATCGAG -ACGGAAAGTTGGATCTGGCTCCTT -ACGGAAAGTTGGATCTGGCCTGTT -ACGGAAAGTTGGATCTGGCGGTTT -ACGGAAAGTTGGATCTGGGTGGTT -ACGGAAAGTTGGATCTGGGCCTTT -ACGGAAAGTTGGATCTGGGGTCTT -ACGGAAAGTTGGATCTGGACGCTT -ACGGAAAGTTGGATCTGGAGCGTT -ACGGAAAGTTGGATCTGGTTCGTC -ACGGAAAGTTGGATCTGGTCTCTC -ACGGAAAGTTGGATCTGGTGGATC -ACGGAAAGTTGGATCTGGCACTTC -ACGGAAAGTTGGATCTGGGTACTC -ACGGAAAGTTGGATCTGGGATGTC -ACGGAAAGTTGGATCTGGACAGTC -ACGGAAAGTTGGATCTGGTTGCTG -ACGGAAAGTTGGATCTGGTCCATG -ACGGAAAGTTGGATCTGGTGTGTG -ACGGAAAGTTGGATCTGGCTAGTG -ACGGAAAGTTGGATCTGGCATCTG -ACGGAAAGTTGGATCTGGGAGTTG -ACGGAAAGTTGGATCTGGAGACTG -ACGGAAAGTTGGATCTGGTCGGTA -ACGGAAAGTTGGATCTGGTGCCTA -ACGGAAAGTTGGATCTGGCCACTA -ACGGAAAGTTGGATCTGGGGAGTA -ACGGAAAGTTGGATCTGGTCGTCT -ACGGAAAGTTGGATCTGGTGCACT -ACGGAAAGTTGGATCTGGCTGACT -ACGGAAAGTTGGATCTGGCAACCT -ACGGAAAGTTGGATCTGGGCTACT -ACGGAAAGTTGGATCTGGGGATCT -ACGGAAAGTTGGATCTGGAAGGCT -ACGGAAAGTTGGATCTGGTCAACC -ACGGAAAGTTGGATCTGGTGTTCC -ACGGAAAGTTGGATCTGGATTCCC -ACGGAAAGTTGGATCTGGTTCTCG -ACGGAAAGTTGGATCTGGTAGACG -ACGGAAAGTTGGATCTGGGTAACG -ACGGAAAGTTGGATCTGGACTTCG -ACGGAAAGTTGGATCTGGTACGCA -ACGGAAAGTTGGATCTGGCTTGCA -ACGGAAAGTTGGATCTGGCGAACA -ACGGAAAGTTGGATCTGGCAGTCA -ACGGAAAGTTGGATCTGGGATCCA -ACGGAAAGTTGGATCTGGACGACA -ACGGAAAGTTGGATCTGGAGCTCA -ACGGAAAGTTGGATCTGGTCACGT -ACGGAAAGTTGGATCTGGCGTAGT -ACGGAAAGTTGGATCTGGGTCAGT -ACGGAAAGTTGGATCTGGGAAGGT -ACGGAAAGTTGGATCTGGAACCGT -ACGGAAAGTTGGATCTGGTTGTGC -ACGGAAAGTTGGATCTGGCTAAGC -ACGGAAAGTTGGATCTGGACTAGC -ACGGAAAGTTGGATCTGGAGATGC -ACGGAAAGTTGGATCTGGTGAAGG -ACGGAAAGTTGGATCTGGCAATGG -ACGGAAAGTTGGATCTGGATGAGG -ACGGAAAGTTGGATCTGGAATGGG -ACGGAAAGTTGGATCTGGTCCTGA -ACGGAAAGTTGGATCTGGTAGCGA -ACGGAAAGTTGGATCTGGCACAGA -ACGGAAAGTTGGATCTGGGCAAGA -ACGGAAAGTTGGATCTGGGGTTGA -ACGGAAAGTTGGATCTGGTCCGAT -ACGGAAAGTTGGATCTGGTGGCAT -ACGGAAAGTTGGATCTGGCGAGAT -ACGGAAAGTTGGATCTGGTACCAC -ACGGAAAGTTGGATCTGGCAGAAC -ACGGAAAGTTGGATCTGGGTCTAC -ACGGAAAGTTGGATCTGGACGTAC -ACGGAAAGTTGGATCTGGAGTGAC -ACGGAAAGTTGGATCTGGCTGTAG -ACGGAAAGTTGGATCTGGCCTAAG -ACGGAAAGTTGGATCTGGGTTCAG -ACGGAAAGTTGGATCTGGGCATAG -ACGGAAAGTTGGATCTGGGACAAG -ACGGAAAGTTGGATCTGGAAGCAG -ACGGAAAGTTGGATCTGGCGTCAA -ACGGAAAGTTGGATCTGGGCTGAA -ACGGAAAGTTGGATCTGGAGTACG -ACGGAAAGTTGGATCTGGATCCGA -ACGGAAAGTTGGATCTGGATGGGA -ACGGAAAGTTGGATCTGGGTGCAA -ACGGAAAGTTGGATCTGGGAGGAA -ACGGAAAGTTGGATCTGGCAGGTA -ACGGAAAGTTGGATCTGGGACTCT -ACGGAAAGTTGGATCTGGAGTCCT -ACGGAAAGTTGGATCTGGTAAGCC -ACGGAAAGTTGGATCTGGATAGCC -ACGGAAAGTTGGATCTGGTAACCG -ACGGAAAGTTGGATCTGGATGCCA -ACGGAAAGTTGGTTCCACGGAAAC -ACGGAAAGTTGGTTCCACAACACC -ACGGAAAGTTGGTTCCACATCGAG -ACGGAAAGTTGGTTCCACCTCCTT -ACGGAAAGTTGGTTCCACCCTGTT -ACGGAAAGTTGGTTCCACCGGTTT -ACGGAAAGTTGGTTCCACGTGGTT -ACGGAAAGTTGGTTCCACGCCTTT -ACGGAAAGTTGGTTCCACGGTCTT -ACGGAAAGTTGGTTCCACACGCTT -ACGGAAAGTTGGTTCCACAGCGTT -ACGGAAAGTTGGTTCCACTTCGTC -ACGGAAAGTTGGTTCCACTCTCTC -ACGGAAAGTTGGTTCCACTGGATC -ACGGAAAGTTGGTTCCACCACTTC -ACGGAAAGTTGGTTCCACGTACTC -ACGGAAAGTTGGTTCCACGATGTC -ACGGAAAGTTGGTTCCACACAGTC -ACGGAAAGTTGGTTCCACTTGCTG -ACGGAAAGTTGGTTCCACTCCATG -ACGGAAAGTTGGTTCCACTGTGTG -ACGGAAAGTTGGTTCCACCTAGTG -ACGGAAAGTTGGTTCCACCATCTG -ACGGAAAGTTGGTTCCACGAGTTG -ACGGAAAGTTGGTTCCACAGACTG -ACGGAAAGTTGGTTCCACTCGGTA -ACGGAAAGTTGGTTCCACTGCCTA -ACGGAAAGTTGGTTCCACCCACTA -ACGGAAAGTTGGTTCCACGGAGTA -ACGGAAAGTTGGTTCCACTCGTCT -ACGGAAAGTTGGTTCCACTGCACT -ACGGAAAGTTGGTTCCACCTGACT -ACGGAAAGTTGGTTCCACCAACCT -ACGGAAAGTTGGTTCCACGCTACT -ACGGAAAGTTGGTTCCACGGATCT -ACGGAAAGTTGGTTCCACAAGGCT -ACGGAAAGTTGGTTCCACTCAACC -ACGGAAAGTTGGTTCCACTGTTCC -ACGGAAAGTTGGTTCCACATTCCC -ACGGAAAGTTGGTTCCACTTCTCG -ACGGAAAGTTGGTTCCACTAGACG -ACGGAAAGTTGGTTCCACGTAACG -ACGGAAAGTTGGTTCCACACTTCG -ACGGAAAGTTGGTTCCACTACGCA -ACGGAAAGTTGGTTCCACCTTGCA -ACGGAAAGTTGGTTCCACCGAACA -ACGGAAAGTTGGTTCCACCAGTCA -ACGGAAAGTTGGTTCCACGATCCA -ACGGAAAGTTGGTTCCACACGACA -ACGGAAAGTTGGTTCCACAGCTCA -ACGGAAAGTTGGTTCCACTCACGT -ACGGAAAGTTGGTTCCACCGTAGT -ACGGAAAGTTGGTTCCACGTCAGT -ACGGAAAGTTGGTTCCACGAAGGT -ACGGAAAGTTGGTTCCACAACCGT -ACGGAAAGTTGGTTCCACTTGTGC -ACGGAAAGTTGGTTCCACCTAAGC -ACGGAAAGTTGGTTCCACACTAGC -ACGGAAAGTTGGTTCCACAGATGC -ACGGAAAGTTGGTTCCACTGAAGG -ACGGAAAGTTGGTTCCACCAATGG -ACGGAAAGTTGGTTCCACATGAGG -ACGGAAAGTTGGTTCCACAATGGG -ACGGAAAGTTGGTTCCACTCCTGA -ACGGAAAGTTGGTTCCACTAGCGA -ACGGAAAGTTGGTTCCACCACAGA -ACGGAAAGTTGGTTCCACGCAAGA -ACGGAAAGTTGGTTCCACGGTTGA -ACGGAAAGTTGGTTCCACTCCGAT -ACGGAAAGTTGGTTCCACTGGCAT -ACGGAAAGTTGGTTCCACCGAGAT -ACGGAAAGTTGGTTCCACTACCAC -ACGGAAAGTTGGTTCCACCAGAAC -ACGGAAAGTTGGTTCCACGTCTAC -ACGGAAAGTTGGTTCCACACGTAC -ACGGAAAGTTGGTTCCACAGTGAC -ACGGAAAGTTGGTTCCACCTGTAG -ACGGAAAGTTGGTTCCACCCTAAG -ACGGAAAGTTGGTTCCACGTTCAG -ACGGAAAGTTGGTTCCACGCATAG -ACGGAAAGTTGGTTCCACGACAAG -ACGGAAAGTTGGTTCCACAAGCAG -ACGGAAAGTTGGTTCCACCGTCAA -ACGGAAAGTTGGTTCCACGCTGAA -ACGGAAAGTTGGTTCCACAGTACG -ACGGAAAGTTGGTTCCACATCCGA -ACGGAAAGTTGGTTCCACATGGGA -ACGGAAAGTTGGTTCCACGTGCAA -ACGGAAAGTTGGTTCCACGAGGAA -ACGGAAAGTTGGTTCCACCAGGTA -ACGGAAAGTTGGTTCCACGACTCT -ACGGAAAGTTGGTTCCACAGTCCT -ACGGAAAGTTGGTTCCACTAAGCC -ACGGAAAGTTGGTTCCACATAGCC -ACGGAAAGTTGGTTCCACTAACCG -ACGGAAAGTTGGTTCCACATGCCA -ACGGAAAGTTGGCTCGTAGGAAAC -ACGGAAAGTTGGCTCGTAAACACC -ACGGAAAGTTGGCTCGTAATCGAG -ACGGAAAGTTGGCTCGTACTCCTT -ACGGAAAGTTGGCTCGTACCTGTT -ACGGAAAGTTGGCTCGTACGGTTT -ACGGAAAGTTGGCTCGTAGTGGTT -ACGGAAAGTTGGCTCGTAGCCTTT -ACGGAAAGTTGGCTCGTAGGTCTT -ACGGAAAGTTGGCTCGTAACGCTT -ACGGAAAGTTGGCTCGTAAGCGTT -ACGGAAAGTTGGCTCGTATTCGTC -ACGGAAAGTTGGCTCGTATCTCTC -ACGGAAAGTTGGCTCGTATGGATC -ACGGAAAGTTGGCTCGTACACTTC -ACGGAAAGTTGGCTCGTAGTACTC -ACGGAAAGTTGGCTCGTAGATGTC -ACGGAAAGTTGGCTCGTAACAGTC -ACGGAAAGTTGGCTCGTATTGCTG -ACGGAAAGTTGGCTCGTATCCATG -ACGGAAAGTTGGCTCGTATGTGTG -ACGGAAAGTTGGCTCGTACTAGTG -ACGGAAAGTTGGCTCGTACATCTG -ACGGAAAGTTGGCTCGTAGAGTTG -ACGGAAAGTTGGCTCGTAAGACTG -ACGGAAAGTTGGCTCGTATCGGTA -ACGGAAAGTTGGCTCGTATGCCTA -ACGGAAAGTTGGCTCGTACCACTA -ACGGAAAGTTGGCTCGTAGGAGTA -ACGGAAAGTTGGCTCGTATCGTCT -ACGGAAAGTTGGCTCGTATGCACT -ACGGAAAGTTGGCTCGTACTGACT -ACGGAAAGTTGGCTCGTACAACCT -ACGGAAAGTTGGCTCGTAGCTACT -ACGGAAAGTTGGCTCGTAGGATCT -ACGGAAAGTTGGCTCGTAAAGGCT -ACGGAAAGTTGGCTCGTATCAACC -ACGGAAAGTTGGCTCGTATGTTCC -ACGGAAAGTTGGCTCGTAATTCCC -ACGGAAAGTTGGCTCGTATTCTCG -ACGGAAAGTTGGCTCGTATAGACG -ACGGAAAGTTGGCTCGTAGTAACG -ACGGAAAGTTGGCTCGTAACTTCG -ACGGAAAGTTGGCTCGTATACGCA -ACGGAAAGTTGGCTCGTACTTGCA -ACGGAAAGTTGGCTCGTACGAACA -ACGGAAAGTTGGCTCGTACAGTCA -ACGGAAAGTTGGCTCGTAGATCCA -ACGGAAAGTTGGCTCGTAACGACA -ACGGAAAGTTGGCTCGTAAGCTCA -ACGGAAAGTTGGCTCGTATCACGT -ACGGAAAGTTGGCTCGTACGTAGT -ACGGAAAGTTGGCTCGTAGTCAGT -ACGGAAAGTTGGCTCGTAGAAGGT -ACGGAAAGTTGGCTCGTAAACCGT -ACGGAAAGTTGGCTCGTATTGTGC -ACGGAAAGTTGGCTCGTACTAAGC -ACGGAAAGTTGGCTCGTAACTAGC -ACGGAAAGTTGGCTCGTAAGATGC -ACGGAAAGTTGGCTCGTATGAAGG -ACGGAAAGTTGGCTCGTACAATGG -ACGGAAAGTTGGCTCGTAATGAGG -ACGGAAAGTTGGCTCGTAAATGGG -ACGGAAAGTTGGCTCGTATCCTGA -ACGGAAAGTTGGCTCGTATAGCGA -ACGGAAAGTTGGCTCGTACACAGA -ACGGAAAGTTGGCTCGTAGCAAGA -ACGGAAAGTTGGCTCGTAGGTTGA -ACGGAAAGTTGGCTCGTATCCGAT -ACGGAAAGTTGGCTCGTATGGCAT -ACGGAAAGTTGGCTCGTACGAGAT -ACGGAAAGTTGGCTCGTATACCAC -ACGGAAAGTTGGCTCGTACAGAAC -ACGGAAAGTTGGCTCGTAGTCTAC -ACGGAAAGTTGGCTCGTAACGTAC -ACGGAAAGTTGGCTCGTAAGTGAC -ACGGAAAGTTGGCTCGTACTGTAG -ACGGAAAGTTGGCTCGTACCTAAG -ACGGAAAGTTGGCTCGTAGTTCAG -ACGGAAAGTTGGCTCGTAGCATAG -ACGGAAAGTTGGCTCGTAGACAAG -ACGGAAAGTTGGCTCGTAAAGCAG -ACGGAAAGTTGGCTCGTACGTCAA -ACGGAAAGTTGGCTCGTAGCTGAA -ACGGAAAGTTGGCTCGTAAGTACG -ACGGAAAGTTGGCTCGTAATCCGA -ACGGAAAGTTGGCTCGTAATGGGA -ACGGAAAGTTGGCTCGTAGTGCAA -ACGGAAAGTTGGCTCGTAGAGGAA -ACGGAAAGTTGGCTCGTACAGGTA -ACGGAAAGTTGGCTCGTAGACTCT -ACGGAAAGTTGGCTCGTAAGTCCT -ACGGAAAGTTGGCTCGTATAAGCC -ACGGAAAGTTGGCTCGTAATAGCC -ACGGAAAGTTGGCTCGTATAACCG -ACGGAAAGTTGGCTCGTAATGCCA -ACGGAAAGTTGGGTCGATGGAAAC -ACGGAAAGTTGGGTCGATAACACC -ACGGAAAGTTGGGTCGATATCGAG -ACGGAAAGTTGGGTCGATCTCCTT -ACGGAAAGTTGGGTCGATCCTGTT -ACGGAAAGTTGGGTCGATCGGTTT -ACGGAAAGTTGGGTCGATGTGGTT -ACGGAAAGTTGGGTCGATGCCTTT -ACGGAAAGTTGGGTCGATGGTCTT -ACGGAAAGTTGGGTCGATACGCTT -ACGGAAAGTTGGGTCGATAGCGTT -ACGGAAAGTTGGGTCGATTTCGTC -ACGGAAAGTTGGGTCGATTCTCTC -ACGGAAAGTTGGGTCGATTGGATC -ACGGAAAGTTGGGTCGATCACTTC -ACGGAAAGTTGGGTCGATGTACTC -ACGGAAAGTTGGGTCGATGATGTC -ACGGAAAGTTGGGTCGATACAGTC -ACGGAAAGTTGGGTCGATTTGCTG -ACGGAAAGTTGGGTCGATTCCATG -ACGGAAAGTTGGGTCGATTGTGTG -ACGGAAAGTTGGGTCGATCTAGTG -ACGGAAAGTTGGGTCGATCATCTG -ACGGAAAGTTGGGTCGATGAGTTG -ACGGAAAGTTGGGTCGATAGACTG -ACGGAAAGTTGGGTCGATTCGGTA -ACGGAAAGTTGGGTCGATTGCCTA -ACGGAAAGTTGGGTCGATCCACTA -ACGGAAAGTTGGGTCGATGGAGTA -ACGGAAAGTTGGGTCGATTCGTCT -ACGGAAAGTTGGGTCGATTGCACT -ACGGAAAGTTGGGTCGATCTGACT -ACGGAAAGTTGGGTCGATCAACCT -ACGGAAAGTTGGGTCGATGCTACT -ACGGAAAGTTGGGTCGATGGATCT -ACGGAAAGTTGGGTCGATAAGGCT -ACGGAAAGTTGGGTCGATTCAACC -ACGGAAAGTTGGGTCGATTGTTCC -ACGGAAAGTTGGGTCGATATTCCC -ACGGAAAGTTGGGTCGATTTCTCG -ACGGAAAGTTGGGTCGATTAGACG -ACGGAAAGTTGGGTCGATGTAACG -ACGGAAAGTTGGGTCGATACTTCG -ACGGAAAGTTGGGTCGATTACGCA -ACGGAAAGTTGGGTCGATCTTGCA -ACGGAAAGTTGGGTCGATCGAACA -ACGGAAAGTTGGGTCGATCAGTCA -ACGGAAAGTTGGGTCGATGATCCA -ACGGAAAGTTGGGTCGATACGACA -ACGGAAAGTTGGGTCGATAGCTCA -ACGGAAAGTTGGGTCGATTCACGT -ACGGAAAGTTGGGTCGATCGTAGT -ACGGAAAGTTGGGTCGATGTCAGT -ACGGAAAGTTGGGTCGATGAAGGT -ACGGAAAGTTGGGTCGATAACCGT -ACGGAAAGTTGGGTCGATTTGTGC -ACGGAAAGTTGGGTCGATCTAAGC -ACGGAAAGTTGGGTCGATACTAGC -ACGGAAAGTTGGGTCGATAGATGC -ACGGAAAGTTGGGTCGATTGAAGG -ACGGAAAGTTGGGTCGATCAATGG -ACGGAAAGTTGGGTCGATATGAGG -ACGGAAAGTTGGGTCGATAATGGG -ACGGAAAGTTGGGTCGATTCCTGA -ACGGAAAGTTGGGTCGATTAGCGA -ACGGAAAGTTGGGTCGATCACAGA -ACGGAAAGTTGGGTCGATGCAAGA -ACGGAAAGTTGGGTCGATGGTTGA -ACGGAAAGTTGGGTCGATTCCGAT -ACGGAAAGTTGGGTCGATTGGCAT -ACGGAAAGTTGGGTCGATCGAGAT -ACGGAAAGTTGGGTCGATTACCAC -ACGGAAAGTTGGGTCGATCAGAAC -ACGGAAAGTTGGGTCGATGTCTAC -ACGGAAAGTTGGGTCGATACGTAC -ACGGAAAGTTGGGTCGATAGTGAC -ACGGAAAGTTGGGTCGATCTGTAG -ACGGAAAGTTGGGTCGATCCTAAG -ACGGAAAGTTGGGTCGATGTTCAG -ACGGAAAGTTGGGTCGATGCATAG -ACGGAAAGTTGGGTCGATGACAAG -ACGGAAAGTTGGGTCGATAAGCAG -ACGGAAAGTTGGGTCGATCGTCAA -ACGGAAAGTTGGGTCGATGCTGAA -ACGGAAAGTTGGGTCGATAGTACG -ACGGAAAGTTGGGTCGATATCCGA -ACGGAAAGTTGGGTCGATATGGGA -ACGGAAAGTTGGGTCGATGTGCAA -ACGGAAAGTTGGGTCGATGAGGAA -ACGGAAAGTTGGGTCGATCAGGTA -ACGGAAAGTTGGGTCGATGACTCT -ACGGAAAGTTGGGTCGATAGTCCT -ACGGAAAGTTGGGTCGATTAAGCC -ACGGAAAGTTGGGTCGATATAGCC -ACGGAAAGTTGGGTCGATTAACCG -ACGGAAAGTTGGGTCGATATGCCA -ACGGAAAGTTGGGTCACAGGAAAC -ACGGAAAGTTGGGTCACAAACACC -ACGGAAAGTTGGGTCACAATCGAG -ACGGAAAGTTGGGTCACACTCCTT -ACGGAAAGTTGGGTCACACCTGTT -ACGGAAAGTTGGGTCACACGGTTT -ACGGAAAGTTGGGTCACAGTGGTT -ACGGAAAGTTGGGTCACAGCCTTT -ACGGAAAGTTGGGTCACAGGTCTT -ACGGAAAGTTGGGTCACAACGCTT -ACGGAAAGTTGGGTCACAAGCGTT -ACGGAAAGTTGGGTCACATTCGTC -ACGGAAAGTTGGGTCACATCTCTC -ACGGAAAGTTGGGTCACATGGATC -ACGGAAAGTTGGGTCACACACTTC -ACGGAAAGTTGGGTCACAGTACTC -ACGGAAAGTTGGGTCACAGATGTC -ACGGAAAGTTGGGTCACAACAGTC -ACGGAAAGTTGGGTCACATTGCTG -ACGGAAAGTTGGGTCACATCCATG -ACGGAAAGTTGGGTCACATGTGTG -ACGGAAAGTTGGGTCACACTAGTG -ACGGAAAGTTGGGTCACACATCTG -ACGGAAAGTTGGGTCACAGAGTTG -ACGGAAAGTTGGGTCACAAGACTG -ACGGAAAGTTGGGTCACATCGGTA -ACGGAAAGTTGGGTCACATGCCTA -ACGGAAAGTTGGGTCACACCACTA -ACGGAAAGTTGGGTCACAGGAGTA -ACGGAAAGTTGGGTCACATCGTCT -ACGGAAAGTTGGGTCACATGCACT -ACGGAAAGTTGGGTCACACTGACT -ACGGAAAGTTGGGTCACACAACCT -ACGGAAAGTTGGGTCACAGCTACT -ACGGAAAGTTGGGTCACAGGATCT -ACGGAAAGTTGGGTCACAAAGGCT -ACGGAAAGTTGGGTCACATCAACC -ACGGAAAGTTGGGTCACATGTTCC -ACGGAAAGTTGGGTCACAATTCCC -ACGGAAAGTTGGGTCACATTCTCG -ACGGAAAGTTGGGTCACATAGACG -ACGGAAAGTTGGGTCACAGTAACG -ACGGAAAGTTGGGTCACAACTTCG -ACGGAAAGTTGGGTCACATACGCA -ACGGAAAGTTGGGTCACACTTGCA -ACGGAAAGTTGGGTCACACGAACA -ACGGAAAGTTGGGTCACACAGTCA -ACGGAAAGTTGGGTCACAGATCCA -ACGGAAAGTTGGGTCACAACGACA -ACGGAAAGTTGGGTCACAAGCTCA -ACGGAAAGTTGGGTCACATCACGT -ACGGAAAGTTGGGTCACACGTAGT -ACGGAAAGTTGGGTCACAGTCAGT -ACGGAAAGTTGGGTCACAGAAGGT -ACGGAAAGTTGGGTCACAAACCGT -ACGGAAAGTTGGGTCACATTGTGC -ACGGAAAGTTGGGTCACACTAAGC -ACGGAAAGTTGGGTCACAACTAGC -ACGGAAAGTTGGGTCACAAGATGC -ACGGAAAGTTGGGTCACATGAAGG -ACGGAAAGTTGGGTCACACAATGG -ACGGAAAGTTGGGTCACAATGAGG -ACGGAAAGTTGGGTCACAAATGGG -ACGGAAAGTTGGGTCACATCCTGA -ACGGAAAGTTGGGTCACATAGCGA -ACGGAAAGTTGGGTCACACACAGA -ACGGAAAGTTGGGTCACAGCAAGA -ACGGAAAGTTGGGTCACAGGTTGA -ACGGAAAGTTGGGTCACATCCGAT -ACGGAAAGTTGGGTCACATGGCAT -ACGGAAAGTTGGGTCACACGAGAT -ACGGAAAGTTGGGTCACATACCAC -ACGGAAAGTTGGGTCACACAGAAC -ACGGAAAGTTGGGTCACAGTCTAC -ACGGAAAGTTGGGTCACAACGTAC -ACGGAAAGTTGGGTCACAAGTGAC -ACGGAAAGTTGGGTCACACTGTAG -ACGGAAAGTTGGGTCACACCTAAG -ACGGAAAGTTGGGTCACAGTTCAG -ACGGAAAGTTGGGTCACAGCATAG -ACGGAAAGTTGGGTCACAGACAAG -ACGGAAAGTTGGGTCACAAAGCAG -ACGGAAAGTTGGGTCACACGTCAA -ACGGAAAGTTGGGTCACAGCTGAA -ACGGAAAGTTGGGTCACAAGTACG -ACGGAAAGTTGGGTCACAATCCGA -ACGGAAAGTTGGGTCACAATGGGA -ACGGAAAGTTGGGTCACAGTGCAA -ACGGAAAGTTGGGTCACAGAGGAA -ACGGAAAGTTGGGTCACACAGGTA -ACGGAAAGTTGGGTCACAGACTCT -ACGGAAAGTTGGGTCACAAGTCCT -ACGGAAAGTTGGGTCACATAAGCC -ACGGAAAGTTGGGTCACAATAGCC -ACGGAAAGTTGGGTCACATAACCG -ACGGAAAGTTGGGTCACAATGCCA -ACGGAAAGTTGGCTGTTGGGAAAC -ACGGAAAGTTGGCTGTTGAACACC -ACGGAAAGTTGGCTGTTGATCGAG -ACGGAAAGTTGGCTGTTGCTCCTT -ACGGAAAGTTGGCTGTTGCCTGTT -ACGGAAAGTTGGCTGTTGCGGTTT -ACGGAAAGTTGGCTGTTGGTGGTT -ACGGAAAGTTGGCTGTTGGCCTTT -ACGGAAAGTTGGCTGTTGGGTCTT -ACGGAAAGTTGGCTGTTGACGCTT -ACGGAAAGTTGGCTGTTGAGCGTT -ACGGAAAGTTGGCTGTTGTTCGTC -ACGGAAAGTTGGCTGTTGTCTCTC -ACGGAAAGTTGGCTGTTGTGGATC -ACGGAAAGTTGGCTGTTGCACTTC -ACGGAAAGTTGGCTGTTGGTACTC -ACGGAAAGTTGGCTGTTGGATGTC -ACGGAAAGTTGGCTGTTGACAGTC -ACGGAAAGTTGGCTGTTGTTGCTG -ACGGAAAGTTGGCTGTTGTCCATG -ACGGAAAGTTGGCTGTTGTGTGTG -ACGGAAAGTTGGCTGTTGCTAGTG -ACGGAAAGTTGGCTGTTGCATCTG -ACGGAAAGTTGGCTGTTGGAGTTG -ACGGAAAGTTGGCTGTTGAGACTG -ACGGAAAGTTGGCTGTTGTCGGTA -ACGGAAAGTTGGCTGTTGTGCCTA -ACGGAAAGTTGGCTGTTGCCACTA -ACGGAAAGTTGGCTGTTGGGAGTA -ACGGAAAGTTGGCTGTTGTCGTCT -ACGGAAAGTTGGCTGTTGTGCACT -ACGGAAAGTTGGCTGTTGCTGACT -ACGGAAAGTTGGCTGTTGCAACCT -ACGGAAAGTTGGCTGTTGGCTACT -ACGGAAAGTTGGCTGTTGGGATCT -ACGGAAAGTTGGCTGTTGAAGGCT -ACGGAAAGTTGGCTGTTGTCAACC -ACGGAAAGTTGGCTGTTGTGTTCC -ACGGAAAGTTGGCTGTTGATTCCC -ACGGAAAGTTGGCTGTTGTTCTCG -ACGGAAAGTTGGCTGTTGTAGACG -ACGGAAAGTTGGCTGTTGGTAACG -ACGGAAAGTTGGCTGTTGACTTCG -ACGGAAAGTTGGCTGTTGTACGCA -ACGGAAAGTTGGCTGTTGCTTGCA -ACGGAAAGTTGGCTGTTGCGAACA -ACGGAAAGTTGGCTGTTGCAGTCA -ACGGAAAGTTGGCTGTTGGATCCA -ACGGAAAGTTGGCTGTTGACGACA -ACGGAAAGTTGGCTGTTGAGCTCA -ACGGAAAGTTGGCTGTTGTCACGT -ACGGAAAGTTGGCTGTTGCGTAGT -ACGGAAAGTTGGCTGTTGGTCAGT -ACGGAAAGTTGGCTGTTGGAAGGT -ACGGAAAGTTGGCTGTTGAACCGT -ACGGAAAGTTGGCTGTTGTTGTGC -ACGGAAAGTTGGCTGTTGCTAAGC -ACGGAAAGTTGGCTGTTGACTAGC -ACGGAAAGTTGGCTGTTGAGATGC -ACGGAAAGTTGGCTGTTGTGAAGG -ACGGAAAGTTGGCTGTTGCAATGG -ACGGAAAGTTGGCTGTTGATGAGG -ACGGAAAGTTGGCTGTTGAATGGG -ACGGAAAGTTGGCTGTTGTCCTGA -ACGGAAAGTTGGCTGTTGTAGCGA -ACGGAAAGTTGGCTGTTGCACAGA -ACGGAAAGTTGGCTGTTGGCAAGA -ACGGAAAGTTGGCTGTTGGGTTGA -ACGGAAAGTTGGCTGTTGTCCGAT -ACGGAAAGTTGGCTGTTGTGGCAT -ACGGAAAGTTGGCTGTTGCGAGAT -ACGGAAAGTTGGCTGTTGTACCAC -ACGGAAAGTTGGCTGTTGCAGAAC -ACGGAAAGTTGGCTGTTGGTCTAC -ACGGAAAGTTGGCTGTTGACGTAC -ACGGAAAGTTGGCTGTTGAGTGAC -ACGGAAAGTTGGCTGTTGCTGTAG -ACGGAAAGTTGGCTGTTGCCTAAG -ACGGAAAGTTGGCTGTTGGTTCAG -ACGGAAAGTTGGCTGTTGGCATAG -ACGGAAAGTTGGCTGTTGGACAAG -ACGGAAAGTTGGCTGTTGAAGCAG -ACGGAAAGTTGGCTGTTGCGTCAA -ACGGAAAGTTGGCTGTTGGCTGAA -ACGGAAAGTTGGCTGTTGAGTACG -ACGGAAAGTTGGCTGTTGATCCGA -ACGGAAAGTTGGCTGTTGATGGGA -ACGGAAAGTTGGCTGTTGGTGCAA -ACGGAAAGTTGGCTGTTGGAGGAA -ACGGAAAGTTGGCTGTTGCAGGTA -ACGGAAAGTTGGCTGTTGGACTCT -ACGGAAAGTTGGCTGTTGAGTCCT -ACGGAAAGTTGGCTGTTGTAAGCC -ACGGAAAGTTGGCTGTTGATAGCC -ACGGAAAGTTGGCTGTTGTAACCG -ACGGAAAGTTGGCTGTTGATGCCA -ACGGAAAGTTGGATGTCCGGAAAC -ACGGAAAGTTGGATGTCCAACACC -ACGGAAAGTTGGATGTCCATCGAG -ACGGAAAGTTGGATGTCCCTCCTT -ACGGAAAGTTGGATGTCCCCTGTT -ACGGAAAGTTGGATGTCCCGGTTT -ACGGAAAGTTGGATGTCCGTGGTT -ACGGAAAGTTGGATGTCCGCCTTT -ACGGAAAGTTGGATGTCCGGTCTT -ACGGAAAGTTGGATGTCCACGCTT -ACGGAAAGTTGGATGTCCAGCGTT -ACGGAAAGTTGGATGTCCTTCGTC -ACGGAAAGTTGGATGTCCTCTCTC -ACGGAAAGTTGGATGTCCTGGATC -ACGGAAAGTTGGATGTCCCACTTC -ACGGAAAGTTGGATGTCCGTACTC -ACGGAAAGTTGGATGTCCGATGTC -ACGGAAAGTTGGATGTCCACAGTC -ACGGAAAGTTGGATGTCCTTGCTG -ACGGAAAGTTGGATGTCCTCCATG -ACGGAAAGTTGGATGTCCTGTGTG -ACGGAAAGTTGGATGTCCCTAGTG -ACGGAAAGTTGGATGTCCCATCTG -ACGGAAAGTTGGATGTCCGAGTTG -ACGGAAAGTTGGATGTCCAGACTG -ACGGAAAGTTGGATGTCCTCGGTA -ACGGAAAGTTGGATGTCCTGCCTA -ACGGAAAGTTGGATGTCCCCACTA -ACGGAAAGTTGGATGTCCGGAGTA -ACGGAAAGTTGGATGTCCTCGTCT -ACGGAAAGTTGGATGTCCTGCACT -ACGGAAAGTTGGATGTCCCTGACT -ACGGAAAGTTGGATGTCCCAACCT -ACGGAAAGTTGGATGTCCGCTACT -ACGGAAAGTTGGATGTCCGGATCT -ACGGAAAGTTGGATGTCCAAGGCT -ACGGAAAGTTGGATGTCCTCAACC -ACGGAAAGTTGGATGTCCTGTTCC -ACGGAAAGTTGGATGTCCATTCCC -ACGGAAAGTTGGATGTCCTTCTCG -ACGGAAAGTTGGATGTCCTAGACG -ACGGAAAGTTGGATGTCCGTAACG -ACGGAAAGTTGGATGTCCACTTCG -ACGGAAAGTTGGATGTCCTACGCA -ACGGAAAGTTGGATGTCCCTTGCA -ACGGAAAGTTGGATGTCCCGAACA -ACGGAAAGTTGGATGTCCCAGTCA -ACGGAAAGTTGGATGTCCGATCCA -ACGGAAAGTTGGATGTCCACGACA -ACGGAAAGTTGGATGTCCAGCTCA -ACGGAAAGTTGGATGTCCTCACGT -ACGGAAAGTTGGATGTCCCGTAGT -ACGGAAAGTTGGATGTCCGTCAGT -ACGGAAAGTTGGATGTCCGAAGGT -ACGGAAAGTTGGATGTCCAACCGT -ACGGAAAGTTGGATGTCCTTGTGC -ACGGAAAGTTGGATGTCCCTAAGC -ACGGAAAGTTGGATGTCCACTAGC -ACGGAAAGTTGGATGTCCAGATGC -ACGGAAAGTTGGATGTCCTGAAGG -ACGGAAAGTTGGATGTCCCAATGG -ACGGAAAGTTGGATGTCCATGAGG -ACGGAAAGTTGGATGTCCAATGGG -ACGGAAAGTTGGATGTCCTCCTGA -ACGGAAAGTTGGATGTCCTAGCGA -ACGGAAAGTTGGATGTCCCACAGA -ACGGAAAGTTGGATGTCCGCAAGA -ACGGAAAGTTGGATGTCCGGTTGA -ACGGAAAGTTGGATGTCCTCCGAT -ACGGAAAGTTGGATGTCCTGGCAT -ACGGAAAGTTGGATGTCCCGAGAT -ACGGAAAGTTGGATGTCCTACCAC -ACGGAAAGTTGGATGTCCCAGAAC -ACGGAAAGTTGGATGTCCGTCTAC -ACGGAAAGTTGGATGTCCACGTAC -ACGGAAAGTTGGATGTCCAGTGAC -ACGGAAAGTTGGATGTCCCTGTAG -ACGGAAAGTTGGATGTCCCCTAAG -ACGGAAAGTTGGATGTCCGTTCAG -ACGGAAAGTTGGATGTCCGCATAG -ACGGAAAGTTGGATGTCCGACAAG -ACGGAAAGTTGGATGTCCAAGCAG -ACGGAAAGTTGGATGTCCCGTCAA -ACGGAAAGTTGGATGTCCGCTGAA -ACGGAAAGTTGGATGTCCAGTACG -ACGGAAAGTTGGATGTCCATCCGA -ACGGAAAGTTGGATGTCCATGGGA -ACGGAAAGTTGGATGTCCGTGCAA -ACGGAAAGTTGGATGTCCGAGGAA -ACGGAAAGTTGGATGTCCCAGGTA -ACGGAAAGTTGGATGTCCGACTCT -ACGGAAAGTTGGATGTCCAGTCCT -ACGGAAAGTTGGATGTCCTAAGCC -ACGGAAAGTTGGATGTCCATAGCC -ACGGAAAGTTGGATGTCCTAACCG -ACGGAAAGTTGGATGTCCATGCCA -ACGGAAAGTTGGGTGTGTGGAAAC -ACGGAAAGTTGGGTGTGTAACACC -ACGGAAAGTTGGGTGTGTATCGAG -ACGGAAAGTTGGGTGTGTCTCCTT -ACGGAAAGTTGGGTGTGTCCTGTT -ACGGAAAGTTGGGTGTGTCGGTTT -ACGGAAAGTTGGGTGTGTGTGGTT -ACGGAAAGTTGGGTGTGTGCCTTT -ACGGAAAGTTGGGTGTGTGGTCTT -ACGGAAAGTTGGGTGTGTACGCTT -ACGGAAAGTTGGGTGTGTAGCGTT -ACGGAAAGTTGGGTGTGTTTCGTC -ACGGAAAGTTGGGTGTGTTCTCTC -ACGGAAAGTTGGGTGTGTTGGATC -ACGGAAAGTTGGGTGTGTCACTTC -ACGGAAAGTTGGGTGTGTGTACTC -ACGGAAAGTTGGGTGTGTGATGTC -ACGGAAAGTTGGGTGTGTACAGTC -ACGGAAAGTTGGGTGTGTTTGCTG -ACGGAAAGTTGGGTGTGTTCCATG -ACGGAAAGTTGGGTGTGTTGTGTG -ACGGAAAGTTGGGTGTGTCTAGTG -ACGGAAAGTTGGGTGTGTCATCTG -ACGGAAAGTTGGGTGTGTGAGTTG -ACGGAAAGTTGGGTGTGTAGACTG -ACGGAAAGTTGGGTGTGTTCGGTA -ACGGAAAGTTGGGTGTGTTGCCTA -ACGGAAAGTTGGGTGTGTCCACTA -ACGGAAAGTTGGGTGTGTGGAGTA -ACGGAAAGTTGGGTGTGTTCGTCT -ACGGAAAGTTGGGTGTGTTGCACT -ACGGAAAGTTGGGTGTGTCTGACT -ACGGAAAGTTGGGTGTGTCAACCT -ACGGAAAGTTGGGTGTGTGCTACT -ACGGAAAGTTGGGTGTGTGGATCT -ACGGAAAGTTGGGTGTGTAAGGCT -ACGGAAAGTTGGGTGTGTTCAACC -ACGGAAAGTTGGGTGTGTTGTTCC -ACGGAAAGTTGGGTGTGTATTCCC -ACGGAAAGTTGGGTGTGTTTCTCG -ACGGAAAGTTGGGTGTGTTAGACG -ACGGAAAGTTGGGTGTGTGTAACG -ACGGAAAGTTGGGTGTGTACTTCG -ACGGAAAGTTGGGTGTGTTACGCA -ACGGAAAGTTGGGTGTGTCTTGCA -ACGGAAAGTTGGGTGTGTCGAACA -ACGGAAAGTTGGGTGTGTCAGTCA -ACGGAAAGTTGGGTGTGTGATCCA -ACGGAAAGTTGGGTGTGTACGACA -ACGGAAAGTTGGGTGTGTAGCTCA -ACGGAAAGTTGGGTGTGTTCACGT -ACGGAAAGTTGGGTGTGTCGTAGT -ACGGAAAGTTGGGTGTGTGTCAGT -ACGGAAAGTTGGGTGTGTGAAGGT -ACGGAAAGTTGGGTGTGTAACCGT -ACGGAAAGTTGGGTGTGTTTGTGC -ACGGAAAGTTGGGTGTGTCTAAGC -ACGGAAAGTTGGGTGTGTACTAGC -ACGGAAAGTTGGGTGTGTAGATGC -ACGGAAAGTTGGGTGTGTTGAAGG -ACGGAAAGTTGGGTGTGTCAATGG -ACGGAAAGTTGGGTGTGTATGAGG -ACGGAAAGTTGGGTGTGTAATGGG -ACGGAAAGTTGGGTGTGTTCCTGA -ACGGAAAGTTGGGTGTGTTAGCGA -ACGGAAAGTTGGGTGTGTCACAGA -ACGGAAAGTTGGGTGTGTGCAAGA -ACGGAAAGTTGGGTGTGTGGTTGA -ACGGAAAGTTGGGTGTGTTCCGAT -ACGGAAAGTTGGGTGTGTTGGCAT -ACGGAAAGTTGGGTGTGTCGAGAT -ACGGAAAGTTGGGTGTGTTACCAC -ACGGAAAGTTGGGTGTGTCAGAAC -ACGGAAAGTTGGGTGTGTGTCTAC -ACGGAAAGTTGGGTGTGTACGTAC -ACGGAAAGTTGGGTGTGTAGTGAC -ACGGAAAGTTGGGTGTGTCTGTAG -ACGGAAAGTTGGGTGTGTCCTAAG -ACGGAAAGTTGGGTGTGTGTTCAG -ACGGAAAGTTGGGTGTGTGCATAG -ACGGAAAGTTGGGTGTGTGACAAG -ACGGAAAGTTGGGTGTGTAAGCAG -ACGGAAAGTTGGGTGTGTCGTCAA -ACGGAAAGTTGGGTGTGTGCTGAA -ACGGAAAGTTGGGTGTGTAGTACG -ACGGAAAGTTGGGTGTGTATCCGA -ACGGAAAGTTGGGTGTGTATGGGA -ACGGAAAGTTGGGTGTGTGTGCAA -ACGGAAAGTTGGGTGTGTGAGGAA -ACGGAAAGTTGGGTGTGTCAGGTA -ACGGAAAGTTGGGTGTGTGACTCT -ACGGAAAGTTGGGTGTGTAGTCCT -ACGGAAAGTTGGGTGTGTTAAGCC -ACGGAAAGTTGGGTGTGTATAGCC -ACGGAAAGTTGGGTGTGTTAACCG -ACGGAAAGTTGGGTGTGTATGCCA -ACGGAAAGTTGGGTGCTAGGAAAC -ACGGAAAGTTGGGTGCTAAACACC -ACGGAAAGTTGGGTGCTAATCGAG -ACGGAAAGTTGGGTGCTACTCCTT -ACGGAAAGTTGGGTGCTACCTGTT -ACGGAAAGTTGGGTGCTACGGTTT -ACGGAAAGTTGGGTGCTAGTGGTT -ACGGAAAGTTGGGTGCTAGCCTTT -ACGGAAAGTTGGGTGCTAGGTCTT -ACGGAAAGTTGGGTGCTAACGCTT -ACGGAAAGTTGGGTGCTAAGCGTT -ACGGAAAGTTGGGTGCTATTCGTC -ACGGAAAGTTGGGTGCTATCTCTC -ACGGAAAGTTGGGTGCTATGGATC -ACGGAAAGTTGGGTGCTACACTTC -ACGGAAAGTTGGGTGCTAGTACTC -ACGGAAAGTTGGGTGCTAGATGTC -ACGGAAAGTTGGGTGCTAACAGTC -ACGGAAAGTTGGGTGCTATTGCTG -ACGGAAAGTTGGGTGCTATCCATG -ACGGAAAGTTGGGTGCTATGTGTG -ACGGAAAGTTGGGTGCTACTAGTG -ACGGAAAGTTGGGTGCTACATCTG -ACGGAAAGTTGGGTGCTAGAGTTG -ACGGAAAGTTGGGTGCTAAGACTG -ACGGAAAGTTGGGTGCTATCGGTA -ACGGAAAGTTGGGTGCTATGCCTA -ACGGAAAGTTGGGTGCTACCACTA -ACGGAAAGTTGGGTGCTAGGAGTA -ACGGAAAGTTGGGTGCTATCGTCT -ACGGAAAGTTGGGTGCTATGCACT -ACGGAAAGTTGGGTGCTACTGACT -ACGGAAAGTTGGGTGCTACAACCT -ACGGAAAGTTGGGTGCTAGCTACT -ACGGAAAGTTGGGTGCTAGGATCT -ACGGAAAGTTGGGTGCTAAAGGCT -ACGGAAAGTTGGGTGCTATCAACC -ACGGAAAGTTGGGTGCTATGTTCC -ACGGAAAGTTGGGTGCTAATTCCC -ACGGAAAGTTGGGTGCTATTCTCG -ACGGAAAGTTGGGTGCTATAGACG -ACGGAAAGTTGGGTGCTAGTAACG -ACGGAAAGTTGGGTGCTAACTTCG -ACGGAAAGTTGGGTGCTATACGCA -ACGGAAAGTTGGGTGCTACTTGCA -ACGGAAAGTTGGGTGCTACGAACA -ACGGAAAGTTGGGTGCTACAGTCA -ACGGAAAGTTGGGTGCTAGATCCA -ACGGAAAGTTGGGTGCTAACGACA -ACGGAAAGTTGGGTGCTAAGCTCA -ACGGAAAGTTGGGTGCTATCACGT -ACGGAAAGTTGGGTGCTACGTAGT -ACGGAAAGTTGGGTGCTAGTCAGT -ACGGAAAGTTGGGTGCTAGAAGGT -ACGGAAAGTTGGGTGCTAAACCGT -ACGGAAAGTTGGGTGCTATTGTGC -ACGGAAAGTTGGGTGCTACTAAGC -ACGGAAAGTTGGGTGCTAACTAGC -ACGGAAAGTTGGGTGCTAAGATGC -ACGGAAAGTTGGGTGCTATGAAGG -ACGGAAAGTTGGGTGCTACAATGG -ACGGAAAGTTGGGTGCTAATGAGG -ACGGAAAGTTGGGTGCTAAATGGG -ACGGAAAGTTGGGTGCTATCCTGA -ACGGAAAGTTGGGTGCTATAGCGA -ACGGAAAGTTGGGTGCTACACAGA -ACGGAAAGTTGGGTGCTAGCAAGA -ACGGAAAGTTGGGTGCTAGGTTGA -ACGGAAAGTTGGGTGCTATCCGAT -ACGGAAAGTTGGGTGCTATGGCAT -ACGGAAAGTTGGGTGCTACGAGAT -ACGGAAAGTTGGGTGCTATACCAC -ACGGAAAGTTGGGTGCTACAGAAC -ACGGAAAGTTGGGTGCTAGTCTAC -ACGGAAAGTTGGGTGCTAACGTAC -ACGGAAAGTTGGGTGCTAAGTGAC -ACGGAAAGTTGGGTGCTACTGTAG -ACGGAAAGTTGGGTGCTACCTAAG -ACGGAAAGTTGGGTGCTAGTTCAG -ACGGAAAGTTGGGTGCTAGCATAG -ACGGAAAGTTGGGTGCTAGACAAG -ACGGAAAGTTGGGTGCTAAAGCAG -ACGGAAAGTTGGGTGCTACGTCAA -ACGGAAAGTTGGGTGCTAGCTGAA -ACGGAAAGTTGGGTGCTAAGTACG -ACGGAAAGTTGGGTGCTAATCCGA -ACGGAAAGTTGGGTGCTAATGGGA -ACGGAAAGTTGGGTGCTAGTGCAA -ACGGAAAGTTGGGTGCTAGAGGAA -ACGGAAAGTTGGGTGCTACAGGTA -ACGGAAAGTTGGGTGCTAGACTCT -ACGGAAAGTTGGGTGCTAAGTCCT -ACGGAAAGTTGGGTGCTATAAGCC -ACGGAAAGTTGGGTGCTAATAGCC -ACGGAAAGTTGGGTGCTATAACCG -ACGGAAAGTTGGGTGCTAATGCCA -ACGGAAAGTTGGCTGCATGGAAAC -ACGGAAAGTTGGCTGCATAACACC -ACGGAAAGTTGGCTGCATATCGAG -ACGGAAAGTTGGCTGCATCTCCTT -ACGGAAAGTTGGCTGCATCCTGTT -ACGGAAAGTTGGCTGCATCGGTTT -ACGGAAAGTTGGCTGCATGTGGTT -ACGGAAAGTTGGCTGCATGCCTTT -ACGGAAAGTTGGCTGCATGGTCTT -ACGGAAAGTTGGCTGCATACGCTT -ACGGAAAGTTGGCTGCATAGCGTT -ACGGAAAGTTGGCTGCATTTCGTC -ACGGAAAGTTGGCTGCATTCTCTC -ACGGAAAGTTGGCTGCATTGGATC -ACGGAAAGTTGGCTGCATCACTTC -ACGGAAAGTTGGCTGCATGTACTC -ACGGAAAGTTGGCTGCATGATGTC -ACGGAAAGTTGGCTGCATACAGTC -ACGGAAAGTTGGCTGCATTTGCTG -ACGGAAAGTTGGCTGCATTCCATG -ACGGAAAGTTGGCTGCATTGTGTG -ACGGAAAGTTGGCTGCATCTAGTG -ACGGAAAGTTGGCTGCATCATCTG -ACGGAAAGTTGGCTGCATGAGTTG -ACGGAAAGTTGGCTGCATAGACTG -ACGGAAAGTTGGCTGCATTCGGTA -ACGGAAAGTTGGCTGCATTGCCTA -ACGGAAAGTTGGCTGCATCCACTA -ACGGAAAGTTGGCTGCATGGAGTA -ACGGAAAGTTGGCTGCATTCGTCT -ACGGAAAGTTGGCTGCATTGCACT -ACGGAAAGTTGGCTGCATCTGACT -ACGGAAAGTTGGCTGCATCAACCT -ACGGAAAGTTGGCTGCATGCTACT -ACGGAAAGTTGGCTGCATGGATCT -ACGGAAAGTTGGCTGCATAAGGCT -ACGGAAAGTTGGCTGCATTCAACC -ACGGAAAGTTGGCTGCATTGTTCC -ACGGAAAGTTGGCTGCATATTCCC -ACGGAAAGTTGGCTGCATTTCTCG -ACGGAAAGTTGGCTGCATTAGACG -ACGGAAAGTTGGCTGCATGTAACG -ACGGAAAGTTGGCTGCATACTTCG -ACGGAAAGTTGGCTGCATTACGCA -ACGGAAAGTTGGCTGCATCTTGCA -ACGGAAAGTTGGCTGCATCGAACA -ACGGAAAGTTGGCTGCATCAGTCA -ACGGAAAGTTGGCTGCATGATCCA -ACGGAAAGTTGGCTGCATACGACA -ACGGAAAGTTGGCTGCATAGCTCA -ACGGAAAGTTGGCTGCATTCACGT -ACGGAAAGTTGGCTGCATCGTAGT -ACGGAAAGTTGGCTGCATGTCAGT -ACGGAAAGTTGGCTGCATGAAGGT -ACGGAAAGTTGGCTGCATAACCGT -ACGGAAAGTTGGCTGCATTTGTGC -ACGGAAAGTTGGCTGCATCTAAGC -ACGGAAAGTTGGCTGCATACTAGC -ACGGAAAGTTGGCTGCATAGATGC -ACGGAAAGTTGGCTGCATTGAAGG -ACGGAAAGTTGGCTGCATCAATGG -ACGGAAAGTTGGCTGCATATGAGG -ACGGAAAGTTGGCTGCATAATGGG -ACGGAAAGTTGGCTGCATTCCTGA -ACGGAAAGTTGGCTGCATTAGCGA -ACGGAAAGTTGGCTGCATCACAGA -ACGGAAAGTTGGCTGCATGCAAGA -ACGGAAAGTTGGCTGCATGGTTGA -ACGGAAAGTTGGCTGCATTCCGAT -ACGGAAAGTTGGCTGCATTGGCAT -ACGGAAAGTTGGCTGCATCGAGAT -ACGGAAAGTTGGCTGCATTACCAC -ACGGAAAGTTGGCTGCATCAGAAC -ACGGAAAGTTGGCTGCATGTCTAC -ACGGAAAGTTGGCTGCATACGTAC -ACGGAAAGTTGGCTGCATAGTGAC -ACGGAAAGTTGGCTGCATCTGTAG -ACGGAAAGTTGGCTGCATCCTAAG -ACGGAAAGTTGGCTGCATGTTCAG -ACGGAAAGTTGGCTGCATGCATAG -ACGGAAAGTTGGCTGCATGACAAG -ACGGAAAGTTGGCTGCATAAGCAG -ACGGAAAGTTGGCTGCATCGTCAA -ACGGAAAGTTGGCTGCATGCTGAA -ACGGAAAGTTGGCTGCATAGTACG -ACGGAAAGTTGGCTGCATATCCGA -ACGGAAAGTTGGCTGCATATGGGA -ACGGAAAGTTGGCTGCATGTGCAA -ACGGAAAGTTGGCTGCATGAGGAA -ACGGAAAGTTGGCTGCATCAGGTA -ACGGAAAGTTGGCTGCATGACTCT -ACGGAAAGTTGGCTGCATAGTCCT -ACGGAAAGTTGGCTGCATTAAGCC -ACGGAAAGTTGGCTGCATATAGCC -ACGGAAAGTTGGCTGCATTAACCG -ACGGAAAGTTGGCTGCATATGCCA -ACGGAAAGTTGGTTGGAGGGAAAC -ACGGAAAGTTGGTTGGAGAACACC -ACGGAAAGTTGGTTGGAGATCGAG -ACGGAAAGTTGGTTGGAGCTCCTT -ACGGAAAGTTGGTTGGAGCCTGTT -ACGGAAAGTTGGTTGGAGCGGTTT -ACGGAAAGTTGGTTGGAGGTGGTT -ACGGAAAGTTGGTTGGAGGCCTTT -ACGGAAAGTTGGTTGGAGGGTCTT -ACGGAAAGTTGGTTGGAGACGCTT -ACGGAAAGTTGGTTGGAGAGCGTT -ACGGAAAGTTGGTTGGAGTTCGTC -ACGGAAAGTTGGTTGGAGTCTCTC -ACGGAAAGTTGGTTGGAGTGGATC -ACGGAAAGTTGGTTGGAGCACTTC -ACGGAAAGTTGGTTGGAGGTACTC -ACGGAAAGTTGGTTGGAGGATGTC -ACGGAAAGTTGGTTGGAGACAGTC -ACGGAAAGTTGGTTGGAGTTGCTG -ACGGAAAGTTGGTTGGAGTCCATG -ACGGAAAGTTGGTTGGAGTGTGTG -ACGGAAAGTTGGTTGGAGCTAGTG -ACGGAAAGTTGGTTGGAGCATCTG -ACGGAAAGTTGGTTGGAGGAGTTG -ACGGAAAGTTGGTTGGAGAGACTG -ACGGAAAGTTGGTTGGAGTCGGTA -ACGGAAAGTTGGTTGGAGTGCCTA -ACGGAAAGTTGGTTGGAGCCACTA -ACGGAAAGTTGGTTGGAGGGAGTA -ACGGAAAGTTGGTTGGAGTCGTCT -ACGGAAAGTTGGTTGGAGTGCACT -ACGGAAAGTTGGTTGGAGCTGACT -ACGGAAAGTTGGTTGGAGCAACCT -ACGGAAAGTTGGTTGGAGGCTACT -ACGGAAAGTTGGTTGGAGGGATCT -ACGGAAAGTTGGTTGGAGAAGGCT -ACGGAAAGTTGGTTGGAGTCAACC -ACGGAAAGTTGGTTGGAGTGTTCC -ACGGAAAGTTGGTTGGAGATTCCC -ACGGAAAGTTGGTTGGAGTTCTCG -ACGGAAAGTTGGTTGGAGTAGACG -ACGGAAAGTTGGTTGGAGGTAACG -ACGGAAAGTTGGTTGGAGACTTCG -ACGGAAAGTTGGTTGGAGTACGCA -ACGGAAAGTTGGTTGGAGCTTGCA -ACGGAAAGTTGGTTGGAGCGAACA -ACGGAAAGTTGGTTGGAGCAGTCA -ACGGAAAGTTGGTTGGAGGATCCA -ACGGAAAGTTGGTTGGAGACGACA -ACGGAAAGTTGGTTGGAGAGCTCA -ACGGAAAGTTGGTTGGAGTCACGT -ACGGAAAGTTGGTTGGAGCGTAGT -ACGGAAAGTTGGTTGGAGGTCAGT -ACGGAAAGTTGGTTGGAGGAAGGT -ACGGAAAGTTGGTTGGAGAACCGT -ACGGAAAGTTGGTTGGAGTTGTGC -ACGGAAAGTTGGTTGGAGCTAAGC -ACGGAAAGTTGGTTGGAGACTAGC -ACGGAAAGTTGGTTGGAGAGATGC -ACGGAAAGTTGGTTGGAGTGAAGG -ACGGAAAGTTGGTTGGAGCAATGG -ACGGAAAGTTGGTTGGAGATGAGG -ACGGAAAGTTGGTTGGAGAATGGG -ACGGAAAGTTGGTTGGAGTCCTGA -ACGGAAAGTTGGTTGGAGTAGCGA -ACGGAAAGTTGGTTGGAGCACAGA -ACGGAAAGTTGGTTGGAGGCAAGA -ACGGAAAGTTGGTTGGAGGGTTGA -ACGGAAAGTTGGTTGGAGTCCGAT -ACGGAAAGTTGGTTGGAGTGGCAT -ACGGAAAGTTGGTTGGAGCGAGAT -ACGGAAAGTTGGTTGGAGTACCAC -ACGGAAAGTTGGTTGGAGCAGAAC -ACGGAAAGTTGGTTGGAGGTCTAC -ACGGAAAGTTGGTTGGAGACGTAC -ACGGAAAGTTGGTTGGAGAGTGAC -ACGGAAAGTTGGTTGGAGCTGTAG -ACGGAAAGTTGGTTGGAGCCTAAG -ACGGAAAGTTGGTTGGAGGTTCAG -ACGGAAAGTTGGTTGGAGGCATAG -ACGGAAAGTTGGTTGGAGGACAAG -ACGGAAAGTTGGTTGGAGAAGCAG -ACGGAAAGTTGGTTGGAGCGTCAA -ACGGAAAGTTGGTTGGAGGCTGAA -ACGGAAAGTTGGTTGGAGAGTACG -ACGGAAAGTTGGTTGGAGATCCGA -ACGGAAAGTTGGTTGGAGATGGGA -ACGGAAAGTTGGTTGGAGGTGCAA -ACGGAAAGTTGGTTGGAGGAGGAA -ACGGAAAGTTGGTTGGAGCAGGTA -ACGGAAAGTTGGTTGGAGGACTCT -ACGGAAAGTTGGTTGGAGAGTCCT -ACGGAAAGTTGGTTGGAGTAAGCC -ACGGAAAGTTGGTTGGAGATAGCC -ACGGAAAGTTGGTTGGAGTAACCG -ACGGAAAGTTGGTTGGAGATGCCA -ACGGAAAGTTGGCTGAGAGGAAAC -ACGGAAAGTTGGCTGAGAAACACC -ACGGAAAGTTGGCTGAGAATCGAG -ACGGAAAGTTGGCTGAGACTCCTT -ACGGAAAGTTGGCTGAGACCTGTT -ACGGAAAGTTGGCTGAGACGGTTT -ACGGAAAGTTGGCTGAGAGTGGTT -ACGGAAAGTTGGCTGAGAGCCTTT -ACGGAAAGTTGGCTGAGAGGTCTT -ACGGAAAGTTGGCTGAGAACGCTT -ACGGAAAGTTGGCTGAGAAGCGTT -ACGGAAAGTTGGCTGAGATTCGTC -ACGGAAAGTTGGCTGAGATCTCTC -ACGGAAAGTTGGCTGAGATGGATC -ACGGAAAGTTGGCTGAGACACTTC -ACGGAAAGTTGGCTGAGAGTACTC -ACGGAAAGTTGGCTGAGAGATGTC -ACGGAAAGTTGGCTGAGAACAGTC -ACGGAAAGTTGGCTGAGATTGCTG -ACGGAAAGTTGGCTGAGATCCATG -ACGGAAAGTTGGCTGAGATGTGTG -ACGGAAAGTTGGCTGAGACTAGTG -ACGGAAAGTTGGCTGAGACATCTG -ACGGAAAGTTGGCTGAGAGAGTTG -ACGGAAAGTTGGCTGAGAAGACTG -ACGGAAAGTTGGCTGAGATCGGTA -ACGGAAAGTTGGCTGAGATGCCTA -ACGGAAAGTTGGCTGAGACCACTA -ACGGAAAGTTGGCTGAGAGGAGTA -ACGGAAAGTTGGCTGAGATCGTCT -ACGGAAAGTTGGCTGAGATGCACT -ACGGAAAGTTGGCTGAGACTGACT -ACGGAAAGTTGGCTGAGACAACCT -ACGGAAAGTTGGCTGAGAGCTACT -ACGGAAAGTTGGCTGAGAGGATCT -ACGGAAAGTTGGCTGAGAAAGGCT -ACGGAAAGTTGGCTGAGATCAACC -ACGGAAAGTTGGCTGAGATGTTCC -ACGGAAAGTTGGCTGAGAATTCCC -ACGGAAAGTTGGCTGAGATTCTCG -ACGGAAAGTTGGCTGAGATAGACG -ACGGAAAGTTGGCTGAGAGTAACG -ACGGAAAGTTGGCTGAGAACTTCG -ACGGAAAGTTGGCTGAGATACGCA -ACGGAAAGTTGGCTGAGACTTGCA -ACGGAAAGTTGGCTGAGACGAACA -ACGGAAAGTTGGCTGAGACAGTCA -ACGGAAAGTTGGCTGAGAGATCCA -ACGGAAAGTTGGCTGAGAACGACA -ACGGAAAGTTGGCTGAGAAGCTCA -ACGGAAAGTTGGCTGAGATCACGT -ACGGAAAGTTGGCTGAGACGTAGT -ACGGAAAGTTGGCTGAGAGTCAGT -ACGGAAAGTTGGCTGAGAGAAGGT -ACGGAAAGTTGGCTGAGAAACCGT -ACGGAAAGTTGGCTGAGATTGTGC -ACGGAAAGTTGGCTGAGACTAAGC -ACGGAAAGTTGGCTGAGAACTAGC -ACGGAAAGTTGGCTGAGAAGATGC -ACGGAAAGTTGGCTGAGATGAAGG -ACGGAAAGTTGGCTGAGACAATGG -ACGGAAAGTTGGCTGAGAATGAGG -ACGGAAAGTTGGCTGAGAAATGGG -ACGGAAAGTTGGCTGAGATCCTGA -ACGGAAAGTTGGCTGAGATAGCGA -ACGGAAAGTTGGCTGAGACACAGA -ACGGAAAGTTGGCTGAGAGCAAGA -ACGGAAAGTTGGCTGAGAGGTTGA -ACGGAAAGTTGGCTGAGATCCGAT -ACGGAAAGTTGGCTGAGATGGCAT -ACGGAAAGTTGGCTGAGACGAGAT -ACGGAAAGTTGGCTGAGATACCAC -ACGGAAAGTTGGCTGAGACAGAAC -ACGGAAAGTTGGCTGAGAGTCTAC -ACGGAAAGTTGGCTGAGAACGTAC -ACGGAAAGTTGGCTGAGAAGTGAC -ACGGAAAGTTGGCTGAGACTGTAG -ACGGAAAGTTGGCTGAGACCTAAG -ACGGAAAGTTGGCTGAGAGTTCAG -ACGGAAAGTTGGCTGAGAGCATAG -ACGGAAAGTTGGCTGAGAGACAAG -ACGGAAAGTTGGCTGAGAAAGCAG -ACGGAAAGTTGGCTGAGACGTCAA -ACGGAAAGTTGGCTGAGAGCTGAA -ACGGAAAGTTGGCTGAGAAGTACG -ACGGAAAGTTGGCTGAGAATCCGA -ACGGAAAGTTGGCTGAGAATGGGA -ACGGAAAGTTGGCTGAGAGTGCAA -ACGGAAAGTTGGCTGAGAGAGGAA -ACGGAAAGTTGGCTGAGACAGGTA -ACGGAAAGTTGGCTGAGAGACTCT -ACGGAAAGTTGGCTGAGAAGTCCT -ACGGAAAGTTGGCTGAGATAAGCC -ACGGAAAGTTGGCTGAGAATAGCC -ACGGAAAGTTGGCTGAGATAACCG -ACGGAAAGTTGGCTGAGAATGCCA -ACGGAAAGTTGGGTATCGGGAAAC -ACGGAAAGTTGGGTATCGAACACC -ACGGAAAGTTGGGTATCGATCGAG -ACGGAAAGTTGGGTATCGCTCCTT -ACGGAAAGTTGGGTATCGCCTGTT -ACGGAAAGTTGGGTATCGCGGTTT -ACGGAAAGTTGGGTATCGGTGGTT -ACGGAAAGTTGGGTATCGGCCTTT -ACGGAAAGTTGGGTATCGGGTCTT -ACGGAAAGTTGGGTATCGACGCTT -ACGGAAAGTTGGGTATCGAGCGTT -ACGGAAAGTTGGGTATCGTTCGTC -ACGGAAAGTTGGGTATCGTCTCTC -ACGGAAAGTTGGGTATCGTGGATC -ACGGAAAGTTGGGTATCGCACTTC -ACGGAAAGTTGGGTATCGGTACTC -ACGGAAAGTTGGGTATCGGATGTC -ACGGAAAGTTGGGTATCGACAGTC -ACGGAAAGTTGGGTATCGTTGCTG -ACGGAAAGTTGGGTATCGTCCATG -ACGGAAAGTTGGGTATCGTGTGTG -ACGGAAAGTTGGGTATCGCTAGTG -ACGGAAAGTTGGGTATCGCATCTG -ACGGAAAGTTGGGTATCGGAGTTG -ACGGAAAGTTGGGTATCGAGACTG -ACGGAAAGTTGGGTATCGTCGGTA -ACGGAAAGTTGGGTATCGTGCCTA -ACGGAAAGTTGGGTATCGCCACTA -ACGGAAAGTTGGGTATCGGGAGTA -ACGGAAAGTTGGGTATCGTCGTCT -ACGGAAAGTTGGGTATCGTGCACT -ACGGAAAGTTGGGTATCGCTGACT -ACGGAAAGTTGGGTATCGCAACCT -ACGGAAAGTTGGGTATCGGCTACT -ACGGAAAGTTGGGTATCGGGATCT -ACGGAAAGTTGGGTATCGAAGGCT -ACGGAAAGTTGGGTATCGTCAACC -ACGGAAAGTTGGGTATCGTGTTCC -ACGGAAAGTTGGGTATCGATTCCC -ACGGAAAGTTGGGTATCGTTCTCG -ACGGAAAGTTGGGTATCGTAGACG -ACGGAAAGTTGGGTATCGGTAACG -ACGGAAAGTTGGGTATCGACTTCG -ACGGAAAGTTGGGTATCGTACGCA -ACGGAAAGTTGGGTATCGCTTGCA -ACGGAAAGTTGGGTATCGCGAACA -ACGGAAAGTTGGGTATCGCAGTCA -ACGGAAAGTTGGGTATCGGATCCA -ACGGAAAGTTGGGTATCGACGACA -ACGGAAAGTTGGGTATCGAGCTCA -ACGGAAAGTTGGGTATCGTCACGT -ACGGAAAGTTGGGTATCGCGTAGT -ACGGAAAGTTGGGTATCGGTCAGT -ACGGAAAGTTGGGTATCGGAAGGT -ACGGAAAGTTGGGTATCGAACCGT -ACGGAAAGTTGGGTATCGTTGTGC -ACGGAAAGTTGGGTATCGCTAAGC -ACGGAAAGTTGGGTATCGACTAGC -ACGGAAAGTTGGGTATCGAGATGC -ACGGAAAGTTGGGTATCGTGAAGG -ACGGAAAGTTGGGTATCGCAATGG -ACGGAAAGTTGGGTATCGATGAGG -ACGGAAAGTTGGGTATCGAATGGG -ACGGAAAGTTGGGTATCGTCCTGA -ACGGAAAGTTGGGTATCGTAGCGA -ACGGAAAGTTGGGTATCGCACAGA -ACGGAAAGTTGGGTATCGGCAAGA -ACGGAAAGTTGGGTATCGGGTTGA -ACGGAAAGTTGGGTATCGTCCGAT -ACGGAAAGTTGGGTATCGTGGCAT -ACGGAAAGTTGGGTATCGCGAGAT -ACGGAAAGTTGGGTATCGTACCAC -ACGGAAAGTTGGGTATCGCAGAAC -ACGGAAAGTTGGGTATCGGTCTAC -ACGGAAAGTTGGGTATCGACGTAC -ACGGAAAGTTGGGTATCGAGTGAC -ACGGAAAGTTGGGTATCGCTGTAG -ACGGAAAGTTGGGTATCGCCTAAG -ACGGAAAGTTGGGTATCGGTTCAG -ACGGAAAGTTGGGTATCGGCATAG -ACGGAAAGTTGGGTATCGGACAAG -ACGGAAAGTTGGGTATCGAAGCAG -ACGGAAAGTTGGGTATCGCGTCAA -ACGGAAAGTTGGGTATCGGCTGAA -ACGGAAAGTTGGGTATCGAGTACG -ACGGAAAGTTGGGTATCGATCCGA -ACGGAAAGTTGGGTATCGATGGGA -ACGGAAAGTTGGGTATCGGTGCAA -ACGGAAAGTTGGGTATCGGAGGAA -ACGGAAAGTTGGGTATCGCAGGTA -ACGGAAAGTTGGGTATCGGACTCT -ACGGAAAGTTGGGTATCGAGTCCT -ACGGAAAGTTGGGTATCGTAAGCC -ACGGAAAGTTGGGTATCGATAGCC -ACGGAAAGTTGGGTATCGTAACCG -ACGGAAAGTTGGGTATCGATGCCA -ACGGAAAGTTGGCTATGCGGAAAC -ACGGAAAGTTGGCTATGCAACACC -ACGGAAAGTTGGCTATGCATCGAG -ACGGAAAGTTGGCTATGCCTCCTT -ACGGAAAGTTGGCTATGCCCTGTT -ACGGAAAGTTGGCTATGCCGGTTT -ACGGAAAGTTGGCTATGCGTGGTT -ACGGAAAGTTGGCTATGCGCCTTT -ACGGAAAGTTGGCTATGCGGTCTT -ACGGAAAGTTGGCTATGCACGCTT -ACGGAAAGTTGGCTATGCAGCGTT -ACGGAAAGTTGGCTATGCTTCGTC -ACGGAAAGTTGGCTATGCTCTCTC -ACGGAAAGTTGGCTATGCTGGATC -ACGGAAAGTTGGCTATGCCACTTC -ACGGAAAGTTGGCTATGCGTACTC -ACGGAAAGTTGGCTATGCGATGTC -ACGGAAAGTTGGCTATGCACAGTC -ACGGAAAGTTGGCTATGCTTGCTG -ACGGAAAGTTGGCTATGCTCCATG -ACGGAAAGTTGGCTATGCTGTGTG -ACGGAAAGTTGGCTATGCCTAGTG -ACGGAAAGTTGGCTATGCCATCTG -ACGGAAAGTTGGCTATGCGAGTTG -ACGGAAAGTTGGCTATGCAGACTG -ACGGAAAGTTGGCTATGCTCGGTA -ACGGAAAGTTGGCTATGCTGCCTA -ACGGAAAGTTGGCTATGCCCACTA -ACGGAAAGTTGGCTATGCGGAGTA -ACGGAAAGTTGGCTATGCTCGTCT -ACGGAAAGTTGGCTATGCTGCACT -ACGGAAAGTTGGCTATGCCTGACT -ACGGAAAGTTGGCTATGCCAACCT -ACGGAAAGTTGGCTATGCGCTACT -ACGGAAAGTTGGCTATGCGGATCT -ACGGAAAGTTGGCTATGCAAGGCT -ACGGAAAGTTGGCTATGCTCAACC -ACGGAAAGTTGGCTATGCTGTTCC -ACGGAAAGTTGGCTATGCATTCCC -ACGGAAAGTTGGCTATGCTTCTCG -ACGGAAAGTTGGCTATGCTAGACG -ACGGAAAGTTGGCTATGCGTAACG -ACGGAAAGTTGGCTATGCACTTCG -ACGGAAAGTTGGCTATGCTACGCA -ACGGAAAGTTGGCTATGCCTTGCA -ACGGAAAGTTGGCTATGCCGAACA -ACGGAAAGTTGGCTATGCCAGTCA -ACGGAAAGTTGGCTATGCGATCCA -ACGGAAAGTTGGCTATGCACGACA -ACGGAAAGTTGGCTATGCAGCTCA -ACGGAAAGTTGGCTATGCTCACGT -ACGGAAAGTTGGCTATGCCGTAGT -ACGGAAAGTTGGCTATGCGTCAGT -ACGGAAAGTTGGCTATGCGAAGGT -ACGGAAAGTTGGCTATGCAACCGT -ACGGAAAGTTGGCTATGCTTGTGC -ACGGAAAGTTGGCTATGCCTAAGC -ACGGAAAGTTGGCTATGCACTAGC -ACGGAAAGTTGGCTATGCAGATGC -ACGGAAAGTTGGCTATGCTGAAGG -ACGGAAAGTTGGCTATGCCAATGG -ACGGAAAGTTGGCTATGCATGAGG -ACGGAAAGTTGGCTATGCAATGGG -ACGGAAAGTTGGCTATGCTCCTGA -ACGGAAAGTTGGCTATGCTAGCGA -ACGGAAAGTTGGCTATGCCACAGA -ACGGAAAGTTGGCTATGCGCAAGA -ACGGAAAGTTGGCTATGCGGTTGA -ACGGAAAGTTGGCTATGCTCCGAT -ACGGAAAGTTGGCTATGCTGGCAT -ACGGAAAGTTGGCTATGCCGAGAT -ACGGAAAGTTGGCTATGCTACCAC -ACGGAAAGTTGGCTATGCCAGAAC -ACGGAAAGTTGGCTATGCGTCTAC -ACGGAAAGTTGGCTATGCACGTAC -ACGGAAAGTTGGCTATGCAGTGAC -ACGGAAAGTTGGCTATGCCTGTAG -ACGGAAAGTTGGCTATGCCCTAAG -ACGGAAAGTTGGCTATGCGTTCAG -ACGGAAAGTTGGCTATGCGCATAG -ACGGAAAGTTGGCTATGCGACAAG -ACGGAAAGTTGGCTATGCAAGCAG -ACGGAAAGTTGGCTATGCCGTCAA -ACGGAAAGTTGGCTATGCGCTGAA -ACGGAAAGTTGGCTATGCAGTACG -ACGGAAAGTTGGCTATGCATCCGA -ACGGAAAGTTGGCTATGCATGGGA -ACGGAAAGTTGGCTATGCGTGCAA -ACGGAAAGTTGGCTATGCGAGGAA -ACGGAAAGTTGGCTATGCCAGGTA -ACGGAAAGTTGGCTATGCGACTCT -ACGGAAAGTTGGCTATGCAGTCCT -ACGGAAAGTTGGCTATGCTAAGCC -ACGGAAAGTTGGCTATGCATAGCC -ACGGAAAGTTGGCTATGCTAACCG -ACGGAAAGTTGGCTATGCATGCCA -ACGGAAAGTTGGCTACCAGGAAAC -ACGGAAAGTTGGCTACCAAACACC -ACGGAAAGTTGGCTACCAATCGAG -ACGGAAAGTTGGCTACCACTCCTT -ACGGAAAGTTGGCTACCACCTGTT -ACGGAAAGTTGGCTACCACGGTTT -ACGGAAAGTTGGCTACCAGTGGTT -ACGGAAAGTTGGCTACCAGCCTTT -ACGGAAAGTTGGCTACCAGGTCTT -ACGGAAAGTTGGCTACCAACGCTT -ACGGAAAGTTGGCTACCAAGCGTT -ACGGAAAGTTGGCTACCATTCGTC -ACGGAAAGTTGGCTACCATCTCTC -ACGGAAAGTTGGCTACCATGGATC -ACGGAAAGTTGGCTACCACACTTC -ACGGAAAGTTGGCTACCAGTACTC -ACGGAAAGTTGGCTACCAGATGTC -ACGGAAAGTTGGCTACCAACAGTC -ACGGAAAGTTGGCTACCATTGCTG -ACGGAAAGTTGGCTACCATCCATG -ACGGAAAGTTGGCTACCATGTGTG -ACGGAAAGTTGGCTACCACTAGTG -ACGGAAAGTTGGCTACCACATCTG -ACGGAAAGTTGGCTACCAGAGTTG -ACGGAAAGTTGGCTACCAAGACTG -ACGGAAAGTTGGCTACCATCGGTA -ACGGAAAGTTGGCTACCATGCCTA -ACGGAAAGTTGGCTACCACCACTA -ACGGAAAGTTGGCTACCAGGAGTA -ACGGAAAGTTGGCTACCATCGTCT -ACGGAAAGTTGGCTACCATGCACT -ACGGAAAGTTGGCTACCACTGACT -ACGGAAAGTTGGCTACCACAACCT -ACGGAAAGTTGGCTACCAGCTACT -ACGGAAAGTTGGCTACCAGGATCT -ACGGAAAGTTGGCTACCAAAGGCT -ACGGAAAGTTGGCTACCATCAACC -ACGGAAAGTTGGCTACCATGTTCC -ACGGAAAGTTGGCTACCAATTCCC -ACGGAAAGTTGGCTACCATTCTCG -ACGGAAAGTTGGCTACCATAGACG -ACGGAAAGTTGGCTACCAGTAACG -ACGGAAAGTTGGCTACCAACTTCG -ACGGAAAGTTGGCTACCATACGCA -ACGGAAAGTTGGCTACCACTTGCA -ACGGAAAGTTGGCTACCACGAACA -ACGGAAAGTTGGCTACCACAGTCA -ACGGAAAGTTGGCTACCAGATCCA -ACGGAAAGTTGGCTACCAACGACA -ACGGAAAGTTGGCTACCAAGCTCA -ACGGAAAGTTGGCTACCATCACGT -ACGGAAAGTTGGCTACCACGTAGT -ACGGAAAGTTGGCTACCAGTCAGT -ACGGAAAGTTGGCTACCAGAAGGT -ACGGAAAGTTGGCTACCAAACCGT -ACGGAAAGTTGGCTACCATTGTGC -ACGGAAAGTTGGCTACCACTAAGC -ACGGAAAGTTGGCTACCAACTAGC -ACGGAAAGTTGGCTACCAAGATGC -ACGGAAAGTTGGCTACCATGAAGG -ACGGAAAGTTGGCTACCACAATGG -ACGGAAAGTTGGCTACCAATGAGG -ACGGAAAGTTGGCTACCAAATGGG -ACGGAAAGTTGGCTACCATCCTGA -ACGGAAAGTTGGCTACCATAGCGA -ACGGAAAGTTGGCTACCACACAGA -ACGGAAAGTTGGCTACCAGCAAGA -ACGGAAAGTTGGCTACCAGGTTGA -ACGGAAAGTTGGCTACCATCCGAT -ACGGAAAGTTGGCTACCATGGCAT -ACGGAAAGTTGGCTACCACGAGAT -ACGGAAAGTTGGCTACCATACCAC -ACGGAAAGTTGGCTACCACAGAAC -ACGGAAAGTTGGCTACCAGTCTAC -ACGGAAAGTTGGCTACCAACGTAC -ACGGAAAGTTGGCTACCAAGTGAC -ACGGAAAGTTGGCTACCACTGTAG -ACGGAAAGTTGGCTACCACCTAAG -ACGGAAAGTTGGCTACCAGTTCAG -ACGGAAAGTTGGCTACCAGCATAG -ACGGAAAGTTGGCTACCAGACAAG -ACGGAAAGTTGGCTACCAAAGCAG -ACGGAAAGTTGGCTACCACGTCAA -ACGGAAAGTTGGCTACCAGCTGAA -ACGGAAAGTTGGCTACCAAGTACG -ACGGAAAGTTGGCTACCAATCCGA -ACGGAAAGTTGGCTACCAATGGGA -ACGGAAAGTTGGCTACCAGTGCAA -ACGGAAAGTTGGCTACCAGAGGAA -ACGGAAAGTTGGCTACCACAGGTA -ACGGAAAGTTGGCTACCAGACTCT -ACGGAAAGTTGGCTACCAAGTCCT -ACGGAAAGTTGGCTACCATAAGCC -ACGGAAAGTTGGCTACCAATAGCC -ACGGAAAGTTGGCTACCATAACCG -ACGGAAAGTTGGCTACCAATGCCA -ACGGAAAGTTGGGTAGGAGGAAAC -ACGGAAAGTTGGGTAGGAAACACC -ACGGAAAGTTGGGTAGGAATCGAG -ACGGAAAGTTGGGTAGGACTCCTT -ACGGAAAGTTGGGTAGGACCTGTT -ACGGAAAGTTGGGTAGGACGGTTT -ACGGAAAGTTGGGTAGGAGTGGTT -ACGGAAAGTTGGGTAGGAGCCTTT -ACGGAAAGTTGGGTAGGAGGTCTT -ACGGAAAGTTGGGTAGGAACGCTT -ACGGAAAGTTGGGTAGGAAGCGTT -ACGGAAAGTTGGGTAGGATTCGTC -ACGGAAAGTTGGGTAGGATCTCTC -ACGGAAAGTTGGGTAGGATGGATC -ACGGAAAGTTGGGTAGGACACTTC -ACGGAAAGTTGGGTAGGAGTACTC -ACGGAAAGTTGGGTAGGAGATGTC -ACGGAAAGTTGGGTAGGAACAGTC -ACGGAAAGTTGGGTAGGATTGCTG -ACGGAAAGTTGGGTAGGATCCATG -ACGGAAAGTTGGGTAGGATGTGTG -ACGGAAAGTTGGGTAGGACTAGTG -ACGGAAAGTTGGGTAGGACATCTG -ACGGAAAGTTGGGTAGGAGAGTTG -ACGGAAAGTTGGGTAGGAAGACTG -ACGGAAAGTTGGGTAGGATCGGTA -ACGGAAAGTTGGGTAGGATGCCTA -ACGGAAAGTTGGGTAGGACCACTA -ACGGAAAGTTGGGTAGGAGGAGTA -ACGGAAAGTTGGGTAGGATCGTCT -ACGGAAAGTTGGGTAGGATGCACT -ACGGAAAGTTGGGTAGGACTGACT -ACGGAAAGTTGGGTAGGACAACCT -ACGGAAAGTTGGGTAGGAGCTACT -ACGGAAAGTTGGGTAGGAGGATCT -ACGGAAAGTTGGGTAGGAAAGGCT -ACGGAAAGTTGGGTAGGATCAACC -ACGGAAAGTTGGGTAGGATGTTCC -ACGGAAAGTTGGGTAGGAATTCCC -ACGGAAAGTTGGGTAGGATTCTCG -ACGGAAAGTTGGGTAGGATAGACG -ACGGAAAGTTGGGTAGGAGTAACG -ACGGAAAGTTGGGTAGGAACTTCG -ACGGAAAGTTGGGTAGGATACGCA -ACGGAAAGTTGGGTAGGACTTGCA -ACGGAAAGTTGGGTAGGACGAACA -ACGGAAAGTTGGGTAGGACAGTCA -ACGGAAAGTTGGGTAGGAGATCCA -ACGGAAAGTTGGGTAGGAACGACA -ACGGAAAGTTGGGTAGGAAGCTCA -ACGGAAAGTTGGGTAGGATCACGT -ACGGAAAGTTGGGTAGGACGTAGT -ACGGAAAGTTGGGTAGGAGTCAGT -ACGGAAAGTTGGGTAGGAGAAGGT -ACGGAAAGTTGGGTAGGAAACCGT -ACGGAAAGTTGGGTAGGATTGTGC -ACGGAAAGTTGGGTAGGACTAAGC -ACGGAAAGTTGGGTAGGAACTAGC -ACGGAAAGTTGGGTAGGAAGATGC -ACGGAAAGTTGGGTAGGATGAAGG -ACGGAAAGTTGGGTAGGACAATGG -ACGGAAAGTTGGGTAGGAATGAGG -ACGGAAAGTTGGGTAGGAAATGGG -ACGGAAAGTTGGGTAGGATCCTGA -ACGGAAAGTTGGGTAGGATAGCGA -ACGGAAAGTTGGGTAGGACACAGA -ACGGAAAGTTGGGTAGGAGCAAGA -ACGGAAAGTTGGGTAGGAGGTTGA -ACGGAAAGTTGGGTAGGATCCGAT -ACGGAAAGTTGGGTAGGATGGCAT -ACGGAAAGTTGGGTAGGACGAGAT -ACGGAAAGTTGGGTAGGATACCAC -ACGGAAAGTTGGGTAGGACAGAAC -ACGGAAAGTTGGGTAGGAGTCTAC -ACGGAAAGTTGGGTAGGAACGTAC -ACGGAAAGTTGGGTAGGAAGTGAC -ACGGAAAGTTGGGTAGGACTGTAG -ACGGAAAGTTGGGTAGGACCTAAG -ACGGAAAGTTGGGTAGGAGTTCAG -ACGGAAAGTTGGGTAGGAGCATAG -ACGGAAAGTTGGGTAGGAGACAAG -ACGGAAAGTTGGGTAGGAAAGCAG -ACGGAAAGTTGGGTAGGACGTCAA -ACGGAAAGTTGGGTAGGAGCTGAA -ACGGAAAGTTGGGTAGGAAGTACG -ACGGAAAGTTGGGTAGGAATCCGA -ACGGAAAGTTGGGTAGGAATGGGA -ACGGAAAGTTGGGTAGGAGTGCAA -ACGGAAAGTTGGGTAGGAGAGGAA -ACGGAAAGTTGGGTAGGACAGGTA -ACGGAAAGTTGGGTAGGAGACTCT -ACGGAAAGTTGGGTAGGAAGTCCT -ACGGAAAGTTGGGTAGGATAAGCC -ACGGAAAGTTGGGTAGGAATAGCC -ACGGAAAGTTGGGTAGGATAACCG -ACGGAAAGTTGGGTAGGAATGCCA -ACGGAAAGTTGGTCTTCGGGAAAC -ACGGAAAGTTGGTCTTCGAACACC -ACGGAAAGTTGGTCTTCGATCGAG -ACGGAAAGTTGGTCTTCGCTCCTT -ACGGAAAGTTGGTCTTCGCCTGTT -ACGGAAAGTTGGTCTTCGCGGTTT -ACGGAAAGTTGGTCTTCGGTGGTT -ACGGAAAGTTGGTCTTCGGCCTTT -ACGGAAAGTTGGTCTTCGGGTCTT -ACGGAAAGTTGGTCTTCGACGCTT -ACGGAAAGTTGGTCTTCGAGCGTT -ACGGAAAGTTGGTCTTCGTTCGTC -ACGGAAAGTTGGTCTTCGTCTCTC -ACGGAAAGTTGGTCTTCGTGGATC -ACGGAAAGTTGGTCTTCGCACTTC -ACGGAAAGTTGGTCTTCGGTACTC -ACGGAAAGTTGGTCTTCGGATGTC -ACGGAAAGTTGGTCTTCGACAGTC -ACGGAAAGTTGGTCTTCGTTGCTG -ACGGAAAGTTGGTCTTCGTCCATG -ACGGAAAGTTGGTCTTCGTGTGTG -ACGGAAAGTTGGTCTTCGCTAGTG -ACGGAAAGTTGGTCTTCGCATCTG -ACGGAAAGTTGGTCTTCGGAGTTG -ACGGAAAGTTGGTCTTCGAGACTG -ACGGAAAGTTGGTCTTCGTCGGTA -ACGGAAAGTTGGTCTTCGTGCCTA -ACGGAAAGTTGGTCTTCGCCACTA -ACGGAAAGTTGGTCTTCGGGAGTA -ACGGAAAGTTGGTCTTCGTCGTCT -ACGGAAAGTTGGTCTTCGTGCACT -ACGGAAAGTTGGTCTTCGCTGACT -ACGGAAAGTTGGTCTTCGCAACCT -ACGGAAAGTTGGTCTTCGGCTACT -ACGGAAAGTTGGTCTTCGGGATCT -ACGGAAAGTTGGTCTTCGAAGGCT -ACGGAAAGTTGGTCTTCGTCAACC -ACGGAAAGTTGGTCTTCGTGTTCC -ACGGAAAGTTGGTCTTCGATTCCC -ACGGAAAGTTGGTCTTCGTTCTCG -ACGGAAAGTTGGTCTTCGTAGACG -ACGGAAAGTTGGTCTTCGGTAACG -ACGGAAAGTTGGTCTTCGACTTCG -ACGGAAAGTTGGTCTTCGTACGCA -ACGGAAAGTTGGTCTTCGCTTGCA -ACGGAAAGTTGGTCTTCGCGAACA -ACGGAAAGTTGGTCTTCGCAGTCA -ACGGAAAGTTGGTCTTCGGATCCA -ACGGAAAGTTGGTCTTCGACGACA -ACGGAAAGTTGGTCTTCGAGCTCA -ACGGAAAGTTGGTCTTCGTCACGT -ACGGAAAGTTGGTCTTCGCGTAGT -ACGGAAAGTTGGTCTTCGGTCAGT -ACGGAAAGTTGGTCTTCGGAAGGT -ACGGAAAGTTGGTCTTCGAACCGT -ACGGAAAGTTGGTCTTCGTTGTGC -ACGGAAAGTTGGTCTTCGCTAAGC -ACGGAAAGTTGGTCTTCGACTAGC -ACGGAAAGTTGGTCTTCGAGATGC -ACGGAAAGTTGGTCTTCGTGAAGG -ACGGAAAGTTGGTCTTCGCAATGG -ACGGAAAGTTGGTCTTCGATGAGG -ACGGAAAGTTGGTCTTCGAATGGG -ACGGAAAGTTGGTCTTCGTCCTGA -ACGGAAAGTTGGTCTTCGTAGCGA -ACGGAAAGTTGGTCTTCGCACAGA -ACGGAAAGTTGGTCTTCGGCAAGA -ACGGAAAGTTGGTCTTCGGGTTGA -ACGGAAAGTTGGTCTTCGTCCGAT -ACGGAAAGTTGGTCTTCGTGGCAT -ACGGAAAGTTGGTCTTCGCGAGAT -ACGGAAAGTTGGTCTTCGTACCAC -ACGGAAAGTTGGTCTTCGCAGAAC -ACGGAAAGTTGGTCTTCGGTCTAC -ACGGAAAGTTGGTCTTCGACGTAC -ACGGAAAGTTGGTCTTCGAGTGAC -ACGGAAAGTTGGTCTTCGCTGTAG -ACGGAAAGTTGGTCTTCGCCTAAG -ACGGAAAGTTGGTCTTCGGTTCAG -ACGGAAAGTTGGTCTTCGGCATAG -ACGGAAAGTTGGTCTTCGGACAAG -ACGGAAAGTTGGTCTTCGAAGCAG -ACGGAAAGTTGGTCTTCGCGTCAA -ACGGAAAGTTGGTCTTCGGCTGAA -ACGGAAAGTTGGTCTTCGAGTACG -ACGGAAAGTTGGTCTTCGATCCGA -ACGGAAAGTTGGTCTTCGATGGGA -ACGGAAAGTTGGTCTTCGGTGCAA -ACGGAAAGTTGGTCTTCGGAGGAA -ACGGAAAGTTGGTCTTCGCAGGTA -ACGGAAAGTTGGTCTTCGGACTCT -ACGGAAAGTTGGTCTTCGAGTCCT -ACGGAAAGTTGGTCTTCGTAAGCC -ACGGAAAGTTGGTCTTCGATAGCC -ACGGAAAGTTGGTCTTCGTAACCG -ACGGAAAGTTGGTCTTCGATGCCA -ACGGAAAGTTGGACTTGCGGAAAC -ACGGAAAGTTGGACTTGCAACACC -ACGGAAAGTTGGACTTGCATCGAG -ACGGAAAGTTGGACTTGCCTCCTT -ACGGAAAGTTGGACTTGCCCTGTT -ACGGAAAGTTGGACTTGCCGGTTT -ACGGAAAGTTGGACTTGCGTGGTT -ACGGAAAGTTGGACTTGCGCCTTT -ACGGAAAGTTGGACTTGCGGTCTT -ACGGAAAGTTGGACTTGCACGCTT -ACGGAAAGTTGGACTTGCAGCGTT -ACGGAAAGTTGGACTTGCTTCGTC -ACGGAAAGTTGGACTTGCTCTCTC -ACGGAAAGTTGGACTTGCTGGATC -ACGGAAAGTTGGACTTGCCACTTC -ACGGAAAGTTGGACTTGCGTACTC -ACGGAAAGTTGGACTTGCGATGTC -ACGGAAAGTTGGACTTGCACAGTC -ACGGAAAGTTGGACTTGCTTGCTG -ACGGAAAGTTGGACTTGCTCCATG -ACGGAAAGTTGGACTTGCTGTGTG -ACGGAAAGTTGGACTTGCCTAGTG -ACGGAAAGTTGGACTTGCCATCTG -ACGGAAAGTTGGACTTGCGAGTTG -ACGGAAAGTTGGACTTGCAGACTG -ACGGAAAGTTGGACTTGCTCGGTA -ACGGAAAGTTGGACTTGCTGCCTA -ACGGAAAGTTGGACTTGCCCACTA -ACGGAAAGTTGGACTTGCGGAGTA -ACGGAAAGTTGGACTTGCTCGTCT -ACGGAAAGTTGGACTTGCTGCACT -ACGGAAAGTTGGACTTGCCTGACT -ACGGAAAGTTGGACTTGCCAACCT -ACGGAAAGTTGGACTTGCGCTACT -ACGGAAAGTTGGACTTGCGGATCT -ACGGAAAGTTGGACTTGCAAGGCT -ACGGAAAGTTGGACTTGCTCAACC -ACGGAAAGTTGGACTTGCTGTTCC -ACGGAAAGTTGGACTTGCATTCCC -ACGGAAAGTTGGACTTGCTTCTCG -ACGGAAAGTTGGACTTGCTAGACG -ACGGAAAGTTGGACTTGCGTAACG -ACGGAAAGTTGGACTTGCACTTCG -ACGGAAAGTTGGACTTGCTACGCA -ACGGAAAGTTGGACTTGCCTTGCA -ACGGAAAGTTGGACTTGCCGAACA -ACGGAAAGTTGGACTTGCCAGTCA -ACGGAAAGTTGGACTTGCGATCCA -ACGGAAAGTTGGACTTGCACGACA -ACGGAAAGTTGGACTTGCAGCTCA -ACGGAAAGTTGGACTTGCTCACGT -ACGGAAAGTTGGACTTGCCGTAGT -ACGGAAAGTTGGACTTGCGTCAGT -ACGGAAAGTTGGACTTGCGAAGGT -ACGGAAAGTTGGACTTGCAACCGT -ACGGAAAGTTGGACTTGCTTGTGC -ACGGAAAGTTGGACTTGCCTAAGC -ACGGAAAGTTGGACTTGCACTAGC -ACGGAAAGTTGGACTTGCAGATGC -ACGGAAAGTTGGACTTGCTGAAGG -ACGGAAAGTTGGACTTGCCAATGG -ACGGAAAGTTGGACTTGCATGAGG -ACGGAAAGTTGGACTTGCAATGGG -ACGGAAAGTTGGACTTGCTCCTGA -ACGGAAAGTTGGACTTGCTAGCGA -ACGGAAAGTTGGACTTGCCACAGA -ACGGAAAGTTGGACTTGCGCAAGA -ACGGAAAGTTGGACTTGCGGTTGA -ACGGAAAGTTGGACTTGCTCCGAT -ACGGAAAGTTGGACTTGCTGGCAT -ACGGAAAGTTGGACTTGCCGAGAT -ACGGAAAGTTGGACTTGCTACCAC -ACGGAAAGTTGGACTTGCCAGAAC -ACGGAAAGTTGGACTTGCGTCTAC -ACGGAAAGTTGGACTTGCACGTAC -ACGGAAAGTTGGACTTGCAGTGAC -ACGGAAAGTTGGACTTGCCTGTAG -ACGGAAAGTTGGACTTGCCCTAAG -ACGGAAAGTTGGACTTGCGTTCAG -ACGGAAAGTTGGACTTGCGCATAG -ACGGAAAGTTGGACTTGCGACAAG -ACGGAAAGTTGGACTTGCAAGCAG -ACGGAAAGTTGGACTTGCCGTCAA -ACGGAAAGTTGGACTTGCGCTGAA -ACGGAAAGTTGGACTTGCAGTACG -ACGGAAAGTTGGACTTGCATCCGA -ACGGAAAGTTGGACTTGCATGGGA -ACGGAAAGTTGGACTTGCGTGCAA -ACGGAAAGTTGGACTTGCGAGGAA -ACGGAAAGTTGGACTTGCCAGGTA -ACGGAAAGTTGGACTTGCGACTCT -ACGGAAAGTTGGACTTGCAGTCCT -ACGGAAAGTTGGACTTGCTAAGCC -ACGGAAAGTTGGACTTGCATAGCC -ACGGAAAGTTGGACTTGCTAACCG -ACGGAAAGTTGGACTTGCATGCCA -ACGGAAAGTTGGACTCTGGGAAAC -ACGGAAAGTTGGACTCTGAACACC -ACGGAAAGTTGGACTCTGATCGAG -ACGGAAAGTTGGACTCTGCTCCTT -ACGGAAAGTTGGACTCTGCCTGTT -ACGGAAAGTTGGACTCTGCGGTTT -ACGGAAAGTTGGACTCTGGTGGTT -ACGGAAAGTTGGACTCTGGCCTTT -ACGGAAAGTTGGACTCTGGGTCTT -ACGGAAAGTTGGACTCTGACGCTT -ACGGAAAGTTGGACTCTGAGCGTT -ACGGAAAGTTGGACTCTGTTCGTC -ACGGAAAGTTGGACTCTGTCTCTC -ACGGAAAGTTGGACTCTGTGGATC -ACGGAAAGTTGGACTCTGCACTTC -ACGGAAAGTTGGACTCTGGTACTC -ACGGAAAGTTGGACTCTGGATGTC -ACGGAAAGTTGGACTCTGACAGTC -ACGGAAAGTTGGACTCTGTTGCTG -ACGGAAAGTTGGACTCTGTCCATG -ACGGAAAGTTGGACTCTGTGTGTG -ACGGAAAGTTGGACTCTGCTAGTG -ACGGAAAGTTGGACTCTGCATCTG -ACGGAAAGTTGGACTCTGGAGTTG -ACGGAAAGTTGGACTCTGAGACTG -ACGGAAAGTTGGACTCTGTCGGTA -ACGGAAAGTTGGACTCTGTGCCTA -ACGGAAAGTTGGACTCTGCCACTA -ACGGAAAGTTGGACTCTGGGAGTA -ACGGAAAGTTGGACTCTGTCGTCT -ACGGAAAGTTGGACTCTGTGCACT -ACGGAAAGTTGGACTCTGCTGACT -ACGGAAAGTTGGACTCTGCAACCT -ACGGAAAGTTGGACTCTGGCTACT -ACGGAAAGTTGGACTCTGGGATCT -ACGGAAAGTTGGACTCTGAAGGCT -ACGGAAAGTTGGACTCTGTCAACC -ACGGAAAGTTGGACTCTGTGTTCC -ACGGAAAGTTGGACTCTGATTCCC -ACGGAAAGTTGGACTCTGTTCTCG -ACGGAAAGTTGGACTCTGTAGACG -ACGGAAAGTTGGACTCTGGTAACG -ACGGAAAGTTGGACTCTGACTTCG -ACGGAAAGTTGGACTCTGTACGCA -ACGGAAAGTTGGACTCTGCTTGCA -ACGGAAAGTTGGACTCTGCGAACA -ACGGAAAGTTGGACTCTGCAGTCA -ACGGAAAGTTGGACTCTGGATCCA -ACGGAAAGTTGGACTCTGACGACA -ACGGAAAGTTGGACTCTGAGCTCA -ACGGAAAGTTGGACTCTGTCACGT -ACGGAAAGTTGGACTCTGCGTAGT -ACGGAAAGTTGGACTCTGGTCAGT -ACGGAAAGTTGGACTCTGGAAGGT -ACGGAAAGTTGGACTCTGAACCGT -ACGGAAAGTTGGACTCTGTTGTGC -ACGGAAAGTTGGACTCTGCTAAGC -ACGGAAAGTTGGACTCTGACTAGC -ACGGAAAGTTGGACTCTGAGATGC -ACGGAAAGTTGGACTCTGTGAAGG -ACGGAAAGTTGGACTCTGCAATGG -ACGGAAAGTTGGACTCTGATGAGG -ACGGAAAGTTGGACTCTGAATGGG -ACGGAAAGTTGGACTCTGTCCTGA -ACGGAAAGTTGGACTCTGTAGCGA -ACGGAAAGTTGGACTCTGCACAGA -ACGGAAAGTTGGACTCTGGCAAGA -ACGGAAAGTTGGACTCTGGGTTGA -ACGGAAAGTTGGACTCTGTCCGAT -ACGGAAAGTTGGACTCTGTGGCAT -ACGGAAAGTTGGACTCTGCGAGAT -ACGGAAAGTTGGACTCTGTACCAC -ACGGAAAGTTGGACTCTGCAGAAC -ACGGAAAGTTGGACTCTGGTCTAC -ACGGAAAGTTGGACTCTGACGTAC -ACGGAAAGTTGGACTCTGAGTGAC -ACGGAAAGTTGGACTCTGCTGTAG -ACGGAAAGTTGGACTCTGCCTAAG -ACGGAAAGTTGGACTCTGGTTCAG -ACGGAAAGTTGGACTCTGGCATAG -ACGGAAAGTTGGACTCTGGACAAG -ACGGAAAGTTGGACTCTGAAGCAG -ACGGAAAGTTGGACTCTGCGTCAA -ACGGAAAGTTGGACTCTGGCTGAA -ACGGAAAGTTGGACTCTGAGTACG -ACGGAAAGTTGGACTCTGATCCGA -ACGGAAAGTTGGACTCTGATGGGA -ACGGAAAGTTGGACTCTGGTGCAA -ACGGAAAGTTGGACTCTGGAGGAA -ACGGAAAGTTGGACTCTGCAGGTA -ACGGAAAGTTGGACTCTGGACTCT -ACGGAAAGTTGGACTCTGAGTCCT -ACGGAAAGTTGGACTCTGTAAGCC -ACGGAAAGTTGGACTCTGATAGCC -ACGGAAAGTTGGACTCTGTAACCG -ACGGAAAGTTGGACTCTGATGCCA -ACGGAAAGTTGGCCTCAAGGAAAC -ACGGAAAGTTGGCCTCAAAACACC -ACGGAAAGTTGGCCTCAAATCGAG -ACGGAAAGTTGGCCTCAACTCCTT -ACGGAAAGTTGGCCTCAACCTGTT -ACGGAAAGTTGGCCTCAACGGTTT -ACGGAAAGTTGGCCTCAAGTGGTT -ACGGAAAGTTGGCCTCAAGCCTTT -ACGGAAAGTTGGCCTCAAGGTCTT -ACGGAAAGTTGGCCTCAAACGCTT -ACGGAAAGTTGGCCTCAAAGCGTT -ACGGAAAGTTGGCCTCAATTCGTC -ACGGAAAGTTGGCCTCAATCTCTC -ACGGAAAGTTGGCCTCAATGGATC -ACGGAAAGTTGGCCTCAACACTTC -ACGGAAAGTTGGCCTCAAGTACTC -ACGGAAAGTTGGCCTCAAGATGTC -ACGGAAAGTTGGCCTCAAACAGTC -ACGGAAAGTTGGCCTCAATTGCTG -ACGGAAAGTTGGCCTCAATCCATG -ACGGAAAGTTGGCCTCAATGTGTG -ACGGAAAGTTGGCCTCAACTAGTG -ACGGAAAGTTGGCCTCAACATCTG -ACGGAAAGTTGGCCTCAAGAGTTG -ACGGAAAGTTGGCCTCAAAGACTG -ACGGAAAGTTGGCCTCAATCGGTA -ACGGAAAGTTGGCCTCAATGCCTA -ACGGAAAGTTGGCCTCAACCACTA -ACGGAAAGTTGGCCTCAAGGAGTA -ACGGAAAGTTGGCCTCAATCGTCT -ACGGAAAGTTGGCCTCAATGCACT -ACGGAAAGTTGGCCTCAACTGACT -ACGGAAAGTTGGCCTCAACAACCT -ACGGAAAGTTGGCCTCAAGCTACT -ACGGAAAGTTGGCCTCAAGGATCT -ACGGAAAGTTGGCCTCAAAAGGCT -ACGGAAAGTTGGCCTCAATCAACC -ACGGAAAGTTGGCCTCAATGTTCC -ACGGAAAGTTGGCCTCAAATTCCC -ACGGAAAGTTGGCCTCAATTCTCG -ACGGAAAGTTGGCCTCAATAGACG -ACGGAAAGTTGGCCTCAAGTAACG -ACGGAAAGTTGGCCTCAAACTTCG -ACGGAAAGTTGGCCTCAATACGCA -ACGGAAAGTTGGCCTCAACTTGCA -ACGGAAAGTTGGCCTCAACGAACA -ACGGAAAGTTGGCCTCAACAGTCA -ACGGAAAGTTGGCCTCAAGATCCA -ACGGAAAGTTGGCCTCAAACGACA -ACGGAAAGTTGGCCTCAAAGCTCA -ACGGAAAGTTGGCCTCAATCACGT -ACGGAAAGTTGGCCTCAACGTAGT -ACGGAAAGTTGGCCTCAAGTCAGT -ACGGAAAGTTGGCCTCAAGAAGGT -ACGGAAAGTTGGCCTCAAAACCGT -ACGGAAAGTTGGCCTCAATTGTGC -ACGGAAAGTTGGCCTCAACTAAGC -ACGGAAAGTTGGCCTCAAACTAGC -ACGGAAAGTTGGCCTCAAAGATGC -ACGGAAAGTTGGCCTCAATGAAGG -ACGGAAAGTTGGCCTCAACAATGG -ACGGAAAGTTGGCCTCAAATGAGG -ACGGAAAGTTGGCCTCAAAATGGG -ACGGAAAGTTGGCCTCAATCCTGA -ACGGAAAGTTGGCCTCAATAGCGA -ACGGAAAGTTGGCCTCAACACAGA -ACGGAAAGTTGGCCTCAAGCAAGA -ACGGAAAGTTGGCCTCAAGGTTGA -ACGGAAAGTTGGCCTCAATCCGAT -ACGGAAAGTTGGCCTCAATGGCAT -ACGGAAAGTTGGCCTCAACGAGAT -ACGGAAAGTTGGCCTCAATACCAC -ACGGAAAGTTGGCCTCAACAGAAC -ACGGAAAGTTGGCCTCAAGTCTAC -ACGGAAAGTTGGCCTCAAACGTAC -ACGGAAAGTTGGCCTCAAAGTGAC -ACGGAAAGTTGGCCTCAACTGTAG -ACGGAAAGTTGGCCTCAACCTAAG -ACGGAAAGTTGGCCTCAAGTTCAG -ACGGAAAGTTGGCCTCAAGCATAG -ACGGAAAGTTGGCCTCAAGACAAG -ACGGAAAGTTGGCCTCAAAAGCAG -ACGGAAAGTTGGCCTCAACGTCAA -ACGGAAAGTTGGCCTCAAGCTGAA -ACGGAAAGTTGGCCTCAAAGTACG -ACGGAAAGTTGGCCTCAAATCCGA -ACGGAAAGTTGGCCTCAAATGGGA -ACGGAAAGTTGGCCTCAAGTGCAA -ACGGAAAGTTGGCCTCAAGAGGAA -ACGGAAAGTTGGCCTCAACAGGTA -ACGGAAAGTTGGCCTCAAGACTCT -ACGGAAAGTTGGCCTCAAAGTCCT -ACGGAAAGTTGGCCTCAATAAGCC -ACGGAAAGTTGGCCTCAAATAGCC -ACGGAAAGTTGGCCTCAATAACCG -ACGGAAAGTTGGCCTCAAATGCCA -ACGGAAAGTTGGACTGCTGGAAAC -ACGGAAAGTTGGACTGCTAACACC -ACGGAAAGTTGGACTGCTATCGAG -ACGGAAAGTTGGACTGCTCTCCTT -ACGGAAAGTTGGACTGCTCCTGTT -ACGGAAAGTTGGACTGCTCGGTTT -ACGGAAAGTTGGACTGCTGTGGTT -ACGGAAAGTTGGACTGCTGCCTTT -ACGGAAAGTTGGACTGCTGGTCTT -ACGGAAAGTTGGACTGCTACGCTT -ACGGAAAGTTGGACTGCTAGCGTT -ACGGAAAGTTGGACTGCTTTCGTC -ACGGAAAGTTGGACTGCTTCTCTC -ACGGAAAGTTGGACTGCTTGGATC -ACGGAAAGTTGGACTGCTCACTTC -ACGGAAAGTTGGACTGCTGTACTC -ACGGAAAGTTGGACTGCTGATGTC -ACGGAAAGTTGGACTGCTACAGTC -ACGGAAAGTTGGACTGCTTTGCTG -ACGGAAAGTTGGACTGCTTCCATG -ACGGAAAGTTGGACTGCTTGTGTG -ACGGAAAGTTGGACTGCTCTAGTG -ACGGAAAGTTGGACTGCTCATCTG -ACGGAAAGTTGGACTGCTGAGTTG -ACGGAAAGTTGGACTGCTAGACTG -ACGGAAAGTTGGACTGCTTCGGTA -ACGGAAAGTTGGACTGCTTGCCTA -ACGGAAAGTTGGACTGCTCCACTA -ACGGAAAGTTGGACTGCTGGAGTA -ACGGAAAGTTGGACTGCTTCGTCT -ACGGAAAGTTGGACTGCTTGCACT -ACGGAAAGTTGGACTGCTCTGACT -ACGGAAAGTTGGACTGCTCAACCT -ACGGAAAGTTGGACTGCTGCTACT -ACGGAAAGTTGGACTGCTGGATCT -ACGGAAAGTTGGACTGCTAAGGCT -ACGGAAAGTTGGACTGCTTCAACC -ACGGAAAGTTGGACTGCTTGTTCC -ACGGAAAGTTGGACTGCTATTCCC -ACGGAAAGTTGGACTGCTTTCTCG -ACGGAAAGTTGGACTGCTTAGACG -ACGGAAAGTTGGACTGCTGTAACG -ACGGAAAGTTGGACTGCTACTTCG -ACGGAAAGTTGGACTGCTTACGCA -ACGGAAAGTTGGACTGCTCTTGCA -ACGGAAAGTTGGACTGCTCGAACA -ACGGAAAGTTGGACTGCTCAGTCA -ACGGAAAGTTGGACTGCTGATCCA -ACGGAAAGTTGGACTGCTACGACA -ACGGAAAGTTGGACTGCTAGCTCA -ACGGAAAGTTGGACTGCTTCACGT -ACGGAAAGTTGGACTGCTCGTAGT -ACGGAAAGTTGGACTGCTGTCAGT -ACGGAAAGTTGGACTGCTGAAGGT -ACGGAAAGTTGGACTGCTAACCGT -ACGGAAAGTTGGACTGCTTTGTGC -ACGGAAAGTTGGACTGCTCTAAGC -ACGGAAAGTTGGACTGCTACTAGC -ACGGAAAGTTGGACTGCTAGATGC -ACGGAAAGTTGGACTGCTTGAAGG -ACGGAAAGTTGGACTGCTCAATGG -ACGGAAAGTTGGACTGCTATGAGG -ACGGAAAGTTGGACTGCTAATGGG -ACGGAAAGTTGGACTGCTTCCTGA -ACGGAAAGTTGGACTGCTTAGCGA -ACGGAAAGTTGGACTGCTCACAGA -ACGGAAAGTTGGACTGCTGCAAGA -ACGGAAAGTTGGACTGCTGGTTGA -ACGGAAAGTTGGACTGCTTCCGAT -ACGGAAAGTTGGACTGCTTGGCAT -ACGGAAAGTTGGACTGCTCGAGAT -ACGGAAAGTTGGACTGCTTACCAC -ACGGAAAGTTGGACTGCTCAGAAC -ACGGAAAGTTGGACTGCTGTCTAC -ACGGAAAGTTGGACTGCTACGTAC -ACGGAAAGTTGGACTGCTAGTGAC -ACGGAAAGTTGGACTGCTCTGTAG -ACGGAAAGTTGGACTGCTCCTAAG -ACGGAAAGTTGGACTGCTGTTCAG -ACGGAAAGTTGGACTGCTGCATAG -ACGGAAAGTTGGACTGCTGACAAG -ACGGAAAGTTGGACTGCTAAGCAG -ACGGAAAGTTGGACTGCTCGTCAA -ACGGAAAGTTGGACTGCTGCTGAA -ACGGAAAGTTGGACTGCTAGTACG -ACGGAAAGTTGGACTGCTATCCGA -ACGGAAAGTTGGACTGCTATGGGA -ACGGAAAGTTGGACTGCTGTGCAA -ACGGAAAGTTGGACTGCTGAGGAA -ACGGAAAGTTGGACTGCTCAGGTA -ACGGAAAGTTGGACTGCTGACTCT -ACGGAAAGTTGGACTGCTAGTCCT -ACGGAAAGTTGGACTGCTTAAGCC -ACGGAAAGTTGGACTGCTATAGCC -ACGGAAAGTTGGACTGCTTAACCG -ACGGAAAGTTGGACTGCTATGCCA -ACGGAAAGTTGGTCTGGAGGAAAC -ACGGAAAGTTGGTCTGGAAACACC -ACGGAAAGTTGGTCTGGAATCGAG -ACGGAAAGTTGGTCTGGACTCCTT -ACGGAAAGTTGGTCTGGACCTGTT -ACGGAAAGTTGGTCTGGACGGTTT -ACGGAAAGTTGGTCTGGAGTGGTT -ACGGAAAGTTGGTCTGGAGCCTTT -ACGGAAAGTTGGTCTGGAGGTCTT -ACGGAAAGTTGGTCTGGAACGCTT -ACGGAAAGTTGGTCTGGAAGCGTT -ACGGAAAGTTGGTCTGGATTCGTC -ACGGAAAGTTGGTCTGGATCTCTC -ACGGAAAGTTGGTCTGGATGGATC -ACGGAAAGTTGGTCTGGACACTTC -ACGGAAAGTTGGTCTGGAGTACTC -ACGGAAAGTTGGTCTGGAGATGTC -ACGGAAAGTTGGTCTGGAACAGTC -ACGGAAAGTTGGTCTGGATTGCTG -ACGGAAAGTTGGTCTGGATCCATG -ACGGAAAGTTGGTCTGGATGTGTG -ACGGAAAGTTGGTCTGGACTAGTG -ACGGAAAGTTGGTCTGGACATCTG -ACGGAAAGTTGGTCTGGAGAGTTG -ACGGAAAGTTGGTCTGGAAGACTG -ACGGAAAGTTGGTCTGGATCGGTA -ACGGAAAGTTGGTCTGGATGCCTA -ACGGAAAGTTGGTCTGGACCACTA -ACGGAAAGTTGGTCTGGAGGAGTA -ACGGAAAGTTGGTCTGGATCGTCT -ACGGAAAGTTGGTCTGGATGCACT -ACGGAAAGTTGGTCTGGACTGACT -ACGGAAAGTTGGTCTGGACAACCT -ACGGAAAGTTGGTCTGGAGCTACT -ACGGAAAGTTGGTCTGGAGGATCT -ACGGAAAGTTGGTCTGGAAAGGCT -ACGGAAAGTTGGTCTGGATCAACC -ACGGAAAGTTGGTCTGGATGTTCC -ACGGAAAGTTGGTCTGGAATTCCC -ACGGAAAGTTGGTCTGGATTCTCG -ACGGAAAGTTGGTCTGGATAGACG -ACGGAAAGTTGGTCTGGAGTAACG -ACGGAAAGTTGGTCTGGAACTTCG -ACGGAAAGTTGGTCTGGATACGCA -ACGGAAAGTTGGTCTGGACTTGCA -ACGGAAAGTTGGTCTGGACGAACA -ACGGAAAGTTGGTCTGGACAGTCA -ACGGAAAGTTGGTCTGGAGATCCA -ACGGAAAGTTGGTCTGGAACGACA -ACGGAAAGTTGGTCTGGAAGCTCA -ACGGAAAGTTGGTCTGGATCACGT -ACGGAAAGTTGGTCTGGACGTAGT -ACGGAAAGTTGGTCTGGAGTCAGT -ACGGAAAGTTGGTCTGGAGAAGGT -ACGGAAAGTTGGTCTGGAAACCGT -ACGGAAAGTTGGTCTGGATTGTGC -ACGGAAAGTTGGTCTGGACTAAGC -ACGGAAAGTTGGTCTGGAACTAGC -ACGGAAAGTTGGTCTGGAAGATGC -ACGGAAAGTTGGTCTGGATGAAGG -ACGGAAAGTTGGTCTGGACAATGG -ACGGAAAGTTGGTCTGGAATGAGG -ACGGAAAGTTGGTCTGGAAATGGG -ACGGAAAGTTGGTCTGGATCCTGA -ACGGAAAGTTGGTCTGGATAGCGA -ACGGAAAGTTGGTCTGGACACAGA -ACGGAAAGTTGGTCTGGAGCAAGA -ACGGAAAGTTGGTCTGGAGGTTGA -ACGGAAAGTTGGTCTGGATCCGAT -ACGGAAAGTTGGTCTGGATGGCAT -ACGGAAAGTTGGTCTGGACGAGAT -ACGGAAAGTTGGTCTGGATACCAC -ACGGAAAGTTGGTCTGGACAGAAC -ACGGAAAGTTGGTCTGGAGTCTAC -ACGGAAAGTTGGTCTGGAACGTAC -ACGGAAAGTTGGTCTGGAAGTGAC -ACGGAAAGTTGGTCTGGACTGTAG -ACGGAAAGTTGGTCTGGACCTAAG -ACGGAAAGTTGGTCTGGAGTTCAG -ACGGAAAGTTGGTCTGGAGCATAG -ACGGAAAGTTGGTCTGGAGACAAG -ACGGAAAGTTGGTCTGGAAAGCAG -ACGGAAAGTTGGTCTGGACGTCAA -ACGGAAAGTTGGTCTGGAGCTGAA -ACGGAAAGTTGGTCTGGAAGTACG -ACGGAAAGTTGGTCTGGAATCCGA -ACGGAAAGTTGGTCTGGAATGGGA -ACGGAAAGTTGGTCTGGAGTGCAA -ACGGAAAGTTGGTCTGGAGAGGAA -ACGGAAAGTTGGTCTGGACAGGTA -ACGGAAAGTTGGTCTGGAGACTCT -ACGGAAAGTTGGTCTGGAAGTCCT -ACGGAAAGTTGGTCTGGATAAGCC -ACGGAAAGTTGGTCTGGAATAGCC -ACGGAAAGTTGGTCTGGATAACCG -ACGGAAAGTTGGTCTGGAATGCCA -ACGGAAAGTTGGGCTAAGGGAAAC -ACGGAAAGTTGGGCTAAGAACACC -ACGGAAAGTTGGGCTAAGATCGAG -ACGGAAAGTTGGGCTAAGCTCCTT -ACGGAAAGTTGGGCTAAGCCTGTT -ACGGAAAGTTGGGCTAAGCGGTTT -ACGGAAAGTTGGGCTAAGGTGGTT -ACGGAAAGTTGGGCTAAGGCCTTT -ACGGAAAGTTGGGCTAAGGGTCTT -ACGGAAAGTTGGGCTAAGACGCTT -ACGGAAAGTTGGGCTAAGAGCGTT -ACGGAAAGTTGGGCTAAGTTCGTC -ACGGAAAGTTGGGCTAAGTCTCTC -ACGGAAAGTTGGGCTAAGTGGATC -ACGGAAAGTTGGGCTAAGCACTTC -ACGGAAAGTTGGGCTAAGGTACTC -ACGGAAAGTTGGGCTAAGGATGTC -ACGGAAAGTTGGGCTAAGACAGTC -ACGGAAAGTTGGGCTAAGTTGCTG -ACGGAAAGTTGGGCTAAGTCCATG -ACGGAAAGTTGGGCTAAGTGTGTG -ACGGAAAGTTGGGCTAAGCTAGTG -ACGGAAAGTTGGGCTAAGCATCTG -ACGGAAAGTTGGGCTAAGGAGTTG -ACGGAAAGTTGGGCTAAGAGACTG -ACGGAAAGTTGGGCTAAGTCGGTA -ACGGAAAGTTGGGCTAAGTGCCTA -ACGGAAAGTTGGGCTAAGCCACTA -ACGGAAAGTTGGGCTAAGGGAGTA -ACGGAAAGTTGGGCTAAGTCGTCT -ACGGAAAGTTGGGCTAAGTGCACT -ACGGAAAGTTGGGCTAAGCTGACT -ACGGAAAGTTGGGCTAAGCAACCT -ACGGAAAGTTGGGCTAAGGCTACT -ACGGAAAGTTGGGCTAAGGGATCT -ACGGAAAGTTGGGCTAAGAAGGCT -ACGGAAAGTTGGGCTAAGTCAACC -ACGGAAAGTTGGGCTAAGTGTTCC -ACGGAAAGTTGGGCTAAGATTCCC -ACGGAAAGTTGGGCTAAGTTCTCG -ACGGAAAGTTGGGCTAAGTAGACG -ACGGAAAGTTGGGCTAAGGTAACG -ACGGAAAGTTGGGCTAAGACTTCG -ACGGAAAGTTGGGCTAAGTACGCA -ACGGAAAGTTGGGCTAAGCTTGCA -ACGGAAAGTTGGGCTAAGCGAACA -ACGGAAAGTTGGGCTAAGCAGTCA -ACGGAAAGTTGGGCTAAGGATCCA -ACGGAAAGTTGGGCTAAGACGACA -ACGGAAAGTTGGGCTAAGAGCTCA -ACGGAAAGTTGGGCTAAGTCACGT -ACGGAAAGTTGGGCTAAGCGTAGT -ACGGAAAGTTGGGCTAAGGTCAGT -ACGGAAAGTTGGGCTAAGGAAGGT -ACGGAAAGTTGGGCTAAGAACCGT -ACGGAAAGTTGGGCTAAGTTGTGC -ACGGAAAGTTGGGCTAAGCTAAGC -ACGGAAAGTTGGGCTAAGACTAGC -ACGGAAAGTTGGGCTAAGAGATGC -ACGGAAAGTTGGGCTAAGTGAAGG -ACGGAAAGTTGGGCTAAGCAATGG -ACGGAAAGTTGGGCTAAGATGAGG -ACGGAAAGTTGGGCTAAGAATGGG -ACGGAAAGTTGGGCTAAGTCCTGA -ACGGAAAGTTGGGCTAAGTAGCGA -ACGGAAAGTTGGGCTAAGCACAGA -ACGGAAAGTTGGGCTAAGGCAAGA -ACGGAAAGTTGGGCTAAGGGTTGA -ACGGAAAGTTGGGCTAAGTCCGAT -ACGGAAAGTTGGGCTAAGTGGCAT -ACGGAAAGTTGGGCTAAGCGAGAT -ACGGAAAGTTGGGCTAAGTACCAC -ACGGAAAGTTGGGCTAAGCAGAAC -ACGGAAAGTTGGGCTAAGGTCTAC -ACGGAAAGTTGGGCTAAGACGTAC -ACGGAAAGTTGGGCTAAGAGTGAC -ACGGAAAGTTGGGCTAAGCTGTAG -ACGGAAAGTTGGGCTAAGCCTAAG -ACGGAAAGTTGGGCTAAGGTTCAG -ACGGAAAGTTGGGCTAAGGCATAG -ACGGAAAGTTGGGCTAAGGACAAG -ACGGAAAGTTGGGCTAAGAAGCAG -ACGGAAAGTTGGGCTAAGCGTCAA -ACGGAAAGTTGGGCTAAGGCTGAA -ACGGAAAGTTGGGCTAAGAGTACG -ACGGAAAGTTGGGCTAAGATCCGA -ACGGAAAGTTGGGCTAAGATGGGA -ACGGAAAGTTGGGCTAAGGTGCAA -ACGGAAAGTTGGGCTAAGGAGGAA -ACGGAAAGTTGGGCTAAGCAGGTA -ACGGAAAGTTGGGCTAAGGACTCT -ACGGAAAGTTGGGCTAAGAGTCCT -ACGGAAAGTTGGGCTAAGTAAGCC -ACGGAAAGTTGGGCTAAGATAGCC -ACGGAAAGTTGGGCTAAGTAACCG -ACGGAAAGTTGGGCTAAGATGCCA -ACGGAAAGTTGGACCTCAGGAAAC -ACGGAAAGTTGGACCTCAAACACC -ACGGAAAGTTGGACCTCAATCGAG -ACGGAAAGTTGGACCTCACTCCTT -ACGGAAAGTTGGACCTCACCTGTT -ACGGAAAGTTGGACCTCACGGTTT -ACGGAAAGTTGGACCTCAGTGGTT -ACGGAAAGTTGGACCTCAGCCTTT -ACGGAAAGTTGGACCTCAGGTCTT -ACGGAAAGTTGGACCTCAACGCTT -ACGGAAAGTTGGACCTCAAGCGTT -ACGGAAAGTTGGACCTCATTCGTC -ACGGAAAGTTGGACCTCATCTCTC -ACGGAAAGTTGGACCTCATGGATC -ACGGAAAGTTGGACCTCACACTTC -ACGGAAAGTTGGACCTCAGTACTC -ACGGAAAGTTGGACCTCAGATGTC -ACGGAAAGTTGGACCTCAACAGTC -ACGGAAAGTTGGACCTCATTGCTG -ACGGAAAGTTGGACCTCATCCATG -ACGGAAAGTTGGACCTCATGTGTG -ACGGAAAGTTGGACCTCACTAGTG -ACGGAAAGTTGGACCTCACATCTG -ACGGAAAGTTGGACCTCAGAGTTG -ACGGAAAGTTGGACCTCAAGACTG -ACGGAAAGTTGGACCTCATCGGTA -ACGGAAAGTTGGACCTCATGCCTA -ACGGAAAGTTGGACCTCACCACTA -ACGGAAAGTTGGACCTCAGGAGTA -ACGGAAAGTTGGACCTCATCGTCT -ACGGAAAGTTGGACCTCATGCACT -ACGGAAAGTTGGACCTCACTGACT -ACGGAAAGTTGGACCTCACAACCT -ACGGAAAGTTGGACCTCAGCTACT -ACGGAAAGTTGGACCTCAGGATCT -ACGGAAAGTTGGACCTCAAAGGCT -ACGGAAAGTTGGACCTCATCAACC -ACGGAAAGTTGGACCTCATGTTCC -ACGGAAAGTTGGACCTCAATTCCC -ACGGAAAGTTGGACCTCATTCTCG -ACGGAAAGTTGGACCTCATAGACG -ACGGAAAGTTGGACCTCAGTAACG -ACGGAAAGTTGGACCTCAACTTCG -ACGGAAAGTTGGACCTCATACGCA -ACGGAAAGTTGGACCTCACTTGCA -ACGGAAAGTTGGACCTCACGAACA -ACGGAAAGTTGGACCTCACAGTCA -ACGGAAAGTTGGACCTCAGATCCA -ACGGAAAGTTGGACCTCAACGACA -ACGGAAAGTTGGACCTCAAGCTCA -ACGGAAAGTTGGACCTCATCACGT -ACGGAAAGTTGGACCTCACGTAGT -ACGGAAAGTTGGACCTCAGTCAGT -ACGGAAAGTTGGACCTCAGAAGGT -ACGGAAAGTTGGACCTCAAACCGT -ACGGAAAGTTGGACCTCATTGTGC -ACGGAAAGTTGGACCTCACTAAGC -ACGGAAAGTTGGACCTCAACTAGC -ACGGAAAGTTGGACCTCAAGATGC -ACGGAAAGTTGGACCTCATGAAGG -ACGGAAAGTTGGACCTCACAATGG -ACGGAAAGTTGGACCTCAATGAGG -ACGGAAAGTTGGACCTCAAATGGG -ACGGAAAGTTGGACCTCATCCTGA -ACGGAAAGTTGGACCTCATAGCGA -ACGGAAAGTTGGACCTCACACAGA -ACGGAAAGTTGGACCTCAGCAAGA -ACGGAAAGTTGGACCTCAGGTTGA -ACGGAAAGTTGGACCTCATCCGAT -ACGGAAAGTTGGACCTCATGGCAT -ACGGAAAGTTGGACCTCACGAGAT -ACGGAAAGTTGGACCTCATACCAC -ACGGAAAGTTGGACCTCACAGAAC -ACGGAAAGTTGGACCTCAGTCTAC -ACGGAAAGTTGGACCTCAACGTAC -ACGGAAAGTTGGACCTCAAGTGAC -ACGGAAAGTTGGACCTCACTGTAG -ACGGAAAGTTGGACCTCACCTAAG -ACGGAAAGTTGGACCTCAGTTCAG -ACGGAAAGTTGGACCTCAGCATAG -ACGGAAAGTTGGACCTCAGACAAG -ACGGAAAGTTGGACCTCAAAGCAG -ACGGAAAGTTGGACCTCACGTCAA -ACGGAAAGTTGGACCTCAGCTGAA -ACGGAAAGTTGGACCTCAAGTACG -ACGGAAAGTTGGACCTCAATCCGA -ACGGAAAGTTGGACCTCAATGGGA -ACGGAAAGTTGGACCTCAGTGCAA -ACGGAAAGTTGGACCTCAGAGGAA -ACGGAAAGTTGGACCTCACAGGTA -ACGGAAAGTTGGACCTCAGACTCT -ACGGAAAGTTGGACCTCAAGTCCT -ACGGAAAGTTGGACCTCATAAGCC -ACGGAAAGTTGGACCTCAATAGCC -ACGGAAAGTTGGACCTCATAACCG -ACGGAAAGTTGGACCTCAATGCCA -ACGGAAAGTTGGTCCTGTGGAAAC -ACGGAAAGTTGGTCCTGTAACACC -ACGGAAAGTTGGTCCTGTATCGAG -ACGGAAAGTTGGTCCTGTCTCCTT -ACGGAAAGTTGGTCCTGTCCTGTT -ACGGAAAGTTGGTCCTGTCGGTTT -ACGGAAAGTTGGTCCTGTGTGGTT -ACGGAAAGTTGGTCCTGTGCCTTT -ACGGAAAGTTGGTCCTGTGGTCTT -ACGGAAAGTTGGTCCTGTACGCTT -ACGGAAAGTTGGTCCTGTAGCGTT -ACGGAAAGTTGGTCCTGTTTCGTC -ACGGAAAGTTGGTCCTGTTCTCTC -ACGGAAAGTTGGTCCTGTTGGATC -ACGGAAAGTTGGTCCTGTCACTTC -ACGGAAAGTTGGTCCTGTGTACTC -ACGGAAAGTTGGTCCTGTGATGTC -ACGGAAAGTTGGTCCTGTACAGTC -ACGGAAAGTTGGTCCTGTTTGCTG -ACGGAAAGTTGGTCCTGTTCCATG -ACGGAAAGTTGGTCCTGTTGTGTG -ACGGAAAGTTGGTCCTGTCTAGTG -ACGGAAAGTTGGTCCTGTCATCTG -ACGGAAAGTTGGTCCTGTGAGTTG -ACGGAAAGTTGGTCCTGTAGACTG -ACGGAAAGTTGGTCCTGTTCGGTA -ACGGAAAGTTGGTCCTGTTGCCTA -ACGGAAAGTTGGTCCTGTCCACTA -ACGGAAAGTTGGTCCTGTGGAGTA -ACGGAAAGTTGGTCCTGTTCGTCT -ACGGAAAGTTGGTCCTGTTGCACT -ACGGAAAGTTGGTCCTGTCTGACT -ACGGAAAGTTGGTCCTGTCAACCT -ACGGAAAGTTGGTCCTGTGCTACT -ACGGAAAGTTGGTCCTGTGGATCT -ACGGAAAGTTGGTCCTGTAAGGCT -ACGGAAAGTTGGTCCTGTTCAACC -ACGGAAAGTTGGTCCTGTTGTTCC -ACGGAAAGTTGGTCCTGTATTCCC -ACGGAAAGTTGGTCCTGTTTCTCG -ACGGAAAGTTGGTCCTGTTAGACG -ACGGAAAGTTGGTCCTGTGTAACG -ACGGAAAGTTGGTCCTGTACTTCG -ACGGAAAGTTGGTCCTGTTACGCA -ACGGAAAGTTGGTCCTGTCTTGCA -ACGGAAAGTTGGTCCTGTCGAACA -ACGGAAAGTTGGTCCTGTCAGTCA -ACGGAAAGTTGGTCCTGTGATCCA -ACGGAAAGTTGGTCCTGTACGACA -ACGGAAAGTTGGTCCTGTAGCTCA -ACGGAAAGTTGGTCCTGTTCACGT -ACGGAAAGTTGGTCCTGTCGTAGT -ACGGAAAGTTGGTCCTGTGTCAGT -ACGGAAAGTTGGTCCTGTGAAGGT -ACGGAAAGTTGGTCCTGTAACCGT -ACGGAAAGTTGGTCCTGTTTGTGC -ACGGAAAGTTGGTCCTGTCTAAGC -ACGGAAAGTTGGTCCTGTACTAGC -ACGGAAAGTTGGTCCTGTAGATGC -ACGGAAAGTTGGTCCTGTTGAAGG -ACGGAAAGTTGGTCCTGTCAATGG -ACGGAAAGTTGGTCCTGTATGAGG -ACGGAAAGTTGGTCCTGTAATGGG -ACGGAAAGTTGGTCCTGTTCCTGA -ACGGAAAGTTGGTCCTGTTAGCGA -ACGGAAAGTTGGTCCTGTCACAGA -ACGGAAAGTTGGTCCTGTGCAAGA -ACGGAAAGTTGGTCCTGTGGTTGA -ACGGAAAGTTGGTCCTGTTCCGAT -ACGGAAAGTTGGTCCTGTTGGCAT -ACGGAAAGTTGGTCCTGTCGAGAT -ACGGAAAGTTGGTCCTGTTACCAC -ACGGAAAGTTGGTCCTGTCAGAAC -ACGGAAAGTTGGTCCTGTGTCTAC -ACGGAAAGTTGGTCCTGTACGTAC -ACGGAAAGTTGGTCCTGTAGTGAC -ACGGAAAGTTGGTCCTGTCTGTAG -ACGGAAAGTTGGTCCTGTCCTAAG -ACGGAAAGTTGGTCCTGTGTTCAG -ACGGAAAGTTGGTCCTGTGCATAG -ACGGAAAGTTGGTCCTGTGACAAG -ACGGAAAGTTGGTCCTGTAAGCAG -ACGGAAAGTTGGTCCTGTCGTCAA -ACGGAAAGTTGGTCCTGTGCTGAA -ACGGAAAGTTGGTCCTGTAGTACG -ACGGAAAGTTGGTCCTGTATCCGA -ACGGAAAGTTGGTCCTGTATGGGA -ACGGAAAGTTGGTCCTGTGTGCAA -ACGGAAAGTTGGTCCTGTGAGGAA -ACGGAAAGTTGGTCCTGTCAGGTA -ACGGAAAGTTGGTCCTGTGACTCT -ACGGAAAGTTGGTCCTGTAGTCCT -ACGGAAAGTTGGTCCTGTTAAGCC -ACGGAAAGTTGGTCCTGTATAGCC -ACGGAAAGTTGGTCCTGTTAACCG -ACGGAAAGTTGGTCCTGTATGCCA -ACGGAAAGTTGGCCCATTGGAAAC -ACGGAAAGTTGGCCCATTAACACC -ACGGAAAGTTGGCCCATTATCGAG -ACGGAAAGTTGGCCCATTCTCCTT -ACGGAAAGTTGGCCCATTCCTGTT -ACGGAAAGTTGGCCCATTCGGTTT -ACGGAAAGTTGGCCCATTGTGGTT -ACGGAAAGTTGGCCCATTGCCTTT -ACGGAAAGTTGGCCCATTGGTCTT -ACGGAAAGTTGGCCCATTACGCTT -ACGGAAAGTTGGCCCATTAGCGTT -ACGGAAAGTTGGCCCATTTTCGTC -ACGGAAAGTTGGCCCATTTCTCTC -ACGGAAAGTTGGCCCATTTGGATC -ACGGAAAGTTGGCCCATTCACTTC -ACGGAAAGTTGGCCCATTGTACTC -ACGGAAAGTTGGCCCATTGATGTC -ACGGAAAGTTGGCCCATTACAGTC -ACGGAAAGTTGGCCCATTTTGCTG -ACGGAAAGTTGGCCCATTTCCATG -ACGGAAAGTTGGCCCATTTGTGTG -ACGGAAAGTTGGCCCATTCTAGTG -ACGGAAAGTTGGCCCATTCATCTG -ACGGAAAGTTGGCCCATTGAGTTG -ACGGAAAGTTGGCCCATTAGACTG -ACGGAAAGTTGGCCCATTTCGGTA -ACGGAAAGTTGGCCCATTTGCCTA -ACGGAAAGTTGGCCCATTCCACTA -ACGGAAAGTTGGCCCATTGGAGTA -ACGGAAAGTTGGCCCATTTCGTCT -ACGGAAAGTTGGCCCATTTGCACT -ACGGAAAGTTGGCCCATTCTGACT -ACGGAAAGTTGGCCCATTCAACCT -ACGGAAAGTTGGCCCATTGCTACT -ACGGAAAGTTGGCCCATTGGATCT -ACGGAAAGTTGGCCCATTAAGGCT -ACGGAAAGTTGGCCCATTTCAACC -ACGGAAAGTTGGCCCATTTGTTCC -ACGGAAAGTTGGCCCATTATTCCC -ACGGAAAGTTGGCCCATTTTCTCG -ACGGAAAGTTGGCCCATTTAGACG -ACGGAAAGTTGGCCCATTGTAACG -ACGGAAAGTTGGCCCATTACTTCG -ACGGAAAGTTGGCCCATTTACGCA -ACGGAAAGTTGGCCCATTCTTGCA -ACGGAAAGTTGGCCCATTCGAACA -ACGGAAAGTTGGCCCATTCAGTCA -ACGGAAAGTTGGCCCATTGATCCA -ACGGAAAGTTGGCCCATTACGACA -ACGGAAAGTTGGCCCATTAGCTCA -ACGGAAAGTTGGCCCATTTCACGT -ACGGAAAGTTGGCCCATTCGTAGT -ACGGAAAGTTGGCCCATTGTCAGT -ACGGAAAGTTGGCCCATTGAAGGT -ACGGAAAGTTGGCCCATTAACCGT -ACGGAAAGTTGGCCCATTTTGTGC -ACGGAAAGTTGGCCCATTCTAAGC -ACGGAAAGTTGGCCCATTACTAGC -ACGGAAAGTTGGCCCATTAGATGC -ACGGAAAGTTGGCCCATTTGAAGG -ACGGAAAGTTGGCCCATTCAATGG -ACGGAAAGTTGGCCCATTATGAGG -ACGGAAAGTTGGCCCATTAATGGG -ACGGAAAGTTGGCCCATTTCCTGA -ACGGAAAGTTGGCCCATTTAGCGA -ACGGAAAGTTGGCCCATTCACAGA -ACGGAAAGTTGGCCCATTGCAAGA -ACGGAAAGTTGGCCCATTGGTTGA -ACGGAAAGTTGGCCCATTTCCGAT -ACGGAAAGTTGGCCCATTTGGCAT -ACGGAAAGTTGGCCCATTCGAGAT -ACGGAAAGTTGGCCCATTTACCAC -ACGGAAAGTTGGCCCATTCAGAAC -ACGGAAAGTTGGCCCATTGTCTAC -ACGGAAAGTTGGCCCATTACGTAC -ACGGAAAGTTGGCCCATTAGTGAC -ACGGAAAGTTGGCCCATTCTGTAG -ACGGAAAGTTGGCCCATTCCTAAG -ACGGAAAGTTGGCCCATTGTTCAG -ACGGAAAGTTGGCCCATTGCATAG -ACGGAAAGTTGGCCCATTGACAAG -ACGGAAAGTTGGCCCATTAAGCAG -ACGGAAAGTTGGCCCATTCGTCAA -ACGGAAAGTTGGCCCATTGCTGAA -ACGGAAAGTTGGCCCATTAGTACG -ACGGAAAGTTGGCCCATTATCCGA -ACGGAAAGTTGGCCCATTATGGGA -ACGGAAAGTTGGCCCATTGTGCAA -ACGGAAAGTTGGCCCATTGAGGAA -ACGGAAAGTTGGCCCATTCAGGTA -ACGGAAAGTTGGCCCATTGACTCT -ACGGAAAGTTGGCCCATTAGTCCT -ACGGAAAGTTGGCCCATTTAAGCC -ACGGAAAGTTGGCCCATTATAGCC -ACGGAAAGTTGGCCCATTTAACCG -ACGGAAAGTTGGCCCATTATGCCA -ACGGAAAGTTGGTCGTTCGGAAAC -ACGGAAAGTTGGTCGTTCAACACC -ACGGAAAGTTGGTCGTTCATCGAG -ACGGAAAGTTGGTCGTTCCTCCTT -ACGGAAAGTTGGTCGTTCCCTGTT -ACGGAAAGTTGGTCGTTCCGGTTT -ACGGAAAGTTGGTCGTTCGTGGTT -ACGGAAAGTTGGTCGTTCGCCTTT -ACGGAAAGTTGGTCGTTCGGTCTT -ACGGAAAGTTGGTCGTTCACGCTT -ACGGAAAGTTGGTCGTTCAGCGTT -ACGGAAAGTTGGTCGTTCTTCGTC -ACGGAAAGTTGGTCGTTCTCTCTC -ACGGAAAGTTGGTCGTTCTGGATC -ACGGAAAGTTGGTCGTTCCACTTC -ACGGAAAGTTGGTCGTTCGTACTC -ACGGAAAGTTGGTCGTTCGATGTC -ACGGAAAGTTGGTCGTTCACAGTC -ACGGAAAGTTGGTCGTTCTTGCTG -ACGGAAAGTTGGTCGTTCTCCATG -ACGGAAAGTTGGTCGTTCTGTGTG -ACGGAAAGTTGGTCGTTCCTAGTG -ACGGAAAGTTGGTCGTTCCATCTG -ACGGAAAGTTGGTCGTTCGAGTTG -ACGGAAAGTTGGTCGTTCAGACTG -ACGGAAAGTTGGTCGTTCTCGGTA -ACGGAAAGTTGGTCGTTCTGCCTA -ACGGAAAGTTGGTCGTTCCCACTA -ACGGAAAGTTGGTCGTTCGGAGTA -ACGGAAAGTTGGTCGTTCTCGTCT -ACGGAAAGTTGGTCGTTCTGCACT -ACGGAAAGTTGGTCGTTCCTGACT -ACGGAAAGTTGGTCGTTCCAACCT -ACGGAAAGTTGGTCGTTCGCTACT -ACGGAAAGTTGGTCGTTCGGATCT -ACGGAAAGTTGGTCGTTCAAGGCT -ACGGAAAGTTGGTCGTTCTCAACC -ACGGAAAGTTGGTCGTTCTGTTCC -ACGGAAAGTTGGTCGTTCATTCCC -ACGGAAAGTTGGTCGTTCTTCTCG -ACGGAAAGTTGGTCGTTCTAGACG -ACGGAAAGTTGGTCGTTCGTAACG -ACGGAAAGTTGGTCGTTCACTTCG -ACGGAAAGTTGGTCGTTCTACGCA -ACGGAAAGTTGGTCGTTCCTTGCA -ACGGAAAGTTGGTCGTTCCGAACA -ACGGAAAGTTGGTCGTTCCAGTCA -ACGGAAAGTTGGTCGTTCGATCCA -ACGGAAAGTTGGTCGTTCACGACA -ACGGAAAGTTGGTCGTTCAGCTCA -ACGGAAAGTTGGTCGTTCTCACGT -ACGGAAAGTTGGTCGTTCCGTAGT -ACGGAAAGTTGGTCGTTCGTCAGT -ACGGAAAGTTGGTCGTTCGAAGGT -ACGGAAAGTTGGTCGTTCAACCGT -ACGGAAAGTTGGTCGTTCTTGTGC -ACGGAAAGTTGGTCGTTCCTAAGC -ACGGAAAGTTGGTCGTTCACTAGC -ACGGAAAGTTGGTCGTTCAGATGC -ACGGAAAGTTGGTCGTTCTGAAGG -ACGGAAAGTTGGTCGTTCCAATGG -ACGGAAAGTTGGTCGTTCATGAGG -ACGGAAAGTTGGTCGTTCAATGGG -ACGGAAAGTTGGTCGTTCTCCTGA -ACGGAAAGTTGGTCGTTCTAGCGA -ACGGAAAGTTGGTCGTTCCACAGA -ACGGAAAGTTGGTCGTTCGCAAGA -ACGGAAAGTTGGTCGTTCGGTTGA -ACGGAAAGTTGGTCGTTCTCCGAT -ACGGAAAGTTGGTCGTTCTGGCAT -ACGGAAAGTTGGTCGTTCCGAGAT -ACGGAAAGTTGGTCGTTCTACCAC -ACGGAAAGTTGGTCGTTCCAGAAC -ACGGAAAGTTGGTCGTTCGTCTAC -ACGGAAAGTTGGTCGTTCACGTAC -ACGGAAAGTTGGTCGTTCAGTGAC -ACGGAAAGTTGGTCGTTCCTGTAG -ACGGAAAGTTGGTCGTTCCCTAAG -ACGGAAAGTTGGTCGTTCGTTCAG -ACGGAAAGTTGGTCGTTCGCATAG -ACGGAAAGTTGGTCGTTCGACAAG -ACGGAAAGTTGGTCGTTCAAGCAG -ACGGAAAGTTGGTCGTTCCGTCAA -ACGGAAAGTTGGTCGTTCGCTGAA -ACGGAAAGTTGGTCGTTCAGTACG -ACGGAAAGTTGGTCGTTCATCCGA -ACGGAAAGTTGGTCGTTCATGGGA -ACGGAAAGTTGGTCGTTCGTGCAA -ACGGAAAGTTGGTCGTTCGAGGAA -ACGGAAAGTTGGTCGTTCCAGGTA -ACGGAAAGTTGGTCGTTCGACTCT -ACGGAAAGTTGGTCGTTCAGTCCT -ACGGAAAGTTGGTCGTTCTAAGCC -ACGGAAAGTTGGTCGTTCATAGCC -ACGGAAAGTTGGTCGTTCTAACCG -ACGGAAAGTTGGTCGTTCATGCCA -ACGGAAAGTTGGACGTAGGGAAAC -ACGGAAAGTTGGACGTAGAACACC -ACGGAAAGTTGGACGTAGATCGAG -ACGGAAAGTTGGACGTAGCTCCTT -ACGGAAAGTTGGACGTAGCCTGTT -ACGGAAAGTTGGACGTAGCGGTTT -ACGGAAAGTTGGACGTAGGTGGTT -ACGGAAAGTTGGACGTAGGCCTTT -ACGGAAAGTTGGACGTAGGGTCTT -ACGGAAAGTTGGACGTAGACGCTT -ACGGAAAGTTGGACGTAGAGCGTT -ACGGAAAGTTGGACGTAGTTCGTC -ACGGAAAGTTGGACGTAGTCTCTC -ACGGAAAGTTGGACGTAGTGGATC -ACGGAAAGTTGGACGTAGCACTTC -ACGGAAAGTTGGACGTAGGTACTC -ACGGAAAGTTGGACGTAGGATGTC -ACGGAAAGTTGGACGTAGACAGTC -ACGGAAAGTTGGACGTAGTTGCTG -ACGGAAAGTTGGACGTAGTCCATG -ACGGAAAGTTGGACGTAGTGTGTG -ACGGAAAGTTGGACGTAGCTAGTG -ACGGAAAGTTGGACGTAGCATCTG -ACGGAAAGTTGGACGTAGGAGTTG -ACGGAAAGTTGGACGTAGAGACTG -ACGGAAAGTTGGACGTAGTCGGTA -ACGGAAAGTTGGACGTAGTGCCTA -ACGGAAAGTTGGACGTAGCCACTA -ACGGAAAGTTGGACGTAGGGAGTA -ACGGAAAGTTGGACGTAGTCGTCT -ACGGAAAGTTGGACGTAGTGCACT -ACGGAAAGTTGGACGTAGCTGACT -ACGGAAAGTTGGACGTAGCAACCT -ACGGAAAGTTGGACGTAGGCTACT -ACGGAAAGTTGGACGTAGGGATCT -ACGGAAAGTTGGACGTAGAAGGCT -ACGGAAAGTTGGACGTAGTCAACC -ACGGAAAGTTGGACGTAGTGTTCC -ACGGAAAGTTGGACGTAGATTCCC -ACGGAAAGTTGGACGTAGTTCTCG -ACGGAAAGTTGGACGTAGTAGACG -ACGGAAAGTTGGACGTAGGTAACG -ACGGAAAGTTGGACGTAGACTTCG -ACGGAAAGTTGGACGTAGTACGCA -ACGGAAAGTTGGACGTAGCTTGCA -ACGGAAAGTTGGACGTAGCGAACA -ACGGAAAGTTGGACGTAGCAGTCA -ACGGAAAGTTGGACGTAGGATCCA -ACGGAAAGTTGGACGTAGACGACA -ACGGAAAGTTGGACGTAGAGCTCA -ACGGAAAGTTGGACGTAGTCACGT -ACGGAAAGTTGGACGTAGCGTAGT -ACGGAAAGTTGGACGTAGGTCAGT -ACGGAAAGTTGGACGTAGGAAGGT -ACGGAAAGTTGGACGTAGAACCGT -ACGGAAAGTTGGACGTAGTTGTGC -ACGGAAAGTTGGACGTAGCTAAGC -ACGGAAAGTTGGACGTAGACTAGC -ACGGAAAGTTGGACGTAGAGATGC -ACGGAAAGTTGGACGTAGTGAAGG -ACGGAAAGTTGGACGTAGCAATGG -ACGGAAAGTTGGACGTAGATGAGG -ACGGAAAGTTGGACGTAGAATGGG -ACGGAAAGTTGGACGTAGTCCTGA -ACGGAAAGTTGGACGTAGTAGCGA -ACGGAAAGTTGGACGTAGCACAGA -ACGGAAAGTTGGACGTAGGCAAGA -ACGGAAAGTTGGACGTAGGGTTGA -ACGGAAAGTTGGACGTAGTCCGAT -ACGGAAAGTTGGACGTAGTGGCAT -ACGGAAAGTTGGACGTAGCGAGAT -ACGGAAAGTTGGACGTAGTACCAC -ACGGAAAGTTGGACGTAGCAGAAC -ACGGAAAGTTGGACGTAGGTCTAC -ACGGAAAGTTGGACGTAGACGTAC -ACGGAAAGTTGGACGTAGAGTGAC -ACGGAAAGTTGGACGTAGCTGTAG -ACGGAAAGTTGGACGTAGCCTAAG -ACGGAAAGTTGGACGTAGGTTCAG -ACGGAAAGTTGGACGTAGGCATAG -ACGGAAAGTTGGACGTAGGACAAG -ACGGAAAGTTGGACGTAGAAGCAG -ACGGAAAGTTGGACGTAGCGTCAA -ACGGAAAGTTGGACGTAGGCTGAA -ACGGAAAGTTGGACGTAGAGTACG -ACGGAAAGTTGGACGTAGATCCGA -ACGGAAAGTTGGACGTAGATGGGA -ACGGAAAGTTGGACGTAGGTGCAA -ACGGAAAGTTGGACGTAGGAGGAA -ACGGAAAGTTGGACGTAGCAGGTA -ACGGAAAGTTGGACGTAGGACTCT -ACGGAAAGTTGGACGTAGAGTCCT -ACGGAAAGTTGGACGTAGTAAGCC -ACGGAAAGTTGGACGTAGATAGCC -ACGGAAAGTTGGACGTAGTAACCG -ACGGAAAGTTGGACGTAGATGCCA -ACGGAAAGTTGGACGGTAGGAAAC -ACGGAAAGTTGGACGGTAAACACC -ACGGAAAGTTGGACGGTAATCGAG -ACGGAAAGTTGGACGGTACTCCTT -ACGGAAAGTTGGACGGTACCTGTT -ACGGAAAGTTGGACGGTACGGTTT -ACGGAAAGTTGGACGGTAGTGGTT -ACGGAAAGTTGGACGGTAGCCTTT -ACGGAAAGTTGGACGGTAGGTCTT -ACGGAAAGTTGGACGGTAACGCTT -ACGGAAAGTTGGACGGTAAGCGTT -ACGGAAAGTTGGACGGTATTCGTC -ACGGAAAGTTGGACGGTATCTCTC -ACGGAAAGTTGGACGGTATGGATC -ACGGAAAGTTGGACGGTACACTTC -ACGGAAAGTTGGACGGTAGTACTC -ACGGAAAGTTGGACGGTAGATGTC -ACGGAAAGTTGGACGGTAACAGTC -ACGGAAAGTTGGACGGTATTGCTG -ACGGAAAGTTGGACGGTATCCATG -ACGGAAAGTTGGACGGTATGTGTG -ACGGAAAGTTGGACGGTACTAGTG -ACGGAAAGTTGGACGGTACATCTG -ACGGAAAGTTGGACGGTAGAGTTG -ACGGAAAGTTGGACGGTAAGACTG -ACGGAAAGTTGGACGGTATCGGTA -ACGGAAAGTTGGACGGTATGCCTA -ACGGAAAGTTGGACGGTACCACTA -ACGGAAAGTTGGACGGTAGGAGTA -ACGGAAAGTTGGACGGTATCGTCT -ACGGAAAGTTGGACGGTATGCACT -ACGGAAAGTTGGACGGTACTGACT -ACGGAAAGTTGGACGGTACAACCT -ACGGAAAGTTGGACGGTAGCTACT -ACGGAAAGTTGGACGGTAGGATCT -ACGGAAAGTTGGACGGTAAAGGCT -ACGGAAAGTTGGACGGTATCAACC -ACGGAAAGTTGGACGGTATGTTCC -ACGGAAAGTTGGACGGTAATTCCC -ACGGAAAGTTGGACGGTATTCTCG -ACGGAAAGTTGGACGGTATAGACG -ACGGAAAGTTGGACGGTAGTAACG -ACGGAAAGTTGGACGGTAACTTCG -ACGGAAAGTTGGACGGTATACGCA -ACGGAAAGTTGGACGGTACTTGCA -ACGGAAAGTTGGACGGTACGAACA -ACGGAAAGTTGGACGGTACAGTCA -ACGGAAAGTTGGACGGTAGATCCA -ACGGAAAGTTGGACGGTAACGACA -ACGGAAAGTTGGACGGTAAGCTCA -ACGGAAAGTTGGACGGTATCACGT -ACGGAAAGTTGGACGGTACGTAGT -ACGGAAAGTTGGACGGTAGTCAGT -ACGGAAAGTTGGACGGTAGAAGGT -ACGGAAAGTTGGACGGTAAACCGT -ACGGAAAGTTGGACGGTATTGTGC -ACGGAAAGTTGGACGGTACTAAGC -ACGGAAAGTTGGACGGTAACTAGC -ACGGAAAGTTGGACGGTAAGATGC -ACGGAAAGTTGGACGGTATGAAGG -ACGGAAAGTTGGACGGTACAATGG -ACGGAAAGTTGGACGGTAATGAGG -ACGGAAAGTTGGACGGTAAATGGG -ACGGAAAGTTGGACGGTATCCTGA -ACGGAAAGTTGGACGGTATAGCGA -ACGGAAAGTTGGACGGTACACAGA -ACGGAAAGTTGGACGGTAGCAAGA -ACGGAAAGTTGGACGGTAGGTTGA -ACGGAAAGTTGGACGGTATCCGAT -ACGGAAAGTTGGACGGTATGGCAT -ACGGAAAGTTGGACGGTACGAGAT -ACGGAAAGTTGGACGGTATACCAC -ACGGAAAGTTGGACGGTACAGAAC -ACGGAAAGTTGGACGGTAGTCTAC -ACGGAAAGTTGGACGGTAACGTAC -ACGGAAAGTTGGACGGTAAGTGAC -ACGGAAAGTTGGACGGTACTGTAG -ACGGAAAGTTGGACGGTACCTAAG -ACGGAAAGTTGGACGGTAGTTCAG -ACGGAAAGTTGGACGGTAGCATAG -ACGGAAAGTTGGACGGTAGACAAG -ACGGAAAGTTGGACGGTAAAGCAG -ACGGAAAGTTGGACGGTACGTCAA -ACGGAAAGTTGGACGGTAGCTGAA -ACGGAAAGTTGGACGGTAAGTACG -ACGGAAAGTTGGACGGTAATCCGA -ACGGAAAGTTGGACGGTAATGGGA -ACGGAAAGTTGGACGGTAGTGCAA -ACGGAAAGTTGGACGGTAGAGGAA -ACGGAAAGTTGGACGGTACAGGTA -ACGGAAAGTTGGACGGTAGACTCT -ACGGAAAGTTGGACGGTAAGTCCT -ACGGAAAGTTGGACGGTATAAGCC -ACGGAAAGTTGGACGGTAATAGCC -ACGGAAAGTTGGACGGTATAACCG -ACGGAAAGTTGGACGGTAATGCCA -ACGGAAAGTTGGTCGACTGGAAAC -ACGGAAAGTTGGTCGACTAACACC -ACGGAAAGTTGGTCGACTATCGAG -ACGGAAAGTTGGTCGACTCTCCTT -ACGGAAAGTTGGTCGACTCCTGTT -ACGGAAAGTTGGTCGACTCGGTTT -ACGGAAAGTTGGTCGACTGTGGTT -ACGGAAAGTTGGTCGACTGCCTTT -ACGGAAAGTTGGTCGACTGGTCTT -ACGGAAAGTTGGTCGACTACGCTT -ACGGAAAGTTGGTCGACTAGCGTT -ACGGAAAGTTGGTCGACTTTCGTC -ACGGAAAGTTGGTCGACTTCTCTC -ACGGAAAGTTGGTCGACTTGGATC -ACGGAAAGTTGGTCGACTCACTTC -ACGGAAAGTTGGTCGACTGTACTC -ACGGAAAGTTGGTCGACTGATGTC -ACGGAAAGTTGGTCGACTACAGTC -ACGGAAAGTTGGTCGACTTTGCTG -ACGGAAAGTTGGTCGACTTCCATG -ACGGAAAGTTGGTCGACTTGTGTG -ACGGAAAGTTGGTCGACTCTAGTG -ACGGAAAGTTGGTCGACTCATCTG -ACGGAAAGTTGGTCGACTGAGTTG -ACGGAAAGTTGGTCGACTAGACTG -ACGGAAAGTTGGTCGACTTCGGTA -ACGGAAAGTTGGTCGACTTGCCTA -ACGGAAAGTTGGTCGACTCCACTA -ACGGAAAGTTGGTCGACTGGAGTA -ACGGAAAGTTGGTCGACTTCGTCT -ACGGAAAGTTGGTCGACTTGCACT -ACGGAAAGTTGGTCGACTCTGACT -ACGGAAAGTTGGTCGACTCAACCT -ACGGAAAGTTGGTCGACTGCTACT -ACGGAAAGTTGGTCGACTGGATCT -ACGGAAAGTTGGTCGACTAAGGCT -ACGGAAAGTTGGTCGACTTCAACC -ACGGAAAGTTGGTCGACTTGTTCC -ACGGAAAGTTGGTCGACTATTCCC -ACGGAAAGTTGGTCGACTTTCTCG -ACGGAAAGTTGGTCGACTTAGACG -ACGGAAAGTTGGTCGACTGTAACG -ACGGAAAGTTGGTCGACTACTTCG -ACGGAAAGTTGGTCGACTTACGCA -ACGGAAAGTTGGTCGACTCTTGCA -ACGGAAAGTTGGTCGACTCGAACA -ACGGAAAGTTGGTCGACTCAGTCA -ACGGAAAGTTGGTCGACTGATCCA -ACGGAAAGTTGGTCGACTACGACA -ACGGAAAGTTGGTCGACTAGCTCA -ACGGAAAGTTGGTCGACTTCACGT -ACGGAAAGTTGGTCGACTCGTAGT -ACGGAAAGTTGGTCGACTGTCAGT -ACGGAAAGTTGGTCGACTGAAGGT -ACGGAAAGTTGGTCGACTAACCGT -ACGGAAAGTTGGTCGACTTTGTGC -ACGGAAAGTTGGTCGACTCTAAGC -ACGGAAAGTTGGTCGACTACTAGC -ACGGAAAGTTGGTCGACTAGATGC -ACGGAAAGTTGGTCGACTTGAAGG -ACGGAAAGTTGGTCGACTCAATGG -ACGGAAAGTTGGTCGACTATGAGG -ACGGAAAGTTGGTCGACTAATGGG -ACGGAAAGTTGGTCGACTTCCTGA -ACGGAAAGTTGGTCGACTTAGCGA -ACGGAAAGTTGGTCGACTCACAGA -ACGGAAAGTTGGTCGACTGCAAGA -ACGGAAAGTTGGTCGACTGGTTGA -ACGGAAAGTTGGTCGACTTCCGAT -ACGGAAAGTTGGTCGACTTGGCAT -ACGGAAAGTTGGTCGACTCGAGAT -ACGGAAAGTTGGTCGACTTACCAC -ACGGAAAGTTGGTCGACTCAGAAC -ACGGAAAGTTGGTCGACTGTCTAC -ACGGAAAGTTGGTCGACTACGTAC -ACGGAAAGTTGGTCGACTAGTGAC -ACGGAAAGTTGGTCGACTCTGTAG -ACGGAAAGTTGGTCGACTCCTAAG -ACGGAAAGTTGGTCGACTGTTCAG -ACGGAAAGTTGGTCGACTGCATAG -ACGGAAAGTTGGTCGACTGACAAG -ACGGAAAGTTGGTCGACTAAGCAG -ACGGAAAGTTGGTCGACTCGTCAA -ACGGAAAGTTGGTCGACTGCTGAA -ACGGAAAGTTGGTCGACTAGTACG -ACGGAAAGTTGGTCGACTATCCGA -ACGGAAAGTTGGTCGACTATGGGA -ACGGAAAGTTGGTCGACTGTGCAA -ACGGAAAGTTGGTCGACTGAGGAA -ACGGAAAGTTGGTCGACTCAGGTA -ACGGAAAGTTGGTCGACTGACTCT -ACGGAAAGTTGGTCGACTAGTCCT -ACGGAAAGTTGGTCGACTTAAGCC -ACGGAAAGTTGGTCGACTATAGCC -ACGGAAAGTTGGTCGACTTAACCG -ACGGAAAGTTGGTCGACTATGCCA -ACGGAAAGTTGGGCATACGGAAAC -ACGGAAAGTTGGGCATACAACACC -ACGGAAAGTTGGGCATACATCGAG -ACGGAAAGTTGGGCATACCTCCTT -ACGGAAAGTTGGGCATACCCTGTT -ACGGAAAGTTGGGCATACCGGTTT -ACGGAAAGTTGGGCATACGTGGTT -ACGGAAAGTTGGGCATACGCCTTT -ACGGAAAGTTGGGCATACGGTCTT -ACGGAAAGTTGGGCATACACGCTT -ACGGAAAGTTGGGCATACAGCGTT -ACGGAAAGTTGGGCATACTTCGTC -ACGGAAAGTTGGGCATACTCTCTC -ACGGAAAGTTGGGCATACTGGATC -ACGGAAAGTTGGGCATACCACTTC -ACGGAAAGTTGGGCATACGTACTC -ACGGAAAGTTGGGCATACGATGTC -ACGGAAAGTTGGGCATACACAGTC -ACGGAAAGTTGGGCATACTTGCTG -ACGGAAAGTTGGGCATACTCCATG -ACGGAAAGTTGGGCATACTGTGTG -ACGGAAAGTTGGGCATACCTAGTG -ACGGAAAGTTGGGCATACCATCTG -ACGGAAAGTTGGGCATACGAGTTG -ACGGAAAGTTGGGCATACAGACTG -ACGGAAAGTTGGGCATACTCGGTA -ACGGAAAGTTGGGCATACTGCCTA -ACGGAAAGTTGGGCATACCCACTA -ACGGAAAGTTGGGCATACGGAGTA -ACGGAAAGTTGGGCATACTCGTCT -ACGGAAAGTTGGGCATACTGCACT -ACGGAAAGTTGGGCATACCTGACT -ACGGAAAGTTGGGCATACCAACCT -ACGGAAAGTTGGGCATACGCTACT -ACGGAAAGTTGGGCATACGGATCT -ACGGAAAGTTGGGCATACAAGGCT -ACGGAAAGTTGGGCATACTCAACC -ACGGAAAGTTGGGCATACTGTTCC -ACGGAAAGTTGGGCATACATTCCC -ACGGAAAGTTGGGCATACTTCTCG -ACGGAAAGTTGGGCATACTAGACG -ACGGAAAGTTGGGCATACGTAACG -ACGGAAAGTTGGGCATACACTTCG -ACGGAAAGTTGGGCATACTACGCA -ACGGAAAGTTGGGCATACCTTGCA -ACGGAAAGTTGGGCATACCGAACA -ACGGAAAGTTGGGCATACCAGTCA -ACGGAAAGTTGGGCATACGATCCA -ACGGAAAGTTGGGCATACACGACA -ACGGAAAGTTGGGCATACAGCTCA -ACGGAAAGTTGGGCATACTCACGT -ACGGAAAGTTGGGCATACCGTAGT -ACGGAAAGTTGGGCATACGTCAGT -ACGGAAAGTTGGGCATACGAAGGT -ACGGAAAGTTGGGCATACAACCGT -ACGGAAAGTTGGGCATACTTGTGC -ACGGAAAGTTGGGCATACCTAAGC -ACGGAAAGTTGGGCATACACTAGC -ACGGAAAGTTGGGCATACAGATGC -ACGGAAAGTTGGGCATACTGAAGG -ACGGAAAGTTGGGCATACCAATGG -ACGGAAAGTTGGGCATACATGAGG -ACGGAAAGTTGGGCATACAATGGG -ACGGAAAGTTGGGCATACTCCTGA -ACGGAAAGTTGGGCATACTAGCGA -ACGGAAAGTTGGGCATACCACAGA -ACGGAAAGTTGGGCATACGCAAGA -ACGGAAAGTTGGGCATACGGTTGA -ACGGAAAGTTGGGCATACTCCGAT -ACGGAAAGTTGGGCATACTGGCAT -ACGGAAAGTTGGGCATACCGAGAT -ACGGAAAGTTGGGCATACTACCAC -ACGGAAAGTTGGGCATACCAGAAC -ACGGAAAGTTGGGCATACGTCTAC -ACGGAAAGTTGGGCATACACGTAC -ACGGAAAGTTGGGCATACAGTGAC -ACGGAAAGTTGGGCATACCTGTAG -ACGGAAAGTTGGGCATACCCTAAG -ACGGAAAGTTGGGCATACGTTCAG -ACGGAAAGTTGGGCATACGCATAG -ACGGAAAGTTGGGCATACGACAAG -ACGGAAAGTTGGGCATACAAGCAG -ACGGAAAGTTGGGCATACCGTCAA -ACGGAAAGTTGGGCATACGCTGAA -ACGGAAAGTTGGGCATACAGTACG -ACGGAAAGTTGGGCATACATCCGA -ACGGAAAGTTGGGCATACATGGGA -ACGGAAAGTTGGGCATACGTGCAA -ACGGAAAGTTGGGCATACGAGGAA -ACGGAAAGTTGGGCATACCAGGTA -ACGGAAAGTTGGGCATACGACTCT -ACGGAAAGTTGGGCATACAGTCCT -ACGGAAAGTTGGGCATACTAAGCC -ACGGAAAGTTGGGCATACATAGCC -ACGGAAAGTTGGGCATACTAACCG -ACGGAAAGTTGGGCATACATGCCA -ACGGAAAGTTGGGCACTTGGAAAC -ACGGAAAGTTGGGCACTTAACACC -ACGGAAAGTTGGGCACTTATCGAG -ACGGAAAGTTGGGCACTTCTCCTT -ACGGAAAGTTGGGCACTTCCTGTT -ACGGAAAGTTGGGCACTTCGGTTT -ACGGAAAGTTGGGCACTTGTGGTT -ACGGAAAGTTGGGCACTTGCCTTT -ACGGAAAGTTGGGCACTTGGTCTT -ACGGAAAGTTGGGCACTTACGCTT -ACGGAAAGTTGGGCACTTAGCGTT -ACGGAAAGTTGGGCACTTTTCGTC -ACGGAAAGTTGGGCACTTTCTCTC -ACGGAAAGTTGGGCACTTTGGATC -ACGGAAAGTTGGGCACTTCACTTC -ACGGAAAGTTGGGCACTTGTACTC -ACGGAAAGTTGGGCACTTGATGTC -ACGGAAAGTTGGGCACTTACAGTC -ACGGAAAGTTGGGCACTTTTGCTG -ACGGAAAGTTGGGCACTTTCCATG -ACGGAAAGTTGGGCACTTTGTGTG -ACGGAAAGTTGGGCACTTCTAGTG -ACGGAAAGTTGGGCACTTCATCTG -ACGGAAAGTTGGGCACTTGAGTTG -ACGGAAAGTTGGGCACTTAGACTG -ACGGAAAGTTGGGCACTTTCGGTA -ACGGAAAGTTGGGCACTTTGCCTA -ACGGAAAGTTGGGCACTTCCACTA -ACGGAAAGTTGGGCACTTGGAGTA -ACGGAAAGTTGGGCACTTTCGTCT -ACGGAAAGTTGGGCACTTTGCACT -ACGGAAAGTTGGGCACTTCTGACT -ACGGAAAGTTGGGCACTTCAACCT -ACGGAAAGTTGGGCACTTGCTACT -ACGGAAAGTTGGGCACTTGGATCT -ACGGAAAGTTGGGCACTTAAGGCT -ACGGAAAGTTGGGCACTTTCAACC -ACGGAAAGTTGGGCACTTTGTTCC -ACGGAAAGTTGGGCACTTATTCCC -ACGGAAAGTTGGGCACTTTTCTCG -ACGGAAAGTTGGGCACTTTAGACG -ACGGAAAGTTGGGCACTTGTAACG -ACGGAAAGTTGGGCACTTACTTCG -ACGGAAAGTTGGGCACTTTACGCA -ACGGAAAGTTGGGCACTTCTTGCA -ACGGAAAGTTGGGCACTTCGAACA -ACGGAAAGTTGGGCACTTCAGTCA -ACGGAAAGTTGGGCACTTGATCCA -ACGGAAAGTTGGGCACTTACGACA -ACGGAAAGTTGGGCACTTAGCTCA -ACGGAAAGTTGGGCACTTTCACGT -ACGGAAAGTTGGGCACTTCGTAGT -ACGGAAAGTTGGGCACTTGTCAGT -ACGGAAAGTTGGGCACTTGAAGGT -ACGGAAAGTTGGGCACTTAACCGT -ACGGAAAGTTGGGCACTTTTGTGC -ACGGAAAGTTGGGCACTTCTAAGC -ACGGAAAGTTGGGCACTTACTAGC -ACGGAAAGTTGGGCACTTAGATGC -ACGGAAAGTTGGGCACTTTGAAGG -ACGGAAAGTTGGGCACTTCAATGG -ACGGAAAGTTGGGCACTTATGAGG -ACGGAAAGTTGGGCACTTAATGGG -ACGGAAAGTTGGGCACTTTCCTGA -ACGGAAAGTTGGGCACTTTAGCGA -ACGGAAAGTTGGGCACTTCACAGA -ACGGAAAGTTGGGCACTTGCAAGA -ACGGAAAGTTGGGCACTTGGTTGA -ACGGAAAGTTGGGCACTTTCCGAT -ACGGAAAGTTGGGCACTTTGGCAT -ACGGAAAGTTGGGCACTTCGAGAT -ACGGAAAGTTGGGCACTTTACCAC -ACGGAAAGTTGGGCACTTCAGAAC -ACGGAAAGTTGGGCACTTGTCTAC -ACGGAAAGTTGGGCACTTACGTAC -ACGGAAAGTTGGGCACTTAGTGAC -ACGGAAAGTTGGGCACTTCTGTAG -ACGGAAAGTTGGGCACTTCCTAAG -ACGGAAAGTTGGGCACTTGTTCAG -ACGGAAAGTTGGGCACTTGCATAG -ACGGAAAGTTGGGCACTTGACAAG -ACGGAAAGTTGGGCACTTAAGCAG -ACGGAAAGTTGGGCACTTCGTCAA -ACGGAAAGTTGGGCACTTGCTGAA -ACGGAAAGTTGGGCACTTAGTACG -ACGGAAAGTTGGGCACTTATCCGA -ACGGAAAGTTGGGCACTTATGGGA -ACGGAAAGTTGGGCACTTGTGCAA -ACGGAAAGTTGGGCACTTGAGGAA -ACGGAAAGTTGGGCACTTCAGGTA -ACGGAAAGTTGGGCACTTGACTCT -ACGGAAAGTTGGGCACTTAGTCCT -ACGGAAAGTTGGGCACTTTAAGCC -ACGGAAAGTTGGGCACTTATAGCC -ACGGAAAGTTGGGCACTTTAACCG -ACGGAAAGTTGGGCACTTATGCCA -ACGGAAAGTTGGACACGAGGAAAC -ACGGAAAGTTGGACACGAAACACC -ACGGAAAGTTGGACACGAATCGAG -ACGGAAAGTTGGACACGACTCCTT -ACGGAAAGTTGGACACGACCTGTT -ACGGAAAGTTGGACACGACGGTTT -ACGGAAAGTTGGACACGAGTGGTT -ACGGAAAGTTGGACACGAGCCTTT -ACGGAAAGTTGGACACGAGGTCTT -ACGGAAAGTTGGACACGAACGCTT -ACGGAAAGTTGGACACGAAGCGTT -ACGGAAAGTTGGACACGATTCGTC -ACGGAAAGTTGGACACGATCTCTC -ACGGAAAGTTGGACACGATGGATC -ACGGAAAGTTGGACACGACACTTC -ACGGAAAGTTGGACACGAGTACTC -ACGGAAAGTTGGACACGAGATGTC -ACGGAAAGTTGGACACGAACAGTC -ACGGAAAGTTGGACACGATTGCTG -ACGGAAAGTTGGACACGATCCATG -ACGGAAAGTTGGACACGATGTGTG -ACGGAAAGTTGGACACGACTAGTG -ACGGAAAGTTGGACACGACATCTG -ACGGAAAGTTGGACACGAGAGTTG -ACGGAAAGTTGGACACGAAGACTG -ACGGAAAGTTGGACACGATCGGTA -ACGGAAAGTTGGACACGATGCCTA -ACGGAAAGTTGGACACGACCACTA -ACGGAAAGTTGGACACGAGGAGTA -ACGGAAAGTTGGACACGATCGTCT -ACGGAAAGTTGGACACGATGCACT -ACGGAAAGTTGGACACGACTGACT -ACGGAAAGTTGGACACGACAACCT -ACGGAAAGTTGGACACGAGCTACT -ACGGAAAGTTGGACACGAGGATCT -ACGGAAAGTTGGACACGAAAGGCT -ACGGAAAGTTGGACACGATCAACC -ACGGAAAGTTGGACACGATGTTCC -ACGGAAAGTTGGACACGAATTCCC -ACGGAAAGTTGGACACGATTCTCG -ACGGAAAGTTGGACACGATAGACG -ACGGAAAGTTGGACACGAGTAACG -ACGGAAAGTTGGACACGAACTTCG -ACGGAAAGTTGGACACGATACGCA -ACGGAAAGTTGGACACGACTTGCA -ACGGAAAGTTGGACACGACGAACA -ACGGAAAGTTGGACACGACAGTCA -ACGGAAAGTTGGACACGAGATCCA -ACGGAAAGTTGGACACGAACGACA -ACGGAAAGTTGGACACGAAGCTCA -ACGGAAAGTTGGACACGATCACGT -ACGGAAAGTTGGACACGACGTAGT -ACGGAAAGTTGGACACGAGTCAGT -ACGGAAAGTTGGACACGAGAAGGT -ACGGAAAGTTGGACACGAAACCGT -ACGGAAAGTTGGACACGATTGTGC -ACGGAAAGTTGGACACGACTAAGC -ACGGAAAGTTGGACACGAACTAGC -ACGGAAAGTTGGACACGAAGATGC -ACGGAAAGTTGGACACGATGAAGG -ACGGAAAGTTGGACACGACAATGG -ACGGAAAGTTGGACACGAATGAGG -ACGGAAAGTTGGACACGAAATGGG -ACGGAAAGTTGGACACGATCCTGA -ACGGAAAGTTGGACACGATAGCGA -ACGGAAAGTTGGACACGACACAGA -ACGGAAAGTTGGACACGAGCAAGA -ACGGAAAGTTGGACACGAGGTTGA -ACGGAAAGTTGGACACGATCCGAT -ACGGAAAGTTGGACACGATGGCAT -ACGGAAAGTTGGACACGACGAGAT -ACGGAAAGTTGGACACGATACCAC -ACGGAAAGTTGGACACGACAGAAC -ACGGAAAGTTGGACACGAGTCTAC -ACGGAAAGTTGGACACGAACGTAC -ACGGAAAGTTGGACACGAAGTGAC -ACGGAAAGTTGGACACGACTGTAG -ACGGAAAGTTGGACACGACCTAAG -ACGGAAAGTTGGACACGAGTTCAG -ACGGAAAGTTGGACACGAGCATAG -ACGGAAAGTTGGACACGAGACAAG -ACGGAAAGTTGGACACGAAAGCAG -ACGGAAAGTTGGACACGACGTCAA -ACGGAAAGTTGGACACGAGCTGAA -ACGGAAAGTTGGACACGAAGTACG -ACGGAAAGTTGGACACGAATCCGA -ACGGAAAGTTGGACACGAATGGGA -ACGGAAAGTTGGACACGAGTGCAA -ACGGAAAGTTGGACACGAGAGGAA -ACGGAAAGTTGGACACGACAGGTA -ACGGAAAGTTGGACACGAGACTCT -ACGGAAAGTTGGACACGAAGTCCT -ACGGAAAGTTGGACACGATAAGCC -ACGGAAAGTTGGACACGAATAGCC -ACGGAAAGTTGGACACGATAACCG -ACGGAAAGTTGGACACGAATGCCA -ACGGAAAGTTGGTCACAGGGAAAC -ACGGAAAGTTGGTCACAGAACACC -ACGGAAAGTTGGTCACAGATCGAG -ACGGAAAGTTGGTCACAGCTCCTT -ACGGAAAGTTGGTCACAGCCTGTT -ACGGAAAGTTGGTCACAGCGGTTT -ACGGAAAGTTGGTCACAGGTGGTT -ACGGAAAGTTGGTCACAGGCCTTT -ACGGAAAGTTGGTCACAGGGTCTT -ACGGAAAGTTGGTCACAGACGCTT -ACGGAAAGTTGGTCACAGAGCGTT -ACGGAAAGTTGGTCACAGTTCGTC -ACGGAAAGTTGGTCACAGTCTCTC -ACGGAAAGTTGGTCACAGTGGATC -ACGGAAAGTTGGTCACAGCACTTC -ACGGAAAGTTGGTCACAGGTACTC -ACGGAAAGTTGGTCACAGGATGTC -ACGGAAAGTTGGTCACAGACAGTC -ACGGAAAGTTGGTCACAGTTGCTG -ACGGAAAGTTGGTCACAGTCCATG -ACGGAAAGTTGGTCACAGTGTGTG -ACGGAAAGTTGGTCACAGCTAGTG -ACGGAAAGTTGGTCACAGCATCTG -ACGGAAAGTTGGTCACAGGAGTTG -ACGGAAAGTTGGTCACAGAGACTG -ACGGAAAGTTGGTCACAGTCGGTA -ACGGAAAGTTGGTCACAGTGCCTA -ACGGAAAGTTGGTCACAGCCACTA -ACGGAAAGTTGGTCACAGGGAGTA -ACGGAAAGTTGGTCACAGTCGTCT -ACGGAAAGTTGGTCACAGTGCACT -ACGGAAAGTTGGTCACAGCTGACT -ACGGAAAGTTGGTCACAGCAACCT -ACGGAAAGTTGGTCACAGGCTACT -ACGGAAAGTTGGTCACAGGGATCT -ACGGAAAGTTGGTCACAGAAGGCT -ACGGAAAGTTGGTCACAGTCAACC -ACGGAAAGTTGGTCACAGTGTTCC -ACGGAAAGTTGGTCACAGATTCCC -ACGGAAAGTTGGTCACAGTTCTCG -ACGGAAAGTTGGTCACAGTAGACG -ACGGAAAGTTGGTCACAGGTAACG -ACGGAAAGTTGGTCACAGACTTCG -ACGGAAAGTTGGTCACAGTACGCA -ACGGAAAGTTGGTCACAGCTTGCA -ACGGAAAGTTGGTCACAGCGAACA -ACGGAAAGTTGGTCACAGCAGTCA -ACGGAAAGTTGGTCACAGGATCCA -ACGGAAAGTTGGTCACAGACGACA -ACGGAAAGTTGGTCACAGAGCTCA -ACGGAAAGTTGGTCACAGTCACGT -ACGGAAAGTTGGTCACAGCGTAGT -ACGGAAAGTTGGTCACAGGTCAGT -ACGGAAAGTTGGTCACAGGAAGGT -ACGGAAAGTTGGTCACAGAACCGT -ACGGAAAGTTGGTCACAGTTGTGC -ACGGAAAGTTGGTCACAGCTAAGC -ACGGAAAGTTGGTCACAGACTAGC -ACGGAAAGTTGGTCACAGAGATGC -ACGGAAAGTTGGTCACAGTGAAGG -ACGGAAAGTTGGTCACAGCAATGG -ACGGAAAGTTGGTCACAGATGAGG -ACGGAAAGTTGGTCACAGAATGGG -ACGGAAAGTTGGTCACAGTCCTGA -ACGGAAAGTTGGTCACAGTAGCGA -ACGGAAAGTTGGTCACAGCACAGA -ACGGAAAGTTGGTCACAGGCAAGA -ACGGAAAGTTGGTCACAGGGTTGA -ACGGAAAGTTGGTCACAGTCCGAT -ACGGAAAGTTGGTCACAGTGGCAT -ACGGAAAGTTGGTCACAGCGAGAT -ACGGAAAGTTGGTCACAGTACCAC -ACGGAAAGTTGGTCACAGCAGAAC -ACGGAAAGTTGGTCACAGGTCTAC -ACGGAAAGTTGGTCACAGACGTAC -ACGGAAAGTTGGTCACAGAGTGAC -ACGGAAAGTTGGTCACAGCTGTAG -ACGGAAAGTTGGTCACAGCCTAAG -ACGGAAAGTTGGTCACAGGTTCAG -ACGGAAAGTTGGTCACAGGCATAG -ACGGAAAGTTGGTCACAGGACAAG -ACGGAAAGTTGGTCACAGAAGCAG -ACGGAAAGTTGGTCACAGCGTCAA -ACGGAAAGTTGGTCACAGGCTGAA -ACGGAAAGTTGGTCACAGAGTACG -ACGGAAAGTTGGTCACAGATCCGA -ACGGAAAGTTGGTCACAGATGGGA -ACGGAAAGTTGGTCACAGGTGCAA -ACGGAAAGTTGGTCACAGGAGGAA -ACGGAAAGTTGGTCACAGCAGGTA -ACGGAAAGTTGGTCACAGGACTCT -ACGGAAAGTTGGTCACAGAGTCCT -ACGGAAAGTTGGTCACAGTAAGCC -ACGGAAAGTTGGTCACAGATAGCC -ACGGAAAGTTGGTCACAGTAACCG -ACGGAAAGTTGGTCACAGATGCCA -ACGGAAAGTTGGCCAGATGGAAAC -ACGGAAAGTTGGCCAGATAACACC -ACGGAAAGTTGGCCAGATATCGAG -ACGGAAAGTTGGCCAGATCTCCTT -ACGGAAAGTTGGCCAGATCCTGTT -ACGGAAAGTTGGCCAGATCGGTTT -ACGGAAAGTTGGCCAGATGTGGTT -ACGGAAAGTTGGCCAGATGCCTTT -ACGGAAAGTTGGCCAGATGGTCTT -ACGGAAAGTTGGCCAGATACGCTT -ACGGAAAGTTGGCCAGATAGCGTT -ACGGAAAGTTGGCCAGATTTCGTC -ACGGAAAGTTGGCCAGATTCTCTC -ACGGAAAGTTGGCCAGATTGGATC -ACGGAAAGTTGGCCAGATCACTTC -ACGGAAAGTTGGCCAGATGTACTC -ACGGAAAGTTGGCCAGATGATGTC -ACGGAAAGTTGGCCAGATACAGTC -ACGGAAAGTTGGCCAGATTTGCTG -ACGGAAAGTTGGCCAGATTCCATG -ACGGAAAGTTGGCCAGATTGTGTG -ACGGAAAGTTGGCCAGATCTAGTG -ACGGAAAGTTGGCCAGATCATCTG -ACGGAAAGTTGGCCAGATGAGTTG -ACGGAAAGTTGGCCAGATAGACTG -ACGGAAAGTTGGCCAGATTCGGTA -ACGGAAAGTTGGCCAGATTGCCTA -ACGGAAAGTTGGCCAGATCCACTA -ACGGAAAGTTGGCCAGATGGAGTA -ACGGAAAGTTGGCCAGATTCGTCT -ACGGAAAGTTGGCCAGATTGCACT -ACGGAAAGTTGGCCAGATCTGACT -ACGGAAAGTTGGCCAGATCAACCT -ACGGAAAGTTGGCCAGATGCTACT -ACGGAAAGTTGGCCAGATGGATCT -ACGGAAAGTTGGCCAGATAAGGCT -ACGGAAAGTTGGCCAGATTCAACC -ACGGAAAGTTGGCCAGATTGTTCC -ACGGAAAGTTGGCCAGATATTCCC -ACGGAAAGTTGGCCAGATTTCTCG -ACGGAAAGTTGGCCAGATTAGACG -ACGGAAAGTTGGCCAGATGTAACG -ACGGAAAGTTGGCCAGATACTTCG -ACGGAAAGTTGGCCAGATTACGCA -ACGGAAAGTTGGCCAGATCTTGCA -ACGGAAAGTTGGCCAGATCGAACA -ACGGAAAGTTGGCCAGATCAGTCA -ACGGAAAGTTGGCCAGATGATCCA -ACGGAAAGTTGGCCAGATACGACA -ACGGAAAGTTGGCCAGATAGCTCA -ACGGAAAGTTGGCCAGATTCACGT -ACGGAAAGTTGGCCAGATCGTAGT -ACGGAAAGTTGGCCAGATGTCAGT -ACGGAAAGTTGGCCAGATGAAGGT -ACGGAAAGTTGGCCAGATAACCGT -ACGGAAAGTTGGCCAGATTTGTGC -ACGGAAAGTTGGCCAGATCTAAGC -ACGGAAAGTTGGCCAGATACTAGC -ACGGAAAGTTGGCCAGATAGATGC -ACGGAAAGTTGGCCAGATTGAAGG -ACGGAAAGTTGGCCAGATCAATGG -ACGGAAAGTTGGCCAGATATGAGG -ACGGAAAGTTGGCCAGATAATGGG -ACGGAAAGTTGGCCAGATTCCTGA -ACGGAAAGTTGGCCAGATTAGCGA -ACGGAAAGTTGGCCAGATCACAGA -ACGGAAAGTTGGCCAGATGCAAGA -ACGGAAAGTTGGCCAGATGGTTGA -ACGGAAAGTTGGCCAGATTCCGAT -ACGGAAAGTTGGCCAGATTGGCAT -ACGGAAAGTTGGCCAGATCGAGAT -ACGGAAAGTTGGCCAGATTACCAC -ACGGAAAGTTGGCCAGATCAGAAC -ACGGAAAGTTGGCCAGATGTCTAC -ACGGAAAGTTGGCCAGATACGTAC -ACGGAAAGTTGGCCAGATAGTGAC -ACGGAAAGTTGGCCAGATCTGTAG -ACGGAAAGTTGGCCAGATCCTAAG -ACGGAAAGTTGGCCAGATGTTCAG -ACGGAAAGTTGGCCAGATGCATAG -ACGGAAAGTTGGCCAGATGACAAG -ACGGAAAGTTGGCCAGATAAGCAG -ACGGAAAGTTGGCCAGATCGTCAA -ACGGAAAGTTGGCCAGATGCTGAA -ACGGAAAGTTGGCCAGATAGTACG -ACGGAAAGTTGGCCAGATATCCGA -ACGGAAAGTTGGCCAGATATGGGA -ACGGAAAGTTGGCCAGATGTGCAA -ACGGAAAGTTGGCCAGATGAGGAA -ACGGAAAGTTGGCCAGATCAGGTA -ACGGAAAGTTGGCCAGATGACTCT -ACGGAAAGTTGGCCAGATAGTCCT -ACGGAAAGTTGGCCAGATTAAGCC -ACGGAAAGTTGGCCAGATATAGCC -ACGGAAAGTTGGCCAGATTAACCG -ACGGAAAGTTGGCCAGATATGCCA -ACGGAAAGTTGGACAACGGGAAAC -ACGGAAAGTTGGACAACGAACACC -ACGGAAAGTTGGACAACGATCGAG -ACGGAAAGTTGGACAACGCTCCTT -ACGGAAAGTTGGACAACGCCTGTT -ACGGAAAGTTGGACAACGCGGTTT -ACGGAAAGTTGGACAACGGTGGTT -ACGGAAAGTTGGACAACGGCCTTT -ACGGAAAGTTGGACAACGGGTCTT -ACGGAAAGTTGGACAACGACGCTT -ACGGAAAGTTGGACAACGAGCGTT -ACGGAAAGTTGGACAACGTTCGTC -ACGGAAAGTTGGACAACGTCTCTC -ACGGAAAGTTGGACAACGTGGATC -ACGGAAAGTTGGACAACGCACTTC -ACGGAAAGTTGGACAACGGTACTC -ACGGAAAGTTGGACAACGGATGTC -ACGGAAAGTTGGACAACGACAGTC -ACGGAAAGTTGGACAACGTTGCTG -ACGGAAAGTTGGACAACGTCCATG -ACGGAAAGTTGGACAACGTGTGTG -ACGGAAAGTTGGACAACGCTAGTG -ACGGAAAGTTGGACAACGCATCTG -ACGGAAAGTTGGACAACGGAGTTG -ACGGAAAGTTGGACAACGAGACTG -ACGGAAAGTTGGACAACGTCGGTA -ACGGAAAGTTGGACAACGTGCCTA -ACGGAAAGTTGGACAACGCCACTA -ACGGAAAGTTGGACAACGGGAGTA -ACGGAAAGTTGGACAACGTCGTCT -ACGGAAAGTTGGACAACGTGCACT -ACGGAAAGTTGGACAACGCTGACT -ACGGAAAGTTGGACAACGCAACCT -ACGGAAAGTTGGACAACGGCTACT -ACGGAAAGTTGGACAACGGGATCT -ACGGAAAGTTGGACAACGAAGGCT -ACGGAAAGTTGGACAACGTCAACC -ACGGAAAGTTGGACAACGTGTTCC -ACGGAAAGTTGGACAACGATTCCC -ACGGAAAGTTGGACAACGTTCTCG -ACGGAAAGTTGGACAACGTAGACG -ACGGAAAGTTGGACAACGGTAACG -ACGGAAAGTTGGACAACGACTTCG -ACGGAAAGTTGGACAACGTACGCA -ACGGAAAGTTGGACAACGCTTGCA -ACGGAAAGTTGGACAACGCGAACA -ACGGAAAGTTGGACAACGCAGTCA -ACGGAAAGTTGGACAACGGATCCA -ACGGAAAGTTGGACAACGACGACA -ACGGAAAGTTGGACAACGAGCTCA -ACGGAAAGTTGGACAACGTCACGT -ACGGAAAGTTGGACAACGCGTAGT -ACGGAAAGTTGGACAACGGTCAGT -ACGGAAAGTTGGACAACGGAAGGT -ACGGAAAGTTGGACAACGAACCGT -ACGGAAAGTTGGACAACGTTGTGC -ACGGAAAGTTGGACAACGCTAAGC -ACGGAAAGTTGGACAACGACTAGC -ACGGAAAGTTGGACAACGAGATGC -ACGGAAAGTTGGACAACGTGAAGG -ACGGAAAGTTGGACAACGCAATGG -ACGGAAAGTTGGACAACGATGAGG -ACGGAAAGTTGGACAACGAATGGG -ACGGAAAGTTGGACAACGTCCTGA -ACGGAAAGTTGGACAACGTAGCGA -ACGGAAAGTTGGACAACGCACAGA -ACGGAAAGTTGGACAACGGCAAGA -ACGGAAAGTTGGACAACGGGTTGA -ACGGAAAGTTGGACAACGTCCGAT -ACGGAAAGTTGGACAACGTGGCAT -ACGGAAAGTTGGACAACGCGAGAT -ACGGAAAGTTGGACAACGTACCAC -ACGGAAAGTTGGACAACGCAGAAC -ACGGAAAGTTGGACAACGGTCTAC -ACGGAAAGTTGGACAACGACGTAC -ACGGAAAGTTGGACAACGAGTGAC -ACGGAAAGTTGGACAACGCTGTAG -ACGGAAAGTTGGACAACGCCTAAG -ACGGAAAGTTGGACAACGGTTCAG -ACGGAAAGTTGGACAACGGCATAG -ACGGAAAGTTGGACAACGGACAAG -ACGGAAAGTTGGACAACGAAGCAG -ACGGAAAGTTGGACAACGCGTCAA -ACGGAAAGTTGGACAACGGCTGAA -ACGGAAAGTTGGACAACGAGTACG -ACGGAAAGTTGGACAACGATCCGA -ACGGAAAGTTGGACAACGATGGGA -ACGGAAAGTTGGACAACGGTGCAA -ACGGAAAGTTGGACAACGGAGGAA -ACGGAAAGTTGGACAACGCAGGTA -ACGGAAAGTTGGACAACGGACTCT -ACGGAAAGTTGGACAACGAGTCCT -ACGGAAAGTTGGACAACGTAAGCC -ACGGAAAGTTGGACAACGATAGCC -ACGGAAAGTTGGACAACGTAACCG -ACGGAAAGTTGGACAACGATGCCA -ACGGAAAGTTGGTCAAGCGGAAAC -ACGGAAAGTTGGTCAAGCAACACC -ACGGAAAGTTGGTCAAGCATCGAG -ACGGAAAGTTGGTCAAGCCTCCTT -ACGGAAAGTTGGTCAAGCCCTGTT -ACGGAAAGTTGGTCAAGCCGGTTT -ACGGAAAGTTGGTCAAGCGTGGTT -ACGGAAAGTTGGTCAAGCGCCTTT -ACGGAAAGTTGGTCAAGCGGTCTT -ACGGAAAGTTGGTCAAGCACGCTT -ACGGAAAGTTGGTCAAGCAGCGTT -ACGGAAAGTTGGTCAAGCTTCGTC -ACGGAAAGTTGGTCAAGCTCTCTC -ACGGAAAGTTGGTCAAGCTGGATC -ACGGAAAGTTGGTCAAGCCACTTC -ACGGAAAGTTGGTCAAGCGTACTC -ACGGAAAGTTGGTCAAGCGATGTC -ACGGAAAGTTGGTCAAGCACAGTC -ACGGAAAGTTGGTCAAGCTTGCTG -ACGGAAAGTTGGTCAAGCTCCATG -ACGGAAAGTTGGTCAAGCTGTGTG -ACGGAAAGTTGGTCAAGCCTAGTG -ACGGAAAGTTGGTCAAGCCATCTG -ACGGAAAGTTGGTCAAGCGAGTTG -ACGGAAAGTTGGTCAAGCAGACTG -ACGGAAAGTTGGTCAAGCTCGGTA -ACGGAAAGTTGGTCAAGCTGCCTA -ACGGAAAGTTGGTCAAGCCCACTA -ACGGAAAGTTGGTCAAGCGGAGTA -ACGGAAAGTTGGTCAAGCTCGTCT -ACGGAAAGTTGGTCAAGCTGCACT -ACGGAAAGTTGGTCAAGCCTGACT -ACGGAAAGTTGGTCAAGCCAACCT -ACGGAAAGTTGGTCAAGCGCTACT -ACGGAAAGTTGGTCAAGCGGATCT -ACGGAAAGTTGGTCAAGCAAGGCT -ACGGAAAGTTGGTCAAGCTCAACC -ACGGAAAGTTGGTCAAGCTGTTCC -ACGGAAAGTTGGTCAAGCATTCCC -ACGGAAAGTTGGTCAAGCTTCTCG -ACGGAAAGTTGGTCAAGCTAGACG -ACGGAAAGTTGGTCAAGCGTAACG -ACGGAAAGTTGGTCAAGCACTTCG -ACGGAAAGTTGGTCAAGCTACGCA -ACGGAAAGTTGGTCAAGCCTTGCA -ACGGAAAGTTGGTCAAGCCGAACA -ACGGAAAGTTGGTCAAGCCAGTCA -ACGGAAAGTTGGTCAAGCGATCCA -ACGGAAAGTTGGTCAAGCACGACA -ACGGAAAGTTGGTCAAGCAGCTCA -ACGGAAAGTTGGTCAAGCTCACGT -ACGGAAAGTTGGTCAAGCCGTAGT -ACGGAAAGTTGGTCAAGCGTCAGT -ACGGAAAGTTGGTCAAGCGAAGGT -ACGGAAAGTTGGTCAAGCAACCGT -ACGGAAAGTTGGTCAAGCTTGTGC -ACGGAAAGTTGGTCAAGCCTAAGC -ACGGAAAGTTGGTCAAGCACTAGC -ACGGAAAGTTGGTCAAGCAGATGC -ACGGAAAGTTGGTCAAGCTGAAGG -ACGGAAAGTTGGTCAAGCCAATGG -ACGGAAAGTTGGTCAAGCATGAGG -ACGGAAAGTTGGTCAAGCAATGGG -ACGGAAAGTTGGTCAAGCTCCTGA -ACGGAAAGTTGGTCAAGCTAGCGA -ACGGAAAGTTGGTCAAGCCACAGA -ACGGAAAGTTGGTCAAGCGCAAGA -ACGGAAAGTTGGTCAAGCGGTTGA -ACGGAAAGTTGGTCAAGCTCCGAT -ACGGAAAGTTGGTCAAGCTGGCAT -ACGGAAAGTTGGTCAAGCCGAGAT -ACGGAAAGTTGGTCAAGCTACCAC -ACGGAAAGTTGGTCAAGCCAGAAC -ACGGAAAGTTGGTCAAGCGTCTAC -ACGGAAAGTTGGTCAAGCACGTAC -ACGGAAAGTTGGTCAAGCAGTGAC -ACGGAAAGTTGGTCAAGCCTGTAG -ACGGAAAGTTGGTCAAGCCCTAAG -ACGGAAAGTTGGTCAAGCGTTCAG -ACGGAAAGTTGGTCAAGCGCATAG -ACGGAAAGTTGGTCAAGCGACAAG -ACGGAAAGTTGGTCAAGCAAGCAG -ACGGAAAGTTGGTCAAGCCGTCAA -ACGGAAAGTTGGTCAAGCGCTGAA -ACGGAAAGTTGGTCAAGCAGTACG -ACGGAAAGTTGGTCAAGCATCCGA -ACGGAAAGTTGGTCAAGCATGGGA -ACGGAAAGTTGGTCAAGCGTGCAA -ACGGAAAGTTGGTCAAGCGAGGAA -ACGGAAAGTTGGTCAAGCCAGGTA -ACGGAAAGTTGGTCAAGCGACTCT -ACGGAAAGTTGGTCAAGCAGTCCT -ACGGAAAGTTGGTCAAGCTAAGCC -ACGGAAAGTTGGTCAAGCATAGCC -ACGGAAAGTTGGTCAAGCTAACCG -ACGGAAAGTTGGTCAAGCATGCCA -ACGGAAAGTTGGCGTTCAGGAAAC -ACGGAAAGTTGGCGTTCAAACACC -ACGGAAAGTTGGCGTTCAATCGAG -ACGGAAAGTTGGCGTTCACTCCTT -ACGGAAAGTTGGCGTTCACCTGTT -ACGGAAAGTTGGCGTTCACGGTTT -ACGGAAAGTTGGCGTTCAGTGGTT -ACGGAAAGTTGGCGTTCAGCCTTT -ACGGAAAGTTGGCGTTCAGGTCTT -ACGGAAAGTTGGCGTTCAACGCTT -ACGGAAAGTTGGCGTTCAAGCGTT -ACGGAAAGTTGGCGTTCATTCGTC -ACGGAAAGTTGGCGTTCATCTCTC -ACGGAAAGTTGGCGTTCATGGATC -ACGGAAAGTTGGCGTTCACACTTC -ACGGAAAGTTGGCGTTCAGTACTC -ACGGAAAGTTGGCGTTCAGATGTC -ACGGAAAGTTGGCGTTCAACAGTC -ACGGAAAGTTGGCGTTCATTGCTG -ACGGAAAGTTGGCGTTCATCCATG -ACGGAAAGTTGGCGTTCATGTGTG -ACGGAAAGTTGGCGTTCACTAGTG -ACGGAAAGTTGGCGTTCACATCTG -ACGGAAAGTTGGCGTTCAGAGTTG -ACGGAAAGTTGGCGTTCAAGACTG -ACGGAAAGTTGGCGTTCATCGGTA -ACGGAAAGTTGGCGTTCATGCCTA -ACGGAAAGTTGGCGTTCACCACTA -ACGGAAAGTTGGCGTTCAGGAGTA -ACGGAAAGTTGGCGTTCATCGTCT -ACGGAAAGTTGGCGTTCATGCACT -ACGGAAAGTTGGCGTTCACTGACT -ACGGAAAGTTGGCGTTCACAACCT -ACGGAAAGTTGGCGTTCAGCTACT -ACGGAAAGTTGGCGTTCAGGATCT -ACGGAAAGTTGGCGTTCAAAGGCT -ACGGAAAGTTGGCGTTCATCAACC -ACGGAAAGTTGGCGTTCATGTTCC -ACGGAAAGTTGGCGTTCAATTCCC -ACGGAAAGTTGGCGTTCATTCTCG -ACGGAAAGTTGGCGTTCATAGACG -ACGGAAAGTTGGCGTTCAGTAACG -ACGGAAAGTTGGCGTTCAACTTCG -ACGGAAAGTTGGCGTTCATACGCA -ACGGAAAGTTGGCGTTCACTTGCA -ACGGAAAGTTGGCGTTCACGAACA -ACGGAAAGTTGGCGTTCACAGTCA -ACGGAAAGTTGGCGTTCAGATCCA -ACGGAAAGTTGGCGTTCAACGACA -ACGGAAAGTTGGCGTTCAAGCTCA -ACGGAAAGTTGGCGTTCATCACGT -ACGGAAAGTTGGCGTTCACGTAGT -ACGGAAAGTTGGCGTTCAGTCAGT -ACGGAAAGTTGGCGTTCAGAAGGT -ACGGAAAGTTGGCGTTCAAACCGT -ACGGAAAGTTGGCGTTCATTGTGC -ACGGAAAGTTGGCGTTCACTAAGC -ACGGAAAGTTGGCGTTCAACTAGC -ACGGAAAGTTGGCGTTCAAGATGC -ACGGAAAGTTGGCGTTCATGAAGG -ACGGAAAGTTGGCGTTCACAATGG -ACGGAAAGTTGGCGTTCAATGAGG -ACGGAAAGTTGGCGTTCAAATGGG -ACGGAAAGTTGGCGTTCATCCTGA -ACGGAAAGTTGGCGTTCATAGCGA -ACGGAAAGTTGGCGTTCACACAGA -ACGGAAAGTTGGCGTTCAGCAAGA -ACGGAAAGTTGGCGTTCAGGTTGA -ACGGAAAGTTGGCGTTCATCCGAT -ACGGAAAGTTGGCGTTCATGGCAT -ACGGAAAGTTGGCGTTCACGAGAT -ACGGAAAGTTGGCGTTCATACCAC -ACGGAAAGTTGGCGTTCACAGAAC -ACGGAAAGTTGGCGTTCAGTCTAC -ACGGAAAGTTGGCGTTCAACGTAC -ACGGAAAGTTGGCGTTCAAGTGAC -ACGGAAAGTTGGCGTTCACTGTAG -ACGGAAAGTTGGCGTTCACCTAAG -ACGGAAAGTTGGCGTTCAGTTCAG -ACGGAAAGTTGGCGTTCAGCATAG -ACGGAAAGTTGGCGTTCAGACAAG -ACGGAAAGTTGGCGTTCAAAGCAG -ACGGAAAGTTGGCGTTCACGTCAA -ACGGAAAGTTGGCGTTCAGCTGAA -ACGGAAAGTTGGCGTTCAAGTACG -ACGGAAAGTTGGCGTTCAATCCGA -ACGGAAAGTTGGCGTTCAATGGGA -ACGGAAAGTTGGCGTTCAGTGCAA -ACGGAAAGTTGGCGTTCAGAGGAA -ACGGAAAGTTGGCGTTCACAGGTA -ACGGAAAGTTGGCGTTCAGACTCT -ACGGAAAGTTGGCGTTCAAGTCCT -ACGGAAAGTTGGCGTTCATAAGCC -ACGGAAAGTTGGCGTTCAATAGCC -ACGGAAAGTTGGCGTTCATAACCG -ACGGAAAGTTGGCGTTCAATGCCA -ACGGAAAGTTGGAGTCGTGGAAAC -ACGGAAAGTTGGAGTCGTAACACC -ACGGAAAGTTGGAGTCGTATCGAG -ACGGAAAGTTGGAGTCGTCTCCTT -ACGGAAAGTTGGAGTCGTCCTGTT -ACGGAAAGTTGGAGTCGTCGGTTT -ACGGAAAGTTGGAGTCGTGTGGTT -ACGGAAAGTTGGAGTCGTGCCTTT -ACGGAAAGTTGGAGTCGTGGTCTT -ACGGAAAGTTGGAGTCGTACGCTT -ACGGAAAGTTGGAGTCGTAGCGTT -ACGGAAAGTTGGAGTCGTTTCGTC -ACGGAAAGTTGGAGTCGTTCTCTC -ACGGAAAGTTGGAGTCGTTGGATC -ACGGAAAGTTGGAGTCGTCACTTC -ACGGAAAGTTGGAGTCGTGTACTC -ACGGAAAGTTGGAGTCGTGATGTC -ACGGAAAGTTGGAGTCGTACAGTC -ACGGAAAGTTGGAGTCGTTTGCTG -ACGGAAAGTTGGAGTCGTTCCATG -ACGGAAAGTTGGAGTCGTTGTGTG -ACGGAAAGTTGGAGTCGTCTAGTG -ACGGAAAGTTGGAGTCGTCATCTG -ACGGAAAGTTGGAGTCGTGAGTTG -ACGGAAAGTTGGAGTCGTAGACTG -ACGGAAAGTTGGAGTCGTTCGGTA -ACGGAAAGTTGGAGTCGTTGCCTA -ACGGAAAGTTGGAGTCGTCCACTA -ACGGAAAGTTGGAGTCGTGGAGTA -ACGGAAAGTTGGAGTCGTTCGTCT -ACGGAAAGTTGGAGTCGTTGCACT -ACGGAAAGTTGGAGTCGTCTGACT -ACGGAAAGTTGGAGTCGTCAACCT -ACGGAAAGTTGGAGTCGTGCTACT -ACGGAAAGTTGGAGTCGTGGATCT -ACGGAAAGTTGGAGTCGTAAGGCT -ACGGAAAGTTGGAGTCGTTCAACC -ACGGAAAGTTGGAGTCGTTGTTCC -ACGGAAAGTTGGAGTCGTATTCCC -ACGGAAAGTTGGAGTCGTTTCTCG -ACGGAAAGTTGGAGTCGTTAGACG -ACGGAAAGTTGGAGTCGTGTAACG -ACGGAAAGTTGGAGTCGTACTTCG -ACGGAAAGTTGGAGTCGTTACGCA -ACGGAAAGTTGGAGTCGTCTTGCA -ACGGAAAGTTGGAGTCGTCGAACA -ACGGAAAGTTGGAGTCGTCAGTCA -ACGGAAAGTTGGAGTCGTGATCCA -ACGGAAAGTTGGAGTCGTACGACA -ACGGAAAGTTGGAGTCGTAGCTCA -ACGGAAAGTTGGAGTCGTTCACGT -ACGGAAAGTTGGAGTCGTCGTAGT -ACGGAAAGTTGGAGTCGTGTCAGT -ACGGAAAGTTGGAGTCGTGAAGGT -ACGGAAAGTTGGAGTCGTAACCGT -ACGGAAAGTTGGAGTCGTTTGTGC -ACGGAAAGTTGGAGTCGTCTAAGC -ACGGAAAGTTGGAGTCGTACTAGC -ACGGAAAGTTGGAGTCGTAGATGC -ACGGAAAGTTGGAGTCGTTGAAGG -ACGGAAAGTTGGAGTCGTCAATGG -ACGGAAAGTTGGAGTCGTATGAGG -ACGGAAAGTTGGAGTCGTAATGGG -ACGGAAAGTTGGAGTCGTTCCTGA -ACGGAAAGTTGGAGTCGTTAGCGA -ACGGAAAGTTGGAGTCGTCACAGA -ACGGAAAGTTGGAGTCGTGCAAGA -ACGGAAAGTTGGAGTCGTGGTTGA -ACGGAAAGTTGGAGTCGTTCCGAT -ACGGAAAGTTGGAGTCGTTGGCAT -ACGGAAAGTTGGAGTCGTCGAGAT -ACGGAAAGTTGGAGTCGTTACCAC -ACGGAAAGTTGGAGTCGTCAGAAC -ACGGAAAGTTGGAGTCGTGTCTAC -ACGGAAAGTTGGAGTCGTACGTAC -ACGGAAAGTTGGAGTCGTAGTGAC -ACGGAAAGTTGGAGTCGTCTGTAG -ACGGAAAGTTGGAGTCGTCCTAAG -ACGGAAAGTTGGAGTCGTGTTCAG -ACGGAAAGTTGGAGTCGTGCATAG -ACGGAAAGTTGGAGTCGTGACAAG -ACGGAAAGTTGGAGTCGTAAGCAG -ACGGAAAGTTGGAGTCGTCGTCAA -ACGGAAAGTTGGAGTCGTGCTGAA -ACGGAAAGTTGGAGTCGTAGTACG -ACGGAAAGTTGGAGTCGTATCCGA -ACGGAAAGTTGGAGTCGTATGGGA -ACGGAAAGTTGGAGTCGTGTGCAA -ACGGAAAGTTGGAGTCGTGAGGAA -ACGGAAAGTTGGAGTCGTCAGGTA -ACGGAAAGTTGGAGTCGTGACTCT -ACGGAAAGTTGGAGTCGTAGTCCT -ACGGAAAGTTGGAGTCGTTAAGCC -ACGGAAAGTTGGAGTCGTATAGCC -ACGGAAAGTTGGAGTCGTTAACCG -ACGGAAAGTTGGAGTCGTATGCCA -ACGGAAAGTTGGAGTGTCGGAAAC -ACGGAAAGTTGGAGTGTCAACACC -ACGGAAAGTTGGAGTGTCATCGAG -ACGGAAAGTTGGAGTGTCCTCCTT -ACGGAAAGTTGGAGTGTCCCTGTT -ACGGAAAGTTGGAGTGTCCGGTTT -ACGGAAAGTTGGAGTGTCGTGGTT -ACGGAAAGTTGGAGTGTCGCCTTT -ACGGAAAGTTGGAGTGTCGGTCTT -ACGGAAAGTTGGAGTGTCACGCTT -ACGGAAAGTTGGAGTGTCAGCGTT -ACGGAAAGTTGGAGTGTCTTCGTC -ACGGAAAGTTGGAGTGTCTCTCTC -ACGGAAAGTTGGAGTGTCTGGATC -ACGGAAAGTTGGAGTGTCCACTTC -ACGGAAAGTTGGAGTGTCGTACTC -ACGGAAAGTTGGAGTGTCGATGTC -ACGGAAAGTTGGAGTGTCACAGTC -ACGGAAAGTTGGAGTGTCTTGCTG -ACGGAAAGTTGGAGTGTCTCCATG -ACGGAAAGTTGGAGTGTCTGTGTG -ACGGAAAGTTGGAGTGTCCTAGTG -ACGGAAAGTTGGAGTGTCCATCTG -ACGGAAAGTTGGAGTGTCGAGTTG -ACGGAAAGTTGGAGTGTCAGACTG -ACGGAAAGTTGGAGTGTCTCGGTA -ACGGAAAGTTGGAGTGTCTGCCTA -ACGGAAAGTTGGAGTGTCCCACTA -ACGGAAAGTTGGAGTGTCGGAGTA -ACGGAAAGTTGGAGTGTCTCGTCT -ACGGAAAGTTGGAGTGTCTGCACT -ACGGAAAGTTGGAGTGTCCTGACT -ACGGAAAGTTGGAGTGTCCAACCT -ACGGAAAGTTGGAGTGTCGCTACT -ACGGAAAGTTGGAGTGTCGGATCT -ACGGAAAGTTGGAGTGTCAAGGCT -ACGGAAAGTTGGAGTGTCTCAACC -ACGGAAAGTTGGAGTGTCTGTTCC -ACGGAAAGTTGGAGTGTCATTCCC -ACGGAAAGTTGGAGTGTCTTCTCG -ACGGAAAGTTGGAGTGTCTAGACG -ACGGAAAGTTGGAGTGTCGTAACG -ACGGAAAGTTGGAGTGTCACTTCG -ACGGAAAGTTGGAGTGTCTACGCA -ACGGAAAGTTGGAGTGTCCTTGCA -ACGGAAAGTTGGAGTGTCCGAACA -ACGGAAAGTTGGAGTGTCCAGTCA -ACGGAAAGTTGGAGTGTCGATCCA -ACGGAAAGTTGGAGTGTCACGACA -ACGGAAAGTTGGAGTGTCAGCTCA -ACGGAAAGTTGGAGTGTCTCACGT -ACGGAAAGTTGGAGTGTCCGTAGT -ACGGAAAGTTGGAGTGTCGTCAGT -ACGGAAAGTTGGAGTGTCGAAGGT -ACGGAAAGTTGGAGTGTCAACCGT -ACGGAAAGTTGGAGTGTCTTGTGC -ACGGAAAGTTGGAGTGTCCTAAGC -ACGGAAAGTTGGAGTGTCACTAGC -ACGGAAAGTTGGAGTGTCAGATGC -ACGGAAAGTTGGAGTGTCTGAAGG -ACGGAAAGTTGGAGTGTCCAATGG -ACGGAAAGTTGGAGTGTCATGAGG -ACGGAAAGTTGGAGTGTCAATGGG -ACGGAAAGTTGGAGTGTCTCCTGA -ACGGAAAGTTGGAGTGTCTAGCGA -ACGGAAAGTTGGAGTGTCCACAGA -ACGGAAAGTTGGAGTGTCGCAAGA -ACGGAAAGTTGGAGTGTCGGTTGA -ACGGAAAGTTGGAGTGTCTCCGAT -ACGGAAAGTTGGAGTGTCTGGCAT -ACGGAAAGTTGGAGTGTCCGAGAT -ACGGAAAGTTGGAGTGTCTACCAC -ACGGAAAGTTGGAGTGTCCAGAAC -ACGGAAAGTTGGAGTGTCGTCTAC -ACGGAAAGTTGGAGTGTCACGTAC -ACGGAAAGTTGGAGTGTCAGTGAC -ACGGAAAGTTGGAGTGTCCTGTAG -ACGGAAAGTTGGAGTGTCCCTAAG -ACGGAAAGTTGGAGTGTCGTTCAG -ACGGAAAGTTGGAGTGTCGCATAG -ACGGAAAGTTGGAGTGTCGACAAG -ACGGAAAGTTGGAGTGTCAAGCAG -ACGGAAAGTTGGAGTGTCCGTCAA -ACGGAAAGTTGGAGTGTCGCTGAA -ACGGAAAGTTGGAGTGTCAGTACG -ACGGAAAGTTGGAGTGTCATCCGA -ACGGAAAGTTGGAGTGTCATGGGA -ACGGAAAGTTGGAGTGTCGTGCAA -ACGGAAAGTTGGAGTGTCGAGGAA -ACGGAAAGTTGGAGTGTCCAGGTA -ACGGAAAGTTGGAGTGTCGACTCT -ACGGAAAGTTGGAGTGTCAGTCCT -ACGGAAAGTTGGAGTGTCTAAGCC -ACGGAAAGTTGGAGTGTCATAGCC -ACGGAAAGTTGGAGTGTCTAACCG -ACGGAAAGTTGGAGTGTCATGCCA -ACGGAAAGTTGGGGTGAAGGAAAC -ACGGAAAGTTGGGGTGAAAACACC -ACGGAAAGTTGGGGTGAAATCGAG -ACGGAAAGTTGGGGTGAACTCCTT -ACGGAAAGTTGGGGTGAACCTGTT -ACGGAAAGTTGGGGTGAACGGTTT -ACGGAAAGTTGGGGTGAAGTGGTT -ACGGAAAGTTGGGGTGAAGCCTTT -ACGGAAAGTTGGGGTGAAGGTCTT -ACGGAAAGTTGGGGTGAAACGCTT -ACGGAAAGTTGGGGTGAAAGCGTT -ACGGAAAGTTGGGGTGAATTCGTC -ACGGAAAGTTGGGGTGAATCTCTC -ACGGAAAGTTGGGGTGAATGGATC -ACGGAAAGTTGGGGTGAACACTTC -ACGGAAAGTTGGGGTGAAGTACTC -ACGGAAAGTTGGGGTGAAGATGTC -ACGGAAAGTTGGGGTGAAACAGTC -ACGGAAAGTTGGGGTGAATTGCTG -ACGGAAAGTTGGGGTGAATCCATG -ACGGAAAGTTGGGGTGAATGTGTG -ACGGAAAGTTGGGGTGAACTAGTG -ACGGAAAGTTGGGGTGAACATCTG -ACGGAAAGTTGGGGTGAAGAGTTG -ACGGAAAGTTGGGGTGAAAGACTG -ACGGAAAGTTGGGGTGAATCGGTA -ACGGAAAGTTGGGGTGAATGCCTA -ACGGAAAGTTGGGGTGAACCACTA -ACGGAAAGTTGGGGTGAAGGAGTA -ACGGAAAGTTGGGGTGAATCGTCT -ACGGAAAGTTGGGGTGAATGCACT -ACGGAAAGTTGGGGTGAACTGACT -ACGGAAAGTTGGGGTGAACAACCT -ACGGAAAGTTGGGGTGAAGCTACT -ACGGAAAGTTGGGGTGAAGGATCT -ACGGAAAGTTGGGGTGAAAAGGCT -ACGGAAAGTTGGGGTGAATCAACC -ACGGAAAGTTGGGGTGAATGTTCC -ACGGAAAGTTGGGGTGAAATTCCC -ACGGAAAGTTGGGGTGAATTCTCG -ACGGAAAGTTGGGGTGAATAGACG -ACGGAAAGTTGGGGTGAAGTAACG -ACGGAAAGTTGGGGTGAAACTTCG -ACGGAAAGTTGGGGTGAATACGCA -ACGGAAAGTTGGGGTGAACTTGCA -ACGGAAAGTTGGGGTGAACGAACA -ACGGAAAGTTGGGGTGAACAGTCA -ACGGAAAGTTGGGGTGAAGATCCA -ACGGAAAGTTGGGGTGAAACGACA -ACGGAAAGTTGGGGTGAAAGCTCA -ACGGAAAGTTGGGGTGAATCACGT -ACGGAAAGTTGGGGTGAACGTAGT -ACGGAAAGTTGGGGTGAAGTCAGT -ACGGAAAGTTGGGGTGAAGAAGGT -ACGGAAAGTTGGGGTGAAAACCGT -ACGGAAAGTTGGGGTGAATTGTGC -ACGGAAAGTTGGGGTGAACTAAGC -ACGGAAAGTTGGGGTGAAACTAGC -ACGGAAAGTTGGGGTGAAAGATGC -ACGGAAAGTTGGGGTGAATGAAGG -ACGGAAAGTTGGGGTGAACAATGG -ACGGAAAGTTGGGGTGAAATGAGG -ACGGAAAGTTGGGGTGAAAATGGG -ACGGAAAGTTGGGGTGAATCCTGA -ACGGAAAGTTGGGGTGAATAGCGA -ACGGAAAGTTGGGGTGAACACAGA -ACGGAAAGTTGGGGTGAAGCAAGA -ACGGAAAGTTGGGGTGAAGGTTGA -ACGGAAAGTTGGGGTGAATCCGAT -ACGGAAAGTTGGGGTGAATGGCAT -ACGGAAAGTTGGGGTGAACGAGAT -ACGGAAAGTTGGGGTGAATACCAC -ACGGAAAGTTGGGGTGAACAGAAC -ACGGAAAGTTGGGGTGAAGTCTAC -ACGGAAAGTTGGGGTGAAACGTAC -ACGGAAAGTTGGGGTGAAAGTGAC -ACGGAAAGTTGGGGTGAACTGTAG -ACGGAAAGTTGGGGTGAACCTAAG -ACGGAAAGTTGGGGTGAAGTTCAG -ACGGAAAGTTGGGGTGAAGCATAG -ACGGAAAGTTGGGGTGAAGACAAG -ACGGAAAGTTGGGGTGAAAAGCAG -ACGGAAAGTTGGGGTGAACGTCAA -ACGGAAAGTTGGGGTGAAGCTGAA -ACGGAAAGTTGGGGTGAAAGTACG -ACGGAAAGTTGGGGTGAAATCCGA -ACGGAAAGTTGGGGTGAAATGGGA -ACGGAAAGTTGGGGTGAAGTGCAA -ACGGAAAGTTGGGGTGAAGAGGAA -ACGGAAAGTTGGGGTGAACAGGTA -ACGGAAAGTTGGGGTGAAGACTCT -ACGGAAAGTTGGGGTGAAAGTCCT -ACGGAAAGTTGGGGTGAATAAGCC -ACGGAAAGTTGGGGTGAAATAGCC -ACGGAAAGTTGGGGTGAATAACCG -ACGGAAAGTTGGGGTGAAATGCCA -ACGGAAAGTTGGCGTAACGGAAAC -ACGGAAAGTTGGCGTAACAACACC -ACGGAAAGTTGGCGTAACATCGAG -ACGGAAAGTTGGCGTAACCTCCTT -ACGGAAAGTTGGCGTAACCCTGTT -ACGGAAAGTTGGCGTAACCGGTTT -ACGGAAAGTTGGCGTAACGTGGTT -ACGGAAAGTTGGCGTAACGCCTTT -ACGGAAAGTTGGCGTAACGGTCTT -ACGGAAAGTTGGCGTAACACGCTT -ACGGAAAGTTGGCGTAACAGCGTT -ACGGAAAGTTGGCGTAACTTCGTC -ACGGAAAGTTGGCGTAACTCTCTC -ACGGAAAGTTGGCGTAACTGGATC -ACGGAAAGTTGGCGTAACCACTTC -ACGGAAAGTTGGCGTAACGTACTC -ACGGAAAGTTGGCGTAACGATGTC -ACGGAAAGTTGGCGTAACACAGTC -ACGGAAAGTTGGCGTAACTTGCTG -ACGGAAAGTTGGCGTAACTCCATG -ACGGAAAGTTGGCGTAACTGTGTG -ACGGAAAGTTGGCGTAACCTAGTG -ACGGAAAGTTGGCGTAACCATCTG -ACGGAAAGTTGGCGTAACGAGTTG -ACGGAAAGTTGGCGTAACAGACTG -ACGGAAAGTTGGCGTAACTCGGTA -ACGGAAAGTTGGCGTAACTGCCTA -ACGGAAAGTTGGCGTAACCCACTA -ACGGAAAGTTGGCGTAACGGAGTA -ACGGAAAGTTGGCGTAACTCGTCT -ACGGAAAGTTGGCGTAACTGCACT -ACGGAAAGTTGGCGTAACCTGACT -ACGGAAAGTTGGCGTAACCAACCT -ACGGAAAGTTGGCGTAACGCTACT -ACGGAAAGTTGGCGTAACGGATCT -ACGGAAAGTTGGCGTAACAAGGCT -ACGGAAAGTTGGCGTAACTCAACC -ACGGAAAGTTGGCGTAACTGTTCC -ACGGAAAGTTGGCGTAACATTCCC -ACGGAAAGTTGGCGTAACTTCTCG -ACGGAAAGTTGGCGTAACTAGACG -ACGGAAAGTTGGCGTAACGTAACG -ACGGAAAGTTGGCGTAACACTTCG -ACGGAAAGTTGGCGTAACTACGCA -ACGGAAAGTTGGCGTAACCTTGCA -ACGGAAAGTTGGCGTAACCGAACA -ACGGAAAGTTGGCGTAACCAGTCA -ACGGAAAGTTGGCGTAACGATCCA -ACGGAAAGTTGGCGTAACACGACA -ACGGAAAGTTGGCGTAACAGCTCA -ACGGAAAGTTGGCGTAACTCACGT -ACGGAAAGTTGGCGTAACCGTAGT -ACGGAAAGTTGGCGTAACGTCAGT -ACGGAAAGTTGGCGTAACGAAGGT -ACGGAAAGTTGGCGTAACAACCGT -ACGGAAAGTTGGCGTAACTTGTGC -ACGGAAAGTTGGCGTAACCTAAGC -ACGGAAAGTTGGCGTAACACTAGC -ACGGAAAGTTGGCGTAACAGATGC -ACGGAAAGTTGGCGTAACTGAAGG -ACGGAAAGTTGGCGTAACCAATGG -ACGGAAAGTTGGCGTAACATGAGG -ACGGAAAGTTGGCGTAACAATGGG -ACGGAAAGTTGGCGTAACTCCTGA -ACGGAAAGTTGGCGTAACTAGCGA -ACGGAAAGTTGGCGTAACCACAGA -ACGGAAAGTTGGCGTAACGCAAGA -ACGGAAAGTTGGCGTAACGGTTGA -ACGGAAAGTTGGCGTAACTCCGAT -ACGGAAAGTTGGCGTAACTGGCAT -ACGGAAAGTTGGCGTAACCGAGAT -ACGGAAAGTTGGCGTAACTACCAC -ACGGAAAGTTGGCGTAACCAGAAC -ACGGAAAGTTGGCGTAACGTCTAC -ACGGAAAGTTGGCGTAACACGTAC -ACGGAAAGTTGGCGTAACAGTGAC -ACGGAAAGTTGGCGTAACCTGTAG -ACGGAAAGTTGGCGTAACCCTAAG -ACGGAAAGTTGGCGTAACGTTCAG -ACGGAAAGTTGGCGTAACGCATAG -ACGGAAAGTTGGCGTAACGACAAG -ACGGAAAGTTGGCGTAACAAGCAG -ACGGAAAGTTGGCGTAACCGTCAA -ACGGAAAGTTGGCGTAACGCTGAA -ACGGAAAGTTGGCGTAACAGTACG -ACGGAAAGTTGGCGTAACATCCGA -ACGGAAAGTTGGCGTAACATGGGA -ACGGAAAGTTGGCGTAACGTGCAA -ACGGAAAGTTGGCGTAACGAGGAA -ACGGAAAGTTGGCGTAACCAGGTA -ACGGAAAGTTGGCGTAACGACTCT -ACGGAAAGTTGGCGTAACAGTCCT -ACGGAAAGTTGGCGTAACTAAGCC -ACGGAAAGTTGGCGTAACATAGCC -ACGGAAAGTTGGCGTAACTAACCG -ACGGAAAGTTGGCGTAACATGCCA -ACGGAAAGTTGGTGCTTGGGAAAC -ACGGAAAGTTGGTGCTTGAACACC -ACGGAAAGTTGGTGCTTGATCGAG -ACGGAAAGTTGGTGCTTGCTCCTT -ACGGAAAGTTGGTGCTTGCCTGTT -ACGGAAAGTTGGTGCTTGCGGTTT -ACGGAAAGTTGGTGCTTGGTGGTT -ACGGAAAGTTGGTGCTTGGCCTTT -ACGGAAAGTTGGTGCTTGGGTCTT -ACGGAAAGTTGGTGCTTGACGCTT -ACGGAAAGTTGGTGCTTGAGCGTT -ACGGAAAGTTGGTGCTTGTTCGTC -ACGGAAAGTTGGTGCTTGTCTCTC -ACGGAAAGTTGGTGCTTGTGGATC -ACGGAAAGTTGGTGCTTGCACTTC -ACGGAAAGTTGGTGCTTGGTACTC -ACGGAAAGTTGGTGCTTGGATGTC -ACGGAAAGTTGGTGCTTGACAGTC -ACGGAAAGTTGGTGCTTGTTGCTG -ACGGAAAGTTGGTGCTTGTCCATG -ACGGAAAGTTGGTGCTTGTGTGTG -ACGGAAAGTTGGTGCTTGCTAGTG -ACGGAAAGTTGGTGCTTGCATCTG -ACGGAAAGTTGGTGCTTGGAGTTG -ACGGAAAGTTGGTGCTTGAGACTG -ACGGAAAGTTGGTGCTTGTCGGTA -ACGGAAAGTTGGTGCTTGTGCCTA -ACGGAAAGTTGGTGCTTGCCACTA -ACGGAAAGTTGGTGCTTGGGAGTA -ACGGAAAGTTGGTGCTTGTCGTCT -ACGGAAAGTTGGTGCTTGTGCACT -ACGGAAAGTTGGTGCTTGCTGACT -ACGGAAAGTTGGTGCTTGCAACCT -ACGGAAAGTTGGTGCTTGGCTACT -ACGGAAAGTTGGTGCTTGGGATCT -ACGGAAAGTTGGTGCTTGAAGGCT -ACGGAAAGTTGGTGCTTGTCAACC -ACGGAAAGTTGGTGCTTGTGTTCC -ACGGAAAGTTGGTGCTTGATTCCC -ACGGAAAGTTGGTGCTTGTTCTCG -ACGGAAAGTTGGTGCTTGTAGACG -ACGGAAAGTTGGTGCTTGGTAACG -ACGGAAAGTTGGTGCTTGACTTCG -ACGGAAAGTTGGTGCTTGTACGCA -ACGGAAAGTTGGTGCTTGCTTGCA -ACGGAAAGTTGGTGCTTGCGAACA -ACGGAAAGTTGGTGCTTGCAGTCA -ACGGAAAGTTGGTGCTTGGATCCA -ACGGAAAGTTGGTGCTTGACGACA -ACGGAAAGTTGGTGCTTGAGCTCA -ACGGAAAGTTGGTGCTTGTCACGT -ACGGAAAGTTGGTGCTTGCGTAGT -ACGGAAAGTTGGTGCTTGGTCAGT -ACGGAAAGTTGGTGCTTGGAAGGT -ACGGAAAGTTGGTGCTTGAACCGT -ACGGAAAGTTGGTGCTTGTTGTGC -ACGGAAAGTTGGTGCTTGCTAAGC -ACGGAAAGTTGGTGCTTGACTAGC -ACGGAAAGTTGGTGCTTGAGATGC -ACGGAAAGTTGGTGCTTGTGAAGG -ACGGAAAGTTGGTGCTTGCAATGG -ACGGAAAGTTGGTGCTTGATGAGG -ACGGAAAGTTGGTGCTTGAATGGG -ACGGAAAGTTGGTGCTTGTCCTGA -ACGGAAAGTTGGTGCTTGTAGCGA -ACGGAAAGTTGGTGCTTGCACAGA -ACGGAAAGTTGGTGCTTGGCAAGA -ACGGAAAGTTGGTGCTTGGGTTGA -ACGGAAAGTTGGTGCTTGTCCGAT -ACGGAAAGTTGGTGCTTGTGGCAT -ACGGAAAGTTGGTGCTTGCGAGAT -ACGGAAAGTTGGTGCTTGTACCAC -ACGGAAAGTTGGTGCTTGCAGAAC -ACGGAAAGTTGGTGCTTGGTCTAC -ACGGAAAGTTGGTGCTTGACGTAC -ACGGAAAGTTGGTGCTTGAGTGAC -ACGGAAAGTTGGTGCTTGCTGTAG -ACGGAAAGTTGGTGCTTGCCTAAG -ACGGAAAGTTGGTGCTTGGTTCAG -ACGGAAAGTTGGTGCTTGGCATAG -ACGGAAAGTTGGTGCTTGGACAAG -ACGGAAAGTTGGTGCTTGAAGCAG -ACGGAAAGTTGGTGCTTGCGTCAA -ACGGAAAGTTGGTGCTTGGCTGAA -ACGGAAAGTTGGTGCTTGAGTACG -ACGGAAAGTTGGTGCTTGATCCGA -ACGGAAAGTTGGTGCTTGATGGGA -ACGGAAAGTTGGTGCTTGGTGCAA -ACGGAAAGTTGGTGCTTGGAGGAA -ACGGAAAGTTGGTGCTTGCAGGTA -ACGGAAAGTTGGTGCTTGGACTCT -ACGGAAAGTTGGTGCTTGAGTCCT -ACGGAAAGTTGGTGCTTGTAAGCC -ACGGAAAGTTGGTGCTTGATAGCC -ACGGAAAGTTGGTGCTTGTAACCG -ACGGAAAGTTGGTGCTTGATGCCA -ACGGAAAGTTGGAGCCTAGGAAAC -ACGGAAAGTTGGAGCCTAAACACC -ACGGAAAGTTGGAGCCTAATCGAG -ACGGAAAGTTGGAGCCTACTCCTT -ACGGAAAGTTGGAGCCTACCTGTT -ACGGAAAGTTGGAGCCTACGGTTT -ACGGAAAGTTGGAGCCTAGTGGTT -ACGGAAAGTTGGAGCCTAGCCTTT -ACGGAAAGTTGGAGCCTAGGTCTT -ACGGAAAGTTGGAGCCTAACGCTT -ACGGAAAGTTGGAGCCTAAGCGTT -ACGGAAAGTTGGAGCCTATTCGTC -ACGGAAAGTTGGAGCCTATCTCTC -ACGGAAAGTTGGAGCCTATGGATC -ACGGAAAGTTGGAGCCTACACTTC -ACGGAAAGTTGGAGCCTAGTACTC -ACGGAAAGTTGGAGCCTAGATGTC -ACGGAAAGTTGGAGCCTAACAGTC -ACGGAAAGTTGGAGCCTATTGCTG -ACGGAAAGTTGGAGCCTATCCATG -ACGGAAAGTTGGAGCCTATGTGTG -ACGGAAAGTTGGAGCCTACTAGTG -ACGGAAAGTTGGAGCCTACATCTG -ACGGAAAGTTGGAGCCTAGAGTTG -ACGGAAAGTTGGAGCCTAAGACTG -ACGGAAAGTTGGAGCCTATCGGTA -ACGGAAAGTTGGAGCCTATGCCTA -ACGGAAAGTTGGAGCCTACCACTA -ACGGAAAGTTGGAGCCTAGGAGTA -ACGGAAAGTTGGAGCCTATCGTCT -ACGGAAAGTTGGAGCCTATGCACT -ACGGAAAGTTGGAGCCTACTGACT -ACGGAAAGTTGGAGCCTACAACCT -ACGGAAAGTTGGAGCCTAGCTACT -ACGGAAAGTTGGAGCCTAGGATCT -ACGGAAAGTTGGAGCCTAAAGGCT -ACGGAAAGTTGGAGCCTATCAACC -ACGGAAAGTTGGAGCCTATGTTCC -ACGGAAAGTTGGAGCCTAATTCCC -ACGGAAAGTTGGAGCCTATTCTCG -ACGGAAAGTTGGAGCCTATAGACG -ACGGAAAGTTGGAGCCTAGTAACG -ACGGAAAGTTGGAGCCTAACTTCG -ACGGAAAGTTGGAGCCTATACGCA -ACGGAAAGTTGGAGCCTACTTGCA -ACGGAAAGTTGGAGCCTACGAACA -ACGGAAAGTTGGAGCCTACAGTCA -ACGGAAAGTTGGAGCCTAGATCCA -ACGGAAAGTTGGAGCCTAACGACA -ACGGAAAGTTGGAGCCTAAGCTCA -ACGGAAAGTTGGAGCCTATCACGT -ACGGAAAGTTGGAGCCTACGTAGT -ACGGAAAGTTGGAGCCTAGTCAGT -ACGGAAAGTTGGAGCCTAGAAGGT -ACGGAAAGTTGGAGCCTAAACCGT -ACGGAAAGTTGGAGCCTATTGTGC -ACGGAAAGTTGGAGCCTACTAAGC -ACGGAAAGTTGGAGCCTAACTAGC -ACGGAAAGTTGGAGCCTAAGATGC -ACGGAAAGTTGGAGCCTATGAAGG -ACGGAAAGTTGGAGCCTACAATGG -ACGGAAAGTTGGAGCCTAATGAGG -ACGGAAAGTTGGAGCCTAAATGGG -ACGGAAAGTTGGAGCCTATCCTGA -ACGGAAAGTTGGAGCCTATAGCGA -ACGGAAAGTTGGAGCCTACACAGA -ACGGAAAGTTGGAGCCTAGCAAGA -ACGGAAAGTTGGAGCCTAGGTTGA -ACGGAAAGTTGGAGCCTATCCGAT -ACGGAAAGTTGGAGCCTATGGCAT -ACGGAAAGTTGGAGCCTACGAGAT -ACGGAAAGTTGGAGCCTATACCAC -ACGGAAAGTTGGAGCCTACAGAAC -ACGGAAAGTTGGAGCCTAGTCTAC -ACGGAAAGTTGGAGCCTAACGTAC -ACGGAAAGTTGGAGCCTAAGTGAC -ACGGAAAGTTGGAGCCTACTGTAG -ACGGAAAGTTGGAGCCTACCTAAG -ACGGAAAGTTGGAGCCTAGTTCAG -ACGGAAAGTTGGAGCCTAGCATAG -ACGGAAAGTTGGAGCCTAGACAAG -ACGGAAAGTTGGAGCCTAAAGCAG -ACGGAAAGTTGGAGCCTACGTCAA -ACGGAAAGTTGGAGCCTAGCTGAA -ACGGAAAGTTGGAGCCTAAGTACG -ACGGAAAGTTGGAGCCTAATCCGA -ACGGAAAGTTGGAGCCTAATGGGA -ACGGAAAGTTGGAGCCTAGTGCAA -ACGGAAAGTTGGAGCCTAGAGGAA -ACGGAAAGTTGGAGCCTACAGGTA -ACGGAAAGTTGGAGCCTAGACTCT -ACGGAAAGTTGGAGCCTAAGTCCT -ACGGAAAGTTGGAGCCTATAAGCC -ACGGAAAGTTGGAGCCTAATAGCC -ACGGAAAGTTGGAGCCTATAACCG -ACGGAAAGTTGGAGCCTAATGCCA -ACGGAAAGTTGGAGCACTGGAAAC -ACGGAAAGTTGGAGCACTAACACC -ACGGAAAGTTGGAGCACTATCGAG -ACGGAAAGTTGGAGCACTCTCCTT -ACGGAAAGTTGGAGCACTCCTGTT -ACGGAAAGTTGGAGCACTCGGTTT -ACGGAAAGTTGGAGCACTGTGGTT -ACGGAAAGTTGGAGCACTGCCTTT -ACGGAAAGTTGGAGCACTGGTCTT -ACGGAAAGTTGGAGCACTACGCTT -ACGGAAAGTTGGAGCACTAGCGTT -ACGGAAAGTTGGAGCACTTTCGTC -ACGGAAAGTTGGAGCACTTCTCTC -ACGGAAAGTTGGAGCACTTGGATC -ACGGAAAGTTGGAGCACTCACTTC -ACGGAAAGTTGGAGCACTGTACTC -ACGGAAAGTTGGAGCACTGATGTC -ACGGAAAGTTGGAGCACTACAGTC -ACGGAAAGTTGGAGCACTTTGCTG -ACGGAAAGTTGGAGCACTTCCATG -ACGGAAAGTTGGAGCACTTGTGTG -ACGGAAAGTTGGAGCACTCTAGTG -ACGGAAAGTTGGAGCACTCATCTG -ACGGAAAGTTGGAGCACTGAGTTG -ACGGAAAGTTGGAGCACTAGACTG -ACGGAAAGTTGGAGCACTTCGGTA -ACGGAAAGTTGGAGCACTTGCCTA -ACGGAAAGTTGGAGCACTCCACTA -ACGGAAAGTTGGAGCACTGGAGTA -ACGGAAAGTTGGAGCACTTCGTCT -ACGGAAAGTTGGAGCACTTGCACT -ACGGAAAGTTGGAGCACTCTGACT -ACGGAAAGTTGGAGCACTCAACCT -ACGGAAAGTTGGAGCACTGCTACT -ACGGAAAGTTGGAGCACTGGATCT -ACGGAAAGTTGGAGCACTAAGGCT -ACGGAAAGTTGGAGCACTTCAACC -ACGGAAAGTTGGAGCACTTGTTCC -ACGGAAAGTTGGAGCACTATTCCC -ACGGAAAGTTGGAGCACTTTCTCG -ACGGAAAGTTGGAGCACTTAGACG -ACGGAAAGTTGGAGCACTGTAACG -ACGGAAAGTTGGAGCACTACTTCG -ACGGAAAGTTGGAGCACTTACGCA -ACGGAAAGTTGGAGCACTCTTGCA -ACGGAAAGTTGGAGCACTCGAACA -ACGGAAAGTTGGAGCACTCAGTCA -ACGGAAAGTTGGAGCACTGATCCA -ACGGAAAGTTGGAGCACTACGACA -ACGGAAAGTTGGAGCACTAGCTCA -ACGGAAAGTTGGAGCACTTCACGT -ACGGAAAGTTGGAGCACTCGTAGT -ACGGAAAGTTGGAGCACTGTCAGT -ACGGAAAGTTGGAGCACTGAAGGT -ACGGAAAGTTGGAGCACTAACCGT -ACGGAAAGTTGGAGCACTTTGTGC -ACGGAAAGTTGGAGCACTCTAAGC -ACGGAAAGTTGGAGCACTACTAGC -ACGGAAAGTTGGAGCACTAGATGC -ACGGAAAGTTGGAGCACTTGAAGG -ACGGAAAGTTGGAGCACTCAATGG -ACGGAAAGTTGGAGCACTATGAGG -ACGGAAAGTTGGAGCACTAATGGG -ACGGAAAGTTGGAGCACTTCCTGA -ACGGAAAGTTGGAGCACTTAGCGA -ACGGAAAGTTGGAGCACTCACAGA -ACGGAAAGTTGGAGCACTGCAAGA -ACGGAAAGTTGGAGCACTGGTTGA -ACGGAAAGTTGGAGCACTTCCGAT -ACGGAAAGTTGGAGCACTTGGCAT -ACGGAAAGTTGGAGCACTCGAGAT -ACGGAAAGTTGGAGCACTTACCAC -ACGGAAAGTTGGAGCACTCAGAAC -ACGGAAAGTTGGAGCACTGTCTAC -ACGGAAAGTTGGAGCACTACGTAC -ACGGAAAGTTGGAGCACTAGTGAC -ACGGAAAGTTGGAGCACTCTGTAG -ACGGAAAGTTGGAGCACTCCTAAG -ACGGAAAGTTGGAGCACTGTTCAG -ACGGAAAGTTGGAGCACTGCATAG -ACGGAAAGTTGGAGCACTGACAAG -ACGGAAAGTTGGAGCACTAAGCAG -ACGGAAAGTTGGAGCACTCGTCAA -ACGGAAAGTTGGAGCACTGCTGAA -ACGGAAAGTTGGAGCACTAGTACG -ACGGAAAGTTGGAGCACTATCCGA -ACGGAAAGTTGGAGCACTATGGGA -ACGGAAAGTTGGAGCACTGTGCAA -ACGGAAAGTTGGAGCACTGAGGAA -ACGGAAAGTTGGAGCACTCAGGTA -ACGGAAAGTTGGAGCACTGACTCT -ACGGAAAGTTGGAGCACTAGTCCT -ACGGAAAGTTGGAGCACTTAAGCC -ACGGAAAGTTGGAGCACTATAGCC -ACGGAAAGTTGGAGCACTTAACCG -ACGGAAAGTTGGAGCACTATGCCA -ACGGAAAGTTGGTGCAGAGGAAAC -ACGGAAAGTTGGTGCAGAAACACC -ACGGAAAGTTGGTGCAGAATCGAG -ACGGAAAGTTGGTGCAGACTCCTT -ACGGAAAGTTGGTGCAGACCTGTT -ACGGAAAGTTGGTGCAGACGGTTT -ACGGAAAGTTGGTGCAGAGTGGTT -ACGGAAAGTTGGTGCAGAGCCTTT -ACGGAAAGTTGGTGCAGAGGTCTT -ACGGAAAGTTGGTGCAGAACGCTT -ACGGAAAGTTGGTGCAGAAGCGTT -ACGGAAAGTTGGTGCAGATTCGTC -ACGGAAAGTTGGTGCAGATCTCTC -ACGGAAAGTTGGTGCAGATGGATC -ACGGAAAGTTGGTGCAGACACTTC -ACGGAAAGTTGGTGCAGAGTACTC -ACGGAAAGTTGGTGCAGAGATGTC -ACGGAAAGTTGGTGCAGAACAGTC -ACGGAAAGTTGGTGCAGATTGCTG -ACGGAAAGTTGGTGCAGATCCATG -ACGGAAAGTTGGTGCAGATGTGTG -ACGGAAAGTTGGTGCAGACTAGTG -ACGGAAAGTTGGTGCAGACATCTG -ACGGAAAGTTGGTGCAGAGAGTTG -ACGGAAAGTTGGTGCAGAAGACTG -ACGGAAAGTTGGTGCAGATCGGTA -ACGGAAAGTTGGTGCAGATGCCTA -ACGGAAAGTTGGTGCAGACCACTA -ACGGAAAGTTGGTGCAGAGGAGTA -ACGGAAAGTTGGTGCAGATCGTCT -ACGGAAAGTTGGTGCAGATGCACT -ACGGAAAGTTGGTGCAGACTGACT -ACGGAAAGTTGGTGCAGACAACCT -ACGGAAAGTTGGTGCAGAGCTACT -ACGGAAAGTTGGTGCAGAGGATCT -ACGGAAAGTTGGTGCAGAAAGGCT -ACGGAAAGTTGGTGCAGATCAACC -ACGGAAAGTTGGTGCAGATGTTCC -ACGGAAAGTTGGTGCAGAATTCCC -ACGGAAAGTTGGTGCAGATTCTCG -ACGGAAAGTTGGTGCAGATAGACG -ACGGAAAGTTGGTGCAGAGTAACG -ACGGAAAGTTGGTGCAGAACTTCG -ACGGAAAGTTGGTGCAGATACGCA -ACGGAAAGTTGGTGCAGACTTGCA -ACGGAAAGTTGGTGCAGACGAACA -ACGGAAAGTTGGTGCAGACAGTCA -ACGGAAAGTTGGTGCAGAGATCCA -ACGGAAAGTTGGTGCAGAACGACA -ACGGAAAGTTGGTGCAGAAGCTCA -ACGGAAAGTTGGTGCAGATCACGT -ACGGAAAGTTGGTGCAGACGTAGT -ACGGAAAGTTGGTGCAGAGTCAGT -ACGGAAAGTTGGTGCAGAGAAGGT -ACGGAAAGTTGGTGCAGAAACCGT -ACGGAAAGTTGGTGCAGATTGTGC -ACGGAAAGTTGGTGCAGACTAAGC -ACGGAAAGTTGGTGCAGAACTAGC -ACGGAAAGTTGGTGCAGAAGATGC -ACGGAAAGTTGGTGCAGATGAAGG -ACGGAAAGTTGGTGCAGACAATGG -ACGGAAAGTTGGTGCAGAATGAGG -ACGGAAAGTTGGTGCAGAAATGGG -ACGGAAAGTTGGTGCAGATCCTGA -ACGGAAAGTTGGTGCAGATAGCGA -ACGGAAAGTTGGTGCAGACACAGA -ACGGAAAGTTGGTGCAGAGCAAGA -ACGGAAAGTTGGTGCAGAGGTTGA -ACGGAAAGTTGGTGCAGATCCGAT -ACGGAAAGTTGGTGCAGATGGCAT -ACGGAAAGTTGGTGCAGACGAGAT -ACGGAAAGTTGGTGCAGATACCAC -ACGGAAAGTTGGTGCAGACAGAAC -ACGGAAAGTTGGTGCAGAGTCTAC -ACGGAAAGTTGGTGCAGAACGTAC -ACGGAAAGTTGGTGCAGAAGTGAC -ACGGAAAGTTGGTGCAGACTGTAG -ACGGAAAGTTGGTGCAGACCTAAG -ACGGAAAGTTGGTGCAGAGTTCAG -ACGGAAAGTTGGTGCAGAGCATAG -ACGGAAAGTTGGTGCAGAGACAAG -ACGGAAAGTTGGTGCAGAAAGCAG -ACGGAAAGTTGGTGCAGACGTCAA -ACGGAAAGTTGGTGCAGAGCTGAA -ACGGAAAGTTGGTGCAGAAGTACG -ACGGAAAGTTGGTGCAGAATCCGA -ACGGAAAGTTGGTGCAGAATGGGA -ACGGAAAGTTGGTGCAGAGTGCAA -ACGGAAAGTTGGTGCAGAGAGGAA -ACGGAAAGTTGGTGCAGACAGGTA -ACGGAAAGTTGGTGCAGAGACTCT -ACGGAAAGTTGGTGCAGAAGTCCT -ACGGAAAGTTGGTGCAGATAAGCC -ACGGAAAGTTGGTGCAGAATAGCC -ACGGAAAGTTGGTGCAGATAACCG -ACGGAAAGTTGGTGCAGAATGCCA -ACGGAAAGTTGGAGGTGAGGAAAC -ACGGAAAGTTGGAGGTGAAACACC -ACGGAAAGTTGGAGGTGAATCGAG -ACGGAAAGTTGGAGGTGACTCCTT -ACGGAAAGTTGGAGGTGACCTGTT -ACGGAAAGTTGGAGGTGACGGTTT -ACGGAAAGTTGGAGGTGAGTGGTT -ACGGAAAGTTGGAGGTGAGCCTTT -ACGGAAAGTTGGAGGTGAGGTCTT -ACGGAAAGTTGGAGGTGAACGCTT -ACGGAAAGTTGGAGGTGAAGCGTT -ACGGAAAGTTGGAGGTGATTCGTC -ACGGAAAGTTGGAGGTGATCTCTC -ACGGAAAGTTGGAGGTGATGGATC -ACGGAAAGTTGGAGGTGACACTTC -ACGGAAAGTTGGAGGTGAGTACTC -ACGGAAAGTTGGAGGTGAGATGTC -ACGGAAAGTTGGAGGTGAACAGTC -ACGGAAAGTTGGAGGTGATTGCTG -ACGGAAAGTTGGAGGTGATCCATG -ACGGAAAGTTGGAGGTGATGTGTG -ACGGAAAGTTGGAGGTGACTAGTG -ACGGAAAGTTGGAGGTGACATCTG -ACGGAAAGTTGGAGGTGAGAGTTG -ACGGAAAGTTGGAGGTGAAGACTG -ACGGAAAGTTGGAGGTGATCGGTA -ACGGAAAGTTGGAGGTGATGCCTA -ACGGAAAGTTGGAGGTGACCACTA -ACGGAAAGTTGGAGGTGAGGAGTA -ACGGAAAGTTGGAGGTGATCGTCT -ACGGAAAGTTGGAGGTGATGCACT -ACGGAAAGTTGGAGGTGACTGACT -ACGGAAAGTTGGAGGTGACAACCT -ACGGAAAGTTGGAGGTGAGCTACT -ACGGAAAGTTGGAGGTGAGGATCT -ACGGAAAGTTGGAGGTGAAAGGCT -ACGGAAAGTTGGAGGTGATCAACC -ACGGAAAGTTGGAGGTGATGTTCC -ACGGAAAGTTGGAGGTGAATTCCC -ACGGAAAGTTGGAGGTGATTCTCG -ACGGAAAGTTGGAGGTGATAGACG -ACGGAAAGTTGGAGGTGAGTAACG -ACGGAAAGTTGGAGGTGAACTTCG -ACGGAAAGTTGGAGGTGATACGCA -ACGGAAAGTTGGAGGTGACTTGCA -ACGGAAAGTTGGAGGTGACGAACA -ACGGAAAGTTGGAGGTGACAGTCA -ACGGAAAGTTGGAGGTGAGATCCA -ACGGAAAGTTGGAGGTGAACGACA -ACGGAAAGTTGGAGGTGAAGCTCA -ACGGAAAGTTGGAGGTGATCACGT -ACGGAAAGTTGGAGGTGACGTAGT -ACGGAAAGTTGGAGGTGAGTCAGT -ACGGAAAGTTGGAGGTGAGAAGGT -ACGGAAAGTTGGAGGTGAAACCGT -ACGGAAAGTTGGAGGTGATTGTGC -ACGGAAAGTTGGAGGTGACTAAGC -ACGGAAAGTTGGAGGTGAACTAGC -ACGGAAAGTTGGAGGTGAAGATGC -ACGGAAAGTTGGAGGTGATGAAGG -ACGGAAAGTTGGAGGTGACAATGG -ACGGAAAGTTGGAGGTGAATGAGG -ACGGAAAGTTGGAGGTGAAATGGG -ACGGAAAGTTGGAGGTGATCCTGA -ACGGAAAGTTGGAGGTGATAGCGA -ACGGAAAGTTGGAGGTGACACAGA -ACGGAAAGTTGGAGGTGAGCAAGA -ACGGAAAGTTGGAGGTGAGGTTGA -ACGGAAAGTTGGAGGTGATCCGAT -ACGGAAAGTTGGAGGTGATGGCAT -ACGGAAAGTTGGAGGTGACGAGAT -ACGGAAAGTTGGAGGTGATACCAC -ACGGAAAGTTGGAGGTGACAGAAC -ACGGAAAGTTGGAGGTGAGTCTAC -ACGGAAAGTTGGAGGTGAACGTAC -ACGGAAAGTTGGAGGTGAAGTGAC -ACGGAAAGTTGGAGGTGACTGTAG -ACGGAAAGTTGGAGGTGACCTAAG -ACGGAAAGTTGGAGGTGAGTTCAG -ACGGAAAGTTGGAGGTGAGCATAG -ACGGAAAGTTGGAGGTGAGACAAG -ACGGAAAGTTGGAGGTGAAAGCAG -ACGGAAAGTTGGAGGTGACGTCAA -ACGGAAAGTTGGAGGTGAGCTGAA -ACGGAAAGTTGGAGGTGAAGTACG -ACGGAAAGTTGGAGGTGAATCCGA -ACGGAAAGTTGGAGGTGAATGGGA -ACGGAAAGTTGGAGGTGAGTGCAA -ACGGAAAGTTGGAGGTGAGAGGAA -ACGGAAAGTTGGAGGTGACAGGTA -ACGGAAAGTTGGAGGTGAGACTCT -ACGGAAAGTTGGAGGTGAAGTCCT -ACGGAAAGTTGGAGGTGATAAGCC -ACGGAAAGTTGGAGGTGAATAGCC -ACGGAAAGTTGGAGGTGATAACCG -ACGGAAAGTTGGAGGTGAATGCCA -ACGGAAAGTTGGTGGCAAGGAAAC -ACGGAAAGTTGGTGGCAAAACACC -ACGGAAAGTTGGTGGCAAATCGAG -ACGGAAAGTTGGTGGCAACTCCTT -ACGGAAAGTTGGTGGCAACCTGTT -ACGGAAAGTTGGTGGCAACGGTTT -ACGGAAAGTTGGTGGCAAGTGGTT -ACGGAAAGTTGGTGGCAAGCCTTT -ACGGAAAGTTGGTGGCAAGGTCTT -ACGGAAAGTTGGTGGCAAACGCTT -ACGGAAAGTTGGTGGCAAAGCGTT -ACGGAAAGTTGGTGGCAATTCGTC -ACGGAAAGTTGGTGGCAATCTCTC -ACGGAAAGTTGGTGGCAATGGATC -ACGGAAAGTTGGTGGCAACACTTC -ACGGAAAGTTGGTGGCAAGTACTC -ACGGAAAGTTGGTGGCAAGATGTC -ACGGAAAGTTGGTGGCAAACAGTC -ACGGAAAGTTGGTGGCAATTGCTG -ACGGAAAGTTGGTGGCAATCCATG -ACGGAAAGTTGGTGGCAATGTGTG -ACGGAAAGTTGGTGGCAACTAGTG -ACGGAAAGTTGGTGGCAACATCTG -ACGGAAAGTTGGTGGCAAGAGTTG -ACGGAAAGTTGGTGGCAAAGACTG -ACGGAAAGTTGGTGGCAATCGGTA -ACGGAAAGTTGGTGGCAATGCCTA -ACGGAAAGTTGGTGGCAACCACTA -ACGGAAAGTTGGTGGCAAGGAGTA -ACGGAAAGTTGGTGGCAATCGTCT -ACGGAAAGTTGGTGGCAATGCACT -ACGGAAAGTTGGTGGCAACTGACT -ACGGAAAGTTGGTGGCAACAACCT -ACGGAAAGTTGGTGGCAAGCTACT -ACGGAAAGTTGGTGGCAAGGATCT -ACGGAAAGTTGGTGGCAAAAGGCT -ACGGAAAGTTGGTGGCAATCAACC -ACGGAAAGTTGGTGGCAATGTTCC -ACGGAAAGTTGGTGGCAAATTCCC -ACGGAAAGTTGGTGGCAATTCTCG -ACGGAAAGTTGGTGGCAATAGACG -ACGGAAAGTTGGTGGCAAGTAACG -ACGGAAAGTTGGTGGCAAACTTCG -ACGGAAAGTTGGTGGCAATACGCA -ACGGAAAGTTGGTGGCAACTTGCA -ACGGAAAGTTGGTGGCAACGAACA -ACGGAAAGTTGGTGGCAACAGTCA -ACGGAAAGTTGGTGGCAAGATCCA -ACGGAAAGTTGGTGGCAAACGACA -ACGGAAAGTTGGTGGCAAAGCTCA -ACGGAAAGTTGGTGGCAATCACGT -ACGGAAAGTTGGTGGCAACGTAGT -ACGGAAAGTTGGTGGCAAGTCAGT -ACGGAAAGTTGGTGGCAAGAAGGT -ACGGAAAGTTGGTGGCAAAACCGT -ACGGAAAGTTGGTGGCAATTGTGC -ACGGAAAGTTGGTGGCAACTAAGC -ACGGAAAGTTGGTGGCAAACTAGC -ACGGAAAGTTGGTGGCAAAGATGC -ACGGAAAGTTGGTGGCAATGAAGG -ACGGAAAGTTGGTGGCAACAATGG -ACGGAAAGTTGGTGGCAAATGAGG -ACGGAAAGTTGGTGGCAAAATGGG -ACGGAAAGTTGGTGGCAATCCTGA -ACGGAAAGTTGGTGGCAATAGCGA -ACGGAAAGTTGGTGGCAACACAGA -ACGGAAAGTTGGTGGCAAGCAAGA -ACGGAAAGTTGGTGGCAAGGTTGA -ACGGAAAGTTGGTGGCAATCCGAT -ACGGAAAGTTGGTGGCAATGGCAT -ACGGAAAGTTGGTGGCAACGAGAT -ACGGAAAGTTGGTGGCAATACCAC -ACGGAAAGTTGGTGGCAACAGAAC -ACGGAAAGTTGGTGGCAAGTCTAC -ACGGAAAGTTGGTGGCAAACGTAC -ACGGAAAGTTGGTGGCAAAGTGAC -ACGGAAAGTTGGTGGCAACTGTAG -ACGGAAAGTTGGTGGCAACCTAAG -ACGGAAAGTTGGTGGCAAGTTCAG -ACGGAAAGTTGGTGGCAAGCATAG -ACGGAAAGTTGGTGGCAAGACAAG -ACGGAAAGTTGGTGGCAAAAGCAG -ACGGAAAGTTGGTGGCAACGTCAA -ACGGAAAGTTGGTGGCAAGCTGAA -ACGGAAAGTTGGTGGCAAAGTACG -ACGGAAAGTTGGTGGCAAATCCGA -ACGGAAAGTTGGTGGCAAATGGGA -ACGGAAAGTTGGTGGCAAGTGCAA -ACGGAAAGTTGGTGGCAAGAGGAA -ACGGAAAGTTGGTGGCAACAGGTA -ACGGAAAGTTGGTGGCAAGACTCT -ACGGAAAGTTGGTGGCAAAGTCCT -ACGGAAAGTTGGTGGCAATAAGCC -ACGGAAAGTTGGTGGCAAATAGCC -ACGGAAAGTTGGTGGCAATAACCG -ACGGAAAGTTGGTGGCAAATGCCA -ACGGAAAGTTGGAGGATGGGAAAC -ACGGAAAGTTGGAGGATGAACACC -ACGGAAAGTTGGAGGATGATCGAG -ACGGAAAGTTGGAGGATGCTCCTT -ACGGAAAGTTGGAGGATGCCTGTT -ACGGAAAGTTGGAGGATGCGGTTT -ACGGAAAGTTGGAGGATGGTGGTT -ACGGAAAGTTGGAGGATGGCCTTT -ACGGAAAGTTGGAGGATGGGTCTT -ACGGAAAGTTGGAGGATGACGCTT -ACGGAAAGTTGGAGGATGAGCGTT -ACGGAAAGTTGGAGGATGTTCGTC -ACGGAAAGTTGGAGGATGTCTCTC -ACGGAAAGTTGGAGGATGTGGATC -ACGGAAAGTTGGAGGATGCACTTC -ACGGAAAGTTGGAGGATGGTACTC -ACGGAAAGTTGGAGGATGGATGTC -ACGGAAAGTTGGAGGATGACAGTC -ACGGAAAGTTGGAGGATGTTGCTG -ACGGAAAGTTGGAGGATGTCCATG -ACGGAAAGTTGGAGGATGTGTGTG -ACGGAAAGTTGGAGGATGCTAGTG -ACGGAAAGTTGGAGGATGCATCTG -ACGGAAAGTTGGAGGATGGAGTTG -ACGGAAAGTTGGAGGATGAGACTG -ACGGAAAGTTGGAGGATGTCGGTA -ACGGAAAGTTGGAGGATGTGCCTA -ACGGAAAGTTGGAGGATGCCACTA -ACGGAAAGTTGGAGGATGGGAGTA -ACGGAAAGTTGGAGGATGTCGTCT -ACGGAAAGTTGGAGGATGTGCACT -ACGGAAAGTTGGAGGATGCTGACT -ACGGAAAGTTGGAGGATGCAACCT -ACGGAAAGTTGGAGGATGGCTACT -ACGGAAAGTTGGAGGATGGGATCT -ACGGAAAGTTGGAGGATGAAGGCT -ACGGAAAGTTGGAGGATGTCAACC -ACGGAAAGTTGGAGGATGTGTTCC -ACGGAAAGTTGGAGGATGATTCCC -ACGGAAAGTTGGAGGATGTTCTCG -ACGGAAAGTTGGAGGATGTAGACG -ACGGAAAGTTGGAGGATGGTAACG -ACGGAAAGTTGGAGGATGACTTCG -ACGGAAAGTTGGAGGATGTACGCA -ACGGAAAGTTGGAGGATGCTTGCA -ACGGAAAGTTGGAGGATGCGAACA -ACGGAAAGTTGGAGGATGCAGTCA -ACGGAAAGTTGGAGGATGGATCCA -ACGGAAAGTTGGAGGATGACGACA -ACGGAAAGTTGGAGGATGAGCTCA -ACGGAAAGTTGGAGGATGTCACGT -ACGGAAAGTTGGAGGATGCGTAGT -ACGGAAAGTTGGAGGATGGTCAGT -ACGGAAAGTTGGAGGATGGAAGGT -ACGGAAAGTTGGAGGATGAACCGT -ACGGAAAGTTGGAGGATGTTGTGC -ACGGAAAGTTGGAGGATGCTAAGC -ACGGAAAGTTGGAGGATGACTAGC -ACGGAAAGTTGGAGGATGAGATGC -ACGGAAAGTTGGAGGATGTGAAGG -ACGGAAAGTTGGAGGATGCAATGG -ACGGAAAGTTGGAGGATGATGAGG -ACGGAAAGTTGGAGGATGAATGGG -ACGGAAAGTTGGAGGATGTCCTGA -ACGGAAAGTTGGAGGATGTAGCGA -ACGGAAAGTTGGAGGATGCACAGA -ACGGAAAGTTGGAGGATGGCAAGA -ACGGAAAGTTGGAGGATGGGTTGA -ACGGAAAGTTGGAGGATGTCCGAT -ACGGAAAGTTGGAGGATGTGGCAT -ACGGAAAGTTGGAGGATGCGAGAT -ACGGAAAGTTGGAGGATGTACCAC -ACGGAAAGTTGGAGGATGCAGAAC -ACGGAAAGTTGGAGGATGGTCTAC -ACGGAAAGTTGGAGGATGACGTAC -ACGGAAAGTTGGAGGATGAGTGAC -ACGGAAAGTTGGAGGATGCTGTAG -ACGGAAAGTTGGAGGATGCCTAAG -ACGGAAAGTTGGAGGATGGTTCAG -ACGGAAAGTTGGAGGATGGCATAG -ACGGAAAGTTGGAGGATGGACAAG -ACGGAAAGTTGGAGGATGAAGCAG -ACGGAAAGTTGGAGGATGCGTCAA -ACGGAAAGTTGGAGGATGGCTGAA -ACGGAAAGTTGGAGGATGAGTACG -ACGGAAAGTTGGAGGATGATCCGA -ACGGAAAGTTGGAGGATGATGGGA -ACGGAAAGTTGGAGGATGGTGCAA -ACGGAAAGTTGGAGGATGGAGGAA -ACGGAAAGTTGGAGGATGCAGGTA -ACGGAAAGTTGGAGGATGGACTCT -ACGGAAAGTTGGAGGATGAGTCCT -ACGGAAAGTTGGAGGATGTAAGCC -ACGGAAAGTTGGAGGATGATAGCC -ACGGAAAGTTGGAGGATGTAACCG -ACGGAAAGTTGGAGGATGATGCCA -ACGGAAAGTTGGGGGAATGGAAAC -ACGGAAAGTTGGGGGAATAACACC -ACGGAAAGTTGGGGGAATATCGAG -ACGGAAAGTTGGGGGAATCTCCTT -ACGGAAAGTTGGGGGAATCCTGTT -ACGGAAAGTTGGGGGAATCGGTTT -ACGGAAAGTTGGGGGAATGTGGTT -ACGGAAAGTTGGGGGAATGCCTTT -ACGGAAAGTTGGGGGAATGGTCTT -ACGGAAAGTTGGGGGAATACGCTT -ACGGAAAGTTGGGGGAATAGCGTT -ACGGAAAGTTGGGGGAATTTCGTC -ACGGAAAGTTGGGGGAATTCTCTC -ACGGAAAGTTGGGGGAATTGGATC -ACGGAAAGTTGGGGGAATCACTTC -ACGGAAAGTTGGGGGAATGTACTC -ACGGAAAGTTGGGGGAATGATGTC -ACGGAAAGTTGGGGGAATACAGTC -ACGGAAAGTTGGGGGAATTTGCTG -ACGGAAAGTTGGGGGAATTCCATG -ACGGAAAGTTGGGGGAATTGTGTG -ACGGAAAGTTGGGGGAATCTAGTG -ACGGAAAGTTGGGGGAATCATCTG -ACGGAAAGTTGGGGGAATGAGTTG -ACGGAAAGTTGGGGGAATAGACTG -ACGGAAAGTTGGGGGAATTCGGTA -ACGGAAAGTTGGGGGAATTGCCTA -ACGGAAAGTTGGGGGAATCCACTA -ACGGAAAGTTGGGGGAATGGAGTA -ACGGAAAGTTGGGGGAATTCGTCT -ACGGAAAGTTGGGGGAATTGCACT -ACGGAAAGTTGGGGGAATCTGACT -ACGGAAAGTTGGGGGAATCAACCT -ACGGAAAGTTGGGGGAATGCTACT -ACGGAAAGTTGGGGGAATGGATCT -ACGGAAAGTTGGGGGAATAAGGCT -ACGGAAAGTTGGGGGAATTCAACC -ACGGAAAGTTGGGGGAATTGTTCC -ACGGAAAGTTGGGGGAATATTCCC -ACGGAAAGTTGGGGGAATTTCTCG -ACGGAAAGTTGGGGGAATTAGACG -ACGGAAAGTTGGGGGAATGTAACG -ACGGAAAGTTGGGGGAATACTTCG -ACGGAAAGTTGGGGGAATTACGCA -ACGGAAAGTTGGGGGAATCTTGCA -ACGGAAAGTTGGGGGAATCGAACA -ACGGAAAGTTGGGGGAATCAGTCA -ACGGAAAGTTGGGGGAATGATCCA -ACGGAAAGTTGGGGGAATACGACA -ACGGAAAGTTGGGGGAATAGCTCA -ACGGAAAGTTGGGGGAATTCACGT -ACGGAAAGTTGGGGGAATCGTAGT -ACGGAAAGTTGGGGGAATGTCAGT -ACGGAAAGTTGGGGGAATGAAGGT -ACGGAAAGTTGGGGGAATAACCGT -ACGGAAAGTTGGGGGAATTTGTGC -ACGGAAAGTTGGGGGAATCTAAGC -ACGGAAAGTTGGGGGAATACTAGC -ACGGAAAGTTGGGGGAATAGATGC -ACGGAAAGTTGGGGGAATTGAAGG -ACGGAAAGTTGGGGGAATCAATGG -ACGGAAAGTTGGGGGAATATGAGG -ACGGAAAGTTGGGGGAATAATGGG -ACGGAAAGTTGGGGGAATTCCTGA -ACGGAAAGTTGGGGGAATTAGCGA -ACGGAAAGTTGGGGGAATCACAGA -ACGGAAAGTTGGGGGAATGCAAGA -ACGGAAAGTTGGGGGAATGGTTGA -ACGGAAAGTTGGGGGAATTCCGAT -ACGGAAAGTTGGGGGAATTGGCAT -ACGGAAAGTTGGGGGAATCGAGAT -ACGGAAAGTTGGGGGAATTACCAC -ACGGAAAGTTGGGGGAATCAGAAC -ACGGAAAGTTGGGGGAATGTCTAC -ACGGAAAGTTGGGGGAATACGTAC -ACGGAAAGTTGGGGGAATAGTGAC -ACGGAAAGTTGGGGGAATCTGTAG -ACGGAAAGTTGGGGGAATCCTAAG -ACGGAAAGTTGGGGGAATGTTCAG -ACGGAAAGTTGGGGGAATGCATAG -ACGGAAAGTTGGGGGAATGACAAG -ACGGAAAGTTGGGGGAATAAGCAG -ACGGAAAGTTGGGGGAATCGTCAA -ACGGAAAGTTGGGGGAATGCTGAA -ACGGAAAGTTGGGGGAATAGTACG -ACGGAAAGTTGGGGGAATATCCGA -ACGGAAAGTTGGGGGAATATGGGA -ACGGAAAGTTGGGGGAATGTGCAA -ACGGAAAGTTGGGGGAATGAGGAA -ACGGAAAGTTGGGGGAATCAGGTA -ACGGAAAGTTGGGGGAATGACTCT -ACGGAAAGTTGGGGGAATAGTCCT -ACGGAAAGTTGGGGGAATTAAGCC -ACGGAAAGTTGGGGGAATATAGCC -ACGGAAAGTTGGGGGAATTAACCG -ACGGAAAGTTGGGGGAATATGCCA -ACGGAAAGTTGGTGATCCGGAAAC -ACGGAAAGTTGGTGATCCAACACC -ACGGAAAGTTGGTGATCCATCGAG -ACGGAAAGTTGGTGATCCCTCCTT -ACGGAAAGTTGGTGATCCCCTGTT -ACGGAAAGTTGGTGATCCCGGTTT -ACGGAAAGTTGGTGATCCGTGGTT -ACGGAAAGTTGGTGATCCGCCTTT -ACGGAAAGTTGGTGATCCGGTCTT -ACGGAAAGTTGGTGATCCACGCTT -ACGGAAAGTTGGTGATCCAGCGTT -ACGGAAAGTTGGTGATCCTTCGTC -ACGGAAAGTTGGTGATCCTCTCTC -ACGGAAAGTTGGTGATCCTGGATC -ACGGAAAGTTGGTGATCCCACTTC -ACGGAAAGTTGGTGATCCGTACTC -ACGGAAAGTTGGTGATCCGATGTC -ACGGAAAGTTGGTGATCCACAGTC -ACGGAAAGTTGGTGATCCTTGCTG -ACGGAAAGTTGGTGATCCTCCATG -ACGGAAAGTTGGTGATCCTGTGTG -ACGGAAAGTTGGTGATCCCTAGTG -ACGGAAAGTTGGTGATCCCATCTG -ACGGAAAGTTGGTGATCCGAGTTG -ACGGAAAGTTGGTGATCCAGACTG -ACGGAAAGTTGGTGATCCTCGGTA -ACGGAAAGTTGGTGATCCTGCCTA -ACGGAAAGTTGGTGATCCCCACTA -ACGGAAAGTTGGTGATCCGGAGTA -ACGGAAAGTTGGTGATCCTCGTCT -ACGGAAAGTTGGTGATCCTGCACT -ACGGAAAGTTGGTGATCCCTGACT -ACGGAAAGTTGGTGATCCCAACCT -ACGGAAAGTTGGTGATCCGCTACT -ACGGAAAGTTGGTGATCCGGATCT -ACGGAAAGTTGGTGATCCAAGGCT -ACGGAAAGTTGGTGATCCTCAACC -ACGGAAAGTTGGTGATCCTGTTCC -ACGGAAAGTTGGTGATCCATTCCC -ACGGAAAGTTGGTGATCCTTCTCG -ACGGAAAGTTGGTGATCCTAGACG -ACGGAAAGTTGGTGATCCGTAACG -ACGGAAAGTTGGTGATCCACTTCG -ACGGAAAGTTGGTGATCCTACGCA -ACGGAAAGTTGGTGATCCCTTGCA -ACGGAAAGTTGGTGATCCCGAACA -ACGGAAAGTTGGTGATCCCAGTCA -ACGGAAAGTTGGTGATCCGATCCA -ACGGAAAGTTGGTGATCCACGACA -ACGGAAAGTTGGTGATCCAGCTCA -ACGGAAAGTTGGTGATCCTCACGT -ACGGAAAGTTGGTGATCCCGTAGT -ACGGAAAGTTGGTGATCCGTCAGT -ACGGAAAGTTGGTGATCCGAAGGT -ACGGAAAGTTGGTGATCCAACCGT -ACGGAAAGTTGGTGATCCTTGTGC -ACGGAAAGTTGGTGATCCCTAAGC -ACGGAAAGTTGGTGATCCACTAGC -ACGGAAAGTTGGTGATCCAGATGC -ACGGAAAGTTGGTGATCCTGAAGG -ACGGAAAGTTGGTGATCCCAATGG -ACGGAAAGTTGGTGATCCATGAGG -ACGGAAAGTTGGTGATCCAATGGG -ACGGAAAGTTGGTGATCCTCCTGA -ACGGAAAGTTGGTGATCCTAGCGA -ACGGAAAGTTGGTGATCCCACAGA -ACGGAAAGTTGGTGATCCGCAAGA -ACGGAAAGTTGGTGATCCGGTTGA -ACGGAAAGTTGGTGATCCTCCGAT -ACGGAAAGTTGGTGATCCTGGCAT -ACGGAAAGTTGGTGATCCCGAGAT -ACGGAAAGTTGGTGATCCTACCAC -ACGGAAAGTTGGTGATCCCAGAAC -ACGGAAAGTTGGTGATCCGTCTAC -ACGGAAAGTTGGTGATCCACGTAC -ACGGAAAGTTGGTGATCCAGTGAC -ACGGAAAGTTGGTGATCCCTGTAG -ACGGAAAGTTGGTGATCCCCTAAG -ACGGAAAGTTGGTGATCCGTTCAG -ACGGAAAGTTGGTGATCCGCATAG -ACGGAAAGTTGGTGATCCGACAAG -ACGGAAAGTTGGTGATCCAAGCAG -ACGGAAAGTTGGTGATCCCGTCAA -ACGGAAAGTTGGTGATCCGCTGAA -ACGGAAAGTTGGTGATCCAGTACG -ACGGAAAGTTGGTGATCCATCCGA -ACGGAAAGTTGGTGATCCATGGGA -ACGGAAAGTTGGTGATCCGTGCAA -ACGGAAAGTTGGTGATCCGAGGAA -ACGGAAAGTTGGTGATCCCAGGTA -ACGGAAAGTTGGTGATCCGACTCT -ACGGAAAGTTGGTGATCCAGTCCT -ACGGAAAGTTGGTGATCCTAAGCC -ACGGAAAGTTGGTGATCCATAGCC -ACGGAAAGTTGGTGATCCTAACCG -ACGGAAAGTTGGTGATCCATGCCA -ACGGAAAGTTGGCGATAGGGAAAC -ACGGAAAGTTGGCGATAGAACACC -ACGGAAAGTTGGCGATAGATCGAG -ACGGAAAGTTGGCGATAGCTCCTT -ACGGAAAGTTGGCGATAGCCTGTT -ACGGAAAGTTGGCGATAGCGGTTT -ACGGAAAGTTGGCGATAGGTGGTT -ACGGAAAGTTGGCGATAGGCCTTT -ACGGAAAGTTGGCGATAGGGTCTT -ACGGAAAGTTGGCGATAGACGCTT -ACGGAAAGTTGGCGATAGAGCGTT -ACGGAAAGTTGGCGATAGTTCGTC -ACGGAAAGTTGGCGATAGTCTCTC -ACGGAAAGTTGGCGATAGTGGATC -ACGGAAAGTTGGCGATAGCACTTC -ACGGAAAGTTGGCGATAGGTACTC -ACGGAAAGTTGGCGATAGGATGTC -ACGGAAAGTTGGCGATAGACAGTC -ACGGAAAGTTGGCGATAGTTGCTG -ACGGAAAGTTGGCGATAGTCCATG -ACGGAAAGTTGGCGATAGTGTGTG -ACGGAAAGTTGGCGATAGCTAGTG -ACGGAAAGTTGGCGATAGCATCTG -ACGGAAAGTTGGCGATAGGAGTTG -ACGGAAAGTTGGCGATAGAGACTG -ACGGAAAGTTGGCGATAGTCGGTA -ACGGAAAGTTGGCGATAGTGCCTA -ACGGAAAGTTGGCGATAGCCACTA -ACGGAAAGTTGGCGATAGGGAGTA -ACGGAAAGTTGGCGATAGTCGTCT -ACGGAAAGTTGGCGATAGTGCACT -ACGGAAAGTTGGCGATAGCTGACT -ACGGAAAGTTGGCGATAGCAACCT -ACGGAAAGTTGGCGATAGGCTACT -ACGGAAAGTTGGCGATAGGGATCT -ACGGAAAGTTGGCGATAGAAGGCT -ACGGAAAGTTGGCGATAGTCAACC -ACGGAAAGTTGGCGATAGTGTTCC -ACGGAAAGTTGGCGATAGATTCCC -ACGGAAAGTTGGCGATAGTTCTCG -ACGGAAAGTTGGCGATAGTAGACG -ACGGAAAGTTGGCGATAGGTAACG -ACGGAAAGTTGGCGATAGACTTCG -ACGGAAAGTTGGCGATAGTACGCA -ACGGAAAGTTGGCGATAGCTTGCA -ACGGAAAGTTGGCGATAGCGAACA -ACGGAAAGTTGGCGATAGCAGTCA -ACGGAAAGTTGGCGATAGGATCCA -ACGGAAAGTTGGCGATAGACGACA -ACGGAAAGTTGGCGATAGAGCTCA -ACGGAAAGTTGGCGATAGTCACGT -ACGGAAAGTTGGCGATAGCGTAGT -ACGGAAAGTTGGCGATAGGTCAGT -ACGGAAAGTTGGCGATAGGAAGGT -ACGGAAAGTTGGCGATAGAACCGT -ACGGAAAGTTGGCGATAGTTGTGC -ACGGAAAGTTGGCGATAGCTAAGC -ACGGAAAGTTGGCGATAGACTAGC -ACGGAAAGTTGGCGATAGAGATGC -ACGGAAAGTTGGCGATAGTGAAGG -ACGGAAAGTTGGCGATAGCAATGG -ACGGAAAGTTGGCGATAGATGAGG -ACGGAAAGTTGGCGATAGAATGGG -ACGGAAAGTTGGCGATAGTCCTGA -ACGGAAAGTTGGCGATAGTAGCGA -ACGGAAAGTTGGCGATAGCACAGA -ACGGAAAGTTGGCGATAGGCAAGA -ACGGAAAGTTGGCGATAGGGTTGA -ACGGAAAGTTGGCGATAGTCCGAT -ACGGAAAGTTGGCGATAGTGGCAT -ACGGAAAGTTGGCGATAGCGAGAT -ACGGAAAGTTGGCGATAGTACCAC -ACGGAAAGTTGGCGATAGCAGAAC -ACGGAAAGTTGGCGATAGGTCTAC -ACGGAAAGTTGGCGATAGACGTAC -ACGGAAAGTTGGCGATAGAGTGAC -ACGGAAAGTTGGCGATAGCTGTAG -ACGGAAAGTTGGCGATAGCCTAAG -ACGGAAAGTTGGCGATAGGTTCAG -ACGGAAAGTTGGCGATAGGCATAG -ACGGAAAGTTGGCGATAGGACAAG -ACGGAAAGTTGGCGATAGAAGCAG -ACGGAAAGTTGGCGATAGCGTCAA -ACGGAAAGTTGGCGATAGGCTGAA -ACGGAAAGTTGGCGATAGAGTACG -ACGGAAAGTTGGCGATAGATCCGA -ACGGAAAGTTGGCGATAGATGGGA -ACGGAAAGTTGGCGATAGGTGCAA -ACGGAAAGTTGGCGATAGGAGGAA -ACGGAAAGTTGGCGATAGCAGGTA -ACGGAAAGTTGGCGATAGGACTCT -ACGGAAAGTTGGCGATAGAGTCCT -ACGGAAAGTTGGCGATAGTAAGCC -ACGGAAAGTTGGCGATAGATAGCC -ACGGAAAGTTGGCGATAGTAACCG -ACGGAAAGTTGGCGATAGATGCCA -ACGGAAAGTTGGAGACACGGAAAC -ACGGAAAGTTGGAGACACAACACC -ACGGAAAGTTGGAGACACATCGAG -ACGGAAAGTTGGAGACACCTCCTT -ACGGAAAGTTGGAGACACCCTGTT -ACGGAAAGTTGGAGACACCGGTTT -ACGGAAAGTTGGAGACACGTGGTT -ACGGAAAGTTGGAGACACGCCTTT -ACGGAAAGTTGGAGACACGGTCTT -ACGGAAAGTTGGAGACACACGCTT -ACGGAAAGTTGGAGACACAGCGTT -ACGGAAAGTTGGAGACACTTCGTC -ACGGAAAGTTGGAGACACTCTCTC -ACGGAAAGTTGGAGACACTGGATC -ACGGAAAGTTGGAGACACCACTTC -ACGGAAAGTTGGAGACACGTACTC -ACGGAAAGTTGGAGACACGATGTC -ACGGAAAGTTGGAGACACACAGTC -ACGGAAAGTTGGAGACACTTGCTG -ACGGAAAGTTGGAGACACTCCATG -ACGGAAAGTTGGAGACACTGTGTG -ACGGAAAGTTGGAGACACCTAGTG -ACGGAAAGTTGGAGACACCATCTG -ACGGAAAGTTGGAGACACGAGTTG -ACGGAAAGTTGGAGACACAGACTG -ACGGAAAGTTGGAGACACTCGGTA -ACGGAAAGTTGGAGACACTGCCTA -ACGGAAAGTTGGAGACACCCACTA -ACGGAAAGTTGGAGACACGGAGTA -ACGGAAAGTTGGAGACACTCGTCT -ACGGAAAGTTGGAGACACTGCACT -ACGGAAAGTTGGAGACACCTGACT -ACGGAAAGTTGGAGACACCAACCT -ACGGAAAGTTGGAGACACGCTACT -ACGGAAAGTTGGAGACACGGATCT -ACGGAAAGTTGGAGACACAAGGCT -ACGGAAAGTTGGAGACACTCAACC -ACGGAAAGTTGGAGACACTGTTCC -ACGGAAAGTTGGAGACACATTCCC -ACGGAAAGTTGGAGACACTTCTCG -ACGGAAAGTTGGAGACACTAGACG -ACGGAAAGTTGGAGACACGTAACG -ACGGAAAGTTGGAGACACACTTCG -ACGGAAAGTTGGAGACACTACGCA -ACGGAAAGTTGGAGACACCTTGCA -ACGGAAAGTTGGAGACACCGAACA -ACGGAAAGTTGGAGACACCAGTCA -ACGGAAAGTTGGAGACACGATCCA -ACGGAAAGTTGGAGACACACGACA -ACGGAAAGTTGGAGACACAGCTCA -ACGGAAAGTTGGAGACACTCACGT -ACGGAAAGTTGGAGACACCGTAGT -ACGGAAAGTTGGAGACACGTCAGT -ACGGAAAGTTGGAGACACGAAGGT -ACGGAAAGTTGGAGACACAACCGT -ACGGAAAGTTGGAGACACTTGTGC -ACGGAAAGTTGGAGACACCTAAGC -ACGGAAAGTTGGAGACACACTAGC -ACGGAAAGTTGGAGACACAGATGC -ACGGAAAGTTGGAGACACTGAAGG -ACGGAAAGTTGGAGACACCAATGG -ACGGAAAGTTGGAGACACATGAGG -ACGGAAAGTTGGAGACACAATGGG -ACGGAAAGTTGGAGACACTCCTGA -ACGGAAAGTTGGAGACACTAGCGA -ACGGAAAGTTGGAGACACCACAGA -ACGGAAAGTTGGAGACACGCAAGA -ACGGAAAGTTGGAGACACGGTTGA -ACGGAAAGTTGGAGACACTCCGAT -ACGGAAAGTTGGAGACACTGGCAT -ACGGAAAGTTGGAGACACCGAGAT -ACGGAAAGTTGGAGACACTACCAC -ACGGAAAGTTGGAGACACCAGAAC -ACGGAAAGTTGGAGACACGTCTAC -ACGGAAAGTTGGAGACACACGTAC -ACGGAAAGTTGGAGACACAGTGAC -ACGGAAAGTTGGAGACACCTGTAG -ACGGAAAGTTGGAGACACCCTAAG -ACGGAAAGTTGGAGACACGTTCAG -ACGGAAAGTTGGAGACACGCATAG -ACGGAAAGTTGGAGACACGACAAG -ACGGAAAGTTGGAGACACAAGCAG -ACGGAAAGTTGGAGACACCGTCAA -ACGGAAAGTTGGAGACACGCTGAA -ACGGAAAGTTGGAGACACAGTACG -ACGGAAAGTTGGAGACACATCCGA -ACGGAAAGTTGGAGACACATGGGA -ACGGAAAGTTGGAGACACGTGCAA -ACGGAAAGTTGGAGACACGAGGAA -ACGGAAAGTTGGAGACACCAGGTA -ACGGAAAGTTGGAGACACGACTCT -ACGGAAAGTTGGAGACACAGTCCT -ACGGAAAGTTGGAGACACTAAGCC -ACGGAAAGTTGGAGACACATAGCC -ACGGAAAGTTGGAGACACTAACCG -ACGGAAAGTTGGAGACACATGCCA -ACGGAAAGTTGGAGAGCAGGAAAC -ACGGAAAGTTGGAGAGCAAACACC -ACGGAAAGTTGGAGAGCAATCGAG -ACGGAAAGTTGGAGAGCACTCCTT -ACGGAAAGTTGGAGAGCACCTGTT -ACGGAAAGTTGGAGAGCACGGTTT -ACGGAAAGTTGGAGAGCAGTGGTT -ACGGAAAGTTGGAGAGCAGCCTTT -ACGGAAAGTTGGAGAGCAGGTCTT -ACGGAAAGTTGGAGAGCAACGCTT -ACGGAAAGTTGGAGAGCAAGCGTT -ACGGAAAGTTGGAGAGCATTCGTC -ACGGAAAGTTGGAGAGCATCTCTC -ACGGAAAGTTGGAGAGCATGGATC -ACGGAAAGTTGGAGAGCACACTTC -ACGGAAAGTTGGAGAGCAGTACTC -ACGGAAAGTTGGAGAGCAGATGTC -ACGGAAAGTTGGAGAGCAACAGTC -ACGGAAAGTTGGAGAGCATTGCTG -ACGGAAAGTTGGAGAGCATCCATG -ACGGAAAGTTGGAGAGCATGTGTG -ACGGAAAGTTGGAGAGCACTAGTG -ACGGAAAGTTGGAGAGCACATCTG -ACGGAAAGTTGGAGAGCAGAGTTG -ACGGAAAGTTGGAGAGCAAGACTG -ACGGAAAGTTGGAGAGCATCGGTA -ACGGAAAGTTGGAGAGCATGCCTA -ACGGAAAGTTGGAGAGCACCACTA -ACGGAAAGTTGGAGAGCAGGAGTA -ACGGAAAGTTGGAGAGCATCGTCT -ACGGAAAGTTGGAGAGCATGCACT -ACGGAAAGTTGGAGAGCACTGACT -ACGGAAAGTTGGAGAGCACAACCT -ACGGAAAGTTGGAGAGCAGCTACT -ACGGAAAGTTGGAGAGCAGGATCT -ACGGAAAGTTGGAGAGCAAAGGCT -ACGGAAAGTTGGAGAGCATCAACC -ACGGAAAGTTGGAGAGCATGTTCC -ACGGAAAGTTGGAGAGCAATTCCC -ACGGAAAGTTGGAGAGCATTCTCG -ACGGAAAGTTGGAGAGCATAGACG -ACGGAAAGTTGGAGAGCAGTAACG -ACGGAAAGTTGGAGAGCAACTTCG -ACGGAAAGTTGGAGAGCATACGCA -ACGGAAAGTTGGAGAGCACTTGCA -ACGGAAAGTTGGAGAGCACGAACA -ACGGAAAGTTGGAGAGCACAGTCA -ACGGAAAGTTGGAGAGCAGATCCA -ACGGAAAGTTGGAGAGCAACGACA -ACGGAAAGTTGGAGAGCAAGCTCA -ACGGAAAGTTGGAGAGCATCACGT -ACGGAAAGTTGGAGAGCACGTAGT -ACGGAAAGTTGGAGAGCAGTCAGT -ACGGAAAGTTGGAGAGCAGAAGGT -ACGGAAAGTTGGAGAGCAAACCGT -ACGGAAAGTTGGAGAGCATTGTGC -ACGGAAAGTTGGAGAGCACTAAGC -ACGGAAAGTTGGAGAGCAACTAGC -ACGGAAAGTTGGAGAGCAAGATGC -ACGGAAAGTTGGAGAGCATGAAGG -ACGGAAAGTTGGAGAGCACAATGG -ACGGAAAGTTGGAGAGCAATGAGG -ACGGAAAGTTGGAGAGCAAATGGG -ACGGAAAGTTGGAGAGCATCCTGA -ACGGAAAGTTGGAGAGCATAGCGA -ACGGAAAGTTGGAGAGCACACAGA -ACGGAAAGTTGGAGAGCAGCAAGA -ACGGAAAGTTGGAGAGCAGGTTGA -ACGGAAAGTTGGAGAGCATCCGAT -ACGGAAAGTTGGAGAGCATGGCAT -ACGGAAAGTTGGAGAGCACGAGAT -ACGGAAAGTTGGAGAGCATACCAC -ACGGAAAGTTGGAGAGCACAGAAC -ACGGAAAGTTGGAGAGCAGTCTAC -ACGGAAAGTTGGAGAGCAACGTAC -ACGGAAAGTTGGAGAGCAAGTGAC -ACGGAAAGTTGGAGAGCACTGTAG -ACGGAAAGTTGGAGAGCACCTAAG -ACGGAAAGTTGGAGAGCAGTTCAG -ACGGAAAGTTGGAGAGCAGCATAG -ACGGAAAGTTGGAGAGCAGACAAG -ACGGAAAGTTGGAGAGCAAAGCAG -ACGGAAAGTTGGAGAGCACGTCAA -ACGGAAAGTTGGAGAGCAGCTGAA -ACGGAAAGTTGGAGAGCAAGTACG -ACGGAAAGTTGGAGAGCAATCCGA -ACGGAAAGTTGGAGAGCAATGGGA -ACGGAAAGTTGGAGAGCAGTGCAA -ACGGAAAGTTGGAGAGCAGAGGAA -ACGGAAAGTTGGAGAGCACAGGTA -ACGGAAAGTTGGAGAGCAGACTCT -ACGGAAAGTTGGAGAGCAAGTCCT -ACGGAAAGTTGGAGAGCATAAGCC -ACGGAAAGTTGGAGAGCAATAGCC -ACGGAAAGTTGGAGAGCATAACCG -ACGGAAAGTTGGAGAGCAATGCCA -ACGGAAAGTTGGTGAGGTGGAAAC -ACGGAAAGTTGGTGAGGTAACACC -ACGGAAAGTTGGTGAGGTATCGAG -ACGGAAAGTTGGTGAGGTCTCCTT -ACGGAAAGTTGGTGAGGTCCTGTT -ACGGAAAGTTGGTGAGGTCGGTTT -ACGGAAAGTTGGTGAGGTGTGGTT -ACGGAAAGTTGGTGAGGTGCCTTT -ACGGAAAGTTGGTGAGGTGGTCTT -ACGGAAAGTTGGTGAGGTACGCTT -ACGGAAAGTTGGTGAGGTAGCGTT -ACGGAAAGTTGGTGAGGTTTCGTC -ACGGAAAGTTGGTGAGGTTCTCTC -ACGGAAAGTTGGTGAGGTTGGATC -ACGGAAAGTTGGTGAGGTCACTTC -ACGGAAAGTTGGTGAGGTGTACTC -ACGGAAAGTTGGTGAGGTGATGTC -ACGGAAAGTTGGTGAGGTACAGTC -ACGGAAAGTTGGTGAGGTTTGCTG -ACGGAAAGTTGGTGAGGTTCCATG -ACGGAAAGTTGGTGAGGTTGTGTG -ACGGAAAGTTGGTGAGGTCTAGTG -ACGGAAAGTTGGTGAGGTCATCTG -ACGGAAAGTTGGTGAGGTGAGTTG -ACGGAAAGTTGGTGAGGTAGACTG -ACGGAAAGTTGGTGAGGTTCGGTA -ACGGAAAGTTGGTGAGGTTGCCTA -ACGGAAAGTTGGTGAGGTCCACTA -ACGGAAAGTTGGTGAGGTGGAGTA -ACGGAAAGTTGGTGAGGTTCGTCT -ACGGAAAGTTGGTGAGGTTGCACT -ACGGAAAGTTGGTGAGGTCTGACT -ACGGAAAGTTGGTGAGGTCAACCT -ACGGAAAGTTGGTGAGGTGCTACT -ACGGAAAGTTGGTGAGGTGGATCT -ACGGAAAGTTGGTGAGGTAAGGCT -ACGGAAAGTTGGTGAGGTTCAACC -ACGGAAAGTTGGTGAGGTTGTTCC -ACGGAAAGTTGGTGAGGTATTCCC -ACGGAAAGTTGGTGAGGTTTCTCG -ACGGAAAGTTGGTGAGGTTAGACG -ACGGAAAGTTGGTGAGGTGTAACG -ACGGAAAGTTGGTGAGGTACTTCG -ACGGAAAGTTGGTGAGGTTACGCA -ACGGAAAGTTGGTGAGGTCTTGCA -ACGGAAAGTTGGTGAGGTCGAACA -ACGGAAAGTTGGTGAGGTCAGTCA -ACGGAAAGTTGGTGAGGTGATCCA -ACGGAAAGTTGGTGAGGTACGACA -ACGGAAAGTTGGTGAGGTAGCTCA -ACGGAAAGTTGGTGAGGTTCACGT -ACGGAAAGTTGGTGAGGTCGTAGT -ACGGAAAGTTGGTGAGGTGTCAGT -ACGGAAAGTTGGTGAGGTGAAGGT -ACGGAAAGTTGGTGAGGTAACCGT -ACGGAAAGTTGGTGAGGTTTGTGC -ACGGAAAGTTGGTGAGGTCTAAGC -ACGGAAAGTTGGTGAGGTACTAGC -ACGGAAAGTTGGTGAGGTAGATGC -ACGGAAAGTTGGTGAGGTTGAAGG -ACGGAAAGTTGGTGAGGTCAATGG -ACGGAAAGTTGGTGAGGTATGAGG -ACGGAAAGTTGGTGAGGTAATGGG -ACGGAAAGTTGGTGAGGTTCCTGA -ACGGAAAGTTGGTGAGGTTAGCGA -ACGGAAAGTTGGTGAGGTCACAGA -ACGGAAAGTTGGTGAGGTGCAAGA -ACGGAAAGTTGGTGAGGTGGTTGA -ACGGAAAGTTGGTGAGGTTCCGAT -ACGGAAAGTTGGTGAGGTTGGCAT -ACGGAAAGTTGGTGAGGTCGAGAT -ACGGAAAGTTGGTGAGGTTACCAC -ACGGAAAGTTGGTGAGGTCAGAAC -ACGGAAAGTTGGTGAGGTGTCTAC -ACGGAAAGTTGGTGAGGTACGTAC -ACGGAAAGTTGGTGAGGTAGTGAC -ACGGAAAGTTGGTGAGGTCTGTAG -ACGGAAAGTTGGTGAGGTCCTAAG -ACGGAAAGTTGGTGAGGTGTTCAG -ACGGAAAGTTGGTGAGGTGCATAG -ACGGAAAGTTGGTGAGGTGACAAG -ACGGAAAGTTGGTGAGGTAAGCAG -ACGGAAAGTTGGTGAGGTCGTCAA -ACGGAAAGTTGGTGAGGTGCTGAA -ACGGAAAGTTGGTGAGGTAGTACG -ACGGAAAGTTGGTGAGGTATCCGA -ACGGAAAGTTGGTGAGGTATGGGA -ACGGAAAGTTGGTGAGGTGTGCAA -ACGGAAAGTTGGTGAGGTGAGGAA -ACGGAAAGTTGGTGAGGTCAGGTA -ACGGAAAGTTGGTGAGGTGACTCT -ACGGAAAGTTGGTGAGGTAGTCCT -ACGGAAAGTTGGTGAGGTTAAGCC -ACGGAAAGTTGGTGAGGTATAGCC -ACGGAAAGTTGGTGAGGTTAACCG -ACGGAAAGTTGGTGAGGTATGCCA -ACGGAAAGTTGGGATTCCGGAAAC -ACGGAAAGTTGGGATTCCAACACC -ACGGAAAGTTGGGATTCCATCGAG -ACGGAAAGTTGGGATTCCCTCCTT -ACGGAAAGTTGGGATTCCCCTGTT -ACGGAAAGTTGGGATTCCCGGTTT -ACGGAAAGTTGGGATTCCGTGGTT -ACGGAAAGTTGGGATTCCGCCTTT -ACGGAAAGTTGGGATTCCGGTCTT -ACGGAAAGTTGGGATTCCACGCTT -ACGGAAAGTTGGGATTCCAGCGTT -ACGGAAAGTTGGGATTCCTTCGTC -ACGGAAAGTTGGGATTCCTCTCTC -ACGGAAAGTTGGGATTCCTGGATC -ACGGAAAGTTGGGATTCCCACTTC -ACGGAAAGTTGGGATTCCGTACTC -ACGGAAAGTTGGGATTCCGATGTC -ACGGAAAGTTGGGATTCCACAGTC -ACGGAAAGTTGGGATTCCTTGCTG -ACGGAAAGTTGGGATTCCTCCATG -ACGGAAAGTTGGGATTCCTGTGTG -ACGGAAAGTTGGGATTCCCTAGTG -ACGGAAAGTTGGGATTCCCATCTG -ACGGAAAGTTGGGATTCCGAGTTG -ACGGAAAGTTGGGATTCCAGACTG -ACGGAAAGTTGGGATTCCTCGGTA -ACGGAAAGTTGGGATTCCTGCCTA -ACGGAAAGTTGGGATTCCCCACTA -ACGGAAAGTTGGGATTCCGGAGTA -ACGGAAAGTTGGGATTCCTCGTCT -ACGGAAAGTTGGGATTCCTGCACT -ACGGAAAGTTGGGATTCCCTGACT -ACGGAAAGTTGGGATTCCCAACCT -ACGGAAAGTTGGGATTCCGCTACT -ACGGAAAGTTGGGATTCCGGATCT -ACGGAAAGTTGGGATTCCAAGGCT -ACGGAAAGTTGGGATTCCTCAACC -ACGGAAAGTTGGGATTCCTGTTCC -ACGGAAAGTTGGGATTCCATTCCC -ACGGAAAGTTGGGATTCCTTCTCG -ACGGAAAGTTGGGATTCCTAGACG -ACGGAAAGTTGGGATTCCGTAACG -ACGGAAAGTTGGGATTCCACTTCG -ACGGAAAGTTGGGATTCCTACGCA -ACGGAAAGTTGGGATTCCCTTGCA -ACGGAAAGTTGGGATTCCCGAACA -ACGGAAAGTTGGGATTCCCAGTCA -ACGGAAAGTTGGGATTCCGATCCA -ACGGAAAGTTGGGATTCCACGACA -ACGGAAAGTTGGGATTCCAGCTCA -ACGGAAAGTTGGGATTCCTCACGT -ACGGAAAGTTGGGATTCCCGTAGT -ACGGAAAGTTGGGATTCCGTCAGT -ACGGAAAGTTGGGATTCCGAAGGT -ACGGAAAGTTGGGATTCCAACCGT -ACGGAAAGTTGGGATTCCTTGTGC -ACGGAAAGTTGGGATTCCCTAAGC -ACGGAAAGTTGGGATTCCACTAGC -ACGGAAAGTTGGGATTCCAGATGC -ACGGAAAGTTGGGATTCCTGAAGG -ACGGAAAGTTGGGATTCCCAATGG -ACGGAAAGTTGGGATTCCATGAGG -ACGGAAAGTTGGGATTCCAATGGG -ACGGAAAGTTGGGATTCCTCCTGA -ACGGAAAGTTGGGATTCCTAGCGA -ACGGAAAGTTGGGATTCCCACAGA -ACGGAAAGTTGGGATTCCGCAAGA -ACGGAAAGTTGGGATTCCGGTTGA -ACGGAAAGTTGGGATTCCTCCGAT -ACGGAAAGTTGGGATTCCTGGCAT -ACGGAAAGTTGGGATTCCCGAGAT -ACGGAAAGTTGGGATTCCTACCAC -ACGGAAAGTTGGGATTCCCAGAAC -ACGGAAAGTTGGGATTCCGTCTAC -ACGGAAAGTTGGGATTCCACGTAC -ACGGAAAGTTGGGATTCCAGTGAC -ACGGAAAGTTGGGATTCCCTGTAG -ACGGAAAGTTGGGATTCCCCTAAG -ACGGAAAGTTGGGATTCCGTTCAG -ACGGAAAGTTGGGATTCCGCATAG -ACGGAAAGTTGGGATTCCGACAAG -ACGGAAAGTTGGGATTCCAAGCAG -ACGGAAAGTTGGGATTCCCGTCAA -ACGGAAAGTTGGGATTCCGCTGAA -ACGGAAAGTTGGGATTCCAGTACG -ACGGAAAGTTGGGATTCCATCCGA -ACGGAAAGTTGGGATTCCATGGGA -ACGGAAAGTTGGGATTCCGTGCAA -ACGGAAAGTTGGGATTCCGAGGAA -ACGGAAAGTTGGGATTCCCAGGTA -ACGGAAAGTTGGGATTCCGACTCT -ACGGAAAGTTGGGATTCCAGTCCT -ACGGAAAGTTGGGATTCCTAAGCC -ACGGAAAGTTGGGATTCCATAGCC -ACGGAAAGTTGGGATTCCTAACCG -ACGGAAAGTTGGGATTCCATGCCA -ACGGAAAGTTGGCATTGGGGAAAC -ACGGAAAGTTGGCATTGGAACACC -ACGGAAAGTTGGCATTGGATCGAG -ACGGAAAGTTGGCATTGGCTCCTT -ACGGAAAGTTGGCATTGGCCTGTT -ACGGAAAGTTGGCATTGGCGGTTT -ACGGAAAGTTGGCATTGGGTGGTT -ACGGAAAGTTGGCATTGGGCCTTT -ACGGAAAGTTGGCATTGGGGTCTT -ACGGAAAGTTGGCATTGGACGCTT -ACGGAAAGTTGGCATTGGAGCGTT -ACGGAAAGTTGGCATTGGTTCGTC -ACGGAAAGTTGGCATTGGTCTCTC -ACGGAAAGTTGGCATTGGTGGATC -ACGGAAAGTTGGCATTGGCACTTC -ACGGAAAGTTGGCATTGGGTACTC -ACGGAAAGTTGGCATTGGGATGTC -ACGGAAAGTTGGCATTGGACAGTC -ACGGAAAGTTGGCATTGGTTGCTG -ACGGAAAGTTGGCATTGGTCCATG -ACGGAAAGTTGGCATTGGTGTGTG -ACGGAAAGTTGGCATTGGCTAGTG -ACGGAAAGTTGGCATTGGCATCTG -ACGGAAAGTTGGCATTGGGAGTTG -ACGGAAAGTTGGCATTGGAGACTG -ACGGAAAGTTGGCATTGGTCGGTA -ACGGAAAGTTGGCATTGGTGCCTA -ACGGAAAGTTGGCATTGGCCACTA -ACGGAAAGTTGGCATTGGGGAGTA -ACGGAAAGTTGGCATTGGTCGTCT -ACGGAAAGTTGGCATTGGTGCACT -ACGGAAAGTTGGCATTGGCTGACT -ACGGAAAGTTGGCATTGGCAACCT -ACGGAAAGTTGGCATTGGGCTACT -ACGGAAAGTTGGCATTGGGGATCT -ACGGAAAGTTGGCATTGGAAGGCT -ACGGAAAGTTGGCATTGGTCAACC -ACGGAAAGTTGGCATTGGTGTTCC -ACGGAAAGTTGGCATTGGATTCCC -ACGGAAAGTTGGCATTGGTTCTCG -ACGGAAAGTTGGCATTGGTAGACG -ACGGAAAGTTGGCATTGGGTAACG -ACGGAAAGTTGGCATTGGACTTCG -ACGGAAAGTTGGCATTGGTACGCA -ACGGAAAGTTGGCATTGGCTTGCA -ACGGAAAGTTGGCATTGGCGAACA -ACGGAAAGTTGGCATTGGCAGTCA -ACGGAAAGTTGGCATTGGGATCCA -ACGGAAAGTTGGCATTGGACGACA -ACGGAAAGTTGGCATTGGAGCTCA -ACGGAAAGTTGGCATTGGTCACGT -ACGGAAAGTTGGCATTGGCGTAGT -ACGGAAAGTTGGCATTGGGTCAGT -ACGGAAAGTTGGCATTGGGAAGGT -ACGGAAAGTTGGCATTGGAACCGT -ACGGAAAGTTGGCATTGGTTGTGC -ACGGAAAGTTGGCATTGGCTAAGC -ACGGAAAGTTGGCATTGGACTAGC -ACGGAAAGTTGGCATTGGAGATGC -ACGGAAAGTTGGCATTGGTGAAGG -ACGGAAAGTTGGCATTGGCAATGG -ACGGAAAGTTGGCATTGGATGAGG -ACGGAAAGTTGGCATTGGAATGGG -ACGGAAAGTTGGCATTGGTCCTGA -ACGGAAAGTTGGCATTGGTAGCGA -ACGGAAAGTTGGCATTGGCACAGA -ACGGAAAGTTGGCATTGGGCAAGA -ACGGAAAGTTGGCATTGGGGTTGA -ACGGAAAGTTGGCATTGGTCCGAT -ACGGAAAGTTGGCATTGGTGGCAT -ACGGAAAGTTGGCATTGGCGAGAT -ACGGAAAGTTGGCATTGGTACCAC -ACGGAAAGTTGGCATTGGCAGAAC -ACGGAAAGTTGGCATTGGGTCTAC -ACGGAAAGTTGGCATTGGACGTAC -ACGGAAAGTTGGCATTGGAGTGAC -ACGGAAAGTTGGCATTGGCTGTAG -ACGGAAAGTTGGCATTGGCCTAAG -ACGGAAAGTTGGCATTGGGTTCAG -ACGGAAAGTTGGCATTGGGCATAG -ACGGAAAGTTGGCATTGGGACAAG -ACGGAAAGTTGGCATTGGAAGCAG -ACGGAAAGTTGGCATTGGCGTCAA -ACGGAAAGTTGGCATTGGGCTGAA -ACGGAAAGTTGGCATTGGAGTACG -ACGGAAAGTTGGCATTGGATCCGA -ACGGAAAGTTGGCATTGGATGGGA -ACGGAAAGTTGGCATTGGGTGCAA -ACGGAAAGTTGGCATTGGGAGGAA -ACGGAAAGTTGGCATTGGCAGGTA -ACGGAAAGTTGGCATTGGGACTCT -ACGGAAAGTTGGCATTGGAGTCCT -ACGGAAAGTTGGCATTGGTAAGCC -ACGGAAAGTTGGCATTGGATAGCC -ACGGAAAGTTGGCATTGGTAACCG -ACGGAAAGTTGGCATTGGATGCCA -ACGGAAAGTTGGGATCGAGGAAAC -ACGGAAAGTTGGGATCGAAACACC -ACGGAAAGTTGGGATCGAATCGAG -ACGGAAAGTTGGGATCGACTCCTT -ACGGAAAGTTGGGATCGACCTGTT -ACGGAAAGTTGGGATCGACGGTTT -ACGGAAAGTTGGGATCGAGTGGTT -ACGGAAAGTTGGGATCGAGCCTTT -ACGGAAAGTTGGGATCGAGGTCTT -ACGGAAAGTTGGGATCGAACGCTT -ACGGAAAGTTGGGATCGAAGCGTT -ACGGAAAGTTGGGATCGATTCGTC -ACGGAAAGTTGGGATCGATCTCTC -ACGGAAAGTTGGGATCGATGGATC -ACGGAAAGTTGGGATCGACACTTC -ACGGAAAGTTGGGATCGAGTACTC -ACGGAAAGTTGGGATCGAGATGTC -ACGGAAAGTTGGGATCGAACAGTC -ACGGAAAGTTGGGATCGATTGCTG -ACGGAAAGTTGGGATCGATCCATG -ACGGAAAGTTGGGATCGATGTGTG -ACGGAAAGTTGGGATCGACTAGTG -ACGGAAAGTTGGGATCGACATCTG -ACGGAAAGTTGGGATCGAGAGTTG -ACGGAAAGTTGGGATCGAAGACTG -ACGGAAAGTTGGGATCGATCGGTA -ACGGAAAGTTGGGATCGATGCCTA -ACGGAAAGTTGGGATCGACCACTA -ACGGAAAGTTGGGATCGAGGAGTA -ACGGAAAGTTGGGATCGATCGTCT -ACGGAAAGTTGGGATCGATGCACT -ACGGAAAGTTGGGATCGACTGACT -ACGGAAAGTTGGGATCGACAACCT -ACGGAAAGTTGGGATCGAGCTACT -ACGGAAAGTTGGGATCGAGGATCT -ACGGAAAGTTGGGATCGAAAGGCT -ACGGAAAGTTGGGATCGATCAACC -ACGGAAAGTTGGGATCGATGTTCC -ACGGAAAGTTGGGATCGAATTCCC -ACGGAAAGTTGGGATCGATTCTCG -ACGGAAAGTTGGGATCGATAGACG -ACGGAAAGTTGGGATCGAGTAACG -ACGGAAAGTTGGGATCGAACTTCG -ACGGAAAGTTGGGATCGATACGCA -ACGGAAAGTTGGGATCGACTTGCA -ACGGAAAGTTGGGATCGACGAACA -ACGGAAAGTTGGGATCGACAGTCA -ACGGAAAGTTGGGATCGAGATCCA -ACGGAAAGTTGGGATCGAACGACA -ACGGAAAGTTGGGATCGAAGCTCA -ACGGAAAGTTGGGATCGATCACGT -ACGGAAAGTTGGGATCGACGTAGT -ACGGAAAGTTGGGATCGAGTCAGT -ACGGAAAGTTGGGATCGAGAAGGT -ACGGAAAGTTGGGATCGAAACCGT -ACGGAAAGTTGGGATCGATTGTGC -ACGGAAAGTTGGGATCGACTAAGC -ACGGAAAGTTGGGATCGAACTAGC -ACGGAAAGTTGGGATCGAAGATGC -ACGGAAAGTTGGGATCGATGAAGG -ACGGAAAGTTGGGATCGACAATGG -ACGGAAAGTTGGGATCGAATGAGG -ACGGAAAGTTGGGATCGAAATGGG -ACGGAAAGTTGGGATCGATCCTGA -ACGGAAAGTTGGGATCGATAGCGA -ACGGAAAGTTGGGATCGACACAGA -ACGGAAAGTTGGGATCGAGCAAGA -ACGGAAAGTTGGGATCGAGGTTGA -ACGGAAAGTTGGGATCGATCCGAT -ACGGAAAGTTGGGATCGATGGCAT -ACGGAAAGTTGGGATCGACGAGAT -ACGGAAAGTTGGGATCGATACCAC -ACGGAAAGTTGGGATCGACAGAAC -ACGGAAAGTTGGGATCGAGTCTAC -ACGGAAAGTTGGGATCGAACGTAC -ACGGAAAGTTGGGATCGAAGTGAC -ACGGAAAGTTGGGATCGACTGTAG -ACGGAAAGTTGGGATCGACCTAAG -ACGGAAAGTTGGGATCGAGTTCAG -ACGGAAAGTTGGGATCGAGCATAG -ACGGAAAGTTGGGATCGAGACAAG -ACGGAAAGTTGGGATCGAAAGCAG -ACGGAAAGTTGGGATCGACGTCAA -ACGGAAAGTTGGGATCGAGCTGAA -ACGGAAAGTTGGGATCGAAGTACG -ACGGAAAGTTGGGATCGAATCCGA -ACGGAAAGTTGGGATCGAATGGGA -ACGGAAAGTTGGGATCGAGTGCAA -ACGGAAAGTTGGGATCGAGAGGAA -ACGGAAAGTTGGGATCGACAGGTA -ACGGAAAGTTGGGATCGAGACTCT -ACGGAAAGTTGGGATCGAAGTCCT -ACGGAAAGTTGGGATCGATAAGCC -ACGGAAAGTTGGGATCGAATAGCC -ACGGAAAGTTGGGATCGATAACCG -ACGGAAAGTTGGGATCGAATGCCA -ACGGAAAGTTGGCACTACGGAAAC -ACGGAAAGTTGGCACTACAACACC -ACGGAAAGTTGGCACTACATCGAG -ACGGAAAGTTGGCACTACCTCCTT -ACGGAAAGTTGGCACTACCCTGTT -ACGGAAAGTTGGCACTACCGGTTT -ACGGAAAGTTGGCACTACGTGGTT -ACGGAAAGTTGGCACTACGCCTTT -ACGGAAAGTTGGCACTACGGTCTT -ACGGAAAGTTGGCACTACACGCTT -ACGGAAAGTTGGCACTACAGCGTT -ACGGAAAGTTGGCACTACTTCGTC -ACGGAAAGTTGGCACTACTCTCTC -ACGGAAAGTTGGCACTACTGGATC -ACGGAAAGTTGGCACTACCACTTC -ACGGAAAGTTGGCACTACGTACTC -ACGGAAAGTTGGCACTACGATGTC -ACGGAAAGTTGGCACTACACAGTC -ACGGAAAGTTGGCACTACTTGCTG -ACGGAAAGTTGGCACTACTCCATG -ACGGAAAGTTGGCACTACTGTGTG -ACGGAAAGTTGGCACTACCTAGTG -ACGGAAAGTTGGCACTACCATCTG -ACGGAAAGTTGGCACTACGAGTTG -ACGGAAAGTTGGCACTACAGACTG -ACGGAAAGTTGGCACTACTCGGTA -ACGGAAAGTTGGCACTACTGCCTA -ACGGAAAGTTGGCACTACCCACTA -ACGGAAAGTTGGCACTACGGAGTA -ACGGAAAGTTGGCACTACTCGTCT -ACGGAAAGTTGGCACTACTGCACT -ACGGAAAGTTGGCACTACCTGACT -ACGGAAAGTTGGCACTACCAACCT -ACGGAAAGTTGGCACTACGCTACT -ACGGAAAGTTGGCACTACGGATCT -ACGGAAAGTTGGCACTACAAGGCT -ACGGAAAGTTGGCACTACTCAACC -ACGGAAAGTTGGCACTACTGTTCC -ACGGAAAGTTGGCACTACATTCCC -ACGGAAAGTTGGCACTACTTCTCG -ACGGAAAGTTGGCACTACTAGACG -ACGGAAAGTTGGCACTACGTAACG -ACGGAAAGTTGGCACTACACTTCG -ACGGAAAGTTGGCACTACTACGCA -ACGGAAAGTTGGCACTACCTTGCA -ACGGAAAGTTGGCACTACCGAACA -ACGGAAAGTTGGCACTACCAGTCA -ACGGAAAGTTGGCACTACGATCCA -ACGGAAAGTTGGCACTACACGACA -ACGGAAAGTTGGCACTACAGCTCA -ACGGAAAGTTGGCACTACTCACGT -ACGGAAAGTTGGCACTACCGTAGT -ACGGAAAGTTGGCACTACGTCAGT -ACGGAAAGTTGGCACTACGAAGGT -ACGGAAAGTTGGCACTACAACCGT -ACGGAAAGTTGGCACTACTTGTGC -ACGGAAAGTTGGCACTACCTAAGC -ACGGAAAGTTGGCACTACACTAGC -ACGGAAAGTTGGCACTACAGATGC -ACGGAAAGTTGGCACTACTGAAGG -ACGGAAAGTTGGCACTACCAATGG -ACGGAAAGTTGGCACTACATGAGG -ACGGAAAGTTGGCACTACAATGGG -ACGGAAAGTTGGCACTACTCCTGA -ACGGAAAGTTGGCACTACTAGCGA -ACGGAAAGTTGGCACTACCACAGA -ACGGAAAGTTGGCACTACGCAAGA -ACGGAAAGTTGGCACTACGGTTGA -ACGGAAAGTTGGCACTACTCCGAT -ACGGAAAGTTGGCACTACTGGCAT -ACGGAAAGTTGGCACTACCGAGAT -ACGGAAAGTTGGCACTACTACCAC -ACGGAAAGTTGGCACTACCAGAAC -ACGGAAAGTTGGCACTACGTCTAC -ACGGAAAGTTGGCACTACACGTAC -ACGGAAAGTTGGCACTACAGTGAC -ACGGAAAGTTGGCACTACCTGTAG -ACGGAAAGTTGGCACTACCCTAAG -ACGGAAAGTTGGCACTACGTTCAG -ACGGAAAGTTGGCACTACGCATAG -ACGGAAAGTTGGCACTACGACAAG -ACGGAAAGTTGGCACTACAAGCAG -ACGGAAAGTTGGCACTACCGTCAA -ACGGAAAGTTGGCACTACGCTGAA -ACGGAAAGTTGGCACTACAGTACG -ACGGAAAGTTGGCACTACATCCGA -ACGGAAAGTTGGCACTACATGGGA -ACGGAAAGTTGGCACTACGTGCAA -ACGGAAAGTTGGCACTACGAGGAA -ACGGAAAGTTGGCACTACCAGGTA -ACGGAAAGTTGGCACTACGACTCT -ACGGAAAGTTGGCACTACAGTCCT -ACGGAAAGTTGGCACTACTAAGCC -ACGGAAAGTTGGCACTACATAGCC -ACGGAAAGTTGGCACTACTAACCG -ACGGAAAGTTGGCACTACATGCCA -ACGGAAAGTTGGAACCAGGGAAAC -ACGGAAAGTTGGAACCAGAACACC -ACGGAAAGTTGGAACCAGATCGAG -ACGGAAAGTTGGAACCAGCTCCTT -ACGGAAAGTTGGAACCAGCCTGTT -ACGGAAAGTTGGAACCAGCGGTTT -ACGGAAAGTTGGAACCAGGTGGTT -ACGGAAAGTTGGAACCAGGCCTTT -ACGGAAAGTTGGAACCAGGGTCTT -ACGGAAAGTTGGAACCAGACGCTT -ACGGAAAGTTGGAACCAGAGCGTT -ACGGAAAGTTGGAACCAGTTCGTC -ACGGAAAGTTGGAACCAGTCTCTC -ACGGAAAGTTGGAACCAGTGGATC -ACGGAAAGTTGGAACCAGCACTTC -ACGGAAAGTTGGAACCAGGTACTC -ACGGAAAGTTGGAACCAGGATGTC -ACGGAAAGTTGGAACCAGACAGTC -ACGGAAAGTTGGAACCAGTTGCTG -ACGGAAAGTTGGAACCAGTCCATG -ACGGAAAGTTGGAACCAGTGTGTG -ACGGAAAGTTGGAACCAGCTAGTG -ACGGAAAGTTGGAACCAGCATCTG -ACGGAAAGTTGGAACCAGGAGTTG -ACGGAAAGTTGGAACCAGAGACTG -ACGGAAAGTTGGAACCAGTCGGTA -ACGGAAAGTTGGAACCAGTGCCTA -ACGGAAAGTTGGAACCAGCCACTA -ACGGAAAGTTGGAACCAGGGAGTA -ACGGAAAGTTGGAACCAGTCGTCT -ACGGAAAGTTGGAACCAGTGCACT -ACGGAAAGTTGGAACCAGCTGACT -ACGGAAAGTTGGAACCAGCAACCT -ACGGAAAGTTGGAACCAGGCTACT -ACGGAAAGTTGGAACCAGGGATCT -ACGGAAAGTTGGAACCAGAAGGCT -ACGGAAAGTTGGAACCAGTCAACC -ACGGAAAGTTGGAACCAGTGTTCC -ACGGAAAGTTGGAACCAGATTCCC -ACGGAAAGTTGGAACCAGTTCTCG -ACGGAAAGTTGGAACCAGTAGACG -ACGGAAAGTTGGAACCAGGTAACG -ACGGAAAGTTGGAACCAGACTTCG -ACGGAAAGTTGGAACCAGTACGCA -ACGGAAAGTTGGAACCAGCTTGCA -ACGGAAAGTTGGAACCAGCGAACA -ACGGAAAGTTGGAACCAGCAGTCA -ACGGAAAGTTGGAACCAGGATCCA -ACGGAAAGTTGGAACCAGACGACA -ACGGAAAGTTGGAACCAGAGCTCA -ACGGAAAGTTGGAACCAGTCACGT -ACGGAAAGTTGGAACCAGCGTAGT -ACGGAAAGTTGGAACCAGGTCAGT -ACGGAAAGTTGGAACCAGGAAGGT -ACGGAAAGTTGGAACCAGAACCGT -ACGGAAAGTTGGAACCAGTTGTGC -ACGGAAAGTTGGAACCAGCTAAGC -ACGGAAAGTTGGAACCAGACTAGC -ACGGAAAGTTGGAACCAGAGATGC -ACGGAAAGTTGGAACCAGTGAAGG -ACGGAAAGTTGGAACCAGCAATGG -ACGGAAAGTTGGAACCAGATGAGG -ACGGAAAGTTGGAACCAGAATGGG -ACGGAAAGTTGGAACCAGTCCTGA -ACGGAAAGTTGGAACCAGTAGCGA -ACGGAAAGTTGGAACCAGCACAGA -ACGGAAAGTTGGAACCAGGCAAGA -ACGGAAAGTTGGAACCAGGGTTGA -ACGGAAAGTTGGAACCAGTCCGAT -ACGGAAAGTTGGAACCAGTGGCAT -ACGGAAAGTTGGAACCAGCGAGAT -ACGGAAAGTTGGAACCAGTACCAC -ACGGAAAGTTGGAACCAGCAGAAC -ACGGAAAGTTGGAACCAGGTCTAC -ACGGAAAGTTGGAACCAGACGTAC -ACGGAAAGTTGGAACCAGAGTGAC -ACGGAAAGTTGGAACCAGCTGTAG -ACGGAAAGTTGGAACCAGCCTAAG -ACGGAAAGTTGGAACCAGGTTCAG -ACGGAAAGTTGGAACCAGGCATAG -ACGGAAAGTTGGAACCAGGACAAG -ACGGAAAGTTGGAACCAGAAGCAG -ACGGAAAGTTGGAACCAGCGTCAA -ACGGAAAGTTGGAACCAGGCTGAA -ACGGAAAGTTGGAACCAGAGTACG -ACGGAAAGTTGGAACCAGATCCGA -ACGGAAAGTTGGAACCAGATGGGA -ACGGAAAGTTGGAACCAGGTGCAA -ACGGAAAGTTGGAACCAGGAGGAA -ACGGAAAGTTGGAACCAGCAGGTA -ACGGAAAGTTGGAACCAGGACTCT -ACGGAAAGTTGGAACCAGAGTCCT -ACGGAAAGTTGGAACCAGTAAGCC -ACGGAAAGTTGGAACCAGATAGCC -ACGGAAAGTTGGAACCAGTAACCG -ACGGAAAGTTGGAACCAGATGCCA -ACGGAAAGTTGGTACGTCGGAAAC -ACGGAAAGTTGGTACGTCAACACC -ACGGAAAGTTGGTACGTCATCGAG -ACGGAAAGTTGGTACGTCCTCCTT -ACGGAAAGTTGGTACGTCCCTGTT -ACGGAAAGTTGGTACGTCCGGTTT -ACGGAAAGTTGGTACGTCGTGGTT -ACGGAAAGTTGGTACGTCGCCTTT -ACGGAAAGTTGGTACGTCGGTCTT -ACGGAAAGTTGGTACGTCACGCTT -ACGGAAAGTTGGTACGTCAGCGTT -ACGGAAAGTTGGTACGTCTTCGTC -ACGGAAAGTTGGTACGTCTCTCTC -ACGGAAAGTTGGTACGTCTGGATC -ACGGAAAGTTGGTACGTCCACTTC -ACGGAAAGTTGGTACGTCGTACTC -ACGGAAAGTTGGTACGTCGATGTC -ACGGAAAGTTGGTACGTCACAGTC -ACGGAAAGTTGGTACGTCTTGCTG -ACGGAAAGTTGGTACGTCTCCATG -ACGGAAAGTTGGTACGTCTGTGTG -ACGGAAAGTTGGTACGTCCTAGTG -ACGGAAAGTTGGTACGTCCATCTG -ACGGAAAGTTGGTACGTCGAGTTG -ACGGAAAGTTGGTACGTCAGACTG -ACGGAAAGTTGGTACGTCTCGGTA -ACGGAAAGTTGGTACGTCTGCCTA -ACGGAAAGTTGGTACGTCCCACTA -ACGGAAAGTTGGTACGTCGGAGTA -ACGGAAAGTTGGTACGTCTCGTCT -ACGGAAAGTTGGTACGTCTGCACT -ACGGAAAGTTGGTACGTCCTGACT -ACGGAAAGTTGGTACGTCCAACCT -ACGGAAAGTTGGTACGTCGCTACT -ACGGAAAGTTGGTACGTCGGATCT -ACGGAAAGTTGGTACGTCAAGGCT -ACGGAAAGTTGGTACGTCTCAACC -ACGGAAAGTTGGTACGTCTGTTCC -ACGGAAAGTTGGTACGTCATTCCC -ACGGAAAGTTGGTACGTCTTCTCG -ACGGAAAGTTGGTACGTCTAGACG -ACGGAAAGTTGGTACGTCGTAACG -ACGGAAAGTTGGTACGTCACTTCG -ACGGAAAGTTGGTACGTCTACGCA -ACGGAAAGTTGGTACGTCCTTGCA -ACGGAAAGTTGGTACGTCCGAACA -ACGGAAAGTTGGTACGTCCAGTCA -ACGGAAAGTTGGTACGTCGATCCA -ACGGAAAGTTGGTACGTCACGACA -ACGGAAAGTTGGTACGTCAGCTCA -ACGGAAAGTTGGTACGTCTCACGT -ACGGAAAGTTGGTACGTCCGTAGT -ACGGAAAGTTGGTACGTCGTCAGT -ACGGAAAGTTGGTACGTCGAAGGT -ACGGAAAGTTGGTACGTCAACCGT -ACGGAAAGTTGGTACGTCTTGTGC -ACGGAAAGTTGGTACGTCCTAAGC -ACGGAAAGTTGGTACGTCACTAGC -ACGGAAAGTTGGTACGTCAGATGC -ACGGAAAGTTGGTACGTCTGAAGG -ACGGAAAGTTGGTACGTCCAATGG -ACGGAAAGTTGGTACGTCATGAGG -ACGGAAAGTTGGTACGTCAATGGG -ACGGAAAGTTGGTACGTCTCCTGA -ACGGAAAGTTGGTACGTCTAGCGA -ACGGAAAGTTGGTACGTCCACAGA -ACGGAAAGTTGGTACGTCGCAAGA -ACGGAAAGTTGGTACGTCGGTTGA -ACGGAAAGTTGGTACGTCTCCGAT -ACGGAAAGTTGGTACGTCTGGCAT -ACGGAAAGTTGGTACGTCCGAGAT -ACGGAAAGTTGGTACGTCTACCAC -ACGGAAAGTTGGTACGTCCAGAAC -ACGGAAAGTTGGTACGTCGTCTAC -ACGGAAAGTTGGTACGTCACGTAC -ACGGAAAGTTGGTACGTCAGTGAC -ACGGAAAGTTGGTACGTCCTGTAG -ACGGAAAGTTGGTACGTCCCTAAG -ACGGAAAGTTGGTACGTCGTTCAG -ACGGAAAGTTGGTACGTCGCATAG -ACGGAAAGTTGGTACGTCGACAAG -ACGGAAAGTTGGTACGTCAAGCAG -ACGGAAAGTTGGTACGTCCGTCAA -ACGGAAAGTTGGTACGTCGCTGAA -ACGGAAAGTTGGTACGTCAGTACG -ACGGAAAGTTGGTACGTCATCCGA -ACGGAAAGTTGGTACGTCATGGGA -ACGGAAAGTTGGTACGTCGTGCAA -ACGGAAAGTTGGTACGTCGAGGAA -ACGGAAAGTTGGTACGTCCAGGTA -ACGGAAAGTTGGTACGTCGACTCT -ACGGAAAGTTGGTACGTCAGTCCT -ACGGAAAGTTGGTACGTCTAAGCC -ACGGAAAGTTGGTACGTCATAGCC -ACGGAAAGTTGGTACGTCTAACCG -ACGGAAAGTTGGTACGTCATGCCA -ACGGAAAGTTGGTACACGGGAAAC -ACGGAAAGTTGGTACACGAACACC -ACGGAAAGTTGGTACACGATCGAG -ACGGAAAGTTGGTACACGCTCCTT -ACGGAAAGTTGGTACACGCCTGTT -ACGGAAAGTTGGTACACGCGGTTT -ACGGAAAGTTGGTACACGGTGGTT -ACGGAAAGTTGGTACACGGCCTTT -ACGGAAAGTTGGTACACGGGTCTT -ACGGAAAGTTGGTACACGACGCTT -ACGGAAAGTTGGTACACGAGCGTT -ACGGAAAGTTGGTACACGTTCGTC -ACGGAAAGTTGGTACACGTCTCTC -ACGGAAAGTTGGTACACGTGGATC -ACGGAAAGTTGGTACACGCACTTC -ACGGAAAGTTGGTACACGGTACTC -ACGGAAAGTTGGTACACGGATGTC -ACGGAAAGTTGGTACACGACAGTC -ACGGAAAGTTGGTACACGTTGCTG -ACGGAAAGTTGGTACACGTCCATG -ACGGAAAGTTGGTACACGTGTGTG -ACGGAAAGTTGGTACACGCTAGTG -ACGGAAAGTTGGTACACGCATCTG -ACGGAAAGTTGGTACACGGAGTTG -ACGGAAAGTTGGTACACGAGACTG -ACGGAAAGTTGGTACACGTCGGTA -ACGGAAAGTTGGTACACGTGCCTA -ACGGAAAGTTGGTACACGCCACTA -ACGGAAAGTTGGTACACGGGAGTA -ACGGAAAGTTGGTACACGTCGTCT -ACGGAAAGTTGGTACACGTGCACT -ACGGAAAGTTGGTACACGCTGACT -ACGGAAAGTTGGTACACGCAACCT -ACGGAAAGTTGGTACACGGCTACT -ACGGAAAGTTGGTACACGGGATCT -ACGGAAAGTTGGTACACGAAGGCT -ACGGAAAGTTGGTACACGTCAACC -ACGGAAAGTTGGTACACGTGTTCC -ACGGAAAGTTGGTACACGATTCCC -ACGGAAAGTTGGTACACGTTCTCG -ACGGAAAGTTGGTACACGTAGACG -ACGGAAAGTTGGTACACGGTAACG -ACGGAAAGTTGGTACACGACTTCG -ACGGAAAGTTGGTACACGTACGCA -ACGGAAAGTTGGTACACGCTTGCA -ACGGAAAGTTGGTACACGCGAACA -ACGGAAAGTTGGTACACGCAGTCA -ACGGAAAGTTGGTACACGGATCCA -ACGGAAAGTTGGTACACGACGACA -ACGGAAAGTTGGTACACGAGCTCA -ACGGAAAGTTGGTACACGTCACGT -ACGGAAAGTTGGTACACGCGTAGT -ACGGAAAGTTGGTACACGGTCAGT -ACGGAAAGTTGGTACACGGAAGGT -ACGGAAAGTTGGTACACGAACCGT -ACGGAAAGTTGGTACACGTTGTGC -ACGGAAAGTTGGTACACGCTAAGC -ACGGAAAGTTGGTACACGACTAGC -ACGGAAAGTTGGTACACGAGATGC -ACGGAAAGTTGGTACACGTGAAGG -ACGGAAAGTTGGTACACGCAATGG -ACGGAAAGTTGGTACACGATGAGG -ACGGAAAGTTGGTACACGAATGGG -ACGGAAAGTTGGTACACGTCCTGA -ACGGAAAGTTGGTACACGTAGCGA -ACGGAAAGTTGGTACACGCACAGA -ACGGAAAGTTGGTACACGGCAAGA -ACGGAAAGTTGGTACACGGGTTGA -ACGGAAAGTTGGTACACGTCCGAT -ACGGAAAGTTGGTACACGTGGCAT -ACGGAAAGTTGGTACACGCGAGAT -ACGGAAAGTTGGTACACGTACCAC -ACGGAAAGTTGGTACACGCAGAAC -ACGGAAAGTTGGTACACGGTCTAC -ACGGAAAGTTGGTACACGACGTAC -ACGGAAAGTTGGTACACGAGTGAC -ACGGAAAGTTGGTACACGCTGTAG -ACGGAAAGTTGGTACACGCCTAAG -ACGGAAAGTTGGTACACGGTTCAG -ACGGAAAGTTGGTACACGGCATAG -ACGGAAAGTTGGTACACGGACAAG -ACGGAAAGTTGGTACACGAAGCAG -ACGGAAAGTTGGTACACGCGTCAA -ACGGAAAGTTGGTACACGGCTGAA -ACGGAAAGTTGGTACACGAGTACG -ACGGAAAGTTGGTACACGATCCGA -ACGGAAAGTTGGTACACGATGGGA -ACGGAAAGTTGGTACACGGTGCAA -ACGGAAAGTTGGTACACGGAGGAA -ACGGAAAGTTGGTACACGCAGGTA -ACGGAAAGTTGGTACACGGACTCT -ACGGAAAGTTGGTACACGAGTCCT -ACGGAAAGTTGGTACACGTAAGCC -ACGGAAAGTTGGTACACGATAGCC -ACGGAAAGTTGGTACACGTAACCG -ACGGAAAGTTGGTACACGATGCCA -ACGGAAAGTTGGGACAGTGGAAAC -ACGGAAAGTTGGGACAGTAACACC -ACGGAAAGTTGGGACAGTATCGAG -ACGGAAAGTTGGGACAGTCTCCTT -ACGGAAAGTTGGGACAGTCCTGTT -ACGGAAAGTTGGGACAGTCGGTTT -ACGGAAAGTTGGGACAGTGTGGTT -ACGGAAAGTTGGGACAGTGCCTTT -ACGGAAAGTTGGGACAGTGGTCTT -ACGGAAAGTTGGGACAGTACGCTT -ACGGAAAGTTGGGACAGTAGCGTT -ACGGAAAGTTGGGACAGTTTCGTC -ACGGAAAGTTGGGACAGTTCTCTC -ACGGAAAGTTGGGACAGTTGGATC -ACGGAAAGTTGGGACAGTCACTTC -ACGGAAAGTTGGGACAGTGTACTC -ACGGAAAGTTGGGACAGTGATGTC -ACGGAAAGTTGGGACAGTACAGTC -ACGGAAAGTTGGGACAGTTTGCTG -ACGGAAAGTTGGGACAGTTCCATG -ACGGAAAGTTGGGACAGTTGTGTG -ACGGAAAGTTGGGACAGTCTAGTG -ACGGAAAGTTGGGACAGTCATCTG -ACGGAAAGTTGGGACAGTGAGTTG -ACGGAAAGTTGGGACAGTAGACTG -ACGGAAAGTTGGGACAGTTCGGTA -ACGGAAAGTTGGGACAGTTGCCTA -ACGGAAAGTTGGGACAGTCCACTA -ACGGAAAGTTGGGACAGTGGAGTA -ACGGAAAGTTGGGACAGTTCGTCT -ACGGAAAGTTGGGACAGTTGCACT -ACGGAAAGTTGGGACAGTCTGACT -ACGGAAAGTTGGGACAGTCAACCT -ACGGAAAGTTGGGACAGTGCTACT -ACGGAAAGTTGGGACAGTGGATCT -ACGGAAAGTTGGGACAGTAAGGCT -ACGGAAAGTTGGGACAGTTCAACC -ACGGAAAGTTGGGACAGTTGTTCC -ACGGAAAGTTGGGACAGTATTCCC -ACGGAAAGTTGGGACAGTTTCTCG -ACGGAAAGTTGGGACAGTTAGACG -ACGGAAAGTTGGGACAGTGTAACG -ACGGAAAGTTGGGACAGTACTTCG -ACGGAAAGTTGGGACAGTTACGCA -ACGGAAAGTTGGGACAGTCTTGCA -ACGGAAAGTTGGGACAGTCGAACA -ACGGAAAGTTGGGACAGTCAGTCA -ACGGAAAGTTGGGACAGTGATCCA -ACGGAAAGTTGGGACAGTACGACA -ACGGAAAGTTGGGACAGTAGCTCA -ACGGAAAGTTGGGACAGTTCACGT -ACGGAAAGTTGGGACAGTCGTAGT -ACGGAAAGTTGGGACAGTGTCAGT -ACGGAAAGTTGGGACAGTGAAGGT -ACGGAAAGTTGGGACAGTAACCGT -ACGGAAAGTTGGGACAGTTTGTGC -ACGGAAAGTTGGGACAGTCTAAGC -ACGGAAAGTTGGGACAGTACTAGC -ACGGAAAGTTGGGACAGTAGATGC -ACGGAAAGTTGGGACAGTTGAAGG -ACGGAAAGTTGGGACAGTCAATGG -ACGGAAAGTTGGGACAGTATGAGG -ACGGAAAGTTGGGACAGTAATGGG -ACGGAAAGTTGGGACAGTTCCTGA -ACGGAAAGTTGGGACAGTTAGCGA -ACGGAAAGTTGGGACAGTCACAGA -ACGGAAAGTTGGGACAGTGCAAGA -ACGGAAAGTTGGGACAGTGGTTGA -ACGGAAAGTTGGGACAGTTCCGAT -ACGGAAAGTTGGGACAGTTGGCAT -ACGGAAAGTTGGGACAGTCGAGAT -ACGGAAAGTTGGGACAGTTACCAC -ACGGAAAGTTGGGACAGTCAGAAC -ACGGAAAGTTGGGACAGTGTCTAC -ACGGAAAGTTGGGACAGTACGTAC -ACGGAAAGTTGGGACAGTAGTGAC -ACGGAAAGTTGGGACAGTCTGTAG -ACGGAAAGTTGGGACAGTCCTAAG -ACGGAAAGTTGGGACAGTGTTCAG -ACGGAAAGTTGGGACAGTGCATAG -ACGGAAAGTTGGGACAGTGACAAG -ACGGAAAGTTGGGACAGTAAGCAG -ACGGAAAGTTGGGACAGTCGTCAA -ACGGAAAGTTGGGACAGTGCTGAA -ACGGAAAGTTGGGACAGTAGTACG -ACGGAAAGTTGGGACAGTATCCGA -ACGGAAAGTTGGGACAGTATGGGA -ACGGAAAGTTGGGACAGTGTGCAA -ACGGAAAGTTGGGACAGTGAGGAA -ACGGAAAGTTGGGACAGTCAGGTA -ACGGAAAGTTGGGACAGTGACTCT -ACGGAAAGTTGGGACAGTAGTCCT -ACGGAAAGTTGGGACAGTTAAGCC -ACGGAAAGTTGGGACAGTATAGCC -ACGGAAAGTTGGGACAGTTAACCG -ACGGAAAGTTGGGACAGTATGCCA -ACGGAAAGTTGGTAGCTGGGAAAC -ACGGAAAGTTGGTAGCTGAACACC -ACGGAAAGTTGGTAGCTGATCGAG -ACGGAAAGTTGGTAGCTGCTCCTT -ACGGAAAGTTGGTAGCTGCCTGTT -ACGGAAAGTTGGTAGCTGCGGTTT -ACGGAAAGTTGGTAGCTGGTGGTT -ACGGAAAGTTGGTAGCTGGCCTTT -ACGGAAAGTTGGTAGCTGGGTCTT -ACGGAAAGTTGGTAGCTGACGCTT -ACGGAAAGTTGGTAGCTGAGCGTT -ACGGAAAGTTGGTAGCTGTTCGTC -ACGGAAAGTTGGTAGCTGTCTCTC -ACGGAAAGTTGGTAGCTGTGGATC -ACGGAAAGTTGGTAGCTGCACTTC -ACGGAAAGTTGGTAGCTGGTACTC -ACGGAAAGTTGGTAGCTGGATGTC -ACGGAAAGTTGGTAGCTGACAGTC -ACGGAAAGTTGGTAGCTGTTGCTG -ACGGAAAGTTGGTAGCTGTCCATG -ACGGAAAGTTGGTAGCTGTGTGTG -ACGGAAAGTTGGTAGCTGCTAGTG -ACGGAAAGTTGGTAGCTGCATCTG -ACGGAAAGTTGGTAGCTGGAGTTG -ACGGAAAGTTGGTAGCTGAGACTG -ACGGAAAGTTGGTAGCTGTCGGTA -ACGGAAAGTTGGTAGCTGTGCCTA -ACGGAAAGTTGGTAGCTGCCACTA -ACGGAAAGTTGGTAGCTGGGAGTA -ACGGAAAGTTGGTAGCTGTCGTCT -ACGGAAAGTTGGTAGCTGTGCACT -ACGGAAAGTTGGTAGCTGCTGACT -ACGGAAAGTTGGTAGCTGCAACCT -ACGGAAAGTTGGTAGCTGGCTACT -ACGGAAAGTTGGTAGCTGGGATCT -ACGGAAAGTTGGTAGCTGAAGGCT -ACGGAAAGTTGGTAGCTGTCAACC -ACGGAAAGTTGGTAGCTGTGTTCC -ACGGAAAGTTGGTAGCTGATTCCC -ACGGAAAGTTGGTAGCTGTTCTCG -ACGGAAAGTTGGTAGCTGTAGACG -ACGGAAAGTTGGTAGCTGGTAACG -ACGGAAAGTTGGTAGCTGACTTCG -ACGGAAAGTTGGTAGCTGTACGCA -ACGGAAAGTTGGTAGCTGCTTGCA -ACGGAAAGTTGGTAGCTGCGAACA -ACGGAAAGTTGGTAGCTGCAGTCA -ACGGAAAGTTGGTAGCTGGATCCA -ACGGAAAGTTGGTAGCTGACGACA -ACGGAAAGTTGGTAGCTGAGCTCA -ACGGAAAGTTGGTAGCTGTCACGT -ACGGAAAGTTGGTAGCTGCGTAGT -ACGGAAAGTTGGTAGCTGGTCAGT -ACGGAAAGTTGGTAGCTGGAAGGT -ACGGAAAGTTGGTAGCTGAACCGT -ACGGAAAGTTGGTAGCTGTTGTGC -ACGGAAAGTTGGTAGCTGCTAAGC -ACGGAAAGTTGGTAGCTGACTAGC -ACGGAAAGTTGGTAGCTGAGATGC -ACGGAAAGTTGGTAGCTGTGAAGG -ACGGAAAGTTGGTAGCTGCAATGG -ACGGAAAGTTGGTAGCTGATGAGG -ACGGAAAGTTGGTAGCTGAATGGG -ACGGAAAGTTGGTAGCTGTCCTGA -ACGGAAAGTTGGTAGCTGTAGCGA -ACGGAAAGTTGGTAGCTGCACAGA -ACGGAAAGTTGGTAGCTGGCAAGA -ACGGAAAGTTGGTAGCTGGGTTGA -ACGGAAAGTTGGTAGCTGTCCGAT -ACGGAAAGTTGGTAGCTGTGGCAT -ACGGAAAGTTGGTAGCTGCGAGAT -ACGGAAAGTTGGTAGCTGTACCAC -ACGGAAAGTTGGTAGCTGCAGAAC -ACGGAAAGTTGGTAGCTGGTCTAC -ACGGAAAGTTGGTAGCTGACGTAC -ACGGAAAGTTGGTAGCTGAGTGAC -ACGGAAAGTTGGTAGCTGCTGTAG -ACGGAAAGTTGGTAGCTGCCTAAG -ACGGAAAGTTGGTAGCTGGTTCAG -ACGGAAAGTTGGTAGCTGGCATAG -ACGGAAAGTTGGTAGCTGGACAAG -ACGGAAAGTTGGTAGCTGAAGCAG -ACGGAAAGTTGGTAGCTGCGTCAA -ACGGAAAGTTGGTAGCTGGCTGAA -ACGGAAAGTTGGTAGCTGAGTACG -ACGGAAAGTTGGTAGCTGATCCGA -ACGGAAAGTTGGTAGCTGATGGGA -ACGGAAAGTTGGTAGCTGGTGCAA -ACGGAAAGTTGGTAGCTGGAGGAA -ACGGAAAGTTGGTAGCTGCAGGTA -ACGGAAAGTTGGTAGCTGGACTCT -ACGGAAAGTTGGTAGCTGAGTCCT -ACGGAAAGTTGGTAGCTGTAAGCC -ACGGAAAGTTGGTAGCTGATAGCC -ACGGAAAGTTGGTAGCTGTAACCG -ACGGAAAGTTGGTAGCTGATGCCA -ACGGAAAGTTGGAAGCCTGGAAAC -ACGGAAAGTTGGAAGCCTAACACC -ACGGAAAGTTGGAAGCCTATCGAG -ACGGAAAGTTGGAAGCCTCTCCTT -ACGGAAAGTTGGAAGCCTCCTGTT -ACGGAAAGTTGGAAGCCTCGGTTT -ACGGAAAGTTGGAAGCCTGTGGTT -ACGGAAAGTTGGAAGCCTGCCTTT -ACGGAAAGTTGGAAGCCTGGTCTT -ACGGAAAGTTGGAAGCCTACGCTT -ACGGAAAGTTGGAAGCCTAGCGTT -ACGGAAAGTTGGAAGCCTTTCGTC -ACGGAAAGTTGGAAGCCTTCTCTC -ACGGAAAGTTGGAAGCCTTGGATC -ACGGAAAGTTGGAAGCCTCACTTC -ACGGAAAGTTGGAAGCCTGTACTC -ACGGAAAGTTGGAAGCCTGATGTC -ACGGAAAGTTGGAAGCCTACAGTC -ACGGAAAGTTGGAAGCCTTTGCTG -ACGGAAAGTTGGAAGCCTTCCATG -ACGGAAAGTTGGAAGCCTTGTGTG -ACGGAAAGTTGGAAGCCTCTAGTG -ACGGAAAGTTGGAAGCCTCATCTG -ACGGAAAGTTGGAAGCCTGAGTTG -ACGGAAAGTTGGAAGCCTAGACTG -ACGGAAAGTTGGAAGCCTTCGGTA -ACGGAAAGTTGGAAGCCTTGCCTA -ACGGAAAGTTGGAAGCCTCCACTA -ACGGAAAGTTGGAAGCCTGGAGTA -ACGGAAAGTTGGAAGCCTTCGTCT -ACGGAAAGTTGGAAGCCTTGCACT -ACGGAAAGTTGGAAGCCTCTGACT -ACGGAAAGTTGGAAGCCTCAACCT -ACGGAAAGTTGGAAGCCTGCTACT -ACGGAAAGTTGGAAGCCTGGATCT -ACGGAAAGTTGGAAGCCTAAGGCT -ACGGAAAGTTGGAAGCCTTCAACC -ACGGAAAGTTGGAAGCCTTGTTCC -ACGGAAAGTTGGAAGCCTATTCCC -ACGGAAAGTTGGAAGCCTTTCTCG -ACGGAAAGTTGGAAGCCTTAGACG -ACGGAAAGTTGGAAGCCTGTAACG -ACGGAAAGTTGGAAGCCTACTTCG -ACGGAAAGTTGGAAGCCTTACGCA -ACGGAAAGTTGGAAGCCTCTTGCA -ACGGAAAGTTGGAAGCCTCGAACA -ACGGAAAGTTGGAAGCCTCAGTCA -ACGGAAAGTTGGAAGCCTGATCCA -ACGGAAAGTTGGAAGCCTACGACA -ACGGAAAGTTGGAAGCCTAGCTCA -ACGGAAAGTTGGAAGCCTTCACGT -ACGGAAAGTTGGAAGCCTCGTAGT -ACGGAAAGTTGGAAGCCTGTCAGT -ACGGAAAGTTGGAAGCCTGAAGGT -ACGGAAAGTTGGAAGCCTAACCGT -ACGGAAAGTTGGAAGCCTTTGTGC -ACGGAAAGTTGGAAGCCTCTAAGC -ACGGAAAGTTGGAAGCCTACTAGC -ACGGAAAGTTGGAAGCCTAGATGC -ACGGAAAGTTGGAAGCCTTGAAGG -ACGGAAAGTTGGAAGCCTCAATGG -ACGGAAAGTTGGAAGCCTATGAGG -ACGGAAAGTTGGAAGCCTAATGGG -ACGGAAAGTTGGAAGCCTTCCTGA -ACGGAAAGTTGGAAGCCTTAGCGA -ACGGAAAGTTGGAAGCCTCACAGA -ACGGAAAGTTGGAAGCCTGCAAGA -ACGGAAAGTTGGAAGCCTGGTTGA -ACGGAAAGTTGGAAGCCTTCCGAT -ACGGAAAGTTGGAAGCCTTGGCAT -ACGGAAAGTTGGAAGCCTCGAGAT -ACGGAAAGTTGGAAGCCTTACCAC -ACGGAAAGTTGGAAGCCTCAGAAC -ACGGAAAGTTGGAAGCCTGTCTAC -ACGGAAAGTTGGAAGCCTACGTAC -ACGGAAAGTTGGAAGCCTAGTGAC -ACGGAAAGTTGGAAGCCTCTGTAG -ACGGAAAGTTGGAAGCCTCCTAAG -ACGGAAAGTTGGAAGCCTGTTCAG -ACGGAAAGTTGGAAGCCTGCATAG -ACGGAAAGTTGGAAGCCTGACAAG -ACGGAAAGTTGGAAGCCTAAGCAG -ACGGAAAGTTGGAAGCCTCGTCAA -ACGGAAAGTTGGAAGCCTGCTGAA -ACGGAAAGTTGGAAGCCTAGTACG -ACGGAAAGTTGGAAGCCTATCCGA -ACGGAAAGTTGGAAGCCTATGGGA -ACGGAAAGTTGGAAGCCTGTGCAA -ACGGAAAGTTGGAAGCCTGAGGAA -ACGGAAAGTTGGAAGCCTCAGGTA -ACGGAAAGTTGGAAGCCTGACTCT -ACGGAAAGTTGGAAGCCTAGTCCT -ACGGAAAGTTGGAAGCCTTAAGCC -ACGGAAAGTTGGAAGCCTATAGCC -ACGGAAAGTTGGAAGCCTTAACCG -ACGGAAAGTTGGAAGCCTATGCCA -ACGGAAAGTTGGCAGGTTGGAAAC -ACGGAAAGTTGGCAGGTTAACACC -ACGGAAAGTTGGCAGGTTATCGAG -ACGGAAAGTTGGCAGGTTCTCCTT -ACGGAAAGTTGGCAGGTTCCTGTT -ACGGAAAGTTGGCAGGTTCGGTTT -ACGGAAAGTTGGCAGGTTGTGGTT -ACGGAAAGTTGGCAGGTTGCCTTT -ACGGAAAGTTGGCAGGTTGGTCTT -ACGGAAAGTTGGCAGGTTACGCTT -ACGGAAAGTTGGCAGGTTAGCGTT -ACGGAAAGTTGGCAGGTTTTCGTC -ACGGAAAGTTGGCAGGTTTCTCTC -ACGGAAAGTTGGCAGGTTTGGATC -ACGGAAAGTTGGCAGGTTCACTTC -ACGGAAAGTTGGCAGGTTGTACTC -ACGGAAAGTTGGCAGGTTGATGTC -ACGGAAAGTTGGCAGGTTACAGTC -ACGGAAAGTTGGCAGGTTTTGCTG -ACGGAAAGTTGGCAGGTTTCCATG -ACGGAAAGTTGGCAGGTTTGTGTG -ACGGAAAGTTGGCAGGTTCTAGTG -ACGGAAAGTTGGCAGGTTCATCTG -ACGGAAAGTTGGCAGGTTGAGTTG -ACGGAAAGTTGGCAGGTTAGACTG -ACGGAAAGTTGGCAGGTTTCGGTA -ACGGAAAGTTGGCAGGTTTGCCTA -ACGGAAAGTTGGCAGGTTCCACTA -ACGGAAAGTTGGCAGGTTGGAGTA -ACGGAAAGTTGGCAGGTTTCGTCT -ACGGAAAGTTGGCAGGTTTGCACT -ACGGAAAGTTGGCAGGTTCTGACT -ACGGAAAGTTGGCAGGTTCAACCT -ACGGAAAGTTGGCAGGTTGCTACT -ACGGAAAGTTGGCAGGTTGGATCT -ACGGAAAGTTGGCAGGTTAAGGCT -ACGGAAAGTTGGCAGGTTTCAACC -ACGGAAAGTTGGCAGGTTTGTTCC -ACGGAAAGTTGGCAGGTTATTCCC -ACGGAAAGTTGGCAGGTTTTCTCG -ACGGAAAGTTGGCAGGTTTAGACG -ACGGAAAGTTGGCAGGTTGTAACG -ACGGAAAGTTGGCAGGTTACTTCG -ACGGAAAGTTGGCAGGTTTACGCA -ACGGAAAGTTGGCAGGTTCTTGCA -ACGGAAAGTTGGCAGGTTCGAACA -ACGGAAAGTTGGCAGGTTCAGTCA -ACGGAAAGTTGGCAGGTTGATCCA -ACGGAAAGTTGGCAGGTTACGACA -ACGGAAAGTTGGCAGGTTAGCTCA -ACGGAAAGTTGGCAGGTTTCACGT -ACGGAAAGTTGGCAGGTTCGTAGT -ACGGAAAGTTGGCAGGTTGTCAGT -ACGGAAAGTTGGCAGGTTGAAGGT -ACGGAAAGTTGGCAGGTTAACCGT -ACGGAAAGTTGGCAGGTTTTGTGC -ACGGAAAGTTGGCAGGTTCTAAGC -ACGGAAAGTTGGCAGGTTACTAGC -ACGGAAAGTTGGCAGGTTAGATGC -ACGGAAAGTTGGCAGGTTTGAAGG -ACGGAAAGTTGGCAGGTTCAATGG -ACGGAAAGTTGGCAGGTTATGAGG -ACGGAAAGTTGGCAGGTTAATGGG -ACGGAAAGTTGGCAGGTTTCCTGA -ACGGAAAGTTGGCAGGTTTAGCGA -ACGGAAAGTTGGCAGGTTCACAGA -ACGGAAAGTTGGCAGGTTGCAAGA -ACGGAAAGTTGGCAGGTTGGTTGA -ACGGAAAGTTGGCAGGTTTCCGAT -ACGGAAAGTTGGCAGGTTTGGCAT -ACGGAAAGTTGGCAGGTTCGAGAT -ACGGAAAGTTGGCAGGTTTACCAC -ACGGAAAGTTGGCAGGTTCAGAAC -ACGGAAAGTTGGCAGGTTGTCTAC -ACGGAAAGTTGGCAGGTTACGTAC -ACGGAAAGTTGGCAGGTTAGTGAC -ACGGAAAGTTGGCAGGTTCTGTAG -ACGGAAAGTTGGCAGGTTCCTAAG -ACGGAAAGTTGGCAGGTTGTTCAG -ACGGAAAGTTGGCAGGTTGCATAG -ACGGAAAGTTGGCAGGTTGACAAG -ACGGAAAGTTGGCAGGTTAAGCAG -ACGGAAAGTTGGCAGGTTCGTCAA -ACGGAAAGTTGGCAGGTTGCTGAA -ACGGAAAGTTGGCAGGTTAGTACG -ACGGAAAGTTGGCAGGTTATCCGA -ACGGAAAGTTGGCAGGTTATGGGA -ACGGAAAGTTGGCAGGTTGTGCAA -ACGGAAAGTTGGCAGGTTGAGGAA -ACGGAAAGTTGGCAGGTTCAGGTA -ACGGAAAGTTGGCAGGTTGACTCT -ACGGAAAGTTGGCAGGTTAGTCCT -ACGGAAAGTTGGCAGGTTTAAGCC -ACGGAAAGTTGGCAGGTTATAGCC -ACGGAAAGTTGGCAGGTTTAACCG -ACGGAAAGTTGGCAGGTTATGCCA -ACGGAAAGTTGGTAGGCAGGAAAC -ACGGAAAGTTGGTAGGCAAACACC -ACGGAAAGTTGGTAGGCAATCGAG -ACGGAAAGTTGGTAGGCACTCCTT -ACGGAAAGTTGGTAGGCACCTGTT -ACGGAAAGTTGGTAGGCACGGTTT -ACGGAAAGTTGGTAGGCAGTGGTT -ACGGAAAGTTGGTAGGCAGCCTTT -ACGGAAAGTTGGTAGGCAGGTCTT -ACGGAAAGTTGGTAGGCAACGCTT -ACGGAAAGTTGGTAGGCAAGCGTT -ACGGAAAGTTGGTAGGCATTCGTC -ACGGAAAGTTGGTAGGCATCTCTC -ACGGAAAGTTGGTAGGCATGGATC -ACGGAAAGTTGGTAGGCACACTTC -ACGGAAAGTTGGTAGGCAGTACTC -ACGGAAAGTTGGTAGGCAGATGTC -ACGGAAAGTTGGTAGGCAACAGTC -ACGGAAAGTTGGTAGGCATTGCTG -ACGGAAAGTTGGTAGGCATCCATG -ACGGAAAGTTGGTAGGCATGTGTG -ACGGAAAGTTGGTAGGCACTAGTG -ACGGAAAGTTGGTAGGCACATCTG -ACGGAAAGTTGGTAGGCAGAGTTG -ACGGAAAGTTGGTAGGCAAGACTG -ACGGAAAGTTGGTAGGCATCGGTA -ACGGAAAGTTGGTAGGCATGCCTA -ACGGAAAGTTGGTAGGCACCACTA -ACGGAAAGTTGGTAGGCAGGAGTA -ACGGAAAGTTGGTAGGCATCGTCT -ACGGAAAGTTGGTAGGCATGCACT -ACGGAAAGTTGGTAGGCACTGACT -ACGGAAAGTTGGTAGGCACAACCT -ACGGAAAGTTGGTAGGCAGCTACT -ACGGAAAGTTGGTAGGCAGGATCT -ACGGAAAGTTGGTAGGCAAAGGCT -ACGGAAAGTTGGTAGGCATCAACC -ACGGAAAGTTGGTAGGCATGTTCC -ACGGAAAGTTGGTAGGCAATTCCC -ACGGAAAGTTGGTAGGCATTCTCG -ACGGAAAGTTGGTAGGCATAGACG -ACGGAAAGTTGGTAGGCAGTAACG -ACGGAAAGTTGGTAGGCAACTTCG -ACGGAAAGTTGGTAGGCATACGCA -ACGGAAAGTTGGTAGGCACTTGCA -ACGGAAAGTTGGTAGGCACGAACA -ACGGAAAGTTGGTAGGCACAGTCA -ACGGAAAGTTGGTAGGCAGATCCA -ACGGAAAGTTGGTAGGCAACGACA -ACGGAAAGTTGGTAGGCAAGCTCA -ACGGAAAGTTGGTAGGCATCACGT -ACGGAAAGTTGGTAGGCACGTAGT -ACGGAAAGTTGGTAGGCAGTCAGT -ACGGAAAGTTGGTAGGCAGAAGGT -ACGGAAAGTTGGTAGGCAAACCGT -ACGGAAAGTTGGTAGGCATTGTGC -ACGGAAAGTTGGTAGGCACTAAGC -ACGGAAAGTTGGTAGGCAACTAGC -ACGGAAAGTTGGTAGGCAAGATGC -ACGGAAAGTTGGTAGGCATGAAGG -ACGGAAAGTTGGTAGGCACAATGG -ACGGAAAGTTGGTAGGCAATGAGG -ACGGAAAGTTGGTAGGCAAATGGG -ACGGAAAGTTGGTAGGCATCCTGA -ACGGAAAGTTGGTAGGCATAGCGA -ACGGAAAGTTGGTAGGCACACAGA -ACGGAAAGTTGGTAGGCAGCAAGA -ACGGAAAGTTGGTAGGCAGGTTGA -ACGGAAAGTTGGTAGGCATCCGAT -ACGGAAAGTTGGTAGGCATGGCAT -ACGGAAAGTTGGTAGGCACGAGAT -ACGGAAAGTTGGTAGGCATACCAC -ACGGAAAGTTGGTAGGCACAGAAC -ACGGAAAGTTGGTAGGCAGTCTAC -ACGGAAAGTTGGTAGGCAACGTAC -ACGGAAAGTTGGTAGGCAAGTGAC -ACGGAAAGTTGGTAGGCACTGTAG -ACGGAAAGTTGGTAGGCACCTAAG -ACGGAAAGTTGGTAGGCAGTTCAG -ACGGAAAGTTGGTAGGCAGCATAG -ACGGAAAGTTGGTAGGCAGACAAG -ACGGAAAGTTGGTAGGCAAAGCAG -ACGGAAAGTTGGTAGGCACGTCAA -ACGGAAAGTTGGTAGGCAGCTGAA -ACGGAAAGTTGGTAGGCAAGTACG -ACGGAAAGTTGGTAGGCAATCCGA -ACGGAAAGTTGGTAGGCAATGGGA -ACGGAAAGTTGGTAGGCAGTGCAA -ACGGAAAGTTGGTAGGCAGAGGAA -ACGGAAAGTTGGTAGGCACAGGTA -ACGGAAAGTTGGTAGGCAGACTCT -ACGGAAAGTTGGTAGGCAAGTCCT -ACGGAAAGTTGGTAGGCATAAGCC -ACGGAAAGTTGGTAGGCAATAGCC -ACGGAAAGTTGGTAGGCATAACCG -ACGGAAAGTTGGTAGGCAATGCCA -ACGGAAAGTTGGAAGGACGGAAAC -ACGGAAAGTTGGAAGGACAACACC -ACGGAAAGTTGGAAGGACATCGAG -ACGGAAAGTTGGAAGGACCTCCTT -ACGGAAAGTTGGAAGGACCCTGTT -ACGGAAAGTTGGAAGGACCGGTTT -ACGGAAAGTTGGAAGGACGTGGTT -ACGGAAAGTTGGAAGGACGCCTTT -ACGGAAAGTTGGAAGGACGGTCTT -ACGGAAAGTTGGAAGGACACGCTT -ACGGAAAGTTGGAAGGACAGCGTT -ACGGAAAGTTGGAAGGACTTCGTC -ACGGAAAGTTGGAAGGACTCTCTC -ACGGAAAGTTGGAAGGACTGGATC -ACGGAAAGTTGGAAGGACCACTTC -ACGGAAAGTTGGAAGGACGTACTC -ACGGAAAGTTGGAAGGACGATGTC -ACGGAAAGTTGGAAGGACACAGTC -ACGGAAAGTTGGAAGGACTTGCTG -ACGGAAAGTTGGAAGGACTCCATG -ACGGAAAGTTGGAAGGACTGTGTG -ACGGAAAGTTGGAAGGACCTAGTG -ACGGAAAGTTGGAAGGACCATCTG -ACGGAAAGTTGGAAGGACGAGTTG -ACGGAAAGTTGGAAGGACAGACTG -ACGGAAAGTTGGAAGGACTCGGTA -ACGGAAAGTTGGAAGGACTGCCTA -ACGGAAAGTTGGAAGGACCCACTA -ACGGAAAGTTGGAAGGACGGAGTA -ACGGAAAGTTGGAAGGACTCGTCT -ACGGAAAGTTGGAAGGACTGCACT -ACGGAAAGTTGGAAGGACCTGACT -ACGGAAAGTTGGAAGGACCAACCT -ACGGAAAGTTGGAAGGACGCTACT -ACGGAAAGTTGGAAGGACGGATCT -ACGGAAAGTTGGAAGGACAAGGCT -ACGGAAAGTTGGAAGGACTCAACC -ACGGAAAGTTGGAAGGACTGTTCC -ACGGAAAGTTGGAAGGACATTCCC -ACGGAAAGTTGGAAGGACTTCTCG -ACGGAAAGTTGGAAGGACTAGACG -ACGGAAAGTTGGAAGGACGTAACG -ACGGAAAGTTGGAAGGACACTTCG -ACGGAAAGTTGGAAGGACTACGCA -ACGGAAAGTTGGAAGGACCTTGCA -ACGGAAAGTTGGAAGGACCGAACA -ACGGAAAGTTGGAAGGACCAGTCA -ACGGAAAGTTGGAAGGACGATCCA -ACGGAAAGTTGGAAGGACACGACA -ACGGAAAGTTGGAAGGACAGCTCA -ACGGAAAGTTGGAAGGACTCACGT -ACGGAAAGTTGGAAGGACCGTAGT -ACGGAAAGTTGGAAGGACGTCAGT -ACGGAAAGTTGGAAGGACGAAGGT -ACGGAAAGTTGGAAGGACAACCGT -ACGGAAAGTTGGAAGGACTTGTGC -ACGGAAAGTTGGAAGGACCTAAGC -ACGGAAAGTTGGAAGGACACTAGC -ACGGAAAGTTGGAAGGACAGATGC -ACGGAAAGTTGGAAGGACTGAAGG -ACGGAAAGTTGGAAGGACCAATGG -ACGGAAAGTTGGAAGGACATGAGG -ACGGAAAGTTGGAAGGACAATGGG -ACGGAAAGTTGGAAGGACTCCTGA -ACGGAAAGTTGGAAGGACTAGCGA -ACGGAAAGTTGGAAGGACCACAGA -ACGGAAAGTTGGAAGGACGCAAGA -ACGGAAAGTTGGAAGGACGGTTGA -ACGGAAAGTTGGAAGGACTCCGAT -ACGGAAAGTTGGAAGGACTGGCAT -ACGGAAAGTTGGAAGGACCGAGAT -ACGGAAAGTTGGAAGGACTACCAC -ACGGAAAGTTGGAAGGACCAGAAC -ACGGAAAGTTGGAAGGACGTCTAC -ACGGAAAGTTGGAAGGACACGTAC -ACGGAAAGTTGGAAGGACAGTGAC -ACGGAAAGTTGGAAGGACCTGTAG -ACGGAAAGTTGGAAGGACCCTAAG -ACGGAAAGTTGGAAGGACGTTCAG -ACGGAAAGTTGGAAGGACGCATAG -ACGGAAAGTTGGAAGGACGACAAG -ACGGAAAGTTGGAAGGACAAGCAG -ACGGAAAGTTGGAAGGACCGTCAA -ACGGAAAGTTGGAAGGACGCTGAA -ACGGAAAGTTGGAAGGACAGTACG -ACGGAAAGTTGGAAGGACATCCGA -ACGGAAAGTTGGAAGGACATGGGA -ACGGAAAGTTGGAAGGACGTGCAA -ACGGAAAGTTGGAAGGACGAGGAA -ACGGAAAGTTGGAAGGACCAGGTA -ACGGAAAGTTGGAAGGACGACTCT -ACGGAAAGTTGGAAGGACAGTCCT -ACGGAAAGTTGGAAGGACTAAGCC -ACGGAAAGTTGGAAGGACATAGCC -ACGGAAAGTTGGAAGGACTAACCG -ACGGAAAGTTGGAAGGACATGCCA -ACGGAAAGTTGGCAGAAGGGAAAC -ACGGAAAGTTGGCAGAAGAACACC -ACGGAAAGTTGGCAGAAGATCGAG -ACGGAAAGTTGGCAGAAGCTCCTT -ACGGAAAGTTGGCAGAAGCCTGTT -ACGGAAAGTTGGCAGAAGCGGTTT -ACGGAAAGTTGGCAGAAGGTGGTT -ACGGAAAGTTGGCAGAAGGCCTTT -ACGGAAAGTTGGCAGAAGGGTCTT -ACGGAAAGTTGGCAGAAGACGCTT -ACGGAAAGTTGGCAGAAGAGCGTT -ACGGAAAGTTGGCAGAAGTTCGTC -ACGGAAAGTTGGCAGAAGTCTCTC -ACGGAAAGTTGGCAGAAGTGGATC -ACGGAAAGTTGGCAGAAGCACTTC -ACGGAAAGTTGGCAGAAGGTACTC -ACGGAAAGTTGGCAGAAGGATGTC -ACGGAAAGTTGGCAGAAGACAGTC -ACGGAAAGTTGGCAGAAGTTGCTG -ACGGAAAGTTGGCAGAAGTCCATG -ACGGAAAGTTGGCAGAAGTGTGTG -ACGGAAAGTTGGCAGAAGCTAGTG -ACGGAAAGTTGGCAGAAGCATCTG -ACGGAAAGTTGGCAGAAGGAGTTG -ACGGAAAGTTGGCAGAAGAGACTG -ACGGAAAGTTGGCAGAAGTCGGTA -ACGGAAAGTTGGCAGAAGTGCCTA -ACGGAAAGTTGGCAGAAGCCACTA -ACGGAAAGTTGGCAGAAGGGAGTA -ACGGAAAGTTGGCAGAAGTCGTCT -ACGGAAAGTTGGCAGAAGTGCACT -ACGGAAAGTTGGCAGAAGCTGACT -ACGGAAAGTTGGCAGAAGCAACCT -ACGGAAAGTTGGCAGAAGGCTACT -ACGGAAAGTTGGCAGAAGGGATCT -ACGGAAAGTTGGCAGAAGAAGGCT -ACGGAAAGTTGGCAGAAGTCAACC -ACGGAAAGTTGGCAGAAGTGTTCC -ACGGAAAGTTGGCAGAAGATTCCC -ACGGAAAGTTGGCAGAAGTTCTCG -ACGGAAAGTTGGCAGAAGTAGACG -ACGGAAAGTTGGCAGAAGGTAACG -ACGGAAAGTTGGCAGAAGACTTCG -ACGGAAAGTTGGCAGAAGTACGCA -ACGGAAAGTTGGCAGAAGCTTGCA -ACGGAAAGTTGGCAGAAGCGAACA -ACGGAAAGTTGGCAGAAGCAGTCA -ACGGAAAGTTGGCAGAAGGATCCA -ACGGAAAGTTGGCAGAAGACGACA -ACGGAAAGTTGGCAGAAGAGCTCA -ACGGAAAGTTGGCAGAAGTCACGT -ACGGAAAGTTGGCAGAAGCGTAGT -ACGGAAAGTTGGCAGAAGGTCAGT -ACGGAAAGTTGGCAGAAGGAAGGT -ACGGAAAGTTGGCAGAAGAACCGT -ACGGAAAGTTGGCAGAAGTTGTGC -ACGGAAAGTTGGCAGAAGCTAAGC -ACGGAAAGTTGGCAGAAGACTAGC -ACGGAAAGTTGGCAGAAGAGATGC -ACGGAAAGTTGGCAGAAGTGAAGG -ACGGAAAGTTGGCAGAAGCAATGG -ACGGAAAGTTGGCAGAAGATGAGG -ACGGAAAGTTGGCAGAAGAATGGG -ACGGAAAGTTGGCAGAAGTCCTGA -ACGGAAAGTTGGCAGAAGTAGCGA -ACGGAAAGTTGGCAGAAGCACAGA -ACGGAAAGTTGGCAGAAGGCAAGA -ACGGAAAGTTGGCAGAAGGGTTGA -ACGGAAAGTTGGCAGAAGTCCGAT -ACGGAAAGTTGGCAGAAGTGGCAT -ACGGAAAGTTGGCAGAAGCGAGAT -ACGGAAAGTTGGCAGAAGTACCAC -ACGGAAAGTTGGCAGAAGCAGAAC -ACGGAAAGTTGGCAGAAGGTCTAC -ACGGAAAGTTGGCAGAAGACGTAC -ACGGAAAGTTGGCAGAAGAGTGAC -ACGGAAAGTTGGCAGAAGCTGTAG -ACGGAAAGTTGGCAGAAGCCTAAG -ACGGAAAGTTGGCAGAAGGTTCAG -ACGGAAAGTTGGCAGAAGGCATAG -ACGGAAAGTTGGCAGAAGGACAAG -ACGGAAAGTTGGCAGAAGAAGCAG -ACGGAAAGTTGGCAGAAGCGTCAA -ACGGAAAGTTGGCAGAAGGCTGAA -ACGGAAAGTTGGCAGAAGAGTACG -ACGGAAAGTTGGCAGAAGATCCGA -ACGGAAAGTTGGCAGAAGATGGGA -ACGGAAAGTTGGCAGAAGGTGCAA -ACGGAAAGTTGGCAGAAGGAGGAA -ACGGAAAGTTGGCAGAAGCAGGTA -ACGGAAAGTTGGCAGAAGGACTCT -ACGGAAAGTTGGCAGAAGAGTCCT -ACGGAAAGTTGGCAGAAGTAAGCC -ACGGAAAGTTGGCAGAAGATAGCC -ACGGAAAGTTGGCAGAAGTAACCG -ACGGAAAGTTGGCAGAAGATGCCA -ACGGAAAGTTGGCAACGTGGAAAC -ACGGAAAGTTGGCAACGTAACACC -ACGGAAAGTTGGCAACGTATCGAG -ACGGAAAGTTGGCAACGTCTCCTT -ACGGAAAGTTGGCAACGTCCTGTT -ACGGAAAGTTGGCAACGTCGGTTT -ACGGAAAGTTGGCAACGTGTGGTT -ACGGAAAGTTGGCAACGTGCCTTT -ACGGAAAGTTGGCAACGTGGTCTT -ACGGAAAGTTGGCAACGTACGCTT -ACGGAAAGTTGGCAACGTAGCGTT -ACGGAAAGTTGGCAACGTTTCGTC -ACGGAAAGTTGGCAACGTTCTCTC -ACGGAAAGTTGGCAACGTTGGATC -ACGGAAAGTTGGCAACGTCACTTC -ACGGAAAGTTGGCAACGTGTACTC -ACGGAAAGTTGGCAACGTGATGTC -ACGGAAAGTTGGCAACGTACAGTC -ACGGAAAGTTGGCAACGTTTGCTG -ACGGAAAGTTGGCAACGTTCCATG -ACGGAAAGTTGGCAACGTTGTGTG -ACGGAAAGTTGGCAACGTCTAGTG -ACGGAAAGTTGGCAACGTCATCTG -ACGGAAAGTTGGCAACGTGAGTTG -ACGGAAAGTTGGCAACGTAGACTG -ACGGAAAGTTGGCAACGTTCGGTA -ACGGAAAGTTGGCAACGTTGCCTA -ACGGAAAGTTGGCAACGTCCACTA -ACGGAAAGTTGGCAACGTGGAGTA -ACGGAAAGTTGGCAACGTTCGTCT -ACGGAAAGTTGGCAACGTTGCACT -ACGGAAAGTTGGCAACGTCTGACT -ACGGAAAGTTGGCAACGTCAACCT -ACGGAAAGTTGGCAACGTGCTACT -ACGGAAAGTTGGCAACGTGGATCT -ACGGAAAGTTGGCAACGTAAGGCT -ACGGAAAGTTGGCAACGTTCAACC -ACGGAAAGTTGGCAACGTTGTTCC -ACGGAAAGTTGGCAACGTATTCCC -ACGGAAAGTTGGCAACGTTTCTCG -ACGGAAAGTTGGCAACGTTAGACG -ACGGAAAGTTGGCAACGTGTAACG -ACGGAAAGTTGGCAACGTACTTCG -ACGGAAAGTTGGCAACGTTACGCA -ACGGAAAGTTGGCAACGTCTTGCA -ACGGAAAGTTGGCAACGTCGAACA -ACGGAAAGTTGGCAACGTCAGTCA -ACGGAAAGTTGGCAACGTGATCCA -ACGGAAAGTTGGCAACGTACGACA -ACGGAAAGTTGGCAACGTAGCTCA -ACGGAAAGTTGGCAACGTTCACGT -ACGGAAAGTTGGCAACGTCGTAGT -ACGGAAAGTTGGCAACGTGTCAGT -ACGGAAAGTTGGCAACGTGAAGGT -ACGGAAAGTTGGCAACGTAACCGT -ACGGAAAGTTGGCAACGTTTGTGC -ACGGAAAGTTGGCAACGTCTAAGC -ACGGAAAGTTGGCAACGTACTAGC -ACGGAAAGTTGGCAACGTAGATGC -ACGGAAAGTTGGCAACGTTGAAGG -ACGGAAAGTTGGCAACGTCAATGG -ACGGAAAGTTGGCAACGTATGAGG -ACGGAAAGTTGGCAACGTAATGGG -ACGGAAAGTTGGCAACGTTCCTGA -ACGGAAAGTTGGCAACGTTAGCGA -ACGGAAAGTTGGCAACGTCACAGA -ACGGAAAGTTGGCAACGTGCAAGA -ACGGAAAGTTGGCAACGTGGTTGA -ACGGAAAGTTGGCAACGTTCCGAT -ACGGAAAGTTGGCAACGTTGGCAT -ACGGAAAGTTGGCAACGTCGAGAT -ACGGAAAGTTGGCAACGTTACCAC -ACGGAAAGTTGGCAACGTCAGAAC -ACGGAAAGTTGGCAACGTGTCTAC -ACGGAAAGTTGGCAACGTACGTAC -ACGGAAAGTTGGCAACGTAGTGAC -ACGGAAAGTTGGCAACGTCTGTAG -ACGGAAAGTTGGCAACGTCCTAAG -ACGGAAAGTTGGCAACGTGTTCAG -ACGGAAAGTTGGCAACGTGCATAG -ACGGAAAGTTGGCAACGTGACAAG -ACGGAAAGTTGGCAACGTAAGCAG -ACGGAAAGTTGGCAACGTCGTCAA -ACGGAAAGTTGGCAACGTGCTGAA -ACGGAAAGTTGGCAACGTAGTACG -ACGGAAAGTTGGCAACGTATCCGA -ACGGAAAGTTGGCAACGTATGGGA -ACGGAAAGTTGGCAACGTGTGCAA -ACGGAAAGTTGGCAACGTGAGGAA -ACGGAAAGTTGGCAACGTCAGGTA -ACGGAAAGTTGGCAACGTGACTCT -ACGGAAAGTTGGCAACGTAGTCCT -ACGGAAAGTTGGCAACGTTAAGCC -ACGGAAAGTTGGCAACGTATAGCC -ACGGAAAGTTGGCAACGTTAACCG -ACGGAAAGTTGGCAACGTATGCCA -ACGGAAAGTTGGGAAGCTGGAAAC -ACGGAAAGTTGGGAAGCTAACACC -ACGGAAAGTTGGGAAGCTATCGAG -ACGGAAAGTTGGGAAGCTCTCCTT -ACGGAAAGTTGGGAAGCTCCTGTT -ACGGAAAGTTGGGAAGCTCGGTTT -ACGGAAAGTTGGGAAGCTGTGGTT -ACGGAAAGTTGGGAAGCTGCCTTT -ACGGAAAGTTGGGAAGCTGGTCTT -ACGGAAAGTTGGGAAGCTACGCTT -ACGGAAAGTTGGGAAGCTAGCGTT -ACGGAAAGTTGGGAAGCTTTCGTC -ACGGAAAGTTGGGAAGCTTCTCTC -ACGGAAAGTTGGGAAGCTTGGATC -ACGGAAAGTTGGGAAGCTCACTTC -ACGGAAAGTTGGGAAGCTGTACTC -ACGGAAAGTTGGGAAGCTGATGTC -ACGGAAAGTTGGGAAGCTACAGTC -ACGGAAAGTTGGGAAGCTTTGCTG -ACGGAAAGTTGGGAAGCTTCCATG -ACGGAAAGTTGGGAAGCTTGTGTG -ACGGAAAGTTGGGAAGCTCTAGTG -ACGGAAAGTTGGGAAGCTCATCTG -ACGGAAAGTTGGGAAGCTGAGTTG -ACGGAAAGTTGGGAAGCTAGACTG -ACGGAAAGTTGGGAAGCTTCGGTA -ACGGAAAGTTGGGAAGCTTGCCTA -ACGGAAAGTTGGGAAGCTCCACTA -ACGGAAAGTTGGGAAGCTGGAGTA -ACGGAAAGTTGGGAAGCTTCGTCT -ACGGAAAGTTGGGAAGCTTGCACT -ACGGAAAGTTGGGAAGCTCTGACT -ACGGAAAGTTGGGAAGCTCAACCT -ACGGAAAGTTGGGAAGCTGCTACT -ACGGAAAGTTGGGAAGCTGGATCT -ACGGAAAGTTGGGAAGCTAAGGCT -ACGGAAAGTTGGGAAGCTTCAACC -ACGGAAAGTTGGGAAGCTTGTTCC -ACGGAAAGTTGGGAAGCTATTCCC -ACGGAAAGTTGGGAAGCTTTCTCG -ACGGAAAGTTGGGAAGCTTAGACG -ACGGAAAGTTGGGAAGCTGTAACG -ACGGAAAGTTGGGAAGCTACTTCG -ACGGAAAGTTGGGAAGCTTACGCA -ACGGAAAGTTGGGAAGCTCTTGCA -ACGGAAAGTTGGGAAGCTCGAACA -ACGGAAAGTTGGGAAGCTCAGTCA -ACGGAAAGTTGGGAAGCTGATCCA -ACGGAAAGTTGGGAAGCTACGACA -ACGGAAAGTTGGGAAGCTAGCTCA -ACGGAAAGTTGGGAAGCTTCACGT -ACGGAAAGTTGGGAAGCTCGTAGT -ACGGAAAGTTGGGAAGCTGTCAGT -ACGGAAAGTTGGGAAGCTGAAGGT -ACGGAAAGTTGGGAAGCTAACCGT -ACGGAAAGTTGGGAAGCTTTGTGC -ACGGAAAGTTGGGAAGCTCTAAGC -ACGGAAAGTTGGGAAGCTACTAGC -ACGGAAAGTTGGGAAGCTAGATGC -ACGGAAAGTTGGGAAGCTTGAAGG -ACGGAAAGTTGGGAAGCTCAATGG -ACGGAAAGTTGGGAAGCTATGAGG -ACGGAAAGTTGGGAAGCTAATGGG -ACGGAAAGTTGGGAAGCTTCCTGA -ACGGAAAGTTGGGAAGCTTAGCGA -ACGGAAAGTTGGGAAGCTCACAGA -ACGGAAAGTTGGGAAGCTGCAAGA -ACGGAAAGTTGGGAAGCTGGTTGA -ACGGAAAGTTGGGAAGCTTCCGAT -ACGGAAAGTTGGGAAGCTTGGCAT -ACGGAAAGTTGGGAAGCTCGAGAT -ACGGAAAGTTGGGAAGCTTACCAC -ACGGAAAGTTGGGAAGCTCAGAAC -ACGGAAAGTTGGGAAGCTGTCTAC -ACGGAAAGTTGGGAAGCTACGTAC -ACGGAAAGTTGGGAAGCTAGTGAC -ACGGAAAGTTGGGAAGCTCTGTAG -ACGGAAAGTTGGGAAGCTCCTAAG -ACGGAAAGTTGGGAAGCTGTTCAG -ACGGAAAGTTGGGAAGCTGCATAG -ACGGAAAGTTGGGAAGCTGACAAG -ACGGAAAGTTGGGAAGCTAAGCAG -ACGGAAAGTTGGGAAGCTCGTCAA -ACGGAAAGTTGGGAAGCTGCTGAA -ACGGAAAGTTGGGAAGCTAGTACG -ACGGAAAGTTGGGAAGCTATCCGA -ACGGAAAGTTGGGAAGCTATGGGA -ACGGAAAGTTGGGAAGCTGTGCAA -ACGGAAAGTTGGGAAGCTGAGGAA -ACGGAAAGTTGGGAAGCTCAGGTA -ACGGAAAGTTGGGAAGCTGACTCT -ACGGAAAGTTGGGAAGCTAGTCCT -ACGGAAAGTTGGGAAGCTTAAGCC -ACGGAAAGTTGGGAAGCTATAGCC -ACGGAAAGTTGGGAAGCTTAACCG -ACGGAAAGTTGGGAAGCTATGCCA -ACGGAAAGTTGGACGAGTGGAAAC -ACGGAAAGTTGGACGAGTAACACC -ACGGAAAGTTGGACGAGTATCGAG -ACGGAAAGTTGGACGAGTCTCCTT -ACGGAAAGTTGGACGAGTCCTGTT -ACGGAAAGTTGGACGAGTCGGTTT -ACGGAAAGTTGGACGAGTGTGGTT -ACGGAAAGTTGGACGAGTGCCTTT -ACGGAAAGTTGGACGAGTGGTCTT -ACGGAAAGTTGGACGAGTACGCTT -ACGGAAAGTTGGACGAGTAGCGTT -ACGGAAAGTTGGACGAGTTTCGTC -ACGGAAAGTTGGACGAGTTCTCTC -ACGGAAAGTTGGACGAGTTGGATC -ACGGAAAGTTGGACGAGTCACTTC -ACGGAAAGTTGGACGAGTGTACTC -ACGGAAAGTTGGACGAGTGATGTC -ACGGAAAGTTGGACGAGTACAGTC -ACGGAAAGTTGGACGAGTTTGCTG -ACGGAAAGTTGGACGAGTTCCATG -ACGGAAAGTTGGACGAGTTGTGTG -ACGGAAAGTTGGACGAGTCTAGTG -ACGGAAAGTTGGACGAGTCATCTG -ACGGAAAGTTGGACGAGTGAGTTG -ACGGAAAGTTGGACGAGTAGACTG -ACGGAAAGTTGGACGAGTTCGGTA -ACGGAAAGTTGGACGAGTTGCCTA -ACGGAAAGTTGGACGAGTCCACTA -ACGGAAAGTTGGACGAGTGGAGTA -ACGGAAAGTTGGACGAGTTCGTCT -ACGGAAAGTTGGACGAGTTGCACT -ACGGAAAGTTGGACGAGTCTGACT -ACGGAAAGTTGGACGAGTCAACCT -ACGGAAAGTTGGACGAGTGCTACT -ACGGAAAGTTGGACGAGTGGATCT -ACGGAAAGTTGGACGAGTAAGGCT -ACGGAAAGTTGGACGAGTTCAACC -ACGGAAAGTTGGACGAGTTGTTCC -ACGGAAAGTTGGACGAGTATTCCC -ACGGAAAGTTGGACGAGTTTCTCG -ACGGAAAGTTGGACGAGTTAGACG -ACGGAAAGTTGGACGAGTGTAACG -ACGGAAAGTTGGACGAGTACTTCG -ACGGAAAGTTGGACGAGTTACGCA -ACGGAAAGTTGGACGAGTCTTGCA -ACGGAAAGTTGGACGAGTCGAACA -ACGGAAAGTTGGACGAGTCAGTCA -ACGGAAAGTTGGACGAGTGATCCA -ACGGAAAGTTGGACGAGTACGACA -ACGGAAAGTTGGACGAGTAGCTCA -ACGGAAAGTTGGACGAGTTCACGT -ACGGAAAGTTGGACGAGTCGTAGT -ACGGAAAGTTGGACGAGTGTCAGT -ACGGAAAGTTGGACGAGTGAAGGT -ACGGAAAGTTGGACGAGTAACCGT -ACGGAAAGTTGGACGAGTTTGTGC -ACGGAAAGTTGGACGAGTCTAAGC -ACGGAAAGTTGGACGAGTACTAGC -ACGGAAAGTTGGACGAGTAGATGC -ACGGAAAGTTGGACGAGTTGAAGG -ACGGAAAGTTGGACGAGTCAATGG -ACGGAAAGTTGGACGAGTATGAGG -ACGGAAAGTTGGACGAGTAATGGG -ACGGAAAGTTGGACGAGTTCCTGA -ACGGAAAGTTGGACGAGTTAGCGA -ACGGAAAGTTGGACGAGTCACAGA -ACGGAAAGTTGGACGAGTGCAAGA -ACGGAAAGTTGGACGAGTGGTTGA -ACGGAAAGTTGGACGAGTTCCGAT -ACGGAAAGTTGGACGAGTTGGCAT -ACGGAAAGTTGGACGAGTCGAGAT -ACGGAAAGTTGGACGAGTTACCAC -ACGGAAAGTTGGACGAGTCAGAAC -ACGGAAAGTTGGACGAGTGTCTAC -ACGGAAAGTTGGACGAGTACGTAC -ACGGAAAGTTGGACGAGTAGTGAC -ACGGAAAGTTGGACGAGTCTGTAG -ACGGAAAGTTGGACGAGTCCTAAG -ACGGAAAGTTGGACGAGTGTTCAG -ACGGAAAGTTGGACGAGTGCATAG -ACGGAAAGTTGGACGAGTGACAAG -ACGGAAAGTTGGACGAGTAAGCAG -ACGGAAAGTTGGACGAGTCGTCAA -ACGGAAAGTTGGACGAGTGCTGAA -ACGGAAAGTTGGACGAGTAGTACG -ACGGAAAGTTGGACGAGTATCCGA -ACGGAAAGTTGGACGAGTATGGGA -ACGGAAAGTTGGACGAGTGTGCAA -ACGGAAAGTTGGACGAGTGAGGAA -ACGGAAAGTTGGACGAGTCAGGTA -ACGGAAAGTTGGACGAGTGACTCT -ACGGAAAGTTGGACGAGTAGTCCT -ACGGAAAGTTGGACGAGTTAAGCC -ACGGAAAGTTGGACGAGTATAGCC -ACGGAAAGTTGGACGAGTTAACCG -ACGGAAAGTTGGACGAGTATGCCA -ACGGAAAGTTGGCGAATCGGAAAC -ACGGAAAGTTGGCGAATCAACACC -ACGGAAAGTTGGCGAATCATCGAG -ACGGAAAGTTGGCGAATCCTCCTT -ACGGAAAGTTGGCGAATCCCTGTT -ACGGAAAGTTGGCGAATCCGGTTT -ACGGAAAGTTGGCGAATCGTGGTT -ACGGAAAGTTGGCGAATCGCCTTT -ACGGAAAGTTGGCGAATCGGTCTT -ACGGAAAGTTGGCGAATCACGCTT -ACGGAAAGTTGGCGAATCAGCGTT -ACGGAAAGTTGGCGAATCTTCGTC -ACGGAAAGTTGGCGAATCTCTCTC -ACGGAAAGTTGGCGAATCTGGATC -ACGGAAAGTTGGCGAATCCACTTC -ACGGAAAGTTGGCGAATCGTACTC -ACGGAAAGTTGGCGAATCGATGTC -ACGGAAAGTTGGCGAATCACAGTC -ACGGAAAGTTGGCGAATCTTGCTG -ACGGAAAGTTGGCGAATCTCCATG -ACGGAAAGTTGGCGAATCTGTGTG -ACGGAAAGTTGGCGAATCCTAGTG -ACGGAAAGTTGGCGAATCCATCTG -ACGGAAAGTTGGCGAATCGAGTTG -ACGGAAAGTTGGCGAATCAGACTG -ACGGAAAGTTGGCGAATCTCGGTA -ACGGAAAGTTGGCGAATCTGCCTA -ACGGAAAGTTGGCGAATCCCACTA -ACGGAAAGTTGGCGAATCGGAGTA -ACGGAAAGTTGGCGAATCTCGTCT -ACGGAAAGTTGGCGAATCTGCACT -ACGGAAAGTTGGCGAATCCTGACT -ACGGAAAGTTGGCGAATCCAACCT -ACGGAAAGTTGGCGAATCGCTACT -ACGGAAAGTTGGCGAATCGGATCT -ACGGAAAGTTGGCGAATCAAGGCT -ACGGAAAGTTGGCGAATCTCAACC -ACGGAAAGTTGGCGAATCTGTTCC -ACGGAAAGTTGGCGAATCATTCCC -ACGGAAAGTTGGCGAATCTTCTCG -ACGGAAAGTTGGCGAATCTAGACG -ACGGAAAGTTGGCGAATCGTAACG -ACGGAAAGTTGGCGAATCACTTCG -ACGGAAAGTTGGCGAATCTACGCA -ACGGAAAGTTGGCGAATCCTTGCA -ACGGAAAGTTGGCGAATCCGAACA -ACGGAAAGTTGGCGAATCCAGTCA -ACGGAAAGTTGGCGAATCGATCCA -ACGGAAAGTTGGCGAATCACGACA -ACGGAAAGTTGGCGAATCAGCTCA -ACGGAAAGTTGGCGAATCTCACGT -ACGGAAAGTTGGCGAATCCGTAGT -ACGGAAAGTTGGCGAATCGTCAGT -ACGGAAAGTTGGCGAATCGAAGGT -ACGGAAAGTTGGCGAATCAACCGT -ACGGAAAGTTGGCGAATCTTGTGC -ACGGAAAGTTGGCGAATCCTAAGC -ACGGAAAGTTGGCGAATCACTAGC -ACGGAAAGTTGGCGAATCAGATGC -ACGGAAAGTTGGCGAATCTGAAGG -ACGGAAAGTTGGCGAATCCAATGG -ACGGAAAGTTGGCGAATCATGAGG -ACGGAAAGTTGGCGAATCAATGGG -ACGGAAAGTTGGCGAATCTCCTGA -ACGGAAAGTTGGCGAATCTAGCGA -ACGGAAAGTTGGCGAATCCACAGA -ACGGAAAGTTGGCGAATCGCAAGA -ACGGAAAGTTGGCGAATCGGTTGA -ACGGAAAGTTGGCGAATCTCCGAT -ACGGAAAGTTGGCGAATCTGGCAT -ACGGAAAGTTGGCGAATCCGAGAT -ACGGAAAGTTGGCGAATCTACCAC -ACGGAAAGTTGGCGAATCCAGAAC -ACGGAAAGTTGGCGAATCGTCTAC -ACGGAAAGTTGGCGAATCACGTAC -ACGGAAAGTTGGCGAATCAGTGAC -ACGGAAAGTTGGCGAATCCTGTAG -ACGGAAAGTTGGCGAATCCCTAAG -ACGGAAAGTTGGCGAATCGTTCAG -ACGGAAAGTTGGCGAATCGCATAG -ACGGAAAGTTGGCGAATCGACAAG -ACGGAAAGTTGGCGAATCAAGCAG -ACGGAAAGTTGGCGAATCCGTCAA -ACGGAAAGTTGGCGAATCGCTGAA -ACGGAAAGTTGGCGAATCAGTACG -ACGGAAAGTTGGCGAATCATCCGA -ACGGAAAGTTGGCGAATCATGGGA -ACGGAAAGTTGGCGAATCGTGCAA -ACGGAAAGTTGGCGAATCGAGGAA -ACGGAAAGTTGGCGAATCCAGGTA -ACGGAAAGTTGGCGAATCGACTCT -ACGGAAAGTTGGCGAATCAGTCCT -ACGGAAAGTTGGCGAATCTAAGCC -ACGGAAAGTTGGCGAATCATAGCC -ACGGAAAGTTGGCGAATCTAACCG -ACGGAAAGTTGGCGAATCATGCCA -ACGGAAAGTTGGGGAATGGGAAAC -ACGGAAAGTTGGGGAATGAACACC -ACGGAAAGTTGGGGAATGATCGAG -ACGGAAAGTTGGGGAATGCTCCTT -ACGGAAAGTTGGGGAATGCCTGTT -ACGGAAAGTTGGGGAATGCGGTTT -ACGGAAAGTTGGGGAATGGTGGTT -ACGGAAAGTTGGGGAATGGCCTTT -ACGGAAAGTTGGGGAATGGGTCTT -ACGGAAAGTTGGGGAATGACGCTT -ACGGAAAGTTGGGGAATGAGCGTT -ACGGAAAGTTGGGGAATGTTCGTC -ACGGAAAGTTGGGGAATGTCTCTC -ACGGAAAGTTGGGGAATGTGGATC -ACGGAAAGTTGGGGAATGCACTTC -ACGGAAAGTTGGGGAATGGTACTC -ACGGAAAGTTGGGGAATGGATGTC -ACGGAAAGTTGGGGAATGACAGTC -ACGGAAAGTTGGGGAATGTTGCTG -ACGGAAAGTTGGGGAATGTCCATG -ACGGAAAGTTGGGGAATGTGTGTG -ACGGAAAGTTGGGGAATGCTAGTG -ACGGAAAGTTGGGGAATGCATCTG -ACGGAAAGTTGGGGAATGGAGTTG -ACGGAAAGTTGGGGAATGAGACTG -ACGGAAAGTTGGGGAATGTCGGTA -ACGGAAAGTTGGGGAATGTGCCTA -ACGGAAAGTTGGGGAATGCCACTA -ACGGAAAGTTGGGGAATGGGAGTA -ACGGAAAGTTGGGGAATGTCGTCT -ACGGAAAGTTGGGGAATGTGCACT -ACGGAAAGTTGGGGAATGCTGACT -ACGGAAAGTTGGGGAATGCAACCT -ACGGAAAGTTGGGGAATGGCTACT -ACGGAAAGTTGGGGAATGGGATCT -ACGGAAAGTTGGGGAATGAAGGCT -ACGGAAAGTTGGGGAATGTCAACC -ACGGAAAGTTGGGGAATGTGTTCC -ACGGAAAGTTGGGGAATGATTCCC -ACGGAAAGTTGGGGAATGTTCTCG -ACGGAAAGTTGGGGAATGTAGACG -ACGGAAAGTTGGGGAATGGTAACG -ACGGAAAGTTGGGGAATGACTTCG -ACGGAAAGTTGGGGAATGTACGCA -ACGGAAAGTTGGGGAATGCTTGCA -ACGGAAAGTTGGGGAATGCGAACA -ACGGAAAGTTGGGGAATGCAGTCA -ACGGAAAGTTGGGGAATGGATCCA -ACGGAAAGTTGGGGAATGACGACA -ACGGAAAGTTGGGGAATGAGCTCA -ACGGAAAGTTGGGGAATGTCACGT -ACGGAAAGTTGGGGAATGCGTAGT -ACGGAAAGTTGGGGAATGGTCAGT -ACGGAAAGTTGGGGAATGGAAGGT -ACGGAAAGTTGGGGAATGAACCGT -ACGGAAAGTTGGGGAATGTTGTGC -ACGGAAAGTTGGGGAATGCTAAGC -ACGGAAAGTTGGGGAATGACTAGC -ACGGAAAGTTGGGGAATGAGATGC -ACGGAAAGTTGGGGAATGTGAAGG -ACGGAAAGTTGGGGAATGCAATGG -ACGGAAAGTTGGGGAATGATGAGG -ACGGAAAGTTGGGGAATGAATGGG -ACGGAAAGTTGGGGAATGTCCTGA -ACGGAAAGTTGGGGAATGTAGCGA -ACGGAAAGTTGGGGAATGCACAGA -ACGGAAAGTTGGGGAATGGCAAGA -ACGGAAAGTTGGGGAATGGGTTGA -ACGGAAAGTTGGGGAATGTCCGAT -ACGGAAAGTTGGGGAATGTGGCAT -ACGGAAAGTTGGGGAATGCGAGAT -ACGGAAAGTTGGGGAATGTACCAC -ACGGAAAGTTGGGGAATGCAGAAC -ACGGAAAGTTGGGGAATGGTCTAC -ACGGAAAGTTGGGGAATGACGTAC -ACGGAAAGTTGGGGAATGAGTGAC -ACGGAAAGTTGGGGAATGCTGTAG -ACGGAAAGTTGGGGAATGCCTAAG -ACGGAAAGTTGGGGAATGGTTCAG -ACGGAAAGTTGGGGAATGGCATAG -ACGGAAAGTTGGGGAATGGACAAG -ACGGAAAGTTGGGGAATGAAGCAG -ACGGAAAGTTGGGGAATGCGTCAA -ACGGAAAGTTGGGGAATGGCTGAA -ACGGAAAGTTGGGGAATGAGTACG -ACGGAAAGTTGGGGAATGATCCGA -ACGGAAAGTTGGGGAATGATGGGA -ACGGAAAGTTGGGGAATGGTGCAA -ACGGAAAGTTGGGGAATGGAGGAA -ACGGAAAGTTGGGGAATGCAGGTA -ACGGAAAGTTGGGGAATGGACTCT -ACGGAAAGTTGGGGAATGAGTCCT -ACGGAAAGTTGGGGAATGTAAGCC -ACGGAAAGTTGGGGAATGATAGCC -ACGGAAAGTTGGGGAATGTAACCG -ACGGAAAGTTGGGGAATGATGCCA -ACGGAAAGTTGGCAAGTGGGAAAC -ACGGAAAGTTGGCAAGTGAACACC -ACGGAAAGTTGGCAAGTGATCGAG -ACGGAAAGTTGGCAAGTGCTCCTT -ACGGAAAGTTGGCAAGTGCCTGTT -ACGGAAAGTTGGCAAGTGCGGTTT -ACGGAAAGTTGGCAAGTGGTGGTT -ACGGAAAGTTGGCAAGTGGCCTTT -ACGGAAAGTTGGCAAGTGGGTCTT -ACGGAAAGTTGGCAAGTGACGCTT -ACGGAAAGTTGGCAAGTGAGCGTT -ACGGAAAGTTGGCAAGTGTTCGTC -ACGGAAAGTTGGCAAGTGTCTCTC -ACGGAAAGTTGGCAAGTGTGGATC -ACGGAAAGTTGGCAAGTGCACTTC -ACGGAAAGTTGGCAAGTGGTACTC -ACGGAAAGTTGGCAAGTGGATGTC -ACGGAAAGTTGGCAAGTGACAGTC -ACGGAAAGTTGGCAAGTGTTGCTG -ACGGAAAGTTGGCAAGTGTCCATG -ACGGAAAGTTGGCAAGTGTGTGTG -ACGGAAAGTTGGCAAGTGCTAGTG -ACGGAAAGTTGGCAAGTGCATCTG -ACGGAAAGTTGGCAAGTGGAGTTG -ACGGAAAGTTGGCAAGTGAGACTG -ACGGAAAGTTGGCAAGTGTCGGTA -ACGGAAAGTTGGCAAGTGTGCCTA -ACGGAAAGTTGGCAAGTGCCACTA -ACGGAAAGTTGGCAAGTGGGAGTA -ACGGAAAGTTGGCAAGTGTCGTCT -ACGGAAAGTTGGCAAGTGTGCACT -ACGGAAAGTTGGCAAGTGCTGACT -ACGGAAAGTTGGCAAGTGCAACCT -ACGGAAAGTTGGCAAGTGGCTACT -ACGGAAAGTTGGCAAGTGGGATCT -ACGGAAAGTTGGCAAGTGAAGGCT -ACGGAAAGTTGGCAAGTGTCAACC -ACGGAAAGTTGGCAAGTGTGTTCC -ACGGAAAGTTGGCAAGTGATTCCC -ACGGAAAGTTGGCAAGTGTTCTCG -ACGGAAAGTTGGCAAGTGTAGACG -ACGGAAAGTTGGCAAGTGGTAACG -ACGGAAAGTTGGCAAGTGACTTCG -ACGGAAAGTTGGCAAGTGTACGCA -ACGGAAAGTTGGCAAGTGCTTGCA -ACGGAAAGTTGGCAAGTGCGAACA -ACGGAAAGTTGGCAAGTGCAGTCA -ACGGAAAGTTGGCAAGTGGATCCA -ACGGAAAGTTGGCAAGTGACGACA -ACGGAAAGTTGGCAAGTGAGCTCA -ACGGAAAGTTGGCAAGTGTCACGT -ACGGAAAGTTGGCAAGTGCGTAGT -ACGGAAAGTTGGCAAGTGGTCAGT -ACGGAAAGTTGGCAAGTGGAAGGT -ACGGAAAGTTGGCAAGTGAACCGT -ACGGAAAGTTGGCAAGTGTTGTGC -ACGGAAAGTTGGCAAGTGCTAAGC -ACGGAAAGTTGGCAAGTGACTAGC -ACGGAAAGTTGGCAAGTGAGATGC -ACGGAAAGTTGGCAAGTGTGAAGG -ACGGAAAGTTGGCAAGTGCAATGG -ACGGAAAGTTGGCAAGTGATGAGG -ACGGAAAGTTGGCAAGTGAATGGG -ACGGAAAGTTGGCAAGTGTCCTGA -ACGGAAAGTTGGCAAGTGTAGCGA -ACGGAAAGTTGGCAAGTGCACAGA -ACGGAAAGTTGGCAAGTGGCAAGA -ACGGAAAGTTGGCAAGTGGGTTGA -ACGGAAAGTTGGCAAGTGTCCGAT -ACGGAAAGTTGGCAAGTGTGGCAT -ACGGAAAGTTGGCAAGTGCGAGAT -ACGGAAAGTTGGCAAGTGTACCAC -ACGGAAAGTTGGCAAGTGCAGAAC -ACGGAAAGTTGGCAAGTGGTCTAC -ACGGAAAGTTGGCAAGTGACGTAC -ACGGAAAGTTGGCAAGTGAGTGAC -ACGGAAAGTTGGCAAGTGCTGTAG -ACGGAAAGTTGGCAAGTGCCTAAG -ACGGAAAGTTGGCAAGTGGTTCAG -ACGGAAAGTTGGCAAGTGGCATAG -ACGGAAAGTTGGCAAGTGGACAAG -ACGGAAAGTTGGCAAGTGAAGCAG -ACGGAAAGTTGGCAAGTGCGTCAA -ACGGAAAGTTGGCAAGTGGCTGAA -ACGGAAAGTTGGCAAGTGAGTACG -ACGGAAAGTTGGCAAGTGATCCGA -ACGGAAAGTTGGCAAGTGATGGGA -ACGGAAAGTTGGCAAGTGGTGCAA -ACGGAAAGTTGGCAAGTGGAGGAA -ACGGAAAGTTGGCAAGTGCAGGTA -ACGGAAAGTTGGCAAGTGGACTCT -ACGGAAAGTTGGCAAGTGAGTCCT -ACGGAAAGTTGGCAAGTGTAAGCC -ACGGAAAGTTGGCAAGTGATAGCC -ACGGAAAGTTGGCAAGTGTAACCG -ACGGAAAGTTGGCAAGTGATGCCA -ACGGAAAGTTGGGAAGAGGGAAAC -ACGGAAAGTTGGGAAGAGAACACC -ACGGAAAGTTGGGAAGAGATCGAG -ACGGAAAGTTGGGAAGAGCTCCTT -ACGGAAAGTTGGGAAGAGCCTGTT -ACGGAAAGTTGGGAAGAGCGGTTT -ACGGAAAGTTGGGAAGAGGTGGTT -ACGGAAAGTTGGGAAGAGGCCTTT -ACGGAAAGTTGGGAAGAGGGTCTT -ACGGAAAGTTGGGAAGAGACGCTT -ACGGAAAGTTGGGAAGAGAGCGTT -ACGGAAAGTTGGGAAGAGTTCGTC -ACGGAAAGTTGGGAAGAGTCTCTC -ACGGAAAGTTGGGAAGAGTGGATC -ACGGAAAGTTGGGAAGAGCACTTC -ACGGAAAGTTGGGAAGAGGTACTC -ACGGAAAGTTGGGAAGAGGATGTC -ACGGAAAGTTGGGAAGAGACAGTC -ACGGAAAGTTGGGAAGAGTTGCTG -ACGGAAAGTTGGGAAGAGTCCATG -ACGGAAAGTTGGGAAGAGTGTGTG -ACGGAAAGTTGGGAAGAGCTAGTG -ACGGAAAGTTGGGAAGAGCATCTG -ACGGAAAGTTGGGAAGAGGAGTTG -ACGGAAAGTTGGGAAGAGAGACTG -ACGGAAAGTTGGGAAGAGTCGGTA -ACGGAAAGTTGGGAAGAGTGCCTA -ACGGAAAGTTGGGAAGAGCCACTA -ACGGAAAGTTGGGAAGAGGGAGTA -ACGGAAAGTTGGGAAGAGTCGTCT -ACGGAAAGTTGGGAAGAGTGCACT -ACGGAAAGTTGGGAAGAGCTGACT -ACGGAAAGTTGGGAAGAGCAACCT -ACGGAAAGTTGGGAAGAGGCTACT -ACGGAAAGTTGGGAAGAGGGATCT -ACGGAAAGTTGGGAAGAGAAGGCT -ACGGAAAGTTGGGAAGAGTCAACC -ACGGAAAGTTGGGAAGAGTGTTCC -ACGGAAAGTTGGGAAGAGATTCCC -ACGGAAAGTTGGGAAGAGTTCTCG -ACGGAAAGTTGGGAAGAGTAGACG -ACGGAAAGTTGGGAAGAGGTAACG -ACGGAAAGTTGGGAAGAGACTTCG -ACGGAAAGTTGGGAAGAGTACGCA -ACGGAAAGTTGGGAAGAGCTTGCA -ACGGAAAGTTGGGAAGAGCGAACA -ACGGAAAGTTGGGAAGAGCAGTCA -ACGGAAAGTTGGGAAGAGGATCCA -ACGGAAAGTTGGGAAGAGACGACA -ACGGAAAGTTGGGAAGAGAGCTCA -ACGGAAAGTTGGGAAGAGTCACGT -ACGGAAAGTTGGGAAGAGCGTAGT -ACGGAAAGTTGGGAAGAGGTCAGT -ACGGAAAGTTGGGAAGAGGAAGGT -ACGGAAAGTTGGGAAGAGAACCGT -ACGGAAAGTTGGGAAGAGTTGTGC -ACGGAAAGTTGGGAAGAGCTAAGC -ACGGAAAGTTGGGAAGAGACTAGC -ACGGAAAGTTGGGAAGAGAGATGC -ACGGAAAGTTGGGAAGAGTGAAGG -ACGGAAAGTTGGGAAGAGCAATGG -ACGGAAAGTTGGGAAGAGATGAGG -ACGGAAAGTTGGGAAGAGAATGGG -ACGGAAAGTTGGGAAGAGTCCTGA -ACGGAAAGTTGGGAAGAGTAGCGA -ACGGAAAGTTGGGAAGAGCACAGA -ACGGAAAGTTGGGAAGAGGCAAGA -ACGGAAAGTTGGGAAGAGGGTTGA -ACGGAAAGTTGGGAAGAGTCCGAT -ACGGAAAGTTGGGAAGAGTGGCAT -ACGGAAAGTTGGGAAGAGCGAGAT -ACGGAAAGTTGGGAAGAGTACCAC -ACGGAAAGTTGGGAAGAGCAGAAC -ACGGAAAGTTGGGAAGAGGTCTAC -ACGGAAAGTTGGGAAGAGACGTAC -ACGGAAAGTTGGGAAGAGAGTGAC -ACGGAAAGTTGGGAAGAGCTGTAG -ACGGAAAGTTGGGAAGAGCCTAAG -ACGGAAAGTTGGGAAGAGGTTCAG -ACGGAAAGTTGGGAAGAGGCATAG -ACGGAAAGTTGGGAAGAGGACAAG -ACGGAAAGTTGGGAAGAGAAGCAG -ACGGAAAGTTGGGAAGAGCGTCAA -ACGGAAAGTTGGGAAGAGGCTGAA -ACGGAAAGTTGGGAAGAGAGTACG -ACGGAAAGTTGGGAAGAGATCCGA -ACGGAAAGTTGGGAAGAGATGGGA -ACGGAAAGTTGGGAAGAGGTGCAA -ACGGAAAGTTGGGAAGAGGAGGAA -ACGGAAAGTTGGGAAGAGCAGGTA -ACGGAAAGTTGGGAAGAGGACTCT -ACGGAAAGTTGGGAAGAGAGTCCT -ACGGAAAGTTGGGAAGAGTAAGCC -ACGGAAAGTTGGGAAGAGATAGCC -ACGGAAAGTTGGGAAGAGTAACCG -ACGGAAAGTTGGGAAGAGATGCCA -ACGGAAAGTTGGGTACAGGGAAAC -ACGGAAAGTTGGGTACAGAACACC -ACGGAAAGTTGGGTACAGATCGAG -ACGGAAAGTTGGGTACAGCTCCTT -ACGGAAAGTTGGGTACAGCCTGTT -ACGGAAAGTTGGGTACAGCGGTTT -ACGGAAAGTTGGGTACAGGTGGTT -ACGGAAAGTTGGGTACAGGCCTTT -ACGGAAAGTTGGGTACAGGGTCTT -ACGGAAAGTTGGGTACAGACGCTT -ACGGAAAGTTGGGTACAGAGCGTT -ACGGAAAGTTGGGTACAGTTCGTC -ACGGAAAGTTGGGTACAGTCTCTC -ACGGAAAGTTGGGTACAGTGGATC -ACGGAAAGTTGGGTACAGCACTTC -ACGGAAAGTTGGGTACAGGTACTC -ACGGAAAGTTGGGTACAGGATGTC -ACGGAAAGTTGGGTACAGACAGTC -ACGGAAAGTTGGGTACAGTTGCTG -ACGGAAAGTTGGGTACAGTCCATG -ACGGAAAGTTGGGTACAGTGTGTG -ACGGAAAGTTGGGTACAGCTAGTG -ACGGAAAGTTGGGTACAGCATCTG -ACGGAAAGTTGGGTACAGGAGTTG -ACGGAAAGTTGGGTACAGAGACTG -ACGGAAAGTTGGGTACAGTCGGTA -ACGGAAAGTTGGGTACAGTGCCTA -ACGGAAAGTTGGGTACAGCCACTA -ACGGAAAGTTGGGTACAGGGAGTA -ACGGAAAGTTGGGTACAGTCGTCT -ACGGAAAGTTGGGTACAGTGCACT -ACGGAAAGTTGGGTACAGCTGACT -ACGGAAAGTTGGGTACAGCAACCT -ACGGAAAGTTGGGTACAGGCTACT -ACGGAAAGTTGGGTACAGGGATCT -ACGGAAAGTTGGGTACAGAAGGCT -ACGGAAAGTTGGGTACAGTCAACC -ACGGAAAGTTGGGTACAGTGTTCC -ACGGAAAGTTGGGTACAGATTCCC -ACGGAAAGTTGGGTACAGTTCTCG -ACGGAAAGTTGGGTACAGTAGACG -ACGGAAAGTTGGGTACAGGTAACG -ACGGAAAGTTGGGTACAGACTTCG -ACGGAAAGTTGGGTACAGTACGCA -ACGGAAAGTTGGGTACAGCTTGCA -ACGGAAAGTTGGGTACAGCGAACA -ACGGAAAGTTGGGTACAGCAGTCA -ACGGAAAGTTGGGTACAGGATCCA -ACGGAAAGTTGGGTACAGACGACA -ACGGAAAGTTGGGTACAGAGCTCA -ACGGAAAGTTGGGTACAGTCACGT -ACGGAAAGTTGGGTACAGCGTAGT -ACGGAAAGTTGGGTACAGGTCAGT -ACGGAAAGTTGGGTACAGGAAGGT -ACGGAAAGTTGGGTACAGAACCGT -ACGGAAAGTTGGGTACAGTTGTGC -ACGGAAAGTTGGGTACAGCTAAGC -ACGGAAAGTTGGGTACAGACTAGC -ACGGAAAGTTGGGTACAGAGATGC -ACGGAAAGTTGGGTACAGTGAAGG -ACGGAAAGTTGGGTACAGCAATGG -ACGGAAAGTTGGGTACAGATGAGG -ACGGAAAGTTGGGTACAGAATGGG -ACGGAAAGTTGGGTACAGTCCTGA -ACGGAAAGTTGGGTACAGTAGCGA -ACGGAAAGTTGGGTACAGCACAGA -ACGGAAAGTTGGGTACAGGCAAGA -ACGGAAAGTTGGGTACAGGGTTGA -ACGGAAAGTTGGGTACAGTCCGAT -ACGGAAAGTTGGGTACAGTGGCAT -ACGGAAAGTTGGGTACAGCGAGAT -ACGGAAAGTTGGGTACAGTACCAC -ACGGAAAGTTGGGTACAGCAGAAC -ACGGAAAGTTGGGTACAGGTCTAC -ACGGAAAGTTGGGTACAGACGTAC -ACGGAAAGTTGGGTACAGAGTGAC -ACGGAAAGTTGGGTACAGCTGTAG -ACGGAAAGTTGGGTACAGCCTAAG -ACGGAAAGTTGGGTACAGGTTCAG -ACGGAAAGTTGGGTACAGGCATAG -ACGGAAAGTTGGGTACAGGACAAG -ACGGAAAGTTGGGTACAGAAGCAG -ACGGAAAGTTGGGTACAGCGTCAA -ACGGAAAGTTGGGTACAGGCTGAA -ACGGAAAGTTGGGTACAGAGTACG -ACGGAAAGTTGGGTACAGATCCGA -ACGGAAAGTTGGGTACAGATGGGA -ACGGAAAGTTGGGTACAGGTGCAA -ACGGAAAGTTGGGTACAGGAGGAA -ACGGAAAGTTGGGTACAGCAGGTA -ACGGAAAGTTGGGTACAGGACTCT -ACGGAAAGTTGGGTACAGAGTCCT -ACGGAAAGTTGGGTACAGTAAGCC -ACGGAAAGTTGGGTACAGATAGCC -ACGGAAAGTTGGGTACAGTAACCG -ACGGAAAGTTGGGTACAGATGCCA -ACGGAAAGTTGGTCTGACGGAAAC -ACGGAAAGTTGGTCTGACAACACC -ACGGAAAGTTGGTCTGACATCGAG -ACGGAAAGTTGGTCTGACCTCCTT -ACGGAAAGTTGGTCTGACCCTGTT -ACGGAAAGTTGGTCTGACCGGTTT -ACGGAAAGTTGGTCTGACGTGGTT -ACGGAAAGTTGGTCTGACGCCTTT -ACGGAAAGTTGGTCTGACGGTCTT -ACGGAAAGTTGGTCTGACACGCTT -ACGGAAAGTTGGTCTGACAGCGTT -ACGGAAAGTTGGTCTGACTTCGTC -ACGGAAAGTTGGTCTGACTCTCTC -ACGGAAAGTTGGTCTGACTGGATC -ACGGAAAGTTGGTCTGACCACTTC -ACGGAAAGTTGGTCTGACGTACTC -ACGGAAAGTTGGTCTGACGATGTC -ACGGAAAGTTGGTCTGACACAGTC -ACGGAAAGTTGGTCTGACTTGCTG -ACGGAAAGTTGGTCTGACTCCATG -ACGGAAAGTTGGTCTGACTGTGTG -ACGGAAAGTTGGTCTGACCTAGTG -ACGGAAAGTTGGTCTGACCATCTG -ACGGAAAGTTGGTCTGACGAGTTG -ACGGAAAGTTGGTCTGACAGACTG -ACGGAAAGTTGGTCTGACTCGGTA -ACGGAAAGTTGGTCTGACTGCCTA -ACGGAAAGTTGGTCTGACCCACTA -ACGGAAAGTTGGTCTGACGGAGTA -ACGGAAAGTTGGTCTGACTCGTCT -ACGGAAAGTTGGTCTGACTGCACT -ACGGAAAGTTGGTCTGACCTGACT -ACGGAAAGTTGGTCTGACCAACCT -ACGGAAAGTTGGTCTGACGCTACT -ACGGAAAGTTGGTCTGACGGATCT -ACGGAAAGTTGGTCTGACAAGGCT -ACGGAAAGTTGGTCTGACTCAACC -ACGGAAAGTTGGTCTGACTGTTCC -ACGGAAAGTTGGTCTGACATTCCC -ACGGAAAGTTGGTCTGACTTCTCG -ACGGAAAGTTGGTCTGACTAGACG -ACGGAAAGTTGGTCTGACGTAACG -ACGGAAAGTTGGTCTGACACTTCG -ACGGAAAGTTGGTCTGACTACGCA -ACGGAAAGTTGGTCTGACCTTGCA -ACGGAAAGTTGGTCTGACCGAACA -ACGGAAAGTTGGTCTGACCAGTCA -ACGGAAAGTTGGTCTGACGATCCA -ACGGAAAGTTGGTCTGACACGACA -ACGGAAAGTTGGTCTGACAGCTCA -ACGGAAAGTTGGTCTGACTCACGT -ACGGAAAGTTGGTCTGACCGTAGT -ACGGAAAGTTGGTCTGACGTCAGT -ACGGAAAGTTGGTCTGACGAAGGT -ACGGAAAGTTGGTCTGACAACCGT -ACGGAAAGTTGGTCTGACTTGTGC -ACGGAAAGTTGGTCTGACCTAAGC -ACGGAAAGTTGGTCTGACACTAGC -ACGGAAAGTTGGTCTGACAGATGC -ACGGAAAGTTGGTCTGACTGAAGG -ACGGAAAGTTGGTCTGACCAATGG -ACGGAAAGTTGGTCTGACATGAGG -ACGGAAAGTTGGTCTGACAATGGG -ACGGAAAGTTGGTCTGACTCCTGA -ACGGAAAGTTGGTCTGACTAGCGA -ACGGAAAGTTGGTCTGACCACAGA -ACGGAAAGTTGGTCTGACGCAAGA -ACGGAAAGTTGGTCTGACGGTTGA -ACGGAAAGTTGGTCTGACTCCGAT -ACGGAAAGTTGGTCTGACTGGCAT -ACGGAAAGTTGGTCTGACCGAGAT -ACGGAAAGTTGGTCTGACTACCAC -ACGGAAAGTTGGTCTGACCAGAAC -ACGGAAAGTTGGTCTGACGTCTAC -ACGGAAAGTTGGTCTGACACGTAC -ACGGAAAGTTGGTCTGACAGTGAC -ACGGAAAGTTGGTCTGACCTGTAG -ACGGAAAGTTGGTCTGACCCTAAG -ACGGAAAGTTGGTCTGACGTTCAG -ACGGAAAGTTGGTCTGACGCATAG -ACGGAAAGTTGGTCTGACGACAAG -ACGGAAAGTTGGTCTGACAAGCAG -ACGGAAAGTTGGTCTGACCGTCAA -ACGGAAAGTTGGTCTGACGCTGAA -ACGGAAAGTTGGTCTGACAGTACG -ACGGAAAGTTGGTCTGACATCCGA -ACGGAAAGTTGGTCTGACATGGGA -ACGGAAAGTTGGTCTGACGTGCAA -ACGGAAAGTTGGTCTGACGAGGAA -ACGGAAAGTTGGTCTGACCAGGTA -ACGGAAAGTTGGTCTGACGACTCT -ACGGAAAGTTGGTCTGACAGTCCT -ACGGAAAGTTGGTCTGACTAAGCC -ACGGAAAGTTGGTCTGACATAGCC -ACGGAAAGTTGGTCTGACTAACCG -ACGGAAAGTTGGTCTGACATGCCA -ACGGAAAGTTGGCCTAGTGGAAAC -ACGGAAAGTTGGCCTAGTAACACC -ACGGAAAGTTGGCCTAGTATCGAG -ACGGAAAGTTGGCCTAGTCTCCTT -ACGGAAAGTTGGCCTAGTCCTGTT -ACGGAAAGTTGGCCTAGTCGGTTT -ACGGAAAGTTGGCCTAGTGTGGTT -ACGGAAAGTTGGCCTAGTGCCTTT -ACGGAAAGTTGGCCTAGTGGTCTT -ACGGAAAGTTGGCCTAGTACGCTT -ACGGAAAGTTGGCCTAGTAGCGTT -ACGGAAAGTTGGCCTAGTTTCGTC -ACGGAAAGTTGGCCTAGTTCTCTC -ACGGAAAGTTGGCCTAGTTGGATC -ACGGAAAGTTGGCCTAGTCACTTC -ACGGAAAGTTGGCCTAGTGTACTC -ACGGAAAGTTGGCCTAGTGATGTC -ACGGAAAGTTGGCCTAGTACAGTC -ACGGAAAGTTGGCCTAGTTTGCTG -ACGGAAAGTTGGCCTAGTTCCATG -ACGGAAAGTTGGCCTAGTTGTGTG -ACGGAAAGTTGGCCTAGTCTAGTG -ACGGAAAGTTGGCCTAGTCATCTG -ACGGAAAGTTGGCCTAGTGAGTTG -ACGGAAAGTTGGCCTAGTAGACTG -ACGGAAAGTTGGCCTAGTTCGGTA -ACGGAAAGTTGGCCTAGTTGCCTA -ACGGAAAGTTGGCCTAGTCCACTA -ACGGAAAGTTGGCCTAGTGGAGTA -ACGGAAAGTTGGCCTAGTTCGTCT -ACGGAAAGTTGGCCTAGTTGCACT -ACGGAAAGTTGGCCTAGTCTGACT -ACGGAAAGTTGGCCTAGTCAACCT -ACGGAAAGTTGGCCTAGTGCTACT -ACGGAAAGTTGGCCTAGTGGATCT -ACGGAAAGTTGGCCTAGTAAGGCT -ACGGAAAGTTGGCCTAGTTCAACC -ACGGAAAGTTGGCCTAGTTGTTCC -ACGGAAAGTTGGCCTAGTATTCCC -ACGGAAAGTTGGCCTAGTTTCTCG -ACGGAAAGTTGGCCTAGTTAGACG -ACGGAAAGTTGGCCTAGTGTAACG -ACGGAAAGTTGGCCTAGTACTTCG -ACGGAAAGTTGGCCTAGTTACGCA -ACGGAAAGTTGGCCTAGTCTTGCA -ACGGAAAGTTGGCCTAGTCGAACA -ACGGAAAGTTGGCCTAGTCAGTCA -ACGGAAAGTTGGCCTAGTGATCCA -ACGGAAAGTTGGCCTAGTACGACA -ACGGAAAGTTGGCCTAGTAGCTCA -ACGGAAAGTTGGCCTAGTTCACGT -ACGGAAAGTTGGCCTAGTCGTAGT -ACGGAAAGTTGGCCTAGTGTCAGT -ACGGAAAGTTGGCCTAGTGAAGGT -ACGGAAAGTTGGCCTAGTAACCGT -ACGGAAAGTTGGCCTAGTTTGTGC -ACGGAAAGTTGGCCTAGTCTAAGC -ACGGAAAGTTGGCCTAGTACTAGC -ACGGAAAGTTGGCCTAGTAGATGC -ACGGAAAGTTGGCCTAGTTGAAGG -ACGGAAAGTTGGCCTAGTCAATGG -ACGGAAAGTTGGCCTAGTATGAGG -ACGGAAAGTTGGCCTAGTAATGGG -ACGGAAAGTTGGCCTAGTTCCTGA -ACGGAAAGTTGGCCTAGTTAGCGA -ACGGAAAGTTGGCCTAGTCACAGA -ACGGAAAGTTGGCCTAGTGCAAGA -ACGGAAAGTTGGCCTAGTGGTTGA -ACGGAAAGTTGGCCTAGTTCCGAT -ACGGAAAGTTGGCCTAGTTGGCAT -ACGGAAAGTTGGCCTAGTCGAGAT -ACGGAAAGTTGGCCTAGTTACCAC -ACGGAAAGTTGGCCTAGTCAGAAC -ACGGAAAGTTGGCCTAGTGTCTAC -ACGGAAAGTTGGCCTAGTACGTAC -ACGGAAAGTTGGCCTAGTAGTGAC -ACGGAAAGTTGGCCTAGTCTGTAG -ACGGAAAGTTGGCCTAGTCCTAAG -ACGGAAAGTTGGCCTAGTGTTCAG -ACGGAAAGTTGGCCTAGTGCATAG -ACGGAAAGTTGGCCTAGTGACAAG -ACGGAAAGTTGGCCTAGTAAGCAG -ACGGAAAGTTGGCCTAGTCGTCAA -ACGGAAAGTTGGCCTAGTGCTGAA -ACGGAAAGTTGGCCTAGTAGTACG -ACGGAAAGTTGGCCTAGTATCCGA -ACGGAAAGTTGGCCTAGTATGGGA -ACGGAAAGTTGGCCTAGTGTGCAA -ACGGAAAGTTGGCCTAGTGAGGAA -ACGGAAAGTTGGCCTAGTCAGGTA -ACGGAAAGTTGGCCTAGTGACTCT -ACGGAAAGTTGGCCTAGTAGTCCT -ACGGAAAGTTGGCCTAGTTAAGCC -ACGGAAAGTTGGCCTAGTATAGCC -ACGGAAAGTTGGCCTAGTTAACCG -ACGGAAAGTTGGCCTAGTATGCCA -ACGGAAAGTTGGGCCTAAGGAAAC -ACGGAAAGTTGGGCCTAAAACACC -ACGGAAAGTTGGGCCTAAATCGAG -ACGGAAAGTTGGGCCTAACTCCTT -ACGGAAAGTTGGGCCTAACCTGTT -ACGGAAAGTTGGGCCTAACGGTTT -ACGGAAAGTTGGGCCTAAGTGGTT -ACGGAAAGTTGGGCCTAAGCCTTT -ACGGAAAGTTGGGCCTAAGGTCTT -ACGGAAAGTTGGGCCTAAACGCTT -ACGGAAAGTTGGGCCTAAAGCGTT -ACGGAAAGTTGGGCCTAATTCGTC -ACGGAAAGTTGGGCCTAATCTCTC -ACGGAAAGTTGGGCCTAATGGATC -ACGGAAAGTTGGGCCTAACACTTC -ACGGAAAGTTGGGCCTAAGTACTC -ACGGAAAGTTGGGCCTAAGATGTC -ACGGAAAGTTGGGCCTAAACAGTC -ACGGAAAGTTGGGCCTAATTGCTG -ACGGAAAGTTGGGCCTAATCCATG -ACGGAAAGTTGGGCCTAATGTGTG -ACGGAAAGTTGGGCCTAACTAGTG -ACGGAAAGTTGGGCCTAACATCTG -ACGGAAAGTTGGGCCTAAGAGTTG -ACGGAAAGTTGGGCCTAAAGACTG -ACGGAAAGTTGGGCCTAATCGGTA -ACGGAAAGTTGGGCCTAATGCCTA -ACGGAAAGTTGGGCCTAACCACTA -ACGGAAAGTTGGGCCTAAGGAGTA -ACGGAAAGTTGGGCCTAATCGTCT -ACGGAAAGTTGGGCCTAATGCACT -ACGGAAAGTTGGGCCTAACTGACT -ACGGAAAGTTGGGCCTAACAACCT -ACGGAAAGTTGGGCCTAAGCTACT -ACGGAAAGTTGGGCCTAAGGATCT -ACGGAAAGTTGGGCCTAAAAGGCT -ACGGAAAGTTGGGCCTAATCAACC -ACGGAAAGTTGGGCCTAATGTTCC -ACGGAAAGTTGGGCCTAAATTCCC -ACGGAAAGTTGGGCCTAATTCTCG -ACGGAAAGTTGGGCCTAATAGACG -ACGGAAAGTTGGGCCTAAGTAACG -ACGGAAAGTTGGGCCTAAACTTCG -ACGGAAAGTTGGGCCTAATACGCA -ACGGAAAGTTGGGCCTAACTTGCA -ACGGAAAGTTGGGCCTAACGAACA -ACGGAAAGTTGGGCCTAACAGTCA -ACGGAAAGTTGGGCCTAAGATCCA -ACGGAAAGTTGGGCCTAAACGACA -ACGGAAAGTTGGGCCTAAAGCTCA -ACGGAAAGTTGGGCCTAATCACGT -ACGGAAAGTTGGGCCTAACGTAGT -ACGGAAAGTTGGGCCTAAGTCAGT -ACGGAAAGTTGGGCCTAAGAAGGT -ACGGAAAGTTGGGCCTAAAACCGT -ACGGAAAGTTGGGCCTAATTGTGC -ACGGAAAGTTGGGCCTAACTAAGC -ACGGAAAGTTGGGCCTAAACTAGC -ACGGAAAGTTGGGCCTAAAGATGC -ACGGAAAGTTGGGCCTAATGAAGG -ACGGAAAGTTGGGCCTAACAATGG -ACGGAAAGTTGGGCCTAAATGAGG -ACGGAAAGTTGGGCCTAAAATGGG -ACGGAAAGTTGGGCCTAATCCTGA -ACGGAAAGTTGGGCCTAATAGCGA -ACGGAAAGTTGGGCCTAACACAGA -ACGGAAAGTTGGGCCTAAGCAAGA -ACGGAAAGTTGGGCCTAAGGTTGA -ACGGAAAGTTGGGCCTAATCCGAT -ACGGAAAGTTGGGCCTAATGGCAT -ACGGAAAGTTGGGCCTAACGAGAT -ACGGAAAGTTGGGCCTAATACCAC -ACGGAAAGTTGGGCCTAACAGAAC -ACGGAAAGTTGGGCCTAAGTCTAC -ACGGAAAGTTGGGCCTAAACGTAC -ACGGAAAGTTGGGCCTAAAGTGAC -ACGGAAAGTTGGGCCTAACTGTAG -ACGGAAAGTTGGGCCTAACCTAAG -ACGGAAAGTTGGGCCTAAGTTCAG -ACGGAAAGTTGGGCCTAAGCATAG -ACGGAAAGTTGGGCCTAAGACAAG -ACGGAAAGTTGGGCCTAAAAGCAG -ACGGAAAGTTGGGCCTAACGTCAA -ACGGAAAGTTGGGCCTAAGCTGAA -ACGGAAAGTTGGGCCTAAAGTACG -ACGGAAAGTTGGGCCTAAATCCGA -ACGGAAAGTTGGGCCTAAATGGGA -ACGGAAAGTTGGGCCTAAGTGCAA -ACGGAAAGTTGGGCCTAAGAGGAA -ACGGAAAGTTGGGCCTAACAGGTA -ACGGAAAGTTGGGCCTAAGACTCT -ACGGAAAGTTGGGCCTAAAGTCCT -ACGGAAAGTTGGGCCTAATAAGCC -ACGGAAAGTTGGGCCTAAATAGCC -ACGGAAAGTTGGGCCTAATAACCG -ACGGAAAGTTGGGCCTAAATGCCA -ACGGAAAGTTGGGCCATAGGAAAC -ACGGAAAGTTGGGCCATAAACACC -ACGGAAAGTTGGGCCATAATCGAG -ACGGAAAGTTGGGCCATACTCCTT -ACGGAAAGTTGGGCCATACCTGTT -ACGGAAAGTTGGGCCATACGGTTT -ACGGAAAGTTGGGCCATAGTGGTT -ACGGAAAGTTGGGCCATAGCCTTT -ACGGAAAGTTGGGCCATAGGTCTT -ACGGAAAGTTGGGCCATAACGCTT -ACGGAAAGTTGGGCCATAAGCGTT -ACGGAAAGTTGGGCCATATTCGTC -ACGGAAAGTTGGGCCATATCTCTC -ACGGAAAGTTGGGCCATATGGATC -ACGGAAAGTTGGGCCATACACTTC -ACGGAAAGTTGGGCCATAGTACTC -ACGGAAAGTTGGGCCATAGATGTC -ACGGAAAGTTGGGCCATAACAGTC -ACGGAAAGTTGGGCCATATTGCTG -ACGGAAAGTTGGGCCATATCCATG -ACGGAAAGTTGGGCCATATGTGTG -ACGGAAAGTTGGGCCATACTAGTG -ACGGAAAGTTGGGCCATACATCTG -ACGGAAAGTTGGGCCATAGAGTTG -ACGGAAAGTTGGGCCATAAGACTG -ACGGAAAGTTGGGCCATATCGGTA -ACGGAAAGTTGGGCCATATGCCTA -ACGGAAAGTTGGGCCATACCACTA -ACGGAAAGTTGGGCCATAGGAGTA -ACGGAAAGTTGGGCCATATCGTCT -ACGGAAAGTTGGGCCATATGCACT -ACGGAAAGTTGGGCCATACTGACT -ACGGAAAGTTGGGCCATACAACCT -ACGGAAAGTTGGGCCATAGCTACT -ACGGAAAGTTGGGCCATAGGATCT -ACGGAAAGTTGGGCCATAAAGGCT -ACGGAAAGTTGGGCCATATCAACC -ACGGAAAGTTGGGCCATATGTTCC -ACGGAAAGTTGGGCCATAATTCCC -ACGGAAAGTTGGGCCATATTCTCG -ACGGAAAGTTGGGCCATATAGACG -ACGGAAAGTTGGGCCATAGTAACG -ACGGAAAGTTGGGCCATAACTTCG -ACGGAAAGTTGGGCCATATACGCA -ACGGAAAGTTGGGCCATACTTGCA -ACGGAAAGTTGGGCCATACGAACA -ACGGAAAGTTGGGCCATACAGTCA -ACGGAAAGTTGGGCCATAGATCCA -ACGGAAAGTTGGGCCATAACGACA -ACGGAAAGTTGGGCCATAAGCTCA -ACGGAAAGTTGGGCCATATCACGT -ACGGAAAGTTGGGCCATACGTAGT -ACGGAAAGTTGGGCCATAGTCAGT -ACGGAAAGTTGGGCCATAGAAGGT -ACGGAAAGTTGGGCCATAAACCGT -ACGGAAAGTTGGGCCATATTGTGC -ACGGAAAGTTGGGCCATACTAAGC -ACGGAAAGTTGGGCCATAACTAGC -ACGGAAAGTTGGGCCATAAGATGC -ACGGAAAGTTGGGCCATATGAAGG -ACGGAAAGTTGGGCCATACAATGG -ACGGAAAGTTGGGCCATAATGAGG -ACGGAAAGTTGGGCCATAAATGGG -ACGGAAAGTTGGGCCATATCCTGA -ACGGAAAGTTGGGCCATATAGCGA -ACGGAAAGTTGGGCCATACACAGA -ACGGAAAGTTGGGCCATAGCAAGA -ACGGAAAGTTGGGCCATAGGTTGA -ACGGAAAGTTGGGCCATATCCGAT -ACGGAAAGTTGGGCCATATGGCAT -ACGGAAAGTTGGGCCATACGAGAT -ACGGAAAGTTGGGCCATATACCAC -ACGGAAAGTTGGGCCATACAGAAC -ACGGAAAGTTGGGCCATAGTCTAC -ACGGAAAGTTGGGCCATAACGTAC -ACGGAAAGTTGGGCCATAAGTGAC -ACGGAAAGTTGGGCCATACTGTAG -ACGGAAAGTTGGGCCATACCTAAG -ACGGAAAGTTGGGCCATAGTTCAG -ACGGAAAGTTGGGCCATAGCATAG -ACGGAAAGTTGGGCCATAGACAAG -ACGGAAAGTTGGGCCATAAAGCAG -ACGGAAAGTTGGGCCATACGTCAA -ACGGAAAGTTGGGCCATAGCTGAA -ACGGAAAGTTGGGCCATAAGTACG -ACGGAAAGTTGGGCCATAATCCGA -ACGGAAAGTTGGGCCATAATGGGA -ACGGAAAGTTGGGCCATAGTGCAA -ACGGAAAGTTGGGCCATAGAGGAA -ACGGAAAGTTGGGCCATACAGGTA -ACGGAAAGTTGGGCCATAGACTCT -ACGGAAAGTTGGGCCATAAGTCCT -ACGGAAAGTTGGGCCATATAAGCC -ACGGAAAGTTGGGCCATAATAGCC -ACGGAAAGTTGGGCCATATAACCG -ACGGAAAGTTGGGCCATAATGCCA -ACGGAAAGTTGGCCGTAAGGAAAC -ACGGAAAGTTGGCCGTAAAACACC -ACGGAAAGTTGGCCGTAAATCGAG -ACGGAAAGTTGGCCGTAACTCCTT -ACGGAAAGTTGGCCGTAACCTGTT -ACGGAAAGTTGGCCGTAACGGTTT -ACGGAAAGTTGGCCGTAAGTGGTT -ACGGAAAGTTGGCCGTAAGCCTTT -ACGGAAAGTTGGCCGTAAGGTCTT -ACGGAAAGTTGGCCGTAAACGCTT -ACGGAAAGTTGGCCGTAAAGCGTT -ACGGAAAGTTGGCCGTAATTCGTC -ACGGAAAGTTGGCCGTAATCTCTC -ACGGAAAGTTGGCCGTAATGGATC -ACGGAAAGTTGGCCGTAACACTTC -ACGGAAAGTTGGCCGTAAGTACTC -ACGGAAAGTTGGCCGTAAGATGTC -ACGGAAAGTTGGCCGTAAACAGTC -ACGGAAAGTTGGCCGTAATTGCTG -ACGGAAAGTTGGCCGTAATCCATG -ACGGAAAGTTGGCCGTAATGTGTG -ACGGAAAGTTGGCCGTAACTAGTG -ACGGAAAGTTGGCCGTAACATCTG -ACGGAAAGTTGGCCGTAAGAGTTG -ACGGAAAGTTGGCCGTAAAGACTG -ACGGAAAGTTGGCCGTAATCGGTA -ACGGAAAGTTGGCCGTAATGCCTA -ACGGAAAGTTGGCCGTAACCACTA -ACGGAAAGTTGGCCGTAAGGAGTA -ACGGAAAGTTGGCCGTAATCGTCT -ACGGAAAGTTGGCCGTAATGCACT -ACGGAAAGTTGGCCGTAACTGACT -ACGGAAAGTTGGCCGTAACAACCT -ACGGAAAGTTGGCCGTAAGCTACT -ACGGAAAGTTGGCCGTAAGGATCT -ACGGAAAGTTGGCCGTAAAAGGCT -ACGGAAAGTTGGCCGTAATCAACC -ACGGAAAGTTGGCCGTAATGTTCC -ACGGAAAGTTGGCCGTAAATTCCC -ACGGAAAGTTGGCCGTAATTCTCG -ACGGAAAGTTGGCCGTAATAGACG -ACGGAAAGTTGGCCGTAAGTAACG -ACGGAAAGTTGGCCGTAAACTTCG -ACGGAAAGTTGGCCGTAATACGCA -ACGGAAAGTTGGCCGTAACTTGCA -ACGGAAAGTTGGCCGTAACGAACA -ACGGAAAGTTGGCCGTAACAGTCA -ACGGAAAGTTGGCCGTAAGATCCA -ACGGAAAGTTGGCCGTAAACGACA -ACGGAAAGTTGGCCGTAAAGCTCA -ACGGAAAGTTGGCCGTAATCACGT -ACGGAAAGTTGGCCGTAACGTAGT -ACGGAAAGTTGGCCGTAAGTCAGT -ACGGAAAGTTGGCCGTAAGAAGGT -ACGGAAAGTTGGCCGTAAAACCGT -ACGGAAAGTTGGCCGTAATTGTGC -ACGGAAAGTTGGCCGTAACTAAGC -ACGGAAAGTTGGCCGTAAACTAGC -ACGGAAAGTTGGCCGTAAAGATGC -ACGGAAAGTTGGCCGTAATGAAGG -ACGGAAAGTTGGCCGTAACAATGG -ACGGAAAGTTGGCCGTAAATGAGG -ACGGAAAGTTGGCCGTAAAATGGG -ACGGAAAGTTGGCCGTAATCCTGA -ACGGAAAGTTGGCCGTAATAGCGA -ACGGAAAGTTGGCCGTAACACAGA -ACGGAAAGTTGGCCGTAAGCAAGA -ACGGAAAGTTGGCCGTAAGGTTGA -ACGGAAAGTTGGCCGTAATCCGAT -ACGGAAAGTTGGCCGTAATGGCAT -ACGGAAAGTTGGCCGTAACGAGAT -ACGGAAAGTTGGCCGTAATACCAC -ACGGAAAGTTGGCCGTAACAGAAC -ACGGAAAGTTGGCCGTAAGTCTAC -ACGGAAAGTTGGCCGTAAACGTAC -ACGGAAAGTTGGCCGTAAAGTGAC -ACGGAAAGTTGGCCGTAACTGTAG -ACGGAAAGTTGGCCGTAACCTAAG -ACGGAAAGTTGGCCGTAAGTTCAG -ACGGAAAGTTGGCCGTAAGCATAG -ACGGAAAGTTGGCCGTAAGACAAG -ACGGAAAGTTGGCCGTAAAAGCAG -ACGGAAAGTTGGCCGTAACGTCAA -ACGGAAAGTTGGCCGTAAGCTGAA -ACGGAAAGTTGGCCGTAAAGTACG -ACGGAAAGTTGGCCGTAAATCCGA -ACGGAAAGTTGGCCGTAAATGGGA -ACGGAAAGTTGGCCGTAAGTGCAA -ACGGAAAGTTGGCCGTAAGAGGAA -ACGGAAAGTTGGCCGTAACAGGTA -ACGGAAAGTTGGCCGTAAGACTCT -ACGGAAAGTTGGCCGTAAAGTCCT -ACGGAAAGTTGGCCGTAATAAGCC -ACGGAAAGTTGGCCGTAAATAGCC -ACGGAAAGTTGGCCGTAATAACCG -ACGGAAAGTTGGCCGTAAATGCCA -ACGGAAAGTTGGCCAATGGGAAAC -ACGGAAAGTTGGCCAATGAACACC -ACGGAAAGTTGGCCAATGATCGAG -ACGGAAAGTTGGCCAATGCTCCTT -ACGGAAAGTTGGCCAATGCCTGTT -ACGGAAAGTTGGCCAATGCGGTTT -ACGGAAAGTTGGCCAATGGTGGTT -ACGGAAAGTTGGCCAATGGCCTTT -ACGGAAAGTTGGCCAATGGGTCTT -ACGGAAAGTTGGCCAATGACGCTT -ACGGAAAGTTGGCCAATGAGCGTT -ACGGAAAGTTGGCCAATGTTCGTC -ACGGAAAGTTGGCCAATGTCTCTC -ACGGAAAGTTGGCCAATGTGGATC -ACGGAAAGTTGGCCAATGCACTTC -ACGGAAAGTTGGCCAATGGTACTC -ACGGAAAGTTGGCCAATGGATGTC -ACGGAAAGTTGGCCAATGACAGTC -ACGGAAAGTTGGCCAATGTTGCTG -ACGGAAAGTTGGCCAATGTCCATG -ACGGAAAGTTGGCCAATGTGTGTG -ACGGAAAGTTGGCCAATGCTAGTG -ACGGAAAGTTGGCCAATGCATCTG -ACGGAAAGTTGGCCAATGGAGTTG -ACGGAAAGTTGGCCAATGAGACTG -ACGGAAAGTTGGCCAATGTCGGTA -ACGGAAAGTTGGCCAATGTGCCTA -ACGGAAAGTTGGCCAATGCCACTA -ACGGAAAGTTGGCCAATGGGAGTA -ACGGAAAGTTGGCCAATGTCGTCT -ACGGAAAGTTGGCCAATGTGCACT -ACGGAAAGTTGGCCAATGCTGACT -ACGGAAAGTTGGCCAATGCAACCT -ACGGAAAGTTGGCCAATGGCTACT -ACGGAAAGTTGGCCAATGGGATCT -ACGGAAAGTTGGCCAATGAAGGCT -ACGGAAAGTTGGCCAATGTCAACC -ACGGAAAGTTGGCCAATGTGTTCC -ACGGAAAGTTGGCCAATGATTCCC -ACGGAAAGTTGGCCAATGTTCTCG -ACGGAAAGTTGGCCAATGTAGACG -ACGGAAAGTTGGCCAATGGTAACG -ACGGAAAGTTGGCCAATGACTTCG -ACGGAAAGTTGGCCAATGTACGCA -ACGGAAAGTTGGCCAATGCTTGCA -ACGGAAAGTTGGCCAATGCGAACA -ACGGAAAGTTGGCCAATGCAGTCA -ACGGAAAGTTGGCCAATGGATCCA -ACGGAAAGTTGGCCAATGACGACA -ACGGAAAGTTGGCCAATGAGCTCA -ACGGAAAGTTGGCCAATGTCACGT -ACGGAAAGTTGGCCAATGCGTAGT -ACGGAAAGTTGGCCAATGGTCAGT -ACGGAAAGTTGGCCAATGGAAGGT -ACGGAAAGTTGGCCAATGAACCGT -ACGGAAAGTTGGCCAATGTTGTGC -ACGGAAAGTTGGCCAATGCTAAGC -ACGGAAAGTTGGCCAATGACTAGC -ACGGAAAGTTGGCCAATGAGATGC -ACGGAAAGTTGGCCAATGTGAAGG -ACGGAAAGTTGGCCAATGCAATGG -ACGGAAAGTTGGCCAATGATGAGG -ACGGAAAGTTGGCCAATGAATGGG -ACGGAAAGTTGGCCAATGTCCTGA -ACGGAAAGTTGGCCAATGTAGCGA -ACGGAAAGTTGGCCAATGCACAGA -ACGGAAAGTTGGCCAATGGCAAGA -ACGGAAAGTTGGCCAATGGGTTGA -ACGGAAAGTTGGCCAATGTCCGAT -ACGGAAAGTTGGCCAATGTGGCAT -ACGGAAAGTTGGCCAATGCGAGAT -ACGGAAAGTTGGCCAATGTACCAC -ACGGAAAGTTGGCCAATGCAGAAC -ACGGAAAGTTGGCCAATGGTCTAC -ACGGAAAGTTGGCCAATGACGTAC -ACGGAAAGTTGGCCAATGAGTGAC -ACGGAAAGTTGGCCAATGCTGTAG -ACGGAAAGTTGGCCAATGCCTAAG -ACGGAAAGTTGGCCAATGGTTCAG -ACGGAAAGTTGGCCAATGGCATAG -ACGGAAAGTTGGCCAATGGACAAG -ACGGAAAGTTGGCCAATGAAGCAG -ACGGAAAGTTGGCCAATGCGTCAA -ACGGAAAGTTGGCCAATGGCTGAA -ACGGAAAGTTGGCCAATGAGTACG -ACGGAAAGTTGGCCAATGATCCGA -ACGGAAAGTTGGCCAATGATGGGA -ACGGAAAGTTGGCCAATGGTGCAA -ACGGAAAGTTGGCCAATGGAGGAA -ACGGAAAGTTGGCCAATGCAGGTA -ACGGAAAGTTGGCCAATGGACTCT -ACGGAAAGTTGGCCAATGAGTCCT -ACGGAAAGTTGGCCAATGTAAGCC -ACGGAAAGTTGGCCAATGATAGCC -ACGGAAAGTTGGCCAATGTAACCG -ACGGAAAGTTGGCCAATGATGCCA -ACGGAAGACTGAAACGGAGGAAAC -ACGGAAGACTGAAACGGAAACACC -ACGGAAGACTGAAACGGAATCGAG -ACGGAAGACTGAAACGGACTCCTT -ACGGAAGACTGAAACGGACCTGTT -ACGGAAGACTGAAACGGACGGTTT -ACGGAAGACTGAAACGGAGTGGTT -ACGGAAGACTGAAACGGAGCCTTT -ACGGAAGACTGAAACGGAGGTCTT -ACGGAAGACTGAAACGGAACGCTT -ACGGAAGACTGAAACGGAAGCGTT -ACGGAAGACTGAAACGGATTCGTC -ACGGAAGACTGAAACGGATCTCTC -ACGGAAGACTGAAACGGATGGATC -ACGGAAGACTGAAACGGACACTTC -ACGGAAGACTGAAACGGAGTACTC -ACGGAAGACTGAAACGGAGATGTC -ACGGAAGACTGAAACGGAACAGTC -ACGGAAGACTGAAACGGATTGCTG -ACGGAAGACTGAAACGGATCCATG -ACGGAAGACTGAAACGGATGTGTG -ACGGAAGACTGAAACGGACTAGTG -ACGGAAGACTGAAACGGACATCTG -ACGGAAGACTGAAACGGAGAGTTG -ACGGAAGACTGAAACGGAAGACTG -ACGGAAGACTGAAACGGATCGGTA -ACGGAAGACTGAAACGGATGCCTA -ACGGAAGACTGAAACGGACCACTA -ACGGAAGACTGAAACGGAGGAGTA -ACGGAAGACTGAAACGGATCGTCT -ACGGAAGACTGAAACGGATGCACT -ACGGAAGACTGAAACGGACTGACT -ACGGAAGACTGAAACGGACAACCT -ACGGAAGACTGAAACGGAGCTACT -ACGGAAGACTGAAACGGAGGATCT -ACGGAAGACTGAAACGGAAAGGCT -ACGGAAGACTGAAACGGATCAACC -ACGGAAGACTGAAACGGATGTTCC -ACGGAAGACTGAAACGGAATTCCC -ACGGAAGACTGAAACGGATTCTCG -ACGGAAGACTGAAACGGATAGACG -ACGGAAGACTGAAACGGAGTAACG -ACGGAAGACTGAAACGGAACTTCG -ACGGAAGACTGAAACGGATACGCA -ACGGAAGACTGAAACGGACTTGCA -ACGGAAGACTGAAACGGACGAACA -ACGGAAGACTGAAACGGACAGTCA -ACGGAAGACTGAAACGGAGATCCA -ACGGAAGACTGAAACGGAACGACA -ACGGAAGACTGAAACGGAAGCTCA -ACGGAAGACTGAAACGGATCACGT -ACGGAAGACTGAAACGGACGTAGT -ACGGAAGACTGAAACGGAGTCAGT -ACGGAAGACTGAAACGGAGAAGGT -ACGGAAGACTGAAACGGAAACCGT -ACGGAAGACTGAAACGGATTGTGC -ACGGAAGACTGAAACGGACTAAGC -ACGGAAGACTGAAACGGAACTAGC -ACGGAAGACTGAAACGGAAGATGC -ACGGAAGACTGAAACGGATGAAGG -ACGGAAGACTGAAACGGACAATGG -ACGGAAGACTGAAACGGAATGAGG -ACGGAAGACTGAAACGGAAATGGG -ACGGAAGACTGAAACGGATCCTGA -ACGGAAGACTGAAACGGATAGCGA -ACGGAAGACTGAAACGGACACAGA -ACGGAAGACTGAAACGGAGCAAGA -ACGGAAGACTGAAACGGAGGTTGA -ACGGAAGACTGAAACGGATCCGAT -ACGGAAGACTGAAACGGATGGCAT -ACGGAAGACTGAAACGGACGAGAT -ACGGAAGACTGAAACGGATACCAC -ACGGAAGACTGAAACGGACAGAAC -ACGGAAGACTGAAACGGAGTCTAC -ACGGAAGACTGAAACGGAACGTAC -ACGGAAGACTGAAACGGAAGTGAC -ACGGAAGACTGAAACGGACTGTAG -ACGGAAGACTGAAACGGACCTAAG -ACGGAAGACTGAAACGGAGTTCAG -ACGGAAGACTGAAACGGAGCATAG -ACGGAAGACTGAAACGGAGACAAG -ACGGAAGACTGAAACGGAAAGCAG -ACGGAAGACTGAAACGGACGTCAA -ACGGAAGACTGAAACGGAGCTGAA -ACGGAAGACTGAAACGGAAGTACG -ACGGAAGACTGAAACGGAATCCGA -ACGGAAGACTGAAACGGAATGGGA -ACGGAAGACTGAAACGGAGTGCAA -ACGGAAGACTGAAACGGAGAGGAA -ACGGAAGACTGAAACGGACAGGTA -ACGGAAGACTGAAACGGAGACTCT -ACGGAAGACTGAAACGGAAGTCCT -ACGGAAGACTGAAACGGATAAGCC -ACGGAAGACTGAAACGGAATAGCC -ACGGAAGACTGAAACGGATAACCG -ACGGAAGACTGAAACGGAATGCCA -ACGGAAGACTGAACCAACGGAAAC -ACGGAAGACTGAACCAACAACACC -ACGGAAGACTGAACCAACATCGAG -ACGGAAGACTGAACCAACCTCCTT -ACGGAAGACTGAACCAACCCTGTT -ACGGAAGACTGAACCAACCGGTTT -ACGGAAGACTGAACCAACGTGGTT -ACGGAAGACTGAACCAACGCCTTT -ACGGAAGACTGAACCAACGGTCTT -ACGGAAGACTGAACCAACACGCTT -ACGGAAGACTGAACCAACAGCGTT -ACGGAAGACTGAACCAACTTCGTC -ACGGAAGACTGAACCAACTCTCTC -ACGGAAGACTGAACCAACTGGATC -ACGGAAGACTGAACCAACCACTTC -ACGGAAGACTGAACCAACGTACTC -ACGGAAGACTGAACCAACGATGTC -ACGGAAGACTGAACCAACACAGTC -ACGGAAGACTGAACCAACTTGCTG -ACGGAAGACTGAACCAACTCCATG -ACGGAAGACTGAACCAACTGTGTG -ACGGAAGACTGAACCAACCTAGTG -ACGGAAGACTGAACCAACCATCTG -ACGGAAGACTGAACCAACGAGTTG -ACGGAAGACTGAACCAACAGACTG -ACGGAAGACTGAACCAACTCGGTA -ACGGAAGACTGAACCAACTGCCTA -ACGGAAGACTGAACCAACCCACTA -ACGGAAGACTGAACCAACGGAGTA -ACGGAAGACTGAACCAACTCGTCT -ACGGAAGACTGAACCAACTGCACT -ACGGAAGACTGAACCAACCTGACT -ACGGAAGACTGAACCAACCAACCT -ACGGAAGACTGAACCAACGCTACT -ACGGAAGACTGAACCAACGGATCT -ACGGAAGACTGAACCAACAAGGCT -ACGGAAGACTGAACCAACTCAACC -ACGGAAGACTGAACCAACTGTTCC -ACGGAAGACTGAACCAACATTCCC -ACGGAAGACTGAACCAACTTCTCG -ACGGAAGACTGAACCAACTAGACG -ACGGAAGACTGAACCAACGTAACG -ACGGAAGACTGAACCAACACTTCG -ACGGAAGACTGAACCAACTACGCA -ACGGAAGACTGAACCAACCTTGCA -ACGGAAGACTGAACCAACCGAACA -ACGGAAGACTGAACCAACCAGTCA -ACGGAAGACTGAACCAACGATCCA -ACGGAAGACTGAACCAACACGACA -ACGGAAGACTGAACCAACAGCTCA -ACGGAAGACTGAACCAACTCACGT -ACGGAAGACTGAACCAACCGTAGT -ACGGAAGACTGAACCAACGTCAGT -ACGGAAGACTGAACCAACGAAGGT -ACGGAAGACTGAACCAACAACCGT -ACGGAAGACTGAACCAACTTGTGC -ACGGAAGACTGAACCAACCTAAGC -ACGGAAGACTGAACCAACACTAGC -ACGGAAGACTGAACCAACAGATGC -ACGGAAGACTGAACCAACTGAAGG -ACGGAAGACTGAACCAACCAATGG -ACGGAAGACTGAACCAACATGAGG -ACGGAAGACTGAACCAACAATGGG -ACGGAAGACTGAACCAACTCCTGA -ACGGAAGACTGAACCAACTAGCGA -ACGGAAGACTGAACCAACCACAGA -ACGGAAGACTGAACCAACGCAAGA -ACGGAAGACTGAACCAACGGTTGA -ACGGAAGACTGAACCAACTCCGAT -ACGGAAGACTGAACCAACTGGCAT -ACGGAAGACTGAACCAACCGAGAT -ACGGAAGACTGAACCAACTACCAC -ACGGAAGACTGAACCAACCAGAAC -ACGGAAGACTGAACCAACGTCTAC -ACGGAAGACTGAACCAACACGTAC -ACGGAAGACTGAACCAACAGTGAC -ACGGAAGACTGAACCAACCTGTAG -ACGGAAGACTGAACCAACCCTAAG -ACGGAAGACTGAACCAACGTTCAG -ACGGAAGACTGAACCAACGCATAG -ACGGAAGACTGAACCAACGACAAG -ACGGAAGACTGAACCAACAAGCAG -ACGGAAGACTGAACCAACCGTCAA -ACGGAAGACTGAACCAACGCTGAA -ACGGAAGACTGAACCAACAGTACG -ACGGAAGACTGAACCAACATCCGA -ACGGAAGACTGAACCAACATGGGA -ACGGAAGACTGAACCAACGTGCAA -ACGGAAGACTGAACCAACGAGGAA -ACGGAAGACTGAACCAACCAGGTA -ACGGAAGACTGAACCAACGACTCT -ACGGAAGACTGAACCAACAGTCCT -ACGGAAGACTGAACCAACTAAGCC -ACGGAAGACTGAACCAACATAGCC -ACGGAAGACTGAACCAACTAACCG -ACGGAAGACTGAACCAACATGCCA -ACGGAAGACTGAGAGATCGGAAAC -ACGGAAGACTGAGAGATCAACACC -ACGGAAGACTGAGAGATCATCGAG -ACGGAAGACTGAGAGATCCTCCTT -ACGGAAGACTGAGAGATCCCTGTT -ACGGAAGACTGAGAGATCCGGTTT -ACGGAAGACTGAGAGATCGTGGTT -ACGGAAGACTGAGAGATCGCCTTT -ACGGAAGACTGAGAGATCGGTCTT -ACGGAAGACTGAGAGATCACGCTT -ACGGAAGACTGAGAGATCAGCGTT -ACGGAAGACTGAGAGATCTTCGTC -ACGGAAGACTGAGAGATCTCTCTC -ACGGAAGACTGAGAGATCTGGATC -ACGGAAGACTGAGAGATCCACTTC -ACGGAAGACTGAGAGATCGTACTC -ACGGAAGACTGAGAGATCGATGTC -ACGGAAGACTGAGAGATCACAGTC -ACGGAAGACTGAGAGATCTTGCTG -ACGGAAGACTGAGAGATCTCCATG -ACGGAAGACTGAGAGATCTGTGTG -ACGGAAGACTGAGAGATCCTAGTG -ACGGAAGACTGAGAGATCCATCTG -ACGGAAGACTGAGAGATCGAGTTG -ACGGAAGACTGAGAGATCAGACTG -ACGGAAGACTGAGAGATCTCGGTA -ACGGAAGACTGAGAGATCTGCCTA -ACGGAAGACTGAGAGATCCCACTA -ACGGAAGACTGAGAGATCGGAGTA -ACGGAAGACTGAGAGATCTCGTCT -ACGGAAGACTGAGAGATCTGCACT -ACGGAAGACTGAGAGATCCTGACT -ACGGAAGACTGAGAGATCCAACCT -ACGGAAGACTGAGAGATCGCTACT -ACGGAAGACTGAGAGATCGGATCT -ACGGAAGACTGAGAGATCAAGGCT -ACGGAAGACTGAGAGATCTCAACC -ACGGAAGACTGAGAGATCTGTTCC -ACGGAAGACTGAGAGATCATTCCC -ACGGAAGACTGAGAGATCTTCTCG -ACGGAAGACTGAGAGATCTAGACG -ACGGAAGACTGAGAGATCGTAACG -ACGGAAGACTGAGAGATCACTTCG -ACGGAAGACTGAGAGATCTACGCA -ACGGAAGACTGAGAGATCCTTGCA -ACGGAAGACTGAGAGATCCGAACA -ACGGAAGACTGAGAGATCCAGTCA -ACGGAAGACTGAGAGATCGATCCA -ACGGAAGACTGAGAGATCACGACA -ACGGAAGACTGAGAGATCAGCTCA -ACGGAAGACTGAGAGATCTCACGT -ACGGAAGACTGAGAGATCCGTAGT -ACGGAAGACTGAGAGATCGTCAGT -ACGGAAGACTGAGAGATCGAAGGT -ACGGAAGACTGAGAGATCAACCGT -ACGGAAGACTGAGAGATCTTGTGC -ACGGAAGACTGAGAGATCCTAAGC -ACGGAAGACTGAGAGATCACTAGC -ACGGAAGACTGAGAGATCAGATGC -ACGGAAGACTGAGAGATCTGAAGG -ACGGAAGACTGAGAGATCCAATGG -ACGGAAGACTGAGAGATCATGAGG -ACGGAAGACTGAGAGATCAATGGG -ACGGAAGACTGAGAGATCTCCTGA -ACGGAAGACTGAGAGATCTAGCGA -ACGGAAGACTGAGAGATCCACAGA -ACGGAAGACTGAGAGATCGCAAGA -ACGGAAGACTGAGAGATCGGTTGA -ACGGAAGACTGAGAGATCTCCGAT -ACGGAAGACTGAGAGATCTGGCAT -ACGGAAGACTGAGAGATCCGAGAT -ACGGAAGACTGAGAGATCTACCAC -ACGGAAGACTGAGAGATCCAGAAC -ACGGAAGACTGAGAGATCGTCTAC -ACGGAAGACTGAGAGATCACGTAC -ACGGAAGACTGAGAGATCAGTGAC -ACGGAAGACTGAGAGATCCTGTAG -ACGGAAGACTGAGAGATCCCTAAG -ACGGAAGACTGAGAGATCGTTCAG -ACGGAAGACTGAGAGATCGCATAG -ACGGAAGACTGAGAGATCGACAAG -ACGGAAGACTGAGAGATCAAGCAG -ACGGAAGACTGAGAGATCCGTCAA -ACGGAAGACTGAGAGATCGCTGAA -ACGGAAGACTGAGAGATCAGTACG -ACGGAAGACTGAGAGATCATCCGA -ACGGAAGACTGAGAGATCATGGGA -ACGGAAGACTGAGAGATCGTGCAA -ACGGAAGACTGAGAGATCGAGGAA -ACGGAAGACTGAGAGATCCAGGTA -ACGGAAGACTGAGAGATCGACTCT -ACGGAAGACTGAGAGATCAGTCCT -ACGGAAGACTGAGAGATCTAAGCC -ACGGAAGACTGAGAGATCATAGCC -ACGGAAGACTGAGAGATCTAACCG -ACGGAAGACTGAGAGATCATGCCA -ACGGAAGACTGACTTCTCGGAAAC -ACGGAAGACTGACTTCTCAACACC -ACGGAAGACTGACTTCTCATCGAG -ACGGAAGACTGACTTCTCCTCCTT -ACGGAAGACTGACTTCTCCCTGTT -ACGGAAGACTGACTTCTCCGGTTT -ACGGAAGACTGACTTCTCGTGGTT -ACGGAAGACTGACTTCTCGCCTTT -ACGGAAGACTGACTTCTCGGTCTT -ACGGAAGACTGACTTCTCACGCTT -ACGGAAGACTGACTTCTCAGCGTT -ACGGAAGACTGACTTCTCTTCGTC -ACGGAAGACTGACTTCTCTCTCTC -ACGGAAGACTGACTTCTCTGGATC -ACGGAAGACTGACTTCTCCACTTC -ACGGAAGACTGACTTCTCGTACTC -ACGGAAGACTGACTTCTCGATGTC -ACGGAAGACTGACTTCTCACAGTC -ACGGAAGACTGACTTCTCTTGCTG -ACGGAAGACTGACTTCTCTCCATG -ACGGAAGACTGACTTCTCTGTGTG -ACGGAAGACTGACTTCTCCTAGTG -ACGGAAGACTGACTTCTCCATCTG -ACGGAAGACTGACTTCTCGAGTTG -ACGGAAGACTGACTTCTCAGACTG -ACGGAAGACTGACTTCTCTCGGTA -ACGGAAGACTGACTTCTCTGCCTA -ACGGAAGACTGACTTCTCCCACTA -ACGGAAGACTGACTTCTCGGAGTA -ACGGAAGACTGACTTCTCTCGTCT -ACGGAAGACTGACTTCTCTGCACT -ACGGAAGACTGACTTCTCCTGACT -ACGGAAGACTGACTTCTCCAACCT -ACGGAAGACTGACTTCTCGCTACT -ACGGAAGACTGACTTCTCGGATCT -ACGGAAGACTGACTTCTCAAGGCT -ACGGAAGACTGACTTCTCTCAACC -ACGGAAGACTGACTTCTCTGTTCC -ACGGAAGACTGACTTCTCATTCCC -ACGGAAGACTGACTTCTCTTCTCG -ACGGAAGACTGACTTCTCTAGACG -ACGGAAGACTGACTTCTCGTAACG -ACGGAAGACTGACTTCTCACTTCG -ACGGAAGACTGACTTCTCTACGCA -ACGGAAGACTGACTTCTCCTTGCA -ACGGAAGACTGACTTCTCCGAACA -ACGGAAGACTGACTTCTCCAGTCA -ACGGAAGACTGACTTCTCGATCCA -ACGGAAGACTGACTTCTCACGACA -ACGGAAGACTGACTTCTCAGCTCA -ACGGAAGACTGACTTCTCTCACGT -ACGGAAGACTGACTTCTCCGTAGT -ACGGAAGACTGACTTCTCGTCAGT -ACGGAAGACTGACTTCTCGAAGGT -ACGGAAGACTGACTTCTCAACCGT -ACGGAAGACTGACTTCTCTTGTGC -ACGGAAGACTGACTTCTCCTAAGC -ACGGAAGACTGACTTCTCACTAGC -ACGGAAGACTGACTTCTCAGATGC -ACGGAAGACTGACTTCTCTGAAGG -ACGGAAGACTGACTTCTCCAATGG -ACGGAAGACTGACTTCTCATGAGG -ACGGAAGACTGACTTCTCAATGGG -ACGGAAGACTGACTTCTCTCCTGA -ACGGAAGACTGACTTCTCTAGCGA -ACGGAAGACTGACTTCTCCACAGA -ACGGAAGACTGACTTCTCGCAAGA -ACGGAAGACTGACTTCTCGGTTGA -ACGGAAGACTGACTTCTCTCCGAT -ACGGAAGACTGACTTCTCTGGCAT -ACGGAAGACTGACTTCTCCGAGAT -ACGGAAGACTGACTTCTCTACCAC -ACGGAAGACTGACTTCTCCAGAAC -ACGGAAGACTGACTTCTCGTCTAC -ACGGAAGACTGACTTCTCACGTAC -ACGGAAGACTGACTTCTCAGTGAC -ACGGAAGACTGACTTCTCCTGTAG -ACGGAAGACTGACTTCTCCCTAAG -ACGGAAGACTGACTTCTCGTTCAG -ACGGAAGACTGACTTCTCGCATAG -ACGGAAGACTGACTTCTCGACAAG -ACGGAAGACTGACTTCTCAAGCAG -ACGGAAGACTGACTTCTCCGTCAA -ACGGAAGACTGACTTCTCGCTGAA -ACGGAAGACTGACTTCTCAGTACG -ACGGAAGACTGACTTCTCATCCGA -ACGGAAGACTGACTTCTCATGGGA -ACGGAAGACTGACTTCTCGTGCAA -ACGGAAGACTGACTTCTCGAGGAA -ACGGAAGACTGACTTCTCCAGGTA -ACGGAAGACTGACTTCTCGACTCT -ACGGAAGACTGACTTCTCAGTCCT -ACGGAAGACTGACTTCTCTAAGCC -ACGGAAGACTGACTTCTCATAGCC -ACGGAAGACTGACTTCTCTAACCG -ACGGAAGACTGACTTCTCATGCCA -ACGGAAGACTGAGTTCCTGGAAAC -ACGGAAGACTGAGTTCCTAACACC -ACGGAAGACTGAGTTCCTATCGAG -ACGGAAGACTGAGTTCCTCTCCTT -ACGGAAGACTGAGTTCCTCCTGTT -ACGGAAGACTGAGTTCCTCGGTTT -ACGGAAGACTGAGTTCCTGTGGTT -ACGGAAGACTGAGTTCCTGCCTTT -ACGGAAGACTGAGTTCCTGGTCTT -ACGGAAGACTGAGTTCCTACGCTT -ACGGAAGACTGAGTTCCTAGCGTT -ACGGAAGACTGAGTTCCTTTCGTC -ACGGAAGACTGAGTTCCTTCTCTC -ACGGAAGACTGAGTTCCTTGGATC -ACGGAAGACTGAGTTCCTCACTTC -ACGGAAGACTGAGTTCCTGTACTC -ACGGAAGACTGAGTTCCTGATGTC -ACGGAAGACTGAGTTCCTACAGTC -ACGGAAGACTGAGTTCCTTTGCTG -ACGGAAGACTGAGTTCCTTCCATG -ACGGAAGACTGAGTTCCTTGTGTG -ACGGAAGACTGAGTTCCTCTAGTG -ACGGAAGACTGAGTTCCTCATCTG -ACGGAAGACTGAGTTCCTGAGTTG -ACGGAAGACTGAGTTCCTAGACTG -ACGGAAGACTGAGTTCCTTCGGTA -ACGGAAGACTGAGTTCCTTGCCTA -ACGGAAGACTGAGTTCCTCCACTA -ACGGAAGACTGAGTTCCTGGAGTA -ACGGAAGACTGAGTTCCTTCGTCT -ACGGAAGACTGAGTTCCTTGCACT -ACGGAAGACTGAGTTCCTCTGACT -ACGGAAGACTGAGTTCCTCAACCT -ACGGAAGACTGAGTTCCTGCTACT -ACGGAAGACTGAGTTCCTGGATCT -ACGGAAGACTGAGTTCCTAAGGCT -ACGGAAGACTGAGTTCCTTCAACC -ACGGAAGACTGAGTTCCTTGTTCC -ACGGAAGACTGAGTTCCTATTCCC -ACGGAAGACTGAGTTCCTTTCTCG -ACGGAAGACTGAGTTCCTTAGACG -ACGGAAGACTGAGTTCCTGTAACG -ACGGAAGACTGAGTTCCTACTTCG -ACGGAAGACTGAGTTCCTTACGCA -ACGGAAGACTGAGTTCCTCTTGCA -ACGGAAGACTGAGTTCCTCGAACA -ACGGAAGACTGAGTTCCTCAGTCA -ACGGAAGACTGAGTTCCTGATCCA -ACGGAAGACTGAGTTCCTACGACA -ACGGAAGACTGAGTTCCTAGCTCA -ACGGAAGACTGAGTTCCTTCACGT -ACGGAAGACTGAGTTCCTCGTAGT -ACGGAAGACTGAGTTCCTGTCAGT -ACGGAAGACTGAGTTCCTGAAGGT -ACGGAAGACTGAGTTCCTAACCGT -ACGGAAGACTGAGTTCCTTTGTGC -ACGGAAGACTGAGTTCCTCTAAGC -ACGGAAGACTGAGTTCCTACTAGC -ACGGAAGACTGAGTTCCTAGATGC -ACGGAAGACTGAGTTCCTTGAAGG -ACGGAAGACTGAGTTCCTCAATGG -ACGGAAGACTGAGTTCCTATGAGG -ACGGAAGACTGAGTTCCTAATGGG -ACGGAAGACTGAGTTCCTTCCTGA -ACGGAAGACTGAGTTCCTTAGCGA -ACGGAAGACTGAGTTCCTCACAGA -ACGGAAGACTGAGTTCCTGCAAGA -ACGGAAGACTGAGTTCCTGGTTGA -ACGGAAGACTGAGTTCCTTCCGAT -ACGGAAGACTGAGTTCCTTGGCAT -ACGGAAGACTGAGTTCCTCGAGAT -ACGGAAGACTGAGTTCCTTACCAC -ACGGAAGACTGAGTTCCTCAGAAC -ACGGAAGACTGAGTTCCTGTCTAC -ACGGAAGACTGAGTTCCTACGTAC -ACGGAAGACTGAGTTCCTAGTGAC -ACGGAAGACTGAGTTCCTCTGTAG -ACGGAAGACTGAGTTCCTCCTAAG -ACGGAAGACTGAGTTCCTGTTCAG -ACGGAAGACTGAGTTCCTGCATAG -ACGGAAGACTGAGTTCCTGACAAG -ACGGAAGACTGAGTTCCTAAGCAG -ACGGAAGACTGAGTTCCTCGTCAA -ACGGAAGACTGAGTTCCTGCTGAA -ACGGAAGACTGAGTTCCTAGTACG -ACGGAAGACTGAGTTCCTATCCGA -ACGGAAGACTGAGTTCCTATGGGA -ACGGAAGACTGAGTTCCTGTGCAA -ACGGAAGACTGAGTTCCTGAGGAA -ACGGAAGACTGAGTTCCTCAGGTA -ACGGAAGACTGAGTTCCTGACTCT -ACGGAAGACTGAGTTCCTAGTCCT -ACGGAAGACTGAGTTCCTTAAGCC -ACGGAAGACTGAGTTCCTATAGCC -ACGGAAGACTGAGTTCCTTAACCG -ACGGAAGACTGAGTTCCTATGCCA -ACGGAAGACTGATTTCGGGGAAAC -ACGGAAGACTGATTTCGGAACACC -ACGGAAGACTGATTTCGGATCGAG -ACGGAAGACTGATTTCGGCTCCTT -ACGGAAGACTGATTTCGGCCTGTT -ACGGAAGACTGATTTCGGCGGTTT -ACGGAAGACTGATTTCGGGTGGTT -ACGGAAGACTGATTTCGGGCCTTT -ACGGAAGACTGATTTCGGGGTCTT -ACGGAAGACTGATTTCGGACGCTT -ACGGAAGACTGATTTCGGAGCGTT -ACGGAAGACTGATTTCGGTTCGTC -ACGGAAGACTGATTTCGGTCTCTC -ACGGAAGACTGATTTCGGTGGATC -ACGGAAGACTGATTTCGGCACTTC -ACGGAAGACTGATTTCGGGTACTC -ACGGAAGACTGATTTCGGGATGTC -ACGGAAGACTGATTTCGGACAGTC -ACGGAAGACTGATTTCGGTTGCTG -ACGGAAGACTGATTTCGGTCCATG -ACGGAAGACTGATTTCGGTGTGTG -ACGGAAGACTGATTTCGGCTAGTG -ACGGAAGACTGATTTCGGCATCTG -ACGGAAGACTGATTTCGGGAGTTG -ACGGAAGACTGATTTCGGAGACTG -ACGGAAGACTGATTTCGGTCGGTA -ACGGAAGACTGATTTCGGTGCCTA -ACGGAAGACTGATTTCGGCCACTA -ACGGAAGACTGATTTCGGGGAGTA -ACGGAAGACTGATTTCGGTCGTCT -ACGGAAGACTGATTTCGGTGCACT -ACGGAAGACTGATTTCGGCTGACT -ACGGAAGACTGATTTCGGCAACCT -ACGGAAGACTGATTTCGGGCTACT -ACGGAAGACTGATTTCGGGGATCT -ACGGAAGACTGATTTCGGAAGGCT -ACGGAAGACTGATTTCGGTCAACC -ACGGAAGACTGATTTCGGTGTTCC -ACGGAAGACTGATTTCGGATTCCC -ACGGAAGACTGATTTCGGTTCTCG -ACGGAAGACTGATTTCGGTAGACG -ACGGAAGACTGATTTCGGGTAACG -ACGGAAGACTGATTTCGGACTTCG -ACGGAAGACTGATTTCGGTACGCA -ACGGAAGACTGATTTCGGCTTGCA -ACGGAAGACTGATTTCGGCGAACA -ACGGAAGACTGATTTCGGCAGTCA -ACGGAAGACTGATTTCGGGATCCA -ACGGAAGACTGATTTCGGACGACA -ACGGAAGACTGATTTCGGAGCTCA -ACGGAAGACTGATTTCGGTCACGT -ACGGAAGACTGATTTCGGCGTAGT -ACGGAAGACTGATTTCGGGTCAGT -ACGGAAGACTGATTTCGGGAAGGT -ACGGAAGACTGATTTCGGAACCGT -ACGGAAGACTGATTTCGGTTGTGC -ACGGAAGACTGATTTCGGCTAAGC -ACGGAAGACTGATTTCGGACTAGC -ACGGAAGACTGATTTCGGAGATGC -ACGGAAGACTGATTTCGGTGAAGG -ACGGAAGACTGATTTCGGCAATGG -ACGGAAGACTGATTTCGGATGAGG -ACGGAAGACTGATTTCGGAATGGG -ACGGAAGACTGATTTCGGTCCTGA -ACGGAAGACTGATTTCGGTAGCGA -ACGGAAGACTGATTTCGGCACAGA -ACGGAAGACTGATTTCGGGCAAGA -ACGGAAGACTGATTTCGGGGTTGA -ACGGAAGACTGATTTCGGTCCGAT -ACGGAAGACTGATTTCGGTGGCAT -ACGGAAGACTGATTTCGGCGAGAT -ACGGAAGACTGATTTCGGTACCAC -ACGGAAGACTGATTTCGGCAGAAC -ACGGAAGACTGATTTCGGGTCTAC -ACGGAAGACTGATTTCGGACGTAC -ACGGAAGACTGATTTCGGAGTGAC -ACGGAAGACTGATTTCGGCTGTAG -ACGGAAGACTGATTTCGGCCTAAG -ACGGAAGACTGATTTCGGGTTCAG -ACGGAAGACTGATTTCGGGCATAG -ACGGAAGACTGATTTCGGGACAAG -ACGGAAGACTGATTTCGGAAGCAG -ACGGAAGACTGATTTCGGCGTCAA -ACGGAAGACTGATTTCGGGCTGAA -ACGGAAGACTGATTTCGGAGTACG -ACGGAAGACTGATTTCGGATCCGA -ACGGAAGACTGATTTCGGATGGGA -ACGGAAGACTGATTTCGGGTGCAA -ACGGAAGACTGATTTCGGGAGGAA -ACGGAAGACTGATTTCGGCAGGTA -ACGGAAGACTGATTTCGGGACTCT -ACGGAAGACTGATTTCGGAGTCCT -ACGGAAGACTGATTTCGGTAAGCC -ACGGAAGACTGATTTCGGATAGCC -ACGGAAGACTGATTTCGGTAACCG -ACGGAAGACTGATTTCGGATGCCA -ACGGAAGACTGAGTTGTGGGAAAC -ACGGAAGACTGAGTTGTGAACACC -ACGGAAGACTGAGTTGTGATCGAG -ACGGAAGACTGAGTTGTGCTCCTT -ACGGAAGACTGAGTTGTGCCTGTT -ACGGAAGACTGAGTTGTGCGGTTT -ACGGAAGACTGAGTTGTGGTGGTT -ACGGAAGACTGAGTTGTGGCCTTT -ACGGAAGACTGAGTTGTGGGTCTT -ACGGAAGACTGAGTTGTGACGCTT -ACGGAAGACTGAGTTGTGAGCGTT -ACGGAAGACTGAGTTGTGTTCGTC -ACGGAAGACTGAGTTGTGTCTCTC -ACGGAAGACTGAGTTGTGTGGATC -ACGGAAGACTGAGTTGTGCACTTC -ACGGAAGACTGAGTTGTGGTACTC -ACGGAAGACTGAGTTGTGGATGTC -ACGGAAGACTGAGTTGTGACAGTC -ACGGAAGACTGAGTTGTGTTGCTG -ACGGAAGACTGAGTTGTGTCCATG -ACGGAAGACTGAGTTGTGTGTGTG -ACGGAAGACTGAGTTGTGCTAGTG -ACGGAAGACTGAGTTGTGCATCTG -ACGGAAGACTGAGTTGTGGAGTTG -ACGGAAGACTGAGTTGTGAGACTG -ACGGAAGACTGAGTTGTGTCGGTA -ACGGAAGACTGAGTTGTGTGCCTA -ACGGAAGACTGAGTTGTGCCACTA -ACGGAAGACTGAGTTGTGGGAGTA -ACGGAAGACTGAGTTGTGTCGTCT -ACGGAAGACTGAGTTGTGTGCACT -ACGGAAGACTGAGTTGTGCTGACT -ACGGAAGACTGAGTTGTGCAACCT -ACGGAAGACTGAGTTGTGGCTACT -ACGGAAGACTGAGTTGTGGGATCT -ACGGAAGACTGAGTTGTGAAGGCT -ACGGAAGACTGAGTTGTGTCAACC -ACGGAAGACTGAGTTGTGTGTTCC -ACGGAAGACTGAGTTGTGATTCCC -ACGGAAGACTGAGTTGTGTTCTCG -ACGGAAGACTGAGTTGTGTAGACG -ACGGAAGACTGAGTTGTGGTAACG -ACGGAAGACTGAGTTGTGACTTCG -ACGGAAGACTGAGTTGTGTACGCA -ACGGAAGACTGAGTTGTGCTTGCA -ACGGAAGACTGAGTTGTGCGAACA -ACGGAAGACTGAGTTGTGCAGTCA -ACGGAAGACTGAGTTGTGGATCCA -ACGGAAGACTGAGTTGTGACGACA -ACGGAAGACTGAGTTGTGAGCTCA -ACGGAAGACTGAGTTGTGTCACGT -ACGGAAGACTGAGTTGTGCGTAGT -ACGGAAGACTGAGTTGTGGTCAGT -ACGGAAGACTGAGTTGTGGAAGGT -ACGGAAGACTGAGTTGTGAACCGT -ACGGAAGACTGAGTTGTGTTGTGC -ACGGAAGACTGAGTTGTGCTAAGC -ACGGAAGACTGAGTTGTGACTAGC -ACGGAAGACTGAGTTGTGAGATGC -ACGGAAGACTGAGTTGTGTGAAGG -ACGGAAGACTGAGTTGTGCAATGG -ACGGAAGACTGAGTTGTGATGAGG -ACGGAAGACTGAGTTGTGAATGGG -ACGGAAGACTGAGTTGTGTCCTGA -ACGGAAGACTGAGTTGTGTAGCGA -ACGGAAGACTGAGTTGTGCACAGA -ACGGAAGACTGAGTTGTGGCAAGA -ACGGAAGACTGAGTTGTGGGTTGA -ACGGAAGACTGAGTTGTGTCCGAT -ACGGAAGACTGAGTTGTGTGGCAT -ACGGAAGACTGAGTTGTGCGAGAT -ACGGAAGACTGAGTTGTGTACCAC -ACGGAAGACTGAGTTGTGCAGAAC -ACGGAAGACTGAGTTGTGGTCTAC -ACGGAAGACTGAGTTGTGACGTAC -ACGGAAGACTGAGTTGTGAGTGAC -ACGGAAGACTGAGTTGTGCTGTAG -ACGGAAGACTGAGTTGTGCCTAAG -ACGGAAGACTGAGTTGTGGTTCAG -ACGGAAGACTGAGTTGTGGCATAG -ACGGAAGACTGAGTTGTGGACAAG -ACGGAAGACTGAGTTGTGAAGCAG -ACGGAAGACTGAGTTGTGCGTCAA -ACGGAAGACTGAGTTGTGGCTGAA -ACGGAAGACTGAGTTGTGAGTACG -ACGGAAGACTGAGTTGTGATCCGA -ACGGAAGACTGAGTTGTGATGGGA -ACGGAAGACTGAGTTGTGGTGCAA -ACGGAAGACTGAGTTGTGGAGGAA -ACGGAAGACTGAGTTGTGCAGGTA -ACGGAAGACTGAGTTGTGGACTCT -ACGGAAGACTGAGTTGTGAGTCCT -ACGGAAGACTGAGTTGTGTAAGCC -ACGGAAGACTGAGTTGTGATAGCC -ACGGAAGACTGAGTTGTGTAACCG -ACGGAAGACTGAGTTGTGATGCCA -ACGGAAGACTGATTTGCCGGAAAC -ACGGAAGACTGATTTGCCAACACC -ACGGAAGACTGATTTGCCATCGAG -ACGGAAGACTGATTTGCCCTCCTT -ACGGAAGACTGATTTGCCCCTGTT -ACGGAAGACTGATTTGCCCGGTTT -ACGGAAGACTGATTTGCCGTGGTT -ACGGAAGACTGATTTGCCGCCTTT -ACGGAAGACTGATTTGCCGGTCTT -ACGGAAGACTGATTTGCCACGCTT -ACGGAAGACTGATTTGCCAGCGTT -ACGGAAGACTGATTTGCCTTCGTC -ACGGAAGACTGATTTGCCTCTCTC -ACGGAAGACTGATTTGCCTGGATC -ACGGAAGACTGATTTGCCCACTTC -ACGGAAGACTGATTTGCCGTACTC -ACGGAAGACTGATTTGCCGATGTC -ACGGAAGACTGATTTGCCACAGTC -ACGGAAGACTGATTTGCCTTGCTG -ACGGAAGACTGATTTGCCTCCATG -ACGGAAGACTGATTTGCCTGTGTG -ACGGAAGACTGATTTGCCCTAGTG -ACGGAAGACTGATTTGCCCATCTG -ACGGAAGACTGATTTGCCGAGTTG -ACGGAAGACTGATTTGCCAGACTG -ACGGAAGACTGATTTGCCTCGGTA -ACGGAAGACTGATTTGCCTGCCTA -ACGGAAGACTGATTTGCCCCACTA -ACGGAAGACTGATTTGCCGGAGTA -ACGGAAGACTGATTTGCCTCGTCT -ACGGAAGACTGATTTGCCTGCACT -ACGGAAGACTGATTTGCCCTGACT -ACGGAAGACTGATTTGCCCAACCT -ACGGAAGACTGATTTGCCGCTACT -ACGGAAGACTGATTTGCCGGATCT -ACGGAAGACTGATTTGCCAAGGCT -ACGGAAGACTGATTTGCCTCAACC -ACGGAAGACTGATTTGCCTGTTCC -ACGGAAGACTGATTTGCCATTCCC -ACGGAAGACTGATTTGCCTTCTCG -ACGGAAGACTGATTTGCCTAGACG -ACGGAAGACTGATTTGCCGTAACG -ACGGAAGACTGATTTGCCACTTCG -ACGGAAGACTGATTTGCCTACGCA -ACGGAAGACTGATTTGCCCTTGCA -ACGGAAGACTGATTTGCCCGAACA -ACGGAAGACTGATTTGCCCAGTCA -ACGGAAGACTGATTTGCCGATCCA -ACGGAAGACTGATTTGCCACGACA -ACGGAAGACTGATTTGCCAGCTCA -ACGGAAGACTGATTTGCCTCACGT -ACGGAAGACTGATTTGCCCGTAGT -ACGGAAGACTGATTTGCCGTCAGT -ACGGAAGACTGATTTGCCGAAGGT -ACGGAAGACTGATTTGCCAACCGT -ACGGAAGACTGATTTGCCTTGTGC -ACGGAAGACTGATTTGCCCTAAGC -ACGGAAGACTGATTTGCCACTAGC -ACGGAAGACTGATTTGCCAGATGC -ACGGAAGACTGATTTGCCTGAAGG -ACGGAAGACTGATTTGCCCAATGG -ACGGAAGACTGATTTGCCATGAGG -ACGGAAGACTGATTTGCCAATGGG -ACGGAAGACTGATTTGCCTCCTGA -ACGGAAGACTGATTTGCCTAGCGA -ACGGAAGACTGATTTGCCCACAGA -ACGGAAGACTGATTTGCCGCAAGA -ACGGAAGACTGATTTGCCGGTTGA -ACGGAAGACTGATTTGCCTCCGAT -ACGGAAGACTGATTTGCCTGGCAT -ACGGAAGACTGATTTGCCCGAGAT -ACGGAAGACTGATTTGCCTACCAC -ACGGAAGACTGATTTGCCCAGAAC -ACGGAAGACTGATTTGCCGTCTAC -ACGGAAGACTGATTTGCCACGTAC -ACGGAAGACTGATTTGCCAGTGAC -ACGGAAGACTGATTTGCCCTGTAG -ACGGAAGACTGATTTGCCCCTAAG -ACGGAAGACTGATTTGCCGTTCAG -ACGGAAGACTGATTTGCCGCATAG -ACGGAAGACTGATTTGCCGACAAG -ACGGAAGACTGATTTGCCAAGCAG -ACGGAAGACTGATTTGCCCGTCAA -ACGGAAGACTGATTTGCCGCTGAA -ACGGAAGACTGATTTGCCAGTACG -ACGGAAGACTGATTTGCCATCCGA -ACGGAAGACTGATTTGCCATGGGA -ACGGAAGACTGATTTGCCGTGCAA -ACGGAAGACTGATTTGCCGAGGAA -ACGGAAGACTGATTTGCCCAGGTA -ACGGAAGACTGATTTGCCGACTCT -ACGGAAGACTGATTTGCCAGTCCT -ACGGAAGACTGATTTGCCTAAGCC -ACGGAAGACTGATTTGCCATAGCC -ACGGAAGACTGATTTGCCTAACCG -ACGGAAGACTGATTTGCCATGCCA -ACGGAAGACTGACTTGGTGGAAAC -ACGGAAGACTGACTTGGTAACACC -ACGGAAGACTGACTTGGTATCGAG -ACGGAAGACTGACTTGGTCTCCTT -ACGGAAGACTGACTTGGTCCTGTT -ACGGAAGACTGACTTGGTCGGTTT -ACGGAAGACTGACTTGGTGTGGTT -ACGGAAGACTGACTTGGTGCCTTT -ACGGAAGACTGACTTGGTGGTCTT -ACGGAAGACTGACTTGGTACGCTT -ACGGAAGACTGACTTGGTAGCGTT -ACGGAAGACTGACTTGGTTTCGTC -ACGGAAGACTGACTTGGTTCTCTC -ACGGAAGACTGACTTGGTTGGATC -ACGGAAGACTGACTTGGTCACTTC -ACGGAAGACTGACTTGGTGTACTC -ACGGAAGACTGACTTGGTGATGTC -ACGGAAGACTGACTTGGTACAGTC -ACGGAAGACTGACTTGGTTTGCTG -ACGGAAGACTGACTTGGTTCCATG -ACGGAAGACTGACTTGGTTGTGTG -ACGGAAGACTGACTTGGTCTAGTG -ACGGAAGACTGACTTGGTCATCTG -ACGGAAGACTGACTTGGTGAGTTG -ACGGAAGACTGACTTGGTAGACTG -ACGGAAGACTGACTTGGTTCGGTA -ACGGAAGACTGACTTGGTTGCCTA -ACGGAAGACTGACTTGGTCCACTA -ACGGAAGACTGACTTGGTGGAGTA -ACGGAAGACTGACTTGGTTCGTCT -ACGGAAGACTGACTTGGTTGCACT -ACGGAAGACTGACTTGGTCTGACT -ACGGAAGACTGACTTGGTCAACCT -ACGGAAGACTGACTTGGTGCTACT -ACGGAAGACTGACTTGGTGGATCT -ACGGAAGACTGACTTGGTAAGGCT -ACGGAAGACTGACTTGGTTCAACC -ACGGAAGACTGACTTGGTTGTTCC -ACGGAAGACTGACTTGGTATTCCC -ACGGAAGACTGACTTGGTTTCTCG -ACGGAAGACTGACTTGGTTAGACG -ACGGAAGACTGACTTGGTGTAACG -ACGGAAGACTGACTTGGTACTTCG -ACGGAAGACTGACTTGGTTACGCA -ACGGAAGACTGACTTGGTCTTGCA -ACGGAAGACTGACTTGGTCGAACA -ACGGAAGACTGACTTGGTCAGTCA -ACGGAAGACTGACTTGGTGATCCA -ACGGAAGACTGACTTGGTACGACA -ACGGAAGACTGACTTGGTAGCTCA -ACGGAAGACTGACTTGGTTCACGT -ACGGAAGACTGACTTGGTCGTAGT -ACGGAAGACTGACTTGGTGTCAGT -ACGGAAGACTGACTTGGTGAAGGT -ACGGAAGACTGACTTGGTAACCGT -ACGGAAGACTGACTTGGTTTGTGC -ACGGAAGACTGACTTGGTCTAAGC -ACGGAAGACTGACTTGGTACTAGC -ACGGAAGACTGACTTGGTAGATGC -ACGGAAGACTGACTTGGTTGAAGG -ACGGAAGACTGACTTGGTCAATGG -ACGGAAGACTGACTTGGTATGAGG -ACGGAAGACTGACTTGGTAATGGG -ACGGAAGACTGACTTGGTTCCTGA -ACGGAAGACTGACTTGGTTAGCGA -ACGGAAGACTGACTTGGTCACAGA -ACGGAAGACTGACTTGGTGCAAGA -ACGGAAGACTGACTTGGTGGTTGA -ACGGAAGACTGACTTGGTTCCGAT -ACGGAAGACTGACTTGGTTGGCAT -ACGGAAGACTGACTTGGTCGAGAT -ACGGAAGACTGACTTGGTTACCAC -ACGGAAGACTGACTTGGTCAGAAC -ACGGAAGACTGACTTGGTGTCTAC -ACGGAAGACTGACTTGGTACGTAC -ACGGAAGACTGACTTGGTAGTGAC -ACGGAAGACTGACTTGGTCTGTAG -ACGGAAGACTGACTTGGTCCTAAG -ACGGAAGACTGACTTGGTGTTCAG -ACGGAAGACTGACTTGGTGCATAG -ACGGAAGACTGACTTGGTGACAAG -ACGGAAGACTGACTTGGTAAGCAG -ACGGAAGACTGACTTGGTCGTCAA -ACGGAAGACTGACTTGGTGCTGAA -ACGGAAGACTGACTTGGTAGTACG -ACGGAAGACTGACTTGGTATCCGA -ACGGAAGACTGACTTGGTATGGGA -ACGGAAGACTGACTTGGTGTGCAA -ACGGAAGACTGACTTGGTGAGGAA -ACGGAAGACTGACTTGGTCAGGTA -ACGGAAGACTGACTTGGTGACTCT -ACGGAAGACTGACTTGGTAGTCCT -ACGGAAGACTGACTTGGTTAAGCC -ACGGAAGACTGACTTGGTATAGCC -ACGGAAGACTGACTTGGTTAACCG -ACGGAAGACTGACTTGGTATGCCA -ACGGAAGACTGACTTACGGGAAAC -ACGGAAGACTGACTTACGAACACC -ACGGAAGACTGACTTACGATCGAG -ACGGAAGACTGACTTACGCTCCTT -ACGGAAGACTGACTTACGCCTGTT -ACGGAAGACTGACTTACGCGGTTT -ACGGAAGACTGACTTACGGTGGTT -ACGGAAGACTGACTTACGGCCTTT -ACGGAAGACTGACTTACGGGTCTT -ACGGAAGACTGACTTACGACGCTT -ACGGAAGACTGACTTACGAGCGTT -ACGGAAGACTGACTTACGTTCGTC -ACGGAAGACTGACTTACGTCTCTC -ACGGAAGACTGACTTACGTGGATC -ACGGAAGACTGACTTACGCACTTC -ACGGAAGACTGACTTACGGTACTC -ACGGAAGACTGACTTACGGATGTC -ACGGAAGACTGACTTACGACAGTC -ACGGAAGACTGACTTACGTTGCTG -ACGGAAGACTGACTTACGTCCATG -ACGGAAGACTGACTTACGTGTGTG -ACGGAAGACTGACTTACGCTAGTG -ACGGAAGACTGACTTACGCATCTG -ACGGAAGACTGACTTACGGAGTTG -ACGGAAGACTGACTTACGAGACTG -ACGGAAGACTGACTTACGTCGGTA -ACGGAAGACTGACTTACGTGCCTA -ACGGAAGACTGACTTACGCCACTA -ACGGAAGACTGACTTACGGGAGTA -ACGGAAGACTGACTTACGTCGTCT -ACGGAAGACTGACTTACGTGCACT -ACGGAAGACTGACTTACGCTGACT -ACGGAAGACTGACTTACGCAACCT -ACGGAAGACTGACTTACGGCTACT -ACGGAAGACTGACTTACGGGATCT -ACGGAAGACTGACTTACGAAGGCT -ACGGAAGACTGACTTACGTCAACC -ACGGAAGACTGACTTACGTGTTCC -ACGGAAGACTGACTTACGATTCCC -ACGGAAGACTGACTTACGTTCTCG -ACGGAAGACTGACTTACGTAGACG -ACGGAAGACTGACTTACGGTAACG -ACGGAAGACTGACTTACGACTTCG -ACGGAAGACTGACTTACGTACGCA -ACGGAAGACTGACTTACGCTTGCA -ACGGAAGACTGACTTACGCGAACA -ACGGAAGACTGACTTACGCAGTCA -ACGGAAGACTGACTTACGGATCCA -ACGGAAGACTGACTTACGACGACA -ACGGAAGACTGACTTACGAGCTCA -ACGGAAGACTGACTTACGTCACGT -ACGGAAGACTGACTTACGCGTAGT -ACGGAAGACTGACTTACGGTCAGT -ACGGAAGACTGACTTACGGAAGGT -ACGGAAGACTGACTTACGAACCGT -ACGGAAGACTGACTTACGTTGTGC -ACGGAAGACTGACTTACGCTAAGC -ACGGAAGACTGACTTACGACTAGC -ACGGAAGACTGACTTACGAGATGC -ACGGAAGACTGACTTACGTGAAGG -ACGGAAGACTGACTTACGCAATGG -ACGGAAGACTGACTTACGATGAGG -ACGGAAGACTGACTTACGAATGGG -ACGGAAGACTGACTTACGTCCTGA -ACGGAAGACTGACTTACGTAGCGA -ACGGAAGACTGACTTACGCACAGA -ACGGAAGACTGACTTACGGCAAGA -ACGGAAGACTGACTTACGGGTTGA -ACGGAAGACTGACTTACGTCCGAT -ACGGAAGACTGACTTACGTGGCAT -ACGGAAGACTGACTTACGCGAGAT -ACGGAAGACTGACTTACGTACCAC -ACGGAAGACTGACTTACGCAGAAC -ACGGAAGACTGACTTACGGTCTAC -ACGGAAGACTGACTTACGACGTAC -ACGGAAGACTGACTTACGAGTGAC -ACGGAAGACTGACTTACGCTGTAG -ACGGAAGACTGACTTACGCCTAAG -ACGGAAGACTGACTTACGGTTCAG -ACGGAAGACTGACTTACGGCATAG -ACGGAAGACTGACTTACGGACAAG -ACGGAAGACTGACTTACGAAGCAG -ACGGAAGACTGACTTACGCGTCAA -ACGGAAGACTGACTTACGGCTGAA -ACGGAAGACTGACTTACGAGTACG -ACGGAAGACTGACTTACGATCCGA -ACGGAAGACTGACTTACGATGGGA -ACGGAAGACTGACTTACGGTGCAA -ACGGAAGACTGACTTACGGAGGAA -ACGGAAGACTGACTTACGCAGGTA -ACGGAAGACTGACTTACGGACTCT -ACGGAAGACTGACTTACGAGTCCT -ACGGAAGACTGACTTACGTAAGCC -ACGGAAGACTGACTTACGATAGCC -ACGGAAGACTGACTTACGTAACCG -ACGGAAGACTGACTTACGATGCCA -ACGGAAGACTGAGTTAGCGGAAAC -ACGGAAGACTGAGTTAGCAACACC -ACGGAAGACTGAGTTAGCATCGAG -ACGGAAGACTGAGTTAGCCTCCTT -ACGGAAGACTGAGTTAGCCCTGTT -ACGGAAGACTGAGTTAGCCGGTTT -ACGGAAGACTGAGTTAGCGTGGTT -ACGGAAGACTGAGTTAGCGCCTTT -ACGGAAGACTGAGTTAGCGGTCTT -ACGGAAGACTGAGTTAGCACGCTT -ACGGAAGACTGAGTTAGCAGCGTT -ACGGAAGACTGAGTTAGCTTCGTC -ACGGAAGACTGAGTTAGCTCTCTC -ACGGAAGACTGAGTTAGCTGGATC -ACGGAAGACTGAGTTAGCCACTTC -ACGGAAGACTGAGTTAGCGTACTC -ACGGAAGACTGAGTTAGCGATGTC -ACGGAAGACTGAGTTAGCACAGTC -ACGGAAGACTGAGTTAGCTTGCTG -ACGGAAGACTGAGTTAGCTCCATG -ACGGAAGACTGAGTTAGCTGTGTG -ACGGAAGACTGAGTTAGCCTAGTG -ACGGAAGACTGAGTTAGCCATCTG -ACGGAAGACTGAGTTAGCGAGTTG -ACGGAAGACTGAGTTAGCAGACTG -ACGGAAGACTGAGTTAGCTCGGTA -ACGGAAGACTGAGTTAGCTGCCTA -ACGGAAGACTGAGTTAGCCCACTA -ACGGAAGACTGAGTTAGCGGAGTA -ACGGAAGACTGAGTTAGCTCGTCT -ACGGAAGACTGAGTTAGCTGCACT -ACGGAAGACTGAGTTAGCCTGACT -ACGGAAGACTGAGTTAGCCAACCT -ACGGAAGACTGAGTTAGCGCTACT -ACGGAAGACTGAGTTAGCGGATCT -ACGGAAGACTGAGTTAGCAAGGCT -ACGGAAGACTGAGTTAGCTCAACC -ACGGAAGACTGAGTTAGCTGTTCC -ACGGAAGACTGAGTTAGCATTCCC -ACGGAAGACTGAGTTAGCTTCTCG -ACGGAAGACTGAGTTAGCTAGACG -ACGGAAGACTGAGTTAGCGTAACG -ACGGAAGACTGAGTTAGCACTTCG -ACGGAAGACTGAGTTAGCTACGCA -ACGGAAGACTGAGTTAGCCTTGCA -ACGGAAGACTGAGTTAGCCGAACA -ACGGAAGACTGAGTTAGCCAGTCA -ACGGAAGACTGAGTTAGCGATCCA -ACGGAAGACTGAGTTAGCACGACA -ACGGAAGACTGAGTTAGCAGCTCA -ACGGAAGACTGAGTTAGCTCACGT -ACGGAAGACTGAGTTAGCCGTAGT -ACGGAAGACTGAGTTAGCGTCAGT -ACGGAAGACTGAGTTAGCGAAGGT -ACGGAAGACTGAGTTAGCAACCGT -ACGGAAGACTGAGTTAGCTTGTGC -ACGGAAGACTGAGTTAGCCTAAGC -ACGGAAGACTGAGTTAGCACTAGC -ACGGAAGACTGAGTTAGCAGATGC -ACGGAAGACTGAGTTAGCTGAAGG -ACGGAAGACTGAGTTAGCCAATGG -ACGGAAGACTGAGTTAGCATGAGG -ACGGAAGACTGAGTTAGCAATGGG -ACGGAAGACTGAGTTAGCTCCTGA -ACGGAAGACTGAGTTAGCTAGCGA -ACGGAAGACTGAGTTAGCCACAGA -ACGGAAGACTGAGTTAGCGCAAGA -ACGGAAGACTGAGTTAGCGGTTGA -ACGGAAGACTGAGTTAGCTCCGAT -ACGGAAGACTGAGTTAGCTGGCAT -ACGGAAGACTGAGTTAGCCGAGAT -ACGGAAGACTGAGTTAGCTACCAC -ACGGAAGACTGAGTTAGCCAGAAC -ACGGAAGACTGAGTTAGCGTCTAC -ACGGAAGACTGAGTTAGCACGTAC -ACGGAAGACTGAGTTAGCAGTGAC -ACGGAAGACTGAGTTAGCCTGTAG -ACGGAAGACTGAGTTAGCCCTAAG -ACGGAAGACTGAGTTAGCGTTCAG -ACGGAAGACTGAGTTAGCGCATAG -ACGGAAGACTGAGTTAGCGACAAG -ACGGAAGACTGAGTTAGCAAGCAG -ACGGAAGACTGAGTTAGCCGTCAA -ACGGAAGACTGAGTTAGCGCTGAA -ACGGAAGACTGAGTTAGCAGTACG -ACGGAAGACTGAGTTAGCATCCGA -ACGGAAGACTGAGTTAGCATGGGA -ACGGAAGACTGAGTTAGCGTGCAA -ACGGAAGACTGAGTTAGCGAGGAA -ACGGAAGACTGAGTTAGCCAGGTA -ACGGAAGACTGAGTTAGCGACTCT -ACGGAAGACTGAGTTAGCAGTCCT -ACGGAAGACTGAGTTAGCTAAGCC -ACGGAAGACTGAGTTAGCATAGCC -ACGGAAGACTGAGTTAGCTAACCG -ACGGAAGACTGAGTTAGCATGCCA -ACGGAAGACTGAGTCTTCGGAAAC -ACGGAAGACTGAGTCTTCAACACC -ACGGAAGACTGAGTCTTCATCGAG -ACGGAAGACTGAGTCTTCCTCCTT -ACGGAAGACTGAGTCTTCCCTGTT -ACGGAAGACTGAGTCTTCCGGTTT -ACGGAAGACTGAGTCTTCGTGGTT -ACGGAAGACTGAGTCTTCGCCTTT -ACGGAAGACTGAGTCTTCGGTCTT -ACGGAAGACTGAGTCTTCACGCTT -ACGGAAGACTGAGTCTTCAGCGTT -ACGGAAGACTGAGTCTTCTTCGTC -ACGGAAGACTGAGTCTTCTCTCTC -ACGGAAGACTGAGTCTTCTGGATC -ACGGAAGACTGAGTCTTCCACTTC -ACGGAAGACTGAGTCTTCGTACTC -ACGGAAGACTGAGTCTTCGATGTC -ACGGAAGACTGAGTCTTCACAGTC -ACGGAAGACTGAGTCTTCTTGCTG -ACGGAAGACTGAGTCTTCTCCATG -ACGGAAGACTGAGTCTTCTGTGTG -ACGGAAGACTGAGTCTTCCTAGTG -ACGGAAGACTGAGTCTTCCATCTG -ACGGAAGACTGAGTCTTCGAGTTG -ACGGAAGACTGAGTCTTCAGACTG -ACGGAAGACTGAGTCTTCTCGGTA -ACGGAAGACTGAGTCTTCTGCCTA -ACGGAAGACTGAGTCTTCCCACTA -ACGGAAGACTGAGTCTTCGGAGTA -ACGGAAGACTGAGTCTTCTCGTCT -ACGGAAGACTGAGTCTTCTGCACT -ACGGAAGACTGAGTCTTCCTGACT -ACGGAAGACTGAGTCTTCCAACCT -ACGGAAGACTGAGTCTTCGCTACT -ACGGAAGACTGAGTCTTCGGATCT -ACGGAAGACTGAGTCTTCAAGGCT -ACGGAAGACTGAGTCTTCTCAACC -ACGGAAGACTGAGTCTTCTGTTCC -ACGGAAGACTGAGTCTTCATTCCC -ACGGAAGACTGAGTCTTCTTCTCG -ACGGAAGACTGAGTCTTCTAGACG -ACGGAAGACTGAGTCTTCGTAACG -ACGGAAGACTGAGTCTTCACTTCG -ACGGAAGACTGAGTCTTCTACGCA -ACGGAAGACTGAGTCTTCCTTGCA -ACGGAAGACTGAGTCTTCCGAACA -ACGGAAGACTGAGTCTTCCAGTCA -ACGGAAGACTGAGTCTTCGATCCA -ACGGAAGACTGAGTCTTCACGACA -ACGGAAGACTGAGTCTTCAGCTCA -ACGGAAGACTGAGTCTTCTCACGT -ACGGAAGACTGAGTCTTCCGTAGT -ACGGAAGACTGAGTCTTCGTCAGT -ACGGAAGACTGAGTCTTCGAAGGT -ACGGAAGACTGAGTCTTCAACCGT -ACGGAAGACTGAGTCTTCTTGTGC -ACGGAAGACTGAGTCTTCCTAAGC -ACGGAAGACTGAGTCTTCACTAGC -ACGGAAGACTGAGTCTTCAGATGC -ACGGAAGACTGAGTCTTCTGAAGG -ACGGAAGACTGAGTCTTCCAATGG -ACGGAAGACTGAGTCTTCATGAGG -ACGGAAGACTGAGTCTTCAATGGG -ACGGAAGACTGAGTCTTCTCCTGA -ACGGAAGACTGAGTCTTCTAGCGA -ACGGAAGACTGAGTCTTCCACAGA -ACGGAAGACTGAGTCTTCGCAAGA -ACGGAAGACTGAGTCTTCGGTTGA -ACGGAAGACTGAGTCTTCTCCGAT -ACGGAAGACTGAGTCTTCTGGCAT -ACGGAAGACTGAGTCTTCCGAGAT -ACGGAAGACTGAGTCTTCTACCAC -ACGGAAGACTGAGTCTTCCAGAAC -ACGGAAGACTGAGTCTTCGTCTAC -ACGGAAGACTGAGTCTTCACGTAC -ACGGAAGACTGAGTCTTCAGTGAC -ACGGAAGACTGAGTCTTCCTGTAG -ACGGAAGACTGAGTCTTCCCTAAG -ACGGAAGACTGAGTCTTCGTTCAG -ACGGAAGACTGAGTCTTCGCATAG -ACGGAAGACTGAGTCTTCGACAAG -ACGGAAGACTGAGTCTTCAAGCAG -ACGGAAGACTGAGTCTTCCGTCAA -ACGGAAGACTGAGTCTTCGCTGAA -ACGGAAGACTGAGTCTTCAGTACG -ACGGAAGACTGAGTCTTCATCCGA -ACGGAAGACTGAGTCTTCATGGGA -ACGGAAGACTGAGTCTTCGTGCAA -ACGGAAGACTGAGTCTTCGAGGAA -ACGGAAGACTGAGTCTTCCAGGTA -ACGGAAGACTGAGTCTTCGACTCT -ACGGAAGACTGAGTCTTCAGTCCT -ACGGAAGACTGAGTCTTCTAAGCC -ACGGAAGACTGAGTCTTCATAGCC -ACGGAAGACTGAGTCTTCTAACCG -ACGGAAGACTGAGTCTTCATGCCA -ACGGAAGACTGACTCTCTGGAAAC -ACGGAAGACTGACTCTCTAACACC -ACGGAAGACTGACTCTCTATCGAG -ACGGAAGACTGACTCTCTCTCCTT -ACGGAAGACTGACTCTCTCCTGTT -ACGGAAGACTGACTCTCTCGGTTT -ACGGAAGACTGACTCTCTGTGGTT -ACGGAAGACTGACTCTCTGCCTTT -ACGGAAGACTGACTCTCTGGTCTT -ACGGAAGACTGACTCTCTACGCTT -ACGGAAGACTGACTCTCTAGCGTT -ACGGAAGACTGACTCTCTTTCGTC -ACGGAAGACTGACTCTCTTCTCTC -ACGGAAGACTGACTCTCTTGGATC -ACGGAAGACTGACTCTCTCACTTC -ACGGAAGACTGACTCTCTGTACTC -ACGGAAGACTGACTCTCTGATGTC -ACGGAAGACTGACTCTCTACAGTC -ACGGAAGACTGACTCTCTTTGCTG -ACGGAAGACTGACTCTCTTCCATG -ACGGAAGACTGACTCTCTTGTGTG -ACGGAAGACTGACTCTCTCTAGTG -ACGGAAGACTGACTCTCTCATCTG -ACGGAAGACTGACTCTCTGAGTTG -ACGGAAGACTGACTCTCTAGACTG -ACGGAAGACTGACTCTCTTCGGTA -ACGGAAGACTGACTCTCTTGCCTA -ACGGAAGACTGACTCTCTCCACTA -ACGGAAGACTGACTCTCTGGAGTA -ACGGAAGACTGACTCTCTTCGTCT -ACGGAAGACTGACTCTCTTGCACT -ACGGAAGACTGACTCTCTCTGACT -ACGGAAGACTGACTCTCTCAACCT -ACGGAAGACTGACTCTCTGCTACT -ACGGAAGACTGACTCTCTGGATCT -ACGGAAGACTGACTCTCTAAGGCT -ACGGAAGACTGACTCTCTTCAACC -ACGGAAGACTGACTCTCTTGTTCC -ACGGAAGACTGACTCTCTATTCCC -ACGGAAGACTGACTCTCTTTCTCG -ACGGAAGACTGACTCTCTTAGACG -ACGGAAGACTGACTCTCTGTAACG -ACGGAAGACTGACTCTCTACTTCG -ACGGAAGACTGACTCTCTTACGCA -ACGGAAGACTGACTCTCTCTTGCA -ACGGAAGACTGACTCTCTCGAACA -ACGGAAGACTGACTCTCTCAGTCA -ACGGAAGACTGACTCTCTGATCCA -ACGGAAGACTGACTCTCTACGACA -ACGGAAGACTGACTCTCTAGCTCA -ACGGAAGACTGACTCTCTTCACGT -ACGGAAGACTGACTCTCTCGTAGT -ACGGAAGACTGACTCTCTGTCAGT -ACGGAAGACTGACTCTCTGAAGGT -ACGGAAGACTGACTCTCTAACCGT -ACGGAAGACTGACTCTCTTTGTGC -ACGGAAGACTGACTCTCTCTAAGC -ACGGAAGACTGACTCTCTACTAGC -ACGGAAGACTGACTCTCTAGATGC -ACGGAAGACTGACTCTCTTGAAGG -ACGGAAGACTGACTCTCTCAATGG -ACGGAAGACTGACTCTCTATGAGG -ACGGAAGACTGACTCTCTAATGGG -ACGGAAGACTGACTCTCTTCCTGA -ACGGAAGACTGACTCTCTTAGCGA -ACGGAAGACTGACTCTCTCACAGA -ACGGAAGACTGACTCTCTGCAAGA -ACGGAAGACTGACTCTCTGGTTGA -ACGGAAGACTGACTCTCTTCCGAT -ACGGAAGACTGACTCTCTTGGCAT -ACGGAAGACTGACTCTCTCGAGAT -ACGGAAGACTGACTCTCTTACCAC -ACGGAAGACTGACTCTCTCAGAAC -ACGGAAGACTGACTCTCTGTCTAC -ACGGAAGACTGACTCTCTACGTAC -ACGGAAGACTGACTCTCTAGTGAC -ACGGAAGACTGACTCTCTCTGTAG -ACGGAAGACTGACTCTCTCCTAAG -ACGGAAGACTGACTCTCTGTTCAG -ACGGAAGACTGACTCTCTGCATAG -ACGGAAGACTGACTCTCTGACAAG -ACGGAAGACTGACTCTCTAAGCAG -ACGGAAGACTGACTCTCTCGTCAA -ACGGAAGACTGACTCTCTGCTGAA -ACGGAAGACTGACTCTCTAGTACG -ACGGAAGACTGACTCTCTATCCGA -ACGGAAGACTGACTCTCTATGGGA -ACGGAAGACTGACTCTCTGTGCAA -ACGGAAGACTGACTCTCTGAGGAA -ACGGAAGACTGACTCTCTCAGGTA -ACGGAAGACTGACTCTCTGACTCT -ACGGAAGACTGACTCTCTAGTCCT -ACGGAAGACTGACTCTCTTAAGCC -ACGGAAGACTGACTCTCTATAGCC -ACGGAAGACTGACTCTCTTAACCG -ACGGAAGACTGACTCTCTATGCCA -ACGGAAGACTGAATCTGGGGAAAC -ACGGAAGACTGAATCTGGAACACC -ACGGAAGACTGAATCTGGATCGAG -ACGGAAGACTGAATCTGGCTCCTT -ACGGAAGACTGAATCTGGCCTGTT -ACGGAAGACTGAATCTGGCGGTTT -ACGGAAGACTGAATCTGGGTGGTT -ACGGAAGACTGAATCTGGGCCTTT -ACGGAAGACTGAATCTGGGGTCTT -ACGGAAGACTGAATCTGGACGCTT -ACGGAAGACTGAATCTGGAGCGTT -ACGGAAGACTGAATCTGGTTCGTC -ACGGAAGACTGAATCTGGTCTCTC -ACGGAAGACTGAATCTGGTGGATC -ACGGAAGACTGAATCTGGCACTTC -ACGGAAGACTGAATCTGGGTACTC -ACGGAAGACTGAATCTGGGATGTC -ACGGAAGACTGAATCTGGACAGTC -ACGGAAGACTGAATCTGGTTGCTG -ACGGAAGACTGAATCTGGTCCATG -ACGGAAGACTGAATCTGGTGTGTG -ACGGAAGACTGAATCTGGCTAGTG -ACGGAAGACTGAATCTGGCATCTG -ACGGAAGACTGAATCTGGGAGTTG -ACGGAAGACTGAATCTGGAGACTG -ACGGAAGACTGAATCTGGTCGGTA -ACGGAAGACTGAATCTGGTGCCTA -ACGGAAGACTGAATCTGGCCACTA -ACGGAAGACTGAATCTGGGGAGTA -ACGGAAGACTGAATCTGGTCGTCT -ACGGAAGACTGAATCTGGTGCACT -ACGGAAGACTGAATCTGGCTGACT -ACGGAAGACTGAATCTGGCAACCT -ACGGAAGACTGAATCTGGGCTACT -ACGGAAGACTGAATCTGGGGATCT -ACGGAAGACTGAATCTGGAAGGCT -ACGGAAGACTGAATCTGGTCAACC -ACGGAAGACTGAATCTGGTGTTCC -ACGGAAGACTGAATCTGGATTCCC -ACGGAAGACTGAATCTGGTTCTCG -ACGGAAGACTGAATCTGGTAGACG -ACGGAAGACTGAATCTGGGTAACG -ACGGAAGACTGAATCTGGACTTCG -ACGGAAGACTGAATCTGGTACGCA -ACGGAAGACTGAATCTGGCTTGCA -ACGGAAGACTGAATCTGGCGAACA -ACGGAAGACTGAATCTGGCAGTCA -ACGGAAGACTGAATCTGGGATCCA -ACGGAAGACTGAATCTGGACGACA -ACGGAAGACTGAATCTGGAGCTCA -ACGGAAGACTGAATCTGGTCACGT -ACGGAAGACTGAATCTGGCGTAGT -ACGGAAGACTGAATCTGGGTCAGT -ACGGAAGACTGAATCTGGGAAGGT -ACGGAAGACTGAATCTGGAACCGT -ACGGAAGACTGAATCTGGTTGTGC -ACGGAAGACTGAATCTGGCTAAGC -ACGGAAGACTGAATCTGGACTAGC -ACGGAAGACTGAATCTGGAGATGC -ACGGAAGACTGAATCTGGTGAAGG -ACGGAAGACTGAATCTGGCAATGG -ACGGAAGACTGAATCTGGATGAGG -ACGGAAGACTGAATCTGGAATGGG -ACGGAAGACTGAATCTGGTCCTGA -ACGGAAGACTGAATCTGGTAGCGA -ACGGAAGACTGAATCTGGCACAGA -ACGGAAGACTGAATCTGGGCAAGA -ACGGAAGACTGAATCTGGGGTTGA -ACGGAAGACTGAATCTGGTCCGAT -ACGGAAGACTGAATCTGGTGGCAT -ACGGAAGACTGAATCTGGCGAGAT -ACGGAAGACTGAATCTGGTACCAC -ACGGAAGACTGAATCTGGCAGAAC -ACGGAAGACTGAATCTGGGTCTAC -ACGGAAGACTGAATCTGGACGTAC -ACGGAAGACTGAATCTGGAGTGAC -ACGGAAGACTGAATCTGGCTGTAG -ACGGAAGACTGAATCTGGCCTAAG -ACGGAAGACTGAATCTGGGTTCAG -ACGGAAGACTGAATCTGGGCATAG -ACGGAAGACTGAATCTGGGACAAG -ACGGAAGACTGAATCTGGAAGCAG -ACGGAAGACTGAATCTGGCGTCAA -ACGGAAGACTGAATCTGGGCTGAA -ACGGAAGACTGAATCTGGAGTACG -ACGGAAGACTGAATCTGGATCCGA -ACGGAAGACTGAATCTGGATGGGA -ACGGAAGACTGAATCTGGGTGCAA -ACGGAAGACTGAATCTGGGAGGAA -ACGGAAGACTGAATCTGGCAGGTA -ACGGAAGACTGAATCTGGGACTCT -ACGGAAGACTGAATCTGGAGTCCT -ACGGAAGACTGAATCTGGTAAGCC -ACGGAAGACTGAATCTGGATAGCC -ACGGAAGACTGAATCTGGTAACCG -ACGGAAGACTGAATCTGGATGCCA -ACGGAAGACTGATTCCACGGAAAC -ACGGAAGACTGATTCCACAACACC -ACGGAAGACTGATTCCACATCGAG -ACGGAAGACTGATTCCACCTCCTT -ACGGAAGACTGATTCCACCCTGTT -ACGGAAGACTGATTCCACCGGTTT -ACGGAAGACTGATTCCACGTGGTT -ACGGAAGACTGATTCCACGCCTTT -ACGGAAGACTGATTCCACGGTCTT -ACGGAAGACTGATTCCACACGCTT -ACGGAAGACTGATTCCACAGCGTT -ACGGAAGACTGATTCCACTTCGTC -ACGGAAGACTGATTCCACTCTCTC -ACGGAAGACTGATTCCACTGGATC -ACGGAAGACTGATTCCACCACTTC -ACGGAAGACTGATTCCACGTACTC -ACGGAAGACTGATTCCACGATGTC -ACGGAAGACTGATTCCACACAGTC -ACGGAAGACTGATTCCACTTGCTG -ACGGAAGACTGATTCCACTCCATG -ACGGAAGACTGATTCCACTGTGTG -ACGGAAGACTGATTCCACCTAGTG -ACGGAAGACTGATTCCACCATCTG -ACGGAAGACTGATTCCACGAGTTG -ACGGAAGACTGATTCCACAGACTG -ACGGAAGACTGATTCCACTCGGTA -ACGGAAGACTGATTCCACTGCCTA -ACGGAAGACTGATTCCACCCACTA -ACGGAAGACTGATTCCACGGAGTA -ACGGAAGACTGATTCCACTCGTCT -ACGGAAGACTGATTCCACTGCACT -ACGGAAGACTGATTCCACCTGACT -ACGGAAGACTGATTCCACCAACCT -ACGGAAGACTGATTCCACGCTACT -ACGGAAGACTGATTCCACGGATCT -ACGGAAGACTGATTCCACAAGGCT -ACGGAAGACTGATTCCACTCAACC -ACGGAAGACTGATTCCACTGTTCC -ACGGAAGACTGATTCCACATTCCC -ACGGAAGACTGATTCCACTTCTCG -ACGGAAGACTGATTCCACTAGACG -ACGGAAGACTGATTCCACGTAACG -ACGGAAGACTGATTCCACACTTCG -ACGGAAGACTGATTCCACTACGCA -ACGGAAGACTGATTCCACCTTGCA -ACGGAAGACTGATTCCACCGAACA -ACGGAAGACTGATTCCACCAGTCA -ACGGAAGACTGATTCCACGATCCA -ACGGAAGACTGATTCCACACGACA -ACGGAAGACTGATTCCACAGCTCA -ACGGAAGACTGATTCCACTCACGT -ACGGAAGACTGATTCCACCGTAGT -ACGGAAGACTGATTCCACGTCAGT -ACGGAAGACTGATTCCACGAAGGT -ACGGAAGACTGATTCCACAACCGT -ACGGAAGACTGATTCCACTTGTGC -ACGGAAGACTGATTCCACCTAAGC -ACGGAAGACTGATTCCACACTAGC -ACGGAAGACTGATTCCACAGATGC -ACGGAAGACTGATTCCACTGAAGG -ACGGAAGACTGATTCCACCAATGG -ACGGAAGACTGATTCCACATGAGG -ACGGAAGACTGATTCCACAATGGG -ACGGAAGACTGATTCCACTCCTGA -ACGGAAGACTGATTCCACTAGCGA -ACGGAAGACTGATTCCACCACAGA -ACGGAAGACTGATTCCACGCAAGA -ACGGAAGACTGATTCCACGGTTGA -ACGGAAGACTGATTCCACTCCGAT -ACGGAAGACTGATTCCACTGGCAT -ACGGAAGACTGATTCCACCGAGAT -ACGGAAGACTGATTCCACTACCAC -ACGGAAGACTGATTCCACCAGAAC -ACGGAAGACTGATTCCACGTCTAC -ACGGAAGACTGATTCCACACGTAC -ACGGAAGACTGATTCCACAGTGAC -ACGGAAGACTGATTCCACCTGTAG -ACGGAAGACTGATTCCACCCTAAG -ACGGAAGACTGATTCCACGTTCAG -ACGGAAGACTGATTCCACGCATAG -ACGGAAGACTGATTCCACGACAAG -ACGGAAGACTGATTCCACAAGCAG -ACGGAAGACTGATTCCACCGTCAA -ACGGAAGACTGATTCCACGCTGAA -ACGGAAGACTGATTCCACAGTACG -ACGGAAGACTGATTCCACATCCGA -ACGGAAGACTGATTCCACATGGGA -ACGGAAGACTGATTCCACGTGCAA -ACGGAAGACTGATTCCACGAGGAA -ACGGAAGACTGATTCCACCAGGTA -ACGGAAGACTGATTCCACGACTCT -ACGGAAGACTGATTCCACAGTCCT -ACGGAAGACTGATTCCACTAAGCC -ACGGAAGACTGATTCCACATAGCC -ACGGAAGACTGATTCCACTAACCG -ACGGAAGACTGATTCCACATGCCA -ACGGAAGACTGACTCGTAGGAAAC -ACGGAAGACTGACTCGTAAACACC -ACGGAAGACTGACTCGTAATCGAG -ACGGAAGACTGACTCGTACTCCTT -ACGGAAGACTGACTCGTACCTGTT -ACGGAAGACTGACTCGTACGGTTT -ACGGAAGACTGACTCGTAGTGGTT -ACGGAAGACTGACTCGTAGCCTTT -ACGGAAGACTGACTCGTAGGTCTT -ACGGAAGACTGACTCGTAACGCTT -ACGGAAGACTGACTCGTAAGCGTT -ACGGAAGACTGACTCGTATTCGTC -ACGGAAGACTGACTCGTATCTCTC -ACGGAAGACTGACTCGTATGGATC -ACGGAAGACTGACTCGTACACTTC -ACGGAAGACTGACTCGTAGTACTC -ACGGAAGACTGACTCGTAGATGTC -ACGGAAGACTGACTCGTAACAGTC -ACGGAAGACTGACTCGTATTGCTG -ACGGAAGACTGACTCGTATCCATG -ACGGAAGACTGACTCGTATGTGTG -ACGGAAGACTGACTCGTACTAGTG -ACGGAAGACTGACTCGTACATCTG -ACGGAAGACTGACTCGTAGAGTTG -ACGGAAGACTGACTCGTAAGACTG -ACGGAAGACTGACTCGTATCGGTA -ACGGAAGACTGACTCGTATGCCTA -ACGGAAGACTGACTCGTACCACTA -ACGGAAGACTGACTCGTAGGAGTA -ACGGAAGACTGACTCGTATCGTCT -ACGGAAGACTGACTCGTATGCACT -ACGGAAGACTGACTCGTACTGACT -ACGGAAGACTGACTCGTACAACCT -ACGGAAGACTGACTCGTAGCTACT -ACGGAAGACTGACTCGTAGGATCT -ACGGAAGACTGACTCGTAAAGGCT -ACGGAAGACTGACTCGTATCAACC -ACGGAAGACTGACTCGTATGTTCC -ACGGAAGACTGACTCGTAATTCCC -ACGGAAGACTGACTCGTATTCTCG -ACGGAAGACTGACTCGTATAGACG -ACGGAAGACTGACTCGTAGTAACG -ACGGAAGACTGACTCGTAACTTCG -ACGGAAGACTGACTCGTATACGCA -ACGGAAGACTGACTCGTACTTGCA -ACGGAAGACTGACTCGTACGAACA -ACGGAAGACTGACTCGTACAGTCA -ACGGAAGACTGACTCGTAGATCCA -ACGGAAGACTGACTCGTAACGACA -ACGGAAGACTGACTCGTAAGCTCA -ACGGAAGACTGACTCGTATCACGT -ACGGAAGACTGACTCGTACGTAGT -ACGGAAGACTGACTCGTAGTCAGT -ACGGAAGACTGACTCGTAGAAGGT -ACGGAAGACTGACTCGTAAACCGT -ACGGAAGACTGACTCGTATTGTGC -ACGGAAGACTGACTCGTACTAAGC -ACGGAAGACTGACTCGTAACTAGC -ACGGAAGACTGACTCGTAAGATGC -ACGGAAGACTGACTCGTATGAAGG -ACGGAAGACTGACTCGTACAATGG -ACGGAAGACTGACTCGTAATGAGG -ACGGAAGACTGACTCGTAAATGGG -ACGGAAGACTGACTCGTATCCTGA -ACGGAAGACTGACTCGTATAGCGA -ACGGAAGACTGACTCGTACACAGA -ACGGAAGACTGACTCGTAGCAAGA -ACGGAAGACTGACTCGTAGGTTGA -ACGGAAGACTGACTCGTATCCGAT -ACGGAAGACTGACTCGTATGGCAT -ACGGAAGACTGACTCGTACGAGAT -ACGGAAGACTGACTCGTATACCAC -ACGGAAGACTGACTCGTACAGAAC -ACGGAAGACTGACTCGTAGTCTAC -ACGGAAGACTGACTCGTAACGTAC -ACGGAAGACTGACTCGTAAGTGAC -ACGGAAGACTGACTCGTACTGTAG -ACGGAAGACTGACTCGTACCTAAG -ACGGAAGACTGACTCGTAGTTCAG -ACGGAAGACTGACTCGTAGCATAG -ACGGAAGACTGACTCGTAGACAAG -ACGGAAGACTGACTCGTAAAGCAG -ACGGAAGACTGACTCGTACGTCAA -ACGGAAGACTGACTCGTAGCTGAA -ACGGAAGACTGACTCGTAAGTACG -ACGGAAGACTGACTCGTAATCCGA -ACGGAAGACTGACTCGTAATGGGA -ACGGAAGACTGACTCGTAGTGCAA -ACGGAAGACTGACTCGTAGAGGAA -ACGGAAGACTGACTCGTACAGGTA -ACGGAAGACTGACTCGTAGACTCT -ACGGAAGACTGACTCGTAAGTCCT -ACGGAAGACTGACTCGTATAAGCC -ACGGAAGACTGACTCGTAATAGCC -ACGGAAGACTGACTCGTATAACCG -ACGGAAGACTGACTCGTAATGCCA -ACGGAAGACTGAGTCGATGGAAAC -ACGGAAGACTGAGTCGATAACACC -ACGGAAGACTGAGTCGATATCGAG -ACGGAAGACTGAGTCGATCTCCTT -ACGGAAGACTGAGTCGATCCTGTT -ACGGAAGACTGAGTCGATCGGTTT -ACGGAAGACTGAGTCGATGTGGTT -ACGGAAGACTGAGTCGATGCCTTT -ACGGAAGACTGAGTCGATGGTCTT -ACGGAAGACTGAGTCGATACGCTT -ACGGAAGACTGAGTCGATAGCGTT -ACGGAAGACTGAGTCGATTTCGTC -ACGGAAGACTGAGTCGATTCTCTC -ACGGAAGACTGAGTCGATTGGATC -ACGGAAGACTGAGTCGATCACTTC -ACGGAAGACTGAGTCGATGTACTC -ACGGAAGACTGAGTCGATGATGTC -ACGGAAGACTGAGTCGATACAGTC -ACGGAAGACTGAGTCGATTTGCTG -ACGGAAGACTGAGTCGATTCCATG -ACGGAAGACTGAGTCGATTGTGTG -ACGGAAGACTGAGTCGATCTAGTG -ACGGAAGACTGAGTCGATCATCTG -ACGGAAGACTGAGTCGATGAGTTG -ACGGAAGACTGAGTCGATAGACTG -ACGGAAGACTGAGTCGATTCGGTA -ACGGAAGACTGAGTCGATTGCCTA -ACGGAAGACTGAGTCGATCCACTA -ACGGAAGACTGAGTCGATGGAGTA -ACGGAAGACTGAGTCGATTCGTCT -ACGGAAGACTGAGTCGATTGCACT -ACGGAAGACTGAGTCGATCTGACT -ACGGAAGACTGAGTCGATCAACCT -ACGGAAGACTGAGTCGATGCTACT -ACGGAAGACTGAGTCGATGGATCT -ACGGAAGACTGAGTCGATAAGGCT -ACGGAAGACTGAGTCGATTCAACC -ACGGAAGACTGAGTCGATTGTTCC -ACGGAAGACTGAGTCGATATTCCC -ACGGAAGACTGAGTCGATTTCTCG -ACGGAAGACTGAGTCGATTAGACG -ACGGAAGACTGAGTCGATGTAACG -ACGGAAGACTGAGTCGATACTTCG -ACGGAAGACTGAGTCGATTACGCA -ACGGAAGACTGAGTCGATCTTGCA -ACGGAAGACTGAGTCGATCGAACA -ACGGAAGACTGAGTCGATCAGTCA -ACGGAAGACTGAGTCGATGATCCA -ACGGAAGACTGAGTCGATACGACA -ACGGAAGACTGAGTCGATAGCTCA -ACGGAAGACTGAGTCGATTCACGT -ACGGAAGACTGAGTCGATCGTAGT -ACGGAAGACTGAGTCGATGTCAGT -ACGGAAGACTGAGTCGATGAAGGT -ACGGAAGACTGAGTCGATAACCGT -ACGGAAGACTGAGTCGATTTGTGC -ACGGAAGACTGAGTCGATCTAAGC -ACGGAAGACTGAGTCGATACTAGC -ACGGAAGACTGAGTCGATAGATGC -ACGGAAGACTGAGTCGATTGAAGG -ACGGAAGACTGAGTCGATCAATGG -ACGGAAGACTGAGTCGATATGAGG -ACGGAAGACTGAGTCGATAATGGG -ACGGAAGACTGAGTCGATTCCTGA -ACGGAAGACTGAGTCGATTAGCGA -ACGGAAGACTGAGTCGATCACAGA -ACGGAAGACTGAGTCGATGCAAGA -ACGGAAGACTGAGTCGATGGTTGA -ACGGAAGACTGAGTCGATTCCGAT -ACGGAAGACTGAGTCGATTGGCAT -ACGGAAGACTGAGTCGATCGAGAT -ACGGAAGACTGAGTCGATTACCAC -ACGGAAGACTGAGTCGATCAGAAC -ACGGAAGACTGAGTCGATGTCTAC -ACGGAAGACTGAGTCGATACGTAC -ACGGAAGACTGAGTCGATAGTGAC -ACGGAAGACTGAGTCGATCTGTAG -ACGGAAGACTGAGTCGATCCTAAG -ACGGAAGACTGAGTCGATGTTCAG -ACGGAAGACTGAGTCGATGCATAG -ACGGAAGACTGAGTCGATGACAAG -ACGGAAGACTGAGTCGATAAGCAG -ACGGAAGACTGAGTCGATCGTCAA -ACGGAAGACTGAGTCGATGCTGAA -ACGGAAGACTGAGTCGATAGTACG -ACGGAAGACTGAGTCGATATCCGA -ACGGAAGACTGAGTCGATATGGGA -ACGGAAGACTGAGTCGATGTGCAA -ACGGAAGACTGAGTCGATGAGGAA -ACGGAAGACTGAGTCGATCAGGTA -ACGGAAGACTGAGTCGATGACTCT -ACGGAAGACTGAGTCGATAGTCCT -ACGGAAGACTGAGTCGATTAAGCC -ACGGAAGACTGAGTCGATATAGCC -ACGGAAGACTGAGTCGATTAACCG -ACGGAAGACTGAGTCGATATGCCA -ACGGAAGACTGAGTCACAGGAAAC -ACGGAAGACTGAGTCACAAACACC -ACGGAAGACTGAGTCACAATCGAG -ACGGAAGACTGAGTCACACTCCTT -ACGGAAGACTGAGTCACACCTGTT -ACGGAAGACTGAGTCACACGGTTT -ACGGAAGACTGAGTCACAGTGGTT -ACGGAAGACTGAGTCACAGCCTTT -ACGGAAGACTGAGTCACAGGTCTT -ACGGAAGACTGAGTCACAACGCTT -ACGGAAGACTGAGTCACAAGCGTT -ACGGAAGACTGAGTCACATTCGTC -ACGGAAGACTGAGTCACATCTCTC -ACGGAAGACTGAGTCACATGGATC -ACGGAAGACTGAGTCACACACTTC -ACGGAAGACTGAGTCACAGTACTC -ACGGAAGACTGAGTCACAGATGTC -ACGGAAGACTGAGTCACAACAGTC -ACGGAAGACTGAGTCACATTGCTG -ACGGAAGACTGAGTCACATCCATG -ACGGAAGACTGAGTCACATGTGTG -ACGGAAGACTGAGTCACACTAGTG -ACGGAAGACTGAGTCACACATCTG -ACGGAAGACTGAGTCACAGAGTTG -ACGGAAGACTGAGTCACAAGACTG -ACGGAAGACTGAGTCACATCGGTA -ACGGAAGACTGAGTCACATGCCTA -ACGGAAGACTGAGTCACACCACTA -ACGGAAGACTGAGTCACAGGAGTA -ACGGAAGACTGAGTCACATCGTCT -ACGGAAGACTGAGTCACATGCACT -ACGGAAGACTGAGTCACACTGACT -ACGGAAGACTGAGTCACACAACCT -ACGGAAGACTGAGTCACAGCTACT -ACGGAAGACTGAGTCACAGGATCT -ACGGAAGACTGAGTCACAAAGGCT -ACGGAAGACTGAGTCACATCAACC -ACGGAAGACTGAGTCACATGTTCC -ACGGAAGACTGAGTCACAATTCCC -ACGGAAGACTGAGTCACATTCTCG -ACGGAAGACTGAGTCACATAGACG -ACGGAAGACTGAGTCACAGTAACG -ACGGAAGACTGAGTCACAACTTCG -ACGGAAGACTGAGTCACATACGCA -ACGGAAGACTGAGTCACACTTGCA -ACGGAAGACTGAGTCACACGAACA -ACGGAAGACTGAGTCACACAGTCA -ACGGAAGACTGAGTCACAGATCCA -ACGGAAGACTGAGTCACAACGACA -ACGGAAGACTGAGTCACAAGCTCA -ACGGAAGACTGAGTCACATCACGT -ACGGAAGACTGAGTCACACGTAGT -ACGGAAGACTGAGTCACAGTCAGT -ACGGAAGACTGAGTCACAGAAGGT -ACGGAAGACTGAGTCACAAACCGT -ACGGAAGACTGAGTCACATTGTGC -ACGGAAGACTGAGTCACACTAAGC -ACGGAAGACTGAGTCACAACTAGC -ACGGAAGACTGAGTCACAAGATGC -ACGGAAGACTGAGTCACATGAAGG -ACGGAAGACTGAGTCACACAATGG -ACGGAAGACTGAGTCACAATGAGG -ACGGAAGACTGAGTCACAAATGGG -ACGGAAGACTGAGTCACATCCTGA -ACGGAAGACTGAGTCACATAGCGA -ACGGAAGACTGAGTCACACACAGA -ACGGAAGACTGAGTCACAGCAAGA -ACGGAAGACTGAGTCACAGGTTGA -ACGGAAGACTGAGTCACATCCGAT -ACGGAAGACTGAGTCACATGGCAT -ACGGAAGACTGAGTCACACGAGAT -ACGGAAGACTGAGTCACATACCAC -ACGGAAGACTGAGTCACACAGAAC -ACGGAAGACTGAGTCACAGTCTAC -ACGGAAGACTGAGTCACAACGTAC -ACGGAAGACTGAGTCACAAGTGAC -ACGGAAGACTGAGTCACACTGTAG -ACGGAAGACTGAGTCACACCTAAG -ACGGAAGACTGAGTCACAGTTCAG -ACGGAAGACTGAGTCACAGCATAG -ACGGAAGACTGAGTCACAGACAAG -ACGGAAGACTGAGTCACAAAGCAG -ACGGAAGACTGAGTCACACGTCAA -ACGGAAGACTGAGTCACAGCTGAA -ACGGAAGACTGAGTCACAAGTACG -ACGGAAGACTGAGTCACAATCCGA -ACGGAAGACTGAGTCACAATGGGA -ACGGAAGACTGAGTCACAGTGCAA -ACGGAAGACTGAGTCACAGAGGAA -ACGGAAGACTGAGTCACACAGGTA -ACGGAAGACTGAGTCACAGACTCT -ACGGAAGACTGAGTCACAAGTCCT -ACGGAAGACTGAGTCACATAAGCC -ACGGAAGACTGAGTCACAATAGCC -ACGGAAGACTGAGTCACATAACCG -ACGGAAGACTGAGTCACAATGCCA -ACGGAAGACTGACTGTTGGGAAAC -ACGGAAGACTGACTGTTGAACACC -ACGGAAGACTGACTGTTGATCGAG -ACGGAAGACTGACTGTTGCTCCTT -ACGGAAGACTGACTGTTGCCTGTT -ACGGAAGACTGACTGTTGCGGTTT -ACGGAAGACTGACTGTTGGTGGTT -ACGGAAGACTGACTGTTGGCCTTT -ACGGAAGACTGACTGTTGGGTCTT -ACGGAAGACTGACTGTTGACGCTT -ACGGAAGACTGACTGTTGAGCGTT -ACGGAAGACTGACTGTTGTTCGTC -ACGGAAGACTGACTGTTGTCTCTC -ACGGAAGACTGACTGTTGTGGATC -ACGGAAGACTGACTGTTGCACTTC -ACGGAAGACTGACTGTTGGTACTC -ACGGAAGACTGACTGTTGGATGTC -ACGGAAGACTGACTGTTGACAGTC -ACGGAAGACTGACTGTTGTTGCTG -ACGGAAGACTGACTGTTGTCCATG -ACGGAAGACTGACTGTTGTGTGTG -ACGGAAGACTGACTGTTGCTAGTG -ACGGAAGACTGACTGTTGCATCTG -ACGGAAGACTGACTGTTGGAGTTG -ACGGAAGACTGACTGTTGAGACTG -ACGGAAGACTGACTGTTGTCGGTA -ACGGAAGACTGACTGTTGTGCCTA -ACGGAAGACTGACTGTTGCCACTA -ACGGAAGACTGACTGTTGGGAGTA -ACGGAAGACTGACTGTTGTCGTCT -ACGGAAGACTGACTGTTGTGCACT -ACGGAAGACTGACTGTTGCTGACT -ACGGAAGACTGACTGTTGCAACCT -ACGGAAGACTGACTGTTGGCTACT -ACGGAAGACTGACTGTTGGGATCT -ACGGAAGACTGACTGTTGAAGGCT -ACGGAAGACTGACTGTTGTCAACC -ACGGAAGACTGACTGTTGTGTTCC -ACGGAAGACTGACTGTTGATTCCC -ACGGAAGACTGACTGTTGTTCTCG -ACGGAAGACTGACTGTTGTAGACG -ACGGAAGACTGACTGTTGGTAACG -ACGGAAGACTGACTGTTGACTTCG -ACGGAAGACTGACTGTTGTACGCA -ACGGAAGACTGACTGTTGCTTGCA -ACGGAAGACTGACTGTTGCGAACA -ACGGAAGACTGACTGTTGCAGTCA -ACGGAAGACTGACTGTTGGATCCA -ACGGAAGACTGACTGTTGACGACA -ACGGAAGACTGACTGTTGAGCTCA -ACGGAAGACTGACTGTTGTCACGT -ACGGAAGACTGACTGTTGCGTAGT -ACGGAAGACTGACTGTTGGTCAGT -ACGGAAGACTGACTGTTGGAAGGT -ACGGAAGACTGACTGTTGAACCGT -ACGGAAGACTGACTGTTGTTGTGC -ACGGAAGACTGACTGTTGCTAAGC -ACGGAAGACTGACTGTTGACTAGC -ACGGAAGACTGACTGTTGAGATGC -ACGGAAGACTGACTGTTGTGAAGG -ACGGAAGACTGACTGTTGCAATGG -ACGGAAGACTGACTGTTGATGAGG -ACGGAAGACTGACTGTTGAATGGG -ACGGAAGACTGACTGTTGTCCTGA -ACGGAAGACTGACTGTTGTAGCGA -ACGGAAGACTGACTGTTGCACAGA -ACGGAAGACTGACTGTTGGCAAGA -ACGGAAGACTGACTGTTGGGTTGA -ACGGAAGACTGACTGTTGTCCGAT -ACGGAAGACTGACTGTTGTGGCAT -ACGGAAGACTGACTGTTGCGAGAT -ACGGAAGACTGACTGTTGTACCAC -ACGGAAGACTGACTGTTGCAGAAC -ACGGAAGACTGACTGTTGGTCTAC -ACGGAAGACTGACTGTTGACGTAC -ACGGAAGACTGACTGTTGAGTGAC -ACGGAAGACTGACTGTTGCTGTAG -ACGGAAGACTGACTGTTGCCTAAG -ACGGAAGACTGACTGTTGGTTCAG -ACGGAAGACTGACTGTTGGCATAG -ACGGAAGACTGACTGTTGGACAAG -ACGGAAGACTGACTGTTGAAGCAG -ACGGAAGACTGACTGTTGCGTCAA -ACGGAAGACTGACTGTTGGCTGAA -ACGGAAGACTGACTGTTGAGTACG -ACGGAAGACTGACTGTTGATCCGA -ACGGAAGACTGACTGTTGATGGGA -ACGGAAGACTGACTGTTGGTGCAA -ACGGAAGACTGACTGTTGGAGGAA -ACGGAAGACTGACTGTTGCAGGTA -ACGGAAGACTGACTGTTGGACTCT -ACGGAAGACTGACTGTTGAGTCCT -ACGGAAGACTGACTGTTGTAAGCC -ACGGAAGACTGACTGTTGATAGCC -ACGGAAGACTGACTGTTGTAACCG -ACGGAAGACTGACTGTTGATGCCA -ACGGAAGACTGAATGTCCGGAAAC -ACGGAAGACTGAATGTCCAACACC -ACGGAAGACTGAATGTCCATCGAG -ACGGAAGACTGAATGTCCCTCCTT -ACGGAAGACTGAATGTCCCCTGTT -ACGGAAGACTGAATGTCCCGGTTT -ACGGAAGACTGAATGTCCGTGGTT -ACGGAAGACTGAATGTCCGCCTTT -ACGGAAGACTGAATGTCCGGTCTT -ACGGAAGACTGAATGTCCACGCTT -ACGGAAGACTGAATGTCCAGCGTT -ACGGAAGACTGAATGTCCTTCGTC -ACGGAAGACTGAATGTCCTCTCTC -ACGGAAGACTGAATGTCCTGGATC -ACGGAAGACTGAATGTCCCACTTC -ACGGAAGACTGAATGTCCGTACTC -ACGGAAGACTGAATGTCCGATGTC -ACGGAAGACTGAATGTCCACAGTC -ACGGAAGACTGAATGTCCTTGCTG -ACGGAAGACTGAATGTCCTCCATG -ACGGAAGACTGAATGTCCTGTGTG -ACGGAAGACTGAATGTCCCTAGTG -ACGGAAGACTGAATGTCCCATCTG -ACGGAAGACTGAATGTCCGAGTTG -ACGGAAGACTGAATGTCCAGACTG -ACGGAAGACTGAATGTCCTCGGTA -ACGGAAGACTGAATGTCCTGCCTA -ACGGAAGACTGAATGTCCCCACTA -ACGGAAGACTGAATGTCCGGAGTA -ACGGAAGACTGAATGTCCTCGTCT -ACGGAAGACTGAATGTCCTGCACT -ACGGAAGACTGAATGTCCCTGACT -ACGGAAGACTGAATGTCCCAACCT -ACGGAAGACTGAATGTCCGCTACT -ACGGAAGACTGAATGTCCGGATCT -ACGGAAGACTGAATGTCCAAGGCT -ACGGAAGACTGAATGTCCTCAACC -ACGGAAGACTGAATGTCCTGTTCC -ACGGAAGACTGAATGTCCATTCCC -ACGGAAGACTGAATGTCCTTCTCG -ACGGAAGACTGAATGTCCTAGACG -ACGGAAGACTGAATGTCCGTAACG -ACGGAAGACTGAATGTCCACTTCG -ACGGAAGACTGAATGTCCTACGCA -ACGGAAGACTGAATGTCCCTTGCA -ACGGAAGACTGAATGTCCCGAACA -ACGGAAGACTGAATGTCCCAGTCA -ACGGAAGACTGAATGTCCGATCCA -ACGGAAGACTGAATGTCCACGACA -ACGGAAGACTGAATGTCCAGCTCA -ACGGAAGACTGAATGTCCTCACGT -ACGGAAGACTGAATGTCCCGTAGT -ACGGAAGACTGAATGTCCGTCAGT -ACGGAAGACTGAATGTCCGAAGGT -ACGGAAGACTGAATGTCCAACCGT -ACGGAAGACTGAATGTCCTTGTGC -ACGGAAGACTGAATGTCCCTAAGC -ACGGAAGACTGAATGTCCACTAGC -ACGGAAGACTGAATGTCCAGATGC -ACGGAAGACTGAATGTCCTGAAGG -ACGGAAGACTGAATGTCCCAATGG -ACGGAAGACTGAATGTCCATGAGG -ACGGAAGACTGAATGTCCAATGGG -ACGGAAGACTGAATGTCCTCCTGA -ACGGAAGACTGAATGTCCTAGCGA -ACGGAAGACTGAATGTCCCACAGA -ACGGAAGACTGAATGTCCGCAAGA -ACGGAAGACTGAATGTCCGGTTGA -ACGGAAGACTGAATGTCCTCCGAT -ACGGAAGACTGAATGTCCTGGCAT -ACGGAAGACTGAATGTCCCGAGAT -ACGGAAGACTGAATGTCCTACCAC -ACGGAAGACTGAATGTCCCAGAAC -ACGGAAGACTGAATGTCCGTCTAC -ACGGAAGACTGAATGTCCACGTAC -ACGGAAGACTGAATGTCCAGTGAC -ACGGAAGACTGAATGTCCCTGTAG -ACGGAAGACTGAATGTCCCCTAAG -ACGGAAGACTGAATGTCCGTTCAG -ACGGAAGACTGAATGTCCGCATAG -ACGGAAGACTGAATGTCCGACAAG -ACGGAAGACTGAATGTCCAAGCAG -ACGGAAGACTGAATGTCCCGTCAA -ACGGAAGACTGAATGTCCGCTGAA -ACGGAAGACTGAATGTCCAGTACG -ACGGAAGACTGAATGTCCATCCGA -ACGGAAGACTGAATGTCCATGGGA -ACGGAAGACTGAATGTCCGTGCAA -ACGGAAGACTGAATGTCCGAGGAA -ACGGAAGACTGAATGTCCCAGGTA -ACGGAAGACTGAATGTCCGACTCT -ACGGAAGACTGAATGTCCAGTCCT -ACGGAAGACTGAATGTCCTAAGCC -ACGGAAGACTGAATGTCCATAGCC -ACGGAAGACTGAATGTCCTAACCG -ACGGAAGACTGAATGTCCATGCCA -ACGGAAGACTGAGTGTGTGGAAAC -ACGGAAGACTGAGTGTGTAACACC -ACGGAAGACTGAGTGTGTATCGAG -ACGGAAGACTGAGTGTGTCTCCTT -ACGGAAGACTGAGTGTGTCCTGTT -ACGGAAGACTGAGTGTGTCGGTTT -ACGGAAGACTGAGTGTGTGTGGTT -ACGGAAGACTGAGTGTGTGCCTTT -ACGGAAGACTGAGTGTGTGGTCTT -ACGGAAGACTGAGTGTGTACGCTT -ACGGAAGACTGAGTGTGTAGCGTT -ACGGAAGACTGAGTGTGTTTCGTC -ACGGAAGACTGAGTGTGTTCTCTC -ACGGAAGACTGAGTGTGTTGGATC -ACGGAAGACTGAGTGTGTCACTTC -ACGGAAGACTGAGTGTGTGTACTC -ACGGAAGACTGAGTGTGTGATGTC -ACGGAAGACTGAGTGTGTACAGTC -ACGGAAGACTGAGTGTGTTTGCTG -ACGGAAGACTGAGTGTGTTCCATG -ACGGAAGACTGAGTGTGTTGTGTG -ACGGAAGACTGAGTGTGTCTAGTG -ACGGAAGACTGAGTGTGTCATCTG -ACGGAAGACTGAGTGTGTGAGTTG -ACGGAAGACTGAGTGTGTAGACTG -ACGGAAGACTGAGTGTGTTCGGTA -ACGGAAGACTGAGTGTGTTGCCTA -ACGGAAGACTGAGTGTGTCCACTA -ACGGAAGACTGAGTGTGTGGAGTA -ACGGAAGACTGAGTGTGTTCGTCT -ACGGAAGACTGAGTGTGTTGCACT -ACGGAAGACTGAGTGTGTCTGACT -ACGGAAGACTGAGTGTGTCAACCT -ACGGAAGACTGAGTGTGTGCTACT -ACGGAAGACTGAGTGTGTGGATCT -ACGGAAGACTGAGTGTGTAAGGCT -ACGGAAGACTGAGTGTGTTCAACC -ACGGAAGACTGAGTGTGTTGTTCC -ACGGAAGACTGAGTGTGTATTCCC -ACGGAAGACTGAGTGTGTTTCTCG -ACGGAAGACTGAGTGTGTTAGACG -ACGGAAGACTGAGTGTGTGTAACG -ACGGAAGACTGAGTGTGTACTTCG -ACGGAAGACTGAGTGTGTTACGCA -ACGGAAGACTGAGTGTGTCTTGCA -ACGGAAGACTGAGTGTGTCGAACA -ACGGAAGACTGAGTGTGTCAGTCA -ACGGAAGACTGAGTGTGTGATCCA -ACGGAAGACTGAGTGTGTACGACA -ACGGAAGACTGAGTGTGTAGCTCA -ACGGAAGACTGAGTGTGTTCACGT -ACGGAAGACTGAGTGTGTCGTAGT -ACGGAAGACTGAGTGTGTGTCAGT -ACGGAAGACTGAGTGTGTGAAGGT -ACGGAAGACTGAGTGTGTAACCGT -ACGGAAGACTGAGTGTGTTTGTGC -ACGGAAGACTGAGTGTGTCTAAGC -ACGGAAGACTGAGTGTGTACTAGC -ACGGAAGACTGAGTGTGTAGATGC -ACGGAAGACTGAGTGTGTTGAAGG -ACGGAAGACTGAGTGTGTCAATGG -ACGGAAGACTGAGTGTGTATGAGG -ACGGAAGACTGAGTGTGTAATGGG -ACGGAAGACTGAGTGTGTTCCTGA -ACGGAAGACTGAGTGTGTTAGCGA -ACGGAAGACTGAGTGTGTCACAGA -ACGGAAGACTGAGTGTGTGCAAGA -ACGGAAGACTGAGTGTGTGGTTGA -ACGGAAGACTGAGTGTGTTCCGAT -ACGGAAGACTGAGTGTGTTGGCAT -ACGGAAGACTGAGTGTGTCGAGAT -ACGGAAGACTGAGTGTGTTACCAC -ACGGAAGACTGAGTGTGTCAGAAC -ACGGAAGACTGAGTGTGTGTCTAC -ACGGAAGACTGAGTGTGTACGTAC -ACGGAAGACTGAGTGTGTAGTGAC -ACGGAAGACTGAGTGTGTCTGTAG -ACGGAAGACTGAGTGTGTCCTAAG -ACGGAAGACTGAGTGTGTGTTCAG -ACGGAAGACTGAGTGTGTGCATAG -ACGGAAGACTGAGTGTGTGACAAG -ACGGAAGACTGAGTGTGTAAGCAG -ACGGAAGACTGAGTGTGTCGTCAA -ACGGAAGACTGAGTGTGTGCTGAA -ACGGAAGACTGAGTGTGTAGTACG -ACGGAAGACTGAGTGTGTATCCGA -ACGGAAGACTGAGTGTGTATGGGA -ACGGAAGACTGAGTGTGTGTGCAA -ACGGAAGACTGAGTGTGTGAGGAA -ACGGAAGACTGAGTGTGTCAGGTA -ACGGAAGACTGAGTGTGTGACTCT -ACGGAAGACTGAGTGTGTAGTCCT -ACGGAAGACTGAGTGTGTTAAGCC -ACGGAAGACTGAGTGTGTATAGCC -ACGGAAGACTGAGTGTGTTAACCG -ACGGAAGACTGAGTGTGTATGCCA -ACGGAAGACTGAGTGCTAGGAAAC -ACGGAAGACTGAGTGCTAAACACC -ACGGAAGACTGAGTGCTAATCGAG -ACGGAAGACTGAGTGCTACTCCTT -ACGGAAGACTGAGTGCTACCTGTT -ACGGAAGACTGAGTGCTACGGTTT -ACGGAAGACTGAGTGCTAGTGGTT -ACGGAAGACTGAGTGCTAGCCTTT -ACGGAAGACTGAGTGCTAGGTCTT -ACGGAAGACTGAGTGCTAACGCTT -ACGGAAGACTGAGTGCTAAGCGTT -ACGGAAGACTGAGTGCTATTCGTC -ACGGAAGACTGAGTGCTATCTCTC -ACGGAAGACTGAGTGCTATGGATC -ACGGAAGACTGAGTGCTACACTTC -ACGGAAGACTGAGTGCTAGTACTC -ACGGAAGACTGAGTGCTAGATGTC -ACGGAAGACTGAGTGCTAACAGTC -ACGGAAGACTGAGTGCTATTGCTG -ACGGAAGACTGAGTGCTATCCATG -ACGGAAGACTGAGTGCTATGTGTG -ACGGAAGACTGAGTGCTACTAGTG -ACGGAAGACTGAGTGCTACATCTG -ACGGAAGACTGAGTGCTAGAGTTG -ACGGAAGACTGAGTGCTAAGACTG -ACGGAAGACTGAGTGCTATCGGTA -ACGGAAGACTGAGTGCTATGCCTA -ACGGAAGACTGAGTGCTACCACTA -ACGGAAGACTGAGTGCTAGGAGTA -ACGGAAGACTGAGTGCTATCGTCT -ACGGAAGACTGAGTGCTATGCACT -ACGGAAGACTGAGTGCTACTGACT -ACGGAAGACTGAGTGCTACAACCT -ACGGAAGACTGAGTGCTAGCTACT -ACGGAAGACTGAGTGCTAGGATCT -ACGGAAGACTGAGTGCTAAAGGCT -ACGGAAGACTGAGTGCTATCAACC -ACGGAAGACTGAGTGCTATGTTCC -ACGGAAGACTGAGTGCTAATTCCC -ACGGAAGACTGAGTGCTATTCTCG -ACGGAAGACTGAGTGCTATAGACG -ACGGAAGACTGAGTGCTAGTAACG -ACGGAAGACTGAGTGCTAACTTCG -ACGGAAGACTGAGTGCTATACGCA -ACGGAAGACTGAGTGCTACTTGCA -ACGGAAGACTGAGTGCTACGAACA -ACGGAAGACTGAGTGCTACAGTCA -ACGGAAGACTGAGTGCTAGATCCA -ACGGAAGACTGAGTGCTAACGACA -ACGGAAGACTGAGTGCTAAGCTCA -ACGGAAGACTGAGTGCTATCACGT -ACGGAAGACTGAGTGCTACGTAGT -ACGGAAGACTGAGTGCTAGTCAGT -ACGGAAGACTGAGTGCTAGAAGGT -ACGGAAGACTGAGTGCTAAACCGT -ACGGAAGACTGAGTGCTATTGTGC -ACGGAAGACTGAGTGCTACTAAGC -ACGGAAGACTGAGTGCTAACTAGC -ACGGAAGACTGAGTGCTAAGATGC -ACGGAAGACTGAGTGCTATGAAGG -ACGGAAGACTGAGTGCTACAATGG -ACGGAAGACTGAGTGCTAATGAGG -ACGGAAGACTGAGTGCTAAATGGG -ACGGAAGACTGAGTGCTATCCTGA -ACGGAAGACTGAGTGCTATAGCGA -ACGGAAGACTGAGTGCTACACAGA -ACGGAAGACTGAGTGCTAGCAAGA -ACGGAAGACTGAGTGCTAGGTTGA -ACGGAAGACTGAGTGCTATCCGAT -ACGGAAGACTGAGTGCTATGGCAT -ACGGAAGACTGAGTGCTACGAGAT -ACGGAAGACTGAGTGCTATACCAC -ACGGAAGACTGAGTGCTACAGAAC -ACGGAAGACTGAGTGCTAGTCTAC -ACGGAAGACTGAGTGCTAACGTAC -ACGGAAGACTGAGTGCTAAGTGAC -ACGGAAGACTGAGTGCTACTGTAG -ACGGAAGACTGAGTGCTACCTAAG -ACGGAAGACTGAGTGCTAGTTCAG -ACGGAAGACTGAGTGCTAGCATAG -ACGGAAGACTGAGTGCTAGACAAG -ACGGAAGACTGAGTGCTAAAGCAG -ACGGAAGACTGAGTGCTACGTCAA -ACGGAAGACTGAGTGCTAGCTGAA -ACGGAAGACTGAGTGCTAAGTACG -ACGGAAGACTGAGTGCTAATCCGA -ACGGAAGACTGAGTGCTAATGGGA -ACGGAAGACTGAGTGCTAGTGCAA -ACGGAAGACTGAGTGCTAGAGGAA -ACGGAAGACTGAGTGCTACAGGTA -ACGGAAGACTGAGTGCTAGACTCT -ACGGAAGACTGAGTGCTAAGTCCT -ACGGAAGACTGAGTGCTATAAGCC -ACGGAAGACTGAGTGCTAATAGCC -ACGGAAGACTGAGTGCTATAACCG -ACGGAAGACTGAGTGCTAATGCCA -ACGGAAGACTGACTGCATGGAAAC -ACGGAAGACTGACTGCATAACACC -ACGGAAGACTGACTGCATATCGAG -ACGGAAGACTGACTGCATCTCCTT -ACGGAAGACTGACTGCATCCTGTT -ACGGAAGACTGACTGCATCGGTTT -ACGGAAGACTGACTGCATGTGGTT -ACGGAAGACTGACTGCATGCCTTT -ACGGAAGACTGACTGCATGGTCTT -ACGGAAGACTGACTGCATACGCTT -ACGGAAGACTGACTGCATAGCGTT -ACGGAAGACTGACTGCATTTCGTC -ACGGAAGACTGACTGCATTCTCTC -ACGGAAGACTGACTGCATTGGATC -ACGGAAGACTGACTGCATCACTTC -ACGGAAGACTGACTGCATGTACTC -ACGGAAGACTGACTGCATGATGTC -ACGGAAGACTGACTGCATACAGTC -ACGGAAGACTGACTGCATTTGCTG -ACGGAAGACTGACTGCATTCCATG -ACGGAAGACTGACTGCATTGTGTG -ACGGAAGACTGACTGCATCTAGTG -ACGGAAGACTGACTGCATCATCTG -ACGGAAGACTGACTGCATGAGTTG -ACGGAAGACTGACTGCATAGACTG -ACGGAAGACTGACTGCATTCGGTA -ACGGAAGACTGACTGCATTGCCTA -ACGGAAGACTGACTGCATCCACTA -ACGGAAGACTGACTGCATGGAGTA -ACGGAAGACTGACTGCATTCGTCT -ACGGAAGACTGACTGCATTGCACT -ACGGAAGACTGACTGCATCTGACT -ACGGAAGACTGACTGCATCAACCT -ACGGAAGACTGACTGCATGCTACT -ACGGAAGACTGACTGCATGGATCT -ACGGAAGACTGACTGCATAAGGCT -ACGGAAGACTGACTGCATTCAACC -ACGGAAGACTGACTGCATTGTTCC -ACGGAAGACTGACTGCATATTCCC -ACGGAAGACTGACTGCATTTCTCG -ACGGAAGACTGACTGCATTAGACG -ACGGAAGACTGACTGCATGTAACG -ACGGAAGACTGACTGCATACTTCG -ACGGAAGACTGACTGCATTACGCA -ACGGAAGACTGACTGCATCTTGCA -ACGGAAGACTGACTGCATCGAACA -ACGGAAGACTGACTGCATCAGTCA -ACGGAAGACTGACTGCATGATCCA -ACGGAAGACTGACTGCATACGACA -ACGGAAGACTGACTGCATAGCTCA -ACGGAAGACTGACTGCATTCACGT -ACGGAAGACTGACTGCATCGTAGT -ACGGAAGACTGACTGCATGTCAGT -ACGGAAGACTGACTGCATGAAGGT -ACGGAAGACTGACTGCATAACCGT -ACGGAAGACTGACTGCATTTGTGC -ACGGAAGACTGACTGCATCTAAGC -ACGGAAGACTGACTGCATACTAGC -ACGGAAGACTGACTGCATAGATGC -ACGGAAGACTGACTGCATTGAAGG -ACGGAAGACTGACTGCATCAATGG -ACGGAAGACTGACTGCATATGAGG -ACGGAAGACTGACTGCATAATGGG -ACGGAAGACTGACTGCATTCCTGA -ACGGAAGACTGACTGCATTAGCGA -ACGGAAGACTGACTGCATCACAGA -ACGGAAGACTGACTGCATGCAAGA -ACGGAAGACTGACTGCATGGTTGA -ACGGAAGACTGACTGCATTCCGAT -ACGGAAGACTGACTGCATTGGCAT -ACGGAAGACTGACTGCATCGAGAT -ACGGAAGACTGACTGCATTACCAC -ACGGAAGACTGACTGCATCAGAAC -ACGGAAGACTGACTGCATGTCTAC -ACGGAAGACTGACTGCATACGTAC -ACGGAAGACTGACTGCATAGTGAC -ACGGAAGACTGACTGCATCTGTAG -ACGGAAGACTGACTGCATCCTAAG -ACGGAAGACTGACTGCATGTTCAG -ACGGAAGACTGACTGCATGCATAG -ACGGAAGACTGACTGCATGACAAG -ACGGAAGACTGACTGCATAAGCAG -ACGGAAGACTGACTGCATCGTCAA -ACGGAAGACTGACTGCATGCTGAA -ACGGAAGACTGACTGCATAGTACG -ACGGAAGACTGACTGCATATCCGA -ACGGAAGACTGACTGCATATGGGA -ACGGAAGACTGACTGCATGTGCAA -ACGGAAGACTGACTGCATGAGGAA -ACGGAAGACTGACTGCATCAGGTA -ACGGAAGACTGACTGCATGACTCT -ACGGAAGACTGACTGCATAGTCCT -ACGGAAGACTGACTGCATTAAGCC -ACGGAAGACTGACTGCATATAGCC -ACGGAAGACTGACTGCATTAACCG -ACGGAAGACTGACTGCATATGCCA -ACGGAAGACTGATTGGAGGGAAAC -ACGGAAGACTGATTGGAGAACACC -ACGGAAGACTGATTGGAGATCGAG -ACGGAAGACTGATTGGAGCTCCTT -ACGGAAGACTGATTGGAGCCTGTT -ACGGAAGACTGATTGGAGCGGTTT -ACGGAAGACTGATTGGAGGTGGTT -ACGGAAGACTGATTGGAGGCCTTT -ACGGAAGACTGATTGGAGGGTCTT -ACGGAAGACTGATTGGAGACGCTT -ACGGAAGACTGATTGGAGAGCGTT -ACGGAAGACTGATTGGAGTTCGTC -ACGGAAGACTGATTGGAGTCTCTC -ACGGAAGACTGATTGGAGTGGATC -ACGGAAGACTGATTGGAGCACTTC -ACGGAAGACTGATTGGAGGTACTC -ACGGAAGACTGATTGGAGGATGTC -ACGGAAGACTGATTGGAGACAGTC -ACGGAAGACTGATTGGAGTTGCTG -ACGGAAGACTGATTGGAGTCCATG -ACGGAAGACTGATTGGAGTGTGTG -ACGGAAGACTGATTGGAGCTAGTG -ACGGAAGACTGATTGGAGCATCTG -ACGGAAGACTGATTGGAGGAGTTG -ACGGAAGACTGATTGGAGAGACTG -ACGGAAGACTGATTGGAGTCGGTA -ACGGAAGACTGATTGGAGTGCCTA -ACGGAAGACTGATTGGAGCCACTA -ACGGAAGACTGATTGGAGGGAGTA -ACGGAAGACTGATTGGAGTCGTCT -ACGGAAGACTGATTGGAGTGCACT -ACGGAAGACTGATTGGAGCTGACT -ACGGAAGACTGATTGGAGCAACCT -ACGGAAGACTGATTGGAGGCTACT -ACGGAAGACTGATTGGAGGGATCT -ACGGAAGACTGATTGGAGAAGGCT -ACGGAAGACTGATTGGAGTCAACC -ACGGAAGACTGATTGGAGTGTTCC -ACGGAAGACTGATTGGAGATTCCC -ACGGAAGACTGATTGGAGTTCTCG -ACGGAAGACTGATTGGAGTAGACG -ACGGAAGACTGATTGGAGGTAACG -ACGGAAGACTGATTGGAGACTTCG -ACGGAAGACTGATTGGAGTACGCA -ACGGAAGACTGATTGGAGCTTGCA -ACGGAAGACTGATTGGAGCGAACA -ACGGAAGACTGATTGGAGCAGTCA -ACGGAAGACTGATTGGAGGATCCA -ACGGAAGACTGATTGGAGACGACA -ACGGAAGACTGATTGGAGAGCTCA -ACGGAAGACTGATTGGAGTCACGT -ACGGAAGACTGATTGGAGCGTAGT -ACGGAAGACTGATTGGAGGTCAGT -ACGGAAGACTGATTGGAGGAAGGT -ACGGAAGACTGATTGGAGAACCGT -ACGGAAGACTGATTGGAGTTGTGC -ACGGAAGACTGATTGGAGCTAAGC -ACGGAAGACTGATTGGAGACTAGC -ACGGAAGACTGATTGGAGAGATGC -ACGGAAGACTGATTGGAGTGAAGG -ACGGAAGACTGATTGGAGCAATGG -ACGGAAGACTGATTGGAGATGAGG -ACGGAAGACTGATTGGAGAATGGG -ACGGAAGACTGATTGGAGTCCTGA -ACGGAAGACTGATTGGAGTAGCGA -ACGGAAGACTGATTGGAGCACAGA -ACGGAAGACTGATTGGAGGCAAGA -ACGGAAGACTGATTGGAGGGTTGA -ACGGAAGACTGATTGGAGTCCGAT -ACGGAAGACTGATTGGAGTGGCAT -ACGGAAGACTGATTGGAGCGAGAT -ACGGAAGACTGATTGGAGTACCAC -ACGGAAGACTGATTGGAGCAGAAC -ACGGAAGACTGATTGGAGGTCTAC -ACGGAAGACTGATTGGAGACGTAC -ACGGAAGACTGATTGGAGAGTGAC -ACGGAAGACTGATTGGAGCTGTAG -ACGGAAGACTGATTGGAGCCTAAG -ACGGAAGACTGATTGGAGGTTCAG -ACGGAAGACTGATTGGAGGCATAG -ACGGAAGACTGATTGGAGGACAAG -ACGGAAGACTGATTGGAGAAGCAG -ACGGAAGACTGATTGGAGCGTCAA -ACGGAAGACTGATTGGAGGCTGAA -ACGGAAGACTGATTGGAGAGTACG -ACGGAAGACTGATTGGAGATCCGA -ACGGAAGACTGATTGGAGATGGGA -ACGGAAGACTGATTGGAGGTGCAA -ACGGAAGACTGATTGGAGGAGGAA -ACGGAAGACTGATTGGAGCAGGTA -ACGGAAGACTGATTGGAGGACTCT -ACGGAAGACTGATTGGAGAGTCCT -ACGGAAGACTGATTGGAGTAAGCC -ACGGAAGACTGATTGGAGATAGCC -ACGGAAGACTGATTGGAGTAACCG -ACGGAAGACTGATTGGAGATGCCA -ACGGAAGACTGACTGAGAGGAAAC -ACGGAAGACTGACTGAGAAACACC -ACGGAAGACTGACTGAGAATCGAG -ACGGAAGACTGACTGAGACTCCTT -ACGGAAGACTGACTGAGACCTGTT -ACGGAAGACTGACTGAGACGGTTT -ACGGAAGACTGACTGAGAGTGGTT -ACGGAAGACTGACTGAGAGCCTTT -ACGGAAGACTGACTGAGAGGTCTT -ACGGAAGACTGACTGAGAACGCTT -ACGGAAGACTGACTGAGAAGCGTT -ACGGAAGACTGACTGAGATTCGTC -ACGGAAGACTGACTGAGATCTCTC -ACGGAAGACTGACTGAGATGGATC -ACGGAAGACTGACTGAGACACTTC -ACGGAAGACTGACTGAGAGTACTC -ACGGAAGACTGACTGAGAGATGTC -ACGGAAGACTGACTGAGAACAGTC -ACGGAAGACTGACTGAGATTGCTG -ACGGAAGACTGACTGAGATCCATG -ACGGAAGACTGACTGAGATGTGTG -ACGGAAGACTGACTGAGACTAGTG -ACGGAAGACTGACTGAGACATCTG -ACGGAAGACTGACTGAGAGAGTTG -ACGGAAGACTGACTGAGAAGACTG -ACGGAAGACTGACTGAGATCGGTA -ACGGAAGACTGACTGAGATGCCTA -ACGGAAGACTGACTGAGACCACTA -ACGGAAGACTGACTGAGAGGAGTA -ACGGAAGACTGACTGAGATCGTCT -ACGGAAGACTGACTGAGATGCACT -ACGGAAGACTGACTGAGACTGACT -ACGGAAGACTGACTGAGACAACCT -ACGGAAGACTGACTGAGAGCTACT -ACGGAAGACTGACTGAGAGGATCT -ACGGAAGACTGACTGAGAAAGGCT -ACGGAAGACTGACTGAGATCAACC -ACGGAAGACTGACTGAGATGTTCC -ACGGAAGACTGACTGAGAATTCCC -ACGGAAGACTGACTGAGATTCTCG -ACGGAAGACTGACTGAGATAGACG -ACGGAAGACTGACTGAGAGTAACG -ACGGAAGACTGACTGAGAACTTCG -ACGGAAGACTGACTGAGATACGCA -ACGGAAGACTGACTGAGACTTGCA -ACGGAAGACTGACTGAGACGAACA -ACGGAAGACTGACTGAGACAGTCA -ACGGAAGACTGACTGAGAGATCCA -ACGGAAGACTGACTGAGAACGACA -ACGGAAGACTGACTGAGAAGCTCA -ACGGAAGACTGACTGAGATCACGT -ACGGAAGACTGACTGAGACGTAGT -ACGGAAGACTGACTGAGAGTCAGT -ACGGAAGACTGACTGAGAGAAGGT -ACGGAAGACTGACTGAGAAACCGT -ACGGAAGACTGACTGAGATTGTGC -ACGGAAGACTGACTGAGACTAAGC -ACGGAAGACTGACTGAGAACTAGC -ACGGAAGACTGACTGAGAAGATGC -ACGGAAGACTGACTGAGATGAAGG -ACGGAAGACTGACTGAGACAATGG -ACGGAAGACTGACTGAGAATGAGG -ACGGAAGACTGACTGAGAAATGGG -ACGGAAGACTGACTGAGATCCTGA -ACGGAAGACTGACTGAGATAGCGA -ACGGAAGACTGACTGAGACACAGA -ACGGAAGACTGACTGAGAGCAAGA -ACGGAAGACTGACTGAGAGGTTGA -ACGGAAGACTGACTGAGATCCGAT -ACGGAAGACTGACTGAGATGGCAT -ACGGAAGACTGACTGAGACGAGAT -ACGGAAGACTGACTGAGATACCAC -ACGGAAGACTGACTGAGACAGAAC -ACGGAAGACTGACTGAGAGTCTAC -ACGGAAGACTGACTGAGAACGTAC -ACGGAAGACTGACTGAGAAGTGAC -ACGGAAGACTGACTGAGACTGTAG -ACGGAAGACTGACTGAGACCTAAG -ACGGAAGACTGACTGAGAGTTCAG -ACGGAAGACTGACTGAGAGCATAG -ACGGAAGACTGACTGAGAGACAAG -ACGGAAGACTGACTGAGAAAGCAG -ACGGAAGACTGACTGAGACGTCAA -ACGGAAGACTGACTGAGAGCTGAA -ACGGAAGACTGACTGAGAAGTACG -ACGGAAGACTGACTGAGAATCCGA -ACGGAAGACTGACTGAGAATGGGA -ACGGAAGACTGACTGAGAGTGCAA -ACGGAAGACTGACTGAGAGAGGAA -ACGGAAGACTGACTGAGACAGGTA -ACGGAAGACTGACTGAGAGACTCT -ACGGAAGACTGACTGAGAAGTCCT -ACGGAAGACTGACTGAGATAAGCC -ACGGAAGACTGACTGAGAATAGCC -ACGGAAGACTGACTGAGATAACCG -ACGGAAGACTGACTGAGAATGCCA -ACGGAAGACTGAGTATCGGGAAAC -ACGGAAGACTGAGTATCGAACACC -ACGGAAGACTGAGTATCGATCGAG -ACGGAAGACTGAGTATCGCTCCTT -ACGGAAGACTGAGTATCGCCTGTT -ACGGAAGACTGAGTATCGCGGTTT -ACGGAAGACTGAGTATCGGTGGTT -ACGGAAGACTGAGTATCGGCCTTT -ACGGAAGACTGAGTATCGGGTCTT -ACGGAAGACTGAGTATCGACGCTT -ACGGAAGACTGAGTATCGAGCGTT -ACGGAAGACTGAGTATCGTTCGTC -ACGGAAGACTGAGTATCGTCTCTC -ACGGAAGACTGAGTATCGTGGATC -ACGGAAGACTGAGTATCGCACTTC -ACGGAAGACTGAGTATCGGTACTC -ACGGAAGACTGAGTATCGGATGTC -ACGGAAGACTGAGTATCGACAGTC -ACGGAAGACTGAGTATCGTTGCTG -ACGGAAGACTGAGTATCGTCCATG -ACGGAAGACTGAGTATCGTGTGTG -ACGGAAGACTGAGTATCGCTAGTG -ACGGAAGACTGAGTATCGCATCTG -ACGGAAGACTGAGTATCGGAGTTG -ACGGAAGACTGAGTATCGAGACTG -ACGGAAGACTGAGTATCGTCGGTA -ACGGAAGACTGAGTATCGTGCCTA -ACGGAAGACTGAGTATCGCCACTA -ACGGAAGACTGAGTATCGGGAGTA -ACGGAAGACTGAGTATCGTCGTCT -ACGGAAGACTGAGTATCGTGCACT -ACGGAAGACTGAGTATCGCTGACT -ACGGAAGACTGAGTATCGCAACCT -ACGGAAGACTGAGTATCGGCTACT -ACGGAAGACTGAGTATCGGGATCT -ACGGAAGACTGAGTATCGAAGGCT -ACGGAAGACTGAGTATCGTCAACC -ACGGAAGACTGAGTATCGTGTTCC -ACGGAAGACTGAGTATCGATTCCC -ACGGAAGACTGAGTATCGTTCTCG -ACGGAAGACTGAGTATCGTAGACG -ACGGAAGACTGAGTATCGGTAACG -ACGGAAGACTGAGTATCGACTTCG -ACGGAAGACTGAGTATCGTACGCA -ACGGAAGACTGAGTATCGCTTGCA -ACGGAAGACTGAGTATCGCGAACA -ACGGAAGACTGAGTATCGCAGTCA -ACGGAAGACTGAGTATCGGATCCA -ACGGAAGACTGAGTATCGACGACA -ACGGAAGACTGAGTATCGAGCTCA -ACGGAAGACTGAGTATCGTCACGT -ACGGAAGACTGAGTATCGCGTAGT -ACGGAAGACTGAGTATCGGTCAGT -ACGGAAGACTGAGTATCGGAAGGT -ACGGAAGACTGAGTATCGAACCGT -ACGGAAGACTGAGTATCGTTGTGC -ACGGAAGACTGAGTATCGCTAAGC -ACGGAAGACTGAGTATCGACTAGC -ACGGAAGACTGAGTATCGAGATGC -ACGGAAGACTGAGTATCGTGAAGG -ACGGAAGACTGAGTATCGCAATGG -ACGGAAGACTGAGTATCGATGAGG -ACGGAAGACTGAGTATCGAATGGG -ACGGAAGACTGAGTATCGTCCTGA -ACGGAAGACTGAGTATCGTAGCGA -ACGGAAGACTGAGTATCGCACAGA -ACGGAAGACTGAGTATCGGCAAGA -ACGGAAGACTGAGTATCGGGTTGA -ACGGAAGACTGAGTATCGTCCGAT -ACGGAAGACTGAGTATCGTGGCAT -ACGGAAGACTGAGTATCGCGAGAT -ACGGAAGACTGAGTATCGTACCAC -ACGGAAGACTGAGTATCGCAGAAC -ACGGAAGACTGAGTATCGGTCTAC -ACGGAAGACTGAGTATCGACGTAC -ACGGAAGACTGAGTATCGAGTGAC -ACGGAAGACTGAGTATCGCTGTAG -ACGGAAGACTGAGTATCGCCTAAG -ACGGAAGACTGAGTATCGGTTCAG -ACGGAAGACTGAGTATCGGCATAG -ACGGAAGACTGAGTATCGGACAAG -ACGGAAGACTGAGTATCGAAGCAG -ACGGAAGACTGAGTATCGCGTCAA -ACGGAAGACTGAGTATCGGCTGAA -ACGGAAGACTGAGTATCGAGTACG -ACGGAAGACTGAGTATCGATCCGA -ACGGAAGACTGAGTATCGATGGGA -ACGGAAGACTGAGTATCGGTGCAA -ACGGAAGACTGAGTATCGGAGGAA -ACGGAAGACTGAGTATCGCAGGTA -ACGGAAGACTGAGTATCGGACTCT -ACGGAAGACTGAGTATCGAGTCCT -ACGGAAGACTGAGTATCGTAAGCC -ACGGAAGACTGAGTATCGATAGCC -ACGGAAGACTGAGTATCGTAACCG -ACGGAAGACTGAGTATCGATGCCA -ACGGAAGACTGACTATGCGGAAAC -ACGGAAGACTGACTATGCAACACC -ACGGAAGACTGACTATGCATCGAG -ACGGAAGACTGACTATGCCTCCTT -ACGGAAGACTGACTATGCCCTGTT -ACGGAAGACTGACTATGCCGGTTT -ACGGAAGACTGACTATGCGTGGTT -ACGGAAGACTGACTATGCGCCTTT -ACGGAAGACTGACTATGCGGTCTT -ACGGAAGACTGACTATGCACGCTT -ACGGAAGACTGACTATGCAGCGTT -ACGGAAGACTGACTATGCTTCGTC -ACGGAAGACTGACTATGCTCTCTC -ACGGAAGACTGACTATGCTGGATC -ACGGAAGACTGACTATGCCACTTC -ACGGAAGACTGACTATGCGTACTC -ACGGAAGACTGACTATGCGATGTC -ACGGAAGACTGACTATGCACAGTC -ACGGAAGACTGACTATGCTTGCTG -ACGGAAGACTGACTATGCTCCATG -ACGGAAGACTGACTATGCTGTGTG -ACGGAAGACTGACTATGCCTAGTG -ACGGAAGACTGACTATGCCATCTG -ACGGAAGACTGACTATGCGAGTTG -ACGGAAGACTGACTATGCAGACTG -ACGGAAGACTGACTATGCTCGGTA -ACGGAAGACTGACTATGCTGCCTA -ACGGAAGACTGACTATGCCCACTA -ACGGAAGACTGACTATGCGGAGTA -ACGGAAGACTGACTATGCTCGTCT -ACGGAAGACTGACTATGCTGCACT -ACGGAAGACTGACTATGCCTGACT -ACGGAAGACTGACTATGCCAACCT -ACGGAAGACTGACTATGCGCTACT -ACGGAAGACTGACTATGCGGATCT -ACGGAAGACTGACTATGCAAGGCT -ACGGAAGACTGACTATGCTCAACC -ACGGAAGACTGACTATGCTGTTCC -ACGGAAGACTGACTATGCATTCCC -ACGGAAGACTGACTATGCTTCTCG -ACGGAAGACTGACTATGCTAGACG -ACGGAAGACTGACTATGCGTAACG -ACGGAAGACTGACTATGCACTTCG -ACGGAAGACTGACTATGCTACGCA -ACGGAAGACTGACTATGCCTTGCA -ACGGAAGACTGACTATGCCGAACA -ACGGAAGACTGACTATGCCAGTCA -ACGGAAGACTGACTATGCGATCCA -ACGGAAGACTGACTATGCACGACA -ACGGAAGACTGACTATGCAGCTCA -ACGGAAGACTGACTATGCTCACGT -ACGGAAGACTGACTATGCCGTAGT -ACGGAAGACTGACTATGCGTCAGT -ACGGAAGACTGACTATGCGAAGGT -ACGGAAGACTGACTATGCAACCGT -ACGGAAGACTGACTATGCTTGTGC -ACGGAAGACTGACTATGCCTAAGC -ACGGAAGACTGACTATGCACTAGC -ACGGAAGACTGACTATGCAGATGC -ACGGAAGACTGACTATGCTGAAGG -ACGGAAGACTGACTATGCCAATGG -ACGGAAGACTGACTATGCATGAGG -ACGGAAGACTGACTATGCAATGGG -ACGGAAGACTGACTATGCTCCTGA -ACGGAAGACTGACTATGCTAGCGA -ACGGAAGACTGACTATGCCACAGA -ACGGAAGACTGACTATGCGCAAGA -ACGGAAGACTGACTATGCGGTTGA -ACGGAAGACTGACTATGCTCCGAT -ACGGAAGACTGACTATGCTGGCAT -ACGGAAGACTGACTATGCCGAGAT -ACGGAAGACTGACTATGCTACCAC -ACGGAAGACTGACTATGCCAGAAC -ACGGAAGACTGACTATGCGTCTAC -ACGGAAGACTGACTATGCACGTAC -ACGGAAGACTGACTATGCAGTGAC -ACGGAAGACTGACTATGCCTGTAG -ACGGAAGACTGACTATGCCCTAAG -ACGGAAGACTGACTATGCGTTCAG -ACGGAAGACTGACTATGCGCATAG -ACGGAAGACTGACTATGCGACAAG -ACGGAAGACTGACTATGCAAGCAG -ACGGAAGACTGACTATGCCGTCAA -ACGGAAGACTGACTATGCGCTGAA -ACGGAAGACTGACTATGCAGTACG -ACGGAAGACTGACTATGCATCCGA -ACGGAAGACTGACTATGCATGGGA -ACGGAAGACTGACTATGCGTGCAA -ACGGAAGACTGACTATGCGAGGAA -ACGGAAGACTGACTATGCCAGGTA -ACGGAAGACTGACTATGCGACTCT -ACGGAAGACTGACTATGCAGTCCT -ACGGAAGACTGACTATGCTAAGCC -ACGGAAGACTGACTATGCATAGCC -ACGGAAGACTGACTATGCTAACCG -ACGGAAGACTGACTATGCATGCCA -ACGGAAGACTGACTACCAGGAAAC -ACGGAAGACTGACTACCAAACACC -ACGGAAGACTGACTACCAATCGAG -ACGGAAGACTGACTACCACTCCTT -ACGGAAGACTGACTACCACCTGTT -ACGGAAGACTGACTACCACGGTTT -ACGGAAGACTGACTACCAGTGGTT -ACGGAAGACTGACTACCAGCCTTT -ACGGAAGACTGACTACCAGGTCTT -ACGGAAGACTGACTACCAACGCTT -ACGGAAGACTGACTACCAAGCGTT -ACGGAAGACTGACTACCATTCGTC -ACGGAAGACTGACTACCATCTCTC -ACGGAAGACTGACTACCATGGATC -ACGGAAGACTGACTACCACACTTC -ACGGAAGACTGACTACCAGTACTC -ACGGAAGACTGACTACCAGATGTC -ACGGAAGACTGACTACCAACAGTC -ACGGAAGACTGACTACCATTGCTG -ACGGAAGACTGACTACCATCCATG -ACGGAAGACTGACTACCATGTGTG -ACGGAAGACTGACTACCACTAGTG -ACGGAAGACTGACTACCACATCTG -ACGGAAGACTGACTACCAGAGTTG -ACGGAAGACTGACTACCAAGACTG -ACGGAAGACTGACTACCATCGGTA -ACGGAAGACTGACTACCATGCCTA -ACGGAAGACTGACTACCACCACTA -ACGGAAGACTGACTACCAGGAGTA -ACGGAAGACTGACTACCATCGTCT -ACGGAAGACTGACTACCATGCACT -ACGGAAGACTGACTACCACTGACT -ACGGAAGACTGACTACCACAACCT -ACGGAAGACTGACTACCAGCTACT -ACGGAAGACTGACTACCAGGATCT -ACGGAAGACTGACTACCAAAGGCT -ACGGAAGACTGACTACCATCAACC -ACGGAAGACTGACTACCATGTTCC -ACGGAAGACTGACTACCAATTCCC -ACGGAAGACTGACTACCATTCTCG -ACGGAAGACTGACTACCATAGACG -ACGGAAGACTGACTACCAGTAACG -ACGGAAGACTGACTACCAACTTCG -ACGGAAGACTGACTACCATACGCA -ACGGAAGACTGACTACCACTTGCA -ACGGAAGACTGACTACCACGAACA -ACGGAAGACTGACTACCACAGTCA -ACGGAAGACTGACTACCAGATCCA -ACGGAAGACTGACTACCAACGACA -ACGGAAGACTGACTACCAAGCTCA -ACGGAAGACTGACTACCATCACGT -ACGGAAGACTGACTACCACGTAGT -ACGGAAGACTGACTACCAGTCAGT -ACGGAAGACTGACTACCAGAAGGT -ACGGAAGACTGACTACCAAACCGT -ACGGAAGACTGACTACCATTGTGC -ACGGAAGACTGACTACCACTAAGC -ACGGAAGACTGACTACCAACTAGC -ACGGAAGACTGACTACCAAGATGC -ACGGAAGACTGACTACCATGAAGG -ACGGAAGACTGACTACCACAATGG -ACGGAAGACTGACTACCAATGAGG -ACGGAAGACTGACTACCAAATGGG -ACGGAAGACTGACTACCATCCTGA -ACGGAAGACTGACTACCATAGCGA -ACGGAAGACTGACTACCACACAGA -ACGGAAGACTGACTACCAGCAAGA -ACGGAAGACTGACTACCAGGTTGA -ACGGAAGACTGACTACCATCCGAT -ACGGAAGACTGACTACCATGGCAT -ACGGAAGACTGACTACCACGAGAT -ACGGAAGACTGACTACCATACCAC -ACGGAAGACTGACTACCACAGAAC -ACGGAAGACTGACTACCAGTCTAC -ACGGAAGACTGACTACCAACGTAC -ACGGAAGACTGACTACCAAGTGAC -ACGGAAGACTGACTACCACTGTAG -ACGGAAGACTGACTACCACCTAAG -ACGGAAGACTGACTACCAGTTCAG -ACGGAAGACTGACTACCAGCATAG -ACGGAAGACTGACTACCAGACAAG -ACGGAAGACTGACTACCAAAGCAG -ACGGAAGACTGACTACCACGTCAA -ACGGAAGACTGACTACCAGCTGAA -ACGGAAGACTGACTACCAAGTACG -ACGGAAGACTGACTACCAATCCGA -ACGGAAGACTGACTACCAATGGGA -ACGGAAGACTGACTACCAGTGCAA -ACGGAAGACTGACTACCAGAGGAA -ACGGAAGACTGACTACCACAGGTA -ACGGAAGACTGACTACCAGACTCT -ACGGAAGACTGACTACCAAGTCCT -ACGGAAGACTGACTACCATAAGCC -ACGGAAGACTGACTACCAATAGCC -ACGGAAGACTGACTACCATAACCG -ACGGAAGACTGACTACCAATGCCA -ACGGAAGACTGAGTAGGAGGAAAC -ACGGAAGACTGAGTAGGAAACACC -ACGGAAGACTGAGTAGGAATCGAG -ACGGAAGACTGAGTAGGACTCCTT -ACGGAAGACTGAGTAGGACCTGTT -ACGGAAGACTGAGTAGGACGGTTT -ACGGAAGACTGAGTAGGAGTGGTT -ACGGAAGACTGAGTAGGAGCCTTT -ACGGAAGACTGAGTAGGAGGTCTT -ACGGAAGACTGAGTAGGAACGCTT -ACGGAAGACTGAGTAGGAAGCGTT -ACGGAAGACTGAGTAGGATTCGTC -ACGGAAGACTGAGTAGGATCTCTC -ACGGAAGACTGAGTAGGATGGATC -ACGGAAGACTGAGTAGGACACTTC -ACGGAAGACTGAGTAGGAGTACTC -ACGGAAGACTGAGTAGGAGATGTC -ACGGAAGACTGAGTAGGAACAGTC -ACGGAAGACTGAGTAGGATTGCTG -ACGGAAGACTGAGTAGGATCCATG -ACGGAAGACTGAGTAGGATGTGTG -ACGGAAGACTGAGTAGGACTAGTG -ACGGAAGACTGAGTAGGACATCTG -ACGGAAGACTGAGTAGGAGAGTTG -ACGGAAGACTGAGTAGGAAGACTG -ACGGAAGACTGAGTAGGATCGGTA -ACGGAAGACTGAGTAGGATGCCTA -ACGGAAGACTGAGTAGGACCACTA -ACGGAAGACTGAGTAGGAGGAGTA -ACGGAAGACTGAGTAGGATCGTCT -ACGGAAGACTGAGTAGGATGCACT -ACGGAAGACTGAGTAGGACTGACT -ACGGAAGACTGAGTAGGACAACCT -ACGGAAGACTGAGTAGGAGCTACT -ACGGAAGACTGAGTAGGAGGATCT -ACGGAAGACTGAGTAGGAAAGGCT -ACGGAAGACTGAGTAGGATCAACC -ACGGAAGACTGAGTAGGATGTTCC -ACGGAAGACTGAGTAGGAATTCCC -ACGGAAGACTGAGTAGGATTCTCG -ACGGAAGACTGAGTAGGATAGACG -ACGGAAGACTGAGTAGGAGTAACG -ACGGAAGACTGAGTAGGAACTTCG -ACGGAAGACTGAGTAGGATACGCA -ACGGAAGACTGAGTAGGACTTGCA -ACGGAAGACTGAGTAGGACGAACA -ACGGAAGACTGAGTAGGACAGTCA -ACGGAAGACTGAGTAGGAGATCCA -ACGGAAGACTGAGTAGGAACGACA -ACGGAAGACTGAGTAGGAAGCTCA -ACGGAAGACTGAGTAGGATCACGT -ACGGAAGACTGAGTAGGACGTAGT -ACGGAAGACTGAGTAGGAGTCAGT -ACGGAAGACTGAGTAGGAGAAGGT -ACGGAAGACTGAGTAGGAAACCGT -ACGGAAGACTGAGTAGGATTGTGC -ACGGAAGACTGAGTAGGACTAAGC -ACGGAAGACTGAGTAGGAACTAGC -ACGGAAGACTGAGTAGGAAGATGC -ACGGAAGACTGAGTAGGATGAAGG -ACGGAAGACTGAGTAGGACAATGG -ACGGAAGACTGAGTAGGAATGAGG -ACGGAAGACTGAGTAGGAAATGGG -ACGGAAGACTGAGTAGGATCCTGA -ACGGAAGACTGAGTAGGATAGCGA -ACGGAAGACTGAGTAGGACACAGA -ACGGAAGACTGAGTAGGAGCAAGA -ACGGAAGACTGAGTAGGAGGTTGA -ACGGAAGACTGAGTAGGATCCGAT -ACGGAAGACTGAGTAGGATGGCAT -ACGGAAGACTGAGTAGGACGAGAT -ACGGAAGACTGAGTAGGATACCAC -ACGGAAGACTGAGTAGGACAGAAC -ACGGAAGACTGAGTAGGAGTCTAC -ACGGAAGACTGAGTAGGAACGTAC -ACGGAAGACTGAGTAGGAAGTGAC -ACGGAAGACTGAGTAGGACTGTAG -ACGGAAGACTGAGTAGGACCTAAG -ACGGAAGACTGAGTAGGAGTTCAG -ACGGAAGACTGAGTAGGAGCATAG -ACGGAAGACTGAGTAGGAGACAAG -ACGGAAGACTGAGTAGGAAAGCAG -ACGGAAGACTGAGTAGGACGTCAA -ACGGAAGACTGAGTAGGAGCTGAA -ACGGAAGACTGAGTAGGAAGTACG -ACGGAAGACTGAGTAGGAATCCGA -ACGGAAGACTGAGTAGGAATGGGA -ACGGAAGACTGAGTAGGAGTGCAA -ACGGAAGACTGAGTAGGAGAGGAA -ACGGAAGACTGAGTAGGACAGGTA -ACGGAAGACTGAGTAGGAGACTCT -ACGGAAGACTGAGTAGGAAGTCCT -ACGGAAGACTGAGTAGGATAAGCC -ACGGAAGACTGAGTAGGAATAGCC -ACGGAAGACTGAGTAGGATAACCG -ACGGAAGACTGAGTAGGAATGCCA -ACGGAAGACTGATCTTCGGGAAAC -ACGGAAGACTGATCTTCGAACACC -ACGGAAGACTGATCTTCGATCGAG -ACGGAAGACTGATCTTCGCTCCTT -ACGGAAGACTGATCTTCGCCTGTT -ACGGAAGACTGATCTTCGCGGTTT -ACGGAAGACTGATCTTCGGTGGTT -ACGGAAGACTGATCTTCGGCCTTT -ACGGAAGACTGATCTTCGGGTCTT -ACGGAAGACTGATCTTCGACGCTT -ACGGAAGACTGATCTTCGAGCGTT -ACGGAAGACTGATCTTCGTTCGTC -ACGGAAGACTGATCTTCGTCTCTC -ACGGAAGACTGATCTTCGTGGATC -ACGGAAGACTGATCTTCGCACTTC -ACGGAAGACTGATCTTCGGTACTC -ACGGAAGACTGATCTTCGGATGTC -ACGGAAGACTGATCTTCGACAGTC -ACGGAAGACTGATCTTCGTTGCTG -ACGGAAGACTGATCTTCGTCCATG -ACGGAAGACTGATCTTCGTGTGTG -ACGGAAGACTGATCTTCGCTAGTG -ACGGAAGACTGATCTTCGCATCTG -ACGGAAGACTGATCTTCGGAGTTG -ACGGAAGACTGATCTTCGAGACTG -ACGGAAGACTGATCTTCGTCGGTA -ACGGAAGACTGATCTTCGTGCCTA -ACGGAAGACTGATCTTCGCCACTA -ACGGAAGACTGATCTTCGGGAGTA -ACGGAAGACTGATCTTCGTCGTCT -ACGGAAGACTGATCTTCGTGCACT -ACGGAAGACTGATCTTCGCTGACT -ACGGAAGACTGATCTTCGCAACCT -ACGGAAGACTGATCTTCGGCTACT -ACGGAAGACTGATCTTCGGGATCT -ACGGAAGACTGATCTTCGAAGGCT -ACGGAAGACTGATCTTCGTCAACC -ACGGAAGACTGATCTTCGTGTTCC -ACGGAAGACTGATCTTCGATTCCC -ACGGAAGACTGATCTTCGTTCTCG -ACGGAAGACTGATCTTCGTAGACG -ACGGAAGACTGATCTTCGGTAACG -ACGGAAGACTGATCTTCGACTTCG -ACGGAAGACTGATCTTCGTACGCA -ACGGAAGACTGATCTTCGCTTGCA -ACGGAAGACTGATCTTCGCGAACA -ACGGAAGACTGATCTTCGCAGTCA -ACGGAAGACTGATCTTCGGATCCA -ACGGAAGACTGATCTTCGACGACA -ACGGAAGACTGATCTTCGAGCTCA -ACGGAAGACTGATCTTCGTCACGT -ACGGAAGACTGATCTTCGCGTAGT -ACGGAAGACTGATCTTCGGTCAGT -ACGGAAGACTGATCTTCGGAAGGT -ACGGAAGACTGATCTTCGAACCGT -ACGGAAGACTGATCTTCGTTGTGC -ACGGAAGACTGATCTTCGCTAAGC -ACGGAAGACTGATCTTCGACTAGC -ACGGAAGACTGATCTTCGAGATGC -ACGGAAGACTGATCTTCGTGAAGG -ACGGAAGACTGATCTTCGCAATGG -ACGGAAGACTGATCTTCGATGAGG -ACGGAAGACTGATCTTCGAATGGG -ACGGAAGACTGATCTTCGTCCTGA -ACGGAAGACTGATCTTCGTAGCGA -ACGGAAGACTGATCTTCGCACAGA -ACGGAAGACTGATCTTCGGCAAGA -ACGGAAGACTGATCTTCGGGTTGA -ACGGAAGACTGATCTTCGTCCGAT -ACGGAAGACTGATCTTCGTGGCAT -ACGGAAGACTGATCTTCGCGAGAT -ACGGAAGACTGATCTTCGTACCAC -ACGGAAGACTGATCTTCGCAGAAC -ACGGAAGACTGATCTTCGGTCTAC -ACGGAAGACTGATCTTCGACGTAC -ACGGAAGACTGATCTTCGAGTGAC -ACGGAAGACTGATCTTCGCTGTAG -ACGGAAGACTGATCTTCGCCTAAG -ACGGAAGACTGATCTTCGGTTCAG -ACGGAAGACTGATCTTCGGCATAG -ACGGAAGACTGATCTTCGGACAAG -ACGGAAGACTGATCTTCGAAGCAG -ACGGAAGACTGATCTTCGCGTCAA -ACGGAAGACTGATCTTCGGCTGAA -ACGGAAGACTGATCTTCGAGTACG -ACGGAAGACTGATCTTCGATCCGA -ACGGAAGACTGATCTTCGATGGGA -ACGGAAGACTGATCTTCGGTGCAA -ACGGAAGACTGATCTTCGGAGGAA -ACGGAAGACTGATCTTCGCAGGTA -ACGGAAGACTGATCTTCGGACTCT -ACGGAAGACTGATCTTCGAGTCCT -ACGGAAGACTGATCTTCGTAAGCC -ACGGAAGACTGATCTTCGATAGCC -ACGGAAGACTGATCTTCGTAACCG -ACGGAAGACTGATCTTCGATGCCA -ACGGAAGACTGAACTTGCGGAAAC -ACGGAAGACTGAACTTGCAACACC -ACGGAAGACTGAACTTGCATCGAG -ACGGAAGACTGAACTTGCCTCCTT -ACGGAAGACTGAACTTGCCCTGTT -ACGGAAGACTGAACTTGCCGGTTT -ACGGAAGACTGAACTTGCGTGGTT -ACGGAAGACTGAACTTGCGCCTTT -ACGGAAGACTGAACTTGCGGTCTT -ACGGAAGACTGAACTTGCACGCTT -ACGGAAGACTGAACTTGCAGCGTT -ACGGAAGACTGAACTTGCTTCGTC -ACGGAAGACTGAACTTGCTCTCTC -ACGGAAGACTGAACTTGCTGGATC -ACGGAAGACTGAACTTGCCACTTC -ACGGAAGACTGAACTTGCGTACTC -ACGGAAGACTGAACTTGCGATGTC -ACGGAAGACTGAACTTGCACAGTC -ACGGAAGACTGAACTTGCTTGCTG -ACGGAAGACTGAACTTGCTCCATG -ACGGAAGACTGAACTTGCTGTGTG -ACGGAAGACTGAACTTGCCTAGTG -ACGGAAGACTGAACTTGCCATCTG -ACGGAAGACTGAACTTGCGAGTTG -ACGGAAGACTGAACTTGCAGACTG -ACGGAAGACTGAACTTGCTCGGTA -ACGGAAGACTGAACTTGCTGCCTA -ACGGAAGACTGAACTTGCCCACTA -ACGGAAGACTGAACTTGCGGAGTA -ACGGAAGACTGAACTTGCTCGTCT -ACGGAAGACTGAACTTGCTGCACT -ACGGAAGACTGAACTTGCCTGACT -ACGGAAGACTGAACTTGCCAACCT -ACGGAAGACTGAACTTGCGCTACT -ACGGAAGACTGAACTTGCGGATCT -ACGGAAGACTGAACTTGCAAGGCT -ACGGAAGACTGAACTTGCTCAACC -ACGGAAGACTGAACTTGCTGTTCC -ACGGAAGACTGAACTTGCATTCCC -ACGGAAGACTGAACTTGCTTCTCG -ACGGAAGACTGAACTTGCTAGACG -ACGGAAGACTGAACTTGCGTAACG -ACGGAAGACTGAACTTGCACTTCG -ACGGAAGACTGAACTTGCTACGCA -ACGGAAGACTGAACTTGCCTTGCA -ACGGAAGACTGAACTTGCCGAACA -ACGGAAGACTGAACTTGCCAGTCA -ACGGAAGACTGAACTTGCGATCCA -ACGGAAGACTGAACTTGCACGACA -ACGGAAGACTGAACTTGCAGCTCA -ACGGAAGACTGAACTTGCTCACGT -ACGGAAGACTGAACTTGCCGTAGT -ACGGAAGACTGAACTTGCGTCAGT -ACGGAAGACTGAACTTGCGAAGGT -ACGGAAGACTGAACTTGCAACCGT -ACGGAAGACTGAACTTGCTTGTGC -ACGGAAGACTGAACTTGCCTAAGC -ACGGAAGACTGAACTTGCACTAGC -ACGGAAGACTGAACTTGCAGATGC -ACGGAAGACTGAACTTGCTGAAGG -ACGGAAGACTGAACTTGCCAATGG -ACGGAAGACTGAACTTGCATGAGG -ACGGAAGACTGAACTTGCAATGGG -ACGGAAGACTGAACTTGCTCCTGA -ACGGAAGACTGAACTTGCTAGCGA -ACGGAAGACTGAACTTGCCACAGA -ACGGAAGACTGAACTTGCGCAAGA -ACGGAAGACTGAACTTGCGGTTGA -ACGGAAGACTGAACTTGCTCCGAT -ACGGAAGACTGAACTTGCTGGCAT -ACGGAAGACTGAACTTGCCGAGAT -ACGGAAGACTGAACTTGCTACCAC -ACGGAAGACTGAACTTGCCAGAAC -ACGGAAGACTGAACTTGCGTCTAC -ACGGAAGACTGAACTTGCACGTAC -ACGGAAGACTGAACTTGCAGTGAC -ACGGAAGACTGAACTTGCCTGTAG -ACGGAAGACTGAACTTGCCCTAAG -ACGGAAGACTGAACTTGCGTTCAG -ACGGAAGACTGAACTTGCGCATAG -ACGGAAGACTGAACTTGCGACAAG -ACGGAAGACTGAACTTGCAAGCAG -ACGGAAGACTGAACTTGCCGTCAA -ACGGAAGACTGAACTTGCGCTGAA -ACGGAAGACTGAACTTGCAGTACG -ACGGAAGACTGAACTTGCATCCGA -ACGGAAGACTGAACTTGCATGGGA -ACGGAAGACTGAACTTGCGTGCAA -ACGGAAGACTGAACTTGCGAGGAA -ACGGAAGACTGAACTTGCCAGGTA -ACGGAAGACTGAACTTGCGACTCT -ACGGAAGACTGAACTTGCAGTCCT -ACGGAAGACTGAACTTGCTAAGCC -ACGGAAGACTGAACTTGCATAGCC -ACGGAAGACTGAACTTGCTAACCG -ACGGAAGACTGAACTTGCATGCCA -ACGGAAGACTGAACTCTGGGAAAC -ACGGAAGACTGAACTCTGAACACC -ACGGAAGACTGAACTCTGATCGAG -ACGGAAGACTGAACTCTGCTCCTT -ACGGAAGACTGAACTCTGCCTGTT -ACGGAAGACTGAACTCTGCGGTTT -ACGGAAGACTGAACTCTGGTGGTT -ACGGAAGACTGAACTCTGGCCTTT -ACGGAAGACTGAACTCTGGGTCTT -ACGGAAGACTGAACTCTGACGCTT -ACGGAAGACTGAACTCTGAGCGTT -ACGGAAGACTGAACTCTGTTCGTC -ACGGAAGACTGAACTCTGTCTCTC -ACGGAAGACTGAACTCTGTGGATC -ACGGAAGACTGAACTCTGCACTTC -ACGGAAGACTGAACTCTGGTACTC -ACGGAAGACTGAACTCTGGATGTC -ACGGAAGACTGAACTCTGACAGTC -ACGGAAGACTGAACTCTGTTGCTG -ACGGAAGACTGAACTCTGTCCATG -ACGGAAGACTGAACTCTGTGTGTG -ACGGAAGACTGAACTCTGCTAGTG -ACGGAAGACTGAACTCTGCATCTG -ACGGAAGACTGAACTCTGGAGTTG -ACGGAAGACTGAACTCTGAGACTG -ACGGAAGACTGAACTCTGTCGGTA -ACGGAAGACTGAACTCTGTGCCTA -ACGGAAGACTGAACTCTGCCACTA -ACGGAAGACTGAACTCTGGGAGTA -ACGGAAGACTGAACTCTGTCGTCT -ACGGAAGACTGAACTCTGTGCACT -ACGGAAGACTGAACTCTGCTGACT -ACGGAAGACTGAACTCTGCAACCT -ACGGAAGACTGAACTCTGGCTACT -ACGGAAGACTGAACTCTGGGATCT -ACGGAAGACTGAACTCTGAAGGCT -ACGGAAGACTGAACTCTGTCAACC -ACGGAAGACTGAACTCTGTGTTCC -ACGGAAGACTGAACTCTGATTCCC -ACGGAAGACTGAACTCTGTTCTCG -ACGGAAGACTGAACTCTGTAGACG -ACGGAAGACTGAACTCTGGTAACG -ACGGAAGACTGAACTCTGACTTCG -ACGGAAGACTGAACTCTGTACGCA -ACGGAAGACTGAACTCTGCTTGCA -ACGGAAGACTGAACTCTGCGAACA -ACGGAAGACTGAACTCTGCAGTCA -ACGGAAGACTGAACTCTGGATCCA -ACGGAAGACTGAACTCTGACGACA -ACGGAAGACTGAACTCTGAGCTCA -ACGGAAGACTGAACTCTGTCACGT -ACGGAAGACTGAACTCTGCGTAGT -ACGGAAGACTGAACTCTGGTCAGT -ACGGAAGACTGAACTCTGGAAGGT -ACGGAAGACTGAACTCTGAACCGT -ACGGAAGACTGAACTCTGTTGTGC -ACGGAAGACTGAACTCTGCTAAGC -ACGGAAGACTGAACTCTGACTAGC -ACGGAAGACTGAACTCTGAGATGC -ACGGAAGACTGAACTCTGTGAAGG -ACGGAAGACTGAACTCTGCAATGG -ACGGAAGACTGAACTCTGATGAGG -ACGGAAGACTGAACTCTGAATGGG -ACGGAAGACTGAACTCTGTCCTGA -ACGGAAGACTGAACTCTGTAGCGA -ACGGAAGACTGAACTCTGCACAGA -ACGGAAGACTGAACTCTGGCAAGA -ACGGAAGACTGAACTCTGGGTTGA -ACGGAAGACTGAACTCTGTCCGAT -ACGGAAGACTGAACTCTGTGGCAT -ACGGAAGACTGAACTCTGCGAGAT -ACGGAAGACTGAACTCTGTACCAC -ACGGAAGACTGAACTCTGCAGAAC -ACGGAAGACTGAACTCTGGTCTAC -ACGGAAGACTGAACTCTGACGTAC -ACGGAAGACTGAACTCTGAGTGAC -ACGGAAGACTGAACTCTGCTGTAG -ACGGAAGACTGAACTCTGCCTAAG -ACGGAAGACTGAACTCTGGTTCAG -ACGGAAGACTGAACTCTGGCATAG -ACGGAAGACTGAACTCTGGACAAG -ACGGAAGACTGAACTCTGAAGCAG -ACGGAAGACTGAACTCTGCGTCAA -ACGGAAGACTGAACTCTGGCTGAA -ACGGAAGACTGAACTCTGAGTACG -ACGGAAGACTGAACTCTGATCCGA -ACGGAAGACTGAACTCTGATGGGA -ACGGAAGACTGAACTCTGGTGCAA -ACGGAAGACTGAACTCTGGAGGAA -ACGGAAGACTGAACTCTGCAGGTA -ACGGAAGACTGAACTCTGGACTCT -ACGGAAGACTGAACTCTGAGTCCT -ACGGAAGACTGAACTCTGTAAGCC -ACGGAAGACTGAACTCTGATAGCC -ACGGAAGACTGAACTCTGTAACCG -ACGGAAGACTGAACTCTGATGCCA -ACGGAAGACTGACCTCAAGGAAAC -ACGGAAGACTGACCTCAAAACACC -ACGGAAGACTGACCTCAAATCGAG -ACGGAAGACTGACCTCAACTCCTT -ACGGAAGACTGACCTCAACCTGTT -ACGGAAGACTGACCTCAACGGTTT -ACGGAAGACTGACCTCAAGTGGTT -ACGGAAGACTGACCTCAAGCCTTT -ACGGAAGACTGACCTCAAGGTCTT -ACGGAAGACTGACCTCAAACGCTT -ACGGAAGACTGACCTCAAAGCGTT -ACGGAAGACTGACCTCAATTCGTC -ACGGAAGACTGACCTCAATCTCTC -ACGGAAGACTGACCTCAATGGATC -ACGGAAGACTGACCTCAACACTTC -ACGGAAGACTGACCTCAAGTACTC -ACGGAAGACTGACCTCAAGATGTC -ACGGAAGACTGACCTCAAACAGTC -ACGGAAGACTGACCTCAATTGCTG -ACGGAAGACTGACCTCAATCCATG -ACGGAAGACTGACCTCAATGTGTG -ACGGAAGACTGACCTCAACTAGTG -ACGGAAGACTGACCTCAACATCTG -ACGGAAGACTGACCTCAAGAGTTG -ACGGAAGACTGACCTCAAAGACTG -ACGGAAGACTGACCTCAATCGGTA -ACGGAAGACTGACCTCAATGCCTA -ACGGAAGACTGACCTCAACCACTA -ACGGAAGACTGACCTCAAGGAGTA -ACGGAAGACTGACCTCAATCGTCT -ACGGAAGACTGACCTCAATGCACT -ACGGAAGACTGACCTCAACTGACT -ACGGAAGACTGACCTCAACAACCT -ACGGAAGACTGACCTCAAGCTACT -ACGGAAGACTGACCTCAAGGATCT -ACGGAAGACTGACCTCAAAAGGCT -ACGGAAGACTGACCTCAATCAACC -ACGGAAGACTGACCTCAATGTTCC -ACGGAAGACTGACCTCAAATTCCC -ACGGAAGACTGACCTCAATTCTCG -ACGGAAGACTGACCTCAATAGACG -ACGGAAGACTGACCTCAAGTAACG -ACGGAAGACTGACCTCAAACTTCG -ACGGAAGACTGACCTCAATACGCA -ACGGAAGACTGACCTCAACTTGCA -ACGGAAGACTGACCTCAACGAACA -ACGGAAGACTGACCTCAACAGTCA -ACGGAAGACTGACCTCAAGATCCA -ACGGAAGACTGACCTCAAACGACA -ACGGAAGACTGACCTCAAAGCTCA -ACGGAAGACTGACCTCAATCACGT -ACGGAAGACTGACCTCAACGTAGT -ACGGAAGACTGACCTCAAGTCAGT -ACGGAAGACTGACCTCAAGAAGGT -ACGGAAGACTGACCTCAAAACCGT -ACGGAAGACTGACCTCAATTGTGC -ACGGAAGACTGACCTCAACTAAGC -ACGGAAGACTGACCTCAAACTAGC -ACGGAAGACTGACCTCAAAGATGC -ACGGAAGACTGACCTCAATGAAGG -ACGGAAGACTGACCTCAACAATGG -ACGGAAGACTGACCTCAAATGAGG -ACGGAAGACTGACCTCAAAATGGG -ACGGAAGACTGACCTCAATCCTGA -ACGGAAGACTGACCTCAATAGCGA -ACGGAAGACTGACCTCAACACAGA -ACGGAAGACTGACCTCAAGCAAGA -ACGGAAGACTGACCTCAAGGTTGA -ACGGAAGACTGACCTCAATCCGAT -ACGGAAGACTGACCTCAATGGCAT -ACGGAAGACTGACCTCAACGAGAT -ACGGAAGACTGACCTCAATACCAC -ACGGAAGACTGACCTCAACAGAAC -ACGGAAGACTGACCTCAAGTCTAC -ACGGAAGACTGACCTCAAACGTAC -ACGGAAGACTGACCTCAAAGTGAC -ACGGAAGACTGACCTCAACTGTAG -ACGGAAGACTGACCTCAACCTAAG -ACGGAAGACTGACCTCAAGTTCAG -ACGGAAGACTGACCTCAAGCATAG -ACGGAAGACTGACCTCAAGACAAG -ACGGAAGACTGACCTCAAAAGCAG -ACGGAAGACTGACCTCAACGTCAA -ACGGAAGACTGACCTCAAGCTGAA -ACGGAAGACTGACCTCAAAGTACG -ACGGAAGACTGACCTCAAATCCGA -ACGGAAGACTGACCTCAAATGGGA -ACGGAAGACTGACCTCAAGTGCAA -ACGGAAGACTGACCTCAAGAGGAA -ACGGAAGACTGACCTCAACAGGTA -ACGGAAGACTGACCTCAAGACTCT -ACGGAAGACTGACCTCAAAGTCCT -ACGGAAGACTGACCTCAATAAGCC -ACGGAAGACTGACCTCAAATAGCC -ACGGAAGACTGACCTCAATAACCG -ACGGAAGACTGACCTCAAATGCCA -ACGGAAGACTGAACTGCTGGAAAC -ACGGAAGACTGAACTGCTAACACC -ACGGAAGACTGAACTGCTATCGAG -ACGGAAGACTGAACTGCTCTCCTT -ACGGAAGACTGAACTGCTCCTGTT -ACGGAAGACTGAACTGCTCGGTTT -ACGGAAGACTGAACTGCTGTGGTT -ACGGAAGACTGAACTGCTGCCTTT -ACGGAAGACTGAACTGCTGGTCTT -ACGGAAGACTGAACTGCTACGCTT -ACGGAAGACTGAACTGCTAGCGTT -ACGGAAGACTGAACTGCTTTCGTC -ACGGAAGACTGAACTGCTTCTCTC -ACGGAAGACTGAACTGCTTGGATC -ACGGAAGACTGAACTGCTCACTTC -ACGGAAGACTGAACTGCTGTACTC -ACGGAAGACTGAACTGCTGATGTC -ACGGAAGACTGAACTGCTACAGTC -ACGGAAGACTGAACTGCTTTGCTG -ACGGAAGACTGAACTGCTTCCATG -ACGGAAGACTGAACTGCTTGTGTG -ACGGAAGACTGAACTGCTCTAGTG -ACGGAAGACTGAACTGCTCATCTG -ACGGAAGACTGAACTGCTGAGTTG -ACGGAAGACTGAACTGCTAGACTG -ACGGAAGACTGAACTGCTTCGGTA -ACGGAAGACTGAACTGCTTGCCTA -ACGGAAGACTGAACTGCTCCACTA -ACGGAAGACTGAACTGCTGGAGTA -ACGGAAGACTGAACTGCTTCGTCT -ACGGAAGACTGAACTGCTTGCACT -ACGGAAGACTGAACTGCTCTGACT -ACGGAAGACTGAACTGCTCAACCT -ACGGAAGACTGAACTGCTGCTACT -ACGGAAGACTGAACTGCTGGATCT -ACGGAAGACTGAACTGCTAAGGCT -ACGGAAGACTGAACTGCTTCAACC -ACGGAAGACTGAACTGCTTGTTCC -ACGGAAGACTGAACTGCTATTCCC -ACGGAAGACTGAACTGCTTTCTCG -ACGGAAGACTGAACTGCTTAGACG -ACGGAAGACTGAACTGCTGTAACG -ACGGAAGACTGAACTGCTACTTCG -ACGGAAGACTGAACTGCTTACGCA -ACGGAAGACTGAACTGCTCTTGCA -ACGGAAGACTGAACTGCTCGAACA -ACGGAAGACTGAACTGCTCAGTCA -ACGGAAGACTGAACTGCTGATCCA -ACGGAAGACTGAACTGCTACGACA -ACGGAAGACTGAACTGCTAGCTCA -ACGGAAGACTGAACTGCTTCACGT -ACGGAAGACTGAACTGCTCGTAGT -ACGGAAGACTGAACTGCTGTCAGT -ACGGAAGACTGAACTGCTGAAGGT -ACGGAAGACTGAACTGCTAACCGT -ACGGAAGACTGAACTGCTTTGTGC -ACGGAAGACTGAACTGCTCTAAGC -ACGGAAGACTGAACTGCTACTAGC -ACGGAAGACTGAACTGCTAGATGC -ACGGAAGACTGAACTGCTTGAAGG -ACGGAAGACTGAACTGCTCAATGG -ACGGAAGACTGAACTGCTATGAGG -ACGGAAGACTGAACTGCTAATGGG -ACGGAAGACTGAACTGCTTCCTGA -ACGGAAGACTGAACTGCTTAGCGA -ACGGAAGACTGAACTGCTCACAGA -ACGGAAGACTGAACTGCTGCAAGA -ACGGAAGACTGAACTGCTGGTTGA -ACGGAAGACTGAACTGCTTCCGAT -ACGGAAGACTGAACTGCTTGGCAT -ACGGAAGACTGAACTGCTCGAGAT -ACGGAAGACTGAACTGCTTACCAC -ACGGAAGACTGAACTGCTCAGAAC -ACGGAAGACTGAACTGCTGTCTAC -ACGGAAGACTGAACTGCTACGTAC -ACGGAAGACTGAACTGCTAGTGAC -ACGGAAGACTGAACTGCTCTGTAG -ACGGAAGACTGAACTGCTCCTAAG -ACGGAAGACTGAACTGCTGTTCAG -ACGGAAGACTGAACTGCTGCATAG -ACGGAAGACTGAACTGCTGACAAG -ACGGAAGACTGAACTGCTAAGCAG -ACGGAAGACTGAACTGCTCGTCAA -ACGGAAGACTGAACTGCTGCTGAA -ACGGAAGACTGAACTGCTAGTACG -ACGGAAGACTGAACTGCTATCCGA -ACGGAAGACTGAACTGCTATGGGA -ACGGAAGACTGAACTGCTGTGCAA -ACGGAAGACTGAACTGCTGAGGAA -ACGGAAGACTGAACTGCTCAGGTA -ACGGAAGACTGAACTGCTGACTCT -ACGGAAGACTGAACTGCTAGTCCT -ACGGAAGACTGAACTGCTTAAGCC -ACGGAAGACTGAACTGCTATAGCC -ACGGAAGACTGAACTGCTTAACCG -ACGGAAGACTGAACTGCTATGCCA -ACGGAAGACTGATCTGGAGGAAAC -ACGGAAGACTGATCTGGAAACACC -ACGGAAGACTGATCTGGAATCGAG -ACGGAAGACTGATCTGGACTCCTT -ACGGAAGACTGATCTGGACCTGTT -ACGGAAGACTGATCTGGACGGTTT -ACGGAAGACTGATCTGGAGTGGTT -ACGGAAGACTGATCTGGAGCCTTT -ACGGAAGACTGATCTGGAGGTCTT -ACGGAAGACTGATCTGGAACGCTT -ACGGAAGACTGATCTGGAAGCGTT -ACGGAAGACTGATCTGGATTCGTC -ACGGAAGACTGATCTGGATCTCTC -ACGGAAGACTGATCTGGATGGATC -ACGGAAGACTGATCTGGACACTTC -ACGGAAGACTGATCTGGAGTACTC -ACGGAAGACTGATCTGGAGATGTC -ACGGAAGACTGATCTGGAACAGTC -ACGGAAGACTGATCTGGATTGCTG -ACGGAAGACTGATCTGGATCCATG -ACGGAAGACTGATCTGGATGTGTG -ACGGAAGACTGATCTGGACTAGTG -ACGGAAGACTGATCTGGACATCTG -ACGGAAGACTGATCTGGAGAGTTG -ACGGAAGACTGATCTGGAAGACTG -ACGGAAGACTGATCTGGATCGGTA -ACGGAAGACTGATCTGGATGCCTA -ACGGAAGACTGATCTGGACCACTA -ACGGAAGACTGATCTGGAGGAGTA -ACGGAAGACTGATCTGGATCGTCT -ACGGAAGACTGATCTGGATGCACT -ACGGAAGACTGATCTGGACTGACT -ACGGAAGACTGATCTGGACAACCT -ACGGAAGACTGATCTGGAGCTACT -ACGGAAGACTGATCTGGAGGATCT -ACGGAAGACTGATCTGGAAAGGCT -ACGGAAGACTGATCTGGATCAACC -ACGGAAGACTGATCTGGATGTTCC -ACGGAAGACTGATCTGGAATTCCC -ACGGAAGACTGATCTGGATTCTCG -ACGGAAGACTGATCTGGATAGACG -ACGGAAGACTGATCTGGAGTAACG -ACGGAAGACTGATCTGGAACTTCG -ACGGAAGACTGATCTGGATACGCA -ACGGAAGACTGATCTGGACTTGCA -ACGGAAGACTGATCTGGACGAACA -ACGGAAGACTGATCTGGACAGTCA -ACGGAAGACTGATCTGGAGATCCA -ACGGAAGACTGATCTGGAACGACA -ACGGAAGACTGATCTGGAAGCTCA -ACGGAAGACTGATCTGGATCACGT -ACGGAAGACTGATCTGGACGTAGT -ACGGAAGACTGATCTGGAGTCAGT -ACGGAAGACTGATCTGGAGAAGGT -ACGGAAGACTGATCTGGAAACCGT -ACGGAAGACTGATCTGGATTGTGC -ACGGAAGACTGATCTGGACTAAGC -ACGGAAGACTGATCTGGAACTAGC -ACGGAAGACTGATCTGGAAGATGC -ACGGAAGACTGATCTGGATGAAGG -ACGGAAGACTGATCTGGACAATGG -ACGGAAGACTGATCTGGAATGAGG -ACGGAAGACTGATCTGGAAATGGG -ACGGAAGACTGATCTGGATCCTGA -ACGGAAGACTGATCTGGATAGCGA -ACGGAAGACTGATCTGGACACAGA -ACGGAAGACTGATCTGGAGCAAGA -ACGGAAGACTGATCTGGAGGTTGA -ACGGAAGACTGATCTGGATCCGAT -ACGGAAGACTGATCTGGATGGCAT -ACGGAAGACTGATCTGGACGAGAT -ACGGAAGACTGATCTGGATACCAC -ACGGAAGACTGATCTGGACAGAAC -ACGGAAGACTGATCTGGAGTCTAC -ACGGAAGACTGATCTGGAACGTAC -ACGGAAGACTGATCTGGAAGTGAC -ACGGAAGACTGATCTGGACTGTAG -ACGGAAGACTGATCTGGACCTAAG -ACGGAAGACTGATCTGGAGTTCAG -ACGGAAGACTGATCTGGAGCATAG -ACGGAAGACTGATCTGGAGACAAG -ACGGAAGACTGATCTGGAAAGCAG -ACGGAAGACTGATCTGGACGTCAA -ACGGAAGACTGATCTGGAGCTGAA -ACGGAAGACTGATCTGGAAGTACG -ACGGAAGACTGATCTGGAATCCGA -ACGGAAGACTGATCTGGAATGGGA -ACGGAAGACTGATCTGGAGTGCAA -ACGGAAGACTGATCTGGAGAGGAA -ACGGAAGACTGATCTGGACAGGTA -ACGGAAGACTGATCTGGAGACTCT -ACGGAAGACTGATCTGGAAGTCCT -ACGGAAGACTGATCTGGATAAGCC -ACGGAAGACTGATCTGGAATAGCC -ACGGAAGACTGATCTGGATAACCG -ACGGAAGACTGATCTGGAATGCCA -ACGGAAGACTGAGCTAAGGGAAAC -ACGGAAGACTGAGCTAAGAACACC -ACGGAAGACTGAGCTAAGATCGAG -ACGGAAGACTGAGCTAAGCTCCTT -ACGGAAGACTGAGCTAAGCCTGTT -ACGGAAGACTGAGCTAAGCGGTTT -ACGGAAGACTGAGCTAAGGTGGTT -ACGGAAGACTGAGCTAAGGCCTTT -ACGGAAGACTGAGCTAAGGGTCTT -ACGGAAGACTGAGCTAAGACGCTT -ACGGAAGACTGAGCTAAGAGCGTT -ACGGAAGACTGAGCTAAGTTCGTC -ACGGAAGACTGAGCTAAGTCTCTC -ACGGAAGACTGAGCTAAGTGGATC -ACGGAAGACTGAGCTAAGCACTTC -ACGGAAGACTGAGCTAAGGTACTC -ACGGAAGACTGAGCTAAGGATGTC -ACGGAAGACTGAGCTAAGACAGTC -ACGGAAGACTGAGCTAAGTTGCTG -ACGGAAGACTGAGCTAAGTCCATG -ACGGAAGACTGAGCTAAGTGTGTG -ACGGAAGACTGAGCTAAGCTAGTG -ACGGAAGACTGAGCTAAGCATCTG -ACGGAAGACTGAGCTAAGGAGTTG -ACGGAAGACTGAGCTAAGAGACTG -ACGGAAGACTGAGCTAAGTCGGTA -ACGGAAGACTGAGCTAAGTGCCTA -ACGGAAGACTGAGCTAAGCCACTA -ACGGAAGACTGAGCTAAGGGAGTA -ACGGAAGACTGAGCTAAGTCGTCT -ACGGAAGACTGAGCTAAGTGCACT -ACGGAAGACTGAGCTAAGCTGACT -ACGGAAGACTGAGCTAAGCAACCT -ACGGAAGACTGAGCTAAGGCTACT -ACGGAAGACTGAGCTAAGGGATCT -ACGGAAGACTGAGCTAAGAAGGCT -ACGGAAGACTGAGCTAAGTCAACC -ACGGAAGACTGAGCTAAGTGTTCC -ACGGAAGACTGAGCTAAGATTCCC -ACGGAAGACTGAGCTAAGTTCTCG -ACGGAAGACTGAGCTAAGTAGACG -ACGGAAGACTGAGCTAAGGTAACG -ACGGAAGACTGAGCTAAGACTTCG -ACGGAAGACTGAGCTAAGTACGCA -ACGGAAGACTGAGCTAAGCTTGCA -ACGGAAGACTGAGCTAAGCGAACA -ACGGAAGACTGAGCTAAGCAGTCA -ACGGAAGACTGAGCTAAGGATCCA -ACGGAAGACTGAGCTAAGACGACA -ACGGAAGACTGAGCTAAGAGCTCA -ACGGAAGACTGAGCTAAGTCACGT -ACGGAAGACTGAGCTAAGCGTAGT -ACGGAAGACTGAGCTAAGGTCAGT -ACGGAAGACTGAGCTAAGGAAGGT -ACGGAAGACTGAGCTAAGAACCGT -ACGGAAGACTGAGCTAAGTTGTGC -ACGGAAGACTGAGCTAAGCTAAGC -ACGGAAGACTGAGCTAAGACTAGC -ACGGAAGACTGAGCTAAGAGATGC -ACGGAAGACTGAGCTAAGTGAAGG -ACGGAAGACTGAGCTAAGCAATGG -ACGGAAGACTGAGCTAAGATGAGG -ACGGAAGACTGAGCTAAGAATGGG -ACGGAAGACTGAGCTAAGTCCTGA -ACGGAAGACTGAGCTAAGTAGCGA -ACGGAAGACTGAGCTAAGCACAGA -ACGGAAGACTGAGCTAAGGCAAGA -ACGGAAGACTGAGCTAAGGGTTGA -ACGGAAGACTGAGCTAAGTCCGAT -ACGGAAGACTGAGCTAAGTGGCAT -ACGGAAGACTGAGCTAAGCGAGAT -ACGGAAGACTGAGCTAAGTACCAC -ACGGAAGACTGAGCTAAGCAGAAC -ACGGAAGACTGAGCTAAGGTCTAC -ACGGAAGACTGAGCTAAGACGTAC -ACGGAAGACTGAGCTAAGAGTGAC -ACGGAAGACTGAGCTAAGCTGTAG -ACGGAAGACTGAGCTAAGCCTAAG -ACGGAAGACTGAGCTAAGGTTCAG -ACGGAAGACTGAGCTAAGGCATAG -ACGGAAGACTGAGCTAAGGACAAG -ACGGAAGACTGAGCTAAGAAGCAG -ACGGAAGACTGAGCTAAGCGTCAA -ACGGAAGACTGAGCTAAGGCTGAA -ACGGAAGACTGAGCTAAGAGTACG -ACGGAAGACTGAGCTAAGATCCGA -ACGGAAGACTGAGCTAAGATGGGA -ACGGAAGACTGAGCTAAGGTGCAA -ACGGAAGACTGAGCTAAGGAGGAA -ACGGAAGACTGAGCTAAGCAGGTA -ACGGAAGACTGAGCTAAGGACTCT -ACGGAAGACTGAGCTAAGAGTCCT -ACGGAAGACTGAGCTAAGTAAGCC -ACGGAAGACTGAGCTAAGATAGCC -ACGGAAGACTGAGCTAAGTAACCG -ACGGAAGACTGAGCTAAGATGCCA -ACGGAAGACTGAACCTCAGGAAAC -ACGGAAGACTGAACCTCAAACACC -ACGGAAGACTGAACCTCAATCGAG -ACGGAAGACTGAACCTCACTCCTT -ACGGAAGACTGAACCTCACCTGTT -ACGGAAGACTGAACCTCACGGTTT -ACGGAAGACTGAACCTCAGTGGTT -ACGGAAGACTGAACCTCAGCCTTT -ACGGAAGACTGAACCTCAGGTCTT -ACGGAAGACTGAACCTCAACGCTT -ACGGAAGACTGAACCTCAAGCGTT -ACGGAAGACTGAACCTCATTCGTC -ACGGAAGACTGAACCTCATCTCTC -ACGGAAGACTGAACCTCATGGATC -ACGGAAGACTGAACCTCACACTTC -ACGGAAGACTGAACCTCAGTACTC -ACGGAAGACTGAACCTCAGATGTC -ACGGAAGACTGAACCTCAACAGTC -ACGGAAGACTGAACCTCATTGCTG -ACGGAAGACTGAACCTCATCCATG -ACGGAAGACTGAACCTCATGTGTG -ACGGAAGACTGAACCTCACTAGTG -ACGGAAGACTGAACCTCACATCTG -ACGGAAGACTGAACCTCAGAGTTG -ACGGAAGACTGAACCTCAAGACTG -ACGGAAGACTGAACCTCATCGGTA -ACGGAAGACTGAACCTCATGCCTA -ACGGAAGACTGAACCTCACCACTA -ACGGAAGACTGAACCTCAGGAGTA -ACGGAAGACTGAACCTCATCGTCT -ACGGAAGACTGAACCTCATGCACT -ACGGAAGACTGAACCTCACTGACT -ACGGAAGACTGAACCTCACAACCT -ACGGAAGACTGAACCTCAGCTACT -ACGGAAGACTGAACCTCAGGATCT -ACGGAAGACTGAACCTCAAAGGCT -ACGGAAGACTGAACCTCATCAACC -ACGGAAGACTGAACCTCATGTTCC -ACGGAAGACTGAACCTCAATTCCC -ACGGAAGACTGAACCTCATTCTCG -ACGGAAGACTGAACCTCATAGACG -ACGGAAGACTGAACCTCAGTAACG -ACGGAAGACTGAACCTCAACTTCG -ACGGAAGACTGAACCTCATACGCA -ACGGAAGACTGAACCTCACTTGCA -ACGGAAGACTGAACCTCACGAACA -ACGGAAGACTGAACCTCACAGTCA -ACGGAAGACTGAACCTCAGATCCA -ACGGAAGACTGAACCTCAACGACA -ACGGAAGACTGAACCTCAAGCTCA -ACGGAAGACTGAACCTCATCACGT -ACGGAAGACTGAACCTCACGTAGT -ACGGAAGACTGAACCTCAGTCAGT -ACGGAAGACTGAACCTCAGAAGGT -ACGGAAGACTGAACCTCAAACCGT -ACGGAAGACTGAACCTCATTGTGC -ACGGAAGACTGAACCTCACTAAGC -ACGGAAGACTGAACCTCAACTAGC -ACGGAAGACTGAACCTCAAGATGC -ACGGAAGACTGAACCTCATGAAGG -ACGGAAGACTGAACCTCACAATGG -ACGGAAGACTGAACCTCAATGAGG -ACGGAAGACTGAACCTCAAATGGG -ACGGAAGACTGAACCTCATCCTGA -ACGGAAGACTGAACCTCATAGCGA -ACGGAAGACTGAACCTCACACAGA -ACGGAAGACTGAACCTCAGCAAGA -ACGGAAGACTGAACCTCAGGTTGA -ACGGAAGACTGAACCTCATCCGAT -ACGGAAGACTGAACCTCATGGCAT -ACGGAAGACTGAACCTCACGAGAT -ACGGAAGACTGAACCTCATACCAC -ACGGAAGACTGAACCTCACAGAAC -ACGGAAGACTGAACCTCAGTCTAC -ACGGAAGACTGAACCTCAACGTAC -ACGGAAGACTGAACCTCAAGTGAC -ACGGAAGACTGAACCTCACTGTAG -ACGGAAGACTGAACCTCACCTAAG -ACGGAAGACTGAACCTCAGTTCAG -ACGGAAGACTGAACCTCAGCATAG -ACGGAAGACTGAACCTCAGACAAG -ACGGAAGACTGAACCTCAAAGCAG -ACGGAAGACTGAACCTCACGTCAA -ACGGAAGACTGAACCTCAGCTGAA -ACGGAAGACTGAACCTCAAGTACG -ACGGAAGACTGAACCTCAATCCGA -ACGGAAGACTGAACCTCAATGGGA -ACGGAAGACTGAACCTCAGTGCAA -ACGGAAGACTGAACCTCAGAGGAA -ACGGAAGACTGAACCTCACAGGTA -ACGGAAGACTGAACCTCAGACTCT -ACGGAAGACTGAACCTCAAGTCCT -ACGGAAGACTGAACCTCATAAGCC -ACGGAAGACTGAACCTCAATAGCC -ACGGAAGACTGAACCTCATAACCG -ACGGAAGACTGAACCTCAATGCCA -ACGGAAGACTGATCCTGTGGAAAC -ACGGAAGACTGATCCTGTAACACC -ACGGAAGACTGATCCTGTATCGAG -ACGGAAGACTGATCCTGTCTCCTT -ACGGAAGACTGATCCTGTCCTGTT -ACGGAAGACTGATCCTGTCGGTTT -ACGGAAGACTGATCCTGTGTGGTT -ACGGAAGACTGATCCTGTGCCTTT -ACGGAAGACTGATCCTGTGGTCTT -ACGGAAGACTGATCCTGTACGCTT -ACGGAAGACTGATCCTGTAGCGTT -ACGGAAGACTGATCCTGTTTCGTC -ACGGAAGACTGATCCTGTTCTCTC -ACGGAAGACTGATCCTGTTGGATC -ACGGAAGACTGATCCTGTCACTTC -ACGGAAGACTGATCCTGTGTACTC -ACGGAAGACTGATCCTGTGATGTC -ACGGAAGACTGATCCTGTACAGTC -ACGGAAGACTGATCCTGTTTGCTG -ACGGAAGACTGATCCTGTTCCATG -ACGGAAGACTGATCCTGTTGTGTG -ACGGAAGACTGATCCTGTCTAGTG -ACGGAAGACTGATCCTGTCATCTG -ACGGAAGACTGATCCTGTGAGTTG -ACGGAAGACTGATCCTGTAGACTG -ACGGAAGACTGATCCTGTTCGGTA -ACGGAAGACTGATCCTGTTGCCTA -ACGGAAGACTGATCCTGTCCACTA -ACGGAAGACTGATCCTGTGGAGTA -ACGGAAGACTGATCCTGTTCGTCT -ACGGAAGACTGATCCTGTTGCACT -ACGGAAGACTGATCCTGTCTGACT -ACGGAAGACTGATCCTGTCAACCT -ACGGAAGACTGATCCTGTGCTACT -ACGGAAGACTGATCCTGTGGATCT -ACGGAAGACTGATCCTGTAAGGCT -ACGGAAGACTGATCCTGTTCAACC -ACGGAAGACTGATCCTGTTGTTCC -ACGGAAGACTGATCCTGTATTCCC -ACGGAAGACTGATCCTGTTTCTCG -ACGGAAGACTGATCCTGTTAGACG -ACGGAAGACTGATCCTGTGTAACG -ACGGAAGACTGATCCTGTACTTCG -ACGGAAGACTGATCCTGTTACGCA -ACGGAAGACTGATCCTGTCTTGCA -ACGGAAGACTGATCCTGTCGAACA -ACGGAAGACTGATCCTGTCAGTCA -ACGGAAGACTGATCCTGTGATCCA -ACGGAAGACTGATCCTGTACGACA -ACGGAAGACTGATCCTGTAGCTCA -ACGGAAGACTGATCCTGTTCACGT -ACGGAAGACTGATCCTGTCGTAGT -ACGGAAGACTGATCCTGTGTCAGT -ACGGAAGACTGATCCTGTGAAGGT -ACGGAAGACTGATCCTGTAACCGT -ACGGAAGACTGATCCTGTTTGTGC -ACGGAAGACTGATCCTGTCTAAGC -ACGGAAGACTGATCCTGTACTAGC -ACGGAAGACTGATCCTGTAGATGC -ACGGAAGACTGATCCTGTTGAAGG -ACGGAAGACTGATCCTGTCAATGG -ACGGAAGACTGATCCTGTATGAGG -ACGGAAGACTGATCCTGTAATGGG -ACGGAAGACTGATCCTGTTCCTGA -ACGGAAGACTGATCCTGTTAGCGA -ACGGAAGACTGATCCTGTCACAGA -ACGGAAGACTGATCCTGTGCAAGA -ACGGAAGACTGATCCTGTGGTTGA -ACGGAAGACTGATCCTGTTCCGAT -ACGGAAGACTGATCCTGTTGGCAT -ACGGAAGACTGATCCTGTCGAGAT -ACGGAAGACTGATCCTGTTACCAC -ACGGAAGACTGATCCTGTCAGAAC -ACGGAAGACTGATCCTGTGTCTAC -ACGGAAGACTGATCCTGTACGTAC -ACGGAAGACTGATCCTGTAGTGAC -ACGGAAGACTGATCCTGTCTGTAG -ACGGAAGACTGATCCTGTCCTAAG -ACGGAAGACTGATCCTGTGTTCAG -ACGGAAGACTGATCCTGTGCATAG -ACGGAAGACTGATCCTGTGACAAG -ACGGAAGACTGATCCTGTAAGCAG -ACGGAAGACTGATCCTGTCGTCAA -ACGGAAGACTGATCCTGTGCTGAA -ACGGAAGACTGATCCTGTAGTACG -ACGGAAGACTGATCCTGTATCCGA -ACGGAAGACTGATCCTGTATGGGA -ACGGAAGACTGATCCTGTGTGCAA -ACGGAAGACTGATCCTGTGAGGAA -ACGGAAGACTGATCCTGTCAGGTA -ACGGAAGACTGATCCTGTGACTCT -ACGGAAGACTGATCCTGTAGTCCT -ACGGAAGACTGATCCTGTTAAGCC -ACGGAAGACTGATCCTGTATAGCC -ACGGAAGACTGATCCTGTTAACCG -ACGGAAGACTGATCCTGTATGCCA -ACGGAAGACTGACCCATTGGAAAC -ACGGAAGACTGACCCATTAACACC -ACGGAAGACTGACCCATTATCGAG -ACGGAAGACTGACCCATTCTCCTT -ACGGAAGACTGACCCATTCCTGTT -ACGGAAGACTGACCCATTCGGTTT -ACGGAAGACTGACCCATTGTGGTT -ACGGAAGACTGACCCATTGCCTTT -ACGGAAGACTGACCCATTGGTCTT -ACGGAAGACTGACCCATTACGCTT -ACGGAAGACTGACCCATTAGCGTT -ACGGAAGACTGACCCATTTTCGTC -ACGGAAGACTGACCCATTTCTCTC -ACGGAAGACTGACCCATTTGGATC -ACGGAAGACTGACCCATTCACTTC -ACGGAAGACTGACCCATTGTACTC -ACGGAAGACTGACCCATTGATGTC -ACGGAAGACTGACCCATTACAGTC -ACGGAAGACTGACCCATTTTGCTG -ACGGAAGACTGACCCATTTCCATG -ACGGAAGACTGACCCATTTGTGTG -ACGGAAGACTGACCCATTCTAGTG -ACGGAAGACTGACCCATTCATCTG -ACGGAAGACTGACCCATTGAGTTG -ACGGAAGACTGACCCATTAGACTG -ACGGAAGACTGACCCATTTCGGTA -ACGGAAGACTGACCCATTTGCCTA -ACGGAAGACTGACCCATTCCACTA -ACGGAAGACTGACCCATTGGAGTA -ACGGAAGACTGACCCATTTCGTCT -ACGGAAGACTGACCCATTTGCACT -ACGGAAGACTGACCCATTCTGACT -ACGGAAGACTGACCCATTCAACCT -ACGGAAGACTGACCCATTGCTACT -ACGGAAGACTGACCCATTGGATCT -ACGGAAGACTGACCCATTAAGGCT -ACGGAAGACTGACCCATTTCAACC -ACGGAAGACTGACCCATTTGTTCC -ACGGAAGACTGACCCATTATTCCC -ACGGAAGACTGACCCATTTTCTCG -ACGGAAGACTGACCCATTTAGACG -ACGGAAGACTGACCCATTGTAACG -ACGGAAGACTGACCCATTACTTCG -ACGGAAGACTGACCCATTTACGCA -ACGGAAGACTGACCCATTCTTGCA -ACGGAAGACTGACCCATTCGAACA -ACGGAAGACTGACCCATTCAGTCA -ACGGAAGACTGACCCATTGATCCA -ACGGAAGACTGACCCATTACGACA -ACGGAAGACTGACCCATTAGCTCA -ACGGAAGACTGACCCATTTCACGT -ACGGAAGACTGACCCATTCGTAGT -ACGGAAGACTGACCCATTGTCAGT -ACGGAAGACTGACCCATTGAAGGT -ACGGAAGACTGACCCATTAACCGT -ACGGAAGACTGACCCATTTTGTGC -ACGGAAGACTGACCCATTCTAAGC -ACGGAAGACTGACCCATTACTAGC -ACGGAAGACTGACCCATTAGATGC -ACGGAAGACTGACCCATTTGAAGG -ACGGAAGACTGACCCATTCAATGG -ACGGAAGACTGACCCATTATGAGG -ACGGAAGACTGACCCATTAATGGG -ACGGAAGACTGACCCATTTCCTGA -ACGGAAGACTGACCCATTTAGCGA -ACGGAAGACTGACCCATTCACAGA -ACGGAAGACTGACCCATTGCAAGA -ACGGAAGACTGACCCATTGGTTGA -ACGGAAGACTGACCCATTTCCGAT -ACGGAAGACTGACCCATTTGGCAT -ACGGAAGACTGACCCATTCGAGAT -ACGGAAGACTGACCCATTTACCAC -ACGGAAGACTGACCCATTCAGAAC -ACGGAAGACTGACCCATTGTCTAC -ACGGAAGACTGACCCATTACGTAC -ACGGAAGACTGACCCATTAGTGAC -ACGGAAGACTGACCCATTCTGTAG -ACGGAAGACTGACCCATTCCTAAG -ACGGAAGACTGACCCATTGTTCAG -ACGGAAGACTGACCCATTGCATAG -ACGGAAGACTGACCCATTGACAAG -ACGGAAGACTGACCCATTAAGCAG -ACGGAAGACTGACCCATTCGTCAA -ACGGAAGACTGACCCATTGCTGAA -ACGGAAGACTGACCCATTAGTACG -ACGGAAGACTGACCCATTATCCGA -ACGGAAGACTGACCCATTATGGGA -ACGGAAGACTGACCCATTGTGCAA -ACGGAAGACTGACCCATTGAGGAA -ACGGAAGACTGACCCATTCAGGTA -ACGGAAGACTGACCCATTGACTCT -ACGGAAGACTGACCCATTAGTCCT -ACGGAAGACTGACCCATTTAAGCC -ACGGAAGACTGACCCATTATAGCC -ACGGAAGACTGACCCATTTAACCG -ACGGAAGACTGACCCATTATGCCA -ACGGAAGACTGATCGTTCGGAAAC -ACGGAAGACTGATCGTTCAACACC -ACGGAAGACTGATCGTTCATCGAG -ACGGAAGACTGATCGTTCCTCCTT -ACGGAAGACTGATCGTTCCCTGTT -ACGGAAGACTGATCGTTCCGGTTT -ACGGAAGACTGATCGTTCGTGGTT -ACGGAAGACTGATCGTTCGCCTTT -ACGGAAGACTGATCGTTCGGTCTT -ACGGAAGACTGATCGTTCACGCTT -ACGGAAGACTGATCGTTCAGCGTT -ACGGAAGACTGATCGTTCTTCGTC -ACGGAAGACTGATCGTTCTCTCTC -ACGGAAGACTGATCGTTCTGGATC -ACGGAAGACTGATCGTTCCACTTC -ACGGAAGACTGATCGTTCGTACTC -ACGGAAGACTGATCGTTCGATGTC -ACGGAAGACTGATCGTTCACAGTC -ACGGAAGACTGATCGTTCTTGCTG -ACGGAAGACTGATCGTTCTCCATG -ACGGAAGACTGATCGTTCTGTGTG -ACGGAAGACTGATCGTTCCTAGTG -ACGGAAGACTGATCGTTCCATCTG -ACGGAAGACTGATCGTTCGAGTTG -ACGGAAGACTGATCGTTCAGACTG -ACGGAAGACTGATCGTTCTCGGTA -ACGGAAGACTGATCGTTCTGCCTA -ACGGAAGACTGATCGTTCCCACTA -ACGGAAGACTGATCGTTCGGAGTA -ACGGAAGACTGATCGTTCTCGTCT -ACGGAAGACTGATCGTTCTGCACT -ACGGAAGACTGATCGTTCCTGACT -ACGGAAGACTGATCGTTCCAACCT -ACGGAAGACTGATCGTTCGCTACT -ACGGAAGACTGATCGTTCGGATCT -ACGGAAGACTGATCGTTCAAGGCT -ACGGAAGACTGATCGTTCTCAACC -ACGGAAGACTGATCGTTCTGTTCC -ACGGAAGACTGATCGTTCATTCCC -ACGGAAGACTGATCGTTCTTCTCG -ACGGAAGACTGATCGTTCTAGACG -ACGGAAGACTGATCGTTCGTAACG -ACGGAAGACTGATCGTTCACTTCG -ACGGAAGACTGATCGTTCTACGCA -ACGGAAGACTGATCGTTCCTTGCA -ACGGAAGACTGATCGTTCCGAACA -ACGGAAGACTGATCGTTCCAGTCA -ACGGAAGACTGATCGTTCGATCCA -ACGGAAGACTGATCGTTCACGACA -ACGGAAGACTGATCGTTCAGCTCA -ACGGAAGACTGATCGTTCTCACGT -ACGGAAGACTGATCGTTCCGTAGT -ACGGAAGACTGATCGTTCGTCAGT -ACGGAAGACTGATCGTTCGAAGGT -ACGGAAGACTGATCGTTCAACCGT -ACGGAAGACTGATCGTTCTTGTGC -ACGGAAGACTGATCGTTCCTAAGC -ACGGAAGACTGATCGTTCACTAGC -ACGGAAGACTGATCGTTCAGATGC -ACGGAAGACTGATCGTTCTGAAGG -ACGGAAGACTGATCGTTCCAATGG -ACGGAAGACTGATCGTTCATGAGG -ACGGAAGACTGATCGTTCAATGGG -ACGGAAGACTGATCGTTCTCCTGA -ACGGAAGACTGATCGTTCTAGCGA -ACGGAAGACTGATCGTTCCACAGA -ACGGAAGACTGATCGTTCGCAAGA -ACGGAAGACTGATCGTTCGGTTGA -ACGGAAGACTGATCGTTCTCCGAT -ACGGAAGACTGATCGTTCTGGCAT -ACGGAAGACTGATCGTTCCGAGAT -ACGGAAGACTGATCGTTCTACCAC -ACGGAAGACTGATCGTTCCAGAAC -ACGGAAGACTGATCGTTCGTCTAC -ACGGAAGACTGATCGTTCACGTAC -ACGGAAGACTGATCGTTCAGTGAC -ACGGAAGACTGATCGTTCCTGTAG -ACGGAAGACTGATCGTTCCCTAAG -ACGGAAGACTGATCGTTCGTTCAG -ACGGAAGACTGATCGTTCGCATAG -ACGGAAGACTGATCGTTCGACAAG -ACGGAAGACTGATCGTTCAAGCAG -ACGGAAGACTGATCGTTCCGTCAA -ACGGAAGACTGATCGTTCGCTGAA -ACGGAAGACTGATCGTTCAGTACG -ACGGAAGACTGATCGTTCATCCGA -ACGGAAGACTGATCGTTCATGGGA -ACGGAAGACTGATCGTTCGTGCAA -ACGGAAGACTGATCGTTCGAGGAA -ACGGAAGACTGATCGTTCCAGGTA -ACGGAAGACTGATCGTTCGACTCT -ACGGAAGACTGATCGTTCAGTCCT -ACGGAAGACTGATCGTTCTAAGCC -ACGGAAGACTGATCGTTCATAGCC -ACGGAAGACTGATCGTTCTAACCG -ACGGAAGACTGATCGTTCATGCCA -ACGGAAGACTGAACGTAGGGAAAC -ACGGAAGACTGAACGTAGAACACC -ACGGAAGACTGAACGTAGATCGAG -ACGGAAGACTGAACGTAGCTCCTT -ACGGAAGACTGAACGTAGCCTGTT -ACGGAAGACTGAACGTAGCGGTTT -ACGGAAGACTGAACGTAGGTGGTT -ACGGAAGACTGAACGTAGGCCTTT -ACGGAAGACTGAACGTAGGGTCTT -ACGGAAGACTGAACGTAGACGCTT -ACGGAAGACTGAACGTAGAGCGTT -ACGGAAGACTGAACGTAGTTCGTC -ACGGAAGACTGAACGTAGTCTCTC -ACGGAAGACTGAACGTAGTGGATC -ACGGAAGACTGAACGTAGCACTTC -ACGGAAGACTGAACGTAGGTACTC -ACGGAAGACTGAACGTAGGATGTC -ACGGAAGACTGAACGTAGACAGTC -ACGGAAGACTGAACGTAGTTGCTG -ACGGAAGACTGAACGTAGTCCATG -ACGGAAGACTGAACGTAGTGTGTG -ACGGAAGACTGAACGTAGCTAGTG -ACGGAAGACTGAACGTAGCATCTG -ACGGAAGACTGAACGTAGGAGTTG -ACGGAAGACTGAACGTAGAGACTG -ACGGAAGACTGAACGTAGTCGGTA -ACGGAAGACTGAACGTAGTGCCTA -ACGGAAGACTGAACGTAGCCACTA -ACGGAAGACTGAACGTAGGGAGTA -ACGGAAGACTGAACGTAGTCGTCT -ACGGAAGACTGAACGTAGTGCACT -ACGGAAGACTGAACGTAGCTGACT -ACGGAAGACTGAACGTAGCAACCT -ACGGAAGACTGAACGTAGGCTACT -ACGGAAGACTGAACGTAGGGATCT -ACGGAAGACTGAACGTAGAAGGCT -ACGGAAGACTGAACGTAGTCAACC -ACGGAAGACTGAACGTAGTGTTCC -ACGGAAGACTGAACGTAGATTCCC -ACGGAAGACTGAACGTAGTTCTCG -ACGGAAGACTGAACGTAGTAGACG -ACGGAAGACTGAACGTAGGTAACG -ACGGAAGACTGAACGTAGACTTCG -ACGGAAGACTGAACGTAGTACGCA -ACGGAAGACTGAACGTAGCTTGCA -ACGGAAGACTGAACGTAGCGAACA -ACGGAAGACTGAACGTAGCAGTCA -ACGGAAGACTGAACGTAGGATCCA -ACGGAAGACTGAACGTAGACGACA -ACGGAAGACTGAACGTAGAGCTCA -ACGGAAGACTGAACGTAGTCACGT -ACGGAAGACTGAACGTAGCGTAGT -ACGGAAGACTGAACGTAGGTCAGT -ACGGAAGACTGAACGTAGGAAGGT -ACGGAAGACTGAACGTAGAACCGT -ACGGAAGACTGAACGTAGTTGTGC -ACGGAAGACTGAACGTAGCTAAGC -ACGGAAGACTGAACGTAGACTAGC -ACGGAAGACTGAACGTAGAGATGC -ACGGAAGACTGAACGTAGTGAAGG -ACGGAAGACTGAACGTAGCAATGG -ACGGAAGACTGAACGTAGATGAGG -ACGGAAGACTGAACGTAGAATGGG -ACGGAAGACTGAACGTAGTCCTGA -ACGGAAGACTGAACGTAGTAGCGA -ACGGAAGACTGAACGTAGCACAGA -ACGGAAGACTGAACGTAGGCAAGA -ACGGAAGACTGAACGTAGGGTTGA -ACGGAAGACTGAACGTAGTCCGAT -ACGGAAGACTGAACGTAGTGGCAT -ACGGAAGACTGAACGTAGCGAGAT -ACGGAAGACTGAACGTAGTACCAC -ACGGAAGACTGAACGTAGCAGAAC -ACGGAAGACTGAACGTAGGTCTAC -ACGGAAGACTGAACGTAGACGTAC -ACGGAAGACTGAACGTAGAGTGAC -ACGGAAGACTGAACGTAGCTGTAG -ACGGAAGACTGAACGTAGCCTAAG -ACGGAAGACTGAACGTAGGTTCAG -ACGGAAGACTGAACGTAGGCATAG -ACGGAAGACTGAACGTAGGACAAG -ACGGAAGACTGAACGTAGAAGCAG -ACGGAAGACTGAACGTAGCGTCAA -ACGGAAGACTGAACGTAGGCTGAA -ACGGAAGACTGAACGTAGAGTACG -ACGGAAGACTGAACGTAGATCCGA -ACGGAAGACTGAACGTAGATGGGA -ACGGAAGACTGAACGTAGGTGCAA -ACGGAAGACTGAACGTAGGAGGAA -ACGGAAGACTGAACGTAGCAGGTA -ACGGAAGACTGAACGTAGGACTCT -ACGGAAGACTGAACGTAGAGTCCT -ACGGAAGACTGAACGTAGTAAGCC -ACGGAAGACTGAACGTAGATAGCC -ACGGAAGACTGAACGTAGTAACCG -ACGGAAGACTGAACGTAGATGCCA -ACGGAAGACTGAACGGTAGGAAAC -ACGGAAGACTGAACGGTAAACACC -ACGGAAGACTGAACGGTAATCGAG -ACGGAAGACTGAACGGTACTCCTT -ACGGAAGACTGAACGGTACCTGTT -ACGGAAGACTGAACGGTACGGTTT -ACGGAAGACTGAACGGTAGTGGTT -ACGGAAGACTGAACGGTAGCCTTT -ACGGAAGACTGAACGGTAGGTCTT -ACGGAAGACTGAACGGTAACGCTT -ACGGAAGACTGAACGGTAAGCGTT -ACGGAAGACTGAACGGTATTCGTC -ACGGAAGACTGAACGGTATCTCTC -ACGGAAGACTGAACGGTATGGATC -ACGGAAGACTGAACGGTACACTTC -ACGGAAGACTGAACGGTAGTACTC -ACGGAAGACTGAACGGTAGATGTC -ACGGAAGACTGAACGGTAACAGTC -ACGGAAGACTGAACGGTATTGCTG -ACGGAAGACTGAACGGTATCCATG -ACGGAAGACTGAACGGTATGTGTG -ACGGAAGACTGAACGGTACTAGTG -ACGGAAGACTGAACGGTACATCTG -ACGGAAGACTGAACGGTAGAGTTG -ACGGAAGACTGAACGGTAAGACTG -ACGGAAGACTGAACGGTATCGGTA -ACGGAAGACTGAACGGTATGCCTA -ACGGAAGACTGAACGGTACCACTA -ACGGAAGACTGAACGGTAGGAGTA -ACGGAAGACTGAACGGTATCGTCT -ACGGAAGACTGAACGGTATGCACT -ACGGAAGACTGAACGGTACTGACT -ACGGAAGACTGAACGGTACAACCT -ACGGAAGACTGAACGGTAGCTACT -ACGGAAGACTGAACGGTAGGATCT -ACGGAAGACTGAACGGTAAAGGCT -ACGGAAGACTGAACGGTATCAACC -ACGGAAGACTGAACGGTATGTTCC -ACGGAAGACTGAACGGTAATTCCC -ACGGAAGACTGAACGGTATTCTCG -ACGGAAGACTGAACGGTATAGACG -ACGGAAGACTGAACGGTAGTAACG -ACGGAAGACTGAACGGTAACTTCG -ACGGAAGACTGAACGGTATACGCA -ACGGAAGACTGAACGGTACTTGCA -ACGGAAGACTGAACGGTACGAACA -ACGGAAGACTGAACGGTACAGTCA -ACGGAAGACTGAACGGTAGATCCA -ACGGAAGACTGAACGGTAACGACA -ACGGAAGACTGAACGGTAAGCTCA -ACGGAAGACTGAACGGTATCACGT -ACGGAAGACTGAACGGTACGTAGT -ACGGAAGACTGAACGGTAGTCAGT -ACGGAAGACTGAACGGTAGAAGGT -ACGGAAGACTGAACGGTAAACCGT -ACGGAAGACTGAACGGTATTGTGC -ACGGAAGACTGAACGGTACTAAGC -ACGGAAGACTGAACGGTAACTAGC -ACGGAAGACTGAACGGTAAGATGC -ACGGAAGACTGAACGGTATGAAGG -ACGGAAGACTGAACGGTACAATGG -ACGGAAGACTGAACGGTAATGAGG -ACGGAAGACTGAACGGTAAATGGG -ACGGAAGACTGAACGGTATCCTGA -ACGGAAGACTGAACGGTATAGCGA -ACGGAAGACTGAACGGTACACAGA -ACGGAAGACTGAACGGTAGCAAGA -ACGGAAGACTGAACGGTAGGTTGA -ACGGAAGACTGAACGGTATCCGAT -ACGGAAGACTGAACGGTATGGCAT -ACGGAAGACTGAACGGTACGAGAT -ACGGAAGACTGAACGGTATACCAC -ACGGAAGACTGAACGGTACAGAAC -ACGGAAGACTGAACGGTAGTCTAC -ACGGAAGACTGAACGGTAACGTAC -ACGGAAGACTGAACGGTAAGTGAC -ACGGAAGACTGAACGGTACTGTAG -ACGGAAGACTGAACGGTACCTAAG -ACGGAAGACTGAACGGTAGTTCAG -ACGGAAGACTGAACGGTAGCATAG -ACGGAAGACTGAACGGTAGACAAG -ACGGAAGACTGAACGGTAAAGCAG -ACGGAAGACTGAACGGTACGTCAA -ACGGAAGACTGAACGGTAGCTGAA -ACGGAAGACTGAACGGTAAGTACG -ACGGAAGACTGAACGGTAATCCGA -ACGGAAGACTGAACGGTAATGGGA -ACGGAAGACTGAACGGTAGTGCAA -ACGGAAGACTGAACGGTAGAGGAA -ACGGAAGACTGAACGGTACAGGTA -ACGGAAGACTGAACGGTAGACTCT -ACGGAAGACTGAACGGTAAGTCCT -ACGGAAGACTGAACGGTATAAGCC -ACGGAAGACTGAACGGTAATAGCC -ACGGAAGACTGAACGGTATAACCG -ACGGAAGACTGAACGGTAATGCCA -ACGGAAGACTGATCGACTGGAAAC -ACGGAAGACTGATCGACTAACACC -ACGGAAGACTGATCGACTATCGAG -ACGGAAGACTGATCGACTCTCCTT -ACGGAAGACTGATCGACTCCTGTT -ACGGAAGACTGATCGACTCGGTTT -ACGGAAGACTGATCGACTGTGGTT -ACGGAAGACTGATCGACTGCCTTT -ACGGAAGACTGATCGACTGGTCTT -ACGGAAGACTGATCGACTACGCTT -ACGGAAGACTGATCGACTAGCGTT -ACGGAAGACTGATCGACTTTCGTC -ACGGAAGACTGATCGACTTCTCTC -ACGGAAGACTGATCGACTTGGATC -ACGGAAGACTGATCGACTCACTTC -ACGGAAGACTGATCGACTGTACTC -ACGGAAGACTGATCGACTGATGTC -ACGGAAGACTGATCGACTACAGTC -ACGGAAGACTGATCGACTTTGCTG -ACGGAAGACTGATCGACTTCCATG -ACGGAAGACTGATCGACTTGTGTG -ACGGAAGACTGATCGACTCTAGTG -ACGGAAGACTGATCGACTCATCTG -ACGGAAGACTGATCGACTGAGTTG -ACGGAAGACTGATCGACTAGACTG -ACGGAAGACTGATCGACTTCGGTA -ACGGAAGACTGATCGACTTGCCTA -ACGGAAGACTGATCGACTCCACTA -ACGGAAGACTGATCGACTGGAGTA -ACGGAAGACTGATCGACTTCGTCT -ACGGAAGACTGATCGACTTGCACT -ACGGAAGACTGATCGACTCTGACT -ACGGAAGACTGATCGACTCAACCT -ACGGAAGACTGATCGACTGCTACT -ACGGAAGACTGATCGACTGGATCT -ACGGAAGACTGATCGACTAAGGCT -ACGGAAGACTGATCGACTTCAACC -ACGGAAGACTGATCGACTTGTTCC -ACGGAAGACTGATCGACTATTCCC -ACGGAAGACTGATCGACTTTCTCG -ACGGAAGACTGATCGACTTAGACG -ACGGAAGACTGATCGACTGTAACG -ACGGAAGACTGATCGACTACTTCG -ACGGAAGACTGATCGACTTACGCA -ACGGAAGACTGATCGACTCTTGCA -ACGGAAGACTGATCGACTCGAACA -ACGGAAGACTGATCGACTCAGTCA -ACGGAAGACTGATCGACTGATCCA -ACGGAAGACTGATCGACTACGACA -ACGGAAGACTGATCGACTAGCTCA -ACGGAAGACTGATCGACTTCACGT -ACGGAAGACTGATCGACTCGTAGT -ACGGAAGACTGATCGACTGTCAGT -ACGGAAGACTGATCGACTGAAGGT -ACGGAAGACTGATCGACTAACCGT -ACGGAAGACTGATCGACTTTGTGC -ACGGAAGACTGATCGACTCTAAGC -ACGGAAGACTGATCGACTACTAGC -ACGGAAGACTGATCGACTAGATGC -ACGGAAGACTGATCGACTTGAAGG -ACGGAAGACTGATCGACTCAATGG -ACGGAAGACTGATCGACTATGAGG -ACGGAAGACTGATCGACTAATGGG -ACGGAAGACTGATCGACTTCCTGA -ACGGAAGACTGATCGACTTAGCGA -ACGGAAGACTGATCGACTCACAGA -ACGGAAGACTGATCGACTGCAAGA -ACGGAAGACTGATCGACTGGTTGA -ACGGAAGACTGATCGACTTCCGAT -ACGGAAGACTGATCGACTTGGCAT -ACGGAAGACTGATCGACTCGAGAT -ACGGAAGACTGATCGACTTACCAC -ACGGAAGACTGATCGACTCAGAAC -ACGGAAGACTGATCGACTGTCTAC -ACGGAAGACTGATCGACTACGTAC -ACGGAAGACTGATCGACTAGTGAC -ACGGAAGACTGATCGACTCTGTAG -ACGGAAGACTGATCGACTCCTAAG -ACGGAAGACTGATCGACTGTTCAG -ACGGAAGACTGATCGACTGCATAG -ACGGAAGACTGATCGACTGACAAG -ACGGAAGACTGATCGACTAAGCAG -ACGGAAGACTGATCGACTCGTCAA -ACGGAAGACTGATCGACTGCTGAA -ACGGAAGACTGATCGACTAGTACG -ACGGAAGACTGATCGACTATCCGA -ACGGAAGACTGATCGACTATGGGA -ACGGAAGACTGATCGACTGTGCAA -ACGGAAGACTGATCGACTGAGGAA -ACGGAAGACTGATCGACTCAGGTA -ACGGAAGACTGATCGACTGACTCT -ACGGAAGACTGATCGACTAGTCCT -ACGGAAGACTGATCGACTTAAGCC -ACGGAAGACTGATCGACTATAGCC -ACGGAAGACTGATCGACTTAACCG -ACGGAAGACTGATCGACTATGCCA -ACGGAAGACTGAGCATACGGAAAC -ACGGAAGACTGAGCATACAACACC -ACGGAAGACTGAGCATACATCGAG -ACGGAAGACTGAGCATACCTCCTT -ACGGAAGACTGAGCATACCCTGTT -ACGGAAGACTGAGCATACCGGTTT -ACGGAAGACTGAGCATACGTGGTT -ACGGAAGACTGAGCATACGCCTTT -ACGGAAGACTGAGCATACGGTCTT -ACGGAAGACTGAGCATACACGCTT -ACGGAAGACTGAGCATACAGCGTT -ACGGAAGACTGAGCATACTTCGTC -ACGGAAGACTGAGCATACTCTCTC -ACGGAAGACTGAGCATACTGGATC -ACGGAAGACTGAGCATACCACTTC -ACGGAAGACTGAGCATACGTACTC -ACGGAAGACTGAGCATACGATGTC -ACGGAAGACTGAGCATACACAGTC -ACGGAAGACTGAGCATACTTGCTG -ACGGAAGACTGAGCATACTCCATG -ACGGAAGACTGAGCATACTGTGTG -ACGGAAGACTGAGCATACCTAGTG -ACGGAAGACTGAGCATACCATCTG -ACGGAAGACTGAGCATACGAGTTG -ACGGAAGACTGAGCATACAGACTG -ACGGAAGACTGAGCATACTCGGTA -ACGGAAGACTGAGCATACTGCCTA -ACGGAAGACTGAGCATACCCACTA -ACGGAAGACTGAGCATACGGAGTA -ACGGAAGACTGAGCATACTCGTCT -ACGGAAGACTGAGCATACTGCACT -ACGGAAGACTGAGCATACCTGACT -ACGGAAGACTGAGCATACCAACCT -ACGGAAGACTGAGCATACGCTACT -ACGGAAGACTGAGCATACGGATCT -ACGGAAGACTGAGCATACAAGGCT -ACGGAAGACTGAGCATACTCAACC -ACGGAAGACTGAGCATACTGTTCC -ACGGAAGACTGAGCATACATTCCC -ACGGAAGACTGAGCATACTTCTCG -ACGGAAGACTGAGCATACTAGACG -ACGGAAGACTGAGCATACGTAACG -ACGGAAGACTGAGCATACACTTCG -ACGGAAGACTGAGCATACTACGCA -ACGGAAGACTGAGCATACCTTGCA -ACGGAAGACTGAGCATACCGAACA -ACGGAAGACTGAGCATACCAGTCA -ACGGAAGACTGAGCATACGATCCA -ACGGAAGACTGAGCATACACGACA -ACGGAAGACTGAGCATACAGCTCA -ACGGAAGACTGAGCATACTCACGT -ACGGAAGACTGAGCATACCGTAGT -ACGGAAGACTGAGCATACGTCAGT -ACGGAAGACTGAGCATACGAAGGT -ACGGAAGACTGAGCATACAACCGT -ACGGAAGACTGAGCATACTTGTGC -ACGGAAGACTGAGCATACCTAAGC -ACGGAAGACTGAGCATACACTAGC -ACGGAAGACTGAGCATACAGATGC -ACGGAAGACTGAGCATACTGAAGG -ACGGAAGACTGAGCATACCAATGG -ACGGAAGACTGAGCATACATGAGG -ACGGAAGACTGAGCATACAATGGG -ACGGAAGACTGAGCATACTCCTGA -ACGGAAGACTGAGCATACTAGCGA -ACGGAAGACTGAGCATACCACAGA -ACGGAAGACTGAGCATACGCAAGA -ACGGAAGACTGAGCATACGGTTGA -ACGGAAGACTGAGCATACTCCGAT -ACGGAAGACTGAGCATACTGGCAT -ACGGAAGACTGAGCATACCGAGAT -ACGGAAGACTGAGCATACTACCAC -ACGGAAGACTGAGCATACCAGAAC -ACGGAAGACTGAGCATACGTCTAC -ACGGAAGACTGAGCATACACGTAC -ACGGAAGACTGAGCATACAGTGAC -ACGGAAGACTGAGCATACCTGTAG -ACGGAAGACTGAGCATACCCTAAG -ACGGAAGACTGAGCATACGTTCAG -ACGGAAGACTGAGCATACGCATAG -ACGGAAGACTGAGCATACGACAAG -ACGGAAGACTGAGCATACAAGCAG -ACGGAAGACTGAGCATACCGTCAA -ACGGAAGACTGAGCATACGCTGAA -ACGGAAGACTGAGCATACAGTACG -ACGGAAGACTGAGCATACATCCGA -ACGGAAGACTGAGCATACATGGGA -ACGGAAGACTGAGCATACGTGCAA -ACGGAAGACTGAGCATACGAGGAA -ACGGAAGACTGAGCATACCAGGTA -ACGGAAGACTGAGCATACGACTCT -ACGGAAGACTGAGCATACAGTCCT -ACGGAAGACTGAGCATACTAAGCC -ACGGAAGACTGAGCATACATAGCC -ACGGAAGACTGAGCATACTAACCG -ACGGAAGACTGAGCATACATGCCA -ACGGAAGACTGAGCACTTGGAAAC -ACGGAAGACTGAGCACTTAACACC -ACGGAAGACTGAGCACTTATCGAG -ACGGAAGACTGAGCACTTCTCCTT -ACGGAAGACTGAGCACTTCCTGTT -ACGGAAGACTGAGCACTTCGGTTT -ACGGAAGACTGAGCACTTGTGGTT -ACGGAAGACTGAGCACTTGCCTTT -ACGGAAGACTGAGCACTTGGTCTT -ACGGAAGACTGAGCACTTACGCTT -ACGGAAGACTGAGCACTTAGCGTT -ACGGAAGACTGAGCACTTTTCGTC -ACGGAAGACTGAGCACTTTCTCTC -ACGGAAGACTGAGCACTTTGGATC -ACGGAAGACTGAGCACTTCACTTC -ACGGAAGACTGAGCACTTGTACTC -ACGGAAGACTGAGCACTTGATGTC -ACGGAAGACTGAGCACTTACAGTC -ACGGAAGACTGAGCACTTTTGCTG -ACGGAAGACTGAGCACTTTCCATG -ACGGAAGACTGAGCACTTTGTGTG -ACGGAAGACTGAGCACTTCTAGTG -ACGGAAGACTGAGCACTTCATCTG -ACGGAAGACTGAGCACTTGAGTTG -ACGGAAGACTGAGCACTTAGACTG -ACGGAAGACTGAGCACTTTCGGTA -ACGGAAGACTGAGCACTTTGCCTA -ACGGAAGACTGAGCACTTCCACTA -ACGGAAGACTGAGCACTTGGAGTA -ACGGAAGACTGAGCACTTTCGTCT -ACGGAAGACTGAGCACTTTGCACT -ACGGAAGACTGAGCACTTCTGACT -ACGGAAGACTGAGCACTTCAACCT -ACGGAAGACTGAGCACTTGCTACT -ACGGAAGACTGAGCACTTGGATCT -ACGGAAGACTGAGCACTTAAGGCT -ACGGAAGACTGAGCACTTTCAACC -ACGGAAGACTGAGCACTTTGTTCC -ACGGAAGACTGAGCACTTATTCCC -ACGGAAGACTGAGCACTTTTCTCG -ACGGAAGACTGAGCACTTTAGACG -ACGGAAGACTGAGCACTTGTAACG -ACGGAAGACTGAGCACTTACTTCG -ACGGAAGACTGAGCACTTTACGCA -ACGGAAGACTGAGCACTTCTTGCA -ACGGAAGACTGAGCACTTCGAACA -ACGGAAGACTGAGCACTTCAGTCA -ACGGAAGACTGAGCACTTGATCCA -ACGGAAGACTGAGCACTTACGACA -ACGGAAGACTGAGCACTTAGCTCA -ACGGAAGACTGAGCACTTTCACGT -ACGGAAGACTGAGCACTTCGTAGT -ACGGAAGACTGAGCACTTGTCAGT -ACGGAAGACTGAGCACTTGAAGGT -ACGGAAGACTGAGCACTTAACCGT -ACGGAAGACTGAGCACTTTTGTGC -ACGGAAGACTGAGCACTTCTAAGC -ACGGAAGACTGAGCACTTACTAGC -ACGGAAGACTGAGCACTTAGATGC -ACGGAAGACTGAGCACTTTGAAGG -ACGGAAGACTGAGCACTTCAATGG -ACGGAAGACTGAGCACTTATGAGG -ACGGAAGACTGAGCACTTAATGGG -ACGGAAGACTGAGCACTTTCCTGA -ACGGAAGACTGAGCACTTTAGCGA -ACGGAAGACTGAGCACTTCACAGA -ACGGAAGACTGAGCACTTGCAAGA -ACGGAAGACTGAGCACTTGGTTGA -ACGGAAGACTGAGCACTTTCCGAT -ACGGAAGACTGAGCACTTTGGCAT -ACGGAAGACTGAGCACTTCGAGAT -ACGGAAGACTGAGCACTTTACCAC -ACGGAAGACTGAGCACTTCAGAAC -ACGGAAGACTGAGCACTTGTCTAC -ACGGAAGACTGAGCACTTACGTAC -ACGGAAGACTGAGCACTTAGTGAC -ACGGAAGACTGAGCACTTCTGTAG -ACGGAAGACTGAGCACTTCCTAAG -ACGGAAGACTGAGCACTTGTTCAG -ACGGAAGACTGAGCACTTGCATAG -ACGGAAGACTGAGCACTTGACAAG -ACGGAAGACTGAGCACTTAAGCAG -ACGGAAGACTGAGCACTTCGTCAA -ACGGAAGACTGAGCACTTGCTGAA -ACGGAAGACTGAGCACTTAGTACG -ACGGAAGACTGAGCACTTATCCGA -ACGGAAGACTGAGCACTTATGGGA -ACGGAAGACTGAGCACTTGTGCAA -ACGGAAGACTGAGCACTTGAGGAA -ACGGAAGACTGAGCACTTCAGGTA -ACGGAAGACTGAGCACTTGACTCT -ACGGAAGACTGAGCACTTAGTCCT -ACGGAAGACTGAGCACTTTAAGCC -ACGGAAGACTGAGCACTTATAGCC -ACGGAAGACTGAGCACTTTAACCG -ACGGAAGACTGAGCACTTATGCCA -ACGGAAGACTGAACACGAGGAAAC -ACGGAAGACTGAACACGAAACACC -ACGGAAGACTGAACACGAATCGAG -ACGGAAGACTGAACACGACTCCTT -ACGGAAGACTGAACACGACCTGTT -ACGGAAGACTGAACACGACGGTTT -ACGGAAGACTGAACACGAGTGGTT -ACGGAAGACTGAACACGAGCCTTT -ACGGAAGACTGAACACGAGGTCTT -ACGGAAGACTGAACACGAACGCTT -ACGGAAGACTGAACACGAAGCGTT -ACGGAAGACTGAACACGATTCGTC -ACGGAAGACTGAACACGATCTCTC -ACGGAAGACTGAACACGATGGATC -ACGGAAGACTGAACACGACACTTC -ACGGAAGACTGAACACGAGTACTC -ACGGAAGACTGAACACGAGATGTC -ACGGAAGACTGAACACGAACAGTC -ACGGAAGACTGAACACGATTGCTG -ACGGAAGACTGAACACGATCCATG -ACGGAAGACTGAACACGATGTGTG -ACGGAAGACTGAACACGACTAGTG -ACGGAAGACTGAACACGACATCTG -ACGGAAGACTGAACACGAGAGTTG -ACGGAAGACTGAACACGAAGACTG -ACGGAAGACTGAACACGATCGGTA -ACGGAAGACTGAACACGATGCCTA -ACGGAAGACTGAACACGACCACTA -ACGGAAGACTGAACACGAGGAGTA -ACGGAAGACTGAACACGATCGTCT -ACGGAAGACTGAACACGATGCACT -ACGGAAGACTGAACACGACTGACT -ACGGAAGACTGAACACGACAACCT -ACGGAAGACTGAACACGAGCTACT -ACGGAAGACTGAACACGAGGATCT -ACGGAAGACTGAACACGAAAGGCT -ACGGAAGACTGAACACGATCAACC -ACGGAAGACTGAACACGATGTTCC -ACGGAAGACTGAACACGAATTCCC -ACGGAAGACTGAACACGATTCTCG -ACGGAAGACTGAACACGATAGACG -ACGGAAGACTGAACACGAGTAACG -ACGGAAGACTGAACACGAACTTCG -ACGGAAGACTGAACACGATACGCA -ACGGAAGACTGAACACGACTTGCA -ACGGAAGACTGAACACGACGAACA -ACGGAAGACTGAACACGACAGTCA -ACGGAAGACTGAACACGAGATCCA -ACGGAAGACTGAACACGAACGACA -ACGGAAGACTGAACACGAAGCTCA -ACGGAAGACTGAACACGATCACGT -ACGGAAGACTGAACACGACGTAGT -ACGGAAGACTGAACACGAGTCAGT -ACGGAAGACTGAACACGAGAAGGT -ACGGAAGACTGAACACGAAACCGT -ACGGAAGACTGAACACGATTGTGC -ACGGAAGACTGAACACGACTAAGC -ACGGAAGACTGAACACGAACTAGC -ACGGAAGACTGAACACGAAGATGC -ACGGAAGACTGAACACGATGAAGG -ACGGAAGACTGAACACGACAATGG -ACGGAAGACTGAACACGAATGAGG -ACGGAAGACTGAACACGAAATGGG -ACGGAAGACTGAACACGATCCTGA -ACGGAAGACTGAACACGATAGCGA -ACGGAAGACTGAACACGACACAGA -ACGGAAGACTGAACACGAGCAAGA -ACGGAAGACTGAACACGAGGTTGA -ACGGAAGACTGAACACGATCCGAT -ACGGAAGACTGAACACGATGGCAT -ACGGAAGACTGAACACGACGAGAT -ACGGAAGACTGAACACGATACCAC -ACGGAAGACTGAACACGACAGAAC -ACGGAAGACTGAACACGAGTCTAC -ACGGAAGACTGAACACGAACGTAC -ACGGAAGACTGAACACGAAGTGAC -ACGGAAGACTGAACACGACTGTAG -ACGGAAGACTGAACACGACCTAAG -ACGGAAGACTGAACACGAGTTCAG -ACGGAAGACTGAACACGAGCATAG -ACGGAAGACTGAACACGAGACAAG -ACGGAAGACTGAACACGAAAGCAG -ACGGAAGACTGAACACGACGTCAA -ACGGAAGACTGAACACGAGCTGAA -ACGGAAGACTGAACACGAAGTACG -ACGGAAGACTGAACACGAATCCGA -ACGGAAGACTGAACACGAATGGGA -ACGGAAGACTGAACACGAGTGCAA -ACGGAAGACTGAACACGAGAGGAA -ACGGAAGACTGAACACGACAGGTA -ACGGAAGACTGAACACGAGACTCT -ACGGAAGACTGAACACGAAGTCCT -ACGGAAGACTGAACACGATAAGCC -ACGGAAGACTGAACACGAATAGCC -ACGGAAGACTGAACACGATAACCG -ACGGAAGACTGAACACGAATGCCA -ACGGAAGACTGATCACAGGGAAAC -ACGGAAGACTGATCACAGAACACC -ACGGAAGACTGATCACAGATCGAG -ACGGAAGACTGATCACAGCTCCTT -ACGGAAGACTGATCACAGCCTGTT -ACGGAAGACTGATCACAGCGGTTT -ACGGAAGACTGATCACAGGTGGTT -ACGGAAGACTGATCACAGGCCTTT -ACGGAAGACTGATCACAGGGTCTT -ACGGAAGACTGATCACAGACGCTT -ACGGAAGACTGATCACAGAGCGTT -ACGGAAGACTGATCACAGTTCGTC -ACGGAAGACTGATCACAGTCTCTC -ACGGAAGACTGATCACAGTGGATC -ACGGAAGACTGATCACAGCACTTC -ACGGAAGACTGATCACAGGTACTC -ACGGAAGACTGATCACAGGATGTC -ACGGAAGACTGATCACAGACAGTC -ACGGAAGACTGATCACAGTTGCTG -ACGGAAGACTGATCACAGTCCATG -ACGGAAGACTGATCACAGTGTGTG -ACGGAAGACTGATCACAGCTAGTG -ACGGAAGACTGATCACAGCATCTG -ACGGAAGACTGATCACAGGAGTTG -ACGGAAGACTGATCACAGAGACTG -ACGGAAGACTGATCACAGTCGGTA -ACGGAAGACTGATCACAGTGCCTA -ACGGAAGACTGATCACAGCCACTA -ACGGAAGACTGATCACAGGGAGTA -ACGGAAGACTGATCACAGTCGTCT -ACGGAAGACTGATCACAGTGCACT -ACGGAAGACTGATCACAGCTGACT -ACGGAAGACTGATCACAGCAACCT -ACGGAAGACTGATCACAGGCTACT -ACGGAAGACTGATCACAGGGATCT -ACGGAAGACTGATCACAGAAGGCT -ACGGAAGACTGATCACAGTCAACC -ACGGAAGACTGATCACAGTGTTCC -ACGGAAGACTGATCACAGATTCCC -ACGGAAGACTGATCACAGTTCTCG -ACGGAAGACTGATCACAGTAGACG -ACGGAAGACTGATCACAGGTAACG -ACGGAAGACTGATCACAGACTTCG -ACGGAAGACTGATCACAGTACGCA -ACGGAAGACTGATCACAGCTTGCA -ACGGAAGACTGATCACAGCGAACA -ACGGAAGACTGATCACAGCAGTCA -ACGGAAGACTGATCACAGGATCCA -ACGGAAGACTGATCACAGACGACA -ACGGAAGACTGATCACAGAGCTCA -ACGGAAGACTGATCACAGTCACGT -ACGGAAGACTGATCACAGCGTAGT -ACGGAAGACTGATCACAGGTCAGT -ACGGAAGACTGATCACAGGAAGGT -ACGGAAGACTGATCACAGAACCGT -ACGGAAGACTGATCACAGTTGTGC -ACGGAAGACTGATCACAGCTAAGC -ACGGAAGACTGATCACAGACTAGC -ACGGAAGACTGATCACAGAGATGC -ACGGAAGACTGATCACAGTGAAGG -ACGGAAGACTGATCACAGCAATGG -ACGGAAGACTGATCACAGATGAGG -ACGGAAGACTGATCACAGAATGGG -ACGGAAGACTGATCACAGTCCTGA -ACGGAAGACTGATCACAGTAGCGA -ACGGAAGACTGATCACAGCACAGA -ACGGAAGACTGATCACAGGCAAGA -ACGGAAGACTGATCACAGGGTTGA -ACGGAAGACTGATCACAGTCCGAT -ACGGAAGACTGATCACAGTGGCAT -ACGGAAGACTGATCACAGCGAGAT -ACGGAAGACTGATCACAGTACCAC -ACGGAAGACTGATCACAGCAGAAC -ACGGAAGACTGATCACAGGTCTAC -ACGGAAGACTGATCACAGACGTAC -ACGGAAGACTGATCACAGAGTGAC -ACGGAAGACTGATCACAGCTGTAG -ACGGAAGACTGATCACAGCCTAAG -ACGGAAGACTGATCACAGGTTCAG -ACGGAAGACTGATCACAGGCATAG -ACGGAAGACTGATCACAGGACAAG -ACGGAAGACTGATCACAGAAGCAG -ACGGAAGACTGATCACAGCGTCAA -ACGGAAGACTGATCACAGGCTGAA -ACGGAAGACTGATCACAGAGTACG -ACGGAAGACTGATCACAGATCCGA -ACGGAAGACTGATCACAGATGGGA -ACGGAAGACTGATCACAGGTGCAA -ACGGAAGACTGATCACAGGAGGAA -ACGGAAGACTGATCACAGCAGGTA -ACGGAAGACTGATCACAGGACTCT -ACGGAAGACTGATCACAGAGTCCT -ACGGAAGACTGATCACAGTAAGCC -ACGGAAGACTGATCACAGATAGCC -ACGGAAGACTGATCACAGTAACCG -ACGGAAGACTGATCACAGATGCCA -ACGGAAGACTGACCAGATGGAAAC -ACGGAAGACTGACCAGATAACACC -ACGGAAGACTGACCAGATATCGAG -ACGGAAGACTGACCAGATCTCCTT -ACGGAAGACTGACCAGATCCTGTT -ACGGAAGACTGACCAGATCGGTTT -ACGGAAGACTGACCAGATGTGGTT -ACGGAAGACTGACCAGATGCCTTT -ACGGAAGACTGACCAGATGGTCTT -ACGGAAGACTGACCAGATACGCTT -ACGGAAGACTGACCAGATAGCGTT -ACGGAAGACTGACCAGATTTCGTC -ACGGAAGACTGACCAGATTCTCTC -ACGGAAGACTGACCAGATTGGATC -ACGGAAGACTGACCAGATCACTTC -ACGGAAGACTGACCAGATGTACTC -ACGGAAGACTGACCAGATGATGTC -ACGGAAGACTGACCAGATACAGTC -ACGGAAGACTGACCAGATTTGCTG -ACGGAAGACTGACCAGATTCCATG -ACGGAAGACTGACCAGATTGTGTG -ACGGAAGACTGACCAGATCTAGTG -ACGGAAGACTGACCAGATCATCTG -ACGGAAGACTGACCAGATGAGTTG -ACGGAAGACTGACCAGATAGACTG -ACGGAAGACTGACCAGATTCGGTA -ACGGAAGACTGACCAGATTGCCTA -ACGGAAGACTGACCAGATCCACTA -ACGGAAGACTGACCAGATGGAGTA -ACGGAAGACTGACCAGATTCGTCT -ACGGAAGACTGACCAGATTGCACT -ACGGAAGACTGACCAGATCTGACT -ACGGAAGACTGACCAGATCAACCT -ACGGAAGACTGACCAGATGCTACT -ACGGAAGACTGACCAGATGGATCT -ACGGAAGACTGACCAGATAAGGCT -ACGGAAGACTGACCAGATTCAACC -ACGGAAGACTGACCAGATTGTTCC -ACGGAAGACTGACCAGATATTCCC -ACGGAAGACTGACCAGATTTCTCG -ACGGAAGACTGACCAGATTAGACG -ACGGAAGACTGACCAGATGTAACG -ACGGAAGACTGACCAGATACTTCG -ACGGAAGACTGACCAGATTACGCA -ACGGAAGACTGACCAGATCTTGCA -ACGGAAGACTGACCAGATCGAACA -ACGGAAGACTGACCAGATCAGTCA -ACGGAAGACTGACCAGATGATCCA -ACGGAAGACTGACCAGATACGACA -ACGGAAGACTGACCAGATAGCTCA -ACGGAAGACTGACCAGATTCACGT -ACGGAAGACTGACCAGATCGTAGT -ACGGAAGACTGACCAGATGTCAGT -ACGGAAGACTGACCAGATGAAGGT -ACGGAAGACTGACCAGATAACCGT -ACGGAAGACTGACCAGATTTGTGC -ACGGAAGACTGACCAGATCTAAGC -ACGGAAGACTGACCAGATACTAGC -ACGGAAGACTGACCAGATAGATGC -ACGGAAGACTGACCAGATTGAAGG -ACGGAAGACTGACCAGATCAATGG -ACGGAAGACTGACCAGATATGAGG -ACGGAAGACTGACCAGATAATGGG -ACGGAAGACTGACCAGATTCCTGA -ACGGAAGACTGACCAGATTAGCGA -ACGGAAGACTGACCAGATCACAGA -ACGGAAGACTGACCAGATGCAAGA -ACGGAAGACTGACCAGATGGTTGA -ACGGAAGACTGACCAGATTCCGAT -ACGGAAGACTGACCAGATTGGCAT -ACGGAAGACTGACCAGATCGAGAT -ACGGAAGACTGACCAGATTACCAC -ACGGAAGACTGACCAGATCAGAAC -ACGGAAGACTGACCAGATGTCTAC -ACGGAAGACTGACCAGATACGTAC -ACGGAAGACTGACCAGATAGTGAC -ACGGAAGACTGACCAGATCTGTAG -ACGGAAGACTGACCAGATCCTAAG -ACGGAAGACTGACCAGATGTTCAG -ACGGAAGACTGACCAGATGCATAG -ACGGAAGACTGACCAGATGACAAG -ACGGAAGACTGACCAGATAAGCAG -ACGGAAGACTGACCAGATCGTCAA -ACGGAAGACTGACCAGATGCTGAA -ACGGAAGACTGACCAGATAGTACG -ACGGAAGACTGACCAGATATCCGA -ACGGAAGACTGACCAGATATGGGA -ACGGAAGACTGACCAGATGTGCAA -ACGGAAGACTGACCAGATGAGGAA -ACGGAAGACTGACCAGATCAGGTA -ACGGAAGACTGACCAGATGACTCT -ACGGAAGACTGACCAGATAGTCCT -ACGGAAGACTGACCAGATTAAGCC -ACGGAAGACTGACCAGATATAGCC -ACGGAAGACTGACCAGATTAACCG -ACGGAAGACTGACCAGATATGCCA -ACGGAAGACTGAACAACGGGAAAC -ACGGAAGACTGAACAACGAACACC -ACGGAAGACTGAACAACGATCGAG -ACGGAAGACTGAACAACGCTCCTT -ACGGAAGACTGAACAACGCCTGTT -ACGGAAGACTGAACAACGCGGTTT -ACGGAAGACTGAACAACGGTGGTT -ACGGAAGACTGAACAACGGCCTTT -ACGGAAGACTGAACAACGGGTCTT -ACGGAAGACTGAACAACGACGCTT -ACGGAAGACTGAACAACGAGCGTT -ACGGAAGACTGAACAACGTTCGTC -ACGGAAGACTGAACAACGTCTCTC -ACGGAAGACTGAACAACGTGGATC -ACGGAAGACTGAACAACGCACTTC -ACGGAAGACTGAACAACGGTACTC -ACGGAAGACTGAACAACGGATGTC -ACGGAAGACTGAACAACGACAGTC -ACGGAAGACTGAACAACGTTGCTG -ACGGAAGACTGAACAACGTCCATG -ACGGAAGACTGAACAACGTGTGTG -ACGGAAGACTGAACAACGCTAGTG -ACGGAAGACTGAACAACGCATCTG -ACGGAAGACTGAACAACGGAGTTG -ACGGAAGACTGAACAACGAGACTG -ACGGAAGACTGAACAACGTCGGTA -ACGGAAGACTGAACAACGTGCCTA -ACGGAAGACTGAACAACGCCACTA -ACGGAAGACTGAACAACGGGAGTA -ACGGAAGACTGAACAACGTCGTCT -ACGGAAGACTGAACAACGTGCACT -ACGGAAGACTGAACAACGCTGACT -ACGGAAGACTGAACAACGCAACCT -ACGGAAGACTGAACAACGGCTACT -ACGGAAGACTGAACAACGGGATCT -ACGGAAGACTGAACAACGAAGGCT -ACGGAAGACTGAACAACGTCAACC -ACGGAAGACTGAACAACGTGTTCC -ACGGAAGACTGAACAACGATTCCC -ACGGAAGACTGAACAACGTTCTCG -ACGGAAGACTGAACAACGTAGACG -ACGGAAGACTGAACAACGGTAACG -ACGGAAGACTGAACAACGACTTCG -ACGGAAGACTGAACAACGTACGCA -ACGGAAGACTGAACAACGCTTGCA -ACGGAAGACTGAACAACGCGAACA -ACGGAAGACTGAACAACGCAGTCA -ACGGAAGACTGAACAACGGATCCA -ACGGAAGACTGAACAACGACGACA -ACGGAAGACTGAACAACGAGCTCA -ACGGAAGACTGAACAACGTCACGT -ACGGAAGACTGAACAACGCGTAGT -ACGGAAGACTGAACAACGGTCAGT -ACGGAAGACTGAACAACGGAAGGT -ACGGAAGACTGAACAACGAACCGT -ACGGAAGACTGAACAACGTTGTGC -ACGGAAGACTGAACAACGCTAAGC -ACGGAAGACTGAACAACGACTAGC -ACGGAAGACTGAACAACGAGATGC -ACGGAAGACTGAACAACGTGAAGG -ACGGAAGACTGAACAACGCAATGG -ACGGAAGACTGAACAACGATGAGG -ACGGAAGACTGAACAACGAATGGG -ACGGAAGACTGAACAACGTCCTGA -ACGGAAGACTGAACAACGTAGCGA -ACGGAAGACTGAACAACGCACAGA -ACGGAAGACTGAACAACGGCAAGA -ACGGAAGACTGAACAACGGGTTGA -ACGGAAGACTGAACAACGTCCGAT -ACGGAAGACTGAACAACGTGGCAT -ACGGAAGACTGAACAACGCGAGAT -ACGGAAGACTGAACAACGTACCAC -ACGGAAGACTGAACAACGCAGAAC -ACGGAAGACTGAACAACGGTCTAC -ACGGAAGACTGAACAACGACGTAC -ACGGAAGACTGAACAACGAGTGAC -ACGGAAGACTGAACAACGCTGTAG -ACGGAAGACTGAACAACGCCTAAG -ACGGAAGACTGAACAACGGTTCAG -ACGGAAGACTGAACAACGGCATAG -ACGGAAGACTGAACAACGGACAAG -ACGGAAGACTGAACAACGAAGCAG -ACGGAAGACTGAACAACGCGTCAA -ACGGAAGACTGAACAACGGCTGAA -ACGGAAGACTGAACAACGAGTACG -ACGGAAGACTGAACAACGATCCGA -ACGGAAGACTGAACAACGATGGGA -ACGGAAGACTGAACAACGGTGCAA -ACGGAAGACTGAACAACGGAGGAA -ACGGAAGACTGAACAACGCAGGTA -ACGGAAGACTGAACAACGGACTCT -ACGGAAGACTGAACAACGAGTCCT -ACGGAAGACTGAACAACGTAAGCC -ACGGAAGACTGAACAACGATAGCC -ACGGAAGACTGAACAACGTAACCG -ACGGAAGACTGAACAACGATGCCA -ACGGAAGACTGATCAAGCGGAAAC -ACGGAAGACTGATCAAGCAACACC -ACGGAAGACTGATCAAGCATCGAG -ACGGAAGACTGATCAAGCCTCCTT -ACGGAAGACTGATCAAGCCCTGTT -ACGGAAGACTGATCAAGCCGGTTT -ACGGAAGACTGATCAAGCGTGGTT -ACGGAAGACTGATCAAGCGCCTTT -ACGGAAGACTGATCAAGCGGTCTT -ACGGAAGACTGATCAAGCACGCTT -ACGGAAGACTGATCAAGCAGCGTT -ACGGAAGACTGATCAAGCTTCGTC -ACGGAAGACTGATCAAGCTCTCTC -ACGGAAGACTGATCAAGCTGGATC -ACGGAAGACTGATCAAGCCACTTC -ACGGAAGACTGATCAAGCGTACTC -ACGGAAGACTGATCAAGCGATGTC -ACGGAAGACTGATCAAGCACAGTC -ACGGAAGACTGATCAAGCTTGCTG -ACGGAAGACTGATCAAGCTCCATG -ACGGAAGACTGATCAAGCTGTGTG -ACGGAAGACTGATCAAGCCTAGTG -ACGGAAGACTGATCAAGCCATCTG -ACGGAAGACTGATCAAGCGAGTTG -ACGGAAGACTGATCAAGCAGACTG -ACGGAAGACTGATCAAGCTCGGTA -ACGGAAGACTGATCAAGCTGCCTA -ACGGAAGACTGATCAAGCCCACTA -ACGGAAGACTGATCAAGCGGAGTA -ACGGAAGACTGATCAAGCTCGTCT -ACGGAAGACTGATCAAGCTGCACT -ACGGAAGACTGATCAAGCCTGACT -ACGGAAGACTGATCAAGCCAACCT -ACGGAAGACTGATCAAGCGCTACT -ACGGAAGACTGATCAAGCGGATCT -ACGGAAGACTGATCAAGCAAGGCT -ACGGAAGACTGATCAAGCTCAACC -ACGGAAGACTGATCAAGCTGTTCC -ACGGAAGACTGATCAAGCATTCCC -ACGGAAGACTGATCAAGCTTCTCG -ACGGAAGACTGATCAAGCTAGACG -ACGGAAGACTGATCAAGCGTAACG -ACGGAAGACTGATCAAGCACTTCG -ACGGAAGACTGATCAAGCTACGCA -ACGGAAGACTGATCAAGCCTTGCA -ACGGAAGACTGATCAAGCCGAACA -ACGGAAGACTGATCAAGCCAGTCA -ACGGAAGACTGATCAAGCGATCCA -ACGGAAGACTGATCAAGCACGACA -ACGGAAGACTGATCAAGCAGCTCA -ACGGAAGACTGATCAAGCTCACGT -ACGGAAGACTGATCAAGCCGTAGT -ACGGAAGACTGATCAAGCGTCAGT -ACGGAAGACTGATCAAGCGAAGGT -ACGGAAGACTGATCAAGCAACCGT -ACGGAAGACTGATCAAGCTTGTGC -ACGGAAGACTGATCAAGCCTAAGC -ACGGAAGACTGATCAAGCACTAGC -ACGGAAGACTGATCAAGCAGATGC -ACGGAAGACTGATCAAGCTGAAGG -ACGGAAGACTGATCAAGCCAATGG -ACGGAAGACTGATCAAGCATGAGG -ACGGAAGACTGATCAAGCAATGGG -ACGGAAGACTGATCAAGCTCCTGA -ACGGAAGACTGATCAAGCTAGCGA -ACGGAAGACTGATCAAGCCACAGA -ACGGAAGACTGATCAAGCGCAAGA -ACGGAAGACTGATCAAGCGGTTGA -ACGGAAGACTGATCAAGCTCCGAT -ACGGAAGACTGATCAAGCTGGCAT -ACGGAAGACTGATCAAGCCGAGAT -ACGGAAGACTGATCAAGCTACCAC -ACGGAAGACTGATCAAGCCAGAAC -ACGGAAGACTGATCAAGCGTCTAC -ACGGAAGACTGATCAAGCACGTAC -ACGGAAGACTGATCAAGCAGTGAC -ACGGAAGACTGATCAAGCCTGTAG -ACGGAAGACTGATCAAGCCCTAAG -ACGGAAGACTGATCAAGCGTTCAG -ACGGAAGACTGATCAAGCGCATAG -ACGGAAGACTGATCAAGCGACAAG -ACGGAAGACTGATCAAGCAAGCAG -ACGGAAGACTGATCAAGCCGTCAA -ACGGAAGACTGATCAAGCGCTGAA -ACGGAAGACTGATCAAGCAGTACG -ACGGAAGACTGATCAAGCATCCGA -ACGGAAGACTGATCAAGCATGGGA -ACGGAAGACTGATCAAGCGTGCAA -ACGGAAGACTGATCAAGCGAGGAA -ACGGAAGACTGATCAAGCCAGGTA -ACGGAAGACTGATCAAGCGACTCT -ACGGAAGACTGATCAAGCAGTCCT -ACGGAAGACTGATCAAGCTAAGCC -ACGGAAGACTGATCAAGCATAGCC -ACGGAAGACTGATCAAGCTAACCG -ACGGAAGACTGATCAAGCATGCCA -ACGGAAGACTGACGTTCAGGAAAC -ACGGAAGACTGACGTTCAAACACC -ACGGAAGACTGACGTTCAATCGAG -ACGGAAGACTGACGTTCACTCCTT -ACGGAAGACTGACGTTCACCTGTT -ACGGAAGACTGACGTTCACGGTTT -ACGGAAGACTGACGTTCAGTGGTT -ACGGAAGACTGACGTTCAGCCTTT -ACGGAAGACTGACGTTCAGGTCTT -ACGGAAGACTGACGTTCAACGCTT -ACGGAAGACTGACGTTCAAGCGTT -ACGGAAGACTGACGTTCATTCGTC -ACGGAAGACTGACGTTCATCTCTC -ACGGAAGACTGACGTTCATGGATC -ACGGAAGACTGACGTTCACACTTC -ACGGAAGACTGACGTTCAGTACTC -ACGGAAGACTGACGTTCAGATGTC -ACGGAAGACTGACGTTCAACAGTC -ACGGAAGACTGACGTTCATTGCTG -ACGGAAGACTGACGTTCATCCATG -ACGGAAGACTGACGTTCATGTGTG -ACGGAAGACTGACGTTCACTAGTG -ACGGAAGACTGACGTTCACATCTG -ACGGAAGACTGACGTTCAGAGTTG -ACGGAAGACTGACGTTCAAGACTG -ACGGAAGACTGACGTTCATCGGTA -ACGGAAGACTGACGTTCATGCCTA -ACGGAAGACTGACGTTCACCACTA -ACGGAAGACTGACGTTCAGGAGTA -ACGGAAGACTGACGTTCATCGTCT -ACGGAAGACTGACGTTCATGCACT -ACGGAAGACTGACGTTCACTGACT -ACGGAAGACTGACGTTCACAACCT -ACGGAAGACTGACGTTCAGCTACT -ACGGAAGACTGACGTTCAGGATCT -ACGGAAGACTGACGTTCAAAGGCT -ACGGAAGACTGACGTTCATCAACC -ACGGAAGACTGACGTTCATGTTCC -ACGGAAGACTGACGTTCAATTCCC -ACGGAAGACTGACGTTCATTCTCG -ACGGAAGACTGACGTTCATAGACG -ACGGAAGACTGACGTTCAGTAACG -ACGGAAGACTGACGTTCAACTTCG -ACGGAAGACTGACGTTCATACGCA -ACGGAAGACTGACGTTCACTTGCA -ACGGAAGACTGACGTTCACGAACA -ACGGAAGACTGACGTTCACAGTCA -ACGGAAGACTGACGTTCAGATCCA -ACGGAAGACTGACGTTCAACGACA -ACGGAAGACTGACGTTCAAGCTCA -ACGGAAGACTGACGTTCATCACGT -ACGGAAGACTGACGTTCACGTAGT -ACGGAAGACTGACGTTCAGTCAGT -ACGGAAGACTGACGTTCAGAAGGT -ACGGAAGACTGACGTTCAAACCGT -ACGGAAGACTGACGTTCATTGTGC -ACGGAAGACTGACGTTCACTAAGC -ACGGAAGACTGACGTTCAACTAGC -ACGGAAGACTGACGTTCAAGATGC -ACGGAAGACTGACGTTCATGAAGG -ACGGAAGACTGACGTTCACAATGG -ACGGAAGACTGACGTTCAATGAGG -ACGGAAGACTGACGTTCAAATGGG -ACGGAAGACTGACGTTCATCCTGA -ACGGAAGACTGACGTTCATAGCGA -ACGGAAGACTGACGTTCACACAGA -ACGGAAGACTGACGTTCAGCAAGA -ACGGAAGACTGACGTTCAGGTTGA -ACGGAAGACTGACGTTCATCCGAT -ACGGAAGACTGACGTTCATGGCAT -ACGGAAGACTGACGTTCACGAGAT -ACGGAAGACTGACGTTCATACCAC -ACGGAAGACTGACGTTCACAGAAC -ACGGAAGACTGACGTTCAGTCTAC -ACGGAAGACTGACGTTCAACGTAC -ACGGAAGACTGACGTTCAAGTGAC -ACGGAAGACTGACGTTCACTGTAG -ACGGAAGACTGACGTTCACCTAAG -ACGGAAGACTGACGTTCAGTTCAG -ACGGAAGACTGACGTTCAGCATAG -ACGGAAGACTGACGTTCAGACAAG -ACGGAAGACTGACGTTCAAAGCAG -ACGGAAGACTGACGTTCACGTCAA -ACGGAAGACTGACGTTCAGCTGAA -ACGGAAGACTGACGTTCAAGTACG -ACGGAAGACTGACGTTCAATCCGA -ACGGAAGACTGACGTTCAATGGGA -ACGGAAGACTGACGTTCAGTGCAA -ACGGAAGACTGACGTTCAGAGGAA -ACGGAAGACTGACGTTCACAGGTA -ACGGAAGACTGACGTTCAGACTCT -ACGGAAGACTGACGTTCAAGTCCT -ACGGAAGACTGACGTTCATAAGCC -ACGGAAGACTGACGTTCAATAGCC -ACGGAAGACTGACGTTCATAACCG -ACGGAAGACTGACGTTCAATGCCA -ACGGAAGACTGAAGTCGTGGAAAC -ACGGAAGACTGAAGTCGTAACACC -ACGGAAGACTGAAGTCGTATCGAG -ACGGAAGACTGAAGTCGTCTCCTT -ACGGAAGACTGAAGTCGTCCTGTT -ACGGAAGACTGAAGTCGTCGGTTT -ACGGAAGACTGAAGTCGTGTGGTT -ACGGAAGACTGAAGTCGTGCCTTT -ACGGAAGACTGAAGTCGTGGTCTT -ACGGAAGACTGAAGTCGTACGCTT -ACGGAAGACTGAAGTCGTAGCGTT -ACGGAAGACTGAAGTCGTTTCGTC -ACGGAAGACTGAAGTCGTTCTCTC -ACGGAAGACTGAAGTCGTTGGATC -ACGGAAGACTGAAGTCGTCACTTC -ACGGAAGACTGAAGTCGTGTACTC -ACGGAAGACTGAAGTCGTGATGTC -ACGGAAGACTGAAGTCGTACAGTC -ACGGAAGACTGAAGTCGTTTGCTG -ACGGAAGACTGAAGTCGTTCCATG -ACGGAAGACTGAAGTCGTTGTGTG -ACGGAAGACTGAAGTCGTCTAGTG -ACGGAAGACTGAAGTCGTCATCTG -ACGGAAGACTGAAGTCGTGAGTTG -ACGGAAGACTGAAGTCGTAGACTG -ACGGAAGACTGAAGTCGTTCGGTA -ACGGAAGACTGAAGTCGTTGCCTA -ACGGAAGACTGAAGTCGTCCACTA -ACGGAAGACTGAAGTCGTGGAGTA -ACGGAAGACTGAAGTCGTTCGTCT -ACGGAAGACTGAAGTCGTTGCACT -ACGGAAGACTGAAGTCGTCTGACT -ACGGAAGACTGAAGTCGTCAACCT -ACGGAAGACTGAAGTCGTGCTACT -ACGGAAGACTGAAGTCGTGGATCT -ACGGAAGACTGAAGTCGTAAGGCT -ACGGAAGACTGAAGTCGTTCAACC -ACGGAAGACTGAAGTCGTTGTTCC -ACGGAAGACTGAAGTCGTATTCCC -ACGGAAGACTGAAGTCGTTTCTCG -ACGGAAGACTGAAGTCGTTAGACG -ACGGAAGACTGAAGTCGTGTAACG -ACGGAAGACTGAAGTCGTACTTCG -ACGGAAGACTGAAGTCGTTACGCA -ACGGAAGACTGAAGTCGTCTTGCA -ACGGAAGACTGAAGTCGTCGAACA -ACGGAAGACTGAAGTCGTCAGTCA -ACGGAAGACTGAAGTCGTGATCCA -ACGGAAGACTGAAGTCGTACGACA -ACGGAAGACTGAAGTCGTAGCTCA -ACGGAAGACTGAAGTCGTTCACGT -ACGGAAGACTGAAGTCGTCGTAGT -ACGGAAGACTGAAGTCGTGTCAGT -ACGGAAGACTGAAGTCGTGAAGGT -ACGGAAGACTGAAGTCGTAACCGT -ACGGAAGACTGAAGTCGTTTGTGC -ACGGAAGACTGAAGTCGTCTAAGC -ACGGAAGACTGAAGTCGTACTAGC -ACGGAAGACTGAAGTCGTAGATGC -ACGGAAGACTGAAGTCGTTGAAGG -ACGGAAGACTGAAGTCGTCAATGG -ACGGAAGACTGAAGTCGTATGAGG -ACGGAAGACTGAAGTCGTAATGGG -ACGGAAGACTGAAGTCGTTCCTGA -ACGGAAGACTGAAGTCGTTAGCGA -ACGGAAGACTGAAGTCGTCACAGA -ACGGAAGACTGAAGTCGTGCAAGA -ACGGAAGACTGAAGTCGTGGTTGA -ACGGAAGACTGAAGTCGTTCCGAT -ACGGAAGACTGAAGTCGTTGGCAT -ACGGAAGACTGAAGTCGTCGAGAT -ACGGAAGACTGAAGTCGTTACCAC -ACGGAAGACTGAAGTCGTCAGAAC -ACGGAAGACTGAAGTCGTGTCTAC -ACGGAAGACTGAAGTCGTACGTAC -ACGGAAGACTGAAGTCGTAGTGAC -ACGGAAGACTGAAGTCGTCTGTAG -ACGGAAGACTGAAGTCGTCCTAAG -ACGGAAGACTGAAGTCGTGTTCAG -ACGGAAGACTGAAGTCGTGCATAG -ACGGAAGACTGAAGTCGTGACAAG -ACGGAAGACTGAAGTCGTAAGCAG -ACGGAAGACTGAAGTCGTCGTCAA -ACGGAAGACTGAAGTCGTGCTGAA -ACGGAAGACTGAAGTCGTAGTACG -ACGGAAGACTGAAGTCGTATCCGA -ACGGAAGACTGAAGTCGTATGGGA -ACGGAAGACTGAAGTCGTGTGCAA -ACGGAAGACTGAAGTCGTGAGGAA -ACGGAAGACTGAAGTCGTCAGGTA -ACGGAAGACTGAAGTCGTGACTCT -ACGGAAGACTGAAGTCGTAGTCCT -ACGGAAGACTGAAGTCGTTAAGCC -ACGGAAGACTGAAGTCGTATAGCC -ACGGAAGACTGAAGTCGTTAACCG -ACGGAAGACTGAAGTCGTATGCCA -ACGGAAGACTGAAGTGTCGGAAAC -ACGGAAGACTGAAGTGTCAACACC -ACGGAAGACTGAAGTGTCATCGAG -ACGGAAGACTGAAGTGTCCTCCTT -ACGGAAGACTGAAGTGTCCCTGTT -ACGGAAGACTGAAGTGTCCGGTTT -ACGGAAGACTGAAGTGTCGTGGTT -ACGGAAGACTGAAGTGTCGCCTTT -ACGGAAGACTGAAGTGTCGGTCTT -ACGGAAGACTGAAGTGTCACGCTT -ACGGAAGACTGAAGTGTCAGCGTT -ACGGAAGACTGAAGTGTCTTCGTC -ACGGAAGACTGAAGTGTCTCTCTC -ACGGAAGACTGAAGTGTCTGGATC -ACGGAAGACTGAAGTGTCCACTTC -ACGGAAGACTGAAGTGTCGTACTC -ACGGAAGACTGAAGTGTCGATGTC -ACGGAAGACTGAAGTGTCACAGTC -ACGGAAGACTGAAGTGTCTTGCTG -ACGGAAGACTGAAGTGTCTCCATG -ACGGAAGACTGAAGTGTCTGTGTG -ACGGAAGACTGAAGTGTCCTAGTG -ACGGAAGACTGAAGTGTCCATCTG -ACGGAAGACTGAAGTGTCGAGTTG -ACGGAAGACTGAAGTGTCAGACTG -ACGGAAGACTGAAGTGTCTCGGTA -ACGGAAGACTGAAGTGTCTGCCTA -ACGGAAGACTGAAGTGTCCCACTA -ACGGAAGACTGAAGTGTCGGAGTA -ACGGAAGACTGAAGTGTCTCGTCT -ACGGAAGACTGAAGTGTCTGCACT -ACGGAAGACTGAAGTGTCCTGACT -ACGGAAGACTGAAGTGTCCAACCT -ACGGAAGACTGAAGTGTCGCTACT -ACGGAAGACTGAAGTGTCGGATCT -ACGGAAGACTGAAGTGTCAAGGCT -ACGGAAGACTGAAGTGTCTCAACC -ACGGAAGACTGAAGTGTCTGTTCC -ACGGAAGACTGAAGTGTCATTCCC -ACGGAAGACTGAAGTGTCTTCTCG -ACGGAAGACTGAAGTGTCTAGACG -ACGGAAGACTGAAGTGTCGTAACG -ACGGAAGACTGAAGTGTCACTTCG -ACGGAAGACTGAAGTGTCTACGCA -ACGGAAGACTGAAGTGTCCTTGCA -ACGGAAGACTGAAGTGTCCGAACA -ACGGAAGACTGAAGTGTCCAGTCA -ACGGAAGACTGAAGTGTCGATCCA -ACGGAAGACTGAAGTGTCACGACA -ACGGAAGACTGAAGTGTCAGCTCA -ACGGAAGACTGAAGTGTCTCACGT -ACGGAAGACTGAAGTGTCCGTAGT -ACGGAAGACTGAAGTGTCGTCAGT -ACGGAAGACTGAAGTGTCGAAGGT -ACGGAAGACTGAAGTGTCAACCGT -ACGGAAGACTGAAGTGTCTTGTGC -ACGGAAGACTGAAGTGTCCTAAGC -ACGGAAGACTGAAGTGTCACTAGC -ACGGAAGACTGAAGTGTCAGATGC -ACGGAAGACTGAAGTGTCTGAAGG -ACGGAAGACTGAAGTGTCCAATGG -ACGGAAGACTGAAGTGTCATGAGG -ACGGAAGACTGAAGTGTCAATGGG -ACGGAAGACTGAAGTGTCTCCTGA -ACGGAAGACTGAAGTGTCTAGCGA -ACGGAAGACTGAAGTGTCCACAGA -ACGGAAGACTGAAGTGTCGCAAGA -ACGGAAGACTGAAGTGTCGGTTGA -ACGGAAGACTGAAGTGTCTCCGAT -ACGGAAGACTGAAGTGTCTGGCAT -ACGGAAGACTGAAGTGTCCGAGAT -ACGGAAGACTGAAGTGTCTACCAC -ACGGAAGACTGAAGTGTCCAGAAC -ACGGAAGACTGAAGTGTCGTCTAC -ACGGAAGACTGAAGTGTCACGTAC -ACGGAAGACTGAAGTGTCAGTGAC -ACGGAAGACTGAAGTGTCCTGTAG -ACGGAAGACTGAAGTGTCCCTAAG -ACGGAAGACTGAAGTGTCGTTCAG -ACGGAAGACTGAAGTGTCGCATAG -ACGGAAGACTGAAGTGTCGACAAG -ACGGAAGACTGAAGTGTCAAGCAG -ACGGAAGACTGAAGTGTCCGTCAA -ACGGAAGACTGAAGTGTCGCTGAA -ACGGAAGACTGAAGTGTCAGTACG -ACGGAAGACTGAAGTGTCATCCGA -ACGGAAGACTGAAGTGTCATGGGA -ACGGAAGACTGAAGTGTCGTGCAA -ACGGAAGACTGAAGTGTCGAGGAA -ACGGAAGACTGAAGTGTCCAGGTA -ACGGAAGACTGAAGTGTCGACTCT -ACGGAAGACTGAAGTGTCAGTCCT -ACGGAAGACTGAAGTGTCTAAGCC -ACGGAAGACTGAAGTGTCATAGCC -ACGGAAGACTGAAGTGTCTAACCG -ACGGAAGACTGAAGTGTCATGCCA -ACGGAAGACTGAGGTGAAGGAAAC -ACGGAAGACTGAGGTGAAAACACC -ACGGAAGACTGAGGTGAAATCGAG -ACGGAAGACTGAGGTGAACTCCTT -ACGGAAGACTGAGGTGAACCTGTT -ACGGAAGACTGAGGTGAACGGTTT -ACGGAAGACTGAGGTGAAGTGGTT -ACGGAAGACTGAGGTGAAGCCTTT -ACGGAAGACTGAGGTGAAGGTCTT -ACGGAAGACTGAGGTGAAACGCTT -ACGGAAGACTGAGGTGAAAGCGTT -ACGGAAGACTGAGGTGAATTCGTC -ACGGAAGACTGAGGTGAATCTCTC -ACGGAAGACTGAGGTGAATGGATC -ACGGAAGACTGAGGTGAACACTTC -ACGGAAGACTGAGGTGAAGTACTC -ACGGAAGACTGAGGTGAAGATGTC -ACGGAAGACTGAGGTGAAACAGTC -ACGGAAGACTGAGGTGAATTGCTG -ACGGAAGACTGAGGTGAATCCATG -ACGGAAGACTGAGGTGAATGTGTG -ACGGAAGACTGAGGTGAACTAGTG -ACGGAAGACTGAGGTGAACATCTG -ACGGAAGACTGAGGTGAAGAGTTG -ACGGAAGACTGAGGTGAAAGACTG -ACGGAAGACTGAGGTGAATCGGTA -ACGGAAGACTGAGGTGAATGCCTA -ACGGAAGACTGAGGTGAACCACTA -ACGGAAGACTGAGGTGAAGGAGTA -ACGGAAGACTGAGGTGAATCGTCT -ACGGAAGACTGAGGTGAATGCACT -ACGGAAGACTGAGGTGAACTGACT -ACGGAAGACTGAGGTGAACAACCT -ACGGAAGACTGAGGTGAAGCTACT -ACGGAAGACTGAGGTGAAGGATCT -ACGGAAGACTGAGGTGAAAAGGCT -ACGGAAGACTGAGGTGAATCAACC -ACGGAAGACTGAGGTGAATGTTCC -ACGGAAGACTGAGGTGAAATTCCC -ACGGAAGACTGAGGTGAATTCTCG -ACGGAAGACTGAGGTGAATAGACG -ACGGAAGACTGAGGTGAAGTAACG -ACGGAAGACTGAGGTGAAACTTCG -ACGGAAGACTGAGGTGAATACGCA -ACGGAAGACTGAGGTGAACTTGCA -ACGGAAGACTGAGGTGAACGAACA -ACGGAAGACTGAGGTGAACAGTCA -ACGGAAGACTGAGGTGAAGATCCA -ACGGAAGACTGAGGTGAAACGACA -ACGGAAGACTGAGGTGAAAGCTCA -ACGGAAGACTGAGGTGAATCACGT -ACGGAAGACTGAGGTGAACGTAGT -ACGGAAGACTGAGGTGAAGTCAGT -ACGGAAGACTGAGGTGAAGAAGGT -ACGGAAGACTGAGGTGAAAACCGT -ACGGAAGACTGAGGTGAATTGTGC -ACGGAAGACTGAGGTGAACTAAGC -ACGGAAGACTGAGGTGAAACTAGC -ACGGAAGACTGAGGTGAAAGATGC -ACGGAAGACTGAGGTGAATGAAGG -ACGGAAGACTGAGGTGAACAATGG -ACGGAAGACTGAGGTGAAATGAGG -ACGGAAGACTGAGGTGAAAATGGG -ACGGAAGACTGAGGTGAATCCTGA -ACGGAAGACTGAGGTGAATAGCGA -ACGGAAGACTGAGGTGAACACAGA -ACGGAAGACTGAGGTGAAGCAAGA -ACGGAAGACTGAGGTGAAGGTTGA -ACGGAAGACTGAGGTGAATCCGAT -ACGGAAGACTGAGGTGAATGGCAT -ACGGAAGACTGAGGTGAACGAGAT -ACGGAAGACTGAGGTGAATACCAC -ACGGAAGACTGAGGTGAACAGAAC -ACGGAAGACTGAGGTGAAGTCTAC -ACGGAAGACTGAGGTGAAACGTAC -ACGGAAGACTGAGGTGAAAGTGAC -ACGGAAGACTGAGGTGAACTGTAG -ACGGAAGACTGAGGTGAACCTAAG -ACGGAAGACTGAGGTGAAGTTCAG -ACGGAAGACTGAGGTGAAGCATAG -ACGGAAGACTGAGGTGAAGACAAG -ACGGAAGACTGAGGTGAAAAGCAG -ACGGAAGACTGAGGTGAACGTCAA -ACGGAAGACTGAGGTGAAGCTGAA -ACGGAAGACTGAGGTGAAAGTACG -ACGGAAGACTGAGGTGAAATCCGA -ACGGAAGACTGAGGTGAAATGGGA -ACGGAAGACTGAGGTGAAGTGCAA -ACGGAAGACTGAGGTGAAGAGGAA -ACGGAAGACTGAGGTGAACAGGTA -ACGGAAGACTGAGGTGAAGACTCT -ACGGAAGACTGAGGTGAAAGTCCT -ACGGAAGACTGAGGTGAATAAGCC -ACGGAAGACTGAGGTGAAATAGCC -ACGGAAGACTGAGGTGAATAACCG -ACGGAAGACTGAGGTGAAATGCCA -ACGGAAGACTGACGTAACGGAAAC -ACGGAAGACTGACGTAACAACACC -ACGGAAGACTGACGTAACATCGAG -ACGGAAGACTGACGTAACCTCCTT -ACGGAAGACTGACGTAACCCTGTT -ACGGAAGACTGACGTAACCGGTTT -ACGGAAGACTGACGTAACGTGGTT -ACGGAAGACTGACGTAACGCCTTT -ACGGAAGACTGACGTAACGGTCTT -ACGGAAGACTGACGTAACACGCTT -ACGGAAGACTGACGTAACAGCGTT -ACGGAAGACTGACGTAACTTCGTC -ACGGAAGACTGACGTAACTCTCTC -ACGGAAGACTGACGTAACTGGATC -ACGGAAGACTGACGTAACCACTTC -ACGGAAGACTGACGTAACGTACTC -ACGGAAGACTGACGTAACGATGTC -ACGGAAGACTGACGTAACACAGTC -ACGGAAGACTGACGTAACTTGCTG -ACGGAAGACTGACGTAACTCCATG -ACGGAAGACTGACGTAACTGTGTG -ACGGAAGACTGACGTAACCTAGTG -ACGGAAGACTGACGTAACCATCTG -ACGGAAGACTGACGTAACGAGTTG -ACGGAAGACTGACGTAACAGACTG -ACGGAAGACTGACGTAACTCGGTA -ACGGAAGACTGACGTAACTGCCTA -ACGGAAGACTGACGTAACCCACTA -ACGGAAGACTGACGTAACGGAGTA -ACGGAAGACTGACGTAACTCGTCT -ACGGAAGACTGACGTAACTGCACT -ACGGAAGACTGACGTAACCTGACT -ACGGAAGACTGACGTAACCAACCT -ACGGAAGACTGACGTAACGCTACT -ACGGAAGACTGACGTAACGGATCT -ACGGAAGACTGACGTAACAAGGCT -ACGGAAGACTGACGTAACTCAACC -ACGGAAGACTGACGTAACTGTTCC -ACGGAAGACTGACGTAACATTCCC -ACGGAAGACTGACGTAACTTCTCG -ACGGAAGACTGACGTAACTAGACG -ACGGAAGACTGACGTAACGTAACG -ACGGAAGACTGACGTAACACTTCG -ACGGAAGACTGACGTAACTACGCA -ACGGAAGACTGACGTAACCTTGCA -ACGGAAGACTGACGTAACCGAACA -ACGGAAGACTGACGTAACCAGTCA -ACGGAAGACTGACGTAACGATCCA -ACGGAAGACTGACGTAACACGACA -ACGGAAGACTGACGTAACAGCTCA -ACGGAAGACTGACGTAACTCACGT -ACGGAAGACTGACGTAACCGTAGT -ACGGAAGACTGACGTAACGTCAGT -ACGGAAGACTGACGTAACGAAGGT -ACGGAAGACTGACGTAACAACCGT -ACGGAAGACTGACGTAACTTGTGC -ACGGAAGACTGACGTAACCTAAGC -ACGGAAGACTGACGTAACACTAGC -ACGGAAGACTGACGTAACAGATGC -ACGGAAGACTGACGTAACTGAAGG -ACGGAAGACTGACGTAACCAATGG -ACGGAAGACTGACGTAACATGAGG -ACGGAAGACTGACGTAACAATGGG -ACGGAAGACTGACGTAACTCCTGA -ACGGAAGACTGACGTAACTAGCGA -ACGGAAGACTGACGTAACCACAGA -ACGGAAGACTGACGTAACGCAAGA -ACGGAAGACTGACGTAACGGTTGA -ACGGAAGACTGACGTAACTCCGAT -ACGGAAGACTGACGTAACTGGCAT -ACGGAAGACTGACGTAACCGAGAT -ACGGAAGACTGACGTAACTACCAC -ACGGAAGACTGACGTAACCAGAAC -ACGGAAGACTGACGTAACGTCTAC -ACGGAAGACTGACGTAACACGTAC -ACGGAAGACTGACGTAACAGTGAC -ACGGAAGACTGACGTAACCTGTAG -ACGGAAGACTGACGTAACCCTAAG -ACGGAAGACTGACGTAACGTTCAG -ACGGAAGACTGACGTAACGCATAG -ACGGAAGACTGACGTAACGACAAG -ACGGAAGACTGACGTAACAAGCAG -ACGGAAGACTGACGTAACCGTCAA -ACGGAAGACTGACGTAACGCTGAA -ACGGAAGACTGACGTAACAGTACG -ACGGAAGACTGACGTAACATCCGA -ACGGAAGACTGACGTAACATGGGA -ACGGAAGACTGACGTAACGTGCAA -ACGGAAGACTGACGTAACGAGGAA -ACGGAAGACTGACGTAACCAGGTA -ACGGAAGACTGACGTAACGACTCT -ACGGAAGACTGACGTAACAGTCCT -ACGGAAGACTGACGTAACTAAGCC -ACGGAAGACTGACGTAACATAGCC -ACGGAAGACTGACGTAACTAACCG -ACGGAAGACTGACGTAACATGCCA -ACGGAAGACTGATGCTTGGGAAAC -ACGGAAGACTGATGCTTGAACACC -ACGGAAGACTGATGCTTGATCGAG -ACGGAAGACTGATGCTTGCTCCTT -ACGGAAGACTGATGCTTGCCTGTT -ACGGAAGACTGATGCTTGCGGTTT -ACGGAAGACTGATGCTTGGTGGTT -ACGGAAGACTGATGCTTGGCCTTT -ACGGAAGACTGATGCTTGGGTCTT -ACGGAAGACTGATGCTTGACGCTT -ACGGAAGACTGATGCTTGAGCGTT -ACGGAAGACTGATGCTTGTTCGTC -ACGGAAGACTGATGCTTGTCTCTC -ACGGAAGACTGATGCTTGTGGATC -ACGGAAGACTGATGCTTGCACTTC -ACGGAAGACTGATGCTTGGTACTC -ACGGAAGACTGATGCTTGGATGTC -ACGGAAGACTGATGCTTGACAGTC -ACGGAAGACTGATGCTTGTTGCTG -ACGGAAGACTGATGCTTGTCCATG -ACGGAAGACTGATGCTTGTGTGTG -ACGGAAGACTGATGCTTGCTAGTG -ACGGAAGACTGATGCTTGCATCTG -ACGGAAGACTGATGCTTGGAGTTG -ACGGAAGACTGATGCTTGAGACTG -ACGGAAGACTGATGCTTGTCGGTA -ACGGAAGACTGATGCTTGTGCCTA -ACGGAAGACTGATGCTTGCCACTA -ACGGAAGACTGATGCTTGGGAGTA -ACGGAAGACTGATGCTTGTCGTCT -ACGGAAGACTGATGCTTGTGCACT -ACGGAAGACTGATGCTTGCTGACT -ACGGAAGACTGATGCTTGCAACCT -ACGGAAGACTGATGCTTGGCTACT -ACGGAAGACTGATGCTTGGGATCT -ACGGAAGACTGATGCTTGAAGGCT -ACGGAAGACTGATGCTTGTCAACC -ACGGAAGACTGATGCTTGTGTTCC -ACGGAAGACTGATGCTTGATTCCC -ACGGAAGACTGATGCTTGTTCTCG -ACGGAAGACTGATGCTTGTAGACG -ACGGAAGACTGATGCTTGGTAACG -ACGGAAGACTGATGCTTGACTTCG -ACGGAAGACTGATGCTTGTACGCA -ACGGAAGACTGATGCTTGCTTGCA -ACGGAAGACTGATGCTTGCGAACA -ACGGAAGACTGATGCTTGCAGTCA -ACGGAAGACTGATGCTTGGATCCA -ACGGAAGACTGATGCTTGACGACA -ACGGAAGACTGATGCTTGAGCTCA -ACGGAAGACTGATGCTTGTCACGT -ACGGAAGACTGATGCTTGCGTAGT -ACGGAAGACTGATGCTTGGTCAGT -ACGGAAGACTGATGCTTGGAAGGT -ACGGAAGACTGATGCTTGAACCGT -ACGGAAGACTGATGCTTGTTGTGC -ACGGAAGACTGATGCTTGCTAAGC -ACGGAAGACTGATGCTTGACTAGC -ACGGAAGACTGATGCTTGAGATGC -ACGGAAGACTGATGCTTGTGAAGG -ACGGAAGACTGATGCTTGCAATGG -ACGGAAGACTGATGCTTGATGAGG -ACGGAAGACTGATGCTTGAATGGG -ACGGAAGACTGATGCTTGTCCTGA -ACGGAAGACTGATGCTTGTAGCGA -ACGGAAGACTGATGCTTGCACAGA -ACGGAAGACTGATGCTTGGCAAGA -ACGGAAGACTGATGCTTGGGTTGA -ACGGAAGACTGATGCTTGTCCGAT -ACGGAAGACTGATGCTTGTGGCAT -ACGGAAGACTGATGCTTGCGAGAT -ACGGAAGACTGATGCTTGTACCAC -ACGGAAGACTGATGCTTGCAGAAC -ACGGAAGACTGATGCTTGGTCTAC -ACGGAAGACTGATGCTTGACGTAC -ACGGAAGACTGATGCTTGAGTGAC -ACGGAAGACTGATGCTTGCTGTAG -ACGGAAGACTGATGCTTGCCTAAG -ACGGAAGACTGATGCTTGGTTCAG -ACGGAAGACTGATGCTTGGCATAG -ACGGAAGACTGATGCTTGGACAAG -ACGGAAGACTGATGCTTGAAGCAG -ACGGAAGACTGATGCTTGCGTCAA -ACGGAAGACTGATGCTTGGCTGAA -ACGGAAGACTGATGCTTGAGTACG -ACGGAAGACTGATGCTTGATCCGA -ACGGAAGACTGATGCTTGATGGGA -ACGGAAGACTGATGCTTGGTGCAA -ACGGAAGACTGATGCTTGGAGGAA -ACGGAAGACTGATGCTTGCAGGTA -ACGGAAGACTGATGCTTGGACTCT -ACGGAAGACTGATGCTTGAGTCCT -ACGGAAGACTGATGCTTGTAAGCC -ACGGAAGACTGATGCTTGATAGCC -ACGGAAGACTGATGCTTGTAACCG -ACGGAAGACTGATGCTTGATGCCA -ACGGAAGACTGAAGCCTAGGAAAC -ACGGAAGACTGAAGCCTAAACACC -ACGGAAGACTGAAGCCTAATCGAG -ACGGAAGACTGAAGCCTACTCCTT -ACGGAAGACTGAAGCCTACCTGTT -ACGGAAGACTGAAGCCTACGGTTT -ACGGAAGACTGAAGCCTAGTGGTT -ACGGAAGACTGAAGCCTAGCCTTT -ACGGAAGACTGAAGCCTAGGTCTT -ACGGAAGACTGAAGCCTAACGCTT -ACGGAAGACTGAAGCCTAAGCGTT -ACGGAAGACTGAAGCCTATTCGTC -ACGGAAGACTGAAGCCTATCTCTC -ACGGAAGACTGAAGCCTATGGATC -ACGGAAGACTGAAGCCTACACTTC -ACGGAAGACTGAAGCCTAGTACTC -ACGGAAGACTGAAGCCTAGATGTC -ACGGAAGACTGAAGCCTAACAGTC -ACGGAAGACTGAAGCCTATTGCTG -ACGGAAGACTGAAGCCTATCCATG -ACGGAAGACTGAAGCCTATGTGTG -ACGGAAGACTGAAGCCTACTAGTG -ACGGAAGACTGAAGCCTACATCTG -ACGGAAGACTGAAGCCTAGAGTTG -ACGGAAGACTGAAGCCTAAGACTG -ACGGAAGACTGAAGCCTATCGGTA -ACGGAAGACTGAAGCCTATGCCTA -ACGGAAGACTGAAGCCTACCACTA -ACGGAAGACTGAAGCCTAGGAGTA -ACGGAAGACTGAAGCCTATCGTCT -ACGGAAGACTGAAGCCTATGCACT -ACGGAAGACTGAAGCCTACTGACT -ACGGAAGACTGAAGCCTACAACCT -ACGGAAGACTGAAGCCTAGCTACT -ACGGAAGACTGAAGCCTAGGATCT -ACGGAAGACTGAAGCCTAAAGGCT -ACGGAAGACTGAAGCCTATCAACC -ACGGAAGACTGAAGCCTATGTTCC -ACGGAAGACTGAAGCCTAATTCCC -ACGGAAGACTGAAGCCTATTCTCG -ACGGAAGACTGAAGCCTATAGACG -ACGGAAGACTGAAGCCTAGTAACG -ACGGAAGACTGAAGCCTAACTTCG -ACGGAAGACTGAAGCCTATACGCA -ACGGAAGACTGAAGCCTACTTGCA -ACGGAAGACTGAAGCCTACGAACA -ACGGAAGACTGAAGCCTACAGTCA -ACGGAAGACTGAAGCCTAGATCCA -ACGGAAGACTGAAGCCTAACGACA -ACGGAAGACTGAAGCCTAAGCTCA -ACGGAAGACTGAAGCCTATCACGT -ACGGAAGACTGAAGCCTACGTAGT -ACGGAAGACTGAAGCCTAGTCAGT -ACGGAAGACTGAAGCCTAGAAGGT -ACGGAAGACTGAAGCCTAAACCGT -ACGGAAGACTGAAGCCTATTGTGC -ACGGAAGACTGAAGCCTACTAAGC -ACGGAAGACTGAAGCCTAACTAGC -ACGGAAGACTGAAGCCTAAGATGC -ACGGAAGACTGAAGCCTATGAAGG -ACGGAAGACTGAAGCCTACAATGG -ACGGAAGACTGAAGCCTAATGAGG -ACGGAAGACTGAAGCCTAAATGGG -ACGGAAGACTGAAGCCTATCCTGA -ACGGAAGACTGAAGCCTATAGCGA -ACGGAAGACTGAAGCCTACACAGA -ACGGAAGACTGAAGCCTAGCAAGA -ACGGAAGACTGAAGCCTAGGTTGA -ACGGAAGACTGAAGCCTATCCGAT -ACGGAAGACTGAAGCCTATGGCAT -ACGGAAGACTGAAGCCTACGAGAT -ACGGAAGACTGAAGCCTATACCAC -ACGGAAGACTGAAGCCTACAGAAC -ACGGAAGACTGAAGCCTAGTCTAC -ACGGAAGACTGAAGCCTAACGTAC -ACGGAAGACTGAAGCCTAAGTGAC -ACGGAAGACTGAAGCCTACTGTAG -ACGGAAGACTGAAGCCTACCTAAG -ACGGAAGACTGAAGCCTAGTTCAG -ACGGAAGACTGAAGCCTAGCATAG -ACGGAAGACTGAAGCCTAGACAAG -ACGGAAGACTGAAGCCTAAAGCAG -ACGGAAGACTGAAGCCTACGTCAA -ACGGAAGACTGAAGCCTAGCTGAA -ACGGAAGACTGAAGCCTAAGTACG -ACGGAAGACTGAAGCCTAATCCGA -ACGGAAGACTGAAGCCTAATGGGA -ACGGAAGACTGAAGCCTAGTGCAA -ACGGAAGACTGAAGCCTAGAGGAA -ACGGAAGACTGAAGCCTACAGGTA -ACGGAAGACTGAAGCCTAGACTCT -ACGGAAGACTGAAGCCTAAGTCCT -ACGGAAGACTGAAGCCTATAAGCC -ACGGAAGACTGAAGCCTAATAGCC -ACGGAAGACTGAAGCCTATAACCG -ACGGAAGACTGAAGCCTAATGCCA -ACGGAAGACTGAAGCACTGGAAAC -ACGGAAGACTGAAGCACTAACACC -ACGGAAGACTGAAGCACTATCGAG -ACGGAAGACTGAAGCACTCTCCTT -ACGGAAGACTGAAGCACTCCTGTT -ACGGAAGACTGAAGCACTCGGTTT -ACGGAAGACTGAAGCACTGTGGTT -ACGGAAGACTGAAGCACTGCCTTT -ACGGAAGACTGAAGCACTGGTCTT -ACGGAAGACTGAAGCACTACGCTT -ACGGAAGACTGAAGCACTAGCGTT -ACGGAAGACTGAAGCACTTTCGTC -ACGGAAGACTGAAGCACTTCTCTC -ACGGAAGACTGAAGCACTTGGATC -ACGGAAGACTGAAGCACTCACTTC -ACGGAAGACTGAAGCACTGTACTC -ACGGAAGACTGAAGCACTGATGTC -ACGGAAGACTGAAGCACTACAGTC -ACGGAAGACTGAAGCACTTTGCTG -ACGGAAGACTGAAGCACTTCCATG -ACGGAAGACTGAAGCACTTGTGTG -ACGGAAGACTGAAGCACTCTAGTG -ACGGAAGACTGAAGCACTCATCTG -ACGGAAGACTGAAGCACTGAGTTG -ACGGAAGACTGAAGCACTAGACTG -ACGGAAGACTGAAGCACTTCGGTA -ACGGAAGACTGAAGCACTTGCCTA -ACGGAAGACTGAAGCACTCCACTA -ACGGAAGACTGAAGCACTGGAGTA -ACGGAAGACTGAAGCACTTCGTCT -ACGGAAGACTGAAGCACTTGCACT -ACGGAAGACTGAAGCACTCTGACT -ACGGAAGACTGAAGCACTCAACCT -ACGGAAGACTGAAGCACTGCTACT -ACGGAAGACTGAAGCACTGGATCT -ACGGAAGACTGAAGCACTAAGGCT -ACGGAAGACTGAAGCACTTCAACC -ACGGAAGACTGAAGCACTTGTTCC -ACGGAAGACTGAAGCACTATTCCC -ACGGAAGACTGAAGCACTTTCTCG -ACGGAAGACTGAAGCACTTAGACG -ACGGAAGACTGAAGCACTGTAACG -ACGGAAGACTGAAGCACTACTTCG -ACGGAAGACTGAAGCACTTACGCA -ACGGAAGACTGAAGCACTCTTGCA -ACGGAAGACTGAAGCACTCGAACA -ACGGAAGACTGAAGCACTCAGTCA -ACGGAAGACTGAAGCACTGATCCA -ACGGAAGACTGAAGCACTACGACA -ACGGAAGACTGAAGCACTAGCTCA -ACGGAAGACTGAAGCACTTCACGT -ACGGAAGACTGAAGCACTCGTAGT -ACGGAAGACTGAAGCACTGTCAGT -ACGGAAGACTGAAGCACTGAAGGT -ACGGAAGACTGAAGCACTAACCGT -ACGGAAGACTGAAGCACTTTGTGC -ACGGAAGACTGAAGCACTCTAAGC -ACGGAAGACTGAAGCACTACTAGC -ACGGAAGACTGAAGCACTAGATGC -ACGGAAGACTGAAGCACTTGAAGG -ACGGAAGACTGAAGCACTCAATGG -ACGGAAGACTGAAGCACTATGAGG -ACGGAAGACTGAAGCACTAATGGG -ACGGAAGACTGAAGCACTTCCTGA -ACGGAAGACTGAAGCACTTAGCGA -ACGGAAGACTGAAGCACTCACAGA -ACGGAAGACTGAAGCACTGCAAGA -ACGGAAGACTGAAGCACTGGTTGA -ACGGAAGACTGAAGCACTTCCGAT -ACGGAAGACTGAAGCACTTGGCAT -ACGGAAGACTGAAGCACTCGAGAT -ACGGAAGACTGAAGCACTTACCAC -ACGGAAGACTGAAGCACTCAGAAC -ACGGAAGACTGAAGCACTGTCTAC -ACGGAAGACTGAAGCACTACGTAC -ACGGAAGACTGAAGCACTAGTGAC -ACGGAAGACTGAAGCACTCTGTAG -ACGGAAGACTGAAGCACTCCTAAG -ACGGAAGACTGAAGCACTGTTCAG -ACGGAAGACTGAAGCACTGCATAG -ACGGAAGACTGAAGCACTGACAAG -ACGGAAGACTGAAGCACTAAGCAG -ACGGAAGACTGAAGCACTCGTCAA -ACGGAAGACTGAAGCACTGCTGAA -ACGGAAGACTGAAGCACTAGTACG -ACGGAAGACTGAAGCACTATCCGA -ACGGAAGACTGAAGCACTATGGGA -ACGGAAGACTGAAGCACTGTGCAA -ACGGAAGACTGAAGCACTGAGGAA -ACGGAAGACTGAAGCACTCAGGTA -ACGGAAGACTGAAGCACTGACTCT -ACGGAAGACTGAAGCACTAGTCCT -ACGGAAGACTGAAGCACTTAAGCC -ACGGAAGACTGAAGCACTATAGCC -ACGGAAGACTGAAGCACTTAACCG -ACGGAAGACTGAAGCACTATGCCA -ACGGAAGACTGATGCAGAGGAAAC -ACGGAAGACTGATGCAGAAACACC -ACGGAAGACTGATGCAGAATCGAG -ACGGAAGACTGATGCAGACTCCTT -ACGGAAGACTGATGCAGACCTGTT -ACGGAAGACTGATGCAGACGGTTT -ACGGAAGACTGATGCAGAGTGGTT -ACGGAAGACTGATGCAGAGCCTTT -ACGGAAGACTGATGCAGAGGTCTT -ACGGAAGACTGATGCAGAACGCTT -ACGGAAGACTGATGCAGAAGCGTT -ACGGAAGACTGATGCAGATTCGTC -ACGGAAGACTGATGCAGATCTCTC -ACGGAAGACTGATGCAGATGGATC -ACGGAAGACTGATGCAGACACTTC -ACGGAAGACTGATGCAGAGTACTC -ACGGAAGACTGATGCAGAGATGTC -ACGGAAGACTGATGCAGAACAGTC -ACGGAAGACTGATGCAGATTGCTG -ACGGAAGACTGATGCAGATCCATG -ACGGAAGACTGATGCAGATGTGTG -ACGGAAGACTGATGCAGACTAGTG -ACGGAAGACTGATGCAGACATCTG -ACGGAAGACTGATGCAGAGAGTTG -ACGGAAGACTGATGCAGAAGACTG -ACGGAAGACTGATGCAGATCGGTA -ACGGAAGACTGATGCAGATGCCTA -ACGGAAGACTGATGCAGACCACTA -ACGGAAGACTGATGCAGAGGAGTA -ACGGAAGACTGATGCAGATCGTCT -ACGGAAGACTGATGCAGATGCACT -ACGGAAGACTGATGCAGACTGACT -ACGGAAGACTGATGCAGACAACCT -ACGGAAGACTGATGCAGAGCTACT -ACGGAAGACTGATGCAGAGGATCT -ACGGAAGACTGATGCAGAAAGGCT -ACGGAAGACTGATGCAGATCAACC -ACGGAAGACTGATGCAGATGTTCC -ACGGAAGACTGATGCAGAATTCCC -ACGGAAGACTGATGCAGATTCTCG -ACGGAAGACTGATGCAGATAGACG -ACGGAAGACTGATGCAGAGTAACG -ACGGAAGACTGATGCAGAACTTCG -ACGGAAGACTGATGCAGATACGCA -ACGGAAGACTGATGCAGACTTGCA -ACGGAAGACTGATGCAGACGAACA -ACGGAAGACTGATGCAGACAGTCA -ACGGAAGACTGATGCAGAGATCCA -ACGGAAGACTGATGCAGAACGACA -ACGGAAGACTGATGCAGAAGCTCA -ACGGAAGACTGATGCAGATCACGT -ACGGAAGACTGATGCAGACGTAGT -ACGGAAGACTGATGCAGAGTCAGT -ACGGAAGACTGATGCAGAGAAGGT -ACGGAAGACTGATGCAGAAACCGT -ACGGAAGACTGATGCAGATTGTGC -ACGGAAGACTGATGCAGACTAAGC -ACGGAAGACTGATGCAGAACTAGC -ACGGAAGACTGATGCAGAAGATGC -ACGGAAGACTGATGCAGATGAAGG -ACGGAAGACTGATGCAGACAATGG -ACGGAAGACTGATGCAGAATGAGG -ACGGAAGACTGATGCAGAAATGGG -ACGGAAGACTGATGCAGATCCTGA -ACGGAAGACTGATGCAGATAGCGA -ACGGAAGACTGATGCAGACACAGA -ACGGAAGACTGATGCAGAGCAAGA -ACGGAAGACTGATGCAGAGGTTGA -ACGGAAGACTGATGCAGATCCGAT -ACGGAAGACTGATGCAGATGGCAT -ACGGAAGACTGATGCAGACGAGAT -ACGGAAGACTGATGCAGATACCAC -ACGGAAGACTGATGCAGACAGAAC -ACGGAAGACTGATGCAGAGTCTAC -ACGGAAGACTGATGCAGAACGTAC -ACGGAAGACTGATGCAGAAGTGAC -ACGGAAGACTGATGCAGACTGTAG -ACGGAAGACTGATGCAGACCTAAG -ACGGAAGACTGATGCAGAGTTCAG -ACGGAAGACTGATGCAGAGCATAG -ACGGAAGACTGATGCAGAGACAAG -ACGGAAGACTGATGCAGAAAGCAG -ACGGAAGACTGATGCAGACGTCAA -ACGGAAGACTGATGCAGAGCTGAA -ACGGAAGACTGATGCAGAAGTACG -ACGGAAGACTGATGCAGAATCCGA -ACGGAAGACTGATGCAGAATGGGA -ACGGAAGACTGATGCAGAGTGCAA -ACGGAAGACTGATGCAGAGAGGAA -ACGGAAGACTGATGCAGACAGGTA -ACGGAAGACTGATGCAGAGACTCT -ACGGAAGACTGATGCAGAAGTCCT -ACGGAAGACTGATGCAGATAAGCC -ACGGAAGACTGATGCAGAATAGCC -ACGGAAGACTGATGCAGATAACCG -ACGGAAGACTGATGCAGAATGCCA -ACGGAAGACTGAAGGTGAGGAAAC -ACGGAAGACTGAAGGTGAAACACC -ACGGAAGACTGAAGGTGAATCGAG -ACGGAAGACTGAAGGTGACTCCTT -ACGGAAGACTGAAGGTGACCTGTT -ACGGAAGACTGAAGGTGACGGTTT -ACGGAAGACTGAAGGTGAGTGGTT -ACGGAAGACTGAAGGTGAGCCTTT -ACGGAAGACTGAAGGTGAGGTCTT -ACGGAAGACTGAAGGTGAACGCTT -ACGGAAGACTGAAGGTGAAGCGTT -ACGGAAGACTGAAGGTGATTCGTC -ACGGAAGACTGAAGGTGATCTCTC -ACGGAAGACTGAAGGTGATGGATC -ACGGAAGACTGAAGGTGACACTTC -ACGGAAGACTGAAGGTGAGTACTC -ACGGAAGACTGAAGGTGAGATGTC -ACGGAAGACTGAAGGTGAACAGTC -ACGGAAGACTGAAGGTGATTGCTG -ACGGAAGACTGAAGGTGATCCATG -ACGGAAGACTGAAGGTGATGTGTG -ACGGAAGACTGAAGGTGACTAGTG -ACGGAAGACTGAAGGTGACATCTG -ACGGAAGACTGAAGGTGAGAGTTG -ACGGAAGACTGAAGGTGAAGACTG -ACGGAAGACTGAAGGTGATCGGTA -ACGGAAGACTGAAGGTGATGCCTA -ACGGAAGACTGAAGGTGACCACTA -ACGGAAGACTGAAGGTGAGGAGTA -ACGGAAGACTGAAGGTGATCGTCT -ACGGAAGACTGAAGGTGATGCACT -ACGGAAGACTGAAGGTGACTGACT -ACGGAAGACTGAAGGTGACAACCT -ACGGAAGACTGAAGGTGAGCTACT -ACGGAAGACTGAAGGTGAGGATCT -ACGGAAGACTGAAGGTGAAAGGCT -ACGGAAGACTGAAGGTGATCAACC -ACGGAAGACTGAAGGTGATGTTCC -ACGGAAGACTGAAGGTGAATTCCC -ACGGAAGACTGAAGGTGATTCTCG -ACGGAAGACTGAAGGTGATAGACG -ACGGAAGACTGAAGGTGAGTAACG -ACGGAAGACTGAAGGTGAACTTCG -ACGGAAGACTGAAGGTGATACGCA -ACGGAAGACTGAAGGTGACTTGCA -ACGGAAGACTGAAGGTGACGAACA -ACGGAAGACTGAAGGTGACAGTCA -ACGGAAGACTGAAGGTGAGATCCA -ACGGAAGACTGAAGGTGAACGACA -ACGGAAGACTGAAGGTGAAGCTCA -ACGGAAGACTGAAGGTGATCACGT -ACGGAAGACTGAAGGTGACGTAGT -ACGGAAGACTGAAGGTGAGTCAGT -ACGGAAGACTGAAGGTGAGAAGGT -ACGGAAGACTGAAGGTGAAACCGT -ACGGAAGACTGAAGGTGATTGTGC -ACGGAAGACTGAAGGTGACTAAGC -ACGGAAGACTGAAGGTGAACTAGC -ACGGAAGACTGAAGGTGAAGATGC -ACGGAAGACTGAAGGTGATGAAGG -ACGGAAGACTGAAGGTGACAATGG -ACGGAAGACTGAAGGTGAATGAGG -ACGGAAGACTGAAGGTGAAATGGG -ACGGAAGACTGAAGGTGATCCTGA -ACGGAAGACTGAAGGTGATAGCGA -ACGGAAGACTGAAGGTGACACAGA -ACGGAAGACTGAAGGTGAGCAAGA -ACGGAAGACTGAAGGTGAGGTTGA -ACGGAAGACTGAAGGTGATCCGAT -ACGGAAGACTGAAGGTGATGGCAT -ACGGAAGACTGAAGGTGACGAGAT -ACGGAAGACTGAAGGTGATACCAC -ACGGAAGACTGAAGGTGACAGAAC -ACGGAAGACTGAAGGTGAGTCTAC -ACGGAAGACTGAAGGTGAACGTAC -ACGGAAGACTGAAGGTGAAGTGAC -ACGGAAGACTGAAGGTGACTGTAG -ACGGAAGACTGAAGGTGACCTAAG -ACGGAAGACTGAAGGTGAGTTCAG -ACGGAAGACTGAAGGTGAGCATAG -ACGGAAGACTGAAGGTGAGACAAG -ACGGAAGACTGAAGGTGAAAGCAG -ACGGAAGACTGAAGGTGACGTCAA -ACGGAAGACTGAAGGTGAGCTGAA -ACGGAAGACTGAAGGTGAAGTACG -ACGGAAGACTGAAGGTGAATCCGA -ACGGAAGACTGAAGGTGAATGGGA -ACGGAAGACTGAAGGTGAGTGCAA -ACGGAAGACTGAAGGTGAGAGGAA -ACGGAAGACTGAAGGTGACAGGTA -ACGGAAGACTGAAGGTGAGACTCT -ACGGAAGACTGAAGGTGAAGTCCT -ACGGAAGACTGAAGGTGATAAGCC -ACGGAAGACTGAAGGTGAATAGCC -ACGGAAGACTGAAGGTGATAACCG -ACGGAAGACTGAAGGTGAATGCCA -ACGGAAGACTGATGGCAAGGAAAC -ACGGAAGACTGATGGCAAAACACC -ACGGAAGACTGATGGCAAATCGAG -ACGGAAGACTGATGGCAACTCCTT -ACGGAAGACTGATGGCAACCTGTT -ACGGAAGACTGATGGCAACGGTTT -ACGGAAGACTGATGGCAAGTGGTT -ACGGAAGACTGATGGCAAGCCTTT -ACGGAAGACTGATGGCAAGGTCTT -ACGGAAGACTGATGGCAAACGCTT -ACGGAAGACTGATGGCAAAGCGTT -ACGGAAGACTGATGGCAATTCGTC -ACGGAAGACTGATGGCAATCTCTC -ACGGAAGACTGATGGCAATGGATC -ACGGAAGACTGATGGCAACACTTC -ACGGAAGACTGATGGCAAGTACTC -ACGGAAGACTGATGGCAAGATGTC -ACGGAAGACTGATGGCAAACAGTC -ACGGAAGACTGATGGCAATTGCTG -ACGGAAGACTGATGGCAATCCATG -ACGGAAGACTGATGGCAATGTGTG -ACGGAAGACTGATGGCAACTAGTG -ACGGAAGACTGATGGCAACATCTG -ACGGAAGACTGATGGCAAGAGTTG -ACGGAAGACTGATGGCAAAGACTG -ACGGAAGACTGATGGCAATCGGTA -ACGGAAGACTGATGGCAATGCCTA -ACGGAAGACTGATGGCAACCACTA -ACGGAAGACTGATGGCAAGGAGTA -ACGGAAGACTGATGGCAATCGTCT -ACGGAAGACTGATGGCAATGCACT -ACGGAAGACTGATGGCAACTGACT -ACGGAAGACTGATGGCAACAACCT -ACGGAAGACTGATGGCAAGCTACT -ACGGAAGACTGATGGCAAGGATCT -ACGGAAGACTGATGGCAAAAGGCT -ACGGAAGACTGATGGCAATCAACC -ACGGAAGACTGATGGCAATGTTCC -ACGGAAGACTGATGGCAAATTCCC -ACGGAAGACTGATGGCAATTCTCG -ACGGAAGACTGATGGCAATAGACG -ACGGAAGACTGATGGCAAGTAACG -ACGGAAGACTGATGGCAAACTTCG -ACGGAAGACTGATGGCAATACGCA -ACGGAAGACTGATGGCAACTTGCA -ACGGAAGACTGATGGCAACGAACA -ACGGAAGACTGATGGCAACAGTCA -ACGGAAGACTGATGGCAAGATCCA -ACGGAAGACTGATGGCAAACGACA -ACGGAAGACTGATGGCAAAGCTCA -ACGGAAGACTGATGGCAATCACGT -ACGGAAGACTGATGGCAACGTAGT -ACGGAAGACTGATGGCAAGTCAGT -ACGGAAGACTGATGGCAAGAAGGT -ACGGAAGACTGATGGCAAAACCGT -ACGGAAGACTGATGGCAATTGTGC -ACGGAAGACTGATGGCAACTAAGC -ACGGAAGACTGATGGCAAACTAGC -ACGGAAGACTGATGGCAAAGATGC -ACGGAAGACTGATGGCAATGAAGG -ACGGAAGACTGATGGCAACAATGG -ACGGAAGACTGATGGCAAATGAGG -ACGGAAGACTGATGGCAAAATGGG -ACGGAAGACTGATGGCAATCCTGA -ACGGAAGACTGATGGCAATAGCGA -ACGGAAGACTGATGGCAACACAGA -ACGGAAGACTGATGGCAAGCAAGA -ACGGAAGACTGATGGCAAGGTTGA -ACGGAAGACTGATGGCAATCCGAT -ACGGAAGACTGATGGCAATGGCAT -ACGGAAGACTGATGGCAACGAGAT -ACGGAAGACTGATGGCAATACCAC -ACGGAAGACTGATGGCAACAGAAC -ACGGAAGACTGATGGCAAGTCTAC -ACGGAAGACTGATGGCAAACGTAC -ACGGAAGACTGATGGCAAAGTGAC -ACGGAAGACTGATGGCAACTGTAG -ACGGAAGACTGATGGCAACCTAAG -ACGGAAGACTGATGGCAAGTTCAG -ACGGAAGACTGATGGCAAGCATAG -ACGGAAGACTGATGGCAAGACAAG -ACGGAAGACTGATGGCAAAAGCAG -ACGGAAGACTGATGGCAACGTCAA -ACGGAAGACTGATGGCAAGCTGAA -ACGGAAGACTGATGGCAAAGTACG -ACGGAAGACTGATGGCAAATCCGA -ACGGAAGACTGATGGCAAATGGGA -ACGGAAGACTGATGGCAAGTGCAA -ACGGAAGACTGATGGCAAGAGGAA -ACGGAAGACTGATGGCAACAGGTA -ACGGAAGACTGATGGCAAGACTCT -ACGGAAGACTGATGGCAAAGTCCT -ACGGAAGACTGATGGCAATAAGCC -ACGGAAGACTGATGGCAAATAGCC -ACGGAAGACTGATGGCAATAACCG -ACGGAAGACTGATGGCAAATGCCA -ACGGAAGACTGAAGGATGGGAAAC -ACGGAAGACTGAAGGATGAACACC -ACGGAAGACTGAAGGATGATCGAG -ACGGAAGACTGAAGGATGCTCCTT -ACGGAAGACTGAAGGATGCCTGTT -ACGGAAGACTGAAGGATGCGGTTT -ACGGAAGACTGAAGGATGGTGGTT -ACGGAAGACTGAAGGATGGCCTTT -ACGGAAGACTGAAGGATGGGTCTT -ACGGAAGACTGAAGGATGACGCTT -ACGGAAGACTGAAGGATGAGCGTT -ACGGAAGACTGAAGGATGTTCGTC -ACGGAAGACTGAAGGATGTCTCTC -ACGGAAGACTGAAGGATGTGGATC -ACGGAAGACTGAAGGATGCACTTC -ACGGAAGACTGAAGGATGGTACTC -ACGGAAGACTGAAGGATGGATGTC -ACGGAAGACTGAAGGATGACAGTC -ACGGAAGACTGAAGGATGTTGCTG -ACGGAAGACTGAAGGATGTCCATG -ACGGAAGACTGAAGGATGTGTGTG -ACGGAAGACTGAAGGATGCTAGTG -ACGGAAGACTGAAGGATGCATCTG -ACGGAAGACTGAAGGATGGAGTTG -ACGGAAGACTGAAGGATGAGACTG -ACGGAAGACTGAAGGATGTCGGTA -ACGGAAGACTGAAGGATGTGCCTA -ACGGAAGACTGAAGGATGCCACTA -ACGGAAGACTGAAGGATGGGAGTA -ACGGAAGACTGAAGGATGTCGTCT -ACGGAAGACTGAAGGATGTGCACT -ACGGAAGACTGAAGGATGCTGACT -ACGGAAGACTGAAGGATGCAACCT -ACGGAAGACTGAAGGATGGCTACT -ACGGAAGACTGAAGGATGGGATCT -ACGGAAGACTGAAGGATGAAGGCT -ACGGAAGACTGAAGGATGTCAACC -ACGGAAGACTGAAGGATGTGTTCC -ACGGAAGACTGAAGGATGATTCCC -ACGGAAGACTGAAGGATGTTCTCG -ACGGAAGACTGAAGGATGTAGACG -ACGGAAGACTGAAGGATGGTAACG -ACGGAAGACTGAAGGATGACTTCG -ACGGAAGACTGAAGGATGTACGCA -ACGGAAGACTGAAGGATGCTTGCA -ACGGAAGACTGAAGGATGCGAACA -ACGGAAGACTGAAGGATGCAGTCA -ACGGAAGACTGAAGGATGGATCCA -ACGGAAGACTGAAGGATGACGACA -ACGGAAGACTGAAGGATGAGCTCA -ACGGAAGACTGAAGGATGTCACGT -ACGGAAGACTGAAGGATGCGTAGT -ACGGAAGACTGAAGGATGGTCAGT -ACGGAAGACTGAAGGATGGAAGGT -ACGGAAGACTGAAGGATGAACCGT -ACGGAAGACTGAAGGATGTTGTGC -ACGGAAGACTGAAGGATGCTAAGC -ACGGAAGACTGAAGGATGACTAGC -ACGGAAGACTGAAGGATGAGATGC -ACGGAAGACTGAAGGATGTGAAGG -ACGGAAGACTGAAGGATGCAATGG -ACGGAAGACTGAAGGATGATGAGG -ACGGAAGACTGAAGGATGAATGGG -ACGGAAGACTGAAGGATGTCCTGA -ACGGAAGACTGAAGGATGTAGCGA -ACGGAAGACTGAAGGATGCACAGA -ACGGAAGACTGAAGGATGGCAAGA -ACGGAAGACTGAAGGATGGGTTGA -ACGGAAGACTGAAGGATGTCCGAT -ACGGAAGACTGAAGGATGTGGCAT -ACGGAAGACTGAAGGATGCGAGAT -ACGGAAGACTGAAGGATGTACCAC -ACGGAAGACTGAAGGATGCAGAAC -ACGGAAGACTGAAGGATGGTCTAC -ACGGAAGACTGAAGGATGACGTAC -ACGGAAGACTGAAGGATGAGTGAC -ACGGAAGACTGAAGGATGCTGTAG -ACGGAAGACTGAAGGATGCCTAAG -ACGGAAGACTGAAGGATGGTTCAG -ACGGAAGACTGAAGGATGGCATAG -ACGGAAGACTGAAGGATGGACAAG -ACGGAAGACTGAAGGATGAAGCAG -ACGGAAGACTGAAGGATGCGTCAA -ACGGAAGACTGAAGGATGGCTGAA -ACGGAAGACTGAAGGATGAGTACG -ACGGAAGACTGAAGGATGATCCGA -ACGGAAGACTGAAGGATGATGGGA -ACGGAAGACTGAAGGATGGTGCAA -ACGGAAGACTGAAGGATGGAGGAA -ACGGAAGACTGAAGGATGCAGGTA -ACGGAAGACTGAAGGATGGACTCT -ACGGAAGACTGAAGGATGAGTCCT -ACGGAAGACTGAAGGATGTAAGCC -ACGGAAGACTGAAGGATGATAGCC -ACGGAAGACTGAAGGATGTAACCG -ACGGAAGACTGAAGGATGATGCCA -ACGGAAGACTGAGGGAATGGAAAC -ACGGAAGACTGAGGGAATAACACC -ACGGAAGACTGAGGGAATATCGAG -ACGGAAGACTGAGGGAATCTCCTT -ACGGAAGACTGAGGGAATCCTGTT -ACGGAAGACTGAGGGAATCGGTTT -ACGGAAGACTGAGGGAATGTGGTT -ACGGAAGACTGAGGGAATGCCTTT -ACGGAAGACTGAGGGAATGGTCTT -ACGGAAGACTGAGGGAATACGCTT -ACGGAAGACTGAGGGAATAGCGTT -ACGGAAGACTGAGGGAATTTCGTC -ACGGAAGACTGAGGGAATTCTCTC -ACGGAAGACTGAGGGAATTGGATC -ACGGAAGACTGAGGGAATCACTTC -ACGGAAGACTGAGGGAATGTACTC -ACGGAAGACTGAGGGAATGATGTC -ACGGAAGACTGAGGGAATACAGTC -ACGGAAGACTGAGGGAATTTGCTG -ACGGAAGACTGAGGGAATTCCATG -ACGGAAGACTGAGGGAATTGTGTG -ACGGAAGACTGAGGGAATCTAGTG -ACGGAAGACTGAGGGAATCATCTG -ACGGAAGACTGAGGGAATGAGTTG -ACGGAAGACTGAGGGAATAGACTG -ACGGAAGACTGAGGGAATTCGGTA -ACGGAAGACTGAGGGAATTGCCTA -ACGGAAGACTGAGGGAATCCACTA -ACGGAAGACTGAGGGAATGGAGTA -ACGGAAGACTGAGGGAATTCGTCT -ACGGAAGACTGAGGGAATTGCACT -ACGGAAGACTGAGGGAATCTGACT -ACGGAAGACTGAGGGAATCAACCT -ACGGAAGACTGAGGGAATGCTACT -ACGGAAGACTGAGGGAATGGATCT -ACGGAAGACTGAGGGAATAAGGCT -ACGGAAGACTGAGGGAATTCAACC -ACGGAAGACTGAGGGAATTGTTCC -ACGGAAGACTGAGGGAATATTCCC -ACGGAAGACTGAGGGAATTTCTCG -ACGGAAGACTGAGGGAATTAGACG -ACGGAAGACTGAGGGAATGTAACG -ACGGAAGACTGAGGGAATACTTCG -ACGGAAGACTGAGGGAATTACGCA -ACGGAAGACTGAGGGAATCTTGCA -ACGGAAGACTGAGGGAATCGAACA -ACGGAAGACTGAGGGAATCAGTCA -ACGGAAGACTGAGGGAATGATCCA -ACGGAAGACTGAGGGAATACGACA -ACGGAAGACTGAGGGAATAGCTCA -ACGGAAGACTGAGGGAATTCACGT -ACGGAAGACTGAGGGAATCGTAGT -ACGGAAGACTGAGGGAATGTCAGT -ACGGAAGACTGAGGGAATGAAGGT -ACGGAAGACTGAGGGAATAACCGT -ACGGAAGACTGAGGGAATTTGTGC -ACGGAAGACTGAGGGAATCTAAGC -ACGGAAGACTGAGGGAATACTAGC -ACGGAAGACTGAGGGAATAGATGC -ACGGAAGACTGAGGGAATTGAAGG -ACGGAAGACTGAGGGAATCAATGG -ACGGAAGACTGAGGGAATATGAGG -ACGGAAGACTGAGGGAATAATGGG -ACGGAAGACTGAGGGAATTCCTGA -ACGGAAGACTGAGGGAATTAGCGA -ACGGAAGACTGAGGGAATCACAGA -ACGGAAGACTGAGGGAATGCAAGA -ACGGAAGACTGAGGGAATGGTTGA -ACGGAAGACTGAGGGAATTCCGAT -ACGGAAGACTGAGGGAATTGGCAT -ACGGAAGACTGAGGGAATCGAGAT -ACGGAAGACTGAGGGAATTACCAC -ACGGAAGACTGAGGGAATCAGAAC -ACGGAAGACTGAGGGAATGTCTAC -ACGGAAGACTGAGGGAATACGTAC -ACGGAAGACTGAGGGAATAGTGAC -ACGGAAGACTGAGGGAATCTGTAG -ACGGAAGACTGAGGGAATCCTAAG -ACGGAAGACTGAGGGAATGTTCAG -ACGGAAGACTGAGGGAATGCATAG -ACGGAAGACTGAGGGAATGACAAG -ACGGAAGACTGAGGGAATAAGCAG -ACGGAAGACTGAGGGAATCGTCAA -ACGGAAGACTGAGGGAATGCTGAA -ACGGAAGACTGAGGGAATAGTACG -ACGGAAGACTGAGGGAATATCCGA -ACGGAAGACTGAGGGAATATGGGA -ACGGAAGACTGAGGGAATGTGCAA -ACGGAAGACTGAGGGAATGAGGAA -ACGGAAGACTGAGGGAATCAGGTA -ACGGAAGACTGAGGGAATGACTCT -ACGGAAGACTGAGGGAATAGTCCT -ACGGAAGACTGAGGGAATTAAGCC -ACGGAAGACTGAGGGAATATAGCC -ACGGAAGACTGAGGGAATTAACCG -ACGGAAGACTGAGGGAATATGCCA -ACGGAAGACTGATGATCCGGAAAC -ACGGAAGACTGATGATCCAACACC -ACGGAAGACTGATGATCCATCGAG -ACGGAAGACTGATGATCCCTCCTT -ACGGAAGACTGATGATCCCCTGTT -ACGGAAGACTGATGATCCCGGTTT -ACGGAAGACTGATGATCCGTGGTT -ACGGAAGACTGATGATCCGCCTTT -ACGGAAGACTGATGATCCGGTCTT -ACGGAAGACTGATGATCCACGCTT -ACGGAAGACTGATGATCCAGCGTT -ACGGAAGACTGATGATCCTTCGTC -ACGGAAGACTGATGATCCTCTCTC -ACGGAAGACTGATGATCCTGGATC -ACGGAAGACTGATGATCCCACTTC -ACGGAAGACTGATGATCCGTACTC -ACGGAAGACTGATGATCCGATGTC -ACGGAAGACTGATGATCCACAGTC -ACGGAAGACTGATGATCCTTGCTG -ACGGAAGACTGATGATCCTCCATG -ACGGAAGACTGATGATCCTGTGTG -ACGGAAGACTGATGATCCCTAGTG -ACGGAAGACTGATGATCCCATCTG -ACGGAAGACTGATGATCCGAGTTG -ACGGAAGACTGATGATCCAGACTG -ACGGAAGACTGATGATCCTCGGTA -ACGGAAGACTGATGATCCTGCCTA -ACGGAAGACTGATGATCCCCACTA -ACGGAAGACTGATGATCCGGAGTA -ACGGAAGACTGATGATCCTCGTCT -ACGGAAGACTGATGATCCTGCACT -ACGGAAGACTGATGATCCCTGACT -ACGGAAGACTGATGATCCCAACCT -ACGGAAGACTGATGATCCGCTACT -ACGGAAGACTGATGATCCGGATCT -ACGGAAGACTGATGATCCAAGGCT -ACGGAAGACTGATGATCCTCAACC -ACGGAAGACTGATGATCCTGTTCC -ACGGAAGACTGATGATCCATTCCC -ACGGAAGACTGATGATCCTTCTCG -ACGGAAGACTGATGATCCTAGACG -ACGGAAGACTGATGATCCGTAACG -ACGGAAGACTGATGATCCACTTCG -ACGGAAGACTGATGATCCTACGCA -ACGGAAGACTGATGATCCCTTGCA -ACGGAAGACTGATGATCCCGAACA -ACGGAAGACTGATGATCCCAGTCA -ACGGAAGACTGATGATCCGATCCA -ACGGAAGACTGATGATCCACGACA -ACGGAAGACTGATGATCCAGCTCA -ACGGAAGACTGATGATCCTCACGT -ACGGAAGACTGATGATCCCGTAGT -ACGGAAGACTGATGATCCGTCAGT -ACGGAAGACTGATGATCCGAAGGT -ACGGAAGACTGATGATCCAACCGT -ACGGAAGACTGATGATCCTTGTGC -ACGGAAGACTGATGATCCCTAAGC -ACGGAAGACTGATGATCCACTAGC -ACGGAAGACTGATGATCCAGATGC -ACGGAAGACTGATGATCCTGAAGG -ACGGAAGACTGATGATCCCAATGG -ACGGAAGACTGATGATCCATGAGG -ACGGAAGACTGATGATCCAATGGG -ACGGAAGACTGATGATCCTCCTGA -ACGGAAGACTGATGATCCTAGCGA -ACGGAAGACTGATGATCCCACAGA -ACGGAAGACTGATGATCCGCAAGA -ACGGAAGACTGATGATCCGGTTGA -ACGGAAGACTGATGATCCTCCGAT -ACGGAAGACTGATGATCCTGGCAT -ACGGAAGACTGATGATCCCGAGAT -ACGGAAGACTGATGATCCTACCAC -ACGGAAGACTGATGATCCCAGAAC -ACGGAAGACTGATGATCCGTCTAC -ACGGAAGACTGATGATCCACGTAC -ACGGAAGACTGATGATCCAGTGAC -ACGGAAGACTGATGATCCCTGTAG -ACGGAAGACTGATGATCCCCTAAG -ACGGAAGACTGATGATCCGTTCAG -ACGGAAGACTGATGATCCGCATAG -ACGGAAGACTGATGATCCGACAAG -ACGGAAGACTGATGATCCAAGCAG -ACGGAAGACTGATGATCCCGTCAA -ACGGAAGACTGATGATCCGCTGAA -ACGGAAGACTGATGATCCAGTACG -ACGGAAGACTGATGATCCATCCGA -ACGGAAGACTGATGATCCATGGGA -ACGGAAGACTGATGATCCGTGCAA -ACGGAAGACTGATGATCCGAGGAA -ACGGAAGACTGATGATCCCAGGTA -ACGGAAGACTGATGATCCGACTCT -ACGGAAGACTGATGATCCAGTCCT -ACGGAAGACTGATGATCCTAAGCC -ACGGAAGACTGATGATCCATAGCC -ACGGAAGACTGATGATCCTAACCG -ACGGAAGACTGATGATCCATGCCA -ACGGAAGACTGACGATAGGGAAAC -ACGGAAGACTGACGATAGAACACC -ACGGAAGACTGACGATAGATCGAG -ACGGAAGACTGACGATAGCTCCTT -ACGGAAGACTGACGATAGCCTGTT -ACGGAAGACTGACGATAGCGGTTT -ACGGAAGACTGACGATAGGTGGTT -ACGGAAGACTGACGATAGGCCTTT -ACGGAAGACTGACGATAGGGTCTT -ACGGAAGACTGACGATAGACGCTT -ACGGAAGACTGACGATAGAGCGTT -ACGGAAGACTGACGATAGTTCGTC -ACGGAAGACTGACGATAGTCTCTC -ACGGAAGACTGACGATAGTGGATC -ACGGAAGACTGACGATAGCACTTC -ACGGAAGACTGACGATAGGTACTC -ACGGAAGACTGACGATAGGATGTC -ACGGAAGACTGACGATAGACAGTC -ACGGAAGACTGACGATAGTTGCTG -ACGGAAGACTGACGATAGTCCATG -ACGGAAGACTGACGATAGTGTGTG -ACGGAAGACTGACGATAGCTAGTG -ACGGAAGACTGACGATAGCATCTG -ACGGAAGACTGACGATAGGAGTTG -ACGGAAGACTGACGATAGAGACTG -ACGGAAGACTGACGATAGTCGGTA -ACGGAAGACTGACGATAGTGCCTA -ACGGAAGACTGACGATAGCCACTA -ACGGAAGACTGACGATAGGGAGTA -ACGGAAGACTGACGATAGTCGTCT -ACGGAAGACTGACGATAGTGCACT -ACGGAAGACTGACGATAGCTGACT -ACGGAAGACTGACGATAGCAACCT -ACGGAAGACTGACGATAGGCTACT -ACGGAAGACTGACGATAGGGATCT -ACGGAAGACTGACGATAGAAGGCT -ACGGAAGACTGACGATAGTCAACC -ACGGAAGACTGACGATAGTGTTCC -ACGGAAGACTGACGATAGATTCCC -ACGGAAGACTGACGATAGTTCTCG -ACGGAAGACTGACGATAGTAGACG -ACGGAAGACTGACGATAGGTAACG -ACGGAAGACTGACGATAGACTTCG -ACGGAAGACTGACGATAGTACGCA -ACGGAAGACTGACGATAGCTTGCA -ACGGAAGACTGACGATAGCGAACA -ACGGAAGACTGACGATAGCAGTCA -ACGGAAGACTGACGATAGGATCCA -ACGGAAGACTGACGATAGACGACA -ACGGAAGACTGACGATAGAGCTCA -ACGGAAGACTGACGATAGTCACGT -ACGGAAGACTGACGATAGCGTAGT -ACGGAAGACTGACGATAGGTCAGT -ACGGAAGACTGACGATAGGAAGGT -ACGGAAGACTGACGATAGAACCGT -ACGGAAGACTGACGATAGTTGTGC -ACGGAAGACTGACGATAGCTAAGC -ACGGAAGACTGACGATAGACTAGC -ACGGAAGACTGACGATAGAGATGC -ACGGAAGACTGACGATAGTGAAGG -ACGGAAGACTGACGATAGCAATGG -ACGGAAGACTGACGATAGATGAGG -ACGGAAGACTGACGATAGAATGGG -ACGGAAGACTGACGATAGTCCTGA -ACGGAAGACTGACGATAGTAGCGA -ACGGAAGACTGACGATAGCACAGA -ACGGAAGACTGACGATAGGCAAGA -ACGGAAGACTGACGATAGGGTTGA -ACGGAAGACTGACGATAGTCCGAT -ACGGAAGACTGACGATAGTGGCAT -ACGGAAGACTGACGATAGCGAGAT -ACGGAAGACTGACGATAGTACCAC -ACGGAAGACTGACGATAGCAGAAC -ACGGAAGACTGACGATAGGTCTAC -ACGGAAGACTGACGATAGACGTAC -ACGGAAGACTGACGATAGAGTGAC -ACGGAAGACTGACGATAGCTGTAG -ACGGAAGACTGACGATAGCCTAAG -ACGGAAGACTGACGATAGGTTCAG -ACGGAAGACTGACGATAGGCATAG -ACGGAAGACTGACGATAGGACAAG -ACGGAAGACTGACGATAGAAGCAG -ACGGAAGACTGACGATAGCGTCAA -ACGGAAGACTGACGATAGGCTGAA -ACGGAAGACTGACGATAGAGTACG -ACGGAAGACTGACGATAGATCCGA -ACGGAAGACTGACGATAGATGGGA -ACGGAAGACTGACGATAGGTGCAA -ACGGAAGACTGACGATAGGAGGAA -ACGGAAGACTGACGATAGCAGGTA -ACGGAAGACTGACGATAGGACTCT -ACGGAAGACTGACGATAGAGTCCT -ACGGAAGACTGACGATAGTAAGCC -ACGGAAGACTGACGATAGATAGCC -ACGGAAGACTGACGATAGTAACCG -ACGGAAGACTGACGATAGATGCCA -ACGGAAGACTGAAGACACGGAAAC -ACGGAAGACTGAAGACACAACACC -ACGGAAGACTGAAGACACATCGAG -ACGGAAGACTGAAGACACCTCCTT -ACGGAAGACTGAAGACACCCTGTT -ACGGAAGACTGAAGACACCGGTTT -ACGGAAGACTGAAGACACGTGGTT -ACGGAAGACTGAAGACACGCCTTT -ACGGAAGACTGAAGACACGGTCTT -ACGGAAGACTGAAGACACACGCTT -ACGGAAGACTGAAGACACAGCGTT -ACGGAAGACTGAAGACACTTCGTC -ACGGAAGACTGAAGACACTCTCTC -ACGGAAGACTGAAGACACTGGATC -ACGGAAGACTGAAGACACCACTTC -ACGGAAGACTGAAGACACGTACTC -ACGGAAGACTGAAGACACGATGTC -ACGGAAGACTGAAGACACACAGTC -ACGGAAGACTGAAGACACTTGCTG -ACGGAAGACTGAAGACACTCCATG -ACGGAAGACTGAAGACACTGTGTG -ACGGAAGACTGAAGACACCTAGTG -ACGGAAGACTGAAGACACCATCTG -ACGGAAGACTGAAGACACGAGTTG -ACGGAAGACTGAAGACACAGACTG -ACGGAAGACTGAAGACACTCGGTA -ACGGAAGACTGAAGACACTGCCTA -ACGGAAGACTGAAGACACCCACTA -ACGGAAGACTGAAGACACGGAGTA -ACGGAAGACTGAAGACACTCGTCT -ACGGAAGACTGAAGACACTGCACT -ACGGAAGACTGAAGACACCTGACT -ACGGAAGACTGAAGACACCAACCT -ACGGAAGACTGAAGACACGCTACT -ACGGAAGACTGAAGACACGGATCT -ACGGAAGACTGAAGACACAAGGCT -ACGGAAGACTGAAGACACTCAACC -ACGGAAGACTGAAGACACTGTTCC -ACGGAAGACTGAAGACACATTCCC -ACGGAAGACTGAAGACACTTCTCG -ACGGAAGACTGAAGACACTAGACG -ACGGAAGACTGAAGACACGTAACG -ACGGAAGACTGAAGACACACTTCG -ACGGAAGACTGAAGACACTACGCA -ACGGAAGACTGAAGACACCTTGCA -ACGGAAGACTGAAGACACCGAACA -ACGGAAGACTGAAGACACCAGTCA -ACGGAAGACTGAAGACACGATCCA -ACGGAAGACTGAAGACACACGACA -ACGGAAGACTGAAGACACAGCTCA -ACGGAAGACTGAAGACACTCACGT -ACGGAAGACTGAAGACACCGTAGT -ACGGAAGACTGAAGACACGTCAGT -ACGGAAGACTGAAGACACGAAGGT -ACGGAAGACTGAAGACACAACCGT -ACGGAAGACTGAAGACACTTGTGC -ACGGAAGACTGAAGACACCTAAGC -ACGGAAGACTGAAGACACACTAGC -ACGGAAGACTGAAGACACAGATGC -ACGGAAGACTGAAGACACTGAAGG -ACGGAAGACTGAAGACACCAATGG -ACGGAAGACTGAAGACACATGAGG -ACGGAAGACTGAAGACACAATGGG -ACGGAAGACTGAAGACACTCCTGA -ACGGAAGACTGAAGACACTAGCGA -ACGGAAGACTGAAGACACCACAGA -ACGGAAGACTGAAGACACGCAAGA -ACGGAAGACTGAAGACACGGTTGA -ACGGAAGACTGAAGACACTCCGAT -ACGGAAGACTGAAGACACTGGCAT -ACGGAAGACTGAAGACACCGAGAT -ACGGAAGACTGAAGACACTACCAC -ACGGAAGACTGAAGACACCAGAAC -ACGGAAGACTGAAGACACGTCTAC -ACGGAAGACTGAAGACACACGTAC -ACGGAAGACTGAAGACACAGTGAC -ACGGAAGACTGAAGACACCTGTAG -ACGGAAGACTGAAGACACCCTAAG -ACGGAAGACTGAAGACACGTTCAG -ACGGAAGACTGAAGACACGCATAG -ACGGAAGACTGAAGACACGACAAG -ACGGAAGACTGAAGACACAAGCAG -ACGGAAGACTGAAGACACCGTCAA -ACGGAAGACTGAAGACACGCTGAA -ACGGAAGACTGAAGACACAGTACG -ACGGAAGACTGAAGACACATCCGA -ACGGAAGACTGAAGACACATGGGA -ACGGAAGACTGAAGACACGTGCAA -ACGGAAGACTGAAGACACGAGGAA -ACGGAAGACTGAAGACACCAGGTA -ACGGAAGACTGAAGACACGACTCT -ACGGAAGACTGAAGACACAGTCCT -ACGGAAGACTGAAGACACTAAGCC -ACGGAAGACTGAAGACACATAGCC -ACGGAAGACTGAAGACACTAACCG -ACGGAAGACTGAAGACACATGCCA -ACGGAAGACTGAAGAGCAGGAAAC -ACGGAAGACTGAAGAGCAAACACC -ACGGAAGACTGAAGAGCAATCGAG -ACGGAAGACTGAAGAGCACTCCTT -ACGGAAGACTGAAGAGCACCTGTT -ACGGAAGACTGAAGAGCACGGTTT -ACGGAAGACTGAAGAGCAGTGGTT -ACGGAAGACTGAAGAGCAGCCTTT -ACGGAAGACTGAAGAGCAGGTCTT -ACGGAAGACTGAAGAGCAACGCTT -ACGGAAGACTGAAGAGCAAGCGTT -ACGGAAGACTGAAGAGCATTCGTC -ACGGAAGACTGAAGAGCATCTCTC -ACGGAAGACTGAAGAGCATGGATC -ACGGAAGACTGAAGAGCACACTTC -ACGGAAGACTGAAGAGCAGTACTC -ACGGAAGACTGAAGAGCAGATGTC -ACGGAAGACTGAAGAGCAACAGTC -ACGGAAGACTGAAGAGCATTGCTG -ACGGAAGACTGAAGAGCATCCATG -ACGGAAGACTGAAGAGCATGTGTG -ACGGAAGACTGAAGAGCACTAGTG -ACGGAAGACTGAAGAGCACATCTG -ACGGAAGACTGAAGAGCAGAGTTG -ACGGAAGACTGAAGAGCAAGACTG -ACGGAAGACTGAAGAGCATCGGTA -ACGGAAGACTGAAGAGCATGCCTA -ACGGAAGACTGAAGAGCACCACTA -ACGGAAGACTGAAGAGCAGGAGTA -ACGGAAGACTGAAGAGCATCGTCT -ACGGAAGACTGAAGAGCATGCACT -ACGGAAGACTGAAGAGCACTGACT -ACGGAAGACTGAAGAGCACAACCT -ACGGAAGACTGAAGAGCAGCTACT -ACGGAAGACTGAAGAGCAGGATCT -ACGGAAGACTGAAGAGCAAAGGCT -ACGGAAGACTGAAGAGCATCAACC -ACGGAAGACTGAAGAGCATGTTCC -ACGGAAGACTGAAGAGCAATTCCC -ACGGAAGACTGAAGAGCATTCTCG -ACGGAAGACTGAAGAGCATAGACG -ACGGAAGACTGAAGAGCAGTAACG -ACGGAAGACTGAAGAGCAACTTCG -ACGGAAGACTGAAGAGCATACGCA -ACGGAAGACTGAAGAGCACTTGCA -ACGGAAGACTGAAGAGCACGAACA -ACGGAAGACTGAAGAGCACAGTCA -ACGGAAGACTGAAGAGCAGATCCA -ACGGAAGACTGAAGAGCAACGACA -ACGGAAGACTGAAGAGCAAGCTCA -ACGGAAGACTGAAGAGCATCACGT -ACGGAAGACTGAAGAGCACGTAGT -ACGGAAGACTGAAGAGCAGTCAGT -ACGGAAGACTGAAGAGCAGAAGGT -ACGGAAGACTGAAGAGCAAACCGT -ACGGAAGACTGAAGAGCATTGTGC -ACGGAAGACTGAAGAGCACTAAGC -ACGGAAGACTGAAGAGCAACTAGC -ACGGAAGACTGAAGAGCAAGATGC -ACGGAAGACTGAAGAGCATGAAGG -ACGGAAGACTGAAGAGCACAATGG -ACGGAAGACTGAAGAGCAATGAGG -ACGGAAGACTGAAGAGCAAATGGG -ACGGAAGACTGAAGAGCATCCTGA -ACGGAAGACTGAAGAGCATAGCGA -ACGGAAGACTGAAGAGCACACAGA -ACGGAAGACTGAAGAGCAGCAAGA -ACGGAAGACTGAAGAGCAGGTTGA -ACGGAAGACTGAAGAGCATCCGAT -ACGGAAGACTGAAGAGCATGGCAT -ACGGAAGACTGAAGAGCACGAGAT -ACGGAAGACTGAAGAGCATACCAC -ACGGAAGACTGAAGAGCACAGAAC -ACGGAAGACTGAAGAGCAGTCTAC -ACGGAAGACTGAAGAGCAACGTAC -ACGGAAGACTGAAGAGCAAGTGAC -ACGGAAGACTGAAGAGCACTGTAG -ACGGAAGACTGAAGAGCACCTAAG -ACGGAAGACTGAAGAGCAGTTCAG -ACGGAAGACTGAAGAGCAGCATAG -ACGGAAGACTGAAGAGCAGACAAG -ACGGAAGACTGAAGAGCAAAGCAG -ACGGAAGACTGAAGAGCACGTCAA -ACGGAAGACTGAAGAGCAGCTGAA -ACGGAAGACTGAAGAGCAAGTACG -ACGGAAGACTGAAGAGCAATCCGA -ACGGAAGACTGAAGAGCAATGGGA -ACGGAAGACTGAAGAGCAGTGCAA -ACGGAAGACTGAAGAGCAGAGGAA -ACGGAAGACTGAAGAGCACAGGTA -ACGGAAGACTGAAGAGCAGACTCT -ACGGAAGACTGAAGAGCAAGTCCT -ACGGAAGACTGAAGAGCATAAGCC -ACGGAAGACTGAAGAGCAATAGCC -ACGGAAGACTGAAGAGCATAACCG -ACGGAAGACTGAAGAGCAATGCCA -ACGGAAGACTGATGAGGTGGAAAC -ACGGAAGACTGATGAGGTAACACC -ACGGAAGACTGATGAGGTATCGAG -ACGGAAGACTGATGAGGTCTCCTT -ACGGAAGACTGATGAGGTCCTGTT -ACGGAAGACTGATGAGGTCGGTTT -ACGGAAGACTGATGAGGTGTGGTT -ACGGAAGACTGATGAGGTGCCTTT -ACGGAAGACTGATGAGGTGGTCTT -ACGGAAGACTGATGAGGTACGCTT -ACGGAAGACTGATGAGGTAGCGTT -ACGGAAGACTGATGAGGTTTCGTC -ACGGAAGACTGATGAGGTTCTCTC -ACGGAAGACTGATGAGGTTGGATC -ACGGAAGACTGATGAGGTCACTTC -ACGGAAGACTGATGAGGTGTACTC -ACGGAAGACTGATGAGGTGATGTC -ACGGAAGACTGATGAGGTACAGTC -ACGGAAGACTGATGAGGTTTGCTG -ACGGAAGACTGATGAGGTTCCATG -ACGGAAGACTGATGAGGTTGTGTG -ACGGAAGACTGATGAGGTCTAGTG -ACGGAAGACTGATGAGGTCATCTG -ACGGAAGACTGATGAGGTGAGTTG -ACGGAAGACTGATGAGGTAGACTG -ACGGAAGACTGATGAGGTTCGGTA -ACGGAAGACTGATGAGGTTGCCTA -ACGGAAGACTGATGAGGTCCACTA -ACGGAAGACTGATGAGGTGGAGTA -ACGGAAGACTGATGAGGTTCGTCT -ACGGAAGACTGATGAGGTTGCACT -ACGGAAGACTGATGAGGTCTGACT -ACGGAAGACTGATGAGGTCAACCT -ACGGAAGACTGATGAGGTGCTACT -ACGGAAGACTGATGAGGTGGATCT -ACGGAAGACTGATGAGGTAAGGCT -ACGGAAGACTGATGAGGTTCAACC -ACGGAAGACTGATGAGGTTGTTCC -ACGGAAGACTGATGAGGTATTCCC -ACGGAAGACTGATGAGGTTTCTCG -ACGGAAGACTGATGAGGTTAGACG -ACGGAAGACTGATGAGGTGTAACG -ACGGAAGACTGATGAGGTACTTCG -ACGGAAGACTGATGAGGTTACGCA -ACGGAAGACTGATGAGGTCTTGCA -ACGGAAGACTGATGAGGTCGAACA -ACGGAAGACTGATGAGGTCAGTCA -ACGGAAGACTGATGAGGTGATCCA -ACGGAAGACTGATGAGGTACGACA -ACGGAAGACTGATGAGGTAGCTCA -ACGGAAGACTGATGAGGTTCACGT -ACGGAAGACTGATGAGGTCGTAGT -ACGGAAGACTGATGAGGTGTCAGT -ACGGAAGACTGATGAGGTGAAGGT -ACGGAAGACTGATGAGGTAACCGT -ACGGAAGACTGATGAGGTTTGTGC -ACGGAAGACTGATGAGGTCTAAGC -ACGGAAGACTGATGAGGTACTAGC -ACGGAAGACTGATGAGGTAGATGC -ACGGAAGACTGATGAGGTTGAAGG -ACGGAAGACTGATGAGGTCAATGG -ACGGAAGACTGATGAGGTATGAGG -ACGGAAGACTGATGAGGTAATGGG -ACGGAAGACTGATGAGGTTCCTGA -ACGGAAGACTGATGAGGTTAGCGA -ACGGAAGACTGATGAGGTCACAGA -ACGGAAGACTGATGAGGTGCAAGA -ACGGAAGACTGATGAGGTGGTTGA -ACGGAAGACTGATGAGGTTCCGAT -ACGGAAGACTGATGAGGTTGGCAT -ACGGAAGACTGATGAGGTCGAGAT -ACGGAAGACTGATGAGGTTACCAC -ACGGAAGACTGATGAGGTCAGAAC -ACGGAAGACTGATGAGGTGTCTAC -ACGGAAGACTGATGAGGTACGTAC -ACGGAAGACTGATGAGGTAGTGAC -ACGGAAGACTGATGAGGTCTGTAG -ACGGAAGACTGATGAGGTCCTAAG -ACGGAAGACTGATGAGGTGTTCAG -ACGGAAGACTGATGAGGTGCATAG -ACGGAAGACTGATGAGGTGACAAG -ACGGAAGACTGATGAGGTAAGCAG -ACGGAAGACTGATGAGGTCGTCAA -ACGGAAGACTGATGAGGTGCTGAA -ACGGAAGACTGATGAGGTAGTACG -ACGGAAGACTGATGAGGTATCCGA -ACGGAAGACTGATGAGGTATGGGA -ACGGAAGACTGATGAGGTGTGCAA -ACGGAAGACTGATGAGGTGAGGAA -ACGGAAGACTGATGAGGTCAGGTA -ACGGAAGACTGATGAGGTGACTCT -ACGGAAGACTGATGAGGTAGTCCT -ACGGAAGACTGATGAGGTTAAGCC -ACGGAAGACTGATGAGGTATAGCC -ACGGAAGACTGATGAGGTTAACCG -ACGGAAGACTGATGAGGTATGCCA -ACGGAAGACTGAGATTCCGGAAAC -ACGGAAGACTGAGATTCCAACACC -ACGGAAGACTGAGATTCCATCGAG -ACGGAAGACTGAGATTCCCTCCTT -ACGGAAGACTGAGATTCCCCTGTT -ACGGAAGACTGAGATTCCCGGTTT -ACGGAAGACTGAGATTCCGTGGTT -ACGGAAGACTGAGATTCCGCCTTT -ACGGAAGACTGAGATTCCGGTCTT -ACGGAAGACTGAGATTCCACGCTT -ACGGAAGACTGAGATTCCAGCGTT -ACGGAAGACTGAGATTCCTTCGTC -ACGGAAGACTGAGATTCCTCTCTC -ACGGAAGACTGAGATTCCTGGATC -ACGGAAGACTGAGATTCCCACTTC -ACGGAAGACTGAGATTCCGTACTC -ACGGAAGACTGAGATTCCGATGTC -ACGGAAGACTGAGATTCCACAGTC -ACGGAAGACTGAGATTCCTTGCTG -ACGGAAGACTGAGATTCCTCCATG -ACGGAAGACTGAGATTCCTGTGTG -ACGGAAGACTGAGATTCCCTAGTG -ACGGAAGACTGAGATTCCCATCTG -ACGGAAGACTGAGATTCCGAGTTG -ACGGAAGACTGAGATTCCAGACTG -ACGGAAGACTGAGATTCCTCGGTA -ACGGAAGACTGAGATTCCTGCCTA -ACGGAAGACTGAGATTCCCCACTA -ACGGAAGACTGAGATTCCGGAGTA -ACGGAAGACTGAGATTCCTCGTCT -ACGGAAGACTGAGATTCCTGCACT -ACGGAAGACTGAGATTCCCTGACT -ACGGAAGACTGAGATTCCCAACCT -ACGGAAGACTGAGATTCCGCTACT -ACGGAAGACTGAGATTCCGGATCT -ACGGAAGACTGAGATTCCAAGGCT -ACGGAAGACTGAGATTCCTCAACC -ACGGAAGACTGAGATTCCTGTTCC -ACGGAAGACTGAGATTCCATTCCC -ACGGAAGACTGAGATTCCTTCTCG -ACGGAAGACTGAGATTCCTAGACG -ACGGAAGACTGAGATTCCGTAACG -ACGGAAGACTGAGATTCCACTTCG -ACGGAAGACTGAGATTCCTACGCA -ACGGAAGACTGAGATTCCCTTGCA -ACGGAAGACTGAGATTCCCGAACA -ACGGAAGACTGAGATTCCCAGTCA -ACGGAAGACTGAGATTCCGATCCA -ACGGAAGACTGAGATTCCACGACA -ACGGAAGACTGAGATTCCAGCTCA -ACGGAAGACTGAGATTCCTCACGT -ACGGAAGACTGAGATTCCCGTAGT -ACGGAAGACTGAGATTCCGTCAGT -ACGGAAGACTGAGATTCCGAAGGT -ACGGAAGACTGAGATTCCAACCGT -ACGGAAGACTGAGATTCCTTGTGC -ACGGAAGACTGAGATTCCCTAAGC -ACGGAAGACTGAGATTCCACTAGC -ACGGAAGACTGAGATTCCAGATGC -ACGGAAGACTGAGATTCCTGAAGG -ACGGAAGACTGAGATTCCCAATGG -ACGGAAGACTGAGATTCCATGAGG -ACGGAAGACTGAGATTCCAATGGG -ACGGAAGACTGAGATTCCTCCTGA -ACGGAAGACTGAGATTCCTAGCGA -ACGGAAGACTGAGATTCCCACAGA -ACGGAAGACTGAGATTCCGCAAGA -ACGGAAGACTGAGATTCCGGTTGA -ACGGAAGACTGAGATTCCTCCGAT -ACGGAAGACTGAGATTCCTGGCAT -ACGGAAGACTGAGATTCCCGAGAT -ACGGAAGACTGAGATTCCTACCAC -ACGGAAGACTGAGATTCCCAGAAC -ACGGAAGACTGAGATTCCGTCTAC -ACGGAAGACTGAGATTCCACGTAC -ACGGAAGACTGAGATTCCAGTGAC -ACGGAAGACTGAGATTCCCTGTAG -ACGGAAGACTGAGATTCCCCTAAG -ACGGAAGACTGAGATTCCGTTCAG -ACGGAAGACTGAGATTCCGCATAG -ACGGAAGACTGAGATTCCGACAAG -ACGGAAGACTGAGATTCCAAGCAG -ACGGAAGACTGAGATTCCCGTCAA -ACGGAAGACTGAGATTCCGCTGAA -ACGGAAGACTGAGATTCCAGTACG -ACGGAAGACTGAGATTCCATCCGA -ACGGAAGACTGAGATTCCATGGGA -ACGGAAGACTGAGATTCCGTGCAA -ACGGAAGACTGAGATTCCGAGGAA -ACGGAAGACTGAGATTCCCAGGTA -ACGGAAGACTGAGATTCCGACTCT -ACGGAAGACTGAGATTCCAGTCCT -ACGGAAGACTGAGATTCCTAAGCC -ACGGAAGACTGAGATTCCATAGCC -ACGGAAGACTGAGATTCCTAACCG -ACGGAAGACTGAGATTCCATGCCA -ACGGAAGACTGACATTGGGGAAAC -ACGGAAGACTGACATTGGAACACC -ACGGAAGACTGACATTGGATCGAG -ACGGAAGACTGACATTGGCTCCTT -ACGGAAGACTGACATTGGCCTGTT -ACGGAAGACTGACATTGGCGGTTT -ACGGAAGACTGACATTGGGTGGTT -ACGGAAGACTGACATTGGGCCTTT -ACGGAAGACTGACATTGGGGTCTT -ACGGAAGACTGACATTGGACGCTT -ACGGAAGACTGACATTGGAGCGTT -ACGGAAGACTGACATTGGTTCGTC -ACGGAAGACTGACATTGGTCTCTC -ACGGAAGACTGACATTGGTGGATC -ACGGAAGACTGACATTGGCACTTC -ACGGAAGACTGACATTGGGTACTC -ACGGAAGACTGACATTGGGATGTC -ACGGAAGACTGACATTGGACAGTC -ACGGAAGACTGACATTGGTTGCTG -ACGGAAGACTGACATTGGTCCATG -ACGGAAGACTGACATTGGTGTGTG -ACGGAAGACTGACATTGGCTAGTG -ACGGAAGACTGACATTGGCATCTG -ACGGAAGACTGACATTGGGAGTTG -ACGGAAGACTGACATTGGAGACTG -ACGGAAGACTGACATTGGTCGGTA -ACGGAAGACTGACATTGGTGCCTA -ACGGAAGACTGACATTGGCCACTA -ACGGAAGACTGACATTGGGGAGTA -ACGGAAGACTGACATTGGTCGTCT -ACGGAAGACTGACATTGGTGCACT -ACGGAAGACTGACATTGGCTGACT -ACGGAAGACTGACATTGGCAACCT -ACGGAAGACTGACATTGGGCTACT -ACGGAAGACTGACATTGGGGATCT -ACGGAAGACTGACATTGGAAGGCT -ACGGAAGACTGACATTGGTCAACC -ACGGAAGACTGACATTGGTGTTCC -ACGGAAGACTGACATTGGATTCCC -ACGGAAGACTGACATTGGTTCTCG -ACGGAAGACTGACATTGGTAGACG -ACGGAAGACTGACATTGGGTAACG -ACGGAAGACTGACATTGGACTTCG -ACGGAAGACTGACATTGGTACGCA -ACGGAAGACTGACATTGGCTTGCA -ACGGAAGACTGACATTGGCGAACA -ACGGAAGACTGACATTGGCAGTCA -ACGGAAGACTGACATTGGGATCCA -ACGGAAGACTGACATTGGACGACA -ACGGAAGACTGACATTGGAGCTCA -ACGGAAGACTGACATTGGTCACGT -ACGGAAGACTGACATTGGCGTAGT -ACGGAAGACTGACATTGGGTCAGT -ACGGAAGACTGACATTGGGAAGGT -ACGGAAGACTGACATTGGAACCGT -ACGGAAGACTGACATTGGTTGTGC -ACGGAAGACTGACATTGGCTAAGC -ACGGAAGACTGACATTGGACTAGC -ACGGAAGACTGACATTGGAGATGC -ACGGAAGACTGACATTGGTGAAGG -ACGGAAGACTGACATTGGCAATGG -ACGGAAGACTGACATTGGATGAGG -ACGGAAGACTGACATTGGAATGGG -ACGGAAGACTGACATTGGTCCTGA -ACGGAAGACTGACATTGGTAGCGA -ACGGAAGACTGACATTGGCACAGA -ACGGAAGACTGACATTGGGCAAGA -ACGGAAGACTGACATTGGGGTTGA -ACGGAAGACTGACATTGGTCCGAT -ACGGAAGACTGACATTGGTGGCAT -ACGGAAGACTGACATTGGCGAGAT -ACGGAAGACTGACATTGGTACCAC -ACGGAAGACTGACATTGGCAGAAC -ACGGAAGACTGACATTGGGTCTAC -ACGGAAGACTGACATTGGACGTAC -ACGGAAGACTGACATTGGAGTGAC -ACGGAAGACTGACATTGGCTGTAG -ACGGAAGACTGACATTGGCCTAAG -ACGGAAGACTGACATTGGGTTCAG -ACGGAAGACTGACATTGGGCATAG -ACGGAAGACTGACATTGGGACAAG -ACGGAAGACTGACATTGGAAGCAG -ACGGAAGACTGACATTGGCGTCAA -ACGGAAGACTGACATTGGGCTGAA -ACGGAAGACTGACATTGGAGTACG -ACGGAAGACTGACATTGGATCCGA -ACGGAAGACTGACATTGGATGGGA -ACGGAAGACTGACATTGGGTGCAA -ACGGAAGACTGACATTGGGAGGAA -ACGGAAGACTGACATTGGCAGGTA -ACGGAAGACTGACATTGGGACTCT -ACGGAAGACTGACATTGGAGTCCT -ACGGAAGACTGACATTGGTAAGCC -ACGGAAGACTGACATTGGATAGCC -ACGGAAGACTGACATTGGTAACCG -ACGGAAGACTGACATTGGATGCCA -ACGGAAGACTGAGATCGAGGAAAC -ACGGAAGACTGAGATCGAAACACC -ACGGAAGACTGAGATCGAATCGAG -ACGGAAGACTGAGATCGACTCCTT -ACGGAAGACTGAGATCGACCTGTT -ACGGAAGACTGAGATCGACGGTTT -ACGGAAGACTGAGATCGAGTGGTT -ACGGAAGACTGAGATCGAGCCTTT -ACGGAAGACTGAGATCGAGGTCTT -ACGGAAGACTGAGATCGAACGCTT -ACGGAAGACTGAGATCGAAGCGTT -ACGGAAGACTGAGATCGATTCGTC -ACGGAAGACTGAGATCGATCTCTC -ACGGAAGACTGAGATCGATGGATC -ACGGAAGACTGAGATCGACACTTC -ACGGAAGACTGAGATCGAGTACTC -ACGGAAGACTGAGATCGAGATGTC -ACGGAAGACTGAGATCGAACAGTC -ACGGAAGACTGAGATCGATTGCTG -ACGGAAGACTGAGATCGATCCATG -ACGGAAGACTGAGATCGATGTGTG -ACGGAAGACTGAGATCGACTAGTG -ACGGAAGACTGAGATCGACATCTG -ACGGAAGACTGAGATCGAGAGTTG -ACGGAAGACTGAGATCGAAGACTG -ACGGAAGACTGAGATCGATCGGTA -ACGGAAGACTGAGATCGATGCCTA -ACGGAAGACTGAGATCGACCACTA -ACGGAAGACTGAGATCGAGGAGTA -ACGGAAGACTGAGATCGATCGTCT -ACGGAAGACTGAGATCGATGCACT -ACGGAAGACTGAGATCGACTGACT -ACGGAAGACTGAGATCGACAACCT -ACGGAAGACTGAGATCGAGCTACT -ACGGAAGACTGAGATCGAGGATCT -ACGGAAGACTGAGATCGAAAGGCT -ACGGAAGACTGAGATCGATCAACC -ACGGAAGACTGAGATCGATGTTCC -ACGGAAGACTGAGATCGAATTCCC -ACGGAAGACTGAGATCGATTCTCG -ACGGAAGACTGAGATCGATAGACG -ACGGAAGACTGAGATCGAGTAACG -ACGGAAGACTGAGATCGAACTTCG -ACGGAAGACTGAGATCGATACGCA -ACGGAAGACTGAGATCGACTTGCA -ACGGAAGACTGAGATCGACGAACA -ACGGAAGACTGAGATCGACAGTCA -ACGGAAGACTGAGATCGAGATCCA -ACGGAAGACTGAGATCGAACGACA -ACGGAAGACTGAGATCGAAGCTCA -ACGGAAGACTGAGATCGATCACGT -ACGGAAGACTGAGATCGACGTAGT -ACGGAAGACTGAGATCGAGTCAGT -ACGGAAGACTGAGATCGAGAAGGT -ACGGAAGACTGAGATCGAAACCGT -ACGGAAGACTGAGATCGATTGTGC -ACGGAAGACTGAGATCGACTAAGC -ACGGAAGACTGAGATCGAACTAGC -ACGGAAGACTGAGATCGAAGATGC -ACGGAAGACTGAGATCGATGAAGG -ACGGAAGACTGAGATCGACAATGG -ACGGAAGACTGAGATCGAATGAGG -ACGGAAGACTGAGATCGAAATGGG -ACGGAAGACTGAGATCGATCCTGA -ACGGAAGACTGAGATCGATAGCGA -ACGGAAGACTGAGATCGACACAGA -ACGGAAGACTGAGATCGAGCAAGA -ACGGAAGACTGAGATCGAGGTTGA -ACGGAAGACTGAGATCGATCCGAT -ACGGAAGACTGAGATCGATGGCAT -ACGGAAGACTGAGATCGACGAGAT -ACGGAAGACTGAGATCGATACCAC -ACGGAAGACTGAGATCGACAGAAC -ACGGAAGACTGAGATCGAGTCTAC -ACGGAAGACTGAGATCGAACGTAC -ACGGAAGACTGAGATCGAAGTGAC -ACGGAAGACTGAGATCGACTGTAG -ACGGAAGACTGAGATCGACCTAAG -ACGGAAGACTGAGATCGAGTTCAG -ACGGAAGACTGAGATCGAGCATAG -ACGGAAGACTGAGATCGAGACAAG -ACGGAAGACTGAGATCGAAAGCAG -ACGGAAGACTGAGATCGACGTCAA -ACGGAAGACTGAGATCGAGCTGAA -ACGGAAGACTGAGATCGAAGTACG -ACGGAAGACTGAGATCGAATCCGA -ACGGAAGACTGAGATCGAATGGGA -ACGGAAGACTGAGATCGAGTGCAA -ACGGAAGACTGAGATCGAGAGGAA -ACGGAAGACTGAGATCGACAGGTA -ACGGAAGACTGAGATCGAGACTCT -ACGGAAGACTGAGATCGAAGTCCT -ACGGAAGACTGAGATCGATAAGCC -ACGGAAGACTGAGATCGAATAGCC -ACGGAAGACTGAGATCGATAACCG -ACGGAAGACTGAGATCGAATGCCA -ACGGAAGACTGACACTACGGAAAC -ACGGAAGACTGACACTACAACACC -ACGGAAGACTGACACTACATCGAG -ACGGAAGACTGACACTACCTCCTT -ACGGAAGACTGACACTACCCTGTT -ACGGAAGACTGACACTACCGGTTT -ACGGAAGACTGACACTACGTGGTT -ACGGAAGACTGACACTACGCCTTT -ACGGAAGACTGACACTACGGTCTT -ACGGAAGACTGACACTACACGCTT -ACGGAAGACTGACACTACAGCGTT -ACGGAAGACTGACACTACTTCGTC -ACGGAAGACTGACACTACTCTCTC -ACGGAAGACTGACACTACTGGATC -ACGGAAGACTGACACTACCACTTC -ACGGAAGACTGACACTACGTACTC -ACGGAAGACTGACACTACGATGTC -ACGGAAGACTGACACTACACAGTC -ACGGAAGACTGACACTACTTGCTG -ACGGAAGACTGACACTACTCCATG -ACGGAAGACTGACACTACTGTGTG -ACGGAAGACTGACACTACCTAGTG -ACGGAAGACTGACACTACCATCTG -ACGGAAGACTGACACTACGAGTTG -ACGGAAGACTGACACTACAGACTG -ACGGAAGACTGACACTACTCGGTA -ACGGAAGACTGACACTACTGCCTA -ACGGAAGACTGACACTACCCACTA -ACGGAAGACTGACACTACGGAGTA -ACGGAAGACTGACACTACTCGTCT -ACGGAAGACTGACACTACTGCACT -ACGGAAGACTGACACTACCTGACT -ACGGAAGACTGACACTACCAACCT -ACGGAAGACTGACACTACGCTACT -ACGGAAGACTGACACTACGGATCT -ACGGAAGACTGACACTACAAGGCT -ACGGAAGACTGACACTACTCAACC -ACGGAAGACTGACACTACTGTTCC -ACGGAAGACTGACACTACATTCCC -ACGGAAGACTGACACTACTTCTCG -ACGGAAGACTGACACTACTAGACG -ACGGAAGACTGACACTACGTAACG -ACGGAAGACTGACACTACACTTCG -ACGGAAGACTGACACTACTACGCA -ACGGAAGACTGACACTACCTTGCA -ACGGAAGACTGACACTACCGAACA -ACGGAAGACTGACACTACCAGTCA -ACGGAAGACTGACACTACGATCCA -ACGGAAGACTGACACTACACGACA -ACGGAAGACTGACACTACAGCTCA -ACGGAAGACTGACACTACTCACGT -ACGGAAGACTGACACTACCGTAGT -ACGGAAGACTGACACTACGTCAGT -ACGGAAGACTGACACTACGAAGGT -ACGGAAGACTGACACTACAACCGT -ACGGAAGACTGACACTACTTGTGC -ACGGAAGACTGACACTACCTAAGC -ACGGAAGACTGACACTACACTAGC -ACGGAAGACTGACACTACAGATGC -ACGGAAGACTGACACTACTGAAGG -ACGGAAGACTGACACTACCAATGG -ACGGAAGACTGACACTACATGAGG -ACGGAAGACTGACACTACAATGGG -ACGGAAGACTGACACTACTCCTGA -ACGGAAGACTGACACTACTAGCGA -ACGGAAGACTGACACTACCACAGA -ACGGAAGACTGACACTACGCAAGA -ACGGAAGACTGACACTACGGTTGA -ACGGAAGACTGACACTACTCCGAT -ACGGAAGACTGACACTACTGGCAT -ACGGAAGACTGACACTACCGAGAT -ACGGAAGACTGACACTACTACCAC -ACGGAAGACTGACACTACCAGAAC -ACGGAAGACTGACACTACGTCTAC -ACGGAAGACTGACACTACACGTAC -ACGGAAGACTGACACTACAGTGAC -ACGGAAGACTGACACTACCTGTAG -ACGGAAGACTGACACTACCCTAAG -ACGGAAGACTGACACTACGTTCAG -ACGGAAGACTGACACTACGCATAG -ACGGAAGACTGACACTACGACAAG -ACGGAAGACTGACACTACAAGCAG -ACGGAAGACTGACACTACCGTCAA -ACGGAAGACTGACACTACGCTGAA -ACGGAAGACTGACACTACAGTACG -ACGGAAGACTGACACTACATCCGA -ACGGAAGACTGACACTACATGGGA -ACGGAAGACTGACACTACGTGCAA -ACGGAAGACTGACACTACGAGGAA -ACGGAAGACTGACACTACCAGGTA -ACGGAAGACTGACACTACGACTCT -ACGGAAGACTGACACTACAGTCCT -ACGGAAGACTGACACTACTAAGCC -ACGGAAGACTGACACTACATAGCC -ACGGAAGACTGACACTACTAACCG -ACGGAAGACTGACACTACATGCCA -ACGGAAGACTGAAACCAGGGAAAC -ACGGAAGACTGAAACCAGAACACC -ACGGAAGACTGAAACCAGATCGAG -ACGGAAGACTGAAACCAGCTCCTT -ACGGAAGACTGAAACCAGCCTGTT -ACGGAAGACTGAAACCAGCGGTTT -ACGGAAGACTGAAACCAGGTGGTT -ACGGAAGACTGAAACCAGGCCTTT -ACGGAAGACTGAAACCAGGGTCTT -ACGGAAGACTGAAACCAGACGCTT -ACGGAAGACTGAAACCAGAGCGTT -ACGGAAGACTGAAACCAGTTCGTC -ACGGAAGACTGAAACCAGTCTCTC -ACGGAAGACTGAAACCAGTGGATC -ACGGAAGACTGAAACCAGCACTTC -ACGGAAGACTGAAACCAGGTACTC -ACGGAAGACTGAAACCAGGATGTC -ACGGAAGACTGAAACCAGACAGTC -ACGGAAGACTGAAACCAGTTGCTG -ACGGAAGACTGAAACCAGTCCATG -ACGGAAGACTGAAACCAGTGTGTG -ACGGAAGACTGAAACCAGCTAGTG -ACGGAAGACTGAAACCAGCATCTG -ACGGAAGACTGAAACCAGGAGTTG -ACGGAAGACTGAAACCAGAGACTG -ACGGAAGACTGAAACCAGTCGGTA -ACGGAAGACTGAAACCAGTGCCTA -ACGGAAGACTGAAACCAGCCACTA -ACGGAAGACTGAAACCAGGGAGTA -ACGGAAGACTGAAACCAGTCGTCT -ACGGAAGACTGAAACCAGTGCACT -ACGGAAGACTGAAACCAGCTGACT -ACGGAAGACTGAAACCAGCAACCT -ACGGAAGACTGAAACCAGGCTACT -ACGGAAGACTGAAACCAGGGATCT -ACGGAAGACTGAAACCAGAAGGCT -ACGGAAGACTGAAACCAGTCAACC -ACGGAAGACTGAAACCAGTGTTCC -ACGGAAGACTGAAACCAGATTCCC -ACGGAAGACTGAAACCAGTTCTCG -ACGGAAGACTGAAACCAGTAGACG -ACGGAAGACTGAAACCAGGTAACG -ACGGAAGACTGAAACCAGACTTCG -ACGGAAGACTGAAACCAGTACGCA -ACGGAAGACTGAAACCAGCTTGCA -ACGGAAGACTGAAACCAGCGAACA -ACGGAAGACTGAAACCAGCAGTCA -ACGGAAGACTGAAACCAGGATCCA -ACGGAAGACTGAAACCAGACGACA -ACGGAAGACTGAAACCAGAGCTCA -ACGGAAGACTGAAACCAGTCACGT -ACGGAAGACTGAAACCAGCGTAGT -ACGGAAGACTGAAACCAGGTCAGT -ACGGAAGACTGAAACCAGGAAGGT -ACGGAAGACTGAAACCAGAACCGT -ACGGAAGACTGAAACCAGTTGTGC -ACGGAAGACTGAAACCAGCTAAGC -ACGGAAGACTGAAACCAGACTAGC -ACGGAAGACTGAAACCAGAGATGC -ACGGAAGACTGAAACCAGTGAAGG -ACGGAAGACTGAAACCAGCAATGG -ACGGAAGACTGAAACCAGATGAGG -ACGGAAGACTGAAACCAGAATGGG -ACGGAAGACTGAAACCAGTCCTGA -ACGGAAGACTGAAACCAGTAGCGA -ACGGAAGACTGAAACCAGCACAGA -ACGGAAGACTGAAACCAGGCAAGA -ACGGAAGACTGAAACCAGGGTTGA -ACGGAAGACTGAAACCAGTCCGAT -ACGGAAGACTGAAACCAGTGGCAT -ACGGAAGACTGAAACCAGCGAGAT -ACGGAAGACTGAAACCAGTACCAC -ACGGAAGACTGAAACCAGCAGAAC -ACGGAAGACTGAAACCAGGTCTAC -ACGGAAGACTGAAACCAGACGTAC -ACGGAAGACTGAAACCAGAGTGAC -ACGGAAGACTGAAACCAGCTGTAG -ACGGAAGACTGAAACCAGCCTAAG -ACGGAAGACTGAAACCAGGTTCAG -ACGGAAGACTGAAACCAGGCATAG -ACGGAAGACTGAAACCAGGACAAG -ACGGAAGACTGAAACCAGAAGCAG -ACGGAAGACTGAAACCAGCGTCAA -ACGGAAGACTGAAACCAGGCTGAA -ACGGAAGACTGAAACCAGAGTACG -ACGGAAGACTGAAACCAGATCCGA -ACGGAAGACTGAAACCAGATGGGA -ACGGAAGACTGAAACCAGGTGCAA -ACGGAAGACTGAAACCAGGAGGAA -ACGGAAGACTGAAACCAGCAGGTA -ACGGAAGACTGAAACCAGGACTCT -ACGGAAGACTGAAACCAGAGTCCT -ACGGAAGACTGAAACCAGTAAGCC -ACGGAAGACTGAAACCAGATAGCC -ACGGAAGACTGAAACCAGTAACCG -ACGGAAGACTGAAACCAGATGCCA -ACGGAAGACTGATACGTCGGAAAC -ACGGAAGACTGATACGTCAACACC -ACGGAAGACTGATACGTCATCGAG -ACGGAAGACTGATACGTCCTCCTT -ACGGAAGACTGATACGTCCCTGTT -ACGGAAGACTGATACGTCCGGTTT -ACGGAAGACTGATACGTCGTGGTT -ACGGAAGACTGATACGTCGCCTTT -ACGGAAGACTGATACGTCGGTCTT -ACGGAAGACTGATACGTCACGCTT -ACGGAAGACTGATACGTCAGCGTT -ACGGAAGACTGATACGTCTTCGTC -ACGGAAGACTGATACGTCTCTCTC -ACGGAAGACTGATACGTCTGGATC -ACGGAAGACTGATACGTCCACTTC -ACGGAAGACTGATACGTCGTACTC -ACGGAAGACTGATACGTCGATGTC -ACGGAAGACTGATACGTCACAGTC -ACGGAAGACTGATACGTCTTGCTG -ACGGAAGACTGATACGTCTCCATG -ACGGAAGACTGATACGTCTGTGTG -ACGGAAGACTGATACGTCCTAGTG -ACGGAAGACTGATACGTCCATCTG -ACGGAAGACTGATACGTCGAGTTG -ACGGAAGACTGATACGTCAGACTG -ACGGAAGACTGATACGTCTCGGTA -ACGGAAGACTGATACGTCTGCCTA -ACGGAAGACTGATACGTCCCACTA -ACGGAAGACTGATACGTCGGAGTA -ACGGAAGACTGATACGTCTCGTCT -ACGGAAGACTGATACGTCTGCACT -ACGGAAGACTGATACGTCCTGACT -ACGGAAGACTGATACGTCCAACCT -ACGGAAGACTGATACGTCGCTACT -ACGGAAGACTGATACGTCGGATCT -ACGGAAGACTGATACGTCAAGGCT -ACGGAAGACTGATACGTCTCAACC -ACGGAAGACTGATACGTCTGTTCC -ACGGAAGACTGATACGTCATTCCC -ACGGAAGACTGATACGTCTTCTCG -ACGGAAGACTGATACGTCTAGACG -ACGGAAGACTGATACGTCGTAACG -ACGGAAGACTGATACGTCACTTCG -ACGGAAGACTGATACGTCTACGCA -ACGGAAGACTGATACGTCCTTGCA -ACGGAAGACTGATACGTCCGAACA -ACGGAAGACTGATACGTCCAGTCA -ACGGAAGACTGATACGTCGATCCA -ACGGAAGACTGATACGTCACGACA -ACGGAAGACTGATACGTCAGCTCA -ACGGAAGACTGATACGTCTCACGT -ACGGAAGACTGATACGTCCGTAGT -ACGGAAGACTGATACGTCGTCAGT -ACGGAAGACTGATACGTCGAAGGT -ACGGAAGACTGATACGTCAACCGT -ACGGAAGACTGATACGTCTTGTGC -ACGGAAGACTGATACGTCCTAAGC -ACGGAAGACTGATACGTCACTAGC -ACGGAAGACTGATACGTCAGATGC -ACGGAAGACTGATACGTCTGAAGG -ACGGAAGACTGATACGTCCAATGG -ACGGAAGACTGATACGTCATGAGG -ACGGAAGACTGATACGTCAATGGG -ACGGAAGACTGATACGTCTCCTGA -ACGGAAGACTGATACGTCTAGCGA -ACGGAAGACTGATACGTCCACAGA -ACGGAAGACTGATACGTCGCAAGA -ACGGAAGACTGATACGTCGGTTGA -ACGGAAGACTGATACGTCTCCGAT -ACGGAAGACTGATACGTCTGGCAT -ACGGAAGACTGATACGTCCGAGAT -ACGGAAGACTGATACGTCTACCAC -ACGGAAGACTGATACGTCCAGAAC -ACGGAAGACTGATACGTCGTCTAC -ACGGAAGACTGATACGTCACGTAC -ACGGAAGACTGATACGTCAGTGAC -ACGGAAGACTGATACGTCCTGTAG -ACGGAAGACTGATACGTCCCTAAG -ACGGAAGACTGATACGTCGTTCAG -ACGGAAGACTGATACGTCGCATAG -ACGGAAGACTGATACGTCGACAAG -ACGGAAGACTGATACGTCAAGCAG -ACGGAAGACTGATACGTCCGTCAA -ACGGAAGACTGATACGTCGCTGAA -ACGGAAGACTGATACGTCAGTACG -ACGGAAGACTGATACGTCATCCGA -ACGGAAGACTGATACGTCATGGGA -ACGGAAGACTGATACGTCGTGCAA -ACGGAAGACTGATACGTCGAGGAA -ACGGAAGACTGATACGTCCAGGTA -ACGGAAGACTGATACGTCGACTCT -ACGGAAGACTGATACGTCAGTCCT -ACGGAAGACTGATACGTCTAAGCC -ACGGAAGACTGATACGTCATAGCC -ACGGAAGACTGATACGTCTAACCG -ACGGAAGACTGATACGTCATGCCA -ACGGAAGACTGATACACGGGAAAC -ACGGAAGACTGATACACGAACACC -ACGGAAGACTGATACACGATCGAG -ACGGAAGACTGATACACGCTCCTT -ACGGAAGACTGATACACGCCTGTT -ACGGAAGACTGATACACGCGGTTT -ACGGAAGACTGATACACGGTGGTT -ACGGAAGACTGATACACGGCCTTT -ACGGAAGACTGATACACGGGTCTT -ACGGAAGACTGATACACGACGCTT -ACGGAAGACTGATACACGAGCGTT -ACGGAAGACTGATACACGTTCGTC -ACGGAAGACTGATACACGTCTCTC -ACGGAAGACTGATACACGTGGATC -ACGGAAGACTGATACACGCACTTC -ACGGAAGACTGATACACGGTACTC -ACGGAAGACTGATACACGGATGTC -ACGGAAGACTGATACACGACAGTC -ACGGAAGACTGATACACGTTGCTG -ACGGAAGACTGATACACGTCCATG -ACGGAAGACTGATACACGTGTGTG -ACGGAAGACTGATACACGCTAGTG -ACGGAAGACTGATACACGCATCTG -ACGGAAGACTGATACACGGAGTTG -ACGGAAGACTGATACACGAGACTG -ACGGAAGACTGATACACGTCGGTA -ACGGAAGACTGATACACGTGCCTA -ACGGAAGACTGATACACGCCACTA -ACGGAAGACTGATACACGGGAGTA -ACGGAAGACTGATACACGTCGTCT -ACGGAAGACTGATACACGTGCACT -ACGGAAGACTGATACACGCTGACT -ACGGAAGACTGATACACGCAACCT -ACGGAAGACTGATACACGGCTACT -ACGGAAGACTGATACACGGGATCT -ACGGAAGACTGATACACGAAGGCT -ACGGAAGACTGATACACGTCAACC -ACGGAAGACTGATACACGTGTTCC -ACGGAAGACTGATACACGATTCCC -ACGGAAGACTGATACACGTTCTCG -ACGGAAGACTGATACACGTAGACG -ACGGAAGACTGATACACGGTAACG -ACGGAAGACTGATACACGACTTCG -ACGGAAGACTGATACACGTACGCA -ACGGAAGACTGATACACGCTTGCA -ACGGAAGACTGATACACGCGAACA -ACGGAAGACTGATACACGCAGTCA -ACGGAAGACTGATACACGGATCCA -ACGGAAGACTGATACACGACGACA -ACGGAAGACTGATACACGAGCTCA -ACGGAAGACTGATACACGTCACGT -ACGGAAGACTGATACACGCGTAGT -ACGGAAGACTGATACACGGTCAGT -ACGGAAGACTGATACACGGAAGGT -ACGGAAGACTGATACACGAACCGT -ACGGAAGACTGATACACGTTGTGC -ACGGAAGACTGATACACGCTAAGC -ACGGAAGACTGATACACGACTAGC -ACGGAAGACTGATACACGAGATGC -ACGGAAGACTGATACACGTGAAGG -ACGGAAGACTGATACACGCAATGG -ACGGAAGACTGATACACGATGAGG -ACGGAAGACTGATACACGAATGGG -ACGGAAGACTGATACACGTCCTGA -ACGGAAGACTGATACACGTAGCGA -ACGGAAGACTGATACACGCACAGA -ACGGAAGACTGATACACGGCAAGA -ACGGAAGACTGATACACGGGTTGA -ACGGAAGACTGATACACGTCCGAT -ACGGAAGACTGATACACGTGGCAT -ACGGAAGACTGATACACGCGAGAT -ACGGAAGACTGATACACGTACCAC -ACGGAAGACTGATACACGCAGAAC -ACGGAAGACTGATACACGGTCTAC -ACGGAAGACTGATACACGACGTAC -ACGGAAGACTGATACACGAGTGAC -ACGGAAGACTGATACACGCTGTAG -ACGGAAGACTGATACACGCCTAAG -ACGGAAGACTGATACACGGTTCAG -ACGGAAGACTGATACACGGCATAG -ACGGAAGACTGATACACGGACAAG -ACGGAAGACTGATACACGAAGCAG -ACGGAAGACTGATACACGCGTCAA -ACGGAAGACTGATACACGGCTGAA -ACGGAAGACTGATACACGAGTACG -ACGGAAGACTGATACACGATCCGA -ACGGAAGACTGATACACGATGGGA -ACGGAAGACTGATACACGGTGCAA -ACGGAAGACTGATACACGGAGGAA -ACGGAAGACTGATACACGCAGGTA -ACGGAAGACTGATACACGGACTCT -ACGGAAGACTGATACACGAGTCCT -ACGGAAGACTGATACACGTAAGCC -ACGGAAGACTGATACACGATAGCC -ACGGAAGACTGATACACGTAACCG -ACGGAAGACTGATACACGATGCCA -ACGGAAGACTGAGACAGTGGAAAC -ACGGAAGACTGAGACAGTAACACC -ACGGAAGACTGAGACAGTATCGAG -ACGGAAGACTGAGACAGTCTCCTT -ACGGAAGACTGAGACAGTCCTGTT -ACGGAAGACTGAGACAGTCGGTTT -ACGGAAGACTGAGACAGTGTGGTT -ACGGAAGACTGAGACAGTGCCTTT -ACGGAAGACTGAGACAGTGGTCTT -ACGGAAGACTGAGACAGTACGCTT -ACGGAAGACTGAGACAGTAGCGTT -ACGGAAGACTGAGACAGTTTCGTC -ACGGAAGACTGAGACAGTTCTCTC -ACGGAAGACTGAGACAGTTGGATC -ACGGAAGACTGAGACAGTCACTTC -ACGGAAGACTGAGACAGTGTACTC -ACGGAAGACTGAGACAGTGATGTC -ACGGAAGACTGAGACAGTACAGTC -ACGGAAGACTGAGACAGTTTGCTG -ACGGAAGACTGAGACAGTTCCATG -ACGGAAGACTGAGACAGTTGTGTG -ACGGAAGACTGAGACAGTCTAGTG -ACGGAAGACTGAGACAGTCATCTG -ACGGAAGACTGAGACAGTGAGTTG -ACGGAAGACTGAGACAGTAGACTG -ACGGAAGACTGAGACAGTTCGGTA -ACGGAAGACTGAGACAGTTGCCTA -ACGGAAGACTGAGACAGTCCACTA -ACGGAAGACTGAGACAGTGGAGTA -ACGGAAGACTGAGACAGTTCGTCT -ACGGAAGACTGAGACAGTTGCACT -ACGGAAGACTGAGACAGTCTGACT -ACGGAAGACTGAGACAGTCAACCT -ACGGAAGACTGAGACAGTGCTACT -ACGGAAGACTGAGACAGTGGATCT -ACGGAAGACTGAGACAGTAAGGCT -ACGGAAGACTGAGACAGTTCAACC -ACGGAAGACTGAGACAGTTGTTCC -ACGGAAGACTGAGACAGTATTCCC -ACGGAAGACTGAGACAGTTTCTCG -ACGGAAGACTGAGACAGTTAGACG -ACGGAAGACTGAGACAGTGTAACG -ACGGAAGACTGAGACAGTACTTCG -ACGGAAGACTGAGACAGTTACGCA -ACGGAAGACTGAGACAGTCTTGCA -ACGGAAGACTGAGACAGTCGAACA -ACGGAAGACTGAGACAGTCAGTCA -ACGGAAGACTGAGACAGTGATCCA -ACGGAAGACTGAGACAGTACGACA -ACGGAAGACTGAGACAGTAGCTCA -ACGGAAGACTGAGACAGTTCACGT -ACGGAAGACTGAGACAGTCGTAGT -ACGGAAGACTGAGACAGTGTCAGT -ACGGAAGACTGAGACAGTGAAGGT -ACGGAAGACTGAGACAGTAACCGT -ACGGAAGACTGAGACAGTTTGTGC -ACGGAAGACTGAGACAGTCTAAGC -ACGGAAGACTGAGACAGTACTAGC -ACGGAAGACTGAGACAGTAGATGC -ACGGAAGACTGAGACAGTTGAAGG -ACGGAAGACTGAGACAGTCAATGG -ACGGAAGACTGAGACAGTATGAGG -ACGGAAGACTGAGACAGTAATGGG -ACGGAAGACTGAGACAGTTCCTGA -ACGGAAGACTGAGACAGTTAGCGA -ACGGAAGACTGAGACAGTCACAGA -ACGGAAGACTGAGACAGTGCAAGA -ACGGAAGACTGAGACAGTGGTTGA -ACGGAAGACTGAGACAGTTCCGAT -ACGGAAGACTGAGACAGTTGGCAT -ACGGAAGACTGAGACAGTCGAGAT -ACGGAAGACTGAGACAGTTACCAC -ACGGAAGACTGAGACAGTCAGAAC -ACGGAAGACTGAGACAGTGTCTAC -ACGGAAGACTGAGACAGTACGTAC -ACGGAAGACTGAGACAGTAGTGAC -ACGGAAGACTGAGACAGTCTGTAG -ACGGAAGACTGAGACAGTCCTAAG -ACGGAAGACTGAGACAGTGTTCAG -ACGGAAGACTGAGACAGTGCATAG -ACGGAAGACTGAGACAGTGACAAG -ACGGAAGACTGAGACAGTAAGCAG -ACGGAAGACTGAGACAGTCGTCAA -ACGGAAGACTGAGACAGTGCTGAA -ACGGAAGACTGAGACAGTAGTACG -ACGGAAGACTGAGACAGTATCCGA -ACGGAAGACTGAGACAGTATGGGA -ACGGAAGACTGAGACAGTGTGCAA -ACGGAAGACTGAGACAGTGAGGAA -ACGGAAGACTGAGACAGTCAGGTA -ACGGAAGACTGAGACAGTGACTCT -ACGGAAGACTGAGACAGTAGTCCT -ACGGAAGACTGAGACAGTTAAGCC -ACGGAAGACTGAGACAGTATAGCC -ACGGAAGACTGAGACAGTTAACCG -ACGGAAGACTGAGACAGTATGCCA -ACGGAAGACTGATAGCTGGGAAAC -ACGGAAGACTGATAGCTGAACACC -ACGGAAGACTGATAGCTGATCGAG -ACGGAAGACTGATAGCTGCTCCTT -ACGGAAGACTGATAGCTGCCTGTT -ACGGAAGACTGATAGCTGCGGTTT -ACGGAAGACTGATAGCTGGTGGTT -ACGGAAGACTGATAGCTGGCCTTT -ACGGAAGACTGATAGCTGGGTCTT -ACGGAAGACTGATAGCTGACGCTT -ACGGAAGACTGATAGCTGAGCGTT -ACGGAAGACTGATAGCTGTTCGTC -ACGGAAGACTGATAGCTGTCTCTC -ACGGAAGACTGATAGCTGTGGATC -ACGGAAGACTGATAGCTGCACTTC -ACGGAAGACTGATAGCTGGTACTC -ACGGAAGACTGATAGCTGGATGTC -ACGGAAGACTGATAGCTGACAGTC -ACGGAAGACTGATAGCTGTTGCTG -ACGGAAGACTGATAGCTGTCCATG -ACGGAAGACTGATAGCTGTGTGTG -ACGGAAGACTGATAGCTGCTAGTG -ACGGAAGACTGATAGCTGCATCTG -ACGGAAGACTGATAGCTGGAGTTG -ACGGAAGACTGATAGCTGAGACTG -ACGGAAGACTGATAGCTGTCGGTA -ACGGAAGACTGATAGCTGTGCCTA -ACGGAAGACTGATAGCTGCCACTA -ACGGAAGACTGATAGCTGGGAGTA -ACGGAAGACTGATAGCTGTCGTCT -ACGGAAGACTGATAGCTGTGCACT -ACGGAAGACTGATAGCTGCTGACT -ACGGAAGACTGATAGCTGCAACCT -ACGGAAGACTGATAGCTGGCTACT -ACGGAAGACTGATAGCTGGGATCT -ACGGAAGACTGATAGCTGAAGGCT -ACGGAAGACTGATAGCTGTCAACC -ACGGAAGACTGATAGCTGTGTTCC -ACGGAAGACTGATAGCTGATTCCC -ACGGAAGACTGATAGCTGTTCTCG -ACGGAAGACTGATAGCTGTAGACG -ACGGAAGACTGATAGCTGGTAACG -ACGGAAGACTGATAGCTGACTTCG -ACGGAAGACTGATAGCTGTACGCA -ACGGAAGACTGATAGCTGCTTGCA -ACGGAAGACTGATAGCTGCGAACA -ACGGAAGACTGATAGCTGCAGTCA -ACGGAAGACTGATAGCTGGATCCA -ACGGAAGACTGATAGCTGACGACA -ACGGAAGACTGATAGCTGAGCTCA -ACGGAAGACTGATAGCTGTCACGT -ACGGAAGACTGATAGCTGCGTAGT -ACGGAAGACTGATAGCTGGTCAGT -ACGGAAGACTGATAGCTGGAAGGT -ACGGAAGACTGATAGCTGAACCGT -ACGGAAGACTGATAGCTGTTGTGC -ACGGAAGACTGATAGCTGCTAAGC -ACGGAAGACTGATAGCTGACTAGC -ACGGAAGACTGATAGCTGAGATGC -ACGGAAGACTGATAGCTGTGAAGG -ACGGAAGACTGATAGCTGCAATGG -ACGGAAGACTGATAGCTGATGAGG -ACGGAAGACTGATAGCTGAATGGG -ACGGAAGACTGATAGCTGTCCTGA -ACGGAAGACTGATAGCTGTAGCGA -ACGGAAGACTGATAGCTGCACAGA -ACGGAAGACTGATAGCTGGCAAGA -ACGGAAGACTGATAGCTGGGTTGA -ACGGAAGACTGATAGCTGTCCGAT -ACGGAAGACTGATAGCTGTGGCAT -ACGGAAGACTGATAGCTGCGAGAT -ACGGAAGACTGATAGCTGTACCAC -ACGGAAGACTGATAGCTGCAGAAC -ACGGAAGACTGATAGCTGGTCTAC -ACGGAAGACTGATAGCTGACGTAC -ACGGAAGACTGATAGCTGAGTGAC -ACGGAAGACTGATAGCTGCTGTAG -ACGGAAGACTGATAGCTGCCTAAG -ACGGAAGACTGATAGCTGGTTCAG -ACGGAAGACTGATAGCTGGCATAG -ACGGAAGACTGATAGCTGGACAAG -ACGGAAGACTGATAGCTGAAGCAG -ACGGAAGACTGATAGCTGCGTCAA -ACGGAAGACTGATAGCTGGCTGAA -ACGGAAGACTGATAGCTGAGTACG -ACGGAAGACTGATAGCTGATCCGA -ACGGAAGACTGATAGCTGATGGGA -ACGGAAGACTGATAGCTGGTGCAA -ACGGAAGACTGATAGCTGGAGGAA -ACGGAAGACTGATAGCTGCAGGTA -ACGGAAGACTGATAGCTGGACTCT -ACGGAAGACTGATAGCTGAGTCCT -ACGGAAGACTGATAGCTGTAAGCC -ACGGAAGACTGATAGCTGATAGCC -ACGGAAGACTGATAGCTGTAACCG -ACGGAAGACTGATAGCTGATGCCA -ACGGAAGACTGAAAGCCTGGAAAC -ACGGAAGACTGAAAGCCTAACACC -ACGGAAGACTGAAAGCCTATCGAG -ACGGAAGACTGAAAGCCTCTCCTT -ACGGAAGACTGAAAGCCTCCTGTT -ACGGAAGACTGAAAGCCTCGGTTT -ACGGAAGACTGAAAGCCTGTGGTT -ACGGAAGACTGAAAGCCTGCCTTT -ACGGAAGACTGAAAGCCTGGTCTT -ACGGAAGACTGAAAGCCTACGCTT -ACGGAAGACTGAAAGCCTAGCGTT -ACGGAAGACTGAAAGCCTTTCGTC -ACGGAAGACTGAAAGCCTTCTCTC -ACGGAAGACTGAAAGCCTTGGATC -ACGGAAGACTGAAAGCCTCACTTC -ACGGAAGACTGAAAGCCTGTACTC -ACGGAAGACTGAAAGCCTGATGTC -ACGGAAGACTGAAAGCCTACAGTC -ACGGAAGACTGAAAGCCTTTGCTG -ACGGAAGACTGAAAGCCTTCCATG -ACGGAAGACTGAAAGCCTTGTGTG -ACGGAAGACTGAAAGCCTCTAGTG -ACGGAAGACTGAAAGCCTCATCTG -ACGGAAGACTGAAAGCCTGAGTTG -ACGGAAGACTGAAAGCCTAGACTG -ACGGAAGACTGAAAGCCTTCGGTA -ACGGAAGACTGAAAGCCTTGCCTA -ACGGAAGACTGAAAGCCTCCACTA -ACGGAAGACTGAAAGCCTGGAGTA -ACGGAAGACTGAAAGCCTTCGTCT -ACGGAAGACTGAAAGCCTTGCACT -ACGGAAGACTGAAAGCCTCTGACT -ACGGAAGACTGAAAGCCTCAACCT -ACGGAAGACTGAAAGCCTGCTACT -ACGGAAGACTGAAAGCCTGGATCT -ACGGAAGACTGAAAGCCTAAGGCT -ACGGAAGACTGAAAGCCTTCAACC -ACGGAAGACTGAAAGCCTTGTTCC -ACGGAAGACTGAAAGCCTATTCCC -ACGGAAGACTGAAAGCCTTTCTCG -ACGGAAGACTGAAAGCCTTAGACG -ACGGAAGACTGAAAGCCTGTAACG -ACGGAAGACTGAAAGCCTACTTCG -ACGGAAGACTGAAAGCCTTACGCA -ACGGAAGACTGAAAGCCTCTTGCA -ACGGAAGACTGAAAGCCTCGAACA -ACGGAAGACTGAAAGCCTCAGTCA -ACGGAAGACTGAAAGCCTGATCCA -ACGGAAGACTGAAAGCCTACGACA -ACGGAAGACTGAAAGCCTAGCTCA -ACGGAAGACTGAAAGCCTTCACGT -ACGGAAGACTGAAAGCCTCGTAGT -ACGGAAGACTGAAAGCCTGTCAGT -ACGGAAGACTGAAAGCCTGAAGGT -ACGGAAGACTGAAAGCCTAACCGT -ACGGAAGACTGAAAGCCTTTGTGC -ACGGAAGACTGAAAGCCTCTAAGC -ACGGAAGACTGAAAGCCTACTAGC -ACGGAAGACTGAAAGCCTAGATGC -ACGGAAGACTGAAAGCCTTGAAGG -ACGGAAGACTGAAAGCCTCAATGG -ACGGAAGACTGAAAGCCTATGAGG -ACGGAAGACTGAAAGCCTAATGGG -ACGGAAGACTGAAAGCCTTCCTGA -ACGGAAGACTGAAAGCCTTAGCGA -ACGGAAGACTGAAAGCCTCACAGA -ACGGAAGACTGAAAGCCTGCAAGA -ACGGAAGACTGAAAGCCTGGTTGA -ACGGAAGACTGAAAGCCTTCCGAT -ACGGAAGACTGAAAGCCTTGGCAT -ACGGAAGACTGAAAGCCTCGAGAT -ACGGAAGACTGAAAGCCTTACCAC -ACGGAAGACTGAAAGCCTCAGAAC -ACGGAAGACTGAAAGCCTGTCTAC -ACGGAAGACTGAAAGCCTACGTAC -ACGGAAGACTGAAAGCCTAGTGAC -ACGGAAGACTGAAAGCCTCTGTAG -ACGGAAGACTGAAAGCCTCCTAAG -ACGGAAGACTGAAAGCCTGTTCAG -ACGGAAGACTGAAAGCCTGCATAG -ACGGAAGACTGAAAGCCTGACAAG -ACGGAAGACTGAAAGCCTAAGCAG -ACGGAAGACTGAAAGCCTCGTCAA -ACGGAAGACTGAAAGCCTGCTGAA -ACGGAAGACTGAAAGCCTAGTACG -ACGGAAGACTGAAAGCCTATCCGA -ACGGAAGACTGAAAGCCTATGGGA -ACGGAAGACTGAAAGCCTGTGCAA -ACGGAAGACTGAAAGCCTGAGGAA -ACGGAAGACTGAAAGCCTCAGGTA -ACGGAAGACTGAAAGCCTGACTCT -ACGGAAGACTGAAAGCCTAGTCCT -ACGGAAGACTGAAAGCCTTAAGCC -ACGGAAGACTGAAAGCCTATAGCC -ACGGAAGACTGAAAGCCTTAACCG -ACGGAAGACTGAAAGCCTATGCCA -ACGGAAGACTGACAGGTTGGAAAC -ACGGAAGACTGACAGGTTAACACC -ACGGAAGACTGACAGGTTATCGAG -ACGGAAGACTGACAGGTTCTCCTT -ACGGAAGACTGACAGGTTCCTGTT -ACGGAAGACTGACAGGTTCGGTTT -ACGGAAGACTGACAGGTTGTGGTT -ACGGAAGACTGACAGGTTGCCTTT -ACGGAAGACTGACAGGTTGGTCTT -ACGGAAGACTGACAGGTTACGCTT -ACGGAAGACTGACAGGTTAGCGTT -ACGGAAGACTGACAGGTTTTCGTC -ACGGAAGACTGACAGGTTTCTCTC -ACGGAAGACTGACAGGTTTGGATC -ACGGAAGACTGACAGGTTCACTTC -ACGGAAGACTGACAGGTTGTACTC -ACGGAAGACTGACAGGTTGATGTC -ACGGAAGACTGACAGGTTACAGTC -ACGGAAGACTGACAGGTTTTGCTG -ACGGAAGACTGACAGGTTTCCATG -ACGGAAGACTGACAGGTTTGTGTG -ACGGAAGACTGACAGGTTCTAGTG -ACGGAAGACTGACAGGTTCATCTG -ACGGAAGACTGACAGGTTGAGTTG -ACGGAAGACTGACAGGTTAGACTG -ACGGAAGACTGACAGGTTTCGGTA -ACGGAAGACTGACAGGTTTGCCTA -ACGGAAGACTGACAGGTTCCACTA -ACGGAAGACTGACAGGTTGGAGTA -ACGGAAGACTGACAGGTTTCGTCT -ACGGAAGACTGACAGGTTTGCACT -ACGGAAGACTGACAGGTTCTGACT -ACGGAAGACTGACAGGTTCAACCT -ACGGAAGACTGACAGGTTGCTACT -ACGGAAGACTGACAGGTTGGATCT -ACGGAAGACTGACAGGTTAAGGCT -ACGGAAGACTGACAGGTTTCAACC -ACGGAAGACTGACAGGTTTGTTCC -ACGGAAGACTGACAGGTTATTCCC -ACGGAAGACTGACAGGTTTTCTCG -ACGGAAGACTGACAGGTTTAGACG -ACGGAAGACTGACAGGTTGTAACG -ACGGAAGACTGACAGGTTACTTCG -ACGGAAGACTGACAGGTTTACGCA -ACGGAAGACTGACAGGTTCTTGCA -ACGGAAGACTGACAGGTTCGAACA -ACGGAAGACTGACAGGTTCAGTCA -ACGGAAGACTGACAGGTTGATCCA -ACGGAAGACTGACAGGTTACGACA -ACGGAAGACTGACAGGTTAGCTCA -ACGGAAGACTGACAGGTTTCACGT -ACGGAAGACTGACAGGTTCGTAGT -ACGGAAGACTGACAGGTTGTCAGT -ACGGAAGACTGACAGGTTGAAGGT -ACGGAAGACTGACAGGTTAACCGT -ACGGAAGACTGACAGGTTTTGTGC -ACGGAAGACTGACAGGTTCTAAGC -ACGGAAGACTGACAGGTTACTAGC -ACGGAAGACTGACAGGTTAGATGC -ACGGAAGACTGACAGGTTTGAAGG -ACGGAAGACTGACAGGTTCAATGG -ACGGAAGACTGACAGGTTATGAGG -ACGGAAGACTGACAGGTTAATGGG -ACGGAAGACTGACAGGTTTCCTGA -ACGGAAGACTGACAGGTTTAGCGA -ACGGAAGACTGACAGGTTCACAGA -ACGGAAGACTGACAGGTTGCAAGA -ACGGAAGACTGACAGGTTGGTTGA -ACGGAAGACTGACAGGTTTCCGAT -ACGGAAGACTGACAGGTTTGGCAT -ACGGAAGACTGACAGGTTCGAGAT -ACGGAAGACTGACAGGTTTACCAC -ACGGAAGACTGACAGGTTCAGAAC -ACGGAAGACTGACAGGTTGTCTAC -ACGGAAGACTGACAGGTTACGTAC -ACGGAAGACTGACAGGTTAGTGAC -ACGGAAGACTGACAGGTTCTGTAG -ACGGAAGACTGACAGGTTCCTAAG -ACGGAAGACTGACAGGTTGTTCAG -ACGGAAGACTGACAGGTTGCATAG -ACGGAAGACTGACAGGTTGACAAG -ACGGAAGACTGACAGGTTAAGCAG -ACGGAAGACTGACAGGTTCGTCAA -ACGGAAGACTGACAGGTTGCTGAA -ACGGAAGACTGACAGGTTAGTACG -ACGGAAGACTGACAGGTTATCCGA -ACGGAAGACTGACAGGTTATGGGA -ACGGAAGACTGACAGGTTGTGCAA -ACGGAAGACTGACAGGTTGAGGAA -ACGGAAGACTGACAGGTTCAGGTA -ACGGAAGACTGACAGGTTGACTCT -ACGGAAGACTGACAGGTTAGTCCT -ACGGAAGACTGACAGGTTTAAGCC -ACGGAAGACTGACAGGTTATAGCC -ACGGAAGACTGACAGGTTTAACCG -ACGGAAGACTGACAGGTTATGCCA -ACGGAAGACTGATAGGCAGGAAAC -ACGGAAGACTGATAGGCAAACACC -ACGGAAGACTGATAGGCAATCGAG -ACGGAAGACTGATAGGCACTCCTT -ACGGAAGACTGATAGGCACCTGTT -ACGGAAGACTGATAGGCACGGTTT -ACGGAAGACTGATAGGCAGTGGTT -ACGGAAGACTGATAGGCAGCCTTT -ACGGAAGACTGATAGGCAGGTCTT -ACGGAAGACTGATAGGCAACGCTT -ACGGAAGACTGATAGGCAAGCGTT -ACGGAAGACTGATAGGCATTCGTC -ACGGAAGACTGATAGGCATCTCTC -ACGGAAGACTGATAGGCATGGATC -ACGGAAGACTGATAGGCACACTTC -ACGGAAGACTGATAGGCAGTACTC -ACGGAAGACTGATAGGCAGATGTC -ACGGAAGACTGATAGGCAACAGTC -ACGGAAGACTGATAGGCATTGCTG -ACGGAAGACTGATAGGCATCCATG -ACGGAAGACTGATAGGCATGTGTG -ACGGAAGACTGATAGGCACTAGTG -ACGGAAGACTGATAGGCACATCTG -ACGGAAGACTGATAGGCAGAGTTG -ACGGAAGACTGATAGGCAAGACTG -ACGGAAGACTGATAGGCATCGGTA -ACGGAAGACTGATAGGCATGCCTA -ACGGAAGACTGATAGGCACCACTA -ACGGAAGACTGATAGGCAGGAGTA -ACGGAAGACTGATAGGCATCGTCT -ACGGAAGACTGATAGGCATGCACT -ACGGAAGACTGATAGGCACTGACT -ACGGAAGACTGATAGGCACAACCT -ACGGAAGACTGATAGGCAGCTACT -ACGGAAGACTGATAGGCAGGATCT -ACGGAAGACTGATAGGCAAAGGCT -ACGGAAGACTGATAGGCATCAACC -ACGGAAGACTGATAGGCATGTTCC -ACGGAAGACTGATAGGCAATTCCC -ACGGAAGACTGATAGGCATTCTCG -ACGGAAGACTGATAGGCATAGACG -ACGGAAGACTGATAGGCAGTAACG -ACGGAAGACTGATAGGCAACTTCG -ACGGAAGACTGATAGGCATACGCA -ACGGAAGACTGATAGGCACTTGCA -ACGGAAGACTGATAGGCACGAACA -ACGGAAGACTGATAGGCACAGTCA -ACGGAAGACTGATAGGCAGATCCA -ACGGAAGACTGATAGGCAACGACA -ACGGAAGACTGATAGGCAAGCTCA -ACGGAAGACTGATAGGCATCACGT -ACGGAAGACTGATAGGCACGTAGT -ACGGAAGACTGATAGGCAGTCAGT -ACGGAAGACTGATAGGCAGAAGGT -ACGGAAGACTGATAGGCAAACCGT -ACGGAAGACTGATAGGCATTGTGC -ACGGAAGACTGATAGGCACTAAGC -ACGGAAGACTGATAGGCAACTAGC -ACGGAAGACTGATAGGCAAGATGC -ACGGAAGACTGATAGGCATGAAGG -ACGGAAGACTGATAGGCACAATGG -ACGGAAGACTGATAGGCAATGAGG -ACGGAAGACTGATAGGCAAATGGG -ACGGAAGACTGATAGGCATCCTGA -ACGGAAGACTGATAGGCATAGCGA -ACGGAAGACTGATAGGCACACAGA -ACGGAAGACTGATAGGCAGCAAGA -ACGGAAGACTGATAGGCAGGTTGA -ACGGAAGACTGATAGGCATCCGAT -ACGGAAGACTGATAGGCATGGCAT -ACGGAAGACTGATAGGCACGAGAT -ACGGAAGACTGATAGGCATACCAC -ACGGAAGACTGATAGGCACAGAAC -ACGGAAGACTGATAGGCAGTCTAC -ACGGAAGACTGATAGGCAACGTAC -ACGGAAGACTGATAGGCAAGTGAC -ACGGAAGACTGATAGGCACTGTAG -ACGGAAGACTGATAGGCACCTAAG -ACGGAAGACTGATAGGCAGTTCAG -ACGGAAGACTGATAGGCAGCATAG -ACGGAAGACTGATAGGCAGACAAG -ACGGAAGACTGATAGGCAAAGCAG -ACGGAAGACTGATAGGCACGTCAA -ACGGAAGACTGATAGGCAGCTGAA -ACGGAAGACTGATAGGCAAGTACG -ACGGAAGACTGATAGGCAATCCGA -ACGGAAGACTGATAGGCAATGGGA -ACGGAAGACTGATAGGCAGTGCAA -ACGGAAGACTGATAGGCAGAGGAA -ACGGAAGACTGATAGGCACAGGTA -ACGGAAGACTGATAGGCAGACTCT -ACGGAAGACTGATAGGCAAGTCCT -ACGGAAGACTGATAGGCATAAGCC -ACGGAAGACTGATAGGCAATAGCC -ACGGAAGACTGATAGGCATAACCG -ACGGAAGACTGATAGGCAATGCCA -ACGGAAGACTGAAAGGACGGAAAC -ACGGAAGACTGAAAGGACAACACC -ACGGAAGACTGAAAGGACATCGAG -ACGGAAGACTGAAAGGACCTCCTT -ACGGAAGACTGAAAGGACCCTGTT -ACGGAAGACTGAAAGGACCGGTTT -ACGGAAGACTGAAAGGACGTGGTT -ACGGAAGACTGAAAGGACGCCTTT -ACGGAAGACTGAAAGGACGGTCTT -ACGGAAGACTGAAAGGACACGCTT -ACGGAAGACTGAAAGGACAGCGTT -ACGGAAGACTGAAAGGACTTCGTC -ACGGAAGACTGAAAGGACTCTCTC -ACGGAAGACTGAAAGGACTGGATC -ACGGAAGACTGAAAGGACCACTTC -ACGGAAGACTGAAAGGACGTACTC -ACGGAAGACTGAAAGGACGATGTC -ACGGAAGACTGAAAGGACACAGTC -ACGGAAGACTGAAAGGACTTGCTG -ACGGAAGACTGAAAGGACTCCATG -ACGGAAGACTGAAAGGACTGTGTG -ACGGAAGACTGAAAGGACCTAGTG -ACGGAAGACTGAAAGGACCATCTG -ACGGAAGACTGAAAGGACGAGTTG -ACGGAAGACTGAAAGGACAGACTG -ACGGAAGACTGAAAGGACTCGGTA -ACGGAAGACTGAAAGGACTGCCTA -ACGGAAGACTGAAAGGACCCACTA -ACGGAAGACTGAAAGGACGGAGTA -ACGGAAGACTGAAAGGACTCGTCT -ACGGAAGACTGAAAGGACTGCACT -ACGGAAGACTGAAAGGACCTGACT -ACGGAAGACTGAAAGGACCAACCT -ACGGAAGACTGAAAGGACGCTACT -ACGGAAGACTGAAAGGACGGATCT -ACGGAAGACTGAAAGGACAAGGCT -ACGGAAGACTGAAAGGACTCAACC -ACGGAAGACTGAAAGGACTGTTCC -ACGGAAGACTGAAAGGACATTCCC -ACGGAAGACTGAAAGGACTTCTCG -ACGGAAGACTGAAAGGACTAGACG -ACGGAAGACTGAAAGGACGTAACG -ACGGAAGACTGAAAGGACACTTCG -ACGGAAGACTGAAAGGACTACGCA -ACGGAAGACTGAAAGGACCTTGCA -ACGGAAGACTGAAAGGACCGAACA -ACGGAAGACTGAAAGGACCAGTCA -ACGGAAGACTGAAAGGACGATCCA -ACGGAAGACTGAAAGGACACGACA -ACGGAAGACTGAAAGGACAGCTCA -ACGGAAGACTGAAAGGACTCACGT -ACGGAAGACTGAAAGGACCGTAGT -ACGGAAGACTGAAAGGACGTCAGT -ACGGAAGACTGAAAGGACGAAGGT -ACGGAAGACTGAAAGGACAACCGT -ACGGAAGACTGAAAGGACTTGTGC -ACGGAAGACTGAAAGGACCTAAGC -ACGGAAGACTGAAAGGACACTAGC -ACGGAAGACTGAAAGGACAGATGC -ACGGAAGACTGAAAGGACTGAAGG -ACGGAAGACTGAAAGGACCAATGG -ACGGAAGACTGAAAGGACATGAGG -ACGGAAGACTGAAAGGACAATGGG -ACGGAAGACTGAAAGGACTCCTGA -ACGGAAGACTGAAAGGACTAGCGA -ACGGAAGACTGAAAGGACCACAGA -ACGGAAGACTGAAAGGACGCAAGA -ACGGAAGACTGAAAGGACGGTTGA -ACGGAAGACTGAAAGGACTCCGAT -ACGGAAGACTGAAAGGACTGGCAT -ACGGAAGACTGAAAGGACCGAGAT -ACGGAAGACTGAAAGGACTACCAC -ACGGAAGACTGAAAGGACCAGAAC -ACGGAAGACTGAAAGGACGTCTAC -ACGGAAGACTGAAAGGACACGTAC -ACGGAAGACTGAAAGGACAGTGAC -ACGGAAGACTGAAAGGACCTGTAG -ACGGAAGACTGAAAGGACCCTAAG -ACGGAAGACTGAAAGGACGTTCAG -ACGGAAGACTGAAAGGACGCATAG -ACGGAAGACTGAAAGGACGACAAG -ACGGAAGACTGAAAGGACAAGCAG -ACGGAAGACTGAAAGGACCGTCAA -ACGGAAGACTGAAAGGACGCTGAA -ACGGAAGACTGAAAGGACAGTACG -ACGGAAGACTGAAAGGACATCCGA -ACGGAAGACTGAAAGGACATGGGA -ACGGAAGACTGAAAGGACGTGCAA -ACGGAAGACTGAAAGGACGAGGAA -ACGGAAGACTGAAAGGACCAGGTA -ACGGAAGACTGAAAGGACGACTCT -ACGGAAGACTGAAAGGACAGTCCT -ACGGAAGACTGAAAGGACTAAGCC -ACGGAAGACTGAAAGGACATAGCC -ACGGAAGACTGAAAGGACTAACCG -ACGGAAGACTGAAAGGACATGCCA -ACGGAAGACTGACAGAAGGGAAAC -ACGGAAGACTGACAGAAGAACACC -ACGGAAGACTGACAGAAGATCGAG -ACGGAAGACTGACAGAAGCTCCTT -ACGGAAGACTGACAGAAGCCTGTT -ACGGAAGACTGACAGAAGCGGTTT -ACGGAAGACTGACAGAAGGTGGTT -ACGGAAGACTGACAGAAGGCCTTT -ACGGAAGACTGACAGAAGGGTCTT -ACGGAAGACTGACAGAAGACGCTT -ACGGAAGACTGACAGAAGAGCGTT -ACGGAAGACTGACAGAAGTTCGTC -ACGGAAGACTGACAGAAGTCTCTC -ACGGAAGACTGACAGAAGTGGATC -ACGGAAGACTGACAGAAGCACTTC -ACGGAAGACTGACAGAAGGTACTC -ACGGAAGACTGACAGAAGGATGTC -ACGGAAGACTGACAGAAGACAGTC -ACGGAAGACTGACAGAAGTTGCTG -ACGGAAGACTGACAGAAGTCCATG -ACGGAAGACTGACAGAAGTGTGTG -ACGGAAGACTGACAGAAGCTAGTG -ACGGAAGACTGACAGAAGCATCTG -ACGGAAGACTGACAGAAGGAGTTG -ACGGAAGACTGACAGAAGAGACTG -ACGGAAGACTGACAGAAGTCGGTA -ACGGAAGACTGACAGAAGTGCCTA -ACGGAAGACTGACAGAAGCCACTA -ACGGAAGACTGACAGAAGGGAGTA -ACGGAAGACTGACAGAAGTCGTCT -ACGGAAGACTGACAGAAGTGCACT -ACGGAAGACTGACAGAAGCTGACT -ACGGAAGACTGACAGAAGCAACCT -ACGGAAGACTGACAGAAGGCTACT -ACGGAAGACTGACAGAAGGGATCT -ACGGAAGACTGACAGAAGAAGGCT -ACGGAAGACTGACAGAAGTCAACC -ACGGAAGACTGACAGAAGTGTTCC -ACGGAAGACTGACAGAAGATTCCC -ACGGAAGACTGACAGAAGTTCTCG -ACGGAAGACTGACAGAAGTAGACG -ACGGAAGACTGACAGAAGGTAACG -ACGGAAGACTGACAGAAGACTTCG -ACGGAAGACTGACAGAAGTACGCA -ACGGAAGACTGACAGAAGCTTGCA -ACGGAAGACTGACAGAAGCGAACA -ACGGAAGACTGACAGAAGCAGTCA -ACGGAAGACTGACAGAAGGATCCA -ACGGAAGACTGACAGAAGACGACA -ACGGAAGACTGACAGAAGAGCTCA -ACGGAAGACTGACAGAAGTCACGT -ACGGAAGACTGACAGAAGCGTAGT -ACGGAAGACTGACAGAAGGTCAGT -ACGGAAGACTGACAGAAGGAAGGT -ACGGAAGACTGACAGAAGAACCGT -ACGGAAGACTGACAGAAGTTGTGC -ACGGAAGACTGACAGAAGCTAAGC -ACGGAAGACTGACAGAAGACTAGC -ACGGAAGACTGACAGAAGAGATGC -ACGGAAGACTGACAGAAGTGAAGG -ACGGAAGACTGACAGAAGCAATGG -ACGGAAGACTGACAGAAGATGAGG -ACGGAAGACTGACAGAAGAATGGG -ACGGAAGACTGACAGAAGTCCTGA -ACGGAAGACTGACAGAAGTAGCGA -ACGGAAGACTGACAGAAGCACAGA -ACGGAAGACTGACAGAAGGCAAGA -ACGGAAGACTGACAGAAGGGTTGA -ACGGAAGACTGACAGAAGTCCGAT -ACGGAAGACTGACAGAAGTGGCAT -ACGGAAGACTGACAGAAGCGAGAT -ACGGAAGACTGACAGAAGTACCAC -ACGGAAGACTGACAGAAGCAGAAC -ACGGAAGACTGACAGAAGGTCTAC -ACGGAAGACTGACAGAAGACGTAC -ACGGAAGACTGACAGAAGAGTGAC -ACGGAAGACTGACAGAAGCTGTAG -ACGGAAGACTGACAGAAGCCTAAG -ACGGAAGACTGACAGAAGGTTCAG -ACGGAAGACTGACAGAAGGCATAG -ACGGAAGACTGACAGAAGGACAAG -ACGGAAGACTGACAGAAGAAGCAG -ACGGAAGACTGACAGAAGCGTCAA -ACGGAAGACTGACAGAAGGCTGAA -ACGGAAGACTGACAGAAGAGTACG -ACGGAAGACTGACAGAAGATCCGA -ACGGAAGACTGACAGAAGATGGGA -ACGGAAGACTGACAGAAGGTGCAA -ACGGAAGACTGACAGAAGGAGGAA -ACGGAAGACTGACAGAAGCAGGTA -ACGGAAGACTGACAGAAGGACTCT -ACGGAAGACTGACAGAAGAGTCCT -ACGGAAGACTGACAGAAGTAAGCC -ACGGAAGACTGACAGAAGATAGCC -ACGGAAGACTGACAGAAGTAACCG -ACGGAAGACTGACAGAAGATGCCA -ACGGAAGACTGACAACGTGGAAAC -ACGGAAGACTGACAACGTAACACC -ACGGAAGACTGACAACGTATCGAG -ACGGAAGACTGACAACGTCTCCTT -ACGGAAGACTGACAACGTCCTGTT -ACGGAAGACTGACAACGTCGGTTT -ACGGAAGACTGACAACGTGTGGTT -ACGGAAGACTGACAACGTGCCTTT -ACGGAAGACTGACAACGTGGTCTT -ACGGAAGACTGACAACGTACGCTT -ACGGAAGACTGACAACGTAGCGTT -ACGGAAGACTGACAACGTTTCGTC -ACGGAAGACTGACAACGTTCTCTC -ACGGAAGACTGACAACGTTGGATC -ACGGAAGACTGACAACGTCACTTC -ACGGAAGACTGACAACGTGTACTC -ACGGAAGACTGACAACGTGATGTC -ACGGAAGACTGACAACGTACAGTC -ACGGAAGACTGACAACGTTTGCTG -ACGGAAGACTGACAACGTTCCATG -ACGGAAGACTGACAACGTTGTGTG -ACGGAAGACTGACAACGTCTAGTG -ACGGAAGACTGACAACGTCATCTG -ACGGAAGACTGACAACGTGAGTTG -ACGGAAGACTGACAACGTAGACTG -ACGGAAGACTGACAACGTTCGGTA -ACGGAAGACTGACAACGTTGCCTA -ACGGAAGACTGACAACGTCCACTA -ACGGAAGACTGACAACGTGGAGTA -ACGGAAGACTGACAACGTTCGTCT -ACGGAAGACTGACAACGTTGCACT -ACGGAAGACTGACAACGTCTGACT -ACGGAAGACTGACAACGTCAACCT -ACGGAAGACTGACAACGTGCTACT -ACGGAAGACTGACAACGTGGATCT -ACGGAAGACTGACAACGTAAGGCT -ACGGAAGACTGACAACGTTCAACC -ACGGAAGACTGACAACGTTGTTCC -ACGGAAGACTGACAACGTATTCCC -ACGGAAGACTGACAACGTTTCTCG -ACGGAAGACTGACAACGTTAGACG -ACGGAAGACTGACAACGTGTAACG -ACGGAAGACTGACAACGTACTTCG -ACGGAAGACTGACAACGTTACGCA -ACGGAAGACTGACAACGTCTTGCA -ACGGAAGACTGACAACGTCGAACA -ACGGAAGACTGACAACGTCAGTCA -ACGGAAGACTGACAACGTGATCCA -ACGGAAGACTGACAACGTACGACA -ACGGAAGACTGACAACGTAGCTCA -ACGGAAGACTGACAACGTTCACGT -ACGGAAGACTGACAACGTCGTAGT -ACGGAAGACTGACAACGTGTCAGT -ACGGAAGACTGACAACGTGAAGGT -ACGGAAGACTGACAACGTAACCGT -ACGGAAGACTGACAACGTTTGTGC -ACGGAAGACTGACAACGTCTAAGC -ACGGAAGACTGACAACGTACTAGC -ACGGAAGACTGACAACGTAGATGC -ACGGAAGACTGACAACGTTGAAGG -ACGGAAGACTGACAACGTCAATGG -ACGGAAGACTGACAACGTATGAGG -ACGGAAGACTGACAACGTAATGGG -ACGGAAGACTGACAACGTTCCTGA -ACGGAAGACTGACAACGTTAGCGA -ACGGAAGACTGACAACGTCACAGA -ACGGAAGACTGACAACGTGCAAGA -ACGGAAGACTGACAACGTGGTTGA -ACGGAAGACTGACAACGTTCCGAT -ACGGAAGACTGACAACGTTGGCAT -ACGGAAGACTGACAACGTCGAGAT -ACGGAAGACTGACAACGTTACCAC -ACGGAAGACTGACAACGTCAGAAC -ACGGAAGACTGACAACGTGTCTAC -ACGGAAGACTGACAACGTACGTAC -ACGGAAGACTGACAACGTAGTGAC -ACGGAAGACTGACAACGTCTGTAG -ACGGAAGACTGACAACGTCCTAAG -ACGGAAGACTGACAACGTGTTCAG -ACGGAAGACTGACAACGTGCATAG -ACGGAAGACTGACAACGTGACAAG -ACGGAAGACTGACAACGTAAGCAG -ACGGAAGACTGACAACGTCGTCAA -ACGGAAGACTGACAACGTGCTGAA -ACGGAAGACTGACAACGTAGTACG -ACGGAAGACTGACAACGTATCCGA -ACGGAAGACTGACAACGTATGGGA -ACGGAAGACTGACAACGTGTGCAA -ACGGAAGACTGACAACGTGAGGAA -ACGGAAGACTGACAACGTCAGGTA -ACGGAAGACTGACAACGTGACTCT -ACGGAAGACTGACAACGTAGTCCT -ACGGAAGACTGACAACGTTAAGCC -ACGGAAGACTGACAACGTATAGCC -ACGGAAGACTGACAACGTTAACCG -ACGGAAGACTGACAACGTATGCCA -ACGGAAGACTGAGAAGCTGGAAAC -ACGGAAGACTGAGAAGCTAACACC -ACGGAAGACTGAGAAGCTATCGAG -ACGGAAGACTGAGAAGCTCTCCTT -ACGGAAGACTGAGAAGCTCCTGTT -ACGGAAGACTGAGAAGCTCGGTTT -ACGGAAGACTGAGAAGCTGTGGTT -ACGGAAGACTGAGAAGCTGCCTTT -ACGGAAGACTGAGAAGCTGGTCTT -ACGGAAGACTGAGAAGCTACGCTT -ACGGAAGACTGAGAAGCTAGCGTT -ACGGAAGACTGAGAAGCTTTCGTC -ACGGAAGACTGAGAAGCTTCTCTC -ACGGAAGACTGAGAAGCTTGGATC -ACGGAAGACTGAGAAGCTCACTTC -ACGGAAGACTGAGAAGCTGTACTC -ACGGAAGACTGAGAAGCTGATGTC -ACGGAAGACTGAGAAGCTACAGTC -ACGGAAGACTGAGAAGCTTTGCTG -ACGGAAGACTGAGAAGCTTCCATG -ACGGAAGACTGAGAAGCTTGTGTG -ACGGAAGACTGAGAAGCTCTAGTG -ACGGAAGACTGAGAAGCTCATCTG -ACGGAAGACTGAGAAGCTGAGTTG -ACGGAAGACTGAGAAGCTAGACTG -ACGGAAGACTGAGAAGCTTCGGTA -ACGGAAGACTGAGAAGCTTGCCTA -ACGGAAGACTGAGAAGCTCCACTA -ACGGAAGACTGAGAAGCTGGAGTA -ACGGAAGACTGAGAAGCTTCGTCT -ACGGAAGACTGAGAAGCTTGCACT -ACGGAAGACTGAGAAGCTCTGACT -ACGGAAGACTGAGAAGCTCAACCT -ACGGAAGACTGAGAAGCTGCTACT -ACGGAAGACTGAGAAGCTGGATCT -ACGGAAGACTGAGAAGCTAAGGCT -ACGGAAGACTGAGAAGCTTCAACC -ACGGAAGACTGAGAAGCTTGTTCC -ACGGAAGACTGAGAAGCTATTCCC -ACGGAAGACTGAGAAGCTTTCTCG -ACGGAAGACTGAGAAGCTTAGACG -ACGGAAGACTGAGAAGCTGTAACG -ACGGAAGACTGAGAAGCTACTTCG -ACGGAAGACTGAGAAGCTTACGCA -ACGGAAGACTGAGAAGCTCTTGCA -ACGGAAGACTGAGAAGCTCGAACA -ACGGAAGACTGAGAAGCTCAGTCA -ACGGAAGACTGAGAAGCTGATCCA -ACGGAAGACTGAGAAGCTACGACA -ACGGAAGACTGAGAAGCTAGCTCA -ACGGAAGACTGAGAAGCTTCACGT -ACGGAAGACTGAGAAGCTCGTAGT -ACGGAAGACTGAGAAGCTGTCAGT -ACGGAAGACTGAGAAGCTGAAGGT -ACGGAAGACTGAGAAGCTAACCGT -ACGGAAGACTGAGAAGCTTTGTGC -ACGGAAGACTGAGAAGCTCTAAGC -ACGGAAGACTGAGAAGCTACTAGC -ACGGAAGACTGAGAAGCTAGATGC -ACGGAAGACTGAGAAGCTTGAAGG -ACGGAAGACTGAGAAGCTCAATGG -ACGGAAGACTGAGAAGCTATGAGG -ACGGAAGACTGAGAAGCTAATGGG -ACGGAAGACTGAGAAGCTTCCTGA -ACGGAAGACTGAGAAGCTTAGCGA -ACGGAAGACTGAGAAGCTCACAGA -ACGGAAGACTGAGAAGCTGCAAGA -ACGGAAGACTGAGAAGCTGGTTGA -ACGGAAGACTGAGAAGCTTCCGAT -ACGGAAGACTGAGAAGCTTGGCAT -ACGGAAGACTGAGAAGCTCGAGAT -ACGGAAGACTGAGAAGCTTACCAC -ACGGAAGACTGAGAAGCTCAGAAC -ACGGAAGACTGAGAAGCTGTCTAC -ACGGAAGACTGAGAAGCTACGTAC -ACGGAAGACTGAGAAGCTAGTGAC -ACGGAAGACTGAGAAGCTCTGTAG -ACGGAAGACTGAGAAGCTCCTAAG -ACGGAAGACTGAGAAGCTGTTCAG -ACGGAAGACTGAGAAGCTGCATAG -ACGGAAGACTGAGAAGCTGACAAG -ACGGAAGACTGAGAAGCTAAGCAG -ACGGAAGACTGAGAAGCTCGTCAA -ACGGAAGACTGAGAAGCTGCTGAA -ACGGAAGACTGAGAAGCTAGTACG -ACGGAAGACTGAGAAGCTATCCGA -ACGGAAGACTGAGAAGCTATGGGA -ACGGAAGACTGAGAAGCTGTGCAA -ACGGAAGACTGAGAAGCTGAGGAA -ACGGAAGACTGAGAAGCTCAGGTA -ACGGAAGACTGAGAAGCTGACTCT -ACGGAAGACTGAGAAGCTAGTCCT -ACGGAAGACTGAGAAGCTTAAGCC -ACGGAAGACTGAGAAGCTATAGCC -ACGGAAGACTGAGAAGCTTAACCG -ACGGAAGACTGAGAAGCTATGCCA -ACGGAAGACTGAACGAGTGGAAAC -ACGGAAGACTGAACGAGTAACACC -ACGGAAGACTGAACGAGTATCGAG -ACGGAAGACTGAACGAGTCTCCTT -ACGGAAGACTGAACGAGTCCTGTT -ACGGAAGACTGAACGAGTCGGTTT -ACGGAAGACTGAACGAGTGTGGTT -ACGGAAGACTGAACGAGTGCCTTT -ACGGAAGACTGAACGAGTGGTCTT -ACGGAAGACTGAACGAGTACGCTT -ACGGAAGACTGAACGAGTAGCGTT -ACGGAAGACTGAACGAGTTTCGTC -ACGGAAGACTGAACGAGTTCTCTC -ACGGAAGACTGAACGAGTTGGATC -ACGGAAGACTGAACGAGTCACTTC -ACGGAAGACTGAACGAGTGTACTC -ACGGAAGACTGAACGAGTGATGTC -ACGGAAGACTGAACGAGTACAGTC -ACGGAAGACTGAACGAGTTTGCTG -ACGGAAGACTGAACGAGTTCCATG -ACGGAAGACTGAACGAGTTGTGTG -ACGGAAGACTGAACGAGTCTAGTG -ACGGAAGACTGAACGAGTCATCTG -ACGGAAGACTGAACGAGTGAGTTG -ACGGAAGACTGAACGAGTAGACTG -ACGGAAGACTGAACGAGTTCGGTA -ACGGAAGACTGAACGAGTTGCCTA -ACGGAAGACTGAACGAGTCCACTA -ACGGAAGACTGAACGAGTGGAGTA -ACGGAAGACTGAACGAGTTCGTCT -ACGGAAGACTGAACGAGTTGCACT -ACGGAAGACTGAACGAGTCTGACT -ACGGAAGACTGAACGAGTCAACCT -ACGGAAGACTGAACGAGTGCTACT -ACGGAAGACTGAACGAGTGGATCT -ACGGAAGACTGAACGAGTAAGGCT -ACGGAAGACTGAACGAGTTCAACC -ACGGAAGACTGAACGAGTTGTTCC -ACGGAAGACTGAACGAGTATTCCC -ACGGAAGACTGAACGAGTTTCTCG -ACGGAAGACTGAACGAGTTAGACG -ACGGAAGACTGAACGAGTGTAACG -ACGGAAGACTGAACGAGTACTTCG -ACGGAAGACTGAACGAGTTACGCA -ACGGAAGACTGAACGAGTCTTGCA -ACGGAAGACTGAACGAGTCGAACA -ACGGAAGACTGAACGAGTCAGTCA -ACGGAAGACTGAACGAGTGATCCA -ACGGAAGACTGAACGAGTACGACA -ACGGAAGACTGAACGAGTAGCTCA -ACGGAAGACTGAACGAGTTCACGT -ACGGAAGACTGAACGAGTCGTAGT -ACGGAAGACTGAACGAGTGTCAGT -ACGGAAGACTGAACGAGTGAAGGT -ACGGAAGACTGAACGAGTAACCGT -ACGGAAGACTGAACGAGTTTGTGC -ACGGAAGACTGAACGAGTCTAAGC -ACGGAAGACTGAACGAGTACTAGC -ACGGAAGACTGAACGAGTAGATGC -ACGGAAGACTGAACGAGTTGAAGG -ACGGAAGACTGAACGAGTCAATGG -ACGGAAGACTGAACGAGTATGAGG -ACGGAAGACTGAACGAGTAATGGG -ACGGAAGACTGAACGAGTTCCTGA -ACGGAAGACTGAACGAGTTAGCGA -ACGGAAGACTGAACGAGTCACAGA -ACGGAAGACTGAACGAGTGCAAGA -ACGGAAGACTGAACGAGTGGTTGA -ACGGAAGACTGAACGAGTTCCGAT -ACGGAAGACTGAACGAGTTGGCAT -ACGGAAGACTGAACGAGTCGAGAT -ACGGAAGACTGAACGAGTTACCAC -ACGGAAGACTGAACGAGTCAGAAC -ACGGAAGACTGAACGAGTGTCTAC -ACGGAAGACTGAACGAGTACGTAC -ACGGAAGACTGAACGAGTAGTGAC -ACGGAAGACTGAACGAGTCTGTAG -ACGGAAGACTGAACGAGTCCTAAG -ACGGAAGACTGAACGAGTGTTCAG -ACGGAAGACTGAACGAGTGCATAG -ACGGAAGACTGAACGAGTGACAAG -ACGGAAGACTGAACGAGTAAGCAG -ACGGAAGACTGAACGAGTCGTCAA -ACGGAAGACTGAACGAGTGCTGAA -ACGGAAGACTGAACGAGTAGTACG -ACGGAAGACTGAACGAGTATCCGA -ACGGAAGACTGAACGAGTATGGGA -ACGGAAGACTGAACGAGTGTGCAA -ACGGAAGACTGAACGAGTGAGGAA -ACGGAAGACTGAACGAGTCAGGTA -ACGGAAGACTGAACGAGTGACTCT -ACGGAAGACTGAACGAGTAGTCCT -ACGGAAGACTGAACGAGTTAAGCC -ACGGAAGACTGAACGAGTATAGCC -ACGGAAGACTGAACGAGTTAACCG -ACGGAAGACTGAACGAGTATGCCA -ACGGAAGACTGACGAATCGGAAAC -ACGGAAGACTGACGAATCAACACC -ACGGAAGACTGACGAATCATCGAG -ACGGAAGACTGACGAATCCTCCTT -ACGGAAGACTGACGAATCCCTGTT -ACGGAAGACTGACGAATCCGGTTT -ACGGAAGACTGACGAATCGTGGTT -ACGGAAGACTGACGAATCGCCTTT -ACGGAAGACTGACGAATCGGTCTT -ACGGAAGACTGACGAATCACGCTT -ACGGAAGACTGACGAATCAGCGTT -ACGGAAGACTGACGAATCTTCGTC -ACGGAAGACTGACGAATCTCTCTC -ACGGAAGACTGACGAATCTGGATC -ACGGAAGACTGACGAATCCACTTC -ACGGAAGACTGACGAATCGTACTC -ACGGAAGACTGACGAATCGATGTC -ACGGAAGACTGACGAATCACAGTC -ACGGAAGACTGACGAATCTTGCTG -ACGGAAGACTGACGAATCTCCATG -ACGGAAGACTGACGAATCTGTGTG -ACGGAAGACTGACGAATCCTAGTG -ACGGAAGACTGACGAATCCATCTG -ACGGAAGACTGACGAATCGAGTTG -ACGGAAGACTGACGAATCAGACTG -ACGGAAGACTGACGAATCTCGGTA -ACGGAAGACTGACGAATCTGCCTA -ACGGAAGACTGACGAATCCCACTA -ACGGAAGACTGACGAATCGGAGTA -ACGGAAGACTGACGAATCTCGTCT -ACGGAAGACTGACGAATCTGCACT -ACGGAAGACTGACGAATCCTGACT -ACGGAAGACTGACGAATCCAACCT -ACGGAAGACTGACGAATCGCTACT -ACGGAAGACTGACGAATCGGATCT -ACGGAAGACTGACGAATCAAGGCT -ACGGAAGACTGACGAATCTCAACC -ACGGAAGACTGACGAATCTGTTCC -ACGGAAGACTGACGAATCATTCCC -ACGGAAGACTGACGAATCTTCTCG -ACGGAAGACTGACGAATCTAGACG -ACGGAAGACTGACGAATCGTAACG -ACGGAAGACTGACGAATCACTTCG -ACGGAAGACTGACGAATCTACGCA -ACGGAAGACTGACGAATCCTTGCA -ACGGAAGACTGACGAATCCGAACA -ACGGAAGACTGACGAATCCAGTCA -ACGGAAGACTGACGAATCGATCCA -ACGGAAGACTGACGAATCACGACA -ACGGAAGACTGACGAATCAGCTCA -ACGGAAGACTGACGAATCTCACGT -ACGGAAGACTGACGAATCCGTAGT -ACGGAAGACTGACGAATCGTCAGT -ACGGAAGACTGACGAATCGAAGGT -ACGGAAGACTGACGAATCAACCGT -ACGGAAGACTGACGAATCTTGTGC -ACGGAAGACTGACGAATCCTAAGC -ACGGAAGACTGACGAATCACTAGC -ACGGAAGACTGACGAATCAGATGC -ACGGAAGACTGACGAATCTGAAGG -ACGGAAGACTGACGAATCCAATGG -ACGGAAGACTGACGAATCATGAGG -ACGGAAGACTGACGAATCAATGGG -ACGGAAGACTGACGAATCTCCTGA -ACGGAAGACTGACGAATCTAGCGA -ACGGAAGACTGACGAATCCACAGA -ACGGAAGACTGACGAATCGCAAGA -ACGGAAGACTGACGAATCGGTTGA -ACGGAAGACTGACGAATCTCCGAT -ACGGAAGACTGACGAATCTGGCAT -ACGGAAGACTGACGAATCCGAGAT -ACGGAAGACTGACGAATCTACCAC -ACGGAAGACTGACGAATCCAGAAC -ACGGAAGACTGACGAATCGTCTAC -ACGGAAGACTGACGAATCACGTAC -ACGGAAGACTGACGAATCAGTGAC -ACGGAAGACTGACGAATCCTGTAG -ACGGAAGACTGACGAATCCCTAAG -ACGGAAGACTGACGAATCGTTCAG -ACGGAAGACTGACGAATCGCATAG -ACGGAAGACTGACGAATCGACAAG -ACGGAAGACTGACGAATCAAGCAG -ACGGAAGACTGACGAATCCGTCAA -ACGGAAGACTGACGAATCGCTGAA -ACGGAAGACTGACGAATCAGTACG -ACGGAAGACTGACGAATCATCCGA -ACGGAAGACTGACGAATCATGGGA -ACGGAAGACTGACGAATCGTGCAA -ACGGAAGACTGACGAATCGAGGAA -ACGGAAGACTGACGAATCCAGGTA -ACGGAAGACTGACGAATCGACTCT -ACGGAAGACTGACGAATCAGTCCT -ACGGAAGACTGACGAATCTAAGCC -ACGGAAGACTGACGAATCATAGCC -ACGGAAGACTGACGAATCTAACCG -ACGGAAGACTGACGAATCATGCCA -ACGGAAGACTGAGGAATGGGAAAC -ACGGAAGACTGAGGAATGAACACC -ACGGAAGACTGAGGAATGATCGAG -ACGGAAGACTGAGGAATGCTCCTT -ACGGAAGACTGAGGAATGCCTGTT -ACGGAAGACTGAGGAATGCGGTTT -ACGGAAGACTGAGGAATGGTGGTT -ACGGAAGACTGAGGAATGGCCTTT -ACGGAAGACTGAGGAATGGGTCTT -ACGGAAGACTGAGGAATGACGCTT -ACGGAAGACTGAGGAATGAGCGTT -ACGGAAGACTGAGGAATGTTCGTC -ACGGAAGACTGAGGAATGTCTCTC -ACGGAAGACTGAGGAATGTGGATC -ACGGAAGACTGAGGAATGCACTTC -ACGGAAGACTGAGGAATGGTACTC -ACGGAAGACTGAGGAATGGATGTC -ACGGAAGACTGAGGAATGACAGTC -ACGGAAGACTGAGGAATGTTGCTG -ACGGAAGACTGAGGAATGTCCATG -ACGGAAGACTGAGGAATGTGTGTG -ACGGAAGACTGAGGAATGCTAGTG -ACGGAAGACTGAGGAATGCATCTG -ACGGAAGACTGAGGAATGGAGTTG -ACGGAAGACTGAGGAATGAGACTG -ACGGAAGACTGAGGAATGTCGGTA -ACGGAAGACTGAGGAATGTGCCTA -ACGGAAGACTGAGGAATGCCACTA -ACGGAAGACTGAGGAATGGGAGTA -ACGGAAGACTGAGGAATGTCGTCT -ACGGAAGACTGAGGAATGTGCACT -ACGGAAGACTGAGGAATGCTGACT -ACGGAAGACTGAGGAATGCAACCT -ACGGAAGACTGAGGAATGGCTACT -ACGGAAGACTGAGGAATGGGATCT -ACGGAAGACTGAGGAATGAAGGCT -ACGGAAGACTGAGGAATGTCAACC -ACGGAAGACTGAGGAATGTGTTCC -ACGGAAGACTGAGGAATGATTCCC -ACGGAAGACTGAGGAATGTTCTCG -ACGGAAGACTGAGGAATGTAGACG -ACGGAAGACTGAGGAATGGTAACG -ACGGAAGACTGAGGAATGACTTCG -ACGGAAGACTGAGGAATGTACGCA -ACGGAAGACTGAGGAATGCTTGCA -ACGGAAGACTGAGGAATGCGAACA -ACGGAAGACTGAGGAATGCAGTCA -ACGGAAGACTGAGGAATGGATCCA -ACGGAAGACTGAGGAATGACGACA -ACGGAAGACTGAGGAATGAGCTCA -ACGGAAGACTGAGGAATGTCACGT -ACGGAAGACTGAGGAATGCGTAGT -ACGGAAGACTGAGGAATGGTCAGT -ACGGAAGACTGAGGAATGGAAGGT -ACGGAAGACTGAGGAATGAACCGT -ACGGAAGACTGAGGAATGTTGTGC -ACGGAAGACTGAGGAATGCTAAGC -ACGGAAGACTGAGGAATGACTAGC -ACGGAAGACTGAGGAATGAGATGC -ACGGAAGACTGAGGAATGTGAAGG -ACGGAAGACTGAGGAATGCAATGG -ACGGAAGACTGAGGAATGATGAGG -ACGGAAGACTGAGGAATGAATGGG -ACGGAAGACTGAGGAATGTCCTGA -ACGGAAGACTGAGGAATGTAGCGA -ACGGAAGACTGAGGAATGCACAGA -ACGGAAGACTGAGGAATGGCAAGA -ACGGAAGACTGAGGAATGGGTTGA -ACGGAAGACTGAGGAATGTCCGAT -ACGGAAGACTGAGGAATGTGGCAT -ACGGAAGACTGAGGAATGCGAGAT -ACGGAAGACTGAGGAATGTACCAC -ACGGAAGACTGAGGAATGCAGAAC -ACGGAAGACTGAGGAATGGTCTAC -ACGGAAGACTGAGGAATGACGTAC -ACGGAAGACTGAGGAATGAGTGAC -ACGGAAGACTGAGGAATGCTGTAG -ACGGAAGACTGAGGAATGCCTAAG -ACGGAAGACTGAGGAATGGTTCAG -ACGGAAGACTGAGGAATGGCATAG -ACGGAAGACTGAGGAATGGACAAG -ACGGAAGACTGAGGAATGAAGCAG -ACGGAAGACTGAGGAATGCGTCAA -ACGGAAGACTGAGGAATGGCTGAA -ACGGAAGACTGAGGAATGAGTACG -ACGGAAGACTGAGGAATGATCCGA -ACGGAAGACTGAGGAATGATGGGA -ACGGAAGACTGAGGAATGGTGCAA -ACGGAAGACTGAGGAATGGAGGAA -ACGGAAGACTGAGGAATGCAGGTA -ACGGAAGACTGAGGAATGGACTCT -ACGGAAGACTGAGGAATGAGTCCT -ACGGAAGACTGAGGAATGTAAGCC -ACGGAAGACTGAGGAATGATAGCC -ACGGAAGACTGAGGAATGTAACCG -ACGGAAGACTGAGGAATGATGCCA -ACGGAAGACTGACAAGTGGGAAAC -ACGGAAGACTGACAAGTGAACACC -ACGGAAGACTGACAAGTGATCGAG -ACGGAAGACTGACAAGTGCTCCTT -ACGGAAGACTGACAAGTGCCTGTT -ACGGAAGACTGACAAGTGCGGTTT -ACGGAAGACTGACAAGTGGTGGTT -ACGGAAGACTGACAAGTGGCCTTT -ACGGAAGACTGACAAGTGGGTCTT -ACGGAAGACTGACAAGTGACGCTT -ACGGAAGACTGACAAGTGAGCGTT -ACGGAAGACTGACAAGTGTTCGTC -ACGGAAGACTGACAAGTGTCTCTC -ACGGAAGACTGACAAGTGTGGATC -ACGGAAGACTGACAAGTGCACTTC -ACGGAAGACTGACAAGTGGTACTC -ACGGAAGACTGACAAGTGGATGTC -ACGGAAGACTGACAAGTGACAGTC -ACGGAAGACTGACAAGTGTTGCTG -ACGGAAGACTGACAAGTGTCCATG -ACGGAAGACTGACAAGTGTGTGTG -ACGGAAGACTGACAAGTGCTAGTG -ACGGAAGACTGACAAGTGCATCTG -ACGGAAGACTGACAAGTGGAGTTG -ACGGAAGACTGACAAGTGAGACTG -ACGGAAGACTGACAAGTGTCGGTA -ACGGAAGACTGACAAGTGTGCCTA -ACGGAAGACTGACAAGTGCCACTA -ACGGAAGACTGACAAGTGGGAGTA -ACGGAAGACTGACAAGTGTCGTCT -ACGGAAGACTGACAAGTGTGCACT -ACGGAAGACTGACAAGTGCTGACT -ACGGAAGACTGACAAGTGCAACCT -ACGGAAGACTGACAAGTGGCTACT -ACGGAAGACTGACAAGTGGGATCT -ACGGAAGACTGACAAGTGAAGGCT -ACGGAAGACTGACAAGTGTCAACC -ACGGAAGACTGACAAGTGTGTTCC -ACGGAAGACTGACAAGTGATTCCC -ACGGAAGACTGACAAGTGTTCTCG -ACGGAAGACTGACAAGTGTAGACG -ACGGAAGACTGACAAGTGGTAACG -ACGGAAGACTGACAAGTGACTTCG -ACGGAAGACTGACAAGTGTACGCA -ACGGAAGACTGACAAGTGCTTGCA -ACGGAAGACTGACAAGTGCGAACA -ACGGAAGACTGACAAGTGCAGTCA -ACGGAAGACTGACAAGTGGATCCA -ACGGAAGACTGACAAGTGACGACA -ACGGAAGACTGACAAGTGAGCTCA -ACGGAAGACTGACAAGTGTCACGT -ACGGAAGACTGACAAGTGCGTAGT -ACGGAAGACTGACAAGTGGTCAGT -ACGGAAGACTGACAAGTGGAAGGT -ACGGAAGACTGACAAGTGAACCGT -ACGGAAGACTGACAAGTGTTGTGC -ACGGAAGACTGACAAGTGCTAAGC -ACGGAAGACTGACAAGTGACTAGC -ACGGAAGACTGACAAGTGAGATGC -ACGGAAGACTGACAAGTGTGAAGG -ACGGAAGACTGACAAGTGCAATGG -ACGGAAGACTGACAAGTGATGAGG -ACGGAAGACTGACAAGTGAATGGG -ACGGAAGACTGACAAGTGTCCTGA -ACGGAAGACTGACAAGTGTAGCGA -ACGGAAGACTGACAAGTGCACAGA -ACGGAAGACTGACAAGTGGCAAGA -ACGGAAGACTGACAAGTGGGTTGA -ACGGAAGACTGACAAGTGTCCGAT -ACGGAAGACTGACAAGTGTGGCAT -ACGGAAGACTGACAAGTGCGAGAT -ACGGAAGACTGACAAGTGTACCAC -ACGGAAGACTGACAAGTGCAGAAC -ACGGAAGACTGACAAGTGGTCTAC -ACGGAAGACTGACAAGTGACGTAC -ACGGAAGACTGACAAGTGAGTGAC -ACGGAAGACTGACAAGTGCTGTAG -ACGGAAGACTGACAAGTGCCTAAG -ACGGAAGACTGACAAGTGGTTCAG -ACGGAAGACTGACAAGTGGCATAG -ACGGAAGACTGACAAGTGGACAAG -ACGGAAGACTGACAAGTGAAGCAG -ACGGAAGACTGACAAGTGCGTCAA -ACGGAAGACTGACAAGTGGCTGAA -ACGGAAGACTGACAAGTGAGTACG -ACGGAAGACTGACAAGTGATCCGA -ACGGAAGACTGACAAGTGATGGGA -ACGGAAGACTGACAAGTGGTGCAA -ACGGAAGACTGACAAGTGGAGGAA -ACGGAAGACTGACAAGTGCAGGTA -ACGGAAGACTGACAAGTGGACTCT -ACGGAAGACTGACAAGTGAGTCCT -ACGGAAGACTGACAAGTGTAAGCC -ACGGAAGACTGACAAGTGATAGCC -ACGGAAGACTGACAAGTGTAACCG -ACGGAAGACTGACAAGTGATGCCA -ACGGAAGACTGAGAAGAGGGAAAC -ACGGAAGACTGAGAAGAGAACACC -ACGGAAGACTGAGAAGAGATCGAG -ACGGAAGACTGAGAAGAGCTCCTT -ACGGAAGACTGAGAAGAGCCTGTT -ACGGAAGACTGAGAAGAGCGGTTT -ACGGAAGACTGAGAAGAGGTGGTT -ACGGAAGACTGAGAAGAGGCCTTT -ACGGAAGACTGAGAAGAGGGTCTT -ACGGAAGACTGAGAAGAGACGCTT -ACGGAAGACTGAGAAGAGAGCGTT -ACGGAAGACTGAGAAGAGTTCGTC -ACGGAAGACTGAGAAGAGTCTCTC -ACGGAAGACTGAGAAGAGTGGATC -ACGGAAGACTGAGAAGAGCACTTC -ACGGAAGACTGAGAAGAGGTACTC -ACGGAAGACTGAGAAGAGGATGTC -ACGGAAGACTGAGAAGAGACAGTC -ACGGAAGACTGAGAAGAGTTGCTG -ACGGAAGACTGAGAAGAGTCCATG -ACGGAAGACTGAGAAGAGTGTGTG -ACGGAAGACTGAGAAGAGCTAGTG -ACGGAAGACTGAGAAGAGCATCTG -ACGGAAGACTGAGAAGAGGAGTTG -ACGGAAGACTGAGAAGAGAGACTG -ACGGAAGACTGAGAAGAGTCGGTA -ACGGAAGACTGAGAAGAGTGCCTA -ACGGAAGACTGAGAAGAGCCACTA -ACGGAAGACTGAGAAGAGGGAGTA -ACGGAAGACTGAGAAGAGTCGTCT -ACGGAAGACTGAGAAGAGTGCACT -ACGGAAGACTGAGAAGAGCTGACT -ACGGAAGACTGAGAAGAGCAACCT -ACGGAAGACTGAGAAGAGGCTACT -ACGGAAGACTGAGAAGAGGGATCT -ACGGAAGACTGAGAAGAGAAGGCT -ACGGAAGACTGAGAAGAGTCAACC -ACGGAAGACTGAGAAGAGTGTTCC -ACGGAAGACTGAGAAGAGATTCCC -ACGGAAGACTGAGAAGAGTTCTCG -ACGGAAGACTGAGAAGAGTAGACG -ACGGAAGACTGAGAAGAGGTAACG -ACGGAAGACTGAGAAGAGACTTCG -ACGGAAGACTGAGAAGAGTACGCA -ACGGAAGACTGAGAAGAGCTTGCA -ACGGAAGACTGAGAAGAGCGAACA -ACGGAAGACTGAGAAGAGCAGTCA -ACGGAAGACTGAGAAGAGGATCCA -ACGGAAGACTGAGAAGAGACGACA -ACGGAAGACTGAGAAGAGAGCTCA -ACGGAAGACTGAGAAGAGTCACGT -ACGGAAGACTGAGAAGAGCGTAGT -ACGGAAGACTGAGAAGAGGTCAGT -ACGGAAGACTGAGAAGAGGAAGGT -ACGGAAGACTGAGAAGAGAACCGT -ACGGAAGACTGAGAAGAGTTGTGC -ACGGAAGACTGAGAAGAGCTAAGC -ACGGAAGACTGAGAAGAGACTAGC -ACGGAAGACTGAGAAGAGAGATGC -ACGGAAGACTGAGAAGAGTGAAGG -ACGGAAGACTGAGAAGAGCAATGG -ACGGAAGACTGAGAAGAGATGAGG -ACGGAAGACTGAGAAGAGAATGGG -ACGGAAGACTGAGAAGAGTCCTGA -ACGGAAGACTGAGAAGAGTAGCGA -ACGGAAGACTGAGAAGAGCACAGA -ACGGAAGACTGAGAAGAGGCAAGA -ACGGAAGACTGAGAAGAGGGTTGA -ACGGAAGACTGAGAAGAGTCCGAT -ACGGAAGACTGAGAAGAGTGGCAT -ACGGAAGACTGAGAAGAGCGAGAT -ACGGAAGACTGAGAAGAGTACCAC -ACGGAAGACTGAGAAGAGCAGAAC -ACGGAAGACTGAGAAGAGGTCTAC -ACGGAAGACTGAGAAGAGACGTAC -ACGGAAGACTGAGAAGAGAGTGAC -ACGGAAGACTGAGAAGAGCTGTAG -ACGGAAGACTGAGAAGAGCCTAAG -ACGGAAGACTGAGAAGAGGTTCAG -ACGGAAGACTGAGAAGAGGCATAG -ACGGAAGACTGAGAAGAGGACAAG -ACGGAAGACTGAGAAGAGAAGCAG -ACGGAAGACTGAGAAGAGCGTCAA -ACGGAAGACTGAGAAGAGGCTGAA -ACGGAAGACTGAGAAGAGAGTACG -ACGGAAGACTGAGAAGAGATCCGA -ACGGAAGACTGAGAAGAGATGGGA -ACGGAAGACTGAGAAGAGGTGCAA -ACGGAAGACTGAGAAGAGGAGGAA -ACGGAAGACTGAGAAGAGCAGGTA -ACGGAAGACTGAGAAGAGGACTCT -ACGGAAGACTGAGAAGAGAGTCCT -ACGGAAGACTGAGAAGAGTAAGCC -ACGGAAGACTGAGAAGAGATAGCC -ACGGAAGACTGAGAAGAGTAACCG -ACGGAAGACTGAGAAGAGATGCCA -ACGGAAGACTGAGTACAGGGAAAC -ACGGAAGACTGAGTACAGAACACC -ACGGAAGACTGAGTACAGATCGAG -ACGGAAGACTGAGTACAGCTCCTT -ACGGAAGACTGAGTACAGCCTGTT -ACGGAAGACTGAGTACAGCGGTTT -ACGGAAGACTGAGTACAGGTGGTT -ACGGAAGACTGAGTACAGGCCTTT -ACGGAAGACTGAGTACAGGGTCTT -ACGGAAGACTGAGTACAGACGCTT -ACGGAAGACTGAGTACAGAGCGTT -ACGGAAGACTGAGTACAGTTCGTC -ACGGAAGACTGAGTACAGTCTCTC -ACGGAAGACTGAGTACAGTGGATC -ACGGAAGACTGAGTACAGCACTTC -ACGGAAGACTGAGTACAGGTACTC -ACGGAAGACTGAGTACAGGATGTC -ACGGAAGACTGAGTACAGACAGTC -ACGGAAGACTGAGTACAGTTGCTG -ACGGAAGACTGAGTACAGTCCATG -ACGGAAGACTGAGTACAGTGTGTG -ACGGAAGACTGAGTACAGCTAGTG -ACGGAAGACTGAGTACAGCATCTG -ACGGAAGACTGAGTACAGGAGTTG -ACGGAAGACTGAGTACAGAGACTG -ACGGAAGACTGAGTACAGTCGGTA -ACGGAAGACTGAGTACAGTGCCTA -ACGGAAGACTGAGTACAGCCACTA -ACGGAAGACTGAGTACAGGGAGTA -ACGGAAGACTGAGTACAGTCGTCT -ACGGAAGACTGAGTACAGTGCACT -ACGGAAGACTGAGTACAGCTGACT -ACGGAAGACTGAGTACAGCAACCT -ACGGAAGACTGAGTACAGGCTACT -ACGGAAGACTGAGTACAGGGATCT -ACGGAAGACTGAGTACAGAAGGCT -ACGGAAGACTGAGTACAGTCAACC -ACGGAAGACTGAGTACAGTGTTCC -ACGGAAGACTGAGTACAGATTCCC -ACGGAAGACTGAGTACAGTTCTCG -ACGGAAGACTGAGTACAGTAGACG -ACGGAAGACTGAGTACAGGTAACG -ACGGAAGACTGAGTACAGACTTCG -ACGGAAGACTGAGTACAGTACGCA -ACGGAAGACTGAGTACAGCTTGCA -ACGGAAGACTGAGTACAGCGAACA -ACGGAAGACTGAGTACAGCAGTCA -ACGGAAGACTGAGTACAGGATCCA -ACGGAAGACTGAGTACAGACGACA -ACGGAAGACTGAGTACAGAGCTCA -ACGGAAGACTGAGTACAGTCACGT -ACGGAAGACTGAGTACAGCGTAGT -ACGGAAGACTGAGTACAGGTCAGT -ACGGAAGACTGAGTACAGGAAGGT -ACGGAAGACTGAGTACAGAACCGT -ACGGAAGACTGAGTACAGTTGTGC -ACGGAAGACTGAGTACAGCTAAGC -ACGGAAGACTGAGTACAGACTAGC -ACGGAAGACTGAGTACAGAGATGC -ACGGAAGACTGAGTACAGTGAAGG -ACGGAAGACTGAGTACAGCAATGG -ACGGAAGACTGAGTACAGATGAGG -ACGGAAGACTGAGTACAGAATGGG -ACGGAAGACTGAGTACAGTCCTGA -ACGGAAGACTGAGTACAGTAGCGA -ACGGAAGACTGAGTACAGCACAGA -ACGGAAGACTGAGTACAGGCAAGA -ACGGAAGACTGAGTACAGGGTTGA -ACGGAAGACTGAGTACAGTCCGAT -ACGGAAGACTGAGTACAGTGGCAT -ACGGAAGACTGAGTACAGCGAGAT -ACGGAAGACTGAGTACAGTACCAC -ACGGAAGACTGAGTACAGCAGAAC -ACGGAAGACTGAGTACAGGTCTAC -ACGGAAGACTGAGTACAGACGTAC -ACGGAAGACTGAGTACAGAGTGAC -ACGGAAGACTGAGTACAGCTGTAG -ACGGAAGACTGAGTACAGCCTAAG -ACGGAAGACTGAGTACAGGTTCAG -ACGGAAGACTGAGTACAGGCATAG -ACGGAAGACTGAGTACAGGACAAG -ACGGAAGACTGAGTACAGAAGCAG -ACGGAAGACTGAGTACAGCGTCAA -ACGGAAGACTGAGTACAGGCTGAA -ACGGAAGACTGAGTACAGAGTACG -ACGGAAGACTGAGTACAGATCCGA -ACGGAAGACTGAGTACAGATGGGA -ACGGAAGACTGAGTACAGGTGCAA -ACGGAAGACTGAGTACAGGAGGAA -ACGGAAGACTGAGTACAGCAGGTA -ACGGAAGACTGAGTACAGGACTCT -ACGGAAGACTGAGTACAGAGTCCT -ACGGAAGACTGAGTACAGTAAGCC -ACGGAAGACTGAGTACAGATAGCC -ACGGAAGACTGAGTACAGTAACCG -ACGGAAGACTGAGTACAGATGCCA -ACGGAAGACTGATCTGACGGAAAC -ACGGAAGACTGATCTGACAACACC -ACGGAAGACTGATCTGACATCGAG -ACGGAAGACTGATCTGACCTCCTT -ACGGAAGACTGATCTGACCCTGTT -ACGGAAGACTGATCTGACCGGTTT -ACGGAAGACTGATCTGACGTGGTT -ACGGAAGACTGATCTGACGCCTTT -ACGGAAGACTGATCTGACGGTCTT -ACGGAAGACTGATCTGACACGCTT -ACGGAAGACTGATCTGACAGCGTT -ACGGAAGACTGATCTGACTTCGTC -ACGGAAGACTGATCTGACTCTCTC -ACGGAAGACTGATCTGACTGGATC -ACGGAAGACTGATCTGACCACTTC -ACGGAAGACTGATCTGACGTACTC -ACGGAAGACTGATCTGACGATGTC -ACGGAAGACTGATCTGACACAGTC -ACGGAAGACTGATCTGACTTGCTG -ACGGAAGACTGATCTGACTCCATG -ACGGAAGACTGATCTGACTGTGTG -ACGGAAGACTGATCTGACCTAGTG -ACGGAAGACTGATCTGACCATCTG -ACGGAAGACTGATCTGACGAGTTG -ACGGAAGACTGATCTGACAGACTG -ACGGAAGACTGATCTGACTCGGTA -ACGGAAGACTGATCTGACTGCCTA -ACGGAAGACTGATCTGACCCACTA -ACGGAAGACTGATCTGACGGAGTA -ACGGAAGACTGATCTGACTCGTCT -ACGGAAGACTGATCTGACTGCACT -ACGGAAGACTGATCTGACCTGACT -ACGGAAGACTGATCTGACCAACCT -ACGGAAGACTGATCTGACGCTACT -ACGGAAGACTGATCTGACGGATCT -ACGGAAGACTGATCTGACAAGGCT -ACGGAAGACTGATCTGACTCAACC -ACGGAAGACTGATCTGACTGTTCC -ACGGAAGACTGATCTGACATTCCC -ACGGAAGACTGATCTGACTTCTCG -ACGGAAGACTGATCTGACTAGACG -ACGGAAGACTGATCTGACGTAACG -ACGGAAGACTGATCTGACACTTCG -ACGGAAGACTGATCTGACTACGCA -ACGGAAGACTGATCTGACCTTGCA -ACGGAAGACTGATCTGACCGAACA -ACGGAAGACTGATCTGACCAGTCA -ACGGAAGACTGATCTGACGATCCA -ACGGAAGACTGATCTGACACGACA -ACGGAAGACTGATCTGACAGCTCA -ACGGAAGACTGATCTGACTCACGT -ACGGAAGACTGATCTGACCGTAGT -ACGGAAGACTGATCTGACGTCAGT -ACGGAAGACTGATCTGACGAAGGT -ACGGAAGACTGATCTGACAACCGT -ACGGAAGACTGATCTGACTTGTGC -ACGGAAGACTGATCTGACCTAAGC -ACGGAAGACTGATCTGACACTAGC -ACGGAAGACTGATCTGACAGATGC -ACGGAAGACTGATCTGACTGAAGG -ACGGAAGACTGATCTGACCAATGG -ACGGAAGACTGATCTGACATGAGG -ACGGAAGACTGATCTGACAATGGG -ACGGAAGACTGATCTGACTCCTGA -ACGGAAGACTGATCTGACTAGCGA -ACGGAAGACTGATCTGACCACAGA -ACGGAAGACTGATCTGACGCAAGA -ACGGAAGACTGATCTGACGGTTGA -ACGGAAGACTGATCTGACTCCGAT -ACGGAAGACTGATCTGACTGGCAT -ACGGAAGACTGATCTGACCGAGAT -ACGGAAGACTGATCTGACTACCAC -ACGGAAGACTGATCTGACCAGAAC -ACGGAAGACTGATCTGACGTCTAC -ACGGAAGACTGATCTGACACGTAC -ACGGAAGACTGATCTGACAGTGAC -ACGGAAGACTGATCTGACCTGTAG -ACGGAAGACTGATCTGACCCTAAG -ACGGAAGACTGATCTGACGTTCAG -ACGGAAGACTGATCTGACGCATAG -ACGGAAGACTGATCTGACGACAAG -ACGGAAGACTGATCTGACAAGCAG -ACGGAAGACTGATCTGACCGTCAA -ACGGAAGACTGATCTGACGCTGAA -ACGGAAGACTGATCTGACAGTACG -ACGGAAGACTGATCTGACATCCGA -ACGGAAGACTGATCTGACATGGGA -ACGGAAGACTGATCTGACGTGCAA -ACGGAAGACTGATCTGACGAGGAA -ACGGAAGACTGATCTGACCAGGTA -ACGGAAGACTGATCTGACGACTCT -ACGGAAGACTGATCTGACAGTCCT -ACGGAAGACTGATCTGACTAAGCC -ACGGAAGACTGATCTGACATAGCC -ACGGAAGACTGATCTGACTAACCG -ACGGAAGACTGATCTGACATGCCA -ACGGAAGACTGACCTAGTGGAAAC -ACGGAAGACTGACCTAGTAACACC -ACGGAAGACTGACCTAGTATCGAG -ACGGAAGACTGACCTAGTCTCCTT -ACGGAAGACTGACCTAGTCCTGTT -ACGGAAGACTGACCTAGTCGGTTT -ACGGAAGACTGACCTAGTGTGGTT -ACGGAAGACTGACCTAGTGCCTTT -ACGGAAGACTGACCTAGTGGTCTT -ACGGAAGACTGACCTAGTACGCTT -ACGGAAGACTGACCTAGTAGCGTT -ACGGAAGACTGACCTAGTTTCGTC -ACGGAAGACTGACCTAGTTCTCTC -ACGGAAGACTGACCTAGTTGGATC -ACGGAAGACTGACCTAGTCACTTC -ACGGAAGACTGACCTAGTGTACTC -ACGGAAGACTGACCTAGTGATGTC -ACGGAAGACTGACCTAGTACAGTC -ACGGAAGACTGACCTAGTTTGCTG -ACGGAAGACTGACCTAGTTCCATG -ACGGAAGACTGACCTAGTTGTGTG -ACGGAAGACTGACCTAGTCTAGTG -ACGGAAGACTGACCTAGTCATCTG -ACGGAAGACTGACCTAGTGAGTTG -ACGGAAGACTGACCTAGTAGACTG -ACGGAAGACTGACCTAGTTCGGTA -ACGGAAGACTGACCTAGTTGCCTA -ACGGAAGACTGACCTAGTCCACTA -ACGGAAGACTGACCTAGTGGAGTA -ACGGAAGACTGACCTAGTTCGTCT -ACGGAAGACTGACCTAGTTGCACT -ACGGAAGACTGACCTAGTCTGACT -ACGGAAGACTGACCTAGTCAACCT -ACGGAAGACTGACCTAGTGCTACT -ACGGAAGACTGACCTAGTGGATCT -ACGGAAGACTGACCTAGTAAGGCT -ACGGAAGACTGACCTAGTTCAACC -ACGGAAGACTGACCTAGTTGTTCC -ACGGAAGACTGACCTAGTATTCCC -ACGGAAGACTGACCTAGTTTCTCG -ACGGAAGACTGACCTAGTTAGACG -ACGGAAGACTGACCTAGTGTAACG -ACGGAAGACTGACCTAGTACTTCG -ACGGAAGACTGACCTAGTTACGCA -ACGGAAGACTGACCTAGTCTTGCA -ACGGAAGACTGACCTAGTCGAACA -ACGGAAGACTGACCTAGTCAGTCA -ACGGAAGACTGACCTAGTGATCCA -ACGGAAGACTGACCTAGTACGACA -ACGGAAGACTGACCTAGTAGCTCA -ACGGAAGACTGACCTAGTTCACGT -ACGGAAGACTGACCTAGTCGTAGT -ACGGAAGACTGACCTAGTGTCAGT -ACGGAAGACTGACCTAGTGAAGGT -ACGGAAGACTGACCTAGTAACCGT -ACGGAAGACTGACCTAGTTTGTGC -ACGGAAGACTGACCTAGTCTAAGC -ACGGAAGACTGACCTAGTACTAGC -ACGGAAGACTGACCTAGTAGATGC -ACGGAAGACTGACCTAGTTGAAGG -ACGGAAGACTGACCTAGTCAATGG -ACGGAAGACTGACCTAGTATGAGG -ACGGAAGACTGACCTAGTAATGGG -ACGGAAGACTGACCTAGTTCCTGA -ACGGAAGACTGACCTAGTTAGCGA -ACGGAAGACTGACCTAGTCACAGA -ACGGAAGACTGACCTAGTGCAAGA -ACGGAAGACTGACCTAGTGGTTGA -ACGGAAGACTGACCTAGTTCCGAT -ACGGAAGACTGACCTAGTTGGCAT -ACGGAAGACTGACCTAGTCGAGAT -ACGGAAGACTGACCTAGTTACCAC -ACGGAAGACTGACCTAGTCAGAAC -ACGGAAGACTGACCTAGTGTCTAC -ACGGAAGACTGACCTAGTACGTAC -ACGGAAGACTGACCTAGTAGTGAC -ACGGAAGACTGACCTAGTCTGTAG -ACGGAAGACTGACCTAGTCCTAAG -ACGGAAGACTGACCTAGTGTTCAG -ACGGAAGACTGACCTAGTGCATAG -ACGGAAGACTGACCTAGTGACAAG -ACGGAAGACTGACCTAGTAAGCAG -ACGGAAGACTGACCTAGTCGTCAA -ACGGAAGACTGACCTAGTGCTGAA -ACGGAAGACTGACCTAGTAGTACG -ACGGAAGACTGACCTAGTATCCGA -ACGGAAGACTGACCTAGTATGGGA -ACGGAAGACTGACCTAGTGTGCAA -ACGGAAGACTGACCTAGTGAGGAA -ACGGAAGACTGACCTAGTCAGGTA -ACGGAAGACTGACCTAGTGACTCT -ACGGAAGACTGACCTAGTAGTCCT -ACGGAAGACTGACCTAGTTAAGCC -ACGGAAGACTGACCTAGTATAGCC -ACGGAAGACTGACCTAGTTAACCG -ACGGAAGACTGACCTAGTATGCCA -ACGGAAGACTGAGCCTAAGGAAAC -ACGGAAGACTGAGCCTAAAACACC -ACGGAAGACTGAGCCTAAATCGAG -ACGGAAGACTGAGCCTAACTCCTT -ACGGAAGACTGAGCCTAACCTGTT -ACGGAAGACTGAGCCTAACGGTTT -ACGGAAGACTGAGCCTAAGTGGTT -ACGGAAGACTGAGCCTAAGCCTTT -ACGGAAGACTGAGCCTAAGGTCTT -ACGGAAGACTGAGCCTAAACGCTT -ACGGAAGACTGAGCCTAAAGCGTT -ACGGAAGACTGAGCCTAATTCGTC -ACGGAAGACTGAGCCTAATCTCTC -ACGGAAGACTGAGCCTAATGGATC -ACGGAAGACTGAGCCTAACACTTC -ACGGAAGACTGAGCCTAAGTACTC -ACGGAAGACTGAGCCTAAGATGTC -ACGGAAGACTGAGCCTAAACAGTC -ACGGAAGACTGAGCCTAATTGCTG -ACGGAAGACTGAGCCTAATCCATG -ACGGAAGACTGAGCCTAATGTGTG -ACGGAAGACTGAGCCTAACTAGTG -ACGGAAGACTGAGCCTAACATCTG -ACGGAAGACTGAGCCTAAGAGTTG -ACGGAAGACTGAGCCTAAAGACTG -ACGGAAGACTGAGCCTAATCGGTA -ACGGAAGACTGAGCCTAATGCCTA -ACGGAAGACTGAGCCTAACCACTA -ACGGAAGACTGAGCCTAAGGAGTA -ACGGAAGACTGAGCCTAATCGTCT -ACGGAAGACTGAGCCTAATGCACT -ACGGAAGACTGAGCCTAACTGACT -ACGGAAGACTGAGCCTAACAACCT -ACGGAAGACTGAGCCTAAGCTACT -ACGGAAGACTGAGCCTAAGGATCT -ACGGAAGACTGAGCCTAAAAGGCT -ACGGAAGACTGAGCCTAATCAACC -ACGGAAGACTGAGCCTAATGTTCC -ACGGAAGACTGAGCCTAAATTCCC -ACGGAAGACTGAGCCTAATTCTCG -ACGGAAGACTGAGCCTAATAGACG -ACGGAAGACTGAGCCTAAGTAACG -ACGGAAGACTGAGCCTAAACTTCG -ACGGAAGACTGAGCCTAATACGCA -ACGGAAGACTGAGCCTAACTTGCA -ACGGAAGACTGAGCCTAACGAACA -ACGGAAGACTGAGCCTAACAGTCA -ACGGAAGACTGAGCCTAAGATCCA -ACGGAAGACTGAGCCTAAACGACA -ACGGAAGACTGAGCCTAAAGCTCA -ACGGAAGACTGAGCCTAATCACGT -ACGGAAGACTGAGCCTAACGTAGT -ACGGAAGACTGAGCCTAAGTCAGT -ACGGAAGACTGAGCCTAAGAAGGT -ACGGAAGACTGAGCCTAAAACCGT -ACGGAAGACTGAGCCTAATTGTGC -ACGGAAGACTGAGCCTAACTAAGC -ACGGAAGACTGAGCCTAAACTAGC -ACGGAAGACTGAGCCTAAAGATGC -ACGGAAGACTGAGCCTAATGAAGG -ACGGAAGACTGAGCCTAACAATGG -ACGGAAGACTGAGCCTAAATGAGG -ACGGAAGACTGAGCCTAAAATGGG -ACGGAAGACTGAGCCTAATCCTGA -ACGGAAGACTGAGCCTAATAGCGA -ACGGAAGACTGAGCCTAACACAGA -ACGGAAGACTGAGCCTAAGCAAGA -ACGGAAGACTGAGCCTAAGGTTGA -ACGGAAGACTGAGCCTAATCCGAT -ACGGAAGACTGAGCCTAATGGCAT -ACGGAAGACTGAGCCTAACGAGAT -ACGGAAGACTGAGCCTAATACCAC -ACGGAAGACTGAGCCTAACAGAAC -ACGGAAGACTGAGCCTAAGTCTAC -ACGGAAGACTGAGCCTAAACGTAC -ACGGAAGACTGAGCCTAAAGTGAC -ACGGAAGACTGAGCCTAACTGTAG -ACGGAAGACTGAGCCTAACCTAAG -ACGGAAGACTGAGCCTAAGTTCAG -ACGGAAGACTGAGCCTAAGCATAG -ACGGAAGACTGAGCCTAAGACAAG -ACGGAAGACTGAGCCTAAAAGCAG -ACGGAAGACTGAGCCTAACGTCAA -ACGGAAGACTGAGCCTAAGCTGAA -ACGGAAGACTGAGCCTAAAGTACG -ACGGAAGACTGAGCCTAAATCCGA -ACGGAAGACTGAGCCTAAATGGGA -ACGGAAGACTGAGCCTAAGTGCAA -ACGGAAGACTGAGCCTAAGAGGAA -ACGGAAGACTGAGCCTAACAGGTA -ACGGAAGACTGAGCCTAAGACTCT -ACGGAAGACTGAGCCTAAAGTCCT -ACGGAAGACTGAGCCTAATAAGCC -ACGGAAGACTGAGCCTAAATAGCC -ACGGAAGACTGAGCCTAATAACCG -ACGGAAGACTGAGCCTAAATGCCA -ACGGAAGACTGAGCCATAGGAAAC -ACGGAAGACTGAGCCATAAACACC -ACGGAAGACTGAGCCATAATCGAG -ACGGAAGACTGAGCCATACTCCTT -ACGGAAGACTGAGCCATACCTGTT -ACGGAAGACTGAGCCATACGGTTT -ACGGAAGACTGAGCCATAGTGGTT -ACGGAAGACTGAGCCATAGCCTTT -ACGGAAGACTGAGCCATAGGTCTT -ACGGAAGACTGAGCCATAACGCTT -ACGGAAGACTGAGCCATAAGCGTT -ACGGAAGACTGAGCCATATTCGTC -ACGGAAGACTGAGCCATATCTCTC -ACGGAAGACTGAGCCATATGGATC -ACGGAAGACTGAGCCATACACTTC -ACGGAAGACTGAGCCATAGTACTC -ACGGAAGACTGAGCCATAGATGTC -ACGGAAGACTGAGCCATAACAGTC -ACGGAAGACTGAGCCATATTGCTG -ACGGAAGACTGAGCCATATCCATG -ACGGAAGACTGAGCCATATGTGTG -ACGGAAGACTGAGCCATACTAGTG -ACGGAAGACTGAGCCATACATCTG -ACGGAAGACTGAGCCATAGAGTTG -ACGGAAGACTGAGCCATAAGACTG -ACGGAAGACTGAGCCATATCGGTA -ACGGAAGACTGAGCCATATGCCTA -ACGGAAGACTGAGCCATACCACTA -ACGGAAGACTGAGCCATAGGAGTA -ACGGAAGACTGAGCCATATCGTCT -ACGGAAGACTGAGCCATATGCACT -ACGGAAGACTGAGCCATACTGACT -ACGGAAGACTGAGCCATACAACCT -ACGGAAGACTGAGCCATAGCTACT -ACGGAAGACTGAGCCATAGGATCT -ACGGAAGACTGAGCCATAAAGGCT -ACGGAAGACTGAGCCATATCAACC -ACGGAAGACTGAGCCATATGTTCC -ACGGAAGACTGAGCCATAATTCCC -ACGGAAGACTGAGCCATATTCTCG -ACGGAAGACTGAGCCATATAGACG -ACGGAAGACTGAGCCATAGTAACG -ACGGAAGACTGAGCCATAACTTCG -ACGGAAGACTGAGCCATATACGCA -ACGGAAGACTGAGCCATACTTGCA -ACGGAAGACTGAGCCATACGAACA -ACGGAAGACTGAGCCATACAGTCA -ACGGAAGACTGAGCCATAGATCCA -ACGGAAGACTGAGCCATAACGACA -ACGGAAGACTGAGCCATAAGCTCA -ACGGAAGACTGAGCCATATCACGT -ACGGAAGACTGAGCCATACGTAGT -ACGGAAGACTGAGCCATAGTCAGT -ACGGAAGACTGAGCCATAGAAGGT -ACGGAAGACTGAGCCATAAACCGT -ACGGAAGACTGAGCCATATTGTGC -ACGGAAGACTGAGCCATACTAAGC -ACGGAAGACTGAGCCATAACTAGC -ACGGAAGACTGAGCCATAAGATGC -ACGGAAGACTGAGCCATATGAAGG -ACGGAAGACTGAGCCATACAATGG -ACGGAAGACTGAGCCATAATGAGG -ACGGAAGACTGAGCCATAAATGGG -ACGGAAGACTGAGCCATATCCTGA -ACGGAAGACTGAGCCATATAGCGA -ACGGAAGACTGAGCCATACACAGA -ACGGAAGACTGAGCCATAGCAAGA -ACGGAAGACTGAGCCATAGGTTGA -ACGGAAGACTGAGCCATATCCGAT -ACGGAAGACTGAGCCATATGGCAT -ACGGAAGACTGAGCCATACGAGAT -ACGGAAGACTGAGCCATATACCAC -ACGGAAGACTGAGCCATACAGAAC -ACGGAAGACTGAGCCATAGTCTAC -ACGGAAGACTGAGCCATAACGTAC -ACGGAAGACTGAGCCATAAGTGAC -ACGGAAGACTGAGCCATACTGTAG -ACGGAAGACTGAGCCATACCTAAG -ACGGAAGACTGAGCCATAGTTCAG -ACGGAAGACTGAGCCATAGCATAG -ACGGAAGACTGAGCCATAGACAAG -ACGGAAGACTGAGCCATAAAGCAG -ACGGAAGACTGAGCCATACGTCAA -ACGGAAGACTGAGCCATAGCTGAA -ACGGAAGACTGAGCCATAAGTACG -ACGGAAGACTGAGCCATAATCCGA -ACGGAAGACTGAGCCATAATGGGA -ACGGAAGACTGAGCCATAGTGCAA -ACGGAAGACTGAGCCATAGAGGAA -ACGGAAGACTGAGCCATACAGGTA -ACGGAAGACTGAGCCATAGACTCT -ACGGAAGACTGAGCCATAAGTCCT -ACGGAAGACTGAGCCATATAAGCC -ACGGAAGACTGAGCCATAATAGCC -ACGGAAGACTGAGCCATATAACCG -ACGGAAGACTGAGCCATAATGCCA -ACGGAAGACTGACCGTAAGGAAAC -ACGGAAGACTGACCGTAAAACACC -ACGGAAGACTGACCGTAAATCGAG -ACGGAAGACTGACCGTAACTCCTT -ACGGAAGACTGACCGTAACCTGTT -ACGGAAGACTGACCGTAACGGTTT -ACGGAAGACTGACCGTAAGTGGTT -ACGGAAGACTGACCGTAAGCCTTT -ACGGAAGACTGACCGTAAGGTCTT -ACGGAAGACTGACCGTAAACGCTT -ACGGAAGACTGACCGTAAAGCGTT -ACGGAAGACTGACCGTAATTCGTC -ACGGAAGACTGACCGTAATCTCTC -ACGGAAGACTGACCGTAATGGATC -ACGGAAGACTGACCGTAACACTTC -ACGGAAGACTGACCGTAAGTACTC -ACGGAAGACTGACCGTAAGATGTC -ACGGAAGACTGACCGTAAACAGTC -ACGGAAGACTGACCGTAATTGCTG -ACGGAAGACTGACCGTAATCCATG -ACGGAAGACTGACCGTAATGTGTG -ACGGAAGACTGACCGTAACTAGTG -ACGGAAGACTGACCGTAACATCTG -ACGGAAGACTGACCGTAAGAGTTG -ACGGAAGACTGACCGTAAAGACTG -ACGGAAGACTGACCGTAATCGGTA -ACGGAAGACTGACCGTAATGCCTA -ACGGAAGACTGACCGTAACCACTA -ACGGAAGACTGACCGTAAGGAGTA -ACGGAAGACTGACCGTAATCGTCT -ACGGAAGACTGACCGTAATGCACT -ACGGAAGACTGACCGTAACTGACT -ACGGAAGACTGACCGTAACAACCT -ACGGAAGACTGACCGTAAGCTACT -ACGGAAGACTGACCGTAAGGATCT -ACGGAAGACTGACCGTAAAAGGCT -ACGGAAGACTGACCGTAATCAACC -ACGGAAGACTGACCGTAATGTTCC -ACGGAAGACTGACCGTAAATTCCC -ACGGAAGACTGACCGTAATTCTCG -ACGGAAGACTGACCGTAATAGACG -ACGGAAGACTGACCGTAAGTAACG -ACGGAAGACTGACCGTAAACTTCG -ACGGAAGACTGACCGTAATACGCA -ACGGAAGACTGACCGTAACTTGCA -ACGGAAGACTGACCGTAACGAACA -ACGGAAGACTGACCGTAACAGTCA -ACGGAAGACTGACCGTAAGATCCA -ACGGAAGACTGACCGTAAACGACA -ACGGAAGACTGACCGTAAAGCTCA -ACGGAAGACTGACCGTAATCACGT -ACGGAAGACTGACCGTAACGTAGT -ACGGAAGACTGACCGTAAGTCAGT -ACGGAAGACTGACCGTAAGAAGGT -ACGGAAGACTGACCGTAAAACCGT -ACGGAAGACTGACCGTAATTGTGC -ACGGAAGACTGACCGTAACTAAGC -ACGGAAGACTGACCGTAAACTAGC -ACGGAAGACTGACCGTAAAGATGC -ACGGAAGACTGACCGTAATGAAGG -ACGGAAGACTGACCGTAACAATGG -ACGGAAGACTGACCGTAAATGAGG -ACGGAAGACTGACCGTAAAATGGG -ACGGAAGACTGACCGTAATCCTGA -ACGGAAGACTGACCGTAATAGCGA -ACGGAAGACTGACCGTAACACAGA -ACGGAAGACTGACCGTAAGCAAGA -ACGGAAGACTGACCGTAAGGTTGA -ACGGAAGACTGACCGTAATCCGAT -ACGGAAGACTGACCGTAATGGCAT -ACGGAAGACTGACCGTAACGAGAT -ACGGAAGACTGACCGTAATACCAC -ACGGAAGACTGACCGTAACAGAAC -ACGGAAGACTGACCGTAAGTCTAC -ACGGAAGACTGACCGTAAACGTAC -ACGGAAGACTGACCGTAAAGTGAC -ACGGAAGACTGACCGTAACTGTAG -ACGGAAGACTGACCGTAACCTAAG -ACGGAAGACTGACCGTAAGTTCAG -ACGGAAGACTGACCGTAAGCATAG -ACGGAAGACTGACCGTAAGACAAG -ACGGAAGACTGACCGTAAAAGCAG -ACGGAAGACTGACCGTAACGTCAA -ACGGAAGACTGACCGTAAGCTGAA -ACGGAAGACTGACCGTAAAGTACG -ACGGAAGACTGACCGTAAATCCGA -ACGGAAGACTGACCGTAAATGGGA -ACGGAAGACTGACCGTAAGTGCAA -ACGGAAGACTGACCGTAAGAGGAA -ACGGAAGACTGACCGTAACAGGTA -ACGGAAGACTGACCGTAAGACTCT -ACGGAAGACTGACCGTAAAGTCCT -ACGGAAGACTGACCGTAATAAGCC -ACGGAAGACTGACCGTAAATAGCC -ACGGAAGACTGACCGTAATAACCG -ACGGAAGACTGACCGTAAATGCCA -ACGGAAGACTGACCAATGGGAAAC -ACGGAAGACTGACCAATGAACACC -ACGGAAGACTGACCAATGATCGAG -ACGGAAGACTGACCAATGCTCCTT -ACGGAAGACTGACCAATGCCTGTT -ACGGAAGACTGACCAATGCGGTTT -ACGGAAGACTGACCAATGGTGGTT -ACGGAAGACTGACCAATGGCCTTT -ACGGAAGACTGACCAATGGGTCTT -ACGGAAGACTGACCAATGACGCTT -ACGGAAGACTGACCAATGAGCGTT -ACGGAAGACTGACCAATGTTCGTC -ACGGAAGACTGACCAATGTCTCTC -ACGGAAGACTGACCAATGTGGATC -ACGGAAGACTGACCAATGCACTTC -ACGGAAGACTGACCAATGGTACTC -ACGGAAGACTGACCAATGGATGTC -ACGGAAGACTGACCAATGACAGTC -ACGGAAGACTGACCAATGTTGCTG -ACGGAAGACTGACCAATGTCCATG -ACGGAAGACTGACCAATGTGTGTG -ACGGAAGACTGACCAATGCTAGTG -ACGGAAGACTGACCAATGCATCTG -ACGGAAGACTGACCAATGGAGTTG -ACGGAAGACTGACCAATGAGACTG -ACGGAAGACTGACCAATGTCGGTA -ACGGAAGACTGACCAATGTGCCTA -ACGGAAGACTGACCAATGCCACTA -ACGGAAGACTGACCAATGGGAGTA -ACGGAAGACTGACCAATGTCGTCT -ACGGAAGACTGACCAATGTGCACT -ACGGAAGACTGACCAATGCTGACT -ACGGAAGACTGACCAATGCAACCT -ACGGAAGACTGACCAATGGCTACT -ACGGAAGACTGACCAATGGGATCT -ACGGAAGACTGACCAATGAAGGCT -ACGGAAGACTGACCAATGTCAACC -ACGGAAGACTGACCAATGTGTTCC -ACGGAAGACTGACCAATGATTCCC -ACGGAAGACTGACCAATGTTCTCG -ACGGAAGACTGACCAATGTAGACG -ACGGAAGACTGACCAATGGTAACG -ACGGAAGACTGACCAATGACTTCG -ACGGAAGACTGACCAATGTACGCA -ACGGAAGACTGACCAATGCTTGCA -ACGGAAGACTGACCAATGCGAACA -ACGGAAGACTGACCAATGCAGTCA -ACGGAAGACTGACCAATGGATCCA -ACGGAAGACTGACCAATGACGACA -ACGGAAGACTGACCAATGAGCTCA -ACGGAAGACTGACCAATGTCACGT -ACGGAAGACTGACCAATGCGTAGT -ACGGAAGACTGACCAATGGTCAGT -ACGGAAGACTGACCAATGGAAGGT -ACGGAAGACTGACCAATGAACCGT -ACGGAAGACTGACCAATGTTGTGC -ACGGAAGACTGACCAATGCTAAGC -ACGGAAGACTGACCAATGACTAGC -ACGGAAGACTGACCAATGAGATGC -ACGGAAGACTGACCAATGTGAAGG -ACGGAAGACTGACCAATGCAATGG -ACGGAAGACTGACCAATGATGAGG -ACGGAAGACTGACCAATGAATGGG -ACGGAAGACTGACCAATGTCCTGA -ACGGAAGACTGACCAATGTAGCGA -ACGGAAGACTGACCAATGCACAGA -ACGGAAGACTGACCAATGGCAAGA -ACGGAAGACTGACCAATGGGTTGA -ACGGAAGACTGACCAATGTCCGAT -ACGGAAGACTGACCAATGTGGCAT -ACGGAAGACTGACCAATGCGAGAT -ACGGAAGACTGACCAATGTACCAC -ACGGAAGACTGACCAATGCAGAAC -ACGGAAGACTGACCAATGGTCTAC -ACGGAAGACTGACCAATGACGTAC -ACGGAAGACTGACCAATGAGTGAC -ACGGAAGACTGACCAATGCTGTAG -ACGGAAGACTGACCAATGCCTAAG -ACGGAAGACTGACCAATGGTTCAG -ACGGAAGACTGACCAATGGCATAG -ACGGAAGACTGACCAATGGACAAG -ACGGAAGACTGACCAATGAAGCAG -ACGGAAGACTGACCAATGCGTCAA -ACGGAAGACTGACCAATGGCTGAA -ACGGAAGACTGACCAATGAGTACG -ACGGAAGACTGACCAATGATCCGA -ACGGAAGACTGACCAATGATGGGA -ACGGAAGACTGACCAATGGTGCAA -ACGGAAGACTGACCAATGGAGGAA -ACGGAAGACTGACCAATGCAGGTA -ACGGAAGACTGACCAATGGACTCT -ACGGAAGACTGACCAATGAGTCCT -ACGGAAGACTGACCAATGTAAGCC -ACGGAAGACTGACCAATGATAGCC -ACGGAAGACTGACCAATGTAACCG -ACGGAAGACTGACCAATGATGCCA -ACGGAACGGTATAACGGAGGAAAC -ACGGAACGGTATAACGGAAACACC -ACGGAACGGTATAACGGAATCGAG -ACGGAACGGTATAACGGACTCCTT -ACGGAACGGTATAACGGACCTGTT -ACGGAACGGTATAACGGACGGTTT -ACGGAACGGTATAACGGAGTGGTT -ACGGAACGGTATAACGGAGCCTTT -ACGGAACGGTATAACGGAGGTCTT -ACGGAACGGTATAACGGAACGCTT -ACGGAACGGTATAACGGAAGCGTT -ACGGAACGGTATAACGGATTCGTC -ACGGAACGGTATAACGGATCTCTC -ACGGAACGGTATAACGGATGGATC -ACGGAACGGTATAACGGACACTTC -ACGGAACGGTATAACGGAGTACTC -ACGGAACGGTATAACGGAGATGTC -ACGGAACGGTATAACGGAACAGTC -ACGGAACGGTATAACGGATTGCTG -ACGGAACGGTATAACGGATCCATG -ACGGAACGGTATAACGGATGTGTG -ACGGAACGGTATAACGGACTAGTG -ACGGAACGGTATAACGGACATCTG -ACGGAACGGTATAACGGAGAGTTG -ACGGAACGGTATAACGGAAGACTG -ACGGAACGGTATAACGGATCGGTA -ACGGAACGGTATAACGGATGCCTA -ACGGAACGGTATAACGGACCACTA -ACGGAACGGTATAACGGAGGAGTA -ACGGAACGGTATAACGGATCGTCT -ACGGAACGGTATAACGGATGCACT -ACGGAACGGTATAACGGACTGACT -ACGGAACGGTATAACGGACAACCT -ACGGAACGGTATAACGGAGCTACT -ACGGAACGGTATAACGGAGGATCT -ACGGAACGGTATAACGGAAAGGCT -ACGGAACGGTATAACGGATCAACC -ACGGAACGGTATAACGGATGTTCC -ACGGAACGGTATAACGGAATTCCC -ACGGAACGGTATAACGGATTCTCG -ACGGAACGGTATAACGGATAGACG -ACGGAACGGTATAACGGAGTAACG -ACGGAACGGTATAACGGAACTTCG -ACGGAACGGTATAACGGATACGCA -ACGGAACGGTATAACGGACTTGCA -ACGGAACGGTATAACGGACGAACA -ACGGAACGGTATAACGGACAGTCA -ACGGAACGGTATAACGGAGATCCA -ACGGAACGGTATAACGGAACGACA -ACGGAACGGTATAACGGAAGCTCA -ACGGAACGGTATAACGGATCACGT -ACGGAACGGTATAACGGACGTAGT -ACGGAACGGTATAACGGAGTCAGT -ACGGAACGGTATAACGGAGAAGGT -ACGGAACGGTATAACGGAAACCGT -ACGGAACGGTATAACGGATTGTGC -ACGGAACGGTATAACGGACTAAGC -ACGGAACGGTATAACGGAACTAGC -ACGGAACGGTATAACGGAAGATGC -ACGGAACGGTATAACGGATGAAGG -ACGGAACGGTATAACGGACAATGG -ACGGAACGGTATAACGGAATGAGG -ACGGAACGGTATAACGGAAATGGG -ACGGAACGGTATAACGGATCCTGA -ACGGAACGGTATAACGGATAGCGA -ACGGAACGGTATAACGGACACAGA -ACGGAACGGTATAACGGAGCAAGA -ACGGAACGGTATAACGGAGGTTGA -ACGGAACGGTATAACGGATCCGAT -ACGGAACGGTATAACGGATGGCAT -ACGGAACGGTATAACGGACGAGAT -ACGGAACGGTATAACGGATACCAC -ACGGAACGGTATAACGGACAGAAC -ACGGAACGGTATAACGGAGTCTAC -ACGGAACGGTATAACGGAACGTAC -ACGGAACGGTATAACGGAAGTGAC -ACGGAACGGTATAACGGACTGTAG -ACGGAACGGTATAACGGACCTAAG -ACGGAACGGTATAACGGAGTTCAG -ACGGAACGGTATAACGGAGCATAG -ACGGAACGGTATAACGGAGACAAG -ACGGAACGGTATAACGGAAAGCAG -ACGGAACGGTATAACGGACGTCAA -ACGGAACGGTATAACGGAGCTGAA -ACGGAACGGTATAACGGAAGTACG -ACGGAACGGTATAACGGAATCCGA -ACGGAACGGTATAACGGAATGGGA -ACGGAACGGTATAACGGAGTGCAA -ACGGAACGGTATAACGGAGAGGAA -ACGGAACGGTATAACGGACAGGTA -ACGGAACGGTATAACGGAGACTCT -ACGGAACGGTATAACGGAAGTCCT -ACGGAACGGTATAACGGATAAGCC -ACGGAACGGTATAACGGAATAGCC -ACGGAACGGTATAACGGATAACCG -ACGGAACGGTATAACGGAATGCCA -ACGGAACGGTATACCAACGGAAAC -ACGGAACGGTATACCAACAACACC -ACGGAACGGTATACCAACATCGAG -ACGGAACGGTATACCAACCTCCTT -ACGGAACGGTATACCAACCCTGTT -ACGGAACGGTATACCAACCGGTTT -ACGGAACGGTATACCAACGTGGTT -ACGGAACGGTATACCAACGCCTTT -ACGGAACGGTATACCAACGGTCTT -ACGGAACGGTATACCAACACGCTT -ACGGAACGGTATACCAACAGCGTT -ACGGAACGGTATACCAACTTCGTC -ACGGAACGGTATACCAACTCTCTC -ACGGAACGGTATACCAACTGGATC -ACGGAACGGTATACCAACCACTTC -ACGGAACGGTATACCAACGTACTC -ACGGAACGGTATACCAACGATGTC -ACGGAACGGTATACCAACACAGTC -ACGGAACGGTATACCAACTTGCTG -ACGGAACGGTATACCAACTCCATG -ACGGAACGGTATACCAACTGTGTG -ACGGAACGGTATACCAACCTAGTG -ACGGAACGGTATACCAACCATCTG -ACGGAACGGTATACCAACGAGTTG -ACGGAACGGTATACCAACAGACTG -ACGGAACGGTATACCAACTCGGTA -ACGGAACGGTATACCAACTGCCTA -ACGGAACGGTATACCAACCCACTA -ACGGAACGGTATACCAACGGAGTA -ACGGAACGGTATACCAACTCGTCT -ACGGAACGGTATACCAACTGCACT -ACGGAACGGTATACCAACCTGACT -ACGGAACGGTATACCAACCAACCT -ACGGAACGGTATACCAACGCTACT -ACGGAACGGTATACCAACGGATCT -ACGGAACGGTATACCAACAAGGCT -ACGGAACGGTATACCAACTCAACC -ACGGAACGGTATACCAACTGTTCC -ACGGAACGGTATACCAACATTCCC -ACGGAACGGTATACCAACTTCTCG -ACGGAACGGTATACCAACTAGACG -ACGGAACGGTATACCAACGTAACG -ACGGAACGGTATACCAACACTTCG -ACGGAACGGTATACCAACTACGCA -ACGGAACGGTATACCAACCTTGCA -ACGGAACGGTATACCAACCGAACA -ACGGAACGGTATACCAACCAGTCA -ACGGAACGGTATACCAACGATCCA -ACGGAACGGTATACCAACACGACA -ACGGAACGGTATACCAACAGCTCA -ACGGAACGGTATACCAACTCACGT -ACGGAACGGTATACCAACCGTAGT -ACGGAACGGTATACCAACGTCAGT -ACGGAACGGTATACCAACGAAGGT -ACGGAACGGTATACCAACAACCGT -ACGGAACGGTATACCAACTTGTGC -ACGGAACGGTATACCAACCTAAGC -ACGGAACGGTATACCAACACTAGC -ACGGAACGGTATACCAACAGATGC -ACGGAACGGTATACCAACTGAAGG -ACGGAACGGTATACCAACCAATGG -ACGGAACGGTATACCAACATGAGG -ACGGAACGGTATACCAACAATGGG -ACGGAACGGTATACCAACTCCTGA -ACGGAACGGTATACCAACTAGCGA -ACGGAACGGTATACCAACCACAGA -ACGGAACGGTATACCAACGCAAGA -ACGGAACGGTATACCAACGGTTGA -ACGGAACGGTATACCAACTCCGAT -ACGGAACGGTATACCAACTGGCAT -ACGGAACGGTATACCAACCGAGAT -ACGGAACGGTATACCAACTACCAC -ACGGAACGGTATACCAACCAGAAC -ACGGAACGGTATACCAACGTCTAC -ACGGAACGGTATACCAACACGTAC -ACGGAACGGTATACCAACAGTGAC -ACGGAACGGTATACCAACCTGTAG -ACGGAACGGTATACCAACCCTAAG -ACGGAACGGTATACCAACGTTCAG -ACGGAACGGTATACCAACGCATAG -ACGGAACGGTATACCAACGACAAG -ACGGAACGGTATACCAACAAGCAG -ACGGAACGGTATACCAACCGTCAA -ACGGAACGGTATACCAACGCTGAA -ACGGAACGGTATACCAACAGTACG -ACGGAACGGTATACCAACATCCGA -ACGGAACGGTATACCAACATGGGA -ACGGAACGGTATACCAACGTGCAA -ACGGAACGGTATACCAACGAGGAA -ACGGAACGGTATACCAACCAGGTA -ACGGAACGGTATACCAACGACTCT -ACGGAACGGTATACCAACAGTCCT -ACGGAACGGTATACCAACTAAGCC -ACGGAACGGTATACCAACATAGCC -ACGGAACGGTATACCAACTAACCG -ACGGAACGGTATACCAACATGCCA -ACGGAACGGTATGAGATCGGAAAC -ACGGAACGGTATGAGATCAACACC -ACGGAACGGTATGAGATCATCGAG -ACGGAACGGTATGAGATCCTCCTT -ACGGAACGGTATGAGATCCCTGTT -ACGGAACGGTATGAGATCCGGTTT -ACGGAACGGTATGAGATCGTGGTT -ACGGAACGGTATGAGATCGCCTTT -ACGGAACGGTATGAGATCGGTCTT -ACGGAACGGTATGAGATCACGCTT -ACGGAACGGTATGAGATCAGCGTT -ACGGAACGGTATGAGATCTTCGTC -ACGGAACGGTATGAGATCTCTCTC -ACGGAACGGTATGAGATCTGGATC -ACGGAACGGTATGAGATCCACTTC -ACGGAACGGTATGAGATCGTACTC -ACGGAACGGTATGAGATCGATGTC -ACGGAACGGTATGAGATCACAGTC -ACGGAACGGTATGAGATCTTGCTG -ACGGAACGGTATGAGATCTCCATG -ACGGAACGGTATGAGATCTGTGTG -ACGGAACGGTATGAGATCCTAGTG -ACGGAACGGTATGAGATCCATCTG -ACGGAACGGTATGAGATCGAGTTG -ACGGAACGGTATGAGATCAGACTG -ACGGAACGGTATGAGATCTCGGTA -ACGGAACGGTATGAGATCTGCCTA -ACGGAACGGTATGAGATCCCACTA -ACGGAACGGTATGAGATCGGAGTA -ACGGAACGGTATGAGATCTCGTCT -ACGGAACGGTATGAGATCTGCACT -ACGGAACGGTATGAGATCCTGACT -ACGGAACGGTATGAGATCCAACCT -ACGGAACGGTATGAGATCGCTACT -ACGGAACGGTATGAGATCGGATCT -ACGGAACGGTATGAGATCAAGGCT -ACGGAACGGTATGAGATCTCAACC -ACGGAACGGTATGAGATCTGTTCC -ACGGAACGGTATGAGATCATTCCC -ACGGAACGGTATGAGATCTTCTCG -ACGGAACGGTATGAGATCTAGACG -ACGGAACGGTATGAGATCGTAACG -ACGGAACGGTATGAGATCACTTCG -ACGGAACGGTATGAGATCTACGCA -ACGGAACGGTATGAGATCCTTGCA -ACGGAACGGTATGAGATCCGAACA -ACGGAACGGTATGAGATCCAGTCA -ACGGAACGGTATGAGATCGATCCA -ACGGAACGGTATGAGATCACGACA -ACGGAACGGTATGAGATCAGCTCA -ACGGAACGGTATGAGATCTCACGT -ACGGAACGGTATGAGATCCGTAGT -ACGGAACGGTATGAGATCGTCAGT -ACGGAACGGTATGAGATCGAAGGT -ACGGAACGGTATGAGATCAACCGT -ACGGAACGGTATGAGATCTTGTGC -ACGGAACGGTATGAGATCCTAAGC -ACGGAACGGTATGAGATCACTAGC -ACGGAACGGTATGAGATCAGATGC -ACGGAACGGTATGAGATCTGAAGG -ACGGAACGGTATGAGATCCAATGG -ACGGAACGGTATGAGATCATGAGG -ACGGAACGGTATGAGATCAATGGG -ACGGAACGGTATGAGATCTCCTGA -ACGGAACGGTATGAGATCTAGCGA -ACGGAACGGTATGAGATCCACAGA -ACGGAACGGTATGAGATCGCAAGA -ACGGAACGGTATGAGATCGGTTGA -ACGGAACGGTATGAGATCTCCGAT -ACGGAACGGTATGAGATCTGGCAT -ACGGAACGGTATGAGATCCGAGAT -ACGGAACGGTATGAGATCTACCAC -ACGGAACGGTATGAGATCCAGAAC -ACGGAACGGTATGAGATCGTCTAC -ACGGAACGGTATGAGATCACGTAC -ACGGAACGGTATGAGATCAGTGAC -ACGGAACGGTATGAGATCCTGTAG -ACGGAACGGTATGAGATCCCTAAG -ACGGAACGGTATGAGATCGTTCAG -ACGGAACGGTATGAGATCGCATAG -ACGGAACGGTATGAGATCGACAAG -ACGGAACGGTATGAGATCAAGCAG -ACGGAACGGTATGAGATCCGTCAA -ACGGAACGGTATGAGATCGCTGAA -ACGGAACGGTATGAGATCAGTACG -ACGGAACGGTATGAGATCATCCGA -ACGGAACGGTATGAGATCATGGGA -ACGGAACGGTATGAGATCGTGCAA -ACGGAACGGTATGAGATCGAGGAA -ACGGAACGGTATGAGATCCAGGTA -ACGGAACGGTATGAGATCGACTCT -ACGGAACGGTATGAGATCAGTCCT -ACGGAACGGTATGAGATCTAAGCC -ACGGAACGGTATGAGATCATAGCC -ACGGAACGGTATGAGATCTAACCG -ACGGAACGGTATGAGATCATGCCA -ACGGAACGGTATCTTCTCGGAAAC -ACGGAACGGTATCTTCTCAACACC -ACGGAACGGTATCTTCTCATCGAG -ACGGAACGGTATCTTCTCCTCCTT -ACGGAACGGTATCTTCTCCCTGTT -ACGGAACGGTATCTTCTCCGGTTT -ACGGAACGGTATCTTCTCGTGGTT -ACGGAACGGTATCTTCTCGCCTTT -ACGGAACGGTATCTTCTCGGTCTT -ACGGAACGGTATCTTCTCACGCTT -ACGGAACGGTATCTTCTCAGCGTT -ACGGAACGGTATCTTCTCTTCGTC -ACGGAACGGTATCTTCTCTCTCTC -ACGGAACGGTATCTTCTCTGGATC -ACGGAACGGTATCTTCTCCACTTC -ACGGAACGGTATCTTCTCGTACTC -ACGGAACGGTATCTTCTCGATGTC -ACGGAACGGTATCTTCTCACAGTC -ACGGAACGGTATCTTCTCTTGCTG -ACGGAACGGTATCTTCTCTCCATG -ACGGAACGGTATCTTCTCTGTGTG -ACGGAACGGTATCTTCTCCTAGTG -ACGGAACGGTATCTTCTCCATCTG -ACGGAACGGTATCTTCTCGAGTTG -ACGGAACGGTATCTTCTCAGACTG -ACGGAACGGTATCTTCTCTCGGTA -ACGGAACGGTATCTTCTCTGCCTA -ACGGAACGGTATCTTCTCCCACTA -ACGGAACGGTATCTTCTCGGAGTA -ACGGAACGGTATCTTCTCTCGTCT -ACGGAACGGTATCTTCTCTGCACT -ACGGAACGGTATCTTCTCCTGACT -ACGGAACGGTATCTTCTCCAACCT -ACGGAACGGTATCTTCTCGCTACT -ACGGAACGGTATCTTCTCGGATCT -ACGGAACGGTATCTTCTCAAGGCT -ACGGAACGGTATCTTCTCTCAACC -ACGGAACGGTATCTTCTCTGTTCC -ACGGAACGGTATCTTCTCATTCCC -ACGGAACGGTATCTTCTCTTCTCG -ACGGAACGGTATCTTCTCTAGACG -ACGGAACGGTATCTTCTCGTAACG -ACGGAACGGTATCTTCTCACTTCG -ACGGAACGGTATCTTCTCTACGCA -ACGGAACGGTATCTTCTCCTTGCA -ACGGAACGGTATCTTCTCCGAACA -ACGGAACGGTATCTTCTCCAGTCA -ACGGAACGGTATCTTCTCGATCCA -ACGGAACGGTATCTTCTCACGACA -ACGGAACGGTATCTTCTCAGCTCA -ACGGAACGGTATCTTCTCTCACGT -ACGGAACGGTATCTTCTCCGTAGT -ACGGAACGGTATCTTCTCGTCAGT -ACGGAACGGTATCTTCTCGAAGGT -ACGGAACGGTATCTTCTCAACCGT -ACGGAACGGTATCTTCTCTTGTGC -ACGGAACGGTATCTTCTCCTAAGC -ACGGAACGGTATCTTCTCACTAGC -ACGGAACGGTATCTTCTCAGATGC -ACGGAACGGTATCTTCTCTGAAGG -ACGGAACGGTATCTTCTCCAATGG -ACGGAACGGTATCTTCTCATGAGG -ACGGAACGGTATCTTCTCAATGGG -ACGGAACGGTATCTTCTCTCCTGA -ACGGAACGGTATCTTCTCTAGCGA -ACGGAACGGTATCTTCTCCACAGA -ACGGAACGGTATCTTCTCGCAAGA -ACGGAACGGTATCTTCTCGGTTGA -ACGGAACGGTATCTTCTCTCCGAT -ACGGAACGGTATCTTCTCTGGCAT -ACGGAACGGTATCTTCTCCGAGAT -ACGGAACGGTATCTTCTCTACCAC -ACGGAACGGTATCTTCTCCAGAAC -ACGGAACGGTATCTTCTCGTCTAC -ACGGAACGGTATCTTCTCACGTAC -ACGGAACGGTATCTTCTCAGTGAC -ACGGAACGGTATCTTCTCCTGTAG -ACGGAACGGTATCTTCTCCCTAAG -ACGGAACGGTATCTTCTCGTTCAG -ACGGAACGGTATCTTCTCGCATAG -ACGGAACGGTATCTTCTCGACAAG -ACGGAACGGTATCTTCTCAAGCAG -ACGGAACGGTATCTTCTCCGTCAA -ACGGAACGGTATCTTCTCGCTGAA -ACGGAACGGTATCTTCTCAGTACG -ACGGAACGGTATCTTCTCATCCGA -ACGGAACGGTATCTTCTCATGGGA -ACGGAACGGTATCTTCTCGTGCAA -ACGGAACGGTATCTTCTCGAGGAA -ACGGAACGGTATCTTCTCCAGGTA -ACGGAACGGTATCTTCTCGACTCT -ACGGAACGGTATCTTCTCAGTCCT -ACGGAACGGTATCTTCTCTAAGCC -ACGGAACGGTATCTTCTCATAGCC -ACGGAACGGTATCTTCTCTAACCG -ACGGAACGGTATCTTCTCATGCCA -ACGGAACGGTATGTTCCTGGAAAC -ACGGAACGGTATGTTCCTAACACC -ACGGAACGGTATGTTCCTATCGAG -ACGGAACGGTATGTTCCTCTCCTT -ACGGAACGGTATGTTCCTCCTGTT -ACGGAACGGTATGTTCCTCGGTTT -ACGGAACGGTATGTTCCTGTGGTT -ACGGAACGGTATGTTCCTGCCTTT -ACGGAACGGTATGTTCCTGGTCTT -ACGGAACGGTATGTTCCTACGCTT -ACGGAACGGTATGTTCCTAGCGTT -ACGGAACGGTATGTTCCTTTCGTC -ACGGAACGGTATGTTCCTTCTCTC -ACGGAACGGTATGTTCCTTGGATC -ACGGAACGGTATGTTCCTCACTTC -ACGGAACGGTATGTTCCTGTACTC -ACGGAACGGTATGTTCCTGATGTC -ACGGAACGGTATGTTCCTACAGTC -ACGGAACGGTATGTTCCTTTGCTG -ACGGAACGGTATGTTCCTTCCATG -ACGGAACGGTATGTTCCTTGTGTG -ACGGAACGGTATGTTCCTCTAGTG -ACGGAACGGTATGTTCCTCATCTG -ACGGAACGGTATGTTCCTGAGTTG -ACGGAACGGTATGTTCCTAGACTG -ACGGAACGGTATGTTCCTTCGGTA -ACGGAACGGTATGTTCCTTGCCTA -ACGGAACGGTATGTTCCTCCACTA -ACGGAACGGTATGTTCCTGGAGTA -ACGGAACGGTATGTTCCTTCGTCT -ACGGAACGGTATGTTCCTTGCACT -ACGGAACGGTATGTTCCTCTGACT -ACGGAACGGTATGTTCCTCAACCT -ACGGAACGGTATGTTCCTGCTACT -ACGGAACGGTATGTTCCTGGATCT -ACGGAACGGTATGTTCCTAAGGCT -ACGGAACGGTATGTTCCTTCAACC -ACGGAACGGTATGTTCCTTGTTCC -ACGGAACGGTATGTTCCTATTCCC -ACGGAACGGTATGTTCCTTTCTCG -ACGGAACGGTATGTTCCTTAGACG -ACGGAACGGTATGTTCCTGTAACG -ACGGAACGGTATGTTCCTACTTCG -ACGGAACGGTATGTTCCTTACGCA -ACGGAACGGTATGTTCCTCTTGCA -ACGGAACGGTATGTTCCTCGAACA -ACGGAACGGTATGTTCCTCAGTCA -ACGGAACGGTATGTTCCTGATCCA -ACGGAACGGTATGTTCCTACGACA -ACGGAACGGTATGTTCCTAGCTCA -ACGGAACGGTATGTTCCTTCACGT -ACGGAACGGTATGTTCCTCGTAGT -ACGGAACGGTATGTTCCTGTCAGT -ACGGAACGGTATGTTCCTGAAGGT -ACGGAACGGTATGTTCCTAACCGT -ACGGAACGGTATGTTCCTTTGTGC -ACGGAACGGTATGTTCCTCTAAGC -ACGGAACGGTATGTTCCTACTAGC -ACGGAACGGTATGTTCCTAGATGC -ACGGAACGGTATGTTCCTTGAAGG -ACGGAACGGTATGTTCCTCAATGG -ACGGAACGGTATGTTCCTATGAGG -ACGGAACGGTATGTTCCTAATGGG -ACGGAACGGTATGTTCCTTCCTGA -ACGGAACGGTATGTTCCTTAGCGA -ACGGAACGGTATGTTCCTCACAGA -ACGGAACGGTATGTTCCTGCAAGA -ACGGAACGGTATGTTCCTGGTTGA -ACGGAACGGTATGTTCCTTCCGAT -ACGGAACGGTATGTTCCTTGGCAT -ACGGAACGGTATGTTCCTCGAGAT -ACGGAACGGTATGTTCCTTACCAC -ACGGAACGGTATGTTCCTCAGAAC -ACGGAACGGTATGTTCCTGTCTAC -ACGGAACGGTATGTTCCTACGTAC -ACGGAACGGTATGTTCCTAGTGAC -ACGGAACGGTATGTTCCTCTGTAG -ACGGAACGGTATGTTCCTCCTAAG -ACGGAACGGTATGTTCCTGTTCAG -ACGGAACGGTATGTTCCTGCATAG -ACGGAACGGTATGTTCCTGACAAG -ACGGAACGGTATGTTCCTAAGCAG -ACGGAACGGTATGTTCCTCGTCAA -ACGGAACGGTATGTTCCTGCTGAA -ACGGAACGGTATGTTCCTAGTACG -ACGGAACGGTATGTTCCTATCCGA -ACGGAACGGTATGTTCCTATGGGA -ACGGAACGGTATGTTCCTGTGCAA -ACGGAACGGTATGTTCCTGAGGAA -ACGGAACGGTATGTTCCTCAGGTA -ACGGAACGGTATGTTCCTGACTCT -ACGGAACGGTATGTTCCTAGTCCT -ACGGAACGGTATGTTCCTTAAGCC -ACGGAACGGTATGTTCCTATAGCC -ACGGAACGGTATGTTCCTTAACCG -ACGGAACGGTATGTTCCTATGCCA -ACGGAACGGTATTTTCGGGGAAAC -ACGGAACGGTATTTTCGGAACACC -ACGGAACGGTATTTTCGGATCGAG -ACGGAACGGTATTTTCGGCTCCTT -ACGGAACGGTATTTTCGGCCTGTT -ACGGAACGGTATTTTCGGCGGTTT -ACGGAACGGTATTTTCGGGTGGTT -ACGGAACGGTATTTTCGGGCCTTT -ACGGAACGGTATTTTCGGGGTCTT -ACGGAACGGTATTTTCGGACGCTT -ACGGAACGGTATTTTCGGAGCGTT -ACGGAACGGTATTTTCGGTTCGTC -ACGGAACGGTATTTTCGGTCTCTC -ACGGAACGGTATTTTCGGTGGATC -ACGGAACGGTATTTTCGGCACTTC -ACGGAACGGTATTTTCGGGTACTC -ACGGAACGGTATTTTCGGGATGTC -ACGGAACGGTATTTTCGGACAGTC -ACGGAACGGTATTTTCGGTTGCTG -ACGGAACGGTATTTTCGGTCCATG -ACGGAACGGTATTTTCGGTGTGTG -ACGGAACGGTATTTTCGGCTAGTG -ACGGAACGGTATTTTCGGCATCTG -ACGGAACGGTATTTTCGGGAGTTG -ACGGAACGGTATTTTCGGAGACTG -ACGGAACGGTATTTTCGGTCGGTA -ACGGAACGGTATTTTCGGTGCCTA -ACGGAACGGTATTTTCGGCCACTA -ACGGAACGGTATTTTCGGGGAGTA -ACGGAACGGTATTTTCGGTCGTCT -ACGGAACGGTATTTTCGGTGCACT -ACGGAACGGTATTTTCGGCTGACT -ACGGAACGGTATTTTCGGCAACCT -ACGGAACGGTATTTTCGGGCTACT -ACGGAACGGTATTTTCGGGGATCT -ACGGAACGGTATTTTCGGAAGGCT -ACGGAACGGTATTTTCGGTCAACC -ACGGAACGGTATTTTCGGTGTTCC -ACGGAACGGTATTTTCGGATTCCC -ACGGAACGGTATTTTCGGTTCTCG -ACGGAACGGTATTTTCGGTAGACG -ACGGAACGGTATTTTCGGGTAACG -ACGGAACGGTATTTTCGGACTTCG -ACGGAACGGTATTTTCGGTACGCA -ACGGAACGGTATTTTCGGCTTGCA -ACGGAACGGTATTTTCGGCGAACA -ACGGAACGGTATTTTCGGCAGTCA -ACGGAACGGTATTTTCGGGATCCA -ACGGAACGGTATTTTCGGACGACA -ACGGAACGGTATTTTCGGAGCTCA -ACGGAACGGTATTTTCGGTCACGT -ACGGAACGGTATTTTCGGCGTAGT -ACGGAACGGTATTTTCGGGTCAGT -ACGGAACGGTATTTTCGGGAAGGT -ACGGAACGGTATTTTCGGAACCGT -ACGGAACGGTATTTTCGGTTGTGC -ACGGAACGGTATTTTCGGCTAAGC -ACGGAACGGTATTTTCGGACTAGC -ACGGAACGGTATTTTCGGAGATGC -ACGGAACGGTATTTTCGGTGAAGG -ACGGAACGGTATTTTCGGCAATGG -ACGGAACGGTATTTTCGGATGAGG -ACGGAACGGTATTTTCGGAATGGG -ACGGAACGGTATTTTCGGTCCTGA -ACGGAACGGTATTTTCGGTAGCGA -ACGGAACGGTATTTTCGGCACAGA -ACGGAACGGTATTTTCGGGCAAGA -ACGGAACGGTATTTTCGGGGTTGA -ACGGAACGGTATTTTCGGTCCGAT -ACGGAACGGTATTTTCGGTGGCAT -ACGGAACGGTATTTTCGGCGAGAT -ACGGAACGGTATTTTCGGTACCAC -ACGGAACGGTATTTTCGGCAGAAC -ACGGAACGGTATTTTCGGGTCTAC -ACGGAACGGTATTTTCGGACGTAC -ACGGAACGGTATTTTCGGAGTGAC -ACGGAACGGTATTTTCGGCTGTAG -ACGGAACGGTATTTTCGGCCTAAG -ACGGAACGGTATTTTCGGGTTCAG -ACGGAACGGTATTTTCGGGCATAG -ACGGAACGGTATTTTCGGGACAAG -ACGGAACGGTATTTTCGGAAGCAG -ACGGAACGGTATTTTCGGCGTCAA -ACGGAACGGTATTTTCGGGCTGAA -ACGGAACGGTATTTTCGGAGTACG -ACGGAACGGTATTTTCGGATCCGA -ACGGAACGGTATTTTCGGATGGGA -ACGGAACGGTATTTTCGGGTGCAA -ACGGAACGGTATTTTCGGGAGGAA -ACGGAACGGTATTTTCGGCAGGTA -ACGGAACGGTATTTTCGGGACTCT -ACGGAACGGTATTTTCGGAGTCCT -ACGGAACGGTATTTTCGGTAAGCC -ACGGAACGGTATTTTCGGATAGCC -ACGGAACGGTATTTTCGGTAACCG -ACGGAACGGTATTTTCGGATGCCA -ACGGAACGGTATGTTGTGGGAAAC -ACGGAACGGTATGTTGTGAACACC -ACGGAACGGTATGTTGTGATCGAG -ACGGAACGGTATGTTGTGCTCCTT -ACGGAACGGTATGTTGTGCCTGTT -ACGGAACGGTATGTTGTGCGGTTT -ACGGAACGGTATGTTGTGGTGGTT -ACGGAACGGTATGTTGTGGCCTTT -ACGGAACGGTATGTTGTGGGTCTT -ACGGAACGGTATGTTGTGACGCTT -ACGGAACGGTATGTTGTGAGCGTT -ACGGAACGGTATGTTGTGTTCGTC -ACGGAACGGTATGTTGTGTCTCTC -ACGGAACGGTATGTTGTGTGGATC -ACGGAACGGTATGTTGTGCACTTC -ACGGAACGGTATGTTGTGGTACTC -ACGGAACGGTATGTTGTGGATGTC -ACGGAACGGTATGTTGTGACAGTC -ACGGAACGGTATGTTGTGTTGCTG -ACGGAACGGTATGTTGTGTCCATG -ACGGAACGGTATGTTGTGTGTGTG -ACGGAACGGTATGTTGTGCTAGTG -ACGGAACGGTATGTTGTGCATCTG -ACGGAACGGTATGTTGTGGAGTTG -ACGGAACGGTATGTTGTGAGACTG -ACGGAACGGTATGTTGTGTCGGTA -ACGGAACGGTATGTTGTGTGCCTA -ACGGAACGGTATGTTGTGCCACTA -ACGGAACGGTATGTTGTGGGAGTA -ACGGAACGGTATGTTGTGTCGTCT -ACGGAACGGTATGTTGTGTGCACT -ACGGAACGGTATGTTGTGCTGACT -ACGGAACGGTATGTTGTGCAACCT -ACGGAACGGTATGTTGTGGCTACT -ACGGAACGGTATGTTGTGGGATCT -ACGGAACGGTATGTTGTGAAGGCT -ACGGAACGGTATGTTGTGTCAACC -ACGGAACGGTATGTTGTGTGTTCC -ACGGAACGGTATGTTGTGATTCCC -ACGGAACGGTATGTTGTGTTCTCG -ACGGAACGGTATGTTGTGTAGACG -ACGGAACGGTATGTTGTGGTAACG -ACGGAACGGTATGTTGTGACTTCG -ACGGAACGGTATGTTGTGTACGCA -ACGGAACGGTATGTTGTGCTTGCA -ACGGAACGGTATGTTGTGCGAACA -ACGGAACGGTATGTTGTGCAGTCA -ACGGAACGGTATGTTGTGGATCCA -ACGGAACGGTATGTTGTGACGACA -ACGGAACGGTATGTTGTGAGCTCA -ACGGAACGGTATGTTGTGTCACGT -ACGGAACGGTATGTTGTGCGTAGT -ACGGAACGGTATGTTGTGGTCAGT -ACGGAACGGTATGTTGTGGAAGGT -ACGGAACGGTATGTTGTGAACCGT -ACGGAACGGTATGTTGTGTTGTGC -ACGGAACGGTATGTTGTGCTAAGC -ACGGAACGGTATGTTGTGACTAGC -ACGGAACGGTATGTTGTGAGATGC -ACGGAACGGTATGTTGTGTGAAGG -ACGGAACGGTATGTTGTGCAATGG -ACGGAACGGTATGTTGTGATGAGG -ACGGAACGGTATGTTGTGAATGGG -ACGGAACGGTATGTTGTGTCCTGA -ACGGAACGGTATGTTGTGTAGCGA -ACGGAACGGTATGTTGTGCACAGA -ACGGAACGGTATGTTGTGGCAAGA -ACGGAACGGTATGTTGTGGGTTGA -ACGGAACGGTATGTTGTGTCCGAT -ACGGAACGGTATGTTGTGTGGCAT -ACGGAACGGTATGTTGTGCGAGAT -ACGGAACGGTATGTTGTGTACCAC -ACGGAACGGTATGTTGTGCAGAAC -ACGGAACGGTATGTTGTGGTCTAC -ACGGAACGGTATGTTGTGACGTAC -ACGGAACGGTATGTTGTGAGTGAC -ACGGAACGGTATGTTGTGCTGTAG -ACGGAACGGTATGTTGTGCCTAAG -ACGGAACGGTATGTTGTGGTTCAG -ACGGAACGGTATGTTGTGGCATAG -ACGGAACGGTATGTTGTGGACAAG -ACGGAACGGTATGTTGTGAAGCAG -ACGGAACGGTATGTTGTGCGTCAA -ACGGAACGGTATGTTGTGGCTGAA -ACGGAACGGTATGTTGTGAGTACG -ACGGAACGGTATGTTGTGATCCGA -ACGGAACGGTATGTTGTGATGGGA -ACGGAACGGTATGTTGTGGTGCAA -ACGGAACGGTATGTTGTGGAGGAA -ACGGAACGGTATGTTGTGCAGGTA -ACGGAACGGTATGTTGTGGACTCT -ACGGAACGGTATGTTGTGAGTCCT -ACGGAACGGTATGTTGTGTAAGCC -ACGGAACGGTATGTTGTGATAGCC -ACGGAACGGTATGTTGTGTAACCG -ACGGAACGGTATGTTGTGATGCCA -ACGGAACGGTATTTTGCCGGAAAC -ACGGAACGGTATTTTGCCAACACC -ACGGAACGGTATTTTGCCATCGAG -ACGGAACGGTATTTTGCCCTCCTT -ACGGAACGGTATTTTGCCCCTGTT -ACGGAACGGTATTTTGCCCGGTTT -ACGGAACGGTATTTTGCCGTGGTT -ACGGAACGGTATTTTGCCGCCTTT -ACGGAACGGTATTTTGCCGGTCTT -ACGGAACGGTATTTTGCCACGCTT -ACGGAACGGTATTTTGCCAGCGTT -ACGGAACGGTATTTTGCCTTCGTC -ACGGAACGGTATTTTGCCTCTCTC -ACGGAACGGTATTTTGCCTGGATC -ACGGAACGGTATTTTGCCCACTTC -ACGGAACGGTATTTTGCCGTACTC -ACGGAACGGTATTTTGCCGATGTC -ACGGAACGGTATTTTGCCACAGTC -ACGGAACGGTATTTTGCCTTGCTG -ACGGAACGGTATTTTGCCTCCATG -ACGGAACGGTATTTTGCCTGTGTG -ACGGAACGGTATTTTGCCCTAGTG -ACGGAACGGTATTTTGCCCATCTG -ACGGAACGGTATTTTGCCGAGTTG -ACGGAACGGTATTTTGCCAGACTG -ACGGAACGGTATTTTGCCTCGGTA -ACGGAACGGTATTTTGCCTGCCTA -ACGGAACGGTATTTTGCCCCACTA -ACGGAACGGTATTTTGCCGGAGTA -ACGGAACGGTATTTTGCCTCGTCT -ACGGAACGGTATTTTGCCTGCACT -ACGGAACGGTATTTTGCCCTGACT -ACGGAACGGTATTTTGCCCAACCT -ACGGAACGGTATTTTGCCGCTACT -ACGGAACGGTATTTTGCCGGATCT -ACGGAACGGTATTTTGCCAAGGCT -ACGGAACGGTATTTTGCCTCAACC -ACGGAACGGTATTTTGCCTGTTCC -ACGGAACGGTATTTTGCCATTCCC -ACGGAACGGTATTTTGCCTTCTCG -ACGGAACGGTATTTTGCCTAGACG -ACGGAACGGTATTTTGCCGTAACG -ACGGAACGGTATTTTGCCACTTCG -ACGGAACGGTATTTTGCCTACGCA -ACGGAACGGTATTTTGCCCTTGCA -ACGGAACGGTATTTTGCCCGAACA -ACGGAACGGTATTTTGCCCAGTCA -ACGGAACGGTATTTTGCCGATCCA -ACGGAACGGTATTTTGCCACGACA -ACGGAACGGTATTTTGCCAGCTCA -ACGGAACGGTATTTTGCCTCACGT -ACGGAACGGTATTTTGCCCGTAGT -ACGGAACGGTATTTTGCCGTCAGT -ACGGAACGGTATTTTGCCGAAGGT -ACGGAACGGTATTTTGCCAACCGT -ACGGAACGGTATTTTGCCTTGTGC -ACGGAACGGTATTTTGCCCTAAGC -ACGGAACGGTATTTTGCCACTAGC -ACGGAACGGTATTTTGCCAGATGC -ACGGAACGGTATTTTGCCTGAAGG -ACGGAACGGTATTTTGCCCAATGG -ACGGAACGGTATTTTGCCATGAGG -ACGGAACGGTATTTTGCCAATGGG -ACGGAACGGTATTTTGCCTCCTGA -ACGGAACGGTATTTTGCCTAGCGA -ACGGAACGGTATTTTGCCCACAGA -ACGGAACGGTATTTTGCCGCAAGA -ACGGAACGGTATTTTGCCGGTTGA -ACGGAACGGTATTTTGCCTCCGAT -ACGGAACGGTATTTTGCCTGGCAT -ACGGAACGGTATTTTGCCCGAGAT -ACGGAACGGTATTTTGCCTACCAC -ACGGAACGGTATTTTGCCCAGAAC -ACGGAACGGTATTTTGCCGTCTAC -ACGGAACGGTATTTTGCCACGTAC -ACGGAACGGTATTTTGCCAGTGAC -ACGGAACGGTATTTTGCCCTGTAG -ACGGAACGGTATTTTGCCCCTAAG -ACGGAACGGTATTTTGCCGTTCAG -ACGGAACGGTATTTTGCCGCATAG -ACGGAACGGTATTTTGCCGACAAG -ACGGAACGGTATTTTGCCAAGCAG -ACGGAACGGTATTTTGCCCGTCAA -ACGGAACGGTATTTTGCCGCTGAA -ACGGAACGGTATTTTGCCAGTACG -ACGGAACGGTATTTTGCCATCCGA -ACGGAACGGTATTTTGCCATGGGA -ACGGAACGGTATTTTGCCGTGCAA -ACGGAACGGTATTTTGCCGAGGAA -ACGGAACGGTATTTTGCCCAGGTA -ACGGAACGGTATTTTGCCGACTCT -ACGGAACGGTATTTTGCCAGTCCT -ACGGAACGGTATTTTGCCTAAGCC -ACGGAACGGTATTTTGCCATAGCC -ACGGAACGGTATTTTGCCTAACCG -ACGGAACGGTATTTTGCCATGCCA -ACGGAACGGTATCTTGGTGGAAAC -ACGGAACGGTATCTTGGTAACACC -ACGGAACGGTATCTTGGTATCGAG -ACGGAACGGTATCTTGGTCTCCTT -ACGGAACGGTATCTTGGTCCTGTT -ACGGAACGGTATCTTGGTCGGTTT -ACGGAACGGTATCTTGGTGTGGTT -ACGGAACGGTATCTTGGTGCCTTT -ACGGAACGGTATCTTGGTGGTCTT -ACGGAACGGTATCTTGGTACGCTT -ACGGAACGGTATCTTGGTAGCGTT -ACGGAACGGTATCTTGGTTTCGTC -ACGGAACGGTATCTTGGTTCTCTC -ACGGAACGGTATCTTGGTTGGATC -ACGGAACGGTATCTTGGTCACTTC -ACGGAACGGTATCTTGGTGTACTC -ACGGAACGGTATCTTGGTGATGTC -ACGGAACGGTATCTTGGTACAGTC -ACGGAACGGTATCTTGGTTTGCTG -ACGGAACGGTATCTTGGTTCCATG -ACGGAACGGTATCTTGGTTGTGTG -ACGGAACGGTATCTTGGTCTAGTG -ACGGAACGGTATCTTGGTCATCTG -ACGGAACGGTATCTTGGTGAGTTG -ACGGAACGGTATCTTGGTAGACTG -ACGGAACGGTATCTTGGTTCGGTA -ACGGAACGGTATCTTGGTTGCCTA -ACGGAACGGTATCTTGGTCCACTA -ACGGAACGGTATCTTGGTGGAGTA -ACGGAACGGTATCTTGGTTCGTCT -ACGGAACGGTATCTTGGTTGCACT -ACGGAACGGTATCTTGGTCTGACT -ACGGAACGGTATCTTGGTCAACCT -ACGGAACGGTATCTTGGTGCTACT -ACGGAACGGTATCTTGGTGGATCT -ACGGAACGGTATCTTGGTAAGGCT -ACGGAACGGTATCTTGGTTCAACC -ACGGAACGGTATCTTGGTTGTTCC -ACGGAACGGTATCTTGGTATTCCC -ACGGAACGGTATCTTGGTTTCTCG -ACGGAACGGTATCTTGGTTAGACG -ACGGAACGGTATCTTGGTGTAACG -ACGGAACGGTATCTTGGTACTTCG -ACGGAACGGTATCTTGGTTACGCA -ACGGAACGGTATCTTGGTCTTGCA -ACGGAACGGTATCTTGGTCGAACA -ACGGAACGGTATCTTGGTCAGTCA -ACGGAACGGTATCTTGGTGATCCA -ACGGAACGGTATCTTGGTACGACA -ACGGAACGGTATCTTGGTAGCTCA -ACGGAACGGTATCTTGGTTCACGT -ACGGAACGGTATCTTGGTCGTAGT -ACGGAACGGTATCTTGGTGTCAGT -ACGGAACGGTATCTTGGTGAAGGT -ACGGAACGGTATCTTGGTAACCGT -ACGGAACGGTATCTTGGTTTGTGC -ACGGAACGGTATCTTGGTCTAAGC -ACGGAACGGTATCTTGGTACTAGC -ACGGAACGGTATCTTGGTAGATGC -ACGGAACGGTATCTTGGTTGAAGG -ACGGAACGGTATCTTGGTCAATGG -ACGGAACGGTATCTTGGTATGAGG -ACGGAACGGTATCTTGGTAATGGG -ACGGAACGGTATCTTGGTTCCTGA -ACGGAACGGTATCTTGGTTAGCGA -ACGGAACGGTATCTTGGTCACAGA -ACGGAACGGTATCTTGGTGCAAGA -ACGGAACGGTATCTTGGTGGTTGA -ACGGAACGGTATCTTGGTTCCGAT -ACGGAACGGTATCTTGGTTGGCAT -ACGGAACGGTATCTTGGTCGAGAT -ACGGAACGGTATCTTGGTTACCAC -ACGGAACGGTATCTTGGTCAGAAC -ACGGAACGGTATCTTGGTGTCTAC -ACGGAACGGTATCTTGGTACGTAC -ACGGAACGGTATCTTGGTAGTGAC -ACGGAACGGTATCTTGGTCTGTAG -ACGGAACGGTATCTTGGTCCTAAG -ACGGAACGGTATCTTGGTGTTCAG -ACGGAACGGTATCTTGGTGCATAG -ACGGAACGGTATCTTGGTGACAAG -ACGGAACGGTATCTTGGTAAGCAG -ACGGAACGGTATCTTGGTCGTCAA -ACGGAACGGTATCTTGGTGCTGAA -ACGGAACGGTATCTTGGTAGTACG -ACGGAACGGTATCTTGGTATCCGA -ACGGAACGGTATCTTGGTATGGGA -ACGGAACGGTATCTTGGTGTGCAA -ACGGAACGGTATCTTGGTGAGGAA -ACGGAACGGTATCTTGGTCAGGTA -ACGGAACGGTATCTTGGTGACTCT -ACGGAACGGTATCTTGGTAGTCCT -ACGGAACGGTATCTTGGTTAAGCC -ACGGAACGGTATCTTGGTATAGCC -ACGGAACGGTATCTTGGTTAACCG -ACGGAACGGTATCTTGGTATGCCA -ACGGAACGGTATCTTACGGGAAAC -ACGGAACGGTATCTTACGAACACC -ACGGAACGGTATCTTACGATCGAG -ACGGAACGGTATCTTACGCTCCTT -ACGGAACGGTATCTTACGCCTGTT -ACGGAACGGTATCTTACGCGGTTT -ACGGAACGGTATCTTACGGTGGTT -ACGGAACGGTATCTTACGGCCTTT -ACGGAACGGTATCTTACGGGTCTT -ACGGAACGGTATCTTACGACGCTT -ACGGAACGGTATCTTACGAGCGTT -ACGGAACGGTATCTTACGTTCGTC -ACGGAACGGTATCTTACGTCTCTC -ACGGAACGGTATCTTACGTGGATC -ACGGAACGGTATCTTACGCACTTC -ACGGAACGGTATCTTACGGTACTC -ACGGAACGGTATCTTACGGATGTC -ACGGAACGGTATCTTACGACAGTC -ACGGAACGGTATCTTACGTTGCTG -ACGGAACGGTATCTTACGTCCATG -ACGGAACGGTATCTTACGTGTGTG -ACGGAACGGTATCTTACGCTAGTG -ACGGAACGGTATCTTACGCATCTG -ACGGAACGGTATCTTACGGAGTTG -ACGGAACGGTATCTTACGAGACTG -ACGGAACGGTATCTTACGTCGGTA -ACGGAACGGTATCTTACGTGCCTA -ACGGAACGGTATCTTACGCCACTA -ACGGAACGGTATCTTACGGGAGTA -ACGGAACGGTATCTTACGTCGTCT -ACGGAACGGTATCTTACGTGCACT -ACGGAACGGTATCTTACGCTGACT -ACGGAACGGTATCTTACGCAACCT -ACGGAACGGTATCTTACGGCTACT -ACGGAACGGTATCTTACGGGATCT -ACGGAACGGTATCTTACGAAGGCT -ACGGAACGGTATCTTACGTCAACC -ACGGAACGGTATCTTACGTGTTCC -ACGGAACGGTATCTTACGATTCCC -ACGGAACGGTATCTTACGTTCTCG -ACGGAACGGTATCTTACGTAGACG -ACGGAACGGTATCTTACGGTAACG -ACGGAACGGTATCTTACGACTTCG -ACGGAACGGTATCTTACGTACGCA -ACGGAACGGTATCTTACGCTTGCA -ACGGAACGGTATCTTACGCGAACA -ACGGAACGGTATCTTACGCAGTCA -ACGGAACGGTATCTTACGGATCCA -ACGGAACGGTATCTTACGACGACA -ACGGAACGGTATCTTACGAGCTCA -ACGGAACGGTATCTTACGTCACGT -ACGGAACGGTATCTTACGCGTAGT -ACGGAACGGTATCTTACGGTCAGT -ACGGAACGGTATCTTACGGAAGGT -ACGGAACGGTATCTTACGAACCGT -ACGGAACGGTATCTTACGTTGTGC -ACGGAACGGTATCTTACGCTAAGC -ACGGAACGGTATCTTACGACTAGC -ACGGAACGGTATCTTACGAGATGC -ACGGAACGGTATCTTACGTGAAGG -ACGGAACGGTATCTTACGCAATGG -ACGGAACGGTATCTTACGATGAGG -ACGGAACGGTATCTTACGAATGGG -ACGGAACGGTATCTTACGTCCTGA -ACGGAACGGTATCTTACGTAGCGA -ACGGAACGGTATCTTACGCACAGA -ACGGAACGGTATCTTACGGCAAGA -ACGGAACGGTATCTTACGGGTTGA -ACGGAACGGTATCTTACGTCCGAT -ACGGAACGGTATCTTACGTGGCAT -ACGGAACGGTATCTTACGCGAGAT -ACGGAACGGTATCTTACGTACCAC -ACGGAACGGTATCTTACGCAGAAC -ACGGAACGGTATCTTACGGTCTAC -ACGGAACGGTATCTTACGACGTAC -ACGGAACGGTATCTTACGAGTGAC -ACGGAACGGTATCTTACGCTGTAG -ACGGAACGGTATCTTACGCCTAAG -ACGGAACGGTATCTTACGGTTCAG -ACGGAACGGTATCTTACGGCATAG -ACGGAACGGTATCTTACGGACAAG -ACGGAACGGTATCTTACGAAGCAG -ACGGAACGGTATCTTACGCGTCAA -ACGGAACGGTATCTTACGGCTGAA -ACGGAACGGTATCTTACGAGTACG -ACGGAACGGTATCTTACGATCCGA -ACGGAACGGTATCTTACGATGGGA -ACGGAACGGTATCTTACGGTGCAA -ACGGAACGGTATCTTACGGAGGAA -ACGGAACGGTATCTTACGCAGGTA -ACGGAACGGTATCTTACGGACTCT -ACGGAACGGTATCTTACGAGTCCT -ACGGAACGGTATCTTACGTAAGCC -ACGGAACGGTATCTTACGATAGCC -ACGGAACGGTATCTTACGTAACCG -ACGGAACGGTATCTTACGATGCCA -ACGGAACGGTATGTTAGCGGAAAC -ACGGAACGGTATGTTAGCAACACC -ACGGAACGGTATGTTAGCATCGAG -ACGGAACGGTATGTTAGCCTCCTT -ACGGAACGGTATGTTAGCCCTGTT -ACGGAACGGTATGTTAGCCGGTTT -ACGGAACGGTATGTTAGCGTGGTT -ACGGAACGGTATGTTAGCGCCTTT -ACGGAACGGTATGTTAGCGGTCTT -ACGGAACGGTATGTTAGCACGCTT -ACGGAACGGTATGTTAGCAGCGTT -ACGGAACGGTATGTTAGCTTCGTC -ACGGAACGGTATGTTAGCTCTCTC -ACGGAACGGTATGTTAGCTGGATC -ACGGAACGGTATGTTAGCCACTTC -ACGGAACGGTATGTTAGCGTACTC -ACGGAACGGTATGTTAGCGATGTC -ACGGAACGGTATGTTAGCACAGTC -ACGGAACGGTATGTTAGCTTGCTG -ACGGAACGGTATGTTAGCTCCATG -ACGGAACGGTATGTTAGCTGTGTG -ACGGAACGGTATGTTAGCCTAGTG -ACGGAACGGTATGTTAGCCATCTG -ACGGAACGGTATGTTAGCGAGTTG -ACGGAACGGTATGTTAGCAGACTG -ACGGAACGGTATGTTAGCTCGGTA -ACGGAACGGTATGTTAGCTGCCTA -ACGGAACGGTATGTTAGCCCACTA -ACGGAACGGTATGTTAGCGGAGTA -ACGGAACGGTATGTTAGCTCGTCT -ACGGAACGGTATGTTAGCTGCACT -ACGGAACGGTATGTTAGCCTGACT -ACGGAACGGTATGTTAGCCAACCT -ACGGAACGGTATGTTAGCGCTACT -ACGGAACGGTATGTTAGCGGATCT -ACGGAACGGTATGTTAGCAAGGCT -ACGGAACGGTATGTTAGCTCAACC -ACGGAACGGTATGTTAGCTGTTCC -ACGGAACGGTATGTTAGCATTCCC -ACGGAACGGTATGTTAGCTTCTCG -ACGGAACGGTATGTTAGCTAGACG -ACGGAACGGTATGTTAGCGTAACG -ACGGAACGGTATGTTAGCACTTCG -ACGGAACGGTATGTTAGCTACGCA -ACGGAACGGTATGTTAGCCTTGCA -ACGGAACGGTATGTTAGCCGAACA -ACGGAACGGTATGTTAGCCAGTCA -ACGGAACGGTATGTTAGCGATCCA -ACGGAACGGTATGTTAGCACGACA -ACGGAACGGTATGTTAGCAGCTCA -ACGGAACGGTATGTTAGCTCACGT -ACGGAACGGTATGTTAGCCGTAGT -ACGGAACGGTATGTTAGCGTCAGT -ACGGAACGGTATGTTAGCGAAGGT -ACGGAACGGTATGTTAGCAACCGT -ACGGAACGGTATGTTAGCTTGTGC -ACGGAACGGTATGTTAGCCTAAGC -ACGGAACGGTATGTTAGCACTAGC -ACGGAACGGTATGTTAGCAGATGC -ACGGAACGGTATGTTAGCTGAAGG -ACGGAACGGTATGTTAGCCAATGG -ACGGAACGGTATGTTAGCATGAGG -ACGGAACGGTATGTTAGCAATGGG -ACGGAACGGTATGTTAGCTCCTGA -ACGGAACGGTATGTTAGCTAGCGA -ACGGAACGGTATGTTAGCCACAGA -ACGGAACGGTATGTTAGCGCAAGA -ACGGAACGGTATGTTAGCGGTTGA -ACGGAACGGTATGTTAGCTCCGAT -ACGGAACGGTATGTTAGCTGGCAT -ACGGAACGGTATGTTAGCCGAGAT -ACGGAACGGTATGTTAGCTACCAC -ACGGAACGGTATGTTAGCCAGAAC -ACGGAACGGTATGTTAGCGTCTAC -ACGGAACGGTATGTTAGCACGTAC -ACGGAACGGTATGTTAGCAGTGAC -ACGGAACGGTATGTTAGCCTGTAG -ACGGAACGGTATGTTAGCCCTAAG -ACGGAACGGTATGTTAGCGTTCAG -ACGGAACGGTATGTTAGCGCATAG -ACGGAACGGTATGTTAGCGACAAG -ACGGAACGGTATGTTAGCAAGCAG -ACGGAACGGTATGTTAGCCGTCAA -ACGGAACGGTATGTTAGCGCTGAA -ACGGAACGGTATGTTAGCAGTACG -ACGGAACGGTATGTTAGCATCCGA -ACGGAACGGTATGTTAGCATGGGA -ACGGAACGGTATGTTAGCGTGCAA -ACGGAACGGTATGTTAGCGAGGAA -ACGGAACGGTATGTTAGCCAGGTA -ACGGAACGGTATGTTAGCGACTCT -ACGGAACGGTATGTTAGCAGTCCT -ACGGAACGGTATGTTAGCTAAGCC -ACGGAACGGTATGTTAGCATAGCC -ACGGAACGGTATGTTAGCTAACCG -ACGGAACGGTATGTTAGCATGCCA -ACGGAACGGTATGTCTTCGGAAAC -ACGGAACGGTATGTCTTCAACACC -ACGGAACGGTATGTCTTCATCGAG -ACGGAACGGTATGTCTTCCTCCTT -ACGGAACGGTATGTCTTCCCTGTT -ACGGAACGGTATGTCTTCCGGTTT -ACGGAACGGTATGTCTTCGTGGTT -ACGGAACGGTATGTCTTCGCCTTT -ACGGAACGGTATGTCTTCGGTCTT -ACGGAACGGTATGTCTTCACGCTT -ACGGAACGGTATGTCTTCAGCGTT -ACGGAACGGTATGTCTTCTTCGTC -ACGGAACGGTATGTCTTCTCTCTC -ACGGAACGGTATGTCTTCTGGATC -ACGGAACGGTATGTCTTCCACTTC -ACGGAACGGTATGTCTTCGTACTC -ACGGAACGGTATGTCTTCGATGTC -ACGGAACGGTATGTCTTCACAGTC -ACGGAACGGTATGTCTTCTTGCTG -ACGGAACGGTATGTCTTCTCCATG -ACGGAACGGTATGTCTTCTGTGTG -ACGGAACGGTATGTCTTCCTAGTG -ACGGAACGGTATGTCTTCCATCTG -ACGGAACGGTATGTCTTCGAGTTG -ACGGAACGGTATGTCTTCAGACTG -ACGGAACGGTATGTCTTCTCGGTA -ACGGAACGGTATGTCTTCTGCCTA -ACGGAACGGTATGTCTTCCCACTA -ACGGAACGGTATGTCTTCGGAGTA -ACGGAACGGTATGTCTTCTCGTCT -ACGGAACGGTATGTCTTCTGCACT -ACGGAACGGTATGTCTTCCTGACT -ACGGAACGGTATGTCTTCCAACCT -ACGGAACGGTATGTCTTCGCTACT -ACGGAACGGTATGTCTTCGGATCT -ACGGAACGGTATGTCTTCAAGGCT -ACGGAACGGTATGTCTTCTCAACC -ACGGAACGGTATGTCTTCTGTTCC -ACGGAACGGTATGTCTTCATTCCC -ACGGAACGGTATGTCTTCTTCTCG -ACGGAACGGTATGTCTTCTAGACG -ACGGAACGGTATGTCTTCGTAACG -ACGGAACGGTATGTCTTCACTTCG -ACGGAACGGTATGTCTTCTACGCA -ACGGAACGGTATGTCTTCCTTGCA -ACGGAACGGTATGTCTTCCGAACA -ACGGAACGGTATGTCTTCCAGTCA -ACGGAACGGTATGTCTTCGATCCA -ACGGAACGGTATGTCTTCACGACA -ACGGAACGGTATGTCTTCAGCTCA -ACGGAACGGTATGTCTTCTCACGT -ACGGAACGGTATGTCTTCCGTAGT -ACGGAACGGTATGTCTTCGTCAGT -ACGGAACGGTATGTCTTCGAAGGT -ACGGAACGGTATGTCTTCAACCGT -ACGGAACGGTATGTCTTCTTGTGC -ACGGAACGGTATGTCTTCCTAAGC -ACGGAACGGTATGTCTTCACTAGC -ACGGAACGGTATGTCTTCAGATGC -ACGGAACGGTATGTCTTCTGAAGG -ACGGAACGGTATGTCTTCCAATGG -ACGGAACGGTATGTCTTCATGAGG -ACGGAACGGTATGTCTTCAATGGG -ACGGAACGGTATGTCTTCTCCTGA -ACGGAACGGTATGTCTTCTAGCGA -ACGGAACGGTATGTCTTCCACAGA -ACGGAACGGTATGTCTTCGCAAGA -ACGGAACGGTATGTCTTCGGTTGA -ACGGAACGGTATGTCTTCTCCGAT -ACGGAACGGTATGTCTTCTGGCAT -ACGGAACGGTATGTCTTCCGAGAT -ACGGAACGGTATGTCTTCTACCAC -ACGGAACGGTATGTCTTCCAGAAC -ACGGAACGGTATGTCTTCGTCTAC -ACGGAACGGTATGTCTTCACGTAC -ACGGAACGGTATGTCTTCAGTGAC -ACGGAACGGTATGTCTTCCTGTAG -ACGGAACGGTATGTCTTCCCTAAG -ACGGAACGGTATGTCTTCGTTCAG -ACGGAACGGTATGTCTTCGCATAG -ACGGAACGGTATGTCTTCGACAAG -ACGGAACGGTATGTCTTCAAGCAG -ACGGAACGGTATGTCTTCCGTCAA -ACGGAACGGTATGTCTTCGCTGAA -ACGGAACGGTATGTCTTCAGTACG -ACGGAACGGTATGTCTTCATCCGA -ACGGAACGGTATGTCTTCATGGGA -ACGGAACGGTATGTCTTCGTGCAA -ACGGAACGGTATGTCTTCGAGGAA -ACGGAACGGTATGTCTTCCAGGTA -ACGGAACGGTATGTCTTCGACTCT -ACGGAACGGTATGTCTTCAGTCCT -ACGGAACGGTATGTCTTCTAAGCC -ACGGAACGGTATGTCTTCATAGCC -ACGGAACGGTATGTCTTCTAACCG -ACGGAACGGTATGTCTTCATGCCA -ACGGAACGGTATCTCTCTGGAAAC -ACGGAACGGTATCTCTCTAACACC -ACGGAACGGTATCTCTCTATCGAG -ACGGAACGGTATCTCTCTCTCCTT -ACGGAACGGTATCTCTCTCCTGTT -ACGGAACGGTATCTCTCTCGGTTT -ACGGAACGGTATCTCTCTGTGGTT -ACGGAACGGTATCTCTCTGCCTTT -ACGGAACGGTATCTCTCTGGTCTT -ACGGAACGGTATCTCTCTACGCTT -ACGGAACGGTATCTCTCTAGCGTT -ACGGAACGGTATCTCTCTTTCGTC -ACGGAACGGTATCTCTCTTCTCTC -ACGGAACGGTATCTCTCTTGGATC -ACGGAACGGTATCTCTCTCACTTC -ACGGAACGGTATCTCTCTGTACTC -ACGGAACGGTATCTCTCTGATGTC -ACGGAACGGTATCTCTCTACAGTC -ACGGAACGGTATCTCTCTTTGCTG -ACGGAACGGTATCTCTCTTCCATG -ACGGAACGGTATCTCTCTTGTGTG -ACGGAACGGTATCTCTCTCTAGTG -ACGGAACGGTATCTCTCTCATCTG -ACGGAACGGTATCTCTCTGAGTTG -ACGGAACGGTATCTCTCTAGACTG -ACGGAACGGTATCTCTCTTCGGTA -ACGGAACGGTATCTCTCTTGCCTA -ACGGAACGGTATCTCTCTCCACTA -ACGGAACGGTATCTCTCTGGAGTA -ACGGAACGGTATCTCTCTTCGTCT -ACGGAACGGTATCTCTCTTGCACT -ACGGAACGGTATCTCTCTCTGACT -ACGGAACGGTATCTCTCTCAACCT -ACGGAACGGTATCTCTCTGCTACT -ACGGAACGGTATCTCTCTGGATCT -ACGGAACGGTATCTCTCTAAGGCT -ACGGAACGGTATCTCTCTTCAACC -ACGGAACGGTATCTCTCTTGTTCC -ACGGAACGGTATCTCTCTATTCCC -ACGGAACGGTATCTCTCTTTCTCG -ACGGAACGGTATCTCTCTTAGACG -ACGGAACGGTATCTCTCTGTAACG -ACGGAACGGTATCTCTCTACTTCG -ACGGAACGGTATCTCTCTTACGCA -ACGGAACGGTATCTCTCTCTTGCA -ACGGAACGGTATCTCTCTCGAACA -ACGGAACGGTATCTCTCTCAGTCA -ACGGAACGGTATCTCTCTGATCCA -ACGGAACGGTATCTCTCTACGACA -ACGGAACGGTATCTCTCTAGCTCA -ACGGAACGGTATCTCTCTTCACGT -ACGGAACGGTATCTCTCTCGTAGT -ACGGAACGGTATCTCTCTGTCAGT -ACGGAACGGTATCTCTCTGAAGGT -ACGGAACGGTATCTCTCTAACCGT -ACGGAACGGTATCTCTCTTTGTGC -ACGGAACGGTATCTCTCTCTAAGC -ACGGAACGGTATCTCTCTACTAGC -ACGGAACGGTATCTCTCTAGATGC -ACGGAACGGTATCTCTCTTGAAGG -ACGGAACGGTATCTCTCTCAATGG -ACGGAACGGTATCTCTCTATGAGG -ACGGAACGGTATCTCTCTAATGGG -ACGGAACGGTATCTCTCTTCCTGA -ACGGAACGGTATCTCTCTTAGCGA -ACGGAACGGTATCTCTCTCACAGA -ACGGAACGGTATCTCTCTGCAAGA -ACGGAACGGTATCTCTCTGGTTGA -ACGGAACGGTATCTCTCTTCCGAT -ACGGAACGGTATCTCTCTTGGCAT -ACGGAACGGTATCTCTCTCGAGAT -ACGGAACGGTATCTCTCTTACCAC -ACGGAACGGTATCTCTCTCAGAAC -ACGGAACGGTATCTCTCTGTCTAC -ACGGAACGGTATCTCTCTACGTAC -ACGGAACGGTATCTCTCTAGTGAC -ACGGAACGGTATCTCTCTCTGTAG -ACGGAACGGTATCTCTCTCCTAAG -ACGGAACGGTATCTCTCTGTTCAG -ACGGAACGGTATCTCTCTGCATAG -ACGGAACGGTATCTCTCTGACAAG -ACGGAACGGTATCTCTCTAAGCAG -ACGGAACGGTATCTCTCTCGTCAA -ACGGAACGGTATCTCTCTGCTGAA -ACGGAACGGTATCTCTCTAGTACG -ACGGAACGGTATCTCTCTATCCGA -ACGGAACGGTATCTCTCTATGGGA -ACGGAACGGTATCTCTCTGTGCAA -ACGGAACGGTATCTCTCTGAGGAA -ACGGAACGGTATCTCTCTCAGGTA -ACGGAACGGTATCTCTCTGACTCT -ACGGAACGGTATCTCTCTAGTCCT -ACGGAACGGTATCTCTCTTAAGCC -ACGGAACGGTATCTCTCTATAGCC -ACGGAACGGTATCTCTCTTAACCG -ACGGAACGGTATCTCTCTATGCCA -ACGGAACGGTATATCTGGGGAAAC -ACGGAACGGTATATCTGGAACACC -ACGGAACGGTATATCTGGATCGAG -ACGGAACGGTATATCTGGCTCCTT -ACGGAACGGTATATCTGGCCTGTT -ACGGAACGGTATATCTGGCGGTTT -ACGGAACGGTATATCTGGGTGGTT -ACGGAACGGTATATCTGGGCCTTT -ACGGAACGGTATATCTGGGGTCTT -ACGGAACGGTATATCTGGACGCTT -ACGGAACGGTATATCTGGAGCGTT -ACGGAACGGTATATCTGGTTCGTC -ACGGAACGGTATATCTGGTCTCTC -ACGGAACGGTATATCTGGTGGATC -ACGGAACGGTATATCTGGCACTTC -ACGGAACGGTATATCTGGGTACTC -ACGGAACGGTATATCTGGGATGTC -ACGGAACGGTATATCTGGACAGTC -ACGGAACGGTATATCTGGTTGCTG -ACGGAACGGTATATCTGGTCCATG -ACGGAACGGTATATCTGGTGTGTG -ACGGAACGGTATATCTGGCTAGTG -ACGGAACGGTATATCTGGCATCTG -ACGGAACGGTATATCTGGGAGTTG -ACGGAACGGTATATCTGGAGACTG -ACGGAACGGTATATCTGGTCGGTA -ACGGAACGGTATATCTGGTGCCTA -ACGGAACGGTATATCTGGCCACTA -ACGGAACGGTATATCTGGGGAGTA -ACGGAACGGTATATCTGGTCGTCT -ACGGAACGGTATATCTGGTGCACT -ACGGAACGGTATATCTGGCTGACT -ACGGAACGGTATATCTGGCAACCT -ACGGAACGGTATATCTGGGCTACT -ACGGAACGGTATATCTGGGGATCT -ACGGAACGGTATATCTGGAAGGCT -ACGGAACGGTATATCTGGTCAACC -ACGGAACGGTATATCTGGTGTTCC -ACGGAACGGTATATCTGGATTCCC -ACGGAACGGTATATCTGGTTCTCG -ACGGAACGGTATATCTGGTAGACG -ACGGAACGGTATATCTGGGTAACG -ACGGAACGGTATATCTGGACTTCG -ACGGAACGGTATATCTGGTACGCA -ACGGAACGGTATATCTGGCTTGCA -ACGGAACGGTATATCTGGCGAACA -ACGGAACGGTATATCTGGCAGTCA -ACGGAACGGTATATCTGGGATCCA -ACGGAACGGTATATCTGGACGACA -ACGGAACGGTATATCTGGAGCTCA -ACGGAACGGTATATCTGGTCACGT -ACGGAACGGTATATCTGGCGTAGT -ACGGAACGGTATATCTGGGTCAGT -ACGGAACGGTATATCTGGGAAGGT -ACGGAACGGTATATCTGGAACCGT -ACGGAACGGTATATCTGGTTGTGC -ACGGAACGGTATATCTGGCTAAGC -ACGGAACGGTATATCTGGACTAGC -ACGGAACGGTATATCTGGAGATGC -ACGGAACGGTATATCTGGTGAAGG -ACGGAACGGTATATCTGGCAATGG -ACGGAACGGTATATCTGGATGAGG -ACGGAACGGTATATCTGGAATGGG -ACGGAACGGTATATCTGGTCCTGA -ACGGAACGGTATATCTGGTAGCGA -ACGGAACGGTATATCTGGCACAGA -ACGGAACGGTATATCTGGGCAAGA -ACGGAACGGTATATCTGGGGTTGA -ACGGAACGGTATATCTGGTCCGAT -ACGGAACGGTATATCTGGTGGCAT -ACGGAACGGTATATCTGGCGAGAT -ACGGAACGGTATATCTGGTACCAC -ACGGAACGGTATATCTGGCAGAAC -ACGGAACGGTATATCTGGGTCTAC -ACGGAACGGTATATCTGGACGTAC -ACGGAACGGTATATCTGGAGTGAC -ACGGAACGGTATATCTGGCTGTAG -ACGGAACGGTATATCTGGCCTAAG -ACGGAACGGTATATCTGGGTTCAG -ACGGAACGGTATATCTGGGCATAG -ACGGAACGGTATATCTGGGACAAG -ACGGAACGGTATATCTGGAAGCAG -ACGGAACGGTATATCTGGCGTCAA -ACGGAACGGTATATCTGGGCTGAA -ACGGAACGGTATATCTGGAGTACG -ACGGAACGGTATATCTGGATCCGA -ACGGAACGGTATATCTGGATGGGA -ACGGAACGGTATATCTGGGTGCAA -ACGGAACGGTATATCTGGGAGGAA -ACGGAACGGTATATCTGGCAGGTA -ACGGAACGGTATATCTGGGACTCT -ACGGAACGGTATATCTGGAGTCCT -ACGGAACGGTATATCTGGTAAGCC -ACGGAACGGTATATCTGGATAGCC -ACGGAACGGTATATCTGGTAACCG -ACGGAACGGTATATCTGGATGCCA -ACGGAACGGTATTTCCACGGAAAC -ACGGAACGGTATTTCCACAACACC -ACGGAACGGTATTTCCACATCGAG -ACGGAACGGTATTTCCACCTCCTT -ACGGAACGGTATTTCCACCCTGTT -ACGGAACGGTATTTCCACCGGTTT -ACGGAACGGTATTTCCACGTGGTT -ACGGAACGGTATTTCCACGCCTTT -ACGGAACGGTATTTCCACGGTCTT -ACGGAACGGTATTTCCACACGCTT -ACGGAACGGTATTTCCACAGCGTT -ACGGAACGGTATTTCCACTTCGTC -ACGGAACGGTATTTCCACTCTCTC -ACGGAACGGTATTTCCACTGGATC -ACGGAACGGTATTTCCACCACTTC -ACGGAACGGTATTTCCACGTACTC -ACGGAACGGTATTTCCACGATGTC -ACGGAACGGTATTTCCACACAGTC -ACGGAACGGTATTTCCACTTGCTG -ACGGAACGGTATTTCCACTCCATG -ACGGAACGGTATTTCCACTGTGTG -ACGGAACGGTATTTCCACCTAGTG -ACGGAACGGTATTTCCACCATCTG -ACGGAACGGTATTTCCACGAGTTG -ACGGAACGGTATTTCCACAGACTG -ACGGAACGGTATTTCCACTCGGTA -ACGGAACGGTATTTCCACTGCCTA -ACGGAACGGTATTTCCACCCACTA -ACGGAACGGTATTTCCACGGAGTA -ACGGAACGGTATTTCCACTCGTCT -ACGGAACGGTATTTCCACTGCACT -ACGGAACGGTATTTCCACCTGACT -ACGGAACGGTATTTCCACCAACCT -ACGGAACGGTATTTCCACGCTACT -ACGGAACGGTATTTCCACGGATCT -ACGGAACGGTATTTCCACAAGGCT -ACGGAACGGTATTTCCACTCAACC -ACGGAACGGTATTTCCACTGTTCC -ACGGAACGGTATTTCCACATTCCC -ACGGAACGGTATTTCCACTTCTCG -ACGGAACGGTATTTCCACTAGACG -ACGGAACGGTATTTCCACGTAACG -ACGGAACGGTATTTCCACACTTCG -ACGGAACGGTATTTCCACTACGCA -ACGGAACGGTATTTCCACCTTGCA -ACGGAACGGTATTTCCACCGAACA -ACGGAACGGTATTTCCACCAGTCA -ACGGAACGGTATTTCCACGATCCA -ACGGAACGGTATTTCCACACGACA -ACGGAACGGTATTTCCACAGCTCA -ACGGAACGGTATTTCCACTCACGT -ACGGAACGGTATTTCCACCGTAGT -ACGGAACGGTATTTCCACGTCAGT -ACGGAACGGTATTTCCACGAAGGT -ACGGAACGGTATTTCCACAACCGT -ACGGAACGGTATTTCCACTTGTGC -ACGGAACGGTATTTCCACCTAAGC -ACGGAACGGTATTTCCACACTAGC -ACGGAACGGTATTTCCACAGATGC -ACGGAACGGTATTTCCACTGAAGG -ACGGAACGGTATTTCCACCAATGG -ACGGAACGGTATTTCCACATGAGG -ACGGAACGGTATTTCCACAATGGG -ACGGAACGGTATTTCCACTCCTGA -ACGGAACGGTATTTCCACTAGCGA -ACGGAACGGTATTTCCACCACAGA -ACGGAACGGTATTTCCACGCAAGA -ACGGAACGGTATTTCCACGGTTGA -ACGGAACGGTATTTCCACTCCGAT -ACGGAACGGTATTTCCACTGGCAT -ACGGAACGGTATTTCCACCGAGAT -ACGGAACGGTATTTCCACTACCAC -ACGGAACGGTATTTCCACCAGAAC -ACGGAACGGTATTTCCACGTCTAC -ACGGAACGGTATTTCCACACGTAC -ACGGAACGGTATTTCCACAGTGAC -ACGGAACGGTATTTCCACCTGTAG -ACGGAACGGTATTTCCACCCTAAG -ACGGAACGGTATTTCCACGTTCAG -ACGGAACGGTATTTCCACGCATAG -ACGGAACGGTATTTCCACGACAAG -ACGGAACGGTATTTCCACAAGCAG -ACGGAACGGTATTTCCACCGTCAA -ACGGAACGGTATTTCCACGCTGAA -ACGGAACGGTATTTCCACAGTACG -ACGGAACGGTATTTCCACATCCGA -ACGGAACGGTATTTCCACATGGGA -ACGGAACGGTATTTCCACGTGCAA -ACGGAACGGTATTTCCACGAGGAA -ACGGAACGGTATTTCCACCAGGTA -ACGGAACGGTATTTCCACGACTCT -ACGGAACGGTATTTCCACAGTCCT -ACGGAACGGTATTTCCACTAAGCC -ACGGAACGGTATTTCCACATAGCC -ACGGAACGGTATTTCCACTAACCG -ACGGAACGGTATTTCCACATGCCA -ACGGAACGGTATCTCGTAGGAAAC -ACGGAACGGTATCTCGTAAACACC -ACGGAACGGTATCTCGTAATCGAG -ACGGAACGGTATCTCGTACTCCTT -ACGGAACGGTATCTCGTACCTGTT -ACGGAACGGTATCTCGTACGGTTT -ACGGAACGGTATCTCGTAGTGGTT -ACGGAACGGTATCTCGTAGCCTTT -ACGGAACGGTATCTCGTAGGTCTT -ACGGAACGGTATCTCGTAACGCTT -ACGGAACGGTATCTCGTAAGCGTT -ACGGAACGGTATCTCGTATTCGTC -ACGGAACGGTATCTCGTATCTCTC -ACGGAACGGTATCTCGTATGGATC -ACGGAACGGTATCTCGTACACTTC -ACGGAACGGTATCTCGTAGTACTC -ACGGAACGGTATCTCGTAGATGTC -ACGGAACGGTATCTCGTAACAGTC -ACGGAACGGTATCTCGTATTGCTG -ACGGAACGGTATCTCGTATCCATG -ACGGAACGGTATCTCGTATGTGTG -ACGGAACGGTATCTCGTACTAGTG -ACGGAACGGTATCTCGTACATCTG -ACGGAACGGTATCTCGTAGAGTTG -ACGGAACGGTATCTCGTAAGACTG -ACGGAACGGTATCTCGTATCGGTA -ACGGAACGGTATCTCGTATGCCTA -ACGGAACGGTATCTCGTACCACTA -ACGGAACGGTATCTCGTAGGAGTA -ACGGAACGGTATCTCGTATCGTCT -ACGGAACGGTATCTCGTATGCACT -ACGGAACGGTATCTCGTACTGACT -ACGGAACGGTATCTCGTACAACCT -ACGGAACGGTATCTCGTAGCTACT -ACGGAACGGTATCTCGTAGGATCT -ACGGAACGGTATCTCGTAAAGGCT -ACGGAACGGTATCTCGTATCAACC -ACGGAACGGTATCTCGTATGTTCC -ACGGAACGGTATCTCGTAATTCCC -ACGGAACGGTATCTCGTATTCTCG -ACGGAACGGTATCTCGTATAGACG -ACGGAACGGTATCTCGTAGTAACG -ACGGAACGGTATCTCGTAACTTCG -ACGGAACGGTATCTCGTATACGCA -ACGGAACGGTATCTCGTACTTGCA -ACGGAACGGTATCTCGTACGAACA -ACGGAACGGTATCTCGTACAGTCA -ACGGAACGGTATCTCGTAGATCCA -ACGGAACGGTATCTCGTAACGACA -ACGGAACGGTATCTCGTAAGCTCA -ACGGAACGGTATCTCGTATCACGT -ACGGAACGGTATCTCGTACGTAGT -ACGGAACGGTATCTCGTAGTCAGT -ACGGAACGGTATCTCGTAGAAGGT -ACGGAACGGTATCTCGTAAACCGT -ACGGAACGGTATCTCGTATTGTGC -ACGGAACGGTATCTCGTACTAAGC -ACGGAACGGTATCTCGTAACTAGC -ACGGAACGGTATCTCGTAAGATGC -ACGGAACGGTATCTCGTATGAAGG -ACGGAACGGTATCTCGTACAATGG -ACGGAACGGTATCTCGTAATGAGG -ACGGAACGGTATCTCGTAAATGGG -ACGGAACGGTATCTCGTATCCTGA -ACGGAACGGTATCTCGTATAGCGA -ACGGAACGGTATCTCGTACACAGA -ACGGAACGGTATCTCGTAGCAAGA -ACGGAACGGTATCTCGTAGGTTGA -ACGGAACGGTATCTCGTATCCGAT -ACGGAACGGTATCTCGTATGGCAT -ACGGAACGGTATCTCGTACGAGAT -ACGGAACGGTATCTCGTATACCAC -ACGGAACGGTATCTCGTACAGAAC -ACGGAACGGTATCTCGTAGTCTAC -ACGGAACGGTATCTCGTAACGTAC -ACGGAACGGTATCTCGTAAGTGAC -ACGGAACGGTATCTCGTACTGTAG -ACGGAACGGTATCTCGTACCTAAG -ACGGAACGGTATCTCGTAGTTCAG -ACGGAACGGTATCTCGTAGCATAG -ACGGAACGGTATCTCGTAGACAAG -ACGGAACGGTATCTCGTAAAGCAG -ACGGAACGGTATCTCGTACGTCAA -ACGGAACGGTATCTCGTAGCTGAA -ACGGAACGGTATCTCGTAAGTACG -ACGGAACGGTATCTCGTAATCCGA -ACGGAACGGTATCTCGTAATGGGA -ACGGAACGGTATCTCGTAGTGCAA -ACGGAACGGTATCTCGTAGAGGAA -ACGGAACGGTATCTCGTACAGGTA -ACGGAACGGTATCTCGTAGACTCT -ACGGAACGGTATCTCGTAAGTCCT -ACGGAACGGTATCTCGTATAAGCC -ACGGAACGGTATCTCGTAATAGCC -ACGGAACGGTATCTCGTATAACCG -ACGGAACGGTATCTCGTAATGCCA -ACGGAACGGTATGTCGATGGAAAC -ACGGAACGGTATGTCGATAACACC -ACGGAACGGTATGTCGATATCGAG -ACGGAACGGTATGTCGATCTCCTT -ACGGAACGGTATGTCGATCCTGTT -ACGGAACGGTATGTCGATCGGTTT -ACGGAACGGTATGTCGATGTGGTT -ACGGAACGGTATGTCGATGCCTTT -ACGGAACGGTATGTCGATGGTCTT -ACGGAACGGTATGTCGATACGCTT -ACGGAACGGTATGTCGATAGCGTT -ACGGAACGGTATGTCGATTTCGTC -ACGGAACGGTATGTCGATTCTCTC -ACGGAACGGTATGTCGATTGGATC -ACGGAACGGTATGTCGATCACTTC -ACGGAACGGTATGTCGATGTACTC -ACGGAACGGTATGTCGATGATGTC -ACGGAACGGTATGTCGATACAGTC -ACGGAACGGTATGTCGATTTGCTG -ACGGAACGGTATGTCGATTCCATG -ACGGAACGGTATGTCGATTGTGTG -ACGGAACGGTATGTCGATCTAGTG -ACGGAACGGTATGTCGATCATCTG -ACGGAACGGTATGTCGATGAGTTG -ACGGAACGGTATGTCGATAGACTG -ACGGAACGGTATGTCGATTCGGTA -ACGGAACGGTATGTCGATTGCCTA -ACGGAACGGTATGTCGATCCACTA -ACGGAACGGTATGTCGATGGAGTA -ACGGAACGGTATGTCGATTCGTCT -ACGGAACGGTATGTCGATTGCACT -ACGGAACGGTATGTCGATCTGACT -ACGGAACGGTATGTCGATCAACCT -ACGGAACGGTATGTCGATGCTACT -ACGGAACGGTATGTCGATGGATCT -ACGGAACGGTATGTCGATAAGGCT -ACGGAACGGTATGTCGATTCAACC -ACGGAACGGTATGTCGATTGTTCC -ACGGAACGGTATGTCGATATTCCC -ACGGAACGGTATGTCGATTTCTCG -ACGGAACGGTATGTCGATTAGACG -ACGGAACGGTATGTCGATGTAACG -ACGGAACGGTATGTCGATACTTCG -ACGGAACGGTATGTCGATTACGCA -ACGGAACGGTATGTCGATCTTGCA -ACGGAACGGTATGTCGATCGAACA -ACGGAACGGTATGTCGATCAGTCA -ACGGAACGGTATGTCGATGATCCA -ACGGAACGGTATGTCGATACGACA -ACGGAACGGTATGTCGATAGCTCA -ACGGAACGGTATGTCGATTCACGT -ACGGAACGGTATGTCGATCGTAGT -ACGGAACGGTATGTCGATGTCAGT -ACGGAACGGTATGTCGATGAAGGT -ACGGAACGGTATGTCGATAACCGT -ACGGAACGGTATGTCGATTTGTGC -ACGGAACGGTATGTCGATCTAAGC -ACGGAACGGTATGTCGATACTAGC -ACGGAACGGTATGTCGATAGATGC -ACGGAACGGTATGTCGATTGAAGG -ACGGAACGGTATGTCGATCAATGG -ACGGAACGGTATGTCGATATGAGG -ACGGAACGGTATGTCGATAATGGG -ACGGAACGGTATGTCGATTCCTGA -ACGGAACGGTATGTCGATTAGCGA -ACGGAACGGTATGTCGATCACAGA -ACGGAACGGTATGTCGATGCAAGA -ACGGAACGGTATGTCGATGGTTGA -ACGGAACGGTATGTCGATTCCGAT -ACGGAACGGTATGTCGATTGGCAT -ACGGAACGGTATGTCGATCGAGAT -ACGGAACGGTATGTCGATTACCAC -ACGGAACGGTATGTCGATCAGAAC -ACGGAACGGTATGTCGATGTCTAC -ACGGAACGGTATGTCGATACGTAC -ACGGAACGGTATGTCGATAGTGAC -ACGGAACGGTATGTCGATCTGTAG -ACGGAACGGTATGTCGATCCTAAG -ACGGAACGGTATGTCGATGTTCAG -ACGGAACGGTATGTCGATGCATAG -ACGGAACGGTATGTCGATGACAAG -ACGGAACGGTATGTCGATAAGCAG -ACGGAACGGTATGTCGATCGTCAA -ACGGAACGGTATGTCGATGCTGAA -ACGGAACGGTATGTCGATAGTACG -ACGGAACGGTATGTCGATATCCGA -ACGGAACGGTATGTCGATATGGGA -ACGGAACGGTATGTCGATGTGCAA -ACGGAACGGTATGTCGATGAGGAA -ACGGAACGGTATGTCGATCAGGTA -ACGGAACGGTATGTCGATGACTCT -ACGGAACGGTATGTCGATAGTCCT -ACGGAACGGTATGTCGATTAAGCC -ACGGAACGGTATGTCGATATAGCC -ACGGAACGGTATGTCGATTAACCG -ACGGAACGGTATGTCGATATGCCA -ACGGAACGGTATGTCACAGGAAAC -ACGGAACGGTATGTCACAAACACC -ACGGAACGGTATGTCACAATCGAG -ACGGAACGGTATGTCACACTCCTT -ACGGAACGGTATGTCACACCTGTT -ACGGAACGGTATGTCACACGGTTT -ACGGAACGGTATGTCACAGTGGTT -ACGGAACGGTATGTCACAGCCTTT -ACGGAACGGTATGTCACAGGTCTT -ACGGAACGGTATGTCACAACGCTT -ACGGAACGGTATGTCACAAGCGTT -ACGGAACGGTATGTCACATTCGTC -ACGGAACGGTATGTCACATCTCTC -ACGGAACGGTATGTCACATGGATC -ACGGAACGGTATGTCACACACTTC -ACGGAACGGTATGTCACAGTACTC -ACGGAACGGTATGTCACAGATGTC -ACGGAACGGTATGTCACAACAGTC -ACGGAACGGTATGTCACATTGCTG -ACGGAACGGTATGTCACATCCATG -ACGGAACGGTATGTCACATGTGTG -ACGGAACGGTATGTCACACTAGTG -ACGGAACGGTATGTCACACATCTG -ACGGAACGGTATGTCACAGAGTTG -ACGGAACGGTATGTCACAAGACTG -ACGGAACGGTATGTCACATCGGTA -ACGGAACGGTATGTCACATGCCTA -ACGGAACGGTATGTCACACCACTA -ACGGAACGGTATGTCACAGGAGTA -ACGGAACGGTATGTCACATCGTCT -ACGGAACGGTATGTCACATGCACT -ACGGAACGGTATGTCACACTGACT -ACGGAACGGTATGTCACACAACCT -ACGGAACGGTATGTCACAGCTACT -ACGGAACGGTATGTCACAGGATCT -ACGGAACGGTATGTCACAAAGGCT -ACGGAACGGTATGTCACATCAACC -ACGGAACGGTATGTCACATGTTCC -ACGGAACGGTATGTCACAATTCCC -ACGGAACGGTATGTCACATTCTCG -ACGGAACGGTATGTCACATAGACG -ACGGAACGGTATGTCACAGTAACG -ACGGAACGGTATGTCACAACTTCG -ACGGAACGGTATGTCACATACGCA -ACGGAACGGTATGTCACACTTGCA -ACGGAACGGTATGTCACACGAACA -ACGGAACGGTATGTCACACAGTCA -ACGGAACGGTATGTCACAGATCCA -ACGGAACGGTATGTCACAACGACA -ACGGAACGGTATGTCACAAGCTCA -ACGGAACGGTATGTCACATCACGT -ACGGAACGGTATGTCACACGTAGT -ACGGAACGGTATGTCACAGTCAGT -ACGGAACGGTATGTCACAGAAGGT -ACGGAACGGTATGTCACAAACCGT -ACGGAACGGTATGTCACATTGTGC -ACGGAACGGTATGTCACACTAAGC -ACGGAACGGTATGTCACAACTAGC -ACGGAACGGTATGTCACAAGATGC -ACGGAACGGTATGTCACATGAAGG -ACGGAACGGTATGTCACACAATGG -ACGGAACGGTATGTCACAATGAGG -ACGGAACGGTATGTCACAAATGGG -ACGGAACGGTATGTCACATCCTGA -ACGGAACGGTATGTCACATAGCGA -ACGGAACGGTATGTCACACACAGA -ACGGAACGGTATGTCACAGCAAGA -ACGGAACGGTATGTCACAGGTTGA -ACGGAACGGTATGTCACATCCGAT -ACGGAACGGTATGTCACATGGCAT -ACGGAACGGTATGTCACACGAGAT -ACGGAACGGTATGTCACATACCAC -ACGGAACGGTATGTCACACAGAAC -ACGGAACGGTATGTCACAGTCTAC -ACGGAACGGTATGTCACAACGTAC -ACGGAACGGTATGTCACAAGTGAC -ACGGAACGGTATGTCACACTGTAG -ACGGAACGGTATGTCACACCTAAG -ACGGAACGGTATGTCACAGTTCAG -ACGGAACGGTATGTCACAGCATAG -ACGGAACGGTATGTCACAGACAAG -ACGGAACGGTATGTCACAAAGCAG -ACGGAACGGTATGTCACACGTCAA -ACGGAACGGTATGTCACAGCTGAA -ACGGAACGGTATGTCACAAGTACG -ACGGAACGGTATGTCACAATCCGA -ACGGAACGGTATGTCACAATGGGA -ACGGAACGGTATGTCACAGTGCAA -ACGGAACGGTATGTCACAGAGGAA -ACGGAACGGTATGTCACACAGGTA -ACGGAACGGTATGTCACAGACTCT -ACGGAACGGTATGTCACAAGTCCT -ACGGAACGGTATGTCACATAAGCC -ACGGAACGGTATGTCACAATAGCC -ACGGAACGGTATGTCACATAACCG -ACGGAACGGTATGTCACAATGCCA -ACGGAACGGTATCTGTTGGGAAAC -ACGGAACGGTATCTGTTGAACACC -ACGGAACGGTATCTGTTGATCGAG -ACGGAACGGTATCTGTTGCTCCTT -ACGGAACGGTATCTGTTGCCTGTT -ACGGAACGGTATCTGTTGCGGTTT -ACGGAACGGTATCTGTTGGTGGTT -ACGGAACGGTATCTGTTGGCCTTT -ACGGAACGGTATCTGTTGGGTCTT -ACGGAACGGTATCTGTTGACGCTT -ACGGAACGGTATCTGTTGAGCGTT -ACGGAACGGTATCTGTTGTTCGTC -ACGGAACGGTATCTGTTGTCTCTC -ACGGAACGGTATCTGTTGTGGATC -ACGGAACGGTATCTGTTGCACTTC -ACGGAACGGTATCTGTTGGTACTC -ACGGAACGGTATCTGTTGGATGTC -ACGGAACGGTATCTGTTGACAGTC -ACGGAACGGTATCTGTTGTTGCTG -ACGGAACGGTATCTGTTGTCCATG -ACGGAACGGTATCTGTTGTGTGTG -ACGGAACGGTATCTGTTGCTAGTG -ACGGAACGGTATCTGTTGCATCTG -ACGGAACGGTATCTGTTGGAGTTG -ACGGAACGGTATCTGTTGAGACTG -ACGGAACGGTATCTGTTGTCGGTA -ACGGAACGGTATCTGTTGTGCCTA -ACGGAACGGTATCTGTTGCCACTA -ACGGAACGGTATCTGTTGGGAGTA -ACGGAACGGTATCTGTTGTCGTCT -ACGGAACGGTATCTGTTGTGCACT -ACGGAACGGTATCTGTTGCTGACT -ACGGAACGGTATCTGTTGCAACCT -ACGGAACGGTATCTGTTGGCTACT -ACGGAACGGTATCTGTTGGGATCT -ACGGAACGGTATCTGTTGAAGGCT -ACGGAACGGTATCTGTTGTCAACC -ACGGAACGGTATCTGTTGTGTTCC -ACGGAACGGTATCTGTTGATTCCC -ACGGAACGGTATCTGTTGTTCTCG -ACGGAACGGTATCTGTTGTAGACG -ACGGAACGGTATCTGTTGGTAACG -ACGGAACGGTATCTGTTGACTTCG -ACGGAACGGTATCTGTTGTACGCA -ACGGAACGGTATCTGTTGCTTGCA -ACGGAACGGTATCTGTTGCGAACA -ACGGAACGGTATCTGTTGCAGTCA -ACGGAACGGTATCTGTTGGATCCA -ACGGAACGGTATCTGTTGACGACA -ACGGAACGGTATCTGTTGAGCTCA -ACGGAACGGTATCTGTTGTCACGT -ACGGAACGGTATCTGTTGCGTAGT -ACGGAACGGTATCTGTTGGTCAGT -ACGGAACGGTATCTGTTGGAAGGT -ACGGAACGGTATCTGTTGAACCGT -ACGGAACGGTATCTGTTGTTGTGC -ACGGAACGGTATCTGTTGCTAAGC -ACGGAACGGTATCTGTTGACTAGC -ACGGAACGGTATCTGTTGAGATGC -ACGGAACGGTATCTGTTGTGAAGG -ACGGAACGGTATCTGTTGCAATGG -ACGGAACGGTATCTGTTGATGAGG -ACGGAACGGTATCTGTTGAATGGG -ACGGAACGGTATCTGTTGTCCTGA -ACGGAACGGTATCTGTTGTAGCGA -ACGGAACGGTATCTGTTGCACAGA -ACGGAACGGTATCTGTTGGCAAGA -ACGGAACGGTATCTGTTGGGTTGA -ACGGAACGGTATCTGTTGTCCGAT -ACGGAACGGTATCTGTTGTGGCAT -ACGGAACGGTATCTGTTGCGAGAT -ACGGAACGGTATCTGTTGTACCAC -ACGGAACGGTATCTGTTGCAGAAC -ACGGAACGGTATCTGTTGGTCTAC -ACGGAACGGTATCTGTTGACGTAC -ACGGAACGGTATCTGTTGAGTGAC -ACGGAACGGTATCTGTTGCTGTAG -ACGGAACGGTATCTGTTGCCTAAG -ACGGAACGGTATCTGTTGGTTCAG -ACGGAACGGTATCTGTTGGCATAG -ACGGAACGGTATCTGTTGGACAAG -ACGGAACGGTATCTGTTGAAGCAG -ACGGAACGGTATCTGTTGCGTCAA -ACGGAACGGTATCTGTTGGCTGAA -ACGGAACGGTATCTGTTGAGTACG -ACGGAACGGTATCTGTTGATCCGA -ACGGAACGGTATCTGTTGATGGGA -ACGGAACGGTATCTGTTGGTGCAA -ACGGAACGGTATCTGTTGGAGGAA -ACGGAACGGTATCTGTTGCAGGTA -ACGGAACGGTATCTGTTGGACTCT -ACGGAACGGTATCTGTTGAGTCCT -ACGGAACGGTATCTGTTGTAAGCC -ACGGAACGGTATCTGTTGATAGCC -ACGGAACGGTATCTGTTGTAACCG -ACGGAACGGTATCTGTTGATGCCA -ACGGAACGGTATATGTCCGGAAAC -ACGGAACGGTATATGTCCAACACC -ACGGAACGGTATATGTCCATCGAG -ACGGAACGGTATATGTCCCTCCTT -ACGGAACGGTATATGTCCCCTGTT -ACGGAACGGTATATGTCCCGGTTT -ACGGAACGGTATATGTCCGTGGTT -ACGGAACGGTATATGTCCGCCTTT -ACGGAACGGTATATGTCCGGTCTT -ACGGAACGGTATATGTCCACGCTT -ACGGAACGGTATATGTCCAGCGTT -ACGGAACGGTATATGTCCTTCGTC -ACGGAACGGTATATGTCCTCTCTC -ACGGAACGGTATATGTCCTGGATC -ACGGAACGGTATATGTCCCACTTC -ACGGAACGGTATATGTCCGTACTC -ACGGAACGGTATATGTCCGATGTC -ACGGAACGGTATATGTCCACAGTC -ACGGAACGGTATATGTCCTTGCTG -ACGGAACGGTATATGTCCTCCATG -ACGGAACGGTATATGTCCTGTGTG -ACGGAACGGTATATGTCCCTAGTG -ACGGAACGGTATATGTCCCATCTG -ACGGAACGGTATATGTCCGAGTTG -ACGGAACGGTATATGTCCAGACTG -ACGGAACGGTATATGTCCTCGGTA -ACGGAACGGTATATGTCCTGCCTA -ACGGAACGGTATATGTCCCCACTA -ACGGAACGGTATATGTCCGGAGTA -ACGGAACGGTATATGTCCTCGTCT -ACGGAACGGTATATGTCCTGCACT -ACGGAACGGTATATGTCCCTGACT -ACGGAACGGTATATGTCCCAACCT -ACGGAACGGTATATGTCCGCTACT -ACGGAACGGTATATGTCCGGATCT -ACGGAACGGTATATGTCCAAGGCT -ACGGAACGGTATATGTCCTCAACC -ACGGAACGGTATATGTCCTGTTCC -ACGGAACGGTATATGTCCATTCCC -ACGGAACGGTATATGTCCTTCTCG -ACGGAACGGTATATGTCCTAGACG -ACGGAACGGTATATGTCCGTAACG -ACGGAACGGTATATGTCCACTTCG -ACGGAACGGTATATGTCCTACGCA -ACGGAACGGTATATGTCCCTTGCA -ACGGAACGGTATATGTCCCGAACA -ACGGAACGGTATATGTCCCAGTCA -ACGGAACGGTATATGTCCGATCCA -ACGGAACGGTATATGTCCACGACA -ACGGAACGGTATATGTCCAGCTCA -ACGGAACGGTATATGTCCTCACGT -ACGGAACGGTATATGTCCCGTAGT -ACGGAACGGTATATGTCCGTCAGT -ACGGAACGGTATATGTCCGAAGGT -ACGGAACGGTATATGTCCAACCGT -ACGGAACGGTATATGTCCTTGTGC -ACGGAACGGTATATGTCCCTAAGC -ACGGAACGGTATATGTCCACTAGC -ACGGAACGGTATATGTCCAGATGC -ACGGAACGGTATATGTCCTGAAGG -ACGGAACGGTATATGTCCCAATGG -ACGGAACGGTATATGTCCATGAGG -ACGGAACGGTATATGTCCAATGGG -ACGGAACGGTATATGTCCTCCTGA -ACGGAACGGTATATGTCCTAGCGA -ACGGAACGGTATATGTCCCACAGA -ACGGAACGGTATATGTCCGCAAGA -ACGGAACGGTATATGTCCGGTTGA -ACGGAACGGTATATGTCCTCCGAT -ACGGAACGGTATATGTCCTGGCAT -ACGGAACGGTATATGTCCCGAGAT -ACGGAACGGTATATGTCCTACCAC -ACGGAACGGTATATGTCCCAGAAC -ACGGAACGGTATATGTCCGTCTAC -ACGGAACGGTATATGTCCACGTAC -ACGGAACGGTATATGTCCAGTGAC -ACGGAACGGTATATGTCCCTGTAG -ACGGAACGGTATATGTCCCCTAAG -ACGGAACGGTATATGTCCGTTCAG -ACGGAACGGTATATGTCCGCATAG -ACGGAACGGTATATGTCCGACAAG -ACGGAACGGTATATGTCCAAGCAG -ACGGAACGGTATATGTCCCGTCAA -ACGGAACGGTATATGTCCGCTGAA -ACGGAACGGTATATGTCCAGTACG -ACGGAACGGTATATGTCCATCCGA -ACGGAACGGTATATGTCCATGGGA -ACGGAACGGTATATGTCCGTGCAA -ACGGAACGGTATATGTCCGAGGAA -ACGGAACGGTATATGTCCCAGGTA -ACGGAACGGTATATGTCCGACTCT -ACGGAACGGTATATGTCCAGTCCT -ACGGAACGGTATATGTCCTAAGCC -ACGGAACGGTATATGTCCATAGCC -ACGGAACGGTATATGTCCTAACCG -ACGGAACGGTATATGTCCATGCCA -ACGGAACGGTATGTGTGTGGAAAC -ACGGAACGGTATGTGTGTAACACC -ACGGAACGGTATGTGTGTATCGAG -ACGGAACGGTATGTGTGTCTCCTT -ACGGAACGGTATGTGTGTCCTGTT -ACGGAACGGTATGTGTGTCGGTTT -ACGGAACGGTATGTGTGTGTGGTT -ACGGAACGGTATGTGTGTGCCTTT -ACGGAACGGTATGTGTGTGGTCTT -ACGGAACGGTATGTGTGTACGCTT -ACGGAACGGTATGTGTGTAGCGTT -ACGGAACGGTATGTGTGTTTCGTC -ACGGAACGGTATGTGTGTTCTCTC -ACGGAACGGTATGTGTGTTGGATC -ACGGAACGGTATGTGTGTCACTTC -ACGGAACGGTATGTGTGTGTACTC -ACGGAACGGTATGTGTGTGATGTC -ACGGAACGGTATGTGTGTACAGTC -ACGGAACGGTATGTGTGTTTGCTG -ACGGAACGGTATGTGTGTTCCATG -ACGGAACGGTATGTGTGTTGTGTG -ACGGAACGGTATGTGTGTCTAGTG -ACGGAACGGTATGTGTGTCATCTG -ACGGAACGGTATGTGTGTGAGTTG -ACGGAACGGTATGTGTGTAGACTG -ACGGAACGGTATGTGTGTTCGGTA -ACGGAACGGTATGTGTGTTGCCTA -ACGGAACGGTATGTGTGTCCACTA -ACGGAACGGTATGTGTGTGGAGTA -ACGGAACGGTATGTGTGTTCGTCT -ACGGAACGGTATGTGTGTTGCACT -ACGGAACGGTATGTGTGTCTGACT -ACGGAACGGTATGTGTGTCAACCT -ACGGAACGGTATGTGTGTGCTACT -ACGGAACGGTATGTGTGTGGATCT -ACGGAACGGTATGTGTGTAAGGCT -ACGGAACGGTATGTGTGTTCAACC -ACGGAACGGTATGTGTGTTGTTCC -ACGGAACGGTATGTGTGTATTCCC -ACGGAACGGTATGTGTGTTTCTCG -ACGGAACGGTATGTGTGTTAGACG -ACGGAACGGTATGTGTGTGTAACG -ACGGAACGGTATGTGTGTACTTCG -ACGGAACGGTATGTGTGTTACGCA -ACGGAACGGTATGTGTGTCTTGCA -ACGGAACGGTATGTGTGTCGAACA -ACGGAACGGTATGTGTGTCAGTCA -ACGGAACGGTATGTGTGTGATCCA -ACGGAACGGTATGTGTGTACGACA -ACGGAACGGTATGTGTGTAGCTCA -ACGGAACGGTATGTGTGTTCACGT -ACGGAACGGTATGTGTGTCGTAGT -ACGGAACGGTATGTGTGTGTCAGT -ACGGAACGGTATGTGTGTGAAGGT -ACGGAACGGTATGTGTGTAACCGT -ACGGAACGGTATGTGTGTTTGTGC -ACGGAACGGTATGTGTGTCTAAGC -ACGGAACGGTATGTGTGTACTAGC -ACGGAACGGTATGTGTGTAGATGC -ACGGAACGGTATGTGTGTTGAAGG -ACGGAACGGTATGTGTGTCAATGG -ACGGAACGGTATGTGTGTATGAGG -ACGGAACGGTATGTGTGTAATGGG -ACGGAACGGTATGTGTGTTCCTGA -ACGGAACGGTATGTGTGTTAGCGA -ACGGAACGGTATGTGTGTCACAGA -ACGGAACGGTATGTGTGTGCAAGA -ACGGAACGGTATGTGTGTGGTTGA -ACGGAACGGTATGTGTGTTCCGAT -ACGGAACGGTATGTGTGTTGGCAT -ACGGAACGGTATGTGTGTCGAGAT -ACGGAACGGTATGTGTGTTACCAC -ACGGAACGGTATGTGTGTCAGAAC -ACGGAACGGTATGTGTGTGTCTAC -ACGGAACGGTATGTGTGTACGTAC -ACGGAACGGTATGTGTGTAGTGAC -ACGGAACGGTATGTGTGTCTGTAG -ACGGAACGGTATGTGTGTCCTAAG -ACGGAACGGTATGTGTGTGTTCAG -ACGGAACGGTATGTGTGTGCATAG -ACGGAACGGTATGTGTGTGACAAG -ACGGAACGGTATGTGTGTAAGCAG -ACGGAACGGTATGTGTGTCGTCAA -ACGGAACGGTATGTGTGTGCTGAA -ACGGAACGGTATGTGTGTAGTACG -ACGGAACGGTATGTGTGTATCCGA -ACGGAACGGTATGTGTGTATGGGA -ACGGAACGGTATGTGTGTGTGCAA -ACGGAACGGTATGTGTGTGAGGAA -ACGGAACGGTATGTGTGTCAGGTA -ACGGAACGGTATGTGTGTGACTCT -ACGGAACGGTATGTGTGTAGTCCT -ACGGAACGGTATGTGTGTTAAGCC -ACGGAACGGTATGTGTGTATAGCC -ACGGAACGGTATGTGTGTTAACCG -ACGGAACGGTATGTGTGTATGCCA -ACGGAACGGTATGTGCTAGGAAAC -ACGGAACGGTATGTGCTAAACACC -ACGGAACGGTATGTGCTAATCGAG -ACGGAACGGTATGTGCTACTCCTT -ACGGAACGGTATGTGCTACCTGTT -ACGGAACGGTATGTGCTACGGTTT -ACGGAACGGTATGTGCTAGTGGTT -ACGGAACGGTATGTGCTAGCCTTT -ACGGAACGGTATGTGCTAGGTCTT -ACGGAACGGTATGTGCTAACGCTT -ACGGAACGGTATGTGCTAAGCGTT -ACGGAACGGTATGTGCTATTCGTC -ACGGAACGGTATGTGCTATCTCTC -ACGGAACGGTATGTGCTATGGATC -ACGGAACGGTATGTGCTACACTTC -ACGGAACGGTATGTGCTAGTACTC -ACGGAACGGTATGTGCTAGATGTC -ACGGAACGGTATGTGCTAACAGTC -ACGGAACGGTATGTGCTATTGCTG -ACGGAACGGTATGTGCTATCCATG -ACGGAACGGTATGTGCTATGTGTG -ACGGAACGGTATGTGCTACTAGTG -ACGGAACGGTATGTGCTACATCTG -ACGGAACGGTATGTGCTAGAGTTG -ACGGAACGGTATGTGCTAAGACTG -ACGGAACGGTATGTGCTATCGGTA -ACGGAACGGTATGTGCTATGCCTA -ACGGAACGGTATGTGCTACCACTA -ACGGAACGGTATGTGCTAGGAGTA -ACGGAACGGTATGTGCTATCGTCT -ACGGAACGGTATGTGCTATGCACT -ACGGAACGGTATGTGCTACTGACT -ACGGAACGGTATGTGCTACAACCT -ACGGAACGGTATGTGCTAGCTACT -ACGGAACGGTATGTGCTAGGATCT -ACGGAACGGTATGTGCTAAAGGCT -ACGGAACGGTATGTGCTATCAACC -ACGGAACGGTATGTGCTATGTTCC -ACGGAACGGTATGTGCTAATTCCC -ACGGAACGGTATGTGCTATTCTCG -ACGGAACGGTATGTGCTATAGACG -ACGGAACGGTATGTGCTAGTAACG -ACGGAACGGTATGTGCTAACTTCG -ACGGAACGGTATGTGCTATACGCA -ACGGAACGGTATGTGCTACTTGCA -ACGGAACGGTATGTGCTACGAACA -ACGGAACGGTATGTGCTACAGTCA -ACGGAACGGTATGTGCTAGATCCA -ACGGAACGGTATGTGCTAACGACA -ACGGAACGGTATGTGCTAAGCTCA -ACGGAACGGTATGTGCTATCACGT -ACGGAACGGTATGTGCTACGTAGT -ACGGAACGGTATGTGCTAGTCAGT -ACGGAACGGTATGTGCTAGAAGGT -ACGGAACGGTATGTGCTAAACCGT -ACGGAACGGTATGTGCTATTGTGC -ACGGAACGGTATGTGCTACTAAGC -ACGGAACGGTATGTGCTAACTAGC -ACGGAACGGTATGTGCTAAGATGC -ACGGAACGGTATGTGCTATGAAGG -ACGGAACGGTATGTGCTACAATGG -ACGGAACGGTATGTGCTAATGAGG -ACGGAACGGTATGTGCTAAATGGG -ACGGAACGGTATGTGCTATCCTGA -ACGGAACGGTATGTGCTATAGCGA -ACGGAACGGTATGTGCTACACAGA -ACGGAACGGTATGTGCTAGCAAGA -ACGGAACGGTATGTGCTAGGTTGA -ACGGAACGGTATGTGCTATCCGAT -ACGGAACGGTATGTGCTATGGCAT -ACGGAACGGTATGTGCTACGAGAT -ACGGAACGGTATGTGCTATACCAC -ACGGAACGGTATGTGCTACAGAAC -ACGGAACGGTATGTGCTAGTCTAC -ACGGAACGGTATGTGCTAACGTAC -ACGGAACGGTATGTGCTAAGTGAC -ACGGAACGGTATGTGCTACTGTAG -ACGGAACGGTATGTGCTACCTAAG -ACGGAACGGTATGTGCTAGTTCAG -ACGGAACGGTATGTGCTAGCATAG -ACGGAACGGTATGTGCTAGACAAG -ACGGAACGGTATGTGCTAAAGCAG -ACGGAACGGTATGTGCTACGTCAA -ACGGAACGGTATGTGCTAGCTGAA -ACGGAACGGTATGTGCTAAGTACG -ACGGAACGGTATGTGCTAATCCGA -ACGGAACGGTATGTGCTAATGGGA -ACGGAACGGTATGTGCTAGTGCAA -ACGGAACGGTATGTGCTAGAGGAA -ACGGAACGGTATGTGCTACAGGTA -ACGGAACGGTATGTGCTAGACTCT -ACGGAACGGTATGTGCTAAGTCCT -ACGGAACGGTATGTGCTATAAGCC -ACGGAACGGTATGTGCTAATAGCC -ACGGAACGGTATGTGCTATAACCG -ACGGAACGGTATGTGCTAATGCCA -ACGGAACGGTATCTGCATGGAAAC -ACGGAACGGTATCTGCATAACACC -ACGGAACGGTATCTGCATATCGAG -ACGGAACGGTATCTGCATCTCCTT -ACGGAACGGTATCTGCATCCTGTT -ACGGAACGGTATCTGCATCGGTTT -ACGGAACGGTATCTGCATGTGGTT -ACGGAACGGTATCTGCATGCCTTT -ACGGAACGGTATCTGCATGGTCTT -ACGGAACGGTATCTGCATACGCTT -ACGGAACGGTATCTGCATAGCGTT -ACGGAACGGTATCTGCATTTCGTC -ACGGAACGGTATCTGCATTCTCTC -ACGGAACGGTATCTGCATTGGATC -ACGGAACGGTATCTGCATCACTTC -ACGGAACGGTATCTGCATGTACTC -ACGGAACGGTATCTGCATGATGTC -ACGGAACGGTATCTGCATACAGTC -ACGGAACGGTATCTGCATTTGCTG -ACGGAACGGTATCTGCATTCCATG -ACGGAACGGTATCTGCATTGTGTG -ACGGAACGGTATCTGCATCTAGTG -ACGGAACGGTATCTGCATCATCTG -ACGGAACGGTATCTGCATGAGTTG -ACGGAACGGTATCTGCATAGACTG -ACGGAACGGTATCTGCATTCGGTA -ACGGAACGGTATCTGCATTGCCTA -ACGGAACGGTATCTGCATCCACTA -ACGGAACGGTATCTGCATGGAGTA -ACGGAACGGTATCTGCATTCGTCT -ACGGAACGGTATCTGCATTGCACT -ACGGAACGGTATCTGCATCTGACT -ACGGAACGGTATCTGCATCAACCT -ACGGAACGGTATCTGCATGCTACT -ACGGAACGGTATCTGCATGGATCT -ACGGAACGGTATCTGCATAAGGCT -ACGGAACGGTATCTGCATTCAACC -ACGGAACGGTATCTGCATTGTTCC -ACGGAACGGTATCTGCATATTCCC -ACGGAACGGTATCTGCATTTCTCG -ACGGAACGGTATCTGCATTAGACG -ACGGAACGGTATCTGCATGTAACG -ACGGAACGGTATCTGCATACTTCG -ACGGAACGGTATCTGCATTACGCA -ACGGAACGGTATCTGCATCTTGCA -ACGGAACGGTATCTGCATCGAACA -ACGGAACGGTATCTGCATCAGTCA -ACGGAACGGTATCTGCATGATCCA -ACGGAACGGTATCTGCATACGACA -ACGGAACGGTATCTGCATAGCTCA -ACGGAACGGTATCTGCATTCACGT -ACGGAACGGTATCTGCATCGTAGT -ACGGAACGGTATCTGCATGTCAGT -ACGGAACGGTATCTGCATGAAGGT -ACGGAACGGTATCTGCATAACCGT -ACGGAACGGTATCTGCATTTGTGC -ACGGAACGGTATCTGCATCTAAGC -ACGGAACGGTATCTGCATACTAGC -ACGGAACGGTATCTGCATAGATGC -ACGGAACGGTATCTGCATTGAAGG -ACGGAACGGTATCTGCATCAATGG -ACGGAACGGTATCTGCATATGAGG -ACGGAACGGTATCTGCATAATGGG -ACGGAACGGTATCTGCATTCCTGA -ACGGAACGGTATCTGCATTAGCGA -ACGGAACGGTATCTGCATCACAGA -ACGGAACGGTATCTGCATGCAAGA -ACGGAACGGTATCTGCATGGTTGA -ACGGAACGGTATCTGCATTCCGAT -ACGGAACGGTATCTGCATTGGCAT -ACGGAACGGTATCTGCATCGAGAT -ACGGAACGGTATCTGCATTACCAC -ACGGAACGGTATCTGCATCAGAAC -ACGGAACGGTATCTGCATGTCTAC -ACGGAACGGTATCTGCATACGTAC -ACGGAACGGTATCTGCATAGTGAC -ACGGAACGGTATCTGCATCTGTAG -ACGGAACGGTATCTGCATCCTAAG -ACGGAACGGTATCTGCATGTTCAG -ACGGAACGGTATCTGCATGCATAG -ACGGAACGGTATCTGCATGACAAG -ACGGAACGGTATCTGCATAAGCAG -ACGGAACGGTATCTGCATCGTCAA -ACGGAACGGTATCTGCATGCTGAA -ACGGAACGGTATCTGCATAGTACG -ACGGAACGGTATCTGCATATCCGA -ACGGAACGGTATCTGCATATGGGA -ACGGAACGGTATCTGCATGTGCAA -ACGGAACGGTATCTGCATGAGGAA -ACGGAACGGTATCTGCATCAGGTA -ACGGAACGGTATCTGCATGACTCT -ACGGAACGGTATCTGCATAGTCCT -ACGGAACGGTATCTGCATTAAGCC -ACGGAACGGTATCTGCATATAGCC -ACGGAACGGTATCTGCATTAACCG -ACGGAACGGTATCTGCATATGCCA -ACGGAACGGTATTTGGAGGGAAAC -ACGGAACGGTATTTGGAGAACACC -ACGGAACGGTATTTGGAGATCGAG -ACGGAACGGTATTTGGAGCTCCTT -ACGGAACGGTATTTGGAGCCTGTT -ACGGAACGGTATTTGGAGCGGTTT -ACGGAACGGTATTTGGAGGTGGTT -ACGGAACGGTATTTGGAGGCCTTT -ACGGAACGGTATTTGGAGGGTCTT -ACGGAACGGTATTTGGAGACGCTT -ACGGAACGGTATTTGGAGAGCGTT -ACGGAACGGTATTTGGAGTTCGTC -ACGGAACGGTATTTGGAGTCTCTC -ACGGAACGGTATTTGGAGTGGATC -ACGGAACGGTATTTGGAGCACTTC -ACGGAACGGTATTTGGAGGTACTC -ACGGAACGGTATTTGGAGGATGTC -ACGGAACGGTATTTGGAGACAGTC -ACGGAACGGTATTTGGAGTTGCTG -ACGGAACGGTATTTGGAGTCCATG -ACGGAACGGTATTTGGAGTGTGTG -ACGGAACGGTATTTGGAGCTAGTG -ACGGAACGGTATTTGGAGCATCTG -ACGGAACGGTATTTGGAGGAGTTG -ACGGAACGGTATTTGGAGAGACTG -ACGGAACGGTATTTGGAGTCGGTA -ACGGAACGGTATTTGGAGTGCCTA -ACGGAACGGTATTTGGAGCCACTA -ACGGAACGGTATTTGGAGGGAGTA -ACGGAACGGTATTTGGAGTCGTCT -ACGGAACGGTATTTGGAGTGCACT -ACGGAACGGTATTTGGAGCTGACT -ACGGAACGGTATTTGGAGCAACCT -ACGGAACGGTATTTGGAGGCTACT -ACGGAACGGTATTTGGAGGGATCT -ACGGAACGGTATTTGGAGAAGGCT -ACGGAACGGTATTTGGAGTCAACC -ACGGAACGGTATTTGGAGTGTTCC -ACGGAACGGTATTTGGAGATTCCC -ACGGAACGGTATTTGGAGTTCTCG -ACGGAACGGTATTTGGAGTAGACG -ACGGAACGGTATTTGGAGGTAACG -ACGGAACGGTATTTGGAGACTTCG -ACGGAACGGTATTTGGAGTACGCA -ACGGAACGGTATTTGGAGCTTGCA -ACGGAACGGTATTTGGAGCGAACA -ACGGAACGGTATTTGGAGCAGTCA -ACGGAACGGTATTTGGAGGATCCA -ACGGAACGGTATTTGGAGACGACA -ACGGAACGGTATTTGGAGAGCTCA -ACGGAACGGTATTTGGAGTCACGT -ACGGAACGGTATTTGGAGCGTAGT -ACGGAACGGTATTTGGAGGTCAGT -ACGGAACGGTATTTGGAGGAAGGT -ACGGAACGGTATTTGGAGAACCGT -ACGGAACGGTATTTGGAGTTGTGC -ACGGAACGGTATTTGGAGCTAAGC -ACGGAACGGTATTTGGAGACTAGC -ACGGAACGGTATTTGGAGAGATGC -ACGGAACGGTATTTGGAGTGAAGG -ACGGAACGGTATTTGGAGCAATGG -ACGGAACGGTATTTGGAGATGAGG -ACGGAACGGTATTTGGAGAATGGG -ACGGAACGGTATTTGGAGTCCTGA -ACGGAACGGTATTTGGAGTAGCGA -ACGGAACGGTATTTGGAGCACAGA -ACGGAACGGTATTTGGAGGCAAGA -ACGGAACGGTATTTGGAGGGTTGA -ACGGAACGGTATTTGGAGTCCGAT -ACGGAACGGTATTTGGAGTGGCAT -ACGGAACGGTATTTGGAGCGAGAT -ACGGAACGGTATTTGGAGTACCAC -ACGGAACGGTATTTGGAGCAGAAC -ACGGAACGGTATTTGGAGGTCTAC -ACGGAACGGTATTTGGAGACGTAC -ACGGAACGGTATTTGGAGAGTGAC -ACGGAACGGTATTTGGAGCTGTAG -ACGGAACGGTATTTGGAGCCTAAG -ACGGAACGGTATTTGGAGGTTCAG -ACGGAACGGTATTTGGAGGCATAG -ACGGAACGGTATTTGGAGGACAAG -ACGGAACGGTATTTGGAGAAGCAG -ACGGAACGGTATTTGGAGCGTCAA -ACGGAACGGTATTTGGAGGCTGAA -ACGGAACGGTATTTGGAGAGTACG -ACGGAACGGTATTTGGAGATCCGA -ACGGAACGGTATTTGGAGATGGGA -ACGGAACGGTATTTGGAGGTGCAA -ACGGAACGGTATTTGGAGGAGGAA -ACGGAACGGTATTTGGAGCAGGTA -ACGGAACGGTATTTGGAGGACTCT -ACGGAACGGTATTTGGAGAGTCCT -ACGGAACGGTATTTGGAGTAAGCC -ACGGAACGGTATTTGGAGATAGCC -ACGGAACGGTATTTGGAGTAACCG -ACGGAACGGTATTTGGAGATGCCA -ACGGAACGGTATCTGAGAGGAAAC -ACGGAACGGTATCTGAGAAACACC -ACGGAACGGTATCTGAGAATCGAG -ACGGAACGGTATCTGAGACTCCTT -ACGGAACGGTATCTGAGACCTGTT -ACGGAACGGTATCTGAGACGGTTT -ACGGAACGGTATCTGAGAGTGGTT -ACGGAACGGTATCTGAGAGCCTTT -ACGGAACGGTATCTGAGAGGTCTT -ACGGAACGGTATCTGAGAACGCTT -ACGGAACGGTATCTGAGAAGCGTT -ACGGAACGGTATCTGAGATTCGTC -ACGGAACGGTATCTGAGATCTCTC -ACGGAACGGTATCTGAGATGGATC -ACGGAACGGTATCTGAGACACTTC -ACGGAACGGTATCTGAGAGTACTC -ACGGAACGGTATCTGAGAGATGTC -ACGGAACGGTATCTGAGAACAGTC -ACGGAACGGTATCTGAGATTGCTG -ACGGAACGGTATCTGAGATCCATG -ACGGAACGGTATCTGAGATGTGTG -ACGGAACGGTATCTGAGACTAGTG -ACGGAACGGTATCTGAGACATCTG -ACGGAACGGTATCTGAGAGAGTTG -ACGGAACGGTATCTGAGAAGACTG -ACGGAACGGTATCTGAGATCGGTA -ACGGAACGGTATCTGAGATGCCTA -ACGGAACGGTATCTGAGACCACTA -ACGGAACGGTATCTGAGAGGAGTA -ACGGAACGGTATCTGAGATCGTCT -ACGGAACGGTATCTGAGATGCACT -ACGGAACGGTATCTGAGACTGACT -ACGGAACGGTATCTGAGACAACCT -ACGGAACGGTATCTGAGAGCTACT -ACGGAACGGTATCTGAGAGGATCT -ACGGAACGGTATCTGAGAAAGGCT -ACGGAACGGTATCTGAGATCAACC -ACGGAACGGTATCTGAGATGTTCC -ACGGAACGGTATCTGAGAATTCCC -ACGGAACGGTATCTGAGATTCTCG -ACGGAACGGTATCTGAGATAGACG -ACGGAACGGTATCTGAGAGTAACG -ACGGAACGGTATCTGAGAACTTCG -ACGGAACGGTATCTGAGATACGCA -ACGGAACGGTATCTGAGACTTGCA -ACGGAACGGTATCTGAGACGAACA -ACGGAACGGTATCTGAGACAGTCA -ACGGAACGGTATCTGAGAGATCCA -ACGGAACGGTATCTGAGAACGACA -ACGGAACGGTATCTGAGAAGCTCA -ACGGAACGGTATCTGAGATCACGT -ACGGAACGGTATCTGAGACGTAGT -ACGGAACGGTATCTGAGAGTCAGT -ACGGAACGGTATCTGAGAGAAGGT -ACGGAACGGTATCTGAGAAACCGT -ACGGAACGGTATCTGAGATTGTGC -ACGGAACGGTATCTGAGACTAAGC -ACGGAACGGTATCTGAGAACTAGC -ACGGAACGGTATCTGAGAAGATGC -ACGGAACGGTATCTGAGATGAAGG -ACGGAACGGTATCTGAGACAATGG -ACGGAACGGTATCTGAGAATGAGG -ACGGAACGGTATCTGAGAAATGGG -ACGGAACGGTATCTGAGATCCTGA -ACGGAACGGTATCTGAGATAGCGA -ACGGAACGGTATCTGAGACACAGA -ACGGAACGGTATCTGAGAGCAAGA -ACGGAACGGTATCTGAGAGGTTGA -ACGGAACGGTATCTGAGATCCGAT -ACGGAACGGTATCTGAGATGGCAT -ACGGAACGGTATCTGAGACGAGAT -ACGGAACGGTATCTGAGATACCAC -ACGGAACGGTATCTGAGACAGAAC -ACGGAACGGTATCTGAGAGTCTAC -ACGGAACGGTATCTGAGAACGTAC -ACGGAACGGTATCTGAGAAGTGAC -ACGGAACGGTATCTGAGACTGTAG -ACGGAACGGTATCTGAGACCTAAG -ACGGAACGGTATCTGAGAGTTCAG -ACGGAACGGTATCTGAGAGCATAG -ACGGAACGGTATCTGAGAGACAAG -ACGGAACGGTATCTGAGAAAGCAG -ACGGAACGGTATCTGAGACGTCAA -ACGGAACGGTATCTGAGAGCTGAA -ACGGAACGGTATCTGAGAAGTACG -ACGGAACGGTATCTGAGAATCCGA -ACGGAACGGTATCTGAGAATGGGA -ACGGAACGGTATCTGAGAGTGCAA -ACGGAACGGTATCTGAGAGAGGAA -ACGGAACGGTATCTGAGACAGGTA -ACGGAACGGTATCTGAGAGACTCT -ACGGAACGGTATCTGAGAAGTCCT -ACGGAACGGTATCTGAGATAAGCC -ACGGAACGGTATCTGAGAATAGCC -ACGGAACGGTATCTGAGATAACCG -ACGGAACGGTATCTGAGAATGCCA -ACGGAACGGTATGTATCGGGAAAC -ACGGAACGGTATGTATCGAACACC -ACGGAACGGTATGTATCGATCGAG -ACGGAACGGTATGTATCGCTCCTT -ACGGAACGGTATGTATCGCCTGTT -ACGGAACGGTATGTATCGCGGTTT -ACGGAACGGTATGTATCGGTGGTT -ACGGAACGGTATGTATCGGCCTTT -ACGGAACGGTATGTATCGGGTCTT -ACGGAACGGTATGTATCGACGCTT -ACGGAACGGTATGTATCGAGCGTT -ACGGAACGGTATGTATCGTTCGTC -ACGGAACGGTATGTATCGTCTCTC -ACGGAACGGTATGTATCGTGGATC -ACGGAACGGTATGTATCGCACTTC -ACGGAACGGTATGTATCGGTACTC -ACGGAACGGTATGTATCGGATGTC -ACGGAACGGTATGTATCGACAGTC -ACGGAACGGTATGTATCGTTGCTG -ACGGAACGGTATGTATCGTCCATG -ACGGAACGGTATGTATCGTGTGTG -ACGGAACGGTATGTATCGCTAGTG -ACGGAACGGTATGTATCGCATCTG -ACGGAACGGTATGTATCGGAGTTG -ACGGAACGGTATGTATCGAGACTG -ACGGAACGGTATGTATCGTCGGTA -ACGGAACGGTATGTATCGTGCCTA -ACGGAACGGTATGTATCGCCACTA -ACGGAACGGTATGTATCGGGAGTA -ACGGAACGGTATGTATCGTCGTCT -ACGGAACGGTATGTATCGTGCACT -ACGGAACGGTATGTATCGCTGACT -ACGGAACGGTATGTATCGCAACCT -ACGGAACGGTATGTATCGGCTACT -ACGGAACGGTATGTATCGGGATCT -ACGGAACGGTATGTATCGAAGGCT -ACGGAACGGTATGTATCGTCAACC -ACGGAACGGTATGTATCGTGTTCC -ACGGAACGGTATGTATCGATTCCC -ACGGAACGGTATGTATCGTTCTCG -ACGGAACGGTATGTATCGTAGACG -ACGGAACGGTATGTATCGGTAACG -ACGGAACGGTATGTATCGACTTCG -ACGGAACGGTATGTATCGTACGCA -ACGGAACGGTATGTATCGCTTGCA -ACGGAACGGTATGTATCGCGAACA -ACGGAACGGTATGTATCGCAGTCA -ACGGAACGGTATGTATCGGATCCA -ACGGAACGGTATGTATCGACGACA -ACGGAACGGTATGTATCGAGCTCA -ACGGAACGGTATGTATCGTCACGT -ACGGAACGGTATGTATCGCGTAGT -ACGGAACGGTATGTATCGGTCAGT -ACGGAACGGTATGTATCGGAAGGT -ACGGAACGGTATGTATCGAACCGT -ACGGAACGGTATGTATCGTTGTGC -ACGGAACGGTATGTATCGCTAAGC -ACGGAACGGTATGTATCGACTAGC -ACGGAACGGTATGTATCGAGATGC -ACGGAACGGTATGTATCGTGAAGG -ACGGAACGGTATGTATCGCAATGG -ACGGAACGGTATGTATCGATGAGG -ACGGAACGGTATGTATCGAATGGG -ACGGAACGGTATGTATCGTCCTGA -ACGGAACGGTATGTATCGTAGCGA -ACGGAACGGTATGTATCGCACAGA -ACGGAACGGTATGTATCGGCAAGA -ACGGAACGGTATGTATCGGGTTGA -ACGGAACGGTATGTATCGTCCGAT -ACGGAACGGTATGTATCGTGGCAT -ACGGAACGGTATGTATCGCGAGAT -ACGGAACGGTATGTATCGTACCAC -ACGGAACGGTATGTATCGCAGAAC -ACGGAACGGTATGTATCGGTCTAC -ACGGAACGGTATGTATCGACGTAC -ACGGAACGGTATGTATCGAGTGAC -ACGGAACGGTATGTATCGCTGTAG -ACGGAACGGTATGTATCGCCTAAG -ACGGAACGGTATGTATCGGTTCAG -ACGGAACGGTATGTATCGGCATAG -ACGGAACGGTATGTATCGGACAAG -ACGGAACGGTATGTATCGAAGCAG -ACGGAACGGTATGTATCGCGTCAA -ACGGAACGGTATGTATCGGCTGAA -ACGGAACGGTATGTATCGAGTACG -ACGGAACGGTATGTATCGATCCGA -ACGGAACGGTATGTATCGATGGGA -ACGGAACGGTATGTATCGGTGCAA -ACGGAACGGTATGTATCGGAGGAA -ACGGAACGGTATGTATCGCAGGTA -ACGGAACGGTATGTATCGGACTCT -ACGGAACGGTATGTATCGAGTCCT -ACGGAACGGTATGTATCGTAAGCC -ACGGAACGGTATGTATCGATAGCC -ACGGAACGGTATGTATCGTAACCG -ACGGAACGGTATGTATCGATGCCA -ACGGAACGGTATCTATGCGGAAAC -ACGGAACGGTATCTATGCAACACC -ACGGAACGGTATCTATGCATCGAG -ACGGAACGGTATCTATGCCTCCTT -ACGGAACGGTATCTATGCCCTGTT -ACGGAACGGTATCTATGCCGGTTT -ACGGAACGGTATCTATGCGTGGTT -ACGGAACGGTATCTATGCGCCTTT -ACGGAACGGTATCTATGCGGTCTT -ACGGAACGGTATCTATGCACGCTT -ACGGAACGGTATCTATGCAGCGTT -ACGGAACGGTATCTATGCTTCGTC -ACGGAACGGTATCTATGCTCTCTC -ACGGAACGGTATCTATGCTGGATC -ACGGAACGGTATCTATGCCACTTC -ACGGAACGGTATCTATGCGTACTC -ACGGAACGGTATCTATGCGATGTC -ACGGAACGGTATCTATGCACAGTC -ACGGAACGGTATCTATGCTTGCTG -ACGGAACGGTATCTATGCTCCATG -ACGGAACGGTATCTATGCTGTGTG -ACGGAACGGTATCTATGCCTAGTG -ACGGAACGGTATCTATGCCATCTG -ACGGAACGGTATCTATGCGAGTTG -ACGGAACGGTATCTATGCAGACTG -ACGGAACGGTATCTATGCTCGGTA -ACGGAACGGTATCTATGCTGCCTA -ACGGAACGGTATCTATGCCCACTA -ACGGAACGGTATCTATGCGGAGTA -ACGGAACGGTATCTATGCTCGTCT -ACGGAACGGTATCTATGCTGCACT -ACGGAACGGTATCTATGCCTGACT -ACGGAACGGTATCTATGCCAACCT -ACGGAACGGTATCTATGCGCTACT -ACGGAACGGTATCTATGCGGATCT -ACGGAACGGTATCTATGCAAGGCT -ACGGAACGGTATCTATGCTCAACC -ACGGAACGGTATCTATGCTGTTCC -ACGGAACGGTATCTATGCATTCCC -ACGGAACGGTATCTATGCTTCTCG -ACGGAACGGTATCTATGCTAGACG -ACGGAACGGTATCTATGCGTAACG -ACGGAACGGTATCTATGCACTTCG -ACGGAACGGTATCTATGCTACGCA -ACGGAACGGTATCTATGCCTTGCA -ACGGAACGGTATCTATGCCGAACA -ACGGAACGGTATCTATGCCAGTCA -ACGGAACGGTATCTATGCGATCCA -ACGGAACGGTATCTATGCACGACA -ACGGAACGGTATCTATGCAGCTCA -ACGGAACGGTATCTATGCTCACGT -ACGGAACGGTATCTATGCCGTAGT -ACGGAACGGTATCTATGCGTCAGT -ACGGAACGGTATCTATGCGAAGGT -ACGGAACGGTATCTATGCAACCGT -ACGGAACGGTATCTATGCTTGTGC -ACGGAACGGTATCTATGCCTAAGC -ACGGAACGGTATCTATGCACTAGC -ACGGAACGGTATCTATGCAGATGC -ACGGAACGGTATCTATGCTGAAGG -ACGGAACGGTATCTATGCCAATGG -ACGGAACGGTATCTATGCATGAGG -ACGGAACGGTATCTATGCAATGGG -ACGGAACGGTATCTATGCTCCTGA -ACGGAACGGTATCTATGCTAGCGA -ACGGAACGGTATCTATGCCACAGA -ACGGAACGGTATCTATGCGCAAGA -ACGGAACGGTATCTATGCGGTTGA -ACGGAACGGTATCTATGCTCCGAT -ACGGAACGGTATCTATGCTGGCAT -ACGGAACGGTATCTATGCCGAGAT -ACGGAACGGTATCTATGCTACCAC -ACGGAACGGTATCTATGCCAGAAC -ACGGAACGGTATCTATGCGTCTAC -ACGGAACGGTATCTATGCACGTAC -ACGGAACGGTATCTATGCAGTGAC -ACGGAACGGTATCTATGCCTGTAG -ACGGAACGGTATCTATGCCCTAAG -ACGGAACGGTATCTATGCGTTCAG -ACGGAACGGTATCTATGCGCATAG -ACGGAACGGTATCTATGCGACAAG -ACGGAACGGTATCTATGCAAGCAG -ACGGAACGGTATCTATGCCGTCAA -ACGGAACGGTATCTATGCGCTGAA -ACGGAACGGTATCTATGCAGTACG -ACGGAACGGTATCTATGCATCCGA -ACGGAACGGTATCTATGCATGGGA -ACGGAACGGTATCTATGCGTGCAA -ACGGAACGGTATCTATGCGAGGAA -ACGGAACGGTATCTATGCCAGGTA -ACGGAACGGTATCTATGCGACTCT -ACGGAACGGTATCTATGCAGTCCT -ACGGAACGGTATCTATGCTAAGCC -ACGGAACGGTATCTATGCATAGCC -ACGGAACGGTATCTATGCTAACCG -ACGGAACGGTATCTATGCATGCCA -ACGGAACGGTATCTACCAGGAAAC -ACGGAACGGTATCTACCAAACACC -ACGGAACGGTATCTACCAATCGAG -ACGGAACGGTATCTACCACTCCTT -ACGGAACGGTATCTACCACCTGTT -ACGGAACGGTATCTACCACGGTTT -ACGGAACGGTATCTACCAGTGGTT -ACGGAACGGTATCTACCAGCCTTT -ACGGAACGGTATCTACCAGGTCTT -ACGGAACGGTATCTACCAACGCTT -ACGGAACGGTATCTACCAAGCGTT -ACGGAACGGTATCTACCATTCGTC -ACGGAACGGTATCTACCATCTCTC -ACGGAACGGTATCTACCATGGATC -ACGGAACGGTATCTACCACACTTC -ACGGAACGGTATCTACCAGTACTC -ACGGAACGGTATCTACCAGATGTC -ACGGAACGGTATCTACCAACAGTC -ACGGAACGGTATCTACCATTGCTG -ACGGAACGGTATCTACCATCCATG -ACGGAACGGTATCTACCATGTGTG -ACGGAACGGTATCTACCACTAGTG -ACGGAACGGTATCTACCACATCTG -ACGGAACGGTATCTACCAGAGTTG -ACGGAACGGTATCTACCAAGACTG -ACGGAACGGTATCTACCATCGGTA -ACGGAACGGTATCTACCATGCCTA -ACGGAACGGTATCTACCACCACTA -ACGGAACGGTATCTACCAGGAGTA -ACGGAACGGTATCTACCATCGTCT -ACGGAACGGTATCTACCATGCACT -ACGGAACGGTATCTACCACTGACT -ACGGAACGGTATCTACCACAACCT -ACGGAACGGTATCTACCAGCTACT -ACGGAACGGTATCTACCAGGATCT -ACGGAACGGTATCTACCAAAGGCT -ACGGAACGGTATCTACCATCAACC -ACGGAACGGTATCTACCATGTTCC -ACGGAACGGTATCTACCAATTCCC -ACGGAACGGTATCTACCATTCTCG -ACGGAACGGTATCTACCATAGACG -ACGGAACGGTATCTACCAGTAACG -ACGGAACGGTATCTACCAACTTCG -ACGGAACGGTATCTACCATACGCA -ACGGAACGGTATCTACCACTTGCA -ACGGAACGGTATCTACCACGAACA -ACGGAACGGTATCTACCACAGTCA -ACGGAACGGTATCTACCAGATCCA -ACGGAACGGTATCTACCAACGACA -ACGGAACGGTATCTACCAAGCTCA -ACGGAACGGTATCTACCATCACGT -ACGGAACGGTATCTACCACGTAGT -ACGGAACGGTATCTACCAGTCAGT -ACGGAACGGTATCTACCAGAAGGT -ACGGAACGGTATCTACCAAACCGT -ACGGAACGGTATCTACCATTGTGC -ACGGAACGGTATCTACCACTAAGC -ACGGAACGGTATCTACCAACTAGC -ACGGAACGGTATCTACCAAGATGC -ACGGAACGGTATCTACCATGAAGG -ACGGAACGGTATCTACCACAATGG -ACGGAACGGTATCTACCAATGAGG -ACGGAACGGTATCTACCAAATGGG -ACGGAACGGTATCTACCATCCTGA -ACGGAACGGTATCTACCATAGCGA -ACGGAACGGTATCTACCACACAGA -ACGGAACGGTATCTACCAGCAAGA -ACGGAACGGTATCTACCAGGTTGA -ACGGAACGGTATCTACCATCCGAT -ACGGAACGGTATCTACCATGGCAT -ACGGAACGGTATCTACCACGAGAT -ACGGAACGGTATCTACCATACCAC -ACGGAACGGTATCTACCACAGAAC -ACGGAACGGTATCTACCAGTCTAC -ACGGAACGGTATCTACCAACGTAC -ACGGAACGGTATCTACCAAGTGAC -ACGGAACGGTATCTACCACTGTAG -ACGGAACGGTATCTACCACCTAAG -ACGGAACGGTATCTACCAGTTCAG -ACGGAACGGTATCTACCAGCATAG -ACGGAACGGTATCTACCAGACAAG -ACGGAACGGTATCTACCAAAGCAG -ACGGAACGGTATCTACCACGTCAA -ACGGAACGGTATCTACCAGCTGAA -ACGGAACGGTATCTACCAAGTACG -ACGGAACGGTATCTACCAATCCGA -ACGGAACGGTATCTACCAATGGGA -ACGGAACGGTATCTACCAGTGCAA -ACGGAACGGTATCTACCAGAGGAA -ACGGAACGGTATCTACCACAGGTA -ACGGAACGGTATCTACCAGACTCT -ACGGAACGGTATCTACCAAGTCCT -ACGGAACGGTATCTACCATAAGCC -ACGGAACGGTATCTACCAATAGCC -ACGGAACGGTATCTACCATAACCG -ACGGAACGGTATCTACCAATGCCA -ACGGAACGGTATGTAGGAGGAAAC -ACGGAACGGTATGTAGGAAACACC -ACGGAACGGTATGTAGGAATCGAG -ACGGAACGGTATGTAGGACTCCTT -ACGGAACGGTATGTAGGACCTGTT -ACGGAACGGTATGTAGGACGGTTT -ACGGAACGGTATGTAGGAGTGGTT -ACGGAACGGTATGTAGGAGCCTTT -ACGGAACGGTATGTAGGAGGTCTT -ACGGAACGGTATGTAGGAACGCTT -ACGGAACGGTATGTAGGAAGCGTT -ACGGAACGGTATGTAGGATTCGTC -ACGGAACGGTATGTAGGATCTCTC -ACGGAACGGTATGTAGGATGGATC -ACGGAACGGTATGTAGGACACTTC -ACGGAACGGTATGTAGGAGTACTC -ACGGAACGGTATGTAGGAGATGTC -ACGGAACGGTATGTAGGAACAGTC -ACGGAACGGTATGTAGGATTGCTG -ACGGAACGGTATGTAGGATCCATG -ACGGAACGGTATGTAGGATGTGTG -ACGGAACGGTATGTAGGACTAGTG -ACGGAACGGTATGTAGGACATCTG -ACGGAACGGTATGTAGGAGAGTTG -ACGGAACGGTATGTAGGAAGACTG -ACGGAACGGTATGTAGGATCGGTA -ACGGAACGGTATGTAGGATGCCTA -ACGGAACGGTATGTAGGACCACTA -ACGGAACGGTATGTAGGAGGAGTA -ACGGAACGGTATGTAGGATCGTCT -ACGGAACGGTATGTAGGATGCACT -ACGGAACGGTATGTAGGACTGACT -ACGGAACGGTATGTAGGACAACCT -ACGGAACGGTATGTAGGAGCTACT -ACGGAACGGTATGTAGGAGGATCT -ACGGAACGGTATGTAGGAAAGGCT -ACGGAACGGTATGTAGGATCAACC -ACGGAACGGTATGTAGGATGTTCC -ACGGAACGGTATGTAGGAATTCCC -ACGGAACGGTATGTAGGATTCTCG -ACGGAACGGTATGTAGGATAGACG -ACGGAACGGTATGTAGGAGTAACG -ACGGAACGGTATGTAGGAACTTCG -ACGGAACGGTATGTAGGATACGCA -ACGGAACGGTATGTAGGACTTGCA -ACGGAACGGTATGTAGGACGAACA -ACGGAACGGTATGTAGGACAGTCA -ACGGAACGGTATGTAGGAGATCCA -ACGGAACGGTATGTAGGAACGACA -ACGGAACGGTATGTAGGAAGCTCA -ACGGAACGGTATGTAGGATCACGT -ACGGAACGGTATGTAGGACGTAGT -ACGGAACGGTATGTAGGAGTCAGT -ACGGAACGGTATGTAGGAGAAGGT -ACGGAACGGTATGTAGGAAACCGT -ACGGAACGGTATGTAGGATTGTGC -ACGGAACGGTATGTAGGACTAAGC -ACGGAACGGTATGTAGGAACTAGC -ACGGAACGGTATGTAGGAAGATGC -ACGGAACGGTATGTAGGATGAAGG -ACGGAACGGTATGTAGGACAATGG -ACGGAACGGTATGTAGGAATGAGG -ACGGAACGGTATGTAGGAAATGGG -ACGGAACGGTATGTAGGATCCTGA -ACGGAACGGTATGTAGGATAGCGA -ACGGAACGGTATGTAGGACACAGA -ACGGAACGGTATGTAGGAGCAAGA -ACGGAACGGTATGTAGGAGGTTGA -ACGGAACGGTATGTAGGATCCGAT -ACGGAACGGTATGTAGGATGGCAT -ACGGAACGGTATGTAGGACGAGAT -ACGGAACGGTATGTAGGATACCAC -ACGGAACGGTATGTAGGACAGAAC -ACGGAACGGTATGTAGGAGTCTAC -ACGGAACGGTATGTAGGAACGTAC -ACGGAACGGTATGTAGGAAGTGAC -ACGGAACGGTATGTAGGACTGTAG -ACGGAACGGTATGTAGGACCTAAG -ACGGAACGGTATGTAGGAGTTCAG -ACGGAACGGTATGTAGGAGCATAG -ACGGAACGGTATGTAGGAGACAAG -ACGGAACGGTATGTAGGAAAGCAG -ACGGAACGGTATGTAGGACGTCAA -ACGGAACGGTATGTAGGAGCTGAA -ACGGAACGGTATGTAGGAAGTACG -ACGGAACGGTATGTAGGAATCCGA -ACGGAACGGTATGTAGGAATGGGA -ACGGAACGGTATGTAGGAGTGCAA -ACGGAACGGTATGTAGGAGAGGAA -ACGGAACGGTATGTAGGACAGGTA -ACGGAACGGTATGTAGGAGACTCT -ACGGAACGGTATGTAGGAAGTCCT -ACGGAACGGTATGTAGGATAAGCC -ACGGAACGGTATGTAGGAATAGCC -ACGGAACGGTATGTAGGATAACCG -ACGGAACGGTATGTAGGAATGCCA -ACGGAACGGTATTCTTCGGGAAAC -ACGGAACGGTATTCTTCGAACACC -ACGGAACGGTATTCTTCGATCGAG -ACGGAACGGTATTCTTCGCTCCTT -ACGGAACGGTATTCTTCGCCTGTT -ACGGAACGGTATTCTTCGCGGTTT -ACGGAACGGTATTCTTCGGTGGTT -ACGGAACGGTATTCTTCGGCCTTT -ACGGAACGGTATTCTTCGGGTCTT -ACGGAACGGTATTCTTCGACGCTT -ACGGAACGGTATTCTTCGAGCGTT -ACGGAACGGTATTCTTCGTTCGTC -ACGGAACGGTATTCTTCGTCTCTC -ACGGAACGGTATTCTTCGTGGATC -ACGGAACGGTATTCTTCGCACTTC -ACGGAACGGTATTCTTCGGTACTC -ACGGAACGGTATTCTTCGGATGTC -ACGGAACGGTATTCTTCGACAGTC -ACGGAACGGTATTCTTCGTTGCTG -ACGGAACGGTATTCTTCGTCCATG -ACGGAACGGTATTCTTCGTGTGTG -ACGGAACGGTATTCTTCGCTAGTG -ACGGAACGGTATTCTTCGCATCTG -ACGGAACGGTATTCTTCGGAGTTG -ACGGAACGGTATTCTTCGAGACTG -ACGGAACGGTATTCTTCGTCGGTA -ACGGAACGGTATTCTTCGTGCCTA -ACGGAACGGTATTCTTCGCCACTA -ACGGAACGGTATTCTTCGGGAGTA -ACGGAACGGTATTCTTCGTCGTCT -ACGGAACGGTATTCTTCGTGCACT -ACGGAACGGTATTCTTCGCTGACT -ACGGAACGGTATTCTTCGCAACCT -ACGGAACGGTATTCTTCGGCTACT -ACGGAACGGTATTCTTCGGGATCT -ACGGAACGGTATTCTTCGAAGGCT -ACGGAACGGTATTCTTCGTCAACC -ACGGAACGGTATTCTTCGTGTTCC -ACGGAACGGTATTCTTCGATTCCC -ACGGAACGGTATTCTTCGTTCTCG -ACGGAACGGTATTCTTCGTAGACG -ACGGAACGGTATTCTTCGGTAACG -ACGGAACGGTATTCTTCGACTTCG -ACGGAACGGTATTCTTCGTACGCA -ACGGAACGGTATTCTTCGCTTGCA -ACGGAACGGTATTCTTCGCGAACA -ACGGAACGGTATTCTTCGCAGTCA -ACGGAACGGTATTCTTCGGATCCA -ACGGAACGGTATTCTTCGACGACA -ACGGAACGGTATTCTTCGAGCTCA -ACGGAACGGTATTCTTCGTCACGT -ACGGAACGGTATTCTTCGCGTAGT -ACGGAACGGTATTCTTCGGTCAGT -ACGGAACGGTATTCTTCGGAAGGT -ACGGAACGGTATTCTTCGAACCGT -ACGGAACGGTATTCTTCGTTGTGC -ACGGAACGGTATTCTTCGCTAAGC -ACGGAACGGTATTCTTCGACTAGC -ACGGAACGGTATTCTTCGAGATGC -ACGGAACGGTATTCTTCGTGAAGG -ACGGAACGGTATTCTTCGCAATGG -ACGGAACGGTATTCTTCGATGAGG -ACGGAACGGTATTCTTCGAATGGG -ACGGAACGGTATTCTTCGTCCTGA -ACGGAACGGTATTCTTCGTAGCGA -ACGGAACGGTATTCTTCGCACAGA -ACGGAACGGTATTCTTCGGCAAGA -ACGGAACGGTATTCTTCGGGTTGA -ACGGAACGGTATTCTTCGTCCGAT -ACGGAACGGTATTCTTCGTGGCAT -ACGGAACGGTATTCTTCGCGAGAT -ACGGAACGGTATTCTTCGTACCAC -ACGGAACGGTATTCTTCGCAGAAC -ACGGAACGGTATTCTTCGGTCTAC -ACGGAACGGTATTCTTCGACGTAC -ACGGAACGGTATTCTTCGAGTGAC -ACGGAACGGTATTCTTCGCTGTAG -ACGGAACGGTATTCTTCGCCTAAG -ACGGAACGGTATTCTTCGGTTCAG -ACGGAACGGTATTCTTCGGCATAG -ACGGAACGGTATTCTTCGGACAAG -ACGGAACGGTATTCTTCGAAGCAG -ACGGAACGGTATTCTTCGCGTCAA -ACGGAACGGTATTCTTCGGCTGAA -ACGGAACGGTATTCTTCGAGTACG -ACGGAACGGTATTCTTCGATCCGA -ACGGAACGGTATTCTTCGATGGGA -ACGGAACGGTATTCTTCGGTGCAA -ACGGAACGGTATTCTTCGGAGGAA -ACGGAACGGTATTCTTCGCAGGTA -ACGGAACGGTATTCTTCGGACTCT -ACGGAACGGTATTCTTCGAGTCCT -ACGGAACGGTATTCTTCGTAAGCC -ACGGAACGGTATTCTTCGATAGCC -ACGGAACGGTATTCTTCGTAACCG -ACGGAACGGTATTCTTCGATGCCA -ACGGAACGGTATACTTGCGGAAAC -ACGGAACGGTATACTTGCAACACC -ACGGAACGGTATACTTGCATCGAG -ACGGAACGGTATACTTGCCTCCTT -ACGGAACGGTATACTTGCCCTGTT -ACGGAACGGTATACTTGCCGGTTT -ACGGAACGGTATACTTGCGTGGTT -ACGGAACGGTATACTTGCGCCTTT -ACGGAACGGTATACTTGCGGTCTT -ACGGAACGGTATACTTGCACGCTT -ACGGAACGGTATACTTGCAGCGTT -ACGGAACGGTATACTTGCTTCGTC -ACGGAACGGTATACTTGCTCTCTC -ACGGAACGGTATACTTGCTGGATC -ACGGAACGGTATACTTGCCACTTC -ACGGAACGGTATACTTGCGTACTC -ACGGAACGGTATACTTGCGATGTC -ACGGAACGGTATACTTGCACAGTC -ACGGAACGGTATACTTGCTTGCTG -ACGGAACGGTATACTTGCTCCATG -ACGGAACGGTATACTTGCTGTGTG -ACGGAACGGTATACTTGCCTAGTG -ACGGAACGGTATACTTGCCATCTG -ACGGAACGGTATACTTGCGAGTTG -ACGGAACGGTATACTTGCAGACTG -ACGGAACGGTATACTTGCTCGGTA -ACGGAACGGTATACTTGCTGCCTA -ACGGAACGGTATACTTGCCCACTA -ACGGAACGGTATACTTGCGGAGTA -ACGGAACGGTATACTTGCTCGTCT -ACGGAACGGTATACTTGCTGCACT -ACGGAACGGTATACTTGCCTGACT -ACGGAACGGTATACTTGCCAACCT -ACGGAACGGTATACTTGCGCTACT -ACGGAACGGTATACTTGCGGATCT -ACGGAACGGTATACTTGCAAGGCT -ACGGAACGGTATACTTGCTCAACC -ACGGAACGGTATACTTGCTGTTCC -ACGGAACGGTATACTTGCATTCCC -ACGGAACGGTATACTTGCTTCTCG -ACGGAACGGTATACTTGCTAGACG -ACGGAACGGTATACTTGCGTAACG -ACGGAACGGTATACTTGCACTTCG -ACGGAACGGTATACTTGCTACGCA -ACGGAACGGTATACTTGCCTTGCA -ACGGAACGGTATACTTGCCGAACA -ACGGAACGGTATACTTGCCAGTCA -ACGGAACGGTATACTTGCGATCCA -ACGGAACGGTATACTTGCACGACA -ACGGAACGGTATACTTGCAGCTCA -ACGGAACGGTATACTTGCTCACGT -ACGGAACGGTATACTTGCCGTAGT -ACGGAACGGTATACTTGCGTCAGT -ACGGAACGGTATACTTGCGAAGGT -ACGGAACGGTATACTTGCAACCGT -ACGGAACGGTATACTTGCTTGTGC -ACGGAACGGTATACTTGCCTAAGC -ACGGAACGGTATACTTGCACTAGC -ACGGAACGGTATACTTGCAGATGC -ACGGAACGGTATACTTGCTGAAGG -ACGGAACGGTATACTTGCCAATGG -ACGGAACGGTATACTTGCATGAGG -ACGGAACGGTATACTTGCAATGGG -ACGGAACGGTATACTTGCTCCTGA -ACGGAACGGTATACTTGCTAGCGA -ACGGAACGGTATACTTGCCACAGA -ACGGAACGGTATACTTGCGCAAGA -ACGGAACGGTATACTTGCGGTTGA -ACGGAACGGTATACTTGCTCCGAT -ACGGAACGGTATACTTGCTGGCAT -ACGGAACGGTATACTTGCCGAGAT -ACGGAACGGTATACTTGCTACCAC -ACGGAACGGTATACTTGCCAGAAC -ACGGAACGGTATACTTGCGTCTAC -ACGGAACGGTATACTTGCACGTAC -ACGGAACGGTATACTTGCAGTGAC -ACGGAACGGTATACTTGCCTGTAG -ACGGAACGGTATACTTGCCCTAAG -ACGGAACGGTATACTTGCGTTCAG -ACGGAACGGTATACTTGCGCATAG -ACGGAACGGTATACTTGCGACAAG -ACGGAACGGTATACTTGCAAGCAG -ACGGAACGGTATACTTGCCGTCAA -ACGGAACGGTATACTTGCGCTGAA -ACGGAACGGTATACTTGCAGTACG -ACGGAACGGTATACTTGCATCCGA -ACGGAACGGTATACTTGCATGGGA -ACGGAACGGTATACTTGCGTGCAA -ACGGAACGGTATACTTGCGAGGAA -ACGGAACGGTATACTTGCCAGGTA -ACGGAACGGTATACTTGCGACTCT -ACGGAACGGTATACTTGCAGTCCT -ACGGAACGGTATACTTGCTAAGCC -ACGGAACGGTATACTTGCATAGCC -ACGGAACGGTATACTTGCTAACCG -ACGGAACGGTATACTTGCATGCCA -ACGGAACGGTATACTCTGGGAAAC -ACGGAACGGTATACTCTGAACACC -ACGGAACGGTATACTCTGATCGAG -ACGGAACGGTATACTCTGCTCCTT -ACGGAACGGTATACTCTGCCTGTT -ACGGAACGGTATACTCTGCGGTTT -ACGGAACGGTATACTCTGGTGGTT -ACGGAACGGTATACTCTGGCCTTT -ACGGAACGGTATACTCTGGGTCTT -ACGGAACGGTATACTCTGACGCTT -ACGGAACGGTATACTCTGAGCGTT -ACGGAACGGTATACTCTGTTCGTC -ACGGAACGGTATACTCTGTCTCTC -ACGGAACGGTATACTCTGTGGATC -ACGGAACGGTATACTCTGCACTTC -ACGGAACGGTATACTCTGGTACTC -ACGGAACGGTATACTCTGGATGTC -ACGGAACGGTATACTCTGACAGTC -ACGGAACGGTATACTCTGTTGCTG -ACGGAACGGTATACTCTGTCCATG -ACGGAACGGTATACTCTGTGTGTG -ACGGAACGGTATACTCTGCTAGTG -ACGGAACGGTATACTCTGCATCTG -ACGGAACGGTATACTCTGGAGTTG -ACGGAACGGTATACTCTGAGACTG -ACGGAACGGTATACTCTGTCGGTA -ACGGAACGGTATACTCTGTGCCTA -ACGGAACGGTATACTCTGCCACTA -ACGGAACGGTATACTCTGGGAGTA -ACGGAACGGTATACTCTGTCGTCT -ACGGAACGGTATACTCTGTGCACT -ACGGAACGGTATACTCTGCTGACT -ACGGAACGGTATACTCTGCAACCT -ACGGAACGGTATACTCTGGCTACT -ACGGAACGGTATACTCTGGGATCT -ACGGAACGGTATACTCTGAAGGCT -ACGGAACGGTATACTCTGTCAACC -ACGGAACGGTATACTCTGTGTTCC -ACGGAACGGTATACTCTGATTCCC -ACGGAACGGTATACTCTGTTCTCG -ACGGAACGGTATACTCTGTAGACG -ACGGAACGGTATACTCTGGTAACG -ACGGAACGGTATACTCTGACTTCG -ACGGAACGGTATACTCTGTACGCA -ACGGAACGGTATACTCTGCTTGCA -ACGGAACGGTATACTCTGCGAACA -ACGGAACGGTATACTCTGCAGTCA -ACGGAACGGTATACTCTGGATCCA -ACGGAACGGTATACTCTGACGACA -ACGGAACGGTATACTCTGAGCTCA -ACGGAACGGTATACTCTGTCACGT -ACGGAACGGTATACTCTGCGTAGT -ACGGAACGGTATACTCTGGTCAGT -ACGGAACGGTATACTCTGGAAGGT -ACGGAACGGTATACTCTGAACCGT -ACGGAACGGTATACTCTGTTGTGC -ACGGAACGGTATACTCTGCTAAGC -ACGGAACGGTATACTCTGACTAGC -ACGGAACGGTATACTCTGAGATGC -ACGGAACGGTATACTCTGTGAAGG -ACGGAACGGTATACTCTGCAATGG -ACGGAACGGTATACTCTGATGAGG -ACGGAACGGTATACTCTGAATGGG -ACGGAACGGTATACTCTGTCCTGA -ACGGAACGGTATACTCTGTAGCGA -ACGGAACGGTATACTCTGCACAGA -ACGGAACGGTATACTCTGGCAAGA -ACGGAACGGTATACTCTGGGTTGA -ACGGAACGGTATACTCTGTCCGAT -ACGGAACGGTATACTCTGTGGCAT -ACGGAACGGTATACTCTGCGAGAT -ACGGAACGGTATACTCTGTACCAC -ACGGAACGGTATACTCTGCAGAAC -ACGGAACGGTATACTCTGGTCTAC -ACGGAACGGTATACTCTGACGTAC -ACGGAACGGTATACTCTGAGTGAC -ACGGAACGGTATACTCTGCTGTAG -ACGGAACGGTATACTCTGCCTAAG -ACGGAACGGTATACTCTGGTTCAG -ACGGAACGGTATACTCTGGCATAG -ACGGAACGGTATACTCTGGACAAG -ACGGAACGGTATACTCTGAAGCAG -ACGGAACGGTATACTCTGCGTCAA -ACGGAACGGTATACTCTGGCTGAA -ACGGAACGGTATACTCTGAGTACG -ACGGAACGGTATACTCTGATCCGA -ACGGAACGGTATACTCTGATGGGA -ACGGAACGGTATACTCTGGTGCAA -ACGGAACGGTATACTCTGGAGGAA -ACGGAACGGTATACTCTGCAGGTA -ACGGAACGGTATACTCTGGACTCT -ACGGAACGGTATACTCTGAGTCCT -ACGGAACGGTATACTCTGTAAGCC -ACGGAACGGTATACTCTGATAGCC -ACGGAACGGTATACTCTGTAACCG -ACGGAACGGTATACTCTGATGCCA -ACGGAACGGTATCCTCAAGGAAAC -ACGGAACGGTATCCTCAAAACACC -ACGGAACGGTATCCTCAAATCGAG -ACGGAACGGTATCCTCAACTCCTT -ACGGAACGGTATCCTCAACCTGTT -ACGGAACGGTATCCTCAACGGTTT -ACGGAACGGTATCCTCAAGTGGTT -ACGGAACGGTATCCTCAAGCCTTT -ACGGAACGGTATCCTCAAGGTCTT -ACGGAACGGTATCCTCAAACGCTT -ACGGAACGGTATCCTCAAAGCGTT -ACGGAACGGTATCCTCAATTCGTC -ACGGAACGGTATCCTCAATCTCTC -ACGGAACGGTATCCTCAATGGATC -ACGGAACGGTATCCTCAACACTTC -ACGGAACGGTATCCTCAAGTACTC -ACGGAACGGTATCCTCAAGATGTC -ACGGAACGGTATCCTCAAACAGTC -ACGGAACGGTATCCTCAATTGCTG -ACGGAACGGTATCCTCAATCCATG -ACGGAACGGTATCCTCAATGTGTG -ACGGAACGGTATCCTCAACTAGTG -ACGGAACGGTATCCTCAACATCTG -ACGGAACGGTATCCTCAAGAGTTG -ACGGAACGGTATCCTCAAAGACTG -ACGGAACGGTATCCTCAATCGGTA -ACGGAACGGTATCCTCAATGCCTA -ACGGAACGGTATCCTCAACCACTA -ACGGAACGGTATCCTCAAGGAGTA -ACGGAACGGTATCCTCAATCGTCT -ACGGAACGGTATCCTCAATGCACT -ACGGAACGGTATCCTCAACTGACT -ACGGAACGGTATCCTCAACAACCT -ACGGAACGGTATCCTCAAGCTACT -ACGGAACGGTATCCTCAAGGATCT -ACGGAACGGTATCCTCAAAAGGCT -ACGGAACGGTATCCTCAATCAACC -ACGGAACGGTATCCTCAATGTTCC -ACGGAACGGTATCCTCAAATTCCC -ACGGAACGGTATCCTCAATTCTCG -ACGGAACGGTATCCTCAATAGACG -ACGGAACGGTATCCTCAAGTAACG -ACGGAACGGTATCCTCAAACTTCG -ACGGAACGGTATCCTCAATACGCA -ACGGAACGGTATCCTCAACTTGCA -ACGGAACGGTATCCTCAACGAACA -ACGGAACGGTATCCTCAACAGTCA -ACGGAACGGTATCCTCAAGATCCA -ACGGAACGGTATCCTCAAACGACA -ACGGAACGGTATCCTCAAAGCTCA -ACGGAACGGTATCCTCAATCACGT -ACGGAACGGTATCCTCAACGTAGT -ACGGAACGGTATCCTCAAGTCAGT -ACGGAACGGTATCCTCAAGAAGGT -ACGGAACGGTATCCTCAAAACCGT -ACGGAACGGTATCCTCAATTGTGC -ACGGAACGGTATCCTCAACTAAGC -ACGGAACGGTATCCTCAAACTAGC -ACGGAACGGTATCCTCAAAGATGC -ACGGAACGGTATCCTCAATGAAGG -ACGGAACGGTATCCTCAACAATGG -ACGGAACGGTATCCTCAAATGAGG -ACGGAACGGTATCCTCAAAATGGG -ACGGAACGGTATCCTCAATCCTGA -ACGGAACGGTATCCTCAATAGCGA -ACGGAACGGTATCCTCAACACAGA -ACGGAACGGTATCCTCAAGCAAGA -ACGGAACGGTATCCTCAAGGTTGA -ACGGAACGGTATCCTCAATCCGAT -ACGGAACGGTATCCTCAATGGCAT -ACGGAACGGTATCCTCAACGAGAT -ACGGAACGGTATCCTCAATACCAC -ACGGAACGGTATCCTCAACAGAAC -ACGGAACGGTATCCTCAAGTCTAC -ACGGAACGGTATCCTCAAACGTAC -ACGGAACGGTATCCTCAAAGTGAC -ACGGAACGGTATCCTCAACTGTAG -ACGGAACGGTATCCTCAACCTAAG -ACGGAACGGTATCCTCAAGTTCAG -ACGGAACGGTATCCTCAAGCATAG -ACGGAACGGTATCCTCAAGACAAG -ACGGAACGGTATCCTCAAAAGCAG -ACGGAACGGTATCCTCAACGTCAA -ACGGAACGGTATCCTCAAGCTGAA -ACGGAACGGTATCCTCAAAGTACG -ACGGAACGGTATCCTCAAATCCGA -ACGGAACGGTATCCTCAAATGGGA -ACGGAACGGTATCCTCAAGTGCAA -ACGGAACGGTATCCTCAAGAGGAA -ACGGAACGGTATCCTCAACAGGTA -ACGGAACGGTATCCTCAAGACTCT -ACGGAACGGTATCCTCAAAGTCCT -ACGGAACGGTATCCTCAATAAGCC -ACGGAACGGTATCCTCAAATAGCC -ACGGAACGGTATCCTCAATAACCG -ACGGAACGGTATCCTCAAATGCCA -ACGGAACGGTATACTGCTGGAAAC -ACGGAACGGTATACTGCTAACACC -ACGGAACGGTATACTGCTATCGAG -ACGGAACGGTATACTGCTCTCCTT -ACGGAACGGTATACTGCTCCTGTT -ACGGAACGGTATACTGCTCGGTTT -ACGGAACGGTATACTGCTGTGGTT -ACGGAACGGTATACTGCTGCCTTT -ACGGAACGGTATACTGCTGGTCTT -ACGGAACGGTATACTGCTACGCTT -ACGGAACGGTATACTGCTAGCGTT -ACGGAACGGTATACTGCTTTCGTC -ACGGAACGGTATACTGCTTCTCTC -ACGGAACGGTATACTGCTTGGATC -ACGGAACGGTATACTGCTCACTTC -ACGGAACGGTATACTGCTGTACTC -ACGGAACGGTATACTGCTGATGTC -ACGGAACGGTATACTGCTACAGTC -ACGGAACGGTATACTGCTTTGCTG -ACGGAACGGTATACTGCTTCCATG -ACGGAACGGTATACTGCTTGTGTG -ACGGAACGGTATACTGCTCTAGTG -ACGGAACGGTATACTGCTCATCTG -ACGGAACGGTATACTGCTGAGTTG -ACGGAACGGTATACTGCTAGACTG -ACGGAACGGTATACTGCTTCGGTA -ACGGAACGGTATACTGCTTGCCTA -ACGGAACGGTATACTGCTCCACTA -ACGGAACGGTATACTGCTGGAGTA -ACGGAACGGTATACTGCTTCGTCT -ACGGAACGGTATACTGCTTGCACT -ACGGAACGGTATACTGCTCTGACT -ACGGAACGGTATACTGCTCAACCT -ACGGAACGGTATACTGCTGCTACT -ACGGAACGGTATACTGCTGGATCT -ACGGAACGGTATACTGCTAAGGCT -ACGGAACGGTATACTGCTTCAACC -ACGGAACGGTATACTGCTTGTTCC -ACGGAACGGTATACTGCTATTCCC -ACGGAACGGTATACTGCTTTCTCG -ACGGAACGGTATACTGCTTAGACG -ACGGAACGGTATACTGCTGTAACG -ACGGAACGGTATACTGCTACTTCG -ACGGAACGGTATACTGCTTACGCA -ACGGAACGGTATACTGCTCTTGCA -ACGGAACGGTATACTGCTCGAACA -ACGGAACGGTATACTGCTCAGTCA -ACGGAACGGTATACTGCTGATCCA -ACGGAACGGTATACTGCTACGACA -ACGGAACGGTATACTGCTAGCTCA -ACGGAACGGTATACTGCTTCACGT -ACGGAACGGTATACTGCTCGTAGT -ACGGAACGGTATACTGCTGTCAGT -ACGGAACGGTATACTGCTGAAGGT -ACGGAACGGTATACTGCTAACCGT -ACGGAACGGTATACTGCTTTGTGC -ACGGAACGGTATACTGCTCTAAGC -ACGGAACGGTATACTGCTACTAGC -ACGGAACGGTATACTGCTAGATGC -ACGGAACGGTATACTGCTTGAAGG -ACGGAACGGTATACTGCTCAATGG -ACGGAACGGTATACTGCTATGAGG -ACGGAACGGTATACTGCTAATGGG -ACGGAACGGTATACTGCTTCCTGA -ACGGAACGGTATACTGCTTAGCGA -ACGGAACGGTATACTGCTCACAGA -ACGGAACGGTATACTGCTGCAAGA -ACGGAACGGTATACTGCTGGTTGA -ACGGAACGGTATACTGCTTCCGAT -ACGGAACGGTATACTGCTTGGCAT -ACGGAACGGTATACTGCTCGAGAT -ACGGAACGGTATACTGCTTACCAC -ACGGAACGGTATACTGCTCAGAAC -ACGGAACGGTATACTGCTGTCTAC -ACGGAACGGTATACTGCTACGTAC -ACGGAACGGTATACTGCTAGTGAC -ACGGAACGGTATACTGCTCTGTAG -ACGGAACGGTATACTGCTCCTAAG -ACGGAACGGTATACTGCTGTTCAG -ACGGAACGGTATACTGCTGCATAG -ACGGAACGGTATACTGCTGACAAG -ACGGAACGGTATACTGCTAAGCAG -ACGGAACGGTATACTGCTCGTCAA -ACGGAACGGTATACTGCTGCTGAA -ACGGAACGGTATACTGCTAGTACG -ACGGAACGGTATACTGCTATCCGA -ACGGAACGGTATACTGCTATGGGA -ACGGAACGGTATACTGCTGTGCAA -ACGGAACGGTATACTGCTGAGGAA -ACGGAACGGTATACTGCTCAGGTA -ACGGAACGGTATACTGCTGACTCT -ACGGAACGGTATACTGCTAGTCCT -ACGGAACGGTATACTGCTTAAGCC -ACGGAACGGTATACTGCTATAGCC -ACGGAACGGTATACTGCTTAACCG -ACGGAACGGTATACTGCTATGCCA -ACGGAACGGTATTCTGGAGGAAAC -ACGGAACGGTATTCTGGAAACACC -ACGGAACGGTATTCTGGAATCGAG -ACGGAACGGTATTCTGGACTCCTT -ACGGAACGGTATTCTGGACCTGTT -ACGGAACGGTATTCTGGACGGTTT -ACGGAACGGTATTCTGGAGTGGTT -ACGGAACGGTATTCTGGAGCCTTT -ACGGAACGGTATTCTGGAGGTCTT -ACGGAACGGTATTCTGGAACGCTT -ACGGAACGGTATTCTGGAAGCGTT -ACGGAACGGTATTCTGGATTCGTC -ACGGAACGGTATTCTGGATCTCTC -ACGGAACGGTATTCTGGATGGATC -ACGGAACGGTATTCTGGACACTTC -ACGGAACGGTATTCTGGAGTACTC -ACGGAACGGTATTCTGGAGATGTC -ACGGAACGGTATTCTGGAACAGTC -ACGGAACGGTATTCTGGATTGCTG -ACGGAACGGTATTCTGGATCCATG -ACGGAACGGTATTCTGGATGTGTG -ACGGAACGGTATTCTGGACTAGTG -ACGGAACGGTATTCTGGACATCTG -ACGGAACGGTATTCTGGAGAGTTG -ACGGAACGGTATTCTGGAAGACTG -ACGGAACGGTATTCTGGATCGGTA -ACGGAACGGTATTCTGGATGCCTA -ACGGAACGGTATTCTGGACCACTA -ACGGAACGGTATTCTGGAGGAGTA -ACGGAACGGTATTCTGGATCGTCT -ACGGAACGGTATTCTGGATGCACT -ACGGAACGGTATTCTGGACTGACT -ACGGAACGGTATTCTGGACAACCT -ACGGAACGGTATTCTGGAGCTACT -ACGGAACGGTATTCTGGAGGATCT -ACGGAACGGTATTCTGGAAAGGCT -ACGGAACGGTATTCTGGATCAACC -ACGGAACGGTATTCTGGATGTTCC -ACGGAACGGTATTCTGGAATTCCC -ACGGAACGGTATTCTGGATTCTCG -ACGGAACGGTATTCTGGATAGACG -ACGGAACGGTATTCTGGAGTAACG -ACGGAACGGTATTCTGGAACTTCG -ACGGAACGGTATTCTGGATACGCA -ACGGAACGGTATTCTGGACTTGCA -ACGGAACGGTATTCTGGACGAACA -ACGGAACGGTATTCTGGACAGTCA -ACGGAACGGTATTCTGGAGATCCA -ACGGAACGGTATTCTGGAACGACA -ACGGAACGGTATTCTGGAAGCTCA -ACGGAACGGTATTCTGGATCACGT -ACGGAACGGTATTCTGGACGTAGT -ACGGAACGGTATTCTGGAGTCAGT -ACGGAACGGTATTCTGGAGAAGGT -ACGGAACGGTATTCTGGAAACCGT -ACGGAACGGTATTCTGGATTGTGC -ACGGAACGGTATTCTGGACTAAGC -ACGGAACGGTATTCTGGAACTAGC -ACGGAACGGTATTCTGGAAGATGC -ACGGAACGGTATTCTGGATGAAGG -ACGGAACGGTATTCTGGACAATGG -ACGGAACGGTATTCTGGAATGAGG -ACGGAACGGTATTCTGGAAATGGG -ACGGAACGGTATTCTGGATCCTGA -ACGGAACGGTATTCTGGATAGCGA -ACGGAACGGTATTCTGGACACAGA -ACGGAACGGTATTCTGGAGCAAGA -ACGGAACGGTATTCTGGAGGTTGA -ACGGAACGGTATTCTGGATCCGAT -ACGGAACGGTATTCTGGATGGCAT -ACGGAACGGTATTCTGGACGAGAT -ACGGAACGGTATTCTGGATACCAC -ACGGAACGGTATTCTGGACAGAAC -ACGGAACGGTATTCTGGAGTCTAC -ACGGAACGGTATTCTGGAACGTAC -ACGGAACGGTATTCTGGAAGTGAC -ACGGAACGGTATTCTGGACTGTAG -ACGGAACGGTATTCTGGACCTAAG -ACGGAACGGTATTCTGGAGTTCAG -ACGGAACGGTATTCTGGAGCATAG -ACGGAACGGTATTCTGGAGACAAG -ACGGAACGGTATTCTGGAAAGCAG -ACGGAACGGTATTCTGGACGTCAA -ACGGAACGGTATTCTGGAGCTGAA -ACGGAACGGTATTCTGGAAGTACG -ACGGAACGGTATTCTGGAATCCGA -ACGGAACGGTATTCTGGAATGGGA -ACGGAACGGTATTCTGGAGTGCAA -ACGGAACGGTATTCTGGAGAGGAA -ACGGAACGGTATTCTGGACAGGTA -ACGGAACGGTATTCTGGAGACTCT -ACGGAACGGTATTCTGGAAGTCCT -ACGGAACGGTATTCTGGATAAGCC -ACGGAACGGTATTCTGGAATAGCC -ACGGAACGGTATTCTGGATAACCG -ACGGAACGGTATTCTGGAATGCCA -ACGGAACGGTATGCTAAGGGAAAC -ACGGAACGGTATGCTAAGAACACC -ACGGAACGGTATGCTAAGATCGAG -ACGGAACGGTATGCTAAGCTCCTT -ACGGAACGGTATGCTAAGCCTGTT -ACGGAACGGTATGCTAAGCGGTTT -ACGGAACGGTATGCTAAGGTGGTT -ACGGAACGGTATGCTAAGGCCTTT -ACGGAACGGTATGCTAAGGGTCTT -ACGGAACGGTATGCTAAGACGCTT -ACGGAACGGTATGCTAAGAGCGTT -ACGGAACGGTATGCTAAGTTCGTC -ACGGAACGGTATGCTAAGTCTCTC -ACGGAACGGTATGCTAAGTGGATC -ACGGAACGGTATGCTAAGCACTTC -ACGGAACGGTATGCTAAGGTACTC -ACGGAACGGTATGCTAAGGATGTC -ACGGAACGGTATGCTAAGACAGTC -ACGGAACGGTATGCTAAGTTGCTG -ACGGAACGGTATGCTAAGTCCATG -ACGGAACGGTATGCTAAGTGTGTG -ACGGAACGGTATGCTAAGCTAGTG -ACGGAACGGTATGCTAAGCATCTG -ACGGAACGGTATGCTAAGGAGTTG -ACGGAACGGTATGCTAAGAGACTG -ACGGAACGGTATGCTAAGTCGGTA -ACGGAACGGTATGCTAAGTGCCTA -ACGGAACGGTATGCTAAGCCACTA -ACGGAACGGTATGCTAAGGGAGTA -ACGGAACGGTATGCTAAGTCGTCT -ACGGAACGGTATGCTAAGTGCACT -ACGGAACGGTATGCTAAGCTGACT -ACGGAACGGTATGCTAAGCAACCT -ACGGAACGGTATGCTAAGGCTACT -ACGGAACGGTATGCTAAGGGATCT -ACGGAACGGTATGCTAAGAAGGCT -ACGGAACGGTATGCTAAGTCAACC -ACGGAACGGTATGCTAAGTGTTCC -ACGGAACGGTATGCTAAGATTCCC -ACGGAACGGTATGCTAAGTTCTCG -ACGGAACGGTATGCTAAGTAGACG -ACGGAACGGTATGCTAAGGTAACG -ACGGAACGGTATGCTAAGACTTCG -ACGGAACGGTATGCTAAGTACGCA -ACGGAACGGTATGCTAAGCTTGCA -ACGGAACGGTATGCTAAGCGAACA -ACGGAACGGTATGCTAAGCAGTCA -ACGGAACGGTATGCTAAGGATCCA -ACGGAACGGTATGCTAAGACGACA -ACGGAACGGTATGCTAAGAGCTCA -ACGGAACGGTATGCTAAGTCACGT -ACGGAACGGTATGCTAAGCGTAGT -ACGGAACGGTATGCTAAGGTCAGT -ACGGAACGGTATGCTAAGGAAGGT -ACGGAACGGTATGCTAAGAACCGT -ACGGAACGGTATGCTAAGTTGTGC -ACGGAACGGTATGCTAAGCTAAGC -ACGGAACGGTATGCTAAGACTAGC -ACGGAACGGTATGCTAAGAGATGC -ACGGAACGGTATGCTAAGTGAAGG -ACGGAACGGTATGCTAAGCAATGG -ACGGAACGGTATGCTAAGATGAGG -ACGGAACGGTATGCTAAGAATGGG -ACGGAACGGTATGCTAAGTCCTGA -ACGGAACGGTATGCTAAGTAGCGA -ACGGAACGGTATGCTAAGCACAGA -ACGGAACGGTATGCTAAGGCAAGA -ACGGAACGGTATGCTAAGGGTTGA -ACGGAACGGTATGCTAAGTCCGAT -ACGGAACGGTATGCTAAGTGGCAT -ACGGAACGGTATGCTAAGCGAGAT -ACGGAACGGTATGCTAAGTACCAC -ACGGAACGGTATGCTAAGCAGAAC -ACGGAACGGTATGCTAAGGTCTAC -ACGGAACGGTATGCTAAGACGTAC -ACGGAACGGTATGCTAAGAGTGAC -ACGGAACGGTATGCTAAGCTGTAG -ACGGAACGGTATGCTAAGCCTAAG -ACGGAACGGTATGCTAAGGTTCAG -ACGGAACGGTATGCTAAGGCATAG -ACGGAACGGTATGCTAAGGACAAG -ACGGAACGGTATGCTAAGAAGCAG -ACGGAACGGTATGCTAAGCGTCAA -ACGGAACGGTATGCTAAGGCTGAA -ACGGAACGGTATGCTAAGAGTACG -ACGGAACGGTATGCTAAGATCCGA -ACGGAACGGTATGCTAAGATGGGA -ACGGAACGGTATGCTAAGGTGCAA -ACGGAACGGTATGCTAAGGAGGAA -ACGGAACGGTATGCTAAGCAGGTA -ACGGAACGGTATGCTAAGGACTCT -ACGGAACGGTATGCTAAGAGTCCT -ACGGAACGGTATGCTAAGTAAGCC -ACGGAACGGTATGCTAAGATAGCC -ACGGAACGGTATGCTAAGTAACCG -ACGGAACGGTATGCTAAGATGCCA -ACGGAACGGTATACCTCAGGAAAC -ACGGAACGGTATACCTCAAACACC -ACGGAACGGTATACCTCAATCGAG -ACGGAACGGTATACCTCACTCCTT -ACGGAACGGTATACCTCACCTGTT -ACGGAACGGTATACCTCACGGTTT -ACGGAACGGTATACCTCAGTGGTT -ACGGAACGGTATACCTCAGCCTTT -ACGGAACGGTATACCTCAGGTCTT -ACGGAACGGTATACCTCAACGCTT -ACGGAACGGTATACCTCAAGCGTT -ACGGAACGGTATACCTCATTCGTC -ACGGAACGGTATACCTCATCTCTC -ACGGAACGGTATACCTCATGGATC -ACGGAACGGTATACCTCACACTTC -ACGGAACGGTATACCTCAGTACTC -ACGGAACGGTATACCTCAGATGTC -ACGGAACGGTATACCTCAACAGTC -ACGGAACGGTATACCTCATTGCTG -ACGGAACGGTATACCTCATCCATG -ACGGAACGGTATACCTCATGTGTG -ACGGAACGGTATACCTCACTAGTG -ACGGAACGGTATACCTCACATCTG -ACGGAACGGTATACCTCAGAGTTG -ACGGAACGGTATACCTCAAGACTG -ACGGAACGGTATACCTCATCGGTA -ACGGAACGGTATACCTCATGCCTA -ACGGAACGGTATACCTCACCACTA -ACGGAACGGTATACCTCAGGAGTA -ACGGAACGGTATACCTCATCGTCT -ACGGAACGGTATACCTCATGCACT -ACGGAACGGTATACCTCACTGACT -ACGGAACGGTATACCTCACAACCT -ACGGAACGGTATACCTCAGCTACT -ACGGAACGGTATACCTCAGGATCT -ACGGAACGGTATACCTCAAAGGCT -ACGGAACGGTATACCTCATCAACC -ACGGAACGGTATACCTCATGTTCC -ACGGAACGGTATACCTCAATTCCC -ACGGAACGGTATACCTCATTCTCG -ACGGAACGGTATACCTCATAGACG -ACGGAACGGTATACCTCAGTAACG -ACGGAACGGTATACCTCAACTTCG -ACGGAACGGTATACCTCATACGCA -ACGGAACGGTATACCTCACTTGCA -ACGGAACGGTATACCTCACGAACA -ACGGAACGGTATACCTCACAGTCA -ACGGAACGGTATACCTCAGATCCA -ACGGAACGGTATACCTCAACGACA -ACGGAACGGTATACCTCAAGCTCA -ACGGAACGGTATACCTCATCACGT -ACGGAACGGTATACCTCACGTAGT -ACGGAACGGTATACCTCAGTCAGT -ACGGAACGGTATACCTCAGAAGGT -ACGGAACGGTATACCTCAAACCGT -ACGGAACGGTATACCTCATTGTGC -ACGGAACGGTATACCTCACTAAGC -ACGGAACGGTATACCTCAACTAGC -ACGGAACGGTATACCTCAAGATGC -ACGGAACGGTATACCTCATGAAGG -ACGGAACGGTATACCTCACAATGG -ACGGAACGGTATACCTCAATGAGG -ACGGAACGGTATACCTCAAATGGG -ACGGAACGGTATACCTCATCCTGA -ACGGAACGGTATACCTCATAGCGA -ACGGAACGGTATACCTCACACAGA -ACGGAACGGTATACCTCAGCAAGA -ACGGAACGGTATACCTCAGGTTGA -ACGGAACGGTATACCTCATCCGAT -ACGGAACGGTATACCTCATGGCAT -ACGGAACGGTATACCTCACGAGAT -ACGGAACGGTATACCTCATACCAC -ACGGAACGGTATACCTCACAGAAC -ACGGAACGGTATACCTCAGTCTAC -ACGGAACGGTATACCTCAACGTAC -ACGGAACGGTATACCTCAAGTGAC -ACGGAACGGTATACCTCACTGTAG -ACGGAACGGTATACCTCACCTAAG -ACGGAACGGTATACCTCAGTTCAG -ACGGAACGGTATACCTCAGCATAG -ACGGAACGGTATACCTCAGACAAG -ACGGAACGGTATACCTCAAAGCAG -ACGGAACGGTATACCTCACGTCAA -ACGGAACGGTATACCTCAGCTGAA -ACGGAACGGTATACCTCAAGTACG -ACGGAACGGTATACCTCAATCCGA -ACGGAACGGTATACCTCAATGGGA -ACGGAACGGTATACCTCAGTGCAA -ACGGAACGGTATACCTCAGAGGAA -ACGGAACGGTATACCTCACAGGTA -ACGGAACGGTATACCTCAGACTCT -ACGGAACGGTATACCTCAAGTCCT -ACGGAACGGTATACCTCATAAGCC -ACGGAACGGTATACCTCAATAGCC -ACGGAACGGTATACCTCATAACCG -ACGGAACGGTATACCTCAATGCCA -ACGGAACGGTATTCCTGTGGAAAC -ACGGAACGGTATTCCTGTAACACC -ACGGAACGGTATTCCTGTATCGAG -ACGGAACGGTATTCCTGTCTCCTT -ACGGAACGGTATTCCTGTCCTGTT -ACGGAACGGTATTCCTGTCGGTTT -ACGGAACGGTATTCCTGTGTGGTT -ACGGAACGGTATTCCTGTGCCTTT -ACGGAACGGTATTCCTGTGGTCTT -ACGGAACGGTATTCCTGTACGCTT -ACGGAACGGTATTCCTGTAGCGTT -ACGGAACGGTATTCCTGTTTCGTC -ACGGAACGGTATTCCTGTTCTCTC -ACGGAACGGTATTCCTGTTGGATC -ACGGAACGGTATTCCTGTCACTTC -ACGGAACGGTATTCCTGTGTACTC -ACGGAACGGTATTCCTGTGATGTC -ACGGAACGGTATTCCTGTACAGTC -ACGGAACGGTATTCCTGTTTGCTG -ACGGAACGGTATTCCTGTTCCATG -ACGGAACGGTATTCCTGTTGTGTG -ACGGAACGGTATTCCTGTCTAGTG -ACGGAACGGTATTCCTGTCATCTG -ACGGAACGGTATTCCTGTGAGTTG -ACGGAACGGTATTCCTGTAGACTG -ACGGAACGGTATTCCTGTTCGGTA -ACGGAACGGTATTCCTGTTGCCTA -ACGGAACGGTATTCCTGTCCACTA -ACGGAACGGTATTCCTGTGGAGTA -ACGGAACGGTATTCCTGTTCGTCT -ACGGAACGGTATTCCTGTTGCACT -ACGGAACGGTATTCCTGTCTGACT -ACGGAACGGTATTCCTGTCAACCT -ACGGAACGGTATTCCTGTGCTACT -ACGGAACGGTATTCCTGTGGATCT -ACGGAACGGTATTCCTGTAAGGCT -ACGGAACGGTATTCCTGTTCAACC -ACGGAACGGTATTCCTGTTGTTCC -ACGGAACGGTATTCCTGTATTCCC -ACGGAACGGTATTCCTGTTTCTCG -ACGGAACGGTATTCCTGTTAGACG -ACGGAACGGTATTCCTGTGTAACG -ACGGAACGGTATTCCTGTACTTCG -ACGGAACGGTATTCCTGTTACGCA -ACGGAACGGTATTCCTGTCTTGCA -ACGGAACGGTATTCCTGTCGAACA -ACGGAACGGTATTCCTGTCAGTCA -ACGGAACGGTATTCCTGTGATCCA -ACGGAACGGTATTCCTGTACGACA -ACGGAACGGTATTCCTGTAGCTCA -ACGGAACGGTATTCCTGTTCACGT -ACGGAACGGTATTCCTGTCGTAGT -ACGGAACGGTATTCCTGTGTCAGT -ACGGAACGGTATTCCTGTGAAGGT -ACGGAACGGTATTCCTGTAACCGT -ACGGAACGGTATTCCTGTTTGTGC -ACGGAACGGTATTCCTGTCTAAGC -ACGGAACGGTATTCCTGTACTAGC -ACGGAACGGTATTCCTGTAGATGC -ACGGAACGGTATTCCTGTTGAAGG -ACGGAACGGTATTCCTGTCAATGG -ACGGAACGGTATTCCTGTATGAGG -ACGGAACGGTATTCCTGTAATGGG -ACGGAACGGTATTCCTGTTCCTGA -ACGGAACGGTATTCCTGTTAGCGA -ACGGAACGGTATTCCTGTCACAGA -ACGGAACGGTATTCCTGTGCAAGA -ACGGAACGGTATTCCTGTGGTTGA -ACGGAACGGTATTCCTGTTCCGAT -ACGGAACGGTATTCCTGTTGGCAT -ACGGAACGGTATTCCTGTCGAGAT -ACGGAACGGTATTCCTGTTACCAC -ACGGAACGGTATTCCTGTCAGAAC -ACGGAACGGTATTCCTGTGTCTAC -ACGGAACGGTATTCCTGTACGTAC -ACGGAACGGTATTCCTGTAGTGAC -ACGGAACGGTATTCCTGTCTGTAG -ACGGAACGGTATTCCTGTCCTAAG -ACGGAACGGTATTCCTGTGTTCAG -ACGGAACGGTATTCCTGTGCATAG -ACGGAACGGTATTCCTGTGACAAG -ACGGAACGGTATTCCTGTAAGCAG -ACGGAACGGTATTCCTGTCGTCAA -ACGGAACGGTATTCCTGTGCTGAA -ACGGAACGGTATTCCTGTAGTACG -ACGGAACGGTATTCCTGTATCCGA -ACGGAACGGTATTCCTGTATGGGA -ACGGAACGGTATTCCTGTGTGCAA -ACGGAACGGTATTCCTGTGAGGAA -ACGGAACGGTATTCCTGTCAGGTA -ACGGAACGGTATTCCTGTGACTCT -ACGGAACGGTATTCCTGTAGTCCT -ACGGAACGGTATTCCTGTTAAGCC -ACGGAACGGTATTCCTGTATAGCC -ACGGAACGGTATTCCTGTTAACCG -ACGGAACGGTATTCCTGTATGCCA -ACGGAACGGTATCCCATTGGAAAC -ACGGAACGGTATCCCATTAACACC -ACGGAACGGTATCCCATTATCGAG -ACGGAACGGTATCCCATTCTCCTT -ACGGAACGGTATCCCATTCCTGTT -ACGGAACGGTATCCCATTCGGTTT -ACGGAACGGTATCCCATTGTGGTT -ACGGAACGGTATCCCATTGCCTTT -ACGGAACGGTATCCCATTGGTCTT -ACGGAACGGTATCCCATTACGCTT -ACGGAACGGTATCCCATTAGCGTT -ACGGAACGGTATCCCATTTTCGTC -ACGGAACGGTATCCCATTTCTCTC -ACGGAACGGTATCCCATTTGGATC -ACGGAACGGTATCCCATTCACTTC -ACGGAACGGTATCCCATTGTACTC -ACGGAACGGTATCCCATTGATGTC -ACGGAACGGTATCCCATTACAGTC -ACGGAACGGTATCCCATTTTGCTG -ACGGAACGGTATCCCATTTCCATG -ACGGAACGGTATCCCATTTGTGTG -ACGGAACGGTATCCCATTCTAGTG -ACGGAACGGTATCCCATTCATCTG -ACGGAACGGTATCCCATTGAGTTG -ACGGAACGGTATCCCATTAGACTG -ACGGAACGGTATCCCATTTCGGTA -ACGGAACGGTATCCCATTTGCCTA -ACGGAACGGTATCCCATTCCACTA -ACGGAACGGTATCCCATTGGAGTA -ACGGAACGGTATCCCATTTCGTCT -ACGGAACGGTATCCCATTTGCACT -ACGGAACGGTATCCCATTCTGACT -ACGGAACGGTATCCCATTCAACCT -ACGGAACGGTATCCCATTGCTACT -ACGGAACGGTATCCCATTGGATCT -ACGGAACGGTATCCCATTAAGGCT -ACGGAACGGTATCCCATTTCAACC -ACGGAACGGTATCCCATTTGTTCC -ACGGAACGGTATCCCATTATTCCC -ACGGAACGGTATCCCATTTTCTCG -ACGGAACGGTATCCCATTTAGACG -ACGGAACGGTATCCCATTGTAACG -ACGGAACGGTATCCCATTACTTCG -ACGGAACGGTATCCCATTTACGCA -ACGGAACGGTATCCCATTCTTGCA -ACGGAACGGTATCCCATTCGAACA -ACGGAACGGTATCCCATTCAGTCA -ACGGAACGGTATCCCATTGATCCA -ACGGAACGGTATCCCATTACGACA -ACGGAACGGTATCCCATTAGCTCA -ACGGAACGGTATCCCATTTCACGT -ACGGAACGGTATCCCATTCGTAGT -ACGGAACGGTATCCCATTGTCAGT -ACGGAACGGTATCCCATTGAAGGT -ACGGAACGGTATCCCATTAACCGT -ACGGAACGGTATCCCATTTTGTGC -ACGGAACGGTATCCCATTCTAAGC -ACGGAACGGTATCCCATTACTAGC -ACGGAACGGTATCCCATTAGATGC -ACGGAACGGTATCCCATTTGAAGG -ACGGAACGGTATCCCATTCAATGG -ACGGAACGGTATCCCATTATGAGG -ACGGAACGGTATCCCATTAATGGG -ACGGAACGGTATCCCATTTCCTGA -ACGGAACGGTATCCCATTTAGCGA -ACGGAACGGTATCCCATTCACAGA -ACGGAACGGTATCCCATTGCAAGA -ACGGAACGGTATCCCATTGGTTGA -ACGGAACGGTATCCCATTTCCGAT -ACGGAACGGTATCCCATTTGGCAT -ACGGAACGGTATCCCATTCGAGAT -ACGGAACGGTATCCCATTTACCAC -ACGGAACGGTATCCCATTCAGAAC -ACGGAACGGTATCCCATTGTCTAC -ACGGAACGGTATCCCATTACGTAC -ACGGAACGGTATCCCATTAGTGAC -ACGGAACGGTATCCCATTCTGTAG -ACGGAACGGTATCCCATTCCTAAG -ACGGAACGGTATCCCATTGTTCAG -ACGGAACGGTATCCCATTGCATAG -ACGGAACGGTATCCCATTGACAAG -ACGGAACGGTATCCCATTAAGCAG -ACGGAACGGTATCCCATTCGTCAA -ACGGAACGGTATCCCATTGCTGAA -ACGGAACGGTATCCCATTAGTACG -ACGGAACGGTATCCCATTATCCGA -ACGGAACGGTATCCCATTATGGGA -ACGGAACGGTATCCCATTGTGCAA -ACGGAACGGTATCCCATTGAGGAA -ACGGAACGGTATCCCATTCAGGTA -ACGGAACGGTATCCCATTGACTCT -ACGGAACGGTATCCCATTAGTCCT -ACGGAACGGTATCCCATTTAAGCC -ACGGAACGGTATCCCATTATAGCC -ACGGAACGGTATCCCATTTAACCG -ACGGAACGGTATCCCATTATGCCA -ACGGAACGGTATTCGTTCGGAAAC -ACGGAACGGTATTCGTTCAACACC -ACGGAACGGTATTCGTTCATCGAG -ACGGAACGGTATTCGTTCCTCCTT -ACGGAACGGTATTCGTTCCCTGTT -ACGGAACGGTATTCGTTCCGGTTT -ACGGAACGGTATTCGTTCGTGGTT -ACGGAACGGTATTCGTTCGCCTTT -ACGGAACGGTATTCGTTCGGTCTT -ACGGAACGGTATTCGTTCACGCTT -ACGGAACGGTATTCGTTCAGCGTT -ACGGAACGGTATTCGTTCTTCGTC -ACGGAACGGTATTCGTTCTCTCTC -ACGGAACGGTATTCGTTCTGGATC -ACGGAACGGTATTCGTTCCACTTC -ACGGAACGGTATTCGTTCGTACTC -ACGGAACGGTATTCGTTCGATGTC -ACGGAACGGTATTCGTTCACAGTC -ACGGAACGGTATTCGTTCTTGCTG -ACGGAACGGTATTCGTTCTCCATG -ACGGAACGGTATTCGTTCTGTGTG -ACGGAACGGTATTCGTTCCTAGTG -ACGGAACGGTATTCGTTCCATCTG -ACGGAACGGTATTCGTTCGAGTTG -ACGGAACGGTATTCGTTCAGACTG -ACGGAACGGTATTCGTTCTCGGTA -ACGGAACGGTATTCGTTCTGCCTA -ACGGAACGGTATTCGTTCCCACTA -ACGGAACGGTATTCGTTCGGAGTA -ACGGAACGGTATTCGTTCTCGTCT -ACGGAACGGTATTCGTTCTGCACT -ACGGAACGGTATTCGTTCCTGACT -ACGGAACGGTATTCGTTCCAACCT -ACGGAACGGTATTCGTTCGCTACT -ACGGAACGGTATTCGTTCGGATCT -ACGGAACGGTATTCGTTCAAGGCT -ACGGAACGGTATTCGTTCTCAACC -ACGGAACGGTATTCGTTCTGTTCC -ACGGAACGGTATTCGTTCATTCCC -ACGGAACGGTATTCGTTCTTCTCG -ACGGAACGGTATTCGTTCTAGACG -ACGGAACGGTATTCGTTCGTAACG -ACGGAACGGTATTCGTTCACTTCG -ACGGAACGGTATTCGTTCTACGCA -ACGGAACGGTATTCGTTCCTTGCA -ACGGAACGGTATTCGTTCCGAACA -ACGGAACGGTATTCGTTCCAGTCA -ACGGAACGGTATTCGTTCGATCCA -ACGGAACGGTATTCGTTCACGACA -ACGGAACGGTATTCGTTCAGCTCA -ACGGAACGGTATTCGTTCTCACGT -ACGGAACGGTATTCGTTCCGTAGT -ACGGAACGGTATTCGTTCGTCAGT -ACGGAACGGTATTCGTTCGAAGGT -ACGGAACGGTATTCGTTCAACCGT -ACGGAACGGTATTCGTTCTTGTGC -ACGGAACGGTATTCGTTCCTAAGC -ACGGAACGGTATTCGTTCACTAGC -ACGGAACGGTATTCGTTCAGATGC -ACGGAACGGTATTCGTTCTGAAGG -ACGGAACGGTATTCGTTCCAATGG -ACGGAACGGTATTCGTTCATGAGG -ACGGAACGGTATTCGTTCAATGGG -ACGGAACGGTATTCGTTCTCCTGA -ACGGAACGGTATTCGTTCTAGCGA -ACGGAACGGTATTCGTTCCACAGA -ACGGAACGGTATTCGTTCGCAAGA -ACGGAACGGTATTCGTTCGGTTGA -ACGGAACGGTATTCGTTCTCCGAT -ACGGAACGGTATTCGTTCTGGCAT -ACGGAACGGTATTCGTTCCGAGAT -ACGGAACGGTATTCGTTCTACCAC -ACGGAACGGTATTCGTTCCAGAAC -ACGGAACGGTATTCGTTCGTCTAC -ACGGAACGGTATTCGTTCACGTAC -ACGGAACGGTATTCGTTCAGTGAC -ACGGAACGGTATTCGTTCCTGTAG -ACGGAACGGTATTCGTTCCCTAAG -ACGGAACGGTATTCGTTCGTTCAG -ACGGAACGGTATTCGTTCGCATAG -ACGGAACGGTATTCGTTCGACAAG -ACGGAACGGTATTCGTTCAAGCAG -ACGGAACGGTATTCGTTCCGTCAA -ACGGAACGGTATTCGTTCGCTGAA -ACGGAACGGTATTCGTTCAGTACG -ACGGAACGGTATTCGTTCATCCGA -ACGGAACGGTATTCGTTCATGGGA -ACGGAACGGTATTCGTTCGTGCAA -ACGGAACGGTATTCGTTCGAGGAA -ACGGAACGGTATTCGTTCCAGGTA -ACGGAACGGTATTCGTTCGACTCT -ACGGAACGGTATTCGTTCAGTCCT -ACGGAACGGTATTCGTTCTAAGCC -ACGGAACGGTATTCGTTCATAGCC -ACGGAACGGTATTCGTTCTAACCG -ACGGAACGGTATTCGTTCATGCCA -ACGGAACGGTATACGTAGGGAAAC -ACGGAACGGTATACGTAGAACACC -ACGGAACGGTATACGTAGATCGAG -ACGGAACGGTATACGTAGCTCCTT -ACGGAACGGTATACGTAGCCTGTT -ACGGAACGGTATACGTAGCGGTTT -ACGGAACGGTATACGTAGGTGGTT -ACGGAACGGTATACGTAGGCCTTT -ACGGAACGGTATACGTAGGGTCTT -ACGGAACGGTATACGTAGACGCTT -ACGGAACGGTATACGTAGAGCGTT -ACGGAACGGTATACGTAGTTCGTC -ACGGAACGGTATACGTAGTCTCTC -ACGGAACGGTATACGTAGTGGATC -ACGGAACGGTATACGTAGCACTTC -ACGGAACGGTATACGTAGGTACTC -ACGGAACGGTATACGTAGGATGTC -ACGGAACGGTATACGTAGACAGTC -ACGGAACGGTATACGTAGTTGCTG -ACGGAACGGTATACGTAGTCCATG -ACGGAACGGTATACGTAGTGTGTG -ACGGAACGGTATACGTAGCTAGTG -ACGGAACGGTATACGTAGCATCTG -ACGGAACGGTATACGTAGGAGTTG -ACGGAACGGTATACGTAGAGACTG -ACGGAACGGTATACGTAGTCGGTA -ACGGAACGGTATACGTAGTGCCTA -ACGGAACGGTATACGTAGCCACTA -ACGGAACGGTATACGTAGGGAGTA -ACGGAACGGTATACGTAGTCGTCT -ACGGAACGGTATACGTAGTGCACT -ACGGAACGGTATACGTAGCTGACT -ACGGAACGGTATACGTAGCAACCT -ACGGAACGGTATACGTAGGCTACT -ACGGAACGGTATACGTAGGGATCT -ACGGAACGGTATACGTAGAAGGCT -ACGGAACGGTATACGTAGTCAACC -ACGGAACGGTATACGTAGTGTTCC -ACGGAACGGTATACGTAGATTCCC -ACGGAACGGTATACGTAGTTCTCG -ACGGAACGGTATACGTAGTAGACG -ACGGAACGGTATACGTAGGTAACG -ACGGAACGGTATACGTAGACTTCG -ACGGAACGGTATACGTAGTACGCA -ACGGAACGGTATACGTAGCTTGCA -ACGGAACGGTATACGTAGCGAACA -ACGGAACGGTATACGTAGCAGTCA -ACGGAACGGTATACGTAGGATCCA -ACGGAACGGTATACGTAGACGACA -ACGGAACGGTATACGTAGAGCTCA -ACGGAACGGTATACGTAGTCACGT -ACGGAACGGTATACGTAGCGTAGT -ACGGAACGGTATACGTAGGTCAGT -ACGGAACGGTATACGTAGGAAGGT -ACGGAACGGTATACGTAGAACCGT -ACGGAACGGTATACGTAGTTGTGC -ACGGAACGGTATACGTAGCTAAGC -ACGGAACGGTATACGTAGACTAGC -ACGGAACGGTATACGTAGAGATGC -ACGGAACGGTATACGTAGTGAAGG -ACGGAACGGTATACGTAGCAATGG -ACGGAACGGTATACGTAGATGAGG -ACGGAACGGTATACGTAGAATGGG -ACGGAACGGTATACGTAGTCCTGA -ACGGAACGGTATACGTAGTAGCGA -ACGGAACGGTATACGTAGCACAGA -ACGGAACGGTATACGTAGGCAAGA -ACGGAACGGTATACGTAGGGTTGA -ACGGAACGGTATACGTAGTCCGAT -ACGGAACGGTATACGTAGTGGCAT -ACGGAACGGTATACGTAGCGAGAT -ACGGAACGGTATACGTAGTACCAC -ACGGAACGGTATACGTAGCAGAAC -ACGGAACGGTATACGTAGGTCTAC -ACGGAACGGTATACGTAGACGTAC -ACGGAACGGTATACGTAGAGTGAC -ACGGAACGGTATACGTAGCTGTAG -ACGGAACGGTATACGTAGCCTAAG -ACGGAACGGTATACGTAGGTTCAG -ACGGAACGGTATACGTAGGCATAG -ACGGAACGGTATACGTAGGACAAG -ACGGAACGGTATACGTAGAAGCAG -ACGGAACGGTATACGTAGCGTCAA -ACGGAACGGTATACGTAGGCTGAA -ACGGAACGGTATACGTAGAGTACG -ACGGAACGGTATACGTAGATCCGA -ACGGAACGGTATACGTAGATGGGA -ACGGAACGGTATACGTAGGTGCAA -ACGGAACGGTATACGTAGGAGGAA -ACGGAACGGTATACGTAGCAGGTA -ACGGAACGGTATACGTAGGACTCT -ACGGAACGGTATACGTAGAGTCCT -ACGGAACGGTATACGTAGTAAGCC -ACGGAACGGTATACGTAGATAGCC -ACGGAACGGTATACGTAGTAACCG -ACGGAACGGTATACGTAGATGCCA -ACGGAACGGTATACGGTAGGAAAC -ACGGAACGGTATACGGTAAACACC -ACGGAACGGTATACGGTAATCGAG -ACGGAACGGTATACGGTACTCCTT -ACGGAACGGTATACGGTACCTGTT -ACGGAACGGTATACGGTACGGTTT -ACGGAACGGTATACGGTAGTGGTT -ACGGAACGGTATACGGTAGCCTTT -ACGGAACGGTATACGGTAGGTCTT -ACGGAACGGTATACGGTAACGCTT -ACGGAACGGTATACGGTAAGCGTT -ACGGAACGGTATACGGTATTCGTC -ACGGAACGGTATACGGTATCTCTC -ACGGAACGGTATACGGTATGGATC -ACGGAACGGTATACGGTACACTTC -ACGGAACGGTATACGGTAGTACTC -ACGGAACGGTATACGGTAGATGTC -ACGGAACGGTATACGGTAACAGTC -ACGGAACGGTATACGGTATTGCTG -ACGGAACGGTATACGGTATCCATG -ACGGAACGGTATACGGTATGTGTG -ACGGAACGGTATACGGTACTAGTG -ACGGAACGGTATACGGTACATCTG -ACGGAACGGTATACGGTAGAGTTG -ACGGAACGGTATACGGTAAGACTG -ACGGAACGGTATACGGTATCGGTA -ACGGAACGGTATACGGTATGCCTA -ACGGAACGGTATACGGTACCACTA -ACGGAACGGTATACGGTAGGAGTA -ACGGAACGGTATACGGTATCGTCT -ACGGAACGGTATACGGTATGCACT -ACGGAACGGTATACGGTACTGACT -ACGGAACGGTATACGGTACAACCT -ACGGAACGGTATACGGTAGCTACT -ACGGAACGGTATACGGTAGGATCT -ACGGAACGGTATACGGTAAAGGCT -ACGGAACGGTATACGGTATCAACC -ACGGAACGGTATACGGTATGTTCC -ACGGAACGGTATACGGTAATTCCC -ACGGAACGGTATACGGTATTCTCG -ACGGAACGGTATACGGTATAGACG -ACGGAACGGTATACGGTAGTAACG -ACGGAACGGTATACGGTAACTTCG -ACGGAACGGTATACGGTATACGCA -ACGGAACGGTATACGGTACTTGCA -ACGGAACGGTATACGGTACGAACA -ACGGAACGGTATACGGTACAGTCA -ACGGAACGGTATACGGTAGATCCA -ACGGAACGGTATACGGTAACGACA -ACGGAACGGTATACGGTAAGCTCA -ACGGAACGGTATACGGTATCACGT -ACGGAACGGTATACGGTACGTAGT -ACGGAACGGTATACGGTAGTCAGT -ACGGAACGGTATACGGTAGAAGGT -ACGGAACGGTATACGGTAAACCGT -ACGGAACGGTATACGGTATTGTGC -ACGGAACGGTATACGGTACTAAGC -ACGGAACGGTATACGGTAACTAGC -ACGGAACGGTATACGGTAAGATGC -ACGGAACGGTATACGGTATGAAGG -ACGGAACGGTATACGGTACAATGG -ACGGAACGGTATACGGTAATGAGG -ACGGAACGGTATACGGTAAATGGG -ACGGAACGGTATACGGTATCCTGA -ACGGAACGGTATACGGTATAGCGA -ACGGAACGGTATACGGTACACAGA -ACGGAACGGTATACGGTAGCAAGA -ACGGAACGGTATACGGTAGGTTGA -ACGGAACGGTATACGGTATCCGAT -ACGGAACGGTATACGGTATGGCAT -ACGGAACGGTATACGGTACGAGAT -ACGGAACGGTATACGGTATACCAC -ACGGAACGGTATACGGTACAGAAC -ACGGAACGGTATACGGTAGTCTAC -ACGGAACGGTATACGGTAACGTAC -ACGGAACGGTATACGGTAAGTGAC -ACGGAACGGTATACGGTACTGTAG -ACGGAACGGTATACGGTACCTAAG -ACGGAACGGTATACGGTAGTTCAG -ACGGAACGGTATACGGTAGCATAG -ACGGAACGGTATACGGTAGACAAG -ACGGAACGGTATACGGTAAAGCAG -ACGGAACGGTATACGGTACGTCAA -ACGGAACGGTATACGGTAGCTGAA -ACGGAACGGTATACGGTAAGTACG -ACGGAACGGTATACGGTAATCCGA -ACGGAACGGTATACGGTAATGGGA -ACGGAACGGTATACGGTAGTGCAA -ACGGAACGGTATACGGTAGAGGAA -ACGGAACGGTATACGGTACAGGTA -ACGGAACGGTATACGGTAGACTCT -ACGGAACGGTATACGGTAAGTCCT -ACGGAACGGTATACGGTATAAGCC -ACGGAACGGTATACGGTAATAGCC -ACGGAACGGTATACGGTATAACCG -ACGGAACGGTATACGGTAATGCCA -ACGGAACGGTATTCGACTGGAAAC -ACGGAACGGTATTCGACTAACACC -ACGGAACGGTATTCGACTATCGAG -ACGGAACGGTATTCGACTCTCCTT -ACGGAACGGTATTCGACTCCTGTT -ACGGAACGGTATTCGACTCGGTTT -ACGGAACGGTATTCGACTGTGGTT -ACGGAACGGTATTCGACTGCCTTT -ACGGAACGGTATTCGACTGGTCTT -ACGGAACGGTATTCGACTACGCTT -ACGGAACGGTATTCGACTAGCGTT -ACGGAACGGTATTCGACTTTCGTC -ACGGAACGGTATTCGACTTCTCTC -ACGGAACGGTATTCGACTTGGATC -ACGGAACGGTATTCGACTCACTTC -ACGGAACGGTATTCGACTGTACTC -ACGGAACGGTATTCGACTGATGTC -ACGGAACGGTATTCGACTACAGTC -ACGGAACGGTATTCGACTTTGCTG -ACGGAACGGTATTCGACTTCCATG -ACGGAACGGTATTCGACTTGTGTG -ACGGAACGGTATTCGACTCTAGTG -ACGGAACGGTATTCGACTCATCTG -ACGGAACGGTATTCGACTGAGTTG -ACGGAACGGTATTCGACTAGACTG -ACGGAACGGTATTCGACTTCGGTA -ACGGAACGGTATTCGACTTGCCTA -ACGGAACGGTATTCGACTCCACTA -ACGGAACGGTATTCGACTGGAGTA -ACGGAACGGTATTCGACTTCGTCT -ACGGAACGGTATTCGACTTGCACT -ACGGAACGGTATTCGACTCTGACT -ACGGAACGGTATTCGACTCAACCT -ACGGAACGGTATTCGACTGCTACT -ACGGAACGGTATTCGACTGGATCT -ACGGAACGGTATTCGACTAAGGCT -ACGGAACGGTATTCGACTTCAACC -ACGGAACGGTATTCGACTTGTTCC -ACGGAACGGTATTCGACTATTCCC -ACGGAACGGTATTCGACTTTCTCG -ACGGAACGGTATTCGACTTAGACG -ACGGAACGGTATTCGACTGTAACG -ACGGAACGGTATTCGACTACTTCG -ACGGAACGGTATTCGACTTACGCA -ACGGAACGGTATTCGACTCTTGCA -ACGGAACGGTATTCGACTCGAACA -ACGGAACGGTATTCGACTCAGTCA -ACGGAACGGTATTCGACTGATCCA -ACGGAACGGTATTCGACTACGACA -ACGGAACGGTATTCGACTAGCTCA -ACGGAACGGTATTCGACTTCACGT -ACGGAACGGTATTCGACTCGTAGT -ACGGAACGGTATTCGACTGTCAGT -ACGGAACGGTATTCGACTGAAGGT -ACGGAACGGTATTCGACTAACCGT -ACGGAACGGTATTCGACTTTGTGC -ACGGAACGGTATTCGACTCTAAGC -ACGGAACGGTATTCGACTACTAGC -ACGGAACGGTATTCGACTAGATGC -ACGGAACGGTATTCGACTTGAAGG -ACGGAACGGTATTCGACTCAATGG -ACGGAACGGTATTCGACTATGAGG -ACGGAACGGTATTCGACTAATGGG -ACGGAACGGTATTCGACTTCCTGA -ACGGAACGGTATTCGACTTAGCGA -ACGGAACGGTATTCGACTCACAGA -ACGGAACGGTATTCGACTGCAAGA -ACGGAACGGTATTCGACTGGTTGA -ACGGAACGGTATTCGACTTCCGAT -ACGGAACGGTATTCGACTTGGCAT -ACGGAACGGTATTCGACTCGAGAT -ACGGAACGGTATTCGACTTACCAC -ACGGAACGGTATTCGACTCAGAAC -ACGGAACGGTATTCGACTGTCTAC -ACGGAACGGTATTCGACTACGTAC -ACGGAACGGTATTCGACTAGTGAC -ACGGAACGGTATTCGACTCTGTAG -ACGGAACGGTATTCGACTCCTAAG -ACGGAACGGTATTCGACTGTTCAG -ACGGAACGGTATTCGACTGCATAG -ACGGAACGGTATTCGACTGACAAG -ACGGAACGGTATTCGACTAAGCAG -ACGGAACGGTATTCGACTCGTCAA -ACGGAACGGTATTCGACTGCTGAA -ACGGAACGGTATTCGACTAGTACG -ACGGAACGGTATTCGACTATCCGA -ACGGAACGGTATTCGACTATGGGA -ACGGAACGGTATTCGACTGTGCAA -ACGGAACGGTATTCGACTGAGGAA -ACGGAACGGTATTCGACTCAGGTA -ACGGAACGGTATTCGACTGACTCT -ACGGAACGGTATTCGACTAGTCCT -ACGGAACGGTATTCGACTTAAGCC -ACGGAACGGTATTCGACTATAGCC -ACGGAACGGTATTCGACTTAACCG -ACGGAACGGTATTCGACTATGCCA -ACGGAACGGTATGCATACGGAAAC -ACGGAACGGTATGCATACAACACC -ACGGAACGGTATGCATACATCGAG -ACGGAACGGTATGCATACCTCCTT -ACGGAACGGTATGCATACCCTGTT -ACGGAACGGTATGCATACCGGTTT -ACGGAACGGTATGCATACGTGGTT -ACGGAACGGTATGCATACGCCTTT -ACGGAACGGTATGCATACGGTCTT -ACGGAACGGTATGCATACACGCTT -ACGGAACGGTATGCATACAGCGTT -ACGGAACGGTATGCATACTTCGTC -ACGGAACGGTATGCATACTCTCTC -ACGGAACGGTATGCATACTGGATC -ACGGAACGGTATGCATACCACTTC -ACGGAACGGTATGCATACGTACTC -ACGGAACGGTATGCATACGATGTC -ACGGAACGGTATGCATACACAGTC -ACGGAACGGTATGCATACTTGCTG -ACGGAACGGTATGCATACTCCATG -ACGGAACGGTATGCATACTGTGTG -ACGGAACGGTATGCATACCTAGTG -ACGGAACGGTATGCATACCATCTG -ACGGAACGGTATGCATACGAGTTG -ACGGAACGGTATGCATACAGACTG -ACGGAACGGTATGCATACTCGGTA -ACGGAACGGTATGCATACTGCCTA -ACGGAACGGTATGCATACCCACTA -ACGGAACGGTATGCATACGGAGTA -ACGGAACGGTATGCATACTCGTCT -ACGGAACGGTATGCATACTGCACT -ACGGAACGGTATGCATACCTGACT -ACGGAACGGTATGCATACCAACCT -ACGGAACGGTATGCATACGCTACT -ACGGAACGGTATGCATACGGATCT -ACGGAACGGTATGCATACAAGGCT -ACGGAACGGTATGCATACTCAACC -ACGGAACGGTATGCATACTGTTCC -ACGGAACGGTATGCATACATTCCC -ACGGAACGGTATGCATACTTCTCG -ACGGAACGGTATGCATACTAGACG -ACGGAACGGTATGCATACGTAACG -ACGGAACGGTATGCATACACTTCG -ACGGAACGGTATGCATACTACGCA -ACGGAACGGTATGCATACCTTGCA -ACGGAACGGTATGCATACCGAACA -ACGGAACGGTATGCATACCAGTCA -ACGGAACGGTATGCATACGATCCA -ACGGAACGGTATGCATACACGACA -ACGGAACGGTATGCATACAGCTCA -ACGGAACGGTATGCATACTCACGT -ACGGAACGGTATGCATACCGTAGT -ACGGAACGGTATGCATACGTCAGT -ACGGAACGGTATGCATACGAAGGT -ACGGAACGGTATGCATACAACCGT -ACGGAACGGTATGCATACTTGTGC -ACGGAACGGTATGCATACCTAAGC -ACGGAACGGTATGCATACACTAGC -ACGGAACGGTATGCATACAGATGC -ACGGAACGGTATGCATACTGAAGG -ACGGAACGGTATGCATACCAATGG -ACGGAACGGTATGCATACATGAGG -ACGGAACGGTATGCATACAATGGG -ACGGAACGGTATGCATACTCCTGA -ACGGAACGGTATGCATACTAGCGA -ACGGAACGGTATGCATACCACAGA -ACGGAACGGTATGCATACGCAAGA -ACGGAACGGTATGCATACGGTTGA -ACGGAACGGTATGCATACTCCGAT -ACGGAACGGTATGCATACTGGCAT -ACGGAACGGTATGCATACCGAGAT -ACGGAACGGTATGCATACTACCAC -ACGGAACGGTATGCATACCAGAAC -ACGGAACGGTATGCATACGTCTAC -ACGGAACGGTATGCATACACGTAC -ACGGAACGGTATGCATACAGTGAC -ACGGAACGGTATGCATACCTGTAG -ACGGAACGGTATGCATACCCTAAG -ACGGAACGGTATGCATACGTTCAG -ACGGAACGGTATGCATACGCATAG -ACGGAACGGTATGCATACGACAAG -ACGGAACGGTATGCATACAAGCAG -ACGGAACGGTATGCATACCGTCAA -ACGGAACGGTATGCATACGCTGAA -ACGGAACGGTATGCATACAGTACG -ACGGAACGGTATGCATACATCCGA -ACGGAACGGTATGCATACATGGGA -ACGGAACGGTATGCATACGTGCAA -ACGGAACGGTATGCATACGAGGAA -ACGGAACGGTATGCATACCAGGTA -ACGGAACGGTATGCATACGACTCT -ACGGAACGGTATGCATACAGTCCT -ACGGAACGGTATGCATACTAAGCC -ACGGAACGGTATGCATACATAGCC -ACGGAACGGTATGCATACTAACCG -ACGGAACGGTATGCATACATGCCA -ACGGAACGGTATGCACTTGGAAAC -ACGGAACGGTATGCACTTAACACC -ACGGAACGGTATGCACTTATCGAG -ACGGAACGGTATGCACTTCTCCTT -ACGGAACGGTATGCACTTCCTGTT -ACGGAACGGTATGCACTTCGGTTT -ACGGAACGGTATGCACTTGTGGTT -ACGGAACGGTATGCACTTGCCTTT -ACGGAACGGTATGCACTTGGTCTT -ACGGAACGGTATGCACTTACGCTT -ACGGAACGGTATGCACTTAGCGTT -ACGGAACGGTATGCACTTTTCGTC -ACGGAACGGTATGCACTTTCTCTC -ACGGAACGGTATGCACTTTGGATC -ACGGAACGGTATGCACTTCACTTC -ACGGAACGGTATGCACTTGTACTC -ACGGAACGGTATGCACTTGATGTC -ACGGAACGGTATGCACTTACAGTC -ACGGAACGGTATGCACTTTTGCTG -ACGGAACGGTATGCACTTTCCATG -ACGGAACGGTATGCACTTTGTGTG -ACGGAACGGTATGCACTTCTAGTG -ACGGAACGGTATGCACTTCATCTG -ACGGAACGGTATGCACTTGAGTTG -ACGGAACGGTATGCACTTAGACTG -ACGGAACGGTATGCACTTTCGGTA -ACGGAACGGTATGCACTTTGCCTA -ACGGAACGGTATGCACTTCCACTA -ACGGAACGGTATGCACTTGGAGTA -ACGGAACGGTATGCACTTTCGTCT -ACGGAACGGTATGCACTTTGCACT -ACGGAACGGTATGCACTTCTGACT -ACGGAACGGTATGCACTTCAACCT -ACGGAACGGTATGCACTTGCTACT -ACGGAACGGTATGCACTTGGATCT -ACGGAACGGTATGCACTTAAGGCT -ACGGAACGGTATGCACTTTCAACC -ACGGAACGGTATGCACTTTGTTCC -ACGGAACGGTATGCACTTATTCCC -ACGGAACGGTATGCACTTTTCTCG -ACGGAACGGTATGCACTTTAGACG -ACGGAACGGTATGCACTTGTAACG -ACGGAACGGTATGCACTTACTTCG -ACGGAACGGTATGCACTTTACGCA -ACGGAACGGTATGCACTTCTTGCA -ACGGAACGGTATGCACTTCGAACA -ACGGAACGGTATGCACTTCAGTCA -ACGGAACGGTATGCACTTGATCCA -ACGGAACGGTATGCACTTACGACA -ACGGAACGGTATGCACTTAGCTCA -ACGGAACGGTATGCACTTTCACGT -ACGGAACGGTATGCACTTCGTAGT -ACGGAACGGTATGCACTTGTCAGT -ACGGAACGGTATGCACTTGAAGGT -ACGGAACGGTATGCACTTAACCGT -ACGGAACGGTATGCACTTTTGTGC -ACGGAACGGTATGCACTTCTAAGC -ACGGAACGGTATGCACTTACTAGC -ACGGAACGGTATGCACTTAGATGC -ACGGAACGGTATGCACTTTGAAGG -ACGGAACGGTATGCACTTCAATGG -ACGGAACGGTATGCACTTATGAGG -ACGGAACGGTATGCACTTAATGGG -ACGGAACGGTATGCACTTTCCTGA -ACGGAACGGTATGCACTTTAGCGA -ACGGAACGGTATGCACTTCACAGA -ACGGAACGGTATGCACTTGCAAGA -ACGGAACGGTATGCACTTGGTTGA -ACGGAACGGTATGCACTTTCCGAT -ACGGAACGGTATGCACTTTGGCAT -ACGGAACGGTATGCACTTCGAGAT -ACGGAACGGTATGCACTTTACCAC -ACGGAACGGTATGCACTTCAGAAC -ACGGAACGGTATGCACTTGTCTAC -ACGGAACGGTATGCACTTACGTAC -ACGGAACGGTATGCACTTAGTGAC -ACGGAACGGTATGCACTTCTGTAG -ACGGAACGGTATGCACTTCCTAAG -ACGGAACGGTATGCACTTGTTCAG -ACGGAACGGTATGCACTTGCATAG -ACGGAACGGTATGCACTTGACAAG -ACGGAACGGTATGCACTTAAGCAG -ACGGAACGGTATGCACTTCGTCAA -ACGGAACGGTATGCACTTGCTGAA -ACGGAACGGTATGCACTTAGTACG -ACGGAACGGTATGCACTTATCCGA -ACGGAACGGTATGCACTTATGGGA -ACGGAACGGTATGCACTTGTGCAA -ACGGAACGGTATGCACTTGAGGAA -ACGGAACGGTATGCACTTCAGGTA -ACGGAACGGTATGCACTTGACTCT -ACGGAACGGTATGCACTTAGTCCT -ACGGAACGGTATGCACTTTAAGCC -ACGGAACGGTATGCACTTATAGCC -ACGGAACGGTATGCACTTTAACCG -ACGGAACGGTATGCACTTATGCCA -ACGGAACGGTATACACGAGGAAAC -ACGGAACGGTATACACGAAACACC -ACGGAACGGTATACACGAATCGAG -ACGGAACGGTATACACGACTCCTT -ACGGAACGGTATACACGACCTGTT -ACGGAACGGTATACACGACGGTTT -ACGGAACGGTATACACGAGTGGTT -ACGGAACGGTATACACGAGCCTTT -ACGGAACGGTATACACGAGGTCTT -ACGGAACGGTATACACGAACGCTT -ACGGAACGGTATACACGAAGCGTT -ACGGAACGGTATACACGATTCGTC -ACGGAACGGTATACACGATCTCTC -ACGGAACGGTATACACGATGGATC -ACGGAACGGTATACACGACACTTC -ACGGAACGGTATACACGAGTACTC -ACGGAACGGTATACACGAGATGTC -ACGGAACGGTATACACGAACAGTC -ACGGAACGGTATACACGATTGCTG -ACGGAACGGTATACACGATCCATG -ACGGAACGGTATACACGATGTGTG -ACGGAACGGTATACACGACTAGTG -ACGGAACGGTATACACGACATCTG -ACGGAACGGTATACACGAGAGTTG -ACGGAACGGTATACACGAAGACTG -ACGGAACGGTATACACGATCGGTA -ACGGAACGGTATACACGATGCCTA -ACGGAACGGTATACACGACCACTA -ACGGAACGGTATACACGAGGAGTA -ACGGAACGGTATACACGATCGTCT -ACGGAACGGTATACACGATGCACT -ACGGAACGGTATACACGACTGACT -ACGGAACGGTATACACGACAACCT -ACGGAACGGTATACACGAGCTACT -ACGGAACGGTATACACGAGGATCT -ACGGAACGGTATACACGAAAGGCT -ACGGAACGGTATACACGATCAACC -ACGGAACGGTATACACGATGTTCC -ACGGAACGGTATACACGAATTCCC -ACGGAACGGTATACACGATTCTCG -ACGGAACGGTATACACGATAGACG -ACGGAACGGTATACACGAGTAACG -ACGGAACGGTATACACGAACTTCG -ACGGAACGGTATACACGATACGCA -ACGGAACGGTATACACGACTTGCA -ACGGAACGGTATACACGACGAACA -ACGGAACGGTATACACGACAGTCA -ACGGAACGGTATACACGAGATCCA -ACGGAACGGTATACACGAACGACA -ACGGAACGGTATACACGAAGCTCA -ACGGAACGGTATACACGATCACGT -ACGGAACGGTATACACGACGTAGT -ACGGAACGGTATACACGAGTCAGT -ACGGAACGGTATACACGAGAAGGT -ACGGAACGGTATACACGAAACCGT -ACGGAACGGTATACACGATTGTGC -ACGGAACGGTATACACGACTAAGC -ACGGAACGGTATACACGAACTAGC -ACGGAACGGTATACACGAAGATGC -ACGGAACGGTATACACGATGAAGG -ACGGAACGGTATACACGACAATGG -ACGGAACGGTATACACGAATGAGG -ACGGAACGGTATACACGAAATGGG -ACGGAACGGTATACACGATCCTGA -ACGGAACGGTATACACGATAGCGA -ACGGAACGGTATACACGACACAGA -ACGGAACGGTATACACGAGCAAGA -ACGGAACGGTATACACGAGGTTGA -ACGGAACGGTATACACGATCCGAT -ACGGAACGGTATACACGATGGCAT -ACGGAACGGTATACACGACGAGAT -ACGGAACGGTATACACGATACCAC -ACGGAACGGTATACACGACAGAAC -ACGGAACGGTATACACGAGTCTAC -ACGGAACGGTATACACGAACGTAC -ACGGAACGGTATACACGAAGTGAC -ACGGAACGGTATACACGACTGTAG -ACGGAACGGTATACACGACCTAAG -ACGGAACGGTATACACGAGTTCAG -ACGGAACGGTATACACGAGCATAG -ACGGAACGGTATACACGAGACAAG -ACGGAACGGTATACACGAAAGCAG -ACGGAACGGTATACACGACGTCAA -ACGGAACGGTATACACGAGCTGAA -ACGGAACGGTATACACGAAGTACG -ACGGAACGGTATACACGAATCCGA -ACGGAACGGTATACACGAATGGGA -ACGGAACGGTATACACGAGTGCAA -ACGGAACGGTATACACGAGAGGAA -ACGGAACGGTATACACGACAGGTA -ACGGAACGGTATACACGAGACTCT -ACGGAACGGTATACACGAAGTCCT -ACGGAACGGTATACACGATAAGCC -ACGGAACGGTATACACGAATAGCC -ACGGAACGGTATACACGATAACCG -ACGGAACGGTATACACGAATGCCA -ACGGAACGGTATTCACAGGGAAAC -ACGGAACGGTATTCACAGAACACC -ACGGAACGGTATTCACAGATCGAG -ACGGAACGGTATTCACAGCTCCTT -ACGGAACGGTATTCACAGCCTGTT -ACGGAACGGTATTCACAGCGGTTT -ACGGAACGGTATTCACAGGTGGTT -ACGGAACGGTATTCACAGGCCTTT -ACGGAACGGTATTCACAGGGTCTT -ACGGAACGGTATTCACAGACGCTT -ACGGAACGGTATTCACAGAGCGTT -ACGGAACGGTATTCACAGTTCGTC -ACGGAACGGTATTCACAGTCTCTC -ACGGAACGGTATTCACAGTGGATC -ACGGAACGGTATTCACAGCACTTC -ACGGAACGGTATTCACAGGTACTC -ACGGAACGGTATTCACAGGATGTC -ACGGAACGGTATTCACAGACAGTC -ACGGAACGGTATTCACAGTTGCTG -ACGGAACGGTATTCACAGTCCATG -ACGGAACGGTATTCACAGTGTGTG -ACGGAACGGTATTCACAGCTAGTG -ACGGAACGGTATTCACAGCATCTG -ACGGAACGGTATTCACAGGAGTTG -ACGGAACGGTATTCACAGAGACTG -ACGGAACGGTATTCACAGTCGGTA -ACGGAACGGTATTCACAGTGCCTA -ACGGAACGGTATTCACAGCCACTA -ACGGAACGGTATTCACAGGGAGTA -ACGGAACGGTATTCACAGTCGTCT -ACGGAACGGTATTCACAGTGCACT -ACGGAACGGTATTCACAGCTGACT -ACGGAACGGTATTCACAGCAACCT -ACGGAACGGTATTCACAGGCTACT -ACGGAACGGTATTCACAGGGATCT -ACGGAACGGTATTCACAGAAGGCT -ACGGAACGGTATTCACAGTCAACC -ACGGAACGGTATTCACAGTGTTCC -ACGGAACGGTATTCACAGATTCCC -ACGGAACGGTATTCACAGTTCTCG -ACGGAACGGTATTCACAGTAGACG -ACGGAACGGTATTCACAGGTAACG -ACGGAACGGTATTCACAGACTTCG -ACGGAACGGTATTCACAGTACGCA -ACGGAACGGTATTCACAGCTTGCA -ACGGAACGGTATTCACAGCGAACA -ACGGAACGGTATTCACAGCAGTCA -ACGGAACGGTATTCACAGGATCCA -ACGGAACGGTATTCACAGACGACA -ACGGAACGGTATTCACAGAGCTCA -ACGGAACGGTATTCACAGTCACGT -ACGGAACGGTATTCACAGCGTAGT -ACGGAACGGTATTCACAGGTCAGT -ACGGAACGGTATTCACAGGAAGGT -ACGGAACGGTATTCACAGAACCGT -ACGGAACGGTATTCACAGTTGTGC -ACGGAACGGTATTCACAGCTAAGC -ACGGAACGGTATTCACAGACTAGC -ACGGAACGGTATTCACAGAGATGC -ACGGAACGGTATTCACAGTGAAGG -ACGGAACGGTATTCACAGCAATGG -ACGGAACGGTATTCACAGATGAGG -ACGGAACGGTATTCACAGAATGGG -ACGGAACGGTATTCACAGTCCTGA -ACGGAACGGTATTCACAGTAGCGA -ACGGAACGGTATTCACAGCACAGA -ACGGAACGGTATTCACAGGCAAGA -ACGGAACGGTATTCACAGGGTTGA -ACGGAACGGTATTCACAGTCCGAT -ACGGAACGGTATTCACAGTGGCAT -ACGGAACGGTATTCACAGCGAGAT -ACGGAACGGTATTCACAGTACCAC -ACGGAACGGTATTCACAGCAGAAC -ACGGAACGGTATTCACAGGTCTAC -ACGGAACGGTATTCACAGACGTAC -ACGGAACGGTATTCACAGAGTGAC -ACGGAACGGTATTCACAGCTGTAG -ACGGAACGGTATTCACAGCCTAAG -ACGGAACGGTATTCACAGGTTCAG -ACGGAACGGTATTCACAGGCATAG -ACGGAACGGTATTCACAGGACAAG -ACGGAACGGTATTCACAGAAGCAG -ACGGAACGGTATTCACAGCGTCAA -ACGGAACGGTATTCACAGGCTGAA -ACGGAACGGTATTCACAGAGTACG -ACGGAACGGTATTCACAGATCCGA -ACGGAACGGTATTCACAGATGGGA -ACGGAACGGTATTCACAGGTGCAA -ACGGAACGGTATTCACAGGAGGAA -ACGGAACGGTATTCACAGCAGGTA -ACGGAACGGTATTCACAGGACTCT -ACGGAACGGTATTCACAGAGTCCT -ACGGAACGGTATTCACAGTAAGCC -ACGGAACGGTATTCACAGATAGCC -ACGGAACGGTATTCACAGTAACCG -ACGGAACGGTATTCACAGATGCCA -ACGGAACGGTATCCAGATGGAAAC -ACGGAACGGTATCCAGATAACACC -ACGGAACGGTATCCAGATATCGAG -ACGGAACGGTATCCAGATCTCCTT -ACGGAACGGTATCCAGATCCTGTT -ACGGAACGGTATCCAGATCGGTTT -ACGGAACGGTATCCAGATGTGGTT -ACGGAACGGTATCCAGATGCCTTT -ACGGAACGGTATCCAGATGGTCTT -ACGGAACGGTATCCAGATACGCTT -ACGGAACGGTATCCAGATAGCGTT -ACGGAACGGTATCCAGATTTCGTC -ACGGAACGGTATCCAGATTCTCTC -ACGGAACGGTATCCAGATTGGATC -ACGGAACGGTATCCAGATCACTTC -ACGGAACGGTATCCAGATGTACTC -ACGGAACGGTATCCAGATGATGTC -ACGGAACGGTATCCAGATACAGTC -ACGGAACGGTATCCAGATTTGCTG -ACGGAACGGTATCCAGATTCCATG -ACGGAACGGTATCCAGATTGTGTG -ACGGAACGGTATCCAGATCTAGTG -ACGGAACGGTATCCAGATCATCTG -ACGGAACGGTATCCAGATGAGTTG -ACGGAACGGTATCCAGATAGACTG -ACGGAACGGTATCCAGATTCGGTA -ACGGAACGGTATCCAGATTGCCTA -ACGGAACGGTATCCAGATCCACTA -ACGGAACGGTATCCAGATGGAGTA -ACGGAACGGTATCCAGATTCGTCT -ACGGAACGGTATCCAGATTGCACT -ACGGAACGGTATCCAGATCTGACT -ACGGAACGGTATCCAGATCAACCT -ACGGAACGGTATCCAGATGCTACT -ACGGAACGGTATCCAGATGGATCT -ACGGAACGGTATCCAGATAAGGCT -ACGGAACGGTATCCAGATTCAACC -ACGGAACGGTATCCAGATTGTTCC -ACGGAACGGTATCCAGATATTCCC -ACGGAACGGTATCCAGATTTCTCG -ACGGAACGGTATCCAGATTAGACG -ACGGAACGGTATCCAGATGTAACG -ACGGAACGGTATCCAGATACTTCG -ACGGAACGGTATCCAGATTACGCA -ACGGAACGGTATCCAGATCTTGCA -ACGGAACGGTATCCAGATCGAACA -ACGGAACGGTATCCAGATCAGTCA -ACGGAACGGTATCCAGATGATCCA -ACGGAACGGTATCCAGATACGACA -ACGGAACGGTATCCAGATAGCTCA -ACGGAACGGTATCCAGATTCACGT -ACGGAACGGTATCCAGATCGTAGT -ACGGAACGGTATCCAGATGTCAGT -ACGGAACGGTATCCAGATGAAGGT -ACGGAACGGTATCCAGATAACCGT -ACGGAACGGTATCCAGATTTGTGC -ACGGAACGGTATCCAGATCTAAGC -ACGGAACGGTATCCAGATACTAGC -ACGGAACGGTATCCAGATAGATGC -ACGGAACGGTATCCAGATTGAAGG -ACGGAACGGTATCCAGATCAATGG -ACGGAACGGTATCCAGATATGAGG -ACGGAACGGTATCCAGATAATGGG -ACGGAACGGTATCCAGATTCCTGA -ACGGAACGGTATCCAGATTAGCGA -ACGGAACGGTATCCAGATCACAGA -ACGGAACGGTATCCAGATGCAAGA -ACGGAACGGTATCCAGATGGTTGA -ACGGAACGGTATCCAGATTCCGAT -ACGGAACGGTATCCAGATTGGCAT -ACGGAACGGTATCCAGATCGAGAT -ACGGAACGGTATCCAGATTACCAC -ACGGAACGGTATCCAGATCAGAAC -ACGGAACGGTATCCAGATGTCTAC -ACGGAACGGTATCCAGATACGTAC -ACGGAACGGTATCCAGATAGTGAC -ACGGAACGGTATCCAGATCTGTAG -ACGGAACGGTATCCAGATCCTAAG -ACGGAACGGTATCCAGATGTTCAG -ACGGAACGGTATCCAGATGCATAG -ACGGAACGGTATCCAGATGACAAG -ACGGAACGGTATCCAGATAAGCAG -ACGGAACGGTATCCAGATCGTCAA -ACGGAACGGTATCCAGATGCTGAA -ACGGAACGGTATCCAGATAGTACG -ACGGAACGGTATCCAGATATCCGA -ACGGAACGGTATCCAGATATGGGA -ACGGAACGGTATCCAGATGTGCAA -ACGGAACGGTATCCAGATGAGGAA -ACGGAACGGTATCCAGATCAGGTA -ACGGAACGGTATCCAGATGACTCT -ACGGAACGGTATCCAGATAGTCCT -ACGGAACGGTATCCAGATTAAGCC -ACGGAACGGTATCCAGATATAGCC -ACGGAACGGTATCCAGATTAACCG -ACGGAACGGTATCCAGATATGCCA -ACGGAACGGTATACAACGGGAAAC -ACGGAACGGTATACAACGAACACC -ACGGAACGGTATACAACGATCGAG -ACGGAACGGTATACAACGCTCCTT -ACGGAACGGTATACAACGCCTGTT -ACGGAACGGTATACAACGCGGTTT -ACGGAACGGTATACAACGGTGGTT -ACGGAACGGTATACAACGGCCTTT -ACGGAACGGTATACAACGGGTCTT -ACGGAACGGTATACAACGACGCTT -ACGGAACGGTATACAACGAGCGTT -ACGGAACGGTATACAACGTTCGTC -ACGGAACGGTATACAACGTCTCTC -ACGGAACGGTATACAACGTGGATC -ACGGAACGGTATACAACGCACTTC -ACGGAACGGTATACAACGGTACTC -ACGGAACGGTATACAACGGATGTC -ACGGAACGGTATACAACGACAGTC -ACGGAACGGTATACAACGTTGCTG -ACGGAACGGTATACAACGTCCATG -ACGGAACGGTATACAACGTGTGTG -ACGGAACGGTATACAACGCTAGTG -ACGGAACGGTATACAACGCATCTG -ACGGAACGGTATACAACGGAGTTG -ACGGAACGGTATACAACGAGACTG -ACGGAACGGTATACAACGTCGGTA -ACGGAACGGTATACAACGTGCCTA -ACGGAACGGTATACAACGCCACTA -ACGGAACGGTATACAACGGGAGTA -ACGGAACGGTATACAACGTCGTCT -ACGGAACGGTATACAACGTGCACT -ACGGAACGGTATACAACGCTGACT -ACGGAACGGTATACAACGCAACCT -ACGGAACGGTATACAACGGCTACT -ACGGAACGGTATACAACGGGATCT -ACGGAACGGTATACAACGAAGGCT -ACGGAACGGTATACAACGTCAACC -ACGGAACGGTATACAACGTGTTCC -ACGGAACGGTATACAACGATTCCC -ACGGAACGGTATACAACGTTCTCG -ACGGAACGGTATACAACGTAGACG -ACGGAACGGTATACAACGGTAACG -ACGGAACGGTATACAACGACTTCG -ACGGAACGGTATACAACGTACGCA -ACGGAACGGTATACAACGCTTGCA -ACGGAACGGTATACAACGCGAACA -ACGGAACGGTATACAACGCAGTCA -ACGGAACGGTATACAACGGATCCA -ACGGAACGGTATACAACGACGACA -ACGGAACGGTATACAACGAGCTCA -ACGGAACGGTATACAACGTCACGT -ACGGAACGGTATACAACGCGTAGT -ACGGAACGGTATACAACGGTCAGT -ACGGAACGGTATACAACGGAAGGT -ACGGAACGGTATACAACGAACCGT -ACGGAACGGTATACAACGTTGTGC -ACGGAACGGTATACAACGCTAAGC -ACGGAACGGTATACAACGACTAGC -ACGGAACGGTATACAACGAGATGC -ACGGAACGGTATACAACGTGAAGG -ACGGAACGGTATACAACGCAATGG -ACGGAACGGTATACAACGATGAGG -ACGGAACGGTATACAACGAATGGG -ACGGAACGGTATACAACGTCCTGA -ACGGAACGGTATACAACGTAGCGA -ACGGAACGGTATACAACGCACAGA -ACGGAACGGTATACAACGGCAAGA -ACGGAACGGTATACAACGGGTTGA -ACGGAACGGTATACAACGTCCGAT -ACGGAACGGTATACAACGTGGCAT -ACGGAACGGTATACAACGCGAGAT -ACGGAACGGTATACAACGTACCAC -ACGGAACGGTATACAACGCAGAAC -ACGGAACGGTATACAACGGTCTAC -ACGGAACGGTATACAACGACGTAC -ACGGAACGGTATACAACGAGTGAC -ACGGAACGGTATACAACGCTGTAG -ACGGAACGGTATACAACGCCTAAG -ACGGAACGGTATACAACGGTTCAG -ACGGAACGGTATACAACGGCATAG -ACGGAACGGTATACAACGGACAAG -ACGGAACGGTATACAACGAAGCAG -ACGGAACGGTATACAACGCGTCAA -ACGGAACGGTATACAACGGCTGAA -ACGGAACGGTATACAACGAGTACG -ACGGAACGGTATACAACGATCCGA -ACGGAACGGTATACAACGATGGGA -ACGGAACGGTATACAACGGTGCAA -ACGGAACGGTATACAACGGAGGAA -ACGGAACGGTATACAACGCAGGTA -ACGGAACGGTATACAACGGACTCT -ACGGAACGGTATACAACGAGTCCT -ACGGAACGGTATACAACGTAAGCC -ACGGAACGGTATACAACGATAGCC -ACGGAACGGTATACAACGTAACCG -ACGGAACGGTATACAACGATGCCA -ACGGAACGGTATTCAAGCGGAAAC -ACGGAACGGTATTCAAGCAACACC -ACGGAACGGTATTCAAGCATCGAG -ACGGAACGGTATTCAAGCCTCCTT -ACGGAACGGTATTCAAGCCCTGTT -ACGGAACGGTATTCAAGCCGGTTT -ACGGAACGGTATTCAAGCGTGGTT -ACGGAACGGTATTCAAGCGCCTTT -ACGGAACGGTATTCAAGCGGTCTT -ACGGAACGGTATTCAAGCACGCTT -ACGGAACGGTATTCAAGCAGCGTT -ACGGAACGGTATTCAAGCTTCGTC -ACGGAACGGTATTCAAGCTCTCTC -ACGGAACGGTATTCAAGCTGGATC -ACGGAACGGTATTCAAGCCACTTC -ACGGAACGGTATTCAAGCGTACTC -ACGGAACGGTATTCAAGCGATGTC -ACGGAACGGTATTCAAGCACAGTC -ACGGAACGGTATTCAAGCTTGCTG -ACGGAACGGTATTCAAGCTCCATG -ACGGAACGGTATTCAAGCTGTGTG -ACGGAACGGTATTCAAGCCTAGTG -ACGGAACGGTATTCAAGCCATCTG -ACGGAACGGTATTCAAGCGAGTTG -ACGGAACGGTATTCAAGCAGACTG -ACGGAACGGTATTCAAGCTCGGTA -ACGGAACGGTATTCAAGCTGCCTA -ACGGAACGGTATTCAAGCCCACTA -ACGGAACGGTATTCAAGCGGAGTA -ACGGAACGGTATTCAAGCTCGTCT -ACGGAACGGTATTCAAGCTGCACT -ACGGAACGGTATTCAAGCCTGACT -ACGGAACGGTATTCAAGCCAACCT -ACGGAACGGTATTCAAGCGCTACT -ACGGAACGGTATTCAAGCGGATCT -ACGGAACGGTATTCAAGCAAGGCT -ACGGAACGGTATTCAAGCTCAACC -ACGGAACGGTATTCAAGCTGTTCC -ACGGAACGGTATTCAAGCATTCCC -ACGGAACGGTATTCAAGCTTCTCG -ACGGAACGGTATTCAAGCTAGACG -ACGGAACGGTATTCAAGCGTAACG -ACGGAACGGTATTCAAGCACTTCG -ACGGAACGGTATTCAAGCTACGCA -ACGGAACGGTATTCAAGCCTTGCA -ACGGAACGGTATTCAAGCCGAACA -ACGGAACGGTATTCAAGCCAGTCA -ACGGAACGGTATTCAAGCGATCCA -ACGGAACGGTATTCAAGCACGACA -ACGGAACGGTATTCAAGCAGCTCA -ACGGAACGGTATTCAAGCTCACGT -ACGGAACGGTATTCAAGCCGTAGT -ACGGAACGGTATTCAAGCGTCAGT -ACGGAACGGTATTCAAGCGAAGGT -ACGGAACGGTATTCAAGCAACCGT -ACGGAACGGTATTCAAGCTTGTGC -ACGGAACGGTATTCAAGCCTAAGC -ACGGAACGGTATTCAAGCACTAGC -ACGGAACGGTATTCAAGCAGATGC -ACGGAACGGTATTCAAGCTGAAGG -ACGGAACGGTATTCAAGCCAATGG -ACGGAACGGTATTCAAGCATGAGG -ACGGAACGGTATTCAAGCAATGGG -ACGGAACGGTATTCAAGCTCCTGA -ACGGAACGGTATTCAAGCTAGCGA -ACGGAACGGTATTCAAGCCACAGA -ACGGAACGGTATTCAAGCGCAAGA -ACGGAACGGTATTCAAGCGGTTGA -ACGGAACGGTATTCAAGCTCCGAT -ACGGAACGGTATTCAAGCTGGCAT -ACGGAACGGTATTCAAGCCGAGAT -ACGGAACGGTATTCAAGCTACCAC -ACGGAACGGTATTCAAGCCAGAAC -ACGGAACGGTATTCAAGCGTCTAC -ACGGAACGGTATTCAAGCACGTAC -ACGGAACGGTATTCAAGCAGTGAC -ACGGAACGGTATTCAAGCCTGTAG -ACGGAACGGTATTCAAGCCCTAAG -ACGGAACGGTATTCAAGCGTTCAG -ACGGAACGGTATTCAAGCGCATAG -ACGGAACGGTATTCAAGCGACAAG -ACGGAACGGTATTCAAGCAAGCAG -ACGGAACGGTATTCAAGCCGTCAA -ACGGAACGGTATTCAAGCGCTGAA -ACGGAACGGTATTCAAGCAGTACG -ACGGAACGGTATTCAAGCATCCGA -ACGGAACGGTATTCAAGCATGGGA -ACGGAACGGTATTCAAGCGTGCAA -ACGGAACGGTATTCAAGCGAGGAA -ACGGAACGGTATTCAAGCCAGGTA -ACGGAACGGTATTCAAGCGACTCT -ACGGAACGGTATTCAAGCAGTCCT -ACGGAACGGTATTCAAGCTAAGCC -ACGGAACGGTATTCAAGCATAGCC -ACGGAACGGTATTCAAGCTAACCG -ACGGAACGGTATTCAAGCATGCCA -ACGGAACGGTATCGTTCAGGAAAC -ACGGAACGGTATCGTTCAAACACC -ACGGAACGGTATCGTTCAATCGAG -ACGGAACGGTATCGTTCACTCCTT -ACGGAACGGTATCGTTCACCTGTT -ACGGAACGGTATCGTTCACGGTTT -ACGGAACGGTATCGTTCAGTGGTT -ACGGAACGGTATCGTTCAGCCTTT -ACGGAACGGTATCGTTCAGGTCTT -ACGGAACGGTATCGTTCAACGCTT -ACGGAACGGTATCGTTCAAGCGTT -ACGGAACGGTATCGTTCATTCGTC -ACGGAACGGTATCGTTCATCTCTC -ACGGAACGGTATCGTTCATGGATC -ACGGAACGGTATCGTTCACACTTC -ACGGAACGGTATCGTTCAGTACTC -ACGGAACGGTATCGTTCAGATGTC -ACGGAACGGTATCGTTCAACAGTC -ACGGAACGGTATCGTTCATTGCTG -ACGGAACGGTATCGTTCATCCATG -ACGGAACGGTATCGTTCATGTGTG -ACGGAACGGTATCGTTCACTAGTG -ACGGAACGGTATCGTTCACATCTG -ACGGAACGGTATCGTTCAGAGTTG -ACGGAACGGTATCGTTCAAGACTG -ACGGAACGGTATCGTTCATCGGTA -ACGGAACGGTATCGTTCATGCCTA -ACGGAACGGTATCGTTCACCACTA -ACGGAACGGTATCGTTCAGGAGTA -ACGGAACGGTATCGTTCATCGTCT -ACGGAACGGTATCGTTCATGCACT -ACGGAACGGTATCGTTCACTGACT -ACGGAACGGTATCGTTCACAACCT -ACGGAACGGTATCGTTCAGCTACT -ACGGAACGGTATCGTTCAGGATCT -ACGGAACGGTATCGTTCAAAGGCT -ACGGAACGGTATCGTTCATCAACC -ACGGAACGGTATCGTTCATGTTCC -ACGGAACGGTATCGTTCAATTCCC -ACGGAACGGTATCGTTCATTCTCG -ACGGAACGGTATCGTTCATAGACG -ACGGAACGGTATCGTTCAGTAACG -ACGGAACGGTATCGTTCAACTTCG -ACGGAACGGTATCGTTCATACGCA -ACGGAACGGTATCGTTCACTTGCA -ACGGAACGGTATCGTTCACGAACA -ACGGAACGGTATCGTTCACAGTCA -ACGGAACGGTATCGTTCAGATCCA -ACGGAACGGTATCGTTCAACGACA -ACGGAACGGTATCGTTCAAGCTCA -ACGGAACGGTATCGTTCATCACGT -ACGGAACGGTATCGTTCACGTAGT -ACGGAACGGTATCGTTCAGTCAGT -ACGGAACGGTATCGTTCAGAAGGT -ACGGAACGGTATCGTTCAAACCGT -ACGGAACGGTATCGTTCATTGTGC -ACGGAACGGTATCGTTCACTAAGC -ACGGAACGGTATCGTTCAACTAGC -ACGGAACGGTATCGTTCAAGATGC -ACGGAACGGTATCGTTCATGAAGG -ACGGAACGGTATCGTTCACAATGG -ACGGAACGGTATCGTTCAATGAGG -ACGGAACGGTATCGTTCAAATGGG -ACGGAACGGTATCGTTCATCCTGA -ACGGAACGGTATCGTTCATAGCGA -ACGGAACGGTATCGTTCACACAGA -ACGGAACGGTATCGTTCAGCAAGA -ACGGAACGGTATCGTTCAGGTTGA -ACGGAACGGTATCGTTCATCCGAT -ACGGAACGGTATCGTTCATGGCAT -ACGGAACGGTATCGTTCACGAGAT -ACGGAACGGTATCGTTCATACCAC -ACGGAACGGTATCGTTCACAGAAC -ACGGAACGGTATCGTTCAGTCTAC -ACGGAACGGTATCGTTCAACGTAC -ACGGAACGGTATCGTTCAAGTGAC -ACGGAACGGTATCGTTCACTGTAG -ACGGAACGGTATCGTTCACCTAAG -ACGGAACGGTATCGTTCAGTTCAG -ACGGAACGGTATCGTTCAGCATAG -ACGGAACGGTATCGTTCAGACAAG -ACGGAACGGTATCGTTCAAAGCAG -ACGGAACGGTATCGTTCACGTCAA -ACGGAACGGTATCGTTCAGCTGAA -ACGGAACGGTATCGTTCAAGTACG -ACGGAACGGTATCGTTCAATCCGA -ACGGAACGGTATCGTTCAATGGGA -ACGGAACGGTATCGTTCAGTGCAA -ACGGAACGGTATCGTTCAGAGGAA -ACGGAACGGTATCGTTCACAGGTA -ACGGAACGGTATCGTTCAGACTCT -ACGGAACGGTATCGTTCAAGTCCT -ACGGAACGGTATCGTTCATAAGCC -ACGGAACGGTATCGTTCAATAGCC -ACGGAACGGTATCGTTCATAACCG -ACGGAACGGTATCGTTCAATGCCA -ACGGAACGGTATAGTCGTGGAAAC -ACGGAACGGTATAGTCGTAACACC -ACGGAACGGTATAGTCGTATCGAG -ACGGAACGGTATAGTCGTCTCCTT -ACGGAACGGTATAGTCGTCCTGTT -ACGGAACGGTATAGTCGTCGGTTT -ACGGAACGGTATAGTCGTGTGGTT -ACGGAACGGTATAGTCGTGCCTTT -ACGGAACGGTATAGTCGTGGTCTT -ACGGAACGGTATAGTCGTACGCTT -ACGGAACGGTATAGTCGTAGCGTT -ACGGAACGGTATAGTCGTTTCGTC -ACGGAACGGTATAGTCGTTCTCTC -ACGGAACGGTATAGTCGTTGGATC -ACGGAACGGTATAGTCGTCACTTC -ACGGAACGGTATAGTCGTGTACTC -ACGGAACGGTATAGTCGTGATGTC -ACGGAACGGTATAGTCGTACAGTC -ACGGAACGGTATAGTCGTTTGCTG -ACGGAACGGTATAGTCGTTCCATG -ACGGAACGGTATAGTCGTTGTGTG -ACGGAACGGTATAGTCGTCTAGTG -ACGGAACGGTATAGTCGTCATCTG -ACGGAACGGTATAGTCGTGAGTTG -ACGGAACGGTATAGTCGTAGACTG -ACGGAACGGTATAGTCGTTCGGTA -ACGGAACGGTATAGTCGTTGCCTA -ACGGAACGGTATAGTCGTCCACTA -ACGGAACGGTATAGTCGTGGAGTA -ACGGAACGGTATAGTCGTTCGTCT -ACGGAACGGTATAGTCGTTGCACT -ACGGAACGGTATAGTCGTCTGACT -ACGGAACGGTATAGTCGTCAACCT -ACGGAACGGTATAGTCGTGCTACT -ACGGAACGGTATAGTCGTGGATCT -ACGGAACGGTATAGTCGTAAGGCT -ACGGAACGGTATAGTCGTTCAACC -ACGGAACGGTATAGTCGTTGTTCC -ACGGAACGGTATAGTCGTATTCCC -ACGGAACGGTATAGTCGTTTCTCG -ACGGAACGGTATAGTCGTTAGACG -ACGGAACGGTATAGTCGTGTAACG -ACGGAACGGTATAGTCGTACTTCG -ACGGAACGGTATAGTCGTTACGCA -ACGGAACGGTATAGTCGTCTTGCA -ACGGAACGGTATAGTCGTCGAACA -ACGGAACGGTATAGTCGTCAGTCA -ACGGAACGGTATAGTCGTGATCCA -ACGGAACGGTATAGTCGTACGACA -ACGGAACGGTATAGTCGTAGCTCA -ACGGAACGGTATAGTCGTTCACGT -ACGGAACGGTATAGTCGTCGTAGT -ACGGAACGGTATAGTCGTGTCAGT -ACGGAACGGTATAGTCGTGAAGGT -ACGGAACGGTATAGTCGTAACCGT -ACGGAACGGTATAGTCGTTTGTGC -ACGGAACGGTATAGTCGTCTAAGC -ACGGAACGGTATAGTCGTACTAGC -ACGGAACGGTATAGTCGTAGATGC -ACGGAACGGTATAGTCGTTGAAGG -ACGGAACGGTATAGTCGTCAATGG -ACGGAACGGTATAGTCGTATGAGG -ACGGAACGGTATAGTCGTAATGGG -ACGGAACGGTATAGTCGTTCCTGA -ACGGAACGGTATAGTCGTTAGCGA -ACGGAACGGTATAGTCGTCACAGA -ACGGAACGGTATAGTCGTGCAAGA -ACGGAACGGTATAGTCGTGGTTGA -ACGGAACGGTATAGTCGTTCCGAT -ACGGAACGGTATAGTCGTTGGCAT -ACGGAACGGTATAGTCGTCGAGAT -ACGGAACGGTATAGTCGTTACCAC -ACGGAACGGTATAGTCGTCAGAAC -ACGGAACGGTATAGTCGTGTCTAC -ACGGAACGGTATAGTCGTACGTAC -ACGGAACGGTATAGTCGTAGTGAC -ACGGAACGGTATAGTCGTCTGTAG -ACGGAACGGTATAGTCGTCCTAAG -ACGGAACGGTATAGTCGTGTTCAG -ACGGAACGGTATAGTCGTGCATAG -ACGGAACGGTATAGTCGTGACAAG -ACGGAACGGTATAGTCGTAAGCAG -ACGGAACGGTATAGTCGTCGTCAA -ACGGAACGGTATAGTCGTGCTGAA -ACGGAACGGTATAGTCGTAGTACG -ACGGAACGGTATAGTCGTATCCGA -ACGGAACGGTATAGTCGTATGGGA -ACGGAACGGTATAGTCGTGTGCAA -ACGGAACGGTATAGTCGTGAGGAA -ACGGAACGGTATAGTCGTCAGGTA -ACGGAACGGTATAGTCGTGACTCT -ACGGAACGGTATAGTCGTAGTCCT -ACGGAACGGTATAGTCGTTAAGCC -ACGGAACGGTATAGTCGTATAGCC -ACGGAACGGTATAGTCGTTAACCG -ACGGAACGGTATAGTCGTATGCCA -ACGGAACGGTATAGTGTCGGAAAC -ACGGAACGGTATAGTGTCAACACC -ACGGAACGGTATAGTGTCATCGAG -ACGGAACGGTATAGTGTCCTCCTT -ACGGAACGGTATAGTGTCCCTGTT -ACGGAACGGTATAGTGTCCGGTTT -ACGGAACGGTATAGTGTCGTGGTT -ACGGAACGGTATAGTGTCGCCTTT -ACGGAACGGTATAGTGTCGGTCTT -ACGGAACGGTATAGTGTCACGCTT -ACGGAACGGTATAGTGTCAGCGTT -ACGGAACGGTATAGTGTCTTCGTC -ACGGAACGGTATAGTGTCTCTCTC -ACGGAACGGTATAGTGTCTGGATC -ACGGAACGGTATAGTGTCCACTTC -ACGGAACGGTATAGTGTCGTACTC -ACGGAACGGTATAGTGTCGATGTC -ACGGAACGGTATAGTGTCACAGTC -ACGGAACGGTATAGTGTCTTGCTG -ACGGAACGGTATAGTGTCTCCATG -ACGGAACGGTATAGTGTCTGTGTG -ACGGAACGGTATAGTGTCCTAGTG -ACGGAACGGTATAGTGTCCATCTG -ACGGAACGGTATAGTGTCGAGTTG -ACGGAACGGTATAGTGTCAGACTG -ACGGAACGGTATAGTGTCTCGGTA -ACGGAACGGTATAGTGTCTGCCTA -ACGGAACGGTATAGTGTCCCACTA -ACGGAACGGTATAGTGTCGGAGTA -ACGGAACGGTATAGTGTCTCGTCT -ACGGAACGGTATAGTGTCTGCACT -ACGGAACGGTATAGTGTCCTGACT -ACGGAACGGTATAGTGTCCAACCT -ACGGAACGGTATAGTGTCGCTACT -ACGGAACGGTATAGTGTCGGATCT -ACGGAACGGTATAGTGTCAAGGCT -ACGGAACGGTATAGTGTCTCAACC -ACGGAACGGTATAGTGTCTGTTCC -ACGGAACGGTATAGTGTCATTCCC -ACGGAACGGTATAGTGTCTTCTCG -ACGGAACGGTATAGTGTCTAGACG -ACGGAACGGTATAGTGTCGTAACG -ACGGAACGGTATAGTGTCACTTCG -ACGGAACGGTATAGTGTCTACGCA -ACGGAACGGTATAGTGTCCTTGCA -ACGGAACGGTATAGTGTCCGAACA -ACGGAACGGTATAGTGTCCAGTCA -ACGGAACGGTATAGTGTCGATCCA -ACGGAACGGTATAGTGTCACGACA -ACGGAACGGTATAGTGTCAGCTCA -ACGGAACGGTATAGTGTCTCACGT -ACGGAACGGTATAGTGTCCGTAGT -ACGGAACGGTATAGTGTCGTCAGT -ACGGAACGGTATAGTGTCGAAGGT -ACGGAACGGTATAGTGTCAACCGT -ACGGAACGGTATAGTGTCTTGTGC -ACGGAACGGTATAGTGTCCTAAGC -ACGGAACGGTATAGTGTCACTAGC -ACGGAACGGTATAGTGTCAGATGC -ACGGAACGGTATAGTGTCTGAAGG -ACGGAACGGTATAGTGTCCAATGG -ACGGAACGGTATAGTGTCATGAGG -ACGGAACGGTATAGTGTCAATGGG -ACGGAACGGTATAGTGTCTCCTGA -ACGGAACGGTATAGTGTCTAGCGA -ACGGAACGGTATAGTGTCCACAGA -ACGGAACGGTATAGTGTCGCAAGA -ACGGAACGGTATAGTGTCGGTTGA -ACGGAACGGTATAGTGTCTCCGAT -ACGGAACGGTATAGTGTCTGGCAT -ACGGAACGGTATAGTGTCCGAGAT -ACGGAACGGTATAGTGTCTACCAC -ACGGAACGGTATAGTGTCCAGAAC -ACGGAACGGTATAGTGTCGTCTAC -ACGGAACGGTATAGTGTCACGTAC -ACGGAACGGTATAGTGTCAGTGAC -ACGGAACGGTATAGTGTCCTGTAG -ACGGAACGGTATAGTGTCCCTAAG -ACGGAACGGTATAGTGTCGTTCAG -ACGGAACGGTATAGTGTCGCATAG -ACGGAACGGTATAGTGTCGACAAG -ACGGAACGGTATAGTGTCAAGCAG -ACGGAACGGTATAGTGTCCGTCAA -ACGGAACGGTATAGTGTCGCTGAA -ACGGAACGGTATAGTGTCAGTACG -ACGGAACGGTATAGTGTCATCCGA -ACGGAACGGTATAGTGTCATGGGA -ACGGAACGGTATAGTGTCGTGCAA -ACGGAACGGTATAGTGTCGAGGAA -ACGGAACGGTATAGTGTCCAGGTA -ACGGAACGGTATAGTGTCGACTCT -ACGGAACGGTATAGTGTCAGTCCT -ACGGAACGGTATAGTGTCTAAGCC -ACGGAACGGTATAGTGTCATAGCC -ACGGAACGGTATAGTGTCTAACCG -ACGGAACGGTATAGTGTCATGCCA -ACGGAACGGTATGGTGAAGGAAAC -ACGGAACGGTATGGTGAAAACACC -ACGGAACGGTATGGTGAAATCGAG -ACGGAACGGTATGGTGAACTCCTT -ACGGAACGGTATGGTGAACCTGTT -ACGGAACGGTATGGTGAACGGTTT -ACGGAACGGTATGGTGAAGTGGTT -ACGGAACGGTATGGTGAAGCCTTT -ACGGAACGGTATGGTGAAGGTCTT -ACGGAACGGTATGGTGAAACGCTT -ACGGAACGGTATGGTGAAAGCGTT -ACGGAACGGTATGGTGAATTCGTC -ACGGAACGGTATGGTGAATCTCTC -ACGGAACGGTATGGTGAATGGATC -ACGGAACGGTATGGTGAACACTTC -ACGGAACGGTATGGTGAAGTACTC -ACGGAACGGTATGGTGAAGATGTC -ACGGAACGGTATGGTGAAACAGTC -ACGGAACGGTATGGTGAATTGCTG -ACGGAACGGTATGGTGAATCCATG -ACGGAACGGTATGGTGAATGTGTG -ACGGAACGGTATGGTGAACTAGTG -ACGGAACGGTATGGTGAACATCTG -ACGGAACGGTATGGTGAAGAGTTG -ACGGAACGGTATGGTGAAAGACTG -ACGGAACGGTATGGTGAATCGGTA -ACGGAACGGTATGGTGAATGCCTA -ACGGAACGGTATGGTGAACCACTA -ACGGAACGGTATGGTGAAGGAGTA -ACGGAACGGTATGGTGAATCGTCT -ACGGAACGGTATGGTGAATGCACT -ACGGAACGGTATGGTGAACTGACT -ACGGAACGGTATGGTGAACAACCT -ACGGAACGGTATGGTGAAGCTACT -ACGGAACGGTATGGTGAAGGATCT -ACGGAACGGTATGGTGAAAAGGCT -ACGGAACGGTATGGTGAATCAACC -ACGGAACGGTATGGTGAATGTTCC -ACGGAACGGTATGGTGAAATTCCC -ACGGAACGGTATGGTGAATTCTCG -ACGGAACGGTATGGTGAATAGACG -ACGGAACGGTATGGTGAAGTAACG -ACGGAACGGTATGGTGAAACTTCG -ACGGAACGGTATGGTGAATACGCA -ACGGAACGGTATGGTGAACTTGCA -ACGGAACGGTATGGTGAACGAACA -ACGGAACGGTATGGTGAACAGTCA -ACGGAACGGTATGGTGAAGATCCA -ACGGAACGGTATGGTGAAACGACA -ACGGAACGGTATGGTGAAAGCTCA -ACGGAACGGTATGGTGAATCACGT -ACGGAACGGTATGGTGAACGTAGT -ACGGAACGGTATGGTGAAGTCAGT -ACGGAACGGTATGGTGAAGAAGGT -ACGGAACGGTATGGTGAAAACCGT -ACGGAACGGTATGGTGAATTGTGC -ACGGAACGGTATGGTGAACTAAGC -ACGGAACGGTATGGTGAAACTAGC -ACGGAACGGTATGGTGAAAGATGC -ACGGAACGGTATGGTGAATGAAGG -ACGGAACGGTATGGTGAACAATGG -ACGGAACGGTATGGTGAAATGAGG -ACGGAACGGTATGGTGAAAATGGG -ACGGAACGGTATGGTGAATCCTGA -ACGGAACGGTATGGTGAATAGCGA -ACGGAACGGTATGGTGAACACAGA -ACGGAACGGTATGGTGAAGCAAGA -ACGGAACGGTATGGTGAAGGTTGA -ACGGAACGGTATGGTGAATCCGAT -ACGGAACGGTATGGTGAATGGCAT -ACGGAACGGTATGGTGAACGAGAT -ACGGAACGGTATGGTGAATACCAC -ACGGAACGGTATGGTGAACAGAAC -ACGGAACGGTATGGTGAAGTCTAC -ACGGAACGGTATGGTGAAACGTAC -ACGGAACGGTATGGTGAAAGTGAC -ACGGAACGGTATGGTGAACTGTAG -ACGGAACGGTATGGTGAACCTAAG -ACGGAACGGTATGGTGAAGTTCAG -ACGGAACGGTATGGTGAAGCATAG -ACGGAACGGTATGGTGAAGACAAG -ACGGAACGGTATGGTGAAAAGCAG -ACGGAACGGTATGGTGAACGTCAA -ACGGAACGGTATGGTGAAGCTGAA -ACGGAACGGTATGGTGAAAGTACG -ACGGAACGGTATGGTGAAATCCGA -ACGGAACGGTATGGTGAAATGGGA -ACGGAACGGTATGGTGAAGTGCAA -ACGGAACGGTATGGTGAAGAGGAA -ACGGAACGGTATGGTGAACAGGTA -ACGGAACGGTATGGTGAAGACTCT -ACGGAACGGTATGGTGAAAGTCCT -ACGGAACGGTATGGTGAATAAGCC -ACGGAACGGTATGGTGAAATAGCC -ACGGAACGGTATGGTGAATAACCG -ACGGAACGGTATGGTGAAATGCCA -ACGGAACGGTATCGTAACGGAAAC -ACGGAACGGTATCGTAACAACACC -ACGGAACGGTATCGTAACATCGAG -ACGGAACGGTATCGTAACCTCCTT -ACGGAACGGTATCGTAACCCTGTT -ACGGAACGGTATCGTAACCGGTTT -ACGGAACGGTATCGTAACGTGGTT -ACGGAACGGTATCGTAACGCCTTT -ACGGAACGGTATCGTAACGGTCTT -ACGGAACGGTATCGTAACACGCTT -ACGGAACGGTATCGTAACAGCGTT -ACGGAACGGTATCGTAACTTCGTC -ACGGAACGGTATCGTAACTCTCTC -ACGGAACGGTATCGTAACTGGATC -ACGGAACGGTATCGTAACCACTTC -ACGGAACGGTATCGTAACGTACTC -ACGGAACGGTATCGTAACGATGTC -ACGGAACGGTATCGTAACACAGTC -ACGGAACGGTATCGTAACTTGCTG -ACGGAACGGTATCGTAACTCCATG -ACGGAACGGTATCGTAACTGTGTG -ACGGAACGGTATCGTAACCTAGTG -ACGGAACGGTATCGTAACCATCTG -ACGGAACGGTATCGTAACGAGTTG -ACGGAACGGTATCGTAACAGACTG -ACGGAACGGTATCGTAACTCGGTA -ACGGAACGGTATCGTAACTGCCTA -ACGGAACGGTATCGTAACCCACTA -ACGGAACGGTATCGTAACGGAGTA -ACGGAACGGTATCGTAACTCGTCT -ACGGAACGGTATCGTAACTGCACT -ACGGAACGGTATCGTAACCTGACT -ACGGAACGGTATCGTAACCAACCT -ACGGAACGGTATCGTAACGCTACT -ACGGAACGGTATCGTAACGGATCT -ACGGAACGGTATCGTAACAAGGCT -ACGGAACGGTATCGTAACTCAACC -ACGGAACGGTATCGTAACTGTTCC -ACGGAACGGTATCGTAACATTCCC -ACGGAACGGTATCGTAACTTCTCG -ACGGAACGGTATCGTAACTAGACG -ACGGAACGGTATCGTAACGTAACG -ACGGAACGGTATCGTAACACTTCG -ACGGAACGGTATCGTAACTACGCA -ACGGAACGGTATCGTAACCTTGCA -ACGGAACGGTATCGTAACCGAACA -ACGGAACGGTATCGTAACCAGTCA -ACGGAACGGTATCGTAACGATCCA -ACGGAACGGTATCGTAACACGACA -ACGGAACGGTATCGTAACAGCTCA -ACGGAACGGTATCGTAACTCACGT -ACGGAACGGTATCGTAACCGTAGT -ACGGAACGGTATCGTAACGTCAGT -ACGGAACGGTATCGTAACGAAGGT -ACGGAACGGTATCGTAACAACCGT -ACGGAACGGTATCGTAACTTGTGC -ACGGAACGGTATCGTAACCTAAGC -ACGGAACGGTATCGTAACACTAGC -ACGGAACGGTATCGTAACAGATGC -ACGGAACGGTATCGTAACTGAAGG -ACGGAACGGTATCGTAACCAATGG -ACGGAACGGTATCGTAACATGAGG -ACGGAACGGTATCGTAACAATGGG -ACGGAACGGTATCGTAACTCCTGA -ACGGAACGGTATCGTAACTAGCGA -ACGGAACGGTATCGTAACCACAGA -ACGGAACGGTATCGTAACGCAAGA -ACGGAACGGTATCGTAACGGTTGA -ACGGAACGGTATCGTAACTCCGAT -ACGGAACGGTATCGTAACTGGCAT -ACGGAACGGTATCGTAACCGAGAT -ACGGAACGGTATCGTAACTACCAC -ACGGAACGGTATCGTAACCAGAAC -ACGGAACGGTATCGTAACGTCTAC -ACGGAACGGTATCGTAACACGTAC -ACGGAACGGTATCGTAACAGTGAC -ACGGAACGGTATCGTAACCTGTAG -ACGGAACGGTATCGTAACCCTAAG -ACGGAACGGTATCGTAACGTTCAG -ACGGAACGGTATCGTAACGCATAG -ACGGAACGGTATCGTAACGACAAG -ACGGAACGGTATCGTAACAAGCAG -ACGGAACGGTATCGTAACCGTCAA -ACGGAACGGTATCGTAACGCTGAA -ACGGAACGGTATCGTAACAGTACG -ACGGAACGGTATCGTAACATCCGA -ACGGAACGGTATCGTAACATGGGA -ACGGAACGGTATCGTAACGTGCAA -ACGGAACGGTATCGTAACGAGGAA -ACGGAACGGTATCGTAACCAGGTA -ACGGAACGGTATCGTAACGACTCT -ACGGAACGGTATCGTAACAGTCCT -ACGGAACGGTATCGTAACTAAGCC -ACGGAACGGTATCGTAACATAGCC -ACGGAACGGTATCGTAACTAACCG -ACGGAACGGTATCGTAACATGCCA -ACGGAACGGTATTGCTTGGGAAAC -ACGGAACGGTATTGCTTGAACACC -ACGGAACGGTATTGCTTGATCGAG -ACGGAACGGTATTGCTTGCTCCTT -ACGGAACGGTATTGCTTGCCTGTT -ACGGAACGGTATTGCTTGCGGTTT -ACGGAACGGTATTGCTTGGTGGTT -ACGGAACGGTATTGCTTGGCCTTT -ACGGAACGGTATTGCTTGGGTCTT -ACGGAACGGTATTGCTTGACGCTT -ACGGAACGGTATTGCTTGAGCGTT -ACGGAACGGTATTGCTTGTTCGTC -ACGGAACGGTATTGCTTGTCTCTC -ACGGAACGGTATTGCTTGTGGATC -ACGGAACGGTATTGCTTGCACTTC -ACGGAACGGTATTGCTTGGTACTC -ACGGAACGGTATTGCTTGGATGTC -ACGGAACGGTATTGCTTGACAGTC -ACGGAACGGTATTGCTTGTTGCTG -ACGGAACGGTATTGCTTGTCCATG -ACGGAACGGTATTGCTTGTGTGTG -ACGGAACGGTATTGCTTGCTAGTG -ACGGAACGGTATTGCTTGCATCTG -ACGGAACGGTATTGCTTGGAGTTG -ACGGAACGGTATTGCTTGAGACTG -ACGGAACGGTATTGCTTGTCGGTA -ACGGAACGGTATTGCTTGTGCCTA -ACGGAACGGTATTGCTTGCCACTA -ACGGAACGGTATTGCTTGGGAGTA -ACGGAACGGTATTGCTTGTCGTCT -ACGGAACGGTATTGCTTGTGCACT -ACGGAACGGTATTGCTTGCTGACT -ACGGAACGGTATTGCTTGCAACCT -ACGGAACGGTATTGCTTGGCTACT -ACGGAACGGTATTGCTTGGGATCT -ACGGAACGGTATTGCTTGAAGGCT -ACGGAACGGTATTGCTTGTCAACC -ACGGAACGGTATTGCTTGTGTTCC -ACGGAACGGTATTGCTTGATTCCC -ACGGAACGGTATTGCTTGTTCTCG -ACGGAACGGTATTGCTTGTAGACG -ACGGAACGGTATTGCTTGGTAACG -ACGGAACGGTATTGCTTGACTTCG -ACGGAACGGTATTGCTTGTACGCA -ACGGAACGGTATTGCTTGCTTGCA -ACGGAACGGTATTGCTTGCGAACA -ACGGAACGGTATTGCTTGCAGTCA -ACGGAACGGTATTGCTTGGATCCA -ACGGAACGGTATTGCTTGACGACA -ACGGAACGGTATTGCTTGAGCTCA -ACGGAACGGTATTGCTTGTCACGT -ACGGAACGGTATTGCTTGCGTAGT -ACGGAACGGTATTGCTTGGTCAGT -ACGGAACGGTATTGCTTGGAAGGT -ACGGAACGGTATTGCTTGAACCGT -ACGGAACGGTATTGCTTGTTGTGC -ACGGAACGGTATTGCTTGCTAAGC -ACGGAACGGTATTGCTTGACTAGC -ACGGAACGGTATTGCTTGAGATGC -ACGGAACGGTATTGCTTGTGAAGG -ACGGAACGGTATTGCTTGCAATGG -ACGGAACGGTATTGCTTGATGAGG -ACGGAACGGTATTGCTTGAATGGG -ACGGAACGGTATTGCTTGTCCTGA -ACGGAACGGTATTGCTTGTAGCGA -ACGGAACGGTATTGCTTGCACAGA -ACGGAACGGTATTGCTTGGCAAGA -ACGGAACGGTATTGCTTGGGTTGA -ACGGAACGGTATTGCTTGTCCGAT -ACGGAACGGTATTGCTTGTGGCAT -ACGGAACGGTATTGCTTGCGAGAT -ACGGAACGGTATTGCTTGTACCAC -ACGGAACGGTATTGCTTGCAGAAC -ACGGAACGGTATTGCTTGGTCTAC -ACGGAACGGTATTGCTTGACGTAC -ACGGAACGGTATTGCTTGAGTGAC -ACGGAACGGTATTGCTTGCTGTAG -ACGGAACGGTATTGCTTGCCTAAG -ACGGAACGGTATTGCTTGGTTCAG -ACGGAACGGTATTGCTTGGCATAG -ACGGAACGGTATTGCTTGGACAAG -ACGGAACGGTATTGCTTGAAGCAG -ACGGAACGGTATTGCTTGCGTCAA -ACGGAACGGTATTGCTTGGCTGAA -ACGGAACGGTATTGCTTGAGTACG -ACGGAACGGTATTGCTTGATCCGA -ACGGAACGGTATTGCTTGATGGGA -ACGGAACGGTATTGCTTGGTGCAA -ACGGAACGGTATTGCTTGGAGGAA -ACGGAACGGTATTGCTTGCAGGTA -ACGGAACGGTATTGCTTGGACTCT -ACGGAACGGTATTGCTTGAGTCCT -ACGGAACGGTATTGCTTGTAAGCC -ACGGAACGGTATTGCTTGATAGCC -ACGGAACGGTATTGCTTGTAACCG -ACGGAACGGTATTGCTTGATGCCA -ACGGAACGGTATAGCCTAGGAAAC -ACGGAACGGTATAGCCTAAACACC -ACGGAACGGTATAGCCTAATCGAG -ACGGAACGGTATAGCCTACTCCTT -ACGGAACGGTATAGCCTACCTGTT -ACGGAACGGTATAGCCTACGGTTT -ACGGAACGGTATAGCCTAGTGGTT -ACGGAACGGTATAGCCTAGCCTTT -ACGGAACGGTATAGCCTAGGTCTT -ACGGAACGGTATAGCCTAACGCTT -ACGGAACGGTATAGCCTAAGCGTT -ACGGAACGGTATAGCCTATTCGTC -ACGGAACGGTATAGCCTATCTCTC -ACGGAACGGTATAGCCTATGGATC -ACGGAACGGTATAGCCTACACTTC -ACGGAACGGTATAGCCTAGTACTC -ACGGAACGGTATAGCCTAGATGTC -ACGGAACGGTATAGCCTAACAGTC -ACGGAACGGTATAGCCTATTGCTG -ACGGAACGGTATAGCCTATCCATG -ACGGAACGGTATAGCCTATGTGTG -ACGGAACGGTATAGCCTACTAGTG -ACGGAACGGTATAGCCTACATCTG -ACGGAACGGTATAGCCTAGAGTTG -ACGGAACGGTATAGCCTAAGACTG -ACGGAACGGTATAGCCTATCGGTA -ACGGAACGGTATAGCCTATGCCTA -ACGGAACGGTATAGCCTACCACTA -ACGGAACGGTATAGCCTAGGAGTA -ACGGAACGGTATAGCCTATCGTCT -ACGGAACGGTATAGCCTATGCACT -ACGGAACGGTATAGCCTACTGACT -ACGGAACGGTATAGCCTACAACCT -ACGGAACGGTATAGCCTAGCTACT -ACGGAACGGTATAGCCTAGGATCT -ACGGAACGGTATAGCCTAAAGGCT -ACGGAACGGTATAGCCTATCAACC -ACGGAACGGTATAGCCTATGTTCC -ACGGAACGGTATAGCCTAATTCCC -ACGGAACGGTATAGCCTATTCTCG -ACGGAACGGTATAGCCTATAGACG -ACGGAACGGTATAGCCTAGTAACG -ACGGAACGGTATAGCCTAACTTCG -ACGGAACGGTATAGCCTATACGCA -ACGGAACGGTATAGCCTACTTGCA -ACGGAACGGTATAGCCTACGAACA -ACGGAACGGTATAGCCTACAGTCA -ACGGAACGGTATAGCCTAGATCCA -ACGGAACGGTATAGCCTAACGACA -ACGGAACGGTATAGCCTAAGCTCA -ACGGAACGGTATAGCCTATCACGT -ACGGAACGGTATAGCCTACGTAGT -ACGGAACGGTATAGCCTAGTCAGT -ACGGAACGGTATAGCCTAGAAGGT -ACGGAACGGTATAGCCTAAACCGT -ACGGAACGGTATAGCCTATTGTGC -ACGGAACGGTATAGCCTACTAAGC -ACGGAACGGTATAGCCTAACTAGC -ACGGAACGGTATAGCCTAAGATGC -ACGGAACGGTATAGCCTATGAAGG -ACGGAACGGTATAGCCTACAATGG -ACGGAACGGTATAGCCTAATGAGG -ACGGAACGGTATAGCCTAAATGGG -ACGGAACGGTATAGCCTATCCTGA -ACGGAACGGTATAGCCTATAGCGA -ACGGAACGGTATAGCCTACACAGA -ACGGAACGGTATAGCCTAGCAAGA -ACGGAACGGTATAGCCTAGGTTGA -ACGGAACGGTATAGCCTATCCGAT -ACGGAACGGTATAGCCTATGGCAT -ACGGAACGGTATAGCCTACGAGAT -ACGGAACGGTATAGCCTATACCAC -ACGGAACGGTATAGCCTACAGAAC -ACGGAACGGTATAGCCTAGTCTAC -ACGGAACGGTATAGCCTAACGTAC -ACGGAACGGTATAGCCTAAGTGAC -ACGGAACGGTATAGCCTACTGTAG -ACGGAACGGTATAGCCTACCTAAG -ACGGAACGGTATAGCCTAGTTCAG -ACGGAACGGTATAGCCTAGCATAG -ACGGAACGGTATAGCCTAGACAAG -ACGGAACGGTATAGCCTAAAGCAG -ACGGAACGGTATAGCCTACGTCAA -ACGGAACGGTATAGCCTAGCTGAA -ACGGAACGGTATAGCCTAAGTACG -ACGGAACGGTATAGCCTAATCCGA -ACGGAACGGTATAGCCTAATGGGA -ACGGAACGGTATAGCCTAGTGCAA -ACGGAACGGTATAGCCTAGAGGAA -ACGGAACGGTATAGCCTACAGGTA -ACGGAACGGTATAGCCTAGACTCT -ACGGAACGGTATAGCCTAAGTCCT -ACGGAACGGTATAGCCTATAAGCC -ACGGAACGGTATAGCCTAATAGCC -ACGGAACGGTATAGCCTATAACCG -ACGGAACGGTATAGCCTAATGCCA -ACGGAACGGTATAGCACTGGAAAC -ACGGAACGGTATAGCACTAACACC -ACGGAACGGTATAGCACTATCGAG -ACGGAACGGTATAGCACTCTCCTT -ACGGAACGGTATAGCACTCCTGTT -ACGGAACGGTATAGCACTCGGTTT -ACGGAACGGTATAGCACTGTGGTT -ACGGAACGGTATAGCACTGCCTTT -ACGGAACGGTATAGCACTGGTCTT -ACGGAACGGTATAGCACTACGCTT -ACGGAACGGTATAGCACTAGCGTT -ACGGAACGGTATAGCACTTTCGTC -ACGGAACGGTATAGCACTTCTCTC -ACGGAACGGTATAGCACTTGGATC -ACGGAACGGTATAGCACTCACTTC -ACGGAACGGTATAGCACTGTACTC -ACGGAACGGTATAGCACTGATGTC -ACGGAACGGTATAGCACTACAGTC -ACGGAACGGTATAGCACTTTGCTG -ACGGAACGGTATAGCACTTCCATG -ACGGAACGGTATAGCACTTGTGTG -ACGGAACGGTATAGCACTCTAGTG -ACGGAACGGTATAGCACTCATCTG -ACGGAACGGTATAGCACTGAGTTG -ACGGAACGGTATAGCACTAGACTG -ACGGAACGGTATAGCACTTCGGTA -ACGGAACGGTATAGCACTTGCCTA -ACGGAACGGTATAGCACTCCACTA -ACGGAACGGTATAGCACTGGAGTA -ACGGAACGGTATAGCACTTCGTCT -ACGGAACGGTATAGCACTTGCACT -ACGGAACGGTATAGCACTCTGACT -ACGGAACGGTATAGCACTCAACCT -ACGGAACGGTATAGCACTGCTACT -ACGGAACGGTATAGCACTGGATCT -ACGGAACGGTATAGCACTAAGGCT -ACGGAACGGTATAGCACTTCAACC -ACGGAACGGTATAGCACTTGTTCC -ACGGAACGGTATAGCACTATTCCC -ACGGAACGGTATAGCACTTTCTCG -ACGGAACGGTATAGCACTTAGACG -ACGGAACGGTATAGCACTGTAACG -ACGGAACGGTATAGCACTACTTCG -ACGGAACGGTATAGCACTTACGCA -ACGGAACGGTATAGCACTCTTGCA -ACGGAACGGTATAGCACTCGAACA -ACGGAACGGTATAGCACTCAGTCA -ACGGAACGGTATAGCACTGATCCA -ACGGAACGGTATAGCACTACGACA -ACGGAACGGTATAGCACTAGCTCA -ACGGAACGGTATAGCACTTCACGT -ACGGAACGGTATAGCACTCGTAGT -ACGGAACGGTATAGCACTGTCAGT -ACGGAACGGTATAGCACTGAAGGT -ACGGAACGGTATAGCACTAACCGT -ACGGAACGGTATAGCACTTTGTGC -ACGGAACGGTATAGCACTCTAAGC -ACGGAACGGTATAGCACTACTAGC -ACGGAACGGTATAGCACTAGATGC -ACGGAACGGTATAGCACTTGAAGG -ACGGAACGGTATAGCACTCAATGG -ACGGAACGGTATAGCACTATGAGG -ACGGAACGGTATAGCACTAATGGG -ACGGAACGGTATAGCACTTCCTGA -ACGGAACGGTATAGCACTTAGCGA -ACGGAACGGTATAGCACTCACAGA -ACGGAACGGTATAGCACTGCAAGA -ACGGAACGGTATAGCACTGGTTGA -ACGGAACGGTATAGCACTTCCGAT -ACGGAACGGTATAGCACTTGGCAT -ACGGAACGGTATAGCACTCGAGAT -ACGGAACGGTATAGCACTTACCAC -ACGGAACGGTATAGCACTCAGAAC -ACGGAACGGTATAGCACTGTCTAC -ACGGAACGGTATAGCACTACGTAC -ACGGAACGGTATAGCACTAGTGAC -ACGGAACGGTATAGCACTCTGTAG -ACGGAACGGTATAGCACTCCTAAG -ACGGAACGGTATAGCACTGTTCAG -ACGGAACGGTATAGCACTGCATAG -ACGGAACGGTATAGCACTGACAAG -ACGGAACGGTATAGCACTAAGCAG -ACGGAACGGTATAGCACTCGTCAA -ACGGAACGGTATAGCACTGCTGAA -ACGGAACGGTATAGCACTAGTACG -ACGGAACGGTATAGCACTATCCGA -ACGGAACGGTATAGCACTATGGGA -ACGGAACGGTATAGCACTGTGCAA -ACGGAACGGTATAGCACTGAGGAA -ACGGAACGGTATAGCACTCAGGTA -ACGGAACGGTATAGCACTGACTCT -ACGGAACGGTATAGCACTAGTCCT -ACGGAACGGTATAGCACTTAAGCC -ACGGAACGGTATAGCACTATAGCC -ACGGAACGGTATAGCACTTAACCG -ACGGAACGGTATAGCACTATGCCA -ACGGAACGGTATTGCAGAGGAAAC -ACGGAACGGTATTGCAGAAACACC -ACGGAACGGTATTGCAGAATCGAG -ACGGAACGGTATTGCAGACTCCTT -ACGGAACGGTATTGCAGACCTGTT -ACGGAACGGTATTGCAGACGGTTT -ACGGAACGGTATTGCAGAGTGGTT -ACGGAACGGTATTGCAGAGCCTTT -ACGGAACGGTATTGCAGAGGTCTT -ACGGAACGGTATTGCAGAACGCTT -ACGGAACGGTATTGCAGAAGCGTT -ACGGAACGGTATTGCAGATTCGTC -ACGGAACGGTATTGCAGATCTCTC -ACGGAACGGTATTGCAGATGGATC -ACGGAACGGTATTGCAGACACTTC -ACGGAACGGTATTGCAGAGTACTC -ACGGAACGGTATTGCAGAGATGTC -ACGGAACGGTATTGCAGAACAGTC -ACGGAACGGTATTGCAGATTGCTG -ACGGAACGGTATTGCAGATCCATG -ACGGAACGGTATTGCAGATGTGTG -ACGGAACGGTATTGCAGACTAGTG -ACGGAACGGTATTGCAGACATCTG -ACGGAACGGTATTGCAGAGAGTTG -ACGGAACGGTATTGCAGAAGACTG -ACGGAACGGTATTGCAGATCGGTA -ACGGAACGGTATTGCAGATGCCTA -ACGGAACGGTATTGCAGACCACTA -ACGGAACGGTATTGCAGAGGAGTA -ACGGAACGGTATTGCAGATCGTCT -ACGGAACGGTATTGCAGATGCACT -ACGGAACGGTATTGCAGACTGACT -ACGGAACGGTATTGCAGACAACCT -ACGGAACGGTATTGCAGAGCTACT -ACGGAACGGTATTGCAGAGGATCT -ACGGAACGGTATTGCAGAAAGGCT -ACGGAACGGTATTGCAGATCAACC -ACGGAACGGTATTGCAGATGTTCC -ACGGAACGGTATTGCAGAATTCCC -ACGGAACGGTATTGCAGATTCTCG -ACGGAACGGTATTGCAGATAGACG -ACGGAACGGTATTGCAGAGTAACG -ACGGAACGGTATTGCAGAACTTCG -ACGGAACGGTATTGCAGATACGCA -ACGGAACGGTATTGCAGACTTGCA -ACGGAACGGTATTGCAGACGAACA -ACGGAACGGTATTGCAGACAGTCA -ACGGAACGGTATTGCAGAGATCCA -ACGGAACGGTATTGCAGAACGACA -ACGGAACGGTATTGCAGAAGCTCA -ACGGAACGGTATTGCAGATCACGT -ACGGAACGGTATTGCAGACGTAGT -ACGGAACGGTATTGCAGAGTCAGT -ACGGAACGGTATTGCAGAGAAGGT -ACGGAACGGTATTGCAGAAACCGT -ACGGAACGGTATTGCAGATTGTGC -ACGGAACGGTATTGCAGACTAAGC -ACGGAACGGTATTGCAGAACTAGC -ACGGAACGGTATTGCAGAAGATGC -ACGGAACGGTATTGCAGATGAAGG -ACGGAACGGTATTGCAGACAATGG -ACGGAACGGTATTGCAGAATGAGG -ACGGAACGGTATTGCAGAAATGGG -ACGGAACGGTATTGCAGATCCTGA -ACGGAACGGTATTGCAGATAGCGA -ACGGAACGGTATTGCAGACACAGA -ACGGAACGGTATTGCAGAGCAAGA -ACGGAACGGTATTGCAGAGGTTGA -ACGGAACGGTATTGCAGATCCGAT -ACGGAACGGTATTGCAGATGGCAT -ACGGAACGGTATTGCAGACGAGAT -ACGGAACGGTATTGCAGATACCAC -ACGGAACGGTATTGCAGACAGAAC -ACGGAACGGTATTGCAGAGTCTAC -ACGGAACGGTATTGCAGAACGTAC -ACGGAACGGTATTGCAGAAGTGAC -ACGGAACGGTATTGCAGACTGTAG -ACGGAACGGTATTGCAGACCTAAG -ACGGAACGGTATTGCAGAGTTCAG -ACGGAACGGTATTGCAGAGCATAG -ACGGAACGGTATTGCAGAGACAAG -ACGGAACGGTATTGCAGAAAGCAG -ACGGAACGGTATTGCAGACGTCAA -ACGGAACGGTATTGCAGAGCTGAA -ACGGAACGGTATTGCAGAAGTACG -ACGGAACGGTATTGCAGAATCCGA -ACGGAACGGTATTGCAGAATGGGA -ACGGAACGGTATTGCAGAGTGCAA -ACGGAACGGTATTGCAGAGAGGAA -ACGGAACGGTATTGCAGACAGGTA -ACGGAACGGTATTGCAGAGACTCT -ACGGAACGGTATTGCAGAAGTCCT -ACGGAACGGTATTGCAGATAAGCC -ACGGAACGGTATTGCAGAATAGCC -ACGGAACGGTATTGCAGATAACCG -ACGGAACGGTATTGCAGAATGCCA -ACGGAACGGTATAGGTGAGGAAAC -ACGGAACGGTATAGGTGAAACACC -ACGGAACGGTATAGGTGAATCGAG -ACGGAACGGTATAGGTGACTCCTT -ACGGAACGGTATAGGTGACCTGTT -ACGGAACGGTATAGGTGACGGTTT -ACGGAACGGTATAGGTGAGTGGTT -ACGGAACGGTATAGGTGAGCCTTT -ACGGAACGGTATAGGTGAGGTCTT -ACGGAACGGTATAGGTGAACGCTT -ACGGAACGGTATAGGTGAAGCGTT -ACGGAACGGTATAGGTGATTCGTC -ACGGAACGGTATAGGTGATCTCTC -ACGGAACGGTATAGGTGATGGATC -ACGGAACGGTATAGGTGACACTTC -ACGGAACGGTATAGGTGAGTACTC -ACGGAACGGTATAGGTGAGATGTC -ACGGAACGGTATAGGTGAACAGTC -ACGGAACGGTATAGGTGATTGCTG -ACGGAACGGTATAGGTGATCCATG -ACGGAACGGTATAGGTGATGTGTG -ACGGAACGGTATAGGTGACTAGTG -ACGGAACGGTATAGGTGACATCTG -ACGGAACGGTATAGGTGAGAGTTG -ACGGAACGGTATAGGTGAAGACTG -ACGGAACGGTATAGGTGATCGGTA -ACGGAACGGTATAGGTGATGCCTA -ACGGAACGGTATAGGTGACCACTA -ACGGAACGGTATAGGTGAGGAGTA -ACGGAACGGTATAGGTGATCGTCT -ACGGAACGGTATAGGTGATGCACT -ACGGAACGGTATAGGTGACTGACT -ACGGAACGGTATAGGTGACAACCT -ACGGAACGGTATAGGTGAGCTACT -ACGGAACGGTATAGGTGAGGATCT -ACGGAACGGTATAGGTGAAAGGCT -ACGGAACGGTATAGGTGATCAACC -ACGGAACGGTATAGGTGATGTTCC -ACGGAACGGTATAGGTGAATTCCC -ACGGAACGGTATAGGTGATTCTCG -ACGGAACGGTATAGGTGATAGACG -ACGGAACGGTATAGGTGAGTAACG -ACGGAACGGTATAGGTGAACTTCG -ACGGAACGGTATAGGTGATACGCA -ACGGAACGGTATAGGTGACTTGCA -ACGGAACGGTATAGGTGACGAACA -ACGGAACGGTATAGGTGACAGTCA -ACGGAACGGTATAGGTGAGATCCA -ACGGAACGGTATAGGTGAACGACA -ACGGAACGGTATAGGTGAAGCTCA -ACGGAACGGTATAGGTGATCACGT -ACGGAACGGTATAGGTGACGTAGT -ACGGAACGGTATAGGTGAGTCAGT -ACGGAACGGTATAGGTGAGAAGGT -ACGGAACGGTATAGGTGAAACCGT -ACGGAACGGTATAGGTGATTGTGC -ACGGAACGGTATAGGTGACTAAGC -ACGGAACGGTATAGGTGAACTAGC -ACGGAACGGTATAGGTGAAGATGC -ACGGAACGGTATAGGTGATGAAGG -ACGGAACGGTATAGGTGACAATGG -ACGGAACGGTATAGGTGAATGAGG -ACGGAACGGTATAGGTGAAATGGG -ACGGAACGGTATAGGTGATCCTGA -ACGGAACGGTATAGGTGATAGCGA -ACGGAACGGTATAGGTGACACAGA -ACGGAACGGTATAGGTGAGCAAGA -ACGGAACGGTATAGGTGAGGTTGA -ACGGAACGGTATAGGTGATCCGAT -ACGGAACGGTATAGGTGATGGCAT -ACGGAACGGTATAGGTGACGAGAT -ACGGAACGGTATAGGTGATACCAC -ACGGAACGGTATAGGTGACAGAAC -ACGGAACGGTATAGGTGAGTCTAC -ACGGAACGGTATAGGTGAACGTAC -ACGGAACGGTATAGGTGAAGTGAC -ACGGAACGGTATAGGTGACTGTAG -ACGGAACGGTATAGGTGACCTAAG -ACGGAACGGTATAGGTGAGTTCAG -ACGGAACGGTATAGGTGAGCATAG -ACGGAACGGTATAGGTGAGACAAG -ACGGAACGGTATAGGTGAAAGCAG -ACGGAACGGTATAGGTGACGTCAA -ACGGAACGGTATAGGTGAGCTGAA -ACGGAACGGTATAGGTGAAGTACG -ACGGAACGGTATAGGTGAATCCGA -ACGGAACGGTATAGGTGAATGGGA -ACGGAACGGTATAGGTGAGTGCAA -ACGGAACGGTATAGGTGAGAGGAA -ACGGAACGGTATAGGTGACAGGTA -ACGGAACGGTATAGGTGAGACTCT -ACGGAACGGTATAGGTGAAGTCCT -ACGGAACGGTATAGGTGATAAGCC -ACGGAACGGTATAGGTGAATAGCC -ACGGAACGGTATAGGTGATAACCG -ACGGAACGGTATAGGTGAATGCCA -ACGGAACGGTATTGGCAAGGAAAC -ACGGAACGGTATTGGCAAAACACC -ACGGAACGGTATTGGCAAATCGAG -ACGGAACGGTATTGGCAACTCCTT -ACGGAACGGTATTGGCAACCTGTT -ACGGAACGGTATTGGCAACGGTTT -ACGGAACGGTATTGGCAAGTGGTT -ACGGAACGGTATTGGCAAGCCTTT -ACGGAACGGTATTGGCAAGGTCTT -ACGGAACGGTATTGGCAAACGCTT -ACGGAACGGTATTGGCAAAGCGTT -ACGGAACGGTATTGGCAATTCGTC -ACGGAACGGTATTGGCAATCTCTC -ACGGAACGGTATTGGCAATGGATC -ACGGAACGGTATTGGCAACACTTC -ACGGAACGGTATTGGCAAGTACTC -ACGGAACGGTATTGGCAAGATGTC -ACGGAACGGTATTGGCAAACAGTC -ACGGAACGGTATTGGCAATTGCTG -ACGGAACGGTATTGGCAATCCATG -ACGGAACGGTATTGGCAATGTGTG -ACGGAACGGTATTGGCAACTAGTG -ACGGAACGGTATTGGCAACATCTG -ACGGAACGGTATTGGCAAGAGTTG -ACGGAACGGTATTGGCAAAGACTG -ACGGAACGGTATTGGCAATCGGTA -ACGGAACGGTATTGGCAATGCCTA -ACGGAACGGTATTGGCAACCACTA -ACGGAACGGTATTGGCAAGGAGTA -ACGGAACGGTATTGGCAATCGTCT -ACGGAACGGTATTGGCAATGCACT -ACGGAACGGTATTGGCAACTGACT -ACGGAACGGTATTGGCAACAACCT -ACGGAACGGTATTGGCAAGCTACT -ACGGAACGGTATTGGCAAGGATCT -ACGGAACGGTATTGGCAAAAGGCT -ACGGAACGGTATTGGCAATCAACC -ACGGAACGGTATTGGCAATGTTCC -ACGGAACGGTATTGGCAAATTCCC -ACGGAACGGTATTGGCAATTCTCG -ACGGAACGGTATTGGCAATAGACG -ACGGAACGGTATTGGCAAGTAACG -ACGGAACGGTATTGGCAAACTTCG -ACGGAACGGTATTGGCAATACGCA -ACGGAACGGTATTGGCAACTTGCA -ACGGAACGGTATTGGCAACGAACA -ACGGAACGGTATTGGCAACAGTCA -ACGGAACGGTATTGGCAAGATCCA -ACGGAACGGTATTGGCAAACGACA -ACGGAACGGTATTGGCAAAGCTCA -ACGGAACGGTATTGGCAATCACGT -ACGGAACGGTATTGGCAACGTAGT -ACGGAACGGTATTGGCAAGTCAGT -ACGGAACGGTATTGGCAAGAAGGT -ACGGAACGGTATTGGCAAAACCGT -ACGGAACGGTATTGGCAATTGTGC -ACGGAACGGTATTGGCAACTAAGC -ACGGAACGGTATTGGCAAACTAGC -ACGGAACGGTATTGGCAAAGATGC -ACGGAACGGTATTGGCAATGAAGG -ACGGAACGGTATTGGCAACAATGG -ACGGAACGGTATTGGCAAATGAGG -ACGGAACGGTATTGGCAAAATGGG -ACGGAACGGTATTGGCAATCCTGA -ACGGAACGGTATTGGCAATAGCGA -ACGGAACGGTATTGGCAACACAGA -ACGGAACGGTATTGGCAAGCAAGA -ACGGAACGGTATTGGCAAGGTTGA -ACGGAACGGTATTGGCAATCCGAT -ACGGAACGGTATTGGCAATGGCAT -ACGGAACGGTATTGGCAACGAGAT -ACGGAACGGTATTGGCAATACCAC -ACGGAACGGTATTGGCAACAGAAC -ACGGAACGGTATTGGCAAGTCTAC -ACGGAACGGTATTGGCAAACGTAC -ACGGAACGGTATTGGCAAAGTGAC -ACGGAACGGTATTGGCAACTGTAG -ACGGAACGGTATTGGCAACCTAAG -ACGGAACGGTATTGGCAAGTTCAG -ACGGAACGGTATTGGCAAGCATAG -ACGGAACGGTATTGGCAAGACAAG -ACGGAACGGTATTGGCAAAAGCAG -ACGGAACGGTATTGGCAACGTCAA -ACGGAACGGTATTGGCAAGCTGAA -ACGGAACGGTATTGGCAAAGTACG -ACGGAACGGTATTGGCAAATCCGA -ACGGAACGGTATTGGCAAATGGGA -ACGGAACGGTATTGGCAAGTGCAA -ACGGAACGGTATTGGCAAGAGGAA -ACGGAACGGTATTGGCAACAGGTA -ACGGAACGGTATTGGCAAGACTCT -ACGGAACGGTATTGGCAAAGTCCT -ACGGAACGGTATTGGCAATAAGCC -ACGGAACGGTATTGGCAAATAGCC -ACGGAACGGTATTGGCAATAACCG -ACGGAACGGTATTGGCAAATGCCA -ACGGAACGGTATAGGATGGGAAAC -ACGGAACGGTATAGGATGAACACC -ACGGAACGGTATAGGATGATCGAG -ACGGAACGGTATAGGATGCTCCTT -ACGGAACGGTATAGGATGCCTGTT -ACGGAACGGTATAGGATGCGGTTT -ACGGAACGGTATAGGATGGTGGTT -ACGGAACGGTATAGGATGGCCTTT -ACGGAACGGTATAGGATGGGTCTT -ACGGAACGGTATAGGATGACGCTT -ACGGAACGGTATAGGATGAGCGTT -ACGGAACGGTATAGGATGTTCGTC -ACGGAACGGTATAGGATGTCTCTC -ACGGAACGGTATAGGATGTGGATC -ACGGAACGGTATAGGATGCACTTC -ACGGAACGGTATAGGATGGTACTC -ACGGAACGGTATAGGATGGATGTC -ACGGAACGGTATAGGATGACAGTC -ACGGAACGGTATAGGATGTTGCTG -ACGGAACGGTATAGGATGTCCATG -ACGGAACGGTATAGGATGTGTGTG -ACGGAACGGTATAGGATGCTAGTG -ACGGAACGGTATAGGATGCATCTG -ACGGAACGGTATAGGATGGAGTTG -ACGGAACGGTATAGGATGAGACTG -ACGGAACGGTATAGGATGTCGGTA -ACGGAACGGTATAGGATGTGCCTA -ACGGAACGGTATAGGATGCCACTA -ACGGAACGGTATAGGATGGGAGTA -ACGGAACGGTATAGGATGTCGTCT -ACGGAACGGTATAGGATGTGCACT -ACGGAACGGTATAGGATGCTGACT -ACGGAACGGTATAGGATGCAACCT -ACGGAACGGTATAGGATGGCTACT -ACGGAACGGTATAGGATGGGATCT -ACGGAACGGTATAGGATGAAGGCT -ACGGAACGGTATAGGATGTCAACC -ACGGAACGGTATAGGATGTGTTCC -ACGGAACGGTATAGGATGATTCCC -ACGGAACGGTATAGGATGTTCTCG -ACGGAACGGTATAGGATGTAGACG -ACGGAACGGTATAGGATGGTAACG -ACGGAACGGTATAGGATGACTTCG -ACGGAACGGTATAGGATGTACGCA -ACGGAACGGTATAGGATGCTTGCA -ACGGAACGGTATAGGATGCGAACA -ACGGAACGGTATAGGATGCAGTCA -ACGGAACGGTATAGGATGGATCCA -ACGGAACGGTATAGGATGACGACA -ACGGAACGGTATAGGATGAGCTCA -ACGGAACGGTATAGGATGTCACGT -ACGGAACGGTATAGGATGCGTAGT -ACGGAACGGTATAGGATGGTCAGT -ACGGAACGGTATAGGATGGAAGGT -ACGGAACGGTATAGGATGAACCGT -ACGGAACGGTATAGGATGTTGTGC -ACGGAACGGTATAGGATGCTAAGC -ACGGAACGGTATAGGATGACTAGC -ACGGAACGGTATAGGATGAGATGC -ACGGAACGGTATAGGATGTGAAGG -ACGGAACGGTATAGGATGCAATGG -ACGGAACGGTATAGGATGATGAGG -ACGGAACGGTATAGGATGAATGGG -ACGGAACGGTATAGGATGTCCTGA -ACGGAACGGTATAGGATGTAGCGA -ACGGAACGGTATAGGATGCACAGA -ACGGAACGGTATAGGATGGCAAGA -ACGGAACGGTATAGGATGGGTTGA -ACGGAACGGTATAGGATGTCCGAT -ACGGAACGGTATAGGATGTGGCAT -ACGGAACGGTATAGGATGCGAGAT -ACGGAACGGTATAGGATGTACCAC -ACGGAACGGTATAGGATGCAGAAC -ACGGAACGGTATAGGATGGTCTAC -ACGGAACGGTATAGGATGACGTAC -ACGGAACGGTATAGGATGAGTGAC -ACGGAACGGTATAGGATGCTGTAG -ACGGAACGGTATAGGATGCCTAAG -ACGGAACGGTATAGGATGGTTCAG -ACGGAACGGTATAGGATGGCATAG -ACGGAACGGTATAGGATGGACAAG -ACGGAACGGTATAGGATGAAGCAG -ACGGAACGGTATAGGATGCGTCAA -ACGGAACGGTATAGGATGGCTGAA -ACGGAACGGTATAGGATGAGTACG -ACGGAACGGTATAGGATGATCCGA -ACGGAACGGTATAGGATGATGGGA -ACGGAACGGTATAGGATGGTGCAA -ACGGAACGGTATAGGATGGAGGAA -ACGGAACGGTATAGGATGCAGGTA -ACGGAACGGTATAGGATGGACTCT -ACGGAACGGTATAGGATGAGTCCT -ACGGAACGGTATAGGATGTAAGCC -ACGGAACGGTATAGGATGATAGCC -ACGGAACGGTATAGGATGTAACCG -ACGGAACGGTATAGGATGATGCCA -ACGGAACGGTATGGGAATGGAAAC -ACGGAACGGTATGGGAATAACACC -ACGGAACGGTATGGGAATATCGAG -ACGGAACGGTATGGGAATCTCCTT -ACGGAACGGTATGGGAATCCTGTT -ACGGAACGGTATGGGAATCGGTTT -ACGGAACGGTATGGGAATGTGGTT -ACGGAACGGTATGGGAATGCCTTT -ACGGAACGGTATGGGAATGGTCTT -ACGGAACGGTATGGGAATACGCTT -ACGGAACGGTATGGGAATAGCGTT -ACGGAACGGTATGGGAATTTCGTC -ACGGAACGGTATGGGAATTCTCTC -ACGGAACGGTATGGGAATTGGATC -ACGGAACGGTATGGGAATCACTTC -ACGGAACGGTATGGGAATGTACTC -ACGGAACGGTATGGGAATGATGTC -ACGGAACGGTATGGGAATACAGTC -ACGGAACGGTATGGGAATTTGCTG -ACGGAACGGTATGGGAATTCCATG -ACGGAACGGTATGGGAATTGTGTG -ACGGAACGGTATGGGAATCTAGTG -ACGGAACGGTATGGGAATCATCTG -ACGGAACGGTATGGGAATGAGTTG -ACGGAACGGTATGGGAATAGACTG -ACGGAACGGTATGGGAATTCGGTA -ACGGAACGGTATGGGAATTGCCTA -ACGGAACGGTATGGGAATCCACTA -ACGGAACGGTATGGGAATGGAGTA -ACGGAACGGTATGGGAATTCGTCT -ACGGAACGGTATGGGAATTGCACT -ACGGAACGGTATGGGAATCTGACT -ACGGAACGGTATGGGAATCAACCT -ACGGAACGGTATGGGAATGCTACT -ACGGAACGGTATGGGAATGGATCT -ACGGAACGGTATGGGAATAAGGCT -ACGGAACGGTATGGGAATTCAACC -ACGGAACGGTATGGGAATTGTTCC -ACGGAACGGTATGGGAATATTCCC -ACGGAACGGTATGGGAATTTCTCG -ACGGAACGGTATGGGAATTAGACG -ACGGAACGGTATGGGAATGTAACG -ACGGAACGGTATGGGAATACTTCG -ACGGAACGGTATGGGAATTACGCA -ACGGAACGGTATGGGAATCTTGCA -ACGGAACGGTATGGGAATCGAACA -ACGGAACGGTATGGGAATCAGTCA -ACGGAACGGTATGGGAATGATCCA -ACGGAACGGTATGGGAATACGACA -ACGGAACGGTATGGGAATAGCTCA -ACGGAACGGTATGGGAATTCACGT -ACGGAACGGTATGGGAATCGTAGT -ACGGAACGGTATGGGAATGTCAGT -ACGGAACGGTATGGGAATGAAGGT -ACGGAACGGTATGGGAATAACCGT -ACGGAACGGTATGGGAATTTGTGC -ACGGAACGGTATGGGAATCTAAGC -ACGGAACGGTATGGGAATACTAGC -ACGGAACGGTATGGGAATAGATGC -ACGGAACGGTATGGGAATTGAAGG -ACGGAACGGTATGGGAATCAATGG -ACGGAACGGTATGGGAATATGAGG -ACGGAACGGTATGGGAATAATGGG -ACGGAACGGTATGGGAATTCCTGA -ACGGAACGGTATGGGAATTAGCGA -ACGGAACGGTATGGGAATCACAGA -ACGGAACGGTATGGGAATGCAAGA -ACGGAACGGTATGGGAATGGTTGA -ACGGAACGGTATGGGAATTCCGAT -ACGGAACGGTATGGGAATTGGCAT -ACGGAACGGTATGGGAATCGAGAT -ACGGAACGGTATGGGAATTACCAC -ACGGAACGGTATGGGAATCAGAAC -ACGGAACGGTATGGGAATGTCTAC -ACGGAACGGTATGGGAATACGTAC -ACGGAACGGTATGGGAATAGTGAC -ACGGAACGGTATGGGAATCTGTAG -ACGGAACGGTATGGGAATCCTAAG -ACGGAACGGTATGGGAATGTTCAG -ACGGAACGGTATGGGAATGCATAG -ACGGAACGGTATGGGAATGACAAG -ACGGAACGGTATGGGAATAAGCAG -ACGGAACGGTATGGGAATCGTCAA -ACGGAACGGTATGGGAATGCTGAA -ACGGAACGGTATGGGAATAGTACG -ACGGAACGGTATGGGAATATCCGA -ACGGAACGGTATGGGAATATGGGA -ACGGAACGGTATGGGAATGTGCAA -ACGGAACGGTATGGGAATGAGGAA -ACGGAACGGTATGGGAATCAGGTA -ACGGAACGGTATGGGAATGACTCT -ACGGAACGGTATGGGAATAGTCCT -ACGGAACGGTATGGGAATTAAGCC -ACGGAACGGTATGGGAATATAGCC -ACGGAACGGTATGGGAATTAACCG -ACGGAACGGTATGGGAATATGCCA -ACGGAACGGTATTGATCCGGAAAC -ACGGAACGGTATTGATCCAACACC -ACGGAACGGTATTGATCCATCGAG -ACGGAACGGTATTGATCCCTCCTT -ACGGAACGGTATTGATCCCCTGTT -ACGGAACGGTATTGATCCCGGTTT -ACGGAACGGTATTGATCCGTGGTT -ACGGAACGGTATTGATCCGCCTTT -ACGGAACGGTATTGATCCGGTCTT -ACGGAACGGTATTGATCCACGCTT -ACGGAACGGTATTGATCCAGCGTT -ACGGAACGGTATTGATCCTTCGTC -ACGGAACGGTATTGATCCTCTCTC -ACGGAACGGTATTGATCCTGGATC -ACGGAACGGTATTGATCCCACTTC -ACGGAACGGTATTGATCCGTACTC -ACGGAACGGTATTGATCCGATGTC -ACGGAACGGTATTGATCCACAGTC -ACGGAACGGTATTGATCCTTGCTG -ACGGAACGGTATTGATCCTCCATG -ACGGAACGGTATTGATCCTGTGTG -ACGGAACGGTATTGATCCCTAGTG -ACGGAACGGTATTGATCCCATCTG -ACGGAACGGTATTGATCCGAGTTG -ACGGAACGGTATTGATCCAGACTG -ACGGAACGGTATTGATCCTCGGTA -ACGGAACGGTATTGATCCTGCCTA -ACGGAACGGTATTGATCCCCACTA -ACGGAACGGTATTGATCCGGAGTA -ACGGAACGGTATTGATCCTCGTCT -ACGGAACGGTATTGATCCTGCACT -ACGGAACGGTATTGATCCCTGACT -ACGGAACGGTATTGATCCCAACCT -ACGGAACGGTATTGATCCGCTACT -ACGGAACGGTATTGATCCGGATCT -ACGGAACGGTATTGATCCAAGGCT -ACGGAACGGTATTGATCCTCAACC -ACGGAACGGTATTGATCCTGTTCC -ACGGAACGGTATTGATCCATTCCC -ACGGAACGGTATTGATCCTTCTCG -ACGGAACGGTATTGATCCTAGACG -ACGGAACGGTATTGATCCGTAACG -ACGGAACGGTATTGATCCACTTCG -ACGGAACGGTATTGATCCTACGCA -ACGGAACGGTATTGATCCCTTGCA -ACGGAACGGTATTGATCCCGAACA -ACGGAACGGTATTGATCCCAGTCA -ACGGAACGGTATTGATCCGATCCA -ACGGAACGGTATTGATCCACGACA -ACGGAACGGTATTGATCCAGCTCA -ACGGAACGGTATTGATCCTCACGT -ACGGAACGGTATTGATCCCGTAGT -ACGGAACGGTATTGATCCGTCAGT -ACGGAACGGTATTGATCCGAAGGT -ACGGAACGGTATTGATCCAACCGT -ACGGAACGGTATTGATCCTTGTGC -ACGGAACGGTATTGATCCCTAAGC -ACGGAACGGTATTGATCCACTAGC -ACGGAACGGTATTGATCCAGATGC -ACGGAACGGTATTGATCCTGAAGG -ACGGAACGGTATTGATCCCAATGG -ACGGAACGGTATTGATCCATGAGG -ACGGAACGGTATTGATCCAATGGG -ACGGAACGGTATTGATCCTCCTGA -ACGGAACGGTATTGATCCTAGCGA -ACGGAACGGTATTGATCCCACAGA -ACGGAACGGTATTGATCCGCAAGA -ACGGAACGGTATTGATCCGGTTGA -ACGGAACGGTATTGATCCTCCGAT -ACGGAACGGTATTGATCCTGGCAT -ACGGAACGGTATTGATCCCGAGAT -ACGGAACGGTATTGATCCTACCAC -ACGGAACGGTATTGATCCCAGAAC -ACGGAACGGTATTGATCCGTCTAC -ACGGAACGGTATTGATCCACGTAC -ACGGAACGGTATTGATCCAGTGAC -ACGGAACGGTATTGATCCCTGTAG -ACGGAACGGTATTGATCCCCTAAG -ACGGAACGGTATTGATCCGTTCAG -ACGGAACGGTATTGATCCGCATAG -ACGGAACGGTATTGATCCGACAAG -ACGGAACGGTATTGATCCAAGCAG -ACGGAACGGTATTGATCCCGTCAA -ACGGAACGGTATTGATCCGCTGAA -ACGGAACGGTATTGATCCAGTACG -ACGGAACGGTATTGATCCATCCGA -ACGGAACGGTATTGATCCATGGGA -ACGGAACGGTATTGATCCGTGCAA -ACGGAACGGTATTGATCCGAGGAA -ACGGAACGGTATTGATCCCAGGTA -ACGGAACGGTATTGATCCGACTCT -ACGGAACGGTATTGATCCAGTCCT -ACGGAACGGTATTGATCCTAAGCC -ACGGAACGGTATTGATCCATAGCC -ACGGAACGGTATTGATCCTAACCG -ACGGAACGGTATTGATCCATGCCA -ACGGAACGGTATCGATAGGGAAAC -ACGGAACGGTATCGATAGAACACC -ACGGAACGGTATCGATAGATCGAG -ACGGAACGGTATCGATAGCTCCTT -ACGGAACGGTATCGATAGCCTGTT -ACGGAACGGTATCGATAGCGGTTT -ACGGAACGGTATCGATAGGTGGTT -ACGGAACGGTATCGATAGGCCTTT -ACGGAACGGTATCGATAGGGTCTT -ACGGAACGGTATCGATAGACGCTT -ACGGAACGGTATCGATAGAGCGTT -ACGGAACGGTATCGATAGTTCGTC -ACGGAACGGTATCGATAGTCTCTC -ACGGAACGGTATCGATAGTGGATC -ACGGAACGGTATCGATAGCACTTC -ACGGAACGGTATCGATAGGTACTC -ACGGAACGGTATCGATAGGATGTC -ACGGAACGGTATCGATAGACAGTC -ACGGAACGGTATCGATAGTTGCTG -ACGGAACGGTATCGATAGTCCATG -ACGGAACGGTATCGATAGTGTGTG -ACGGAACGGTATCGATAGCTAGTG -ACGGAACGGTATCGATAGCATCTG -ACGGAACGGTATCGATAGGAGTTG -ACGGAACGGTATCGATAGAGACTG -ACGGAACGGTATCGATAGTCGGTA -ACGGAACGGTATCGATAGTGCCTA -ACGGAACGGTATCGATAGCCACTA -ACGGAACGGTATCGATAGGGAGTA -ACGGAACGGTATCGATAGTCGTCT -ACGGAACGGTATCGATAGTGCACT -ACGGAACGGTATCGATAGCTGACT -ACGGAACGGTATCGATAGCAACCT -ACGGAACGGTATCGATAGGCTACT -ACGGAACGGTATCGATAGGGATCT -ACGGAACGGTATCGATAGAAGGCT -ACGGAACGGTATCGATAGTCAACC -ACGGAACGGTATCGATAGTGTTCC -ACGGAACGGTATCGATAGATTCCC -ACGGAACGGTATCGATAGTTCTCG -ACGGAACGGTATCGATAGTAGACG -ACGGAACGGTATCGATAGGTAACG -ACGGAACGGTATCGATAGACTTCG -ACGGAACGGTATCGATAGTACGCA -ACGGAACGGTATCGATAGCTTGCA -ACGGAACGGTATCGATAGCGAACA -ACGGAACGGTATCGATAGCAGTCA -ACGGAACGGTATCGATAGGATCCA -ACGGAACGGTATCGATAGACGACA -ACGGAACGGTATCGATAGAGCTCA -ACGGAACGGTATCGATAGTCACGT -ACGGAACGGTATCGATAGCGTAGT -ACGGAACGGTATCGATAGGTCAGT -ACGGAACGGTATCGATAGGAAGGT -ACGGAACGGTATCGATAGAACCGT -ACGGAACGGTATCGATAGTTGTGC -ACGGAACGGTATCGATAGCTAAGC -ACGGAACGGTATCGATAGACTAGC -ACGGAACGGTATCGATAGAGATGC -ACGGAACGGTATCGATAGTGAAGG -ACGGAACGGTATCGATAGCAATGG -ACGGAACGGTATCGATAGATGAGG -ACGGAACGGTATCGATAGAATGGG -ACGGAACGGTATCGATAGTCCTGA -ACGGAACGGTATCGATAGTAGCGA -ACGGAACGGTATCGATAGCACAGA -ACGGAACGGTATCGATAGGCAAGA -ACGGAACGGTATCGATAGGGTTGA -ACGGAACGGTATCGATAGTCCGAT -ACGGAACGGTATCGATAGTGGCAT -ACGGAACGGTATCGATAGCGAGAT -ACGGAACGGTATCGATAGTACCAC -ACGGAACGGTATCGATAGCAGAAC -ACGGAACGGTATCGATAGGTCTAC -ACGGAACGGTATCGATAGACGTAC -ACGGAACGGTATCGATAGAGTGAC -ACGGAACGGTATCGATAGCTGTAG -ACGGAACGGTATCGATAGCCTAAG -ACGGAACGGTATCGATAGGTTCAG -ACGGAACGGTATCGATAGGCATAG -ACGGAACGGTATCGATAGGACAAG -ACGGAACGGTATCGATAGAAGCAG -ACGGAACGGTATCGATAGCGTCAA -ACGGAACGGTATCGATAGGCTGAA -ACGGAACGGTATCGATAGAGTACG -ACGGAACGGTATCGATAGATCCGA -ACGGAACGGTATCGATAGATGGGA -ACGGAACGGTATCGATAGGTGCAA -ACGGAACGGTATCGATAGGAGGAA -ACGGAACGGTATCGATAGCAGGTA -ACGGAACGGTATCGATAGGACTCT -ACGGAACGGTATCGATAGAGTCCT -ACGGAACGGTATCGATAGTAAGCC -ACGGAACGGTATCGATAGATAGCC -ACGGAACGGTATCGATAGTAACCG -ACGGAACGGTATCGATAGATGCCA -ACGGAACGGTATAGACACGGAAAC -ACGGAACGGTATAGACACAACACC -ACGGAACGGTATAGACACATCGAG -ACGGAACGGTATAGACACCTCCTT -ACGGAACGGTATAGACACCCTGTT -ACGGAACGGTATAGACACCGGTTT -ACGGAACGGTATAGACACGTGGTT -ACGGAACGGTATAGACACGCCTTT -ACGGAACGGTATAGACACGGTCTT -ACGGAACGGTATAGACACACGCTT -ACGGAACGGTATAGACACAGCGTT -ACGGAACGGTATAGACACTTCGTC -ACGGAACGGTATAGACACTCTCTC -ACGGAACGGTATAGACACTGGATC -ACGGAACGGTATAGACACCACTTC -ACGGAACGGTATAGACACGTACTC -ACGGAACGGTATAGACACGATGTC -ACGGAACGGTATAGACACACAGTC -ACGGAACGGTATAGACACTTGCTG -ACGGAACGGTATAGACACTCCATG -ACGGAACGGTATAGACACTGTGTG -ACGGAACGGTATAGACACCTAGTG -ACGGAACGGTATAGACACCATCTG -ACGGAACGGTATAGACACGAGTTG -ACGGAACGGTATAGACACAGACTG -ACGGAACGGTATAGACACTCGGTA -ACGGAACGGTATAGACACTGCCTA -ACGGAACGGTATAGACACCCACTA -ACGGAACGGTATAGACACGGAGTA -ACGGAACGGTATAGACACTCGTCT -ACGGAACGGTATAGACACTGCACT -ACGGAACGGTATAGACACCTGACT -ACGGAACGGTATAGACACCAACCT -ACGGAACGGTATAGACACGCTACT -ACGGAACGGTATAGACACGGATCT -ACGGAACGGTATAGACACAAGGCT -ACGGAACGGTATAGACACTCAACC -ACGGAACGGTATAGACACTGTTCC -ACGGAACGGTATAGACACATTCCC -ACGGAACGGTATAGACACTTCTCG -ACGGAACGGTATAGACACTAGACG -ACGGAACGGTATAGACACGTAACG -ACGGAACGGTATAGACACACTTCG -ACGGAACGGTATAGACACTACGCA -ACGGAACGGTATAGACACCTTGCA -ACGGAACGGTATAGACACCGAACA -ACGGAACGGTATAGACACCAGTCA -ACGGAACGGTATAGACACGATCCA -ACGGAACGGTATAGACACACGACA -ACGGAACGGTATAGACACAGCTCA -ACGGAACGGTATAGACACTCACGT -ACGGAACGGTATAGACACCGTAGT -ACGGAACGGTATAGACACGTCAGT -ACGGAACGGTATAGACACGAAGGT -ACGGAACGGTATAGACACAACCGT -ACGGAACGGTATAGACACTTGTGC -ACGGAACGGTATAGACACCTAAGC -ACGGAACGGTATAGACACACTAGC -ACGGAACGGTATAGACACAGATGC -ACGGAACGGTATAGACACTGAAGG -ACGGAACGGTATAGACACCAATGG -ACGGAACGGTATAGACACATGAGG -ACGGAACGGTATAGACACAATGGG -ACGGAACGGTATAGACACTCCTGA -ACGGAACGGTATAGACACTAGCGA -ACGGAACGGTATAGACACCACAGA -ACGGAACGGTATAGACACGCAAGA -ACGGAACGGTATAGACACGGTTGA -ACGGAACGGTATAGACACTCCGAT -ACGGAACGGTATAGACACTGGCAT -ACGGAACGGTATAGACACCGAGAT -ACGGAACGGTATAGACACTACCAC -ACGGAACGGTATAGACACCAGAAC -ACGGAACGGTATAGACACGTCTAC -ACGGAACGGTATAGACACACGTAC -ACGGAACGGTATAGACACAGTGAC -ACGGAACGGTATAGACACCTGTAG -ACGGAACGGTATAGACACCCTAAG -ACGGAACGGTATAGACACGTTCAG -ACGGAACGGTATAGACACGCATAG -ACGGAACGGTATAGACACGACAAG -ACGGAACGGTATAGACACAAGCAG -ACGGAACGGTATAGACACCGTCAA -ACGGAACGGTATAGACACGCTGAA -ACGGAACGGTATAGACACAGTACG -ACGGAACGGTATAGACACATCCGA -ACGGAACGGTATAGACACATGGGA -ACGGAACGGTATAGACACGTGCAA -ACGGAACGGTATAGACACGAGGAA -ACGGAACGGTATAGACACCAGGTA -ACGGAACGGTATAGACACGACTCT -ACGGAACGGTATAGACACAGTCCT -ACGGAACGGTATAGACACTAAGCC -ACGGAACGGTATAGACACATAGCC -ACGGAACGGTATAGACACTAACCG -ACGGAACGGTATAGACACATGCCA -ACGGAACGGTATAGAGCAGGAAAC -ACGGAACGGTATAGAGCAAACACC -ACGGAACGGTATAGAGCAATCGAG -ACGGAACGGTATAGAGCACTCCTT -ACGGAACGGTATAGAGCACCTGTT -ACGGAACGGTATAGAGCACGGTTT -ACGGAACGGTATAGAGCAGTGGTT -ACGGAACGGTATAGAGCAGCCTTT -ACGGAACGGTATAGAGCAGGTCTT -ACGGAACGGTATAGAGCAACGCTT -ACGGAACGGTATAGAGCAAGCGTT -ACGGAACGGTATAGAGCATTCGTC -ACGGAACGGTATAGAGCATCTCTC -ACGGAACGGTATAGAGCATGGATC -ACGGAACGGTATAGAGCACACTTC -ACGGAACGGTATAGAGCAGTACTC -ACGGAACGGTATAGAGCAGATGTC -ACGGAACGGTATAGAGCAACAGTC -ACGGAACGGTATAGAGCATTGCTG -ACGGAACGGTATAGAGCATCCATG -ACGGAACGGTATAGAGCATGTGTG -ACGGAACGGTATAGAGCACTAGTG -ACGGAACGGTATAGAGCACATCTG -ACGGAACGGTATAGAGCAGAGTTG -ACGGAACGGTATAGAGCAAGACTG -ACGGAACGGTATAGAGCATCGGTA -ACGGAACGGTATAGAGCATGCCTA -ACGGAACGGTATAGAGCACCACTA -ACGGAACGGTATAGAGCAGGAGTA -ACGGAACGGTATAGAGCATCGTCT -ACGGAACGGTATAGAGCATGCACT -ACGGAACGGTATAGAGCACTGACT -ACGGAACGGTATAGAGCACAACCT -ACGGAACGGTATAGAGCAGCTACT -ACGGAACGGTATAGAGCAGGATCT -ACGGAACGGTATAGAGCAAAGGCT -ACGGAACGGTATAGAGCATCAACC -ACGGAACGGTATAGAGCATGTTCC -ACGGAACGGTATAGAGCAATTCCC -ACGGAACGGTATAGAGCATTCTCG -ACGGAACGGTATAGAGCATAGACG -ACGGAACGGTATAGAGCAGTAACG -ACGGAACGGTATAGAGCAACTTCG -ACGGAACGGTATAGAGCATACGCA -ACGGAACGGTATAGAGCACTTGCA -ACGGAACGGTATAGAGCACGAACA -ACGGAACGGTATAGAGCACAGTCA -ACGGAACGGTATAGAGCAGATCCA -ACGGAACGGTATAGAGCAACGACA -ACGGAACGGTATAGAGCAAGCTCA -ACGGAACGGTATAGAGCATCACGT -ACGGAACGGTATAGAGCACGTAGT -ACGGAACGGTATAGAGCAGTCAGT -ACGGAACGGTATAGAGCAGAAGGT -ACGGAACGGTATAGAGCAAACCGT -ACGGAACGGTATAGAGCATTGTGC -ACGGAACGGTATAGAGCACTAAGC -ACGGAACGGTATAGAGCAACTAGC -ACGGAACGGTATAGAGCAAGATGC -ACGGAACGGTATAGAGCATGAAGG -ACGGAACGGTATAGAGCACAATGG -ACGGAACGGTATAGAGCAATGAGG -ACGGAACGGTATAGAGCAAATGGG -ACGGAACGGTATAGAGCATCCTGA -ACGGAACGGTATAGAGCATAGCGA -ACGGAACGGTATAGAGCACACAGA -ACGGAACGGTATAGAGCAGCAAGA -ACGGAACGGTATAGAGCAGGTTGA -ACGGAACGGTATAGAGCATCCGAT -ACGGAACGGTATAGAGCATGGCAT -ACGGAACGGTATAGAGCACGAGAT -ACGGAACGGTATAGAGCATACCAC -ACGGAACGGTATAGAGCACAGAAC -ACGGAACGGTATAGAGCAGTCTAC -ACGGAACGGTATAGAGCAACGTAC -ACGGAACGGTATAGAGCAAGTGAC -ACGGAACGGTATAGAGCACTGTAG -ACGGAACGGTATAGAGCACCTAAG -ACGGAACGGTATAGAGCAGTTCAG -ACGGAACGGTATAGAGCAGCATAG -ACGGAACGGTATAGAGCAGACAAG -ACGGAACGGTATAGAGCAAAGCAG -ACGGAACGGTATAGAGCACGTCAA -ACGGAACGGTATAGAGCAGCTGAA -ACGGAACGGTATAGAGCAAGTACG -ACGGAACGGTATAGAGCAATCCGA -ACGGAACGGTATAGAGCAATGGGA -ACGGAACGGTATAGAGCAGTGCAA -ACGGAACGGTATAGAGCAGAGGAA -ACGGAACGGTATAGAGCACAGGTA -ACGGAACGGTATAGAGCAGACTCT -ACGGAACGGTATAGAGCAAGTCCT -ACGGAACGGTATAGAGCATAAGCC -ACGGAACGGTATAGAGCAATAGCC -ACGGAACGGTATAGAGCATAACCG -ACGGAACGGTATAGAGCAATGCCA -ACGGAACGGTATTGAGGTGGAAAC -ACGGAACGGTATTGAGGTAACACC -ACGGAACGGTATTGAGGTATCGAG -ACGGAACGGTATTGAGGTCTCCTT -ACGGAACGGTATTGAGGTCCTGTT -ACGGAACGGTATTGAGGTCGGTTT -ACGGAACGGTATTGAGGTGTGGTT -ACGGAACGGTATTGAGGTGCCTTT -ACGGAACGGTATTGAGGTGGTCTT -ACGGAACGGTATTGAGGTACGCTT -ACGGAACGGTATTGAGGTAGCGTT -ACGGAACGGTATTGAGGTTTCGTC -ACGGAACGGTATTGAGGTTCTCTC -ACGGAACGGTATTGAGGTTGGATC -ACGGAACGGTATTGAGGTCACTTC -ACGGAACGGTATTGAGGTGTACTC -ACGGAACGGTATTGAGGTGATGTC -ACGGAACGGTATTGAGGTACAGTC -ACGGAACGGTATTGAGGTTTGCTG -ACGGAACGGTATTGAGGTTCCATG -ACGGAACGGTATTGAGGTTGTGTG -ACGGAACGGTATTGAGGTCTAGTG -ACGGAACGGTATTGAGGTCATCTG -ACGGAACGGTATTGAGGTGAGTTG -ACGGAACGGTATTGAGGTAGACTG -ACGGAACGGTATTGAGGTTCGGTA -ACGGAACGGTATTGAGGTTGCCTA -ACGGAACGGTATTGAGGTCCACTA -ACGGAACGGTATTGAGGTGGAGTA -ACGGAACGGTATTGAGGTTCGTCT -ACGGAACGGTATTGAGGTTGCACT -ACGGAACGGTATTGAGGTCTGACT -ACGGAACGGTATTGAGGTCAACCT -ACGGAACGGTATTGAGGTGCTACT -ACGGAACGGTATTGAGGTGGATCT -ACGGAACGGTATTGAGGTAAGGCT -ACGGAACGGTATTGAGGTTCAACC -ACGGAACGGTATTGAGGTTGTTCC -ACGGAACGGTATTGAGGTATTCCC -ACGGAACGGTATTGAGGTTTCTCG -ACGGAACGGTATTGAGGTTAGACG -ACGGAACGGTATTGAGGTGTAACG -ACGGAACGGTATTGAGGTACTTCG -ACGGAACGGTATTGAGGTTACGCA -ACGGAACGGTATTGAGGTCTTGCA -ACGGAACGGTATTGAGGTCGAACA -ACGGAACGGTATTGAGGTCAGTCA -ACGGAACGGTATTGAGGTGATCCA -ACGGAACGGTATTGAGGTACGACA -ACGGAACGGTATTGAGGTAGCTCA -ACGGAACGGTATTGAGGTTCACGT -ACGGAACGGTATTGAGGTCGTAGT -ACGGAACGGTATTGAGGTGTCAGT -ACGGAACGGTATTGAGGTGAAGGT -ACGGAACGGTATTGAGGTAACCGT -ACGGAACGGTATTGAGGTTTGTGC -ACGGAACGGTATTGAGGTCTAAGC -ACGGAACGGTATTGAGGTACTAGC -ACGGAACGGTATTGAGGTAGATGC -ACGGAACGGTATTGAGGTTGAAGG -ACGGAACGGTATTGAGGTCAATGG -ACGGAACGGTATTGAGGTATGAGG -ACGGAACGGTATTGAGGTAATGGG -ACGGAACGGTATTGAGGTTCCTGA -ACGGAACGGTATTGAGGTTAGCGA -ACGGAACGGTATTGAGGTCACAGA -ACGGAACGGTATTGAGGTGCAAGA -ACGGAACGGTATTGAGGTGGTTGA -ACGGAACGGTATTGAGGTTCCGAT -ACGGAACGGTATTGAGGTTGGCAT -ACGGAACGGTATTGAGGTCGAGAT -ACGGAACGGTATTGAGGTTACCAC -ACGGAACGGTATTGAGGTCAGAAC -ACGGAACGGTATTGAGGTGTCTAC -ACGGAACGGTATTGAGGTACGTAC -ACGGAACGGTATTGAGGTAGTGAC -ACGGAACGGTATTGAGGTCTGTAG -ACGGAACGGTATTGAGGTCCTAAG -ACGGAACGGTATTGAGGTGTTCAG -ACGGAACGGTATTGAGGTGCATAG -ACGGAACGGTATTGAGGTGACAAG -ACGGAACGGTATTGAGGTAAGCAG -ACGGAACGGTATTGAGGTCGTCAA -ACGGAACGGTATTGAGGTGCTGAA -ACGGAACGGTATTGAGGTAGTACG -ACGGAACGGTATTGAGGTATCCGA -ACGGAACGGTATTGAGGTATGGGA -ACGGAACGGTATTGAGGTGTGCAA -ACGGAACGGTATTGAGGTGAGGAA -ACGGAACGGTATTGAGGTCAGGTA -ACGGAACGGTATTGAGGTGACTCT -ACGGAACGGTATTGAGGTAGTCCT -ACGGAACGGTATTGAGGTTAAGCC -ACGGAACGGTATTGAGGTATAGCC -ACGGAACGGTATTGAGGTTAACCG -ACGGAACGGTATTGAGGTATGCCA -ACGGAACGGTATGATTCCGGAAAC -ACGGAACGGTATGATTCCAACACC -ACGGAACGGTATGATTCCATCGAG -ACGGAACGGTATGATTCCCTCCTT -ACGGAACGGTATGATTCCCCTGTT -ACGGAACGGTATGATTCCCGGTTT -ACGGAACGGTATGATTCCGTGGTT -ACGGAACGGTATGATTCCGCCTTT -ACGGAACGGTATGATTCCGGTCTT -ACGGAACGGTATGATTCCACGCTT -ACGGAACGGTATGATTCCAGCGTT -ACGGAACGGTATGATTCCTTCGTC -ACGGAACGGTATGATTCCTCTCTC -ACGGAACGGTATGATTCCTGGATC -ACGGAACGGTATGATTCCCACTTC -ACGGAACGGTATGATTCCGTACTC -ACGGAACGGTATGATTCCGATGTC -ACGGAACGGTATGATTCCACAGTC -ACGGAACGGTATGATTCCTTGCTG -ACGGAACGGTATGATTCCTCCATG -ACGGAACGGTATGATTCCTGTGTG -ACGGAACGGTATGATTCCCTAGTG -ACGGAACGGTATGATTCCCATCTG -ACGGAACGGTATGATTCCGAGTTG -ACGGAACGGTATGATTCCAGACTG -ACGGAACGGTATGATTCCTCGGTA -ACGGAACGGTATGATTCCTGCCTA -ACGGAACGGTATGATTCCCCACTA -ACGGAACGGTATGATTCCGGAGTA -ACGGAACGGTATGATTCCTCGTCT -ACGGAACGGTATGATTCCTGCACT -ACGGAACGGTATGATTCCCTGACT -ACGGAACGGTATGATTCCCAACCT -ACGGAACGGTATGATTCCGCTACT -ACGGAACGGTATGATTCCGGATCT -ACGGAACGGTATGATTCCAAGGCT -ACGGAACGGTATGATTCCTCAACC -ACGGAACGGTATGATTCCTGTTCC -ACGGAACGGTATGATTCCATTCCC -ACGGAACGGTATGATTCCTTCTCG -ACGGAACGGTATGATTCCTAGACG -ACGGAACGGTATGATTCCGTAACG -ACGGAACGGTATGATTCCACTTCG -ACGGAACGGTATGATTCCTACGCA -ACGGAACGGTATGATTCCCTTGCA -ACGGAACGGTATGATTCCCGAACA -ACGGAACGGTATGATTCCCAGTCA -ACGGAACGGTATGATTCCGATCCA -ACGGAACGGTATGATTCCACGACA -ACGGAACGGTATGATTCCAGCTCA -ACGGAACGGTATGATTCCTCACGT -ACGGAACGGTATGATTCCCGTAGT -ACGGAACGGTATGATTCCGTCAGT -ACGGAACGGTATGATTCCGAAGGT -ACGGAACGGTATGATTCCAACCGT -ACGGAACGGTATGATTCCTTGTGC -ACGGAACGGTATGATTCCCTAAGC -ACGGAACGGTATGATTCCACTAGC -ACGGAACGGTATGATTCCAGATGC -ACGGAACGGTATGATTCCTGAAGG -ACGGAACGGTATGATTCCCAATGG -ACGGAACGGTATGATTCCATGAGG -ACGGAACGGTATGATTCCAATGGG -ACGGAACGGTATGATTCCTCCTGA -ACGGAACGGTATGATTCCTAGCGA -ACGGAACGGTATGATTCCCACAGA -ACGGAACGGTATGATTCCGCAAGA -ACGGAACGGTATGATTCCGGTTGA -ACGGAACGGTATGATTCCTCCGAT -ACGGAACGGTATGATTCCTGGCAT -ACGGAACGGTATGATTCCCGAGAT -ACGGAACGGTATGATTCCTACCAC -ACGGAACGGTATGATTCCCAGAAC -ACGGAACGGTATGATTCCGTCTAC -ACGGAACGGTATGATTCCACGTAC -ACGGAACGGTATGATTCCAGTGAC -ACGGAACGGTATGATTCCCTGTAG -ACGGAACGGTATGATTCCCCTAAG -ACGGAACGGTATGATTCCGTTCAG -ACGGAACGGTATGATTCCGCATAG -ACGGAACGGTATGATTCCGACAAG -ACGGAACGGTATGATTCCAAGCAG -ACGGAACGGTATGATTCCCGTCAA -ACGGAACGGTATGATTCCGCTGAA -ACGGAACGGTATGATTCCAGTACG -ACGGAACGGTATGATTCCATCCGA -ACGGAACGGTATGATTCCATGGGA -ACGGAACGGTATGATTCCGTGCAA -ACGGAACGGTATGATTCCGAGGAA -ACGGAACGGTATGATTCCCAGGTA -ACGGAACGGTATGATTCCGACTCT -ACGGAACGGTATGATTCCAGTCCT -ACGGAACGGTATGATTCCTAAGCC -ACGGAACGGTATGATTCCATAGCC -ACGGAACGGTATGATTCCTAACCG -ACGGAACGGTATGATTCCATGCCA -ACGGAACGGTATCATTGGGGAAAC -ACGGAACGGTATCATTGGAACACC -ACGGAACGGTATCATTGGATCGAG -ACGGAACGGTATCATTGGCTCCTT -ACGGAACGGTATCATTGGCCTGTT -ACGGAACGGTATCATTGGCGGTTT -ACGGAACGGTATCATTGGGTGGTT -ACGGAACGGTATCATTGGGCCTTT -ACGGAACGGTATCATTGGGGTCTT -ACGGAACGGTATCATTGGACGCTT -ACGGAACGGTATCATTGGAGCGTT -ACGGAACGGTATCATTGGTTCGTC -ACGGAACGGTATCATTGGTCTCTC -ACGGAACGGTATCATTGGTGGATC -ACGGAACGGTATCATTGGCACTTC -ACGGAACGGTATCATTGGGTACTC -ACGGAACGGTATCATTGGGATGTC -ACGGAACGGTATCATTGGACAGTC -ACGGAACGGTATCATTGGTTGCTG -ACGGAACGGTATCATTGGTCCATG -ACGGAACGGTATCATTGGTGTGTG -ACGGAACGGTATCATTGGCTAGTG -ACGGAACGGTATCATTGGCATCTG -ACGGAACGGTATCATTGGGAGTTG -ACGGAACGGTATCATTGGAGACTG -ACGGAACGGTATCATTGGTCGGTA -ACGGAACGGTATCATTGGTGCCTA -ACGGAACGGTATCATTGGCCACTA -ACGGAACGGTATCATTGGGGAGTA -ACGGAACGGTATCATTGGTCGTCT -ACGGAACGGTATCATTGGTGCACT -ACGGAACGGTATCATTGGCTGACT -ACGGAACGGTATCATTGGCAACCT -ACGGAACGGTATCATTGGGCTACT -ACGGAACGGTATCATTGGGGATCT -ACGGAACGGTATCATTGGAAGGCT -ACGGAACGGTATCATTGGTCAACC -ACGGAACGGTATCATTGGTGTTCC -ACGGAACGGTATCATTGGATTCCC -ACGGAACGGTATCATTGGTTCTCG -ACGGAACGGTATCATTGGTAGACG -ACGGAACGGTATCATTGGGTAACG -ACGGAACGGTATCATTGGACTTCG -ACGGAACGGTATCATTGGTACGCA -ACGGAACGGTATCATTGGCTTGCA -ACGGAACGGTATCATTGGCGAACA -ACGGAACGGTATCATTGGCAGTCA -ACGGAACGGTATCATTGGGATCCA -ACGGAACGGTATCATTGGACGACA -ACGGAACGGTATCATTGGAGCTCA -ACGGAACGGTATCATTGGTCACGT -ACGGAACGGTATCATTGGCGTAGT -ACGGAACGGTATCATTGGGTCAGT -ACGGAACGGTATCATTGGGAAGGT -ACGGAACGGTATCATTGGAACCGT -ACGGAACGGTATCATTGGTTGTGC -ACGGAACGGTATCATTGGCTAAGC -ACGGAACGGTATCATTGGACTAGC -ACGGAACGGTATCATTGGAGATGC -ACGGAACGGTATCATTGGTGAAGG -ACGGAACGGTATCATTGGCAATGG -ACGGAACGGTATCATTGGATGAGG -ACGGAACGGTATCATTGGAATGGG -ACGGAACGGTATCATTGGTCCTGA -ACGGAACGGTATCATTGGTAGCGA -ACGGAACGGTATCATTGGCACAGA -ACGGAACGGTATCATTGGGCAAGA -ACGGAACGGTATCATTGGGGTTGA -ACGGAACGGTATCATTGGTCCGAT -ACGGAACGGTATCATTGGTGGCAT -ACGGAACGGTATCATTGGCGAGAT -ACGGAACGGTATCATTGGTACCAC -ACGGAACGGTATCATTGGCAGAAC -ACGGAACGGTATCATTGGGTCTAC -ACGGAACGGTATCATTGGACGTAC -ACGGAACGGTATCATTGGAGTGAC -ACGGAACGGTATCATTGGCTGTAG -ACGGAACGGTATCATTGGCCTAAG -ACGGAACGGTATCATTGGGTTCAG -ACGGAACGGTATCATTGGGCATAG -ACGGAACGGTATCATTGGGACAAG -ACGGAACGGTATCATTGGAAGCAG -ACGGAACGGTATCATTGGCGTCAA -ACGGAACGGTATCATTGGGCTGAA -ACGGAACGGTATCATTGGAGTACG -ACGGAACGGTATCATTGGATCCGA -ACGGAACGGTATCATTGGATGGGA -ACGGAACGGTATCATTGGGTGCAA -ACGGAACGGTATCATTGGGAGGAA -ACGGAACGGTATCATTGGCAGGTA -ACGGAACGGTATCATTGGGACTCT -ACGGAACGGTATCATTGGAGTCCT -ACGGAACGGTATCATTGGTAAGCC -ACGGAACGGTATCATTGGATAGCC -ACGGAACGGTATCATTGGTAACCG -ACGGAACGGTATCATTGGATGCCA -ACGGAACGGTATGATCGAGGAAAC -ACGGAACGGTATGATCGAAACACC -ACGGAACGGTATGATCGAATCGAG -ACGGAACGGTATGATCGACTCCTT -ACGGAACGGTATGATCGACCTGTT -ACGGAACGGTATGATCGACGGTTT -ACGGAACGGTATGATCGAGTGGTT -ACGGAACGGTATGATCGAGCCTTT -ACGGAACGGTATGATCGAGGTCTT -ACGGAACGGTATGATCGAACGCTT -ACGGAACGGTATGATCGAAGCGTT -ACGGAACGGTATGATCGATTCGTC -ACGGAACGGTATGATCGATCTCTC -ACGGAACGGTATGATCGATGGATC -ACGGAACGGTATGATCGACACTTC -ACGGAACGGTATGATCGAGTACTC -ACGGAACGGTATGATCGAGATGTC -ACGGAACGGTATGATCGAACAGTC -ACGGAACGGTATGATCGATTGCTG -ACGGAACGGTATGATCGATCCATG -ACGGAACGGTATGATCGATGTGTG -ACGGAACGGTATGATCGACTAGTG -ACGGAACGGTATGATCGACATCTG -ACGGAACGGTATGATCGAGAGTTG -ACGGAACGGTATGATCGAAGACTG -ACGGAACGGTATGATCGATCGGTA -ACGGAACGGTATGATCGATGCCTA -ACGGAACGGTATGATCGACCACTA -ACGGAACGGTATGATCGAGGAGTA -ACGGAACGGTATGATCGATCGTCT -ACGGAACGGTATGATCGATGCACT -ACGGAACGGTATGATCGACTGACT -ACGGAACGGTATGATCGACAACCT -ACGGAACGGTATGATCGAGCTACT -ACGGAACGGTATGATCGAGGATCT -ACGGAACGGTATGATCGAAAGGCT -ACGGAACGGTATGATCGATCAACC -ACGGAACGGTATGATCGATGTTCC -ACGGAACGGTATGATCGAATTCCC -ACGGAACGGTATGATCGATTCTCG -ACGGAACGGTATGATCGATAGACG -ACGGAACGGTATGATCGAGTAACG -ACGGAACGGTATGATCGAACTTCG -ACGGAACGGTATGATCGATACGCA -ACGGAACGGTATGATCGACTTGCA -ACGGAACGGTATGATCGACGAACA -ACGGAACGGTATGATCGACAGTCA -ACGGAACGGTATGATCGAGATCCA -ACGGAACGGTATGATCGAACGACA -ACGGAACGGTATGATCGAAGCTCA -ACGGAACGGTATGATCGATCACGT -ACGGAACGGTATGATCGACGTAGT -ACGGAACGGTATGATCGAGTCAGT -ACGGAACGGTATGATCGAGAAGGT -ACGGAACGGTATGATCGAAACCGT -ACGGAACGGTATGATCGATTGTGC -ACGGAACGGTATGATCGACTAAGC -ACGGAACGGTATGATCGAACTAGC -ACGGAACGGTATGATCGAAGATGC -ACGGAACGGTATGATCGATGAAGG -ACGGAACGGTATGATCGACAATGG -ACGGAACGGTATGATCGAATGAGG -ACGGAACGGTATGATCGAAATGGG -ACGGAACGGTATGATCGATCCTGA -ACGGAACGGTATGATCGATAGCGA -ACGGAACGGTATGATCGACACAGA -ACGGAACGGTATGATCGAGCAAGA -ACGGAACGGTATGATCGAGGTTGA -ACGGAACGGTATGATCGATCCGAT -ACGGAACGGTATGATCGATGGCAT -ACGGAACGGTATGATCGACGAGAT -ACGGAACGGTATGATCGATACCAC -ACGGAACGGTATGATCGACAGAAC -ACGGAACGGTATGATCGAGTCTAC -ACGGAACGGTATGATCGAACGTAC -ACGGAACGGTATGATCGAAGTGAC -ACGGAACGGTATGATCGACTGTAG -ACGGAACGGTATGATCGACCTAAG -ACGGAACGGTATGATCGAGTTCAG -ACGGAACGGTATGATCGAGCATAG -ACGGAACGGTATGATCGAGACAAG -ACGGAACGGTATGATCGAAAGCAG -ACGGAACGGTATGATCGACGTCAA -ACGGAACGGTATGATCGAGCTGAA -ACGGAACGGTATGATCGAAGTACG -ACGGAACGGTATGATCGAATCCGA -ACGGAACGGTATGATCGAATGGGA -ACGGAACGGTATGATCGAGTGCAA -ACGGAACGGTATGATCGAGAGGAA -ACGGAACGGTATGATCGACAGGTA -ACGGAACGGTATGATCGAGACTCT -ACGGAACGGTATGATCGAAGTCCT -ACGGAACGGTATGATCGATAAGCC -ACGGAACGGTATGATCGAATAGCC -ACGGAACGGTATGATCGATAACCG -ACGGAACGGTATGATCGAATGCCA -ACGGAACGGTATCACTACGGAAAC -ACGGAACGGTATCACTACAACACC -ACGGAACGGTATCACTACATCGAG -ACGGAACGGTATCACTACCTCCTT -ACGGAACGGTATCACTACCCTGTT -ACGGAACGGTATCACTACCGGTTT -ACGGAACGGTATCACTACGTGGTT -ACGGAACGGTATCACTACGCCTTT -ACGGAACGGTATCACTACGGTCTT -ACGGAACGGTATCACTACACGCTT -ACGGAACGGTATCACTACAGCGTT -ACGGAACGGTATCACTACTTCGTC -ACGGAACGGTATCACTACTCTCTC -ACGGAACGGTATCACTACTGGATC -ACGGAACGGTATCACTACCACTTC -ACGGAACGGTATCACTACGTACTC -ACGGAACGGTATCACTACGATGTC -ACGGAACGGTATCACTACACAGTC -ACGGAACGGTATCACTACTTGCTG -ACGGAACGGTATCACTACTCCATG -ACGGAACGGTATCACTACTGTGTG -ACGGAACGGTATCACTACCTAGTG -ACGGAACGGTATCACTACCATCTG -ACGGAACGGTATCACTACGAGTTG -ACGGAACGGTATCACTACAGACTG -ACGGAACGGTATCACTACTCGGTA -ACGGAACGGTATCACTACTGCCTA -ACGGAACGGTATCACTACCCACTA -ACGGAACGGTATCACTACGGAGTA -ACGGAACGGTATCACTACTCGTCT -ACGGAACGGTATCACTACTGCACT -ACGGAACGGTATCACTACCTGACT -ACGGAACGGTATCACTACCAACCT -ACGGAACGGTATCACTACGCTACT -ACGGAACGGTATCACTACGGATCT -ACGGAACGGTATCACTACAAGGCT -ACGGAACGGTATCACTACTCAACC -ACGGAACGGTATCACTACTGTTCC -ACGGAACGGTATCACTACATTCCC -ACGGAACGGTATCACTACTTCTCG -ACGGAACGGTATCACTACTAGACG -ACGGAACGGTATCACTACGTAACG -ACGGAACGGTATCACTACACTTCG -ACGGAACGGTATCACTACTACGCA -ACGGAACGGTATCACTACCTTGCA -ACGGAACGGTATCACTACCGAACA -ACGGAACGGTATCACTACCAGTCA -ACGGAACGGTATCACTACGATCCA -ACGGAACGGTATCACTACACGACA -ACGGAACGGTATCACTACAGCTCA -ACGGAACGGTATCACTACTCACGT -ACGGAACGGTATCACTACCGTAGT -ACGGAACGGTATCACTACGTCAGT -ACGGAACGGTATCACTACGAAGGT -ACGGAACGGTATCACTACAACCGT -ACGGAACGGTATCACTACTTGTGC -ACGGAACGGTATCACTACCTAAGC -ACGGAACGGTATCACTACACTAGC -ACGGAACGGTATCACTACAGATGC -ACGGAACGGTATCACTACTGAAGG -ACGGAACGGTATCACTACCAATGG -ACGGAACGGTATCACTACATGAGG -ACGGAACGGTATCACTACAATGGG -ACGGAACGGTATCACTACTCCTGA -ACGGAACGGTATCACTACTAGCGA -ACGGAACGGTATCACTACCACAGA -ACGGAACGGTATCACTACGCAAGA -ACGGAACGGTATCACTACGGTTGA -ACGGAACGGTATCACTACTCCGAT -ACGGAACGGTATCACTACTGGCAT -ACGGAACGGTATCACTACCGAGAT -ACGGAACGGTATCACTACTACCAC -ACGGAACGGTATCACTACCAGAAC -ACGGAACGGTATCACTACGTCTAC -ACGGAACGGTATCACTACACGTAC -ACGGAACGGTATCACTACAGTGAC -ACGGAACGGTATCACTACCTGTAG -ACGGAACGGTATCACTACCCTAAG -ACGGAACGGTATCACTACGTTCAG -ACGGAACGGTATCACTACGCATAG -ACGGAACGGTATCACTACGACAAG -ACGGAACGGTATCACTACAAGCAG -ACGGAACGGTATCACTACCGTCAA -ACGGAACGGTATCACTACGCTGAA -ACGGAACGGTATCACTACAGTACG -ACGGAACGGTATCACTACATCCGA -ACGGAACGGTATCACTACATGGGA -ACGGAACGGTATCACTACGTGCAA -ACGGAACGGTATCACTACGAGGAA -ACGGAACGGTATCACTACCAGGTA -ACGGAACGGTATCACTACGACTCT -ACGGAACGGTATCACTACAGTCCT -ACGGAACGGTATCACTACTAAGCC -ACGGAACGGTATCACTACATAGCC -ACGGAACGGTATCACTACTAACCG -ACGGAACGGTATCACTACATGCCA -ACGGAACGGTATAACCAGGGAAAC -ACGGAACGGTATAACCAGAACACC -ACGGAACGGTATAACCAGATCGAG -ACGGAACGGTATAACCAGCTCCTT -ACGGAACGGTATAACCAGCCTGTT -ACGGAACGGTATAACCAGCGGTTT -ACGGAACGGTATAACCAGGTGGTT -ACGGAACGGTATAACCAGGCCTTT -ACGGAACGGTATAACCAGGGTCTT -ACGGAACGGTATAACCAGACGCTT -ACGGAACGGTATAACCAGAGCGTT -ACGGAACGGTATAACCAGTTCGTC -ACGGAACGGTATAACCAGTCTCTC -ACGGAACGGTATAACCAGTGGATC -ACGGAACGGTATAACCAGCACTTC -ACGGAACGGTATAACCAGGTACTC -ACGGAACGGTATAACCAGGATGTC -ACGGAACGGTATAACCAGACAGTC -ACGGAACGGTATAACCAGTTGCTG -ACGGAACGGTATAACCAGTCCATG -ACGGAACGGTATAACCAGTGTGTG -ACGGAACGGTATAACCAGCTAGTG -ACGGAACGGTATAACCAGCATCTG -ACGGAACGGTATAACCAGGAGTTG -ACGGAACGGTATAACCAGAGACTG -ACGGAACGGTATAACCAGTCGGTA -ACGGAACGGTATAACCAGTGCCTA -ACGGAACGGTATAACCAGCCACTA -ACGGAACGGTATAACCAGGGAGTA -ACGGAACGGTATAACCAGTCGTCT -ACGGAACGGTATAACCAGTGCACT -ACGGAACGGTATAACCAGCTGACT -ACGGAACGGTATAACCAGCAACCT -ACGGAACGGTATAACCAGGCTACT -ACGGAACGGTATAACCAGGGATCT -ACGGAACGGTATAACCAGAAGGCT -ACGGAACGGTATAACCAGTCAACC -ACGGAACGGTATAACCAGTGTTCC -ACGGAACGGTATAACCAGATTCCC -ACGGAACGGTATAACCAGTTCTCG -ACGGAACGGTATAACCAGTAGACG -ACGGAACGGTATAACCAGGTAACG -ACGGAACGGTATAACCAGACTTCG -ACGGAACGGTATAACCAGTACGCA -ACGGAACGGTATAACCAGCTTGCA -ACGGAACGGTATAACCAGCGAACA -ACGGAACGGTATAACCAGCAGTCA -ACGGAACGGTATAACCAGGATCCA -ACGGAACGGTATAACCAGACGACA -ACGGAACGGTATAACCAGAGCTCA -ACGGAACGGTATAACCAGTCACGT -ACGGAACGGTATAACCAGCGTAGT -ACGGAACGGTATAACCAGGTCAGT -ACGGAACGGTATAACCAGGAAGGT -ACGGAACGGTATAACCAGAACCGT -ACGGAACGGTATAACCAGTTGTGC -ACGGAACGGTATAACCAGCTAAGC -ACGGAACGGTATAACCAGACTAGC -ACGGAACGGTATAACCAGAGATGC -ACGGAACGGTATAACCAGTGAAGG -ACGGAACGGTATAACCAGCAATGG -ACGGAACGGTATAACCAGATGAGG -ACGGAACGGTATAACCAGAATGGG -ACGGAACGGTATAACCAGTCCTGA -ACGGAACGGTATAACCAGTAGCGA -ACGGAACGGTATAACCAGCACAGA -ACGGAACGGTATAACCAGGCAAGA -ACGGAACGGTATAACCAGGGTTGA -ACGGAACGGTATAACCAGTCCGAT -ACGGAACGGTATAACCAGTGGCAT -ACGGAACGGTATAACCAGCGAGAT -ACGGAACGGTATAACCAGTACCAC -ACGGAACGGTATAACCAGCAGAAC -ACGGAACGGTATAACCAGGTCTAC -ACGGAACGGTATAACCAGACGTAC -ACGGAACGGTATAACCAGAGTGAC -ACGGAACGGTATAACCAGCTGTAG -ACGGAACGGTATAACCAGCCTAAG -ACGGAACGGTATAACCAGGTTCAG -ACGGAACGGTATAACCAGGCATAG -ACGGAACGGTATAACCAGGACAAG -ACGGAACGGTATAACCAGAAGCAG -ACGGAACGGTATAACCAGCGTCAA -ACGGAACGGTATAACCAGGCTGAA -ACGGAACGGTATAACCAGAGTACG -ACGGAACGGTATAACCAGATCCGA -ACGGAACGGTATAACCAGATGGGA -ACGGAACGGTATAACCAGGTGCAA -ACGGAACGGTATAACCAGGAGGAA -ACGGAACGGTATAACCAGCAGGTA -ACGGAACGGTATAACCAGGACTCT -ACGGAACGGTATAACCAGAGTCCT -ACGGAACGGTATAACCAGTAAGCC -ACGGAACGGTATAACCAGATAGCC -ACGGAACGGTATAACCAGTAACCG -ACGGAACGGTATAACCAGATGCCA -ACGGAACGGTATTACGTCGGAAAC -ACGGAACGGTATTACGTCAACACC -ACGGAACGGTATTACGTCATCGAG -ACGGAACGGTATTACGTCCTCCTT -ACGGAACGGTATTACGTCCCTGTT -ACGGAACGGTATTACGTCCGGTTT -ACGGAACGGTATTACGTCGTGGTT -ACGGAACGGTATTACGTCGCCTTT -ACGGAACGGTATTACGTCGGTCTT -ACGGAACGGTATTACGTCACGCTT -ACGGAACGGTATTACGTCAGCGTT -ACGGAACGGTATTACGTCTTCGTC -ACGGAACGGTATTACGTCTCTCTC -ACGGAACGGTATTACGTCTGGATC -ACGGAACGGTATTACGTCCACTTC -ACGGAACGGTATTACGTCGTACTC -ACGGAACGGTATTACGTCGATGTC -ACGGAACGGTATTACGTCACAGTC -ACGGAACGGTATTACGTCTTGCTG -ACGGAACGGTATTACGTCTCCATG -ACGGAACGGTATTACGTCTGTGTG -ACGGAACGGTATTACGTCCTAGTG -ACGGAACGGTATTACGTCCATCTG -ACGGAACGGTATTACGTCGAGTTG -ACGGAACGGTATTACGTCAGACTG -ACGGAACGGTATTACGTCTCGGTA -ACGGAACGGTATTACGTCTGCCTA -ACGGAACGGTATTACGTCCCACTA -ACGGAACGGTATTACGTCGGAGTA -ACGGAACGGTATTACGTCTCGTCT -ACGGAACGGTATTACGTCTGCACT -ACGGAACGGTATTACGTCCTGACT -ACGGAACGGTATTACGTCCAACCT -ACGGAACGGTATTACGTCGCTACT -ACGGAACGGTATTACGTCGGATCT -ACGGAACGGTATTACGTCAAGGCT -ACGGAACGGTATTACGTCTCAACC -ACGGAACGGTATTACGTCTGTTCC -ACGGAACGGTATTACGTCATTCCC -ACGGAACGGTATTACGTCTTCTCG -ACGGAACGGTATTACGTCTAGACG -ACGGAACGGTATTACGTCGTAACG -ACGGAACGGTATTACGTCACTTCG -ACGGAACGGTATTACGTCTACGCA -ACGGAACGGTATTACGTCCTTGCA -ACGGAACGGTATTACGTCCGAACA -ACGGAACGGTATTACGTCCAGTCA -ACGGAACGGTATTACGTCGATCCA -ACGGAACGGTATTACGTCACGACA -ACGGAACGGTATTACGTCAGCTCA -ACGGAACGGTATTACGTCTCACGT -ACGGAACGGTATTACGTCCGTAGT -ACGGAACGGTATTACGTCGTCAGT -ACGGAACGGTATTACGTCGAAGGT -ACGGAACGGTATTACGTCAACCGT -ACGGAACGGTATTACGTCTTGTGC -ACGGAACGGTATTACGTCCTAAGC -ACGGAACGGTATTACGTCACTAGC -ACGGAACGGTATTACGTCAGATGC -ACGGAACGGTATTACGTCTGAAGG -ACGGAACGGTATTACGTCCAATGG -ACGGAACGGTATTACGTCATGAGG -ACGGAACGGTATTACGTCAATGGG -ACGGAACGGTATTACGTCTCCTGA -ACGGAACGGTATTACGTCTAGCGA -ACGGAACGGTATTACGTCCACAGA -ACGGAACGGTATTACGTCGCAAGA -ACGGAACGGTATTACGTCGGTTGA -ACGGAACGGTATTACGTCTCCGAT -ACGGAACGGTATTACGTCTGGCAT -ACGGAACGGTATTACGTCCGAGAT -ACGGAACGGTATTACGTCTACCAC -ACGGAACGGTATTACGTCCAGAAC -ACGGAACGGTATTACGTCGTCTAC -ACGGAACGGTATTACGTCACGTAC -ACGGAACGGTATTACGTCAGTGAC -ACGGAACGGTATTACGTCCTGTAG -ACGGAACGGTATTACGTCCCTAAG -ACGGAACGGTATTACGTCGTTCAG -ACGGAACGGTATTACGTCGCATAG -ACGGAACGGTATTACGTCGACAAG -ACGGAACGGTATTACGTCAAGCAG -ACGGAACGGTATTACGTCCGTCAA -ACGGAACGGTATTACGTCGCTGAA -ACGGAACGGTATTACGTCAGTACG -ACGGAACGGTATTACGTCATCCGA -ACGGAACGGTATTACGTCATGGGA -ACGGAACGGTATTACGTCGTGCAA -ACGGAACGGTATTACGTCGAGGAA -ACGGAACGGTATTACGTCCAGGTA -ACGGAACGGTATTACGTCGACTCT -ACGGAACGGTATTACGTCAGTCCT -ACGGAACGGTATTACGTCTAAGCC -ACGGAACGGTATTACGTCATAGCC -ACGGAACGGTATTACGTCTAACCG -ACGGAACGGTATTACGTCATGCCA -ACGGAACGGTATTACACGGGAAAC -ACGGAACGGTATTACACGAACACC -ACGGAACGGTATTACACGATCGAG -ACGGAACGGTATTACACGCTCCTT -ACGGAACGGTATTACACGCCTGTT -ACGGAACGGTATTACACGCGGTTT -ACGGAACGGTATTACACGGTGGTT -ACGGAACGGTATTACACGGCCTTT -ACGGAACGGTATTACACGGGTCTT -ACGGAACGGTATTACACGACGCTT -ACGGAACGGTATTACACGAGCGTT -ACGGAACGGTATTACACGTTCGTC -ACGGAACGGTATTACACGTCTCTC -ACGGAACGGTATTACACGTGGATC -ACGGAACGGTATTACACGCACTTC -ACGGAACGGTATTACACGGTACTC -ACGGAACGGTATTACACGGATGTC -ACGGAACGGTATTACACGACAGTC -ACGGAACGGTATTACACGTTGCTG -ACGGAACGGTATTACACGTCCATG -ACGGAACGGTATTACACGTGTGTG -ACGGAACGGTATTACACGCTAGTG -ACGGAACGGTATTACACGCATCTG -ACGGAACGGTATTACACGGAGTTG -ACGGAACGGTATTACACGAGACTG -ACGGAACGGTATTACACGTCGGTA -ACGGAACGGTATTACACGTGCCTA -ACGGAACGGTATTACACGCCACTA -ACGGAACGGTATTACACGGGAGTA -ACGGAACGGTATTACACGTCGTCT -ACGGAACGGTATTACACGTGCACT -ACGGAACGGTATTACACGCTGACT -ACGGAACGGTATTACACGCAACCT -ACGGAACGGTATTACACGGCTACT -ACGGAACGGTATTACACGGGATCT -ACGGAACGGTATTACACGAAGGCT -ACGGAACGGTATTACACGTCAACC -ACGGAACGGTATTACACGTGTTCC -ACGGAACGGTATTACACGATTCCC -ACGGAACGGTATTACACGTTCTCG -ACGGAACGGTATTACACGTAGACG -ACGGAACGGTATTACACGGTAACG -ACGGAACGGTATTACACGACTTCG -ACGGAACGGTATTACACGTACGCA -ACGGAACGGTATTACACGCTTGCA -ACGGAACGGTATTACACGCGAACA -ACGGAACGGTATTACACGCAGTCA -ACGGAACGGTATTACACGGATCCA -ACGGAACGGTATTACACGACGACA -ACGGAACGGTATTACACGAGCTCA -ACGGAACGGTATTACACGTCACGT -ACGGAACGGTATTACACGCGTAGT -ACGGAACGGTATTACACGGTCAGT -ACGGAACGGTATTACACGGAAGGT -ACGGAACGGTATTACACGAACCGT -ACGGAACGGTATTACACGTTGTGC -ACGGAACGGTATTACACGCTAAGC -ACGGAACGGTATTACACGACTAGC -ACGGAACGGTATTACACGAGATGC -ACGGAACGGTATTACACGTGAAGG -ACGGAACGGTATTACACGCAATGG -ACGGAACGGTATTACACGATGAGG -ACGGAACGGTATTACACGAATGGG -ACGGAACGGTATTACACGTCCTGA -ACGGAACGGTATTACACGTAGCGA -ACGGAACGGTATTACACGCACAGA -ACGGAACGGTATTACACGGCAAGA -ACGGAACGGTATTACACGGGTTGA -ACGGAACGGTATTACACGTCCGAT -ACGGAACGGTATTACACGTGGCAT -ACGGAACGGTATTACACGCGAGAT -ACGGAACGGTATTACACGTACCAC -ACGGAACGGTATTACACGCAGAAC -ACGGAACGGTATTACACGGTCTAC -ACGGAACGGTATTACACGACGTAC -ACGGAACGGTATTACACGAGTGAC -ACGGAACGGTATTACACGCTGTAG -ACGGAACGGTATTACACGCCTAAG -ACGGAACGGTATTACACGGTTCAG -ACGGAACGGTATTACACGGCATAG -ACGGAACGGTATTACACGGACAAG -ACGGAACGGTATTACACGAAGCAG -ACGGAACGGTATTACACGCGTCAA -ACGGAACGGTATTACACGGCTGAA -ACGGAACGGTATTACACGAGTACG -ACGGAACGGTATTACACGATCCGA -ACGGAACGGTATTACACGATGGGA -ACGGAACGGTATTACACGGTGCAA -ACGGAACGGTATTACACGGAGGAA -ACGGAACGGTATTACACGCAGGTA -ACGGAACGGTATTACACGGACTCT -ACGGAACGGTATTACACGAGTCCT -ACGGAACGGTATTACACGTAAGCC -ACGGAACGGTATTACACGATAGCC -ACGGAACGGTATTACACGTAACCG -ACGGAACGGTATTACACGATGCCA -ACGGAACGGTATGACAGTGGAAAC -ACGGAACGGTATGACAGTAACACC -ACGGAACGGTATGACAGTATCGAG -ACGGAACGGTATGACAGTCTCCTT -ACGGAACGGTATGACAGTCCTGTT -ACGGAACGGTATGACAGTCGGTTT -ACGGAACGGTATGACAGTGTGGTT -ACGGAACGGTATGACAGTGCCTTT -ACGGAACGGTATGACAGTGGTCTT -ACGGAACGGTATGACAGTACGCTT -ACGGAACGGTATGACAGTAGCGTT -ACGGAACGGTATGACAGTTTCGTC -ACGGAACGGTATGACAGTTCTCTC -ACGGAACGGTATGACAGTTGGATC -ACGGAACGGTATGACAGTCACTTC -ACGGAACGGTATGACAGTGTACTC -ACGGAACGGTATGACAGTGATGTC -ACGGAACGGTATGACAGTACAGTC -ACGGAACGGTATGACAGTTTGCTG -ACGGAACGGTATGACAGTTCCATG -ACGGAACGGTATGACAGTTGTGTG -ACGGAACGGTATGACAGTCTAGTG -ACGGAACGGTATGACAGTCATCTG -ACGGAACGGTATGACAGTGAGTTG -ACGGAACGGTATGACAGTAGACTG -ACGGAACGGTATGACAGTTCGGTA -ACGGAACGGTATGACAGTTGCCTA -ACGGAACGGTATGACAGTCCACTA -ACGGAACGGTATGACAGTGGAGTA -ACGGAACGGTATGACAGTTCGTCT -ACGGAACGGTATGACAGTTGCACT -ACGGAACGGTATGACAGTCTGACT -ACGGAACGGTATGACAGTCAACCT -ACGGAACGGTATGACAGTGCTACT -ACGGAACGGTATGACAGTGGATCT -ACGGAACGGTATGACAGTAAGGCT -ACGGAACGGTATGACAGTTCAACC -ACGGAACGGTATGACAGTTGTTCC -ACGGAACGGTATGACAGTATTCCC -ACGGAACGGTATGACAGTTTCTCG -ACGGAACGGTATGACAGTTAGACG -ACGGAACGGTATGACAGTGTAACG -ACGGAACGGTATGACAGTACTTCG -ACGGAACGGTATGACAGTTACGCA -ACGGAACGGTATGACAGTCTTGCA -ACGGAACGGTATGACAGTCGAACA -ACGGAACGGTATGACAGTCAGTCA -ACGGAACGGTATGACAGTGATCCA -ACGGAACGGTATGACAGTACGACA -ACGGAACGGTATGACAGTAGCTCA -ACGGAACGGTATGACAGTTCACGT -ACGGAACGGTATGACAGTCGTAGT -ACGGAACGGTATGACAGTGTCAGT -ACGGAACGGTATGACAGTGAAGGT -ACGGAACGGTATGACAGTAACCGT -ACGGAACGGTATGACAGTTTGTGC -ACGGAACGGTATGACAGTCTAAGC -ACGGAACGGTATGACAGTACTAGC -ACGGAACGGTATGACAGTAGATGC -ACGGAACGGTATGACAGTTGAAGG -ACGGAACGGTATGACAGTCAATGG -ACGGAACGGTATGACAGTATGAGG -ACGGAACGGTATGACAGTAATGGG -ACGGAACGGTATGACAGTTCCTGA -ACGGAACGGTATGACAGTTAGCGA -ACGGAACGGTATGACAGTCACAGA -ACGGAACGGTATGACAGTGCAAGA -ACGGAACGGTATGACAGTGGTTGA -ACGGAACGGTATGACAGTTCCGAT -ACGGAACGGTATGACAGTTGGCAT -ACGGAACGGTATGACAGTCGAGAT -ACGGAACGGTATGACAGTTACCAC -ACGGAACGGTATGACAGTCAGAAC -ACGGAACGGTATGACAGTGTCTAC -ACGGAACGGTATGACAGTACGTAC -ACGGAACGGTATGACAGTAGTGAC -ACGGAACGGTATGACAGTCTGTAG -ACGGAACGGTATGACAGTCCTAAG -ACGGAACGGTATGACAGTGTTCAG -ACGGAACGGTATGACAGTGCATAG -ACGGAACGGTATGACAGTGACAAG -ACGGAACGGTATGACAGTAAGCAG -ACGGAACGGTATGACAGTCGTCAA -ACGGAACGGTATGACAGTGCTGAA -ACGGAACGGTATGACAGTAGTACG -ACGGAACGGTATGACAGTATCCGA -ACGGAACGGTATGACAGTATGGGA -ACGGAACGGTATGACAGTGTGCAA -ACGGAACGGTATGACAGTGAGGAA -ACGGAACGGTATGACAGTCAGGTA -ACGGAACGGTATGACAGTGACTCT -ACGGAACGGTATGACAGTAGTCCT -ACGGAACGGTATGACAGTTAAGCC -ACGGAACGGTATGACAGTATAGCC -ACGGAACGGTATGACAGTTAACCG -ACGGAACGGTATGACAGTATGCCA -ACGGAACGGTATTAGCTGGGAAAC -ACGGAACGGTATTAGCTGAACACC -ACGGAACGGTATTAGCTGATCGAG -ACGGAACGGTATTAGCTGCTCCTT -ACGGAACGGTATTAGCTGCCTGTT -ACGGAACGGTATTAGCTGCGGTTT -ACGGAACGGTATTAGCTGGTGGTT -ACGGAACGGTATTAGCTGGCCTTT -ACGGAACGGTATTAGCTGGGTCTT -ACGGAACGGTATTAGCTGACGCTT -ACGGAACGGTATTAGCTGAGCGTT -ACGGAACGGTATTAGCTGTTCGTC -ACGGAACGGTATTAGCTGTCTCTC -ACGGAACGGTATTAGCTGTGGATC -ACGGAACGGTATTAGCTGCACTTC -ACGGAACGGTATTAGCTGGTACTC -ACGGAACGGTATTAGCTGGATGTC -ACGGAACGGTATTAGCTGACAGTC -ACGGAACGGTATTAGCTGTTGCTG -ACGGAACGGTATTAGCTGTCCATG -ACGGAACGGTATTAGCTGTGTGTG -ACGGAACGGTATTAGCTGCTAGTG -ACGGAACGGTATTAGCTGCATCTG -ACGGAACGGTATTAGCTGGAGTTG -ACGGAACGGTATTAGCTGAGACTG -ACGGAACGGTATTAGCTGTCGGTA -ACGGAACGGTATTAGCTGTGCCTA -ACGGAACGGTATTAGCTGCCACTA -ACGGAACGGTATTAGCTGGGAGTA -ACGGAACGGTATTAGCTGTCGTCT -ACGGAACGGTATTAGCTGTGCACT -ACGGAACGGTATTAGCTGCTGACT -ACGGAACGGTATTAGCTGCAACCT -ACGGAACGGTATTAGCTGGCTACT -ACGGAACGGTATTAGCTGGGATCT -ACGGAACGGTATTAGCTGAAGGCT -ACGGAACGGTATTAGCTGTCAACC -ACGGAACGGTATTAGCTGTGTTCC -ACGGAACGGTATTAGCTGATTCCC -ACGGAACGGTATTAGCTGTTCTCG -ACGGAACGGTATTAGCTGTAGACG -ACGGAACGGTATTAGCTGGTAACG -ACGGAACGGTATTAGCTGACTTCG -ACGGAACGGTATTAGCTGTACGCA -ACGGAACGGTATTAGCTGCTTGCA -ACGGAACGGTATTAGCTGCGAACA -ACGGAACGGTATTAGCTGCAGTCA -ACGGAACGGTATTAGCTGGATCCA -ACGGAACGGTATTAGCTGACGACA -ACGGAACGGTATTAGCTGAGCTCA -ACGGAACGGTATTAGCTGTCACGT -ACGGAACGGTATTAGCTGCGTAGT -ACGGAACGGTATTAGCTGGTCAGT -ACGGAACGGTATTAGCTGGAAGGT -ACGGAACGGTATTAGCTGAACCGT -ACGGAACGGTATTAGCTGTTGTGC -ACGGAACGGTATTAGCTGCTAAGC -ACGGAACGGTATTAGCTGACTAGC -ACGGAACGGTATTAGCTGAGATGC -ACGGAACGGTATTAGCTGTGAAGG -ACGGAACGGTATTAGCTGCAATGG -ACGGAACGGTATTAGCTGATGAGG -ACGGAACGGTATTAGCTGAATGGG -ACGGAACGGTATTAGCTGTCCTGA -ACGGAACGGTATTAGCTGTAGCGA -ACGGAACGGTATTAGCTGCACAGA -ACGGAACGGTATTAGCTGGCAAGA -ACGGAACGGTATTAGCTGGGTTGA -ACGGAACGGTATTAGCTGTCCGAT -ACGGAACGGTATTAGCTGTGGCAT -ACGGAACGGTATTAGCTGCGAGAT -ACGGAACGGTATTAGCTGTACCAC -ACGGAACGGTATTAGCTGCAGAAC -ACGGAACGGTATTAGCTGGTCTAC -ACGGAACGGTATTAGCTGACGTAC -ACGGAACGGTATTAGCTGAGTGAC -ACGGAACGGTATTAGCTGCTGTAG -ACGGAACGGTATTAGCTGCCTAAG -ACGGAACGGTATTAGCTGGTTCAG -ACGGAACGGTATTAGCTGGCATAG -ACGGAACGGTATTAGCTGGACAAG -ACGGAACGGTATTAGCTGAAGCAG -ACGGAACGGTATTAGCTGCGTCAA -ACGGAACGGTATTAGCTGGCTGAA -ACGGAACGGTATTAGCTGAGTACG -ACGGAACGGTATTAGCTGATCCGA -ACGGAACGGTATTAGCTGATGGGA -ACGGAACGGTATTAGCTGGTGCAA -ACGGAACGGTATTAGCTGGAGGAA -ACGGAACGGTATTAGCTGCAGGTA -ACGGAACGGTATTAGCTGGACTCT -ACGGAACGGTATTAGCTGAGTCCT -ACGGAACGGTATTAGCTGTAAGCC -ACGGAACGGTATTAGCTGATAGCC -ACGGAACGGTATTAGCTGTAACCG -ACGGAACGGTATTAGCTGATGCCA -ACGGAACGGTATAAGCCTGGAAAC -ACGGAACGGTATAAGCCTAACACC -ACGGAACGGTATAAGCCTATCGAG -ACGGAACGGTATAAGCCTCTCCTT -ACGGAACGGTATAAGCCTCCTGTT -ACGGAACGGTATAAGCCTCGGTTT -ACGGAACGGTATAAGCCTGTGGTT -ACGGAACGGTATAAGCCTGCCTTT -ACGGAACGGTATAAGCCTGGTCTT -ACGGAACGGTATAAGCCTACGCTT -ACGGAACGGTATAAGCCTAGCGTT -ACGGAACGGTATAAGCCTTTCGTC -ACGGAACGGTATAAGCCTTCTCTC -ACGGAACGGTATAAGCCTTGGATC -ACGGAACGGTATAAGCCTCACTTC -ACGGAACGGTATAAGCCTGTACTC -ACGGAACGGTATAAGCCTGATGTC -ACGGAACGGTATAAGCCTACAGTC -ACGGAACGGTATAAGCCTTTGCTG -ACGGAACGGTATAAGCCTTCCATG -ACGGAACGGTATAAGCCTTGTGTG -ACGGAACGGTATAAGCCTCTAGTG -ACGGAACGGTATAAGCCTCATCTG -ACGGAACGGTATAAGCCTGAGTTG -ACGGAACGGTATAAGCCTAGACTG -ACGGAACGGTATAAGCCTTCGGTA -ACGGAACGGTATAAGCCTTGCCTA -ACGGAACGGTATAAGCCTCCACTA -ACGGAACGGTATAAGCCTGGAGTA -ACGGAACGGTATAAGCCTTCGTCT -ACGGAACGGTATAAGCCTTGCACT -ACGGAACGGTATAAGCCTCTGACT -ACGGAACGGTATAAGCCTCAACCT -ACGGAACGGTATAAGCCTGCTACT -ACGGAACGGTATAAGCCTGGATCT -ACGGAACGGTATAAGCCTAAGGCT -ACGGAACGGTATAAGCCTTCAACC -ACGGAACGGTATAAGCCTTGTTCC -ACGGAACGGTATAAGCCTATTCCC -ACGGAACGGTATAAGCCTTTCTCG -ACGGAACGGTATAAGCCTTAGACG -ACGGAACGGTATAAGCCTGTAACG -ACGGAACGGTATAAGCCTACTTCG -ACGGAACGGTATAAGCCTTACGCA -ACGGAACGGTATAAGCCTCTTGCA -ACGGAACGGTATAAGCCTCGAACA -ACGGAACGGTATAAGCCTCAGTCA -ACGGAACGGTATAAGCCTGATCCA -ACGGAACGGTATAAGCCTACGACA -ACGGAACGGTATAAGCCTAGCTCA -ACGGAACGGTATAAGCCTTCACGT -ACGGAACGGTATAAGCCTCGTAGT -ACGGAACGGTATAAGCCTGTCAGT -ACGGAACGGTATAAGCCTGAAGGT -ACGGAACGGTATAAGCCTAACCGT -ACGGAACGGTATAAGCCTTTGTGC -ACGGAACGGTATAAGCCTCTAAGC -ACGGAACGGTATAAGCCTACTAGC -ACGGAACGGTATAAGCCTAGATGC -ACGGAACGGTATAAGCCTTGAAGG -ACGGAACGGTATAAGCCTCAATGG -ACGGAACGGTATAAGCCTATGAGG -ACGGAACGGTATAAGCCTAATGGG -ACGGAACGGTATAAGCCTTCCTGA -ACGGAACGGTATAAGCCTTAGCGA -ACGGAACGGTATAAGCCTCACAGA -ACGGAACGGTATAAGCCTGCAAGA -ACGGAACGGTATAAGCCTGGTTGA -ACGGAACGGTATAAGCCTTCCGAT -ACGGAACGGTATAAGCCTTGGCAT -ACGGAACGGTATAAGCCTCGAGAT -ACGGAACGGTATAAGCCTTACCAC -ACGGAACGGTATAAGCCTCAGAAC -ACGGAACGGTATAAGCCTGTCTAC -ACGGAACGGTATAAGCCTACGTAC -ACGGAACGGTATAAGCCTAGTGAC -ACGGAACGGTATAAGCCTCTGTAG -ACGGAACGGTATAAGCCTCCTAAG -ACGGAACGGTATAAGCCTGTTCAG -ACGGAACGGTATAAGCCTGCATAG -ACGGAACGGTATAAGCCTGACAAG -ACGGAACGGTATAAGCCTAAGCAG -ACGGAACGGTATAAGCCTCGTCAA -ACGGAACGGTATAAGCCTGCTGAA -ACGGAACGGTATAAGCCTAGTACG -ACGGAACGGTATAAGCCTATCCGA -ACGGAACGGTATAAGCCTATGGGA -ACGGAACGGTATAAGCCTGTGCAA -ACGGAACGGTATAAGCCTGAGGAA -ACGGAACGGTATAAGCCTCAGGTA -ACGGAACGGTATAAGCCTGACTCT -ACGGAACGGTATAAGCCTAGTCCT -ACGGAACGGTATAAGCCTTAAGCC -ACGGAACGGTATAAGCCTATAGCC -ACGGAACGGTATAAGCCTTAACCG -ACGGAACGGTATAAGCCTATGCCA -ACGGAACGGTATCAGGTTGGAAAC -ACGGAACGGTATCAGGTTAACACC -ACGGAACGGTATCAGGTTATCGAG -ACGGAACGGTATCAGGTTCTCCTT -ACGGAACGGTATCAGGTTCCTGTT -ACGGAACGGTATCAGGTTCGGTTT -ACGGAACGGTATCAGGTTGTGGTT -ACGGAACGGTATCAGGTTGCCTTT -ACGGAACGGTATCAGGTTGGTCTT -ACGGAACGGTATCAGGTTACGCTT -ACGGAACGGTATCAGGTTAGCGTT -ACGGAACGGTATCAGGTTTTCGTC -ACGGAACGGTATCAGGTTTCTCTC -ACGGAACGGTATCAGGTTTGGATC -ACGGAACGGTATCAGGTTCACTTC -ACGGAACGGTATCAGGTTGTACTC -ACGGAACGGTATCAGGTTGATGTC -ACGGAACGGTATCAGGTTACAGTC -ACGGAACGGTATCAGGTTTTGCTG -ACGGAACGGTATCAGGTTTCCATG -ACGGAACGGTATCAGGTTTGTGTG -ACGGAACGGTATCAGGTTCTAGTG -ACGGAACGGTATCAGGTTCATCTG -ACGGAACGGTATCAGGTTGAGTTG -ACGGAACGGTATCAGGTTAGACTG -ACGGAACGGTATCAGGTTTCGGTA -ACGGAACGGTATCAGGTTTGCCTA -ACGGAACGGTATCAGGTTCCACTA -ACGGAACGGTATCAGGTTGGAGTA -ACGGAACGGTATCAGGTTTCGTCT -ACGGAACGGTATCAGGTTTGCACT -ACGGAACGGTATCAGGTTCTGACT -ACGGAACGGTATCAGGTTCAACCT -ACGGAACGGTATCAGGTTGCTACT -ACGGAACGGTATCAGGTTGGATCT -ACGGAACGGTATCAGGTTAAGGCT -ACGGAACGGTATCAGGTTTCAACC -ACGGAACGGTATCAGGTTTGTTCC -ACGGAACGGTATCAGGTTATTCCC -ACGGAACGGTATCAGGTTTTCTCG -ACGGAACGGTATCAGGTTTAGACG -ACGGAACGGTATCAGGTTGTAACG -ACGGAACGGTATCAGGTTACTTCG -ACGGAACGGTATCAGGTTTACGCA -ACGGAACGGTATCAGGTTCTTGCA -ACGGAACGGTATCAGGTTCGAACA -ACGGAACGGTATCAGGTTCAGTCA -ACGGAACGGTATCAGGTTGATCCA -ACGGAACGGTATCAGGTTACGACA -ACGGAACGGTATCAGGTTAGCTCA -ACGGAACGGTATCAGGTTTCACGT -ACGGAACGGTATCAGGTTCGTAGT -ACGGAACGGTATCAGGTTGTCAGT -ACGGAACGGTATCAGGTTGAAGGT -ACGGAACGGTATCAGGTTAACCGT -ACGGAACGGTATCAGGTTTTGTGC -ACGGAACGGTATCAGGTTCTAAGC -ACGGAACGGTATCAGGTTACTAGC -ACGGAACGGTATCAGGTTAGATGC -ACGGAACGGTATCAGGTTTGAAGG -ACGGAACGGTATCAGGTTCAATGG -ACGGAACGGTATCAGGTTATGAGG -ACGGAACGGTATCAGGTTAATGGG -ACGGAACGGTATCAGGTTTCCTGA -ACGGAACGGTATCAGGTTTAGCGA -ACGGAACGGTATCAGGTTCACAGA -ACGGAACGGTATCAGGTTGCAAGA -ACGGAACGGTATCAGGTTGGTTGA -ACGGAACGGTATCAGGTTTCCGAT -ACGGAACGGTATCAGGTTTGGCAT -ACGGAACGGTATCAGGTTCGAGAT -ACGGAACGGTATCAGGTTTACCAC -ACGGAACGGTATCAGGTTCAGAAC -ACGGAACGGTATCAGGTTGTCTAC -ACGGAACGGTATCAGGTTACGTAC -ACGGAACGGTATCAGGTTAGTGAC -ACGGAACGGTATCAGGTTCTGTAG -ACGGAACGGTATCAGGTTCCTAAG -ACGGAACGGTATCAGGTTGTTCAG -ACGGAACGGTATCAGGTTGCATAG -ACGGAACGGTATCAGGTTGACAAG -ACGGAACGGTATCAGGTTAAGCAG -ACGGAACGGTATCAGGTTCGTCAA -ACGGAACGGTATCAGGTTGCTGAA -ACGGAACGGTATCAGGTTAGTACG -ACGGAACGGTATCAGGTTATCCGA -ACGGAACGGTATCAGGTTATGGGA -ACGGAACGGTATCAGGTTGTGCAA -ACGGAACGGTATCAGGTTGAGGAA -ACGGAACGGTATCAGGTTCAGGTA -ACGGAACGGTATCAGGTTGACTCT -ACGGAACGGTATCAGGTTAGTCCT -ACGGAACGGTATCAGGTTTAAGCC -ACGGAACGGTATCAGGTTATAGCC -ACGGAACGGTATCAGGTTTAACCG -ACGGAACGGTATCAGGTTATGCCA -ACGGAACGGTATTAGGCAGGAAAC -ACGGAACGGTATTAGGCAAACACC -ACGGAACGGTATTAGGCAATCGAG -ACGGAACGGTATTAGGCACTCCTT -ACGGAACGGTATTAGGCACCTGTT -ACGGAACGGTATTAGGCACGGTTT -ACGGAACGGTATTAGGCAGTGGTT -ACGGAACGGTATTAGGCAGCCTTT -ACGGAACGGTATTAGGCAGGTCTT -ACGGAACGGTATTAGGCAACGCTT -ACGGAACGGTATTAGGCAAGCGTT -ACGGAACGGTATTAGGCATTCGTC -ACGGAACGGTATTAGGCATCTCTC -ACGGAACGGTATTAGGCATGGATC -ACGGAACGGTATTAGGCACACTTC -ACGGAACGGTATTAGGCAGTACTC -ACGGAACGGTATTAGGCAGATGTC -ACGGAACGGTATTAGGCAACAGTC -ACGGAACGGTATTAGGCATTGCTG -ACGGAACGGTATTAGGCATCCATG -ACGGAACGGTATTAGGCATGTGTG -ACGGAACGGTATTAGGCACTAGTG -ACGGAACGGTATTAGGCACATCTG -ACGGAACGGTATTAGGCAGAGTTG -ACGGAACGGTATTAGGCAAGACTG -ACGGAACGGTATTAGGCATCGGTA -ACGGAACGGTATTAGGCATGCCTA -ACGGAACGGTATTAGGCACCACTA -ACGGAACGGTATTAGGCAGGAGTA -ACGGAACGGTATTAGGCATCGTCT -ACGGAACGGTATTAGGCATGCACT -ACGGAACGGTATTAGGCACTGACT -ACGGAACGGTATTAGGCACAACCT -ACGGAACGGTATTAGGCAGCTACT -ACGGAACGGTATTAGGCAGGATCT -ACGGAACGGTATTAGGCAAAGGCT -ACGGAACGGTATTAGGCATCAACC -ACGGAACGGTATTAGGCATGTTCC -ACGGAACGGTATTAGGCAATTCCC -ACGGAACGGTATTAGGCATTCTCG -ACGGAACGGTATTAGGCATAGACG -ACGGAACGGTATTAGGCAGTAACG -ACGGAACGGTATTAGGCAACTTCG -ACGGAACGGTATTAGGCATACGCA -ACGGAACGGTATTAGGCACTTGCA -ACGGAACGGTATTAGGCACGAACA -ACGGAACGGTATTAGGCACAGTCA -ACGGAACGGTATTAGGCAGATCCA -ACGGAACGGTATTAGGCAACGACA -ACGGAACGGTATTAGGCAAGCTCA -ACGGAACGGTATTAGGCATCACGT -ACGGAACGGTATTAGGCACGTAGT -ACGGAACGGTATTAGGCAGTCAGT -ACGGAACGGTATTAGGCAGAAGGT -ACGGAACGGTATTAGGCAAACCGT -ACGGAACGGTATTAGGCATTGTGC -ACGGAACGGTATTAGGCACTAAGC -ACGGAACGGTATTAGGCAACTAGC -ACGGAACGGTATTAGGCAAGATGC -ACGGAACGGTATTAGGCATGAAGG -ACGGAACGGTATTAGGCACAATGG -ACGGAACGGTATTAGGCAATGAGG -ACGGAACGGTATTAGGCAAATGGG -ACGGAACGGTATTAGGCATCCTGA -ACGGAACGGTATTAGGCATAGCGA -ACGGAACGGTATTAGGCACACAGA -ACGGAACGGTATTAGGCAGCAAGA -ACGGAACGGTATTAGGCAGGTTGA -ACGGAACGGTATTAGGCATCCGAT -ACGGAACGGTATTAGGCATGGCAT -ACGGAACGGTATTAGGCACGAGAT -ACGGAACGGTATTAGGCATACCAC -ACGGAACGGTATTAGGCACAGAAC -ACGGAACGGTATTAGGCAGTCTAC -ACGGAACGGTATTAGGCAACGTAC -ACGGAACGGTATTAGGCAAGTGAC -ACGGAACGGTATTAGGCACTGTAG -ACGGAACGGTATTAGGCACCTAAG -ACGGAACGGTATTAGGCAGTTCAG -ACGGAACGGTATTAGGCAGCATAG -ACGGAACGGTATTAGGCAGACAAG -ACGGAACGGTATTAGGCAAAGCAG -ACGGAACGGTATTAGGCACGTCAA -ACGGAACGGTATTAGGCAGCTGAA -ACGGAACGGTATTAGGCAAGTACG -ACGGAACGGTATTAGGCAATCCGA -ACGGAACGGTATTAGGCAATGGGA -ACGGAACGGTATTAGGCAGTGCAA -ACGGAACGGTATTAGGCAGAGGAA -ACGGAACGGTATTAGGCACAGGTA -ACGGAACGGTATTAGGCAGACTCT -ACGGAACGGTATTAGGCAAGTCCT -ACGGAACGGTATTAGGCATAAGCC -ACGGAACGGTATTAGGCAATAGCC -ACGGAACGGTATTAGGCATAACCG -ACGGAACGGTATTAGGCAATGCCA -ACGGAACGGTATAAGGACGGAAAC -ACGGAACGGTATAAGGACAACACC -ACGGAACGGTATAAGGACATCGAG -ACGGAACGGTATAAGGACCTCCTT -ACGGAACGGTATAAGGACCCTGTT -ACGGAACGGTATAAGGACCGGTTT -ACGGAACGGTATAAGGACGTGGTT -ACGGAACGGTATAAGGACGCCTTT -ACGGAACGGTATAAGGACGGTCTT -ACGGAACGGTATAAGGACACGCTT -ACGGAACGGTATAAGGACAGCGTT -ACGGAACGGTATAAGGACTTCGTC -ACGGAACGGTATAAGGACTCTCTC -ACGGAACGGTATAAGGACTGGATC -ACGGAACGGTATAAGGACCACTTC -ACGGAACGGTATAAGGACGTACTC -ACGGAACGGTATAAGGACGATGTC -ACGGAACGGTATAAGGACACAGTC -ACGGAACGGTATAAGGACTTGCTG -ACGGAACGGTATAAGGACTCCATG -ACGGAACGGTATAAGGACTGTGTG -ACGGAACGGTATAAGGACCTAGTG -ACGGAACGGTATAAGGACCATCTG -ACGGAACGGTATAAGGACGAGTTG -ACGGAACGGTATAAGGACAGACTG -ACGGAACGGTATAAGGACTCGGTA -ACGGAACGGTATAAGGACTGCCTA -ACGGAACGGTATAAGGACCCACTA -ACGGAACGGTATAAGGACGGAGTA -ACGGAACGGTATAAGGACTCGTCT -ACGGAACGGTATAAGGACTGCACT -ACGGAACGGTATAAGGACCTGACT -ACGGAACGGTATAAGGACCAACCT -ACGGAACGGTATAAGGACGCTACT -ACGGAACGGTATAAGGACGGATCT -ACGGAACGGTATAAGGACAAGGCT -ACGGAACGGTATAAGGACTCAACC -ACGGAACGGTATAAGGACTGTTCC -ACGGAACGGTATAAGGACATTCCC -ACGGAACGGTATAAGGACTTCTCG -ACGGAACGGTATAAGGACTAGACG -ACGGAACGGTATAAGGACGTAACG -ACGGAACGGTATAAGGACACTTCG -ACGGAACGGTATAAGGACTACGCA -ACGGAACGGTATAAGGACCTTGCA -ACGGAACGGTATAAGGACCGAACA -ACGGAACGGTATAAGGACCAGTCA -ACGGAACGGTATAAGGACGATCCA -ACGGAACGGTATAAGGACACGACA -ACGGAACGGTATAAGGACAGCTCA -ACGGAACGGTATAAGGACTCACGT -ACGGAACGGTATAAGGACCGTAGT -ACGGAACGGTATAAGGACGTCAGT -ACGGAACGGTATAAGGACGAAGGT -ACGGAACGGTATAAGGACAACCGT -ACGGAACGGTATAAGGACTTGTGC -ACGGAACGGTATAAGGACCTAAGC -ACGGAACGGTATAAGGACACTAGC -ACGGAACGGTATAAGGACAGATGC -ACGGAACGGTATAAGGACTGAAGG -ACGGAACGGTATAAGGACCAATGG -ACGGAACGGTATAAGGACATGAGG -ACGGAACGGTATAAGGACAATGGG -ACGGAACGGTATAAGGACTCCTGA -ACGGAACGGTATAAGGACTAGCGA -ACGGAACGGTATAAGGACCACAGA -ACGGAACGGTATAAGGACGCAAGA -ACGGAACGGTATAAGGACGGTTGA -ACGGAACGGTATAAGGACTCCGAT -ACGGAACGGTATAAGGACTGGCAT -ACGGAACGGTATAAGGACCGAGAT -ACGGAACGGTATAAGGACTACCAC -ACGGAACGGTATAAGGACCAGAAC -ACGGAACGGTATAAGGACGTCTAC -ACGGAACGGTATAAGGACACGTAC -ACGGAACGGTATAAGGACAGTGAC -ACGGAACGGTATAAGGACCTGTAG -ACGGAACGGTATAAGGACCCTAAG -ACGGAACGGTATAAGGACGTTCAG -ACGGAACGGTATAAGGACGCATAG -ACGGAACGGTATAAGGACGACAAG -ACGGAACGGTATAAGGACAAGCAG -ACGGAACGGTATAAGGACCGTCAA -ACGGAACGGTATAAGGACGCTGAA -ACGGAACGGTATAAGGACAGTACG -ACGGAACGGTATAAGGACATCCGA -ACGGAACGGTATAAGGACATGGGA -ACGGAACGGTATAAGGACGTGCAA -ACGGAACGGTATAAGGACGAGGAA -ACGGAACGGTATAAGGACCAGGTA -ACGGAACGGTATAAGGACGACTCT -ACGGAACGGTATAAGGACAGTCCT -ACGGAACGGTATAAGGACTAAGCC -ACGGAACGGTATAAGGACATAGCC -ACGGAACGGTATAAGGACTAACCG -ACGGAACGGTATAAGGACATGCCA -ACGGAACGGTATCAGAAGGGAAAC -ACGGAACGGTATCAGAAGAACACC -ACGGAACGGTATCAGAAGATCGAG -ACGGAACGGTATCAGAAGCTCCTT -ACGGAACGGTATCAGAAGCCTGTT -ACGGAACGGTATCAGAAGCGGTTT -ACGGAACGGTATCAGAAGGTGGTT -ACGGAACGGTATCAGAAGGCCTTT -ACGGAACGGTATCAGAAGGGTCTT -ACGGAACGGTATCAGAAGACGCTT -ACGGAACGGTATCAGAAGAGCGTT -ACGGAACGGTATCAGAAGTTCGTC -ACGGAACGGTATCAGAAGTCTCTC -ACGGAACGGTATCAGAAGTGGATC -ACGGAACGGTATCAGAAGCACTTC -ACGGAACGGTATCAGAAGGTACTC -ACGGAACGGTATCAGAAGGATGTC -ACGGAACGGTATCAGAAGACAGTC -ACGGAACGGTATCAGAAGTTGCTG -ACGGAACGGTATCAGAAGTCCATG -ACGGAACGGTATCAGAAGTGTGTG -ACGGAACGGTATCAGAAGCTAGTG -ACGGAACGGTATCAGAAGCATCTG -ACGGAACGGTATCAGAAGGAGTTG -ACGGAACGGTATCAGAAGAGACTG -ACGGAACGGTATCAGAAGTCGGTA -ACGGAACGGTATCAGAAGTGCCTA -ACGGAACGGTATCAGAAGCCACTA -ACGGAACGGTATCAGAAGGGAGTA -ACGGAACGGTATCAGAAGTCGTCT -ACGGAACGGTATCAGAAGTGCACT -ACGGAACGGTATCAGAAGCTGACT -ACGGAACGGTATCAGAAGCAACCT -ACGGAACGGTATCAGAAGGCTACT -ACGGAACGGTATCAGAAGGGATCT -ACGGAACGGTATCAGAAGAAGGCT -ACGGAACGGTATCAGAAGTCAACC -ACGGAACGGTATCAGAAGTGTTCC -ACGGAACGGTATCAGAAGATTCCC -ACGGAACGGTATCAGAAGTTCTCG -ACGGAACGGTATCAGAAGTAGACG -ACGGAACGGTATCAGAAGGTAACG -ACGGAACGGTATCAGAAGACTTCG -ACGGAACGGTATCAGAAGTACGCA -ACGGAACGGTATCAGAAGCTTGCA -ACGGAACGGTATCAGAAGCGAACA -ACGGAACGGTATCAGAAGCAGTCA -ACGGAACGGTATCAGAAGGATCCA -ACGGAACGGTATCAGAAGACGACA -ACGGAACGGTATCAGAAGAGCTCA -ACGGAACGGTATCAGAAGTCACGT -ACGGAACGGTATCAGAAGCGTAGT -ACGGAACGGTATCAGAAGGTCAGT -ACGGAACGGTATCAGAAGGAAGGT -ACGGAACGGTATCAGAAGAACCGT -ACGGAACGGTATCAGAAGTTGTGC -ACGGAACGGTATCAGAAGCTAAGC -ACGGAACGGTATCAGAAGACTAGC -ACGGAACGGTATCAGAAGAGATGC -ACGGAACGGTATCAGAAGTGAAGG -ACGGAACGGTATCAGAAGCAATGG -ACGGAACGGTATCAGAAGATGAGG -ACGGAACGGTATCAGAAGAATGGG -ACGGAACGGTATCAGAAGTCCTGA -ACGGAACGGTATCAGAAGTAGCGA -ACGGAACGGTATCAGAAGCACAGA -ACGGAACGGTATCAGAAGGCAAGA -ACGGAACGGTATCAGAAGGGTTGA -ACGGAACGGTATCAGAAGTCCGAT -ACGGAACGGTATCAGAAGTGGCAT -ACGGAACGGTATCAGAAGCGAGAT -ACGGAACGGTATCAGAAGTACCAC -ACGGAACGGTATCAGAAGCAGAAC -ACGGAACGGTATCAGAAGGTCTAC -ACGGAACGGTATCAGAAGACGTAC -ACGGAACGGTATCAGAAGAGTGAC -ACGGAACGGTATCAGAAGCTGTAG -ACGGAACGGTATCAGAAGCCTAAG -ACGGAACGGTATCAGAAGGTTCAG -ACGGAACGGTATCAGAAGGCATAG -ACGGAACGGTATCAGAAGGACAAG -ACGGAACGGTATCAGAAGAAGCAG -ACGGAACGGTATCAGAAGCGTCAA -ACGGAACGGTATCAGAAGGCTGAA -ACGGAACGGTATCAGAAGAGTACG -ACGGAACGGTATCAGAAGATCCGA -ACGGAACGGTATCAGAAGATGGGA -ACGGAACGGTATCAGAAGGTGCAA -ACGGAACGGTATCAGAAGGAGGAA -ACGGAACGGTATCAGAAGCAGGTA -ACGGAACGGTATCAGAAGGACTCT -ACGGAACGGTATCAGAAGAGTCCT -ACGGAACGGTATCAGAAGTAAGCC -ACGGAACGGTATCAGAAGATAGCC -ACGGAACGGTATCAGAAGTAACCG -ACGGAACGGTATCAGAAGATGCCA -ACGGAACGGTATCAACGTGGAAAC -ACGGAACGGTATCAACGTAACACC -ACGGAACGGTATCAACGTATCGAG -ACGGAACGGTATCAACGTCTCCTT -ACGGAACGGTATCAACGTCCTGTT -ACGGAACGGTATCAACGTCGGTTT -ACGGAACGGTATCAACGTGTGGTT -ACGGAACGGTATCAACGTGCCTTT -ACGGAACGGTATCAACGTGGTCTT -ACGGAACGGTATCAACGTACGCTT -ACGGAACGGTATCAACGTAGCGTT -ACGGAACGGTATCAACGTTTCGTC -ACGGAACGGTATCAACGTTCTCTC -ACGGAACGGTATCAACGTTGGATC -ACGGAACGGTATCAACGTCACTTC -ACGGAACGGTATCAACGTGTACTC -ACGGAACGGTATCAACGTGATGTC -ACGGAACGGTATCAACGTACAGTC -ACGGAACGGTATCAACGTTTGCTG -ACGGAACGGTATCAACGTTCCATG -ACGGAACGGTATCAACGTTGTGTG -ACGGAACGGTATCAACGTCTAGTG -ACGGAACGGTATCAACGTCATCTG -ACGGAACGGTATCAACGTGAGTTG -ACGGAACGGTATCAACGTAGACTG -ACGGAACGGTATCAACGTTCGGTA -ACGGAACGGTATCAACGTTGCCTA -ACGGAACGGTATCAACGTCCACTA -ACGGAACGGTATCAACGTGGAGTA -ACGGAACGGTATCAACGTTCGTCT -ACGGAACGGTATCAACGTTGCACT -ACGGAACGGTATCAACGTCTGACT -ACGGAACGGTATCAACGTCAACCT -ACGGAACGGTATCAACGTGCTACT -ACGGAACGGTATCAACGTGGATCT -ACGGAACGGTATCAACGTAAGGCT -ACGGAACGGTATCAACGTTCAACC -ACGGAACGGTATCAACGTTGTTCC -ACGGAACGGTATCAACGTATTCCC -ACGGAACGGTATCAACGTTTCTCG -ACGGAACGGTATCAACGTTAGACG -ACGGAACGGTATCAACGTGTAACG -ACGGAACGGTATCAACGTACTTCG -ACGGAACGGTATCAACGTTACGCA -ACGGAACGGTATCAACGTCTTGCA -ACGGAACGGTATCAACGTCGAACA -ACGGAACGGTATCAACGTCAGTCA -ACGGAACGGTATCAACGTGATCCA -ACGGAACGGTATCAACGTACGACA -ACGGAACGGTATCAACGTAGCTCA -ACGGAACGGTATCAACGTTCACGT -ACGGAACGGTATCAACGTCGTAGT -ACGGAACGGTATCAACGTGTCAGT -ACGGAACGGTATCAACGTGAAGGT -ACGGAACGGTATCAACGTAACCGT -ACGGAACGGTATCAACGTTTGTGC -ACGGAACGGTATCAACGTCTAAGC -ACGGAACGGTATCAACGTACTAGC -ACGGAACGGTATCAACGTAGATGC -ACGGAACGGTATCAACGTTGAAGG -ACGGAACGGTATCAACGTCAATGG -ACGGAACGGTATCAACGTATGAGG -ACGGAACGGTATCAACGTAATGGG -ACGGAACGGTATCAACGTTCCTGA -ACGGAACGGTATCAACGTTAGCGA -ACGGAACGGTATCAACGTCACAGA -ACGGAACGGTATCAACGTGCAAGA -ACGGAACGGTATCAACGTGGTTGA -ACGGAACGGTATCAACGTTCCGAT -ACGGAACGGTATCAACGTTGGCAT -ACGGAACGGTATCAACGTCGAGAT -ACGGAACGGTATCAACGTTACCAC -ACGGAACGGTATCAACGTCAGAAC -ACGGAACGGTATCAACGTGTCTAC -ACGGAACGGTATCAACGTACGTAC -ACGGAACGGTATCAACGTAGTGAC -ACGGAACGGTATCAACGTCTGTAG -ACGGAACGGTATCAACGTCCTAAG -ACGGAACGGTATCAACGTGTTCAG -ACGGAACGGTATCAACGTGCATAG -ACGGAACGGTATCAACGTGACAAG -ACGGAACGGTATCAACGTAAGCAG -ACGGAACGGTATCAACGTCGTCAA -ACGGAACGGTATCAACGTGCTGAA -ACGGAACGGTATCAACGTAGTACG -ACGGAACGGTATCAACGTATCCGA -ACGGAACGGTATCAACGTATGGGA -ACGGAACGGTATCAACGTGTGCAA -ACGGAACGGTATCAACGTGAGGAA -ACGGAACGGTATCAACGTCAGGTA -ACGGAACGGTATCAACGTGACTCT -ACGGAACGGTATCAACGTAGTCCT -ACGGAACGGTATCAACGTTAAGCC -ACGGAACGGTATCAACGTATAGCC -ACGGAACGGTATCAACGTTAACCG -ACGGAACGGTATCAACGTATGCCA -ACGGAACGGTATGAAGCTGGAAAC -ACGGAACGGTATGAAGCTAACACC -ACGGAACGGTATGAAGCTATCGAG -ACGGAACGGTATGAAGCTCTCCTT -ACGGAACGGTATGAAGCTCCTGTT -ACGGAACGGTATGAAGCTCGGTTT -ACGGAACGGTATGAAGCTGTGGTT -ACGGAACGGTATGAAGCTGCCTTT -ACGGAACGGTATGAAGCTGGTCTT -ACGGAACGGTATGAAGCTACGCTT -ACGGAACGGTATGAAGCTAGCGTT -ACGGAACGGTATGAAGCTTTCGTC -ACGGAACGGTATGAAGCTTCTCTC -ACGGAACGGTATGAAGCTTGGATC -ACGGAACGGTATGAAGCTCACTTC -ACGGAACGGTATGAAGCTGTACTC -ACGGAACGGTATGAAGCTGATGTC -ACGGAACGGTATGAAGCTACAGTC -ACGGAACGGTATGAAGCTTTGCTG -ACGGAACGGTATGAAGCTTCCATG -ACGGAACGGTATGAAGCTTGTGTG -ACGGAACGGTATGAAGCTCTAGTG -ACGGAACGGTATGAAGCTCATCTG -ACGGAACGGTATGAAGCTGAGTTG -ACGGAACGGTATGAAGCTAGACTG -ACGGAACGGTATGAAGCTTCGGTA -ACGGAACGGTATGAAGCTTGCCTA -ACGGAACGGTATGAAGCTCCACTA -ACGGAACGGTATGAAGCTGGAGTA -ACGGAACGGTATGAAGCTTCGTCT -ACGGAACGGTATGAAGCTTGCACT -ACGGAACGGTATGAAGCTCTGACT -ACGGAACGGTATGAAGCTCAACCT -ACGGAACGGTATGAAGCTGCTACT -ACGGAACGGTATGAAGCTGGATCT -ACGGAACGGTATGAAGCTAAGGCT -ACGGAACGGTATGAAGCTTCAACC -ACGGAACGGTATGAAGCTTGTTCC -ACGGAACGGTATGAAGCTATTCCC -ACGGAACGGTATGAAGCTTTCTCG -ACGGAACGGTATGAAGCTTAGACG -ACGGAACGGTATGAAGCTGTAACG -ACGGAACGGTATGAAGCTACTTCG -ACGGAACGGTATGAAGCTTACGCA -ACGGAACGGTATGAAGCTCTTGCA -ACGGAACGGTATGAAGCTCGAACA -ACGGAACGGTATGAAGCTCAGTCA -ACGGAACGGTATGAAGCTGATCCA -ACGGAACGGTATGAAGCTACGACA -ACGGAACGGTATGAAGCTAGCTCA -ACGGAACGGTATGAAGCTTCACGT -ACGGAACGGTATGAAGCTCGTAGT -ACGGAACGGTATGAAGCTGTCAGT -ACGGAACGGTATGAAGCTGAAGGT -ACGGAACGGTATGAAGCTAACCGT -ACGGAACGGTATGAAGCTTTGTGC -ACGGAACGGTATGAAGCTCTAAGC -ACGGAACGGTATGAAGCTACTAGC -ACGGAACGGTATGAAGCTAGATGC -ACGGAACGGTATGAAGCTTGAAGG -ACGGAACGGTATGAAGCTCAATGG -ACGGAACGGTATGAAGCTATGAGG -ACGGAACGGTATGAAGCTAATGGG -ACGGAACGGTATGAAGCTTCCTGA -ACGGAACGGTATGAAGCTTAGCGA -ACGGAACGGTATGAAGCTCACAGA -ACGGAACGGTATGAAGCTGCAAGA -ACGGAACGGTATGAAGCTGGTTGA -ACGGAACGGTATGAAGCTTCCGAT -ACGGAACGGTATGAAGCTTGGCAT -ACGGAACGGTATGAAGCTCGAGAT -ACGGAACGGTATGAAGCTTACCAC -ACGGAACGGTATGAAGCTCAGAAC -ACGGAACGGTATGAAGCTGTCTAC -ACGGAACGGTATGAAGCTACGTAC -ACGGAACGGTATGAAGCTAGTGAC -ACGGAACGGTATGAAGCTCTGTAG -ACGGAACGGTATGAAGCTCCTAAG -ACGGAACGGTATGAAGCTGTTCAG -ACGGAACGGTATGAAGCTGCATAG -ACGGAACGGTATGAAGCTGACAAG -ACGGAACGGTATGAAGCTAAGCAG -ACGGAACGGTATGAAGCTCGTCAA -ACGGAACGGTATGAAGCTGCTGAA -ACGGAACGGTATGAAGCTAGTACG -ACGGAACGGTATGAAGCTATCCGA -ACGGAACGGTATGAAGCTATGGGA -ACGGAACGGTATGAAGCTGTGCAA -ACGGAACGGTATGAAGCTGAGGAA -ACGGAACGGTATGAAGCTCAGGTA -ACGGAACGGTATGAAGCTGACTCT -ACGGAACGGTATGAAGCTAGTCCT -ACGGAACGGTATGAAGCTTAAGCC -ACGGAACGGTATGAAGCTATAGCC -ACGGAACGGTATGAAGCTTAACCG -ACGGAACGGTATGAAGCTATGCCA -ACGGAACGGTATACGAGTGGAAAC -ACGGAACGGTATACGAGTAACACC -ACGGAACGGTATACGAGTATCGAG -ACGGAACGGTATACGAGTCTCCTT -ACGGAACGGTATACGAGTCCTGTT -ACGGAACGGTATACGAGTCGGTTT -ACGGAACGGTATACGAGTGTGGTT -ACGGAACGGTATACGAGTGCCTTT -ACGGAACGGTATACGAGTGGTCTT -ACGGAACGGTATACGAGTACGCTT -ACGGAACGGTATACGAGTAGCGTT -ACGGAACGGTATACGAGTTTCGTC -ACGGAACGGTATACGAGTTCTCTC -ACGGAACGGTATACGAGTTGGATC -ACGGAACGGTATACGAGTCACTTC -ACGGAACGGTATACGAGTGTACTC -ACGGAACGGTATACGAGTGATGTC -ACGGAACGGTATACGAGTACAGTC -ACGGAACGGTATACGAGTTTGCTG -ACGGAACGGTATACGAGTTCCATG -ACGGAACGGTATACGAGTTGTGTG -ACGGAACGGTATACGAGTCTAGTG -ACGGAACGGTATACGAGTCATCTG -ACGGAACGGTATACGAGTGAGTTG -ACGGAACGGTATACGAGTAGACTG -ACGGAACGGTATACGAGTTCGGTA -ACGGAACGGTATACGAGTTGCCTA -ACGGAACGGTATACGAGTCCACTA -ACGGAACGGTATACGAGTGGAGTA -ACGGAACGGTATACGAGTTCGTCT -ACGGAACGGTATACGAGTTGCACT -ACGGAACGGTATACGAGTCTGACT -ACGGAACGGTATACGAGTCAACCT -ACGGAACGGTATACGAGTGCTACT -ACGGAACGGTATACGAGTGGATCT -ACGGAACGGTATACGAGTAAGGCT -ACGGAACGGTATACGAGTTCAACC -ACGGAACGGTATACGAGTTGTTCC -ACGGAACGGTATACGAGTATTCCC -ACGGAACGGTATACGAGTTTCTCG -ACGGAACGGTATACGAGTTAGACG -ACGGAACGGTATACGAGTGTAACG -ACGGAACGGTATACGAGTACTTCG -ACGGAACGGTATACGAGTTACGCA -ACGGAACGGTATACGAGTCTTGCA -ACGGAACGGTATACGAGTCGAACA -ACGGAACGGTATACGAGTCAGTCA -ACGGAACGGTATACGAGTGATCCA -ACGGAACGGTATACGAGTACGACA -ACGGAACGGTATACGAGTAGCTCA -ACGGAACGGTATACGAGTTCACGT -ACGGAACGGTATACGAGTCGTAGT -ACGGAACGGTATACGAGTGTCAGT -ACGGAACGGTATACGAGTGAAGGT -ACGGAACGGTATACGAGTAACCGT -ACGGAACGGTATACGAGTTTGTGC -ACGGAACGGTATACGAGTCTAAGC -ACGGAACGGTATACGAGTACTAGC -ACGGAACGGTATACGAGTAGATGC -ACGGAACGGTATACGAGTTGAAGG -ACGGAACGGTATACGAGTCAATGG -ACGGAACGGTATACGAGTATGAGG -ACGGAACGGTATACGAGTAATGGG -ACGGAACGGTATACGAGTTCCTGA -ACGGAACGGTATACGAGTTAGCGA -ACGGAACGGTATACGAGTCACAGA -ACGGAACGGTATACGAGTGCAAGA -ACGGAACGGTATACGAGTGGTTGA -ACGGAACGGTATACGAGTTCCGAT -ACGGAACGGTATACGAGTTGGCAT -ACGGAACGGTATACGAGTCGAGAT -ACGGAACGGTATACGAGTTACCAC -ACGGAACGGTATACGAGTCAGAAC -ACGGAACGGTATACGAGTGTCTAC -ACGGAACGGTATACGAGTACGTAC -ACGGAACGGTATACGAGTAGTGAC -ACGGAACGGTATACGAGTCTGTAG -ACGGAACGGTATACGAGTCCTAAG -ACGGAACGGTATACGAGTGTTCAG -ACGGAACGGTATACGAGTGCATAG -ACGGAACGGTATACGAGTGACAAG -ACGGAACGGTATACGAGTAAGCAG -ACGGAACGGTATACGAGTCGTCAA -ACGGAACGGTATACGAGTGCTGAA -ACGGAACGGTATACGAGTAGTACG -ACGGAACGGTATACGAGTATCCGA -ACGGAACGGTATACGAGTATGGGA -ACGGAACGGTATACGAGTGTGCAA -ACGGAACGGTATACGAGTGAGGAA -ACGGAACGGTATACGAGTCAGGTA -ACGGAACGGTATACGAGTGACTCT -ACGGAACGGTATACGAGTAGTCCT -ACGGAACGGTATACGAGTTAAGCC -ACGGAACGGTATACGAGTATAGCC -ACGGAACGGTATACGAGTTAACCG -ACGGAACGGTATACGAGTATGCCA -ACGGAACGGTATCGAATCGGAAAC -ACGGAACGGTATCGAATCAACACC -ACGGAACGGTATCGAATCATCGAG -ACGGAACGGTATCGAATCCTCCTT -ACGGAACGGTATCGAATCCCTGTT -ACGGAACGGTATCGAATCCGGTTT -ACGGAACGGTATCGAATCGTGGTT -ACGGAACGGTATCGAATCGCCTTT -ACGGAACGGTATCGAATCGGTCTT -ACGGAACGGTATCGAATCACGCTT -ACGGAACGGTATCGAATCAGCGTT -ACGGAACGGTATCGAATCTTCGTC -ACGGAACGGTATCGAATCTCTCTC -ACGGAACGGTATCGAATCTGGATC -ACGGAACGGTATCGAATCCACTTC -ACGGAACGGTATCGAATCGTACTC -ACGGAACGGTATCGAATCGATGTC -ACGGAACGGTATCGAATCACAGTC -ACGGAACGGTATCGAATCTTGCTG -ACGGAACGGTATCGAATCTCCATG -ACGGAACGGTATCGAATCTGTGTG -ACGGAACGGTATCGAATCCTAGTG -ACGGAACGGTATCGAATCCATCTG -ACGGAACGGTATCGAATCGAGTTG -ACGGAACGGTATCGAATCAGACTG -ACGGAACGGTATCGAATCTCGGTA -ACGGAACGGTATCGAATCTGCCTA -ACGGAACGGTATCGAATCCCACTA -ACGGAACGGTATCGAATCGGAGTA -ACGGAACGGTATCGAATCTCGTCT -ACGGAACGGTATCGAATCTGCACT -ACGGAACGGTATCGAATCCTGACT -ACGGAACGGTATCGAATCCAACCT -ACGGAACGGTATCGAATCGCTACT -ACGGAACGGTATCGAATCGGATCT -ACGGAACGGTATCGAATCAAGGCT -ACGGAACGGTATCGAATCTCAACC -ACGGAACGGTATCGAATCTGTTCC -ACGGAACGGTATCGAATCATTCCC -ACGGAACGGTATCGAATCTTCTCG -ACGGAACGGTATCGAATCTAGACG -ACGGAACGGTATCGAATCGTAACG -ACGGAACGGTATCGAATCACTTCG -ACGGAACGGTATCGAATCTACGCA -ACGGAACGGTATCGAATCCTTGCA -ACGGAACGGTATCGAATCCGAACA -ACGGAACGGTATCGAATCCAGTCA -ACGGAACGGTATCGAATCGATCCA -ACGGAACGGTATCGAATCACGACA -ACGGAACGGTATCGAATCAGCTCA -ACGGAACGGTATCGAATCTCACGT -ACGGAACGGTATCGAATCCGTAGT -ACGGAACGGTATCGAATCGTCAGT -ACGGAACGGTATCGAATCGAAGGT -ACGGAACGGTATCGAATCAACCGT -ACGGAACGGTATCGAATCTTGTGC -ACGGAACGGTATCGAATCCTAAGC -ACGGAACGGTATCGAATCACTAGC -ACGGAACGGTATCGAATCAGATGC -ACGGAACGGTATCGAATCTGAAGG -ACGGAACGGTATCGAATCCAATGG -ACGGAACGGTATCGAATCATGAGG -ACGGAACGGTATCGAATCAATGGG -ACGGAACGGTATCGAATCTCCTGA -ACGGAACGGTATCGAATCTAGCGA -ACGGAACGGTATCGAATCCACAGA -ACGGAACGGTATCGAATCGCAAGA -ACGGAACGGTATCGAATCGGTTGA -ACGGAACGGTATCGAATCTCCGAT -ACGGAACGGTATCGAATCTGGCAT -ACGGAACGGTATCGAATCCGAGAT -ACGGAACGGTATCGAATCTACCAC -ACGGAACGGTATCGAATCCAGAAC -ACGGAACGGTATCGAATCGTCTAC -ACGGAACGGTATCGAATCACGTAC -ACGGAACGGTATCGAATCAGTGAC -ACGGAACGGTATCGAATCCTGTAG -ACGGAACGGTATCGAATCCCTAAG -ACGGAACGGTATCGAATCGTTCAG -ACGGAACGGTATCGAATCGCATAG -ACGGAACGGTATCGAATCGACAAG -ACGGAACGGTATCGAATCAAGCAG -ACGGAACGGTATCGAATCCGTCAA -ACGGAACGGTATCGAATCGCTGAA -ACGGAACGGTATCGAATCAGTACG -ACGGAACGGTATCGAATCATCCGA -ACGGAACGGTATCGAATCATGGGA -ACGGAACGGTATCGAATCGTGCAA -ACGGAACGGTATCGAATCGAGGAA -ACGGAACGGTATCGAATCCAGGTA -ACGGAACGGTATCGAATCGACTCT -ACGGAACGGTATCGAATCAGTCCT -ACGGAACGGTATCGAATCTAAGCC -ACGGAACGGTATCGAATCATAGCC -ACGGAACGGTATCGAATCTAACCG -ACGGAACGGTATCGAATCATGCCA -ACGGAACGGTATGGAATGGGAAAC -ACGGAACGGTATGGAATGAACACC -ACGGAACGGTATGGAATGATCGAG -ACGGAACGGTATGGAATGCTCCTT -ACGGAACGGTATGGAATGCCTGTT -ACGGAACGGTATGGAATGCGGTTT -ACGGAACGGTATGGAATGGTGGTT -ACGGAACGGTATGGAATGGCCTTT -ACGGAACGGTATGGAATGGGTCTT -ACGGAACGGTATGGAATGACGCTT -ACGGAACGGTATGGAATGAGCGTT -ACGGAACGGTATGGAATGTTCGTC -ACGGAACGGTATGGAATGTCTCTC -ACGGAACGGTATGGAATGTGGATC -ACGGAACGGTATGGAATGCACTTC -ACGGAACGGTATGGAATGGTACTC -ACGGAACGGTATGGAATGGATGTC -ACGGAACGGTATGGAATGACAGTC -ACGGAACGGTATGGAATGTTGCTG -ACGGAACGGTATGGAATGTCCATG -ACGGAACGGTATGGAATGTGTGTG -ACGGAACGGTATGGAATGCTAGTG -ACGGAACGGTATGGAATGCATCTG -ACGGAACGGTATGGAATGGAGTTG -ACGGAACGGTATGGAATGAGACTG -ACGGAACGGTATGGAATGTCGGTA -ACGGAACGGTATGGAATGTGCCTA -ACGGAACGGTATGGAATGCCACTA -ACGGAACGGTATGGAATGGGAGTA -ACGGAACGGTATGGAATGTCGTCT -ACGGAACGGTATGGAATGTGCACT -ACGGAACGGTATGGAATGCTGACT -ACGGAACGGTATGGAATGCAACCT -ACGGAACGGTATGGAATGGCTACT -ACGGAACGGTATGGAATGGGATCT -ACGGAACGGTATGGAATGAAGGCT -ACGGAACGGTATGGAATGTCAACC -ACGGAACGGTATGGAATGTGTTCC -ACGGAACGGTATGGAATGATTCCC -ACGGAACGGTATGGAATGTTCTCG -ACGGAACGGTATGGAATGTAGACG -ACGGAACGGTATGGAATGGTAACG -ACGGAACGGTATGGAATGACTTCG -ACGGAACGGTATGGAATGTACGCA -ACGGAACGGTATGGAATGCTTGCA -ACGGAACGGTATGGAATGCGAACA -ACGGAACGGTATGGAATGCAGTCA -ACGGAACGGTATGGAATGGATCCA -ACGGAACGGTATGGAATGACGACA -ACGGAACGGTATGGAATGAGCTCA -ACGGAACGGTATGGAATGTCACGT -ACGGAACGGTATGGAATGCGTAGT -ACGGAACGGTATGGAATGGTCAGT -ACGGAACGGTATGGAATGGAAGGT -ACGGAACGGTATGGAATGAACCGT -ACGGAACGGTATGGAATGTTGTGC -ACGGAACGGTATGGAATGCTAAGC -ACGGAACGGTATGGAATGACTAGC -ACGGAACGGTATGGAATGAGATGC -ACGGAACGGTATGGAATGTGAAGG -ACGGAACGGTATGGAATGCAATGG -ACGGAACGGTATGGAATGATGAGG -ACGGAACGGTATGGAATGAATGGG -ACGGAACGGTATGGAATGTCCTGA -ACGGAACGGTATGGAATGTAGCGA -ACGGAACGGTATGGAATGCACAGA -ACGGAACGGTATGGAATGGCAAGA -ACGGAACGGTATGGAATGGGTTGA -ACGGAACGGTATGGAATGTCCGAT -ACGGAACGGTATGGAATGTGGCAT -ACGGAACGGTATGGAATGCGAGAT -ACGGAACGGTATGGAATGTACCAC -ACGGAACGGTATGGAATGCAGAAC -ACGGAACGGTATGGAATGGTCTAC -ACGGAACGGTATGGAATGACGTAC -ACGGAACGGTATGGAATGAGTGAC -ACGGAACGGTATGGAATGCTGTAG -ACGGAACGGTATGGAATGCCTAAG -ACGGAACGGTATGGAATGGTTCAG -ACGGAACGGTATGGAATGGCATAG -ACGGAACGGTATGGAATGGACAAG -ACGGAACGGTATGGAATGAAGCAG -ACGGAACGGTATGGAATGCGTCAA -ACGGAACGGTATGGAATGGCTGAA -ACGGAACGGTATGGAATGAGTACG -ACGGAACGGTATGGAATGATCCGA -ACGGAACGGTATGGAATGATGGGA -ACGGAACGGTATGGAATGGTGCAA -ACGGAACGGTATGGAATGGAGGAA -ACGGAACGGTATGGAATGCAGGTA -ACGGAACGGTATGGAATGGACTCT -ACGGAACGGTATGGAATGAGTCCT -ACGGAACGGTATGGAATGTAAGCC -ACGGAACGGTATGGAATGATAGCC -ACGGAACGGTATGGAATGTAACCG -ACGGAACGGTATGGAATGATGCCA -ACGGAACGGTATCAAGTGGGAAAC -ACGGAACGGTATCAAGTGAACACC -ACGGAACGGTATCAAGTGATCGAG -ACGGAACGGTATCAAGTGCTCCTT -ACGGAACGGTATCAAGTGCCTGTT -ACGGAACGGTATCAAGTGCGGTTT -ACGGAACGGTATCAAGTGGTGGTT -ACGGAACGGTATCAAGTGGCCTTT -ACGGAACGGTATCAAGTGGGTCTT -ACGGAACGGTATCAAGTGACGCTT -ACGGAACGGTATCAAGTGAGCGTT -ACGGAACGGTATCAAGTGTTCGTC -ACGGAACGGTATCAAGTGTCTCTC -ACGGAACGGTATCAAGTGTGGATC -ACGGAACGGTATCAAGTGCACTTC -ACGGAACGGTATCAAGTGGTACTC -ACGGAACGGTATCAAGTGGATGTC -ACGGAACGGTATCAAGTGACAGTC -ACGGAACGGTATCAAGTGTTGCTG -ACGGAACGGTATCAAGTGTCCATG -ACGGAACGGTATCAAGTGTGTGTG -ACGGAACGGTATCAAGTGCTAGTG -ACGGAACGGTATCAAGTGCATCTG -ACGGAACGGTATCAAGTGGAGTTG -ACGGAACGGTATCAAGTGAGACTG -ACGGAACGGTATCAAGTGTCGGTA -ACGGAACGGTATCAAGTGTGCCTA -ACGGAACGGTATCAAGTGCCACTA -ACGGAACGGTATCAAGTGGGAGTA -ACGGAACGGTATCAAGTGTCGTCT -ACGGAACGGTATCAAGTGTGCACT -ACGGAACGGTATCAAGTGCTGACT -ACGGAACGGTATCAAGTGCAACCT -ACGGAACGGTATCAAGTGGCTACT -ACGGAACGGTATCAAGTGGGATCT -ACGGAACGGTATCAAGTGAAGGCT -ACGGAACGGTATCAAGTGTCAACC -ACGGAACGGTATCAAGTGTGTTCC -ACGGAACGGTATCAAGTGATTCCC -ACGGAACGGTATCAAGTGTTCTCG -ACGGAACGGTATCAAGTGTAGACG -ACGGAACGGTATCAAGTGGTAACG -ACGGAACGGTATCAAGTGACTTCG -ACGGAACGGTATCAAGTGTACGCA -ACGGAACGGTATCAAGTGCTTGCA -ACGGAACGGTATCAAGTGCGAACA -ACGGAACGGTATCAAGTGCAGTCA -ACGGAACGGTATCAAGTGGATCCA -ACGGAACGGTATCAAGTGACGACA -ACGGAACGGTATCAAGTGAGCTCA -ACGGAACGGTATCAAGTGTCACGT -ACGGAACGGTATCAAGTGCGTAGT -ACGGAACGGTATCAAGTGGTCAGT -ACGGAACGGTATCAAGTGGAAGGT -ACGGAACGGTATCAAGTGAACCGT -ACGGAACGGTATCAAGTGTTGTGC -ACGGAACGGTATCAAGTGCTAAGC -ACGGAACGGTATCAAGTGACTAGC -ACGGAACGGTATCAAGTGAGATGC -ACGGAACGGTATCAAGTGTGAAGG -ACGGAACGGTATCAAGTGCAATGG -ACGGAACGGTATCAAGTGATGAGG -ACGGAACGGTATCAAGTGAATGGG -ACGGAACGGTATCAAGTGTCCTGA -ACGGAACGGTATCAAGTGTAGCGA -ACGGAACGGTATCAAGTGCACAGA -ACGGAACGGTATCAAGTGGCAAGA -ACGGAACGGTATCAAGTGGGTTGA -ACGGAACGGTATCAAGTGTCCGAT -ACGGAACGGTATCAAGTGTGGCAT -ACGGAACGGTATCAAGTGCGAGAT -ACGGAACGGTATCAAGTGTACCAC -ACGGAACGGTATCAAGTGCAGAAC -ACGGAACGGTATCAAGTGGTCTAC -ACGGAACGGTATCAAGTGACGTAC -ACGGAACGGTATCAAGTGAGTGAC -ACGGAACGGTATCAAGTGCTGTAG -ACGGAACGGTATCAAGTGCCTAAG -ACGGAACGGTATCAAGTGGTTCAG -ACGGAACGGTATCAAGTGGCATAG -ACGGAACGGTATCAAGTGGACAAG -ACGGAACGGTATCAAGTGAAGCAG -ACGGAACGGTATCAAGTGCGTCAA -ACGGAACGGTATCAAGTGGCTGAA -ACGGAACGGTATCAAGTGAGTACG -ACGGAACGGTATCAAGTGATCCGA -ACGGAACGGTATCAAGTGATGGGA -ACGGAACGGTATCAAGTGGTGCAA -ACGGAACGGTATCAAGTGGAGGAA -ACGGAACGGTATCAAGTGCAGGTA -ACGGAACGGTATCAAGTGGACTCT -ACGGAACGGTATCAAGTGAGTCCT -ACGGAACGGTATCAAGTGTAAGCC -ACGGAACGGTATCAAGTGATAGCC -ACGGAACGGTATCAAGTGTAACCG -ACGGAACGGTATCAAGTGATGCCA -ACGGAACGGTATGAAGAGGGAAAC -ACGGAACGGTATGAAGAGAACACC -ACGGAACGGTATGAAGAGATCGAG -ACGGAACGGTATGAAGAGCTCCTT -ACGGAACGGTATGAAGAGCCTGTT -ACGGAACGGTATGAAGAGCGGTTT -ACGGAACGGTATGAAGAGGTGGTT -ACGGAACGGTATGAAGAGGCCTTT -ACGGAACGGTATGAAGAGGGTCTT -ACGGAACGGTATGAAGAGACGCTT -ACGGAACGGTATGAAGAGAGCGTT -ACGGAACGGTATGAAGAGTTCGTC -ACGGAACGGTATGAAGAGTCTCTC -ACGGAACGGTATGAAGAGTGGATC -ACGGAACGGTATGAAGAGCACTTC -ACGGAACGGTATGAAGAGGTACTC -ACGGAACGGTATGAAGAGGATGTC -ACGGAACGGTATGAAGAGACAGTC -ACGGAACGGTATGAAGAGTTGCTG -ACGGAACGGTATGAAGAGTCCATG -ACGGAACGGTATGAAGAGTGTGTG -ACGGAACGGTATGAAGAGCTAGTG -ACGGAACGGTATGAAGAGCATCTG -ACGGAACGGTATGAAGAGGAGTTG -ACGGAACGGTATGAAGAGAGACTG -ACGGAACGGTATGAAGAGTCGGTA -ACGGAACGGTATGAAGAGTGCCTA -ACGGAACGGTATGAAGAGCCACTA -ACGGAACGGTATGAAGAGGGAGTA -ACGGAACGGTATGAAGAGTCGTCT -ACGGAACGGTATGAAGAGTGCACT -ACGGAACGGTATGAAGAGCTGACT -ACGGAACGGTATGAAGAGCAACCT -ACGGAACGGTATGAAGAGGCTACT -ACGGAACGGTATGAAGAGGGATCT -ACGGAACGGTATGAAGAGAAGGCT -ACGGAACGGTATGAAGAGTCAACC -ACGGAACGGTATGAAGAGTGTTCC -ACGGAACGGTATGAAGAGATTCCC -ACGGAACGGTATGAAGAGTTCTCG -ACGGAACGGTATGAAGAGTAGACG -ACGGAACGGTATGAAGAGGTAACG -ACGGAACGGTATGAAGAGACTTCG -ACGGAACGGTATGAAGAGTACGCA -ACGGAACGGTATGAAGAGCTTGCA -ACGGAACGGTATGAAGAGCGAACA -ACGGAACGGTATGAAGAGCAGTCA -ACGGAACGGTATGAAGAGGATCCA -ACGGAACGGTATGAAGAGACGACA -ACGGAACGGTATGAAGAGAGCTCA -ACGGAACGGTATGAAGAGTCACGT -ACGGAACGGTATGAAGAGCGTAGT -ACGGAACGGTATGAAGAGGTCAGT -ACGGAACGGTATGAAGAGGAAGGT -ACGGAACGGTATGAAGAGAACCGT -ACGGAACGGTATGAAGAGTTGTGC -ACGGAACGGTATGAAGAGCTAAGC -ACGGAACGGTATGAAGAGACTAGC -ACGGAACGGTATGAAGAGAGATGC -ACGGAACGGTATGAAGAGTGAAGG -ACGGAACGGTATGAAGAGCAATGG -ACGGAACGGTATGAAGAGATGAGG -ACGGAACGGTATGAAGAGAATGGG -ACGGAACGGTATGAAGAGTCCTGA -ACGGAACGGTATGAAGAGTAGCGA -ACGGAACGGTATGAAGAGCACAGA -ACGGAACGGTATGAAGAGGCAAGA -ACGGAACGGTATGAAGAGGGTTGA -ACGGAACGGTATGAAGAGTCCGAT -ACGGAACGGTATGAAGAGTGGCAT -ACGGAACGGTATGAAGAGCGAGAT -ACGGAACGGTATGAAGAGTACCAC -ACGGAACGGTATGAAGAGCAGAAC -ACGGAACGGTATGAAGAGGTCTAC -ACGGAACGGTATGAAGAGACGTAC -ACGGAACGGTATGAAGAGAGTGAC -ACGGAACGGTATGAAGAGCTGTAG -ACGGAACGGTATGAAGAGCCTAAG -ACGGAACGGTATGAAGAGGTTCAG -ACGGAACGGTATGAAGAGGCATAG -ACGGAACGGTATGAAGAGGACAAG -ACGGAACGGTATGAAGAGAAGCAG -ACGGAACGGTATGAAGAGCGTCAA -ACGGAACGGTATGAAGAGGCTGAA -ACGGAACGGTATGAAGAGAGTACG -ACGGAACGGTATGAAGAGATCCGA -ACGGAACGGTATGAAGAGATGGGA -ACGGAACGGTATGAAGAGGTGCAA -ACGGAACGGTATGAAGAGGAGGAA -ACGGAACGGTATGAAGAGCAGGTA -ACGGAACGGTATGAAGAGGACTCT -ACGGAACGGTATGAAGAGAGTCCT -ACGGAACGGTATGAAGAGTAAGCC -ACGGAACGGTATGAAGAGATAGCC -ACGGAACGGTATGAAGAGTAACCG -ACGGAACGGTATGAAGAGATGCCA -ACGGAACGGTATGTACAGGGAAAC -ACGGAACGGTATGTACAGAACACC -ACGGAACGGTATGTACAGATCGAG -ACGGAACGGTATGTACAGCTCCTT -ACGGAACGGTATGTACAGCCTGTT -ACGGAACGGTATGTACAGCGGTTT -ACGGAACGGTATGTACAGGTGGTT -ACGGAACGGTATGTACAGGCCTTT -ACGGAACGGTATGTACAGGGTCTT -ACGGAACGGTATGTACAGACGCTT -ACGGAACGGTATGTACAGAGCGTT -ACGGAACGGTATGTACAGTTCGTC -ACGGAACGGTATGTACAGTCTCTC -ACGGAACGGTATGTACAGTGGATC -ACGGAACGGTATGTACAGCACTTC -ACGGAACGGTATGTACAGGTACTC -ACGGAACGGTATGTACAGGATGTC -ACGGAACGGTATGTACAGACAGTC -ACGGAACGGTATGTACAGTTGCTG -ACGGAACGGTATGTACAGTCCATG -ACGGAACGGTATGTACAGTGTGTG -ACGGAACGGTATGTACAGCTAGTG -ACGGAACGGTATGTACAGCATCTG -ACGGAACGGTATGTACAGGAGTTG -ACGGAACGGTATGTACAGAGACTG -ACGGAACGGTATGTACAGTCGGTA -ACGGAACGGTATGTACAGTGCCTA -ACGGAACGGTATGTACAGCCACTA -ACGGAACGGTATGTACAGGGAGTA -ACGGAACGGTATGTACAGTCGTCT -ACGGAACGGTATGTACAGTGCACT -ACGGAACGGTATGTACAGCTGACT -ACGGAACGGTATGTACAGCAACCT -ACGGAACGGTATGTACAGGCTACT -ACGGAACGGTATGTACAGGGATCT -ACGGAACGGTATGTACAGAAGGCT -ACGGAACGGTATGTACAGTCAACC -ACGGAACGGTATGTACAGTGTTCC -ACGGAACGGTATGTACAGATTCCC -ACGGAACGGTATGTACAGTTCTCG -ACGGAACGGTATGTACAGTAGACG -ACGGAACGGTATGTACAGGTAACG -ACGGAACGGTATGTACAGACTTCG -ACGGAACGGTATGTACAGTACGCA -ACGGAACGGTATGTACAGCTTGCA -ACGGAACGGTATGTACAGCGAACA -ACGGAACGGTATGTACAGCAGTCA -ACGGAACGGTATGTACAGGATCCA -ACGGAACGGTATGTACAGACGACA -ACGGAACGGTATGTACAGAGCTCA -ACGGAACGGTATGTACAGTCACGT -ACGGAACGGTATGTACAGCGTAGT -ACGGAACGGTATGTACAGGTCAGT -ACGGAACGGTATGTACAGGAAGGT -ACGGAACGGTATGTACAGAACCGT -ACGGAACGGTATGTACAGTTGTGC -ACGGAACGGTATGTACAGCTAAGC -ACGGAACGGTATGTACAGACTAGC -ACGGAACGGTATGTACAGAGATGC -ACGGAACGGTATGTACAGTGAAGG -ACGGAACGGTATGTACAGCAATGG -ACGGAACGGTATGTACAGATGAGG -ACGGAACGGTATGTACAGAATGGG -ACGGAACGGTATGTACAGTCCTGA -ACGGAACGGTATGTACAGTAGCGA -ACGGAACGGTATGTACAGCACAGA -ACGGAACGGTATGTACAGGCAAGA -ACGGAACGGTATGTACAGGGTTGA -ACGGAACGGTATGTACAGTCCGAT -ACGGAACGGTATGTACAGTGGCAT -ACGGAACGGTATGTACAGCGAGAT -ACGGAACGGTATGTACAGTACCAC -ACGGAACGGTATGTACAGCAGAAC -ACGGAACGGTATGTACAGGTCTAC -ACGGAACGGTATGTACAGACGTAC -ACGGAACGGTATGTACAGAGTGAC -ACGGAACGGTATGTACAGCTGTAG -ACGGAACGGTATGTACAGCCTAAG -ACGGAACGGTATGTACAGGTTCAG -ACGGAACGGTATGTACAGGCATAG -ACGGAACGGTATGTACAGGACAAG -ACGGAACGGTATGTACAGAAGCAG -ACGGAACGGTATGTACAGCGTCAA -ACGGAACGGTATGTACAGGCTGAA -ACGGAACGGTATGTACAGAGTACG -ACGGAACGGTATGTACAGATCCGA -ACGGAACGGTATGTACAGATGGGA -ACGGAACGGTATGTACAGGTGCAA -ACGGAACGGTATGTACAGGAGGAA -ACGGAACGGTATGTACAGCAGGTA -ACGGAACGGTATGTACAGGACTCT -ACGGAACGGTATGTACAGAGTCCT -ACGGAACGGTATGTACAGTAAGCC -ACGGAACGGTATGTACAGATAGCC -ACGGAACGGTATGTACAGTAACCG -ACGGAACGGTATGTACAGATGCCA -ACGGAACGGTATTCTGACGGAAAC -ACGGAACGGTATTCTGACAACACC -ACGGAACGGTATTCTGACATCGAG -ACGGAACGGTATTCTGACCTCCTT -ACGGAACGGTATTCTGACCCTGTT -ACGGAACGGTATTCTGACCGGTTT -ACGGAACGGTATTCTGACGTGGTT -ACGGAACGGTATTCTGACGCCTTT -ACGGAACGGTATTCTGACGGTCTT -ACGGAACGGTATTCTGACACGCTT -ACGGAACGGTATTCTGACAGCGTT -ACGGAACGGTATTCTGACTTCGTC -ACGGAACGGTATTCTGACTCTCTC -ACGGAACGGTATTCTGACTGGATC -ACGGAACGGTATTCTGACCACTTC -ACGGAACGGTATTCTGACGTACTC -ACGGAACGGTATTCTGACGATGTC -ACGGAACGGTATTCTGACACAGTC -ACGGAACGGTATTCTGACTTGCTG -ACGGAACGGTATTCTGACTCCATG -ACGGAACGGTATTCTGACTGTGTG -ACGGAACGGTATTCTGACCTAGTG -ACGGAACGGTATTCTGACCATCTG -ACGGAACGGTATTCTGACGAGTTG -ACGGAACGGTATTCTGACAGACTG -ACGGAACGGTATTCTGACTCGGTA -ACGGAACGGTATTCTGACTGCCTA -ACGGAACGGTATTCTGACCCACTA -ACGGAACGGTATTCTGACGGAGTA -ACGGAACGGTATTCTGACTCGTCT -ACGGAACGGTATTCTGACTGCACT -ACGGAACGGTATTCTGACCTGACT -ACGGAACGGTATTCTGACCAACCT -ACGGAACGGTATTCTGACGCTACT -ACGGAACGGTATTCTGACGGATCT -ACGGAACGGTATTCTGACAAGGCT -ACGGAACGGTATTCTGACTCAACC -ACGGAACGGTATTCTGACTGTTCC -ACGGAACGGTATTCTGACATTCCC -ACGGAACGGTATTCTGACTTCTCG -ACGGAACGGTATTCTGACTAGACG -ACGGAACGGTATTCTGACGTAACG -ACGGAACGGTATTCTGACACTTCG -ACGGAACGGTATTCTGACTACGCA -ACGGAACGGTATTCTGACCTTGCA -ACGGAACGGTATTCTGACCGAACA -ACGGAACGGTATTCTGACCAGTCA -ACGGAACGGTATTCTGACGATCCA -ACGGAACGGTATTCTGACACGACA -ACGGAACGGTATTCTGACAGCTCA -ACGGAACGGTATTCTGACTCACGT -ACGGAACGGTATTCTGACCGTAGT -ACGGAACGGTATTCTGACGTCAGT -ACGGAACGGTATTCTGACGAAGGT -ACGGAACGGTATTCTGACAACCGT -ACGGAACGGTATTCTGACTTGTGC -ACGGAACGGTATTCTGACCTAAGC -ACGGAACGGTATTCTGACACTAGC -ACGGAACGGTATTCTGACAGATGC -ACGGAACGGTATTCTGACTGAAGG -ACGGAACGGTATTCTGACCAATGG -ACGGAACGGTATTCTGACATGAGG -ACGGAACGGTATTCTGACAATGGG -ACGGAACGGTATTCTGACTCCTGA -ACGGAACGGTATTCTGACTAGCGA -ACGGAACGGTATTCTGACCACAGA -ACGGAACGGTATTCTGACGCAAGA -ACGGAACGGTATTCTGACGGTTGA -ACGGAACGGTATTCTGACTCCGAT -ACGGAACGGTATTCTGACTGGCAT -ACGGAACGGTATTCTGACCGAGAT -ACGGAACGGTATTCTGACTACCAC -ACGGAACGGTATTCTGACCAGAAC -ACGGAACGGTATTCTGACGTCTAC -ACGGAACGGTATTCTGACACGTAC -ACGGAACGGTATTCTGACAGTGAC -ACGGAACGGTATTCTGACCTGTAG -ACGGAACGGTATTCTGACCCTAAG -ACGGAACGGTATTCTGACGTTCAG -ACGGAACGGTATTCTGACGCATAG -ACGGAACGGTATTCTGACGACAAG -ACGGAACGGTATTCTGACAAGCAG -ACGGAACGGTATTCTGACCGTCAA -ACGGAACGGTATTCTGACGCTGAA -ACGGAACGGTATTCTGACAGTACG -ACGGAACGGTATTCTGACATCCGA -ACGGAACGGTATTCTGACATGGGA -ACGGAACGGTATTCTGACGTGCAA -ACGGAACGGTATTCTGACGAGGAA -ACGGAACGGTATTCTGACCAGGTA -ACGGAACGGTATTCTGACGACTCT -ACGGAACGGTATTCTGACAGTCCT -ACGGAACGGTATTCTGACTAAGCC -ACGGAACGGTATTCTGACATAGCC -ACGGAACGGTATTCTGACTAACCG -ACGGAACGGTATTCTGACATGCCA -ACGGAACGGTATCCTAGTGGAAAC -ACGGAACGGTATCCTAGTAACACC -ACGGAACGGTATCCTAGTATCGAG -ACGGAACGGTATCCTAGTCTCCTT -ACGGAACGGTATCCTAGTCCTGTT -ACGGAACGGTATCCTAGTCGGTTT -ACGGAACGGTATCCTAGTGTGGTT -ACGGAACGGTATCCTAGTGCCTTT -ACGGAACGGTATCCTAGTGGTCTT -ACGGAACGGTATCCTAGTACGCTT -ACGGAACGGTATCCTAGTAGCGTT -ACGGAACGGTATCCTAGTTTCGTC -ACGGAACGGTATCCTAGTTCTCTC -ACGGAACGGTATCCTAGTTGGATC -ACGGAACGGTATCCTAGTCACTTC -ACGGAACGGTATCCTAGTGTACTC -ACGGAACGGTATCCTAGTGATGTC -ACGGAACGGTATCCTAGTACAGTC -ACGGAACGGTATCCTAGTTTGCTG -ACGGAACGGTATCCTAGTTCCATG -ACGGAACGGTATCCTAGTTGTGTG -ACGGAACGGTATCCTAGTCTAGTG -ACGGAACGGTATCCTAGTCATCTG -ACGGAACGGTATCCTAGTGAGTTG -ACGGAACGGTATCCTAGTAGACTG -ACGGAACGGTATCCTAGTTCGGTA -ACGGAACGGTATCCTAGTTGCCTA -ACGGAACGGTATCCTAGTCCACTA -ACGGAACGGTATCCTAGTGGAGTA -ACGGAACGGTATCCTAGTTCGTCT -ACGGAACGGTATCCTAGTTGCACT -ACGGAACGGTATCCTAGTCTGACT -ACGGAACGGTATCCTAGTCAACCT -ACGGAACGGTATCCTAGTGCTACT -ACGGAACGGTATCCTAGTGGATCT -ACGGAACGGTATCCTAGTAAGGCT -ACGGAACGGTATCCTAGTTCAACC -ACGGAACGGTATCCTAGTTGTTCC -ACGGAACGGTATCCTAGTATTCCC -ACGGAACGGTATCCTAGTTTCTCG -ACGGAACGGTATCCTAGTTAGACG -ACGGAACGGTATCCTAGTGTAACG -ACGGAACGGTATCCTAGTACTTCG -ACGGAACGGTATCCTAGTTACGCA -ACGGAACGGTATCCTAGTCTTGCA -ACGGAACGGTATCCTAGTCGAACA -ACGGAACGGTATCCTAGTCAGTCA -ACGGAACGGTATCCTAGTGATCCA -ACGGAACGGTATCCTAGTACGACA -ACGGAACGGTATCCTAGTAGCTCA -ACGGAACGGTATCCTAGTTCACGT -ACGGAACGGTATCCTAGTCGTAGT -ACGGAACGGTATCCTAGTGTCAGT -ACGGAACGGTATCCTAGTGAAGGT -ACGGAACGGTATCCTAGTAACCGT -ACGGAACGGTATCCTAGTTTGTGC -ACGGAACGGTATCCTAGTCTAAGC -ACGGAACGGTATCCTAGTACTAGC -ACGGAACGGTATCCTAGTAGATGC -ACGGAACGGTATCCTAGTTGAAGG -ACGGAACGGTATCCTAGTCAATGG -ACGGAACGGTATCCTAGTATGAGG -ACGGAACGGTATCCTAGTAATGGG -ACGGAACGGTATCCTAGTTCCTGA -ACGGAACGGTATCCTAGTTAGCGA -ACGGAACGGTATCCTAGTCACAGA -ACGGAACGGTATCCTAGTGCAAGA -ACGGAACGGTATCCTAGTGGTTGA -ACGGAACGGTATCCTAGTTCCGAT -ACGGAACGGTATCCTAGTTGGCAT -ACGGAACGGTATCCTAGTCGAGAT -ACGGAACGGTATCCTAGTTACCAC -ACGGAACGGTATCCTAGTCAGAAC -ACGGAACGGTATCCTAGTGTCTAC -ACGGAACGGTATCCTAGTACGTAC -ACGGAACGGTATCCTAGTAGTGAC -ACGGAACGGTATCCTAGTCTGTAG -ACGGAACGGTATCCTAGTCCTAAG -ACGGAACGGTATCCTAGTGTTCAG -ACGGAACGGTATCCTAGTGCATAG -ACGGAACGGTATCCTAGTGACAAG -ACGGAACGGTATCCTAGTAAGCAG -ACGGAACGGTATCCTAGTCGTCAA -ACGGAACGGTATCCTAGTGCTGAA -ACGGAACGGTATCCTAGTAGTACG -ACGGAACGGTATCCTAGTATCCGA -ACGGAACGGTATCCTAGTATGGGA -ACGGAACGGTATCCTAGTGTGCAA -ACGGAACGGTATCCTAGTGAGGAA -ACGGAACGGTATCCTAGTCAGGTA -ACGGAACGGTATCCTAGTGACTCT -ACGGAACGGTATCCTAGTAGTCCT -ACGGAACGGTATCCTAGTTAAGCC -ACGGAACGGTATCCTAGTATAGCC -ACGGAACGGTATCCTAGTTAACCG -ACGGAACGGTATCCTAGTATGCCA -ACGGAACGGTATGCCTAAGGAAAC -ACGGAACGGTATGCCTAAAACACC -ACGGAACGGTATGCCTAAATCGAG -ACGGAACGGTATGCCTAACTCCTT -ACGGAACGGTATGCCTAACCTGTT -ACGGAACGGTATGCCTAACGGTTT -ACGGAACGGTATGCCTAAGTGGTT -ACGGAACGGTATGCCTAAGCCTTT -ACGGAACGGTATGCCTAAGGTCTT -ACGGAACGGTATGCCTAAACGCTT -ACGGAACGGTATGCCTAAAGCGTT -ACGGAACGGTATGCCTAATTCGTC -ACGGAACGGTATGCCTAATCTCTC -ACGGAACGGTATGCCTAATGGATC -ACGGAACGGTATGCCTAACACTTC -ACGGAACGGTATGCCTAAGTACTC -ACGGAACGGTATGCCTAAGATGTC -ACGGAACGGTATGCCTAAACAGTC -ACGGAACGGTATGCCTAATTGCTG -ACGGAACGGTATGCCTAATCCATG -ACGGAACGGTATGCCTAATGTGTG -ACGGAACGGTATGCCTAACTAGTG -ACGGAACGGTATGCCTAACATCTG -ACGGAACGGTATGCCTAAGAGTTG -ACGGAACGGTATGCCTAAAGACTG -ACGGAACGGTATGCCTAATCGGTA -ACGGAACGGTATGCCTAATGCCTA -ACGGAACGGTATGCCTAACCACTA -ACGGAACGGTATGCCTAAGGAGTA -ACGGAACGGTATGCCTAATCGTCT -ACGGAACGGTATGCCTAATGCACT -ACGGAACGGTATGCCTAACTGACT -ACGGAACGGTATGCCTAACAACCT -ACGGAACGGTATGCCTAAGCTACT -ACGGAACGGTATGCCTAAGGATCT -ACGGAACGGTATGCCTAAAAGGCT -ACGGAACGGTATGCCTAATCAACC -ACGGAACGGTATGCCTAATGTTCC -ACGGAACGGTATGCCTAAATTCCC -ACGGAACGGTATGCCTAATTCTCG -ACGGAACGGTATGCCTAATAGACG -ACGGAACGGTATGCCTAAGTAACG -ACGGAACGGTATGCCTAAACTTCG -ACGGAACGGTATGCCTAATACGCA -ACGGAACGGTATGCCTAACTTGCA -ACGGAACGGTATGCCTAACGAACA -ACGGAACGGTATGCCTAACAGTCA -ACGGAACGGTATGCCTAAGATCCA -ACGGAACGGTATGCCTAAACGACA -ACGGAACGGTATGCCTAAAGCTCA -ACGGAACGGTATGCCTAATCACGT -ACGGAACGGTATGCCTAACGTAGT -ACGGAACGGTATGCCTAAGTCAGT -ACGGAACGGTATGCCTAAGAAGGT -ACGGAACGGTATGCCTAAAACCGT -ACGGAACGGTATGCCTAATTGTGC -ACGGAACGGTATGCCTAACTAAGC -ACGGAACGGTATGCCTAAACTAGC -ACGGAACGGTATGCCTAAAGATGC -ACGGAACGGTATGCCTAATGAAGG -ACGGAACGGTATGCCTAACAATGG -ACGGAACGGTATGCCTAAATGAGG -ACGGAACGGTATGCCTAAAATGGG -ACGGAACGGTATGCCTAATCCTGA -ACGGAACGGTATGCCTAATAGCGA -ACGGAACGGTATGCCTAACACAGA -ACGGAACGGTATGCCTAAGCAAGA -ACGGAACGGTATGCCTAAGGTTGA -ACGGAACGGTATGCCTAATCCGAT -ACGGAACGGTATGCCTAATGGCAT -ACGGAACGGTATGCCTAACGAGAT -ACGGAACGGTATGCCTAATACCAC -ACGGAACGGTATGCCTAACAGAAC -ACGGAACGGTATGCCTAAGTCTAC -ACGGAACGGTATGCCTAAACGTAC -ACGGAACGGTATGCCTAAAGTGAC -ACGGAACGGTATGCCTAACTGTAG -ACGGAACGGTATGCCTAACCTAAG -ACGGAACGGTATGCCTAAGTTCAG -ACGGAACGGTATGCCTAAGCATAG -ACGGAACGGTATGCCTAAGACAAG -ACGGAACGGTATGCCTAAAAGCAG -ACGGAACGGTATGCCTAACGTCAA -ACGGAACGGTATGCCTAAGCTGAA -ACGGAACGGTATGCCTAAAGTACG -ACGGAACGGTATGCCTAAATCCGA -ACGGAACGGTATGCCTAAATGGGA -ACGGAACGGTATGCCTAAGTGCAA -ACGGAACGGTATGCCTAAGAGGAA -ACGGAACGGTATGCCTAACAGGTA -ACGGAACGGTATGCCTAAGACTCT -ACGGAACGGTATGCCTAAAGTCCT -ACGGAACGGTATGCCTAATAAGCC -ACGGAACGGTATGCCTAAATAGCC -ACGGAACGGTATGCCTAATAACCG -ACGGAACGGTATGCCTAAATGCCA -ACGGAACGGTATGCCATAGGAAAC -ACGGAACGGTATGCCATAAACACC -ACGGAACGGTATGCCATAATCGAG -ACGGAACGGTATGCCATACTCCTT -ACGGAACGGTATGCCATACCTGTT -ACGGAACGGTATGCCATACGGTTT -ACGGAACGGTATGCCATAGTGGTT -ACGGAACGGTATGCCATAGCCTTT -ACGGAACGGTATGCCATAGGTCTT -ACGGAACGGTATGCCATAACGCTT -ACGGAACGGTATGCCATAAGCGTT -ACGGAACGGTATGCCATATTCGTC -ACGGAACGGTATGCCATATCTCTC -ACGGAACGGTATGCCATATGGATC -ACGGAACGGTATGCCATACACTTC -ACGGAACGGTATGCCATAGTACTC -ACGGAACGGTATGCCATAGATGTC -ACGGAACGGTATGCCATAACAGTC -ACGGAACGGTATGCCATATTGCTG -ACGGAACGGTATGCCATATCCATG -ACGGAACGGTATGCCATATGTGTG -ACGGAACGGTATGCCATACTAGTG -ACGGAACGGTATGCCATACATCTG -ACGGAACGGTATGCCATAGAGTTG -ACGGAACGGTATGCCATAAGACTG -ACGGAACGGTATGCCATATCGGTA -ACGGAACGGTATGCCATATGCCTA -ACGGAACGGTATGCCATACCACTA -ACGGAACGGTATGCCATAGGAGTA -ACGGAACGGTATGCCATATCGTCT -ACGGAACGGTATGCCATATGCACT -ACGGAACGGTATGCCATACTGACT -ACGGAACGGTATGCCATACAACCT -ACGGAACGGTATGCCATAGCTACT -ACGGAACGGTATGCCATAGGATCT -ACGGAACGGTATGCCATAAAGGCT -ACGGAACGGTATGCCATATCAACC -ACGGAACGGTATGCCATATGTTCC -ACGGAACGGTATGCCATAATTCCC -ACGGAACGGTATGCCATATTCTCG -ACGGAACGGTATGCCATATAGACG -ACGGAACGGTATGCCATAGTAACG -ACGGAACGGTATGCCATAACTTCG -ACGGAACGGTATGCCATATACGCA -ACGGAACGGTATGCCATACTTGCA -ACGGAACGGTATGCCATACGAACA -ACGGAACGGTATGCCATACAGTCA -ACGGAACGGTATGCCATAGATCCA -ACGGAACGGTATGCCATAACGACA -ACGGAACGGTATGCCATAAGCTCA -ACGGAACGGTATGCCATATCACGT -ACGGAACGGTATGCCATACGTAGT -ACGGAACGGTATGCCATAGTCAGT -ACGGAACGGTATGCCATAGAAGGT -ACGGAACGGTATGCCATAAACCGT -ACGGAACGGTATGCCATATTGTGC -ACGGAACGGTATGCCATACTAAGC -ACGGAACGGTATGCCATAACTAGC -ACGGAACGGTATGCCATAAGATGC -ACGGAACGGTATGCCATATGAAGG -ACGGAACGGTATGCCATACAATGG -ACGGAACGGTATGCCATAATGAGG -ACGGAACGGTATGCCATAAATGGG -ACGGAACGGTATGCCATATCCTGA -ACGGAACGGTATGCCATATAGCGA -ACGGAACGGTATGCCATACACAGA -ACGGAACGGTATGCCATAGCAAGA -ACGGAACGGTATGCCATAGGTTGA -ACGGAACGGTATGCCATATCCGAT -ACGGAACGGTATGCCATATGGCAT -ACGGAACGGTATGCCATACGAGAT -ACGGAACGGTATGCCATATACCAC -ACGGAACGGTATGCCATACAGAAC -ACGGAACGGTATGCCATAGTCTAC -ACGGAACGGTATGCCATAACGTAC -ACGGAACGGTATGCCATAAGTGAC -ACGGAACGGTATGCCATACTGTAG -ACGGAACGGTATGCCATACCTAAG -ACGGAACGGTATGCCATAGTTCAG -ACGGAACGGTATGCCATAGCATAG -ACGGAACGGTATGCCATAGACAAG -ACGGAACGGTATGCCATAAAGCAG -ACGGAACGGTATGCCATACGTCAA -ACGGAACGGTATGCCATAGCTGAA -ACGGAACGGTATGCCATAAGTACG -ACGGAACGGTATGCCATAATCCGA -ACGGAACGGTATGCCATAATGGGA -ACGGAACGGTATGCCATAGTGCAA -ACGGAACGGTATGCCATAGAGGAA -ACGGAACGGTATGCCATACAGGTA -ACGGAACGGTATGCCATAGACTCT -ACGGAACGGTATGCCATAAGTCCT -ACGGAACGGTATGCCATATAAGCC -ACGGAACGGTATGCCATAATAGCC -ACGGAACGGTATGCCATATAACCG -ACGGAACGGTATGCCATAATGCCA -ACGGAACGGTATCCGTAAGGAAAC -ACGGAACGGTATCCGTAAAACACC -ACGGAACGGTATCCGTAAATCGAG -ACGGAACGGTATCCGTAACTCCTT -ACGGAACGGTATCCGTAACCTGTT -ACGGAACGGTATCCGTAACGGTTT -ACGGAACGGTATCCGTAAGTGGTT -ACGGAACGGTATCCGTAAGCCTTT -ACGGAACGGTATCCGTAAGGTCTT -ACGGAACGGTATCCGTAAACGCTT -ACGGAACGGTATCCGTAAAGCGTT -ACGGAACGGTATCCGTAATTCGTC -ACGGAACGGTATCCGTAATCTCTC -ACGGAACGGTATCCGTAATGGATC -ACGGAACGGTATCCGTAACACTTC -ACGGAACGGTATCCGTAAGTACTC -ACGGAACGGTATCCGTAAGATGTC -ACGGAACGGTATCCGTAAACAGTC -ACGGAACGGTATCCGTAATTGCTG -ACGGAACGGTATCCGTAATCCATG -ACGGAACGGTATCCGTAATGTGTG -ACGGAACGGTATCCGTAACTAGTG -ACGGAACGGTATCCGTAACATCTG -ACGGAACGGTATCCGTAAGAGTTG -ACGGAACGGTATCCGTAAAGACTG -ACGGAACGGTATCCGTAATCGGTA -ACGGAACGGTATCCGTAATGCCTA -ACGGAACGGTATCCGTAACCACTA -ACGGAACGGTATCCGTAAGGAGTA -ACGGAACGGTATCCGTAATCGTCT -ACGGAACGGTATCCGTAATGCACT -ACGGAACGGTATCCGTAACTGACT -ACGGAACGGTATCCGTAACAACCT -ACGGAACGGTATCCGTAAGCTACT -ACGGAACGGTATCCGTAAGGATCT -ACGGAACGGTATCCGTAAAAGGCT -ACGGAACGGTATCCGTAATCAACC -ACGGAACGGTATCCGTAATGTTCC -ACGGAACGGTATCCGTAAATTCCC -ACGGAACGGTATCCGTAATTCTCG -ACGGAACGGTATCCGTAATAGACG -ACGGAACGGTATCCGTAAGTAACG -ACGGAACGGTATCCGTAAACTTCG -ACGGAACGGTATCCGTAATACGCA -ACGGAACGGTATCCGTAACTTGCA -ACGGAACGGTATCCGTAACGAACA -ACGGAACGGTATCCGTAACAGTCA -ACGGAACGGTATCCGTAAGATCCA -ACGGAACGGTATCCGTAAACGACA -ACGGAACGGTATCCGTAAAGCTCA -ACGGAACGGTATCCGTAATCACGT -ACGGAACGGTATCCGTAACGTAGT -ACGGAACGGTATCCGTAAGTCAGT -ACGGAACGGTATCCGTAAGAAGGT -ACGGAACGGTATCCGTAAAACCGT -ACGGAACGGTATCCGTAATTGTGC -ACGGAACGGTATCCGTAACTAAGC -ACGGAACGGTATCCGTAAACTAGC -ACGGAACGGTATCCGTAAAGATGC -ACGGAACGGTATCCGTAATGAAGG -ACGGAACGGTATCCGTAACAATGG -ACGGAACGGTATCCGTAAATGAGG -ACGGAACGGTATCCGTAAAATGGG -ACGGAACGGTATCCGTAATCCTGA -ACGGAACGGTATCCGTAATAGCGA -ACGGAACGGTATCCGTAACACAGA -ACGGAACGGTATCCGTAAGCAAGA -ACGGAACGGTATCCGTAAGGTTGA -ACGGAACGGTATCCGTAATCCGAT -ACGGAACGGTATCCGTAATGGCAT -ACGGAACGGTATCCGTAACGAGAT -ACGGAACGGTATCCGTAATACCAC -ACGGAACGGTATCCGTAACAGAAC -ACGGAACGGTATCCGTAAGTCTAC -ACGGAACGGTATCCGTAAACGTAC -ACGGAACGGTATCCGTAAAGTGAC -ACGGAACGGTATCCGTAACTGTAG -ACGGAACGGTATCCGTAACCTAAG -ACGGAACGGTATCCGTAAGTTCAG -ACGGAACGGTATCCGTAAGCATAG -ACGGAACGGTATCCGTAAGACAAG -ACGGAACGGTATCCGTAAAAGCAG -ACGGAACGGTATCCGTAACGTCAA -ACGGAACGGTATCCGTAAGCTGAA -ACGGAACGGTATCCGTAAAGTACG -ACGGAACGGTATCCGTAAATCCGA -ACGGAACGGTATCCGTAAATGGGA -ACGGAACGGTATCCGTAAGTGCAA -ACGGAACGGTATCCGTAAGAGGAA -ACGGAACGGTATCCGTAACAGGTA -ACGGAACGGTATCCGTAAGACTCT -ACGGAACGGTATCCGTAAAGTCCT -ACGGAACGGTATCCGTAATAAGCC -ACGGAACGGTATCCGTAAATAGCC -ACGGAACGGTATCCGTAATAACCG -ACGGAACGGTATCCGTAAATGCCA -ACGGAACGGTATCCAATGGGAAAC -ACGGAACGGTATCCAATGAACACC -ACGGAACGGTATCCAATGATCGAG -ACGGAACGGTATCCAATGCTCCTT -ACGGAACGGTATCCAATGCCTGTT -ACGGAACGGTATCCAATGCGGTTT -ACGGAACGGTATCCAATGGTGGTT -ACGGAACGGTATCCAATGGCCTTT -ACGGAACGGTATCCAATGGGTCTT -ACGGAACGGTATCCAATGACGCTT -ACGGAACGGTATCCAATGAGCGTT -ACGGAACGGTATCCAATGTTCGTC -ACGGAACGGTATCCAATGTCTCTC -ACGGAACGGTATCCAATGTGGATC -ACGGAACGGTATCCAATGCACTTC -ACGGAACGGTATCCAATGGTACTC -ACGGAACGGTATCCAATGGATGTC -ACGGAACGGTATCCAATGACAGTC -ACGGAACGGTATCCAATGTTGCTG -ACGGAACGGTATCCAATGTCCATG -ACGGAACGGTATCCAATGTGTGTG -ACGGAACGGTATCCAATGCTAGTG -ACGGAACGGTATCCAATGCATCTG -ACGGAACGGTATCCAATGGAGTTG -ACGGAACGGTATCCAATGAGACTG -ACGGAACGGTATCCAATGTCGGTA -ACGGAACGGTATCCAATGTGCCTA -ACGGAACGGTATCCAATGCCACTA -ACGGAACGGTATCCAATGGGAGTA -ACGGAACGGTATCCAATGTCGTCT -ACGGAACGGTATCCAATGTGCACT -ACGGAACGGTATCCAATGCTGACT -ACGGAACGGTATCCAATGCAACCT -ACGGAACGGTATCCAATGGCTACT -ACGGAACGGTATCCAATGGGATCT -ACGGAACGGTATCCAATGAAGGCT -ACGGAACGGTATCCAATGTCAACC -ACGGAACGGTATCCAATGTGTTCC -ACGGAACGGTATCCAATGATTCCC -ACGGAACGGTATCCAATGTTCTCG -ACGGAACGGTATCCAATGTAGACG -ACGGAACGGTATCCAATGGTAACG -ACGGAACGGTATCCAATGACTTCG -ACGGAACGGTATCCAATGTACGCA -ACGGAACGGTATCCAATGCTTGCA -ACGGAACGGTATCCAATGCGAACA -ACGGAACGGTATCCAATGCAGTCA -ACGGAACGGTATCCAATGGATCCA -ACGGAACGGTATCCAATGACGACA -ACGGAACGGTATCCAATGAGCTCA -ACGGAACGGTATCCAATGTCACGT -ACGGAACGGTATCCAATGCGTAGT -ACGGAACGGTATCCAATGGTCAGT -ACGGAACGGTATCCAATGGAAGGT -ACGGAACGGTATCCAATGAACCGT -ACGGAACGGTATCCAATGTTGTGC -ACGGAACGGTATCCAATGCTAAGC -ACGGAACGGTATCCAATGACTAGC -ACGGAACGGTATCCAATGAGATGC -ACGGAACGGTATCCAATGTGAAGG -ACGGAACGGTATCCAATGCAATGG -ACGGAACGGTATCCAATGATGAGG -ACGGAACGGTATCCAATGAATGGG -ACGGAACGGTATCCAATGTCCTGA -ACGGAACGGTATCCAATGTAGCGA -ACGGAACGGTATCCAATGCACAGA -ACGGAACGGTATCCAATGGCAAGA -ACGGAACGGTATCCAATGGGTTGA -ACGGAACGGTATCCAATGTCCGAT -ACGGAACGGTATCCAATGTGGCAT -ACGGAACGGTATCCAATGCGAGAT -ACGGAACGGTATCCAATGTACCAC -ACGGAACGGTATCCAATGCAGAAC -ACGGAACGGTATCCAATGGTCTAC -ACGGAACGGTATCCAATGACGTAC -ACGGAACGGTATCCAATGAGTGAC -ACGGAACGGTATCCAATGCTGTAG -ACGGAACGGTATCCAATGCCTAAG -ACGGAACGGTATCCAATGGTTCAG -ACGGAACGGTATCCAATGGCATAG -ACGGAACGGTATCCAATGGACAAG -ACGGAACGGTATCCAATGAAGCAG -ACGGAACGGTATCCAATGCGTCAA -ACGGAACGGTATCCAATGGCTGAA -ACGGAACGGTATCCAATGAGTACG -ACGGAACGGTATCCAATGATCCGA -ACGGAACGGTATCCAATGATGGGA -ACGGAACGGTATCCAATGGTGCAA -ACGGAACGGTATCCAATGGAGGAA -ACGGAACGGTATCCAATGCAGGTA -ACGGAACGGTATCCAATGGACTCT -ACGGAACGGTATCCAATGAGTCCT -ACGGAACGGTATCCAATGTAAGCC -ACGGAACGGTATCCAATGATAGCC -ACGGAACGGTATCCAATGTAACCG -ACGGAACGGTATCCAATGATGCCA -ACGGAAGCCTATAACGGAGGAAAC -ACGGAAGCCTATAACGGAAACACC -ACGGAAGCCTATAACGGAATCGAG -ACGGAAGCCTATAACGGACTCCTT -ACGGAAGCCTATAACGGACCTGTT -ACGGAAGCCTATAACGGACGGTTT -ACGGAAGCCTATAACGGAGTGGTT -ACGGAAGCCTATAACGGAGCCTTT -ACGGAAGCCTATAACGGAGGTCTT -ACGGAAGCCTATAACGGAACGCTT -ACGGAAGCCTATAACGGAAGCGTT -ACGGAAGCCTATAACGGATTCGTC -ACGGAAGCCTATAACGGATCTCTC -ACGGAAGCCTATAACGGATGGATC -ACGGAAGCCTATAACGGACACTTC -ACGGAAGCCTATAACGGAGTACTC -ACGGAAGCCTATAACGGAGATGTC -ACGGAAGCCTATAACGGAACAGTC -ACGGAAGCCTATAACGGATTGCTG -ACGGAAGCCTATAACGGATCCATG -ACGGAAGCCTATAACGGATGTGTG -ACGGAAGCCTATAACGGACTAGTG -ACGGAAGCCTATAACGGACATCTG -ACGGAAGCCTATAACGGAGAGTTG -ACGGAAGCCTATAACGGAAGACTG -ACGGAAGCCTATAACGGATCGGTA -ACGGAAGCCTATAACGGATGCCTA -ACGGAAGCCTATAACGGACCACTA -ACGGAAGCCTATAACGGAGGAGTA -ACGGAAGCCTATAACGGATCGTCT -ACGGAAGCCTATAACGGATGCACT -ACGGAAGCCTATAACGGACTGACT -ACGGAAGCCTATAACGGACAACCT -ACGGAAGCCTATAACGGAGCTACT -ACGGAAGCCTATAACGGAGGATCT -ACGGAAGCCTATAACGGAAAGGCT -ACGGAAGCCTATAACGGATCAACC -ACGGAAGCCTATAACGGATGTTCC -ACGGAAGCCTATAACGGAATTCCC -ACGGAAGCCTATAACGGATTCTCG -ACGGAAGCCTATAACGGATAGACG -ACGGAAGCCTATAACGGAGTAACG -ACGGAAGCCTATAACGGAACTTCG -ACGGAAGCCTATAACGGATACGCA -ACGGAAGCCTATAACGGACTTGCA -ACGGAAGCCTATAACGGACGAACA -ACGGAAGCCTATAACGGACAGTCA -ACGGAAGCCTATAACGGAGATCCA -ACGGAAGCCTATAACGGAACGACA -ACGGAAGCCTATAACGGAAGCTCA -ACGGAAGCCTATAACGGATCACGT -ACGGAAGCCTATAACGGACGTAGT -ACGGAAGCCTATAACGGAGTCAGT -ACGGAAGCCTATAACGGAGAAGGT -ACGGAAGCCTATAACGGAAACCGT -ACGGAAGCCTATAACGGATTGTGC -ACGGAAGCCTATAACGGACTAAGC -ACGGAAGCCTATAACGGAACTAGC -ACGGAAGCCTATAACGGAAGATGC -ACGGAAGCCTATAACGGATGAAGG -ACGGAAGCCTATAACGGACAATGG -ACGGAAGCCTATAACGGAATGAGG -ACGGAAGCCTATAACGGAAATGGG -ACGGAAGCCTATAACGGATCCTGA -ACGGAAGCCTATAACGGATAGCGA -ACGGAAGCCTATAACGGACACAGA -ACGGAAGCCTATAACGGAGCAAGA -ACGGAAGCCTATAACGGAGGTTGA -ACGGAAGCCTATAACGGATCCGAT -ACGGAAGCCTATAACGGATGGCAT -ACGGAAGCCTATAACGGACGAGAT -ACGGAAGCCTATAACGGATACCAC -ACGGAAGCCTATAACGGACAGAAC -ACGGAAGCCTATAACGGAGTCTAC -ACGGAAGCCTATAACGGAACGTAC -ACGGAAGCCTATAACGGAAGTGAC -ACGGAAGCCTATAACGGACTGTAG -ACGGAAGCCTATAACGGACCTAAG -ACGGAAGCCTATAACGGAGTTCAG -ACGGAAGCCTATAACGGAGCATAG -ACGGAAGCCTATAACGGAGACAAG -ACGGAAGCCTATAACGGAAAGCAG -ACGGAAGCCTATAACGGACGTCAA -ACGGAAGCCTATAACGGAGCTGAA -ACGGAAGCCTATAACGGAAGTACG -ACGGAAGCCTATAACGGAATCCGA -ACGGAAGCCTATAACGGAATGGGA -ACGGAAGCCTATAACGGAGTGCAA -ACGGAAGCCTATAACGGAGAGGAA -ACGGAAGCCTATAACGGACAGGTA -ACGGAAGCCTATAACGGAGACTCT -ACGGAAGCCTATAACGGAAGTCCT -ACGGAAGCCTATAACGGATAAGCC -ACGGAAGCCTATAACGGAATAGCC -ACGGAAGCCTATAACGGATAACCG -ACGGAAGCCTATAACGGAATGCCA -ACGGAAGCCTATACCAACGGAAAC -ACGGAAGCCTATACCAACAACACC -ACGGAAGCCTATACCAACATCGAG -ACGGAAGCCTATACCAACCTCCTT -ACGGAAGCCTATACCAACCCTGTT -ACGGAAGCCTATACCAACCGGTTT -ACGGAAGCCTATACCAACGTGGTT -ACGGAAGCCTATACCAACGCCTTT -ACGGAAGCCTATACCAACGGTCTT -ACGGAAGCCTATACCAACACGCTT -ACGGAAGCCTATACCAACAGCGTT -ACGGAAGCCTATACCAACTTCGTC -ACGGAAGCCTATACCAACTCTCTC -ACGGAAGCCTATACCAACTGGATC -ACGGAAGCCTATACCAACCACTTC -ACGGAAGCCTATACCAACGTACTC -ACGGAAGCCTATACCAACGATGTC -ACGGAAGCCTATACCAACACAGTC -ACGGAAGCCTATACCAACTTGCTG -ACGGAAGCCTATACCAACTCCATG -ACGGAAGCCTATACCAACTGTGTG -ACGGAAGCCTATACCAACCTAGTG -ACGGAAGCCTATACCAACCATCTG -ACGGAAGCCTATACCAACGAGTTG -ACGGAAGCCTATACCAACAGACTG -ACGGAAGCCTATACCAACTCGGTA -ACGGAAGCCTATACCAACTGCCTA -ACGGAAGCCTATACCAACCCACTA -ACGGAAGCCTATACCAACGGAGTA -ACGGAAGCCTATACCAACTCGTCT -ACGGAAGCCTATACCAACTGCACT -ACGGAAGCCTATACCAACCTGACT -ACGGAAGCCTATACCAACCAACCT -ACGGAAGCCTATACCAACGCTACT -ACGGAAGCCTATACCAACGGATCT -ACGGAAGCCTATACCAACAAGGCT -ACGGAAGCCTATACCAACTCAACC -ACGGAAGCCTATACCAACTGTTCC -ACGGAAGCCTATACCAACATTCCC -ACGGAAGCCTATACCAACTTCTCG -ACGGAAGCCTATACCAACTAGACG -ACGGAAGCCTATACCAACGTAACG -ACGGAAGCCTATACCAACACTTCG -ACGGAAGCCTATACCAACTACGCA -ACGGAAGCCTATACCAACCTTGCA -ACGGAAGCCTATACCAACCGAACA -ACGGAAGCCTATACCAACCAGTCA -ACGGAAGCCTATACCAACGATCCA -ACGGAAGCCTATACCAACACGACA -ACGGAAGCCTATACCAACAGCTCA -ACGGAAGCCTATACCAACTCACGT -ACGGAAGCCTATACCAACCGTAGT -ACGGAAGCCTATACCAACGTCAGT -ACGGAAGCCTATACCAACGAAGGT -ACGGAAGCCTATACCAACAACCGT -ACGGAAGCCTATACCAACTTGTGC -ACGGAAGCCTATACCAACCTAAGC -ACGGAAGCCTATACCAACACTAGC -ACGGAAGCCTATACCAACAGATGC -ACGGAAGCCTATACCAACTGAAGG -ACGGAAGCCTATACCAACCAATGG -ACGGAAGCCTATACCAACATGAGG -ACGGAAGCCTATACCAACAATGGG -ACGGAAGCCTATACCAACTCCTGA -ACGGAAGCCTATACCAACTAGCGA -ACGGAAGCCTATACCAACCACAGA -ACGGAAGCCTATACCAACGCAAGA -ACGGAAGCCTATACCAACGGTTGA -ACGGAAGCCTATACCAACTCCGAT -ACGGAAGCCTATACCAACTGGCAT -ACGGAAGCCTATACCAACCGAGAT -ACGGAAGCCTATACCAACTACCAC -ACGGAAGCCTATACCAACCAGAAC -ACGGAAGCCTATACCAACGTCTAC -ACGGAAGCCTATACCAACACGTAC -ACGGAAGCCTATACCAACAGTGAC -ACGGAAGCCTATACCAACCTGTAG -ACGGAAGCCTATACCAACCCTAAG -ACGGAAGCCTATACCAACGTTCAG -ACGGAAGCCTATACCAACGCATAG -ACGGAAGCCTATACCAACGACAAG -ACGGAAGCCTATACCAACAAGCAG -ACGGAAGCCTATACCAACCGTCAA -ACGGAAGCCTATACCAACGCTGAA -ACGGAAGCCTATACCAACAGTACG -ACGGAAGCCTATACCAACATCCGA -ACGGAAGCCTATACCAACATGGGA -ACGGAAGCCTATACCAACGTGCAA -ACGGAAGCCTATACCAACGAGGAA -ACGGAAGCCTATACCAACCAGGTA -ACGGAAGCCTATACCAACGACTCT -ACGGAAGCCTATACCAACAGTCCT -ACGGAAGCCTATACCAACTAAGCC -ACGGAAGCCTATACCAACATAGCC -ACGGAAGCCTATACCAACTAACCG -ACGGAAGCCTATACCAACATGCCA -ACGGAAGCCTATGAGATCGGAAAC -ACGGAAGCCTATGAGATCAACACC -ACGGAAGCCTATGAGATCATCGAG -ACGGAAGCCTATGAGATCCTCCTT -ACGGAAGCCTATGAGATCCCTGTT -ACGGAAGCCTATGAGATCCGGTTT -ACGGAAGCCTATGAGATCGTGGTT -ACGGAAGCCTATGAGATCGCCTTT -ACGGAAGCCTATGAGATCGGTCTT -ACGGAAGCCTATGAGATCACGCTT -ACGGAAGCCTATGAGATCAGCGTT -ACGGAAGCCTATGAGATCTTCGTC -ACGGAAGCCTATGAGATCTCTCTC -ACGGAAGCCTATGAGATCTGGATC -ACGGAAGCCTATGAGATCCACTTC -ACGGAAGCCTATGAGATCGTACTC -ACGGAAGCCTATGAGATCGATGTC -ACGGAAGCCTATGAGATCACAGTC -ACGGAAGCCTATGAGATCTTGCTG -ACGGAAGCCTATGAGATCTCCATG -ACGGAAGCCTATGAGATCTGTGTG -ACGGAAGCCTATGAGATCCTAGTG -ACGGAAGCCTATGAGATCCATCTG -ACGGAAGCCTATGAGATCGAGTTG -ACGGAAGCCTATGAGATCAGACTG -ACGGAAGCCTATGAGATCTCGGTA -ACGGAAGCCTATGAGATCTGCCTA -ACGGAAGCCTATGAGATCCCACTA -ACGGAAGCCTATGAGATCGGAGTA -ACGGAAGCCTATGAGATCTCGTCT -ACGGAAGCCTATGAGATCTGCACT -ACGGAAGCCTATGAGATCCTGACT -ACGGAAGCCTATGAGATCCAACCT -ACGGAAGCCTATGAGATCGCTACT -ACGGAAGCCTATGAGATCGGATCT -ACGGAAGCCTATGAGATCAAGGCT -ACGGAAGCCTATGAGATCTCAACC -ACGGAAGCCTATGAGATCTGTTCC -ACGGAAGCCTATGAGATCATTCCC -ACGGAAGCCTATGAGATCTTCTCG -ACGGAAGCCTATGAGATCTAGACG -ACGGAAGCCTATGAGATCGTAACG -ACGGAAGCCTATGAGATCACTTCG -ACGGAAGCCTATGAGATCTACGCA -ACGGAAGCCTATGAGATCCTTGCA -ACGGAAGCCTATGAGATCCGAACA -ACGGAAGCCTATGAGATCCAGTCA -ACGGAAGCCTATGAGATCGATCCA -ACGGAAGCCTATGAGATCACGACA -ACGGAAGCCTATGAGATCAGCTCA -ACGGAAGCCTATGAGATCTCACGT -ACGGAAGCCTATGAGATCCGTAGT -ACGGAAGCCTATGAGATCGTCAGT -ACGGAAGCCTATGAGATCGAAGGT -ACGGAAGCCTATGAGATCAACCGT -ACGGAAGCCTATGAGATCTTGTGC -ACGGAAGCCTATGAGATCCTAAGC -ACGGAAGCCTATGAGATCACTAGC -ACGGAAGCCTATGAGATCAGATGC -ACGGAAGCCTATGAGATCTGAAGG -ACGGAAGCCTATGAGATCCAATGG -ACGGAAGCCTATGAGATCATGAGG -ACGGAAGCCTATGAGATCAATGGG -ACGGAAGCCTATGAGATCTCCTGA -ACGGAAGCCTATGAGATCTAGCGA -ACGGAAGCCTATGAGATCCACAGA -ACGGAAGCCTATGAGATCGCAAGA -ACGGAAGCCTATGAGATCGGTTGA -ACGGAAGCCTATGAGATCTCCGAT -ACGGAAGCCTATGAGATCTGGCAT -ACGGAAGCCTATGAGATCCGAGAT -ACGGAAGCCTATGAGATCTACCAC -ACGGAAGCCTATGAGATCCAGAAC -ACGGAAGCCTATGAGATCGTCTAC -ACGGAAGCCTATGAGATCACGTAC -ACGGAAGCCTATGAGATCAGTGAC -ACGGAAGCCTATGAGATCCTGTAG -ACGGAAGCCTATGAGATCCCTAAG -ACGGAAGCCTATGAGATCGTTCAG -ACGGAAGCCTATGAGATCGCATAG -ACGGAAGCCTATGAGATCGACAAG -ACGGAAGCCTATGAGATCAAGCAG -ACGGAAGCCTATGAGATCCGTCAA -ACGGAAGCCTATGAGATCGCTGAA -ACGGAAGCCTATGAGATCAGTACG -ACGGAAGCCTATGAGATCATCCGA -ACGGAAGCCTATGAGATCATGGGA -ACGGAAGCCTATGAGATCGTGCAA -ACGGAAGCCTATGAGATCGAGGAA -ACGGAAGCCTATGAGATCCAGGTA -ACGGAAGCCTATGAGATCGACTCT -ACGGAAGCCTATGAGATCAGTCCT -ACGGAAGCCTATGAGATCTAAGCC -ACGGAAGCCTATGAGATCATAGCC -ACGGAAGCCTATGAGATCTAACCG -ACGGAAGCCTATGAGATCATGCCA -ACGGAAGCCTATCTTCTCGGAAAC -ACGGAAGCCTATCTTCTCAACACC -ACGGAAGCCTATCTTCTCATCGAG -ACGGAAGCCTATCTTCTCCTCCTT -ACGGAAGCCTATCTTCTCCCTGTT -ACGGAAGCCTATCTTCTCCGGTTT -ACGGAAGCCTATCTTCTCGTGGTT -ACGGAAGCCTATCTTCTCGCCTTT -ACGGAAGCCTATCTTCTCGGTCTT -ACGGAAGCCTATCTTCTCACGCTT -ACGGAAGCCTATCTTCTCAGCGTT -ACGGAAGCCTATCTTCTCTTCGTC -ACGGAAGCCTATCTTCTCTCTCTC -ACGGAAGCCTATCTTCTCTGGATC -ACGGAAGCCTATCTTCTCCACTTC -ACGGAAGCCTATCTTCTCGTACTC -ACGGAAGCCTATCTTCTCGATGTC -ACGGAAGCCTATCTTCTCACAGTC -ACGGAAGCCTATCTTCTCTTGCTG -ACGGAAGCCTATCTTCTCTCCATG -ACGGAAGCCTATCTTCTCTGTGTG -ACGGAAGCCTATCTTCTCCTAGTG -ACGGAAGCCTATCTTCTCCATCTG -ACGGAAGCCTATCTTCTCGAGTTG -ACGGAAGCCTATCTTCTCAGACTG -ACGGAAGCCTATCTTCTCTCGGTA -ACGGAAGCCTATCTTCTCTGCCTA -ACGGAAGCCTATCTTCTCCCACTA -ACGGAAGCCTATCTTCTCGGAGTA -ACGGAAGCCTATCTTCTCTCGTCT -ACGGAAGCCTATCTTCTCTGCACT -ACGGAAGCCTATCTTCTCCTGACT -ACGGAAGCCTATCTTCTCCAACCT -ACGGAAGCCTATCTTCTCGCTACT -ACGGAAGCCTATCTTCTCGGATCT -ACGGAAGCCTATCTTCTCAAGGCT -ACGGAAGCCTATCTTCTCTCAACC -ACGGAAGCCTATCTTCTCTGTTCC -ACGGAAGCCTATCTTCTCATTCCC -ACGGAAGCCTATCTTCTCTTCTCG -ACGGAAGCCTATCTTCTCTAGACG -ACGGAAGCCTATCTTCTCGTAACG -ACGGAAGCCTATCTTCTCACTTCG -ACGGAAGCCTATCTTCTCTACGCA -ACGGAAGCCTATCTTCTCCTTGCA -ACGGAAGCCTATCTTCTCCGAACA -ACGGAAGCCTATCTTCTCCAGTCA -ACGGAAGCCTATCTTCTCGATCCA -ACGGAAGCCTATCTTCTCACGACA -ACGGAAGCCTATCTTCTCAGCTCA -ACGGAAGCCTATCTTCTCTCACGT -ACGGAAGCCTATCTTCTCCGTAGT -ACGGAAGCCTATCTTCTCGTCAGT -ACGGAAGCCTATCTTCTCGAAGGT -ACGGAAGCCTATCTTCTCAACCGT -ACGGAAGCCTATCTTCTCTTGTGC -ACGGAAGCCTATCTTCTCCTAAGC -ACGGAAGCCTATCTTCTCACTAGC -ACGGAAGCCTATCTTCTCAGATGC -ACGGAAGCCTATCTTCTCTGAAGG -ACGGAAGCCTATCTTCTCCAATGG -ACGGAAGCCTATCTTCTCATGAGG -ACGGAAGCCTATCTTCTCAATGGG -ACGGAAGCCTATCTTCTCTCCTGA -ACGGAAGCCTATCTTCTCTAGCGA -ACGGAAGCCTATCTTCTCCACAGA -ACGGAAGCCTATCTTCTCGCAAGA -ACGGAAGCCTATCTTCTCGGTTGA -ACGGAAGCCTATCTTCTCTCCGAT -ACGGAAGCCTATCTTCTCTGGCAT -ACGGAAGCCTATCTTCTCCGAGAT -ACGGAAGCCTATCTTCTCTACCAC -ACGGAAGCCTATCTTCTCCAGAAC -ACGGAAGCCTATCTTCTCGTCTAC -ACGGAAGCCTATCTTCTCACGTAC -ACGGAAGCCTATCTTCTCAGTGAC -ACGGAAGCCTATCTTCTCCTGTAG -ACGGAAGCCTATCTTCTCCCTAAG -ACGGAAGCCTATCTTCTCGTTCAG -ACGGAAGCCTATCTTCTCGCATAG -ACGGAAGCCTATCTTCTCGACAAG -ACGGAAGCCTATCTTCTCAAGCAG -ACGGAAGCCTATCTTCTCCGTCAA -ACGGAAGCCTATCTTCTCGCTGAA -ACGGAAGCCTATCTTCTCAGTACG -ACGGAAGCCTATCTTCTCATCCGA -ACGGAAGCCTATCTTCTCATGGGA -ACGGAAGCCTATCTTCTCGTGCAA -ACGGAAGCCTATCTTCTCGAGGAA -ACGGAAGCCTATCTTCTCCAGGTA -ACGGAAGCCTATCTTCTCGACTCT -ACGGAAGCCTATCTTCTCAGTCCT -ACGGAAGCCTATCTTCTCTAAGCC -ACGGAAGCCTATCTTCTCATAGCC -ACGGAAGCCTATCTTCTCTAACCG -ACGGAAGCCTATCTTCTCATGCCA -ACGGAAGCCTATGTTCCTGGAAAC -ACGGAAGCCTATGTTCCTAACACC -ACGGAAGCCTATGTTCCTATCGAG -ACGGAAGCCTATGTTCCTCTCCTT -ACGGAAGCCTATGTTCCTCCTGTT -ACGGAAGCCTATGTTCCTCGGTTT -ACGGAAGCCTATGTTCCTGTGGTT -ACGGAAGCCTATGTTCCTGCCTTT -ACGGAAGCCTATGTTCCTGGTCTT -ACGGAAGCCTATGTTCCTACGCTT -ACGGAAGCCTATGTTCCTAGCGTT -ACGGAAGCCTATGTTCCTTTCGTC -ACGGAAGCCTATGTTCCTTCTCTC -ACGGAAGCCTATGTTCCTTGGATC -ACGGAAGCCTATGTTCCTCACTTC -ACGGAAGCCTATGTTCCTGTACTC -ACGGAAGCCTATGTTCCTGATGTC -ACGGAAGCCTATGTTCCTACAGTC -ACGGAAGCCTATGTTCCTTTGCTG -ACGGAAGCCTATGTTCCTTCCATG -ACGGAAGCCTATGTTCCTTGTGTG -ACGGAAGCCTATGTTCCTCTAGTG -ACGGAAGCCTATGTTCCTCATCTG -ACGGAAGCCTATGTTCCTGAGTTG -ACGGAAGCCTATGTTCCTAGACTG -ACGGAAGCCTATGTTCCTTCGGTA -ACGGAAGCCTATGTTCCTTGCCTA -ACGGAAGCCTATGTTCCTCCACTA -ACGGAAGCCTATGTTCCTGGAGTA -ACGGAAGCCTATGTTCCTTCGTCT -ACGGAAGCCTATGTTCCTTGCACT -ACGGAAGCCTATGTTCCTCTGACT -ACGGAAGCCTATGTTCCTCAACCT -ACGGAAGCCTATGTTCCTGCTACT -ACGGAAGCCTATGTTCCTGGATCT -ACGGAAGCCTATGTTCCTAAGGCT -ACGGAAGCCTATGTTCCTTCAACC -ACGGAAGCCTATGTTCCTTGTTCC -ACGGAAGCCTATGTTCCTATTCCC -ACGGAAGCCTATGTTCCTTTCTCG -ACGGAAGCCTATGTTCCTTAGACG -ACGGAAGCCTATGTTCCTGTAACG -ACGGAAGCCTATGTTCCTACTTCG -ACGGAAGCCTATGTTCCTTACGCA -ACGGAAGCCTATGTTCCTCTTGCA -ACGGAAGCCTATGTTCCTCGAACA -ACGGAAGCCTATGTTCCTCAGTCA -ACGGAAGCCTATGTTCCTGATCCA -ACGGAAGCCTATGTTCCTACGACA -ACGGAAGCCTATGTTCCTAGCTCA -ACGGAAGCCTATGTTCCTTCACGT -ACGGAAGCCTATGTTCCTCGTAGT -ACGGAAGCCTATGTTCCTGTCAGT -ACGGAAGCCTATGTTCCTGAAGGT -ACGGAAGCCTATGTTCCTAACCGT -ACGGAAGCCTATGTTCCTTTGTGC -ACGGAAGCCTATGTTCCTCTAAGC -ACGGAAGCCTATGTTCCTACTAGC -ACGGAAGCCTATGTTCCTAGATGC -ACGGAAGCCTATGTTCCTTGAAGG -ACGGAAGCCTATGTTCCTCAATGG -ACGGAAGCCTATGTTCCTATGAGG -ACGGAAGCCTATGTTCCTAATGGG -ACGGAAGCCTATGTTCCTTCCTGA -ACGGAAGCCTATGTTCCTTAGCGA -ACGGAAGCCTATGTTCCTCACAGA -ACGGAAGCCTATGTTCCTGCAAGA -ACGGAAGCCTATGTTCCTGGTTGA -ACGGAAGCCTATGTTCCTTCCGAT -ACGGAAGCCTATGTTCCTTGGCAT -ACGGAAGCCTATGTTCCTCGAGAT -ACGGAAGCCTATGTTCCTTACCAC -ACGGAAGCCTATGTTCCTCAGAAC -ACGGAAGCCTATGTTCCTGTCTAC -ACGGAAGCCTATGTTCCTACGTAC -ACGGAAGCCTATGTTCCTAGTGAC -ACGGAAGCCTATGTTCCTCTGTAG -ACGGAAGCCTATGTTCCTCCTAAG -ACGGAAGCCTATGTTCCTGTTCAG -ACGGAAGCCTATGTTCCTGCATAG -ACGGAAGCCTATGTTCCTGACAAG -ACGGAAGCCTATGTTCCTAAGCAG -ACGGAAGCCTATGTTCCTCGTCAA -ACGGAAGCCTATGTTCCTGCTGAA -ACGGAAGCCTATGTTCCTAGTACG -ACGGAAGCCTATGTTCCTATCCGA -ACGGAAGCCTATGTTCCTATGGGA -ACGGAAGCCTATGTTCCTGTGCAA -ACGGAAGCCTATGTTCCTGAGGAA -ACGGAAGCCTATGTTCCTCAGGTA -ACGGAAGCCTATGTTCCTGACTCT -ACGGAAGCCTATGTTCCTAGTCCT -ACGGAAGCCTATGTTCCTTAAGCC -ACGGAAGCCTATGTTCCTATAGCC -ACGGAAGCCTATGTTCCTTAACCG -ACGGAAGCCTATGTTCCTATGCCA -ACGGAAGCCTATTTTCGGGGAAAC -ACGGAAGCCTATTTTCGGAACACC -ACGGAAGCCTATTTTCGGATCGAG -ACGGAAGCCTATTTTCGGCTCCTT -ACGGAAGCCTATTTTCGGCCTGTT -ACGGAAGCCTATTTTCGGCGGTTT -ACGGAAGCCTATTTTCGGGTGGTT -ACGGAAGCCTATTTTCGGGCCTTT -ACGGAAGCCTATTTTCGGGGTCTT -ACGGAAGCCTATTTTCGGACGCTT -ACGGAAGCCTATTTTCGGAGCGTT -ACGGAAGCCTATTTTCGGTTCGTC -ACGGAAGCCTATTTTCGGTCTCTC -ACGGAAGCCTATTTTCGGTGGATC -ACGGAAGCCTATTTTCGGCACTTC -ACGGAAGCCTATTTTCGGGTACTC -ACGGAAGCCTATTTTCGGGATGTC -ACGGAAGCCTATTTTCGGACAGTC -ACGGAAGCCTATTTTCGGTTGCTG -ACGGAAGCCTATTTTCGGTCCATG -ACGGAAGCCTATTTTCGGTGTGTG -ACGGAAGCCTATTTTCGGCTAGTG -ACGGAAGCCTATTTTCGGCATCTG -ACGGAAGCCTATTTTCGGGAGTTG -ACGGAAGCCTATTTTCGGAGACTG -ACGGAAGCCTATTTTCGGTCGGTA -ACGGAAGCCTATTTTCGGTGCCTA -ACGGAAGCCTATTTTCGGCCACTA -ACGGAAGCCTATTTTCGGGGAGTA -ACGGAAGCCTATTTTCGGTCGTCT -ACGGAAGCCTATTTTCGGTGCACT -ACGGAAGCCTATTTTCGGCTGACT -ACGGAAGCCTATTTTCGGCAACCT -ACGGAAGCCTATTTTCGGGCTACT -ACGGAAGCCTATTTTCGGGGATCT -ACGGAAGCCTATTTTCGGAAGGCT -ACGGAAGCCTATTTTCGGTCAACC -ACGGAAGCCTATTTTCGGTGTTCC -ACGGAAGCCTATTTTCGGATTCCC -ACGGAAGCCTATTTTCGGTTCTCG -ACGGAAGCCTATTTTCGGTAGACG -ACGGAAGCCTATTTTCGGGTAACG -ACGGAAGCCTATTTTCGGACTTCG -ACGGAAGCCTATTTTCGGTACGCA -ACGGAAGCCTATTTTCGGCTTGCA -ACGGAAGCCTATTTTCGGCGAACA -ACGGAAGCCTATTTTCGGCAGTCA -ACGGAAGCCTATTTTCGGGATCCA -ACGGAAGCCTATTTTCGGACGACA -ACGGAAGCCTATTTTCGGAGCTCA -ACGGAAGCCTATTTTCGGTCACGT -ACGGAAGCCTATTTTCGGCGTAGT -ACGGAAGCCTATTTTCGGGTCAGT -ACGGAAGCCTATTTTCGGGAAGGT -ACGGAAGCCTATTTTCGGAACCGT -ACGGAAGCCTATTTTCGGTTGTGC -ACGGAAGCCTATTTTCGGCTAAGC -ACGGAAGCCTATTTTCGGACTAGC -ACGGAAGCCTATTTTCGGAGATGC -ACGGAAGCCTATTTTCGGTGAAGG -ACGGAAGCCTATTTTCGGCAATGG -ACGGAAGCCTATTTTCGGATGAGG -ACGGAAGCCTATTTTCGGAATGGG -ACGGAAGCCTATTTTCGGTCCTGA -ACGGAAGCCTATTTTCGGTAGCGA -ACGGAAGCCTATTTTCGGCACAGA -ACGGAAGCCTATTTTCGGGCAAGA -ACGGAAGCCTATTTTCGGGGTTGA -ACGGAAGCCTATTTTCGGTCCGAT -ACGGAAGCCTATTTTCGGTGGCAT -ACGGAAGCCTATTTTCGGCGAGAT -ACGGAAGCCTATTTTCGGTACCAC -ACGGAAGCCTATTTTCGGCAGAAC -ACGGAAGCCTATTTTCGGGTCTAC -ACGGAAGCCTATTTTCGGACGTAC -ACGGAAGCCTATTTTCGGAGTGAC -ACGGAAGCCTATTTTCGGCTGTAG -ACGGAAGCCTATTTTCGGCCTAAG -ACGGAAGCCTATTTTCGGGTTCAG -ACGGAAGCCTATTTTCGGGCATAG -ACGGAAGCCTATTTTCGGGACAAG -ACGGAAGCCTATTTTCGGAAGCAG -ACGGAAGCCTATTTTCGGCGTCAA -ACGGAAGCCTATTTTCGGGCTGAA -ACGGAAGCCTATTTTCGGAGTACG -ACGGAAGCCTATTTTCGGATCCGA -ACGGAAGCCTATTTTCGGATGGGA -ACGGAAGCCTATTTTCGGGTGCAA -ACGGAAGCCTATTTTCGGGAGGAA -ACGGAAGCCTATTTTCGGCAGGTA -ACGGAAGCCTATTTTCGGGACTCT -ACGGAAGCCTATTTTCGGAGTCCT -ACGGAAGCCTATTTTCGGTAAGCC -ACGGAAGCCTATTTTCGGATAGCC -ACGGAAGCCTATTTTCGGTAACCG -ACGGAAGCCTATTTTCGGATGCCA -ACGGAAGCCTATGTTGTGGGAAAC -ACGGAAGCCTATGTTGTGAACACC -ACGGAAGCCTATGTTGTGATCGAG -ACGGAAGCCTATGTTGTGCTCCTT -ACGGAAGCCTATGTTGTGCCTGTT -ACGGAAGCCTATGTTGTGCGGTTT -ACGGAAGCCTATGTTGTGGTGGTT -ACGGAAGCCTATGTTGTGGCCTTT -ACGGAAGCCTATGTTGTGGGTCTT -ACGGAAGCCTATGTTGTGACGCTT -ACGGAAGCCTATGTTGTGAGCGTT -ACGGAAGCCTATGTTGTGTTCGTC -ACGGAAGCCTATGTTGTGTCTCTC -ACGGAAGCCTATGTTGTGTGGATC -ACGGAAGCCTATGTTGTGCACTTC -ACGGAAGCCTATGTTGTGGTACTC -ACGGAAGCCTATGTTGTGGATGTC -ACGGAAGCCTATGTTGTGACAGTC -ACGGAAGCCTATGTTGTGTTGCTG -ACGGAAGCCTATGTTGTGTCCATG -ACGGAAGCCTATGTTGTGTGTGTG -ACGGAAGCCTATGTTGTGCTAGTG -ACGGAAGCCTATGTTGTGCATCTG -ACGGAAGCCTATGTTGTGGAGTTG -ACGGAAGCCTATGTTGTGAGACTG -ACGGAAGCCTATGTTGTGTCGGTA -ACGGAAGCCTATGTTGTGTGCCTA -ACGGAAGCCTATGTTGTGCCACTA -ACGGAAGCCTATGTTGTGGGAGTA -ACGGAAGCCTATGTTGTGTCGTCT -ACGGAAGCCTATGTTGTGTGCACT -ACGGAAGCCTATGTTGTGCTGACT -ACGGAAGCCTATGTTGTGCAACCT -ACGGAAGCCTATGTTGTGGCTACT -ACGGAAGCCTATGTTGTGGGATCT -ACGGAAGCCTATGTTGTGAAGGCT -ACGGAAGCCTATGTTGTGTCAACC -ACGGAAGCCTATGTTGTGTGTTCC -ACGGAAGCCTATGTTGTGATTCCC -ACGGAAGCCTATGTTGTGTTCTCG -ACGGAAGCCTATGTTGTGTAGACG -ACGGAAGCCTATGTTGTGGTAACG -ACGGAAGCCTATGTTGTGACTTCG -ACGGAAGCCTATGTTGTGTACGCA -ACGGAAGCCTATGTTGTGCTTGCA -ACGGAAGCCTATGTTGTGCGAACA -ACGGAAGCCTATGTTGTGCAGTCA -ACGGAAGCCTATGTTGTGGATCCA -ACGGAAGCCTATGTTGTGACGACA -ACGGAAGCCTATGTTGTGAGCTCA -ACGGAAGCCTATGTTGTGTCACGT -ACGGAAGCCTATGTTGTGCGTAGT -ACGGAAGCCTATGTTGTGGTCAGT -ACGGAAGCCTATGTTGTGGAAGGT -ACGGAAGCCTATGTTGTGAACCGT -ACGGAAGCCTATGTTGTGTTGTGC -ACGGAAGCCTATGTTGTGCTAAGC -ACGGAAGCCTATGTTGTGACTAGC -ACGGAAGCCTATGTTGTGAGATGC -ACGGAAGCCTATGTTGTGTGAAGG -ACGGAAGCCTATGTTGTGCAATGG -ACGGAAGCCTATGTTGTGATGAGG -ACGGAAGCCTATGTTGTGAATGGG -ACGGAAGCCTATGTTGTGTCCTGA -ACGGAAGCCTATGTTGTGTAGCGA -ACGGAAGCCTATGTTGTGCACAGA -ACGGAAGCCTATGTTGTGGCAAGA -ACGGAAGCCTATGTTGTGGGTTGA -ACGGAAGCCTATGTTGTGTCCGAT -ACGGAAGCCTATGTTGTGTGGCAT -ACGGAAGCCTATGTTGTGCGAGAT -ACGGAAGCCTATGTTGTGTACCAC -ACGGAAGCCTATGTTGTGCAGAAC -ACGGAAGCCTATGTTGTGGTCTAC -ACGGAAGCCTATGTTGTGACGTAC -ACGGAAGCCTATGTTGTGAGTGAC -ACGGAAGCCTATGTTGTGCTGTAG -ACGGAAGCCTATGTTGTGCCTAAG -ACGGAAGCCTATGTTGTGGTTCAG -ACGGAAGCCTATGTTGTGGCATAG -ACGGAAGCCTATGTTGTGGACAAG -ACGGAAGCCTATGTTGTGAAGCAG -ACGGAAGCCTATGTTGTGCGTCAA -ACGGAAGCCTATGTTGTGGCTGAA -ACGGAAGCCTATGTTGTGAGTACG -ACGGAAGCCTATGTTGTGATCCGA -ACGGAAGCCTATGTTGTGATGGGA -ACGGAAGCCTATGTTGTGGTGCAA -ACGGAAGCCTATGTTGTGGAGGAA -ACGGAAGCCTATGTTGTGCAGGTA -ACGGAAGCCTATGTTGTGGACTCT -ACGGAAGCCTATGTTGTGAGTCCT -ACGGAAGCCTATGTTGTGTAAGCC -ACGGAAGCCTATGTTGTGATAGCC -ACGGAAGCCTATGTTGTGTAACCG -ACGGAAGCCTATGTTGTGATGCCA -ACGGAAGCCTATTTTGCCGGAAAC -ACGGAAGCCTATTTTGCCAACACC -ACGGAAGCCTATTTTGCCATCGAG -ACGGAAGCCTATTTTGCCCTCCTT -ACGGAAGCCTATTTTGCCCCTGTT -ACGGAAGCCTATTTTGCCCGGTTT -ACGGAAGCCTATTTTGCCGTGGTT -ACGGAAGCCTATTTTGCCGCCTTT -ACGGAAGCCTATTTTGCCGGTCTT -ACGGAAGCCTATTTTGCCACGCTT -ACGGAAGCCTATTTTGCCAGCGTT -ACGGAAGCCTATTTTGCCTTCGTC -ACGGAAGCCTATTTTGCCTCTCTC -ACGGAAGCCTATTTTGCCTGGATC -ACGGAAGCCTATTTTGCCCACTTC -ACGGAAGCCTATTTTGCCGTACTC -ACGGAAGCCTATTTTGCCGATGTC -ACGGAAGCCTATTTTGCCACAGTC -ACGGAAGCCTATTTTGCCTTGCTG -ACGGAAGCCTATTTTGCCTCCATG -ACGGAAGCCTATTTTGCCTGTGTG -ACGGAAGCCTATTTTGCCCTAGTG -ACGGAAGCCTATTTTGCCCATCTG -ACGGAAGCCTATTTTGCCGAGTTG -ACGGAAGCCTATTTTGCCAGACTG -ACGGAAGCCTATTTTGCCTCGGTA -ACGGAAGCCTATTTTGCCTGCCTA -ACGGAAGCCTATTTTGCCCCACTA -ACGGAAGCCTATTTTGCCGGAGTA -ACGGAAGCCTATTTTGCCTCGTCT -ACGGAAGCCTATTTTGCCTGCACT -ACGGAAGCCTATTTTGCCCTGACT -ACGGAAGCCTATTTTGCCCAACCT -ACGGAAGCCTATTTTGCCGCTACT -ACGGAAGCCTATTTTGCCGGATCT -ACGGAAGCCTATTTTGCCAAGGCT -ACGGAAGCCTATTTTGCCTCAACC -ACGGAAGCCTATTTTGCCTGTTCC -ACGGAAGCCTATTTTGCCATTCCC -ACGGAAGCCTATTTTGCCTTCTCG -ACGGAAGCCTATTTTGCCTAGACG -ACGGAAGCCTATTTTGCCGTAACG -ACGGAAGCCTATTTTGCCACTTCG -ACGGAAGCCTATTTTGCCTACGCA -ACGGAAGCCTATTTTGCCCTTGCA -ACGGAAGCCTATTTTGCCCGAACA -ACGGAAGCCTATTTTGCCCAGTCA -ACGGAAGCCTATTTTGCCGATCCA -ACGGAAGCCTATTTTGCCACGACA -ACGGAAGCCTATTTTGCCAGCTCA -ACGGAAGCCTATTTTGCCTCACGT -ACGGAAGCCTATTTTGCCCGTAGT -ACGGAAGCCTATTTTGCCGTCAGT -ACGGAAGCCTATTTTGCCGAAGGT -ACGGAAGCCTATTTTGCCAACCGT -ACGGAAGCCTATTTTGCCTTGTGC -ACGGAAGCCTATTTTGCCCTAAGC -ACGGAAGCCTATTTTGCCACTAGC -ACGGAAGCCTATTTTGCCAGATGC -ACGGAAGCCTATTTTGCCTGAAGG -ACGGAAGCCTATTTTGCCCAATGG -ACGGAAGCCTATTTTGCCATGAGG -ACGGAAGCCTATTTTGCCAATGGG -ACGGAAGCCTATTTTGCCTCCTGA -ACGGAAGCCTATTTTGCCTAGCGA -ACGGAAGCCTATTTTGCCCACAGA -ACGGAAGCCTATTTTGCCGCAAGA -ACGGAAGCCTATTTTGCCGGTTGA -ACGGAAGCCTATTTTGCCTCCGAT -ACGGAAGCCTATTTTGCCTGGCAT -ACGGAAGCCTATTTTGCCCGAGAT -ACGGAAGCCTATTTTGCCTACCAC -ACGGAAGCCTATTTTGCCCAGAAC -ACGGAAGCCTATTTTGCCGTCTAC -ACGGAAGCCTATTTTGCCACGTAC -ACGGAAGCCTATTTTGCCAGTGAC -ACGGAAGCCTATTTTGCCCTGTAG -ACGGAAGCCTATTTTGCCCCTAAG -ACGGAAGCCTATTTTGCCGTTCAG -ACGGAAGCCTATTTTGCCGCATAG -ACGGAAGCCTATTTTGCCGACAAG -ACGGAAGCCTATTTTGCCAAGCAG -ACGGAAGCCTATTTTGCCCGTCAA -ACGGAAGCCTATTTTGCCGCTGAA -ACGGAAGCCTATTTTGCCAGTACG -ACGGAAGCCTATTTTGCCATCCGA -ACGGAAGCCTATTTTGCCATGGGA -ACGGAAGCCTATTTTGCCGTGCAA -ACGGAAGCCTATTTTGCCGAGGAA -ACGGAAGCCTATTTTGCCCAGGTA -ACGGAAGCCTATTTTGCCGACTCT -ACGGAAGCCTATTTTGCCAGTCCT -ACGGAAGCCTATTTTGCCTAAGCC -ACGGAAGCCTATTTTGCCATAGCC -ACGGAAGCCTATTTTGCCTAACCG -ACGGAAGCCTATTTTGCCATGCCA -ACGGAAGCCTATCTTGGTGGAAAC -ACGGAAGCCTATCTTGGTAACACC -ACGGAAGCCTATCTTGGTATCGAG -ACGGAAGCCTATCTTGGTCTCCTT -ACGGAAGCCTATCTTGGTCCTGTT -ACGGAAGCCTATCTTGGTCGGTTT -ACGGAAGCCTATCTTGGTGTGGTT -ACGGAAGCCTATCTTGGTGCCTTT -ACGGAAGCCTATCTTGGTGGTCTT -ACGGAAGCCTATCTTGGTACGCTT -ACGGAAGCCTATCTTGGTAGCGTT -ACGGAAGCCTATCTTGGTTTCGTC -ACGGAAGCCTATCTTGGTTCTCTC -ACGGAAGCCTATCTTGGTTGGATC -ACGGAAGCCTATCTTGGTCACTTC -ACGGAAGCCTATCTTGGTGTACTC -ACGGAAGCCTATCTTGGTGATGTC -ACGGAAGCCTATCTTGGTACAGTC -ACGGAAGCCTATCTTGGTTTGCTG -ACGGAAGCCTATCTTGGTTCCATG -ACGGAAGCCTATCTTGGTTGTGTG -ACGGAAGCCTATCTTGGTCTAGTG -ACGGAAGCCTATCTTGGTCATCTG -ACGGAAGCCTATCTTGGTGAGTTG -ACGGAAGCCTATCTTGGTAGACTG -ACGGAAGCCTATCTTGGTTCGGTA -ACGGAAGCCTATCTTGGTTGCCTA -ACGGAAGCCTATCTTGGTCCACTA -ACGGAAGCCTATCTTGGTGGAGTA -ACGGAAGCCTATCTTGGTTCGTCT -ACGGAAGCCTATCTTGGTTGCACT -ACGGAAGCCTATCTTGGTCTGACT -ACGGAAGCCTATCTTGGTCAACCT -ACGGAAGCCTATCTTGGTGCTACT -ACGGAAGCCTATCTTGGTGGATCT -ACGGAAGCCTATCTTGGTAAGGCT -ACGGAAGCCTATCTTGGTTCAACC -ACGGAAGCCTATCTTGGTTGTTCC -ACGGAAGCCTATCTTGGTATTCCC -ACGGAAGCCTATCTTGGTTTCTCG -ACGGAAGCCTATCTTGGTTAGACG -ACGGAAGCCTATCTTGGTGTAACG -ACGGAAGCCTATCTTGGTACTTCG -ACGGAAGCCTATCTTGGTTACGCA -ACGGAAGCCTATCTTGGTCTTGCA -ACGGAAGCCTATCTTGGTCGAACA -ACGGAAGCCTATCTTGGTCAGTCA -ACGGAAGCCTATCTTGGTGATCCA -ACGGAAGCCTATCTTGGTACGACA -ACGGAAGCCTATCTTGGTAGCTCA -ACGGAAGCCTATCTTGGTTCACGT -ACGGAAGCCTATCTTGGTCGTAGT -ACGGAAGCCTATCTTGGTGTCAGT -ACGGAAGCCTATCTTGGTGAAGGT -ACGGAAGCCTATCTTGGTAACCGT -ACGGAAGCCTATCTTGGTTTGTGC -ACGGAAGCCTATCTTGGTCTAAGC -ACGGAAGCCTATCTTGGTACTAGC -ACGGAAGCCTATCTTGGTAGATGC -ACGGAAGCCTATCTTGGTTGAAGG -ACGGAAGCCTATCTTGGTCAATGG -ACGGAAGCCTATCTTGGTATGAGG -ACGGAAGCCTATCTTGGTAATGGG -ACGGAAGCCTATCTTGGTTCCTGA -ACGGAAGCCTATCTTGGTTAGCGA -ACGGAAGCCTATCTTGGTCACAGA -ACGGAAGCCTATCTTGGTGCAAGA -ACGGAAGCCTATCTTGGTGGTTGA -ACGGAAGCCTATCTTGGTTCCGAT -ACGGAAGCCTATCTTGGTTGGCAT -ACGGAAGCCTATCTTGGTCGAGAT -ACGGAAGCCTATCTTGGTTACCAC -ACGGAAGCCTATCTTGGTCAGAAC -ACGGAAGCCTATCTTGGTGTCTAC -ACGGAAGCCTATCTTGGTACGTAC -ACGGAAGCCTATCTTGGTAGTGAC -ACGGAAGCCTATCTTGGTCTGTAG -ACGGAAGCCTATCTTGGTCCTAAG -ACGGAAGCCTATCTTGGTGTTCAG -ACGGAAGCCTATCTTGGTGCATAG -ACGGAAGCCTATCTTGGTGACAAG -ACGGAAGCCTATCTTGGTAAGCAG -ACGGAAGCCTATCTTGGTCGTCAA -ACGGAAGCCTATCTTGGTGCTGAA -ACGGAAGCCTATCTTGGTAGTACG -ACGGAAGCCTATCTTGGTATCCGA -ACGGAAGCCTATCTTGGTATGGGA -ACGGAAGCCTATCTTGGTGTGCAA -ACGGAAGCCTATCTTGGTGAGGAA -ACGGAAGCCTATCTTGGTCAGGTA -ACGGAAGCCTATCTTGGTGACTCT -ACGGAAGCCTATCTTGGTAGTCCT -ACGGAAGCCTATCTTGGTTAAGCC -ACGGAAGCCTATCTTGGTATAGCC -ACGGAAGCCTATCTTGGTTAACCG -ACGGAAGCCTATCTTGGTATGCCA -ACGGAAGCCTATCTTACGGGAAAC -ACGGAAGCCTATCTTACGAACACC -ACGGAAGCCTATCTTACGATCGAG -ACGGAAGCCTATCTTACGCTCCTT -ACGGAAGCCTATCTTACGCCTGTT -ACGGAAGCCTATCTTACGCGGTTT -ACGGAAGCCTATCTTACGGTGGTT -ACGGAAGCCTATCTTACGGCCTTT -ACGGAAGCCTATCTTACGGGTCTT -ACGGAAGCCTATCTTACGACGCTT -ACGGAAGCCTATCTTACGAGCGTT -ACGGAAGCCTATCTTACGTTCGTC -ACGGAAGCCTATCTTACGTCTCTC -ACGGAAGCCTATCTTACGTGGATC -ACGGAAGCCTATCTTACGCACTTC -ACGGAAGCCTATCTTACGGTACTC -ACGGAAGCCTATCTTACGGATGTC -ACGGAAGCCTATCTTACGACAGTC -ACGGAAGCCTATCTTACGTTGCTG -ACGGAAGCCTATCTTACGTCCATG -ACGGAAGCCTATCTTACGTGTGTG -ACGGAAGCCTATCTTACGCTAGTG -ACGGAAGCCTATCTTACGCATCTG -ACGGAAGCCTATCTTACGGAGTTG -ACGGAAGCCTATCTTACGAGACTG -ACGGAAGCCTATCTTACGTCGGTA -ACGGAAGCCTATCTTACGTGCCTA -ACGGAAGCCTATCTTACGCCACTA -ACGGAAGCCTATCTTACGGGAGTA -ACGGAAGCCTATCTTACGTCGTCT -ACGGAAGCCTATCTTACGTGCACT -ACGGAAGCCTATCTTACGCTGACT -ACGGAAGCCTATCTTACGCAACCT -ACGGAAGCCTATCTTACGGCTACT -ACGGAAGCCTATCTTACGGGATCT -ACGGAAGCCTATCTTACGAAGGCT -ACGGAAGCCTATCTTACGTCAACC -ACGGAAGCCTATCTTACGTGTTCC -ACGGAAGCCTATCTTACGATTCCC -ACGGAAGCCTATCTTACGTTCTCG -ACGGAAGCCTATCTTACGTAGACG -ACGGAAGCCTATCTTACGGTAACG -ACGGAAGCCTATCTTACGACTTCG -ACGGAAGCCTATCTTACGTACGCA -ACGGAAGCCTATCTTACGCTTGCA -ACGGAAGCCTATCTTACGCGAACA -ACGGAAGCCTATCTTACGCAGTCA -ACGGAAGCCTATCTTACGGATCCA -ACGGAAGCCTATCTTACGACGACA -ACGGAAGCCTATCTTACGAGCTCA -ACGGAAGCCTATCTTACGTCACGT -ACGGAAGCCTATCTTACGCGTAGT -ACGGAAGCCTATCTTACGGTCAGT -ACGGAAGCCTATCTTACGGAAGGT -ACGGAAGCCTATCTTACGAACCGT -ACGGAAGCCTATCTTACGTTGTGC -ACGGAAGCCTATCTTACGCTAAGC -ACGGAAGCCTATCTTACGACTAGC -ACGGAAGCCTATCTTACGAGATGC -ACGGAAGCCTATCTTACGTGAAGG -ACGGAAGCCTATCTTACGCAATGG -ACGGAAGCCTATCTTACGATGAGG -ACGGAAGCCTATCTTACGAATGGG -ACGGAAGCCTATCTTACGTCCTGA -ACGGAAGCCTATCTTACGTAGCGA -ACGGAAGCCTATCTTACGCACAGA -ACGGAAGCCTATCTTACGGCAAGA -ACGGAAGCCTATCTTACGGGTTGA -ACGGAAGCCTATCTTACGTCCGAT -ACGGAAGCCTATCTTACGTGGCAT -ACGGAAGCCTATCTTACGCGAGAT -ACGGAAGCCTATCTTACGTACCAC -ACGGAAGCCTATCTTACGCAGAAC -ACGGAAGCCTATCTTACGGTCTAC -ACGGAAGCCTATCTTACGACGTAC -ACGGAAGCCTATCTTACGAGTGAC -ACGGAAGCCTATCTTACGCTGTAG -ACGGAAGCCTATCTTACGCCTAAG -ACGGAAGCCTATCTTACGGTTCAG -ACGGAAGCCTATCTTACGGCATAG -ACGGAAGCCTATCTTACGGACAAG -ACGGAAGCCTATCTTACGAAGCAG -ACGGAAGCCTATCTTACGCGTCAA -ACGGAAGCCTATCTTACGGCTGAA -ACGGAAGCCTATCTTACGAGTACG -ACGGAAGCCTATCTTACGATCCGA -ACGGAAGCCTATCTTACGATGGGA -ACGGAAGCCTATCTTACGGTGCAA -ACGGAAGCCTATCTTACGGAGGAA -ACGGAAGCCTATCTTACGCAGGTA -ACGGAAGCCTATCTTACGGACTCT -ACGGAAGCCTATCTTACGAGTCCT -ACGGAAGCCTATCTTACGTAAGCC -ACGGAAGCCTATCTTACGATAGCC -ACGGAAGCCTATCTTACGTAACCG -ACGGAAGCCTATCTTACGATGCCA -ACGGAAGCCTATGTTAGCGGAAAC -ACGGAAGCCTATGTTAGCAACACC -ACGGAAGCCTATGTTAGCATCGAG -ACGGAAGCCTATGTTAGCCTCCTT -ACGGAAGCCTATGTTAGCCCTGTT -ACGGAAGCCTATGTTAGCCGGTTT -ACGGAAGCCTATGTTAGCGTGGTT -ACGGAAGCCTATGTTAGCGCCTTT -ACGGAAGCCTATGTTAGCGGTCTT -ACGGAAGCCTATGTTAGCACGCTT -ACGGAAGCCTATGTTAGCAGCGTT -ACGGAAGCCTATGTTAGCTTCGTC -ACGGAAGCCTATGTTAGCTCTCTC -ACGGAAGCCTATGTTAGCTGGATC -ACGGAAGCCTATGTTAGCCACTTC -ACGGAAGCCTATGTTAGCGTACTC -ACGGAAGCCTATGTTAGCGATGTC -ACGGAAGCCTATGTTAGCACAGTC -ACGGAAGCCTATGTTAGCTTGCTG -ACGGAAGCCTATGTTAGCTCCATG -ACGGAAGCCTATGTTAGCTGTGTG -ACGGAAGCCTATGTTAGCCTAGTG -ACGGAAGCCTATGTTAGCCATCTG -ACGGAAGCCTATGTTAGCGAGTTG -ACGGAAGCCTATGTTAGCAGACTG -ACGGAAGCCTATGTTAGCTCGGTA -ACGGAAGCCTATGTTAGCTGCCTA -ACGGAAGCCTATGTTAGCCCACTA -ACGGAAGCCTATGTTAGCGGAGTA -ACGGAAGCCTATGTTAGCTCGTCT -ACGGAAGCCTATGTTAGCTGCACT -ACGGAAGCCTATGTTAGCCTGACT -ACGGAAGCCTATGTTAGCCAACCT -ACGGAAGCCTATGTTAGCGCTACT -ACGGAAGCCTATGTTAGCGGATCT -ACGGAAGCCTATGTTAGCAAGGCT -ACGGAAGCCTATGTTAGCTCAACC -ACGGAAGCCTATGTTAGCTGTTCC -ACGGAAGCCTATGTTAGCATTCCC -ACGGAAGCCTATGTTAGCTTCTCG -ACGGAAGCCTATGTTAGCTAGACG -ACGGAAGCCTATGTTAGCGTAACG -ACGGAAGCCTATGTTAGCACTTCG -ACGGAAGCCTATGTTAGCTACGCA -ACGGAAGCCTATGTTAGCCTTGCA -ACGGAAGCCTATGTTAGCCGAACA -ACGGAAGCCTATGTTAGCCAGTCA -ACGGAAGCCTATGTTAGCGATCCA -ACGGAAGCCTATGTTAGCACGACA -ACGGAAGCCTATGTTAGCAGCTCA -ACGGAAGCCTATGTTAGCTCACGT -ACGGAAGCCTATGTTAGCCGTAGT -ACGGAAGCCTATGTTAGCGTCAGT -ACGGAAGCCTATGTTAGCGAAGGT -ACGGAAGCCTATGTTAGCAACCGT -ACGGAAGCCTATGTTAGCTTGTGC -ACGGAAGCCTATGTTAGCCTAAGC -ACGGAAGCCTATGTTAGCACTAGC -ACGGAAGCCTATGTTAGCAGATGC -ACGGAAGCCTATGTTAGCTGAAGG -ACGGAAGCCTATGTTAGCCAATGG -ACGGAAGCCTATGTTAGCATGAGG -ACGGAAGCCTATGTTAGCAATGGG -ACGGAAGCCTATGTTAGCTCCTGA -ACGGAAGCCTATGTTAGCTAGCGA -ACGGAAGCCTATGTTAGCCACAGA -ACGGAAGCCTATGTTAGCGCAAGA -ACGGAAGCCTATGTTAGCGGTTGA -ACGGAAGCCTATGTTAGCTCCGAT -ACGGAAGCCTATGTTAGCTGGCAT -ACGGAAGCCTATGTTAGCCGAGAT -ACGGAAGCCTATGTTAGCTACCAC -ACGGAAGCCTATGTTAGCCAGAAC -ACGGAAGCCTATGTTAGCGTCTAC -ACGGAAGCCTATGTTAGCACGTAC -ACGGAAGCCTATGTTAGCAGTGAC -ACGGAAGCCTATGTTAGCCTGTAG -ACGGAAGCCTATGTTAGCCCTAAG -ACGGAAGCCTATGTTAGCGTTCAG -ACGGAAGCCTATGTTAGCGCATAG -ACGGAAGCCTATGTTAGCGACAAG -ACGGAAGCCTATGTTAGCAAGCAG -ACGGAAGCCTATGTTAGCCGTCAA -ACGGAAGCCTATGTTAGCGCTGAA -ACGGAAGCCTATGTTAGCAGTACG -ACGGAAGCCTATGTTAGCATCCGA -ACGGAAGCCTATGTTAGCATGGGA -ACGGAAGCCTATGTTAGCGTGCAA -ACGGAAGCCTATGTTAGCGAGGAA -ACGGAAGCCTATGTTAGCCAGGTA -ACGGAAGCCTATGTTAGCGACTCT -ACGGAAGCCTATGTTAGCAGTCCT -ACGGAAGCCTATGTTAGCTAAGCC -ACGGAAGCCTATGTTAGCATAGCC -ACGGAAGCCTATGTTAGCTAACCG -ACGGAAGCCTATGTTAGCATGCCA -ACGGAAGCCTATGTCTTCGGAAAC -ACGGAAGCCTATGTCTTCAACACC -ACGGAAGCCTATGTCTTCATCGAG -ACGGAAGCCTATGTCTTCCTCCTT -ACGGAAGCCTATGTCTTCCCTGTT -ACGGAAGCCTATGTCTTCCGGTTT -ACGGAAGCCTATGTCTTCGTGGTT -ACGGAAGCCTATGTCTTCGCCTTT -ACGGAAGCCTATGTCTTCGGTCTT -ACGGAAGCCTATGTCTTCACGCTT -ACGGAAGCCTATGTCTTCAGCGTT -ACGGAAGCCTATGTCTTCTTCGTC -ACGGAAGCCTATGTCTTCTCTCTC -ACGGAAGCCTATGTCTTCTGGATC -ACGGAAGCCTATGTCTTCCACTTC -ACGGAAGCCTATGTCTTCGTACTC -ACGGAAGCCTATGTCTTCGATGTC -ACGGAAGCCTATGTCTTCACAGTC -ACGGAAGCCTATGTCTTCTTGCTG -ACGGAAGCCTATGTCTTCTCCATG -ACGGAAGCCTATGTCTTCTGTGTG -ACGGAAGCCTATGTCTTCCTAGTG -ACGGAAGCCTATGTCTTCCATCTG -ACGGAAGCCTATGTCTTCGAGTTG -ACGGAAGCCTATGTCTTCAGACTG -ACGGAAGCCTATGTCTTCTCGGTA -ACGGAAGCCTATGTCTTCTGCCTA -ACGGAAGCCTATGTCTTCCCACTA -ACGGAAGCCTATGTCTTCGGAGTA -ACGGAAGCCTATGTCTTCTCGTCT -ACGGAAGCCTATGTCTTCTGCACT -ACGGAAGCCTATGTCTTCCTGACT -ACGGAAGCCTATGTCTTCCAACCT -ACGGAAGCCTATGTCTTCGCTACT -ACGGAAGCCTATGTCTTCGGATCT -ACGGAAGCCTATGTCTTCAAGGCT -ACGGAAGCCTATGTCTTCTCAACC -ACGGAAGCCTATGTCTTCTGTTCC -ACGGAAGCCTATGTCTTCATTCCC -ACGGAAGCCTATGTCTTCTTCTCG -ACGGAAGCCTATGTCTTCTAGACG -ACGGAAGCCTATGTCTTCGTAACG -ACGGAAGCCTATGTCTTCACTTCG -ACGGAAGCCTATGTCTTCTACGCA -ACGGAAGCCTATGTCTTCCTTGCA -ACGGAAGCCTATGTCTTCCGAACA -ACGGAAGCCTATGTCTTCCAGTCA -ACGGAAGCCTATGTCTTCGATCCA -ACGGAAGCCTATGTCTTCACGACA -ACGGAAGCCTATGTCTTCAGCTCA -ACGGAAGCCTATGTCTTCTCACGT -ACGGAAGCCTATGTCTTCCGTAGT -ACGGAAGCCTATGTCTTCGTCAGT -ACGGAAGCCTATGTCTTCGAAGGT -ACGGAAGCCTATGTCTTCAACCGT -ACGGAAGCCTATGTCTTCTTGTGC -ACGGAAGCCTATGTCTTCCTAAGC -ACGGAAGCCTATGTCTTCACTAGC -ACGGAAGCCTATGTCTTCAGATGC -ACGGAAGCCTATGTCTTCTGAAGG -ACGGAAGCCTATGTCTTCCAATGG -ACGGAAGCCTATGTCTTCATGAGG -ACGGAAGCCTATGTCTTCAATGGG -ACGGAAGCCTATGTCTTCTCCTGA -ACGGAAGCCTATGTCTTCTAGCGA -ACGGAAGCCTATGTCTTCCACAGA -ACGGAAGCCTATGTCTTCGCAAGA -ACGGAAGCCTATGTCTTCGGTTGA -ACGGAAGCCTATGTCTTCTCCGAT -ACGGAAGCCTATGTCTTCTGGCAT -ACGGAAGCCTATGTCTTCCGAGAT -ACGGAAGCCTATGTCTTCTACCAC -ACGGAAGCCTATGTCTTCCAGAAC -ACGGAAGCCTATGTCTTCGTCTAC -ACGGAAGCCTATGTCTTCACGTAC -ACGGAAGCCTATGTCTTCAGTGAC -ACGGAAGCCTATGTCTTCCTGTAG -ACGGAAGCCTATGTCTTCCCTAAG -ACGGAAGCCTATGTCTTCGTTCAG -ACGGAAGCCTATGTCTTCGCATAG -ACGGAAGCCTATGTCTTCGACAAG -ACGGAAGCCTATGTCTTCAAGCAG -ACGGAAGCCTATGTCTTCCGTCAA -ACGGAAGCCTATGTCTTCGCTGAA -ACGGAAGCCTATGTCTTCAGTACG -ACGGAAGCCTATGTCTTCATCCGA -ACGGAAGCCTATGTCTTCATGGGA -ACGGAAGCCTATGTCTTCGTGCAA -ACGGAAGCCTATGTCTTCGAGGAA -ACGGAAGCCTATGTCTTCCAGGTA -ACGGAAGCCTATGTCTTCGACTCT -ACGGAAGCCTATGTCTTCAGTCCT -ACGGAAGCCTATGTCTTCTAAGCC -ACGGAAGCCTATGTCTTCATAGCC -ACGGAAGCCTATGTCTTCTAACCG -ACGGAAGCCTATGTCTTCATGCCA -ACGGAAGCCTATCTCTCTGGAAAC -ACGGAAGCCTATCTCTCTAACACC -ACGGAAGCCTATCTCTCTATCGAG -ACGGAAGCCTATCTCTCTCTCCTT -ACGGAAGCCTATCTCTCTCCTGTT -ACGGAAGCCTATCTCTCTCGGTTT -ACGGAAGCCTATCTCTCTGTGGTT -ACGGAAGCCTATCTCTCTGCCTTT -ACGGAAGCCTATCTCTCTGGTCTT -ACGGAAGCCTATCTCTCTACGCTT -ACGGAAGCCTATCTCTCTAGCGTT -ACGGAAGCCTATCTCTCTTTCGTC -ACGGAAGCCTATCTCTCTTCTCTC -ACGGAAGCCTATCTCTCTTGGATC -ACGGAAGCCTATCTCTCTCACTTC -ACGGAAGCCTATCTCTCTGTACTC -ACGGAAGCCTATCTCTCTGATGTC -ACGGAAGCCTATCTCTCTACAGTC -ACGGAAGCCTATCTCTCTTTGCTG -ACGGAAGCCTATCTCTCTTCCATG -ACGGAAGCCTATCTCTCTTGTGTG -ACGGAAGCCTATCTCTCTCTAGTG -ACGGAAGCCTATCTCTCTCATCTG -ACGGAAGCCTATCTCTCTGAGTTG -ACGGAAGCCTATCTCTCTAGACTG -ACGGAAGCCTATCTCTCTTCGGTA -ACGGAAGCCTATCTCTCTTGCCTA -ACGGAAGCCTATCTCTCTCCACTA -ACGGAAGCCTATCTCTCTGGAGTA -ACGGAAGCCTATCTCTCTTCGTCT -ACGGAAGCCTATCTCTCTTGCACT -ACGGAAGCCTATCTCTCTCTGACT -ACGGAAGCCTATCTCTCTCAACCT -ACGGAAGCCTATCTCTCTGCTACT -ACGGAAGCCTATCTCTCTGGATCT -ACGGAAGCCTATCTCTCTAAGGCT -ACGGAAGCCTATCTCTCTTCAACC -ACGGAAGCCTATCTCTCTTGTTCC -ACGGAAGCCTATCTCTCTATTCCC -ACGGAAGCCTATCTCTCTTTCTCG -ACGGAAGCCTATCTCTCTTAGACG -ACGGAAGCCTATCTCTCTGTAACG -ACGGAAGCCTATCTCTCTACTTCG -ACGGAAGCCTATCTCTCTTACGCA -ACGGAAGCCTATCTCTCTCTTGCA -ACGGAAGCCTATCTCTCTCGAACA -ACGGAAGCCTATCTCTCTCAGTCA -ACGGAAGCCTATCTCTCTGATCCA -ACGGAAGCCTATCTCTCTACGACA -ACGGAAGCCTATCTCTCTAGCTCA -ACGGAAGCCTATCTCTCTTCACGT -ACGGAAGCCTATCTCTCTCGTAGT -ACGGAAGCCTATCTCTCTGTCAGT -ACGGAAGCCTATCTCTCTGAAGGT -ACGGAAGCCTATCTCTCTAACCGT -ACGGAAGCCTATCTCTCTTTGTGC -ACGGAAGCCTATCTCTCTCTAAGC -ACGGAAGCCTATCTCTCTACTAGC -ACGGAAGCCTATCTCTCTAGATGC -ACGGAAGCCTATCTCTCTTGAAGG -ACGGAAGCCTATCTCTCTCAATGG -ACGGAAGCCTATCTCTCTATGAGG -ACGGAAGCCTATCTCTCTAATGGG -ACGGAAGCCTATCTCTCTTCCTGA -ACGGAAGCCTATCTCTCTTAGCGA -ACGGAAGCCTATCTCTCTCACAGA -ACGGAAGCCTATCTCTCTGCAAGA -ACGGAAGCCTATCTCTCTGGTTGA -ACGGAAGCCTATCTCTCTTCCGAT -ACGGAAGCCTATCTCTCTTGGCAT -ACGGAAGCCTATCTCTCTCGAGAT -ACGGAAGCCTATCTCTCTTACCAC -ACGGAAGCCTATCTCTCTCAGAAC -ACGGAAGCCTATCTCTCTGTCTAC -ACGGAAGCCTATCTCTCTACGTAC -ACGGAAGCCTATCTCTCTAGTGAC -ACGGAAGCCTATCTCTCTCTGTAG -ACGGAAGCCTATCTCTCTCCTAAG -ACGGAAGCCTATCTCTCTGTTCAG -ACGGAAGCCTATCTCTCTGCATAG -ACGGAAGCCTATCTCTCTGACAAG -ACGGAAGCCTATCTCTCTAAGCAG -ACGGAAGCCTATCTCTCTCGTCAA -ACGGAAGCCTATCTCTCTGCTGAA -ACGGAAGCCTATCTCTCTAGTACG -ACGGAAGCCTATCTCTCTATCCGA -ACGGAAGCCTATCTCTCTATGGGA -ACGGAAGCCTATCTCTCTGTGCAA -ACGGAAGCCTATCTCTCTGAGGAA -ACGGAAGCCTATCTCTCTCAGGTA -ACGGAAGCCTATCTCTCTGACTCT -ACGGAAGCCTATCTCTCTAGTCCT -ACGGAAGCCTATCTCTCTTAAGCC -ACGGAAGCCTATCTCTCTATAGCC -ACGGAAGCCTATCTCTCTTAACCG -ACGGAAGCCTATCTCTCTATGCCA -ACGGAAGCCTATATCTGGGGAAAC -ACGGAAGCCTATATCTGGAACACC -ACGGAAGCCTATATCTGGATCGAG -ACGGAAGCCTATATCTGGCTCCTT -ACGGAAGCCTATATCTGGCCTGTT -ACGGAAGCCTATATCTGGCGGTTT -ACGGAAGCCTATATCTGGGTGGTT -ACGGAAGCCTATATCTGGGCCTTT -ACGGAAGCCTATATCTGGGGTCTT -ACGGAAGCCTATATCTGGACGCTT -ACGGAAGCCTATATCTGGAGCGTT -ACGGAAGCCTATATCTGGTTCGTC -ACGGAAGCCTATATCTGGTCTCTC -ACGGAAGCCTATATCTGGTGGATC -ACGGAAGCCTATATCTGGCACTTC -ACGGAAGCCTATATCTGGGTACTC -ACGGAAGCCTATATCTGGGATGTC -ACGGAAGCCTATATCTGGACAGTC -ACGGAAGCCTATATCTGGTTGCTG -ACGGAAGCCTATATCTGGTCCATG -ACGGAAGCCTATATCTGGTGTGTG -ACGGAAGCCTATATCTGGCTAGTG -ACGGAAGCCTATATCTGGCATCTG -ACGGAAGCCTATATCTGGGAGTTG -ACGGAAGCCTATATCTGGAGACTG -ACGGAAGCCTATATCTGGTCGGTA -ACGGAAGCCTATATCTGGTGCCTA -ACGGAAGCCTATATCTGGCCACTA -ACGGAAGCCTATATCTGGGGAGTA -ACGGAAGCCTATATCTGGTCGTCT -ACGGAAGCCTATATCTGGTGCACT -ACGGAAGCCTATATCTGGCTGACT -ACGGAAGCCTATATCTGGCAACCT -ACGGAAGCCTATATCTGGGCTACT -ACGGAAGCCTATATCTGGGGATCT -ACGGAAGCCTATATCTGGAAGGCT -ACGGAAGCCTATATCTGGTCAACC -ACGGAAGCCTATATCTGGTGTTCC -ACGGAAGCCTATATCTGGATTCCC -ACGGAAGCCTATATCTGGTTCTCG -ACGGAAGCCTATATCTGGTAGACG -ACGGAAGCCTATATCTGGGTAACG -ACGGAAGCCTATATCTGGACTTCG -ACGGAAGCCTATATCTGGTACGCA -ACGGAAGCCTATATCTGGCTTGCA -ACGGAAGCCTATATCTGGCGAACA -ACGGAAGCCTATATCTGGCAGTCA -ACGGAAGCCTATATCTGGGATCCA -ACGGAAGCCTATATCTGGACGACA -ACGGAAGCCTATATCTGGAGCTCA -ACGGAAGCCTATATCTGGTCACGT -ACGGAAGCCTATATCTGGCGTAGT -ACGGAAGCCTATATCTGGGTCAGT -ACGGAAGCCTATATCTGGGAAGGT -ACGGAAGCCTATATCTGGAACCGT -ACGGAAGCCTATATCTGGTTGTGC -ACGGAAGCCTATATCTGGCTAAGC -ACGGAAGCCTATATCTGGACTAGC -ACGGAAGCCTATATCTGGAGATGC -ACGGAAGCCTATATCTGGTGAAGG -ACGGAAGCCTATATCTGGCAATGG -ACGGAAGCCTATATCTGGATGAGG -ACGGAAGCCTATATCTGGAATGGG -ACGGAAGCCTATATCTGGTCCTGA -ACGGAAGCCTATATCTGGTAGCGA -ACGGAAGCCTATATCTGGCACAGA -ACGGAAGCCTATATCTGGGCAAGA -ACGGAAGCCTATATCTGGGGTTGA -ACGGAAGCCTATATCTGGTCCGAT -ACGGAAGCCTATATCTGGTGGCAT -ACGGAAGCCTATATCTGGCGAGAT -ACGGAAGCCTATATCTGGTACCAC -ACGGAAGCCTATATCTGGCAGAAC -ACGGAAGCCTATATCTGGGTCTAC -ACGGAAGCCTATATCTGGACGTAC -ACGGAAGCCTATATCTGGAGTGAC -ACGGAAGCCTATATCTGGCTGTAG -ACGGAAGCCTATATCTGGCCTAAG -ACGGAAGCCTATATCTGGGTTCAG -ACGGAAGCCTATATCTGGGCATAG -ACGGAAGCCTATATCTGGGACAAG -ACGGAAGCCTATATCTGGAAGCAG -ACGGAAGCCTATATCTGGCGTCAA -ACGGAAGCCTATATCTGGGCTGAA -ACGGAAGCCTATATCTGGAGTACG -ACGGAAGCCTATATCTGGATCCGA -ACGGAAGCCTATATCTGGATGGGA -ACGGAAGCCTATATCTGGGTGCAA -ACGGAAGCCTATATCTGGGAGGAA -ACGGAAGCCTATATCTGGCAGGTA -ACGGAAGCCTATATCTGGGACTCT -ACGGAAGCCTATATCTGGAGTCCT -ACGGAAGCCTATATCTGGTAAGCC -ACGGAAGCCTATATCTGGATAGCC -ACGGAAGCCTATATCTGGTAACCG -ACGGAAGCCTATATCTGGATGCCA -ACGGAAGCCTATTTCCACGGAAAC -ACGGAAGCCTATTTCCACAACACC -ACGGAAGCCTATTTCCACATCGAG -ACGGAAGCCTATTTCCACCTCCTT -ACGGAAGCCTATTTCCACCCTGTT -ACGGAAGCCTATTTCCACCGGTTT -ACGGAAGCCTATTTCCACGTGGTT -ACGGAAGCCTATTTCCACGCCTTT -ACGGAAGCCTATTTCCACGGTCTT -ACGGAAGCCTATTTCCACACGCTT -ACGGAAGCCTATTTCCACAGCGTT -ACGGAAGCCTATTTCCACTTCGTC -ACGGAAGCCTATTTCCACTCTCTC -ACGGAAGCCTATTTCCACTGGATC -ACGGAAGCCTATTTCCACCACTTC -ACGGAAGCCTATTTCCACGTACTC -ACGGAAGCCTATTTCCACGATGTC -ACGGAAGCCTATTTCCACACAGTC -ACGGAAGCCTATTTCCACTTGCTG -ACGGAAGCCTATTTCCACTCCATG -ACGGAAGCCTATTTCCACTGTGTG -ACGGAAGCCTATTTCCACCTAGTG -ACGGAAGCCTATTTCCACCATCTG -ACGGAAGCCTATTTCCACGAGTTG -ACGGAAGCCTATTTCCACAGACTG -ACGGAAGCCTATTTCCACTCGGTA -ACGGAAGCCTATTTCCACTGCCTA -ACGGAAGCCTATTTCCACCCACTA -ACGGAAGCCTATTTCCACGGAGTA -ACGGAAGCCTATTTCCACTCGTCT -ACGGAAGCCTATTTCCACTGCACT -ACGGAAGCCTATTTCCACCTGACT -ACGGAAGCCTATTTCCACCAACCT -ACGGAAGCCTATTTCCACGCTACT -ACGGAAGCCTATTTCCACGGATCT -ACGGAAGCCTATTTCCACAAGGCT -ACGGAAGCCTATTTCCACTCAACC -ACGGAAGCCTATTTCCACTGTTCC -ACGGAAGCCTATTTCCACATTCCC -ACGGAAGCCTATTTCCACTTCTCG -ACGGAAGCCTATTTCCACTAGACG -ACGGAAGCCTATTTCCACGTAACG -ACGGAAGCCTATTTCCACACTTCG -ACGGAAGCCTATTTCCACTACGCA -ACGGAAGCCTATTTCCACCTTGCA -ACGGAAGCCTATTTCCACCGAACA -ACGGAAGCCTATTTCCACCAGTCA -ACGGAAGCCTATTTCCACGATCCA -ACGGAAGCCTATTTCCACACGACA -ACGGAAGCCTATTTCCACAGCTCA -ACGGAAGCCTATTTCCACTCACGT -ACGGAAGCCTATTTCCACCGTAGT -ACGGAAGCCTATTTCCACGTCAGT -ACGGAAGCCTATTTCCACGAAGGT -ACGGAAGCCTATTTCCACAACCGT -ACGGAAGCCTATTTCCACTTGTGC -ACGGAAGCCTATTTCCACCTAAGC -ACGGAAGCCTATTTCCACACTAGC -ACGGAAGCCTATTTCCACAGATGC -ACGGAAGCCTATTTCCACTGAAGG -ACGGAAGCCTATTTCCACCAATGG -ACGGAAGCCTATTTCCACATGAGG -ACGGAAGCCTATTTCCACAATGGG -ACGGAAGCCTATTTCCACTCCTGA -ACGGAAGCCTATTTCCACTAGCGA -ACGGAAGCCTATTTCCACCACAGA -ACGGAAGCCTATTTCCACGCAAGA -ACGGAAGCCTATTTCCACGGTTGA -ACGGAAGCCTATTTCCACTCCGAT -ACGGAAGCCTATTTCCACTGGCAT -ACGGAAGCCTATTTCCACCGAGAT -ACGGAAGCCTATTTCCACTACCAC -ACGGAAGCCTATTTCCACCAGAAC -ACGGAAGCCTATTTCCACGTCTAC -ACGGAAGCCTATTTCCACACGTAC -ACGGAAGCCTATTTCCACAGTGAC -ACGGAAGCCTATTTCCACCTGTAG -ACGGAAGCCTATTTCCACCCTAAG -ACGGAAGCCTATTTCCACGTTCAG -ACGGAAGCCTATTTCCACGCATAG -ACGGAAGCCTATTTCCACGACAAG -ACGGAAGCCTATTTCCACAAGCAG -ACGGAAGCCTATTTCCACCGTCAA -ACGGAAGCCTATTTCCACGCTGAA -ACGGAAGCCTATTTCCACAGTACG -ACGGAAGCCTATTTCCACATCCGA -ACGGAAGCCTATTTCCACATGGGA -ACGGAAGCCTATTTCCACGTGCAA -ACGGAAGCCTATTTCCACGAGGAA -ACGGAAGCCTATTTCCACCAGGTA -ACGGAAGCCTATTTCCACGACTCT -ACGGAAGCCTATTTCCACAGTCCT -ACGGAAGCCTATTTCCACTAAGCC -ACGGAAGCCTATTTCCACATAGCC -ACGGAAGCCTATTTCCACTAACCG -ACGGAAGCCTATTTCCACATGCCA -ACGGAAGCCTATCTCGTAGGAAAC -ACGGAAGCCTATCTCGTAAACACC -ACGGAAGCCTATCTCGTAATCGAG -ACGGAAGCCTATCTCGTACTCCTT -ACGGAAGCCTATCTCGTACCTGTT -ACGGAAGCCTATCTCGTACGGTTT -ACGGAAGCCTATCTCGTAGTGGTT -ACGGAAGCCTATCTCGTAGCCTTT -ACGGAAGCCTATCTCGTAGGTCTT -ACGGAAGCCTATCTCGTAACGCTT -ACGGAAGCCTATCTCGTAAGCGTT -ACGGAAGCCTATCTCGTATTCGTC -ACGGAAGCCTATCTCGTATCTCTC -ACGGAAGCCTATCTCGTATGGATC -ACGGAAGCCTATCTCGTACACTTC -ACGGAAGCCTATCTCGTAGTACTC -ACGGAAGCCTATCTCGTAGATGTC -ACGGAAGCCTATCTCGTAACAGTC -ACGGAAGCCTATCTCGTATTGCTG -ACGGAAGCCTATCTCGTATCCATG -ACGGAAGCCTATCTCGTATGTGTG -ACGGAAGCCTATCTCGTACTAGTG -ACGGAAGCCTATCTCGTACATCTG -ACGGAAGCCTATCTCGTAGAGTTG -ACGGAAGCCTATCTCGTAAGACTG -ACGGAAGCCTATCTCGTATCGGTA -ACGGAAGCCTATCTCGTATGCCTA -ACGGAAGCCTATCTCGTACCACTA -ACGGAAGCCTATCTCGTAGGAGTA -ACGGAAGCCTATCTCGTATCGTCT -ACGGAAGCCTATCTCGTATGCACT -ACGGAAGCCTATCTCGTACTGACT -ACGGAAGCCTATCTCGTACAACCT -ACGGAAGCCTATCTCGTAGCTACT -ACGGAAGCCTATCTCGTAGGATCT -ACGGAAGCCTATCTCGTAAAGGCT -ACGGAAGCCTATCTCGTATCAACC -ACGGAAGCCTATCTCGTATGTTCC -ACGGAAGCCTATCTCGTAATTCCC -ACGGAAGCCTATCTCGTATTCTCG -ACGGAAGCCTATCTCGTATAGACG -ACGGAAGCCTATCTCGTAGTAACG -ACGGAAGCCTATCTCGTAACTTCG -ACGGAAGCCTATCTCGTATACGCA -ACGGAAGCCTATCTCGTACTTGCA -ACGGAAGCCTATCTCGTACGAACA -ACGGAAGCCTATCTCGTACAGTCA -ACGGAAGCCTATCTCGTAGATCCA -ACGGAAGCCTATCTCGTAACGACA -ACGGAAGCCTATCTCGTAAGCTCA -ACGGAAGCCTATCTCGTATCACGT -ACGGAAGCCTATCTCGTACGTAGT -ACGGAAGCCTATCTCGTAGTCAGT -ACGGAAGCCTATCTCGTAGAAGGT -ACGGAAGCCTATCTCGTAAACCGT -ACGGAAGCCTATCTCGTATTGTGC -ACGGAAGCCTATCTCGTACTAAGC -ACGGAAGCCTATCTCGTAACTAGC -ACGGAAGCCTATCTCGTAAGATGC -ACGGAAGCCTATCTCGTATGAAGG -ACGGAAGCCTATCTCGTACAATGG -ACGGAAGCCTATCTCGTAATGAGG -ACGGAAGCCTATCTCGTAAATGGG -ACGGAAGCCTATCTCGTATCCTGA -ACGGAAGCCTATCTCGTATAGCGA -ACGGAAGCCTATCTCGTACACAGA -ACGGAAGCCTATCTCGTAGCAAGA -ACGGAAGCCTATCTCGTAGGTTGA -ACGGAAGCCTATCTCGTATCCGAT -ACGGAAGCCTATCTCGTATGGCAT -ACGGAAGCCTATCTCGTACGAGAT -ACGGAAGCCTATCTCGTATACCAC -ACGGAAGCCTATCTCGTACAGAAC -ACGGAAGCCTATCTCGTAGTCTAC -ACGGAAGCCTATCTCGTAACGTAC -ACGGAAGCCTATCTCGTAAGTGAC -ACGGAAGCCTATCTCGTACTGTAG -ACGGAAGCCTATCTCGTACCTAAG -ACGGAAGCCTATCTCGTAGTTCAG -ACGGAAGCCTATCTCGTAGCATAG -ACGGAAGCCTATCTCGTAGACAAG -ACGGAAGCCTATCTCGTAAAGCAG -ACGGAAGCCTATCTCGTACGTCAA -ACGGAAGCCTATCTCGTAGCTGAA -ACGGAAGCCTATCTCGTAAGTACG -ACGGAAGCCTATCTCGTAATCCGA -ACGGAAGCCTATCTCGTAATGGGA -ACGGAAGCCTATCTCGTAGTGCAA -ACGGAAGCCTATCTCGTAGAGGAA -ACGGAAGCCTATCTCGTACAGGTA -ACGGAAGCCTATCTCGTAGACTCT -ACGGAAGCCTATCTCGTAAGTCCT -ACGGAAGCCTATCTCGTATAAGCC -ACGGAAGCCTATCTCGTAATAGCC -ACGGAAGCCTATCTCGTATAACCG -ACGGAAGCCTATCTCGTAATGCCA -ACGGAAGCCTATGTCGATGGAAAC -ACGGAAGCCTATGTCGATAACACC -ACGGAAGCCTATGTCGATATCGAG -ACGGAAGCCTATGTCGATCTCCTT -ACGGAAGCCTATGTCGATCCTGTT -ACGGAAGCCTATGTCGATCGGTTT -ACGGAAGCCTATGTCGATGTGGTT -ACGGAAGCCTATGTCGATGCCTTT -ACGGAAGCCTATGTCGATGGTCTT -ACGGAAGCCTATGTCGATACGCTT -ACGGAAGCCTATGTCGATAGCGTT -ACGGAAGCCTATGTCGATTTCGTC -ACGGAAGCCTATGTCGATTCTCTC -ACGGAAGCCTATGTCGATTGGATC -ACGGAAGCCTATGTCGATCACTTC -ACGGAAGCCTATGTCGATGTACTC -ACGGAAGCCTATGTCGATGATGTC -ACGGAAGCCTATGTCGATACAGTC -ACGGAAGCCTATGTCGATTTGCTG -ACGGAAGCCTATGTCGATTCCATG -ACGGAAGCCTATGTCGATTGTGTG -ACGGAAGCCTATGTCGATCTAGTG -ACGGAAGCCTATGTCGATCATCTG -ACGGAAGCCTATGTCGATGAGTTG -ACGGAAGCCTATGTCGATAGACTG -ACGGAAGCCTATGTCGATTCGGTA -ACGGAAGCCTATGTCGATTGCCTA -ACGGAAGCCTATGTCGATCCACTA -ACGGAAGCCTATGTCGATGGAGTA -ACGGAAGCCTATGTCGATTCGTCT -ACGGAAGCCTATGTCGATTGCACT -ACGGAAGCCTATGTCGATCTGACT -ACGGAAGCCTATGTCGATCAACCT -ACGGAAGCCTATGTCGATGCTACT -ACGGAAGCCTATGTCGATGGATCT -ACGGAAGCCTATGTCGATAAGGCT -ACGGAAGCCTATGTCGATTCAACC -ACGGAAGCCTATGTCGATTGTTCC -ACGGAAGCCTATGTCGATATTCCC -ACGGAAGCCTATGTCGATTTCTCG -ACGGAAGCCTATGTCGATTAGACG -ACGGAAGCCTATGTCGATGTAACG -ACGGAAGCCTATGTCGATACTTCG -ACGGAAGCCTATGTCGATTACGCA -ACGGAAGCCTATGTCGATCTTGCA -ACGGAAGCCTATGTCGATCGAACA -ACGGAAGCCTATGTCGATCAGTCA -ACGGAAGCCTATGTCGATGATCCA -ACGGAAGCCTATGTCGATACGACA -ACGGAAGCCTATGTCGATAGCTCA -ACGGAAGCCTATGTCGATTCACGT -ACGGAAGCCTATGTCGATCGTAGT -ACGGAAGCCTATGTCGATGTCAGT -ACGGAAGCCTATGTCGATGAAGGT -ACGGAAGCCTATGTCGATAACCGT -ACGGAAGCCTATGTCGATTTGTGC -ACGGAAGCCTATGTCGATCTAAGC -ACGGAAGCCTATGTCGATACTAGC -ACGGAAGCCTATGTCGATAGATGC -ACGGAAGCCTATGTCGATTGAAGG -ACGGAAGCCTATGTCGATCAATGG -ACGGAAGCCTATGTCGATATGAGG -ACGGAAGCCTATGTCGATAATGGG -ACGGAAGCCTATGTCGATTCCTGA -ACGGAAGCCTATGTCGATTAGCGA -ACGGAAGCCTATGTCGATCACAGA -ACGGAAGCCTATGTCGATGCAAGA -ACGGAAGCCTATGTCGATGGTTGA -ACGGAAGCCTATGTCGATTCCGAT -ACGGAAGCCTATGTCGATTGGCAT -ACGGAAGCCTATGTCGATCGAGAT -ACGGAAGCCTATGTCGATTACCAC -ACGGAAGCCTATGTCGATCAGAAC -ACGGAAGCCTATGTCGATGTCTAC -ACGGAAGCCTATGTCGATACGTAC -ACGGAAGCCTATGTCGATAGTGAC -ACGGAAGCCTATGTCGATCTGTAG -ACGGAAGCCTATGTCGATCCTAAG -ACGGAAGCCTATGTCGATGTTCAG -ACGGAAGCCTATGTCGATGCATAG -ACGGAAGCCTATGTCGATGACAAG -ACGGAAGCCTATGTCGATAAGCAG -ACGGAAGCCTATGTCGATCGTCAA -ACGGAAGCCTATGTCGATGCTGAA -ACGGAAGCCTATGTCGATAGTACG -ACGGAAGCCTATGTCGATATCCGA -ACGGAAGCCTATGTCGATATGGGA -ACGGAAGCCTATGTCGATGTGCAA -ACGGAAGCCTATGTCGATGAGGAA -ACGGAAGCCTATGTCGATCAGGTA -ACGGAAGCCTATGTCGATGACTCT -ACGGAAGCCTATGTCGATAGTCCT -ACGGAAGCCTATGTCGATTAAGCC -ACGGAAGCCTATGTCGATATAGCC -ACGGAAGCCTATGTCGATTAACCG -ACGGAAGCCTATGTCGATATGCCA -ACGGAAGCCTATGTCACAGGAAAC -ACGGAAGCCTATGTCACAAACACC -ACGGAAGCCTATGTCACAATCGAG -ACGGAAGCCTATGTCACACTCCTT -ACGGAAGCCTATGTCACACCTGTT -ACGGAAGCCTATGTCACACGGTTT -ACGGAAGCCTATGTCACAGTGGTT -ACGGAAGCCTATGTCACAGCCTTT -ACGGAAGCCTATGTCACAGGTCTT -ACGGAAGCCTATGTCACAACGCTT -ACGGAAGCCTATGTCACAAGCGTT -ACGGAAGCCTATGTCACATTCGTC -ACGGAAGCCTATGTCACATCTCTC -ACGGAAGCCTATGTCACATGGATC -ACGGAAGCCTATGTCACACACTTC -ACGGAAGCCTATGTCACAGTACTC -ACGGAAGCCTATGTCACAGATGTC -ACGGAAGCCTATGTCACAACAGTC -ACGGAAGCCTATGTCACATTGCTG -ACGGAAGCCTATGTCACATCCATG -ACGGAAGCCTATGTCACATGTGTG -ACGGAAGCCTATGTCACACTAGTG -ACGGAAGCCTATGTCACACATCTG -ACGGAAGCCTATGTCACAGAGTTG -ACGGAAGCCTATGTCACAAGACTG -ACGGAAGCCTATGTCACATCGGTA -ACGGAAGCCTATGTCACATGCCTA -ACGGAAGCCTATGTCACACCACTA -ACGGAAGCCTATGTCACAGGAGTA -ACGGAAGCCTATGTCACATCGTCT -ACGGAAGCCTATGTCACATGCACT -ACGGAAGCCTATGTCACACTGACT -ACGGAAGCCTATGTCACACAACCT -ACGGAAGCCTATGTCACAGCTACT -ACGGAAGCCTATGTCACAGGATCT -ACGGAAGCCTATGTCACAAAGGCT -ACGGAAGCCTATGTCACATCAACC -ACGGAAGCCTATGTCACATGTTCC -ACGGAAGCCTATGTCACAATTCCC -ACGGAAGCCTATGTCACATTCTCG -ACGGAAGCCTATGTCACATAGACG -ACGGAAGCCTATGTCACAGTAACG -ACGGAAGCCTATGTCACAACTTCG -ACGGAAGCCTATGTCACATACGCA -ACGGAAGCCTATGTCACACTTGCA -ACGGAAGCCTATGTCACACGAACA -ACGGAAGCCTATGTCACACAGTCA -ACGGAAGCCTATGTCACAGATCCA -ACGGAAGCCTATGTCACAACGACA -ACGGAAGCCTATGTCACAAGCTCA -ACGGAAGCCTATGTCACATCACGT -ACGGAAGCCTATGTCACACGTAGT -ACGGAAGCCTATGTCACAGTCAGT -ACGGAAGCCTATGTCACAGAAGGT -ACGGAAGCCTATGTCACAAACCGT -ACGGAAGCCTATGTCACATTGTGC -ACGGAAGCCTATGTCACACTAAGC -ACGGAAGCCTATGTCACAACTAGC -ACGGAAGCCTATGTCACAAGATGC -ACGGAAGCCTATGTCACATGAAGG -ACGGAAGCCTATGTCACACAATGG -ACGGAAGCCTATGTCACAATGAGG -ACGGAAGCCTATGTCACAAATGGG -ACGGAAGCCTATGTCACATCCTGA -ACGGAAGCCTATGTCACATAGCGA -ACGGAAGCCTATGTCACACACAGA -ACGGAAGCCTATGTCACAGCAAGA -ACGGAAGCCTATGTCACAGGTTGA -ACGGAAGCCTATGTCACATCCGAT -ACGGAAGCCTATGTCACATGGCAT -ACGGAAGCCTATGTCACACGAGAT -ACGGAAGCCTATGTCACATACCAC -ACGGAAGCCTATGTCACACAGAAC -ACGGAAGCCTATGTCACAGTCTAC -ACGGAAGCCTATGTCACAACGTAC -ACGGAAGCCTATGTCACAAGTGAC -ACGGAAGCCTATGTCACACTGTAG -ACGGAAGCCTATGTCACACCTAAG -ACGGAAGCCTATGTCACAGTTCAG -ACGGAAGCCTATGTCACAGCATAG -ACGGAAGCCTATGTCACAGACAAG -ACGGAAGCCTATGTCACAAAGCAG -ACGGAAGCCTATGTCACACGTCAA -ACGGAAGCCTATGTCACAGCTGAA -ACGGAAGCCTATGTCACAAGTACG -ACGGAAGCCTATGTCACAATCCGA -ACGGAAGCCTATGTCACAATGGGA -ACGGAAGCCTATGTCACAGTGCAA -ACGGAAGCCTATGTCACAGAGGAA -ACGGAAGCCTATGTCACACAGGTA -ACGGAAGCCTATGTCACAGACTCT -ACGGAAGCCTATGTCACAAGTCCT -ACGGAAGCCTATGTCACATAAGCC -ACGGAAGCCTATGTCACAATAGCC -ACGGAAGCCTATGTCACATAACCG -ACGGAAGCCTATGTCACAATGCCA -ACGGAAGCCTATCTGTTGGGAAAC -ACGGAAGCCTATCTGTTGAACACC -ACGGAAGCCTATCTGTTGATCGAG -ACGGAAGCCTATCTGTTGCTCCTT -ACGGAAGCCTATCTGTTGCCTGTT -ACGGAAGCCTATCTGTTGCGGTTT -ACGGAAGCCTATCTGTTGGTGGTT -ACGGAAGCCTATCTGTTGGCCTTT -ACGGAAGCCTATCTGTTGGGTCTT -ACGGAAGCCTATCTGTTGACGCTT -ACGGAAGCCTATCTGTTGAGCGTT -ACGGAAGCCTATCTGTTGTTCGTC -ACGGAAGCCTATCTGTTGTCTCTC -ACGGAAGCCTATCTGTTGTGGATC -ACGGAAGCCTATCTGTTGCACTTC -ACGGAAGCCTATCTGTTGGTACTC -ACGGAAGCCTATCTGTTGGATGTC -ACGGAAGCCTATCTGTTGACAGTC -ACGGAAGCCTATCTGTTGTTGCTG -ACGGAAGCCTATCTGTTGTCCATG -ACGGAAGCCTATCTGTTGTGTGTG -ACGGAAGCCTATCTGTTGCTAGTG -ACGGAAGCCTATCTGTTGCATCTG -ACGGAAGCCTATCTGTTGGAGTTG -ACGGAAGCCTATCTGTTGAGACTG -ACGGAAGCCTATCTGTTGTCGGTA -ACGGAAGCCTATCTGTTGTGCCTA -ACGGAAGCCTATCTGTTGCCACTA -ACGGAAGCCTATCTGTTGGGAGTA -ACGGAAGCCTATCTGTTGTCGTCT -ACGGAAGCCTATCTGTTGTGCACT -ACGGAAGCCTATCTGTTGCTGACT -ACGGAAGCCTATCTGTTGCAACCT -ACGGAAGCCTATCTGTTGGCTACT -ACGGAAGCCTATCTGTTGGGATCT -ACGGAAGCCTATCTGTTGAAGGCT -ACGGAAGCCTATCTGTTGTCAACC -ACGGAAGCCTATCTGTTGTGTTCC -ACGGAAGCCTATCTGTTGATTCCC -ACGGAAGCCTATCTGTTGTTCTCG -ACGGAAGCCTATCTGTTGTAGACG -ACGGAAGCCTATCTGTTGGTAACG -ACGGAAGCCTATCTGTTGACTTCG -ACGGAAGCCTATCTGTTGTACGCA -ACGGAAGCCTATCTGTTGCTTGCA -ACGGAAGCCTATCTGTTGCGAACA -ACGGAAGCCTATCTGTTGCAGTCA -ACGGAAGCCTATCTGTTGGATCCA -ACGGAAGCCTATCTGTTGACGACA -ACGGAAGCCTATCTGTTGAGCTCA -ACGGAAGCCTATCTGTTGTCACGT -ACGGAAGCCTATCTGTTGCGTAGT -ACGGAAGCCTATCTGTTGGTCAGT -ACGGAAGCCTATCTGTTGGAAGGT -ACGGAAGCCTATCTGTTGAACCGT -ACGGAAGCCTATCTGTTGTTGTGC -ACGGAAGCCTATCTGTTGCTAAGC -ACGGAAGCCTATCTGTTGACTAGC -ACGGAAGCCTATCTGTTGAGATGC -ACGGAAGCCTATCTGTTGTGAAGG -ACGGAAGCCTATCTGTTGCAATGG -ACGGAAGCCTATCTGTTGATGAGG -ACGGAAGCCTATCTGTTGAATGGG -ACGGAAGCCTATCTGTTGTCCTGA -ACGGAAGCCTATCTGTTGTAGCGA -ACGGAAGCCTATCTGTTGCACAGA -ACGGAAGCCTATCTGTTGGCAAGA -ACGGAAGCCTATCTGTTGGGTTGA -ACGGAAGCCTATCTGTTGTCCGAT -ACGGAAGCCTATCTGTTGTGGCAT -ACGGAAGCCTATCTGTTGCGAGAT -ACGGAAGCCTATCTGTTGTACCAC -ACGGAAGCCTATCTGTTGCAGAAC -ACGGAAGCCTATCTGTTGGTCTAC -ACGGAAGCCTATCTGTTGACGTAC -ACGGAAGCCTATCTGTTGAGTGAC -ACGGAAGCCTATCTGTTGCTGTAG -ACGGAAGCCTATCTGTTGCCTAAG -ACGGAAGCCTATCTGTTGGTTCAG -ACGGAAGCCTATCTGTTGGCATAG -ACGGAAGCCTATCTGTTGGACAAG -ACGGAAGCCTATCTGTTGAAGCAG -ACGGAAGCCTATCTGTTGCGTCAA -ACGGAAGCCTATCTGTTGGCTGAA -ACGGAAGCCTATCTGTTGAGTACG -ACGGAAGCCTATCTGTTGATCCGA -ACGGAAGCCTATCTGTTGATGGGA -ACGGAAGCCTATCTGTTGGTGCAA -ACGGAAGCCTATCTGTTGGAGGAA -ACGGAAGCCTATCTGTTGCAGGTA -ACGGAAGCCTATCTGTTGGACTCT -ACGGAAGCCTATCTGTTGAGTCCT -ACGGAAGCCTATCTGTTGTAAGCC -ACGGAAGCCTATCTGTTGATAGCC -ACGGAAGCCTATCTGTTGTAACCG -ACGGAAGCCTATCTGTTGATGCCA -ACGGAAGCCTATATGTCCGGAAAC -ACGGAAGCCTATATGTCCAACACC -ACGGAAGCCTATATGTCCATCGAG -ACGGAAGCCTATATGTCCCTCCTT -ACGGAAGCCTATATGTCCCCTGTT -ACGGAAGCCTATATGTCCCGGTTT -ACGGAAGCCTATATGTCCGTGGTT -ACGGAAGCCTATATGTCCGCCTTT -ACGGAAGCCTATATGTCCGGTCTT -ACGGAAGCCTATATGTCCACGCTT -ACGGAAGCCTATATGTCCAGCGTT -ACGGAAGCCTATATGTCCTTCGTC -ACGGAAGCCTATATGTCCTCTCTC -ACGGAAGCCTATATGTCCTGGATC -ACGGAAGCCTATATGTCCCACTTC -ACGGAAGCCTATATGTCCGTACTC -ACGGAAGCCTATATGTCCGATGTC -ACGGAAGCCTATATGTCCACAGTC -ACGGAAGCCTATATGTCCTTGCTG -ACGGAAGCCTATATGTCCTCCATG -ACGGAAGCCTATATGTCCTGTGTG -ACGGAAGCCTATATGTCCCTAGTG -ACGGAAGCCTATATGTCCCATCTG -ACGGAAGCCTATATGTCCGAGTTG -ACGGAAGCCTATATGTCCAGACTG -ACGGAAGCCTATATGTCCTCGGTA -ACGGAAGCCTATATGTCCTGCCTA -ACGGAAGCCTATATGTCCCCACTA -ACGGAAGCCTATATGTCCGGAGTA -ACGGAAGCCTATATGTCCTCGTCT -ACGGAAGCCTATATGTCCTGCACT -ACGGAAGCCTATATGTCCCTGACT -ACGGAAGCCTATATGTCCCAACCT -ACGGAAGCCTATATGTCCGCTACT -ACGGAAGCCTATATGTCCGGATCT -ACGGAAGCCTATATGTCCAAGGCT -ACGGAAGCCTATATGTCCTCAACC -ACGGAAGCCTATATGTCCTGTTCC -ACGGAAGCCTATATGTCCATTCCC -ACGGAAGCCTATATGTCCTTCTCG -ACGGAAGCCTATATGTCCTAGACG -ACGGAAGCCTATATGTCCGTAACG -ACGGAAGCCTATATGTCCACTTCG -ACGGAAGCCTATATGTCCTACGCA -ACGGAAGCCTATATGTCCCTTGCA -ACGGAAGCCTATATGTCCCGAACA -ACGGAAGCCTATATGTCCCAGTCA -ACGGAAGCCTATATGTCCGATCCA -ACGGAAGCCTATATGTCCACGACA -ACGGAAGCCTATATGTCCAGCTCA -ACGGAAGCCTATATGTCCTCACGT -ACGGAAGCCTATATGTCCCGTAGT -ACGGAAGCCTATATGTCCGTCAGT -ACGGAAGCCTATATGTCCGAAGGT -ACGGAAGCCTATATGTCCAACCGT -ACGGAAGCCTATATGTCCTTGTGC -ACGGAAGCCTATATGTCCCTAAGC -ACGGAAGCCTATATGTCCACTAGC -ACGGAAGCCTATATGTCCAGATGC -ACGGAAGCCTATATGTCCTGAAGG -ACGGAAGCCTATATGTCCCAATGG -ACGGAAGCCTATATGTCCATGAGG -ACGGAAGCCTATATGTCCAATGGG -ACGGAAGCCTATATGTCCTCCTGA -ACGGAAGCCTATATGTCCTAGCGA -ACGGAAGCCTATATGTCCCACAGA -ACGGAAGCCTATATGTCCGCAAGA -ACGGAAGCCTATATGTCCGGTTGA -ACGGAAGCCTATATGTCCTCCGAT -ACGGAAGCCTATATGTCCTGGCAT -ACGGAAGCCTATATGTCCCGAGAT -ACGGAAGCCTATATGTCCTACCAC -ACGGAAGCCTATATGTCCCAGAAC -ACGGAAGCCTATATGTCCGTCTAC -ACGGAAGCCTATATGTCCACGTAC -ACGGAAGCCTATATGTCCAGTGAC -ACGGAAGCCTATATGTCCCTGTAG -ACGGAAGCCTATATGTCCCCTAAG -ACGGAAGCCTATATGTCCGTTCAG -ACGGAAGCCTATATGTCCGCATAG -ACGGAAGCCTATATGTCCGACAAG -ACGGAAGCCTATATGTCCAAGCAG -ACGGAAGCCTATATGTCCCGTCAA -ACGGAAGCCTATATGTCCGCTGAA -ACGGAAGCCTATATGTCCAGTACG -ACGGAAGCCTATATGTCCATCCGA -ACGGAAGCCTATATGTCCATGGGA -ACGGAAGCCTATATGTCCGTGCAA -ACGGAAGCCTATATGTCCGAGGAA -ACGGAAGCCTATATGTCCCAGGTA -ACGGAAGCCTATATGTCCGACTCT -ACGGAAGCCTATATGTCCAGTCCT -ACGGAAGCCTATATGTCCTAAGCC -ACGGAAGCCTATATGTCCATAGCC -ACGGAAGCCTATATGTCCTAACCG -ACGGAAGCCTATATGTCCATGCCA -ACGGAAGCCTATGTGTGTGGAAAC -ACGGAAGCCTATGTGTGTAACACC -ACGGAAGCCTATGTGTGTATCGAG -ACGGAAGCCTATGTGTGTCTCCTT -ACGGAAGCCTATGTGTGTCCTGTT -ACGGAAGCCTATGTGTGTCGGTTT -ACGGAAGCCTATGTGTGTGTGGTT -ACGGAAGCCTATGTGTGTGCCTTT -ACGGAAGCCTATGTGTGTGGTCTT -ACGGAAGCCTATGTGTGTACGCTT -ACGGAAGCCTATGTGTGTAGCGTT -ACGGAAGCCTATGTGTGTTTCGTC -ACGGAAGCCTATGTGTGTTCTCTC -ACGGAAGCCTATGTGTGTTGGATC -ACGGAAGCCTATGTGTGTCACTTC -ACGGAAGCCTATGTGTGTGTACTC -ACGGAAGCCTATGTGTGTGATGTC -ACGGAAGCCTATGTGTGTACAGTC -ACGGAAGCCTATGTGTGTTTGCTG -ACGGAAGCCTATGTGTGTTCCATG -ACGGAAGCCTATGTGTGTTGTGTG -ACGGAAGCCTATGTGTGTCTAGTG -ACGGAAGCCTATGTGTGTCATCTG -ACGGAAGCCTATGTGTGTGAGTTG -ACGGAAGCCTATGTGTGTAGACTG -ACGGAAGCCTATGTGTGTTCGGTA -ACGGAAGCCTATGTGTGTTGCCTA -ACGGAAGCCTATGTGTGTCCACTA -ACGGAAGCCTATGTGTGTGGAGTA -ACGGAAGCCTATGTGTGTTCGTCT -ACGGAAGCCTATGTGTGTTGCACT -ACGGAAGCCTATGTGTGTCTGACT -ACGGAAGCCTATGTGTGTCAACCT -ACGGAAGCCTATGTGTGTGCTACT -ACGGAAGCCTATGTGTGTGGATCT -ACGGAAGCCTATGTGTGTAAGGCT -ACGGAAGCCTATGTGTGTTCAACC -ACGGAAGCCTATGTGTGTTGTTCC -ACGGAAGCCTATGTGTGTATTCCC -ACGGAAGCCTATGTGTGTTTCTCG -ACGGAAGCCTATGTGTGTTAGACG -ACGGAAGCCTATGTGTGTGTAACG -ACGGAAGCCTATGTGTGTACTTCG -ACGGAAGCCTATGTGTGTTACGCA -ACGGAAGCCTATGTGTGTCTTGCA -ACGGAAGCCTATGTGTGTCGAACA -ACGGAAGCCTATGTGTGTCAGTCA -ACGGAAGCCTATGTGTGTGATCCA -ACGGAAGCCTATGTGTGTACGACA -ACGGAAGCCTATGTGTGTAGCTCA -ACGGAAGCCTATGTGTGTTCACGT -ACGGAAGCCTATGTGTGTCGTAGT -ACGGAAGCCTATGTGTGTGTCAGT -ACGGAAGCCTATGTGTGTGAAGGT -ACGGAAGCCTATGTGTGTAACCGT -ACGGAAGCCTATGTGTGTTTGTGC -ACGGAAGCCTATGTGTGTCTAAGC -ACGGAAGCCTATGTGTGTACTAGC -ACGGAAGCCTATGTGTGTAGATGC -ACGGAAGCCTATGTGTGTTGAAGG -ACGGAAGCCTATGTGTGTCAATGG -ACGGAAGCCTATGTGTGTATGAGG -ACGGAAGCCTATGTGTGTAATGGG -ACGGAAGCCTATGTGTGTTCCTGA -ACGGAAGCCTATGTGTGTTAGCGA -ACGGAAGCCTATGTGTGTCACAGA -ACGGAAGCCTATGTGTGTGCAAGA -ACGGAAGCCTATGTGTGTGGTTGA -ACGGAAGCCTATGTGTGTTCCGAT -ACGGAAGCCTATGTGTGTTGGCAT -ACGGAAGCCTATGTGTGTCGAGAT -ACGGAAGCCTATGTGTGTTACCAC -ACGGAAGCCTATGTGTGTCAGAAC -ACGGAAGCCTATGTGTGTGTCTAC -ACGGAAGCCTATGTGTGTACGTAC -ACGGAAGCCTATGTGTGTAGTGAC -ACGGAAGCCTATGTGTGTCTGTAG -ACGGAAGCCTATGTGTGTCCTAAG -ACGGAAGCCTATGTGTGTGTTCAG -ACGGAAGCCTATGTGTGTGCATAG -ACGGAAGCCTATGTGTGTGACAAG -ACGGAAGCCTATGTGTGTAAGCAG -ACGGAAGCCTATGTGTGTCGTCAA -ACGGAAGCCTATGTGTGTGCTGAA -ACGGAAGCCTATGTGTGTAGTACG -ACGGAAGCCTATGTGTGTATCCGA -ACGGAAGCCTATGTGTGTATGGGA -ACGGAAGCCTATGTGTGTGTGCAA -ACGGAAGCCTATGTGTGTGAGGAA -ACGGAAGCCTATGTGTGTCAGGTA -ACGGAAGCCTATGTGTGTGACTCT -ACGGAAGCCTATGTGTGTAGTCCT -ACGGAAGCCTATGTGTGTTAAGCC -ACGGAAGCCTATGTGTGTATAGCC -ACGGAAGCCTATGTGTGTTAACCG -ACGGAAGCCTATGTGTGTATGCCA -ACGGAAGCCTATGTGCTAGGAAAC -ACGGAAGCCTATGTGCTAAACACC -ACGGAAGCCTATGTGCTAATCGAG -ACGGAAGCCTATGTGCTACTCCTT -ACGGAAGCCTATGTGCTACCTGTT -ACGGAAGCCTATGTGCTACGGTTT -ACGGAAGCCTATGTGCTAGTGGTT -ACGGAAGCCTATGTGCTAGCCTTT -ACGGAAGCCTATGTGCTAGGTCTT -ACGGAAGCCTATGTGCTAACGCTT -ACGGAAGCCTATGTGCTAAGCGTT -ACGGAAGCCTATGTGCTATTCGTC -ACGGAAGCCTATGTGCTATCTCTC -ACGGAAGCCTATGTGCTATGGATC -ACGGAAGCCTATGTGCTACACTTC -ACGGAAGCCTATGTGCTAGTACTC -ACGGAAGCCTATGTGCTAGATGTC -ACGGAAGCCTATGTGCTAACAGTC -ACGGAAGCCTATGTGCTATTGCTG -ACGGAAGCCTATGTGCTATCCATG -ACGGAAGCCTATGTGCTATGTGTG -ACGGAAGCCTATGTGCTACTAGTG -ACGGAAGCCTATGTGCTACATCTG -ACGGAAGCCTATGTGCTAGAGTTG -ACGGAAGCCTATGTGCTAAGACTG -ACGGAAGCCTATGTGCTATCGGTA -ACGGAAGCCTATGTGCTATGCCTA -ACGGAAGCCTATGTGCTACCACTA -ACGGAAGCCTATGTGCTAGGAGTA -ACGGAAGCCTATGTGCTATCGTCT -ACGGAAGCCTATGTGCTATGCACT -ACGGAAGCCTATGTGCTACTGACT -ACGGAAGCCTATGTGCTACAACCT -ACGGAAGCCTATGTGCTAGCTACT -ACGGAAGCCTATGTGCTAGGATCT -ACGGAAGCCTATGTGCTAAAGGCT -ACGGAAGCCTATGTGCTATCAACC -ACGGAAGCCTATGTGCTATGTTCC -ACGGAAGCCTATGTGCTAATTCCC -ACGGAAGCCTATGTGCTATTCTCG -ACGGAAGCCTATGTGCTATAGACG -ACGGAAGCCTATGTGCTAGTAACG -ACGGAAGCCTATGTGCTAACTTCG -ACGGAAGCCTATGTGCTATACGCA -ACGGAAGCCTATGTGCTACTTGCA -ACGGAAGCCTATGTGCTACGAACA -ACGGAAGCCTATGTGCTACAGTCA -ACGGAAGCCTATGTGCTAGATCCA -ACGGAAGCCTATGTGCTAACGACA -ACGGAAGCCTATGTGCTAAGCTCA -ACGGAAGCCTATGTGCTATCACGT -ACGGAAGCCTATGTGCTACGTAGT -ACGGAAGCCTATGTGCTAGTCAGT -ACGGAAGCCTATGTGCTAGAAGGT -ACGGAAGCCTATGTGCTAAACCGT -ACGGAAGCCTATGTGCTATTGTGC -ACGGAAGCCTATGTGCTACTAAGC -ACGGAAGCCTATGTGCTAACTAGC -ACGGAAGCCTATGTGCTAAGATGC -ACGGAAGCCTATGTGCTATGAAGG -ACGGAAGCCTATGTGCTACAATGG -ACGGAAGCCTATGTGCTAATGAGG -ACGGAAGCCTATGTGCTAAATGGG -ACGGAAGCCTATGTGCTATCCTGA -ACGGAAGCCTATGTGCTATAGCGA -ACGGAAGCCTATGTGCTACACAGA -ACGGAAGCCTATGTGCTAGCAAGA -ACGGAAGCCTATGTGCTAGGTTGA -ACGGAAGCCTATGTGCTATCCGAT -ACGGAAGCCTATGTGCTATGGCAT -ACGGAAGCCTATGTGCTACGAGAT -ACGGAAGCCTATGTGCTATACCAC -ACGGAAGCCTATGTGCTACAGAAC -ACGGAAGCCTATGTGCTAGTCTAC -ACGGAAGCCTATGTGCTAACGTAC -ACGGAAGCCTATGTGCTAAGTGAC -ACGGAAGCCTATGTGCTACTGTAG -ACGGAAGCCTATGTGCTACCTAAG -ACGGAAGCCTATGTGCTAGTTCAG -ACGGAAGCCTATGTGCTAGCATAG -ACGGAAGCCTATGTGCTAGACAAG -ACGGAAGCCTATGTGCTAAAGCAG -ACGGAAGCCTATGTGCTACGTCAA -ACGGAAGCCTATGTGCTAGCTGAA -ACGGAAGCCTATGTGCTAAGTACG -ACGGAAGCCTATGTGCTAATCCGA -ACGGAAGCCTATGTGCTAATGGGA -ACGGAAGCCTATGTGCTAGTGCAA -ACGGAAGCCTATGTGCTAGAGGAA -ACGGAAGCCTATGTGCTACAGGTA -ACGGAAGCCTATGTGCTAGACTCT -ACGGAAGCCTATGTGCTAAGTCCT -ACGGAAGCCTATGTGCTATAAGCC -ACGGAAGCCTATGTGCTAATAGCC -ACGGAAGCCTATGTGCTATAACCG -ACGGAAGCCTATGTGCTAATGCCA -ACGGAAGCCTATCTGCATGGAAAC -ACGGAAGCCTATCTGCATAACACC -ACGGAAGCCTATCTGCATATCGAG -ACGGAAGCCTATCTGCATCTCCTT -ACGGAAGCCTATCTGCATCCTGTT -ACGGAAGCCTATCTGCATCGGTTT -ACGGAAGCCTATCTGCATGTGGTT -ACGGAAGCCTATCTGCATGCCTTT -ACGGAAGCCTATCTGCATGGTCTT -ACGGAAGCCTATCTGCATACGCTT -ACGGAAGCCTATCTGCATAGCGTT -ACGGAAGCCTATCTGCATTTCGTC -ACGGAAGCCTATCTGCATTCTCTC -ACGGAAGCCTATCTGCATTGGATC -ACGGAAGCCTATCTGCATCACTTC -ACGGAAGCCTATCTGCATGTACTC -ACGGAAGCCTATCTGCATGATGTC -ACGGAAGCCTATCTGCATACAGTC -ACGGAAGCCTATCTGCATTTGCTG -ACGGAAGCCTATCTGCATTCCATG -ACGGAAGCCTATCTGCATTGTGTG -ACGGAAGCCTATCTGCATCTAGTG -ACGGAAGCCTATCTGCATCATCTG -ACGGAAGCCTATCTGCATGAGTTG -ACGGAAGCCTATCTGCATAGACTG -ACGGAAGCCTATCTGCATTCGGTA -ACGGAAGCCTATCTGCATTGCCTA -ACGGAAGCCTATCTGCATCCACTA -ACGGAAGCCTATCTGCATGGAGTA -ACGGAAGCCTATCTGCATTCGTCT -ACGGAAGCCTATCTGCATTGCACT -ACGGAAGCCTATCTGCATCTGACT -ACGGAAGCCTATCTGCATCAACCT -ACGGAAGCCTATCTGCATGCTACT -ACGGAAGCCTATCTGCATGGATCT -ACGGAAGCCTATCTGCATAAGGCT -ACGGAAGCCTATCTGCATTCAACC -ACGGAAGCCTATCTGCATTGTTCC -ACGGAAGCCTATCTGCATATTCCC -ACGGAAGCCTATCTGCATTTCTCG -ACGGAAGCCTATCTGCATTAGACG -ACGGAAGCCTATCTGCATGTAACG -ACGGAAGCCTATCTGCATACTTCG -ACGGAAGCCTATCTGCATTACGCA -ACGGAAGCCTATCTGCATCTTGCA -ACGGAAGCCTATCTGCATCGAACA -ACGGAAGCCTATCTGCATCAGTCA -ACGGAAGCCTATCTGCATGATCCA -ACGGAAGCCTATCTGCATACGACA -ACGGAAGCCTATCTGCATAGCTCA -ACGGAAGCCTATCTGCATTCACGT -ACGGAAGCCTATCTGCATCGTAGT -ACGGAAGCCTATCTGCATGTCAGT -ACGGAAGCCTATCTGCATGAAGGT -ACGGAAGCCTATCTGCATAACCGT -ACGGAAGCCTATCTGCATTTGTGC -ACGGAAGCCTATCTGCATCTAAGC -ACGGAAGCCTATCTGCATACTAGC -ACGGAAGCCTATCTGCATAGATGC -ACGGAAGCCTATCTGCATTGAAGG -ACGGAAGCCTATCTGCATCAATGG -ACGGAAGCCTATCTGCATATGAGG -ACGGAAGCCTATCTGCATAATGGG -ACGGAAGCCTATCTGCATTCCTGA -ACGGAAGCCTATCTGCATTAGCGA -ACGGAAGCCTATCTGCATCACAGA -ACGGAAGCCTATCTGCATGCAAGA -ACGGAAGCCTATCTGCATGGTTGA -ACGGAAGCCTATCTGCATTCCGAT -ACGGAAGCCTATCTGCATTGGCAT -ACGGAAGCCTATCTGCATCGAGAT -ACGGAAGCCTATCTGCATTACCAC -ACGGAAGCCTATCTGCATCAGAAC -ACGGAAGCCTATCTGCATGTCTAC -ACGGAAGCCTATCTGCATACGTAC -ACGGAAGCCTATCTGCATAGTGAC -ACGGAAGCCTATCTGCATCTGTAG -ACGGAAGCCTATCTGCATCCTAAG -ACGGAAGCCTATCTGCATGTTCAG -ACGGAAGCCTATCTGCATGCATAG -ACGGAAGCCTATCTGCATGACAAG -ACGGAAGCCTATCTGCATAAGCAG -ACGGAAGCCTATCTGCATCGTCAA -ACGGAAGCCTATCTGCATGCTGAA -ACGGAAGCCTATCTGCATAGTACG -ACGGAAGCCTATCTGCATATCCGA -ACGGAAGCCTATCTGCATATGGGA -ACGGAAGCCTATCTGCATGTGCAA -ACGGAAGCCTATCTGCATGAGGAA -ACGGAAGCCTATCTGCATCAGGTA -ACGGAAGCCTATCTGCATGACTCT -ACGGAAGCCTATCTGCATAGTCCT -ACGGAAGCCTATCTGCATTAAGCC -ACGGAAGCCTATCTGCATATAGCC -ACGGAAGCCTATCTGCATTAACCG -ACGGAAGCCTATCTGCATATGCCA -ACGGAAGCCTATTTGGAGGGAAAC -ACGGAAGCCTATTTGGAGAACACC -ACGGAAGCCTATTTGGAGATCGAG -ACGGAAGCCTATTTGGAGCTCCTT -ACGGAAGCCTATTTGGAGCCTGTT -ACGGAAGCCTATTTGGAGCGGTTT -ACGGAAGCCTATTTGGAGGTGGTT -ACGGAAGCCTATTTGGAGGCCTTT -ACGGAAGCCTATTTGGAGGGTCTT -ACGGAAGCCTATTTGGAGACGCTT -ACGGAAGCCTATTTGGAGAGCGTT -ACGGAAGCCTATTTGGAGTTCGTC -ACGGAAGCCTATTTGGAGTCTCTC -ACGGAAGCCTATTTGGAGTGGATC -ACGGAAGCCTATTTGGAGCACTTC -ACGGAAGCCTATTTGGAGGTACTC -ACGGAAGCCTATTTGGAGGATGTC -ACGGAAGCCTATTTGGAGACAGTC -ACGGAAGCCTATTTGGAGTTGCTG -ACGGAAGCCTATTTGGAGTCCATG -ACGGAAGCCTATTTGGAGTGTGTG -ACGGAAGCCTATTTGGAGCTAGTG -ACGGAAGCCTATTTGGAGCATCTG -ACGGAAGCCTATTTGGAGGAGTTG -ACGGAAGCCTATTTGGAGAGACTG -ACGGAAGCCTATTTGGAGTCGGTA -ACGGAAGCCTATTTGGAGTGCCTA -ACGGAAGCCTATTTGGAGCCACTA -ACGGAAGCCTATTTGGAGGGAGTA -ACGGAAGCCTATTTGGAGTCGTCT -ACGGAAGCCTATTTGGAGTGCACT -ACGGAAGCCTATTTGGAGCTGACT -ACGGAAGCCTATTTGGAGCAACCT -ACGGAAGCCTATTTGGAGGCTACT -ACGGAAGCCTATTTGGAGGGATCT -ACGGAAGCCTATTTGGAGAAGGCT -ACGGAAGCCTATTTGGAGTCAACC -ACGGAAGCCTATTTGGAGTGTTCC -ACGGAAGCCTATTTGGAGATTCCC -ACGGAAGCCTATTTGGAGTTCTCG -ACGGAAGCCTATTTGGAGTAGACG -ACGGAAGCCTATTTGGAGGTAACG -ACGGAAGCCTATTTGGAGACTTCG -ACGGAAGCCTATTTGGAGTACGCA -ACGGAAGCCTATTTGGAGCTTGCA -ACGGAAGCCTATTTGGAGCGAACA -ACGGAAGCCTATTTGGAGCAGTCA -ACGGAAGCCTATTTGGAGGATCCA -ACGGAAGCCTATTTGGAGACGACA -ACGGAAGCCTATTTGGAGAGCTCA -ACGGAAGCCTATTTGGAGTCACGT -ACGGAAGCCTATTTGGAGCGTAGT -ACGGAAGCCTATTTGGAGGTCAGT -ACGGAAGCCTATTTGGAGGAAGGT -ACGGAAGCCTATTTGGAGAACCGT -ACGGAAGCCTATTTGGAGTTGTGC -ACGGAAGCCTATTTGGAGCTAAGC -ACGGAAGCCTATTTGGAGACTAGC -ACGGAAGCCTATTTGGAGAGATGC -ACGGAAGCCTATTTGGAGTGAAGG -ACGGAAGCCTATTTGGAGCAATGG -ACGGAAGCCTATTTGGAGATGAGG -ACGGAAGCCTATTTGGAGAATGGG -ACGGAAGCCTATTTGGAGTCCTGA -ACGGAAGCCTATTTGGAGTAGCGA -ACGGAAGCCTATTTGGAGCACAGA -ACGGAAGCCTATTTGGAGGCAAGA -ACGGAAGCCTATTTGGAGGGTTGA -ACGGAAGCCTATTTGGAGTCCGAT -ACGGAAGCCTATTTGGAGTGGCAT -ACGGAAGCCTATTTGGAGCGAGAT -ACGGAAGCCTATTTGGAGTACCAC -ACGGAAGCCTATTTGGAGCAGAAC -ACGGAAGCCTATTTGGAGGTCTAC -ACGGAAGCCTATTTGGAGACGTAC -ACGGAAGCCTATTTGGAGAGTGAC -ACGGAAGCCTATTTGGAGCTGTAG -ACGGAAGCCTATTTGGAGCCTAAG -ACGGAAGCCTATTTGGAGGTTCAG -ACGGAAGCCTATTTGGAGGCATAG -ACGGAAGCCTATTTGGAGGACAAG -ACGGAAGCCTATTTGGAGAAGCAG -ACGGAAGCCTATTTGGAGCGTCAA -ACGGAAGCCTATTTGGAGGCTGAA -ACGGAAGCCTATTTGGAGAGTACG -ACGGAAGCCTATTTGGAGATCCGA -ACGGAAGCCTATTTGGAGATGGGA -ACGGAAGCCTATTTGGAGGTGCAA -ACGGAAGCCTATTTGGAGGAGGAA -ACGGAAGCCTATTTGGAGCAGGTA -ACGGAAGCCTATTTGGAGGACTCT -ACGGAAGCCTATTTGGAGAGTCCT -ACGGAAGCCTATTTGGAGTAAGCC -ACGGAAGCCTATTTGGAGATAGCC -ACGGAAGCCTATTTGGAGTAACCG -ACGGAAGCCTATTTGGAGATGCCA -ACGGAAGCCTATCTGAGAGGAAAC -ACGGAAGCCTATCTGAGAAACACC -ACGGAAGCCTATCTGAGAATCGAG -ACGGAAGCCTATCTGAGACTCCTT -ACGGAAGCCTATCTGAGACCTGTT -ACGGAAGCCTATCTGAGACGGTTT -ACGGAAGCCTATCTGAGAGTGGTT -ACGGAAGCCTATCTGAGAGCCTTT -ACGGAAGCCTATCTGAGAGGTCTT -ACGGAAGCCTATCTGAGAACGCTT -ACGGAAGCCTATCTGAGAAGCGTT -ACGGAAGCCTATCTGAGATTCGTC -ACGGAAGCCTATCTGAGATCTCTC -ACGGAAGCCTATCTGAGATGGATC -ACGGAAGCCTATCTGAGACACTTC -ACGGAAGCCTATCTGAGAGTACTC -ACGGAAGCCTATCTGAGAGATGTC -ACGGAAGCCTATCTGAGAACAGTC -ACGGAAGCCTATCTGAGATTGCTG -ACGGAAGCCTATCTGAGATCCATG -ACGGAAGCCTATCTGAGATGTGTG -ACGGAAGCCTATCTGAGACTAGTG -ACGGAAGCCTATCTGAGACATCTG -ACGGAAGCCTATCTGAGAGAGTTG -ACGGAAGCCTATCTGAGAAGACTG -ACGGAAGCCTATCTGAGATCGGTA -ACGGAAGCCTATCTGAGATGCCTA -ACGGAAGCCTATCTGAGACCACTA -ACGGAAGCCTATCTGAGAGGAGTA -ACGGAAGCCTATCTGAGATCGTCT -ACGGAAGCCTATCTGAGATGCACT -ACGGAAGCCTATCTGAGACTGACT -ACGGAAGCCTATCTGAGACAACCT -ACGGAAGCCTATCTGAGAGCTACT -ACGGAAGCCTATCTGAGAGGATCT -ACGGAAGCCTATCTGAGAAAGGCT -ACGGAAGCCTATCTGAGATCAACC -ACGGAAGCCTATCTGAGATGTTCC -ACGGAAGCCTATCTGAGAATTCCC -ACGGAAGCCTATCTGAGATTCTCG -ACGGAAGCCTATCTGAGATAGACG -ACGGAAGCCTATCTGAGAGTAACG -ACGGAAGCCTATCTGAGAACTTCG -ACGGAAGCCTATCTGAGATACGCA -ACGGAAGCCTATCTGAGACTTGCA -ACGGAAGCCTATCTGAGACGAACA -ACGGAAGCCTATCTGAGACAGTCA -ACGGAAGCCTATCTGAGAGATCCA -ACGGAAGCCTATCTGAGAACGACA -ACGGAAGCCTATCTGAGAAGCTCA -ACGGAAGCCTATCTGAGATCACGT -ACGGAAGCCTATCTGAGACGTAGT -ACGGAAGCCTATCTGAGAGTCAGT -ACGGAAGCCTATCTGAGAGAAGGT -ACGGAAGCCTATCTGAGAAACCGT -ACGGAAGCCTATCTGAGATTGTGC -ACGGAAGCCTATCTGAGACTAAGC -ACGGAAGCCTATCTGAGAACTAGC -ACGGAAGCCTATCTGAGAAGATGC -ACGGAAGCCTATCTGAGATGAAGG -ACGGAAGCCTATCTGAGACAATGG -ACGGAAGCCTATCTGAGAATGAGG -ACGGAAGCCTATCTGAGAAATGGG -ACGGAAGCCTATCTGAGATCCTGA -ACGGAAGCCTATCTGAGATAGCGA -ACGGAAGCCTATCTGAGACACAGA -ACGGAAGCCTATCTGAGAGCAAGA -ACGGAAGCCTATCTGAGAGGTTGA -ACGGAAGCCTATCTGAGATCCGAT -ACGGAAGCCTATCTGAGATGGCAT -ACGGAAGCCTATCTGAGACGAGAT -ACGGAAGCCTATCTGAGATACCAC -ACGGAAGCCTATCTGAGACAGAAC -ACGGAAGCCTATCTGAGAGTCTAC -ACGGAAGCCTATCTGAGAACGTAC -ACGGAAGCCTATCTGAGAAGTGAC -ACGGAAGCCTATCTGAGACTGTAG -ACGGAAGCCTATCTGAGACCTAAG -ACGGAAGCCTATCTGAGAGTTCAG -ACGGAAGCCTATCTGAGAGCATAG -ACGGAAGCCTATCTGAGAGACAAG -ACGGAAGCCTATCTGAGAAAGCAG -ACGGAAGCCTATCTGAGACGTCAA -ACGGAAGCCTATCTGAGAGCTGAA -ACGGAAGCCTATCTGAGAAGTACG -ACGGAAGCCTATCTGAGAATCCGA -ACGGAAGCCTATCTGAGAATGGGA -ACGGAAGCCTATCTGAGAGTGCAA -ACGGAAGCCTATCTGAGAGAGGAA -ACGGAAGCCTATCTGAGACAGGTA -ACGGAAGCCTATCTGAGAGACTCT -ACGGAAGCCTATCTGAGAAGTCCT -ACGGAAGCCTATCTGAGATAAGCC -ACGGAAGCCTATCTGAGAATAGCC -ACGGAAGCCTATCTGAGATAACCG -ACGGAAGCCTATCTGAGAATGCCA -ACGGAAGCCTATGTATCGGGAAAC -ACGGAAGCCTATGTATCGAACACC -ACGGAAGCCTATGTATCGATCGAG -ACGGAAGCCTATGTATCGCTCCTT -ACGGAAGCCTATGTATCGCCTGTT -ACGGAAGCCTATGTATCGCGGTTT -ACGGAAGCCTATGTATCGGTGGTT -ACGGAAGCCTATGTATCGGCCTTT -ACGGAAGCCTATGTATCGGGTCTT -ACGGAAGCCTATGTATCGACGCTT -ACGGAAGCCTATGTATCGAGCGTT -ACGGAAGCCTATGTATCGTTCGTC -ACGGAAGCCTATGTATCGTCTCTC -ACGGAAGCCTATGTATCGTGGATC -ACGGAAGCCTATGTATCGCACTTC -ACGGAAGCCTATGTATCGGTACTC -ACGGAAGCCTATGTATCGGATGTC -ACGGAAGCCTATGTATCGACAGTC -ACGGAAGCCTATGTATCGTTGCTG -ACGGAAGCCTATGTATCGTCCATG -ACGGAAGCCTATGTATCGTGTGTG -ACGGAAGCCTATGTATCGCTAGTG -ACGGAAGCCTATGTATCGCATCTG -ACGGAAGCCTATGTATCGGAGTTG -ACGGAAGCCTATGTATCGAGACTG -ACGGAAGCCTATGTATCGTCGGTA -ACGGAAGCCTATGTATCGTGCCTA -ACGGAAGCCTATGTATCGCCACTA -ACGGAAGCCTATGTATCGGGAGTA -ACGGAAGCCTATGTATCGTCGTCT -ACGGAAGCCTATGTATCGTGCACT -ACGGAAGCCTATGTATCGCTGACT -ACGGAAGCCTATGTATCGCAACCT -ACGGAAGCCTATGTATCGGCTACT -ACGGAAGCCTATGTATCGGGATCT -ACGGAAGCCTATGTATCGAAGGCT -ACGGAAGCCTATGTATCGTCAACC -ACGGAAGCCTATGTATCGTGTTCC -ACGGAAGCCTATGTATCGATTCCC -ACGGAAGCCTATGTATCGTTCTCG -ACGGAAGCCTATGTATCGTAGACG -ACGGAAGCCTATGTATCGGTAACG -ACGGAAGCCTATGTATCGACTTCG -ACGGAAGCCTATGTATCGTACGCA -ACGGAAGCCTATGTATCGCTTGCA -ACGGAAGCCTATGTATCGCGAACA -ACGGAAGCCTATGTATCGCAGTCA -ACGGAAGCCTATGTATCGGATCCA -ACGGAAGCCTATGTATCGACGACA -ACGGAAGCCTATGTATCGAGCTCA -ACGGAAGCCTATGTATCGTCACGT -ACGGAAGCCTATGTATCGCGTAGT -ACGGAAGCCTATGTATCGGTCAGT -ACGGAAGCCTATGTATCGGAAGGT -ACGGAAGCCTATGTATCGAACCGT -ACGGAAGCCTATGTATCGTTGTGC -ACGGAAGCCTATGTATCGCTAAGC -ACGGAAGCCTATGTATCGACTAGC -ACGGAAGCCTATGTATCGAGATGC -ACGGAAGCCTATGTATCGTGAAGG -ACGGAAGCCTATGTATCGCAATGG -ACGGAAGCCTATGTATCGATGAGG -ACGGAAGCCTATGTATCGAATGGG -ACGGAAGCCTATGTATCGTCCTGA -ACGGAAGCCTATGTATCGTAGCGA -ACGGAAGCCTATGTATCGCACAGA -ACGGAAGCCTATGTATCGGCAAGA -ACGGAAGCCTATGTATCGGGTTGA -ACGGAAGCCTATGTATCGTCCGAT -ACGGAAGCCTATGTATCGTGGCAT -ACGGAAGCCTATGTATCGCGAGAT -ACGGAAGCCTATGTATCGTACCAC -ACGGAAGCCTATGTATCGCAGAAC -ACGGAAGCCTATGTATCGGTCTAC -ACGGAAGCCTATGTATCGACGTAC -ACGGAAGCCTATGTATCGAGTGAC -ACGGAAGCCTATGTATCGCTGTAG -ACGGAAGCCTATGTATCGCCTAAG -ACGGAAGCCTATGTATCGGTTCAG -ACGGAAGCCTATGTATCGGCATAG -ACGGAAGCCTATGTATCGGACAAG -ACGGAAGCCTATGTATCGAAGCAG -ACGGAAGCCTATGTATCGCGTCAA -ACGGAAGCCTATGTATCGGCTGAA -ACGGAAGCCTATGTATCGAGTACG -ACGGAAGCCTATGTATCGATCCGA -ACGGAAGCCTATGTATCGATGGGA -ACGGAAGCCTATGTATCGGTGCAA -ACGGAAGCCTATGTATCGGAGGAA -ACGGAAGCCTATGTATCGCAGGTA -ACGGAAGCCTATGTATCGGACTCT -ACGGAAGCCTATGTATCGAGTCCT -ACGGAAGCCTATGTATCGTAAGCC -ACGGAAGCCTATGTATCGATAGCC -ACGGAAGCCTATGTATCGTAACCG -ACGGAAGCCTATGTATCGATGCCA -ACGGAAGCCTATCTATGCGGAAAC -ACGGAAGCCTATCTATGCAACACC -ACGGAAGCCTATCTATGCATCGAG -ACGGAAGCCTATCTATGCCTCCTT -ACGGAAGCCTATCTATGCCCTGTT -ACGGAAGCCTATCTATGCCGGTTT -ACGGAAGCCTATCTATGCGTGGTT -ACGGAAGCCTATCTATGCGCCTTT -ACGGAAGCCTATCTATGCGGTCTT -ACGGAAGCCTATCTATGCACGCTT -ACGGAAGCCTATCTATGCAGCGTT -ACGGAAGCCTATCTATGCTTCGTC -ACGGAAGCCTATCTATGCTCTCTC -ACGGAAGCCTATCTATGCTGGATC -ACGGAAGCCTATCTATGCCACTTC -ACGGAAGCCTATCTATGCGTACTC -ACGGAAGCCTATCTATGCGATGTC -ACGGAAGCCTATCTATGCACAGTC -ACGGAAGCCTATCTATGCTTGCTG -ACGGAAGCCTATCTATGCTCCATG -ACGGAAGCCTATCTATGCTGTGTG -ACGGAAGCCTATCTATGCCTAGTG -ACGGAAGCCTATCTATGCCATCTG -ACGGAAGCCTATCTATGCGAGTTG -ACGGAAGCCTATCTATGCAGACTG -ACGGAAGCCTATCTATGCTCGGTA -ACGGAAGCCTATCTATGCTGCCTA -ACGGAAGCCTATCTATGCCCACTA -ACGGAAGCCTATCTATGCGGAGTA -ACGGAAGCCTATCTATGCTCGTCT -ACGGAAGCCTATCTATGCTGCACT -ACGGAAGCCTATCTATGCCTGACT -ACGGAAGCCTATCTATGCCAACCT -ACGGAAGCCTATCTATGCGCTACT -ACGGAAGCCTATCTATGCGGATCT -ACGGAAGCCTATCTATGCAAGGCT -ACGGAAGCCTATCTATGCTCAACC -ACGGAAGCCTATCTATGCTGTTCC -ACGGAAGCCTATCTATGCATTCCC -ACGGAAGCCTATCTATGCTTCTCG -ACGGAAGCCTATCTATGCTAGACG -ACGGAAGCCTATCTATGCGTAACG -ACGGAAGCCTATCTATGCACTTCG -ACGGAAGCCTATCTATGCTACGCA -ACGGAAGCCTATCTATGCCTTGCA -ACGGAAGCCTATCTATGCCGAACA -ACGGAAGCCTATCTATGCCAGTCA -ACGGAAGCCTATCTATGCGATCCA -ACGGAAGCCTATCTATGCACGACA -ACGGAAGCCTATCTATGCAGCTCA -ACGGAAGCCTATCTATGCTCACGT -ACGGAAGCCTATCTATGCCGTAGT -ACGGAAGCCTATCTATGCGTCAGT -ACGGAAGCCTATCTATGCGAAGGT -ACGGAAGCCTATCTATGCAACCGT -ACGGAAGCCTATCTATGCTTGTGC -ACGGAAGCCTATCTATGCCTAAGC -ACGGAAGCCTATCTATGCACTAGC -ACGGAAGCCTATCTATGCAGATGC -ACGGAAGCCTATCTATGCTGAAGG -ACGGAAGCCTATCTATGCCAATGG -ACGGAAGCCTATCTATGCATGAGG -ACGGAAGCCTATCTATGCAATGGG -ACGGAAGCCTATCTATGCTCCTGA -ACGGAAGCCTATCTATGCTAGCGA -ACGGAAGCCTATCTATGCCACAGA -ACGGAAGCCTATCTATGCGCAAGA -ACGGAAGCCTATCTATGCGGTTGA -ACGGAAGCCTATCTATGCTCCGAT -ACGGAAGCCTATCTATGCTGGCAT -ACGGAAGCCTATCTATGCCGAGAT -ACGGAAGCCTATCTATGCTACCAC -ACGGAAGCCTATCTATGCCAGAAC -ACGGAAGCCTATCTATGCGTCTAC -ACGGAAGCCTATCTATGCACGTAC -ACGGAAGCCTATCTATGCAGTGAC -ACGGAAGCCTATCTATGCCTGTAG -ACGGAAGCCTATCTATGCCCTAAG -ACGGAAGCCTATCTATGCGTTCAG -ACGGAAGCCTATCTATGCGCATAG -ACGGAAGCCTATCTATGCGACAAG -ACGGAAGCCTATCTATGCAAGCAG -ACGGAAGCCTATCTATGCCGTCAA -ACGGAAGCCTATCTATGCGCTGAA -ACGGAAGCCTATCTATGCAGTACG -ACGGAAGCCTATCTATGCATCCGA -ACGGAAGCCTATCTATGCATGGGA -ACGGAAGCCTATCTATGCGTGCAA -ACGGAAGCCTATCTATGCGAGGAA -ACGGAAGCCTATCTATGCCAGGTA -ACGGAAGCCTATCTATGCGACTCT -ACGGAAGCCTATCTATGCAGTCCT -ACGGAAGCCTATCTATGCTAAGCC -ACGGAAGCCTATCTATGCATAGCC -ACGGAAGCCTATCTATGCTAACCG -ACGGAAGCCTATCTATGCATGCCA -ACGGAAGCCTATCTACCAGGAAAC -ACGGAAGCCTATCTACCAAACACC -ACGGAAGCCTATCTACCAATCGAG -ACGGAAGCCTATCTACCACTCCTT -ACGGAAGCCTATCTACCACCTGTT -ACGGAAGCCTATCTACCACGGTTT -ACGGAAGCCTATCTACCAGTGGTT -ACGGAAGCCTATCTACCAGCCTTT -ACGGAAGCCTATCTACCAGGTCTT -ACGGAAGCCTATCTACCAACGCTT -ACGGAAGCCTATCTACCAAGCGTT -ACGGAAGCCTATCTACCATTCGTC -ACGGAAGCCTATCTACCATCTCTC -ACGGAAGCCTATCTACCATGGATC -ACGGAAGCCTATCTACCACACTTC -ACGGAAGCCTATCTACCAGTACTC -ACGGAAGCCTATCTACCAGATGTC -ACGGAAGCCTATCTACCAACAGTC -ACGGAAGCCTATCTACCATTGCTG -ACGGAAGCCTATCTACCATCCATG -ACGGAAGCCTATCTACCATGTGTG -ACGGAAGCCTATCTACCACTAGTG -ACGGAAGCCTATCTACCACATCTG -ACGGAAGCCTATCTACCAGAGTTG -ACGGAAGCCTATCTACCAAGACTG -ACGGAAGCCTATCTACCATCGGTA -ACGGAAGCCTATCTACCATGCCTA -ACGGAAGCCTATCTACCACCACTA -ACGGAAGCCTATCTACCAGGAGTA -ACGGAAGCCTATCTACCATCGTCT -ACGGAAGCCTATCTACCATGCACT -ACGGAAGCCTATCTACCACTGACT -ACGGAAGCCTATCTACCACAACCT -ACGGAAGCCTATCTACCAGCTACT -ACGGAAGCCTATCTACCAGGATCT -ACGGAAGCCTATCTACCAAAGGCT -ACGGAAGCCTATCTACCATCAACC -ACGGAAGCCTATCTACCATGTTCC -ACGGAAGCCTATCTACCAATTCCC -ACGGAAGCCTATCTACCATTCTCG -ACGGAAGCCTATCTACCATAGACG -ACGGAAGCCTATCTACCAGTAACG -ACGGAAGCCTATCTACCAACTTCG -ACGGAAGCCTATCTACCATACGCA -ACGGAAGCCTATCTACCACTTGCA -ACGGAAGCCTATCTACCACGAACA -ACGGAAGCCTATCTACCACAGTCA -ACGGAAGCCTATCTACCAGATCCA -ACGGAAGCCTATCTACCAACGACA -ACGGAAGCCTATCTACCAAGCTCA -ACGGAAGCCTATCTACCATCACGT -ACGGAAGCCTATCTACCACGTAGT -ACGGAAGCCTATCTACCAGTCAGT -ACGGAAGCCTATCTACCAGAAGGT -ACGGAAGCCTATCTACCAAACCGT -ACGGAAGCCTATCTACCATTGTGC -ACGGAAGCCTATCTACCACTAAGC -ACGGAAGCCTATCTACCAACTAGC -ACGGAAGCCTATCTACCAAGATGC -ACGGAAGCCTATCTACCATGAAGG -ACGGAAGCCTATCTACCACAATGG -ACGGAAGCCTATCTACCAATGAGG -ACGGAAGCCTATCTACCAAATGGG -ACGGAAGCCTATCTACCATCCTGA -ACGGAAGCCTATCTACCATAGCGA -ACGGAAGCCTATCTACCACACAGA -ACGGAAGCCTATCTACCAGCAAGA -ACGGAAGCCTATCTACCAGGTTGA -ACGGAAGCCTATCTACCATCCGAT -ACGGAAGCCTATCTACCATGGCAT -ACGGAAGCCTATCTACCACGAGAT -ACGGAAGCCTATCTACCATACCAC -ACGGAAGCCTATCTACCACAGAAC -ACGGAAGCCTATCTACCAGTCTAC -ACGGAAGCCTATCTACCAACGTAC -ACGGAAGCCTATCTACCAAGTGAC -ACGGAAGCCTATCTACCACTGTAG -ACGGAAGCCTATCTACCACCTAAG -ACGGAAGCCTATCTACCAGTTCAG -ACGGAAGCCTATCTACCAGCATAG -ACGGAAGCCTATCTACCAGACAAG -ACGGAAGCCTATCTACCAAAGCAG -ACGGAAGCCTATCTACCACGTCAA -ACGGAAGCCTATCTACCAGCTGAA -ACGGAAGCCTATCTACCAAGTACG -ACGGAAGCCTATCTACCAATCCGA -ACGGAAGCCTATCTACCAATGGGA -ACGGAAGCCTATCTACCAGTGCAA -ACGGAAGCCTATCTACCAGAGGAA -ACGGAAGCCTATCTACCACAGGTA -ACGGAAGCCTATCTACCAGACTCT -ACGGAAGCCTATCTACCAAGTCCT -ACGGAAGCCTATCTACCATAAGCC -ACGGAAGCCTATCTACCAATAGCC -ACGGAAGCCTATCTACCATAACCG -ACGGAAGCCTATCTACCAATGCCA -ACGGAAGCCTATGTAGGAGGAAAC -ACGGAAGCCTATGTAGGAAACACC -ACGGAAGCCTATGTAGGAATCGAG -ACGGAAGCCTATGTAGGACTCCTT -ACGGAAGCCTATGTAGGACCTGTT -ACGGAAGCCTATGTAGGACGGTTT -ACGGAAGCCTATGTAGGAGTGGTT -ACGGAAGCCTATGTAGGAGCCTTT -ACGGAAGCCTATGTAGGAGGTCTT -ACGGAAGCCTATGTAGGAACGCTT -ACGGAAGCCTATGTAGGAAGCGTT -ACGGAAGCCTATGTAGGATTCGTC -ACGGAAGCCTATGTAGGATCTCTC -ACGGAAGCCTATGTAGGATGGATC -ACGGAAGCCTATGTAGGACACTTC -ACGGAAGCCTATGTAGGAGTACTC -ACGGAAGCCTATGTAGGAGATGTC -ACGGAAGCCTATGTAGGAACAGTC -ACGGAAGCCTATGTAGGATTGCTG -ACGGAAGCCTATGTAGGATCCATG -ACGGAAGCCTATGTAGGATGTGTG -ACGGAAGCCTATGTAGGACTAGTG -ACGGAAGCCTATGTAGGACATCTG -ACGGAAGCCTATGTAGGAGAGTTG -ACGGAAGCCTATGTAGGAAGACTG -ACGGAAGCCTATGTAGGATCGGTA -ACGGAAGCCTATGTAGGATGCCTA -ACGGAAGCCTATGTAGGACCACTA -ACGGAAGCCTATGTAGGAGGAGTA -ACGGAAGCCTATGTAGGATCGTCT -ACGGAAGCCTATGTAGGATGCACT -ACGGAAGCCTATGTAGGACTGACT -ACGGAAGCCTATGTAGGACAACCT -ACGGAAGCCTATGTAGGAGCTACT -ACGGAAGCCTATGTAGGAGGATCT -ACGGAAGCCTATGTAGGAAAGGCT -ACGGAAGCCTATGTAGGATCAACC -ACGGAAGCCTATGTAGGATGTTCC -ACGGAAGCCTATGTAGGAATTCCC -ACGGAAGCCTATGTAGGATTCTCG -ACGGAAGCCTATGTAGGATAGACG -ACGGAAGCCTATGTAGGAGTAACG -ACGGAAGCCTATGTAGGAACTTCG -ACGGAAGCCTATGTAGGATACGCA -ACGGAAGCCTATGTAGGACTTGCA -ACGGAAGCCTATGTAGGACGAACA -ACGGAAGCCTATGTAGGACAGTCA -ACGGAAGCCTATGTAGGAGATCCA -ACGGAAGCCTATGTAGGAACGACA -ACGGAAGCCTATGTAGGAAGCTCA -ACGGAAGCCTATGTAGGATCACGT -ACGGAAGCCTATGTAGGACGTAGT -ACGGAAGCCTATGTAGGAGTCAGT -ACGGAAGCCTATGTAGGAGAAGGT -ACGGAAGCCTATGTAGGAAACCGT -ACGGAAGCCTATGTAGGATTGTGC -ACGGAAGCCTATGTAGGACTAAGC -ACGGAAGCCTATGTAGGAACTAGC -ACGGAAGCCTATGTAGGAAGATGC -ACGGAAGCCTATGTAGGATGAAGG -ACGGAAGCCTATGTAGGACAATGG -ACGGAAGCCTATGTAGGAATGAGG -ACGGAAGCCTATGTAGGAAATGGG -ACGGAAGCCTATGTAGGATCCTGA -ACGGAAGCCTATGTAGGATAGCGA -ACGGAAGCCTATGTAGGACACAGA -ACGGAAGCCTATGTAGGAGCAAGA -ACGGAAGCCTATGTAGGAGGTTGA -ACGGAAGCCTATGTAGGATCCGAT -ACGGAAGCCTATGTAGGATGGCAT -ACGGAAGCCTATGTAGGACGAGAT -ACGGAAGCCTATGTAGGATACCAC -ACGGAAGCCTATGTAGGACAGAAC -ACGGAAGCCTATGTAGGAGTCTAC -ACGGAAGCCTATGTAGGAACGTAC -ACGGAAGCCTATGTAGGAAGTGAC -ACGGAAGCCTATGTAGGACTGTAG -ACGGAAGCCTATGTAGGACCTAAG -ACGGAAGCCTATGTAGGAGTTCAG -ACGGAAGCCTATGTAGGAGCATAG -ACGGAAGCCTATGTAGGAGACAAG -ACGGAAGCCTATGTAGGAAAGCAG -ACGGAAGCCTATGTAGGACGTCAA -ACGGAAGCCTATGTAGGAGCTGAA -ACGGAAGCCTATGTAGGAAGTACG -ACGGAAGCCTATGTAGGAATCCGA -ACGGAAGCCTATGTAGGAATGGGA -ACGGAAGCCTATGTAGGAGTGCAA -ACGGAAGCCTATGTAGGAGAGGAA -ACGGAAGCCTATGTAGGACAGGTA -ACGGAAGCCTATGTAGGAGACTCT -ACGGAAGCCTATGTAGGAAGTCCT -ACGGAAGCCTATGTAGGATAAGCC -ACGGAAGCCTATGTAGGAATAGCC -ACGGAAGCCTATGTAGGATAACCG -ACGGAAGCCTATGTAGGAATGCCA -ACGGAAGCCTATTCTTCGGGAAAC -ACGGAAGCCTATTCTTCGAACACC -ACGGAAGCCTATTCTTCGATCGAG -ACGGAAGCCTATTCTTCGCTCCTT -ACGGAAGCCTATTCTTCGCCTGTT -ACGGAAGCCTATTCTTCGCGGTTT -ACGGAAGCCTATTCTTCGGTGGTT -ACGGAAGCCTATTCTTCGGCCTTT -ACGGAAGCCTATTCTTCGGGTCTT -ACGGAAGCCTATTCTTCGACGCTT -ACGGAAGCCTATTCTTCGAGCGTT -ACGGAAGCCTATTCTTCGTTCGTC -ACGGAAGCCTATTCTTCGTCTCTC -ACGGAAGCCTATTCTTCGTGGATC -ACGGAAGCCTATTCTTCGCACTTC -ACGGAAGCCTATTCTTCGGTACTC -ACGGAAGCCTATTCTTCGGATGTC -ACGGAAGCCTATTCTTCGACAGTC -ACGGAAGCCTATTCTTCGTTGCTG -ACGGAAGCCTATTCTTCGTCCATG -ACGGAAGCCTATTCTTCGTGTGTG -ACGGAAGCCTATTCTTCGCTAGTG -ACGGAAGCCTATTCTTCGCATCTG -ACGGAAGCCTATTCTTCGGAGTTG -ACGGAAGCCTATTCTTCGAGACTG -ACGGAAGCCTATTCTTCGTCGGTA -ACGGAAGCCTATTCTTCGTGCCTA -ACGGAAGCCTATTCTTCGCCACTA -ACGGAAGCCTATTCTTCGGGAGTA -ACGGAAGCCTATTCTTCGTCGTCT -ACGGAAGCCTATTCTTCGTGCACT -ACGGAAGCCTATTCTTCGCTGACT -ACGGAAGCCTATTCTTCGCAACCT -ACGGAAGCCTATTCTTCGGCTACT -ACGGAAGCCTATTCTTCGGGATCT -ACGGAAGCCTATTCTTCGAAGGCT -ACGGAAGCCTATTCTTCGTCAACC -ACGGAAGCCTATTCTTCGTGTTCC -ACGGAAGCCTATTCTTCGATTCCC -ACGGAAGCCTATTCTTCGTTCTCG -ACGGAAGCCTATTCTTCGTAGACG -ACGGAAGCCTATTCTTCGGTAACG -ACGGAAGCCTATTCTTCGACTTCG -ACGGAAGCCTATTCTTCGTACGCA -ACGGAAGCCTATTCTTCGCTTGCA -ACGGAAGCCTATTCTTCGCGAACA -ACGGAAGCCTATTCTTCGCAGTCA -ACGGAAGCCTATTCTTCGGATCCA -ACGGAAGCCTATTCTTCGACGACA -ACGGAAGCCTATTCTTCGAGCTCA -ACGGAAGCCTATTCTTCGTCACGT -ACGGAAGCCTATTCTTCGCGTAGT -ACGGAAGCCTATTCTTCGGTCAGT -ACGGAAGCCTATTCTTCGGAAGGT -ACGGAAGCCTATTCTTCGAACCGT -ACGGAAGCCTATTCTTCGTTGTGC -ACGGAAGCCTATTCTTCGCTAAGC -ACGGAAGCCTATTCTTCGACTAGC -ACGGAAGCCTATTCTTCGAGATGC -ACGGAAGCCTATTCTTCGTGAAGG -ACGGAAGCCTATTCTTCGCAATGG -ACGGAAGCCTATTCTTCGATGAGG -ACGGAAGCCTATTCTTCGAATGGG -ACGGAAGCCTATTCTTCGTCCTGA -ACGGAAGCCTATTCTTCGTAGCGA -ACGGAAGCCTATTCTTCGCACAGA -ACGGAAGCCTATTCTTCGGCAAGA -ACGGAAGCCTATTCTTCGGGTTGA -ACGGAAGCCTATTCTTCGTCCGAT -ACGGAAGCCTATTCTTCGTGGCAT -ACGGAAGCCTATTCTTCGCGAGAT -ACGGAAGCCTATTCTTCGTACCAC -ACGGAAGCCTATTCTTCGCAGAAC -ACGGAAGCCTATTCTTCGGTCTAC -ACGGAAGCCTATTCTTCGACGTAC -ACGGAAGCCTATTCTTCGAGTGAC -ACGGAAGCCTATTCTTCGCTGTAG -ACGGAAGCCTATTCTTCGCCTAAG -ACGGAAGCCTATTCTTCGGTTCAG -ACGGAAGCCTATTCTTCGGCATAG -ACGGAAGCCTATTCTTCGGACAAG -ACGGAAGCCTATTCTTCGAAGCAG -ACGGAAGCCTATTCTTCGCGTCAA -ACGGAAGCCTATTCTTCGGCTGAA -ACGGAAGCCTATTCTTCGAGTACG -ACGGAAGCCTATTCTTCGATCCGA -ACGGAAGCCTATTCTTCGATGGGA -ACGGAAGCCTATTCTTCGGTGCAA -ACGGAAGCCTATTCTTCGGAGGAA -ACGGAAGCCTATTCTTCGCAGGTA -ACGGAAGCCTATTCTTCGGACTCT -ACGGAAGCCTATTCTTCGAGTCCT -ACGGAAGCCTATTCTTCGTAAGCC -ACGGAAGCCTATTCTTCGATAGCC -ACGGAAGCCTATTCTTCGTAACCG -ACGGAAGCCTATTCTTCGATGCCA -ACGGAAGCCTATACTTGCGGAAAC -ACGGAAGCCTATACTTGCAACACC -ACGGAAGCCTATACTTGCATCGAG -ACGGAAGCCTATACTTGCCTCCTT -ACGGAAGCCTATACTTGCCCTGTT -ACGGAAGCCTATACTTGCCGGTTT -ACGGAAGCCTATACTTGCGTGGTT -ACGGAAGCCTATACTTGCGCCTTT -ACGGAAGCCTATACTTGCGGTCTT -ACGGAAGCCTATACTTGCACGCTT -ACGGAAGCCTATACTTGCAGCGTT -ACGGAAGCCTATACTTGCTTCGTC -ACGGAAGCCTATACTTGCTCTCTC -ACGGAAGCCTATACTTGCTGGATC -ACGGAAGCCTATACTTGCCACTTC -ACGGAAGCCTATACTTGCGTACTC -ACGGAAGCCTATACTTGCGATGTC -ACGGAAGCCTATACTTGCACAGTC -ACGGAAGCCTATACTTGCTTGCTG -ACGGAAGCCTATACTTGCTCCATG -ACGGAAGCCTATACTTGCTGTGTG -ACGGAAGCCTATACTTGCCTAGTG -ACGGAAGCCTATACTTGCCATCTG -ACGGAAGCCTATACTTGCGAGTTG -ACGGAAGCCTATACTTGCAGACTG -ACGGAAGCCTATACTTGCTCGGTA -ACGGAAGCCTATACTTGCTGCCTA -ACGGAAGCCTATACTTGCCCACTA -ACGGAAGCCTATACTTGCGGAGTA -ACGGAAGCCTATACTTGCTCGTCT -ACGGAAGCCTATACTTGCTGCACT -ACGGAAGCCTATACTTGCCTGACT -ACGGAAGCCTATACTTGCCAACCT -ACGGAAGCCTATACTTGCGCTACT -ACGGAAGCCTATACTTGCGGATCT -ACGGAAGCCTATACTTGCAAGGCT -ACGGAAGCCTATACTTGCTCAACC -ACGGAAGCCTATACTTGCTGTTCC -ACGGAAGCCTATACTTGCATTCCC -ACGGAAGCCTATACTTGCTTCTCG -ACGGAAGCCTATACTTGCTAGACG -ACGGAAGCCTATACTTGCGTAACG -ACGGAAGCCTATACTTGCACTTCG -ACGGAAGCCTATACTTGCTACGCA -ACGGAAGCCTATACTTGCCTTGCA -ACGGAAGCCTATACTTGCCGAACA -ACGGAAGCCTATACTTGCCAGTCA -ACGGAAGCCTATACTTGCGATCCA -ACGGAAGCCTATACTTGCACGACA -ACGGAAGCCTATACTTGCAGCTCA -ACGGAAGCCTATACTTGCTCACGT -ACGGAAGCCTATACTTGCCGTAGT -ACGGAAGCCTATACTTGCGTCAGT -ACGGAAGCCTATACTTGCGAAGGT -ACGGAAGCCTATACTTGCAACCGT -ACGGAAGCCTATACTTGCTTGTGC -ACGGAAGCCTATACTTGCCTAAGC -ACGGAAGCCTATACTTGCACTAGC -ACGGAAGCCTATACTTGCAGATGC -ACGGAAGCCTATACTTGCTGAAGG -ACGGAAGCCTATACTTGCCAATGG -ACGGAAGCCTATACTTGCATGAGG -ACGGAAGCCTATACTTGCAATGGG -ACGGAAGCCTATACTTGCTCCTGA -ACGGAAGCCTATACTTGCTAGCGA -ACGGAAGCCTATACTTGCCACAGA -ACGGAAGCCTATACTTGCGCAAGA -ACGGAAGCCTATACTTGCGGTTGA -ACGGAAGCCTATACTTGCTCCGAT -ACGGAAGCCTATACTTGCTGGCAT -ACGGAAGCCTATACTTGCCGAGAT -ACGGAAGCCTATACTTGCTACCAC -ACGGAAGCCTATACTTGCCAGAAC -ACGGAAGCCTATACTTGCGTCTAC -ACGGAAGCCTATACTTGCACGTAC -ACGGAAGCCTATACTTGCAGTGAC -ACGGAAGCCTATACTTGCCTGTAG -ACGGAAGCCTATACTTGCCCTAAG -ACGGAAGCCTATACTTGCGTTCAG -ACGGAAGCCTATACTTGCGCATAG -ACGGAAGCCTATACTTGCGACAAG -ACGGAAGCCTATACTTGCAAGCAG -ACGGAAGCCTATACTTGCCGTCAA -ACGGAAGCCTATACTTGCGCTGAA -ACGGAAGCCTATACTTGCAGTACG -ACGGAAGCCTATACTTGCATCCGA -ACGGAAGCCTATACTTGCATGGGA -ACGGAAGCCTATACTTGCGTGCAA -ACGGAAGCCTATACTTGCGAGGAA -ACGGAAGCCTATACTTGCCAGGTA -ACGGAAGCCTATACTTGCGACTCT -ACGGAAGCCTATACTTGCAGTCCT -ACGGAAGCCTATACTTGCTAAGCC -ACGGAAGCCTATACTTGCATAGCC -ACGGAAGCCTATACTTGCTAACCG -ACGGAAGCCTATACTTGCATGCCA -ACGGAAGCCTATACTCTGGGAAAC -ACGGAAGCCTATACTCTGAACACC -ACGGAAGCCTATACTCTGATCGAG -ACGGAAGCCTATACTCTGCTCCTT -ACGGAAGCCTATACTCTGCCTGTT -ACGGAAGCCTATACTCTGCGGTTT -ACGGAAGCCTATACTCTGGTGGTT -ACGGAAGCCTATACTCTGGCCTTT -ACGGAAGCCTATACTCTGGGTCTT -ACGGAAGCCTATACTCTGACGCTT -ACGGAAGCCTATACTCTGAGCGTT -ACGGAAGCCTATACTCTGTTCGTC -ACGGAAGCCTATACTCTGTCTCTC -ACGGAAGCCTATACTCTGTGGATC -ACGGAAGCCTATACTCTGCACTTC -ACGGAAGCCTATACTCTGGTACTC -ACGGAAGCCTATACTCTGGATGTC -ACGGAAGCCTATACTCTGACAGTC -ACGGAAGCCTATACTCTGTTGCTG -ACGGAAGCCTATACTCTGTCCATG -ACGGAAGCCTATACTCTGTGTGTG -ACGGAAGCCTATACTCTGCTAGTG -ACGGAAGCCTATACTCTGCATCTG -ACGGAAGCCTATACTCTGGAGTTG -ACGGAAGCCTATACTCTGAGACTG -ACGGAAGCCTATACTCTGTCGGTA -ACGGAAGCCTATACTCTGTGCCTA -ACGGAAGCCTATACTCTGCCACTA -ACGGAAGCCTATACTCTGGGAGTA -ACGGAAGCCTATACTCTGTCGTCT -ACGGAAGCCTATACTCTGTGCACT -ACGGAAGCCTATACTCTGCTGACT -ACGGAAGCCTATACTCTGCAACCT -ACGGAAGCCTATACTCTGGCTACT -ACGGAAGCCTATACTCTGGGATCT -ACGGAAGCCTATACTCTGAAGGCT -ACGGAAGCCTATACTCTGTCAACC -ACGGAAGCCTATACTCTGTGTTCC -ACGGAAGCCTATACTCTGATTCCC -ACGGAAGCCTATACTCTGTTCTCG -ACGGAAGCCTATACTCTGTAGACG -ACGGAAGCCTATACTCTGGTAACG -ACGGAAGCCTATACTCTGACTTCG -ACGGAAGCCTATACTCTGTACGCA -ACGGAAGCCTATACTCTGCTTGCA -ACGGAAGCCTATACTCTGCGAACA -ACGGAAGCCTATACTCTGCAGTCA -ACGGAAGCCTATACTCTGGATCCA -ACGGAAGCCTATACTCTGACGACA -ACGGAAGCCTATACTCTGAGCTCA -ACGGAAGCCTATACTCTGTCACGT -ACGGAAGCCTATACTCTGCGTAGT -ACGGAAGCCTATACTCTGGTCAGT -ACGGAAGCCTATACTCTGGAAGGT -ACGGAAGCCTATACTCTGAACCGT -ACGGAAGCCTATACTCTGTTGTGC -ACGGAAGCCTATACTCTGCTAAGC -ACGGAAGCCTATACTCTGACTAGC -ACGGAAGCCTATACTCTGAGATGC -ACGGAAGCCTATACTCTGTGAAGG -ACGGAAGCCTATACTCTGCAATGG -ACGGAAGCCTATACTCTGATGAGG -ACGGAAGCCTATACTCTGAATGGG -ACGGAAGCCTATACTCTGTCCTGA -ACGGAAGCCTATACTCTGTAGCGA -ACGGAAGCCTATACTCTGCACAGA -ACGGAAGCCTATACTCTGGCAAGA -ACGGAAGCCTATACTCTGGGTTGA -ACGGAAGCCTATACTCTGTCCGAT -ACGGAAGCCTATACTCTGTGGCAT -ACGGAAGCCTATACTCTGCGAGAT -ACGGAAGCCTATACTCTGTACCAC -ACGGAAGCCTATACTCTGCAGAAC -ACGGAAGCCTATACTCTGGTCTAC -ACGGAAGCCTATACTCTGACGTAC -ACGGAAGCCTATACTCTGAGTGAC -ACGGAAGCCTATACTCTGCTGTAG -ACGGAAGCCTATACTCTGCCTAAG -ACGGAAGCCTATACTCTGGTTCAG -ACGGAAGCCTATACTCTGGCATAG -ACGGAAGCCTATACTCTGGACAAG -ACGGAAGCCTATACTCTGAAGCAG -ACGGAAGCCTATACTCTGCGTCAA -ACGGAAGCCTATACTCTGGCTGAA -ACGGAAGCCTATACTCTGAGTACG -ACGGAAGCCTATACTCTGATCCGA -ACGGAAGCCTATACTCTGATGGGA -ACGGAAGCCTATACTCTGGTGCAA -ACGGAAGCCTATACTCTGGAGGAA -ACGGAAGCCTATACTCTGCAGGTA -ACGGAAGCCTATACTCTGGACTCT -ACGGAAGCCTATACTCTGAGTCCT -ACGGAAGCCTATACTCTGTAAGCC -ACGGAAGCCTATACTCTGATAGCC -ACGGAAGCCTATACTCTGTAACCG -ACGGAAGCCTATACTCTGATGCCA -ACGGAAGCCTATCCTCAAGGAAAC -ACGGAAGCCTATCCTCAAAACACC -ACGGAAGCCTATCCTCAAATCGAG -ACGGAAGCCTATCCTCAACTCCTT -ACGGAAGCCTATCCTCAACCTGTT -ACGGAAGCCTATCCTCAACGGTTT -ACGGAAGCCTATCCTCAAGTGGTT -ACGGAAGCCTATCCTCAAGCCTTT -ACGGAAGCCTATCCTCAAGGTCTT -ACGGAAGCCTATCCTCAAACGCTT -ACGGAAGCCTATCCTCAAAGCGTT -ACGGAAGCCTATCCTCAATTCGTC -ACGGAAGCCTATCCTCAATCTCTC -ACGGAAGCCTATCCTCAATGGATC -ACGGAAGCCTATCCTCAACACTTC -ACGGAAGCCTATCCTCAAGTACTC -ACGGAAGCCTATCCTCAAGATGTC -ACGGAAGCCTATCCTCAAACAGTC -ACGGAAGCCTATCCTCAATTGCTG -ACGGAAGCCTATCCTCAATCCATG -ACGGAAGCCTATCCTCAATGTGTG -ACGGAAGCCTATCCTCAACTAGTG -ACGGAAGCCTATCCTCAACATCTG -ACGGAAGCCTATCCTCAAGAGTTG -ACGGAAGCCTATCCTCAAAGACTG -ACGGAAGCCTATCCTCAATCGGTA -ACGGAAGCCTATCCTCAATGCCTA -ACGGAAGCCTATCCTCAACCACTA -ACGGAAGCCTATCCTCAAGGAGTA -ACGGAAGCCTATCCTCAATCGTCT -ACGGAAGCCTATCCTCAATGCACT -ACGGAAGCCTATCCTCAACTGACT -ACGGAAGCCTATCCTCAACAACCT -ACGGAAGCCTATCCTCAAGCTACT -ACGGAAGCCTATCCTCAAGGATCT -ACGGAAGCCTATCCTCAAAAGGCT -ACGGAAGCCTATCCTCAATCAACC -ACGGAAGCCTATCCTCAATGTTCC -ACGGAAGCCTATCCTCAAATTCCC -ACGGAAGCCTATCCTCAATTCTCG -ACGGAAGCCTATCCTCAATAGACG -ACGGAAGCCTATCCTCAAGTAACG -ACGGAAGCCTATCCTCAAACTTCG -ACGGAAGCCTATCCTCAATACGCA -ACGGAAGCCTATCCTCAACTTGCA -ACGGAAGCCTATCCTCAACGAACA -ACGGAAGCCTATCCTCAACAGTCA -ACGGAAGCCTATCCTCAAGATCCA -ACGGAAGCCTATCCTCAAACGACA -ACGGAAGCCTATCCTCAAAGCTCA -ACGGAAGCCTATCCTCAATCACGT -ACGGAAGCCTATCCTCAACGTAGT -ACGGAAGCCTATCCTCAAGTCAGT -ACGGAAGCCTATCCTCAAGAAGGT -ACGGAAGCCTATCCTCAAAACCGT -ACGGAAGCCTATCCTCAATTGTGC -ACGGAAGCCTATCCTCAACTAAGC -ACGGAAGCCTATCCTCAAACTAGC -ACGGAAGCCTATCCTCAAAGATGC -ACGGAAGCCTATCCTCAATGAAGG -ACGGAAGCCTATCCTCAACAATGG -ACGGAAGCCTATCCTCAAATGAGG -ACGGAAGCCTATCCTCAAAATGGG -ACGGAAGCCTATCCTCAATCCTGA -ACGGAAGCCTATCCTCAATAGCGA -ACGGAAGCCTATCCTCAACACAGA -ACGGAAGCCTATCCTCAAGCAAGA -ACGGAAGCCTATCCTCAAGGTTGA -ACGGAAGCCTATCCTCAATCCGAT -ACGGAAGCCTATCCTCAATGGCAT -ACGGAAGCCTATCCTCAACGAGAT -ACGGAAGCCTATCCTCAATACCAC -ACGGAAGCCTATCCTCAACAGAAC -ACGGAAGCCTATCCTCAAGTCTAC -ACGGAAGCCTATCCTCAAACGTAC -ACGGAAGCCTATCCTCAAAGTGAC -ACGGAAGCCTATCCTCAACTGTAG -ACGGAAGCCTATCCTCAACCTAAG -ACGGAAGCCTATCCTCAAGTTCAG -ACGGAAGCCTATCCTCAAGCATAG -ACGGAAGCCTATCCTCAAGACAAG -ACGGAAGCCTATCCTCAAAAGCAG -ACGGAAGCCTATCCTCAACGTCAA -ACGGAAGCCTATCCTCAAGCTGAA -ACGGAAGCCTATCCTCAAAGTACG -ACGGAAGCCTATCCTCAAATCCGA -ACGGAAGCCTATCCTCAAATGGGA -ACGGAAGCCTATCCTCAAGTGCAA -ACGGAAGCCTATCCTCAAGAGGAA -ACGGAAGCCTATCCTCAACAGGTA -ACGGAAGCCTATCCTCAAGACTCT -ACGGAAGCCTATCCTCAAAGTCCT -ACGGAAGCCTATCCTCAATAAGCC -ACGGAAGCCTATCCTCAAATAGCC -ACGGAAGCCTATCCTCAATAACCG -ACGGAAGCCTATCCTCAAATGCCA -ACGGAAGCCTATACTGCTGGAAAC -ACGGAAGCCTATACTGCTAACACC -ACGGAAGCCTATACTGCTATCGAG -ACGGAAGCCTATACTGCTCTCCTT -ACGGAAGCCTATACTGCTCCTGTT -ACGGAAGCCTATACTGCTCGGTTT -ACGGAAGCCTATACTGCTGTGGTT -ACGGAAGCCTATACTGCTGCCTTT -ACGGAAGCCTATACTGCTGGTCTT -ACGGAAGCCTATACTGCTACGCTT -ACGGAAGCCTATACTGCTAGCGTT -ACGGAAGCCTATACTGCTTTCGTC -ACGGAAGCCTATACTGCTTCTCTC -ACGGAAGCCTATACTGCTTGGATC -ACGGAAGCCTATACTGCTCACTTC -ACGGAAGCCTATACTGCTGTACTC -ACGGAAGCCTATACTGCTGATGTC -ACGGAAGCCTATACTGCTACAGTC -ACGGAAGCCTATACTGCTTTGCTG -ACGGAAGCCTATACTGCTTCCATG -ACGGAAGCCTATACTGCTTGTGTG -ACGGAAGCCTATACTGCTCTAGTG -ACGGAAGCCTATACTGCTCATCTG -ACGGAAGCCTATACTGCTGAGTTG -ACGGAAGCCTATACTGCTAGACTG -ACGGAAGCCTATACTGCTTCGGTA -ACGGAAGCCTATACTGCTTGCCTA -ACGGAAGCCTATACTGCTCCACTA -ACGGAAGCCTATACTGCTGGAGTA -ACGGAAGCCTATACTGCTTCGTCT -ACGGAAGCCTATACTGCTTGCACT -ACGGAAGCCTATACTGCTCTGACT -ACGGAAGCCTATACTGCTCAACCT -ACGGAAGCCTATACTGCTGCTACT -ACGGAAGCCTATACTGCTGGATCT -ACGGAAGCCTATACTGCTAAGGCT -ACGGAAGCCTATACTGCTTCAACC -ACGGAAGCCTATACTGCTTGTTCC -ACGGAAGCCTATACTGCTATTCCC -ACGGAAGCCTATACTGCTTTCTCG -ACGGAAGCCTATACTGCTTAGACG -ACGGAAGCCTATACTGCTGTAACG -ACGGAAGCCTATACTGCTACTTCG -ACGGAAGCCTATACTGCTTACGCA -ACGGAAGCCTATACTGCTCTTGCA -ACGGAAGCCTATACTGCTCGAACA -ACGGAAGCCTATACTGCTCAGTCA -ACGGAAGCCTATACTGCTGATCCA -ACGGAAGCCTATACTGCTACGACA -ACGGAAGCCTATACTGCTAGCTCA -ACGGAAGCCTATACTGCTTCACGT -ACGGAAGCCTATACTGCTCGTAGT -ACGGAAGCCTATACTGCTGTCAGT -ACGGAAGCCTATACTGCTGAAGGT -ACGGAAGCCTATACTGCTAACCGT -ACGGAAGCCTATACTGCTTTGTGC -ACGGAAGCCTATACTGCTCTAAGC -ACGGAAGCCTATACTGCTACTAGC -ACGGAAGCCTATACTGCTAGATGC -ACGGAAGCCTATACTGCTTGAAGG -ACGGAAGCCTATACTGCTCAATGG -ACGGAAGCCTATACTGCTATGAGG -ACGGAAGCCTATACTGCTAATGGG -ACGGAAGCCTATACTGCTTCCTGA -ACGGAAGCCTATACTGCTTAGCGA -ACGGAAGCCTATACTGCTCACAGA -ACGGAAGCCTATACTGCTGCAAGA -ACGGAAGCCTATACTGCTGGTTGA -ACGGAAGCCTATACTGCTTCCGAT -ACGGAAGCCTATACTGCTTGGCAT -ACGGAAGCCTATACTGCTCGAGAT -ACGGAAGCCTATACTGCTTACCAC -ACGGAAGCCTATACTGCTCAGAAC -ACGGAAGCCTATACTGCTGTCTAC -ACGGAAGCCTATACTGCTACGTAC -ACGGAAGCCTATACTGCTAGTGAC -ACGGAAGCCTATACTGCTCTGTAG -ACGGAAGCCTATACTGCTCCTAAG -ACGGAAGCCTATACTGCTGTTCAG -ACGGAAGCCTATACTGCTGCATAG -ACGGAAGCCTATACTGCTGACAAG -ACGGAAGCCTATACTGCTAAGCAG -ACGGAAGCCTATACTGCTCGTCAA -ACGGAAGCCTATACTGCTGCTGAA -ACGGAAGCCTATACTGCTAGTACG -ACGGAAGCCTATACTGCTATCCGA -ACGGAAGCCTATACTGCTATGGGA -ACGGAAGCCTATACTGCTGTGCAA -ACGGAAGCCTATACTGCTGAGGAA -ACGGAAGCCTATACTGCTCAGGTA -ACGGAAGCCTATACTGCTGACTCT -ACGGAAGCCTATACTGCTAGTCCT -ACGGAAGCCTATACTGCTTAAGCC -ACGGAAGCCTATACTGCTATAGCC -ACGGAAGCCTATACTGCTTAACCG -ACGGAAGCCTATACTGCTATGCCA -ACGGAAGCCTATTCTGGAGGAAAC -ACGGAAGCCTATTCTGGAAACACC -ACGGAAGCCTATTCTGGAATCGAG -ACGGAAGCCTATTCTGGACTCCTT -ACGGAAGCCTATTCTGGACCTGTT -ACGGAAGCCTATTCTGGACGGTTT -ACGGAAGCCTATTCTGGAGTGGTT -ACGGAAGCCTATTCTGGAGCCTTT -ACGGAAGCCTATTCTGGAGGTCTT -ACGGAAGCCTATTCTGGAACGCTT -ACGGAAGCCTATTCTGGAAGCGTT -ACGGAAGCCTATTCTGGATTCGTC -ACGGAAGCCTATTCTGGATCTCTC -ACGGAAGCCTATTCTGGATGGATC -ACGGAAGCCTATTCTGGACACTTC -ACGGAAGCCTATTCTGGAGTACTC -ACGGAAGCCTATTCTGGAGATGTC -ACGGAAGCCTATTCTGGAACAGTC -ACGGAAGCCTATTCTGGATTGCTG -ACGGAAGCCTATTCTGGATCCATG -ACGGAAGCCTATTCTGGATGTGTG -ACGGAAGCCTATTCTGGACTAGTG -ACGGAAGCCTATTCTGGACATCTG -ACGGAAGCCTATTCTGGAGAGTTG -ACGGAAGCCTATTCTGGAAGACTG -ACGGAAGCCTATTCTGGATCGGTA -ACGGAAGCCTATTCTGGATGCCTA -ACGGAAGCCTATTCTGGACCACTA -ACGGAAGCCTATTCTGGAGGAGTA -ACGGAAGCCTATTCTGGATCGTCT -ACGGAAGCCTATTCTGGATGCACT -ACGGAAGCCTATTCTGGACTGACT -ACGGAAGCCTATTCTGGACAACCT -ACGGAAGCCTATTCTGGAGCTACT -ACGGAAGCCTATTCTGGAGGATCT -ACGGAAGCCTATTCTGGAAAGGCT -ACGGAAGCCTATTCTGGATCAACC -ACGGAAGCCTATTCTGGATGTTCC -ACGGAAGCCTATTCTGGAATTCCC -ACGGAAGCCTATTCTGGATTCTCG -ACGGAAGCCTATTCTGGATAGACG -ACGGAAGCCTATTCTGGAGTAACG -ACGGAAGCCTATTCTGGAACTTCG -ACGGAAGCCTATTCTGGATACGCA -ACGGAAGCCTATTCTGGACTTGCA -ACGGAAGCCTATTCTGGACGAACA -ACGGAAGCCTATTCTGGACAGTCA -ACGGAAGCCTATTCTGGAGATCCA -ACGGAAGCCTATTCTGGAACGACA -ACGGAAGCCTATTCTGGAAGCTCA -ACGGAAGCCTATTCTGGATCACGT -ACGGAAGCCTATTCTGGACGTAGT -ACGGAAGCCTATTCTGGAGTCAGT -ACGGAAGCCTATTCTGGAGAAGGT -ACGGAAGCCTATTCTGGAAACCGT -ACGGAAGCCTATTCTGGATTGTGC -ACGGAAGCCTATTCTGGACTAAGC -ACGGAAGCCTATTCTGGAACTAGC -ACGGAAGCCTATTCTGGAAGATGC -ACGGAAGCCTATTCTGGATGAAGG -ACGGAAGCCTATTCTGGACAATGG -ACGGAAGCCTATTCTGGAATGAGG -ACGGAAGCCTATTCTGGAAATGGG -ACGGAAGCCTATTCTGGATCCTGA -ACGGAAGCCTATTCTGGATAGCGA -ACGGAAGCCTATTCTGGACACAGA -ACGGAAGCCTATTCTGGAGCAAGA -ACGGAAGCCTATTCTGGAGGTTGA -ACGGAAGCCTATTCTGGATCCGAT -ACGGAAGCCTATTCTGGATGGCAT -ACGGAAGCCTATTCTGGACGAGAT -ACGGAAGCCTATTCTGGATACCAC -ACGGAAGCCTATTCTGGACAGAAC -ACGGAAGCCTATTCTGGAGTCTAC -ACGGAAGCCTATTCTGGAACGTAC -ACGGAAGCCTATTCTGGAAGTGAC -ACGGAAGCCTATTCTGGACTGTAG -ACGGAAGCCTATTCTGGACCTAAG -ACGGAAGCCTATTCTGGAGTTCAG -ACGGAAGCCTATTCTGGAGCATAG -ACGGAAGCCTATTCTGGAGACAAG -ACGGAAGCCTATTCTGGAAAGCAG -ACGGAAGCCTATTCTGGACGTCAA -ACGGAAGCCTATTCTGGAGCTGAA -ACGGAAGCCTATTCTGGAAGTACG -ACGGAAGCCTATTCTGGAATCCGA -ACGGAAGCCTATTCTGGAATGGGA -ACGGAAGCCTATTCTGGAGTGCAA -ACGGAAGCCTATTCTGGAGAGGAA -ACGGAAGCCTATTCTGGACAGGTA -ACGGAAGCCTATTCTGGAGACTCT -ACGGAAGCCTATTCTGGAAGTCCT -ACGGAAGCCTATTCTGGATAAGCC -ACGGAAGCCTATTCTGGAATAGCC -ACGGAAGCCTATTCTGGATAACCG -ACGGAAGCCTATTCTGGAATGCCA -ACGGAAGCCTATGCTAAGGGAAAC -ACGGAAGCCTATGCTAAGAACACC -ACGGAAGCCTATGCTAAGATCGAG -ACGGAAGCCTATGCTAAGCTCCTT -ACGGAAGCCTATGCTAAGCCTGTT -ACGGAAGCCTATGCTAAGCGGTTT -ACGGAAGCCTATGCTAAGGTGGTT -ACGGAAGCCTATGCTAAGGCCTTT -ACGGAAGCCTATGCTAAGGGTCTT -ACGGAAGCCTATGCTAAGACGCTT -ACGGAAGCCTATGCTAAGAGCGTT -ACGGAAGCCTATGCTAAGTTCGTC -ACGGAAGCCTATGCTAAGTCTCTC -ACGGAAGCCTATGCTAAGTGGATC -ACGGAAGCCTATGCTAAGCACTTC -ACGGAAGCCTATGCTAAGGTACTC -ACGGAAGCCTATGCTAAGGATGTC -ACGGAAGCCTATGCTAAGACAGTC -ACGGAAGCCTATGCTAAGTTGCTG -ACGGAAGCCTATGCTAAGTCCATG -ACGGAAGCCTATGCTAAGTGTGTG -ACGGAAGCCTATGCTAAGCTAGTG -ACGGAAGCCTATGCTAAGCATCTG -ACGGAAGCCTATGCTAAGGAGTTG -ACGGAAGCCTATGCTAAGAGACTG -ACGGAAGCCTATGCTAAGTCGGTA -ACGGAAGCCTATGCTAAGTGCCTA -ACGGAAGCCTATGCTAAGCCACTA -ACGGAAGCCTATGCTAAGGGAGTA -ACGGAAGCCTATGCTAAGTCGTCT -ACGGAAGCCTATGCTAAGTGCACT -ACGGAAGCCTATGCTAAGCTGACT -ACGGAAGCCTATGCTAAGCAACCT -ACGGAAGCCTATGCTAAGGCTACT -ACGGAAGCCTATGCTAAGGGATCT -ACGGAAGCCTATGCTAAGAAGGCT -ACGGAAGCCTATGCTAAGTCAACC -ACGGAAGCCTATGCTAAGTGTTCC -ACGGAAGCCTATGCTAAGATTCCC -ACGGAAGCCTATGCTAAGTTCTCG -ACGGAAGCCTATGCTAAGTAGACG -ACGGAAGCCTATGCTAAGGTAACG -ACGGAAGCCTATGCTAAGACTTCG -ACGGAAGCCTATGCTAAGTACGCA -ACGGAAGCCTATGCTAAGCTTGCA -ACGGAAGCCTATGCTAAGCGAACA -ACGGAAGCCTATGCTAAGCAGTCA -ACGGAAGCCTATGCTAAGGATCCA -ACGGAAGCCTATGCTAAGACGACA -ACGGAAGCCTATGCTAAGAGCTCA -ACGGAAGCCTATGCTAAGTCACGT -ACGGAAGCCTATGCTAAGCGTAGT -ACGGAAGCCTATGCTAAGGTCAGT -ACGGAAGCCTATGCTAAGGAAGGT -ACGGAAGCCTATGCTAAGAACCGT -ACGGAAGCCTATGCTAAGTTGTGC -ACGGAAGCCTATGCTAAGCTAAGC -ACGGAAGCCTATGCTAAGACTAGC -ACGGAAGCCTATGCTAAGAGATGC -ACGGAAGCCTATGCTAAGTGAAGG -ACGGAAGCCTATGCTAAGCAATGG -ACGGAAGCCTATGCTAAGATGAGG -ACGGAAGCCTATGCTAAGAATGGG -ACGGAAGCCTATGCTAAGTCCTGA -ACGGAAGCCTATGCTAAGTAGCGA -ACGGAAGCCTATGCTAAGCACAGA -ACGGAAGCCTATGCTAAGGCAAGA -ACGGAAGCCTATGCTAAGGGTTGA -ACGGAAGCCTATGCTAAGTCCGAT -ACGGAAGCCTATGCTAAGTGGCAT -ACGGAAGCCTATGCTAAGCGAGAT -ACGGAAGCCTATGCTAAGTACCAC -ACGGAAGCCTATGCTAAGCAGAAC -ACGGAAGCCTATGCTAAGGTCTAC -ACGGAAGCCTATGCTAAGACGTAC -ACGGAAGCCTATGCTAAGAGTGAC -ACGGAAGCCTATGCTAAGCTGTAG -ACGGAAGCCTATGCTAAGCCTAAG -ACGGAAGCCTATGCTAAGGTTCAG -ACGGAAGCCTATGCTAAGGCATAG -ACGGAAGCCTATGCTAAGGACAAG -ACGGAAGCCTATGCTAAGAAGCAG -ACGGAAGCCTATGCTAAGCGTCAA -ACGGAAGCCTATGCTAAGGCTGAA -ACGGAAGCCTATGCTAAGAGTACG -ACGGAAGCCTATGCTAAGATCCGA -ACGGAAGCCTATGCTAAGATGGGA -ACGGAAGCCTATGCTAAGGTGCAA -ACGGAAGCCTATGCTAAGGAGGAA -ACGGAAGCCTATGCTAAGCAGGTA -ACGGAAGCCTATGCTAAGGACTCT -ACGGAAGCCTATGCTAAGAGTCCT -ACGGAAGCCTATGCTAAGTAAGCC -ACGGAAGCCTATGCTAAGATAGCC -ACGGAAGCCTATGCTAAGTAACCG -ACGGAAGCCTATGCTAAGATGCCA -ACGGAAGCCTATACCTCAGGAAAC -ACGGAAGCCTATACCTCAAACACC -ACGGAAGCCTATACCTCAATCGAG -ACGGAAGCCTATACCTCACTCCTT -ACGGAAGCCTATACCTCACCTGTT -ACGGAAGCCTATACCTCACGGTTT -ACGGAAGCCTATACCTCAGTGGTT -ACGGAAGCCTATACCTCAGCCTTT -ACGGAAGCCTATACCTCAGGTCTT -ACGGAAGCCTATACCTCAACGCTT -ACGGAAGCCTATACCTCAAGCGTT -ACGGAAGCCTATACCTCATTCGTC -ACGGAAGCCTATACCTCATCTCTC -ACGGAAGCCTATACCTCATGGATC -ACGGAAGCCTATACCTCACACTTC -ACGGAAGCCTATACCTCAGTACTC -ACGGAAGCCTATACCTCAGATGTC -ACGGAAGCCTATACCTCAACAGTC -ACGGAAGCCTATACCTCATTGCTG -ACGGAAGCCTATACCTCATCCATG -ACGGAAGCCTATACCTCATGTGTG -ACGGAAGCCTATACCTCACTAGTG -ACGGAAGCCTATACCTCACATCTG -ACGGAAGCCTATACCTCAGAGTTG -ACGGAAGCCTATACCTCAAGACTG -ACGGAAGCCTATACCTCATCGGTA -ACGGAAGCCTATACCTCATGCCTA -ACGGAAGCCTATACCTCACCACTA -ACGGAAGCCTATACCTCAGGAGTA -ACGGAAGCCTATACCTCATCGTCT -ACGGAAGCCTATACCTCATGCACT -ACGGAAGCCTATACCTCACTGACT -ACGGAAGCCTATACCTCACAACCT -ACGGAAGCCTATACCTCAGCTACT -ACGGAAGCCTATACCTCAGGATCT -ACGGAAGCCTATACCTCAAAGGCT -ACGGAAGCCTATACCTCATCAACC -ACGGAAGCCTATACCTCATGTTCC -ACGGAAGCCTATACCTCAATTCCC -ACGGAAGCCTATACCTCATTCTCG -ACGGAAGCCTATACCTCATAGACG -ACGGAAGCCTATACCTCAGTAACG -ACGGAAGCCTATACCTCAACTTCG -ACGGAAGCCTATACCTCATACGCA -ACGGAAGCCTATACCTCACTTGCA -ACGGAAGCCTATACCTCACGAACA -ACGGAAGCCTATACCTCACAGTCA -ACGGAAGCCTATACCTCAGATCCA -ACGGAAGCCTATACCTCAACGACA -ACGGAAGCCTATACCTCAAGCTCA -ACGGAAGCCTATACCTCATCACGT -ACGGAAGCCTATACCTCACGTAGT -ACGGAAGCCTATACCTCAGTCAGT -ACGGAAGCCTATACCTCAGAAGGT -ACGGAAGCCTATACCTCAAACCGT -ACGGAAGCCTATACCTCATTGTGC -ACGGAAGCCTATACCTCACTAAGC -ACGGAAGCCTATACCTCAACTAGC -ACGGAAGCCTATACCTCAAGATGC -ACGGAAGCCTATACCTCATGAAGG -ACGGAAGCCTATACCTCACAATGG -ACGGAAGCCTATACCTCAATGAGG -ACGGAAGCCTATACCTCAAATGGG -ACGGAAGCCTATACCTCATCCTGA -ACGGAAGCCTATACCTCATAGCGA -ACGGAAGCCTATACCTCACACAGA -ACGGAAGCCTATACCTCAGCAAGA -ACGGAAGCCTATACCTCAGGTTGA -ACGGAAGCCTATACCTCATCCGAT -ACGGAAGCCTATACCTCATGGCAT -ACGGAAGCCTATACCTCACGAGAT -ACGGAAGCCTATACCTCATACCAC -ACGGAAGCCTATACCTCACAGAAC -ACGGAAGCCTATACCTCAGTCTAC -ACGGAAGCCTATACCTCAACGTAC -ACGGAAGCCTATACCTCAAGTGAC -ACGGAAGCCTATACCTCACTGTAG -ACGGAAGCCTATACCTCACCTAAG -ACGGAAGCCTATACCTCAGTTCAG -ACGGAAGCCTATACCTCAGCATAG -ACGGAAGCCTATACCTCAGACAAG -ACGGAAGCCTATACCTCAAAGCAG -ACGGAAGCCTATACCTCACGTCAA -ACGGAAGCCTATACCTCAGCTGAA -ACGGAAGCCTATACCTCAAGTACG -ACGGAAGCCTATACCTCAATCCGA -ACGGAAGCCTATACCTCAATGGGA -ACGGAAGCCTATACCTCAGTGCAA -ACGGAAGCCTATACCTCAGAGGAA -ACGGAAGCCTATACCTCACAGGTA -ACGGAAGCCTATACCTCAGACTCT -ACGGAAGCCTATACCTCAAGTCCT -ACGGAAGCCTATACCTCATAAGCC -ACGGAAGCCTATACCTCAATAGCC -ACGGAAGCCTATACCTCATAACCG -ACGGAAGCCTATACCTCAATGCCA -ACGGAAGCCTATTCCTGTGGAAAC -ACGGAAGCCTATTCCTGTAACACC -ACGGAAGCCTATTCCTGTATCGAG -ACGGAAGCCTATTCCTGTCTCCTT -ACGGAAGCCTATTCCTGTCCTGTT -ACGGAAGCCTATTCCTGTCGGTTT -ACGGAAGCCTATTCCTGTGTGGTT -ACGGAAGCCTATTCCTGTGCCTTT -ACGGAAGCCTATTCCTGTGGTCTT -ACGGAAGCCTATTCCTGTACGCTT -ACGGAAGCCTATTCCTGTAGCGTT -ACGGAAGCCTATTCCTGTTTCGTC -ACGGAAGCCTATTCCTGTTCTCTC -ACGGAAGCCTATTCCTGTTGGATC -ACGGAAGCCTATTCCTGTCACTTC -ACGGAAGCCTATTCCTGTGTACTC -ACGGAAGCCTATTCCTGTGATGTC -ACGGAAGCCTATTCCTGTACAGTC -ACGGAAGCCTATTCCTGTTTGCTG -ACGGAAGCCTATTCCTGTTCCATG -ACGGAAGCCTATTCCTGTTGTGTG -ACGGAAGCCTATTCCTGTCTAGTG -ACGGAAGCCTATTCCTGTCATCTG -ACGGAAGCCTATTCCTGTGAGTTG -ACGGAAGCCTATTCCTGTAGACTG -ACGGAAGCCTATTCCTGTTCGGTA -ACGGAAGCCTATTCCTGTTGCCTA -ACGGAAGCCTATTCCTGTCCACTA -ACGGAAGCCTATTCCTGTGGAGTA -ACGGAAGCCTATTCCTGTTCGTCT -ACGGAAGCCTATTCCTGTTGCACT -ACGGAAGCCTATTCCTGTCTGACT -ACGGAAGCCTATTCCTGTCAACCT -ACGGAAGCCTATTCCTGTGCTACT -ACGGAAGCCTATTCCTGTGGATCT -ACGGAAGCCTATTCCTGTAAGGCT -ACGGAAGCCTATTCCTGTTCAACC -ACGGAAGCCTATTCCTGTTGTTCC -ACGGAAGCCTATTCCTGTATTCCC -ACGGAAGCCTATTCCTGTTTCTCG -ACGGAAGCCTATTCCTGTTAGACG -ACGGAAGCCTATTCCTGTGTAACG -ACGGAAGCCTATTCCTGTACTTCG -ACGGAAGCCTATTCCTGTTACGCA -ACGGAAGCCTATTCCTGTCTTGCA -ACGGAAGCCTATTCCTGTCGAACA -ACGGAAGCCTATTCCTGTCAGTCA -ACGGAAGCCTATTCCTGTGATCCA -ACGGAAGCCTATTCCTGTACGACA -ACGGAAGCCTATTCCTGTAGCTCA -ACGGAAGCCTATTCCTGTTCACGT -ACGGAAGCCTATTCCTGTCGTAGT -ACGGAAGCCTATTCCTGTGTCAGT -ACGGAAGCCTATTCCTGTGAAGGT -ACGGAAGCCTATTCCTGTAACCGT -ACGGAAGCCTATTCCTGTTTGTGC -ACGGAAGCCTATTCCTGTCTAAGC -ACGGAAGCCTATTCCTGTACTAGC -ACGGAAGCCTATTCCTGTAGATGC -ACGGAAGCCTATTCCTGTTGAAGG -ACGGAAGCCTATTCCTGTCAATGG -ACGGAAGCCTATTCCTGTATGAGG -ACGGAAGCCTATTCCTGTAATGGG -ACGGAAGCCTATTCCTGTTCCTGA -ACGGAAGCCTATTCCTGTTAGCGA -ACGGAAGCCTATTCCTGTCACAGA -ACGGAAGCCTATTCCTGTGCAAGA -ACGGAAGCCTATTCCTGTGGTTGA -ACGGAAGCCTATTCCTGTTCCGAT -ACGGAAGCCTATTCCTGTTGGCAT -ACGGAAGCCTATTCCTGTCGAGAT -ACGGAAGCCTATTCCTGTTACCAC -ACGGAAGCCTATTCCTGTCAGAAC -ACGGAAGCCTATTCCTGTGTCTAC -ACGGAAGCCTATTCCTGTACGTAC -ACGGAAGCCTATTCCTGTAGTGAC -ACGGAAGCCTATTCCTGTCTGTAG -ACGGAAGCCTATTCCTGTCCTAAG -ACGGAAGCCTATTCCTGTGTTCAG -ACGGAAGCCTATTCCTGTGCATAG -ACGGAAGCCTATTCCTGTGACAAG -ACGGAAGCCTATTCCTGTAAGCAG -ACGGAAGCCTATTCCTGTCGTCAA -ACGGAAGCCTATTCCTGTGCTGAA -ACGGAAGCCTATTCCTGTAGTACG -ACGGAAGCCTATTCCTGTATCCGA -ACGGAAGCCTATTCCTGTATGGGA -ACGGAAGCCTATTCCTGTGTGCAA -ACGGAAGCCTATTCCTGTGAGGAA -ACGGAAGCCTATTCCTGTCAGGTA -ACGGAAGCCTATTCCTGTGACTCT -ACGGAAGCCTATTCCTGTAGTCCT -ACGGAAGCCTATTCCTGTTAAGCC -ACGGAAGCCTATTCCTGTATAGCC -ACGGAAGCCTATTCCTGTTAACCG -ACGGAAGCCTATTCCTGTATGCCA -ACGGAAGCCTATCCCATTGGAAAC -ACGGAAGCCTATCCCATTAACACC -ACGGAAGCCTATCCCATTATCGAG -ACGGAAGCCTATCCCATTCTCCTT -ACGGAAGCCTATCCCATTCCTGTT -ACGGAAGCCTATCCCATTCGGTTT -ACGGAAGCCTATCCCATTGTGGTT -ACGGAAGCCTATCCCATTGCCTTT -ACGGAAGCCTATCCCATTGGTCTT -ACGGAAGCCTATCCCATTACGCTT -ACGGAAGCCTATCCCATTAGCGTT -ACGGAAGCCTATCCCATTTTCGTC -ACGGAAGCCTATCCCATTTCTCTC -ACGGAAGCCTATCCCATTTGGATC -ACGGAAGCCTATCCCATTCACTTC -ACGGAAGCCTATCCCATTGTACTC -ACGGAAGCCTATCCCATTGATGTC -ACGGAAGCCTATCCCATTACAGTC -ACGGAAGCCTATCCCATTTTGCTG -ACGGAAGCCTATCCCATTTCCATG -ACGGAAGCCTATCCCATTTGTGTG -ACGGAAGCCTATCCCATTCTAGTG -ACGGAAGCCTATCCCATTCATCTG -ACGGAAGCCTATCCCATTGAGTTG -ACGGAAGCCTATCCCATTAGACTG -ACGGAAGCCTATCCCATTTCGGTA -ACGGAAGCCTATCCCATTTGCCTA -ACGGAAGCCTATCCCATTCCACTA -ACGGAAGCCTATCCCATTGGAGTA -ACGGAAGCCTATCCCATTTCGTCT -ACGGAAGCCTATCCCATTTGCACT -ACGGAAGCCTATCCCATTCTGACT -ACGGAAGCCTATCCCATTCAACCT -ACGGAAGCCTATCCCATTGCTACT -ACGGAAGCCTATCCCATTGGATCT -ACGGAAGCCTATCCCATTAAGGCT -ACGGAAGCCTATCCCATTTCAACC -ACGGAAGCCTATCCCATTTGTTCC -ACGGAAGCCTATCCCATTATTCCC -ACGGAAGCCTATCCCATTTTCTCG -ACGGAAGCCTATCCCATTTAGACG -ACGGAAGCCTATCCCATTGTAACG -ACGGAAGCCTATCCCATTACTTCG -ACGGAAGCCTATCCCATTTACGCA -ACGGAAGCCTATCCCATTCTTGCA -ACGGAAGCCTATCCCATTCGAACA -ACGGAAGCCTATCCCATTCAGTCA -ACGGAAGCCTATCCCATTGATCCA -ACGGAAGCCTATCCCATTACGACA -ACGGAAGCCTATCCCATTAGCTCA -ACGGAAGCCTATCCCATTTCACGT -ACGGAAGCCTATCCCATTCGTAGT -ACGGAAGCCTATCCCATTGTCAGT -ACGGAAGCCTATCCCATTGAAGGT -ACGGAAGCCTATCCCATTAACCGT -ACGGAAGCCTATCCCATTTTGTGC -ACGGAAGCCTATCCCATTCTAAGC -ACGGAAGCCTATCCCATTACTAGC -ACGGAAGCCTATCCCATTAGATGC -ACGGAAGCCTATCCCATTTGAAGG -ACGGAAGCCTATCCCATTCAATGG -ACGGAAGCCTATCCCATTATGAGG -ACGGAAGCCTATCCCATTAATGGG -ACGGAAGCCTATCCCATTTCCTGA -ACGGAAGCCTATCCCATTTAGCGA -ACGGAAGCCTATCCCATTCACAGA -ACGGAAGCCTATCCCATTGCAAGA -ACGGAAGCCTATCCCATTGGTTGA -ACGGAAGCCTATCCCATTTCCGAT -ACGGAAGCCTATCCCATTTGGCAT -ACGGAAGCCTATCCCATTCGAGAT -ACGGAAGCCTATCCCATTTACCAC -ACGGAAGCCTATCCCATTCAGAAC -ACGGAAGCCTATCCCATTGTCTAC -ACGGAAGCCTATCCCATTACGTAC -ACGGAAGCCTATCCCATTAGTGAC -ACGGAAGCCTATCCCATTCTGTAG -ACGGAAGCCTATCCCATTCCTAAG -ACGGAAGCCTATCCCATTGTTCAG -ACGGAAGCCTATCCCATTGCATAG -ACGGAAGCCTATCCCATTGACAAG -ACGGAAGCCTATCCCATTAAGCAG -ACGGAAGCCTATCCCATTCGTCAA -ACGGAAGCCTATCCCATTGCTGAA -ACGGAAGCCTATCCCATTAGTACG -ACGGAAGCCTATCCCATTATCCGA -ACGGAAGCCTATCCCATTATGGGA -ACGGAAGCCTATCCCATTGTGCAA -ACGGAAGCCTATCCCATTGAGGAA -ACGGAAGCCTATCCCATTCAGGTA -ACGGAAGCCTATCCCATTGACTCT -ACGGAAGCCTATCCCATTAGTCCT -ACGGAAGCCTATCCCATTTAAGCC -ACGGAAGCCTATCCCATTATAGCC -ACGGAAGCCTATCCCATTTAACCG -ACGGAAGCCTATCCCATTATGCCA -ACGGAAGCCTATTCGTTCGGAAAC -ACGGAAGCCTATTCGTTCAACACC -ACGGAAGCCTATTCGTTCATCGAG -ACGGAAGCCTATTCGTTCCTCCTT -ACGGAAGCCTATTCGTTCCCTGTT -ACGGAAGCCTATTCGTTCCGGTTT -ACGGAAGCCTATTCGTTCGTGGTT -ACGGAAGCCTATTCGTTCGCCTTT -ACGGAAGCCTATTCGTTCGGTCTT -ACGGAAGCCTATTCGTTCACGCTT -ACGGAAGCCTATTCGTTCAGCGTT -ACGGAAGCCTATTCGTTCTTCGTC -ACGGAAGCCTATTCGTTCTCTCTC -ACGGAAGCCTATTCGTTCTGGATC -ACGGAAGCCTATTCGTTCCACTTC -ACGGAAGCCTATTCGTTCGTACTC -ACGGAAGCCTATTCGTTCGATGTC -ACGGAAGCCTATTCGTTCACAGTC -ACGGAAGCCTATTCGTTCTTGCTG -ACGGAAGCCTATTCGTTCTCCATG -ACGGAAGCCTATTCGTTCTGTGTG -ACGGAAGCCTATTCGTTCCTAGTG -ACGGAAGCCTATTCGTTCCATCTG -ACGGAAGCCTATTCGTTCGAGTTG -ACGGAAGCCTATTCGTTCAGACTG -ACGGAAGCCTATTCGTTCTCGGTA -ACGGAAGCCTATTCGTTCTGCCTA -ACGGAAGCCTATTCGTTCCCACTA -ACGGAAGCCTATTCGTTCGGAGTA -ACGGAAGCCTATTCGTTCTCGTCT -ACGGAAGCCTATTCGTTCTGCACT -ACGGAAGCCTATTCGTTCCTGACT -ACGGAAGCCTATTCGTTCCAACCT -ACGGAAGCCTATTCGTTCGCTACT -ACGGAAGCCTATTCGTTCGGATCT -ACGGAAGCCTATTCGTTCAAGGCT -ACGGAAGCCTATTCGTTCTCAACC -ACGGAAGCCTATTCGTTCTGTTCC -ACGGAAGCCTATTCGTTCATTCCC -ACGGAAGCCTATTCGTTCTTCTCG -ACGGAAGCCTATTCGTTCTAGACG -ACGGAAGCCTATTCGTTCGTAACG -ACGGAAGCCTATTCGTTCACTTCG -ACGGAAGCCTATTCGTTCTACGCA -ACGGAAGCCTATTCGTTCCTTGCA -ACGGAAGCCTATTCGTTCCGAACA -ACGGAAGCCTATTCGTTCCAGTCA -ACGGAAGCCTATTCGTTCGATCCA -ACGGAAGCCTATTCGTTCACGACA -ACGGAAGCCTATTCGTTCAGCTCA -ACGGAAGCCTATTCGTTCTCACGT -ACGGAAGCCTATTCGTTCCGTAGT -ACGGAAGCCTATTCGTTCGTCAGT -ACGGAAGCCTATTCGTTCGAAGGT -ACGGAAGCCTATTCGTTCAACCGT -ACGGAAGCCTATTCGTTCTTGTGC -ACGGAAGCCTATTCGTTCCTAAGC -ACGGAAGCCTATTCGTTCACTAGC -ACGGAAGCCTATTCGTTCAGATGC -ACGGAAGCCTATTCGTTCTGAAGG -ACGGAAGCCTATTCGTTCCAATGG -ACGGAAGCCTATTCGTTCATGAGG -ACGGAAGCCTATTCGTTCAATGGG -ACGGAAGCCTATTCGTTCTCCTGA -ACGGAAGCCTATTCGTTCTAGCGA -ACGGAAGCCTATTCGTTCCACAGA -ACGGAAGCCTATTCGTTCGCAAGA -ACGGAAGCCTATTCGTTCGGTTGA -ACGGAAGCCTATTCGTTCTCCGAT -ACGGAAGCCTATTCGTTCTGGCAT -ACGGAAGCCTATTCGTTCCGAGAT -ACGGAAGCCTATTCGTTCTACCAC -ACGGAAGCCTATTCGTTCCAGAAC -ACGGAAGCCTATTCGTTCGTCTAC -ACGGAAGCCTATTCGTTCACGTAC -ACGGAAGCCTATTCGTTCAGTGAC -ACGGAAGCCTATTCGTTCCTGTAG -ACGGAAGCCTATTCGTTCCCTAAG -ACGGAAGCCTATTCGTTCGTTCAG -ACGGAAGCCTATTCGTTCGCATAG -ACGGAAGCCTATTCGTTCGACAAG -ACGGAAGCCTATTCGTTCAAGCAG -ACGGAAGCCTATTCGTTCCGTCAA -ACGGAAGCCTATTCGTTCGCTGAA -ACGGAAGCCTATTCGTTCAGTACG -ACGGAAGCCTATTCGTTCATCCGA -ACGGAAGCCTATTCGTTCATGGGA -ACGGAAGCCTATTCGTTCGTGCAA -ACGGAAGCCTATTCGTTCGAGGAA -ACGGAAGCCTATTCGTTCCAGGTA -ACGGAAGCCTATTCGTTCGACTCT -ACGGAAGCCTATTCGTTCAGTCCT -ACGGAAGCCTATTCGTTCTAAGCC -ACGGAAGCCTATTCGTTCATAGCC -ACGGAAGCCTATTCGTTCTAACCG -ACGGAAGCCTATTCGTTCATGCCA -ACGGAAGCCTATACGTAGGGAAAC -ACGGAAGCCTATACGTAGAACACC -ACGGAAGCCTATACGTAGATCGAG -ACGGAAGCCTATACGTAGCTCCTT -ACGGAAGCCTATACGTAGCCTGTT -ACGGAAGCCTATACGTAGCGGTTT -ACGGAAGCCTATACGTAGGTGGTT -ACGGAAGCCTATACGTAGGCCTTT -ACGGAAGCCTATACGTAGGGTCTT -ACGGAAGCCTATACGTAGACGCTT -ACGGAAGCCTATACGTAGAGCGTT -ACGGAAGCCTATACGTAGTTCGTC -ACGGAAGCCTATACGTAGTCTCTC -ACGGAAGCCTATACGTAGTGGATC -ACGGAAGCCTATACGTAGCACTTC -ACGGAAGCCTATACGTAGGTACTC -ACGGAAGCCTATACGTAGGATGTC -ACGGAAGCCTATACGTAGACAGTC -ACGGAAGCCTATACGTAGTTGCTG -ACGGAAGCCTATACGTAGTCCATG -ACGGAAGCCTATACGTAGTGTGTG -ACGGAAGCCTATACGTAGCTAGTG -ACGGAAGCCTATACGTAGCATCTG -ACGGAAGCCTATACGTAGGAGTTG -ACGGAAGCCTATACGTAGAGACTG -ACGGAAGCCTATACGTAGTCGGTA -ACGGAAGCCTATACGTAGTGCCTA -ACGGAAGCCTATACGTAGCCACTA -ACGGAAGCCTATACGTAGGGAGTA -ACGGAAGCCTATACGTAGTCGTCT -ACGGAAGCCTATACGTAGTGCACT -ACGGAAGCCTATACGTAGCTGACT -ACGGAAGCCTATACGTAGCAACCT -ACGGAAGCCTATACGTAGGCTACT -ACGGAAGCCTATACGTAGGGATCT -ACGGAAGCCTATACGTAGAAGGCT -ACGGAAGCCTATACGTAGTCAACC -ACGGAAGCCTATACGTAGTGTTCC -ACGGAAGCCTATACGTAGATTCCC -ACGGAAGCCTATACGTAGTTCTCG -ACGGAAGCCTATACGTAGTAGACG -ACGGAAGCCTATACGTAGGTAACG -ACGGAAGCCTATACGTAGACTTCG -ACGGAAGCCTATACGTAGTACGCA -ACGGAAGCCTATACGTAGCTTGCA -ACGGAAGCCTATACGTAGCGAACA -ACGGAAGCCTATACGTAGCAGTCA -ACGGAAGCCTATACGTAGGATCCA -ACGGAAGCCTATACGTAGACGACA -ACGGAAGCCTATACGTAGAGCTCA -ACGGAAGCCTATACGTAGTCACGT -ACGGAAGCCTATACGTAGCGTAGT -ACGGAAGCCTATACGTAGGTCAGT -ACGGAAGCCTATACGTAGGAAGGT -ACGGAAGCCTATACGTAGAACCGT -ACGGAAGCCTATACGTAGTTGTGC -ACGGAAGCCTATACGTAGCTAAGC -ACGGAAGCCTATACGTAGACTAGC -ACGGAAGCCTATACGTAGAGATGC -ACGGAAGCCTATACGTAGTGAAGG -ACGGAAGCCTATACGTAGCAATGG -ACGGAAGCCTATACGTAGATGAGG -ACGGAAGCCTATACGTAGAATGGG -ACGGAAGCCTATACGTAGTCCTGA -ACGGAAGCCTATACGTAGTAGCGA -ACGGAAGCCTATACGTAGCACAGA -ACGGAAGCCTATACGTAGGCAAGA -ACGGAAGCCTATACGTAGGGTTGA -ACGGAAGCCTATACGTAGTCCGAT -ACGGAAGCCTATACGTAGTGGCAT -ACGGAAGCCTATACGTAGCGAGAT -ACGGAAGCCTATACGTAGTACCAC -ACGGAAGCCTATACGTAGCAGAAC -ACGGAAGCCTATACGTAGGTCTAC -ACGGAAGCCTATACGTAGACGTAC -ACGGAAGCCTATACGTAGAGTGAC -ACGGAAGCCTATACGTAGCTGTAG -ACGGAAGCCTATACGTAGCCTAAG -ACGGAAGCCTATACGTAGGTTCAG -ACGGAAGCCTATACGTAGGCATAG -ACGGAAGCCTATACGTAGGACAAG -ACGGAAGCCTATACGTAGAAGCAG -ACGGAAGCCTATACGTAGCGTCAA -ACGGAAGCCTATACGTAGGCTGAA -ACGGAAGCCTATACGTAGAGTACG -ACGGAAGCCTATACGTAGATCCGA -ACGGAAGCCTATACGTAGATGGGA -ACGGAAGCCTATACGTAGGTGCAA -ACGGAAGCCTATACGTAGGAGGAA -ACGGAAGCCTATACGTAGCAGGTA -ACGGAAGCCTATACGTAGGACTCT -ACGGAAGCCTATACGTAGAGTCCT -ACGGAAGCCTATACGTAGTAAGCC -ACGGAAGCCTATACGTAGATAGCC -ACGGAAGCCTATACGTAGTAACCG -ACGGAAGCCTATACGTAGATGCCA -ACGGAAGCCTATACGGTAGGAAAC -ACGGAAGCCTATACGGTAAACACC -ACGGAAGCCTATACGGTAATCGAG -ACGGAAGCCTATACGGTACTCCTT -ACGGAAGCCTATACGGTACCTGTT -ACGGAAGCCTATACGGTACGGTTT -ACGGAAGCCTATACGGTAGTGGTT -ACGGAAGCCTATACGGTAGCCTTT -ACGGAAGCCTATACGGTAGGTCTT -ACGGAAGCCTATACGGTAACGCTT -ACGGAAGCCTATACGGTAAGCGTT -ACGGAAGCCTATACGGTATTCGTC -ACGGAAGCCTATACGGTATCTCTC -ACGGAAGCCTATACGGTATGGATC -ACGGAAGCCTATACGGTACACTTC -ACGGAAGCCTATACGGTAGTACTC -ACGGAAGCCTATACGGTAGATGTC -ACGGAAGCCTATACGGTAACAGTC -ACGGAAGCCTATACGGTATTGCTG -ACGGAAGCCTATACGGTATCCATG -ACGGAAGCCTATACGGTATGTGTG -ACGGAAGCCTATACGGTACTAGTG -ACGGAAGCCTATACGGTACATCTG -ACGGAAGCCTATACGGTAGAGTTG -ACGGAAGCCTATACGGTAAGACTG -ACGGAAGCCTATACGGTATCGGTA -ACGGAAGCCTATACGGTATGCCTA -ACGGAAGCCTATACGGTACCACTA -ACGGAAGCCTATACGGTAGGAGTA -ACGGAAGCCTATACGGTATCGTCT -ACGGAAGCCTATACGGTATGCACT -ACGGAAGCCTATACGGTACTGACT -ACGGAAGCCTATACGGTACAACCT -ACGGAAGCCTATACGGTAGCTACT -ACGGAAGCCTATACGGTAGGATCT -ACGGAAGCCTATACGGTAAAGGCT -ACGGAAGCCTATACGGTATCAACC -ACGGAAGCCTATACGGTATGTTCC -ACGGAAGCCTATACGGTAATTCCC -ACGGAAGCCTATACGGTATTCTCG -ACGGAAGCCTATACGGTATAGACG -ACGGAAGCCTATACGGTAGTAACG -ACGGAAGCCTATACGGTAACTTCG -ACGGAAGCCTATACGGTATACGCA -ACGGAAGCCTATACGGTACTTGCA -ACGGAAGCCTATACGGTACGAACA -ACGGAAGCCTATACGGTACAGTCA -ACGGAAGCCTATACGGTAGATCCA -ACGGAAGCCTATACGGTAACGACA -ACGGAAGCCTATACGGTAAGCTCA -ACGGAAGCCTATACGGTATCACGT -ACGGAAGCCTATACGGTACGTAGT -ACGGAAGCCTATACGGTAGTCAGT -ACGGAAGCCTATACGGTAGAAGGT -ACGGAAGCCTATACGGTAAACCGT -ACGGAAGCCTATACGGTATTGTGC -ACGGAAGCCTATACGGTACTAAGC -ACGGAAGCCTATACGGTAACTAGC -ACGGAAGCCTATACGGTAAGATGC -ACGGAAGCCTATACGGTATGAAGG -ACGGAAGCCTATACGGTACAATGG -ACGGAAGCCTATACGGTAATGAGG -ACGGAAGCCTATACGGTAAATGGG -ACGGAAGCCTATACGGTATCCTGA -ACGGAAGCCTATACGGTATAGCGA -ACGGAAGCCTATACGGTACACAGA -ACGGAAGCCTATACGGTAGCAAGA -ACGGAAGCCTATACGGTAGGTTGA -ACGGAAGCCTATACGGTATCCGAT -ACGGAAGCCTATACGGTATGGCAT -ACGGAAGCCTATACGGTACGAGAT -ACGGAAGCCTATACGGTATACCAC -ACGGAAGCCTATACGGTACAGAAC -ACGGAAGCCTATACGGTAGTCTAC -ACGGAAGCCTATACGGTAACGTAC -ACGGAAGCCTATACGGTAAGTGAC -ACGGAAGCCTATACGGTACTGTAG -ACGGAAGCCTATACGGTACCTAAG -ACGGAAGCCTATACGGTAGTTCAG -ACGGAAGCCTATACGGTAGCATAG -ACGGAAGCCTATACGGTAGACAAG -ACGGAAGCCTATACGGTAAAGCAG -ACGGAAGCCTATACGGTACGTCAA -ACGGAAGCCTATACGGTAGCTGAA -ACGGAAGCCTATACGGTAAGTACG -ACGGAAGCCTATACGGTAATCCGA -ACGGAAGCCTATACGGTAATGGGA -ACGGAAGCCTATACGGTAGTGCAA -ACGGAAGCCTATACGGTAGAGGAA -ACGGAAGCCTATACGGTACAGGTA -ACGGAAGCCTATACGGTAGACTCT -ACGGAAGCCTATACGGTAAGTCCT -ACGGAAGCCTATACGGTATAAGCC -ACGGAAGCCTATACGGTAATAGCC -ACGGAAGCCTATACGGTATAACCG -ACGGAAGCCTATACGGTAATGCCA -ACGGAAGCCTATTCGACTGGAAAC -ACGGAAGCCTATTCGACTAACACC -ACGGAAGCCTATTCGACTATCGAG -ACGGAAGCCTATTCGACTCTCCTT -ACGGAAGCCTATTCGACTCCTGTT -ACGGAAGCCTATTCGACTCGGTTT -ACGGAAGCCTATTCGACTGTGGTT -ACGGAAGCCTATTCGACTGCCTTT -ACGGAAGCCTATTCGACTGGTCTT -ACGGAAGCCTATTCGACTACGCTT -ACGGAAGCCTATTCGACTAGCGTT -ACGGAAGCCTATTCGACTTTCGTC -ACGGAAGCCTATTCGACTTCTCTC -ACGGAAGCCTATTCGACTTGGATC -ACGGAAGCCTATTCGACTCACTTC -ACGGAAGCCTATTCGACTGTACTC -ACGGAAGCCTATTCGACTGATGTC -ACGGAAGCCTATTCGACTACAGTC -ACGGAAGCCTATTCGACTTTGCTG -ACGGAAGCCTATTCGACTTCCATG -ACGGAAGCCTATTCGACTTGTGTG -ACGGAAGCCTATTCGACTCTAGTG -ACGGAAGCCTATTCGACTCATCTG -ACGGAAGCCTATTCGACTGAGTTG -ACGGAAGCCTATTCGACTAGACTG -ACGGAAGCCTATTCGACTTCGGTA -ACGGAAGCCTATTCGACTTGCCTA -ACGGAAGCCTATTCGACTCCACTA -ACGGAAGCCTATTCGACTGGAGTA -ACGGAAGCCTATTCGACTTCGTCT -ACGGAAGCCTATTCGACTTGCACT -ACGGAAGCCTATTCGACTCTGACT -ACGGAAGCCTATTCGACTCAACCT -ACGGAAGCCTATTCGACTGCTACT -ACGGAAGCCTATTCGACTGGATCT -ACGGAAGCCTATTCGACTAAGGCT -ACGGAAGCCTATTCGACTTCAACC -ACGGAAGCCTATTCGACTTGTTCC -ACGGAAGCCTATTCGACTATTCCC -ACGGAAGCCTATTCGACTTTCTCG -ACGGAAGCCTATTCGACTTAGACG -ACGGAAGCCTATTCGACTGTAACG -ACGGAAGCCTATTCGACTACTTCG -ACGGAAGCCTATTCGACTTACGCA -ACGGAAGCCTATTCGACTCTTGCA -ACGGAAGCCTATTCGACTCGAACA -ACGGAAGCCTATTCGACTCAGTCA -ACGGAAGCCTATTCGACTGATCCA -ACGGAAGCCTATTCGACTACGACA -ACGGAAGCCTATTCGACTAGCTCA -ACGGAAGCCTATTCGACTTCACGT -ACGGAAGCCTATTCGACTCGTAGT -ACGGAAGCCTATTCGACTGTCAGT -ACGGAAGCCTATTCGACTGAAGGT -ACGGAAGCCTATTCGACTAACCGT -ACGGAAGCCTATTCGACTTTGTGC -ACGGAAGCCTATTCGACTCTAAGC -ACGGAAGCCTATTCGACTACTAGC -ACGGAAGCCTATTCGACTAGATGC -ACGGAAGCCTATTCGACTTGAAGG -ACGGAAGCCTATTCGACTCAATGG -ACGGAAGCCTATTCGACTATGAGG -ACGGAAGCCTATTCGACTAATGGG -ACGGAAGCCTATTCGACTTCCTGA -ACGGAAGCCTATTCGACTTAGCGA -ACGGAAGCCTATTCGACTCACAGA -ACGGAAGCCTATTCGACTGCAAGA -ACGGAAGCCTATTCGACTGGTTGA -ACGGAAGCCTATTCGACTTCCGAT -ACGGAAGCCTATTCGACTTGGCAT -ACGGAAGCCTATTCGACTCGAGAT -ACGGAAGCCTATTCGACTTACCAC -ACGGAAGCCTATTCGACTCAGAAC -ACGGAAGCCTATTCGACTGTCTAC -ACGGAAGCCTATTCGACTACGTAC -ACGGAAGCCTATTCGACTAGTGAC -ACGGAAGCCTATTCGACTCTGTAG -ACGGAAGCCTATTCGACTCCTAAG -ACGGAAGCCTATTCGACTGTTCAG -ACGGAAGCCTATTCGACTGCATAG -ACGGAAGCCTATTCGACTGACAAG -ACGGAAGCCTATTCGACTAAGCAG -ACGGAAGCCTATTCGACTCGTCAA -ACGGAAGCCTATTCGACTGCTGAA -ACGGAAGCCTATTCGACTAGTACG -ACGGAAGCCTATTCGACTATCCGA -ACGGAAGCCTATTCGACTATGGGA -ACGGAAGCCTATTCGACTGTGCAA -ACGGAAGCCTATTCGACTGAGGAA -ACGGAAGCCTATTCGACTCAGGTA -ACGGAAGCCTATTCGACTGACTCT -ACGGAAGCCTATTCGACTAGTCCT -ACGGAAGCCTATTCGACTTAAGCC -ACGGAAGCCTATTCGACTATAGCC -ACGGAAGCCTATTCGACTTAACCG -ACGGAAGCCTATTCGACTATGCCA -ACGGAAGCCTATGCATACGGAAAC -ACGGAAGCCTATGCATACAACACC -ACGGAAGCCTATGCATACATCGAG -ACGGAAGCCTATGCATACCTCCTT -ACGGAAGCCTATGCATACCCTGTT -ACGGAAGCCTATGCATACCGGTTT -ACGGAAGCCTATGCATACGTGGTT -ACGGAAGCCTATGCATACGCCTTT -ACGGAAGCCTATGCATACGGTCTT -ACGGAAGCCTATGCATACACGCTT -ACGGAAGCCTATGCATACAGCGTT -ACGGAAGCCTATGCATACTTCGTC -ACGGAAGCCTATGCATACTCTCTC -ACGGAAGCCTATGCATACTGGATC -ACGGAAGCCTATGCATACCACTTC -ACGGAAGCCTATGCATACGTACTC -ACGGAAGCCTATGCATACGATGTC -ACGGAAGCCTATGCATACACAGTC -ACGGAAGCCTATGCATACTTGCTG -ACGGAAGCCTATGCATACTCCATG -ACGGAAGCCTATGCATACTGTGTG -ACGGAAGCCTATGCATACCTAGTG -ACGGAAGCCTATGCATACCATCTG -ACGGAAGCCTATGCATACGAGTTG -ACGGAAGCCTATGCATACAGACTG -ACGGAAGCCTATGCATACTCGGTA -ACGGAAGCCTATGCATACTGCCTA -ACGGAAGCCTATGCATACCCACTA -ACGGAAGCCTATGCATACGGAGTA -ACGGAAGCCTATGCATACTCGTCT -ACGGAAGCCTATGCATACTGCACT -ACGGAAGCCTATGCATACCTGACT -ACGGAAGCCTATGCATACCAACCT -ACGGAAGCCTATGCATACGCTACT -ACGGAAGCCTATGCATACGGATCT -ACGGAAGCCTATGCATACAAGGCT -ACGGAAGCCTATGCATACTCAACC -ACGGAAGCCTATGCATACTGTTCC -ACGGAAGCCTATGCATACATTCCC -ACGGAAGCCTATGCATACTTCTCG -ACGGAAGCCTATGCATACTAGACG -ACGGAAGCCTATGCATACGTAACG -ACGGAAGCCTATGCATACACTTCG -ACGGAAGCCTATGCATACTACGCA -ACGGAAGCCTATGCATACCTTGCA -ACGGAAGCCTATGCATACCGAACA -ACGGAAGCCTATGCATACCAGTCA -ACGGAAGCCTATGCATACGATCCA -ACGGAAGCCTATGCATACACGACA -ACGGAAGCCTATGCATACAGCTCA -ACGGAAGCCTATGCATACTCACGT -ACGGAAGCCTATGCATACCGTAGT -ACGGAAGCCTATGCATACGTCAGT -ACGGAAGCCTATGCATACGAAGGT -ACGGAAGCCTATGCATACAACCGT -ACGGAAGCCTATGCATACTTGTGC -ACGGAAGCCTATGCATACCTAAGC -ACGGAAGCCTATGCATACACTAGC -ACGGAAGCCTATGCATACAGATGC -ACGGAAGCCTATGCATACTGAAGG -ACGGAAGCCTATGCATACCAATGG -ACGGAAGCCTATGCATACATGAGG -ACGGAAGCCTATGCATACAATGGG -ACGGAAGCCTATGCATACTCCTGA -ACGGAAGCCTATGCATACTAGCGA -ACGGAAGCCTATGCATACCACAGA -ACGGAAGCCTATGCATACGCAAGA -ACGGAAGCCTATGCATACGGTTGA -ACGGAAGCCTATGCATACTCCGAT -ACGGAAGCCTATGCATACTGGCAT -ACGGAAGCCTATGCATACCGAGAT -ACGGAAGCCTATGCATACTACCAC -ACGGAAGCCTATGCATACCAGAAC -ACGGAAGCCTATGCATACGTCTAC -ACGGAAGCCTATGCATACACGTAC -ACGGAAGCCTATGCATACAGTGAC -ACGGAAGCCTATGCATACCTGTAG -ACGGAAGCCTATGCATACCCTAAG -ACGGAAGCCTATGCATACGTTCAG -ACGGAAGCCTATGCATACGCATAG -ACGGAAGCCTATGCATACGACAAG -ACGGAAGCCTATGCATACAAGCAG -ACGGAAGCCTATGCATACCGTCAA -ACGGAAGCCTATGCATACGCTGAA -ACGGAAGCCTATGCATACAGTACG -ACGGAAGCCTATGCATACATCCGA -ACGGAAGCCTATGCATACATGGGA -ACGGAAGCCTATGCATACGTGCAA -ACGGAAGCCTATGCATACGAGGAA -ACGGAAGCCTATGCATACCAGGTA -ACGGAAGCCTATGCATACGACTCT -ACGGAAGCCTATGCATACAGTCCT -ACGGAAGCCTATGCATACTAAGCC -ACGGAAGCCTATGCATACATAGCC -ACGGAAGCCTATGCATACTAACCG -ACGGAAGCCTATGCATACATGCCA -ACGGAAGCCTATGCACTTGGAAAC -ACGGAAGCCTATGCACTTAACACC -ACGGAAGCCTATGCACTTATCGAG -ACGGAAGCCTATGCACTTCTCCTT -ACGGAAGCCTATGCACTTCCTGTT -ACGGAAGCCTATGCACTTCGGTTT -ACGGAAGCCTATGCACTTGTGGTT -ACGGAAGCCTATGCACTTGCCTTT -ACGGAAGCCTATGCACTTGGTCTT -ACGGAAGCCTATGCACTTACGCTT -ACGGAAGCCTATGCACTTAGCGTT -ACGGAAGCCTATGCACTTTTCGTC -ACGGAAGCCTATGCACTTTCTCTC -ACGGAAGCCTATGCACTTTGGATC -ACGGAAGCCTATGCACTTCACTTC -ACGGAAGCCTATGCACTTGTACTC -ACGGAAGCCTATGCACTTGATGTC -ACGGAAGCCTATGCACTTACAGTC -ACGGAAGCCTATGCACTTTTGCTG -ACGGAAGCCTATGCACTTTCCATG -ACGGAAGCCTATGCACTTTGTGTG -ACGGAAGCCTATGCACTTCTAGTG -ACGGAAGCCTATGCACTTCATCTG -ACGGAAGCCTATGCACTTGAGTTG -ACGGAAGCCTATGCACTTAGACTG -ACGGAAGCCTATGCACTTTCGGTA -ACGGAAGCCTATGCACTTTGCCTA -ACGGAAGCCTATGCACTTCCACTA -ACGGAAGCCTATGCACTTGGAGTA -ACGGAAGCCTATGCACTTTCGTCT -ACGGAAGCCTATGCACTTTGCACT -ACGGAAGCCTATGCACTTCTGACT -ACGGAAGCCTATGCACTTCAACCT -ACGGAAGCCTATGCACTTGCTACT -ACGGAAGCCTATGCACTTGGATCT -ACGGAAGCCTATGCACTTAAGGCT -ACGGAAGCCTATGCACTTTCAACC -ACGGAAGCCTATGCACTTTGTTCC -ACGGAAGCCTATGCACTTATTCCC -ACGGAAGCCTATGCACTTTTCTCG -ACGGAAGCCTATGCACTTTAGACG -ACGGAAGCCTATGCACTTGTAACG -ACGGAAGCCTATGCACTTACTTCG -ACGGAAGCCTATGCACTTTACGCA -ACGGAAGCCTATGCACTTCTTGCA -ACGGAAGCCTATGCACTTCGAACA -ACGGAAGCCTATGCACTTCAGTCA -ACGGAAGCCTATGCACTTGATCCA -ACGGAAGCCTATGCACTTACGACA -ACGGAAGCCTATGCACTTAGCTCA -ACGGAAGCCTATGCACTTTCACGT -ACGGAAGCCTATGCACTTCGTAGT -ACGGAAGCCTATGCACTTGTCAGT -ACGGAAGCCTATGCACTTGAAGGT -ACGGAAGCCTATGCACTTAACCGT -ACGGAAGCCTATGCACTTTTGTGC -ACGGAAGCCTATGCACTTCTAAGC -ACGGAAGCCTATGCACTTACTAGC -ACGGAAGCCTATGCACTTAGATGC -ACGGAAGCCTATGCACTTTGAAGG -ACGGAAGCCTATGCACTTCAATGG -ACGGAAGCCTATGCACTTATGAGG -ACGGAAGCCTATGCACTTAATGGG -ACGGAAGCCTATGCACTTTCCTGA -ACGGAAGCCTATGCACTTTAGCGA -ACGGAAGCCTATGCACTTCACAGA -ACGGAAGCCTATGCACTTGCAAGA -ACGGAAGCCTATGCACTTGGTTGA -ACGGAAGCCTATGCACTTTCCGAT -ACGGAAGCCTATGCACTTTGGCAT -ACGGAAGCCTATGCACTTCGAGAT -ACGGAAGCCTATGCACTTTACCAC -ACGGAAGCCTATGCACTTCAGAAC -ACGGAAGCCTATGCACTTGTCTAC -ACGGAAGCCTATGCACTTACGTAC -ACGGAAGCCTATGCACTTAGTGAC -ACGGAAGCCTATGCACTTCTGTAG -ACGGAAGCCTATGCACTTCCTAAG -ACGGAAGCCTATGCACTTGTTCAG -ACGGAAGCCTATGCACTTGCATAG -ACGGAAGCCTATGCACTTGACAAG -ACGGAAGCCTATGCACTTAAGCAG -ACGGAAGCCTATGCACTTCGTCAA -ACGGAAGCCTATGCACTTGCTGAA -ACGGAAGCCTATGCACTTAGTACG -ACGGAAGCCTATGCACTTATCCGA -ACGGAAGCCTATGCACTTATGGGA -ACGGAAGCCTATGCACTTGTGCAA -ACGGAAGCCTATGCACTTGAGGAA -ACGGAAGCCTATGCACTTCAGGTA -ACGGAAGCCTATGCACTTGACTCT -ACGGAAGCCTATGCACTTAGTCCT -ACGGAAGCCTATGCACTTTAAGCC -ACGGAAGCCTATGCACTTATAGCC -ACGGAAGCCTATGCACTTTAACCG -ACGGAAGCCTATGCACTTATGCCA -ACGGAAGCCTATACACGAGGAAAC -ACGGAAGCCTATACACGAAACACC -ACGGAAGCCTATACACGAATCGAG -ACGGAAGCCTATACACGACTCCTT -ACGGAAGCCTATACACGACCTGTT -ACGGAAGCCTATACACGACGGTTT -ACGGAAGCCTATACACGAGTGGTT -ACGGAAGCCTATACACGAGCCTTT -ACGGAAGCCTATACACGAGGTCTT -ACGGAAGCCTATACACGAACGCTT -ACGGAAGCCTATACACGAAGCGTT -ACGGAAGCCTATACACGATTCGTC -ACGGAAGCCTATACACGATCTCTC -ACGGAAGCCTATACACGATGGATC -ACGGAAGCCTATACACGACACTTC -ACGGAAGCCTATACACGAGTACTC -ACGGAAGCCTATACACGAGATGTC -ACGGAAGCCTATACACGAACAGTC -ACGGAAGCCTATACACGATTGCTG -ACGGAAGCCTATACACGATCCATG -ACGGAAGCCTATACACGATGTGTG -ACGGAAGCCTATACACGACTAGTG -ACGGAAGCCTATACACGACATCTG -ACGGAAGCCTATACACGAGAGTTG -ACGGAAGCCTATACACGAAGACTG -ACGGAAGCCTATACACGATCGGTA -ACGGAAGCCTATACACGATGCCTA -ACGGAAGCCTATACACGACCACTA -ACGGAAGCCTATACACGAGGAGTA -ACGGAAGCCTATACACGATCGTCT -ACGGAAGCCTATACACGATGCACT -ACGGAAGCCTATACACGACTGACT -ACGGAAGCCTATACACGACAACCT -ACGGAAGCCTATACACGAGCTACT -ACGGAAGCCTATACACGAGGATCT -ACGGAAGCCTATACACGAAAGGCT -ACGGAAGCCTATACACGATCAACC -ACGGAAGCCTATACACGATGTTCC -ACGGAAGCCTATACACGAATTCCC -ACGGAAGCCTATACACGATTCTCG -ACGGAAGCCTATACACGATAGACG -ACGGAAGCCTATACACGAGTAACG -ACGGAAGCCTATACACGAACTTCG -ACGGAAGCCTATACACGATACGCA -ACGGAAGCCTATACACGACTTGCA -ACGGAAGCCTATACACGACGAACA -ACGGAAGCCTATACACGACAGTCA -ACGGAAGCCTATACACGAGATCCA -ACGGAAGCCTATACACGAACGACA -ACGGAAGCCTATACACGAAGCTCA -ACGGAAGCCTATACACGATCACGT -ACGGAAGCCTATACACGACGTAGT -ACGGAAGCCTATACACGAGTCAGT -ACGGAAGCCTATACACGAGAAGGT -ACGGAAGCCTATACACGAAACCGT -ACGGAAGCCTATACACGATTGTGC -ACGGAAGCCTATACACGACTAAGC -ACGGAAGCCTATACACGAACTAGC -ACGGAAGCCTATACACGAAGATGC -ACGGAAGCCTATACACGATGAAGG -ACGGAAGCCTATACACGACAATGG -ACGGAAGCCTATACACGAATGAGG -ACGGAAGCCTATACACGAAATGGG -ACGGAAGCCTATACACGATCCTGA -ACGGAAGCCTATACACGATAGCGA -ACGGAAGCCTATACACGACACAGA -ACGGAAGCCTATACACGAGCAAGA -ACGGAAGCCTATACACGAGGTTGA -ACGGAAGCCTATACACGATCCGAT -ACGGAAGCCTATACACGATGGCAT -ACGGAAGCCTATACACGACGAGAT -ACGGAAGCCTATACACGATACCAC -ACGGAAGCCTATACACGACAGAAC -ACGGAAGCCTATACACGAGTCTAC -ACGGAAGCCTATACACGAACGTAC -ACGGAAGCCTATACACGAAGTGAC -ACGGAAGCCTATACACGACTGTAG -ACGGAAGCCTATACACGACCTAAG -ACGGAAGCCTATACACGAGTTCAG -ACGGAAGCCTATACACGAGCATAG -ACGGAAGCCTATACACGAGACAAG -ACGGAAGCCTATACACGAAAGCAG -ACGGAAGCCTATACACGACGTCAA -ACGGAAGCCTATACACGAGCTGAA -ACGGAAGCCTATACACGAAGTACG -ACGGAAGCCTATACACGAATCCGA -ACGGAAGCCTATACACGAATGGGA -ACGGAAGCCTATACACGAGTGCAA -ACGGAAGCCTATACACGAGAGGAA -ACGGAAGCCTATACACGACAGGTA -ACGGAAGCCTATACACGAGACTCT -ACGGAAGCCTATACACGAAGTCCT -ACGGAAGCCTATACACGATAAGCC -ACGGAAGCCTATACACGAATAGCC -ACGGAAGCCTATACACGATAACCG -ACGGAAGCCTATACACGAATGCCA -ACGGAAGCCTATTCACAGGGAAAC -ACGGAAGCCTATTCACAGAACACC -ACGGAAGCCTATTCACAGATCGAG -ACGGAAGCCTATTCACAGCTCCTT -ACGGAAGCCTATTCACAGCCTGTT -ACGGAAGCCTATTCACAGCGGTTT -ACGGAAGCCTATTCACAGGTGGTT -ACGGAAGCCTATTCACAGGCCTTT -ACGGAAGCCTATTCACAGGGTCTT -ACGGAAGCCTATTCACAGACGCTT -ACGGAAGCCTATTCACAGAGCGTT -ACGGAAGCCTATTCACAGTTCGTC -ACGGAAGCCTATTCACAGTCTCTC -ACGGAAGCCTATTCACAGTGGATC -ACGGAAGCCTATTCACAGCACTTC -ACGGAAGCCTATTCACAGGTACTC -ACGGAAGCCTATTCACAGGATGTC -ACGGAAGCCTATTCACAGACAGTC -ACGGAAGCCTATTCACAGTTGCTG -ACGGAAGCCTATTCACAGTCCATG -ACGGAAGCCTATTCACAGTGTGTG -ACGGAAGCCTATTCACAGCTAGTG -ACGGAAGCCTATTCACAGCATCTG -ACGGAAGCCTATTCACAGGAGTTG -ACGGAAGCCTATTCACAGAGACTG -ACGGAAGCCTATTCACAGTCGGTA -ACGGAAGCCTATTCACAGTGCCTA -ACGGAAGCCTATTCACAGCCACTA -ACGGAAGCCTATTCACAGGGAGTA -ACGGAAGCCTATTCACAGTCGTCT -ACGGAAGCCTATTCACAGTGCACT -ACGGAAGCCTATTCACAGCTGACT -ACGGAAGCCTATTCACAGCAACCT -ACGGAAGCCTATTCACAGGCTACT -ACGGAAGCCTATTCACAGGGATCT -ACGGAAGCCTATTCACAGAAGGCT -ACGGAAGCCTATTCACAGTCAACC -ACGGAAGCCTATTCACAGTGTTCC -ACGGAAGCCTATTCACAGATTCCC -ACGGAAGCCTATTCACAGTTCTCG -ACGGAAGCCTATTCACAGTAGACG -ACGGAAGCCTATTCACAGGTAACG -ACGGAAGCCTATTCACAGACTTCG -ACGGAAGCCTATTCACAGTACGCA -ACGGAAGCCTATTCACAGCTTGCA -ACGGAAGCCTATTCACAGCGAACA -ACGGAAGCCTATTCACAGCAGTCA -ACGGAAGCCTATTCACAGGATCCA -ACGGAAGCCTATTCACAGACGACA -ACGGAAGCCTATTCACAGAGCTCA -ACGGAAGCCTATTCACAGTCACGT -ACGGAAGCCTATTCACAGCGTAGT -ACGGAAGCCTATTCACAGGTCAGT -ACGGAAGCCTATTCACAGGAAGGT -ACGGAAGCCTATTCACAGAACCGT -ACGGAAGCCTATTCACAGTTGTGC -ACGGAAGCCTATTCACAGCTAAGC -ACGGAAGCCTATTCACAGACTAGC -ACGGAAGCCTATTCACAGAGATGC -ACGGAAGCCTATTCACAGTGAAGG -ACGGAAGCCTATTCACAGCAATGG -ACGGAAGCCTATTCACAGATGAGG -ACGGAAGCCTATTCACAGAATGGG -ACGGAAGCCTATTCACAGTCCTGA -ACGGAAGCCTATTCACAGTAGCGA -ACGGAAGCCTATTCACAGCACAGA -ACGGAAGCCTATTCACAGGCAAGA -ACGGAAGCCTATTCACAGGGTTGA -ACGGAAGCCTATTCACAGTCCGAT -ACGGAAGCCTATTCACAGTGGCAT -ACGGAAGCCTATTCACAGCGAGAT -ACGGAAGCCTATTCACAGTACCAC -ACGGAAGCCTATTCACAGCAGAAC -ACGGAAGCCTATTCACAGGTCTAC -ACGGAAGCCTATTCACAGACGTAC -ACGGAAGCCTATTCACAGAGTGAC -ACGGAAGCCTATTCACAGCTGTAG -ACGGAAGCCTATTCACAGCCTAAG -ACGGAAGCCTATTCACAGGTTCAG -ACGGAAGCCTATTCACAGGCATAG -ACGGAAGCCTATTCACAGGACAAG -ACGGAAGCCTATTCACAGAAGCAG -ACGGAAGCCTATTCACAGCGTCAA -ACGGAAGCCTATTCACAGGCTGAA -ACGGAAGCCTATTCACAGAGTACG -ACGGAAGCCTATTCACAGATCCGA -ACGGAAGCCTATTCACAGATGGGA -ACGGAAGCCTATTCACAGGTGCAA -ACGGAAGCCTATTCACAGGAGGAA -ACGGAAGCCTATTCACAGCAGGTA -ACGGAAGCCTATTCACAGGACTCT -ACGGAAGCCTATTCACAGAGTCCT -ACGGAAGCCTATTCACAGTAAGCC -ACGGAAGCCTATTCACAGATAGCC -ACGGAAGCCTATTCACAGTAACCG -ACGGAAGCCTATTCACAGATGCCA -ACGGAAGCCTATCCAGATGGAAAC -ACGGAAGCCTATCCAGATAACACC -ACGGAAGCCTATCCAGATATCGAG -ACGGAAGCCTATCCAGATCTCCTT -ACGGAAGCCTATCCAGATCCTGTT -ACGGAAGCCTATCCAGATCGGTTT -ACGGAAGCCTATCCAGATGTGGTT -ACGGAAGCCTATCCAGATGCCTTT -ACGGAAGCCTATCCAGATGGTCTT -ACGGAAGCCTATCCAGATACGCTT -ACGGAAGCCTATCCAGATAGCGTT -ACGGAAGCCTATCCAGATTTCGTC -ACGGAAGCCTATCCAGATTCTCTC -ACGGAAGCCTATCCAGATTGGATC -ACGGAAGCCTATCCAGATCACTTC -ACGGAAGCCTATCCAGATGTACTC -ACGGAAGCCTATCCAGATGATGTC -ACGGAAGCCTATCCAGATACAGTC -ACGGAAGCCTATCCAGATTTGCTG -ACGGAAGCCTATCCAGATTCCATG -ACGGAAGCCTATCCAGATTGTGTG -ACGGAAGCCTATCCAGATCTAGTG -ACGGAAGCCTATCCAGATCATCTG -ACGGAAGCCTATCCAGATGAGTTG -ACGGAAGCCTATCCAGATAGACTG -ACGGAAGCCTATCCAGATTCGGTA -ACGGAAGCCTATCCAGATTGCCTA -ACGGAAGCCTATCCAGATCCACTA -ACGGAAGCCTATCCAGATGGAGTA -ACGGAAGCCTATCCAGATTCGTCT -ACGGAAGCCTATCCAGATTGCACT -ACGGAAGCCTATCCAGATCTGACT -ACGGAAGCCTATCCAGATCAACCT -ACGGAAGCCTATCCAGATGCTACT -ACGGAAGCCTATCCAGATGGATCT -ACGGAAGCCTATCCAGATAAGGCT -ACGGAAGCCTATCCAGATTCAACC -ACGGAAGCCTATCCAGATTGTTCC -ACGGAAGCCTATCCAGATATTCCC -ACGGAAGCCTATCCAGATTTCTCG -ACGGAAGCCTATCCAGATTAGACG -ACGGAAGCCTATCCAGATGTAACG -ACGGAAGCCTATCCAGATACTTCG -ACGGAAGCCTATCCAGATTACGCA -ACGGAAGCCTATCCAGATCTTGCA -ACGGAAGCCTATCCAGATCGAACA -ACGGAAGCCTATCCAGATCAGTCA -ACGGAAGCCTATCCAGATGATCCA -ACGGAAGCCTATCCAGATACGACA -ACGGAAGCCTATCCAGATAGCTCA -ACGGAAGCCTATCCAGATTCACGT -ACGGAAGCCTATCCAGATCGTAGT -ACGGAAGCCTATCCAGATGTCAGT -ACGGAAGCCTATCCAGATGAAGGT -ACGGAAGCCTATCCAGATAACCGT -ACGGAAGCCTATCCAGATTTGTGC -ACGGAAGCCTATCCAGATCTAAGC -ACGGAAGCCTATCCAGATACTAGC -ACGGAAGCCTATCCAGATAGATGC -ACGGAAGCCTATCCAGATTGAAGG -ACGGAAGCCTATCCAGATCAATGG -ACGGAAGCCTATCCAGATATGAGG -ACGGAAGCCTATCCAGATAATGGG -ACGGAAGCCTATCCAGATTCCTGA -ACGGAAGCCTATCCAGATTAGCGA -ACGGAAGCCTATCCAGATCACAGA -ACGGAAGCCTATCCAGATGCAAGA -ACGGAAGCCTATCCAGATGGTTGA -ACGGAAGCCTATCCAGATTCCGAT -ACGGAAGCCTATCCAGATTGGCAT -ACGGAAGCCTATCCAGATCGAGAT -ACGGAAGCCTATCCAGATTACCAC -ACGGAAGCCTATCCAGATCAGAAC -ACGGAAGCCTATCCAGATGTCTAC -ACGGAAGCCTATCCAGATACGTAC -ACGGAAGCCTATCCAGATAGTGAC -ACGGAAGCCTATCCAGATCTGTAG -ACGGAAGCCTATCCAGATCCTAAG -ACGGAAGCCTATCCAGATGTTCAG -ACGGAAGCCTATCCAGATGCATAG -ACGGAAGCCTATCCAGATGACAAG -ACGGAAGCCTATCCAGATAAGCAG -ACGGAAGCCTATCCAGATCGTCAA -ACGGAAGCCTATCCAGATGCTGAA -ACGGAAGCCTATCCAGATAGTACG -ACGGAAGCCTATCCAGATATCCGA -ACGGAAGCCTATCCAGATATGGGA -ACGGAAGCCTATCCAGATGTGCAA -ACGGAAGCCTATCCAGATGAGGAA -ACGGAAGCCTATCCAGATCAGGTA -ACGGAAGCCTATCCAGATGACTCT -ACGGAAGCCTATCCAGATAGTCCT -ACGGAAGCCTATCCAGATTAAGCC -ACGGAAGCCTATCCAGATATAGCC -ACGGAAGCCTATCCAGATTAACCG -ACGGAAGCCTATCCAGATATGCCA -ACGGAAGCCTATACAACGGGAAAC -ACGGAAGCCTATACAACGAACACC -ACGGAAGCCTATACAACGATCGAG -ACGGAAGCCTATACAACGCTCCTT -ACGGAAGCCTATACAACGCCTGTT -ACGGAAGCCTATACAACGCGGTTT -ACGGAAGCCTATACAACGGTGGTT -ACGGAAGCCTATACAACGGCCTTT -ACGGAAGCCTATACAACGGGTCTT -ACGGAAGCCTATACAACGACGCTT -ACGGAAGCCTATACAACGAGCGTT -ACGGAAGCCTATACAACGTTCGTC -ACGGAAGCCTATACAACGTCTCTC -ACGGAAGCCTATACAACGTGGATC -ACGGAAGCCTATACAACGCACTTC -ACGGAAGCCTATACAACGGTACTC -ACGGAAGCCTATACAACGGATGTC -ACGGAAGCCTATACAACGACAGTC -ACGGAAGCCTATACAACGTTGCTG -ACGGAAGCCTATACAACGTCCATG -ACGGAAGCCTATACAACGTGTGTG -ACGGAAGCCTATACAACGCTAGTG -ACGGAAGCCTATACAACGCATCTG -ACGGAAGCCTATACAACGGAGTTG -ACGGAAGCCTATACAACGAGACTG -ACGGAAGCCTATACAACGTCGGTA -ACGGAAGCCTATACAACGTGCCTA -ACGGAAGCCTATACAACGCCACTA -ACGGAAGCCTATACAACGGGAGTA -ACGGAAGCCTATACAACGTCGTCT -ACGGAAGCCTATACAACGTGCACT -ACGGAAGCCTATACAACGCTGACT -ACGGAAGCCTATACAACGCAACCT -ACGGAAGCCTATACAACGGCTACT -ACGGAAGCCTATACAACGGGATCT -ACGGAAGCCTATACAACGAAGGCT -ACGGAAGCCTATACAACGTCAACC -ACGGAAGCCTATACAACGTGTTCC -ACGGAAGCCTATACAACGATTCCC -ACGGAAGCCTATACAACGTTCTCG -ACGGAAGCCTATACAACGTAGACG -ACGGAAGCCTATACAACGGTAACG -ACGGAAGCCTATACAACGACTTCG -ACGGAAGCCTATACAACGTACGCA -ACGGAAGCCTATACAACGCTTGCA -ACGGAAGCCTATACAACGCGAACA -ACGGAAGCCTATACAACGCAGTCA -ACGGAAGCCTATACAACGGATCCA -ACGGAAGCCTATACAACGACGACA -ACGGAAGCCTATACAACGAGCTCA -ACGGAAGCCTATACAACGTCACGT -ACGGAAGCCTATACAACGCGTAGT -ACGGAAGCCTATACAACGGTCAGT -ACGGAAGCCTATACAACGGAAGGT -ACGGAAGCCTATACAACGAACCGT -ACGGAAGCCTATACAACGTTGTGC -ACGGAAGCCTATACAACGCTAAGC -ACGGAAGCCTATACAACGACTAGC -ACGGAAGCCTATACAACGAGATGC -ACGGAAGCCTATACAACGTGAAGG -ACGGAAGCCTATACAACGCAATGG -ACGGAAGCCTATACAACGATGAGG -ACGGAAGCCTATACAACGAATGGG -ACGGAAGCCTATACAACGTCCTGA -ACGGAAGCCTATACAACGTAGCGA -ACGGAAGCCTATACAACGCACAGA -ACGGAAGCCTATACAACGGCAAGA -ACGGAAGCCTATACAACGGGTTGA -ACGGAAGCCTATACAACGTCCGAT -ACGGAAGCCTATACAACGTGGCAT -ACGGAAGCCTATACAACGCGAGAT -ACGGAAGCCTATACAACGTACCAC -ACGGAAGCCTATACAACGCAGAAC -ACGGAAGCCTATACAACGGTCTAC -ACGGAAGCCTATACAACGACGTAC -ACGGAAGCCTATACAACGAGTGAC -ACGGAAGCCTATACAACGCTGTAG -ACGGAAGCCTATACAACGCCTAAG -ACGGAAGCCTATACAACGGTTCAG -ACGGAAGCCTATACAACGGCATAG -ACGGAAGCCTATACAACGGACAAG -ACGGAAGCCTATACAACGAAGCAG -ACGGAAGCCTATACAACGCGTCAA -ACGGAAGCCTATACAACGGCTGAA -ACGGAAGCCTATACAACGAGTACG -ACGGAAGCCTATACAACGATCCGA -ACGGAAGCCTATACAACGATGGGA -ACGGAAGCCTATACAACGGTGCAA -ACGGAAGCCTATACAACGGAGGAA -ACGGAAGCCTATACAACGCAGGTA -ACGGAAGCCTATACAACGGACTCT -ACGGAAGCCTATACAACGAGTCCT -ACGGAAGCCTATACAACGTAAGCC -ACGGAAGCCTATACAACGATAGCC -ACGGAAGCCTATACAACGTAACCG -ACGGAAGCCTATACAACGATGCCA -ACGGAAGCCTATTCAAGCGGAAAC -ACGGAAGCCTATTCAAGCAACACC -ACGGAAGCCTATTCAAGCATCGAG -ACGGAAGCCTATTCAAGCCTCCTT -ACGGAAGCCTATTCAAGCCCTGTT -ACGGAAGCCTATTCAAGCCGGTTT -ACGGAAGCCTATTCAAGCGTGGTT -ACGGAAGCCTATTCAAGCGCCTTT -ACGGAAGCCTATTCAAGCGGTCTT -ACGGAAGCCTATTCAAGCACGCTT -ACGGAAGCCTATTCAAGCAGCGTT -ACGGAAGCCTATTCAAGCTTCGTC -ACGGAAGCCTATTCAAGCTCTCTC -ACGGAAGCCTATTCAAGCTGGATC -ACGGAAGCCTATTCAAGCCACTTC -ACGGAAGCCTATTCAAGCGTACTC -ACGGAAGCCTATTCAAGCGATGTC -ACGGAAGCCTATTCAAGCACAGTC -ACGGAAGCCTATTCAAGCTTGCTG -ACGGAAGCCTATTCAAGCTCCATG -ACGGAAGCCTATTCAAGCTGTGTG -ACGGAAGCCTATTCAAGCCTAGTG -ACGGAAGCCTATTCAAGCCATCTG -ACGGAAGCCTATTCAAGCGAGTTG -ACGGAAGCCTATTCAAGCAGACTG -ACGGAAGCCTATTCAAGCTCGGTA -ACGGAAGCCTATTCAAGCTGCCTA -ACGGAAGCCTATTCAAGCCCACTA -ACGGAAGCCTATTCAAGCGGAGTA -ACGGAAGCCTATTCAAGCTCGTCT -ACGGAAGCCTATTCAAGCTGCACT -ACGGAAGCCTATTCAAGCCTGACT -ACGGAAGCCTATTCAAGCCAACCT -ACGGAAGCCTATTCAAGCGCTACT -ACGGAAGCCTATTCAAGCGGATCT -ACGGAAGCCTATTCAAGCAAGGCT -ACGGAAGCCTATTCAAGCTCAACC -ACGGAAGCCTATTCAAGCTGTTCC -ACGGAAGCCTATTCAAGCATTCCC -ACGGAAGCCTATTCAAGCTTCTCG -ACGGAAGCCTATTCAAGCTAGACG -ACGGAAGCCTATTCAAGCGTAACG -ACGGAAGCCTATTCAAGCACTTCG -ACGGAAGCCTATTCAAGCTACGCA -ACGGAAGCCTATTCAAGCCTTGCA -ACGGAAGCCTATTCAAGCCGAACA -ACGGAAGCCTATTCAAGCCAGTCA -ACGGAAGCCTATTCAAGCGATCCA -ACGGAAGCCTATTCAAGCACGACA -ACGGAAGCCTATTCAAGCAGCTCA -ACGGAAGCCTATTCAAGCTCACGT -ACGGAAGCCTATTCAAGCCGTAGT -ACGGAAGCCTATTCAAGCGTCAGT -ACGGAAGCCTATTCAAGCGAAGGT -ACGGAAGCCTATTCAAGCAACCGT -ACGGAAGCCTATTCAAGCTTGTGC -ACGGAAGCCTATTCAAGCCTAAGC -ACGGAAGCCTATTCAAGCACTAGC -ACGGAAGCCTATTCAAGCAGATGC -ACGGAAGCCTATTCAAGCTGAAGG -ACGGAAGCCTATTCAAGCCAATGG -ACGGAAGCCTATTCAAGCATGAGG -ACGGAAGCCTATTCAAGCAATGGG -ACGGAAGCCTATTCAAGCTCCTGA -ACGGAAGCCTATTCAAGCTAGCGA -ACGGAAGCCTATTCAAGCCACAGA -ACGGAAGCCTATTCAAGCGCAAGA -ACGGAAGCCTATTCAAGCGGTTGA -ACGGAAGCCTATTCAAGCTCCGAT -ACGGAAGCCTATTCAAGCTGGCAT -ACGGAAGCCTATTCAAGCCGAGAT -ACGGAAGCCTATTCAAGCTACCAC -ACGGAAGCCTATTCAAGCCAGAAC -ACGGAAGCCTATTCAAGCGTCTAC -ACGGAAGCCTATTCAAGCACGTAC -ACGGAAGCCTATTCAAGCAGTGAC -ACGGAAGCCTATTCAAGCCTGTAG -ACGGAAGCCTATTCAAGCCCTAAG -ACGGAAGCCTATTCAAGCGTTCAG -ACGGAAGCCTATTCAAGCGCATAG -ACGGAAGCCTATTCAAGCGACAAG -ACGGAAGCCTATTCAAGCAAGCAG -ACGGAAGCCTATTCAAGCCGTCAA -ACGGAAGCCTATTCAAGCGCTGAA -ACGGAAGCCTATTCAAGCAGTACG -ACGGAAGCCTATTCAAGCATCCGA -ACGGAAGCCTATTCAAGCATGGGA -ACGGAAGCCTATTCAAGCGTGCAA -ACGGAAGCCTATTCAAGCGAGGAA -ACGGAAGCCTATTCAAGCCAGGTA -ACGGAAGCCTATTCAAGCGACTCT -ACGGAAGCCTATTCAAGCAGTCCT -ACGGAAGCCTATTCAAGCTAAGCC -ACGGAAGCCTATTCAAGCATAGCC -ACGGAAGCCTATTCAAGCTAACCG -ACGGAAGCCTATTCAAGCATGCCA -ACGGAAGCCTATCGTTCAGGAAAC -ACGGAAGCCTATCGTTCAAACACC -ACGGAAGCCTATCGTTCAATCGAG -ACGGAAGCCTATCGTTCACTCCTT -ACGGAAGCCTATCGTTCACCTGTT -ACGGAAGCCTATCGTTCACGGTTT -ACGGAAGCCTATCGTTCAGTGGTT -ACGGAAGCCTATCGTTCAGCCTTT -ACGGAAGCCTATCGTTCAGGTCTT -ACGGAAGCCTATCGTTCAACGCTT -ACGGAAGCCTATCGTTCAAGCGTT -ACGGAAGCCTATCGTTCATTCGTC -ACGGAAGCCTATCGTTCATCTCTC -ACGGAAGCCTATCGTTCATGGATC -ACGGAAGCCTATCGTTCACACTTC -ACGGAAGCCTATCGTTCAGTACTC -ACGGAAGCCTATCGTTCAGATGTC -ACGGAAGCCTATCGTTCAACAGTC -ACGGAAGCCTATCGTTCATTGCTG -ACGGAAGCCTATCGTTCATCCATG -ACGGAAGCCTATCGTTCATGTGTG -ACGGAAGCCTATCGTTCACTAGTG -ACGGAAGCCTATCGTTCACATCTG -ACGGAAGCCTATCGTTCAGAGTTG -ACGGAAGCCTATCGTTCAAGACTG -ACGGAAGCCTATCGTTCATCGGTA -ACGGAAGCCTATCGTTCATGCCTA -ACGGAAGCCTATCGTTCACCACTA -ACGGAAGCCTATCGTTCAGGAGTA -ACGGAAGCCTATCGTTCATCGTCT -ACGGAAGCCTATCGTTCATGCACT -ACGGAAGCCTATCGTTCACTGACT -ACGGAAGCCTATCGTTCACAACCT -ACGGAAGCCTATCGTTCAGCTACT -ACGGAAGCCTATCGTTCAGGATCT -ACGGAAGCCTATCGTTCAAAGGCT -ACGGAAGCCTATCGTTCATCAACC -ACGGAAGCCTATCGTTCATGTTCC -ACGGAAGCCTATCGTTCAATTCCC -ACGGAAGCCTATCGTTCATTCTCG -ACGGAAGCCTATCGTTCATAGACG -ACGGAAGCCTATCGTTCAGTAACG -ACGGAAGCCTATCGTTCAACTTCG -ACGGAAGCCTATCGTTCATACGCA -ACGGAAGCCTATCGTTCACTTGCA -ACGGAAGCCTATCGTTCACGAACA -ACGGAAGCCTATCGTTCACAGTCA -ACGGAAGCCTATCGTTCAGATCCA -ACGGAAGCCTATCGTTCAACGACA -ACGGAAGCCTATCGTTCAAGCTCA -ACGGAAGCCTATCGTTCATCACGT -ACGGAAGCCTATCGTTCACGTAGT -ACGGAAGCCTATCGTTCAGTCAGT -ACGGAAGCCTATCGTTCAGAAGGT -ACGGAAGCCTATCGTTCAAACCGT -ACGGAAGCCTATCGTTCATTGTGC -ACGGAAGCCTATCGTTCACTAAGC -ACGGAAGCCTATCGTTCAACTAGC -ACGGAAGCCTATCGTTCAAGATGC -ACGGAAGCCTATCGTTCATGAAGG -ACGGAAGCCTATCGTTCACAATGG -ACGGAAGCCTATCGTTCAATGAGG -ACGGAAGCCTATCGTTCAAATGGG -ACGGAAGCCTATCGTTCATCCTGA -ACGGAAGCCTATCGTTCATAGCGA -ACGGAAGCCTATCGTTCACACAGA -ACGGAAGCCTATCGTTCAGCAAGA -ACGGAAGCCTATCGTTCAGGTTGA -ACGGAAGCCTATCGTTCATCCGAT -ACGGAAGCCTATCGTTCATGGCAT -ACGGAAGCCTATCGTTCACGAGAT -ACGGAAGCCTATCGTTCATACCAC -ACGGAAGCCTATCGTTCACAGAAC -ACGGAAGCCTATCGTTCAGTCTAC -ACGGAAGCCTATCGTTCAACGTAC -ACGGAAGCCTATCGTTCAAGTGAC -ACGGAAGCCTATCGTTCACTGTAG -ACGGAAGCCTATCGTTCACCTAAG -ACGGAAGCCTATCGTTCAGTTCAG -ACGGAAGCCTATCGTTCAGCATAG -ACGGAAGCCTATCGTTCAGACAAG -ACGGAAGCCTATCGTTCAAAGCAG -ACGGAAGCCTATCGTTCACGTCAA -ACGGAAGCCTATCGTTCAGCTGAA -ACGGAAGCCTATCGTTCAAGTACG -ACGGAAGCCTATCGTTCAATCCGA -ACGGAAGCCTATCGTTCAATGGGA -ACGGAAGCCTATCGTTCAGTGCAA -ACGGAAGCCTATCGTTCAGAGGAA -ACGGAAGCCTATCGTTCACAGGTA -ACGGAAGCCTATCGTTCAGACTCT -ACGGAAGCCTATCGTTCAAGTCCT -ACGGAAGCCTATCGTTCATAAGCC -ACGGAAGCCTATCGTTCAATAGCC -ACGGAAGCCTATCGTTCATAACCG -ACGGAAGCCTATCGTTCAATGCCA -ACGGAAGCCTATAGTCGTGGAAAC -ACGGAAGCCTATAGTCGTAACACC -ACGGAAGCCTATAGTCGTATCGAG -ACGGAAGCCTATAGTCGTCTCCTT -ACGGAAGCCTATAGTCGTCCTGTT -ACGGAAGCCTATAGTCGTCGGTTT -ACGGAAGCCTATAGTCGTGTGGTT -ACGGAAGCCTATAGTCGTGCCTTT -ACGGAAGCCTATAGTCGTGGTCTT -ACGGAAGCCTATAGTCGTACGCTT -ACGGAAGCCTATAGTCGTAGCGTT -ACGGAAGCCTATAGTCGTTTCGTC -ACGGAAGCCTATAGTCGTTCTCTC -ACGGAAGCCTATAGTCGTTGGATC -ACGGAAGCCTATAGTCGTCACTTC -ACGGAAGCCTATAGTCGTGTACTC -ACGGAAGCCTATAGTCGTGATGTC -ACGGAAGCCTATAGTCGTACAGTC -ACGGAAGCCTATAGTCGTTTGCTG -ACGGAAGCCTATAGTCGTTCCATG -ACGGAAGCCTATAGTCGTTGTGTG -ACGGAAGCCTATAGTCGTCTAGTG -ACGGAAGCCTATAGTCGTCATCTG -ACGGAAGCCTATAGTCGTGAGTTG -ACGGAAGCCTATAGTCGTAGACTG -ACGGAAGCCTATAGTCGTTCGGTA -ACGGAAGCCTATAGTCGTTGCCTA -ACGGAAGCCTATAGTCGTCCACTA -ACGGAAGCCTATAGTCGTGGAGTA -ACGGAAGCCTATAGTCGTTCGTCT -ACGGAAGCCTATAGTCGTTGCACT -ACGGAAGCCTATAGTCGTCTGACT -ACGGAAGCCTATAGTCGTCAACCT -ACGGAAGCCTATAGTCGTGCTACT -ACGGAAGCCTATAGTCGTGGATCT -ACGGAAGCCTATAGTCGTAAGGCT -ACGGAAGCCTATAGTCGTTCAACC -ACGGAAGCCTATAGTCGTTGTTCC -ACGGAAGCCTATAGTCGTATTCCC -ACGGAAGCCTATAGTCGTTTCTCG -ACGGAAGCCTATAGTCGTTAGACG -ACGGAAGCCTATAGTCGTGTAACG -ACGGAAGCCTATAGTCGTACTTCG -ACGGAAGCCTATAGTCGTTACGCA -ACGGAAGCCTATAGTCGTCTTGCA -ACGGAAGCCTATAGTCGTCGAACA -ACGGAAGCCTATAGTCGTCAGTCA -ACGGAAGCCTATAGTCGTGATCCA -ACGGAAGCCTATAGTCGTACGACA -ACGGAAGCCTATAGTCGTAGCTCA -ACGGAAGCCTATAGTCGTTCACGT -ACGGAAGCCTATAGTCGTCGTAGT -ACGGAAGCCTATAGTCGTGTCAGT -ACGGAAGCCTATAGTCGTGAAGGT -ACGGAAGCCTATAGTCGTAACCGT -ACGGAAGCCTATAGTCGTTTGTGC -ACGGAAGCCTATAGTCGTCTAAGC -ACGGAAGCCTATAGTCGTACTAGC -ACGGAAGCCTATAGTCGTAGATGC -ACGGAAGCCTATAGTCGTTGAAGG -ACGGAAGCCTATAGTCGTCAATGG -ACGGAAGCCTATAGTCGTATGAGG -ACGGAAGCCTATAGTCGTAATGGG -ACGGAAGCCTATAGTCGTTCCTGA -ACGGAAGCCTATAGTCGTTAGCGA -ACGGAAGCCTATAGTCGTCACAGA -ACGGAAGCCTATAGTCGTGCAAGA -ACGGAAGCCTATAGTCGTGGTTGA -ACGGAAGCCTATAGTCGTTCCGAT -ACGGAAGCCTATAGTCGTTGGCAT -ACGGAAGCCTATAGTCGTCGAGAT -ACGGAAGCCTATAGTCGTTACCAC -ACGGAAGCCTATAGTCGTCAGAAC -ACGGAAGCCTATAGTCGTGTCTAC -ACGGAAGCCTATAGTCGTACGTAC -ACGGAAGCCTATAGTCGTAGTGAC -ACGGAAGCCTATAGTCGTCTGTAG -ACGGAAGCCTATAGTCGTCCTAAG -ACGGAAGCCTATAGTCGTGTTCAG -ACGGAAGCCTATAGTCGTGCATAG -ACGGAAGCCTATAGTCGTGACAAG -ACGGAAGCCTATAGTCGTAAGCAG -ACGGAAGCCTATAGTCGTCGTCAA -ACGGAAGCCTATAGTCGTGCTGAA -ACGGAAGCCTATAGTCGTAGTACG -ACGGAAGCCTATAGTCGTATCCGA -ACGGAAGCCTATAGTCGTATGGGA -ACGGAAGCCTATAGTCGTGTGCAA -ACGGAAGCCTATAGTCGTGAGGAA -ACGGAAGCCTATAGTCGTCAGGTA -ACGGAAGCCTATAGTCGTGACTCT -ACGGAAGCCTATAGTCGTAGTCCT -ACGGAAGCCTATAGTCGTTAAGCC -ACGGAAGCCTATAGTCGTATAGCC -ACGGAAGCCTATAGTCGTTAACCG -ACGGAAGCCTATAGTCGTATGCCA -ACGGAAGCCTATAGTGTCGGAAAC -ACGGAAGCCTATAGTGTCAACACC -ACGGAAGCCTATAGTGTCATCGAG -ACGGAAGCCTATAGTGTCCTCCTT -ACGGAAGCCTATAGTGTCCCTGTT -ACGGAAGCCTATAGTGTCCGGTTT -ACGGAAGCCTATAGTGTCGTGGTT -ACGGAAGCCTATAGTGTCGCCTTT -ACGGAAGCCTATAGTGTCGGTCTT -ACGGAAGCCTATAGTGTCACGCTT -ACGGAAGCCTATAGTGTCAGCGTT -ACGGAAGCCTATAGTGTCTTCGTC -ACGGAAGCCTATAGTGTCTCTCTC -ACGGAAGCCTATAGTGTCTGGATC -ACGGAAGCCTATAGTGTCCACTTC -ACGGAAGCCTATAGTGTCGTACTC -ACGGAAGCCTATAGTGTCGATGTC -ACGGAAGCCTATAGTGTCACAGTC -ACGGAAGCCTATAGTGTCTTGCTG -ACGGAAGCCTATAGTGTCTCCATG -ACGGAAGCCTATAGTGTCTGTGTG -ACGGAAGCCTATAGTGTCCTAGTG -ACGGAAGCCTATAGTGTCCATCTG -ACGGAAGCCTATAGTGTCGAGTTG -ACGGAAGCCTATAGTGTCAGACTG -ACGGAAGCCTATAGTGTCTCGGTA -ACGGAAGCCTATAGTGTCTGCCTA -ACGGAAGCCTATAGTGTCCCACTA -ACGGAAGCCTATAGTGTCGGAGTA -ACGGAAGCCTATAGTGTCTCGTCT -ACGGAAGCCTATAGTGTCTGCACT -ACGGAAGCCTATAGTGTCCTGACT -ACGGAAGCCTATAGTGTCCAACCT -ACGGAAGCCTATAGTGTCGCTACT -ACGGAAGCCTATAGTGTCGGATCT -ACGGAAGCCTATAGTGTCAAGGCT -ACGGAAGCCTATAGTGTCTCAACC -ACGGAAGCCTATAGTGTCTGTTCC -ACGGAAGCCTATAGTGTCATTCCC -ACGGAAGCCTATAGTGTCTTCTCG -ACGGAAGCCTATAGTGTCTAGACG -ACGGAAGCCTATAGTGTCGTAACG -ACGGAAGCCTATAGTGTCACTTCG -ACGGAAGCCTATAGTGTCTACGCA -ACGGAAGCCTATAGTGTCCTTGCA -ACGGAAGCCTATAGTGTCCGAACA -ACGGAAGCCTATAGTGTCCAGTCA -ACGGAAGCCTATAGTGTCGATCCA -ACGGAAGCCTATAGTGTCACGACA -ACGGAAGCCTATAGTGTCAGCTCA -ACGGAAGCCTATAGTGTCTCACGT -ACGGAAGCCTATAGTGTCCGTAGT -ACGGAAGCCTATAGTGTCGTCAGT -ACGGAAGCCTATAGTGTCGAAGGT -ACGGAAGCCTATAGTGTCAACCGT -ACGGAAGCCTATAGTGTCTTGTGC -ACGGAAGCCTATAGTGTCCTAAGC -ACGGAAGCCTATAGTGTCACTAGC -ACGGAAGCCTATAGTGTCAGATGC -ACGGAAGCCTATAGTGTCTGAAGG -ACGGAAGCCTATAGTGTCCAATGG -ACGGAAGCCTATAGTGTCATGAGG -ACGGAAGCCTATAGTGTCAATGGG -ACGGAAGCCTATAGTGTCTCCTGA -ACGGAAGCCTATAGTGTCTAGCGA -ACGGAAGCCTATAGTGTCCACAGA -ACGGAAGCCTATAGTGTCGCAAGA -ACGGAAGCCTATAGTGTCGGTTGA -ACGGAAGCCTATAGTGTCTCCGAT -ACGGAAGCCTATAGTGTCTGGCAT -ACGGAAGCCTATAGTGTCCGAGAT -ACGGAAGCCTATAGTGTCTACCAC -ACGGAAGCCTATAGTGTCCAGAAC -ACGGAAGCCTATAGTGTCGTCTAC -ACGGAAGCCTATAGTGTCACGTAC -ACGGAAGCCTATAGTGTCAGTGAC -ACGGAAGCCTATAGTGTCCTGTAG -ACGGAAGCCTATAGTGTCCCTAAG -ACGGAAGCCTATAGTGTCGTTCAG -ACGGAAGCCTATAGTGTCGCATAG -ACGGAAGCCTATAGTGTCGACAAG -ACGGAAGCCTATAGTGTCAAGCAG -ACGGAAGCCTATAGTGTCCGTCAA -ACGGAAGCCTATAGTGTCGCTGAA -ACGGAAGCCTATAGTGTCAGTACG -ACGGAAGCCTATAGTGTCATCCGA -ACGGAAGCCTATAGTGTCATGGGA -ACGGAAGCCTATAGTGTCGTGCAA -ACGGAAGCCTATAGTGTCGAGGAA -ACGGAAGCCTATAGTGTCCAGGTA -ACGGAAGCCTATAGTGTCGACTCT -ACGGAAGCCTATAGTGTCAGTCCT -ACGGAAGCCTATAGTGTCTAAGCC -ACGGAAGCCTATAGTGTCATAGCC -ACGGAAGCCTATAGTGTCTAACCG -ACGGAAGCCTATAGTGTCATGCCA -ACGGAAGCCTATGGTGAAGGAAAC -ACGGAAGCCTATGGTGAAAACACC -ACGGAAGCCTATGGTGAAATCGAG -ACGGAAGCCTATGGTGAACTCCTT -ACGGAAGCCTATGGTGAACCTGTT -ACGGAAGCCTATGGTGAACGGTTT -ACGGAAGCCTATGGTGAAGTGGTT -ACGGAAGCCTATGGTGAAGCCTTT -ACGGAAGCCTATGGTGAAGGTCTT -ACGGAAGCCTATGGTGAAACGCTT -ACGGAAGCCTATGGTGAAAGCGTT -ACGGAAGCCTATGGTGAATTCGTC -ACGGAAGCCTATGGTGAATCTCTC -ACGGAAGCCTATGGTGAATGGATC -ACGGAAGCCTATGGTGAACACTTC -ACGGAAGCCTATGGTGAAGTACTC -ACGGAAGCCTATGGTGAAGATGTC -ACGGAAGCCTATGGTGAAACAGTC -ACGGAAGCCTATGGTGAATTGCTG -ACGGAAGCCTATGGTGAATCCATG -ACGGAAGCCTATGGTGAATGTGTG -ACGGAAGCCTATGGTGAACTAGTG -ACGGAAGCCTATGGTGAACATCTG -ACGGAAGCCTATGGTGAAGAGTTG -ACGGAAGCCTATGGTGAAAGACTG -ACGGAAGCCTATGGTGAATCGGTA -ACGGAAGCCTATGGTGAATGCCTA -ACGGAAGCCTATGGTGAACCACTA -ACGGAAGCCTATGGTGAAGGAGTA -ACGGAAGCCTATGGTGAATCGTCT -ACGGAAGCCTATGGTGAATGCACT -ACGGAAGCCTATGGTGAACTGACT -ACGGAAGCCTATGGTGAACAACCT -ACGGAAGCCTATGGTGAAGCTACT -ACGGAAGCCTATGGTGAAGGATCT -ACGGAAGCCTATGGTGAAAAGGCT -ACGGAAGCCTATGGTGAATCAACC -ACGGAAGCCTATGGTGAATGTTCC -ACGGAAGCCTATGGTGAAATTCCC -ACGGAAGCCTATGGTGAATTCTCG -ACGGAAGCCTATGGTGAATAGACG -ACGGAAGCCTATGGTGAAGTAACG -ACGGAAGCCTATGGTGAAACTTCG -ACGGAAGCCTATGGTGAATACGCA -ACGGAAGCCTATGGTGAACTTGCA -ACGGAAGCCTATGGTGAACGAACA -ACGGAAGCCTATGGTGAACAGTCA -ACGGAAGCCTATGGTGAAGATCCA -ACGGAAGCCTATGGTGAAACGACA -ACGGAAGCCTATGGTGAAAGCTCA -ACGGAAGCCTATGGTGAATCACGT -ACGGAAGCCTATGGTGAACGTAGT -ACGGAAGCCTATGGTGAAGTCAGT -ACGGAAGCCTATGGTGAAGAAGGT -ACGGAAGCCTATGGTGAAAACCGT -ACGGAAGCCTATGGTGAATTGTGC -ACGGAAGCCTATGGTGAACTAAGC -ACGGAAGCCTATGGTGAAACTAGC -ACGGAAGCCTATGGTGAAAGATGC -ACGGAAGCCTATGGTGAATGAAGG -ACGGAAGCCTATGGTGAACAATGG -ACGGAAGCCTATGGTGAAATGAGG -ACGGAAGCCTATGGTGAAAATGGG -ACGGAAGCCTATGGTGAATCCTGA -ACGGAAGCCTATGGTGAATAGCGA -ACGGAAGCCTATGGTGAACACAGA -ACGGAAGCCTATGGTGAAGCAAGA -ACGGAAGCCTATGGTGAAGGTTGA -ACGGAAGCCTATGGTGAATCCGAT -ACGGAAGCCTATGGTGAATGGCAT -ACGGAAGCCTATGGTGAACGAGAT -ACGGAAGCCTATGGTGAATACCAC -ACGGAAGCCTATGGTGAACAGAAC -ACGGAAGCCTATGGTGAAGTCTAC -ACGGAAGCCTATGGTGAAACGTAC -ACGGAAGCCTATGGTGAAAGTGAC -ACGGAAGCCTATGGTGAACTGTAG -ACGGAAGCCTATGGTGAACCTAAG -ACGGAAGCCTATGGTGAAGTTCAG -ACGGAAGCCTATGGTGAAGCATAG -ACGGAAGCCTATGGTGAAGACAAG -ACGGAAGCCTATGGTGAAAAGCAG -ACGGAAGCCTATGGTGAACGTCAA -ACGGAAGCCTATGGTGAAGCTGAA -ACGGAAGCCTATGGTGAAAGTACG -ACGGAAGCCTATGGTGAAATCCGA -ACGGAAGCCTATGGTGAAATGGGA -ACGGAAGCCTATGGTGAAGTGCAA -ACGGAAGCCTATGGTGAAGAGGAA -ACGGAAGCCTATGGTGAACAGGTA -ACGGAAGCCTATGGTGAAGACTCT -ACGGAAGCCTATGGTGAAAGTCCT -ACGGAAGCCTATGGTGAATAAGCC -ACGGAAGCCTATGGTGAAATAGCC -ACGGAAGCCTATGGTGAATAACCG -ACGGAAGCCTATGGTGAAATGCCA -ACGGAAGCCTATCGTAACGGAAAC -ACGGAAGCCTATCGTAACAACACC -ACGGAAGCCTATCGTAACATCGAG -ACGGAAGCCTATCGTAACCTCCTT -ACGGAAGCCTATCGTAACCCTGTT -ACGGAAGCCTATCGTAACCGGTTT -ACGGAAGCCTATCGTAACGTGGTT -ACGGAAGCCTATCGTAACGCCTTT -ACGGAAGCCTATCGTAACGGTCTT -ACGGAAGCCTATCGTAACACGCTT -ACGGAAGCCTATCGTAACAGCGTT -ACGGAAGCCTATCGTAACTTCGTC -ACGGAAGCCTATCGTAACTCTCTC -ACGGAAGCCTATCGTAACTGGATC -ACGGAAGCCTATCGTAACCACTTC -ACGGAAGCCTATCGTAACGTACTC -ACGGAAGCCTATCGTAACGATGTC -ACGGAAGCCTATCGTAACACAGTC -ACGGAAGCCTATCGTAACTTGCTG -ACGGAAGCCTATCGTAACTCCATG -ACGGAAGCCTATCGTAACTGTGTG -ACGGAAGCCTATCGTAACCTAGTG -ACGGAAGCCTATCGTAACCATCTG -ACGGAAGCCTATCGTAACGAGTTG -ACGGAAGCCTATCGTAACAGACTG -ACGGAAGCCTATCGTAACTCGGTA -ACGGAAGCCTATCGTAACTGCCTA -ACGGAAGCCTATCGTAACCCACTA -ACGGAAGCCTATCGTAACGGAGTA -ACGGAAGCCTATCGTAACTCGTCT -ACGGAAGCCTATCGTAACTGCACT -ACGGAAGCCTATCGTAACCTGACT -ACGGAAGCCTATCGTAACCAACCT -ACGGAAGCCTATCGTAACGCTACT -ACGGAAGCCTATCGTAACGGATCT -ACGGAAGCCTATCGTAACAAGGCT -ACGGAAGCCTATCGTAACTCAACC -ACGGAAGCCTATCGTAACTGTTCC -ACGGAAGCCTATCGTAACATTCCC -ACGGAAGCCTATCGTAACTTCTCG -ACGGAAGCCTATCGTAACTAGACG -ACGGAAGCCTATCGTAACGTAACG -ACGGAAGCCTATCGTAACACTTCG -ACGGAAGCCTATCGTAACTACGCA -ACGGAAGCCTATCGTAACCTTGCA -ACGGAAGCCTATCGTAACCGAACA -ACGGAAGCCTATCGTAACCAGTCA -ACGGAAGCCTATCGTAACGATCCA -ACGGAAGCCTATCGTAACACGACA -ACGGAAGCCTATCGTAACAGCTCA -ACGGAAGCCTATCGTAACTCACGT -ACGGAAGCCTATCGTAACCGTAGT -ACGGAAGCCTATCGTAACGTCAGT -ACGGAAGCCTATCGTAACGAAGGT -ACGGAAGCCTATCGTAACAACCGT -ACGGAAGCCTATCGTAACTTGTGC -ACGGAAGCCTATCGTAACCTAAGC -ACGGAAGCCTATCGTAACACTAGC -ACGGAAGCCTATCGTAACAGATGC -ACGGAAGCCTATCGTAACTGAAGG -ACGGAAGCCTATCGTAACCAATGG -ACGGAAGCCTATCGTAACATGAGG -ACGGAAGCCTATCGTAACAATGGG -ACGGAAGCCTATCGTAACTCCTGA -ACGGAAGCCTATCGTAACTAGCGA -ACGGAAGCCTATCGTAACCACAGA -ACGGAAGCCTATCGTAACGCAAGA -ACGGAAGCCTATCGTAACGGTTGA -ACGGAAGCCTATCGTAACTCCGAT -ACGGAAGCCTATCGTAACTGGCAT -ACGGAAGCCTATCGTAACCGAGAT -ACGGAAGCCTATCGTAACTACCAC -ACGGAAGCCTATCGTAACCAGAAC -ACGGAAGCCTATCGTAACGTCTAC -ACGGAAGCCTATCGTAACACGTAC -ACGGAAGCCTATCGTAACAGTGAC -ACGGAAGCCTATCGTAACCTGTAG -ACGGAAGCCTATCGTAACCCTAAG -ACGGAAGCCTATCGTAACGTTCAG -ACGGAAGCCTATCGTAACGCATAG -ACGGAAGCCTATCGTAACGACAAG -ACGGAAGCCTATCGTAACAAGCAG -ACGGAAGCCTATCGTAACCGTCAA -ACGGAAGCCTATCGTAACGCTGAA -ACGGAAGCCTATCGTAACAGTACG -ACGGAAGCCTATCGTAACATCCGA -ACGGAAGCCTATCGTAACATGGGA -ACGGAAGCCTATCGTAACGTGCAA -ACGGAAGCCTATCGTAACGAGGAA -ACGGAAGCCTATCGTAACCAGGTA -ACGGAAGCCTATCGTAACGACTCT -ACGGAAGCCTATCGTAACAGTCCT -ACGGAAGCCTATCGTAACTAAGCC -ACGGAAGCCTATCGTAACATAGCC -ACGGAAGCCTATCGTAACTAACCG -ACGGAAGCCTATCGTAACATGCCA -ACGGAAGCCTATTGCTTGGGAAAC -ACGGAAGCCTATTGCTTGAACACC -ACGGAAGCCTATTGCTTGATCGAG -ACGGAAGCCTATTGCTTGCTCCTT -ACGGAAGCCTATTGCTTGCCTGTT -ACGGAAGCCTATTGCTTGCGGTTT -ACGGAAGCCTATTGCTTGGTGGTT -ACGGAAGCCTATTGCTTGGCCTTT -ACGGAAGCCTATTGCTTGGGTCTT -ACGGAAGCCTATTGCTTGACGCTT -ACGGAAGCCTATTGCTTGAGCGTT -ACGGAAGCCTATTGCTTGTTCGTC -ACGGAAGCCTATTGCTTGTCTCTC -ACGGAAGCCTATTGCTTGTGGATC -ACGGAAGCCTATTGCTTGCACTTC -ACGGAAGCCTATTGCTTGGTACTC -ACGGAAGCCTATTGCTTGGATGTC -ACGGAAGCCTATTGCTTGACAGTC -ACGGAAGCCTATTGCTTGTTGCTG -ACGGAAGCCTATTGCTTGTCCATG -ACGGAAGCCTATTGCTTGTGTGTG -ACGGAAGCCTATTGCTTGCTAGTG -ACGGAAGCCTATTGCTTGCATCTG -ACGGAAGCCTATTGCTTGGAGTTG -ACGGAAGCCTATTGCTTGAGACTG -ACGGAAGCCTATTGCTTGTCGGTA -ACGGAAGCCTATTGCTTGTGCCTA -ACGGAAGCCTATTGCTTGCCACTA -ACGGAAGCCTATTGCTTGGGAGTA -ACGGAAGCCTATTGCTTGTCGTCT -ACGGAAGCCTATTGCTTGTGCACT -ACGGAAGCCTATTGCTTGCTGACT -ACGGAAGCCTATTGCTTGCAACCT -ACGGAAGCCTATTGCTTGGCTACT -ACGGAAGCCTATTGCTTGGGATCT -ACGGAAGCCTATTGCTTGAAGGCT -ACGGAAGCCTATTGCTTGTCAACC -ACGGAAGCCTATTGCTTGTGTTCC -ACGGAAGCCTATTGCTTGATTCCC -ACGGAAGCCTATTGCTTGTTCTCG -ACGGAAGCCTATTGCTTGTAGACG -ACGGAAGCCTATTGCTTGGTAACG -ACGGAAGCCTATTGCTTGACTTCG -ACGGAAGCCTATTGCTTGTACGCA -ACGGAAGCCTATTGCTTGCTTGCA -ACGGAAGCCTATTGCTTGCGAACA -ACGGAAGCCTATTGCTTGCAGTCA -ACGGAAGCCTATTGCTTGGATCCA -ACGGAAGCCTATTGCTTGACGACA -ACGGAAGCCTATTGCTTGAGCTCA -ACGGAAGCCTATTGCTTGTCACGT -ACGGAAGCCTATTGCTTGCGTAGT -ACGGAAGCCTATTGCTTGGTCAGT -ACGGAAGCCTATTGCTTGGAAGGT -ACGGAAGCCTATTGCTTGAACCGT -ACGGAAGCCTATTGCTTGTTGTGC -ACGGAAGCCTATTGCTTGCTAAGC -ACGGAAGCCTATTGCTTGACTAGC -ACGGAAGCCTATTGCTTGAGATGC -ACGGAAGCCTATTGCTTGTGAAGG -ACGGAAGCCTATTGCTTGCAATGG -ACGGAAGCCTATTGCTTGATGAGG -ACGGAAGCCTATTGCTTGAATGGG -ACGGAAGCCTATTGCTTGTCCTGA -ACGGAAGCCTATTGCTTGTAGCGA -ACGGAAGCCTATTGCTTGCACAGA -ACGGAAGCCTATTGCTTGGCAAGA -ACGGAAGCCTATTGCTTGGGTTGA -ACGGAAGCCTATTGCTTGTCCGAT -ACGGAAGCCTATTGCTTGTGGCAT -ACGGAAGCCTATTGCTTGCGAGAT -ACGGAAGCCTATTGCTTGTACCAC -ACGGAAGCCTATTGCTTGCAGAAC -ACGGAAGCCTATTGCTTGGTCTAC -ACGGAAGCCTATTGCTTGACGTAC -ACGGAAGCCTATTGCTTGAGTGAC -ACGGAAGCCTATTGCTTGCTGTAG -ACGGAAGCCTATTGCTTGCCTAAG -ACGGAAGCCTATTGCTTGGTTCAG -ACGGAAGCCTATTGCTTGGCATAG -ACGGAAGCCTATTGCTTGGACAAG -ACGGAAGCCTATTGCTTGAAGCAG -ACGGAAGCCTATTGCTTGCGTCAA -ACGGAAGCCTATTGCTTGGCTGAA -ACGGAAGCCTATTGCTTGAGTACG -ACGGAAGCCTATTGCTTGATCCGA -ACGGAAGCCTATTGCTTGATGGGA -ACGGAAGCCTATTGCTTGGTGCAA -ACGGAAGCCTATTGCTTGGAGGAA -ACGGAAGCCTATTGCTTGCAGGTA -ACGGAAGCCTATTGCTTGGACTCT -ACGGAAGCCTATTGCTTGAGTCCT -ACGGAAGCCTATTGCTTGTAAGCC -ACGGAAGCCTATTGCTTGATAGCC -ACGGAAGCCTATTGCTTGTAACCG -ACGGAAGCCTATTGCTTGATGCCA -ACGGAAGCCTATAGCCTAGGAAAC -ACGGAAGCCTATAGCCTAAACACC -ACGGAAGCCTATAGCCTAATCGAG -ACGGAAGCCTATAGCCTACTCCTT -ACGGAAGCCTATAGCCTACCTGTT -ACGGAAGCCTATAGCCTACGGTTT -ACGGAAGCCTATAGCCTAGTGGTT -ACGGAAGCCTATAGCCTAGCCTTT -ACGGAAGCCTATAGCCTAGGTCTT -ACGGAAGCCTATAGCCTAACGCTT -ACGGAAGCCTATAGCCTAAGCGTT -ACGGAAGCCTATAGCCTATTCGTC -ACGGAAGCCTATAGCCTATCTCTC -ACGGAAGCCTATAGCCTATGGATC -ACGGAAGCCTATAGCCTACACTTC -ACGGAAGCCTATAGCCTAGTACTC -ACGGAAGCCTATAGCCTAGATGTC -ACGGAAGCCTATAGCCTAACAGTC -ACGGAAGCCTATAGCCTATTGCTG -ACGGAAGCCTATAGCCTATCCATG -ACGGAAGCCTATAGCCTATGTGTG -ACGGAAGCCTATAGCCTACTAGTG -ACGGAAGCCTATAGCCTACATCTG -ACGGAAGCCTATAGCCTAGAGTTG -ACGGAAGCCTATAGCCTAAGACTG -ACGGAAGCCTATAGCCTATCGGTA -ACGGAAGCCTATAGCCTATGCCTA -ACGGAAGCCTATAGCCTACCACTA -ACGGAAGCCTATAGCCTAGGAGTA -ACGGAAGCCTATAGCCTATCGTCT -ACGGAAGCCTATAGCCTATGCACT -ACGGAAGCCTATAGCCTACTGACT -ACGGAAGCCTATAGCCTACAACCT -ACGGAAGCCTATAGCCTAGCTACT -ACGGAAGCCTATAGCCTAGGATCT -ACGGAAGCCTATAGCCTAAAGGCT -ACGGAAGCCTATAGCCTATCAACC -ACGGAAGCCTATAGCCTATGTTCC -ACGGAAGCCTATAGCCTAATTCCC -ACGGAAGCCTATAGCCTATTCTCG -ACGGAAGCCTATAGCCTATAGACG -ACGGAAGCCTATAGCCTAGTAACG -ACGGAAGCCTATAGCCTAACTTCG -ACGGAAGCCTATAGCCTATACGCA -ACGGAAGCCTATAGCCTACTTGCA -ACGGAAGCCTATAGCCTACGAACA -ACGGAAGCCTATAGCCTACAGTCA -ACGGAAGCCTATAGCCTAGATCCA -ACGGAAGCCTATAGCCTAACGACA -ACGGAAGCCTATAGCCTAAGCTCA -ACGGAAGCCTATAGCCTATCACGT -ACGGAAGCCTATAGCCTACGTAGT -ACGGAAGCCTATAGCCTAGTCAGT -ACGGAAGCCTATAGCCTAGAAGGT -ACGGAAGCCTATAGCCTAAACCGT -ACGGAAGCCTATAGCCTATTGTGC -ACGGAAGCCTATAGCCTACTAAGC -ACGGAAGCCTATAGCCTAACTAGC -ACGGAAGCCTATAGCCTAAGATGC -ACGGAAGCCTATAGCCTATGAAGG -ACGGAAGCCTATAGCCTACAATGG -ACGGAAGCCTATAGCCTAATGAGG -ACGGAAGCCTATAGCCTAAATGGG -ACGGAAGCCTATAGCCTATCCTGA -ACGGAAGCCTATAGCCTATAGCGA -ACGGAAGCCTATAGCCTACACAGA -ACGGAAGCCTATAGCCTAGCAAGA -ACGGAAGCCTATAGCCTAGGTTGA -ACGGAAGCCTATAGCCTATCCGAT -ACGGAAGCCTATAGCCTATGGCAT -ACGGAAGCCTATAGCCTACGAGAT -ACGGAAGCCTATAGCCTATACCAC -ACGGAAGCCTATAGCCTACAGAAC -ACGGAAGCCTATAGCCTAGTCTAC -ACGGAAGCCTATAGCCTAACGTAC -ACGGAAGCCTATAGCCTAAGTGAC -ACGGAAGCCTATAGCCTACTGTAG -ACGGAAGCCTATAGCCTACCTAAG -ACGGAAGCCTATAGCCTAGTTCAG -ACGGAAGCCTATAGCCTAGCATAG -ACGGAAGCCTATAGCCTAGACAAG -ACGGAAGCCTATAGCCTAAAGCAG -ACGGAAGCCTATAGCCTACGTCAA -ACGGAAGCCTATAGCCTAGCTGAA -ACGGAAGCCTATAGCCTAAGTACG -ACGGAAGCCTATAGCCTAATCCGA -ACGGAAGCCTATAGCCTAATGGGA -ACGGAAGCCTATAGCCTAGTGCAA -ACGGAAGCCTATAGCCTAGAGGAA -ACGGAAGCCTATAGCCTACAGGTA -ACGGAAGCCTATAGCCTAGACTCT -ACGGAAGCCTATAGCCTAAGTCCT -ACGGAAGCCTATAGCCTATAAGCC -ACGGAAGCCTATAGCCTAATAGCC -ACGGAAGCCTATAGCCTATAACCG -ACGGAAGCCTATAGCCTAATGCCA -ACGGAAGCCTATAGCACTGGAAAC -ACGGAAGCCTATAGCACTAACACC -ACGGAAGCCTATAGCACTATCGAG -ACGGAAGCCTATAGCACTCTCCTT -ACGGAAGCCTATAGCACTCCTGTT -ACGGAAGCCTATAGCACTCGGTTT -ACGGAAGCCTATAGCACTGTGGTT -ACGGAAGCCTATAGCACTGCCTTT -ACGGAAGCCTATAGCACTGGTCTT -ACGGAAGCCTATAGCACTACGCTT -ACGGAAGCCTATAGCACTAGCGTT -ACGGAAGCCTATAGCACTTTCGTC -ACGGAAGCCTATAGCACTTCTCTC -ACGGAAGCCTATAGCACTTGGATC -ACGGAAGCCTATAGCACTCACTTC -ACGGAAGCCTATAGCACTGTACTC -ACGGAAGCCTATAGCACTGATGTC -ACGGAAGCCTATAGCACTACAGTC -ACGGAAGCCTATAGCACTTTGCTG -ACGGAAGCCTATAGCACTTCCATG -ACGGAAGCCTATAGCACTTGTGTG -ACGGAAGCCTATAGCACTCTAGTG -ACGGAAGCCTATAGCACTCATCTG -ACGGAAGCCTATAGCACTGAGTTG -ACGGAAGCCTATAGCACTAGACTG -ACGGAAGCCTATAGCACTTCGGTA -ACGGAAGCCTATAGCACTTGCCTA -ACGGAAGCCTATAGCACTCCACTA -ACGGAAGCCTATAGCACTGGAGTA -ACGGAAGCCTATAGCACTTCGTCT -ACGGAAGCCTATAGCACTTGCACT -ACGGAAGCCTATAGCACTCTGACT -ACGGAAGCCTATAGCACTCAACCT -ACGGAAGCCTATAGCACTGCTACT -ACGGAAGCCTATAGCACTGGATCT -ACGGAAGCCTATAGCACTAAGGCT -ACGGAAGCCTATAGCACTTCAACC -ACGGAAGCCTATAGCACTTGTTCC -ACGGAAGCCTATAGCACTATTCCC -ACGGAAGCCTATAGCACTTTCTCG -ACGGAAGCCTATAGCACTTAGACG -ACGGAAGCCTATAGCACTGTAACG -ACGGAAGCCTATAGCACTACTTCG -ACGGAAGCCTATAGCACTTACGCA -ACGGAAGCCTATAGCACTCTTGCA -ACGGAAGCCTATAGCACTCGAACA -ACGGAAGCCTATAGCACTCAGTCA -ACGGAAGCCTATAGCACTGATCCA -ACGGAAGCCTATAGCACTACGACA -ACGGAAGCCTATAGCACTAGCTCA -ACGGAAGCCTATAGCACTTCACGT -ACGGAAGCCTATAGCACTCGTAGT -ACGGAAGCCTATAGCACTGTCAGT -ACGGAAGCCTATAGCACTGAAGGT -ACGGAAGCCTATAGCACTAACCGT -ACGGAAGCCTATAGCACTTTGTGC -ACGGAAGCCTATAGCACTCTAAGC -ACGGAAGCCTATAGCACTACTAGC -ACGGAAGCCTATAGCACTAGATGC -ACGGAAGCCTATAGCACTTGAAGG -ACGGAAGCCTATAGCACTCAATGG -ACGGAAGCCTATAGCACTATGAGG -ACGGAAGCCTATAGCACTAATGGG -ACGGAAGCCTATAGCACTTCCTGA -ACGGAAGCCTATAGCACTTAGCGA -ACGGAAGCCTATAGCACTCACAGA -ACGGAAGCCTATAGCACTGCAAGA -ACGGAAGCCTATAGCACTGGTTGA -ACGGAAGCCTATAGCACTTCCGAT -ACGGAAGCCTATAGCACTTGGCAT -ACGGAAGCCTATAGCACTCGAGAT -ACGGAAGCCTATAGCACTTACCAC -ACGGAAGCCTATAGCACTCAGAAC -ACGGAAGCCTATAGCACTGTCTAC -ACGGAAGCCTATAGCACTACGTAC -ACGGAAGCCTATAGCACTAGTGAC -ACGGAAGCCTATAGCACTCTGTAG -ACGGAAGCCTATAGCACTCCTAAG -ACGGAAGCCTATAGCACTGTTCAG -ACGGAAGCCTATAGCACTGCATAG -ACGGAAGCCTATAGCACTGACAAG -ACGGAAGCCTATAGCACTAAGCAG -ACGGAAGCCTATAGCACTCGTCAA -ACGGAAGCCTATAGCACTGCTGAA -ACGGAAGCCTATAGCACTAGTACG -ACGGAAGCCTATAGCACTATCCGA -ACGGAAGCCTATAGCACTATGGGA -ACGGAAGCCTATAGCACTGTGCAA -ACGGAAGCCTATAGCACTGAGGAA -ACGGAAGCCTATAGCACTCAGGTA -ACGGAAGCCTATAGCACTGACTCT -ACGGAAGCCTATAGCACTAGTCCT -ACGGAAGCCTATAGCACTTAAGCC -ACGGAAGCCTATAGCACTATAGCC -ACGGAAGCCTATAGCACTTAACCG -ACGGAAGCCTATAGCACTATGCCA -ACGGAAGCCTATTGCAGAGGAAAC -ACGGAAGCCTATTGCAGAAACACC -ACGGAAGCCTATTGCAGAATCGAG -ACGGAAGCCTATTGCAGACTCCTT -ACGGAAGCCTATTGCAGACCTGTT -ACGGAAGCCTATTGCAGACGGTTT -ACGGAAGCCTATTGCAGAGTGGTT -ACGGAAGCCTATTGCAGAGCCTTT -ACGGAAGCCTATTGCAGAGGTCTT -ACGGAAGCCTATTGCAGAACGCTT -ACGGAAGCCTATTGCAGAAGCGTT -ACGGAAGCCTATTGCAGATTCGTC -ACGGAAGCCTATTGCAGATCTCTC -ACGGAAGCCTATTGCAGATGGATC -ACGGAAGCCTATTGCAGACACTTC -ACGGAAGCCTATTGCAGAGTACTC -ACGGAAGCCTATTGCAGAGATGTC -ACGGAAGCCTATTGCAGAACAGTC -ACGGAAGCCTATTGCAGATTGCTG -ACGGAAGCCTATTGCAGATCCATG -ACGGAAGCCTATTGCAGATGTGTG -ACGGAAGCCTATTGCAGACTAGTG -ACGGAAGCCTATTGCAGACATCTG -ACGGAAGCCTATTGCAGAGAGTTG -ACGGAAGCCTATTGCAGAAGACTG -ACGGAAGCCTATTGCAGATCGGTA -ACGGAAGCCTATTGCAGATGCCTA -ACGGAAGCCTATTGCAGACCACTA -ACGGAAGCCTATTGCAGAGGAGTA -ACGGAAGCCTATTGCAGATCGTCT -ACGGAAGCCTATTGCAGATGCACT -ACGGAAGCCTATTGCAGACTGACT -ACGGAAGCCTATTGCAGACAACCT -ACGGAAGCCTATTGCAGAGCTACT -ACGGAAGCCTATTGCAGAGGATCT -ACGGAAGCCTATTGCAGAAAGGCT -ACGGAAGCCTATTGCAGATCAACC -ACGGAAGCCTATTGCAGATGTTCC -ACGGAAGCCTATTGCAGAATTCCC -ACGGAAGCCTATTGCAGATTCTCG -ACGGAAGCCTATTGCAGATAGACG -ACGGAAGCCTATTGCAGAGTAACG -ACGGAAGCCTATTGCAGAACTTCG -ACGGAAGCCTATTGCAGATACGCA -ACGGAAGCCTATTGCAGACTTGCA -ACGGAAGCCTATTGCAGACGAACA -ACGGAAGCCTATTGCAGACAGTCA -ACGGAAGCCTATTGCAGAGATCCA -ACGGAAGCCTATTGCAGAACGACA -ACGGAAGCCTATTGCAGAAGCTCA -ACGGAAGCCTATTGCAGATCACGT -ACGGAAGCCTATTGCAGACGTAGT -ACGGAAGCCTATTGCAGAGTCAGT -ACGGAAGCCTATTGCAGAGAAGGT -ACGGAAGCCTATTGCAGAAACCGT -ACGGAAGCCTATTGCAGATTGTGC -ACGGAAGCCTATTGCAGACTAAGC -ACGGAAGCCTATTGCAGAACTAGC -ACGGAAGCCTATTGCAGAAGATGC -ACGGAAGCCTATTGCAGATGAAGG -ACGGAAGCCTATTGCAGACAATGG -ACGGAAGCCTATTGCAGAATGAGG -ACGGAAGCCTATTGCAGAAATGGG -ACGGAAGCCTATTGCAGATCCTGA -ACGGAAGCCTATTGCAGATAGCGA -ACGGAAGCCTATTGCAGACACAGA -ACGGAAGCCTATTGCAGAGCAAGA -ACGGAAGCCTATTGCAGAGGTTGA -ACGGAAGCCTATTGCAGATCCGAT -ACGGAAGCCTATTGCAGATGGCAT -ACGGAAGCCTATTGCAGACGAGAT -ACGGAAGCCTATTGCAGATACCAC -ACGGAAGCCTATTGCAGACAGAAC -ACGGAAGCCTATTGCAGAGTCTAC -ACGGAAGCCTATTGCAGAACGTAC -ACGGAAGCCTATTGCAGAAGTGAC -ACGGAAGCCTATTGCAGACTGTAG -ACGGAAGCCTATTGCAGACCTAAG -ACGGAAGCCTATTGCAGAGTTCAG -ACGGAAGCCTATTGCAGAGCATAG -ACGGAAGCCTATTGCAGAGACAAG -ACGGAAGCCTATTGCAGAAAGCAG -ACGGAAGCCTATTGCAGACGTCAA -ACGGAAGCCTATTGCAGAGCTGAA -ACGGAAGCCTATTGCAGAAGTACG -ACGGAAGCCTATTGCAGAATCCGA -ACGGAAGCCTATTGCAGAATGGGA -ACGGAAGCCTATTGCAGAGTGCAA -ACGGAAGCCTATTGCAGAGAGGAA -ACGGAAGCCTATTGCAGACAGGTA -ACGGAAGCCTATTGCAGAGACTCT -ACGGAAGCCTATTGCAGAAGTCCT -ACGGAAGCCTATTGCAGATAAGCC -ACGGAAGCCTATTGCAGAATAGCC -ACGGAAGCCTATTGCAGATAACCG -ACGGAAGCCTATTGCAGAATGCCA -ACGGAAGCCTATAGGTGAGGAAAC -ACGGAAGCCTATAGGTGAAACACC -ACGGAAGCCTATAGGTGAATCGAG -ACGGAAGCCTATAGGTGACTCCTT -ACGGAAGCCTATAGGTGACCTGTT -ACGGAAGCCTATAGGTGACGGTTT -ACGGAAGCCTATAGGTGAGTGGTT -ACGGAAGCCTATAGGTGAGCCTTT -ACGGAAGCCTATAGGTGAGGTCTT -ACGGAAGCCTATAGGTGAACGCTT -ACGGAAGCCTATAGGTGAAGCGTT -ACGGAAGCCTATAGGTGATTCGTC -ACGGAAGCCTATAGGTGATCTCTC -ACGGAAGCCTATAGGTGATGGATC -ACGGAAGCCTATAGGTGACACTTC -ACGGAAGCCTATAGGTGAGTACTC -ACGGAAGCCTATAGGTGAGATGTC -ACGGAAGCCTATAGGTGAACAGTC -ACGGAAGCCTATAGGTGATTGCTG -ACGGAAGCCTATAGGTGATCCATG -ACGGAAGCCTATAGGTGATGTGTG -ACGGAAGCCTATAGGTGACTAGTG -ACGGAAGCCTATAGGTGACATCTG -ACGGAAGCCTATAGGTGAGAGTTG -ACGGAAGCCTATAGGTGAAGACTG -ACGGAAGCCTATAGGTGATCGGTA -ACGGAAGCCTATAGGTGATGCCTA -ACGGAAGCCTATAGGTGACCACTA -ACGGAAGCCTATAGGTGAGGAGTA -ACGGAAGCCTATAGGTGATCGTCT -ACGGAAGCCTATAGGTGATGCACT -ACGGAAGCCTATAGGTGACTGACT -ACGGAAGCCTATAGGTGACAACCT -ACGGAAGCCTATAGGTGAGCTACT -ACGGAAGCCTATAGGTGAGGATCT -ACGGAAGCCTATAGGTGAAAGGCT -ACGGAAGCCTATAGGTGATCAACC -ACGGAAGCCTATAGGTGATGTTCC -ACGGAAGCCTATAGGTGAATTCCC -ACGGAAGCCTATAGGTGATTCTCG -ACGGAAGCCTATAGGTGATAGACG -ACGGAAGCCTATAGGTGAGTAACG -ACGGAAGCCTATAGGTGAACTTCG -ACGGAAGCCTATAGGTGATACGCA -ACGGAAGCCTATAGGTGACTTGCA -ACGGAAGCCTATAGGTGACGAACA -ACGGAAGCCTATAGGTGACAGTCA -ACGGAAGCCTATAGGTGAGATCCA -ACGGAAGCCTATAGGTGAACGACA -ACGGAAGCCTATAGGTGAAGCTCA -ACGGAAGCCTATAGGTGATCACGT -ACGGAAGCCTATAGGTGACGTAGT -ACGGAAGCCTATAGGTGAGTCAGT -ACGGAAGCCTATAGGTGAGAAGGT -ACGGAAGCCTATAGGTGAAACCGT -ACGGAAGCCTATAGGTGATTGTGC -ACGGAAGCCTATAGGTGACTAAGC -ACGGAAGCCTATAGGTGAACTAGC -ACGGAAGCCTATAGGTGAAGATGC -ACGGAAGCCTATAGGTGATGAAGG -ACGGAAGCCTATAGGTGACAATGG -ACGGAAGCCTATAGGTGAATGAGG -ACGGAAGCCTATAGGTGAAATGGG -ACGGAAGCCTATAGGTGATCCTGA -ACGGAAGCCTATAGGTGATAGCGA -ACGGAAGCCTATAGGTGACACAGA -ACGGAAGCCTATAGGTGAGCAAGA -ACGGAAGCCTATAGGTGAGGTTGA -ACGGAAGCCTATAGGTGATCCGAT -ACGGAAGCCTATAGGTGATGGCAT -ACGGAAGCCTATAGGTGACGAGAT -ACGGAAGCCTATAGGTGATACCAC -ACGGAAGCCTATAGGTGACAGAAC -ACGGAAGCCTATAGGTGAGTCTAC -ACGGAAGCCTATAGGTGAACGTAC -ACGGAAGCCTATAGGTGAAGTGAC -ACGGAAGCCTATAGGTGACTGTAG -ACGGAAGCCTATAGGTGACCTAAG -ACGGAAGCCTATAGGTGAGTTCAG -ACGGAAGCCTATAGGTGAGCATAG -ACGGAAGCCTATAGGTGAGACAAG -ACGGAAGCCTATAGGTGAAAGCAG -ACGGAAGCCTATAGGTGACGTCAA -ACGGAAGCCTATAGGTGAGCTGAA -ACGGAAGCCTATAGGTGAAGTACG -ACGGAAGCCTATAGGTGAATCCGA -ACGGAAGCCTATAGGTGAATGGGA -ACGGAAGCCTATAGGTGAGTGCAA -ACGGAAGCCTATAGGTGAGAGGAA -ACGGAAGCCTATAGGTGACAGGTA -ACGGAAGCCTATAGGTGAGACTCT -ACGGAAGCCTATAGGTGAAGTCCT -ACGGAAGCCTATAGGTGATAAGCC -ACGGAAGCCTATAGGTGAATAGCC -ACGGAAGCCTATAGGTGATAACCG -ACGGAAGCCTATAGGTGAATGCCA -ACGGAAGCCTATTGGCAAGGAAAC -ACGGAAGCCTATTGGCAAAACACC -ACGGAAGCCTATTGGCAAATCGAG -ACGGAAGCCTATTGGCAACTCCTT -ACGGAAGCCTATTGGCAACCTGTT -ACGGAAGCCTATTGGCAACGGTTT -ACGGAAGCCTATTGGCAAGTGGTT -ACGGAAGCCTATTGGCAAGCCTTT -ACGGAAGCCTATTGGCAAGGTCTT -ACGGAAGCCTATTGGCAAACGCTT -ACGGAAGCCTATTGGCAAAGCGTT -ACGGAAGCCTATTGGCAATTCGTC -ACGGAAGCCTATTGGCAATCTCTC -ACGGAAGCCTATTGGCAATGGATC -ACGGAAGCCTATTGGCAACACTTC -ACGGAAGCCTATTGGCAAGTACTC -ACGGAAGCCTATTGGCAAGATGTC -ACGGAAGCCTATTGGCAAACAGTC -ACGGAAGCCTATTGGCAATTGCTG -ACGGAAGCCTATTGGCAATCCATG -ACGGAAGCCTATTGGCAATGTGTG -ACGGAAGCCTATTGGCAACTAGTG -ACGGAAGCCTATTGGCAACATCTG -ACGGAAGCCTATTGGCAAGAGTTG -ACGGAAGCCTATTGGCAAAGACTG -ACGGAAGCCTATTGGCAATCGGTA -ACGGAAGCCTATTGGCAATGCCTA -ACGGAAGCCTATTGGCAACCACTA -ACGGAAGCCTATTGGCAAGGAGTA -ACGGAAGCCTATTGGCAATCGTCT -ACGGAAGCCTATTGGCAATGCACT -ACGGAAGCCTATTGGCAACTGACT -ACGGAAGCCTATTGGCAACAACCT -ACGGAAGCCTATTGGCAAGCTACT -ACGGAAGCCTATTGGCAAGGATCT -ACGGAAGCCTATTGGCAAAAGGCT -ACGGAAGCCTATTGGCAATCAACC -ACGGAAGCCTATTGGCAATGTTCC -ACGGAAGCCTATTGGCAAATTCCC -ACGGAAGCCTATTGGCAATTCTCG -ACGGAAGCCTATTGGCAATAGACG -ACGGAAGCCTATTGGCAAGTAACG -ACGGAAGCCTATTGGCAAACTTCG -ACGGAAGCCTATTGGCAATACGCA -ACGGAAGCCTATTGGCAACTTGCA -ACGGAAGCCTATTGGCAACGAACA -ACGGAAGCCTATTGGCAACAGTCA -ACGGAAGCCTATTGGCAAGATCCA -ACGGAAGCCTATTGGCAAACGACA -ACGGAAGCCTATTGGCAAAGCTCA -ACGGAAGCCTATTGGCAATCACGT -ACGGAAGCCTATTGGCAACGTAGT -ACGGAAGCCTATTGGCAAGTCAGT -ACGGAAGCCTATTGGCAAGAAGGT -ACGGAAGCCTATTGGCAAAACCGT -ACGGAAGCCTATTGGCAATTGTGC -ACGGAAGCCTATTGGCAACTAAGC -ACGGAAGCCTATTGGCAAACTAGC -ACGGAAGCCTATTGGCAAAGATGC -ACGGAAGCCTATTGGCAATGAAGG -ACGGAAGCCTATTGGCAACAATGG -ACGGAAGCCTATTGGCAAATGAGG -ACGGAAGCCTATTGGCAAAATGGG -ACGGAAGCCTATTGGCAATCCTGA -ACGGAAGCCTATTGGCAATAGCGA -ACGGAAGCCTATTGGCAACACAGA -ACGGAAGCCTATTGGCAAGCAAGA -ACGGAAGCCTATTGGCAAGGTTGA -ACGGAAGCCTATTGGCAATCCGAT -ACGGAAGCCTATTGGCAATGGCAT -ACGGAAGCCTATTGGCAACGAGAT -ACGGAAGCCTATTGGCAATACCAC -ACGGAAGCCTATTGGCAACAGAAC -ACGGAAGCCTATTGGCAAGTCTAC -ACGGAAGCCTATTGGCAAACGTAC -ACGGAAGCCTATTGGCAAAGTGAC -ACGGAAGCCTATTGGCAACTGTAG -ACGGAAGCCTATTGGCAACCTAAG -ACGGAAGCCTATTGGCAAGTTCAG -ACGGAAGCCTATTGGCAAGCATAG -ACGGAAGCCTATTGGCAAGACAAG -ACGGAAGCCTATTGGCAAAAGCAG -ACGGAAGCCTATTGGCAACGTCAA -ACGGAAGCCTATTGGCAAGCTGAA -ACGGAAGCCTATTGGCAAAGTACG -ACGGAAGCCTATTGGCAAATCCGA -ACGGAAGCCTATTGGCAAATGGGA -ACGGAAGCCTATTGGCAAGTGCAA -ACGGAAGCCTATTGGCAAGAGGAA -ACGGAAGCCTATTGGCAACAGGTA -ACGGAAGCCTATTGGCAAGACTCT -ACGGAAGCCTATTGGCAAAGTCCT -ACGGAAGCCTATTGGCAATAAGCC -ACGGAAGCCTATTGGCAAATAGCC -ACGGAAGCCTATTGGCAATAACCG -ACGGAAGCCTATTGGCAAATGCCA -ACGGAAGCCTATAGGATGGGAAAC -ACGGAAGCCTATAGGATGAACACC -ACGGAAGCCTATAGGATGATCGAG -ACGGAAGCCTATAGGATGCTCCTT -ACGGAAGCCTATAGGATGCCTGTT -ACGGAAGCCTATAGGATGCGGTTT -ACGGAAGCCTATAGGATGGTGGTT -ACGGAAGCCTATAGGATGGCCTTT -ACGGAAGCCTATAGGATGGGTCTT -ACGGAAGCCTATAGGATGACGCTT -ACGGAAGCCTATAGGATGAGCGTT -ACGGAAGCCTATAGGATGTTCGTC -ACGGAAGCCTATAGGATGTCTCTC -ACGGAAGCCTATAGGATGTGGATC -ACGGAAGCCTATAGGATGCACTTC -ACGGAAGCCTATAGGATGGTACTC -ACGGAAGCCTATAGGATGGATGTC -ACGGAAGCCTATAGGATGACAGTC -ACGGAAGCCTATAGGATGTTGCTG -ACGGAAGCCTATAGGATGTCCATG -ACGGAAGCCTATAGGATGTGTGTG -ACGGAAGCCTATAGGATGCTAGTG -ACGGAAGCCTATAGGATGCATCTG -ACGGAAGCCTATAGGATGGAGTTG -ACGGAAGCCTATAGGATGAGACTG -ACGGAAGCCTATAGGATGTCGGTA -ACGGAAGCCTATAGGATGTGCCTA -ACGGAAGCCTATAGGATGCCACTA -ACGGAAGCCTATAGGATGGGAGTA -ACGGAAGCCTATAGGATGTCGTCT -ACGGAAGCCTATAGGATGTGCACT -ACGGAAGCCTATAGGATGCTGACT -ACGGAAGCCTATAGGATGCAACCT -ACGGAAGCCTATAGGATGGCTACT -ACGGAAGCCTATAGGATGGGATCT -ACGGAAGCCTATAGGATGAAGGCT -ACGGAAGCCTATAGGATGTCAACC -ACGGAAGCCTATAGGATGTGTTCC -ACGGAAGCCTATAGGATGATTCCC -ACGGAAGCCTATAGGATGTTCTCG -ACGGAAGCCTATAGGATGTAGACG -ACGGAAGCCTATAGGATGGTAACG -ACGGAAGCCTATAGGATGACTTCG -ACGGAAGCCTATAGGATGTACGCA -ACGGAAGCCTATAGGATGCTTGCA -ACGGAAGCCTATAGGATGCGAACA -ACGGAAGCCTATAGGATGCAGTCA -ACGGAAGCCTATAGGATGGATCCA -ACGGAAGCCTATAGGATGACGACA -ACGGAAGCCTATAGGATGAGCTCA -ACGGAAGCCTATAGGATGTCACGT -ACGGAAGCCTATAGGATGCGTAGT -ACGGAAGCCTATAGGATGGTCAGT -ACGGAAGCCTATAGGATGGAAGGT -ACGGAAGCCTATAGGATGAACCGT -ACGGAAGCCTATAGGATGTTGTGC -ACGGAAGCCTATAGGATGCTAAGC -ACGGAAGCCTATAGGATGACTAGC -ACGGAAGCCTATAGGATGAGATGC -ACGGAAGCCTATAGGATGTGAAGG -ACGGAAGCCTATAGGATGCAATGG -ACGGAAGCCTATAGGATGATGAGG -ACGGAAGCCTATAGGATGAATGGG -ACGGAAGCCTATAGGATGTCCTGA -ACGGAAGCCTATAGGATGTAGCGA -ACGGAAGCCTATAGGATGCACAGA -ACGGAAGCCTATAGGATGGCAAGA -ACGGAAGCCTATAGGATGGGTTGA -ACGGAAGCCTATAGGATGTCCGAT -ACGGAAGCCTATAGGATGTGGCAT -ACGGAAGCCTATAGGATGCGAGAT -ACGGAAGCCTATAGGATGTACCAC -ACGGAAGCCTATAGGATGCAGAAC -ACGGAAGCCTATAGGATGGTCTAC -ACGGAAGCCTATAGGATGACGTAC -ACGGAAGCCTATAGGATGAGTGAC -ACGGAAGCCTATAGGATGCTGTAG -ACGGAAGCCTATAGGATGCCTAAG -ACGGAAGCCTATAGGATGGTTCAG -ACGGAAGCCTATAGGATGGCATAG -ACGGAAGCCTATAGGATGGACAAG -ACGGAAGCCTATAGGATGAAGCAG -ACGGAAGCCTATAGGATGCGTCAA -ACGGAAGCCTATAGGATGGCTGAA -ACGGAAGCCTATAGGATGAGTACG -ACGGAAGCCTATAGGATGATCCGA -ACGGAAGCCTATAGGATGATGGGA -ACGGAAGCCTATAGGATGGTGCAA -ACGGAAGCCTATAGGATGGAGGAA -ACGGAAGCCTATAGGATGCAGGTA -ACGGAAGCCTATAGGATGGACTCT -ACGGAAGCCTATAGGATGAGTCCT -ACGGAAGCCTATAGGATGTAAGCC -ACGGAAGCCTATAGGATGATAGCC -ACGGAAGCCTATAGGATGTAACCG -ACGGAAGCCTATAGGATGATGCCA -ACGGAAGCCTATGGGAATGGAAAC -ACGGAAGCCTATGGGAATAACACC -ACGGAAGCCTATGGGAATATCGAG -ACGGAAGCCTATGGGAATCTCCTT -ACGGAAGCCTATGGGAATCCTGTT -ACGGAAGCCTATGGGAATCGGTTT -ACGGAAGCCTATGGGAATGTGGTT -ACGGAAGCCTATGGGAATGCCTTT -ACGGAAGCCTATGGGAATGGTCTT -ACGGAAGCCTATGGGAATACGCTT -ACGGAAGCCTATGGGAATAGCGTT -ACGGAAGCCTATGGGAATTTCGTC -ACGGAAGCCTATGGGAATTCTCTC -ACGGAAGCCTATGGGAATTGGATC -ACGGAAGCCTATGGGAATCACTTC -ACGGAAGCCTATGGGAATGTACTC -ACGGAAGCCTATGGGAATGATGTC -ACGGAAGCCTATGGGAATACAGTC -ACGGAAGCCTATGGGAATTTGCTG -ACGGAAGCCTATGGGAATTCCATG -ACGGAAGCCTATGGGAATTGTGTG -ACGGAAGCCTATGGGAATCTAGTG -ACGGAAGCCTATGGGAATCATCTG -ACGGAAGCCTATGGGAATGAGTTG -ACGGAAGCCTATGGGAATAGACTG -ACGGAAGCCTATGGGAATTCGGTA -ACGGAAGCCTATGGGAATTGCCTA -ACGGAAGCCTATGGGAATCCACTA -ACGGAAGCCTATGGGAATGGAGTA -ACGGAAGCCTATGGGAATTCGTCT -ACGGAAGCCTATGGGAATTGCACT -ACGGAAGCCTATGGGAATCTGACT -ACGGAAGCCTATGGGAATCAACCT -ACGGAAGCCTATGGGAATGCTACT -ACGGAAGCCTATGGGAATGGATCT -ACGGAAGCCTATGGGAATAAGGCT -ACGGAAGCCTATGGGAATTCAACC -ACGGAAGCCTATGGGAATTGTTCC -ACGGAAGCCTATGGGAATATTCCC -ACGGAAGCCTATGGGAATTTCTCG -ACGGAAGCCTATGGGAATTAGACG -ACGGAAGCCTATGGGAATGTAACG -ACGGAAGCCTATGGGAATACTTCG -ACGGAAGCCTATGGGAATTACGCA -ACGGAAGCCTATGGGAATCTTGCA -ACGGAAGCCTATGGGAATCGAACA -ACGGAAGCCTATGGGAATCAGTCA -ACGGAAGCCTATGGGAATGATCCA -ACGGAAGCCTATGGGAATACGACA -ACGGAAGCCTATGGGAATAGCTCA -ACGGAAGCCTATGGGAATTCACGT -ACGGAAGCCTATGGGAATCGTAGT -ACGGAAGCCTATGGGAATGTCAGT -ACGGAAGCCTATGGGAATGAAGGT -ACGGAAGCCTATGGGAATAACCGT -ACGGAAGCCTATGGGAATTTGTGC -ACGGAAGCCTATGGGAATCTAAGC -ACGGAAGCCTATGGGAATACTAGC -ACGGAAGCCTATGGGAATAGATGC -ACGGAAGCCTATGGGAATTGAAGG -ACGGAAGCCTATGGGAATCAATGG -ACGGAAGCCTATGGGAATATGAGG -ACGGAAGCCTATGGGAATAATGGG -ACGGAAGCCTATGGGAATTCCTGA -ACGGAAGCCTATGGGAATTAGCGA -ACGGAAGCCTATGGGAATCACAGA -ACGGAAGCCTATGGGAATGCAAGA -ACGGAAGCCTATGGGAATGGTTGA -ACGGAAGCCTATGGGAATTCCGAT -ACGGAAGCCTATGGGAATTGGCAT -ACGGAAGCCTATGGGAATCGAGAT -ACGGAAGCCTATGGGAATTACCAC -ACGGAAGCCTATGGGAATCAGAAC -ACGGAAGCCTATGGGAATGTCTAC -ACGGAAGCCTATGGGAATACGTAC -ACGGAAGCCTATGGGAATAGTGAC -ACGGAAGCCTATGGGAATCTGTAG -ACGGAAGCCTATGGGAATCCTAAG -ACGGAAGCCTATGGGAATGTTCAG -ACGGAAGCCTATGGGAATGCATAG -ACGGAAGCCTATGGGAATGACAAG -ACGGAAGCCTATGGGAATAAGCAG -ACGGAAGCCTATGGGAATCGTCAA -ACGGAAGCCTATGGGAATGCTGAA -ACGGAAGCCTATGGGAATAGTACG -ACGGAAGCCTATGGGAATATCCGA -ACGGAAGCCTATGGGAATATGGGA -ACGGAAGCCTATGGGAATGTGCAA -ACGGAAGCCTATGGGAATGAGGAA -ACGGAAGCCTATGGGAATCAGGTA -ACGGAAGCCTATGGGAATGACTCT -ACGGAAGCCTATGGGAATAGTCCT -ACGGAAGCCTATGGGAATTAAGCC -ACGGAAGCCTATGGGAATATAGCC -ACGGAAGCCTATGGGAATTAACCG -ACGGAAGCCTATGGGAATATGCCA -ACGGAAGCCTATTGATCCGGAAAC -ACGGAAGCCTATTGATCCAACACC -ACGGAAGCCTATTGATCCATCGAG -ACGGAAGCCTATTGATCCCTCCTT -ACGGAAGCCTATTGATCCCCTGTT -ACGGAAGCCTATTGATCCCGGTTT -ACGGAAGCCTATTGATCCGTGGTT -ACGGAAGCCTATTGATCCGCCTTT -ACGGAAGCCTATTGATCCGGTCTT -ACGGAAGCCTATTGATCCACGCTT -ACGGAAGCCTATTGATCCAGCGTT -ACGGAAGCCTATTGATCCTTCGTC -ACGGAAGCCTATTGATCCTCTCTC -ACGGAAGCCTATTGATCCTGGATC -ACGGAAGCCTATTGATCCCACTTC -ACGGAAGCCTATTGATCCGTACTC -ACGGAAGCCTATTGATCCGATGTC -ACGGAAGCCTATTGATCCACAGTC -ACGGAAGCCTATTGATCCTTGCTG -ACGGAAGCCTATTGATCCTCCATG -ACGGAAGCCTATTGATCCTGTGTG -ACGGAAGCCTATTGATCCCTAGTG -ACGGAAGCCTATTGATCCCATCTG -ACGGAAGCCTATTGATCCGAGTTG -ACGGAAGCCTATTGATCCAGACTG -ACGGAAGCCTATTGATCCTCGGTA -ACGGAAGCCTATTGATCCTGCCTA -ACGGAAGCCTATTGATCCCCACTA -ACGGAAGCCTATTGATCCGGAGTA -ACGGAAGCCTATTGATCCTCGTCT -ACGGAAGCCTATTGATCCTGCACT -ACGGAAGCCTATTGATCCCTGACT -ACGGAAGCCTATTGATCCCAACCT -ACGGAAGCCTATTGATCCGCTACT -ACGGAAGCCTATTGATCCGGATCT -ACGGAAGCCTATTGATCCAAGGCT -ACGGAAGCCTATTGATCCTCAACC -ACGGAAGCCTATTGATCCTGTTCC -ACGGAAGCCTATTGATCCATTCCC -ACGGAAGCCTATTGATCCTTCTCG -ACGGAAGCCTATTGATCCTAGACG -ACGGAAGCCTATTGATCCGTAACG -ACGGAAGCCTATTGATCCACTTCG -ACGGAAGCCTATTGATCCTACGCA -ACGGAAGCCTATTGATCCCTTGCA -ACGGAAGCCTATTGATCCCGAACA -ACGGAAGCCTATTGATCCCAGTCA -ACGGAAGCCTATTGATCCGATCCA -ACGGAAGCCTATTGATCCACGACA -ACGGAAGCCTATTGATCCAGCTCA -ACGGAAGCCTATTGATCCTCACGT -ACGGAAGCCTATTGATCCCGTAGT -ACGGAAGCCTATTGATCCGTCAGT -ACGGAAGCCTATTGATCCGAAGGT -ACGGAAGCCTATTGATCCAACCGT -ACGGAAGCCTATTGATCCTTGTGC -ACGGAAGCCTATTGATCCCTAAGC -ACGGAAGCCTATTGATCCACTAGC -ACGGAAGCCTATTGATCCAGATGC -ACGGAAGCCTATTGATCCTGAAGG -ACGGAAGCCTATTGATCCCAATGG -ACGGAAGCCTATTGATCCATGAGG -ACGGAAGCCTATTGATCCAATGGG -ACGGAAGCCTATTGATCCTCCTGA -ACGGAAGCCTATTGATCCTAGCGA -ACGGAAGCCTATTGATCCCACAGA -ACGGAAGCCTATTGATCCGCAAGA -ACGGAAGCCTATTGATCCGGTTGA -ACGGAAGCCTATTGATCCTCCGAT -ACGGAAGCCTATTGATCCTGGCAT -ACGGAAGCCTATTGATCCCGAGAT -ACGGAAGCCTATTGATCCTACCAC -ACGGAAGCCTATTGATCCCAGAAC -ACGGAAGCCTATTGATCCGTCTAC -ACGGAAGCCTATTGATCCACGTAC -ACGGAAGCCTATTGATCCAGTGAC -ACGGAAGCCTATTGATCCCTGTAG -ACGGAAGCCTATTGATCCCCTAAG -ACGGAAGCCTATTGATCCGTTCAG -ACGGAAGCCTATTGATCCGCATAG -ACGGAAGCCTATTGATCCGACAAG -ACGGAAGCCTATTGATCCAAGCAG -ACGGAAGCCTATTGATCCCGTCAA -ACGGAAGCCTATTGATCCGCTGAA -ACGGAAGCCTATTGATCCAGTACG -ACGGAAGCCTATTGATCCATCCGA -ACGGAAGCCTATTGATCCATGGGA -ACGGAAGCCTATTGATCCGTGCAA -ACGGAAGCCTATTGATCCGAGGAA -ACGGAAGCCTATTGATCCCAGGTA -ACGGAAGCCTATTGATCCGACTCT -ACGGAAGCCTATTGATCCAGTCCT -ACGGAAGCCTATTGATCCTAAGCC -ACGGAAGCCTATTGATCCATAGCC -ACGGAAGCCTATTGATCCTAACCG -ACGGAAGCCTATTGATCCATGCCA -ACGGAAGCCTATCGATAGGGAAAC -ACGGAAGCCTATCGATAGAACACC -ACGGAAGCCTATCGATAGATCGAG -ACGGAAGCCTATCGATAGCTCCTT -ACGGAAGCCTATCGATAGCCTGTT -ACGGAAGCCTATCGATAGCGGTTT -ACGGAAGCCTATCGATAGGTGGTT -ACGGAAGCCTATCGATAGGCCTTT -ACGGAAGCCTATCGATAGGGTCTT -ACGGAAGCCTATCGATAGACGCTT -ACGGAAGCCTATCGATAGAGCGTT -ACGGAAGCCTATCGATAGTTCGTC -ACGGAAGCCTATCGATAGTCTCTC -ACGGAAGCCTATCGATAGTGGATC -ACGGAAGCCTATCGATAGCACTTC -ACGGAAGCCTATCGATAGGTACTC -ACGGAAGCCTATCGATAGGATGTC -ACGGAAGCCTATCGATAGACAGTC -ACGGAAGCCTATCGATAGTTGCTG -ACGGAAGCCTATCGATAGTCCATG -ACGGAAGCCTATCGATAGTGTGTG -ACGGAAGCCTATCGATAGCTAGTG -ACGGAAGCCTATCGATAGCATCTG -ACGGAAGCCTATCGATAGGAGTTG -ACGGAAGCCTATCGATAGAGACTG -ACGGAAGCCTATCGATAGTCGGTA -ACGGAAGCCTATCGATAGTGCCTA -ACGGAAGCCTATCGATAGCCACTA -ACGGAAGCCTATCGATAGGGAGTA -ACGGAAGCCTATCGATAGTCGTCT -ACGGAAGCCTATCGATAGTGCACT -ACGGAAGCCTATCGATAGCTGACT -ACGGAAGCCTATCGATAGCAACCT -ACGGAAGCCTATCGATAGGCTACT -ACGGAAGCCTATCGATAGGGATCT -ACGGAAGCCTATCGATAGAAGGCT -ACGGAAGCCTATCGATAGTCAACC -ACGGAAGCCTATCGATAGTGTTCC -ACGGAAGCCTATCGATAGATTCCC -ACGGAAGCCTATCGATAGTTCTCG -ACGGAAGCCTATCGATAGTAGACG -ACGGAAGCCTATCGATAGGTAACG -ACGGAAGCCTATCGATAGACTTCG -ACGGAAGCCTATCGATAGTACGCA -ACGGAAGCCTATCGATAGCTTGCA -ACGGAAGCCTATCGATAGCGAACA -ACGGAAGCCTATCGATAGCAGTCA -ACGGAAGCCTATCGATAGGATCCA -ACGGAAGCCTATCGATAGACGACA -ACGGAAGCCTATCGATAGAGCTCA -ACGGAAGCCTATCGATAGTCACGT -ACGGAAGCCTATCGATAGCGTAGT -ACGGAAGCCTATCGATAGGTCAGT -ACGGAAGCCTATCGATAGGAAGGT -ACGGAAGCCTATCGATAGAACCGT -ACGGAAGCCTATCGATAGTTGTGC -ACGGAAGCCTATCGATAGCTAAGC -ACGGAAGCCTATCGATAGACTAGC -ACGGAAGCCTATCGATAGAGATGC -ACGGAAGCCTATCGATAGTGAAGG -ACGGAAGCCTATCGATAGCAATGG -ACGGAAGCCTATCGATAGATGAGG -ACGGAAGCCTATCGATAGAATGGG -ACGGAAGCCTATCGATAGTCCTGA -ACGGAAGCCTATCGATAGTAGCGA -ACGGAAGCCTATCGATAGCACAGA -ACGGAAGCCTATCGATAGGCAAGA -ACGGAAGCCTATCGATAGGGTTGA -ACGGAAGCCTATCGATAGTCCGAT -ACGGAAGCCTATCGATAGTGGCAT -ACGGAAGCCTATCGATAGCGAGAT -ACGGAAGCCTATCGATAGTACCAC -ACGGAAGCCTATCGATAGCAGAAC -ACGGAAGCCTATCGATAGGTCTAC -ACGGAAGCCTATCGATAGACGTAC -ACGGAAGCCTATCGATAGAGTGAC -ACGGAAGCCTATCGATAGCTGTAG -ACGGAAGCCTATCGATAGCCTAAG -ACGGAAGCCTATCGATAGGTTCAG -ACGGAAGCCTATCGATAGGCATAG -ACGGAAGCCTATCGATAGGACAAG -ACGGAAGCCTATCGATAGAAGCAG -ACGGAAGCCTATCGATAGCGTCAA -ACGGAAGCCTATCGATAGGCTGAA -ACGGAAGCCTATCGATAGAGTACG -ACGGAAGCCTATCGATAGATCCGA -ACGGAAGCCTATCGATAGATGGGA -ACGGAAGCCTATCGATAGGTGCAA -ACGGAAGCCTATCGATAGGAGGAA -ACGGAAGCCTATCGATAGCAGGTA -ACGGAAGCCTATCGATAGGACTCT -ACGGAAGCCTATCGATAGAGTCCT -ACGGAAGCCTATCGATAGTAAGCC -ACGGAAGCCTATCGATAGATAGCC -ACGGAAGCCTATCGATAGTAACCG -ACGGAAGCCTATCGATAGATGCCA -ACGGAAGCCTATAGACACGGAAAC -ACGGAAGCCTATAGACACAACACC -ACGGAAGCCTATAGACACATCGAG -ACGGAAGCCTATAGACACCTCCTT -ACGGAAGCCTATAGACACCCTGTT -ACGGAAGCCTATAGACACCGGTTT -ACGGAAGCCTATAGACACGTGGTT -ACGGAAGCCTATAGACACGCCTTT -ACGGAAGCCTATAGACACGGTCTT -ACGGAAGCCTATAGACACACGCTT -ACGGAAGCCTATAGACACAGCGTT -ACGGAAGCCTATAGACACTTCGTC -ACGGAAGCCTATAGACACTCTCTC -ACGGAAGCCTATAGACACTGGATC -ACGGAAGCCTATAGACACCACTTC -ACGGAAGCCTATAGACACGTACTC -ACGGAAGCCTATAGACACGATGTC -ACGGAAGCCTATAGACACACAGTC -ACGGAAGCCTATAGACACTTGCTG -ACGGAAGCCTATAGACACTCCATG -ACGGAAGCCTATAGACACTGTGTG -ACGGAAGCCTATAGACACCTAGTG -ACGGAAGCCTATAGACACCATCTG -ACGGAAGCCTATAGACACGAGTTG -ACGGAAGCCTATAGACACAGACTG -ACGGAAGCCTATAGACACTCGGTA -ACGGAAGCCTATAGACACTGCCTA -ACGGAAGCCTATAGACACCCACTA -ACGGAAGCCTATAGACACGGAGTA -ACGGAAGCCTATAGACACTCGTCT -ACGGAAGCCTATAGACACTGCACT -ACGGAAGCCTATAGACACCTGACT -ACGGAAGCCTATAGACACCAACCT -ACGGAAGCCTATAGACACGCTACT -ACGGAAGCCTATAGACACGGATCT -ACGGAAGCCTATAGACACAAGGCT -ACGGAAGCCTATAGACACTCAACC -ACGGAAGCCTATAGACACTGTTCC -ACGGAAGCCTATAGACACATTCCC -ACGGAAGCCTATAGACACTTCTCG -ACGGAAGCCTATAGACACTAGACG -ACGGAAGCCTATAGACACGTAACG -ACGGAAGCCTATAGACACACTTCG -ACGGAAGCCTATAGACACTACGCA -ACGGAAGCCTATAGACACCTTGCA -ACGGAAGCCTATAGACACCGAACA -ACGGAAGCCTATAGACACCAGTCA -ACGGAAGCCTATAGACACGATCCA -ACGGAAGCCTATAGACACACGACA -ACGGAAGCCTATAGACACAGCTCA -ACGGAAGCCTATAGACACTCACGT -ACGGAAGCCTATAGACACCGTAGT -ACGGAAGCCTATAGACACGTCAGT -ACGGAAGCCTATAGACACGAAGGT -ACGGAAGCCTATAGACACAACCGT -ACGGAAGCCTATAGACACTTGTGC -ACGGAAGCCTATAGACACCTAAGC -ACGGAAGCCTATAGACACACTAGC -ACGGAAGCCTATAGACACAGATGC -ACGGAAGCCTATAGACACTGAAGG -ACGGAAGCCTATAGACACCAATGG -ACGGAAGCCTATAGACACATGAGG -ACGGAAGCCTATAGACACAATGGG -ACGGAAGCCTATAGACACTCCTGA -ACGGAAGCCTATAGACACTAGCGA -ACGGAAGCCTATAGACACCACAGA -ACGGAAGCCTATAGACACGCAAGA -ACGGAAGCCTATAGACACGGTTGA -ACGGAAGCCTATAGACACTCCGAT -ACGGAAGCCTATAGACACTGGCAT -ACGGAAGCCTATAGACACCGAGAT -ACGGAAGCCTATAGACACTACCAC -ACGGAAGCCTATAGACACCAGAAC -ACGGAAGCCTATAGACACGTCTAC -ACGGAAGCCTATAGACACACGTAC -ACGGAAGCCTATAGACACAGTGAC -ACGGAAGCCTATAGACACCTGTAG -ACGGAAGCCTATAGACACCCTAAG -ACGGAAGCCTATAGACACGTTCAG -ACGGAAGCCTATAGACACGCATAG -ACGGAAGCCTATAGACACGACAAG -ACGGAAGCCTATAGACACAAGCAG -ACGGAAGCCTATAGACACCGTCAA -ACGGAAGCCTATAGACACGCTGAA -ACGGAAGCCTATAGACACAGTACG -ACGGAAGCCTATAGACACATCCGA -ACGGAAGCCTATAGACACATGGGA -ACGGAAGCCTATAGACACGTGCAA -ACGGAAGCCTATAGACACGAGGAA -ACGGAAGCCTATAGACACCAGGTA -ACGGAAGCCTATAGACACGACTCT -ACGGAAGCCTATAGACACAGTCCT -ACGGAAGCCTATAGACACTAAGCC -ACGGAAGCCTATAGACACATAGCC -ACGGAAGCCTATAGACACTAACCG -ACGGAAGCCTATAGACACATGCCA -ACGGAAGCCTATAGAGCAGGAAAC -ACGGAAGCCTATAGAGCAAACACC -ACGGAAGCCTATAGAGCAATCGAG -ACGGAAGCCTATAGAGCACTCCTT -ACGGAAGCCTATAGAGCACCTGTT -ACGGAAGCCTATAGAGCACGGTTT -ACGGAAGCCTATAGAGCAGTGGTT -ACGGAAGCCTATAGAGCAGCCTTT -ACGGAAGCCTATAGAGCAGGTCTT -ACGGAAGCCTATAGAGCAACGCTT -ACGGAAGCCTATAGAGCAAGCGTT -ACGGAAGCCTATAGAGCATTCGTC -ACGGAAGCCTATAGAGCATCTCTC -ACGGAAGCCTATAGAGCATGGATC -ACGGAAGCCTATAGAGCACACTTC -ACGGAAGCCTATAGAGCAGTACTC -ACGGAAGCCTATAGAGCAGATGTC -ACGGAAGCCTATAGAGCAACAGTC -ACGGAAGCCTATAGAGCATTGCTG -ACGGAAGCCTATAGAGCATCCATG -ACGGAAGCCTATAGAGCATGTGTG -ACGGAAGCCTATAGAGCACTAGTG -ACGGAAGCCTATAGAGCACATCTG -ACGGAAGCCTATAGAGCAGAGTTG -ACGGAAGCCTATAGAGCAAGACTG -ACGGAAGCCTATAGAGCATCGGTA -ACGGAAGCCTATAGAGCATGCCTA -ACGGAAGCCTATAGAGCACCACTA -ACGGAAGCCTATAGAGCAGGAGTA -ACGGAAGCCTATAGAGCATCGTCT -ACGGAAGCCTATAGAGCATGCACT -ACGGAAGCCTATAGAGCACTGACT -ACGGAAGCCTATAGAGCACAACCT -ACGGAAGCCTATAGAGCAGCTACT -ACGGAAGCCTATAGAGCAGGATCT -ACGGAAGCCTATAGAGCAAAGGCT -ACGGAAGCCTATAGAGCATCAACC -ACGGAAGCCTATAGAGCATGTTCC -ACGGAAGCCTATAGAGCAATTCCC -ACGGAAGCCTATAGAGCATTCTCG -ACGGAAGCCTATAGAGCATAGACG -ACGGAAGCCTATAGAGCAGTAACG -ACGGAAGCCTATAGAGCAACTTCG -ACGGAAGCCTATAGAGCATACGCA -ACGGAAGCCTATAGAGCACTTGCA -ACGGAAGCCTATAGAGCACGAACA -ACGGAAGCCTATAGAGCACAGTCA -ACGGAAGCCTATAGAGCAGATCCA -ACGGAAGCCTATAGAGCAACGACA -ACGGAAGCCTATAGAGCAAGCTCA -ACGGAAGCCTATAGAGCATCACGT -ACGGAAGCCTATAGAGCACGTAGT -ACGGAAGCCTATAGAGCAGTCAGT -ACGGAAGCCTATAGAGCAGAAGGT -ACGGAAGCCTATAGAGCAAACCGT -ACGGAAGCCTATAGAGCATTGTGC -ACGGAAGCCTATAGAGCACTAAGC -ACGGAAGCCTATAGAGCAACTAGC -ACGGAAGCCTATAGAGCAAGATGC -ACGGAAGCCTATAGAGCATGAAGG -ACGGAAGCCTATAGAGCACAATGG -ACGGAAGCCTATAGAGCAATGAGG -ACGGAAGCCTATAGAGCAAATGGG -ACGGAAGCCTATAGAGCATCCTGA -ACGGAAGCCTATAGAGCATAGCGA -ACGGAAGCCTATAGAGCACACAGA -ACGGAAGCCTATAGAGCAGCAAGA -ACGGAAGCCTATAGAGCAGGTTGA -ACGGAAGCCTATAGAGCATCCGAT -ACGGAAGCCTATAGAGCATGGCAT -ACGGAAGCCTATAGAGCACGAGAT -ACGGAAGCCTATAGAGCATACCAC -ACGGAAGCCTATAGAGCACAGAAC -ACGGAAGCCTATAGAGCAGTCTAC -ACGGAAGCCTATAGAGCAACGTAC -ACGGAAGCCTATAGAGCAAGTGAC -ACGGAAGCCTATAGAGCACTGTAG -ACGGAAGCCTATAGAGCACCTAAG -ACGGAAGCCTATAGAGCAGTTCAG -ACGGAAGCCTATAGAGCAGCATAG -ACGGAAGCCTATAGAGCAGACAAG -ACGGAAGCCTATAGAGCAAAGCAG -ACGGAAGCCTATAGAGCACGTCAA -ACGGAAGCCTATAGAGCAGCTGAA -ACGGAAGCCTATAGAGCAAGTACG -ACGGAAGCCTATAGAGCAATCCGA -ACGGAAGCCTATAGAGCAATGGGA -ACGGAAGCCTATAGAGCAGTGCAA -ACGGAAGCCTATAGAGCAGAGGAA -ACGGAAGCCTATAGAGCACAGGTA -ACGGAAGCCTATAGAGCAGACTCT -ACGGAAGCCTATAGAGCAAGTCCT -ACGGAAGCCTATAGAGCATAAGCC -ACGGAAGCCTATAGAGCAATAGCC -ACGGAAGCCTATAGAGCATAACCG -ACGGAAGCCTATAGAGCAATGCCA -ACGGAAGCCTATTGAGGTGGAAAC -ACGGAAGCCTATTGAGGTAACACC -ACGGAAGCCTATTGAGGTATCGAG -ACGGAAGCCTATTGAGGTCTCCTT -ACGGAAGCCTATTGAGGTCCTGTT -ACGGAAGCCTATTGAGGTCGGTTT -ACGGAAGCCTATTGAGGTGTGGTT -ACGGAAGCCTATTGAGGTGCCTTT -ACGGAAGCCTATTGAGGTGGTCTT -ACGGAAGCCTATTGAGGTACGCTT -ACGGAAGCCTATTGAGGTAGCGTT -ACGGAAGCCTATTGAGGTTTCGTC -ACGGAAGCCTATTGAGGTTCTCTC -ACGGAAGCCTATTGAGGTTGGATC -ACGGAAGCCTATTGAGGTCACTTC -ACGGAAGCCTATTGAGGTGTACTC -ACGGAAGCCTATTGAGGTGATGTC -ACGGAAGCCTATTGAGGTACAGTC -ACGGAAGCCTATTGAGGTTTGCTG -ACGGAAGCCTATTGAGGTTCCATG -ACGGAAGCCTATTGAGGTTGTGTG -ACGGAAGCCTATTGAGGTCTAGTG -ACGGAAGCCTATTGAGGTCATCTG -ACGGAAGCCTATTGAGGTGAGTTG -ACGGAAGCCTATTGAGGTAGACTG -ACGGAAGCCTATTGAGGTTCGGTA -ACGGAAGCCTATTGAGGTTGCCTA -ACGGAAGCCTATTGAGGTCCACTA -ACGGAAGCCTATTGAGGTGGAGTA -ACGGAAGCCTATTGAGGTTCGTCT -ACGGAAGCCTATTGAGGTTGCACT -ACGGAAGCCTATTGAGGTCTGACT -ACGGAAGCCTATTGAGGTCAACCT -ACGGAAGCCTATTGAGGTGCTACT -ACGGAAGCCTATTGAGGTGGATCT -ACGGAAGCCTATTGAGGTAAGGCT -ACGGAAGCCTATTGAGGTTCAACC -ACGGAAGCCTATTGAGGTTGTTCC -ACGGAAGCCTATTGAGGTATTCCC -ACGGAAGCCTATTGAGGTTTCTCG -ACGGAAGCCTATTGAGGTTAGACG -ACGGAAGCCTATTGAGGTGTAACG -ACGGAAGCCTATTGAGGTACTTCG -ACGGAAGCCTATTGAGGTTACGCA -ACGGAAGCCTATTGAGGTCTTGCA -ACGGAAGCCTATTGAGGTCGAACA -ACGGAAGCCTATTGAGGTCAGTCA -ACGGAAGCCTATTGAGGTGATCCA -ACGGAAGCCTATTGAGGTACGACA -ACGGAAGCCTATTGAGGTAGCTCA -ACGGAAGCCTATTGAGGTTCACGT -ACGGAAGCCTATTGAGGTCGTAGT -ACGGAAGCCTATTGAGGTGTCAGT -ACGGAAGCCTATTGAGGTGAAGGT -ACGGAAGCCTATTGAGGTAACCGT -ACGGAAGCCTATTGAGGTTTGTGC -ACGGAAGCCTATTGAGGTCTAAGC -ACGGAAGCCTATTGAGGTACTAGC -ACGGAAGCCTATTGAGGTAGATGC -ACGGAAGCCTATTGAGGTTGAAGG -ACGGAAGCCTATTGAGGTCAATGG -ACGGAAGCCTATTGAGGTATGAGG -ACGGAAGCCTATTGAGGTAATGGG -ACGGAAGCCTATTGAGGTTCCTGA -ACGGAAGCCTATTGAGGTTAGCGA -ACGGAAGCCTATTGAGGTCACAGA -ACGGAAGCCTATTGAGGTGCAAGA -ACGGAAGCCTATTGAGGTGGTTGA -ACGGAAGCCTATTGAGGTTCCGAT -ACGGAAGCCTATTGAGGTTGGCAT -ACGGAAGCCTATTGAGGTCGAGAT -ACGGAAGCCTATTGAGGTTACCAC -ACGGAAGCCTATTGAGGTCAGAAC -ACGGAAGCCTATTGAGGTGTCTAC -ACGGAAGCCTATTGAGGTACGTAC -ACGGAAGCCTATTGAGGTAGTGAC -ACGGAAGCCTATTGAGGTCTGTAG -ACGGAAGCCTATTGAGGTCCTAAG -ACGGAAGCCTATTGAGGTGTTCAG -ACGGAAGCCTATTGAGGTGCATAG -ACGGAAGCCTATTGAGGTGACAAG -ACGGAAGCCTATTGAGGTAAGCAG -ACGGAAGCCTATTGAGGTCGTCAA -ACGGAAGCCTATTGAGGTGCTGAA -ACGGAAGCCTATTGAGGTAGTACG -ACGGAAGCCTATTGAGGTATCCGA -ACGGAAGCCTATTGAGGTATGGGA -ACGGAAGCCTATTGAGGTGTGCAA -ACGGAAGCCTATTGAGGTGAGGAA -ACGGAAGCCTATTGAGGTCAGGTA -ACGGAAGCCTATTGAGGTGACTCT -ACGGAAGCCTATTGAGGTAGTCCT -ACGGAAGCCTATTGAGGTTAAGCC -ACGGAAGCCTATTGAGGTATAGCC -ACGGAAGCCTATTGAGGTTAACCG -ACGGAAGCCTATTGAGGTATGCCA -ACGGAAGCCTATGATTCCGGAAAC -ACGGAAGCCTATGATTCCAACACC -ACGGAAGCCTATGATTCCATCGAG -ACGGAAGCCTATGATTCCCTCCTT -ACGGAAGCCTATGATTCCCCTGTT -ACGGAAGCCTATGATTCCCGGTTT -ACGGAAGCCTATGATTCCGTGGTT -ACGGAAGCCTATGATTCCGCCTTT -ACGGAAGCCTATGATTCCGGTCTT -ACGGAAGCCTATGATTCCACGCTT -ACGGAAGCCTATGATTCCAGCGTT -ACGGAAGCCTATGATTCCTTCGTC -ACGGAAGCCTATGATTCCTCTCTC -ACGGAAGCCTATGATTCCTGGATC -ACGGAAGCCTATGATTCCCACTTC -ACGGAAGCCTATGATTCCGTACTC -ACGGAAGCCTATGATTCCGATGTC -ACGGAAGCCTATGATTCCACAGTC -ACGGAAGCCTATGATTCCTTGCTG -ACGGAAGCCTATGATTCCTCCATG -ACGGAAGCCTATGATTCCTGTGTG -ACGGAAGCCTATGATTCCCTAGTG -ACGGAAGCCTATGATTCCCATCTG -ACGGAAGCCTATGATTCCGAGTTG -ACGGAAGCCTATGATTCCAGACTG -ACGGAAGCCTATGATTCCTCGGTA -ACGGAAGCCTATGATTCCTGCCTA -ACGGAAGCCTATGATTCCCCACTA -ACGGAAGCCTATGATTCCGGAGTA -ACGGAAGCCTATGATTCCTCGTCT -ACGGAAGCCTATGATTCCTGCACT -ACGGAAGCCTATGATTCCCTGACT -ACGGAAGCCTATGATTCCCAACCT -ACGGAAGCCTATGATTCCGCTACT -ACGGAAGCCTATGATTCCGGATCT -ACGGAAGCCTATGATTCCAAGGCT -ACGGAAGCCTATGATTCCTCAACC -ACGGAAGCCTATGATTCCTGTTCC -ACGGAAGCCTATGATTCCATTCCC -ACGGAAGCCTATGATTCCTTCTCG -ACGGAAGCCTATGATTCCTAGACG -ACGGAAGCCTATGATTCCGTAACG -ACGGAAGCCTATGATTCCACTTCG -ACGGAAGCCTATGATTCCTACGCA -ACGGAAGCCTATGATTCCCTTGCA -ACGGAAGCCTATGATTCCCGAACA -ACGGAAGCCTATGATTCCCAGTCA -ACGGAAGCCTATGATTCCGATCCA -ACGGAAGCCTATGATTCCACGACA -ACGGAAGCCTATGATTCCAGCTCA -ACGGAAGCCTATGATTCCTCACGT -ACGGAAGCCTATGATTCCCGTAGT -ACGGAAGCCTATGATTCCGTCAGT -ACGGAAGCCTATGATTCCGAAGGT -ACGGAAGCCTATGATTCCAACCGT -ACGGAAGCCTATGATTCCTTGTGC -ACGGAAGCCTATGATTCCCTAAGC -ACGGAAGCCTATGATTCCACTAGC -ACGGAAGCCTATGATTCCAGATGC -ACGGAAGCCTATGATTCCTGAAGG -ACGGAAGCCTATGATTCCCAATGG -ACGGAAGCCTATGATTCCATGAGG -ACGGAAGCCTATGATTCCAATGGG -ACGGAAGCCTATGATTCCTCCTGA -ACGGAAGCCTATGATTCCTAGCGA -ACGGAAGCCTATGATTCCCACAGA -ACGGAAGCCTATGATTCCGCAAGA -ACGGAAGCCTATGATTCCGGTTGA -ACGGAAGCCTATGATTCCTCCGAT -ACGGAAGCCTATGATTCCTGGCAT -ACGGAAGCCTATGATTCCCGAGAT -ACGGAAGCCTATGATTCCTACCAC -ACGGAAGCCTATGATTCCCAGAAC -ACGGAAGCCTATGATTCCGTCTAC -ACGGAAGCCTATGATTCCACGTAC -ACGGAAGCCTATGATTCCAGTGAC -ACGGAAGCCTATGATTCCCTGTAG -ACGGAAGCCTATGATTCCCCTAAG -ACGGAAGCCTATGATTCCGTTCAG -ACGGAAGCCTATGATTCCGCATAG -ACGGAAGCCTATGATTCCGACAAG -ACGGAAGCCTATGATTCCAAGCAG -ACGGAAGCCTATGATTCCCGTCAA -ACGGAAGCCTATGATTCCGCTGAA -ACGGAAGCCTATGATTCCAGTACG -ACGGAAGCCTATGATTCCATCCGA -ACGGAAGCCTATGATTCCATGGGA -ACGGAAGCCTATGATTCCGTGCAA -ACGGAAGCCTATGATTCCGAGGAA -ACGGAAGCCTATGATTCCCAGGTA -ACGGAAGCCTATGATTCCGACTCT -ACGGAAGCCTATGATTCCAGTCCT -ACGGAAGCCTATGATTCCTAAGCC -ACGGAAGCCTATGATTCCATAGCC -ACGGAAGCCTATGATTCCTAACCG -ACGGAAGCCTATGATTCCATGCCA -ACGGAAGCCTATCATTGGGGAAAC -ACGGAAGCCTATCATTGGAACACC -ACGGAAGCCTATCATTGGATCGAG -ACGGAAGCCTATCATTGGCTCCTT -ACGGAAGCCTATCATTGGCCTGTT -ACGGAAGCCTATCATTGGCGGTTT -ACGGAAGCCTATCATTGGGTGGTT -ACGGAAGCCTATCATTGGGCCTTT -ACGGAAGCCTATCATTGGGGTCTT -ACGGAAGCCTATCATTGGACGCTT -ACGGAAGCCTATCATTGGAGCGTT -ACGGAAGCCTATCATTGGTTCGTC -ACGGAAGCCTATCATTGGTCTCTC -ACGGAAGCCTATCATTGGTGGATC -ACGGAAGCCTATCATTGGCACTTC -ACGGAAGCCTATCATTGGGTACTC -ACGGAAGCCTATCATTGGGATGTC -ACGGAAGCCTATCATTGGACAGTC -ACGGAAGCCTATCATTGGTTGCTG -ACGGAAGCCTATCATTGGTCCATG -ACGGAAGCCTATCATTGGTGTGTG -ACGGAAGCCTATCATTGGCTAGTG -ACGGAAGCCTATCATTGGCATCTG -ACGGAAGCCTATCATTGGGAGTTG -ACGGAAGCCTATCATTGGAGACTG -ACGGAAGCCTATCATTGGTCGGTA -ACGGAAGCCTATCATTGGTGCCTA -ACGGAAGCCTATCATTGGCCACTA -ACGGAAGCCTATCATTGGGGAGTA -ACGGAAGCCTATCATTGGTCGTCT -ACGGAAGCCTATCATTGGTGCACT -ACGGAAGCCTATCATTGGCTGACT -ACGGAAGCCTATCATTGGCAACCT -ACGGAAGCCTATCATTGGGCTACT -ACGGAAGCCTATCATTGGGGATCT -ACGGAAGCCTATCATTGGAAGGCT -ACGGAAGCCTATCATTGGTCAACC -ACGGAAGCCTATCATTGGTGTTCC -ACGGAAGCCTATCATTGGATTCCC -ACGGAAGCCTATCATTGGTTCTCG -ACGGAAGCCTATCATTGGTAGACG -ACGGAAGCCTATCATTGGGTAACG -ACGGAAGCCTATCATTGGACTTCG -ACGGAAGCCTATCATTGGTACGCA -ACGGAAGCCTATCATTGGCTTGCA -ACGGAAGCCTATCATTGGCGAACA -ACGGAAGCCTATCATTGGCAGTCA -ACGGAAGCCTATCATTGGGATCCA -ACGGAAGCCTATCATTGGACGACA -ACGGAAGCCTATCATTGGAGCTCA -ACGGAAGCCTATCATTGGTCACGT -ACGGAAGCCTATCATTGGCGTAGT -ACGGAAGCCTATCATTGGGTCAGT -ACGGAAGCCTATCATTGGGAAGGT -ACGGAAGCCTATCATTGGAACCGT -ACGGAAGCCTATCATTGGTTGTGC -ACGGAAGCCTATCATTGGCTAAGC -ACGGAAGCCTATCATTGGACTAGC -ACGGAAGCCTATCATTGGAGATGC -ACGGAAGCCTATCATTGGTGAAGG -ACGGAAGCCTATCATTGGCAATGG -ACGGAAGCCTATCATTGGATGAGG -ACGGAAGCCTATCATTGGAATGGG -ACGGAAGCCTATCATTGGTCCTGA -ACGGAAGCCTATCATTGGTAGCGA -ACGGAAGCCTATCATTGGCACAGA -ACGGAAGCCTATCATTGGGCAAGA -ACGGAAGCCTATCATTGGGGTTGA -ACGGAAGCCTATCATTGGTCCGAT -ACGGAAGCCTATCATTGGTGGCAT -ACGGAAGCCTATCATTGGCGAGAT -ACGGAAGCCTATCATTGGTACCAC -ACGGAAGCCTATCATTGGCAGAAC -ACGGAAGCCTATCATTGGGTCTAC -ACGGAAGCCTATCATTGGACGTAC -ACGGAAGCCTATCATTGGAGTGAC -ACGGAAGCCTATCATTGGCTGTAG -ACGGAAGCCTATCATTGGCCTAAG -ACGGAAGCCTATCATTGGGTTCAG -ACGGAAGCCTATCATTGGGCATAG -ACGGAAGCCTATCATTGGGACAAG -ACGGAAGCCTATCATTGGAAGCAG -ACGGAAGCCTATCATTGGCGTCAA -ACGGAAGCCTATCATTGGGCTGAA -ACGGAAGCCTATCATTGGAGTACG -ACGGAAGCCTATCATTGGATCCGA -ACGGAAGCCTATCATTGGATGGGA -ACGGAAGCCTATCATTGGGTGCAA -ACGGAAGCCTATCATTGGGAGGAA -ACGGAAGCCTATCATTGGCAGGTA -ACGGAAGCCTATCATTGGGACTCT -ACGGAAGCCTATCATTGGAGTCCT -ACGGAAGCCTATCATTGGTAAGCC -ACGGAAGCCTATCATTGGATAGCC -ACGGAAGCCTATCATTGGTAACCG -ACGGAAGCCTATCATTGGATGCCA -ACGGAAGCCTATGATCGAGGAAAC -ACGGAAGCCTATGATCGAAACACC -ACGGAAGCCTATGATCGAATCGAG -ACGGAAGCCTATGATCGACTCCTT -ACGGAAGCCTATGATCGACCTGTT -ACGGAAGCCTATGATCGACGGTTT -ACGGAAGCCTATGATCGAGTGGTT -ACGGAAGCCTATGATCGAGCCTTT -ACGGAAGCCTATGATCGAGGTCTT -ACGGAAGCCTATGATCGAACGCTT -ACGGAAGCCTATGATCGAAGCGTT -ACGGAAGCCTATGATCGATTCGTC -ACGGAAGCCTATGATCGATCTCTC -ACGGAAGCCTATGATCGATGGATC -ACGGAAGCCTATGATCGACACTTC -ACGGAAGCCTATGATCGAGTACTC -ACGGAAGCCTATGATCGAGATGTC -ACGGAAGCCTATGATCGAACAGTC -ACGGAAGCCTATGATCGATTGCTG -ACGGAAGCCTATGATCGATCCATG -ACGGAAGCCTATGATCGATGTGTG -ACGGAAGCCTATGATCGACTAGTG -ACGGAAGCCTATGATCGACATCTG -ACGGAAGCCTATGATCGAGAGTTG -ACGGAAGCCTATGATCGAAGACTG -ACGGAAGCCTATGATCGATCGGTA -ACGGAAGCCTATGATCGATGCCTA -ACGGAAGCCTATGATCGACCACTA -ACGGAAGCCTATGATCGAGGAGTA -ACGGAAGCCTATGATCGATCGTCT -ACGGAAGCCTATGATCGATGCACT -ACGGAAGCCTATGATCGACTGACT -ACGGAAGCCTATGATCGACAACCT -ACGGAAGCCTATGATCGAGCTACT -ACGGAAGCCTATGATCGAGGATCT -ACGGAAGCCTATGATCGAAAGGCT -ACGGAAGCCTATGATCGATCAACC -ACGGAAGCCTATGATCGATGTTCC -ACGGAAGCCTATGATCGAATTCCC -ACGGAAGCCTATGATCGATTCTCG -ACGGAAGCCTATGATCGATAGACG -ACGGAAGCCTATGATCGAGTAACG -ACGGAAGCCTATGATCGAACTTCG -ACGGAAGCCTATGATCGATACGCA -ACGGAAGCCTATGATCGACTTGCA -ACGGAAGCCTATGATCGACGAACA -ACGGAAGCCTATGATCGACAGTCA -ACGGAAGCCTATGATCGAGATCCA -ACGGAAGCCTATGATCGAACGACA -ACGGAAGCCTATGATCGAAGCTCA -ACGGAAGCCTATGATCGATCACGT -ACGGAAGCCTATGATCGACGTAGT -ACGGAAGCCTATGATCGAGTCAGT -ACGGAAGCCTATGATCGAGAAGGT -ACGGAAGCCTATGATCGAAACCGT -ACGGAAGCCTATGATCGATTGTGC -ACGGAAGCCTATGATCGACTAAGC -ACGGAAGCCTATGATCGAACTAGC -ACGGAAGCCTATGATCGAAGATGC -ACGGAAGCCTATGATCGATGAAGG -ACGGAAGCCTATGATCGACAATGG -ACGGAAGCCTATGATCGAATGAGG -ACGGAAGCCTATGATCGAAATGGG -ACGGAAGCCTATGATCGATCCTGA -ACGGAAGCCTATGATCGATAGCGA -ACGGAAGCCTATGATCGACACAGA -ACGGAAGCCTATGATCGAGCAAGA -ACGGAAGCCTATGATCGAGGTTGA -ACGGAAGCCTATGATCGATCCGAT -ACGGAAGCCTATGATCGATGGCAT -ACGGAAGCCTATGATCGACGAGAT -ACGGAAGCCTATGATCGATACCAC -ACGGAAGCCTATGATCGACAGAAC -ACGGAAGCCTATGATCGAGTCTAC -ACGGAAGCCTATGATCGAACGTAC -ACGGAAGCCTATGATCGAAGTGAC -ACGGAAGCCTATGATCGACTGTAG -ACGGAAGCCTATGATCGACCTAAG -ACGGAAGCCTATGATCGAGTTCAG -ACGGAAGCCTATGATCGAGCATAG -ACGGAAGCCTATGATCGAGACAAG -ACGGAAGCCTATGATCGAAAGCAG -ACGGAAGCCTATGATCGACGTCAA -ACGGAAGCCTATGATCGAGCTGAA -ACGGAAGCCTATGATCGAAGTACG -ACGGAAGCCTATGATCGAATCCGA -ACGGAAGCCTATGATCGAATGGGA -ACGGAAGCCTATGATCGAGTGCAA -ACGGAAGCCTATGATCGAGAGGAA -ACGGAAGCCTATGATCGACAGGTA -ACGGAAGCCTATGATCGAGACTCT -ACGGAAGCCTATGATCGAAGTCCT -ACGGAAGCCTATGATCGATAAGCC -ACGGAAGCCTATGATCGAATAGCC -ACGGAAGCCTATGATCGATAACCG -ACGGAAGCCTATGATCGAATGCCA -ACGGAAGCCTATCACTACGGAAAC -ACGGAAGCCTATCACTACAACACC -ACGGAAGCCTATCACTACATCGAG -ACGGAAGCCTATCACTACCTCCTT -ACGGAAGCCTATCACTACCCTGTT -ACGGAAGCCTATCACTACCGGTTT -ACGGAAGCCTATCACTACGTGGTT -ACGGAAGCCTATCACTACGCCTTT -ACGGAAGCCTATCACTACGGTCTT -ACGGAAGCCTATCACTACACGCTT -ACGGAAGCCTATCACTACAGCGTT -ACGGAAGCCTATCACTACTTCGTC -ACGGAAGCCTATCACTACTCTCTC -ACGGAAGCCTATCACTACTGGATC -ACGGAAGCCTATCACTACCACTTC -ACGGAAGCCTATCACTACGTACTC -ACGGAAGCCTATCACTACGATGTC -ACGGAAGCCTATCACTACACAGTC -ACGGAAGCCTATCACTACTTGCTG -ACGGAAGCCTATCACTACTCCATG -ACGGAAGCCTATCACTACTGTGTG -ACGGAAGCCTATCACTACCTAGTG -ACGGAAGCCTATCACTACCATCTG -ACGGAAGCCTATCACTACGAGTTG -ACGGAAGCCTATCACTACAGACTG -ACGGAAGCCTATCACTACTCGGTA -ACGGAAGCCTATCACTACTGCCTA -ACGGAAGCCTATCACTACCCACTA -ACGGAAGCCTATCACTACGGAGTA -ACGGAAGCCTATCACTACTCGTCT -ACGGAAGCCTATCACTACTGCACT -ACGGAAGCCTATCACTACCTGACT -ACGGAAGCCTATCACTACCAACCT -ACGGAAGCCTATCACTACGCTACT -ACGGAAGCCTATCACTACGGATCT -ACGGAAGCCTATCACTACAAGGCT -ACGGAAGCCTATCACTACTCAACC -ACGGAAGCCTATCACTACTGTTCC -ACGGAAGCCTATCACTACATTCCC -ACGGAAGCCTATCACTACTTCTCG -ACGGAAGCCTATCACTACTAGACG -ACGGAAGCCTATCACTACGTAACG -ACGGAAGCCTATCACTACACTTCG -ACGGAAGCCTATCACTACTACGCA -ACGGAAGCCTATCACTACCTTGCA -ACGGAAGCCTATCACTACCGAACA -ACGGAAGCCTATCACTACCAGTCA -ACGGAAGCCTATCACTACGATCCA -ACGGAAGCCTATCACTACACGACA -ACGGAAGCCTATCACTACAGCTCA -ACGGAAGCCTATCACTACTCACGT -ACGGAAGCCTATCACTACCGTAGT -ACGGAAGCCTATCACTACGTCAGT -ACGGAAGCCTATCACTACGAAGGT -ACGGAAGCCTATCACTACAACCGT -ACGGAAGCCTATCACTACTTGTGC -ACGGAAGCCTATCACTACCTAAGC -ACGGAAGCCTATCACTACACTAGC -ACGGAAGCCTATCACTACAGATGC -ACGGAAGCCTATCACTACTGAAGG -ACGGAAGCCTATCACTACCAATGG -ACGGAAGCCTATCACTACATGAGG -ACGGAAGCCTATCACTACAATGGG -ACGGAAGCCTATCACTACTCCTGA -ACGGAAGCCTATCACTACTAGCGA -ACGGAAGCCTATCACTACCACAGA -ACGGAAGCCTATCACTACGCAAGA -ACGGAAGCCTATCACTACGGTTGA -ACGGAAGCCTATCACTACTCCGAT -ACGGAAGCCTATCACTACTGGCAT -ACGGAAGCCTATCACTACCGAGAT -ACGGAAGCCTATCACTACTACCAC -ACGGAAGCCTATCACTACCAGAAC -ACGGAAGCCTATCACTACGTCTAC -ACGGAAGCCTATCACTACACGTAC -ACGGAAGCCTATCACTACAGTGAC -ACGGAAGCCTATCACTACCTGTAG -ACGGAAGCCTATCACTACCCTAAG -ACGGAAGCCTATCACTACGTTCAG -ACGGAAGCCTATCACTACGCATAG -ACGGAAGCCTATCACTACGACAAG -ACGGAAGCCTATCACTACAAGCAG -ACGGAAGCCTATCACTACCGTCAA -ACGGAAGCCTATCACTACGCTGAA -ACGGAAGCCTATCACTACAGTACG -ACGGAAGCCTATCACTACATCCGA -ACGGAAGCCTATCACTACATGGGA -ACGGAAGCCTATCACTACGTGCAA -ACGGAAGCCTATCACTACGAGGAA -ACGGAAGCCTATCACTACCAGGTA -ACGGAAGCCTATCACTACGACTCT -ACGGAAGCCTATCACTACAGTCCT -ACGGAAGCCTATCACTACTAAGCC -ACGGAAGCCTATCACTACATAGCC -ACGGAAGCCTATCACTACTAACCG -ACGGAAGCCTATCACTACATGCCA -ACGGAAGCCTATAACCAGGGAAAC -ACGGAAGCCTATAACCAGAACACC -ACGGAAGCCTATAACCAGATCGAG -ACGGAAGCCTATAACCAGCTCCTT -ACGGAAGCCTATAACCAGCCTGTT -ACGGAAGCCTATAACCAGCGGTTT -ACGGAAGCCTATAACCAGGTGGTT -ACGGAAGCCTATAACCAGGCCTTT -ACGGAAGCCTATAACCAGGGTCTT -ACGGAAGCCTATAACCAGACGCTT -ACGGAAGCCTATAACCAGAGCGTT -ACGGAAGCCTATAACCAGTTCGTC -ACGGAAGCCTATAACCAGTCTCTC -ACGGAAGCCTATAACCAGTGGATC -ACGGAAGCCTATAACCAGCACTTC -ACGGAAGCCTATAACCAGGTACTC -ACGGAAGCCTATAACCAGGATGTC -ACGGAAGCCTATAACCAGACAGTC -ACGGAAGCCTATAACCAGTTGCTG -ACGGAAGCCTATAACCAGTCCATG -ACGGAAGCCTATAACCAGTGTGTG -ACGGAAGCCTATAACCAGCTAGTG -ACGGAAGCCTATAACCAGCATCTG -ACGGAAGCCTATAACCAGGAGTTG -ACGGAAGCCTATAACCAGAGACTG -ACGGAAGCCTATAACCAGTCGGTA -ACGGAAGCCTATAACCAGTGCCTA -ACGGAAGCCTATAACCAGCCACTA -ACGGAAGCCTATAACCAGGGAGTA -ACGGAAGCCTATAACCAGTCGTCT -ACGGAAGCCTATAACCAGTGCACT -ACGGAAGCCTATAACCAGCTGACT -ACGGAAGCCTATAACCAGCAACCT -ACGGAAGCCTATAACCAGGCTACT -ACGGAAGCCTATAACCAGGGATCT -ACGGAAGCCTATAACCAGAAGGCT -ACGGAAGCCTATAACCAGTCAACC -ACGGAAGCCTATAACCAGTGTTCC -ACGGAAGCCTATAACCAGATTCCC -ACGGAAGCCTATAACCAGTTCTCG -ACGGAAGCCTATAACCAGTAGACG -ACGGAAGCCTATAACCAGGTAACG -ACGGAAGCCTATAACCAGACTTCG -ACGGAAGCCTATAACCAGTACGCA -ACGGAAGCCTATAACCAGCTTGCA -ACGGAAGCCTATAACCAGCGAACA -ACGGAAGCCTATAACCAGCAGTCA -ACGGAAGCCTATAACCAGGATCCA -ACGGAAGCCTATAACCAGACGACA -ACGGAAGCCTATAACCAGAGCTCA -ACGGAAGCCTATAACCAGTCACGT -ACGGAAGCCTATAACCAGCGTAGT -ACGGAAGCCTATAACCAGGTCAGT -ACGGAAGCCTATAACCAGGAAGGT -ACGGAAGCCTATAACCAGAACCGT -ACGGAAGCCTATAACCAGTTGTGC -ACGGAAGCCTATAACCAGCTAAGC -ACGGAAGCCTATAACCAGACTAGC -ACGGAAGCCTATAACCAGAGATGC -ACGGAAGCCTATAACCAGTGAAGG -ACGGAAGCCTATAACCAGCAATGG -ACGGAAGCCTATAACCAGATGAGG -ACGGAAGCCTATAACCAGAATGGG -ACGGAAGCCTATAACCAGTCCTGA -ACGGAAGCCTATAACCAGTAGCGA -ACGGAAGCCTATAACCAGCACAGA -ACGGAAGCCTATAACCAGGCAAGA -ACGGAAGCCTATAACCAGGGTTGA -ACGGAAGCCTATAACCAGTCCGAT -ACGGAAGCCTATAACCAGTGGCAT -ACGGAAGCCTATAACCAGCGAGAT -ACGGAAGCCTATAACCAGTACCAC -ACGGAAGCCTATAACCAGCAGAAC -ACGGAAGCCTATAACCAGGTCTAC -ACGGAAGCCTATAACCAGACGTAC -ACGGAAGCCTATAACCAGAGTGAC -ACGGAAGCCTATAACCAGCTGTAG -ACGGAAGCCTATAACCAGCCTAAG -ACGGAAGCCTATAACCAGGTTCAG -ACGGAAGCCTATAACCAGGCATAG -ACGGAAGCCTATAACCAGGACAAG -ACGGAAGCCTATAACCAGAAGCAG -ACGGAAGCCTATAACCAGCGTCAA -ACGGAAGCCTATAACCAGGCTGAA -ACGGAAGCCTATAACCAGAGTACG -ACGGAAGCCTATAACCAGATCCGA -ACGGAAGCCTATAACCAGATGGGA -ACGGAAGCCTATAACCAGGTGCAA -ACGGAAGCCTATAACCAGGAGGAA -ACGGAAGCCTATAACCAGCAGGTA -ACGGAAGCCTATAACCAGGACTCT -ACGGAAGCCTATAACCAGAGTCCT -ACGGAAGCCTATAACCAGTAAGCC -ACGGAAGCCTATAACCAGATAGCC -ACGGAAGCCTATAACCAGTAACCG -ACGGAAGCCTATAACCAGATGCCA -ACGGAAGCCTATTACGTCGGAAAC -ACGGAAGCCTATTACGTCAACACC -ACGGAAGCCTATTACGTCATCGAG -ACGGAAGCCTATTACGTCCTCCTT -ACGGAAGCCTATTACGTCCCTGTT -ACGGAAGCCTATTACGTCCGGTTT -ACGGAAGCCTATTACGTCGTGGTT -ACGGAAGCCTATTACGTCGCCTTT -ACGGAAGCCTATTACGTCGGTCTT -ACGGAAGCCTATTACGTCACGCTT -ACGGAAGCCTATTACGTCAGCGTT -ACGGAAGCCTATTACGTCTTCGTC -ACGGAAGCCTATTACGTCTCTCTC -ACGGAAGCCTATTACGTCTGGATC -ACGGAAGCCTATTACGTCCACTTC -ACGGAAGCCTATTACGTCGTACTC -ACGGAAGCCTATTACGTCGATGTC -ACGGAAGCCTATTACGTCACAGTC -ACGGAAGCCTATTACGTCTTGCTG -ACGGAAGCCTATTACGTCTCCATG -ACGGAAGCCTATTACGTCTGTGTG -ACGGAAGCCTATTACGTCCTAGTG -ACGGAAGCCTATTACGTCCATCTG -ACGGAAGCCTATTACGTCGAGTTG -ACGGAAGCCTATTACGTCAGACTG -ACGGAAGCCTATTACGTCTCGGTA -ACGGAAGCCTATTACGTCTGCCTA -ACGGAAGCCTATTACGTCCCACTA -ACGGAAGCCTATTACGTCGGAGTA -ACGGAAGCCTATTACGTCTCGTCT -ACGGAAGCCTATTACGTCTGCACT -ACGGAAGCCTATTACGTCCTGACT -ACGGAAGCCTATTACGTCCAACCT -ACGGAAGCCTATTACGTCGCTACT -ACGGAAGCCTATTACGTCGGATCT -ACGGAAGCCTATTACGTCAAGGCT -ACGGAAGCCTATTACGTCTCAACC -ACGGAAGCCTATTACGTCTGTTCC -ACGGAAGCCTATTACGTCATTCCC -ACGGAAGCCTATTACGTCTTCTCG -ACGGAAGCCTATTACGTCTAGACG -ACGGAAGCCTATTACGTCGTAACG -ACGGAAGCCTATTACGTCACTTCG -ACGGAAGCCTATTACGTCTACGCA -ACGGAAGCCTATTACGTCCTTGCA -ACGGAAGCCTATTACGTCCGAACA -ACGGAAGCCTATTACGTCCAGTCA -ACGGAAGCCTATTACGTCGATCCA -ACGGAAGCCTATTACGTCACGACA -ACGGAAGCCTATTACGTCAGCTCA -ACGGAAGCCTATTACGTCTCACGT -ACGGAAGCCTATTACGTCCGTAGT -ACGGAAGCCTATTACGTCGTCAGT -ACGGAAGCCTATTACGTCGAAGGT -ACGGAAGCCTATTACGTCAACCGT -ACGGAAGCCTATTACGTCTTGTGC -ACGGAAGCCTATTACGTCCTAAGC -ACGGAAGCCTATTACGTCACTAGC -ACGGAAGCCTATTACGTCAGATGC -ACGGAAGCCTATTACGTCTGAAGG -ACGGAAGCCTATTACGTCCAATGG -ACGGAAGCCTATTACGTCATGAGG -ACGGAAGCCTATTACGTCAATGGG -ACGGAAGCCTATTACGTCTCCTGA -ACGGAAGCCTATTACGTCTAGCGA -ACGGAAGCCTATTACGTCCACAGA -ACGGAAGCCTATTACGTCGCAAGA -ACGGAAGCCTATTACGTCGGTTGA -ACGGAAGCCTATTACGTCTCCGAT -ACGGAAGCCTATTACGTCTGGCAT -ACGGAAGCCTATTACGTCCGAGAT -ACGGAAGCCTATTACGTCTACCAC -ACGGAAGCCTATTACGTCCAGAAC -ACGGAAGCCTATTACGTCGTCTAC -ACGGAAGCCTATTACGTCACGTAC -ACGGAAGCCTATTACGTCAGTGAC -ACGGAAGCCTATTACGTCCTGTAG -ACGGAAGCCTATTACGTCCCTAAG -ACGGAAGCCTATTACGTCGTTCAG -ACGGAAGCCTATTACGTCGCATAG -ACGGAAGCCTATTACGTCGACAAG -ACGGAAGCCTATTACGTCAAGCAG -ACGGAAGCCTATTACGTCCGTCAA -ACGGAAGCCTATTACGTCGCTGAA -ACGGAAGCCTATTACGTCAGTACG -ACGGAAGCCTATTACGTCATCCGA -ACGGAAGCCTATTACGTCATGGGA -ACGGAAGCCTATTACGTCGTGCAA -ACGGAAGCCTATTACGTCGAGGAA -ACGGAAGCCTATTACGTCCAGGTA -ACGGAAGCCTATTACGTCGACTCT -ACGGAAGCCTATTACGTCAGTCCT -ACGGAAGCCTATTACGTCTAAGCC -ACGGAAGCCTATTACGTCATAGCC -ACGGAAGCCTATTACGTCTAACCG -ACGGAAGCCTATTACGTCATGCCA -ACGGAAGCCTATTACACGGGAAAC -ACGGAAGCCTATTACACGAACACC -ACGGAAGCCTATTACACGATCGAG -ACGGAAGCCTATTACACGCTCCTT -ACGGAAGCCTATTACACGCCTGTT -ACGGAAGCCTATTACACGCGGTTT -ACGGAAGCCTATTACACGGTGGTT -ACGGAAGCCTATTACACGGCCTTT -ACGGAAGCCTATTACACGGGTCTT -ACGGAAGCCTATTACACGACGCTT -ACGGAAGCCTATTACACGAGCGTT -ACGGAAGCCTATTACACGTTCGTC -ACGGAAGCCTATTACACGTCTCTC -ACGGAAGCCTATTACACGTGGATC -ACGGAAGCCTATTACACGCACTTC -ACGGAAGCCTATTACACGGTACTC -ACGGAAGCCTATTACACGGATGTC -ACGGAAGCCTATTACACGACAGTC -ACGGAAGCCTATTACACGTTGCTG -ACGGAAGCCTATTACACGTCCATG -ACGGAAGCCTATTACACGTGTGTG -ACGGAAGCCTATTACACGCTAGTG -ACGGAAGCCTATTACACGCATCTG -ACGGAAGCCTATTACACGGAGTTG -ACGGAAGCCTATTACACGAGACTG -ACGGAAGCCTATTACACGTCGGTA -ACGGAAGCCTATTACACGTGCCTA -ACGGAAGCCTATTACACGCCACTA -ACGGAAGCCTATTACACGGGAGTA -ACGGAAGCCTATTACACGTCGTCT -ACGGAAGCCTATTACACGTGCACT -ACGGAAGCCTATTACACGCTGACT -ACGGAAGCCTATTACACGCAACCT -ACGGAAGCCTATTACACGGCTACT -ACGGAAGCCTATTACACGGGATCT -ACGGAAGCCTATTACACGAAGGCT -ACGGAAGCCTATTACACGTCAACC -ACGGAAGCCTATTACACGTGTTCC -ACGGAAGCCTATTACACGATTCCC -ACGGAAGCCTATTACACGTTCTCG -ACGGAAGCCTATTACACGTAGACG -ACGGAAGCCTATTACACGGTAACG -ACGGAAGCCTATTACACGACTTCG -ACGGAAGCCTATTACACGTACGCA -ACGGAAGCCTATTACACGCTTGCA -ACGGAAGCCTATTACACGCGAACA -ACGGAAGCCTATTACACGCAGTCA -ACGGAAGCCTATTACACGGATCCA -ACGGAAGCCTATTACACGACGACA -ACGGAAGCCTATTACACGAGCTCA -ACGGAAGCCTATTACACGTCACGT -ACGGAAGCCTATTACACGCGTAGT -ACGGAAGCCTATTACACGGTCAGT -ACGGAAGCCTATTACACGGAAGGT -ACGGAAGCCTATTACACGAACCGT -ACGGAAGCCTATTACACGTTGTGC -ACGGAAGCCTATTACACGCTAAGC -ACGGAAGCCTATTACACGACTAGC -ACGGAAGCCTATTACACGAGATGC -ACGGAAGCCTATTACACGTGAAGG -ACGGAAGCCTATTACACGCAATGG -ACGGAAGCCTATTACACGATGAGG -ACGGAAGCCTATTACACGAATGGG -ACGGAAGCCTATTACACGTCCTGA -ACGGAAGCCTATTACACGTAGCGA -ACGGAAGCCTATTACACGCACAGA -ACGGAAGCCTATTACACGGCAAGA -ACGGAAGCCTATTACACGGGTTGA -ACGGAAGCCTATTACACGTCCGAT -ACGGAAGCCTATTACACGTGGCAT -ACGGAAGCCTATTACACGCGAGAT -ACGGAAGCCTATTACACGTACCAC -ACGGAAGCCTATTACACGCAGAAC -ACGGAAGCCTATTACACGGTCTAC -ACGGAAGCCTATTACACGACGTAC -ACGGAAGCCTATTACACGAGTGAC -ACGGAAGCCTATTACACGCTGTAG -ACGGAAGCCTATTACACGCCTAAG -ACGGAAGCCTATTACACGGTTCAG -ACGGAAGCCTATTACACGGCATAG -ACGGAAGCCTATTACACGGACAAG -ACGGAAGCCTATTACACGAAGCAG -ACGGAAGCCTATTACACGCGTCAA -ACGGAAGCCTATTACACGGCTGAA -ACGGAAGCCTATTACACGAGTACG -ACGGAAGCCTATTACACGATCCGA -ACGGAAGCCTATTACACGATGGGA -ACGGAAGCCTATTACACGGTGCAA -ACGGAAGCCTATTACACGGAGGAA -ACGGAAGCCTATTACACGCAGGTA -ACGGAAGCCTATTACACGGACTCT -ACGGAAGCCTATTACACGAGTCCT -ACGGAAGCCTATTACACGTAAGCC -ACGGAAGCCTATTACACGATAGCC -ACGGAAGCCTATTACACGTAACCG -ACGGAAGCCTATTACACGATGCCA -ACGGAAGCCTATGACAGTGGAAAC -ACGGAAGCCTATGACAGTAACACC -ACGGAAGCCTATGACAGTATCGAG -ACGGAAGCCTATGACAGTCTCCTT -ACGGAAGCCTATGACAGTCCTGTT -ACGGAAGCCTATGACAGTCGGTTT -ACGGAAGCCTATGACAGTGTGGTT -ACGGAAGCCTATGACAGTGCCTTT -ACGGAAGCCTATGACAGTGGTCTT -ACGGAAGCCTATGACAGTACGCTT -ACGGAAGCCTATGACAGTAGCGTT -ACGGAAGCCTATGACAGTTTCGTC -ACGGAAGCCTATGACAGTTCTCTC -ACGGAAGCCTATGACAGTTGGATC -ACGGAAGCCTATGACAGTCACTTC -ACGGAAGCCTATGACAGTGTACTC -ACGGAAGCCTATGACAGTGATGTC -ACGGAAGCCTATGACAGTACAGTC -ACGGAAGCCTATGACAGTTTGCTG -ACGGAAGCCTATGACAGTTCCATG -ACGGAAGCCTATGACAGTTGTGTG -ACGGAAGCCTATGACAGTCTAGTG -ACGGAAGCCTATGACAGTCATCTG -ACGGAAGCCTATGACAGTGAGTTG -ACGGAAGCCTATGACAGTAGACTG -ACGGAAGCCTATGACAGTTCGGTA -ACGGAAGCCTATGACAGTTGCCTA -ACGGAAGCCTATGACAGTCCACTA -ACGGAAGCCTATGACAGTGGAGTA -ACGGAAGCCTATGACAGTTCGTCT -ACGGAAGCCTATGACAGTTGCACT -ACGGAAGCCTATGACAGTCTGACT -ACGGAAGCCTATGACAGTCAACCT -ACGGAAGCCTATGACAGTGCTACT -ACGGAAGCCTATGACAGTGGATCT -ACGGAAGCCTATGACAGTAAGGCT -ACGGAAGCCTATGACAGTTCAACC -ACGGAAGCCTATGACAGTTGTTCC -ACGGAAGCCTATGACAGTATTCCC -ACGGAAGCCTATGACAGTTTCTCG -ACGGAAGCCTATGACAGTTAGACG -ACGGAAGCCTATGACAGTGTAACG -ACGGAAGCCTATGACAGTACTTCG -ACGGAAGCCTATGACAGTTACGCA -ACGGAAGCCTATGACAGTCTTGCA -ACGGAAGCCTATGACAGTCGAACA -ACGGAAGCCTATGACAGTCAGTCA -ACGGAAGCCTATGACAGTGATCCA -ACGGAAGCCTATGACAGTACGACA -ACGGAAGCCTATGACAGTAGCTCA -ACGGAAGCCTATGACAGTTCACGT -ACGGAAGCCTATGACAGTCGTAGT -ACGGAAGCCTATGACAGTGTCAGT -ACGGAAGCCTATGACAGTGAAGGT -ACGGAAGCCTATGACAGTAACCGT -ACGGAAGCCTATGACAGTTTGTGC -ACGGAAGCCTATGACAGTCTAAGC -ACGGAAGCCTATGACAGTACTAGC -ACGGAAGCCTATGACAGTAGATGC -ACGGAAGCCTATGACAGTTGAAGG -ACGGAAGCCTATGACAGTCAATGG -ACGGAAGCCTATGACAGTATGAGG -ACGGAAGCCTATGACAGTAATGGG -ACGGAAGCCTATGACAGTTCCTGA -ACGGAAGCCTATGACAGTTAGCGA -ACGGAAGCCTATGACAGTCACAGA -ACGGAAGCCTATGACAGTGCAAGA -ACGGAAGCCTATGACAGTGGTTGA -ACGGAAGCCTATGACAGTTCCGAT -ACGGAAGCCTATGACAGTTGGCAT -ACGGAAGCCTATGACAGTCGAGAT -ACGGAAGCCTATGACAGTTACCAC -ACGGAAGCCTATGACAGTCAGAAC -ACGGAAGCCTATGACAGTGTCTAC -ACGGAAGCCTATGACAGTACGTAC -ACGGAAGCCTATGACAGTAGTGAC -ACGGAAGCCTATGACAGTCTGTAG -ACGGAAGCCTATGACAGTCCTAAG -ACGGAAGCCTATGACAGTGTTCAG -ACGGAAGCCTATGACAGTGCATAG -ACGGAAGCCTATGACAGTGACAAG -ACGGAAGCCTATGACAGTAAGCAG -ACGGAAGCCTATGACAGTCGTCAA -ACGGAAGCCTATGACAGTGCTGAA -ACGGAAGCCTATGACAGTAGTACG -ACGGAAGCCTATGACAGTATCCGA -ACGGAAGCCTATGACAGTATGGGA -ACGGAAGCCTATGACAGTGTGCAA -ACGGAAGCCTATGACAGTGAGGAA -ACGGAAGCCTATGACAGTCAGGTA -ACGGAAGCCTATGACAGTGACTCT -ACGGAAGCCTATGACAGTAGTCCT -ACGGAAGCCTATGACAGTTAAGCC -ACGGAAGCCTATGACAGTATAGCC -ACGGAAGCCTATGACAGTTAACCG -ACGGAAGCCTATGACAGTATGCCA -ACGGAAGCCTATTAGCTGGGAAAC -ACGGAAGCCTATTAGCTGAACACC -ACGGAAGCCTATTAGCTGATCGAG -ACGGAAGCCTATTAGCTGCTCCTT -ACGGAAGCCTATTAGCTGCCTGTT -ACGGAAGCCTATTAGCTGCGGTTT -ACGGAAGCCTATTAGCTGGTGGTT -ACGGAAGCCTATTAGCTGGCCTTT -ACGGAAGCCTATTAGCTGGGTCTT -ACGGAAGCCTATTAGCTGACGCTT -ACGGAAGCCTATTAGCTGAGCGTT -ACGGAAGCCTATTAGCTGTTCGTC -ACGGAAGCCTATTAGCTGTCTCTC -ACGGAAGCCTATTAGCTGTGGATC -ACGGAAGCCTATTAGCTGCACTTC -ACGGAAGCCTATTAGCTGGTACTC -ACGGAAGCCTATTAGCTGGATGTC -ACGGAAGCCTATTAGCTGACAGTC -ACGGAAGCCTATTAGCTGTTGCTG -ACGGAAGCCTATTAGCTGTCCATG -ACGGAAGCCTATTAGCTGTGTGTG -ACGGAAGCCTATTAGCTGCTAGTG -ACGGAAGCCTATTAGCTGCATCTG -ACGGAAGCCTATTAGCTGGAGTTG -ACGGAAGCCTATTAGCTGAGACTG -ACGGAAGCCTATTAGCTGTCGGTA -ACGGAAGCCTATTAGCTGTGCCTA -ACGGAAGCCTATTAGCTGCCACTA -ACGGAAGCCTATTAGCTGGGAGTA -ACGGAAGCCTATTAGCTGTCGTCT -ACGGAAGCCTATTAGCTGTGCACT -ACGGAAGCCTATTAGCTGCTGACT -ACGGAAGCCTATTAGCTGCAACCT -ACGGAAGCCTATTAGCTGGCTACT -ACGGAAGCCTATTAGCTGGGATCT -ACGGAAGCCTATTAGCTGAAGGCT -ACGGAAGCCTATTAGCTGTCAACC -ACGGAAGCCTATTAGCTGTGTTCC -ACGGAAGCCTATTAGCTGATTCCC -ACGGAAGCCTATTAGCTGTTCTCG -ACGGAAGCCTATTAGCTGTAGACG -ACGGAAGCCTATTAGCTGGTAACG -ACGGAAGCCTATTAGCTGACTTCG -ACGGAAGCCTATTAGCTGTACGCA -ACGGAAGCCTATTAGCTGCTTGCA -ACGGAAGCCTATTAGCTGCGAACA -ACGGAAGCCTATTAGCTGCAGTCA -ACGGAAGCCTATTAGCTGGATCCA -ACGGAAGCCTATTAGCTGACGACA -ACGGAAGCCTATTAGCTGAGCTCA -ACGGAAGCCTATTAGCTGTCACGT -ACGGAAGCCTATTAGCTGCGTAGT -ACGGAAGCCTATTAGCTGGTCAGT -ACGGAAGCCTATTAGCTGGAAGGT -ACGGAAGCCTATTAGCTGAACCGT -ACGGAAGCCTATTAGCTGTTGTGC -ACGGAAGCCTATTAGCTGCTAAGC -ACGGAAGCCTATTAGCTGACTAGC -ACGGAAGCCTATTAGCTGAGATGC -ACGGAAGCCTATTAGCTGTGAAGG -ACGGAAGCCTATTAGCTGCAATGG -ACGGAAGCCTATTAGCTGATGAGG -ACGGAAGCCTATTAGCTGAATGGG -ACGGAAGCCTATTAGCTGTCCTGA -ACGGAAGCCTATTAGCTGTAGCGA -ACGGAAGCCTATTAGCTGCACAGA -ACGGAAGCCTATTAGCTGGCAAGA -ACGGAAGCCTATTAGCTGGGTTGA -ACGGAAGCCTATTAGCTGTCCGAT -ACGGAAGCCTATTAGCTGTGGCAT -ACGGAAGCCTATTAGCTGCGAGAT -ACGGAAGCCTATTAGCTGTACCAC -ACGGAAGCCTATTAGCTGCAGAAC -ACGGAAGCCTATTAGCTGGTCTAC -ACGGAAGCCTATTAGCTGACGTAC -ACGGAAGCCTATTAGCTGAGTGAC -ACGGAAGCCTATTAGCTGCTGTAG -ACGGAAGCCTATTAGCTGCCTAAG -ACGGAAGCCTATTAGCTGGTTCAG -ACGGAAGCCTATTAGCTGGCATAG -ACGGAAGCCTATTAGCTGGACAAG -ACGGAAGCCTATTAGCTGAAGCAG -ACGGAAGCCTATTAGCTGCGTCAA -ACGGAAGCCTATTAGCTGGCTGAA -ACGGAAGCCTATTAGCTGAGTACG -ACGGAAGCCTATTAGCTGATCCGA -ACGGAAGCCTATTAGCTGATGGGA -ACGGAAGCCTATTAGCTGGTGCAA -ACGGAAGCCTATTAGCTGGAGGAA -ACGGAAGCCTATTAGCTGCAGGTA -ACGGAAGCCTATTAGCTGGACTCT -ACGGAAGCCTATTAGCTGAGTCCT -ACGGAAGCCTATTAGCTGTAAGCC -ACGGAAGCCTATTAGCTGATAGCC -ACGGAAGCCTATTAGCTGTAACCG -ACGGAAGCCTATTAGCTGATGCCA -ACGGAAGCCTATAAGCCTGGAAAC -ACGGAAGCCTATAAGCCTAACACC -ACGGAAGCCTATAAGCCTATCGAG -ACGGAAGCCTATAAGCCTCTCCTT -ACGGAAGCCTATAAGCCTCCTGTT -ACGGAAGCCTATAAGCCTCGGTTT -ACGGAAGCCTATAAGCCTGTGGTT -ACGGAAGCCTATAAGCCTGCCTTT -ACGGAAGCCTATAAGCCTGGTCTT -ACGGAAGCCTATAAGCCTACGCTT -ACGGAAGCCTATAAGCCTAGCGTT -ACGGAAGCCTATAAGCCTTTCGTC -ACGGAAGCCTATAAGCCTTCTCTC -ACGGAAGCCTATAAGCCTTGGATC -ACGGAAGCCTATAAGCCTCACTTC -ACGGAAGCCTATAAGCCTGTACTC -ACGGAAGCCTATAAGCCTGATGTC -ACGGAAGCCTATAAGCCTACAGTC -ACGGAAGCCTATAAGCCTTTGCTG -ACGGAAGCCTATAAGCCTTCCATG -ACGGAAGCCTATAAGCCTTGTGTG -ACGGAAGCCTATAAGCCTCTAGTG -ACGGAAGCCTATAAGCCTCATCTG -ACGGAAGCCTATAAGCCTGAGTTG -ACGGAAGCCTATAAGCCTAGACTG -ACGGAAGCCTATAAGCCTTCGGTA -ACGGAAGCCTATAAGCCTTGCCTA -ACGGAAGCCTATAAGCCTCCACTA -ACGGAAGCCTATAAGCCTGGAGTA -ACGGAAGCCTATAAGCCTTCGTCT -ACGGAAGCCTATAAGCCTTGCACT -ACGGAAGCCTATAAGCCTCTGACT -ACGGAAGCCTATAAGCCTCAACCT -ACGGAAGCCTATAAGCCTGCTACT -ACGGAAGCCTATAAGCCTGGATCT -ACGGAAGCCTATAAGCCTAAGGCT -ACGGAAGCCTATAAGCCTTCAACC -ACGGAAGCCTATAAGCCTTGTTCC -ACGGAAGCCTATAAGCCTATTCCC -ACGGAAGCCTATAAGCCTTTCTCG -ACGGAAGCCTATAAGCCTTAGACG -ACGGAAGCCTATAAGCCTGTAACG -ACGGAAGCCTATAAGCCTACTTCG -ACGGAAGCCTATAAGCCTTACGCA -ACGGAAGCCTATAAGCCTCTTGCA -ACGGAAGCCTATAAGCCTCGAACA -ACGGAAGCCTATAAGCCTCAGTCA -ACGGAAGCCTATAAGCCTGATCCA -ACGGAAGCCTATAAGCCTACGACA -ACGGAAGCCTATAAGCCTAGCTCA -ACGGAAGCCTATAAGCCTTCACGT -ACGGAAGCCTATAAGCCTCGTAGT -ACGGAAGCCTATAAGCCTGTCAGT -ACGGAAGCCTATAAGCCTGAAGGT -ACGGAAGCCTATAAGCCTAACCGT -ACGGAAGCCTATAAGCCTTTGTGC -ACGGAAGCCTATAAGCCTCTAAGC -ACGGAAGCCTATAAGCCTACTAGC -ACGGAAGCCTATAAGCCTAGATGC -ACGGAAGCCTATAAGCCTTGAAGG -ACGGAAGCCTATAAGCCTCAATGG -ACGGAAGCCTATAAGCCTATGAGG -ACGGAAGCCTATAAGCCTAATGGG -ACGGAAGCCTATAAGCCTTCCTGA -ACGGAAGCCTATAAGCCTTAGCGA -ACGGAAGCCTATAAGCCTCACAGA -ACGGAAGCCTATAAGCCTGCAAGA -ACGGAAGCCTATAAGCCTGGTTGA -ACGGAAGCCTATAAGCCTTCCGAT -ACGGAAGCCTATAAGCCTTGGCAT -ACGGAAGCCTATAAGCCTCGAGAT -ACGGAAGCCTATAAGCCTTACCAC -ACGGAAGCCTATAAGCCTCAGAAC -ACGGAAGCCTATAAGCCTGTCTAC -ACGGAAGCCTATAAGCCTACGTAC -ACGGAAGCCTATAAGCCTAGTGAC -ACGGAAGCCTATAAGCCTCTGTAG -ACGGAAGCCTATAAGCCTCCTAAG -ACGGAAGCCTATAAGCCTGTTCAG -ACGGAAGCCTATAAGCCTGCATAG -ACGGAAGCCTATAAGCCTGACAAG -ACGGAAGCCTATAAGCCTAAGCAG -ACGGAAGCCTATAAGCCTCGTCAA -ACGGAAGCCTATAAGCCTGCTGAA -ACGGAAGCCTATAAGCCTAGTACG -ACGGAAGCCTATAAGCCTATCCGA -ACGGAAGCCTATAAGCCTATGGGA -ACGGAAGCCTATAAGCCTGTGCAA -ACGGAAGCCTATAAGCCTGAGGAA -ACGGAAGCCTATAAGCCTCAGGTA -ACGGAAGCCTATAAGCCTGACTCT -ACGGAAGCCTATAAGCCTAGTCCT -ACGGAAGCCTATAAGCCTTAAGCC -ACGGAAGCCTATAAGCCTATAGCC -ACGGAAGCCTATAAGCCTTAACCG -ACGGAAGCCTATAAGCCTATGCCA -ACGGAAGCCTATCAGGTTGGAAAC -ACGGAAGCCTATCAGGTTAACACC -ACGGAAGCCTATCAGGTTATCGAG -ACGGAAGCCTATCAGGTTCTCCTT -ACGGAAGCCTATCAGGTTCCTGTT -ACGGAAGCCTATCAGGTTCGGTTT -ACGGAAGCCTATCAGGTTGTGGTT -ACGGAAGCCTATCAGGTTGCCTTT -ACGGAAGCCTATCAGGTTGGTCTT -ACGGAAGCCTATCAGGTTACGCTT -ACGGAAGCCTATCAGGTTAGCGTT -ACGGAAGCCTATCAGGTTTTCGTC -ACGGAAGCCTATCAGGTTTCTCTC -ACGGAAGCCTATCAGGTTTGGATC -ACGGAAGCCTATCAGGTTCACTTC -ACGGAAGCCTATCAGGTTGTACTC -ACGGAAGCCTATCAGGTTGATGTC -ACGGAAGCCTATCAGGTTACAGTC -ACGGAAGCCTATCAGGTTTTGCTG -ACGGAAGCCTATCAGGTTTCCATG -ACGGAAGCCTATCAGGTTTGTGTG -ACGGAAGCCTATCAGGTTCTAGTG -ACGGAAGCCTATCAGGTTCATCTG -ACGGAAGCCTATCAGGTTGAGTTG -ACGGAAGCCTATCAGGTTAGACTG -ACGGAAGCCTATCAGGTTTCGGTA -ACGGAAGCCTATCAGGTTTGCCTA -ACGGAAGCCTATCAGGTTCCACTA -ACGGAAGCCTATCAGGTTGGAGTA -ACGGAAGCCTATCAGGTTTCGTCT -ACGGAAGCCTATCAGGTTTGCACT -ACGGAAGCCTATCAGGTTCTGACT -ACGGAAGCCTATCAGGTTCAACCT -ACGGAAGCCTATCAGGTTGCTACT -ACGGAAGCCTATCAGGTTGGATCT -ACGGAAGCCTATCAGGTTAAGGCT -ACGGAAGCCTATCAGGTTTCAACC -ACGGAAGCCTATCAGGTTTGTTCC -ACGGAAGCCTATCAGGTTATTCCC -ACGGAAGCCTATCAGGTTTTCTCG -ACGGAAGCCTATCAGGTTTAGACG -ACGGAAGCCTATCAGGTTGTAACG -ACGGAAGCCTATCAGGTTACTTCG -ACGGAAGCCTATCAGGTTTACGCA -ACGGAAGCCTATCAGGTTCTTGCA -ACGGAAGCCTATCAGGTTCGAACA -ACGGAAGCCTATCAGGTTCAGTCA -ACGGAAGCCTATCAGGTTGATCCA -ACGGAAGCCTATCAGGTTACGACA -ACGGAAGCCTATCAGGTTAGCTCA -ACGGAAGCCTATCAGGTTTCACGT -ACGGAAGCCTATCAGGTTCGTAGT -ACGGAAGCCTATCAGGTTGTCAGT -ACGGAAGCCTATCAGGTTGAAGGT -ACGGAAGCCTATCAGGTTAACCGT -ACGGAAGCCTATCAGGTTTTGTGC -ACGGAAGCCTATCAGGTTCTAAGC -ACGGAAGCCTATCAGGTTACTAGC -ACGGAAGCCTATCAGGTTAGATGC -ACGGAAGCCTATCAGGTTTGAAGG -ACGGAAGCCTATCAGGTTCAATGG -ACGGAAGCCTATCAGGTTATGAGG -ACGGAAGCCTATCAGGTTAATGGG -ACGGAAGCCTATCAGGTTTCCTGA -ACGGAAGCCTATCAGGTTTAGCGA -ACGGAAGCCTATCAGGTTCACAGA -ACGGAAGCCTATCAGGTTGCAAGA -ACGGAAGCCTATCAGGTTGGTTGA -ACGGAAGCCTATCAGGTTTCCGAT -ACGGAAGCCTATCAGGTTTGGCAT -ACGGAAGCCTATCAGGTTCGAGAT -ACGGAAGCCTATCAGGTTTACCAC -ACGGAAGCCTATCAGGTTCAGAAC -ACGGAAGCCTATCAGGTTGTCTAC -ACGGAAGCCTATCAGGTTACGTAC -ACGGAAGCCTATCAGGTTAGTGAC -ACGGAAGCCTATCAGGTTCTGTAG -ACGGAAGCCTATCAGGTTCCTAAG -ACGGAAGCCTATCAGGTTGTTCAG -ACGGAAGCCTATCAGGTTGCATAG -ACGGAAGCCTATCAGGTTGACAAG -ACGGAAGCCTATCAGGTTAAGCAG -ACGGAAGCCTATCAGGTTCGTCAA -ACGGAAGCCTATCAGGTTGCTGAA -ACGGAAGCCTATCAGGTTAGTACG -ACGGAAGCCTATCAGGTTATCCGA -ACGGAAGCCTATCAGGTTATGGGA -ACGGAAGCCTATCAGGTTGTGCAA -ACGGAAGCCTATCAGGTTGAGGAA -ACGGAAGCCTATCAGGTTCAGGTA -ACGGAAGCCTATCAGGTTGACTCT -ACGGAAGCCTATCAGGTTAGTCCT -ACGGAAGCCTATCAGGTTTAAGCC -ACGGAAGCCTATCAGGTTATAGCC -ACGGAAGCCTATCAGGTTTAACCG -ACGGAAGCCTATCAGGTTATGCCA -ACGGAAGCCTATTAGGCAGGAAAC -ACGGAAGCCTATTAGGCAAACACC -ACGGAAGCCTATTAGGCAATCGAG -ACGGAAGCCTATTAGGCACTCCTT -ACGGAAGCCTATTAGGCACCTGTT -ACGGAAGCCTATTAGGCACGGTTT -ACGGAAGCCTATTAGGCAGTGGTT -ACGGAAGCCTATTAGGCAGCCTTT -ACGGAAGCCTATTAGGCAGGTCTT -ACGGAAGCCTATTAGGCAACGCTT -ACGGAAGCCTATTAGGCAAGCGTT -ACGGAAGCCTATTAGGCATTCGTC -ACGGAAGCCTATTAGGCATCTCTC -ACGGAAGCCTATTAGGCATGGATC -ACGGAAGCCTATTAGGCACACTTC -ACGGAAGCCTATTAGGCAGTACTC -ACGGAAGCCTATTAGGCAGATGTC -ACGGAAGCCTATTAGGCAACAGTC -ACGGAAGCCTATTAGGCATTGCTG -ACGGAAGCCTATTAGGCATCCATG -ACGGAAGCCTATTAGGCATGTGTG -ACGGAAGCCTATTAGGCACTAGTG -ACGGAAGCCTATTAGGCACATCTG -ACGGAAGCCTATTAGGCAGAGTTG -ACGGAAGCCTATTAGGCAAGACTG -ACGGAAGCCTATTAGGCATCGGTA -ACGGAAGCCTATTAGGCATGCCTA -ACGGAAGCCTATTAGGCACCACTA -ACGGAAGCCTATTAGGCAGGAGTA -ACGGAAGCCTATTAGGCATCGTCT -ACGGAAGCCTATTAGGCATGCACT -ACGGAAGCCTATTAGGCACTGACT -ACGGAAGCCTATTAGGCACAACCT -ACGGAAGCCTATTAGGCAGCTACT -ACGGAAGCCTATTAGGCAGGATCT -ACGGAAGCCTATTAGGCAAAGGCT -ACGGAAGCCTATTAGGCATCAACC -ACGGAAGCCTATTAGGCATGTTCC -ACGGAAGCCTATTAGGCAATTCCC -ACGGAAGCCTATTAGGCATTCTCG -ACGGAAGCCTATTAGGCATAGACG -ACGGAAGCCTATTAGGCAGTAACG -ACGGAAGCCTATTAGGCAACTTCG -ACGGAAGCCTATTAGGCATACGCA -ACGGAAGCCTATTAGGCACTTGCA -ACGGAAGCCTATTAGGCACGAACA -ACGGAAGCCTATTAGGCACAGTCA -ACGGAAGCCTATTAGGCAGATCCA -ACGGAAGCCTATTAGGCAACGACA -ACGGAAGCCTATTAGGCAAGCTCA -ACGGAAGCCTATTAGGCATCACGT -ACGGAAGCCTATTAGGCACGTAGT -ACGGAAGCCTATTAGGCAGTCAGT -ACGGAAGCCTATTAGGCAGAAGGT -ACGGAAGCCTATTAGGCAAACCGT -ACGGAAGCCTATTAGGCATTGTGC -ACGGAAGCCTATTAGGCACTAAGC -ACGGAAGCCTATTAGGCAACTAGC -ACGGAAGCCTATTAGGCAAGATGC -ACGGAAGCCTATTAGGCATGAAGG -ACGGAAGCCTATTAGGCACAATGG -ACGGAAGCCTATTAGGCAATGAGG -ACGGAAGCCTATTAGGCAAATGGG -ACGGAAGCCTATTAGGCATCCTGA -ACGGAAGCCTATTAGGCATAGCGA -ACGGAAGCCTATTAGGCACACAGA -ACGGAAGCCTATTAGGCAGCAAGA -ACGGAAGCCTATTAGGCAGGTTGA -ACGGAAGCCTATTAGGCATCCGAT -ACGGAAGCCTATTAGGCATGGCAT -ACGGAAGCCTATTAGGCACGAGAT -ACGGAAGCCTATTAGGCATACCAC -ACGGAAGCCTATTAGGCACAGAAC -ACGGAAGCCTATTAGGCAGTCTAC -ACGGAAGCCTATTAGGCAACGTAC -ACGGAAGCCTATTAGGCAAGTGAC -ACGGAAGCCTATTAGGCACTGTAG -ACGGAAGCCTATTAGGCACCTAAG -ACGGAAGCCTATTAGGCAGTTCAG -ACGGAAGCCTATTAGGCAGCATAG -ACGGAAGCCTATTAGGCAGACAAG -ACGGAAGCCTATTAGGCAAAGCAG -ACGGAAGCCTATTAGGCACGTCAA -ACGGAAGCCTATTAGGCAGCTGAA -ACGGAAGCCTATTAGGCAAGTACG -ACGGAAGCCTATTAGGCAATCCGA -ACGGAAGCCTATTAGGCAATGGGA -ACGGAAGCCTATTAGGCAGTGCAA -ACGGAAGCCTATTAGGCAGAGGAA -ACGGAAGCCTATTAGGCACAGGTA -ACGGAAGCCTATTAGGCAGACTCT -ACGGAAGCCTATTAGGCAAGTCCT -ACGGAAGCCTATTAGGCATAAGCC -ACGGAAGCCTATTAGGCAATAGCC -ACGGAAGCCTATTAGGCATAACCG -ACGGAAGCCTATTAGGCAATGCCA -ACGGAAGCCTATAAGGACGGAAAC -ACGGAAGCCTATAAGGACAACACC -ACGGAAGCCTATAAGGACATCGAG -ACGGAAGCCTATAAGGACCTCCTT -ACGGAAGCCTATAAGGACCCTGTT -ACGGAAGCCTATAAGGACCGGTTT -ACGGAAGCCTATAAGGACGTGGTT -ACGGAAGCCTATAAGGACGCCTTT -ACGGAAGCCTATAAGGACGGTCTT -ACGGAAGCCTATAAGGACACGCTT -ACGGAAGCCTATAAGGACAGCGTT -ACGGAAGCCTATAAGGACTTCGTC -ACGGAAGCCTATAAGGACTCTCTC -ACGGAAGCCTATAAGGACTGGATC -ACGGAAGCCTATAAGGACCACTTC -ACGGAAGCCTATAAGGACGTACTC -ACGGAAGCCTATAAGGACGATGTC -ACGGAAGCCTATAAGGACACAGTC -ACGGAAGCCTATAAGGACTTGCTG -ACGGAAGCCTATAAGGACTCCATG -ACGGAAGCCTATAAGGACTGTGTG -ACGGAAGCCTATAAGGACCTAGTG -ACGGAAGCCTATAAGGACCATCTG -ACGGAAGCCTATAAGGACGAGTTG -ACGGAAGCCTATAAGGACAGACTG -ACGGAAGCCTATAAGGACTCGGTA -ACGGAAGCCTATAAGGACTGCCTA -ACGGAAGCCTATAAGGACCCACTA -ACGGAAGCCTATAAGGACGGAGTA -ACGGAAGCCTATAAGGACTCGTCT -ACGGAAGCCTATAAGGACTGCACT -ACGGAAGCCTATAAGGACCTGACT -ACGGAAGCCTATAAGGACCAACCT -ACGGAAGCCTATAAGGACGCTACT -ACGGAAGCCTATAAGGACGGATCT -ACGGAAGCCTATAAGGACAAGGCT -ACGGAAGCCTATAAGGACTCAACC -ACGGAAGCCTATAAGGACTGTTCC -ACGGAAGCCTATAAGGACATTCCC -ACGGAAGCCTATAAGGACTTCTCG -ACGGAAGCCTATAAGGACTAGACG -ACGGAAGCCTATAAGGACGTAACG -ACGGAAGCCTATAAGGACACTTCG -ACGGAAGCCTATAAGGACTACGCA -ACGGAAGCCTATAAGGACCTTGCA -ACGGAAGCCTATAAGGACCGAACA -ACGGAAGCCTATAAGGACCAGTCA -ACGGAAGCCTATAAGGACGATCCA -ACGGAAGCCTATAAGGACACGACA -ACGGAAGCCTATAAGGACAGCTCA -ACGGAAGCCTATAAGGACTCACGT -ACGGAAGCCTATAAGGACCGTAGT -ACGGAAGCCTATAAGGACGTCAGT -ACGGAAGCCTATAAGGACGAAGGT -ACGGAAGCCTATAAGGACAACCGT -ACGGAAGCCTATAAGGACTTGTGC -ACGGAAGCCTATAAGGACCTAAGC -ACGGAAGCCTATAAGGACACTAGC -ACGGAAGCCTATAAGGACAGATGC -ACGGAAGCCTATAAGGACTGAAGG -ACGGAAGCCTATAAGGACCAATGG -ACGGAAGCCTATAAGGACATGAGG -ACGGAAGCCTATAAGGACAATGGG -ACGGAAGCCTATAAGGACTCCTGA -ACGGAAGCCTATAAGGACTAGCGA -ACGGAAGCCTATAAGGACCACAGA -ACGGAAGCCTATAAGGACGCAAGA -ACGGAAGCCTATAAGGACGGTTGA -ACGGAAGCCTATAAGGACTCCGAT -ACGGAAGCCTATAAGGACTGGCAT -ACGGAAGCCTATAAGGACCGAGAT -ACGGAAGCCTATAAGGACTACCAC -ACGGAAGCCTATAAGGACCAGAAC -ACGGAAGCCTATAAGGACGTCTAC -ACGGAAGCCTATAAGGACACGTAC -ACGGAAGCCTATAAGGACAGTGAC -ACGGAAGCCTATAAGGACCTGTAG -ACGGAAGCCTATAAGGACCCTAAG -ACGGAAGCCTATAAGGACGTTCAG -ACGGAAGCCTATAAGGACGCATAG -ACGGAAGCCTATAAGGACGACAAG -ACGGAAGCCTATAAGGACAAGCAG -ACGGAAGCCTATAAGGACCGTCAA -ACGGAAGCCTATAAGGACGCTGAA -ACGGAAGCCTATAAGGACAGTACG -ACGGAAGCCTATAAGGACATCCGA -ACGGAAGCCTATAAGGACATGGGA -ACGGAAGCCTATAAGGACGTGCAA -ACGGAAGCCTATAAGGACGAGGAA -ACGGAAGCCTATAAGGACCAGGTA -ACGGAAGCCTATAAGGACGACTCT -ACGGAAGCCTATAAGGACAGTCCT -ACGGAAGCCTATAAGGACTAAGCC -ACGGAAGCCTATAAGGACATAGCC -ACGGAAGCCTATAAGGACTAACCG -ACGGAAGCCTATAAGGACATGCCA -ACGGAAGCCTATCAGAAGGGAAAC -ACGGAAGCCTATCAGAAGAACACC -ACGGAAGCCTATCAGAAGATCGAG -ACGGAAGCCTATCAGAAGCTCCTT -ACGGAAGCCTATCAGAAGCCTGTT -ACGGAAGCCTATCAGAAGCGGTTT -ACGGAAGCCTATCAGAAGGTGGTT -ACGGAAGCCTATCAGAAGGCCTTT -ACGGAAGCCTATCAGAAGGGTCTT -ACGGAAGCCTATCAGAAGACGCTT -ACGGAAGCCTATCAGAAGAGCGTT -ACGGAAGCCTATCAGAAGTTCGTC -ACGGAAGCCTATCAGAAGTCTCTC -ACGGAAGCCTATCAGAAGTGGATC -ACGGAAGCCTATCAGAAGCACTTC -ACGGAAGCCTATCAGAAGGTACTC -ACGGAAGCCTATCAGAAGGATGTC -ACGGAAGCCTATCAGAAGACAGTC -ACGGAAGCCTATCAGAAGTTGCTG -ACGGAAGCCTATCAGAAGTCCATG -ACGGAAGCCTATCAGAAGTGTGTG -ACGGAAGCCTATCAGAAGCTAGTG -ACGGAAGCCTATCAGAAGCATCTG -ACGGAAGCCTATCAGAAGGAGTTG -ACGGAAGCCTATCAGAAGAGACTG -ACGGAAGCCTATCAGAAGTCGGTA -ACGGAAGCCTATCAGAAGTGCCTA -ACGGAAGCCTATCAGAAGCCACTA -ACGGAAGCCTATCAGAAGGGAGTA -ACGGAAGCCTATCAGAAGTCGTCT -ACGGAAGCCTATCAGAAGTGCACT -ACGGAAGCCTATCAGAAGCTGACT -ACGGAAGCCTATCAGAAGCAACCT -ACGGAAGCCTATCAGAAGGCTACT -ACGGAAGCCTATCAGAAGGGATCT -ACGGAAGCCTATCAGAAGAAGGCT -ACGGAAGCCTATCAGAAGTCAACC -ACGGAAGCCTATCAGAAGTGTTCC -ACGGAAGCCTATCAGAAGATTCCC -ACGGAAGCCTATCAGAAGTTCTCG -ACGGAAGCCTATCAGAAGTAGACG -ACGGAAGCCTATCAGAAGGTAACG -ACGGAAGCCTATCAGAAGACTTCG -ACGGAAGCCTATCAGAAGTACGCA -ACGGAAGCCTATCAGAAGCTTGCA -ACGGAAGCCTATCAGAAGCGAACA -ACGGAAGCCTATCAGAAGCAGTCA -ACGGAAGCCTATCAGAAGGATCCA -ACGGAAGCCTATCAGAAGACGACA -ACGGAAGCCTATCAGAAGAGCTCA -ACGGAAGCCTATCAGAAGTCACGT -ACGGAAGCCTATCAGAAGCGTAGT -ACGGAAGCCTATCAGAAGGTCAGT -ACGGAAGCCTATCAGAAGGAAGGT -ACGGAAGCCTATCAGAAGAACCGT -ACGGAAGCCTATCAGAAGTTGTGC -ACGGAAGCCTATCAGAAGCTAAGC -ACGGAAGCCTATCAGAAGACTAGC -ACGGAAGCCTATCAGAAGAGATGC -ACGGAAGCCTATCAGAAGTGAAGG -ACGGAAGCCTATCAGAAGCAATGG -ACGGAAGCCTATCAGAAGATGAGG -ACGGAAGCCTATCAGAAGAATGGG -ACGGAAGCCTATCAGAAGTCCTGA -ACGGAAGCCTATCAGAAGTAGCGA -ACGGAAGCCTATCAGAAGCACAGA -ACGGAAGCCTATCAGAAGGCAAGA -ACGGAAGCCTATCAGAAGGGTTGA -ACGGAAGCCTATCAGAAGTCCGAT -ACGGAAGCCTATCAGAAGTGGCAT -ACGGAAGCCTATCAGAAGCGAGAT -ACGGAAGCCTATCAGAAGTACCAC -ACGGAAGCCTATCAGAAGCAGAAC -ACGGAAGCCTATCAGAAGGTCTAC -ACGGAAGCCTATCAGAAGACGTAC -ACGGAAGCCTATCAGAAGAGTGAC -ACGGAAGCCTATCAGAAGCTGTAG -ACGGAAGCCTATCAGAAGCCTAAG -ACGGAAGCCTATCAGAAGGTTCAG -ACGGAAGCCTATCAGAAGGCATAG -ACGGAAGCCTATCAGAAGGACAAG -ACGGAAGCCTATCAGAAGAAGCAG -ACGGAAGCCTATCAGAAGCGTCAA -ACGGAAGCCTATCAGAAGGCTGAA -ACGGAAGCCTATCAGAAGAGTACG -ACGGAAGCCTATCAGAAGATCCGA -ACGGAAGCCTATCAGAAGATGGGA -ACGGAAGCCTATCAGAAGGTGCAA -ACGGAAGCCTATCAGAAGGAGGAA -ACGGAAGCCTATCAGAAGCAGGTA -ACGGAAGCCTATCAGAAGGACTCT -ACGGAAGCCTATCAGAAGAGTCCT -ACGGAAGCCTATCAGAAGTAAGCC -ACGGAAGCCTATCAGAAGATAGCC -ACGGAAGCCTATCAGAAGTAACCG -ACGGAAGCCTATCAGAAGATGCCA -ACGGAAGCCTATCAACGTGGAAAC -ACGGAAGCCTATCAACGTAACACC -ACGGAAGCCTATCAACGTATCGAG -ACGGAAGCCTATCAACGTCTCCTT -ACGGAAGCCTATCAACGTCCTGTT -ACGGAAGCCTATCAACGTCGGTTT -ACGGAAGCCTATCAACGTGTGGTT -ACGGAAGCCTATCAACGTGCCTTT -ACGGAAGCCTATCAACGTGGTCTT -ACGGAAGCCTATCAACGTACGCTT -ACGGAAGCCTATCAACGTAGCGTT -ACGGAAGCCTATCAACGTTTCGTC -ACGGAAGCCTATCAACGTTCTCTC -ACGGAAGCCTATCAACGTTGGATC -ACGGAAGCCTATCAACGTCACTTC -ACGGAAGCCTATCAACGTGTACTC -ACGGAAGCCTATCAACGTGATGTC -ACGGAAGCCTATCAACGTACAGTC -ACGGAAGCCTATCAACGTTTGCTG -ACGGAAGCCTATCAACGTTCCATG -ACGGAAGCCTATCAACGTTGTGTG -ACGGAAGCCTATCAACGTCTAGTG -ACGGAAGCCTATCAACGTCATCTG -ACGGAAGCCTATCAACGTGAGTTG -ACGGAAGCCTATCAACGTAGACTG -ACGGAAGCCTATCAACGTTCGGTA -ACGGAAGCCTATCAACGTTGCCTA -ACGGAAGCCTATCAACGTCCACTA -ACGGAAGCCTATCAACGTGGAGTA -ACGGAAGCCTATCAACGTTCGTCT -ACGGAAGCCTATCAACGTTGCACT -ACGGAAGCCTATCAACGTCTGACT -ACGGAAGCCTATCAACGTCAACCT -ACGGAAGCCTATCAACGTGCTACT -ACGGAAGCCTATCAACGTGGATCT -ACGGAAGCCTATCAACGTAAGGCT -ACGGAAGCCTATCAACGTTCAACC -ACGGAAGCCTATCAACGTTGTTCC -ACGGAAGCCTATCAACGTATTCCC -ACGGAAGCCTATCAACGTTTCTCG -ACGGAAGCCTATCAACGTTAGACG -ACGGAAGCCTATCAACGTGTAACG -ACGGAAGCCTATCAACGTACTTCG -ACGGAAGCCTATCAACGTTACGCA -ACGGAAGCCTATCAACGTCTTGCA -ACGGAAGCCTATCAACGTCGAACA -ACGGAAGCCTATCAACGTCAGTCA -ACGGAAGCCTATCAACGTGATCCA -ACGGAAGCCTATCAACGTACGACA -ACGGAAGCCTATCAACGTAGCTCA -ACGGAAGCCTATCAACGTTCACGT -ACGGAAGCCTATCAACGTCGTAGT -ACGGAAGCCTATCAACGTGTCAGT -ACGGAAGCCTATCAACGTGAAGGT -ACGGAAGCCTATCAACGTAACCGT -ACGGAAGCCTATCAACGTTTGTGC -ACGGAAGCCTATCAACGTCTAAGC -ACGGAAGCCTATCAACGTACTAGC -ACGGAAGCCTATCAACGTAGATGC -ACGGAAGCCTATCAACGTTGAAGG -ACGGAAGCCTATCAACGTCAATGG -ACGGAAGCCTATCAACGTATGAGG -ACGGAAGCCTATCAACGTAATGGG -ACGGAAGCCTATCAACGTTCCTGA -ACGGAAGCCTATCAACGTTAGCGA -ACGGAAGCCTATCAACGTCACAGA -ACGGAAGCCTATCAACGTGCAAGA -ACGGAAGCCTATCAACGTGGTTGA -ACGGAAGCCTATCAACGTTCCGAT -ACGGAAGCCTATCAACGTTGGCAT -ACGGAAGCCTATCAACGTCGAGAT -ACGGAAGCCTATCAACGTTACCAC -ACGGAAGCCTATCAACGTCAGAAC -ACGGAAGCCTATCAACGTGTCTAC -ACGGAAGCCTATCAACGTACGTAC -ACGGAAGCCTATCAACGTAGTGAC -ACGGAAGCCTATCAACGTCTGTAG -ACGGAAGCCTATCAACGTCCTAAG -ACGGAAGCCTATCAACGTGTTCAG -ACGGAAGCCTATCAACGTGCATAG -ACGGAAGCCTATCAACGTGACAAG -ACGGAAGCCTATCAACGTAAGCAG -ACGGAAGCCTATCAACGTCGTCAA -ACGGAAGCCTATCAACGTGCTGAA -ACGGAAGCCTATCAACGTAGTACG -ACGGAAGCCTATCAACGTATCCGA -ACGGAAGCCTATCAACGTATGGGA -ACGGAAGCCTATCAACGTGTGCAA -ACGGAAGCCTATCAACGTGAGGAA -ACGGAAGCCTATCAACGTCAGGTA -ACGGAAGCCTATCAACGTGACTCT -ACGGAAGCCTATCAACGTAGTCCT -ACGGAAGCCTATCAACGTTAAGCC -ACGGAAGCCTATCAACGTATAGCC -ACGGAAGCCTATCAACGTTAACCG -ACGGAAGCCTATCAACGTATGCCA -ACGGAAGCCTATGAAGCTGGAAAC -ACGGAAGCCTATGAAGCTAACACC -ACGGAAGCCTATGAAGCTATCGAG -ACGGAAGCCTATGAAGCTCTCCTT -ACGGAAGCCTATGAAGCTCCTGTT -ACGGAAGCCTATGAAGCTCGGTTT -ACGGAAGCCTATGAAGCTGTGGTT -ACGGAAGCCTATGAAGCTGCCTTT -ACGGAAGCCTATGAAGCTGGTCTT -ACGGAAGCCTATGAAGCTACGCTT -ACGGAAGCCTATGAAGCTAGCGTT -ACGGAAGCCTATGAAGCTTTCGTC -ACGGAAGCCTATGAAGCTTCTCTC -ACGGAAGCCTATGAAGCTTGGATC -ACGGAAGCCTATGAAGCTCACTTC -ACGGAAGCCTATGAAGCTGTACTC -ACGGAAGCCTATGAAGCTGATGTC -ACGGAAGCCTATGAAGCTACAGTC -ACGGAAGCCTATGAAGCTTTGCTG -ACGGAAGCCTATGAAGCTTCCATG -ACGGAAGCCTATGAAGCTTGTGTG -ACGGAAGCCTATGAAGCTCTAGTG -ACGGAAGCCTATGAAGCTCATCTG -ACGGAAGCCTATGAAGCTGAGTTG -ACGGAAGCCTATGAAGCTAGACTG -ACGGAAGCCTATGAAGCTTCGGTA -ACGGAAGCCTATGAAGCTTGCCTA -ACGGAAGCCTATGAAGCTCCACTA -ACGGAAGCCTATGAAGCTGGAGTA -ACGGAAGCCTATGAAGCTTCGTCT -ACGGAAGCCTATGAAGCTTGCACT -ACGGAAGCCTATGAAGCTCTGACT -ACGGAAGCCTATGAAGCTCAACCT -ACGGAAGCCTATGAAGCTGCTACT -ACGGAAGCCTATGAAGCTGGATCT -ACGGAAGCCTATGAAGCTAAGGCT -ACGGAAGCCTATGAAGCTTCAACC -ACGGAAGCCTATGAAGCTTGTTCC -ACGGAAGCCTATGAAGCTATTCCC -ACGGAAGCCTATGAAGCTTTCTCG -ACGGAAGCCTATGAAGCTTAGACG -ACGGAAGCCTATGAAGCTGTAACG -ACGGAAGCCTATGAAGCTACTTCG -ACGGAAGCCTATGAAGCTTACGCA -ACGGAAGCCTATGAAGCTCTTGCA -ACGGAAGCCTATGAAGCTCGAACA -ACGGAAGCCTATGAAGCTCAGTCA -ACGGAAGCCTATGAAGCTGATCCA -ACGGAAGCCTATGAAGCTACGACA -ACGGAAGCCTATGAAGCTAGCTCA -ACGGAAGCCTATGAAGCTTCACGT -ACGGAAGCCTATGAAGCTCGTAGT -ACGGAAGCCTATGAAGCTGTCAGT -ACGGAAGCCTATGAAGCTGAAGGT -ACGGAAGCCTATGAAGCTAACCGT -ACGGAAGCCTATGAAGCTTTGTGC -ACGGAAGCCTATGAAGCTCTAAGC -ACGGAAGCCTATGAAGCTACTAGC -ACGGAAGCCTATGAAGCTAGATGC -ACGGAAGCCTATGAAGCTTGAAGG -ACGGAAGCCTATGAAGCTCAATGG -ACGGAAGCCTATGAAGCTATGAGG -ACGGAAGCCTATGAAGCTAATGGG -ACGGAAGCCTATGAAGCTTCCTGA -ACGGAAGCCTATGAAGCTTAGCGA -ACGGAAGCCTATGAAGCTCACAGA -ACGGAAGCCTATGAAGCTGCAAGA -ACGGAAGCCTATGAAGCTGGTTGA -ACGGAAGCCTATGAAGCTTCCGAT -ACGGAAGCCTATGAAGCTTGGCAT -ACGGAAGCCTATGAAGCTCGAGAT -ACGGAAGCCTATGAAGCTTACCAC -ACGGAAGCCTATGAAGCTCAGAAC -ACGGAAGCCTATGAAGCTGTCTAC -ACGGAAGCCTATGAAGCTACGTAC -ACGGAAGCCTATGAAGCTAGTGAC -ACGGAAGCCTATGAAGCTCTGTAG -ACGGAAGCCTATGAAGCTCCTAAG -ACGGAAGCCTATGAAGCTGTTCAG -ACGGAAGCCTATGAAGCTGCATAG -ACGGAAGCCTATGAAGCTGACAAG -ACGGAAGCCTATGAAGCTAAGCAG -ACGGAAGCCTATGAAGCTCGTCAA -ACGGAAGCCTATGAAGCTGCTGAA -ACGGAAGCCTATGAAGCTAGTACG -ACGGAAGCCTATGAAGCTATCCGA -ACGGAAGCCTATGAAGCTATGGGA -ACGGAAGCCTATGAAGCTGTGCAA -ACGGAAGCCTATGAAGCTGAGGAA -ACGGAAGCCTATGAAGCTCAGGTA -ACGGAAGCCTATGAAGCTGACTCT -ACGGAAGCCTATGAAGCTAGTCCT -ACGGAAGCCTATGAAGCTTAAGCC -ACGGAAGCCTATGAAGCTATAGCC -ACGGAAGCCTATGAAGCTTAACCG -ACGGAAGCCTATGAAGCTATGCCA -ACGGAAGCCTATACGAGTGGAAAC -ACGGAAGCCTATACGAGTAACACC -ACGGAAGCCTATACGAGTATCGAG -ACGGAAGCCTATACGAGTCTCCTT -ACGGAAGCCTATACGAGTCCTGTT -ACGGAAGCCTATACGAGTCGGTTT -ACGGAAGCCTATACGAGTGTGGTT -ACGGAAGCCTATACGAGTGCCTTT -ACGGAAGCCTATACGAGTGGTCTT -ACGGAAGCCTATACGAGTACGCTT -ACGGAAGCCTATACGAGTAGCGTT -ACGGAAGCCTATACGAGTTTCGTC -ACGGAAGCCTATACGAGTTCTCTC -ACGGAAGCCTATACGAGTTGGATC -ACGGAAGCCTATACGAGTCACTTC -ACGGAAGCCTATACGAGTGTACTC -ACGGAAGCCTATACGAGTGATGTC -ACGGAAGCCTATACGAGTACAGTC -ACGGAAGCCTATACGAGTTTGCTG -ACGGAAGCCTATACGAGTTCCATG -ACGGAAGCCTATACGAGTTGTGTG -ACGGAAGCCTATACGAGTCTAGTG -ACGGAAGCCTATACGAGTCATCTG -ACGGAAGCCTATACGAGTGAGTTG -ACGGAAGCCTATACGAGTAGACTG -ACGGAAGCCTATACGAGTTCGGTA -ACGGAAGCCTATACGAGTTGCCTA -ACGGAAGCCTATACGAGTCCACTA -ACGGAAGCCTATACGAGTGGAGTA -ACGGAAGCCTATACGAGTTCGTCT -ACGGAAGCCTATACGAGTTGCACT -ACGGAAGCCTATACGAGTCTGACT -ACGGAAGCCTATACGAGTCAACCT -ACGGAAGCCTATACGAGTGCTACT -ACGGAAGCCTATACGAGTGGATCT -ACGGAAGCCTATACGAGTAAGGCT -ACGGAAGCCTATACGAGTTCAACC -ACGGAAGCCTATACGAGTTGTTCC -ACGGAAGCCTATACGAGTATTCCC -ACGGAAGCCTATACGAGTTTCTCG -ACGGAAGCCTATACGAGTTAGACG -ACGGAAGCCTATACGAGTGTAACG -ACGGAAGCCTATACGAGTACTTCG -ACGGAAGCCTATACGAGTTACGCA -ACGGAAGCCTATACGAGTCTTGCA -ACGGAAGCCTATACGAGTCGAACA -ACGGAAGCCTATACGAGTCAGTCA -ACGGAAGCCTATACGAGTGATCCA -ACGGAAGCCTATACGAGTACGACA -ACGGAAGCCTATACGAGTAGCTCA -ACGGAAGCCTATACGAGTTCACGT -ACGGAAGCCTATACGAGTCGTAGT -ACGGAAGCCTATACGAGTGTCAGT -ACGGAAGCCTATACGAGTGAAGGT -ACGGAAGCCTATACGAGTAACCGT -ACGGAAGCCTATACGAGTTTGTGC -ACGGAAGCCTATACGAGTCTAAGC -ACGGAAGCCTATACGAGTACTAGC -ACGGAAGCCTATACGAGTAGATGC -ACGGAAGCCTATACGAGTTGAAGG -ACGGAAGCCTATACGAGTCAATGG -ACGGAAGCCTATACGAGTATGAGG -ACGGAAGCCTATACGAGTAATGGG -ACGGAAGCCTATACGAGTTCCTGA -ACGGAAGCCTATACGAGTTAGCGA -ACGGAAGCCTATACGAGTCACAGA -ACGGAAGCCTATACGAGTGCAAGA -ACGGAAGCCTATACGAGTGGTTGA -ACGGAAGCCTATACGAGTTCCGAT -ACGGAAGCCTATACGAGTTGGCAT -ACGGAAGCCTATACGAGTCGAGAT -ACGGAAGCCTATACGAGTTACCAC -ACGGAAGCCTATACGAGTCAGAAC -ACGGAAGCCTATACGAGTGTCTAC -ACGGAAGCCTATACGAGTACGTAC -ACGGAAGCCTATACGAGTAGTGAC -ACGGAAGCCTATACGAGTCTGTAG -ACGGAAGCCTATACGAGTCCTAAG -ACGGAAGCCTATACGAGTGTTCAG -ACGGAAGCCTATACGAGTGCATAG -ACGGAAGCCTATACGAGTGACAAG -ACGGAAGCCTATACGAGTAAGCAG -ACGGAAGCCTATACGAGTCGTCAA -ACGGAAGCCTATACGAGTGCTGAA -ACGGAAGCCTATACGAGTAGTACG -ACGGAAGCCTATACGAGTATCCGA -ACGGAAGCCTATACGAGTATGGGA -ACGGAAGCCTATACGAGTGTGCAA -ACGGAAGCCTATACGAGTGAGGAA -ACGGAAGCCTATACGAGTCAGGTA -ACGGAAGCCTATACGAGTGACTCT -ACGGAAGCCTATACGAGTAGTCCT -ACGGAAGCCTATACGAGTTAAGCC -ACGGAAGCCTATACGAGTATAGCC -ACGGAAGCCTATACGAGTTAACCG -ACGGAAGCCTATACGAGTATGCCA -ACGGAAGCCTATCGAATCGGAAAC -ACGGAAGCCTATCGAATCAACACC -ACGGAAGCCTATCGAATCATCGAG -ACGGAAGCCTATCGAATCCTCCTT -ACGGAAGCCTATCGAATCCCTGTT -ACGGAAGCCTATCGAATCCGGTTT -ACGGAAGCCTATCGAATCGTGGTT -ACGGAAGCCTATCGAATCGCCTTT -ACGGAAGCCTATCGAATCGGTCTT -ACGGAAGCCTATCGAATCACGCTT -ACGGAAGCCTATCGAATCAGCGTT -ACGGAAGCCTATCGAATCTTCGTC -ACGGAAGCCTATCGAATCTCTCTC -ACGGAAGCCTATCGAATCTGGATC -ACGGAAGCCTATCGAATCCACTTC -ACGGAAGCCTATCGAATCGTACTC -ACGGAAGCCTATCGAATCGATGTC -ACGGAAGCCTATCGAATCACAGTC -ACGGAAGCCTATCGAATCTTGCTG -ACGGAAGCCTATCGAATCTCCATG -ACGGAAGCCTATCGAATCTGTGTG -ACGGAAGCCTATCGAATCCTAGTG -ACGGAAGCCTATCGAATCCATCTG -ACGGAAGCCTATCGAATCGAGTTG -ACGGAAGCCTATCGAATCAGACTG -ACGGAAGCCTATCGAATCTCGGTA -ACGGAAGCCTATCGAATCTGCCTA -ACGGAAGCCTATCGAATCCCACTA -ACGGAAGCCTATCGAATCGGAGTA -ACGGAAGCCTATCGAATCTCGTCT -ACGGAAGCCTATCGAATCTGCACT -ACGGAAGCCTATCGAATCCTGACT -ACGGAAGCCTATCGAATCCAACCT -ACGGAAGCCTATCGAATCGCTACT -ACGGAAGCCTATCGAATCGGATCT -ACGGAAGCCTATCGAATCAAGGCT -ACGGAAGCCTATCGAATCTCAACC -ACGGAAGCCTATCGAATCTGTTCC -ACGGAAGCCTATCGAATCATTCCC -ACGGAAGCCTATCGAATCTTCTCG -ACGGAAGCCTATCGAATCTAGACG -ACGGAAGCCTATCGAATCGTAACG -ACGGAAGCCTATCGAATCACTTCG -ACGGAAGCCTATCGAATCTACGCA -ACGGAAGCCTATCGAATCCTTGCA -ACGGAAGCCTATCGAATCCGAACA -ACGGAAGCCTATCGAATCCAGTCA -ACGGAAGCCTATCGAATCGATCCA -ACGGAAGCCTATCGAATCACGACA -ACGGAAGCCTATCGAATCAGCTCA -ACGGAAGCCTATCGAATCTCACGT -ACGGAAGCCTATCGAATCCGTAGT -ACGGAAGCCTATCGAATCGTCAGT -ACGGAAGCCTATCGAATCGAAGGT -ACGGAAGCCTATCGAATCAACCGT -ACGGAAGCCTATCGAATCTTGTGC -ACGGAAGCCTATCGAATCCTAAGC -ACGGAAGCCTATCGAATCACTAGC -ACGGAAGCCTATCGAATCAGATGC -ACGGAAGCCTATCGAATCTGAAGG -ACGGAAGCCTATCGAATCCAATGG -ACGGAAGCCTATCGAATCATGAGG -ACGGAAGCCTATCGAATCAATGGG -ACGGAAGCCTATCGAATCTCCTGA -ACGGAAGCCTATCGAATCTAGCGA -ACGGAAGCCTATCGAATCCACAGA -ACGGAAGCCTATCGAATCGCAAGA -ACGGAAGCCTATCGAATCGGTTGA -ACGGAAGCCTATCGAATCTCCGAT -ACGGAAGCCTATCGAATCTGGCAT -ACGGAAGCCTATCGAATCCGAGAT -ACGGAAGCCTATCGAATCTACCAC -ACGGAAGCCTATCGAATCCAGAAC -ACGGAAGCCTATCGAATCGTCTAC -ACGGAAGCCTATCGAATCACGTAC -ACGGAAGCCTATCGAATCAGTGAC -ACGGAAGCCTATCGAATCCTGTAG -ACGGAAGCCTATCGAATCCCTAAG -ACGGAAGCCTATCGAATCGTTCAG -ACGGAAGCCTATCGAATCGCATAG -ACGGAAGCCTATCGAATCGACAAG -ACGGAAGCCTATCGAATCAAGCAG -ACGGAAGCCTATCGAATCCGTCAA -ACGGAAGCCTATCGAATCGCTGAA -ACGGAAGCCTATCGAATCAGTACG -ACGGAAGCCTATCGAATCATCCGA -ACGGAAGCCTATCGAATCATGGGA -ACGGAAGCCTATCGAATCGTGCAA -ACGGAAGCCTATCGAATCGAGGAA -ACGGAAGCCTATCGAATCCAGGTA -ACGGAAGCCTATCGAATCGACTCT -ACGGAAGCCTATCGAATCAGTCCT -ACGGAAGCCTATCGAATCTAAGCC -ACGGAAGCCTATCGAATCATAGCC -ACGGAAGCCTATCGAATCTAACCG -ACGGAAGCCTATCGAATCATGCCA -ACGGAAGCCTATGGAATGGGAAAC -ACGGAAGCCTATGGAATGAACACC -ACGGAAGCCTATGGAATGATCGAG -ACGGAAGCCTATGGAATGCTCCTT -ACGGAAGCCTATGGAATGCCTGTT -ACGGAAGCCTATGGAATGCGGTTT -ACGGAAGCCTATGGAATGGTGGTT -ACGGAAGCCTATGGAATGGCCTTT -ACGGAAGCCTATGGAATGGGTCTT -ACGGAAGCCTATGGAATGACGCTT -ACGGAAGCCTATGGAATGAGCGTT -ACGGAAGCCTATGGAATGTTCGTC -ACGGAAGCCTATGGAATGTCTCTC -ACGGAAGCCTATGGAATGTGGATC -ACGGAAGCCTATGGAATGCACTTC -ACGGAAGCCTATGGAATGGTACTC -ACGGAAGCCTATGGAATGGATGTC -ACGGAAGCCTATGGAATGACAGTC -ACGGAAGCCTATGGAATGTTGCTG -ACGGAAGCCTATGGAATGTCCATG -ACGGAAGCCTATGGAATGTGTGTG -ACGGAAGCCTATGGAATGCTAGTG -ACGGAAGCCTATGGAATGCATCTG -ACGGAAGCCTATGGAATGGAGTTG -ACGGAAGCCTATGGAATGAGACTG -ACGGAAGCCTATGGAATGTCGGTA -ACGGAAGCCTATGGAATGTGCCTA -ACGGAAGCCTATGGAATGCCACTA -ACGGAAGCCTATGGAATGGGAGTA -ACGGAAGCCTATGGAATGTCGTCT -ACGGAAGCCTATGGAATGTGCACT -ACGGAAGCCTATGGAATGCTGACT -ACGGAAGCCTATGGAATGCAACCT -ACGGAAGCCTATGGAATGGCTACT -ACGGAAGCCTATGGAATGGGATCT -ACGGAAGCCTATGGAATGAAGGCT -ACGGAAGCCTATGGAATGTCAACC -ACGGAAGCCTATGGAATGTGTTCC -ACGGAAGCCTATGGAATGATTCCC -ACGGAAGCCTATGGAATGTTCTCG -ACGGAAGCCTATGGAATGTAGACG -ACGGAAGCCTATGGAATGGTAACG -ACGGAAGCCTATGGAATGACTTCG -ACGGAAGCCTATGGAATGTACGCA -ACGGAAGCCTATGGAATGCTTGCA -ACGGAAGCCTATGGAATGCGAACA -ACGGAAGCCTATGGAATGCAGTCA -ACGGAAGCCTATGGAATGGATCCA -ACGGAAGCCTATGGAATGACGACA -ACGGAAGCCTATGGAATGAGCTCA -ACGGAAGCCTATGGAATGTCACGT -ACGGAAGCCTATGGAATGCGTAGT -ACGGAAGCCTATGGAATGGTCAGT -ACGGAAGCCTATGGAATGGAAGGT -ACGGAAGCCTATGGAATGAACCGT -ACGGAAGCCTATGGAATGTTGTGC -ACGGAAGCCTATGGAATGCTAAGC -ACGGAAGCCTATGGAATGACTAGC -ACGGAAGCCTATGGAATGAGATGC -ACGGAAGCCTATGGAATGTGAAGG -ACGGAAGCCTATGGAATGCAATGG -ACGGAAGCCTATGGAATGATGAGG -ACGGAAGCCTATGGAATGAATGGG -ACGGAAGCCTATGGAATGTCCTGA -ACGGAAGCCTATGGAATGTAGCGA -ACGGAAGCCTATGGAATGCACAGA -ACGGAAGCCTATGGAATGGCAAGA -ACGGAAGCCTATGGAATGGGTTGA -ACGGAAGCCTATGGAATGTCCGAT -ACGGAAGCCTATGGAATGTGGCAT -ACGGAAGCCTATGGAATGCGAGAT -ACGGAAGCCTATGGAATGTACCAC -ACGGAAGCCTATGGAATGCAGAAC -ACGGAAGCCTATGGAATGGTCTAC -ACGGAAGCCTATGGAATGACGTAC -ACGGAAGCCTATGGAATGAGTGAC -ACGGAAGCCTATGGAATGCTGTAG -ACGGAAGCCTATGGAATGCCTAAG -ACGGAAGCCTATGGAATGGTTCAG -ACGGAAGCCTATGGAATGGCATAG -ACGGAAGCCTATGGAATGGACAAG -ACGGAAGCCTATGGAATGAAGCAG -ACGGAAGCCTATGGAATGCGTCAA -ACGGAAGCCTATGGAATGGCTGAA -ACGGAAGCCTATGGAATGAGTACG -ACGGAAGCCTATGGAATGATCCGA -ACGGAAGCCTATGGAATGATGGGA -ACGGAAGCCTATGGAATGGTGCAA -ACGGAAGCCTATGGAATGGAGGAA -ACGGAAGCCTATGGAATGCAGGTA -ACGGAAGCCTATGGAATGGACTCT -ACGGAAGCCTATGGAATGAGTCCT -ACGGAAGCCTATGGAATGTAAGCC -ACGGAAGCCTATGGAATGATAGCC -ACGGAAGCCTATGGAATGTAACCG -ACGGAAGCCTATGGAATGATGCCA -ACGGAAGCCTATCAAGTGGGAAAC -ACGGAAGCCTATCAAGTGAACACC -ACGGAAGCCTATCAAGTGATCGAG -ACGGAAGCCTATCAAGTGCTCCTT -ACGGAAGCCTATCAAGTGCCTGTT -ACGGAAGCCTATCAAGTGCGGTTT -ACGGAAGCCTATCAAGTGGTGGTT -ACGGAAGCCTATCAAGTGGCCTTT -ACGGAAGCCTATCAAGTGGGTCTT -ACGGAAGCCTATCAAGTGACGCTT -ACGGAAGCCTATCAAGTGAGCGTT -ACGGAAGCCTATCAAGTGTTCGTC -ACGGAAGCCTATCAAGTGTCTCTC -ACGGAAGCCTATCAAGTGTGGATC -ACGGAAGCCTATCAAGTGCACTTC -ACGGAAGCCTATCAAGTGGTACTC -ACGGAAGCCTATCAAGTGGATGTC -ACGGAAGCCTATCAAGTGACAGTC -ACGGAAGCCTATCAAGTGTTGCTG -ACGGAAGCCTATCAAGTGTCCATG -ACGGAAGCCTATCAAGTGTGTGTG -ACGGAAGCCTATCAAGTGCTAGTG -ACGGAAGCCTATCAAGTGCATCTG -ACGGAAGCCTATCAAGTGGAGTTG -ACGGAAGCCTATCAAGTGAGACTG -ACGGAAGCCTATCAAGTGTCGGTA -ACGGAAGCCTATCAAGTGTGCCTA -ACGGAAGCCTATCAAGTGCCACTA -ACGGAAGCCTATCAAGTGGGAGTA -ACGGAAGCCTATCAAGTGTCGTCT -ACGGAAGCCTATCAAGTGTGCACT -ACGGAAGCCTATCAAGTGCTGACT -ACGGAAGCCTATCAAGTGCAACCT -ACGGAAGCCTATCAAGTGGCTACT -ACGGAAGCCTATCAAGTGGGATCT -ACGGAAGCCTATCAAGTGAAGGCT -ACGGAAGCCTATCAAGTGTCAACC -ACGGAAGCCTATCAAGTGTGTTCC -ACGGAAGCCTATCAAGTGATTCCC -ACGGAAGCCTATCAAGTGTTCTCG -ACGGAAGCCTATCAAGTGTAGACG -ACGGAAGCCTATCAAGTGGTAACG -ACGGAAGCCTATCAAGTGACTTCG -ACGGAAGCCTATCAAGTGTACGCA -ACGGAAGCCTATCAAGTGCTTGCA -ACGGAAGCCTATCAAGTGCGAACA -ACGGAAGCCTATCAAGTGCAGTCA -ACGGAAGCCTATCAAGTGGATCCA -ACGGAAGCCTATCAAGTGACGACA -ACGGAAGCCTATCAAGTGAGCTCA -ACGGAAGCCTATCAAGTGTCACGT -ACGGAAGCCTATCAAGTGCGTAGT -ACGGAAGCCTATCAAGTGGTCAGT -ACGGAAGCCTATCAAGTGGAAGGT -ACGGAAGCCTATCAAGTGAACCGT -ACGGAAGCCTATCAAGTGTTGTGC -ACGGAAGCCTATCAAGTGCTAAGC -ACGGAAGCCTATCAAGTGACTAGC -ACGGAAGCCTATCAAGTGAGATGC -ACGGAAGCCTATCAAGTGTGAAGG -ACGGAAGCCTATCAAGTGCAATGG -ACGGAAGCCTATCAAGTGATGAGG -ACGGAAGCCTATCAAGTGAATGGG -ACGGAAGCCTATCAAGTGTCCTGA -ACGGAAGCCTATCAAGTGTAGCGA -ACGGAAGCCTATCAAGTGCACAGA -ACGGAAGCCTATCAAGTGGCAAGA -ACGGAAGCCTATCAAGTGGGTTGA -ACGGAAGCCTATCAAGTGTCCGAT -ACGGAAGCCTATCAAGTGTGGCAT -ACGGAAGCCTATCAAGTGCGAGAT -ACGGAAGCCTATCAAGTGTACCAC -ACGGAAGCCTATCAAGTGCAGAAC -ACGGAAGCCTATCAAGTGGTCTAC -ACGGAAGCCTATCAAGTGACGTAC -ACGGAAGCCTATCAAGTGAGTGAC -ACGGAAGCCTATCAAGTGCTGTAG -ACGGAAGCCTATCAAGTGCCTAAG -ACGGAAGCCTATCAAGTGGTTCAG -ACGGAAGCCTATCAAGTGGCATAG -ACGGAAGCCTATCAAGTGGACAAG -ACGGAAGCCTATCAAGTGAAGCAG -ACGGAAGCCTATCAAGTGCGTCAA -ACGGAAGCCTATCAAGTGGCTGAA -ACGGAAGCCTATCAAGTGAGTACG -ACGGAAGCCTATCAAGTGATCCGA -ACGGAAGCCTATCAAGTGATGGGA -ACGGAAGCCTATCAAGTGGTGCAA -ACGGAAGCCTATCAAGTGGAGGAA -ACGGAAGCCTATCAAGTGCAGGTA -ACGGAAGCCTATCAAGTGGACTCT -ACGGAAGCCTATCAAGTGAGTCCT -ACGGAAGCCTATCAAGTGTAAGCC -ACGGAAGCCTATCAAGTGATAGCC -ACGGAAGCCTATCAAGTGTAACCG -ACGGAAGCCTATCAAGTGATGCCA -ACGGAAGCCTATGAAGAGGGAAAC -ACGGAAGCCTATGAAGAGAACACC -ACGGAAGCCTATGAAGAGATCGAG -ACGGAAGCCTATGAAGAGCTCCTT -ACGGAAGCCTATGAAGAGCCTGTT -ACGGAAGCCTATGAAGAGCGGTTT -ACGGAAGCCTATGAAGAGGTGGTT -ACGGAAGCCTATGAAGAGGCCTTT -ACGGAAGCCTATGAAGAGGGTCTT -ACGGAAGCCTATGAAGAGACGCTT -ACGGAAGCCTATGAAGAGAGCGTT -ACGGAAGCCTATGAAGAGTTCGTC -ACGGAAGCCTATGAAGAGTCTCTC -ACGGAAGCCTATGAAGAGTGGATC -ACGGAAGCCTATGAAGAGCACTTC -ACGGAAGCCTATGAAGAGGTACTC -ACGGAAGCCTATGAAGAGGATGTC -ACGGAAGCCTATGAAGAGACAGTC -ACGGAAGCCTATGAAGAGTTGCTG -ACGGAAGCCTATGAAGAGTCCATG -ACGGAAGCCTATGAAGAGTGTGTG -ACGGAAGCCTATGAAGAGCTAGTG -ACGGAAGCCTATGAAGAGCATCTG -ACGGAAGCCTATGAAGAGGAGTTG -ACGGAAGCCTATGAAGAGAGACTG -ACGGAAGCCTATGAAGAGTCGGTA -ACGGAAGCCTATGAAGAGTGCCTA -ACGGAAGCCTATGAAGAGCCACTA -ACGGAAGCCTATGAAGAGGGAGTA -ACGGAAGCCTATGAAGAGTCGTCT -ACGGAAGCCTATGAAGAGTGCACT -ACGGAAGCCTATGAAGAGCTGACT -ACGGAAGCCTATGAAGAGCAACCT -ACGGAAGCCTATGAAGAGGCTACT -ACGGAAGCCTATGAAGAGGGATCT -ACGGAAGCCTATGAAGAGAAGGCT -ACGGAAGCCTATGAAGAGTCAACC -ACGGAAGCCTATGAAGAGTGTTCC -ACGGAAGCCTATGAAGAGATTCCC -ACGGAAGCCTATGAAGAGTTCTCG -ACGGAAGCCTATGAAGAGTAGACG -ACGGAAGCCTATGAAGAGGTAACG -ACGGAAGCCTATGAAGAGACTTCG -ACGGAAGCCTATGAAGAGTACGCA -ACGGAAGCCTATGAAGAGCTTGCA -ACGGAAGCCTATGAAGAGCGAACA -ACGGAAGCCTATGAAGAGCAGTCA -ACGGAAGCCTATGAAGAGGATCCA -ACGGAAGCCTATGAAGAGACGACA -ACGGAAGCCTATGAAGAGAGCTCA -ACGGAAGCCTATGAAGAGTCACGT -ACGGAAGCCTATGAAGAGCGTAGT -ACGGAAGCCTATGAAGAGGTCAGT -ACGGAAGCCTATGAAGAGGAAGGT -ACGGAAGCCTATGAAGAGAACCGT -ACGGAAGCCTATGAAGAGTTGTGC -ACGGAAGCCTATGAAGAGCTAAGC -ACGGAAGCCTATGAAGAGACTAGC -ACGGAAGCCTATGAAGAGAGATGC -ACGGAAGCCTATGAAGAGTGAAGG -ACGGAAGCCTATGAAGAGCAATGG -ACGGAAGCCTATGAAGAGATGAGG -ACGGAAGCCTATGAAGAGAATGGG -ACGGAAGCCTATGAAGAGTCCTGA -ACGGAAGCCTATGAAGAGTAGCGA -ACGGAAGCCTATGAAGAGCACAGA -ACGGAAGCCTATGAAGAGGCAAGA -ACGGAAGCCTATGAAGAGGGTTGA -ACGGAAGCCTATGAAGAGTCCGAT -ACGGAAGCCTATGAAGAGTGGCAT -ACGGAAGCCTATGAAGAGCGAGAT -ACGGAAGCCTATGAAGAGTACCAC -ACGGAAGCCTATGAAGAGCAGAAC -ACGGAAGCCTATGAAGAGGTCTAC -ACGGAAGCCTATGAAGAGACGTAC -ACGGAAGCCTATGAAGAGAGTGAC -ACGGAAGCCTATGAAGAGCTGTAG -ACGGAAGCCTATGAAGAGCCTAAG -ACGGAAGCCTATGAAGAGGTTCAG -ACGGAAGCCTATGAAGAGGCATAG -ACGGAAGCCTATGAAGAGGACAAG -ACGGAAGCCTATGAAGAGAAGCAG -ACGGAAGCCTATGAAGAGCGTCAA -ACGGAAGCCTATGAAGAGGCTGAA -ACGGAAGCCTATGAAGAGAGTACG -ACGGAAGCCTATGAAGAGATCCGA -ACGGAAGCCTATGAAGAGATGGGA -ACGGAAGCCTATGAAGAGGTGCAA -ACGGAAGCCTATGAAGAGGAGGAA -ACGGAAGCCTATGAAGAGCAGGTA -ACGGAAGCCTATGAAGAGGACTCT -ACGGAAGCCTATGAAGAGAGTCCT -ACGGAAGCCTATGAAGAGTAAGCC -ACGGAAGCCTATGAAGAGATAGCC -ACGGAAGCCTATGAAGAGTAACCG -ACGGAAGCCTATGAAGAGATGCCA -ACGGAAGCCTATGTACAGGGAAAC -ACGGAAGCCTATGTACAGAACACC -ACGGAAGCCTATGTACAGATCGAG -ACGGAAGCCTATGTACAGCTCCTT -ACGGAAGCCTATGTACAGCCTGTT -ACGGAAGCCTATGTACAGCGGTTT -ACGGAAGCCTATGTACAGGTGGTT -ACGGAAGCCTATGTACAGGCCTTT -ACGGAAGCCTATGTACAGGGTCTT -ACGGAAGCCTATGTACAGACGCTT -ACGGAAGCCTATGTACAGAGCGTT -ACGGAAGCCTATGTACAGTTCGTC -ACGGAAGCCTATGTACAGTCTCTC -ACGGAAGCCTATGTACAGTGGATC -ACGGAAGCCTATGTACAGCACTTC -ACGGAAGCCTATGTACAGGTACTC -ACGGAAGCCTATGTACAGGATGTC -ACGGAAGCCTATGTACAGACAGTC -ACGGAAGCCTATGTACAGTTGCTG -ACGGAAGCCTATGTACAGTCCATG -ACGGAAGCCTATGTACAGTGTGTG -ACGGAAGCCTATGTACAGCTAGTG -ACGGAAGCCTATGTACAGCATCTG -ACGGAAGCCTATGTACAGGAGTTG -ACGGAAGCCTATGTACAGAGACTG -ACGGAAGCCTATGTACAGTCGGTA -ACGGAAGCCTATGTACAGTGCCTA -ACGGAAGCCTATGTACAGCCACTA -ACGGAAGCCTATGTACAGGGAGTA -ACGGAAGCCTATGTACAGTCGTCT -ACGGAAGCCTATGTACAGTGCACT -ACGGAAGCCTATGTACAGCTGACT -ACGGAAGCCTATGTACAGCAACCT -ACGGAAGCCTATGTACAGGCTACT -ACGGAAGCCTATGTACAGGGATCT -ACGGAAGCCTATGTACAGAAGGCT -ACGGAAGCCTATGTACAGTCAACC -ACGGAAGCCTATGTACAGTGTTCC -ACGGAAGCCTATGTACAGATTCCC -ACGGAAGCCTATGTACAGTTCTCG -ACGGAAGCCTATGTACAGTAGACG -ACGGAAGCCTATGTACAGGTAACG -ACGGAAGCCTATGTACAGACTTCG -ACGGAAGCCTATGTACAGTACGCA -ACGGAAGCCTATGTACAGCTTGCA -ACGGAAGCCTATGTACAGCGAACA -ACGGAAGCCTATGTACAGCAGTCA -ACGGAAGCCTATGTACAGGATCCA -ACGGAAGCCTATGTACAGACGACA -ACGGAAGCCTATGTACAGAGCTCA -ACGGAAGCCTATGTACAGTCACGT -ACGGAAGCCTATGTACAGCGTAGT -ACGGAAGCCTATGTACAGGTCAGT -ACGGAAGCCTATGTACAGGAAGGT -ACGGAAGCCTATGTACAGAACCGT -ACGGAAGCCTATGTACAGTTGTGC -ACGGAAGCCTATGTACAGCTAAGC -ACGGAAGCCTATGTACAGACTAGC -ACGGAAGCCTATGTACAGAGATGC -ACGGAAGCCTATGTACAGTGAAGG -ACGGAAGCCTATGTACAGCAATGG -ACGGAAGCCTATGTACAGATGAGG -ACGGAAGCCTATGTACAGAATGGG -ACGGAAGCCTATGTACAGTCCTGA -ACGGAAGCCTATGTACAGTAGCGA -ACGGAAGCCTATGTACAGCACAGA -ACGGAAGCCTATGTACAGGCAAGA -ACGGAAGCCTATGTACAGGGTTGA -ACGGAAGCCTATGTACAGTCCGAT -ACGGAAGCCTATGTACAGTGGCAT -ACGGAAGCCTATGTACAGCGAGAT -ACGGAAGCCTATGTACAGTACCAC -ACGGAAGCCTATGTACAGCAGAAC -ACGGAAGCCTATGTACAGGTCTAC -ACGGAAGCCTATGTACAGACGTAC -ACGGAAGCCTATGTACAGAGTGAC -ACGGAAGCCTATGTACAGCTGTAG -ACGGAAGCCTATGTACAGCCTAAG -ACGGAAGCCTATGTACAGGTTCAG -ACGGAAGCCTATGTACAGGCATAG -ACGGAAGCCTATGTACAGGACAAG -ACGGAAGCCTATGTACAGAAGCAG -ACGGAAGCCTATGTACAGCGTCAA -ACGGAAGCCTATGTACAGGCTGAA -ACGGAAGCCTATGTACAGAGTACG -ACGGAAGCCTATGTACAGATCCGA -ACGGAAGCCTATGTACAGATGGGA -ACGGAAGCCTATGTACAGGTGCAA -ACGGAAGCCTATGTACAGGAGGAA -ACGGAAGCCTATGTACAGCAGGTA -ACGGAAGCCTATGTACAGGACTCT -ACGGAAGCCTATGTACAGAGTCCT -ACGGAAGCCTATGTACAGTAAGCC -ACGGAAGCCTATGTACAGATAGCC -ACGGAAGCCTATGTACAGTAACCG -ACGGAAGCCTATGTACAGATGCCA -ACGGAAGCCTATTCTGACGGAAAC -ACGGAAGCCTATTCTGACAACACC -ACGGAAGCCTATTCTGACATCGAG -ACGGAAGCCTATTCTGACCTCCTT -ACGGAAGCCTATTCTGACCCTGTT -ACGGAAGCCTATTCTGACCGGTTT -ACGGAAGCCTATTCTGACGTGGTT -ACGGAAGCCTATTCTGACGCCTTT -ACGGAAGCCTATTCTGACGGTCTT -ACGGAAGCCTATTCTGACACGCTT -ACGGAAGCCTATTCTGACAGCGTT -ACGGAAGCCTATTCTGACTTCGTC -ACGGAAGCCTATTCTGACTCTCTC -ACGGAAGCCTATTCTGACTGGATC -ACGGAAGCCTATTCTGACCACTTC -ACGGAAGCCTATTCTGACGTACTC -ACGGAAGCCTATTCTGACGATGTC -ACGGAAGCCTATTCTGACACAGTC -ACGGAAGCCTATTCTGACTTGCTG -ACGGAAGCCTATTCTGACTCCATG -ACGGAAGCCTATTCTGACTGTGTG -ACGGAAGCCTATTCTGACCTAGTG -ACGGAAGCCTATTCTGACCATCTG -ACGGAAGCCTATTCTGACGAGTTG -ACGGAAGCCTATTCTGACAGACTG -ACGGAAGCCTATTCTGACTCGGTA -ACGGAAGCCTATTCTGACTGCCTA -ACGGAAGCCTATTCTGACCCACTA -ACGGAAGCCTATTCTGACGGAGTA -ACGGAAGCCTATTCTGACTCGTCT -ACGGAAGCCTATTCTGACTGCACT -ACGGAAGCCTATTCTGACCTGACT -ACGGAAGCCTATTCTGACCAACCT -ACGGAAGCCTATTCTGACGCTACT -ACGGAAGCCTATTCTGACGGATCT -ACGGAAGCCTATTCTGACAAGGCT -ACGGAAGCCTATTCTGACTCAACC -ACGGAAGCCTATTCTGACTGTTCC -ACGGAAGCCTATTCTGACATTCCC -ACGGAAGCCTATTCTGACTTCTCG -ACGGAAGCCTATTCTGACTAGACG -ACGGAAGCCTATTCTGACGTAACG -ACGGAAGCCTATTCTGACACTTCG -ACGGAAGCCTATTCTGACTACGCA -ACGGAAGCCTATTCTGACCTTGCA -ACGGAAGCCTATTCTGACCGAACA -ACGGAAGCCTATTCTGACCAGTCA -ACGGAAGCCTATTCTGACGATCCA -ACGGAAGCCTATTCTGACACGACA -ACGGAAGCCTATTCTGACAGCTCA -ACGGAAGCCTATTCTGACTCACGT -ACGGAAGCCTATTCTGACCGTAGT -ACGGAAGCCTATTCTGACGTCAGT -ACGGAAGCCTATTCTGACGAAGGT -ACGGAAGCCTATTCTGACAACCGT -ACGGAAGCCTATTCTGACTTGTGC -ACGGAAGCCTATTCTGACCTAAGC -ACGGAAGCCTATTCTGACACTAGC -ACGGAAGCCTATTCTGACAGATGC -ACGGAAGCCTATTCTGACTGAAGG -ACGGAAGCCTATTCTGACCAATGG -ACGGAAGCCTATTCTGACATGAGG -ACGGAAGCCTATTCTGACAATGGG -ACGGAAGCCTATTCTGACTCCTGA -ACGGAAGCCTATTCTGACTAGCGA -ACGGAAGCCTATTCTGACCACAGA -ACGGAAGCCTATTCTGACGCAAGA -ACGGAAGCCTATTCTGACGGTTGA -ACGGAAGCCTATTCTGACTCCGAT -ACGGAAGCCTATTCTGACTGGCAT -ACGGAAGCCTATTCTGACCGAGAT -ACGGAAGCCTATTCTGACTACCAC -ACGGAAGCCTATTCTGACCAGAAC -ACGGAAGCCTATTCTGACGTCTAC -ACGGAAGCCTATTCTGACACGTAC -ACGGAAGCCTATTCTGACAGTGAC -ACGGAAGCCTATTCTGACCTGTAG -ACGGAAGCCTATTCTGACCCTAAG -ACGGAAGCCTATTCTGACGTTCAG -ACGGAAGCCTATTCTGACGCATAG -ACGGAAGCCTATTCTGACGACAAG -ACGGAAGCCTATTCTGACAAGCAG -ACGGAAGCCTATTCTGACCGTCAA -ACGGAAGCCTATTCTGACGCTGAA -ACGGAAGCCTATTCTGACAGTACG -ACGGAAGCCTATTCTGACATCCGA -ACGGAAGCCTATTCTGACATGGGA -ACGGAAGCCTATTCTGACGTGCAA -ACGGAAGCCTATTCTGACGAGGAA -ACGGAAGCCTATTCTGACCAGGTA -ACGGAAGCCTATTCTGACGACTCT -ACGGAAGCCTATTCTGACAGTCCT -ACGGAAGCCTATTCTGACTAAGCC -ACGGAAGCCTATTCTGACATAGCC -ACGGAAGCCTATTCTGACTAACCG -ACGGAAGCCTATTCTGACATGCCA -ACGGAAGCCTATCCTAGTGGAAAC -ACGGAAGCCTATCCTAGTAACACC -ACGGAAGCCTATCCTAGTATCGAG -ACGGAAGCCTATCCTAGTCTCCTT -ACGGAAGCCTATCCTAGTCCTGTT -ACGGAAGCCTATCCTAGTCGGTTT -ACGGAAGCCTATCCTAGTGTGGTT -ACGGAAGCCTATCCTAGTGCCTTT -ACGGAAGCCTATCCTAGTGGTCTT -ACGGAAGCCTATCCTAGTACGCTT -ACGGAAGCCTATCCTAGTAGCGTT -ACGGAAGCCTATCCTAGTTTCGTC -ACGGAAGCCTATCCTAGTTCTCTC -ACGGAAGCCTATCCTAGTTGGATC -ACGGAAGCCTATCCTAGTCACTTC -ACGGAAGCCTATCCTAGTGTACTC -ACGGAAGCCTATCCTAGTGATGTC -ACGGAAGCCTATCCTAGTACAGTC -ACGGAAGCCTATCCTAGTTTGCTG -ACGGAAGCCTATCCTAGTTCCATG -ACGGAAGCCTATCCTAGTTGTGTG -ACGGAAGCCTATCCTAGTCTAGTG -ACGGAAGCCTATCCTAGTCATCTG -ACGGAAGCCTATCCTAGTGAGTTG -ACGGAAGCCTATCCTAGTAGACTG -ACGGAAGCCTATCCTAGTTCGGTA -ACGGAAGCCTATCCTAGTTGCCTA -ACGGAAGCCTATCCTAGTCCACTA -ACGGAAGCCTATCCTAGTGGAGTA -ACGGAAGCCTATCCTAGTTCGTCT -ACGGAAGCCTATCCTAGTTGCACT -ACGGAAGCCTATCCTAGTCTGACT -ACGGAAGCCTATCCTAGTCAACCT -ACGGAAGCCTATCCTAGTGCTACT -ACGGAAGCCTATCCTAGTGGATCT -ACGGAAGCCTATCCTAGTAAGGCT -ACGGAAGCCTATCCTAGTTCAACC -ACGGAAGCCTATCCTAGTTGTTCC -ACGGAAGCCTATCCTAGTATTCCC -ACGGAAGCCTATCCTAGTTTCTCG -ACGGAAGCCTATCCTAGTTAGACG -ACGGAAGCCTATCCTAGTGTAACG -ACGGAAGCCTATCCTAGTACTTCG -ACGGAAGCCTATCCTAGTTACGCA -ACGGAAGCCTATCCTAGTCTTGCA -ACGGAAGCCTATCCTAGTCGAACA -ACGGAAGCCTATCCTAGTCAGTCA -ACGGAAGCCTATCCTAGTGATCCA -ACGGAAGCCTATCCTAGTACGACA -ACGGAAGCCTATCCTAGTAGCTCA -ACGGAAGCCTATCCTAGTTCACGT -ACGGAAGCCTATCCTAGTCGTAGT -ACGGAAGCCTATCCTAGTGTCAGT -ACGGAAGCCTATCCTAGTGAAGGT -ACGGAAGCCTATCCTAGTAACCGT -ACGGAAGCCTATCCTAGTTTGTGC -ACGGAAGCCTATCCTAGTCTAAGC -ACGGAAGCCTATCCTAGTACTAGC -ACGGAAGCCTATCCTAGTAGATGC -ACGGAAGCCTATCCTAGTTGAAGG -ACGGAAGCCTATCCTAGTCAATGG -ACGGAAGCCTATCCTAGTATGAGG -ACGGAAGCCTATCCTAGTAATGGG -ACGGAAGCCTATCCTAGTTCCTGA -ACGGAAGCCTATCCTAGTTAGCGA -ACGGAAGCCTATCCTAGTCACAGA -ACGGAAGCCTATCCTAGTGCAAGA -ACGGAAGCCTATCCTAGTGGTTGA -ACGGAAGCCTATCCTAGTTCCGAT -ACGGAAGCCTATCCTAGTTGGCAT -ACGGAAGCCTATCCTAGTCGAGAT -ACGGAAGCCTATCCTAGTTACCAC -ACGGAAGCCTATCCTAGTCAGAAC -ACGGAAGCCTATCCTAGTGTCTAC -ACGGAAGCCTATCCTAGTACGTAC -ACGGAAGCCTATCCTAGTAGTGAC -ACGGAAGCCTATCCTAGTCTGTAG -ACGGAAGCCTATCCTAGTCCTAAG -ACGGAAGCCTATCCTAGTGTTCAG -ACGGAAGCCTATCCTAGTGCATAG -ACGGAAGCCTATCCTAGTGACAAG -ACGGAAGCCTATCCTAGTAAGCAG -ACGGAAGCCTATCCTAGTCGTCAA -ACGGAAGCCTATCCTAGTGCTGAA -ACGGAAGCCTATCCTAGTAGTACG -ACGGAAGCCTATCCTAGTATCCGA -ACGGAAGCCTATCCTAGTATGGGA -ACGGAAGCCTATCCTAGTGTGCAA -ACGGAAGCCTATCCTAGTGAGGAA -ACGGAAGCCTATCCTAGTCAGGTA -ACGGAAGCCTATCCTAGTGACTCT -ACGGAAGCCTATCCTAGTAGTCCT -ACGGAAGCCTATCCTAGTTAAGCC -ACGGAAGCCTATCCTAGTATAGCC -ACGGAAGCCTATCCTAGTTAACCG -ACGGAAGCCTATCCTAGTATGCCA -ACGGAAGCCTATGCCTAAGGAAAC -ACGGAAGCCTATGCCTAAAACACC -ACGGAAGCCTATGCCTAAATCGAG -ACGGAAGCCTATGCCTAACTCCTT -ACGGAAGCCTATGCCTAACCTGTT -ACGGAAGCCTATGCCTAACGGTTT -ACGGAAGCCTATGCCTAAGTGGTT -ACGGAAGCCTATGCCTAAGCCTTT -ACGGAAGCCTATGCCTAAGGTCTT -ACGGAAGCCTATGCCTAAACGCTT -ACGGAAGCCTATGCCTAAAGCGTT -ACGGAAGCCTATGCCTAATTCGTC -ACGGAAGCCTATGCCTAATCTCTC -ACGGAAGCCTATGCCTAATGGATC -ACGGAAGCCTATGCCTAACACTTC -ACGGAAGCCTATGCCTAAGTACTC -ACGGAAGCCTATGCCTAAGATGTC -ACGGAAGCCTATGCCTAAACAGTC -ACGGAAGCCTATGCCTAATTGCTG -ACGGAAGCCTATGCCTAATCCATG -ACGGAAGCCTATGCCTAATGTGTG -ACGGAAGCCTATGCCTAACTAGTG -ACGGAAGCCTATGCCTAACATCTG -ACGGAAGCCTATGCCTAAGAGTTG -ACGGAAGCCTATGCCTAAAGACTG -ACGGAAGCCTATGCCTAATCGGTA -ACGGAAGCCTATGCCTAATGCCTA -ACGGAAGCCTATGCCTAACCACTA -ACGGAAGCCTATGCCTAAGGAGTA -ACGGAAGCCTATGCCTAATCGTCT -ACGGAAGCCTATGCCTAATGCACT -ACGGAAGCCTATGCCTAACTGACT -ACGGAAGCCTATGCCTAACAACCT -ACGGAAGCCTATGCCTAAGCTACT -ACGGAAGCCTATGCCTAAGGATCT -ACGGAAGCCTATGCCTAAAAGGCT -ACGGAAGCCTATGCCTAATCAACC -ACGGAAGCCTATGCCTAATGTTCC -ACGGAAGCCTATGCCTAAATTCCC -ACGGAAGCCTATGCCTAATTCTCG -ACGGAAGCCTATGCCTAATAGACG -ACGGAAGCCTATGCCTAAGTAACG -ACGGAAGCCTATGCCTAAACTTCG -ACGGAAGCCTATGCCTAATACGCA -ACGGAAGCCTATGCCTAACTTGCA -ACGGAAGCCTATGCCTAACGAACA -ACGGAAGCCTATGCCTAACAGTCA -ACGGAAGCCTATGCCTAAGATCCA -ACGGAAGCCTATGCCTAAACGACA -ACGGAAGCCTATGCCTAAAGCTCA -ACGGAAGCCTATGCCTAATCACGT -ACGGAAGCCTATGCCTAACGTAGT -ACGGAAGCCTATGCCTAAGTCAGT -ACGGAAGCCTATGCCTAAGAAGGT -ACGGAAGCCTATGCCTAAAACCGT -ACGGAAGCCTATGCCTAATTGTGC -ACGGAAGCCTATGCCTAACTAAGC -ACGGAAGCCTATGCCTAAACTAGC -ACGGAAGCCTATGCCTAAAGATGC -ACGGAAGCCTATGCCTAATGAAGG -ACGGAAGCCTATGCCTAACAATGG -ACGGAAGCCTATGCCTAAATGAGG -ACGGAAGCCTATGCCTAAAATGGG -ACGGAAGCCTATGCCTAATCCTGA -ACGGAAGCCTATGCCTAATAGCGA -ACGGAAGCCTATGCCTAACACAGA -ACGGAAGCCTATGCCTAAGCAAGA -ACGGAAGCCTATGCCTAAGGTTGA -ACGGAAGCCTATGCCTAATCCGAT -ACGGAAGCCTATGCCTAATGGCAT -ACGGAAGCCTATGCCTAACGAGAT -ACGGAAGCCTATGCCTAATACCAC -ACGGAAGCCTATGCCTAACAGAAC -ACGGAAGCCTATGCCTAAGTCTAC -ACGGAAGCCTATGCCTAAACGTAC -ACGGAAGCCTATGCCTAAAGTGAC -ACGGAAGCCTATGCCTAACTGTAG -ACGGAAGCCTATGCCTAACCTAAG -ACGGAAGCCTATGCCTAAGTTCAG -ACGGAAGCCTATGCCTAAGCATAG -ACGGAAGCCTATGCCTAAGACAAG -ACGGAAGCCTATGCCTAAAAGCAG -ACGGAAGCCTATGCCTAACGTCAA -ACGGAAGCCTATGCCTAAGCTGAA -ACGGAAGCCTATGCCTAAAGTACG -ACGGAAGCCTATGCCTAAATCCGA -ACGGAAGCCTATGCCTAAATGGGA -ACGGAAGCCTATGCCTAAGTGCAA -ACGGAAGCCTATGCCTAAGAGGAA -ACGGAAGCCTATGCCTAACAGGTA -ACGGAAGCCTATGCCTAAGACTCT -ACGGAAGCCTATGCCTAAAGTCCT -ACGGAAGCCTATGCCTAATAAGCC -ACGGAAGCCTATGCCTAAATAGCC -ACGGAAGCCTATGCCTAATAACCG -ACGGAAGCCTATGCCTAAATGCCA -ACGGAAGCCTATGCCATAGGAAAC -ACGGAAGCCTATGCCATAAACACC -ACGGAAGCCTATGCCATAATCGAG -ACGGAAGCCTATGCCATACTCCTT -ACGGAAGCCTATGCCATACCTGTT -ACGGAAGCCTATGCCATACGGTTT -ACGGAAGCCTATGCCATAGTGGTT -ACGGAAGCCTATGCCATAGCCTTT -ACGGAAGCCTATGCCATAGGTCTT -ACGGAAGCCTATGCCATAACGCTT -ACGGAAGCCTATGCCATAAGCGTT -ACGGAAGCCTATGCCATATTCGTC -ACGGAAGCCTATGCCATATCTCTC -ACGGAAGCCTATGCCATATGGATC -ACGGAAGCCTATGCCATACACTTC -ACGGAAGCCTATGCCATAGTACTC -ACGGAAGCCTATGCCATAGATGTC -ACGGAAGCCTATGCCATAACAGTC -ACGGAAGCCTATGCCATATTGCTG -ACGGAAGCCTATGCCATATCCATG -ACGGAAGCCTATGCCATATGTGTG -ACGGAAGCCTATGCCATACTAGTG -ACGGAAGCCTATGCCATACATCTG -ACGGAAGCCTATGCCATAGAGTTG -ACGGAAGCCTATGCCATAAGACTG -ACGGAAGCCTATGCCATATCGGTA -ACGGAAGCCTATGCCATATGCCTA -ACGGAAGCCTATGCCATACCACTA -ACGGAAGCCTATGCCATAGGAGTA -ACGGAAGCCTATGCCATATCGTCT -ACGGAAGCCTATGCCATATGCACT -ACGGAAGCCTATGCCATACTGACT -ACGGAAGCCTATGCCATACAACCT -ACGGAAGCCTATGCCATAGCTACT -ACGGAAGCCTATGCCATAGGATCT -ACGGAAGCCTATGCCATAAAGGCT -ACGGAAGCCTATGCCATATCAACC -ACGGAAGCCTATGCCATATGTTCC -ACGGAAGCCTATGCCATAATTCCC -ACGGAAGCCTATGCCATATTCTCG -ACGGAAGCCTATGCCATATAGACG -ACGGAAGCCTATGCCATAGTAACG -ACGGAAGCCTATGCCATAACTTCG -ACGGAAGCCTATGCCATATACGCA -ACGGAAGCCTATGCCATACTTGCA -ACGGAAGCCTATGCCATACGAACA -ACGGAAGCCTATGCCATACAGTCA -ACGGAAGCCTATGCCATAGATCCA -ACGGAAGCCTATGCCATAACGACA -ACGGAAGCCTATGCCATAAGCTCA -ACGGAAGCCTATGCCATATCACGT -ACGGAAGCCTATGCCATACGTAGT -ACGGAAGCCTATGCCATAGTCAGT -ACGGAAGCCTATGCCATAGAAGGT -ACGGAAGCCTATGCCATAAACCGT -ACGGAAGCCTATGCCATATTGTGC -ACGGAAGCCTATGCCATACTAAGC -ACGGAAGCCTATGCCATAACTAGC -ACGGAAGCCTATGCCATAAGATGC -ACGGAAGCCTATGCCATATGAAGG -ACGGAAGCCTATGCCATACAATGG -ACGGAAGCCTATGCCATAATGAGG -ACGGAAGCCTATGCCATAAATGGG -ACGGAAGCCTATGCCATATCCTGA -ACGGAAGCCTATGCCATATAGCGA -ACGGAAGCCTATGCCATACACAGA -ACGGAAGCCTATGCCATAGCAAGA -ACGGAAGCCTATGCCATAGGTTGA -ACGGAAGCCTATGCCATATCCGAT -ACGGAAGCCTATGCCATATGGCAT -ACGGAAGCCTATGCCATACGAGAT -ACGGAAGCCTATGCCATATACCAC -ACGGAAGCCTATGCCATACAGAAC -ACGGAAGCCTATGCCATAGTCTAC -ACGGAAGCCTATGCCATAACGTAC -ACGGAAGCCTATGCCATAAGTGAC -ACGGAAGCCTATGCCATACTGTAG -ACGGAAGCCTATGCCATACCTAAG -ACGGAAGCCTATGCCATAGTTCAG -ACGGAAGCCTATGCCATAGCATAG -ACGGAAGCCTATGCCATAGACAAG -ACGGAAGCCTATGCCATAAAGCAG -ACGGAAGCCTATGCCATACGTCAA -ACGGAAGCCTATGCCATAGCTGAA -ACGGAAGCCTATGCCATAAGTACG -ACGGAAGCCTATGCCATAATCCGA -ACGGAAGCCTATGCCATAATGGGA -ACGGAAGCCTATGCCATAGTGCAA -ACGGAAGCCTATGCCATAGAGGAA -ACGGAAGCCTATGCCATACAGGTA -ACGGAAGCCTATGCCATAGACTCT -ACGGAAGCCTATGCCATAAGTCCT -ACGGAAGCCTATGCCATATAAGCC -ACGGAAGCCTATGCCATAATAGCC -ACGGAAGCCTATGCCATATAACCG -ACGGAAGCCTATGCCATAATGCCA -ACGGAAGCCTATCCGTAAGGAAAC -ACGGAAGCCTATCCGTAAAACACC -ACGGAAGCCTATCCGTAAATCGAG -ACGGAAGCCTATCCGTAACTCCTT -ACGGAAGCCTATCCGTAACCTGTT -ACGGAAGCCTATCCGTAACGGTTT -ACGGAAGCCTATCCGTAAGTGGTT -ACGGAAGCCTATCCGTAAGCCTTT -ACGGAAGCCTATCCGTAAGGTCTT -ACGGAAGCCTATCCGTAAACGCTT -ACGGAAGCCTATCCGTAAAGCGTT -ACGGAAGCCTATCCGTAATTCGTC -ACGGAAGCCTATCCGTAATCTCTC -ACGGAAGCCTATCCGTAATGGATC -ACGGAAGCCTATCCGTAACACTTC -ACGGAAGCCTATCCGTAAGTACTC -ACGGAAGCCTATCCGTAAGATGTC -ACGGAAGCCTATCCGTAAACAGTC -ACGGAAGCCTATCCGTAATTGCTG -ACGGAAGCCTATCCGTAATCCATG -ACGGAAGCCTATCCGTAATGTGTG -ACGGAAGCCTATCCGTAACTAGTG -ACGGAAGCCTATCCGTAACATCTG -ACGGAAGCCTATCCGTAAGAGTTG -ACGGAAGCCTATCCGTAAAGACTG -ACGGAAGCCTATCCGTAATCGGTA -ACGGAAGCCTATCCGTAATGCCTA -ACGGAAGCCTATCCGTAACCACTA -ACGGAAGCCTATCCGTAAGGAGTA -ACGGAAGCCTATCCGTAATCGTCT -ACGGAAGCCTATCCGTAATGCACT -ACGGAAGCCTATCCGTAACTGACT -ACGGAAGCCTATCCGTAACAACCT -ACGGAAGCCTATCCGTAAGCTACT -ACGGAAGCCTATCCGTAAGGATCT -ACGGAAGCCTATCCGTAAAAGGCT -ACGGAAGCCTATCCGTAATCAACC -ACGGAAGCCTATCCGTAATGTTCC -ACGGAAGCCTATCCGTAAATTCCC -ACGGAAGCCTATCCGTAATTCTCG -ACGGAAGCCTATCCGTAATAGACG -ACGGAAGCCTATCCGTAAGTAACG -ACGGAAGCCTATCCGTAAACTTCG -ACGGAAGCCTATCCGTAATACGCA -ACGGAAGCCTATCCGTAACTTGCA -ACGGAAGCCTATCCGTAACGAACA -ACGGAAGCCTATCCGTAACAGTCA -ACGGAAGCCTATCCGTAAGATCCA -ACGGAAGCCTATCCGTAAACGACA -ACGGAAGCCTATCCGTAAAGCTCA -ACGGAAGCCTATCCGTAATCACGT -ACGGAAGCCTATCCGTAACGTAGT -ACGGAAGCCTATCCGTAAGTCAGT -ACGGAAGCCTATCCGTAAGAAGGT -ACGGAAGCCTATCCGTAAAACCGT -ACGGAAGCCTATCCGTAATTGTGC -ACGGAAGCCTATCCGTAACTAAGC -ACGGAAGCCTATCCGTAAACTAGC -ACGGAAGCCTATCCGTAAAGATGC -ACGGAAGCCTATCCGTAATGAAGG -ACGGAAGCCTATCCGTAACAATGG -ACGGAAGCCTATCCGTAAATGAGG -ACGGAAGCCTATCCGTAAAATGGG -ACGGAAGCCTATCCGTAATCCTGA -ACGGAAGCCTATCCGTAATAGCGA -ACGGAAGCCTATCCGTAACACAGA -ACGGAAGCCTATCCGTAAGCAAGA -ACGGAAGCCTATCCGTAAGGTTGA -ACGGAAGCCTATCCGTAATCCGAT -ACGGAAGCCTATCCGTAATGGCAT -ACGGAAGCCTATCCGTAACGAGAT -ACGGAAGCCTATCCGTAATACCAC -ACGGAAGCCTATCCGTAACAGAAC -ACGGAAGCCTATCCGTAAGTCTAC -ACGGAAGCCTATCCGTAAACGTAC -ACGGAAGCCTATCCGTAAAGTGAC -ACGGAAGCCTATCCGTAACTGTAG -ACGGAAGCCTATCCGTAACCTAAG -ACGGAAGCCTATCCGTAAGTTCAG -ACGGAAGCCTATCCGTAAGCATAG -ACGGAAGCCTATCCGTAAGACAAG -ACGGAAGCCTATCCGTAAAAGCAG -ACGGAAGCCTATCCGTAACGTCAA -ACGGAAGCCTATCCGTAAGCTGAA -ACGGAAGCCTATCCGTAAAGTACG -ACGGAAGCCTATCCGTAAATCCGA -ACGGAAGCCTATCCGTAAATGGGA -ACGGAAGCCTATCCGTAAGTGCAA -ACGGAAGCCTATCCGTAAGAGGAA -ACGGAAGCCTATCCGTAACAGGTA -ACGGAAGCCTATCCGTAAGACTCT -ACGGAAGCCTATCCGTAAAGTCCT -ACGGAAGCCTATCCGTAATAAGCC -ACGGAAGCCTATCCGTAAATAGCC -ACGGAAGCCTATCCGTAATAACCG -ACGGAAGCCTATCCGTAAATGCCA -ACGGAAGCCTATCCAATGGGAAAC -ACGGAAGCCTATCCAATGAACACC -ACGGAAGCCTATCCAATGATCGAG -ACGGAAGCCTATCCAATGCTCCTT -ACGGAAGCCTATCCAATGCCTGTT -ACGGAAGCCTATCCAATGCGGTTT -ACGGAAGCCTATCCAATGGTGGTT -ACGGAAGCCTATCCAATGGCCTTT -ACGGAAGCCTATCCAATGGGTCTT -ACGGAAGCCTATCCAATGACGCTT -ACGGAAGCCTATCCAATGAGCGTT -ACGGAAGCCTATCCAATGTTCGTC -ACGGAAGCCTATCCAATGTCTCTC -ACGGAAGCCTATCCAATGTGGATC -ACGGAAGCCTATCCAATGCACTTC -ACGGAAGCCTATCCAATGGTACTC -ACGGAAGCCTATCCAATGGATGTC -ACGGAAGCCTATCCAATGACAGTC -ACGGAAGCCTATCCAATGTTGCTG -ACGGAAGCCTATCCAATGTCCATG -ACGGAAGCCTATCCAATGTGTGTG -ACGGAAGCCTATCCAATGCTAGTG -ACGGAAGCCTATCCAATGCATCTG -ACGGAAGCCTATCCAATGGAGTTG -ACGGAAGCCTATCCAATGAGACTG -ACGGAAGCCTATCCAATGTCGGTA -ACGGAAGCCTATCCAATGTGCCTA -ACGGAAGCCTATCCAATGCCACTA -ACGGAAGCCTATCCAATGGGAGTA -ACGGAAGCCTATCCAATGTCGTCT -ACGGAAGCCTATCCAATGTGCACT -ACGGAAGCCTATCCAATGCTGACT -ACGGAAGCCTATCCAATGCAACCT -ACGGAAGCCTATCCAATGGCTACT -ACGGAAGCCTATCCAATGGGATCT -ACGGAAGCCTATCCAATGAAGGCT -ACGGAAGCCTATCCAATGTCAACC -ACGGAAGCCTATCCAATGTGTTCC -ACGGAAGCCTATCCAATGATTCCC -ACGGAAGCCTATCCAATGTTCTCG -ACGGAAGCCTATCCAATGTAGACG -ACGGAAGCCTATCCAATGGTAACG -ACGGAAGCCTATCCAATGACTTCG -ACGGAAGCCTATCCAATGTACGCA -ACGGAAGCCTATCCAATGCTTGCA -ACGGAAGCCTATCCAATGCGAACA -ACGGAAGCCTATCCAATGCAGTCA -ACGGAAGCCTATCCAATGGATCCA -ACGGAAGCCTATCCAATGACGACA -ACGGAAGCCTATCCAATGAGCTCA -ACGGAAGCCTATCCAATGTCACGT -ACGGAAGCCTATCCAATGCGTAGT -ACGGAAGCCTATCCAATGGTCAGT -ACGGAAGCCTATCCAATGGAAGGT -ACGGAAGCCTATCCAATGAACCGT -ACGGAAGCCTATCCAATGTTGTGC -ACGGAAGCCTATCCAATGCTAAGC -ACGGAAGCCTATCCAATGACTAGC -ACGGAAGCCTATCCAATGAGATGC -ACGGAAGCCTATCCAATGTGAAGG -ACGGAAGCCTATCCAATGCAATGG -ACGGAAGCCTATCCAATGATGAGG -ACGGAAGCCTATCCAATGAATGGG -ACGGAAGCCTATCCAATGTCCTGA -ACGGAAGCCTATCCAATGTAGCGA -ACGGAAGCCTATCCAATGCACAGA -ACGGAAGCCTATCCAATGGCAAGA -ACGGAAGCCTATCCAATGGGTTGA -ACGGAAGCCTATCCAATGTCCGAT -ACGGAAGCCTATCCAATGTGGCAT -ACGGAAGCCTATCCAATGCGAGAT -ACGGAAGCCTATCCAATGTACCAC -ACGGAAGCCTATCCAATGCAGAAC -ACGGAAGCCTATCCAATGGTCTAC -ACGGAAGCCTATCCAATGACGTAC -ACGGAAGCCTATCCAATGAGTGAC -ACGGAAGCCTATCCAATGCTGTAG -ACGGAAGCCTATCCAATGCCTAAG -ACGGAAGCCTATCCAATGGTTCAG -ACGGAAGCCTATCCAATGGCATAG -ACGGAAGCCTATCCAATGGACAAG -ACGGAAGCCTATCCAATGAAGCAG -ACGGAAGCCTATCCAATGCGTCAA -ACGGAAGCCTATCCAATGGCTGAA -ACGGAAGCCTATCCAATGAGTACG -ACGGAAGCCTATCCAATGATCCGA -ACGGAAGCCTATCCAATGATGGGA -ACGGAAGCCTATCCAATGGTGCAA -ACGGAAGCCTATCCAATGGAGGAA -ACGGAAGCCTATCCAATGCAGGTA -ACGGAAGCCTATCCAATGGACTCT -ACGGAAGCCTATCCAATGAGTCCT -ACGGAAGCCTATCCAATGTAAGCC -ACGGAAGCCTATCCAATGATAGCC -ACGGAAGCCTATCCAATGTAACCG -ACGGAAGCCTATCCAATGATGCCA -ACGGAACACTACAACGGAGGAAAC -ACGGAACACTACAACGGAAACACC -ACGGAACACTACAACGGAATCGAG -ACGGAACACTACAACGGACTCCTT -ACGGAACACTACAACGGACCTGTT -ACGGAACACTACAACGGACGGTTT -ACGGAACACTACAACGGAGTGGTT -ACGGAACACTACAACGGAGCCTTT -ACGGAACACTACAACGGAGGTCTT -ACGGAACACTACAACGGAACGCTT -ACGGAACACTACAACGGAAGCGTT -ACGGAACACTACAACGGATTCGTC -ACGGAACACTACAACGGATCTCTC -ACGGAACACTACAACGGATGGATC -ACGGAACACTACAACGGACACTTC -ACGGAACACTACAACGGAGTACTC -ACGGAACACTACAACGGAGATGTC -ACGGAACACTACAACGGAACAGTC -ACGGAACACTACAACGGATTGCTG -ACGGAACACTACAACGGATCCATG -ACGGAACACTACAACGGATGTGTG -ACGGAACACTACAACGGACTAGTG -ACGGAACACTACAACGGACATCTG -ACGGAACACTACAACGGAGAGTTG -ACGGAACACTACAACGGAAGACTG -ACGGAACACTACAACGGATCGGTA -ACGGAACACTACAACGGATGCCTA -ACGGAACACTACAACGGACCACTA -ACGGAACACTACAACGGAGGAGTA -ACGGAACACTACAACGGATCGTCT -ACGGAACACTACAACGGATGCACT -ACGGAACACTACAACGGACTGACT -ACGGAACACTACAACGGACAACCT -ACGGAACACTACAACGGAGCTACT -ACGGAACACTACAACGGAGGATCT -ACGGAACACTACAACGGAAAGGCT -ACGGAACACTACAACGGATCAACC -ACGGAACACTACAACGGATGTTCC -ACGGAACACTACAACGGAATTCCC -ACGGAACACTACAACGGATTCTCG -ACGGAACACTACAACGGATAGACG -ACGGAACACTACAACGGAGTAACG -ACGGAACACTACAACGGAACTTCG -ACGGAACACTACAACGGATACGCA -ACGGAACACTACAACGGACTTGCA -ACGGAACACTACAACGGACGAACA -ACGGAACACTACAACGGACAGTCA -ACGGAACACTACAACGGAGATCCA -ACGGAACACTACAACGGAACGACA -ACGGAACACTACAACGGAAGCTCA -ACGGAACACTACAACGGATCACGT -ACGGAACACTACAACGGACGTAGT -ACGGAACACTACAACGGAGTCAGT -ACGGAACACTACAACGGAGAAGGT -ACGGAACACTACAACGGAAACCGT -ACGGAACACTACAACGGATTGTGC -ACGGAACACTACAACGGACTAAGC -ACGGAACACTACAACGGAACTAGC -ACGGAACACTACAACGGAAGATGC -ACGGAACACTACAACGGATGAAGG -ACGGAACACTACAACGGACAATGG -ACGGAACACTACAACGGAATGAGG -ACGGAACACTACAACGGAAATGGG -ACGGAACACTACAACGGATCCTGA -ACGGAACACTACAACGGATAGCGA -ACGGAACACTACAACGGACACAGA -ACGGAACACTACAACGGAGCAAGA -ACGGAACACTACAACGGAGGTTGA -ACGGAACACTACAACGGATCCGAT -ACGGAACACTACAACGGATGGCAT -ACGGAACACTACAACGGACGAGAT -ACGGAACACTACAACGGATACCAC -ACGGAACACTACAACGGACAGAAC -ACGGAACACTACAACGGAGTCTAC -ACGGAACACTACAACGGAACGTAC -ACGGAACACTACAACGGAAGTGAC -ACGGAACACTACAACGGACTGTAG -ACGGAACACTACAACGGACCTAAG -ACGGAACACTACAACGGAGTTCAG -ACGGAACACTACAACGGAGCATAG -ACGGAACACTACAACGGAGACAAG -ACGGAACACTACAACGGAAAGCAG -ACGGAACACTACAACGGACGTCAA -ACGGAACACTACAACGGAGCTGAA -ACGGAACACTACAACGGAAGTACG -ACGGAACACTACAACGGAATCCGA -ACGGAACACTACAACGGAATGGGA -ACGGAACACTACAACGGAGTGCAA -ACGGAACACTACAACGGAGAGGAA -ACGGAACACTACAACGGACAGGTA -ACGGAACACTACAACGGAGACTCT -ACGGAACACTACAACGGAAGTCCT -ACGGAACACTACAACGGATAAGCC -ACGGAACACTACAACGGAATAGCC -ACGGAACACTACAACGGATAACCG -ACGGAACACTACAACGGAATGCCA -ACGGAACACTACACCAACGGAAAC -ACGGAACACTACACCAACAACACC -ACGGAACACTACACCAACATCGAG -ACGGAACACTACACCAACCTCCTT -ACGGAACACTACACCAACCCTGTT -ACGGAACACTACACCAACCGGTTT -ACGGAACACTACACCAACGTGGTT -ACGGAACACTACACCAACGCCTTT -ACGGAACACTACACCAACGGTCTT -ACGGAACACTACACCAACACGCTT -ACGGAACACTACACCAACAGCGTT -ACGGAACACTACACCAACTTCGTC -ACGGAACACTACACCAACTCTCTC -ACGGAACACTACACCAACTGGATC -ACGGAACACTACACCAACCACTTC -ACGGAACACTACACCAACGTACTC -ACGGAACACTACACCAACGATGTC -ACGGAACACTACACCAACACAGTC -ACGGAACACTACACCAACTTGCTG -ACGGAACACTACACCAACTCCATG -ACGGAACACTACACCAACTGTGTG -ACGGAACACTACACCAACCTAGTG -ACGGAACACTACACCAACCATCTG -ACGGAACACTACACCAACGAGTTG -ACGGAACACTACACCAACAGACTG -ACGGAACACTACACCAACTCGGTA -ACGGAACACTACACCAACTGCCTA -ACGGAACACTACACCAACCCACTA -ACGGAACACTACACCAACGGAGTA -ACGGAACACTACACCAACTCGTCT -ACGGAACACTACACCAACTGCACT -ACGGAACACTACACCAACCTGACT -ACGGAACACTACACCAACCAACCT -ACGGAACACTACACCAACGCTACT -ACGGAACACTACACCAACGGATCT -ACGGAACACTACACCAACAAGGCT -ACGGAACACTACACCAACTCAACC -ACGGAACACTACACCAACTGTTCC -ACGGAACACTACACCAACATTCCC -ACGGAACACTACACCAACTTCTCG -ACGGAACACTACACCAACTAGACG -ACGGAACACTACACCAACGTAACG -ACGGAACACTACACCAACACTTCG -ACGGAACACTACACCAACTACGCA -ACGGAACACTACACCAACCTTGCA -ACGGAACACTACACCAACCGAACA -ACGGAACACTACACCAACCAGTCA -ACGGAACACTACACCAACGATCCA -ACGGAACACTACACCAACACGACA -ACGGAACACTACACCAACAGCTCA -ACGGAACACTACACCAACTCACGT -ACGGAACACTACACCAACCGTAGT -ACGGAACACTACACCAACGTCAGT -ACGGAACACTACACCAACGAAGGT -ACGGAACACTACACCAACAACCGT -ACGGAACACTACACCAACTTGTGC -ACGGAACACTACACCAACCTAAGC -ACGGAACACTACACCAACACTAGC -ACGGAACACTACACCAACAGATGC -ACGGAACACTACACCAACTGAAGG -ACGGAACACTACACCAACCAATGG -ACGGAACACTACACCAACATGAGG -ACGGAACACTACACCAACAATGGG -ACGGAACACTACACCAACTCCTGA -ACGGAACACTACACCAACTAGCGA -ACGGAACACTACACCAACCACAGA -ACGGAACACTACACCAACGCAAGA -ACGGAACACTACACCAACGGTTGA -ACGGAACACTACACCAACTCCGAT -ACGGAACACTACACCAACTGGCAT -ACGGAACACTACACCAACCGAGAT -ACGGAACACTACACCAACTACCAC -ACGGAACACTACACCAACCAGAAC -ACGGAACACTACACCAACGTCTAC -ACGGAACACTACACCAACACGTAC -ACGGAACACTACACCAACAGTGAC -ACGGAACACTACACCAACCTGTAG -ACGGAACACTACACCAACCCTAAG -ACGGAACACTACACCAACGTTCAG -ACGGAACACTACACCAACGCATAG -ACGGAACACTACACCAACGACAAG -ACGGAACACTACACCAACAAGCAG -ACGGAACACTACACCAACCGTCAA -ACGGAACACTACACCAACGCTGAA -ACGGAACACTACACCAACAGTACG -ACGGAACACTACACCAACATCCGA -ACGGAACACTACACCAACATGGGA -ACGGAACACTACACCAACGTGCAA -ACGGAACACTACACCAACGAGGAA -ACGGAACACTACACCAACCAGGTA -ACGGAACACTACACCAACGACTCT -ACGGAACACTACACCAACAGTCCT -ACGGAACACTACACCAACTAAGCC -ACGGAACACTACACCAACATAGCC -ACGGAACACTACACCAACTAACCG -ACGGAACACTACACCAACATGCCA -ACGGAACACTACGAGATCGGAAAC -ACGGAACACTACGAGATCAACACC -ACGGAACACTACGAGATCATCGAG -ACGGAACACTACGAGATCCTCCTT -ACGGAACACTACGAGATCCCTGTT -ACGGAACACTACGAGATCCGGTTT -ACGGAACACTACGAGATCGTGGTT -ACGGAACACTACGAGATCGCCTTT -ACGGAACACTACGAGATCGGTCTT -ACGGAACACTACGAGATCACGCTT -ACGGAACACTACGAGATCAGCGTT -ACGGAACACTACGAGATCTTCGTC -ACGGAACACTACGAGATCTCTCTC -ACGGAACACTACGAGATCTGGATC -ACGGAACACTACGAGATCCACTTC -ACGGAACACTACGAGATCGTACTC -ACGGAACACTACGAGATCGATGTC -ACGGAACACTACGAGATCACAGTC -ACGGAACACTACGAGATCTTGCTG -ACGGAACACTACGAGATCTCCATG -ACGGAACACTACGAGATCTGTGTG -ACGGAACACTACGAGATCCTAGTG -ACGGAACACTACGAGATCCATCTG -ACGGAACACTACGAGATCGAGTTG -ACGGAACACTACGAGATCAGACTG -ACGGAACACTACGAGATCTCGGTA -ACGGAACACTACGAGATCTGCCTA -ACGGAACACTACGAGATCCCACTA -ACGGAACACTACGAGATCGGAGTA -ACGGAACACTACGAGATCTCGTCT -ACGGAACACTACGAGATCTGCACT -ACGGAACACTACGAGATCCTGACT -ACGGAACACTACGAGATCCAACCT -ACGGAACACTACGAGATCGCTACT -ACGGAACACTACGAGATCGGATCT -ACGGAACACTACGAGATCAAGGCT -ACGGAACACTACGAGATCTCAACC -ACGGAACACTACGAGATCTGTTCC -ACGGAACACTACGAGATCATTCCC -ACGGAACACTACGAGATCTTCTCG -ACGGAACACTACGAGATCTAGACG -ACGGAACACTACGAGATCGTAACG -ACGGAACACTACGAGATCACTTCG -ACGGAACACTACGAGATCTACGCA -ACGGAACACTACGAGATCCTTGCA -ACGGAACACTACGAGATCCGAACA -ACGGAACACTACGAGATCCAGTCA -ACGGAACACTACGAGATCGATCCA -ACGGAACACTACGAGATCACGACA -ACGGAACACTACGAGATCAGCTCA -ACGGAACACTACGAGATCTCACGT -ACGGAACACTACGAGATCCGTAGT -ACGGAACACTACGAGATCGTCAGT -ACGGAACACTACGAGATCGAAGGT -ACGGAACACTACGAGATCAACCGT -ACGGAACACTACGAGATCTTGTGC -ACGGAACACTACGAGATCCTAAGC -ACGGAACACTACGAGATCACTAGC -ACGGAACACTACGAGATCAGATGC -ACGGAACACTACGAGATCTGAAGG -ACGGAACACTACGAGATCCAATGG -ACGGAACACTACGAGATCATGAGG -ACGGAACACTACGAGATCAATGGG -ACGGAACACTACGAGATCTCCTGA -ACGGAACACTACGAGATCTAGCGA -ACGGAACACTACGAGATCCACAGA -ACGGAACACTACGAGATCGCAAGA -ACGGAACACTACGAGATCGGTTGA -ACGGAACACTACGAGATCTCCGAT -ACGGAACACTACGAGATCTGGCAT -ACGGAACACTACGAGATCCGAGAT -ACGGAACACTACGAGATCTACCAC -ACGGAACACTACGAGATCCAGAAC -ACGGAACACTACGAGATCGTCTAC -ACGGAACACTACGAGATCACGTAC -ACGGAACACTACGAGATCAGTGAC -ACGGAACACTACGAGATCCTGTAG -ACGGAACACTACGAGATCCCTAAG -ACGGAACACTACGAGATCGTTCAG -ACGGAACACTACGAGATCGCATAG -ACGGAACACTACGAGATCGACAAG -ACGGAACACTACGAGATCAAGCAG -ACGGAACACTACGAGATCCGTCAA -ACGGAACACTACGAGATCGCTGAA -ACGGAACACTACGAGATCAGTACG -ACGGAACACTACGAGATCATCCGA -ACGGAACACTACGAGATCATGGGA -ACGGAACACTACGAGATCGTGCAA -ACGGAACACTACGAGATCGAGGAA -ACGGAACACTACGAGATCCAGGTA -ACGGAACACTACGAGATCGACTCT -ACGGAACACTACGAGATCAGTCCT -ACGGAACACTACGAGATCTAAGCC -ACGGAACACTACGAGATCATAGCC -ACGGAACACTACGAGATCTAACCG -ACGGAACACTACGAGATCATGCCA -ACGGAACACTACCTTCTCGGAAAC -ACGGAACACTACCTTCTCAACACC -ACGGAACACTACCTTCTCATCGAG -ACGGAACACTACCTTCTCCTCCTT -ACGGAACACTACCTTCTCCCTGTT -ACGGAACACTACCTTCTCCGGTTT -ACGGAACACTACCTTCTCGTGGTT -ACGGAACACTACCTTCTCGCCTTT -ACGGAACACTACCTTCTCGGTCTT -ACGGAACACTACCTTCTCACGCTT -ACGGAACACTACCTTCTCAGCGTT -ACGGAACACTACCTTCTCTTCGTC -ACGGAACACTACCTTCTCTCTCTC -ACGGAACACTACCTTCTCTGGATC -ACGGAACACTACCTTCTCCACTTC -ACGGAACACTACCTTCTCGTACTC -ACGGAACACTACCTTCTCGATGTC -ACGGAACACTACCTTCTCACAGTC -ACGGAACACTACCTTCTCTTGCTG -ACGGAACACTACCTTCTCTCCATG -ACGGAACACTACCTTCTCTGTGTG -ACGGAACACTACCTTCTCCTAGTG -ACGGAACACTACCTTCTCCATCTG -ACGGAACACTACCTTCTCGAGTTG -ACGGAACACTACCTTCTCAGACTG -ACGGAACACTACCTTCTCTCGGTA -ACGGAACACTACCTTCTCTGCCTA -ACGGAACACTACCTTCTCCCACTA -ACGGAACACTACCTTCTCGGAGTA -ACGGAACACTACCTTCTCTCGTCT -ACGGAACACTACCTTCTCTGCACT -ACGGAACACTACCTTCTCCTGACT -ACGGAACACTACCTTCTCCAACCT -ACGGAACACTACCTTCTCGCTACT -ACGGAACACTACCTTCTCGGATCT -ACGGAACACTACCTTCTCAAGGCT -ACGGAACACTACCTTCTCTCAACC -ACGGAACACTACCTTCTCTGTTCC -ACGGAACACTACCTTCTCATTCCC -ACGGAACACTACCTTCTCTTCTCG -ACGGAACACTACCTTCTCTAGACG -ACGGAACACTACCTTCTCGTAACG -ACGGAACACTACCTTCTCACTTCG -ACGGAACACTACCTTCTCTACGCA -ACGGAACACTACCTTCTCCTTGCA -ACGGAACACTACCTTCTCCGAACA -ACGGAACACTACCTTCTCCAGTCA -ACGGAACACTACCTTCTCGATCCA -ACGGAACACTACCTTCTCACGACA -ACGGAACACTACCTTCTCAGCTCA -ACGGAACACTACCTTCTCTCACGT -ACGGAACACTACCTTCTCCGTAGT -ACGGAACACTACCTTCTCGTCAGT -ACGGAACACTACCTTCTCGAAGGT -ACGGAACACTACCTTCTCAACCGT -ACGGAACACTACCTTCTCTTGTGC -ACGGAACACTACCTTCTCCTAAGC -ACGGAACACTACCTTCTCACTAGC -ACGGAACACTACCTTCTCAGATGC -ACGGAACACTACCTTCTCTGAAGG -ACGGAACACTACCTTCTCCAATGG -ACGGAACACTACCTTCTCATGAGG -ACGGAACACTACCTTCTCAATGGG -ACGGAACACTACCTTCTCTCCTGA -ACGGAACACTACCTTCTCTAGCGA -ACGGAACACTACCTTCTCCACAGA -ACGGAACACTACCTTCTCGCAAGA -ACGGAACACTACCTTCTCGGTTGA -ACGGAACACTACCTTCTCTCCGAT -ACGGAACACTACCTTCTCTGGCAT -ACGGAACACTACCTTCTCCGAGAT -ACGGAACACTACCTTCTCTACCAC -ACGGAACACTACCTTCTCCAGAAC -ACGGAACACTACCTTCTCGTCTAC -ACGGAACACTACCTTCTCACGTAC -ACGGAACACTACCTTCTCAGTGAC -ACGGAACACTACCTTCTCCTGTAG -ACGGAACACTACCTTCTCCCTAAG -ACGGAACACTACCTTCTCGTTCAG -ACGGAACACTACCTTCTCGCATAG -ACGGAACACTACCTTCTCGACAAG -ACGGAACACTACCTTCTCAAGCAG -ACGGAACACTACCTTCTCCGTCAA -ACGGAACACTACCTTCTCGCTGAA -ACGGAACACTACCTTCTCAGTACG -ACGGAACACTACCTTCTCATCCGA -ACGGAACACTACCTTCTCATGGGA -ACGGAACACTACCTTCTCGTGCAA -ACGGAACACTACCTTCTCGAGGAA -ACGGAACACTACCTTCTCCAGGTA -ACGGAACACTACCTTCTCGACTCT -ACGGAACACTACCTTCTCAGTCCT -ACGGAACACTACCTTCTCTAAGCC -ACGGAACACTACCTTCTCATAGCC -ACGGAACACTACCTTCTCTAACCG -ACGGAACACTACCTTCTCATGCCA -ACGGAACACTACGTTCCTGGAAAC -ACGGAACACTACGTTCCTAACACC -ACGGAACACTACGTTCCTATCGAG -ACGGAACACTACGTTCCTCTCCTT -ACGGAACACTACGTTCCTCCTGTT -ACGGAACACTACGTTCCTCGGTTT -ACGGAACACTACGTTCCTGTGGTT -ACGGAACACTACGTTCCTGCCTTT -ACGGAACACTACGTTCCTGGTCTT -ACGGAACACTACGTTCCTACGCTT -ACGGAACACTACGTTCCTAGCGTT -ACGGAACACTACGTTCCTTTCGTC -ACGGAACACTACGTTCCTTCTCTC -ACGGAACACTACGTTCCTTGGATC -ACGGAACACTACGTTCCTCACTTC -ACGGAACACTACGTTCCTGTACTC -ACGGAACACTACGTTCCTGATGTC -ACGGAACACTACGTTCCTACAGTC -ACGGAACACTACGTTCCTTTGCTG -ACGGAACACTACGTTCCTTCCATG -ACGGAACACTACGTTCCTTGTGTG -ACGGAACACTACGTTCCTCTAGTG -ACGGAACACTACGTTCCTCATCTG -ACGGAACACTACGTTCCTGAGTTG -ACGGAACACTACGTTCCTAGACTG -ACGGAACACTACGTTCCTTCGGTA -ACGGAACACTACGTTCCTTGCCTA -ACGGAACACTACGTTCCTCCACTA -ACGGAACACTACGTTCCTGGAGTA -ACGGAACACTACGTTCCTTCGTCT -ACGGAACACTACGTTCCTTGCACT -ACGGAACACTACGTTCCTCTGACT -ACGGAACACTACGTTCCTCAACCT -ACGGAACACTACGTTCCTGCTACT -ACGGAACACTACGTTCCTGGATCT -ACGGAACACTACGTTCCTAAGGCT -ACGGAACACTACGTTCCTTCAACC -ACGGAACACTACGTTCCTTGTTCC -ACGGAACACTACGTTCCTATTCCC -ACGGAACACTACGTTCCTTTCTCG -ACGGAACACTACGTTCCTTAGACG -ACGGAACACTACGTTCCTGTAACG -ACGGAACACTACGTTCCTACTTCG -ACGGAACACTACGTTCCTTACGCA -ACGGAACACTACGTTCCTCTTGCA -ACGGAACACTACGTTCCTCGAACA -ACGGAACACTACGTTCCTCAGTCA -ACGGAACACTACGTTCCTGATCCA -ACGGAACACTACGTTCCTACGACA -ACGGAACACTACGTTCCTAGCTCA -ACGGAACACTACGTTCCTTCACGT -ACGGAACACTACGTTCCTCGTAGT -ACGGAACACTACGTTCCTGTCAGT -ACGGAACACTACGTTCCTGAAGGT -ACGGAACACTACGTTCCTAACCGT -ACGGAACACTACGTTCCTTTGTGC -ACGGAACACTACGTTCCTCTAAGC -ACGGAACACTACGTTCCTACTAGC -ACGGAACACTACGTTCCTAGATGC -ACGGAACACTACGTTCCTTGAAGG -ACGGAACACTACGTTCCTCAATGG -ACGGAACACTACGTTCCTATGAGG -ACGGAACACTACGTTCCTAATGGG -ACGGAACACTACGTTCCTTCCTGA -ACGGAACACTACGTTCCTTAGCGA -ACGGAACACTACGTTCCTCACAGA -ACGGAACACTACGTTCCTGCAAGA -ACGGAACACTACGTTCCTGGTTGA -ACGGAACACTACGTTCCTTCCGAT -ACGGAACACTACGTTCCTTGGCAT -ACGGAACACTACGTTCCTCGAGAT -ACGGAACACTACGTTCCTTACCAC -ACGGAACACTACGTTCCTCAGAAC -ACGGAACACTACGTTCCTGTCTAC -ACGGAACACTACGTTCCTACGTAC -ACGGAACACTACGTTCCTAGTGAC -ACGGAACACTACGTTCCTCTGTAG -ACGGAACACTACGTTCCTCCTAAG -ACGGAACACTACGTTCCTGTTCAG -ACGGAACACTACGTTCCTGCATAG -ACGGAACACTACGTTCCTGACAAG -ACGGAACACTACGTTCCTAAGCAG -ACGGAACACTACGTTCCTCGTCAA -ACGGAACACTACGTTCCTGCTGAA -ACGGAACACTACGTTCCTAGTACG -ACGGAACACTACGTTCCTATCCGA -ACGGAACACTACGTTCCTATGGGA -ACGGAACACTACGTTCCTGTGCAA -ACGGAACACTACGTTCCTGAGGAA -ACGGAACACTACGTTCCTCAGGTA -ACGGAACACTACGTTCCTGACTCT -ACGGAACACTACGTTCCTAGTCCT -ACGGAACACTACGTTCCTTAAGCC -ACGGAACACTACGTTCCTATAGCC -ACGGAACACTACGTTCCTTAACCG -ACGGAACACTACGTTCCTATGCCA -ACGGAACACTACTTTCGGGGAAAC -ACGGAACACTACTTTCGGAACACC -ACGGAACACTACTTTCGGATCGAG -ACGGAACACTACTTTCGGCTCCTT -ACGGAACACTACTTTCGGCCTGTT -ACGGAACACTACTTTCGGCGGTTT -ACGGAACACTACTTTCGGGTGGTT -ACGGAACACTACTTTCGGGCCTTT -ACGGAACACTACTTTCGGGGTCTT -ACGGAACACTACTTTCGGACGCTT -ACGGAACACTACTTTCGGAGCGTT -ACGGAACACTACTTTCGGTTCGTC -ACGGAACACTACTTTCGGTCTCTC -ACGGAACACTACTTTCGGTGGATC -ACGGAACACTACTTTCGGCACTTC -ACGGAACACTACTTTCGGGTACTC -ACGGAACACTACTTTCGGGATGTC -ACGGAACACTACTTTCGGACAGTC -ACGGAACACTACTTTCGGTTGCTG -ACGGAACACTACTTTCGGTCCATG -ACGGAACACTACTTTCGGTGTGTG -ACGGAACACTACTTTCGGCTAGTG -ACGGAACACTACTTTCGGCATCTG -ACGGAACACTACTTTCGGGAGTTG -ACGGAACACTACTTTCGGAGACTG -ACGGAACACTACTTTCGGTCGGTA -ACGGAACACTACTTTCGGTGCCTA -ACGGAACACTACTTTCGGCCACTA -ACGGAACACTACTTTCGGGGAGTA -ACGGAACACTACTTTCGGTCGTCT -ACGGAACACTACTTTCGGTGCACT -ACGGAACACTACTTTCGGCTGACT -ACGGAACACTACTTTCGGCAACCT -ACGGAACACTACTTTCGGGCTACT -ACGGAACACTACTTTCGGGGATCT -ACGGAACACTACTTTCGGAAGGCT -ACGGAACACTACTTTCGGTCAACC -ACGGAACACTACTTTCGGTGTTCC -ACGGAACACTACTTTCGGATTCCC -ACGGAACACTACTTTCGGTTCTCG -ACGGAACACTACTTTCGGTAGACG -ACGGAACACTACTTTCGGGTAACG -ACGGAACACTACTTTCGGACTTCG -ACGGAACACTACTTTCGGTACGCA -ACGGAACACTACTTTCGGCTTGCA -ACGGAACACTACTTTCGGCGAACA -ACGGAACACTACTTTCGGCAGTCA -ACGGAACACTACTTTCGGGATCCA -ACGGAACACTACTTTCGGACGACA -ACGGAACACTACTTTCGGAGCTCA -ACGGAACACTACTTTCGGTCACGT -ACGGAACACTACTTTCGGCGTAGT -ACGGAACACTACTTTCGGGTCAGT -ACGGAACACTACTTTCGGGAAGGT -ACGGAACACTACTTTCGGAACCGT -ACGGAACACTACTTTCGGTTGTGC -ACGGAACACTACTTTCGGCTAAGC -ACGGAACACTACTTTCGGACTAGC -ACGGAACACTACTTTCGGAGATGC -ACGGAACACTACTTTCGGTGAAGG -ACGGAACACTACTTTCGGCAATGG -ACGGAACACTACTTTCGGATGAGG -ACGGAACACTACTTTCGGAATGGG -ACGGAACACTACTTTCGGTCCTGA -ACGGAACACTACTTTCGGTAGCGA -ACGGAACACTACTTTCGGCACAGA -ACGGAACACTACTTTCGGGCAAGA -ACGGAACACTACTTTCGGGGTTGA -ACGGAACACTACTTTCGGTCCGAT -ACGGAACACTACTTTCGGTGGCAT -ACGGAACACTACTTTCGGCGAGAT -ACGGAACACTACTTTCGGTACCAC -ACGGAACACTACTTTCGGCAGAAC -ACGGAACACTACTTTCGGGTCTAC -ACGGAACACTACTTTCGGACGTAC -ACGGAACACTACTTTCGGAGTGAC -ACGGAACACTACTTTCGGCTGTAG -ACGGAACACTACTTTCGGCCTAAG -ACGGAACACTACTTTCGGGTTCAG -ACGGAACACTACTTTCGGGCATAG -ACGGAACACTACTTTCGGGACAAG -ACGGAACACTACTTTCGGAAGCAG -ACGGAACACTACTTTCGGCGTCAA -ACGGAACACTACTTTCGGGCTGAA -ACGGAACACTACTTTCGGAGTACG -ACGGAACACTACTTTCGGATCCGA -ACGGAACACTACTTTCGGATGGGA -ACGGAACACTACTTTCGGGTGCAA -ACGGAACACTACTTTCGGGAGGAA -ACGGAACACTACTTTCGGCAGGTA -ACGGAACACTACTTTCGGGACTCT -ACGGAACACTACTTTCGGAGTCCT -ACGGAACACTACTTTCGGTAAGCC -ACGGAACACTACTTTCGGATAGCC -ACGGAACACTACTTTCGGTAACCG -ACGGAACACTACTTTCGGATGCCA -ACGGAACACTACGTTGTGGGAAAC -ACGGAACACTACGTTGTGAACACC -ACGGAACACTACGTTGTGATCGAG -ACGGAACACTACGTTGTGCTCCTT -ACGGAACACTACGTTGTGCCTGTT -ACGGAACACTACGTTGTGCGGTTT -ACGGAACACTACGTTGTGGTGGTT -ACGGAACACTACGTTGTGGCCTTT -ACGGAACACTACGTTGTGGGTCTT -ACGGAACACTACGTTGTGACGCTT -ACGGAACACTACGTTGTGAGCGTT -ACGGAACACTACGTTGTGTTCGTC -ACGGAACACTACGTTGTGTCTCTC -ACGGAACACTACGTTGTGTGGATC -ACGGAACACTACGTTGTGCACTTC -ACGGAACACTACGTTGTGGTACTC -ACGGAACACTACGTTGTGGATGTC -ACGGAACACTACGTTGTGACAGTC -ACGGAACACTACGTTGTGTTGCTG -ACGGAACACTACGTTGTGTCCATG -ACGGAACACTACGTTGTGTGTGTG -ACGGAACACTACGTTGTGCTAGTG -ACGGAACACTACGTTGTGCATCTG -ACGGAACACTACGTTGTGGAGTTG -ACGGAACACTACGTTGTGAGACTG -ACGGAACACTACGTTGTGTCGGTA -ACGGAACACTACGTTGTGTGCCTA -ACGGAACACTACGTTGTGCCACTA -ACGGAACACTACGTTGTGGGAGTA -ACGGAACACTACGTTGTGTCGTCT -ACGGAACACTACGTTGTGTGCACT -ACGGAACACTACGTTGTGCTGACT -ACGGAACACTACGTTGTGCAACCT -ACGGAACACTACGTTGTGGCTACT -ACGGAACACTACGTTGTGGGATCT -ACGGAACACTACGTTGTGAAGGCT -ACGGAACACTACGTTGTGTCAACC -ACGGAACACTACGTTGTGTGTTCC -ACGGAACACTACGTTGTGATTCCC -ACGGAACACTACGTTGTGTTCTCG -ACGGAACACTACGTTGTGTAGACG -ACGGAACACTACGTTGTGGTAACG -ACGGAACACTACGTTGTGACTTCG -ACGGAACACTACGTTGTGTACGCA -ACGGAACACTACGTTGTGCTTGCA -ACGGAACACTACGTTGTGCGAACA -ACGGAACACTACGTTGTGCAGTCA -ACGGAACACTACGTTGTGGATCCA -ACGGAACACTACGTTGTGACGACA -ACGGAACACTACGTTGTGAGCTCA -ACGGAACACTACGTTGTGTCACGT -ACGGAACACTACGTTGTGCGTAGT -ACGGAACACTACGTTGTGGTCAGT -ACGGAACACTACGTTGTGGAAGGT -ACGGAACACTACGTTGTGAACCGT -ACGGAACACTACGTTGTGTTGTGC -ACGGAACACTACGTTGTGCTAAGC -ACGGAACACTACGTTGTGACTAGC -ACGGAACACTACGTTGTGAGATGC -ACGGAACACTACGTTGTGTGAAGG -ACGGAACACTACGTTGTGCAATGG -ACGGAACACTACGTTGTGATGAGG -ACGGAACACTACGTTGTGAATGGG -ACGGAACACTACGTTGTGTCCTGA -ACGGAACACTACGTTGTGTAGCGA -ACGGAACACTACGTTGTGCACAGA -ACGGAACACTACGTTGTGGCAAGA -ACGGAACACTACGTTGTGGGTTGA -ACGGAACACTACGTTGTGTCCGAT -ACGGAACACTACGTTGTGTGGCAT -ACGGAACACTACGTTGTGCGAGAT -ACGGAACACTACGTTGTGTACCAC -ACGGAACACTACGTTGTGCAGAAC -ACGGAACACTACGTTGTGGTCTAC -ACGGAACACTACGTTGTGACGTAC -ACGGAACACTACGTTGTGAGTGAC -ACGGAACACTACGTTGTGCTGTAG -ACGGAACACTACGTTGTGCCTAAG -ACGGAACACTACGTTGTGGTTCAG -ACGGAACACTACGTTGTGGCATAG -ACGGAACACTACGTTGTGGACAAG -ACGGAACACTACGTTGTGAAGCAG -ACGGAACACTACGTTGTGCGTCAA -ACGGAACACTACGTTGTGGCTGAA -ACGGAACACTACGTTGTGAGTACG -ACGGAACACTACGTTGTGATCCGA -ACGGAACACTACGTTGTGATGGGA -ACGGAACACTACGTTGTGGTGCAA -ACGGAACACTACGTTGTGGAGGAA -ACGGAACACTACGTTGTGCAGGTA -ACGGAACACTACGTTGTGGACTCT -ACGGAACACTACGTTGTGAGTCCT -ACGGAACACTACGTTGTGTAAGCC -ACGGAACACTACGTTGTGATAGCC -ACGGAACACTACGTTGTGTAACCG -ACGGAACACTACGTTGTGATGCCA -ACGGAACACTACTTTGCCGGAAAC -ACGGAACACTACTTTGCCAACACC -ACGGAACACTACTTTGCCATCGAG -ACGGAACACTACTTTGCCCTCCTT -ACGGAACACTACTTTGCCCCTGTT -ACGGAACACTACTTTGCCCGGTTT -ACGGAACACTACTTTGCCGTGGTT -ACGGAACACTACTTTGCCGCCTTT -ACGGAACACTACTTTGCCGGTCTT -ACGGAACACTACTTTGCCACGCTT -ACGGAACACTACTTTGCCAGCGTT -ACGGAACACTACTTTGCCTTCGTC -ACGGAACACTACTTTGCCTCTCTC -ACGGAACACTACTTTGCCTGGATC -ACGGAACACTACTTTGCCCACTTC -ACGGAACACTACTTTGCCGTACTC -ACGGAACACTACTTTGCCGATGTC -ACGGAACACTACTTTGCCACAGTC -ACGGAACACTACTTTGCCTTGCTG -ACGGAACACTACTTTGCCTCCATG -ACGGAACACTACTTTGCCTGTGTG -ACGGAACACTACTTTGCCCTAGTG -ACGGAACACTACTTTGCCCATCTG -ACGGAACACTACTTTGCCGAGTTG -ACGGAACACTACTTTGCCAGACTG -ACGGAACACTACTTTGCCTCGGTA -ACGGAACACTACTTTGCCTGCCTA -ACGGAACACTACTTTGCCCCACTA -ACGGAACACTACTTTGCCGGAGTA -ACGGAACACTACTTTGCCTCGTCT -ACGGAACACTACTTTGCCTGCACT -ACGGAACACTACTTTGCCCTGACT -ACGGAACACTACTTTGCCCAACCT -ACGGAACACTACTTTGCCGCTACT -ACGGAACACTACTTTGCCGGATCT -ACGGAACACTACTTTGCCAAGGCT -ACGGAACACTACTTTGCCTCAACC -ACGGAACACTACTTTGCCTGTTCC -ACGGAACACTACTTTGCCATTCCC -ACGGAACACTACTTTGCCTTCTCG -ACGGAACACTACTTTGCCTAGACG -ACGGAACACTACTTTGCCGTAACG -ACGGAACACTACTTTGCCACTTCG -ACGGAACACTACTTTGCCTACGCA -ACGGAACACTACTTTGCCCTTGCA -ACGGAACACTACTTTGCCCGAACA -ACGGAACACTACTTTGCCCAGTCA -ACGGAACACTACTTTGCCGATCCA -ACGGAACACTACTTTGCCACGACA -ACGGAACACTACTTTGCCAGCTCA -ACGGAACACTACTTTGCCTCACGT -ACGGAACACTACTTTGCCCGTAGT -ACGGAACACTACTTTGCCGTCAGT -ACGGAACACTACTTTGCCGAAGGT -ACGGAACACTACTTTGCCAACCGT -ACGGAACACTACTTTGCCTTGTGC -ACGGAACACTACTTTGCCCTAAGC -ACGGAACACTACTTTGCCACTAGC -ACGGAACACTACTTTGCCAGATGC -ACGGAACACTACTTTGCCTGAAGG -ACGGAACACTACTTTGCCCAATGG -ACGGAACACTACTTTGCCATGAGG -ACGGAACACTACTTTGCCAATGGG -ACGGAACACTACTTTGCCTCCTGA -ACGGAACACTACTTTGCCTAGCGA -ACGGAACACTACTTTGCCCACAGA -ACGGAACACTACTTTGCCGCAAGA -ACGGAACACTACTTTGCCGGTTGA -ACGGAACACTACTTTGCCTCCGAT -ACGGAACACTACTTTGCCTGGCAT -ACGGAACACTACTTTGCCCGAGAT -ACGGAACACTACTTTGCCTACCAC -ACGGAACACTACTTTGCCCAGAAC -ACGGAACACTACTTTGCCGTCTAC -ACGGAACACTACTTTGCCACGTAC -ACGGAACACTACTTTGCCAGTGAC -ACGGAACACTACTTTGCCCTGTAG -ACGGAACACTACTTTGCCCCTAAG -ACGGAACACTACTTTGCCGTTCAG -ACGGAACACTACTTTGCCGCATAG -ACGGAACACTACTTTGCCGACAAG -ACGGAACACTACTTTGCCAAGCAG -ACGGAACACTACTTTGCCCGTCAA -ACGGAACACTACTTTGCCGCTGAA -ACGGAACACTACTTTGCCAGTACG -ACGGAACACTACTTTGCCATCCGA -ACGGAACACTACTTTGCCATGGGA -ACGGAACACTACTTTGCCGTGCAA -ACGGAACACTACTTTGCCGAGGAA -ACGGAACACTACTTTGCCCAGGTA -ACGGAACACTACTTTGCCGACTCT -ACGGAACACTACTTTGCCAGTCCT -ACGGAACACTACTTTGCCTAAGCC -ACGGAACACTACTTTGCCATAGCC -ACGGAACACTACTTTGCCTAACCG -ACGGAACACTACTTTGCCATGCCA -ACGGAACACTACCTTGGTGGAAAC -ACGGAACACTACCTTGGTAACACC -ACGGAACACTACCTTGGTATCGAG -ACGGAACACTACCTTGGTCTCCTT -ACGGAACACTACCTTGGTCCTGTT -ACGGAACACTACCTTGGTCGGTTT -ACGGAACACTACCTTGGTGTGGTT -ACGGAACACTACCTTGGTGCCTTT -ACGGAACACTACCTTGGTGGTCTT -ACGGAACACTACCTTGGTACGCTT -ACGGAACACTACCTTGGTAGCGTT -ACGGAACACTACCTTGGTTTCGTC -ACGGAACACTACCTTGGTTCTCTC -ACGGAACACTACCTTGGTTGGATC -ACGGAACACTACCTTGGTCACTTC -ACGGAACACTACCTTGGTGTACTC -ACGGAACACTACCTTGGTGATGTC -ACGGAACACTACCTTGGTACAGTC -ACGGAACACTACCTTGGTTTGCTG -ACGGAACACTACCTTGGTTCCATG -ACGGAACACTACCTTGGTTGTGTG -ACGGAACACTACCTTGGTCTAGTG -ACGGAACACTACCTTGGTCATCTG -ACGGAACACTACCTTGGTGAGTTG -ACGGAACACTACCTTGGTAGACTG -ACGGAACACTACCTTGGTTCGGTA -ACGGAACACTACCTTGGTTGCCTA -ACGGAACACTACCTTGGTCCACTA -ACGGAACACTACCTTGGTGGAGTA -ACGGAACACTACCTTGGTTCGTCT -ACGGAACACTACCTTGGTTGCACT -ACGGAACACTACCTTGGTCTGACT -ACGGAACACTACCTTGGTCAACCT -ACGGAACACTACCTTGGTGCTACT -ACGGAACACTACCTTGGTGGATCT -ACGGAACACTACCTTGGTAAGGCT -ACGGAACACTACCTTGGTTCAACC -ACGGAACACTACCTTGGTTGTTCC -ACGGAACACTACCTTGGTATTCCC -ACGGAACACTACCTTGGTTTCTCG -ACGGAACACTACCTTGGTTAGACG -ACGGAACACTACCTTGGTGTAACG -ACGGAACACTACCTTGGTACTTCG -ACGGAACACTACCTTGGTTACGCA -ACGGAACACTACCTTGGTCTTGCA -ACGGAACACTACCTTGGTCGAACA -ACGGAACACTACCTTGGTCAGTCA -ACGGAACACTACCTTGGTGATCCA -ACGGAACACTACCTTGGTACGACA -ACGGAACACTACCTTGGTAGCTCA -ACGGAACACTACCTTGGTTCACGT -ACGGAACACTACCTTGGTCGTAGT -ACGGAACACTACCTTGGTGTCAGT -ACGGAACACTACCTTGGTGAAGGT -ACGGAACACTACCTTGGTAACCGT -ACGGAACACTACCTTGGTTTGTGC -ACGGAACACTACCTTGGTCTAAGC -ACGGAACACTACCTTGGTACTAGC -ACGGAACACTACCTTGGTAGATGC -ACGGAACACTACCTTGGTTGAAGG -ACGGAACACTACCTTGGTCAATGG -ACGGAACACTACCTTGGTATGAGG -ACGGAACACTACCTTGGTAATGGG -ACGGAACACTACCTTGGTTCCTGA -ACGGAACACTACCTTGGTTAGCGA -ACGGAACACTACCTTGGTCACAGA -ACGGAACACTACCTTGGTGCAAGA -ACGGAACACTACCTTGGTGGTTGA -ACGGAACACTACCTTGGTTCCGAT -ACGGAACACTACCTTGGTTGGCAT -ACGGAACACTACCTTGGTCGAGAT -ACGGAACACTACCTTGGTTACCAC -ACGGAACACTACCTTGGTCAGAAC -ACGGAACACTACCTTGGTGTCTAC -ACGGAACACTACCTTGGTACGTAC -ACGGAACACTACCTTGGTAGTGAC -ACGGAACACTACCTTGGTCTGTAG -ACGGAACACTACCTTGGTCCTAAG -ACGGAACACTACCTTGGTGTTCAG -ACGGAACACTACCTTGGTGCATAG -ACGGAACACTACCTTGGTGACAAG -ACGGAACACTACCTTGGTAAGCAG -ACGGAACACTACCTTGGTCGTCAA -ACGGAACACTACCTTGGTGCTGAA -ACGGAACACTACCTTGGTAGTACG -ACGGAACACTACCTTGGTATCCGA -ACGGAACACTACCTTGGTATGGGA -ACGGAACACTACCTTGGTGTGCAA -ACGGAACACTACCTTGGTGAGGAA -ACGGAACACTACCTTGGTCAGGTA -ACGGAACACTACCTTGGTGACTCT -ACGGAACACTACCTTGGTAGTCCT -ACGGAACACTACCTTGGTTAAGCC -ACGGAACACTACCTTGGTATAGCC -ACGGAACACTACCTTGGTTAACCG -ACGGAACACTACCTTGGTATGCCA -ACGGAACACTACCTTACGGGAAAC -ACGGAACACTACCTTACGAACACC -ACGGAACACTACCTTACGATCGAG -ACGGAACACTACCTTACGCTCCTT -ACGGAACACTACCTTACGCCTGTT -ACGGAACACTACCTTACGCGGTTT -ACGGAACACTACCTTACGGTGGTT -ACGGAACACTACCTTACGGCCTTT -ACGGAACACTACCTTACGGGTCTT -ACGGAACACTACCTTACGACGCTT -ACGGAACACTACCTTACGAGCGTT -ACGGAACACTACCTTACGTTCGTC -ACGGAACACTACCTTACGTCTCTC -ACGGAACACTACCTTACGTGGATC -ACGGAACACTACCTTACGCACTTC -ACGGAACACTACCTTACGGTACTC -ACGGAACACTACCTTACGGATGTC -ACGGAACACTACCTTACGACAGTC -ACGGAACACTACCTTACGTTGCTG -ACGGAACACTACCTTACGTCCATG -ACGGAACACTACCTTACGTGTGTG -ACGGAACACTACCTTACGCTAGTG -ACGGAACACTACCTTACGCATCTG -ACGGAACACTACCTTACGGAGTTG -ACGGAACACTACCTTACGAGACTG -ACGGAACACTACCTTACGTCGGTA -ACGGAACACTACCTTACGTGCCTA -ACGGAACACTACCTTACGCCACTA -ACGGAACACTACCTTACGGGAGTA -ACGGAACACTACCTTACGTCGTCT -ACGGAACACTACCTTACGTGCACT -ACGGAACACTACCTTACGCTGACT -ACGGAACACTACCTTACGCAACCT -ACGGAACACTACCTTACGGCTACT -ACGGAACACTACCTTACGGGATCT -ACGGAACACTACCTTACGAAGGCT -ACGGAACACTACCTTACGTCAACC -ACGGAACACTACCTTACGTGTTCC -ACGGAACACTACCTTACGATTCCC -ACGGAACACTACCTTACGTTCTCG -ACGGAACACTACCTTACGTAGACG -ACGGAACACTACCTTACGGTAACG -ACGGAACACTACCTTACGACTTCG -ACGGAACACTACCTTACGTACGCA -ACGGAACACTACCTTACGCTTGCA -ACGGAACACTACCTTACGCGAACA -ACGGAACACTACCTTACGCAGTCA -ACGGAACACTACCTTACGGATCCA -ACGGAACACTACCTTACGACGACA -ACGGAACACTACCTTACGAGCTCA -ACGGAACACTACCTTACGTCACGT -ACGGAACACTACCTTACGCGTAGT -ACGGAACACTACCTTACGGTCAGT -ACGGAACACTACCTTACGGAAGGT -ACGGAACACTACCTTACGAACCGT -ACGGAACACTACCTTACGTTGTGC -ACGGAACACTACCTTACGCTAAGC -ACGGAACACTACCTTACGACTAGC -ACGGAACACTACCTTACGAGATGC -ACGGAACACTACCTTACGTGAAGG -ACGGAACACTACCTTACGCAATGG -ACGGAACACTACCTTACGATGAGG -ACGGAACACTACCTTACGAATGGG -ACGGAACACTACCTTACGTCCTGA -ACGGAACACTACCTTACGTAGCGA -ACGGAACACTACCTTACGCACAGA -ACGGAACACTACCTTACGGCAAGA -ACGGAACACTACCTTACGGGTTGA -ACGGAACACTACCTTACGTCCGAT -ACGGAACACTACCTTACGTGGCAT -ACGGAACACTACCTTACGCGAGAT -ACGGAACACTACCTTACGTACCAC -ACGGAACACTACCTTACGCAGAAC -ACGGAACACTACCTTACGGTCTAC -ACGGAACACTACCTTACGACGTAC -ACGGAACACTACCTTACGAGTGAC -ACGGAACACTACCTTACGCTGTAG -ACGGAACACTACCTTACGCCTAAG -ACGGAACACTACCTTACGGTTCAG -ACGGAACACTACCTTACGGCATAG -ACGGAACACTACCTTACGGACAAG -ACGGAACACTACCTTACGAAGCAG -ACGGAACACTACCTTACGCGTCAA -ACGGAACACTACCTTACGGCTGAA -ACGGAACACTACCTTACGAGTACG -ACGGAACACTACCTTACGATCCGA -ACGGAACACTACCTTACGATGGGA -ACGGAACACTACCTTACGGTGCAA -ACGGAACACTACCTTACGGAGGAA -ACGGAACACTACCTTACGCAGGTA -ACGGAACACTACCTTACGGACTCT -ACGGAACACTACCTTACGAGTCCT -ACGGAACACTACCTTACGTAAGCC -ACGGAACACTACCTTACGATAGCC -ACGGAACACTACCTTACGTAACCG -ACGGAACACTACCTTACGATGCCA -ACGGAACACTACGTTAGCGGAAAC -ACGGAACACTACGTTAGCAACACC -ACGGAACACTACGTTAGCATCGAG -ACGGAACACTACGTTAGCCTCCTT -ACGGAACACTACGTTAGCCCTGTT -ACGGAACACTACGTTAGCCGGTTT -ACGGAACACTACGTTAGCGTGGTT -ACGGAACACTACGTTAGCGCCTTT -ACGGAACACTACGTTAGCGGTCTT -ACGGAACACTACGTTAGCACGCTT -ACGGAACACTACGTTAGCAGCGTT -ACGGAACACTACGTTAGCTTCGTC -ACGGAACACTACGTTAGCTCTCTC -ACGGAACACTACGTTAGCTGGATC -ACGGAACACTACGTTAGCCACTTC -ACGGAACACTACGTTAGCGTACTC -ACGGAACACTACGTTAGCGATGTC -ACGGAACACTACGTTAGCACAGTC -ACGGAACACTACGTTAGCTTGCTG -ACGGAACACTACGTTAGCTCCATG -ACGGAACACTACGTTAGCTGTGTG -ACGGAACACTACGTTAGCCTAGTG -ACGGAACACTACGTTAGCCATCTG -ACGGAACACTACGTTAGCGAGTTG -ACGGAACACTACGTTAGCAGACTG -ACGGAACACTACGTTAGCTCGGTA -ACGGAACACTACGTTAGCTGCCTA -ACGGAACACTACGTTAGCCCACTA -ACGGAACACTACGTTAGCGGAGTA -ACGGAACACTACGTTAGCTCGTCT -ACGGAACACTACGTTAGCTGCACT -ACGGAACACTACGTTAGCCTGACT -ACGGAACACTACGTTAGCCAACCT -ACGGAACACTACGTTAGCGCTACT -ACGGAACACTACGTTAGCGGATCT -ACGGAACACTACGTTAGCAAGGCT -ACGGAACACTACGTTAGCTCAACC -ACGGAACACTACGTTAGCTGTTCC -ACGGAACACTACGTTAGCATTCCC -ACGGAACACTACGTTAGCTTCTCG -ACGGAACACTACGTTAGCTAGACG -ACGGAACACTACGTTAGCGTAACG -ACGGAACACTACGTTAGCACTTCG -ACGGAACACTACGTTAGCTACGCA -ACGGAACACTACGTTAGCCTTGCA -ACGGAACACTACGTTAGCCGAACA -ACGGAACACTACGTTAGCCAGTCA -ACGGAACACTACGTTAGCGATCCA -ACGGAACACTACGTTAGCACGACA -ACGGAACACTACGTTAGCAGCTCA -ACGGAACACTACGTTAGCTCACGT -ACGGAACACTACGTTAGCCGTAGT -ACGGAACACTACGTTAGCGTCAGT -ACGGAACACTACGTTAGCGAAGGT -ACGGAACACTACGTTAGCAACCGT -ACGGAACACTACGTTAGCTTGTGC -ACGGAACACTACGTTAGCCTAAGC -ACGGAACACTACGTTAGCACTAGC -ACGGAACACTACGTTAGCAGATGC -ACGGAACACTACGTTAGCTGAAGG -ACGGAACACTACGTTAGCCAATGG -ACGGAACACTACGTTAGCATGAGG -ACGGAACACTACGTTAGCAATGGG -ACGGAACACTACGTTAGCTCCTGA -ACGGAACACTACGTTAGCTAGCGA -ACGGAACACTACGTTAGCCACAGA -ACGGAACACTACGTTAGCGCAAGA -ACGGAACACTACGTTAGCGGTTGA -ACGGAACACTACGTTAGCTCCGAT -ACGGAACACTACGTTAGCTGGCAT -ACGGAACACTACGTTAGCCGAGAT -ACGGAACACTACGTTAGCTACCAC -ACGGAACACTACGTTAGCCAGAAC -ACGGAACACTACGTTAGCGTCTAC -ACGGAACACTACGTTAGCACGTAC -ACGGAACACTACGTTAGCAGTGAC -ACGGAACACTACGTTAGCCTGTAG -ACGGAACACTACGTTAGCCCTAAG -ACGGAACACTACGTTAGCGTTCAG -ACGGAACACTACGTTAGCGCATAG -ACGGAACACTACGTTAGCGACAAG -ACGGAACACTACGTTAGCAAGCAG -ACGGAACACTACGTTAGCCGTCAA -ACGGAACACTACGTTAGCGCTGAA -ACGGAACACTACGTTAGCAGTACG -ACGGAACACTACGTTAGCATCCGA -ACGGAACACTACGTTAGCATGGGA -ACGGAACACTACGTTAGCGTGCAA -ACGGAACACTACGTTAGCGAGGAA -ACGGAACACTACGTTAGCCAGGTA -ACGGAACACTACGTTAGCGACTCT -ACGGAACACTACGTTAGCAGTCCT -ACGGAACACTACGTTAGCTAAGCC -ACGGAACACTACGTTAGCATAGCC -ACGGAACACTACGTTAGCTAACCG -ACGGAACACTACGTTAGCATGCCA -ACGGAACACTACGTCTTCGGAAAC -ACGGAACACTACGTCTTCAACACC -ACGGAACACTACGTCTTCATCGAG -ACGGAACACTACGTCTTCCTCCTT -ACGGAACACTACGTCTTCCCTGTT -ACGGAACACTACGTCTTCCGGTTT -ACGGAACACTACGTCTTCGTGGTT -ACGGAACACTACGTCTTCGCCTTT -ACGGAACACTACGTCTTCGGTCTT -ACGGAACACTACGTCTTCACGCTT -ACGGAACACTACGTCTTCAGCGTT -ACGGAACACTACGTCTTCTTCGTC -ACGGAACACTACGTCTTCTCTCTC -ACGGAACACTACGTCTTCTGGATC -ACGGAACACTACGTCTTCCACTTC -ACGGAACACTACGTCTTCGTACTC -ACGGAACACTACGTCTTCGATGTC -ACGGAACACTACGTCTTCACAGTC -ACGGAACACTACGTCTTCTTGCTG -ACGGAACACTACGTCTTCTCCATG -ACGGAACACTACGTCTTCTGTGTG -ACGGAACACTACGTCTTCCTAGTG -ACGGAACACTACGTCTTCCATCTG -ACGGAACACTACGTCTTCGAGTTG -ACGGAACACTACGTCTTCAGACTG -ACGGAACACTACGTCTTCTCGGTA -ACGGAACACTACGTCTTCTGCCTA -ACGGAACACTACGTCTTCCCACTA -ACGGAACACTACGTCTTCGGAGTA -ACGGAACACTACGTCTTCTCGTCT -ACGGAACACTACGTCTTCTGCACT -ACGGAACACTACGTCTTCCTGACT -ACGGAACACTACGTCTTCCAACCT -ACGGAACACTACGTCTTCGCTACT -ACGGAACACTACGTCTTCGGATCT -ACGGAACACTACGTCTTCAAGGCT -ACGGAACACTACGTCTTCTCAACC -ACGGAACACTACGTCTTCTGTTCC -ACGGAACACTACGTCTTCATTCCC -ACGGAACACTACGTCTTCTTCTCG -ACGGAACACTACGTCTTCTAGACG -ACGGAACACTACGTCTTCGTAACG -ACGGAACACTACGTCTTCACTTCG -ACGGAACACTACGTCTTCTACGCA -ACGGAACACTACGTCTTCCTTGCA -ACGGAACACTACGTCTTCCGAACA -ACGGAACACTACGTCTTCCAGTCA -ACGGAACACTACGTCTTCGATCCA -ACGGAACACTACGTCTTCACGACA -ACGGAACACTACGTCTTCAGCTCA -ACGGAACACTACGTCTTCTCACGT -ACGGAACACTACGTCTTCCGTAGT -ACGGAACACTACGTCTTCGTCAGT -ACGGAACACTACGTCTTCGAAGGT -ACGGAACACTACGTCTTCAACCGT -ACGGAACACTACGTCTTCTTGTGC -ACGGAACACTACGTCTTCCTAAGC -ACGGAACACTACGTCTTCACTAGC -ACGGAACACTACGTCTTCAGATGC -ACGGAACACTACGTCTTCTGAAGG -ACGGAACACTACGTCTTCCAATGG -ACGGAACACTACGTCTTCATGAGG -ACGGAACACTACGTCTTCAATGGG -ACGGAACACTACGTCTTCTCCTGA -ACGGAACACTACGTCTTCTAGCGA -ACGGAACACTACGTCTTCCACAGA -ACGGAACACTACGTCTTCGCAAGA -ACGGAACACTACGTCTTCGGTTGA -ACGGAACACTACGTCTTCTCCGAT -ACGGAACACTACGTCTTCTGGCAT -ACGGAACACTACGTCTTCCGAGAT -ACGGAACACTACGTCTTCTACCAC -ACGGAACACTACGTCTTCCAGAAC -ACGGAACACTACGTCTTCGTCTAC -ACGGAACACTACGTCTTCACGTAC -ACGGAACACTACGTCTTCAGTGAC -ACGGAACACTACGTCTTCCTGTAG -ACGGAACACTACGTCTTCCCTAAG -ACGGAACACTACGTCTTCGTTCAG -ACGGAACACTACGTCTTCGCATAG -ACGGAACACTACGTCTTCGACAAG -ACGGAACACTACGTCTTCAAGCAG -ACGGAACACTACGTCTTCCGTCAA -ACGGAACACTACGTCTTCGCTGAA -ACGGAACACTACGTCTTCAGTACG -ACGGAACACTACGTCTTCATCCGA -ACGGAACACTACGTCTTCATGGGA -ACGGAACACTACGTCTTCGTGCAA -ACGGAACACTACGTCTTCGAGGAA -ACGGAACACTACGTCTTCCAGGTA -ACGGAACACTACGTCTTCGACTCT -ACGGAACACTACGTCTTCAGTCCT -ACGGAACACTACGTCTTCTAAGCC -ACGGAACACTACGTCTTCATAGCC -ACGGAACACTACGTCTTCTAACCG -ACGGAACACTACGTCTTCATGCCA -ACGGAACACTACCTCTCTGGAAAC -ACGGAACACTACCTCTCTAACACC -ACGGAACACTACCTCTCTATCGAG -ACGGAACACTACCTCTCTCTCCTT -ACGGAACACTACCTCTCTCCTGTT -ACGGAACACTACCTCTCTCGGTTT -ACGGAACACTACCTCTCTGTGGTT -ACGGAACACTACCTCTCTGCCTTT -ACGGAACACTACCTCTCTGGTCTT -ACGGAACACTACCTCTCTACGCTT -ACGGAACACTACCTCTCTAGCGTT -ACGGAACACTACCTCTCTTTCGTC -ACGGAACACTACCTCTCTTCTCTC -ACGGAACACTACCTCTCTTGGATC -ACGGAACACTACCTCTCTCACTTC -ACGGAACACTACCTCTCTGTACTC -ACGGAACACTACCTCTCTGATGTC -ACGGAACACTACCTCTCTACAGTC -ACGGAACACTACCTCTCTTTGCTG -ACGGAACACTACCTCTCTTCCATG -ACGGAACACTACCTCTCTTGTGTG -ACGGAACACTACCTCTCTCTAGTG -ACGGAACACTACCTCTCTCATCTG -ACGGAACACTACCTCTCTGAGTTG -ACGGAACACTACCTCTCTAGACTG -ACGGAACACTACCTCTCTTCGGTA -ACGGAACACTACCTCTCTTGCCTA -ACGGAACACTACCTCTCTCCACTA -ACGGAACACTACCTCTCTGGAGTA -ACGGAACACTACCTCTCTTCGTCT -ACGGAACACTACCTCTCTTGCACT -ACGGAACACTACCTCTCTCTGACT -ACGGAACACTACCTCTCTCAACCT -ACGGAACACTACCTCTCTGCTACT -ACGGAACACTACCTCTCTGGATCT -ACGGAACACTACCTCTCTAAGGCT -ACGGAACACTACCTCTCTTCAACC -ACGGAACACTACCTCTCTTGTTCC -ACGGAACACTACCTCTCTATTCCC -ACGGAACACTACCTCTCTTTCTCG -ACGGAACACTACCTCTCTTAGACG -ACGGAACACTACCTCTCTGTAACG -ACGGAACACTACCTCTCTACTTCG -ACGGAACACTACCTCTCTTACGCA -ACGGAACACTACCTCTCTCTTGCA -ACGGAACACTACCTCTCTCGAACA -ACGGAACACTACCTCTCTCAGTCA -ACGGAACACTACCTCTCTGATCCA -ACGGAACACTACCTCTCTACGACA -ACGGAACACTACCTCTCTAGCTCA -ACGGAACACTACCTCTCTTCACGT -ACGGAACACTACCTCTCTCGTAGT -ACGGAACACTACCTCTCTGTCAGT -ACGGAACACTACCTCTCTGAAGGT -ACGGAACACTACCTCTCTAACCGT -ACGGAACACTACCTCTCTTTGTGC -ACGGAACACTACCTCTCTCTAAGC -ACGGAACACTACCTCTCTACTAGC -ACGGAACACTACCTCTCTAGATGC -ACGGAACACTACCTCTCTTGAAGG -ACGGAACACTACCTCTCTCAATGG -ACGGAACACTACCTCTCTATGAGG -ACGGAACACTACCTCTCTAATGGG -ACGGAACACTACCTCTCTTCCTGA -ACGGAACACTACCTCTCTTAGCGA -ACGGAACACTACCTCTCTCACAGA -ACGGAACACTACCTCTCTGCAAGA -ACGGAACACTACCTCTCTGGTTGA -ACGGAACACTACCTCTCTTCCGAT -ACGGAACACTACCTCTCTTGGCAT -ACGGAACACTACCTCTCTCGAGAT -ACGGAACACTACCTCTCTTACCAC -ACGGAACACTACCTCTCTCAGAAC -ACGGAACACTACCTCTCTGTCTAC -ACGGAACACTACCTCTCTACGTAC -ACGGAACACTACCTCTCTAGTGAC -ACGGAACACTACCTCTCTCTGTAG -ACGGAACACTACCTCTCTCCTAAG -ACGGAACACTACCTCTCTGTTCAG -ACGGAACACTACCTCTCTGCATAG -ACGGAACACTACCTCTCTGACAAG -ACGGAACACTACCTCTCTAAGCAG -ACGGAACACTACCTCTCTCGTCAA -ACGGAACACTACCTCTCTGCTGAA -ACGGAACACTACCTCTCTAGTACG -ACGGAACACTACCTCTCTATCCGA -ACGGAACACTACCTCTCTATGGGA -ACGGAACACTACCTCTCTGTGCAA -ACGGAACACTACCTCTCTGAGGAA -ACGGAACACTACCTCTCTCAGGTA -ACGGAACACTACCTCTCTGACTCT -ACGGAACACTACCTCTCTAGTCCT -ACGGAACACTACCTCTCTTAAGCC -ACGGAACACTACCTCTCTATAGCC -ACGGAACACTACCTCTCTTAACCG -ACGGAACACTACCTCTCTATGCCA -ACGGAACACTACATCTGGGGAAAC -ACGGAACACTACATCTGGAACACC -ACGGAACACTACATCTGGATCGAG -ACGGAACACTACATCTGGCTCCTT -ACGGAACACTACATCTGGCCTGTT -ACGGAACACTACATCTGGCGGTTT -ACGGAACACTACATCTGGGTGGTT -ACGGAACACTACATCTGGGCCTTT -ACGGAACACTACATCTGGGGTCTT -ACGGAACACTACATCTGGACGCTT -ACGGAACACTACATCTGGAGCGTT -ACGGAACACTACATCTGGTTCGTC -ACGGAACACTACATCTGGTCTCTC -ACGGAACACTACATCTGGTGGATC -ACGGAACACTACATCTGGCACTTC -ACGGAACACTACATCTGGGTACTC -ACGGAACACTACATCTGGGATGTC -ACGGAACACTACATCTGGACAGTC -ACGGAACACTACATCTGGTTGCTG -ACGGAACACTACATCTGGTCCATG -ACGGAACACTACATCTGGTGTGTG -ACGGAACACTACATCTGGCTAGTG -ACGGAACACTACATCTGGCATCTG -ACGGAACACTACATCTGGGAGTTG -ACGGAACACTACATCTGGAGACTG -ACGGAACACTACATCTGGTCGGTA -ACGGAACACTACATCTGGTGCCTA -ACGGAACACTACATCTGGCCACTA -ACGGAACACTACATCTGGGGAGTA -ACGGAACACTACATCTGGTCGTCT -ACGGAACACTACATCTGGTGCACT -ACGGAACACTACATCTGGCTGACT -ACGGAACACTACATCTGGCAACCT -ACGGAACACTACATCTGGGCTACT -ACGGAACACTACATCTGGGGATCT -ACGGAACACTACATCTGGAAGGCT -ACGGAACACTACATCTGGTCAACC -ACGGAACACTACATCTGGTGTTCC -ACGGAACACTACATCTGGATTCCC -ACGGAACACTACATCTGGTTCTCG -ACGGAACACTACATCTGGTAGACG -ACGGAACACTACATCTGGGTAACG -ACGGAACACTACATCTGGACTTCG -ACGGAACACTACATCTGGTACGCA -ACGGAACACTACATCTGGCTTGCA -ACGGAACACTACATCTGGCGAACA -ACGGAACACTACATCTGGCAGTCA -ACGGAACACTACATCTGGGATCCA -ACGGAACACTACATCTGGACGACA -ACGGAACACTACATCTGGAGCTCA -ACGGAACACTACATCTGGTCACGT -ACGGAACACTACATCTGGCGTAGT -ACGGAACACTACATCTGGGTCAGT -ACGGAACACTACATCTGGGAAGGT -ACGGAACACTACATCTGGAACCGT -ACGGAACACTACATCTGGTTGTGC -ACGGAACACTACATCTGGCTAAGC -ACGGAACACTACATCTGGACTAGC -ACGGAACACTACATCTGGAGATGC -ACGGAACACTACATCTGGTGAAGG -ACGGAACACTACATCTGGCAATGG -ACGGAACACTACATCTGGATGAGG -ACGGAACACTACATCTGGAATGGG -ACGGAACACTACATCTGGTCCTGA -ACGGAACACTACATCTGGTAGCGA -ACGGAACACTACATCTGGCACAGA -ACGGAACACTACATCTGGGCAAGA -ACGGAACACTACATCTGGGGTTGA -ACGGAACACTACATCTGGTCCGAT -ACGGAACACTACATCTGGTGGCAT -ACGGAACACTACATCTGGCGAGAT -ACGGAACACTACATCTGGTACCAC -ACGGAACACTACATCTGGCAGAAC -ACGGAACACTACATCTGGGTCTAC -ACGGAACACTACATCTGGACGTAC -ACGGAACACTACATCTGGAGTGAC -ACGGAACACTACATCTGGCTGTAG -ACGGAACACTACATCTGGCCTAAG -ACGGAACACTACATCTGGGTTCAG -ACGGAACACTACATCTGGGCATAG -ACGGAACACTACATCTGGGACAAG -ACGGAACACTACATCTGGAAGCAG -ACGGAACACTACATCTGGCGTCAA -ACGGAACACTACATCTGGGCTGAA -ACGGAACACTACATCTGGAGTACG -ACGGAACACTACATCTGGATCCGA -ACGGAACACTACATCTGGATGGGA -ACGGAACACTACATCTGGGTGCAA -ACGGAACACTACATCTGGGAGGAA -ACGGAACACTACATCTGGCAGGTA -ACGGAACACTACATCTGGGACTCT -ACGGAACACTACATCTGGAGTCCT -ACGGAACACTACATCTGGTAAGCC -ACGGAACACTACATCTGGATAGCC -ACGGAACACTACATCTGGTAACCG -ACGGAACACTACATCTGGATGCCA -ACGGAACACTACTTCCACGGAAAC -ACGGAACACTACTTCCACAACACC -ACGGAACACTACTTCCACATCGAG -ACGGAACACTACTTCCACCTCCTT -ACGGAACACTACTTCCACCCTGTT -ACGGAACACTACTTCCACCGGTTT -ACGGAACACTACTTCCACGTGGTT -ACGGAACACTACTTCCACGCCTTT -ACGGAACACTACTTCCACGGTCTT -ACGGAACACTACTTCCACACGCTT -ACGGAACACTACTTCCACAGCGTT -ACGGAACACTACTTCCACTTCGTC -ACGGAACACTACTTCCACTCTCTC -ACGGAACACTACTTCCACTGGATC -ACGGAACACTACTTCCACCACTTC -ACGGAACACTACTTCCACGTACTC -ACGGAACACTACTTCCACGATGTC -ACGGAACACTACTTCCACACAGTC -ACGGAACACTACTTCCACTTGCTG -ACGGAACACTACTTCCACTCCATG -ACGGAACACTACTTCCACTGTGTG -ACGGAACACTACTTCCACCTAGTG -ACGGAACACTACTTCCACCATCTG -ACGGAACACTACTTCCACGAGTTG -ACGGAACACTACTTCCACAGACTG -ACGGAACACTACTTCCACTCGGTA -ACGGAACACTACTTCCACTGCCTA -ACGGAACACTACTTCCACCCACTA -ACGGAACACTACTTCCACGGAGTA -ACGGAACACTACTTCCACTCGTCT -ACGGAACACTACTTCCACTGCACT -ACGGAACACTACTTCCACCTGACT -ACGGAACACTACTTCCACCAACCT -ACGGAACACTACTTCCACGCTACT -ACGGAACACTACTTCCACGGATCT -ACGGAACACTACTTCCACAAGGCT -ACGGAACACTACTTCCACTCAACC -ACGGAACACTACTTCCACTGTTCC -ACGGAACACTACTTCCACATTCCC -ACGGAACACTACTTCCACTTCTCG -ACGGAACACTACTTCCACTAGACG -ACGGAACACTACTTCCACGTAACG -ACGGAACACTACTTCCACACTTCG -ACGGAACACTACTTCCACTACGCA -ACGGAACACTACTTCCACCTTGCA -ACGGAACACTACTTCCACCGAACA -ACGGAACACTACTTCCACCAGTCA -ACGGAACACTACTTCCACGATCCA -ACGGAACACTACTTCCACACGACA -ACGGAACACTACTTCCACAGCTCA -ACGGAACACTACTTCCACTCACGT -ACGGAACACTACTTCCACCGTAGT -ACGGAACACTACTTCCACGTCAGT -ACGGAACACTACTTCCACGAAGGT -ACGGAACACTACTTCCACAACCGT -ACGGAACACTACTTCCACTTGTGC -ACGGAACACTACTTCCACCTAAGC -ACGGAACACTACTTCCACACTAGC -ACGGAACACTACTTCCACAGATGC -ACGGAACACTACTTCCACTGAAGG -ACGGAACACTACTTCCACCAATGG -ACGGAACACTACTTCCACATGAGG -ACGGAACACTACTTCCACAATGGG -ACGGAACACTACTTCCACTCCTGA -ACGGAACACTACTTCCACTAGCGA -ACGGAACACTACTTCCACCACAGA -ACGGAACACTACTTCCACGCAAGA -ACGGAACACTACTTCCACGGTTGA -ACGGAACACTACTTCCACTCCGAT -ACGGAACACTACTTCCACTGGCAT -ACGGAACACTACTTCCACCGAGAT -ACGGAACACTACTTCCACTACCAC -ACGGAACACTACTTCCACCAGAAC -ACGGAACACTACTTCCACGTCTAC -ACGGAACACTACTTCCACACGTAC -ACGGAACACTACTTCCACAGTGAC -ACGGAACACTACTTCCACCTGTAG -ACGGAACACTACTTCCACCCTAAG -ACGGAACACTACTTCCACGTTCAG -ACGGAACACTACTTCCACGCATAG -ACGGAACACTACTTCCACGACAAG -ACGGAACACTACTTCCACAAGCAG -ACGGAACACTACTTCCACCGTCAA -ACGGAACACTACTTCCACGCTGAA -ACGGAACACTACTTCCACAGTACG -ACGGAACACTACTTCCACATCCGA -ACGGAACACTACTTCCACATGGGA -ACGGAACACTACTTCCACGTGCAA -ACGGAACACTACTTCCACGAGGAA -ACGGAACACTACTTCCACCAGGTA -ACGGAACACTACTTCCACGACTCT -ACGGAACACTACTTCCACAGTCCT -ACGGAACACTACTTCCACTAAGCC -ACGGAACACTACTTCCACATAGCC -ACGGAACACTACTTCCACTAACCG -ACGGAACACTACTTCCACATGCCA -ACGGAACACTACCTCGTAGGAAAC -ACGGAACACTACCTCGTAAACACC -ACGGAACACTACCTCGTAATCGAG -ACGGAACACTACCTCGTACTCCTT -ACGGAACACTACCTCGTACCTGTT -ACGGAACACTACCTCGTACGGTTT -ACGGAACACTACCTCGTAGTGGTT -ACGGAACACTACCTCGTAGCCTTT -ACGGAACACTACCTCGTAGGTCTT -ACGGAACACTACCTCGTAACGCTT -ACGGAACACTACCTCGTAAGCGTT -ACGGAACACTACCTCGTATTCGTC -ACGGAACACTACCTCGTATCTCTC -ACGGAACACTACCTCGTATGGATC -ACGGAACACTACCTCGTACACTTC -ACGGAACACTACCTCGTAGTACTC -ACGGAACACTACCTCGTAGATGTC -ACGGAACACTACCTCGTAACAGTC -ACGGAACACTACCTCGTATTGCTG -ACGGAACACTACCTCGTATCCATG -ACGGAACACTACCTCGTATGTGTG -ACGGAACACTACCTCGTACTAGTG -ACGGAACACTACCTCGTACATCTG -ACGGAACACTACCTCGTAGAGTTG -ACGGAACACTACCTCGTAAGACTG -ACGGAACACTACCTCGTATCGGTA -ACGGAACACTACCTCGTATGCCTA -ACGGAACACTACCTCGTACCACTA -ACGGAACACTACCTCGTAGGAGTA -ACGGAACACTACCTCGTATCGTCT -ACGGAACACTACCTCGTATGCACT -ACGGAACACTACCTCGTACTGACT -ACGGAACACTACCTCGTACAACCT -ACGGAACACTACCTCGTAGCTACT -ACGGAACACTACCTCGTAGGATCT -ACGGAACACTACCTCGTAAAGGCT -ACGGAACACTACCTCGTATCAACC -ACGGAACACTACCTCGTATGTTCC -ACGGAACACTACCTCGTAATTCCC -ACGGAACACTACCTCGTATTCTCG -ACGGAACACTACCTCGTATAGACG -ACGGAACACTACCTCGTAGTAACG -ACGGAACACTACCTCGTAACTTCG -ACGGAACACTACCTCGTATACGCA -ACGGAACACTACCTCGTACTTGCA -ACGGAACACTACCTCGTACGAACA -ACGGAACACTACCTCGTACAGTCA -ACGGAACACTACCTCGTAGATCCA -ACGGAACACTACCTCGTAACGACA -ACGGAACACTACCTCGTAAGCTCA -ACGGAACACTACCTCGTATCACGT -ACGGAACACTACCTCGTACGTAGT -ACGGAACACTACCTCGTAGTCAGT -ACGGAACACTACCTCGTAGAAGGT -ACGGAACACTACCTCGTAAACCGT -ACGGAACACTACCTCGTATTGTGC -ACGGAACACTACCTCGTACTAAGC -ACGGAACACTACCTCGTAACTAGC -ACGGAACACTACCTCGTAAGATGC -ACGGAACACTACCTCGTATGAAGG -ACGGAACACTACCTCGTACAATGG -ACGGAACACTACCTCGTAATGAGG -ACGGAACACTACCTCGTAAATGGG -ACGGAACACTACCTCGTATCCTGA -ACGGAACACTACCTCGTATAGCGA -ACGGAACACTACCTCGTACACAGA -ACGGAACACTACCTCGTAGCAAGA -ACGGAACACTACCTCGTAGGTTGA -ACGGAACACTACCTCGTATCCGAT -ACGGAACACTACCTCGTATGGCAT -ACGGAACACTACCTCGTACGAGAT -ACGGAACACTACCTCGTATACCAC -ACGGAACACTACCTCGTACAGAAC -ACGGAACACTACCTCGTAGTCTAC -ACGGAACACTACCTCGTAACGTAC -ACGGAACACTACCTCGTAAGTGAC -ACGGAACACTACCTCGTACTGTAG -ACGGAACACTACCTCGTACCTAAG -ACGGAACACTACCTCGTAGTTCAG -ACGGAACACTACCTCGTAGCATAG -ACGGAACACTACCTCGTAGACAAG -ACGGAACACTACCTCGTAAAGCAG -ACGGAACACTACCTCGTACGTCAA -ACGGAACACTACCTCGTAGCTGAA -ACGGAACACTACCTCGTAAGTACG -ACGGAACACTACCTCGTAATCCGA -ACGGAACACTACCTCGTAATGGGA -ACGGAACACTACCTCGTAGTGCAA -ACGGAACACTACCTCGTAGAGGAA -ACGGAACACTACCTCGTACAGGTA -ACGGAACACTACCTCGTAGACTCT -ACGGAACACTACCTCGTAAGTCCT -ACGGAACACTACCTCGTATAAGCC -ACGGAACACTACCTCGTAATAGCC -ACGGAACACTACCTCGTATAACCG -ACGGAACACTACCTCGTAATGCCA -ACGGAACACTACGTCGATGGAAAC -ACGGAACACTACGTCGATAACACC -ACGGAACACTACGTCGATATCGAG -ACGGAACACTACGTCGATCTCCTT -ACGGAACACTACGTCGATCCTGTT -ACGGAACACTACGTCGATCGGTTT -ACGGAACACTACGTCGATGTGGTT -ACGGAACACTACGTCGATGCCTTT -ACGGAACACTACGTCGATGGTCTT -ACGGAACACTACGTCGATACGCTT -ACGGAACACTACGTCGATAGCGTT -ACGGAACACTACGTCGATTTCGTC -ACGGAACACTACGTCGATTCTCTC -ACGGAACACTACGTCGATTGGATC -ACGGAACACTACGTCGATCACTTC -ACGGAACACTACGTCGATGTACTC -ACGGAACACTACGTCGATGATGTC -ACGGAACACTACGTCGATACAGTC -ACGGAACACTACGTCGATTTGCTG -ACGGAACACTACGTCGATTCCATG -ACGGAACACTACGTCGATTGTGTG -ACGGAACACTACGTCGATCTAGTG -ACGGAACACTACGTCGATCATCTG -ACGGAACACTACGTCGATGAGTTG -ACGGAACACTACGTCGATAGACTG -ACGGAACACTACGTCGATTCGGTA -ACGGAACACTACGTCGATTGCCTA -ACGGAACACTACGTCGATCCACTA -ACGGAACACTACGTCGATGGAGTA -ACGGAACACTACGTCGATTCGTCT -ACGGAACACTACGTCGATTGCACT -ACGGAACACTACGTCGATCTGACT -ACGGAACACTACGTCGATCAACCT -ACGGAACACTACGTCGATGCTACT -ACGGAACACTACGTCGATGGATCT -ACGGAACACTACGTCGATAAGGCT -ACGGAACACTACGTCGATTCAACC -ACGGAACACTACGTCGATTGTTCC -ACGGAACACTACGTCGATATTCCC -ACGGAACACTACGTCGATTTCTCG -ACGGAACACTACGTCGATTAGACG -ACGGAACACTACGTCGATGTAACG -ACGGAACACTACGTCGATACTTCG -ACGGAACACTACGTCGATTACGCA -ACGGAACACTACGTCGATCTTGCA -ACGGAACACTACGTCGATCGAACA -ACGGAACACTACGTCGATCAGTCA -ACGGAACACTACGTCGATGATCCA -ACGGAACACTACGTCGATACGACA -ACGGAACACTACGTCGATAGCTCA -ACGGAACACTACGTCGATTCACGT -ACGGAACACTACGTCGATCGTAGT -ACGGAACACTACGTCGATGTCAGT -ACGGAACACTACGTCGATGAAGGT -ACGGAACACTACGTCGATAACCGT -ACGGAACACTACGTCGATTTGTGC -ACGGAACACTACGTCGATCTAAGC -ACGGAACACTACGTCGATACTAGC -ACGGAACACTACGTCGATAGATGC -ACGGAACACTACGTCGATTGAAGG -ACGGAACACTACGTCGATCAATGG -ACGGAACACTACGTCGATATGAGG -ACGGAACACTACGTCGATAATGGG -ACGGAACACTACGTCGATTCCTGA -ACGGAACACTACGTCGATTAGCGA -ACGGAACACTACGTCGATCACAGA -ACGGAACACTACGTCGATGCAAGA -ACGGAACACTACGTCGATGGTTGA -ACGGAACACTACGTCGATTCCGAT -ACGGAACACTACGTCGATTGGCAT -ACGGAACACTACGTCGATCGAGAT -ACGGAACACTACGTCGATTACCAC -ACGGAACACTACGTCGATCAGAAC -ACGGAACACTACGTCGATGTCTAC -ACGGAACACTACGTCGATACGTAC -ACGGAACACTACGTCGATAGTGAC -ACGGAACACTACGTCGATCTGTAG -ACGGAACACTACGTCGATCCTAAG -ACGGAACACTACGTCGATGTTCAG -ACGGAACACTACGTCGATGCATAG -ACGGAACACTACGTCGATGACAAG -ACGGAACACTACGTCGATAAGCAG -ACGGAACACTACGTCGATCGTCAA -ACGGAACACTACGTCGATGCTGAA -ACGGAACACTACGTCGATAGTACG -ACGGAACACTACGTCGATATCCGA -ACGGAACACTACGTCGATATGGGA -ACGGAACACTACGTCGATGTGCAA -ACGGAACACTACGTCGATGAGGAA -ACGGAACACTACGTCGATCAGGTA -ACGGAACACTACGTCGATGACTCT -ACGGAACACTACGTCGATAGTCCT -ACGGAACACTACGTCGATTAAGCC -ACGGAACACTACGTCGATATAGCC -ACGGAACACTACGTCGATTAACCG -ACGGAACACTACGTCGATATGCCA -ACGGAACACTACGTCACAGGAAAC -ACGGAACACTACGTCACAAACACC -ACGGAACACTACGTCACAATCGAG -ACGGAACACTACGTCACACTCCTT -ACGGAACACTACGTCACACCTGTT -ACGGAACACTACGTCACACGGTTT -ACGGAACACTACGTCACAGTGGTT -ACGGAACACTACGTCACAGCCTTT -ACGGAACACTACGTCACAGGTCTT -ACGGAACACTACGTCACAACGCTT -ACGGAACACTACGTCACAAGCGTT -ACGGAACACTACGTCACATTCGTC -ACGGAACACTACGTCACATCTCTC -ACGGAACACTACGTCACATGGATC -ACGGAACACTACGTCACACACTTC -ACGGAACACTACGTCACAGTACTC -ACGGAACACTACGTCACAGATGTC -ACGGAACACTACGTCACAACAGTC -ACGGAACACTACGTCACATTGCTG -ACGGAACACTACGTCACATCCATG -ACGGAACACTACGTCACATGTGTG -ACGGAACACTACGTCACACTAGTG -ACGGAACACTACGTCACACATCTG -ACGGAACACTACGTCACAGAGTTG -ACGGAACACTACGTCACAAGACTG -ACGGAACACTACGTCACATCGGTA -ACGGAACACTACGTCACATGCCTA -ACGGAACACTACGTCACACCACTA -ACGGAACACTACGTCACAGGAGTA -ACGGAACACTACGTCACATCGTCT -ACGGAACACTACGTCACATGCACT -ACGGAACACTACGTCACACTGACT -ACGGAACACTACGTCACACAACCT -ACGGAACACTACGTCACAGCTACT -ACGGAACACTACGTCACAGGATCT -ACGGAACACTACGTCACAAAGGCT -ACGGAACACTACGTCACATCAACC -ACGGAACACTACGTCACATGTTCC -ACGGAACACTACGTCACAATTCCC -ACGGAACACTACGTCACATTCTCG -ACGGAACACTACGTCACATAGACG -ACGGAACACTACGTCACAGTAACG -ACGGAACACTACGTCACAACTTCG -ACGGAACACTACGTCACATACGCA -ACGGAACACTACGTCACACTTGCA -ACGGAACACTACGTCACACGAACA -ACGGAACACTACGTCACACAGTCA -ACGGAACACTACGTCACAGATCCA -ACGGAACACTACGTCACAACGACA -ACGGAACACTACGTCACAAGCTCA -ACGGAACACTACGTCACATCACGT -ACGGAACACTACGTCACACGTAGT -ACGGAACACTACGTCACAGTCAGT -ACGGAACACTACGTCACAGAAGGT -ACGGAACACTACGTCACAAACCGT -ACGGAACACTACGTCACATTGTGC -ACGGAACACTACGTCACACTAAGC -ACGGAACACTACGTCACAACTAGC -ACGGAACACTACGTCACAAGATGC -ACGGAACACTACGTCACATGAAGG -ACGGAACACTACGTCACACAATGG -ACGGAACACTACGTCACAATGAGG -ACGGAACACTACGTCACAAATGGG -ACGGAACACTACGTCACATCCTGA -ACGGAACACTACGTCACATAGCGA -ACGGAACACTACGTCACACACAGA -ACGGAACACTACGTCACAGCAAGA -ACGGAACACTACGTCACAGGTTGA -ACGGAACACTACGTCACATCCGAT -ACGGAACACTACGTCACATGGCAT -ACGGAACACTACGTCACACGAGAT -ACGGAACACTACGTCACATACCAC -ACGGAACACTACGTCACACAGAAC -ACGGAACACTACGTCACAGTCTAC -ACGGAACACTACGTCACAACGTAC -ACGGAACACTACGTCACAAGTGAC -ACGGAACACTACGTCACACTGTAG -ACGGAACACTACGTCACACCTAAG -ACGGAACACTACGTCACAGTTCAG -ACGGAACACTACGTCACAGCATAG -ACGGAACACTACGTCACAGACAAG -ACGGAACACTACGTCACAAAGCAG -ACGGAACACTACGTCACACGTCAA -ACGGAACACTACGTCACAGCTGAA -ACGGAACACTACGTCACAAGTACG -ACGGAACACTACGTCACAATCCGA -ACGGAACACTACGTCACAATGGGA -ACGGAACACTACGTCACAGTGCAA -ACGGAACACTACGTCACAGAGGAA -ACGGAACACTACGTCACACAGGTA -ACGGAACACTACGTCACAGACTCT -ACGGAACACTACGTCACAAGTCCT -ACGGAACACTACGTCACATAAGCC -ACGGAACACTACGTCACAATAGCC -ACGGAACACTACGTCACATAACCG -ACGGAACACTACGTCACAATGCCA -ACGGAACACTACCTGTTGGGAAAC -ACGGAACACTACCTGTTGAACACC -ACGGAACACTACCTGTTGATCGAG -ACGGAACACTACCTGTTGCTCCTT -ACGGAACACTACCTGTTGCCTGTT -ACGGAACACTACCTGTTGCGGTTT -ACGGAACACTACCTGTTGGTGGTT -ACGGAACACTACCTGTTGGCCTTT -ACGGAACACTACCTGTTGGGTCTT -ACGGAACACTACCTGTTGACGCTT -ACGGAACACTACCTGTTGAGCGTT -ACGGAACACTACCTGTTGTTCGTC -ACGGAACACTACCTGTTGTCTCTC -ACGGAACACTACCTGTTGTGGATC -ACGGAACACTACCTGTTGCACTTC -ACGGAACACTACCTGTTGGTACTC -ACGGAACACTACCTGTTGGATGTC -ACGGAACACTACCTGTTGACAGTC -ACGGAACACTACCTGTTGTTGCTG -ACGGAACACTACCTGTTGTCCATG -ACGGAACACTACCTGTTGTGTGTG -ACGGAACACTACCTGTTGCTAGTG -ACGGAACACTACCTGTTGCATCTG -ACGGAACACTACCTGTTGGAGTTG -ACGGAACACTACCTGTTGAGACTG -ACGGAACACTACCTGTTGTCGGTA -ACGGAACACTACCTGTTGTGCCTA -ACGGAACACTACCTGTTGCCACTA -ACGGAACACTACCTGTTGGGAGTA -ACGGAACACTACCTGTTGTCGTCT -ACGGAACACTACCTGTTGTGCACT -ACGGAACACTACCTGTTGCTGACT -ACGGAACACTACCTGTTGCAACCT -ACGGAACACTACCTGTTGGCTACT -ACGGAACACTACCTGTTGGGATCT -ACGGAACACTACCTGTTGAAGGCT -ACGGAACACTACCTGTTGTCAACC -ACGGAACACTACCTGTTGTGTTCC -ACGGAACACTACCTGTTGATTCCC -ACGGAACACTACCTGTTGTTCTCG -ACGGAACACTACCTGTTGTAGACG -ACGGAACACTACCTGTTGGTAACG -ACGGAACACTACCTGTTGACTTCG -ACGGAACACTACCTGTTGTACGCA -ACGGAACACTACCTGTTGCTTGCA -ACGGAACACTACCTGTTGCGAACA -ACGGAACACTACCTGTTGCAGTCA -ACGGAACACTACCTGTTGGATCCA -ACGGAACACTACCTGTTGACGACA -ACGGAACACTACCTGTTGAGCTCA -ACGGAACACTACCTGTTGTCACGT -ACGGAACACTACCTGTTGCGTAGT -ACGGAACACTACCTGTTGGTCAGT -ACGGAACACTACCTGTTGGAAGGT -ACGGAACACTACCTGTTGAACCGT -ACGGAACACTACCTGTTGTTGTGC -ACGGAACACTACCTGTTGCTAAGC -ACGGAACACTACCTGTTGACTAGC -ACGGAACACTACCTGTTGAGATGC -ACGGAACACTACCTGTTGTGAAGG -ACGGAACACTACCTGTTGCAATGG -ACGGAACACTACCTGTTGATGAGG -ACGGAACACTACCTGTTGAATGGG -ACGGAACACTACCTGTTGTCCTGA -ACGGAACACTACCTGTTGTAGCGA -ACGGAACACTACCTGTTGCACAGA -ACGGAACACTACCTGTTGGCAAGA -ACGGAACACTACCTGTTGGGTTGA -ACGGAACACTACCTGTTGTCCGAT -ACGGAACACTACCTGTTGTGGCAT -ACGGAACACTACCTGTTGCGAGAT -ACGGAACACTACCTGTTGTACCAC -ACGGAACACTACCTGTTGCAGAAC -ACGGAACACTACCTGTTGGTCTAC -ACGGAACACTACCTGTTGACGTAC -ACGGAACACTACCTGTTGAGTGAC -ACGGAACACTACCTGTTGCTGTAG -ACGGAACACTACCTGTTGCCTAAG -ACGGAACACTACCTGTTGGTTCAG -ACGGAACACTACCTGTTGGCATAG -ACGGAACACTACCTGTTGGACAAG -ACGGAACACTACCTGTTGAAGCAG -ACGGAACACTACCTGTTGCGTCAA -ACGGAACACTACCTGTTGGCTGAA -ACGGAACACTACCTGTTGAGTACG -ACGGAACACTACCTGTTGATCCGA -ACGGAACACTACCTGTTGATGGGA -ACGGAACACTACCTGTTGGTGCAA -ACGGAACACTACCTGTTGGAGGAA -ACGGAACACTACCTGTTGCAGGTA -ACGGAACACTACCTGTTGGACTCT -ACGGAACACTACCTGTTGAGTCCT -ACGGAACACTACCTGTTGTAAGCC -ACGGAACACTACCTGTTGATAGCC -ACGGAACACTACCTGTTGTAACCG -ACGGAACACTACCTGTTGATGCCA -ACGGAACACTACATGTCCGGAAAC -ACGGAACACTACATGTCCAACACC -ACGGAACACTACATGTCCATCGAG -ACGGAACACTACATGTCCCTCCTT -ACGGAACACTACATGTCCCCTGTT -ACGGAACACTACATGTCCCGGTTT -ACGGAACACTACATGTCCGTGGTT -ACGGAACACTACATGTCCGCCTTT -ACGGAACACTACATGTCCGGTCTT -ACGGAACACTACATGTCCACGCTT -ACGGAACACTACATGTCCAGCGTT -ACGGAACACTACATGTCCTTCGTC -ACGGAACACTACATGTCCTCTCTC -ACGGAACACTACATGTCCTGGATC -ACGGAACACTACATGTCCCACTTC -ACGGAACACTACATGTCCGTACTC -ACGGAACACTACATGTCCGATGTC -ACGGAACACTACATGTCCACAGTC -ACGGAACACTACATGTCCTTGCTG -ACGGAACACTACATGTCCTCCATG -ACGGAACACTACATGTCCTGTGTG -ACGGAACACTACATGTCCCTAGTG -ACGGAACACTACATGTCCCATCTG -ACGGAACACTACATGTCCGAGTTG -ACGGAACACTACATGTCCAGACTG -ACGGAACACTACATGTCCTCGGTA -ACGGAACACTACATGTCCTGCCTA -ACGGAACACTACATGTCCCCACTA -ACGGAACACTACATGTCCGGAGTA -ACGGAACACTACATGTCCTCGTCT -ACGGAACACTACATGTCCTGCACT -ACGGAACACTACATGTCCCTGACT -ACGGAACACTACATGTCCCAACCT -ACGGAACACTACATGTCCGCTACT -ACGGAACACTACATGTCCGGATCT -ACGGAACACTACATGTCCAAGGCT -ACGGAACACTACATGTCCTCAACC -ACGGAACACTACATGTCCTGTTCC -ACGGAACACTACATGTCCATTCCC -ACGGAACACTACATGTCCTTCTCG -ACGGAACACTACATGTCCTAGACG -ACGGAACACTACATGTCCGTAACG -ACGGAACACTACATGTCCACTTCG -ACGGAACACTACATGTCCTACGCA -ACGGAACACTACATGTCCCTTGCA -ACGGAACACTACATGTCCCGAACA -ACGGAACACTACATGTCCCAGTCA -ACGGAACACTACATGTCCGATCCA -ACGGAACACTACATGTCCACGACA -ACGGAACACTACATGTCCAGCTCA -ACGGAACACTACATGTCCTCACGT -ACGGAACACTACATGTCCCGTAGT -ACGGAACACTACATGTCCGTCAGT -ACGGAACACTACATGTCCGAAGGT -ACGGAACACTACATGTCCAACCGT -ACGGAACACTACATGTCCTTGTGC -ACGGAACACTACATGTCCCTAAGC -ACGGAACACTACATGTCCACTAGC -ACGGAACACTACATGTCCAGATGC -ACGGAACACTACATGTCCTGAAGG -ACGGAACACTACATGTCCCAATGG -ACGGAACACTACATGTCCATGAGG -ACGGAACACTACATGTCCAATGGG -ACGGAACACTACATGTCCTCCTGA -ACGGAACACTACATGTCCTAGCGA -ACGGAACACTACATGTCCCACAGA -ACGGAACACTACATGTCCGCAAGA -ACGGAACACTACATGTCCGGTTGA -ACGGAACACTACATGTCCTCCGAT -ACGGAACACTACATGTCCTGGCAT -ACGGAACACTACATGTCCCGAGAT -ACGGAACACTACATGTCCTACCAC -ACGGAACACTACATGTCCCAGAAC -ACGGAACACTACATGTCCGTCTAC -ACGGAACACTACATGTCCACGTAC -ACGGAACACTACATGTCCAGTGAC -ACGGAACACTACATGTCCCTGTAG -ACGGAACACTACATGTCCCCTAAG -ACGGAACACTACATGTCCGTTCAG -ACGGAACACTACATGTCCGCATAG -ACGGAACACTACATGTCCGACAAG -ACGGAACACTACATGTCCAAGCAG -ACGGAACACTACATGTCCCGTCAA -ACGGAACACTACATGTCCGCTGAA -ACGGAACACTACATGTCCAGTACG -ACGGAACACTACATGTCCATCCGA -ACGGAACACTACATGTCCATGGGA -ACGGAACACTACATGTCCGTGCAA -ACGGAACACTACATGTCCGAGGAA -ACGGAACACTACATGTCCCAGGTA -ACGGAACACTACATGTCCGACTCT -ACGGAACACTACATGTCCAGTCCT -ACGGAACACTACATGTCCTAAGCC -ACGGAACACTACATGTCCATAGCC -ACGGAACACTACATGTCCTAACCG -ACGGAACACTACATGTCCATGCCA -ACGGAACACTACGTGTGTGGAAAC -ACGGAACACTACGTGTGTAACACC -ACGGAACACTACGTGTGTATCGAG -ACGGAACACTACGTGTGTCTCCTT -ACGGAACACTACGTGTGTCCTGTT -ACGGAACACTACGTGTGTCGGTTT -ACGGAACACTACGTGTGTGTGGTT -ACGGAACACTACGTGTGTGCCTTT -ACGGAACACTACGTGTGTGGTCTT -ACGGAACACTACGTGTGTACGCTT -ACGGAACACTACGTGTGTAGCGTT -ACGGAACACTACGTGTGTTTCGTC -ACGGAACACTACGTGTGTTCTCTC -ACGGAACACTACGTGTGTTGGATC -ACGGAACACTACGTGTGTCACTTC -ACGGAACACTACGTGTGTGTACTC -ACGGAACACTACGTGTGTGATGTC -ACGGAACACTACGTGTGTACAGTC -ACGGAACACTACGTGTGTTTGCTG -ACGGAACACTACGTGTGTTCCATG -ACGGAACACTACGTGTGTTGTGTG -ACGGAACACTACGTGTGTCTAGTG -ACGGAACACTACGTGTGTCATCTG -ACGGAACACTACGTGTGTGAGTTG -ACGGAACACTACGTGTGTAGACTG -ACGGAACACTACGTGTGTTCGGTA -ACGGAACACTACGTGTGTTGCCTA -ACGGAACACTACGTGTGTCCACTA -ACGGAACACTACGTGTGTGGAGTA -ACGGAACACTACGTGTGTTCGTCT -ACGGAACACTACGTGTGTTGCACT -ACGGAACACTACGTGTGTCTGACT -ACGGAACACTACGTGTGTCAACCT -ACGGAACACTACGTGTGTGCTACT -ACGGAACACTACGTGTGTGGATCT -ACGGAACACTACGTGTGTAAGGCT -ACGGAACACTACGTGTGTTCAACC -ACGGAACACTACGTGTGTTGTTCC -ACGGAACACTACGTGTGTATTCCC -ACGGAACACTACGTGTGTTTCTCG -ACGGAACACTACGTGTGTTAGACG -ACGGAACACTACGTGTGTGTAACG -ACGGAACACTACGTGTGTACTTCG -ACGGAACACTACGTGTGTTACGCA -ACGGAACACTACGTGTGTCTTGCA -ACGGAACACTACGTGTGTCGAACA -ACGGAACACTACGTGTGTCAGTCA -ACGGAACACTACGTGTGTGATCCA -ACGGAACACTACGTGTGTACGACA -ACGGAACACTACGTGTGTAGCTCA -ACGGAACACTACGTGTGTTCACGT -ACGGAACACTACGTGTGTCGTAGT -ACGGAACACTACGTGTGTGTCAGT -ACGGAACACTACGTGTGTGAAGGT -ACGGAACACTACGTGTGTAACCGT -ACGGAACACTACGTGTGTTTGTGC -ACGGAACACTACGTGTGTCTAAGC -ACGGAACACTACGTGTGTACTAGC -ACGGAACACTACGTGTGTAGATGC -ACGGAACACTACGTGTGTTGAAGG -ACGGAACACTACGTGTGTCAATGG -ACGGAACACTACGTGTGTATGAGG -ACGGAACACTACGTGTGTAATGGG -ACGGAACACTACGTGTGTTCCTGA -ACGGAACACTACGTGTGTTAGCGA -ACGGAACACTACGTGTGTCACAGA -ACGGAACACTACGTGTGTGCAAGA -ACGGAACACTACGTGTGTGGTTGA -ACGGAACACTACGTGTGTTCCGAT -ACGGAACACTACGTGTGTTGGCAT -ACGGAACACTACGTGTGTCGAGAT -ACGGAACACTACGTGTGTTACCAC -ACGGAACACTACGTGTGTCAGAAC -ACGGAACACTACGTGTGTGTCTAC -ACGGAACACTACGTGTGTACGTAC -ACGGAACACTACGTGTGTAGTGAC -ACGGAACACTACGTGTGTCTGTAG -ACGGAACACTACGTGTGTCCTAAG -ACGGAACACTACGTGTGTGTTCAG -ACGGAACACTACGTGTGTGCATAG -ACGGAACACTACGTGTGTGACAAG -ACGGAACACTACGTGTGTAAGCAG -ACGGAACACTACGTGTGTCGTCAA -ACGGAACACTACGTGTGTGCTGAA -ACGGAACACTACGTGTGTAGTACG -ACGGAACACTACGTGTGTATCCGA -ACGGAACACTACGTGTGTATGGGA -ACGGAACACTACGTGTGTGTGCAA -ACGGAACACTACGTGTGTGAGGAA -ACGGAACACTACGTGTGTCAGGTA -ACGGAACACTACGTGTGTGACTCT -ACGGAACACTACGTGTGTAGTCCT -ACGGAACACTACGTGTGTTAAGCC -ACGGAACACTACGTGTGTATAGCC -ACGGAACACTACGTGTGTTAACCG -ACGGAACACTACGTGTGTATGCCA -ACGGAACACTACGTGCTAGGAAAC -ACGGAACACTACGTGCTAAACACC -ACGGAACACTACGTGCTAATCGAG -ACGGAACACTACGTGCTACTCCTT -ACGGAACACTACGTGCTACCTGTT -ACGGAACACTACGTGCTACGGTTT -ACGGAACACTACGTGCTAGTGGTT -ACGGAACACTACGTGCTAGCCTTT -ACGGAACACTACGTGCTAGGTCTT -ACGGAACACTACGTGCTAACGCTT -ACGGAACACTACGTGCTAAGCGTT -ACGGAACACTACGTGCTATTCGTC -ACGGAACACTACGTGCTATCTCTC -ACGGAACACTACGTGCTATGGATC -ACGGAACACTACGTGCTACACTTC -ACGGAACACTACGTGCTAGTACTC -ACGGAACACTACGTGCTAGATGTC -ACGGAACACTACGTGCTAACAGTC -ACGGAACACTACGTGCTATTGCTG -ACGGAACACTACGTGCTATCCATG -ACGGAACACTACGTGCTATGTGTG -ACGGAACACTACGTGCTACTAGTG -ACGGAACACTACGTGCTACATCTG -ACGGAACACTACGTGCTAGAGTTG -ACGGAACACTACGTGCTAAGACTG -ACGGAACACTACGTGCTATCGGTA -ACGGAACACTACGTGCTATGCCTA -ACGGAACACTACGTGCTACCACTA -ACGGAACACTACGTGCTAGGAGTA -ACGGAACACTACGTGCTATCGTCT -ACGGAACACTACGTGCTATGCACT -ACGGAACACTACGTGCTACTGACT -ACGGAACACTACGTGCTACAACCT -ACGGAACACTACGTGCTAGCTACT -ACGGAACACTACGTGCTAGGATCT -ACGGAACACTACGTGCTAAAGGCT -ACGGAACACTACGTGCTATCAACC -ACGGAACACTACGTGCTATGTTCC -ACGGAACACTACGTGCTAATTCCC -ACGGAACACTACGTGCTATTCTCG -ACGGAACACTACGTGCTATAGACG -ACGGAACACTACGTGCTAGTAACG -ACGGAACACTACGTGCTAACTTCG -ACGGAACACTACGTGCTATACGCA -ACGGAACACTACGTGCTACTTGCA -ACGGAACACTACGTGCTACGAACA -ACGGAACACTACGTGCTACAGTCA -ACGGAACACTACGTGCTAGATCCA -ACGGAACACTACGTGCTAACGACA -ACGGAACACTACGTGCTAAGCTCA -ACGGAACACTACGTGCTATCACGT -ACGGAACACTACGTGCTACGTAGT -ACGGAACACTACGTGCTAGTCAGT -ACGGAACACTACGTGCTAGAAGGT -ACGGAACACTACGTGCTAAACCGT -ACGGAACACTACGTGCTATTGTGC -ACGGAACACTACGTGCTACTAAGC -ACGGAACACTACGTGCTAACTAGC -ACGGAACACTACGTGCTAAGATGC -ACGGAACACTACGTGCTATGAAGG -ACGGAACACTACGTGCTACAATGG -ACGGAACACTACGTGCTAATGAGG -ACGGAACACTACGTGCTAAATGGG -ACGGAACACTACGTGCTATCCTGA -ACGGAACACTACGTGCTATAGCGA -ACGGAACACTACGTGCTACACAGA -ACGGAACACTACGTGCTAGCAAGA -ACGGAACACTACGTGCTAGGTTGA -ACGGAACACTACGTGCTATCCGAT -ACGGAACACTACGTGCTATGGCAT -ACGGAACACTACGTGCTACGAGAT -ACGGAACACTACGTGCTATACCAC -ACGGAACACTACGTGCTACAGAAC -ACGGAACACTACGTGCTAGTCTAC -ACGGAACACTACGTGCTAACGTAC -ACGGAACACTACGTGCTAAGTGAC -ACGGAACACTACGTGCTACTGTAG -ACGGAACACTACGTGCTACCTAAG -ACGGAACACTACGTGCTAGTTCAG -ACGGAACACTACGTGCTAGCATAG -ACGGAACACTACGTGCTAGACAAG -ACGGAACACTACGTGCTAAAGCAG -ACGGAACACTACGTGCTACGTCAA -ACGGAACACTACGTGCTAGCTGAA -ACGGAACACTACGTGCTAAGTACG -ACGGAACACTACGTGCTAATCCGA -ACGGAACACTACGTGCTAATGGGA -ACGGAACACTACGTGCTAGTGCAA -ACGGAACACTACGTGCTAGAGGAA -ACGGAACACTACGTGCTACAGGTA -ACGGAACACTACGTGCTAGACTCT -ACGGAACACTACGTGCTAAGTCCT -ACGGAACACTACGTGCTATAAGCC -ACGGAACACTACGTGCTAATAGCC -ACGGAACACTACGTGCTATAACCG -ACGGAACACTACGTGCTAATGCCA -ACGGAACACTACCTGCATGGAAAC -ACGGAACACTACCTGCATAACACC -ACGGAACACTACCTGCATATCGAG -ACGGAACACTACCTGCATCTCCTT -ACGGAACACTACCTGCATCCTGTT -ACGGAACACTACCTGCATCGGTTT -ACGGAACACTACCTGCATGTGGTT -ACGGAACACTACCTGCATGCCTTT -ACGGAACACTACCTGCATGGTCTT -ACGGAACACTACCTGCATACGCTT -ACGGAACACTACCTGCATAGCGTT -ACGGAACACTACCTGCATTTCGTC -ACGGAACACTACCTGCATTCTCTC -ACGGAACACTACCTGCATTGGATC -ACGGAACACTACCTGCATCACTTC -ACGGAACACTACCTGCATGTACTC -ACGGAACACTACCTGCATGATGTC -ACGGAACACTACCTGCATACAGTC -ACGGAACACTACCTGCATTTGCTG -ACGGAACACTACCTGCATTCCATG -ACGGAACACTACCTGCATTGTGTG -ACGGAACACTACCTGCATCTAGTG -ACGGAACACTACCTGCATCATCTG -ACGGAACACTACCTGCATGAGTTG -ACGGAACACTACCTGCATAGACTG -ACGGAACACTACCTGCATTCGGTA -ACGGAACACTACCTGCATTGCCTA -ACGGAACACTACCTGCATCCACTA -ACGGAACACTACCTGCATGGAGTA -ACGGAACACTACCTGCATTCGTCT -ACGGAACACTACCTGCATTGCACT -ACGGAACACTACCTGCATCTGACT -ACGGAACACTACCTGCATCAACCT -ACGGAACACTACCTGCATGCTACT -ACGGAACACTACCTGCATGGATCT -ACGGAACACTACCTGCATAAGGCT -ACGGAACACTACCTGCATTCAACC -ACGGAACACTACCTGCATTGTTCC -ACGGAACACTACCTGCATATTCCC -ACGGAACACTACCTGCATTTCTCG -ACGGAACACTACCTGCATTAGACG -ACGGAACACTACCTGCATGTAACG -ACGGAACACTACCTGCATACTTCG -ACGGAACACTACCTGCATTACGCA -ACGGAACACTACCTGCATCTTGCA -ACGGAACACTACCTGCATCGAACA -ACGGAACACTACCTGCATCAGTCA -ACGGAACACTACCTGCATGATCCA -ACGGAACACTACCTGCATACGACA -ACGGAACACTACCTGCATAGCTCA -ACGGAACACTACCTGCATTCACGT -ACGGAACACTACCTGCATCGTAGT -ACGGAACACTACCTGCATGTCAGT -ACGGAACACTACCTGCATGAAGGT -ACGGAACACTACCTGCATAACCGT -ACGGAACACTACCTGCATTTGTGC -ACGGAACACTACCTGCATCTAAGC -ACGGAACACTACCTGCATACTAGC -ACGGAACACTACCTGCATAGATGC -ACGGAACACTACCTGCATTGAAGG -ACGGAACACTACCTGCATCAATGG -ACGGAACACTACCTGCATATGAGG -ACGGAACACTACCTGCATAATGGG -ACGGAACACTACCTGCATTCCTGA -ACGGAACACTACCTGCATTAGCGA -ACGGAACACTACCTGCATCACAGA -ACGGAACACTACCTGCATGCAAGA -ACGGAACACTACCTGCATGGTTGA -ACGGAACACTACCTGCATTCCGAT -ACGGAACACTACCTGCATTGGCAT -ACGGAACACTACCTGCATCGAGAT -ACGGAACACTACCTGCATTACCAC -ACGGAACACTACCTGCATCAGAAC -ACGGAACACTACCTGCATGTCTAC -ACGGAACACTACCTGCATACGTAC -ACGGAACACTACCTGCATAGTGAC -ACGGAACACTACCTGCATCTGTAG -ACGGAACACTACCTGCATCCTAAG -ACGGAACACTACCTGCATGTTCAG -ACGGAACACTACCTGCATGCATAG -ACGGAACACTACCTGCATGACAAG -ACGGAACACTACCTGCATAAGCAG -ACGGAACACTACCTGCATCGTCAA -ACGGAACACTACCTGCATGCTGAA -ACGGAACACTACCTGCATAGTACG -ACGGAACACTACCTGCATATCCGA -ACGGAACACTACCTGCATATGGGA -ACGGAACACTACCTGCATGTGCAA -ACGGAACACTACCTGCATGAGGAA -ACGGAACACTACCTGCATCAGGTA -ACGGAACACTACCTGCATGACTCT -ACGGAACACTACCTGCATAGTCCT -ACGGAACACTACCTGCATTAAGCC -ACGGAACACTACCTGCATATAGCC -ACGGAACACTACCTGCATTAACCG -ACGGAACACTACCTGCATATGCCA -ACGGAACACTACTTGGAGGGAAAC -ACGGAACACTACTTGGAGAACACC -ACGGAACACTACTTGGAGATCGAG -ACGGAACACTACTTGGAGCTCCTT -ACGGAACACTACTTGGAGCCTGTT -ACGGAACACTACTTGGAGCGGTTT -ACGGAACACTACTTGGAGGTGGTT -ACGGAACACTACTTGGAGGCCTTT -ACGGAACACTACTTGGAGGGTCTT -ACGGAACACTACTTGGAGACGCTT -ACGGAACACTACTTGGAGAGCGTT -ACGGAACACTACTTGGAGTTCGTC -ACGGAACACTACTTGGAGTCTCTC -ACGGAACACTACTTGGAGTGGATC -ACGGAACACTACTTGGAGCACTTC -ACGGAACACTACTTGGAGGTACTC -ACGGAACACTACTTGGAGGATGTC -ACGGAACACTACTTGGAGACAGTC -ACGGAACACTACTTGGAGTTGCTG -ACGGAACACTACTTGGAGTCCATG -ACGGAACACTACTTGGAGTGTGTG -ACGGAACACTACTTGGAGCTAGTG -ACGGAACACTACTTGGAGCATCTG -ACGGAACACTACTTGGAGGAGTTG -ACGGAACACTACTTGGAGAGACTG -ACGGAACACTACTTGGAGTCGGTA -ACGGAACACTACTTGGAGTGCCTA -ACGGAACACTACTTGGAGCCACTA -ACGGAACACTACTTGGAGGGAGTA -ACGGAACACTACTTGGAGTCGTCT -ACGGAACACTACTTGGAGTGCACT -ACGGAACACTACTTGGAGCTGACT -ACGGAACACTACTTGGAGCAACCT -ACGGAACACTACTTGGAGGCTACT -ACGGAACACTACTTGGAGGGATCT -ACGGAACACTACTTGGAGAAGGCT -ACGGAACACTACTTGGAGTCAACC -ACGGAACACTACTTGGAGTGTTCC -ACGGAACACTACTTGGAGATTCCC -ACGGAACACTACTTGGAGTTCTCG -ACGGAACACTACTTGGAGTAGACG -ACGGAACACTACTTGGAGGTAACG -ACGGAACACTACTTGGAGACTTCG -ACGGAACACTACTTGGAGTACGCA -ACGGAACACTACTTGGAGCTTGCA -ACGGAACACTACTTGGAGCGAACA -ACGGAACACTACTTGGAGCAGTCA -ACGGAACACTACTTGGAGGATCCA -ACGGAACACTACTTGGAGACGACA -ACGGAACACTACTTGGAGAGCTCA -ACGGAACACTACTTGGAGTCACGT -ACGGAACACTACTTGGAGCGTAGT -ACGGAACACTACTTGGAGGTCAGT -ACGGAACACTACTTGGAGGAAGGT -ACGGAACACTACTTGGAGAACCGT -ACGGAACACTACTTGGAGTTGTGC -ACGGAACACTACTTGGAGCTAAGC -ACGGAACACTACTTGGAGACTAGC -ACGGAACACTACTTGGAGAGATGC -ACGGAACACTACTTGGAGTGAAGG -ACGGAACACTACTTGGAGCAATGG -ACGGAACACTACTTGGAGATGAGG -ACGGAACACTACTTGGAGAATGGG -ACGGAACACTACTTGGAGTCCTGA -ACGGAACACTACTTGGAGTAGCGA -ACGGAACACTACTTGGAGCACAGA -ACGGAACACTACTTGGAGGCAAGA -ACGGAACACTACTTGGAGGGTTGA -ACGGAACACTACTTGGAGTCCGAT -ACGGAACACTACTTGGAGTGGCAT -ACGGAACACTACTTGGAGCGAGAT -ACGGAACACTACTTGGAGTACCAC -ACGGAACACTACTTGGAGCAGAAC -ACGGAACACTACTTGGAGGTCTAC -ACGGAACACTACTTGGAGACGTAC -ACGGAACACTACTTGGAGAGTGAC -ACGGAACACTACTTGGAGCTGTAG -ACGGAACACTACTTGGAGCCTAAG -ACGGAACACTACTTGGAGGTTCAG -ACGGAACACTACTTGGAGGCATAG -ACGGAACACTACTTGGAGGACAAG -ACGGAACACTACTTGGAGAAGCAG -ACGGAACACTACTTGGAGCGTCAA -ACGGAACACTACTTGGAGGCTGAA -ACGGAACACTACTTGGAGAGTACG -ACGGAACACTACTTGGAGATCCGA -ACGGAACACTACTTGGAGATGGGA -ACGGAACACTACTTGGAGGTGCAA -ACGGAACACTACTTGGAGGAGGAA -ACGGAACACTACTTGGAGCAGGTA -ACGGAACACTACTTGGAGGACTCT -ACGGAACACTACTTGGAGAGTCCT -ACGGAACACTACTTGGAGTAAGCC -ACGGAACACTACTTGGAGATAGCC -ACGGAACACTACTTGGAGTAACCG -ACGGAACACTACTTGGAGATGCCA -ACGGAACACTACCTGAGAGGAAAC -ACGGAACACTACCTGAGAAACACC -ACGGAACACTACCTGAGAATCGAG -ACGGAACACTACCTGAGACTCCTT -ACGGAACACTACCTGAGACCTGTT -ACGGAACACTACCTGAGACGGTTT -ACGGAACACTACCTGAGAGTGGTT -ACGGAACACTACCTGAGAGCCTTT -ACGGAACACTACCTGAGAGGTCTT -ACGGAACACTACCTGAGAACGCTT -ACGGAACACTACCTGAGAAGCGTT -ACGGAACACTACCTGAGATTCGTC -ACGGAACACTACCTGAGATCTCTC -ACGGAACACTACCTGAGATGGATC -ACGGAACACTACCTGAGACACTTC -ACGGAACACTACCTGAGAGTACTC -ACGGAACACTACCTGAGAGATGTC -ACGGAACACTACCTGAGAACAGTC -ACGGAACACTACCTGAGATTGCTG -ACGGAACACTACCTGAGATCCATG -ACGGAACACTACCTGAGATGTGTG -ACGGAACACTACCTGAGACTAGTG -ACGGAACACTACCTGAGACATCTG -ACGGAACACTACCTGAGAGAGTTG -ACGGAACACTACCTGAGAAGACTG -ACGGAACACTACCTGAGATCGGTA -ACGGAACACTACCTGAGATGCCTA -ACGGAACACTACCTGAGACCACTA -ACGGAACACTACCTGAGAGGAGTA -ACGGAACACTACCTGAGATCGTCT -ACGGAACACTACCTGAGATGCACT -ACGGAACACTACCTGAGACTGACT -ACGGAACACTACCTGAGACAACCT -ACGGAACACTACCTGAGAGCTACT -ACGGAACACTACCTGAGAGGATCT -ACGGAACACTACCTGAGAAAGGCT -ACGGAACACTACCTGAGATCAACC -ACGGAACACTACCTGAGATGTTCC -ACGGAACACTACCTGAGAATTCCC -ACGGAACACTACCTGAGATTCTCG -ACGGAACACTACCTGAGATAGACG -ACGGAACACTACCTGAGAGTAACG -ACGGAACACTACCTGAGAACTTCG -ACGGAACACTACCTGAGATACGCA -ACGGAACACTACCTGAGACTTGCA -ACGGAACACTACCTGAGACGAACA -ACGGAACACTACCTGAGACAGTCA -ACGGAACACTACCTGAGAGATCCA -ACGGAACACTACCTGAGAACGACA -ACGGAACACTACCTGAGAAGCTCA -ACGGAACACTACCTGAGATCACGT -ACGGAACACTACCTGAGACGTAGT -ACGGAACACTACCTGAGAGTCAGT -ACGGAACACTACCTGAGAGAAGGT -ACGGAACACTACCTGAGAAACCGT -ACGGAACACTACCTGAGATTGTGC -ACGGAACACTACCTGAGACTAAGC -ACGGAACACTACCTGAGAACTAGC -ACGGAACACTACCTGAGAAGATGC -ACGGAACACTACCTGAGATGAAGG -ACGGAACACTACCTGAGACAATGG -ACGGAACACTACCTGAGAATGAGG -ACGGAACACTACCTGAGAAATGGG -ACGGAACACTACCTGAGATCCTGA -ACGGAACACTACCTGAGATAGCGA -ACGGAACACTACCTGAGACACAGA -ACGGAACACTACCTGAGAGCAAGA -ACGGAACACTACCTGAGAGGTTGA -ACGGAACACTACCTGAGATCCGAT -ACGGAACACTACCTGAGATGGCAT -ACGGAACACTACCTGAGACGAGAT -ACGGAACACTACCTGAGATACCAC -ACGGAACACTACCTGAGACAGAAC -ACGGAACACTACCTGAGAGTCTAC -ACGGAACACTACCTGAGAACGTAC -ACGGAACACTACCTGAGAAGTGAC -ACGGAACACTACCTGAGACTGTAG -ACGGAACACTACCTGAGACCTAAG -ACGGAACACTACCTGAGAGTTCAG -ACGGAACACTACCTGAGAGCATAG -ACGGAACACTACCTGAGAGACAAG -ACGGAACACTACCTGAGAAAGCAG -ACGGAACACTACCTGAGACGTCAA -ACGGAACACTACCTGAGAGCTGAA -ACGGAACACTACCTGAGAAGTACG -ACGGAACACTACCTGAGAATCCGA -ACGGAACACTACCTGAGAATGGGA -ACGGAACACTACCTGAGAGTGCAA -ACGGAACACTACCTGAGAGAGGAA -ACGGAACACTACCTGAGACAGGTA -ACGGAACACTACCTGAGAGACTCT -ACGGAACACTACCTGAGAAGTCCT -ACGGAACACTACCTGAGATAAGCC -ACGGAACACTACCTGAGAATAGCC -ACGGAACACTACCTGAGATAACCG -ACGGAACACTACCTGAGAATGCCA -ACGGAACACTACGTATCGGGAAAC -ACGGAACACTACGTATCGAACACC -ACGGAACACTACGTATCGATCGAG -ACGGAACACTACGTATCGCTCCTT -ACGGAACACTACGTATCGCCTGTT -ACGGAACACTACGTATCGCGGTTT -ACGGAACACTACGTATCGGTGGTT -ACGGAACACTACGTATCGGCCTTT -ACGGAACACTACGTATCGGGTCTT -ACGGAACACTACGTATCGACGCTT -ACGGAACACTACGTATCGAGCGTT -ACGGAACACTACGTATCGTTCGTC -ACGGAACACTACGTATCGTCTCTC -ACGGAACACTACGTATCGTGGATC -ACGGAACACTACGTATCGCACTTC -ACGGAACACTACGTATCGGTACTC -ACGGAACACTACGTATCGGATGTC -ACGGAACACTACGTATCGACAGTC -ACGGAACACTACGTATCGTTGCTG -ACGGAACACTACGTATCGTCCATG -ACGGAACACTACGTATCGTGTGTG -ACGGAACACTACGTATCGCTAGTG -ACGGAACACTACGTATCGCATCTG -ACGGAACACTACGTATCGGAGTTG -ACGGAACACTACGTATCGAGACTG -ACGGAACACTACGTATCGTCGGTA -ACGGAACACTACGTATCGTGCCTA -ACGGAACACTACGTATCGCCACTA -ACGGAACACTACGTATCGGGAGTA -ACGGAACACTACGTATCGTCGTCT -ACGGAACACTACGTATCGTGCACT -ACGGAACACTACGTATCGCTGACT -ACGGAACACTACGTATCGCAACCT -ACGGAACACTACGTATCGGCTACT -ACGGAACACTACGTATCGGGATCT -ACGGAACACTACGTATCGAAGGCT -ACGGAACACTACGTATCGTCAACC -ACGGAACACTACGTATCGTGTTCC -ACGGAACACTACGTATCGATTCCC -ACGGAACACTACGTATCGTTCTCG -ACGGAACACTACGTATCGTAGACG -ACGGAACACTACGTATCGGTAACG -ACGGAACACTACGTATCGACTTCG -ACGGAACACTACGTATCGTACGCA -ACGGAACACTACGTATCGCTTGCA -ACGGAACACTACGTATCGCGAACA -ACGGAACACTACGTATCGCAGTCA -ACGGAACACTACGTATCGGATCCA -ACGGAACACTACGTATCGACGACA -ACGGAACACTACGTATCGAGCTCA -ACGGAACACTACGTATCGTCACGT -ACGGAACACTACGTATCGCGTAGT -ACGGAACACTACGTATCGGTCAGT -ACGGAACACTACGTATCGGAAGGT -ACGGAACACTACGTATCGAACCGT -ACGGAACACTACGTATCGTTGTGC -ACGGAACACTACGTATCGCTAAGC -ACGGAACACTACGTATCGACTAGC -ACGGAACACTACGTATCGAGATGC -ACGGAACACTACGTATCGTGAAGG -ACGGAACACTACGTATCGCAATGG -ACGGAACACTACGTATCGATGAGG -ACGGAACACTACGTATCGAATGGG -ACGGAACACTACGTATCGTCCTGA -ACGGAACACTACGTATCGTAGCGA -ACGGAACACTACGTATCGCACAGA -ACGGAACACTACGTATCGGCAAGA -ACGGAACACTACGTATCGGGTTGA -ACGGAACACTACGTATCGTCCGAT -ACGGAACACTACGTATCGTGGCAT -ACGGAACACTACGTATCGCGAGAT -ACGGAACACTACGTATCGTACCAC -ACGGAACACTACGTATCGCAGAAC -ACGGAACACTACGTATCGGTCTAC -ACGGAACACTACGTATCGACGTAC -ACGGAACACTACGTATCGAGTGAC -ACGGAACACTACGTATCGCTGTAG -ACGGAACACTACGTATCGCCTAAG -ACGGAACACTACGTATCGGTTCAG -ACGGAACACTACGTATCGGCATAG -ACGGAACACTACGTATCGGACAAG -ACGGAACACTACGTATCGAAGCAG -ACGGAACACTACGTATCGCGTCAA -ACGGAACACTACGTATCGGCTGAA -ACGGAACACTACGTATCGAGTACG -ACGGAACACTACGTATCGATCCGA -ACGGAACACTACGTATCGATGGGA -ACGGAACACTACGTATCGGTGCAA -ACGGAACACTACGTATCGGAGGAA -ACGGAACACTACGTATCGCAGGTA -ACGGAACACTACGTATCGGACTCT -ACGGAACACTACGTATCGAGTCCT -ACGGAACACTACGTATCGTAAGCC -ACGGAACACTACGTATCGATAGCC -ACGGAACACTACGTATCGTAACCG -ACGGAACACTACGTATCGATGCCA -ACGGAACACTACCTATGCGGAAAC -ACGGAACACTACCTATGCAACACC -ACGGAACACTACCTATGCATCGAG -ACGGAACACTACCTATGCCTCCTT -ACGGAACACTACCTATGCCCTGTT -ACGGAACACTACCTATGCCGGTTT -ACGGAACACTACCTATGCGTGGTT -ACGGAACACTACCTATGCGCCTTT -ACGGAACACTACCTATGCGGTCTT -ACGGAACACTACCTATGCACGCTT -ACGGAACACTACCTATGCAGCGTT -ACGGAACACTACCTATGCTTCGTC -ACGGAACACTACCTATGCTCTCTC -ACGGAACACTACCTATGCTGGATC -ACGGAACACTACCTATGCCACTTC -ACGGAACACTACCTATGCGTACTC -ACGGAACACTACCTATGCGATGTC -ACGGAACACTACCTATGCACAGTC -ACGGAACACTACCTATGCTTGCTG -ACGGAACACTACCTATGCTCCATG -ACGGAACACTACCTATGCTGTGTG -ACGGAACACTACCTATGCCTAGTG -ACGGAACACTACCTATGCCATCTG -ACGGAACACTACCTATGCGAGTTG -ACGGAACACTACCTATGCAGACTG -ACGGAACACTACCTATGCTCGGTA -ACGGAACACTACCTATGCTGCCTA -ACGGAACACTACCTATGCCCACTA -ACGGAACACTACCTATGCGGAGTA -ACGGAACACTACCTATGCTCGTCT -ACGGAACACTACCTATGCTGCACT -ACGGAACACTACCTATGCCTGACT -ACGGAACACTACCTATGCCAACCT -ACGGAACACTACCTATGCGCTACT -ACGGAACACTACCTATGCGGATCT -ACGGAACACTACCTATGCAAGGCT -ACGGAACACTACCTATGCTCAACC -ACGGAACACTACCTATGCTGTTCC -ACGGAACACTACCTATGCATTCCC -ACGGAACACTACCTATGCTTCTCG -ACGGAACACTACCTATGCTAGACG -ACGGAACACTACCTATGCGTAACG -ACGGAACACTACCTATGCACTTCG -ACGGAACACTACCTATGCTACGCA -ACGGAACACTACCTATGCCTTGCA -ACGGAACACTACCTATGCCGAACA -ACGGAACACTACCTATGCCAGTCA -ACGGAACACTACCTATGCGATCCA -ACGGAACACTACCTATGCACGACA -ACGGAACACTACCTATGCAGCTCA -ACGGAACACTACCTATGCTCACGT -ACGGAACACTACCTATGCCGTAGT -ACGGAACACTACCTATGCGTCAGT -ACGGAACACTACCTATGCGAAGGT -ACGGAACACTACCTATGCAACCGT -ACGGAACACTACCTATGCTTGTGC -ACGGAACACTACCTATGCCTAAGC -ACGGAACACTACCTATGCACTAGC -ACGGAACACTACCTATGCAGATGC -ACGGAACACTACCTATGCTGAAGG -ACGGAACACTACCTATGCCAATGG -ACGGAACACTACCTATGCATGAGG -ACGGAACACTACCTATGCAATGGG -ACGGAACACTACCTATGCTCCTGA -ACGGAACACTACCTATGCTAGCGA -ACGGAACACTACCTATGCCACAGA -ACGGAACACTACCTATGCGCAAGA -ACGGAACACTACCTATGCGGTTGA -ACGGAACACTACCTATGCTCCGAT -ACGGAACACTACCTATGCTGGCAT -ACGGAACACTACCTATGCCGAGAT -ACGGAACACTACCTATGCTACCAC -ACGGAACACTACCTATGCCAGAAC -ACGGAACACTACCTATGCGTCTAC -ACGGAACACTACCTATGCACGTAC -ACGGAACACTACCTATGCAGTGAC -ACGGAACACTACCTATGCCTGTAG -ACGGAACACTACCTATGCCCTAAG -ACGGAACACTACCTATGCGTTCAG -ACGGAACACTACCTATGCGCATAG -ACGGAACACTACCTATGCGACAAG -ACGGAACACTACCTATGCAAGCAG -ACGGAACACTACCTATGCCGTCAA -ACGGAACACTACCTATGCGCTGAA -ACGGAACACTACCTATGCAGTACG -ACGGAACACTACCTATGCATCCGA -ACGGAACACTACCTATGCATGGGA -ACGGAACACTACCTATGCGTGCAA -ACGGAACACTACCTATGCGAGGAA -ACGGAACACTACCTATGCCAGGTA -ACGGAACACTACCTATGCGACTCT -ACGGAACACTACCTATGCAGTCCT -ACGGAACACTACCTATGCTAAGCC -ACGGAACACTACCTATGCATAGCC -ACGGAACACTACCTATGCTAACCG -ACGGAACACTACCTATGCATGCCA -ACGGAACACTACCTACCAGGAAAC -ACGGAACACTACCTACCAAACACC -ACGGAACACTACCTACCAATCGAG -ACGGAACACTACCTACCACTCCTT -ACGGAACACTACCTACCACCTGTT -ACGGAACACTACCTACCACGGTTT -ACGGAACACTACCTACCAGTGGTT -ACGGAACACTACCTACCAGCCTTT -ACGGAACACTACCTACCAGGTCTT -ACGGAACACTACCTACCAACGCTT -ACGGAACACTACCTACCAAGCGTT -ACGGAACACTACCTACCATTCGTC -ACGGAACACTACCTACCATCTCTC -ACGGAACACTACCTACCATGGATC -ACGGAACACTACCTACCACACTTC -ACGGAACACTACCTACCAGTACTC -ACGGAACACTACCTACCAGATGTC -ACGGAACACTACCTACCAACAGTC -ACGGAACACTACCTACCATTGCTG -ACGGAACACTACCTACCATCCATG -ACGGAACACTACCTACCATGTGTG -ACGGAACACTACCTACCACTAGTG -ACGGAACACTACCTACCACATCTG -ACGGAACACTACCTACCAGAGTTG -ACGGAACACTACCTACCAAGACTG -ACGGAACACTACCTACCATCGGTA -ACGGAACACTACCTACCATGCCTA -ACGGAACACTACCTACCACCACTA -ACGGAACACTACCTACCAGGAGTA -ACGGAACACTACCTACCATCGTCT -ACGGAACACTACCTACCATGCACT -ACGGAACACTACCTACCACTGACT -ACGGAACACTACCTACCACAACCT -ACGGAACACTACCTACCAGCTACT -ACGGAACACTACCTACCAGGATCT -ACGGAACACTACCTACCAAAGGCT -ACGGAACACTACCTACCATCAACC -ACGGAACACTACCTACCATGTTCC -ACGGAACACTACCTACCAATTCCC -ACGGAACACTACCTACCATTCTCG -ACGGAACACTACCTACCATAGACG -ACGGAACACTACCTACCAGTAACG -ACGGAACACTACCTACCAACTTCG -ACGGAACACTACCTACCATACGCA -ACGGAACACTACCTACCACTTGCA -ACGGAACACTACCTACCACGAACA -ACGGAACACTACCTACCACAGTCA -ACGGAACACTACCTACCAGATCCA -ACGGAACACTACCTACCAACGACA -ACGGAACACTACCTACCAAGCTCA -ACGGAACACTACCTACCATCACGT -ACGGAACACTACCTACCACGTAGT -ACGGAACACTACCTACCAGTCAGT -ACGGAACACTACCTACCAGAAGGT -ACGGAACACTACCTACCAAACCGT -ACGGAACACTACCTACCATTGTGC -ACGGAACACTACCTACCACTAAGC -ACGGAACACTACCTACCAACTAGC -ACGGAACACTACCTACCAAGATGC -ACGGAACACTACCTACCATGAAGG -ACGGAACACTACCTACCACAATGG -ACGGAACACTACCTACCAATGAGG -ACGGAACACTACCTACCAAATGGG -ACGGAACACTACCTACCATCCTGA -ACGGAACACTACCTACCATAGCGA -ACGGAACACTACCTACCACACAGA -ACGGAACACTACCTACCAGCAAGA -ACGGAACACTACCTACCAGGTTGA -ACGGAACACTACCTACCATCCGAT -ACGGAACACTACCTACCATGGCAT -ACGGAACACTACCTACCACGAGAT -ACGGAACACTACCTACCATACCAC -ACGGAACACTACCTACCACAGAAC -ACGGAACACTACCTACCAGTCTAC -ACGGAACACTACCTACCAACGTAC -ACGGAACACTACCTACCAAGTGAC -ACGGAACACTACCTACCACTGTAG -ACGGAACACTACCTACCACCTAAG -ACGGAACACTACCTACCAGTTCAG -ACGGAACACTACCTACCAGCATAG -ACGGAACACTACCTACCAGACAAG -ACGGAACACTACCTACCAAAGCAG -ACGGAACACTACCTACCACGTCAA -ACGGAACACTACCTACCAGCTGAA -ACGGAACACTACCTACCAAGTACG -ACGGAACACTACCTACCAATCCGA -ACGGAACACTACCTACCAATGGGA -ACGGAACACTACCTACCAGTGCAA -ACGGAACACTACCTACCAGAGGAA -ACGGAACACTACCTACCACAGGTA -ACGGAACACTACCTACCAGACTCT -ACGGAACACTACCTACCAAGTCCT -ACGGAACACTACCTACCATAAGCC -ACGGAACACTACCTACCAATAGCC -ACGGAACACTACCTACCATAACCG -ACGGAACACTACCTACCAATGCCA -ACGGAACACTACGTAGGAGGAAAC -ACGGAACACTACGTAGGAAACACC -ACGGAACACTACGTAGGAATCGAG -ACGGAACACTACGTAGGACTCCTT -ACGGAACACTACGTAGGACCTGTT -ACGGAACACTACGTAGGACGGTTT -ACGGAACACTACGTAGGAGTGGTT -ACGGAACACTACGTAGGAGCCTTT -ACGGAACACTACGTAGGAGGTCTT -ACGGAACACTACGTAGGAACGCTT -ACGGAACACTACGTAGGAAGCGTT -ACGGAACACTACGTAGGATTCGTC -ACGGAACACTACGTAGGATCTCTC -ACGGAACACTACGTAGGATGGATC -ACGGAACACTACGTAGGACACTTC -ACGGAACACTACGTAGGAGTACTC -ACGGAACACTACGTAGGAGATGTC -ACGGAACACTACGTAGGAACAGTC -ACGGAACACTACGTAGGATTGCTG -ACGGAACACTACGTAGGATCCATG -ACGGAACACTACGTAGGATGTGTG -ACGGAACACTACGTAGGACTAGTG -ACGGAACACTACGTAGGACATCTG -ACGGAACACTACGTAGGAGAGTTG -ACGGAACACTACGTAGGAAGACTG -ACGGAACACTACGTAGGATCGGTA -ACGGAACACTACGTAGGATGCCTA -ACGGAACACTACGTAGGACCACTA -ACGGAACACTACGTAGGAGGAGTA -ACGGAACACTACGTAGGATCGTCT -ACGGAACACTACGTAGGATGCACT -ACGGAACACTACGTAGGACTGACT -ACGGAACACTACGTAGGACAACCT -ACGGAACACTACGTAGGAGCTACT -ACGGAACACTACGTAGGAGGATCT -ACGGAACACTACGTAGGAAAGGCT -ACGGAACACTACGTAGGATCAACC -ACGGAACACTACGTAGGATGTTCC -ACGGAACACTACGTAGGAATTCCC -ACGGAACACTACGTAGGATTCTCG -ACGGAACACTACGTAGGATAGACG -ACGGAACACTACGTAGGAGTAACG -ACGGAACACTACGTAGGAACTTCG -ACGGAACACTACGTAGGATACGCA -ACGGAACACTACGTAGGACTTGCA -ACGGAACACTACGTAGGACGAACA -ACGGAACACTACGTAGGACAGTCA -ACGGAACACTACGTAGGAGATCCA -ACGGAACACTACGTAGGAACGACA -ACGGAACACTACGTAGGAAGCTCA -ACGGAACACTACGTAGGATCACGT -ACGGAACACTACGTAGGACGTAGT -ACGGAACACTACGTAGGAGTCAGT -ACGGAACACTACGTAGGAGAAGGT -ACGGAACACTACGTAGGAAACCGT -ACGGAACACTACGTAGGATTGTGC -ACGGAACACTACGTAGGACTAAGC -ACGGAACACTACGTAGGAACTAGC -ACGGAACACTACGTAGGAAGATGC -ACGGAACACTACGTAGGATGAAGG -ACGGAACACTACGTAGGACAATGG -ACGGAACACTACGTAGGAATGAGG -ACGGAACACTACGTAGGAAATGGG -ACGGAACACTACGTAGGATCCTGA -ACGGAACACTACGTAGGATAGCGA -ACGGAACACTACGTAGGACACAGA -ACGGAACACTACGTAGGAGCAAGA -ACGGAACACTACGTAGGAGGTTGA -ACGGAACACTACGTAGGATCCGAT -ACGGAACACTACGTAGGATGGCAT -ACGGAACACTACGTAGGACGAGAT -ACGGAACACTACGTAGGATACCAC -ACGGAACACTACGTAGGACAGAAC -ACGGAACACTACGTAGGAGTCTAC -ACGGAACACTACGTAGGAACGTAC -ACGGAACACTACGTAGGAAGTGAC -ACGGAACACTACGTAGGACTGTAG -ACGGAACACTACGTAGGACCTAAG -ACGGAACACTACGTAGGAGTTCAG -ACGGAACACTACGTAGGAGCATAG -ACGGAACACTACGTAGGAGACAAG -ACGGAACACTACGTAGGAAAGCAG -ACGGAACACTACGTAGGACGTCAA -ACGGAACACTACGTAGGAGCTGAA -ACGGAACACTACGTAGGAAGTACG -ACGGAACACTACGTAGGAATCCGA -ACGGAACACTACGTAGGAATGGGA -ACGGAACACTACGTAGGAGTGCAA -ACGGAACACTACGTAGGAGAGGAA -ACGGAACACTACGTAGGACAGGTA -ACGGAACACTACGTAGGAGACTCT -ACGGAACACTACGTAGGAAGTCCT -ACGGAACACTACGTAGGATAAGCC -ACGGAACACTACGTAGGAATAGCC -ACGGAACACTACGTAGGATAACCG -ACGGAACACTACGTAGGAATGCCA -ACGGAACACTACTCTTCGGGAAAC -ACGGAACACTACTCTTCGAACACC -ACGGAACACTACTCTTCGATCGAG -ACGGAACACTACTCTTCGCTCCTT -ACGGAACACTACTCTTCGCCTGTT -ACGGAACACTACTCTTCGCGGTTT -ACGGAACACTACTCTTCGGTGGTT -ACGGAACACTACTCTTCGGCCTTT -ACGGAACACTACTCTTCGGGTCTT -ACGGAACACTACTCTTCGACGCTT -ACGGAACACTACTCTTCGAGCGTT -ACGGAACACTACTCTTCGTTCGTC -ACGGAACACTACTCTTCGTCTCTC -ACGGAACACTACTCTTCGTGGATC -ACGGAACACTACTCTTCGCACTTC -ACGGAACACTACTCTTCGGTACTC -ACGGAACACTACTCTTCGGATGTC -ACGGAACACTACTCTTCGACAGTC -ACGGAACACTACTCTTCGTTGCTG -ACGGAACACTACTCTTCGTCCATG -ACGGAACACTACTCTTCGTGTGTG -ACGGAACACTACTCTTCGCTAGTG -ACGGAACACTACTCTTCGCATCTG -ACGGAACACTACTCTTCGGAGTTG -ACGGAACACTACTCTTCGAGACTG -ACGGAACACTACTCTTCGTCGGTA -ACGGAACACTACTCTTCGTGCCTA -ACGGAACACTACTCTTCGCCACTA -ACGGAACACTACTCTTCGGGAGTA -ACGGAACACTACTCTTCGTCGTCT -ACGGAACACTACTCTTCGTGCACT -ACGGAACACTACTCTTCGCTGACT -ACGGAACACTACTCTTCGCAACCT -ACGGAACACTACTCTTCGGCTACT -ACGGAACACTACTCTTCGGGATCT -ACGGAACACTACTCTTCGAAGGCT -ACGGAACACTACTCTTCGTCAACC -ACGGAACACTACTCTTCGTGTTCC -ACGGAACACTACTCTTCGATTCCC -ACGGAACACTACTCTTCGTTCTCG -ACGGAACACTACTCTTCGTAGACG -ACGGAACACTACTCTTCGGTAACG -ACGGAACACTACTCTTCGACTTCG -ACGGAACACTACTCTTCGTACGCA -ACGGAACACTACTCTTCGCTTGCA -ACGGAACACTACTCTTCGCGAACA -ACGGAACACTACTCTTCGCAGTCA -ACGGAACACTACTCTTCGGATCCA -ACGGAACACTACTCTTCGACGACA -ACGGAACACTACTCTTCGAGCTCA -ACGGAACACTACTCTTCGTCACGT -ACGGAACACTACTCTTCGCGTAGT -ACGGAACACTACTCTTCGGTCAGT -ACGGAACACTACTCTTCGGAAGGT -ACGGAACACTACTCTTCGAACCGT -ACGGAACACTACTCTTCGTTGTGC -ACGGAACACTACTCTTCGCTAAGC -ACGGAACACTACTCTTCGACTAGC -ACGGAACACTACTCTTCGAGATGC -ACGGAACACTACTCTTCGTGAAGG -ACGGAACACTACTCTTCGCAATGG -ACGGAACACTACTCTTCGATGAGG -ACGGAACACTACTCTTCGAATGGG -ACGGAACACTACTCTTCGTCCTGA -ACGGAACACTACTCTTCGTAGCGA -ACGGAACACTACTCTTCGCACAGA -ACGGAACACTACTCTTCGGCAAGA -ACGGAACACTACTCTTCGGGTTGA -ACGGAACACTACTCTTCGTCCGAT -ACGGAACACTACTCTTCGTGGCAT -ACGGAACACTACTCTTCGCGAGAT -ACGGAACACTACTCTTCGTACCAC -ACGGAACACTACTCTTCGCAGAAC -ACGGAACACTACTCTTCGGTCTAC -ACGGAACACTACTCTTCGACGTAC -ACGGAACACTACTCTTCGAGTGAC -ACGGAACACTACTCTTCGCTGTAG -ACGGAACACTACTCTTCGCCTAAG -ACGGAACACTACTCTTCGGTTCAG -ACGGAACACTACTCTTCGGCATAG -ACGGAACACTACTCTTCGGACAAG -ACGGAACACTACTCTTCGAAGCAG -ACGGAACACTACTCTTCGCGTCAA -ACGGAACACTACTCTTCGGCTGAA -ACGGAACACTACTCTTCGAGTACG -ACGGAACACTACTCTTCGATCCGA -ACGGAACACTACTCTTCGATGGGA -ACGGAACACTACTCTTCGGTGCAA -ACGGAACACTACTCTTCGGAGGAA -ACGGAACACTACTCTTCGCAGGTA -ACGGAACACTACTCTTCGGACTCT -ACGGAACACTACTCTTCGAGTCCT -ACGGAACACTACTCTTCGTAAGCC -ACGGAACACTACTCTTCGATAGCC -ACGGAACACTACTCTTCGTAACCG -ACGGAACACTACTCTTCGATGCCA -ACGGAACACTACACTTGCGGAAAC -ACGGAACACTACACTTGCAACACC -ACGGAACACTACACTTGCATCGAG -ACGGAACACTACACTTGCCTCCTT -ACGGAACACTACACTTGCCCTGTT -ACGGAACACTACACTTGCCGGTTT -ACGGAACACTACACTTGCGTGGTT -ACGGAACACTACACTTGCGCCTTT -ACGGAACACTACACTTGCGGTCTT -ACGGAACACTACACTTGCACGCTT -ACGGAACACTACACTTGCAGCGTT -ACGGAACACTACACTTGCTTCGTC -ACGGAACACTACACTTGCTCTCTC -ACGGAACACTACACTTGCTGGATC -ACGGAACACTACACTTGCCACTTC -ACGGAACACTACACTTGCGTACTC -ACGGAACACTACACTTGCGATGTC -ACGGAACACTACACTTGCACAGTC -ACGGAACACTACACTTGCTTGCTG -ACGGAACACTACACTTGCTCCATG -ACGGAACACTACACTTGCTGTGTG -ACGGAACACTACACTTGCCTAGTG -ACGGAACACTACACTTGCCATCTG -ACGGAACACTACACTTGCGAGTTG -ACGGAACACTACACTTGCAGACTG -ACGGAACACTACACTTGCTCGGTA -ACGGAACACTACACTTGCTGCCTA -ACGGAACACTACACTTGCCCACTA -ACGGAACACTACACTTGCGGAGTA -ACGGAACACTACACTTGCTCGTCT -ACGGAACACTACACTTGCTGCACT -ACGGAACACTACACTTGCCTGACT -ACGGAACACTACACTTGCCAACCT -ACGGAACACTACACTTGCGCTACT -ACGGAACACTACACTTGCGGATCT -ACGGAACACTACACTTGCAAGGCT -ACGGAACACTACACTTGCTCAACC -ACGGAACACTACACTTGCTGTTCC -ACGGAACACTACACTTGCATTCCC -ACGGAACACTACACTTGCTTCTCG -ACGGAACACTACACTTGCTAGACG -ACGGAACACTACACTTGCGTAACG -ACGGAACACTACACTTGCACTTCG -ACGGAACACTACACTTGCTACGCA -ACGGAACACTACACTTGCCTTGCA -ACGGAACACTACACTTGCCGAACA -ACGGAACACTACACTTGCCAGTCA -ACGGAACACTACACTTGCGATCCA -ACGGAACACTACACTTGCACGACA -ACGGAACACTACACTTGCAGCTCA -ACGGAACACTACACTTGCTCACGT -ACGGAACACTACACTTGCCGTAGT -ACGGAACACTACACTTGCGTCAGT -ACGGAACACTACACTTGCGAAGGT -ACGGAACACTACACTTGCAACCGT -ACGGAACACTACACTTGCTTGTGC -ACGGAACACTACACTTGCCTAAGC -ACGGAACACTACACTTGCACTAGC -ACGGAACACTACACTTGCAGATGC -ACGGAACACTACACTTGCTGAAGG -ACGGAACACTACACTTGCCAATGG -ACGGAACACTACACTTGCATGAGG -ACGGAACACTACACTTGCAATGGG -ACGGAACACTACACTTGCTCCTGA -ACGGAACACTACACTTGCTAGCGA -ACGGAACACTACACTTGCCACAGA -ACGGAACACTACACTTGCGCAAGA -ACGGAACACTACACTTGCGGTTGA -ACGGAACACTACACTTGCTCCGAT -ACGGAACACTACACTTGCTGGCAT -ACGGAACACTACACTTGCCGAGAT -ACGGAACACTACACTTGCTACCAC -ACGGAACACTACACTTGCCAGAAC -ACGGAACACTACACTTGCGTCTAC -ACGGAACACTACACTTGCACGTAC -ACGGAACACTACACTTGCAGTGAC -ACGGAACACTACACTTGCCTGTAG -ACGGAACACTACACTTGCCCTAAG -ACGGAACACTACACTTGCGTTCAG -ACGGAACACTACACTTGCGCATAG -ACGGAACACTACACTTGCGACAAG -ACGGAACACTACACTTGCAAGCAG -ACGGAACACTACACTTGCCGTCAA -ACGGAACACTACACTTGCGCTGAA -ACGGAACACTACACTTGCAGTACG -ACGGAACACTACACTTGCATCCGA -ACGGAACACTACACTTGCATGGGA -ACGGAACACTACACTTGCGTGCAA -ACGGAACACTACACTTGCGAGGAA -ACGGAACACTACACTTGCCAGGTA -ACGGAACACTACACTTGCGACTCT -ACGGAACACTACACTTGCAGTCCT -ACGGAACACTACACTTGCTAAGCC -ACGGAACACTACACTTGCATAGCC -ACGGAACACTACACTTGCTAACCG -ACGGAACACTACACTTGCATGCCA -ACGGAACACTACACTCTGGGAAAC -ACGGAACACTACACTCTGAACACC -ACGGAACACTACACTCTGATCGAG -ACGGAACACTACACTCTGCTCCTT -ACGGAACACTACACTCTGCCTGTT -ACGGAACACTACACTCTGCGGTTT -ACGGAACACTACACTCTGGTGGTT -ACGGAACACTACACTCTGGCCTTT -ACGGAACACTACACTCTGGGTCTT -ACGGAACACTACACTCTGACGCTT -ACGGAACACTACACTCTGAGCGTT -ACGGAACACTACACTCTGTTCGTC -ACGGAACACTACACTCTGTCTCTC -ACGGAACACTACACTCTGTGGATC -ACGGAACACTACACTCTGCACTTC -ACGGAACACTACACTCTGGTACTC -ACGGAACACTACACTCTGGATGTC -ACGGAACACTACACTCTGACAGTC -ACGGAACACTACACTCTGTTGCTG -ACGGAACACTACACTCTGTCCATG -ACGGAACACTACACTCTGTGTGTG -ACGGAACACTACACTCTGCTAGTG -ACGGAACACTACACTCTGCATCTG -ACGGAACACTACACTCTGGAGTTG -ACGGAACACTACACTCTGAGACTG -ACGGAACACTACACTCTGTCGGTA -ACGGAACACTACACTCTGTGCCTA -ACGGAACACTACACTCTGCCACTA -ACGGAACACTACACTCTGGGAGTA -ACGGAACACTACACTCTGTCGTCT -ACGGAACACTACACTCTGTGCACT -ACGGAACACTACACTCTGCTGACT -ACGGAACACTACACTCTGCAACCT -ACGGAACACTACACTCTGGCTACT -ACGGAACACTACACTCTGGGATCT -ACGGAACACTACACTCTGAAGGCT -ACGGAACACTACACTCTGTCAACC -ACGGAACACTACACTCTGTGTTCC -ACGGAACACTACACTCTGATTCCC -ACGGAACACTACACTCTGTTCTCG -ACGGAACACTACACTCTGTAGACG -ACGGAACACTACACTCTGGTAACG -ACGGAACACTACACTCTGACTTCG -ACGGAACACTACACTCTGTACGCA -ACGGAACACTACACTCTGCTTGCA -ACGGAACACTACACTCTGCGAACA -ACGGAACACTACACTCTGCAGTCA -ACGGAACACTACACTCTGGATCCA -ACGGAACACTACACTCTGACGACA -ACGGAACACTACACTCTGAGCTCA -ACGGAACACTACACTCTGTCACGT -ACGGAACACTACACTCTGCGTAGT -ACGGAACACTACACTCTGGTCAGT -ACGGAACACTACACTCTGGAAGGT -ACGGAACACTACACTCTGAACCGT -ACGGAACACTACACTCTGTTGTGC -ACGGAACACTACACTCTGCTAAGC -ACGGAACACTACACTCTGACTAGC -ACGGAACACTACACTCTGAGATGC -ACGGAACACTACACTCTGTGAAGG -ACGGAACACTACACTCTGCAATGG -ACGGAACACTACACTCTGATGAGG -ACGGAACACTACACTCTGAATGGG -ACGGAACACTACACTCTGTCCTGA -ACGGAACACTACACTCTGTAGCGA -ACGGAACACTACACTCTGCACAGA -ACGGAACACTACACTCTGGCAAGA -ACGGAACACTACACTCTGGGTTGA -ACGGAACACTACACTCTGTCCGAT -ACGGAACACTACACTCTGTGGCAT -ACGGAACACTACACTCTGCGAGAT -ACGGAACACTACACTCTGTACCAC -ACGGAACACTACACTCTGCAGAAC -ACGGAACACTACACTCTGGTCTAC -ACGGAACACTACACTCTGACGTAC -ACGGAACACTACACTCTGAGTGAC -ACGGAACACTACACTCTGCTGTAG -ACGGAACACTACACTCTGCCTAAG -ACGGAACACTACACTCTGGTTCAG -ACGGAACACTACACTCTGGCATAG -ACGGAACACTACACTCTGGACAAG -ACGGAACACTACACTCTGAAGCAG -ACGGAACACTACACTCTGCGTCAA -ACGGAACACTACACTCTGGCTGAA -ACGGAACACTACACTCTGAGTACG -ACGGAACACTACACTCTGATCCGA -ACGGAACACTACACTCTGATGGGA -ACGGAACACTACACTCTGGTGCAA -ACGGAACACTACACTCTGGAGGAA -ACGGAACACTACACTCTGCAGGTA -ACGGAACACTACACTCTGGACTCT -ACGGAACACTACACTCTGAGTCCT -ACGGAACACTACACTCTGTAAGCC -ACGGAACACTACACTCTGATAGCC -ACGGAACACTACACTCTGTAACCG -ACGGAACACTACACTCTGATGCCA -ACGGAACACTACCCTCAAGGAAAC -ACGGAACACTACCCTCAAAACACC -ACGGAACACTACCCTCAAATCGAG -ACGGAACACTACCCTCAACTCCTT -ACGGAACACTACCCTCAACCTGTT -ACGGAACACTACCCTCAACGGTTT -ACGGAACACTACCCTCAAGTGGTT -ACGGAACACTACCCTCAAGCCTTT -ACGGAACACTACCCTCAAGGTCTT -ACGGAACACTACCCTCAAACGCTT -ACGGAACACTACCCTCAAAGCGTT -ACGGAACACTACCCTCAATTCGTC -ACGGAACACTACCCTCAATCTCTC -ACGGAACACTACCCTCAATGGATC -ACGGAACACTACCCTCAACACTTC -ACGGAACACTACCCTCAAGTACTC -ACGGAACACTACCCTCAAGATGTC -ACGGAACACTACCCTCAAACAGTC -ACGGAACACTACCCTCAATTGCTG -ACGGAACACTACCCTCAATCCATG -ACGGAACACTACCCTCAATGTGTG -ACGGAACACTACCCTCAACTAGTG -ACGGAACACTACCCTCAACATCTG -ACGGAACACTACCCTCAAGAGTTG -ACGGAACACTACCCTCAAAGACTG -ACGGAACACTACCCTCAATCGGTA -ACGGAACACTACCCTCAATGCCTA -ACGGAACACTACCCTCAACCACTA -ACGGAACACTACCCTCAAGGAGTA -ACGGAACACTACCCTCAATCGTCT -ACGGAACACTACCCTCAATGCACT -ACGGAACACTACCCTCAACTGACT -ACGGAACACTACCCTCAACAACCT -ACGGAACACTACCCTCAAGCTACT -ACGGAACACTACCCTCAAGGATCT -ACGGAACACTACCCTCAAAAGGCT -ACGGAACACTACCCTCAATCAACC -ACGGAACACTACCCTCAATGTTCC -ACGGAACACTACCCTCAAATTCCC -ACGGAACACTACCCTCAATTCTCG -ACGGAACACTACCCTCAATAGACG -ACGGAACACTACCCTCAAGTAACG -ACGGAACACTACCCTCAAACTTCG -ACGGAACACTACCCTCAATACGCA -ACGGAACACTACCCTCAACTTGCA -ACGGAACACTACCCTCAACGAACA -ACGGAACACTACCCTCAACAGTCA -ACGGAACACTACCCTCAAGATCCA -ACGGAACACTACCCTCAAACGACA -ACGGAACACTACCCTCAAAGCTCA -ACGGAACACTACCCTCAATCACGT -ACGGAACACTACCCTCAACGTAGT -ACGGAACACTACCCTCAAGTCAGT -ACGGAACACTACCCTCAAGAAGGT -ACGGAACACTACCCTCAAAACCGT -ACGGAACACTACCCTCAATTGTGC -ACGGAACACTACCCTCAACTAAGC -ACGGAACACTACCCTCAAACTAGC -ACGGAACACTACCCTCAAAGATGC -ACGGAACACTACCCTCAATGAAGG -ACGGAACACTACCCTCAACAATGG -ACGGAACACTACCCTCAAATGAGG -ACGGAACACTACCCTCAAAATGGG -ACGGAACACTACCCTCAATCCTGA -ACGGAACACTACCCTCAATAGCGA -ACGGAACACTACCCTCAACACAGA -ACGGAACACTACCCTCAAGCAAGA -ACGGAACACTACCCTCAAGGTTGA -ACGGAACACTACCCTCAATCCGAT -ACGGAACACTACCCTCAATGGCAT -ACGGAACACTACCCTCAACGAGAT -ACGGAACACTACCCTCAATACCAC -ACGGAACACTACCCTCAACAGAAC -ACGGAACACTACCCTCAAGTCTAC -ACGGAACACTACCCTCAAACGTAC -ACGGAACACTACCCTCAAAGTGAC -ACGGAACACTACCCTCAACTGTAG -ACGGAACACTACCCTCAACCTAAG -ACGGAACACTACCCTCAAGTTCAG -ACGGAACACTACCCTCAAGCATAG -ACGGAACACTACCCTCAAGACAAG -ACGGAACACTACCCTCAAAAGCAG -ACGGAACACTACCCTCAACGTCAA -ACGGAACACTACCCTCAAGCTGAA -ACGGAACACTACCCTCAAAGTACG -ACGGAACACTACCCTCAAATCCGA -ACGGAACACTACCCTCAAATGGGA -ACGGAACACTACCCTCAAGTGCAA -ACGGAACACTACCCTCAAGAGGAA -ACGGAACACTACCCTCAACAGGTA -ACGGAACACTACCCTCAAGACTCT -ACGGAACACTACCCTCAAAGTCCT -ACGGAACACTACCCTCAATAAGCC -ACGGAACACTACCCTCAAATAGCC -ACGGAACACTACCCTCAATAACCG -ACGGAACACTACCCTCAAATGCCA -ACGGAACACTACACTGCTGGAAAC -ACGGAACACTACACTGCTAACACC -ACGGAACACTACACTGCTATCGAG -ACGGAACACTACACTGCTCTCCTT -ACGGAACACTACACTGCTCCTGTT -ACGGAACACTACACTGCTCGGTTT -ACGGAACACTACACTGCTGTGGTT -ACGGAACACTACACTGCTGCCTTT -ACGGAACACTACACTGCTGGTCTT -ACGGAACACTACACTGCTACGCTT -ACGGAACACTACACTGCTAGCGTT -ACGGAACACTACACTGCTTTCGTC -ACGGAACACTACACTGCTTCTCTC -ACGGAACACTACACTGCTTGGATC -ACGGAACACTACACTGCTCACTTC -ACGGAACACTACACTGCTGTACTC -ACGGAACACTACACTGCTGATGTC -ACGGAACACTACACTGCTACAGTC -ACGGAACACTACACTGCTTTGCTG -ACGGAACACTACACTGCTTCCATG -ACGGAACACTACACTGCTTGTGTG -ACGGAACACTACACTGCTCTAGTG -ACGGAACACTACACTGCTCATCTG -ACGGAACACTACACTGCTGAGTTG -ACGGAACACTACACTGCTAGACTG -ACGGAACACTACACTGCTTCGGTA -ACGGAACACTACACTGCTTGCCTA -ACGGAACACTACACTGCTCCACTA -ACGGAACACTACACTGCTGGAGTA -ACGGAACACTACACTGCTTCGTCT -ACGGAACACTACACTGCTTGCACT -ACGGAACACTACACTGCTCTGACT -ACGGAACACTACACTGCTCAACCT -ACGGAACACTACACTGCTGCTACT -ACGGAACACTACACTGCTGGATCT -ACGGAACACTACACTGCTAAGGCT -ACGGAACACTACACTGCTTCAACC -ACGGAACACTACACTGCTTGTTCC -ACGGAACACTACACTGCTATTCCC -ACGGAACACTACACTGCTTTCTCG -ACGGAACACTACACTGCTTAGACG -ACGGAACACTACACTGCTGTAACG -ACGGAACACTACACTGCTACTTCG -ACGGAACACTACACTGCTTACGCA -ACGGAACACTACACTGCTCTTGCA -ACGGAACACTACACTGCTCGAACA -ACGGAACACTACACTGCTCAGTCA -ACGGAACACTACACTGCTGATCCA -ACGGAACACTACACTGCTACGACA -ACGGAACACTACACTGCTAGCTCA -ACGGAACACTACACTGCTTCACGT -ACGGAACACTACACTGCTCGTAGT -ACGGAACACTACACTGCTGTCAGT -ACGGAACACTACACTGCTGAAGGT -ACGGAACACTACACTGCTAACCGT -ACGGAACACTACACTGCTTTGTGC -ACGGAACACTACACTGCTCTAAGC -ACGGAACACTACACTGCTACTAGC -ACGGAACACTACACTGCTAGATGC -ACGGAACACTACACTGCTTGAAGG -ACGGAACACTACACTGCTCAATGG -ACGGAACACTACACTGCTATGAGG -ACGGAACACTACACTGCTAATGGG -ACGGAACACTACACTGCTTCCTGA -ACGGAACACTACACTGCTTAGCGA -ACGGAACACTACACTGCTCACAGA -ACGGAACACTACACTGCTGCAAGA -ACGGAACACTACACTGCTGGTTGA -ACGGAACACTACACTGCTTCCGAT -ACGGAACACTACACTGCTTGGCAT -ACGGAACACTACACTGCTCGAGAT -ACGGAACACTACACTGCTTACCAC -ACGGAACACTACACTGCTCAGAAC -ACGGAACACTACACTGCTGTCTAC -ACGGAACACTACACTGCTACGTAC -ACGGAACACTACACTGCTAGTGAC -ACGGAACACTACACTGCTCTGTAG -ACGGAACACTACACTGCTCCTAAG -ACGGAACACTACACTGCTGTTCAG -ACGGAACACTACACTGCTGCATAG -ACGGAACACTACACTGCTGACAAG -ACGGAACACTACACTGCTAAGCAG -ACGGAACACTACACTGCTCGTCAA -ACGGAACACTACACTGCTGCTGAA -ACGGAACACTACACTGCTAGTACG -ACGGAACACTACACTGCTATCCGA -ACGGAACACTACACTGCTATGGGA -ACGGAACACTACACTGCTGTGCAA -ACGGAACACTACACTGCTGAGGAA -ACGGAACACTACACTGCTCAGGTA -ACGGAACACTACACTGCTGACTCT -ACGGAACACTACACTGCTAGTCCT -ACGGAACACTACACTGCTTAAGCC -ACGGAACACTACACTGCTATAGCC -ACGGAACACTACACTGCTTAACCG -ACGGAACACTACACTGCTATGCCA -ACGGAACACTACTCTGGAGGAAAC -ACGGAACACTACTCTGGAAACACC -ACGGAACACTACTCTGGAATCGAG -ACGGAACACTACTCTGGACTCCTT -ACGGAACACTACTCTGGACCTGTT -ACGGAACACTACTCTGGACGGTTT -ACGGAACACTACTCTGGAGTGGTT -ACGGAACACTACTCTGGAGCCTTT -ACGGAACACTACTCTGGAGGTCTT -ACGGAACACTACTCTGGAACGCTT -ACGGAACACTACTCTGGAAGCGTT -ACGGAACACTACTCTGGATTCGTC -ACGGAACACTACTCTGGATCTCTC -ACGGAACACTACTCTGGATGGATC -ACGGAACACTACTCTGGACACTTC -ACGGAACACTACTCTGGAGTACTC -ACGGAACACTACTCTGGAGATGTC -ACGGAACACTACTCTGGAACAGTC -ACGGAACACTACTCTGGATTGCTG -ACGGAACACTACTCTGGATCCATG -ACGGAACACTACTCTGGATGTGTG -ACGGAACACTACTCTGGACTAGTG -ACGGAACACTACTCTGGACATCTG -ACGGAACACTACTCTGGAGAGTTG -ACGGAACACTACTCTGGAAGACTG -ACGGAACACTACTCTGGATCGGTA -ACGGAACACTACTCTGGATGCCTA -ACGGAACACTACTCTGGACCACTA -ACGGAACACTACTCTGGAGGAGTA -ACGGAACACTACTCTGGATCGTCT -ACGGAACACTACTCTGGATGCACT -ACGGAACACTACTCTGGACTGACT -ACGGAACACTACTCTGGACAACCT -ACGGAACACTACTCTGGAGCTACT -ACGGAACACTACTCTGGAGGATCT -ACGGAACACTACTCTGGAAAGGCT -ACGGAACACTACTCTGGATCAACC -ACGGAACACTACTCTGGATGTTCC -ACGGAACACTACTCTGGAATTCCC -ACGGAACACTACTCTGGATTCTCG -ACGGAACACTACTCTGGATAGACG -ACGGAACACTACTCTGGAGTAACG -ACGGAACACTACTCTGGAACTTCG -ACGGAACACTACTCTGGATACGCA -ACGGAACACTACTCTGGACTTGCA -ACGGAACACTACTCTGGACGAACA -ACGGAACACTACTCTGGACAGTCA -ACGGAACACTACTCTGGAGATCCA -ACGGAACACTACTCTGGAACGACA -ACGGAACACTACTCTGGAAGCTCA -ACGGAACACTACTCTGGATCACGT -ACGGAACACTACTCTGGACGTAGT -ACGGAACACTACTCTGGAGTCAGT -ACGGAACACTACTCTGGAGAAGGT -ACGGAACACTACTCTGGAAACCGT -ACGGAACACTACTCTGGATTGTGC -ACGGAACACTACTCTGGACTAAGC -ACGGAACACTACTCTGGAACTAGC -ACGGAACACTACTCTGGAAGATGC -ACGGAACACTACTCTGGATGAAGG -ACGGAACACTACTCTGGACAATGG -ACGGAACACTACTCTGGAATGAGG -ACGGAACACTACTCTGGAAATGGG -ACGGAACACTACTCTGGATCCTGA -ACGGAACACTACTCTGGATAGCGA -ACGGAACACTACTCTGGACACAGA -ACGGAACACTACTCTGGAGCAAGA -ACGGAACACTACTCTGGAGGTTGA -ACGGAACACTACTCTGGATCCGAT -ACGGAACACTACTCTGGATGGCAT -ACGGAACACTACTCTGGACGAGAT -ACGGAACACTACTCTGGATACCAC -ACGGAACACTACTCTGGACAGAAC -ACGGAACACTACTCTGGAGTCTAC -ACGGAACACTACTCTGGAACGTAC -ACGGAACACTACTCTGGAAGTGAC -ACGGAACACTACTCTGGACTGTAG -ACGGAACACTACTCTGGACCTAAG -ACGGAACACTACTCTGGAGTTCAG -ACGGAACACTACTCTGGAGCATAG -ACGGAACACTACTCTGGAGACAAG -ACGGAACACTACTCTGGAAAGCAG -ACGGAACACTACTCTGGACGTCAA -ACGGAACACTACTCTGGAGCTGAA -ACGGAACACTACTCTGGAAGTACG -ACGGAACACTACTCTGGAATCCGA -ACGGAACACTACTCTGGAATGGGA -ACGGAACACTACTCTGGAGTGCAA -ACGGAACACTACTCTGGAGAGGAA -ACGGAACACTACTCTGGACAGGTA -ACGGAACACTACTCTGGAGACTCT -ACGGAACACTACTCTGGAAGTCCT -ACGGAACACTACTCTGGATAAGCC -ACGGAACACTACTCTGGAATAGCC -ACGGAACACTACTCTGGATAACCG -ACGGAACACTACTCTGGAATGCCA -ACGGAACACTACGCTAAGGGAAAC -ACGGAACACTACGCTAAGAACACC -ACGGAACACTACGCTAAGATCGAG -ACGGAACACTACGCTAAGCTCCTT -ACGGAACACTACGCTAAGCCTGTT -ACGGAACACTACGCTAAGCGGTTT -ACGGAACACTACGCTAAGGTGGTT -ACGGAACACTACGCTAAGGCCTTT -ACGGAACACTACGCTAAGGGTCTT -ACGGAACACTACGCTAAGACGCTT -ACGGAACACTACGCTAAGAGCGTT -ACGGAACACTACGCTAAGTTCGTC -ACGGAACACTACGCTAAGTCTCTC -ACGGAACACTACGCTAAGTGGATC -ACGGAACACTACGCTAAGCACTTC -ACGGAACACTACGCTAAGGTACTC -ACGGAACACTACGCTAAGGATGTC -ACGGAACACTACGCTAAGACAGTC -ACGGAACACTACGCTAAGTTGCTG -ACGGAACACTACGCTAAGTCCATG -ACGGAACACTACGCTAAGTGTGTG -ACGGAACACTACGCTAAGCTAGTG -ACGGAACACTACGCTAAGCATCTG -ACGGAACACTACGCTAAGGAGTTG -ACGGAACACTACGCTAAGAGACTG -ACGGAACACTACGCTAAGTCGGTA -ACGGAACACTACGCTAAGTGCCTA -ACGGAACACTACGCTAAGCCACTA -ACGGAACACTACGCTAAGGGAGTA -ACGGAACACTACGCTAAGTCGTCT -ACGGAACACTACGCTAAGTGCACT -ACGGAACACTACGCTAAGCTGACT -ACGGAACACTACGCTAAGCAACCT -ACGGAACACTACGCTAAGGCTACT -ACGGAACACTACGCTAAGGGATCT -ACGGAACACTACGCTAAGAAGGCT -ACGGAACACTACGCTAAGTCAACC -ACGGAACACTACGCTAAGTGTTCC -ACGGAACACTACGCTAAGATTCCC -ACGGAACACTACGCTAAGTTCTCG -ACGGAACACTACGCTAAGTAGACG -ACGGAACACTACGCTAAGGTAACG -ACGGAACACTACGCTAAGACTTCG -ACGGAACACTACGCTAAGTACGCA -ACGGAACACTACGCTAAGCTTGCA -ACGGAACACTACGCTAAGCGAACA -ACGGAACACTACGCTAAGCAGTCA -ACGGAACACTACGCTAAGGATCCA -ACGGAACACTACGCTAAGACGACA -ACGGAACACTACGCTAAGAGCTCA -ACGGAACACTACGCTAAGTCACGT -ACGGAACACTACGCTAAGCGTAGT -ACGGAACACTACGCTAAGGTCAGT -ACGGAACACTACGCTAAGGAAGGT -ACGGAACACTACGCTAAGAACCGT -ACGGAACACTACGCTAAGTTGTGC -ACGGAACACTACGCTAAGCTAAGC -ACGGAACACTACGCTAAGACTAGC -ACGGAACACTACGCTAAGAGATGC -ACGGAACACTACGCTAAGTGAAGG -ACGGAACACTACGCTAAGCAATGG -ACGGAACACTACGCTAAGATGAGG -ACGGAACACTACGCTAAGAATGGG -ACGGAACACTACGCTAAGTCCTGA -ACGGAACACTACGCTAAGTAGCGA -ACGGAACACTACGCTAAGCACAGA -ACGGAACACTACGCTAAGGCAAGA -ACGGAACACTACGCTAAGGGTTGA -ACGGAACACTACGCTAAGTCCGAT -ACGGAACACTACGCTAAGTGGCAT -ACGGAACACTACGCTAAGCGAGAT -ACGGAACACTACGCTAAGTACCAC -ACGGAACACTACGCTAAGCAGAAC -ACGGAACACTACGCTAAGGTCTAC -ACGGAACACTACGCTAAGACGTAC -ACGGAACACTACGCTAAGAGTGAC -ACGGAACACTACGCTAAGCTGTAG -ACGGAACACTACGCTAAGCCTAAG -ACGGAACACTACGCTAAGGTTCAG -ACGGAACACTACGCTAAGGCATAG -ACGGAACACTACGCTAAGGACAAG -ACGGAACACTACGCTAAGAAGCAG -ACGGAACACTACGCTAAGCGTCAA -ACGGAACACTACGCTAAGGCTGAA -ACGGAACACTACGCTAAGAGTACG -ACGGAACACTACGCTAAGATCCGA -ACGGAACACTACGCTAAGATGGGA -ACGGAACACTACGCTAAGGTGCAA -ACGGAACACTACGCTAAGGAGGAA -ACGGAACACTACGCTAAGCAGGTA -ACGGAACACTACGCTAAGGACTCT -ACGGAACACTACGCTAAGAGTCCT -ACGGAACACTACGCTAAGTAAGCC -ACGGAACACTACGCTAAGATAGCC -ACGGAACACTACGCTAAGTAACCG -ACGGAACACTACGCTAAGATGCCA -ACGGAACACTACACCTCAGGAAAC -ACGGAACACTACACCTCAAACACC -ACGGAACACTACACCTCAATCGAG -ACGGAACACTACACCTCACTCCTT -ACGGAACACTACACCTCACCTGTT -ACGGAACACTACACCTCACGGTTT -ACGGAACACTACACCTCAGTGGTT -ACGGAACACTACACCTCAGCCTTT -ACGGAACACTACACCTCAGGTCTT -ACGGAACACTACACCTCAACGCTT -ACGGAACACTACACCTCAAGCGTT -ACGGAACACTACACCTCATTCGTC -ACGGAACACTACACCTCATCTCTC -ACGGAACACTACACCTCATGGATC -ACGGAACACTACACCTCACACTTC -ACGGAACACTACACCTCAGTACTC -ACGGAACACTACACCTCAGATGTC -ACGGAACACTACACCTCAACAGTC -ACGGAACACTACACCTCATTGCTG -ACGGAACACTACACCTCATCCATG -ACGGAACACTACACCTCATGTGTG -ACGGAACACTACACCTCACTAGTG -ACGGAACACTACACCTCACATCTG -ACGGAACACTACACCTCAGAGTTG -ACGGAACACTACACCTCAAGACTG -ACGGAACACTACACCTCATCGGTA -ACGGAACACTACACCTCATGCCTA -ACGGAACACTACACCTCACCACTA -ACGGAACACTACACCTCAGGAGTA -ACGGAACACTACACCTCATCGTCT -ACGGAACACTACACCTCATGCACT -ACGGAACACTACACCTCACTGACT -ACGGAACACTACACCTCACAACCT -ACGGAACACTACACCTCAGCTACT -ACGGAACACTACACCTCAGGATCT -ACGGAACACTACACCTCAAAGGCT -ACGGAACACTACACCTCATCAACC -ACGGAACACTACACCTCATGTTCC -ACGGAACACTACACCTCAATTCCC -ACGGAACACTACACCTCATTCTCG -ACGGAACACTACACCTCATAGACG -ACGGAACACTACACCTCAGTAACG -ACGGAACACTACACCTCAACTTCG -ACGGAACACTACACCTCATACGCA -ACGGAACACTACACCTCACTTGCA -ACGGAACACTACACCTCACGAACA -ACGGAACACTACACCTCACAGTCA -ACGGAACACTACACCTCAGATCCA -ACGGAACACTACACCTCAACGACA -ACGGAACACTACACCTCAAGCTCA -ACGGAACACTACACCTCATCACGT -ACGGAACACTACACCTCACGTAGT -ACGGAACACTACACCTCAGTCAGT -ACGGAACACTACACCTCAGAAGGT -ACGGAACACTACACCTCAAACCGT -ACGGAACACTACACCTCATTGTGC -ACGGAACACTACACCTCACTAAGC -ACGGAACACTACACCTCAACTAGC -ACGGAACACTACACCTCAAGATGC -ACGGAACACTACACCTCATGAAGG -ACGGAACACTACACCTCACAATGG -ACGGAACACTACACCTCAATGAGG -ACGGAACACTACACCTCAAATGGG -ACGGAACACTACACCTCATCCTGA -ACGGAACACTACACCTCATAGCGA -ACGGAACACTACACCTCACACAGA -ACGGAACACTACACCTCAGCAAGA -ACGGAACACTACACCTCAGGTTGA -ACGGAACACTACACCTCATCCGAT -ACGGAACACTACACCTCATGGCAT -ACGGAACACTACACCTCACGAGAT -ACGGAACACTACACCTCATACCAC -ACGGAACACTACACCTCACAGAAC -ACGGAACACTACACCTCAGTCTAC -ACGGAACACTACACCTCAACGTAC -ACGGAACACTACACCTCAAGTGAC -ACGGAACACTACACCTCACTGTAG -ACGGAACACTACACCTCACCTAAG -ACGGAACACTACACCTCAGTTCAG -ACGGAACACTACACCTCAGCATAG -ACGGAACACTACACCTCAGACAAG -ACGGAACACTACACCTCAAAGCAG -ACGGAACACTACACCTCACGTCAA -ACGGAACACTACACCTCAGCTGAA -ACGGAACACTACACCTCAAGTACG -ACGGAACACTACACCTCAATCCGA -ACGGAACACTACACCTCAATGGGA -ACGGAACACTACACCTCAGTGCAA -ACGGAACACTACACCTCAGAGGAA -ACGGAACACTACACCTCACAGGTA -ACGGAACACTACACCTCAGACTCT -ACGGAACACTACACCTCAAGTCCT -ACGGAACACTACACCTCATAAGCC -ACGGAACACTACACCTCAATAGCC -ACGGAACACTACACCTCATAACCG -ACGGAACACTACACCTCAATGCCA -ACGGAACACTACTCCTGTGGAAAC -ACGGAACACTACTCCTGTAACACC -ACGGAACACTACTCCTGTATCGAG -ACGGAACACTACTCCTGTCTCCTT -ACGGAACACTACTCCTGTCCTGTT -ACGGAACACTACTCCTGTCGGTTT -ACGGAACACTACTCCTGTGTGGTT -ACGGAACACTACTCCTGTGCCTTT -ACGGAACACTACTCCTGTGGTCTT -ACGGAACACTACTCCTGTACGCTT -ACGGAACACTACTCCTGTAGCGTT -ACGGAACACTACTCCTGTTTCGTC -ACGGAACACTACTCCTGTTCTCTC -ACGGAACACTACTCCTGTTGGATC -ACGGAACACTACTCCTGTCACTTC -ACGGAACACTACTCCTGTGTACTC -ACGGAACACTACTCCTGTGATGTC -ACGGAACACTACTCCTGTACAGTC -ACGGAACACTACTCCTGTTTGCTG -ACGGAACACTACTCCTGTTCCATG -ACGGAACACTACTCCTGTTGTGTG -ACGGAACACTACTCCTGTCTAGTG -ACGGAACACTACTCCTGTCATCTG -ACGGAACACTACTCCTGTGAGTTG -ACGGAACACTACTCCTGTAGACTG -ACGGAACACTACTCCTGTTCGGTA -ACGGAACACTACTCCTGTTGCCTA -ACGGAACACTACTCCTGTCCACTA -ACGGAACACTACTCCTGTGGAGTA -ACGGAACACTACTCCTGTTCGTCT -ACGGAACACTACTCCTGTTGCACT -ACGGAACACTACTCCTGTCTGACT -ACGGAACACTACTCCTGTCAACCT -ACGGAACACTACTCCTGTGCTACT -ACGGAACACTACTCCTGTGGATCT -ACGGAACACTACTCCTGTAAGGCT -ACGGAACACTACTCCTGTTCAACC -ACGGAACACTACTCCTGTTGTTCC -ACGGAACACTACTCCTGTATTCCC -ACGGAACACTACTCCTGTTTCTCG -ACGGAACACTACTCCTGTTAGACG -ACGGAACACTACTCCTGTGTAACG -ACGGAACACTACTCCTGTACTTCG -ACGGAACACTACTCCTGTTACGCA -ACGGAACACTACTCCTGTCTTGCA -ACGGAACACTACTCCTGTCGAACA -ACGGAACACTACTCCTGTCAGTCA -ACGGAACACTACTCCTGTGATCCA -ACGGAACACTACTCCTGTACGACA -ACGGAACACTACTCCTGTAGCTCA -ACGGAACACTACTCCTGTTCACGT -ACGGAACACTACTCCTGTCGTAGT -ACGGAACACTACTCCTGTGTCAGT -ACGGAACACTACTCCTGTGAAGGT -ACGGAACACTACTCCTGTAACCGT -ACGGAACACTACTCCTGTTTGTGC -ACGGAACACTACTCCTGTCTAAGC -ACGGAACACTACTCCTGTACTAGC -ACGGAACACTACTCCTGTAGATGC -ACGGAACACTACTCCTGTTGAAGG -ACGGAACACTACTCCTGTCAATGG -ACGGAACACTACTCCTGTATGAGG -ACGGAACACTACTCCTGTAATGGG -ACGGAACACTACTCCTGTTCCTGA -ACGGAACACTACTCCTGTTAGCGA -ACGGAACACTACTCCTGTCACAGA -ACGGAACACTACTCCTGTGCAAGA -ACGGAACACTACTCCTGTGGTTGA -ACGGAACACTACTCCTGTTCCGAT -ACGGAACACTACTCCTGTTGGCAT -ACGGAACACTACTCCTGTCGAGAT -ACGGAACACTACTCCTGTTACCAC -ACGGAACACTACTCCTGTCAGAAC -ACGGAACACTACTCCTGTGTCTAC -ACGGAACACTACTCCTGTACGTAC -ACGGAACACTACTCCTGTAGTGAC -ACGGAACACTACTCCTGTCTGTAG -ACGGAACACTACTCCTGTCCTAAG -ACGGAACACTACTCCTGTGTTCAG -ACGGAACACTACTCCTGTGCATAG -ACGGAACACTACTCCTGTGACAAG -ACGGAACACTACTCCTGTAAGCAG -ACGGAACACTACTCCTGTCGTCAA -ACGGAACACTACTCCTGTGCTGAA -ACGGAACACTACTCCTGTAGTACG -ACGGAACACTACTCCTGTATCCGA -ACGGAACACTACTCCTGTATGGGA -ACGGAACACTACTCCTGTGTGCAA -ACGGAACACTACTCCTGTGAGGAA -ACGGAACACTACTCCTGTCAGGTA -ACGGAACACTACTCCTGTGACTCT -ACGGAACACTACTCCTGTAGTCCT -ACGGAACACTACTCCTGTTAAGCC -ACGGAACACTACTCCTGTATAGCC -ACGGAACACTACTCCTGTTAACCG -ACGGAACACTACTCCTGTATGCCA -ACGGAACACTACCCCATTGGAAAC -ACGGAACACTACCCCATTAACACC -ACGGAACACTACCCCATTATCGAG -ACGGAACACTACCCCATTCTCCTT -ACGGAACACTACCCCATTCCTGTT -ACGGAACACTACCCCATTCGGTTT -ACGGAACACTACCCCATTGTGGTT -ACGGAACACTACCCCATTGCCTTT -ACGGAACACTACCCCATTGGTCTT -ACGGAACACTACCCCATTACGCTT -ACGGAACACTACCCCATTAGCGTT -ACGGAACACTACCCCATTTTCGTC -ACGGAACACTACCCCATTTCTCTC -ACGGAACACTACCCCATTTGGATC -ACGGAACACTACCCCATTCACTTC -ACGGAACACTACCCCATTGTACTC -ACGGAACACTACCCCATTGATGTC -ACGGAACACTACCCCATTACAGTC -ACGGAACACTACCCCATTTTGCTG -ACGGAACACTACCCCATTTCCATG -ACGGAACACTACCCCATTTGTGTG -ACGGAACACTACCCCATTCTAGTG -ACGGAACACTACCCCATTCATCTG -ACGGAACACTACCCCATTGAGTTG -ACGGAACACTACCCCATTAGACTG -ACGGAACACTACCCCATTTCGGTA -ACGGAACACTACCCCATTTGCCTA -ACGGAACACTACCCCATTCCACTA -ACGGAACACTACCCCATTGGAGTA -ACGGAACACTACCCCATTTCGTCT -ACGGAACACTACCCCATTTGCACT -ACGGAACACTACCCCATTCTGACT -ACGGAACACTACCCCATTCAACCT -ACGGAACACTACCCCATTGCTACT -ACGGAACACTACCCCATTGGATCT -ACGGAACACTACCCCATTAAGGCT -ACGGAACACTACCCCATTTCAACC -ACGGAACACTACCCCATTTGTTCC -ACGGAACACTACCCCATTATTCCC -ACGGAACACTACCCCATTTTCTCG -ACGGAACACTACCCCATTTAGACG -ACGGAACACTACCCCATTGTAACG -ACGGAACACTACCCCATTACTTCG -ACGGAACACTACCCCATTTACGCA -ACGGAACACTACCCCATTCTTGCA -ACGGAACACTACCCCATTCGAACA -ACGGAACACTACCCCATTCAGTCA -ACGGAACACTACCCCATTGATCCA -ACGGAACACTACCCCATTACGACA -ACGGAACACTACCCCATTAGCTCA -ACGGAACACTACCCCATTTCACGT -ACGGAACACTACCCCATTCGTAGT -ACGGAACACTACCCCATTGTCAGT -ACGGAACACTACCCCATTGAAGGT -ACGGAACACTACCCCATTAACCGT -ACGGAACACTACCCCATTTTGTGC -ACGGAACACTACCCCATTCTAAGC -ACGGAACACTACCCCATTACTAGC -ACGGAACACTACCCCATTAGATGC -ACGGAACACTACCCCATTTGAAGG -ACGGAACACTACCCCATTCAATGG -ACGGAACACTACCCCATTATGAGG -ACGGAACACTACCCCATTAATGGG -ACGGAACACTACCCCATTTCCTGA -ACGGAACACTACCCCATTTAGCGA -ACGGAACACTACCCCATTCACAGA -ACGGAACACTACCCCATTGCAAGA -ACGGAACACTACCCCATTGGTTGA -ACGGAACACTACCCCATTTCCGAT -ACGGAACACTACCCCATTTGGCAT -ACGGAACACTACCCCATTCGAGAT -ACGGAACACTACCCCATTTACCAC -ACGGAACACTACCCCATTCAGAAC -ACGGAACACTACCCCATTGTCTAC -ACGGAACACTACCCCATTACGTAC -ACGGAACACTACCCCATTAGTGAC -ACGGAACACTACCCCATTCTGTAG -ACGGAACACTACCCCATTCCTAAG -ACGGAACACTACCCCATTGTTCAG -ACGGAACACTACCCCATTGCATAG -ACGGAACACTACCCCATTGACAAG -ACGGAACACTACCCCATTAAGCAG -ACGGAACACTACCCCATTCGTCAA -ACGGAACACTACCCCATTGCTGAA -ACGGAACACTACCCCATTAGTACG -ACGGAACACTACCCCATTATCCGA -ACGGAACACTACCCCATTATGGGA -ACGGAACACTACCCCATTGTGCAA -ACGGAACACTACCCCATTGAGGAA -ACGGAACACTACCCCATTCAGGTA -ACGGAACACTACCCCATTGACTCT -ACGGAACACTACCCCATTAGTCCT -ACGGAACACTACCCCATTTAAGCC -ACGGAACACTACCCCATTATAGCC -ACGGAACACTACCCCATTTAACCG -ACGGAACACTACCCCATTATGCCA -ACGGAACACTACTCGTTCGGAAAC -ACGGAACACTACTCGTTCAACACC -ACGGAACACTACTCGTTCATCGAG -ACGGAACACTACTCGTTCCTCCTT -ACGGAACACTACTCGTTCCCTGTT -ACGGAACACTACTCGTTCCGGTTT -ACGGAACACTACTCGTTCGTGGTT -ACGGAACACTACTCGTTCGCCTTT -ACGGAACACTACTCGTTCGGTCTT -ACGGAACACTACTCGTTCACGCTT -ACGGAACACTACTCGTTCAGCGTT -ACGGAACACTACTCGTTCTTCGTC -ACGGAACACTACTCGTTCTCTCTC -ACGGAACACTACTCGTTCTGGATC -ACGGAACACTACTCGTTCCACTTC -ACGGAACACTACTCGTTCGTACTC -ACGGAACACTACTCGTTCGATGTC -ACGGAACACTACTCGTTCACAGTC -ACGGAACACTACTCGTTCTTGCTG -ACGGAACACTACTCGTTCTCCATG -ACGGAACACTACTCGTTCTGTGTG -ACGGAACACTACTCGTTCCTAGTG -ACGGAACACTACTCGTTCCATCTG -ACGGAACACTACTCGTTCGAGTTG -ACGGAACACTACTCGTTCAGACTG -ACGGAACACTACTCGTTCTCGGTA -ACGGAACACTACTCGTTCTGCCTA -ACGGAACACTACTCGTTCCCACTA -ACGGAACACTACTCGTTCGGAGTA -ACGGAACACTACTCGTTCTCGTCT -ACGGAACACTACTCGTTCTGCACT -ACGGAACACTACTCGTTCCTGACT -ACGGAACACTACTCGTTCCAACCT -ACGGAACACTACTCGTTCGCTACT -ACGGAACACTACTCGTTCGGATCT -ACGGAACACTACTCGTTCAAGGCT -ACGGAACACTACTCGTTCTCAACC -ACGGAACACTACTCGTTCTGTTCC -ACGGAACACTACTCGTTCATTCCC -ACGGAACACTACTCGTTCTTCTCG -ACGGAACACTACTCGTTCTAGACG -ACGGAACACTACTCGTTCGTAACG -ACGGAACACTACTCGTTCACTTCG -ACGGAACACTACTCGTTCTACGCA -ACGGAACACTACTCGTTCCTTGCA -ACGGAACACTACTCGTTCCGAACA -ACGGAACACTACTCGTTCCAGTCA -ACGGAACACTACTCGTTCGATCCA -ACGGAACACTACTCGTTCACGACA -ACGGAACACTACTCGTTCAGCTCA -ACGGAACACTACTCGTTCTCACGT -ACGGAACACTACTCGTTCCGTAGT -ACGGAACACTACTCGTTCGTCAGT -ACGGAACACTACTCGTTCGAAGGT -ACGGAACACTACTCGTTCAACCGT -ACGGAACACTACTCGTTCTTGTGC -ACGGAACACTACTCGTTCCTAAGC -ACGGAACACTACTCGTTCACTAGC -ACGGAACACTACTCGTTCAGATGC -ACGGAACACTACTCGTTCTGAAGG -ACGGAACACTACTCGTTCCAATGG -ACGGAACACTACTCGTTCATGAGG -ACGGAACACTACTCGTTCAATGGG -ACGGAACACTACTCGTTCTCCTGA -ACGGAACACTACTCGTTCTAGCGA -ACGGAACACTACTCGTTCCACAGA -ACGGAACACTACTCGTTCGCAAGA -ACGGAACACTACTCGTTCGGTTGA -ACGGAACACTACTCGTTCTCCGAT -ACGGAACACTACTCGTTCTGGCAT -ACGGAACACTACTCGTTCCGAGAT -ACGGAACACTACTCGTTCTACCAC -ACGGAACACTACTCGTTCCAGAAC -ACGGAACACTACTCGTTCGTCTAC -ACGGAACACTACTCGTTCACGTAC -ACGGAACACTACTCGTTCAGTGAC -ACGGAACACTACTCGTTCCTGTAG -ACGGAACACTACTCGTTCCCTAAG -ACGGAACACTACTCGTTCGTTCAG -ACGGAACACTACTCGTTCGCATAG -ACGGAACACTACTCGTTCGACAAG -ACGGAACACTACTCGTTCAAGCAG -ACGGAACACTACTCGTTCCGTCAA -ACGGAACACTACTCGTTCGCTGAA -ACGGAACACTACTCGTTCAGTACG -ACGGAACACTACTCGTTCATCCGA -ACGGAACACTACTCGTTCATGGGA -ACGGAACACTACTCGTTCGTGCAA -ACGGAACACTACTCGTTCGAGGAA -ACGGAACACTACTCGTTCCAGGTA -ACGGAACACTACTCGTTCGACTCT -ACGGAACACTACTCGTTCAGTCCT -ACGGAACACTACTCGTTCTAAGCC -ACGGAACACTACTCGTTCATAGCC -ACGGAACACTACTCGTTCTAACCG -ACGGAACACTACTCGTTCATGCCA -ACGGAACACTACACGTAGGGAAAC -ACGGAACACTACACGTAGAACACC -ACGGAACACTACACGTAGATCGAG -ACGGAACACTACACGTAGCTCCTT -ACGGAACACTACACGTAGCCTGTT -ACGGAACACTACACGTAGCGGTTT -ACGGAACACTACACGTAGGTGGTT -ACGGAACACTACACGTAGGCCTTT -ACGGAACACTACACGTAGGGTCTT -ACGGAACACTACACGTAGACGCTT -ACGGAACACTACACGTAGAGCGTT -ACGGAACACTACACGTAGTTCGTC -ACGGAACACTACACGTAGTCTCTC -ACGGAACACTACACGTAGTGGATC -ACGGAACACTACACGTAGCACTTC -ACGGAACACTACACGTAGGTACTC -ACGGAACACTACACGTAGGATGTC -ACGGAACACTACACGTAGACAGTC -ACGGAACACTACACGTAGTTGCTG -ACGGAACACTACACGTAGTCCATG -ACGGAACACTACACGTAGTGTGTG -ACGGAACACTACACGTAGCTAGTG -ACGGAACACTACACGTAGCATCTG -ACGGAACACTACACGTAGGAGTTG -ACGGAACACTACACGTAGAGACTG -ACGGAACACTACACGTAGTCGGTA -ACGGAACACTACACGTAGTGCCTA -ACGGAACACTACACGTAGCCACTA -ACGGAACACTACACGTAGGGAGTA -ACGGAACACTACACGTAGTCGTCT -ACGGAACACTACACGTAGTGCACT -ACGGAACACTACACGTAGCTGACT -ACGGAACACTACACGTAGCAACCT -ACGGAACACTACACGTAGGCTACT -ACGGAACACTACACGTAGGGATCT -ACGGAACACTACACGTAGAAGGCT -ACGGAACACTACACGTAGTCAACC -ACGGAACACTACACGTAGTGTTCC -ACGGAACACTACACGTAGATTCCC -ACGGAACACTACACGTAGTTCTCG -ACGGAACACTACACGTAGTAGACG -ACGGAACACTACACGTAGGTAACG -ACGGAACACTACACGTAGACTTCG -ACGGAACACTACACGTAGTACGCA -ACGGAACACTACACGTAGCTTGCA -ACGGAACACTACACGTAGCGAACA -ACGGAACACTACACGTAGCAGTCA -ACGGAACACTACACGTAGGATCCA -ACGGAACACTACACGTAGACGACA -ACGGAACACTACACGTAGAGCTCA -ACGGAACACTACACGTAGTCACGT -ACGGAACACTACACGTAGCGTAGT -ACGGAACACTACACGTAGGTCAGT -ACGGAACACTACACGTAGGAAGGT -ACGGAACACTACACGTAGAACCGT -ACGGAACACTACACGTAGTTGTGC -ACGGAACACTACACGTAGCTAAGC -ACGGAACACTACACGTAGACTAGC -ACGGAACACTACACGTAGAGATGC -ACGGAACACTACACGTAGTGAAGG -ACGGAACACTACACGTAGCAATGG -ACGGAACACTACACGTAGATGAGG -ACGGAACACTACACGTAGAATGGG -ACGGAACACTACACGTAGTCCTGA -ACGGAACACTACACGTAGTAGCGA -ACGGAACACTACACGTAGCACAGA -ACGGAACACTACACGTAGGCAAGA -ACGGAACACTACACGTAGGGTTGA -ACGGAACACTACACGTAGTCCGAT -ACGGAACACTACACGTAGTGGCAT -ACGGAACACTACACGTAGCGAGAT -ACGGAACACTACACGTAGTACCAC -ACGGAACACTACACGTAGCAGAAC -ACGGAACACTACACGTAGGTCTAC -ACGGAACACTACACGTAGACGTAC -ACGGAACACTACACGTAGAGTGAC -ACGGAACACTACACGTAGCTGTAG -ACGGAACACTACACGTAGCCTAAG -ACGGAACACTACACGTAGGTTCAG -ACGGAACACTACACGTAGGCATAG -ACGGAACACTACACGTAGGACAAG -ACGGAACACTACACGTAGAAGCAG -ACGGAACACTACACGTAGCGTCAA -ACGGAACACTACACGTAGGCTGAA -ACGGAACACTACACGTAGAGTACG -ACGGAACACTACACGTAGATCCGA -ACGGAACACTACACGTAGATGGGA -ACGGAACACTACACGTAGGTGCAA -ACGGAACACTACACGTAGGAGGAA -ACGGAACACTACACGTAGCAGGTA -ACGGAACACTACACGTAGGACTCT -ACGGAACACTACACGTAGAGTCCT -ACGGAACACTACACGTAGTAAGCC -ACGGAACACTACACGTAGATAGCC -ACGGAACACTACACGTAGTAACCG -ACGGAACACTACACGTAGATGCCA -ACGGAACACTACACGGTAGGAAAC -ACGGAACACTACACGGTAAACACC -ACGGAACACTACACGGTAATCGAG -ACGGAACACTACACGGTACTCCTT -ACGGAACACTACACGGTACCTGTT -ACGGAACACTACACGGTACGGTTT -ACGGAACACTACACGGTAGTGGTT -ACGGAACACTACACGGTAGCCTTT -ACGGAACACTACACGGTAGGTCTT -ACGGAACACTACACGGTAACGCTT -ACGGAACACTACACGGTAAGCGTT -ACGGAACACTACACGGTATTCGTC -ACGGAACACTACACGGTATCTCTC -ACGGAACACTACACGGTATGGATC -ACGGAACACTACACGGTACACTTC -ACGGAACACTACACGGTAGTACTC -ACGGAACACTACACGGTAGATGTC -ACGGAACACTACACGGTAACAGTC -ACGGAACACTACACGGTATTGCTG -ACGGAACACTACACGGTATCCATG -ACGGAACACTACACGGTATGTGTG -ACGGAACACTACACGGTACTAGTG -ACGGAACACTACACGGTACATCTG -ACGGAACACTACACGGTAGAGTTG -ACGGAACACTACACGGTAAGACTG -ACGGAACACTACACGGTATCGGTA -ACGGAACACTACACGGTATGCCTA -ACGGAACACTACACGGTACCACTA -ACGGAACACTACACGGTAGGAGTA -ACGGAACACTACACGGTATCGTCT -ACGGAACACTACACGGTATGCACT -ACGGAACACTACACGGTACTGACT -ACGGAACACTACACGGTACAACCT -ACGGAACACTACACGGTAGCTACT -ACGGAACACTACACGGTAGGATCT -ACGGAACACTACACGGTAAAGGCT -ACGGAACACTACACGGTATCAACC -ACGGAACACTACACGGTATGTTCC -ACGGAACACTACACGGTAATTCCC -ACGGAACACTACACGGTATTCTCG -ACGGAACACTACACGGTATAGACG -ACGGAACACTACACGGTAGTAACG -ACGGAACACTACACGGTAACTTCG -ACGGAACACTACACGGTATACGCA -ACGGAACACTACACGGTACTTGCA -ACGGAACACTACACGGTACGAACA -ACGGAACACTACACGGTACAGTCA -ACGGAACACTACACGGTAGATCCA -ACGGAACACTACACGGTAACGACA -ACGGAACACTACACGGTAAGCTCA -ACGGAACACTACACGGTATCACGT -ACGGAACACTACACGGTACGTAGT -ACGGAACACTACACGGTAGTCAGT -ACGGAACACTACACGGTAGAAGGT -ACGGAACACTACACGGTAAACCGT -ACGGAACACTACACGGTATTGTGC -ACGGAACACTACACGGTACTAAGC -ACGGAACACTACACGGTAACTAGC -ACGGAACACTACACGGTAAGATGC -ACGGAACACTACACGGTATGAAGG -ACGGAACACTACACGGTACAATGG -ACGGAACACTACACGGTAATGAGG -ACGGAACACTACACGGTAAATGGG -ACGGAACACTACACGGTATCCTGA -ACGGAACACTACACGGTATAGCGA -ACGGAACACTACACGGTACACAGA -ACGGAACACTACACGGTAGCAAGA -ACGGAACACTACACGGTAGGTTGA -ACGGAACACTACACGGTATCCGAT -ACGGAACACTACACGGTATGGCAT -ACGGAACACTACACGGTACGAGAT -ACGGAACACTACACGGTATACCAC -ACGGAACACTACACGGTACAGAAC -ACGGAACACTACACGGTAGTCTAC -ACGGAACACTACACGGTAACGTAC -ACGGAACACTACACGGTAAGTGAC -ACGGAACACTACACGGTACTGTAG -ACGGAACACTACACGGTACCTAAG -ACGGAACACTACACGGTAGTTCAG -ACGGAACACTACACGGTAGCATAG -ACGGAACACTACACGGTAGACAAG -ACGGAACACTACACGGTAAAGCAG -ACGGAACACTACACGGTACGTCAA -ACGGAACACTACACGGTAGCTGAA -ACGGAACACTACACGGTAAGTACG -ACGGAACACTACACGGTAATCCGA -ACGGAACACTACACGGTAATGGGA -ACGGAACACTACACGGTAGTGCAA -ACGGAACACTACACGGTAGAGGAA -ACGGAACACTACACGGTACAGGTA -ACGGAACACTACACGGTAGACTCT -ACGGAACACTACACGGTAAGTCCT -ACGGAACACTACACGGTATAAGCC -ACGGAACACTACACGGTAATAGCC -ACGGAACACTACACGGTATAACCG -ACGGAACACTACACGGTAATGCCA -ACGGAACACTACTCGACTGGAAAC -ACGGAACACTACTCGACTAACACC -ACGGAACACTACTCGACTATCGAG -ACGGAACACTACTCGACTCTCCTT -ACGGAACACTACTCGACTCCTGTT -ACGGAACACTACTCGACTCGGTTT -ACGGAACACTACTCGACTGTGGTT -ACGGAACACTACTCGACTGCCTTT -ACGGAACACTACTCGACTGGTCTT -ACGGAACACTACTCGACTACGCTT -ACGGAACACTACTCGACTAGCGTT -ACGGAACACTACTCGACTTTCGTC -ACGGAACACTACTCGACTTCTCTC -ACGGAACACTACTCGACTTGGATC -ACGGAACACTACTCGACTCACTTC -ACGGAACACTACTCGACTGTACTC -ACGGAACACTACTCGACTGATGTC -ACGGAACACTACTCGACTACAGTC -ACGGAACACTACTCGACTTTGCTG -ACGGAACACTACTCGACTTCCATG -ACGGAACACTACTCGACTTGTGTG -ACGGAACACTACTCGACTCTAGTG -ACGGAACACTACTCGACTCATCTG -ACGGAACACTACTCGACTGAGTTG -ACGGAACACTACTCGACTAGACTG -ACGGAACACTACTCGACTTCGGTA -ACGGAACACTACTCGACTTGCCTA -ACGGAACACTACTCGACTCCACTA -ACGGAACACTACTCGACTGGAGTA -ACGGAACACTACTCGACTTCGTCT -ACGGAACACTACTCGACTTGCACT -ACGGAACACTACTCGACTCTGACT -ACGGAACACTACTCGACTCAACCT -ACGGAACACTACTCGACTGCTACT -ACGGAACACTACTCGACTGGATCT -ACGGAACACTACTCGACTAAGGCT -ACGGAACACTACTCGACTTCAACC -ACGGAACACTACTCGACTTGTTCC -ACGGAACACTACTCGACTATTCCC -ACGGAACACTACTCGACTTTCTCG -ACGGAACACTACTCGACTTAGACG -ACGGAACACTACTCGACTGTAACG -ACGGAACACTACTCGACTACTTCG -ACGGAACACTACTCGACTTACGCA -ACGGAACACTACTCGACTCTTGCA -ACGGAACACTACTCGACTCGAACA -ACGGAACACTACTCGACTCAGTCA -ACGGAACACTACTCGACTGATCCA -ACGGAACACTACTCGACTACGACA -ACGGAACACTACTCGACTAGCTCA -ACGGAACACTACTCGACTTCACGT -ACGGAACACTACTCGACTCGTAGT -ACGGAACACTACTCGACTGTCAGT -ACGGAACACTACTCGACTGAAGGT -ACGGAACACTACTCGACTAACCGT -ACGGAACACTACTCGACTTTGTGC -ACGGAACACTACTCGACTCTAAGC -ACGGAACACTACTCGACTACTAGC -ACGGAACACTACTCGACTAGATGC -ACGGAACACTACTCGACTTGAAGG -ACGGAACACTACTCGACTCAATGG -ACGGAACACTACTCGACTATGAGG -ACGGAACACTACTCGACTAATGGG -ACGGAACACTACTCGACTTCCTGA -ACGGAACACTACTCGACTTAGCGA -ACGGAACACTACTCGACTCACAGA -ACGGAACACTACTCGACTGCAAGA -ACGGAACACTACTCGACTGGTTGA -ACGGAACACTACTCGACTTCCGAT -ACGGAACACTACTCGACTTGGCAT -ACGGAACACTACTCGACTCGAGAT -ACGGAACACTACTCGACTTACCAC -ACGGAACACTACTCGACTCAGAAC -ACGGAACACTACTCGACTGTCTAC -ACGGAACACTACTCGACTACGTAC -ACGGAACACTACTCGACTAGTGAC -ACGGAACACTACTCGACTCTGTAG -ACGGAACACTACTCGACTCCTAAG -ACGGAACACTACTCGACTGTTCAG -ACGGAACACTACTCGACTGCATAG -ACGGAACACTACTCGACTGACAAG -ACGGAACACTACTCGACTAAGCAG -ACGGAACACTACTCGACTCGTCAA -ACGGAACACTACTCGACTGCTGAA -ACGGAACACTACTCGACTAGTACG -ACGGAACACTACTCGACTATCCGA -ACGGAACACTACTCGACTATGGGA -ACGGAACACTACTCGACTGTGCAA -ACGGAACACTACTCGACTGAGGAA -ACGGAACACTACTCGACTCAGGTA -ACGGAACACTACTCGACTGACTCT -ACGGAACACTACTCGACTAGTCCT -ACGGAACACTACTCGACTTAAGCC -ACGGAACACTACTCGACTATAGCC -ACGGAACACTACTCGACTTAACCG -ACGGAACACTACTCGACTATGCCA -ACGGAACACTACGCATACGGAAAC -ACGGAACACTACGCATACAACACC -ACGGAACACTACGCATACATCGAG -ACGGAACACTACGCATACCTCCTT -ACGGAACACTACGCATACCCTGTT -ACGGAACACTACGCATACCGGTTT -ACGGAACACTACGCATACGTGGTT -ACGGAACACTACGCATACGCCTTT -ACGGAACACTACGCATACGGTCTT -ACGGAACACTACGCATACACGCTT -ACGGAACACTACGCATACAGCGTT -ACGGAACACTACGCATACTTCGTC -ACGGAACACTACGCATACTCTCTC -ACGGAACACTACGCATACTGGATC -ACGGAACACTACGCATACCACTTC -ACGGAACACTACGCATACGTACTC -ACGGAACACTACGCATACGATGTC -ACGGAACACTACGCATACACAGTC -ACGGAACACTACGCATACTTGCTG -ACGGAACACTACGCATACTCCATG -ACGGAACACTACGCATACTGTGTG -ACGGAACACTACGCATACCTAGTG -ACGGAACACTACGCATACCATCTG -ACGGAACACTACGCATACGAGTTG -ACGGAACACTACGCATACAGACTG -ACGGAACACTACGCATACTCGGTA -ACGGAACACTACGCATACTGCCTA -ACGGAACACTACGCATACCCACTA -ACGGAACACTACGCATACGGAGTA -ACGGAACACTACGCATACTCGTCT -ACGGAACACTACGCATACTGCACT -ACGGAACACTACGCATACCTGACT -ACGGAACACTACGCATACCAACCT -ACGGAACACTACGCATACGCTACT -ACGGAACACTACGCATACGGATCT -ACGGAACACTACGCATACAAGGCT -ACGGAACACTACGCATACTCAACC -ACGGAACACTACGCATACTGTTCC -ACGGAACACTACGCATACATTCCC -ACGGAACACTACGCATACTTCTCG -ACGGAACACTACGCATACTAGACG -ACGGAACACTACGCATACGTAACG -ACGGAACACTACGCATACACTTCG -ACGGAACACTACGCATACTACGCA -ACGGAACACTACGCATACCTTGCA -ACGGAACACTACGCATACCGAACA -ACGGAACACTACGCATACCAGTCA -ACGGAACACTACGCATACGATCCA -ACGGAACACTACGCATACACGACA -ACGGAACACTACGCATACAGCTCA -ACGGAACACTACGCATACTCACGT -ACGGAACACTACGCATACCGTAGT -ACGGAACACTACGCATACGTCAGT -ACGGAACACTACGCATACGAAGGT -ACGGAACACTACGCATACAACCGT -ACGGAACACTACGCATACTTGTGC -ACGGAACACTACGCATACCTAAGC -ACGGAACACTACGCATACACTAGC -ACGGAACACTACGCATACAGATGC -ACGGAACACTACGCATACTGAAGG -ACGGAACACTACGCATACCAATGG -ACGGAACACTACGCATACATGAGG -ACGGAACACTACGCATACAATGGG -ACGGAACACTACGCATACTCCTGA -ACGGAACACTACGCATACTAGCGA -ACGGAACACTACGCATACCACAGA -ACGGAACACTACGCATACGCAAGA -ACGGAACACTACGCATACGGTTGA -ACGGAACACTACGCATACTCCGAT -ACGGAACACTACGCATACTGGCAT -ACGGAACACTACGCATACCGAGAT -ACGGAACACTACGCATACTACCAC -ACGGAACACTACGCATACCAGAAC -ACGGAACACTACGCATACGTCTAC -ACGGAACACTACGCATACACGTAC -ACGGAACACTACGCATACAGTGAC -ACGGAACACTACGCATACCTGTAG -ACGGAACACTACGCATACCCTAAG -ACGGAACACTACGCATACGTTCAG -ACGGAACACTACGCATACGCATAG -ACGGAACACTACGCATACGACAAG -ACGGAACACTACGCATACAAGCAG -ACGGAACACTACGCATACCGTCAA -ACGGAACACTACGCATACGCTGAA -ACGGAACACTACGCATACAGTACG -ACGGAACACTACGCATACATCCGA -ACGGAACACTACGCATACATGGGA -ACGGAACACTACGCATACGTGCAA -ACGGAACACTACGCATACGAGGAA -ACGGAACACTACGCATACCAGGTA -ACGGAACACTACGCATACGACTCT -ACGGAACACTACGCATACAGTCCT -ACGGAACACTACGCATACTAAGCC -ACGGAACACTACGCATACATAGCC -ACGGAACACTACGCATACTAACCG -ACGGAACACTACGCATACATGCCA -ACGGAACACTACGCACTTGGAAAC -ACGGAACACTACGCACTTAACACC -ACGGAACACTACGCACTTATCGAG -ACGGAACACTACGCACTTCTCCTT -ACGGAACACTACGCACTTCCTGTT -ACGGAACACTACGCACTTCGGTTT -ACGGAACACTACGCACTTGTGGTT -ACGGAACACTACGCACTTGCCTTT -ACGGAACACTACGCACTTGGTCTT -ACGGAACACTACGCACTTACGCTT -ACGGAACACTACGCACTTAGCGTT -ACGGAACACTACGCACTTTTCGTC -ACGGAACACTACGCACTTTCTCTC -ACGGAACACTACGCACTTTGGATC -ACGGAACACTACGCACTTCACTTC -ACGGAACACTACGCACTTGTACTC -ACGGAACACTACGCACTTGATGTC -ACGGAACACTACGCACTTACAGTC -ACGGAACACTACGCACTTTTGCTG -ACGGAACACTACGCACTTTCCATG -ACGGAACACTACGCACTTTGTGTG -ACGGAACACTACGCACTTCTAGTG -ACGGAACACTACGCACTTCATCTG -ACGGAACACTACGCACTTGAGTTG -ACGGAACACTACGCACTTAGACTG -ACGGAACACTACGCACTTTCGGTA -ACGGAACACTACGCACTTTGCCTA -ACGGAACACTACGCACTTCCACTA -ACGGAACACTACGCACTTGGAGTA -ACGGAACACTACGCACTTTCGTCT -ACGGAACACTACGCACTTTGCACT -ACGGAACACTACGCACTTCTGACT -ACGGAACACTACGCACTTCAACCT -ACGGAACACTACGCACTTGCTACT -ACGGAACACTACGCACTTGGATCT -ACGGAACACTACGCACTTAAGGCT -ACGGAACACTACGCACTTTCAACC -ACGGAACACTACGCACTTTGTTCC -ACGGAACACTACGCACTTATTCCC -ACGGAACACTACGCACTTTTCTCG -ACGGAACACTACGCACTTTAGACG -ACGGAACACTACGCACTTGTAACG -ACGGAACACTACGCACTTACTTCG -ACGGAACACTACGCACTTTACGCA -ACGGAACACTACGCACTTCTTGCA -ACGGAACACTACGCACTTCGAACA -ACGGAACACTACGCACTTCAGTCA -ACGGAACACTACGCACTTGATCCA -ACGGAACACTACGCACTTACGACA -ACGGAACACTACGCACTTAGCTCA -ACGGAACACTACGCACTTTCACGT -ACGGAACACTACGCACTTCGTAGT -ACGGAACACTACGCACTTGTCAGT -ACGGAACACTACGCACTTGAAGGT -ACGGAACACTACGCACTTAACCGT -ACGGAACACTACGCACTTTTGTGC -ACGGAACACTACGCACTTCTAAGC -ACGGAACACTACGCACTTACTAGC -ACGGAACACTACGCACTTAGATGC -ACGGAACACTACGCACTTTGAAGG -ACGGAACACTACGCACTTCAATGG -ACGGAACACTACGCACTTATGAGG -ACGGAACACTACGCACTTAATGGG -ACGGAACACTACGCACTTTCCTGA -ACGGAACACTACGCACTTTAGCGA -ACGGAACACTACGCACTTCACAGA -ACGGAACACTACGCACTTGCAAGA -ACGGAACACTACGCACTTGGTTGA -ACGGAACACTACGCACTTTCCGAT -ACGGAACACTACGCACTTTGGCAT -ACGGAACACTACGCACTTCGAGAT -ACGGAACACTACGCACTTTACCAC -ACGGAACACTACGCACTTCAGAAC -ACGGAACACTACGCACTTGTCTAC -ACGGAACACTACGCACTTACGTAC -ACGGAACACTACGCACTTAGTGAC -ACGGAACACTACGCACTTCTGTAG -ACGGAACACTACGCACTTCCTAAG -ACGGAACACTACGCACTTGTTCAG -ACGGAACACTACGCACTTGCATAG -ACGGAACACTACGCACTTGACAAG -ACGGAACACTACGCACTTAAGCAG -ACGGAACACTACGCACTTCGTCAA -ACGGAACACTACGCACTTGCTGAA -ACGGAACACTACGCACTTAGTACG -ACGGAACACTACGCACTTATCCGA -ACGGAACACTACGCACTTATGGGA -ACGGAACACTACGCACTTGTGCAA -ACGGAACACTACGCACTTGAGGAA -ACGGAACACTACGCACTTCAGGTA -ACGGAACACTACGCACTTGACTCT -ACGGAACACTACGCACTTAGTCCT -ACGGAACACTACGCACTTTAAGCC -ACGGAACACTACGCACTTATAGCC -ACGGAACACTACGCACTTTAACCG -ACGGAACACTACGCACTTATGCCA -ACGGAACACTACACACGAGGAAAC -ACGGAACACTACACACGAAACACC -ACGGAACACTACACACGAATCGAG -ACGGAACACTACACACGACTCCTT -ACGGAACACTACACACGACCTGTT -ACGGAACACTACACACGACGGTTT -ACGGAACACTACACACGAGTGGTT -ACGGAACACTACACACGAGCCTTT -ACGGAACACTACACACGAGGTCTT -ACGGAACACTACACACGAACGCTT -ACGGAACACTACACACGAAGCGTT -ACGGAACACTACACACGATTCGTC -ACGGAACACTACACACGATCTCTC -ACGGAACACTACACACGATGGATC -ACGGAACACTACACACGACACTTC -ACGGAACACTACACACGAGTACTC -ACGGAACACTACACACGAGATGTC -ACGGAACACTACACACGAACAGTC -ACGGAACACTACACACGATTGCTG -ACGGAACACTACACACGATCCATG -ACGGAACACTACACACGATGTGTG -ACGGAACACTACACACGACTAGTG -ACGGAACACTACACACGACATCTG -ACGGAACACTACACACGAGAGTTG -ACGGAACACTACACACGAAGACTG -ACGGAACACTACACACGATCGGTA -ACGGAACACTACACACGATGCCTA -ACGGAACACTACACACGACCACTA -ACGGAACACTACACACGAGGAGTA -ACGGAACACTACACACGATCGTCT -ACGGAACACTACACACGATGCACT -ACGGAACACTACACACGACTGACT -ACGGAACACTACACACGACAACCT -ACGGAACACTACACACGAGCTACT -ACGGAACACTACACACGAGGATCT -ACGGAACACTACACACGAAAGGCT -ACGGAACACTACACACGATCAACC -ACGGAACACTACACACGATGTTCC -ACGGAACACTACACACGAATTCCC -ACGGAACACTACACACGATTCTCG -ACGGAACACTACACACGATAGACG -ACGGAACACTACACACGAGTAACG -ACGGAACACTACACACGAACTTCG -ACGGAACACTACACACGATACGCA -ACGGAACACTACACACGACTTGCA -ACGGAACACTACACACGACGAACA -ACGGAACACTACACACGACAGTCA -ACGGAACACTACACACGAGATCCA -ACGGAACACTACACACGAACGACA -ACGGAACACTACACACGAAGCTCA -ACGGAACACTACACACGATCACGT -ACGGAACACTACACACGACGTAGT -ACGGAACACTACACACGAGTCAGT -ACGGAACACTACACACGAGAAGGT -ACGGAACACTACACACGAAACCGT -ACGGAACACTACACACGATTGTGC -ACGGAACACTACACACGACTAAGC -ACGGAACACTACACACGAACTAGC -ACGGAACACTACACACGAAGATGC -ACGGAACACTACACACGATGAAGG -ACGGAACACTACACACGACAATGG -ACGGAACACTACACACGAATGAGG -ACGGAACACTACACACGAAATGGG -ACGGAACACTACACACGATCCTGA -ACGGAACACTACACACGATAGCGA -ACGGAACACTACACACGACACAGA -ACGGAACACTACACACGAGCAAGA -ACGGAACACTACACACGAGGTTGA -ACGGAACACTACACACGATCCGAT -ACGGAACACTACACACGATGGCAT -ACGGAACACTACACACGACGAGAT -ACGGAACACTACACACGATACCAC -ACGGAACACTACACACGACAGAAC -ACGGAACACTACACACGAGTCTAC -ACGGAACACTACACACGAACGTAC -ACGGAACACTACACACGAAGTGAC -ACGGAACACTACACACGACTGTAG -ACGGAACACTACACACGACCTAAG -ACGGAACACTACACACGAGTTCAG -ACGGAACACTACACACGAGCATAG -ACGGAACACTACACACGAGACAAG -ACGGAACACTACACACGAAAGCAG -ACGGAACACTACACACGACGTCAA -ACGGAACACTACACACGAGCTGAA -ACGGAACACTACACACGAAGTACG -ACGGAACACTACACACGAATCCGA -ACGGAACACTACACACGAATGGGA -ACGGAACACTACACACGAGTGCAA -ACGGAACACTACACACGAGAGGAA -ACGGAACACTACACACGACAGGTA -ACGGAACACTACACACGAGACTCT -ACGGAACACTACACACGAAGTCCT -ACGGAACACTACACACGATAAGCC -ACGGAACACTACACACGAATAGCC -ACGGAACACTACACACGATAACCG -ACGGAACACTACACACGAATGCCA -ACGGAACACTACTCACAGGGAAAC -ACGGAACACTACTCACAGAACACC -ACGGAACACTACTCACAGATCGAG -ACGGAACACTACTCACAGCTCCTT -ACGGAACACTACTCACAGCCTGTT -ACGGAACACTACTCACAGCGGTTT -ACGGAACACTACTCACAGGTGGTT -ACGGAACACTACTCACAGGCCTTT -ACGGAACACTACTCACAGGGTCTT -ACGGAACACTACTCACAGACGCTT -ACGGAACACTACTCACAGAGCGTT -ACGGAACACTACTCACAGTTCGTC -ACGGAACACTACTCACAGTCTCTC -ACGGAACACTACTCACAGTGGATC -ACGGAACACTACTCACAGCACTTC -ACGGAACACTACTCACAGGTACTC -ACGGAACACTACTCACAGGATGTC -ACGGAACACTACTCACAGACAGTC -ACGGAACACTACTCACAGTTGCTG -ACGGAACACTACTCACAGTCCATG -ACGGAACACTACTCACAGTGTGTG -ACGGAACACTACTCACAGCTAGTG -ACGGAACACTACTCACAGCATCTG -ACGGAACACTACTCACAGGAGTTG -ACGGAACACTACTCACAGAGACTG -ACGGAACACTACTCACAGTCGGTA -ACGGAACACTACTCACAGTGCCTA -ACGGAACACTACTCACAGCCACTA -ACGGAACACTACTCACAGGGAGTA -ACGGAACACTACTCACAGTCGTCT -ACGGAACACTACTCACAGTGCACT -ACGGAACACTACTCACAGCTGACT -ACGGAACACTACTCACAGCAACCT -ACGGAACACTACTCACAGGCTACT -ACGGAACACTACTCACAGGGATCT -ACGGAACACTACTCACAGAAGGCT -ACGGAACACTACTCACAGTCAACC -ACGGAACACTACTCACAGTGTTCC -ACGGAACACTACTCACAGATTCCC -ACGGAACACTACTCACAGTTCTCG -ACGGAACACTACTCACAGTAGACG -ACGGAACACTACTCACAGGTAACG -ACGGAACACTACTCACAGACTTCG -ACGGAACACTACTCACAGTACGCA -ACGGAACACTACTCACAGCTTGCA -ACGGAACACTACTCACAGCGAACA -ACGGAACACTACTCACAGCAGTCA -ACGGAACACTACTCACAGGATCCA -ACGGAACACTACTCACAGACGACA -ACGGAACACTACTCACAGAGCTCA -ACGGAACACTACTCACAGTCACGT -ACGGAACACTACTCACAGCGTAGT -ACGGAACACTACTCACAGGTCAGT -ACGGAACACTACTCACAGGAAGGT -ACGGAACACTACTCACAGAACCGT -ACGGAACACTACTCACAGTTGTGC -ACGGAACACTACTCACAGCTAAGC -ACGGAACACTACTCACAGACTAGC -ACGGAACACTACTCACAGAGATGC -ACGGAACACTACTCACAGTGAAGG -ACGGAACACTACTCACAGCAATGG -ACGGAACACTACTCACAGATGAGG -ACGGAACACTACTCACAGAATGGG -ACGGAACACTACTCACAGTCCTGA -ACGGAACACTACTCACAGTAGCGA -ACGGAACACTACTCACAGCACAGA -ACGGAACACTACTCACAGGCAAGA -ACGGAACACTACTCACAGGGTTGA -ACGGAACACTACTCACAGTCCGAT -ACGGAACACTACTCACAGTGGCAT -ACGGAACACTACTCACAGCGAGAT -ACGGAACACTACTCACAGTACCAC -ACGGAACACTACTCACAGCAGAAC -ACGGAACACTACTCACAGGTCTAC -ACGGAACACTACTCACAGACGTAC -ACGGAACACTACTCACAGAGTGAC -ACGGAACACTACTCACAGCTGTAG -ACGGAACACTACTCACAGCCTAAG -ACGGAACACTACTCACAGGTTCAG -ACGGAACACTACTCACAGGCATAG -ACGGAACACTACTCACAGGACAAG -ACGGAACACTACTCACAGAAGCAG -ACGGAACACTACTCACAGCGTCAA -ACGGAACACTACTCACAGGCTGAA -ACGGAACACTACTCACAGAGTACG -ACGGAACACTACTCACAGATCCGA -ACGGAACACTACTCACAGATGGGA -ACGGAACACTACTCACAGGTGCAA -ACGGAACACTACTCACAGGAGGAA -ACGGAACACTACTCACAGCAGGTA -ACGGAACACTACTCACAGGACTCT -ACGGAACACTACTCACAGAGTCCT -ACGGAACACTACTCACAGTAAGCC -ACGGAACACTACTCACAGATAGCC -ACGGAACACTACTCACAGTAACCG -ACGGAACACTACTCACAGATGCCA -ACGGAACACTACCCAGATGGAAAC -ACGGAACACTACCCAGATAACACC -ACGGAACACTACCCAGATATCGAG -ACGGAACACTACCCAGATCTCCTT -ACGGAACACTACCCAGATCCTGTT -ACGGAACACTACCCAGATCGGTTT -ACGGAACACTACCCAGATGTGGTT -ACGGAACACTACCCAGATGCCTTT -ACGGAACACTACCCAGATGGTCTT -ACGGAACACTACCCAGATACGCTT -ACGGAACACTACCCAGATAGCGTT -ACGGAACACTACCCAGATTTCGTC -ACGGAACACTACCCAGATTCTCTC -ACGGAACACTACCCAGATTGGATC -ACGGAACACTACCCAGATCACTTC -ACGGAACACTACCCAGATGTACTC -ACGGAACACTACCCAGATGATGTC -ACGGAACACTACCCAGATACAGTC -ACGGAACACTACCCAGATTTGCTG -ACGGAACACTACCCAGATTCCATG -ACGGAACACTACCCAGATTGTGTG -ACGGAACACTACCCAGATCTAGTG -ACGGAACACTACCCAGATCATCTG -ACGGAACACTACCCAGATGAGTTG -ACGGAACACTACCCAGATAGACTG -ACGGAACACTACCCAGATTCGGTA -ACGGAACACTACCCAGATTGCCTA -ACGGAACACTACCCAGATCCACTA -ACGGAACACTACCCAGATGGAGTA -ACGGAACACTACCCAGATTCGTCT -ACGGAACACTACCCAGATTGCACT -ACGGAACACTACCCAGATCTGACT -ACGGAACACTACCCAGATCAACCT -ACGGAACACTACCCAGATGCTACT -ACGGAACACTACCCAGATGGATCT -ACGGAACACTACCCAGATAAGGCT -ACGGAACACTACCCAGATTCAACC -ACGGAACACTACCCAGATTGTTCC -ACGGAACACTACCCAGATATTCCC -ACGGAACACTACCCAGATTTCTCG -ACGGAACACTACCCAGATTAGACG -ACGGAACACTACCCAGATGTAACG -ACGGAACACTACCCAGATACTTCG -ACGGAACACTACCCAGATTACGCA -ACGGAACACTACCCAGATCTTGCA -ACGGAACACTACCCAGATCGAACA -ACGGAACACTACCCAGATCAGTCA -ACGGAACACTACCCAGATGATCCA -ACGGAACACTACCCAGATACGACA -ACGGAACACTACCCAGATAGCTCA -ACGGAACACTACCCAGATTCACGT -ACGGAACACTACCCAGATCGTAGT -ACGGAACACTACCCAGATGTCAGT -ACGGAACACTACCCAGATGAAGGT -ACGGAACACTACCCAGATAACCGT -ACGGAACACTACCCAGATTTGTGC -ACGGAACACTACCCAGATCTAAGC -ACGGAACACTACCCAGATACTAGC -ACGGAACACTACCCAGATAGATGC -ACGGAACACTACCCAGATTGAAGG -ACGGAACACTACCCAGATCAATGG -ACGGAACACTACCCAGATATGAGG -ACGGAACACTACCCAGATAATGGG -ACGGAACACTACCCAGATTCCTGA -ACGGAACACTACCCAGATTAGCGA -ACGGAACACTACCCAGATCACAGA -ACGGAACACTACCCAGATGCAAGA -ACGGAACACTACCCAGATGGTTGA -ACGGAACACTACCCAGATTCCGAT -ACGGAACACTACCCAGATTGGCAT -ACGGAACACTACCCAGATCGAGAT -ACGGAACACTACCCAGATTACCAC -ACGGAACACTACCCAGATCAGAAC -ACGGAACACTACCCAGATGTCTAC -ACGGAACACTACCCAGATACGTAC -ACGGAACACTACCCAGATAGTGAC -ACGGAACACTACCCAGATCTGTAG -ACGGAACACTACCCAGATCCTAAG -ACGGAACACTACCCAGATGTTCAG -ACGGAACACTACCCAGATGCATAG -ACGGAACACTACCCAGATGACAAG -ACGGAACACTACCCAGATAAGCAG -ACGGAACACTACCCAGATCGTCAA -ACGGAACACTACCCAGATGCTGAA -ACGGAACACTACCCAGATAGTACG -ACGGAACACTACCCAGATATCCGA -ACGGAACACTACCCAGATATGGGA -ACGGAACACTACCCAGATGTGCAA -ACGGAACACTACCCAGATGAGGAA -ACGGAACACTACCCAGATCAGGTA -ACGGAACACTACCCAGATGACTCT -ACGGAACACTACCCAGATAGTCCT -ACGGAACACTACCCAGATTAAGCC -ACGGAACACTACCCAGATATAGCC -ACGGAACACTACCCAGATTAACCG -ACGGAACACTACCCAGATATGCCA -ACGGAACACTACACAACGGGAAAC -ACGGAACACTACACAACGAACACC -ACGGAACACTACACAACGATCGAG -ACGGAACACTACACAACGCTCCTT -ACGGAACACTACACAACGCCTGTT -ACGGAACACTACACAACGCGGTTT -ACGGAACACTACACAACGGTGGTT -ACGGAACACTACACAACGGCCTTT -ACGGAACACTACACAACGGGTCTT -ACGGAACACTACACAACGACGCTT -ACGGAACACTACACAACGAGCGTT -ACGGAACACTACACAACGTTCGTC -ACGGAACACTACACAACGTCTCTC -ACGGAACACTACACAACGTGGATC -ACGGAACACTACACAACGCACTTC -ACGGAACACTACACAACGGTACTC -ACGGAACACTACACAACGGATGTC -ACGGAACACTACACAACGACAGTC -ACGGAACACTACACAACGTTGCTG -ACGGAACACTACACAACGTCCATG -ACGGAACACTACACAACGTGTGTG -ACGGAACACTACACAACGCTAGTG -ACGGAACACTACACAACGCATCTG -ACGGAACACTACACAACGGAGTTG -ACGGAACACTACACAACGAGACTG -ACGGAACACTACACAACGTCGGTA -ACGGAACACTACACAACGTGCCTA -ACGGAACACTACACAACGCCACTA -ACGGAACACTACACAACGGGAGTA -ACGGAACACTACACAACGTCGTCT -ACGGAACACTACACAACGTGCACT -ACGGAACACTACACAACGCTGACT -ACGGAACACTACACAACGCAACCT -ACGGAACACTACACAACGGCTACT -ACGGAACACTACACAACGGGATCT -ACGGAACACTACACAACGAAGGCT -ACGGAACACTACACAACGTCAACC -ACGGAACACTACACAACGTGTTCC -ACGGAACACTACACAACGATTCCC -ACGGAACACTACACAACGTTCTCG -ACGGAACACTACACAACGTAGACG -ACGGAACACTACACAACGGTAACG -ACGGAACACTACACAACGACTTCG -ACGGAACACTACACAACGTACGCA -ACGGAACACTACACAACGCTTGCA -ACGGAACACTACACAACGCGAACA -ACGGAACACTACACAACGCAGTCA -ACGGAACACTACACAACGGATCCA -ACGGAACACTACACAACGACGACA -ACGGAACACTACACAACGAGCTCA -ACGGAACACTACACAACGTCACGT -ACGGAACACTACACAACGCGTAGT -ACGGAACACTACACAACGGTCAGT -ACGGAACACTACACAACGGAAGGT -ACGGAACACTACACAACGAACCGT -ACGGAACACTACACAACGTTGTGC -ACGGAACACTACACAACGCTAAGC -ACGGAACACTACACAACGACTAGC -ACGGAACACTACACAACGAGATGC -ACGGAACACTACACAACGTGAAGG -ACGGAACACTACACAACGCAATGG -ACGGAACACTACACAACGATGAGG -ACGGAACACTACACAACGAATGGG -ACGGAACACTACACAACGTCCTGA -ACGGAACACTACACAACGTAGCGA -ACGGAACACTACACAACGCACAGA -ACGGAACACTACACAACGGCAAGA -ACGGAACACTACACAACGGGTTGA -ACGGAACACTACACAACGTCCGAT -ACGGAACACTACACAACGTGGCAT -ACGGAACACTACACAACGCGAGAT -ACGGAACACTACACAACGTACCAC -ACGGAACACTACACAACGCAGAAC -ACGGAACACTACACAACGGTCTAC -ACGGAACACTACACAACGACGTAC -ACGGAACACTACACAACGAGTGAC -ACGGAACACTACACAACGCTGTAG -ACGGAACACTACACAACGCCTAAG -ACGGAACACTACACAACGGTTCAG -ACGGAACACTACACAACGGCATAG -ACGGAACACTACACAACGGACAAG -ACGGAACACTACACAACGAAGCAG -ACGGAACACTACACAACGCGTCAA -ACGGAACACTACACAACGGCTGAA -ACGGAACACTACACAACGAGTACG -ACGGAACACTACACAACGATCCGA -ACGGAACACTACACAACGATGGGA -ACGGAACACTACACAACGGTGCAA -ACGGAACACTACACAACGGAGGAA -ACGGAACACTACACAACGCAGGTA -ACGGAACACTACACAACGGACTCT -ACGGAACACTACACAACGAGTCCT -ACGGAACACTACACAACGTAAGCC -ACGGAACACTACACAACGATAGCC -ACGGAACACTACACAACGTAACCG -ACGGAACACTACACAACGATGCCA -ACGGAACACTACTCAAGCGGAAAC -ACGGAACACTACTCAAGCAACACC -ACGGAACACTACTCAAGCATCGAG -ACGGAACACTACTCAAGCCTCCTT -ACGGAACACTACTCAAGCCCTGTT -ACGGAACACTACTCAAGCCGGTTT -ACGGAACACTACTCAAGCGTGGTT -ACGGAACACTACTCAAGCGCCTTT -ACGGAACACTACTCAAGCGGTCTT -ACGGAACACTACTCAAGCACGCTT -ACGGAACACTACTCAAGCAGCGTT -ACGGAACACTACTCAAGCTTCGTC -ACGGAACACTACTCAAGCTCTCTC -ACGGAACACTACTCAAGCTGGATC -ACGGAACACTACTCAAGCCACTTC -ACGGAACACTACTCAAGCGTACTC -ACGGAACACTACTCAAGCGATGTC -ACGGAACACTACTCAAGCACAGTC -ACGGAACACTACTCAAGCTTGCTG -ACGGAACACTACTCAAGCTCCATG -ACGGAACACTACTCAAGCTGTGTG -ACGGAACACTACTCAAGCCTAGTG -ACGGAACACTACTCAAGCCATCTG -ACGGAACACTACTCAAGCGAGTTG -ACGGAACACTACTCAAGCAGACTG -ACGGAACACTACTCAAGCTCGGTA -ACGGAACACTACTCAAGCTGCCTA -ACGGAACACTACTCAAGCCCACTA -ACGGAACACTACTCAAGCGGAGTA -ACGGAACACTACTCAAGCTCGTCT -ACGGAACACTACTCAAGCTGCACT -ACGGAACACTACTCAAGCCTGACT -ACGGAACACTACTCAAGCCAACCT -ACGGAACACTACTCAAGCGCTACT -ACGGAACACTACTCAAGCGGATCT -ACGGAACACTACTCAAGCAAGGCT -ACGGAACACTACTCAAGCTCAACC -ACGGAACACTACTCAAGCTGTTCC -ACGGAACACTACTCAAGCATTCCC -ACGGAACACTACTCAAGCTTCTCG -ACGGAACACTACTCAAGCTAGACG -ACGGAACACTACTCAAGCGTAACG -ACGGAACACTACTCAAGCACTTCG -ACGGAACACTACTCAAGCTACGCA -ACGGAACACTACTCAAGCCTTGCA -ACGGAACACTACTCAAGCCGAACA -ACGGAACACTACTCAAGCCAGTCA -ACGGAACACTACTCAAGCGATCCA -ACGGAACACTACTCAAGCACGACA -ACGGAACACTACTCAAGCAGCTCA -ACGGAACACTACTCAAGCTCACGT -ACGGAACACTACTCAAGCCGTAGT -ACGGAACACTACTCAAGCGTCAGT -ACGGAACACTACTCAAGCGAAGGT -ACGGAACACTACTCAAGCAACCGT -ACGGAACACTACTCAAGCTTGTGC -ACGGAACACTACTCAAGCCTAAGC -ACGGAACACTACTCAAGCACTAGC -ACGGAACACTACTCAAGCAGATGC -ACGGAACACTACTCAAGCTGAAGG -ACGGAACACTACTCAAGCCAATGG -ACGGAACACTACTCAAGCATGAGG -ACGGAACACTACTCAAGCAATGGG -ACGGAACACTACTCAAGCTCCTGA -ACGGAACACTACTCAAGCTAGCGA -ACGGAACACTACTCAAGCCACAGA -ACGGAACACTACTCAAGCGCAAGA -ACGGAACACTACTCAAGCGGTTGA -ACGGAACACTACTCAAGCTCCGAT -ACGGAACACTACTCAAGCTGGCAT -ACGGAACACTACTCAAGCCGAGAT -ACGGAACACTACTCAAGCTACCAC -ACGGAACACTACTCAAGCCAGAAC -ACGGAACACTACTCAAGCGTCTAC -ACGGAACACTACTCAAGCACGTAC -ACGGAACACTACTCAAGCAGTGAC -ACGGAACACTACTCAAGCCTGTAG -ACGGAACACTACTCAAGCCCTAAG -ACGGAACACTACTCAAGCGTTCAG -ACGGAACACTACTCAAGCGCATAG -ACGGAACACTACTCAAGCGACAAG -ACGGAACACTACTCAAGCAAGCAG -ACGGAACACTACTCAAGCCGTCAA -ACGGAACACTACTCAAGCGCTGAA -ACGGAACACTACTCAAGCAGTACG -ACGGAACACTACTCAAGCATCCGA -ACGGAACACTACTCAAGCATGGGA -ACGGAACACTACTCAAGCGTGCAA -ACGGAACACTACTCAAGCGAGGAA -ACGGAACACTACTCAAGCCAGGTA -ACGGAACACTACTCAAGCGACTCT -ACGGAACACTACTCAAGCAGTCCT -ACGGAACACTACTCAAGCTAAGCC -ACGGAACACTACTCAAGCATAGCC -ACGGAACACTACTCAAGCTAACCG -ACGGAACACTACTCAAGCATGCCA -ACGGAACACTACCGTTCAGGAAAC -ACGGAACACTACCGTTCAAACACC -ACGGAACACTACCGTTCAATCGAG -ACGGAACACTACCGTTCACTCCTT -ACGGAACACTACCGTTCACCTGTT -ACGGAACACTACCGTTCACGGTTT -ACGGAACACTACCGTTCAGTGGTT -ACGGAACACTACCGTTCAGCCTTT -ACGGAACACTACCGTTCAGGTCTT -ACGGAACACTACCGTTCAACGCTT -ACGGAACACTACCGTTCAAGCGTT -ACGGAACACTACCGTTCATTCGTC -ACGGAACACTACCGTTCATCTCTC -ACGGAACACTACCGTTCATGGATC -ACGGAACACTACCGTTCACACTTC -ACGGAACACTACCGTTCAGTACTC -ACGGAACACTACCGTTCAGATGTC -ACGGAACACTACCGTTCAACAGTC -ACGGAACACTACCGTTCATTGCTG -ACGGAACACTACCGTTCATCCATG -ACGGAACACTACCGTTCATGTGTG -ACGGAACACTACCGTTCACTAGTG -ACGGAACACTACCGTTCACATCTG -ACGGAACACTACCGTTCAGAGTTG -ACGGAACACTACCGTTCAAGACTG -ACGGAACACTACCGTTCATCGGTA -ACGGAACACTACCGTTCATGCCTA -ACGGAACACTACCGTTCACCACTA -ACGGAACACTACCGTTCAGGAGTA -ACGGAACACTACCGTTCATCGTCT -ACGGAACACTACCGTTCATGCACT -ACGGAACACTACCGTTCACTGACT -ACGGAACACTACCGTTCACAACCT -ACGGAACACTACCGTTCAGCTACT -ACGGAACACTACCGTTCAGGATCT -ACGGAACACTACCGTTCAAAGGCT -ACGGAACACTACCGTTCATCAACC -ACGGAACACTACCGTTCATGTTCC -ACGGAACACTACCGTTCAATTCCC -ACGGAACACTACCGTTCATTCTCG -ACGGAACACTACCGTTCATAGACG -ACGGAACACTACCGTTCAGTAACG -ACGGAACACTACCGTTCAACTTCG -ACGGAACACTACCGTTCATACGCA -ACGGAACACTACCGTTCACTTGCA -ACGGAACACTACCGTTCACGAACA -ACGGAACACTACCGTTCACAGTCA -ACGGAACACTACCGTTCAGATCCA -ACGGAACACTACCGTTCAACGACA -ACGGAACACTACCGTTCAAGCTCA -ACGGAACACTACCGTTCATCACGT -ACGGAACACTACCGTTCACGTAGT -ACGGAACACTACCGTTCAGTCAGT -ACGGAACACTACCGTTCAGAAGGT -ACGGAACACTACCGTTCAAACCGT -ACGGAACACTACCGTTCATTGTGC -ACGGAACACTACCGTTCACTAAGC -ACGGAACACTACCGTTCAACTAGC -ACGGAACACTACCGTTCAAGATGC -ACGGAACACTACCGTTCATGAAGG -ACGGAACACTACCGTTCACAATGG -ACGGAACACTACCGTTCAATGAGG -ACGGAACACTACCGTTCAAATGGG -ACGGAACACTACCGTTCATCCTGA -ACGGAACACTACCGTTCATAGCGA -ACGGAACACTACCGTTCACACAGA -ACGGAACACTACCGTTCAGCAAGA -ACGGAACACTACCGTTCAGGTTGA -ACGGAACACTACCGTTCATCCGAT -ACGGAACACTACCGTTCATGGCAT -ACGGAACACTACCGTTCACGAGAT -ACGGAACACTACCGTTCATACCAC -ACGGAACACTACCGTTCACAGAAC -ACGGAACACTACCGTTCAGTCTAC -ACGGAACACTACCGTTCAACGTAC -ACGGAACACTACCGTTCAAGTGAC -ACGGAACACTACCGTTCACTGTAG -ACGGAACACTACCGTTCACCTAAG -ACGGAACACTACCGTTCAGTTCAG -ACGGAACACTACCGTTCAGCATAG -ACGGAACACTACCGTTCAGACAAG -ACGGAACACTACCGTTCAAAGCAG -ACGGAACACTACCGTTCACGTCAA -ACGGAACACTACCGTTCAGCTGAA -ACGGAACACTACCGTTCAAGTACG -ACGGAACACTACCGTTCAATCCGA -ACGGAACACTACCGTTCAATGGGA -ACGGAACACTACCGTTCAGTGCAA -ACGGAACACTACCGTTCAGAGGAA -ACGGAACACTACCGTTCACAGGTA -ACGGAACACTACCGTTCAGACTCT -ACGGAACACTACCGTTCAAGTCCT -ACGGAACACTACCGTTCATAAGCC -ACGGAACACTACCGTTCAATAGCC -ACGGAACACTACCGTTCATAACCG -ACGGAACACTACCGTTCAATGCCA -ACGGAACACTACAGTCGTGGAAAC -ACGGAACACTACAGTCGTAACACC -ACGGAACACTACAGTCGTATCGAG -ACGGAACACTACAGTCGTCTCCTT -ACGGAACACTACAGTCGTCCTGTT -ACGGAACACTACAGTCGTCGGTTT -ACGGAACACTACAGTCGTGTGGTT -ACGGAACACTACAGTCGTGCCTTT -ACGGAACACTACAGTCGTGGTCTT -ACGGAACACTACAGTCGTACGCTT -ACGGAACACTACAGTCGTAGCGTT -ACGGAACACTACAGTCGTTTCGTC -ACGGAACACTACAGTCGTTCTCTC -ACGGAACACTACAGTCGTTGGATC -ACGGAACACTACAGTCGTCACTTC -ACGGAACACTACAGTCGTGTACTC -ACGGAACACTACAGTCGTGATGTC -ACGGAACACTACAGTCGTACAGTC -ACGGAACACTACAGTCGTTTGCTG -ACGGAACACTACAGTCGTTCCATG -ACGGAACACTACAGTCGTTGTGTG -ACGGAACACTACAGTCGTCTAGTG -ACGGAACACTACAGTCGTCATCTG -ACGGAACACTACAGTCGTGAGTTG -ACGGAACACTACAGTCGTAGACTG -ACGGAACACTACAGTCGTTCGGTA -ACGGAACACTACAGTCGTTGCCTA -ACGGAACACTACAGTCGTCCACTA -ACGGAACACTACAGTCGTGGAGTA -ACGGAACACTACAGTCGTTCGTCT -ACGGAACACTACAGTCGTTGCACT -ACGGAACACTACAGTCGTCTGACT -ACGGAACACTACAGTCGTCAACCT -ACGGAACACTACAGTCGTGCTACT -ACGGAACACTACAGTCGTGGATCT -ACGGAACACTACAGTCGTAAGGCT -ACGGAACACTACAGTCGTTCAACC -ACGGAACACTACAGTCGTTGTTCC -ACGGAACACTACAGTCGTATTCCC -ACGGAACACTACAGTCGTTTCTCG -ACGGAACACTACAGTCGTTAGACG -ACGGAACACTACAGTCGTGTAACG -ACGGAACACTACAGTCGTACTTCG -ACGGAACACTACAGTCGTTACGCA -ACGGAACACTACAGTCGTCTTGCA -ACGGAACACTACAGTCGTCGAACA -ACGGAACACTACAGTCGTCAGTCA -ACGGAACACTACAGTCGTGATCCA -ACGGAACACTACAGTCGTACGACA -ACGGAACACTACAGTCGTAGCTCA -ACGGAACACTACAGTCGTTCACGT -ACGGAACACTACAGTCGTCGTAGT -ACGGAACACTACAGTCGTGTCAGT -ACGGAACACTACAGTCGTGAAGGT -ACGGAACACTACAGTCGTAACCGT -ACGGAACACTACAGTCGTTTGTGC -ACGGAACACTACAGTCGTCTAAGC -ACGGAACACTACAGTCGTACTAGC -ACGGAACACTACAGTCGTAGATGC -ACGGAACACTACAGTCGTTGAAGG -ACGGAACACTACAGTCGTCAATGG -ACGGAACACTACAGTCGTATGAGG -ACGGAACACTACAGTCGTAATGGG -ACGGAACACTACAGTCGTTCCTGA -ACGGAACACTACAGTCGTTAGCGA -ACGGAACACTACAGTCGTCACAGA -ACGGAACACTACAGTCGTGCAAGA -ACGGAACACTACAGTCGTGGTTGA -ACGGAACACTACAGTCGTTCCGAT -ACGGAACACTACAGTCGTTGGCAT -ACGGAACACTACAGTCGTCGAGAT -ACGGAACACTACAGTCGTTACCAC -ACGGAACACTACAGTCGTCAGAAC -ACGGAACACTACAGTCGTGTCTAC -ACGGAACACTACAGTCGTACGTAC -ACGGAACACTACAGTCGTAGTGAC -ACGGAACACTACAGTCGTCTGTAG -ACGGAACACTACAGTCGTCCTAAG -ACGGAACACTACAGTCGTGTTCAG -ACGGAACACTACAGTCGTGCATAG -ACGGAACACTACAGTCGTGACAAG -ACGGAACACTACAGTCGTAAGCAG -ACGGAACACTACAGTCGTCGTCAA -ACGGAACACTACAGTCGTGCTGAA -ACGGAACACTACAGTCGTAGTACG -ACGGAACACTACAGTCGTATCCGA -ACGGAACACTACAGTCGTATGGGA -ACGGAACACTACAGTCGTGTGCAA -ACGGAACACTACAGTCGTGAGGAA -ACGGAACACTACAGTCGTCAGGTA -ACGGAACACTACAGTCGTGACTCT -ACGGAACACTACAGTCGTAGTCCT -ACGGAACACTACAGTCGTTAAGCC -ACGGAACACTACAGTCGTATAGCC -ACGGAACACTACAGTCGTTAACCG -ACGGAACACTACAGTCGTATGCCA -ACGGAACACTACAGTGTCGGAAAC -ACGGAACACTACAGTGTCAACACC -ACGGAACACTACAGTGTCATCGAG -ACGGAACACTACAGTGTCCTCCTT -ACGGAACACTACAGTGTCCCTGTT -ACGGAACACTACAGTGTCCGGTTT -ACGGAACACTACAGTGTCGTGGTT -ACGGAACACTACAGTGTCGCCTTT -ACGGAACACTACAGTGTCGGTCTT -ACGGAACACTACAGTGTCACGCTT -ACGGAACACTACAGTGTCAGCGTT -ACGGAACACTACAGTGTCTTCGTC -ACGGAACACTACAGTGTCTCTCTC -ACGGAACACTACAGTGTCTGGATC -ACGGAACACTACAGTGTCCACTTC -ACGGAACACTACAGTGTCGTACTC -ACGGAACACTACAGTGTCGATGTC -ACGGAACACTACAGTGTCACAGTC -ACGGAACACTACAGTGTCTTGCTG -ACGGAACACTACAGTGTCTCCATG -ACGGAACACTACAGTGTCTGTGTG -ACGGAACACTACAGTGTCCTAGTG -ACGGAACACTACAGTGTCCATCTG -ACGGAACACTACAGTGTCGAGTTG -ACGGAACACTACAGTGTCAGACTG -ACGGAACACTACAGTGTCTCGGTA -ACGGAACACTACAGTGTCTGCCTA -ACGGAACACTACAGTGTCCCACTA -ACGGAACACTACAGTGTCGGAGTA -ACGGAACACTACAGTGTCTCGTCT -ACGGAACACTACAGTGTCTGCACT -ACGGAACACTACAGTGTCCTGACT -ACGGAACACTACAGTGTCCAACCT -ACGGAACACTACAGTGTCGCTACT -ACGGAACACTACAGTGTCGGATCT -ACGGAACACTACAGTGTCAAGGCT -ACGGAACACTACAGTGTCTCAACC -ACGGAACACTACAGTGTCTGTTCC -ACGGAACACTACAGTGTCATTCCC -ACGGAACACTACAGTGTCTTCTCG -ACGGAACACTACAGTGTCTAGACG -ACGGAACACTACAGTGTCGTAACG -ACGGAACACTACAGTGTCACTTCG -ACGGAACACTACAGTGTCTACGCA -ACGGAACACTACAGTGTCCTTGCA -ACGGAACACTACAGTGTCCGAACA -ACGGAACACTACAGTGTCCAGTCA -ACGGAACACTACAGTGTCGATCCA -ACGGAACACTACAGTGTCACGACA -ACGGAACACTACAGTGTCAGCTCA -ACGGAACACTACAGTGTCTCACGT -ACGGAACACTACAGTGTCCGTAGT -ACGGAACACTACAGTGTCGTCAGT -ACGGAACACTACAGTGTCGAAGGT -ACGGAACACTACAGTGTCAACCGT -ACGGAACACTACAGTGTCTTGTGC -ACGGAACACTACAGTGTCCTAAGC -ACGGAACACTACAGTGTCACTAGC -ACGGAACACTACAGTGTCAGATGC -ACGGAACACTACAGTGTCTGAAGG -ACGGAACACTACAGTGTCCAATGG -ACGGAACACTACAGTGTCATGAGG -ACGGAACACTACAGTGTCAATGGG -ACGGAACACTACAGTGTCTCCTGA -ACGGAACACTACAGTGTCTAGCGA -ACGGAACACTACAGTGTCCACAGA -ACGGAACACTACAGTGTCGCAAGA -ACGGAACACTACAGTGTCGGTTGA -ACGGAACACTACAGTGTCTCCGAT -ACGGAACACTACAGTGTCTGGCAT -ACGGAACACTACAGTGTCCGAGAT -ACGGAACACTACAGTGTCTACCAC -ACGGAACACTACAGTGTCCAGAAC -ACGGAACACTACAGTGTCGTCTAC -ACGGAACACTACAGTGTCACGTAC -ACGGAACACTACAGTGTCAGTGAC -ACGGAACACTACAGTGTCCTGTAG -ACGGAACACTACAGTGTCCCTAAG -ACGGAACACTACAGTGTCGTTCAG -ACGGAACACTACAGTGTCGCATAG -ACGGAACACTACAGTGTCGACAAG -ACGGAACACTACAGTGTCAAGCAG -ACGGAACACTACAGTGTCCGTCAA -ACGGAACACTACAGTGTCGCTGAA -ACGGAACACTACAGTGTCAGTACG -ACGGAACACTACAGTGTCATCCGA -ACGGAACACTACAGTGTCATGGGA -ACGGAACACTACAGTGTCGTGCAA -ACGGAACACTACAGTGTCGAGGAA -ACGGAACACTACAGTGTCCAGGTA -ACGGAACACTACAGTGTCGACTCT -ACGGAACACTACAGTGTCAGTCCT -ACGGAACACTACAGTGTCTAAGCC -ACGGAACACTACAGTGTCATAGCC -ACGGAACACTACAGTGTCTAACCG -ACGGAACACTACAGTGTCATGCCA -ACGGAACACTACGGTGAAGGAAAC -ACGGAACACTACGGTGAAAACACC -ACGGAACACTACGGTGAAATCGAG -ACGGAACACTACGGTGAACTCCTT -ACGGAACACTACGGTGAACCTGTT -ACGGAACACTACGGTGAACGGTTT -ACGGAACACTACGGTGAAGTGGTT -ACGGAACACTACGGTGAAGCCTTT -ACGGAACACTACGGTGAAGGTCTT -ACGGAACACTACGGTGAAACGCTT -ACGGAACACTACGGTGAAAGCGTT -ACGGAACACTACGGTGAATTCGTC -ACGGAACACTACGGTGAATCTCTC -ACGGAACACTACGGTGAATGGATC -ACGGAACACTACGGTGAACACTTC -ACGGAACACTACGGTGAAGTACTC -ACGGAACACTACGGTGAAGATGTC -ACGGAACACTACGGTGAAACAGTC -ACGGAACACTACGGTGAATTGCTG -ACGGAACACTACGGTGAATCCATG -ACGGAACACTACGGTGAATGTGTG -ACGGAACACTACGGTGAACTAGTG -ACGGAACACTACGGTGAACATCTG -ACGGAACACTACGGTGAAGAGTTG -ACGGAACACTACGGTGAAAGACTG -ACGGAACACTACGGTGAATCGGTA -ACGGAACACTACGGTGAATGCCTA -ACGGAACACTACGGTGAACCACTA -ACGGAACACTACGGTGAAGGAGTA -ACGGAACACTACGGTGAATCGTCT -ACGGAACACTACGGTGAATGCACT -ACGGAACACTACGGTGAACTGACT -ACGGAACACTACGGTGAACAACCT -ACGGAACACTACGGTGAAGCTACT -ACGGAACACTACGGTGAAGGATCT -ACGGAACACTACGGTGAAAAGGCT -ACGGAACACTACGGTGAATCAACC -ACGGAACACTACGGTGAATGTTCC -ACGGAACACTACGGTGAAATTCCC -ACGGAACACTACGGTGAATTCTCG -ACGGAACACTACGGTGAATAGACG -ACGGAACACTACGGTGAAGTAACG -ACGGAACACTACGGTGAAACTTCG -ACGGAACACTACGGTGAATACGCA -ACGGAACACTACGGTGAACTTGCA -ACGGAACACTACGGTGAACGAACA -ACGGAACACTACGGTGAACAGTCA -ACGGAACACTACGGTGAAGATCCA -ACGGAACACTACGGTGAAACGACA -ACGGAACACTACGGTGAAAGCTCA -ACGGAACACTACGGTGAATCACGT -ACGGAACACTACGGTGAACGTAGT -ACGGAACACTACGGTGAAGTCAGT -ACGGAACACTACGGTGAAGAAGGT -ACGGAACACTACGGTGAAAACCGT -ACGGAACACTACGGTGAATTGTGC -ACGGAACACTACGGTGAACTAAGC -ACGGAACACTACGGTGAAACTAGC -ACGGAACACTACGGTGAAAGATGC -ACGGAACACTACGGTGAATGAAGG -ACGGAACACTACGGTGAACAATGG -ACGGAACACTACGGTGAAATGAGG -ACGGAACACTACGGTGAAAATGGG -ACGGAACACTACGGTGAATCCTGA -ACGGAACACTACGGTGAATAGCGA -ACGGAACACTACGGTGAACACAGA -ACGGAACACTACGGTGAAGCAAGA -ACGGAACACTACGGTGAAGGTTGA -ACGGAACACTACGGTGAATCCGAT -ACGGAACACTACGGTGAATGGCAT -ACGGAACACTACGGTGAACGAGAT -ACGGAACACTACGGTGAATACCAC -ACGGAACACTACGGTGAACAGAAC -ACGGAACACTACGGTGAAGTCTAC -ACGGAACACTACGGTGAAACGTAC -ACGGAACACTACGGTGAAAGTGAC -ACGGAACACTACGGTGAACTGTAG -ACGGAACACTACGGTGAACCTAAG -ACGGAACACTACGGTGAAGTTCAG -ACGGAACACTACGGTGAAGCATAG -ACGGAACACTACGGTGAAGACAAG -ACGGAACACTACGGTGAAAAGCAG -ACGGAACACTACGGTGAACGTCAA -ACGGAACACTACGGTGAAGCTGAA -ACGGAACACTACGGTGAAAGTACG -ACGGAACACTACGGTGAAATCCGA -ACGGAACACTACGGTGAAATGGGA -ACGGAACACTACGGTGAAGTGCAA -ACGGAACACTACGGTGAAGAGGAA -ACGGAACACTACGGTGAACAGGTA -ACGGAACACTACGGTGAAGACTCT -ACGGAACACTACGGTGAAAGTCCT -ACGGAACACTACGGTGAATAAGCC -ACGGAACACTACGGTGAAATAGCC -ACGGAACACTACGGTGAATAACCG -ACGGAACACTACGGTGAAATGCCA -ACGGAACACTACCGTAACGGAAAC -ACGGAACACTACCGTAACAACACC -ACGGAACACTACCGTAACATCGAG -ACGGAACACTACCGTAACCTCCTT -ACGGAACACTACCGTAACCCTGTT -ACGGAACACTACCGTAACCGGTTT -ACGGAACACTACCGTAACGTGGTT -ACGGAACACTACCGTAACGCCTTT -ACGGAACACTACCGTAACGGTCTT -ACGGAACACTACCGTAACACGCTT -ACGGAACACTACCGTAACAGCGTT -ACGGAACACTACCGTAACTTCGTC -ACGGAACACTACCGTAACTCTCTC -ACGGAACACTACCGTAACTGGATC -ACGGAACACTACCGTAACCACTTC -ACGGAACACTACCGTAACGTACTC -ACGGAACACTACCGTAACGATGTC -ACGGAACACTACCGTAACACAGTC -ACGGAACACTACCGTAACTTGCTG -ACGGAACACTACCGTAACTCCATG -ACGGAACACTACCGTAACTGTGTG -ACGGAACACTACCGTAACCTAGTG -ACGGAACACTACCGTAACCATCTG -ACGGAACACTACCGTAACGAGTTG -ACGGAACACTACCGTAACAGACTG -ACGGAACACTACCGTAACTCGGTA -ACGGAACACTACCGTAACTGCCTA -ACGGAACACTACCGTAACCCACTA -ACGGAACACTACCGTAACGGAGTA -ACGGAACACTACCGTAACTCGTCT -ACGGAACACTACCGTAACTGCACT -ACGGAACACTACCGTAACCTGACT -ACGGAACACTACCGTAACCAACCT -ACGGAACACTACCGTAACGCTACT -ACGGAACACTACCGTAACGGATCT -ACGGAACACTACCGTAACAAGGCT -ACGGAACACTACCGTAACTCAACC -ACGGAACACTACCGTAACTGTTCC -ACGGAACACTACCGTAACATTCCC -ACGGAACACTACCGTAACTTCTCG -ACGGAACACTACCGTAACTAGACG -ACGGAACACTACCGTAACGTAACG -ACGGAACACTACCGTAACACTTCG -ACGGAACACTACCGTAACTACGCA -ACGGAACACTACCGTAACCTTGCA -ACGGAACACTACCGTAACCGAACA -ACGGAACACTACCGTAACCAGTCA -ACGGAACACTACCGTAACGATCCA -ACGGAACACTACCGTAACACGACA -ACGGAACACTACCGTAACAGCTCA -ACGGAACACTACCGTAACTCACGT -ACGGAACACTACCGTAACCGTAGT -ACGGAACACTACCGTAACGTCAGT -ACGGAACACTACCGTAACGAAGGT -ACGGAACACTACCGTAACAACCGT -ACGGAACACTACCGTAACTTGTGC -ACGGAACACTACCGTAACCTAAGC -ACGGAACACTACCGTAACACTAGC -ACGGAACACTACCGTAACAGATGC -ACGGAACACTACCGTAACTGAAGG -ACGGAACACTACCGTAACCAATGG -ACGGAACACTACCGTAACATGAGG -ACGGAACACTACCGTAACAATGGG -ACGGAACACTACCGTAACTCCTGA -ACGGAACACTACCGTAACTAGCGA -ACGGAACACTACCGTAACCACAGA -ACGGAACACTACCGTAACGCAAGA -ACGGAACACTACCGTAACGGTTGA -ACGGAACACTACCGTAACTCCGAT -ACGGAACACTACCGTAACTGGCAT -ACGGAACACTACCGTAACCGAGAT -ACGGAACACTACCGTAACTACCAC -ACGGAACACTACCGTAACCAGAAC -ACGGAACACTACCGTAACGTCTAC -ACGGAACACTACCGTAACACGTAC -ACGGAACACTACCGTAACAGTGAC -ACGGAACACTACCGTAACCTGTAG -ACGGAACACTACCGTAACCCTAAG -ACGGAACACTACCGTAACGTTCAG -ACGGAACACTACCGTAACGCATAG -ACGGAACACTACCGTAACGACAAG -ACGGAACACTACCGTAACAAGCAG -ACGGAACACTACCGTAACCGTCAA -ACGGAACACTACCGTAACGCTGAA -ACGGAACACTACCGTAACAGTACG -ACGGAACACTACCGTAACATCCGA -ACGGAACACTACCGTAACATGGGA -ACGGAACACTACCGTAACGTGCAA -ACGGAACACTACCGTAACGAGGAA -ACGGAACACTACCGTAACCAGGTA -ACGGAACACTACCGTAACGACTCT -ACGGAACACTACCGTAACAGTCCT -ACGGAACACTACCGTAACTAAGCC -ACGGAACACTACCGTAACATAGCC -ACGGAACACTACCGTAACTAACCG -ACGGAACACTACCGTAACATGCCA -ACGGAACACTACTGCTTGGGAAAC -ACGGAACACTACTGCTTGAACACC -ACGGAACACTACTGCTTGATCGAG -ACGGAACACTACTGCTTGCTCCTT -ACGGAACACTACTGCTTGCCTGTT -ACGGAACACTACTGCTTGCGGTTT -ACGGAACACTACTGCTTGGTGGTT -ACGGAACACTACTGCTTGGCCTTT -ACGGAACACTACTGCTTGGGTCTT -ACGGAACACTACTGCTTGACGCTT -ACGGAACACTACTGCTTGAGCGTT -ACGGAACACTACTGCTTGTTCGTC -ACGGAACACTACTGCTTGTCTCTC -ACGGAACACTACTGCTTGTGGATC -ACGGAACACTACTGCTTGCACTTC -ACGGAACACTACTGCTTGGTACTC -ACGGAACACTACTGCTTGGATGTC -ACGGAACACTACTGCTTGACAGTC -ACGGAACACTACTGCTTGTTGCTG -ACGGAACACTACTGCTTGTCCATG -ACGGAACACTACTGCTTGTGTGTG -ACGGAACACTACTGCTTGCTAGTG -ACGGAACACTACTGCTTGCATCTG -ACGGAACACTACTGCTTGGAGTTG -ACGGAACACTACTGCTTGAGACTG -ACGGAACACTACTGCTTGTCGGTA -ACGGAACACTACTGCTTGTGCCTA -ACGGAACACTACTGCTTGCCACTA -ACGGAACACTACTGCTTGGGAGTA -ACGGAACACTACTGCTTGTCGTCT -ACGGAACACTACTGCTTGTGCACT -ACGGAACACTACTGCTTGCTGACT -ACGGAACACTACTGCTTGCAACCT -ACGGAACACTACTGCTTGGCTACT -ACGGAACACTACTGCTTGGGATCT -ACGGAACACTACTGCTTGAAGGCT -ACGGAACACTACTGCTTGTCAACC -ACGGAACACTACTGCTTGTGTTCC -ACGGAACACTACTGCTTGATTCCC -ACGGAACACTACTGCTTGTTCTCG -ACGGAACACTACTGCTTGTAGACG -ACGGAACACTACTGCTTGGTAACG -ACGGAACACTACTGCTTGACTTCG -ACGGAACACTACTGCTTGTACGCA -ACGGAACACTACTGCTTGCTTGCA -ACGGAACACTACTGCTTGCGAACA -ACGGAACACTACTGCTTGCAGTCA -ACGGAACACTACTGCTTGGATCCA -ACGGAACACTACTGCTTGACGACA -ACGGAACACTACTGCTTGAGCTCA -ACGGAACACTACTGCTTGTCACGT -ACGGAACACTACTGCTTGCGTAGT -ACGGAACACTACTGCTTGGTCAGT -ACGGAACACTACTGCTTGGAAGGT -ACGGAACACTACTGCTTGAACCGT -ACGGAACACTACTGCTTGTTGTGC -ACGGAACACTACTGCTTGCTAAGC -ACGGAACACTACTGCTTGACTAGC -ACGGAACACTACTGCTTGAGATGC -ACGGAACACTACTGCTTGTGAAGG -ACGGAACACTACTGCTTGCAATGG -ACGGAACACTACTGCTTGATGAGG -ACGGAACACTACTGCTTGAATGGG -ACGGAACACTACTGCTTGTCCTGA -ACGGAACACTACTGCTTGTAGCGA -ACGGAACACTACTGCTTGCACAGA -ACGGAACACTACTGCTTGGCAAGA -ACGGAACACTACTGCTTGGGTTGA -ACGGAACACTACTGCTTGTCCGAT -ACGGAACACTACTGCTTGTGGCAT -ACGGAACACTACTGCTTGCGAGAT -ACGGAACACTACTGCTTGTACCAC -ACGGAACACTACTGCTTGCAGAAC -ACGGAACACTACTGCTTGGTCTAC -ACGGAACACTACTGCTTGACGTAC -ACGGAACACTACTGCTTGAGTGAC -ACGGAACACTACTGCTTGCTGTAG -ACGGAACACTACTGCTTGCCTAAG -ACGGAACACTACTGCTTGGTTCAG -ACGGAACACTACTGCTTGGCATAG -ACGGAACACTACTGCTTGGACAAG -ACGGAACACTACTGCTTGAAGCAG -ACGGAACACTACTGCTTGCGTCAA -ACGGAACACTACTGCTTGGCTGAA -ACGGAACACTACTGCTTGAGTACG -ACGGAACACTACTGCTTGATCCGA -ACGGAACACTACTGCTTGATGGGA -ACGGAACACTACTGCTTGGTGCAA -ACGGAACACTACTGCTTGGAGGAA -ACGGAACACTACTGCTTGCAGGTA -ACGGAACACTACTGCTTGGACTCT -ACGGAACACTACTGCTTGAGTCCT -ACGGAACACTACTGCTTGTAAGCC -ACGGAACACTACTGCTTGATAGCC -ACGGAACACTACTGCTTGTAACCG -ACGGAACACTACTGCTTGATGCCA -ACGGAACACTACAGCCTAGGAAAC -ACGGAACACTACAGCCTAAACACC -ACGGAACACTACAGCCTAATCGAG -ACGGAACACTACAGCCTACTCCTT -ACGGAACACTACAGCCTACCTGTT -ACGGAACACTACAGCCTACGGTTT -ACGGAACACTACAGCCTAGTGGTT -ACGGAACACTACAGCCTAGCCTTT -ACGGAACACTACAGCCTAGGTCTT -ACGGAACACTACAGCCTAACGCTT -ACGGAACACTACAGCCTAAGCGTT -ACGGAACACTACAGCCTATTCGTC -ACGGAACACTACAGCCTATCTCTC -ACGGAACACTACAGCCTATGGATC -ACGGAACACTACAGCCTACACTTC -ACGGAACACTACAGCCTAGTACTC -ACGGAACACTACAGCCTAGATGTC -ACGGAACACTACAGCCTAACAGTC -ACGGAACACTACAGCCTATTGCTG -ACGGAACACTACAGCCTATCCATG -ACGGAACACTACAGCCTATGTGTG -ACGGAACACTACAGCCTACTAGTG -ACGGAACACTACAGCCTACATCTG -ACGGAACACTACAGCCTAGAGTTG -ACGGAACACTACAGCCTAAGACTG -ACGGAACACTACAGCCTATCGGTA -ACGGAACACTACAGCCTATGCCTA -ACGGAACACTACAGCCTACCACTA -ACGGAACACTACAGCCTAGGAGTA -ACGGAACACTACAGCCTATCGTCT -ACGGAACACTACAGCCTATGCACT -ACGGAACACTACAGCCTACTGACT -ACGGAACACTACAGCCTACAACCT -ACGGAACACTACAGCCTAGCTACT -ACGGAACACTACAGCCTAGGATCT -ACGGAACACTACAGCCTAAAGGCT -ACGGAACACTACAGCCTATCAACC -ACGGAACACTACAGCCTATGTTCC -ACGGAACACTACAGCCTAATTCCC -ACGGAACACTACAGCCTATTCTCG -ACGGAACACTACAGCCTATAGACG -ACGGAACACTACAGCCTAGTAACG -ACGGAACACTACAGCCTAACTTCG -ACGGAACACTACAGCCTATACGCA -ACGGAACACTACAGCCTACTTGCA -ACGGAACACTACAGCCTACGAACA -ACGGAACACTACAGCCTACAGTCA -ACGGAACACTACAGCCTAGATCCA -ACGGAACACTACAGCCTAACGACA -ACGGAACACTACAGCCTAAGCTCA -ACGGAACACTACAGCCTATCACGT -ACGGAACACTACAGCCTACGTAGT -ACGGAACACTACAGCCTAGTCAGT -ACGGAACACTACAGCCTAGAAGGT -ACGGAACACTACAGCCTAAACCGT -ACGGAACACTACAGCCTATTGTGC -ACGGAACACTACAGCCTACTAAGC -ACGGAACACTACAGCCTAACTAGC -ACGGAACACTACAGCCTAAGATGC -ACGGAACACTACAGCCTATGAAGG -ACGGAACACTACAGCCTACAATGG -ACGGAACACTACAGCCTAATGAGG -ACGGAACACTACAGCCTAAATGGG -ACGGAACACTACAGCCTATCCTGA -ACGGAACACTACAGCCTATAGCGA -ACGGAACACTACAGCCTACACAGA -ACGGAACACTACAGCCTAGCAAGA -ACGGAACACTACAGCCTAGGTTGA -ACGGAACACTACAGCCTATCCGAT -ACGGAACACTACAGCCTATGGCAT -ACGGAACACTACAGCCTACGAGAT -ACGGAACACTACAGCCTATACCAC -ACGGAACACTACAGCCTACAGAAC -ACGGAACACTACAGCCTAGTCTAC -ACGGAACACTACAGCCTAACGTAC -ACGGAACACTACAGCCTAAGTGAC -ACGGAACACTACAGCCTACTGTAG -ACGGAACACTACAGCCTACCTAAG -ACGGAACACTACAGCCTAGTTCAG -ACGGAACACTACAGCCTAGCATAG -ACGGAACACTACAGCCTAGACAAG -ACGGAACACTACAGCCTAAAGCAG -ACGGAACACTACAGCCTACGTCAA -ACGGAACACTACAGCCTAGCTGAA -ACGGAACACTACAGCCTAAGTACG -ACGGAACACTACAGCCTAATCCGA -ACGGAACACTACAGCCTAATGGGA -ACGGAACACTACAGCCTAGTGCAA -ACGGAACACTACAGCCTAGAGGAA -ACGGAACACTACAGCCTACAGGTA -ACGGAACACTACAGCCTAGACTCT -ACGGAACACTACAGCCTAAGTCCT -ACGGAACACTACAGCCTATAAGCC -ACGGAACACTACAGCCTAATAGCC -ACGGAACACTACAGCCTATAACCG -ACGGAACACTACAGCCTAATGCCA -ACGGAACACTACAGCACTGGAAAC -ACGGAACACTACAGCACTAACACC -ACGGAACACTACAGCACTATCGAG -ACGGAACACTACAGCACTCTCCTT -ACGGAACACTACAGCACTCCTGTT -ACGGAACACTACAGCACTCGGTTT -ACGGAACACTACAGCACTGTGGTT -ACGGAACACTACAGCACTGCCTTT -ACGGAACACTACAGCACTGGTCTT -ACGGAACACTACAGCACTACGCTT -ACGGAACACTACAGCACTAGCGTT -ACGGAACACTACAGCACTTTCGTC -ACGGAACACTACAGCACTTCTCTC -ACGGAACACTACAGCACTTGGATC -ACGGAACACTACAGCACTCACTTC -ACGGAACACTACAGCACTGTACTC -ACGGAACACTACAGCACTGATGTC -ACGGAACACTACAGCACTACAGTC -ACGGAACACTACAGCACTTTGCTG -ACGGAACACTACAGCACTTCCATG -ACGGAACACTACAGCACTTGTGTG -ACGGAACACTACAGCACTCTAGTG -ACGGAACACTACAGCACTCATCTG -ACGGAACACTACAGCACTGAGTTG -ACGGAACACTACAGCACTAGACTG -ACGGAACACTACAGCACTTCGGTA -ACGGAACACTACAGCACTTGCCTA -ACGGAACACTACAGCACTCCACTA -ACGGAACACTACAGCACTGGAGTA -ACGGAACACTACAGCACTTCGTCT -ACGGAACACTACAGCACTTGCACT -ACGGAACACTACAGCACTCTGACT -ACGGAACACTACAGCACTCAACCT -ACGGAACACTACAGCACTGCTACT -ACGGAACACTACAGCACTGGATCT -ACGGAACACTACAGCACTAAGGCT -ACGGAACACTACAGCACTTCAACC -ACGGAACACTACAGCACTTGTTCC -ACGGAACACTACAGCACTATTCCC -ACGGAACACTACAGCACTTTCTCG -ACGGAACACTACAGCACTTAGACG -ACGGAACACTACAGCACTGTAACG -ACGGAACACTACAGCACTACTTCG -ACGGAACACTACAGCACTTACGCA -ACGGAACACTACAGCACTCTTGCA -ACGGAACACTACAGCACTCGAACA -ACGGAACACTACAGCACTCAGTCA -ACGGAACACTACAGCACTGATCCA -ACGGAACACTACAGCACTACGACA -ACGGAACACTACAGCACTAGCTCA -ACGGAACACTACAGCACTTCACGT -ACGGAACACTACAGCACTCGTAGT -ACGGAACACTACAGCACTGTCAGT -ACGGAACACTACAGCACTGAAGGT -ACGGAACACTACAGCACTAACCGT -ACGGAACACTACAGCACTTTGTGC -ACGGAACACTACAGCACTCTAAGC -ACGGAACACTACAGCACTACTAGC -ACGGAACACTACAGCACTAGATGC -ACGGAACACTACAGCACTTGAAGG -ACGGAACACTACAGCACTCAATGG -ACGGAACACTACAGCACTATGAGG -ACGGAACACTACAGCACTAATGGG -ACGGAACACTACAGCACTTCCTGA -ACGGAACACTACAGCACTTAGCGA -ACGGAACACTACAGCACTCACAGA -ACGGAACACTACAGCACTGCAAGA -ACGGAACACTACAGCACTGGTTGA -ACGGAACACTACAGCACTTCCGAT -ACGGAACACTACAGCACTTGGCAT -ACGGAACACTACAGCACTCGAGAT -ACGGAACACTACAGCACTTACCAC -ACGGAACACTACAGCACTCAGAAC -ACGGAACACTACAGCACTGTCTAC -ACGGAACACTACAGCACTACGTAC -ACGGAACACTACAGCACTAGTGAC -ACGGAACACTACAGCACTCTGTAG -ACGGAACACTACAGCACTCCTAAG -ACGGAACACTACAGCACTGTTCAG -ACGGAACACTACAGCACTGCATAG -ACGGAACACTACAGCACTGACAAG -ACGGAACACTACAGCACTAAGCAG -ACGGAACACTACAGCACTCGTCAA -ACGGAACACTACAGCACTGCTGAA -ACGGAACACTACAGCACTAGTACG -ACGGAACACTACAGCACTATCCGA -ACGGAACACTACAGCACTATGGGA -ACGGAACACTACAGCACTGTGCAA -ACGGAACACTACAGCACTGAGGAA -ACGGAACACTACAGCACTCAGGTA -ACGGAACACTACAGCACTGACTCT -ACGGAACACTACAGCACTAGTCCT -ACGGAACACTACAGCACTTAAGCC -ACGGAACACTACAGCACTATAGCC -ACGGAACACTACAGCACTTAACCG -ACGGAACACTACAGCACTATGCCA -ACGGAACACTACTGCAGAGGAAAC -ACGGAACACTACTGCAGAAACACC -ACGGAACACTACTGCAGAATCGAG -ACGGAACACTACTGCAGACTCCTT -ACGGAACACTACTGCAGACCTGTT -ACGGAACACTACTGCAGACGGTTT -ACGGAACACTACTGCAGAGTGGTT -ACGGAACACTACTGCAGAGCCTTT -ACGGAACACTACTGCAGAGGTCTT -ACGGAACACTACTGCAGAACGCTT -ACGGAACACTACTGCAGAAGCGTT -ACGGAACACTACTGCAGATTCGTC -ACGGAACACTACTGCAGATCTCTC -ACGGAACACTACTGCAGATGGATC -ACGGAACACTACTGCAGACACTTC -ACGGAACACTACTGCAGAGTACTC -ACGGAACACTACTGCAGAGATGTC -ACGGAACACTACTGCAGAACAGTC -ACGGAACACTACTGCAGATTGCTG -ACGGAACACTACTGCAGATCCATG -ACGGAACACTACTGCAGATGTGTG -ACGGAACACTACTGCAGACTAGTG -ACGGAACACTACTGCAGACATCTG -ACGGAACACTACTGCAGAGAGTTG -ACGGAACACTACTGCAGAAGACTG -ACGGAACACTACTGCAGATCGGTA -ACGGAACACTACTGCAGATGCCTA -ACGGAACACTACTGCAGACCACTA -ACGGAACACTACTGCAGAGGAGTA -ACGGAACACTACTGCAGATCGTCT -ACGGAACACTACTGCAGATGCACT -ACGGAACACTACTGCAGACTGACT -ACGGAACACTACTGCAGACAACCT -ACGGAACACTACTGCAGAGCTACT -ACGGAACACTACTGCAGAGGATCT -ACGGAACACTACTGCAGAAAGGCT -ACGGAACACTACTGCAGATCAACC -ACGGAACACTACTGCAGATGTTCC -ACGGAACACTACTGCAGAATTCCC -ACGGAACACTACTGCAGATTCTCG -ACGGAACACTACTGCAGATAGACG -ACGGAACACTACTGCAGAGTAACG -ACGGAACACTACTGCAGAACTTCG -ACGGAACACTACTGCAGATACGCA -ACGGAACACTACTGCAGACTTGCA -ACGGAACACTACTGCAGACGAACA -ACGGAACACTACTGCAGACAGTCA -ACGGAACACTACTGCAGAGATCCA -ACGGAACACTACTGCAGAACGACA -ACGGAACACTACTGCAGAAGCTCA -ACGGAACACTACTGCAGATCACGT -ACGGAACACTACTGCAGACGTAGT -ACGGAACACTACTGCAGAGTCAGT -ACGGAACACTACTGCAGAGAAGGT -ACGGAACACTACTGCAGAAACCGT -ACGGAACACTACTGCAGATTGTGC -ACGGAACACTACTGCAGACTAAGC -ACGGAACACTACTGCAGAACTAGC -ACGGAACACTACTGCAGAAGATGC -ACGGAACACTACTGCAGATGAAGG -ACGGAACACTACTGCAGACAATGG -ACGGAACACTACTGCAGAATGAGG -ACGGAACACTACTGCAGAAATGGG -ACGGAACACTACTGCAGATCCTGA -ACGGAACACTACTGCAGATAGCGA -ACGGAACACTACTGCAGACACAGA -ACGGAACACTACTGCAGAGCAAGA -ACGGAACACTACTGCAGAGGTTGA -ACGGAACACTACTGCAGATCCGAT -ACGGAACACTACTGCAGATGGCAT -ACGGAACACTACTGCAGACGAGAT -ACGGAACACTACTGCAGATACCAC -ACGGAACACTACTGCAGACAGAAC -ACGGAACACTACTGCAGAGTCTAC -ACGGAACACTACTGCAGAACGTAC -ACGGAACACTACTGCAGAAGTGAC -ACGGAACACTACTGCAGACTGTAG -ACGGAACACTACTGCAGACCTAAG -ACGGAACACTACTGCAGAGTTCAG -ACGGAACACTACTGCAGAGCATAG -ACGGAACACTACTGCAGAGACAAG -ACGGAACACTACTGCAGAAAGCAG -ACGGAACACTACTGCAGACGTCAA -ACGGAACACTACTGCAGAGCTGAA -ACGGAACACTACTGCAGAAGTACG -ACGGAACACTACTGCAGAATCCGA -ACGGAACACTACTGCAGAATGGGA -ACGGAACACTACTGCAGAGTGCAA -ACGGAACACTACTGCAGAGAGGAA -ACGGAACACTACTGCAGACAGGTA -ACGGAACACTACTGCAGAGACTCT -ACGGAACACTACTGCAGAAGTCCT -ACGGAACACTACTGCAGATAAGCC -ACGGAACACTACTGCAGAATAGCC -ACGGAACACTACTGCAGATAACCG -ACGGAACACTACTGCAGAATGCCA -ACGGAACACTACAGGTGAGGAAAC -ACGGAACACTACAGGTGAAACACC -ACGGAACACTACAGGTGAATCGAG -ACGGAACACTACAGGTGACTCCTT -ACGGAACACTACAGGTGACCTGTT -ACGGAACACTACAGGTGACGGTTT -ACGGAACACTACAGGTGAGTGGTT -ACGGAACACTACAGGTGAGCCTTT -ACGGAACACTACAGGTGAGGTCTT -ACGGAACACTACAGGTGAACGCTT -ACGGAACACTACAGGTGAAGCGTT -ACGGAACACTACAGGTGATTCGTC -ACGGAACACTACAGGTGATCTCTC -ACGGAACACTACAGGTGATGGATC -ACGGAACACTACAGGTGACACTTC -ACGGAACACTACAGGTGAGTACTC -ACGGAACACTACAGGTGAGATGTC -ACGGAACACTACAGGTGAACAGTC -ACGGAACACTACAGGTGATTGCTG -ACGGAACACTACAGGTGATCCATG -ACGGAACACTACAGGTGATGTGTG -ACGGAACACTACAGGTGACTAGTG -ACGGAACACTACAGGTGACATCTG -ACGGAACACTACAGGTGAGAGTTG -ACGGAACACTACAGGTGAAGACTG -ACGGAACACTACAGGTGATCGGTA -ACGGAACACTACAGGTGATGCCTA -ACGGAACACTACAGGTGACCACTA -ACGGAACACTACAGGTGAGGAGTA -ACGGAACACTACAGGTGATCGTCT -ACGGAACACTACAGGTGATGCACT -ACGGAACACTACAGGTGACTGACT -ACGGAACACTACAGGTGACAACCT -ACGGAACACTACAGGTGAGCTACT -ACGGAACACTACAGGTGAGGATCT -ACGGAACACTACAGGTGAAAGGCT -ACGGAACACTACAGGTGATCAACC -ACGGAACACTACAGGTGATGTTCC -ACGGAACACTACAGGTGAATTCCC -ACGGAACACTACAGGTGATTCTCG -ACGGAACACTACAGGTGATAGACG -ACGGAACACTACAGGTGAGTAACG -ACGGAACACTACAGGTGAACTTCG -ACGGAACACTACAGGTGATACGCA -ACGGAACACTACAGGTGACTTGCA -ACGGAACACTACAGGTGACGAACA -ACGGAACACTACAGGTGACAGTCA -ACGGAACACTACAGGTGAGATCCA -ACGGAACACTACAGGTGAACGACA -ACGGAACACTACAGGTGAAGCTCA -ACGGAACACTACAGGTGATCACGT -ACGGAACACTACAGGTGACGTAGT -ACGGAACACTACAGGTGAGTCAGT -ACGGAACACTACAGGTGAGAAGGT -ACGGAACACTACAGGTGAAACCGT -ACGGAACACTACAGGTGATTGTGC -ACGGAACACTACAGGTGACTAAGC -ACGGAACACTACAGGTGAACTAGC -ACGGAACACTACAGGTGAAGATGC -ACGGAACACTACAGGTGATGAAGG -ACGGAACACTACAGGTGACAATGG -ACGGAACACTACAGGTGAATGAGG -ACGGAACACTACAGGTGAAATGGG -ACGGAACACTACAGGTGATCCTGA -ACGGAACACTACAGGTGATAGCGA -ACGGAACACTACAGGTGACACAGA -ACGGAACACTACAGGTGAGCAAGA -ACGGAACACTACAGGTGAGGTTGA -ACGGAACACTACAGGTGATCCGAT -ACGGAACACTACAGGTGATGGCAT -ACGGAACACTACAGGTGACGAGAT -ACGGAACACTACAGGTGATACCAC -ACGGAACACTACAGGTGACAGAAC -ACGGAACACTACAGGTGAGTCTAC -ACGGAACACTACAGGTGAACGTAC -ACGGAACACTACAGGTGAAGTGAC -ACGGAACACTACAGGTGACTGTAG -ACGGAACACTACAGGTGACCTAAG -ACGGAACACTACAGGTGAGTTCAG -ACGGAACACTACAGGTGAGCATAG -ACGGAACACTACAGGTGAGACAAG -ACGGAACACTACAGGTGAAAGCAG -ACGGAACACTACAGGTGACGTCAA -ACGGAACACTACAGGTGAGCTGAA -ACGGAACACTACAGGTGAAGTACG -ACGGAACACTACAGGTGAATCCGA -ACGGAACACTACAGGTGAATGGGA -ACGGAACACTACAGGTGAGTGCAA -ACGGAACACTACAGGTGAGAGGAA -ACGGAACACTACAGGTGACAGGTA -ACGGAACACTACAGGTGAGACTCT -ACGGAACACTACAGGTGAAGTCCT -ACGGAACACTACAGGTGATAAGCC -ACGGAACACTACAGGTGAATAGCC -ACGGAACACTACAGGTGATAACCG -ACGGAACACTACAGGTGAATGCCA -ACGGAACACTACTGGCAAGGAAAC -ACGGAACACTACTGGCAAAACACC -ACGGAACACTACTGGCAAATCGAG -ACGGAACACTACTGGCAACTCCTT -ACGGAACACTACTGGCAACCTGTT -ACGGAACACTACTGGCAACGGTTT -ACGGAACACTACTGGCAAGTGGTT -ACGGAACACTACTGGCAAGCCTTT -ACGGAACACTACTGGCAAGGTCTT -ACGGAACACTACTGGCAAACGCTT -ACGGAACACTACTGGCAAAGCGTT -ACGGAACACTACTGGCAATTCGTC -ACGGAACACTACTGGCAATCTCTC -ACGGAACACTACTGGCAATGGATC -ACGGAACACTACTGGCAACACTTC -ACGGAACACTACTGGCAAGTACTC -ACGGAACACTACTGGCAAGATGTC -ACGGAACACTACTGGCAAACAGTC -ACGGAACACTACTGGCAATTGCTG -ACGGAACACTACTGGCAATCCATG -ACGGAACACTACTGGCAATGTGTG -ACGGAACACTACTGGCAACTAGTG -ACGGAACACTACTGGCAACATCTG -ACGGAACACTACTGGCAAGAGTTG -ACGGAACACTACTGGCAAAGACTG -ACGGAACACTACTGGCAATCGGTA -ACGGAACACTACTGGCAATGCCTA -ACGGAACACTACTGGCAACCACTA -ACGGAACACTACTGGCAAGGAGTA -ACGGAACACTACTGGCAATCGTCT -ACGGAACACTACTGGCAATGCACT -ACGGAACACTACTGGCAACTGACT -ACGGAACACTACTGGCAACAACCT -ACGGAACACTACTGGCAAGCTACT -ACGGAACACTACTGGCAAGGATCT -ACGGAACACTACTGGCAAAAGGCT -ACGGAACACTACTGGCAATCAACC -ACGGAACACTACTGGCAATGTTCC -ACGGAACACTACTGGCAAATTCCC -ACGGAACACTACTGGCAATTCTCG -ACGGAACACTACTGGCAATAGACG -ACGGAACACTACTGGCAAGTAACG -ACGGAACACTACTGGCAAACTTCG -ACGGAACACTACTGGCAATACGCA -ACGGAACACTACTGGCAACTTGCA -ACGGAACACTACTGGCAACGAACA -ACGGAACACTACTGGCAACAGTCA -ACGGAACACTACTGGCAAGATCCA -ACGGAACACTACTGGCAAACGACA -ACGGAACACTACTGGCAAAGCTCA -ACGGAACACTACTGGCAATCACGT -ACGGAACACTACTGGCAACGTAGT -ACGGAACACTACTGGCAAGTCAGT -ACGGAACACTACTGGCAAGAAGGT -ACGGAACACTACTGGCAAAACCGT -ACGGAACACTACTGGCAATTGTGC -ACGGAACACTACTGGCAACTAAGC -ACGGAACACTACTGGCAAACTAGC -ACGGAACACTACTGGCAAAGATGC -ACGGAACACTACTGGCAATGAAGG -ACGGAACACTACTGGCAACAATGG -ACGGAACACTACTGGCAAATGAGG -ACGGAACACTACTGGCAAAATGGG -ACGGAACACTACTGGCAATCCTGA -ACGGAACACTACTGGCAATAGCGA -ACGGAACACTACTGGCAACACAGA -ACGGAACACTACTGGCAAGCAAGA -ACGGAACACTACTGGCAAGGTTGA -ACGGAACACTACTGGCAATCCGAT -ACGGAACACTACTGGCAATGGCAT -ACGGAACACTACTGGCAACGAGAT -ACGGAACACTACTGGCAATACCAC -ACGGAACACTACTGGCAACAGAAC -ACGGAACACTACTGGCAAGTCTAC -ACGGAACACTACTGGCAAACGTAC -ACGGAACACTACTGGCAAAGTGAC -ACGGAACACTACTGGCAACTGTAG -ACGGAACACTACTGGCAACCTAAG -ACGGAACACTACTGGCAAGTTCAG -ACGGAACACTACTGGCAAGCATAG -ACGGAACACTACTGGCAAGACAAG -ACGGAACACTACTGGCAAAAGCAG -ACGGAACACTACTGGCAACGTCAA -ACGGAACACTACTGGCAAGCTGAA -ACGGAACACTACTGGCAAAGTACG -ACGGAACACTACTGGCAAATCCGA -ACGGAACACTACTGGCAAATGGGA -ACGGAACACTACTGGCAAGTGCAA -ACGGAACACTACTGGCAAGAGGAA -ACGGAACACTACTGGCAACAGGTA -ACGGAACACTACTGGCAAGACTCT -ACGGAACACTACTGGCAAAGTCCT -ACGGAACACTACTGGCAATAAGCC -ACGGAACACTACTGGCAAATAGCC -ACGGAACACTACTGGCAATAACCG -ACGGAACACTACTGGCAAATGCCA -ACGGAACACTACAGGATGGGAAAC -ACGGAACACTACAGGATGAACACC -ACGGAACACTACAGGATGATCGAG -ACGGAACACTACAGGATGCTCCTT -ACGGAACACTACAGGATGCCTGTT -ACGGAACACTACAGGATGCGGTTT -ACGGAACACTACAGGATGGTGGTT -ACGGAACACTACAGGATGGCCTTT -ACGGAACACTACAGGATGGGTCTT -ACGGAACACTACAGGATGACGCTT -ACGGAACACTACAGGATGAGCGTT -ACGGAACACTACAGGATGTTCGTC -ACGGAACACTACAGGATGTCTCTC -ACGGAACACTACAGGATGTGGATC -ACGGAACACTACAGGATGCACTTC -ACGGAACACTACAGGATGGTACTC -ACGGAACACTACAGGATGGATGTC -ACGGAACACTACAGGATGACAGTC -ACGGAACACTACAGGATGTTGCTG -ACGGAACACTACAGGATGTCCATG -ACGGAACACTACAGGATGTGTGTG -ACGGAACACTACAGGATGCTAGTG -ACGGAACACTACAGGATGCATCTG -ACGGAACACTACAGGATGGAGTTG -ACGGAACACTACAGGATGAGACTG -ACGGAACACTACAGGATGTCGGTA -ACGGAACACTACAGGATGTGCCTA -ACGGAACACTACAGGATGCCACTA -ACGGAACACTACAGGATGGGAGTA -ACGGAACACTACAGGATGTCGTCT -ACGGAACACTACAGGATGTGCACT -ACGGAACACTACAGGATGCTGACT -ACGGAACACTACAGGATGCAACCT -ACGGAACACTACAGGATGGCTACT -ACGGAACACTACAGGATGGGATCT -ACGGAACACTACAGGATGAAGGCT -ACGGAACACTACAGGATGTCAACC -ACGGAACACTACAGGATGTGTTCC -ACGGAACACTACAGGATGATTCCC -ACGGAACACTACAGGATGTTCTCG -ACGGAACACTACAGGATGTAGACG -ACGGAACACTACAGGATGGTAACG -ACGGAACACTACAGGATGACTTCG -ACGGAACACTACAGGATGTACGCA -ACGGAACACTACAGGATGCTTGCA -ACGGAACACTACAGGATGCGAACA -ACGGAACACTACAGGATGCAGTCA -ACGGAACACTACAGGATGGATCCA -ACGGAACACTACAGGATGACGACA -ACGGAACACTACAGGATGAGCTCA -ACGGAACACTACAGGATGTCACGT -ACGGAACACTACAGGATGCGTAGT -ACGGAACACTACAGGATGGTCAGT -ACGGAACACTACAGGATGGAAGGT -ACGGAACACTACAGGATGAACCGT -ACGGAACACTACAGGATGTTGTGC -ACGGAACACTACAGGATGCTAAGC -ACGGAACACTACAGGATGACTAGC -ACGGAACACTACAGGATGAGATGC -ACGGAACACTACAGGATGTGAAGG -ACGGAACACTACAGGATGCAATGG -ACGGAACACTACAGGATGATGAGG -ACGGAACACTACAGGATGAATGGG -ACGGAACACTACAGGATGTCCTGA -ACGGAACACTACAGGATGTAGCGA -ACGGAACACTACAGGATGCACAGA -ACGGAACACTACAGGATGGCAAGA -ACGGAACACTACAGGATGGGTTGA -ACGGAACACTACAGGATGTCCGAT -ACGGAACACTACAGGATGTGGCAT -ACGGAACACTACAGGATGCGAGAT -ACGGAACACTACAGGATGTACCAC -ACGGAACACTACAGGATGCAGAAC -ACGGAACACTACAGGATGGTCTAC -ACGGAACACTACAGGATGACGTAC -ACGGAACACTACAGGATGAGTGAC -ACGGAACACTACAGGATGCTGTAG -ACGGAACACTACAGGATGCCTAAG -ACGGAACACTACAGGATGGTTCAG -ACGGAACACTACAGGATGGCATAG -ACGGAACACTACAGGATGGACAAG -ACGGAACACTACAGGATGAAGCAG -ACGGAACACTACAGGATGCGTCAA -ACGGAACACTACAGGATGGCTGAA -ACGGAACACTACAGGATGAGTACG -ACGGAACACTACAGGATGATCCGA -ACGGAACACTACAGGATGATGGGA -ACGGAACACTACAGGATGGTGCAA -ACGGAACACTACAGGATGGAGGAA -ACGGAACACTACAGGATGCAGGTA -ACGGAACACTACAGGATGGACTCT -ACGGAACACTACAGGATGAGTCCT -ACGGAACACTACAGGATGTAAGCC -ACGGAACACTACAGGATGATAGCC -ACGGAACACTACAGGATGTAACCG -ACGGAACACTACAGGATGATGCCA -ACGGAACACTACGGGAATGGAAAC -ACGGAACACTACGGGAATAACACC -ACGGAACACTACGGGAATATCGAG -ACGGAACACTACGGGAATCTCCTT -ACGGAACACTACGGGAATCCTGTT -ACGGAACACTACGGGAATCGGTTT -ACGGAACACTACGGGAATGTGGTT -ACGGAACACTACGGGAATGCCTTT -ACGGAACACTACGGGAATGGTCTT -ACGGAACACTACGGGAATACGCTT -ACGGAACACTACGGGAATAGCGTT -ACGGAACACTACGGGAATTTCGTC -ACGGAACACTACGGGAATTCTCTC -ACGGAACACTACGGGAATTGGATC -ACGGAACACTACGGGAATCACTTC -ACGGAACACTACGGGAATGTACTC -ACGGAACACTACGGGAATGATGTC -ACGGAACACTACGGGAATACAGTC -ACGGAACACTACGGGAATTTGCTG -ACGGAACACTACGGGAATTCCATG -ACGGAACACTACGGGAATTGTGTG -ACGGAACACTACGGGAATCTAGTG -ACGGAACACTACGGGAATCATCTG -ACGGAACACTACGGGAATGAGTTG -ACGGAACACTACGGGAATAGACTG -ACGGAACACTACGGGAATTCGGTA -ACGGAACACTACGGGAATTGCCTA -ACGGAACACTACGGGAATCCACTA -ACGGAACACTACGGGAATGGAGTA -ACGGAACACTACGGGAATTCGTCT -ACGGAACACTACGGGAATTGCACT -ACGGAACACTACGGGAATCTGACT -ACGGAACACTACGGGAATCAACCT -ACGGAACACTACGGGAATGCTACT -ACGGAACACTACGGGAATGGATCT -ACGGAACACTACGGGAATAAGGCT -ACGGAACACTACGGGAATTCAACC -ACGGAACACTACGGGAATTGTTCC -ACGGAACACTACGGGAATATTCCC -ACGGAACACTACGGGAATTTCTCG -ACGGAACACTACGGGAATTAGACG -ACGGAACACTACGGGAATGTAACG -ACGGAACACTACGGGAATACTTCG -ACGGAACACTACGGGAATTACGCA -ACGGAACACTACGGGAATCTTGCA -ACGGAACACTACGGGAATCGAACA -ACGGAACACTACGGGAATCAGTCA -ACGGAACACTACGGGAATGATCCA -ACGGAACACTACGGGAATACGACA -ACGGAACACTACGGGAATAGCTCA -ACGGAACACTACGGGAATTCACGT -ACGGAACACTACGGGAATCGTAGT -ACGGAACACTACGGGAATGTCAGT -ACGGAACACTACGGGAATGAAGGT -ACGGAACACTACGGGAATAACCGT -ACGGAACACTACGGGAATTTGTGC -ACGGAACACTACGGGAATCTAAGC -ACGGAACACTACGGGAATACTAGC -ACGGAACACTACGGGAATAGATGC -ACGGAACACTACGGGAATTGAAGG -ACGGAACACTACGGGAATCAATGG -ACGGAACACTACGGGAATATGAGG -ACGGAACACTACGGGAATAATGGG -ACGGAACACTACGGGAATTCCTGA -ACGGAACACTACGGGAATTAGCGA -ACGGAACACTACGGGAATCACAGA -ACGGAACACTACGGGAATGCAAGA -ACGGAACACTACGGGAATGGTTGA -ACGGAACACTACGGGAATTCCGAT -ACGGAACACTACGGGAATTGGCAT -ACGGAACACTACGGGAATCGAGAT -ACGGAACACTACGGGAATTACCAC -ACGGAACACTACGGGAATCAGAAC -ACGGAACACTACGGGAATGTCTAC -ACGGAACACTACGGGAATACGTAC -ACGGAACACTACGGGAATAGTGAC -ACGGAACACTACGGGAATCTGTAG -ACGGAACACTACGGGAATCCTAAG -ACGGAACACTACGGGAATGTTCAG -ACGGAACACTACGGGAATGCATAG -ACGGAACACTACGGGAATGACAAG -ACGGAACACTACGGGAATAAGCAG -ACGGAACACTACGGGAATCGTCAA -ACGGAACACTACGGGAATGCTGAA -ACGGAACACTACGGGAATAGTACG -ACGGAACACTACGGGAATATCCGA -ACGGAACACTACGGGAATATGGGA -ACGGAACACTACGGGAATGTGCAA -ACGGAACACTACGGGAATGAGGAA -ACGGAACACTACGGGAATCAGGTA -ACGGAACACTACGGGAATGACTCT -ACGGAACACTACGGGAATAGTCCT -ACGGAACACTACGGGAATTAAGCC -ACGGAACACTACGGGAATATAGCC -ACGGAACACTACGGGAATTAACCG -ACGGAACACTACGGGAATATGCCA -ACGGAACACTACTGATCCGGAAAC -ACGGAACACTACTGATCCAACACC -ACGGAACACTACTGATCCATCGAG -ACGGAACACTACTGATCCCTCCTT -ACGGAACACTACTGATCCCCTGTT -ACGGAACACTACTGATCCCGGTTT -ACGGAACACTACTGATCCGTGGTT -ACGGAACACTACTGATCCGCCTTT -ACGGAACACTACTGATCCGGTCTT -ACGGAACACTACTGATCCACGCTT -ACGGAACACTACTGATCCAGCGTT -ACGGAACACTACTGATCCTTCGTC -ACGGAACACTACTGATCCTCTCTC -ACGGAACACTACTGATCCTGGATC -ACGGAACACTACTGATCCCACTTC -ACGGAACACTACTGATCCGTACTC -ACGGAACACTACTGATCCGATGTC -ACGGAACACTACTGATCCACAGTC -ACGGAACACTACTGATCCTTGCTG -ACGGAACACTACTGATCCTCCATG -ACGGAACACTACTGATCCTGTGTG -ACGGAACACTACTGATCCCTAGTG -ACGGAACACTACTGATCCCATCTG -ACGGAACACTACTGATCCGAGTTG -ACGGAACACTACTGATCCAGACTG -ACGGAACACTACTGATCCTCGGTA -ACGGAACACTACTGATCCTGCCTA -ACGGAACACTACTGATCCCCACTA -ACGGAACACTACTGATCCGGAGTA -ACGGAACACTACTGATCCTCGTCT -ACGGAACACTACTGATCCTGCACT -ACGGAACACTACTGATCCCTGACT -ACGGAACACTACTGATCCCAACCT -ACGGAACACTACTGATCCGCTACT -ACGGAACACTACTGATCCGGATCT -ACGGAACACTACTGATCCAAGGCT -ACGGAACACTACTGATCCTCAACC -ACGGAACACTACTGATCCTGTTCC -ACGGAACACTACTGATCCATTCCC -ACGGAACACTACTGATCCTTCTCG -ACGGAACACTACTGATCCTAGACG -ACGGAACACTACTGATCCGTAACG -ACGGAACACTACTGATCCACTTCG -ACGGAACACTACTGATCCTACGCA -ACGGAACACTACTGATCCCTTGCA -ACGGAACACTACTGATCCCGAACA -ACGGAACACTACTGATCCCAGTCA -ACGGAACACTACTGATCCGATCCA -ACGGAACACTACTGATCCACGACA -ACGGAACACTACTGATCCAGCTCA -ACGGAACACTACTGATCCTCACGT -ACGGAACACTACTGATCCCGTAGT -ACGGAACACTACTGATCCGTCAGT -ACGGAACACTACTGATCCGAAGGT -ACGGAACACTACTGATCCAACCGT -ACGGAACACTACTGATCCTTGTGC -ACGGAACACTACTGATCCCTAAGC -ACGGAACACTACTGATCCACTAGC -ACGGAACACTACTGATCCAGATGC -ACGGAACACTACTGATCCTGAAGG -ACGGAACACTACTGATCCCAATGG -ACGGAACACTACTGATCCATGAGG -ACGGAACACTACTGATCCAATGGG -ACGGAACACTACTGATCCTCCTGA -ACGGAACACTACTGATCCTAGCGA -ACGGAACACTACTGATCCCACAGA -ACGGAACACTACTGATCCGCAAGA -ACGGAACACTACTGATCCGGTTGA -ACGGAACACTACTGATCCTCCGAT -ACGGAACACTACTGATCCTGGCAT -ACGGAACACTACTGATCCCGAGAT -ACGGAACACTACTGATCCTACCAC -ACGGAACACTACTGATCCCAGAAC -ACGGAACACTACTGATCCGTCTAC -ACGGAACACTACTGATCCACGTAC -ACGGAACACTACTGATCCAGTGAC -ACGGAACACTACTGATCCCTGTAG -ACGGAACACTACTGATCCCCTAAG -ACGGAACACTACTGATCCGTTCAG -ACGGAACACTACTGATCCGCATAG -ACGGAACACTACTGATCCGACAAG -ACGGAACACTACTGATCCAAGCAG -ACGGAACACTACTGATCCCGTCAA -ACGGAACACTACTGATCCGCTGAA -ACGGAACACTACTGATCCAGTACG -ACGGAACACTACTGATCCATCCGA -ACGGAACACTACTGATCCATGGGA -ACGGAACACTACTGATCCGTGCAA -ACGGAACACTACTGATCCGAGGAA -ACGGAACACTACTGATCCCAGGTA -ACGGAACACTACTGATCCGACTCT -ACGGAACACTACTGATCCAGTCCT -ACGGAACACTACTGATCCTAAGCC -ACGGAACACTACTGATCCATAGCC -ACGGAACACTACTGATCCTAACCG -ACGGAACACTACTGATCCATGCCA -ACGGAACACTACCGATAGGGAAAC -ACGGAACACTACCGATAGAACACC -ACGGAACACTACCGATAGATCGAG -ACGGAACACTACCGATAGCTCCTT -ACGGAACACTACCGATAGCCTGTT -ACGGAACACTACCGATAGCGGTTT -ACGGAACACTACCGATAGGTGGTT -ACGGAACACTACCGATAGGCCTTT -ACGGAACACTACCGATAGGGTCTT -ACGGAACACTACCGATAGACGCTT -ACGGAACACTACCGATAGAGCGTT -ACGGAACACTACCGATAGTTCGTC -ACGGAACACTACCGATAGTCTCTC -ACGGAACACTACCGATAGTGGATC -ACGGAACACTACCGATAGCACTTC -ACGGAACACTACCGATAGGTACTC -ACGGAACACTACCGATAGGATGTC -ACGGAACACTACCGATAGACAGTC -ACGGAACACTACCGATAGTTGCTG -ACGGAACACTACCGATAGTCCATG -ACGGAACACTACCGATAGTGTGTG -ACGGAACACTACCGATAGCTAGTG -ACGGAACACTACCGATAGCATCTG -ACGGAACACTACCGATAGGAGTTG -ACGGAACACTACCGATAGAGACTG -ACGGAACACTACCGATAGTCGGTA -ACGGAACACTACCGATAGTGCCTA -ACGGAACACTACCGATAGCCACTA -ACGGAACACTACCGATAGGGAGTA -ACGGAACACTACCGATAGTCGTCT -ACGGAACACTACCGATAGTGCACT -ACGGAACACTACCGATAGCTGACT -ACGGAACACTACCGATAGCAACCT -ACGGAACACTACCGATAGGCTACT -ACGGAACACTACCGATAGGGATCT -ACGGAACACTACCGATAGAAGGCT -ACGGAACACTACCGATAGTCAACC -ACGGAACACTACCGATAGTGTTCC -ACGGAACACTACCGATAGATTCCC -ACGGAACACTACCGATAGTTCTCG -ACGGAACACTACCGATAGTAGACG -ACGGAACACTACCGATAGGTAACG -ACGGAACACTACCGATAGACTTCG -ACGGAACACTACCGATAGTACGCA -ACGGAACACTACCGATAGCTTGCA -ACGGAACACTACCGATAGCGAACA -ACGGAACACTACCGATAGCAGTCA -ACGGAACACTACCGATAGGATCCA -ACGGAACACTACCGATAGACGACA -ACGGAACACTACCGATAGAGCTCA -ACGGAACACTACCGATAGTCACGT -ACGGAACACTACCGATAGCGTAGT -ACGGAACACTACCGATAGGTCAGT -ACGGAACACTACCGATAGGAAGGT -ACGGAACACTACCGATAGAACCGT -ACGGAACACTACCGATAGTTGTGC -ACGGAACACTACCGATAGCTAAGC -ACGGAACACTACCGATAGACTAGC -ACGGAACACTACCGATAGAGATGC -ACGGAACACTACCGATAGTGAAGG -ACGGAACACTACCGATAGCAATGG -ACGGAACACTACCGATAGATGAGG -ACGGAACACTACCGATAGAATGGG -ACGGAACACTACCGATAGTCCTGA -ACGGAACACTACCGATAGTAGCGA -ACGGAACACTACCGATAGCACAGA -ACGGAACACTACCGATAGGCAAGA -ACGGAACACTACCGATAGGGTTGA -ACGGAACACTACCGATAGTCCGAT -ACGGAACACTACCGATAGTGGCAT -ACGGAACACTACCGATAGCGAGAT -ACGGAACACTACCGATAGTACCAC -ACGGAACACTACCGATAGCAGAAC -ACGGAACACTACCGATAGGTCTAC -ACGGAACACTACCGATAGACGTAC -ACGGAACACTACCGATAGAGTGAC -ACGGAACACTACCGATAGCTGTAG -ACGGAACACTACCGATAGCCTAAG -ACGGAACACTACCGATAGGTTCAG -ACGGAACACTACCGATAGGCATAG -ACGGAACACTACCGATAGGACAAG -ACGGAACACTACCGATAGAAGCAG -ACGGAACACTACCGATAGCGTCAA -ACGGAACACTACCGATAGGCTGAA -ACGGAACACTACCGATAGAGTACG -ACGGAACACTACCGATAGATCCGA -ACGGAACACTACCGATAGATGGGA -ACGGAACACTACCGATAGGTGCAA -ACGGAACACTACCGATAGGAGGAA -ACGGAACACTACCGATAGCAGGTA -ACGGAACACTACCGATAGGACTCT -ACGGAACACTACCGATAGAGTCCT -ACGGAACACTACCGATAGTAAGCC -ACGGAACACTACCGATAGATAGCC -ACGGAACACTACCGATAGTAACCG -ACGGAACACTACCGATAGATGCCA -ACGGAACACTACAGACACGGAAAC -ACGGAACACTACAGACACAACACC -ACGGAACACTACAGACACATCGAG -ACGGAACACTACAGACACCTCCTT -ACGGAACACTACAGACACCCTGTT -ACGGAACACTACAGACACCGGTTT -ACGGAACACTACAGACACGTGGTT -ACGGAACACTACAGACACGCCTTT -ACGGAACACTACAGACACGGTCTT -ACGGAACACTACAGACACACGCTT -ACGGAACACTACAGACACAGCGTT -ACGGAACACTACAGACACTTCGTC -ACGGAACACTACAGACACTCTCTC -ACGGAACACTACAGACACTGGATC -ACGGAACACTACAGACACCACTTC -ACGGAACACTACAGACACGTACTC -ACGGAACACTACAGACACGATGTC -ACGGAACACTACAGACACACAGTC -ACGGAACACTACAGACACTTGCTG -ACGGAACACTACAGACACTCCATG -ACGGAACACTACAGACACTGTGTG -ACGGAACACTACAGACACCTAGTG -ACGGAACACTACAGACACCATCTG -ACGGAACACTACAGACACGAGTTG -ACGGAACACTACAGACACAGACTG -ACGGAACACTACAGACACTCGGTA -ACGGAACACTACAGACACTGCCTA -ACGGAACACTACAGACACCCACTA -ACGGAACACTACAGACACGGAGTA -ACGGAACACTACAGACACTCGTCT -ACGGAACACTACAGACACTGCACT -ACGGAACACTACAGACACCTGACT -ACGGAACACTACAGACACCAACCT -ACGGAACACTACAGACACGCTACT -ACGGAACACTACAGACACGGATCT -ACGGAACACTACAGACACAAGGCT -ACGGAACACTACAGACACTCAACC -ACGGAACACTACAGACACTGTTCC -ACGGAACACTACAGACACATTCCC -ACGGAACACTACAGACACTTCTCG -ACGGAACACTACAGACACTAGACG -ACGGAACACTACAGACACGTAACG -ACGGAACACTACAGACACACTTCG -ACGGAACACTACAGACACTACGCA -ACGGAACACTACAGACACCTTGCA -ACGGAACACTACAGACACCGAACA -ACGGAACACTACAGACACCAGTCA -ACGGAACACTACAGACACGATCCA -ACGGAACACTACAGACACACGACA -ACGGAACACTACAGACACAGCTCA -ACGGAACACTACAGACACTCACGT -ACGGAACACTACAGACACCGTAGT -ACGGAACACTACAGACACGTCAGT -ACGGAACACTACAGACACGAAGGT -ACGGAACACTACAGACACAACCGT -ACGGAACACTACAGACACTTGTGC -ACGGAACACTACAGACACCTAAGC -ACGGAACACTACAGACACACTAGC -ACGGAACACTACAGACACAGATGC -ACGGAACACTACAGACACTGAAGG -ACGGAACACTACAGACACCAATGG -ACGGAACACTACAGACACATGAGG -ACGGAACACTACAGACACAATGGG -ACGGAACACTACAGACACTCCTGA -ACGGAACACTACAGACACTAGCGA -ACGGAACACTACAGACACCACAGA -ACGGAACACTACAGACACGCAAGA -ACGGAACACTACAGACACGGTTGA -ACGGAACACTACAGACACTCCGAT -ACGGAACACTACAGACACTGGCAT -ACGGAACACTACAGACACCGAGAT -ACGGAACACTACAGACACTACCAC -ACGGAACACTACAGACACCAGAAC -ACGGAACACTACAGACACGTCTAC -ACGGAACACTACAGACACACGTAC -ACGGAACACTACAGACACAGTGAC -ACGGAACACTACAGACACCTGTAG -ACGGAACACTACAGACACCCTAAG -ACGGAACACTACAGACACGTTCAG -ACGGAACACTACAGACACGCATAG -ACGGAACACTACAGACACGACAAG -ACGGAACACTACAGACACAAGCAG -ACGGAACACTACAGACACCGTCAA -ACGGAACACTACAGACACGCTGAA -ACGGAACACTACAGACACAGTACG -ACGGAACACTACAGACACATCCGA -ACGGAACACTACAGACACATGGGA -ACGGAACACTACAGACACGTGCAA -ACGGAACACTACAGACACGAGGAA -ACGGAACACTACAGACACCAGGTA -ACGGAACACTACAGACACGACTCT -ACGGAACACTACAGACACAGTCCT -ACGGAACACTACAGACACTAAGCC -ACGGAACACTACAGACACATAGCC -ACGGAACACTACAGACACTAACCG -ACGGAACACTACAGACACATGCCA -ACGGAACACTACAGAGCAGGAAAC -ACGGAACACTACAGAGCAAACACC -ACGGAACACTACAGAGCAATCGAG -ACGGAACACTACAGAGCACTCCTT -ACGGAACACTACAGAGCACCTGTT -ACGGAACACTACAGAGCACGGTTT -ACGGAACACTACAGAGCAGTGGTT -ACGGAACACTACAGAGCAGCCTTT -ACGGAACACTACAGAGCAGGTCTT -ACGGAACACTACAGAGCAACGCTT -ACGGAACACTACAGAGCAAGCGTT -ACGGAACACTACAGAGCATTCGTC -ACGGAACACTACAGAGCATCTCTC -ACGGAACACTACAGAGCATGGATC -ACGGAACACTACAGAGCACACTTC -ACGGAACACTACAGAGCAGTACTC -ACGGAACACTACAGAGCAGATGTC -ACGGAACACTACAGAGCAACAGTC -ACGGAACACTACAGAGCATTGCTG -ACGGAACACTACAGAGCATCCATG -ACGGAACACTACAGAGCATGTGTG -ACGGAACACTACAGAGCACTAGTG -ACGGAACACTACAGAGCACATCTG -ACGGAACACTACAGAGCAGAGTTG -ACGGAACACTACAGAGCAAGACTG -ACGGAACACTACAGAGCATCGGTA -ACGGAACACTACAGAGCATGCCTA -ACGGAACACTACAGAGCACCACTA -ACGGAACACTACAGAGCAGGAGTA -ACGGAACACTACAGAGCATCGTCT -ACGGAACACTACAGAGCATGCACT -ACGGAACACTACAGAGCACTGACT -ACGGAACACTACAGAGCACAACCT -ACGGAACACTACAGAGCAGCTACT -ACGGAACACTACAGAGCAGGATCT -ACGGAACACTACAGAGCAAAGGCT -ACGGAACACTACAGAGCATCAACC -ACGGAACACTACAGAGCATGTTCC -ACGGAACACTACAGAGCAATTCCC -ACGGAACACTACAGAGCATTCTCG -ACGGAACACTACAGAGCATAGACG -ACGGAACACTACAGAGCAGTAACG -ACGGAACACTACAGAGCAACTTCG -ACGGAACACTACAGAGCATACGCA -ACGGAACACTACAGAGCACTTGCA -ACGGAACACTACAGAGCACGAACA -ACGGAACACTACAGAGCACAGTCA -ACGGAACACTACAGAGCAGATCCA -ACGGAACACTACAGAGCAACGACA -ACGGAACACTACAGAGCAAGCTCA -ACGGAACACTACAGAGCATCACGT -ACGGAACACTACAGAGCACGTAGT -ACGGAACACTACAGAGCAGTCAGT -ACGGAACACTACAGAGCAGAAGGT -ACGGAACACTACAGAGCAAACCGT -ACGGAACACTACAGAGCATTGTGC -ACGGAACACTACAGAGCACTAAGC -ACGGAACACTACAGAGCAACTAGC -ACGGAACACTACAGAGCAAGATGC -ACGGAACACTACAGAGCATGAAGG -ACGGAACACTACAGAGCACAATGG -ACGGAACACTACAGAGCAATGAGG -ACGGAACACTACAGAGCAAATGGG -ACGGAACACTACAGAGCATCCTGA -ACGGAACACTACAGAGCATAGCGA -ACGGAACACTACAGAGCACACAGA -ACGGAACACTACAGAGCAGCAAGA -ACGGAACACTACAGAGCAGGTTGA -ACGGAACACTACAGAGCATCCGAT -ACGGAACACTACAGAGCATGGCAT -ACGGAACACTACAGAGCACGAGAT -ACGGAACACTACAGAGCATACCAC -ACGGAACACTACAGAGCACAGAAC -ACGGAACACTACAGAGCAGTCTAC -ACGGAACACTACAGAGCAACGTAC -ACGGAACACTACAGAGCAAGTGAC -ACGGAACACTACAGAGCACTGTAG -ACGGAACACTACAGAGCACCTAAG -ACGGAACACTACAGAGCAGTTCAG -ACGGAACACTACAGAGCAGCATAG -ACGGAACACTACAGAGCAGACAAG -ACGGAACACTACAGAGCAAAGCAG -ACGGAACACTACAGAGCACGTCAA -ACGGAACACTACAGAGCAGCTGAA -ACGGAACACTACAGAGCAAGTACG -ACGGAACACTACAGAGCAATCCGA -ACGGAACACTACAGAGCAATGGGA -ACGGAACACTACAGAGCAGTGCAA -ACGGAACACTACAGAGCAGAGGAA -ACGGAACACTACAGAGCACAGGTA -ACGGAACACTACAGAGCAGACTCT -ACGGAACACTACAGAGCAAGTCCT -ACGGAACACTACAGAGCATAAGCC -ACGGAACACTACAGAGCAATAGCC -ACGGAACACTACAGAGCATAACCG -ACGGAACACTACAGAGCAATGCCA -ACGGAACACTACTGAGGTGGAAAC -ACGGAACACTACTGAGGTAACACC -ACGGAACACTACTGAGGTATCGAG -ACGGAACACTACTGAGGTCTCCTT -ACGGAACACTACTGAGGTCCTGTT -ACGGAACACTACTGAGGTCGGTTT -ACGGAACACTACTGAGGTGTGGTT -ACGGAACACTACTGAGGTGCCTTT -ACGGAACACTACTGAGGTGGTCTT -ACGGAACACTACTGAGGTACGCTT -ACGGAACACTACTGAGGTAGCGTT -ACGGAACACTACTGAGGTTTCGTC -ACGGAACACTACTGAGGTTCTCTC -ACGGAACACTACTGAGGTTGGATC -ACGGAACACTACTGAGGTCACTTC -ACGGAACACTACTGAGGTGTACTC -ACGGAACACTACTGAGGTGATGTC -ACGGAACACTACTGAGGTACAGTC -ACGGAACACTACTGAGGTTTGCTG -ACGGAACACTACTGAGGTTCCATG -ACGGAACACTACTGAGGTTGTGTG -ACGGAACACTACTGAGGTCTAGTG -ACGGAACACTACTGAGGTCATCTG -ACGGAACACTACTGAGGTGAGTTG -ACGGAACACTACTGAGGTAGACTG -ACGGAACACTACTGAGGTTCGGTA -ACGGAACACTACTGAGGTTGCCTA -ACGGAACACTACTGAGGTCCACTA -ACGGAACACTACTGAGGTGGAGTA -ACGGAACACTACTGAGGTTCGTCT -ACGGAACACTACTGAGGTTGCACT -ACGGAACACTACTGAGGTCTGACT -ACGGAACACTACTGAGGTCAACCT -ACGGAACACTACTGAGGTGCTACT -ACGGAACACTACTGAGGTGGATCT -ACGGAACACTACTGAGGTAAGGCT -ACGGAACACTACTGAGGTTCAACC -ACGGAACACTACTGAGGTTGTTCC -ACGGAACACTACTGAGGTATTCCC -ACGGAACACTACTGAGGTTTCTCG -ACGGAACACTACTGAGGTTAGACG -ACGGAACACTACTGAGGTGTAACG -ACGGAACACTACTGAGGTACTTCG -ACGGAACACTACTGAGGTTACGCA -ACGGAACACTACTGAGGTCTTGCA -ACGGAACACTACTGAGGTCGAACA -ACGGAACACTACTGAGGTCAGTCA -ACGGAACACTACTGAGGTGATCCA -ACGGAACACTACTGAGGTACGACA -ACGGAACACTACTGAGGTAGCTCA -ACGGAACACTACTGAGGTTCACGT -ACGGAACACTACTGAGGTCGTAGT -ACGGAACACTACTGAGGTGTCAGT -ACGGAACACTACTGAGGTGAAGGT -ACGGAACACTACTGAGGTAACCGT -ACGGAACACTACTGAGGTTTGTGC -ACGGAACACTACTGAGGTCTAAGC -ACGGAACACTACTGAGGTACTAGC -ACGGAACACTACTGAGGTAGATGC -ACGGAACACTACTGAGGTTGAAGG -ACGGAACACTACTGAGGTCAATGG -ACGGAACACTACTGAGGTATGAGG -ACGGAACACTACTGAGGTAATGGG -ACGGAACACTACTGAGGTTCCTGA -ACGGAACACTACTGAGGTTAGCGA -ACGGAACACTACTGAGGTCACAGA -ACGGAACACTACTGAGGTGCAAGA -ACGGAACACTACTGAGGTGGTTGA -ACGGAACACTACTGAGGTTCCGAT -ACGGAACACTACTGAGGTTGGCAT -ACGGAACACTACTGAGGTCGAGAT -ACGGAACACTACTGAGGTTACCAC -ACGGAACACTACTGAGGTCAGAAC -ACGGAACACTACTGAGGTGTCTAC -ACGGAACACTACTGAGGTACGTAC -ACGGAACACTACTGAGGTAGTGAC -ACGGAACACTACTGAGGTCTGTAG -ACGGAACACTACTGAGGTCCTAAG -ACGGAACACTACTGAGGTGTTCAG -ACGGAACACTACTGAGGTGCATAG -ACGGAACACTACTGAGGTGACAAG -ACGGAACACTACTGAGGTAAGCAG -ACGGAACACTACTGAGGTCGTCAA -ACGGAACACTACTGAGGTGCTGAA -ACGGAACACTACTGAGGTAGTACG -ACGGAACACTACTGAGGTATCCGA -ACGGAACACTACTGAGGTATGGGA -ACGGAACACTACTGAGGTGTGCAA -ACGGAACACTACTGAGGTGAGGAA -ACGGAACACTACTGAGGTCAGGTA -ACGGAACACTACTGAGGTGACTCT -ACGGAACACTACTGAGGTAGTCCT -ACGGAACACTACTGAGGTTAAGCC -ACGGAACACTACTGAGGTATAGCC -ACGGAACACTACTGAGGTTAACCG -ACGGAACACTACTGAGGTATGCCA -ACGGAACACTACGATTCCGGAAAC -ACGGAACACTACGATTCCAACACC -ACGGAACACTACGATTCCATCGAG -ACGGAACACTACGATTCCCTCCTT -ACGGAACACTACGATTCCCCTGTT -ACGGAACACTACGATTCCCGGTTT -ACGGAACACTACGATTCCGTGGTT -ACGGAACACTACGATTCCGCCTTT -ACGGAACACTACGATTCCGGTCTT -ACGGAACACTACGATTCCACGCTT -ACGGAACACTACGATTCCAGCGTT -ACGGAACACTACGATTCCTTCGTC -ACGGAACACTACGATTCCTCTCTC -ACGGAACACTACGATTCCTGGATC -ACGGAACACTACGATTCCCACTTC -ACGGAACACTACGATTCCGTACTC -ACGGAACACTACGATTCCGATGTC -ACGGAACACTACGATTCCACAGTC -ACGGAACACTACGATTCCTTGCTG -ACGGAACACTACGATTCCTCCATG -ACGGAACACTACGATTCCTGTGTG -ACGGAACACTACGATTCCCTAGTG -ACGGAACACTACGATTCCCATCTG -ACGGAACACTACGATTCCGAGTTG -ACGGAACACTACGATTCCAGACTG -ACGGAACACTACGATTCCTCGGTA -ACGGAACACTACGATTCCTGCCTA -ACGGAACACTACGATTCCCCACTA -ACGGAACACTACGATTCCGGAGTA -ACGGAACACTACGATTCCTCGTCT -ACGGAACACTACGATTCCTGCACT -ACGGAACACTACGATTCCCTGACT -ACGGAACACTACGATTCCCAACCT -ACGGAACACTACGATTCCGCTACT -ACGGAACACTACGATTCCGGATCT -ACGGAACACTACGATTCCAAGGCT -ACGGAACACTACGATTCCTCAACC -ACGGAACACTACGATTCCTGTTCC -ACGGAACACTACGATTCCATTCCC -ACGGAACACTACGATTCCTTCTCG -ACGGAACACTACGATTCCTAGACG -ACGGAACACTACGATTCCGTAACG -ACGGAACACTACGATTCCACTTCG -ACGGAACACTACGATTCCTACGCA -ACGGAACACTACGATTCCCTTGCA -ACGGAACACTACGATTCCCGAACA -ACGGAACACTACGATTCCCAGTCA -ACGGAACACTACGATTCCGATCCA -ACGGAACACTACGATTCCACGACA -ACGGAACACTACGATTCCAGCTCA -ACGGAACACTACGATTCCTCACGT -ACGGAACACTACGATTCCCGTAGT -ACGGAACACTACGATTCCGTCAGT -ACGGAACACTACGATTCCGAAGGT -ACGGAACACTACGATTCCAACCGT -ACGGAACACTACGATTCCTTGTGC -ACGGAACACTACGATTCCCTAAGC -ACGGAACACTACGATTCCACTAGC -ACGGAACACTACGATTCCAGATGC -ACGGAACACTACGATTCCTGAAGG -ACGGAACACTACGATTCCCAATGG -ACGGAACACTACGATTCCATGAGG -ACGGAACACTACGATTCCAATGGG -ACGGAACACTACGATTCCTCCTGA -ACGGAACACTACGATTCCTAGCGA -ACGGAACACTACGATTCCCACAGA -ACGGAACACTACGATTCCGCAAGA -ACGGAACACTACGATTCCGGTTGA -ACGGAACACTACGATTCCTCCGAT -ACGGAACACTACGATTCCTGGCAT -ACGGAACACTACGATTCCCGAGAT -ACGGAACACTACGATTCCTACCAC -ACGGAACACTACGATTCCCAGAAC -ACGGAACACTACGATTCCGTCTAC -ACGGAACACTACGATTCCACGTAC -ACGGAACACTACGATTCCAGTGAC -ACGGAACACTACGATTCCCTGTAG -ACGGAACACTACGATTCCCCTAAG -ACGGAACACTACGATTCCGTTCAG -ACGGAACACTACGATTCCGCATAG -ACGGAACACTACGATTCCGACAAG -ACGGAACACTACGATTCCAAGCAG -ACGGAACACTACGATTCCCGTCAA -ACGGAACACTACGATTCCGCTGAA -ACGGAACACTACGATTCCAGTACG -ACGGAACACTACGATTCCATCCGA -ACGGAACACTACGATTCCATGGGA -ACGGAACACTACGATTCCGTGCAA -ACGGAACACTACGATTCCGAGGAA -ACGGAACACTACGATTCCCAGGTA -ACGGAACACTACGATTCCGACTCT -ACGGAACACTACGATTCCAGTCCT -ACGGAACACTACGATTCCTAAGCC -ACGGAACACTACGATTCCATAGCC -ACGGAACACTACGATTCCTAACCG -ACGGAACACTACGATTCCATGCCA -ACGGAACACTACCATTGGGGAAAC -ACGGAACACTACCATTGGAACACC -ACGGAACACTACCATTGGATCGAG -ACGGAACACTACCATTGGCTCCTT -ACGGAACACTACCATTGGCCTGTT -ACGGAACACTACCATTGGCGGTTT -ACGGAACACTACCATTGGGTGGTT -ACGGAACACTACCATTGGGCCTTT -ACGGAACACTACCATTGGGGTCTT -ACGGAACACTACCATTGGACGCTT -ACGGAACACTACCATTGGAGCGTT -ACGGAACACTACCATTGGTTCGTC -ACGGAACACTACCATTGGTCTCTC -ACGGAACACTACCATTGGTGGATC -ACGGAACACTACCATTGGCACTTC -ACGGAACACTACCATTGGGTACTC -ACGGAACACTACCATTGGGATGTC -ACGGAACACTACCATTGGACAGTC -ACGGAACACTACCATTGGTTGCTG -ACGGAACACTACCATTGGTCCATG -ACGGAACACTACCATTGGTGTGTG -ACGGAACACTACCATTGGCTAGTG -ACGGAACACTACCATTGGCATCTG -ACGGAACACTACCATTGGGAGTTG -ACGGAACACTACCATTGGAGACTG -ACGGAACACTACCATTGGTCGGTA -ACGGAACACTACCATTGGTGCCTA -ACGGAACACTACCATTGGCCACTA -ACGGAACACTACCATTGGGGAGTA -ACGGAACACTACCATTGGTCGTCT -ACGGAACACTACCATTGGTGCACT -ACGGAACACTACCATTGGCTGACT -ACGGAACACTACCATTGGCAACCT -ACGGAACACTACCATTGGGCTACT -ACGGAACACTACCATTGGGGATCT -ACGGAACACTACCATTGGAAGGCT -ACGGAACACTACCATTGGTCAACC -ACGGAACACTACCATTGGTGTTCC -ACGGAACACTACCATTGGATTCCC -ACGGAACACTACCATTGGTTCTCG -ACGGAACACTACCATTGGTAGACG -ACGGAACACTACCATTGGGTAACG -ACGGAACACTACCATTGGACTTCG -ACGGAACACTACCATTGGTACGCA -ACGGAACACTACCATTGGCTTGCA -ACGGAACACTACCATTGGCGAACA -ACGGAACACTACCATTGGCAGTCA -ACGGAACACTACCATTGGGATCCA -ACGGAACACTACCATTGGACGACA -ACGGAACACTACCATTGGAGCTCA -ACGGAACACTACCATTGGTCACGT -ACGGAACACTACCATTGGCGTAGT -ACGGAACACTACCATTGGGTCAGT -ACGGAACACTACCATTGGGAAGGT -ACGGAACACTACCATTGGAACCGT -ACGGAACACTACCATTGGTTGTGC -ACGGAACACTACCATTGGCTAAGC -ACGGAACACTACCATTGGACTAGC -ACGGAACACTACCATTGGAGATGC -ACGGAACACTACCATTGGTGAAGG -ACGGAACACTACCATTGGCAATGG -ACGGAACACTACCATTGGATGAGG -ACGGAACACTACCATTGGAATGGG -ACGGAACACTACCATTGGTCCTGA -ACGGAACACTACCATTGGTAGCGA -ACGGAACACTACCATTGGCACAGA -ACGGAACACTACCATTGGGCAAGA -ACGGAACACTACCATTGGGGTTGA -ACGGAACACTACCATTGGTCCGAT -ACGGAACACTACCATTGGTGGCAT -ACGGAACACTACCATTGGCGAGAT -ACGGAACACTACCATTGGTACCAC -ACGGAACACTACCATTGGCAGAAC -ACGGAACACTACCATTGGGTCTAC -ACGGAACACTACCATTGGACGTAC -ACGGAACACTACCATTGGAGTGAC -ACGGAACACTACCATTGGCTGTAG -ACGGAACACTACCATTGGCCTAAG -ACGGAACACTACCATTGGGTTCAG -ACGGAACACTACCATTGGGCATAG -ACGGAACACTACCATTGGGACAAG -ACGGAACACTACCATTGGAAGCAG -ACGGAACACTACCATTGGCGTCAA -ACGGAACACTACCATTGGGCTGAA -ACGGAACACTACCATTGGAGTACG -ACGGAACACTACCATTGGATCCGA -ACGGAACACTACCATTGGATGGGA -ACGGAACACTACCATTGGGTGCAA -ACGGAACACTACCATTGGGAGGAA -ACGGAACACTACCATTGGCAGGTA -ACGGAACACTACCATTGGGACTCT -ACGGAACACTACCATTGGAGTCCT -ACGGAACACTACCATTGGTAAGCC -ACGGAACACTACCATTGGATAGCC -ACGGAACACTACCATTGGTAACCG -ACGGAACACTACCATTGGATGCCA -ACGGAACACTACGATCGAGGAAAC -ACGGAACACTACGATCGAAACACC -ACGGAACACTACGATCGAATCGAG -ACGGAACACTACGATCGACTCCTT -ACGGAACACTACGATCGACCTGTT -ACGGAACACTACGATCGACGGTTT -ACGGAACACTACGATCGAGTGGTT -ACGGAACACTACGATCGAGCCTTT -ACGGAACACTACGATCGAGGTCTT -ACGGAACACTACGATCGAACGCTT -ACGGAACACTACGATCGAAGCGTT -ACGGAACACTACGATCGATTCGTC -ACGGAACACTACGATCGATCTCTC -ACGGAACACTACGATCGATGGATC -ACGGAACACTACGATCGACACTTC -ACGGAACACTACGATCGAGTACTC -ACGGAACACTACGATCGAGATGTC -ACGGAACACTACGATCGAACAGTC -ACGGAACACTACGATCGATTGCTG -ACGGAACACTACGATCGATCCATG -ACGGAACACTACGATCGATGTGTG -ACGGAACACTACGATCGACTAGTG -ACGGAACACTACGATCGACATCTG -ACGGAACACTACGATCGAGAGTTG -ACGGAACACTACGATCGAAGACTG -ACGGAACACTACGATCGATCGGTA -ACGGAACACTACGATCGATGCCTA -ACGGAACACTACGATCGACCACTA -ACGGAACACTACGATCGAGGAGTA -ACGGAACACTACGATCGATCGTCT -ACGGAACACTACGATCGATGCACT -ACGGAACACTACGATCGACTGACT -ACGGAACACTACGATCGACAACCT -ACGGAACACTACGATCGAGCTACT -ACGGAACACTACGATCGAGGATCT -ACGGAACACTACGATCGAAAGGCT -ACGGAACACTACGATCGATCAACC -ACGGAACACTACGATCGATGTTCC -ACGGAACACTACGATCGAATTCCC -ACGGAACACTACGATCGATTCTCG -ACGGAACACTACGATCGATAGACG -ACGGAACACTACGATCGAGTAACG -ACGGAACACTACGATCGAACTTCG -ACGGAACACTACGATCGATACGCA -ACGGAACACTACGATCGACTTGCA -ACGGAACACTACGATCGACGAACA -ACGGAACACTACGATCGACAGTCA -ACGGAACACTACGATCGAGATCCA -ACGGAACACTACGATCGAACGACA -ACGGAACACTACGATCGAAGCTCA -ACGGAACACTACGATCGATCACGT -ACGGAACACTACGATCGACGTAGT -ACGGAACACTACGATCGAGTCAGT -ACGGAACACTACGATCGAGAAGGT -ACGGAACACTACGATCGAAACCGT -ACGGAACACTACGATCGATTGTGC -ACGGAACACTACGATCGACTAAGC -ACGGAACACTACGATCGAACTAGC -ACGGAACACTACGATCGAAGATGC -ACGGAACACTACGATCGATGAAGG -ACGGAACACTACGATCGACAATGG -ACGGAACACTACGATCGAATGAGG -ACGGAACACTACGATCGAAATGGG -ACGGAACACTACGATCGATCCTGA -ACGGAACACTACGATCGATAGCGA -ACGGAACACTACGATCGACACAGA -ACGGAACACTACGATCGAGCAAGA -ACGGAACACTACGATCGAGGTTGA -ACGGAACACTACGATCGATCCGAT -ACGGAACACTACGATCGATGGCAT -ACGGAACACTACGATCGACGAGAT -ACGGAACACTACGATCGATACCAC -ACGGAACACTACGATCGACAGAAC -ACGGAACACTACGATCGAGTCTAC -ACGGAACACTACGATCGAACGTAC -ACGGAACACTACGATCGAAGTGAC -ACGGAACACTACGATCGACTGTAG -ACGGAACACTACGATCGACCTAAG -ACGGAACACTACGATCGAGTTCAG -ACGGAACACTACGATCGAGCATAG -ACGGAACACTACGATCGAGACAAG -ACGGAACACTACGATCGAAAGCAG -ACGGAACACTACGATCGACGTCAA -ACGGAACACTACGATCGAGCTGAA -ACGGAACACTACGATCGAAGTACG -ACGGAACACTACGATCGAATCCGA -ACGGAACACTACGATCGAATGGGA -ACGGAACACTACGATCGAGTGCAA -ACGGAACACTACGATCGAGAGGAA -ACGGAACACTACGATCGACAGGTA -ACGGAACACTACGATCGAGACTCT -ACGGAACACTACGATCGAAGTCCT -ACGGAACACTACGATCGATAAGCC -ACGGAACACTACGATCGAATAGCC -ACGGAACACTACGATCGATAACCG -ACGGAACACTACGATCGAATGCCA -ACGGAACACTACCACTACGGAAAC -ACGGAACACTACCACTACAACACC -ACGGAACACTACCACTACATCGAG -ACGGAACACTACCACTACCTCCTT -ACGGAACACTACCACTACCCTGTT -ACGGAACACTACCACTACCGGTTT -ACGGAACACTACCACTACGTGGTT -ACGGAACACTACCACTACGCCTTT -ACGGAACACTACCACTACGGTCTT -ACGGAACACTACCACTACACGCTT -ACGGAACACTACCACTACAGCGTT -ACGGAACACTACCACTACTTCGTC -ACGGAACACTACCACTACTCTCTC -ACGGAACACTACCACTACTGGATC -ACGGAACACTACCACTACCACTTC -ACGGAACACTACCACTACGTACTC -ACGGAACACTACCACTACGATGTC -ACGGAACACTACCACTACACAGTC -ACGGAACACTACCACTACTTGCTG -ACGGAACACTACCACTACTCCATG -ACGGAACACTACCACTACTGTGTG -ACGGAACACTACCACTACCTAGTG -ACGGAACACTACCACTACCATCTG -ACGGAACACTACCACTACGAGTTG -ACGGAACACTACCACTACAGACTG -ACGGAACACTACCACTACTCGGTA -ACGGAACACTACCACTACTGCCTA -ACGGAACACTACCACTACCCACTA -ACGGAACACTACCACTACGGAGTA -ACGGAACACTACCACTACTCGTCT -ACGGAACACTACCACTACTGCACT -ACGGAACACTACCACTACCTGACT -ACGGAACACTACCACTACCAACCT -ACGGAACACTACCACTACGCTACT -ACGGAACACTACCACTACGGATCT -ACGGAACACTACCACTACAAGGCT -ACGGAACACTACCACTACTCAACC -ACGGAACACTACCACTACTGTTCC -ACGGAACACTACCACTACATTCCC -ACGGAACACTACCACTACTTCTCG -ACGGAACACTACCACTACTAGACG -ACGGAACACTACCACTACGTAACG -ACGGAACACTACCACTACACTTCG -ACGGAACACTACCACTACTACGCA -ACGGAACACTACCACTACCTTGCA -ACGGAACACTACCACTACCGAACA -ACGGAACACTACCACTACCAGTCA -ACGGAACACTACCACTACGATCCA -ACGGAACACTACCACTACACGACA -ACGGAACACTACCACTACAGCTCA -ACGGAACACTACCACTACTCACGT -ACGGAACACTACCACTACCGTAGT -ACGGAACACTACCACTACGTCAGT -ACGGAACACTACCACTACGAAGGT -ACGGAACACTACCACTACAACCGT -ACGGAACACTACCACTACTTGTGC -ACGGAACACTACCACTACCTAAGC -ACGGAACACTACCACTACACTAGC -ACGGAACACTACCACTACAGATGC -ACGGAACACTACCACTACTGAAGG -ACGGAACACTACCACTACCAATGG -ACGGAACACTACCACTACATGAGG -ACGGAACACTACCACTACAATGGG -ACGGAACACTACCACTACTCCTGA -ACGGAACACTACCACTACTAGCGA -ACGGAACACTACCACTACCACAGA -ACGGAACACTACCACTACGCAAGA -ACGGAACACTACCACTACGGTTGA -ACGGAACACTACCACTACTCCGAT -ACGGAACACTACCACTACTGGCAT -ACGGAACACTACCACTACCGAGAT -ACGGAACACTACCACTACTACCAC -ACGGAACACTACCACTACCAGAAC -ACGGAACACTACCACTACGTCTAC -ACGGAACACTACCACTACACGTAC -ACGGAACACTACCACTACAGTGAC -ACGGAACACTACCACTACCTGTAG -ACGGAACACTACCACTACCCTAAG -ACGGAACACTACCACTACGTTCAG -ACGGAACACTACCACTACGCATAG -ACGGAACACTACCACTACGACAAG -ACGGAACACTACCACTACAAGCAG -ACGGAACACTACCACTACCGTCAA -ACGGAACACTACCACTACGCTGAA -ACGGAACACTACCACTACAGTACG -ACGGAACACTACCACTACATCCGA -ACGGAACACTACCACTACATGGGA -ACGGAACACTACCACTACGTGCAA -ACGGAACACTACCACTACGAGGAA -ACGGAACACTACCACTACCAGGTA -ACGGAACACTACCACTACGACTCT -ACGGAACACTACCACTACAGTCCT -ACGGAACACTACCACTACTAAGCC -ACGGAACACTACCACTACATAGCC -ACGGAACACTACCACTACTAACCG -ACGGAACACTACCACTACATGCCA -ACGGAACACTACAACCAGGGAAAC -ACGGAACACTACAACCAGAACACC -ACGGAACACTACAACCAGATCGAG -ACGGAACACTACAACCAGCTCCTT -ACGGAACACTACAACCAGCCTGTT -ACGGAACACTACAACCAGCGGTTT -ACGGAACACTACAACCAGGTGGTT -ACGGAACACTACAACCAGGCCTTT -ACGGAACACTACAACCAGGGTCTT -ACGGAACACTACAACCAGACGCTT -ACGGAACACTACAACCAGAGCGTT -ACGGAACACTACAACCAGTTCGTC -ACGGAACACTACAACCAGTCTCTC -ACGGAACACTACAACCAGTGGATC -ACGGAACACTACAACCAGCACTTC -ACGGAACACTACAACCAGGTACTC -ACGGAACACTACAACCAGGATGTC -ACGGAACACTACAACCAGACAGTC -ACGGAACACTACAACCAGTTGCTG -ACGGAACACTACAACCAGTCCATG -ACGGAACACTACAACCAGTGTGTG -ACGGAACACTACAACCAGCTAGTG -ACGGAACACTACAACCAGCATCTG -ACGGAACACTACAACCAGGAGTTG -ACGGAACACTACAACCAGAGACTG -ACGGAACACTACAACCAGTCGGTA -ACGGAACACTACAACCAGTGCCTA -ACGGAACACTACAACCAGCCACTA -ACGGAACACTACAACCAGGGAGTA -ACGGAACACTACAACCAGTCGTCT -ACGGAACACTACAACCAGTGCACT -ACGGAACACTACAACCAGCTGACT -ACGGAACACTACAACCAGCAACCT -ACGGAACACTACAACCAGGCTACT -ACGGAACACTACAACCAGGGATCT -ACGGAACACTACAACCAGAAGGCT -ACGGAACACTACAACCAGTCAACC -ACGGAACACTACAACCAGTGTTCC -ACGGAACACTACAACCAGATTCCC -ACGGAACACTACAACCAGTTCTCG -ACGGAACACTACAACCAGTAGACG -ACGGAACACTACAACCAGGTAACG -ACGGAACACTACAACCAGACTTCG -ACGGAACACTACAACCAGTACGCA -ACGGAACACTACAACCAGCTTGCA -ACGGAACACTACAACCAGCGAACA -ACGGAACACTACAACCAGCAGTCA -ACGGAACACTACAACCAGGATCCA -ACGGAACACTACAACCAGACGACA -ACGGAACACTACAACCAGAGCTCA -ACGGAACACTACAACCAGTCACGT -ACGGAACACTACAACCAGCGTAGT -ACGGAACACTACAACCAGGTCAGT -ACGGAACACTACAACCAGGAAGGT -ACGGAACACTACAACCAGAACCGT -ACGGAACACTACAACCAGTTGTGC -ACGGAACACTACAACCAGCTAAGC -ACGGAACACTACAACCAGACTAGC -ACGGAACACTACAACCAGAGATGC -ACGGAACACTACAACCAGTGAAGG -ACGGAACACTACAACCAGCAATGG -ACGGAACACTACAACCAGATGAGG -ACGGAACACTACAACCAGAATGGG -ACGGAACACTACAACCAGTCCTGA -ACGGAACACTACAACCAGTAGCGA -ACGGAACACTACAACCAGCACAGA -ACGGAACACTACAACCAGGCAAGA -ACGGAACACTACAACCAGGGTTGA -ACGGAACACTACAACCAGTCCGAT -ACGGAACACTACAACCAGTGGCAT -ACGGAACACTACAACCAGCGAGAT -ACGGAACACTACAACCAGTACCAC -ACGGAACACTACAACCAGCAGAAC -ACGGAACACTACAACCAGGTCTAC -ACGGAACACTACAACCAGACGTAC -ACGGAACACTACAACCAGAGTGAC -ACGGAACACTACAACCAGCTGTAG -ACGGAACACTACAACCAGCCTAAG -ACGGAACACTACAACCAGGTTCAG -ACGGAACACTACAACCAGGCATAG -ACGGAACACTACAACCAGGACAAG -ACGGAACACTACAACCAGAAGCAG -ACGGAACACTACAACCAGCGTCAA -ACGGAACACTACAACCAGGCTGAA -ACGGAACACTACAACCAGAGTACG -ACGGAACACTACAACCAGATCCGA -ACGGAACACTACAACCAGATGGGA -ACGGAACACTACAACCAGGTGCAA -ACGGAACACTACAACCAGGAGGAA -ACGGAACACTACAACCAGCAGGTA -ACGGAACACTACAACCAGGACTCT -ACGGAACACTACAACCAGAGTCCT -ACGGAACACTACAACCAGTAAGCC -ACGGAACACTACAACCAGATAGCC -ACGGAACACTACAACCAGTAACCG -ACGGAACACTACAACCAGATGCCA -ACGGAACACTACTACGTCGGAAAC -ACGGAACACTACTACGTCAACACC -ACGGAACACTACTACGTCATCGAG -ACGGAACACTACTACGTCCTCCTT -ACGGAACACTACTACGTCCCTGTT -ACGGAACACTACTACGTCCGGTTT -ACGGAACACTACTACGTCGTGGTT -ACGGAACACTACTACGTCGCCTTT -ACGGAACACTACTACGTCGGTCTT -ACGGAACACTACTACGTCACGCTT -ACGGAACACTACTACGTCAGCGTT -ACGGAACACTACTACGTCTTCGTC -ACGGAACACTACTACGTCTCTCTC -ACGGAACACTACTACGTCTGGATC -ACGGAACACTACTACGTCCACTTC -ACGGAACACTACTACGTCGTACTC -ACGGAACACTACTACGTCGATGTC -ACGGAACACTACTACGTCACAGTC -ACGGAACACTACTACGTCTTGCTG -ACGGAACACTACTACGTCTCCATG -ACGGAACACTACTACGTCTGTGTG -ACGGAACACTACTACGTCCTAGTG -ACGGAACACTACTACGTCCATCTG -ACGGAACACTACTACGTCGAGTTG -ACGGAACACTACTACGTCAGACTG -ACGGAACACTACTACGTCTCGGTA -ACGGAACACTACTACGTCTGCCTA -ACGGAACACTACTACGTCCCACTA -ACGGAACACTACTACGTCGGAGTA -ACGGAACACTACTACGTCTCGTCT -ACGGAACACTACTACGTCTGCACT -ACGGAACACTACTACGTCCTGACT -ACGGAACACTACTACGTCCAACCT -ACGGAACACTACTACGTCGCTACT -ACGGAACACTACTACGTCGGATCT -ACGGAACACTACTACGTCAAGGCT -ACGGAACACTACTACGTCTCAACC -ACGGAACACTACTACGTCTGTTCC -ACGGAACACTACTACGTCATTCCC -ACGGAACACTACTACGTCTTCTCG -ACGGAACACTACTACGTCTAGACG -ACGGAACACTACTACGTCGTAACG -ACGGAACACTACTACGTCACTTCG -ACGGAACACTACTACGTCTACGCA -ACGGAACACTACTACGTCCTTGCA -ACGGAACACTACTACGTCCGAACA -ACGGAACACTACTACGTCCAGTCA -ACGGAACACTACTACGTCGATCCA -ACGGAACACTACTACGTCACGACA -ACGGAACACTACTACGTCAGCTCA -ACGGAACACTACTACGTCTCACGT -ACGGAACACTACTACGTCCGTAGT -ACGGAACACTACTACGTCGTCAGT -ACGGAACACTACTACGTCGAAGGT -ACGGAACACTACTACGTCAACCGT -ACGGAACACTACTACGTCTTGTGC -ACGGAACACTACTACGTCCTAAGC -ACGGAACACTACTACGTCACTAGC -ACGGAACACTACTACGTCAGATGC -ACGGAACACTACTACGTCTGAAGG -ACGGAACACTACTACGTCCAATGG -ACGGAACACTACTACGTCATGAGG -ACGGAACACTACTACGTCAATGGG -ACGGAACACTACTACGTCTCCTGA -ACGGAACACTACTACGTCTAGCGA -ACGGAACACTACTACGTCCACAGA -ACGGAACACTACTACGTCGCAAGA -ACGGAACACTACTACGTCGGTTGA -ACGGAACACTACTACGTCTCCGAT -ACGGAACACTACTACGTCTGGCAT -ACGGAACACTACTACGTCCGAGAT -ACGGAACACTACTACGTCTACCAC -ACGGAACACTACTACGTCCAGAAC -ACGGAACACTACTACGTCGTCTAC -ACGGAACACTACTACGTCACGTAC -ACGGAACACTACTACGTCAGTGAC -ACGGAACACTACTACGTCCTGTAG -ACGGAACACTACTACGTCCCTAAG -ACGGAACACTACTACGTCGTTCAG -ACGGAACACTACTACGTCGCATAG -ACGGAACACTACTACGTCGACAAG -ACGGAACACTACTACGTCAAGCAG -ACGGAACACTACTACGTCCGTCAA -ACGGAACACTACTACGTCGCTGAA -ACGGAACACTACTACGTCAGTACG -ACGGAACACTACTACGTCATCCGA -ACGGAACACTACTACGTCATGGGA -ACGGAACACTACTACGTCGTGCAA -ACGGAACACTACTACGTCGAGGAA -ACGGAACACTACTACGTCCAGGTA -ACGGAACACTACTACGTCGACTCT -ACGGAACACTACTACGTCAGTCCT -ACGGAACACTACTACGTCTAAGCC -ACGGAACACTACTACGTCATAGCC -ACGGAACACTACTACGTCTAACCG -ACGGAACACTACTACGTCATGCCA -ACGGAACACTACTACACGGGAAAC -ACGGAACACTACTACACGAACACC -ACGGAACACTACTACACGATCGAG -ACGGAACACTACTACACGCTCCTT -ACGGAACACTACTACACGCCTGTT -ACGGAACACTACTACACGCGGTTT -ACGGAACACTACTACACGGTGGTT -ACGGAACACTACTACACGGCCTTT -ACGGAACACTACTACACGGGTCTT -ACGGAACACTACTACACGACGCTT -ACGGAACACTACTACACGAGCGTT -ACGGAACACTACTACACGTTCGTC -ACGGAACACTACTACACGTCTCTC -ACGGAACACTACTACACGTGGATC -ACGGAACACTACTACACGCACTTC -ACGGAACACTACTACACGGTACTC -ACGGAACACTACTACACGGATGTC -ACGGAACACTACTACACGACAGTC -ACGGAACACTACTACACGTTGCTG -ACGGAACACTACTACACGTCCATG -ACGGAACACTACTACACGTGTGTG -ACGGAACACTACTACACGCTAGTG -ACGGAACACTACTACACGCATCTG -ACGGAACACTACTACACGGAGTTG -ACGGAACACTACTACACGAGACTG -ACGGAACACTACTACACGTCGGTA -ACGGAACACTACTACACGTGCCTA -ACGGAACACTACTACACGCCACTA -ACGGAACACTACTACACGGGAGTA -ACGGAACACTACTACACGTCGTCT -ACGGAACACTACTACACGTGCACT -ACGGAACACTACTACACGCTGACT -ACGGAACACTACTACACGCAACCT -ACGGAACACTACTACACGGCTACT -ACGGAACACTACTACACGGGATCT -ACGGAACACTACTACACGAAGGCT -ACGGAACACTACTACACGTCAACC -ACGGAACACTACTACACGTGTTCC -ACGGAACACTACTACACGATTCCC -ACGGAACACTACTACACGTTCTCG -ACGGAACACTACTACACGTAGACG -ACGGAACACTACTACACGGTAACG -ACGGAACACTACTACACGACTTCG -ACGGAACACTACTACACGTACGCA -ACGGAACACTACTACACGCTTGCA -ACGGAACACTACTACACGCGAACA -ACGGAACACTACTACACGCAGTCA -ACGGAACACTACTACACGGATCCA -ACGGAACACTACTACACGACGACA -ACGGAACACTACTACACGAGCTCA -ACGGAACACTACTACACGTCACGT -ACGGAACACTACTACACGCGTAGT -ACGGAACACTACTACACGGTCAGT -ACGGAACACTACTACACGGAAGGT -ACGGAACACTACTACACGAACCGT -ACGGAACACTACTACACGTTGTGC -ACGGAACACTACTACACGCTAAGC -ACGGAACACTACTACACGACTAGC -ACGGAACACTACTACACGAGATGC -ACGGAACACTACTACACGTGAAGG -ACGGAACACTACTACACGCAATGG -ACGGAACACTACTACACGATGAGG -ACGGAACACTACTACACGAATGGG -ACGGAACACTACTACACGTCCTGA -ACGGAACACTACTACACGTAGCGA -ACGGAACACTACTACACGCACAGA -ACGGAACACTACTACACGGCAAGA -ACGGAACACTACTACACGGGTTGA -ACGGAACACTACTACACGTCCGAT -ACGGAACACTACTACACGTGGCAT -ACGGAACACTACTACACGCGAGAT -ACGGAACACTACTACACGTACCAC -ACGGAACACTACTACACGCAGAAC -ACGGAACACTACTACACGGTCTAC -ACGGAACACTACTACACGACGTAC -ACGGAACACTACTACACGAGTGAC -ACGGAACACTACTACACGCTGTAG -ACGGAACACTACTACACGCCTAAG -ACGGAACACTACTACACGGTTCAG -ACGGAACACTACTACACGGCATAG -ACGGAACACTACTACACGGACAAG -ACGGAACACTACTACACGAAGCAG -ACGGAACACTACTACACGCGTCAA -ACGGAACACTACTACACGGCTGAA -ACGGAACACTACTACACGAGTACG -ACGGAACACTACTACACGATCCGA -ACGGAACACTACTACACGATGGGA -ACGGAACACTACTACACGGTGCAA -ACGGAACACTACTACACGGAGGAA -ACGGAACACTACTACACGCAGGTA -ACGGAACACTACTACACGGACTCT -ACGGAACACTACTACACGAGTCCT -ACGGAACACTACTACACGTAAGCC -ACGGAACACTACTACACGATAGCC -ACGGAACACTACTACACGTAACCG -ACGGAACACTACTACACGATGCCA -ACGGAACACTACGACAGTGGAAAC -ACGGAACACTACGACAGTAACACC -ACGGAACACTACGACAGTATCGAG -ACGGAACACTACGACAGTCTCCTT -ACGGAACACTACGACAGTCCTGTT -ACGGAACACTACGACAGTCGGTTT -ACGGAACACTACGACAGTGTGGTT -ACGGAACACTACGACAGTGCCTTT -ACGGAACACTACGACAGTGGTCTT -ACGGAACACTACGACAGTACGCTT -ACGGAACACTACGACAGTAGCGTT -ACGGAACACTACGACAGTTTCGTC -ACGGAACACTACGACAGTTCTCTC -ACGGAACACTACGACAGTTGGATC -ACGGAACACTACGACAGTCACTTC -ACGGAACACTACGACAGTGTACTC -ACGGAACACTACGACAGTGATGTC -ACGGAACACTACGACAGTACAGTC -ACGGAACACTACGACAGTTTGCTG -ACGGAACACTACGACAGTTCCATG -ACGGAACACTACGACAGTTGTGTG -ACGGAACACTACGACAGTCTAGTG -ACGGAACACTACGACAGTCATCTG -ACGGAACACTACGACAGTGAGTTG -ACGGAACACTACGACAGTAGACTG -ACGGAACACTACGACAGTTCGGTA -ACGGAACACTACGACAGTTGCCTA -ACGGAACACTACGACAGTCCACTA -ACGGAACACTACGACAGTGGAGTA -ACGGAACACTACGACAGTTCGTCT -ACGGAACACTACGACAGTTGCACT -ACGGAACACTACGACAGTCTGACT -ACGGAACACTACGACAGTCAACCT -ACGGAACACTACGACAGTGCTACT -ACGGAACACTACGACAGTGGATCT -ACGGAACACTACGACAGTAAGGCT -ACGGAACACTACGACAGTTCAACC -ACGGAACACTACGACAGTTGTTCC -ACGGAACACTACGACAGTATTCCC -ACGGAACACTACGACAGTTTCTCG -ACGGAACACTACGACAGTTAGACG -ACGGAACACTACGACAGTGTAACG -ACGGAACACTACGACAGTACTTCG -ACGGAACACTACGACAGTTACGCA -ACGGAACACTACGACAGTCTTGCA -ACGGAACACTACGACAGTCGAACA -ACGGAACACTACGACAGTCAGTCA -ACGGAACACTACGACAGTGATCCA -ACGGAACACTACGACAGTACGACA -ACGGAACACTACGACAGTAGCTCA -ACGGAACACTACGACAGTTCACGT -ACGGAACACTACGACAGTCGTAGT -ACGGAACACTACGACAGTGTCAGT -ACGGAACACTACGACAGTGAAGGT -ACGGAACACTACGACAGTAACCGT -ACGGAACACTACGACAGTTTGTGC -ACGGAACACTACGACAGTCTAAGC -ACGGAACACTACGACAGTACTAGC -ACGGAACACTACGACAGTAGATGC -ACGGAACACTACGACAGTTGAAGG -ACGGAACACTACGACAGTCAATGG -ACGGAACACTACGACAGTATGAGG -ACGGAACACTACGACAGTAATGGG -ACGGAACACTACGACAGTTCCTGA -ACGGAACACTACGACAGTTAGCGA -ACGGAACACTACGACAGTCACAGA -ACGGAACACTACGACAGTGCAAGA -ACGGAACACTACGACAGTGGTTGA -ACGGAACACTACGACAGTTCCGAT -ACGGAACACTACGACAGTTGGCAT -ACGGAACACTACGACAGTCGAGAT -ACGGAACACTACGACAGTTACCAC -ACGGAACACTACGACAGTCAGAAC -ACGGAACACTACGACAGTGTCTAC -ACGGAACACTACGACAGTACGTAC -ACGGAACACTACGACAGTAGTGAC -ACGGAACACTACGACAGTCTGTAG -ACGGAACACTACGACAGTCCTAAG -ACGGAACACTACGACAGTGTTCAG -ACGGAACACTACGACAGTGCATAG -ACGGAACACTACGACAGTGACAAG -ACGGAACACTACGACAGTAAGCAG -ACGGAACACTACGACAGTCGTCAA -ACGGAACACTACGACAGTGCTGAA -ACGGAACACTACGACAGTAGTACG -ACGGAACACTACGACAGTATCCGA -ACGGAACACTACGACAGTATGGGA -ACGGAACACTACGACAGTGTGCAA -ACGGAACACTACGACAGTGAGGAA -ACGGAACACTACGACAGTCAGGTA -ACGGAACACTACGACAGTGACTCT -ACGGAACACTACGACAGTAGTCCT -ACGGAACACTACGACAGTTAAGCC -ACGGAACACTACGACAGTATAGCC -ACGGAACACTACGACAGTTAACCG -ACGGAACACTACGACAGTATGCCA -ACGGAACACTACTAGCTGGGAAAC -ACGGAACACTACTAGCTGAACACC -ACGGAACACTACTAGCTGATCGAG -ACGGAACACTACTAGCTGCTCCTT -ACGGAACACTACTAGCTGCCTGTT -ACGGAACACTACTAGCTGCGGTTT -ACGGAACACTACTAGCTGGTGGTT -ACGGAACACTACTAGCTGGCCTTT -ACGGAACACTACTAGCTGGGTCTT -ACGGAACACTACTAGCTGACGCTT -ACGGAACACTACTAGCTGAGCGTT -ACGGAACACTACTAGCTGTTCGTC -ACGGAACACTACTAGCTGTCTCTC -ACGGAACACTACTAGCTGTGGATC -ACGGAACACTACTAGCTGCACTTC -ACGGAACACTACTAGCTGGTACTC -ACGGAACACTACTAGCTGGATGTC -ACGGAACACTACTAGCTGACAGTC -ACGGAACACTACTAGCTGTTGCTG -ACGGAACACTACTAGCTGTCCATG -ACGGAACACTACTAGCTGTGTGTG -ACGGAACACTACTAGCTGCTAGTG -ACGGAACACTACTAGCTGCATCTG -ACGGAACACTACTAGCTGGAGTTG -ACGGAACACTACTAGCTGAGACTG -ACGGAACACTACTAGCTGTCGGTA -ACGGAACACTACTAGCTGTGCCTA -ACGGAACACTACTAGCTGCCACTA -ACGGAACACTACTAGCTGGGAGTA -ACGGAACACTACTAGCTGTCGTCT -ACGGAACACTACTAGCTGTGCACT -ACGGAACACTACTAGCTGCTGACT -ACGGAACACTACTAGCTGCAACCT -ACGGAACACTACTAGCTGGCTACT -ACGGAACACTACTAGCTGGGATCT -ACGGAACACTACTAGCTGAAGGCT -ACGGAACACTACTAGCTGTCAACC -ACGGAACACTACTAGCTGTGTTCC -ACGGAACACTACTAGCTGATTCCC -ACGGAACACTACTAGCTGTTCTCG -ACGGAACACTACTAGCTGTAGACG -ACGGAACACTACTAGCTGGTAACG -ACGGAACACTACTAGCTGACTTCG -ACGGAACACTACTAGCTGTACGCA -ACGGAACACTACTAGCTGCTTGCA -ACGGAACACTACTAGCTGCGAACA -ACGGAACACTACTAGCTGCAGTCA -ACGGAACACTACTAGCTGGATCCA -ACGGAACACTACTAGCTGACGACA -ACGGAACACTACTAGCTGAGCTCA -ACGGAACACTACTAGCTGTCACGT -ACGGAACACTACTAGCTGCGTAGT -ACGGAACACTACTAGCTGGTCAGT -ACGGAACACTACTAGCTGGAAGGT -ACGGAACACTACTAGCTGAACCGT -ACGGAACACTACTAGCTGTTGTGC -ACGGAACACTACTAGCTGCTAAGC -ACGGAACACTACTAGCTGACTAGC -ACGGAACACTACTAGCTGAGATGC -ACGGAACACTACTAGCTGTGAAGG -ACGGAACACTACTAGCTGCAATGG -ACGGAACACTACTAGCTGATGAGG -ACGGAACACTACTAGCTGAATGGG -ACGGAACACTACTAGCTGTCCTGA -ACGGAACACTACTAGCTGTAGCGA -ACGGAACACTACTAGCTGCACAGA -ACGGAACACTACTAGCTGGCAAGA -ACGGAACACTACTAGCTGGGTTGA -ACGGAACACTACTAGCTGTCCGAT -ACGGAACACTACTAGCTGTGGCAT -ACGGAACACTACTAGCTGCGAGAT -ACGGAACACTACTAGCTGTACCAC -ACGGAACACTACTAGCTGCAGAAC -ACGGAACACTACTAGCTGGTCTAC -ACGGAACACTACTAGCTGACGTAC -ACGGAACACTACTAGCTGAGTGAC -ACGGAACACTACTAGCTGCTGTAG -ACGGAACACTACTAGCTGCCTAAG -ACGGAACACTACTAGCTGGTTCAG -ACGGAACACTACTAGCTGGCATAG -ACGGAACACTACTAGCTGGACAAG -ACGGAACACTACTAGCTGAAGCAG -ACGGAACACTACTAGCTGCGTCAA -ACGGAACACTACTAGCTGGCTGAA -ACGGAACACTACTAGCTGAGTACG -ACGGAACACTACTAGCTGATCCGA -ACGGAACACTACTAGCTGATGGGA -ACGGAACACTACTAGCTGGTGCAA -ACGGAACACTACTAGCTGGAGGAA -ACGGAACACTACTAGCTGCAGGTA -ACGGAACACTACTAGCTGGACTCT -ACGGAACACTACTAGCTGAGTCCT -ACGGAACACTACTAGCTGTAAGCC -ACGGAACACTACTAGCTGATAGCC -ACGGAACACTACTAGCTGTAACCG -ACGGAACACTACTAGCTGATGCCA -ACGGAACACTACAAGCCTGGAAAC -ACGGAACACTACAAGCCTAACACC -ACGGAACACTACAAGCCTATCGAG -ACGGAACACTACAAGCCTCTCCTT -ACGGAACACTACAAGCCTCCTGTT -ACGGAACACTACAAGCCTCGGTTT -ACGGAACACTACAAGCCTGTGGTT -ACGGAACACTACAAGCCTGCCTTT -ACGGAACACTACAAGCCTGGTCTT -ACGGAACACTACAAGCCTACGCTT -ACGGAACACTACAAGCCTAGCGTT -ACGGAACACTACAAGCCTTTCGTC -ACGGAACACTACAAGCCTTCTCTC -ACGGAACACTACAAGCCTTGGATC -ACGGAACACTACAAGCCTCACTTC -ACGGAACACTACAAGCCTGTACTC -ACGGAACACTACAAGCCTGATGTC -ACGGAACACTACAAGCCTACAGTC -ACGGAACACTACAAGCCTTTGCTG -ACGGAACACTACAAGCCTTCCATG -ACGGAACACTACAAGCCTTGTGTG -ACGGAACACTACAAGCCTCTAGTG -ACGGAACACTACAAGCCTCATCTG -ACGGAACACTACAAGCCTGAGTTG -ACGGAACACTACAAGCCTAGACTG -ACGGAACACTACAAGCCTTCGGTA -ACGGAACACTACAAGCCTTGCCTA -ACGGAACACTACAAGCCTCCACTA -ACGGAACACTACAAGCCTGGAGTA -ACGGAACACTACAAGCCTTCGTCT -ACGGAACACTACAAGCCTTGCACT -ACGGAACACTACAAGCCTCTGACT -ACGGAACACTACAAGCCTCAACCT -ACGGAACACTACAAGCCTGCTACT -ACGGAACACTACAAGCCTGGATCT -ACGGAACACTACAAGCCTAAGGCT -ACGGAACACTACAAGCCTTCAACC -ACGGAACACTACAAGCCTTGTTCC -ACGGAACACTACAAGCCTATTCCC -ACGGAACACTACAAGCCTTTCTCG -ACGGAACACTACAAGCCTTAGACG -ACGGAACACTACAAGCCTGTAACG -ACGGAACACTACAAGCCTACTTCG -ACGGAACACTACAAGCCTTACGCA -ACGGAACACTACAAGCCTCTTGCA -ACGGAACACTACAAGCCTCGAACA -ACGGAACACTACAAGCCTCAGTCA -ACGGAACACTACAAGCCTGATCCA -ACGGAACACTACAAGCCTACGACA -ACGGAACACTACAAGCCTAGCTCA -ACGGAACACTACAAGCCTTCACGT -ACGGAACACTACAAGCCTCGTAGT -ACGGAACACTACAAGCCTGTCAGT -ACGGAACACTACAAGCCTGAAGGT -ACGGAACACTACAAGCCTAACCGT -ACGGAACACTACAAGCCTTTGTGC -ACGGAACACTACAAGCCTCTAAGC -ACGGAACACTACAAGCCTACTAGC -ACGGAACACTACAAGCCTAGATGC -ACGGAACACTACAAGCCTTGAAGG -ACGGAACACTACAAGCCTCAATGG -ACGGAACACTACAAGCCTATGAGG -ACGGAACACTACAAGCCTAATGGG -ACGGAACACTACAAGCCTTCCTGA -ACGGAACACTACAAGCCTTAGCGA -ACGGAACACTACAAGCCTCACAGA -ACGGAACACTACAAGCCTGCAAGA -ACGGAACACTACAAGCCTGGTTGA -ACGGAACACTACAAGCCTTCCGAT -ACGGAACACTACAAGCCTTGGCAT -ACGGAACACTACAAGCCTCGAGAT -ACGGAACACTACAAGCCTTACCAC -ACGGAACACTACAAGCCTCAGAAC -ACGGAACACTACAAGCCTGTCTAC -ACGGAACACTACAAGCCTACGTAC -ACGGAACACTACAAGCCTAGTGAC -ACGGAACACTACAAGCCTCTGTAG -ACGGAACACTACAAGCCTCCTAAG -ACGGAACACTACAAGCCTGTTCAG -ACGGAACACTACAAGCCTGCATAG -ACGGAACACTACAAGCCTGACAAG -ACGGAACACTACAAGCCTAAGCAG -ACGGAACACTACAAGCCTCGTCAA -ACGGAACACTACAAGCCTGCTGAA -ACGGAACACTACAAGCCTAGTACG -ACGGAACACTACAAGCCTATCCGA -ACGGAACACTACAAGCCTATGGGA -ACGGAACACTACAAGCCTGTGCAA -ACGGAACACTACAAGCCTGAGGAA -ACGGAACACTACAAGCCTCAGGTA -ACGGAACACTACAAGCCTGACTCT -ACGGAACACTACAAGCCTAGTCCT -ACGGAACACTACAAGCCTTAAGCC -ACGGAACACTACAAGCCTATAGCC -ACGGAACACTACAAGCCTTAACCG -ACGGAACACTACAAGCCTATGCCA -ACGGAACACTACCAGGTTGGAAAC -ACGGAACACTACCAGGTTAACACC -ACGGAACACTACCAGGTTATCGAG -ACGGAACACTACCAGGTTCTCCTT -ACGGAACACTACCAGGTTCCTGTT -ACGGAACACTACCAGGTTCGGTTT -ACGGAACACTACCAGGTTGTGGTT -ACGGAACACTACCAGGTTGCCTTT -ACGGAACACTACCAGGTTGGTCTT -ACGGAACACTACCAGGTTACGCTT -ACGGAACACTACCAGGTTAGCGTT -ACGGAACACTACCAGGTTTTCGTC -ACGGAACACTACCAGGTTTCTCTC -ACGGAACACTACCAGGTTTGGATC -ACGGAACACTACCAGGTTCACTTC -ACGGAACACTACCAGGTTGTACTC -ACGGAACACTACCAGGTTGATGTC -ACGGAACACTACCAGGTTACAGTC -ACGGAACACTACCAGGTTTTGCTG -ACGGAACACTACCAGGTTTCCATG -ACGGAACACTACCAGGTTTGTGTG -ACGGAACACTACCAGGTTCTAGTG -ACGGAACACTACCAGGTTCATCTG -ACGGAACACTACCAGGTTGAGTTG -ACGGAACACTACCAGGTTAGACTG -ACGGAACACTACCAGGTTTCGGTA -ACGGAACACTACCAGGTTTGCCTA -ACGGAACACTACCAGGTTCCACTA -ACGGAACACTACCAGGTTGGAGTA -ACGGAACACTACCAGGTTTCGTCT -ACGGAACACTACCAGGTTTGCACT -ACGGAACACTACCAGGTTCTGACT -ACGGAACACTACCAGGTTCAACCT -ACGGAACACTACCAGGTTGCTACT -ACGGAACACTACCAGGTTGGATCT -ACGGAACACTACCAGGTTAAGGCT -ACGGAACACTACCAGGTTTCAACC -ACGGAACACTACCAGGTTTGTTCC -ACGGAACACTACCAGGTTATTCCC -ACGGAACACTACCAGGTTTTCTCG -ACGGAACACTACCAGGTTTAGACG -ACGGAACACTACCAGGTTGTAACG -ACGGAACACTACCAGGTTACTTCG -ACGGAACACTACCAGGTTTACGCA -ACGGAACACTACCAGGTTCTTGCA -ACGGAACACTACCAGGTTCGAACA -ACGGAACACTACCAGGTTCAGTCA -ACGGAACACTACCAGGTTGATCCA -ACGGAACACTACCAGGTTACGACA -ACGGAACACTACCAGGTTAGCTCA -ACGGAACACTACCAGGTTTCACGT -ACGGAACACTACCAGGTTCGTAGT -ACGGAACACTACCAGGTTGTCAGT -ACGGAACACTACCAGGTTGAAGGT -ACGGAACACTACCAGGTTAACCGT -ACGGAACACTACCAGGTTTTGTGC -ACGGAACACTACCAGGTTCTAAGC -ACGGAACACTACCAGGTTACTAGC -ACGGAACACTACCAGGTTAGATGC -ACGGAACACTACCAGGTTTGAAGG -ACGGAACACTACCAGGTTCAATGG -ACGGAACACTACCAGGTTATGAGG -ACGGAACACTACCAGGTTAATGGG -ACGGAACACTACCAGGTTTCCTGA -ACGGAACACTACCAGGTTTAGCGA -ACGGAACACTACCAGGTTCACAGA -ACGGAACACTACCAGGTTGCAAGA -ACGGAACACTACCAGGTTGGTTGA -ACGGAACACTACCAGGTTTCCGAT -ACGGAACACTACCAGGTTTGGCAT -ACGGAACACTACCAGGTTCGAGAT -ACGGAACACTACCAGGTTTACCAC -ACGGAACACTACCAGGTTCAGAAC -ACGGAACACTACCAGGTTGTCTAC -ACGGAACACTACCAGGTTACGTAC -ACGGAACACTACCAGGTTAGTGAC -ACGGAACACTACCAGGTTCTGTAG -ACGGAACACTACCAGGTTCCTAAG -ACGGAACACTACCAGGTTGTTCAG -ACGGAACACTACCAGGTTGCATAG -ACGGAACACTACCAGGTTGACAAG -ACGGAACACTACCAGGTTAAGCAG -ACGGAACACTACCAGGTTCGTCAA -ACGGAACACTACCAGGTTGCTGAA -ACGGAACACTACCAGGTTAGTACG -ACGGAACACTACCAGGTTATCCGA -ACGGAACACTACCAGGTTATGGGA -ACGGAACACTACCAGGTTGTGCAA -ACGGAACACTACCAGGTTGAGGAA -ACGGAACACTACCAGGTTCAGGTA -ACGGAACACTACCAGGTTGACTCT -ACGGAACACTACCAGGTTAGTCCT -ACGGAACACTACCAGGTTTAAGCC -ACGGAACACTACCAGGTTATAGCC -ACGGAACACTACCAGGTTTAACCG -ACGGAACACTACCAGGTTATGCCA -ACGGAACACTACTAGGCAGGAAAC -ACGGAACACTACTAGGCAAACACC -ACGGAACACTACTAGGCAATCGAG -ACGGAACACTACTAGGCACTCCTT -ACGGAACACTACTAGGCACCTGTT -ACGGAACACTACTAGGCACGGTTT -ACGGAACACTACTAGGCAGTGGTT -ACGGAACACTACTAGGCAGCCTTT -ACGGAACACTACTAGGCAGGTCTT -ACGGAACACTACTAGGCAACGCTT -ACGGAACACTACTAGGCAAGCGTT -ACGGAACACTACTAGGCATTCGTC -ACGGAACACTACTAGGCATCTCTC -ACGGAACACTACTAGGCATGGATC -ACGGAACACTACTAGGCACACTTC -ACGGAACACTACTAGGCAGTACTC -ACGGAACACTACTAGGCAGATGTC -ACGGAACACTACTAGGCAACAGTC -ACGGAACACTACTAGGCATTGCTG -ACGGAACACTACTAGGCATCCATG -ACGGAACACTACTAGGCATGTGTG -ACGGAACACTACTAGGCACTAGTG -ACGGAACACTACTAGGCACATCTG -ACGGAACACTACTAGGCAGAGTTG -ACGGAACACTACTAGGCAAGACTG -ACGGAACACTACTAGGCATCGGTA -ACGGAACACTACTAGGCATGCCTA -ACGGAACACTACTAGGCACCACTA -ACGGAACACTACTAGGCAGGAGTA -ACGGAACACTACTAGGCATCGTCT -ACGGAACACTACTAGGCATGCACT -ACGGAACACTACTAGGCACTGACT -ACGGAACACTACTAGGCACAACCT -ACGGAACACTACTAGGCAGCTACT -ACGGAACACTACTAGGCAGGATCT -ACGGAACACTACTAGGCAAAGGCT -ACGGAACACTACTAGGCATCAACC -ACGGAACACTACTAGGCATGTTCC -ACGGAACACTACTAGGCAATTCCC -ACGGAACACTACTAGGCATTCTCG -ACGGAACACTACTAGGCATAGACG -ACGGAACACTACTAGGCAGTAACG -ACGGAACACTACTAGGCAACTTCG -ACGGAACACTACTAGGCATACGCA -ACGGAACACTACTAGGCACTTGCA -ACGGAACACTACTAGGCACGAACA -ACGGAACACTACTAGGCACAGTCA -ACGGAACACTACTAGGCAGATCCA -ACGGAACACTACTAGGCAACGACA -ACGGAACACTACTAGGCAAGCTCA -ACGGAACACTACTAGGCATCACGT -ACGGAACACTACTAGGCACGTAGT -ACGGAACACTACTAGGCAGTCAGT -ACGGAACACTACTAGGCAGAAGGT -ACGGAACACTACTAGGCAAACCGT -ACGGAACACTACTAGGCATTGTGC -ACGGAACACTACTAGGCACTAAGC -ACGGAACACTACTAGGCAACTAGC -ACGGAACACTACTAGGCAAGATGC -ACGGAACACTACTAGGCATGAAGG -ACGGAACACTACTAGGCACAATGG -ACGGAACACTACTAGGCAATGAGG -ACGGAACACTACTAGGCAAATGGG -ACGGAACACTACTAGGCATCCTGA -ACGGAACACTACTAGGCATAGCGA -ACGGAACACTACTAGGCACACAGA -ACGGAACACTACTAGGCAGCAAGA -ACGGAACACTACTAGGCAGGTTGA -ACGGAACACTACTAGGCATCCGAT -ACGGAACACTACTAGGCATGGCAT -ACGGAACACTACTAGGCACGAGAT -ACGGAACACTACTAGGCATACCAC -ACGGAACACTACTAGGCACAGAAC -ACGGAACACTACTAGGCAGTCTAC -ACGGAACACTACTAGGCAACGTAC -ACGGAACACTACTAGGCAAGTGAC -ACGGAACACTACTAGGCACTGTAG -ACGGAACACTACTAGGCACCTAAG -ACGGAACACTACTAGGCAGTTCAG -ACGGAACACTACTAGGCAGCATAG -ACGGAACACTACTAGGCAGACAAG -ACGGAACACTACTAGGCAAAGCAG -ACGGAACACTACTAGGCACGTCAA -ACGGAACACTACTAGGCAGCTGAA -ACGGAACACTACTAGGCAAGTACG -ACGGAACACTACTAGGCAATCCGA -ACGGAACACTACTAGGCAATGGGA -ACGGAACACTACTAGGCAGTGCAA -ACGGAACACTACTAGGCAGAGGAA -ACGGAACACTACTAGGCACAGGTA -ACGGAACACTACTAGGCAGACTCT -ACGGAACACTACTAGGCAAGTCCT -ACGGAACACTACTAGGCATAAGCC -ACGGAACACTACTAGGCAATAGCC -ACGGAACACTACTAGGCATAACCG -ACGGAACACTACTAGGCAATGCCA -ACGGAACACTACAAGGACGGAAAC -ACGGAACACTACAAGGACAACACC -ACGGAACACTACAAGGACATCGAG -ACGGAACACTACAAGGACCTCCTT -ACGGAACACTACAAGGACCCTGTT -ACGGAACACTACAAGGACCGGTTT -ACGGAACACTACAAGGACGTGGTT -ACGGAACACTACAAGGACGCCTTT -ACGGAACACTACAAGGACGGTCTT -ACGGAACACTACAAGGACACGCTT -ACGGAACACTACAAGGACAGCGTT -ACGGAACACTACAAGGACTTCGTC -ACGGAACACTACAAGGACTCTCTC -ACGGAACACTACAAGGACTGGATC -ACGGAACACTACAAGGACCACTTC -ACGGAACACTACAAGGACGTACTC -ACGGAACACTACAAGGACGATGTC -ACGGAACACTACAAGGACACAGTC -ACGGAACACTACAAGGACTTGCTG -ACGGAACACTACAAGGACTCCATG -ACGGAACACTACAAGGACTGTGTG -ACGGAACACTACAAGGACCTAGTG -ACGGAACACTACAAGGACCATCTG -ACGGAACACTACAAGGACGAGTTG -ACGGAACACTACAAGGACAGACTG -ACGGAACACTACAAGGACTCGGTA -ACGGAACACTACAAGGACTGCCTA -ACGGAACACTACAAGGACCCACTA -ACGGAACACTACAAGGACGGAGTA -ACGGAACACTACAAGGACTCGTCT -ACGGAACACTACAAGGACTGCACT -ACGGAACACTACAAGGACCTGACT -ACGGAACACTACAAGGACCAACCT -ACGGAACACTACAAGGACGCTACT -ACGGAACACTACAAGGACGGATCT -ACGGAACACTACAAGGACAAGGCT -ACGGAACACTACAAGGACTCAACC -ACGGAACACTACAAGGACTGTTCC -ACGGAACACTACAAGGACATTCCC -ACGGAACACTACAAGGACTTCTCG -ACGGAACACTACAAGGACTAGACG -ACGGAACACTACAAGGACGTAACG -ACGGAACACTACAAGGACACTTCG -ACGGAACACTACAAGGACTACGCA -ACGGAACACTACAAGGACCTTGCA -ACGGAACACTACAAGGACCGAACA -ACGGAACACTACAAGGACCAGTCA -ACGGAACACTACAAGGACGATCCA -ACGGAACACTACAAGGACACGACA -ACGGAACACTACAAGGACAGCTCA -ACGGAACACTACAAGGACTCACGT -ACGGAACACTACAAGGACCGTAGT -ACGGAACACTACAAGGACGTCAGT -ACGGAACACTACAAGGACGAAGGT -ACGGAACACTACAAGGACAACCGT -ACGGAACACTACAAGGACTTGTGC -ACGGAACACTACAAGGACCTAAGC -ACGGAACACTACAAGGACACTAGC -ACGGAACACTACAAGGACAGATGC -ACGGAACACTACAAGGACTGAAGG -ACGGAACACTACAAGGACCAATGG -ACGGAACACTACAAGGACATGAGG -ACGGAACACTACAAGGACAATGGG -ACGGAACACTACAAGGACTCCTGA -ACGGAACACTACAAGGACTAGCGA -ACGGAACACTACAAGGACCACAGA -ACGGAACACTACAAGGACGCAAGA -ACGGAACACTACAAGGACGGTTGA -ACGGAACACTACAAGGACTCCGAT -ACGGAACACTACAAGGACTGGCAT -ACGGAACACTACAAGGACCGAGAT -ACGGAACACTACAAGGACTACCAC -ACGGAACACTACAAGGACCAGAAC -ACGGAACACTACAAGGACGTCTAC -ACGGAACACTACAAGGACACGTAC -ACGGAACACTACAAGGACAGTGAC -ACGGAACACTACAAGGACCTGTAG -ACGGAACACTACAAGGACCCTAAG -ACGGAACACTACAAGGACGTTCAG -ACGGAACACTACAAGGACGCATAG -ACGGAACACTACAAGGACGACAAG -ACGGAACACTACAAGGACAAGCAG -ACGGAACACTACAAGGACCGTCAA -ACGGAACACTACAAGGACGCTGAA -ACGGAACACTACAAGGACAGTACG -ACGGAACACTACAAGGACATCCGA -ACGGAACACTACAAGGACATGGGA -ACGGAACACTACAAGGACGTGCAA -ACGGAACACTACAAGGACGAGGAA -ACGGAACACTACAAGGACCAGGTA -ACGGAACACTACAAGGACGACTCT -ACGGAACACTACAAGGACAGTCCT -ACGGAACACTACAAGGACTAAGCC -ACGGAACACTACAAGGACATAGCC -ACGGAACACTACAAGGACTAACCG -ACGGAACACTACAAGGACATGCCA -ACGGAACACTACCAGAAGGGAAAC -ACGGAACACTACCAGAAGAACACC -ACGGAACACTACCAGAAGATCGAG -ACGGAACACTACCAGAAGCTCCTT -ACGGAACACTACCAGAAGCCTGTT -ACGGAACACTACCAGAAGCGGTTT -ACGGAACACTACCAGAAGGTGGTT -ACGGAACACTACCAGAAGGCCTTT -ACGGAACACTACCAGAAGGGTCTT -ACGGAACACTACCAGAAGACGCTT -ACGGAACACTACCAGAAGAGCGTT -ACGGAACACTACCAGAAGTTCGTC -ACGGAACACTACCAGAAGTCTCTC -ACGGAACACTACCAGAAGTGGATC -ACGGAACACTACCAGAAGCACTTC -ACGGAACACTACCAGAAGGTACTC -ACGGAACACTACCAGAAGGATGTC -ACGGAACACTACCAGAAGACAGTC -ACGGAACACTACCAGAAGTTGCTG -ACGGAACACTACCAGAAGTCCATG -ACGGAACACTACCAGAAGTGTGTG -ACGGAACACTACCAGAAGCTAGTG -ACGGAACACTACCAGAAGCATCTG -ACGGAACACTACCAGAAGGAGTTG -ACGGAACACTACCAGAAGAGACTG -ACGGAACACTACCAGAAGTCGGTA -ACGGAACACTACCAGAAGTGCCTA -ACGGAACACTACCAGAAGCCACTA -ACGGAACACTACCAGAAGGGAGTA -ACGGAACACTACCAGAAGTCGTCT -ACGGAACACTACCAGAAGTGCACT -ACGGAACACTACCAGAAGCTGACT -ACGGAACACTACCAGAAGCAACCT -ACGGAACACTACCAGAAGGCTACT -ACGGAACACTACCAGAAGGGATCT -ACGGAACACTACCAGAAGAAGGCT -ACGGAACACTACCAGAAGTCAACC -ACGGAACACTACCAGAAGTGTTCC -ACGGAACACTACCAGAAGATTCCC -ACGGAACACTACCAGAAGTTCTCG -ACGGAACACTACCAGAAGTAGACG -ACGGAACACTACCAGAAGGTAACG -ACGGAACACTACCAGAAGACTTCG -ACGGAACACTACCAGAAGTACGCA -ACGGAACACTACCAGAAGCTTGCA -ACGGAACACTACCAGAAGCGAACA -ACGGAACACTACCAGAAGCAGTCA -ACGGAACACTACCAGAAGGATCCA -ACGGAACACTACCAGAAGACGACA -ACGGAACACTACCAGAAGAGCTCA -ACGGAACACTACCAGAAGTCACGT -ACGGAACACTACCAGAAGCGTAGT -ACGGAACACTACCAGAAGGTCAGT -ACGGAACACTACCAGAAGGAAGGT -ACGGAACACTACCAGAAGAACCGT -ACGGAACACTACCAGAAGTTGTGC -ACGGAACACTACCAGAAGCTAAGC -ACGGAACACTACCAGAAGACTAGC -ACGGAACACTACCAGAAGAGATGC -ACGGAACACTACCAGAAGTGAAGG -ACGGAACACTACCAGAAGCAATGG -ACGGAACACTACCAGAAGATGAGG -ACGGAACACTACCAGAAGAATGGG -ACGGAACACTACCAGAAGTCCTGA -ACGGAACACTACCAGAAGTAGCGA -ACGGAACACTACCAGAAGCACAGA -ACGGAACACTACCAGAAGGCAAGA -ACGGAACACTACCAGAAGGGTTGA -ACGGAACACTACCAGAAGTCCGAT -ACGGAACACTACCAGAAGTGGCAT -ACGGAACACTACCAGAAGCGAGAT -ACGGAACACTACCAGAAGTACCAC -ACGGAACACTACCAGAAGCAGAAC -ACGGAACACTACCAGAAGGTCTAC -ACGGAACACTACCAGAAGACGTAC -ACGGAACACTACCAGAAGAGTGAC -ACGGAACACTACCAGAAGCTGTAG -ACGGAACACTACCAGAAGCCTAAG -ACGGAACACTACCAGAAGGTTCAG -ACGGAACACTACCAGAAGGCATAG -ACGGAACACTACCAGAAGGACAAG -ACGGAACACTACCAGAAGAAGCAG -ACGGAACACTACCAGAAGCGTCAA -ACGGAACACTACCAGAAGGCTGAA -ACGGAACACTACCAGAAGAGTACG -ACGGAACACTACCAGAAGATCCGA -ACGGAACACTACCAGAAGATGGGA -ACGGAACACTACCAGAAGGTGCAA -ACGGAACACTACCAGAAGGAGGAA -ACGGAACACTACCAGAAGCAGGTA -ACGGAACACTACCAGAAGGACTCT -ACGGAACACTACCAGAAGAGTCCT -ACGGAACACTACCAGAAGTAAGCC -ACGGAACACTACCAGAAGATAGCC -ACGGAACACTACCAGAAGTAACCG -ACGGAACACTACCAGAAGATGCCA -ACGGAACACTACCAACGTGGAAAC -ACGGAACACTACCAACGTAACACC -ACGGAACACTACCAACGTATCGAG -ACGGAACACTACCAACGTCTCCTT -ACGGAACACTACCAACGTCCTGTT -ACGGAACACTACCAACGTCGGTTT -ACGGAACACTACCAACGTGTGGTT -ACGGAACACTACCAACGTGCCTTT -ACGGAACACTACCAACGTGGTCTT -ACGGAACACTACCAACGTACGCTT -ACGGAACACTACCAACGTAGCGTT -ACGGAACACTACCAACGTTTCGTC -ACGGAACACTACCAACGTTCTCTC -ACGGAACACTACCAACGTTGGATC -ACGGAACACTACCAACGTCACTTC -ACGGAACACTACCAACGTGTACTC -ACGGAACACTACCAACGTGATGTC -ACGGAACACTACCAACGTACAGTC -ACGGAACACTACCAACGTTTGCTG -ACGGAACACTACCAACGTTCCATG -ACGGAACACTACCAACGTTGTGTG -ACGGAACACTACCAACGTCTAGTG -ACGGAACACTACCAACGTCATCTG -ACGGAACACTACCAACGTGAGTTG -ACGGAACACTACCAACGTAGACTG -ACGGAACACTACCAACGTTCGGTA -ACGGAACACTACCAACGTTGCCTA -ACGGAACACTACCAACGTCCACTA -ACGGAACACTACCAACGTGGAGTA -ACGGAACACTACCAACGTTCGTCT -ACGGAACACTACCAACGTTGCACT -ACGGAACACTACCAACGTCTGACT -ACGGAACACTACCAACGTCAACCT -ACGGAACACTACCAACGTGCTACT -ACGGAACACTACCAACGTGGATCT -ACGGAACACTACCAACGTAAGGCT -ACGGAACACTACCAACGTTCAACC -ACGGAACACTACCAACGTTGTTCC -ACGGAACACTACCAACGTATTCCC -ACGGAACACTACCAACGTTTCTCG -ACGGAACACTACCAACGTTAGACG -ACGGAACACTACCAACGTGTAACG -ACGGAACACTACCAACGTACTTCG -ACGGAACACTACCAACGTTACGCA -ACGGAACACTACCAACGTCTTGCA -ACGGAACACTACCAACGTCGAACA -ACGGAACACTACCAACGTCAGTCA -ACGGAACACTACCAACGTGATCCA -ACGGAACACTACCAACGTACGACA -ACGGAACACTACCAACGTAGCTCA -ACGGAACACTACCAACGTTCACGT -ACGGAACACTACCAACGTCGTAGT -ACGGAACACTACCAACGTGTCAGT -ACGGAACACTACCAACGTGAAGGT -ACGGAACACTACCAACGTAACCGT -ACGGAACACTACCAACGTTTGTGC -ACGGAACACTACCAACGTCTAAGC -ACGGAACACTACCAACGTACTAGC -ACGGAACACTACCAACGTAGATGC -ACGGAACACTACCAACGTTGAAGG -ACGGAACACTACCAACGTCAATGG -ACGGAACACTACCAACGTATGAGG -ACGGAACACTACCAACGTAATGGG -ACGGAACACTACCAACGTTCCTGA -ACGGAACACTACCAACGTTAGCGA -ACGGAACACTACCAACGTCACAGA -ACGGAACACTACCAACGTGCAAGA -ACGGAACACTACCAACGTGGTTGA -ACGGAACACTACCAACGTTCCGAT -ACGGAACACTACCAACGTTGGCAT -ACGGAACACTACCAACGTCGAGAT -ACGGAACACTACCAACGTTACCAC -ACGGAACACTACCAACGTCAGAAC -ACGGAACACTACCAACGTGTCTAC -ACGGAACACTACCAACGTACGTAC -ACGGAACACTACCAACGTAGTGAC -ACGGAACACTACCAACGTCTGTAG -ACGGAACACTACCAACGTCCTAAG -ACGGAACACTACCAACGTGTTCAG -ACGGAACACTACCAACGTGCATAG -ACGGAACACTACCAACGTGACAAG -ACGGAACACTACCAACGTAAGCAG -ACGGAACACTACCAACGTCGTCAA -ACGGAACACTACCAACGTGCTGAA -ACGGAACACTACCAACGTAGTACG -ACGGAACACTACCAACGTATCCGA -ACGGAACACTACCAACGTATGGGA -ACGGAACACTACCAACGTGTGCAA -ACGGAACACTACCAACGTGAGGAA -ACGGAACACTACCAACGTCAGGTA -ACGGAACACTACCAACGTGACTCT -ACGGAACACTACCAACGTAGTCCT -ACGGAACACTACCAACGTTAAGCC -ACGGAACACTACCAACGTATAGCC -ACGGAACACTACCAACGTTAACCG -ACGGAACACTACCAACGTATGCCA -ACGGAACACTACGAAGCTGGAAAC -ACGGAACACTACGAAGCTAACACC -ACGGAACACTACGAAGCTATCGAG -ACGGAACACTACGAAGCTCTCCTT -ACGGAACACTACGAAGCTCCTGTT -ACGGAACACTACGAAGCTCGGTTT -ACGGAACACTACGAAGCTGTGGTT -ACGGAACACTACGAAGCTGCCTTT -ACGGAACACTACGAAGCTGGTCTT -ACGGAACACTACGAAGCTACGCTT -ACGGAACACTACGAAGCTAGCGTT -ACGGAACACTACGAAGCTTTCGTC -ACGGAACACTACGAAGCTTCTCTC -ACGGAACACTACGAAGCTTGGATC -ACGGAACACTACGAAGCTCACTTC -ACGGAACACTACGAAGCTGTACTC -ACGGAACACTACGAAGCTGATGTC -ACGGAACACTACGAAGCTACAGTC -ACGGAACACTACGAAGCTTTGCTG -ACGGAACACTACGAAGCTTCCATG -ACGGAACACTACGAAGCTTGTGTG -ACGGAACACTACGAAGCTCTAGTG -ACGGAACACTACGAAGCTCATCTG -ACGGAACACTACGAAGCTGAGTTG -ACGGAACACTACGAAGCTAGACTG -ACGGAACACTACGAAGCTTCGGTA -ACGGAACACTACGAAGCTTGCCTA -ACGGAACACTACGAAGCTCCACTA -ACGGAACACTACGAAGCTGGAGTA -ACGGAACACTACGAAGCTTCGTCT -ACGGAACACTACGAAGCTTGCACT -ACGGAACACTACGAAGCTCTGACT -ACGGAACACTACGAAGCTCAACCT -ACGGAACACTACGAAGCTGCTACT -ACGGAACACTACGAAGCTGGATCT -ACGGAACACTACGAAGCTAAGGCT -ACGGAACACTACGAAGCTTCAACC -ACGGAACACTACGAAGCTTGTTCC -ACGGAACACTACGAAGCTATTCCC -ACGGAACACTACGAAGCTTTCTCG -ACGGAACACTACGAAGCTTAGACG -ACGGAACACTACGAAGCTGTAACG -ACGGAACACTACGAAGCTACTTCG -ACGGAACACTACGAAGCTTACGCA -ACGGAACACTACGAAGCTCTTGCA -ACGGAACACTACGAAGCTCGAACA -ACGGAACACTACGAAGCTCAGTCA -ACGGAACACTACGAAGCTGATCCA -ACGGAACACTACGAAGCTACGACA -ACGGAACACTACGAAGCTAGCTCA -ACGGAACACTACGAAGCTTCACGT -ACGGAACACTACGAAGCTCGTAGT -ACGGAACACTACGAAGCTGTCAGT -ACGGAACACTACGAAGCTGAAGGT -ACGGAACACTACGAAGCTAACCGT -ACGGAACACTACGAAGCTTTGTGC -ACGGAACACTACGAAGCTCTAAGC -ACGGAACACTACGAAGCTACTAGC -ACGGAACACTACGAAGCTAGATGC -ACGGAACACTACGAAGCTTGAAGG -ACGGAACACTACGAAGCTCAATGG -ACGGAACACTACGAAGCTATGAGG -ACGGAACACTACGAAGCTAATGGG -ACGGAACACTACGAAGCTTCCTGA -ACGGAACACTACGAAGCTTAGCGA -ACGGAACACTACGAAGCTCACAGA -ACGGAACACTACGAAGCTGCAAGA -ACGGAACACTACGAAGCTGGTTGA -ACGGAACACTACGAAGCTTCCGAT -ACGGAACACTACGAAGCTTGGCAT -ACGGAACACTACGAAGCTCGAGAT -ACGGAACACTACGAAGCTTACCAC -ACGGAACACTACGAAGCTCAGAAC -ACGGAACACTACGAAGCTGTCTAC -ACGGAACACTACGAAGCTACGTAC -ACGGAACACTACGAAGCTAGTGAC -ACGGAACACTACGAAGCTCTGTAG -ACGGAACACTACGAAGCTCCTAAG -ACGGAACACTACGAAGCTGTTCAG -ACGGAACACTACGAAGCTGCATAG -ACGGAACACTACGAAGCTGACAAG -ACGGAACACTACGAAGCTAAGCAG -ACGGAACACTACGAAGCTCGTCAA -ACGGAACACTACGAAGCTGCTGAA -ACGGAACACTACGAAGCTAGTACG -ACGGAACACTACGAAGCTATCCGA -ACGGAACACTACGAAGCTATGGGA -ACGGAACACTACGAAGCTGTGCAA -ACGGAACACTACGAAGCTGAGGAA -ACGGAACACTACGAAGCTCAGGTA -ACGGAACACTACGAAGCTGACTCT -ACGGAACACTACGAAGCTAGTCCT -ACGGAACACTACGAAGCTTAAGCC -ACGGAACACTACGAAGCTATAGCC -ACGGAACACTACGAAGCTTAACCG -ACGGAACACTACGAAGCTATGCCA -ACGGAACACTACACGAGTGGAAAC -ACGGAACACTACACGAGTAACACC -ACGGAACACTACACGAGTATCGAG -ACGGAACACTACACGAGTCTCCTT -ACGGAACACTACACGAGTCCTGTT -ACGGAACACTACACGAGTCGGTTT -ACGGAACACTACACGAGTGTGGTT -ACGGAACACTACACGAGTGCCTTT -ACGGAACACTACACGAGTGGTCTT -ACGGAACACTACACGAGTACGCTT -ACGGAACACTACACGAGTAGCGTT -ACGGAACACTACACGAGTTTCGTC -ACGGAACACTACACGAGTTCTCTC -ACGGAACACTACACGAGTTGGATC -ACGGAACACTACACGAGTCACTTC -ACGGAACACTACACGAGTGTACTC -ACGGAACACTACACGAGTGATGTC -ACGGAACACTACACGAGTACAGTC -ACGGAACACTACACGAGTTTGCTG -ACGGAACACTACACGAGTTCCATG -ACGGAACACTACACGAGTTGTGTG -ACGGAACACTACACGAGTCTAGTG -ACGGAACACTACACGAGTCATCTG -ACGGAACACTACACGAGTGAGTTG -ACGGAACACTACACGAGTAGACTG -ACGGAACACTACACGAGTTCGGTA -ACGGAACACTACACGAGTTGCCTA -ACGGAACACTACACGAGTCCACTA -ACGGAACACTACACGAGTGGAGTA -ACGGAACACTACACGAGTTCGTCT -ACGGAACACTACACGAGTTGCACT -ACGGAACACTACACGAGTCTGACT -ACGGAACACTACACGAGTCAACCT -ACGGAACACTACACGAGTGCTACT -ACGGAACACTACACGAGTGGATCT -ACGGAACACTACACGAGTAAGGCT -ACGGAACACTACACGAGTTCAACC -ACGGAACACTACACGAGTTGTTCC -ACGGAACACTACACGAGTATTCCC -ACGGAACACTACACGAGTTTCTCG -ACGGAACACTACACGAGTTAGACG -ACGGAACACTACACGAGTGTAACG -ACGGAACACTACACGAGTACTTCG -ACGGAACACTACACGAGTTACGCA -ACGGAACACTACACGAGTCTTGCA -ACGGAACACTACACGAGTCGAACA -ACGGAACACTACACGAGTCAGTCA -ACGGAACACTACACGAGTGATCCA -ACGGAACACTACACGAGTACGACA -ACGGAACACTACACGAGTAGCTCA -ACGGAACACTACACGAGTTCACGT -ACGGAACACTACACGAGTCGTAGT -ACGGAACACTACACGAGTGTCAGT -ACGGAACACTACACGAGTGAAGGT -ACGGAACACTACACGAGTAACCGT -ACGGAACACTACACGAGTTTGTGC -ACGGAACACTACACGAGTCTAAGC -ACGGAACACTACACGAGTACTAGC -ACGGAACACTACACGAGTAGATGC -ACGGAACACTACACGAGTTGAAGG -ACGGAACACTACACGAGTCAATGG -ACGGAACACTACACGAGTATGAGG -ACGGAACACTACACGAGTAATGGG -ACGGAACACTACACGAGTTCCTGA -ACGGAACACTACACGAGTTAGCGA -ACGGAACACTACACGAGTCACAGA -ACGGAACACTACACGAGTGCAAGA -ACGGAACACTACACGAGTGGTTGA -ACGGAACACTACACGAGTTCCGAT -ACGGAACACTACACGAGTTGGCAT -ACGGAACACTACACGAGTCGAGAT -ACGGAACACTACACGAGTTACCAC -ACGGAACACTACACGAGTCAGAAC -ACGGAACACTACACGAGTGTCTAC -ACGGAACACTACACGAGTACGTAC -ACGGAACACTACACGAGTAGTGAC -ACGGAACACTACACGAGTCTGTAG -ACGGAACACTACACGAGTCCTAAG -ACGGAACACTACACGAGTGTTCAG -ACGGAACACTACACGAGTGCATAG -ACGGAACACTACACGAGTGACAAG -ACGGAACACTACACGAGTAAGCAG -ACGGAACACTACACGAGTCGTCAA -ACGGAACACTACACGAGTGCTGAA -ACGGAACACTACACGAGTAGTACG -ACGGAACACTACACGAGTATCCGA -ACGGAACACTACACGAGTATGGGA -ACGGAACACTACACGAGTGTGCAA -ACGGAACACTACACGAGTGAGGAA -ACGGAACACTACACGAGTCAGGTA -ACGGAACACTACACGAGTGACTCT -ACGGAACACTACACGAGTAGTCCT -ACGGAACACTACACGAGTTAAGCC -ACGGAACACTACACGAGTATAGCC -ACGGAACACTACACGAGTTAACCG -ACGGAACACTACACGAGTATGCCA -ACGGAACACTACCGAATCGGAAAC -ACGGAACACTACCGAATCAACACC -ACGGAACACTACCGAATCATCGAG -ACGGAACACTACCGAATCCTCCTT -ACGGAACACTACCGAATCCCTGTT -ACGGAACACTACCGAATCCGGTTT -ACGGAACACTACCGAATCGTGGTT -ACGGAACACTACCGAATCGCCTTT -ACGGAACACTACCGAATCGGTCTT -ACGGAACACTACCGAATCACGCTT -ACGGAACACTACCGAATCAGCGTT -ACGGAACACTACCGAATCTTCGTC -ACGGAACACTACCGAATCTCTCTC -ACGGAACACTACCGAATCTGGATC -ACGGAACACTACCGAATCCACTTC -ACGGAACACTACCGAATCGTACTC -ACGGAACACTACCGAATCGATGTC -ACGGAACACTACCGAATCACAGTC -ACGGAACACTACCGAATCTTGCTG -ACGGAACACTACCGAATCTCCATG -ACGGAACACTACCGAATCTGTGTG -ACGGAACACTACCGAATCCTAGTG -ACGGAACACTACCGAATCCATCTG -ACGGAACACTACCGAATCGAGTTG -ACGGAACACTACCGAATCAGACTG -ACGGAACACTACCGAATCTCGGTA -ACGGAACACTACCGAATCTGCCTA -ACGGAACACTACCGAATCCCACTA -ACGGAACACTACCGAATCGGAGTA -ACGGAACACTACCGAATCTCGTCT -ACGGAACACTACCGAATCTGCACT -ACGGAACACTACCGAATCCTGACT -ACGGAACACTACCGAATCCAACCT -ACGGAACACTACCGAATCGCTACT -ACGGAACACTACCGAATCGGATCT -ACGGAACACTACCGAATCAAGGCT -ACGGAACACTACCGAATCTCAACC -ACGGAACACTACCGAATCTGTTCC -ACGGAACACTACCGAATCATTCCC -ACGGAACACTACCGAATCTTCTCG -ACGGAACACTACCGAATCTAGACG -ACGGAACACTACCGAATCGTAACG -ACGGAACACTACCGAATCACTTCG -ACGGAACACTACCGAATCTACGCA -ACGGAACACTACCGAATCCTTGCA -ACGGAACACTACCGAATCCGAACA -ACGGAACACTACCGAATCCAGTCA -ACGGAACACTACCGAATCGATCCA -ACGGAACACTACCGAATCACGACA -ACGGAACACTACCGAATCAGCTCA -ACGGAACACTACCGAATCTCACGT -ACGGAACACTACCGAATCCGTAGT -ACGGAACACTACCGAATCGTCAGT -ACGGAACACTACCGAATCGAAGGT -ACGGAACACTACCGAATCAACCGT -ACGGAACACTACCGAATCTTGTGC -ACGGAACACTACCGAATCCTAAGC -ACGGAACACTACCGAATCACTAGC -ACGGAACACTACCGAATCAGATGC -ACGGAACACTACCGAATCTGAAGG -ACGGAACACTACCGAATCCAATGG -ACGGAACACTACCGAATCATGAGG -ACGGAACACTACCGAATCAATGGG -ACGGAACACTACCGAATCTCCTGA -ACGGAACACTACCGAATCTAGCGA -ACGGAACACTACCGAATCCACAGA -ACGGAACACTACCGAATCGCAAGA -ACGGAACACTACCGAATCGGTTGA -ACGGAACACTACCGAATCTCCGAT -ACGGAACACTACCGAATCTGGCAT -ACGGAACACTACCGAATCCGAGAT -ACGGAACACTACCGAATCTACCAC -ACGGAACACTACCGAATCCAGAAC -ACGGAACACTACCGAATCGTCTAC -ACGGAACACTACCGAATCACGTAC -ACGGAACACTACCGAATCAGTGAC -ACGGAACACTACCGAATCCTGTAG -ACGGAACACTACCGAATCCCTAAG -ACGGAACACTACCGAATCGTTCAG -ACGGAACACTACCGAATCGCATAG -ACGGAACACTACCGAATCGACAAG -ACGGAACACTACCGAATCAAGCAG -ACGGAACACTACCGAATCCGTCAA -ACGGAACACTACCGAATCGCTGAA -ACGGAACACTACCGAATCAGTACG -ACGGAACACTACCGAATCATCCGA -ACGGAACACTACCGAATCATGGGA -ACGGAACACTACCGAATCGTGCAA -ACGGAACACTACCGAATCGAGGAA -ACGGAACACTACCGAATCCAGGTA -ACGGAACACTACCGAATCGACTCT -ACGGAACACTACCGAATCAGTCCT -ACGGAACACTACCGAATCTAAGCC -ACGGAACACTACCGAATCATAGCC -ACGGAACACTACCGAATCTAACCG -ACGGAACACTACCGAATCATGCCA -ACGGAACACTACGGAATGGGAAAC -ACGGAACACTACGGAATGAACACC -ACGGAACACTACGGAATGATCGAG -ACGGAACACTACGGAATGCTCCTT -ACGGAACACTACGGAATGCCTGTT -ACGGAACACTACGGAATGCGGTTT -ACGGAACACTACGGAATGGTGGTT -ACGGAACACTACGGAATGGCCTTT -ACGGAACACTACGGAATGGGTCTT -ACGGAACACTACGGAATGACGCTT -ACGGAACACTACGGAATGAGCGTT -ACGGAACACTACGGAATGTTCGTC -ACGGAACACTACGGAATGTCTCTC -ACGGAACACTACGGAATGTGGATC -ACGGAACACTACGGAATGCACTTC -ACGGAACACTACGGAATGGTACTC -ACGGAACACTACGGAATGGATGTC -ACGGAACACTACGGAATGACAGTC -ACGGAACACTACGGAATGTTGCTG -ACGGAACACTACGGAATGTCCATG -ACGGAACACTACGGAATGTGTGTG -ACGGAACACTACGGAATGCTAGTG -ACGGAACACTACGGAATGCATCTG -ACGGAACACTACGGAATGGAGTTG -ACGGAACACTACGGAATGAGACTG -ACGGAACACTACGGAATGTCGGTA -ACGGAACACTACGGAATGTGCCTA -ACGGAACACTACGGAATGCCACTA -ACGGAACACTACGGAATGGGAGTA -ACGGAACACTACGGAATGTCGTCT -ACGGAACACTACGGAATGTGCACT -ACGGAACACTACGGAATGCTGACT -ACGGAACACTACGGAATGCAACCT -ACGGAACACTACGGAATGGCTACT -ACGGAACACTACGGAATGGGATCT -ACGGAACACTACGGAATGAAGGCT -ACGGAACACTACGGAATGTCAACC -ACGGAACACTACGGAATGTGTTCC -ACGGAACACTACGGAATGATTCCC -ACGGAACACTACGGAATGTTCTCG -ACGGAACACTACGGAATGTAGACG -ACGGAACACTACGGAATGGTAACG -ACGGAACACTACGGAATGACTTCG -ACGGAACACTACGGAATGTACGCA -ACGGAACACTACGGAATGCTTGCA -ACGGAACACTACGGAATGCGAACA -ACGGAACACTACGGAATGCAGTCA -ACGGAACACTACGGAATGGATCCA -ACGGAACACTACGGAATGACGACA -ACGGAACACTACGGAATGAGCTCA -ACGGAACACTACGGAATGTCACGT -ACGGAACACTACGGAATGCGTAGT -ACGGAACACTACGGAATGGTCAGT -ACGGAACACTACGGAATGGAAGGT -ACGGAACACTACGGAATGAACCGT -ACGGAACACTACGGAATGTTGTGC -ACGGAACACTACGGAATGCTAAGC -ACGGAACACTACGGAATGACTAGC -ACGGAACACTACGGAATGAGATGC -ACGGAACACTACGGAATGTGAAGG -ACGGAACACTACGGAATGCAATGG -ACGGAACACTACGGAATGATGAGG -ACGGAACACTACGGAATGAATGGG -ACGGAACACTACGGAATGTCCTGA -ACGGAACACTACGGAATGTAGCGA -ACGGAACACTACGGAATGCACAGA -ACGGAACACTACGGAATGGCAAGA -ACGGAACACTACGGAATGGGTTGA -ACGGAACACTACGGAATGTCCGAT -ACGGAACACTACGGAATGTGGCAT -ACGGAACACTACGGAATGCGAGAT -ACGGAACACTACGGAATGTACCAC -ACGGAACACTACGGAATGCAGAAC -ACGGAACACTACGGAATGGTCTAC -ACGGAACACTACGGAATGACGTAC -ACGGAACACTACGGAATGAGTGAC -ACGGAACACTACGGAATGCTGTAG -ACGGAACACTACGGAATGCCTAAG -ACGGAACACTACGGAATGGTTCAG -ACGGAACACTACGGAATGGCATAG -ACGGAACACTACGGAATGGACAAG -ACGGAACACTACGGAATGAAGCAG -ACGGAACACTACGGAATGCGTCAA -ACGGAACACTACGGAATGGCTGAA -ACGGAACACTACGGAATGAGTACG -ACGGAACACTACGGAATGATCCGA -ACGGAACACTACGGAATGATGGGA -ACGGAACACTACGGAATGGTGCAA -ACGGAACACTACGGAATGGAGGAA -ACGGAACACTACGGAATGCAGGTA -ACGGAACACTACGGAATGGACTCT -ACGGAACACTACGGAATGAGTCCT -ACGGAACACTACGGAATGTAAGCC -ACGGAACACTACGGAATGATAGCC -ACGGAACACTACGGAATGTAACCG -ACGGAACACTACGGAATGATGCCA -ACGGAACACTACCAAGTGGGAAAC -ACGGAACACTACCAAGTGAACACC -ACGGAACACTACCAAGTGATCGAG -ACGGAACACTACCAAGTGCTCCTT -ACGGAACACTACCAAGTGCCTGTT -ACGGAACACTACCAAGTGCGGTTT -ACGGAACACTACCAAGTGGTGGTT -ACGGAACACTACCAAGTGGCCTTT -ACGGAACACTACCAAGTGGGTCTT -ACGGAACACTACCAAGTGACGCTT -ACGGAACACTACCAAGTGAGCGTT -ACGGAACACTACCAAGTGTTCGTC -ACGGAACACTACCAAGTGTCTCTC -ACGGAACACTACCAAGTGTGGATC -ACGGAACACTACCAAGTGCACTTC -ACGGAACACTACCAAGTGGTACTC -ACGGAACACTACCAAGTGGATGTC -ACGGAACACTACCAAGTGACAGTC -ACGGAACACTACCAAGTGTTGCTG -ACGGAACACTACCAAGTGTCCATG -ACGGAACACTACCAAGTGTGTGTG -ACGGAACACTACCAAGTGCTAGTG -ACGGAACACTACCAAGTGCATCTG -ACGGAACACTACCAAGTGGAGTTG -ACGGAACACTACCAAGTGAGACTG -ACGGAACACTACCAAGTGTCGGTA -ACGGAACACTACCAAGTGTGCCTA -ACGGAACACTACCAAGTGCCACTA -ACGGAACACTACCAAGTGGGAGTA -ACGGAACACTACCAAGTGTCGTCT -ACGGAACACTACCAAGTGTGCACT -ACGGAACACTACCAAGTGCTGACT -ACGGAACACTACCAAGTGCAACCT -ACGGAACACTACCAAGTGGCTACT -ACGGAACACTACCAAGTGGGATCT -ACGGAACACTACCAAGTGAAGGCT -ACGGAACACTACCAAGTGTCAACC -ACGGAACACTACCAAGTGTGTTCC -ACGGAACACTACCAAGTGATTCCC -ACGGAACACTACCAAGTGTTCTCG -ACGGAACACTACCAAGTGTAGACG -ACGGAACACTACCAAGTGGTAACG -ACGGAACACTACCAAGTGACTTCG -ACGGAACACTACCAAGTGTACGCA -ACGGAACACTACCAAGTGCTTGCA -ACGGAACACTACCAAGTGCGAACA -ACGGAACACTACCAAGTGCAGTCA -ACGGAACACTACCAAGTGGATCCA -ACGGAACACTACCAAGTGACGACA -ACGGAACACTACCAAGTGAGCTCA -ACGGAACACTACCAAGTGTCACGT -ACGGAACACTACCAAGTGCGTAGT -ACGGAACACTACCAAGTGGTCAGT -ACGGAACACTACCAAGTGGAAGGT -ACGGAACACTACCAAGTGAACCGT -ACGGAACACTACCAAGTGTTGTGC -ACGGAACACTACCAAGTGCTAAGC -ACGGAACACTACCAAGTGACTAGC -ACGGAACACTACCAAGTGAGATGC -ACGGAACACTACCAAGTGTGAAGG -ACGGAACACTACCAAGTGCAATGG -ACGGAACACTACCAAGTGATGAGG -ACGGAACACTACCAAGTGAATGGG -ACGGAACACTACCAAGTGTCCTGA -ACGGAACACTACCAAGTGTAGCGA -ACGGAACACTACCAAGTGCACAGA -ACGGAACACTACCAAGTGGCAAGA -ACGGAACACTACCAAGTGGGTTGA -ACGGAACACTACCAAGTGTCCGAT -ACGGAACACTACCAAGTGTGGCAT -ACGGAACACTACCAAGTGCGAGAT -ACGGAACACTACCAAGTGTACCAC -ACGGAACACTACCAAGTGCAGAAC -ACGGAACACTACCAAGTGGTCTAC -ACGGAACACTACCAAGTGACGTAC -ACGGAACACTACCAAGTGAGTGAC -ACGGAACACTACCAAGTGCTGTAG -ACGGAACACTACCAAGTGCCTAAG -ACGGAACACTACCAAGTGGTTCAG -ACGGAACACTACCAAGTGGCATAG -ACGGAACACTACCAAGTGGACAAG -ACGGAACACTACCAAGTGAAGCAG -ACGGAACACTACCAAGTGCGTCAA -ACGGAACACTACCAAGTGGCTGAA -ACGGAACACTACCAAGTGAGTACG -ACGGAACACTACCAAGTGATCCGA -ACGGAACACTACCAAGTGATGGGA -ACGGAACACTACCAAGTGGTGCAA -ACGGAACACTACCAAGTGGAGGAA -ACGGAACACTACCAAGTGCAGGTA -ACGGAACACTACCAAGTGGACTCT -ACGGAACACTACCAAGTGAGTCCT -ACGGAACACTACCAAGTGTAAGCC -ACGGAACACTACCAAGTGATAGCC -ACGGAACACTACCAAGTGTAACCG -ACGGAACACTACCAAGTGATGCCA -ACGGAACACTACGAAGAGGGAAAC -ACGGAACACTACGAAGAGAACACC -ACGGAACACTACGAAGAGATCGAG -ACGGAACACTACGAAGAGCTCCTT -ACGGAACACTACGAAGAGCCTGTT -ACGGAACACTACGAAGAGCGGTTT -ACGGAACACTACGAAGAGGTGGTT -ACGGAACACTACGAAGAGGCCTTT -ACGGAACACTACGAAGAGGGTCTT -ACGGAACACTACGAAGAGACGCTT -ACGGAACACTACGAAGAGAGCGTT -ACGGAACACTACGAAGAGTTCGTC -ACGGAACACTACGAAGAGTCTCTC -ACGGAACACTACGAAGAGTGGATC -ACGGAACACTACGAAGAGCACTTC -ACGGAACACTACGAAGAGGTACTC -ACGGAACACTACGAAGAGGATGTC -ACGGAACACTACGAAGAGACAGTC -ACGGAACACTACGAAGAGTTGCTG -ACGGAACACTACGAAGAGTCCATG -ACGGAACACTACGAAGAGTGTGTG -ACGGAACACTACGAAGAGCTAGTG -ACGGAACACTACGAAGAGCATCTG -ACGGAACACTACGAAGAGGAGTTG -ACGGAACACTACGAAGAGAGACTG -ACGGAACACTACGAAGAGTCGGTA -ACGGAACACTACGAAGAGTGCCTA -ACGGAACACTACGAAGAGCCACTA -ACGGAACACTACGAAGAGGGAGTA -ACGGAACACTACGAAGAGTCGTCT -ACGGAACACTACGAAGAGTGCACT -ACGGAACACTACGAAGAGCTGACT -ACGGAACACTACGAAGAGCAACCT -ACGGAACACTACGAAGAGGCTACT -ACGGAACACTACGAAGAGGGATCT -ACGGAACACTACGAAGAGAAGGCT -ACGGAACACTACGAAGAGTCAACC -ACGGAACACTACGAAGAGTGTTCC -ACGGAACACTACGAAGAGATTCCC -ACGGAACACTACGAAGAGTTCTCG -ACGGAACACTACGAAGAGTAGACG -ACGGAACACTACGAAGAGGTAACG -ACGGAACACTACGAAGAGACTTCG -ACGGAACACTACGAAGAGTACGCA -ACGGAACACTACGAAGAGCTTGCA -ACGGAACACTACGAAGAGCGAACA -ACGGAACACTACGAAGAGCAGTCA -ACGGAACACTACGAAGAGGATCCA -ACGGAACACTACGAAGAGACGACA -ACGGAACACTACGAAGAGAGCTCA -ACGGAACACTACGAAGAGTCACGT -ACGGAACACTACGAAGAGCGTAGT -ACGGAACACTACGAAGAGGTCAGT -ACGGAACACTACGAAGAGGAAGGT -ACGGAACACTACGAAGAGAACCGT -ACGGAACACTACGAAGAGTTGTGC -ACGGAACACTACGAAGAGCTAAGC -ACGGAACACTACGAAGAGACTAGC -ACGGAACACTACGAAGAGAGATGC -ACGGAACACTACGAAGAGTGAAGG -ACGGAACACTACGAAGAGCAATGG -ACGGAACACTACGAAGAGATGAGG -ACGGAACACTACGAAGAGAATGGG -ACGGAACACTACGAAGAGTCCTGA -ACGGAACACTACGAAGAGTAGCGA -ACGGAACACTACGAAGAGCACAGA -ACGGAACACTACGAAGAGGCAAGA -ACGGAACACTACGAAGAGGGTTGA -ACGGAACACTACGAAGAGTCCGAT -ACGGAACACTACGAAGAGTGGCAT -ACGGAACACTACGAAGAGCGAGAT -ACGGAACACTACGAAGAGTACCAC -ACGGAACACTACGAAGAGCAGAAC -ACGGAACACTACGAAGAGGTCTAC -ACGGAACACTACGAAGAGACGTAC -ACGGAACACTACGAAGAGAGTGAC -ACGGAACACTACGAAGAGCTGTAG -ACGGAACACTACGAAGAGCCTAAG -ACGGAACACTACGAAGAGGTTCAG -ACGGAACACTACGAAGAGGCATAG -ACGGAACACTACGAAGAGGACAAG -ACGGAACACTACGAAGAGAAGCAG -ACGGAACACTACGAAGAGCGTCAA -ACGGAACACTACGAAGAGGCTGAA -ACGGAACACTACGAAGAGAGTACG -ACGGAACACTACGAAGAGATCCGA -ACGGAACACTACGAAGAGATGGGA -ACGGAACACTACGAAGAGGTGCAA -ACGGAACACTACGAAGAGGAGGAA -ACGGAACACTACGAAGAGCAGGTA -ACGGAACACTACGAAGAGGACTCT -ACGGAACACTACGAAGAGAGTCCT -ACGGAACACTACGAAGAGTAAGCC -ACGGAACACTACGAAGAGATAGCC -ACGGAACACTACGAAGAGTAACCG -ACGGAACACTACGAAGAGATGCCA -ACGGAACACTACGTACAGGGAAAC -ACGGAACACTACGTACAGAACACC -ACGGAACACTACGTACAGATCGAG -ACGGAACACTACGTACAGCTCCTT -ACGGAACACTACGTACAGCCTGTT -ACGGAACACTACGTACAGCGGTTT -ACGGAACACTACGTACAGGTGGTT -ACGGAACACTACGTACAGGCCTTT -ACGGAACACTACGTACAGGGTCTT -ACGGAACACTACGTACAGACGCTT -ACGGAACACTACGTACAGAGCGTT -ACGGAACACTACGTACAGTTCGTC -ACGGAACACTACGTACAGTCTCTC -ACGGAACACTACGTACAGTGGATC -ACGGAACACTACGTACAGCACTTC -ACGGAACACTACGTACAGGTACTC -ACGGAACACTACGTACAGGATGTC -ACGGAACACTACGTACAGACAGTC -ACGGAACACTACGTACAGTTGCTG -ACGGAACACTACGTACAGTCCATG -ACGGAACACTACGTACAGTGTGTG -ACGGAACACTACGTACAGCTAGTG -ACGGAACACTACGTACAGCATCTG -ACGGAACACTACGTACAGGAGTTG -ACGGAACACTACGTACAGAGACTG -ACGGAACACTACGTACAGTCGGTA -ACGGAACACTACGTACAGTGCCTA -ACGGAACACTACGTACAGCCACTA -ACGGAACACTACGTACAGGGAGTA -ACGGAACACTACGTACAGTCGTCT -ACGGAACACTACGTACAGTGCACT -ACGGAACACTACGTACAGCTGACT -ACGGAACACTACGTACAGCAACCT -ACGGAACACTACGTACAGGCTACT -ACGGAACACTACGTACAGGGATCT -ACGGAACACTACGTACAGAAGGCT -ACGGAACACTACGTACAGTCAACC -ACGGAACACTACGTACAGTGTTCC -ACGGAACACTACGTACAGATTCCC -ACGGAACACTACGTACAGTTCTCG -ACGGAACACTACGTACAGTAGACG -ACGGAACACTACGTACAGGTAACG -ACGGAACACTACGTACAGACTTCG -ACGGAACACTACGTACAGTACGCA -ACGGAACACTACGTACAGCTTGCA -ACGGAACACTACGTACAGCGAACA -ACGGAACACTACGTACAGCAGTCA -ACGGAACACTACGTACAGGATCCA -ACGGAACACTACGTACAGACGACA -ACGGAACACTACGTACAGAGCTCA -ACGGAACACTACGTACAGTCACGT -ACGGAACACTACGTACAGCGTAGT -ACGGAACACTACGTACAGGTCAGT -ACGGAACACTACGTACAGGAAGGT -ACGGAACACTACGTACAGAACCGT -ACGGAACACTACGTACAGTTGTGC -ACGGAACACTACGTACAGCTAAGC -ACGGAACACTACGTACAGACTAGC -ACGGAACACTACGTACAGAGATGC -ACGGAACACTACGTACAGTGAAGG -ACGGAACACTACGTACAGCAATGG -ACGGAACACTACGTACAGATGAGG -ACGGAACACTACGTACAGAATGGG -ACGGAACACTACGTACAGTCCTGA -ACGGAACACTACGTACAGTAGCGA -ACGGAACACTACGTACAGCACAGA -ACGGAACACTACGTACAGGCAAGA -ACGGAACACTACGTACAGGGTTGA -ACGGAACACTACGTACAGTCCGAT -ACGGAACACTACGTACAGTGGCAT -ACGGAACACTACGTACAGCGAGAT -ACGGAACACTACGTACAGTACCAC -ACGGAACACTACGTACAGCAGAAC -ACGGAACACTACGTACAGGTCTAC -ACGGAACACTACGTACAGACGTAC -ACGGAACACTACGTACAGAGTGAC -ACGGAACACTACGTACAGCTGTAG -ACGGAACACTACGTACAGCCTAAG -ACGGAACACTACGTACAGGTTCAG -ACGGAACACTACGTACAGGCATAG -ACGGAACACTACGTACAGGACAAG -ACGGAACACTACGTACAGAAGCAG -ACGGAACACTACGTACAGCGTCAA -ACGGAACACTACGTACAGGCTGAA -ACGGAACACTACGTACAGAGTACG -ACGGAACACTACGTACAGATCCGA -ACGGAACACTACGTACAGATGGGA -ACGGAACACTACGTACAGGTGCAA -ACGGAACACTACGTACAGGAGGAA -ACGGAACACTACGTACAGCAGGTA -ACGGAACACTACGTACAGGACTCT -ACGGAACACTACGTACAGAGTCCT -ACGGAACACTACGTACAGTAAGCC -ACGGAACACTACGTACAGATAGCC -ACGGAACACTACGTACAGTAACCG -ACGGAACACTACGTACAGATGCCA -ACGGAACACTACTCTGACGGAAAC -ACGGAACACTACTCTGACAACACC -ACGGAACACTACTCTGACATCGAG -ACGGAACACTACTCTGACCTCCTT -ACGGAACACTACTCTGACCCTGTT -ACGGAACACTACTCTGACCGGTTT -ACGGAACACTACTCTGACGTGGTT -ACGGAACACTACTCTGACGCCTTT -ACGGAACACTACTCTGACGGTCTT -ACGGAACACTACTCTGACACGCTT -ACGGAACACTACTCTGACAGCGTT -ACGGAACACTACTCTGACTTCGTC -ACGGAACACTACTCTGACTCTCTC -ACGGAACACTACTCTGACTGGATC -ACGGAACACTACTCTGACCACTTC -ACGGAACACTACTCTGACGTACTC -ACGGAACACTACTCTGACGATGTC -ACGGAACACTACTCTGACACAGTC -ACGGAACACTACTCTGACTTGCTG -ACGGAACACTACTCTGACTCCATG -ACGGAACACTACTCTGACTGTGTG -ACGGAACACTACTCTGACCTAGTG -ACGGAACACTACTCTGACCATCTG -ACGGAACACTACTCTGACGAGTTG -ACGGAACACTACTCTGACAGACTG -ACGGAACACTACTCTGACTCGGTA -ACGGAACACTACTCTGACTGCCTA -ACGGAACACTACTCTGACCCACTA -ACGGAACACTACTCTGACGGAGTA -ACGGAACACTACTCTGACTCGTCT -ACGGAACACTACTCTGACTGCACT -ACGGAACACTACTCTGACCTGACT -ACGGAACACTACTCTGACCAACCT -ACGGAACACTACTCTGACGCTACT -ACGGAACACTACTCTGACGGATCT -ACGGAACACTACTCTGACAAGGCT -ACGGAACACTACTCTGACTCAACC -ACGGAACACTACTCTGACTGTTCC -ACGGAACACTACTCTGACATTCCC -ACGGAACACTACTCTGACTTCTCG -ACGGAACACTACTCTGACTAGACG -ACGGAACACTACTCTGACGTAACG -ACGGAACACTACTCTGACACTTCG -ACGGAACACTACTCTGACTACGCA -ACGGAACACTACTCTGACCTTGCA -ACGGAACACTACTCTGACCGAACA -ACGGAACACTACTCTGACCAGTCA -ACGGAACACTACTCTGACGATCCA -ACGGAACACTACTCTGACACGACA -ACGGAACACTACTCTGACAGCTCA -ACGGAACACTACTCTGACTCACGT -ACGGAACACTACTCTGACCGTAGT -ACGGAACACTACTCTGACGTCAGT -ACGGAACACTACTCTGACGAAGGT -ACGGAACACTACTCTGACAACCGT -ACGGAACACTACTCTGACTTGTGC -ACGGAACACTACTCTGACCTAAGC -ACGGAACACTACTCTGACACTAGC -ACGGAACACTACTCTGACAGATGC -ACGGAACACTACTCTGACTGAAGG -ACGGAACACTACTCTGACCAATGG -ACGGAACACTACTCTGACATGAGG -ACGGAACACTACTCTGACAATGGG -ACGGAACACTACTCTGACTCCTGA -ACGGAACACTACTCTGACTAGCGA -ACGGAACACTACTCTGACCACAGA -ACGGAACACTACTCTGACGCAAGA -ACGGAACACTACTCTGACGGTTGA -ACGGAACACTACTCTGACTCCGAT -ACGGAACACTACTCTGACTGGCAT -ACGGAACACTACTCTGACCGAGAT -ACGGAACACTACTCTGACTACCAC -ACGGAACACTACTCTGACCAGAAC -ACGGAACACTACTCTGACGTCTAC -ACGGAACACTACTCTGACACGTAC -ACGGAACACTACTCTGACAGTGAC -ACGGAACACTACTCTGACCTGTAG -ACGGAACACTACTCTGACCCTAAG -ACGGAACACTACTCTGACGTTCAG -ACGGAACACTACTCTGACGCATAG -ACGGAACACTACTCTGACGACAAG -ACGGAACACTACTCTGACAAGCAG -ACGGAACACTACTCTGACCGTCAA -ACGGAACACTACTCTGACGCTGAA -ACGGAACACTACTCTGACAGTACG -ACGGAACACTACTCTGACATCCGA -ACGGAACACTACTCTGACATGGGA -ACGGAACACTACTCTGACGTGCAA -ACGGAACACTACTCTGACGAGGAA -ACGGAACACTACTCTGACCAGGTA -ACGGAACACTACTCTGACGACTCT -ACGGAACACTACTCTGACAGTCCT -ACGGAACACTACTCTGACTAAGCC -ACGGAACACTACTCTGACATAGCC -ACGGAACACTACTCTGACTAACCG -ACGGAACACTACTCTGACATGCCA -ACGGAACACTACCCTAGTGGAAAC -ACGGAACACTACCCTAGTAACACC -ACGGAACACTACCCTAGTATCGAG -ACGGAACACTACCCTAGTCTCCTT -ACGGAACACTACCCTAGTCCTGTT -ACGGAACACTACCCTAGTCGGTTT -ACGGAACACTACCCTAGTGTGGTT -ACGGAACACTACCCTAGTGCCTTT -ACGGAACACTACCCTAGTGGTCTT -ACGGAACACTACCCTAGTACGCTT -ACGGAACACTACCCTAGTAGCGTT -ACGGAACACTACCCTAGTTTCGTC -ACGGAACACTACCCTAGTTCTCTC -ACGGAACACTACCCTAGTTGGATC -ACGGAACACTACCCTAGTCACTTC -ACGGAACACTACCCTAGTGTACTC -ACGGAACACTACCCTAGTGATGTC -ACGGAACACTACCCTAGTACAGTC -ACGGAACACTACCCTAGTTTGCTG -ACGGAACACTACCCTAGTTCCATG -ACGGAACACTACCCTAGTTGTGTG -ACGGAACACTACCCTAGTCTAGTG -ACGGAACACTACCCTAGTCATCTG -ACGGAACACTACCCTAGTGAGTTG -ACGGAACACTACCCTAGTAGACTG -ACGGAACACTACCCTAGTTCGGTA -ACGGAACACTACCCTAGTTGCCTA -ACGGAACACTACCCTAGTCCACTA -ACGGAACACTACCCTAGTGGAGTA -ACGGAACACTACCCTAGTTCGTCT -ACGGAACACTACCCTAGTTGCACT -ACGGAACACTACCCTAGTCTGACT -ACGGAACACTACCCTAGTCAACCT -ACGGAACACTACCCTAGTGCTACT -ACGGAACACTACCCTAGTGGATCT -ACGGAACACTACCCTAGTAAGGCT -ACGGAACACTACCCTAGTTCAACC -ACGGAACACTACCCTAGTTGTTCC -ACGGAACACTACCCTAGTATTCCC -ACGGAACACTACCCTAGTTTCTCG -ACGGAACACTACCCTAGTTAGACG -ACGGAACACTACCCTAGTGTAACG -ACGGAACACTACCCTAGTACTTCG -ACGGAACACTACCCTAGTTACGCA -ACGGAACACTACCCTAGTCTTGCA -ACGGAACACTACCCTAGTCGAACA -ACGGAACACTACCCTAGTCAGTCA -ACGGAACACTACCCTAGTGATCCA -ACGGAACACTACCCTAGTACGACA -ACGGAACACTACCCTAGTAGCTCA -ACGGAACACTACCCTAGTTCACGT -ACGGAACACTACCCTAGTCGTAGT -ACGGAACACTACCCTAGTGTCAGT -ACGGAACACTACCCTAGTGAAGGT -ACGGAACACTACCCTAGTAACCGT -ACGGAACACTACCCTAGTTTGTGC -ACGGAACACTACCCTAGTCTAAGC -ACGGAACACTACCCTAGTACTAGC -ACGGAACACTACCCTAGTAGATGC -ACGGAACACTACCCTAGTTGAAGG -ACGGAACACTACCCTAGTCAATGG -ACGGAACACTACCCTAGTATGAGG -ACGGAACACTACCCTAGTAATGGG -ACGGAACACTACCCTAGTTCCTGA -ACGGAACACTACCCTAGTTAGCGA -ACGGAACACTACCCTAGTCACAGA -ACGGAACACTACCCTAGTGCAAGA -ACGGAACACTACCCTAGTGGTTGA -ACGGAACACTACCCTAGTTCCGAT -ACGGAACACTACCCTAGTTGGCAT -ACGGAACACTACCCTAGTCGAGAT -ACGGAACACTACCCTAGTTACCAC -ACGGAACACTACCCTAGTCAGAAC -ACGGAACACTACCCTAGTGTCTAC -ACGGAACACTACCCTAGTACGTAC -ACGGAACACTACCCTAGTAGTGAC -ACGGAACACTACCCTAGTCTGTAG -ACGGAACACTACCCTAGTCCTAAG -ACGGAACACTACCCTAGTGTTCAG -ACGGAACACTACCCTAGTGCATAG -ACGGAACACTACCCTAGTGACAAG -ACGGAACACTACCCTAGTAAGCAG -ACGGAACACTACCCTAGTCGTCAA -ACGGAACACTACCCTAGTGCTGAA -ACGGAACACTACCCTAGTAGTACG -ACGGAACACTACCCTAGTATCCGA -ACGGAACACTACCCTAGTATGGGA -ACGGAACACTACCCTAGTGTGCAA -ACGGAACACTACCCTAGTGAGGAA -ACGGAACACTACCCTAGTCAGGTA -ACGGAACACTACCCTAGTGACTCT -ACGGAACACTACCCTAGTAGTCCT -ACGGAACACTACCCTAGTTAAGCC -ACGGAACACTACCCTAGTATAGCC -ACGGAACACTACCCTAGTTAACCG -ACGGAACACTACCCTAGTATGCCA -ACGGAACACTACGCCTAAGGAAAC -ACGGAACACTACGCCTAAAACACC -ACGGAACACTACGCCTAAATCGAG -ACGGAACACTACGCCTAACTCCTT -ACGGAACACTACGCCTAACCTGTT -ACGGAACACTACGCCTAACGGTTT -ACGGAACACTACGCCTAAGTGGTT -ACGGAACACTACGCCTAAGCCTTT -ACGGAACACTACGCCTAAGGTCTT -ACGGAACACTACGCCTAAACGCTT -ACGGAACACTACGCCTAAAGCGTT -ACGGAACACTACGCCTAATTCGTC -ACGGAACACTACGCCTAATCTCTC -ACGGAACACTACGCCTAATGGATC -ACGGAACACTACGCCTAACACTTC -ACGGAACACTACGCCTAAGTACTC -ACGGAACACTACGCCTAAGATGTC -ACGGAACACTACGCCTAAACAGTC -ACGGAACACTACGCCTAATTGCTG -ACGGAACACTACGCCTAATCCATG -ACGGAACACTACGCCTAATGTGTG -ACGGAACACTACGCCTAACTAGTG -ACGGAACACTACGCCTAACATCTG -ACGGAACACTACGCCTAAGAGTTG -ACGGAACACTACGCCTAAAGACTG -ACGGAACACTACGCCTAATCGGTA -ACGGAACACTACGCCTAATGCCTA -ACGGAACACTACGCCTAACCACTA -ACGGAACACTACGCCTAAGGAGTA -ACGGAACACTACGCCTAATCGTCT -ACGGAACACTACGCCTAATGCACT -ACGGAACACTACGCCTAACTGACT -ACGGAACACTACGCCTAACAACCT -ACGGAACACTACGCCTAAGCTACT -ACGGAACACTACGCCTAAGGATCT -ACGGAACACTACGCCTAAAAGGCT -ACGGAACACTACGCCTAATCAACC -ACGGAACACTACGCCTAATGTTCC -ACGGAACACTACGCCTAAATTCCC -ACGGAACACTACGCCTAATTCTCG -ACGGAACACTACGCCTAATAGACG -ACGGAACACTACGCCTAAGTAACG -ACGGAACACTACGCCTAAACTTCG -ACGGAACACTACGCCTAATACGCA -ACGGAACACTACGCCTAACTTGCA -ACGGAACACTACGCCTAACGAACA -ACGGAACACTACGCCTAACAGTCA -ACGGAACACTACGCCTAAGATCCA -ACGGAACACTACGCCTAAACGACA -ACGGAACACTACGCCTAAAGCTCA -ACGGAACACTACGCCTAATCACGT -ACGGAACACTACGCCTAACGTAGT -ACGGAACACTACGCCTAAGTCAGT -ACGGAACACTACGCCTAAGAAGGT -ACGGAACACTACGCCTAAAACCGT -ACGGAACACTACGCCTAATTGTGC -ACGGAACACTACGCCTAACTAAGC -ACGGAACACTACGCCTAAACTAGC -ACGGAACACTACGCCTAAAGATGC -ACGGAACACTACGCCTAATGAAGG -ACGGAACACTACGCCTAACAATGG -ACGGAACACTACGCCTAAATGAGG -ACGGAACACTACGCCTAAAATGGG -ACGGAACACTACGCCTAATCCTGA -ACGGAACACTACGCCTAATAGCGA -ACGGAACACTACGCCTAACACAGA -ACGGAACACTACGCCTAAGCAAGA -ACGGAACACTACGCCTAAGGTTGA -ACGGAACACTACGCCTAATCCGAT -ACGGAACACTACGCCTAATGGCAT -ACGGAACACTACGCCTAACGAGAT -ACGGAACACTACGCCTAATACCAC -ACGGAACACTACGCCTAACAGAAC -ACGGAACACTACGCCTAAGTCTAC -ACGGAACACTACGCCTAAACGTAC -ACGGAACACTACGCCTAAAGTGAC -ACGGAACACTACGCCTAACTGTAG -ACGGAACACTACGCCTAACCTAAG -ACGGAACACTACGCCTAAGTTCAG -ACGGAACACTACGCCTAAGCATAG -ACGGAACACTACGCCTAAGACAAG -ACGGAACACTACGCCTAAAAGCAG -ACGGAACACTACGCCTAACGTCAA -ACGGAACACTACGCCTAAGCTGAA -ACGGAACACTACGCCTAAAGTACG -ACGGAACACTACGCCTAAATCCGA -ACGGAACACTACGCCTAAATGGGA -ACGGAACACTACGCCTAAGTGCAA -ACGGAACACTACGCCTAAGAGGAA -ACGGAACACTACGCCTAACAGGTA -ACGGAACACTACGCCTAAGACTCT -ACGGAACACTACGCCTAAAGTCCT -ACGGAACACTACGCCTAATAAGCC -ACGGAACACTACGCCTAAATAGCC -ACGGAACACTACGCCTAATAACCG -ACGGAACACTACGCCTAAATGCCA -ACGGAACACTACGCCATAGGAAAC -ACGGAACACTACGCCATAAACACC -ACGGAACACTACGCCATAATCGAG -ACGGAACACTACGCCATACTCCTT -ACGGAACACTACGCCATACCTGTT -ACGGAACACTACGCCATACGGTTT -ACGGAACACTACGCCATAGTGGTT -ACGGAACACTACGCCATAGCCTTT -ACGGAACACTACGCCATAGGTCTT -ACGGAACACTACGCCATAACGCTT -ACGGAACACTACGCCATAAGCGTT -ACGGAACACTACGCCATATTCGTC -ACGGAACACTACGCCATATCTCTC -ACGGAACACTACGCCATATGGATC -ACGGAACACTACGCCATACACTTC -ACGGAACACTACGCCATAGTACTC -ACGGAACACTACGCCATAGATGTC -ACGGAACACTACGCCATAACAGTC -ACGGAACACTACGCCATATTGCTG -ACGGAACACTACGCCATATCCATG -ACGGAACACTACGCCATATGTGTG -ACGGAACACTACGCCATACTAGTG -ACGGAACACTACGCCATACATCTG -ACGGAACACTACGCCATAGAGTTG -ACGGAACACTACGCCATAAGACTG -ACGGAACACTACGCCATATCGGTA -ACGGAACACTACGCCATATGCCTA -ACGGAACACTACGCCATACCACTA -ACGGAACACTACGCCATAGGAGTA -ACGGAACACTACGCCATATCGTCT -ACGGAACACTACGCCATATGCACT -ACGGAACACTACGCCATACTGACT -ACGGAACACTACGCCATACAACCT -ACGGAACACTACGCCATAGCTACT -ACGGAACACTACGCCATAGGATCT -ACGGAACACTACGCCATAAAGGCT -ACGGAACACTACGCCATATCAACC -ACGGAACACTACGCCATATGTTCC -ACGGAACACTACGCCATAATTCCC -ACGGAACACTACGCCATATTCTCG -ACGGAACACTACGCCATATAGACG -ACGGAACACTACGCCATAGTAACG -ACGGAACACTACGCCATAACTTCG -ACGGAACACTACGCCATATACGCA -ACGGAACACTACGCCATACTTGCA -ACGGAACACTACGCCATACGAACA -ACGGAACACTACGCCATACAGTCA -ACGGAACACTACGCCATAGATCCA -ACGGAACACTACGCCATAACGACA -ACGGAACACTACGCCATAAGCTCA -ACGGAACACTACGCCATATCACGT -ACGGAACACTACGCCATACGTAGT -ACGGAACACTACGCCATAGTCAGT -ACGGAACACTACGCCATAGAAGGT -ACGGAACACTACGCCATAAACCGT -ACGGAACACTACGCCATATTGTGC -ACGGAACACTACGCCATACTAAGC -ACGGAACACTACGCCATAACTAGC -ACGGAACACTACGCCATAAGATGC -ACGGAACACTACGCCATATGAAGG -ACGGAACACTACGCCATACAATGG -ACGGAACACTACGCCATAATGAGG -ACGGAACACTACGCCATAAATGGG -ACGGAACACTACGCCATATCCTGA -ACGGAACACTACGCCATATAGCGA -ACGGAACACTACGCCATACACAGA -ACGGAACACTACGCCATAGCAAGA -ACGGAACACTACGCCATAGGTTGA -ACGGAACACTACGCCATATCCGAT -ACGGAACACTACGCCATATGGCAT -ACGGAACACTACGCCATACGAGAT -ACGGAACACTACGCCATATACCAC -ACGGAACACTACGCCATACAGAAC -ACGGAACACTACGCCATAGTCTAC -ACGGAACACTACGCCATAACGTAC -ACGGAACACTACGCCATAAGTGAC -ACGGAACACTACGCCATACTGTAG -ACGGAACACTACGCCATACCTAAG -ACGGAACACTACGCCATAGTTCAG -ACGGAACACTACGCCATAGCATAG -ACGGAACACTACGCCATAGACAAG -ACGGAACACTACGCCATAAAGCAG -ACGGAACACTACGCCATACGTCAA -ACGGAACACTACGCCATAGCTGAA -ACGGAACACTACGCCATAAGTACG -ACGGAACACTACGCCATAATCCGA -ACGGAACACTACGCCATAATGGGA -ACGGAACACTACGCCATAGTGCAA -ACGGAACACTACGCCATAGAGGAA -ACGGAACACTACGCCATACAGGTA -ACGGAACACTACGCCATAGACTCT -ACGGAACACTACGCCATAAGTCCT -ACGGAACACTACGCCATATAAGCC -ACGGAACACTACGCCATAATAGCC -ACGGAACACTACGCCATATAACCG -ACGGAACACTACGCCATAATGCCA -ACGGAACACTACCCGTAAGGAAAC -ACGGAACACTACCCGTAAAACACC -ACGGAACACTACCCGTAAATCGAG -ACGGAACACTACCCGTAACTCCTT -ACGGAACACTACCCGTAACCTGTT -ACGGAACACTACCCGTAACGGTTT -ACGGAACACTACCCGTAAGTGGTT -ACGGAACACTACCCGTAAGCCTTT -ACGGAACACTACCCGTAAGGTCTT -ACGGAACACTACCCGTAAACGCTT -ACGGAACACTACCCGTAAAGCGTT -ACGGAACACTACCCGTAATTCGTC -ACGGAACACTACCCGTAATCTCTC -ACGGAACACTACCCGTAATGGATC -ACGGAACACTACCCGTAACACTTC -ACGGAACACTACCCGTAAGTACTC -ACGGAACACTACCCGTAAGATGTC -ACGGAACACTACCCGTAAACAGTC -ACGGAACACTACCCGTAATTGCTG -ACGGAACACTACCCGTAATCCATG -ACGGAACACTACCCGTAATGTGTG -ACGGAACACTACCCGTAACTAGTG -ACGGAACACTACCCGTAACATCTG -ACGGAACACTACCCGTAAGAGTTG -ACGGAACACTACCCGTAAAGACTG -ACGGAACACTACCCGTAATCGGTA -ACGGAACACTACCCGTAATGCCTA -ACGGAACACTACCCGTAACCACTA -ACGGAACACTACCCGTAAGGAGTA -ACGGAACACTACCCGTAATCGTCT -ACGGAACACTACCCGTAATGCACT -ACGGAACACTACCCGTAACTGACT -ACGGAACACTACCCGTAACAACCT -ACGGAACACTACCCGTAAGCTACT -ACGGAACACTACCCGTAAGGATCT -ACGGAACACTACCCGTAAAAGGCT -ACGGAACACTACCCGTAATCAACC -ACGGAACACTACCCGTAATGTTCC -ACGGAACACTACCCGTAAATTCCC -ACGGAACACTACCCGTAATTCTCG -ACGGAACACTACCCGTAATAGACG -ACGGAACACTACCCGTAAGTAACG -ACGGAACACTACCCGTAAACTTCG -ACGGAACACTACCCGTAATACGCA -ACGGAACACTACCCGTAACTTGCA -ACGGAACACTACCCGTAACGAACA -ACGGAACACTACCCGTAACAGTCA -ACGGAACACTACCCGTAAGATCCA -ACGGAACACTACCCGTAAACGACA -ACGGAACACTACCCGTAAAGCTCA -ACGGAACACTACCCGTAATCACGT -ACGGAACACTACCCGTAACGTAGT -ACGGAACACTACCCGTAAGTCAGT -ACGGAACACTACCCGTAAGAAGGT -ACGGAACACTACCCGTAAAACCGT -ACGGAACACTACCCGTAATTGTGC -ACGGAACACTACCCGTAACTAAGC -ACGGAACACTACCCGTAAACTAGC -ACGGAACACTACCCGTAAAGATGC -ACGGAACACTACCCGTAATGAAGG -ACGGAACACTACCCGTAACAATGG -ACGGAACACTACCCGTAAATGAGG -ACGGAACACTACCCGTAAAATGGG -ACGGAACACTACCCGTAATCCTGA -ACGGAACACTACCCGTAATAGCGA -ACGGAACACTACCCGTAACACAGA -ACGGAACACTACCCGTAAGCAAGA -ACGGAACACTACCCGTAAGGTTGA -ACGGAACACTACCCGTAATCCGAT -ACGGAACACTACCCGTAATGGCAT -ACGGAACACTACCCGTAACGAGAT -ACGGAACACTACCCGTAATACCAC -ACGGAACACTACCCGTAACAGAAC -ACGGAACACTACCCGTAAGTCTAC -ACGGAACACTACCCGTAAACGTAC -ACGGAACACTACCCGTAAAGTGAC -ACGGAACACTACCCGTAACTGTAG -ACGGAACACTACCCGTAACCTAAG -ACGGAACACTACCCGTAAGTTCAG -ACGGAACACTACCCGTAAGCATAG -ACGGAACACTACCCGTAAGACAAG -ACGGAACACTACCCGTAAAAGCAG -ACGGAACACTACCCGTAACGTCAA -ACGGAACACTACCCGTAAGCTGAA -ACGGAACACTACCCGTAAAGTACG -ACGGAACACTACCCGTAAATCCGA -ACGGAACACTACCCGTAAATGGGA -ACGGAACACTACCCGTAAGTGCAA -ACGGAACACTACCCGTAAGAGGAA -ACGGAACACTACCCGTAACAGGTA -ACGGAACACTACCCGTAAGACTCT -ACGGAACACTACCCGTAAAGTCCT -ACGGAACACTACCCGTAATAAGCC -ACGGAACACTACCCGTAAATAGCC -ACGGAACACTACCCGTAATAACCG -ACGGAACACTACCCGTAAATGCCA -ACGGAACACTACCCAATGGGAAAC -ACGGAACACTACCCAATGAACACC -ACGGAACACTACCCAATGATCGAG -ACGGAACACTACCCAATGCTCCTT -ACGGAACACTACCCAATGCCTGTT -ACGGAACACTACCCAATGCGGTTT -ACGGAACACTACCCAATGGTGGTT -ACGGAACACTACCCAATGGCCTTT -ACGGAACACTACCCAATGGGTCTT -ACGGAACACTACCCAATGACGCTT -ACGGAACACTACCCAATGAGCGTT -ACGGAACACTACCCAATGTTCGTC -ACGGAACACTACCCAATGTCTCTC -ACGGAACACTACCCAATGTGGATC -ACGGAACACTACCCAATGCACTTC -ACGGAACACTACCCAATGGTACTC -ACGGAACACTACCCAATGGATGTC -ACGGAACACTACCCAATGACAGTC -ACGGAACACTACCCAATGTTGCTG -ACGGAACACTACCCAATGTCCATG -ACGGAACACTACCCAATGTGTGTG -ACGGAACACTACCCAATGCTAGTG -ACGGAACACTACCCAATGCATCTG -ACGGAACACTACCCAATGGAGTTG -ACGGAACACTACCCAATGAGACTG -ACGGAACACTACCCAATGTCGGTA -ACGGAACACTACCCAATGTGCCTA -ACGGAACACTACCCAATGCCACTA -ACGGAACACTACCCAATGGGAGTA -ACGGAACACTACCCAATGTCGTCT -ACGGAACACTACCCAATGTGCACT -ACGGAACACTACCCAATGCTGACT -ACGGAACACTACCCAATGCAACCT -ACGGAACACTACCCAATGGCTACT -ACGGAACACTACCCAATGGGATCT -ACGGAACACTACCCAATGAAGGCT -ACGGAACACTACCCAATGTCAACC -ACGGAACACTACCCAATGTGTTCC -ACGGAACACTACCCAATGATTCCC -ACGGAACACTACCCAATGTTCTCG -ACGGAACACTACCCAATGTAGACG -ACGGAACACTACCCAATGGTAACG -ACGGAACACTACCCAATGACTTCG -ACGGAACACTACCCAATGTACGCA -ACGGAACACTACCCAATGCTTGCA -ACGGAACACTACCCAATGCGAACA -ACGGAACACTACCCAATGCAGTCA -ACGGAACACTACCCAATGGATCCA -ACGGAACACTACCCAATGACGACA -ACGGAACACTACCCAATGAGCTCA -ACGGAACACTACCCAATGTCACGT -ACGGAACACTACCCAATGCGTAGT -ACGGAACACTACCCAATGGTCAGT -ACGGAACACTACCCAATGGAAGGT -ACGGAACACTACCCAATGAACCGT -ACGGAACACTACCCAATGTTGTGC -ACGGAACACTACCCAATGCTAAGC -ACGGAACACTACCCAATGACTAGC -ACGGAACACTACCCAATGAGATGC -ACGGAACACTACCCAATGTGAAGG -ACGGAACACTACCCAATGCAATGG -ACGGAACACTACCCAATGATGAGG -ACGGAACACTACCCAATGAATGGG -ACGGAACACTACCCAATGTCCTGA -ACGGAACACTACCCAATGTAGCGA -ACGGAACACTACCCAATGCACAGA -ACGGAACACTACCCAATGGCAAGA -ACGGAACACTACCCAATGGGTTGA -ACGGAACACTACCCAATGTCCGAT -ACGGAACACTACCCAATGTGGCAT -ACGGAACACTACCCAATGCGAGAT -ACGGAACACTACCCAATGTACCAC -ACGGAACACTACCCAATGCAGAAC -ACGGAACACTACCCAATGGTCTAC -ACGGAACACTACCCAATGACGTAC -ACGGAACACTACCCAATGAGTGAC -ACGGAACACTACCCAATGCTGTAG -ACGGAACACTACCCAATGCCTAAG -ACGGAACACTACCCAATGGTTCAG -ACGGAACACTACCCAATGGCATAG -ACGGAACACTACCCAATGGACAAG -ACGGAACACTACCCAATGAAGCAG -ACGGAACACTACCCAATGCGTCAA -ACGGAACACTACCCAATGGCTGAA -ACGGAACACTACCCAATGAGTACG -ACGGAACACTACCCAATGATCCGA -ACGGAACACTACCCAATGATGGGA -ACGGAACACTACCCAATGGTGCAA -ACGGAACACTACCCAATGGAGGAA -ACGGAACACTACCCAATGCAGGTA -ACGGAACACTACCCAATGGACTCT -ACGGAACACTACCCAATGAGTCCT -ACGGAACACTACCCAATGTAAGCC -ACGGAACACTACCCAATGATAGCC -ACGGAACACTACCCAATGTAACCG -ACGGAACACTACCCAATGATGCCA -ACGGAAGAGTAGAACGGAGGAAAC -ACGGAAGAGTAGAACGGAAACACC -ACGGAAGAGTAGAACGGAATCGAG -ACGGAAGAGTAGAACGGACTCCTT -ACGGAAGAGTAGAACGGACCTGTT -ACGGAAGAGTAGAACGGACGGTTT -ACGGAAGAGTAGAACGGAGTGGTT -ACGGAAGAGTAGAACGGAGCCTTT -ACGGAAGAGTAGAACGGAGGTCTT -ACGGAAGAGTAGAACGGAACGCTT -ACGGAAGAGTAGAACGGAAGCGTT -ACGGAAGAGTAGAACGGATTCGTC -ACGGAAGAGTAGAACGGATCTCTC -ACGGAAGAGTAGAACGGATGGATC -ACGGAAGAGTAGAACGGACACTTC -ACGGAAGAGTAGAACGGAGTACTC -ACGGAAGAGTAGAACGGAGATGTC -ACGGAAGAGTAGAACGGAACAGTC -ACGGAAGAGTAGAACGGATTGCTG -ACGGAAGAGTAGAACGGATCCATG -ACGGAAGAGTAGAACGGATGTGTG -ACGGAAGAGTAGAACGGACTAGTG -ACGGAAGAGTAGAACGGACATCTG -ACGGAAGAGTAGAACGGAGAGTTG -ACGGAAGAGTAGAACGGAAGACTG -ACGGAAGAGTAGAACGGATCGGTA -ACGGAAGAGTAGAACGGATGCCTA -ACGGAAGAGTAGAACGGACCACTA -ACGGAAGAGTAGAACGGAGGAGTA -ACGGAAGAGTAGAACGGATCGTCT -ACGGAAGAGTAGAACGGATGCACT -ACGGAAGAGTAGAACGGACTGACT -ACGGAAGAGTAGAACGGACAACCT -ACGGAAGAGTAGAACGGAGCTACT -ACGGAAGAGTAGAACGGAGGATCT -ACGGAAGAGTAGAACGGAAAGGCT -ACGGAAGAGTAGAACGGATCAACC -ACGGAAGAGTAGAACGGATGTTCC -ACGGAAGAGTAGAACGGAATTCCC -ACGGAAGAGTAGAACGGATTCTCG -ACGGAAGAGTAGAACGGATAGACG -ACGGAAGAGTAGAACGGAGTAACG -ACGGAAGAGTAGAACGGAACTTCG -ACGGAAGAGTAGAACGGATACGCA -ACGGAAGAGTAGAACGGACTTGCA -ACGGAAGAGTAGAACGGACGAACA -ACGGAAGAGTAGAACGGACAGTCA -ACGGAAGAGTAGAACGGAGATCCA -ACGGAAGAGTAGAACGGAACGACA -ACGGAAGAGTAGAACGGAAGCTCA -ACGGAAGAGTAGAACGGATCACGT -ACGGAAGAGTAGAACGGACGTAGT -ACGGAAGAGTAGAACGGAGTCAGT -ACGGAAGAGTAGAACGGAGAAGGT -ACGGAAGAGTAGAACGGAAACCGT -ACGGAAGAGTAGAACGGATTGTGC -ACGGAAGAGTAGAACGGACTAAGC -ACGGAAGAGTAGAACGGAACTAGC -ACGGAAGAGTAGAACGGAAGATGC -ACGGAAGAGTAGAACGGATGAAGG -ACGGAAGAGTAGAACGGACAATGG -ACGGAAGAGTAGAACGGAATGAGG -ACGGAAGAGTAGAACGGAAATGGG -ACGGAAGAGTAGAACGGATCCTGA -ACGGAAGAGTAGAACGGATAGCGA -ACGGAAGAGTAGAACGGACACAGA -ACGGAAGAGTAGAACGGAGCAAGA -ACGGAAGAGTAGAACGGAGGTTGA -ACGGAAGAGTAGAACGGATCCGAT -ACGGAAGAGTAGAACGGATGGCAT -ACGGAAGAGTAGAACGGACGAGAT -ACGGAAGAGTAGAACGGATACCAC -ACGGAAGAGTAGAACGGACAGAAC -ACGGAAGAGTAGAACGGAGTCTAC -ACGGAAGAGTAGAACGGAACGTAC -ACGGAAGAGTAGAACGGAAGTGAC -ACGGAAGAGTAGAACGGACTGTAG -ACGGAAGAGTAGAACGGACCTAAG -ACGGAAGAGTAGAACGGAGTTCAG -ACGGAAGAGTAGAACGGAGCATAG -ACGGAAGAGTAGAACGGAGACAAG -ACGGAAGAGTAGAACGGAAAGCAG -ACGGAAGAGTAGAACGGACGTCAA -ACGGAAGAGTAGAACGGAGCTGAA -ACGGAAGAGTAGAACGGAAGTACG -ACGGAAGAGTAGAACGGAATCCGA -ACGGAAGAGTAGAACGGAATGGGA -ACGGAAGAGTAGAACGGAGTGCAA -ACGGAAGAGTAGAACGGAGAGGAA -ACGGAAGAGTAGAACGGACAGGTA -ACGGAAGAGTAGAACGGAGACTCT -ACGGAAGAGTAGAACGGAAGTCCT -ACGGAAGAGTAGAACGGATAAGCC -ACGGAAGAGTAGAACGGAATAGCC -ACGGAAGAGTAGAACGGATAACCG -ACGGAAGAGTAGAACGGAATGCCA -ACGGAAGAGTAGACCAACGGAAAC -ACGGAAGAGTAGACCAACAACACC -ACGGAAGAGTAGACCAACATCGAG -ACGGAAGAGTAGACCAACCTCCTT -ACGGAAGAGTAGACCAACCCTGTT -ACGGAAGAGTAGACCAACCGGTTT -ACGGAAGAGTAGACCAACGTGGTT -ACGGAAGAGTAGACCAACGCCTTT -ACGGAAGAGTAGACCAACGGTCTT -ACGGAAGAGTAGACCAACACGCTT -ACGGAAGAGTAGACCAACAGCGTT -ACGGAAGAGTAGACCAACTTCGTC -ACGGAAGAGTAGACCAACTCTCTC -ACGGAAGAGTAGACCAACTGGATC -ACGGAAGAGTAGACCAACCACTTC -ACGGAAGAGTAGACCAACGTACTC -ACGGAAGAGTAGACCAACGATGTC -ACGGAAGAGTAGACCAACACAGTC -ACGGAAGAGTAGACCAACTTGCTG -ACGGAAGAGTAGACCAACTCCATG -ACGGAAGAGTAGACCAACTGTGTG -ACGGAAGAGTAGACCAACCTAGTG -ACGGAAGAGTAGACCAACCATCTG -ACGGAAGAGTAGACCAACGAGTTG -ACGGAAGAGTAGACCAACAGACTG -ACGGAAGAGTAGACCAACTCGGTA -ACGGAAGAGTAGACCAACTGCCTA -ACGGAAGAGTAGACCAACCCACTA -ACGGAAGAGTAGACCAACGGAGTA -ACGGAAGAGTAGACCAACTCGTCT -ACGGAAGAGTAGACCAACTGCACT -ACGGAAGAGTAGACCAACCTGACT -ACGGAAGAGTAGACCAACCAACCT -ACGGAAGAGTAGACCAACGCTACT -ACGGAAGAGTAGACCAACGGATCT -ACGGAAGAGTAGACCAACAAGGCT -ACGGAAGAGTAGACCAACTCAACC -ACGGAAGAGTAGACCAACTGTTCC -ACGGAAGAGTAGACCAACATTCCC -ACGGAAGAGTAGACCAACTTCTCG -ACGGAAGAGTAGACCAACTAGACG -ACGGAAGAGTAGACCAACGTAACG -ACGGAAGAGTAGACCAACACTTCG -ACGGAAGAGTAGACCAACTACGCA -ACGGAAGAGTAGACCAACCTTGCA -ACGGAAGAGTAGACCAACCGAACA -ACGGAAGAGTAGACCAACCAGTCA -ACGGAAGAGTAGACCAACGATCCA -ACGGAAGAGTAGACCAACACGACA -ACGGAAGAGTAGACCAACAGCTCA -ACGGAAGAGTAGACCAACTCACGT -ACGGAAGAGTAGACCAACCGTAGT -ACGGAAGAGTAGACCAACGTCAGT -ACGGAAGAGTAGACCAACGAAGGT -ACGGAAGAGTAGACCAACAACCGT -ACGGAAGAGTAGACCAACTTGTGC -ACGGAAGAGTAGACCAACCTAAGC -ACGGAAGAGTAGACCAACACTAGC -ACGGAAGAGTAGACCAACAGATGC -ACGGAAGAGTAGACCAACTGAAGG -ACGGAAGAGTAGACCAACCAATGG -ACGGAAGAGTAGACCAACATGAGG -ACGGAAGAGTAGACCAACAATGGG -ACGGAAGAGTAGACCAACTCCTGA -ACGGAAGAGTAGACCAACTAGCGA -ACGGAAGAGTAGACCAACCACAGA -ACGGAAGAGTAGACCAACGCAAGA -ACGGAAGAGTAGACCAACGGTTGA -ACGGAAGAGTAGACCAACTCCGAT -ACGGAAGAGTAGACCAACTGGCAT -ACGGAAGAGTAGACCAACCGAGAT -ACGGAAGAGTAGACCAACTACCAC -ACGGAAGAGTAGACCAACCAGAAC -ACGGAAGAGTAGACCAACGTCTAC -ACGGAAGAGTAGACCAACACGTAC -ACGGAAGAGTAGACCAACAGTGAC -ACGGAAGAGTAGACCAACCTGTAG -ACGGAAGAGTAGACCAACCCTAAG -ACGGAAGAGTAGACCAACGTTCAG -ACGGAAGAGTAGACCAACGCATAG -ACGGAAGAGTAGACCAACGACAAG -ACGGAAGAGTAGACCAACAAGCAG -ACGGAAGAGTAGACCAACCGTCAA -ACGGAAGAGTAGACCAACGCTGAA -ACGGAAGAGTAGACCAACAGTACG -ACGGAAGAGTAGACCAACATCCGA -ACGGAAGAGTAGACCAACATGGGA -ACGGAAGAGTAGACCAACGTGCAA -ACGGAAGAGTAGACCAACGAGGAA -ACGGAAGAGTAGACCAACCAGGTA -ACGGAAGAGTAGACCAACGACTCT -ACGGAAGAGTAGACCAACAGTCCT -ACGGAAGAGTAGACCAACTAAGCC -ACGGAAGAGTAGACCAACATAGCC -ACGGAAGAGTAGACCAACTAACCG -ACGGAAGAGTAGACCAACATGCCA -ACGGAAGAGTAGGAGATCGGAAAC -ACGGAAGAGTAGGAGATCAACACC -ACGGAAGAGTAGGAGATCATCGAG -ACGGAAGAGTAGGAGATCCTCCTT -ACGGAAGAGTAGGAGATCCCTGTT -ACGGAAGAGTAGGAGATCCGGTTT -ACGGAAGAGTAGGAGATCGTGGTT -ACGGAAGAGTAGGAGATCGCCTTT -ACGGAAGAGTAGGAGATCGGTCTT -ACGGAAGAGTAGGAGATCACGCTT -ACGGAAGAGTAGGAGATCAGCGTT -ACGGAAGAGTAGGAGATCTTCGTC -ACGGAAGAGTAGGAGATCTCTCTC -ACGGAAGAGTAGGAGATCTGGATC -ACGGAAGAGTAGGAGATCCACTTC -ACGGAAGAGTAGGAGATCGTACTC -ACGGAAGAGTAGGAGATCGATGTC -ACGGAAGAGTAGGAGATCACAGTC -ACGGAAGAGTAGGAGATCTTGCTG -ACGGAAGAGTAGGAGATCTCCATG -ACGGAAGAGTAGGAGATCTGTGTG -ACGGAAGAGTAGGAGATCCTAGTG -ACGGAAGAGTAGGAGATCCATCTG -ACGGAAGAGTAGGAGATCGAGTTG -ACGGAAGAGTAGGAGATCAGACTG -ACGGAAGAGTAGGAGATCTCGGTA -ACGGAAGAGTAGGAGATCTGCCTA -ACGGAAGAGTAGGAGATCCCACTA -ACGGAAGAGTAGGAGATCGGAGTA -ACGGAAGAGTAGGAGATCTCGTCT -ACGGAAGAGTAGGAGATCTGCACT -ACGGAAGAGTAGGAGATCCTGACT -ACGGAAGAGTAGGAGATCCAACCT -ACGGAAGAGTAGGAGATCGCTACT -ACGGAAGAGTAGGAGATCGGATCT -ACGGAAGAGTAGGAGATCAAGGCT -ACGGAAGAGTAGGAGATCTCAACC -ACGGAAGAGTAGGAGATCTGTTCC -ACGGAAGAGTAGGAGATCATTCCC -ACGGAAGAGTAGGAGATCTTCTCG -ACGGAAGAGTAGGAGATCTAGACG -ACGGAAGAGTAGGAGATCGTAACG -ACGGAAGAGTAGGAGATCACTTCG -ACGGAAGAGTAGGAGATCTACGCA -ACGGAAGAGTAGGAGATCCTTGCA -ACGGAAGAGTAGGAGATCCGAACA -ACGGAAGAGTAGGAGATCCAGTCA -ACGGAAGAGTAGGAGATCGATCCA -ACGGAAGAGTAGGAGATCACGACA -ACGGAAGAGTAGGAGATCAGCTCA -ACGGAAGAGTAGGAGATCTCACGT -ACGGAAGAGTAGGAGATCCGTAGT -ACGGAAGAGTAGGAGATCGTCAGT -ACGGAAGAGTAGGAGATCGAAGGT -ACGGAAGAGTAGGAGATCAACCGT -ACGGAAGAGTAGGAGATCTTGTGC -ACGGAAGAGTAGGAGATCCTAAGC -ACGGAAGAGTAGGAGATCACTAGC -ACGGAAGAGTAGGAGATCAGATGC -ACGGAAGAGTAGGAGATCTGAAGG -ACGGAAGAGTAGGAGATCCAATGG -ACGGAAGAGTAGGAGATCATGAGG -ACGGAAGAGTAGGAGATCAATGGG -ACGGAAGAGTAGGAGATCTCCTGA -ACGGAAGAGTAGGAGATCTAGCGA -ACGGAAGAGTAGGAGATCCACAGA -ACGGAAGAGTAGGAGATCGCAAGA -ACGGAAGAGTAGGAGATCGGTTGA -ACGGAAGAGTAGGAGATCTCCGAT -ACGGAAGAGTAGGAGATCTGGCAT -ACGGAAGAGTAGGAGATCCGAGAT -ACGGAAGAGTAGGAGATCTACCAC -ACGGAAGAGTAGGAGATCCAGAAC -ACGGAAGAGTAGGAGATCGTCTAC -ACGGAAGAGTAGGAGATCACGTAC -ACGGAAGAGTAGGAGATCAGTGAC -ACGGAAGAGTAGGAGATCCTGTAG -ACGGAAGAGTAGGAGATCCCTAAG -ACGGAAGAGTAGGAGATCGTTCAG -ACGGAAGAGTAGGAGATCGCATAG -ACGGAAGAGTAGGAGATCGACAAG -ACGGAAGAGTAGGAGATCAAGCAG -ACGGAAGAGTAGGAGATCCGTCAA -ACGGAAGAGTAGGAGATCGCTGAA -ACGGAAGAGTAGGAGATCAGTACG -ACGGAAGAGTAGGAGATCATCCGA -ACGGAAGAGTAGGAGATCATGGGA -ACGGAAGAGTAGGAGATCGTGCAA -ACGGAAGAGTAGGAGATCGAGGAA -ACGGAAGAGTAGGAGATCCAGGTA -ACGGAAGAGTAGGAGATCGACTCT -ACGGAAGAGTAGGAGATCAGTCCT -ACGGAAGAGTAGGAGATCTAAGCC -ACGGAAGAGTAGGAGATCATAGCC -ACGGAAGAGTAGGAGATCTAACCG -ACGGAAGAGTAGGAGATCATGCCA -ACGGAAGAGTAGCTTCTCGGAAAC -ACGGAAGAGTAGCTTCTCAACACC -ACGGAAGAGTAGCTTCTCATCGAG -ACGGAAGAGTAGCTTCTCCTCCTT -ACGGAAGAGTAGCTTCTCCCTGTT -ACGGAAGAGTAGCTTCTCCGGTTT -ACGGAAGAGTAGCTTCTCGTGGTT -ACGGAAGAGTAGCTTCTCGCCTTT -ACGGAAGAGTAGCTTCTCGGTCTT -ACGGAAGAGTAGCTTCTCACGCTT -ACGGAAGAGTAGCTTCTCAGCGTT -ACGGAAGAGTAGCTTCTCTTCGTC -ACGGAAGAGTAGCTTCTCTCTCTC -ACGGAAGAGTAGCTTCTCTGGATC -ACGGAAGAGTAGCTTCTCCACTTC -ACGGAAGAGTAGCTTCTCGTACTC -ACGGAAGAGTAGCTTCTCGATGTC -ACGGAAGAGTAGCTTCTCACAGTC -ACGGAAGAGTAGCTTCTCTTGCTG -ACGGAAGAGTAGCTTCTCTCCATG -ACGGAAGAGTAGCTTCTCTGTGTG -ACGGAAGAGTAGCTTCTCCTAGTG -ACGGAAGAGTAGCTTCTCCATCTG -ACGGAAGAGTAGCTTCTCGAGTTG -ACGGAAGAGTAGCTTCTCAGACTG -ACGGAAGAGTAGCTTCTCTCGGTA -ACGGAAGAGTAGCTTCTCTGCCTA -ACGGAAGAGTAGCTTCTCCCACTA -ACGGAAGAGTAGCTTCTCGGAGTA -ACGGAAGAGTAGCTTCTCTCGTCT -ACGGAAGAGTAGCTTCTCTGCACT -ACGGAAGAGTAGCTTCTCCTGACT -ACGGAAGAGTAGCTTCTCCAACCT -ACGGAAGAGTAGCTTCTCGCTACT -ACGGAAGAGTAGCTTCTCGGATCT -ACGGAAGAGTAGCTTCTCAAGGCT -ACGGAAGAGTAGCTTCTCTCAACC -ACGGAAGAGTAGCTTCTCTGTTCC -ACGGAAGAGTAGCTTCTCATTCCC -ACGGAAGAGTAGCTTCTCTTCTCG -ACGGAAGAGTAGCTTCTCTAGACG -ACGGAAGAGTAGCTTCTCGTAACG -ACGGAAGAGTAGCTTCTCACTTCG -ACGGAAGAGTAGCTTCTCTACGCA -ACGGAAGAGTAGCTTCTCCTTGCA -ACGGAAGAGTAGCTTCTCCGAACA -ACGGAAGAGTAGCTTCTCCAGTCA -ACGGAAGAGTAGCTTCTCGATCCA -ACGGAAGAGTAGCTTCTCACGACA -ACGGAAGAGTAGCTTCTCAGCTCA -ACGGAAGAGTAGCTTCTCTCACGT -ACGGAAGAGTAGCTTCTCCGTAGT -ACGGAAGAGTAGCTTCTCGTCAGT -ACGGAAGAGTAGCTTCTCGAAGGT -ACGGAAGAGTAGCTTCTCAACCGT -ACGGAAGAGTAGCTTCTCTTGTGC -ACGGAAGAGTAGCTTCTCCTAAGC -ACGGAAGAGTAGCTTCTCACTAGC -ACGGAAGAGTAGCTTCTCAGATGC -ACGGAAGAGTAGCTTCTCTGAAGG -ACGGAAGAGTAGCTTCTCCAATGG -ACGGAAGAGTAGCTTCTCATGAGG -ACGGAAGAGTAGCTTCTCAATGGG -ACGGAAGAGTAGCTTCTCTCCTGA -ACGGAAGAGTAGCTTCTCTAGCGA -ACGGAAGAGTAGCTTCTCCACAGA -ACGGAAGAGTAGCTTCTCGCAAGA -ACGGAAGAGTAGCTTCTCGGTTGA -ACGGAAGAGTAGCTTCTCTCCGAT -ACGGAAGAGTAGCTTCTCTGGCAT -ACGGAAGAGTAGCTTCTCCGAGAT -ACGGAAGAGTAGCTTCTCTACCAC -ACGGAAGAGTAGCTTCTCCAGAAC -ACGGAAGAGTAGCTTCTCGTCTAC -ACGGAAGAGTAGCTTCTCACGTAC -ACGGAAGAGTAGCTTCTCAGTGAC -ACGGAAGAGTAGCTTCTCCTGTAG -ACGGAAGAGTAGCTTCTCCCTAAG -ACGGAAGAGTAGCTTCTCGTTCAG -ACGGAAGAGTAGCTTCTCGCATAG -ACGGAAGAGTAGCTTCTCGACAAG -ACGGAAGAGTAGCTTCTCAAGCAG -ACGGAAGAGTAGCTTCTCCGTCAA -ACGGAAGAGTAGCTTCTCGCTGAA -ACGGAAGAGTAGCTTCTCAGTACG -ACGGAAGAGTAGCTTCTCATCCGA -ACGGAAGAGTAGCTTCTCATGGGA -ACGGAAGAGTAGCTTCTCGTGCAA -ACGGAAGAGTAGCTTCTCGAGGAA -ACGGAAGAGTAGCTTCTCCAGGTA -ACGGAAGAGTAGCTTCTCGACTCT -ACGGAAGAGTAGCTTCTCAGTCCT -ACGGAAGAGTAGCTTCTCTAAGCC -ACGGAAGAGTAGCTTCTCATAGCC -ACGGAAGAGTAGCTTCTCTAACCG -ACGGAAGAGTAGCTTCTCATGCCA -ACGGAAGAGTAGGTTCCTGGAAAC -ACGGAAGAGTAGGTTCCTAACACC -ACGGAAGAGTAGGTTCCTATCGAG -ACGGAAGAGTAGGTTCCTCTCCTT -ACGGAAGAGTAGGTTCCTCCTGTT -ACGGAAGAGTAGGTTCCTCGGTTT -ACGGAAGAGTAGGTTCCTGTGGTT -ACGGAAGAGTAGGTTCCTGCCTTT -ACGGAAGAGTAGGTTCCTGGTCTT -ACGGAAGAGTAGGTTCCTACGCTT -ACGGAAGAGTAGGTTCCTAGCGTT -ACGGAAGAGTAGGTTCCTTTCGTC -ACGGAAGAGTAGGTTCCTTCTCTC -ACGGAAGAGTAGGTTCCTTGGATC -ACGGAAGAGTAGGTTCCTCACTTC -ACGGAAGAGTAGGTTCCTGTACTC -ACGGAAGAGTAGGTTCCTGATGTC -ACGGAAGAGTAGGTTCCTACAGTC -ACGGAAGAGTAGGTTCCTTTGCTG -ACGGAAGAGTAGGTTCCTTCCATG -ACGGAAGAGTAGGTTCCTTGTGTG -ACGGAAGAGTAGGTTCCTCTAGTG -ACGGAAGAGTAGGTTCCTCATCTG -ACGGAAGAGTAGGTTCCTGAGTTG -ACGGAAGAGTAGGTTCCTAGACTG -ACGGAAGAGTAGGTTCCTTCGGTA -ACGGAAGAGTAGGTTCCTTGCCTA -ACGGAAGAGTAGGTTCCTCCACTA -ACGGAAGAGTAGGTTCCTGGAGTA -ACGGAAGAGTAGGTTCCTTCGTCT -ACGGAAGAGTAGGTTCCTTGCACT -ACGGAAGAGTAGGTTCCTCTGACT -ACGGAAGAGTAGGTTCCTCAACCT -ACGGAAGAGTAGGTTCCTGCTACT -ACGGAAGAGTAGGTTCCTGGATCT -ACGGAAGAGTAGGTTCCTAAGGCT -ACGGAAGAGTAGGTTCCTTCAACC -ACGGAAGAGTAGGTTCCTTGTTCC -ACGGAAGAGTAGGTTCCTATTCCC -ACGGAAGAGTAGGTTCCTTTCTCG -ACGGAAGAGTAGGTTCCTTAGACG -ACGGAAGAGTAGGTTCCTGTAACG -ACGGAAGAGTAGGTTCCTACTTCG -ACGGAAGAGTAGGTTCCTTACGCA -ACGGAAGAGTAGGTTCCTCTTGCA -ACGGAAGAGTAGGTTCCTCGAACA -ACGGAAGAGTAGGTTCCTCAGTCA -ACGGAAGAGTAGGTTCCTGATCCA -ACGGAAGAGTAGGTTCCTACGACA -ACGGAAGAGTAGGTTCCTAGCTCA -ACGGAAGAGTAGGTTCCTTCACGT -ACGGAAGAGTAGGTTCCTCGTAGT -ACGGAAGAGTAGGTTCCTGTCAGT -ACGGAAGAGTAGGTTCCTGAAGGT -ACGGAAGAGTAGGTTCCTAACCGT -ACGGAAGAGTAGGTTCCTTTGTGC -ACGGAAGAGTAGGTTCCTCTAAGC -ACGGAAGAGTAGGTTCCTACTAGC -ACGGAAGAGTAGGTTCCTAGATGC -ACGGAAGAGTAGGTTCCTTGAAGG -ACGGAAGAGTAGGTTCCTCAATGG -ACGGAAGAGTAGGTTCCTATGAGG -ACGGAAGAGTAGGTTCCTAATGGG -ACGGAAGAGTAGGTTCCTTCCTGA -ACGGAAGAGTAGGTTCCTTAGCGA -ACGGAAGAGTAGGTTCCTCACAGA -ACGGAAGAGTAGGTTCCTGCAAGA -ACGGAAGAGTAGGTTCCTGGTTGA -ACGGAAGAGTAGGTTCCTTCCGAT -ACGGAAGAGTAGGTTCCTTGGCAT -ACGGAAGAGTAGGTTCCTCGAGAT -ACGGAAGAGTAGGTTCCTTACCAC -ACGGAAGAGTAGGTTCCTCAGAAC -ACGGAAGAGTAGGTTCCTGTCTAC -ACGGAAGAGTAGGTTCCTACGTAC -ACGGAAGAGTAGGTTCCTAGTGAC -ACGGAAGAGTAGGTTCCTCTGTAG -ACGGAAGAGTAGGTTCCTCCTAAG -ACGGAAGAGTAGGTTCCTGTTCAG -ACGGAAGAGTAGGTTCCTGCATAG -ACGGAAGAGTAGGTTCCTGACAAG -ACGGAAGAGTAGGTTCCTAAGCAG -ACGGAAGAGTAGGTTCCTCGTCAA -ACGGAAGAGTAGGTTCCTGCTGAA -ACGGAAGAGTAGGTTCCTAGTACG -ACGGAAGAGTAGGTTCCTATCCGA -ACGGAAGAGTAGGTTCCTATGGGA -ACGGAAGAGTAGGTTCCTGTGCAA -ACGGAAGAGTAGGTTCCTGAGGAA -ACGGAAGAGTAGGTTCCTCAGGTA -ACGGAAGAGTAGGTTCCTGACTCT -ACGGAAGAGTAGGTTCCTAGTCCT -ACGGAAGAGTAGGTTCCTTAAGCC -ACGGAAGAGTAGGTTCCTATAGCC -ACGGAAGAGTAGGTTCCTTAACCG -ACGGAAGAGTAGGTTCCTATGCCA -ACGGAAGAGTAGTTTCGGGGAAAC -ACGGAAGAGTAGTTTCGGAACACC -ACGGAAGAGTAGTTTCGGATCGAG -ACGGAAGAGTAGTTTCGGCTCCTT -ACGGAAGAGTAGTTTCGGCCTGTT -ACGGAAGAGTAGTTTCGGCGGTTT -ACGGAAGAGTAGTTTCGGGTGGTT -ACGGAAGAGTAGTTTCGGGCCTTT -ACGGAAGAGTAGTTTCGGGGTCTT -ACGGAAGAGTAGTTTCGGACGCTT -ACGGAAGAGTAGTTTCGGAGCGTT -ACGGAAGAGTAGTTTCGGTTCGTC -ACGGAAGAGTAGTTTCGGTCTCTC -ACGGAAGAGTAGTTTCGGTGGATC -ACGGAAGAGTAGTTTCGGCACTTC -ACGGAAGAGTAGTTTCGGGTACTC -ACGGAAGAGTAGTTTCGGGATGTC -ACGGAAGAGTAGTTTCGGACAGTC -ACGGAAGAGTAGTTTCGGTTGCTG -ACGGAAGAGTAGTTTCGGTCCATG -ACGGAAGAGTAGTTTCGGTGTGTG -ACGGAAGAGTAGTTTCGGCTAGTG -ACGGAAGAGTAGTTTCGGCATCTG -ACGGAAGAGTAGTTTCGGGAGTTG -ACGGAAGAGTAGTTTCGGAGACTG -ACGGAAGAGTAGTTTCGGTCGGTA -ACGGAAGAGTAGTTTCGGTGCCTA -ACGGAAGAGTAGTTTCGGCCACTA -ACGGAAGAGTAGTTTCGGGGAGTA -ACGGAAGAGTAGTTTCGGTCGTCT -ACGGAAGAGTAGTTTCGGTGCACT -ACGGAAGAGTAGTTTCGGCTGACT -ACGGAAGAGTAGTTTCGGCAACCT -ACGGAAGAGTAGTTTCGGGCTACT -ACGGAAGAGTAGTTTCGGGGATCT -ACGGAAGAGTAGTTTCGGAAGGCT -ACGGAAGAGTAGTTTCGGTCAACC -ACGGAAGAGTAGTTTCGGTGTTCC -ACGGAAGAGTAGTTTCGGATTCCC -ACGGAAGAGTAGTTTCGGTTCTCG -ACGGAAGAGTAGTTTCGGTAGACG -ACGGAAGAGTAGTTTCGGGTAACG -ACGGAAGAGTAGTTTCGGACTTCG -ACGGAAGAGTAGTTTCGGTACGCA -ACGGAAGAGTAGTTTCGGCTTGCA -ACGGAAGAGTAGTTTCGGCGAACA -ACGGAAGAGTAGTTTCGGCAGTCA -ACGGAAGAGTAGTTTCGGGATCCA -ACGGAAGAGTAGTTTCGGACGACA -ACGGAAGAGTAGTTTCGGAGCTCA -ACGGAAGAGTAGTTTCGGTCACGT -ACGGAAGAGTAGTTTCGGCGTAGT -ACGGAAGAGTAGTTTCGGGTCAGT -ACGGAAGAGTAGTTTCGGGAAGGT -ACGGAAGAGTAGTTTCGGAACCGT -ACGGAAGAGTAGTTTCGGTTGTGC -ACGGAAGAGTAGTTTCGGCTAAGC -ACGGAAGAGTAGTTTCGGACTAGC -ACGGAAGAGTAGTTTCGGAGATGC -ACGGAAGAGTAGTTTCGGTGAAGG -ACGGAAGAGTAGTTTCGGCAATGG -ACGGAAGAGTAGTTTCGGATGAGG -ACGGAAGAGTAGTTTCGGAATGGG -ACGGAAGAGTAGTTTCGGTCCTGA -ACGGAAGAGTAGTTTCGGTAGCGA -ACGGAAGAGTAGTTTCGGCACAGA -ACGGAAGAGTAGTTTCGGGCAAGA -ACGGAAGAGTAGTTTCGGGGTTGA -ACGGAAGAGTAGTTTCGGTCCGAT -ACGGAAGAGTAGTTTCGGTGGCAT -ACGGAAGAGTAGTTTCGGCGAGAT -ACGGAAGAGTAGTTTCGGTACCAC -ACGGAAGAGTAGTTTCGGCAGAAC -ACGGAAGAGTAGTTTCGGGTCTAC -ACGGAAGAGTAGTTTCGGACGTAC -ACGGAAGAGTAGTTTCGGAGTGAC -ACGGAAGAGTAGTTTCGGCTGTAG -ACGGAAGAGTAGTTTCGGCCTAAG -ACGGAAGAGTAGTTTCGGGTTCAG -ACGGAAGAGTAGTTTCGGGCATAG -ACGGAAGAGTAGTTTCGGGACAAG -ACGGAAGAGTAGTTTCGGAAGCAG -ACGGAAGAGTAGTTTCGGCGTCAA -ACGGAAGAGTAGTTTCGGGCTGAA -ACGGAAGAGTAGTTTCGGAGTACG -ACGGAAGAGTAGTTTCGGATCCGA -ACGGAAGAGTAGTTTCGGATGGGA -ACGGAAGAGTAGTTTCGGGTGCAA -ACGGAAGAGTAGTTTCGGGAGGAA -ACGGAAGAGTAGTTTCGGCAGGTA -ACGGAAGAGTAGTTTCGGGACTCT -ACGGAAGAGTAGTTTCGGAGTCCT -ACGGAAGAGTAGTTTCGGTAAGCC -ACGGAAGAGTAGTTTCGGATAGCC -ACGGAAGAGTAGTTTCGGTAACCG -ACGGAAGAGTAGTTTCGGATGCCA -ACGGAAGAGTAGGTTGTGGGAAAC -ACGGAAGAGTAGGTTGTGAACACC -ACGGAAGAGTAGGTTGTGATCGAG -ACGGAAGAGTAGGTTGTGCTCCTT -ACGGAAGAGTAGGTTGTGCCTGTT -ACGGAAGAGTAGGTTGTGCGGTTT -ACGGAAGAGTAGGTTGTGGTGGTT -ACGGAAGAGTAGGTTGTGGCCTTT -ACGGAAGAGTAGGTTGTGGGTCTT -ACGGAAGAGTAGGTTGTGACGCTT -ACGGAAGAGTAGGTTGTGAGCGTT -ACGGAAGAGTAGGTTGTGTTCGTC -ACGGAAGAGTAGGTTGTGTCTCTC -ACGGAAGAGTAGGTTGTGTGGATC -ACGGAAGAGTAGGTTGTGCACTTC -ACGGAAGAGTAGGTTGTGGTACTC -ACGGAAGAGTAGGTTGTGGATGTC -ACGGAAGAGTAGGTTGTGACAGTC -ACGGAAGAGTAGGTTGTGTTGCTG -ACGGAAGAGTAGGTTGTGTCCATG -ACGGAAGAGTAGGTTGTGTGTGTG -ACGGAAGAGTAGGTTGTGCTAGTG -ACGGAAGAGTAGGTTGTGCATCTG -ACGGAAGAGTAGGTTGTGGAGTTG -ACGGAAGAGTAGGTTGTGAGACTG -ACGGAAGAGTAGGTTGTGTCGGTA -ACGGAAGAGTAGGTTGTGTGCCTA -ACGGAAGAGTAGGTTGTGCCACTA -ACGGAAGAGTAGGTTGTGGGAGTA -ACGGAAGAGTAGGTTGTGTCGTCT -ACGGAAGAGTAGGTTGTGTGCACT -ACGGAAGAGTAGGTTGTGCTGACT -ACGGAAGAGTAGGTTGTGCAACCT -ACGGAAGAGTAGGTTGTGGCTACT -ACGGAAGAGTAGGTTGTGGGATCT -ACGGAAGAGTAGGTTGTGAAGGCT -ACGGAAGAGTAGGTTGTGTCAACC -ACGGAAGAGTAGGTTGTGTGTTCC -ACGGAAGAGTAGGTTGTGATTCCC -ACGGAAGAGTAGGTTGTGTTCTCG -ACGGAAGAGTAGGTTGTGTAGACG -ACGGAAGAGTAGGTTGTGGTAACG -ACGGAAGAGTAGGTTGTGACTTCG -ACGGAAGAGTAGGTTGTGTACGCA -ACGGAAGAGTAGGTTGTGCTTGCA -ACGGAAGAGTAGGTTGTGCGAACA -ACGGAAGAGTAGGTTGTGCAGTCA -ACGGAAGAGTAGGTTGTGGATCCA -ACGGAAGAGTAGGTTGTGACGACA -ACGGAAGAGTAGGTTGTGAGCTCA -ACGGAAGAGTAGGTTGTGTCACGT -ACGGAAGAGTAGGTTGTGCGTAGT -ACGGAAGAGTAGGTTGTGGTCAGT -ACGGAAGAGTAGGTTGTGGAAGGT -ACGGAAGAGTAGGTTGTGAACCGT -ACGGAAGAGTAGGTTGTGTTGTGC -ACGGAAGAGTAGGTTGTGCTAAGC -ACGGAAGAGTAGGTTGTGACTAGC -ACGGAAGAGTAGGTTGTGAGATGC -ACGGAAGAGTAGGTTGTGTGAAGG -ACGGAAGAGTAGGTTGTGCAATGG -ACGGAAGAGTAGGTTGTGATGAGG -ACGGAAGAGTAGGTTGTGAATGGG -ACGGAAGAGTAGGTTGTGTCCTGA -ACGGAAGAGTAGGTTGTGTAGCGA -ACGGAAGAGTAGGTTGTGCACAGA -ACGGAAGAGTAGGTTGTGGCAAGA -ACGGAAGAGTAGGTTGTGGGTTGA -ACGGAAGAGTAGGTTGTGTCCGAT -ACGGAAGAGTAGGTTGTGTGGCAT -ACGGAAGAGTAGGTTGTGCGAGAT -ACGGAAGAGTAGGTTGTGTACCAC -ACGGAAGAGTAGGTTGTGCAGAAC -ACGGAAGAGTAGGTTGTGGTCTAC -ACGGAAGAGTAGGTTGTGACGTAC -ACGGAAGAGTAGGTTGTGAGTGAC -ACGGAAGAGTAGGTTGTGCTGTAG -ACGGAAGAGTAGGTTGTGCCTAAG -ACGGAAGAGTAGGTTGTGGTTCAG -ACGGAAGAGTAGGTTGTGGCATAG -ACGGAAGAGTAGGTTGTGGACAAG -ACGGAAGAGTAGGTTGTGAAGCAG -ACGGAAGAGTAGGTTGTGCGTCAA -ACGGAAGAGTAGGTTGTGGCTGAA -ACGGAAGAGTAGGTTGTGAGTACG -ACGGAAGAGTAGGTTGTGATCCGA -ACGGAAGAGTAGGTTGTGATGGGA -ACGGAAGAGTAGGTTGTGGTGCAA -ACGGAAGAGTAGGTTGTGGAGGAA -ACGGAAGAGTAGGTTGTGCAGGTA -ACGGAAGAGTAGGTTGTGGACTCT -ACGGAAGAGTAGGTTGTGAGTCCT -ACGGAAGAGTAGGTTGTGTAAGCC -ACGGAAGAGTAGGTTGTGATAGCC -ACGGAAGAGTAGGTTGTGTAACCG -ACGGAAGAGTAGGTTGTGATGCCA -ACGGAAGAGTAGTTTGCCGGAAAC -ACGGAAGAGTAGTTTGCCAACACC -ACGGAAGAGTAGTTTGCCATCGAG -ACGGAAGAGTAGTTTGCCCTCCTT -ACGGAAGAGTAGTTTGCCCCTGTT -ACGGAAGAGTAGTTTGCCCGGTTT -ACGGAAGAGTAGTTTGCCGTGGTT -ACGGAAGAGTAGTTTGCCGCCTTT -ACGGAAGAGTAGTTTGCCGGTCTT -ACGGAAGAGTAGTTTGCCACGCTT -ACGGAAGAGTAGTTTGCCAGCGTT -ACGGAAGAGTAGTTTGCCTTCGTC -ACGGAAGAGTAGTTTGCCTCTCTC -ACGGAAGAGTAGTTTGCCTGGATC -ACGGAAGAGTAGTTTGCCCACTTC -ACGGAAGAGTAGTTTGCCGTACTC -ACGGAAGAGTAGTTTGCCGATGTC -ACGGAAGAGTAGTTTGCCACAGTC -ACGGAAGAGTAGTTTGCCTTGCTG -ACGGAAGAGTAGTTTGCCTCCATG -ACGGAAGAGTAGTTTGCCTGTGTG -ACGGAAGAGTAGTTTGCCCTAGTG -ACGGAAGAGTAGTTTGCCCATCTG -ACGGAAGAGTAGTTTGCCGAGTTG -ACGGAAGAGTAGTTTGCCAGACTG -ACGGAAGAGTAGTTTGCCTCGGTA -ACGGAAGAGTAGTTTGCCTGCCTA -ACGGAAGAGTAGTTTGCCCCACTA -ACGGAAGAGTAGTTTGCCGGAGTA -ACGGAAGAGTAGTTTGCCTCGTCT -ACGGAAGAGTAGTTTGCCTGCACT -ACGGAAGAGTAGTTTGCCCTGACT -ACGGAAGAGTAGTTTGCCCAACCT -ACGGAAGAGTAGTTTGCCGCTACT -ACGGAAGAGTAGTTTGCCGGATCT -ACGGAAGAGTAGTTTGCCAAGGCT -ACGGAAGAGTAGTTTGCCTCAACC -ACGGAAGAGTAGTTTGCCTGTTCC -ACGGAAGAGTAGTTTGCCATTCCC -ACGGAAGAGTAGTTTGCCTTCTCG -ACGGAAGAGTAGTTTGCCTAGACG -ACGGAAGAGTAGTTTGCCGTAACG -ACGGAAGAGTAGTTTGCCACTTCG -ACGGAAGAGTAGTTTGCCTACGCA -ACGGAAGAGTAGTTTGCCCTTGCA -ACGGAAGAGTAGTTTGCCCGAACA -ACGGAAGAGTAGTTTGCCCAGTCA -ACGGAAGAGTAGTTTGCCGATCCA -ACGGAAGAGTAGTTTGCCACGACA -ACGGAAGAGTAGTTTGCCAGCTCA -ACGGAAGAGTAGTTTGCCTCACGT -ACGGAAGAGTAGTTTGCCCGTAGT -ACGGAAGAGTAGTTTGCCGTCAGT -ACGGAAGAGTAGTTTGCCGAAGGT -ACGGAAGAGTAGTTTGCCAACCGT -ACGGAAGAGTAGTTTGCCTTGTGC -ACGGAAGAGTAGTTTGCCCTAAGC -ACGGAAGAGTAGTTTGCCACTAGC -ACGGAAGAGTAGTTTGCCAGATGC -ACGGAAGAGTAGTTTGCCTGAAGG -ACGGAAGAGTAGTTTGCCCAATGG -ACGGAAGAGTAGTTTGCCATGAGG -ACGGAAGAGTAGTTTGCCAATGGG -ACGGAAGAGTAGTTTGCCTCCTGA -ACGGAAGAGTAGTTTGCCTAGCGA -ACGGAAGAGTAGTTTGCCCACAGA -ACGGAAGAGTAGTTTGCCGCAAGA -ACGGAAGAGTAGTTTGCCGGTTGA -ACGGAAGAGTAGTTTGCCTCCGAT -ACGGAAGAGTAGTTTGCCTGGCAT -ACGGAAGAGTAGTTTGCCCGAGAT -ACGGAAGAGTAGTTTGCCTACCAC -ACGGAAGAGTAGTTTGCCCAGAAC -ACGGAAGAGTAGTTTGCCGTCTAC -ACGGAAGAGTAGTTTGCCACGTAC -ACGGAAGAGTAGTTTGCCAGTGAC -ACGGAAGAGTAGTTTGCCCTGTAG -ACGGAAGAGTAGTTTGCCCCTAAG -ACGGAAGAGTAGTTTGCCGTTCAG -ACGGAAGAGTAGTTTGCCGCATAG -ACGGAAGAGTAGTTTGCCGACAAG -ACGGAAGAGTAGTTTGCCAAGCAG -ACGGAAGAGTAGTTTGCCCGTCAA -ACGGAAGAGTAGTTTGCCGCTGAA -ACGGAAGAGTAGTTTGCCAGTACG -ACGGAAGAGTAGTTTGCCATCCGA -ACGGAAGAGTAGTTTGCCATGGGA -ACGGAAGAGTAGTTTGCCGTGCAA -ACGGAAGAGTAGTTTGCCGAGGAA -ACGGAAGAGTAGTTTGCCCAGGTA -ACGGAAGAGTAGTTTGCCGACTCT -ACGGAAGAGTAGTTTGCCAGTCCT -ACGGAAGAGTAGTTTGCCTAAGCC -ACGGAAGAGTAGTTTGCCATAGCC -ACGGAAGAGTAGTTTGCCTAACCG -ACGGAAGAGTAGTTTGCCATGCCA -ACGGAAGAGTAGCTTGGTGGAAAC -ACGGAAGAGTAGCTTGGTAACACC -ACGGAAGAGTAGCTTGGTATCGAG -ACGGAAGAGTAGCTTGGTCTCCTT -ACGGAAGAGTAGCTTGGTCCTGTT -ACGGAAGAGTAGCTTGGTCGGTTT -ACGGAAGAGTAGCTTGGTGTGGTT -ACGGAAGAGTAGCTTGGTGCCTTT -ACGGAAGAGTAGCTTGGTGGTCTT -ACGGAAGAGTAGCTTGGTACGCTT -ACGGAAGAGTAGCTTGGTAGCGTT -ACGGAAGAGTAGCTTGGTTTCGTC -ACGGAAGAGTAGCTTGGTTCTCTC -ACGGAAGAGTAGCTTGGTTGGATC -ACGGAAGAGTAGCTTGGTCACTTC -ACGGAAGAGTAGCTTGGTGTACTC -ACGGAAGAGTAGCTTGGTGATGTC -ACGGAAGAGTAGCTTGGTACAGTC -ACGGAAGAGTAGCTTGGTTTGCTG -ACGGAAGAGTAGCTTGGTTCCATG -ACGGAAGAGTAGCTTGGTTGTGTG -ACGGAAGAGTAGCTTGGTCTAGTG -ACGGAAGAGTAGCTTGGTCATCTG -ACGGAAGAGTAGCTTGGTGAGTTG -ACGGAAGAGTAGCTTGGTAGACTG -ACGGAAGAGTAGCTTGGTTCGGTA -ACGGAAGAGTAGCTTGGTTGCCTA -ACGGAAGAGTAGCTTGGTCCACTA -ACGGAAGAGTAGCTTGGTGGAGTA -ACGGAAGAGTAGCTTGGTTCGTCT -ACGGAAGAGTAGCTTGGTTGCACT -ACGGAAGAGTAGCTTGGTCTGACT -ACGGAAGAGTAGCTTGGTCAACCT -ACGGAAGAGTAGCTTGGTGCTACT -ACGGAAGAGTAGCTTGGTGGATCT -ACGGAAGAGTAGCTTGGTAAGGCT -ACGGAAGAGTAGCTTGGTTCAACC -ACGGAAGAGTAGCTTGGTTGTTCC -ACGGAAGAGTAGCTTGGTATTCCC -ACGGAAGAGTAGCTTGGTTTCTCG -ACGGAAGAGTAGCTTGGTTAGACG -ACGGAAGAGTAGCTTGGTGTAACG -ACGGAAGAGTAGCTTGGTACTTCG -ACGGAAGAGTAGCTTGGTTACGCA -ACGGAAGAGTAGCTTGGTCTTGCA -ACGGAAGAGTAGCTTGGTCGAACA -ACGGAAGAGTAGCTTGGTCAGTCA -ACGGAAGAGTAGCTTGGTGATCCA -ACGGAAGAGTAGCTTGGTACGACA -ACGGAAGAGTAGCTTGGTAGCTCA -ACGGAAGAGTAGCTTGGTTCACGT -ACGGAAGAGTAGCTTGGTCGTAGT -ACGGAAGAGTAGCTTGGTGTCAGT -ACGGAAGAGTAGCTTGGTGAAGGT -ACGGAAGAGTAGCTTGGTAACCGT -ACGGAAGAGTAGCTTGGTTTGTGC -ACGGAAGAGTAGCTTGGTCTAAGC -ACGGAAGAGTAGCTTGGTACTAGC -ACGGAAGAGTAGCTTGGTAGATGC -ACGGAAGAGTAGCTTGGTTGAAGG -ACGGAAGAGTAGCTTGGTCAATGG -ACGGAAGAGTAGCTTGGTATGAGG -ACGGAAGAGTAGCTTGGTAATGGG -ACGGAAGAGTAGCTTGGTTCCTGA -ACGGAAGAGTAGCTTGGTTAGCGA -ACGGAAGAGTAGCTTGGTCACAGA -ACGGAAGAGTAGCTTGGTGCAAGA -ACGGAAGAGTAGCTTGGTGGTTGA -ACGGAAGAGTAGCTTGGTTCCGAT -ACGGAAGAGTAGCTTGGTTGGCAT -ACGGAAGAGTAGCTTGGTCGAGAT -ACGGAAGAGTAGCTTGGTTACCAC -ACGGAAGAGTAGCTTGGTCAGAAC -ACGGAAGAGTAGCTTGGTGTCTAC -ACGGAAGAGTAGCTTGGTACGTAC -ACGGAAGAGTAGCTTGGTAGTGAC -ACGGAAGAGTAGCTTGGTCTGTAG -ACGGAAGAGTAGCTTGGTCCTAAG -ACGGAAGAGTAGCTTGGTGTTCAG -ACGGAAGAGTAGCTTGGTGCATAG -ACGGAAGAGTAGCTTGGTGACAAG -ACGGAAGAGTAGCTTGGTAAGCAG -ACGGAAGAGTAGCTTGGTCGTCAA -ACGGAAGAGTAGCTTGGTGCTGAA -ACGGAAGAGTAGCTTGGTAGTACG -ACGGAAGAGTAGCTTGGTATCCGA -ACGGAAGAGTAGCTTGGTATGGGA -ACGGAAGAGTAGCTTGGTGTGCAA -ACGGAAGAGTAGCTTGGTGAGGAA -ACGGAAGAGTAGCTTGGTCAGGTA -ACGGAAGAGTAGCTTGGTGACTCT -ACGGAAGAGTAGCTTGGTAGTCCT -ACGGAAGAGTAGCTTGGTTAAGCC -ACGGAAGAGTAGCTTGGTATAGCC -ACGGAAGAGTAGCTTGGTTAACCG -ACGGAAGAGTAGCTTGGTATGCCA -ACGGAAGAGTAGCTTACGGGAAAC -ACGGAAGAGTAGCTTACGAACACC -ACGGAAGAGTAGCTTACGATCGAG -ACGGAAGAGTAGCTTACGCTCCTT -ACGGAAGAGTAGCTTACGCCTGTT -ACGGAAGAGTAGCTTACGCGGTTT -ACGGAAGAGTAGCTTACGGTGGTT -ACGGAAGAGTAGCTTACGGCCTTT -ACGGAAGAGTAGCTTACGGGTCTT -ACGGAAGAGTAGCTTACGACGCTT -ACGGAAGAGTAGCTTACGAGCGTT -ACGGAAGAGTAGCTTACGTTCGTC -ACGGAAGAGTAGCTTACGTCTCTC -ACGGAAGAGTAGCTTACGTGGATC -ACGGAAGAGTAGCTTACGCACTTC -ACGGAAGAGTAGCTTACGGTACTC -ACGGAAGAGTAGCTTACGGATGTC -ACGGAAGAGTAGCTTACGACAGTC -ACGGAAGAGTAGCTTACGTTGCTG -ACGGAAGAGTAGCTTACGTCCATG -ACGGAAGAGTAGCTTACGTGTGTG -ACGGAAGAGTAGCTTACGCTAGTG -ACGGAAGAGTAGCTTACGCATCTG -ACGGAAGAGTAGCTTACGGAGTTG -ACGGAAGAGTAGCTTACGAGACTG -ACGGAAGAGTAGCTTACGTCGGTA -ACGGAAGAGTAGCTTACGTGCCTA -ACGGAAGAGTAGCTTACGCCACTA -ACGGAAGAGTAGCTTACGGGAGTA -ACGGAAGAGTAGCTTACGTCGTCT -ACGGAAGAGTAGCTTACGTGCACT -ACGGAAGAGTAGCTTACGCTGACT -ACGGAAGAGTAGCTTACGCAACCT -ACGGAAGAGTAGCTTACGGCTACT -ACGGAAGAGTAGCTTACGGGATCT -ACGGAAGAGTAGCTTACGAAGGCT -ACGGAAGAGTAGCTTACGTCAACC -ACGGAAGAGTAGCTTACGTGTTCC -ACGGAAGAGTAGCTTACGATTCCC -ACGGAAGAGTAGCTTACGTTCTCG -ACGGAAGAGTAGCTTACGTAGACG -ACGGAAGAGTAGCTTACGGTAACG -ACGGAAGAGTAGCTTACGACTTCG -ACGGAAGAGTAGCTTACGTACGCA -ACGGAAGAGTAGCTTACGCTTGCA -ACGGAAGAGTAGCTTACGCGAACA -ACGGAAGAGTAGCTTACGCAGTCA -ACGGAAGAGTAGCTTACGGATCCA -ACGGAAGAGTAGCTTACGACGACA -ACGGAAGAGTAGCTTACGAGCTCA -ACGGAAGAGTAGCTTACGTCACGT -ACGGAAGAGTAGCTTACGCGTAGT -ACGGAAGAGTAGCTTACGGTCAGT -ACGGAAGAGTAGCTTACGGAAGGT -ACGGAAGAGTAGCTTACGAACCGT -ACGGAAGAGTAGCTTACGTTGTGC -ACGGAAGAGTAGCTTACGCTAAGC -ACGGAAGAGTAGCTTACGACTAGC -ACGGAAGAGTAGCTTACGAGATGC -ACGGAAGAGTAGCTTACGTGAAGG -ACGGAAGAGTAGCTTACGCAATGG -ACGGAAGAGTAGCTTACGATGAGG -ACGGAAGAGTAGCTTACGAATGGG -ACGGAAGAGTAGCTTACGTCCTGA -ACGGAAGAGTAGCTTACGTAGCGA -ACGGAAGAGTAGCTTACGCACAGA -ACGGAAGAGTAGCTTACGGCAAGA -ACGGAAGAGTAGCTTACGGGTTGA -ACGGAAGAGTAGCTTACGTCCGAT -ACGGAAGAGTAGCTTACGTGGCAT -ACGGAAGAGTAGCTTACGCGAGAT -ACGGAAGAGTAGCTTACGTACCAC -ACGGAAGAGTAGCTTACGCAGAAC -ACGGAAGAGTAGCTTACGGTCTAC -ACGGAAGAGTAGCTTACGACGTAC -ACGGAAGAGTAGCTTACGAGTGAC -ACGGAAGAGTAGCTTACGCTGTAG -ACGGAAGAGTAGCTTACGCCTAAG -ACGGAAGAGTAGCTTACGGTTCAG -ACGGAAGAGTAGCTTACGGCATAG -ACGGAAGAGTAGCTTACGGACAAG -ACGGAAGAGTAGCTTACGAAGCAG -ACGGAAGAGTAGCTTACGCGTCAA -ACGGAAGAGTAGCTTACGGCTGAA -ACGGAAGAGTAGCTTACGAGTACG -ACGGAAGAGTAGCTTACGATCCGA -ACGGAAGAGTAGCTTACGATGGGA -ACGGAAGAGTAGCTTACGGTGCAA -ACGGAAGAGTAGCTTACGGAGGAA -ACGGAAGAGTAGCTTACGCAGGTA -ACGGAAGAGTAGCTTACGGACTCT -ACGGAAGAGTAGCTTACGAGTCCT -ACGGAAGAGTAGCTTACGTAAGCC -ACGGAAGAGTAGCTTACGATAGCC -ACGGAAGAGTAGCTTACGTAACCG -ACGGAAGAGTAGCTTACGATGCCA -ACGGAAGAGTAGGTTAGCGGAAAC -ACGGAAGAGTAGGTTAGCAACACC -ACGGAAGAGTAGGTTAGCATCGAG -ACGGAAGAGTAGGTTAGCCTCCTT -ACGGAAGAGTAGGTTAGCCCTGTT -ACGGAAGAGTAGGTTAGCCGGTTT -ACGGAAGAGTAGGTTAGCGTGGTT -ACGGAAGAGTAGGTTAGCGCCTTT -ACGGAAGAGTAGGTTAGCGGTCTT -ACGGAAGAGTAGGTTAGCACGCTT -ACGGAAGAGTAGGTTAGCAGCGTT -ACGGAAGAGTAGGTTAGCTTCGTC -ACGGAAGAGTAGGTTAGCTCTCTC -ACGGAAGAGTAGGTTAGCTGGATC -ACGGAAGAGTAGGTTAGCCACTTC -ACGGAAGAGTAGGTTAGCGTACTC -ACGGAAGAGTAGGTTAGCGATGTC -ACGGAAGAGTAGGTTAGCACAGTC -ACGGAAGAGTAGGTTAGCTTGCTG -ACGGAAGAGTAGGTTAGCTCCATG -ACGGAAGAGTAGGTTAGCTGTGTG -ACGGAAGAGTAGGTTAGCCTAGTG -ACGGAAGAGTAGGTTAGCCATCTG -ACGGAAGAGTAGGTTAGCGAGTTG -ACGGAAGAGTAGGTTAGCAGACTG -ACGGAAGAGTAGGTTAGCTCGGTA -ACGGAAGAGTAGGTTAGCTGCCTA -ACGGAAGAGTAGGTTAGCCCACTA -ACGGAAGAGTAGGTTAGCGGAGTA -ACGGAAGAGTAGGTTAGCTCGTCT -ACGGAAGAGTAGGTTAGCTGCACT -ACGGAAGAGTAGGTTAGCCTGACT -ACGGAAGAGTAGGTTAGCCAACCT -ACGGAAGAGTAGGTTAGCGCTACT -ACGGAAGAGTAGGTTAGCGGATCT -ACGGAAGAGTAGGTTAGCAAGGCT -ACGGAAGAGTAGGTTAGCTCAACC -ACGGAAGAGTAGGTTAGCTGTTCC -ACGGAAGAGTAGGTTAGCATTCCC -ACGGAAGAGTAGGTTAGCTTCTCG -ACGGAAGAGTAGGTTAGCTAGACG -ACGGAAGAGTAGGTTAGCGTAACG -ACGGAAGAGTAGGTTAGCACTTCG -ACGGAAGAGTAGGTTAGCTACGCA -ACGGAAGAGTAGGTTAGCCTTGCA -ACGGAAGAGTAGGTTAGCCGAACA -ACGGAAGAGTAGGTTAGCCAGTCA -ACGGAAGAGTAGGTTAGCGATCCA -ACGGAAGAGTAGGTTAGCACGACA -ACGGAAGAGTAGGTTAGCAGCTCA -ACGGAAGAGTAGGTTAGCTCACGT -ACGGAAGAGTAGGTTAGCCGTAGT -ACGGAAGAGTAGGTTAGCGTCAGT -ACGGAAGAGTAGGTTAGCGAAGGT -ACGGAAGAGTAGGTTAGCAACCGT -ACGGAAGAGTAGGTTAGCTTGTGC -ACGGAAGAGTAGGTTAGCCTAAGC -ACGGAAGAGTAGGTTAGCACTAGC -ACGGAAGAGTAGGTTAGCAGATGC -ACGGAAGAGTAGGTTAGCTGAAGG -ACGGAAGAGTAGGTTAGCCAATGG -ACGGAAGAGTAGGTTAGCATGAGG -ACGGAAGAGTAGGTTAGCAATGGG -ACGGAAGAGTAGGTTAGCTCCTGA -ACGGAAGAGTAGGTTAGCTAGCGA -ACGGAAGAGTAGGTTAGCCACAGA -ACGGAAGAGTAGGTTAGCGCAAGA -ACGGAAGAGTAGGTTAGCGGTTGA -ACGGAAGAGTAGGTTAGCTCCGAT -ACGGAAGAGTAGGTTAGCTGGCAT -ACGGAAGAGTAGGTTAGCCGAGAT -ACGGAAGAGTAGGTTAGCTACCAC -ACGGAAGAGTAGGTTAGCCAGAAC -ACGGAAGAGTAGGTTAGCGTCTAC -ACGGAAGAGTAGGTTAGCACGTAC -ACGGAAGAGTAGGTTAGCAGTGAC -ACGGAAGAGTAGGTTAGCCTGTAG -ACGGAAGAGTAGGTTAGCCCTAAG -ACGGAAGAGTAGGTTAGCGTTCAG -ACGGAAGAGTAGGTTAGCGCATAG -ACGGAAGAGTAGGTTAGCGACAAG -ACGGAAGAGTAGGTTAGCAAGCAG -ACGGAAGAGTAGGTTAGCCGTCAA -ACGGAAGAGTAGGTTAGCGCTGAA -ACGGAAGAGTAGGTTAGCAGTACG -ACGGAAGAGTAGGTTAGCATCCGA -ACGGAAGAGTAGGTTAGCATGGGA -ACGGAAGAGTAGGTTAGCGTGCAA -ACGGAAGAGTAGGTTAGCGAGGAA -ACGGAAGAGTAGGTTAGCCAGGTA -ACGGAAGAGTAGGTTAGCGACTCT -ACGGAAGAGTAGGTTAGCAGTCCT -ACGGAAGAGTAGGTTAGCTAAGCC -ACGGAAGAGTAGGTTAGCATAGCC -ACGGAAGAGTAGGTTAGCTAACCG -ACGGAAGAGTAGGTTAGCATGCCA -ACGGAAGAGTAGGTCTTCGGAAAC -ACGGAAGAGTAGGTCTTCAACACC -ACGGAAGAGTAGGTCTTCATCGAG -ACGGAAGAGTAGGTCTTCCTCCTT -ACGGAAGAGTAGGTCTTCCCTGTT -ACGGAAGAGTAGGTCTTCCGGTTT -ACGGAAGAGTAGGTCTTCGTGGTT -ACGGAAGAGTAGGTCTTCGCCTTT -ACGGAAGAGTAGGTCTTCGGTCTT -ACGGAAGAGTAGGTCTTCACGCTT -ACGGAAGAGTAGGTCTTCAGCGTT -ACGGAAGAGTAGGTCTTCTTCGTC -ACGGAAGAGTAGGTCTTCTCTCTC -ACGGAAGAGTAGGTCTTCTGGATC -ACGGAAGAGTAGGTCTTCCACTTC -ACGGAAGAGTAGGTCTTCGTACTC -ACGGAAGAGTAGGTCTTCGATGTC -ACGGAAGAGTAGGTCTTCACAGTC -ACGGAAGAGTAGGTCTTCTTGCTG -ACGGAAGAGTAGGTCTTCTCCATG -ACGGAAGAGTAGGTCTTCTGTGTG -ACGGAAGAGTAGGTCTTCCTAGTG -ACGGAAGAGTAGGTCTTCCATCTG -ACGGAAGAGTAGGTCTTCGAGTTG -ACGGAAGAGTAGGTCTTCAGACTG -ACGGAAGAGTAGGTCTTCTCGGTA -ACGGAAGAGTAGGTCTTCTGCCTA -ACGGAAGAGTAGGTCTTCCCACTA -ACGGAAGAGTAGGTCTTCGGAGTA -ACGGAAGAGTAGGTCTTCTCGTCT -ACGGAAGAGTAGGTCTTCTGCACT -ACGGAAGAGTAGGTCTTCCTGACT -ACGGAAGAGTAGGTCTTCCAACCT -ACGGAAGAGTAGGTCTTCGCTACT -ACGGAAGAGTAGGTCTTCGGATCT -ACGGAAGAGTAGGTCTTCAAGGCT -ACGGAAGAGTAGGTCTTCTCAACC -ACGGAAGAGTAGGTCTTCTGTTCC -ACGGAAGAGTAGGTCTTCATTCCC -ACGGAAGAGTAGGTCTTCTTCTCG -ACGGAAGAGTAGGTCTTCTAGACG -ACGGAAGAGTAGGTCTTCGTAACG -ACGGAAGAGTAGGTCTTCACTTCG -ACGGAAGAGTAGGTCTTCTACGCA -ACGGAAGAGTAGGTCTTCCTTGCA -ACGGAAGAGTAGGTCTTCCGAACA -ACGGAAGAGTAGGTCTTCCAGTCA -ACGGAAGAGTAGGTCTTCGATCCA -ACGGAAGAGTAGGTCTTCACGACA -ACGGAAGAGTAGGTCTTCAGCTCA -ACGGAAGAGTAGGTCTTCTCACGT -ACGGAAGAGTAGGTCTTCCGTAGT -ACGGAAGAGTAGGTCTTCGTCAGT -ACGGAAGAGTAGGTCTTCGAAGGT -ACGGAAGAGTAGGTCTTCAACCGT -ACGGAAGAGTAGGTCTTCTTGTGC -ACGGAAGAGTAGGTCTTCCTAAGC -ACGGAAGAGTAGGTCTTCACTAGC -ACGGAAGAGTAGGTCTTCAGATGC -ACGGAAGAGTAGGTCTTCTGAAGG -ACGGAAGAGTAGGTCTTCCAATGG -ACGGAAGAGTAGGTCTTCATGAGG -ACGGAAGAGTAGGTCTTCAATGGG -ACGGAAGAGTAGGTCTTCTCCTGA -ACGGAAGAGTAGGTCTTCTAGCGA -ACGGAAGAGTAGGTCTTCCACAGA -ACGGAAGAGTAGGTCTTCGCAAGA -ACGGAAGAGTAGGTCTTCGGTTGA -ACGGAAGAGTAGGTCTTCTCCGAT -ACGGAAGAGTAGGTCTTCTGGCAT -ACGGAAGAGTAGGTCTTCCGAGAT -ACGGAAGAGTAGGTCTTCTACCAC -ACGGAAGAGTAGGTCTTCCAGAAC -ACGGAAGAGTAGGTCTTCGTCTAC -ACGGAAGAGTAGGTCTTCACGTAC -ACGGAAGAGTAGGTCTTCAGTGAC -ACGGAAGAGTAGGTCTTCCTGTAG -ACGGAAGAGTAGGTCTTCCCTAAG -ACGGAAGAGTAGGTCTTCGTTCAG -ACGGAAGAGTAGGTCTTCGCATAG -ACGGAAGAGTAGGTCTTCGACAAG -ACGGAAGAGTAGGTCTTCAAGCAG -ACGGAAGAGTAGGTCTTCCGTCAA -ACGGAAGAGTAGGTCTTCGCTGAA -ACGGAAGAGTAGGTCTTCAGTACG -ACGGAAGAGTAGGTCTTCATCCGA -ACGGAAGAGTAGGTCTTCATGGGA -ACGGAAGAGTAGGTCTTCGTGCAA -ACGGAAGAGTAGGTCTTCGAGGAA -ACGGAAGAGTAGGTCTTCCAGGTA -ACGGAAGAGTAGGTCTTCGACTCT -ACGGAAGAGTAGGTCTTCAGTCCT -ACGGAAGAGTAGGTCTTCTAAGCC -ACGGAAGAGTAGGTCTTCATAGCC -ACGGAAGAGTAGGTCTTCTAACCG -ACGGAAGAGTAGGTCTTCATGCCA -ACGGAAGAGTAGCTCTCTGGAAAC -ACGGAAGAGTAGCTCTCTAACACC -ACGGAAGAGTAGCTCTCTATCGAG -ACGGAAGAGTAGCTCTCTCTCCTT -ACGGAAGAGTAGCTCTCTCCTGTT -ACGGAAGAGTAGCTCTCTCGGTTT -ACGGAAGAGTAGCTCTCTGTGGTT -ACGGAAGAGTAGCTCTCTGCCTTT -ACGGAAGAGTAGCTCTCTGGTCTT -ACGGAAGAGTAGCTCTCTACGCTT -ACGGAAGAGTAGCTCTCTAGCGTT -ACGGAAGAGTAGCTCTCTTTCGTC -ACGGAAGAGTAGCTCTCTTCTCTC -ACGGAAGAGTAGCTCTCTTGGATC -ACGGAAGAGTAGCTCTCTCACTTC -ACGGAAGAGTAGCTCTCTGTACTC -ACGGAAGAGTAGCTCTCTGATGTC -ACGGAAGAGTAGCTCTCTACAGTC -ACGGAAGAGTAGCTCTCTTTGCTG -ACGGAAGAGTAGCTCTCTTCCATG -ACGGAAGAGTAGCTCTCTTGTGTG -ACGGAAGAGTAGCTCTCTCTAGTG -ACGGAAGAGTAGCTCTCTCATCTG -ACGGAAGAGTAGCTCTCTGAGTTG -ACGGAAGAGTAGCTCTCTAGACTG -ACGGAAGAGTAGCTCTCTTCGGTA -ACGGAAGAGTAGCTCTCTTGCCTA -ACGGAAGAGTAGCTCTCTCCACTA -ACGGAAGAGTAGCTCTCTGGAGTA -ACGGAAGAGTAGCTCTCTTCGTCT -ACGGAAGAGTAGCTCTCTTGCACT -ACGGAAGAGTAGCTCTCTCTGACT -ACGGAAGAGTAGCTCTCTCAACCT -ACGGAAGAGTAGCTCTCTGCTACT -ACGGAAGAGTAGCTCTCTGGATCT -ACGGAAGAGTAGCTCTCTAAGGCT -ACGGAAGAGTAGCTCTCTTCAACC -ACGGAAGAGTAGCTCTCTTGTTCC -ACGGAAGAGTAGCTCTCTATTCCC -ACGGAAGAGTAGCTCTCTTTCTCG -ACGGAAGAGTAGCTCTCTTAGACG -ACGGAAGAGTAGCTCTCTGTAACG -ACGGAAGAGTAGCTCTCTACTTCG -ACGGAAGAGTAGCTCTCTTACGCA -ACGGAAGAGTAGCTCTCTCTTGCA -ACGGAAGAGTAGCTCTCTCGAACA -ACGGAAGAGTAGCTCTCTCAGTCA -ACGGAAGAGTAGCTCTCTGATCCA -ACGGAAGAGTAGCTCTCTACGACA -ACGGAAGAGTAGCTCTCTAGCTCA -ACGGAAGAGTAGCTCTCTTCACGT -ACGGAAGAGTAGCTCTCTCGTAGT -ACGGAAGAGTAGCTCTCTGTCAGT -ACGGAAGAGTAGCTCTCTGAAGGT -ACGGAAGAGTAGCTCTCTAACCGT -ACGGAAGAGTAGCTCTCTTTGTGC -ACGGAAGAGTAGCTCTCTCTAAGC -ACGGAAGAGTAGCTCTCTACTAGC -ACGGAAGAGTAGCTCTCTAGATGC -ACGGAAGAGTAGCTCTCTTGAAGG -ACGGAAGAGTAGCTCTCTCAATGG -ACGGAAGAGTAGCTCTCTATGAGG -ACGGAAGAGTAGCTCTCTAATGGG -ACGGAAGAGTAGCTCTCTTCCTGA -ACGGAAGAGTAGCTCTCTTAGCGA -ACGGAAGAGTAGCTCTCTCACAGA -ACGGAAGAGTAGCTCTCTGCAAGA -ACGGAAGAGTAGCTCTCTGGTTGA -ACGGAAGAGTAGCTCTCTTCCGAT -ACGGAAGAGTAGCTCTCTTGGCAT -ACGGAAGAGTAGCTCTCTCGAGAT -ACGGAAGAGTAGCTCTCTTACCAC -ACGGAAGAGTAGCTCTCTCAGAAC -ACGGAAGAGTAGCTCTCTGTCTAC -ACGGAAGAGTAGCTCTCTACGTAC -ACGGAAGAGTAGCTCTCTAGTGAC -ACGGAAGAGTAGCTCTCTCTGTAG -ACGGAAGAGTAGCTCTCTCCTAAG -ACGGAAGAGTAGCTCTCTGTTCAG -ACGGAAGAGTAGCTCTCTGCATAG -ACGGAAGAGTAGCTCTCTGACAAG -ACGGAAGAGTAGCTCTCTAAGCAG -ACGGAAGAGTAGCTCTCTCGTCAA -ACGGAAGAGTAGCTCTCTGCTGAA -ACGGAAGAGTAGCTCTCTAGTACG -ACGGAAGAGTAGCTCTCTATCCGA -ACGGAAGAGTAGCTCTCTATGGGA -ACGGAAGAGTAGCTCTCTGTGCAA -ACGGAAGAGTAGCTCTCTGAGGAA -ACGGAAGAGTAGCTCTCTCAGGTA -ACGGAAGAGTAGCTCTCTGACTCT -ACGGAAGAGTAGCTCTCTAGTCCT -ACGGAAGAGTAGCTCTCTTAAGCC -ACGGAAGAGTAGCTCTCTATAGCC -ACGGAAGAGTAGCTCTCTTAACCG -ACGGAAGAGTAGCTCTCTATGCCA -ACGGAAGAGTAGATCTGGGGAAAC -ACGGAAGAGTAGATCTGGAACACC -ACGGAAGAGTAGATCTGGATCGAG -ACGGAAGAGTAGATCTGGCTCCTT -ACGGAAGAGTAGATCTGGCCTGTT -ACGGAAGAGTAGATCTGGCGGTTT -ACGGAAGAGTAGATCTGGGTGGTT -ACGGAAGAGTAGATCTGGGCCTTT -ACGGAAGAGTAGATCTGGGGTCTT -ACGGAAGAGTAGATCTGGACGCTT -ACGGAAGAGTAGATCTGGAGCGTT -ACGGAAGAGTAGATCTGGTTCGTC -ACGGAAGAGTAGATCTGGTCTCTC -ACGGAAGAGTAGATCTGGTGGATC -ACGGAAGAGTAGATCTGGCACTTC -ACGGAAGAGTAGATCTGGGTACTC -ACGGAAGAGTAGATCTGGGATGTC -ACGGAAGAGTAGATCTGGACAGTC -ACGGAAGAGTAGATCTGGTTGCTG -ACGGAAGAGTAGATCTGGTCCATG -ACGGAAGAGTAGATCTGGTGTGTG -ACGGAAGAGTAGATCTGGCTAGTG -ACGGAAGAGTAGATCTGGCATCTG -ACGGAAGAGTAGATCTGGGAGTTG -ACGGAAGAGTAGATCTGGAGACTG -ACGGAAGAGTAGATCTGGTCGGTA -ACGGAAGAGTAGATCTGGTGCCTA -ACGGAAGAGTAGATCTGGCCACTA -ACGGAAGAGTAGATCTGGGGAGTA -ACGGAAGAGTAGATCTGGTCGTCT -ACGGAAGAGTAGATCTGGTGCACT -ACGGAAGAGTAGATCTGGCTGACT -ACGGAAGAGTAGATCTGGCAACCT -ACGGAAGAGTAGATCTGGGCTACT -ACGGAAGAGTAGATCTGGGGATCT -ACGGAAGAGTAGATCTGGAAGGCT -ACGGAAGAGTAGATCTGGTCAACC -ACGGAAGAGTAGATCTGGTGTTCC -ACGGAAGAGTAGATCTGGATTCCC -ACGGAAGAGTAGATCTGGTTCTCG -ACGGAAGAGTAGATCTGGTAGACG -ACGGAAGAGTAGATCTGGGTAACG -ACGGAAGAGTAGATCTGGACTTCG -ACGGAAGAGTAGATCTGGTACGCA -ACGGAAGAGTAGATCTGGCTTGCA -ACGGAAGAGTAGATCTGGCGAACA -ACGGAAGAGTAGATCTGGCAGTCA -ACGGAAGAGTAGATCTGGGATCCA -ACGGAAGAGTAGATCTGGACGACA -ACGGAAGAGTAGATCTGGAGCTCA -ACGGAAGAGTAGATCTGGTCACGT -ACGGAAGAGTAGATCTGGCGTAGT -ACGGAAGAGTAGATCTGGGTCAGT -ACGGAAGAGTAGATCTGGGAAGGT -ACGGAAGAGTAGATCTGGAACCGT -ACGGAAGAGTAGATCTGGTTGTGC -ACGGAAGAGTAGATCTGGCTAAGC -ACGGAAGAGTAGATCTGGACTAGC -ACGGAAGAGTAGATCTGGAGATGC -ACGGAAGAGTAGATCTGGTGAAGG -ACGGAAGAGTAGATCTGGCAATGG -ACGGAAGAGTAGATCTGGATGAGG -ACGGAAGAGTAGATCTGGAATGGG -ACGGAAGAGTAGATCTGGTCCTGA -ACGGAAGAGTAGATCTGGTAGCGA -ACGGAAGAGTAGATCTGGCACAGA -ACGGAAGAGTAGATCTGGGCAAGA -ACGGAAGAGTAGATCTGGGGTTGA -ACGGAAGAGTAGATCTGGTCCGAT -ACGGAAGAGTAGATCTGGTGGCAT -ACGGAAGAGTAGATCTGGCGAGAT -ACGGAAGAGTAGATCTGGTACCAC -ACGGAAGAGTAGATCTGGCAGAAC -ACGGAAGAGTAGATCTGGGTCTAC -ACGGAAGAGTAGATCTGGACGTAC -ACGGAAGAGTAGATCTGGAGTGAC -ACGGAAGAGTAGATCTGGCTGTAG -ACGGAAGAGTAGATCTGGCCTAAG -ACGGAAGAGTAGATCTGGGTTCAG -ACGGAAGAGTAGATCTGGGCATAG -ACGGAAGAGTAGATCTGGGACAAG -ACGGAAGAGTAGATCTGGAAGCAG -ACGGAAGAGTAGATCTGGCGTCAA -ACGGAAGAGTAGATCTGGGCTGAA -ACGGAAGAGTAGATCTGGAGTACG -ACGGAAGAGTAGATCTGGATCCGA -ACGGAAGAGTAGATCTGGATGGGA -ACGGAAGAGTAGATCTGGGTGCAA -ACGGAAGAGTAGATCTGGGAGGAA -ACGGAAGAGTAGATCTGGCAGGTA -ACGGAAGAGTAGATCTGGGACTCT -ACGGAAGAGTAGATCTGGAGTCCT -ACGGAAGAGTAGATCTGGTAAGCC -ACGGAAGAGTAGATCTGGATAGCC -ACGGAAGAGTAGATCTGGTAACCG -ACGGAAGAGTAGATCTGGATGCCA -ACGGAAGAGTAGTTCCACGGAAAC -ACGGAAGAGTAGTTCCACAACACC -ACGGAAGAGTAGTTCCACATCGAG -ACGGAAGAGTAGTTCCACCTCCTT -ACGGAAGAGTAGTTCCACCCTGTT -ACGGAAGAGTAGTTCCACCGGTTT -ACGGAAGAGTAGTTCCACGTGGTT -ACGGAAGAGTAGTTCCACGCCTTT -ACGGAAGAGTAGTTCCACGGTCTT -ACGGAAGAGTAGTTCCACACGCTT -ACGGAAGAGTAGTTCCACAGCGTT -ACGGAAGAGTAGTTCCACTTCGTC -ACGGAAGAGTAGTTCCACTCTCTC -ACGGAAGAGTAGTTCCACTGGATC -ACGGAAGAGTAGTTCCACCACTTC -ACGGAAGAGTAGTTCCACGTACTC -ACGGAAGAGTAGTTCCACGATGTC -ACGGAAGAGTAGTTCCACACAGTC -ACGGAAGAGTAGTTCCACTTGCTG -ACGGAAGAGTAGTTCCACTCCATG -ACGGAAGAGTAGTTCCACTGTGTG -ACGGAAGAGTAGTTCCACCTAGTG -ACGGAAGAGTAGTTCCACCATCTG -ACGGAAGAGTAGTTCCACGAGTTG -ACGGAAGAGTAGTTCCACAGACTG -ACGGAAGAGTAGTTCCACTCGGTA -ACGGAAGAGTAGTTCCACTGCCTA -ACGGAAGAGTAGTTCCACCCACTA -ACGGAAGAGTAGTTCCACGGAGTA -ACGGAAGAGTAGTTCCACTCGTCT -ACGGAAGAGTAGTTCCACTGCACT -ACGGAAGAGTAGTTCCACCTGACT -ACGGAAGAGTAGTTCCACCAACCT -ACGGAAGAGTAGTTCCACGCTACT -ACGGAAGAGTAGTTCCACGGATCT -ACGGAAGAGTAGTTCCACAAGGCT -ACGGAAGAGTAGTTCCACTCAACC -ACGGAAGAGTAGTTCCACTGTTCC -ACGGAAGAGTAGTTCCACATTCCC -ACGGAAGAGTAGTTCCACTTCTCG -ACGGAAGAGTAGTTCCACTAGACG -ACGGAAGAGTAGTTCCACGTAACG -ACGGAAGAGTAGTTCCACACTTCG -ACGGAAGAGTAGTTCCACTACGCA -ACGGAAGAGTAGTTCCACCTTGCA -ACGGAAGAGTAGTTCCACCGAACA -ACGGAAGAGTAGTTCCACCAGTCA -ACGGAAGAGTAGTTCCACGATCCA -ACGGAAGAGTAGTTCCACACGACA -ACGGAAGAGTAGTTCCACAGCTCA -ACGGAAGAGTAGTTCCACTCACGT -ACGGAAGAGTAGTTCCACCGTAGT -ACGGAAGAGTAGTTCCACGTCAGT -ACGGAAGAGTAGTTCCACGAAGGT -ACGGAAGAGTAGTTCCACAACCGT -ACGGAAGAGTAGTTCCACTTGTGC -ACGGAAGAGTAGTTCCACCTAAGC -ACGGAAGAGTAGTTCCACACTAGC -ACGGAAGAGTAGTTCCACAGATGC -ACGGAAGAGTAGTTCCACTGAAGG -ACGGAAGAGTAGTTCCACCAATGG -ACGGAAGAGTAGTTCCACATGAGG -ACGGAAGAGTAGTTCCACAATGGG -ACGGAAGAGTAGTTCCACTCCTGA -ACGGAAGAGTAGTTCCACTAGCGA -ACGGAAGAGTAGTTCCACCACAGA -ACGGAAGAGTAGTTCCACGCAAGA -ACGGAAGAGTAGTTCCACGGTTGA -ACGGAAGAGTAGTTCCACTCCGAT -ACGGAAGAGTAGTTCCACTGGCAT -ACGGAAGAGTAGTTCCACCGAGAT -ACGGAAGAGTAGTTCCACTACCAC -ACGGAAGAGTAGTTCCACCAGAAC -ACGGAAGAGTAGTTCCACGTCTAC -ACGGAAGAGTAGTTCCACACGTAC -ACGGAAGAGTAGTTCCACAGTGAC -ACGGAAGAGTAGTTCCACCTGTAG -ACGGAAGAGTAGTTCCACCCTAAG -ACGGAAGAGTAGTTCCACGTTCAG -ACGGAAGAGTAGTTCCACGCATAG -ACGGAAGAGTAGTTCCACGACAAG -ACGGAAGAGTAGTTCCACAAGCAG -ACGGAAGAGTAGTTCCACCGTCAA -ACGGAAGAGTAGTTCCACGCTGAA -ACGGAAGAGTAGTTCCACAGTACG -ACGGAAGAGTAGTTCCACATCCGA -ACGGAAGAGTAGTTCCACATGGGA -ACGGAAGAGTAGTTCCACGTGCAA -ACGGAAGAGTAGTTCCACGAGGAA -ACGGAAGAGTAGTTCCACCAGGTA -ACGGAAGAGTAGTTCCACGACTCT -ACGGAAGAGTAGTTCCACAGTCCT -ACGGAAGAGTAGTTCCACTAAGCC -ACGGAAGAGTAGTTCCACATAGCC -ACGGAAGAGTAGTTCCACTAACCG -ACGGAAGAGTAGTTCCACATGCCA -ACGGAAGAGTAGCTCGTAGGAAAC -ACGGAAGAGTAGCTCGTAAACACC -ACGGAAGAGTAGCTCGTAATCGAG -ACGGAAGAGTAGCTCGTACTCCTT -ACGGAAGAGTAGCTCGTACCTGTT -ACGGAAGAGTAGCTCGTACGGTTT -ACGGAAGAGTAGCTCGTAGTGGTT -ACGGAAGAGTAGCTCGTAGCCTTT -ACGGAAGAGTAGCTCGTAGGTCTT -ACGGAAGAGTAGCTCGTAACGCTT -ACGGAAGAGTAGCTCGTAAGCGTT -ACGGAAGAGTAGCTCGTATTCGTC -ACGGAAGAGTAGCTCGTATCTCTC -ACGGAAGAGTAGCTCGTATGGATC -ACGGAAGAGTAGCTCGTACACTTC -ACGGAAGAGTAGCTCGTAGTACTC -ACGGAAGAGTAGCTCGTAGATGTC -ACGGAAGAGTAGCTCGTAACAGTC -ACGGAAGAGTAGCTCGTATTGCTG -ACGGAAGAGTAGCTCGTATCCATG -ACGGAAGAGTAGCTCGTATGTGTG -ACGGAAGAGTAGCTCGTACTAGTG -ACGGAAGAGTAGCTCGTACATCTG -ACGGAAGAGTAGCTCGTAGAGTTG -ACGGAAGAGTAGCTCGTAAGACTG -ACGGAAGAGTAGCTCGTATCGGTA -ACGGAAGAGTAGCTCGTATGCCTA -ACGGAAGAGTAGCTCGTACCACTA -ACGGAAGAGTAGCTCGTAGGAGTA -ACGGAAGAGTAGCTCGTATCGTCT -ACGGAAGAGTAGCTCGTATGCACT -ACGGAAGAGTAGCTCGTACTGACT -ACGGAAGAGTAGCTCGTACAACCT -ACGGAAGAGTAGCTCGTAGCTACT -ACGGAAGAGTAGCTCGTAGGATCT -ACGGAAGAGTAGCTCGTAAAGGCT -ACGGAAGAGTAGCTCGTATCAACC -ACGGAAGAGTAGCTCGTATGTTCC -ACGGAAGAGTAGCTCGTAATTCCC -ACGGAAGAGTAGCTCGTATTCTCG -ACGGAAGAGTAGCTCGTATAGACG -ACGGAAGAGTAGCTCGTAGTAACG -ACGGAAGAGTAGCTCGTAACTTCG -ACGGAAGAGTAGCTCGTATACGCA -ACGGAAGAGTAGCTCGTACTTGCA -ACGGAAGAGTAGCTCGTACGAACA -ACGGAAGAGTAGCTCGTACAGTCA -ACGGAAGAGTAGCTCGTAGATCCA -ACGGAAGAGTAGCTCGTAACGACA -ACGGAAGAGTAGCTCGTAAGCTCA -ACGGAAGAGTAGCTCGTATCACGT -ACGGAAGAGTAGCTCGTACGTAGT -ACGGAAGAGTAGCTCGTAGTCAGT -ACGGAAGAGTAGCTCGTAGAAGGT -ACGGAAGAGTAGCTCGTAAACCGT -ACGGAAGAGTAGCTCGTATTGTGC -ACGGAAGAGTAGCTCGTACTAAGC -ACGGAAGAGTAGCTCGTAACTAGC -ACGGAAGAGTAGCTCGTAAGATGC -ACGGAAGAGTAGCTCGTATGAAGG -ACGGAAGAGTAGCTCGTACAATGG -ACGGAAGAGTAGCTCGTAATGAGG -ACGGAAGAGTAGCTCGTAAATGGG -ACGGAAGAGTAGCTCGTATCCTGA -ACGGAAGAGTAGCTCGTATAGCGA -ACGGAAGAGTAGCTCGTACACAGA -ACGGAAGAGTAGCTCGTAGCAAGA -ACGGAAGAGTAGCTCGTAGGTTGA -ACGGAAGAGTAGCTCGTATCCGAT -ACGGAAGAGTAGCTCGTATGGCAT -ACGGAAGAGTAGCTCGTACGAGAT -ACGGAAGAGTAGCTCGTATACCAC -ACGGAAGAGTAGCTCGTACAGAAC -ACGGAAGAGTAGCTCGTAGTCTAC -ACGGAAGAGTAGCTCGTAACGTAC -ACGGAAGAGTAGCTCGTAAGTGAC -ACGGAAGAGTAGCTCGTACTGTAG -ACGGAAGAGTAGCTCGTACCTAAG -ACGGAAGAGTAGCTCGTAGTTCAG -ACGGAAGAGTAGCTCGTAGCATAG -ACGGAAGAGTAGCTCGTAGACAAG -ACGGAAGAGTAGCTCGTAAAGCAG -ACGGAAGAGTAGCTCGTACGTCAA -ACGGAAGAGTAGCTCGTAGCTGAA -ACGGAAGAGTAGCTCGTAAGTACG -ACGGAAGAGTAGCTCGTAATCCGA -ACGGAAGAGTAGCTCGTAATGGGA -ACGGAAGAGTAGCTCGTAGTGCAA -ACGGAAGAGTAGCTCGTAGAGGAA -ACGGAAGAGTAGCTCGTACAGGTA -ACGGAAGAGTAGCTCGTAGACTCT -ACGGAAGAGTAGCTCGTAAGTCCT -ACGGAAGAGTAGCTCGTATAAGCC -ACGGAAGAGTAGCTCGTAATAGCC -ACGGAAGAGTAGCTCGTATAACCG -ACGGAAGAGTAGCTCGTAATGCCA -ACGGAAGAGTAGGTCGATGGAAAC -ACGGAAGAGTAGGTCGATAACACC -ACGGAAGAGTAGGTCGATATCGAG -ACGGAAGAGTAGGTCGATCTCCTT -ACGGAAGAGTAGGTCGATCCTGTT -ACGGAAGAGTAGGTCGATCGGTTT -ACGGAAGAGTAGGTCGATGTGGTT -ACGGAAGAGTAGGTCGATGCCTTT -ACGGAAGAGTAGGTCGATGGTCTT -ACGGAAGAGTAGGTCGATACGCTT -ACGGAAGAGTAGGTCGATAGCGTT -ACGGAAGAGTAGGTCGATTTCGTC -ACGGAAGAGTAGGTCGATTCTCTC -ACGGAAGAGTAGGTCGATTGGATC -ACGGAAGAGTAGGTCGATCACTTC -ACGGAAGAGTAGGTCGATGTACTC -ACGGAAGAGTAGGTCGATGATGTC -ACGGAAGAGTAGGTCGATACAGTC -ACGGAAGAGTAGGTCGATTTGCTG -ACGGAAGAGTAGGTCGATTCCATG -ACGGAAGAGTAGGTCGATTGTGTG -ACGGAAGAGTAGGTCGATCTAGTG -ACGGAAGAGTAGGTCGATCATCTG -ACGGAAGAGTAGGTCGATGAGTTG -ACGGAAGAGTAGGTCGATAGACTG -ACGGAAGAGTAGGTCGATTCGGTA -ACGGAAGAGTAGGTCGATTGCCTA -ACGGAAGAGTAGGTCGATCCACTA -ACGGAAGAGTAGGTCGATGGAGTA -ACGGAAGAGTAGGTCGATTCGTCT -ACGGAAGAGTAGGTCGATTGCACT -ACGGAAGAGTAGGTCGATCTGACT -ACGGAAGAGTAGGTCGATCAACCT -ACGGAAGAGTAGGTCGATGCTACT -ACGGAAGAGTAGGTCGATGGATCT -ACGGAAGAGTAGGTCGATAAGGCT -ACGGAAGAGTAGGTCGATTCAACC -ACGGAAGAGTAGGTCGATTGTTCC -ACGGAAGAGTAGGTCGATATTCCC -ACGGAAGAGTAGGTCGATTTCTCG -ACGGAAGAGTAGGTCGATTAGACG -ACGGAAGAGTAGGTCGATGTAACG -ACGGAAGAGTAGGTCGATACTTCG -ACGGAAGAGTAGGTCGATTACGCA -ACGGAAGAGTAGGTCGATCTTGCA -ACGGAAGAGTAGGTCGATCGAACA -ACGGAAGAGTAGGTCGATCAGTCA -ACGGAAGAGTAGGTCGATGATCCA -ACGGAAGAGTAGGTCGATACGACA -ACGGAAGAGTAGGTCGATAGCTCA -ACGGAAGAGTAGGTCGATTCACGT -ACGGAAGAGTAGGTCGATCGTAGT -ACGGAAGAGTAGGTCGATGTCAGT -ACGGAAGAGTAGGTCGATGAAGGT -ACGGAAGAGTAGGTCGATAACCGT -ACGGAAGAGTAGGTCGATTTGTGC -ACGGAAGAGTAGGTCGATCTAAGC -ACGGAAGAGTAGGTCGATACTAGC -ACGGAAGAGTAGGTCGATAGATGC -ACGGAAGAGTAGGTCGATTGAAGG -ACGGAAGAGTAGGTCGATCAATGG -ACGGAAGAGTAGGTCGATATGAGG -ACGGAAGAGTAGGTCGATAATGGG -ACGGAAGAGTAGGTCGATTCCTGA -ACGGAAGAGTAGGTCGATTAGCGA -ACGGAAGAGTAGGTCGATCACAGA -ACGGAAGAGTAGGTCGATGCAAGA -ACGGAAGAGTAGGTCGATGGTTGA -ACGGAAGAGTAGGTCGATTCCGAT -ACGGAAGAGTAGGTCGATTGGCAT -ACGGAAGAGTAGGTCGATCGAGAT -ACGGAAGAGTAGGTCGATTACCAC -ACGGAAGAGTAGGTCGATCAGAAC -ACGGAAGAGTAGGTCGATGTCTAC -ACGGAAGAGTAGGTCGATACGTAC -ACGGAAGAGTAGGTCGATAGTGAC -ACGGAAGAGTAGGTCGATCTGTAG -ACGGAAGAGTAGGTCGATCCTAAG -ACGGAAGAGTAGGTCGATGTTCAG -ACGGAAGAGTAGGTCGATGCATAG -ACGGAAGAGTAGGTCGATGACAAG -ACGGAAGAGTAGGTCGATAAGCAG -ACGGAAGAGTAGGTCGATCGTCAA -ACGGAAGAGTAGGTCGATGCTGAA -ACGGAAGAGTAGGTCGATAGTACG -ACGGAAGAGTAGGTCGATATCCGA -ACGGAAGAGTAGGTCGATATGGGA -ACGGAAGAGTAGGTCGATGTGCAA -ACGGAAGAGTAGGTCGATGAGGAA -ACGGAAGAGTAGGTCGATCAGGTA -ACGGAAGAGTAGGTCGATGACTCT -ACGGAAGAGTAGGTCGATAGTCCT -ACGGAAGAGTAGGTCGATTAAGCC -ACGGAAGAGTAGGTCGATATAGCC -ACGGAAGAGTAGGTCGATTAACCG -ACGGAAGAGTAGGTCGATATGCCA -ACGGAAGAGTAGGTCACAGGAAAC -ACGGAAGAGTAGGTCACAAACACC -ACGGAAGAGTAGGTCACAATCGAG -ACGGAAGAGTAGGTCACACTCCTT -ACGGAAGAGTAGGTCACACCTGTT -ACGGAAGAGTAGGTCACACGGTTT -ACGGAAGAGTAGGTCACAGTGGTT -ACGGAAGAGTAGGTCACAGCCTTT -ACGGAAGAGTAGGTCACAGGTCTT -ACGGAAGAGTAGGTCACAACGCTT -ACGGAAGAGTAGGTCACAAGCGTT -ACGGAAGAGTAGGTCACATTCGTC -ACGGAAGAGTAGGTCACATCTCTC -ACGGAAGAGTAGGTCACATGGATC -ACGGAAGAGTAGGTCACACACTTC -ACGGAAGAGTAGGTCACAGTACTC -ACGGAAGAGTAGGTCACAGATGTC -ACGGAAGAGTAGGTCACAACAGTC -ACGGAAGAGTAGGTCACATTGCTG -ACGGAAGAGTAGGTCACATCCATG -ACGGAAGAGTAGGTCACATGTGTG -ACGGAAGAGTAGGTCACACTAGTG -ACGGAAGAGTAGGTCACACATCTG -ACGGAAGAGTAGGTCACAGAGTTG -ACGGAAGAGTAGGTCACAAGACTG -ACGGAAGAGTAGGTCACATCGGTA -ACGGAAGAGTAGGTCACATGCCTA -ACGGAAGAGTAGGTCACACCACTA -ACGGAAGAGTAGGTCACAGGAGTA -ACGGAAGAGTAGGTCACATCGTCT -ACGGAAGAGTAGGTCACATGCACT -ACGGAAGAGTAGGTCACACTGACT -ACGGAAGAGTAGGTCACACAACCT -ACGGAAGAGTAGGTCACAGCTACT -ACGGAAGAGTAGGTCACAGGATCT -ACGGAAGAGTAGGTCACAAAGGCT -ACGGAAGAGTAGGTCACATCAACC -ACGGAAGAGTAGGTCACATGTTCC -ACGGAAGAGTAGGTCACAATTCCC -ACGGAAGAGTAGGTCACATTCTCG -ACGGAAGAGTAGGTCACATAGACG -ACGGAAGAGTAGGTCACAGTAACG -ACGGAAGAGTAGGTCACAACTTCG -ACGGAAGAGTAGGTCACATACGCA -ACGGAAGAGTAGGTCACACTTGCA -ACGGAAGAGTAGGTCACACGAACA -ACGGAAGAGTAGGTCACACAGTCA -ACGGAAGAGTAGGTCACAGATCCA -ACGGAAGAGTAGGTCACAACGACA -ACGGAAGAGTAGGTCACAAGCTCA -ACGGAAGAGTAGGTCACATCACGT -ACGGAAGAGTAGGTCACACGTAGT -ACGGAAGAGTAGGTCACAGTCAGT -ACGGAAGAGTAGGTCACAGAAGGT -ACGGAAGAGTAGGTCACAAACCGT -ACGGAAGAGTAGGTCACATTGTGC -ACGGAAGAGTAGGTCACACTAAGC -ACGGAAGAGTAGGTCACAACTAGC -ACGGAAGAGTAGGTCACAAGATGC -ACGGAAGAGTAGGTCACATGAAGG -ACGGAAGAGTAGGTCACACAATGG -ACGGAAGAGTAGGTCACAATGAGG -ACGGAAGAGTAGGTCACAAATGGG -ACGGAAGAGTAGGTCACATCCTGA -ACGGAAGAGTAGGTCACATAGCGA -ACGGAAGAGTAGGTCACACACAGA -ACGGAAGAGTAGGTCACAGCAAGA -ACGGAAGAGTAGGTCACAGGTTGA -ACGGAAGAGTAGGTCACATCCGAT -ACGGAAGAGTAGGTCACATGGCAT -ACGGAAGAGTAGGTCACACGAGAT -ACGGAAGAGTAGGTCACATACCAC -ACGGAAGAGTAGGTCACACAGAAC -ACGGAAGAGTAGGTCACAGTCTAC -ACGGAAGAGTAGGTCACAACGTAC -ACGGAAGAGTAGGTCACAAGTGAC -ACGGAAGAGTAGGTCACACTGTAG -ACGGAAGAGTAGGTCACACCTAAG -ACGGAAGAGTAGGTCACAGTTCAG -ACGGAAGAGTAGGTCACAGCATAG -ACGGAAGAGTAGGTCACAGACAAG -ACGGAAGAGTAGGTCACAAAGCAG -ACGGAAGAGTAGGTCACACGTCAA -ACGGAAGAGTAGGTCACAGCTGAA -ACGGAAGAGTAGGTCACAAGTACG -ACGGAAGAGTAGGTCACAATCCGA -ACGGAAGAGTAGGTCACAATGGGA -ACGGAAGAGTAGGTCACAGTGCAA -ACGGAAGAGTAGGTCACAGAGGAA -ACGGAAGAGTAGGTCACACAGGTA -ACGGAAGAGTAGGTCACAGACTCT -ACGGAAGAGTAGGTCACAAGTCCT -ACGGAAGAGTAGGTCACATAAGCC -ACGGAAGAGTAGGTCACAATAGCC -ACGGAAGAGTAGGTCACATAACCG -ACGGAAGAGTAGGTCACAATGCCA -ACGGAAGAGTAGCTGTTGGGAAAC -ACGGAAGAGTAGCTGTTGAACACC -ACGGAAGAGTAGCTGTTGATCGAG -ACGGAAGAGTAGCTGTTGCTCCTT -ACGGAAGAGTAGCTGTTGCCTGTT -ACGGAAGAGTAGCTGTTGCGGTTT -ACGGAAGAGTAGCTGTTGGTGGTT -ACGGAAGAGTAGCTGTTGGCCTTT -ACGGAAGAGTAGCTGTTGGGTCTT -ACGGAAGAGTAGCTGTTGACGCTT -ACGGAAGAGTAGCTGTTGAGCGTT -ACGGAAGAGTAGCTGTTGTTCGTC -ACGGAAGAGTAGCTGTTGTCTCTC -ACGGAAGAGTAGCTGTTGTGGATC -ACGGAAGAGTAGCTGTTGCACTTC -ACGGAAGAGTAGCTGTTGGTACTC -ACGGAAGAGTAGCTGTTGGATGTC -ACGGAAGAGTAGCTGTTGACAGTC -ACGGAAGAGTAGCTGTTGTTGCTG -ACGGAAGAGTAGCTGTTGTCCATG -ACGGAAGAGTAGCTGTTGTGTGTG -ACGGAAGAGTAGCTGTTGCTAGTG -ACGGAAGAGTAGCTGTTGCATCTG -ACGGAAGAGTAGCTGTTGGAGTTG -ACGGAAGAGTAGCTGTTGAGACTG -ACGGAAGAGTAGCTGTTGTCGGTA -ACGGAAGAGTAGCTGTTGTGCCTA -ACGGAAGAGTAGCTGTTGCCACTA -ACGGAAGAGTAGCTGTTGGGAGTA -ACGGAAGAGTAGCTGTTGTCGTCT -ACGGAAGAGTAGCTGTTGTGCACT -ACGGAAGAGTAGCTGTTGCTGACT -ACGGAAGAGTAGCTGTTGCAACCT -ACGGAAGAGTAGCTGTTGGCTACT -ACGGAAGAGTAGCTGTTGGGATCT -ACGGAAGAGTAGCTGTTGAAGGCT -ACGGAAGAGTAGCTGTTGTCAACC -ACGGAAGAGTAGCTGTTGTGTTCC -ACGGAAGAGTAGCTGTTGATTCCC -ACGGAAGAGTAGCTGTTGTTCTCG -ACGGAAGAGTAGCTGTTGTAGACG -ACGGAAGAGTAGCTGTTGGTAACG -ACGGAAGAGTAGCTGTTGACTTCG -ACGGAAGAGTAGCTGTTGTACGCA -ACGGAAGAGTAGCTGTTGCTTGCA -ACGGAAGAGTAGCTGTTGCGAACA -ACGGAAGAGTAGCTGTTGCAGTCA -ACGGAAGAGTAGCTGTTGGATCCA -ACGGAAGAGTAGCTGTTGACGACA -ACGGAAGAGTAGCTGTTGAGCTCA -ACGGAAGAGTAGCTGTTGTCACGT -ACGGAAGAGTAGCTGTTGCGTAGT -ACGGAAGAGTAGCTGTTGGTCAGT -ACGGAAGAGTAGCTGTTGGAAGGT -ACGGAAGAGTAGCTGTTGAACCGT -ACGGAAGAGTAGCTGTTGTTGTGC -ACGGAAGAGTAGCTGTTGCTAAGC -ACGGAAGAGTAGCTGTTGACTAGC -ACGGAAGAGTAGCTGTTGAGATGC -ACGGAAGAGTAGCTGTTGTGAAGG -ACGGAAGAGTAGCTGTTGCAATGG -ACGGAAGAGTAGCTGTTGATGAGG -ACGGAAGAGTAGCTGTTGAATGGG -ACGGAAGAGTAGCTGTTGTCCTGA -ACGGAAGAGTAGCTGTTGTAGCGA -ACGGAAGAGTAGCTGTTGCACAGA -ACGGAAGAGTAGCTGTTGGCAAGA -ACGGAAGAGTAGCTGTTGGGTTGA -ACGGAAGAGTAGCTGTTGTCCGAT -ACGGAAGAGTAGCTGTTGTGGCAT -ACGGAAGAGTAGCTGTTGCGAGAT -ACGGAAGAGTAGCTGTTGTACCAC -ACGGAAGAGTAGCTGTTGCAGAAC -ACGGAAGAGTAGCTGTTGGTCTAC -ACGGAAGAGTAGCTGTTGACGTAC -ACGGAAGAGTAGCTGTTGAGTGAC -ACGGAAGAGTAGCTGTTGCTGTAG -ACGGAAGAGTAGCTGTTGCCTAAG -ACGGAAGAGTAGCTGTTGGTTCAG -ACGGAAGAGTAGCTGTTGGCATAG -ACGGAAGAGTAGCTGTTGGACAAG -ACGGAAGAGTAGCTGTTGAAGCAG -ACGGAAGAGTAGCTGTTGCGTCAA -ACGGAAGAGTAGCTGTTGGCTGAA -ACGGAAGAGTAGCTGTTGAGTACG -ACGGAAGAGTAGCTGTTGATCCGA -ACGGAAGAGTAGCTGTTGATGGGA -ACGGAAGAGTAGCTGTTGGTGCAA -ACGGAAGAGTAGCTGTTGGAGGAA -ACGGAAGAGTAGCTGTTGCAGGTA -ACGGAAGAGTAGCTGTTGGACTCT -ACGGAAGAGTAGCTGTTGAGTCCT -ACGGAAGAGTAGCTGTTGTAAGCC -ACGGAAGAGTAGCTGTTGATAGCC -ACGGAAGAGTAGCTGTTGTAACCG -ACGGAAGAGTAGCTGTTGATGCCA -ACGGAAGAGTAGATGTCCGGAAAC -ACGGAAGAGTAGATGTCCAACACC -ACGGAAGAGTAGATGTCCATCGAG -ACGGAAGAGTAGATGTCCCTCCTT -ACGGAAGAGTAGATGTCCCCTGTT -ACGGAAGAGTAGATGTCCCGGTTT -ACGGAAGAGTAGATGTCCGTGGTT -ACGGAAGAGTAGATGTCCGCCTTT -ACGGAAGAGTAGATGTCCGGTCTT -ACGGAAGAGTAGATGTCCACGCTT -ACGGAAGAGTAGATGTCCAGCGTT -ACGGAAGAGTAGATGTCCTTCGTC -ACGGAAGAGTAGATGTCCTCTCTC -ACGGAAGAGTAGATGTCCTGGATC -ACGGAAGAGTAGATGTCCCACTTC -ACGGAAGAGTAGATGTCCGTACTC -ACGGAAGAGTAGATGTCCGATGTC -ACGGAAGAGTAGATGTCCACAGTC -ACGGAAGAGTAGATGTCCTTGCTG -ACGGAAGAGTAGATGTCCTCCATG -ACGGAAGAGTAGATGTCCTGTGTG -ACGGAAGAGTAGATGTCCCTAGTG -ACGGAAGAGTAGATGTCCCATCTG -ACGGAAGAGTAGATGTCCGAGTTG -ACGGAAGAGTAGATGTCCAGACTG -ACGGAAGAGTAGATGTCCTCGGTA -ACGGAAGAGTAGATGTCCTGCCTA -ACGGAAGAGTAGATGTCCCCACTA -ACGGAAGAGTAGATGTCCGGAGTA -ACGGAAGAGTAGATGTCCTCGTCT -ACGGAAGAGTAGATGTCCTGCACT -ACGGAAGAGTAGATGTCCCTGACT -ACGGAAGAGTAGATGTCCCAACCT -ACGGAAGAGTAGATGTCCGCTACT -ACGGAAGAGTAGATGTCCGGATCT -ACGGAAGAGTAGATGTCCAAGGCT -ACGGAAGAGTAGATGTCCTCAACC -ACGGAAGAGTAGATGTCCTGTTCC -ACGGAAGAGTAGATGTCCATTCCC -ACGGAAGAGTAGATGTCCTTCTCG -ACGGAAGAGTAGATGTCCTAGACG -ACGGAAGAGTAGATGTCCGTAACG -ACGGAAGAGTAGATGTCCACTTCG -ACGGAAGAGTAGATGTCCTACGCA -ACGGAAGAGTAGATGTCCCTTGCA -ACGGAAGAGTAGATGTCCCGAACA -ACGGAAGAGTAGATGTCCCAGTCA -ACGGAAGAGTAGATGTCCGATCCA -ACGGAAGAGTAGATGTCCACGACA -ACGGAAGAGTAGATGTCCAGCTCA -ACGGAAGAGTAGATGTCCTCACGT -ACGGAAGAGTAGATGTCCCGTAGT -ACGGAAGAGTAGATGTCCGTCAGT -ACGGAAGAGTAGATGTCCGAAGGT -ACGGAAGAGTAGATGTCCAACCGT -ACGGAAGAGTAGATGTCCTTGTGC -ACGGAAGAGTAGATGTCCCTAAGC -ACGGAAGAGTAGATGTCCACTAGC -ACGGAAGAGTAGATGTCCAGATGC -ACGGAAGAGTAGATGTCCTGAAGG -ACGGAAGAGTAGATGTCCCAATGG -ACGGAAGAGTAGATGTCCATGAGG -ACGGAAGAGTAGATGTCCAATGGG -ACGGAAGAGTAGATGTCCTCCTGA -ACGGAAGAGTAGATGTCCTAGCGA -ACGGAAGAGTAGATGTCCCACAGA -ACGGAAGAGTAGATGTCCGCAAGA -ACGGAAGAGTAGATGTCCGGTTGA -ACGGAAGAGTAGATGTCCTCCGAT -ACGGAAGAGTAGATGTCCTGGCAT -ACGGAAGAGTAGATGTCCCGAGAT -ACGGAAGAGTAGATGTCCTACCAC -ACGGAAGAGTAGATGTCCCAGAAC -ACGGAAGAGTAGATGTCCGTCTAC -ACGGAAGAGTAGATGTCCACGTAC -ACGGAAGAGTAGATGTCCAGTGAC -ACGGAAGAGTAGATGTCCCTGTAG -ACGGAAGAGTAGATGTCCCCTAAG -ACGGAAGAGTAGATGTCCGTTCAG -ACGGAAGAGTAGATGTCCGCATAG -ACGGAAGAGTAGATGTCCGACAAG -ACGGAAGAGTAGATGTCCAAGCAG -ACGGAAGAGTAGATGTCCCGTCAA -ACGGAAGAGTAGATGTCCGCTGAA -ACGGAAGAGTAGATGTCCAGTACG -ACGGAAGAGTAGATGTCCATCCGA -ACGGAAGAGTAGATGTCCATGGGA -ACGGAAGAGTAGATGTCCGTGCAA -ACGGAAGAGTAGATGTCCGAGGAA -ACGGAAGAGTAGATGTCCCAGGTA -ACGGAAGAGTAGATGTCCGACTCT -ACGGAAGAGTAGATGTCCAGTCCT -ACGGAAGAGTAGATGTCCTAAGCC -ACGGAAGAGTAGATGTCCATAGCC -ACGGAAGAGTAGATGTCCTAACCG -ACGGAAGAGTAGATGTCCATGCCA -ACGGAAGAGTAGGTGTGTGGAAAC -ACGGAAGAGTAGGTGTGTAACACC -ACGGAAGAGTAGGTGTGTATCGAG -ACGGAAGAGTAGGTGTGTCTCCTT -ACGGAAGAGTAGGTGTGTCCTGTT -ACGGAAGAGTAGGTGTGTCGGTTT -ACGGAAGAGTAGGTGTGTGTGGTT -ACGGAAGAGTAGGTGTGTGCCTTT -ACGGAAGAGTAGGTGTGTGGTCTT -ACGGAAGAGTAGGTGTGTACGCTT -ACGGAAGAGTAGGTGTGTAGCGTT -ACGGAAGAGTAGGTGTGTTTCGTC -ACGGAAGAGTAGGTGTGTTCTCTC -ACGGAAGAGTAGGTGTGTTGGATC -ACGGAAGAGTAGGTGTGTCACTTC -ACGGAAGAGTAGGTGTGTGTACTC -ACGGAAGAGTAGGTGTGTGATGTC -ACGGAAGAGTAGGTGTGTACAGTC -ACGGAAGAGTAGGTGTGTTTGCTG -ACGGAAGAGTAGGTGTGTTCCATG -ACGGAAGAGTAGGTGTGTTGTGTG -ACGGAAGAGTAGGTGTGTCTAGTG -ACGGAAGAGTAGGTGTGTCATCTG -ACGGAAGAGTAGGTGTGTGAGTTG -ACGGAAGAGTAGGTGTGTAGACTG -ACGGAAGAGTAGGTGTGTTCGGTA -ACGGAAGAGTAGGTGTGTTGCCTA -ACGGAAGAGTAGGTGTGTCCACTA -ACGGAAGAGTAGGTGTGTGGAGTA -ACGGAAGAGTAGGTGTGTTCGTCT -ACGGAAGAGTAGGTGTGTTGCACT -ACGGAAGAGTAGGTGTGTCTGACT -ACGGAAGAGTAGGTGTGTCAACCT -ACGGAAGAGTAGGTGTGTGCTACT -ACGGAAGAGTAGGTGTGTGGATCT -ACGGAAGAGTAGGTGTGTAAGGCT -ACGGAAGAGTAGGTGTGTTCAACC -ACGGAAGAGTAGGTGTGTTGTTCC -ACGGAAGAGTAGGTGTGTATTCCC -ACGGAAGAGTAGGTGTGTTTCTCG -ACGGAAGAGTAGGTGTGTTAGACG -ACGGAAGAGTAGGTGTGTGTAACG -ACGGAAGAGTAGGTGTGTACTTCG -ACGGAAGAGTAGGTGTGTTACGCA -ACGGAAGAGTAGGTGTGTCTTGCA -ACGGAAGAGTAGGTGTGTCGAACA -ACGGAAGAGTAGGTGTGTCAGTCA -ACGGAAGAGTAGGTGTGTGATCCA -ACGGAAGAGTAGGTGTGTACGACA -ACGGAAGAGTAGGTGTGTAGCTCA -ACGGAAGAGTAGGTGTGTTCACGT -ACGGAAGAGTAGGTGTGTCGTAGT -ACGGAAGAGTAGGTGTGTGTCAGT -ACGGAAGAGTAGGTGTGTGAAGGT -ACGGAAGAGTAGGTGTGTAACCGT -ACGGAAGAGTAGGTGTGTTTGTGC -ACGGAAGAGTAGGTGTGTCTAAGC -ACGGAAGAGTAGGTGTGTACTAGC -ACGGAAGAGTAGGTGTGTAGATGC -ACGGAAGAGTAGGTGTGTTGAAGG -ACGGAAGAGTAGGTGTGTCAATGG -ACGGAAGAGTAGGTGTGTATGAGG -ACGGAAGAGTAGGTGTGTAATGGG -ACGGAAGAGTAGGTGTGTTCCTGA -ACGGAAGAGTAGGTGTGTTAGCGA -ACGGAAGAGTAGGTGTGTCACAGA -ACGGAAGAGTAGGTGTGTGCAAGA -ACGGAAGAGTAGGTGTGTGGTTGA -ACGGAAGAGTAGGTGTGTTCCGAT -ACGGAAGAGTAGGTGTGTTGGCAT -ACGGAAGAGTAGGTGTGTCGAGAT -ACGGAAGAGTAGGTGTGTTACCAC -ACGGAAGAGTAGGTGTGTCAGAAC -ACGGAAGAGTAGGTGTGTGTCTAC -ACGGAAGAGTAGGTGTGTACGTAC -ACGGAAGAGTAGGTGTGTAGTGAC -ACGGAAGAGTAGGTGTGTCTGTAG -ACGGAAGAGTAGGTGTGTCCTAAG -ACGGAAGAGTAGGTGTGTGTTCAG -ACGGAAGAGTAGGTGTGTGCATAG -ACGGAAGAGTAGGTGTGTGACAAG -ACGGAAGAGTAGGTGTGTAAGCAG -ACGGAAGAGTAGGTGTGTCGTCAA -ACGGAAGAGTAGGTGTGTGCTGAA -ACGGAAGAGTAGGTGTGTAGTACG -ACGGAAGAGTAGGTGTGTATCCGA -ACGGAAGAGTAGGTGTGTATGGGA -ACGGAAGAGTAGGTGTGTGTGCAA -ACGGAAGAGTAGGTGTGTGAGGAA -ACGGAAGAGTAGGTGTGTCAGGTA -ACGGAAGAGTAGGTGTGTGACTCT -ACGGAAGAGTAGGTGTGTAGTCCT -ACGGAAGAGTAGGTGTGTTAAGCC -ACGGAAGAGTAGGTGTGTATAGCC -ACGGAAGAGTAGGTGTGTTAACCG -ACGGAAGAGTAGGTGTGTATGCCA -ACGGAAGAGTAGGTGCTAGGAAAC -ACGGAAGAGTAGGTGCTAAACACC -ACGGAAGAGTAGGTGCTAATCGAG -ACGGAAGAGTAGGTGCTACTCCTT -ACGGAAGAGTAGGTGCTACCTGTT -ACGGAAGAGTAGGTGCTACGGTTT -ACGGAAGAGTAGGTGCTAGTGGTT -ACGGAAGAGTAGGTGCTAGCCTTT -ACGGAAGAGTAGGTGCTAGGTCTT -ACGGAAGAGTAGGTGCTAACGCTT -ACGGAAGAGTAGGTGCTAAGCGTT -ACGGAAGAGTAGGTGCTATTCGTC -ACGGAAGAGTAGGTGCTATCTCTC -ACGGAAGAGTAGGTGCTATGGATC -ACGGAAGAGTAGGTGCTACACTTC -ACGGAAGAGTAGGTGCTAGTACTC -ACGGAAGAGTAGGTGCTAGATGTC -ACGGAAGAGTAGGTGCTAACAGTC -ACGGAAGAGTAGGTGCTATTGCTG -ACGGAAGAGTAGGTGCTATCCATG -ACGGAAGAGTAGGTGCTATGTGTG -ACGGAAGAGTAGGTGCTACTAGTG -ACGGAAGAGTAGGTGCTACATCTG -ACGGAAGAGTAGGTGCTAGAGTTG -ACGGAAGAGTAGGTGCTAAGACTG -ACGGAAGAGTAGGTGCTATCGGTA -ACGGAAGAGTAGGTGCTATGCCTA -ACGGAAGAGTAGGTGCTACCACTA -ACGGAAGAGTAGGTGCTAGGAGTA -ACGGAAGAGTAGGTGCTATCGTCT -ACGGAAGAGTAGGTGCTATGCACT -ACGGAAGAGTAGGTGCTACTGACT -ACGGAAGAGTAGGTGCTACAACCT -ACGGAAGAGTAGGTGCTAGCTACT -ACGGAAGAGTAGGTGCTAGGATCT -ACGGAAGAGTAGGTGCTAAAGGCT -ACGGAAGAGTAGGTGCTATCAACC -ACGGAAGAGTAGGTGCTATGTTCC -ACGGAAGAGTAGGTGCTAATTCCC -ACGGAAGAGTAGGTGCTATTCTCG -ACGGAAGAGTAGGTGCTATAGACG -ACGGAAGAGTAGGTGCTAGTAACG -ACGGAAGAGTAGGTGCTAACTTCG -ACGGAAGAGTAGGTGCTATACGCA -ACGGAAGAGTAGGTGCTACTTGCA -ACGGAAGAGTAGGTGCTACGAACA -ACGGAAGAGTAGGTGCTACAGTCA -ACGGAAGAGTAGGTGCTAGATCCA -ACGGAAGAGTAGGTGCTAACGACA -ACGGAAGAGTAGGTGCTAAGCTCA -ACGGAAGAGTAGGTGCTATCACGT -ACGGAAGAGTAGGTGCTACGTAGT -ACGGAAGAGTAGGTGCTAGTCAGT -ACGGAAGAGTAGGTGCTAGAAGGT -ACGGAAGAGTAGGTGCTAAACCGT -ACGGAAGAGTAGGTGCTATTGTGC -ACGGAAGAGTAGGTGCTACTAAGC -ACGGAAGAGTAGGTGCTAACTAGC -ACGGAAGAGTAGGTGCTAAGATGC -ACGGAAGAGTAGGTGCTATGAAGG -ACGGAAGAGTAGGTGCTACAATGG -ACGGAAGAGTAGGTGCTAATGAGG -ACGGAAGAGTAGGTGCTAAATGGG -ACGGAAGAGTAGGTGCTATCCTGA -ACGGAAGAGTAGGTGCTATAGCGA -ACGGAAGAGTAGGTGCTACACAGA -ACGGAAGAGTAGGTGCTAGCAAGA -ACGGAAGAGTAGGTGCTAGGTTGA -ACGGAAGAGTAGGTGCTATCCGAT -ACGGAAGAGTAGGTGCTATGGCAT -ACGGAAGAGTAGGTGCTACGAGAT -ACGGAAGAGTAGGTGCTATACCAC -ACGGAAGAGTAGGTGCTACAGAAC -ACGGAAGAGTAGGTGCTAGTCTAC -ACGGAAGAGTAGGTGCTAACGTAC -ACGGAAGAGTAGGTGCTAAGTGAC -ACGGAAGAGTAGGTGCTACTGTAG -ACGGAAGAGTAGGTGCTACCTAAG -ACGGAAGAGTAGGTGCTAGTTCAG -ACGGAAGAGTAGGTGCTAGCATAG -ACGGAAGAGTAGGTGCTAGACAAG -ACGGAAGAGTAGGTGCTAAAGCAG -ACGGAAGAGTAGGTGCTACGTCAA -ACGGAAGAGTAGGTGCTAGCTGAA -ACGGAAGAGTAGGTGCTAAGTACG -ACGGAAGAGTAGGTGCTAATCCGA -ACGGAAGAGTAGGTGCTAATGGGA -ACGGAAGAGTAGGTGCTAGTGCAA -ACGGAAGAGTAGGTGCTAGAGGAA -ACGGAAGAGTAGGTGCTACAGGTA -ACGGAAGAGTAGGTGCTAGACTCT -ACGGAAGAGTAGGTGCTAAGTCCT -ACGGAAGAGTAGGTGCTATAAGCC -ACGGAAGAGTAGGTGCTAATAGCC -ACGGAAGAGTAGGTGCTATAACCG -ACGGAAGAGTAGGTGCTAATGCCA -ACGGAAGAGTAGCTGCATGGAAAC -ACGGAAGAGTAGCTGCATAACACC -ACGGAAGAGTAGCTGCATATCGAG -ACGGAAGAGTAGCTGCATCTCCTT -ACGGAAGAGTAGCTGCATCCTGTT -ACGGAAGAGTAGCTGCATCGGTTT -ACGGAAGAGTAGCTGCATGTGGTT -ACGGAAGAGTAGCTGCATGCCTTT -ACGGAAGAGTAGCTGCATGGTCTT -ACGGAAGAGTAGCTGCATACGCTT -ACGGAAGAGTAGCTGCATAGCGTT -ACGGAAGAGTAGCTGCATTTCGTC -ACGGAAGAGTAGCTGCATTCTCTC -ACGGAAGAGTAGCTGCATTGGATC -ACGGAAGAGTAGCTGCATCACTTC -ACGGAAGAGTAGCTGCATGTACTC -ACGGAAGAGTAGCTGCATGATGTC -ACGGAAGAGTAGCTGCATACAGTC -ACGGAAGAGTAGCTGCATTTGCTG -ACGGAAGAGTAGCTGCATTCCATG -ACGGAAGAGTAGCTGCATTGTGTG -ACGGAAGAGTAGCTGCATCTAGTG -ACGGAAGAGTAGCTGCATCATCTG -ACGGAAGAGTAGCTGCATGAGTTG -ACGGAAGAGTAGCTGCATAGACTG -ACGGAAGAGTAGCTGCATTCGGTA -ACGGAAGAGTAGCTGCATTGCCTA -ACGGAAGAGTAGCTGCATCCACTA -ACGGAAGAGTAGCTGCATGGAGTA -ACGGAAGAGTAGCTGCATTCGTCT -ACGGAAGAGTAGCTGCATTGCACT -ACGGAAGAGTAGCTGCATCTGACT -ACGGAAGAGTAGCTGCATCAACCT -ACGGAAGAGTAGCTGCATGCTACT -ACGGAAGAGTAGCTGCATGGATCT -ACGGAAGAGTAGCTGCATAAGGCT -ACGGAAGAGTAGCTGCATTCAACC -ACGGAAGAGTAGCTGCATTGTTCC -ACGGAAGAGTAGCTGCATATTCCC -ACGGAAGAGTAGCTGCATTTCTCG -ACGGAAGAGTAGCTGCATTAGACG -ACGGAAGAGTAGCTGCATGTAACG -ACGGAAGAGTAGCTGCATACTTCG -ACGGAAGAGTAGCTGCATTACGCA -ACGGAAGAGTAGCTGCATCTTGCA -ACGGAAGAGTAGCTGCATCGAACA -ACGGAAGAGTAGCTGCATCAGTCA -ACGGAAGAGTAGCTGCATGATCCA -ACGGAAGAGTAGCTGCATACGACA -ACGGAAGAGTAGCTGCATAGCTCA -ACGGAAGAGTAGCTGCATTCACGT -ACGGAAGAGTAGCTGCATCGTAGT -ACGGAAGAGTAGCTGCATGTCAGT -ACGGAAGAGTAGCTGCATGAAGGT -ACGGAAGAGTAGCTGCATAACCGT -ACGGAAGAGTAGCTGCATTTGTGC -ACGGAAGAGTAGCTGCATCTAAGC -ACGGAAGAGTAGCTGCATACTAGC -ACGGAAGAGTAGCTGCATAGATGC -ACGGAAGAGTAGCTGCATTGAAGG -ACGGAAGAGTAGCTGCATCAATGG -ACGGAAGAGTAGCTGCATATGAGG -ACGGAAGAGTAGCTGCATAATGGG -ACGGAAGAGTAGCTGCATTCCTGA -ACGGAAGAGTAGCTGCATTAGCGA -ACGGAAGAGTAGCTGCATCACAGA -ACGGAAGAGTAGCTGCATGCAAGA -ACGGAAGAGTAGCTGCATGGTTGA -ACGGAAGAGTAGCTGCATTCCGAT -ACGGAAGAGTAGCTGCATTGGCAT -ACGGAAGAGTAGCTGCATCGAGAT -ACGGAAGAGTAGCTGCATTACCAC -ACGGAAGAGTAGCTGCATCAGAAC -ACGGAAGAGTAGCTGCATGTCTAC -ACGGAAGAGTAGCTGCATACGTAC -ACGGAAGAGTAGCTGCATAGTGAC -ACGGAAGAGTAGCTGCATCTGTAG -ACGGAAGAGTAGCTGCATCCTAAG -ACGGAAGAGTAGCTGCATGTTCAG -ACGGAAGAGTAGCTGCATGCATAG -ACGGAAGAGTAGCTGCATGACAAG -ACGGAAGAGTAGCTGCATAAGCAG -ACGGAAGAGTAGCTGCATCGTCAA -ACGGAAGAGTAGCTGCATGCTGAA -ACGGAAGAGTAGCTGCATAGTACG -ACGGAAGAGTAGCTGCATATCCGA -ACGGAAGAGTAGCTGCATATGGGA -ACGGAAGAGTAGCTGCATGTGCAA -ACGGAAGAGTAGCTGCATGAGGAA -ACGGAAGAGTAGCTGCATCAGGTA -ACGGAAGAGTAGCTGCATGACTCT -ACGGAAGAGTAGCTGCATAGTCCT -ACGGAAGAGTAGCTGCATTAAGCC -ACGGAAGAGTAGCTGCATATAGCC -ACGGAAGAGTAGCTGCATTAACCG -ACGGAAGAGTAGCTGCATATGCCA -ACGGAAGAGTAGTTGGAGGGAAAC -ACGGAAGAGTAGTTGGAGAACACC -ACGGAAGAGTAGTTGGAGATCGAG -ACGGAAGAGTAGTTGGAGCTCCTT -ACGGAAGAGTAGTTGGAGCCTGTT -ACGGAAGAGTAGTTGGAGCGGTTT -ACGGAAGAGTAGTTGGAGGTGGTT -ACGGAAGAGTAGTTGGAGGCCTTT -ACGGAAGAGTAGTTGGAGGGTCTT -ACGGAAGAGTAGTTGGAGACGCTT -ACGGAAGAGTAGTTGGAGAGCGTT -ACGGAAGAGTAGTTGGAGTTCGTC -ACGGAAGAGTAGTTGGAGTCTCTC -ACGGAAGAGTAGTTGGAGTGGATC -ACGGAAGAGTAGTTGGAGCACTTC -ACGGAAGAGTAGTTGGAGGTACTC -ACGGAAGAGTAGTTGGAGGATGTC -ACGGAAGAGTAGTTGGAGACAGTC -ACGGAAGAGTAGTTGGAGTTGCTG -ACGGAAGAGTAGTTGGAGTCCATG -ACGGAAGAGTAGTTGGAGTGTGTG -ACGGAAGAGTAGTTGGAGCTAGTG -ACGGAAGAGTAGTTGGAGCATCTG -ACGGAAGAGTAGTTGGAGGAGTTG -ACGGAAGAGTAGTTGGAGAGACTG -ACGGAAGAGTAGTTGGAGTCGGTA -ACGGAAGAGTAGTTGGAGTGCCTA -ACGGAAGAGTAGTTGGAGCCACTA -ACGGAAGAGTAGTTGGAGGGAGTA -ACGGAAGAGTAGTTGGAGTCGTCT -ACGGAAGAGTAGTTGGAGTGCACT -ACGGAAGAGTAGTTGGAGCTGACT -ACGGAAGAGTAGTTGGAGCAACCT -ACGGAAGAGTAGTTGGAGGCTACT -ACGGAAGAGTAGTTGGAGGGATCT -ACGGAAGAGTAGTTGGAGAAGGCT -ACGGAAGAGTAGTTGGAGTCAACC -ACGGAAGAGTAGTTGGAGTGTTCC -ACGGAAGAGTAGTTGGAGATTCCC -ACGGAAGAGTAGTTGGAGTTCTCG -ACGGAAGAGTAGTTGGAGTAGACG -ACGGAAGAGTAGTTGGAGGTAACG -ACGGAAGAGTAGTTGGAGACTTCG -ACGGAAGAGTAGTTGGAGTACGCA -ACGGAAGAGTAGTTGGAGCTTGCA -ACGGAAGAGTAGTTGGAGCGAACA -ACGGAAGAGTAGTTGGAGCAGTCA -ACGGAAGAGTAGTTGGAGGATCCA -ACGGAAGAGTAGTTGGAGACGACA -ACGGAAGAGTAGTTGGAGAGCTCA -ACGGAAGAGTAGTTGGAGTCACGT -ACGGAAGAGTAGTTGGAGCGTAGT -ACGGAAGAGTAGTTGGAGGTCAGT -ACGGAAGAGTAGTTGGAGGAAGGT -ACGGAAGAGTAGTTGGAGAACCGT -ACGGAAGAGTAGTTGGAGTTGTGC -ACGGAAGAGTAGTTGGAGCTAAGC -ACGGAAGAGTAGTTGGAGACTAGC -ACGGAAGAGTAGTTGGAGAGATGC -ACGGAAGAGTAGTTGGAGTGAAGG -ACGGAAGAGTAGTTGGAGCAATGG -ACGGAAGAGTAGTTGGAGATGAGG -ACGGAAGAGTAGTTGGAGAATGGG -ACGGAAGAGTAGTTGGAGTCCTGA -ACGGAAGAGTAGTTGGAGTAGCGA -ACGGAAGAGTAGTTGGAGCACAGA -ACGGAAGAGTAGTTGGAGGCAAGA -ACGGAAGAGTAGTTGGAGGGTTGA -ACGGAAGAGTAGTTGGAGTCCGAT -ACGGAAGAGTAGTTGGAGTGGCAT -ACGGAAGAGTAGTTGGAGCGAGAT -ACGGAAGAGTAGTTGGAGTACCAC -ACGGAAGAGTAGTTGGAGCAGAAC -ACGGAAGAGTAGTTGGAGGTCTAC -ACGGAAGAGTAGTTGGAGACGTAC -ACGGAAGAGTAGTTGGAGAGTGAC -ACGGAAGAGTAGTTGGAGCTGTAG -ACGGAAGAGTAGTTGGAGCCTAAG -ACGGAAGAGTAGTTGGAGGTTCAG -ACGGAAGAGTAGTTGGAGGCATAG -ACGGAAGAGTAGTTGGAGGACAAG -ACGGAAGAGTAGTTGGAGAAGCAG -ACGGAAGAGTAGTTGGAGCGTCAA -ACGGAAGAGTAGTTGGAGGCTGAA -ACGGAAGAGTAGTTGGAGAGTACG -ACGGAAGAGTAGTTGGAGATCCGA -ACGGAAGAGTAGTTGGAGATGGGA -ACGGAAGAGTAGTTGGAGGTGCAA -ACGGAAGAGTAGTTGGAGGAGGAA -ACGGAAGAGTAGTTGGAGCAGGTA -ACGGAAGAGTAGTTGGAGGACTCT -ACGGAAGAGTAGTTGGAGAGTCCT -ACGGAAGAGTAGTTGGAGTAAGCC -ACGGAAGAGTAGTTGGAGATAGCC -ACGGAAGAGTAGTTGGAGTAACCG -ACGGAAGAGTAGTTGGAGATGCCA -ACGGAAGAGTAGCTGAGAGGAAAC -ACGGAAGAGTAGCTGAGAAACACC -ACGGAAGAGTAGCTGAGAATCGAG -ACGGAAGAGTAGCTGAGACTCCTT -ACGGAAGAGTAGCTGAGACCTGTT -ACGGAAGAGTAGCTGAGACGGTTT -ACGGAAGAGTAGCTGAGAGTGGTT -ACGGAAGAGTAGCTGAGAGCCTTT -ACGGAAGAGTAGCTGAGAGGTCTT -ACGGAAGAGTAGCTGAGAACGCTT -ACGGAAGAGTAGCTGAGAAGCGTT -ACGGAAGAGTAGCTGAGATTCGTC -ACGGAAGAGTAGCTGAGATCTCTC -ACGGAAGAGTAGCTGAGATGGATC -ACGGAAGAGTAGCTGAGACACTTC -ACGGAAGAGTAGCTGAGAGTACTC -ACGGAAGAGTAGCTGAGAGATGTC -ACGGAAGAGTAGCTGAGAACAGTC -ACGGAAGAGTAGCTGAGATTGCTG -ACGGAAGAGTAGCTGAGATCCATG -ACGGAAGAGTAGCTGAGATGTGTG -ACGGAAGAGTAGCTGAGACTAGTG -ACGGAAGAGTAGCTGAGACATCTG -ACGGAAGAGTAGCTGAGAGAGTTG -ACGGAAGAGTAGCTGAGAAGACTG -ACGGAAGAGTAGCTGAGATCGGTA -ACGGAAGAGTAGCTGAGATGCCTA -ACGGAAGAGTAGCTGAGACCACTA -ACGGAAGAGTAGCTGAGAGGAGTA -ACGGAAGAGTAGCTGAGATCGTCT -ACGGAAGAGTAGCTGAGATGCACT -ACGGAAGAGTAGCTGAGACTGACT -ACGGAAGAGTAGCTGAGACAACCT -ACGGAAGAGTAGCTGAGAGCTACT -ACGGAAGAGTAGCTGAGAGGATCT -ACGGAAGAGTAGCTGAGAAAGGCT -ACGGAAGAGTAGCTGAGATCAACC -ACGGAAGAGTAGCTGAGATGTTCC -ACGGAAGAGTAGCTGAGAATTCCC -ACGGAAGAGTAGCTGAGATTCTCG -ACGGAAGAGTAGCTGAGATAGACG -ACGGAAGAGTAGCTGAGAGTAACG -ACGGAAGAGTAGCTGAGAACTTCG -ACGGAAGAGTAGCTGAGATACGCA -ACGGAAGAGTAGCTGAGACTTGCA -ACGGAAGAGTAGCTGAGACGAACA -ACGGAAGAGTAGCTGAGACAGTCA -ACGGAAGAGTAGCTGAGAGATCCA -ACGGAAGAGTAGCTGAGAACGACA -ACGGAAGAGTAGCTGAGAAGCTCA -ACGGAAGAGTAGCTGAGATCACGT -ACGGAAGAGTAGCTGAGACGTAGT -ACGGAAGAGTAGCTGAGAGTCAGT -ACGGAAGAGTAGCTGAGAGAAGGT -ACGGAAGAGTAGCTGAGAAACCGT -ACGGAAGAGTAGCTGAGATTGTGC -ACGGAAGAGTAGCTGAGACTAAGC -ACGGAAGAGTAGCTGAGAACTAGC -ACGGAAGAGTAGCTGAGAAGATGC -ACGGAAGAGTAGCTGAGATGAAGG -ACGGAAGAGTAGCTGAGACAATGG -ACGGAAGAGTAGCTGAGAATGAGG -ACGGAAGAGTAGCTGAGAAATGGG -ACGGAAGAGTAGCTGAGATCCTGA -ACGGAAGAGTAGCTGAGATAGCGA -ACGGAAGAGTAGCTGAGACACAGA -ACGGAAGAGTAGCTGAGAGCAAGA -ACGGAAGAGTAGCTGAGAGGTTGA -ACGGAAGAGTAGCTGAGATCCGAT -ACGGAAGAGTAGCTGAGATGGCAT -ACGGAAGAGTAGCTGAGACGAGAT -ACGGAAGAGTAGCTGAGATACCAC -ACGGAAGAGTAGCTGAGACAGAAC -ACGGAAGAGTAGCTGAGAGTCTAC -ACGGAAGAGTAGCTGAGAACGTAC -ACGGAAGAGTAGCTGAGAAGTGAC -ACGGAAGAGTAGCTGAGACTGTAG -ACGGAAGAGTAGCTGAGACCTAAG -ACGGAAGAGTAGCTGAGAGTTCAG -ACGGAAGAGTAGCTGAGAGCATAG -ACGGAAGAGTAGCTGAGAGACAAG -ACGGAAGAGTAGCTGAGAAAGCAG -ACGGAAGAGTAGCTGAGACGTCAA -ACGGAAGAGTAGCTGAGAGCTGAA -ACGGAAGAGTAGCTGAGAAGTACG -ACGGAAGAGTAGCTGAGAATCCGA -ACGGAAGAGTAGCTGAGAATGGGA -ACGGAAGAGTAGCTGAGAGTGCAA -ACGGAAGAGTAGCTGAGAGAGGAA -ACGGAAGAGTAGCTGAGACAGGTA -ACGGAAGAGTAGCTGAGAGACTCT -ACGGAAGAGTAGCTGAGAAGTCCT -ACGGAAGAGTAGCTGAGATAAGCC -ACGGAAGAGTAGCTGAGAATAGCC -ACGGAAGAGTAGCTGAGATAACCG -ACGGAAGAGTAGCTGAGAATGCCA -ACGGAAGAGTAGGTATCGGGAAAC -ACGGAAGAGTAGGTATCGAACACC -ACGGAAGAGTAGGTATCGATCGAG -ACGGAAGAGTAGGTATCGCTCCTT -ACGGAAGAGTAGGTATCGCCTGTT -ACGGAAGAGTAGGTATCGCGGTTT -ACGGAAGAGTAGGTATCGGTGGTT -ACGGAAGAGTAGGTATCGGCCTTT -ACGGAAGAGTAGGTATCGGGTCTT -ACGGAAGAGTAGGTATCGACGCTT -ACGGAAGAGTAGGTATCGAGCGTT -ACGGAAGAGTAGGTATCGTTCGTC -ACGGAAGAGTAGGTATCGTCTCTC -ACGGAAGAGTAGGTATCGTGGATC -ACGGAAGAGTAGGTATCGCACTTC -ACGGAAGAGTAGGTATCGGTACTC -ACGGAAGAGTAGGTATCGGATGTC -ACGGAAGAGTAGGTATCGACAGTC -ACGGAAGAGTAGGTATCGTTGCTG -ACGGAAGAGTAGGTATCGTCCATG -ACGGAAGAGTAGGTATCGTGTGTG -ACGGAAGAGTAGGTATCGCTAGTG -ACGGAAGAGTAGGTATCGCATCTG -ACGGAAGAGTAGGTATCGGAGTTG -ACGGAAGAGTAGGTATCGAGACTG -ACGGAAGAGTAGGTATCGTCGGTA -ACGGAAGAGTAGGTATCGTGCCTA -ACGGAAGAGTAGGTATCGCCACTA -ACGGAAGAGTAGGTATCGGGAGTA -ACGGAAGAGTAGGTATCGTCGTCT -ACGGAAGAGTAGGTATCGTGCACT -ACGGAAGAGTAGGTATCGCTGACT -ACGGAAGAGTAGGTATCGCAACCT -ACGGAAGAGTAGGTATCGGCTACT -ACGGAAGAGTAGGTATCGGGATCT -ACGGAAGAGTAGGTATCGAAGGCT -ACGGAAGAGTAGGTATCGTCAACC -ACGGAAGAGTAGGTATCGTGTTCC -ACGGAAGAGTAGGTATCGATTCCC -ACGGAAGAGTAGGTATCGTTCTCG -ACGGAAGAGTAGGTATCGTAGACG -ACGGAAGAGTAGGTATCGGTAACG -ACGGAAGAGTAGGTATCGACTTCG -ACGGAAGAGTAGGTATCGTACGCA -ACGGAAGAGTAGGTATCGCTTGCA -ACGGAAGAGTAGGTATCGCGAACA -ACGGAAGAGTAGGTATCGCAGTCA -ACGGAAGAGTAGGTATCGGATCCA -ACGGAAGAGTAGGTATCGACGACA -ACGGAAGAGTAGGTATCGAGCTCA -ACGGAAGAGTAGGTATCGTCACGT -ACGGAAGAGTAGGTATCGCGTAGT -ACGGAAGAGTAGGTATCGGTCAGT -ACGGAAGAGTAGGTATCGGAAGGT -ACGGAAGAGTAGGTATCGAACCGT -ACGGAAGAGTAGGTATCGTTGTGC -ACGGAAGAGTAGGTATCGCTAAGC -ACGGAAGAGTAGGTATCGACTAGC -ACGGAAGAGTAGGTATCGAGATGC -ACGGAAGAGTAGGTATCGTGAAGG -ACGGAAGAGTAGGTATCGCAATGG -ACGGAAGAGTAGGTATCGATGAGG -ACGGAAGAGTAGGTATCGAATGGG -ACGGAAGAGTAGGTATCGTCCTGA -ACGGAAGAGTAGGTATCGTAGCGA -ACGGAAGAGTAGGTATCGCACAGA -ACGGAAGAGTAGGTATCGGCAAGA -ACGGAAGAGTAGGTATCGGGTTGA -ACGGAAGAGTAGGTATCGTCCGAT -ACGGAAGAGTAGGTATCGTGGCAT -ACGGAAGAGTAGGTATCGCGAGAT -ACGGAAGAGTAGGTATCGTACCAC -ACGGAAGAGTAGGTATCGCAGAAC -ACGGAAGAGTAGGTATCGGTCTAC -ACGGAAGAGTAGGTATCGACGTAC -ACGGAAGAGTAGGTATCGAGTGAC -ACGGAAGAGTAGGTATCGCTGTAG -ACGGAAGAGTAGGTATCGCCTAAG -ACGGAAGAGTAGGTATCGGTTCAG -ACGGAAGAGTAGGTATCGGCATAG -ACGGAAGAGTAGGTATCGGACAAG -ACGGAAGAGTAGGTATCGAAGCAG -ACGGAAGAGTAGGTATCGCGTCAA -ACGGAAGAGTAGGTATCGGCTGAA -ACGGAAGAGTAGGTATCGAGTACG -ACGGAAGAGTAGGTATCGATCCGA -ACGGAAGAGTAGGTATCGATGGGA -ACGGAAGAGTAGGTATCGGTGCAA -ACGGAAGAGTAGGTATCGGAGGAA -ACGGAAGAGTAGGTATCGCAGGTA -ACGGAAGAGTAGGTATCGGACTCT -ACGGAAGAGTAGGTATCGAGTCCT -ACGGAAGAGTAGGTATCGTAAGCC -ACGGAAGAGTAGGTATCGATAGCC -ACGGAAGAGTAGGTATCGTAACCG -ACGGAAGAGTAGGTATCGATGCCA -ACGGAAGAGTAGCTATGCGGAAAC -ACGGAAGAGTAGCTATGCAACACC -ACGGAAGAGTAGCTATGCATCGAG -ACGGAAGAGTAGCTATGCCTCCTT -ACGGAAGAGTAGCTATGCCCTGTT -ACGGAAGAGTAGCTATGCCGGTTT -ACGGAAGAGTAGCTATGCGTGGTT -ACGGAAGAGTAGCTATGCGCCTTT -ACGGAAGAGTAGCTATGCGGTCTT -ACGGAAGAGTAGCTATGCACGCTT -ACGGAAGAGTAGCTATGCAGCGTT -ACGGAAGAGTAGCTATGCTTCGTC -ACGGAAGAGTAGCTATGCTCTCTC -ACGGAAGAGTAGCTATGCTGGATC -ACGGAAGAGTAGCTATGCCACTTC -ACGGAAGAGTAGCTATGCGTACTC -ACGGAAGAGTAGCTATGCGATGTC -ACGGAAGAGTAGCTATGCACAGTC -ACGGAAGAGTAGCTATGCTTGCTG -ACGGAAGAGTAGCTATGCTCCATG -ACGGAAGAGTAGCTATGCTGTGTG -ACGGAAGAGTAGCTATGCCTAGTG -ACGGAAGAGTAGCTATGCCATCTG -ACGGAAGAGTAGCTATGCGAGTTG -ACGGAAGAGTAGCTATGCAGACTG -ACGGAAGAGTAGCTATGCTCGGTA -ACGGAAGAGTAGCTATGCTGCCTA -ACGGAAGAGTAGCTATGCCCACTA -ACGGAAGAGTAGCTATGCGGAGTA -ACGGAAGAGTAGCTATGCTCGTCT -ACGGAAGAGTAGCTATGCTGCACT -ACGGAAGAGTAGCTATGCCTGACT -ACGGAAGAGTAGCTATGCCAACCT -ACGGAAGAGTAGCTATGCGCTACT -ACGGAAGAGTAGCTATGCGGATCT -ACGGAAGAGTAGCTATGCAAGGCT -ACGGAAGAGTAGCTATGCTCAACC -ACGGAAGAGTAGCTATGCTGTTCC -ACGGAAGAGTAGCTATGCATTCCC -ACGGAAGAGTAGCTATGCTTCTCG -ACGGAAGAGTAGCTATGCTAGACG -ACGGAAGAGTAGCTATGCGTAACG -ACGGAAGAGTAGCTATGCACTTCG -ACGGAAGAGTAGCTATGCTACGCA -ACGGAAGAGTAGCTATGCCTTGCA -ACGGAAGAGTAGCTATGCCGAACA -ACGGAAGAGTAGCTATGCCAGTCA -ACGGAAGAGTAGCTATGCGATCCA -ACGGAAGAGTAGCTATGCACGACA -ACGGAAGAGTAGCTATGCAGCTCA -ACGGAAGAGTAGCTATGCTCACGT -ACGGAAGAGTAGCTATGCCGTAGT -ACGGAAGAGTAGCTATGCGTCAGT -ACGGAAGAGTAGCTATGCGAAGGT -ACGGAAGAGTAGCTATGCAACCGT -ACGGAAGAGTAGCTATGCTTGTGC -ACGGAAGAGTAGCTATGCCTAAGC -ACGGAAGAGTAGCTATGCACTAGC -ACGGAAGAGTAGCTATGCAGATGC -ACGGAAGAGTAGCTATGCTGAAGG -ACGGAAGAGTAGCTATGCCAATGG -ACGGAAGAGTAGCTATGCATGAGG -ACGGAAGAGTAGCTATGCAATGGG -ACGGAAGAGTAGCTATGCTCCTGA -ACGGAAGAGTAGCTATGCTAGCGA -ACGGAAGAGTAGCTATGCCACAGA -ACGGAAGAGTAGCTATGCGCAAGA -ACGGAAGAGTAGCTATGCGGTTGA -ACGGAAGAGTAGCTATGCTCCGAT -ACGGAAGAGTAGCTATGCTGGCAT -ACGGAAGAGTAGCTATGCCGAGAT -ACGGAAGAGTAGCTATGCTACCAC -ACGGAAGAGTAGCTATGCCAGAAC -ACGGAAGAGTAGCTATGCGTCTAC -ACGGAAGAGTAGCTATGCACGTAC -ACGGAAGAGTAGCTATGCAGTGAC -ACGGAAGAGTAGCTATGCCTGTAG -ACGGAAGAGTAGCTATGCCCTAAG -ACGGAAGAGTAGCTATGCGTTCAG -ACGGAAGAGTAGCTATGCGCATAG -ACGGAAGAGTAGCTATGCGACAAG -ACGGAAGAGTAGCTATGCAAGCAG -ACGGAAGAGTAGCTATGCCGTCAA -ACGGAAGAGTAGCTATGCGCTGAA -ACGGAAGAGTAGCTATGCAGTACG -ACGGAAGAGTAGCTATGCATCCGA -ACGGAAGAGTAGCTATGCATGGGA -ACGGAAGAGTAGCTATGCGTGCAA -ACGGAAGAGTAGCTATGCGAGGAA -ACGGAAGAGTAGCTATGCCAGGTA -ACGGAAGAGTAGCTATGCGACTCT -ACGGAAGAGTAGCTATGCAGTCCT -ACGGAAGAGTAGCTATGCTAAGCC -ACGGAAGAGTAGCTATGCATAGCC -ACGGAAGAGTAGCTATGCTAACCG -ACGGAAGAGTAGCTATGCATGCCA -ACGGAAGAGTAGCTACCAGGAAAC -ACGGAAGAGTAGCTACCAAACACC -ACGGAAGAGTAGCTACCAATCGAG -ACGGAAGAGTAGCTACCACTCCTT -ACGGAAGAGTAGCTACCACCTGTT -ACGGAAGAGTAGCTACCACGGTTT -ACGGAAGAGTAGCTACCAGTGGTT -ACGGAAGAGTAGCTACCAGCCTTT -ACGGAAGAGTAGCTACCAGGTCTT -ACGGAAGAGTAGCTACCAACGCTT -ACGGAAGAGTAGCTACCAAGCGTT -ACGGAAGAGTAGCTACCATTCGTC -ACGGAAGAGTAGCTACCATCTCTC -ACGGAAGAGTAGCTACCATGGATC -ACGGAAGAGTAGCTACCACACTTC -ACGGAAGAGTAGCTACCAGTACTC -ACGGAAGAGTAGCTACCAGATGTC -ACGGAAGAGTAGCTACCAACAGTC -ACGGAAGAGTAGCTACCATTGCTG -ACGGAAGAGTAGCTACCATCCATG -ACGGAAGAGTAGCTACCATGTGTG -ACGGAAGAGTAGCTACCACTAGTG -ACGGAAGAGTAGCTACCACATCTG -ACGGAAGAGTAGCTACCAGAGTTG -ACGGAAGAGTAGCTACCAAGACTG -ACGGAAGAGTAGCTACCATCGGTA -ACGGAAGAGTAGCTACCATGCCTA -ACGGAAGAGTAGCTACCACCACTA -ACGGAAGAGTAGCTACCAGGAGTA -ACGGAAGAGTAGCTACCATCGTCT -ACGGAAGAGTAGCTACCATGCACT -ACGGAAGAGTAGCTACCACTGACT -ACGGAAGAGTAGCTACCACAACCT -ACGGAAGAGTAGCTACCAGCTACT -ACGGAAGAGTAGCTACCAGGATCT -ACGGAAGAGTAGCTACCAAAGGCT -ACGGAAGAGTAGCTACCATCAACC -ACGGAAGAGTAGCTACCATGTTCC -ACGGAAGAGTAGCTACCAATTCCC -ACGGAAGAGTAGCTACCATTCTCG -ACGGAAGAGTAGCTACCATAGACG -ACGGAAGAGTAGCTACCAGTAACG -ACGGAAGAGTAGCTACCAACTTCG -ACGGAAGAGTAGCTACCATACGCA -ACGGAAGAGTAGCTACCACTTGCA -ACGGAAGAGTAGCTACCACGAACA -ACGGAAGAGTAGCTACCACAGTCA -ACGGAAGAGTAGCTACCAGATCCA -ACGGAAGAGTAGCTACCAACGACA -ACGGAAGAGTAGCTACCAAGCTCA -ACGGAAGAGTAGCTACCATCACGT -ACGGAAGAGTAGCTACCACGTAGT -ACGGAAGAGTAGCTACCAGTCAGT -ACGGAAGAGTAGCTACCAGAAGGT -ACGGAAGAGTAGCTACCAAACCGT -ACGGAAGAGTAGCTACCATTGTGC -ACGGAAGAGTAGCTACCACTAAGC -ACGGAAGAGTAGCTACCAACTAGC -ACGGAAGAGTAGCTACCAAGATGC -ACGGAAGAGTAGCTACCATGAAGG -ACGGAAGAGTAGCTACCACAATGG -ACGGAAGAGTAGCTACCAATGAGG -ACGGAAGAGTAGCTACCAAATGGG -ACGGAAGAGTAGCTACCATCCTGA -ACGGAAGAGTAGCTACCATAGCGA -ACGGAAGAGTAGCTACCACACAGA -ACGGAAGAGTAGCTACCAGCAAGA -ACGGAAGAGTAGCTACCAGGTTGA -ACGGAAGAGTAGCTACCATCCGAT -ACGGAAGAGTAGCTACCATGGCAT -ACGGAAGAGTAGCTACCACGAGAT -ACGGAAGAGTAGCTACCATACCAC -ACGGAAGAGTAGCTACCACAGAAC -ACGGAAGAGTAGCTACCAGTCTAC -ACGGAAGAGTAGCTACCAACGTAC -ACGGAAGAGTAGCTACCAAGTGAC -ACGGAAGAGTAGCTACCACTGTAG -ACGGAAGAGTAGCTACCACCTAAG -ACGGAAGAGTAGCTACCAGTTCAG -ACGGAAGAGTAGCTACCAGCATAG -ACGGAAGAGTAGCTACCAGACAAG -ACGGAAGAGTAGCTACCAAAGCAG -ACGGAAGAGTAGCTACCACGTCAA -ACGGAAGAGTAGCTACCAGCTGAA -ACGGAAGAGTAGCTACCAAGTACG -ACGGAAGAGTAGCTACCAATCCGA -ACGGAAGAGTAGCTACCAATGGGA -ACGGAAGAGTAGCTACCAGTGCAA -ACGGAAGAGTAGCTACCAGAGGAA -ACGGAAGAGTAGCTACCACAGGTA -ACGGAAGAGTAGCTACCAGACTCT -ACGGAAGAGTAGCTACCAAGTCCT -ACGGAAGAGTAGCTACCATAAGCC -ACGGAAGAGTAGCTACCAATAGCC -ACGGAAGAGTAGCTACCATAACCG -ACGGAAGAGTAGCTACCAATGCCA -ACGGAAGAGTAGGTAGGAGGAAAC -ACGGAAGAGTAGGTAGGAAACACC -ACGGAAGAGTAGGTAGGAATCGAG -ACGGAAGAGTAGGTAGGACTCCTT -ACGGAAGAGTAGGTAGGACCTGTT -ACGGAAGAGTAGGTAGGACGGTTT -ACGGAAGAGTAGGTAGGAGTGGTT -ACGGAAGAGTAGGTAGGAGCCTTT -ACGGAAGAGTAGGTAGGAGGTCTT -ACGGAAGAGTAGGTAGGAACGCTT -ACGGAAGAGTAGGTAGGAAGCGTT -ACGGAAGAGTAGGTAGGATTCGTC -ACGGAAGAGTAGGTAGGATCTCTC -ACGGAAGAGTAGGTAGGATGGATC -ACGGAAGAGTAGGTAGGACACTTC -ACGGAAGAGTAGGTAGGAGTACTC -ACGGAAGAGTAGGTAGGAGATGTC -ACGGAAGAGTAGGTAGGAACAGTC -ACGGAAGAGTAGGTAGGATTGCTG -ACGGAAGAGTAGGTAGGATCCATG -ACGGAAGAGTAGGTAGGATGTGTG -ACGGAAGAGTAGGTAGGACTAGTG -ACGGAAGAGTAGGTAGGACATCTG -ACGGAAGAGTAGGTAGGAGAGTTG -ACGGAAGAGTAGGTAGGAAGACTG -ACGGAAGAGTAGGTAGGATCGGTA -ACGGAAGAGTAGGTAGGATGCCTA -ACGGAAGAGTAGGTAGGACCACTA -ACGGAAGAGTAGGTAGGAGGAGTA -ACGGAAGAGTAGGTAGGATCGTCT -ACGGAAGAGTAGGTAGGATGCACT -ACGGAAGAGTAGGTAGGACTGACT -ACGGAAGAGTAGGTAGGACAACCT -ACGGAAGAGTAGGTAGGAGCTACT -ACGGAAGAGTAGGTAGGAGGATCT -ACGGAAGAGTAGGTAGGAAAGGCT -ACGGAAGAGTAGGTAGGATCAACC -ACGGAAGAGTAGGTAGGATGTTCC -ACGGAAGAGTAGGTAGGAATTCCC -ACGGAAGAGTAGGTAGGATTCTCG -ACGGAAGAGTAGGTAGGATAGACG -ACGGAAGAGTAGGTAGGAGTAACG -ACGGAAGAGTAGGTAGGAACTTCG -ACGGAAGAGTAGGTAGGATACGCA -ACGGAAGAGTAGGTAGGACTTGCA -ACGGAAGAGTAGGTAGGACGAACA -ACGGAAGAGTAGGTAGGACAGTCA -ACGGAAGAGTAGGTAGGAGATCCA -ACGGAAGAGTAGGTAGGAACGACA -ACGGAAGAGTAGGTAGGAAGCTCA -ACGGAAGAGTAGGTAGGATCACGT -ACGGAAGAGTAGGTAGGACGTAGT -ACGGAAGAGTAGGTAGGAGTCAGT -ACGGAAGAGTAGGTAGGAGAAGGT -ACGGAAGAGTAGGTAGGAAACCGT -ACGGAAGAGTAGGTAGGATTGTGC -ACGGAAGAGTAGGTAGGACTAAGC -ACGGAAGAGTAGGTAGGAACTAGC -ACGGAAGAGTAGGTAGGAAGATGC -ACGGAAGAGTAGGTAGGATGAAGG -ACGGAAGAGTAGGTAGGACAATGG -ACGGAAGAGTAGGTAGGAATGAGG -ACGGAAGAGTAGGTAGGAAATGGG -ACGGAAGAGTAGGTAGGATCCTGA -ACGGAAGAGTAGGTAGGATAGCGA -ACGGAAGAGTAGGTAGGACACAGA -ACGGAAGAGTAGGTAGGAGCAAGA -ACGGAAGAGTAGGTAGGAGGTTGA -ACGGAAGAGTAGGTAGGATCCGAT -ACGGAAGAGTAGGTAGGATGGCAT -ACGGAAGAGTAGGTAGGACGAGAT -ACGGAAGAGTAGGTAGGATACCAC -ACGGAAGAGTAGGTAGGACAGAAC -ACGGAAGAGTAGGTAGGAGTCTAC -ACGGAAGAGTAGGTAGGAACGTAC -ACGGAAGAGTAGGTAGGAAGTGAC -ACGGAAGAGTAGGTAGGACTGTAG -ACGGAAGAGTAGGTAGGACCTAAG -ACGGAAGAGTAGGTAGGAGTTCAG -ACGGAAGAGTAGGTAGGAGCATAG -ACGGAAGAGTAGGTAGGAGACAAG -ACGGAAGAGTAGGTAGGAAAGCAG -ACGGAAGAGTAGGTAGGACGTCAA -ACGGAAGAGTAGGTAGGAGCTGAA -ACGGAAGAGTAGGTAGGAAGTACG -ACGGAAGAGTAGGTAGGAATCCGA -ACGGAAGAGTAGGTAGGAATGGGA -ACGGAAGAGTAGGTAGGAGTGCAA -ACGGAAGAGTAGGTAGGAGAGGAA -ACGGAAGAGTAGGTAGGACAGGTA -ACGGAAGAGTAGGTAGGAGACTCT -ACGGAAGAGTAGGTAGGAAGTCCT -ACGGAAGAGTAGGTAGGATAAGCC -ACGGAAGAGTAGGTAGGAATAGCC -ACGGAAGAGTAGGTAGGATAACCG -ACGGAAGAGTAGGTAGGAATGCCA -ACGGAAGAGTAGTCTTCGGGAAAC -ACGGAAGAGTAGTCTTCGAACACC -ACGGAAGAGTAGTCTTCGATCGAG -ACGGAAGAGTAGTCTTCGCTCCTT -ACGGAAGAGTAGTCTTCGCCTGTT -ACGGAAGAGTAGTCTTCGCGGTTT -ACGGAAGAGTAGTCTTCGGTGGTT -ACGGAAGAGTAGTCTTCGGCCTTT -ACGGAAGAGTAGTCTTCGGGTCTT -ACGGAAGAGTAGTCTTCGACGCTT -ACGGAAGAGTAGTCTTCGAGCGTT -ACGGAAGAGTAGTCTTCGTTCGTC -ACGGAAGAGTAGTCTTCGTCTCTC -ACGGAAGAGTAGTCTTCGTGGATC -ACGGAAGAGTAGTCTTCGCACTTC -ACGGAAGAGTAGTCTTCGGTACTC -ACGGAAGAGTAGTCTTCGGATGTC -ACGGAAGAGTAGTCTTCGACAGTC -ACGGAAGAGTAGTCTTCGTTGCTG -ACGGAAGAGTAGTCTTCGTCCATG -ACGGAAGAGTAGTCTTCGTGTGTG -ACGGAAGAGTAGTCTTCGCTAGTG -ACGGAAGAGTAGTCTTCGCATCTG -ACGGAAGAGTAGTCTTCGGAGTTG -ACGGAAGAGTAGTCTTCGAGACTG -ACGGAAGAGTAGTCTTCGTCGGTA -ACGGAAGAGTAGTCTTCGTGCCTA -ACGGAAGAGTAGTCTTCGCCACTA -ACGGAAGAGTAGTCTTCGGGAGTA -ACGGAAGAGTAGTCTTCGTCGTCT -ACGGAAGAGTAGTCTTCGTGCACT -ACGGAAGAGTAGTCTTCGCTGACT -ACGGAAGAGTAGTCTTCGCAACCT -ACGGAAGAGTAGTCTTCGGCTACT -ACGGAAGAGTAGTCTTCGGGATCT -ACGGAAGAGTAGTCTTCGAAGGCT -ACGGAAGAGTAGTCTTCGTCAACC -ACGGAAGAGTAGTCTTCGTGTTCC -ACGGAAGAGTAGTCTTCGATTCCC -ACGGAAGAGTAGTCTTCGTTCTCG -ACGGAAGAGTAGTCTTCGTAGACG -ACGGAAGAGTAGTCTTCGGTAACG -ACGGAAGAGTAGTCTTCGACTTCG -ACGGAAGAGTAGTCTTCGTACGCA -ACGGAAGAGTAGTCTTCGCTTGCA -ACGGAAGAGTAGTCTTCGCGAACA -ACGGAAGAGTAGTCTTCGCAGTCA -ACGGAAGAGTAGTCTTCGGATCCA -ACGGAAGAGTAGTCTTCGACGACA -ACGGAAGAGTAGTCTTCGAGCTCA -ACGGAAGAGTAGTCTTCGTCACGT -ACGGAAGAGTAGTCTTCGCGTAGT -ACGGAAGAGTAGTCTTCGGTCAGT -ACGGAAGAGTAGTCTTCGGAAGGT -ACGGAAGAGTAGTCTTCGAACCGT -ACGGAAGAGTAGTCTTCGTTGTGC -ACGGAAGAGTAGTCTTCGCTAAGC -ACGGAAGAGTAGTCTTCGACTAGC -ACGGAAGAGTAGTCTTCGAGATGC -ACGGAAGAGTAGTCTTCGTGAAGG -ACGGAAGAGTAGTCTTCGCAATGG -ACGGAAGAGTAGTCTTCGATGAGG -ACGGAAGAGTAGTCTTCGAATGGG -ACGGAAGAGTAGTCTTCGTCCTGA -ACGGAAGAGTAGTCTTCGTAGCGA -ACGGAAGAGTAGTCTTCGCACAGA -ACGGAAGAGTAGTCTTCGGCAAGA -ACGGAAGAGTAGTCTTCGGGTTGA -ACGGAAGAGTAGTCTTCGTCCGAT -ACGGAAGAGTAGTCTTCGTGGCAT -ACGGAAGAGTAGTCTTCGCGAGAT -ACGGAAGAGTAGTCTTCGTACCAC -ACGGAAGAGTAGTCTTCGCAGAAC -ACGGAAGAGTAGTCTTCGGTCTAC -ACGGAAGAGTAGTCTTCGACGTAC -ACGGAAGAGTAGTCTTCGAGTGAC -ACGGAAGAGTAGTCTTCGCTGTAG -ACGGAAGAGTAGTCTTCGCCTAAG -ACGGAAGAGTAGTCTTCGGTTCAG -ACGGAAGAGTAGTCTTCGGCATAG -ACGGAAGAGTAGTCTTCGGACAAG -ACGGAAGAGTAGTCTTCGAAGCAG -ACGGAAGAGTAGTCTTCGCGTCAA -ACGGAAGAGTAGTCTTCGGCTGAA -ACGGAAGAGTAGTCTTCGAGTACG -ACGGAAGAGTAGTCTTCGATCCGA -ACGGAAGAGTAGTCTTCGATGGGA -ACGGAAGAGTAGTCTTCGGTGCAA -ACGGAAGAGTAGTCTTCGGAGGAA -ACGGAAGAGTAGTCTTCGCAGGTA -ACGGAAGAGTAGTCTTCGGACTCT -ACGGAAGAGTAGTCTTCGAGTCCT -ACGGAAGAGTAGTCTTCGTAAGCC -ACGGAAGAGTAGTCTTCGATAGCC -ACGGAAGAGTAGTCTTCGTAACCG -ACGGAAGAGTAGTCTTCGATGCCA -ACGGAAGAGTAGACTTGCGGAAAC -ACGGAAGAGTAGACTTGCAACACC -ACGGAAGAGTAGACTTGCATCGAG -ACGGAAGAGTAGACTTGCCTCCTT -ACGGAAGAGTAGACTTGCCCTGTT -ACGGAAGAGTAGACTTGCCGGTTT -ACGGAAGAGTAGACTTGCGTGGTT -ACGGAAGAGTAGACTTGCGCCTTT -ACGGAAGAGTAGACTTGCGGTCTT -ACGGAAGAGTAGACTTGCACGCTT -ACGGAAGAGTAGACTTGCAGCGTT -ACGGAAGAGTAGACTTGCTTCGTC -ACGGAAGAGTAGACTTGCTCTCTC -ACGGAAGAGTAGACTTGCTGGATC -ACGGAAGAGTAGACTTGCCACTTC -ACGGAAGAGTAGACTTGCGTACTC -ACGGAAGAGTAGACTTGCGATGTC -ACGGAAGAGTAGACTTGCACAGTC -ACGGAAGAGTAGACTTGCTTGCTG -ACGGAAGAGTAGACTTGCTCCATG -ACGGAAGAGTAGACTTGCTGTGTG -ACGGAAGAGTAGACTTGCCTAGTG -ACGGAAGAGTAGACTTGCCATCTG -ACGGAAGAGTAGACTTGCGAGTTG -ACGGAAGAGTAGACTTGCAGACTG -ACGGAAGAGTAGACTTGCTCGGTA -ACGGAAGAGTAGACTTGCTGCCTA -ACGGAAGAGTAGACTTGCCCACTA -ACGGAAGAGTAGACTTGCGGAGTA -ACGGAAGAGTAGACTTGCTCGTCT -ACGGAAGAGTAGACTTGCTGCACT -ACGGAAGAGTAGACTTGCCTGACT -ACGGAAGAGTAGACTTGCCAACCT -ACGGAAGAGTAGACTTGCGCTACT -ACGGAAGAGTAGACTTGCGGATCT -ACGGAAGAGTAGACTTGCAAGGCT -ACGGAAGAGTAGACTTGCTCAACC -ACGGAAGAGTAGACTTGCTGTTCC -ACGGAAGAGTAGACTTGCATTCCC -ACGGAAGAGTAGACTTGCTTCTCG -ACGGAAGAGTAGACTTGCTAGACG -ACGGAAGAGTAGACTTGCGTAACG -ACGGAAGAGTAGACTTGCACTTCG -ACGGAAGAGTAGACTTGCTACGCA -ACGGAAGAGTAGACTTGCCTTGCA -ACGGAAGAGTAGACTTGCCGAACA -ACGGAAGAGTAGACTTGCCAGTCA -ACGGAAGAGTAGACTTGCGATCCA -ACGGAAGAGTAGACTTGCACGACA -ACGGAAGAGTAGACTTGCAGCTCA -ACGGAAGAGTAGACTTGCTCACGT -ACGGAAGAGTAGACTTGCCGTAGT -ACGGAAGAGTAGACTTGCGTCAGT -ACGGAAGAGTAGACTTGCGAAGGT -ACGGAAGAGTAGACTTGCAACCGT -ACGGAAGAGTAGACTTGCTTGTGC -ACGGAAGAGTAGACTTGCCTAAGC -ACGGAAGAGTAGACTTGCACTAGC -ACGGAAGAGTAGACTTGCAGATGC -ACGGAAGAGTAGACTTGCTGAAGG -ACGGAAGAGTAGACTTGCCAATGG -ACGGAAGAGTAGACTTGCATGAGG -ACGGAAGAGTAGACTTGCAATGGG -ACGGAAGAGTAGACTTGCTCCTGA -ACGGAAGAGTAGACTTGCTAGCGA -ACGGAAGAGTAGACTTGCCACAGA -ACGGAAGAGTAGACTTGCGCAAGA -ACGGAAGAGTAGACTTGCGGTTGA -ACGGAAGAGTAGACTTGCTCCGAT -ACGGAAGAGTAGACTTGCTGGCAT -ACGGAAGAGTAGACTTGCCGAGAT -ACGGAAGAGTAGACTTGCTACCAC -ACGGAAGAGTAGACTTGCCAGAAC -ACGGAAGAGTAGACTTGCGTCTAC -ACGGAAGAGTAGACTTGCACGTAC -ACGGAAGAGTAGACTTGCAGTGAC -ACGGAAGAGTAGACTTGCCTGTAG -ACGGAAGAGTAGACTTGCCCTAAG -ACGGAAGAGTAGACTTGCGTTCAG -ACGGAAGAGTAGACTTGCGCATAG -ACGGAAGAGTAGACTTGCGACAAG -ACGGAAGAGTAGACTTGCAAGCAG -ACGGAAGAGTAGACTTGCCGTCAA -ACGGAAGAGTAGACTTGCGCTGAA -ACGGAAGAGTAGACTTGCAGTACG -ACGGAAGAGTAGACTTGCATCCGA -ACGGAAGAGTAGACTTGCATGGGA -ACGGAAGAGTAGACTTGCGTGCAA -ACGGAAGAGTAGACTTGCGAGGAA -ACGGAAGAGTAGACTTGCCAGGTA -ACGGAAGAGTAGACTTGCGACTCT -ACGGAAGAGTAGACTTGCAGTCCT -ACGGAAGAGTAGACTTGCTAAGCC -ACGGAAGAGTAGACTTGCATAGCC -ACGGAAGAGTAGACTTGCTAACCG -ACGGAAGAGTAGACTTGCATGCCA -ACGGAAGAGTAGACTCTGGGAAAC -ACGGAAGAGTAGACTCTGAACACC -ACGGAAGAGTAGACTCTGATCGAG -ACGGAAGAGTAGACTCTGCTCCTT -ACGGAAGAGTAGACTCTGCCTGTT -ACGGAAGAGTAGACTCTGCGGTTT -ACGGAAGAGTAGACTCTGGTGGTT -ACGGAAGAGTAGACTCTGGCCTTT -ACGGAAGAGTAGACTCTGGGTCTT -ACGGAAGAGTAGACTCTGACGCTT -ACGGAAGAGTAGACTCTGAGCGTT -ACGGAAGAGTAGACTCTGTTCGTC -ACGGAAGAGTAGACTCTGTCTCTC -ACGGAAGAGTAGACTCTGTGGATC -ACGGAAGAGTAGACTCTGCACTTC -ACGGAAGAGTAGACTCTGGTACTC -ACGGAAGAGTAGACTCTGGATGTC -ACGGAAGAGTAGACTCTGACAGTC -ACGGAAGAGTAGACTCTGTTGCTG -ACGGAAGAGTAGACTCTGTCCATG -ACGGAAGAGTAGACTCTGTGTGTG -ACGGAAGAGTAGACTCTGCTAGTG -ACGGAAGAGTAGACTCTGCATCTG -ACGGAAGAGTAGACTCTGGAGTTG -ACGGAAGAGTAGACTCTGAGACTG -ACGGAAGAGTAGACTCTGTCGGTA -ACGGAAGAGTAGACTCTGTGCCTA -ACGGAAGAGTAGACTCTGCCACTA -ACGGAAGAGTAGACTCTGGGAGTA -ACGGAAGAGTAGACTCTGTCGTCT -ACGGAAGAGTAGACTCTGTGCACT -ACGGAAGAGTAGACTCTGCTGACT -ACGGAAGAGTAGACTCTGCAACCT -ACGGAAGAGTAGACTCTGGCTACT -ACGGAAGAGTAGACTCTGGGATCT -ACGGAAGAGTAGACTCTGAAGGCT -ACGGAAGAGTAGACTCTGTCAACC -ACGGAAGAGTAGACTCTGTGTTCC -ACGGAAGAGTAGACTCTGATTCCC -ACGGAAGAGTAGACTCTGTTCTCG -ACGGAAGAGTAGACTCTGTAGACG -ACGGAAGAGTAGACTCTGGTAACG -ACGGAAGAGTAGACTCTGACTTCG -ACGGAAGAGTAGACTCTGTACGCA -ACGGAAGAGTAGACTCTGCTTGCA -ACGGAAGAGTAGACTCTGCGAACA -ACGGAAGAGTAGACTCTGCAGTCA -ACGGAAGAGTAGACTCTGGATCCA -ACGGAAGAGTAGACTCTGACGACA -ACGGAAGAGTAGACTCTGAGCTCA -ACGGAAGAGTAGACTCTGTCACGT -ACGGAAGAGTAGACTCTGCGTAGT -ACGGAAGAGTAGACTCTGGTCAGT -ACGGAAGAGTAGACTCTGGAAGGT -ACGGAAGAGTAGACTCTGAACCGT -ACGGAAGAGTAGACTCTGTTGTGC -ACGGAAGAGTAGACTCTGCTAAGC -ACGGAAGAGTAGACTCTGACTAGC -ACGGAAGAGTAGACTCTGAGATGC -ACGGAAGAGTAGACTCTGTGAAGG -ACGGAAGAGTAGACTCTGCAATGG -ACGGAAGAGTAGACTCTGATGAGG -ACGGAAGAGTAGACTCTGAATGGG -ACGGAAGAGTAGACTCTGTCCTGA -ACGGAAGAGTAGACTCTGTAGCGA -ACGGAAGAGTAGACTCTGCACAGA -ACGGAAGAGTAGACTCTGGCAAGA -ACGGAAGAGTAGACTCTGGGTTGA -ACGGAAGAGTAGACTCTGTCCGAT -ACGGAAGAGTAGACTCTGTGGCAT -ACGGAAGAGTAGACTCTGCGAGAT -ACGGAAGAGTAGACTCTGTACCAC -ACGGAAGAGTAGACTCTGCAGAAC -ACGGAAGAGTAGACTCTGGTCTAC -ACGGAAGAGTAGACTCTGACGTAC -ACGGAAGAGTAGACTCTGAGTGAC -ACGGAAGAGTAGACTCTGCTGTAG -ACGGAAGAGTAGACTCTGCCTAAG -ACGGAAGAGTAGACTCTGGTTCAG -ACGGAAGAGTAGACTCTGGCATAG -ACGGAAGAGTAGACTCTGGACAAG -ACGGAAGAGTAGACTCTGAAGCAG -ACGGAAGAGTAGACTCTGCGTCAA -ACGGAAGAGTAGACTCTGGCTGAA -ACGGAAGAGTAGACTCTGAGTACG -ACGGAAGAGTAGACTCTGATCCGA -ACGGAAGAGTAGACTCTGATGGGA -ACGGAAGAGTAGACTCTGGTGCAA -ACGGAAGAGTAGACTCTGGAGGAA -ACGGAAGAGTAGACTCTGCAGGTA -ACGGAAGAGTAGACTCTGGACTCT -ACGGAAGAGTAGACTCTGAGTCCT -ACGGAAGAGTAGACTCTGTAAGCC -ACGGAAGAGTAGACTCTGATAGCC -ACGGAAGAGTAGACTCTGTAACCG -ACGGAAGAGTAGACTCTGATGCCA -ACGGAAGAGTAGCCTCAAGGAAAC -ACGGAAGAGTAGCCTCAAAACACC -ACGGAAGAGTAGCCTCAAATCGAG -ACGGAAGAGTAGCCTCAACTCCTT -ACGGAAGAGTAGCCTCAACCTGTT -ACGGAAGAGTAGCCTCAACGGTTT -ACGGAAGAGTAGCCTCAAGTGGTT -ACGGAAGAGTAGCCTCAAGCCTTT -ACGGAAGAGTAGCCTCAAGGTCTT -ACGGAAGAGTAGCCTCAAACGCTT -ACGGAAGAGTAGCCTCAAAGCGTT -ACGGAAGAGTAGCCTCAATTCGTC -ACGGAAGAGTAGCCTCAATCTCTC -ACGGAAGAGTAGCCTCAATGGATC -ACGGAAGAGTAGCCTCAACACTTC -ACGGAAGAGTAGCCTCAAGTACTC -ACGGAAGAGTAGCCTCAAGATGTC -ACGGAAGAGTAGCCTCAAACAGTC -ACGGAAGAGTAGCCTCAATTGCTG -ACGGAAGAGTAGCCTCAATCCATG -ACGGAAGAGTAGCCTCAATGTGTG -ACGGAAGAGTAGCCTCAACTAGTG -ACGGAAGAGTAGCCTCAACATCTG -ACGGAAGAGTAGCCTCAAGAGTTG -ACGGAAGAGTAGCCTCAAAGACTG -ACGGAAGAGTAGCCTCAATCGGTA -ACGGAAGAGTAGCCTCAATGCCTA -ACGGAAGAGTAGCCTCAACCACTA -ACGGAAGAGTAGCCTCAAGGAGTA -ACGGAAGAGTAGCCTCAATCGTCT -ACGGAAGAGTAGCCTCAATGCACT -ACGGAAGAGTAGCCTCAACTGACT -ACGGAAGAGTAGCCTCAACAACCT -ACGGAAGAGTAGCCTCAAGCTACT -ACGGAAGAGTAGCCTCAAGGATCT -ACGGAAGAGTAGCCTCAAAAGGCT -ACGGAAGAGTAGCCTCAATCAACC -ACGGAAGAGTAGCCTCAATGTTCC -ACGGAAGAGTAGCCTCAAATTCCC -ACGGAAGAGTAGCCTCAATTCTCG -ACGGAAGAGTAGCCTCAATAGACG -ACGGAAGAGTAGCCTCAAGTAACG -ACGGAAGAGTAGCCTCAAACTTCG -ACGGAAGAGTAGCCTCAATACGCA -ACGGAAGAGTAGCCTCAACTTGCA -ACGGAAGAGTAGCCTCAACGAACA -ACGGAAGAGTAGCCTCAACAGTCA -ACGGAAGAGTAGCCTCAAGATCCA -ACGGAAGAGTAGCCTCAAACGACA -ACGGAAGAGTAGCCTCAAAGCTCA -ACGGAAGAGTAGCCTCAATCACGT -ACGGAAGAGTAGCCTCAACGTAGT -ACGGAAGAGTAGCCTCAAGTCAGT -ACGGAAGAGTAGCCTCAAGAAGGT -ACGGAAGAGTAGCCTCAAAACCGT -ACGGAAGAGTAGCCTCAATTGTGC -ACGGAAGAGTAGCCTCAACTAAGC -ACGGAAGAGTAGCCTCAAACTAGC -ACGGAAGAGTAGCCTCAAAGATGC -ACGGAAGAGTAGCCTCAATGAAGG -ACGGAAGAGTAGCCTCAACAATGG -ACGGAAGAGTAGCCTCAAATGAGG -ACGGAAGAGTAGCCTCAAAATGGG -ACGGAAGAGTAGCCTCAATCCTGA -ACGGAAGAGTAGCCTCAATAGCGA -ACGGAAGAGTAGCCTCAACACAGA -ACGGAAGAGTAGCCTCAAGCAAGA -ACGGAAGAGTAGCCTCAAGGTTGA -ACGGAAGAGTAGCCTCAATCCGAT -ACGGAAGAGTAGCCTCAATGGCAT -ACGGAAGAGTAGCCTCAACGAGAT -ACGGAAGAGTAGCCTCAATACCAC -ACGGAAGAGTAGCCTCAACAGAAC -ACGGAAGAGTAGCCTCAAGTCTAC -ACGGAAGAGTAGCCTCAAACGTAC -ACGGAAGAGTAGCCTCAAAGTGAC -ACGGAAGAGTAGCCTCAACTGTAG -ACGGAAGAGTAGCCTCAACCTAAG -ACGGAAGAGTAGCCTCAAGTTCAG -ACGGAAGAGTAGCCTCAAGCATAG -ACGGAAGAGTAGCCTCAAGACAAG -ACGGAAGAGTAGCCTCAAAAGCAG -ACGGAAGAGTAGCCTCAACGTCAA -ACGGAAGAGTAGCCTCAAGCTGAA -ACGGAAGAGTAGCCTCAAAGTACG -ACGGAAGAGTAGCCTCAAATCCGA -ACGGAAGAGTAGCCTCAAATGGGA -ACGGAAGAGTAGCCTCAAGTGCAA -ACGGAAGAGTAGCCTCAAGAGGAA -ACGGAAGAGTAGCCTCAACAGGTA -ACGGAAGAGTAGCCTCAAGACTCT -ACGGAAGAGTAGCCTCAAAGTCCT -ACGGAAGAGTAGCCTCAATAAGCC -ACGGAAGAGTAGCCTCAAATAGCC -ACGGAAGAGTAGCCTCAATAACCG -ACGGAAGAGTAGCCTCAAATGCCA -ACGGAAGAGTAGACTGCTGGAAAC -ACGGAAGAGTAGACTGCTAACACC -ACGGAAGAGTAGACTGCTATCGAG -ACGGAAGAGTAGACTGCTCTCCTT -ACGGAAGAGTAGACTGCTCCTGTT -ACGGAAGAGTAGACTGCTCGGTTT -ACGGAAGAGTAGACTGCTGTGGTT -ACGGAAGAGTAGACTGCTGCCTTT -ACGGAAGAGTAGACTGCTGGTCTT -ACGGAAGAGTAGACTGCTACGCTT -ACGGAAGAGTAGACTGCTAGCGTT -ACGGAAGAGTAGACTGCTTTCGTC -ACGGAAGAGTAGACTGCTTCTCTC -ACGGAAGAGTAGACTGCTTGGATC -ACGGAAGAGTAGACTGCTCACTTC -ACGGAAGAGTAGACTGCTGTACTC -ACGGAAGAGTAGACTGCTGATGTC -ACGGAAGAGTAGACTGCTACAGTC -ACGGAAGAGTAGACTGCTTTGCTG -ACGGAAGAGTAGACTGCTTCCATG -ACGGAAGAGTAGACTGCTTGTGTG -ACGGAAGAGTAGACTGCTCTAGTG -ACGGAAGAGTAGACTGCTCATCTG -ACGGAAGAGTAGACTGCTGAGTTG -ACGGAAGAGTAGACTGCTAGACTG -ACGGAAGAGTAGACTGCTTCGGTA -ACGGAAGAGTAGACTGCTTGCCTA -ACGGAAGAGTAGACTGCTCCACTA -ACGGAAGAGTAGACTGCTGGAGTA -ACGGAAGAGTAGACTGCTTCGTCT -ACGGAAGAGTAGACTGCTTGCACT -ACGGAAGAGTAGACTGCTCTGACT -ACGGAAGAGTAGACTGCTCAACCT -ACGGAAGAGTAGACTGCTGCTACT -ACGGAAGAGTAGACTGCTGGATCT -ACGGAAGAGTAGACTGCTAAGGCT -ACGGAAGAGTAGACTGCTTCAACC -ACGGAAGAGTAGACTGCTTGTTCC -ACGGAAGAGTAGACTGCTATTCCC -ACGGAAGAGTAGACTGCTTTCTCG -ACGGAAGAGTAGACTGCTTAGACG -ACGGAAGAGTAGACTGCTGTAACG -ACGGAAGAGTAGACTGCTACTTCG -ACGGAAGAGTAGACTGCTTACGCA -ACGGAAGAGTAGACTGCTCTTGCA -ACGGAAGAGTAGACTGCTCGAACA -ACGGAAGAGTAGACTGCTCAGTCA -ACGGAAGAGTAGACTGCTGATCCA -ACGGAAGAGTAGACTGCTACGACA -ACGGAAGAGTAGACTGCTAGCTCA -ACGGAAGAGTAGACTGCTTCACGT -ACGGAAGAGTAGACTGCTCGTAGT -ACGGAAGAGTAGACTGCTGTCAGT -ACGGAAGAGTAGACTGCTGAAGGT -ACGGAAGAGTAGACTGCTAACCGT -ACGGAAGAGTAGACTGCTTTGTGC -ACGGAAGAGTAGACTGCTCTAAGC -ACGGAAGAGTAGACTGCTACTAGC -ACGGAAGAGTAGACTGCTAGATGC -ACGGAAGAGTAGACTGCTTGAAGG -ACGGAAGAGTAGACTGCTCAATGG -ACGGAAGAGTAGACTGCTATGAGG -ACGGAAGAGTAGACTGCTAATGGG -ACGGAAGAGTAGACTGCTTCCTGA -ACGGAAGAGTAGACTGCTTAGCGA -ACGGAAGAGTAGACTGCTCACAGA -ACGGAAGAGTAGACTGCTGCAAGA -ACGGAAGAGTAGACTGCTGGTTGA -ACGGAAGAGTAGACTGCTTCCGAT -ACGGAAGAGTAGACTGCTTGGCAT -ACGGAAGAGTAGACTGCTCGAGAT -ACGGAAGAGTAGACTGCTTACCAC -ACGGAAGAGTAGACTGCTCAGAAC -ACGGAAGAGTAGACTGCTGTCTAC -ACGGAAGAGTAGACTGCTACGTAC -ACGGAAGAGTAGACTGCTAGTGAC -ACGGAAGAGTAGACTGCTCTGTAG -ACGGAAGAGTAGACTGCTCCTAAG -ACGGAAGAGTAGACTGCTGTTCAG -ACGGAAGAGTAGACTGCTGCATAG -ACGGAAGAGTAGACTGCTGACAAG -ACGGAAGAGTAGACTGCTAAGCAG -ACGGAAGAGTAGACTGCTCGTCAA -ACGGAAGAGTAGACTGCTGCTGAA -ACGGAAGAGTAGACTGCTAGTACG -ACGGAAGAGTAGACTGCTATCCGA -ACGGAAGAGTAGACTGCTATGGGA -ACGGAAGAGTAGACTGCTGTGCAA -ACGGAAGAGTAGACTGCTGAGGAA -ACGGAAGAGTAGACTGCTCAGGTA -ACGGAAGAGTAGACTGCTGACTCT -ACGGAAGAGTAGACTGCTAGTCCT -ACGGAAGAGTAGACTGCTTAAGCC -ACGGAAGAGTAGACTGCTATAGCC -ACGGAAGAGTAGACTGCTTAACCG -ACGGAAGAGTAGACTGCTATGCCA -ACGGAAGAGTAGTCTGGAGGAAAC -ACGGAAGAGTAGTCTGGAAACACC -ACGGAAGAGTAGTCTGGAATCGAG -ACGGAAGAGTAGTCTGGACTCCTT -ACGGAAGAGTAGTCTGGACCTGTT -ACGGAAGAGTAGTCTGGACGGTTT -ACGGAAGAGTAGTCTGGAGTGGTT -ACGGAAGAGTAGTCTGGAGCCTTT -ACGGAAGAGTAGTCTGGAGGTCTT -ACGGAAGAGTAGTCTGGAACGCTT -ACGGAAGAGTAGTCTGGAAGCGTT -ACGGAAGAGTAGTCTGGATTCGTC -ACGGAAGAGTAGTCTGGATCTCTC -ACGGAAGAGTAGTCTGGATGGATC -ACGGAAGAGTAGTCTGGACACTTC -ACGGAAGAGTAGTCTGGAGTACTC -ACGGAAGAGTAGTCTGGAGATGTC -ACGGAAGAGTAGTCTGGAACAGTC -ACGGAAGAGTAGTCTGGATTGCTG -ACGGAAGAGTAGTCTGGATCCATG -ACGGAAGAGTAGTCTGGATGTGTG -ACGGAAGAGTAGTCTGGACTAGTG -ACGGAAGAGTAGTCTGGACATCTG -ACGGAAGAGTAGTCTGGAGAGTTG -ACGGAAGAGTAGTCTGGAAGACTG -ACGGAAGAGTAGTCTGGATCGGTA -ACGGAAGAGTAGTCTGGATGCCTA -ACGGAAGAGTAGTCTGGACCACTA -ACGGAAGAGTAGTCTGGAGGAGTA -ACGGAAGAGTAGTCTGGATCGTCT -ACGGAAGAGTAGTCTGGATGCACT -ACGGAAGAGTAGTCTGGACTGACT -ACGGAAGAGTAGTCTGGACAACCT -ACGGAAGAGTAGTCTGGAGCTACT -ACGGAAGAGTAGTCTGGAGGATCT -ACGGAAGAGTAGTCTGGAAAGGCT -ACGGAAGAGTAGTCTGGATCAACC -ACGGAAGAGTAGTCTGGATGTTCC -ACGGAAGAGTAGTCTGGAATTCCC -ACGGAAGAGTAGTCTGGATTCTCG -ACGGAAGAGTAGTCTGGATAGACG -ACGGAAGAGTAGTCTGGAGTAACG -ACGGAAGAGTAGTCTGGAACTTCG -ACGGAAGAGTAGTCTGGATACGCA -ACGGAAGAGTAGTCTGGACTTGCA -ACGGAAGAGTAGTCTGGACGAACA -ACGGAAGAGTAGTCTGGACAGTCA -ACGGAAGAGTAGTCTGGAGATCCA -ACGGAAGAGTAGTCTGGAACGACA -ACGGAAGAGTAGTCTGGAAGCTCA -ACGGAAGAGTAGTCTGGATCACGT -ACGGAAGAGTAGTCTGGACGTAGT -ACGGAAGAGTAGTCTGGAGTCAGT -ACGGAAGAGTAGTCTGGAGAAGGT -ACGGAAGAGTAGTCTGGAAACCGT -ACGGAAGAGTAGTCTGGATTGTGC -ACGGAAGAGTAGTCTGGACTAAGC -ACGGAAGAGTAGTCTGGAACTAGC -ACGGAAGAGTAGTCTGGAAGATGC -ACGGAAGAGTAGTCTGGATGAAGG -ACGGAAGAGTAGTCTGGACAATGG -ACGGAAGAGTAGTCTGGAATGAGG -ACGGAAGAGTAGTCTGGAAATGGG -ACGGAAGAGTAGTCTGGATCCTGA -ACGGAAGAGTAGTCTGGATAGCGA -ACGGAAGAGTAGTCTGGACACAGA -ACGGAAGAGTAGTCTGGAGCAAGA -ACGGAAGAGTAGTCTGGAGGTTGA -ACGGAAGAGTAGTCTGGATCCGAT -ACGGAAGAGTAGTCTGGATGGCAT -ACGGAAGAGTAGTCTGGACGAGAT -ACGGAAGAGTAGTCTGGATACCAC -ACGGAAGAGTAGTCTGGACAGAAC -ACGGAAGAGTAGTCTGGAGTCTAC -ACGGAAGAGTAGTCTGGAACGTAC -ACGGAAGAGTAGTCTGGAAGTGAC -ACGGAAGAGTAGTCTGGACTGTAG -ACGGAAGAGTAGTCTGGACCTAAG -ACGGAAGAGTAGTCTGGAGTTCAG -ACGGAAGAGTAGTCTGGAGCATAG -ACGGAAGAGTAGTCTGGAGACAAG -ACGGAAGAGTAGTCTGGAAAGCAG -ACGGAAGAGTAGTCTGGACGTCAA -ACGGAAGAGTAGTCTGGAGCTGAA -ACGGAAGAGTAGTCTGGAAGTACG -ACGGAAGAGTAGTCTGGAATCCGA -ACGGAAGAGTAGTCTGGAATGGGA -ACGGAAGAGTAGTCTGGAGTGCAA -ACGGAAGAGTAGTCTGGAGAGGAA -ACGGAAGAGTAGTCTGGACAGGTA -ACGGAAGAGTAGTCTGGAGACTCT -ACGGAAGAGTAGTCTGGAAGTCCT -ACGGAAGAGTAGTCTGGATAAGCC -ACGGAAGAGTAGTCTGGAATAGCC -ACGGAAGAGTAGTCTGGATAACCG -ACGGAAGAGTAGTCTGGAATGCCA -ACGGAAGAGTAGGCTAAGGGAAAC -ACGGAAGAGTAGGCTAAGAACACC -ACGGAAGAGTAGGCTAAGATCGAG -ACGGAAGAGTAGGCTAAGCTCCTT -ACGGAAGAGTAGGCTAAGCCTGTT -ACGGAAGAGTAGGCTAAGCGGTTT -ACGGAAGAGTAGGCTAAGGTGGTT -ACGGAAGAGTAGGCTAAGGCCTTT -ACGGAAGAGTAGGCTAAGGGTCTT -ACGGAAGAGTAGGCTAAGACGCTT -ACGGAAGAGTAGGCTAAGAGCGTT -ACGGAAGAGTAGGCTAAGTTCGTC -ACGGAAGAGTAGGCTAAGTCTCTC -ACGGAAGAGTAGGCTAAGTGGATC -ACGGAAGAGTAGGCTAAGCACTTC -ACGGAAGAGTAGGCTAAGGTACTC -ACGGAAGAGTAGGCTAAGGATGTC -ACGGAAGAGTAGGCTAAGACAGTC -ACGGAAGAGTAGGCTAAGTTGCTG -ACGGAAGAGTAGGCTAAGTCCATG -ACGGAAGAGTAGGCTAAGTGTGTG -ACGGAAGAGTAGGCTAAGCTAGTG -ACGGAAGAGTAGGCTAAGCATCTG -ACGGAAGAGTAGGCTAAGGAGTTG -ACGGAAGAGTAGGCTAAGAGACTG -ACGGAAGAGTAGGCTAAGTCGGTA -ACGGAAGAGTAGGCTAAGTGCCTA -ACGGAAGAGTAGGCTAAGCCACTA -ACGGAAGAGTAGGCTAAGGGAGTA -ACGGAAGAGTAGGCTAAGTCGTCT -ACGGAAGAGTAGGCTAAGTGCACT -ACGGAAGAGTAGGCTAAGCTGACT -ACGGAAGAGTAGGCTAAGCAACCT -ACGGAAGAGTAGGCTAAGGCTACT -ACGGAAGAGTAGGCTAAGGGATCT -ACGGAAGAGTAGGCTAAGAAGGCT -ACGGAAGAGTAGGCTAAGTCAACC -ACGGAAGAGTAGGCTAAGTGTTCC -ACGGAAGAGTAGGCTAAGATTCCC -ACGGAAGAGTAGGCTAAGTTCTCG -ACGGAAGAGTAGGCTAAGTAGACG -ACGGAAGAGTAGGCTAAGGTAACG -ACGGAAGAGTAGGCTAAGACTTCG -ACGGAAGAGTAGGCTAAGTACGCA -ACGGAAGAGTAGGCTAAGCTTGCA -ACGGAAGAGTAGGCTAAGCGAACA -ACGGAAGAGTAGGCTAAGCAGTCA -ACGGAAGAGTAGGCTAAGGATCCA -ACGGAAGAGTAGGCTAAGACGACA -ACGGAAGAGTAGGCTAAGAGCTCA -ACGGAAGAGTAGGCTAAGTCACGT -ACGGAAGAGTAGGCTAAGCGTAGT -ACGGAAGAGTAGGCTAAGGTCAGT -ACGGAAGAGTAGGCTAAGGAAGGT -ACGGAAGAGTAGGCTAAGAACCGT -ACGGAAGAGTAGGCTAAGTTGTGC -ACGGAAGAGTAGGCTAAGCTAAGC -ACGGAAGAGTAGGCTAAGACTAGC -ACGGAAGAGTAGGCTAAGAGATGC -ACGGAAGAGTAGGCTAAGTGAAGG -ACGGAAGAGTAGGCTAAGCAATGG -ACGGAAGAGTAGGCTAAGATGAGG -ACGGAAGAGTAGGCTAAGAATGGG -ACGGAAGAGTAGGCTAAGTCCTGA -ACGGAAGAGTAGGCTAAGTAGCGA -ACGGAAGAGTAGGCTAAGCACAGA -ACGGAAGAGTAGGCTAAGGCAAGA -ACGGAAGAGTAGGCTAAGGGTTGA -ACGGAAGAGTAGGCTAAGTCCGAT -ACGGAAGAGTAGGCTAAGTGGCAT -ACGGAAGAGTAGGCTAAGCGAGAT -ACGGAAGAGTAGGCTAAGTACCAC -ACGGAAGAGTAGGCTAAGCAGAAC -ACGGAAGAGTAGGCTAAGGTCTAC -ACGGAAGAGTAGGCTAAGACGTAC -ACGGAAGAGTAGGCTAAGAGTGAC -ACGGAAGAGTAGGCTAAGCTGTAG -ACGGAAGAGTAGGCTAAGCCTAAG -ACGGAAGAGTAGGCTAAGGTTCAG -ACGGAAGAGTAGGCTAAGGCATAG -ACGGAAGAGTAGGCTAAGGACAAG -ACGGAAGAGTAGGCTAAGAAGCAG -ACGGAAGAGTAGGCTAAGCGTCAA -ACGGAAGAGTAGGCTAAGGCTGAA -ACGGAAGAGTAGGCTAAGAGTACG -ACGGAAGAGTAGGCTAAGATCCGA -ACGGAAGAGTAGGCTAAGATGGGA -ACGGAAGAGTAGGCTAAGGTGCAA -ACGGAAGAGTAGGCTAAGGAGGAA -ACGGAAGAGTAGGCTAAGCAGGTA -ACGGAAGAGTAGGCTAAGGACTCT -ACGGAAGAGTAGGCTAAGAGTCCT -ACGGAAGAGTAGGCTAAGTAAGCC -ACGGAAGAGTAGGCTAAGATAGCC -ACGGAAGAGTAGGCTAAGTAACCG -ACGGAAGAGTAGGCTAAGATGCCA -ACGGAAGAGTAGACCTCAGGAAAC -ACGGAAGAGTAGACCTCAAACACC -ACGGAAGAGTAGACCTCAATCGAG -ACGGAAGAGTAGACCTCACTCCTT -ACGGAAGAGTAGACCTCACCTGTT -ACGGAAGAGTAGACCTCACGGTTT -ACGGAAGAGTAGACCTCAGTGGTT -ACGGAAGAGTAGACCTCAGCCTTT -ACGGAAGAGTAGACCTCAGGTCTT -ACGGAAGAGTAGACCTCAACGCTT -ACGGAAGAGTAGACCTCAAGCGTT -ACGGAAGAGTAGACCTCATTCGTC -ACGGAAGAGTAGACCTCATCTCTC -ACGGAAGAGTAGACCTCATGGATC -ACGGAAGAGTAGACCTCACACTTC -ACGGAAGAGTAGACCTCAGTACTC -ACGGAAGAGTAGACCTCAGATGTC -ACGGAAGAGTAGACCTCAACAGTC -ACGGAAGAGTAGACCTCATTGCTG -ACGGAAGAGTAGACCTCATCCATG -ACGGAAGAGTAGACCTCATGTGTG -ACGGAAGAGTAGACCTCACTAGTG -ACGGAAGAGTAGACCTCACATCTG -ACGGAAGAGTAGACCTCAGAGTTG -ACGGAAGAGTAGACCTCAAGACTG -ACGGAAGAGTAGACCTCATCGGTA -ACGGAAGAGTAGACCTCATGCCTA -ACGGAAGAGTAGACCTCACCACTA -ACGGAAGAGTAGACCTCAGGAGTA -ACGGAAGAGTAGACCTCATCGTCT -ACGGAAGAGTAGACCTCATGCACT -ACGGAAGAGTAGACCTCACTGACT -ACGGAAGAGTAGACCTCACAACCT -ACGGAAGAGTAGACCTCAGCTACT -ACGGAAGAGTAGACCTCAGGATCT -ACGGAAGAGTAGACCTCAAAGGCT -ACGGAAGAGTAGACCTCATCAACC -ACGGAAGAGTAGACCTCATGTTCC -ACGGAAGAGTAGACCTCAATTCCC -ACGGAAGAGTAGACCTCATTCTCG -ACGGAAGAGTAGACCTCATAGACG -ACGGAAGAGTAGACCTCAGTAACG -ACGGAAGAGTAGACCTCAACTTCG -ACGGAAGAGTAGACCTCATACGCA -ACGGAAGAGTAGACCTCACTTGCA -ACGGAAGAGTAGACCTCACGAACA -ACGGAAGAGTAGACCTCACAGTCA -ACGGAAGAGTAGACCTCAGATCCA -ACGGAAGAGTAGACCTCAACGACA -ACGGAAGAGTAGACCTCAAGCTCA -ACGGAAGAGTAGACCTCATCACGT -ACGGAAGAGTAGACCTCACGTAGT -ACGGAAGAGTAGACCTCAGTCAGT -ACGGAAGAGTAGACCTCAGAAGGT -ACGGAAGAGTAGACCTCAAACCGT -ACGGAAGAGTAGACCTCATTGTGC -ACGGAAGAGTAGACCTCACTAAGC -ACGGAAGAGTAGACCTCAACTAGC -ACGGAAGAGTAGACCTCAAGATGC -ACGGAAGAGTAGACCTCATGAAGG -ACGGAAGAGTAGACCTCACAATGG -ACGGAAGAGTAGACCTCAATGAGG -ACGGAAGAGTAGACCTCAAATGGG -ACGGAAGAGTAGACCTCATCCTGA -ACGGAAGAGTAGACCTCATAGCGA -ACGGAAGAGTAGACCTCACACAGA -ACGGAAGAGTAGACCTCAGCAAGA -ACGGAAGAGTAGACCTCAGGTTGA -ACGGAAGAGTAGACCTCATCCGAT -ACGGAAGAGTAGACCTCATGGCAT -ACGGAAGAGTAGACCTCACGAGAT -ACGGAAGAGTAGACCTCATACCAC -ACGGAAGAGTAGACCTCACAGAAC -ACGGAAGAGTAGACCTCAGTCTAC -ACGGAAGAGTAGACCTCAACGTAC -ACGGAAGAGTAGACCTCAAGTGAC -ACGGAAGAGTAGACCTCACTGTAG -ACGGAAGAGTAGACCTCACCTAAG -ACGGAAGAGTAGACCTCAGTTCAG -ACGGAAGAGTAGACCTCAGCATAG -ACGGAAGAGTAGACCTCAGACAAG -ACGGAAGAGTAGACCTCAAAGCAG -ACGGAAGAGTAGACCTCACGTCAA -ACGGAAGAGTAGACCTCAGCTGAA -ACGGAAGAGTAGACCTCAAGTACG -ACGGAAGAGTAGACCTCAATCCGA -ACGGAAGAGTAGACCTCAATGGGA -ACGGAAGAGTAGACCTCAGTGCAA -ACGGAAGAGTAGACCTCAGAGGAA -ACGGAAGAGTAGACCTCACAGGTA -ACGGAAGAGTAGACCTCAGACTCT -ACGGAAGAGTAGACCTCAAGTCCT -ACGGAAGAGTAGACCTCATAAGCC -ACGGAAGAGTAGACCTCAATAGCC -ACGGAAGAGTAGACCTCATAACCG -ACGGAAGAGTAGACCTCAATGCCA -ACGGAAGAGTAGTCCTGTGGAAAC -ACGGAAGAGTAGTCCTGTAACACC -ACGGAAGAGTAGTCCTGTATCGAG -ACGGAAGAGTAGTCCTGTCTCCTT -ACGGAAGAGTAGTCCTGTCCTGTT -ACGGAAGAGTAGTCCTGTCGGTTT -ACGGAAGAGTAGTCCTGTGTGGTT -ACGGAAGAGTAGTCCTGTGCCTTT -ACGGAAGAGTAGTCCTGTGGTCTT -ACGGAAGAGTAGTCCTGTACGCTT -ACGGAAGAGTAGTCCTGTAGCGTT -ACGGAAGAGTAGTCCTGTTTCGTC -ACGGAAGAGTAGTCCTGTTCTCTC -ACGGAAGAGTAGTCCTGTTGGATC -ACGGAAGAGTAGTCCTGTCACTTC -ACGGAAGAGTAGTCCTGTGTACTC -ACGGAAGAGTAGTCCTGTGATGTC -ACGGAAGAGTAGTCCTGTACAGTC -ACGGAAGAGTAGTCCTGTTTGCTG -ACGGAAGAGTAGTCCTGTTCCATG -ACGGAAGAGTAGTCCTGTTGTGTG -ACGGAAGAGTAGTCCTGTCTAGTG -ACGGAAGAGTAGTCCTGTCATCTG -ACGGAAGAGTAGTCCTGTGAGTTG -ACGGAAGAGTAGTCCTGTAGACTG -ACGGAAGAGTAGTCCTGTTCGGTA -ACGGAAGAGTAGTCCTGTTGCCTA -ACGGAAGAGTAGTCCTGTCCACTA -ACGGAAGAGTAGTCCTGTGGAGTA -ACGGAAGAGTAGTCCTGTTCGTCT -ACGGAAGAGTAGTCCTGTTGCACT -ACGGAAGAGTAGTCCTGTCTGACT -ACGGAAGAGTAGTCCTGTCAACCT -ACGGAAGAGTAGTCCTGTGCTACT -ACGGAAGAGTAGTCCTGTGGATCT -ACGGAAGAGTAGTCCTGTAAGGCT -ACGGAAGAGTAGTCCTGTTCAACC -ACGGAAGAGTAGTCCTGTTGTTCC -ACGGAAGAGTAGTCCTGTATTCCC -ACGGAAGAGTAGTCCTGTTTCTCG -ACGGAAGAGTAGTCCTGTTAGACG -ACGGAAGAGTAGTCCTGTGTAACG -ACGGAAGAGTAGTCCTGTACTTCG -ACGGAAGAGTAGTCCTGTTACGCA -ACGGAAGAGTAGTCCTGTCTTGCA -ACGGAAGAGTAGTCCTGTCGAACA -ACGGAAGAGTAGTCCTGTCAGTCA -ACGGAAGAGTAGTCCTGTGATCCA -ACGGAAGAGTAGTCCTGTACGACA -ACGGAAGAGTAGTCCTGTAGCTCA -ACGGAAGAGTAGTCCTGTTCACGT -ACGGAAGAGTAGTCCTGTCGTAGT -ACGGAAGAGTAGTCCTGTGTCAGT -ACGGAAGAGTAGTCCTGTGAAGGT -ACGGAAGAGTAGTCCTGTAACCGT -ACGGAAGAGTAGTCCTGTTTGTGC -ACGGAAGAGTAGTCCTGTCTAAGC -ACGGAAGAGTAGTCCTGTACTAGC -ACGGAAGAGTAGTCCTGTAGATGC -ACGGAAGAGTAGTCCTGTTGAAGG -ACGGAAGAGTAGTCCTGTCAATGG -ACGGAAGAGTAGTCCTGTATGAGG -ACGGAAGAGTAGTCCTGTAATGGG -ACGGAAGAGTAGTCCTGTTCCTGA -ACGGAAGAGTAGTCCTGTTAGCGA -ACGGAAGAGTAGTCCTGTCACAGA -ACGGAAGAGTAGTCCTGTGCAAGA -ACGGAAGAGTAGTCCTGTGGTTGA -ACGGAAGAGTAGTCCTGTTCCGAT -ACGGAAGAGTAGTCCTGTTGGCAT -ACGGAAGAGTAGTCCTGTCGAGAT -ACGGAAGAGTAGTCCTGTTACCAC -ACGGAAGAGTAGTCCTGTCAGAAC -ACGGAAGAGTAGTCCTGTGTCTAC -ACGGAAGAGTAGTCCTGTACGTAC -ACGGAAGAGTAGTCCTGTAGTGAC -ACGGAAGAGTAGTCCTGTCTGTAG -ACGGAAGAGTAGTCCTGTCCTAAG -ACGGAAGAGTAGTCCTGTGTTCAG -ACGGAAGAGTAGTCCTGTGCATAG -ACGGAAGAGTAGTCCTGTGACAAG -ACGGAAGAGTAGTCCTGTAAGCAG -ACGGAAGAGTAGTCCTGTCGTCAA -ACGGAAGAGTAGTCCTGTGCTGAA -ACGGAAGAGTAGTCCTGTAGTACG -ACGGAAGAGTAGTCCTGTATCCGA -ACGGAAGAGTAGTCCTGTATGGGA -ACGGAAGAGTAGTCCTGTGTGCAA -ACGGAAGAGTAGTCCTGTGAGGAA -ACGGAAGAGTAGTCCTGTCAGGTA -ACGGAAGAGTAGTCCTGTGACTCT -ACGGAAGAGTAGTCCTGTAGTCCT -ACGGAAGAGTAGTCCTGTTAAGCC -ACGGAAGAGTAGTCCTGTATAGCC -ACGGAAGAGTAGTCCTGTTAACCG -ACGGAAGAGTAGTCCTGTATGCCA -ACGGAAGAGTAGCCCATTGGAAAC -ACGGAAGAGTAGCCCATTAACACC -ACGGAAGAGTAGCCCATTATCGAG -ACGGAAGAGTAGCCCATTCTCCTT -ACGGAAGAGTAGCCCATTCCTGTT -ACGGAAGAGTAGCCCATTCGGTTT -ACGGAAGAGTAGCCCATTGTGGTT -ACGGAAGAGTAGCCCATTGCCTTT -ACGGAAGAGTAGCCCATTGGTCTT -ACGGAAGAGTAGCCCATTACGCTT -ACGGAAGAGTAGCCCATTAGCGTT -ACGGAAGAGTAGCCCATTTTCGTC -ACGGAAGAGTAGCCCATTTCTCTC -ACGGAAGAGTAGCCCATTTGGATC -ACGGAAGAGTAGCCCATTCACTTC -ACGGAAGAGTAGCCCATTGTACTC -ACGGAAGAGTAGCCCATTGATGTC -ACGGAAGAGTAGCCCATTACAGTC -ACGGAAGAGTAGCCCATTTTGCTG -ACGGAAGAGTAGCCCATTTCCATG -ACGGAAGAGTAGCCCATTTGTGTG -ACGGAAGAGTAGCCCATTCTAGTG -ACGGAAGAGTAGCCCATTCATCTG -ACGGAAGAGTAGCCCATTGAGTTG -ACGGAAGAGTAGCCCATTAGACTG -ACGGAAGAGTAGCCCATTTCGGTA -ACGGAAGAGTAGCCCATTTGCCTA -ACGGAAGAGTAGCCCATTCCACTA -ACGGAAGAGTAGCCCATTGGAGTA -ACGGAAGAGTAGCCCATTTCGTCT -ACGGAAGAGTAGCCCATTTGCACT -ACGGAAGAGTAGCCCATTCTGACT -ACGGAAGAGTAGCCCATTCAACCT -ACGGAAGAGTAGCCCATTGCTACT -ACGGAAGAGTAGCCCATTGGATCT -ACGGAAGAGTAGCCCATTAAGGCT -ACGGAAGAGTAGCCCATTTCAACC -ACGGAAGAGTAGCCCATTTGTTCC -ACGGAAGAGTAGCCCATTATTCCC -ACGGAAGAGTAGCCCATTTTCTCG -ACGGAAGAGTAGCCCATTTAGACG -ACGGAAGAGTAGCCCATTGTAACG -ACGGAAGAGTAGCCCATTACTTCG -ACGGAAGAGTAGCCCATTTACGCA -ACGGAAGAGTAGCCCATTCTTGCA -ACGGAAGAGTAGCCCATTCGAACA -ACGGAAGAGTAGCCCATTCAGTCA -ACGGAAGAGTAGCCCATTGATCCA -ACGGAAGAGTAGCCCATTACGACA -ACGGAAGAGTAGCCCATTAGCTCA -ACGGAAGAGTAGCCCATTTCACGT -ACGGAAGAGTAGCCCATTCGTAGT -ACGGAAGAGTAGCCCATTGTCAGT -ACGGAAGAGTAGCCCATTGAAGGT -ACGGAAGAGTAGCCCATTAACCGT -ACGGAAGAGTAGCCCATTTTGTGC -ACGGAAGAGTAGCCCATTCTAAGC -ACGGAAGAGTAGCCCATTACTAGC -ACGGAAGAGTAGCCCATTAGATGC -ACGGAAGAGTAGCCCATTTGAAGG -ACGGAAGAGTAGCCCATTCAATGG -ACGGAAGAGTAGCCCATTATGAGG -ACGGAAGAGTAGCCCATTAATGGG -ACGGAAGAGTAGCCCATTTCCTGA -ACGGAAGAGTAGCCCATTTAGCGA -ACGGAAGAGTAGCCCATTCACAGA -ACGGAAGAGTAGCCCATTGCAAGA -ACGGAAGAGTAGCCCATTGGTTGA -ACGGAAGAGTAGCCCATTTCCGAT -ACGGAAGAGTAGCCCATTTGGCAT -ACGGAAGAGTAGCCCATTCGAGAT -ACGGAAGAGTAGCCCATTTACCAC -ACGGAAGAGTAGCCCATTCAGAAC -ACGGAAGAGTAGCCCATTGTCTAC -ACGGAAGAGTAGCCCATTACGTAC -ACGGAAGAGTAGCCCATTAGTGAC -ACGGAAGAGTAGCCCATTCTGTAG -ACGGAAGAGTAGCCCATTCCTAAG -ACGGAAGAGTAGCCCATTGTTCAG -ACGGAAGAGTAGCCCATTGCATAG -ACGGAAGAGTAGCCCATTGACAAG -ACGGAAGAGTAGCCCATTAAGCAG -ACGGAAGAGTAGCCCATTCGTCAA -ACGGAAGAGTAGCCCATTGCTGAA -ACGGAAGAGTAGCCCATTAGTACG -ACGGAAGAGTAGCCCATTATCCGA -ACGGAAGAGTAGCCCATTATGGGA -ACGGAAGAGTAGCCCATTGTGCAA -ACGGAAGAGTAGCCCATTGAGGAA -ACGGAAGAGTAGCCCATTCAGGTA -ACGGAAGAGTAGCCCATTGACTCT -ACGGAAGAGTAGCCCATTAGTCCT -ACGGAAGAGTAGCCCATTTAAGCC -ACGGAAGAGTAGCCCATTATAGCC -ACGGAAGAGTAGCCCATTTAACCG -ACGGAAGAGTAGCCCATTATGCCA -ACGGAAGAGTAGTCGTTCGGAAAC -ACGGAAGAGTAGTCGTTCAACACC -ACGGAAGAGTAGTCGTTCATCGAG -ACGGAAGAGTAGTCGTTCCTCCTT -ACGGAAGAGTAGTCGTTCCCTGTT -ACGGAAGAGTAGTCGTTCCGGTTT -ACGGAAGAGTAGTCGTTCGTGGTT -ACGGAAGAGTAGTCGTTCGCCTTT -ACGGAAGAGTAGTCGTTCGGTCTT -ACGGAAGAGTAGTCGTTCACGCTT -ACGGAAGAGTAGTCGTTCAGCGTT -ACGGAAGAGTAGTCGTTCTTCGTC -ACGGAAGAGTAGTCGTTCTCTCTC -ACGGAAGAGTAGTCGTTCTGGATC -ACGGAAGAGTAGTCGTTCCACTTC -ACGGAAGAGTAGTCGTTCGTACTC -ACGGAAGAGTAGTCGTTCGATGTC -ACGGAAGAGTAGTCGTTCACAGTC -ACGGAAGAGTAGTCGTTCTTGCTG -ACGGAAGAGTAGTCGTTCTCCATG -ACGGAAGAGTAGTCGTTCTGTGTG -ACGGAAGAGTAGTCGTTCCTAGTG -ACGGAAGAGTAGTCGTTCCATCTG -ACGGAAGAGTAGTCGTTCGAGTTG -ACGGAAGAGTAGTCGTTCAGACTG -ACGGAAGAGTAGTCGTTCTCGGTA -ACGGAAGAGTAGTCGTTCTGCCTA -ACGGAAGAGTAGTCGTTCCCACTA -ACGGAAGAGTAGTCGTTCGGAGTA -ACGGAAGAGTAGTCGTTCTCGTCT -ACGGAAGAGTAGTCGTTCTGCACT -ACGGAAGAGTAGTCGTTCCTGACT -ACGGAAGAGTAGTCGTTCCAACCT -ACGGAAGAGTAGTCGTTCGCTACT -ACGGAAGAGTAGTCGTTCGGATCT -ACGGAAGAGTAGTCGTTCAAGGCT -ACGGAAGAGTAGTCGTTCTCAACC -ACGGAAGAGTAGTCGTTCTGTTCC -ACGGAAGAGTAGTCGTTCATTCCC -ACGGAAGAGTAGTCGTTCTTCTCG -ACGGAAGAGTAGTCGTTCTAGACG -ACGGAAGAGTAGTCGTTCGTAACG -ACGGAAGAGTAGTCGTTCACTTCG -ACGGAAGAGTAGTCGTTCTACGCA -ACGGAAGAGTAGTCGTTCCTTGCA -ACGGAAGAGTAGTCGTTCCGAACA -ACGGAAGAGTAGTCGTTCCAGTCA -ACGGAAGAGTAGTCGTTCGATCCA -ACGGAAGAGTAGTCGTTCACGACA -ACGGAAGAGTAGTCGTTCAGCTCA -ACGGAAGAGTAGTCGTTCTCACGT -ACGGAAGAGTAGTCGTTCCGTAGT -ACGGAAGAGTAGTCGTTCGTCAGT -ACGGAAGAGTAGTCGTTCGAAGGT -ACGGAAGAGTAGTCGTTCAACCGT -ACGGAAGAGTAGTCGTTCTTGTGC -ACGGAAGAGTAGTCGTTCCTAAGC -ACGGAAGAGTAGTCGTTCACTAGC -ACGGAAGAGTAGTCGTTCAGATGC -ACGGAAGAGTAGTCGTTCTGAAGG -ACGGAAGAGTAGTCGTTCCAATGG -ACGGAAGAGTAGTCGTTCATGAGG -ACGGAAGAGTAGTCGTTCAATGGG -ACGGAAGAGTAGTCGTTCTCCTGA -ACGGAAGAGTAGTCGTTCTAGCGA -ACGGAAGAGTAGTCGTTCCACAGA -ACGGAAGAGTAGTCGTTCGCAAGA -ACGGAAGAGTAGTCGTTCGGTTGA -ACGGAAGAGTAGTCGTTCTCCGAT -ACGGAAGAGTAGTCGTTCTGGCAT -ACGGAAGAGTAGTCGTTCCGAGAT -ACGGAAGAGTAGTCGTTCTACCAC -ACGGAAGAGTAGTCGTTCCAGAAC -ACGGAAGAGTAGTCGTTCGTCTAC -ACGGAAGAGTAGTCGTTCACGTAC -ACGGAAGAGTAGTCGTTCAGTGAC -ACGGAAGAGTAGTCGTTCCTGTAG -ACGGAAGAGTAGTCGTTCCCTAAG -ACGGAAGAGTAGTCGTTCGTTCAG -ACGGAAGAGTAGTCGTTCGCATAG -ACGGAAGAGTAGTCGTTCGACAAG -ACGGAAGAGTAGTCGTTCAAGCAG -ACGGAAGAGTAGTCGTTCCGTCAA -ACGGAAGAGTAGTCGTTCGCTGAA -ACGGAAGAGTAGTCGTTCAGTACG -ACGGAAGAGTAGTCGTTCATCCGA -ACGGAAGAGTAGTCGTTCATGGGA -ACGGAAGAGTAGTCGTTCGTGCAA -ACGGAAGAGTAGTCGTTCGAGGAA -ACGGAAGAGTAGTCGTTCCAGGTA -ACGGAAGAGTAGTCGTTCGACTCT -ACGGAAGAGTAGTCGTTCAGTCCT -ACGGAAGAGTAGTCGTTCTAAGCC -ACGGAAGAGTAGTCGTTCATAGCC -ACGGAAGAGTAGTCGTTCTAACCG -ACGGAAGAGTAGTCGTTCATGCCA -ACGGAAGAGTAGACGTAGGGAAAC -ACGGAAGAGTAGACGTAGAACACC -ACGGAAGAGTAGACGTAGATCGAG -ACGGAAGAGTAGACGTAGCTCCTT -ACGGAAGAGTAGACGTAGCCTGTT -ACGGAAGAGTAGACGTAGCGGTTT -ACGGAAGAGTAGACGTAGGTGGTT -ACGGAAGAGTAGACGTAGGCCTTT -ACGGAAGAGTAGACGTAGGGTCTT -ACGGAAGAGTAGACGTAGACGCTT -ACGGAAGAGTAGACGTAGAGCGTT -ACGGAAGAGTAGACGTAGTTCGTC -ACGGAAGAGTAGACGTAGTCTCTC -ACGGAAGAGTAGACGTAGTGGATC -ACGGAAGAGTAGACGTAGCACTTC -ACGGAAGAGTAGACGTAGGTACTC -ACGGAAGAGTAGACGTAGGATGTC -ACGGAAGAGTAGACGTAGACAGTC -ACGGAAGAGTAGACGTAGTTGCTG -ACGGAAGAGTAGACGTAGTCCATG -ACGGAAGAGTAGACGTAGTGTGTG -ACGGAAGAGTAGACGTAGCTAGTG -ACGGAAGAGTAGACGTAGCATCTG -ACGGAAGAGTAGACGTAGGAGTTG -ACGGAAGAGTAGACGTAGAGACTG -ACGGAAGAGTAGACGTAGTCGGTA -ACGGAAGAGTAGACGTAGTGCCTA -ACGGAAGAGTAGACGTAGCCACTA -ACGGAAGAGTAGACGTAGGGAGTA -ACGGAAGAGTAGACGTAGTCGTCT -ACGGAAGAGTAGACGTAGTGCACT -ACGGAAGAGTAGACGTAGCTGACT -ACGGAAGAGTAGACGTAGCAACCT -ACGGAAGAGTAGACGTAGGCTACT -ACGGAAGAGTAGACGTAGGGATCT -ACGGAAGAGTAGACGTAGAAGGCT -ACGGAAGAGTAGACGTAGTCAACC -ACGGAAGAGTAGACGTAGTGTTCC -ACGGAAGAGTAGACGTAGATTCCC -ACGGAAGAGTAGACGTAGTTCTCG -ACGGAAGAGTAGACGTAGTAGACG -ACGGAAGAGTAGACGTAGGTAACG -ACGGAAGAGTAGACGTAGACTTCG -ACGGAAGAGTAGACGTAGTACGCA -ACGGAAGAGTAGACGTAGCTTGCA -ACGGAAGAGTAGACGTAGCGAACA -ACGGAAGAGTAGACGTAGCAGTCA -ACGGAAGAGTAGACGTAGGATCCA -ACGGAAGAGTAGACGTAGACGACA -ACGGAAGAGTAGACGTAGAGCTCA -ACGGAAGAGTAGACGTAGTCACGT -ACGGAAGAGTAGACGTAGCGTAGT -ACGGAAGAGTAGACGTAGGTCAGT -ACGGAAGAGTAGACGTAGGAAGGT -ACGGAAGAGTAGACGTAGAACCGT -ACGGAAGAGTAGACGTAGTTGTGC -ACGGAAGAGTAGACGTAGCTAAGC -ACGGAAGAGTAGACGTAGACTAGC -ACGGAAGAGTAGACGTAGAGATGC -ACGGAAGAGTAGACGTAGTGAAGG -ACGGAAGAGTAGACGTAGCAATGG -ACGGAAGAGTAGACGTAGATGAGG -ACGGAAGAGTAGACGTAGAATGGG -ACGGAAGAGTAGACGTAGTCCTGA -ACGGAAGAGTAGACGTAGTAGCGA -ACGGAAGAGTAGACGTAGCACAGA -ACGGAAGAGTAGACGTAGGCAAGA -ACGGAAGAGTAGACGTAGGGTTGA -ACGGAAGAGTAGACGTAGTCCGAT -ACGGAAGAGTAGACGTAGTGGCAT -ACGGAAGAGTAGACGTAGCGAGAT -ACGGAAGAGTAGACGTAGTACCAC -ACGGAAGAGTAGACGTAGCAGAAC -ACGGAAGAGTAGACGTAGGTCTAC -ACGGAAGAGTAGACGTAGACGTAC -ACGGAAGAGTAGACGTAGAGTGAC -ACGGAAGAGTAGACGTAGCTGTAG -ACGGAAGAGTAGACGTAGCCTAAG -ACGGAAGAGTAGACGTAGGTTCAG -ACGGAAGAGTAGACGTAGGCATAG -ACGGAAGAGTAGACGTAGGACAAG -ACGGAAGAGTAGACGTAGAAGCAG -ACGGAAGAGTAGACGTAGCGTCAA -ACGGAAGAGTAGACGTAGGCTGAA -ACGGAAGAGTAGACGTAGAGTACG -ACGGAAGAGTAGACGTAGATCCGA -ACGGAAGAGTAGACGTAGATGGGA -ACGGAAGAGTAGACGTAGGTGCAA -ACGGAAGAGTAGACGTAGGAGGAA -ACGGAAGAGTAGACGTAGCAGGTA -ACGGAAGAGTAGACGTAGGACTCT -ACGGAAGAGTAGACGTAGAGTCCT -ACGGAAGAGTAGACGTAGTAAGCC -ACGGAAGAGTAGACGTAGATAGCC -ACGGAAGAGTAGACGTAGTAACCG -ACGGAAGAGTAGACGTAGATGCCA -ACGGAAGAGTAGACGGTAGGAAAC -ACGGAAGAGTAGACGGTAAACACC -ACGGAAGAGTAGACGGTAATCGAG -ACGGAAGAGTAGACGGTACTCCTT -ACGGAAGAGTAGACGGTACCTGTT -ACGGAAGAGTAGACGGTACGGTTT -ACGGAAGAGTAGACGGTAGTGGTT -ACGGAAGAGTAGACGGTAGCCTTT -ACGGAAGAGTAGACGGTAGGTCTT -ACGGAAGAGTAGACGGTAACGCTT -ACGGAAGAGTAGACGGTAAGCGTT -ACGGAAGAGTAGACGGTATTCGTC -ACGGAAGAGTAGACGGTATCTCTC -ACGGAAGAGTAGACGGTATGGATC -ACGGAAGAGTAGACGGTACACTTC -ACGGAAGAGTAGACGGTAGTACTC -ACGGAAGAGTAGACGGTAGATGTC -ACGGAAGAGTAGACGGTAACAGTC -ACGGAAGAGTAGACGGTATTGCTG -ACGGAAGAGTAGACGGTATCCATG -ACGGAAGAGTAGACGGTATGTGTG -ACGGAAGAGTAGACGGTACTAGTG -ACGGAAGAGTAGACGGTACATCTG -ACGGAAGAGTAGACGGTAGAGTTG -ACGGAAGAGTAGACGGTAAGACTG -ACGGAAGAGTAGACGGTATCGGTA -ACGGAAGAGTAGACGGTATGCCTA -ACGGAAGAGTAGACGGTACCACTA -ACGGAAGAGTAGACGGTAGGAGTA -ACGGAAGAGTAGACGGTATCGTCT -ACGGAAGAGTAGACGGTATGCACT -ACGGAAGAGTAGACGGTACTGACT -ACGGAAGAGTAGACGGTACAACCT -ACGGAAGAGTAGACGGTAGCTACT -ACGGAAGAGTAGACGGTAGGATCT -ACGGAAGAGTAGACGGTAAAGGCT -ACGGAAGAGTAGACGGTATCAACC -ACGGAAGAGTAGACGGTATGTTCC -ACGGAAGAGTAGACGGTAATTCCC -ACGGAAGAGTAGACGGTATTCTCG -ACGGAAGAGTAGACGGTATAGACG -ACGGAAGAGTAGACGGTAGTAACG -ACGGAAGAGTAGACGGTAACTTCG -ACGGAAGAGTAGACGGTATACGCA -ACGGAAGAGTAGACGGTACTTGCA -ACGGAAGAGTAGACGGTACGAACA -ACGGAAGAGTAGACGGTACAGTCA -ACGGAAGAGTAGACGGTAGATCCA -ACGGAAGAGTAGACGGTAACGACA -ACGGAAGAGTAGACGGTAAGCTCA -ACGGAAGAGTAGACGGTATCACGT -ACGGAAGAGTAGACGGTACGTAGT -ACGGAAGAGTAGACGGTAGTCAGT -ACGGAAGAGTAGACGGTAGAAGGT -ACGGAAGAGTAGACGGTAAACCGT -ACGGAAGAGTAGACGGTATTGTGC -ACGGAAGAGTAGACGGTACTAAGC -ACGGAAGAGTAGACGGTAACTAGC -ACGGAAGAGTAGACGGTAAGATGC -ACGGAAGAGTAGACGGTATGAAGG -ACGGAAGAGTAGACGGTACAATGG -ACGGAAGAGTAGACGGTAATGAGG -ACGGAAGAGTAGACGGTAAATGGG -ACGGAAGAGTAGACGGTATCCTGA -ACGGAAGAGTAGACGGTATAGCGA -ACGGAAGAGTAGACGGTACACAGA -ACGGAAGAGTAGACGGTAGCAAGA -ACGGAAGAGTAGACGGTAGGTTGA -ACGGAAGAGTAGACGGTATCCGAT -ACGGAAGAGTAGACGGTATGGCAT -ACGGAAGAGTAGACGGTACGAGAT -ACGGAAGAGTAGACGGTATACCAC -ACGGAAGAGTAGACGGTACAGAAC -ACGGAAGAGTAGACGGTAGTCTAC -ACGGAAGAGTAGACGGTAACGTAC -ACGGAAGAGTAGACGGTAAGTGAC -ACGGAAGAGTAGACGGTACTGTAG -ACGGAAGAGTAGACGGTACCTAAG -ACGGAAGAGTAGACGGTAGTTCAG -ACGGAAGAGTAGACGGTAGCATAG -ACGGAAGAGTAGACGGTAGACAAG -ACGGAAGAGTAGACGGTAAAGCAG -ACGGAAGAGTAGACGGTACGTCAA -ACGGAAGAGTAGACGGTAGCTGAA -ACGGAAGAGTAGACGGTAAGTACG -ACGGAAGAGTAGACGGTAATCCGA -ACGGAAGAGTAGACGGTAATGGGA -ACGGAAGAGTAGACGGTAGTGCAA -ACGGAAGAGTAGACGGTAGAGGAA -ACGGAAGAGTAGACGGTACAGGTA -ACGGAAGAGTAGACGGTAGACTCT -ACGGAAGAGTAGACGGTAAGTCCT -ACGGAAGAGTAGACGGTATAAGCC -ACGGAAGAGTAGACGGTAATAGCC -ACGGAAGAGTAGACGGTATAACCG -ACGGAAGAGTAGACGGTAATGCCA -ACGGAAGAGTAGTCGACTGGAAAC -ACGGAAGAGTAGTCGACTAACACC -ACGGAAGAGTAGTCGACTATCGAG -ACGGAAGAGTAGTCGACTCTCCTT -ACGGAAGAGTAGTCGACTCCTGTT -ACGGAAGAGTAGTCGACTCGGTTT -ACGGAAGAGTAGTCGACTGTGGTT -ACGGAAGAGTAGTCGACTGCCTTT -ACGGAAGAGTAGTCGACTGGTCTT -ACGGAAGAGTAGTCGACTACGCTT -ACGGAAGAGTAGTCGACTAGCGTT -ACGGAAGAGTAGTCGACTTTCGTC -ACGGAAGAGTAGTCGACTTCTCTC -ACGGAAGAGTAGTCGACTTGGATC -ACGGAAGAGTAGTCGACTCACTTC -ACGGAAGAGTAGTCGACTGTACTC -ACGGAAGAGTAGTCGACTGATGTC -ACGGAAGAGTAGTCGACTACAGTC -ACGGAAGAGTAGTCGACTTTGCTG -ACGGAAGAGTAGTCGACTTCCATG -ACGGAAGAGTAGTCGACTTGTGTG -ACGGAAGAGTAGTCGACTCTAGTG -ACGGAAGAGTAGTCGACTCATCTG -ACGGAAGAGTAGTCGACTGAGTTG -ACGGAAGAGTAGTCGACTAGACTG -ACGGAAGAGTAGTCGACTTCGGTA -ACGGAAGAGTAGTCGACTTGCCTA -ACGGAAGAGTAGTCGACTCCACTA -ACGGAAGAGTAGTCGACTGGAGTA -ACGGAAGAGTAGTCGACTTCGTCT -ACGGAAGAGTAGTCGACTTGCACT -ACGGAAGAGTAGTCGACTCTGACT -ACGGAAGAGTAGTCGACTCAACCT -ACGGAAGAGTAGTCGACTGCTACT -ACGGAAGAGTAGTCGACTGGATCT -ACGGAAGAGTAGTCGACTAAGGCT -ACGGAAGAGTAGTCGACTTCAACC -ACGGAAGAGTAGTCGACTTGTTCC -ACGGAAGAGTAGTCGACTATTCCC -ACGGAAGAGTAGTCGACTTTCTCG -ACGGAAGAGTAGTCGACTTAGACG -ACGGAAGAGTAGTCGACTGTAACG -ACGGAAGAGTAGTCGACTACTTCG -ACGGAAGAGTAGTCGACTTACGCA -ACGGAAGAGTAGTCGACTCTTGCA -ACGGAAGAGTAGTCGACTCGAACA -ACGGAAGAGTAGTCGACTCAGTCA -ACGGAAGAGTAGTCGACTGATCCA -ACGGAAGAGTAGTCGACTACGACA -ACGGAAGAGTAGTCGACTAGCTCA -ACGGAAGAGTAGTCGACTTCACGT -ACGGAAGAGTAGTCGACTCGTAGT -ACGGAAGAGTAGTCGACTGTCAGT -ACGGAAGAGTAGTCGACTGAAGGT -ACGGAAGAGTAGTCGACTAACCGT -ACGGAAGAGTAGTCGACTTTGTGC -ACGGAAGAGTAGTCGACTCTAAGC -ACGGAAGAGTAGTCGACTACTAGC -ACGGAAGAGTAGTCGACTAGATGC -ACGGAAGAGTAGTCGACTTGAAGG -ACGGAAGAGTAGTCGACTCAATGG -ACGGAAGAGTAGTCGACTATGAGG -ACGGAAGAGTAGTCGACTAATGGG -ACGGAAGAGTAGTCGACTTCCTGA -ACGGAAGAGTAGTCGACTTAGCGA -ACGGAAGAGTAGTCGACTCACAGA -ACGGAAGAGTAGTCGACTGCAAGA -ACGGAAGAGTAGTCGACTGGTTGA -ACGGAAGAGTAGTCGACTTCCGAT -ACGGAAGAGTAGTCGACTTGGCAT -ACGGAAGAGTAGTCGACTCGAGAT -ACGGAAGAGTAGTCGACTTACCAC -ACGGAAGAGTAGTCGACTCAGAAC -ACGGAAGAGTAGTCGACTGTCTAC -ACGGAAGAGTAGTCGACTACGTAC -ACGGAAGAGTAGTCGACTAGTGAC -ACGGAAGAGTAGTCGACTCTGTAG -ACGGAAGAGTAGTCGACTCCTAAG -ACGGAAGAGTAGTCGACTGTTCAG -ACGGAAGAGTAGTCGACTGCATAG -ACGGAAGAGTAGTCGACTGACAAG -ACGGAAGAGTAGTCGACTAAGCAG -ACGGAAGAGTAGTCGACTCGTCAA -ACGGAAGAGTAGTCGACTGCTGAA -ACGGAAGAGTAGTCGACTAGTACG -ACGGAAGAGTAGTCGACTATCCGA -ACGGAAGAGTAGTCGACTATGGGA -ACGGAAGAGTAGTCGACTGTGCAA -ACGGAAGAGTAGTCGACTGAGGAA -ACGGAAGAGTAGTCGACTCAGGTA -ACGGAAGAGTAGTCGACTGACTCT -ACGGAAGAGTAGTCGACTAGTCCT -ACGGAAGAGTAGTCGACTTAAGCC -ACGGAAGAGTAGTCGACTATAGCC -ACGGAAGAGTAGTCGACTTAACCG -ACGGAAGAGTAGTCGACTATGCCA -ACGGAAGAGTAGGCATACGGAAAC -ACGGAAGAGTAGGCATACAACACC -ACGGAAGAGTAGGCATACATCGAG -ACGGAAGAGTAGGCATACCTCCTT -ACGGAAGAGTAGGCATACCCTGTT -ACGGAAGAGTAGGCATACCGGTTT -ACGGAAGAGTAGGCATACGTGGTT -ACGGAAGAGTAGGCATACGCCTTT -ACGGAAGAGTAGGCATACGGTCTT -ACGGAAGAGTAGGCATACACGCTT -ACGGAAGAGTAGGCATACAGCGTT -ACGGAAGAGTAGGCATACTTCGTC -ACGGAAGAGTAGGCATACTCTCTC -ACGGAAGAGTAGGCATACTGGATC -ACGGAAGAGTAGGCATACCACTTC -ACGGAAGAGTAGGCATACGTACTC -ACGGAAGAGTAGGCATACGATGTC -ACGGAAGAGTAGGCATACACAGTC -ACGGAAGAGTAGGCATACTTGCTG -ACGGAAGAGTAGGCATACTCCATG -ACGGAAGAGTAGGCATACTGTGTG -ACGGAAGAGTAGGCATACCTAGTG -ACGGAAGAGTAGGCATACCATCTG -ACGGAAGAGTAGGCATACGAGTTG -ACGGAAGAGTAGGCATACAGACTG -ACGGAAGAGTAGGCATACTCGGTA -ACGGAAGAGTAGGCATACTGCCTA -ACGGAAGAGTAGGCATACCCACTA -ACGGAAGAGTAGGCATACGGAGTA -ACGGAAGAGTAGGCATACTCGTCT -ACGGAAGAGTAGGCATACTGCACT -ACGGAAGAGTAGGCATACCTGACT -ACGGAAGAGTAGGCATACCAACCT -ACGGAAGAGTAGGCATACGCTACT -ACGGAAGAGTAGGCATACGGATCT -ACGGAAGAGTAGGCATACAAGGCT -ACGGAAGAGTAGGCATACTCAACC -ACGGAAGAGTAGGCATACTGTTCC -ACGGAAGAGTAGGCATACATTCCC -ACGGAAGAGTAGGCATACTTCTCG -ACGGAAGAGTAGGCATACTAGACG -ACGGAAGAGTAGGCATACGTAACG -ACGGAAGAGTAGGCATACACTTCG -ACGGAAGAGTAGGCATACTACGCA -ACGGAAGAGTAGGCATACCTTGCA -ACGGAAGAGTAGGCATACCGAACA -ACGGAAGAGTAGGCATACCAGTCA -ACGGAAGAGTAGGCATACGATCCA -ACGGAAGAGTAGGCATACACGACA -ACGGAAGAGTAGGCATACAGCTCA -ACGGAAGAGTAGGCATACTCACGT -ACGGAAGAGTAGGCATACCGTAGT -ACGGAAGAGTAGGCATACGTCAGT -ACGGAAGAGTAGGCATACGAAGGT -ACGGAAGAGTAGGCATACAACCGT -ACGGAAGAGTAGGCATACTTGTGC -ACGGAAGAGTAGGCATACCTAAGC -ACGGAAGAGTAGGCATACACTAGC -ACGGAAGAGTAGGCATACAGATGC -ACGGAAGAGTAGGCATACTGAAGG -ACGGAAGAGTAGGCATACCAATGG -ACGGAAGAGTAGGCATACATGAGG -ACGGAAGAGTAGGCATACAATGGG -ACGGAAGAGTAGGCATACTCCTGA -ACGGAAGAGTAGGCATACTAGCGA -ACGGAAGAGTAGGCATACCACAGA -ACGGAAGAGTAGGCATACGCAAGA -ACGGAAGAGTAGGCATACGGTTGA -ACGGAAGAGTAGGCATACTCCGAT -ACGGAAGAGTAGGCATACTGGCAT -ACGGAAGAGTAGGCATACCGAGAT -ACGGAAGAGTAGGCATACTACCAC -ACGGAAGAGTAGGCATACCAGAAC -ACGGAAGAGTAGGCATACGTCTAC -ACGGAAGAGTAGGCATACACGTAC -ACGGAAGAGTAGGCATACAGTGAC -ACGGAAGAGTAGGCATACCTGTAG -ACGGAAGAGTAGGCATACCCTAAG -ACGGAAGAGTAGGCATACGTTCAG -ACGGAAGAGTAGGCATACGCATAG -ACGGAAGAGTAGGCATACGACAAG -ACGGAAGAGTAGGCATACAAGCAG -ACGGAAGAGTAGGCATACCGTCAA -ACGGAAGAGTAGGCATACGCTGAA -ACGGAAGAGTAGGCATACAGTACG -ACGGAAGAGTAGGCATACATCCGA -ACGGAAGAGTAGGCATACATGGGA -ACGGAAGAGTAGGCATACGTGCAA -ACGGAAGAGTAGGCATACGAGGAA -ACGGAAGAGTAGGCATACCAGGTA -ACGGAAGAGTAGGCATACGACTCT -ACGGAAGAGTAGGCATACAGTCCT -ACGGAAGAGTAGGCATACTAAGCC -ACGGAAGAGTAGGCATACATAGCC -ACGGAAGAGTAGGCATACTAACCG -ACGGAAGAGTAGGCATACATGCCA -ACGGAAGAGTAGGCACTTGGAAAC -ACGGAAGAGTAGGCACTTAACACC -ACGGAAGAGTAGGCACTTATCGAG -ACGGAAGAGTAGGCACTTCTCCTT -ACGGAAGAGTAGGCACTTCCTGTT -ACGGAAGAGTAGGCACTTCGGTTT -ACGGAAGAGTAGGCACTTGTGGTT -ACGGAAGAGTAGGCACTTGCCTTT -ACGGAAGAGTAGGCACTTGGTCTT -ACGGAAGAGTAGGCACTTACGCTT -ACGGAAGAGTAGGCACTTAGCGTT -ACGGAAGAGTAGGCACTTTTCGTC -ACGGAAGAGTAGGCACTTTCTCTC -ACGGAAGAGTAGGCACTTTGGATC -ACGGAAGAGTAGGCACTTCACTTC -ACGGAAGAGTAGGCACTTGTACTC -ACGGAAGAGTAGGCACTTGATGTC -ACGGAAGAGTAGGCACTTACAGTC -ACGGAAGAGTAGGCACTTTTGCTG -ACGGAAGAGTAGGCACTTTCCATG -ACGGAAGAGTAGGCACTTTGTGTG -ACGGAAGAGTAGGCACTTCTAGTG -ACGGAAGAGTAGGCACTTCATCTG -ACGGAAGAGTAGGCACTTGAGTTG -ACGGAAGAGTAGGCACTTAGACTG -ACGGAAGAGTAGGCACTTTCGGTA -ACGGAAGAGTAGGCACTTTGCCTA -ACGGAAGAGTAGGCACTTCCACTA -ACGGAAGAGTAGGCACTTGGAGTA -ACGGAAGAGTAGGCACTTTCGTCT -ACGGAAGAGTAGGCACTTTGCACT -ACGGAAGAGTAGGCACTTCTGACT -ACGGAAGAGTAGGCACTTCAACCT -ACGGAAGAGTAGGCACTTGCTACT -ACGGAAGAGTAGGCACTTGGATCT -ACGGAAGAGTAGGCACTTAAGGCT -ACGGAAGAGTAGGCACTTTCAACC -ACGGAAGAGTAGGCACTTTGTTCC -ACGGAAGAGTAGGCACTTATTCCC -ACGGAAGAGTAGGCACTTTTCTCG -ACGGAAGAGTAGGCACTTTAGACG -ACGGAAGAGTAGGCACTTGTAACG -ACGGAAGAGTAGGCACTTACTTCG -ACGGAAGAGTAGGCACTTTACGCA -ACGGAAGAGTAGGCACTTCTTGCA -ACGGAAGAGTAGGCACTTCGAACA -ACGGAAGAGTAGGCACTTCAGTCA -ACGGAAGAGTAGGCACTTGATCCA -ACGGAAGAGTAGGCACTTACGACA -ACGGAAGAGTAGGCACTTAGCTCA -ACGGAAGAGTAGGCACTTTCACGT -ACGGAAGAGTAGGCACTTCGTAGT -ACGGAAGAGTAGGCACTTGTCAGT -ACGGAAGAGTAGGCACTTGAAGGT -ACGGAAGAGTAGGCACTTAACCGT -ACGGAAGAGTAGGCACTTTTGTGC -ACGGAAGAGTAGGCACTTCTAAGC -ACGGAAGAGTAGGCACTTACTAGC -ACGGAAGAGTAGGCACTTAGATGC -ACGGAAGAGTAGGCACTTTGAAGG -ACGGAAGAGTAGGCACTTCAATGG -ACGGAAGAGTAGGCACTTATGAGG -ACGGAAGAGTAGGCACTTAATGGG -ACGGAAGAGTAGGCACTTTCCTGA -ACGGAAGAGTAGGCACTTTAGCGA -ACGGAAGAGTAGGCACTTCACAGA -ACGGAAGAGTAGGCACTTGCAAGA -ACGGAAGAGTAGGCACTTGGTTGA -ACGGAAGAGTAGGCACTTTCCGAT -ACGGAAGAGTAGGCACTTTGGCAT -ACGGAAGAGTAGGCACTTCGAGAT -ACGGAAGAGTAGGCACTTTACCAC -ACGGAAGAGTAGGCACTTCAGAAC -ACGGAAGAGTAGGCACTTGTCTAC -ACGGAAGAGTAGGCACTTACGTAC -ACGGAAGAGTAGGCACTTAGTGAC -ACGGAAGAGTAGGCACTTCTGTAG -ACGGAAGAGTAGGCACTTCCTAAG -ACGGAAGAGTAGGCACTTGTTCAG -ACGGAAGAGTAGGCACTTGCATAG -ACGGAAGAGTAGGCACTTGACAAG -ACGGAAGAGTAGGCACTTAAGCAG -ACGGAAGAGTAGGCACTTCGTCAA -ACGGAAGAGTAGGCACTTGCTGAA -ACGGAAGAGTAGGCACTTAGTACG -ACGGAAGAGTAGGCACTTATCCGA -ACGGAAGAGTAGGCACTTATGGGA -ACGGAAGAGTAGGCACTTGTGCAA -ACGGAAGAGTAGGCACTTGAGGAA -ACGGAAGAGTAGGCACTTCAGGTA -ACGGAAGAGTAGGCACTTGACTCT -ACGGAAGAGTAGGCACTTAGTCCT -ACGGAAGAGTAGGCACTTTAAGCC -ACGGAAGAGTAGGCACTTATAGCC -ACGGAAGAGTAGGCACTTTAACCG -ACGGAAGAGTAGGCACTTATGCCA -ACGGAAGAGTAGACACGAGGAAAC -ACGGAAGAGTAGACACGAAACACC -ACGGAAGAGTAGACACGAATCGAG -ACGGAAGAGTAGACACGACTCCTT -ACGGAAGAGTAGACACGACCTGTT -ACGGAAGAGTAGACACGACGGTTT -ACGGAAGAGTAGACACGAGTGGTT -ACGGAAGAGTAGACACGAGCCTTT -ACGGAAGAGTAGACACGAGGTCTT -ACGGAAGAGTAGACACGAACGCTT -ACGGAAGAGTAGACACGAAGCGTT -ACGGAAGAGTAGACACGATTCGTC -ACGGAAGAGTAGACACGATCTCTC -ACGGAAGAGTAGACACGATGGATC -ACGGAAGAGTAGACACGACACTTC -ACGGAAGAGTAGACACGAGTACTC -ACGGAAGAGTAGACACGAGATGTC -ACGGAAGAGTAGACACGAACAGTC -ACGGAAGAGTAGACACGATTGCTG -ACGGAAGAGTAGACACGATCCATG -ACGGAAGAGTAGACACGATGTGTG -ACGGAAGAGTAGACACGACTAGTG -ACGGAAGAGTAGACACGACATCTG -ACGGAAGAGTAGACACGAGAGTTG -ACGGAAGAGTAGACACGAAGACTG -ACGGAAGAGTAGACACGATCGGTA -ACGGAAGAGTAGACACGATGCCTA -ACGGAAGAGTAGACACGACCACTA -ACGGAAGAGTAGACACGAGGAGTA -ACGGAAGAGTAGACACGATCGTCT -ACGGAAGAGTAGACACGATGCACT -ACGGAAGAGTAGACACGACTGACT -ACGGAAGAGTAGACACGACAACCT -ACGGAAGAGTAGACACGAGCTACT -ACGGAAGAGTAGACACGAGGATCT -ACGGAAGAGTAGACACGAAAGGCT -ACGGAAGAGTAGACACGATCAACC -ACGGAAGAGTAGACACGATGTTCC -ACGGAAGAGTAGACACGAATTCCC -ACGGAAGAGTAGACACGATTCTCG -ACGGAAGAGTAGACACGATAGACG -ACGGAAGAGTAGACACGAGTAACG -ACGGAAGAGTAGACACGAACTTCG -ACGGAAGAGTAGACACGATACGCA -ACGGAAGAGTAGACACGACTTGCA -ACGGAAGAGTAGACACGACGAACA -ACGGAAGAGTAGACACGACAGTCA -ACGGAAGAGTAGACACGAGATCCA -ACGGAAGAGTAGACACGAACGACA -ACGGAAGAGTAGACACGAAGCTCA -ACGGAAGAGTAGACACGATCACGT -ACGGAAGAGTAGACACGACGTAGT -ACGGAAGAGTAGACACGAGTCAGT -ACGGAAGAGTAGACACGAGAAGGT -ACGGAAGAGTAGACACGAAACCGT -ACGGAAGAGTAGACACGATTGTGC -ACGGAAGAGTAGACACGACTAAGC -ACGGAAGAGTAGACACGAACTAGC -ACGGAAGAGTAGACACGAAGATGC -ACGGAAGAGTAGACACGATGAAGG -ACGGAAGAGTAGACACGACAATGG -ACGGAAGAGTAGACACGAATGAGG -ACGGAAGAGTAGACACGAAATGGG -ACGGAAGAGTAGACACGATCCTGA -ACGGAAGAGTAGACACGATAGCGA -ACGGAAGAGTAGACACGACACAGA -ACGGAAGAGTAGACACGAGCAAGA -ACGGAAGAGTAGACACGAGGTTGA -ACGGAAGAGTAGACACGATCCGAT -ACGGAAGAGTAGACACGATGGCAT -ACGGAAGAGTAGACACGACGAGAT -ACGGAAGAGTAGACACGATACCAC -ACGGAAGAGTAGACACGACAGAAC -ACGGAAGAGTAGACACGAGTCTAC -ACGGAAGAGTAGACACGAACGTAC -ACGGAAGAGTAGACACGAAGTGAC -ACGGAAGAGTAGACACGACTGTAG -ACGGAAGAGTAGACACGACCTAAG -ACGGAAGAGTAGACACGAGTTCAG -ACGGAAGAGTAGACACGAGCATAG -ACGGAAGAGTAGACACGAGACAAG -ACGGAAGAGTAGACACGAAAGCAG -ACGGAAGAGTAGACACGACGTCAA -ACGGAAGAGTAGACACGAGCTGAA -ACGGAAGAGTAGACACGAAGTACG -ACGGAAGAGTAGACACGAATCCGA -ACGGAAGAGTAGACACGAATGGGA -ACGGAAGAGTAGACACGAGTGCAA -ACGGAAGAGTAGACACGAGAGGAA -ACGGAAGAGTAGACACGACAGGTA -ACGGAAGAGTAGACACGAGACTCT -ACGGAAGAGTAGACACGAAGTCCT -ACGGAAGAGTAGACACGATAAGCC -ACGGAAGAGTAGACACGAATAGCC -ACGGAAGAGTAGACACGATAACCG -ACGGAAGAGTAGACACGAATGCCA -ACGGAAGAGTAGTCACAGGGAAAC -ACGGAAGAGTAGTCACAGAACACC -ACGGAAGAGTAGTCACAGATCGAG -ACGGAAGAGTAGTCACAGCTCCTT -ACGGAAGAGTAGTCACAGCCTGTT -ACGGAAGAGTAGTCACAGCGGTTT -ACGGAAGAGTAGTCACAGGTGGTT -ACGGAAGAGTAGTCACAGGCCTTT -ACGGAAGAGTAGTCACAGGGTCTT -ACGGAAGAGTAGTCACAGACGCTT -ACGGAAGAGTAGTCACAGAGCGTT -ACGGAAGAGTAGTCACAGTTCGTC -ACGGAAGAGTAGTCACAGTCTCTC -ACGGAAGAGTAGTCACAGTGGATC -ACGGAAGAGTAGTCACAGCACTTC -ACGGAAGAGTAGTCACAGGTACTC -ACGGAAGAGTAGTCACAGGATGTC -ACGGAAGAGTAGTCACAGACAGTC -ACGGAAGAGTAGTCACAGTTGCTG -ACGGAAGAGTAGTCACAGTCCATG -ACGGAAGAGTAGTCACAGTGTGTG -ACGGAAGAGTAGTCACAGCTAGTG -ACGGAAGAGTAGTCACAGCATCTG -ACGGAAGAGTAGTCACAGGAGTTG -ACGGAAGAGTAGTCACAGAGACTG -ACGGAAGAGTAGTCACAGTCGGTA -ACGGAAGAGTAGTCACAGTGCCTA -ACGGAAGAGTAGTCACAGCCACTA -ACGGAAGAGTAGTCACAGGGAGTA -ACGGAAGAGTAGTCACAGTCGTCT -ACGGAAGAGTAGTCACAGTGCACT -ACGGAAGAGTAGTCACAGCTGACT -ACGGAAGAGTAGTCACAGCAACCT -ACGGAAGAGTAGTCACAGGCTACT -ACGGAAGAGTAGTCACAGGGATCT -ACGGAAGAGTAGTCACAGAAGGCT -ACGGAAGAGTAGTCACAGTCAACC -ACGGAAGAGTAGTCACAGTGTTCC -ACGGAAGAGTAGTCACAGATTCCC -ACGGAAGAGTAGTCACAGTTCTCG -ACGGAAGAGTAGTCACAGTAGACG -ACGGAAGAGTAGTCACAGGTAACG -ACGGAAGAGTAGTCACAGACTTCG -ACGGAAGAGTAGTCACAGTACGCA -ACGGAAGAGTAGTCACAGCTTGCA -ACGGAAGAGTAGTCACAGCGAACA -ACGGAAGAGTAGTCACAGCAGTCA -ACGGAAGAGTAGTCACAGGATCCA -ACGGAAGAGTAGTCACAGACGACA -ACGGAAGAGTAGTCACAGAGCTCA -ACGGAAGAGTAGTCACAGTCACGT -ACGGAAGAGTAGTCACAGCGTAGT -ACGGAAGAGTAGTCACAGGTCAGT -ACGGAAGAGTAGTCACAGGAAGGT -ACGGAAGAGTAGTCACAGAACCGT -ACGGAAGAGTAGTCACAGTTGTGC -ACGGAAGAGTAGTCACAGCTAAGC -ACGGAAGAGTAGTCACAGACTAGC -ACGGAAGAGTAGTCACAGAGATGC -ACGGAAGAGTAGTCACAGTGAAGG -ACGGAAGAGTAGTCACAGCAATGG -ACGGAAGAGTAGTCACAGATGAGG -ACGGAAGAGTAGTCACAGAATGGG -ACGGAAGAGTAGTCACAGTCCTGA -ACGGAAGAGTAGTCACAGTAGCGA -ACGGAAGAGTAGTCACAGCACAGA -ACGGAAGAGTAGTCACAGGCAAGA -ACGGAAGAGTAGTCACAGGGTTGA -ACGGAAGAGTAGTCACAGTCCGAT -ACGGAAGAGTAGTCACAGTGGCAT -ACGGAAGAGTAGTCACAGCGAGAT -ACGGAAGAGTAGTCACAGTACCAC -ACGGAAGAGTAGTCACAGCAGAAC -ACGGAAGAGTAGTCACAGGTCTAC -ACGGAAGAGTAGTCACAGACGTAC -ACGGAAGAGTAGTCACAGAGTGAC -ACGGAAGAGTAGTCACAGCTGTAG -ACGGAAGAGTAGTCACAGCCTAAG -ACGGAAGAGTAGTCACAGGTTCAG -ACGGAAGAGTAGTCACAGGCATAG -ACGGAAGAGTAGTCACAGGACAAG -ACGGAAGAGTAGTCACAGAAGCAG -ACGGAAGAGTAGTCACAGCGTCAA -ACGGAAGAGTAGTCACAGGCTGAA -ACGGAAGAGTAGTCACAGAGTACG -ACGGAAGAGTAGTCACAGATCCGA -ACGGAAGAGTAGTCACAGATGGGA -ACGGAAGAGTAGTCACAGGTGCAA -ACGGAAGAGTAGTCACAGGAGGAA -ACGGAAGAGTAGTCACAGCAGGTA -ACGGAAGAGTAGTCACAGGACTCT -ACGGAAGAGTAGTCACAGAGTCCT -ACGGAAGAGTAGTCACAGTAAGCC -ACGGAAGAGTAGTCACAGATAGCC -ACGGAAGAGTAGTCACAGTAACCG -ACGGAAGAGTAGTCACAGATGCCA -ACGGAAGAGTAGCCAGATGGAAAC -ACGGAAGAGTAGCCAGATAACACC -ACGGAAGAGTAGCCAGATATCGAG -ACGGAAGAGTAGCCAGATCTCCTT -ACGGAAGAGTAGCCAGATCCTGTT -ACGGAAGAGTAGCCAGATCGGTTT -ACGGAAGAGTAGCCAGATGTGGTT -ACGGAAGAGTAGCCAGATGCCTTT -ACGGAAGAGTAGCCAGATGGTCTT -ACGGAAGAGTAGCCAGATACGCTT -ACGGAAGAGTAGCCAGATAGCGTT -ACGGAAGAGTAGCCAGATTTCGTC -ACGGAAGAGTAGCCAGATTCTCTC -ACGGAAGAGTAGCCAGATTGGATC -ACGGAAGAGTAGCCAGATCACTTC -ACGGAAGAGTAGCCAGATGTACTC -ACGGAAGAGTAGCCAGATGATGTC -ACGGAAGAGTAGCCAGATACAGTC -ACGGAAGAGTAGCCAGATTTGCTG -ACGGAAGAGTAGCCAGATTCCATG -ACGGAAGAGTAGCCAGATTGTGTG -ACGGAAGAGTAGCCAGATCTAGTG -ACGGAAGAGTAGCCAGATCATCTG -ACGGAAGAGTAGCCAGATGAGTTG -ACGGAAGAGTAGCCAGATAGACTG -ACGGAAGAGTAGCCAGATTCGGTA -ACGGAAGAGTAGCCAGATTGCCTA -ACGGAAGAGTAGCCAGATCCACTA -ACGGAAGAGTAGCCAGATGGAGTA -ACGGAAGAGTAGCCAGATTCGTCT -ACGGAAGAGTAGCCAGATTGCACT -ACGGAAGAGTAGCCAGATCTGACT -ACGGAAGAGTAGCCAGATCAACCT -ACGGAAGAGTAGCCAGATGCTACT -ACGGAAGAGTAGCCAGATGGATCT -ACGGAAGAGTAGCCAGATAAGGCT -ACGGAAGAGTAGCCAGATTCAACC -ACGGAAGAGTAGCCAGATTGTTCC -ACGGAAGAGTAGCCAGATATTCCC -ACGGAAGAGTAGCCAGATTTCTCG -ACGGAAGAGTAGCCAGATTAGACG -ACGGAAGAGTAGCCAGATGTAACG -ACGGAAGAGTAGCCAGATACTTCG -ACGGAAGAGTAGCCAGATTACGCA -ACGGAAGAGTAGCCAGATCTTGCA -ACGGAAGAGTAGCCAGATCGAACA -ACGGAAGAGTAGCCAGATCAGTCA -ACGGAAGAGTAGCCAGATGATCCA -ACGGAAGAGTAGCCAGATACGACA -ACGGAAGAGTAGCCAGATAGCTCA -ACGGAAGAGTAGCCAGATTCACGT -ACGGAAGAGTAGCCAGATCGTAGT -ACGGAAGAGTAGCCAGATGTCAGT -ACGGAAGAGTAGCCAGATGAAGGT -ACGGAAGAGTAGCCAGATAACCGT -ACGGAAGAGTAGCCAGATTTGTGC -ACGGAAGAGTAGCCAGATCTAAGC -ACGGAAGAGTAGCCAGATACTAGC -ACGGAAGAGTAGCCAGATAGATGC -ACGGAAGAGTAGCCAGATTGAAGG -ACGGAAGAGTAGCCAGATCAATGG -ACGGAAGAGTAGCCAGATATGAGG -ACGGAAGAGTAGCCAGATAATGGG -ACGGAAGAGTAGCCAGATTCCTGA -ACGGAAGAGTAGCCAGATTAGCGA -ACGGAAGAGTAGCCAGATCACAGA -ACGGAAGAGTAGCCAGATGCAAGA -ACGGAAGAGTAGCCAGATGGTTGA -ACGGAAGAGTAGCCAGATTCCGAT -ACGGAAGAGTAGCCAGATTGGCAT -ACGGAAGAGTAGCCAGATCGAGAT -ACGGAAGAGTAGCCAGATTACCAC -ACGGAAGAGTAGCCAGATCAGAAC -ACGGAAGAGTAGCCAGATGTCTAC -ACGGAAGAGTAGCCAGATACGTAC -ACGGAAGAGTAGCCAGATAGTGAC -ACGGAAGAGTAGCCAGATCTGTAG -ACGGAAGAGTAGCCAGATCCTAAG -ACGGAAGAGTAGCCAGATGTTCAG -ACGGAAGAGTAGCCAGATGCATAG -ACGGAAGAGTAGCCAGATGACAAG -ACGGAAGAGTAGCCAGATAAGCAG -ACGGAAGAGTAGCCAGATCGTCAA -ACGGAAGAGTAGCCAGATGCTGAA -ACGGAAGAGTAGCCAGATAGTACG -ACGGAAGAGTAGCCAGATATCCGA -ACGGAAGAGTAGCCAGATATGGGA -ACGGAAGAGTAGCCAGATGTGCAA -ACGGAAGAGTAGCCAGATGAGGAA -ACGGAAGAGTAGCCAGATCAGGTA -ACGGAAGAGTAGCCAGATGACTCT -ACGGAAGAGTAGCCAGATAGTCCT -ACGGAAGAGTAGCCAGATTAAGCC -ACGGAAGAGTAGCCAGATATAGCC -ACGGAAGAGTAGCCAGATTAACCG -ACGGAAGAGTAGCCAGATATGCCA -ACGGAAGAGTAGACAACGGGAAAC -ACGGAAGAGTAGACAACGAACACC -ACGGAAGAGTAGACAACGATCGAG -ACGGAAGAGTAGACAACGCTCCTT -ACGGAAGAGTAGACAACGCCTGTT -ACGGAAGAGTAGACAACGCGGTTT -ACGGAAGAGTAGACAACGGTGGTT -ACGGAAGAGTAGACAACGGCCTTT -ACGGAAGAGTAGACAACGGGTCTT -ACGGAAGAGTAGACAACGACGCTT -ACGGAAGAGTAGACAACGAGCGTT -ACGGAAGAGTAGACAACGTTCGTC -ACGGAAGAGTAGACAACGTCTCTC -ACGGAAGAGTAGACAACGTGGATC -ACGGAAGAGTAGACAACGCACTTC -ACGGAAGAGTAGACAACGGTACTC -ACGGAAGAGTAGACAACGGATGTC -ACGGAAGAGTAGACAACGACAGTC -ACGGAAGAGTAGACAACGTTGCTG -ACGGAAGAGTAGACAACGTCCATG -ACGGAAGAGTAGACAACGTGTGTG -ACGGAAGAGTAGACAACGCTAGTG -ACGGAAGAGTAGACAACGCATCTG -ACGGAAGAGTAGACAACGGAGTTG -ACGGAAGAGTAGACAACGAGACTG -ACGGAAGAGTAGACAACGTCGGTA -ACGGAAGAGTAGACAACGTGCCTA -ACGGAAGAGTAGACAACGCCACTA -ACGGAAGAGTAGACAACGGGAGTA -ACGGAAGAGTAGACAACGTCGTCT -ACGGAAGAGTAGACAACGTGCACT -ACGGAAGAGTAGACAACGCTGACT -ACGGAAGAGTAGACAACGCAACCT -ACGGAAGAGTAGACAACGGCTACT -ACGGAAGAGTAGACAACGGGATCT -ACGGAAGAGTAGACAACGAAGGCT -ACGGAAGAGTAGACAACGTCAACC -ACGGAAGAGTAGACAACGTGTTCC -ACGGAAGAGTAGACAACGATTCCC -ACGGAAGAGTAGACAACGTTCTCG -ACGGAAGAGTAGACAACGTAGACG -ACGGAAGAGTAGACAACGGTAACG -ACGGAAGAGTAGACAACGACTTCG -ACGGAAGAGTAGACAACGTACGCA -ACGGAAGAGTAGACAACGCTTGCA -ACGGAAGAGTAGACAACGCGAACA -ACGGAAGAGTAGACAACGCAGTCA -ACGGAAGAGTAGACAACGGATCCA -ACGGAAGAGTAGACAACGACGACA -ACGGAAGAGTAGACAACGAGCTCA -ACGGAAGAGTAGACAACGTCACGT -ACGGAAGAGTAGACAACGCGTAGT -ACGGAAGAGTAGACAACGGTCAGT -ACGGAAGAGTAGACAACGGAAGGT -ACGGAAGAGTAGACAACGAACCGT -ACGGAAGAGTAGACAACGTTGTGC -ACGGAAGAGTAGACAACGCTAAGC -ACGGAAGAGTAGACAACGACTAGC -ACGGAAGAGTAGACAACGAGATGC -ACGGAAGAGTAGACAACGTGAAGG -ACGGAAGAGTAGACAACGCAATGG -ACGGAAGAGTAGACAACGATGAGG -ACGGAAGAGTAGACAACGAATGGG -ACGGAAGAGTAGACAACGTCCTGA -ACGGAAGAGTAGACAACGTAGCGA -ACGGAAGAGTAGACAACGCACAGA -ACGGAAGAGTAGACAACGGCAAGA -ACGGAAGAGTAGACAACGGGTTGA -ACGGAAGAGTAGACAACGTCCGAT -ACGGAAGAGTAGACAACGTGGCAT -ACGGAAGAGTAGACAACGCGAGAT -ACGGAAGAGTAGACAACGTACCAC -ACGGAAGAGTAGACAACGCAGAAC -ACGGAAGAGTAGACAACGGTCTAC -ACGGAAGAGTAGACAACGACGTAC -ACGGAAGAGTAGACAACGAGTGAC -ACGGAAGAGTAGACAACGCTGTAG -ACGGAAGAGTAGACAACGCCTAAG -ACGGAAGAGTAGACAACGGTTCAG -ACGGAAGAGTAGACAACGGCATAG -ACGGAAGAGTAGACAACGGACAAG -ACGGAAGAGTAGACAACGAAGCAG -ACGGAAGAGTAGACAACGCGTCAA -ACGGAAGAGTAGACAACGGCTGAA -ACGGAAGAGTAGACAACGAGTACG -ACGGAAGAGTAGACAACGATCCGA -ACGGAAGAGTAGACAACGATGGGA -ACGGAAGAGTAGACAACGGTGCAA -ACGGAAGAGTAGACAACGGAGGAA -ACGGAAGAGTAGACAACGCAGGTA -ACGGAAGAGTAGACAACGGACTCT -ACGGAAGAGTAGACAACGAGTCCT -ACGGAAGAGTAGACAACGTAAGCC -ACGGAAGAGTAGACAACGATAGCC -ACGGAAGAGTAGACAACGTAACCG -ACGGAAGAGTAGACAACGATGCCA -ACGGAAGAGTAGTCAAGCGGAAAC -ACGGAAGAGTAGTCAAGCAACACC -ACGGAAGAGTAGTCAAGCATCGAG -ACGGAAGAGTAGTCAAGCCTCCTT -ACGGAAGAGTAGTCAAGCCCTGTT -ACGGAAGAGTAGTCAAGCCGGTTT -ACGGAAGAGTAGTCAAGCGTGGTT -ACGGAAGAGTAGTCAAGCGCCTTT -ACGGAAGAGTAGTCAAGCGGTCTT -ACGGAAGAGTAGTCAAGCACGCTT -ACGGAAGAGTAGTCAAGCAGCGTT -ACGGAAGAGTAGTCAAGCTTCGTC -ACGGAAGAGTAGTCAAGCTCTCTC -ACGGAAGAGTAGTCAAGCTGGATC -ACGGAAGAGTAGTCAAGCCACTTC -ACGGAAGAGTAGTCAAGCGTACTC -ACGGAAGAGTAGTCAAGCGATGTC -ACGGAAGAGTAGTCAAGCACAGTC -ACGGAAGAGTAGTCAAGCTTGCTG -ACGGAAGAGTAGTCAAGCTCCATG -ACGGAAGAGTAGTCAAGCTGTGTG -ACGGAAGAGTAGTCAAGCCTAGTG -ACGGAAGAGTAGTCAAGCCATCTG -ACGGAAGAGTAGTCAAGCGAGTTG -ACGGAAGAGTAGTCAAGCAGACTG -ACGGAAGAGTAGTCAAGCTCGGTA -ACGGAAGAGTAGTCAAGCTGCCTA -ACGGAAGAGTAGTCAAGCCCACTA -ACGGAAGAGTAGTCAAGCGGAGTA -ACGGAAGAGTAGTCAAGCTCGTCT -ACGGAAGAGTAGTCAAGCTGCACT -ACGGAAGAGTAGTCAAGCCTGACT -ACGGAAGAGTAGTCAAGCCAACCT -ACGGAAGAGTAGTCAAGCGCTACT -ACGGAAGAGTAGTCAAGCGGATCT -ACGGAAGAGTAGTCAAGCAAGGCT -ACGGAAGAGTAGTCAAGCTCAACC -ACGGAAGAGTAGTCAAGCTGTTCC -ACGGAAGAGTAGTCAAGCATTCCC -ACGGAAGAGTAGTCAAGCTTCTCG -ACGGAAGAGTAGTCAAGCTAGACG -ACGGAAGAGTAGTCAAGCGTAACG -ACGGAAGAGTAGTCAAGCACTTCG -ACGGAAGAGTAGTCAAGCTACGCA -ACGGAAGAGTAGTCAAGCCTTGCA -ACGGAAGAGTAGTCAAGCCGAACA -ACGGAAGAGTAGTCAAGCCAGTCA -ACGGAAGAGTAGTCAAGCGATCCA -ACGGAAGAGTAGTCAAGCACGACA -ACGGAAGAGTAGTCAAGCAGCTCA -ACGGAAGAGTAGTCAAGCTCACGT -ACGGAAGAGTAGTCAAGCCGTAGT -ACGGAAGAGTAGTCAAGCGTCAGT -ACGGAAGAGTAGTCAAGCGAAGGT -ACGGAAGAGTAGTCAAGCAACCGT -ACGGAAGAGTAGTCAAGCTTGTGC -ACGGAAGAGTAGTCAAGCCTAAGC -ACGGAAGAGTAGTCAAGCACTAGC -ACGGAAGAGTAGTCAAGCAGATGC -ACGGAAGAGTAGTCAAGCTGAAGG -ACGGAAGAGTAGTCAAGCCAATGG -ACGGAAGAGTAGTCAAGCATGAGG -ACGGAAGAGTAGTCAAGCAATGGG -ACGGAAGAGTAGTCAAGCTCCTGA -ACGGAAGAGTAGTCAAGCTAGCGA -ACGGAAGAGTAGTCAAGCCACAGA -ACGGAAGAGTAGTCAAGCGCAAGA -ACGGAAGAGTAGTCAAGCGGTTGA -ACGGAAGAGTAGTCAAGCTCCGAT -ACGGAAGAGTAGTCAAGCTGGCAT -ACGGAAGAGTAGTCAAGCCGAGAT -ACGGAAGAGTAGTCAAGCTACCAC -ACGGAAGAGTAGTCAAGCCAGAAC -ACGGAAGAGTAGTCAAGCGTCTAC -ACGGAAGAGTAGTCAAGCACGTAC -ACGGAAGAGTAGTCAAGCAGTGAC -ACGGAAGAGTAGTCAAGCCTGTAG -ACGGAAGAGTAGTCAAGCCCTAAG -ACGGAAGAGTAGTCAAGCGTTCAG -ACGGAAGAGTAGTCAAGCGCATAG -ACGGAAGAGTAGTCAAGCGACAAG -ACGGAAGAGTAGTCAAGCAAGCAG -ACGGAAGAGTAGTCAAGCCGTCAA -ACGGAAGAGTAGTCAAGCGCTGAA -ACGGAAGAGTAGTCAAGCAGTACG -ACGGAAGAGTAGTCAAGCATCCGA -ACGGAAGAGTAGTCAAGCATGGGA -ACGGAAGAGTAGTCAAGCGTGCAA -ACGGAAGAGTAGTCAAGCGAGGAA -ACGGAAGAGTAGTCAAGCCAGGTA -ACGGAAGAGTAGTCAAGCGACTCT -ACGGAAGAGTAGTCAAGCAGTCCT -ACGGAAGAGTAGTCAAGCTAAGCC -ACGGAAGAGTAGTCAAGCATAGCC -ACGGAAGAGTAGTCAAGCTAACCG -ACGGAAGAGTAGTCAAGCATGCCA -ACGGAAGAGTAGCGTTCAGGAAAC -ACGGAAGAGTAGCGTTCAAACACC -ACGGAAGAGTAGCGTTCAATCGAG -ACGGAAGAGTAGCGTTCACTCCTT -ACGGAAGAGTAGCGTTCACCTGTT -ACGGAAGAGTAGCGTTCACGGTTT -ACGGAAGAGTAGCGTTCAGTGGTT -ACGGAAGAGTAGCGTTCAGCCTTT -ACGGAAGAGTAGCGTTCAGGTCTT -ACGGAAGAGTAGCGTTCAACGCTT -ACGGAAGAGTAGCGTTCAAGCGTT -ACGGAAGAGTAGCGTTCATTCGTC -ACGGAAGAGTAGCGTTCATCTCTC -ACGGAAGAGTAGCGTTCATGGATC -ACGGAAGAGTAGCGTTCACACTTC -ACGGAAGAGTAGCGTTCAGTACTC -ACGGAAGAGTAGCGTTCAGATGTC -ACGGAAGAGTAGCGTTCAACAGTC -ACGGAAGAGTAGCGTTCATTGCTG -ACGGAAGAGTAGCGTTCATCCATG -ACGGAAGAGTAGCGTTCATGTGTG -ACGGAAGAGTAGCGTTCACTAGTG -ACGGAAGAGTAGCGTTCACATCTG -ACGGAAGAGTAGCGTTCAGAGTTG -ACGGAAGAGTAGCGTTCAAGACTG -ACGGAAGAGTAGCGTTCATCGGTA -ACGGAAGAGTAGCGTTCATGCCTA -ACGGAAGAGTAGCGTTCACCACTA -ACGGAAGAGTAGCGTTCAGGAGTA -ACGGAAGAGTAGCGTTCATCGTCT -ACGGAAGAGTAGCGTTCATGCACT -ACGGAAGAGTAGCGTTCACTGACT -ACGGAAGAGTAGCGTTCACAACCT -ACGGAAGAGTAGCGTTCAGCTACT -ACGGAAGAGTAGCGTTCAGGATCT -ACGGAAGAGTAGCGTTCAAAGGCT -ACGGAAGAGTAGCGTTCATCAACC -ACGGAAGAGTAGCGTTCATGTTCC -ACGGAAGAGTAGCGTTCAATTCCC -ACGGAAGAGTAGCGTTCATTCTCG -ACGGAAGAGTAGCGTTCATAGACG -ACGGAAGAGTAGCGTTCAGTAACG -ACGGAAGAGTAGCGTTCAACTTCG -ACGGAAGAGTAGCGTTCATACGCA -ACGGAAGAGTAGCGTTCACTTGCA -ACGGAAGAGTAGCGTTCACGAACA -ACGGAAGAGTAGCGTTCACAGTCA -ACGGAAGAGTAGCGTTCAGATCCA -ACGGAAGAGTAGCGTTCAACGACA -ACGGAAGAGTAGCGTTCAAGCTCA -ACGGAAGAGTAGCGTTCATCACGT -ACGGAAGAGTAGCGTTCACGTAGT -ACGGAAGAGTAGCGTTCAGTCAGT -ACGGAAGAGTAGCGTTCAGAAGGT -ACGGAAGAGTAGCGTTCAAACCGT -ACGGAAGAGTAGCGTTCATTGTGC -ACGGAAGAGTAGCGTTCACTAAGC -ACGGAAGAGTAGCGTTCAACTAGC -ACGGAAGAGTAGCGTTCAAGATGC -ACGGAAGAGTAGCGTTCATGAAGG -ACGGAAGAGTAGCGTTCACAATGG -ACGGAAGAGTAGCGTTCAATGAGG -ACGGAAGAGTAGCGTTCAAATGGG -ACGGAAGAGTAGCGTTCATCCTGA -ACGGAAGAGTAGCGTTCATAGCGA -ACGGAAGAGTAGCGTTCACACAGA -ACGGAAGAGTAGCGTTCAGCAAGA -ACGGAAGAGTAGCGTTCAGGTTGA -ACGGAAGAGTAGCGTTCATCCGAT -ACGGAAGAGTAGCGTTCATGGCAT -ACGGAAGAGTAGCGTTCACGAGAT -ACGGAAGAGTAGCGTTCATACCAC -ACGGAAGAGTAGCGTTCACAGAAC -ACGGAAGAGTAGCGTTCAGTCTAC -ACGGAAGAGTAGCGTTCAACGTAC -ACGGAAGAGTAGCGTTCAAGTGAC -ACGGAAGAGTAGCGTTCACTGTAG -ACGGAAGAGTAGCGTTCACCTAAG -ACGGAAGAGTAGCGTTCAGTTCAG -ACGGAAGAGTAGCGTTCAGCATAG -ACGGAAGAGTAGCGTTCAGACAAG -ACGGAAGAGTAGCGTTCAAAGCAG -ACGGAAGAGTAGCGTTCACGTCAA -ACGGAAGAGTAGCGTTCAGCTGAA -ACGGAAGAGTAGCGTTCAAGTACG -ACGGAAGAGTAGCGTTCAATCCGA -ACGGAAGAGTAGCGTTCAATGGGA -ACGGAAGAGTAGCGTTCAGTGCAA -ACGGAAGAGTAGCGTTCAGAGGAA -ACGGAAGAGTAGCGTTCACAGGTA -ACGGAAGAGTAGCGTTCAGACTCT -ACGGAAGAGTAGCGTTCAAGTCCT -ACGGAAGAGTAGCGTTCATAAGCC -ACGGAAGAGTAGCGTTCAATAGCC -ACGGAAGAGTAGCGTTCATAACCG -ACGGAAGAGTAGCGTTCAATGCCA -ACGGAAGAGTAGAGTCGTGGAAAC -ACGGAAGAGTAGAGTCGTAACACC -ACGGAAGAGTAGAGTCGTATCGAG -ACGGAAGAGTAGAGTCGTCTCCTT -ACGGAAGAGTAGAGTCGTCCTGTT -ACGGAAGAGTAGAGTCGTCGGTTT -ACGGAAGAGTAGAGTCGTGTGGTT -ACGGAAGAGTAGAGTCGTGCCTTT -ACGGAAGAGTAGAGTCGTGGTCTT -ACGGAAGAGTAGAGTCGTACGCTT -ACGGAAGAGTAGAGTCGTAGCGTT -ACGGAAGAGTAGAGTCGTTTCGTC -ACGGAAGAGTAGAGTCGTTCTCTC -ACGGAAGAGTAGAGTCGTTGGATC -ACGGAAGAGTAGAGTCGTCACTTC -ACGGAAGAGTAGAGTCGTGTACTC -ACGGAAGAGTAGAGTCGTGATGTC -ACGGAAGAGTAGAGTCGTACAGTC -ACGGAAGAGTAGAGTCGTTTGCTG -ACGGAAGAGTAGAGTCGTTCCATG -ACGGAAGAGTAGAGTCGTTGTGTG -ACGGAAGAGTAGAGTCGTCTAGTG -ACGGAAGAGTAGAGTCGTCATCTG -ACGGAAGAGTAGAGTCGTGAGTTG -ACGGAAGAGTAGAGTCGTAGACTG -ACGGAAGAGTAGAGTCGTTCGGTA -ACGGAAGAGTAGAGTCGTTGCCTA -ACGGAAGAGTAGAGTCGTCCACTA -ACGGAAGAGTAGAGTCGTGGAGTA -ACGGAAGAGTAGAGTCGTTCGTCT -ACGGAAGAGTAGAGTCGTTGCACT -ACGGAAGAGTAGAGTCGTCTGACT -ACGGAAGAGTAGAGTCGTCAACCT -ACGGAAGAGTAGAGTCGTGCTACT -ACGGAAGAGTAGAGTCGTGGATCT -ACGGAAGAGTAGAGTCGTAAGGCT -ACGGAAGAGTAGAGTCGTTCAACC -ACGGAAGAGTAGAGTCGTTGTTCC -ACGGAAGAGTAGAGTCGTATTCCC -ACGGAAGAGTAGAGTCGTTTCTCG -ACGGAAGAGTAGAGTCGTTAGACG -ACGGAAGAGTAGAGTCGTGTAACG -ACGGAAGAGTAGAGTCGTACTTCG -ACGGAAGAGTAGAGTCGTTACGCA -ACGGAAGAGTAGAGTCGTCTTGCA -ACGGAAGAGTAGAGTCGTCGAACA -ACGGAAGAGTAGAGTCGTCAGTCA -ACGGAAGAGTAGAGTCGTGATCCA -ACGGAAGAGTAGAGTCGTACGACA -ACGGAAGAGTAGAGTCGTAGCTCA -ACGGAAGAGTAGAGTCGTTCACGT -ACGGAAGAGTAGAGTCGTCGTAGT -ACGGAAGAGTAGAGTCGTGTCAGT -ACGGAAGAGTAGAGTCGTGAAGGT -ACGGAAGAGTAGAGTCGTAACCGT -ACGGAAGAGTAGAGTCGTTTGTGC -ACGGAAGAGTAGAGTCGTCTAAGC -ACGGAAGAGTAGAGTCGTACTAGC -ACGGAAGAGTAGAGTCGTAGATGC -ACGGAAGAGTAGAGTCGTTGAAGG -ACGGAAGAGTAGAGTCGTCAATGG -ACGGAAGAGTAGAGTCGTATGAGG -ACGGAAGAGTAGAGTCGTAATGGG -ACGGAAGAGTAGAGTCGTTCCTGA -ACGGAAGAGTAGAGTCGTTAGCGA -ACGGAAGAGTAGAGTCGTCACAGA -ACGGAAGAGTAGAGTCGTGCAAGA -ACGGAAGAGTAGAGTCGTGGTTGA -ACGGAAGAGTAGAGTCGTTCCGAT -ACGGAAGAGTAGAGTCGTTGGCAT -ACGGAAGAGTAGAGTCGTCGAGAT -ACGGAAGAGTAGAGTCGTTACCAC -ACGGAAGAGTAGAGTCGTCAGAAC -ACGGAAGAGTAGAGTCGTGTCTAC -ACGGAAGAGTAGAGTCGTACGTAC -ACGGAAGAGTAGAGTCGTAGTGAC -ACGGAAGAGTAGAGTCGTCTGTAG -ACGGAAGAGTAGAGTCGTCCTAAG -ACGGAAGAGTAGAGTCGTGTTCAG -ACGGAAGAGTAGAGTCGTGCATAG -ACGGAAGAGTAGAGTCGTGACAAG -ACGGAAGAGTAGAGTCGTAAGCAG -ACGGAAGAGTAGAGTCGTCGTCAA -ACGGAAGAGTAGAGTCGTGCTGAA -ACGGAAGAGTAGAGTCGTAGTACG -ACGGAAGAGTAGAGTCGTATCCGA -ACGGAAGAGTAGAGTCGTATGGGA -ACGGAAGAGTAGAGTCGTGTGCAA -ACGGAAGAGTAGAGTCGTGAGGAA -ACGGAAGAGTAGAGTCGTCAGGTA -ACGGAAGAGTAGAGTCGTGACTCT -ACGGAAGAGTAGAGTCGTAGTCCT -ACGGAAGAGTAGAGTCGTTAAGCC -ACGGAAGAGTAGAGTCGTATAGCC -ACGGAAGAGTAGAGTCGTTAACCG -ACGGAAGAGTAGAGTCGTATGCCA -ACGGAAGAGTAGAGTGTCGGAAAC -ACGGAAGAGTAGAGTGTCAACACC -ACGGAAGAGTAGAGTGTCATCGAG -ACGGAAGAGTAGAGTGTCCTCCTT -ACGGAAGAGTAGAGTGTCCCTGTT -ACGGAAGAGTAGAGTGTCCGGTTT -ACGGAAGAGTAGAGTGTCGTGGTT -ACGGAAGAGTAGAGTGTCGCCTTT -ACGGAAGAGTAGAGTGTCGGTCTT -ACGGAAGAGTAGAGTGTCACGCTT -ACGGAAGAGTAGAGTGTCAGCGTT -ACGGAAGAGTAGAGTGTCTTCGTC -ACGGAAGAGTAGAGTGTCTCTCTC -ACGGAAGAGTAGAGTGTCTGGATC -ACGGAAGAGTAGAGTGTCCACTTC -ACGGAAGAGTAGAGTGTCGTACTC -ACGGAAGAGTAGAGTGTCGATGTC -ACGGAAGAGTAGAGTGTCACAGTC -ACGGAAGAGTAGAGTGTCTTGCTG -ACGGAAGAGTAGAGTGTCTCCATG -ACGGAAGAGTAGAGTGTCTGTGTG -ACGGAAGAGTAGAGTGTCCTAGTG -ACGGAAGAGTAGAGTGTCCATCTG -ACGGAAGAGTAGAGTGTCGAGTTG -ACGGAAGAGTAGAGTGTCAGACTG -ACGGAAGAGTAGAGTGTCTCGGTA -ACGGAAGAGTAGAGTGTCTGCCTA -ACGGAAGAGTAGAGTGTCCCACTA -ACGGAAGAGTAGAGTGTCGGAGTA -ACGGAAGAGTAGAGTGTCTCGTCT -ACGGAAGAGTAGAGTGTCTGCACT -ACGGAAGAGTAGAGTGTCCTGACT -ACGGAAGAGTAGAGTGTCCAACCT -ACGGAAGAGTAGAGTGTCGCTACT -ACGGAAGAGTAGAGTGTCGGATCT -ACGGAAGAGTAGAGTGTCAAGGCT -ACGGAAGAGTAGAGTGTCTCAACC -ACGGAAGAGTAGAGTGTCTGTTCC -ACGGAAGAGTAGAGTGTCATTCCC -ACGGAAGAGTAGAGTGTCTTCTCG -ACGGAAGAGTAGAGTGTCTAGACG -ACGGAAGAGTAGAGTGTCGTAACG -ACGGAAGAGTAGAGTGTCACTTCG -ACGGAAGAGTAGAGTGTCTACGCA -ACGGAAGAGTAGAGTGTCCTTGCA -ACGGAAGAGTAGAGTGTCCGAACA -ACGGAAGAGTAGAGTGTCCAGTCA -ACGGAAGAGTAGAGTGTCGATCCA -ACGGAAGAGTAGAGTGTCACGACA -ACGGAAGAGTAGAGTGTCAGCTCA -ACGGAAGAGTAGAGTGTCTCACGT -ACGGAAGAGTAGAGTGTCCGTAGT -ACGGAAGAGTAGAGTGTCGTCAGT -ACGGAAGAGTAGAGTGTCGAAGGT -ACGGAAGAGTAGAGTGTCAACCGT -ACGGAAGAGTAGAGTGTCTTGTGC -ACGGAAGAGTAGAGTGTCCTAAGC -ACGGAAGAGTAGAGTGTCACTAGC -ACGGAAGAGTAGAGTGTCAGATGC -ACGGAAGAGTAGAGTGTCTGAAGG -ACGGAAGAGTAGAGTGTCCAATGG -ACGGAAGAGTAGAGTGTCATGAGG -ACGGAAGAGTAGAGTGTCAATGGG -ACGGAAGAGTAGAGTGTCTCCTGA -ACGGAAGAGTAGAGTGTCTAGCGA -ACGGAAGAGTAGAGTGTCCACAGA -ACGGAAGAGTAGAGTGTCGCAAGA -ACGGAAGAGTAGAGTGTCGGTTGA -ACGGAAGAGTAGAGTGTCTCCGAT -ACGGAAGAGTAGAGTGTCTGGCAT -ACGGAAGAGTAGAGTGTCCGAGAT -ACGGAAGAGTAGAGTGTCTACCAC -ACGGAAGAGTAGAGTGTCCAGAAC -ACGGAAGAGTAGAGTGTCGTCTAC -ACGGAAGAGTAGAGTGTCACGTAC -ACGGAAGAGTAGAGTGTCAGTGAC -ACGGAAGAGTAGAGTGTCCTGTAG -ACGGAAGAGTAGAGTGTCCCTAAG -ACGGAAGAGTAGAGTGTCGTTCAG -ACGGAAGAGTAGAGTGTCGCATAG -ACGGAAGAGTAGAGTGTCGACAAG -ACGGAAGAGTAGAGTGTCAAGCAG -ACGGAAGAGTAGAGTGTCCGTCAA -ACGGAAGAGTAGAGTGTCGCTGAA -ACGGAAGAGTAGAGTGTCAGTACG -ACGGAAGAGTAGAGTGTCATCCGA -ACGGAAGAGTAGAGTGTCATGGGA -ACGGAAGAGTAGAGTGTCGTGCAA -ACGGAAGAGTAGAGTGTCGAGGAA -ACGGAAGAGTAGAGTGTCCAGGTA -ACGGAAGAGTAGAGTGTCGACTCT -ACGGAAGAGTAGAGTGTCAGTCCT -ACGGAAGAGTAGAGTGTCTAAGCC -ACGGAAGAGTAGAGTGTCATAGCC -ACGGAAGAGTAGAGTGTCTAACCG -ACGGAAGAGTAGAGTGTCATGCCA -ACGGAAGAGTAGGGTGAAGGAAAC -ACGGAAGAGTAGGGTGAAAACACC -ACGGAAGAGTAGGGTGAAATCGAG -ACGGAAGAGTAGGGTGAACTCCTT -ACGGAAGAGTAGGGTGAACCTGTT -ACGGAAGAGTAGGGTGAACGGTTT -ACGGAAGAGTAGGGTGAAGTGGTT -ACGGAAGAGTAGGGTGAAGCCTTT -ACGGAAGAGTAGGGTGAAGGTCTT -ACGGAAGAGTAGGGTGAAACGCTT -ACGGAAGAGTAGGGTGAAAGCGTT -ACGGAAGAGTAGGGTGAATTCGTC -ACGGAAGAGTAGGGTGAATCTCTC -ACGGAAGAGTAGGGTGAATGGATC -ACGGAAGAGTAGGGTGAACACTTC -ACGGAAGAGTAGGGTGAAGTACTC -ACGGAAGAGTAGGGTGAAGATGTC -ACGGAAGAGTAGGGTGAAACAGTC -ACGGAAGAGTAGGGTGAATTGCTG -ACGGAAGAGTAGGGTGAATCCATG -ACGGAAGAGTAGGGTGAATGTGTG -ACGGAAGAGTAGGGTGAACTAGTG -ACGGAAGAGTAGGGTGAACATCTG -ACGGAAGAGTAGGGTGAAGAGTTG -ACGGAAGAGTAGGGTGAAAGACTG -ACGGAAGAGTAGGGTGAATCGGTA -ACGGAAGAGTAGGGTGAATGCCTA -ACGGAAGAGTAGGGTGAACCACTA -ACGGAAGAGTAGGGTGAAGGAGTA -ACGGAAGAGTAGGGTGAATCGTCT -ACGGAAGAGTAGGGTGAATGCACT -ACGGAAGAGTAGGGTGAACTGACT -ACGGAAGAGTAGGGTGAACAACCT -ACGGAAGAGTAGGGTGAAGCTACT -ACGGAAGAGTAGGGTGAAGGATCT -ACGGAAGAGTAGGGTGAAAAGGCT -ACGGAAGAGTAGGGTGAATCAACC -ACGGAAGAGTAGGGTGAATGTTCC -ACGGAAGAGTAGGGTGAAATTCCC -ACGGAAGAGTAGGGTGAATTCTCG -ACGGAAGAGTAGGGTGAATAGACG -ACGGAAGAGTAGGGTGAAGTAACG -ACGGAAGAGTAGGGTGAAACTTCG -ACGGAAGAGTAGGGTGAATACGCA -ACGGAAGAGTAGGGTGAACTTGCA -ACGGAAGAGTAGGGTGAACGAACA -ACGGAAGAGTAGGGTGAACAGTCA -ACGGAAGAGTAGGGTGAAGATCCA -ACGGAAGAGTAGGGTGAAACGACA -ACGGAAGAGTAGGGTGAAAGCTCA -ACGGAAGAGTAGGGTGAATCACGT -ACGGAAGAGTAGGGTGAACGTAGT -ACGGAAGAGTAGGGTGAAGTCAGT -ACGGAAGAGTAGGGTGAAGAAGGT -ACGGAAGAGTAGGGTGAAAACCGT -ACGGAAGAGTAGGGTGAATTGTGC -ACGGAAGAGTAGGGTGAACTAAGC -ACGGAAGAGTAGGGTGAAACTAGC -ACGGAAGAGTAGGGTGAAAGATGC -ACGGAAGAGTAGGGTGAATGAAGG -ACGGAAGAGTAGGGTGAACAATGG -ACGGAAGAGTAGGGTGAAATGAGG -ACGGAAGAGTAGGGTGAAAATGGG -ACGGAAGAGTAGGGTGAATCCTGA -ACGGAAGAGTAGGGTGAATAGCGA -ACGGAAGAGTAGGGTGAACACAGA -ACGGAAGAGTAGGGTGAAGCAAGA -ACGGAAGAGTAGGGTGAAGGTTGA -ACGGAAGAGTAGGGTGAATCCGAT -ACGGAAGAGTAGGGTGAATGGCAT -ACGGAAGAGTAGGGTGAACGAGAT -ACGGAAGAGTAGGGTGAATACCAC -ACGGAAGAGTAGGGTGAACAGAAC -ACGGAAGAGTAGGGTGAAGTCTAC -ACGGAAGAGTAGGGTGAAACGTAC -ACGGAAGAGTAGGGTGAAAGTGAC -ACGGAAGAGTAGGGTGAACTGTAG -ACGGAAGAGTAGGGTGAACCTAAG -ACGGAAGAGTAGGGTGAAGTTCAG -ACGGAAGAGTAGGGTGAAGCATAG -ACGGAAGAGTAGGGTGAAGACAAG -ACGGAAGAGTAGGGTGAAAAGCAG -ACGGAAGAGTAGGGTGAACGTCAA -ACGGAAGAGTAGGGTGAAGCTGAA -ACGGAAGAGTAGGGTGAAAGTACG -ACGGAAGAGTAGGGTGAAATCCGA -ACGGAAGAGTAGGGTGAAATGGGA -ACGGAAGAGTAGGGTGAAGTGCAA -ACGGAAGAGTAGGGTGAAGAGGAA -ACGGAAGAGTAGGGTGAACAGGTA -ACGGAAGAGTAGGGTGAAGACTCT -ACGGAAGAGTAGGGTGAAAGTCCT -ACGGAAGAGTAGGGTGAATAAGCC -ACGGAAGAGTAGGGTGAAATAGCC -ACGGAAGAGTAGGGTGAATAACCG -ACGGAAGAGTAGGGTGAAATGCCA -ACGGAAGAGTAGCGTAACGGAAAC -ACGGAAGAGTAGCGTAACAACACC -ACGGAAGAGTAGCGTAACATCGAG -ACGGAAGAGTAGCGTAACCTCCTT -ACGGAAGAGTAGCGTAACCCTGTT -ACGGAAGAGTAGCGTAACCGGTTT -ACGGAAGAGTAGCGTAACGTGGTT -ACGGAAGAGTAGCGTAACGCCTTT -ACGGAAGAGTAGCGTAACGGTCTT -ACGGAAGAGTAGCGTAACACGCTT -ACGGAAGAGTAGCGTAACAGCGTT -ACGGAAGAGTAGCGTAACTTCGTC -ACGGAAGAGTAGCGTAACTCTCTC -ACGGAAGAGTAGCGTAACTGGATC -ACGGAAGAGTAGCGTAACCACTTC -ACGGAAGAGTAGCGTAACGTACTC -ACGGAAGAGTAGCGTAACGATGTC -ACGGAAGAGTAGCGTAACACAGTC -ACGGAAGAGTAGCGTAACTTGCTG -ACGGAAGAGTAGCGTAACTCCATG -ACGGAAGAGTAGCGTAACTGTGTG -ACGGAAGAGTAGCGTAACCTAGTG -ACGGAAGAGTAGCGTAACCATCTG -ACGGAAGAGTAGCGTAACGAGTTG -ACGGAAGAGTAGCGTAACAGACTG -ACGGAAGAGTAGCGTAACTCGGTA -ACGGAAGAGTAGCGTAACTGCCTA -ACGGAAGAGTAGCGTAACCCACTA -ACGGAAGAGTAGCGTAACGGAGTA -ACGGAAGAGTAGCGTAACTCGTCT -ACGGAAGAGTAGCGTAACTGCACT -ACGGAAGAGTAGCGTAACCTGACT -ACGGAAGAGTAGCGTAACCAACCT -ACGGAAGAGTAGCGTAACGCTACT -ACGGAAGAGTAGCGTAACGGATCT -ACGGAAGAGTAGCGTAACAAGGCT -ACGGAAGAGTAGCGTAACTCAACC -ACGGAAGAGTAGCGTAACTGTTCC -ACGGAAGAGTAGCGTAACATTCCC -ACGGAAGAGTAGCGTAACTTCTCG -ACGGAAGAGTAGCGTAACTAGACG -ACGGAAGAGTAGCGTAACGTAACG -ACGGAAGAGTAGCGTAACACTTCG -ACGGAAGAGTAGCGTAACTACGCA -ACGGAAGAGTAGCGTAACCTTGCA -ACGGAAGAGTAGCGTAACCGAACA -ACGGAAGAGTAGCGTAACCAGTCA -ACGGAAGAGTAGCGTAACGATCCA -ACGGAAGAGTAGCGTAACACGACA -ACGGAAGAGTAGCGTAACAGCTCA -ACGGAAGAGTAGCGTAACTCACGT -ACGGAAGAGTAGCGTAACCGTAGT -ACGGAAGAGTAGCGTAACGTCAGT -ACGGAAGAGTAGCGTAACGAAGGT -ACGGAAGAGTAGCGTAACAACCGT -ACGGAAGAGTAGCGTAACTTGTGC -ACGGAAGAGTAGCGTAACCTAAGC -ACGGAAGAGTAGCGTAACACTAGC -ACGGAAGAGTAGCGTAACAGATGC -ACGGAAGAGTAGCGTAACTGAAGG -ACGGAAGAGTAGCGTAACCAATGG -ACGGAAGAGTAGCGTAACATGAGG -ACGGAAGAGTAGCGTAACAATGGG -ACGGAAGAGTAGCGTAACTCCTGA -ACGGAAGAGTAGCGTAACTAGCGA -ACGGAAGAGTAGCGTAACCACAGA -ACGGAAGAGTAGCGTAACGCAAGA -ACGGAAGAGTAGCGTAACGGTTGA -ACGGAAGAGTAGCGTAACTCCGAT -ACGGAAGAGTAGCGTAACTGGCAT -ACGGAAGAGTAGCGTAACCGAGAT -ACGGAAGAGTAGCGTAACTACCAC -ACGGAAGAGTAGCGTAACCAGAAC -ACGGAAGAGTAGCGTAACGTCTAC -ACGGAAGAGTAGCGTAACACGTAC -ACGGAAGAGTAGCGTAACAGTGAC -ACGGAAGAGTAGCGTAACCTGTAG -ACGGAAGAGTAGCGTAACCCTAAG -ACGGAAGAGTAGCGTAACGTTCAG -ACGGAAGAGTAGCGTAACGCATAG -ACGGAAGAGTAGCGTAACGACAAG -ACGGAAGAGTAGCGTAACAAGCAG -ACGGAAGAGTAGCGTAACCGTCAA -ACGGAAGAGTAGCGTAACGCTGAA -ACGGAAGAGTAGCGTAACAGTACG -ACGGAAGAGTAGCGTAACATCCGA -ACGGAAGAGTAGCGTAACATGGGA -ACGGAAGAGTAGCGTAACGTGCAA -ACGGAAGAGTAGCGTAACGAGGAA -ACGGAAGAGTAGCGTAACCAGGTA -ACGGAAGAGTAGCGTAACGACTCT -ACGGAAGAGTAGCGTAACAGTCCT -ACGGAAGAGTAGCGTAACTAAGCC -ACGGAAGAGTAGCGTAACATAGCC -ACGGAAGAGTAGCGTAACTAACCG -ACGGAAGAGTAGCGTAACATGCCA -ACGGAAGAGTAGTGCTTGGGAAAC -ACGGAAGAGTAGTGCTTGAACACC -ACGGAAGAGTAGTGCTTGATCGAG -ACGGAAGAGTAGTGCTTGCTCCTT -ACGGAAGAGTAGTGCTTGCCTGTT -ACGGAAGAGTAGTGCTTGCGGTTT -ACGGAAGAGTAGTGCTTGGTGGTT -ACGGAAGAGTAGTGCTTGGCCTTT -ACGGAAGAGTAGTGCTTGGGTCTT -ACGGAAGAGTAGTGCTTGACGCTT -ACGGAAGAGTAGTGCTTGAGCGTT -ACGGAAGAGTAGTGCTTGTTCGTC -ACGGAAGAGTAGTGCTTGTCTCTC -ACGGAAGAGTAGTGCTTGTGGATC -ACGGAAGAGTAGTGCTTGCACTTC -ACGGAAGAGTAGTGCTTGGTACTC -ACGGAAGAGTAGTGCTTGGATGTC -ACGGAAGAGTAGTGCTTGACAGTC -ACGGAAGAGTAGTGCTTGTTGCTG -ACGGAAGAGTAGTGCTTGTCCATG -ACGGAAGAGTAGTGCTTGTGTGTG -ACGGAAGAGTAGTGCTTGCTAGTG -ACGGAAGAGTAGTGCTTGCATCTG -ACGGAAGAGTAGTGCTTGGAGTTG -ACGGAAGAGTAGTGCTTGAGACTG -ACGGAAGAGTAGTGCTTGTCGGTA -ACGGAAGAGTAGTGCTTGTGCCTA -ACGGAAGAGTAGTGCTTGCCACTA -ACGGAAGAGTAGTGCTTGGGAGTA -ACGGAAGAGTAGTGCTTGTCGTCT -ACGGAAGAGTAGTGCTTGTGCACT -ACGGAAGAGTAGTGCTTGCTGACT -ACGGAAGAGTAGTGCTTGCAACCT -ACGGAAGAGTAGTGCTTGGCTACT -ACGGAAGAGTAGTGCTTGGGATCT -ACGGAAGAGTAGTGCTTGAAGGCT -ACGGAAGAGTAGTGCTTGTCAACC -ACGGAAGAGTAGTGCTTGTGTTCC -ACGGAAGAGTAGTGCTTGATTCCC -ACGGAAGAGTAGTGCTTGTTCTCG -ACGGAAGAGTAGTGCTTGTAGACG -ACGGAAGAGTAGTGCTTGGTAACG -ACGGAAGAGTAGTGCTTGACTTCG -ACGGAAGAGTAGTGCTTGTACGCA -ACGGAAGAGTAGTGCTTGCTTGCA -ACGGAAGAGTAGTGCTTGCGAACA -ACGGAAGAGTAGTGCTTGCAGTCA -ACGGAAGAGTAGTGCTTGGATCCA -ACGGAAGAGTAGTGCTTGACGACA -ACGGAAGAGTAGTGCTTGAGCTCA -ACGGAAGAGTAGTGCTTGTCACGT -ACGGAAGAGTAGTGCTTGCGTAGT -ACGGAAGAGTAGTGCTTGGTCAGT -ACGGAAGAGTAGTGCTTGGAAGGT -ACGGAAGAGTAGTGCTTGAACCGT -ACGGAAGAGTAGTGCTTGTTGTGC -ACGGAAGAGTAGTGCTTGCTAAGC -ACGGAAGAGTAGTGCTTGACTAGC -ACGGAAGAGTAGTGCTTGAGATGC -ACGGAAGAGTAGTGCTTGTGAAGG -ACGGAAGAGTAGTGCTTGCAATGG -ACGGAAGAGTAGTGCTTGATGAGG -ACGGAAGAGTAGTGCTTGAATGGG -ACGGAAGAGTAGTGCTTGTCCTGA -ACGGAAGAGTAGTGCTTGTAGCGA -ACGGAAGAGTAGTGCTTGCACAGA -ACGGAAGAGTAGTGCTTGGCAAGA -ACGGAAGAGTAGTGCTTGGGTTGA -ACGGAAGAGTAGTGCTTGTCCGAT -ACGGAAGAGTAGTGCTTGTGGCAT -ACGGAAGAGTAGTGCTTGCGAGAT -ACGGAAGAGTAGTGCTTGTACCAC -ACGGAAGAGTAGTGCTTGCAGAAC -ACGGAAGAGTAGTGCTTGGTCTAC -ACGGAAGAGTAGTGCTTGACGTAC -ACGGAAGAGTAGTGCTTGAGTGAC -ACGGAAGAGTAGTGCTTGCTGTAG -ACGGAAGAGTAGTGCTTGCCTAAG -ACGGAAGAGTAGTGCTTGGTTCAG -ACGGAAGAGTAGTGCTTGGCATAG -ACGGAAGAGTAGTGCTTGGACAAG -ACGGAAGAGTAGTGCTTGAAGCAG -ACGGAAGAGTAGTGCTTGCGTCAA -ACGGAAGAGTAGTGCTTGGCTGAA -ACGGAAGAGTAGTGCTTGAGTACG -ACGGAAGAGTAGTGCTTGATCCGA -ACGGAAGAGTAGTGCTTGATGGGA -ACGGAAGAGTAGTGCTTGGTGCAA -ACGGAAGAGTAGTGCTTGGAGGAA -ACGGAAGAGTAGTGCTTGCAGGTA -ACGGAAGAGTAGTGCTTGGACTCT -ACGGAAGAGTAGTGCTTGAGTCCT -ACGGAAGAGTAGTGCTTGTAAGCC -ACGGAAGAGTAGTGCTTGATAGCC -ACGGAAGAGTAGTGCTTGTAACCG -ACGGAAGAGTAGTGCTTGATGCCA -ACGGAAGAGTAGAGCCTAGGAAAC -ACGGAAGAGTAGAGCCTAAACACC -ACGGAAGAGTAGAGCCTAATCGAG -ACGGAAGAGTAGAGCCTACTCCTT -ACGGAAGAGTAGAGCCTACCTGTT -ACGGAAGAGTAGAGCCTACGGTTT -ACGGAAGAGTAGAGCCTAGTGGTT -ACGGAAGAGTAGAGCCTAGCCTTT -ACGGAAGAGTAGAGCCTAGGTCTT -ACGGAAGAGTAGAGCCTAACGCTT -ACGGAAGAGTAGAGCCTAAGCGTT -ACGGAAGAGTAGAGCCTATTCGTC -ACGGAAGAGTAGAGCCTATCTCTC -ACGGAAGAGTAGAGCCTATGGATC -ACGGAAGAGTAGAGCCTACACTTC -ACGGAAGAGTAGAGCCTAGTACTC -ACGGAAGAGTAGAGCCTAGATGTC -ACGGAAGAGTAGAGCCTAACAGTC -ACGGAAGAGTAGAGCCTATTGCTG -ACGGAAGAGTAGAGCCTATCCATG -ACGGAAGAGTAGAGCCTATGTGTG -ACGGAAGAGTAGAGCCTACTAGTG -ACGGAAGAGTAGAGCCTACATCTG -ACGGAAGAGTAGAGCCTAGAGTTG -ACGGAAGAGTAGAGCCTAAGACTG -ACGGAAGAGTAGAGCCTATCGGTA -ACGGAAGAGTAGAGCCTATGCCTA -ACGGAAGAGTAGAGCCTACCACTA -ACGGAAGAGTAGAGCCTAGGAGTA -ACGGAAGAGTAGAGCCTATCGTCT -ACGGAAGAGTAGAGCCTATGCACT -ACGGAAGAGTAGAGCCTACTGACT -ACGGAAGAGTAGAGCCTACAACCT -ACGGAAGAGTAGAGCCTAGCTACT -ACGGAAGAGTAGAGCCTAGGATCT -ACGGAAGAGTAGAGCCTAAAGGCT -ACGGAAGAGTAGAGCCTATCAACC -ACGGAAGAGTAGAGCCTATGTTCC -ACGGAAGAGTAGAGCCTAATTCCC -ACGGAAGAGTAGAGCCTATTCTCG -ACGGAAGAGTAGAGCCTATAGACG -ACGGAAGAGTAGAGCCTAGTAACG -ACGGAAGAGTAGAGCCTAACTTCG -ACGGAAGAGTAGAGCCTATACGCA -ACGGAAGAGTAGAGCCTACTTGCA -ACGGAAGAGTAGAGCCTACGAACA -ACGGAAGAGTAGAGCCTACAGTCA -ACGGAAGAGTAGAGCCTAGATCCA -ACGGAAGAGTAGAGCCTAACGACA -ACGGAAGAGTAGAGCCTAAGCTCA -ACGGAAGAGTAGAGCCTATCACGT -ACGGAAGAGTAGAGCCTACGTAGT -ACGGAAGAGTAGAGCCTAGTCAGT -ACGGAAGAGTAGAGCCTAGAAGGT -ACGGAAGAGTAGAGCCTAAACCGT -ACGGAAGAGTAGAGCCTATTGTGC -ACGGAAGAGTAGAGCCTACTAAGC -ACGGAAGAGTAGAGCCTAACTAGC -ACGGAAGAGTAGAGCCTAAGATGC -ACGGAAGAGTAGAGCCTATGAAGG -ACGGAAGAGTAGAGCCTACAATGG -ACGGAAGAGTAGAGCCTAATGAGG -ACGGAAGAGTAGAGCCTAAATGGG -ACGGAAGAGTAGAGCCTATCCTGA -ACGGAAGAGTAGAGCCTATAGCGA -ACGGAAGAGTAGAGCCTACACAGA -ACGGAAGAGTAGAGCCTAGCAAGA -ACGGAAGAGTAGAGCCTAGGTTGA -ACGGAAGAGTAGAGCCTATCCGAT -ACGGAAGAGTAGAGCCTATGGCAT -ACGGAAGAGTAGAGCCTACGAGAT -ACGGAAGAGTAGAGCCTATACCAC -ACGGAAGAGTAGAGCCTACAGAAC -ACGGAAGAGTAGAGCCTAGTCTAC -ACGGAAGAGTAGAGCCTAACGTAC -ACGGAAGAGTAGAGCCTAAGTGAC -ACGGAAGAGTAGAGCCTACTGTAG -ACGGAAGAGTAGAGCCTACCTAAG -ACGGAAGAGTAGAGCCTAGTTCAG -ACGGAAGAGTAGAGCCTAGCATAG -ACGGAAGAGTAGAGCCTAGACAAG -ACGGAAGAGTAGAGCCTAAAGCAG -ACGGAAGAGTAGAGCCTACGTCAA -ACGGAAGAGTAGAGCCTAGCTGAA -ACGGAAGAGTAGAGCCTAAGTACG -ACGGAAGAGTAGAGCCTAATCCGA -ACGGAAGAGTAGAGCCTAATGGGA -ACGGAAGAGTAGAGCCTAGTGCAA -ACGGAAGAGTAGAGCCTAGAGGAA -ACGGAAGAGTAGAGCCTACAGGTA -ACGGAAGAGTAGAGCCTAGACTCT -ACGGAAGAGTAGAGCCTAAGTCCT -ACGGAAGAGTAGAGCCTATAAGCC -ACGGAAGAGTAGAGCCTAATAGCC -ACGGAAGAGTAGAGCCTATAACCG -ACGGAAGAGTAGAGCCTAATGCCA -ACGGAAGAGTAGAGCACTGGAAAC -ACGGAAGAGTAGAGCACTAACACC -ACGGAAGAGTAGAGCACTATCGAG -ACGGAAGAGTAGAGCACTCTCCTT -ACGGAAGAGTAGAGCACTCCTGTT -ACGGAAGAGTAGAGCACTCGGTTT -ACGGAAGAGTAGAGCACTGTGGTT -ACGGAAGAGTAGAGCACTGCCTTT -ACGGAAGAGTAGAGCACTGGTCTT -ACGGAAGAGTAGAGCACTACGCTT -ACGGAAGAGTAGAGCACTAGCGTT -ACGGAAGAGTAGAGCACTTTCGTC -ACGGAAGAGTAGAGCACTTCTCTC -ACGGAAGAGTAGAGCACTTGGATC -ACGGAAGAGTAGAGCACTCACTTC -ACGGAAGAGTAGAGCACTGTACTC -ACGGAAGAGTAGAGCACTGATGTC -ACGGAAGAGTAGAGCACTACAGTC -ACGGAAGAGTAGAGCACTTTGCTG -ACGGAAGAGTAGAGCACTTCCATG -ACGGAAGAGTAGAGCACTTGTGTG -ACGGAAGAGTAGAGCACTCTAGTG -ACGGAAGAGTAGAGCACTCATCTG -ACGGAAGAGTAGAGCACTGAGTTG -ACGGAAGAGTAGAGCACTAGACTG -ACGGAAGAGTAGAGCACTTCGGTA -ACGGAAGAGTAGAGCACTTGCCTA -ACGGAAGAGTAGAGCACTCCACTA -ACGGAAGAGTAGAGCACTGGAGTA -ACGGAAGAGTAGAGCACTTCGTCT -ACGGAAGAGTAGAGCACTTGCACT -ACGGAAGAGTAGAGCACTCTGACT -ACGGAAGAGTAGAGCACTCAACCT -ACGGAAGAGTAGAGCACTGCTACT -ACGGAAGAGTAGAGCACTGGATCT -ACGGAAGAGTAGAGCACTAAGGCT -ACGGAAGAGTAGAGCACTTCAACC -ACGGAAGAGTAGAGCACTTGTTCC -ACGGAAGAGTAGAGCACTATTCCC -ACGGAAGAGTAGAGCACTTTCTCG -ACGGAAGAGTAGAGCACTTAGACG -ACGGAAGAGTAGAGCACTGTAACG -ACGGAAGAGTAGAGCACTACTTCG -ACGGAAGAGTAGAGCACTTACGCA -ACGGAAGAGTAGAGCACTCTTGCA -ACGGAAGAGTAGAGCACTCGAACA -ACGGAAGAGTAGAGCACTCAGTCA -ACGGAAGAGTAGAGCACTGATCCA -ACGGAAGAGTAGAGCACTACGACA -ACGGAAGAGTAGAGCACTAGCTCA -ACGGAAGAGTAGAGCACTTCACGT -ACGGAAGAGTAGAGCACTCGTAGT -ACGGAAGAGTAGAGCACTGTCAGT -ACGGAAGAGTAGAGCACTGAAGGT -ACGGAAGAGTAGAGCACTAACCGT -ACGGAAGAGTAGAGCACTTTGTGC -ACGGAAGAGTAGAGCACTCTAAGC -ACGGAAGAGTAGAGCACTACTAGC -ACGGAAGAGTAGAGCACTAGATGC -ACGGAAGAGTAGAGCACTTGAAGG -ACGGAAGAGTAGAGCACTCAATGG -ACGGAAGAGTAGAGCACTATGAGG -ACGGAAGAGTAGAGCACTAATGGG -ACGGAAGAGTAGAGCACTTCCTGA -ACGGAAGAGTAGAGCACTTAGCGA -ACGGAAGAGTAGAGCACTCACAGA -ACGGAAGAGTAGAGCACTGCAAGA -ACGGAAGAGTAGAGCACTGGTTGA -ACGGAAGAGTAGAGCACTTCCGAT -ACGGAAGAGTAGAGCACTTGGCAT -ACGGAAGAGTAGAGCACTCGAGAT -ACGGAAGAGTAGAGCACTTACCAC -ACGGAAGAGTAGAGCACTCAGAAC -ACGGAAGAGTAGAGCACTGTCTAC -ACGGAAGAGTAGAGCACTACGTAC -ACGGAAGAGTAGAGCACTAGTGAC -ACGGAAGAGTAGAGCACTCTGTAG -ACGGAAGAGTAGAGCACTCCTAAG -ACGGAAGAGTAGAGCACTGTTCAG -ACGGAAGAGTAGAGCACTGCATAG -ACGGAAGAGTAGAGCACTGACAAG -ACGGAAGAGTAGAGCACTAAGCAG -ACGGAAGAGTAGAGCACTCGTCAA -ACGGAAGAGTAGAGCACTGCTGAA -ACGGAAGAGTAGAGCACTAGTACG -ACGGAAGAGTAGAGCACTATCCGA -ACGGAAGAGTAGAGCACTATGGGA -ACGGAAGAGTAGAGCACTGTGCAA -ACGGAAGAGTAGAGCACTGAGGAA -ACGGAAGAGTAGAGCACTCAGGTA -ACGGAAGAGTAGAGCACTGACTCT -ACGGAAGAGTAGAGCACTAGTCCT -ACGGAAGAGTAGAGCACTTAAGCC -ACGGAAGAGTAGAGCACTATAGCC -ACGGAAGAGTAGAGCACTTAACCG -ACGGAAGAGTAGAGCACTATGCCA -ACGGAAGAGTAGTGCAGAGGAAAC -ACGGAAGAGTAGTGCAGAAACACC -ACGGAAGAGTAGTGCAGAATCGAG -ACGGAAGAGTAGTGCAGACTCCTT -ACGGAAGAGTAGTGCAGACCTGTT -ACGGAAGAGTAGTGCAGACGGTTT -ACGGAAGAGTAGTGCAGAGTGGTT -ACGGAAGAGTAGTGCAGAGCCTTT -ACGGAAGAGTAGTGCAGAGGTCTT -ACGGAAGAGTAGTGCAGAACGCTT -ACGGAAGAGTAGTGCAGAAGCGTT -ACGGAAGAGTAGTGCAGATTCGTC -ACGGAAGAGTAGTGCAGATCTCTC -ACGGAAGAGTAGTGCAGATGGATC -ACGGAAGAGTAGTGCAGACACTTC -ACGGAAGAGTAGTGCAGAGTACTC -ACGGAAGAGTAGTGCAGAGATGTC -ACGGAAGAGTAGTGCAGAACAGTC -ACGGAAGAGTAGTGCAGATTGCTG -ACGGAAGAGTAGTGCAGATCCATG -ACGGAAGAGTAGTGCAGATGTGTG -ACGGAAGAGTAGTGCAGACTAGTG -ACGGAAGAGTAGTGCAGACATCTG -ACGGAAGAGTAGTGCAGAGAGTTG -ACGGAAGAGTAGTGCAGAAGACTG -ACGGAAGAGTAGTGCAGATCGGTA -ACGGAAGAGTAGTGCAGATGCCTA -ACGGAAGAGTAGTGCAGACCACTA -ACGGAAGAGTAGTGCAGAGGAGTA -ACGGAAGAGTAGTGCAGATCGTCT -ACGGAAGAGTAGTGCAGATGCACT -ACGGAAGAGTAGTGCAGACTGACT -ACGGAAGAGTAGTGCAGACAACCT -ACGGAAGAGTAGTGCAGAGCTACT -ACGGAAGAGTAGTGCAGAGGATCT -ACGGAAGAGTAGTGCAGAAAGGCT -ACGGAAGAGTAGTGCAGATCAACC -ACGGAAGAGTAGTGCAGATGTTCC -ACGGAAGAGTAGTGCAGAATTCCC -ACGGAAGAGTAGTGCAGATTCTCG -ACGGAAGAGTAGTGCAGATAGACG -ACGGAAGAGTAGTGCAGAGTAACG -ACGGAAGAGTAGTGCAGAACTTCG -ACGGAAGAGTAGTGCAGATACGCA -ACGGAAGAGTAGTGCAGACTTGCA -ACGGAAGAGTAGTGCAGACGAACA -ACGGAAGAGTAGTGCAGACAGTCA -ACGGAAGAGTAGTGCAGAGATCCA -ACGGAAGAGTAGTGCAGAACGACA -ACGGAAGAGTAGTGCAGAAGCTCA -ACGGAAGAGTAGTGCAGATCACGT -ACGGAAGAGTAGTGCAGACGTAGT -ACGGAAGAGTAGTGCAGAGTCAGT -ACGGAAGAGTAGTGCAGAGAAGGT -ACGGAAGAGTAGTGCAGAAACCGT -ACGGAAGAGTAGTGCAGATTGTGC -ACGGAAGAGTAGTGCAGACTAAGC -ACGGAAGAGTAGTGCAGAACTAGC -ACGGAAGAGTAGTGCAGAAGATGC -ACGGAAGAGTAGTGCAGATGAAGG -ACGGAAGAGTAGTGCAGACAATGG -ACGGAAGAGTAGTGCAGAATGAGG -ACGGAAGAGTAGTGCAGAAATGGG -ACGGAAGAGTAGTGCAGATCCTGA -ACGGAAGAGTAGTGCAGATAGCGA -ACGGAAGAGTAGTGCAGACACAGA -ACGGAAGAGTAGTGCAGAGCAAGA -ACGGAAGAGTAGTGCAGAGGTTGA -ACGGAAGAGTAGTGCAGATCCGAT -ACGGAAGAGTAGTGCAGATGGCAT -ACGGAAGAGTAGTGCAGACGAGAT -ACGGAAGAGTAGTGCAGATACCAC -ACGGAAGAGTAGTGCAGACAGAAC -ACGGAAGAGTAGTGCAGAGTCTAC -ACGGAAGAGTAGTGCAGAACGTAC -ACGGAAGAGTAGTGCAGAAGTGAC -ACGGAAGAGTAGTGCAGACTGTAG -ACGGAAGAGTAGTGCAGACCTAAG -ACGGAAGAGTAGTGCAGAGTTCAG -ACGGAAGAGTAGTGCAGAGCATAG -ACGGAAGAGTAGTGCAGAGACAAG -ACGGAAGAGTAGTGCAGAAAGCAG -ACGGAAGAGTAGTGCAGACGTCAA -ACGGAAGAGTAGTGCAGAGCTGAA -ACGGAAGAGTAGTGCAGAAGTACG -ACGGAAGAGTAGTGCAGAATCCGA -ACGGAAGAGTAGTGCAGAATGGGA -ACGGAAGAGTAGTGCAGAGTGCAA -ACGGAAGAGTAGTGCAGAGAGGAA -ACGGAAGAGTAGTGCAGACAGGTA -ACGGAAGAGTAGTGCAGAGACTCT -ACGGAAGAGTAGTGCAGAAGTCCT -ACGGAAGAGTAGTGCAGATAAGCC -ACGGAAGAGTAGTGCAGAATAGCC -ACGGAAGAGTAGTGCAGATAACCG -ACGGAAGAGTAGTGCAGAATGCCA -ACGGAAGAGTAGAGGTGAGGAAAC -ACGGAAGAGTAGAGGTGAAACACC -ACGGAAGAGTAGAGGTGAATCGAG -ACGGAAGAGTAGAGGTGACTCCTT -ACGGAAGAGTAGAGGTGACCTGTT -ACGGAAGAGTAGAGGTGACGGTTT -ACGGAAGAGTAGAGGTGAGTGGTT -ACGGAAGAGTAGAGGTGAGCCTTT -ACGGAAGAGTAGAGGTGAGGTCTT -ACGGAAGAGTAGAGGTGAACGCTT -ACGGAAGAGTAGAGGTGAAGCGTT -ACGGAAGAGTAGAGGTGATTCGTC -ACGGAAGAGTAGAGGTGATCTCTC -ACGGAAGAGTAGAGGTGATGGATC -ACGGAAGAGTAGAGGTGACACTTC -ACGGAAGAGTAGAGGTGAGTACTC -ACGGAAGAGTAGAGGTGAGATGTC -ACGGAAGAGTAGAGGTGAACAGTC -ACGGAAGAGTAGAGGTGATTGCTG -ACGGAAGAGTAGAGGTGATCCATG -ACGGAAGAGTAGAGGTGATGTGTG -ACGGAAGAGTAGAGGTGACTAGTG -ACGGAAGAGTAGAGGTGACATCTG -ACGGAAGAGTAGAGGTGAGAGTTG -ACGGAAGAGTAGAGGTGAAGACTG -ACGGAAGAGTAGAGGTGATCGGTA -ACGGAAGAGTAGAGGTGATGCCTA -ACGGAAGAGTAGAGGTGACCACTA -ACGGAAGAGTAGAGGTGAGGAGTA -ACGGAAGAGTAGAGGTGATCGTCT -ACGGAAGAGTAGAGGTGATGCACT -ACGGAAGAGTAGAGGTGACTGACT -ACGGAAGAGTAGAGGTGACAACCT -ACGGAAGAGTAGAGGTGAGCTACT -ACGGAAGAGTAGAGGTGAGGATCT -ACGGAAGAGTAGAGGTGAAAGGCT -ACGGAAGAGTAGAGGTGATCAACC -ACGGAAGAGTAGAGGTGATGTTCC -ACGGAAGAGTAGAGGTGAATTCCC -ACGGAAGAGTAGAGGTGATTCTCG -ACGGAAGAGTAGAGGTGATAGACG -ACGGAAGAGTAGAGGTGAGTAACG -ACGGAAGAGTAGAGGTGAACTTCG -ACGGAAGAGTAGAGGTGATACGCA -ACGGAAGAGTAGAGGTGACTTGCA -ACGGAAGAGTAGAGGTGACGAACA -ACGGAAGAGTAGAGGTGACAGTCA -ACGGAAGAGTAGAGGTGAGATCCA -ACGGAAGAGTAGAGGTGAACGACA -ACGGAAGAGTAGAGGTGAAGCTCA -ACGGAAGAGTAGAGGTGATCACGT -ACGGAAGAGTAGAGGTGACGTAGT -ACGGAAGAGTAGAGGTGAGTCAGT -ACGGAAGAGTAGAGGTGAGAAGGT -ACGGAAGAGTAGAGGTGAAACCGT -ACGGAAGAGTAGAGGTGATTGTGC -ACGGAAGAGTAGAGGTGACTAAGC -ACGGAAGAGTAGAGGTGAACTAGC -ACGGAAGAGTAGAGGTGAAGATGC -ACGGAAGAGTAGAGGTGATGAAGG -ACGGAAGAGTAGAGGTGACAATGG -ACGGAAGAGTAGAGGTGAATGAGG -ACGGAAGAGTAGAGGTGAAATGGG -ACGGAAGAGTAGAGGTGATCCTGA -ACGGAAGAGTAGAGGTGATAGCGA -ACGGAAGAGTAGAGGTGACACAGA -ACGGAAGAGTAGAGGTGAGCAAGA -ACGGAAGAGTAGAGGTGAGGTTGA -ACGGAAGAGTAGAGGTGATCCGAT -ACGGAAGAGTAGAGGTGATGGCAT -ACGGAAGAGTAGAGGTGACGAGAT -ACGGAAGAGTAGAGGTGATACCAC -ACGGAAGAGTAGAGGTGACAGAAC -ACGGAAGAGTAGAGGTGAGTCTAC -ACGGAAGAGTAGAGGTGAACGTAC -ACGGAAGAGTAGAGGTGAAGTGAC -ACGGAAGAGTAGAGGTGACTGTAG -ACGGAAGAGTAGAGGTGACCTAAG -ACGGAAGAGTAGAGGTGAGTTCAG -ACGGAAGAGTAGAGGTGAGCATAG -ACGGAAGAGTAGAGGTGAGACAAG -ACGGAAGAGTAGAGGTGAAAGCAG -ACGGAAGAGTAGAGGTGACGTCAA -ACGGAAGAGTAGAGGTGAGCTGAA -ACGGAAGAGTAGAGGTGAAGTACG -ACGGAAGAGTAGAGGTGAATCCGA -ACGGAAGAGTAGAGGTGAATGGGA -ACGGAAGAGTAGAGGTGAGTGCAA -ACGGAAGAGTAGAGGTGAGAGGAA -ACGGAAGAGTAGAGGTGACAGGTA -ACGGAAGAGTAGAGGTGAGACTCT -ACGGAAGAGTAGAGGTGAAGTCCT -ACGGAAGAGTAGAGGTGATAAGCC -ACGGAAGAGTAGAGGTGAATAGCC -ACGGAAGAGTAGAGGTGATAACCG -ACGGAAGAGTAGAGGTGAATGCCA -ACGGAAGAGTAGTGGCAAGGAAAC -ACGGAAGAGTAGTGGCAAAACACC -ACGGAAGAGTAGTGGCAAATCGAG -ACGGAAGAGTAGTGGCAACTCCTT -ACGGAAGAGTAGTGGCAACCTGTT -ACGGAAGAGTAGTGGCAACGGTTT -ACGGAAGAGTAGTGGCAAGTGGTT -ACGGAAGAGTAGTGGCAAGCCTTT -ACGGAAGAGTAGTGGCAAGGTCTT -ACGGAAGAGTAGTGGCAAACGCTT -ACGGAAGAGTAGTGGCAAAGCGTT -ACGGAAGAGTAGTGGCAATTCGTC -ACGGAAGAGTAGTGGCAATCTCTC -ACGGAAGAGTAGTGGCAATGGATC -ACGGAAGAGTAGTGGCAACACTTC -ACGGAAGAGTAGTGGCAAGTACTC -ACGGAAGAGTAGTGGCAAGATGTC -ACGGAAGAGTAGTGGCAAACAGTC -ACGGAAGAGTAGTGGCAATTGCTG -ACGGAAGAGTAGTGGCAATCCATG -ACGGAAGAGTAGTGGCAATGTGTG -ACGGAAGAGTAGTGGCAACTAGTG -ACGGAAGAGTAGTGGCAACATCTG -ACGGAAGAGTAGTGGCAAGAGTTG -ACGGAAGAGTAGTGGCAAAGACTG -ACGGAAGAGTAGTGGCAATCGGTA -ACGGAAGAGTAGTGGCAATGCCTA -ACGGAAGAGTAGTGGCAACCACTA -ACGGAAGAGTAGTGGCAAGGAGTA -ACGGAAGAGTAGTGGCAATCGTCT -ACGGAAGAGTAGTGGCAATGCACT -ACGGAAGAGTAGTGGCAACTGACT -ACGGAAGAGTAGTGGCAACAACCT -ACGGAAGAGTAGTGGCAAGCTACT -ACGGAAGAGTAGTGGCAAGGATCT -ACGGAAGAGTAGTGGCAAAAGGCT -ACGGAAGAGTAGTGGCAATCAACC -ACGGAAGAGTAGTGGCAATGTTCC -ACGGAAGAGTAGTGGCAAATTCCC -ACGGAAGAGTAGTGGCAATTCTCG -ACGGAAGAGTAGTGGCAATAGACG -ACGGAAGAGTAGTGGCAAGTAACG -ACGGAAGAGTAGTGGCAAACTTCG -ACGGAAGAGTAGTGGCAATACGCA -ACGGAAGAGTAGTGGCAACTTGCA -ACGGAAGAGTAGTGGCAACGAACA -ACGGAAGAGTAGTGGCAACAGTCA -ACGGAAGAGTAGTGGCAAGATCCA -ACGGAAGAGTAGTGGCAAACGACA -ACGGAAGAGTAGTGGCAAAGCTCA -ACGGAAGAGTAGTGGCAATCACGT -ACGGAAGAGTAGTGGCAACGTAGT -ACGGAAGAGTAGTGGCAAGTCAGT -ACGGAAGAGTAGTGGCAAGAAGGT -ACGGAAGAGTAGTGGCAAAACCGT -ACGGAAGAGTAGTGGCAATTGTGC -ACGGAAGAGTAGTGGCAACTAAGC -ACGGAAGAGTAGTGGCAAACTAGC -ACGGAAGAGTAGTGGCAAAGATGC -ACGGAAGAGTAGTGGCAATGAAGG -ACGGAAGAGTAGTGGCAACAATGG -ACGGAAGAGTAGTGGCAAATGAGG -ACGGAAGAGTAGTGGCAAAATGGG -ACGGAAGAGTAGTGGCAATCCTGA -ACGGAAGAGTAGTGGCAATAGCGA -ACGGAAGAGTAGTGGCAACACAGA -ACGGAAGAGTAGTGGCAAGCAAGA -ACGGAAGAGTAGTGGCAAGGTTGA -ACGGAAGAGTAGTGGCAATCCGAT -ACGGAAGAGTAGTGGCAATGGCAT -ACGGAAGAGTAGTGGCAACGAGAT -ACGGAAGAGTAGTGGCAATACCAC -ACGGAAGAGTAGTGGCAACAGAAC -ACGGAAGAGTAGTGGCAAGTCTAC -ACGGAAGAGTAGTGGCAAACGTAC -ACGGAAGAGTAGTGGCAAAGTGAC -ACGGAAGAGTAGTGGCAACTGTAG -ACGGAAGAGTAGTGGCAACCTAAG -ACGGAAGAGTAGTGGCAAGTTCAG -ACGGAAGAGTAGTGGCAAGCATAG -ACGGAAGAGTAGTGGCAAGACAAG -ACGGAAGAGTAGTGGCAAAAGCAG -ACGGAAGAGTAGTGGCAACGTCAA -ACGGAAGAGTAGTGGCAAGCTGAA -ACGGAAGAGTAGTGGCAAAGTACG -ACGGAAGAGTAGTGGCAAATCCGA -ACGGAAGAGTAGTGGCAAATGGGA -ACGGAAGAGTAGTGGCAAGTGCAA -ACGGAAGAGTAGTGGCAAGAGGAA -ACGGAAGAGTAGTGGCAACAGGTA -ACGGAAGAGTAGTGGCAAGACTCT -ACGGAAGAGTAGTGGCAAAGTCCT -ACGGAAGAGTAGTGGCAATAAGCC -ACGGAAGAGTAGTGGCAAATAGCC -ACGGAAGAGTAGTGGCAATAACCG -ACGGAAGAGTAGTGGCAAATGCCA -ACGGAAGAGTAGAGGATGGGAAAC -ACGGAAGAGTAGAGGATGAACACC -ACGGAAGAGTAGAGGATGATCGAG -ACGGAAGAGTAGAGGATGCTCCTT -ACGGAAGAGTAGAGGATGCCTGTT -ACGGAAGAGTAGAGGATGCGGTTT -ACGGAAGAGTAGAGGATGGTGGTT -ACGGAAGAGTAGAGGATGGCCTTT -ACGGAAGAGTAGAGGATGGGTCTT -ACGGAAGAGTAGAGGATGACGCTT -ACGGAAGAGTAGAGGATGAGCGTT -ACGGAAGAGTAGAGGATGTTCGTC -ACGGAAGAGTAGAGGATGTCTCTC -ACGGAAGAGTAGAGGATGTGGATC -ACGGAAGAGTAGAGGATGCACTTC -ACGGAAGAGTAGAGGATGGTACTC -ACGGAAGAGTAGAGGATGGATGTC -ACGGAAGAGTAGAGGATGACAGTC -ACGGAAGAGTAGAGGATGTTGCTG -ACGGAAGAGTAGAGGATGTCCATG -ACGGAAGAGTAGAGGATGTGTGTG -ACGGAAGAGTAGAGGATGCTAGTG -ACGGAAGAGTAGAGGATGCATCTG -ACGGAAGAGTAGAGGATGGAGTTG -ACGGAAGAGTAGAGGATGAGACTG -ACGGAAGAGTAGAGGATGTCGGTA -ACGGAAGAGTAGAGGATGTGCCTA -ACGGAAGAGTAGAGGATGCCACTA -ACGGAAGAGTAGAGGATGGGAGTA -ACGGAAGAGTAGAGGATGTCGTCT -ACGGAAGAGTAGAGGATGTGCACT -ACGGAAGAGTAGAGGATGCTGACT -ACGGAAGAGTAGAGGATGCAACCT -ACGGAAGAGTAGAGGATGGCTACT -ACGGAAGAGTAGAGGATGGGATCT -ACGGAAGAGTAGAGGATGAAGGCT -ACGGAAGAGTAGAGGATGTCAACC -ACGGAAGAGTAGAGGATGTGTTCC -ACGGAAGAGTAGAGGATGATTCCC -ACGGAAGAGTAGAGGATGTTCTCG -ACGGAAGAGTAGAGGATGTAGACG -ACGGAAGAGTAGAGGATGGTAACG -ACGGAAGAGTAGAGGATGACTTCG -ACGGAAGAGTAGAGGATGTACGCA -ACGGAAGAGTAGAGGATGCTTGCA -ACGGAAGAGTAGAGGATGCGAACA -ACGGAAGAGTAGAGGATGCAGTCA -ACGGAAGAGTAGAGGATGGATCCA -ACGGAAGAGTAGAGGATGACGACA -ACGGAAGAGTAGAGGATGAGCTCA -ACGGAAGAGTAGAGGATGTCACGT -ACGGAAGAGTAGAGGATGCGTAGT -ACGGAAGAGTAGAGGATGGTCAGT -ACGGAAGAGTAGAGGATGGAAGGT -ACGGAAGAGTAGAGGATGAACCGT -ACGGAAGAGTAGAGGATGTTGTGC -ACGGAAGAGTAGAGGATGCTAAGC -ACGGAAGAGTAGAGGATGACTAGC -ACGGAAGAGTAGAGGATGAGATGC -ACGGAAGAGTAGAGGATGTGAAGG -ACGGAAGAGTAGAGGATGCAATGG -ACGGAAGAGTAGAGGATGATGAGG -ACGGAAGAGTAGAGGATGAATGGG -ACGGAAGAGTAGAGGATGTCCTGA -ACGGAAGAGTAGAGGATGTAGCGA -ACGGAAGAGTAGAGGATGCACAGA -ACGGAAGAGTAGAGGATGGCAAGA -ACGGAAGAGTAGAGGATGGGTTGA -ACGGAAGAGTAGAGGATGTCCGAT -ACGGAAGAGTAGAGGATGTGGCAT -ACGGAAGAGTAGAGGATGCGAGAT -ACGGAAGAGTAGAGGATGTACCAC -ACGGAAGAGTAGAGGATGCAGAAC -ACGGAAGAGTAGAGGATGGTCTAC -ACGGAAGAGTAGAGGATGACGTAC -ACGGAAGAGTAGAGGATGAGTGAC -ACGGAAGAGTAGAGGATGCTGTAG -ACGGAAGAGTAGAGGATGCCTAAG -ACGGAAGAGTAGAGGATGGTTCAG -ACGGAAGAGTAGAGGATGGCATAG -ACGGAAGAGTAGAGGATGGACAAG -ACGGAAGAGTAGAGGATGAAGCAG -ACGGAAGAGTAGAGGATGCGTCAA -ACGGAAGAGTAGAGGATGGCTGAA -ACGGAAGAGTAGAGGATGAGTACG -ACGGAAGAGTAGAGGATGATCCGA -ACGGAAGAGTAGAGGATGATGGGA -ACGGAAGAGTAGAGGATGGTGCAA -ACGGAAGAGTAGAGGATGGAGGAA -ACGGAAGAGTAGAGGATGCAGGTA -ACGGAAGAGTAGAGGATGGACTCT -ACGGAAGAGTAGAGGATGAGTCCT -ACGGAAGAGTAGAGGATGTAAGCC -ACGGAAGAGTAGAGGATGATAGCC -ACGGAAGAGTAGAGGATGTAACCG -ACGGAAGAGTAGAGGATGATGCCA -ACGGAAGAGTAGGGGAATGGAAAC -ACGGAAGAGTAGGGGAATAACACC -ACGGAAGAGTAGGGGAATATCGAG -ACGGAAGAGTAGGGGAATCTCCTT -ACGGAAGAGTAGGGGAATCCTGTT -ACGGAAGAGTAGGGGAATCGGTTT -ACGGAAGAGTAGGGGAATGTGGTT -ACGGAAGAGTAGGGGAATGCCTTT -ACGGAAGAGTAGGGGAATGGTCTT -ACGGAAGAGTAGGGGAATACGCTT -ACGGAAGAGTAGGGGAATAGCGTT -ACGGAAGAGTAGGGGAATTTCGTC -ACGGAAGAGTAGGGGAATTCTCTC -ACGGAAGAGTAGGGGAATTGGATC -ACGGAAGAGTAGGGGAATCACTTC -ACGGAAGAGTAGGGGAATGTACTC -ACGGAAGAGTAGGGGAATGATGTC -ACGGAAGAGTAGGGGAATACAGTC -ACGGAAGAGTAGGGGAATTTGCTG -ACGGAAGAGTAGGGGAATTCCATG -ACGGAAGAGTAGGGGAATTGTGTG -ACGGAAGAGTAGGGGAATCTAGTG -ACGGAAGAGTAGGGGAATCATCTG -ACGGAAGAGTAGGGGAATGAGTTG -ACGGAAGAGTAGGGGAATAGACTG -ACGGAAGAGTAGGGGAATTCGGTA -ACGGAAGAGTAGGGGAATTGCCTA -ACGGAAGAGTAGGGGAATCCACTA -ACGGAAGAGTAGGGGAATGGAGTA -ACGGAAGAGTAGGGGAATTCGTCT -ACGGAAGAGTAGGGGAATTGCACT -ACGGAAGAGTAGGGGAATCTGACT -ACGGAAGAGTAGGGGAATCAACCT -ACGGAAGAGTAGGGGAATGCTACT -ACGGAAGAGTAGGGGAATGGATCT -ACGGAAGAGTAGGGGAATAAGGCT -ACGGAAGAGTAGGGGAATTCAACC -ACGGAAGAGTAGGGGAATTGTTCC -ACGGAAGAGTAGGGGAATATTCCC -ACGGAAGAGTAGGGGAATTTCTCG -ACGGAAGAGTAGGGGAATTAGACG -ACGGAAGAGTAGGGGAATGTAACG -ACGGAAGAGTAGGGGAATACTTCG -ACGGAAGAGTAGGGGAATTACGCA -ACGGAAGAGTAGGGGAATCTTGCA -ACGGAAGAGTAGGGGAATCGAACA -ACGGAAGAGTAGGGGAATCAGTCA -ACGGAAGAGTAGGGGAATGATCCA -ACGGAAGAGTAGGGGAATACGACA -ACGGAAGAGTAGGGGAATAGCTCA -ACGGAAGAGTAGGGGAATTCACGT -ACGGAAGAGTAGGGGAATCGTAGT -ACGGAAGAGTAGGGGAATGTCAGT -ACGGAAGAGTAGGGGAATGAAGGT -ACGGAAGAGTAGGGGAATAACCGT -ACGGAAGAGTAGGGGAATTTGTGC -ACGGAAGAGTAGGGGAATCTAAGC -ACGGAAGAGTAGGGGAATACTAGC -ACGGAAGAGTAGGGGAATAGATGC -ACGGAAGAGTAGGGGAATTGAAGG -ACGGAAGAGTAGGGGAATCAATGG -ACGGAAGAGTAGGGGAATATGAGG -ACGGAAGAGTAGGGGAATAATGGG -ACGGAAGAGTAGGGGAATTCCTGA -ACGGAAGAGTAGGGGAATTAGCGA -ACGGAAGAGTAGGGGAATCACAGA -ACGGAAGAGTAGGGGAATGCAAGA -ACGGAAGAGTAGGGGAATGGTTGA -ACGGAAGAGTAGGGGAATTCCGAT -ACGGAAGAGTAGGGGAATTGGCAT -ACGGAAGAGTAGGGGAATCGAGAT -ACGGAAGAGTAGGGGAATTACCAC -ACGGAAGAGTAGGGGAATCAGAAC -ACGGAAGAGTAGGGGAATGTCTAC -ACGGAAGAGTAGGGGAATACGTAC -ACGGAAGAGTAGGGGAATAGTGAC -ACGGAAGAGTAGGGGAATCTGTAG -ACGGAAGAGTAGGGGAATCCTAAG -ACGGAAGAGTAGGGGAATGTTCAG -ACGGAAGAGTAGGGGAATGCATAG -ACGGAAGAGTAGGGGAATGACAAG -ACGGAAGAGTAGGGGAATAAGCAG -ACGGAAGAGTAGGGGAATCGTCAA -ACGGAAGAGTAGGGGAATGCTGAA -ACGGAAGAGTAGGGGAATAGTACG -ACGGAAGAGTAGGGGAATATCCGA -ACGGAAGAGTAGGGGAATATGGGA -ACGGAAGAGTAGGGGAATGTGCAA -ACGGAAGAGTAGGGGAATGAGGAA -ACGGAAGAGTAGGGGAATCAGGTA -ACGGAAGAGTAGGGGAATGACTCT -ACGGAAGAGTAGGGGAATAGTCCT -ACGGAAGAGTAGGGGAATTAAGCC -ACGGAAGAGTAGGGGAATATAGCC -ACGGAAGAGTAGGGGAATTAACCG -ACGGAAGAGTAGGGGAATATGCCA -ACGGAAGAGTAGTGATCCGGAAAC -ACGGAAGAGTAGTGATCCAACACC -ACGGAAGAGTAGTGATCCATCGAG -ACGGAAGAGTAGTGATCCCTCCTT -ACGGAAGAGTAGTGATCCCCTGTT -ACGGAAGAGTAGTGATCCCGGTTT -ACGGAAGAGTAGTGATCCGTGGTT -ACGGAAGAGTAGTGATCCGCCTTT -ACGGAAGAGTAGTGATCCGGTCTT -ACGGAAGAGTAGTGATCCACGCTT -ACGGAAGAGTAGTGATCCAGCGTT -ACGGAAGAGTAGTGATCCTTCGTC -ACGGAAGAGTAGTGATCCTCTCTC -ACGGAAGAGTAGTGATCCTGGATC -ACGGAAGAGTAGTGATCCCACTTC -ACGGAAGAGTAGTGATCCGTACTC -ACGGAAGAGTAGTGATCCGATGTC -ACGGAAGAGTAGTGATCCACAGTC -ACGGAAGAGTAGTGATCCTTGCTG -ACGGAAGAGTAGTGATCCTCCATG -ACGGAAGAGTAGTGATCCTGTGTG -ACGGAAGAGTAGTGATCCCTAGTG -ACGGAAGAGTAGTGATCCCATCTG -ACGGAAGAGTAGTGATCCGAGTTG -ACGGAAGAGTAGTGATCCAGACTG -ACGGAAGAGTAGTGATCCTCGGTA -ACGGAAGAGTAGTGATCCTGCCTA -ACGGAAGAGTAGTGATCCCCACTA -ACGGAAGAGTAGTGATCCGGAGTA -ACGGAAGAGTAGTGATCCTCGTCT -ACGGAAGAGTAGTGATCCTGCACT -ACGGAAGAGTAGTGATCCCTGACT -ACGGAAGAGTAGTGATCCCAACCT -ACGGAAGAGTAGTGATCCGCTACT -ACGGAAGAGTAGTGATCCGGATCT -ACGGAAGAGTAGTGATCCAAGGCT -ACGGAAGAGTAGTGATCCTCAACC -ACGGAAGAGTAGTGATCCTGTTCC -ACGGAAGAGTAGTGATCCATTCCC -ACGGAAGAGTAGTGATCCTTCTCG -ACGGAAGAGTAGTGATCCTAGACG -ACGGAAGAGTAGTGATCCGTAACG -ACGGAAGAGTAGTGATCCACTTCG -ACGGAAGAGTAGTGATCCTACGCA -ACGGAAGAGTAGTGATCCCTTGCA -ACGGAAGAGTAGTGATCCCGAACA -ACGGAAGAGTAGTGATCCCAGTCA -ACGGAAGAGTAGTGATCCGATCCA -ACGGAAGAGTAGTGATCCACGACA -ACGGAAGAGTAGTGATCCAGCTCA -ACGGAAGAGTAGTGATCCTCACGT -ACGGAAGAGTAGTGATCCCGTAGT -ACGGAAGAGTAGTGATCCGTCAGT -ACGGAAGAGTAGTGATCCGAAGGT -ACGGAAGAGTAGTGATCCAACCGT -ACGGAAGAGTAGTGATCCTTGTGC -ACGGAAGAGTAGTGATCCCTAAGC -ACGGAAGAGTAGTGATCCACTAGC -ACGGAAGAGTAGTGATCCAGATGC -ACGGAAGAGTAGTGATCCTGAAGG -ACGGAAGAGTAGTGATCCCAATGG -ACGGAAGAGTAGTGATCCATGAGG -ACGGAAGAGTAGTGATCCAATGGG -ACGGAAGAGTAGTGATCCTCCTGA -ACGGAAGAGTAGTGATCCTAGCGA -ACGGAAGAGTAGTGATCCCACAGA -ACGGAAGAGTAGTGATCCGCAAGA -ACGGAAGAGTAGTGATCCGGTTGA -ACGGAAGAGTAGTGATCCTCCGAT -ACGGAAGAGTAGTGATCCTGGCAT -ACGGAAGAGTAGTGATCCCGAGAT -ACGGAAGAGTAGTGATCCTACCAC -ACGGAAGAGTAGTGATCCCAGAAC -ACGGAAGAGTAGTGATCCGTCTAC -ACGGAAGAGTAGTGATCCACGTAC -ACGGAAGAGTAGTGATCCAGTGAC -ACGGAAGAGTAGTGATCCCTGTAG -ACGGAAGAGTAGTGATCCCCTAAG -ACGGAAGAGTAGTGATCCGTTCAG -ACGGAAGAGTAGTGATCCGCATAG -ACGGAAGAGTAGTGATCCGACAAG -ACGGAAGAGTAGTGATCCAAGCAG -ACGGAAGAGTAGTGATCCCGTCAA -ACGGAAGAGTAGTGATCCGCTGAA -ACGGAAGAGTAGTGATCCAGTACG -ACGGAAGAGTAGTGATCCATCCGA -ACGGAAGAGTAGTGATCCATGGGA -ACGGAAGAGTAGTGATCCGTGCAA -ACGGAAGAGTAGTGATCCGAGGAA -ACGGAAGAGTAGTGATCCCAGGTA -ACGGAAGAGTAGTGATCCGACTCT -ACGGAAGAGTAGTGATCCAGTCCT -ACGGAAGAGTAGTGATCCTAAGCC -ACGGAAGAGTAGTGATCCATAGCC -ACGGAAGAGTAGTGATCCTAACCG -ACGGAAGAGTAGTGATCCATGCCA -ACGGAAGAGTAGCGATAGGGAAAC -ACGGAAGAGTAGCGATAGAACACC -ACGGAAGAGTAGCGATAGATCGAG -ACGGAAGAGTAGCGATAGCTCCTT -ACGGAAGAGTAGCGATAGCCTGTT -ACGGAAGAGTAGCGATAGCGGTTT -ACGGAAGAGTAGCGATAGGTGGTT -ACGGAAGAGTAGCGATAGGCCTTT -ACGGAAGAGTAGCGATAGGGTCTT -ACGGAAGAGTAGCGATAGACGCTT -ACGGAAGAGTAGCGATAGAGCGTT -ACGGAAGAGTAGCGATAGTTCGTC -ACGGAAGAGTAGCGATAGTCTCTC -ACGGAAGAGTAGCGATAGTGGATC -ACGGAAGAGTAGCGATAGCACTTC -ACGGAAGAGTAGCGATAGGTACTC -ACGGAAGAGTAGCGATAGGATGTC -ACGGAAGAGTAGCGATAGACAGTC -ACGGAAGAGTAGCGATAGTTGCTG -ACGGAAGAGTAGCGATAGTCCATG -ACGGAAGAGTAGCGATAGTGTGTG -ACGGAAGAGTAGCGATAGCTAGTG -ACGGAAGAGTAGCGATAGCATCTG -ACGGAAGAGTAGCGATAGGAGTTG -ACGGAAGAGTAGCGATAGAGACTG -ACGGAAGAGTAGCGATAGTCGGTA -ACGGAAGAGTAGCGATAGTGCCTA -ACGGAAGAGTAGCGATAGCCACTA -ACGGAAGAGTAGCGATAGGGAGTA -ACGGAAGAGTAGCGATAGTCGTCT -ACGGAAGAGTAGCGATAGTGCACT -ACGGAAGAGTAGCGATAGCTGACT -ACGGAAGAGTAGCGATAGCAACCT -ACGGAAGAGTAGCGATAGGCTACT -ACGGAAGAGTAGCGATAGGGATCT -ACGGAAGAGTAGCGATAGAAGGCT -ACGGAAGAGTAGCGATAGTCAACC -ACGGAAGAGTAGCGATAGTGTTCC -ACGGAAGAGTAGCGATAGATTCCC -ACGGAAGAGTAGCGATAGTTCTCG -ACGGAAGAGTAGCGATAGTAGACG -ACGGAAGAGTAGCGATAGGTAACG -ACGGAAGAGTAGCGATAGACTTCG -ACGGAAGAGTAGCGATAGTACGCA -ACGGAAGAGTAGCGATAGCTTGCA -ACGGAAGAGTAGCGATAGCGAACA -ACGGAAGAGTAGCGATAGCAGTCA -ACGGAAGAGTAGCGATAGGATCCA -ACGGAAGAGTAGCGATAGACGACA -ACGGAAGAGTAGCGATAGAGCTCA -ACGGAAGAGTAGCGATAGTCACGT -ACGGAAGAGTAGCGATAGCGTAGT -ACGGAAGAGTAGCGATAGGTCAGT -ACGGAAGAGTAGCGATAGGAAGGT -ACGGAAGAGTAGCGATAGAACCGT -ACGGAAGAGTAGCGATAGTTGTGC -ACGGAAGAGTAGCGATAGCTAAGC -ACGGAAGAGTAGCGATAGACTAGC -ACGGAAGAGTAGCGATAGAGATGC -ACGGAAGAGTAGCGATAGTGAAGG -ACGGAAGAGTAGCGATAGCAATGG -ACGGAAGAGTAGCGATAGATGAGG -ACGGAAGAGTAGCGATAGAATGGG -ACGGAAGAGTAGCGATAGTCCTGA -ACGGAAGAGTAGCGATAGTAGCGA -ACGGAAGAGTAGCGATAGCACAGA -ACGGAAGAGTAGCGATAGGCAAGA -ACGGAAGAGTAGCGATAGGGTTGA -ACGGAAGAGTAGCGATAGTCCGAT -ACGGAAGAGTAGCGATAGTGGCAT -ACGGAAGAGTAGCGATAGCGAGAT -ACGGAAGAGTAGCGATAGTACCAC -ACGGAAGAGTAGCGATAGCAGAAC -ACGGAAGAGTAGCGATAGGTCTAC -ACGGAAGAGTAGCGATAGACGTAC -ACGGAAGAGTAGCGATAGAGTGAC -ACGGAAGAGTAGCGATAGCTGTAG -ACGGAAGAGTAGCGATAGCCTAAG -ACGGAAGAGTAGCGATAGGTTCAG -ACGGAAGAGTAGCGATAGGCATAG -ACGGAAGAGTAGCGATAGGACAAG -ACGGAAGAGTAGCGATAGAAGCAG -ACGGAAGAGTAGCGATAGCGTCAA -ACGGAAGAGTAGCGATAGGCTGAA -ACGGAAGAGTAGCGATAGAGTACG -ACGGAAGAGTAGCGATAGATCCGA -ACGGAAGAGTAGCGATAGATGGGA -ACGGAAGAGTAGCGATAGGTGCAA -ACGGAAGAGTAGCGATAGGAGGAA -ACGGAAGAGTAGCGATAGCAGGTA -ACGGAAGAGTAGCGATAGGACTCT -ACGGAAGAGTAGCGATAGAGTCCT -ACGGAAGAGTAGCGATAGTAAGCC -ACGGAAGAGTAGCGATAGATAGCC -ACGGAAGAGTAGCGATAGTAACCG -ACGGAAGAGTAGCGATAGATGCCA -ACGGAAGAGTAGAGACACGGAAAC -ACGGAAGAGTAGAGACACAACACC -ACGGAAGAGTAGAGACACATCGAG -ACGGAAGAGTAGAGACACCTCCTT -ACGGAAGAGTAGAGACACCCTGTT -ACGGAAGAGTAGAGACACCGGTTT -ACGGAAGAGTAGAGACACGTGGTT -ACGGAAGAGTAGAGACACGCCTTT -ACGGAAGAGTAGAGACACGGTCTT -ACGGAAGAGTAGAGACACACGCTT -ACGGAAGAGTAGAGACACAGCGTT -ACGGAAGAGTAGAGACACTTCGTC -ACGGAAGAGTAGAGACACTCTCTC -ACGGAAGAGTAGAGACACTGGATC -ACGGAAGAGTAGAGACACCACTTC -ACGGAAGAGTAGAGACACGTACTC -ACGGAAGAGTAGAGACACGATGTC -ACGGAAGAGTAGAGACACACAGTC -ACGGAAGAGTAGAGACACTTGCTG -ACGGAAGAGTAGAGACACTCCATG -ACGGAAGAGTAGAGACACTGTGTG -ACGGAAGAGTAGAGACACCTAGTG -ACGGAAGAGTAGAGACACCATCTG -ACGGAAGAGTAGAGACACGAGTTG -ACGGAAGAGTAGAGACACAGACTG -ACGGAAGAGTAGAGACACTCGGTA -ACGGAAGAGTAGAGACACTGCCTA -ACGGAAGAGTAGAGACACCCACTA -ACGGAAGAGTAGAGACACGGAGTA -ACGGAAGAGTAGAGACACTCGTCT -ACGGAAGAGTAGAGACACTGCACT -ACGGAAGAGTAGAGACACCTGACT -ACGGAAGAGTAGAGACACCAACCT -ACGGAAGAGTAGAGACACGCTACT -ACGGAAGAGTAGAGACACGGATCT -ACGGAAGAGTAGAGACACAAGGCT -ACGGAAGAGTAGAGACACTCAACC -ACGGAAGAGTAGAGACACTGTTCC -ACGGAAGAGTAGAGACACATTCCC -ACGGAAGAGTAGAGACACTTCTCG -ACGGAAGAGTAGAGACACTAGACG -ACGGAAGAGTAGAGACACGTAACG -ACGGAAGAGTAGAGACACACTTCG -ACGGAAGAGTAGAGACACTACGCA -ACGGAAGAGTAGAGACACCTTGCA -ACGGAAGAGTAGAGACACCGAACA -ACGGAAGAGTAGAGACACCAGTCA -ACGGAAGAGTAGAGACACGATCCA -ACGGAAGAGTAGAGACACACGACA -ACGGAAGAGTAGAGACACAGCTCA -ACGGAAGAGTAGAGACACTCACGT -ACGGAAGAGTAGAGACACCGTAGT -ACGGAAGAGTAGAGACACGTCAGT -ACGGAAGAGTAGAGACACGAAGGT -ACGGAAGAGTAGAGACACAACCGT -ACGGAAGAGTAGAGACACTTGTGC -ACGGAAGAGTAGAGACACCTAAGC -ACGGAAGAGTAGAGACACACTAGC -ACGGAAGAGTAGAGACACAGATGC -ACGGAAGAGTAGAGACACTGAAGG -ACGGAAGAGTAGAGACACCAATGG -ACGGAAGAGTAGAGACACATGAGG -ACGGAAGAGTAGAGACACAATGGG -ACGGAAGAGTAGAGACACTCCTGA -ACGGAAGAGTAGAGACACTAGCGA -ACGGAAGAGTAGAGACACCACAGA -ACGGAAGAGTAGAGACACGCAAGA -ACGGAAGAGTAGAGACACGGTTGA -ACGGAAGAGTAGAGACACTCCGAT -ACGGAAGAGTAGAGACACTGGCAT -ACGGAAGAGTAGAGACACCGAGAT -ACGGAAGAGTAGAGACACTACCAC -ACGGAAGAGTAGAGACACCAGAAC -ACGGAAGAGTAGAGACACGTCTAC -ACGGAAGAGTAGAGACACACGTAC -ACGGAAGAGTAGAGACACAGTGAC -ACGGAAGAGTAGAGACACCTGTAG -ACGGAAGAGTAGAGACACCCTAAG -ACGGAAGAGTAGAGACACGTTCAG -ACGGAAGAGTAGAGACACGCATAG -ACGGAAGAGTAGAGACACGACAAG -ACGGAAGAGTAGAGACACAAGCAG -ACGGAAGAGTAGAGACACCGTCAA -ACGGAAGAGTAGAGACACGCTGAA -ACGGAAGAGTAGAGACACAGTACG -ACGGAAGAGTAGAGACACATCCGA -ACGGAAGAGTAGAGACACATGGGA -ACGGAAGAGTAGAGACACGTGCAA -ACGGAAGAGTAGAGACACGAGGAA -ACGGAAGAGTAGAGACACCAGGTA -ACGGAAGAGTAGAGACACGACTCT -ACGGAAGAGTAGAGACACAGTCCT -ACGGAAGAGTAGAGACACTAAGCC -ACGGAAGAGTAGAGACACATAGCC -ACGGAAGAGTAGAGACACTAACCG -ACGGAAGAGTAGAGACACATGCCA -ACGGAAGAGTAGAGAGCAGGAAAC -ACGGAAGAGTAGAGAGCAAACACC -ACGGAAGAGTAGAGAGCAATCGAG -ACGGAAGAGTAGAGAGCACTCCTT -ACGGAAGAGTAGAGAGCACCTGTT -ACGGAAGAGTAGAGAGCACGGTTT -ACGGAAGAGTAGAGAGCAGTGGTT -ACGGAAGAGTAGAGAGCAGCCTTT -ACGGAAGAGTAGAGAGCAGGTCTT -ACGGAAGAGTAGAGAGCAACGCTT -ACGGAAGAGTAGAGAGCAAGCGTT -ACGGAAGAGTAGAGAGCATTCGTC -ACGGAAGAGTAGAGAGCATCTCTC -ACGGAAGAGTAGAGAGCATGGATC -ACGGAAGAGTAGAGAGCACACTTC -ACGGAAGAGTAGAGAGCAGTACTC -ACGGAAGAGTAGAGAGCAGATGTC -ACGGAAGAGTAGAGAGCAACAGTC -ACGGAAGAGTAGAGAGCATTGCTG -ACGGAAGAGTAGAGAGCATCCATG -ACGGAAGAGTAGAGAGCATGTGTG -ACGGAAGAGTAGAGAGCACTAGTG -ACGGAAGAGTAGAGAGCACATCTG -ACGGAAGAGTAGAGAGCAGAGTTG -ACGGAAGAGTAGAGAGCAAGACTG -ACGGAAGAGTAGAGAGCATCGGTA -ACGGAAGAGTAGAGAGCATGCCTA -ACGGAAGAGTAGAGAGCACCACTA -ACGGAAGAGTAGAGAGCAGGAGTA -ACGGAAGAGTAGAGAGCATCGTCT -ACGGAAGAGTAGAGAGCATGCACT -ACGGAAGAGTAGAGAGCACTGACT -ACGGAAGAGTAGAGAGCACAACCT -ACGGAAGAGTAGAGAGCAGCTACT -ACGGAAGAGTAGAGAGCAGGATCT -ACGGAAGAGTAGAGAGCAAAGGCT -ACGGAAGAGTAGAGAGCATCAACC -ACGGAAGAGTAGAGAGCATGTTCC -ACGGAAGAGTAGAGAGCAATTCCC -ACGGAAGAGTAGAGAGCATTCTCG -ACGGAAGAGTAGAGAGCATAGACG -ACGGAAGAGTAGAGAGCAGTAACG -ACGGAAGAGTAGAGAGCAACTTCG -ACGGAAGAGTAGAGAGCATACGCA -ACGGAAGAGTAGAGAGCACTTGCA -ACGGAAGAGTAGAGAGCACGAACA -ACGGAAGAGTAGAGAGCACAGTCA -ACGGAAGAGTAGAGAGCAGATCCA -ACGGAAGAGTAGAGAGCAACGACA -ACGGAAGAGTAGAGAGCAAGCTCA -ACGGAAGAGTAGAGAGCATCACGT -ACGGAAGAGTAGAGAGCACGTAGT -ACGGAAGAGTAGAGAGCAGTCAGT -ACGGAAGAGTAGAGAGCAGAAGGT -ACGGAAGAGTAGAGAGCAAACCGT -ACGGAAGAGTAGAGAGCATTGTGC -ACGGAAGAGTAGAGAGCACTAAGC -ACGGAAGAGTAGAGAGCAACTAGC -ACGGAAGAGTAGAGAGCAAGATGC -ACGGAAGAGTAGAGAGCATGAAGG -ACGGAAGAGTAGAGAGCACAATGG -ACGGAAGAGTAGAGAGCAATGAGG -ACGGAAGAGTAGAGAGCAAATGGG -ACGGAAGAGTAGAGAGCATCCTGA -ACGGAAGAGTAGAGAGCATAGCGA -ACGGAAGAGTAGAGAGCACACAGA -ACGGAAGAGTAGAGAGCAGCAAGA -ACGGAAGAGTAGAGAGCAGGTTGA -ACGGAAGAGTAGAGAGCATCCGAT -ACGGAAGAGTAGAGAGCATGGCAT -ACGGAAGAGTAGAGAGCACGAGAT -ACGGAAGAGTAGAGAGCATACCAC -ACGGAAGAGTAGAGAGCACAGAAC -ACGGAAGAGTAGAGAGCAGTCTAC -ACGGAAGAGTAGAGAGCAACGTAC -ACGGAAGAGTAGAGAGCAAGTGAC -ACGGAAGAGTAGAGAGCACTGTAG -ACGGAAGAGTAGAGAGCACCTAAG -ACGGAAGAGTAGAGAGCAGTTCAG -ACGGAAGAGTAGAGAGCAGCATAG -ACGGAAGAGTAGAGAGCAGACAAG -ACGGAAGAGTAGAGAGCAAAGCAG -ACGGAAGAGTAGAGAGCACGTCAA -ACGGAAGAGTAGAGAGCAGCTGAA -ACGGAAGAGTAGAGAGCAAGTACG -ACGGAAGAGTAGAGAGCAATCCGA -ACGGAAGAGTAGAGAGCAATGGGA -ACGGAAGAGTAGAGAGCAGTGCAA -ACGGAAGAGTAGAGAGCAGAGGAA -ACGGAAGAGTAGAGAGCACAGGTA -ACGGAAGAGTAGAGAGCAGACTCT -ACGGAAGAGTAGAGAGCAAGTCCT -ACGGAAGAGTAGAGAGCATAAGCC -ACGGAAGAGTAGAGAGCAATAGCC -ACGGAAGAGTAGAGAGCATAACCG -ACGGAAGAGTAGAGAGCAATGCCA -ACGGAAGAGTAGTGAGGTGGAAAC -ACGGAAGAGTAGTGAGGTAACACC -ACGGAAGAGTAGTGAGGTATCGAG -ACGGAAGAGTAGTGAGGTCTCCTT -ACGGAAGAGTAGTGAGGTCCTGTT -ACGGAAGAGTAGTGAGGTCGGTTT -ACGGAAGAGTAGTGAGGTGTGGTT -ACGGAAGAGTAGTGAGGTGCCTTT -ACGGAAGAGTAGTGAGGTGGTCTT -ACGGAAGAGTAGTGAGGTACGCTT -ACGGAAGAGTAGTGAGGTAGCGTT -ACGGAAGAGTAGTGAGGTTTCGTC -ACGGAAGAGTAGTGAGGTTCTCTC -ACGGAAGAGTAGTGAGGTTGGATC -ACGGAAGAGTAGTGAGGTCACTTC -ACGGAAGAGTAGTGAGGTGTACTC -ACGGAAGAGTAGTGAGGTGATGTC -ACGGAAGAGTAGTGAGGTACAGTC -ACGGAAGAGTAGTGAGGTTTGCTG -ACGGAAGAGTAGTGAGGTTCCATG -ACGGAAGAGTAGTGAGGTTGTGTG -ACGGAAGAGTAGTGAGGTCTAGTG -ACGGAAGAGTAGTGAGGTCATCTG -ACGGAAGAGTAGTGAGGTGAGTTG -ACGGAAGAGTAGTGAGGTAGACTG -ACGGAAGAGTAGTGAGGTTCGGTA -ACGGAAGAGTAGTGAGGTTGCCTA -ACGGAAGAGTAGTGAGGTCCACTA -ACGGAAGAGTAGTGAGGTGGAGTA -ACGGAAGAGTAGTGAGGTTCGTCT -ACGGAAGAGTAGTGAGGTTGCACT -ACGGAAGAGTAGTGAGGTCTGACT -ACGGAAGAGTAGTGAGGTCAACCT -ACGGAAGAGTAGTGAGGTGCTACT -ACGGAAGAGTAGTGAGGTGGATCT -ACGGAAGAGTAGTGAGGTAAGGCT -ACGGAAGAGTAGTGAGGTTCAACC -ACGGAAGAGTAGTGAGGTTGTTCC -ACGGAAGAGTAGTGAGGTATTCCC -ACGGAAGAGTAGTGAGGTTTCTCG -ACGGAAGAGTAGTGAGGTTAGACG -ACGGAAGAGTAGTGAGGTGTAACG -ACGGAAGAGTAGTGAGGTACTTCG -ACGGAAGAGTAGTGAGGTTACGCA -ACGGAAGAGTAGTGAGGTCTTGCA -ACGGAAGAGTAGTGAGGTCGAACA -ACGGAAGAGTAGTGAGGTCAGTCA -ACGGAAGAGTAGTGAGGTGATCCA -ACGGAAGAGTAGTGAGGTACGACA -ACGGAAGAGTAGTGAGGTAGCTCA -ACGGAAGAGTAGTGAGGTTCACGT -ACGGAAGAGTAGTGAGGTCGTAGT -ACGGAAGAGTAGTGAGGTGTCAGT -ACGGAAGAGTAGTGAGGTGAAGGT -ACGGAAGAGTAGTGAGGTAACCGT -ACGGAAGAGTAGTGAGGTTTGTGC -ACGGAAGAGTAGTGAGGTCTAAGC -ACGGAAGAGTAGTGAGGTACTAGC -ACGGAAGAGTAGTGAGGTAGATGC -ACGGAAGAGTAGTGAGGTTGAAGG -ACGGAAGAGTAGTGAGGTCAATGG -ACGGAAGAGTAGTGAGGTATGAGG -ACGGAAGAGTAGTGAGGTAATGGG -ACGGAAGAGTAGTGAGGTTCCTGA -ACGGAAGAGTAGTGAGGTTAGCGA -ACGGAAGAGTAGTGAGGTCACAGA -ACGGAAGAGTAGTGAGGTGCAAGA -ACGGAAGAGTAGTGAGGTGGTTGA -ACGGAAGAGTAGTGAGGTTCCGAT -ACGGAAGAGTAGTGAGGTTGGCAT -ACGGAAGAGTAGTGAGGTCGAGAT -ACGGAAGAGTAGTGAGGTTACCAC -ACGGAAGAGTAGTGAGGTCAGAAC -ACGGAAGAGTAGTGAGGTGTCTAC -ACGGAAGAGTAGTGAGGTACGTAC -ACGGAAGAGTAGTGAGGTAGTGAC -ACGGAAGAGTAGTGAGGTCTGTAG -ACGGAAGAGTAGTGAGGTCCTAAG -ACGGAAGAGTAGTGAGGTGTTCAG -ACGGAAGAGTAGTGAGGTGCATAG -ACGGAAGAGTAGTGAGGTGACAAG -ACGGAAGAGTAGTGAGGTAAGCAG -ACGGAAGAGTAGTGAGGTCGTCAA -ACGGAAGAGTAGTGAGGTGCTGAA -ACGGAAGAGTAGTGAGGTAGTACG -ACGGAAGAGTAGTGAGGTATCCGA -ACGGAAGAGTAGTGAGGTATGGGA -ACGGAAGAGTAGTGAGGTGTGCAA -ACGGAAGAGTAGTGAGGTGAGGAA -ACGGAAGAGTAGTGAGGTCAGGTA -ACGGAAGAGTAGTGAGGTGACTCT -ACGGAAGAGTAGTGAGGTAGTCCT -ACGGAAGAGTAGTGAGGTTAAGCC -ACGGAAGAGTAGTGAGGTATAGCC -ACGGAAGAGTAGTGAGGTTAACCG -ACGGAAGAGTAGTGAGGTATGCCA -ACGGAAGAGTAGGATTCCGGAAAC -ACGGAAGAGTAGGATTCCAACACC -ACGGAAGAGTAGGATTCCATCGAG -ACGGAAGAGTAGGATTCCCTCCTT -ACGGAAGAGTAGGATTCCCCTGTT -ACGGAAGAGTAGGATTCCCGGTTT -ACGGAAGAGTAGGATTCCGTGGTT -ACGGAAGAGTAGGATTCCGCCTTT -ACGGAAGAGTAGGATTCCGGTCTT -ACGGAAGAGTAGGATTCCACGCTT -ACGGAAGAGTAGGATTCCAGCGTT -ACGGAAGAGTAGGATTCCTTCGTC -ACGGAAGAGTAGGATTCCTCTCTC -ACGGAAGAGTAGGATTCCTGGATC -ACGGAAGAGTAGGATTCCCACTTC -ACGGAAGAGTAGGATTCCGTACTC -ACGGAAGAGTAGGATTCCGATGTC -ACGGAAGAGTAGGATTCCACAGTC -ACGGAAGAGTAGGATTCCTTGCTG -ACGGAAGAGTAGGATTCCTCCATG -ACGGAAGAGTAGGATTCCTGTGTG -ACGGAAGAGTAGGATTCCCTAGTG -ACGGAAGAGTAGGATTCCCATCTG -ACGGAAGAGTAGGATTCCGAGTTG -ACGGAAGAGTAGGATTCCAGACTG -ACGGAAGAGTAGGATTCCTCGGTA -ACGGAAGAGTAGGATTCCTGCCTA -ACGGAAGAGTAGGATTCCCCACTA -ACGGAAGAGTAGGATTCCGGAGTA -ACGGAAGAGTAGGATTCCTCGTCT -ACGGAAGAGTAGGATTCCTGCACT -ACGGAAGAGTAGGATTCCCTGACT -ACGGAAGAGTAGGATTCCCAACCT -ACGGAAGAGTAGGATTCCGCTACT -ACGGAAGAGTAGGATTCCGGATCT -ACGGAAGAGTAGGATTCCAAGGCT -ACGGAAGAGTAGGATTCCTCAACC -ACGGAAGAGTAGGATTCCTGTTCC -ACGGAAGAGTAGGATTCCATTCCC -ACGGAAGAGTAGGATTCCTTCTCG -ACGGAAGAGTAGGATTCCTAGACG -ACGGAAGAGTAGGATTCCGTAACG -ACGGAAGAGTAGGATTCCACTTCG -ACGGAAGAGTAGGATTCCTACGCA -ACGGAAGAGTAGGATTCCCTTGCA -ACGGAAGAGTAGGATTCCCGAACA -ACGGAAGAGTAGGATTCCCAGTCA -ACGGAAGAGTAGGATTCCGATCCA -ACGGAAGAGTAGGATTCCACGACA -ACGGAAGAGTAGGATTCCAGCTCA -ACGGAAGAGTAGGATTCCTCACGT -ACGGAAGAGTAGGATTCCCGTAGT -ACGGAAGAGTAGGATTCCGTCAGT -ACGGAAGAGTAGGATTCCGAAGGT -ACGGAAGAGTAGGATTCCAACCGT -ACGGAAGAGTAGGATTCCTTGTGC -ACGGAAGAGTAGGATTCCCTAAGC -ACGGAAGAGTAGGATTCCACTAGC -ACGGAAGAGTAGGATTCCAGATGC -ACGGAAGAGTAGGATTCCTGAAGG -ACGGAAGAGTAGGATTCCCAATGG -ACGGAAGAGTAGGATTCCATGAGG -ACGGAAGAGTAGGATTCCAATGGG -ACGGAAGAGTAGGATTCCTCCTGA -ACGGAAGAGTAGGATTCCTAGCGA -ACGGAAGAGTAGGATTCCCACAGA -ACGGAAGAGTAGGATTCCGCAAGA -ACGGAAGAGTAGGATTCCGGTTGA -ACGGAAGAGTAGGATTCCTCCGAT -ACGGAAGAGTAGGATTCCTGGCAT -ACGGAAGAGTAGGATTCCCGAGAT -ACGGAAGAGTAGGATTCCTACCAC -ACGGAAGAGTAGGATTCCCAGAAC -ACGGAAGAGTAGGATTCCGTCTAC -ACGGAAGAGTAGGATTCCACGTAC -ACGGAAGAGTAGGATTCCAGTGAC -ACGGAAGAGTAGGATTCCCTGTAG -ACGGAAGAGTAGGATTCCCCTAAG -ACGGAAGAGTAGGATTCCGTTCAG -ACGGAAGAGTAGGATTCCGCATAG -ACGGAAGAGTAGGATTCCGACAAG -ACGGAAGAGTAGGATTCCAAGCAG -ACGGAAGAGTAGGATTCCCGTCAA -ACGGAAGAGTAGGATTCCGCTGAA -ACGGAAGAGTAGGATTCCAGTACG -ACGGAAGAGTAGGATTCCATCCGA -ACGGAAGAGTAGGATTCCATGGGA -ACGGAAGAGTAGGATTCCGTGCAA -ACGGAAGAGTAGGATTCCGAGGAA -ACGGAAGAGTAGGATTCCCAGGTA -ACGGAAGAGTAGGATTCCGACTCT -ACGGAAGAGTAGGATTCCAGTCCT -ACGGAAGAGTAGGATTCCTAAGCC -ACGGAAGAGTAGGATTCCATAGCC -ACGGAAGAGTAGGATTCCTAACCG -ACGGAAGAGTAGGATTCCATGCCA -ACGGAAGAGTAGCATTGGGGAAAC -ACGGAAGAGTAGCATTGGAACACC -ACGGAAGAGTAGCATTGGATCGAG -ACGGAAGAGTAGCATTGGCTCCTT -ACGGAAGAGTAGCATTGGCCTGTT -ACGGAAGAGTAGCATTGGCGGTTT -ACGGAAGAGTAGCATTGGGTGGTT -ACGGAAGAGTAGCATTGGGCCTTT -ACGGAAGAGTAGCATTGGGGTCTT -ACGGAAGAGTAGCATTGGACGCTT -ACGGAAGAGTAGCATTGGAGCGTT -ACGGAAGAGTAGCATTGGTTCGTC -ACGGAAGAGTAGCATTGGTCTCTC -ACGGAAGAGTAGCATTGGTGGATC -ACGGAAGAGTAGCATTGGCACTTC -ACGGAAGAGTAGCATTGGGTACTC -ACGGAAGAGTAGCATTGGGATGTC -ACGGAAGAGTAGCATTGGACAGTC -ACGGAAGAGTAGCATTGGTTGCTG -ACGGAAGAGTAGCATTGGTCCATG -ACGGAAGAGTAGCATTGGTGTGTG -ACGGAAGAGTAGCATTGGCTAGTG -ACGGAAGAGTAGCATTGGCATCTG -ACGGAAGAGTAGCATTGGGAGTTG -ACGGAAGAGTAGCATTGGAGACTG -ACGGAAGAGTAGCATTGGTCGGTA -ACGGAAGAGTAGCATTGGTGCCTA -ACGGAAGAGTAGCATTGGCCACTA -ACGGAAGAGTAGCATTGGGGAGTA -ACGGAAGAGTAGCATTGGTCGTCT -ACGGAAGAGTAGCATTGGTGCACT -ACGGAAGAGTAGCATTGGCTGACT -ACGGAAGAGTAGCATTGGCAACCT -ACGGAAGAGTAGCATTGGGCTACT -ACGGAAGAGTAGCATTGGGGATCT -ACGGAAGAGTAGCATTGGAAGGCT -ACGGAAGAGTAGCATTGGTCAACC -ACGGAAGAGTAGCATTGGTGTTCC -ACGGAAGAGTAGCATTGGATTCCC -ACGGAAGAGTAGCATTGGTTCTCG -ACGGAAGAGTAGCATTGGTAGACG -ACGGAAGAGTAGCATTGGGTAACG -ACGGAAGAGTAGCATTGGACTTCG -ACGGAAGAGTAGCATTGGTACGCA -ACGGAAGAGTAGCATTGGCTTGCA -ACGGAAGAGTAGCATTGGCGAACA -ACGGAAGAGTAGCATTGGCAGTCA -ACGGAAGAGTAGCATTGGGATCCA -ACGGAAGAGTAGCATTGGACGACA -ACGGAAGAGTAGCATTGGAGCTCA -ACGGAAGAGTAGCATTGGTCACGT -ACGGAAGAGTAGCATTGGCGTAGT -ACGGAAGAGTAGCATTGGGTCAGT -ACGGAAGAGTAGCATTGGGAAGGT -ACGGAAGAGTAGCATTGGAACCGT -ACGGAAGAGTAGCATTGGTTGTGC -ACGGAAGAGTAGCATTGGCTAAGC -ACGGAAGAGTAGCATTGGACTAGC -ACGGAAGAGTAGCATTGGAGATGC -ACGGAAGAGTAGCATTGGTGAAGG -ACGGAAGAGTAGCATTGGCAATGG -ACGGAAGAGTAGCATTGGATGAGG -ACGGAAGAGTAGCATTGGAATGGG -ACGGAAGAGTAGCATTGGTCCTGA -ACGGAAGAGTAGCATTGGTAGCGA -ACGGAAGAGTAGCATTGGCACAGA -ACGGAAGAGTAGCATTGGGCAAGA -ACGGAAGAGTAGCATTGGGGTTGA -ACGGAAGAGTAGCATTGGTCCGAT -ACGGAAGAGTAGCATTGGTGGCAT -ACGGAAGAGTAGCATTGGCGAGAT -ACGGAAGAGTAGCATTGGTACCAC -ACGGAAGAGTAGCATTGGCAGAAC -ACGGAAGAGTAGCATTGGGTCTAC -ACGGAAGAGTAGCATTGGACGTAC -ACGGAAGAGTAGCATTGGAGTGAC -ACGGAAGAGTAGCATTGGCTGTAG -ACGGAAGAGTAGCATTGGCCTAAG -ACGGAAGAGTAGCATTGGGTTCAG -ACGGAAGAGTAGCATTGGGCATAG -ACGGAAGAGTAGCATTGGGACAAG -ACGGAAGAGTAGCATTGGAAGCAG -ACGGAAGAGTAGCATTGGCGTCAA -ACGGAAGAGTAGCATTGGGCTGAA -ACGGAAGAGTAGCATTGGAGTACG -ACGGAAGAGTAGCATTGGATCCGA -ACGGAAGAGTAGCATTGGATGGGA -ACGGAAGAGTAGCATTGGGTGCAA -ACGGAAGAGTAGCATTGGGAGGAA -ACGGAAGAGTAGCATTGGCAGGTA -ACGGAAGAGTAGCATTGGGACTCT -ACGGAAGAGTAGCATTGGAGTCCT -ACGGAAGAGTAGCATTGGTAAGCC -ACGGAAGAGTAGCATTGGATAGCC -ACGGAAGAGTAGCATTGGTAACCG -ACGGAAGAGTAGCATTGGATGCCA -ACGGAAGAGTAGGATCGAGGAAAC -ACGGAAGAGTAGGATCGAAACACC -ACGGAAGAGTAGGATCGAATCGAG -ACGGAAGAGTAGGATCGACTCCTT -ACGGAAGAGTAGGATCGACCTGTT -ACGGAAGAGTAGGATCGACGGTTT -ACGGAAGAGTAGGATCGAGTGGTT -ACGGAAGAGTAGGATCGAGCCTTT -ACGGAAGAGTAGGATCGAGGTCTT -ACGGAAGAGTAGGATCGAACGCTT -ACGGAAGAGTAGGATCGAAGCGTT -ACGGAAGAGTAGGATCGATTCGTC -ACGGAAGAGTAGGATCGATCTCTC -ACGGAAGAGTAGGATCGATGGATC -ACGGAAGAGTAGGATCGACACTTC -ACGGAAGAGTAGGATCGAGTACTC -ACGGAAGAGTAGGATCGAGATGTC -ACGGAAGAGTAGGATCGAACAGTC -ACGGAAGAGTAGGATCGATTGCTG -ACGGAAGAGTAGGATCGATCCATG -ACGGAAGAGTAGGATCGATGTGTG -ACGGAAGAGTAGGATCGACTAGTG -ACGGAAGAGTAGGATCGACATCTG -ACGGAAGAGTAGGATCGAGAGTTG -ACGGAAGAGTAGGATCGAAGACTG -ACGGAAGAGTAGGATCGATCGGTA -ACGGAAGAGTAGGATCGATGCCTA -ACGGAAGAGTAGGATCGACCACTA -ACGGAAGAGTAGGATCGAGGAGTA -ACGGAAGAGTAGGATCGATCGTCT -ACGGAAGAGTAGGATCGATGCACT -ACGGAAGAGTAGGATCGACTGACT -ACGGAAGAGTAGGATCGACAACCT -ACGGAAGAGTAGGATCGAGCTACT -ACGGAAGAGTAGGATCGAGGATCT -ACGGAAGAGTAGGATCGAAAGGCT -ACGGAAGAGTAGGATCGATCAACC -ACGGAAGAGTAGGATCGATGTTCC -ACGGAAGAGTAGGATCGAATTCCC -ACGGAAGAGTAGGATCGATTCTCG -ACGGAAGAGTAGGATCGATAGACG -ACGGAAGAGTAGGATCGAGTAACG -ACGGAAGAGTAGGATCGAACTTCG -ACGGAAGAGTAGGATCGATACGCA -ACGGAAGAGTAGGATCGACTTGCA -ACGGAAGAGTAGGATCGACGAACA -ACGGAAGAGTAGGATCGACAGTCA -ACGGAAGAGTAGGATCGAGATCCA -ACGGAAGAGTAGGATCGAACGACA -ACGGAAGAGTAGGATCGAAGCTCA -ACGGAAGAGTAGGATCGATCACGT -ACGGAAGAGTAGGATCGACGTAGT -ACGGAAGAGTAGGATCGAGTCAGT -ACGGAAGAGTAGGATCGAGAAGGT -ACGGAAGAGTAGGATCGAAACCGT -ACGGAAGAGTAGGATCGATTGTGC -ACGGAAGAGTAGGATCGACTAAGC -ACGGAAGAGTAGGATCGAACTAGC -ACGGAAGAGTAGGATCGAAGATGC -ACGGAAGAGTAGGATCGATGAAGG -ACGGAAGAGTAGGATCGACAATGG -ACGGAAGAGTAGGATCGAATGAGG -ACGGAAGAGTAGGATCGAAATGGG -ACGGAAGAGTAGGATCGATCCTGA -ACGGAAGAGTAGGATCGATAGCGA -ACGGAAGAGTAGGATCGACACAGA -ACGGAAGAGTAGGATCGAGCAAGA -ACGGAAGAGTAGGATCGAGGTTGA -ACGGAAGAGTAGGATCGATCCGAT -ACGGAAGAGTAGGATCGATGGCAT -ACGGAAGAGTAGGATCGACGAGAT -ACGGAAGAGTAGGATCGATACCAC -ACGGAAGAGTAGGATCGACAGAAC -ACGGAAGAGTAGGATCGAGTCTAC -ACGGAAGAGTAGGATCGAACGTAC -ACGGAAGAGTAGGATCGAAGTGAC -ACGGAAGAGTAGGATCGACTGTAG -ACGGAAGAGTAGGATCGACCTAAG -ACGGAAGAGTAGGATCGAGTTCAG -ACGGAAGAGTAGGATCGAGCATAG -ACGGAAGAGTAGGATCGAGACAAG -ACGGAAGAGTAGGATCGAAAGCAG -ACGGAAGAGTAGGATCGACGTCAA -ACGGAAGAGTAGGATCGAGCTGAA -ACGGAAGAGTAGGATCGAAGTACG -ACGGAAGAGTAGGATCGAATCCGA -ACGGAAGAGTAGGATCGAATGGGA -ACGGAAGAGTAGGATCGAGTGCAA -ACGGAAGAGTAGGATCGAGAGGAA -ACGGAAGAGTAGGATCGACAGGTA -ACGGAAGAGTAGGATCGAGACTCT -ACGGAAGAGTAGGATCGAAGTCCT -ACGGAAGAGTAGGATCGATAAGCC -ACGGAAGAGTAGGATCGAATAGCC -ACGGAAGAGTAGGATCGATAACCG -ACGGAAGAGTAGGATCGAATGCCA -ACGGAAGAGTAGCACTACGGAAAC -ACGGAAGAGTAGCACTACAACACC -ACGGAAGAGTAGCACTACATCGAG -ACGGAAGAGTAGCACTACCTCCTT -ACGGAAGAGTAGCACTACCCTGTT -ACGGAAGAGTAGCACTACCGGTTT -ACGGAAGAGTAGCACTACGTGGTT -ACGGAAGAGTAGCACTACGCCTTT -ACGGAAGAGTAGCACTACGGTCTT -ACGGAAGAGTAGCACTACACGCTT -ACGGAAGAGTAGCACTACAGCGTT -ACGGAAGAGTAGCACTACTTCGTC -ACGGAAGAGTAGCACTACTCTCTC -ACGGAAGAGTAGCACTACTGGATC -ACGGAAGAGTAGCACTACCACTTC -ACGGAAGAGTAGCACTACGTACTC -ACGGAAGAGTAGCACTACGATGTC -ACGGAAGAGTAGCACTACACAGTC -ACGGAAGAGTAGCACTACTTGCTG -ACGGAAGAGTAGCACTACTCCATG -ACGGAAGAGTAGCACTACTGTGTG -ACGGAAGAGTAGCACTACCTAGTG -ACGGAAGAGTAGCACTACCATCTG -ACGGAAGAGTAGCACTACGAGTTG -ACGGAAGAGTAGCACTACAGACTG -ACGGAAGAGTAGCACTACTCGGTA -ACGGAAGAGTAGCACTACTGCCTA -ACGGAAGAGTAGCACTACCCACTA -ACGGAAGAGTAGCACTACGGAGTA -ACGGAAGAGTAGCACTACTCGTCT -ACGGAAGAGTAGCACTACTGCACT -ACGGAAGAGTAGCACTACCTGACT -ACGGAAGAGTAGCACTACCAACCT -ACGGAAGAGTAGCACTACGCTACT -ACGGAAGAGTAGCACTACGGATCT -ACGGAAGAGTAGCACTACAAGGCT -ACGGAAGAGTAGCACTACTCAACC -ACGGAAGAGTAGCACTACTGTTCC -ACGGAAGAGTAGCACTACATTCCC -ACGGAAGAGTAGCACTACTTCTCG -ACGGAAGAGTAGCACTACTAGACG -ACGGAAGAGTAGCACTACGTAACG -ACGGAAGAGTAGCACTACACTTCG -ACGGAAGAGTAGCACTACTACGCA -ACGGAAGAGTAGCACTACCTTGCA -ACGGAAGAGTAGCACTACCGAACA -ACGGAAGAGTAGCACTACCAGTCA -ACGGAAGAGTAGCACTACGATCCA -ACGGAAGAGTAGCACTACACGACA -ACGGAAGAGTAGCACTACAGCTCA -ACGGAAGAGTAGCACTACTCACGT -ACGGAAGAGTAGCACTACCGTAGT -ACGGAAGAGTAGCACTACGTCAGT -ACGGAAGAGTAGCACTACGAAGGT -ACGGAAGAGTAGCACTACAACCGT -ACGGAAGAGTAGCACTACTTGTGC -ACGGAAGAGTAGCACTACCTAAGC -ACGGAAGAGTAGCACTACACTAGC -ACGGAAGAGTAGCACTACAGATGC -ACGGAAGAGTAGCACTACTGAAGG -ACGGAAGAGTAGCACTACCAATGG -ACGGAAGAGTAGCACTACATGAGG -ACGGAAGAGTAGCACTACAATGGG -ACGGAAGAGTAGCACTACTCCTGA -ACGGAAGAGTAGCACTACTAGCGA -ACGGAAGAGTAGCACTACCACAGA -ACGGAAGAGTAGCACTACGCAAGA -ACGGAAGAGTAGCACTACGGTTGA -ACGGAAGAGTAGCACTACTCCGAT -ACGGAAGAGTAGCACTACTGGCAT -ACGGAAGAGTAGCACTACCGAGAT -ACGGAAGAGTAGCACTACTACCAC -ACGGAAGAGTAGCACTACCAGAAC -ACGGAAGAGTAGCACTACGTCTAC -ACGGAAGAGTAGCACTACACGTAC -ACGGAAGAGTAGCACTACAGTGAC -ACGGAAGAGTAGCACTACCTGTAG -ACGGAAGAGTAGCACTACCCTAAG -ACGGAAGAGTAGCACTACGTTCAG -ACGGAAGAGTAGCACTACGCATAG -ACGGAAGAGTAGCACTACGACAAG -ACGGAAGAGTAGCACTACAAGCAG -ACGGAAGAGTAGCACTACCGTCAA -ACGGAAGAGTAGCACTACGCTGAA -ACGGAAGAGTAGCACTACAGTACG -ACGGAAGAGTAGCACTACATCCGA -ACGGAAGAGTAGCACTACATGGGA -ACGGAAGAGTAGCACTACGTGCAA -ACGGAAGAGTAGCACTACGAGGAA -ACGGAAGAGTAGCACTACCAGGTA -ACGGAAGAGTAGCACTACGACTCT -ACGGAAGAGTAGCACTACAGTCCT -ACGGAAGAGTAGCACTACTAAGCC -ACGGAAGAGTAGCACTACATAGCC -ACGGAAGAGTAGCACTACTAACCG -ACGGAAGAGTAGCACTACATGCCA -ACGGAAGAGTAGAACCAGGGAAAC -ACGGAAGAGTAGAACCAGAACACC -ACGGAAGAGTAGAACCAGATCGAG -ACGGAAGAGTAGAACCAGCTCCTT -ACGGAAGAGTAGAACCAGCCTGTT -ACGGAAGAGTAGAACCAGCGGTTT -ACGGAAGAGTAGAACCAGGTGGTT -ACGGAAGAGTAGAACCAGGCCTTT -ACGGAAGAGTAGAACCAGGGTCTT -ACGGAAGAGTAGAACCAGACGCTT -ACGGAAGAGTAGAACCAGAGCGTT -ACGGAAGAGTAGAACCAGTTCGTC -ACGGAAGAGTAGAACCAGTCTCTC -ACGGAAGAGTAGAACCAGTGGATC -ACGGAAGAGTAGAACCAGCACTTC -ACGGAAGAGTAGAACCAGGTACTC -ACGGAAGAGTAGAACCAGGATGTC -ACGGAAGAGTAGAACCAGACAGTC -ACGGAAGAGTAGAACCAGTTGCTG -ACGGAAGAGTAGAACCAGTCCATG -ACGGAAGAGTAGAACCAGTGTGTG -ACGGAAGAGTAGAACCAGCTAGTG -ACGGAAGAGTAGAACCAGCATCTG -ACGGAAGAGTAGAACCAGGAGTTG -ACGGAAGAGTAGAACCAGAGACTG -ACGGAAGAGTAGAACCAGTCGGTA -ACGGAAGAGTAGAACCAGTGCCTA -ACGGAAGAGTAGAACCAGCCACTA -ACGGAAGAGTAGAACCAGGGAGTA -ACGGAAGAGTAGAACCAGTCGTCT -ACGGAAGAGTAGAACCAGTGCACT -ACGGAAGAGTAGAACCAGCTGACT -ACGGAAGAGTAGAACCAGCAACCT -ACGGAAGAGTAGAACCAGGCTACT -ACGGAAGAGTAGAACCAGGGATCT -ACGGAAGAGTAGAACCAGAAGGCT -ACGGAAGAGTAGAACCAGTCAACC -ACGGAAGAGTAGAACCAGTGTTCC -ACGGAAGAGTAGAACCAGATTCCC -ACGGAAGAGTAGAACCAGTTCTCG -ACGGAAGAGTAGAACCAGTAGACG -ACGGAAGAGTAGAACCAGGTAACG -ACGGAAGAGTAGAACCAGACTTCG -ACGGAAGAGTAGAACCAGTACGCA -ACGGAAGAGTAGAACCAGCTTGCA -ACGGAAGAGTAGAACCAGCGAACA -ACGGAAGAGTAGAACCAGCAGTCA -ACGGAAGAGTAGAACCAGGATCCA -ACGGAAGAGTAGAACCAGACGACA -ACGGAAGAGTAGAACCAGAGCTCA -ACGGAAGAGTAGAACCAGTCACGT -ACGGAAGAGTAGAACCAGCGTAGT -ACGGAAGAGTAGAACCAGGTCAGT -ACGGAAGAGTAGAACCAGGAAGGT -ACGGAAGAGTAGAACCAGAACCGT -ACGGAAGAGTAGAACCAGTTGTGC -ACGGAAGAGTAGAACCAGCTAAGC -ACGGAAGAGTAGAACCAGACTAGC -ACGGAAGAGTAGAACCAGAGATGC -ACGGAAGAGTAGAACCAGTGAAGG -ACGGAAGAGTAGAACCAGCAATGG -ACGGAAGAGTAGAACCAGATGAGG -ACGGAAGAGTAGAACCAGAATGGG -ACGGAAGAGTAGAACCAGTCCTGA -ACGGAAGAGTAGAACCAGTAGCGA -ACGGAAGAGTAGAACCAGCACAGA -ACGGAAGAGTAGAACCAGGCAAGA -ACGGAAGAGTAGAACCAGGGTTGA -ACGGAAGAGTAGAACCAGTCCGAT -ACGGAAGAGTAGAACCAGTGGCAT -ACGGAAGAGTAGAACCAGCGAGAT -ACGGAAGAGTAGAACCAGTACCAC -ACGGAAGAGTAGAACCAGCAGAAC -ACGGAAGAGTAGAACCAGGTCTAC -ACGGAAGAGTAGAACCAGACGTAC -ACGGAAGAGTAGAACCAGAGTGAC -ACGGAAGAGTAGAACCAGCTGTAG -ACGGAAGAGTAGAACCAGCCTAAG -ACGGAAGAGTAGAACCAGGTTCAG -ACGGAAGAGTAGAACCAGGCATAG -ACGGAAGAGTAGAACCAGGACAAG -ACGGAAGAGTAGAACCAGAAGCAG -ACGGAAGAGTAGAACCAGCGTCAA -ACGGAAGAGTAGAACCAGGCTGAA -ACGGAAGAGTAGAACCAGAGTACG -ACGGAAGAGTAGAACCAGATCCGA -ACGGAAGAGTAGAACCAGATGGGA -ACGGAAGAGTAGAACCAGGTGCAA -ACGGAAGAGTAGAACCAGGAGGAA -ACGGAAGAGTAGAACCAGCAGGTA -ACGGAAGAGTAGAACCAGGACTCT -ACGGAAGAGTAGAACCAGAGTCCT -ACGGAAGAGTAGAACCAGTAAGCC -ACGGAAGAGTAGAACCAGATAGCC -ACGGAAGAGTAGAACCAGTAACCG -ACGGAAGAGTAGAACCAGATGCCA -ACGGAAGAGTAGTACGTCGGAAAC -ACGGAAGAGTAGTACGTCAACACC -ACGGAAGAGTAGTACGTCATCGAG -ACGGAAGAGTAGTACGTCCTCCTT -ACGGAAGAGTAGTACGTCCCTGTT -ACGGAAGAGTAGTACGTCCGGTTT -ACGGAAGAGTAGTACGTCGTGGTT -ACGGAAGAGTAGTACGTCGCCTTT -ACGGAAGAGTAGTACGTCGGTCTT -ACGGAAGAGTAGTACGTCACGCTT -ACGGAAGAGTAGTACGTCAGCGTT -ACGGAAGAGTAGTACGTCTTCGTC -ACGGAAGAGTAGTACGTCTCTCTC -ACGGAAGAGTAGTACGTCTGGATC -ACGGAAGAGTAGTACGTCCACTTC -ACGGAAGAGTAGTACGTCGTACTC -ACGGAAGAGTAGTACGTCGATGTC -ACGGAAGAGTAGTACGTCACAGTC -ACGGAAGAGTAGTACGTCTTGCTG -ACGGAAGAGTAGTACGTCTCCATG -ACGGAAGAGTAGTACGTCTGTGTG -ACGGAAGAGTAGTACGTCCTAGTG -ACGGAAGAGTAGTACGTCCATCTG -ACGGAAGAGTAGTACGTCGAGTTG -ACGGAAGAGTAGTACGTCAGACTG -ACGGAAGAGTAGTACGTCTCGGTA -ACGGAAGAGTAGTACGTCTGCCTA -ACGGAAGAGTAGTACGTCCCACTA -ACGGAAGAGTAGTACGTCGGAGTA -ACGGAAGAGTAGTACGTCTCGTCT -ACGGAAGAGTAGTACGTCTGCACT -ACGGAAGAGTAGTACGTCCTGACT -ACGGAAGAGTAGTACGTCCAACCT -ACGGAAGAGTAGTACGTCGCTACT -ACGGAAGAGTAGTACGTCGGATCT -ACGGAAGAGTAGTACGTCAAGGCT -ACGGAAGAGTAGTACGTCTCAACC -ACGGAAGAGTAGTACGTCTGTTCC -ACGGAAGAGTAGTACGTCATTCCC -ACGGAAGAGTAGTACGTCTTCTCG -ACGGAAGAGTAGTACGTCTAGACG -ACGGAAGAGTAGTACGTCGTAACG -ACGGAAGAGTAGTACGTCACTTCG -ACGGAAGAGTAGTACGTCTACGCA -ACGGAAGAGTAGTACGTCCTTGCA -ACGGAAGAGTAGTACGTCCGAACA -ACGGAAGAGTAGTACGTCCAGTCA -ACGGAAGAGTAGTACGTCGATCCA -ACGGAAGAGTAGTACGTCACGACA -ACGGAAGAGTAGTACGTCAGCTCA -ACGGAAGAGTAGTACGTCTCACGT -ACGGAAGAGTAGTACGTCCGTAGT -ACGGAAGAGTAGTACGTCGTCAGT -ACGGAAGAGTAGTACGTCGAAGGT -ACGGAAGAGTAGTACGTCAACCGT -ACGGAAGAGTAGTACGTCTTGTGC -ACGGAAGAGTAGTACGTCCTAAGC -ACGGAAGAGTAGTACGTCACTAGC -ACGGAAGAGTAGTACGTCAGATGC -ACGGAAGAGTAGTACGTCTGAAGG -ACGGAAGAGTAGTACGTCCAATGG -ACGGAAGAGTAGTACGTCATGAGG -ACGGAAGAGTAGTACGTCAATGGG -ACGGAAGAGTAGTACGTCTCCTGA -ACGGAAGAGTAGTACGTCTAGCGA -ACGGAAGAGTAGTACGTCCACAGA -ACGGAAGAGTAGTACGTCGCAAGA -ACGGAAGAGTAGTACGTCGGTTGA -ACGGAAGAGTAGTACGTCTCCGAT -ACGGAAGAGTAGTACGTCTGGCAT -ACGGAAGAGTAGTACGTCCGAGAT -ACGGAAGAGTAGTACGTCTACCAC -ACGGAAGAGTAGTACGTCCAGAAC -ACGGAAGAGTAGTACGTCGTCTAC -ACGGAAGAGTAGTACGTCACGTAC -ACGGAAGAGTAGTACGTCAGTGAC -ACGGAAGAGTAGTACGTCCTGTAG -ACGGAAGAGTAGTACGTCCCTAAG -ACGGAAGAGTAGTACGTCGTTCAG -ACGGAAGAGTAGTACGTCGCATAG -ACGGAAGAGTAGTACGTCGACAAG -ACGGAAGAGTAGTACGTCAAGCAG -ACGGAAGAGTAGTACGTCCGTCAA -ACGGAAGAGTAGTACGTCGCTGAA -ACGGAAGAGTAGTACGTCAGTACG -ACGGAAGAGTAGTACGTCATCCGA -ACGGAAGAGTAGTACGTCATGGGA -ACGGAAGAGTAGTACGTCGTGCAA -ACGGAAGAGTAGTACGTCGAGGAA -ACGGAAGAGTAGTACGTCCAGGTA -ACGGAAGAGTAGTACGTCGACTCT -ACGGAAGAGTAGTACGTCAGTCCT -ACGGAAGAGTAGTACGTCTAAGCC -ACGGAAGAGTAGTACGTCATAGCC -ACGGAAGAGTAGTACGTCTAACCG -ACGGAAGAGTAGTACGTCATGCCA -ACGGAAGAGTAGTACACGGGAAAC -ACGGAAGAGTAGTACACGAACACC -ACGGAAGAGTAGTACACGATCGAG -ACGGAAGAGTAGTACACGCTCCTT -ACGGAAGAGTAGTACACGCCTGTT -ACGGAAGAGTAGTACACGCGGTTT -ACGGAAGAGTAGTACACGGTGGTT -ACGGAAGAGTAGTACACGGCCTTT -ACGGAAGAGTAGTACACGGGTCTT -ACGGAAGAGTAGTACACGACGCTT -ACGGAAGAGTAGTACACGAGCGTT -ACGGAAGAGTAGTACACGTTCGTC -ACGGAAGAGTAGTACACGTCTCTC -ACGGAAGAGTAGTACACGTGGATC -ACGGAAGAGTAGTACACGCACTTC -ACGGAAGAGTAGTACACGGTACTC -ACGGAAGAGTAGTACACGGATGTC -ACGGAAGAGTAGTACACGACAGTC -ACGGAAGAGTAGTACACGTTGCTG -ACGGAAGAGTAGTACACGTCCATG -ACGGAAGAGTAGTACACGTGTGTG -ACGGAAGAGTAGTACACGCTAGTG -ACGGAAGAGTAGTACACGCATCTG -ACGGAAGAGTAGTACACGGAGTTG -ACGGAAGAGTAGTACACGAGACTG -ACGGAAGAGTAGTACACGTCGGTA -ACGGAAGAGTAGTACACGTGCCTA -ACGGAAGAGTAGTACACGCCACTA -ACGGAAGAGTAGTACACGGGAGTA -ACGGAAGAGTAGTACACGTCGTCT -ACGGAAGAGTAGTACACGTGCACT -ACGGAAGAGTAGTACACGCTGACT -ACGGAAGAGTAGTACACGCAACCT -ACGGAAGAGTAGTACACGGCTACT -ACGGAAGAGTAGTACACGGGATCT -ACGGAAGAGTAGTACACGAAGGCT -ACGGAAGAGTAGTACACGTCAACC -ACGGAAGAGTAGTACACGTGTTCC -ACGGAAGAGTAGTACACGATTCCC -ACGGAAGAGTAGTACACGTTCTCG -ACGGAAGAGTAGTACACGTAGACG -ACGGAAGAGTAGTACACGGTAACG -ACGGAAGAGTAGTACACGACTTCG -ACGGAAGAGTAGTACACGTACGCA -ACGGAAGAGTAGTACACGCTTGCA -ACGGAAGAGTAGTACACGCGAACA -ACGGAAGAGTAGTACACGCAGTCA -ACGGAAGAGTAGTACACGGATCCA -ACGGAAGAGTAGTACACGACGACA -ACGGAAGAGTAGTACACGAGCTCA -ACGGAAGAGTAGTACACGTCACGT -ACGGAAGAGTAGTACACGCGTAGT -ACGGAAGAGTAGTACACGGTCAGT -ACGGAAGAGTAGTACACGGAAGGT -ACGGAAGAGTAGTACACGAACCGT -ACGGAAGAGTAGTACACGTTGTGC -ACGGAAGAGTAGTACACGCTAAGC -ACGGAAGAGTAGTACACGACTAGC -ACGGAAGAGTAGTACACGAGATGC -ACGGAAGAGTAGTACACGTGAAGG -ACGGAAGAGTAGTACACGCAATGG -ACGGAAGAGTAGTACACGATGAGG -ACGGAAGAGTAGTACACGAATGGG -ACGGAAGAGTAGTACACGTCCTGA -ACGGAAGAGTAGTACACGTAGCGA -ACGGAAGAGTAGTACACGCACAGA -ACGGAAGAGTAGTACACGGCAAGA -ACGGAAGAGTAGTACACGGGTTGA -ACGGAAGAGTAGTACACGTCCGAT -ACGGAAGAGTAGTACACGTGGCAT -ACGGAAGAGTAGTACACGCGAGAT -ACGGAAGAGTAGTACACGTACCAC -ACGGAAGAGTAGTACACGCAGAAC -ACGGAAGAGTAGTACACGGTCTAC -ACGGAAGAGTAGTACACGACGTAC -ACGGAAGAGTAGTACACGAGTGAC -ACGGAAGAGTAGTACACGCTGTAG -ACGGAAGAGTAGTACACGCCTAAG -ACGGAAGAGTAGTACACGGTTCAG -ACGGAAGAGTAGTACACGGCATAG -ACGGAAGAGTAGTACACGGACAAG -ACGGAAGAGTAGTACACGAAGCAG -ACGGAAGAGTAGTACACGCGTCAA -ACGGAAGAGTAGTACACGGCTGAA -ACGGAAGAGTAGTACACGAGTACG -ACGGAAGAGTAGTACACGATCCGA -ACGGAAGAGTAGTACACGATGGGA -ACGGAAGAGTAGTACACGGTGCAA -ACGGAAGAGTAGTACACGGAGGAA -ACGGAAGAGTAGTACACGCAGGTA -ACGGAAGAGTAGTACACGGACTCT -ACGGAAGAGTAGTACACGAGTCCT -ACGGAAGAGTAGTACACGTAAGCC -ACGGAAGAGTAGTACACGATAGCC -ACGGAAGAGTAGTACACGTAACCG -ACGGAAGAGTAGTACACGATGCCA -ACGGAAGAGTAGGACAGTGGAAAC -ACGGAAGAGTAGGACAGTAACACC -ACGGAAGAGTAGGACAGTATCGAG -ACGGAAGAGTAGGACAGTCTCCTT -ACGGAAGAGTAGGACAGTCCTGTT -ACGGAAGAGTAGGACAGTCGGTTT -ACGGAAGAGTAGGACAGTGTGGTT -ACGGAAGAGTAGGACAGTGCCTTT -ACGGAAGAGTAGGACAGTGGTCTT -ACGGAAGAGTAGGACAGTACGCTT -ACGGAAGAGTAGGACAGTAGCGTT -ACGGAAGAGTAGGACAGTTTCGTC -ACGGAAGAGTAGGACAGTTCTCTC -ACGGAAGAGTAGGACAGTTGGATC -ACGGAAGAGTAGGACAGTCACTTC -ACGGAAGAGTAGGACAGTGTACTC -ACGGAAGAGTAGGACAGTGATGTC -ACGGAAGAGTAGGACAGTACAGTC -ACGGAAGAGTAGGACAGTTTGCTG -ACGGAAGAGTAGGACAGTTCCATG -ACGGAAGAGTAGGACAGTTGTGTG -ACGGAAGAGTAGGACAGTCTAGTG -ACGGAAGAGTAGGACAGTCATCTG -ACGGAAGAGTAGGACAGTGAGTTG -ACGGAAGAGTAGGACAGTAGACTG -ACGGAAGAGTAGGACAGTTCGGTA -ACGGAAGAGTAGGACAGTTGCCTA -ACGGAAGAGTAGGACAGTCCACTA -ACGGAAGAGTAGGACAGTGGAGTA -ACGGAAGAGTAGGACAGTTCGTCT -ACGGAAGAGTAGGACAGTTGCACT -ACGGAAGAGTAGGACAGTCTGACT -ACGGAAGAGTAGGACAGTCAACCT -ACGGAAGAGTAGGACAGTGCTACT -ACGGAAGAGTAGGACAGTGGATCT -ACGGAAGAGTAGGACAGTAAGGCT -ACGGAAGAGTAGGACAGTTCAACC -ACGGAAGAGTAGGACAGTTGTTCC -ACGGAAGAGTAGGACAGTATTCCC -ACGGAAGAGTAGGACAGTTTCTCG -ACGGAAGAGTAGGACAGTTAGACG -ACGGAAGAGTAGGACAGTGTAACG -ACGGAAGAGTAGGACAGTACTTCG -ACGGAAGAGTAGGACAGTTACGCA -ACGGAAGAGTAGGACAGTCTTGCA -ACGGAAGAGTAGGACAGTCGAACA -ACGGAAGAGTAGGACAGTCAGTCA -ACGGAAGAGTAGGACAGTGATCCA -ACGGAAGAGTAGGACAGTACGACA -ACGGAAGAGTAGGACAGTAGCTCA -ACGGAAGAGTAGGACAGTTCACGT -ACGGAAGAGTAGGACAGTCGTAGT -ACGGAAGAGTAGGACAGTGTCAGT -ACGGAAGAGTAGGACAGTGAAGGT -ACGGAAGAGTAGGACAGTAACCGT -ACGGAAGAGTAGGACAGTTTGTGC -ACGGAAGAGTAGGACAGTCTAAGC -ACGGAAGAGTAGGACAGTACTAGC -ACGGAAGAGTAGGACAGTAGATGC -ACGGAAGAGTAGGACAGTTGAAGG -ACGGAAGAGTAGGACAGTCAATGG -ACGGAAGAGTAGGACAGTATGAGG -ACGGAAGAGTAGGACAGTAATGGG -ACGGAAGAGTAGGACAGTTCCTGA -ACGGAAGAGTAGGACAGTTAGCGA -ACGGAAGAGTAGGACAGTCACAGA -ACGGAAGAGTAGGACAGTGCAAGA -ACGGAAGAGTAGGACAGTGGTTGA -ACGGAAGAGTAGGACAGTTCCGAT -ACGGAAGAGTAGGACAGTTGGCAT -ACGGAAGAGTAGGACAGTCGAGAT -ACGGAAGAGTAGGACAGTTACCAC -ACGGAAGAGTAGGACAGTCAGAAC -ACGGAAGAGTAGGACAGTGTCTAC -ACGGAAGAGTAGGACAGTACGTAC -ACGGAAGAGTAGGACAGTAGTGAC -ACGGAAGAGTAGGACAGTCTGTAG -ACGGAAGAGTAGGACAGTCCTAAG -ACGGAAGAGTAGGACAGTGTTCAG -ACGGAAGAGTAGGACAGTGCATAG -ACGGAAGAGTAGGACAGTGACAAG -ACGGAAGAGTAGGACAGTAAGCAG -ACGGAAGAGTAGGACAGTCGTCAA -ACGGAAGAGTAGGACAGTGCTGAA -ACGGAAGAGTAGGACAGTAGTACG -ACGGAAGAGTAGGACAGTATCCGA -ACGGAAGAGTAGGACAGTATGGGA -ACGGAAGAGTAGGACAGTGTGCAA -ACGGAAGAGTAGGACAGTGAGGAA -ACGGAAGAGTAGGACAGTCAGGTA -ACGGAAGAGTAGGACAGTGACTCT -ACGGAAGAGTAGGACAGTAGTCCT -ACGGAAGAGTAGGACAGTTAAGCC -ACGGAAGAGTAGGACAGTATAGCC -ACGGAAGAGTAGGACAGTTAACCG -ACGGAAGAGTAGGACAGTATGCCA -ACGGAAGAGTAGTAGCTGGGAAAC -ACGGAAGAGTAGTAGCTGAACACC -ACGGAAGAGTAGTAGCTGATCGAG -ACGGAAGAGTAGTAGCTGCTCCTT -ACGGAAGAGTAGTAGCTGCCTGTT -ACGGAAGAGTAGTAGCTGCGGTTT -ACGGAAGAGTAGTAGCTGGTGGTT -ACGGAAGAGTAGTAGCTGGCCTTT -ACGGAAGAGTAGTAGCTGGGTCTT -ACGGAAGAGTAGTAGCTGACGCTT -ACGGAAGAGTAGTAGCTGAGCGTT -ACGGAAGAGTAGTAGCTGTTCGTC -ACGGAAGAGTAGTAGCTGTCTCTC -ACGGAAGAGTAGTAGCTGTGGATC -ACGGAAGAGTAGTAGCTGCACTTC -ACGGAAGAGTAGTAGCTGGTACTC -ACGGAAGAGTAGTAGCTGGATGTC -ACGGAAGAGTAGTAGCTGACAGTC -ACGGAAGAGTAGTAGCTGTTGCTG -ACGGAAGAGTAGTAGCTGTCCATG -ACGGAAGAGTAGTAGCTGTGTGTG -ACGGAAGAGTAGTAGCTGCTAGTG -ACGGAAGAGTAGTAGCTGCATCTG -ACGGAAGAGTAGTAGCTGGAGTTG -ACGGAAGAGTAGTAGCTGAGACTG -ACGGAAGAGTAGTAGCTGTCGGTA -ACGGAAGAGTAGTAGCTGTGCCTA -ACGGAAGAGTAGTAGCTGCCACTA -ACGGAAGAGTAGTAGCTGGGAGTA -ACGGAAGAGTAGTAGCTGTCGTCT -ACGGAAGAGTAGTAGCTGTGCACT -ACGGAAGAGTAGTAGCTGCTGACT -ACGGAAGAGTAGTAGCTGCAACCT -ACGGAAGAGTAGTAGCTGGCTACT -ACGGAAGAGTAGTAGCTGGGATCT -ACGGAAGAGTAGTAGCTGAAGGCT -ACGGAAGAGTAGTAGCTGTCAACC -ACGGAAGAGTAGTAGCTGTGTTCC -ACGGAAGAGTAGTAGCTGATTCCC -ACGGAAGAGTAGTAGCTGTTCTCG -ACGGAAGAGTAGTAGCTGTAGACG -ACGGAAGAGTAGTAGCTGGTAACG -ACGGAAGAGTAGTAGCTGACTTCG -ACGGAAGAGTAGTAGCTGTACGCA -ACGGAAGAGTAGTAGCTGCTTGCA -ACGGAAGAGTAGTAGCTGCGAACA -ACGGAAGAGTAGTAGCTGCAGTCA -ACGGAAGAGTAGTAGCTGGATCCA -ACGGAAGAGTAGTAGCTGACGACA -ACGGAAGAGTAGTAGCTGAGCTCA -ACGGAAGAGTAGTAGCTGTCACGT -ACGGAAGAGTAGTAGCTGCGTAGT -ACGGAAGAGTAGTAGCTGGTCAGT -ACGGAAGAGTAGTAGCTGGAAGGT -ACGGAAGAGTAGTAGCTGAACCGT -ACGGAAGAGTAGTAGCTGTTGTGC -ACGGAAGAGTAGTAGCTGCTAAGC -ACGGAAGAGTAGTAGCTGACTAGC -ACGGAAGAGTAGTAGCTGAGATGC -ACGGAAGAGTAGTAGCTGTGAAGG -ACGGAAGAGTAGTAGCTGCAATGG -ACGGAAGAGTAGTAGCTGATGAGG -ACGGAAGAGTAGTAGCTGAATGGG -ACGGAAGAGTAGTAGCTGTCCTGA -ACGGAAGAGTAGTAGCTGTAGCGA -ACGGAAGAGTAGTAGCTGCACAGA -ACGGAAGAGTAGTAGCTGGCAAGA -ACGGAAGAGTAGTAGCTGGGTTGA -ACGGAAGAGTAGTAGCTGTCCGAT -ACGGAAGAGTAGTAGCTGTGGCAT -ACGGAAGAGTAGTAGCTGCGAGAT -ACGGAAGAGTAGTAGCTGTACCAC -ACGGAAGAGTAGTAGCTGCAGAAC -ACGGAAGAGTAGTAGCTGGTCTAC -ACGGAAGAGTAGTAGCTGACGTAC -ACGGAAGAGTAGTAGCTGAGTGAC -ACGGAAGAGTAGTAGCTGCTGTAG -ACGGAAGAGTAGTAGCTGCCTAAG -ACGGAAGAGTAGTAGCTGGTTCAG -ACGGAAGAGTAGTAGCTGGCATAG -ACGGAAGAGTAGTAGCTGGACAAG -ACGGAAGAGTAGTAGCTGAAGCAG -ACGGAAGAGTAGTAGCTGCGTCAA -ACGGAAGAGTAGTAGCTGGCTGAA -ACGGAAGAGTAGTAGCTGAGTACG -ACGGAAGAGTAGTAGCTGATCCGA -ACGGAAGAGTAGTAGCTGATGGGA -ACGGAAGAGTAGTAGCTGGTGCAA -ACGGAAGAGTAGTAGCTGGAGGAA -ACGGAAGAGTAGTAGCTGCAGGTA -ACGGAAGAGTAGTAGCTGGACTCT -ACGGAAGAGTAGTAGCTGAGTCCT -ACGGAAGAGTAGTAGCTGTAAGCC -ACGGAAGAGTAGTAGCTGATAGCC -ACGGAAGAGTAGTAGCTGTAACCG -ACGGAAGAGTAGTAGCTGATGCCA -ACGGAAGAGTAGAAGCCTGGAAAC -ACGGAAGAGTAGAAGCCTAACACC -ACGGAAGAGTAGAAGCCTATCGAG -ACGGAAGAGTAGAAGCCTCTCCTT -ACGGAAGAGTAGAAGCCTCCTGTT -ACGGAAGAGTAGAAGCCTCGGTTT -ACGGAAGAGTAGAAGCCTGTGGTT -ACGGAAGAGTAGAAGCCTGCCTTT -ACGGAAGAGTAGAAGCCTGGTCTT -ACGGAAGAGTAGAAGCCTACGCTT -ACGGAAGAGTAGAAGCCTAGCGTT -ACGGAAGAGTAGAAGCCTTTCGTC -ACGGAAGAGTAGAAGCCTTCTCTC -ACGGAAGAGTAGAAGCCTTGGATC -ACGGAAGAGTAGAAGCCTCACTTC -ACGGAAGAGTAGAAGCCTGTACTC -ACGGAAGAGTAGAAGCCTGATGTC -ACGGAAGAGTAGAAGCCTACAGTC -ACGGAAGAGTAGAAGCCTTTGCTG -ACGGAAGAGTAGAAGCCTTCCATG -ACGGAAGAGTAGAAGCCTTGTGTG -ACGGAAGAGTAGAAGCCTCTAGTG -ACGGAAGAGTAGAAGCCTCATCTG -ACGGAAGAGTAGAAGCCTGAGTTG -ACGGAAGAGTAGAAGCCTAGACTG -ACGGAAGAGTAGAAGCCTTCGGTA -ACGGAAGAGTAGAAGCCTTGCCTA -ACGGAAGAGTAGAAGCCTCCACTA -ACGGAAGAGTAGAAGCCTGGAGTA -ACGGAAGAGTAGAAGCCTTCGTCT -ACGGAAGAGTAGAAGCCTTGCACT -ACGGAAGAGTAGAAGCCTCTGACT -ACGGAAGAGTAGAAGCCTCAACCT -ACGGAAGAGTAGAAGCCTGCTACT -ACGGAAGAGTAGAAGCCTGGATCT -ACGGAAGAGTAGAAGCCTAAGGCT -ACGGAAGAGTAGAAGCCTTCAACC -ACGGAAGAGTAGAAGCCTTGTTCC -ACGGAAGAGTAGAAGCCTATTCCC -ACGGAAGAGTAGAAGCCTTTCTCG -ACGGAAGAGTAGAAGCCTTAGACG -ACGGAAGAGTAGAAGCCTGTAACG -ACGGAAGAGTAGAAGCCTACTTCG -ACGGAAGAGTAGAAGCCTTACGCA -ACGGAAGAGTAGAAGCCTCTTGCA -ACGGAAGAGTAGAAGCCTCGAACA -ACGGAAGAGTAGAAGCCTCAGTCA -ACGGAAGAGTAGAAGCCTGATCCA -ACGGAAGAGTAGAAGCCTACGACA -ACGGAAGAGTAGAAGCCTAGCTCA -ACGGAAGAGTAGAAGCCTTCACGT -ACGGAAGAGTAGAAGCCTCGTAGT -ACGGAAGAGTAGAAGCCTGTCAGT -ACGGAAGAGTAGAAGCCTGAAGGT -ACGGAAGAGTAGAAGCCTAACCGT -ACGGAAGAGTAGAAGCCTTTGTGC -ACGGAAGAGTAGAAGCCTCTAAGC -ACGGAAGAGTAGAAGCCTACTAGC -ACGGAAGAGTAGAAGCCTAGATGC -ACGGAAGAGTAGAAGCCTTGAAGG -ACGGAAGAGTAGAAGCCTCAATGG -ACGGAAGAGTAGAAGCCTATGAGG -ACGGAAGAGTAGAAGCCTAATGGG -ACGGAAGAGTAGAAGCCTTCCTGA -ACGGAAGAGTAGAAGCCTTAGCGA -ACGGAAGAGTAGAAGCCTCACAGA -ACGGAAGAGTAGAAGCCTGCAAGA -ACGGAAGAGTAGAAGCCTGGTTGA -ACGGAAGAGTAGAAGCCTTCCGAT -ACGGAAGAGTAGAAGCCTTGGCAT -ACGGAAGAGTAGAAGCCTCGAGAT -ACGGAAGAGTAGAAGCCTTACCAC -ACGGAAGAGTAGAAGCCTCAGAAC -ACGGAAGAGTAGAAGCCTGTCTAC -ACGGAAGAGTAGAAGCCTACGTAC -ACGGAAGAGTAGAAGCCTAGTGAC -ACGGAAGAGTAGAAGCCTCTGTAG -ACGGAAGAGTAGAAGCCTCCTAAG -ACGGAAGAGTAGAAGCCTGTTCAG -ACGGAAGAGTAGAAGCCTGCATAG -ACGGAAGAGTAGAAGCCTGACAAG -ACGGAAGAGTAGAAGCCTAAGCAG -ACGGAAGAGTAGAAGCCTCGTCAA -ACGGAAGAGTAGAAGCCTGCTGAA -ACGGAAGAGTAGAAGCCTAGTACG -ACGGAAGAGTAGAAGCCTATCCGA -ACGGAAGAGTAGAAGCCTATGGGA -ACGGAAGAGTAGAAGCCTGTGCAA -ACGGAAGAGTAGAAGCCTGAGGAA -ACGGAAGAGTAGAAGCCTCAGGTA -ACGGAAGAGTAGAAGCCTGACTCT -ACGGAAGAGTAGAAGCCTAGTCCT -ACGGAAGAGTAGAAGCCTTAAGCC -ACGGAAGAGTAGAAGCCTATAGCC -ACGGAAGAGTAGAAGCCTTAACCG -ACGGAAGAGTAGAAGCCTATGCCA -ACGGAAGAGTAGCAGGTTGGAAAC -ACGGAAGAGTAGCAGGTTAACACC -ACGGAAGAGTAGCAGGTTATCGAG -ACGGAAGAGTAGCAGGTTCTCCTT -ACGGAAGAGTAGCAGGTTCCTGTT -ACGGAAGAGTAGCAGGTTCGGTTT -ACGGAAGAGTAGCAGGTTGTGGTT -ACGGAAGAGTAGCAGGTTGCCTTT -ACGGAAGAGTAGCAGGTTGGTCTT -ACGGAAGAGTAGCAGGTTACGCTT -ACGGAAGAGTAGCAGGTTAGCGTT -ACGGAAGAGTAGCAGGTTTTCGTC -ACGGAAGAGTAGCAGGTTTCTCTC -ACGGAAGAGTAGCAGGTTTGGATC -ACGGAAGAGTAGCAGGTTCACTTC -ACGGAAGAGTAGCAGGTTGTACTC -ACGGAAGAGTAGCAGGTTGATGTC -ACGGAAGAGTAGCAGGTTACAGTC -ACGGAAGAGTAGCAGGTTTTGCTG -ACGGAAGAGTAGCAGGTTTCCATG -ACGGAAGAGTAGCAGGTTTGTGTG -ACGGAAGAGTAGCAGGTTCTAGTG -ACGGAAGAGTAGCAGGTTCATCTG -ACGGAAGAGTAGCAGGTTGAGTTG -ACGGAAGAGTAGCAGGTTAGACTG -ACGGAAGAGTAGCAGGTTTCGGTA -ACGGAAGAGTAGCAGGTTTGCCTA -ACGGAAGAGTAGCAGGTTCCACTA -ACGGAAGAGTAGCAGGTTGGAGTA -ACGGAAGAGTAGCAGGTTTCGTCT -ACGGAAGAGTAGCAGGTTTGCACT -ACGGAAGAGTAGCAGGTTCTGACT -ACGGAAGAGTAGCAGGTTCAACCT -ACGGAAGAGTAGCAGGTTGCTACT -ACGGAAGAGTAGCAGGTTGGATCT -ACGGAAGAGTAGCAGGTTAAGGCT -ACGGAAGAGTAGCAGGTTTCAACC -ACGGAAGAGTAGCAGGTTTGTTCC -ACGGAAGAGTAGCAGGTTATTCCC -ACGGAAGAGTAGCAGGTTTTCTCG -ACGGAAGAGTAGCAGGTTTAGACG -ACGGAAGAGTAGCAGGTTGTAACG -ACGGAAGAGTAGCAGGTTACTTCG -ACGGAAGAGTAGCAGGTTTACGCA -ACGGAAGAGTAGCAGGTTCTTGCA -ACGGAAGAGTAGCAGGTTCGAACA -ACGGAAGAGTAGCAGGTTCAGTCA -ACGGAAGAGTAGCAGGTTGATCCA -ACGGAAGAGTAGCAGGTTACGACA -ACGGAAGAGTAGCAGGTTAGCTCA -ACGGAAGAGTAGCAGGTTTCACGT -ACGGAAGAGTAGCAGGTTCGTAGT -ACGGAAGAGTAGCAGGTTGTCAGT -ACGGAAGAGTAGCAGGTTGAAGGT -ACGGAAGAGTAGCAGGTTAACCGT -ACGGAAGAGTAGCAGGTTTTGTGC -ACGGAAGAGTAGCAGGTTCTAAGC -ACGGAAGAGTAGCAGGTTACTAGC -ACGGAAGAGTAGCAGGTTAGATGC -ACGGAAGAGTAGCAGGTTTGAAGG -ACGGAAGAGTAGCAGGTTCAATGG -ACGGAAGAGTAGCAGGTTATGAGG -ACGGAAGAGTAGCAGGTTAATGGG -ACGGAAGAGTAGCAGGTTTCCTGA -ACGGAAGAGTAGCAGGTTTAGCGA -ACGGAAGAGTAGCAGGTTCACAGA -ACGGAAGAGTAGCAGGTTGCAAGA -ACGGAAGAGTAGCAGGTTGGTTGA -ACGGAAGAGTAGCAGGTTTCCGAT -ACGGAAGAGTAGCAGGTTTGGCAT -ACGGAAGAGTAGCAGGTTCGAGAT -ACGGAAGAGTAGCAGGTTTACCAC -ACGGAAGAGTAGCAGGTTCAGAAC -ACGGAAGAGTAGCAGGTTGTCTAC -ACGGAAGAGTAGCAGGTTACGTAC -ACGGAAGAGTAGCAGGTTAGTGAC -ACGGAAGAGTAGCAGGTTCTGTAG -ACGGAAGAGTAGCAGGTTCCTAAG -ACGGAAGAGTAGCAGGTTGTTCAG -ACGGAAGAGTAGCAGGTTGCATAG -ACGGAAGAGTAGCAGGTTGACAAG -ACGGAAGAGTAGCAGGTTAAGCAG -ACGGAAGAGTAGCAGGTTCGTCAA -ACGGAAGAGTAGCAGGTTGCTGAA -ACGGAAGAGTAGCAGGTTAGTACG -ACGGAAGAGTAGCAGGTTATCCGA -ACGGAAGAGTAGCAGGTTATGGGA -ACGGAAGAGTAGCAGGTTGTGCAA -ACGGAAGAGTAGCAGGTTGAGGAA -ACGGAAGAGTAGCAGGTTCAGGTA -ACGGAAGAGTAGCAGGTTGACTCT -ACGGAAGAGTAGCAGGTTAGTCCT -ACGGAAGAGTAGCAGGTTTAAGCC -ACGGAAGAGTAGCAGGTTATAGCC -ACGGAAGAGTAGCAGGTTTAACCG -ACGGAAGAGTAGCAGGTTATGCCA -ACGGAAGAGTAGTAGGCAGGAAAC -ACGGAAGAGTAGTAGGCAAACACC -ACGGAAGAGTAGTAGGCAATCGAG -ACGGAAGAGTAGTAGGCACTCCTT -ACGGAAGAGTAGTAGGCACCTGTT -ACGGAAGAGTAGTAGGCACGGTTT -ACGGAAGAGTAGTAGGCAGTGGTT -ACGGAAGAGTAGTAGGCAGCCTTT -ACGGAAGAGTAGTAGGCAGGTCTT -ACGGAAGAGTAGTAGGCAACGCTT -ACGGAAGAGTAGTAGGCAAGCGTT -ACGGAAGAGTAGTAGGCATTCGTC -ACGGAAGAGTAGTAGGCATCTCTC -ACGGAAGAGTAGTAGGCATGGATC -ACGGAAGAGTAGTAGGCACACTTC -ACGGAAGAGTAGTAGGCAGTACTC -ACGGAAGAGTAGTAGGCAGATGTC -ACGGAAGAGTAGTAGGCAACAGTC -ACGGAAGAGTAGTAGGCATTGCTG -ACGGAAGAGTAGTAGGCATCCATG -ACGGAAGAGTAGTAGGCATGTGTG -ACGGAAGAGTAGTAGGCACTAGTG -ACGGAAGAGTAGTAGGCACATCTG -ACGGAAGAGTAGTAGGCAGAGTTG -ACGGAAGAGTAGTAGGCAAGACTG -ACGGAAGAGTAGTAGGCATCGGTA -ACGGAAGAGTAGTAGGCATGCCTA -ACGGAAGAGTAGTAGGCACCACTA -ACGGAAGAGTAGTAGGCAGGAGTA -ACGGAAGAGTAGTAGGCATCGTCT -ACGGAAGAGTAGTAGGCATGCACT -ACGGAAGAGTAGTAGGCACTGACT -ACGGAAGAGTAGTAGGCACAACCT -ACGGAAGAGTAGTAGGCAGCTACT -ACGGAAGAGTAGTAGGCAGGATCT -ACGGAAGAGTAGTAGGCAAAGGCT -ACGGAAGAGTAGTAGGCATCAACC -ACGGAAGAGTAGTAGGCATGTTCC -ACGGAAGAGTAGTAGGCAATTCCC -ACGGAAGAGTAGTAGGCATTCTCG -ACGGAAGAGTAGTAGGCATAGACG -ACGGAAGAGTAGTAGGCAGTAACG -ACGGAAGAGTAGTAGGCAACTTCG -ACGGAAGAGTAGTAGGCATACGCA -ACGGAAGAGTAGTAGGCACTTGCA -ACGGAAGAGTAGTAGGCACGAACA -ACGGAAGAGTAGTAGGCACAGTCA -ACGGAAGAGTAGTAGGCAGATCCA -ACGGAAGAGTAGTAGGCAACGACA -ACGGAAGAGTAGTAGGCAAGCTCA -ACGGAAGAGTAGTAGGCATCACGT -ACGGAAGAGTAGTAGGCACGTAGT -ACGGAAGAGTAGTAGGCAGTCAGT -ACGGAAGAGTAGTAGGCAGAAGGT -ACGGAAGAGTAGTAGGCAAACCGT -ACGGAAGAGTAGTAGGCATTGTGC -ACGGAAGAGTAGTAGGCACTAAGC -ACGGAAGAGTAGTAGGCAACTAGC -ACGGAAGAGTAGTAGGCAAGATGC -ACGGAAGAGTAGTAGGCATGAAGG -ACGGAAGAGTAGTAGGCACAATGG -ACGGAAGAGTAGTAGGCAATGAGG -ACGGAAGAGTAGTAGGCAAATGGG -ACGGAAGAGTAGTAGGCATCCTGA -ACGGAAGAGTAGTAGGCATAGCGA -ACGGAAGAGTAGTAGGCACACAGA -ACGGAAGAGTAGTAGGCAGCAAGA -ACGGAAGAGTAGTAGGCAGGTTGA -ACGGAAGAGTAGTAGGCATCCGAT -ACGGAAGAGTAGTAGGCATGGCAT -ACGGAAGAGTAGTAGGCACGAGAT -ACGGAAGAGTAGTAGGCATACCAC -ACGGAAGAGTAGTAGGCACAGAAC -ACGGAAGAGTAGTAGGCAGTCTAC -ACGGAAGAGTAGTAGGCAACGTAC -ACGGAAGAGTAGTAGGCAAGTGAC -ACGGAAGAGTAGTAGGCACTGTAG -ACGGAAGAGTAGTAGGCACCTAAG -ACGGAAGAGTAGTAGGCAGTTCAG -ACGGAAGAGTAGTAGGCAGCATAG -ACGGAAGAGTAGTAGGCAGACAAG -ACGGAAGAGTAGTAGGCAAAGCAG -ACGGAAGAGTAGTAGGCACGTCAA -ACGGAAGAGTAGTAGGCAGCTGAA -ACGGAAGAGTAGTAGGCAAGTACG -ACGGAAGAGTAGTAGGCAATCCGA -ACGGAAGAGTAGTAGGCAATGGGA -ACGGAAGAGTAGTAGGCAGTGCAA -ACGGAAGAGTAGTAGGCAGAGGAA -ACGGAAGAGTAGTAGGCACAGGTA -ACGGAAGAGTAGTAGGCAGACTCT -ACGGAAGAGTAGTAGGCAAGTCCT -ACGGAAGAGTAGTAGGCATAAGCC -ACGGAAGAGTAGTAGGCAATAGCC -ACGGAAGAGTAGTAGGCATAACCG -ACGGAAGAGTAGTAGGCAATGCCA -ACGGAAGAGTAGAAGGACGGAAAC -ACGGAAGAGTAGAAGGACAACACC -ACGGAAGAGTAGAAGGACATCGAG -ACGGAAGAGTAGAAGGACCTCCTT -ACGGAAGAGTAGAAGGACCCTGTT -ACGGAAGAGTAGAAGGACCGGTTT -ACGGAAGAGTAGAAGGACGTGGTT -ACGGAAGAGTAGAAGGACGCCTTT -ACGGAAGAGTAGAAGGACGGTCTT -ACGGAAGAGTAGAAGGACACGCTT -ACGGAAGAGTAGAAGGACAGCGTT -ACGGAAGAGTAGAAGGACTTCGTC -ACGGAAGAGTAGAAGGACTCTCTC -ACGGAAGAGTAGAAGGACTGGATC -ACGGAAGAGTAGAAGGACCACTTC -ACGGAAGAGTAGAAGGACGTACTC -ACGGAAGAGTAGAAGGACGATGTC -ACGGAAGAGTAGAAGGACACAGTC -ACGGAAGAGTAGAAGGACTTGCTG -ACGGAAGAGTAGAAGGACTCCATG -ACGGAAGAGTAGAAGGACTGTGTG -ACGGAAGAGTAGAAGGACCTAGTG -ACGGAAGAGTAGAAGGACCATCTG -ACGGAAGAGTAGAAGGACGAGTTG -ACGGAAGAGTAGAAGGACAGACTG -ACGGAAGAGTAGAAGGACTCGGTA -ACGGAAGAGTAGAAGGACTGCCTA -ACGGAAGAGTAGAAGGACCCACTA -ACGGAAGAGTAGAAGGACGGAGTA -ACGGAAGAGTAGAAGGACTCGTCT -ACGGAAGAGTAGAAGGACTGCACT -ACGGAAGAGTAGAAGGACCTGACT -ACGGAAGAGTAGAAGGACCAACCT -ACGGAAGAGTAGAAGGACGCTACT -ACGGAAGAGTAGAAGGACGGATCT -ACGGAAGAGTAGAAGGACAAGGCT -ACGGAAGAGTAGAAGGACTCAACC -ACGGAAGAGTAGAAGGACTGTTCC -ACGGAAGAGTAGAAGGACATTCCC -ACGGAAGAGTAGAAGGACTTCTCG -ACGGAAGAGTAGAAGGACTAGACG -ACGGAAGAGTAGAAGGACGTAACG -ACGGAAGAGTAGAAGGACACTTCG -ACGGAAGAGTAGAAGGACTACGCA -ACGGAAGAGTAGAAGGACCTTGCA -ACGGAAGAGTAGAAGGACCGAACA -ACGGAAGAGTAGAAGGACCAGTCA -ACGGAAGAGTAGAAGGACGATCCA -ACGGAAGAGTAGAAGGACACGACA -ACGGAAGAGTAGAAGGACAGCTCA -ACGGAAGAGTAGAAGGACTCACGT -ACGGAAGAGTAGAAGGACCGTAGT -ACGGAAGAGTAGAAGGACGTCAGT -ACGGAAGAGTAGAAGGACGAAGGT -ACGGAAGAGTAGAAGGACAACCGT -ACGGAAGAGTAGAAGGACTTGTGC -ACGGAAGAGTAGAAGGACCTAAGC -ACGGAAGAGTAGAAGGACACTAGC -ACGGAAGAGTAGAAGGACAGATGC -ACGGAAGAGTAGAAGGACTGAAGG -ACGGAAGAGTAGAAGGACCAATGG -ACGGAAGAGTAGAAGGACATGAGG -ACGGAAGAGTAGAAGGACAATGGG -ACGGAAGAGTAGAAGGACTCCTGA -ACGGAAGAGTAGAAGGACTAGCGA -ACGGAAGAGTAGAAGGACCACAGA -ACGGAAGAGTAGAAGGACGCAAGA -ACGGAAGAGTAGAAGGACGGTTGA -ACGGAAGAGTAGAAGGACTCCGAT -ACGGAAGAGTAGAAGGACTGGCAT -ACGGAAGAGTAGAAGGACCGAGAT -ACGGAAGAGTAGAAGGACTACCAC -ACGGAAGAGTAGAAGGACCAGAAC -ACGGAAGAGTAGAAGGACGTCTAC -ACGGAAGAGTAGAAGGACACGTAC -ACGGAAGAGTAGAAGGACAGTGAC -ACGGAAGAGTAGAAGGACCTGTAG -ACGGAAGAGTAGAAGGACCCTAAG -ACGGAAGAGTAGAAGGACGTTCAG -ACGGAAGAGTAGAAGGACGCATAG -ACGGAAGAGTAGAAGGACGACAAG -ACGGAAGAGTAGAAGGACAAGCAG -ACGGAAGAGTAGAAGGACCGTCAA -ACGGAAGAGTAGAAGGACGCTGAA -ACGGAAGAGTAGAAGGACAGTACG -ACGGAAGAGTAGAAGGACATCCGA -ACGGAAGAGTAGAAGGACATGGGA -ACGGAAGAGTAGAAGGACGTGCAA -ACGGAAGAGTAGAAGGACGAGGAA -ACGGAAGAGTAGAAGGACCAGGTA -ACGGAAGAGTAGAAGGACGACTCT -ACGGAAGAGTAGAAGGACAGTCCT -ACGGAAGAGTAGAAGGACTAAGCC -ACGGAAGAGTAGAAGGACATAGCC -ACGGAAGAGTAGAAGGACTAACCG -ACGGAAGAGTAGAAGGACATGCCA -ACGGAAGAGTAGCAGAAGGGAAAC -ACGGAAGAGTAGCAGAAGAACACC -ACGGAAGAGTAGCAGAAGATCGAG -ACGGAAGAGTAGCAGAAGCTCCTT -ACGGAAGAGTAGCAGAAGCCTGTT -ACGGAAGAGTAGCAGAAGCGGTTT -ACGGAAGAGTAGCAGAAGGTGGTT -ACGGAAGAGTAGCAGAAGGCCTTT -ACGGAAGAGTAGCAGAAGGGTCTT -ACGGAAGAGTAGCAGAAGACGCTT -ACGGAAGAGTAGCAGAAGAGCGTT -ACGGAAGAGTAGCAGAAGTTCGTC -ACGGAAGAGTAGCAGAAGTCTCTC -ACGGAAGAGTAGCAGAAGTGGATC -ACGGAAGAGTAGCAGAAGCACTTC -ACGGAAGAGTAGCAGAAGGTACTC -ACGGAAGAGTAGCAGAAGGATGTC -ACGGAAGAGTAGCAGAAGACAGTC -ACGGAAGAGTAGCAGAAGTTGCTG -ACGGAAGAGTAGCAGAAGTCCATG -ACGGAAGAGTAGCAGAAGTGTGTG -ACGGAAGAGTAGCAGAAGCTAGTG -ACGGAAGAGTAGCAGAAGCATCTG -ACGGAAGAGTAGCAGAAGGAGTTG -ACGGAAGAGTAGCAGAAGAGACTG -ACGGAAGAGTAGCAGAAGTCGGTA -ACGGAAGAGTAGCAGAAGTGCCTA -ACGGAAGAGTAGCAGAAGCCACTA -ACGGAAGAGTAGCAGAAGGGAGTA -ACGGAAGAGTAGCAGAAGTCGTCT -ACGGAAGAGTAGCAGAAGTGCACT -ACGGAAGAGTAGCAGAAGCTGACT -ACGGAAGAGTAGCAGAAGCAACCT -ACGGAAGAGTAGCAGAAGGCTACT -ACGGAAGAGTAGCAGAAGGGATCT -ACGGAAGAGTAGCAGAAGAAGGCT -ACGGAAGAGTAGCAGAAGTCAACC -ACGGAAGAGTAGCAGAAGTGTTCC -ACGGAAGAGTAGCAGAAGATTCCC -ACGGAAGAGTAGCAGAAGTTCTCG -ACGGAAGAGTAGCAGAAGTAGACG -ACGGAAGAGTAGCAGAAGGTAACG -ACGGAAGAGTAGCAGAAGACTTCG -ACGGAAGAGTAGCAGAAGTACGCA -ACGGAAGAGTAGCAGAAGCTTGCA -ACGGAAGAGTAGCAGAAGCGAACA -ACGGAAGAGTAGCAGAAGCAGTCA -ACGGAAGAGTAGCAGAAGGATCCA -ACGGAAGAGTAGCAGAAGACGACA -ACGGAAGAGTAGCAGAAGAGCTCA -ACGGAAGAGTAGCAGAAGTCACGT -ACGGAAGAGTAGCAGAAGCGTAGT -ACGGAAGAGTAGCAGAAGGTCAGT -ACGGAAGAGTAGCAGAAGGAAGGT -ACGGAAGAGTAGCAGAAGAACCGT -ACGGAAGAGTAGCAGAAGTTGTGC -ACGGAAGAGTAGCAGAAGCTAAGC -ACGGAAGAGTAGCAGAAGACTAGC -ACGGAAGAGTAGCAGAAGAGATGC -ACGGAAGAGTAGCAGAAGTGAAGG -ACGGAAGAGTAGCAGAAGCAATGG -ACGGAAGAGTAGCAGAAGATGAGG -ACGGAAGAGTAGCAGAAGAATGGG -ACGGAAGAGTAGCAGAAGTCCTGA -ACGGAAGAGTAGCAGAAGTAGCGA -ACGGAAGAGTAGCAGAAGCACAGA -ACGGAAGAGTAGCAGAAGGCAAGA -ACGGAAGAGTAGCAGAAGGGTTGA -ACGGAAGAGTAGCAGAAGTCCGAT -ACGGAAGAGTAGCAGAAGTGGCAT -ACGGAAGAGTAGCAGAAGCGAGAT -ACGGAAGAGTAGCAGAAGTACCAC -ACGGAAGAGTAGCAGAAGCAGAAC -ACGGAAGAGTAGCAGAAGGTCTAC -ACGGAAGAGTAGCAGAAGACGTAC -ACGGAAGAGTAGCAGAAGAGTGAC -ACGGAAGAGTAGCAGAAGCTGTAG -ACGGAAGAGTAGCAGAAGCCTAAG -ACGGAAGAGTAGCAGAAGGTTCAG -ACGGAAGAGTAGCAGAAGGCATAG -ACGGAAGAGTAGCAGAAGGACAAG -ACGGAAGAGTAGCAGAAGAAGCAG -ACGGAAGAGTAGCAGAAGCGTCAA -ACGGAAGAGTAGCAGAAGGCTGAA -ACGGAAGAGTAGCAGAAGAGTACG -ACGGAAGAGTAGCAGAAGATCCGA -ACGGAAGAGTAGCAGAAGATGGGA -ACGGAAGAGTAGCAGAAGGTGCAA -ACGGAAGAGTAGCAGAAGGAGGAA -ACGGAAGAGTAGCAGAAGCAGGTA -ACGGAAGAGTAGCAGAAGGACTCT -ACGGAAGAGTAGCAGAAGAGTCCT -ACGGAAGAGTAGCAGAAGTAAGCC -ACGGAAGAGTAGCAGAAGATAGCC -ACGGAAGAGTAGCAGAAGTAACCG -ACGGAAGAGTAGCAGAAGATGCCA -ACGGAAGAGTAGCAACGTGGAAAC -ACGGAAGAGTAGCAACGTAACACC -ACGGAAGAGTAGCAACGTATCGAG -ACGGAAGAGTAGCAACGTCTCCTT -ACGGAAGAGTAGCAACGTCCTGTT -ACGGAAGAGTAGCAACGTCGGTTT -ACGGAAGAGTAGCAACGTGTGGTT -ACGGAAGAGTAGCAACGTGCCTTT -ACGGAAGAGTAGCAACGTGGTCTT -ACGGAAGAGTAGCAACGTACGCTT -ACGGAAGAGTAGCAACGTAGCGTT -ACGGAAGAGTAGCAACGTTTCGTC -ACGGAAGAGTAGCAACGTTCTCTC -ACGGAAGAGTAGCAACGTTGGATC -ACGGAAGAGTAGCAACGTCACTTC -ACGGAAGAGTAGCAACGTGTACTC -ACGGAAGAGTAGCAACGTGATGTC -ACGGAAGAGTAGCAACGTACAGTC -ACGGAAGAGTAGCAACGTTTGCTG -ACGGAAGAGTAGCAACGTTCCATG -ACGGAAGAGTAGCAACGTTGTGTG -ACGGAAGAGTAGCAACGTCTAGTG -ACGGAAGAGTAGCAACGTCATCTG -ACGGAAGAGTAGCAACGTGAGTTG -ACGGAAGAGTAGCAACGTAGACTG -ACGGAAGAGTAGCAACGTTCGGTA -ACGGAAGAGTAGCAACGTTGCCTA -ACGGAAGAGTAGCAACGTCCACTA -ACGGAAGAGTAGCAACGTGGAGTA -ACGGAAGAGTAGCAACGTTCGTCT -ACGGAAGAGTAGCAACGTTGCACT -ACGGAAGAGTAGCAACGTCTGACT -ACGGAAGAGTAGCAACGTCAACCT -ACGGAAGAGTAGCAACGTGCTACT -ACGGAAGAGTAGCAACGTGGATCT -ACGGAAGAGTAGCAACGTAAGGCT -ACGGAAGAGTAGCAACGTTCAACC -ACGGAAGAGTAGCAACGTTGTTCC -ACGGAAGAGTAGCAACGTATTCCC -ACGGAAGAGTAGCAACGTTTCTCG -ACGGAAGAGTAGCAACGTTAGACG -ACGGAAGAGTAGCAACGTGTAACG -ACGGAAGAGTAGCAACGTACTTCG -ACGGAAGAGTAGCAACGTTACGCA -ACGGAAGAGTAGCAACGTCTTGCA -ACGGAAGAGTAGCAACGTCGAACA -ACGGAAGAGTAGCAACGTCAGTCA -ACGGAAGAGTAGCAACGTGATCCA -ACGGAAGAGTAGCAACGTACGACA -ACGGAAGAGTAGCAACGTAGCTCA -ACGGAAGAGTAGCAACGTTCACGT -ACGGAAGAGTAGCAACGTCGTAGT -ACGGAAGAGTAGCAACGTGTCAGT -ACGGAAGAGTAGCAACGTGAAGGT -ACGGAAGAGTAGCAACGTAACCGT -ACGGAAGAGTAGCAACGTTTGTGC -ACGGAAGAGTAGCAACGTCTAAGC -ACGGAAGAGTAGCAACGTACTAGC -ACGGAAGAGTAGCAACGTAGATGC -ACGGAAGAGTAGCAACGTTGAAGG -ACGGAAGAGTAGCAACGTCAATGG -ACGGAAGAGTAGCAACGTATGAGG -ACGGAAGAGTAGCAACGTAATGGG -ACGGAAGAGTAGCAACGTTCCTGA -ACGGAAGAGTAGCAACGTTAGCGA -ACGGAAGAGTAGCAACGTCACAGA -ACGGAAGAGTAGCAACGTGCAAGA -ACGGAAGAGTAGCAACGTGGTTGA -ACGGAAGAGTAGCAACGTTCCGAT -ACGGAAGAGTAGCAACGTTGGCAT -ACGGAAGAGTAGCAACGTCGAGAT -ACGGAAGAGTAGCAACGTTACCAC -ACGGAAGAGTAGCAACGTCAGAAC -ACGGAAGAGTAGCAACGTGTCTAC -ACGGAAGAGTAGCAACGTACGTAC -ACGGAAGAGTAGCAACGTAGTGAC -ACGGAAGAGTAGCAACGTCTGTAG -ACGGAAGAGTAGCAACGTCCTAAG -ACGGAAGAGTAGCAACGTGTTCAG -ACGGAAGAGTAGCAACGTGCATAG -ACGGAAGAGTAGCAACGTGACAAG -ACGGAAGAGTAGCAACGTAAGCAG -ACGGAAGAGTAGCAACGTCGTCAA -ACGGAAGAGTAGCAACGTGCTGAA -ACGGAAGAGTAGCAACGTAGTACG -ACGGAAGAGTAGCAACGTATCCGA -ACGGAAGAGTAGCAACGTATGGGA -ACGGAAGAGTAGCAACGTGTGCAA -ACGGAAGAGTAGCAACGTGAGGAA -ACGGAAGAGTAGCAACGTCAGGTA -ACGGAAGAGTAGCAACGTGACTCT -ACGGAAGAGTAGCAACGTAGTCCT -ACGGAAGAGTAGCAACGTTAAGCC -ACGGAAGAGTAGCAACGTATAGCC -ACGGAAGAGTAGCAACGTTAACCG -ACGGAAGAGTAGCAACGTATGCCA -ACGGAAGAGTAGGAAGCTGGAAAC -ACGGAAGAGTAGGAAGCTAACACC -ACGGAAGAGTAGGAAGCTATCGAG -ACGGAAGAGTAGGAAGCTCTCCTT -ACGGAAGAGTAGGAAGCTCCTGTT -ACGGAAGAGTAGGAAGCTCGGTTT -ACGGAAGAGTAGGAAGCTGTGGTT -ACGGAAGAGTAGGAAGCTGCCTTT -ACGGAAGAGTAGGAAGCTGGTCTT -ACGGAAGAGTAGGAAGCTACGCTT -ACGGAAGAGTAGGAAGCTAGCGTT -ACGGAAGAGTAGGAAGCTTTCGTC -ACGGAAGAGTAGGAAGCTTCTCTC -ACGGAAGAGTAGGAAGCTTGGATC -ACGGAAGAGTAGGAAGCTCACTTC -ACGGAAGAGTAGGAAGCTGTACTC -ACGGAAGAGTAGGAAGCTGATGTC -ACGGAAGAGTAGGAAGCTACAGTC -ACGGAAGAGTAGGAAGCTTTGCTG -ACGGAAGAGTAGGAAGCTTCCATG -ACGGAAGAGTAGGAAGCTTGTGTG -ACGGAAGAGTAGGAAGCTCTAGTG -ACGGAAGAGTAGGAAGCTCATCTG -ACGGAAGAGTAGGAAGCTGAGTTG -ACGGAAGAGTAGGAAGCTAGACTG -ACGGAAGAGTAGGAAGCTTCGGTA -ACGGAAGAGTAGGAAGCTTGCCTA -ACGGAAGAGTAGGAAGCTCCACTA -ACGGAAGAGTAGGAAGCTGGAGTA -ACGGAAGAGTAGGAAGCTTCGTCT -ACGGAAGAGTAGGAAGCTTGCACT -ACGGAAGAGTAGGAAGCTCTGACT -ACGGAAGAGTAGGAAGCTCAACCT -ACGGAAGAGTAGGAAGCTGCTACT -ACGGAAGAGTAGGAAGCTGGATCT -ACGGAAGAGTAGGAAGCTAAGGCT -ACGGAAGAGTAGGAAGCTTCAACC -ACGGAAGAGTAGGAAGCTTGTTCC -ACGGAAGAGTAGGAAGCTATTCCC -ACGGAAGAGTAGGAAGCTTTCTCG -ACGGAAGAGTAGGAAGCTTAGACG -ACGGAAGAGTAGGAAGCTGTAACG -ACGGAAGAGTAGGAAGCTACTTCG -ACGGAAGAGTAGGAAGCTTACGCA -ACGGAAGAGTAGGAAGCTCTTGCA -ACGGAAGAGTAGGAAGCTCGAACA -ACGGAAGAGTAGGAAGCTCAGTCA -ACGGAAGAGTAGGAAGCTGATCCA -ACGGAAGAGTAGGAAGCTACGACA -ACGGAAGAGTAGGAAGCTAGCTCA -ACGGAAGAGTAGGAAGCTTCACGT -ACGGAAGAGTAGGAAGCTCGTAGT -ACGGAAGAGTAGGAAGCTGTCAGT -ACGGAAGAGTAGGAAGCTGAAGGT -ACGGAAGAGTAGGAAGCTAACCGT -ACGGAAGAGTAGGAAGCTTTGTGC -ACGGAAGAGTAGGAAGCTCTAAGC -ACGGAAGAGTAGGAAGCTACTAGC -ACGGAAGAGTAGGAAGCTAGATGC -ACGGAAGAGTAGGAAGCTTGAAGG -ACGGAAGAGTAGGAAGCTCAATGG -ACGGAAGAGTAGGAAGCTATGAGG -ACGGAAGAGTAGGAAGCTAATGGG -ACGGAAGAGTAGGAAGCTTCCTGA -ACGGAAGAGTAGGAAGCTTAGCGA -ACGGAAGAGTAGGAAGCTCACAGA -ACGGAAGAGTAGGAAGCTGCAAGA -ACGGAAGAGTAGGAAGCTGGTTGA -ACGGAAGAGTAGGAAGCTTCCGAT -ACGGAAGAGTAGGAAGCTTGGCAT -ACGGAAGAGTAGGAAGCTCGAGAT -ACGGAAGAGTAGGAAGCTTACCAC -ACGGAAGAGTAGGAAGCTCAGAAC -ACGGAAGAGTAGGAAGCTGTCTAC -ACGGAAGAGTAGGAAGCTACGTAC -ACGGAAGAGTAGGAAGCTAGTGAC -ACGGAAGAGTAGGAAGCTCTGTAG -ACGGAAGAGTAGGAAGCTCCTAAG -ACGGAAGAGTAGGAAGCTGTTCAG -ACGGAAGAGTAGGAAGCTGCATAG -ACGGAAGAGTAGGAAGCTGACAAG -ACGGAAGAGTAGGAAGCTAAGCAG -ACGGAAGAGTAGGAAGCTCGTCAA -ACGGAAGAGTAGGAAGCTGCTGAA -ACGGAAGAGTAGGAAGCTAGTACG -ACGGAAGAGTAGGAAGCTATCCGA -ACGGAAGAGTAGGAAGCTATGGGA -ACGGAAGAGTAGGAAGCTGTGCAA -ACGGAAGAGTAGGAAGCTGAGGAA -ACGGAAGAGTAGGAAGCTCAGGTA -ACGGAAGAGTAGGAAGCTGACTCT -ACGGAAGAGTAGGAAGCTAGTCCT -ACGGAAGAGTAGGAAGCTTAAGCC -ACGGAAGAGTAGGAAGCTATAGCC -ACGGAAGAGTAGGAAGCTTAACCG -ACGGAAGAGTAGGAAGCTATGCCA -ACGGAAGAGTAGACGAGTGGAAAC -ACGGAAGAGTAGACGAGTAACACC -ACGGAAGAGTAGACGAGTATCGAG -ACGGAAGAGTAGACGAGTCTCCTT -ACGGAAGAGTAGACGAGTCCTGTT -ACGGAAGAGTAGACGAGTCGGTTT -ACGGAAGAGTAGACGAGTGTGGTT -ACGGAAGAGTAGACGAGTGCCTTT -ACGGAAGAGTAGACGAGTGGTCTT -ACGGAAGAGTAGACGAGTACGCTT -ACGGAAGAGTAGACGAGTAGCGTT -ACGGAAGAGTAGACGAGTTTCGTC -ACGGAAGAGTAGACGAGTTCTCTC -ACGGAAGAGTAGACGAGTTGGATC -ACGGAAGAGTAGACGAGTCACTTC -ACGGAAGAGTAGACGAGTGTACTC -ACGGAAGAGTAGACGAGTGATGTC -ACGGAAGAGTAGACGAGTACAGTC -ACGGAAGAGTAGACGAGTTTGCTG -ACGGAAGAGTAGACGAGTTCCATG -ACGGAAGAGTAGACGAGTTGTGTG -ACGGAAGAGTAGACGAGTCTAGTG -ACGGAAGAGTAGACGAGTCATCTG -ACGGAAGAGTAGACGAGTGAGTTG -ACGGAAGAGTAGACGAGTAGACTG -ACGGAAGAGTAGACGAGTTCGGTA -ACGGAAGAGTAGACGAGTTGCCTA -ACGGAAGAGTAGACGAGTCCACTA -ACGGAAGAGTAGACGAGTGGAGTA -ACGGAAGAGTAGACGAGTTCGTCT -ACGGAAGAGTAGACGAGTTGCACT -ACGGAAGAGTAGACGAGTCTGACT -ACGGAAGAGTAGACGAGTCAACCT -ACGGAAGAGTAGACGAGTGCTACT -ACGGAAGAGTAGACGAGTGGATCT -ACGGAAGAGTAGACGAGTAAGGCT -ACGGAAGAGTAGACGAGTTCAACC -ACGGAAGAGTAGACGAGTTGTTCC -ACGGAAGAGTAGACGAGTATTCCC -ACGGAAGAGTAGACGAGTTTCTCG -ACGGAAGAGTAGACGAGTTAGACG -ACGGAAGAGTAGACGAGTGTAACG -ACGGAAGAGTAGACGAGTACTTCG -ACGGAAGAGTAGACGAGTTACGCA -ACGGAAGAGTAGACGAGTCTTGCA -ACGGAAGAGTAGACGAGTCGAACA -ACGGAAGAGTAGACGAGTCAGTCA -ACGGAAGAGTAGACGAGTGATCCA -ACGGAAGAGTAGACGAGTACGACA -ACGGAAGAGTAGACGAGTAGCTCA -ACGGAAGAGTAGACGAGTTCACGT -ACGGAAGAGTAGACGAGTCGTAGT -ACGGAAGAGTAGACGAGTGTCAGT -ACGGAAGAGTAGACGAGTGAAGGT -ACGGAAGAGTAGACGAGTAACCGT -ACGGAAGAGTAGACGAGTTTGTGC -ACGGAAGAGTAGACGAGTCTAAGC -ACGGAAGAGTAGACGAGTACTAGC -ACGGAAGAGTAGACGAGTAGATGC -ACGGAAGAGTAGACGAGTTGAAGG -ACGGAAGAGTAGACGAGTCAATGG -ACGGAAGAGTAGACGAGTATGAGG -ACGGAAGAGTAGACGAGTAATGGG -ACGGAAGAGTAGACGAGTTCCTGA -ACGGAAGAGTAGACGAGTTAGCGA -ACGGAAGAGTAGACGAGTCACAGA -ACGGAAGAGTAGACGAGTGCAAGA -ACGGAAGAGTAGACGAGTGGTTGA -ACGGAAGAGTAGACGAGTTCCGAT -ACGGAAGAGTAGACGAGTTGGCAT -ACGGAAGAGTAGACGAGTCGAGAT -ACGGAAGAGTAGACGAGTTACCAC -ACGGAAGAGTAGACGAGTCAGAAC -ACGGAAGAGTAGACGAGTGTCTAC -ACGGAAGAGTAGACGAGTACGTAC -ACGGAAGAGTAGACGAGTAGTGAC -ACGGAAGAGTAGACGAGTCTGTAG -ACGGAAGAGTAGACGAGTCCTAAG -ACGGAAGAGTAGACGAGTGTTCAG -ACGGAAGAGTAGACGAGTGCATAG -ACGGAAGAGTAGACGAGTGACAAG -ACGGAAGAGTAGACGAGTAAGCAG -ACGGAAGAGTAGACGAGTCGTCAA -ACGGAAGAGTAGACGAGTGCTGAA -ACGGAAGAGTAGACGAGTAGTACG -ACGGAAGAGTAGACGAGTATCCGA -ACGGAAGAGTAGACGAGTATGGGA -ACGGAAGAGTAGACGAGTGTGCAA -ACGGAAGAGTAGACGAGTGAGGAA -ACGGAAGAGTAGACGAGTCAGGTA -ACGGAAGAGTAGACGAGTGACTCT -ACGGAAGAGTAGACGAGTAGTCCT -ACGGAAGAGTAGACGAGTTAAGCC -ACGGAAGAGTAGACGAGTATAGCC -ACGGAAGAGTAGACGAGTTAACCG -ACGGAAGAGTAGACGAGTATGCCA -ACGGAAGAGTAGCGAATCGGAAAC -ACGGAAGAGTAGCGAATCAACACC -ACGGAAGAGTAGCGAATCATCGAG -ACGGAAGAGTAGCGAATCCTCCTT -ACGGAAGAGTAGCGAATCCCTGTT -ACGGAAGAGTAGCGAATCCGGTTT -ACGGAAGAGTAGCGAATCGTGGTT -ACGGAAGAGTAGCGAATCGCCTTT -ACGGAAGAGTAGCGAATCGGTCTT -ACGGAAGAGTAGCGAATCACGCTT -ACGGAAGAGTAGCGAATCAGCGTT -ACGGAAGAGTAGCGAATCTTCGTC -ACGGAAGAGTAGCGAATCTCTCTC -ACGGAAGAGTAGCGAATCTGGATC -ACGGAAGAGTAGCGAATCCACTTC -ACGGAAGAGTAGCGAATCGTACTC -ACGGAAGAGTAGCGAATCGATGTC -ACGGAAGAGTAGCGAATCACAGTC -ACGGAAGAGTAGCGAATCTTGCTG -ACGGAAGAGTAGCGAATCTCCATG -ACGGAAGAGTAGCGAATCTGTGTG -ACGGAAGAGTAGCGAATCCTAGTG -ACGGAAGAGTAGCGAATCCATCTG -ACGGAAGAGTAGCGAATCGAGTTG -ACGGAAGAGTAGCGAATCAGACTG -ACGGAAGAGTAGCGAATCTCGGTA -ACGGAAGAGTAGCGAATCTGCCTA -ACGGAAGAGTAGCGAATCCCACTA -ACGGAAGAGTAGCGAATCGGAGTA -ACGGAAGAGTAGCGAATCTCGTCT -ACGGAAGAGTAGCGAATCTGCACT -ACGGAAGAGTAGCGAATCCTGACT -ACGGAAGAGTAGCGAATCCAACCT -ACGGAAGAGTAGCGAATCGCTACT -ACGGAAGAGTAGCGAATCGGATCT -ACGGAAGAGTAGCGAATCAAGGCT -ACGGAAGAGTAGCGAATCTCAACC -ACGGAAGAGTAGCGAATCTGTTCC -ACGGAAGAGTAGCGAATCATTCCC -ACGGAAGAGTAGCGAATCTTCTCG -ACGGAAGAGTAGCGAATCTAGACG -ACGGAAGAGTAGCGAATCGTAACG -ACGGAAGAGTAGCGAATCACTTCG -ACGGAAGAGTAGCGAATCTACGCA -ACGGAAGAGTAGCGAATCCTTGCA -ACGGAAGAGTAGCGAATCCGAACA -ACGGAAGAGTAGCGAATCCAGTCA -ACGGAAGAGTAGCGAATCGATCCA -ACGGAAGAGTAGCGAATCACGACA -ACGGAAGAGTAGCGAATCAGCTCA -ACGGAAGAGTAGCGAATCTCACGT -ACGGAAGAGTAGCGAATCCGTAGT -ACGGAAGAGTAGCGAATCGTCAGT -ACGGAAGAGTAGCGAATCGAAGGT -ACGGAAGAGTAGCGAATCAACCGT -ACGGAAGAGTAGCGAATCTTGTGC -ACGGAAGAGTAGCGAATCCTAAGC -ACGGAAGAGTAGCGAATCACTAGC -ACGGAAGAGTAGCGAATCAGATGC -ACGGAAGAGTAGCGAATCTGAAGG -ACGGAAGAGTAGCGAATCCAATGG -ACGGAAGAGTAGCGAATCATGAGG -ACGGAAGAGTAGCGAATCAATGGG -ACGGAAGAGTAGCGAATCTCCTGA -ACGGAAGAGTAGCGAATCTAGCGA -ACGGAAGAGTAGCGAATCCACAGA -ACGGAAGAGTAGCGAATCGCAAGA -ACGGAAGAGTAGCGAATCGGTTGA -ACGGAAGAGTAGCGAATCTCCGAT -ACGGAAGAGTAGCGAATCTGGCAT -ACGGAAGAGTAGCGAATCCGAGAT -ACGGAAGAGTAGCGAATCTACCAC -ACGGAAGAGTAGCGAATCCAGAAC -ACGGAAGAGTAGCGAATCGTCTAC -ACGGAAGAGTAGCGAATCACGTAC -ACGGAAGAGTAGCGAATCAGTGAC -ACGGAAGAGTAGCGAATCCTGTAG -ACGGAAGAGTAGCGAATCCCTAAG -ACGGAAGAGTAGCGAATCGTTCAG -ACGGAAGAGTAGCGAATCGCATAG -ACGGAAGAGTAGCGAATCGACAAG -ACGGAAGAGTAGCGAATCAAGCAG -ACGGAAGAGTAGCGAATCCGTCAA -ACGGAAGAGTAGCGAATCGCTGAA -ACGGAAGAGTAGCGAATCAGTACG -ACGGAAGAGTAGCGAATCATCCGA -ACGGAAGAGTAGCGAATCATGGGA -ACGGAAGAGTAGCGAATCGTGCAA -ACGGAAGAGTAGCGAATCGAGGAA -ACGGAAGAGTAGCGAATCCAGGTA -ACGGAAGAGTAGCGAATCGACTCT -ACGGAAGAGTAGCGAATCAGTCCT -ACGGAAGAGTAGCGAATCTAAGCC -ACGGAAGAGTAGCGAATCATAGCC -ACGGAAGAGTAGCGAATCTAACCG -ACGGAAGAGTAGCGAATCATGCCA -ACGGAAGAGTAGGGAATGGGAAAC -ACGGAAGAGTAGGGAATGAACACC -ACGGAAGAGTAGGGAATGATCGAG -ACGGAAGAGTAGGGAATGCTCCTT -ACGGAAGAGTAGGGAATGCCTGTT -ACGGAAGAGTAGGGAATGCGGTTT -ACGGAAGAGTAGGGAATGGTGGTT -ACGGAAGAGTAGGGAATGGCCTTT -ACGGAAGAGTAGGGAATGGGTCTT -ACGGAAGAGTAGGGAATGACGCTT -ACGGAAGAGTAGGGAATGAGCGTT -ACGGAAGAGTAGGGAATGTTCGTC -ACGGAAGAGTAGGGAATGTCTCTC -ACGGAAGAGTAGGGAATGTGGATC -ACGGAAGAGTAGGGAATGCACTTC -ACGGAAGAGTAGGGAATGGTACTC -ACGGAAGAGTAGGGAATGGATGTC -ACGGAAGAGTAGGGAATGACAGTC -ACGGAAGAGTAGGGAATGTTGCTG -ACGGAAGAGTAGGGAATGTCCATG -ACGGAAGAGTAGGGAATGTGTGTG -ACGGAAGAGTAGGGAATGCTAGTG -ACGGAAGAGTAGGGAATGCATCTG -ACGGAAGAGTAGGGAATGGAGTTG -ACGGAAGAGTAGGGAATGAGACTG -ACGGAAGAGTAGGGAATGTCGGTA -ACGGAAGAGTAGGGAATGTGCCTA -ACGGAAGAGTAGGGAATGCCACTA -ACGGAAGAGTAGGGAATGGGAGTA -ACGGAAGAGTAGGGAATGTCGTCT -ACGGAAGAGTAGGGAATGTGCACT -ACGGAAGAGTAGGGAATGCTGACT -ACGGAAGAGTAGGGAATGCAACCT -ACGGAAGAGTAGGGAATGGCTACT -ACGGAAGAGTAGGGAATGGGATCT -ACGGAAGAGTAGGGAATGAAGGCT -ACGGAAGAGTAGGGAATGTCAACC -ACGGAAGAGTAGGGAATGTGTTCC -ACGGAAGAGTAGGGAATGATTCCC -ACGGAAGAGTAGGGAATGTTCTCG -ACGGAAGAGTAGGGAATGTAGACG -ACGGAAGAGTAGGGAATGGTAACG -ACGGAAGAGTAGGGAATGACTTCG -ACGGAAGAGTAGGGAATGTACGCA -ACGGAAGAGTAGGGAATGCTTGCA -ACGGAAGAGTAGGGAATGCGAACA -ACGGAAGAGTAGGGAATGCAGTCA -ACGGAAGAGTAGGGAATGGATCCA -ACGGAAGAGTAGGGAATGACGACA -ACGGAAGAGTAGGGAATGAGCTCA -ACGGAAGAGTAGGGAATGTCACGT -ACGGAAGAGTAGGGAATGCGTAGT -ACGGAAGAGTAGGGAATGGTCAGT -ACGGAAGAGTAGGGAATGGAAGGT -ACGGAAGAGTAGGGAATGAACCGT -ACGGAAGAGTAGGGAATGTTGTGC -ACGGAAGAGTAGGGAATGCTAAGC -ACGGAAGAGTAGGGAATGACTAGC -ACGGAAGAGTAGGGAATGAGATGC -ACGGAAGAGTAGGGAATGTGAAGG -ACGGAAGAGTAGGGAATGCAATGG -ACGGAAGAGTAGGGAATGATGAGG -ACGGAAGAGTAGGGAATGAATGGG -ACGGAAGAGTAGGGAATGTCCTGA -ACGGAAGAGTAGGGAATGTAGCGA -ACGGAAGAGTAGGGAATGCACAGA -ACGGAAGAGTAGGGAATGGCAAGA -ACGGAAGAGTAGGGAATGGGTTGA -ACGGAAGAGTAGGGAATGTCCGAT -ACGGAAGAGTAGGGAATGTGGCAT -ACGGAAGAGTAGGGAATGCGAGAT -ACGGAAGAGTAGGGAATGTACCAC -ACGGAAGAGTAGGGAATGCAGAAC -ACGGAAGAGTAGGGAATGGTCTAC -ACGGAAGAGTAGGGAATGACGTAC -ACGGAAGAGTAGGGAATGAGTGAC -ACGGAAGAGTAGGGAATGCTGTAG -ACGGAAGAGTAGGGAATGCCTAAG -ACGGAAGAGTAGGGAATGGTTCAG -ACGGAAGAGTAGGGAATGGCATAG -ACGGAAGAGTAGGGAATGGACAAG -ACGGAAGAGTAGGGAATGAAGCAG -ACGGAAGAGTAGGGAATGCGTCAA -ACGGAAGAGTAGGGAATGGCTGAA -ACGGAAGAGTAGGGAATGAGTACG -ACGGAAGAGTAGGGAATGATCCGA -ACGGAAGAGTAGGGAATGATGGGA -ACGGAAGAGTAGGGAATGGTGCAA -ACGGAAGAGTAGGGAATGGAGGAA -ACGGAAGAGTAGGGAATGCAGGTA -ACGGAAGAGTAGGGAATGGACTCT -ACGGAAGAGTAGGGAATGAGTCCT -ACGGAAGAGTAGGGAATGTAAGCC -ACGGAAGAGTAGGGAATGATAGCC -ACGGAAGAGTAGGGAATGTAACCG -ACGGAAGAGTAGGGAATGATGCCA -ACGGAAGAGTAGCAAGTGGGAAAC -ACGGAAGAGTAGCAAGTGAACACC -ACGGAAGAGTAGCAAGTGATCGAG -ACGGAAGAGTAGCAAGTGCTCCTT -ACGGAAGAGTAGCAAGTGCCTGTT -ACGGAAGAGTAGCAAGTGCGGTTT -ACGGAAGAGTAGCAAGTGGTGGTT -ACGGAAGAGTAGCAAGTGGCCTTT -ACGGAAGAGTAGCAAGTGGGTCTT -ACGGAAGAGTAGCAAGTGACGCTT -ACGGAAGAGTAGCAAGTGAGCGTT -ACGGAAGAGTAGCAAGTGTTCGTC -ACGGAAGAGTAGCAAGTGTCTCTC -ACGGAAGAGTAGCAAGTGTGGATC -ACGGAAGAGTAGCAAGTGCACTTC -ACGGAAGAGTAGCAAGTGGTACTC -ACGGAAGAGTAGCAAGTGGATGTC -ACGGAAGAGTAGCAAGTGACAGTC -ACGGAAGAGTAGCAAGTGTTGCTG -ACGGAAGAGTAGCAAGTGTCCATG -ACGGAAGAGTAGCAAGTGTGTGTG -ACGGAAGAGTAGCAAGTGCTAGTG -ACGGAAGAGTAGCAAGTGCATCTG -ACGGAAGAGTAGCAAGTGGAGTTG -ACGGAAGAGTAGCAAGTGAGACTG -ACGGAAGAGTAGCAAGTGTCGGTA -ACGGAAGAGTAGCAAGTGTGCCTA -ACGGAAGAGTAGCAAGTGCCACTA -ACGGAAGAGTAGCAAGTGGGAGTA -ACGGAAGAGTAGCAAGTGTCGTCT -ACGGAAGAGTAGCAAGTGTGCACT -ACGGAAGAGTAGCAAGTGCTGACT -ACGGAAGAGTAGCAAGTGCAACCT -ACGGAAGAGTAGCAAGTGGCTACT -ACGGAAGAGTAGCAAGTGGGATCT -ACGGAAGAGTAGCAAGTGAAGGCT -ACGGAAGAGTAGCAAGTGTCAACC -ACGGAAGAGTAGCAAGTGTGTTCC -ACGGAAGAGTAGCAAGTGATTCCC -ACGGAAGAGTAGCAAGTGTTCTCG -ACGGAAGAGTAGCAAGTGTAGACG -ACGGAAGAGTAGCAAGTGGTAACG -ACGGAAGAGTAGCAAGTGACTTCG -ACGGAAGAGTAGCAAGTGTACGCA -ACGGAAGAGTAGCAAGTGCTTGCA -ACGGAAGAGTAGCAAGTGCGAACA -ACGGAAGAGTAGCAAGTGCAGTCA -ACGGAAGAGTAGCAAGTGGATCCA -ACGGAAGAGTAGCAAGTGACGACA -ACGGAAGAGTAGCAAGTGAGCTCA -ACGGAAGAGTAGCAAGTGTCACGT -ACGGAAGAGTAGCAAGTGCGTAGT -ACGGAAGAGTAGCAAGTGGTCAGT -ACGGAAGAGTAGCAAGTGGAAGGT -ACGGAAGAGTAGCAAGTGAACCGT -ACGGAAGAGTAGCAAGTGTTGTGC -ACGGAAGAGTAGCAAGTGCTAAGC -ACGGAAGAGTAGCAAGTGACTAGC -ACGGAAGAGTAGCAAGTGAGATGC -ACGGAAGAGTAGCAAGTGTGAAGG -ACGGAAGAGTAGCAAGTGCAATGG -ACGGAAGAGTAGCAAGTGATGAGG -ACGGAAGAGTAGCAAGTGAATGGG -ACGGAAGAGTAGCAAGTGTCCTGA -ACGGAAGAGTAGCAAGTGTAGCGA -ACGGAAGAGTAGCAAGTGCACAGA -ACGGAAGAGTAGCAAGTGGCAAGA -ACGGAAGAGTAGCAAGTGGGTTGA -ACGGAAGAGTAGCAAGTGTCCGAT -ACGGAAGAGTAGCAAGTGTGGCAT -ACGGAAGAGTAGCAAGTGCGAGAT -ACGGAAGAGTAGCAAGTGTACCAC -ACGGAAGAGTAGCAAGTGCAGAAC -ACGGAAGAGTAGCAAGTGGTCTAC -ACGGAAGAGTAGCAAGTGACGTAC -ACGGAAGAGTAGCAAGTGAGTGAC -ACGGAAGAGTAGCAAGTGCTGTAG -ACGGAAGAGTAGCAAGTGCCTAAG -ACGGAAGAGTAGCAAGTGGTTCAG -ACGGAAGAGTAGCAAGTGGCATAG -ACGGAAGAGTAGCAAGTGGACAAG -ACGGAAGAGTAGCAAGTGAAGCAG -ACGGAAGAGTAGCAAGTGCGTCAA -ACGGAAGAGTAGCAAGTGGCTGAA -ACGGAAGAGTAGCAAGTGAGTACG -ACGGAAGAGTAGCAAGTGATCCGA -ACGGAAGAGTAGCAAGTGATGGGA -ACGGAAGAGTAGCAAGTGGTGCAA -ACGGAAGAGTAGCAAGTGGAGGAA -ACGGAAGAGTAGCAAGTGCAGGTA -ACGGAAGAGTAGCAAGTGGACTCT -ACGGAAGAGTAGCAAGTGAGTCCT -ACGGAAGAGTAGCAAGTGTAAGCC -ACGGAAGAGTAGCAAGTGATAGCC -ACGGAAGAGTAGCAAGTGTAACCG -ACGGAAGAGTAGCAAGTGATGCCA -ACGGAAGAGTAGGAAGAGGGAAAC -ACGGAAGAGTAGGAAGAGAACACC -ACGGAAGAGTAGGAAGAGATCGAG -ACGGAAGAGTAGGAAGAGCTCCTT -ACGGAAGAGTAGGAAGAGCCTGTT -ACGGAAGAGTAGGAAGAGCGGTTT -ACGGAAGAGTAGGAAGAGGTGGTT -ACGGAAGAGTAGGAAGAGGCCTTT -ACGGAAGAGTAGGAAGAGGGTCTT -ACGGAAGAGTAGGAAGAGACGCTT -ACGGAAGAGTAGGAAGAGAGCGTT -ACGGAAGAGTAGGAAGAGTTCGTC -ACGGAAGAGTAGGAAGAGTCTCTC -ACGGAAGAGTAGGAAGAGTGGATC -ACGGAAGAGTAGGAAGAGCACTTC -ACGGAAGAGTAGGAAGAGGTACTC -ACGGAAGAGTAGGAAGAGGATGTC -ACGGAAGAGTAGGAAGAGACAGTC -ACGGAAGAGTAGGAAGAGTTGCTG -ACGGAAGAGTAGGAAGAGTCCATG -ACGGAAGAGTAGGAAGAGTGTGTG -ACGGAAGAGTAGGAAGAGCTAGTG -ACGGAAGAGTAGGAAGAGCATCTG -ACGGAAGAGTAGGAAGAGGAGTTG -ACGGAAGAGTAGGAAGAGAGACTG -ACGGAAGAGTAGGAAGAGTCGGTA -ACGGAAGAGTAGGAAGAGTGCCTA -ACGGAAGAGTAGGAAGAGCCACTA -ACGGAAGAGTAGGAAGAGGGAGTA -ACGGAAGAGTAGGAAGAGTCGTCT -ACGGAAGAGTAGGAAGAGTGCACT -ACGGAAGAGTAGGAAGAGCTGACT -ACGGAAGAGTAGGAAGAGCAACCT -ACGGAAGAGTAGGAAGAGGCTACT -ACGGAAGAGTAGGAAGAGGGATCT -ACGGAAGAGTAGGAAGAGAAGGCT -ACGGAAGAGTAGGAAGAGTCAACC -ACGGAAGAGTAGGAAGAGTGTTCC -ACGGAAGAGTAGGAAGAGATTCCC -ACGGAAGAGTAGGAAGAGTTCTCG -ACGGAAGAGTAGGAAGAGTAGACG -ACGGAAGAGTAGGAAGAGGTAACG -ACGGAAGAGTAGGAAGAGACTTCG -ACGGAAGAGTAGGAAGAGTACGCA -ACGGAAGAGTAGGAAGAGCTTGCA -ACGGAAGAGTAGGAAGAGCGAACA -ACGGAAGAGTAGGAAGAGCAGTCA -ACGGAAGAGTAGGAAGAGGATCCA -ACGGAAGAGTAGGAAGAGACGACA -ACGGAAGAGTAGGAAGAGAGCTCA -ACGGAAGAGTAGGAAGAGTCACGT -ACGGAAGAGTAGGAAGAGCGTAGT -ACGGAAGAGTAGGAAGAGGTCAGT -ACGGAAGAGTAGGAAGAGGAAGGT -ACGGAAGAGTAGGAAGAGAACCGT -ACGGAAGAGTAGGAAGAGTTGTGC -ACGGAAGAGTAGGAAGAGCTAAGC -ACGGAAGAGTAGGAAGAGACTAGC -ACGGAAGAGTAGGAAGAGAGATGC -ACGGAAGAGTAGGAAGAGTGAAGG -ACGGAAGAGTAGGAAGAGCAATGG -ACGGAAGAGTAGGAAGAGATGAGG -ACGGAAGAGTAGGAAGAGAATGGG -ACGGAAGAGTAGGAAGAGTCCTGA -ACGGAAGAGTAGGAAGAGTAGCGA -ACGGAAGAGTAGGAAGAGCACAGA -ACGGAAGAGTAGGAAGAGGCAAGA -ACGGAAGAGTAGGAAGAGGGTTGA -ACGGAAGAGTAGGAAGAGTCCGAT -ACGGAAGAGTAGGAAGAGTGGCAT -ACGGAAGAGTAGGAAGAGCGAGAT -ACGGAAGAGTAGGAAGAGTACCAC -ACGGAAGAGTAGGAAGAGCAGAAC -ACGGAAGAGTAGGAAGAGGTCTAC -ACGGAAGAGTAGGAAGAGACGTAC -ACGGAAGAGTAGGAAGAGAGTGAC -ACGGAAGAGTAGGAAGAGCTGTAG -ACGGAAGAGTAGGAAGAGCCTAAG -ACGGAAGAGTAGGAAGAGGTTCAG -ACGGAAGAGTAGGAAGAGGCATAG -ACGGAAGAGTAGGAAGAGGACAAG -ACGGAAGAGTAGGAAGAGAAGCAG -ACGGAAGAGTAGGAAGAGCGTCAA -ACGGAAGAGTAGGAAGAGGCTGAA -ACGGAAGAGTAGGAAGAGAGTACG -ACGGAAGAGTAGGAAGAGATCCGA -ACGGAAGAGTAGGAAGAGATGGGA -ACGGAAGAGTAGGAAGAGGTGCAA -ACGGAAGAGTAGGAAGAGGAGGAA -ACGGAAGAGTAGGAAGAGCAGGTA -ACGGAAGAGTAGGAAGAGGACTCT -ACGGAAGAGTAGGAAGAGAGTCCT -ACGGAAGAGTAGGAAGAGTAAGCC -ACGGAAGAGTAGGAAGAGATAGCC -ACGGAAGAGTAGGAAGAGTAACCG -ACGGAAGAGTAGGAAGAGATGCCA -ACGGAAGAGTAGGTACAGGGAAAC -ACGGAAGAGTAGGTACAGAACACC -ACGGAAGAGTAGGTACAGATCGAG -ACGGAAGAGTAGGTACAGCTCCTT -ACGGAAGAGTAGGTACAGCCTGTT -ACGGAAGAGTAGGTACAGCGGTTT -ACGGAAGAGTAGGTACAGGTGGTT -ACGGAAGAGTAGGTACAGGCCTTT -ACGGAAGAGTAGGTACAGGGTCTT -ACGGAAGAGTAGGTACAGACGCTT -ACGGAAGAGTAGGTACAGAGCGTT -ACGGAAGAGTAGGTACAGTTCGTC -ACGGAAGAGTAGGTACAGTCTCTC -ACGGAAGAGTAGGTACAGTGGATC -ACGGAAGAGTAGGTACAGCACTTC -ACGGAAGAGTAGGTACAGGTACTC -ACGGAAGAGTAGGTACAGGATGTC -ACGGAAGAGTAGGTACAGACAGTC -ACGGAAGAGTAGGTACAGTTGCTG -ACGGAAGAGTAGGTACAGTCCATG -ACGGAAGAGTAGGTACAGTGTGTG -ACGGAAGAGTAGGTACAGCTAGTG -ACGGAAGAGTAGGTACAGCATCTG -ACGGAAGAGTAGGTACAGGAGTTG -ACGGAAGAGTAGGTACAGAGACTG -ACGGAAGAGTAGGTACAGTCGGTA -ACGGAAGAGTAGGTACAGTGCCTA -ACGGAAGAGTAGGTACAGCCACTA -ACGGAAGAGTAGGTACAGGGAGTA -ACGGAAGAGTAGGTACAGTCGTCT -ACGGAAGAGTAGGTACAGTGCACT -ACGGAAGAGTAGGTACAGCTGACT -ACGGAAGAGTAGGTACAGCAACCT -ACGGAAGAGTAGGTACAGGCTACT -ACGGAAGAGTAGGTACAGGGATCT -ACGGAAGAGTAGGTACAGAAGGCT -ACGGAAGAGTAGGTACAGTCAACC -ACGGAAGAGTAGGTACAGTGTTCC -ACGGAAGAGTAGGTACAGATTCCC -ACGGAAGAGTAGGTACAGTTCTCG -ACGGAAGAGTAGGTACAGTAGACG -ACGGAAGAGTAGGTACAGGTAACG -ACGGAAGAGTAGGTACAGACTTCG -ACGGAAGAGTAGGTACAGTACGCA -ACGGAAGAGTAGGTACAGCTTGCA -ACGGAAGAGTAGGTACAGCGAACA -ACGGAAGAGTAGGTACAGCAGTCA -ACGGAAGAGTAGGTACAGGATCCA -ACGGAAGAGTAGGTACAGACGACA -ACGGAAGAGTAGGTACAGAGCTCA -ACGGAAGAGTAGGTACAGTCACGT -ACGGAAGAGTAGGTACAGCGTAGT -ACGGAAGAGTAGGTACAGGTCAGT -ACGGAAGAGTAGGTACAGGAAGGT -ACGGAAGAGTAGGTACAGAACCGT -ACGGAAGAGTAGGTACAGTTGTGC -ACGGAAGAGTAGGTACAGCTAAGC -ACGGAAGAGTAGGTACAGACTAGC -ACGGAAGAGTAGGTACAGAGATGC -ACGGAAGAGTAGGTACAGTGAAGG -ACGGAAGAGTAGGTACAGCAATGG -ACGGAAGAGTAGGTACAGATGAGG -ACGGAAGAGTAGGTACAGAATGGG -ACGGAAGAGTAGGTACAGTCCTGA -ACGGAAGAGTAGGTACAGTAGCGA -ACGGAAGAGTAGGTACAGCACAGA -ACGGAAGAGTAGGTACAGGCAAGA -ACGGAAGAGTAGGTACAGGGTTGA -ACGGAAGAGTAGGTACAGTCCGAT -ACGGAAGAGTAGGTACAGTGGCAT -ACGGAAGAGTAGGTACAGCGAGAT -ACGGAAGAGTAGGTACAGTACCAC -ACGGAAGAGTAGGTACAGCAGAAC -ACGGAAGAGTAGGTACAGGTCTAC -ACGGAAGAGTAGGTACAGACGTAC -ACGGAAGAGTAGGTACAGAGTGAC -ACGGAAGAGTAGGTACAGCTGTAG -ACGGAAGAGTAGGTACAGCCTAAG -ACGGAAGAGTAGGTACAGGTTCAG -ACGGAAGAGTAGGTACAGGCATAG -ACGGAAGAGTAGGTACAGGACAAG -ACGGAAGAGTAGGTACAGAAGCAG -ACGGAAGAGTAGGTACAGCGTCAA -ACGGAAGAGTAGGTACAGGCTGAA -ACGGAAGAGTAGGTACAGAGTACG -ACGGAAGAGTAGGTACAGATCCGA -ACGGAAGAGTAGGTACAGATGGGA -ACGGAAGAGTAGGTACAGGTGCAA -ACGGAAGAGTAGGTACAGGAGGAA -ACGGAAGAGTAGGTACAGCAGGTA -ACGGAAGAGTAGGTACAGGACTCT -ACGGAAGAGTAGGTACAGAGTCCT -ACGGAAGAGTAGGTACAGTAAGCC -ACGGAAGAGTAGGTACAGATAGCC -ACGGAAGAGTAGGTACAGTAACCG -ACGGAAGAGTAGGTACAGATGCCA -ACGGAAGAGTAGTCTGACGGAAAC -ACGGAAGAGTAGTCTGACAACACC -ACGGAAGAGTAGTCTGACATCGAG -ACGGAAGAGTAGTCTGACCTCCTT -ACGGAAGAGTAGTCTGACCCTGTT -ACGGAAGAGTAGTCTGACCGGTTT -ACGGAAGAGTAGTCTGACGTGGTT -ACGGAAGAGTAGTCTGACGCCTTT -ACGGAAGAGTAGTCTGACGGTCTT -ACGGAAGAGTAGTCTGACACGCTT -ACGGAAGAGTAGTCTGACAGCGTT -ACGGAAGAGTAGTCTGACTTCGTC -ACGGAAGAGTAGTCTGACTCTCTC -ACGGAAGAGTAGTCTGACTGGATC -ACGGAAGAGTAGTCTGACCACTTC -ACGGAAGAGTAGTCTGACGTACTC -ACGGAAGAGTAGTCTGACGATGTC -ACGGAAGAGTAGTCTGACACAGTC -ACGGAAGAGTAGTCTGACTTGCTG -ACGGAAGAGTAGTCTGACTCCATG -ACGGAAGAGTAGTCTGACTGTGTG -ACGGAAGAGTAGTCTGACCTAGTG -ACGGAAGAGTAGTCTGACCATCTG -ACGGAAGAGTAGTCTGACGAGTTG -ACGGAAGAGTAGTCTGACAGACTG -ACGGAAGAGTAGTCTGACTCGGTA -ACGGAAGAGTAGTCTGACTGCCTA -ACGGAAGAGTAGTCTGACCCACTA -ACGGAAGAGTAGTCTGACGGAGTA -ACGGAAGAGTAGTCTGACTCGTCT -ACGGAAGAGTAGTCTGACTGCACT -ACGGAAGAGTAGTCTGACCTGACT -ACGGAAGAGTAGTCTGACCAACCT -ACGGAAGAGTAGTCTGACGCTACT -ACGGAAGAGTAGTCTGACGGATCT -ACGGAAGAGTAGTCTGACAAGGCT -ACGGAAGAGTAGTCTGACTCAACC -ACGGAAGAGTAGTCTGACTGTTCC -ACGGAAGAGTAGTCTGACATTCCC -ACGGAAGAGTAGTCTGACTTCTCG -ACGGAAGAGTAGTCTGACTAGACG -ACGGAAGAGTAGTCTGACGTAACG -ACGGAAGAGTAGTCTGACACTTCG -ACGGAAGAGTAGTCTGACTACGCA -ACGGAAGAGTAGTCTGACCTTGCA -ACGGAAGAGTAGTCTGACCGAACA -ACGGAAGAGTAGTCTGACCAGTCA -ACGGAAGAGTAGTCTGACGATCCA -ACGGAAGAGTAGTCTGACACGACA -ACGGAAGAGTAGTCTGACAGCTCA -ACGGAAGAGTAGTCTGACTCACGT -ACGGAAGAGTAGTCTGACCGTAGT -ACGGAAGAGTAGTCTGACGTCAGT -ACGGAAGAGTAGTCTGACGAAGGT -ACGGAAGAGTAGTCTGACAACCGT -ACGGAAGAGTAGTCTGACTTGTGC -ACGGAAGAGTAGTCTGACCTAAGC -ACGGAAGAGTAGTCTGACACTAGC -ACGGAAGAGTAGTCTGACAGATGC -ACGGAAGAGTAGTCTGACTGAAGG -ACGGAAGAGTAGTCTGACCAATGG -ACGGAAGAGTAGTCTGACATGAGG -ACGGAAGAGTAGTCTGACAATGGG -ACGGAAGAGTAGTCTGACTCCTGA -ACGGAAGAGTAGTCTGACTAGCGA -ACGGAAGAGTAGTCTGACCACAGA -ACGGAAGAGTAGTCTGACGCAAGA -ACGGAAGAGTAGTCTGACGGTTGA -ACGGAAGAGTAGTCTGACTCCGAT -ACGGAAGAGTAGTCTGACTGGCAT -ACGGAAGAGTAGTCTGACCGAGAT -ACGGAAGAGTAGTCTGACTACCAC -ACGGAAGAGTAGTCTGACCAGAAC -ACGGAAGAGTAGTCTGACGTCTAC -ACGGAAGAGTAGTCTGACACGTAC -ACGGAAGAGTAGTCTGACAGTGAC -ACGGAAGAGTAGTCTGACCTGTAG -ACGGAAGAGTAGTCTGACCCTAAG -ACGGAAGAGTAGTCTGACGTTCAG -ACGGAAGAGTAGTCTGACGCATAG -ACGGAAGAGTAGTCTGACGACAAG -ACGGAAGAGTAGTCTGACAAGCAG -ACGGAAGAGTAGTCTGACCGTCAA -ACGGAAGAGTAGTCTGACGCTGAA -ACGGAAGAGTAGTCTGACAGTACG -ACGGAAGAGTAGTCTGACATCCGA -ACGGAAGAGTAGTCTGACATGGGA -ACGGAAGAGTAGTCTGACGTGCAA -ACGGAAGAGTAGTCTGACGAGGAA -ACGGAAGAGTAGTCTGACCAGGTA -ACGGAAGAGTAGTCTGACGACTCT -ACGGAAGAGTAGTCTGACAGTCCT -ACGGAAGAGTAGTCTGACTAAGCC -ACGGAAGAGTAGTCTGACATAGCC -ACGGAAGAGTAGTCTGACTAACCG -ACGGAAGAGTAGTCTGACATGCCA -ACGGAAGAGTAGCCTAGTGGAAAC -ACGGAAGAGTAGCCTAGTAACACC -ACGGAAGAGTAGCCTAGTATCGAG -ACGGAAGAGTAGCCTAGTCTCCTT -ACGGAAGAGTAGCCTAGTCCTGTT -ACGGAAGAGTAGCCTAGTCGGTTT -ACGGAAGAGTAGCCTAGTGTGGTT -ACGGAAGAGTAGCCTAGTGCCTTT -ACGGAAGAGTAGCCTAGTGGTCTT -ACGGAAGAGTAGCCTAGTACGCTT -ACGGAAGAGTAGCCTAGTAGCGTT -ACGGAAGAGTAGCCTAGTTTCGTC -ACGGAAGAGTAGCCTAGTTCTCTC -ACGGAAGAGTAGCCTAGTTGGATC -ACGGAAGAGTAGCCTAGTCACTTC -ACGGAAGAGTAGCCTAGTGTACTC -ACGGAAGAGTAGCCTAGTGATGTC -ACGGAAGAGTAGCCTAGTACAGTC -ACGGAAGAGTAGCCTAGTTTGCTG -ACGGAAGAGTAGCCTAGTTCCATG -ACGGAAGAGTAGCCTAGTTGTGTG -ACGGAAGAGTAGCCTAGTCTAGTG -ACGGAAGAGTAGCCTAGTCATCTG -ACGGAAGAGTAGCCTAGTGAGTTG -ACGGAAGAGTAGCCTAGTAGACTG -ACGGAAGAGTAGCCTAGTTCGGTA -ACGGAAGAGTAGCCTAGTTGCCTA -ACGGAAGAGTAGCCTAGTCCACTA -ACGGAAGAGTAGCCTAGTGGAGTA -ACGGAAGAGTAGCCTAGTTCGTCT -ACGGAAGAGTAGCCTAGTTGCACT -ACGGAAGAGTAGCCTAGTCTGACT -ACGGAAGAGTAGCCTAGTCAACCT -ACGGAAGAGTAGCCTAGTGCTACT -ACGGAAGAGTAGCCTAGTGGATCT -ACGGAAGAGTAGCCTAGTAAGGCT -ACGGAAGAGTAGCCTAGTTCAACC -ACGGAAGAGTAGCCTAGTTGTTCC -ACGGAAGAGTAGCCTAGTATTCCC -ACGGAAGAGTAGCCTAGTTTCTCG -ACGGAAGAGTAGCCTAGTTAGACG -ACGGAAGAGTAGCCTAGTGTAACG -ACGGAAGAGTAGCCTAGTACTTCG -ACGGAAGAGTAGCCTAGTTACGCA -ACGGAAGAGTAGCCTAGTCTTGCA -ACGGAAGAGTAGCCTAGTCGAACA -ACGGAAGAGTAGCCTAGTCAGTCA -ACGGAAGAGTAGCCTAGTGATCCA -ACGGAAGAGTAGCCTAGTACGACA -ACGGAAGAGTAGCCTAGTAGCTCA -ACGGAAGAGTAGCCTAGTTCACGT -ACGGAAGAGTAGCCTAGTCGTAGT -ACGGAAGAGTAGCCTAGTGTCAGT -ACGGAAGAGTAGCCTAGTGAAGGT -ACGGAAGAGTAGCCTAGTAACCGT -ACGGAAGAGTAGCCTAGTTTGTGC -ACGGAAGAGTAGCCTAGTCTAAGC -ACGGAAGAGTAGCCTAGTACTAGC -ACGGAAGAGTAGCCTAGTAGATGC -ACGGAAGAGTAGCCTAGTTGAAGG -ACGGAAGAGTAGCCTAGTCAATGG -ACGGAAGAGTAGCCTAGTATGAGG -ACGGAAGAGTAGCCTAGTAATGGG -ACGGAAGAGTAGCCTAGTTCCTGA -ACGGAAGAGTAGCCTAGTTAGCGA -ACGGAAGAGTAGCCTAGTCACAGA -ACGGAAGAGTAGCCTAGTGCAAGA -ACGGAAGAGTAGCCTAGTGGTTGA -ACGGAAGAGTAGCCTAGTTCCGAT -ACGGAAGAGTAGCCTAGTTGGCAT -ACGGAAGAGTAGCCTAGTCGAGAT -ACGGAAGAGTAGCCTAGTTACCAC -ACGGAAGAGTAGCCTAGTCAGAAC -ACGGAAGAGTAGCCTAGTGTCTAC -ACGGAAGAGTAGCCTAGTACGTAC -ACGGAAGAGTAGCCTAGTAGTGAC -ACGGAAGAGTAGCCTAGTCTGTAG -ACGGAAGAGTAGCCTAGTCCTAAG -ACGGAAGAGTAGCCTAGTGTTCAG -ACGGAAGAGTAGCCTAGTGCATAG -ACGGAAGAGTAGCCTAGTGACAAG -ACGGAAGAGTAGCCTAGTAAGCAG -ACGGAAGAGTAGCCTAGTCGTCAA -ACGGAAGAGTAGCCTAGTGCTGAA -ACGGAAGAGTAGCCTAGTAGTACG -ACGGAAGAGTAGCCTAGTATCCGA -ACGGAAGAGTAGCCTAGTATGGGA -ACGGAAGAGTAGCCTAGTGTGCAA -ACGGAAGAGTAGCCTAGTGAGGAA -ACGGAAGAGTAGCCTAGTCAGGTA -ACGGAAGAGTAGCCTAGTGACTCT -ACGGAAGAGTAGCCTAGTAGTCCT -ACGGAAGAGTAGCCTAGTTAAGCC -ACGGAAGAGTAGCCTAGTATAGCC -ACGGAAGAGTAGCCTAGTTAACCG -ACGGAAGAGTAGCCTAGTATGCCA -ACGGAAGAGTAGGCCTAAGGAAAC -ACGGAAGAGTAGGCCTAAAACACC -ACGGAAGAGTAGGCCTAAATCGAG -ACGGAAGAGTAGGCCTAACTCCTT -ACGGAAGAGTAGGCCTAACCTGTT -ACGGAAGAGTAGGCCTAACGGTTT -ACGGAAGAGTAGGCCTAAGTGGTT -ACGGAAGAGTAGGCCTAAGCCTTT -ACGGAAGAGTAGGCCTAAGGTCTT -ACGGAAGAGTAGGCCTAAACGCTT -ACGGAAGAGTAGGCCTAAAGCGTT -ACGGAAGAGTAGGCCTAATTCGTC -ACGGAAGAGTAGGCCTAATCTCTC -ACGGAAGAGTAGGCCTAATGGATC -ACGGAAGAGTAGGCCTAACACTTC -ACGGAAGAGTAGGCCTAAGTACTC -ACGGAAGAGTAGGCCTAAGATGTC -ACGGAAGAGTAGGCCTAAACAGTC -ACGGAAGAGTAGGCCTAATTGCTG -ACGGAAGAGTAGGCCTAATCCATG -ACGGAAGAGTAGGCCTAATGTGTG -ACGGAAGAGTAGGCCTAACTAGTG -ACGGAAGAGTAGGCCTAACATCTG -ACGGAAGAGTAGGCCTAAGAGTTG -ACGGAAGAGTAGGCCTAAAGACTG -ACGGAAGAGTAGGCCTAATCGGTA -ACGGAAGAGTAGGCCTAATGCCTA -ACGGAAGAGTAGGCCTAACCACTA -ACGGAAGAGTAGGCCTAAGGAGTA -ACGGAAGAGTAGGCCTAATCGTCT -ACGGAAGAGTAGGCCTAATGCACT -ACGGAAGAGTAGGCCTAACTGACT -ACGGAAGAGTAGGCCTAACAACCT -ACGGAAGAGTAGGCCTAAGCTACT -ACGGAAGAGTAGGCCTAAGGATCT -ACGGAAGAGTAGGCCTAAAAGGCT -ACGGAAGAGTAGGCCTAATCAACC -ACGGAAGAGTAGGCCTAATGTTCC -ACGGAAGAGTAGGCCTAAATTCCC -ACGGAAGAGTAGGCCTAATTCTCG -ACGGAAGAGTAGGCCTAATAGACG -ACGGAAGAGTAGGCCTAAGTAACG -ACGGAAGAGTAGGCCTAAACTTCG -ACGGAAGAGTAGGCCTAATACGCA -ACGGAAGAGTAGGCCTAACTTGCA -ACGGAAGAGTAGGCCTAACGAACA -ACGGAAGAGTAGGCCTAACAGTCA -ACGGAAGAGTAGGCCTAAGATCCA -ACGGAAGAGTAGGCCTAAACGACA -ACGGAAGAGTAGGCCTAAAGCTCA -ACGGAAGAGTAGGCCTAATCACGT -ACGGAAGAGTAGGCCTAACGTAGT -ACGGAAGAGTAGGCCTAAGTCAGT -ACGGAAGAGTAGGCCTAAGAAGGT -ACGGAAGAGTAGGCCTAAAACCGT -ACGGAAGAGTAGGCCTAATTGTGC -ACGGAAGAGTAGGCCTAACTAAGC -ACGGAAGAGTAGGCCTAAACTAGC -ACGGAAGAGTAGGCCTAAAGATGC -ACGGAAGAGTAGGCCTAATGAAGG -ACGGAAGAGTAGGCCTAACAATGG -ACGGAAGAGTAGGCCTAAATGAGG -ACGGAAGAGTAGGCCTAAAATGGG -ACGGAAGAGTAGGCCTAATCCTGA -ACGGAAGAGTAGGCCTAATAGCGA -ACGGAAGAGTAGGCCTAACACAGA -ACGGAAGAGTAGGCCTAAGCAAGA -ACGGAAGAGTAGGCCTAAGGTTGA -ACGGAAGAGTAGGCCTAATCCGAT -ACGGAAGAGTAGGCCTAATGGCAT -ACGGAAGAGTAGGCCTAACGAGAT -ACGGAAGAGTAGGCCTAATACCAC -ACGGAAGAGTAGGCCTAACAGAAC -ACGGAAGAGTAGGCCTAAGTCTAC -ACGGAAGAGTAGGCCTAAACGTAC -ACGGAAGAGTAGGCCTAAAGTGAC -ACGGAAGAGTAGGCCTAACTGTAG -ACGGAAGAGTAGGCCTAACCTAAG -ACGGAAGAGTAGGCCTAAGTTCAG -ACGGAAGAGTAGGCCTAAGCATAG -ACGGAAGAGTAGGCCTAAGACAAG -ACGGAAGAGTAGGCCTAAAAGCAG -ACGGAAGAGTAGGCCTAACGTCAA -ACGGAAGAGTAGGCCTAAGCTGAA -ACGGAAGAGTAGGCCTAAAGTACG -ACGGAAGAGTAGGCCTAAATCCGA -ACGGAAGAGTAGGCCTAAATGGGA -ACGGAAGAGTAGGCCTAAGTGCAA -ACGGAAGAGTAGGCCTAAGAGGAA -ACGGAAGAGTAGGCCTAACAGGTA -ACGGAAGAGTAGGCCTAAGACTCT -ACGGAAGAGTAGGCCTAAAGTCCT -ACGGAAGAGTAGGCCTAATAAGCC -ACGGAAGAGTAGGCCTAAATAGCC -ACGGAAGAGTAGGCCTAATAACCG -ACGGAAGAGTAGGCCTAAATGCCA -ACGGAAGAGTAGGCCATAGGAAAC -ACGGAAGAGTAGGCCATAAACACC -ACGGAAGAGTAGGCCATAATCGAG -ACGGAAGAGTAGGCCATACTCCTT -ACGGAAGAGTAGGCCATACCTGTT -ACGGAAGAGTAGGCCATACGGTTT -ACGGAAGAGTAGGCCATAGTGGTT -ACGGAAGAGTAGGCCATAGCCTTT -ACGGAAGAGTAGGCCATAGGTCTT -ACGGAAGAGTAGGCCATAACGCTT -ACGGAAGAGTAGGCCATAAGCGTT -ACGGAAGAGTAGGCCATATTCGTC -ACGGAAGAGTAGGCCATATCTCTC -ACGGAAGAGTAGGCCATATGGATC -ACGGAAGAGTAGGCCATACACTTC -ACGGAAGAGTAGGCCATAGTACTC -ACGGAAGAGTAGGCCATAGATGTC -ACGGAAGAGTAGGCCATAACAGTC -ACGGAAGAGTAGGCCATATTGCTG -ACGGAAGAGTAGGCCATATCCATG -ACGGAAGAGTAGGCCATATGTGTG -ACGGAAGAGTAGGCCATACTAGTG -ACGGAAGAGTAGGCCATACATCTG -ACGGAAGAGTAGGCCATAGAGTTG -ACGGAAGAGTAGGCCATAAGACTG -ACGGAAGAGTAGGCCATATCGGTA -ACGGAAGAGTAGGCCATATGCCTA -ACGGAAGAGTAGGCCATACCACTA -ACGGAAGAGTAGGCCATAGGAGTA -ACGGAAGAGTAGGCCATATCGTCT -ACGGAAGAGTAGGCCATATGCACT -ACGGAAGAGTAGGCCATACTGACT -ACGGAAGAGTAGGCCATACAACCT -ACGGAAGAGTAGGCCATAGCTACT -ACGGAAGAGTAGGCCATAGGATCT -ACGGAAGAGTAGGCCATAAAGGCT -ACGGAAGAGTAGGCCATATCAACC -ACGGAAGAGTAGGCCATATGTTCC -ACGGAAGAGTAGGCCATAATTCCC -ACGGAAGAGTAGGCCATATTCTCG -ACGGAAGAGTAGGCCATATAGACG -ACGGAAGAGTAGGCCATAGTAACG -ACGGAAGAGTAGGCCATAACTTCG -ACGGAAGAGTAGGCCATATACGCA -ACGGAAGAGTAGGCCATACTTGCA -ACGGAAGAGTAGGCCATACGAACA -ACGGAAGAGTAGGCCATACAGTCA -ACGGAAGAGTAGGCCATAGATCCA -ACGGAAGAGTAGGCCATAACGACA -ACGGAAGAGTAGGCCATAAGCTCA -ACGGAAGAGTAGGCCATATCACGT -ACGGAAGAGTAGGCCATACGTAGT -ACGGAAGAGTAGGCCATAGTCAGT -ACGGAAGAGTAGGCCATAGAAGGT -ACGGAAGAGTAGGCCATAAACCGT -ACGGAAGAGTAGGCCATATTGTGC -ACGGAAGAGTAGGCCATACTAAGC -ACGGAAGAGTAGGCCATAACTAGC -ACGGAAGAGTAGGCCATAAGATGC -ACGGAAGAGTAGGCCATATGAAGG -ACGGAAGAGTAGGCCATACAATGG -ACGGAAGAGTAGGCCATAATGAGG -ACGGAAGAGTAGGCCATAAATGGG -ACGGAAGAGTAGGCCATATCCTGA -ACGGAAGAGTAGGCCATATAGCGA -ACGGAAGAGTAGGCCATACACAGA -ACGGAAGAGTAGGCCATAGCAAGA -ACGGAAGAGTAGGCCATAGGTTGA -ACGGAAGAGTAGGCCATATCCGAT -ACGGAAGAGTAGGCCATATGGCAT -ACGGAAGAGTAGGCCATACGAGAT -ACGGAAGAGTAGGCCATATACCAC -ACGGAAGAGTAGGCCATACAGAAC -ACGGAAGAGTAGGCCATAGTCTAC -ACGGAAGAGTAGGCCATAACGTAC -ACGGAAGAGTAGGCCATAAGTGAC -ACGGAAGAGTAGGCCATACTGTAG -ACGGAAGAGTAGGCCATACCTAAG -ACGGAAGAGTAGGCCATAGTTCAG -ACGGAAGAGTAGGCCATAGCATAG -ACGGAAGAGTAGGCCATAGACAAG -ACGGAAGAGTAGGCCATAAAGCAG -ACGGAAGAGTAGGCCATACGTCAA -ACGGAAGAGTAGGCCATAGCTGAA -ACGGAAGAGTAGGCCATAAGTACG -ACGGAAGAGTAGGCCATAATCCGA -ACGGAAGAGTAGGCCATAATGGGA -ACGGAAGAGTAGGCCATAGTGCAA -ACGGAAGAGTAGGCCATAGAGGAA -ACGGAAGAGTAGGCCATACAGGTA -ACGGAAGAGTAGGCCATAGACTCT -ACGGAAGAGTAGGCCATAAGTCCT -ACGGAAGAGTAGGCCATATAAGCC -ACGGAAGAGTAGGCCATAATAGCC -ACGGAAGAGTAGGCCATATAACCG -ACGGAAGAGTAGGCCATAATGCCA -ACGGAAGAGTAGCCGTAAGGAAAC -ACGGAAGAGTAGCCGTAAAACACC -ACGGAAGAGTAGCCGTAAATCGAG -ACGGAAGAGTAGCCGTAACTCCTT -ACGGAAGAGTAGCCGTAACCTGTT -ACGGAAGAGTAGCCGTAACGGTTT -ACGGAAGAGTAGCCGTAAGTGGTT -ACGGAAGAGTAGCCGTAAGCCTTT -ACGGAAGAGTAGCCGTAAGGTCTT -ACGGAAGAGTAGCCGTAAACGCTT -ACGGAAGAGTAGCCGTAAAGCGTT -ACGGAAGAGTAGCCGTAATTCGTC -ACGGAAGAGTAGCCGTAATCTCTC -ACGGAAGAGTAGCCGTAATGGATC -ACGGAAGAGTAGCCGTAACACTTC -ACGGAAGAGTAGCCGTAAGTACTC -ACGGAAGAGTAGCCGTAAGATGTC -ACGGAAGAGTAGCCGTAAACAGTC -ACGGAAGAGTAGCCGTAATTGCTG -ACGGAAGAGTAGCCGTAATCCATG -ACGGAAGAGTAGCCGTAATGTGTG -ACGGAAGAGTAGCCGTAACTAGTG -ACGGAAGAGTAGCCGTAACATCTG -ACGGAAGAGTAGCCGTAAGAGTTG -ACGGAAGAGTAGCCGTAAAGACTG -ACGGAAGAGTAGCCGTAATCGGTA -ACGGAAGAGTAGCCGTAATGCCTA -ACGGAAGAGTAGCCGTAACCACTA -ACGGAAGAGTAGCCGTAAGGAGTA -ACGGAAGAGTAGCCGTAATCGTCT -ACGGAAGAGTAGCCGTAATGCACT -ACGGAAGAGTAGCCGTAACTGACT -ACGGAAGAGTAGCCGTAACAACCT -ACGGAAGAGTAGCCGTAAGCTACT -ACGGAAGAGTAGCCGTAAGGATCT -ACGGAAGAGTAGCCGTAAAAGGCT -ACGGAAGAGTAGCCGTAATCAACC -ACGGAAGAGTAGCCGTAATGTTCC -ACGGAAGAGTAGCCGTAAATTCCC -ACGGAAGAGTAGCCGTAATTCTCG -ACGGAAGAGTAGCCGTAATAGACG -ACGGAAGAGTAGCCGTAAGTAACG -ACGGAAGAGTAGCCGTAAACTTCG -ACGGAAGAGTAGCCGTAATACGCA -ACGGAAGAGTAGCCGTAACTTGCA -ACGGAAGAGTAGCCGTAACGAACA -ACGGAAGAGTAGCCGTAACAGTCA -ACGGAAGAGTAGCCGTAAGATCCA -ACGGAAGAGTAGCCGTAAACGACA -ACGGAAGAGTAGCCGTAAAGCTCA -ACGGAAGAGTAGCCGTAATCACGT -ACGGAAGAGTAGCCGTAACGTAGT -ACGGAAGAGTAGCCGTAAGTCAGT -ACGGAAGAGTAGCCGTAAGAAGGT -ACGGAAGAGTAGCCGTAAAACCGT -ACGGAAGAGTAGCCGTAATTGTGC -ACGGAAGAGTAGCCGTAACTAAGC -ACGGAAGAGTAGCCGTAAACTAGC -ACGGAAGAGTAGCCGTAAAGATGC -ACGGAAGAGTAGCCGTAATGAAGG -ACGGAAGAGTAGCCGTAACAATGG -ACGGAAGAGTAGCCGTAAATGAGG -ACGGAAGAGTAGCCGTAAAATGGG -ACGGAAGAGTAGCCGTAATCCTGA -ACGGAAGAGTAGCCGTAATAGCGA -ACGGAAGAGTAGCCGTAACACAGA -ACGGAAGAGTAGCCGTAAGCAAGA -ACGGAAGAGTAGCCGTAAGGTTGA -ACGGAAGAGTAGCCGTAATCCGAT -ACGGAAGAGTAGCCGTAATGGCAT -ACGGAAGAGTAGCCGTAACGAGAT -ACGGAAGAGTAGCCGTAATACCAC -ACGGAAGAGTAGCCGTAACAGAAC -ACGGAAGAGTAGCCGTAAGTCTAC -ACGGAAGAGTAGCCGTAAACGTAC -ACGGAAGAGTAGCCGTAAAGTGAC -ACGGAAGAGTAGCCGTAACTGTAG -ACGGAAGAGTAGCCGTAACCTAAG -ACGGAAGAGTAGCCGTAAGTTCAG -ACGGAAGAGTAGCCGTAAGCATAG -ACGGAAGAGTAGCCGTAAGACAAG -ACGGAAGAGTAGCCGTAAAAGCAG -ACGGAAGAGTAGCCGTAACGTCAA -ACGGAAGAGTAGCCGTAAGCTGAA -ACGGAAGAGTAGCCGTAAAGTACG -ACGGAAGAGTAGCCGTAAATCCGA -ACGGAAGAGTAGCCGTAAATGGGA -ACGGAAGAGTAGCCGTAAGTGCAA -ACGGAAGAGTAGCCGTAAGAGGAA -ACGGAAGAGTAGCCGTAACAGGTA -ACGGAAGAGTAGCCGTAAGACTCT -ACGGAAGAGTAGCCGTAAAGTCCT -ACGGAAGAGTAGCCGTAATAAGCC -ACGGAAGAGTAGCCGTAAATAGCC -ACGGAAGAGTAGCCGTAATAACCG -ACGGAAGAGTAGCCGTAAATGCCA -ACGGAAGAGTAGCCAATGGGAAAC -ACGGAAGAGTAGCCAATGAACACC -ACGGAAGAGTAGCCAATGATCGAG -ACGGAAGAGTAGCCAATGCTCCTT -ACGGAAGAGTAGCCAATGCCTGTT -ACGGAAGAGTAGCCAATGCGGTTT -ACGGAAGAGTAGCCAATGGTGGTT -ACGGAAGAGTAGCCAATGGCCTTT -ACGGAAGAGTAGCCAATGGGTCTT -ACGGAAGAGTAGCCAATGACGCTT -ACGGAAGAGTAGCCAATGAGCGTT -ACGGAAGAGTAGCCAATGTTCGTC -ACGGAAGAGTAGCCAATGTCTCTC -ACGGAAGAGTAGCCAATGTGGATC -ACGGAAGAGTAGCCAATGCACTTC -ACGGAAGAGTAGCCAATGGTACTC -ACGGAAGAGTAGCCAATGGATGTC -ACGGAAGAGTAGCCAATGACAGTC -ACGGAAGAGTAGCCAATGTTGCTG -ACGGAAGAGTAGCCAATGTCCATG -ACGGAAGAGTAGCCAATGTGTGTG -ACGGAAGAGTAGCCAATGCTAGTG -ACGGAAGAGTAGCCAATGCATCTG -ACGGAAGAGTAGCCAATGGAGTTG -ACGGAAGAGTAGCCAATGAGACTG -ACGGAAGAGTAGCCAATGTCGGTA -ACGGAAGAGTAGCCAATGTGCCTA -ACGGAAGAGTAGCCAATGCCACTA -ACGGAAGAGTAGCCAATGGGAGTA -ACGGAAGAGTAGCCAATGTCGTCT -ACGGAAGAGTAGCCAATGTGCACT -ACGGAAGAGTAGCCAATGCTGACT -ACGGAAGAGTAGCCAATGCAACCT -ACGGAAGAGTAGCCAATGGCTACT -ACGGAAGAGTAGCCAATGGGATCT -ACGGAAGAGTAGCCAATGAAGGCT -ACGGAAGAGTAGCCAATGTCAACC -ACGGAAGAGTAGCCAATGTGTTCC -ACGGAAGAGTAGCCAATGATTCCC -ACGGAAGAGTAGCCAATGTTCTCG -ACGGAAGAGTAGCCAATGTAGACG -ACGGAAGAGTAGCCAATGGTAACG -ACGGAAGAGTAGCCAATGACTTCG -ACGGAAGAGTAGCCAATGTACGCA -ACGGAAGAGTAGCCAATGCTTGCA -ACGGAAGAGTAGCCAATGCGAACA -ACGGAAGAGTAGCCAATGCAGTCA -ACGGAAGAGTAGCCAATGGATCCA -ACGGAAGAGTAGCCAATGACGACA -ACGGAAGAGTAGCCAATGAGCTCA -ACGGAAGAGTAGCCAATGTCACGT -ACGGAAGAGTAGCCAATGCGTAGT -ACGGAAGAGTAGCCAATGGTCAGT -ACGGAAGAGTAGCCAATGGAAGGT -ACGGAAGAGTAGCCAATGAACCGT -ACGGAAGAGTAGCCAATGTTGTGC -ACGGAAGAGTAGCCAATGCTAAGC -ACGGAAGAGTAGCCAATGACTAGC -ACGGAAGAGTAGCCAATGAGATGC -ACGGAAGAGTAGCCAATGTGAAGG -ACGGAAGAGTAGCCAATGCAATGG -ACGGAAGAGTAGCCAATGATGAGG -ACGGAAGAGTAGCCAATGAATGGG -ACGGAAGAGTAGCCAATGTCCTGA -ACGGAAGAGTAGCCAATGTAGCGA -ACGGAAGAGTAGCCAATGCACAGA -ACGGAAGAGTAGCCAATGGCAAGA -ACGGAAGAGTAGCCAATGGGTTGA -ACGGAAGAGTAGCCAATGTCCGAT -ACGGAAGAGTAGCCAATGTGGCAT -ACGGAAGAGTAGCCAATGCGAGAT -ACGGAAGAGTAGCCAATGTACCAC -ACGGAAGAGTAGCCAATGCAGAAC -ACGGAAGAGTAGCCAATGGTCTAC -ACGGAAGAGTAGCCAATGACGTAC -ACGGAAGAGTAGCCAATGAGTGAC -ACGGAAGAGTAGCCAATGCTGTAG -ACGGAAGAGTAGCCAATGCCTAAG -ACGGAAGAGTAGCCAATGGTTCAG -ACGGAAGAGTAGCCAATGGCATAG -ACGGAAGAGTAGCCAATGGACAAG -ACGGAAGAGTAGCCAATGAAGCAG -ACGGAAGAGTAGCCAATGCGTCAA -ACGGAAGAGTAGCCAATGGCTGAA -ACGGAAGAGTAGCCAATGAGTACG -ACGGAAGAGTAGCCAATGATCCGA -ACGGAAGAGTAGCCAATGATGGGA -ACGGAAGAGTAGCCAATGGTGCAA -ACGGAAGAGTAGCCAATGGAGGAA -ACGGAAGAGTAGCCAATGCAGGTA -ACGGAAGAGTAGCCAATGGACTCT -ACGGAAGAGTAGCCAATGAGTCCT -ACGGAAGAGTAGCCAATGTAAGCC -ACGGAAGAGTAGCCAATGATAGCC -ACGGAAGAGTAGCCAATGTAACCG -ACGGAAGAGTAGCCAATGATGCCA -ACGGAACGTCTTAACGGAGGAAAC -ACGGAACGTCTTAACGGAAACACC -ACGGAACGTCTTAACGGAATCGAG -ACGGAACGTCTTAACGGACTCCTT -ACGGAACGTCTTAACGGACCTGTT -ACGGAACGTCTTAACGGACGGTTT -ACGGAACGTCTTAACGGAGTGGTT -ACGGAACGTCTTAACGGAGCCTTT -ACGGAACGTCTTAACGGAGGTCTT -ACGGAACGTCTTAACGGAACGCTT -ACGGAACGTCTTAACGGAAGCGTT -ACGGAACGTCTTAACGGATTCGTC -ACGGAACGTCTTAACGGATCTCTC -ACGGAACGTCTTAACGGATGGATC -ACGGAACGTCTTAACGGACACTTC -ACGGAACGTCTTAACGGAGTACTC -ACGGAACGTCTTAACGGAGATGTC -ACGGAACGTCTTAACGGAACAGTC -ACGGAACGTCTTAACGGATTGCTG -ACGGAACGTCTTAACGGATCCATG -ACGGAACGTCTTAACGGATGTGTG -ACGGAACGTCTTAACGGACTAGTG -ACGGAACGTCTTAACGGACATCTG -ACGGAACGTCTTAACGGAGAGTTG -ACGGAACGTCTTAACGGAAGACTG -ACGGAACGTCTTAACGGATCGGTA -ACGGAACGTCTTAACGGATGCCTA -ACGGAACGTCTTAACGGACCACTA -ACGGAACGTCTTAACGGAGGAGTA -ACGGAACGTCTTAACGGATCGTCT -ACGGAACGTCTTAACGGATGCACT -ACGGAACGTCTTAACGGACTGACT -ACGGAACGTCTTAACGGACAACCT -ACGGAACGTCTTAACGGAGCTACT -ACGGAACGTCTTAACGGAGGATCT -ACGGAACGTCTTAACGGAAAGGCT -ACGGAACGTCTTAACGGATCAACC -ACGGAACGTCTTAACGGATGTTCC -ACGGAACGTCTTAACGGAATTCCC -ACGGAACGTCTTAACGGATTCTCG -ACGGAACGTCTTAACGGATAGACG -ACGGAACGTCTTAACGGAGTAACG -ACGGAACGTCTTAACGGAACTTCG -ACGGAACGTCTTAACGGATACGCA -ACGGAACGTCTTAACGGACTTGCA -ACGGAACGTCTTAACGGACGAACA -ACGGAACGTCTTAACGGACAGTCA -ACGGAACGTCTTAACGGAGATCCA -ACGGAACGTCTTAACGGAACGACA -ACGGAACGTCTTAACGGAAGCTCA -ACGGAACGTCTTAACGGATCACGT -ACGGAACGTCTTAACGGACGTAGT -ACGGAACGTCTTAACGGAGTCAGT -ACGGAACGTCTTAACGGAGAAGGT -ACGGAACGTCTTAACGGAAACCGT -ACGGAACGTCTTAACGGATTGTGC -ACGGAACGTCTTAACGGACTAAGC -ACGGAACGTCTTAACGGAACTAGC -ACGGAACGTCTTAACGGAAGATGC -ACGGAACGTCTTAACGGATGAAGG -ACGGAACGTCTTAACGGACAATGG -ACGGAACGTCTTAACGGAATGAGG -ACGGAACGTCTTAACGGAAATGGG -ACGGAACGTCTTAACGGATCCTGA -ACGGAACGTCTTAACGGATAGCGA -ACGGAACGTCTTAACGGACACAGA -ACGGAACGTCTTAACGGAGCAAGA -ACGGAACGTCTTAACGGAGGTTGA -ACGGAACGTCTTAACGGATCCGAT -ACGGAACGTCTTAACGGATGGCAT -ACGGAACGTCTTAACGGACGAGAT -ACGGAACGTCTTAACGGATACCAC -ACGGAACGTCTTAACGGACAGAAC -ACGGAACGTCTTAACGGAGTCTAC -ACGGAACGTCTTAACGGAACGTAC -ACGGAACGTCTTAACGGAAGTGAC -ACGGAACGTCTTAACGGACTGTAG -ACGGAACGTCTTAACGGACCTAAG -ACGGAACGTCTTAACGGAGTTCAG -ACGGAACGTCTTAACGGAGCATAG -ACGGAACGTCTTAACGGAGACAAG -ACGGAACGTCTTAACGGAAAGCAG -ACGGAACGTCTTAACGGACGTCAA -ACGGAACGTCTTAACGGAGCTGAA -ACGGAACGTCTTAACGGAAGTACG -ACGGAACGTCTTAACGGAATCCGA -ACGGAACGTCTTAACGGAATGGGA -ACGGAACGTCTTAACGGAGTGCAA -ACGGAACGTCTTAACGGAGAGGAA -ACGGAACGTCTTAACGGACAGGTA -ACGGAACGTCTTAACGGAGACTCT -ACGGAACGTCTTAACGGAAGTCCT -ACGGAACGTCTTAACGGATAAGCC -ACGGAACGTCTTAACGGAATAGCC -ACGGAACGTCTTAACGGATAACCG -ACGGAACGTCTTAACGGAATGCCA -ACGGAACGTCTTACCAACGGAAAC -ACGGAACGTCTTACCAACAACACC -ACGGAACGTCTTACCAACATCGAG -ACGGAACGTCTTACCAACCTCCTT -ACGGAACGTCTTACCAACCCTGTT -ACGGAACGTCTTACCAACCGGTTT -ACGGAACGTCTTACCAACGTGGTT -ACGGAACGTCTTACCAACGCCTTT -ACGGAACGTCTTACCAACGGTCTT -ACGGAACGTCTTACCAACACGCTT -ACGGAACGTCTTACCAACAGCGTT -ACGGAACGTCTTACCAACTTCGTC -ACGGAACGTCTTACCAACTCTCTC -ACGGAACGTCTTACCAACTGGATC -ACGGAACGTCTTACCAACCACTTC -ACGGAACGTCTTACCAACGTACTC -ACGGAACGTCTTACCAACGATGTC -ACGGAACGTCTTACCAACACAGTC -ACGGAACGTCTTACCAACTTGCTG -ACGGAACGTCTTACCAACTCCATG -ACGGAACGTCTTACCAACTGTGTG -ACGGAACGTCTTACCAACCTAGTG -ACGGAACGTCTTACCAACCATCTG -ACGGAACGTCTTACCAACGAGTTG -ACGGAACGTCTTACCAACAGACTG -ACGGAACGTCTTACCAACTCGGTA -ACGGAACGTCTTACCAACTGCCTA -ACGGAACGTCTTACCAACCCACTA -ACGGAACGTCTTACCAACGGAGTA -ACGGAACGTCTTACCAACTCGTCT -ACGGAACGTCTTACCAACTGCACT -ACGGAACGTCTTACCAACCTGACT -ACGGAACGTCTTACCAACCAACCT -ACGGAACGTCTTACCAACGCTACT -ACGGAACGTCTTACCAACGGATCT -ACGGAACGTCTTACCAACAAGGCT -ACGGAACGTCTTACCAACTCAACC -ACGGAACGTCTTACCAACTGTTCC -ACGGAACGTCTTACCAACATTCCC -ACGGAACGTCTTACCAACTTCTCG -ACGGAACGTCTTACCAACTAGACG -ACGGAACGTCTTACCAACGTAACG -ACGGAACGTCTTACCAACACTTCG -ACGGAACGTCTTACCAACTACGCA -ACGGAACGTCTTACCAACCTTGCA -ACGGAACGTCTTACCAACCGAACA -ACGGAACGTCTTACCAACCAGTCA -ACGGAACGTCTTACCAACGATCCA -ACGGAACGTCTTACCAACACGACA -ACGGAACGTCTTACCAACAGCTCA -ACGGAACGTCTTACCAACTCACGT -ACGGAACGTCTTACCAACCGTAGT -ACGGAACGTCTTACCAACGTCAGT -ACGGAACGTCTTACCAACGAAGGT -ACGGAACGTCTTACCAACAACCGT -ACGGAACGTCTTACCAACTTGTGC -ACGGAACGTCTTACCAACCTAAGC -ACGGAACGTCTTACCAACACTAGC -ACGGAACGTCTTACCAACAGATGC -ACGGAACGTCTTACCAACTGAAGG -ACGGAACGTCTTACCAACCAATGG -ACGGAACGTCTTACCAACATGAGG -ACGGAACGTCTTACCAACAATGGG -ACGGAACGTCTTACCAACTCCTGA -ACGGAACGTCTTACCAACTAGCGA -ACGGAACGTCTTACCAACCACAGA -ACGGAACGTCTTACCAACGCAAGA -ACGGAACGTCTTACCAACGGTTGA -ACGGAACGTCTTACCAACTCCGAT -ACGGAACGTCTTACCAACTGGCAT -ACGGAACGTCTTACCAACCGAGAT -ACGGAACGTCTTACCAACTACCAC -ACGGAACGTCTTACCAACCAGAAC -ACGGAACGTCTTACCAACGTCTAC -ACGGAACGTCTTACCAACACGTAC -ACGGAACGTCTTACCAACAGTGAC -ACGGAACGTCTTACCAACCTGTAG -ACGGAACGTCTTACCAACCCTAAG -ACGGAACGTCTTACCAACGTTCAG -ACGGAACGTCTTACCAACGCATAG -ACGGAACGTCTTACCAACGACAAG -ACGGAACGTCTTACCAACAAGCAG -ACGGAACGTCTTACCAACCGTCAA -ACGGAACGTCTTACCAACGCTGAA -ACGGAACGTCTTACCAACAGTACG -ACGGAACGTCTTACCAACATCCGA -ACGGAACGTCTTACCAACATGGGA -ACGGAACGTCTTACCAACGTGCAA -ACGGAACGTCTTACCAACGAGGAA -ACGGAACGTCTTACCAACCAGGTA -ACGGAACGTCTTACCAACGACTCT -ACGGAACGTCTTACCAACAGTCCT -ACGGAACGTCTTACCAACTAAGCC -ACGGAACGTCTTACCAACATAGCC -ACGGAACGTCTTACCAACTAACCG -ACGGAACGTCTTACCAACATGCCA -ACGGAACGTCTTGAGATCGGAAAC -ACGGAACGTCTTGAGATCAACACC -ACGGAACGTCTTGAGATCATCGAG -ACGGAACGTCTTGAGATCCTCCTT -ACGGAACGTCTTGAGATCCCTGTT -ACGGAACGTCTTGAGATCCGGTTT -ACGGAACGTCTTGAGATCGTGGTT -ACGGAACGTCTTGAGATCGCCTTT -ACGGAACGTCTTGAGATCGGTCTT -ACGGAACGTCTTGAGATCACGCTT -ACGGAACGTCTTGAGATCAGCGTT -ACGGAACGTCTTGAGATCTTCGTC -ACGGAACGTCTTGAGATCTCTCTC -ACGGAACGTCTTGAGATCTGGATC -ACGGAACGTCTTGAGATCCACTTC -ACGGAACGTCTTGAGATCGTACTC -ACGGAACGTCTTGAGATCGATGTC -ACGGAACGTCTTGAGATCACAGTC -ACGGAACGTCTTGAGATCTTGCTG -ACGGAACGTCTTGAGATCTCCATG -ACGGAACGTCTTGAGATCTGTGTG -ACGGAACGTCTTGAGATCCTAGTG -ACGGAACGTCTTGAGATCCATCTG -ACGGAACGTCTTGAGATCGAGTTG -ACGGAACGTCTTGAGATCAGACTG -ACGGAACGTCTTGAGATCTCGGTA -ACGGAACGTCTTGAGATCTGCCTA -ACGGAACGTCTTGAGATCCCACTA -ACGGAACGTCTTGAGATCGGAGTA -ACGGAACGTCTTGAGATCTCGTCT -ACGGAACGTCTTGAGATCTGCACT -ACGGAACGTCTTGAGATCCTGACT -ACGGAACGTCTTGAGATCCAACCT -ACGGAACGTCTTGAGATCGCTACT -ACGGAACGTCTTGAGATCGGATCT -ACGGAACGTCTTGAGATCAAGGCT -ACGGAACGTCTTGAGATCTCAACC -ACGGAACGTCTTGAGATCTGTTCC -ACGGAACGTCTTGAGATCATTCCC -ACGGAACGTCTTGAGATCTTCTCG -ACGGAACGTCTTGAGATCTAGACG -ACGGAACGTCTTGAGATCGTAACG -ACGGAACGTCTTGAGATCACTTCG -ACGGAACGTCTTGAGATCTACGCA -ACGGAACGTCTTGAGATCCTTGCA -ACGGAACGTCTTGAGATCCGAACA -ACGGAACGTCTTGAGATCCAGTCA -ACGGAACGTCTTGAGATCGATCCA -ACGGAACGTCTTGAGATCACGACA -ACGGAACGTCTTGAGATCAGCTCA -ACGGAACGTCTTGAGATCTCACGT -ACGGAACGTCTTGAGATCCGTAGT -ACGGAACGTCTTGAGATCGTCAGT -ACGGAACGTCTTGAGATCGAAGGT -ACGGAACGTCTTGAGATCAACCGT -ACGGAACGTCTTGAGATCTTGTGC -ACGGAACGTCTTGAGATCCTAAGC -ACGGAACGTCTTGAGATCACTAGC -ACGGAACGTCTTGAGATCAGATGC -ACGGAACGTCTTGAGATCTGAAGG -ACGGAACGTCTTGAGATCCAATGG -ACGGAACGTCTTGAGATCATGAGG -ACGGAACGTCTTGAGATCAATGGG -ACGGAACGTCTTGAGATCTCCTGA -ACGGAACGTCTTGAGATCTAGCGA -ACGGAACGTCTTGAGATCCACAGA -ACGGAACGTCTTGAGATCGCAAGA -ACGGAACGTCTTGAGATCGGTTGA -ACGGAACGTCTTGAGATCTCCGAT -ACGGAACGTCTTGAGATCTGGCAT -ACGGAACGTCTTGAGATCCGAGAT -ACGGAACGTCTTGAGATCTACCAC -ACGGAACGTCTTGAGATCCAGAAC -ACGGAACGTCTTGAGATCGTCTAC -ACGGAACGTCTTGAGATCACGTAC -ACGGAACGTCTTGAGATCAGTGAC -ACGGAACGTCTTGAGATCCTGTAG -ACGGAACGTCTTGAGATCCCTAAG -ACGGAACGTCTTGAGATCGTTCAG -ACGGAACGTCTTGAGATCGCATAG -ACGGAACGTCTTGAGATCGACAAG -ACGGAACGTCTTGAGATCAAGCAG -ACGGAACGTCTTGAGATCCGTCAA -ACGGAACGTCTTGAGATCGCTGAA -ACGGAACGTCTTGAGATCAGTACG -ACGGAACGTCTTGAGATCATCCGA -ACGGAACGTCTTGAGATCATGGGA -ACGGAACGTCTTGAGATCGTGCAA -ACGGAACGTCTTGAGATCGAGGAA -ACGGAACGTCTTGAGATCCAGGTA -ACGGAACGTCTTGAGATCGACTCT -ACGGAACGTCTTGAGATCAGTCCT -ACGGAACGTCTTGAGATCTAAGCC -ACGGAACGTCTTGAGATCATAGCC -ACGGAACGTCTTGAGATCTAACCG -ACGGAACGTCTTGAGATCATGCCA -ACGGAACGTCTTCTTCTCGGAAAC -ACGGAACGTCTTCTTCTCAACACC -ACGGAACGTCTTCTTCTCATCGAG -ACGGAACGTCTTCTTCTCCTCCTT -ACGGAACGTCTTCTTCTCCCTGTT -ACGGAACGTCTTCTTCTCCGGTTT -ACGGAACGTCTTCTTCTCGTGGTT -ACGGAACGTCTTCTTCTCGCCTTT -ACGGAACGTCTTCTTCTCGGTCTT -ACGGAACGTCTTCTTCTCACGCTT -ACGGAACGTCTTCTTCTCAGCGTT -ACGGAACGTCTTCTTCTCTTCGTC -ACGGAACGTCTTCTTCTCTCTCTC -ACGGAACGTCTTCTTCTCTGGATC -ACGGAACGTCTTCTTCTCCACTTC -ACGGAACGTCTTCTTCTCGTACTC -ACGGAACGTCTTCTTCTCGATGTC -ACGGAACGTCTTCTTCTCACAGTC -ACGGAACGTCTTCTTCTCTTGCTG -ACGGAACGTCTTCTTCTCTCCATG -ACGGAACGTCTTCTTCTCTGTGTG -ACGGAACGTCTTCTTCTCCTAGTG -ACGGAACGTCTTCTTCTCCATCTG -ACGGAACGTCTTCTTCTCGAGTTG -ACGGAACGTCTTCTTCTCAGACTG -ACGGAACGTCTTCTTCTCTCGGTA -ACGGAACGTCTTCTTCTCTGCCTA -ACGGAACGTCTTCTTCTCCCACTA -ACGGAACGTCTTCTTCTCGGAGTA -ACGGAACGTCTTCTTCTCTCGTCT -ACGGAACGTCTTCTTCTCTGCACT -ACGGAACGTCTTCTTCTCCTGACT -ACGGAACGTCTTCTTCTCCAACCT -ACGGAACGTCTTCTTCTCGCTACT -ACGGAACGTCTTCTTCTCGGATCT -ACGGAACGTCTTCTTCTCAAGGCT -ACGGAACGTCTTCTTCTCTCAACC -ACGGAACGTCTTCTTCTCTGTTCC -ACGGAACGTCTTCTTCTCATTCCC -ACGGAACGTCTTCTTCTCTTCTCG -ACGGAACGTCTTCTTCTCTAGACG -ACGGAACGTCTTCTTCTCGTAACG -ACGGAACGTCTTCTTCTCACTTCG -ACGGAACGTCTTCTTCTCTACGCA -ACGGAACGTCTTCTTCTCCTTGCA -ACGGAACGTCTTCTTCTCCGAACA -ACGGAACGTCTTCTTCTCCAGTCA -ACGGAACGTCTTCTTCTCGATCCA -ACGGAACGTCTTCTTCTCACGACA -ACGGAACGTCTTCTTCTCAGCTCA -ACGGAACGTCTTCTTCTCTCACGT -ACGGAACGTCTTCTTCTCCGTAGT -ACGGAACGTCTTCTTCTCGTCAGT -ACGGAACGTCTTCTTCTCGAAGGT -ACGGAACGTCTTCTTCTCAACCGT -ACGGAACGTCTTCTTCTCTTGTGC -ACGGAACGTCTTCTTCTCCTAAGC -ACGGAACGTCTTCTTCTCACTAGC -ACGGAACGTCTTCTTCTCAGATGC -ACGGAACGTCTTCTTCTCTGAAGG -ACGGAACGTCTTCTTCTCCAATGG -ACGGAACGTCTTCTTCTCATGAGG -ACGGAACGTCTTCTTCTCAATGGG -ACGGAACGTCTTCTTCTCTCCTGA -ACGGAACGTCTTCTTCTCTAGCGA -ACGGAACGTCTTCTTCTCCACAGA -ACGGAACGTCTTCTTCTCGCAAGA -ACGGAACGTCTTCTTCTCGGTTGA -ACGGAACGTCTTCTTCTCTCCGAT -ACGGAACGTCTTCTTCTCTGGCAT -ACGGAACGTCTTCTTCTCCGAGAT -ACGGAACGTCTTCTTCTCTACCAC -ACGGAACGTCTTCTTCTCCAGAAC -ACGGAACGTCTTCTTCTCGTCTAC -ACGGAACGTCTTCTTCTCACGTAC -ACGGAACGTCTTCTTCTCAGTGAC -ACGGAACGTCTTCTTCTCCTGTAG -ACGGAACGTCTTCTTCTCCCTAAG -ACGGAACGTCTTCTTCTCGTTCAG -ACGGAACGTCTTCTTCTCGCATAG -ACGGAACGTCTTCTTCTCGACAAG -ACGGAACGTCTTCTTCTCAAGCAG -ACGGAACGTCTTCTTCTCCGTCAA -ACGGAACGTCTTCTTCTCGCTGAA -ACGGAACGTCTTCTTCTCAGTACG -ACGGAACGTCTTCTTCTCATCCGA -ACGGAACGTCTTCTTCTCATGGGA -ACGGAACGTCTTCTTCTCGTGCAA -ACGGAACGTCTTCTTCTCGAGGAA -ACGGAACGTCTTCTTCTCCAGGTA -ACGGAACGTCTTCTTCTCGACTCT -ACGGAACGTCTTCTTCTCAGTCCT -ACGGAACGTCTTCTTCTCTAAGCC -ACGGAACGTCTTCTTCTCATAGCC -ACGGAACGTCTTCTTCTCTAACCG -ACGGAACGTCTTCTTCTCATGCCA -ACGGAACGTCTTGTTCCTGGAAAC -ACGGAACGTCTTGTTCCTAACACC -ACGGAACGTCTTGTTCCTATCGAG -ACGGAACGTCTTGTTCCTCTCCTT -ACGGAACGTCTTGTTCCTCCTGTT -ACGGAACGTCTTGTTCCTCGGTTT -ACGGAACGTCTTGTTCCTGTGGTT -ACGGAACGTCTTGTTCCTGCCTTT -ACGGAACGTCTTGTTCCTGGTCTT -ACGGAACGTCTTGTTCCTACGCTT -ACGGAACGTCTTGTTCCTAGCGTT -ACGGAACGTCTTGTTCCTTTCGTC -ACGGAACGTCTTGTTCCTTCTCTC -ACGGAACGTCTTGTTCCTTGGATC -ACGGAACGTCTTGTTCCTCACTTC -ACGGAACGTCTTGTTCCTGTACTC -ACGGAACGTCTTGTTCCTGATGTC -ACGGAACGTCTTGTTCCTACAGTC -ACGGAACGTCTTGTTCCTTTGCTG -ACGGAACGTCTTGTTCCTTCCATG -ACGGAACGTCTTGTTCCTTGTGTG -ACGGAACGTCTTGTTCCTCTAGTG -ACGGAACGTCTTGTTCCTCATCTG -ACGGAACGTCTTGTTCCTGAGTTG -ACGGAACGTCTTGTTCCTAGACTG -ACGGAACGTCTTGTTCCTTCGGTA -ACGGAACGTCTTGTTCCTTGCCTA -ACGGAACGTCTTGTTCCTCCACTA -ACGGAACGTCTTGTTCCTGGAGTA -ACGGAACGTCTTGTTCCTTCGTCT -ACGGAACGTCTTGTTCCTTGCACT -ACGGAACGTCTTGTTCCTCTGACT -ACGGAACGTCTTGTTCCTCAACCT -ACGGAACGTCTTGTTCCTGCTACT -ACGGAACGTCTTGTTCCTGGATCT -ACGGAACGTCTTGTTCCTAAGGCT -ACGGAACGTCTTGTTCCTTCAACC -ACGGAACGTCTTGTTCCTTGTTCC -ACGGAACGTCTTGTTCCTATTCCC -ACGGAACGTCTTGTTCCTTTCTCG -ACGGAACGTCTTGTTCCTTAGACG -ACGGAACGTCTTGTTCCTGTAACG -ACGGAACGTCTTGTTCCTACTTCG -ACGGAACGTCTTGTTCCTTACGCA -ACGGAACGTCTTGTTCCTCTTGCA -ACGGAACGTCTTGTTCCTCGAACA -ACGGAACGTCTTGTTCCTCAGTCA -ACGGAACGTCTTGTTCCTGATCCA -ACGGAACGTCTTGTTCCTACGACA -ACGGAACGTCTTGTTCCTAGCTCA -ACGGAACGTCTTGTTCCTTCACGT -ACGGAACGTCTTGTTCCTCGTAGT -ACGGAACGTCTTGTTCCTGTCAGT -ACGGAACGTCTTGTTCCTGAAGGT -ACGGAACGTCTTGTTCCTAACCGT -ACGGAACGTCTTGTTCCTTTGTGC -ACGGAACGTCTTGTTCCTCTAAGC -ACGGAACGTCTTGTTCCTACTAGC -ACGGAACGTCTTGTTCCTAGATGC -ACGGAACGTCTTGTTCCTTGAAGG -ACGGAACGTCTTGTTCCTCAATGG -ACGGAACGTCTTGTTCCTATGAGG -ACGGAACGTCTTGTTCCTAATGGG -ACGGAACGTCTTGTTCCTTCCTGA -ACGGAACGTCTTGTTCCTTAGCGA -ACGGAACGTCTTGTTCCTCACAGA -ACGGAACGTCTTGTTCCTGCAAGA -ACGGAACGTCTTGTTCCTGGTTGA -ACGGAACGTCTTGTTCCTTCCGAT -ACGGAACGTCTTGTTCCTTGGCAT -ACGGAACGTCTTGTTCCTCGAGAT -ACGGAACGTCTTGTTCCTTACCAC -ACGGAACGTCTTGTTCCTCAGAAC -ACGGAACGTCTTGTTCCTGTCTAC -ACGGAACGTCTTGTTCCTACGTAC -ACGGAACGTCTTGTTCCTAGTGAC -ACGGAACGTCTTGTTCCTCTGTAG -ACGGAACGTCTTGTTCCTCCTAAG -ACGGAACGTCTTGTTCCTGTTCAG -ACGGAACGTCTTGTTCCTGCATAG -ACGGAACGTCTTGTTCCTGACAAG -ACGGAACGTCTTGTTCCTAAGCAG -ACGGAACGTCTTGTTCCTCGTCAA -ACGGAACGTCTTGTTCCTGCTGAA -ACGGAACGTCTTGTTCCTAGTACG -ACGGAACGTCTTGTTCCTATCCGA -ACGGAACGTCTTGTTCCTATGGGA -ACGGAACGTCTTGTTCCTGTGCAA -ACGGAACGTCTTGTTCCTGAGGAA -ACGGAACGTCTTGTTCCTCAGGTA -ACGGAACGTCTTGTTCCTGACTCT -ACGGAACGTCTTGTTCCTAGTCCT -ACGGAACGTCTTGTTCCTTAAGCC -ACGGAACGTCTTGTTCCTATAGCC -ACGGAACGTCTTGTTCCTTAACCG -ACGGAACGTCTTGTTCCTATGCCA -ACGGAACGTCTTTTTCGGGGAAAC -ACGGAACGTCTTTTTCGGAACACC -ACGGAACGTCTTTTTCGGATCGAG -ACGGAACGTCTTTTTCGGCTCCTT -ACGGAACGTCTTTTTCGGCCTGTT -ACGGAACGTCTTTTTCGGCGGTTT -ACGGAACGTCTTTTTCGGGTGGTT -ACGGAACGTCTTTTTCGGGCCTTT -ACGGAACGTCTTTTTCGGGGTCTT -ACGGAACGTCTTTTTCGGACGCTT -ACGGAACGTCTTTTTCGGAGCGTT -ACGGAACGTCTTTTTCGGTTCGTC -ACGGAACGTCTTTTTCGGTCTCTC -ACGGAACGTCTTTTTCGGTGGATC -ACGGAACGTCTTTTTCGGCACTTC -ACGGAACGTCTTTTTCGGGTACTC -ACGGAACGTCTTTTTCGGGATGTC -ACGGAACGTCTTTTTCGGACAGTC -ACGGAACGTCTTTTTCGGTTGCTG -ACGGAACGTCTTTTTCGGTCCATG -ACGGAACGTCTTTTTCGGTGTGTG -ACGGAACGTCTTTTTCGGCTAGTG -ACGGAACGTCTTTTTCGGCATCTG -ACGGAACGTCTTTTTCGGGAGTTG -ACGGAACGTCTTTTTCGGAGACTG -ACGGAACGTCTTTTTCGGTCGGTA -ACGGAACGTCTTTTTCGGTGCCTA -ACGGAACGTCTTTTTCGGCCACTA -ACGGAACGTCTTTTTCGGGGAGTA -ACGGAACGTCTTTTTCGGTCGTCT -ACGGAACGTCTTTTTCGGTGCACT -ACGGAACGTCTTTTTCGGCTGACT -ACGGAACGTCTTTTTCGGCAACCT -ACGGAACGTCTTTTTCGGGCTACT -ACGGAACGTCTTTTTCGGGGATCT -ACGGAACGTCTTTTTCGGAAGGCT -ACGGAACGTCTTTTTCGGTCAACC -ACGGAACGTCTTTTTCGGTGTTCC -ACGGAACGTCTTTTTCGGATTCCC -ACGGAACGTCTTTTTCGGTTCTCG -ACGGAACGTCTTTTTCGGTAGACG -ACGGAACGTCTTTTTCGGGTAACG -ACGGAACGTCTTTTTCGGACTTCG -ACGGAACGTCTTTTTCGGTACGCA -ACGGAACGTCTTTTTCGGCTTGCA -ACGGAACGTCTTTTTCGGCGAACA -ACGGAACGTCTTTTTCGGCAGTCA -ACGGAACGTCTTTTTCGGGATCCA -ACGGAACGTCTTTTTCGGACGACA -ACGGAACGTCTTTTTCGGAGCTCA -ACGGAACGTCTTTTTCGGTCACGT -ACGGAACGTCTTTTTCGGCGTAGT -ACGGAACGTCTTTTTCGGGTCAGT -ACGGAACGTCTTTTTCGGGAAGGT -ACGGAACGTCTTTTTCGGAACCGT -ACGGAACGTCTTTTTCGGTTGTGC -ACGGAACGTCTTTTTCGGCTAAGC -ACGGAACGTCTTTTTCGGACTAGC -ACGGAACGTCTTTTTCGGAGATGC -ACGGAACGTCTTTTTCGGTGAAGG -ACGGAACGTCTTTTTCGGCAATGG -ACGGAACGTCTTTTTCGGATGAGG -ACGGAACGTCTTTTTCGGAATGGG -ACGGAACGTCTTTTTCGGTCCTGA -ACGGAACGTCTTTTTCGGTAGCGA -ACGGAACGTCTTTTTCGGCACAGA -ACGGAACGTCTTTTTCGGGCAAGA -ACGGAACGTCTTTTTCGGGGTTGA -ACGGAACGTCTTTTTCGGTCCGAT -ACGGAACGTCTTTTTCGGTGGCAT -ACGGAACGTCTTTTTCGGCGAGAT -ACGGAACGTCTTTTTCGGTACCAC -ACGGAACGTCTTTTTCGGCAGAAC -ACGGAACGTCTTTTTCGGGTCTAC -ACGGAACGTCTTTTTCGGACGTAC -ACGGAACGTCTTTTTCGGAGTGAC -ACGGAACGTCTTTTTCGGCTGTAG -ACGGAACGTCTTTTTCGGCCTAAG -ACGGAACGTCTTTTTCGGGTTCAG -ACGGAACGTCTTTTTCGGGCATAG -ACGGAACGTCTTTTTCGGGACAAG -ACGGAACGTCTTTTTCGGAAGCAG -ACGGAACGTCTTTTTCGGCGTCAA -ACGGAACGTCTTTTTCGGGCTGAA -ACGGAACGTCTTTTTCGGAGTACG -ACGGAACGTCTTTTTCGGATCCGA -ACGGAACGTCTTTTTCGGATGGGA -ACGGAACGTCTTTTTCGGGTGCAA -ACGGAACGTCTTTTTCGGGAGGAA -ACGGAACGTCTTTTTCGGCAGGTA -ACGGAACGTCTTTTTCGGGACTCT -ACGGAACGTCTTTTTCGGAGTCCT -ACGGAACGTCTTTTTCGGTAAGCC -ACGGAACGTCTTTTTCGGATAGCC -ACGGAACGTCTTTTTCGGTAACCG -ACGGAACGTCTTTTTCGGATGCCA -ACGGAACGTCTTGTTGTGGGAAAC -ACGGAACGTCTTGTTGTGAACACC -ACGGAACGTCTTGTTGTGATCGAG -ACGGAACGTCTTGTTGTGCTCCTT -ACGGAACGTCTTGTTGTGCCTGTT -ACGGAACGTCTTGTTGTGCGGTTT -ACGGAACGTCTTGTTGTGGTGGTT -ACGGAACGTCTTGTTGTGGCCTTT -ACGGAACGTCTTGTTGTGGGTCTT -ACGGAACGTCTTGTTGTGACGCTT -ACGGAACGTCTTGTTGTGAGCGTT -ACGGAACGTCTTGTTGTGTTCGTC -ACGGAACGTCTTGTTGTGTCTCTC -ACGGAACGTCTTGTTGTGTGGATC -ACGGAACGTCTTGTTGTGCACTTC -ACGGAACGTCTTGTTGTGGTACTC -ACGGAACGTCTTGTTGTGGATGTC -ACGGAACGTCTTGTTGTGACAGTC -ACGGAACGTCTTGTTGTGTTGCTG -ACGGAACGTCTTGTTGTGTCCATG -ACGGAACGTCTTGTTGTGTGTGTG -ACGGAACGTCTTGTTGTGCTAGTG -ACGGAACGTCTTGTTGTGCATCTG -ACGGAACGTCTTGTTGTGGAGTTG -ACGGAACGTCTTGTTGTGAGACTG -ACGGAACGTCTTGTTGTGTCGGTA -ACGGAACGTCTTGTTGTGTGCCTA -ACGGAACGTCTTGTTGTGCCACTA -ACGGAACGTCTTGTTGTGGGAGTA -ACGGAACGTCTTGTTGTGTCGTCT -ACGGAACGTCTTGTTGTGTGCACT -ACGGAACGTCTTGTTGTGCTGACT -ACGGAACGTCTTGTTGTGCAACCT -ACGGAACGTCTTGTTGTGGCTACT -ACGGAACGTCTTGTTGTGGGATCT -ACGGAACGTCTTGTTGTGAAGGCT -ACGGAACGTCTTGTTGTGTCAACC -ACGGAACGTCTTGTTGTGTGTTCC -ACGGAACGTCTTGTTGTGATTCCC -ACGGAACGTCTTGTTGTGTTCTCG -ACGGAACGTCTTGTTGTGTAGACG -ACGGAACGTCTTGTTGTGGTAACG -ACGGAACGTCTTGTTGTGACTTCG -ACGGAACGTCTTGTTGTGTACGCA -ACGGAACGTCTTGTTGTGCTTGCA -ACGGAACGTCTTGTTGTGCGAACA -ACGGAACGTCTTGTTGTGCAGTCA -ACGGAACGTCTTGTTGTGGATCCA -ACGGAACGTCTTGTTGTGACGACA -ACGGAACGTCTTGTTGTGAGCTCA -ACGGAACGTCTTGTTGTGTCACGT -ACGGAACGTCTTGTTGTGCGTAGT -ACGGAACGTCTTGTTGTGGTCAGT -ACGGAACGTCTTGTTGTGGAAGGT -ACGGAACGTCTTGTTGTGAACCGT -ACGGAACGTCTTGTTGTGTTGTGC -ACGGAACGTCTTGTTGTGCTAAGC -ACGGAACGTCTTGTTGTGACTAGC -ACGGAACGTCTTGTTGTGAGATGC -ACGGAACGTCTTGTTGTGTGAAGG -ACGGAACGTCTTGTTGTGCAATGG -ACGGAACGTCTTGTTGTGATGAGG -ACGGAACGTCTTGTTGTGAATGGG -ACGGAACGTCTTGTTGTGTCCTGA -ACGGAACGTCTTGTTGTGTAGCGA -ACGGAACGTCTTGTTGTGCACAGA -ACGGAACGTCTTGTTGTGGCAAGA -ACGGAACGTCTTGTTGTGGGTTGA -ACGGAACGTCTTGTTGTGTCCGAT -ACGGAACGTCTTGTTGTGTGGCAT -ACGGAACGTCTTGTTGTGCGAGAT -ACGGAACGTCTTGTTGTGTACCAC -ACGGAACGTCTTGTTGTGCAGAAC -ACGGAACGTCTTGTTGTGGTCTAC -ACGGAACGTCTTGTTGTGACGTAC -ACGGAACGTCTTGTTGTGAGTGAC -ACGGAACGTCTTGTTGTGCTGTAG -ACGGAACGTCTTGTTGTGCCTAAG -ACGGAACGTCTTGTTGTGGTTCAG -ACGGAACGTCTTGTTGTGGCATAG -ACGGAACGTCTTGTTGTGGACAAG -ACGGAACGTCTTGTTGTGAAGCAG -ACGGAACGTCTTGTTGTGCGTCAA -ACGGAACGTCTTGTTGTGGCTGAA -ACGGAACGTCTTGTTGTGAGTACG -ACGGAACGTCTTGTTGTGATCCGA -ACGGAACGTCTTGTTGTGATGGGA -ACGGAACGTCTTGTTGTGGTGCAA -ACGGAACGTCTTGTTGTGGAGGAA -ACGGAACGTCTTGTTGTGCAGGTA -ACGGAACGTCTTGTTGTGGACTCT -ACGGAACGTCTTGTTGTGAGTCCT -ACGGAACGTCTTGTTGTGTAAGCC -ACGGAACGTCTTGTTGTGATAGCC -ACGGAACGTCTTGTTGTGTAACCG -ACGGAACGTCTTGTTGTGATGCCA -ACGGAACGTCTTTTTGCCGGAAAC -ACGGAACGTCTTTTTGCCAACACC -ACGGAACGTCTTTTTGCCATCGAG -ACGGAACGTCTTTTTGCCCTCCTT -ACGGAACGTCTTTTTGCCCCTGTT -ACGGAACGTCTTTTTGCCCGGTTT -ACGGAACGTCTTTTTGCCGTGGTT -ACGGAACGTCTTTTTGCCGCCTTT -ACGGAACGTCTTTTTGCCGGTCTT -ACGGAACGTCTTTTTGCCACGCTT -ACGGAACGTCTTTTTGCCAGCGTT -ACGGAACGTCTTTTTGCCTTCGTC -ACGGAACGTCTTTTTGCCTCTCTC -ACGGAACGTCTTTTTGCCTGGATC -ACGGAACGTCTTTTTGCCCACTTC -ACGGAACGTCTTTTTGCCGTACTC -ACGGAACGTCTTTTTGCCGATGTC -ACGGAACGTCTTTTTGCCACAGTC -ACGGAACGTCTTTTTGCCTTGCTG -ACGGAACGTCTTTTTGCCTCCATG -ACGGAACGTCTTTTTGCCTGTGTG -ACGGAACGTCTTTTTGCCCTAGTG -ACGGAACGTCTTTTTGCCCATCTG -ACGGAACGTCTTTTTGCCGAGTTG -ACGGAACGTCTTTTTGCCAGACTG -ACGGAACGTCTTTTTGCCTCGGTA -ACGGAACGTCTTTTTGCCTGCCTA -ACGGAACGTCTTTTTGCCCCACTA -ACGGAACGTCTTTTTGCCGGAGTA -ACGGAACGTCTTTTTGCCTCGTCT -ACGGAACGTCTTTTTGCCTGCACT -ACGGAACGTCTTTTTGCCCTGACT -ACGGAACGTCTTTTTGCCCAACCT -ACGGAACGTCTTTTTGCCGCTACT -ACGGAACGTCTTTTTGCCGGATCT -ACGGAACGTCTTTTTGCCAAGGCT -ACGGAACGTCTTTTTGCCTCAACC -ACGGAACGTCTTTTTGCCTGTTCC -ACGGAACGTCTTTTTGCCATTCCC -ACGGAACGTCTTTTTGCCTTCTCG -ACGGAACGTCTTTTTGCCTAGACG -ACGGAACGTCTTTTTGCCGTAACG -ACGGAACGTCTTTTTGCCACTTCG -ACGGAACGTCTTTTTGCCTACGCA -ACGGAACGTCTTTTTGCCCTTGCA -ACGGAACGTCTTTTTGCCCGAACA -ACGGAACGTCTTTTTGCCCAGTCA -ACGGAACGTCTTTTTGCCGATCCA -ACGGAACGTCTTTTTGCCACGACA -ACGGAACGTCTTTTTGCCAGCTCA -ACGGAACGTCTTTTTGCCTCACGT -ACGGAACGTCTTTTTGCCCGTAGT -ACGGAACGTCTTTTTGCCGTCAGT -ACGGAACGTCTTTTTGCCGAAGGT -ACGGAACGTCTTTTTGCCAACCGT -ACGGAACGTCTTTTTGCCTTGTGC -ACGGAACGTCTTTTTGCCCTAAGC -ACGGAACGTCTTTTTGCCACTAGC -ACGGAACGTCTTTTTGCCAGATGC -ACGGAACGTCTTTTTGCCTGAAGG -ACGGAACGTCTTTTTGCCCAATGG -ACGGAACGTCTTTTTGCCATGAGG -ACGGAACGTCTTTTTGCCAATGGG -ACGGAACGTCTTTTTGCCTCCTGA -ACGGAACGTCTTTTTGCCTAGCGA -ACGGAACGTCTTTTTGCCCACAGA -ACGGAACGTCTTTTTGCCGCAAGA -ACGGAACGTCTTTTTGCCGGTTGA -ACGGAACGTCTTTTTGCCTCCGAT -ACGGAACGTCTTTTTGCCTGGCAT -ACGGAACGTCTTTTTGCCCGAGAT -ACGGAACGTCTTTTTGCCTACCAC -ACGGAACGTCTTTTTGCCCAGAAC -ACGGAACGTCTTTTTGCCGTCTAC -ACGGAACGTCTTTTTGCCACGTAC -ACGGAACGTCTTTTTGCCAGTGAC -ACGGAACGTCTTTTTGCCCTGTAG -ACGGAACGTCTTTTTGCCCCTAAG -ACGGAACGTCTTTTTGCCGTTCAG -ACGGAACGTCTTTTTGCCGCATAG -ACGGAACGTCTTTTTGCCGACAAG -ACGGAACGTCTTTTTGCCAAGCAG -ACGGAACGTCTTTTTGCCCGTCAA -ACGGAACGTCTTTTTGCCGCTGAA -ACGGAACGTCTTTTTGCCAGTACG -ACGGAACGTCTTTTTGCCATCCGA -ACGGAACGTCTTTTTGCCATGGGA -ACGGAACGTCTTTTTGCCGTGCAA -ACGGAACGTCTTTTTGCCGAGGAA -ACGGAACGTCTTTTTGCCCAGGTA -ACGGAACGTCTTTTTGCCGACTCT -ACGGAACGTCTTTTTGCCAGTCCT -ACGGAACGTCTTTTTGCCTAAGCC -ACGGAACGTCTTTTTGCCATAGCC -ACGGAACGTCTTTTTGCCTAACCG -ACGGAACGTCTTTTTGCCATGCCA -ACGGAACGTCTTCTTGGTGGAAAC -ACGGAACGTCTTCTTGGTAACACC -ACGGAACGTCTTCTTGGTATCGAG -ACGGAACGTCTTCTTGGTCTCCTT -ACGGAACGTCTTCTTGGTCCTGTT -ACGGAACGTCTTCTTGGTCGGTTT -ACGGAACGTCTTCTTGGTGTGGTT -ACGGAACGTCTTCTTGGTGCCTTT -ACGGAACGTCTTCTTGGTGGTCTT -ACGGAACGTCTTCTTGGTACGCTT -ACGGAACGTCTTCTTGGTAGCGTT -ACGGAACGTCTTCTTGGTTTCGTC -ACGGAACGTCTTCTTGGTTCTCTC -ACGGAACGTCTTCTTGGTTGGATC -ACGGAACGTCTTCTTGGTCACTTC -ACGGAACGTCTTCTTGGTGTACTC -ACGGAACGTCTTCTTGGTGATGTC -ACGGAACGTCTTCTTGGTACAGTC -ACGGAACGTCTTCTTGGTTTGCTG -ACGGAACGTCTTCTTGGTTCCATG -ACGGAACGTCTTCTTGGTTGTGTG -ACGGAACGTCTTCTTGGTCTAGTG -ACGGAACGTCTTCTTGGTCATCTG -ACGGAACGTCTTCTTGGTGAGTTG -ACGGAACGTCTTCTTGGTAGACTG -ACGGAACGTCTTCTTGGTTCGGTA -ACGGAACGTCTTCTTGGTTGCCTA -ACGGAACGTCTTCTTGGTCCACTA -ACGGAACGTCTTCTTGGTGGAGTA -ACGGAACGTCTTCTTGGTTCGTCT -ACGGAACGTCTTCTTGGTTGCACT -ACGGAACGTCTTCTTGGTCTGACT -ACGGAACGTCTTCTTGGTCAACCT -ACGGAACGTCTTCTTGGTGCTACT -ACGGAACGTCTTCTTGGTGGATCT -ACGGAACGTCTTCTTGGTAAGGCT -ACGGAACGTCTTCTTGGTTCAACC -ACGGAACGTCTTCTTGGTTGTTCC -ACGGAACGTCTTCTTGGTATTCCC -ACGGAACGTCTTCTTGGTTTCTCG -ACGGAACGTCTTCTTGGTTAGACG -ACGGAACGTCTTCTTGGTGTAACG -ACGGAACGTCTTCTTGGTACTTCG -ACGGAACGTCTTCTTGGTTACGCA -ACGGAACGTCTTCTTGGTCTTGCA -ACGGAACGTCTTCTTGGTCGAACA -ACGGAACGTCTTCTTGGTCAGTCA -ACGGAACGTCTTCTTGGTGATCCA -ACGGAACGTCTTCTTGGTACGACA -ACGGAACGTCTTCTTGGTAGCTCA -ACGGAACGTCTTCTTGGTTCACGT -ACGGAACGTCTTCTTGGTCGTAGT -ACGGAACGTCTTCTTGGTGTCAGT -ACGGAACGTCTTCTTGGTGAAGGT -ACGGAACGTCTTCTTGGTAACCGT -ACGGAACGTCTTCTTGGTTTGTGC -ACGGAACGTCTTCTTGGTCTAAGC -ACGGAACGTCTTCTTGGTACTAGC -ACGGAACGTCTTCTTGGTAGATGC -ACGGAACGTCTTCTTGGTTGAAGG -ACGGAACGTCTTCTTGGTCAATGG -ACGGAACGTCTTCTTGGTATGAGG -ACGGAACGTCTTCTTGGTAATGGG -ACGGAACGTCTTCTTGGTTCCTGA -ACGGAACGTCTTCTTGGTTAGCGA -ACGGAACGTCTTCTTGGTCACAGA -ACGGAACGTCTTCTTGGTGCAAGA -ACGGAACGTCTTCTTGGTGGTTGA -ACGGAACGTCTTCTTGGTTCCGAT -ACGGAACGTCTTCTTGGTTGGCAT -ACGGAACGTCTTCTTGGTCGAGAT -ACGGAACGTCTTCTTGGTTACCAC -ACGGAACGTCTTCTTGGTCAGAAC -ACGGAACGTCTTCTTGGTGTCTAC -ACGGAACGTCTTCTTGGTACGTAC -ACGGAACGTCTTCTTGGTAGTGAC -ACGGAACGTCTTCTTGGTCTGTAG -ACGGAACGTCTTCTTGGTCCTAAG -ACGGAACGTCTTCTTGGTGTTCAG -ACGGAACGTCTTCTTGGTGCATAG -ACGGAACGTCTTCTTGGTGACAAG -ACGGAACGTCTTCTTGGTAAGCAG -ACGGAACGTCTTCTTGGTCGTCAA -ACGGAACGTCTTCTTGGTGCTGAA -ACGGAACGTCTTCTTGGTAGTACG -ACGGAACGTCTTCTTGGTATCCGA -ACGGAACGTCTTCTTGGTATGGGA -ACGGAACGTCTTCTTGGTGTGCAA -ACGGAACGTCTTCTTGGTGAGGAA -ACGGAACGTCTTCTTGGTCAGGTA -ACGGAACGTCTTCTTGGTGACTCT -ACGGAACGTCTTCTTGGTAGTCCT -ACGGAACGTCTTCTTGGTTAAGCC -ACGGAACGTCTTCTTGGTATAGCC -ACGGAACGTCTTCTTGGTTAACCG -ACGGAACGTCTTCTTGGTATGCCA -ACGGAACGTCTTCTTACGGGAAAC -ACGGAACGTCTTCTTACGAACACC -ACGGAACGTCTTCTTACGATCGAG -ACGGAACGTCTTCTTACGCTCCTT -ACGGAACGTCTTCTTACGCCTGTT -ACGGAACGTCTTCTTACGCGGTTT -ACGGAACGTCTTCTTACGGTGGTT -ACGGAACGTCTTCTTACGGCCTTT -ACGGAACGTCTTCTTACGGGTCTT -ACGGAACGTCTTCTTACGACGCTT -ACGGAACGTCTTCTTACGAGCGTT -ACGGAACGTCTTCTTACGTTCGTC -ACGGAACGTCTTCTTACGTCTCTC -ACGGAACGTCTTCTTACGTGGATC -ACGGAACGTCTTCTTACGCACTTC -ACGGAACGTCTTCTTACGGTACTC -ACGGAACGTCTTCTTACGGATGTC -ACGGAACGTCTTCTTACGACAGTC -ACGGAACGTCTTCTTACGTTGCTG -ACGGAACGTCTTCTTACGTCCATG -ACGGAACGTCTTCTTACGTGTGTG -ACGGAACGTCTTCTTACGCTAGTG -ACGGAACGTCTTCTTACGCATCTG -ACGGAACGTCTTCTTACGGAGTTG -ACGGAACGTCTTCTTACGAGACTG -ACGGAACGTCTTCTTACGTCGGTA -ACGGAACGTCTTCTTACGTGCCTA -ACGGAACGTCTTCTTACGCCACTA -ACGGAACGTCTTCTTACGGGAGTA -ACGGAACGTCTTCTTACGTCGTCT -ACGGAACGTCTTCTTACGTGCACT -ACGGAACGTCTTCTTACGCTGACT -ACGGAACGTCTTCTTACGCAACCT -ACGGAACGTCTTCTTACGGCTACT -ACGGAACGTCTTCTTACGGGATCT -ACGGAACGTCTTCTTACGAAGGCT -ACGGAACGTCTTCTTACGTCAACC -ACGGAACGTCTTCTTACGTGTTCC -ACGGAACGTCTTCTTACGATTCCC -ACGGAACGTCTTCTTACGTTCTCG -ACGGAACGTCTTCTTACGTAGACG -ACGGAACGTCTTCTTACGGTAACG -ACGGAACGTCTTCTTACGACTTCG -ACGGAACGTCTTCTTACGTACGCA -ACGGAACGTCTTCTTACGCTTGCA -ACGGAACGTCTTCTTACGCGAACA -ACGGAACGTCTTCTTACGCAGTCA -ACGGAACGTCTTCTTACGGATCCA -ACGGAACGTCTTCTTACGACGACA -ACGGAACGTCTTCTTACGAGCTCA -ACGGAACGTCTTCTTACGTCACGT -ACGGAACGTCTTCTTACGCGTAGT -ACGGAACGTCTTCTTACGGTCAGT -ACGGAACGTCTTCTTACGGAAGGT -ACGGAACGTCTTCTTACGAACCGT -ACGGAACGTCTTCTTACGTTGTGC -ACGGAACGTCTTCTTACGCTAAGC -ACGGAACGTCTTCTTACGACTAGC -ACGGAACGTCTTCTTACGAGATGC -ACGGAACGTCTTCTTACGTGAAGG -ACGGAACGTCTTCTTACGCAATGG -ACGGAACGTCTTCTTACGATGAGG -ACGGAACGTCTTCTTACGAATGGG -ACGGAACGTCTTCTTACGTCCTGA -ACGGAACGTCTTCTTACGTAGCGA -ACGGAACGTCTTCTTACGCACAGA -ACGGAACGTCTTCTTACGGCAAGA -ACGGAACGTCTTCTTACGGGTTGA -ACGGAACGTCTTCTTACGTCCGAT -ACGGAACGTCTTCTTACGTGGCAT -ACGGAACGTCTTCTTACGCGAGAT -ACGGAACGTCTTCTTACGTACCAC -ACGGAACGTCTTCTTACGCAGAAC -ACGGAACGTCTTCTTACGGTCTAC -ACGGAACGTCTTCTTACGACGTAC -ACGGAACGTCTTCTTACGAGTGAC -ACGGAACGTCTTCTTACGCTGTAG -ACGGAACGTCTTCTTACGCCTAAG -ACGGAACGTCTTCTTACGGTTCAG -ACGGAACGTCTTCTTACGGCATAG -ACGGAACGTCTTCTTACGGACAAG -ACGGAACGTCTTCTTACGAAGCAG -ACGGAACGTCTTCTTACGCGTCAA -ACGGAACGTCTTCTTACGGCTGAA -ACGGAACGTCTTCTTACGAGTACG -ACGGAACGTCTTCTTACGATCCGA -ACGGAACGTCTTCTTACGATGGGA -ACGGAACGTCTTCTTACGGTGCAA -ACGGAACGTCTTCTTACGGAGGAA -ACGGAACGTCTTCTTACGCAGGTA -ACGGAACGTCTTCTTACGGACTCT -ACGGAACGTCTTCTTACGAGTCCT -ACGGAACGTCTTCTTACGTAAGCC -ACGGAACGTCTTCTTACGATAGCC -ACGGAACGTCTTCTTACGTAACCG -ACGGAACGTCTTCTTACGATGCCA -ACGGAACGTCTTGTTAGCGGAAAC -ACGGAACGTCTTGTTAGCAACACC -ACGGAACGTCTTGTTAGCATCGAG -ACGGAACGTCTTGTTAGCCTCCTT -ACGGAACGTCTTGTTAGCCCTGTT -ACGGAACGTCTTGTTAGCCGGTTT -ACGGAACGTCTTGTTAGCGTGGTT -ACGGAACGTCTTGTTAGCGCCTTT -ACGGAACGTCTTGTTAGCGGTCTT -ACGGAACGTCTTGTTAGCACGCTT -ACGGAACGTCTTGTTAGCAGCGTT -ACGGAACGTCTTGTTAGCTTCGTC -ACGGAACGTCTTGTTAGCTCTCTC -ACGGAACGTCTTGTTAGCTGGATC -ACGGAACGTCTTGTTAGCCACTTC -ACGGAACGTCTTGTTAGCGTACTC -ACGGAACGTCTTGTTAGCGATGTC -ACGGAACGTCTTGTTAGCACAGTC -ACGGAACGTCTTGTTAGCTTGCTG -ACGGAACGTCTTGTTAGCTCCATG -ACGGAACGTCTTGTTAGCTGTGTG -ACGGAACGTCTTGTTAGCCTAGTG -ACGGAACGTCTTGTTAGCCATCTG -ACGGAACGTCTTGTTAGCGAGTTG -ACGGAACGTCTTGTTAGCAGACTG -ACGGAACGTCTTGTTAGCTCGGTA -ACGGAACGTCTTGTTAGCTGCCTA -ACGGAACGTCTTGTTAGCCCACTA -ACGGAACGTCTTGTTAGCGGAGTA -ACGGAACGTCTTGTTAGCTCGTCT -ACGGAACGTCTTGTTAGCTGCACT -ACGGAACGTCTTGTTAGCCTGACT -ACGGAACGTCTTGTTAGCCAACCT -ACGGAACGTCTTGTTAGCGCTACT -ACGGAACGTCTTGTTAGCGGATCT -ACGGAACGTCTTGTTAGCAAGGCT -ACGGAACGTCTTGTTAGCTCAACC -ACGGAACGTCTTGTTAGCTGTTCC -ACGGAACGTCTTGTTAGCATTCCC -ACGGAACGTCTTGTTAGCTTCTCG -ACGGAACGTCTTGTTAGCTAGACG -ACGGAACGTCTTGTTAGCGTAACG -ACGGAACGTCTTGTTAGCACTTCG -ACGGAACGTCTTGTTAGCTACGCA -ACGGAACGTCTTGTTAGCCTTGCA -ACGGAACGTCTTGTTAGCCGAACA -ACGGAACGTCTTGTTAGCCAGTCA -ACGGAACGTCTTGTTAGCGATCCA -ACGGAACGTCTTGTTAGCACGACA -ACGGAACGTCTTGTTAGCAGCTCA -ACGGAACGTCTTGTTAGCTCACGT -ACGGAACGTCTTGTTAGCCGTAGT -ACGGAACGTCTTGTTAGCGTCAGT -ACGGAACGTCTTGTTAGCGAAGGT -ACGGAACGTCTTGTTAGCAACCGT -ACGGAACGTCTTGTTAGCTTGTGC -ACGGAACGTCTTGTTAGCCTAAGC -ACGGAACGTCTTGTTAGCACTAGC -ACGGAACGTCTTGTTAGCAGATGC -ACGGAACGTCTTGTTAGCTGAAGG -ACGGAACGTCTTGTTAGCCAATGG -ACGGAACGTCTTGTTAGCATGAGG -ACGGAACGTCTTGTTAGCAATGGG -ACGGAACGTCTTGTTAGCTCCTGA -ACGGAACGTCTTGTTAGCTAGCGA -ACGGAACGTCTTGTTAGCCACAGA -ACGGAACGTCTTGTTAGCGCAAGA -ACGGAACGTCTTGTTAGCGGTTGA -ACGGAACGTCTTGTTAGCTCCGAT -ACGGAACGTCTTGTTAGCTGGCAT -ACGGAACGTCTTGTTAGCCGAGAT -ACGGAACGTCTTGTTAGCTACCAC -ACGGAACGTCTTGTTAGCCAGAAC -ACGGAACGTCTTGTTAGCGTCTAC -ACGGAACGTCTTGTTAGCACGTAC -ACGGAACGTCTTGTTAGCAGTGAC -ACGGAACGTCTTGTTAGCCTGTAG -ACGGAACGTCTTGTTAGCCCTAAG -ACGGAACGTCTTGTTAGCGTTCAG -ACGGAACGTCTTGTTAGCGCATAG -ACGGAACGTCTTGTTAGCGACAAG -ACGGAACGTCTTGTTAGCAAGCAG -ACGGAACGTCTTGTTAGCCGTCAA -ACGGAACGTCTTGTTAGCGCTGAA -ACGGAACGTCTTGTTAGCAGTACG -ACGGAACGTCTTGTTAGCATCCGA -ACGGAACGTCTTGTTAGCATGGGA -ACGGAACGTCTTGTTAGCGTGCAA -ACGGAACGTCTTGTTAGCGAGGAA -ACGGAACGTCTTGTTAGCCAGGTA -ACGGAACGTCTTGTTAGCGACTCT -ACGGAACGTCTTGTTAGCAGTCCT -ACGGAACGTCTTGTTAGCTAAGCC -ACGGAACGTCTTGTTAGCATAGCC -ACGGAACGTCTTGTTAGCTAACCG -ACGGAACGTCTTGTTAGCATGCCA -ACGGAACGTCTTGTCTTCGGAAAC -ACGGAACGTCTTGTCTTCAACACC -ACGGAACGTCTTGTCTTCATCGAG -ACGGAACGTCTTGTCTTCCTCCTT -ACGGAACGTCTTGTCTTCCCTGTT -ACGGAACGTCTTGTCTTCCGGTTT -ACGGAACGTCTTGTCTTCGTGGTT -ACGGAACGTCTTGTCTTCGCCTTT -ACGGAACGTCTTGTCTTCGGTCTT -ACGGAACGTCTTGTCTTCACGCTT -ACGGAACGTCTTGTCTTCAGCGTT -ACGGAACGTCTTGTCTTCTTCGTC -ACGGAACGTCTTGTCTTCTCTCTC -ACGGAACGTCTTGTCTTCTGGATC -ACGGAACGTCTTGTCTTCCACTTC -ACGGAACGTCTTGTCTTCGTACTC -ACGGAACGTCTTGTCTTCGATGTC -ACGGAACGTCTTGTCTTCACAGTC -ACGGAACGTCTTGTCTTCTTGCTG -ACGGAACGTCTTGTCTTCTCCATG -ACGGAACGTCTTGTCTTCTGTGTG -ACGGAACGTCTTGTCTTCCTAGTG -ACGGAACGTCTTGTCTTCCATCTG -ACGGAACGTCTTGTCTTCGAGTTG -ACGGAACGTCTTGTCTTCAGACTG -ACGGAACGTCTTGTCTTCTCGGTA -ACGGAACGTCTTGTCTTCTGCCTA -ACGGAACGTCTTGTCTTCCCACTA -ACGGAACGTCTTGTCTTCGGAGTA -ACGGAACGTCTTGTCTTCTCGTCT -ACGGAACGTCTTGTCTTCTGCACT -ACGGAACGTCTTGTCTTCCTGACT -ACGGAACGTCTTGTCTTCCAACCT -ACGGAACGTCTTGTCTTCGCTACT -ACGGAACGTCTTGTCTTCGGATCT -ACGGAACGTCTTGTCTTCAAGGCT -ACGGAACGTCTTGTCTTCTCAACC -ACGGAACGTCTTGTCTTCTGTTCC -ACGGAACGTCTTGTCTTCATTCCC -ACGGAACGTCTTGTCTTCTTCTCG -ACGGAACGTCTTGTCTTCTAGACG -ACGGAACGTCTTGTCTTCGTAACG -ACGGAACGTCTTGTCTTCACTTCG -ACGGAACGTCTTGTCTTCTACGCA -ACGGAACGTCTTGTCTTCCTTGCA -ACGGAACGTCTTGTCTTCCGAACA -ACGGAACGTCTTGTCTTCCAGTCA -ACGGAACGTCTTGTCTTCGATCCA -ACGGAACGTCTTGTCTTCACGACA -ACGGAACGTCTTGTCTTCAGCTCA -ACGGAACGTCTTGTCTTCTCACGT -ACGGAACGTCTTGTCTTCCGTAGT -ACGGAACGTCTTGTCTTCGTCAGT -ACGGAACGTCTTGTCTTCGAAGGT -ACGGAACGTCTTGTCTTCAACCGT -ACGGAACGTCTTGTCTTCTTGTGC -ACGGAACGTCTTGTCTTCCTAAGC -ACGGAACGTCTTGTCTTCACTAGC -ACGGAACGTCTTGTCTTCAGATGC -ACGGAACGTCTTGTCTTCTGAAGG -ACGGAACGTCTTGTCTTCCAATGG -ACGGAACGTCTTGTCTTCATGAGG -ACGGAACGTCTTGTCTTCAATGGG -ACGGAACGTCTTGTCTTCTCCTGA -ACGGAACGTCTTGTCTTCTAGCGA -ACGGAACGTCTTGTCTTCCACAGA -ACGGAACGTCTTGTCTTCGCAAGA -ACGGAACGTCTTGTCTTCGGTTGA -ACGGAACGTCTTGTCTTCTCCGAT -ACGGAACGTCTTGTCTTCTGGCAT -ACGGAACGTCTTGTCTTCCGAGAT -ACGGAACGTCTTGTCTTCTACCAC -ACGGAACGTCTTGTCTTCCAGAAC -ACGGAACGTCTTGTCTTCGTCTAC -ACGGAACGTCTTGTCTTCACGTAC -ACGGAACGTCTTGTCTTCAGTGAC -ACGGAACGTCTTGTCTTCCTGTAG -ACGGAACGTCTTGTCTTCCCTAAG -ACGGAACGTCTTGTCTTCGTTCAG -ACGGAACGTCTTGTCTTCGCATAG -ACGGAACGTCTTGTCTTCGACAAG -ACGGAACGTCTTGTCTTCAAGCAG -ACGGAACGTCTTGTCTTCCGTCAA -ACGGAACGTCTTGTCTTCGCTGAA -ACGGAACGTCTTGTCTTCAGTACG -ACGGAACGTCTTGTCTTCATCCGA -ACGGAACGTCTTGTCTTCATGGGA -ACGGAACGTCTTGTCTTCGTGCAA -ACGGAACGTCTTGTCTTCGAGGAA -ACGGAACGTCTTGTCTTCCAGGTA -ACGGAACGTCTTGTCTTCGACTCT -ACGGAACGTCTTGTCTTCAGTCCT -ACGGAACGTCTTGTCTTCTAAGCC -ACGGAACGTCTTGTCTTCATAGCC -ACGGAACGTCTTGTCTTCTAACCG -ACGGAACGTCTTGTCTTCATGCCA -ACGGAACGTCTTCTCTCTGGAAAC -ACGGAACGTCTTCTCTCTAACACC -ACGGAACGTCTTCTCTCTATCGAG -ACGGAACGTCTTCTCTCTCTCCTT -ACGGAACGTCTTCTCTCTCCTGTT -ACGGAACGTCTTCTCTCTCGGTTT -ACGGAACGTCTTCTCTCTGTGGTT -ACGGAACGTCTTCTCTCTGCCTTT -ACGGAACGTCTTCTCTCTGGTCTT -ACGGAACGTCTTCTCTCTACGCTT -ACGGAACGTCTTCTCTCTAGCGTT -ACGGAACGTCTTCTCTCTTTCGTC -ACGGAACGTCTTCTCTCTTCTCTC -ACGGAACGTCTTCTCTCTTGGATC -ACGGAACGTCTTCTCTCTCACTTC -ACGGAACGTCTTCTCTCTGTACTC -ACGGAACGTCTTCTCTCTGATGTC -ACGGAACGTCTTCTCTCTACAGTC -ACGGAACGTCTTCTCTCTTTGCTG -ACGGAACGTCTTCTCTCTTCCATG -ACGGAACGTCTTCTCTCTTGTGTG -ACGGAACGTCTTCTCTCTCTAGTG -ACGGAACGTCTTCTCTCTCATCTG -ACGGAACGTCTTCTCTCTGAGTTG -ACGGAACGTCTTCTCTCTAGACTG -ACGGAACGTCTTCTCTCTTCGGTA -ACGGAACGTCTTCTCTCTTGCCTA -ACGGAACGTCTTCTCTCTCCACTA -ACGGAACGTCTTCTCTCTGGAGTA -ACGGAACGTCTTCTCTCTTCGTCT -ACGGAACGTCTTCTCTCTTGCACT -ACGGAACGTCTTCTCTCTCTGACT -ACGGAACGTCTTCTCTCTCAACCT -ACGGAACGTCTTCTCTCTGCTACT -ACGGAACGTCTTCTCTCTGGATCT -ACGGAACGTCTTCTCTCTAAGGCT -ACGGAACGTCTTCTCTCTTCAACC -ACGGAACGTCTTCTCTCTTGTTCC -ACGGAACGTCTTCTCTCTATTCCC -ACGGAACGTCTTCTCTCTTTCTCG -ACGGAACGTCTTCTCTCTTAGACG -ACGGAACGTCTTCTCTCTGTAACG -ACGGAACGTCTTCTCTCTACTTCG -ACGGAACGTCTTCTCTCTTACGCA -ACGGAACGTCTTCTCTCTCTTGCA -ACGGAACGTCTTCTCTCTCGAACA -ACGGAACGTCTTCTCTCTCAGTCA -ACGGAACGTCTTCTCTCTGATCCA -ACGGAACGTCTTCTCTCTACGACA -ACGGAACGTCTTCTCTCTAGCTCA -ACGGAACGTCTTCTCTCTTCACGT -ACGGAACGTCTTCTCTCTCGTAGT -ACGGAACGTCTTCTCTCTGTCAGT -ACGGAACGTCTTCTCTCTGAAGGT -ACGGAACGTCTTCTCTCTAACCGT -ACGGAACGTCTTCTCTCTTTGTGC -ACGGAACGTCTTCTCTCTCTAAGC -ACGGAACGTCTTCTCTCTACTAGC -ACGGAACGTCTTCTCTCTAGATGC -ACGGAACGTCTTCTCTCTTGAAGG -ACGGAACGTCTTCTCTCTCAATGG -ACGGAACGTCTTCTCTCTATGAGG -ACGGAACGTCTTCTCTCTAATGGG -ACGGAACGTCTTCTCTCTTCCTGA -ACGGAACGTCTTCTCTCTTAGCGA -ACGGAACGTCTTCTCTCTCACAGA -ACGGAACGTCTTCTCTCTGCAAGA -ACGGAACGTCTTCTCTCTGGTTGA -ACGGAACGTCTTCTCTCTTCCGAT -ACGGAACGTCTTCTCTCTTGGCAT -ACGGAACGTCTTCTCTCTCGAGAT -ACGGAACGTCTTCTCTCTTACCAC -ACGGAACGTCTTCTCTCTCAGAAC -ACGGAACGTCTTCTCTCTGTCTAC -ACGGAACGTCTTCTCTCTACGTAC -ACGGAACGTCTTCTCTCTAGTGAC -ACGGAACGTCTTCTCTCTCTGTAG -ACGGAACGTCTTCTCTCTCCTAAG -ACGGAACGTCTTCTCTCTGTTCAG -ACGGAACGTCTTCTCTCTGCATAG -ACGGAACGTCTTCTCTCTGACAAG -ACGGAACGTCTTCTCTCTAAGCAG -ACGGAACGTCTTCTCTCTCGTCAA -ACGGAACGTCTTCTCTCTGCTGAA -ACGGAACGTCTTCTCTCTAGTACG -ACGGAACGTCTTCTCTCTATCCGA -ACGGAACGTCTTCTCTCTATGGGA -ACGGAACGTCTTCTCTCTGTGCAA -ACGGAACGTCTTCTCTCTGAGGAA -ACGGAACGTCTTCTCTCTCAGGTA -ACGGAACGTCTTCTCTCTGACTCT -ACGGAACGTCTTCTCTCTAGTCCT -ACGGAACGTCTTCTCTCTTAAGCC -ACGGAACGTCTTCTCTCTATAGCC -ACGGAACGTCTTCTCTCTTAACCG -ACGGAACGTCTTCTCTCTATGCCA -ACGGAACGTCTTATCTGGGGAAAC -ACGGAACGTCTTATCTGGAACACC -ACGGAACGTCTTATCTGGATCGAG -ACGGAACGTCTTATCTGGCTCCTT -ACGGAACGTCTTATCTGGCCTGTT -ACGGAACGTCTTATCTGGCGGTTT -ACGGAACGTCTTATCTGGGTGGTT -ACGGAACGTCTTATCTGGGCCTTT -ACGGAACGTCTTATCTGGGGTCTT -ACGGAACGTCTTATCTGGACGCTT -ACGGAACGTCTTATCTGGAGCGTT -ACGGAACGTCTTATCTGGTTCGTC -ACGGAACGTCTTATCTGGTCTCTC -ACGGAACGTCTTATCTGGTGGATC -ACGGAACGTCTTATCTGGCACTTC -ACGGAACGTCTTATCTGGGTACTC -ACGGAACGTCTTATCTGGGATGTC -ACGGAACGTCTTATCTGGACAGTC -ACGGAACGTCTTATCTGGTTGCTG -ACGGAACGTCTTATCTGGTCCATG -ACGGAACGTCTTATCTGGTGTGTG -ACGGAACGTCTTATCTGGCTAGTG -ACGGAACGTCTTATCTGGCATCTG -ACGGAACGTCTTATCTGGGAGTTG -ACGGAACGTCTTATCTGGAGACTG -ACGGAACGTCTTATCTGGTCGGTA -ACGGAACGTCTTATCTGGTGCCTA -ACGGAACGTCTTATCTGGCCACTA -ACGGAACGTCTTATCTGGGGAGTA -ACGGAACGTCTTATCTGGTCGTCT -ACGGAACGTCTTATCTGGTGCACT -ACGGAACGTCTTATCTGGCTGACT -ACGGAACGTCTTATCTGGCAACCT -ACGGAACGTCTTATCTGGGCTACT -ACGGAACGTCTTATCTGGGGATCT -ACGGAACGTCTTATCTGGAAGGCT -ACGGAACGTCTTATCTGGTCAACC -ACGGAACGTCTTATCTGGTGTTCC -ACGGAACGTCTTATCTGGATTCCC -ACGGAACGTCTTATCTGGTTCTCG -ACGGAACGTCTTATCTGGTAGACG -ACGGAACGTCTTATCTGGGTAACG -ACGGAACGTCTTATCTGGACTTCG -ACGGAACGTCTTATCTGGTACGCA -ACGGAACGTCTTATCTGGCTTGCA -ACGGAACGTCTTATCTGGCGAACA -ACGGAACGTCTTATCTGGCAGTCA -ACGGAACGTCTTATCTGGGATCCA -ACGGAACGTCTTATCTGGACGACA -ACGGAACGTCTTATCTGGAGCTCA -ACGGAACGTCTTATCTGGTCACGT -ACGGAACGTCTTATCTGGCGTAGT -ACGGAACGTCTTATCTGGGTCAGT -ACGGAACGTCTTATCTGGGAAGGT -ACGGAACGTCTTATCTGGAACCGT -ACGGAACGTCTTATCTGGTTGTGC -ACGGAACGTCTTATCTGGCTAAGC -ACGGAACGTCTTATCTGGACTAGC -ACGGAACGTCTTATCTGGAGATGC -ACGGAACGTCTTATCTGGTGAAGG -ACGGAACGTCTTATCTGGCAATGG -ACGGAACGTCTTATCTGGATGAGG -ACGGAACGTCTTATCTGGAATGGG -ACGGAACGTCTTATCTGGTCCTGA -ACGGAACGTCTTATCTGGTAGCGA -ACGGAACGTCTTATCTGGCACAGA -ACGGAACGTCTTATCTGGGCAAGA -ACGGAACGTCTTATCTGGGGTTGA -ACGGAACGTCTTATCTGGTCCGAT -ACGGAACGTCTTATCTGGTGGCAT -ACGGAACGTCTTATCTGGCGAGAT -ACGGAACGTCTTATCTGGTACCAC -ACGGAACGTCTTATCTGGCAGAAC -ACGGAACGTCTTATCTGGGTCTAC -ACGGAACGTCTTATCTGGACGTAC -ACGGAACGTCTTATCTGGAGTGAC -ACGGAACGTCTTATCTGGCTGTAG -ACGGAACGTCTTATCTGGCCTAAG -ACGGAACGTCTTATCTGGGTTCAG -ACGGAACGTCTTATCTGGGCATAG -ACGGAACGTCTTATCTGGGACAAG -ACGGAACGTCTTATCTGGAAGCAG -ACGGAACGTCTTATCTGGCGTCAA -ACGGAACGTCTTATCTGGGCTGAA -ACGGAACGTCTTATCTGGAGTACG -ACGGAACGTCTTATCTGGATCCGA -ACGGAACGTCTTATCTGGATGGGA -ACGGAACGTCTTATCTGGGTGCAA -ACGGAACGTCTTATCTGGGAGGAA -ACGGAACGTCTTATCTGGCAGGTA -ACGGAACGTCTTATCTGGGACTCT -ACGGAACGTCTTATCTGGAGTCCT -ACGGAACGTCTTATCTGGTAAGCC -ACGGAACGTCTTATCTGGATAGCC -ACGGAACGTCTTATCTGGTAACCG -ACGGAACGTCTTATCTGGATGCCA -ACGGAACGTCTTTTCCACGGAAAC -ACGGAACGTCTTTTCCACAACACC -ACGGAACGTCTTTTCCACATCGAG -ACGGAACGTCTTTTCCACCTCCTT -ACGGAACGTCTTTTCCACCCTGTT -ACGGAACGTCTTTTCCACCGGTTT -ACGGAACGTCTTTTCCACGTGGTT -ACGGAACGTCTTTTCCACGCCTTT -ACGGAACGTCTTTTCCACGGTCTT -ACGGAACGTCTTTTCCACACGCTT -ACGGAACGTCTTTTCCACAGCGTT -ACGGAACGTCTTTTCCACTTCGTC -ACGGAACGTCTTTTCCACTCTCTC -ACGGAACGTCTTTTCCACTGGATC -ACGGAACGTCTTTTCCACCACTTC -ACGGAACGTCTTTTCCACGTACTC -ACGGAACGTCTTTTCCACGATGTC -ACGGAACGTCTTTTCCACACAGTC -ACGGAACGTCTTTTCCACTTGCTG -ACGGAACGTCTTTTCCACTCCATG -ACGGAACGTCTTTTCCACTGTGTG -ACGGAACGTCTTTTCCACCTAGTG -ACGGAACGTCTTTTCCACCATCTG -ACGGAACGTCTTTTCCACGAGTTG -ACGGAACGTCTTTTCCACAGACTG -ACGGAACGTCTTTTCCACTCGGTA -ACGGAACGTCTTTTCCACTGCCTA -ACGGAACGTCTTTTCCACCCACTA -ACGGAACGTCTTTTCCACGGAGTA -ACGGAACGTCTTTTCCACTCGTCT -ACGGAACGTCTTTTCCACTGCACT -ACGGAACGTCTTTTCCACCTGACT -ACGGAACGTCTTTTCCACCAACCT -ACGGAACGTCTTTTCCACGCTACT -ACGGAACGTCTTTTCCACGGATCT -ACGGAACGTCTTTTCCACAAGGCT -ACGGAACGTCTTTTCCACTCAACC -ACGGAACGTCTTTTCCACTGTTCC -ACGGAACGTCTTTTCCACATTCCC -ACGGAACGTCTTTTCCACTTCTCG -ACGGAACGTCTTTTCCACTAGACG -ACGGAACGTCTTTTCCACGTAACG -ACGGAACGTCTTTTCCACACTTCG -ACGGAACGTCTTTTCCACTACGCA -ACGGAACGTCTTTTCCACCTTGCA -ACGGAACGTCTTTTCCACCGAACA -ACGGAACGTCTTTTCCACCAGTCA -ACGGAACGTCTTTTCCACGATCCA -ACGGAACGTCTTTTCCACACGACA -ACGGAACGTCTTTTCCACAGCTCA -ACGGAACGTCTTTTCCACTCACGT -ACGGAACGTCTTTTCCACCGTAGT -ACGGAACGTCTTTTCCACGTCAGT -ACGGAACGTCTTTTCCACGAAGGT -ACGGAACGTCTTTTCCACAACCGT -ACGGAACGTCTTTTCCACTTGTGC -ACGGAACGTCTTTTCCACCTAAGC -ACGGAACGTCTTTTCCACACTAGC -ACGGAACGTCTTTTCCACAGATGC -ACGGAACGTCTTTTCCACTGAAGG -ACGGAACGTCTTTTCCACCAATGG -ACGGAACGTCTTTTCCACATGAGG -ACGGAACGTCTTTTCCACAATGGG -ACGGAACGTCTTTTCCACTCCTGA -ACGGAACGTCTTTTCCACTAGCGA -ACGGAACGTCTTTTCCACCACAGA -ACGGAACGTCTTTTCCACGCAAGA -ACGGAACGTCTTTTCCACGGTTGA -ACGGAACGTCTTTTCCACTCCGAT -ACGGAACGTCTTTTCCACTGGCAT -ACGGAACGTCTTTTCCACCGAGAT -ACGGAACGTCTTTTCCACTACCAC -ACGGAACGTCTTTTCCACCAGAAC -ACGGAACGTCTTTTCCACGTCTAC -ACGGAACGTCTTTTCCACACGTAC -ACGGAACGTCTTTTCCACAGTGAC -ACGGAACGTCTTTTCCACCTGTAG -ACGGAACGTCTTTTCCACCCTAAG -ACGGAACGTCTTTTCCACGTTCAG -ACGGAACGTCTTTTCCACGCATAG -ACGGAACGTCTTTTCCACGACAAG -ACGGAACGTCTTTTCCACAAGCAG -ACGGAACGTCTTTTCCACCGTCAA -ACGGAACGTCTTTTCCACGCTGAA -ACGGAACGTCTTTTCCACAGTACG -ACGGAACGTCTTTTCCACATCCGA -ACGGAACGTCTTTTCCACATGGGA -ACGGAACGTCTTTTCCACGTGCAA -ACGGAACGTCTTTTCCACGAGGAA -ACGGAACGTCTTTTCCACCAGGTA -ACGGAACGTCTTTTCCACGACTCT -ACGGAACGTCTTTTCCACAGTCCT -ACGGAACGTCTTTTCCACTAAGCC -ACGGAACGTCTTTTCCACATAGCC -ACGGAACGTCTTTTCCACTAACCG -ACGGAACGTCTTTTCCACATGCCA -ACGGAACGTCTTCTCGTAGGAAAC -ACGGAACGTCTTCTCGTAAACACC -ACGGAACGTCTTCTCGTAATCGAG -ACGGAACGTCTTCTCGTACTCCTT -ACGGAACGTCTTCTCGTACCTGTT -ACGGAACGTCTTCTCGTACGGTTT -ACGGAACGTCTTCTCGTAGTGGTT -ACGGAACGTCTTCTCGTAGCCTTT -ACGGAACGTCTTCTCGTAGGTCTT -ACGGAACGTCTTCTCGTAACGCTT -ACGGAACGTCTTCTCGTAAGCGTT -ACGGAACGTCTTCTCGTATTCGTC -ACGGAACGTCTTCTCGTATCTCTC -ACGGAACGTCTTCTCGTATGGATC -ACGGAACGTCTTCTCGTACACTTC -ACGGAACGTCTTCTCGTAGTACTC -ACGGAACGTCTTCTCGTAGATGTC -ACGGAACGTCTTCTCGTAACAGTC -ACGGAACGTCTTCTCGTATTGCTG -ACGGAACGTCTTCTCGTATCCATG -ACGGAACGTCTTCTCGTATGTGTG -ACGGAACGTCTTCTCGTACTAGTG -ACGGAACGTCTTCTCGTACATCTG -ACGGAACGTCTTCTCGTAGAGTTG -ACGGAACGTCTTCTCGTAAGACTG -ACGGAACGTCTTCTCGTATCGGTA -ACGGAACGTCTTCTCGTATGCCTA -ACGGAACGTCTTCTCGTACCACTA -ACGGAACGTCTTCTCGTAGGAGTA -ACGGAACGTCTTCTCGTATCGTCT -ACGGAACGTCTTCTCGTATGCACT -ACGGAACGTCTTCTCGTACTGACT -ACGGAACGTCTTCTCGTACAACCT -ACGGAACGTCTTCTCGTAGCTACT -ACGGAACGTCTTCTCGTAGGATCT -ACGGAACGTCTTCTCGTAAAGGCT -ACGGAACGTCTTCTCGTATCAACC -ACGGAACGTCTTCTCGTATGTTCC -ACGGAACGTCTTCTCGTAATTCCC -ACGGAACGTCTTCTCGTATTCTCG -ACGGAACGTCTTCTCGTATAGACG -ACGGAACGTCTTCTCGTAGTAACG -ACGGAACGTCTTCTCGTAACTTCG -ACGGAACGTCTTCTCGTATACGCA -ACGGAACGTCTTCTCGTACTTGCA -ACGGAACGTCTTCTCGTACGAACA -ACGGAACGTCTTCTCGTACAGTCA -ACGGAACGTCTTCTCGTAGATCCA -ACGGAACGTCTTCTCGTAACGACA -ACGGAACGTCTTCTCGTAAGCTCA -ACGGAACGTCTTCTCGTATCACGT -ACGGAACGTCTTCTCGTACGTAGT -ACGGAACGTCTTCTCGTAGTCAGT -ACGGAACGTCTTCTCGTAGAAGGT -ACGGAACGTCTTCTCGTAAACCGT -ACGGAACGTCTTCTCGTATTGTGC -ACGGAACGTCTTCTCGTACTAAGC -ACGGAACGTCTTCTCGTAACTAGC -ACGGAACGTCTTCTCGTAAGATGC -ACGGAACGTCTTCTCGTATGAAGG -ACGGAACGTCTTCTCGTACAATGG -ACGGAACGTCTTCTCGTAATGAGG -ACGGAACGTCTTCTCGTAAATGGG -ACGGAACGTCTTCTCGTATCCTGA -ACGGAACGTCTTCTCGTATAGCGA -ACGGAACGTCTTCTCGTACACAGA -ACGGAACGTCTTCTCGTAGCAAGA -ACGGAACGTCTTCTCGTAGGTTGA -ACGGAACGTCTTCTCGTATCCGAT -ACGGAACGTCTTCTCGTATGGCAT -ACGGAACGTCTTCTCGTACGAGAT -ACGGAACGTCTTCTCGTATACCAC -ACGGAACGTCTTCTCGTACAGAAC -ACGGAACGTCTTCTCGTAGTCTAC -ACGGAACGTCTTCTCGTAACGTAC -ACGGAACGTCTTCTCGTAAGTGAC -ACGGAACGTCTTCTCGTACTGTAG -ACGGAACGTCTTCTCGTACCTAAG -ACGGAACGTCTTCTCGTAGTTCAG -ACGGAACGTCTTCTCGTAGCATAG -ACGGAACGTCTTCTCGTAGACAAG -ACGGAACGTCTTCTCGTAAAGCAG -ACGGAACGTCTTCTCGTACGTCAA -ACGGAACGTCTTCTCGTAGCTGAA -ACGGAACGTCTTCTCGTAAGTACG -ACGGAACGTCTTCTCGTAATCCGA -ACGGAACGTCTTCTCGTAATGGGA -ACGGAACGTCTTCTCGTAGTGCAA -ACGGAACGTCTTCTCGTAGAGGAA -ACGGAACGTCTTCTCGTACAGGTA -ACGGAACGTCTTCTCGTAGACTCT -ACGGAACGTCTTCTCGTAAGTCCT -ACGGAACGTCTTCTCGTATAAGCC -ACGGAACGTCTTCTCGTAATAGCC -ACGGAACGTCTTCTCGTATAACCG -ACGGAACGTCTTCTCGTAATGCCA -ACGGAACGTCTTGTCGATGGAAAC -ACGGAACGTCTTGTCGATAACACC -ACGGAACGTCTTGTCGATATCGAG -ACGGAACGTCTTGTCGATCTCCTT -ACGGAACGTCTTGTCGATCCTGTT -ACGGAACGTCTTGTCGATCGGTTT -ACGGAACGTCTTGTCGATGTGGTT -ACGGAACGTCTTGTCGATGCCTTT -ACGGAACGTCTTGTCGATGGTCTT -ACGGAACGTCTTGTCGATACGCTT -ACGGAACGTCTTGTCGATAGCGTT -ACGGAACGTCTTGTCGATTTCGTC -ACGGAACGTCTTGTCGATTCTCTC -ACGGAACGTCTTGTCGATTGGATC -ACGGAACGTCTTGTCGATCACTTC -ACGGAACGTCTTGTCGATGTACTC -ACGGAACGTCTTGTCGATGATGTC -ACGGAACGTCTTGTCGATACAGTC -ACGGAACGTCTTGTCGATTTGCTG -ACGGAACGTCTTGTCGATTCCATG -ACGGAACGTCTTGTCGATTGTGTG -ACGGAACGTCTTGTCGATCTAGTG -ACGGAACGTCTTGTCGATCATCTG -ACGGAACGTCTTGTCGATGAGTTG -ACGGAACGTCTTGTCGATAGACTG -ACGGAACGTCTTGTCGATTCGGTA -ACGGAACGTCTTGTCGATTGCCTA -ACGGAACGTCTTGTCGATCCACTA -ACGGAACGTCTTGTCGATGGAGTA -ACGGAACGTCTTGTCGATTCGTCT -ACGGAACGTCTTGTCGATTGCACT -ACGGAACGTCTTGTCGATCTGACT -ACGGAACGTCTTGTCGATCAACCT -ACGGAACGTCTTGTCGATGCTACT -ACGGAACGTCTTGTCGATGGATCT -ACGGAACGTCTTGTCGATAAGGCT -ACGGAACGTCTTGTCGATTCAACC -ACGGAACGTCTTGTCGATTGTTCC -ACGGAACGTCTTGTCGATATTCCC -ACGGAACGTCTTGTCGATTTCTCG -ACGGAACGTCTTGTCGATTAGACG -ACGGAACGTCTTGTCGATGTAACG -ACGGAACGTCTTGTCGATACTTCG -ACGGAACGTCTTGTCGATTACGCA -ACGGAACGTCTTGTCGATCTTGCA -ACGGAACGTCTTGTCGATCGAACA -ACGGAACGTCTTGTCGATCAGTCA -ACGGAACGTCTTGTCGATGATCCA -ACGGAACGTCTTGTCGATACGACA -ACGGAACGTCTTGTCGATAGCTCA -ACGGAACGTCTTGTCGATTCACGT -ACGGAACGTCTTGTCGATCGTAGT -ACGGAACGTCTTGTCGATGTCAGT -ACGGAACGTCTTGTCGATGAAGGT -ACGGAACGTCTTGTCGATAACCGT -ACGGAACGTCTTGTCGATTTGTGC -ACGGAACGTCTTGTCGATCTAAGC -ACGGAACGTCTTGTCGATACTAGC -ACGGAACGTCTTGTCGATAGATGC -ACGGAACGTCTTGTCGATTGAAGG -ACGGAACGTCTTGTCGATCAATGG -ACGGAACGTCTTGTCGATATGAGG -ACGGAACGTCTTGTCGATAATGGG -ACGGAACGTCTTGTCGATTCCTGA -ACGGAACGTCTTGTCGATTAGCGA -ACGGAACGTCTTGTCGATCACAGA -ACGGAACGTCTTGTCGATGCAAGA -ACGGAACGTCTTGTCGATGGTTGA -ACGGAACGTCTTGTCGATTCCGAT -ACGGAACGTCTTGTCGATTGGCAT -ACGGAACGTCTTGTCGATCGAGAT -ACGGAACGTCTTGTCGATTACCAC -ACGGAACGTCTTGTCGATCAGAAC -ACGGAACGTCTTGTCGATGTCTAC -ACGGAACGTCTTGTCGATACGTAC -ACGGAACGTCTTGTCGATAGTGAC -ACGGAACGTCTTGTCGATCTGTAG -ACGGAACGTCTTGTCGATCCTAAG -ACGGAACGTCTTGTCGATGTTCAG -ACGGAACGTCTTGTCGATGCATAG -ACGGAACGTCTTGTCGATGACAAG -ACGGAACGTCTTGTCGATAAGCAG -ACGGAACGTCTTGTCGATCGTCAA -ACGGAACGTCTTGTCGATGCTGAA -ACGGAACGTCTTGTCGATAGTACG -ACGGAACGTCTTGTCGATATCCGA -ACGGAACGTCTTGTCGATATGGGA -ACGGAACGTCTTGTCGATGTGCAA -ACGGAACGTCTTGTCGATGAGGAA -ACGGAACGTCTTGTCGATCAGGTA -ACGGAACGTCTTGTCGATGACTCT -ACGGAACGTCTTGTCGATAGTCCT -ACGGAACGTCTTGTCGATTAAGCC -ACGGAACGTCTTGTCGATATAGCC -ACGGAACGTCTTGTCGATTAACCG -ACGGAACGTCTTGTCGATATGCCA -ACGGAACGTCTTGTCACAGGAAAC -ACGGAACGTCTTGTCACAAACACC -ACGGAACGTCTTGTCACAATCGAG -ACGGAACGTCTTGTCACACTCCTT -ACGGAACGTCTTGTCACACCTGTT -ACGGAACGTCTTGTCACACGGTTT -ACGGAACGTCTTGTCACAGTGGTT -ACGGAACGTCTTGTCACAGCCTTT -ACGGAACGTCTTGTCACAGGTCTT -ACGGAACGTCTTGTCACAACGCTT -ACGGAACGTCTTGTCACAAGCGTT -ACGGAACGTCTTGTCACATTCGTC -ACGGAACGTCTTGTCACATCTCTC -ACGGAACGTCTTGTCACATGGATC -ACGGAACGTCTTGTCACACACTTC -ACGGAACGTCTTGTCACAGTACTC -ACGGAACGTCTTGTCACAGATGTC -ACGGAACGTCTTGTCACAACAGTC -ACGGAACGTCTTGTCACATTGCTG -ACGGAACGTCTTGTCACATCCATG -ACGGAACGTCTTGTCACATGTGTG -ACGGAACGTCTTGTCACACTAGTG -ACGGAACGTCTTGTCACACATCTG -ACGGAACGTCTTGTCACAGAGTTG -ACGGAACGTCTTGTCACAAGACTG -ACGGAACGTCTTGTCACATCGGTA -ACGGAACGTCTTGTCACATGCCTA -ACGGAACGTCTTGTCACACCACTA -ACGGAACGTCTTGTCACAGGAGTA -ACGGAACGTCTTGTCACATCGTCT -ACGGAACGTCTTGTCACATGCACT -ACGGAACGTCTTGTCACACTGACT -ACGGAACGTCTTGTCACACAACCT -ACGGAACGTCTTGTCACAGCTACT -ACGGAACGTCTTGTCACAGGATCT -ACGGAACGTCTTGTCACAAAGGCT -ACGGAACGTCTTGTCACATCAACC -ACGGAACGTCTTGTCACATGTTCC -ACGGAACGTCTTGTCACAATTCCC -ACGGAACGTCTTGTCACATTCTCG -ACGGAACGTCTTGTCACATAGACG -ACGGAACGTCTTGTCACAGTAACG -ACGGAACGTCTTGTCACAACTTCG -ACGGAACGTCTTGTCACATACGCA -ACGGAACGTCTTGTCACACTTGCA -ACGGAACGTCTTGTCACACGAACA -ACGGAACGTCTTGTCACACAGTCA -ACGGAACGTCTTGTCACAGATCCA -ACGGAACGTCTTGTCACAACGACA -ACGGAACGTCTTGTCACAAGCTCA -ACGGAACGTCTTGTCACATCACGT -ACGGAACGTCTTGTCACACGTAGT -ACGGAACGTCTTGTCACAGTCAGT -ACGGAACGTCTTGTCACAGAAGGT -ACGGAACGTCTTGTCACAAACCGT -ACGGAACGTCTTGTCACATTGTGC -ACGGAACGTCTTGTCACACTAAGC -ACGGAACGTCTTGTCACAACTAGC -ACGGAACGTCTTGTCACAAGATGC -ACGGAACGTCTTGTCACATGAAGG -ACGGAACGTCTTGTCACACAATGG -ACGGAACGTCTTGTCACAATGAGG -ACGGAACGTCTTGTCACAAATGGG -ACGGAACGTCTTGTCACATCCTGA -ACGGAACGTCTTGTCACATAGCGA -ACGGAACGTCTTGTCACACACAGA -ACGGAACGTCTTGTCACAGCAAGA -ACGGAACGTCTTGTCACAGGTTGA -ACGGAACGTCTTGTCACATCCGAT -ACGGAACGTCTTGTCACATGGCAT -ACGGAACGTCTTGTCACACGAGAT -ACGGAACGTCTTGTCACATACCAC -ACGGAACGTCTTGTCACACAGAAC -ACGGAACGTCTTGTCACAGTCTAC -ACGGAACGTCTTGTCACAACGTAC -ACGGAACGTCTTGTCACAAGTGAC -ACGGAACGTCTTGTCACACTGTAG -ACGGAACGTCTTGTCACACCTAAG -ACGGAACGTCTTGTCACAGTTCAG -ACGGAACGTCTTGTCACAGCATAG -ACGGAACGTCTTGTCACAGACAAG -ACGGAACGTCTTGTCACAAAGCAG -ACGGAACGTCTTGTCACACGTCAA -ACGGAACGTCTTGTCACAGCTGAA -ACGGAACGTCTTGTCACAAGTACG -ACGGAACGTCTTGTCACAATCCGA -ACGGAACGTCTTGTCACAATGGGA -ACGGAACGTCTTGTCACAGTGCAA -ACGGAACGTCTTGTCACAGAGGAA -ACGGAACGTCTTGTCACACAGGTA -ACGGAACGTCTTGTCACAGACTCT -ACGGAACGTCTTGTCACAAGTCCT -ACGGAACGTCTTGTCACATAAGCC -ACGGAACGTCTTGTCACAATAGCC -ACGGAACGTCTTGTCACATAACCG -ACGGAACGTCTTGTCACAATGCCA -ACGGAACGTCTTCTGTTGGGAAAC -ACGGAACGTCTTCTGTTGAACACC -ACGGAACGTCTTCTGTTGATCGAG -ACGGAACGTCTTCTGTTGCTCCTT -ACGGAACGTCTTCTGTTGCCTGTT -ACGGAACGTCTTCTGTTGCGGTTT -ACGGAACGTCTTCTGTTGGTGGTT -ACGGAACGTCTTCTGTTGGCCTTT -ACGGAACGTCTTCTGTTGGGTCTT -ACGGAACGTCTTCTGTTGACGCTT -ACGGAACGTCTTCTGTTGAGCGTT -ACGGAACGTCTTCTGTTGTTCGTC -ACGGAACGTCTTCTGTTGTCTCTC -ACGGAACGTCTTCTGTTGTGGATC -ACGGAACGTCTTCTGTTGCACTTC -ACGGAACGTCTTCTGTTGGTACTC -ACGGAACGTCTTCTGTTGGATGTC -ACGGAACGTCTTCTGTTGACAGTC -ACGGAACGTCTTCTGTTGTTGCTG -ACGGAACGTCTTCTGTTGTCCATG -ACGGAACGTCTTCTGTTGTGTGTG -ACGGAACGTCTTCTGTTGCTAGTG -ACGGAACGTCTTCTGTTGCATCTG -ACGGAACGTCTTCTGTTGGAGTTG -ACGGAACGTCTTCTGTTGAGACTG -ACGGAACGTCTTCTGTTGTCGGTA -ACGGAACGTCTTCTGTTGTGCCTA -ACGGAACGTCTTCTGTTGCCACTA -ACGGAACGTCTTCTGTTGGGAGTA -ACGGAACGTCTTCTGTTGTCGTCT -ACGGAACGTCTTCTGTTGTGCACT -ACGGAACGTCTTCTGTTGCTGACT -ACGGAACGTCTTCTGTTGCAACCT -ACGGAACGTCTTCTGTTGGCTACT -ACGGAACGTCTTCTGTTGGGATCT -ACGGAACGTCTTCTGTTGAAGGCT -ACGGAACGTCTTCTGTTGTCAACC -ACGGAACGTCTTCTGTTGTGTTCC -ACGGAACGTCTTCTGTTGATTCCC -ACGGAACGTCTTCTGTTGTTCTCG -ACGGAACGTCTTCTGTTGTAGACG -ACGGAACGTCTTCTGTTGGTAACG -ACGGAACGTCTTCTGTTGACTTCG -ACGGAACGTCTTCTGTTGTACGCA -ACGGAACGTCTTCTGTTGCTTGCA -ACGGAACGTCTTCTGTTGCGAACA -ACGGAACGTCTTCTGTTGCAGTCA -ACGGAACGTCTTCTGTTGGATCCA -ACGGAACGTCTTCTGTTGACGACA -ACGGAACGTCTTCTGTTGAGCTCA -ACGGAACGTCTTCTGTTGTCACGT -ACGGAACGTCTTCTGTTGCGTAGT -ACGGAACGTCTTCTGTTGGTCAGT -ACGGAACGTCTTCTGTTGGAAGGT -ACGGAACGTCTTCTGTTGAACCGT -ACGGAACGTCTTCTGTTGTTGTGC -ACGGAACGTCTTCTGTTGCTAAGC -ACGGAACGTCTTCTGTTGACTAGC -ACGGAACGTCTTCTGTTGAGATGC -ACGGAACGTCTTCTGTTGTGAAGG -ACGGAACGTCTTCTGTTGCAATGG -ACGGAACGTCTTCTGTTGATGAGG -ACGGAACGTCTTCTGTTGAATGGG -ACGGAACGTCTTCTGTTGTCCTGA -ACGGAACGTCTTCTGTTGTAGCGA -ACGGAACGTCTTCTGTTGCACAGA -ACGGAACGTCTTCTGTTGGCAAGA -ACGGAACGTCTTCTGTTGGGTTGA -ACGGAACGTCTTCTGTTGTCCGAT -ACGGAACGTCTTCTGTTGTGGCAT -ACGGAACGTCTTCTGTTGCGAGAT -ACGGAACGTCTTCTGTTGTACCAC -ACGGAACGTCTTCTGTTGCAGAAC -ACGGAACGTCTTCTGTTGGTCTAC -ACGGAACGTCTTCTGTTGACGTAC -ACGGAACGTCTTCTGTTGAGTGAC -ACGGAACGTCTTCTGTTGCTGTAG -ACGGAACGTCTTCTGTTGCCTAAG -ACGGAACGTCTTCTGTTGGTTCAG -ACGGAACGTCTTCTGTTGGCATAG -ACGGAACGTCTTCTGTTGGACAAG -ACGGAACGTCTTCTGTTGAAGCAG -ACGGAACGTCTTCTGTTGCGTCAA -ACGGAACGTCTTCTGTTGGCTGAA -ACGGAACGTCTTCTGTTGAGTACG -ACGGAACGTCTTCTGTTGATCCGA -ACGGAACGTCTTCTGTTGATGGGA -ACGGAACGTCTTCTGTTGGTGCAA -ACGGAACGTCTTCTGTTGGAGGAA -ACGGAACGTCTTCTGTTGCAGGTA -ACGGAACGTCTTCTGTTGGACTCT -ACGGAACGTCTTCTGTTGAGTCCT -ACGGAACGTCTTCTGTTGTAAGCC -ACGGAACGTCTTCTGTTGATAGCC -ACGGAACGTCTTCTGTTGTAACCG -ACGGAACGTCTTCTGTTGATGCCA -ACGGAACGTCTTATGTCCGGAAAC -ACGGAACGTCTTATGTCCAACACC -ACGGAACGTCTTATGTCCATCGAG -ACGGAACGTCTTATGTCCCTCCTT -ACGGAACGTCTTATGTCCCCTGTT -ACGGAACGTCTTATGTCCCGGTTT -ACGGAACGTCTTATGTCCGTGGTT -ACGGAACGTCTTATGTCCGCCTTT -ACGGAACGTCTTATGTCCGGTCTT -ACGGAACGTCTTATGTCCACGCTT -ACGGAACGTCTTATGTCCAGCGTT -ACGGAACGTCTTATGTCCTTCGTC -ACGGAACGTCTTATGTCCTCTCTC -ACGGAACGTCTTATGTCCTGGATC -ACGGAACGTCTTATGTCCCACTTC -ACGGAACGTCTTATGTCCGTACTC -ACGGAACGTCTTATGTCCGATGTC -ACGGAACGTCTTATGTCCACAGTC -ACGGAACGTCTTATGTCCTTGCTG -ACGGAACGTCTTATGTCCTCCATG -ACGGAACGTCTTATGTCCTGTGTG -ACGGAACGTCTTATGTCCCTAGTG -ACGGAACGTCTTATGTCCCATCTG -ACGGAACGTCTTATGTCCGAGTTG -ACGGAACGTCTTATGTCCAGACTG -ACGGAACGTCTTATGTCCTCGGTA -ACGGAACGTCTTATGTCCTGCCTA -ACGGAACGTCTTATGTCCCCACTA -ACGGAACGTCTTATGTCCGGAGTA -ACGGAACGTCTTATGTCCTCGTCT -ACGGAACGTCTTATGTCCTGCACT -ACGGAACGTCTTATGTCCCTGACT -ACGGAACGTCTTATGTCCCAACCT -ACGGAACGTCTTATGTCCGCTACT -ACGGAACGTCTTATGTCCGGATCT -ACGGAACGTCTTATGTCCAAGGCT -ACGGAACGTCTTATGTCCTCAACC -ACGGAACGTCTTATGTCCTGTTCC -ACGGAACGTCTTATGTCCATTCCC -ACGGAACGTCTTATGTCCTTCTCG -ACGGAACGTCTTATGTCCTAGACG -ACGGAACGTCTTATGTCCGTAACG -ACGGAACGTCTTATGTCCACTTCG -ACGGAACGTCTTATGTCCTACGCA -ACGGAACGTCTTATGTCCCTTGCA -ACGGAACGTCTTATGTCCCGAACA -ACGGAACGTCTTATGTCCCAGTCA -ACGGAACGTCTTATGTCCGATCCA -ACGGAACGTCTTATGTCCACGACA -ACGGAACGTCTTATGTCCAGCTCA -ACGGAACGTCTTATGTCCTCACGT -ACGGAACGTCTTATGTCCCGTAGT -ACGGAACGTCTTATGTCCGTCAGT -ACGGAACGTCTTATGTCCGAAGGT -ACGGAACGTCTTATGTCCAACCGT -ACGGAACGTCTTATGTCCTTGTGC -ACGGAACGTCTTATGTCCCTAAGC -ACGGAACGTCTTATGTCCACTAGC -ACGGAACGTCTTATGTCCAGATGC -ACGGAACGTCTTATGTCCTGAAGG -ACGGAACGTCTTATGTCCCAATGG -ACGGAACGTCTTATGTCCATGAGG -ACGGAACGTCTTATGTCCAATGGG -ACGGAACGTCTTATGTCCTCCTGA -ACGGAACGTCTTATGTCCTAGCGA -ACGGAACGTCTTATGTCCCACAGA -ACGGAACGTCTTATGTCCGCAAGA -ACGGAACGTCTTATGTCCGGTTGA -ACGGAACGTCTTATGTCCTCCGAT -ACGGAACGTCTTATGTCCTGGCAT -ACGGAACGTCTTATGTCCCGAGAT -ACGGAACGTCTTATGTCCTACCAC -ACGGAACGTCTTATGTCCCAGAAC -ACGGAACGTCTTATGTCCGTCTAC -ACGGAACGTCTTATGTCCACGTAC -ACGGAACGTCTTATGTCCAGTGAC -ACGGAACGTCTTATGTCCCTGTAG -ACGGAACGTCTTATGTCCCCTAAG -ACGGAACGTCTTATGTCCGTTCAG -ACGGAACGTCTTATGTCCGCATAG -ACGGAACGTCTTATGTCCGACAAG -ACGGAACGTCTTATGTCCAAGCAG -ACGGAACGTCTTATGTCCCGTCAA -ACGGAACGTCTTATGTCCGCTGAA -ACGGAACGTCTTATGTCCAGTACG -ACGGAACGTCTTATGTCCATCCGA -ACGGAACGTCTTATGTCCATGGGA -ACGGAACGTCTTATGTCCGTGCAA -ACGGAACGTCTTATGTCCGAGGAA -ACGGAACGTCTTATGTCCCAGGTA -ACGGAACGTCTTATGTCCGACTCT -ACGGAACGTCTTATGTCCAGTCCT -ACGGAACGTCTTATGTCCTAAGCC -ACGGAACGTCTTATGTCCATAGCC -ACGGAACGTCTTATGTCCTAACCG -ACGGAACGTCTTATGTCCATGCCA -ACGGAACGTCTTGTGTGTGGAAAC -ACGGAACGTCTTGTGTGTAACACC -ACGGAACGTCTTGTGTGTATCGAG -ACGGAACGTCTTGTGTGTCTCCTT -ACGGAACGTCTTGTGTGTCCTGTT -ACGGAACGTCTTGTGTGTCGGTTT -ACGGAACGTCTTGTGTGTGTGGTT -ACGGAACGTCTTGTGTGTGCCTTT -ACGGAACGTCTTGTGTGTGGTCTT -ACGGAACGTCTTGTGTGTACGCTT -ACGGAACGTCTTGTGTGTAGCGTT -ACGGAACGTCTTGTGTGTTTCGTC -ACGGAACGTCTTGTGTGTTCTCTC -ACGGAACGTCTTGTGTGTTGGATC -ACGGAACGTCTTGTGTGTCACTTC -ACGGAACGTCTTGTGTGTGTACTC -ACGGAACGTCTTGTGTGTGATGTC -ACGGAACGTCTTGTGTGTACAGTC -ACGGAACGTCTTGTGTGTTTGCTG -ACGGAACGTCTTGTGTGTTCCATG -ACGGAACGTCTTGTGTGTTGTGTG -ACGGAACGTCTTGTGTGTCTAGTG -ACGGAACGTCTTGTGTGTCATCTG -ACGGAACGTCTTGTGTGTGAGTTG -ACGGAACGTCTTGTGTGTAGACTG -ACGGAACGTCTTGTGTGTTCGGTA -ACGGAACGTCTTGTGTGTTGCCTA -ACGGAACGTCTTGTGTGTCCACTA -ACGGAACGTCTTGTGTGTGGAGTA -ACGGAACGTCTTGTGTGTTCGTCT -ACGGAACGTCTTGTGTGTTGCACT -ACGGAACGTCTTGTGTGTCTGACT -ACGGAACGTCTTGTGTGTCAACCT -ACGGAACGTCTTGTGTGTGCTACT -ACGGAACGTCTTGTGTGTGGATCT -ACGGAACGTCTTGTGTGTAAGGCT -ACGGAACGTCTTGTGTGTTCAACC -ACGGAACGTCTTGTGTGTTGTTCC -ACGGAACGTCTTGTGTGTATTCCC -ACGGAACGTCTTGTGTGTTTCTCG -ACGGAACGTCTTGTGTGTTAGACG -ACGGAACGTCTTGTGTGTGTAACG -ACGGAACGTCTTGTGTGTACTTCG -ACGGAACGTCTTGTGTGTTACGCA -ACGGAACGTCTTGTGTGTCTTGCA -ACGGAACGTCTTGTGTGTCGAACA -ACGGAACGTCTTGTGTGTCAGTCA -ACGGAACGTCTTGTGTGTGATCCA -ACGGAACGTCTTGTGTGTACGACA -ACGGAACGTCTTGTGTGTAGCTCA -ACGGAACGTCTTGTGTGTTCACGT -ACGGAACGTCTTGTGTGTCGTAGT -ACGGAACGTCTTGTGTGTGTCAGT -ACGGAACGTCTTGTGTGTGAAGGT -ACGGAACGTCTTGTGTGTAACCGT -ACGGAACGTCTTGTGTGTTTGTGC -ACGGAACGTCTTGTGTGTCTAAGC -ACGGAACGTCTTGTGTGTACTAGC -ACGGAACGTCTTGTGTGTAGATGC -ACGGAACGTCTTGTGTGTTGAAGG -ACGGAACGTCTTGTGTGTCAATGG -ACGGAACGTCTTGTGTGTATGAGG -ACGGAACGTCTTGTGTGTAATGGG -ACGGAACGTCTTGTGTGTTCCTGA -ACGGAACGTCTTGTGTGTTAGCGA -ACGGAACGTCTTGTGTGTCACAGA -ACGGAACGTCTTGTGTGTGCAAGA -ACGGAACGTCTTGTGTGTGGTTGA -ACGGAACGTCTTGTGTGTTCCGAT -ACGGAACGTCTTGTGTGTTGGCAT -ACGGAACGTCTTGTGTGTCGAGAT -ACGGAACGTCTTGTGTGTTACCAC -ACGGAACGTCTTGTGTGTCAGAAC -ACGGAACGTCTTGTGTGTGTCTAC -ACGGAACGTCTTGTGTGTACGTAC -ACGGAACGTCTTGTGTGTAGTGAC -ACGGAACGTCTTGTGTGTCTGTAG -ACGGAACGTCTTGTGTGTCCTAAG -ACGGAACGTCTTGTGTGTGTTCAG -ACGGAACGTCTTGTGTGTGCATAG -ACGGAACGTCTTGTGTGTGACAAG -ACGGAACGTCTTGTGTGTAAGCAG -ACGGAACGTCTTGTGTGTCGTCAA -ACGGAACGTCTTGTGTGTGCTGAA -ACGGAACGTCTTGTGTGTAGTACG -ACGGAACGTCTTGTGTGTATCCGA -ACGGAACGTCTTGTGTGTATGGGA -ACGGAACGTCTTGTGTGTGTGCAA -ACGGAACGTCTTGTGTGTGAGGAA -ACGGAACGTCTTGTGTGTCAGGTA -ACGGAACGTCTTGTGTGTGACTCT -ACGGAACGTCTTGTGTGTAGTCCT -ACGGAACGTCTTGTGTGTTAAGCC -ACGGAACGTCTTGTGTGTATAGCC -ACGGAACGTCTTGTGTGTTAACCG -ACGGAACGTCTTGTGTGTATGCCA -ACGGAACGTCTTGTGCTAGGAAAC -ACGGAACGTCTTGTGCTAAACACC -ACGGAACGTCTTGTGCTAATCGAG -ACGGAACGTCTTGTGCTACTCCTT -ACGGAACGTCTTGTGCTACCTGTT -ACGGAACGTCTTGTGCTACGGTTT -ACGGAACGTCTTGTGCTAGTGGTT -ACGGAACGTCTTGTGCTAGCCTTT -ACGGAACGTCTTGTGCTAGGTCTT -ACGGAACGTCTTGTGCTAACGCTT -ACGGAACGTCTTGTGCTAAGCGTT -ACGGAACGTCTTGTGCTATTCGTC -ACGGAACGTCTTGTGCTATCTCTC -ACGGAACGTCTTGTGCTATGGATC -ACGGAACGTCTTGTGCTACACTTC -ACGGAACGTCTTGTGCTAGTACTC -ACGGAACGTCTTGTGCTAGATGTC -ACGGAACGTCTTGTGCTAACAGTC -ACGGAACGTCTTGTGCTATTGCTG -ACGGAACGTCTTGTGCTATCCATG -ACGGAACGTCTTGTGCTATGTGTG -ACGGAACGTCTTGTGCTACTAGTG -ACGGAACGTCTTGTGCTACATCTG -ACGGAACGTCTTGTGCTAGAGTTG -ACGGAACGTCTTGTGCTAAGACTG -ACGGAACGTCTTGTGCTATCGGTA -ACGGAACGTCTTGTGCTATGCCTA -ACGGAACGTCTTGTGCTACCACTA -ACGGAACGTCTTGTGCTAGGAGTA -ACGGAACGTCTTGTGCTATCGTCT -ACGGAACGTCTTGTGCTATGCACT -ACGGAACGTCTTGTGCTACTGACT -ACGGAACGTCTTGTGCTACAACCT -ACGGAACGTCTTGTGCTAGCTACT -ACGGAACGTCTTGTGCTAGGATCT -ACGGAACGTCTTGTGCTAAAGGCT -ACGGAACGTCTTGTGCTATCAACC -ACGGAACGTCTTGTGCTATGTTCC -ACGGAACGTCTTGTGCTAATTCCC -ACGGAACGTCTTGTGCTATTCTCG -ACGGAACGTCTTGTGCTATAGACG -ACGGAACGTCTTGTGCTAGTAACG -ACGGAACGTCTTGTGCTAACTTCG -ACGGAACGTCTTGTGCTATACGCA -ACGGAACGTCTTGTGCTACTTGCA -ACGGAACGTCTTGTGCTACGAACA -ACGGAACGTCTTGTGCTACAGTCA -ACGGAACGTCTTGTGCTAGATCCA -ACGGAACGTCTTGTGCTAACGACA -ACGGAACGTCTTGTGCTAAGCTCA -ACGGAACGTCTTGTGCTATCACGT -ACGGAACGTCTTGTGCTACGTAGT -ACGGAACGTCTTGTGCTAGTCAGT -ACGGAACGTCTTGTGCTAGAAGGT -ACGGAACGTCTTGTGCTAAACCGT -ACGGAACGTCTTGTGCTATTGTGC -ACGGAACGTCTTGTGCTACTAAGC -ACGGAACGTCTTGTGCTAACTAGC -ACGGAACGTCTTGTGCTAAGATGC -ACGGAACGTCTTGTGCTATGAAGG -ACGGAACGTCTTGTGCTACAATGG -ACGGAACGTCTTGTGCTAATGAGG -ACGGAACGTCTTGTGCTAAATGGG -ACGGAACGTCTTGTGCTATCCTGA -ACGGAACGTCTTGTGCTATAGCGA -ACGGAACGTCTTGTGCTACACAGA -ACGGAACGTCTTGTGCTAGCAAGA -ACGGAACGTCTTGTGCTAGGTTGA -ACGGAACGTCTTGTGCTATCCGAT -ACGGAACGTCTTGTGCTATGGCAT -ACGGAACGTCTTGTGCTACGAGAT -ACGGAACGTCTTGTGCTATACCAC -ACGGAACGTCTTGTGCTACAGAAC -ACGGAACGTCTTGTGCTAGTCTAC -ACGGAACGTCTTGTGCTAACGTAC -ACGGAACGTCTTGTGCTAAGTGAC -ACGGAACGTCTTGTGCTACTGTAG -ACGGAACGTCTTGTGCTACCTAAG -ACGGAACGTCTTGTGCTAGTTCAG -ACGGAACGTCTTGTGCTAGCATAG -ACGGAACGTCTTGTGCTAGACAAG -ACGGAACGTCTTGTGCTAAAGCAG -ACGGAACGTCTTGTGCTACGTCAA -ACGGAACGTCTTGTGCTAGCTGAA -ACGGAACGTCTTGTGCTAAGTACG -ACGGAACGTCTTGTGCTAATCCGA -ACGGAACGTCTTGTGCTAATGGGA -ACGGAACGTCTTGTGCTAGTGCAA -ACGGAACGTCTTGTGCTAGAGGAA -ACGGAACGTCTTGTGCTACAGGTA -ACGGAACGTCTTGTGCTAGACTCT -ACGGAACGTCTTGTGCTAAGTCCT -ACGGAACGTCTTGTGCTATAAGCC -ACGGAACGTCTTGTGCTAATAGCC -ACGGAACGTCTTGTGCTATAACCG -ACGGAACGTCTTGTGCTAATGCCA -ACGGAACGTCTTCTGCATGGAAAC -ACGGAACGTCTTCTGCATAACACC -ACGGAACGTCTTCTGCATATCGAG -ACGGAACGTCTTCTGCATCTCCTT -ACGGAACGTCTTCTGCATCCTGTT -ACGGAACGTCTTCTGCATCGGTTT -ACGGAACGTCTTCTGCATGTGGTT -ACGGAACGTCTTCTGCATGCCTTT -ACGGAACGTCTTCTGCATGGTCTT -ACGGAACGTCTTCTGCATACGCTT -ACGGAACGTCTTCTGCATAGCGTT -ACGGAACGTCTTCTGCATTTCGTC -ACGGAACGTCTTCTGCATTCTCTC -ACGGAACGTCTTCTGCATTGGATC -ACGGAACGTCTTCTGCATCACTTC -ACGGAACGTCTTCTGCATGTACTC -ACGGAACGTCTTCTGCATGATGTC -ACGGAACGTCTTCTGCATACAGTC -ACGGAACGTCTTCTGCATTTGCTG -ACGGAACGTCTTCTGCATTCCATG -ACGGAACGTCTTCTGCATTGTGTG -ACGGAACGTCTTCTGCATCTAGTG -ACGGAACGTCTTCTGCATCATCTG -ACGGAACGTCTTCTGCATGAGTTG -ACGGAACGTCTTCTGCATAGACTG -ACGGAACGTCTTCTGCATTCGGTA -ACGGAACGTCTTCTGCATTGCCTA -ACGGAACGTCTTCTGCATCCACTA -ACGGAACGTCTTCTGCATGGAGTA -ACGGAACGTCTTCTGCATTCGTCT -ACGGAACGTCTTCTGCATTGCACT -ACGGAACGTCTTCTGCATCTGACT -ACGGAACGTCTTCTGCATCAACCT -ACGGAACGTCTTCTGCATGCTACT -ACGGAACGTCTTCTGCATGGATCT -ACGGAACGTCTTCTGCATAAGGCT -ACGGAACGTCTTCTGCATTCAACC -ACGGAACGTCTTCTGCATTGTTCC -ACGGAACGTCTTCTGCATATTCCC -ACGGAACGTCTTCTGCATTTCTCG -ACGGAACGTCTTCTGCATTAGACG -ACGGAACGTCTTCTGCATGTAACG -ACGGAACGTCTTCTGCATACTTCG -ACGGAACGTCTTCTGCATTACGCA -ACGGAACGTCTTCTGCATCTTGCA -ACGGAACGTCTTCTGCATCGAACA -ACGGAACGTCTTCTGCATCAGTCA -ACGGAACGTCTTCTGCATGATCCA -ACGGAACGTCTTCTGCATACGACA -ACGGAACGTCTTCTGCATAGCTCA -ACGGAACGTCTTCTGCATTCACGT -ACGGAACGTCTTCTGCATCGTAGT -ACGGAACGTCTTCTGCATGTCAGT -ACGGAACGTCTTCTGCATGAAGGT -ACGGAACGTCTTCTGCATAACCGT -ACGGAACGTCTTCTGCATTTGTGC -ACGGAACGTCTTCTGCATCTAAGC -ACGGAACGTCTTCTGCATACTAGC -ACGGAACGTCTTCTGCATAGATGC -ACGGAACGTCTTCTGCATTGAAGG -ACGGAACGTCTTCTGCATCAATGG -ACGGAACGTCTTCTGCATATGAGG -ACGGAACGTCTTCTGCATAATGGG -ACGGAACGTCTTCTGCATTCCTGA -ACGGAACGTCTTCTGCATTAGCGA -ACGGAACGTCTTCTGCATCACAGA -ACGGAACGTCTTCTGCATGCAAGA -ACGGAACGTCTTCTGCATGGTTGA -ACGGAACGTCTTCTGCATTCCGAT -ACGGAACGTCTTCTGCATTGGCAT -ACGGAACGTCTTCTGCATCGAGAT -ACGGAACGTCTTCTGCATTACCAC -ACGGAACGTCTTCTGCATCAGAAC -ACGGAACGTCTTCTGCATGTCTAC -ACGGAACGTCTTCTGCATACGTAC -ACGGAACGTCTTCTGCATAGTGAC -ACGGAACGTCTTCTGCATCTGTAG -ACGGAACGTCTTCTGCATCCTAAG -ACGGAACGTCTTCTGCATGTTCAG -ACGGAACGTCTTCTGCATGCATAG -ACGGAACGTCTTCTGCATGACAAG -ACGGAACGTCTTCTGCATAAGCAG -ACGGAACGTCTTCTGCATCGTCAA -ACGGAACGTCTTCTGCATGCTGAA -ACGGAACGTCTTCTGCATAGTACG -ACGGAACGTCTTCTGCATATCCGA -ACGGAACGTCTTCTGCATATGGGA -ACGGAACGTCTTCTGCATGTGCAA -ACGGAACGTCTTCTGCATGAGGAA -ACGGAACGTCTTCTGCATCAGGTA -ACGGAACGTCTTCTGCATGACTCT -ACGGAACGTCTTCTGCATAGTCCT -ACGGAACGTCTTCTGCATTAAGCC -ACGGAACGTCTTCTGCATATAGCC -ACGGAACGTCTTCTGCATTAACCG -ACGGAACGTCTTCTGCATATGCCA -ACGGAACGTCTTTTGGAGGGAAAC -ACGGAACGTCTTTTGGAGAACACC -ACGGAACGTCTTTTGGAGATCGAG -ACGGAACGTCTTTTGGAGCTCCTT -ACGGAACGTCTTTTGGAGCCTGTT -ACGGAACGTCTTTTGGAGCGGTTT -ACGGAACGTCTTTTGGAGGTGGTT -ACGGAACGTCTTTTGGAGGCCTTT -ACGGAACGTCTTTTGGAGGGTCTT -ACGGAACGTCTTTTGGAGACGCTT -ACGGAACGTCTTTTGGAGAGCGTT -ACGGAACGTCTTTTGGAGTTCGTC -ACGGAACGTCTTTTGGAGTCTCTC -ACGGAACGTCTTTTGGAGTGGATC -ACGGAACGTCTTTTGGAGCACTTC -ACGGAACGTCTTTTGGAGGTACTC -ACGGAACGTCTTTTGGAGGATGTC -ACGGAACGTCTTTTGGAGACAGTC -ACGGAACGTCTTTTGGAGTTGCTG -ACGGAACGTCTTTTGGAGTCCATG -ACGGAACGTCTTTTGGAGTGTGTG -ACGGAACGTCTTTTGGAGCTAGTG -ACGGAACGTCTTTTGGAGCATCTG -ACGGAACGTCTTTTGGAGGAGTTG -ACGGAACGTCTTTTGGAGAGACTG -ACGGAACGTCTTTTGGAGTCGGTA -ACGGAACGTCTTTTGGAGTGCCTA -ACGGAACGTCTTTTGGAGCCACTA -ACGGAACGTCTTTTGGAGGGAGTA -ACGGAACGTCTTTTGGAGTCGTCT -ACGGAACGTCTTTTGGAGTGCACT -ACGGAACGTCTTTTGGAGCTGACT -ACGGAACGTCTTTTGGAGCAACCT -ACGGAACGTCTTTTGGAGGCTACT -ACGGAACGTCTTTTGGAGGGATCT -ACGGAACGTCTTTTGGAGAAGGCT -ACGGAACGTCTTTTGGAGTCAACC -ACGGAACGTCTTTTGGAGTGTTCC -ACGGAACGTCTTTTGGAGATTCCC -ACGGAACGTCTTTTGGAGTTCTCG -ACGGAACGTCTTTTGGAGTAGACG -ACGGAACGTCTTTTGGAGGTAACG -ACGGAACGTCTTTTGGAGACTTCG -ACGGAACGTCTTTTGGAGTACGCA -ACGGAACGTCTTTTGGAGCTTGCA -ACGGAACGTCTTTTGGAGCGAACA -ACGGAACGTCTTTTGGAGCAGTCA -ACGGAACGTCTTTTGGAGGATCCA -ACGGAACGTCTTTTGGAGACGACA -ACGGAACGTCTTTTGGAGAGCTCA -ACGGAACGTCTTTTGGAGTCACGT -ACGGAACGTCTTTTGGAGCGTAGT -ACGGAACGTCTTTTGGAGGTCAGT -ACGGAACGTCTTTTGGAGGAAGGT -ACGGAACGTCTTTTGGAGAACCGT -ACGGAACGTCTTTTGGAGTTGTGC -ACGGAACGTCTTTTGGAGCTAAGC -ACGGAACGTCTTTTGGAGACTAGC -ACGGAACGTCTTTTGGAGAGATGC -ACGGAACGTCTTTTGGAGTGAAGG -ACGGAACGTCTTTTGGAGCAATGG -ACGGAACGTCTTTTGGAGATGAGG -ACGGAACGTCTTTTGGAGAATGGG -ACGGAACGTCTTTTGGAGTCCTGA -ACGGAACGTCTTTTGGAGTAGCGA -ACGGAACGTCTTTTGGAGCACAGA -ACGGAACGTCTTTTGGAGGCAAGA -ACGGAACGTCTTTTGGAGGGTTGA -ACGGAACGTCTTTTGGAGTCCGAT -ACGGAACGTCTTTTGGAGTGGCAT -ACGGAACGTCTTTTGGAGCGAGAT -ACGGAACGTCTTTTGGAGTACCAC -ACGGAACGTCTTTTGGAGCAGAAC -ACGGAACGTCTTTTGGAGGTCTAC -ACGGAACGTCTTTTGGAGACGTAC -ACGGAACGTCTTTTGGAGAGTGAC -ACGGAACGTCTTTTGGAGCTGTAG -ACGGAACGTCTTTTGGAGCCTAAG -ACGGAACGTCTTTTGGAGGTTCAG -ACGGAACGTCTTTTGGAGGCATAG -ACGGAACGTCTTTTGGAGGACAAG -ACGGAACGTCTTTTGGAGAAGCAG -ACGGAACGTCTTTTGGAGCGTCAA -ACGGAACGTCTTTTGGAGGCTGAA -ACGGAACGTCTTTTGGAGAGTACG -ACGGAACGTCTTTTGGAGATCCGA -ACGGAACGTCTTTTGGAGATGGGA -ACGGAACGTCTTTTGGAGGTGCAA -ACGGAACGTCTTTTGGAGGAGGAA -ACGGAACGTCTTTTGGAGCAGGTA -ACGGAACGTCTTTTGGAGGACTCT -ACGGAACGTCTTTTGGAGAGTCCT -ACGGAACGTCTTTTGGAGTAAGCC -ACGGAACGTCTTTTGGAGATAGCC -ACGGAACGTCTTTTGGAGTAACCG -ACGGAACGTCTTTTGGAGATGCCA -ACGGAACGTCTTCTGAGAGGAAAC -ACGGAACGTCTTCTGAGAAACACC -ACGGAACGTCTTCTGAGAATCGAG -ACGGAACGTCTTCTGAGACTCCTT -ACGGAACGTCTTCTGAGACCTGTT -ACGGAACGTCTTCTGAGACGGTTT -ACGGAACGTCTTCTGAGAGTGGTT -ACGGAACGTCTTCTGAGAGCCTTT -ACGGAACGTCTTCTGAGAGGTCTT -ACGGAACGTCTTCTGAGAACGCTT -ACGGAACGTCTTCTGAGAAGCGTT -ACGGAACGTCTTCTGAGATTCGTC -ACGGAACGTCTTCTGAGATCTCTC -ACGGAACGTCTTCTGAGATGGATC -ACGGAACGTCTTCTGAGACACTTC -ACGGAACGTCTTCTGAGAGTACTC -ACGGAACGTCTTCTGAGAGATGTC -ACGGAACGTCTTCTGAGAACAGTC -ACGGAACGTCTTCTGAGATTGCTG -ACGGAACGTCTTCTGAGATCCATG -ACGGAACGTCTTCTGAGATGTGTG -ACGGAACGTCTTCTGAGACTAGTG -ACGGAACGTCTTCTGAGACATCTG -ACGGAACGTCTTCTGAGAGAGTTG -ACGGAACGTCTTCTGAGAAGACTG -ACGGAACGTCTTCTGAGATCGGTA -ACGGAACGTCTTCTGAGATGCCTA -ACGGAACGTCTTCTGAGACCACTA -ACGGAACGTCTTCTGAGAGGAGTA -ACGGAACGTCTTCTGAGATCGTCT -ACGGAACGTCTTCTGAGATGCACT -ACGGAACGTCTTCTGAGACTGACT -ACGGAACGTCTTCTGAGACAACCT -ACGGAACGTCTTCTGAGAGCTACT -ACGGAACGTCTTCTGAGAGGATCT -ACGGAACGTCTTCTGAGAAAGGCT -ACGGAACGTCTTCTGAGATCAACC -ACGGAACGTCTTCTGAGATGTTCC -ACGGAACGTCTTCTGAGAATTCCC -ACGGAACGTCTTCTGAGATTCTCG -ACGGAACGTCTTCTGAGATAGACG -ACGGAACGTCTTCTGAGAGTAACG -ACGGAACGTCTTCTGAGAACTTCG -ACGGAACGTCTTCTGAGATACGCA -ACGGAACGTCTTCTGAGACTTGCA -ACGGAACGTCTTCTGAGACGAACA -ACGGAACGTCTTCTGAGACAGTCA -ACGGAACGTCTTCTGAGAGATCCA -ACGGAACGTCTTCTGAGAACGACA -ACGGAACGTCTTCTGAGAAGCTCA -ACGGAACGTCTTCTGAGATCACGT -ACGGAACGTCTTCTGAGACGTAGT -ACGGAACGTCTTCTGAGAGTCAGT -ACGGAACGTCTTCTGAGAGAAGGT -ACGGAACGTCTTCTGAGAAACCGT -ACGGAACGTCTTCTGAGATTGTGC -ACGGAACGTCTTCTGAGACTAAGC -ACGGAACGTCTTCTGAGAACTAGC -ACGGAACGTCTTCTGAGAAGATGC -ACGGAACGTCTTCTGAGATGAAGG -ACGGAACGTCTTCTGAGACAATGG -ACGGAACGTCTTCTGAGAATGAGG -ACGGAACGTCTTCTGAGAAATGGG -ACGGAACGTCTTCTGAGATCCTGA -ACGGAACGTCTTCTGAGATAGCGA -ACGGAACGTCTTCTGAGACACAGA -ACGGAACGTCTTCTGAGAGCAAGA -ACGGAACGTCTTCTGAGAGGTTGA -ACGGAACGTCTTCTGAGATCCGAT -ACGGAACGTCTTCTGAGATGGCAT -ACGGAACGTCTTCTGAGACGAGAT -ACGGAACGTCTTCTGAGATACCAC -ACGGAACGTCTTCTGAGACAGAAC -ACGGAACGTCTTCTGAGAGTCTAC -ACGGAACGTCTTCTGAGAACGTAC -ACGGAACGTCTTCTGAGAAGTGAC -ACGGAACGTCTTCTGAGACTGTAG -ACGGAACGTCTTCTGAGACCTAAG -ACGGAACGTCTTCTGAGAGTTCAG -ACGGAACGTCTTCTGAGAGCATAG -ACGGAACGTCTTCTGAGAGACAAG -ACGGAACGTCTTCTGAGAAAGCAG -ACGGAACGTCTTCTGAGACGTCAA -ACGGAACGTCTTCTGAGAGCTGAA -ACGGAACGTCTTCTGAGAAGTACG -ACGGAACGTCTTCTGAGAATCCGA -ACGGAACGTCTTCTGAGAATGGGA -ACGGAACGTCTTCTGAGAGTGCAA -ACGGAACGTCTTCTGAGAGAGGAA -ACGGAACGTCTTCTGAGACAGGTA -ACGGAACGTCTTCTGAGAGACTCT -ACGGAACGTCTTCTGAGAAGTCCT -ACGGAACGTCTTCTGAGATAAGCC -ACGGAACGTCTTCTGAGAATAGCC -ACGGAACGTCTTCTGAGATAACCG -ACGGAACGTCTTCTGAGAATGCCA -ACGGAACGTCTTGTATCGGGAAAC -ACGGAACGTCTTGTATCGAACACC -ACGGAACGTCTTGTATCGATCGAG -ACGGAACGTCTTGTATCGCTCCTT -ACGGAACGTCTTGTATCGCCTGTT -ACGGAACGTCTTGTATCGCGGTTT -ACGGAACGTCTTGTATCGGTGGTT -ACGGAACGTCTTGTATCGGCCTTT -ACGGAACGTCTTGTATCGGGTCTT -ACGGAACGTCTTGTATCGACGCTT -ACGGAACGTCTTGTATCGAGCGTT -ACGGAACGTCTTGTATCGTTCGTC -ACGGAACGTCTTGTATCGTCTCTC -ACGGAACGTCTTGTATCGTGGATC -ACGGAACGTCTTGTATCGCACTTC -ACGGAACGTCTTGTATCGGTACTC -ACGGAACGTCTTGTATCGGATGTC -ACGGAACGTCTTGTATCGACAGTC -ACGGAACGTCTTGTATCGTTGCTG -ACGGAACGTCTTGTATCGTCCATG -ACGGAACGTCTTGTATCGTGTGTG -ACGGAACGTCTTGTATCGCTAGTG -ACGGAACGTCTTGTATCGCATCTG -ACGGAACGTCTTGTATCGGAGTTG -ACGGAACGTCTTGTATCGAGACTG -ACGGAACGTCTTGTATCGTCGGTA -ACGGAACGTCTTGTATCGTGCCTA -ACGGAACGTCTTGTATCGCCACTA -ACGGAACGTCTTGTATCGGGAGTA -ACGGAACGTCTTGTATCGTCGTCT -ACGGAACGTCTTGTATCGTGCACT -ACGGAACGTCTTGTATCGCTGACT -ACGGAACGTCTTGTATCGCAACCT -ACGGAACGTCTTGTATCGGCTACT -ACGGAACGTCTTGTATCGGGATCT -ACGGAACGTCTTGTATCGAAGGCT -ACGGAACGTCTTGTATCGTCAACC -ACGGAACGTCTTGTATCGTGTTCC -ACGGAACGTCTTGTATCGATTCCC -ACGGAACGTCTTGTATCGTTCTCG -ACGGAACGTCTTGTATCGTAGACG -ACGGAACGTCTTGTATCGGTAACG -ACGGAACGTCTTGTATCGACTTCG -ACGGAACGTCTTGTATCGTACGCA -ACGGAACGTCTTGTATCGCTTGCA -ACGGAACGTCTTGTATCGCGAACA -ACGGAACGTCTTGTATCGCAGTCA -ACGGAACGTCTTGTATCGGATCCA -ACGGAACGTCTTGTATCGACGACA -ACGGAACGTCTTGTATCGAGCTCA -ACGGAACGTCTTGTATCGTCACGT -ACGGAACGTCTTGTATCGCGTAGT -ACGGAACGTCTTGTATCGGTCAGT -ACGGAACGTCTTGTATCGGAAGGT -ACGGAACGTCTTGTATCGAACCGT -ACGGAACGTCTTGTATCGTTGTGC -ACGGAACGTCTTGTATCGCTAAGC -ACGGAACGTCTTGTATCGACTAGC -ACGGAACGTCTTGTATCGAGATGC -ACGGAACGTCTTGTATCGTGAAGG -ACGGAACGTCTTGTATCGCAATGG -ACGGAACGTCTTGTATCGATGAGG -ACGGAACGTCTTGTATCGAATGGG -ACGGAACGTCTTGTATCGTCCTGA -ACGGAACGTCTTGTATCGTAGCGA -ACGGAACGTCTTGTATCGCACAGA -ACGGAACGTCTTGTATCGGCAAGA -ACGGAACGTCTTGTATCGGGTTGA -ACGGAACGTCTTGTATCGTCCGAT -ACGGAACGTCTTGTATCGTGGCAT -ACGGAACGTCTTGTATCGCGAGAT -ACGGAACGTCTTGTATCGTACCAC -ACGGAACGTCTTGTATCGCAGAAC -ACGGAACGTCTTGTATCGGTCTAC -ACGGAACGTCTTGTATCGACGTAC -ACGGAACGTCTTGTATCGAGTGAC -ACGGAACGTCTTGTATCGCTGTAG -ACGGAACGTCTTGTATCGCCTAAG -ACGGAACGTCTTGTATCGGTTCAG -ACGGAACGTCTTGTATCGGCATAG -ACGGAACGTCTTGTATCGGACAAG -ACGGAACGTCTTGTATCGAAGCAG -ACGGAACGTCTTGTATCGCGTCAA -ACGGAACGTCTTGTATCGGCTGAA -ACGGAACGTCTTGTATCGAGTACG -ACGGAACGTCTTGTATCGATCCGA -ACGGAACGTCTTGTATCGATGGGA -ACGGAACGTCTTGTATCGGTGCAA -ACGGAACGTCTTGTATCGGAGGAA -ACGGAACGTCTTGTATCGCAGGTA -ACGGAACGTCTTGTATCGGACTCT -ACGGAACGTCTTGTATCGAGTCCT -ACGGAACGTCTTGTATCGTAAGCC -ACGGAACGTCTTGTATCGATAGCC -ACGGAACGTCTTGTATCGTAACCG -ACGGAACGTCTTGTATCGATGCCA -ACGGAACGTCTTCTATGCGGAAAC -ACGGAACGTCTTCTATGCAACACC -ACGGAACGTCTTCTATGCATCGAG -ACGGAACGTCTTCTATGCCTCCTT -ACGGAACGTCTTCTATGCCCTGTT -ACGGAACGTCTTCTATGCCGGTTT -ACGGAACGTCTTCTATGCGTGGTT -ACGGAACGTCTTCTATGCGCCTTT -ACGGAACGTCTTCTATGCGGTCTT -ACGGAACGTCTTCTATGCACGCTT -ACGGAACGTCTTCTATGCAGCGTT -ACGGAACGTCTTCTATGCTTCGTC -ACGGAACGTCTTCTATGCTCTCTC -ACGGAACGTCTTCTATGCTGGATC -ACGGAACGTCTTCTATGCCACTTC -ACGGAACGTCTTCTATGCGTACTC -ACGGAACGTCTTCTATGCGATGTC -ACGGAACGTCTTCTATGCACAGTC -ACGGAACGTCTTCTATGCTTGCTG -ACGGAACGTCTTCTATGCTCCATG -ACGGAACGTCTTCTATGCTGTGTG -ACGGAACGTCTTCTATGCCTAGTG -ACGGAACGTCTTCTATGCCATCTG -ACGGAACGTCTTCTATGCGAGTTG -ACGGAACGTCTTCTATGCAGACTG -ACGGAACGTCTTCTATGCTCGGTA -ACGGAACGTCTTCTATGCTGCCTA -ACGGAACGTCTTCTATGCCCACTA -ACGGAACGTCTTCTATGCGGAGTA -ACGGAACGTCTTCTATGCTCGTCT -ACGGAACGTCTTCTATGCTGCACT -ACGGAACGTCTTCTATGCCTGACT -ACGGAACGTCTTCTATGCCAACCT -ACGGAACGTCTTCTATGCGCTACT -ACGGAACGTCTTCTATGCGGATCT -ACGGAACGTCTTCTATGCAAGGCT -ACGGAACGTCTTCTATGCTCAACC -ACGGAACGTCTTCTATGCTGTTCC -ACGGAACGTCTTCTATGCATTCCC -ACGGAACGTCTTCTATGCTTCTCG -ACGGAACGTCTTCTATGCTAGACG -ACGGAACGTCTTCTATGCGTAACG -ACGGAACGTCTTCTATGCACTTCG -ACGGAACGTCTTCTATGCTACGCA -ACGGAACGTCTTCTATGCCTTGCA -ACGGAACGTCTTCTATGCCGAACA -ACGGAACGTCTTCTATGCCAGTCA -ACGGAACGTCTTCTATGCGATCCA -ACGGAACGTCTTCTATGCACGACA -ACGGAACGTCTTCTATGCAGCTCA -ACGGAACGTCTTCTATGCTCACGT -ACGGAACGTCTTCTATGCCGTAGT -ACGGAACGTCTTCTATGCGTCAGT -ACGGAACGTCTTCTATGCGAAGGT -ACGGAACGTCTTCTATGCAACCGT -ACGGAACGTCTTCTATGCTTGTGC -ACGGAACGTCTTCTATGCCTAAGC -ACGGAACGTCTTCTATGCACTAGC -ACGGAACGTCTTCTATGCAGATGC -ACGGAACGTCTTCTATGCTGAAGG -ACGGAACGTCTTCTATGCCAATGG -ACGGAACGTCTTCTATGCATGAGG -ACGGAACGTCTTCTATGCAATGGG -ACGGAACGTCTTCTATGCTCCTGA -ACGGAACGTCTTCTATGCTAGCGA -ACGGAACGTCTTCTATGCCACAGA -ACGGAACGTCTTCTATGCGCAAGA -ACGGAACGTCTTCTATGCGGTTGA -ACGGAACGTCTTCTATGCTCCGAT -ACGGAACGTCTTCTATGCTGGCAT -ACGGAACGTCTTCTATGCCGAGAT -ACGGAACGTCTTCTATGCTACCAC -ACGGAACGTCTTCTATGCCAGAAC -ACGGAACGTCTTCTATGCGTCTAC -ACGGAACGTCTTCTATGCACGTAC -ACGGAACGTCTTCTATGCAGTGAC -ACGGAACGTCTTCTATGCCTGTAG -ACGGAACGTCTTCTATGCCCTAAG -ACGGAACGTCTTCTATGCGTTCAG -ACGGAACGTCTTCTATGCGCATAG -ACGGAACGTCTTCTATGCGACAAG -ACGGAACGTCTTCTATGCAAGCAG -ACGGAACGTCTTCTATGCCGTCAA -ACGGAACGTCTTCTATGCGCTGAA -ACGGAACGTCTTCTATGCAGTACG -ACGGAACGTCTTCTATGCATCCGA -ACGGAACGTCTTCTATGCATGGGA -ACGGAACGTCTTCTATGCGTGCAA -ACGGAACGTCTTCTATGCGAGGAA -ACGGAACGTCTTCTATGCCAGGTA -ACGGAACGTCTTCTATGCGACTCT -ACGGAACGTCTTCTATGCAGTCCT -ACGGAACGTCTTCTATGCTAAGCC -ACGGAACGTCTTCTATGCATAGCC -ACGGAACGTCTTCTATGCTAACCG -ACGGAACGTCTTCTATGCATGCCA -ACGGAACGTCTTCTACCAGGAAAC -ACGGAACGTCTTCTACCAAACACC -ACGGAACGTCTTCTACCAATCGAG -ACGGAACGTCTTCTACCACTCCTT -ACGGAACGTCTTCTACCACCTGTT -ACGGAACGTCTTCTACCACGGTTT -ACGGAACGTCTTCTACCAGTGGTT -ACGGAACGTCTTCTACCAGCCTTT -ACGGAACGTCTTCTACCAGGTCTT -ACGGAACGTCTTCTACCAACGCTT -ACGGAACGTCTTCTACCAAGCGTT -ACGGAACGTCTTCTACCATTCGTC -ACGGAACGTCTTCTACCATCTCTC -ACGGAACGTCTTCTACCATGGATC -ACGGAACGTCTTCTACCACACTTC -ACGGAACGTCTTCTACCAGTACTC -ACGGAACGTCTTCTACCAGATGTC -ACGGAACGTCTTCTACCAACAGTC -ACGGAACGTCTTCTACCATTGCTG -ACGGAACGTCTTCTACCATCCATG -ACGGAACGTCTTCTACCATGTGTG -ACGGAACGTCTTCTACCACTAGTG -ACGGAACGTCTTCTACCACATCTG -ACGGAACGTCTTCTACCAGAGTTG -ACGGAACGTCTTCTACCAAGACTG -ACGGAACGTCTTCTACCATCGGTA -ACGGAACGTCTTCTACCATGCCTA -ACGGAACGTCTTCTACCACCACTA -ACGGAACGTCTTCTACCAGGAGTA -ACGGAACGTCTTCTACCATCGTCT -ACGGAACGTCTTCTACCATGCACT -ACGGAACGTCTTCTACCACTGACT -ACGGAACGTCTTCTACCACAACCT -ACGGAACGTCTTCTACCAGCTACT -ACGGAACGTCTTCTACCAGGATCT -ACGGAACGTCTTCTACCAAAGGCT -ACGGAACGTCTTCTACCATCAACC -ACGGAACGTCTTCTACCATGTTCC -ACGGAACGTCTTCTACCAATTCCC -ACGGAACGTCTTCTACCATTCTCG -ACGGAACGTCTTCTACCATAGACG -ACGGAACGTCTTCTACCAGTAACG -ACGGAACGTCTTCTACCAACTTCG -ACGGAACGTCTTCTACCATACGCA -ACGGAACGTCTTCTACCACTTGCA -ACGGAACGTCTTCTACCACGAACA -ACGGAACGTCTTCTACCACAGTCA -ACGGAACGTCTTCTACCAGATCCA -ACGGAACGTCTTCTACCAACGACA -ACGGAACGTCTTCTACCAAGCTCA -ACGGAACGTCTTCTACCATCACGT -ACGGAACGTCTTCTACCACGTAGT -ACGGAACGTCTTCTACCAGTCAGT -ACGGAACGTCTTCTACCAGAAGGT -ACGGAACGTCTTCTACCAAACCGT -ACGGAACGTCTTCTACCATTGTGC -ACGGAACGTCTTCTACCACTAAGC -ACGGAACGTCTTCTACCAACTAGC -ACGGAACGTCTTCTACCAAGATGC -ACGGAACGTCTTCTACCATGAAGG -ACGGAACGTCTTCTACCACAATGG -ACGGAACGTCTTCTACCAATGAGG -ACGGAACGTCTTCTACCAAATGGG -ACGGAACGTCTTCTACCATCCTGA -ACGGAACGTCTTCTACCATAGCGA -ACGGAACGTCTTCTACCACACAGA -ACGGAACGTCTTCTACCAGCAAGA -ACGGAACGTCTTCTACCAGGTTGA -ACGGAACGTCTTCTACCATCCGAT -ACGGAACGTCTTCTACCATGGCAT -ACGGAACGTCTTCTACCACGAGAT -ACGGAACGTCTTCTACCATACCAC -ACGGAACGTCTTCTACCACAGAAC -ACGGAACGTCTTCTACCAGTCTAC -ACGGAACGTCTTCTACCAACGTAC -ACGGAACGTCTTCTACCAAGTGAC -ACGGAACGTCTTCTACCACTGTAG -ACGGAACGTCTTCTACCACCTAAG -ACGGAACGTCTTCTACCAGTTCAG -ACGGAACGTCTTCTACCAGCATAG -ACGGAACGTCTTCTACCAGACAAG -ACGGAACGTCTTCTACCAAAGCAG -ACGGAACGTCTTCTACCACGTCAA -ACGGAACGTCTTCTACCAGCTGAA -ACGGAACGTCTTCTACCAAGTACG -ACGGAACGTCTTCTACCAATCCGA -ACGGAACGTCTTCTACCAATGGGA -ACGGAACGTCTTCTACCAGTGCAA -ACGGAACGTCTTCTACCAGAGGAA -ACGGAACGTCTTCTACCACAGGTA -ACGGAACGTCTTCTACCAGACTCT -ACGGAACGTCTTCTACCAAGTCCT -ACGGAACGTCTTCTACCATAAGCC -ACGGAACGTCTTCTACCAATAGCC -ACGGAACGTCTTCTACCATAACCG -ACGGAACGTCTTCTACCAATGCCA -ACGGAACGTCTTGTAGGAGGAAAC -ACGGAACGTCTTGTAGGAAACACC -ACGGAACGTCTTGTAGGAATCGAG -ACGGAACGTCTTGTAGGACTCCTT -ACGGAACGTCTTGTAGGACCTGTT -ACGGAACGTCTTGTAGGACGGTTT -ACGGAACGTCTTGTAGGAGTGGTT -ACGGAACGTCTTGTAGGAGCCTTT -ACGGAACGTCTTGTAGGAGGTCTT -ACGGAACGTCTTGTAGGAACGCTT -ACGGAACGTCTTGTAGGAAGCGTT -ACGGAACGTCTTGTAGGATTCGTC -ACGGAACGTCTTGTAGGATCTCTC -ACGGAACGTCTTGTAGGATGGATC -ACGGAACGTCTTGTAGGACACTTC -ACGGAACGTCTTGTAGGAGTACTC -ACGGAACGTCTTGTAGGAGATGTC -ACGGAACGTCTTGTAGGAACAGTC -ACGGAACGTCTTGTAGGATTGCTG -ACGGAACGTCTTGTAGGATCCATG -ACGGAACGTCTTGTAGGATGTGTG -ACGGAACGTCTTGTAGGACTAGTG -ACGGAACGTCTTGTAGGACATCTG -ACGGAACGTCTTGTAGGAGAGTTG -ACGGAACGTCTTGTAGGAAGACTG -ACGGAACGTCTTGTAGGATCGGTA -ACGGAACGTCTTGTAGGATGCCTA -ACGGAACGTCTTGTAGGACCACTA -ACGGAACGTCTTGTAGGAGGAGTA -ACGGAACGTCTTGTAGGATCGTCT -ACGGAACGTCTTGTAGGATGCACT -ACGGAACGTCTTGTAGGACTGACT -ACGGAACGTCTTGTAGGACAACCT -ACGGAACGTCTTGTAGGAGCTACT -ACGGAACGTCTTGTAGGAGGATCT -ACGGAACGTCTTGTAGGAAAGGCT -ACGGAACGTCTTGTAGGATCAACC -ACGGAACGTCTTGTAGGATGTTCC -ACGGAACGTCTTGTAGGAATTCCC -ACGGAACGTCTTGTAGGATTCTCG -ACGGAACGTCTTGTAGGATAGACG -ACGGAACGTCTTGTAGGAGTAACG -ACGGAACGTCTTGTAGGAACTTCG -ACGGAACGTCTTGTAGGATACGCA -ACGGAACGTCTTGTAGGACTTGCA -ACGGAACGTCTTGTAGGACGAACA -ACGGAACGTCTTGTAGGACAGTCA -ACGGAACGTCTTGTAGGAGATCCA -ACGGAACGTCTTGTAGGAACGACA -ACGGAACGTCTTGTAGGAAGCTCA -ACGGAACGTCTTGTAGGATCACGT -ACGGAACGTCTTGTAGGACGTAGT -ACGGAACGTCTTGTAGGAGTCAGT -ACGGAACGTCTTGTAGGAGAAGGT -ACGGAACGTCTTGTAGGAAACCGT -ACGGAACGTCTTGTAGGATTGTGC -ACGGAACGTCTTGTAGGACTAAGC -ACGGAACGTCTTGTAGGAACTAGC -ACGGAACGTCTTGTAGGAAGATGC -ACGGAACGTCTTGTAGGATGAAGG -ACGGAACGTCTTGTAGGACAATGG -ACGGAACGTCTTGTAGGAATGAGG -ACGGAACGTCTTGTAGGAAATGGG -ACGGAACGTCTTGTAGGATCCTGA -ACGGAACGTCTTGTAGGATAGCGA -ACGGAACGTCTTGTAGGACACAGA -ACGGAACGTCTTGTAGGAGCAAGA -ACGGAACGTCTTGTAGGAGGTTGA -ACGGAACGTCTTGTAGGATCCGAT -ACGGAACGTCTTGTAGGATGGCAT -ACGGAACGTCTTGTAGGACGAGAT -ACGGAACGTCTTGTAGGATACCAC -ACGGAACGTCTTGTAGGACAGAAC -ACGGAACGTCTTGTAGGAGTCTAC -ACGGAACGTCTTGTAGGAACGTAC -ACGGAACGTCTTGTAGGAAGTGAC -ACGGAACGTCTTGTAGGACTGTAG -ACGGAACGTCTTGTAGGACCTAAG -ACGGAACGTCTTGTAGGAGTTCAG -ACGGAACGTCTTGTAGGAGCATAG -ACGGAACGTCTTGTAGGAGACAAG -ACGGAACGTCTTGTAGGAAAGCAG -ACGGAACGTCTTGTAGGACGTCAA -ACGGAACGTCTTGTAGGAGCTGAA -ACGGAACGTCTTGTAGGAAGTACG -ACGGAACGTCTTGTAGGAATCCGA -ACGGAACGTCTTGTAGGAATGGGA -ACGGAACGTCTTGTAGGAGTGCAA -ACGGAACGTCTTGTAGGAGAGGAA -ACGGAACGTCTTGTAGGACAGGTA -ACGGAACGTCTTGTAGGAGACTCT -ACGGAACGTCTTGTAGGAAGTCCT -ACGGAACGTCTTGTAGGATAAGCC -ACGGAACGTCTTGTAGGAATAGCC -ACGGAACGTCTTGTAGGATAACCG -ACGGAACGTCTTGTAGGAATGCCA -ACGGAACGTCTTTCTTCGGGAAAC -ACGGAACGTCTTTCTTCGAACACC -ACGGAACGTCTTTCTTCGATCGAG -ACGGAACGTCTTTCTTCGCTCCTT -ACGGAACGTCTTTCTTCGCCTGTT -ACGGAACGTCTTTCTTCGCGGTTT -ACGGAACGTCTTTCTTCGGTGGTT -ACGGAACGTCTTTCTTCGGCCTTT -ACGGAACGTCTTTCTTCGGGTCTT -ACGGAACGTCTTTCTTCGACGCTT -ACGGAACGTCTTTCTTCGAGCGTT -ACGGAACGTCTTTCTTCGTTCGTC -ACGGAACGTCTTTCTTCGTCTCTC -ACGGAACGTCTTTCTTCGTGGATC -ACGGAACGTCTTTCTTCGCACTTC -ACGGAACGTCTTTCTTCGGTACTC -ACGGAACGTCTTTCTTCGGATGTC -ACGGAACGTCTTTCTTCGACAGTC -ACGGAACGTCTTTCTTCGTTGCTG -ACGGAACGTCTTTCTTCGTCCATG -ACGGAACGTCTTTCTTCGTGTGTG -ACGGAACGTCTTTCTTCGCTAGTG -ACGGAACGTCTTTCTTCGCATCTG -ACGGAACGTCTTTCTTCGGAGTTG -ACGGAACGTCTTTCTTCGAGACTG -ACGGAACGTCTTTCTTCGTCGGTA -ACGGAACGTCTTTCTTCGTGCCTA -ACGGAACGTCTTTCTTCGCCACTA -ACGGAACGTCTTTCTTCGGGAGTA -ACGGAACGTCTTTCTTCGTCGTCT -ACGGAACGTCTTTCTTCGTGCACT -ACGGAACGTCTTTCTTCGCTGACT -ACGGAACGTCTTTCTTCGCAACCT -ACGGAACGTCTTTCTTCGGCTACT -ACGGAACGTCTTTCTTCGGGATCT -ACGGAACGTCTTTCTTCGAAGGCT -ACGGAACGTCTTTCTTCGTCAACC -ACGGAACGTCTTTCTTCGTGTTCC -ACGGAACGTCTTTCTTCGATTCCC -ACGGAACGTCTTTCTTCGTTCTCG -ACGGAACGTCTTTCTTCGTAGACG -ACGGAACGTCTTTCTTCGGTAACG -ACGGAACGTCTTTCTTCGACTTCG -ACGGAACGTCTTTCTTCGTACGCA -ACGGAACGTCTTTCTTCGCTTGCA -ACGGAACGTCTTTCTTCGCGAACA -ACGGAACGTCTTTCTTCGCAGTCA -ACGGAACGTCTTTCTTCGGATCCA -ACGGAACGTCTTTCTTCGACGACA -ACGGAACGTCTTTCTTCGAGCTCA -ACGGAACGTCTTTCTTCGTCACGT -ACGGAACGTCTTTCTTCGCGTAGT -ACGGAACGTCTTTCTTCGGTCAGT -ACGGAACGTCTTTCTTCGGAAGGT -ACGGAACGTCTTTCTTCGAACCGT -ACGGAACGTCTTTCTTCGTTGTGC -ACGGAACGTCTTTCTTCGCTAAGC -ACGGAACGTCTTTCTTCGACTAGC -ACGGAACGTCTTTCTTCGAGATGC -ACGGAACGTCTTTCTTCGTGAAGG -ACGGAACGTCTTTCTTCGCAATGG -ACGGAACGTCTTTCTTCGATGAGG -ACGGAACGTCTTTCTTCGAATGGG -ACGGAACGTCTTTCTTCGTCCTGA -ACGGAACGTCTTTCTTCGTAGCGA -ACGGAACGTCTTTCTTCGCACAGA -ACGGAACGTCTTTCTTCGGCAAGA -ACGGAACGTCTTTCTTCGGGTTGA -ACGGAACGTCTTTCTTCGTCCGAT -ACGGAACGTCTTTCTTCGTGGCAT -ACGGAACGTCTTTCTTCGCGAGAT -ACGGAACGTCTTTCTTCGTACCAC -ACGGAACGTCTTTCTTCGCAGAAC -ACGGAACGTCTTTCTTCGGTCTAC -ACGGAACGTCTTTCTTCGACGTAC -ACGGAACGTCTTTCTTCGAGTGAC -ACGGAACGTCTTTCTTCGCTGTAG -ACGGAACGTCTTTCTTCGCCTAAG -ACGGAACGTCTTTCTTCGGTTCAG -ACGGAACGTCTTTCTTCGGCATAG -ACGGAACGTCTTTCTTCGGACAAG -ACGGAACGTCTTTCTTCGAAGCAG -ACGGAACGTCTTTCTTCGCGTCAA -ACGGAACGTCTTTCTTCGGCTGAA -ACGGAACGTCTTTCTTCGAGTACG -ACGGAACGTCTTTCTTCGATCCGA -ACGGAACGTCTTTCTTCGATGGGA -ACGGAACGTCTTTCTTCGGTGCAA -ACGGAACGTCTTTCTTCGGAGGAA -ACGGAACGTCTTTCTTCGCAGGTA -ACGGAACGTCTTTCTTCGGACTCT -ACGGAACGTCTTTCTTCGAGTCCT -ACGGAACGTCTTTCTTCGTAAGCC -ACGGAACGTCTTTCTTCGATAGCC -ACGGAACGTCTTTCTTCGTAACCG -ACGGAACGTCTTTCTTCGATGCCA -ACGGAACGTCTTACTTGCGGAAAC -ACGGAACGTCTTACTTGCAACACC -ACGGAACGTCTTACTTGCATCGAG -ACGGAACGTCTTACTTGCCTCCTT -ACGGAACGTCTTACTTGCCCTGTT -ACGGAACGTCTTACTTGCCGGTTT -ACGGAACGTCTTACTTGCGTGGTT -ACGGAACGTCTTACTTGCGCCTTT -ACGGAACGTCTTACTTGCGGTCTT -ACGGAACGTCTTACTTGCACGCTT -ACGGAACGTCTTACTTGCAGCGTT -ACGGAACGTCTTACTTGCTTCGTC -ACGGAACGTCTTACTTGCTCTCTC -ACGGAACGTCTTACTTGCTGGATC -ACGGAACGTCTTACTTGCCACTTC -ACGGAACGTCTTACTTGCGTACTC -ACGGAACGTCTTACTTGCGATGTC -ACGGAACGTCTTACTTGCACAGTC -ACGGAACGTCTTACTTGCTTGCTG -ACGGAACGTCTTACTTGCTCCATG -ACGGAACGTCTTACTTGCTGTGTG -ACGGAACGTCTTACTTGCCTAGTG -ACGGAACGTCTTACTTGCCATCTG -ACGGAACGTCTTACTTGCGAGTTG -ACGGAACGTCTTACTTGCAGACTG -ACGGAACGTCTTACTTGCTCGGTA -ACGGAACGTCTTACTTGCTGCCTA -ACGGAACGTCTTACTTGCCCACTA -ACGGAACGTCTTACTTGCGGAGTA -ACGGAACGTCTTACTTGCTCGTCT -ACGGAACGTCTTACTTGCTGCACT -ACGGAACGTCTTACTTGCCTGACT -ACGGAACGTCTTACTTGCCAACCT -ACGGAACGTCTTACTTGCGCTACT -ACGGAACGTCTTACTTGCGGATCT -ACGGAACGTCTTACTTGCAAGGCT -ACGGAACGTCTTACTTGCTCAACC -ACGGAACGTCTTACTTGCTGTTCC -ACGGAACGTCTTACTTGCATTCCC -ACGGAACGTCTTACTTGCTTCTCG -ACGGAACGTCTTACTTGCTAGACG -ACGGAACGTCTTACTTGCGTAACG -ACGGAACGTCTTACTTGCACTTCG -ACGGAACGTCTTACTTGCTACGCA -ACGGAACGTCTTACTTGCCTTGCA -ACGGAACGTCTTACTTGCCGAACA -ACGGAACGTCTTACTTGCCAGTCA -ACGGAACGTCTTACTTGCGATCCA -ACGGAACGTCTTACTTGCACGACA -ACGGAACGTCTTACTTGCAGCTCA -ACGGAACGTCTTACTTGCTCACGT -ACGGAACGTCTTACTTGCCGTAGT -ACGGAACGTCTTACTTGCGTCAGT -ACGGAACGTCTTACTTGCGAAGGT -ACGGAACGTCTTACTTGCAACCGT -ACGGAACGTCTTACTTGCTTGTGC -ACGGAACGTCTTACTTGCCTAAGC -ACGGAACGTCTTACTTGCACTAGC -ACGGAACGTCTTACTTGCAGATGC -ACGGAACGTCTTACTTGCTGAAGG -ACGGAACGTCTTACTTGCCAATGG -ACGGAACGTCTTACTTGCATGAGG -ACGGAACGTCTTACTTGCAATGGG -ACGGAACGTCTTACTTGCTCCTGA -ACGGAACGTCTTACTTGCTAGCGA -ACGGAACGTCTTACTTGCCACAGA -ACGGAACGTCTTACTTGCGCAAGA -ACGGAACGTCTTACTTGCGGTTGA -ACGGAACGTCTTACTTGCTCCGAT -ACGGAACGTCTTACTTGCTGGCAT -ACGGAACGTCTTACTTGCCGAGAT -ACGGAACGTCTTACTTGCTACCAC -ACGGAACGTCTTACTTGCCAGAAC -ACGGAACGTCTTACTTGCGTCTAC -ACGGAACGTCTTACTTGCACGTAC -ACGGAACGTCTTACTTGCAGTGAC -ACGGAACGTCTTACTTGCCTGTAG -ACGGAACGTCTTACTTGCCCTAAG -ACGGAACGTCTTACTTGCGTTCAG -ACGGAACGTCTTACTTGCGCATAG -ACGGAACGTCTTACTTGCGACAAG -ACGGAACGTCTTACTTGCAAGCAG -ACGGAACGTCTTACTTGCCGTCAA -ACGGAACGTCTTACTTGCGCTGAA -ACGGAACGTCTTACTTGCAGTACG -ACGGAACGTCTTACTTGCATCCGA -ACGGAACGTCTTACTTGCATGGGA -ACGGAACGTCTTACTTGCGTGCAA -ACGGAACGTCTTACTTGCGAGGAA -ACGGAACGTCTTACTTGCCAGGTA -ACGGAACGTCTTACTTGCGACTCT -ACGGAACGTCTTACTTGCAGTCCT -ACGGAACGTCTTACTTGCTAAGCC -ACGGAACGTCTTACTTGCATAGCC -ACGGAACGTCTTACTTGCTAACCG -ACGGAACGTCTTACTTGCATGCCA -ACGGAACGTCTTACTCTGGGAAAC -ACGGAACGTCTTACTCTGAACACC -ACGGAACGTCTTACTCTGATCGAG -ACGGAACGTCTTACTCTGCTCCTT -ACGGAACGTCTTACTCTGCCTGTT -ACGGAACGTCTTACTCTGCGGTTT -ACGGAACGTCTTACTCTGGTGGTT -ACGGAACGTCTTACTCTGGCCTTT -ACGGAACGTCTTACTCTGGGTCTT -ACGGAACGTCTTACTCTGACGCTT -ACGGAACGTCTTACTCTGAGCGTT -ACGGAACGTCTTACTCTGTTCGTC -ACGGAACGTCTTACTCTGTCTCTC -ACGGAACGTCTTACTCTGTGGATC -ACGGAACGTCTTACTCTGCACTTC -ACGGAACGTCTTACTCTGGTACTC -ACGGAACGTCTTACTCTGGATGTC -ACGGAACGTCTTACTCTGACAGTC -ACGGAACGTCTTACTCTGTTGCTG -ACGGAACGTCTTACTCTGTCCATG -ACGGAACGTCTTACTCTGTGTGTG -ACGGAACGTCTTACTCTGCTAGTG -ACGGAACGTCTTACTCTGCATCTG -ACGGAACGTCTTACTCTGGAGTTG -ACGGAACGTCTTACTCTGAGACTG -ACGGAACGTCTTACTCTGTCGGTA -ACGGAACGTCTTACTCTGTGCCTA -ACGGAACGTCTTACTCTGCCACTA -ACGGAACGTCTTACTCTGGGAGTA -ACGGAACGTCTTACTCTGTCGTCT -ACGGAACGTCTTACTCTGTGCACT -ACGGAACGTCTTACTCTGCTGACT -ACGGAACGTCTTACTCTGCAACCT -ACGGAACGTCTTACTCTGGCTACT -ACGGAACGTCTTACTCTGGGATCT -ACGGAACGTCTTACTCTGAAGGCT -ACGGAACGTCTTACTCTGTCAACC -ACGGAACGTCTTACTCTGTGTTCC -ACGGAACGTCTTACTCTGATTCCC -ACGGAACGTCTTACTCTGTTCTCG -ACGGAACGTCTTACTCTGTAGACG -ACGGAACGTCTTACTCTGGTAACG -ACGGAACGTCTTACTCTGACTTCG -ACGGAACGTCTTACTCTGTACGCA -ACGGAACGTCTTACTCTGCTTGCA -ACGGAACGTCTTACTCTGCGAACA -ACGGAACGTCTTACTCTGCAGTCA -ACGGAACGTCTTACTCTGGATCCA -ACGGAACGTCTTACTCTGACGACA -ACGGAACGTCTTACTCTGAGCTCA -ACGGAACGTCTTACTCTGTCACGT -ACGGAACGTCTTACTCTGCGTAGT -ACGGAACGTCTTACTCTGGTCAGT -ACGGAACGTCTTACTCTGGAAGGT -ACGGAACGTCTTACTCTGAACCGT -ACGGAACGTCTTACTCTGTTGTGC -ACGGAACGTCTTACTCTGCTAAGC -ACGGAACGTCTTACTCTGACTAGC -ACGGAACGTCTTACTCTGAGATGC -ACGGAACGTCTTACTCTGTGAAGG -ACGGAACGTCTTACTCTGCAATGG -ACGGAACGTCTTACTCTGATGAGG -ACGGAACGTCTTACTCTGAATGGG -ACGGAACGTCTTACTCTGTCCTGA -ACGGAACGTCTTACTCTGTAGCGA -ACGGAACGTCTTACTCTGCACAGA -ACGGAACGTCTTACTCTGGCAAGA -ACGGAACGTCTTACTCTGGGTTGA -ACGGAACGTCTTACTCTGTCCGAT -ACGGAACGTCTTACTCTGTGGCAT -ACGGAACGTCTTACTCTGCGAGAT -ACGGAACGTCTTACTCTGTACCAC -ACGGAACGTCTTACTCTGCAGAAC -ACGGAACGTCTTACTCTGGTCTAC -ACGGAACGTCTTACTCTGACGTAC -ACGGAACGTCTTACTCTGAGTGAC -ACGGAACGTCTTACTCTGCTGTAG -ACGGAACGTCTTACTCTGCCTAAG -ACGGAACGTCTTACTCTGGTTCAG -ACGGAACGTCTTACTCTGGCATAG -ACGGAACGTCTTACTCTGGACAAG -ACGGAACGTCTTACTCTGAAGCAG -ACGGAACGTCTTACTCTGCGTCAA -ACGGAACGTCTTACTCTGGCTGAA -ACGGAACGTCTTACTCTGAGTACG -ACGGAACGTCTTACTCTGATCCGA -ACGGAACGTCTTACTCTGATGGGA -ACGGAACGTCTTACTCTGGTGCAA -ACGGAACGTCTTACTCTGGAGGAA -ACGGAACGTCTTACTCTGCAGGTA -ACGGAACGTCTTACTCTGGACTCT -ACGGAACGTCTTACTCTGAGTCCT -ACGGAACGTCTTACTCTGTAAGCC -ACGGAACGTCTTACTCTGATAGCC -ACGGAACGTCTTACTCTGTAACCG -ACGGAACGTCTTACTCTGATGCCA -ACGGAACGTCTTCCTCAAGGAAAC -ACGGAACGTCTTCCTCAAAACACC -ACGGAACGTCTTCCTCAAATCGAG -ACGGAACGTCTTCCTCAACTCCTT -ACGGAACGTCTTCCTCAACCTGTT -ACGGAACGTCTTCCTCAACGGTTT -ACGGAACGTCTTCCTCAAGTGGTT -ACGGAACGTCTTCCTCAAGCCTTT -ACGGAACGTCTTCCTCAAGGTCTT -ACGGAACGTCTTCCTCAAACGCTT -ACGGAACGTCTTCCTCAAAGCGTT -ACGGAACGTCTTCCTCAATTCGTC -ACGGAACGTCTTCCTCAATCTCTC -ACGGAACGTCTTCCTCAATGGATC -ACGGAACGTCTTCCTCAACACTTC -ACGGAACGTCTTCCTCAAGTACTC -ACGGAACGTCTTCCTCAAGATGTC -ACGGAACGTCTTCCTCAAACAGTC -ACGGAACGTCTTCCTCAATTGCTG -ACGGAACGTCTTCCTCAATCCATG -ACGGAACGTCTTCCTCAATGTGTG -ACGGAACGTCTTCCTCAACTAGTG -ACGGAACGTCTTCCTCAACATCTG -ACGGAACGTCTTCCTCAAGAGTTG -ACGGAACGTCTTCCTCAAAGACTG -ACGGAACGTCTTCCTCAATCGGTA -ACGGAACGTCTTCCTCAATGCCTA -ACGGAACGTCTTCCTCAACCACTA -ACGGAACGTCTTCCTCAAGGAGTA -ACGGAACGTCTTCCTCAATCGTCT -ACGGAACGTCTTCCTCAATGCACT -ACGGAACGTCTTCCTCAACTGACT -ACGGAACGTCTTCCTCAACAACCT -ACGGAACGTCTTCCTCAAGCTACT -ACGGAACGTCTTCCTCAAGGATCT -ACGGAACGTCTTCCTCAAAAGGCT -ACGGAACGTCTTCCTCAATCAACC -ACGGAACGTCTTCCTCAATGTTCC -ACGGAACGTCTTCCTCAAATTCCC -ACGGAACGTCTTCCTCAATTCTCG -ACGGAACGTCTTCCTCAATAGACG -ACGGAACGTCTTCCTCAAGTAACG -ACGGAACGTCTTCCTCAAACTTCG -ACGGAACGTCTTCCTCAATACGCA -ACGGAACGTCTTCCTCAACTTGCA -ACGGAACGTCTTCCTCAACGAACA -ACGGAACGTCTTCCTCAACAGTCA -ACGGAACGTCTTCCTCAAGATCCA -ACGGAACGTCTTCCTCAAACGACA -ACGGAACGTCTTCCTCAAAGCTCA -ACGGAACGTCTTCCTCAATCACGT -ACGGAACGTCTTCCTCAACGTAGT -ACGGAACGTCTTCCTCAAGTCAGT -ACGGAACGTCTTCCTCAAGAAGGT -ACGGAACGTCTTCCTCAAAACCGT -ACGGAACGTCTTCCTCAATTGTGC -ACGGAACGTCTTCCTCAACTAAGC -ACGGAACGTCTTCCTCAAACTAGC -ACGGAACGTCTTCCTCAAAGATGC -ACGGAACGTCTTCCTCAATGAAGG -ACGGAACGTCTTCCTCAACAATGG -ACGGAACGTCTTCCTCAAATGAGG -ACGGAACGTCTTCCTCAAAATGGG -ACGGAACGTCTTCCTCAATCCTGA -ACGGAACGTCTTCCTCAATAGCGA -ACGGAACGTCTTCCTCAACACAGA -ACGGAACGTCTTCCTCAAGCAAGA -ACGGAACGTCTTCCTCAAGGTTGA -ACGGAACGTCTTCCTCAATCCGAT -ACGGAACGTCTTCCTCAATGGCAT -ACGGAACGTCTTCCTCAACGAGAT -ACGGAACGTCTTCCTCAATACCAC -ACGGAACGTCTTCCTCAACAGAAC -ACGGAACGTCTTCCTCAAGTCTAC -ACGGAACGTCTTCCTCAAACGTAC -ACGGAACGTCTTCCTCAAAGTGAC -ACGGAACGTCTTCCTCAACTGTAG -ACGGAACGTCTTCCTCAACCTAAG -ACGGAACGTCTTCCTCAAGTTCAG -ACGGAACGTCTTCCTCAAGCATAG -ACGGAACGTCTTCCTCAAGACAAG -ACGGAACGTCTTCCTCAAAAGCAG -ACGGAACGTCTTCCTCAACGTCAA -ACGGAACGTCTTCCTCAAGCTGAA -ACGGAACGTCTTCCTCAAAGTACG -ACGGAACGTCTTCCTCAAATCCGA -ACGGAACGTCTTCCTCAAATGGGA -ACGGAACGTCTTCCTCAAGTGCAA -ACGGAACGTCTTCCTCAAGAGGAA -ACGGAACGTCTTCCTCAACAGGTA -ACGGAACGTCTTCCTCAAGACTCT -ACGGAACGTCTTCCTCAAAGTCCT -ACGGAACGTCTTCCTCAATAAGCC -ACGGAACGTCTTCCTCAAATAGCC -ACGGAACGTCTTCCTCAATAACCG -ACGGAACGTCTTCCTCAAATGCCA -ACGGAACGTCTTACTGCTGGAAAC -ACGGAACGTCTTACTGCTAACACC -ACGGAACGTCTTACTGCTATCGAG -ACGGAACGTCTTACTGCTCTCCTT -ACGGAACGTCTTACTGCTCCTGTT -ACGGAACGTCTTACTGCTCGGTTT -ACGGAACGTCTTACTGCTGTGGTT -ACGGAACGTCTTACTGCTGCCTTT -ACGGAACGTCTTACTGCTGGTCTT -ACGGAACGTCTTACTGCTACGCTT -ACGGAACGTCTTACTGCTAGCGTT -ACGGAACGTCTTACTGCTTTCGTC -ACGGAACGTCTTACTGCTTCTCTC -ACGGAACGTCTTACTGCTTGGATC -ACGGAACGTCTTACTGCTCACTTC -ACGGAACGTCTTACTGCTGTACTC -ACGGAACGTCTTACTGCTGATGTC -ACGGAACGTCTTACTGCTACAGTC -ACGGAACGTCTTACTGCTTTGCTG -ACGGAACGTCTTACTGCTTCCATG -ACGGAACGTCTTACTGCTTGTGTG -ACGGAACGTCTTACTGCTCTAGTG -ACGGAACGTCTTACTGCTCATCTG -ACGGAACGTCTTACTGCTGAGTTG -ACGGAACGTCTTACTGCTAGACTG -ACGGAACGTCTTACTGCTTCGGTA -ACGGAACGTCTTACTGCTTGCCTA -ACGGAACGTCTTACTGCTCCACTA -ACGGAACGTCTTACTGCTGGAGTA -ACGGAACGTCTTACTGCTTCGTCT -ACGGAACGTCTTACTGCTTGCACT -ACGGAACGTCTTACTGCTCTGACT -ACGGAACGTCTTACTGCTCAACCT -ACGGAACGTCTTACTGCTGCTACT -ACGGAACGTCTTACTGCTGGATCT -ACGGAACGTCTTACTGCTAAGGCT -ACGGAACGTCTTACTGCTTCAACC -ACGGAACGTCTTACTGCTTGTTCC -ACGGAACGTCTTACTGCTATTCCC -ACGGAACGTCTTACTGCTTTCTCG -ACGGAACGTCTTACTGCTTAGACG -ACGGAACGTCTTACTGCTGTAACG -ACGGAACGTCTTACTGCTACTTCG -ACGGAACGTCTTACTGCTTACGCA -ACGGAACGTCTTACTGCTCTTGCA -ACGGAACGTCTTACTGCTCGAACA -ACGGAACGTCTTACTGCTCAGTCA -ACGGAACGTCTTACTGCTGATCCA -ACGGAACGTCTTACTGCTACGACA -ACGGAACGTCTTACTGCTAGCTCA -ACGGAACGTCTTACTGCTTCACGT -ACGGAACGTCTTACTGCTCGTAGT -ACGGAACGTCTTACTGCTGTCAGT -ACGGAACGTCTTACTGCTGAAGGT -ACGGAACGTCTTACTGCTAACCGT -ACGGAACGTCTTACTGCTTTGTGC -ACGGAACGTCTTACTGCTCTAAGC -ACGGAACGTCTTACTGCTACTAGC -ACGGAACGTCTTACTGCTAGATGC -ACGGAACGTCTTACTGCTTGAAGG -ACGGAACGTCTTACTGCTCAATGG -ACGGAACGTCTTACTGCTATGAGG -ACGGAACGTCTTACTGCTAATGGG -ACGGAACGTCTTACTGCTTCCTGA -ACGGAACGTCTTACTGCTTAGCGA -ACGGAACGTCTTACTGCTCACAGA -ACGGAACGTCTTACTGCTGCAAGA -ACGGAACGTCTTACTGCTGGTTGA -ACGGAACGTCTTACTGCTTCCGAT -ACGGAACGTCTTACTGCTTGGCAT -ACGGAACGTCTTACTGCTCGAGAT -ACGGAACGTCTTACTGCTTACCAC -ACGGAACGTCTTACTGCTCAGAAC -ACGGAACGTCTTACTGCTGTCTAC -ACGGAACGTCTTACTGCTACGTAC -ACGGAACGTCTTACTGCTAGTGAC -ACGGAACGTCTTACTGCTCTGTAG -ACGGAACGTCTTACTGCTCCTAAG -ACGGAACGTCTTACTGCTGTTCAG -ACGGAACGTCTTACTGCTGCATAG -ACGGAACGTCTTACTGCTGACAAG -ACGGAACGTCTTACTGCTAAGCAG -ACGGAACGTCTTACTGCTCGTCAA -ACGGAACGTCTTACTGCTGCTGAA -ACGGAACGTCTTACTGCTAGTACG -ACGGAACGTCTTACTGCTATCCGA -ACGGAACGTCTTACTGCTATGGGA -ACGGAACGTCTTACTGCTGTGCAA -ACGGAACGTCTTACTGCTGAGGAA -ACGGAACGTCTTACTGCTCAGGTA -ACGGAACGTCTTACTGCTGACTCT -ACGGAACGTCTTACTGCTAGTCCT -ACGGAACGTCTTACTGCTTAAGCC -ACGGAACGTCTTACTGCTATAGCC -ACGGAACGTCTTACTGCTTAACCG -ACGGAACGTCTTACTGCTATGCCA -ACGGAACGTCTTTCTGGAGGAAAC -ACGGAACGTCTTTCTGGAAACACC -ACGGAACGTCTTTCTGGAATCGAG -ACGGAACGTCTTTCTGGACTCCTT -ACGGAACGTCTTTCTGGACCTGTT -ACGGAACGTCTTTCTGGACGGTTT -ACGGAACGTCTTTCTGGAGTGGTT -ACGGAACGTCTTTCTGGAGCCTTT -ACGGAACGTCTTTCTGGAGGTCTT -ACGGAACGTCTTTCTGGAACGCTT -ACGGAACGTCTTTCTGGAAGCGTT -ACGGAACGTCTTTCTGGATTCGTC -ACGGAACGTCTTTCTGGATCTCTC -ACGGAACGTCTTTCTGGATGGATC -ACGGAACGTCTTTCTGGACACTTC -ACGGAACGTCTTTCTGGAGTACTC -ACGGAACGTCTTTCTGGAGATGTC -ACGGAACGTCTTTCTGGAACAGTC -ACGGAACGTCTTTCTGGATTGCTG -ACGGAACGTCTTTCTGGATCCATG -ACGGAACGTCTTTCTGGATGTGTG -ACGGAACGTCTTTCTGGACTAGTG -ACGGAACGTCTTTCTGGACATCTG -ACGGAACGTCTTTCTGGAGAGTTG -ACGGAACGTCTTTCTGGAAGACTG -ACGGAACGTCTTTCTGGATCGGTA -ACGGAACGTCTTTCTGGATGCCTA -ACGGAACGTCTTTCTGGACCACTA -ACGGAACGTCTTTCTGGAGGAGTA -ACGGAACGTCTTTCTGGATCGTCT -ACGGAACGTCTTTCTGGATGCACT -ACGGAACGTCTTTCTGGACTGACT -ACGGAACGTCTTTCTGGACAACCT -ACGGAACGTCTTTCTGGAGCTACT -ACGGAACGTCTTTCTGGAGGATCT -ACGGAACGTCTTTCTGGAAAGGCT -ACGGAACGTCTTTCTGGATCAACC -ACGGAACGTCTTTCTGGATGTTCC -ACGGAACGTCTTTCTGGAATTCCC -ACGGAACGTCTTTCTGGATTCTCG -ACGGAACGTCTTTCTGGATAGACG -ACGGAACGTCTTTCTGGAGTAACG -ACGGAACGTCTTTCTGGAACTTCG -ACGGAACGTCTTTCTGGATACGCA -ACGGAACGTCTTTCTGGACTTGCA -ACGGAACGTCTTTCTGGACGAACA -ACGGAACGTCTTTCTGGACAGTCA -ACGGAACGTCTTTCTGGAGATCCA -ACGGAACGTCTTTCTGGAACGACA -ACGGAACGTCTTTCTGGAAGCTCA -ACGGAACGTCTTTCTGGATCACGT -ACGGAACGTCTTTCTGGACGTAGT -ACGGAACGTCTTTCTGGAGTCAGT -ACGGAACGTCTTTCTGGAGAAGGT -ACGGAACGTCTTTCTGGAAACCGT -ACGGAACGTCTTTCTGGATTGTGC -ACGGAACGTCTTTCTGGACTAAGC -ACGGAACGTCTTTCTGGAACTAGC -ACGGAACGTCTTTCTGGAAGATGC -ACGGAACGTCTTTCTGGATGAAGG -ACGGAACGTCTTTCTGGACAATGG -ACGGAACGTCTTTCTGGAATGAGG -ACGGAACGTCTTTCTGGAAATGGG -ACGGAACGTCTTTCTGGATCCTGA -ACGGAACGTCTTTCTGGATAGCGA -ACGGAACGTCTTTCTGGACACAGA -ACGGAACGTCTTTCTGGAGCAAGA -ACGGAACGTCTTTCTGGAGGTTGA -ACGGAACGTCTTTCTGGATCCGAT -ACGGAACGTCTTTCTGGATGGCAT -ACGGAACGTCTTTCTGGACGAGAT -ACGGAACGTCTTTCTGGATACCAC -ACGGAACGTCTTTCTGGACAGAAC -ACGGAACGTCTTTCTGGAGTCTAC -ACGGAACGTCTTTCTGGAACGTAC -ACGGAACGTCTTTCTGGAAGTGAC -ACGGAACGTCTTTCTGGACTGTAG -ACGGAACGTCTTTCTGGACCTAAG -ACGGAACGTCTTTCTGGAGTTCAG -ACGGAACGTCTTTCTGGAGCATAG -ACGGAACGTCTTTCTGGAGACAAG -ACGGAACGTCTTTCTGGAAAGCAG -ACGGAACGTCTTTCTGGACGTCAA -ACGGAACGTCTTTCTGGAGCTGAA -ACGGAACGTCTTTCTGGAAGTACG -ACGGAACGTCTTTCTGGAATCCGA -ACGGAACGTCTTTCTGGAATGGGA -ACGGAACGTCTTTCTGGAGTGCAA -ACGGAACGTCTTTCTGGAGAGGAA -ACGGAACGTCTTTCTGGACAGGTA -ACGGAACGTCTTTCTGGAGACTCT -ACGGAACGTCTTTCTGGAAGTCCT -ACGGAACGTCTTTCTGGATAAGCC -ACGGAACGTCTTTCTGGAATAGCC -ACGGAACGTCTTTCTGGATAACCG -ACGGAACGTCTTTCTGGAATGCCA -ACGGAACGTCTTGCTAAGGGAAAC -ACGGAACGTCTTGCTAAGAACACC -ACGGAACGTCTTGCTAAGATCGAG -ACGGAACGTCTTGCTAAGCTCCTT -ACGGAACGTCTTGCTAAGCCTGTT -ACGGAACGTCTTGCTAAGCGGTTT -ACGGAACGTCTTGCTAAGGTGGTT -ACGGAACGTCTTGCTAAGGCCTTT -ACGGAACGTCTTGCTAAGGGTCTT -ACGGAACGTCTTGCTAAGACGCTT -ACGGAACGTCTTGCTAAGAGCGTT -ACGGAACGTCTTGCTAAGTTCGTC -ACGGAACGTCTTGCTAAGTCTCTC -ACGGAACGTCTTGCTAAGTGGATC -ACGGAACGTCTTGCTAAGCACTTC -ACGGAACGTCTTGCTAAGGTACTC -ACGGAACGTCTTGCTAAGGATGTC -ACGGAACGTCTTGCTAAGACAGTC -ACGGAACGTCTTGCTAAGTTGCTG -ACGGAACGTCTTGCTAAGTCCATG -ACGGAACGTCTTGCTAAGTGTGTG -ACGGAACGTCTTGCTAAGCTAGTG -ACGGAACGTCTTGCTAAGCATCTG -ACGGAACGTCTTGCTAAGGAGTTG -ACGGAACGTCTTGCTAAGAGACTG -ACGGAACGTCTTGCTAAGTCGGTA -ACGGAACGTCTTGCTAAGTGCCTA -ACGGAACGTCTTGCTAAGCCACTA -ACGGAACGTCTTGCTAAGGGAGTA -ACGGAACGTCTTGCTAAGTCGTCT -ACGGAACGTCTTGCTAAGTGCACT -ACGGAACGTCTTGCTAAGCTGACT -ACGGAACGTCTTGCTAAGCAACCT -ACGGAACGTCTTGCTAAGGCTACT -ACGGAACGTCTTGCTAAGGGATCT -ACGGAACGTCTTGCTAAGAAGGCT -ACGGAACGTCTTGCTAAGTCAACC -ACGGAACGTCTTGCTAAGTGTTCC -ACGGAACGTCTTGCTAAGATTCCC -ACGGAACGTCTTGCTAAGTTCTCG -ACGGAACGTCTTGCTAAGTAGACG -ACGGAACGTCTTGCTAAGGTAACG -ACGGAACGTCTTGCTAAGACTTCG -ACGGAACGTCTTGCTAAGTACGCA -ACGGAACGTCTTGCTAAGCTTGCA -ACGGAACGTCTTGCTAAGCGAACA -ACGGAACGTCTTGCTAAGCAGTCA -ACGGAACGTCTTGCTAAGGATCCA -ACGGAACGTCTTGCTAAGACGACA -ACGGAACGTCTTGCTAAGAGCTCA -ACGGAACGTCTTGCTAAGTCACGT -ACGGAACGTCTTGCTAAGCGTAGT -ACGGAACGTCTTGCTAAGGTCAGT -ACGGAACGTCTTGCTAAGGAAGGT -ACGGAACGTCTTGCTAAGAACCGT -ACGGAACGTCTTGCTAAGTTGTGC -ACGGAACGTCTTGCTAAGCTAAGC -ACGGAACGTCTTGCTAAGACTAGC -ACGGAACGTCTTGCTAAGAGATGC -ACGGAACGTCTTGCTAAGTGAAGG -ACGGAACGTCTTGCTAAGCAATGG -ACGGAACGTCTTGCTAAGATGAGG -ACGGAACGTCTTGCTAAGAATGGG -ACGGAACGTCTTGCTAAGTCCTGA -ACGGAACGTCTTGCTAAGTAGCGA -ACGGAACGTCTTGCTAAGCACAGA -ACGGAACGTCTTGCTAAGGCAAGA -ACGGAACGTCTTGCTAAGGGTTGA -ACGGAACGTCTTGCTAAGTCCGAT -ACGGAACGTCTTGCTAAGTGGCAT -ACGGAACGTCTTGCTAAGCGAGAT -ACGGAACGTCTTGCTAAGTACCAC -ACGGAACGTCTTGCTAAGCAGAAC -ACGGAACGTCTTGCTAAGGTCTAC -ACGGAACGTCTTGCTAAGACGTAC -ACGGAACGTCTTGCTAAGAGTGAC -ACGGAACGTCTTGCTAAGCTGTAG -ACGGAACGTCTTGCTAAGCCTAAG -ACGGAACGTCTTGCTAAGGTTCAG -ACGGAACGTCTTGCTAAGGCATAG -ACGGAACGTCTTGCTAAGGACAAG -ACGGAACGTCTTGCTAAGAAGCAG -ACGGAACGTCTTGCTAAGCGTCAA -ACGGAACGTCTTGCTAAGGCTGAA -ACGGAACGTCTTGCTAAGAGTACG -ACGGAACGTCTTGCTAAGATCCGA -ACGGAACGTCTTGCTAAGATGGGA -ACGGAACGTCTTGCTAAGGTGCAA -ACGGAACGTCTTGCTAAGGAGGAA -ACGGAACGTCTTGCTAAGCAGGTA -ACGGAACGTCTTGCTAAGGACTCT -ACGGAACGTCTTGCTAAGAGTCCT -ACGGAACGTCTTGCTAAGTAAGCC -ACGGAACGTCTTGCTAAGATAGCC -ACGGAACGTCTTGCTAAGTAACCG -ACGGAACGTCTTGCTAAGATGCCA -ACGGAACGTCTTACCTCAGGAAAC -ACGGAACGTCTTACCTCAAACACC -ACGGAACGTCTTACCTCAATCGAG -ACGGAACGTCTTACCTCACTCCTT -ACGGAACGTCTTACCTCACCTGTT -ACGGAACGTCTTACCTCACGGTTT -ACGGAACGTCTTACCTCAGTGGTT -ACGGAACGTCTTACCTCAGCCTTT -ACGGAACGTCTTACCTCAGGTCTT -ACGGAACGTCTTACCTCAACGCTT -ACGGAACGTCTTACCTCAAGCGTT -ACGGAACGTCTTACCTCATTCGTC -ACGGAACGTCTTACCTCATCTCTC -ACGGAACGTCTTACCTCATGGATC -ACGGAACGTCTTACCTCACACTTC -ACGGAACGTCTTACCTCAGTACTC -ACGGAACGTCTTACCTCAGATGTC -ACGGAACGTCTTACCTCAACAGTC -ACGGAACGTCTTACCTCATTGCTG -ACGGAACGTCTTACCTCATCCATG -ACGGAACGTCTTACCTCATGTGTG -ACGGAACGTCTTACCTCACTAGTG -ACGGAACGTCTTACCTCACATCTG -ACGGAACGTCTTACCTCAGAGTTG -ACGGAACGTCTTACCTCAAGACTG -ACGGAACGTCTTACCTCATCGGTA -ACGGAACGTCTTACCTCATGCCTA -ACGGAACGTCTTACCTCACCACTA -ACGGAACGTCTTACCTCAGGAGTA -ACGGAACGTCTTACCTCATCGTCT -ACGGAACGTCTTACCTCATGCACT -ACGGAACGTCTTACCTCACTGACT -ACGGAACGTCTTACCTCACAACCT -ACGGAACGTCTTACCTCAGCTACT -ACGGAACGTCTTACCTCAGGATCT -ACGGAACGTCTTACCTCAAAGGCT -ACGGAACGTCTTACCTCATCAACC -ACGGAACGTCTTACCTCATGTTCC -ACGGAACGTCTTACCTCAATTCCC -ACGGAACGTCTTACCTCATTCTCG -ACGGAACGTCTTACCTCATAGACG -ACGGAACGTCTTACCTCAGTAACG -ACGGAACGTCTTACCTCAACTTCG -ACGGAACGTCTTACCTCATACGCA -ACGGAACGTCTTACCTCACTTGCA -ACGGAACGTCTTACCTCACGAACA -ACGGAACGTCTTACCTCACAGTCA -ACGGAACGTCTTACCTCAGATCCA -ACGGAACGTCTTACCTCAACGACA -ACGGAACGTCTTACCTCAAGCTCA -ACGGAACGTCTTACCTCATCACGT -ACGGAACGTCTTACCTCACGTAGT -ACGGAACGTCTTACCTCAGTCAGT -ACGGAACGTCTTACCTCAGAAGGT -ACGGAACGTCTTACCTCAAACCGT -ACGGAACGTCTTACCTCATTGTGC -ACGGAACGTCTTACCTCACTAAGC -ACGGAACGTCTTACCTCAACTAGC -ACGGAACGTCTTACCTCAAGATGC -ACGGAACGTCTTACCTCATGAAGG -ACGGAACGTCTTACCTCACAATGG -ACGGAACGTCTTACCTCAATGAGG -ACGGAACGTCTTACCTCAAATGGG -ACGGAACGTCTTACCTCATCCTGA -ACGGAACGTCTTACCTCATAGCGA -ACGGAACGTCTTACCTCACACAGA -ACGGAACGTCTTACCTCAGCAAGA -ACGGAACGTCTTACCTCAGGTTGA -ACGGAACGTCTTACCTCATCCGAT -ACGGAACGTCTTACCTCATGGCAT -ACGGAACGTCTTACCTCACGAGAT -ACGGAACGTCTTACCTCATACCAC -ACGGAACGTCTTACCTCACAGAAC -ACGGAACGTCTTACCTCAGTCTAC -ACGGAACGTCTTACCTCAACGTAC -ACGGAACGTCTTACCTCAAGTGAC -ACGGAACGTCTTACCTCACTGTAG -ACGGAACGTCTTACCTCACCTAAG -ACGGAACGTCTTACCTCAGTTCAG -ACGGAACGTCTTACCTCAGCATAG -ACGGAACGTCTTACCTCAGACAAG -ACGGAACGTCTTACCTCAAAGCAG -ACGGAACGTCTTACCTCACGTCAA -ACGGAACGTCTTACCTCAGCTGAA -ACGGAACGTCTTACCTCAAGTACG -ACGGAACGTCTTACCTCAATCCGA -ACGGAACGTCTTACCTCAATGGGA -ACGGAACGTCTTACCTCAGTGCAA -ACGGAACGTCTTACCTCAGAGGAA -ACGGAACGTCTTACCTCACAGGTA -ACGGAACGTCTTACCTCAGACTCT -ACGGAACGTCTTACCTCAAGTCCT -ACGGAACGTCTTACCTCATAAGCC -ACGGAACGTCTTACCTCAATAGCC -ACGGAACGTCTTACCTCATAACCG -ACGGAACGTCTTACCTCAATGCCA -ACGGAACGTCTTTCCTGTGGAAAC -ACGGAACGTCTTTCCTGTAACACC -ACGGAACGTCTTTCCTGTATCGAG -ACGGAACGTCTTTCCTGTCTCCTT -ACGGAACGTCTTTCCTGTCCTGTT -ACGGAACGTCTTTCCTGTCGGTTT -ACGGAACGTCTTTCCTGTGTGGTT -ACGGAACGTCTTTCCTGTGCCTTT -ACGGAACGTCTTTCCTGTGGTCTT -ACGGAACGTCTTTCCTGTACGCTT -ACGGAACGTCTTTCCTGTAGCGTT -ACGGAACGTCTTTCCTGTTTCGTC -ACGGAACGTCTTTCCTGTTCTCTC -ACGGAACGTCTTTCCTGTTGGATC -ACGGAACGTCTTTCCTGTCACTTC -ACGGAACGTCTTTCCTGTGTACTC -ACGGAACGTCTTTCCTGTGATGTC -ACGGAACGTCTTTCCTGTACAGTC -ACGGAACGTCTTTCCTGTTTGCTG -ACGGAACGTCTTTCCTGTTCCATG -ACGGAACGTCTTTCCTGTTGTGTG -ACGGAACGTCTTTCCTGTCTAGTG -ACGGAACGTCTTTCCTGTCATCTG -ACGGAACGTCTTTCCTGTGAGTTG -ACGGAACGTCTTTCCTGTAGACTG -ACGGAACGTCTTTCCTGTTCGGTA -ACGGAACGTCTTTCCTGTTGCCTA -ACGGAACGTCTTTCCTGTCCACTA -ACGGAACGTCTTTCCTGTGGAGTA -ACGGAACGTCTTTCCTGTTCGTCT -ACGGAACGTCTTTCCTGTTGCACT -ACGGAACGTCTTTCCTGTCTGACT -ACGGAACGTCTTTCCTGTCAACCT -ACGGAACGTCTTTCCTGTGCTACT -ACGGAACGTCTTTCCTGTGGATCT -ACGGAACGTCTTTCCTGTAAGGCT -ACGGAACGTCTTTCCTGTTCAACC -ACGGAACGTCTTTCCTGTTGTTCC -ACGGAACGTCTTTCCTGTATTCCC -ACGGAACGTCTTTCCTGTTTCTCG -ACGGAACGTCTTTCCTGTTAGACG -ACGGAACGTCTTTCCTGTGTAACG -ACGGAACGTCTTTCCTGTACTTCG -ACGGAACGTCTTTCCTGTTACGCA -ACGGAACGTCTTTCCTGTCTTGCA -ACGGAACGTCTTTCCTGTCGAACA -ACGGAACGTCTTTCCTGTCAGTCA -ACGGAACGTCTTTCCTGTGATCCA -ACGGAACGTCTTTCCTGTACGACA -ACGGAACGTCTTTCCTGTAGCTCA -ACGGAACGTCTTTCCTGTTCACGT -ACGGAACGTCTTTCCTGTCGTAGT -ACGGAACGTCTTTCCTGTGTCAGT -ACGGAACGTCTTTCCTGTGAAGGT -ACGGAACGTCTTTCCTGTAACCGT -ACGGAACGTCTTTCCTGTTTGTGC -ACGGAACGTCTTTCCTGTCTAAGC -ACGGAACGTCTTTCCTGTACTAGC -ACGGAACGTCTTTCCTGTAGATGC -ACGGAACGTCTTTCCTGTTGAAGG -ACGGAACGTCTTTCCTGTCAATGG -ACGGAACGTCTTTCCTGTATGAGG -ACGGAACGTCTTTCCTGTAATGGG -ACGGAACGTCTTTCCTGTTCCTGA -ACGGAACGTCTTTCCTGTTAGCGA -ACGGAACGTCTTTCCTGTCACAGA -ACGGAACGTCTTTCCTGTGCAAGA -ACGGAACGTCTTTCCTGTGGTTGA -ACGGAACGTCTTTCCTGTTCCGAT -ACGGAACGTCTTTCCTGTTGGCAT -ACGGAACGTCTTTCCTGTCGAGAT -ACGGAACGTCTTTCCTGTTACCAC -ACGGAACGTCTTTCCTGTCAGAAC -ACGGAACGTCTTTCCTGTGTCTAC -ACGGAACGTCTTTCCTGTACGTAC -ACGGAACGTCTTTCCTGTAGTGAC -ACGGAACGTCTTTCCTGTCTGTAG -ACGGAACGTCTTTCCTGTCCTAAG -ACGGAACGTCTTTCCTGTGTTCAG -ACGGAACGTCTTTCCTGTGCATAG -ACGGAACGTCTTTCCTGTGACAAG -ACGGAACGTCTTTCCTGTAAGCAG -ACGGAACGTCTTTCCTGTCGTCAA -ACGGAACGTCTTTCCTGTGCTGAA -ACGGAACGTCTTTCCTGTAGTACG -ACGGAACGTCTTTCCTGTATCCGA -ACGGAACGTCTTTCCTGTATGGGA -ACGGAACGTCTTTCCTGTGTGCAA -ACGGAACGTCTTTCCTGTGAGGAA -ACGGAACGTCTTTCCTGTCAGGTA -ACGGAACGTCTTTCCTGTGACTCT -ACGGAACGTCTTTCCTGTAGTCCT -ACGGAACGTCTTTCCTGTTAAGCC -ACGGAACGTCTTTCCTGTATAGCC -ACGGAACGTCTTTCCTGTTAACCG -ACGGAACGTCTTTCCTGTATGCCA -ACGGAACGTCTTCCCATTGGAAAC -ACGGAACGTCTTCCCATTAACACC -ACGGAACGTCTTCCCATTATCGAG -ACGGAACGTCTTCCCATTCTCCTT -ACGGAACGTCTTCCCATTCCTGTT -ACGGAACGTCTTCCCATTCGGTTT -ACGGAACGTCTTCCCATTGTGGTT -ACGGAACGTCTTCCCATTGCCTTT -ACGGAACGTCTTCCCATTGGTCTT -ACGGAACGTCTTCCCATTACGCTT -ACGGAACGTCTTCCCATTAGCGTT -ACGGAACGTCTTCCCATTTTCGTC -ACGGAACGTCTTCCCATTTCTCTC -ACGGAACGTCTTCCCATTTGGATC -ACGGAACGTCTTCCCATTCACTTC -ACGGAACGTCTTCCCATTGTACTC -ACGGAACGTCTTCCCATTGATGTC -ACGGAACGTCTTCCCATTACAGTC -ACGGAACGTCTTCCCATTTTGCTG -ACGGAACGTCTTCCCATTTCCATG -ACGGAACGTCTTCCCATTTGTGTG -ACGGAACGTCTTCCCATTCTAGTG -ACGGAACGTCTTCCCATTCATCTG -ACGGAACGTCTTCCCATTGAGTTG -ACGGAACGTCTTCCCATTAGACTG -ACGGAACGTCTTCCCATTTCGGTA -ACGGAACGTCTTCCCATTTGCCTA -ACGGAACGTCTTCCCATTCCACTA -ACGGAACGTCTTCCCATTGGAGTA -ACGGAACGTCTTCCCATTTCGTCT -ACGGAACGTCTTCCCATTTGCACT -ACGGAACGTCTTCCCATTCTGACT -ACGGAACGTCTTCCCATTCAACCT -ACGGAACGTCTTCCCATTGCTACT -ACGGAACGTCTTCCCATTGGATCT -ACGGAACGTCTTCCCATTAAGGCT -ACGGAACGTCTTCCCATTTCAACC -ACGGAACGTCTTCCCATTTGTTCC -ACGGAACGTCTTCCCATTATTCCC -ACGGAACGTCTTCCCATTTTCTCG -ACGGAACGTCTTCCCATTTAGACG -ACGGAACGTCTTCCCATTGTAACG -ACGGAACGTCTTCCCATTACTTCG -ACGGAACGTCTTCCCATTTACGCA -ACGGAACGTCTTCCCATTCTTGCA -ACGGAACGTCTTCCCATTCGAACA -ACGGAACGTCTTCCCATTCAGTCA -ACGGAACGTCTTCCCATTGATCCA -ACGGAACGTCTTCCCATTACGACA -ACGGAACGTCTTCCCATTAGCTCA -ACGGAACGTCTTCCCATTTCACGT -ACGGAACGTCTTCCCATTCGTAGT -ACGGAACGTCTTCCCATTGTCAGT -ACGGAACGTCTTCCCATTGAAGGT -ACGGAACGTCTTCCCATTAACCGT -ACGGAACGTCTTCCCATTTTGTGC -ACGGAACGTCTTCCCATTCTAAGC -ACGGAACGTCTTCCCATTACTAGC -ACGGAACGTCTTCCCATTAGATGC -ACGGAACGTCTTCCCATTTGAAGG -ACGGAACGTCTTCCCATTCAATGG -ACGGAACGTCTTCCCATTATGAGG -ACGGAACGTCTTCCCATTAATGGG -ACGGAACGTCTTCCCATTTCCTGA -ACGGAACGTCTTCCCATTTAGCGA -ACGGAACGTCTTCCCATTCACAGA -ACGGAACGTCTTCCCATTGCAAGA -ACGGAACGTCTTCCCATTGGTTGA -ACGGAACGTCTTCCCATTTCCGAT -ACGGAACGTCTTCCCATTTGGCAT -ACGGAACGTCTTCCCATTCGAGAT -ACGGAACGTCTTCCCATTTACCAC -ACGGAACGTCTTCCCATTCAGAAC -ACGGAACGTCTTCCCATTGTCTAC -ACGGAACGTCTTCCCATTACGTAC -ACGGAACGTCTTCCCATTAGTGAC -ACGGAACGTCTTCCCATTCTGTAG -ACGGAACGTCTTCCCATTCCTAAG -ACGGAACGTCTTCCCATTGTTCAG -ACGGAACGTCTTCCCATTGCATAG -ACGGAACGTCTTCCCATTGACAAG -ACGGAACGTCTTCCCATTAAGCAG -ACGGAACGTCTTCCCATTCGTCAA -ACGGAACGTCTTCCCATTGCTGAA -ACGGAACGTCTTCCCATTAGTACG -ACGGAACGTCTTCCCATTATCCGA -ACGGAACGTCTTCCCATTATGGGA -ACGGAACGTCTTCCCATTGTGCAA -ACGGAACGTCTTCCCATTGAGGAA -ACGGAACGTCTTCCCATTCAGGTA -ACGGAACGTCTTCCCATTGACTCT -ACGGAACGTCTTCCCATTAGTCCT -ACGGAACGTCTTCCCATTTAAGCC -ACGGAACGTCTTCCCATTATAGCC -ACGGAACGTCTTCCCATTTAACCG -ACGGAACGTCTTCCCATTATGCCA -ACGGAACGTCTTTCGTTCGGAAAC -ACGGAACGTCTTTCGTTCAACACC -ACGGAACGTCTTTCGTTCATCGAG -ACGGAACGTCTTTCGTTCCTCCTT -ACGGAACGTCTTTCGTTCCCTGTT -ACGGAACGTCTTTCGTTCCGGTTT -ACGGAACGTCTTTCGTTCGTGGTT -ACGGAACGTCTTTCGTTCGCCTTT -ACGGAACGTCTTTCGTTCGGTCTT -ACGGAACGTCTTTCGTTCACGCTT -ACGGAACGTCTTTCGTTCAGCGTT -ACGGAACGTCTTTCGTTCTTCGTC -ACGGAACGTCTTTCGTTCTCTCTC -ACGGAACGTCTTTCGTTCTGGATC -ACGGAACGTCTTTCGTTCCACTTC -ACGGAACGTCTTTCGTTCGTACTC -ACGGAACGTCTTTCGTTCGATGTC -ACGGAACGTCTTTCGTTCACAGTC -ACGGAACGTCTTTCGTTCTTGCTG -ACGGAACGTCTTTCGTTCTCCATG -ACGGAACGTCTTTCGTTCTGTGTG -ACGGAACGTCTTTCGTTCCTAGTG -ACGGAACGTCTTTCGTTCCATCTG -ACGGAACGTCTTTCGTTCGAGTTG -ACGGAACGTCTTTCGTTCAGACTG -ACGGAACGTCTTTCGTTCTCGGTA -ACGGAACGTCTTTCGTTCTGCCTA -ACGGAACGTCTTTCGTTCCCACTA -ACGGAACGTCTTTCGTTCGGAGTA -ACGGAACGTCTTTCGTTCTCGTCT -ACGGAACGTCTTTCGTTCTGCACT -ACGGAACGTCTTTCGTTCCTGACT -ACGGAACGTCTTTCGTTCCAACCT -ACGGAACGTCTTTCGTTCGCTACT -ACGGAACGTCTTTCGTTCGGATCT -ACGGAACGTCTTTCGTTCAAGGCT -ACGGAACGTCTTTCGTTCTCAACC -ACGGAACGTCTTTCGTTCTGTTCC -ACGGAACGTCTTTCGTTCATTCCC -ACGGAACGTCTTTCGTTCTTCTCG -ACGGAACGTCTTTCGTTCTAGACG -ACGGAACGTCTTTCGTTCGTAACG -ACGGAACGTCTTTCGTTCACTTCG -ACGGAACGTCTTTCGTTCTACGCA -ACGGAACGTCTTTCGTTCCTTGCA -ACGGAACGTCTTTCGTTCCGAACA -ACGGAACGTCTTTCGTTCCAGTCA -ACGGAACGTCTTTCGTTCGATCCA -ACGGAACGTCTTTCGTTCACGACA -ACGGAACGTCTTTCGTTCAGCTCA -ACGGAACGTCTTTCGTTCTCACGT -ACGGAACGTCTTTCGTTCCGTAGT -ACGGAACGTCTTTCGTTCGTCAGT -ACGGAACGTCTTTCGTTCGAAGGT -ACGGAACGTCTTTCGTTCAACCGT -ACGGAACGTCTTTCGTTCTTGTGC -ACGGAACGTCTTTCGTTCCTAAGC -ACGGAACGTCTTTCGTTCACTAGC -ACGGAACGTCTTTCGTTCAGATGC -ACGGAACGTCTTTCGTTCTGAAGG -ACGGAACGTCTTTCGTTCCAATGG -ACGGAACGTCTTTCGTTCATGAGG -ACGGAACGTCTTTCGTTCAATGGG -ACGGAACGTCTTTCGTTCTCCTGA -ACGGAACGTCTTTCGTTCTAGCGA -ACGGAACGTCTTTCGTTCCACAGA -ACGGAACGTCTTTCGTTCGCAAGA -ACGGAACGTCTTTCGTTCGGTTGA -ACGGAACGTCTTTCGTTCTCCGAT -ACGGAACGTCTTTCGTTCTGGCAT -ACGGAACGTCTTTCGTTCCGAGAT -ACGGAACGTCTTTCGTTCTACCAC -ACGGAACGTCTTTCGTTCCAGAAC -ACGGAACGTCTTTCGTTCGTCTAC -ACGGAACGTCTTTCGTTCACGTAC -ACGGAACGTCTTTCGTTCAGTGAC -ACGGAACGTCTTTCGTTCCTGTAG -ACGGAACGTCTTTCGTTCCCTAAG -ACGGAACGTCTTTCGTTCGTTCAG -ACGGAACGTCTTTCGTTCGCATAG -ACGGAACGTCTTTCGTTCGACAAG -ACGGAACGTCTTTCGTTCAAGCAG -ACGGAACGTCTTTCGTTCCGTCAA -ACGGAACGTCTTTCGTTCGCTGAA -ACGGAACGTCTTTCGTTCAGTACG -ACGGAACGTCTTTCGTTCATCCGA -ACGGAACGTCTTTCGTTCATGGGA -ACGGAACGTCTTTCGTTCGTGCAA -ACGGAACGTCTTTCGTTCGAGGAA -ACGGAACGTCTTTCGTTCCAGGTA -ACGGAACGTCTTTCGTTCGACTCT -ACGGAACGTCTTTCGTTCAGTCCT -ACGGAACGTCTTTCGTTCTAAGCC -ACGGAACGTCTTTCGTTCATAGCC -ACGGAACGTCTTTCGTTCTAACCG -ACGGAACGTCTTTCGTTCATGCCA -ACGGAACGTCTTACGTAGGGAAAC -ACGGAACGTCTTACGTAGAACACC -ACGGAACGTCTTACGTAGATCGAG -ACGGAACGTCTTACGTAGCTCCTT -ACGGAACGTCTTACGTAGCCTGTT -ACGGAACGTCTTACGTAGCGGTTT -ACGGAACGTCTTACGTAGGTGGTT -ACGGAACGTCTTACGTAGGCCTTT -ACGGAACGTCTTACGTAGGGTCTT -ACGGAACGTCTTACGTAGACGCTT -ACGGAACGTCTTACGTAGAGCGTT -ACGGAACGTCTTACGTAGTTCGTC -ACGGAACGTCTTACGTAGTCTCTC -ACGGAACGTCTTACGTAGTGGATC -ACGGAACGTCTTACGTAGCACTTC -ACGGAACGTCTTACGTAGGTACTC -ACGGAACGTCTTACGTAGGATGTC -ACGGAACGTCTTACGTAGACAGTC -ACGGAACGTCTTACGTAGTTGCTG -ACGGAACGTCTTACGTAGTCCATG -ACGGAACGTCTTACGTAGTGTGTG -ACGGAACGTCTTACGTAGCTAGTG -ACGGAACGTCTTACGTAGCATCTG -ACGGAACGTCTTACGTAGGAGTTG -ACGGAACGTCTTACGTAGAGACTG -ACGGAACGTCTTACGTAGTCGGTA -ACGGAACGTCTTACGTAGTGCCTA -ACGGAACGTCTTACGTAGCCACTA -ACGGAACGTCTTACGTAGGGAGTA -ACGGAACGTCTTACGTAGTCGTCT -ACGGAACGTCTTACGTAGTGCACT -ACGGAACGTCTTACGTAGCTGACT -ACGGAACGTCTTACGTAGCAACCT -ACGGAACGTCTTACGTAGGCTACT -ACGGAACGTCTTACGTAGGGATCT -ACGGAACGTCTTACGTAGAAGGCT -ACGGAACGTCTTACGTAGTCAACC -ACGGAACGTCTTACGTAGTGTTCC -ACGGAACGTCTTACGTAGATTCCC -ACGGAACGTCTTACGTAGTTCTCG -ACGGAACGTCTTACGTAGTAGACG -ACGGAACGTCTTACGTAGGTAACG -ACGGAACGTCTTACGTAGACTTCG -ACGGAACGTCTTACGTAGTACGCA -ACGGAACGTCTTACGTAGCTTGCA -ACGGAACGTCTTACGTAGCGAACA -ACGGAACGTCTTACGTAGCAGTCA -ACGGAACGTCTTACGTAGGATCCA -ACGGAACGTCTTACGTAGACGACA -ACGGAACGTCTTACGTAGAGCTCA -ACGGAACGTCTTACGTAGTCACGT -ACGGAACGTCTTACGTAGCGTAGT -ACGGAACGTCTTACGTAGGTCAGT -ACGGAACGTCTTACGTAGGAAGGT -ACGGAACGTCTTACGTAGAACCGT -ACGGAACGTCTTACGTAGTTGTGC -ACGGAACGTCTTACGTAGCTAAGC -ACGGAACGTCTTACGTAGACTAGC -ACGGAACGTCTTACGTAGAGATGC -ACGGAACGTCTTACGTAGTGAAGG -ACGGAACGTCTTACGTAGCAATGG -ACGGAACGTCTTACGTAGATGAGG -ACGGAACGTCTTACGTAGAATGGG -ACGGAACGTCTTACGTAGTCCTGA -ACGGAACGTCTTACGTAGTAGCGA -ACGGAACGTCTTACGTAGCACAGA -ACGGAACGTCTTACGTAGGCAAGA -ACGGAACGTCTTACGTAGGGTTGA -ACGGAACGTCTTACGTAGTCCGAT -ACGGAACGTCTTACGTAGTGGCAT -ACGGAACGTCTTACGTAGCGAGAT -ACGGAACGTCTTACGTAGTACCAC -ACGGAACGTCTTACGTAGCAGAAC -ACGGAACGTCTTACGTAGGTCTAC -ACGGAACGTCTTACGTAGACGTAC -ACGGAACGTCTTACGTAGAGTGAC -ACGGAACGTCTTACGTAGCTGTAG -ACGGAACGTCTTACGTAGCCTAAG -ACGGAACGTCTTACGTAGGTTCAG -ACGGAACGTCTTACGTAGGCATAG -ACGGAACGTCTTACGTAGGACAAG -ACGGAACGTCTTACGTAGAAGCAG -ACGGAACGTCTTACGTAGCGTCAA -ACGGAACGTCTTACGTAGGCTGAA -ACGGAACGTCTTACGTAGAGTACG -ACGGAACGTCTTACGTAGATCCGA -ACGGAACGTCTTACGTAGATGGGA -ACGGAACGTCTTACGTAGGTGCAA -ACGGAACGTCTTACGTAGGAGGAA -ACGGAACGTCTTACGTAGCAGGTA -ACGGAACGTCTTACGTAGGACTCT -ACGGAACGTCTTACGTAGAGTCCT -ACGGAACGTCTTACGTAGTAAGCC -ACGGAACGTCTTACGTAGATAGCC -ACGGAACGTCTTACGTAGTAACCG -ACGGAACGTCTTACGTAGATGCCA -ACGGAACGTCTTACGGTAGGAAAC -ACGGAACGTCTTACGGTAAACACC -ACGGAACGTCTTACGGTAATCGAG -ACGGAACGTCTTACGGTACTCCTT -ACGGAACGTCTTACGGTACCTGTT -ACGGAACGTCTTACGGTACGGTTT -ACGGAACGTCTTACGGTAGTGGTT -ACGGAACGTCTTACGGTAGCCTTT -ACGGAACGTCTTACGGTAGGTCTT -ACGGAACGTCTTACGGTAACGCTT -ACGGAACGTCTTACGGTAAGCGTT -ACGGAACGTCTTACGGTATTCGTC -ACGGAACGTCTTACGGTATCTCTC -ACGGAACGTCTTACGGTATGGATC -ACGGAACGTCTTACGGTACACTTC -ACGGAACGTCTTACGGTAGTACTC -ACGGAACGTCTTACGGTAGATGTC -ACGGAACGTCTTACGGTAACAGTC -ACGGAACGTCTTACGGTATTGCTG -ACGGAACGTCTTACGGTATCCATG -ACGGAACGTCTTACGGTATGTGTG -ACGGAACGTCTTACGGTACTAGTG -ACGGAACGTCTTACGGTACATCTG -ACGGAACGTCTTACGGTAGAGTTG -ACGGAACGTCTTACGGTAAGACTG -ACGGAACGTCTTACGGTATCGGTA -ACGGAACGTCTTACGGTATGCCTA -ACGGAACGTCTTACGGTACCACTA -ACGGAACGTCTTACGGTAGGAGTA -ACGGAACGTCTTACGGTATCGTCT -ACGGAACGTCTTACGGTATGCACT -ACGGAACGTCTTACGGTACTGACT -ACGGAACGTCTTACGGTACAACCT -ACGGAACGTCTTACGGTAGCTACT -ACGGAACGTCTTACGGTAGGATCT -ACGGAACGTCTTACGGTAAAGGCT -ACGGAACGTCTTACGGTATCAACC -ACGGAACGTCTTACGGTATGTTCC -ACGGAACGTCTTACGGTAATTCCC -ACGGAACGTCTTACGGTATTCTCG -ACGGAACGTCTTACGGTATAGACG -ACGGAACGTCTTACGGTAGTAACG -ACGGAACGTCTTACGGTAACTTCG -ACGGAACGTCTTACGGTATACGCA -ACGGAACGTCTTACGGTACTTGCA -ACGGAACGTCTTACGGTACGAACA -ACGGAACGTCTTACGGTACAGTCA -ACGGAACGTCTTACGGTAGATCCA -ACGGAACGTCTTACGGTAACGACA -ACGGAACGTCTTACGGTAAGCTCA -ACGGAACGTCTTACGGTATCACGT -ACGGAACGTCTTACGGTACGTAGT -ACGGAACGTCTTACGGTAGTCAGT -ACGGAACGTCTTACGGTAGAAGGT -ACGGAACGTCTTACGGTAAACCGT -ACGGAACGTCTTACGGTATTGTGC -ACGGAACGTCTTACGGTACTAAGC -ACGGAACGTCTTACGGTAACTAGC -ACGGAACGTCTTACGGTAAGATGC -ACGGAACGTCTTACGGTATGAAGG -ACGGAACGTCTTACGGTACAATGG -ACGGAACGTCTTACGGTAATGAGG -ACGGAACGTCTTACGGTAAATGGG -ACGGAACGTCTTACGGTATCCTGA -ACGGAACGTCTTACGGTATAGCGA -ACGGAACGTCTTACGGTACACAGA -ACGGAACGTCTTACGGTAGCAAGA -ACGGAACGTCTTACGGTAGGTTGA -ACGGAACGTCTTACGGTATCCGAT -ACGGAACGTCTTACGGTATGGCAT -ACGGAACGTCTTACGGTACGAGAT -ACGGAACGTCTTACGGTATACCAC -ACGGAACGTCTTACGGTACAGAAC -ACGGAACGTCTTACGGTAGTCTAC -ACGGAACGTCTTACGGTAACGTAC -ACGGAACGTCTTACGGTAAGTGAC -ACGGAACGTCTTACGGTACTGTAG -ACGGAACGTCTTACGGTACCTAAG -ACGGAACGTCTTACGGTAGTTCAG -ACGGAACGTCTTACGGTAGCATAG -ACGGAACGTCTTACGGTAGACAAG -ACGGAACGTCTTACGGTAAAGCAG -ACGGAACGTCTTACGGTACGTCAA -ACGGAACGTCTTACGGTAGCTGAA -ACGGAACGTCTTACGGTAAGTACG -ACGGAACGTCTTACGGTAATCCGA -ACGGAACGTCTTACGGTAATGGGA -ACGGAACGTCTTACGGTAGTGCAA -ACGGAACGTCTTACGGTAGAGGAA -ACGGAACGTCTTACGGTACAGGTA -ACGGAACGTCTTACGGTAGACTCT -ACGGAACGTCTTACGGTAAGTCCT -ACGGAACGTCTTACGGTATAAGCC -ACGGAACGTCTTACGGTAATAGCC -ACGGAACGTCTTACGGTATAACCG -ACGGAACGTCTTACGGTAATGCCA -ACGGAACGTCTTTCGACTGGAAAC -ACGGAACGTCTTTCGACTAACACC -ACGGAACGTCTTTCGACTATCGAG -ACGGAACGTCTTTCGACTCTCCTT -ACGGAACGTCTTTCGACTCCTGTT -ACGGAACGTCTTTCGACTCGGTTT -ACGGAACGTCTTTCGACTGTGGTT -ACGGAACGTCTTTCGACTGCCTTT -ACGGAACGTCTTTCGACTGGTCTT -ACGGAACGTCTTTCGACTACGCTT -ACGGAACGTCTTTCGACTAGCGTT -ACGGAACGTCTTTCGACTTTCGTC -ACGGAACGTCTTTCGACTTCTCTC -ACGGAACGTCTTTCGACTTGGATC -ACGGAACGTCTTTCGACTCACTTC -ACGGAACGTCTTTCGACTGTACTC -ACGGAACGTCTTTCGACTGATGTC -ACGGAACGTCTTTCGACTACAGTC -ACGGAACGTCTTTCGACTTTGCTG -ACGGAACGTCTTTCGACTTCCATG -ACGGAACGTCTTTCGACTTGTGTG -ACGGAACGTCTTTCGACTCTAGTG -ACGGAACGTCTTTCGACTCATCTG -ACGGAACGTCTTTCGACTGAGTTG -ACGGAACGTCTTTCGACTAGACTG -ACGGAACGTCTTTCGACTTCGGTA -ACGGAACGTCTTTCGACTTGCCTA -ACGGAACGTCTTTCGACTCCACTA -ACGGAACGTCTTTCGACTGGAGTA -ACGGAACGTCTTTCGACTTCGTCT -ACGGAACGTCTTTCGACTTGCACT -ACGGAACGTCTTTCGACTCTGACT -ACGGAACGTCTTTCGACTCAACCT -ACGGAACGTCTTTCGACTGCTACT -ACGGAACGTCTTTCGACTGGATCT -ACGGAACGTCTTTCGACTAAGGCT -ACGGAACGTCTTTCGACTTCAACC -ACGGAACGTCTTTCGACTTGTTCC -ACGGAACGTCTTTCGACTATTCCC -ACGGAACGTCTTTCGACTTTCTCG -ACGGAACGTCTTTCGACTTAGACG -ACGGAACGTCTTTCGACTGTAACG -ACGGAACGTCTTTCGACTACTTCG -ACGGAACGTCTTTCGACTTACGCA -ACGGAACGTCTTTCGACTCTTGCA -ACGGAACGTCTTTCGACTCGAACA -ACGGAACGTCTTTCGACTCAGTCA -ACGGAACGTCTTTCGACTGATCCA -ACGGAACGTCTTTCGACTACGACA -ACGGAACGTCTTTCGACTAGCTCA -ACGGAACGTCTTTCGACTTCACGT -ACGGAACGTCTTTCGACTCGTAGT -ACGGAACGTCTTTCGACTGTCAGT -ACGGAACGTCTTTCGACTGAAGGT -ACGGAACGTCTTTCGACTAACCGT -ACGGAACGTCTTTCGACTTTGTGC -ACGGAACGTCTTTCGACTCTAAGC -ACGGAACGTCTTTCGACTACTAGC -ACGGAACGTCTTTCGACTAGATGC -ACGGAACGTCTTTCGACTTGAAGG -ACGGAACGTCTTTCGACTCAATGG -ACGGAACGTCTTTCGACTATGAGG -ACGGAACGTCTTTCGACTAATGGG -ACGGAACGTCTTTCGACTTCCTGA -ACGGAACGTCTTTCGACTTAGCGA -ACGGAACGTCTTTCGACTCACAGA -ACGGAACGTCTTTCGACTGCAAGA -ACGGAACGTCTTTCGACTGGTTGA -ACGGAACGTCTTTCGACTTCCGAT -ACGGAACGTCTTTCGACTTGGCAT -ACGGAACGTCTTTCGACTCGAGAT -ACGGAACGTCTTTCGACTTACCAC -ACGGAACGTCTTTCGACTCAGAAC -ACGGAACGTCTTTCGACTGTCTAC -ACGGAACGTCTTTCGACTACGTAC -ACGGAACGTCTTTCGACTAGTGAC -ACGGAACGTCTTTCGACTCTGTAG -ACGGAACGTCTTTCGACTCCTAAG -ACGGAACGTCTTTCGACTGTTCAG -ACGGAACGTCTTTCGACTGCATAG -ACGGAACGTCTTTCGACTGACAAG -ACGGAACGTCTTTCGACTAAGCAG -ACGGAACGTCTTTCGACTCGTCAA -ACGGAACGTCTTTCGACTGCTGAA -ACGGAACGTCTTTCGACTAGTACG -ACGGAACGTCTTTCGACTATCCGA -ACGGAACGTCTTTCGACTATGGGA -ACGGAACGTCTTTCGACTGTGCAA -ACGGAACGTCTTTCGACTGAGGAA -ACGGAACGTCTTTCGACTCAGGTA -ACGGAACGTCTTTCGACTGACTCT -ACGGAACGTCTTTCGACTAGTCCT -ACGGAACGTCTTTCGACTTAAGCC -ACGGAACGTCTTTCGACTATAGCC -ACGGAACGTCTTTCGACTTAACCG -ACGGAACGTCTTTCGACTATGCCA -ACGGAACGTCTTGCATACGGAAAC -ACGGAACGTCTTGCATACAACACC -ACGGAACGTCTTGCATACATCGAG -ACGGAACGTCTTGCATACCTCCTT -ACGGAACGTCTTGCATACCCTGTT -ACGGAACGTCTTGCATACCGGTTT -ACGGAACGTCTTGCATACGTGGTT -ACGGAACGTCTTGCATACGCCTTT -ACGGAACGTCTTGCATACGGTCTT -ACGGAACGTCTTGCATACACGCTT -ACGGAACGTCTTGCATACAGCGTT -ACGGAACGTCTTGCATACTTCGTC -ACGGAACGTCTTGCATACTCTCTC -ACGGAACGTCTTGCATACTGGATC -ACGGAACGTCTTGCATACCACTTC -ACGGAACGTCTTGCATACGTACTC -ACGGAACGTCTTGCATACGATGTC -ACGGAACGTCTTGCATACACAGTC -ACGGAACGTCTTGCATACTTGCTG -ACGGAACGTCTTGCATACTCCATG -ACGGAACGTCTTGCATACTGTGTG -ACGGAACGTCTTGCATACCTAGTG -ACGGAACGTCTTGCATACCATCTG -ACGGAACGTCTTGCATACGAGTTG -ACGGAACGTCTTGCATACAGACTG -ACGGAACGTCTTGCATACTCGGTA -ACGGAACGTCTTGCATACTGCCTA -ACGGAACGTCTTGCATACCCACTA -ACGGAACGTCTTGCATACGGAGTA -ACGGAACGTCTTGCATACTCGTCT -ACGGAACGTCTTGCATACTGCACT -ACGGAACGTCTTGCATACCTGACT -ACGGAACGTCTTGCATACCAACCT -ACGGAACGTCTTGCATACGCTACT -ACGGAACGTCTTGCATACGGATCT -ACGGAACGTCTTGCATACAAGGCT -ACGGAACGTCTTGCATACTCAACC -ACGGAACGTCTTGCATACTGTTCC -ACGGAACGTCTTGCATACATTCCC -ACGGAACGTCTTGCATACTTCTCG -ACGGAACGTCTTGCATACTAGACG -ACGGAACGTCTTGCATACGTAACG -ACGGAACGTCTTGCATACACTTCG -ACGGAACGTCTTGCATACTACGCA -ACGGAACGTCTTGCATACCTTGCA -ACGGAACGTCTTGCATACCGAACA -ACGGAACGTCTTGCATACCAGTCA -ACGGAACGTCTTGCATACGATCCA -ACGGAACGTCTTGCATACACGACA -ACGGAACGTCTTGCATACAGCTCA -ACGGAACGTCTTGCATACTCACGT -ACGGAACGTCTTGCATACCGTAGT -ACGGAACGTCTTGCATACGTCAGT -ACGGAACGTCTTGCATACGAAGGT -ACGGAACGTCTTGCATACAACCGT -ACGGAACGTCTTGCATACTTGTGC -ACGGAACGTCTTGCATACCTAAGC -ACGGAACGTCTTGCATACACTAGC -ACGGAACGTCTTGCATACAGATGC -ACGGAACGTCTTGCATACTGAAGG -ACGGAACGTCTTGCATACCAATGG -ACGGAACGTCTTGCATACATGAGG -ACGGAACGTCTTGCATACAATGGG -ACGGAACGTCTTGCATACTCCTGA -ACGGAACGTCTTGCATACTAGCGA -ACGGAACGTCTTGCATACCACAGA -ACGGAACGTCTTGCATACGCAAGA -ACGGAACGTCTTGCATACGGTTGA -ACGGAACGTCTTGCATACTCCGAT -ACGGAACGTCTTGCATACTGGCAT -ACGGAACGTCTTGCATACCGAGAT -ACGGAACGTCTTGCATACTACCAC -ACGGAACGTCTTGCATACCAGAAC -ACGGAACGTCTTGCATACGTCTAC -ACGGAACGTCTTGCATACACGTAC -ACGGAACGTCTTGCATACAGTGAC -ACGGAACGTCTTGCATACCTGTAG -ACGGAACGTCTTGCATACCCTAAG -ACGGAACGTCTTGCATACGTTCAG -ACGGAACGTCTTGCATACGCATAG -ACGGAACGTCTTGCATACGACAAG -ACGGAACGTCTTGCATACAAGCAG -ACGGAACGTCTTGCATACCGTCAA -ACGGAACGTCTTGCATACGCTGAA -ACGGAACGTCTTGCATACAGTACG -ACGGAACGTCTTGCATACATCCGA -ACGGAACGTCTTGCATACATGGGA -ACGGAACGTCTTGCATACGTGCAA -ACGGAACGTCTTGCATACGAGGAA -ACGGAACGTCTTGCATACCAGGTA -ACGGAACGTCTTGCATACGACTCT -ACGGAACGTCTTGCATACAGTCCT -ACGGAACGTCTTGCATACTAAGCC -ACGGAACGTCTTGCATACATAGCC -ACGGAACGTCTTGCATACTAACCG -ACGGAACGTCTTGCATACATGCCA -ACGGAACGTCTTGCACTTGGAAAC -ACGGAACGTCTTGCACTTAACACC -ACGGAACGTCTTGCACTTATCGAG -ACGGAACGTCTTGCACTTCTCCTT -ACGGAACGTCTTGCACTTCCTGTT -ACGGAACGTCTTGCACTTCGGTTT -ACGGAACGTCTTGCACTTGTGGTT -ACGGAACGTCTTGCACTTGCCTTT -ACGGAACGTCTTGCACTTGGTCTT -ACGGAACGTCTTGCACTTACGCTT -ACGGAACGTCTTGCACTTAGCGTT -ACGGAACGTCTTGCACTTTTCGTC -ACGGAACGTCTTGCACTTTCTCTC -ACGGAACGTCTTGCACTTTGGATC -ACGGAACGTCTTGCACTTCACTTC -ACGGAACGTCTTGCACTTGTACTC -ACGGAACGTCTTGCACTTGATGTC -ACGGAACGTCTTGCACTTACAGTC -ACGGAACGTCTTGCACTTTTGCTG -ACGGAACGTCTTGCACTTTCCATG -ACGGAACGTCTTGCACTTTGTGTG -ACGGAACGTCTTGCACTTCTAGTG -ACGGAACGTCTTGCACTTCATCTG -ACGGAACGTCTTGCACTTGAGTTG -ACGGAACGTCTTGCACTTAGACTG -ACGGAACGTCTTGCACTTTCGGTA -ACGGAACGTCTTGCACTTTGCCTA -ACGGAACGTCTTGCACTTCCACTA -ACGGAACGTCTTGCACTTGGAGTA -ACGGAACGTCTTGCACTTTCGTCT -ACGGAACGTCTTGCACTTTGCACT -ACGGAACGTCTTGCACTTCTGACT -ACGGAACGTCTTGCACTTCAACCT -ACGGAACGTCTTGCACTTGCTACT -ACGGAACGTCTTGCACTTGGATCT -ACGGAACGTCTTGCACTTAAGGCT -ACGGAACGTCTTGCACTTTCAACC -ACGGAACGTCTTGCACTTTGTTCC -ACGGAACGTCTTGCACTTATTCCC -ACGGAACGTCTTGCACTTTTCTCG -ACGGAACGTCTTGCACTTTAGACG -ACGGAACGTCTTGCACTTGTAACG -ACGGAACGTCTTGCACTTACTTCG -ACGGAACGTCTTGCACTTTACGCA -ACGGAACGTCTTGCACTTCTTGCA -ACGGAACGTCTTGCACTTCGAACA -ACGGAACGTCTTGCACTTCAGTCA -ACGGAACGTCTTGCACTTGATCCA -ACGGAACGTCTTGCACTTACGACA -ACGGAACGTCTTGCACTTAGCTCA -ACGGAACGTCTTGCACTTTCACGT -ACGGAACGTCTTGCACTTCGTAGT -ACGGAACGTCTTGCACTTGTCAGT -ACGGAACGTCTTGCACTTGAAGGT -ACGGAACGTCTTGCACTTAACCGT -ACGGAACGTCTTGCACTTTTGTGC -ACGGAACGTCTTGCACTTCTAAGC -ACGGAACGTCTTGCACTTACTAGC -ACGGAACGTCTTGCACTTAGATGC -ACGGAACGTCTTGCACTTTGAAGG -ACGGAACGTCTTGCACTTCAATGG -ACGGAACGTCTTGCACTTATGAGG -ACGGAACGTCTTGCACTTAATGGG -ACGGAACGTCTTGCACTTTCCTGA -ACGGAACGTCTTGCACTTTAGCGA -ACGGAACGTCTTGCACTTCACAGA -ACGGAACGTCTTGCACTTGCAAGA -ACGGAACGTCTTGCACTTGGTTGA -ACGGAACGTCTTGCACTTTCCGAT -ACGGAACGTCTTGCACTTTGGCAT -ACGGAACGTCTTGCACTTCGAGAT -ACGGAACGTCTTGCACTTTACCAC -ACGGAACGTCTTGCACTTCAGAAC -ACGGAACGTCTTGCACTTGTCTAC -ACGGAACGTCTTGCACTTACGTAC -ACGGAACGTCTTGCACTTAGTGAC -ACGGAACGTCTTGCACTTCTGTAG -ACGGAACGTCTTGCACTTCCTAAG -ACGGAACGTCTTGCACTTGTTCAG -ACGGAACGTCTTGCACTTGCATAG -ACGGAACGTCTTGCACTTGACAAG -ACGGAACGTCTTGCACTTAAGCAG -ACGGAACGTCTTGCACTTCGTCAA -ACGGAACGTCTTGCACTTGCTGAA -ACGGAACGTCTTGCACTTAGTACG -ACGGAACGTCTTGCACTTATCCGA -ACGGAACGTCTTGCACTTATGGGA -ACGGAACGTCTTGCACTTGTGCAA -ACGGAACGTCTTGCACTTGAGGAA -ACGGAACGTCTTGCACTTCAGGTA -ACGGAACGTCTTGCACTTGACTCT -ACGGAACGTCTTGCACTTAGTCCT -ACGGAACGTCTTGCACTTTAAGCC -ACGGAACGTCTTGCACTTATAGCC -ACGGAACGTCTTGCACTTTAACCG -ACGGAACGTCTTGCACTTATGCCA -ACGGAACGTCTTACACGAGGAAAC -ACGGAACGTCTTACACGAAACACC -ACGGAACGTCTTACACGAATCGAG -ACGGAACGTCTTACACGACTCCTT -ACGGAACGTCTTACACGACCTGTT -ACGGAACGTCTTACACGACGGTTT -ACGGAACGTCTTACACGAGTGGTT -ACGGAACGTCTTACACGAGCCTTT -ACGGAACGTCTTACACGAGGTCTT -ACGGAACGTCTTACACGAACGCTT -ACGGAACGTCTTACACGAAGCGTT -ACGGAACGTCTTACACGATTCGTC -ACGGAACGTCTTACACGATCTCTC -ACGGAACGTCTTACACGATGGATC -ACGGAACGTCTTACACGACACTTC -ACGGAACGTCTTACACGAGTACTC -ACGGAACGTCTTACACGAGATGTC -ACGGAACGTCTTACACGAACAGTC -ACGGAACGTCTTACACGATTGCTG -ACGGAACGTCTTACACGATCCATG -ACGGAACGTCTTACACGATGTGTG -ACGGAACGTCTTACACGACTAGTG -ACGGAACGTCTTACACGACATCTG -ACGGAACGTCTTACACGAGAGTTG -ACGGAACGTCTTACACGAAGACTG -ACGGAACGTCTTACACGATCGGTA -ACGGAACGTCTTACACGATGCCTA -ACGGAACGTCTTACACGACCACTA -ACGGAACGTCTTACACGAGGAGTA -ACGGAACGTCTTACACGATCGTCT -ACGGAACGTCTTACACGATGCACT -ACGGAACGTCTTACACGACTGACT -ACGGAACGTCTTACACGACAACCT -ACGGAACGTCTTACACGAGCTACT -ACGGAACGTCTTACACGAGGATCT -ACGGAACGTCTTACACGAAAGGCT -ACGGAACGTCTTACACGATCAACC -ACGGAACGTCTTACACGATGTTCC -ACGGAACGTCTTACACGAATTCCC -ACGGAACGTCTTACACGATTCTCG -ACGGAACGTCTTACACGATAGACG -ACGGAACGTCTTACACGAGTAACG -ACGGAACGTCTTACACGAACTTCG -ACGGAACGTCTTACACGATACGCA -ACGGAACGTCTTACACGACTTGCA -ACGGAACGTCTTACACGACGAACA -ACGGAACGTCTTACACGACAGTCA -ACGGAACGTCTTACACGAGATCCA -ACGGAACGTCTTACACGAACGACA -ACGGAACGTCTTACACGAAGCTCA -ACGGAACGTCTTACACGATCACGT -ACGGAACGTCTTACACGACGTAGT -ACGGAACGTCTTACACGAGTCAGT -ACGGAACGTCTTACACGAGAAGGT -ACGGAACGTCTTACACGAAACCGT -ACGGAACGTCTTACACGATTGTGC -ACGGAACGTCTTACACGACTAAGC -ACGGAACGTCTTACACGAACTAGC -ACGGAACGTCTTACACGAAGATGC -ACGGAACGTCTTACACGATGAAGG -ACGGAACGTCTTACACGACAATGG -ACGGAACGTCTTACACGAATGAGG -ACGGAACGTCTTACACGAAATGGG -ACGGAACGTCTTACACGATCCTGA -ACGGAACGTCTTACACGATAGCGA -ACGGAACGTCTTACACGACACAGA -ACGGAACGTCTTACACGAGCAAGA -ACGGAACGTCTTACACGAGGTTGA -ACGGAACGTCTTACACGATCCGAT -ACGGAACGTCTTACACGATGGCAT -ACGGAACGTCTTACACGACGAGAT -ACGGAACGTCTTACACGATACCAC -ACGGAACGTCTTACACGACAGAAC -ACGGAACGTCTTACACGAGTCTAC -ACGGAACGTCTTACACGAACGTAC -ACGGAACGTCTTACACGAAGTGAC -ACGGAACGTCTTACACGACTGTAG -ACGGAACGTCTTACACGACCTAAG -ACGGAACGTCTTACACGAGTTCAG -ACGGAACGTCTTACACGAGCATAG -ACGGAACGTCTTACACGAGACAAG -ACGGAACGTCTTACACGAAAGCAG -ACGGAACGTCTTACACGACGTCAA -ACGGAACGTCTTACACGAGCTGAA -ACGGAACGTCTTACACGAAGTACG -ACGGAACGTCTTACACGAATCCGA -ACGGAACGTCTTACACGAATGGGA -ACGGAACGTCTTACACGAGTGCAA -ACGGAACGTCTTACACGAGAGGAA -ACGGAACGTCTTACACGACAGGTA -ACGGAACGTCTTACACGAGACTCT -ACGGAACGTCTTACACGAAGTCCT -ACGGAACGTCTTACACGATAAGCC -ACGGAACGTCTTACACGAATAGCC -ACGGAACGTCTTACACGATAACCG -ACGGAACGTCTTACACGAATGCCA -ACGGAACGTCTTTCACAGGGAAAC -ACGGAACGTCTTTCACAGAACACC -ACGGAACGTCTTTCACAGATCGAG -ACGGAACGTCTTTCACAGCTCCTT -ACGGAACGTCTTTCACAGCCTGTT -ACGGAACGTCTTTCACAGCGGTTT -ACGGAACGTCTTTCACAGGTGGTT -ACGGAACGTCTTTCACAGGCCTTT -ACGGAACGTCTTTCACAGGGTCTT -ACGGAACGTCTTTCACAGACGCTT -ACGGAACGTCTTTCACAGAGCGTT -ACGGAACGTCTTTCACAGTTCGTC -ACGGAACGTCTTTCACAGTCTCTC -ACGGAACGTCTTTCACAGTGGATC -ACGGAACGTCTTTCACAGCACTTC -ACGGAACGTCTTTCACAGGTACTC -ACGGAACGTCTTTCACAGGATGTC -ACGGAACGTCTTTCACAGACAGTC -ACGGAACGTCTTTCACAGTTGCTG -ACGGAACGTCTTTCACAGTCCATG -ACGGAACGTCTTTCACAGTGTGTG -ACGGAACGTCTTTCACAGCTAGTG -ACGGAACGTCTTTCACAGCATCTG -ACGGAACGTCTTTCACAGGAGTTG -ACGGAACGTCTTTCACAGAGACTG -ACGGAACGTCTTTCACAGTCGGTA -ACGGAACGTCTTTCACAGTGCCTA -ACGGAACGTCTTTCACAGCCACTA -ACGGAACGTCTTTCACAGGGAGTA -ACGGAACGTCTTTCACAGTCGTCT -ACGGAACGTCTTTCACAGTGCACT -ACGGAACGTCTTTCACAGCTGACT -ACGGAACGTCTTTCACAGCAACCT -ACGGAACGTCTTTCACAGGCTACT -ACGGAACGTCTTTCACAGGGATCT -ACGGAACGTCTTTCACAGAAGGCT -ACGGAACGTCTTTCACAGTCAACC -ACGGAACGTCTTTCACAGTGTTCC -ACGGAACGTCTTTCACAGATTCCC -ACGGAACGTCTTTCACAGTTCTCG -ACGGAACGTCTTTCACAGTAGACG -ACGGAACGTCTTTCACAGGTAACG -ACGGAACGTCTTTCACAGACTTCG -ACGGAACGTCTTTCACAGTACGCA -ACGGAACGTCTTTCACAGCTTGCA -ACGGAACGTCTTTCACAGCGAACA -ACGGAACGTCTTTCACAGCAGTCA -ACGGAACGTCTTTCACAGGATCCA -ACGGAACGTCTTTCACAGACGACA -ACGGAACGTCTTTCACAGAGCTCA -ACGGAACGTCTTTCACAGTCACGT -ACGGAACGTCTTTCACAGCGTAGT -ACGGAACGTCTTTCACAGGTCAGT -ACGGAACGTCTTTCACAGGAAGGT -ACGGAACGTCTTTCACAGAACCGT -ACGGAACGTCTTTCACAGTTGTGC -ACGGAACGTCTTTCACAGCTAAGC -ACGGAACGTCTTTCACAGACTAGC -ACGGAACGTCTTTCACAGAGATGC -ACGGAACGTCTTTCACAGTGAAGG -ACGGAACGTCTTTCACAGCAATGG -ACGGAACGTCTTTCACAGATGAGG -ACGGAACGTCTTTCACAGAATGGG -ACGGAACGTCTTTCACAGTCCTGA -ACGGAACGTCTTTCACAGTAGCGA -ACGGAACGTCTTTCACAGCACAGA -ACGGAACGTCTTTCACAGGCAAGA -ACGGAACGTCTTTCACAGGGTTGA -ACGGAACGTCTTTCACAGTCCGAT -ACGGAACGTCTTTCACAGTGGCAT -ACGGAACGTCTTTCACAGCGAGAT -ACGGAACGTCTTTCACAGTACCAC -ACGGAACGTCTTTCACAGCAGAAC -ACGGAACGTCTTTCACAGGTCTAC -ACGGAACGTCTTTCACAGACGTAC -ACGGAACGTCTTTCACAGAGTGAC -ACGGAACGTCTTTCACAGCTGTAG -ACGGAACGTCTTTCACAGCCTAAG -ACGGAACGTCTTTCACAGGTTCAG -ACGGAACGTCTTTCACAGGCATAG -ACGGAACGTCTTTCACAGGACAAG -ACGGAACGTCTTTCACAGAAGCAG -ACGGAACGTCTTTCACAGCGTCAA -ACGGAACGTCTTTCACAGGCTGAA -ACGGAACGTCTTTCACAGAGTACG -ACGGAACGTCTTTCACAGATCCGA -ACGGAACGTCTTTCACAGATGGGA -ACGGAACGTCTTTCACAGGTGCAA -ACGGAACGTCTTTCACAGGAGGAA -ACGGAACGTCTTTCACAGCAGGTA -ACGGAACGTCTTTCACAGGACTCT -ACGGAACGTCTTTCACAGAGTCCT -ACGGAACGTCTTTCACAGTAAGCC -ACGGAACGTCTTTCACAGATAGCC -ACGGAACGTCTTTCACAGTAACCG -ACGGAACGTCTTTCACAGATGCCA -ACGGAACGTCTTCCAGATGGAAAC -ACGGAACGTCTTCCAGATAACACC -ACGGAACGTCTTCCAGATATCGAG -ACGGAACGTCTTCCAGATCTCCTT -ACGGAACGTCTTCCAGATCCTGTT -ACGGAACGTCTTCCAGATCGGTTT -ACGGAACGTCTTCCAGATGTGGTT -ACGGAACGTCTTCCAGATGCCTTT -ACGGAACGTCTTCCAGATGGTCTT -ACGGAACGTCTTCCAGATACGCTT -ACGGAACGTCTTCCAGATAGCGTT -ACGGAACGTCTTCCAGATTTCGTC -ACGGAACGTCTTCCAGATTCTCTC -ACGGAACGTCTTCCAGATTGGATC -ACGGAACGTCTTCCAGATCACTTC -ACGGAACGTCTTCCAGATGTACTC -ACGGAACGTCTTCCAGATGATGTC -ACGGAACGTCTTCCAGATACAGTC -ACGGAACGTCTTCCAGATTTGCTG -ACGGAACGTCTTCCAGATTCCATG -ACGGAACGTCTTCCAGATTGTGTG -ACGGAACGTCTTCCAGATCTAGTG -ACGGAACGTCTTCCAGATCATCTG -ACGGAACGTCTTCCAGATGAGTTG -ACGGAACGTCTTCCAGATAGACTG -ACGGAACGTCTTCCAGATTCGGTA -ACGGAACGTCTTCCAGATTGCCTA -ACGGAACGTCTTCCAGATCCACTA -ACGGAACGTCTTCCAGATGGAGTA -ACGGAACGTCTTCCAGATTCGTCT -ACGGAACGTCTTCCAGATTGCACT -ACGGAACGTCTTCCAGATCTGACT -ACGGAACGTCTTCCAGATCAACCT -ACGGAACGTCTTCCAGATGCTACT -ACGGAACGTCTTCCAGATGGATCT -ACGGAACGTCTTCCAGATAAGGCT -ACGGAACGTCTTCCAGATTCAACC -ACGGAACGTCTTCCAGATTGTTCC -ACGGAACGTCTTCCAGATATTCCC -ACGGAACGTCTTCCAGATTTCTCG -ACGGAACGTCTTCCAGATTAGACG -ACGGAACGTCTTCCAGATGTAACG -ACGGAACGTCTTCCAGATACTTCG -ACGGAACGTCTTCCAGATTACGCA -ACGGAACGTCTTCCAGATCTTGCA -ACGGAACGTCTTCCAGATCGAACA -ACGGAACGTCTTCCAGATCAGTCA -ACGGAACGTCTTCCAGATGATCCA -ACGGAACGTCTTCCAGATACGACA -ACGGAACGTCTTCCAGATAGCTCA -ACGGAACGTCTTCCAGATTCACGT -ACGGAACGTCTTCCAGATCGTAGT -ACGGAACGTCTTCCAGATGTCAGT -ACGGAACGTCTTCCAGATGAAGGT -ACGGAACGTCTTCCAGATAACCGT -ACGGAACGTCTTCCAGATTTGTGC -ACGGAACGTCTTCCAGATCTAAGC -ACGGAACGTCTTCCAGATACTAGC -ACGGAACGTCTTCCAGATAGATGC -ACGGAACGTCTTCCAGATTGAAGG -ACGGAACGTCTTCCAGATCAATGG -ACGGAACGTCTTCCAGATATGAGG -ACGGAACGTCTTCCAGATAATGGG -ACGGAACGTCTTCCAGATTCCTGA -ACGGAACGTCTTCCAGATTAGCGA -ACGGAACGTCTTCCAGATCACAGA -ACGGAACGTCTTCCAGATGCAAGA -ACGGAACGTCTTCCAGATGGTTGA -ACGGAACGTCTTCCAGATTCCGAT -ACGGAACGTCTTCCAGATTGGCAT -ACGGAACGTCTTCCAGATCGAGAT -ACGGAACGTCTTCCAGATTACCAC -ACGGAACGTCTTCCAGATCAGAAC -ACGGAACGTCTTCCAGATGTCTAC -ACGGAACGTCTTCCAGATACGTAC -ACGGAACGTCTTCCAGATAGTGAC -ACGGAACGTCTTCCAGATCTGTAG -ACGGAACGTCTTCCAGATCCTAAG -ACGGAACGTCTTCCAGATGTTCAG -ACGGAACGTCTTCCAGATGCATAG -ACGGAACGTCTTCCAGATGACAAG -ACGGAACGTCTTCCAGATAAGCAG -ACGGAACGTCTTCCAGATCGTCAA -ACGGAACGTCTTCCAGATGCTGAA -ACGGAACGTCTTCCAGATAGTACG -ACGGAACGTCTTCCAGATATCCGA -ACGGAACGTCTTCCAGATATGGGA -ACGGAACGTCTTCCAGATGTGCAA -ACGGAACGTCTTCCAGATGAGGAA -ACGGAACGTCTTCCAGATCAGGTA -ACGGAACGTCTTCCAGATGACTCT -ACGGAACGTCTTCCAGATAGTCCT -ACGGAACGTCTTCCAGATTAAGCC -ACGGAACGTCTTCCAGATATAGCC -ACGGAACGTCTTCCAGATTAACCG -ACGGAACGTCTTCCAGATATGCCA -ACGGAACGTCTTACAACGGGAAAC -ACGGAACGTCTTACAACGAACACC -ACGGAACGTCTTACAACGATCGAG -ACGGAACGTCTTACAACGCTCCTT -ACGGAACGTCTTACAACGCCTGTT -ACGGAACGTCTTACAACGCGGTTT -ACGGAACGTCTTACAACGGTGGTT -ACGGAACGTCTTACAACGGCCTTT -ACGGAACGTCTTACAACGGGTCTT -ACGGAACGTCTTACAACGACGCTT -ACGGAACGTCTTACAACGAGCGTT -ACGGAACGTCTTACAACGTTCGTC -ACGGAACGTCTTACAACGTCTCTC -ACGGAACGTCTTACAACGTGGATC -ACGGAACGTCTTACAACGCACTTC -ACGGAACGTCTTACAACGGTACTC -ACGGAACGTCTTACAACGGATGTC -ACGGAACGTCTTACAACGACAGTC -ACGGAACGTCTTACAACGTTGCTG -ACGGAACGTCTTACAACGTCCATG -ACGGAACGTCTTACAACGTGTGTG -ACGGAACGTCTTACAACGCTAGTG -ACGGAACGTCTTACAACGCATCTG -ACGGAACGTCTTACAACGGAGTTG -ACGGAACGTCTTACAACGAGACTG -ACGGAACGTCTTACAACGTCGGTA -ACGGAACGTCTTACAACGTGCCTA -ACGGAACGTCTTACAACGCCACTA -ACGGAACGTCTTACAACGGGAGTA -ACGGAACGTCTTACAACGTCGTCT -ACGGAACGTCTTACAACGTGCACT -ACGGAACGTCTTACAACGCTGACT -ACGGAACGTCTTACAACGCAACCT -ACGGAACGTCTTACAACGGCTACT -ACGGAACGTCTTACAACGGGATCT -ACGGAACGTCTTACAACGAAGGCT -ACGGAACGTCTTACAACGTCAACC -ACGGAACGTCTTACAACGTGTTCC -ACGGAACGTCTTACAACGATTCCC -ACGGAACGTCTTACAACGTTCTCG -ACGGAACGTCTTACAACGTAGACG -ACGGAACGTCTTACAACGGTAACG -ACGGAACGTCTTACAACGACTTCG -ACGGAACGTCTTACAACGTACGCA -ACGGAACGTCTTACAACGCTTGCA -ACGGAACGTCTTACAACGCGAACA -ACGGAACGTCTTACAACGCAGTCA -ACGGAACGTCTTACAACGGATCCA -ACGGAACGTCTTACAACGACGACA -ACGGAACGTCTTACAACGAGCTCA -ACGGAACGTCTTACAACGTCACGT -ACGGAACGTCTTACAACGCGTAGT -ACGGAACGTCTTACAACGGTCAGT -ACGGAACGTCTTACAACGGAAGGT -ACGGAACGTCTTACAACGAACCGT -ACGGAACGTCTTACAACGTTGTGC -ACGGAACGTCTTACAACGCTAAGC -ACGGAACGTCTTACAACGACTAGC -ACGGAACGTCTTACAACGAGATGC -ACGGAACGTCTTACAACGTGAAGG -ACGGAACGTCTTACAACGCAATGG -ACGGAACGTCTTACAACGATGAGG -ACGGAACGTCTTACAACGAATGGG -ACGGAACGTCTTACAACGTCCTGA -ACGGAACGTCTTACAACGTAGCGA -ACGGAACGTCTTACAACGCACAGA -ACGGAACGTCTTACAACGGCAAGA -ACGGAACGTCTTACAACGGGTTGA -ACGGAACGTCTTACAACGTCCGAT -ACGGAACGTCTTACAACGTGGCAT -ACGGAACGTCTTACAACGCGAGAT -ACGGAACGTCTTACAACGTACCAC -ACGGAACGTCTTACAACGCAGAAC -ACGGAACGTCTTACAACGGTCTAC -ACGGAACGTCTTACAACGACGTAC -ACGGAACGTCTTACAACGAGTGAC -ACGGAACGTCTTACAACGCTGTAG -ACGGAACGTCTTACAACGCCTAAG -ACGGAACGTCTTACAACGGTTCAG -ACGGAACGTCTTACAACGGCATAG -ACGGAACGTCTTACAACGGACAAG -ACGGAACGTCTTACAACGAAGCAG -ACGGAACGTCTTACAACGCGTCAA -ACGGAACGTCTTACAACGGCTGAA -ACGGAACGTCTTACAACGAGTACG -ACGGAACGTCTTACAACGATCCGA -ACGGAACGTCTTACAACGATGGGA -ACGGAACGTCTTACAACGGTGCAA -ACGGAACGTCTTACAACGGAGGAA -ACGGAACGTCTTACAACGCAGGTA -ACGGAACGTCTTACAACGGACTCT -ACGGAACGTCTTACAACGAGTCCT -ACGGAACGTCTTACAACGTAAGCC -ACGGAACGTCTTACAACGATAGCC -ACGGAACGTCTTACAACGTAACCG -ACGGAACGTCTTACAACGATGCCA -ACGGAACGTCTTTCAAGCGGAAAC -ACGGAACGTCTTTCAAGCAACACC -ACGGAACGTCTTTCAAGCATCGAG -ACGGAACGTCTTTCAAGCCTCCTT -ACGGAACGTCTTTCAAGCCCTGTT -ACGGAACGTCTTTCAAGCCGGTTT -ACGGAACGTCTTTCAAGCGTGGTT -ACGGAACGTCTTTCAAGCGCCTTT -ACGGAACGTCTTTCAAGCGGTCTT -ACGGAACGTCTTTCAAGCACGCTT -ACGGAACGTCTTTCAAGCAGCGTT -ACGGAACGTCTTTCAAGCTTCGTC -ACGGAACGTCTTTCAAGCTCTCTC -ACGGAACGTCTTTCAAGCTGGATC -ACGGAACGTCTTTCAAGCCACTTC -ACGGAACGTCTTTCAAGCGTACTC -ACGGAACGTCTTTCAAGCGATGTC -ACGGAACGTCTTTCAAGCACAGTC -ACGGAACGTCTTTCAAGCTTGCTG -ACGGAACGTCTTTCAAGCTCCATG -ACGGAACGTCTTTCAAGCTGTGTG -ACGGAACGTCTTTCAAGCCTAGTG -ACGGAACGTCTTTCAAGCCATCTG -ACGGAACGTCTTTCAAGCGAGTTG -ACGGAACGTCTTTCAAGCAGACTG -ACGGAACGTCTTTCAAGCTCGGTA -ACGGAACGTCTTTCAAGCTGCCTA -ACGGAACGTCTTTCAAGCCCACTA -ACGGAACGTCTTTCAAGCGGAGTA -ACGGAACGTCTTTCAAGCTCGTCT -ACGGAACGTCTTTCAAGCTGCACT -ACGGAACGTCTTTCAAGCCTGACT -ACGGAACGTCTTTCAAGCCAACCT -ACGGAACGTCTTTCAAGCGCTACT -ACGGAACGTCTTTCAAGCGGATCT -ACGGAACGTCTTTCAAGCAAGGCT -ACGGAACGTCTTTCAAGCTCAACC -ACGGAACGTCTTTCAAGCTGTTCC -ACGGAACGTCTTTCAAGCATTCCC -ACGGAACGTCTTTCAAGCTTCTCG -ACGGAACGTCTTTCAAGCTAGACG -ACGGAACGTCTTTCAAGCGTAACG -ACGGAACGTCTTTCAAGCACTTCG -ACGGAACGTCTTTCAAGCTACGCA -ACGGAACGTCTTTCAAGCCTTGCA -ACGGAACGTCTTTCAAGCCGAACA -ACGGAACGTCTTTCAAGCCAGTCA -ACGGAACGTCTTTCAAGCGATCCA -ACGGAACGTCTTTCAAGCACGACA -ACGGAACGTCTTTCAAGCAGCTCA -ACGGAACGTCTTTCAAGCTCACGT -ACGGAACGTCTTTCAAGCCGTAGT -ACGGAACGTCTTTCAAGCGTCAGT -ACGGAACGTCTTTCAAGCGAAGGT -ACGGAACGTCTTTCAAGCAACCGT -ACGGAACGTCTTTCAAGCTTGTGC -ACGGAACGTCTTTCAAGCCTAAGC -ACGGAACGTCTTTCAAGCACTAGC -ACGGAACGTCTTTCAAGCAGATGC -ACGGAACGTCTTTCAAGCTGAAGG -ACGGAACGTCTTTCAAGCCAATGG -ACGGAACGTCTTTCAAGCATGAGG -ACGGAACGTCTTTCAAGCAATGGG -ACGGAACGTCTTTCAAGCTCCTGA -ACGGAACGTCTTTCAAGCTAGCGA -ACGGAACGTCTTTCAAGCCACAGA -ACGGAACGTCTTTCAAGCGCAAGA -ACGGAACGTCTTTCAAGCGGTTGA -ACGGAACGTCTTTCAAGCTCCGAT -ACGGAACGTCTTTCAAGCTGGCAT -ACGGAACGTCTTTCAAGCCGAGAT -ACGGAACGTCTTTCAAGCTACCAC -ACGGAACGTCTTTCAAGCCAGAAC -ACGGAACGTCTTTCAAGCGTCTAC -ACGGAACGTCTTTCAAGCACGTAC -ACGGAACGTCTTTCAAGCAGTGAC -ACGGAACGTCTTTCAAGCCTGTAG -ACGGAACGTCTTTCAAGCCCTAAG -ACGGAACGTCTTTCAAGCGTTCAG -ACGGAACGTCTTTCAAGCGCATAG -ACGGAACGTCTTTCAAGCGACAAG -ACGGAACGTCTTTCAAGCAAGCAG -ACGGAACGTCTTTCAAGCCGTCAA -ACGGAACGTCTTTCAAGCGCTGAA -ACGGAACGTCTTTCAAGCAGTACG -ACGGAACGTCTTTCAAGCATCCGA -ACGGAACGTCTTTCAAGCATGGGA -ACGGAACGTCTTTCAAGCGTGCAA -ACGGAACGTCTTTCAAGCGAGGAA -ACGGAACGTCTTTCAAGCCAGGTA -ACGGAACGTCTTTCAAGCGACTCT -ACGGAACGTCTTTCAAGCAGTCCT -ACGGAACGTCTTTCAAGCTAAGCC -ACGGAACGTCTTTCAAGCATAGCC -ACGGAACGTCTTTCAAGCTAACCG -ACGGAACGTCTTTCAAGCATGCCA -ACGGAACGTCTTCGTTCAGGAAAC -ACGGAACGTCTTCGTTCAAACACC -ACGGAACGTCTTCGTTCAATCGAG -ACGGAACGTCTTCGTTCACTCCTT -ACGGAACGTCTTCGTTCACCTGTT -ACGGAACGTCTTCGTTCACGGTTT -ACGGAACGTCTTCGTTCAGTGGTT -ACGGAACGTCTTCGTTCAGCCTTT -ACGGAACGTCTTCGTTCAGGTCTT -ACGGAACGTCTTCGTTCAACGCTT -ACGGAACGTCTTCGTTCAAGCGTT -ACGGAACGTCTTCGTTCATTCGTC -ACGGAACGTCTTCGTTCATCTCTC -ACGGAACGTCTTCGTTCATGGATC -ACGGAACGTCTTCGTTCACACTTC -ACGGAACGTCTTCGTTCAGTACTC -ACGGAACGTCTTCGTTCAGATGTC -ACGGAACGTCTTCGTTCAACAGTC -ACGGAACGTCTTCGTTCATTGCTG -ACGGAACGTCTTCGTTCATCCATG -ACGGAACGTCTTCGTTCATGTGTG -ACGGAACGTCTTCGTTCACTAGTG -ACGGAACGTCTTCGTTCACATCTG -ACGGAACGTCTTCGTTCAGAGTTG -ACGGAACGTCTTCGTTCAAGACTG -ACGGAACGTCTTCGTTCATCGGTA -ACGGAACGTCTTCGTTCATGCCTA -ACGGAACGTCTTCGTTCACCACTA -ACGGAACGTCTTCGTTCAGGAGTA -ACGGAACGTCTTCGTTCATCGTCT -ACGGAACGTCTTCGTTCATGCACT -ACGGAACGTCTTCGTTCACTGACT -ACGGAACGTCTTCGTTCACAACCT -ACGGAACGTCTTCGTTCAGCTACT -ACGGAACGTCTTCGTTCAGGATCT -ACGGAACGTCTTCGTTCAAAGGCT -ACGGAACGTCTTCGTTCATCAACC -ACGGAACGTCTTCGTTCATGTTCC -ACGGAACGTCTTCGTTCAATTCCC -ACGGAACGTCTTCGTTCATTCTCG -ACGGAACGTCTTCGTTCATAGACG -ACGGAACGTCTTCGTTCAGTAACG -ACGGAACGTCTTCGTTCAACTTCG -ACGGAACGTCTTCGTTCATACGCA -ACGGAACGTCTTCGTTCACTTGCA -ACGGAACGTCTTCGTTCACGAACA -ACGGAACGTCTTCGTTCACAGTCA -ACGGAACGTCTTCGTTCAGATCCA -ACGGAACGTCTTCGTTCAACGACA -ACGGAACGTCTTCGTTCAAGCTCA -ACGGAACGTCTTCGTTCATCACGT -ACGGAACGTCTTCGTTCACGTAGT -ACGGAACGTCTTCGTTCAGTCAGT -ACGGAACGTCTTCGTTCAGAAGGT -ACGGAACGTCTTCGTTCAAACCGT -ACGGAACGTCTTCGTTCATTGTGC -ACGGAACGTCTTCGTTCACTAAGC -ACGGAACGTCTTCGTTCAACTAGC -ACGGAACGTCTTCGTTCAAGATGC -ACGGAACGTCTTCGTTCATGAAGG -ACGGAACGTCTTCGTTCACAATGG -ACGGAACGTCTTCGTTCAATGAGG -ACGGAACGTCTTCGTTCAAATGGG -ACGGAACGTCTTCGTTCATCCTGA -ACGGAACGTCTTCGTTCATAGCGA -ACGGAACGTCTTCGTTCACACAGA -ACGGAACGTCTTCGTTCAGCAAGA -ACGGAACGTCTTCGTTCAGGTTGA -ACGGAACGTCTTCGTTCATCCGAT -ACGGAACGTCTTCGTTCATGGCAT -ACGGAACGTCTTCGTTCACGAGAT -ACGGAACGTCTTCGTTCATACCAC -ACGGAACGTCTTCGTTCACAGAAC -ACGGAACGTCTTCGTTCAGTCTAC -ACGGAACGTCTTCGTTCAACGTAC -ACGGAACGTCTTCGTTCAAGTGAC -ACGGAACGTCTTCGTTCACTGTAG -ACGGAACGTCTTCGTTCACCTAAG -ACGGAACGTCTTCGTTCAGTTCAG -ACGGAACGTCTTCGTTCAGCATAG -ACGGAACGTCTTCGTTCAGACAAG -ACGGAACGTCTTCGTTCAAAGCAG -ACGGAACGTCTTCGTTCACGTCAA -ACGGAACGTCTTCGTTCAGCTGAA -ACGGAACGTCTTCGTTCAAGTACG -ACGGAACGTCTTCGTTCAATCCGA -ACGGAACGTCTTCGTTCAATGGGA -ACGGAACGTCTTCGTTCAGTGCAA -ACGGAACGTCTTCGTTCAGAGGAA -ACGGAACGTCTTCGTTCACAGGTA -ACGGAACGTCTTCGTTCAGACTCT -ACGGAACGTCTTCGTTCAAGTCCT -ACGGAACGTCTTCGTTCATAAGCC -ACGGAACGTCTTCGTTCAATAGCC -ACGGAACGTCTTCGTTCATAACCG -ACGGAACGTCTTCGTTCAATGCCA -ACGGAACGTCTTAGTCGTGGAAAC -ACGGAACGTCTTAGTCGTAACACC -ACGGAACGTCTTAGTCGTATCGAG -ACGGAACGTCTTAGTCGTCTCCTT -ACGGAACGTCTTAGTCGTCCTGTT -ACGGAACGTCTTAGTCGTCGGTTT -ACGGAACGTCTTAGTCGTGTGGTT -ACGGAACGTCTTAGTCGTGCCTTT -ACGGAACGTCTTAGTCGTGGTCTT -ACGGAACGTCTTAGTCGTACGCTT -ACGGAACGTCTTAGTCGTAGCGTT -ACGGAACGTCTTAGTCGTTTCGTC -ACGGAACGTCTTAGTCGTTCTCTC -ACGGAACGTCTTAGTCGTTGGATC -ACGGAACGTCTTAGTCGTCACTTC -ACGGAACGTCTTAGTCGTGTACTC -ACGGAACGTCTTAGTCGTGATGTC -ACGGAACGTCTTAGTCGTACAGTC -ACGGAACGTCTTAGTCGTTTGCTG -ACGGAACGTCTTAGTCGTTCCATG -ACGGAACGTCTTAGTCGTTGTGTG -ACGGAACGTCTTAGTCGTCTAGTG -ACGGAACGTCTTAGTCGTCATCTG -ACGGAACGTCTTAGTCGTGAGTTG -ACGGAACGTCTTAGTCGTAGACTG -ACGGAACGTCTTAGTCGTTCGGTA -ACGGAACGTCTTAGTCGTTGCCTA -ACGGAACGTCTTAGTCGTCCACTA -ACGGAACGTCTTAGTCGTGGAGTA -ACGGAACGTCTTAGTCGTTCGTCT -ACGGAACGTCTTAGTCGTTGCACT -ACGGAACGTCTTAGTCGTCTGACT -ACGGAACGTCTTAGTCGTCAACCT -ACGGAACGTCTTAGTCGTGCTACT -ACGGAACGTCTTAGTCGTGGATCT -ACGGAACGTCTTAGTCGTAAGGCT -ACGGAACGTCTTAGTCGTTCAACC -ACGGAACGTCTTAGTCGTTGTTCC -ACGGAACGTCTTAGTCGTATTCCC -ACGGAACGTCTTAGTCGTTTCTCG -ACGGAACGTCTTAGTCGTTAGACG -ACGGAACGTCTTAGTCGTGTAACG -ACGGAACGTCTTAGTCGTACTTCG -ACGGAACGTCTTAGTCGTTACGCA -ACGGAACGTCTTAGTCGTCTTGCA -ACGGAACGTCTTAGTCGTCGAACA -ACGGAACGTCTTAGTCGTCAGTCA -ACGGAACGTCTTAGTCGTGATCCA -ACGGAACGTCTTAGTCGTACGACA -ACGGAACGTCTTAGTCGTAGCTCA -ACGGAACGTCTTAGTCGTTCACGT -ACGGAACGTCTTAGTCGTCGTAGT -ACGGAACGTCTTAGTCGTGTCAGT -ACGGAACGTCTTAGTCGTGAAGGT -ACGGAACGTCTTAGTCGTAACCGT -ACGGAACGTCTTAGTCGTTTGTGC -ACGGAACGTCTTAGTCGTCTAAGC -ACGGAACGTCTTAGTCGTACTAGC -ACGGAACGTCTTAGTCGTAGATGC -ACGGAACGTCTTAGTCGTTGAAGG -ACGGAACGTCTTAGTCGTCAATGG -ACGGAACGTCTTAGTCGTATGAGG -ACGGAACGTCTTAGTCGTAATGGG -ACGGAACGTCTTAGTCGTTCCTGA -ACGGAACGTCTTAGTCGTTAGCGA -ACGGAACGTCTTAGTCGTCACAGA -ACGGAACGTCTTAGTCGTGCAAGA -ACGGAACGTCTTAGTCGTGGTTGA -ACGGAACGTCTTAGTCGTTCCGAT -ACGGAACGTCTTAGTCGTTGGCAT -ACGGAACGTCTTAGTCGTCGAGAT -ACGGAACGTCTTAGTCGTTACCAC -ACGGAACGTCTTAGTCGTCAGAAC -ACGGAACGTCTTAGTCGTGTCTAC -ACGGAACGTCTTAGTCGTACGTAC -ACGGAACGTCTTAGTCGTAGTGAC -ACGGAACGTCTTAGTCGTCTGTAG -ACGGAACGTCTTAGTCGTCCTAAG -ACGGAACGTCTTAGTCGTGTTCAG -ACGGAACGTCTTAGTCGTGCATAG -ACGGAACGTCTTAGTCGTGACAAG -ACGGAACGTCTTAGTCGTAAGCAG -ACGGAACGTCTTAGTCGTCGTCAA -ACGGAACGTCTTAGTCGTGCTGAA -ACGGAACGTCTTAGTCGTAGTACG -ACGGAACGTCTTAGTCGTATCCGA -ACGGAACGTCTTAGTCGTATGGGA -ACGGAACGTCTTAGTCGTGTGCAA -ACGGAACGTCTTAGTCGTGAGGAA -ACGGAACGTCTTAGTCGTCAGGTA -ACGGAACGTCTTAGTCGTGACTCT -ACGGAACGTCTTAGTCGTAGTCCT -ACGGAACGTCTTAGTCGTTAAGCC -ACGGAACGTCTTAGTCGTATAGCC -ACGGAACGTCTTAGTCGTTAACCG -ACGGAACGTCTTAGTCGTATGCCA -ACGGAACGTCTTAGTGTCGGAAAC -ACGGAACGTCTTAGTGTCAACACC -ACGGAACGTCTTAGTGTCATCGAG -ACGGAACGTCTTAGTGTCCTCCTT -ACGGAACGTCTTAGTGTCCCTGTT -ACGGAACGTCTTAGTGTCCGGTTT -ACGGAACGTCTTAGTGTCGTGGTT -ACGGAACGTCTTAGTGTCGCCTTT -ACGGAACGTCTTAGTGTCGGTCTT -ACGGAACGTCTTAGTGTCACGCTT -ACGGAACGTCTTAGTGTCAGCGTT -ACGGAACGTCTTAGTGTCTTCGTC -ACGGAACGTCTTAGTGTCTCTCTC -ACGGAACGTCTTAGTGTCTGGATC -ACGGAACGTCTTAGTGTCCACTTC -ACGGAACGTCTTAGTGTCGTACTC -ACGGAACGTCTTAGTGTCGATGTC -ACGGAACGTCTTAGTGTCACAGTC -ACGGAACGTCTTAGTGTCTTGCTG -ACGGAACGTCTTAGTGTCTCCATG -ACGGAACGTCTTAGTGTCTGTGTG -ACGGAACGTCTTAGTGTCCTAGTG -ACGGAACGTCTTAGTGTCCATCTG -ACGGAACGTCTTAGTGTCGAGTTG -ACGGAACGTCTTAGTGTCAGACTG -ACGGAACGTCTTAGTGTCTCGGTA -ACGGAACGTCTTAGTGTCTGCCTA -ACGGAACGTCTTAGTGTCCCACTA -ACGGAACGTCTTAGTGTCGGAGTA -ACGGAACGTCTTAGTGTCTCGTCT -ACGGAACGTCTTAGTGTCTGCACT -ACGGAACGTCTTAGTGTCCTGACT -ACGGAACGTCTTAGTGTCCAACCT -ACGGAACGTCTTAGTGTCGCTACT -ACGGAACGTCTTAGTGTCGGATCT -ACGGAACGTCTTAGTGTCAAGGCT -ACGGAACGTCTTAGTGTCTCAACC -ACGGAACGTCTTAGTGTCTGTTCC -ACGGAACGTCTTAGTGTCATTCCC -ACGGAACGTCTTAGTGTCTTCTCG -ACGGAACGTCTTAGTGTCTAGACG -ACGGAACGTCTTAGTGTCGTAACG -ACGGAACGTCTTAGTGTCACTTCG -ACGGAACGTCTTAGTGTCTACGCA -ACGGAACGTCTTAGTGTCCTTGCA -ACGGAACGTCTTAGTGTCCGAACA -ACGGAACGTCTTAGTGTCCAGTCA -ACGGAACGTCTTAGTGTCGATCCA -ACGGAACGTCTTAGTGTCACGACA -ACGGAACGTCTTAGTGTCAGCTCA -ACGGAACGTCTTAGTGTCTCACGT -ACGGAACGTCTTAGTGTCCGTAGT -ACGGAACGTCTTAGTGTCGTCAGT -ACGGAACGTCTTAGTGTCGAAGGT -ACGGAACGTCTTAGTGTCAACCGT -ACGGAACGTCTTAGTGTCTTGTGC -ACGGAACGTCTTAGTGTCCTAAGC -ACGGAACGTCTTAGTGTCACTAGC -ACGGAACGTCTTAGTGTCAGATGC -ACGGAACGTCTTAGTGTCTGAAGG -ACGGAACGTCTTAGTGTCCAATGG -ACGGAACGTCTTAGTGTCATGAGG -ACGGAACGTCTTAGTGTCAATGGG -ACGGAACGTCTTAGTGTCTCCTGA -ACGGAACGTCTTAGTGTCTAGCGA -ACGGAACGTCTTAGTGTCCACAGA -ACGGAACGTCTTAGTGTCGCAAGA -ACGGAACGTCTTAGTGTCGGTTGA -ACGGAACGTCTTAGTGTCTCCGAT -ACGGAACGTCTTAGTGTCTGGCAT -ACGGAACGTCTTAGTGTCCGAGAT -ACGGAACGTCTTAGTGTCTACCAC -ACGGAACGTCTTAGTGTCCAGAAC -ACGGAACGTCTTAGTGTCGTCTAC -ACGGAACGTCTTAGTGTCACGTAC -ACGGAACGTCTTAGTGTCAGTGAC -ACGGAACGTCTTAGTGTCCTGTAG -ACGGAACGTCTTAGTGTCCCTAAG -ACGGAACGTCTTAGTGTCGTTCAG -ACGGAACGTCTTAGTGTCGCATAG -ACGGAACGTCTTAGTGTCGACAAG -ACGGAACGTCTTAGTGTCAAGCAG -ACGGAACGTCTTAGTGTCCGTCAA -ACGGAACGTCTTAGTGTCGCTGAA -ACGGAACGTCTTAGTGTCAGTACG -ACGGAACGTCTTAGTGTCATCCGA -ACGGAACGTCTTAGTGTCATGGGA -ACGGAACGTCTTAGTGTCGTGCAA -ACGGAACGTCTTAGTGTCGAGGAA -ACGGAACGTCTTAGTGTCCAGGTA -ACGGAACGTCTTAGTGTCGACTCT -ACGGAACGTCTTAGTGTCAGTCCT -ACGGAACGTCTTAGTGTCTAAGCC -ACGGAACGTCTTAGTGTCATAGCC -ACGGAACGTCTTAGTGTCTAACCG -ACGGAACGTCTTAGTGTCATGCCA -ACGGAACGTCTTGGTGAAGGAAAC -ACGGAACGTCTTGGTGAAAACACC -ACGGAACGTCTTGGTGAAATCGAG -ACGGAACGTCTTGGTGAACTCCTT -ACGGAACGTCTTGGTGAACCTGTT -ACGGAACGTCTTGGTGAACGGTTT -ACGGAACGTCTTGGTGAAGTGGTT -ACGGAACGTCTTGGTGAAGCCTTT -ACGGAACGTCTTGGTGAAGGTCTT -ACGGAACGTCTTGGTGAAACGCTT -ACGGAACGTCTTGGTGAAAGCGTT -ACGGAACGTCTTGGTGAATTCGTC -ACGGAACGTCTTGGTGAATCTCTC -ACGGAACGTCTTGGTGAATGGATC -ACGGAACGTCTTGGTGAACACTTC -ACGGAACGTCTTGGTGAAGTACTC -ACGGAACGTCTTGGTGAAGATGTC -ACGGAACGTCTTGGTGAAACAGTC -ACGGAACGTCTTGGTGAATTGCTG -ACGGAACGTCTTGGTGAATCCATG -ACGGAACGTCTTGGTGAATGTGTG -ACGGAACGTCTTGGTGAACTAGTG -ACGGAACGTCTTGGTGAACATCTG -ACGGAACGTCTTGGTGAAGAGTTG -ACGGAACGTCTTGGTGAAAGACTG -ACGGAACGTCTTGGTGAATCGGTA -ACGGAACGTCTTGGTGAATGCCTA -ACGGAACGTCTTGGTGAACCACTA -ACGGAACGTCTTGGTGAAGGAGTA -ACGGAACGTCTTGGTGAATCGTCT -ACGGAACGTCTTGGTGAATGCACT -ACGGAACGTCTTGGTGAACTGACT -ACGGAACGTCTTGGTGAACAACCT -ACGGAACGTCTTGGTGAAGCTACT -ACGGAACGTCTTGGTGAAGGATCT -ACGGAACGTCTTGGTGAAAAGGCT -ACGGAACGTCTTGGTGAATCAACC -ACGGAACGTCTTGGTGAATGTTCC -ACGGAACGTCTTGGTGAAATTCCC -ACGGAACGTCTTGGTGAATTCTCG -ACGGAACGTCTTGGTGAATAGACG -ACGGAACGTCTTGGTGAAGTAACG -ACGGAACGTCTTGGTGAAACTTCG -ACGGAACGTCTTGGTGAATACGCA -ACGGAACGTCTTGGTGAACTTGCA -ACGGAACGTCTTGGTGAACGAACA -ACGGAACGTCTTGGTGAACAGTCA -ACGGAACGTCTTGGTGAAGATCCA -ACGGAACGTCTTGGTGAAACGACA -ACGGAACGTCTTGGTGAAAGCTCA -ACGGAACGTCTTGGTGAATCACGT -ACGGAACGTCTTGGTGAACGTAGT -ACGGAACGTCTTGGTGAAGTCAGT -ACGGAACGTCTTGGTGAAGAAGGT -ACGGAACGTCTTGGTGAAAACCGT -ACGGAACGTCTTGGTGAATTGTGC -ACGGAACGTCTTGGTGAACTAAGC -ACGGAACGTCTTGGTGAAACTAGC -ACGGAACGTCTTGGTGAAAGATGC -ACGGAACGTCTTGGTGAATGAAGG -ACGGAACGTCTTGGTGAACAATGG -ACGGAACGTCTTGGTGAAATGAGG -ACGGAACGTCTTGGTGAAAATGGG -ACGGAACGTCTTGGTGAATCCTGA -ACGGAACGTCTTGGTGAATAGCGA -ACGGAACGTCTTGGTGAACACAGA -ACGGAACGTCTTGGTGAAGCAAGA -ACGGAACGTCTTGGTGAAGGTTGA -ACGGAACGTCTTGGTGAATCCGAT -ACGGAACGTCTTGGTGAATGGCAT -ACGGAACGTCTTGGTGAACGAGAT -ACGGAACGTCTTGGTGAATACCAC -ACGGAACGTCTTGGTGAACAGAAC -ACGGAACGTCTTGGTGAAGTCTAC -ACGGAACGTCTTGGTGAAACGTAC -ACGGAACGTCTTGGTGAAAGTGAC -ACGGAACGTCTTGGTGAACTGTAG -ACGGAACGTCTTGGTGAACCTAAG -ACGGAACGTCTTGGTGAAGTTCAG -ACGGAACGTCTTGGTGAAGCATAG -ACGGAACGTCTTGGTGAAGACAAG -ACGGAACGTCTTGGTGAAAAGCAG -ACGGAACGTCTTGGTGAACGTCAA -ACGGAACGTCTTGGTGAAGCTGAA -ACGGAACGTCTTGGTGAAAGTACG -ACGGAACGTCTTGGTGAAATCCGA -ACGGAACGTCTTGGTGAAATGGGA -ACGGAACGTCTTGGTGAAGTGCAA -ACGGAACGTCTTGGTGAAGAGGAA -ACGGAACGTCTTGGTGAACAGGTA -ACGGAACGTCTTGGTGAAGACTCT -ACGGAACGTCTTGGTGAAAGTCCT -ACGGAACGTCTTGGTGAATAAGCC -ACGGAACGTCTTGGTGAAATAGCC -ACGGAACGTCTTGGTGAATAACCG -ACGGAACGTCTTGGTGAAATGCCA -ACGGAACGTCTTCGTAACGGAAAC -ACGGAACGTCTTCGTAACAACACC -ACGGAACGTCTTCGTAACATCGAG -ACGGAACGTCTTCGTAACCTCCTT -ACGGAACGTCTTCGTAACCCTGTT -ACGGAACGTCTTCGTAACCGGTTT -ACGGAACGTCTTCGTAACGTGGTT -ACGGAACGTCTTCGTAACGCCTTT -ACGGAACGTCTTCGTAACGGTCTT -ACGGAACGTCTTCGTAACACGCTT -ACGGAACGTCTTCGTAACAGCGTT -ACGGAACGTCTTCGTAACTTCGTC -ACGGAACGTCTTCGTAACTCTCTC -ACGGAACGTCTTCGTAACTGGATC -ACGGAACGTCTTCGTAACCACTTC -ACGGAACGTCTTCGTAACGTACTC -ACGGAACGTCTTCGTAACGATGTC -ACGGAACGTCTTCGTAACACAGTC -ACGGAACGTCTTCGTAACTTGCTG -ACGGAACGTCTTCGTAACTCCATG -ACGGAACGTCTTCGTAACTGTGTG -ACGGAACGTCTTCGTAACCTAGTG -ACGGAACGTCTTCGTAACCATCTG -ACGGAACGTCTTCGTAACGAGTTG -ACGGAACGTCTTCGTAACAGACTG -ACGGAACGTCTTCGTAACTCGGTA -ACGGAACGTCTTCGTAACTGCCTA -ACGGAACGTCTTCGTAACCCACTA -ACGGAACGTCTTCGTAACGGAGTA -ACGGAACGTCTTCGTAACTCGTCT -ACGGAACGTCTTCGTAACTGCACT -ACGGAACGTCTTCGTAACCTGACT -ACGGAACGTCTTCGTAACCAACCT -ACGGAACGTCTTCGTAACGCTACT -ACGGAACGTCTTCGTAACGGATCT -ACGGAACGTCTTCGTAACAAGGCT -ACGGAACGTCTTCGTAACTCAACC -ACGGAACGTCTTCGTAACTGTTCC -ACGGAACGTCTTCGTAACATTCCC -ACGGAACGTCTTCGTAACTTCTCG -ACGGAACGTCTTCGTAACTAGACG -ACGGAACGTCTTCGTAACGTAACG -ACGGAACGTCTTCGTAACACTTCG -ACGGAACGTCTTCGTAACTACGCA -ACGGAACGTCTTCGTAACCTTGCA -ACGGAACGTCTTCGTAACCGAACA -ACGGAACGTCTTCGTAACCAGTCA -ACGGAACGTCTTCGTAACGATCCA -ACGGAACGTCTTCGTAACACGACA -ACGGAACGTCTTCGTAACAGCTCA -ACGGAACGTCTTCGTAACTCACGT -ACGGAACGTCTTCGTAACCGTAGT -ACGGAACGTCTTCGTAACGTCAGT -ACGGAACGTCTTCGTAACGAAGGT -ACGGAACGTCTTCGTAACAACCGT -ACGGAACGTCTTCGTAACTTGTGC -ACGGAACGTCTTCGTAACCTAAGC -ACGGAACGTCTTCGTAACACTAGC -ACGGAACGTCTTCGTAACAGATGC -ACGGAACGTCTTCGTAACTGAAGG -ACGGAACGTCTTCGTAACCAATGG -ACGGAACGTCTTCGTAACATGAGG -ACGGAACGTCTTCGTAACAATGGG -ACGGAACGTCTTCGTAACTCCTGA -ACGGAACGTCTTCGTAACTAGCGA -ACGGAACGTCTTCGTAACCACAGA -ACGGAACGTCTTCGTAACGCAAGA -ACGGAACGTCTTCGTAACGGTTGA -ACGGAACGTCTTCGTAACTCCGAT -ACGGAACGTCTTCGTAACTGGCAT -ACGGAACGTCTTCGTAACCGAGAT -ACGGAACGTCTTCGTAACTACCAC -ACGGAACGTCTTCGTAACCAGAAC -ACGGAACGTCTTCGTAACGTCTAC -ACGGAACGTCTTCGTAACACGTAC -ACGGAACGTCTTCGTAACAGTGAC -ACGGAACGTCTTCGTAACCTGTAG -ACGGAACGTCTTCGTAACCCTAAG -ACGGAACGTCTTCGTAACGTTCAG -ACGGAACGTCTTCGTAACGCATAG -ACGGAACGTCTTCGTAACGACAAG -ACGGAACGTCTTCGTAACAAGCAG -ACGGAACGTCTTCGTAACCGTCAA -ACGGAACGTCTTCGTAACGCTGAA -ACGGAACGTCTTCGTAACAGTACG -ACGGAACGTCTTCGTAACATCCGA -ACGGAACGTCTTCGTAACATGGGA -ACGGAACGTCTTCGTAACGTGCAA -ACGGAACGTCTTCGTAACGAGGAA -ACGGAACGTCTTCGTAACCAGGTA -ACGGAACGTCTTCGTAACGACTCT -ACGGAACGTCTTCGTAACAGTCCT -ACGGAACGTCTTCGTAACTAAGCC -ACGGAACGTCTTCGTAACATAGCC -ACGGAACGTCTTCGTAACTAACCG -ACGGAACGTCTTCGTAACATGCCA -ACGGAACGTCTTTGCTTGGGAAAC -ACGGAACGTCTTTGCTTGAACACC -ACGGAACGTCTTTGCTTGATCGAG -ACGGAACGTCTTTGCTTGCTCCTT -ACGGAACGTCTTTGCTTGCCTGTT -ACGGAACGTCTTTGCTTGCGGTTT -ACGGAACGTCTTTGCTTGGTGGTT -ACGGAACGTCTTTGCTTGGCCTTT -ACGGAACGTCTTTGCTTGGGTCTT -ACGGAACGTCTTTGCTTGACGCTT -ACGGAACGTCTTTGCTTGAGCGTT -ACGGAACGTCTTTGCTTGTTCGTC -ACGGAACGTCTTTGCTTGTCTCTC -ACGGAACGTCTTTGCTTGTGGATC -ACGGAACGTCTTTGCTTGCACTTC -ACGGAACGTCTTTGCTTGGTACTC -ACGGAACGTCTTTGCTTGGATGTC -ACGGAACGTCTTTGCTTGACAGTC -ACGGAACGTCTTTGCTTGTTGCTG -ACGGAACGTCTTTGCTTGTCCATG -ACGGAACGTCTTTGCTTGTGTGTG -ACGGAACGTCTTTGCTTGCTAGTG -ACGGAACGTCTTTGCTTGCATCTG -ACGGAACGTCTTTGCTTGGAGTTG -ACGGAACGTCTTTGCTTGAGACTG -ACGGAACGTCTTTGCTTGTCGGTA -ACGGAACGTCTTTGCTTGTGCCTA -ACGGAACGTCTTTGCTTGCCACTA -ACGGAACGTCTTTGCTTGGGAGTA -ACGGAACGTCTTTGCTTGTCGTCT -ACGGAACGTCTTTGCTTGTGCACT -ACGGAACGTCTTTGCTTGCTGACT -ACGGAACGTCTTTGCTTGCAACCT -ACGGAACGTCTTTGCTTGGCTACT -ACGGAACGTCTTTGCTTGGGATCT -ACGGAACGTCTTTGCTTGAAGGCT -ACGGAACGTCTTTGCTTGTCAACC -ACGGAACGTCTTTGCTTGTGTTCC -ACGGAACGTCTTTGCTTGATTCCC -ACGGAACGTCTTTGCTTGTTCTCG -ACGGAACGTCTTTGCTTGTAGACG -ACGGAACGTCTTTGCTTGGTAACG -ACGGAACGTCTTTGCTTGACTTCG -ACGGAACGTCTTTGCTTGTACGCA -ACGGAACGTCTTTGCTTGCTTGCA -ACGGAACGTCTTTGCTTGCGAACA -ACGGAACGTCTTTGCTTGCAGTCA -ACGGAACGTCTTTGCTTGGATCCA -ACGGAACGTCTTTGCTTGACGACA -ACGGAACGTCTTTGCTTGAGCTCA -ACGGAACGTCTTTGCTTGTCACGT -ACGGAACGTCTTTGCTTGCGTAGT -ACGGAACGTCTTTGCTTGGTCAGT -ACGGAACGTCTTTGCTTGGAAGGT -ACGGAACGTCTTTGCTTGAACCGT -ACGGAACGTCTTTGCTTGTTGTGC -ACGGAACGTCTTTGCTTGCTAAGC -ACGGAACGTCTTTGCTTGACTAGC -ACGGAACGTCTTTGCTTGAGATGC -ACGGAACGTCTTTGCTTGTGAAGG -ACGGAACGTCTTTGCTTGCAATGG -ACGGAACGTCTTTGCTTGATGAGG -ACGGAACGTCTTTGCTTGAATGGG -ACGGAACGTCTTTGCTTGTCCTGA -ACGGAACGTCTTTGCTTGTAGCGA -ACGGAACGTCTTTGCTTGCACAGA -ACGGAACGTCTTTGCTTGGCAAGA -ACGGAACGTCTTTGCTTGGGTTGA -ACGGAACGTCTTTGCTTGTCCGAT -ACGGAACGTCTTTGCTTGTGGCAT -ACGGAACGTCTTTGCTTGCGAGAT -ACGGAACGTCTTTGCTTGTACCAC -ACGGAACGTCTTTGCTTGCAGAAC -ACGGAACGTCTTTGCTTGGTCTAC -ACGGAACGTCTTTGCTTGACGTAC -ACGGAACGTCTTTGCTTGAGTGAC -ACGGAACGTCTTTGCTTGCTGTAG -ACGGAACGTCTTTGCTTGCCTAAG -ACGGAACGTCTTTGCTTGGTTCAG -ACGGAACGTCTTTGCTTGGCATAG -ACGGAACGTCTTTGCTTGGACAAG -ACGGAACGTCTTTGCTTGAAGCAG -ACGGAACGTCTTTGCTTGCGTCAA -ACGGAACGTCTTTGCTTGGCTGAA -ACGGAACGTCTTTGCTTGAGTACG -ACGGAACGTCTTTGCTTGATCCGA -ACGGAACGTCTTTGCTTGATGGGA -ACGGAACGTCTTTGCTTGGTGCAA -ACGGAACGTCTTTGCTTGGAGGAA -ACGGAACGTCTTTGCTTGCAGGTA -ACGGAACGTCTTTGCTTGGACTCT -ACGGAACGTCTTTGCTTGAGTCCT -ACGGAACGTCTTTGCTTGTAAGCC -ACGGAACGTCTTTGCTTGATAGCC -ACGGAACGTCTTTGCTTGTAACCG -ACGGAACGTCTTTGCTTGATGCCA -ACGGAACGTCTTAGCCTAGGAAAC -ACGGAACGTCTTAGCCTAAACACC -ACGGAACGTCTTAGCCTAATCGAG -ACGGAACGTCTTAGCCTACTCCTT -ACGGAACGTCTTAGCCTACCTGTT -ACGGAACGTCTTAGCCTACGGTTT -ACGGAACGTCTTAGCCTAGTGGTT -ACGGAACGTCTTAGCCTAGCCTTT -ACGGAACGTCTTAGCCTAGGTCTT -ACGGAACGTCTTAGCCTAACGCTT -ACGGAACGTCTTAGCCTAAGCGTT -ACGGAACGTCTTAGCCTATTCGTC -ACGGAACGTCTTAGCCTATCTCTC -ACGGAACGTCTTAGCCTATGGATC -ACGGAACGTCTTAGCCTACACTTC -ACGGAACGTCTTAGCCTAGTACTC -ACGGAACGTCTTAGCCTAGATGTC -ACGGAACGTCTTAGCCTAACAGTC -ACGGAACGTCTTAGCCTATTGCTG -ACGGAACGTCTTAGCCTATCCATG -ACGGAACGTCTTAGCCTATGTGTG -ACGGAACGTCTTAGCCTACTAGTG -ACGGAACGTCTTAGCCTACATCTG -ACGGAACGTCTTAGCCTAGAGTTG -ACGGAACGTCTTAGCCTAAGACTG -ACGGAACGTCTTAGCCTATCGGTA -ACGGAACGTCTTAGCCTATGCCTA -ACGGAACGTCTTAGCCTACCACTA -ACGGAACGTCTTAGCCTAGGAGTA -ACGGAACGTCTTAGCCTATCGTCT -ACGGAACGTCTTAGCCTATGCACT -ACGGAACGTCTTAGCCTACTGACT -ACGGAACGTCTTAGCCTACAACCT -ACGGAACGTCTTAGCCTAGCTACT -ACGGAACGTCTTAGCCTAGGATCT -ACGGAACGTCTTAGCCTAAAGGCT -ACGGAACGTCTTAGCCTATCAACC -ACGGAACGTCTTAGCCTATGTTCC -ACGGAACGTCTTAGCCTAATTCCC -ACGGAACGTCTTAGCCTATTCTCG -ACGGAACGTCTTAGCCTATAGACG -ACGGAACGTCTTAGCCTAGTAACG -ACGGAACGTCTTAGCCTAACTTCG -ACGGAACGTCTTAGCCTATACGCA -ACGGAACGTCTTAGCCTACTTGCA -ACGGAACGTCTTAGCCTACGAACA -ACGGAACGTCTTAGCCTACAGTCA -ACGGAACGTCTTAGCCTAGATCCA -ACGGAACGTCTTAGCCTAACGACA -ACGGAACGTCTTAGCCTAAGCTCA -ACGGAACGTCTTAGCCTATCACGT -ACGGAACGTCTTAGCCTACGTAGT -ACGGAACGTCTTAGCCTAGTCAGT -ACGGAACGTCTTAGCCTAGAAGGT -ACGGAACGTCTTAGCCTAAACCGT -ACGGAACGTCTTAGCCTATTGTGC -ACGGAACGTCTTAGCCTACTAAGC -ACGGAACGTCTTAGCCTAACTAGC -ACGGAACGTCTTAGCCTAAGATGC -ACGGAACGTCTTAGCCTATGAAGG -ACGGAACGTCTTAGCCTACAATGG -ACGGAACGTCTTAGCCTAATGAGG -ACGGAACGTCTTAGCCTAAATGGG -ACGGAACGTCTTAGCCTATCCTGA -ACGGAACGTCTTAGCCTATAGCGA -ACGGAACGTCTTAGCCTACACAGA -ACGGAACGTCTTAGCCTAGCAAGA -ACGGAACGTCTTAGCCTAGGTTGA -ACGGAACGTCTTAGCCTATCCGAT -ACGGAACGTCTTAGCCTATGGCAT -ACGGAACGTCTTAGCCTACGAGAT -ACGGAACGTCTTAGCCTATACCAC -ACGGAACGTCTTAGCCTACAGAAC -ACGGAACGTCTTAGCCTAGTCTAC -ACGGAACGTCTTAGCCTAACGTAC -ACGGAACGTCTTAGCCTAAGTGAC -ACGGAACGTCTTAGCCTACTGTAG -ACGGAACGTCTTAGCCTACCTAAG -ACGGAACGTCTTAGCCTAGTTCAG -ACGGAACGTCTTAGCCTAGCATAG -ACGGAACGTCTTAGCCTAGACAAG -ACGGAACGTCTTAGCCTAAAGCAG -ACGGAACGTCTTAGCCTACGTCAA -ACGGAACGTCTTAGCCTAGCTGAA -ACGGAACGTCTTAGCCTAAGTACG -ACGGAACGTCTTAGCCTAATCCGA -ACGGAACGTCTTAGCCTAATGGGA -ACGGAACGTCTTAGCCTAGTGCAA -ACGGAACGTCTTAGCCTAGAGGAA -ACGGAACGTCTTAGCCTACAGGTA -ACGGAACGTCTTAGCCTAGACTCT -ACGGAACGTCTTAGCCTAAGTCCT -ACGGAACGTCTTAGCCTATAAGCC -ACGGAACGTCTTAGCCTAATAGCC -ACGGAACGTCTTAGCCTATAACCG -ACGGAACGTCTTAGCCTAATGCCA -ACGGAACGTCTTAGCACTGGAAAC -ACGGAACGTCTTAGCACTAACACC -ACGGAACGTCTTAGCACTATCGAG -ACGGAACGTCTTAGCACTCTCCTT -ACGGAACGTCTTAGCACTCCTGTT -ACGGAACGTCTTAGCACTCGGTTT -ACGGAACGTCTTAGCACTGTGGTT -ACGGAACGTCTTAGCACTGCCTTT -ACGGAACGTCTTAGCACTGGTCTT -ACGGAACGTCTTAGCACTACGCTT -ACGGAACGTCTTAGCACTAGCGTT -ACGGAACGTCTTAGCACTTTCGTC -ACGGAACGTCTTAGCACTTCTCTC -ACGGAACGTCTTAGCACTTGGATC -ACGGAACGTCTTAGCACTCACTTC -ACGGAACGTCTTAGCACTGTACTC -ACGGAACGTCTTAGCACTGATGTC -ACGGAACGTCTTAGCACTACAGTC -ACGGAACGTCTTAGCACTTTGCTG -ACGGAACGTCTTAGCACTTCCATG -ACGGAACGTCTTAGCACTTGTGTG -ACGGAACGTCTTAGCACTCTAGTG -ACGGAACGTCTTAGCACTCATCTG -ACGGAACGTCTTAGCACTGAGTTG -ACGGAACGTCTTAGCACTAGACTG -ACGGAACGTCTTAGCACTTCGGTA -ACGGAACGTCTTAGCACTTGCCTA -ACGGAACGTCTTAGCACTCCACTA -ACGGAACGTCTTAGCACTGGAGTA -ACGGAACGTCTTAGCACTTCGTCT -ACGGAACGTCTTAGCACTTGCACT -ACGGAACGTCTTAGCACTCTGACT -ACGGAACGTCTTAGCACTCAACCT -ACGGAACGTCTTAGCACTGCTACT -ACGGAACGTCTTAGCACTGGATCT -ACGGAACGTCTTAGCACTAAGGCT -ACGGAACGTCTTAGCACTTCAACC -ACGGAACGTCTTAGCACTTGTTCC -ACGGAACGTCTTAGCACTATTCCC -ACGGAACGTCTTAGCACTTTCTCG -ACGGAACGTCTTAGCACTTAGACG -ACGGAACGTCTTAGCACTGTAACG -ACGGAACGTCTTAGCACTACTTCG -ACGGAACGTCTTAGCACTTACGCA -ACGGAACGTCTTAGCACTCTTGCA -ACGGAACGTCTTAGCACTCGAACA -ACGGAACGTCTTAGCACTCAGTCA -ACGGAACGTCTTAGCACTGATCCA -ACGGAACGTCTTAGCACTACGACA -ACGGAACGTCTTAGCACTAGCTCA -ACGGAACGTCTTAGCACTTCACGT -ACGGAACGTCTTAGCACTCGTAGT -ACGGAACGTCTTAGCACTGTCAGT -ACGGAACGTCTTAGCACTGAAGGT -ACGGAACGTCTTAGCACTAACCGT -ACGGAACGTCTTAGCACTTTGTGC -ACGGAACGTCTTAGCACTCTAAGC -ACGGAACGTCTTAGCACTACTAGC -ACGGAACGTCTTAGCACTAGATGC -ACGGAACGTCTTAGCACTTGAAGG -ACGGAACGTCTTAGCACTCAATGG -ACGGAACGTCTTAGCACTATGAGG -ACGGAACGTCTTAGCACTAATGGG -ACGGAACGTCTTAGCACTTCCTGA -ACGGAACGTCTTAGCACTTAGCGA -ACGGAACGTCTTAGCACTCACAGA -ACGGAACGTCTTAGCACTGCAAGA -ACGGAACGTCTTAGCACTGGTTGA -ACGGAACGTCTTAGCACTTCCGAT -ACGGAACGTCTTAGCACTTGGCAT -ACGGAACGTCTTAGCACTCGAGAT -ACGGAACGTCTTAGCACTTACCAC -ACGGAACGTCTTAGCACTCAGAAC -ACGGAACGTCTTAGCACTGTCTAC -ACGGAACGTCTTAGCACTACGTAC -ACGGAACGTCTTAGCACTAGTGAC -ACGGAACGTCTTAGCACTCTGTAG -ACGGAACGTCTTAGCACTCCTAAG -ACGGAACGTCTTAGCACTGTTCAG -ACGGAACGTCTTAGCACTGCATAG -ACGGAACGTCTTAGCACTGACAAG -ACGGAACGTCTTAGCACTAAGCAG -ACGGAACGTCTTAGCACTCGTCAA -ACGGAACGTCTTAGCACTGCTGAA -ACGGAACGTCTTAGCACTAGTACG -ACGGAACGTCTTAGCACTATCCGA -ACGGAACGTCTTAGCACTATGGGA -ACGGAACGTCTTAGCACTGTGCAA -ACGGAACGTCTTAGCACTGAGGAA -ACGGAACGTCTTAGCACTCAGGTA -ACGGAACGTCTTAGCACTGACTCT -ACGGAACGTCTTAGCACTAGTCCT -ACGGAACGTCTTAGCACTTAAGCC -ACGGAACGTCTTAGCACTATAGCC -ACGGAACGTCTTAGCACTTAACCG -ACGGAACGTCTTAGCACTATGCCA -ACGGAACGTCTTTGCAGAGGAAAC -ACGGAACGTCTTTGCAGAAACACC -ACGGAACGTCTTTGCAGAATCGAG -ACGGAACGTCTTTGCAGACTCCTT -ACGGAACGTCTTTGCAGACCTGTT -ACGGAACGTCTTTGCAGACGGTTT -ACGGAACGTCTTTGCAGAGTGGTT -ACGGAACGTCTTTGCAGAGCCTTT -ACGGAACGTCTTTGCAGAGGTCTT -ACGGAACGTCTTTGCAGAACGCTT -ACGGAACGTCTTTGCAGAAGCGTT -ACGGAACGTCTTTGCAGATTCGTC -ACGGAACGTCTTTGCAGATCTCTC -ACGGAACGTCTTTGCAGATGGATC -ACGGAACGTCTTTGCAGACACTTC -ACGGAACGTCTTTGCAGAGTACTC -ACGGAACGTCTTTGCAGAGATGTC -ACGGAACGTCTTTGCAGAACAGTC -ACGGAACGTCTTTGCAGATTGCTG -ACGGAACGTCTTTGCAGATCCATG -ACGGAACGTCTTTGCAGATGTGTG -ACGGAACGTCTTTGCAGACTAGTG -ACGGAACGTCTTTGCAGACATCTG -ACGGAACGTCTTTGCAGAGAGTTG -ACGGAACGTCTTTGCAGAAGACTG -ACGGAACGTCTTTGCAGATCGGTA -ACGGAACGTCTTTGCAGATGCCTA -ACGGAACGTCTTTGCAGACCACTA -ACGGAACGTCTTTGCAGAGGAGTA -ACGGAACGTCTTTGCAGATCGTCT -ACGGAACGTCTTTGCAGATGCACT -ACGGAACGTCTTTGCAGACTGACT -ACGGAACGTCTTTGCAGACAACCT -ACGGAACGTCTTTGCAGAGCTACT -ACGGAACGTCTTTGCAGAGGATCT -ACGGAACGTCTTTGCAGAAAGGCT -ACGGAACGTCTTTGCAGATCAACC -ACGGAACGTCTTTGCAGATGTTCC -ACGGAACGTCTTTGCAGAATTCCC -ACGGAACGTCTTTGCAGATTCTCG -ACGGAACGTCTTTGCAGATAGACG -ACGGAACGTCTTTGCAGAGTAACG -ACGGAACGTCTTTGCAGAACTTCG -ACGGAACGTCTTTGCAGATACGCA -ACGGAACGTCTTTGCAGACTTGCA -ACGGAACGTCTTTGCAGACGAACA -ACGGAACGTCTTTGCAGACAGTCA -ACGGAACGTCTTTGCAGAGATCCA -ACGGAACGTCTTTGCAGAACGACA -ACGGAACGTCTTTGCAGAAGCTCA -ACGGAACGTCTTTGCAGATCACGT -ACGGAACGTCTTTGCAGACGTAGT -ACGGAACGTCTTTGCAGAGTCAGT -ACGGAACGTCTTTGCAGAGAAGGT -ACGGAACGTCTTTGCAGAAACCGT -ACGGAACGTCTTTGCAGATTGTGC -ACGGAACGTCTTTGCAGACTAAGC -ACGGAACGTCTTTGCAGAACTAGC -ACGGAACGTCTTTGCAGAAGATGC -ACGGAACGTCTTTGCAGATGAAGG -ACGGAACGTCTTTGCAGACAATGG -ACGGAACGTCTTTGCAGAATGAGG -ACGGAACGTCTTTGCAGAAATGGG -ACGGAACGTCTTTGCAGATCCTGA -ACGGAACGTCTTTGCAGATAGCGA -ACGGAACGTCTTTGCAGACACAGA -ACGGAACGTCTTTGCAGAGCAAGA -ACGGAACGTCTTTGCAGAGGTTGA -ACGGAACGTCTTTGCAGATCCGAT -ACGGAACGTCTTTGCAGATGGCAT -ACGGAACGTCTTTGCAGACGAGAT -ACGGAACGTCTTTGCAGATACCAC -ACGGAACGTCTTTGCAGACAGAAC -ACGGAACGTCTTTGCAGAGTCTAC -ACGGAACGTCTTTGCAGAACGTAC -ACGGAACGTCTTTGCAGAAGTGAC -ACGGAACGTCTTTGCAGACTGTAG -ACGGAACGTCTTTGCAGACCTAAG -ACGGAACGTCTTTGCAGAGTTCAG -ACGGAACGTCTTTGCAGAGCATAG -ACGGAACGTCTTTGCAGAGACAAG -ACGGAACGTCTTTGCAGAAAGCAG -ACGGAACGTCTTTGCAGACGTCAA -ACGGAACGTCTTTGCAGAGCTGAA -ACGGAACGTCTTTGCAGAAGTACG -ACGGAACGTCTTTGCAGAATCCGA -ACGGAACGTCTTTGCAGAATGGGA -ACGGAACGTCTTTGCAGAGTGCAA -ACGGAACGTCTTTGCAGAGAGGAA -ACGGAACGTCTTTGCAGACAGGTA -ACGGAACGTCTTTGCAGAGACTCT -ACGGAACGTCTTTGCAGAAGTCCT -ACGGAACGTCTTTGCAGATAAGCC -ACGGAACGTCTTTGCAGAATAGCC -ACGGAACGTCTTTGCAGATAACCG -ACGGAACGTCTTTGCAGAATGCCA -ACGGAACGTCTTAGGTGAGGAAAC -ACGGAACGTCTTAGGTGAAACACC -ACGGAACGTCTTAGGTGAATCGAG -ACGGAACGTCTTAGGTGACTCCTT -ACGGAACGTCTTAGGTGACCTGTT -ACGGAACGTCTTAGGTGACGGTTT -ACGGAACGTCTTAGGTGAGTGGTT -ACGGAACGTCTTAGGTGAGCCTTT -ACGGAACGTCTTAGGTGAGGTCTT -ACGGAACGTCTTAGGTGAACGCTT -ACGGAACGTCTTAGGTGAAGCGTT -ACGGAACGTCTTAGGTGATTCGTC -ACGGAACGTCTTAGGTGATCTCTC -ACGGAACGTCTTAGGTGATGGATC -ACGGAACGTCTTAGGTGACACTTC -ACGGAACGTCTTAGGTGAGTACTC -ACGGAACGTCTTAGGTGAGATGTC -ACGGAACGTCTTAGGTGAACAGTC -ACGGAACGTCTTAGGTGATTGCTG -ACGGAACGTCTTAGGTGATCCATG -ACGGAACGTCTTAGGTGATGTGTG -ACGGAACGTCTTAGGTGACTAGTG -ACGGAACGTCTTAGGTGACATCTG -ACGGAACGTCTTAGGTGAGAGTTG -ACGGAACGTCTTAGGTGAAGACTG -ACGGAACGTCTTAGGTGATCGGTA -ACGGAACGTCTTAGGTGATGCCTA -ACGGAACGTCTTAGGTGACCACTA -ACGGAACGTCTTAGGTGAGGAGTA -ACGGAACGTCTTAGGTGATCGTCT -ACGGAACGTCTTAGGTGATGCACT -ACGGAACGTCTTAGGTGACTGACT -ACGGAACGTCTTAGGTGACAACCT -ACGGAACGTCTTAGGTGAGCTACT -ACGGAACGTCTTAGGTGAGGATCT -ACGGAACGTCTTAGGTGAAAGGCT -ACGGAACGTCTTAGGTGATCAACC -ACGGAACGTCTTAGGTGATGTTCC -ACGGAACGTCTTAGGTGAATTCCC -ACGGAACGTCTTAGGTGATTCTCG -ACGGAACGTCTTAGGTGATAGACG -ACGGAACGTCTTAGGTGAGTAACG -ACGGAACGTCTTAGGTGAACTTCG -ACGGAACGTCTTAGGTGATACGCA -ACGGAACGTCTTAGGTGACTTGCA -ACGGAACGTCTTAGGTGACGAACA -ACGGAACGTCTTAGGTGACAGTCA -ACGGAACGTCTTAGGTGAGATCCA -ACGGAACGTCTTAGGTGAACGACA -ACGGAACGTCTTAGGTGAAGCTCA -ACGGAACGTCTTAGGTGATCACGT -ACGGAACGTCTTAGGTGACGTAGT -ACGGAACGTCTTAGGTGAGTCAGT -ACGGAACGTCTTAGGTGAGAAGGT -ACGGAACGTCTTAGGTGAAACCGT -ACGGAACGTCTTAGGTGATTGTGC -ACGGAACGTCTTAGGTGACTAAGC -ACGGAACGTCTTAGGTGAACTAGC -ACGGAACGTCTTAGGTGAAGATGC -ACGGAACGTCTTAGGTGATGAAGG -ACGGAACGTCTTAGGTGACAATGG -ACGGAACGTCTTAGGTGAATGAGG -ACGGAACGTCTTAGGTGAAATGGG -ACGGAACGTCTTAGGTGATCCTGA -ACGGAACGTCTTAGGTGATAGCGA -ACGGAACGTCTTAGGTGACACAGA -ACGGAACGTCTTAGGTGAGCAAGA -ACGGAACGTCTTAGGTGAGGTTGA -ACGGAACGTCTTAGGTGATCCGAT -ACGGAACGTCTTAGGTGATGGCAT -ACGGAACGTCTTAGGTGACGAGAT -ACGGAACGTCTTAGGTGATACCAC -ACGGAACGTCTTAGGTGACAGAAC -ACGGAACGTCTTAGGTGAGTCTAC -ACGGAACGTCTTAGGTGAACGTAC -ACGGAACGTCTTAGGTGAAGTGAC -ACGGAACGTCTTAGGTGACTGTAG -ACGGAACGTCTTAGGTGACCTAAG -ACGGAACGTCTTAGGTGAGTTCAG -ACGGAACGTCTTAGGTGAGCATAG -ACGGAACGTCTTAGGTGAGACAAG -ACGGAACGTCTTAGGTGAAAGCAG -ACGGAACGTCTTAGGTGACGTCAA -ACGGAACGTCTTAGGTGAGCTGAA -ACGGAACGTCTTAGGTGAAGTACG -ACGGAACGTCTTAGGTGAATCCGA -ACGGAACGTCTTAGGTGAATGGGA -ACGGAACGTCTTAGGTGAGTGCAA -ACGGAACGTCTTAGGTGAGAGGAA -ACGGAACGTCTTAGGTGACAGGTA -ACGGAACGTCTTAGGTGAGACTCT -ACGGAACGTCTTAGGTGAAGTCCT -ACGGAACGTCTTAGGTGATAAGCC -ACGGAACGTCTTAGGTGAATAGCC -ACGGAACGTCTTAGGTGATAACCG -ACGGAACGTCTTAGGTGAATGCCA -ACGGAACGTCTTTGGCAAGGAAAC -ACGGAACGTCTTTGGCAAAACACC -ACGGAACGTCTTTGGCAAATCGAG -ACGGAACGTCTTTGGCAACTCCTT -ACGGAACGTCTTTGGCAACCTGTT -ACGGAACGTCTTTGGCAACGGTTT -ACGGAACGTCTTTGGCAAGTGGTT -ACGGAACGTCTTTGGCAAGCCTTT -ACGGAACGTCTTTGGCAAGGTCTT -ACGGAACGTCTTTGGCAAACGCTT -ACGGAACGTCTTTGGCAAAGCGTT -ACGGAACGTCTTTGGCAATTCGTC -ACGGAACGTCTTTGGCAATCTCTC -ACGGAACGTCTTTGGCAATGGATC -ACGGAACGTCTTTGGCAACACTTC -ACGGAACGTCTTTGGCAAGTACTC -ACGGAACGTCTTTGGCAAGATGTC -ACGGAACGTCTTTGGCAAACAGTC -ACGGAACGTCTTTGGCAATTGCTG -ACGGAACGTCTTTGGCAATCCATG -ACGGAACGTCTTTGGCAATGTGTG -ACGGAACGTCTTTGGCAACTAGTG -ACGGAACGTCTTTGGCAACATCTG -ACGGAACGTCTTTGGCAAGAGTTG -ACGGAACGTCTTTGGCAAAGACTG -ACGGAACGTCTTTGGCAATCGGTA -ACGGAACGTCTTTGGCAATGCCTA -ACGGAACGTCTTTGGCAACCACTA -ACGGAACGTCTTTGGCAAGGAGTA -ACGGAACGTCTTTGGCAATCGTCT -ACGGAACGTCTTTGGCAATGCACT -ACGGAACGTCTTTGGCAACTGACT -ACGGAACGTCTTTGGCAACAACCT -ACGGAACGTCTTTGGCAAGCTACT -ACGGAACGTCTTTGGCAAGGATCT -ACGGAACGTCTTTGGCAAAAGGCT -ACGGAACGTCTTTGGCAATCAACC -ACGGAACGTCTTTGGCAATGTTCC -ACGGAACGTCTTTGGCAAATTCCC -ACGGAACGTCTTTGGCAATTCTCG -ACGGAACGTCTTTGGCAATAGACG -ACGGAACGTCTTTGGCAAGTAACG -ACGGAACGTCTTTGGCAAACTTCG -ACGGAACGTCTTTGGCAATACGCA -ACGGAACGTCTTTGGCAACTTGCA -ACGGAACGTCTTTGGCAACGAACA -ACGGAACGTCTTTGGCAACAGTCA -ACGGAACGTCTTTGGCAAGATCCA -ACGGAACGTCTTTGGCAAACGACA -ACGGAACGTCTTTGGCAAAGCTCA -ACGGAACGTCTTTGGCAATCACGT -ACGGAACGTCTTTGGCAACGTAGT -ACGGAACGTCTTTGGCAAGTCAGT -ACGGAACGTCTTTGGCAAGAAGGT -ACGGAACGTCTTTGGCAAAACCGT -ACGGAACGTCTTTGGCAATTGTGC -ACGGAACGTCTTTGGCAACTAAGC -ACGGAACGTCTTTGGCAAACTAGC -ACGGAACGTCTTTGGCAAAGATGC -ACGGAACGTCTTTGGCAATGAAGG -ACGGAACGTCTTTGGCAACAATGG -ACGGAACGTCTTTGGCAAATGAGG -ACGGAACGTCTTTGGCAAAATGGG -ACGGAACGTCTTTGGCAATCCTGA -ACGGAACGTCTTTGGCAATAGCGA -ACGGAACGTCTTTGGCAACACAGA -ACGGAACGTCTTTGGCAAGCAAGA -ACGGAACGTCTTTGGCAAGGTTGA -ACGGAACGTCTTTGGCAATCCGAT -ACGGAACGTCTTTGGCAATGGCAT -ACGGAACGTCTTTGGCAACGAGAT -ACGGAACGTCTTTGGCAATACCAC -ACGGAACGTCTTTGGCAACAGAAC -ACGGAACGTCTTTGGCAAGTCTAC -ACGGAACGTCTTTGGCAAACGTAC -ACGGAACGTCTTTGGCAAAGTGAC -ACGGAACGTCTTTGGCAACTGTAG -ACGGAACGTCTTTGGCAACCTAAG -ACGGAACGTCTTTGGCAAGTTCAG -ACGGAACGTCTTTGGCAAGCATAG -ACGGAACGTCTTTGGCAAGACAAG -ACGGAACGTCTTTGGCAAAAGCAG -ACGGAACGTCTTTGGCAACGTCAA -ACGGAACGTCTTTGGCAAGCTGAA -ACGGAACGTCTTTGGCAAAGTACG -ACGGAACGTCTTTGGCAAATCCGA -ACGGAACGTCTTTGGCAAATGGGA -ACGGAACGTCTTTGGCAAGTGCAA -ACGGAACGTCTTTGGCAAGAGGAA -ACGGAACGTCTTTGGCAACAGGTA -ACGGAACGTCTTTGGCAAGACTCT -ACGGAACGTCTTTGGCAAAGTCCT -ACGGAACGTCTTTGGCAATAAGCC -ACGGAACGTCTTTGGCAAATAGCC -ACGGAACGTCTTTGGCAATAACCG -ACGGAACGTCTTTGGCAAATGCCA -ACGGAACGTCTTAGGATGGGAAAC -ACGGAACGTCTTAGGATGAACACC -ACGGAACGTCTTAGGATGATCGAG -ACGGAACGTCTTAGGATGCTCCTT -ACGGAACGTCTTAGGATGCCTGTT -ACGGAACGTCTTAGGATGCGGTTT -ACGGAACGTCTTAGGATGGTGGTT -ACGGAACGTCTTAGGATGGCCTTT -ACGGAACGTCTTAGGATGGGTCTT -ACGGAACGTCTTAGGATGACGCTT -ACGGAACGTCTTAGGATGAGCGTT -ACGGAACGTCTTAGGATGTTCGTC -ACGGAACGTCTTAGGATGTCTCTC -ACGGAACGTCTTAGGATGTGGATC -ACGGAACGTCTTAGGATGCACTTC -ACGGAACGTCTTAGGATGGTACTC -ACGGAACGTCTTAGGATGGATGTC -ACGGAACGTCTTAGGATGACAGTC -ACGGAACGTCTTAGGATGTTGCTG -ACGGAACGTCTTAGGATGTCCATG -ACGGAACGTCTTAGGATGTGTGTG -ACGGAACGTCTTAGGATGCTAGTG -ACGGAACGTCTTAGGATGCATCTG -ACGGAACGTCTTAGGATGGAGTTG -ACGGAACGTCTTAGGATGAGACTG -ACGGAACGTCTTAGGATGTCGGTA -ACGGAACGTCTTAGGATGTGCCTA -ACGGAACGTCTTAGGATGCCACTA -ACGGAACGTCTTAGGATGGGAGTA -ACGGAACGTCTTAGGATGTCGTCT -ACGGAACGTCTTAGGATGTGCACT -ACGGAACGTCTTAGGATGCTGACT -ACGGAACGTCTTAGGATGCAACCT -ACGGAACGTCTTAGGATGGCTACT -ACGGAACGTCTTAGGATGGGATCT -ACGGAACGTCTTAGGATGAAGGCT -ACGGAACGTCTTAGGATGTCAACC -ACGGAACGTCTTAGGATGTGTTCC -ACGGAACGTCTTAGGATGATTCCC -ACGGAACGTCTTAGGATGTTCTCG -ACGGAACGTCTTAGGATGTAGACG -ACGGAACGTCTTAGGATGGTAACG -ACGGAACGTCTTAGGATGACTTCG -ACGGAACGTCTTAGGATGTACGCA -ACGGAACGTCTTAGGATGCTTGCA -ACGGAACGTCTTAGGATGCGAACA -ACGGAACGTCTTAGGATGCAGTCA -ACGGAACGTCTTAGGATGGATCCA -ACGGAACGTCTTAGGATGACGACA -ACGGAACGTCTTAGGATGAGCTCA -ACGGAACGTCTTAGGATGTCACGT -ACGGAACGTCTTAGGATGCGTAGT -ACGGAACGTCTTAGGATGGTCAGT -ACGGAACGTCTTAGGATGGAAGGT -ACGGAACGTCTTAGGATGAACCGT -ACGGAACGTCTTAGGATGTTGTGC -ACGGAACGTCTTAGGATGCTAAGC -ACGGAACGTCTTAGGATGACTAGC -ACGGAACGTCTTAGGATGAGATGC -ACGGAACGTCTTAGGATGTGAAGG -ACGGAACGTCTTAGGATGCAATGG -ACGGAACGTCTTAGGATGATGAGG -ACGGAACGTCTTAGGATGAATGGG -ACGGAACGTCTTAGGATGTCCTGA -ACGGAACGTCTTAGGATGTAGCGA -ACGGAACGTCTTAGGATGCACAGA -ACGGAACGTCTTAGGATGGCAAGA -ACGGAACGTCTTAGGATGGGTTGA -ACGGAACGTCTTAGGATGTCCGAT -ACGGAACGTCTTAGGATGTGGCAT -ACGGAACGTCTTAGGATGCGAGAT -ACGGAACGTCTTAGGATGTACCAC -ACGGAACGTCTTAGGATGCAGAAC -ACGGAACGTCTTAGGATGGTCTAC -ACGGAACGTCTTAGGATGACGTAC -ACGGAACGTCTTAGGATGAGTGAC -ACGGAACGTCTTAGGATGCTGTAG -ACGGAACGTCTTAGGATGCCTAAG -ACGGAACGTCTTAGGATGGTTCAG -ACGGAACGTCTTAGGATGGCATAG -ACGGAACGTCTTAGGATGGACAAG -ACGGAACGTCTTAGGATGAAGCAG -ACGGAACGTCTTAGGATGCGTCAA -ACGGAACGTCTTAGGATGGCTGAA -ACGGAACGTCTTAGGATGAGTACG -ACGGAACGTCTTAGGATGATCCGA -ACGGAACGTCTTAGGATGATGGGA -ACGGAACGTCTTAGGATGGTGCAA -ACGGAACGTCTTAGGATGGAGGAA -ACGGAACGTCTTAGGATGCAGGTA -ACGGAACGTCTTAGGATGGACTCT -ACGGAACGTCTTAGGATGAGTCCT -ACGGAACGTCTTAGGATGTAAGCC -ACGGAACGTCTTAGGATGATAGCC -ACGGAACGTCTTAGGATGTAACCG -ACGGAACGTCTTAGGATGATGCCA -ACGGAACGTCTTGGGAATGGAAAC -ACGGAACGTCTTGGGAATAACACC -ACGGAACGTCTTGGGAATATCGAG -ACGGAACGTCTTGGGAATCTCCTT -ACGGAACGTCTTGGGAATCCTGTT -ACGGAACGTCTTGGGAATCGGTTT -ACGGAACGTCTTGGGAATGTGGTT -ACGGAACGTCTTGGGAATGCCTTT -ACGGAACGTCTTGGGAATGGTCTT -ACGGAACGTCTTGGGAATACGCTT -ACGGAACGTCTTGGGAATAGCGTT -ACGGAACGTCTTGGGAATTTCGTC -ACGGAACGTCTTGGGAATTCTCTC -ACGGAACGTCTTGGGAATTGGATC -ACGGAACGTCTTGGGAATCACTTC -ACGGAACGTCTTGGGAATGTACTC -ACGGAACGTCTTGGGAATGATGTC -ACGGAACGTCTTGGGAATACAGTC -ACGGAACGTCTTGGGAATTTGCTG -ACGGAACGTCTTGGGAATTCCATG -ACGGAACGTCTTGGGAATTGTGTG -ACGGAACGTCTTGGGAATCTAGTG -ACGGAACGTCTTGGGAATCATCTG -ACGGAACGTCTTGGGAATGAGTTG -ACGGAACGTCTTGGGAATAGACTG -ACGGAACGTCTTGGGAATTCGGTA -ACGGAACGTCTTGGGAATTGCCTA -ACGGAACGTCTTGGGAATCCACTA -ACGGAACGTCTTGGGAATGGAGTA -ACGGAACGTCTTGGGAATTCGTCT -ACGGAACGTCTTGGGAATTGCACT -ACGGAACGTCTTGGGAATCTGACT -ACGGAACGTCTTGGGAATCAACCT -ACGGAACGTCTTGGGAATGCTACT -ACGGAACGTCTTGGGAATGGATCT -ACGGAACGTCTTGGGAATAAGGCT -ACGGAACGTCTTGGGAATTCAACC -ACGGAACGTCTTGGGAATTGTTCC -ACGGAACGTCTTGGGAATATTCCC -ACGGAACGTCTTGGGAATTTCTCG -ACGGAACGTCTTGGGAATTAGACG -ACGGAACGTCTTGGGAATGTAACG -ACGGAACGTCTTGGGAATACTTCG -ACGGAACGTCTTGGGAATTACGCA -ACGGAACGTCTTGGGAATCTTGCA -ACGGAACGTCTTGGGAATCGAACA -ACGGAACGTCTTGGGAATCAGTCA -ACGGAACGTCTTGGGAATGATCCA -ACGGAACGTCTTGGGAATACGACA -ACGGAACGTCTTGGGAATAGCTCA -ACGGAACGTCTTGGGAATTCACGT -ACGGAACGTCTTGGGAATCGTAGT -ACGGAACGTCTTGGGAATGTCAGT -ACGGAACGTCTTGGGAATGAAGGT -ACGGAACGTCTTGGGAATAACCGT -ACGGAACGTCTTGGGAATTTGTGC -ACGGAACGTCTTGGGAATCTAAGC -ACGGAACGTCTTGGGAATACTAGC -ACGGAACGTCTTGGGAATAGATGC -ACGGAACGTCTTGGGAATTGAAGG -ACGGAACGTCTTGGGAATCAATGG -ACGGAACGTCTTGGGAATATGAGG -ACGGAACGTCTTGGGAATAATGGG -ACGGAACGTCTTGGGAATTCCTGA -ACGGAACGTCTTGGGAATTAGCGA -ACGGAACGTCTTGGGAATCACAGA -ACGGAACGTCTTGGGAATGCAAGA -ACGGAACGTCTTGGGAATGGTTGA -ACGGAACGTCTTGGGAATTCCGAT -ACGGAACGTCTTGGGAATTGGCAT -ACGGAACGTCTTGGGAATCGAGAT -ACGGAACGTCTTGGGAATTACCAC -ACGGAACGTCTTGGGAATCAGAAC -ACGGAACGTCTTGGGAATGTCTAC -ACGGAACGTCTTGGGAATACGTAC -ACGGAACGTCTTGGGAATAGTGAC -ACGGAACGTCTTGGGAATCTGTAG -ACGGAACGTCTTGGGAATCCTAAG -ACGGAACGTCTTGGGAATGTTCAG -ACGGAACGTCTTGGGAATGCATAG -ACGGAACGTCTTGGGAATGACAAG -ACGGAACGTCTTGGGAATAAGCAG -ACGGAACGTCTTGGGAATCGTCAA -ACGGAACGTCTTGGGAATGCTGAA -ACGGAACGTCTTGGGAATAGTACG -ACGGAACGTCTTGGGAATATCCGA -ACGGAACGTCTTGGGAATATGGGA -ACGGAACGTCTTGGGAATGTGCAA -ACGGAACGTCTTGGGAATGAGGAA -ACGGAACGTCTTGGGAATCAGGTA -ACGGAACGTCTTGGGAATGACTCT -ACGGAACGTCTTGGGAATAGTCCT -ACGGAACGTCTTGGGAATTAAGCC -ACGGAACGTCTTGGGAATATAGCC -ACGGAACGTCTTGGGAATTAACCG -ACGGAACGTCTTGGGAATATGCCA -ACGGAACGTCTTTGATCCGGAAAC -ACGGAACGTCTTTGATCCAACACC -ACGGAACGTCTTTGATCCATCGAG -ACGGAACGTCTTTGATCCCTCCTT -ACGGAACGTCTTTGATCCCCTGTT -ACGGAACGTCTTTGATCCCGGTTT -ACGGAACGTCTTTGATCCGTGGTT -ACGGAACGTCTTTGATCCGCCTTT -ACGGAACGTCTTTGATCCGGTCTT -ACGGAACGTCTTTGATCCACGCTT -ACGGAACGTCTTTGATCCAGCGTT -ACGGAACGTCTTTGATCCTTCGTC -ACGGAACGTCTTTGATCCTCTCTC -ACGGAACGTCTTTGATCCTGGATC -ACGGAACGTCTTTGATCCCACTTC -ACGGAACGTCTTTGATCCGTACTC -ACGGAACGTCTTTGATCCGATGTC -ACGGAACGTCTTTGATCCACAGTC -ACGGAACGTCTTTGATCCTTGCTG -ACGGAACGTCTTTGATCCTCCATG -ACGGAACGTCTTTGATCCTGTGTG -ACGGAACGTCTTTGATCCCTAGTG -ACGGAACGTCTTTGATCCCATCTG -ACGGAACGTCTTTGATCCGAGTTG -ACGGAACGTCTTTGATCCAGACTG -ACGGAACGTCTTTGATCCTCGGTA -ACGGAACGTCTTTGATCCTGCCTA -ACGGAACGTCTTTGATCCCCACTA -ACGGAACGTCTTTGATCCGGAGTA -ACGGAACGTCTTTGATCCTCGTCT -ACGGAACGTCTTTGATCCTGCACT -ACGGAACGTCTTTGATCCCTGACT -ACGGAACGTCTTTGATCCCAACCT -ACGGAACGTCTTTGATCCGCTACT -ACGGAACGTCTTTGATCCGGATCT -ACGGAACGTCTTTGATCCAAGGCT -ACGGAACGTCTTTGATCCTCAACC -ACGGAACGTCTTTGATCCTGTTCC -ACGGAACGTCTTTGATCCATTCCC -ACGGAACGTCTTTGATCCTTCTCG -ACGGAACGTCTTTGATCCTAGACG -ACGGAACGTCTTTGATCCGTAACG -ACGGAACGTCTTTGATCCACTTCG -ACGGAACGTCTTTGATCCTACGCA -ACGGAACGTCTTTGATCCCTTGCA -ACGGAACGTCTTTGATCCCGAACA -ACGGAACGTCTTTGATCCCAGTCA -ACGGAACGTCTTTGATCCGATCCA -ACGGAACGTCTTTGATCCACGACA -ACGGAACGTCTTTGATCCAGCTCA -ACGGAACGTCTTTGATCCTCACGT -ACGGAACGTCTTTGATCCCGTAGT -ACGGAACGTCTTTGATCCGTCAGT -ACGGAACGTCTTTGATCCGAAGGT -ACGGAACGTCTTTGATCCAACCGT -ACGGAACGTCTTTGATCCTTGTGC -ACGGAACGTCTTTGATCCCTAAGC -ACGGAACGTCTTTGATCCACTAGC -ACGGAACGTCTTTGATCCAGATGC -ACGGAACGTCTTTGATCCTGAAGG -ACGGAACGTCTTTGATCCCAATGG -ACGGAACGTCTTTGATCCATGAGG -ACGGAACGTCTTTGATCCAATGGG -ACGGAACGTCTTTGATCCTCCTGA -ACGGAACGTCTTTGATCCTAGCGA -ACGGAACGTCTTTGATCCCACAGA -ACGGAACGTCTTTGATCCGCAAGA -ACGGAACGTCTTTGATCCGGTTGA -ACGGAACGTCTTTGATCCTCCGAT -ACGGAACGTCTTTGATCCTGGCAT -ACGGAACGTCTTTGATCCCGAGAT -ACGGAACGTCTTTGATCCTACCAC -ACGGAACGTCTTTGATCCCAGAAC -ACGGAACGTCTTTGATCCGTCTAC -ACGGAACGTCTTTGATCCACGTAC -ACGGAACGTCTTTGATCCAGTGAC -ACGGAACGTCTTTGATCCCTGTAG -ACGGAACGTCTTTGATCCCCTAAG -ACGGAACGTCTTTGATCCGTTCAG -ACGGAACGTCTTTGATCCGCATAG -ACGGAACGTCTTTGATCCGACAAG -ACGGAACGTCTTTGATCCAAGCAG -ACGGAACGTCTTTGATCCCGTCAA -ACGGAACGTCTTTGATCCGCTGAA -ACGGAACGTCTTTGATCCAGTACG -ACGGAACGTCTTTGATCCATCCGA -ACGGAACGTCTTTGATCCATGGGA -ACGGAACGTCTTTGATCCGTGCAA -ACGGAACGTCTTTGATCCGAGGAA -ACGGAACGTCTTTGATCCCAGGTA -ACGGAACGTCTTTGATCCGACTCT -ACGGAACGTCTTTGATCCAGTCCT -ACGGAACGTCTTTGATCCTAAGCC -ACGGAACGTCTTTGATCCATAGCC -ACGGAACGTCTTTGATCCTAACCG -ACGGAACGTCTTTGATCCATGCCA -ACGGAACGTCTTCGATAGGGAAAC -ACGGAACGTCTTCGATAGAACACC -ACGGAACGTCTTCGATAGATCGAG -ACGGAACGTCTTCGATAGCTCCTT -ACGGAACGTCTTCGATAGCCTGTT -ACGGAACGTCTTCGATAGCGGTTT -ACGGAACGTCTTCGATAGGTGGTT -ACGGAACGTCTTCGATAGGCCTTT -ACGGAACGTCTTCGATAGGGTCTT -ACGGAACGTCTTCGATAGACGCTT -ACGGAACGTCTTCGATAGAGCGTT -ACGGAACGTCTTCGATAGTTCGTC -ACGGAACGTCTTCGATAGTCTCTC -ACGGAACGTCTTCGATAGTGGATC -ACGGAACGTCTTCGATAGCACTTC -ACGGAACGTCTTCGATAGGTACTC -ACGGAACGTCTTCGATAGGATGTC -ACGGAACGTCTTCGATAGACAGTC -ACGGAACGTCTTCGATAGTTGCTG -ACGGAACGTCTTCGATAGTCCATG -ACGGAACGTCTTCGATAGTGTGTG -ACGGAACGTCTTCGATAGCTAGTG -ACGGAACGTCTTCGATAGCATCTG -ACGGAACGTCTTCGATAGGAGTTG -ACGGAACGTCTTCGATAGAGACTG -ACGGAACGTCTTCGATAGTCGGTA -ACGGAACGTCTTCGATAGTGCCTA -ACGGAACGTCTTCGATAGCCACTA -ACGGAACGTCTTCGATAGGGAGTA -ACGGAACGTCTTCGATAGTCGTCT -ACGGAACGTCTTCGATAGTGCACT -ACGGAACGTCTTCGATAGCTGACT -ACGGAACGTCTTCGATAGCAACCT -ACGGAACGTCTTCGATAGGCTACT -ACGGAACGTCTTCGATAGGGATCT -ACGGAACGTCTTCGATAGAAGGCT -ACGGAACGTCTTCGATAGTCAACC -ACGGAACGTCTTCGATAGTGTTCC -ACGGAACGTCTTCGATAGATTCCC -ACGGAACGTCTTCGATAGTTCTCG -ACGGAACGTCTTCGATAGTAGACG -ACGGAACGTCTTCGATAGGTAACG -ACGGAACGTCTTCGATAGACTTCG -ACGGAACGTCTTCGATAGTACGCA -ACGGAACGTCTTCGATAGCTTGCA -ACGGAACGTCTTCGATAGCGAACA -ACGGAACGTCTTCGATAGCAGTCA -ACGGAACGTCTTCGATAGGATCCA -ACGGAACGTCTTCGATAGACGACA -ACGGAACGTCTTCGATAGAGCTCA -ACGGAACGTCTTCGATAGTCACGT -ACGGAACGTCTTCGATAGCGTAGT -ACGGAACGTCTTCGATAGGTCAGT -ACGGAACGTCTTCGATAGGAAGGT -ACGGAACGTCTTCGATAGAACCGT -ACGGAACGTCTTCGATAGTTGTGC -ACGGAACGTCTTCGATAGCTAAGC -ACGGAACGTCTTCGATAGACTAGC -ACGGAACGTCTTCGATAGAGATGC -ACGGAACGTCTTCGATAGTGAAGG -ACGGAACGTCTTCGATAGCAATGG -ACGGAACGTCTTCGATAGATGAGG -ACGGAACGTCTTCGATAGAATGGG -ACGGAACGTCTTCGATAGTCCTGA -ACGGAACGTCTTCGATAGTAGCGA -ACGGAACGTCTTCGATAGCACAGA -ACGGAACGTCTTCGATAGGCAAGA -ACGGAACGTCTTCGATAGGGTTGA -ACGGAACGTCTTCGATAGTCCGAT -ACGGAACGTCTTCGATAGTGGCAT -ACGGAACGTCTTCGATAGCGAGAT -ACGGAACGTCTTCGATAGTACCAC -ACGGAACGTCTTCGATAGCAGAAC -ACGGAACGTCTTCGATAGGTCTAC -ACGGAACGTCTTCGATAGACGTAC -ACGGAACGTCTTCGATAGAGTGAC -ACGGAACGTCTTCGATAGCTGTAG -ACGGAACGTCTTCGATAGCCTAAG -ACGGAACGTCTTCGATAGGTTCAG -ACGGAACGTCTTCGATAGGCATAG -ACGGAACGTCTTCGATAGGACAAG -ACGGAACGTCTTCGATAGAAGCAG -ACGGAACGTCTTCGATAGCGTCAA -ACGGAACGTCTTCGATAGGCTGAA -ACGGAACGTCTTCGATAGAGTACG -ACGGAACGTCTTCGATAGATCCGA -ACGGAACGTCTTCGATAGATGGGA -ACGGAACGTCTTCGATAGGTGCAA -ACGGAACGTCTTCGATAGGAGGAA -ACGGAACGTCTTCGATAGCAGGTA -ACGGAACGTCTTCGATAGGACTCT -ACGGAACGTCTTCGATAGAGTCCT -ACGGAACGTCTTCGATAGTAAGCC -ACGGAACGTCTTCGATAGATAGCC -ACGGAACGTCTTCGATAGTAACCG -ACGGAACGTCTTCGATAGATGCCA -ACGGAACGTCTTAGACACGGAAAC -ACGGAACGTCTTAGACACAACACC -ACGGAACGTCTTAGACACATCGAG -ACGGAACGTCTTAGACACCTCCTT -ACGGAACGTCTTAGACACCCTGTT -ACGGAACGTCTTAGACACCGGTTT -ACGGAACGTCTTAGACACGTGGTT -ACGGAACGTCTTAGACACGCCTTT -ACGGAACGTCTTAGACACGGTCTT -ACGGAACGTCTTAGACACACGCTT -ACGGAACGTCTTAGACACAGCGTT -ACGGAACGTCTTAGACACTTCGTC -ACGGAACGTCTTAGACACTCTCTC -ACGGAACGTCTTAGACACTGGATC -ACGGAACGTCTTAGACACCACTTC -ACGGAACGTCTTAGACACGTACTC -ACGGAACGTCTTAGACACGATGTC -ACGGAACGTCTTAGACACACAGTC -ACGGAACGTCTTAGACACTTGCTG -ACGGAACGTCTTAGACACTCCATG -ACGGAACGTCTTAGACACTGTGTG -ACGGAACGTCTTAGACACCTAGTG -ACGGAACGTCTTAGACACCATCTG -ACGGAACGTCTTAGACACGAGTTG -ACGGAACGTCTTAGACACAGACTG -ACGGAACGTCTTAGACACTCGGTA -ACGGAACGTCTTAGACACTGCCTA -ACGGAACGTCTTAGACACCCACTA -ACGGAACGTCTTAGACACGGAGTA -ACGGAACGTCTTAGACACTCGTCT -ACGGAACGTCTTAGACACTGCACT -ACGGAACGTCTTAGACACCTGACT -ACGGAACGTCTTAGACACCAACCT -ACGGAACGTCTTAGACACGCTACT -ACGGAACGTCTTAGACACGGATCT -ACGGAACGTCTTAGACACAAGGCT -ACGGAACGTCTTAGACACTCAACC -ACGGAACGTCTTAGACACTGTTCC -ACGGAACGTCTTAGACACATTCCC -ACGGAACGTCTTAGACACTTCTCG -ACGGAACGTCTTAGACACTAGACG -ACGGAACGTCTTAGACACGTAACG -ACGGAACGTCTTAGACACACTTCG -ACGGAACGTCTTAGACACTACGCA -ACGGAACGTCTTAGACACCTTGCA -ACGGAACGTCTTAGACACCGAACA -ACGGAACGTCTTAGACACCAGTCA -ACGGAACGTCTTAGACACGATCCA -ACGGAACGTCTTAGACACACGACA -ACGGAACGTCTTAGACACAGCTCA -ACGGAACGTCTTAGACACTCACGT -ACGGAACGTCTTAGACACCGTAGT -ACGGAACGTCTTAGACACGTCAGT -ACGGAACGTCTTAGACACGAAGGT -ACGGAACGTCTTAGACACAACCGT -ACGGAACGTCTTAGACACTTGTGC -ACGGAACGTCTTAGACACCTAAGC -ACGGAACGTCTTAGACACACTAGC -ACGGAACGTCTTAGACACAGATGC -ACGGAACGTCTTAGACACTGAAGG -ACGGAACGTCTTAGACACCAATGG -ACGGAACGTCTTAGACACATGAGG -ACGGAACGTCTTAGACACAATGGG -ACGGAACGTCTTAGACACTCCTGA -ACGGAACGTCTTAGACACTAGCGA -ACGGAACGTCTTAGACACCACAGA -ACGGAACGTCTTAGACACGCAAGA -ACGGAACGTCTTAGACACGGTTGA -ACGGAACGTCTTAGACACTCCGAT -ACGGAACGTCTTAGACACTGGCAT -ACGGAACGTCTTAGACACCGAGAT -ACGGAACGTCTTAGACACTACCAC -ACGGAACGTCTTAGACACCAGAAC -ACGGAACGTCTTAGACACGTCTAC -ACGGAACGTCTTAGACACACGTAC -ACGGAACGTCTTAGACACAGTGAC -ACGGAACGTCTTAGACACCTGTAG -ACGGAACGTCTTAGACACCCTAAG -ACGGAACGTCTTAGACACGTTCAG -ACGGAACGTCTTAGACACGCATAG -ACGGAACGTCTTAGACACGACAAG -ACGGAACGTCTTAGACACAAGCAG -ACGGAACGTCTTAGACACCGTCAA -ACGGAACGTCTTAGACACGCTGAA -ACGGAACGTCTTAGACACAGTACG -ACGGAACGTCTTAGACACATCCGA -ACGGAACGTCTTAGACACATGGGA -ACGGAACGTCTTAGACACGTGCAA -ACGGAACGTCTTAGACACGAGGAA -ACGGAACGTCTTAGACACCAGGTA -ACGGAACGTCTTAGACACGACTCT -ACGGAACGTCTTAGACACAGTCCT -ACGGAACGTCTTAGACACTAAGCC -ACGGAACGTCTTAGACACATAGCC -ACGGAACGTCTTAGACACTAACCG -ACGGAACGTCTTAGACACATGCCA -ACGGAACGTCTTAGAGCAGGAAAC -ACGGAACGTCTTAGAGCAAACACC -ACGGAACGTCTTAGAGCAATCGAG -ACGGAACGTCTTAGAGCACTCCTT -ACGGAACGTCTTAGAGCACCTGTT -ACGGAACGTCTTAGAGCACGGTTT -ACGGAACGTCTTAGAGCAGTGGTT -ACGGAACGTCTTAGAGCAGCCTTT -ACGGAACGTCTTAGAGCAGGTCTT -ACGGAACGTCTTAGAGCAACGCTT -ACGGAACGTCTTAGAGCAAGCGTT -ACGGAACGTCTTAGAGCATTCGTC -ACGGAACGTCTTAGAGCATCTCTC -ACGGAACGTCTTAGAGCATGGATC -ACGGAACGTCTTAGAGCACACTTC -ACGGAACGTCTTAGAGCAGTACTC -ACGGAACGTCTTAGAGCAGATGTC -ACGGAACGTCTTAGAGCAACAGTC -ACGGAACGTCTTAGAGCATTGCTG -ACGGAACGTCTTAGAGCATCCATG -ACGGAACGTCTTAGAGCATGTGTG -ACGGAACGTCTTAGAGCACTAGTG -ACGGAACGTCTTAGAGCACATCTG -ACGGAACGTCTTAGAGCAGAGTTG -ACGGAACGTCTTAGAGCAAGACTG -ACGGAACGTCTTAGAGCATCGGTA -ACGGAACGTCTTAGAGCATGCCTA -ACGGAACGTCTTAGAGCACCACTA -ACGGAACGTCTTAGAGCAGGAGTA -ACGGAACGTCTTAGAGCATCGTCT -ACGGAACGTCTTAGAGCATGCACT -ACGGAACGTCTTAGAGCACTGACT -ACGGAACGTCTTAGAGCACAACCT -ACGGAACGTCTTAGAGCAGCTACT -ACGGAACGTCTTAGAGCAGGATCT -ACGGAACGTCTTAGAGCAAAGGCT -ACGGAACGTCTTAGAGCATCAACC -ACGGAACGTCTTAGAGCATGTTCC -ACGGAACGTCTTAGAGCAATTCCC -ACGGAACGTCTTAGAGCATTCTCG -ACGGAACGTCTTAGAGCATAGACG -ACGGAACGTCTTAGAGCAGTAACG -ACGGAACGTCTTAGAGCAACTTCG -ACGGAACGTCTTAGAGCATACGCA -ACGGAACGTCTTAGAGCACTTGCA -ACGGAACGTCTTAGAGCACGAACA -ACGGAACGTCTTAGAGCACAGTCA -ACGGAACGTCTTAGAGCAGATCCA -ACGGAACGTCTTAGAGCAACGACA -ACGGAACGTCTTAGAGCAAGCTCA -ACGGAACGTCTTAGAGCATCACGT -ACGGAACGTCTTAGAGCACGTAGT -ACGGAACGTCTTAGAGCAGTCAGT -ACGGAACGTCTTAGAGCAGAAGGT -ACGGAACGTCTTAGAGCAAACCGT -ACGGAACGTCTTAGAGCATTGTGC -ACGGAACGTCTTAGAGCACTAAGC -ACGGAACGTCTTAGAGCAACTAGC -ACGGAACGTCTTAGAGCAAGATGC -ACGGAACGTCTTAGAGCATGAAGG -ACGGAACGTCTTAGAGCACAATGG -ACGGAACGTCTTAGAGCAATGAGG -ACGGAACGTCTTAGAGCAAATGGG -ACGGAACGTCTTAGAGCATCCTGA -ACGGAACGTCTTAGAGCATAGCGA -ACGGAACGTCTTAGAGCACACAGA -ACGGAACGTCTTAGAGCAGCAAGA -ACGGAACGTCTTAGAGCAGGTTGA -ACGGAACGTCTTAGAGCATCCGAT -ACGGAACGTCTTAGAGCATGGCAT -ACGGAACGTCTTAGAGCACGAGAT -ACGGAACGTCTTAGAGCATACCAC -ACGGAACGTCTTAGAGCACAGAAC -ACGGAACGTCTTAGAGCAGTCTAC -ACGGAACGTCTTAGAGCAACGTAC -ACGGAACGTCTTAGAGCAAGTGAC -ACGGAACGTCTTAGAGCACTGTAG -ACGGAACGTCTTAGAGCACCTAAG -ACGGAACGTCTTAGAGCAGTTCAG -ACGGAACGTCTTAGAGCAGCATAG -ACGGAACGTCTTAGAGCAGACAAG -ACGGAACGTCTTAGAGCAAAGCAG -ACGGAACGTCTTAGAGCACGTCAA -ACGGAACGTCTTAGAGCAGCTGAA -ACGGAACGTCTTAGAGCAAGTACG -ACGGAACGTCTTAGAGCAATCCGA -ACGGAACGTCTTAGAGCAATGGGA -ACGGAACGTCTTAGAGCAGTGCAA -ACGGAACGTCTTAGAGCAGAGGAA -ACGGAACGTCTTAGAGCACAGGTA -ACGGAACGTCTTAGAGCAGACTCT -ACGGAACGTCTTAGAGCAAGTCCT -ACGGAACGTCTTAGAGCATAAGCC -ACGGAACGTCTTAGAGCAATAGCC -ACGGAACGTCTTAGAGCATAACCG -ACGGAACGTCTTAGAGCAATGCCA -ACGGAACGTCTTTGAGGTGGAAAC -ACGGAACGTCTTTGAGGTAACACC -ACGGAACGTCTTTGAGGTATCGAG -ACGGAACGTCTTTGAGGTCTCCTT -ACGGAACGTCTTTGAGGTCCTGTT -ACGGAACGTCTTTGAGGTCGGTTT -ACGGAACGTCTTTGAGGTGTGGTT -ACGGAACGTCTTTGAGGTGCCTTT -ACGGAACGTCTTTGAGGTGGTCTT -ACGGAACGTCTTTGAGGTACGCTT -ACGGAACGTCTTTGAGGTAGCGTT -ACGGAACGTCTTTGAGGTTTCGTC -ACGGAACGTCTTTGAGGTTCTCTC -ACGGAACGTCTTTGAGGTTGGATC -ACGGAACGTCTTTGAGGTCACTTC -ACGGAACGTCTTTGAGGTGTACTC -ACGGAACGTCTTTGAGGTGATGTC -ACGGAACGTCTTTGAGGTACAGTC -ACGGAACGTCTTTGAGGTTTGCTG -ACGGAACGTCTTTGAGGTTCCATG -ACGGAACGTCTTTGAGGTTGTGTG -ACGGAACGTCTTTGAGGTCTAGTG -ACGGAACGTCTTTGAGGTCATCTG -ACGGAACGTCTTTGAGGTGAGTTG -ACGGAACGTCTTTGAGGTAGACTG -ACGGAACGTCTTTGAGGTTCGGTA -ACGGAACGTCTTTGAGGTTGCCTA -ACGGAACGTCTTTGAGGTCCACTA -ACGGAACGTCTTTGAGGTGGAGTA -ACGGAACGTCTTTGAGGTTCGTCT -ACGGAACGTCTTTGAGGTTGCACT -ACGGAACGTCTTTGAGGTCTGACT -ACGGAACGTCTTTGAGGTCAACCT -ACGGAACGTCTTTGAGGTGCTACT -ACGGAACGTCTTTGAGGTGGATCT -ACGGAACGTCTTTGAGGTAAGGCT -ACGGAACGTCTTTGAGGTTCAACC -ACGGAACGTCTTTGAGGTTGTTCC -ACGGAACGTCTTTGAGGTATTCCC -ACGGAACGTCTTTGAGGTTTCTCG -ACGGAACGTCTTTGAGGTTAGACG -ACGGAACGTCTTTGAGGTGTAACG -ACGGAACGTCTTTGAGGTACTTCG -ACGGAACGTCTTTGAGGTTACGCA -ACGGAACGTCTTTGAGGTCTTGCA -ACGGAACGTCTTTGAGGTCGAACA -ACGGAACGTCTTTGAGGTCAGTCA -ACGGAACGTCTTTGAGGTGATCCA -ACGGAACGTCTTTGAGGTACGACA -ACGGAACGTCTTTGAGGTAGCTCA -ACGGAACGTCTTTGAGGTTCACGT -ACGGAACGTCTTTGAGGTCGTAGT -ACGGAACGTCTTTGAGGTGTCAGT -ACGGAACGTCTTTGAGGTGAAGGT -ACGGAACGTCTTTGAGGTAACCGT -ACGGAACGTCTTTGAGGTTTGTGC -ACGGAACGTCTTTGAGGTCTAAGC -ACGGAACGTCTTTGAGGTACTAGC -ACGGAACGTCTTTGAGGTAGATGC -ACGGAACGTCTTTGAGGTTGAAGG -ACGGAACGTCTTTGAGGTCAATGG -ACGGAACGTCTTTGAGGTATGAGG -ACGGAACGTCTTTGAGGTAATGGG -ACGGAACGTCTTTGAGGTTCCTGA -ACGGAACGTCTTTGAGGTTAGCGA -ACGGAACGTCTTTGAGGTCACAGA -ACGGAACGTCTTTGAGGTGCAAGA -ACGGAACGTCTTTGAGGTGGTTGA -ACGGAACGTCTTTGAGGTTCCGAT -ACGGAACGTCTTTGAGGTTGGCAT -ACGGAACGTCTTTGAGGTCGAGAT -ACGGAACGTCTTTGAGGTTACCAC -ACGGAACGTCTTTGAGGTCAGAAC -ACGGAACGTCTTTGAGGTGTCTAC -ACGGAACGTCTTTGAGGTACGTAC -ACGGAACGTCTTTGAGGTAGTGAC -ACGGAACGTCTTTGAGGTCTGTAG -ACGGAACGTCTTTGAGGTCCTAAG -ACGGAACGTCTTTGAGGTGTTCAG -ACGGAACGTCTTTGAGGTGCATAG -ACGGAACGTCTTTGAGGTGACAAG -ACGGAACGTCTTTGAGGTAAGCAG -ACGGAACGTCTTTGAGGTCGTCAA -ACGGAACGTCTTTGAGGTGCTGAA -ACGGAACGTCTTTGAGGTAGTACG -ACGGAACGTCTTTGAGGTATCCGA -ACGGAACGTCTTTGAGGTATGGGA -ACGGAACGTCTTTGAGGTGTGCAA -ACGGAACGTCTTTGAGGTGAGGAA -ACGGAACGTCTTTGAGGTCAGGTA -ACGGAACGTCTTTGAGGTGACTCT -ACGGAACGTCTTTGAGGTAGTCCT -ACGGAACGTCTTTGAGGTTAAGCC -ACGGAACGTCTTTGAGGTATAGCC -ACGGAACGTCTTTGAGGTTAACCG -ACGGAACGTCTTTGAGGTATGCCA -ACGGAACGTCTTGATTCCGGAAAC -ACGGAACGTCTTGATTCCAACACC -ACGGAACGTCTTGATTCCATCGAG -ACGGAACGTCTTGATTCCCTCCTT -ACGGAACGTCTTGATTCCCCTGTT -ACGGAACGTCTTGATTCCCGGTTT -ACGGAACGTCTTGATTCCGTGGTT -ACGGAACGTCTTGATTCCGCCTTT -ACGGAACGTCTTGATTCCGGTCTT -ACGGAACGTCTTGATTCCACGCTT -ACGGAACGTCTTGATTCCAGCGTT -ACGGAACGTCTTGATTCCTTCGTC -ACGGAACGTCTTGATTCCTCTCTC -ACGGAACGTCTTGATTCCTGGATC -ACGGAACGTCTTGATTCCCACTTC -ACGGAACGTCTTGATTCCGTACTC -ACGGAACGTCTTGATTCCGATGTC -ACGGAACGTCTTGATTCCACAGTC -ACGGAACGTCTTGATTCCTTGCTG -ACGGAACGTCTTGATTCCTCCATG -ACGGAACGTCTTGATTCCTGTGTG -ACGGAACGTCTTGATTCCCTAGTG -ACGGAACGTCTTGATTCCCATCTG -ACGGAACGTCTTGATTCCGAGTTG -ACGGAACGTCTTGATTCCAGACTG -ACGGAACGTCTTGATTCCTCGGTA -ACGGAACGTCTTGATTCCTGCCTA -ACGGAACGTCTTGATTCCCCACTA -ACGGAACGTCTTGATTCCGGAGTA -ACGGAACGTCTTGATTCCTCGTCT -ACGGAACGTCTTGATTCCTGCACT -ACGGAACGTCTTGATTCCCTGACT -ACGGAACGTCTTGATTCCCAACCT -ACGGAACGTCTTGATTCCGCTACT -ACGGAACGTCTTGATTCCGGATCT -ACGGAACGTCTTGATTCCAAGGCT -ACGGAACGTCTTGATTCCTCAACC -ACGGAACGTCTTGATTCCTGTTCC -ACGGAACGTCTTGATTCCATTCCC -ACGGAACGTCTTGATTCCTTCTCG -ACGGAACGTCTTGATTCCTAGACG -ACGGAACGTCTTGATTCCGTAACG -ACGGAACGTCTTGATTCCACTTCG -ACGGAACGTCTTGATTCCTACGCA -ACGGAACGTCTTGATTCCCTTGCA -ACGGAACGTCTTGATTCCCGAACA -ACGGAACGTCTTGATTCCCAGTCA -ACGGAACGTCTTGATTCCGATCCA -ACGGAACGTCTTGATTCCACGACA -ACGGAACGTCTTGATTCCAGCTCA -ACGGAACGTCTTGATTCCTCACGT -ACGGAACGTCTTGATTCCCGTAGT -ACGGAACGTCTTGATTCCGTCAGT -ACGGAACGTCTTGATTCCGAAGGT -ACGGAACGTCTTGATTCCAACCGT -ACGGAACGTCTTGATTCCTTGTGC -ACGGAACGTCTTGATTCCCTAAGC -ACGGAACGTCTTGATTCCACTAGC -ACGGAACGTCTTGATTCCAGATGC -ACGGAACGTCTTGATTCCTGAAGG -ACGGAACGTCTTGATTCCCAATGG -ACGGAACGTCTTGATTCCATGAGG -ACGGAACGTCTTGATTCCAATGGG -ACGGAACGTCTTGATTCCTCCTGA -ACGGAACGTCTTGATTCCTAGCGA -ACGGAACGTCTTGATTCCCACAGA -ACGGAACGTCTTGATTCCGCAAGA -ACGGAACGTCTTGATTCCGGTTGA -ACGGAACGTCTTGATTCCTCCGAT -ACGGAACGTCTTGATTCCTGGCAT -ACGGAACGTCTTGATTCCCGAGAT -ACGGAACGTCTTGATTCCTACCAC -ACGGAACGTCTTGATTCCCAGAAC -ACGGAACGTCTTGATTCCGTCTAC -ACGGAACGTCTTGATTCCACGTAC -ACGGAACGTCTTGATTCCAGTGAC -ACGGAACGTCTTGATTCCCTGTAG -ACGGAACGTCTTGATTCCCCTAAG -ACGGAACGTCTTGATTCCGTTCAG -ACGGAACGTCTTGATTCCGCATAG -ACGGAACGTCTTGATTCCGACAAG -ACGGAACGTCTTGATTCCAAGCAG -ACGGAACGTCTTGATTCCCGTCAA -ACGGAACGTCTTGATTCCGCTGAA -ACGGAACGTCTTGATTCCAGTACG -ACGGAACGTCTTGATTCCATCCGA -ACGGAACGTCTTGATTCCATGGGA -ACGGAACGTCTTGATTCCGTGCAA -ACGGAACGTCTTGATTCCGAGGAA -ACGGAACGTCTTGATTCCCAGGTA -ACGGAACGTCTTGATTCCGACTCT -ACGGAACGTCTTGATTCCAGTCCT -ACGGAACGTCTTGATTCCTAAGCC -ACGGAACGTCTTGATTCCATAGCC -ACGGAACGTCTTGATTCCTAACCG -ACGGAACGTCTTGATTCCATGCCA -ACGGAACGTCTTCATTGGGGAAAC -ACGGAACGTCTTCATTGGAACACC -ACGGAACGTCTTCATTGGATCGAG -ACGGAACGTCTTCATTGGCTCCTT -ACGGAACGTCTTCATTGGCCTGTT -ACGGAACGTCTTCATTGGCGGTTT -ACGGAACGTCTTCATTGGGTGGTT -ACGGAACGTCTTCATTGGGCCTTT -ACGGAACGTCTTCATTGGGGTCTT -ACGGAACGTCTTCATTGGACGCTT -ACGGAACGTCTTCATTGGAGCGTT -ACGGAACGTCTTCATTGGTTCGTC -ACGGAACGTCTTCATTGGTCTCTC -ACGGAACGTCTTCATTGGTGGATC -ACGGAACGTCTTCATTGGCACTTC -ACGGAACGTCTTCATTGGGTACTC -ACGGAACGTCTTCATTGGGATGTC -ACGGAACGTCTTCATTGGACAGTC -ACGGAACGTCTTCATTGGTTGCTG -ACGGAACGTCTTCATTGGTCCATG -ACGGAACGTCTTCATTGGTGTGTG -ACGGAACGTCTTCATTGGCTAGTG -ACGGAACGTCTTCATTGGCATCTG -ACGGAACGTCTTCATTGGGAGTTG -ACGGAACGTCTTCATTGGAGACTG -ACGGAACGTCTTCATTGGTCGGTA -ACGGAACGTCTTCATTGGTGCCTA -ACGGAACGTCTTCATTGGCCACTA -ACGGAACGTCTTCATTGGGGAGTA -ACGGAACGTCTTCATTGGTCGTCT -ACGGAACGTCTTCATTGGTGCACT -ACGGAACGTCTTCATTGGCTGACT -ACGGAACGTCTTCATTGGCAACCT -ACGGAACGTCTTCATTGGGCTACT -ACGGAACGTCTTCATTGGGGATCT -ACGGAACGTCTTCATTGGAAGGCT -ACGGAACGTCTTCATTGGTCAACC -ACGGAACGTCTTCATTGGTGTTCC -ACGGAACGTCTTCATTGGATTCCC -ACGGAACGTCTTCATTGGTTCTCG -ACGGAACGTCTTCATTGGTAGACG -ACGGAACGTCTTCATTGGGTAACG -ACGGAACGTCTTCATTGGACTTCG -ACGGAACGTCTTCATTGGTACGCA -ACGGAACGTCTTCATTGGCTTGCA -ACGGAACGTCTTCATTGGCGAACA -ACGGAACGTCTTCATTGGCAGTCA -ACGGAACGTCTTCATTGGGATCCA -ACGGAACGTCTTCATTGGACGACA -ACGGAACGTCTTCATTGGAGCTCA -ACGGAACGTCTTCATTGGTCACGT -ACGGAACGTCTTCATTGGCGTAGT -ACGGAACGTCTTCATTGGGTCAGT -ACGGAACGTCTTCATTGGGAAGGT -ACGGAACGTCTTCATTGGAACCGT -ACGGAACGTCTTCATTGGTTGTGC -ACGGAACGTCTTCATTGGCTAAGC -ACGGAACGTCTTCATTGGACTAGC -ACGGAACGTCTTCATTGGAGATGC -ACGGAACGTCTTCATTGGTGAAGG -ACGGAACGTCTTCATTGGCAATGG -ACGGAACGTCTTCATTGGATGAGG -ACGGAACGTCTTCATTGGAATGGG -ACGGAACGTCTTCATTGGTCCTGA -ACGGAACGTCTTCATTGGTAGCGA -ACGGAACGTCTTCATTGGCACAGA -ACGGAACGTCTTCATTGGGCAAGA -ACGGAACGTCTTCATTGGGGTTGA -ACGGAACGTCTTCATTGGTCCGAT -ACGGAACGTCTTCATTGGTGGCAT -ACGGAACGTCTTCATTGGCGAGAT -ACGGAACGTCTTCATTGGTACCAC -ACGGAACGTCTTCATTGGCAGAAC -ACGGAACGTCTTCATTGGGTCTAC -ACGGAACGTCTTCATTGGACGTAC -ACGGAACGTCTTCATTGGAGTGAC -ACGGAACGTCTTCATTGGCTGTAG -ACGGAACGTCTTCATTGGCCTAAG -ACGGAACGTCTTCATTGGGTTCAG -ACGGAACGTCTTCATTGGGCATAG -ACGGAACGTCTTCATTGGGACAAG -ACGGAACGTCTTCATTGGAAGCAG -ACGGAACGTCTTCATTGGCGTCAA -ACGGAACGTCTTCATTGGGCTGAA -ACGGAACGTCTTCATTGGAGTACG -ACGGAACGTCTTCATTGGATCCGA -ACGGAACGTCTTCATTGGATGGGA -ACGGAACGTCTTCATTGGGTGCAA -ACGGAACGTCTTCATTGGGAGGAA -ACGGAACGTCTTCATTGGCAGGTA -ACGGAACGTCTTCATTGGGACTCT -ACGGAACGTCTTCATTGGAGTCCT -ACGGAACGTCTTCATTGGTAAGCC -ACGGAACGTCTTCATTGGATAGCC -ACGGAACGTCTTCATTGGTAACCG -ACGGAACGTCTTCATTGGATGCCA -ACGGAACGTCTTGATCGAGGAAAC -ACGGAACGTCTTGATCGAAACACC -ACGGAACGTCTTGATCGAATCGAG -ACGGAACGTCTTGATCGACTCCTT -ACGGAACGTCTTGATCGACCTGTT -ACGGAACGTCTTGATCGACGGTTT -ACGGAACGTCTTGATCGAGTGGTT -ACGGAACGTCTTGATCGAGCCTTT -ACGGAACGTCTTGATCGAGGTCTT -ACGGAACGTCTTGATCGAACGCTT -ACGGAACGTCTTGATCGAAGCGTT -ACGGAACGTCTTGATCGATTCGTC -ACGGAACGTCTTGATCGATCTCTC -ACGGAACGTCTTGATCGATGGATC -ACGGAACGTCTTGATCGACACTTC -ACGGAACGTCTTGATCGAGTACTC -ACGGAACGTCTTGATCGAGATGTC -ACGGAACGTCTTGATCGAACAGTC -ACGGAACGTCTTGATCGATTGCTG -ACGGAACGTCTTGATCGATCCATG -ACGGAACGTCTTGATCGATGTGTG -ACGGAACGTCTTGATCGACTAGTG -ACGGAACGTCTTGATCGACATCTG -ACGGAACGTCTTGATCGAGAGTTG -ACGGAACGTCTTGATCGAAGACTG -ACGGAACGTCTTGATCGATCGGTA -ACGGAACGTCTTGATCGATGCCTA -ACGGAACGTCTTGATCGACCACTA -ACGGAACGTCTTGATCGAGGAGTA -ACGGAACGTCTTGATCGATCGTCT -ACGGAACGTCTTGATCGATGCACT -ACGGAACGTCTTGATCGACTGACT -ACGGAACGTCTTGATCGACAACCT -ACGGAACGTCTTGATCGAGCTACT -ACGGAACGTCTTGATCGAGGATCT -ACGGAACGTCTTGATCGAAAGGCT -ACGGAACGTCTTGATCGATCAACC -ACGGAACGTCTTGATCGATGTTCC -ACGGAACGTCTTGATCGAATTCCC -ACGGAACGTCTTGATCGATTCTCG -ACGGAACGTCTTGATCGATAGACG -ACGGAACGTCTTGATCGAGTAACG -ACGGAACGTCTTGATCGAACTTCG -ACGGAACGTCTTGATCGATACGCA -ACGGAACGTCTTGATCGACTTGCA -ACGGAACGTCTTGATCGACGAACA -ACGGAACGTCTTGATCGACAGTCA -ACGGAACGTCTTGATCGAGATCCA -ACGGAACGTCTTGATCGAACGACA -ACGGAACGTCTTGATCGAAGCTCA -ACGGAACGTCTTGATCGATCACGT -ACGGAACGTCTTGATCGACGTAGT -ACGGAACGTCTTGATCGAGTCAGT -ACGGAACGTCTTGATCGAGAAGGT -ACGGAACGTCTTGATCGAAACCGT -ACGGAACGTCTTGATCGATTGTGC -ACGGAACGTCTTGATCGACTAAGC -ACGGAACGTCTTGATCGAACTAGC -ACGGAACGTCTTGATCGAAGATGC -ACGGAACGTCTTGATCGATGAAGG -ACGGAACGTCTTGATCGACAATGG -ACGGAACGTCTTGATCGAATGAGG -ACGGAACGTCTTGATCGAAATGGG -ACGGAACGTCTTGATCGATCCTGA -ACGGAACGTCTTGATCGATAGCGA -ACGGAACGTCTTGATCGACACAGA -ACGGAACGTCTTGATCGAGCAAGA -ACGGAACGTCTTGATCGAGGTTGA -ACGGAACGTCTTGATCGATCCGAT -ACGGAACGTCTTGATCGATGGCAT -ACGGAACGTCTTGATCGACGAGAT -ACGGAACGTCTTGATCGATACCAC -ACGGAACGTCTTGATCGACAGAAC -ACGGAACGTCTTGATCGAGTCTAC -ACGGAACGTCTTGATCGAACGTAC -ACGGAACGTCTTGATCGAAGTGAC -ACGGAACGTCTTGATCGACTGTAG -ACGGAACGTCTTGATCGACCTAAG -ACGGAACGTCTTGATCGAGTTCAG -ACGGAACGTCTTGATCGAGCATAG -ACGGAACGTCTTGATCGAGACAAG -ACGGAACGTCTTGATCGAAAGCAG -ACGGAACGTCTTGATCGACGTCAA -ACGGAACGTCTTGATCGAGCTGAA -ACGGAACGTCTTGATCGAAGTACG -ACGGAACGTCTTGATCGAATCCGA -ACGGAACGTCTTGATCGAATGGGA -ACGGAACGTCTTGATCGAGTGCAA -ACGGAACGTCTTGATCGAGAGGAA -ACGGAACGTCTTGATCGACAGGTA -ACGGAACGTCTTGATCGAGACTCT -ACGGAACGTCTTGATCGAAGTCCT -ACGGAACGTCTTGATCGATAAGCC -ACGGAACGTCTTGATCGAATAGCC -ACGGAACGTCTTGATCGATAACCG -ACGGAACGTCTTGATCGAATGCCA -ACGGAACGTCTTCACTACGGAAAC -ACGGAACGTCTTCACTACAACACC -ACGGAACGTCTTCACTACATCGAG -ACGGAACGTCTTCACTACCTCCTT -ACGGAACGTCTTCACTACCCTGTT -ACGGAACGTCTTCACTACCGGTTT -ACGGAACGTCTTCACTACGTGGTT -ACGGAACGTCTTCACTACGCCTTT -ACGGAACGTCTTCACTACGGTCTT -ACGGAACGTCTTCACTACACGCTT -ACGGAACGTCTTCACTACAGCGTT -ACGGAACGTCTTCACTACTTCGTC -ACGGAACGTCTTCACTACTCTCTC -ACGGAACGTCTTCACTACTGGATC -ACGGAACGTCTTCACTACCACTTC -ACGGAACGTCTTCACTACGTACTC -ACGGAACGTCTTCACTACGATGTC -ACGGAACGTCTTCACTACACAGTC -ACGGAACGTCTTCACTACTTGCTG -ACGGAACGTCTTCACTACTCCATG -ACGGAACGTCTTCACTACTGTGTG -ACGGAACGTCTTCACTACCTAGTG -ACGGAACGTCTTCACTACCATCTG -ACGGAACGTCTTCACTACGAGTTG -ACGGAACGTCTTCACTACAGACTG -ACGGAACGTCTTCACTACTCGGTA -ACGGAACGTCTTCACTACTGCCTA -ACGGAACGTCTTCACTACCCACTA -ACGGAACGTCTTCACTACGGAGTA -ACGGAACGTCTTCACTACTCGTCT -ACGGAACGTCTTCACTACTGCACT -ACGGAACGTCTTCACTACCTGACT -ACGGAACGTCTTCACTACCAACCT -ACGGAACGTCTTCACTACGCTACT -ACGGAACGTCTTCACTACGGATCT -ACGGAACGTCTTCACTACAAGGCT -ACGGAACGTCTTCACTACTCAACC -ACGGAACGTCTTCACTACTGTTCC -ACGGAACGTCTTCACTACATTCCC -ACGGAACGTCTTCACTACTTCTCG -ACGGAACGTCTTCACTACTAGACG -ACGGAACGTCTTCACTACGTAACG -ACGGAACGTCTTCACTACACTTCG -ACGGAACGTCTTCACTACTACGCA -ACGGAACGTCTTCACTACCTTGCA -ACGGAACGTCTTCACTACCGAACA -ACGGAACGTCTTCACTACCAGTCA -ACGGAACGTCTTCACTACGATCCA -ACGGAACGTCTTCACTACACGACA -ACGGAACGTCTTCACTACAGCTCA -ACGGAACGTCTTCACTACTCACGT -ACGGAACGTCTTCACTACCGTAGT -ACGGAACGTCTTCACTACGTCAGT -ACGGAACGTCTTCACTACGAAGGT -ACGGAACGTCTTCACTACAACCGT -ACGGAACGTCTTCACTACTTGTGC -ACGGAACGTCTTCACTACCTAAGC -ACGGAACGTCTTCACTACACTAGC -ACGGAACGTCTTCACTACAGATGC -ACGGAACGTCTTCACTACTGAAGG -ACGGAACGTCTTCACTACCAATGG -ACGGAACGTCTTCACTACATGAGG -ACGGAACGTCTTCACTACAATGGG -ACGGAACGTCTTCACTACTCCTGA -ACGGAACGTCTTCACTACTAGCGA -ACGGAACGTCTTCACTACCACAGA -ACGGAACGTCTTCACTACGCAAGA -ACGGAACGTCTTCACTACGGTTGA -ACGGAACGTCTTCACTACTCCGAT -ACGGAACGTCTTCACTACTGGCAT -ACGGAACGTCTTCACTACCGAGAT -ACGGAACGTCTTCACTACTACCAC -ACGGAACGTCTTCACTACCAGAAC -ACGGAACGTCTTCACTACGTCTAC -ACGGAACGTCTTCACTACACGTAC -ACGGAACGTCTTCACTACAGTGAC -ACGGAACGTCTTCACTACCTGTAG -ACGGAACGTCTTCACTACCCTAAG -ACGGAACGTCTTCACTACGTTCAG -ACGGAACGTCTTCACTACGCATAG -ACGGAACGTCTTCACTACGACAAG -ACGGAACGTCTTCACTACAAGCAG -ACGGAACGTCTTCACTACCGTCAA -ACGGAACGTCTTCACTACGCTGAA -ACGGAACGTCTTCACTACAGTACG -ACGGAACGTCTTCACTACATCCGA -ACGGAACGTCTTCACTACATGGGA -ACGGAACGTCTTCACTACGTGCAA -ACGGAACGTCTTCACTACGAGGAA -ACGGAACGTCTTCACTACCAGGTA -ACGGAACGTCTTCACTACGACTCT -ACGGAACGTCTTCACTACAGTCCT -ACGGAACGTCTTCACTACTAAGCC -ACGGAACGTCTTCACTACATAGCC -ACGGAACGTCTTCACTACTAACCG -ACGGAACGTCTTCACTACATGCCA -ACGGAACGTCTTAACCAGGGAAAC -ACGGAACGTCTTAACCAGAACACC -ACGGAACGTCTTAACCAGATCGAG -ACGGAACGTCTTAACCAGCTCCTT -ACGGAACGTCTTAACCAGCCTGTT -ACGGAACGTCTTAACCAGCGGTTT -ACGGAACGTCTTAACCAGGTGGTT -ACGGAACGTCTTAACCAGGCCTTT -ACGGAACGTCTTAACCAGGGTCTT -ACGGAACGTCTTAACCAGACGCTT -ACGGAACGTCTTAACCAGAGCGTT -ACGGAACGTCTTAACCAGTTCGTC -ACGGAACGTCTTAACCAGTCTCTC -ACGGAACGTCTTAACCAGTGGATC -ACGGAACGTCTTAACCAGCACTTC -ACGGAACGTCTTAACCAGGTACTC -ACGGAACGTCTTAACCAGGATGTC -ACGGAACGTCTTAACCAGACAGTC -ACGGAACGTCTTAACCAGTTGCTG -ACGGAACGTCTTAACCAGTCCATG -ACGGAACGTCTTAACCAGTGTGTG -ACGGAACGTCTTAACCAGCTAGTG -ACGGAACGTCTTAACCAGCATCTG -ACGGAACGTCTTAACCAGGAGTTG -ACGGAACGTCTTAACCAGAGACTG -ACGGAACGTCTTAACCAGTCGGTA -ACGGAACGTCTTAACCAGTGCCTA -ACGGAACGTCTTAACCAGCCACTA -ACGGAACGTCTTAACCAGGGAGTA -ACGGAACGTCTTAACCAGTCGTCT -ACGGAACGTCTTAACCAGTGCACT -ACGGAACGTCTTAACCAGCTGACT -ACGGAACGTCTTAACCAGCAACCT -ACGGAACGTCTTAACCAGGCTACT -ACGGAACGTCTTAACCAGGGATCT -ACGGAACGTCTTAACCAGAAGGCT -ACGGAACGTCTTAACCAGTCAACC -ACGGAACGTCTTAACCAGTGTTCC -ACGGAACGTCTTAACCAGATTCCC -ACGGAACGTCTTAACCAGTTCTCG -ACGGAACGTCTTAACCAGTAGACG -ACGGAACGTCTTAACCAGGTAACG -ACGGAACGTCTTAACCAGACTTCG -ACGGAACGTCTTAACCAGTACGCA -ACGGAACGTCTTAACCAGCTTGCA -ACGGAACGTCTTAACCAGCGAACA -ACGGAACGTCTTAACCAGCAGTCA -ACGGAACGTCTTAACCAGGATCCA -ACGGAACGTCTTAACCAGACGACA -ACGGAACGTCTTAACCAGAGCTCA -ACGGAACGTCTTAACCAGTCACGT -ACGGAACGTCTTAACCAGCGTAGT -ACGGAACGTCTTAACCAGGTCAGT -ACGGAACGTCTTAACCAGGAAGGT -ACGGAACGTCTTAACCAGAACCGT -ACGGAACGTCTTAACCAGTTGTGC -ACGGAACGTCTTAACCAGCTAAGC -ACGGAACGTCTTAACCAGACTAGC -ACGGAACGTCTTAACCAGAGATGC -ACGGAACGTCTTAACCAGTGAAGG -ACGGAACGTCTTAACCAGCAATGG -ACGGAACGTCTTAACCAGATGAGG -ACGGAACGTCTTAACCAGAATGGG -ACGGAACGTCTTAACCAGTCCTGA -ACGGAACGTCTTAACCAGTAGCGA -ACGGAACGTCTTAACCAGCACAGA -ACGGAACGTCTTAACCAGGCAAGA -ACGGAACGTCTTAACCAGGGTTGA -ACGGAACGTCTTAACCAGTCCGAT -ACGGAACGTCTTAACCAGTGGCAT -ACGGAACGTCTTAACCAGCGAGAT -ACGGAACGTCTTAACCAGTACCAC -ACGGAACGTCTTAACCAGCAGAAC -ACGGAACGTCTTAACCAGGTCTAC -ACGGAACGTCTTAACCAGACGTAC -ACGGAACGTCTTAACCAGAGTGAC -ACGGAACGTCTTAACCAGCTGTAG -ACGGAACGTCTTAACCAGCCTAAG -ACGGAACGTCTTAACCAGGTTCAG -ACGGAACGTCTTAACCAGGCATAG -ACGGAACGTCTTAACCAGGACAAG -ACGGAACGTCTTAACCAGAAGCAG -ACGGAACGTCTTAACCAGCGTCAA -ACGGAACGTCTTAACCAGGCTGAA -ACGGAACGTCTTAACCAGAGTACG -ACGGAACGTCTTAACCAGATCCGA -ACGGAACGTCTTAACCAGATGGGA -ACGGAACGTCTTAACCAGGTGCAA -ACGGAACGTCTTAACCAGGAGGAA -ACGGAACGTCTTAACCAGCAGGTA -ACGGAACGTCTTAACCAGGACTCT -ACGGAACGTCTTAACCAGAGTCCT -ACGGAACGTCTTAACCAGTAAGCC -ACGGAACGTCTTAACCAGATAGCC -ACGGAACGTCTTAACCAGTAACCG -ACGGAACGTCTTAACCAGATGCCA -ACGGAACGTCTTTACGTCGGAAAC -ACGGAACGTCTTTACGTCAACACC -ACGGAACGTCTTTACGTCATCGAG -ACGGAACGTCTTTACGTCCTCCTT -ACGGAACGTCTTTACGTCCCTGTT -ACGGAACGTCTTTACGTCCGGTTT -ACGGAACGTCTTTACGTCGTGGTT -ACGGAACGTCTTTACGTCGCCTTT -ACGGAACGTCTTTACGTCGGTCTT -ACGGAACGTCTTTACGTCACGCTT -ACGGAACGTCTTTACGTCAGCGTT -ACGGAACGTCTTTACGTCTTCGTC -ACGGAACGTCTTTACGTCTCTCTC -ACGGAACGTCTTTACGTCTGGATC -ACGGAACGTCTTTACGTCCACTTC -ACGGAACGTCTTTACGTCGTACTC -ACGGAACGTCTTTACGTCGATGTC -ACGGAACGTCTTTACGTCACAGTC -ACGGAACGTCTTTACGTCTTGCTG -ACGGAACGTCTTTACGTCTCCATG -ACGGAACGTCTTTACGTCTGTGTG -ACGGAACGTCTTTACGTCCTAGTG -ACGGAACGTCTTTACGTCCATCTG -ACGGAACGTCTTTACGTCGAGTTG -ACGGAACGTCTTTACGTCAGACTG -ACGGAACGTCTTTACGTCTCGGTA -ACGGAACGTCTTTACGTCTGCCTA -ACGGAACGTCTTTACGTCCCACTA -ACGGAACGTCTTTACGTCGGAGTA -ACGGAACGTCTTTACGTCTCGTCT -ACGGAACGTCTTTACGTCTGCACT -ACGGAACGTCTTTACGTCCTGACT -ACGGAACGTCTTTACGTCCAACCT -ACGGAACGTCTTTACGTCGCTACT -ACGGAACGTCTTTACGTCGGATCT -ACGGAACGTCTTTACGTCAAGGCT -ACGGAACGTCTTTACGTCTCAACC -ACGGAACGTCTTTACGTCTGTTCC -ACGGAACGTCTTTACGTCATTCCC -ACGGAACGTCTTTACGTCTTCTCG -ACGGAACGTCTTTACGTCTAGACG -ACGGAACGTCTTTACGTCGTAACG -ACGGAACGTCTTTACGTCACTTCG -ACGGAACGTCTTTACGTCTACGCA -ACGGAACGTCTTTACGTCCTTGCA -ACGGAACGTCTTTACGTCCGAACA -ACGGAACGTCTTTACGTCCAGTCA -ACGGAACGTCTTTACGTCGATCCA -ACGGAACGTCTTTACGTCACGACA -ACGGAACGTCTTTACGTCAGCTCA -ACGGAACGTCTTTACGTCTCACGT -ACGGAACGTCTTTACGTCCGTAGT -ACGGAACGTCTTTACGTCGTCAGT -ACGGAACGTCTTTACGTCGAAGGT -ACGGAACGTCTTTACGTCAACCGT -ACGGAACGTCTTTACGTCTTGTGC -ACGGAACGTCTTTACGTCCTAAGC -ACGGAACGTCTTTACGTCACTAGC -ACGGAACGTCTTTACGTCAGATGC -ACGGAACGTCTTTACGTCTGAAGG -ACGGAACGTCTTTACGTCCAATGG -ACGGAACGTCTTTACGTCATGAGG -ACGGAACGTCTTTACGTCAATGGG -ACGGAACGTCTTTACGTCTCCTGA -ACGGAACGTCTTTACGTCTAGCGA -ACGGAACGTCTTTACGTCCACAGA -ACGGAACGTCTTTACGTCGCAAGA -ACGGAACGTCTTTACGTCGGTTGA -ACGGAACGTCTTTACGTCTCCGAT -ACGGAACGTCTTTACGTCTGGCAT -ACGGAACGTCTTTACGTCCGAGAT -ACGGAACGTCTTTACGTCTACCAC -ACGGAACGTCTTTACGTCCAGAAC -ACGGAACGTCTTTACGTCGTCTAC -ACGGAACGTCTTTACGTCACGTAC -ACGGAACGTCTTTACGTCAGTGAC -ACGGAACGTCTTTACGTCCTGTAG -ACGGAACGTCTTTACGTCCCTAAG -ACGGAACGTCTTTACGTCGTTCAG -ACGGAACGTCTTTACGTCGCATAG -ACGGAACGTCTTTACGTCGACAAG -ACGGAACGTCTTTACGTCAAGCAG -ACGGAACGTCTTTACGTCCGTCAA -ACGGAACGTCTTTACGTCGCTGAA -ACGGAACGTCTTTACGTCAGTACG -ACGGAACGTCTTTACGTCATCCGA -ACGGAACGTCTTTACGTCATGGGA -ACGGAACGTCTTTACGTCGTGCAA -ACGGAACGTCTTTACGTCGAGGAA -ACGGAACGTCTTTACGTCCAGGTA -ACGGAACGTCTTTACGTCGACTCT -ACGGAACGTCTTTACGTCAGTCCT -ACGGAACGTCTTTACGTCTAAGCC -ACGGAACGTCTTTACGTCATAGCC -ACGGAACGTCTTTACGTCTAACCG -ACGGAACGTCTTTACGTCATGCCA -ACGGAACGTCTTTACACGGGAAAC -ACGGAACGTCTTTACACGAACACC -ACGGAACGTCTTTACACGATCGAG -ACGGAACGTCTTTACACGCTCCTT -ACGGAACGTCTTTACACGCCTGTT -ACGGAACGTCTTTACACGCGGTTT -ACGGAACGTCTTTACACGGTGGTT -ACGGAACGTCTTTACACGGCCTTT -ACGGAACGTCTTTACACGGGTCTT -ACGGAACGTCTTTACACGACGCTT -ACGGAACGTCTTTACACGAGCGTT -ACGGAACGTCTTTACACGTTCGTC -ACGGAACGTCTTTACACGTCTCTC -ACGGAACGTCTTTACACGTGGATC -ACGGAACGTCTTTACACGCACTTC -ACGGAACGTCTTTACACGGTACTC -ACGGAACGTCTTTACACGGATGTC -ACGGAACGTCTTTACACGACAGTC -ACGGAACGTCTTTACACGTTGCTG -ACGGAACGTCTTTACACGTCCATG -ACGGAACGTCTTTACACGTGTGTG -ACGGAACGTCTTTACACGCTAGTG -ACGGAACGTCTTTACACGCATCTG -ACGGAACGTCTTTACACGGAGTTG -ACGGAACGTCTTTACACGAGACTG -ACGGAACGTCTTTACACGTCGGTA -ACGGAACGTCTTTACACGTGCCTA -ACGGAACGTCTTTACACGCCACTA -ACGGAACGTCTTTACACGGGAGTA -ACGGAACGTCTTTACACGTCGTCT -ACGGAACGTCTTTACACGTGCACT -ACGGAACGTCTTTACACGCTGACT -ACGGAACGTCTTTACACGCAACCT -ACGGAACGTCTTTACACGGCTACT -ACGGAACGTCTTTACACGGGATCT -ACGGAACGTCTTTACACGAAGGCT -ACGGAACGTCTTTACACGTCAACC -ACGGAACGTCTTTACACGTGTTCC -ACGGAACGTCTTTACACGATTCCC -ACGGAACGTCTTTACACGTTCTCG -ACGGAACGTCTTTACACGTAGACG -ACGGAACGTCTTTACACGGTAACG -ACGGAACGTCTTTACACGACTTCG -ACGGAACGTCTTTACACGTACGCA -ACGGAACGTCTTTACACGCTTGCA -ACGGAACGTCTTTACACGCGAACA -ACGGAACGTCTTTACACGCAGTCA -ACGGAACGTCTTTACACGGATCCA -ACGGAACGTCTTTACACGACGACA -ACGGAACGTCTTTACACGAGCTCA -ACGGAACGTCTTTACACGTCACGT -ACGGAACGTCTTTACACGCGTAGT -ACGGAACGTCTTTACACGGTCAGT -ACGGAACGTCTTTACACGGAAGGT -ACGGAACGTCTTTACACGAACCGT -ACGGAACGTCTTTACACGTTGTGC -ACGGAACGTCTTTACACGCTAAGC -ACGGAACGTCTTTACACGACTAGC -ACGGAACGTCTTTACACGAGATGC -ACGGAACGTCTTTACACGTGAAGG -ACGGAACGTCTTTACACGCAATGG -ACGGAACGTCTTTACACGATGAGG -ACGGAACGTCTTTACACGAATGGG -ACGGAACGTCTTTACACGTCCTGA -ACGGAACGTCTTTACACGTAGCGA -ACGGAACGTCTTTACACGCACAGA -ACGGAACGTCTTTACACGGCAAGA -ACGGAACGTCTTTACACGGGTTGA -ACGGAACGTCTTTACACGTCCGAT -ACGGAACGTCTTTACACGTGGCAT -ACGGAACGTCTTTACACGCGAGAT -ACGGAACGTCTTTACACGTACCAC -ACGGAACGTCTTTACACGCAGAAC -ACGGAACGTCTTTACACGGTCTAC -ACGGAACGTCTTTACACGACGTAC -ACGGAACGTCTTTACACGAGTGAC -ACGGAACGTCTTTACACGCTGTAG -ACGGAACGTCTTTACACGCCTAAG -ACGGAACGTCTTTACACGGTTCAG -ACGGAACGTCTTTACACGGCATAG -ACGGAACGTCTTTACACGGACAAG -ACGGAACGTCTTTACACGAAGCAG -ACGGAACGTCTTTACACGCGTCAA -ACGGAACGTCTTTACACGGCTGAA -ACGGAACGTCTTTACACGAGTACG -ACGGAACGTCTTTACACGATCCGA -ACGGAACGTCTTTACACGATGGGA -ACGGAACGTCTTTACACGGTGCAA -ACGGAACGTCTTTACACGGAGGAA -ACGGAACGTCTTTACACGCAGGTA -ACGGAACGTCTTTACACGGACTCT -ACGGAACGTCTTTACACGAGTCCT -ACGGAACGTCTTTACACGTAAGCC -ACGGAACGTCTTTACACGATAGCC -ACGGAACGTCTTTACACGTAACCG -ACGGAACGTCTTTACACGATGCCA -ACGGAACGTCTTGACAGTGGAAAC -ACGGAACGTCTTGACAGTAACACC -ACGGAACGTCTTGACAGTATCGAG -ACGGAACGTCTTGACAGTCTCCTT -ACGGAACGTCTTGACAGTCCTGTT -ACGGAACGTCTTGACAGTCGGTTT -ACGGAACGTCTTGACAGTGTGGTT -ACGGAACGTCTTGACAGTGCCTTT -ACGGAACGTCTTGACAGTGGTCTT -ACGGAACGTCTTGACAGTACGCTT -ACGGAACGTCTTGACAGTAGCGTT -ACGGAACGTCTTGACAGTTTCGTC -ACGGAACGTCTTGACAGTTCTCTC -ACGGAACGTCTTGACAGTTGGATC -ACGGAACGTCTTGACAGTCACTTC -ACGGAACGTCTTGACAGTGTACTC -ACGGAACGTCTTGACAGTGATGTC -ACGGAACGTCTTGACAGTACAGTC -ACGGAACGTCTTGACAGTTTGCTG -ACGGAACGTCTTGACAGTTCCATG -ACGGAACGTCTTGACAGTTGTGTG -ACGGAACGTCTTGACAGTCTAGTG -ACGGAACGTCTTGACAGTCATCTG -ACGGAACGTCTTGACAGTGAGTTG -ACGGAACGTCTTGACAGTAGACTG -ACGGAACGTCTTGACAGTTCGGTA -ACGGAACGTCTTGACAGTTGCCTA -ACGGAACGTCTTGACAGTCCACTA -ACGGAACGTCTTGACAGTGGAGTA -ACGGAACGTCTTGACAGTTCGTCT -ACGGAACGTCTTGACAGTTGCACT -ACGGAACGTCTTGACAGTCTGACT -ACGGAACGTCTTGACAGTCAACCT -ACGGAACGTCTTGACAGTGCTACT -ACGGAACGTCTTGACAGTGGATCT -ACGGAACGTCTTGACAGTAAGGCT -ACGGAACGTCTTGACAGTTCAACC -ACGGAACGTCTTGACAGTTGTTCC -ACGGAACGTCTTGACAGTATTCCC -ACGGAACGTCTTGACAGTTTCTCG -ACGGAACGTCTTGACAGTTAGACG -ACGGAACGTCTTGACAGTGTAACG -ACGGAACGTCTTGACAGTACTTCG -ACGGAACGTCTTGACAGTTACGCA -ACGGAACGTCTTGACAGTCTTGCA -ACGGAACGTCTTGACAGTCGAACA -ACGGAACGTCTTGACAGTCAGTCA -ACGGAACGTCTTGACAGTGATCCA -ACGGAACGTCTTGACAGTACGACA -ACGGAACGTCTTGACAGTAGCTCA -ACGGAACGTCTTGACAGTTCACGT -ACGGAACGTCTTGACAGTCGTAGT -ACGGAACGTCTTGACAGTGTCAGT -ACGGAACGTCTTGACAGTGAAGGT -ACGGAACGTCTTGACAGTAACCGT -ACGGAACGTCTTGACAGTTTGTGC -ACGGAACGTCTTGACAGTCTAAGC -ACGGAACGTCTTGACAGTACTAGC -ACGGAACGTCTTGACAGTAGATGC -ACGGAACGTCTTGACAGTTGAAGG -ACGGAACGTCTTGACAGTCAATGG -ACGGAACGTCTTGACAGTATGAGG -ACGGAACGTCTTGACAGTAATGGG -ACGGAACGTCTTGACAGTTCCTGA -ACGGAACGTCTTGACAGTTAGCGA -ACGGAACGTCTTGACAGTCACAGA -ACGGAACGTCTTGACAGTGCAAGA -ACGGAACGTCTTGACAGTGGTTGA -ACGGAACGTCTTGACAGTTCCGAT -ACGGAACGTCTTGACAGTTGGCAT -ACGGAACGTCTTGACAGTCGAGAT -ACGGAACGTCTTGACAGTTACCAC -ACGGAACGTCTTGACAGTCAGAAC -ACGGAACGTCTTGACAGTGTCTAC -ACGGAACGTCTTGACAGTACGTAC -ACGGAACGTCTTGACAGTAGTGAC -ACGGAACGTCTTGACAGTCTGTAG -ACGGAACGTCTTGACAGTCCTAAG -ACGGAACGTCTTGACAGTGTTCAG -ACGGAACGTCTTGACAGTGCATAG -ACGGAACGTCTTGACAGTGACAAG -ACGGAACGTCTTGACAGTAAGCAG -ACGGAACGTCTTGACAGTCGTCAA -ACGGAACGTCTTGACAGTGCTGAA -ACGGAACGTCTTGACAGTAGTACG -ACGGAACGTCTTGACAGTATCCGA -ACGGAACGTCTTGACAGTATGGGA -ACGGAACGTCTTGACAGTGTGCAA -ACGGAACGTCTTGACAGTGAGGAA -ACGGAACGTCTTGACAGTCAGGTA -ACGGAACGTCTTGACAGTGACTCT -ACGGAACGTCTTGACAGTAGTCCT -ACGGAACGTCTTGACAGTTAAGCC -ACGGAACGTCTTGACAGTATAGCC -ACGGAACGTCTTGACAGTTAACCG -ACGGAACGTCTTGACAGTATGCCA -ACGGAACGTCTTTAGCTGGGAAAC -ACGGAACGTCTTTAGCTGAACACC -ACGGAACGTCTTTAGCTGATCGAG -ACGGAACGTCTTTAGCTGCTCCTT -ACGGAACGTCTTTAGCTGCCTGTT -ACGGAACGTCTTTAGCTGCGGTTT -ACGGAACGTCTTTAGCTGGTGGTT -ACGGAACGTCTTTAGCTGGCCTTT -ACGGAACGTCTTTAGCTGGGTCTT -ACGGAACGTCTTTAGCTGACGCTT -ACGGAACGTCTTTAGCTGAGCGTT -ACGGAACGTCTTTAGCTGTTCGTC -ACGGAACGTCTTTAGCTGTCTCTC -ACGGAACGTCTTTAGCTGTGGATC -ACGGAACGTCTTTAGCTGCACTTC -ACGGAACGTCTTTAGCTGGTACTC -ACGGAACGTCTTTAGCTGGATGTC -ACGGAACGTCTTTAGCTGACAGTC -ACGGAACGTCTTTAGCTGTTGCTG -ACGGAACGTCTTTAGCTGTCCATG -ACGGAACGTCTTTAGCTGTGTGTG -ACGGAACGTCTTTAGCTGCTAGTG -ACGGAACGTCTTTAGCTGCATCTG -ACGGAACGTCTTTAGCTGGAGTTG -ACGGAACGTCTTTAGCTGAGACTG -ACGGAACGTCTTTAGCTGTCGGTA -ACGGAACGTCTTTAGCTGTGCCTA -ACGGAACGTCTTTAGCTGCCACTA -ACGGAACGTCTTTAGCTGGGAGTA -ACGGAACGTCTTTAGCTGTCGTCT -ACGGAACGTCTTTAGCTGTGCACT -ACGGAACGTCTTTAGCTGCTGACT -ACGGAACGTCTTTAGCTGCAACCT -ACGGAACGTCTTTAGCTGGCTACT -ACGGAACGTCTTTAGCTGGGATCT -ACGGAACGTCTTTAGCTGAAGGCT -ACGGAACGTCTTTAGCTGTCAACC -ACGGAACGTCTTTAGCTGTGTTCC -ACGGAACGTCTTTAGCTGATTCCC -ACGGAACGTCTTTAGCTGTTCTCG -ACGGAACGTCTTTAGCTGTAGACG -ACGGAACGTCTTTAGCTGGTAACG -ACGGAACGTCTTTAGCTGACTTCG -ACGGAACGTCTTTAGCTGTACGCA -ACGGAACGTCTTTAGCTGCTTGCA -ACGGAACGTCTTTAGCTGCGAACA -ACGGAACGTCTTTAGCTGCAGTCA -ACGGAACGTCTTTAGCTGGATCCA -ACGGAACGTCTTTAGCTGACGACA -ACGGAACGTCTTTAGCTGAGCTCA -ACGGAACGTCTTTAGCTGTCACGT -ACGGAACGTCTTTAGCTGCGTAGT -ACGGAACGTCTTTAGCTGGTCAGT -ACGGAACGTCTTTAGCTGGAAGGT -ACGGAACGTCTTTAGCTGAACCGT -ACGGAACGTCTTTAGCTGTTGTGC -ACGGAACGTCTTTAGCTGCTAAGC -ACGGAACGTCTTTAGCTGACTAGC -ACGGAACGTCTTTAGCTGAGATGC -ACGGAACGTCTTTAGCTGTGAAGG -ACGGAACGTCTTTAGCTGCAATGG -ACGGAACGTCTTTAGCTGATGAGG -ACGGAACGTCTTTAGCTGAATGGG -ACGGAACGTCTTTAGCTGTCCTGA -ACGGAACGTCTTTAGCTGTAGCGA -ACGGAACGTCTTTAGCTGCACAGA -ACGGAACGTCTTTAGCTGGCAAGA -ACGGAACGTCTTTAGCTGGGTTGA -ACGGAACGTCTTTAGCTGTCCGAT -ACGGAACGTCTTTAGCTGTGGCAT -ACGGAACGTCTTTAGCTGCGAGAT -ACGGAACGTCTTTAGCTGTACCAC -ACGGAACGTCTTTAGCTGCAGAAC -ACGGAACGTCTTTAGCTGGTCTAC -ACGGAACGTCTTTAGCTGACGTAC -ACGGAACGTCTTTAGCTGAGTGAC -ACGGAACGTCTTTAGCTGCTGTAG -ACGGAACGTCTTTAGCTGCCTAAG -ACGGAACGTCTTTAGCTGGTTCAG -ACGGAACGTCTTTAGCTGGCATAG -ACGGAACGTCTTTAGCTGGACAAG -ACGGAACGTCTTTAGCTGAAGCAG -ACGGAACGTCTTTAGCTGCGTCAA -ACGGAACGTCTTTAGCTGGCTGAA -ACGGAACGTCTTTAGCTGAGTACG -ACGGAACGTCTTTAGCTGATCCGA -ACGGAACGTCTTTAGCTGATGGGA -ACGGAACGTCTTTAGCTGGTGCAA -ACGGAACGTCTTTAGCTGGAGGAA -ACGGAACGTCTTTAGCTGCAGGTA -ACGGAACGTCTTTAGCTGGACTCT -ACGGAACGTCTTTAGCTGAGTCCT -ACGGAACGTCTTTAGCTGTAAGCC -ACGGAACGTCTTTAGCTGATAGCC -ACGGAACGTCTTTAGCTGTAACCG -ACGGAACGTCTTTAGCTGATGCCA -ACGGAACGTCTTAAGCCTGGAAAC -ACGGAACGTCTTAAGCCTAACACC -ACGGAACGTCTTAAGCCTATCGAG -ACGGAACGTCTTAAGCCTCTCCTT -ACGGAACGTCTTAAGCCTCCTGTT -ACGGAACGTCTTAAGCCTCGGTTT -ACGGAACGTCTTAAGCCTGTGGTT -ACGGAACGTCTTAAGCCTGCCTTT -ACGGAACGTCTTAAGCCTGGTCTT -ACGGAACGTCTTAAGCCTACGCTT -ACGGAACGTCTTAAGCCTAGCGTT -ACGGAACGTCTTAAGCCTTTCGTC -ACGGAACGTCTTAAGCCTTCTCTC -ACGGAACGTCTTAAGCCTTGGATC -ACGGAACGTCTTAAGCCTCACTTC -ACGGAACGTCTTAAGCCTGTACTC -ACGGAACGTCTTAAGCCTGATGTC -ACGGAACGTCTTAAGCCTACAGTC -ACGGAACGTCTTAAGCCTTTGCTG -ACGGAACGTCTTAAGCCTTCCATG -ACGGAACGTCTTAAGCCTTGTGTG -ACGGAACGTCTTAAGCCTCTAGTG -ACGGAACGTCTTAAGCCTCATCTG -ACGGAACGTCTTAAGCCTGAGTTG -ACGGAACGTCTTAAGCCTAGACTG -ACGGAACGTCTTAAGCCTTCGGTA -ACGGAACGTCTTAAGCCTTGCCTA -ACGGAACGTCTTAAGCCTCCACTA -ACGGAACGTCTTAAGCCTGGAGTA -ACGGAACGTCTTAAGCCTTCGTCT -ACGGAACGTCTTAAGCCTTGCACT -ACGGAACGTCTTAAGCCTCTGACT -ACGGAACGTCTTAAGCCTCAACCT -ACGGAACGTCTTAAGCCTGCTACT -ACGGAACGTCTTAAGCCTGGATCT -ACGGAACGTCTTAAGCCTAAGGCT -ACGGAACGTCTTAAGCCTTCAACC -ACGGAACGTCTTAAGCCTTGTTCC -ACGGAACGTCTTAAGCCTATTCCC -ACGGAACGTCTTAAGCCTTTCTCG -ACGGAACGTCTTAAGCCTTAGACG -ACGGAACGTCTTAAGCCTGTAACG -ACGGAACGTCTTAAGCCTACTTCG -ACGGAACGTCTTAAGCCTTACGCA -ACGGAACGTCTTAAGCCTCTTGCA -ACGGAACGTCTTAAGCCTCGAACA -ACGGAACGTCTTAAGCCTCAGTCA -ACGGAACGTCTTAAGCCTGATCCA -ACGGAACGTCTTAAGCCTACGACA -ACGGAACGTCTTAAGCCTAGCTCA -ACGGAACGTCTTAAGCCTTCACGT -ACGGAACGTCTTAAGCCTCGTAGT -ACGGAACGTCTTAAGCCTGTCAGT -ACGGAACGTCTTAAGCCTGAAGGT -ACGGAACGTCTTAAGCCTAACCGT -ACGGAACGTCTTAAGCCTTTGTGC -ACGGAACGTCTTAAGCCTCTAAGC -ACGGAACGTCTTAAGCCTACTAGC -ACGGAACGTCTTAAGCCTAGATGC -ACGGAACGTCTTAAGCCTTGAAGG -ACGGAACGTCTTAAGCCTCAATGG -ACGGAACGTCTTAAGCCTATGAGG -ACGGAACGTCTTAAGCCTAATGGG -ACGGAACGTCTTAAGCCTTCCTGA -ACGGAACGTCTTAAGCCTTAGCGA -ACGGAACGTCTTAAGCCTCACAGA -ACGGAACGTCTTAAGCCTGCAAGA -ACGGAACGTCTTAAGCCTGGTTGA -ACGGAACGTCTTAAGCCTTCCGAT -ACGGAACGTCTTAAGCCTTGGCAT -ACGGAACGTCTTAAGCCTCGAGAT -ACGGAACGTCTTAAGCCTTACCAC -ACGGAACGTCTTAAGCCTCAGAAC -ACGGAACGTCTTAAGCCTGTCTAC -ACGGAACGTCTTAAGCCTACGTAC -ACGGAACGTCTTAAGCCTAGTGAC -ACGGAACGTCTTAAGCCTCTGTAG -ACGGAACGTCTTAAGCCTCCTAAG -ACGGAACGTCTTAAGCCTGTTCAG -ACGGAACGTCTTAAGCCTGCATAG -ACGGAACGTCTTAAGCCTGACAAG -ACGGAACGTCTTAAGCCTAAGCAG -ACGGAACGTCTTAAGCCTCGTCAA -ACGGAACGTCTTAAGCCTGCTGAA -ACGGAACGTCTTAAGCCTAGTACG -ACGGAACGTCTTAAGCCTATCCGA -ACGGAACGTCTTAAGCCTATGGGA -ACGGAACGTCTTAAGCCTGTGCAA -ACGGAACGTCTTAAGCCTGAGGAA -ACGGAACGTCTTAAGCCTCAGGTA -ACGGAACGTCTTAAGCCTGACTCT -ACGGAACGTCTTAAGCCTAGTCCT -ACGGAACGTCTTAAGCCTTAAGCC -ACGGAACGTCTTAAGCCTATAGCC -ACGGAACGTCTTAAGCCTTAACCG -ACGGAACGTCTTAAGCCTATGCCA -ACGGAACGTCTTCAGGTTGGAAAC -ACGGAACGTCTTCAGGTTAACACC -ACGGAACGTCTTCAGGTTATCGAG -ACGGAACGTCTTCAGGTTCTCCTT -ACGGAACGTCTTCAGGTTCCTGTT -ACGGAACGTCTTCAGGTTCGGTTT -ACGGAACGTCTTCAGGTTGTGGTT -ACGGAACGTCTTCAGGTTGCCTTT -ACGGAACGTCTTCAGGTTGGTCTT -ACGGAACGTCTTCAGGTTACGCTT -ACGGAACGTCTTCAGGTTAGCGTT -ACGGAACGTCTTCAGGTTTTCGTC -ACGGAACGTCTTCAGGTTTCTCTC -ACGGAACGTCTTCAGGTTTGGATC -ACGGAACGTCTTCAGGTTCACTTC -ACGGAACGTCTTCAGGTTGTACTC -ACGGAACGTCTTCAGGTTGATGTC -ACGGAACGTCTTCAGGTTACAGTC -ACGGAACGTCTTCAGGTTTTGCTG -ACGGAACGTCTTCAGGTTTCCATG -ACGGAACGTCTTCAGGTTTGTGTG -ACGGAACGTCTTCAGGTTCTAGTG -ACGGAACGTCTTCAGGTTCATCTG -ACGGAACGTCTTCAGGTTGAGTTG -ACGGAACGTCTTCAGGTTAGACTG -ACGGAACGTCTTCAGGTTTCGGTA -ACGGAACGTCTTCAGGTTTGCCTA -ACGGAACGTCTTCAGGTTCCACTA -ACGGAACGTCTTCAGGTTGGAGTA -ACGGAACGTCTTCAGGTTTCGTCT -ACGGAACGTCTTCAGGTTTGCACT -ACGGAACGTCTTCAGGTTCTGACT -ACGGAACGTCTTCAGGTTCAACCT -ACGGAACGTCTTCAGGTTGCTACT -ACGGAACGTCTTCAGGTTGGATCT -ACGGAACGTCTTCAGGTTAAGGCT -ACGGAACGTCTTCAGGTTTCAACC -ACGGAACGTCTTCAGGTTTGTTCC -ACGGAACGTCTTCAGGTTATTCCC -ACGGAACGTCTTCAGGTTTTCTCG -ACGGAACGTCTTCAGGTTTAGACG -ACGGAACGTCTTCAGGTTGTAACG -ACGGAACGTCTTCAGGTTACTTCG -ACGGAACGTCTTCAGGTTTACGCA -ACGGAACGTCTTCAGGTTCTTGCA -ACGGAACGTCTTCAGGTTCGAACA -ACGGAACGTCTTCAGGTTCAGTCA -ACGGAACGTCTTCAGGTTGATCCA -ACGGAACGTCTTCAGGTTACGACA -ACGGAACGTCTTCAGGTTAGCTCA -ACGGAACGTCTTCAGGTTTCACGT -ACGGAACGTCTTCAGGTTCGTAGT -ACGGAACGTCTTCAGGTTGTCAGT -ACGGAACGTCTTCAGGTTGAAGGT -ACGGAACGTCTTCAGGTTAACCGT -ACGGAACGTCTTCAGGTTTTGTGC -ACGGAACGTCTTCAGGTTCTAAGC -ACGGAACGTCTTCAGGTTACTAGC -ACGGAACGTCTTCAGGTTAGATGC -ACGGAACGTCTTCAGGTTTGAAGG -ACGGAACGTCTTCAGGTTCAATGG -ACGGAACGTCTTCAGGTTATGAGG -ACGGAACGTCTTCAGGTTAATGGG -ACGGAACGTCTTCAGGTTTCCTGA -ACGGAACGTCTTCAGGTTTAGCGA -ACGGAACGTCTTCAGGTTCACAGA -ACGGAACGTCTTCAGGTTGCAAGA -ACGGAACGTCTTCAGGTTGGTTGA -ACGGAACGTCTTCAGGTTTCCGAT -ACGGAACGTCTTCAGGTTTGGCAT -ACGGAACGTCTTCAGGTTCGAGAT -ACGGAACGTCTTCAGGTTTACCAC -ACGGAACGTCTTCAGGTTCAGAAC -ACGGAACGTCTTCAGGTTGTCTAC -ACGGAACGTCTTCAGGTTACGTAC -ACGGAACGTCTTCAGGTTAGTGAC -ACGGAACGTCTTCAGGTTCTGTAG -ACGGAACGTCTTCAGGTTCCTAAG -ACGGAACGTCTTCAGGTTGTTCAG -ACGGAACGTCTTCAGGTTGCATAG -ACGGAACGTCTTCAGGTTGACAAG -ACGGAACGTCTTCAGGTTAAGCAG -ACGGAACGTCTTCAGGTTCGTCAA -ACGGAACGTCTTCAGGTTGCTGAA -ACGGAACGTCTTCAGGTTAGTACG -ACGGAACGTCTTCAGGTTATCCGA -ACGGAACGTCTTCAGGTTATGGGA -ACGGAACGTCTTCAGGTTGTGCAA -ACGGAACGTCTTCAGGTTGAGGAA -ACGGAACGTCTTCAGGTTCAGGTA -ACGGAACGTCTTCAGGTTGACTCT -ACGGAACGTCTTCAGGTTAGTCCT -ACGGAACGTCTTCAGGTTTAAGCC -ACGGAACGTCTTCAGGTTATAGCC -ACGGAACGTCTTCAGGTTTAACCG -ACGGAACGTCTTCAGGTTATGCCA -ACGGAACGTCTTTAGGCAGGAAAC -ACGGAACGTCTTTAGGCAAACACC -ACGGAACGTCTTTAGGCAATCGAG -ACGGAACGTCTTTAGGCACTCCTT -ACGGAACGTCTTTAGGCACCTGTT -ACGGAACGTCTTTAGGCACGGTTT -ACGGAACGTCTTTAGGCAGTGGTT -ACGGAACGTCTTTAGGCAGCCTTT -ACGGAACGTCTTTAGGCAGGTCTT -ACGGAACGTCTTTAGGCAACGCTT -ACGGAACGTCTTTAGGCAAGCGTT -ACGGAACGTCTTTAGGCATTCGTC -ACGGAACGTCTTTAGGCATCTCTC -ACGGAACGTCTTTAGGCATGGATC -ACGGAACGTCTTTAGGCACACTTC -ACGGAACGTCTTTAGGCAGTACTC -ACGGAACGTCTTTAGGCAGATGTC -ACGGAACGTCTTTAGGCAACAGTC -ACGGAACGTCTTTAGGCATTGCTG -ACGGAACGTCTTTAGGCATCCATG -ACGGAACGTCTTTAGGCATGTGTG -ACGGAACGTCTTTAGGCACTAGTG -ACGGAACGTCTTTAGGCACATCTG -ACGGAACGTCTTTAGGCAGAGTTG -ACGGAACGTCTTTAGGCAAGACTG -ACGGAACGTCTTTAGGCATCGGTA -ACGGAACGTCTTTAGGCATGCCTA -ACGGAACGTCTTTAGGCACCACTA -ACGGAACGTCTTTAGGCAGGAGTA -ACGGAACGTCTTTAGGCATCGTCT -ACGGAACGTCTTTAGGCATGCACT -ACGGAACGTCTTTAGGCACTGACT -ACGGAACGTCTTTAGGCACAACCT -ACGGAACGTCTTTAGGCAGCTACT -ACGGAACGTCTTTAGGCAGGATCT -ACGGAACGTCTTTAGGCAAAGGCT -ACGGAACGTCTTTAGGCATCAACC -ACGGAACGTCTTTAGGCATGTTCC -ACGGAACGTCTTTAGGCAATTCCC -ACGGAACGTCTTTAGGCATTCTCG -ACGGAACGTCTTTAGGCATAGACG -ACGGAACGTCTTTAGGCAGTAACG -ACGGAACGTCTTTAGGCAACTTCG -ACGGAACGTCTTTAGGCATACGCA -ACGGAACGTCTTTAGGCACTTGCA -ACGGAACGTCTTTAGGCACGAACA -ACGGAACGTCTTTAGGCACAGTCA -ACGGAACGTCTTTAGGCAGATCCA -ACGGAACGTCTTTAGGCAACGACA -ACGGAACGTCTTTAGGCAAGCTCA -ACGGAACGTCTTTAGGCATCACGT -ACGGAACGTCTTTAGGCACGTAGT -ACGGAACGTCTTTAGGCAGTCAGT -ACGGAACGTCTTTAGGCAGAAGGT -ACGGAACGTCTTTAGGCAAACCGT -ACGGAACGTCTTTAGGCATTGTGC -ACGGAACGTCTTTAGGCACTAAGC -ACGGAACGTCTTTAGGCAACTAGC -ACGGAACGTCTTTAGGCAAGATGC -ACGGAACGTCTTTAGGCATGAAGG -ACGGAACGTCTTTAGGCACAATGG -ACGGAACGTCTTTAGGCAATGAGG -ACGGAACGTCTTTAGGCAAATGGG -ACGGAACGTCTTTAGGCATCCTGA -ACGGAACGTCTTTAGGCATAGCGA -ACGGAACGTCTTTAGGCACACAGA -ACGGAACGTCTTTAGGCAGCAAGA -ACGGAACGTCTTTAGGCAGGTTGA -ACGGAACGTCTTTAGGCATCCGAT -ACGGAACGTCTTTAGGCATGGCAT -ACGGAACGTCTTTAGGCACGAGAT -ACGGAACGTCTTTAGGCATACCAC -ACGGAACGTCTTTAGGCACAGAAC -ACGGAACGTCTTTAGGCAGTCTAC -ACGGAACGTCTTTAGGCAACGTAC -ACGGAACGTCTTTAGGCAAGTGAC -ACGGAACGTCTTTAGGCACTGTAG -ACGGAACGTCTTTAGGCACCTAAG -ACGGAACGTCTTTAGGCAGTTCAG -ACGGAACGTCTTTAGGCAGCATAG -ACGGAACGTCTTTAGGCAGACAAG -ACGGAACGTCTTTAGGCAAAGCAG -ACGGAACGTCTTTAGGCACGTCAA -ACGGAACGTCTTTAGGCAGCTGAA -ACGGAACGTCTTTAGGCAAGTACG -ACGGAACGTCTTTAGGCAATCCGA -ACGGAACGTCTTTAGGCAATGGGA -ACGGAACGTCTTTAGGCAGTGCAA -ACGGAACGTCTTTAGGCAGAGGAA -ACGGAACGTCTTTAGGCACAGGTA -ACGGAACGTCTTTAGGCAGACTCT -ACGGAACGTCTTTAGGCAAGTCCT -ACGGAACGTCTTTAGGCATAAGCC -ACGGAACGTCTTTAGGCAATAGCC -ACGGAACGTCTTTAGGCATAACCG -ACGGAACGTCTTTAGGCAATGCCA -ACGGAACGTCTTAAGGACGGAAAC -ACGGAACGTCTTAAGGACAACACC -ACGGAACGTCTTAAGGACATCGAG -ACGGAACGTCTTAAGGACCTCCTT -ACGGAACGTCTTAAGGACCCTGTT -ACGGAACGTCTTAAGGACCGGTTT -ACGGAACGTCTTAAGGACGTGGTT -ACGGAACGTCTTAAGGACGCCTTT -ACGGAACGTCTTAAGGACGGTCTT -ACGGAACGTCTTAAGGACACGCTT -ACGGAACGTCTTAAGGACAGCGTT -ACGGAACGTCTTAAGGACTTCGTC -ACGGAACGTCTTAAGGACTCTCTC -ACGGAACGTCTTAAGGACTGGATC -ACGGAACGTCTTAAGGACCACTTC -ACGGAACGTCTTAAGGACGTACTC -ACGGAACGTCTTAAGGACGATGTC -ACGGAACGTCTTAAGGACACAGTC -ACGGAACGTCTTAAGGACTTGCTG -ACGGAACGTCTTAAGGACTCCATG -ACGGAACGTCTTAAGGACTGTGTG -ACGGAACGTCTTAAGGACCTAGTG -ACGGAACGTCTTAAGGACCATCTG -ACGGAACGTCTTAAGGACGAGTTG -ACGGAACGTCTTAAGGACAGACTG -ACGGAACGTCTTAAGGACTCGGTA -ACGGAACGTCTTAAGGACTGCCTA -ACGGAACGTCTTAAGGACCCACTA -ACGGAACGTCTTAAGGACGGAGTA -ACGGAACGTCTTAAGGACTCGTCT -ACGGAACGTCTTAAGGACTGCACT -ACGGAACGTCTTAAGGACCTGACT -ACGGAACGTCTTAAGGACCAACCT -ACGGAACGTCTTAAGGACGCTACT -ACGGAACGTCTTAAGGACGGATCT -ACGGAACGTCTTAAGGACAAGGCT -ACGGAACGTCTTAAGGACTCAACC -ACGGAACGTCTTAAGGACTGTTCC -ACGGAACGTCTTAAGGACATTCCC -ACGGAACGTCTTAAGGACTTCTCG -ACGGAACGTCTTAAGGACTAGACG -ACGGAACGTCTTAAGGACGTAACG -ACGGAACGTCTTAAGGACACTTCG -ACGGAACGTCTTAAGGACTACGCA -ACGGAACGTCTTAAGGACCTTGCA -ACGGAACGTCTTAAGGACCGAACA -ACGGAACGTCTTAAGGACCAGTCA -ACGGAACGTCTTAAGGACGATCCA -ACGGAACGTCTTAAGGACACGACA -ACGGAACGTCTTAAGGACAGCTCA -ACGGAACGTCTTAAGGACTCACGT -ACGGAACGTCTTAAGGACCGTAGT -ACGGAACGTCTTAAGGACGTCAGT -ACGGAACGTCTTAAGGACGAAGGT -ACGGAACGTCTTAAGGACAACCGT -ACGGAACGTCTTAAGGACTTGTGC -ACGGAACGTCTTAAGGACCTAAGC -ACGGAACGTCTTAAGGACACTAGC -ACGGAACGTCTTAAGGACAGATGC -ACGGAACGTCTTAAGGACTGAAGG -ACGGAACGTCTTAAGGACCAATGG -ACGGAACGTCTTAAGGACATGAGG -ACGGAACGTCTTAAGGACAATGGG -ACGGAACGTCTTAAGGACTCCTGA -ACGGAACGTCTTAAGGACTAGCGA -ACGGAACGTCTTAAGGACCACAGA -ACGGAACGTCTTAAGGACGCAAGA -ACGGAACGTCTTAAGGACGGTTGA -ACGGAACGTCTTAAGGACTCCGAT -ACGGAACGTCTTAAGGACTGGCAT -ACGGAACGTCTTAAGGACCGAGAT -ACGGAACGTCTTAAGGACTACCAC -ACGGAACGTCTTAAGGACCAGAAC -ACGGAACGTCTTAAGGACGTCTAC -ACGGAACGTCTTAAGGACACGTAC -ACGGAACGTCTTAAGGACAGTGAC -ACGGAACGTCTTAAGGACCTGTAG -ACGGAACGTCTTAAGGACCCTAAG -ACGGAACGTCTTAAGGACGTTCAG -ACGGAACGTCTTAAGGACGCATAG -ACGGAACGTCTTAAGGACGACAAG -ACGGAACGTCTTAAGGACAAGCAG -ACGGAACGTCTTAAGGACCGTCAA -ACGGAACGTCTTAAGGACGCTGAA -ACGGAACGTCTTAAGGACAGTACG -ACGGAACGTCTTAAGGACATCCGA -ACGGAACGTCTTAAGGACATGGGA -ACGGAACGTCTTAAGGACGTGCAA -ACGGAACGTCTTAAGGACGAGGAA -ACGGAACGTCTTAAGGACCAGGTA -ACGGAACGTCTTAAGGACGACTCT -ACGGAACGTCTTAAGGACAGTCCT -ACGGAACGTCTTAAGGACTAAGCC -ACGGAACGTCTTAAGGACATAGCC -ACGGAACGTCTTAAGGACTAACCG -ACGGAACGTCTTAAGGACATGCCA -ACGGAACGTCTTCAGAAGGGAAAC -ACGGAACGTCTTCAGAAGAACACC -ACGGAACGTCTTCAGAAGATCGAG -ACGGAACGTCTTCAGAAGCTCCTT -ACGGAACGTCTTCAGAAGCCTGTT -ACGGAACGTCTTCAGAAGCGGTTT -ACGGAACGTCTTCAGAAGGTGGTT -ACGGAACGTCTTCAGAAGGCCTTT -ACGGAACGTCTTCAGAAGGGTCTT -ACGGAACGTCTTCAGAAGACGCTT -ACGGAACGTCTTCAGAAGAGCGTT -ACGGAACGTCTTCAGAAGTTCGTC -ACGGAACGTCTTCAGAAGTCTCTC -ACGGAACGTCTTCAGAAGTGGATC -ACGGAACGTCTTCAGAAGCACTTC -ACGGAACGTCTTCAGAAGGTACTC -ACGGAACGTCTTCAGAAGGATGTC -ACGGAACGTCTTCAGAAGACAGTC -ACGGAACGTCTTCAGAAGTTGCTG -ACGGAACGTCTTCAGAAGTCCATG -ACGGAACGTCTTCAGAAGTGTGTG -ACGGAACGTCTTCAGAAGCTAGTG -ACGGAACGTCTTCAGAAGCATCTG -ACGGAACGTCTTCAGAAGGAGTTG -ACGGAACGTCTTCAGAAGAGACTG -ACGGAACGTCTTCAGAAGTCGGTA -ACGGAACGTCTTCAGAAGTGCCTA -ACGGAACGTCTTCAGAAGCCACTA -ACGGAACGTCTTCAGAAGGGAGTA -ACGGAACGTCTTCAGAAGTCGTCT -ACGGAACGTCTTCAGAAGTGCACT -ACGGAACGTCTTCAGAAGCTGACT -ACGGAACGTCTTCAGAAGCAACCT -ACGGAACGTCTTCAGAAGGCTACT -ACGGAACGTCTTCAGAAGGGATCT -ACGGAACGTCTTCAGAAGAAGGCT -ACGGAACGTCTTCAGAAGTCAACC -ACGGAACGTCTTCAGAAGTGTTCC -ACGGAACGTCTTCAGAAGATTCCC -ACGGAACGTCTTCAGAAGTTCTCG -ACGGAACGTCTTCAGAAGTAGACG -ACGGAACGTCTTCAGAAGGTAACG -ACGGAACGTCTTCAGAAGACTTCG -ACGGAACGTCTTCAGAAGTACGCA -ACGGAACGTCTTCAGAAGCTTGCA -ACGGAACGTCTTCAGAAGCGAACA -ACGGAACGTCTTCAGAAGCAGTCA -ACGGAACGTCTTCAGAAGGATCCA -ACGGAACGTCTTCAGAAGACGACA -ACGGAACGTCTTCAGAAGAGCTCA -ACGGAACGTCTTCAGAAGTCACGT -ACGGAACGTCTTCAGAAGCGTAGT -ACGGAACGTCTTCAGAAGGTCAGT -ACGGAACGTCTTCAGAAGGAAGGT -ACGGAACGTCTTCAGAAGAACCGT -ACGGAACGTCTTCAGAAGTTGTGC -ACGGAACGTCTTCAGAAGCTAAGC -ACGGAACGTCTTCAGAAGACTAGC -ACGGAACGTCTTCAGAAGAGATGC -ACGGAACGTCTTCAGAAGTGAAGG -ACGGAACGTCTTCAGAAGCAATGG -ACGGAACGTCTTCAGAAGATGAGG -ACGGAACGTCTTCAGAAGAATGGG -ACGGAACGTCTTCAGAAGTCCTGA -ACGGAACGTCTTCAGAAGTAGCGA -ACGGAACGTCTTCAGAAGCACAGA -ACGGAACGTCTTCAGAAGGCAAGA -ACGGAACGTCTTCAGAAGGGTTGA -ACGGAACGTCTTCAGAAGTCCGAT -ACGGAACGTCTTCAGAAGTGGCAT -ACGGAACGTCTTCAGAAGCGAGAT -ACGGAACGTCTTCAGAAGTACCAC -ACGGAACGTCTTCAGAAGCAGAAC -ACGGAACGTCTTCAGAAGGTCTAC -ACGGAACGTCTTCAGAAGACGTAC -ACGGAACGTCTTCAGAAGAGTGAC -ACGGAACGTCTTCAGAAGCTGTAG -ACGGAACGTCTTCAGAAGCCTAAG -ACGGAACGTCTTCAGAAGGTTCAG -ACGGAACGTCTTCAGAAGGCATAG -ACGGAACGTCTTCAGAAGGACAAG -ACGGAACGTCTTCAGAAGAAGCAG -ACGGAACGTCTTCAGAAGCGTCAA -ACGGAACGTCTTCAGAAGGCTGAA -ACGGAACGTCTTCAGAAGAGTACG -ACGGAACGTCTTCAGAAGATCCGA -ACGGAACGTCTTCAGAAGATGGGA -ACGGAACGTCTTCAGAAGGTGCAA -ACGGAACGTCTTCAGAAGGAGGAA -ACGGAACGTCTTCAGAAGCAGGTA -ACGGAACGTCTTCAGAAGGACTCT -ACGGAACGTCTTCAGAAGAGTCCT -ACGGAACGTCTTCAGAAGTAAGCC -ACGGAACGTCTTCAGAAGATAGCC -ACGGAACGTCTTCAGAAGTAACCG -ACGGAACGTCTTCAGAAGATGCCA -ACGGAACGTCTTCAACGTGGAAAC -ACGGAACGTCTTCAACGTAACACC -ACGGAACGTCTTCAACGTATCGAG -ACGGAACGTCTTCAACGTCTCCTT -ACGGAACGTCTTCAACGTCCTGTT -ACGGAACGTCTTCAACGTCGGTTT -ACGGAACGTCTTCAACGTGTGGTT -ACGGAACGTCTTCAACGTGCCTTT -ACGGAACGTCTTCAACGTGGTCTT -ACGGAACGTCTTCAACGTACGCTT -ACGGAACGTCTTCAACGTAGCGTT -ACGGAACGTCTTCAACGTTTCGTC -ACGGAACGTCTTCAACGTTCTCTC -ACGGAACGTCTTCAACGTTGGATC -ACGGAACGTCTTCAACGTCACTTC -ACGGAACGTCTTCAACGTGTACTC -ACGGAACGTCTTCAACGTGATGTC -ACGGAACGTCTTCAACGTACAGTC -ACGGAACGTCTTCAACGTTTGCTG -ACGGAACGTCTTCAACGTTCCATG -ACGGAACGTCTTCAACGTTGTGTG -ACGGAACGTCTTCAACGTCTAGTG -ACGGAACGTCTTCAACGTCATCTG -ACGGAACGTCTTCAACGTGAGTTG -ACGGAACGTCTTCAACGTAGACTG -ACGGAACGTCTTCAACGTTCGGTA -ACGGAACGTCTTCAACGTTGCCTA -ACGGAACGTCTTCAACGTCCACTA -ACGGAACGTCTTCAACGTGGAGTA -ACGGAACGTCTTCAACGTTCGTCT -ACGGAACGTCTTCAACGTTGCACT -ACGGAACGTCTTCAACGTCTGACT -ACGGAACGTCTTCAACGTCAACCT -ACGGAACGTCTTCAACGTGCTACT -ACGGAACGTCTTCAACGTGGATCT -ACGGAACGTCTTCAACGTAAGGCT -ACGGAACGTCTTCAACGTTCAACC -ACGGAACGTCTTCAACGTTGTTCC -ACGGAACGTCTTCAACGTATTCCC -ACGGAACGTCTTCAACGTTTCTCG -ACGGAACGTCTTCAACGTTAGACG -ACGGAACGTCTTCAACGTGTAACG -ACGGAACGTCTTCAACGTACTTCG -ACGGAACGTCTTCAACGTTACGCA -ACGGAACGTCTTCAACGTCTTGCA -ACGGAACGTCTTCAACGTCGAACA -ACGGAACGTCTTCAACGTCAGTCA -ACGGAACGTCTTCAACGTGATCCA -ACGGAACGTCTTCAACGTACGACA -ACGGAACGTCTTCAACGTAGCTCA -ACGGAACGTCTTCAACGTTCACGT -ACGGAACGTCTTCAACGTCGTAGT -ACGGAACGTCTTCAACGTGTCAGT -ACGGAACGTCTTCAACGTGAAGGT -ACGGAACGTCTTCAACGTAACCGT -ACGGAACGTCTTCAACGTTTGTGC -ACGGAACGTCTTCAACGTCTAAGC -ACGGAACGTCTTCAACGTACTAGC -ACGGAACGTCTTCAACGTAGATGC -ACGGAACGTCTTCAACGTTGAAGG -ACGGAACGTCTTCAACGTCAATGG -ACGGAACGTCTTCAACGTATGAGG -ACGGAACGTCTTCAACGTAATGGG -ACGGAACGTCTTCAACGTTCCTGA -ACGGAACGTCTTCAACGTTAGCGA -ACGGAACGTCTTCAACGTCACAGA -ACGGAACGTCTTCAACGTGCAAGA -ACGGAACGTCTTCAACGTGGTTGA -ACGGAACGTCTTCAACGTTCCGAT -ACGGAACGTCTTCAACGTTGGCAT -ACGGAACGTCTTCAACGTCGAGAT -ACGGAACGTCTTCAACGTTACCAC -ACGGAACGTCTTCAACGTCAGAAC -ACGGAACGTCTTCAACGTGTCTAC -ACGGAACGTCTTCAACGTACGTAC -ACGGAACGTCTTCAACGTAGTGAC -ACGGAACGTCTTCAACGTCTGTAG -ACGGAACGTCTTCAACGTCCTAAG -ACGGAACGTCTTCAACGTGTTCAG -ACGGAACGTCTTCAACGTGCATAG -ACGGAACGTCTTCAACGTGACAAG -ACGGAACGTCTTCAACGTAAGCAG -ACGGAACGTCTTCAACGTCGTCAA -ACGGAACGTCTTCAACGTGCTGAA -ACGGAACGTCTTCAACGTAGTACG -ACGGAACGTCTTCAACGTATCCGA -ACGGAACGTCTTCAACGTATGGGA -ACGGAACGTCTTCAACGTGTGCAA -ACGGAACGTCTTCAACGTGAGGAA -ACGGAACGTCTTCAACGTCAGGTA -ACGGAACGTCTTCAACGTGACTCT -ACGGAACGTCTTCAACGTAGTCCT -ACGGAACGTCTTCAACGTTAAGCC -ACGGAACGTCTTCAACGTATAGCC -ACGGAACGTCTTCAACGTTAACCG -ACGGAACGTCTTCAACGTATGCCA -ACGGAACGTCTTGAAGCTGGAAAC -ACGGAACGTCTTGAAGCTAACACC -ACGGAACGTCTTGAAGCTATCGAG -ACGGAACGTCTTGAAGCTCTCCTT -ACGGAACGTCTTGAAGCTCCTGTT -ACGGAACGTCTTGAAGCTCGGTTT -ACGGAACGTCTTGAAGCTGTGGTT -ACGGAACGTCTTGAAGCTGCCTTT -ACGGAACGTCTTGAAGCTGGTCTT -ACGGAACGTCTTGAAGCTACGCTT -ACGGAACGTCTTGAAGCTAGCGTT -ACGGAACGTCTTGAAGCTTTCGTC -ACGGAACGTCTTGAAGCTTCTCTC -ACGGAACGTCTTGAAGCTTGGATC -ACGGAACGTCTTGAAGCTCACTTC -ACGGAACGTCTTGAAGCTGTACTC -ACGGAACGTCTTGAAGCTGATGTC -ACGGAACGTCTTGAAGCTACAGTC -ACGGAACGTCTTGAAGCTTTGCTG -ACGGAACGTCTTGAAGCTTCCATG -ACGGAACGTCTTGAAGCTTGTGTG -ACGGAACGTCTTGAAGCTCTAGTG -ACGGAACGTCTTGAAGCTCATCTG -ACGGAACGTCTTGAAGCTGAGTTG -ACGGAACGTCTTGAAGCTAGACTG -ACGGAACGTCTTGAAGCTTCGGTA -ACGGAACGTCTTGAAGCTTGCCTA -ACGGAACGTCTTGAAGCTCCACTA -ACGGAACGTCTTGAAGCTGGAGTA -ACGGAACGTCTTGAAGCTTCGTCT -ACGGAACGTCTTGAAGCTTGCACT -ACGGAACGTCTTGAAGCTCTGACT -ACGGAACGTCTTGAAGCTCAACCT -ACGGAACGTCTTGAAGCTGCTACT -ACGGAACGTCTTGAAGCTGGATCT -ACGGAACGTCTTGAAGCTAAGGCT -ACGGAACGTCTTGAAGCTTCAACC -ACGGAACGTCTTGAAGCTTGTTCC -ACGGAACGTCTTGAAGCTATTCCC -ACGGAACGTCTTGAAGCTTTCTCG -ACGGAACGTCTTGAAGCTTAGACG -ACGGAACGTCTTGAAGCTGTAACG -ACGGAACGTCTTGAAGCTACTTCG -ACGGAACGTCTTGAAGCTTACGCA -ACGGAACGTCTTGAAGCTCTTGCA -ACGGAACGTCTTGAAGCTCGAACA -ACGGAACGTCTTGAAGCTCAGTCA -ACGGAACGTCTTGAAGCTGATCCA -ACGGAACGTCTTGAAGCTACGACA -ACGGAACGTCTTGAAGCTAGCTCA -ACGGAACGTCTTGAAGCTTCACGT -ACGGAACGTCTTGAAGCTCGTAGT -ACGGAACGTCTTGAAGCTGTCAGT -ACGGAACGTCTTGAAGCTGAAGGT -ACGGAACGTCTTGAAGCTAACCGT -ACGGAACGTCTTGAAGCTTTGTGC -ACGGAACGTCTTGAAGCTCTAAGC -ACGGAACGTCTTGAAGCTACTAGC -ACGGAACGTCTTGAAGCTAGATGC -ACGGAACGTCTTGAAGCTTGAAGG -ACGGAACGTCTTGAAGCTCAATGG -ACGGAACGTCTTGAAGCTATGAGG -ACGGAACGTCTTGAAGCTAATGGG -ACGGAACGTCTTGAAGCTTCCTGA -ACGGAACGTCTTGAAGCTTAGCGA -ACGGAACGTCTTGAAGCTCACAGA -ACGGAACGTCTTGAAGCTGCAAGA -ACGGAACGTCTTGAAGCTGGTTGA -ACGGAACGTCTTGAAGCTTCCGAT -ACGGAACGTCTTGAAGCTTGGCAT -ACGGAACGTCTTGAAGCTCGAGAT -ACGGAACGTCTTGAAGCTTACCAC -ACGGAACGTCTTGAAGCTCAGAAC -ACGGAACGTCTTGAAGCTGTCTAC -ACGGAACGTCTTGAAGCTACGTAC -ACGGAACGTCTTGAAGCTAGTGAC -ACGGAACGTCTTGAAGCTCTGTAG -ACGGAACGTCTTGAAGCTCCTAAG -ACGGAACGTCTTGAAGCTGTTCAG -ACGGAACGTCTTGAAGCTGCATAG -ACGGAACGTCTTGAAGCTGACAAG -ACGGAACGTCTTGAAGCTAAGCAG -ACGGAACGTCTTGAAGCTCGTCAA -ACGGAACGTCTTGAAGCTGCTGAA -ACGGAACGTCTTGAAGCTAGTACG -ACGGAACGTCTTGAAGCTATCCGA -ACGGAACGTCTTGAAGCTATGGGA -ACGGAACGTCTTGAAGCTGTGCAA -ACGGAACGTCTTGAAGCTGAGGAA -ACGGAACGTCTTGAAGCTCAGGTA -ACGGAACGTCTTGAAGCTGACTCT -ACGGAACGTCTTGAAGCTAGTCCT -ACGGAACGTCTTGAAGCTTAAGCC -ACGGAACGTCTTGAAGCTATAGCC -ACGGAACGTCTTGAAGCTTAACCG -ACGGAACGTCTTGAAGCTATGCCA -ACGGAACGTCTTACGAGTGGAAAC -ACGGAACGTCTTACGAGTAACACC -ACGGAACGTCTTACGAGTATCGAG -ACGGAACGTCTTACGAGTCTCCTT -ACGGAACGTCTTACGAGTCCTGTT -ACGGAACGTCTTACGAGTCGGTTT -ACGGAACGTCTTACGAGTGTGGTT -ACGGAACGTCTTACGAGTGCCTTT -ACGGAACGTCTTACGAGTGGTCTT -ACGGAACGTCTTACGAGTACGCTT -ACGGAACGTCTTACGAGTAGCGTT -ACGGAACGTCTTACGAGTTTCGTC -ACGGAACGTCTTACGAGTTCTCTC -ACGGAACGTCTTACGAGTTGGATC -ACGGAACGTCTTACGAGTCACTTC -ACGGAACGTCTTACGAGTGTACTC -ACGGAACGTCTTACGAGTGATGTC -ACGGAACGTCTTACGAGTACAGTC -ACGGAACGTCTTACGAGTTTGCTG -ACGGAACGTCTTACGAGTTCCATG -ACGGAACGTCTTACGAGTTGTGTG -ACGGAACGTCTTACGAGTCTAGTG -ACGGAACGTCTTACGAGTCATCTG -ACGGAACGTCTTACGAGTGAGTTG -ACGGAACGTCTTACGAGTAGACTG -ACGGAACGTCTTACGAGTTCGGTA -ACGGAACGTCTTACGAGTTGCCTA -ACGGAACGTCTTACGAGTCCACTA -ACGGAACGTCTTACGAGTGGAGTA -ACGGAACGTCTTACGAGTTCGTCT -ACGGAACGTCTTACGAGTTGCACT -ACGGAACGTCTTACGAGTCTGACT -ACGGAACGTCTTACGAGTCAACCT -ACGGAACGTCTTACGAGTGCTACT -ACGGAACGTCTTACGAGTGGATCT -ACGGAACGTCTTACGAGTAAGGCT -ACGGAACGTCTTACGAGTTCAACC -ACGGAACGTCTTACGAGTTGTTCC -ACGGAACGTCTTACGAGTATTCCC -ACGGAACGTCTTACGAGTTTCTCG -ACGGAACGTCTTACGAGTTAGACG -ACGGAACGTCTTACGAGTGTAACG -ACGGAACGTCTTACGAGTACTTCG -ACGGAACGTCTTACGAGTTACGCA -ACGGAACGTCTTACGAGTCTTGCA -ACGGAACGTCTTACGAGTCGAACA -ACGGAACGTCTTACGAGTCAGTCA -ACGGAACGTCTTACGAGTGATCCA -ACGGAACGTCTTACGAGTACGACA -ACGGAACGTCTTACGAGTAGCTCA -ACGGAACGTCTTACGAGTTCACGT -ACGGAACGTCTTACGAGTCGTAGT -ACGGAACGTCTTACGAGTGTCAGT -ACGGAACGTCTTACGAGTGAAGGT -ACGGAACGTCTTACGAGTAACCGT -ACGGAACGTCTTACGAGTTTGTGC -ACGGAACGTCTTACGAGTCTAAGC -ACGGAACGTCTTACGAGTACTAGC -ACGGAACGTCTTACGAGTAGATGC -ACGGAACGTCTTACGAGTTGAAGG -ACGGAACGTCTTACGAGTCAATGG -ACGGAACGTCTTACGAGTATGAGG -ACGGAACGTCTTACGAGTAATGGG -ACGGAACGTCTTACGAGTTCCTGA -ACGGAACGTCTTACGAGTTAGCGA -ACGGAACGTCTTACGAGTCACAGA -ACGGAACGTCTTACGAGTGCAAGA -ACGGAACGTCTTACGAGTGGTTGA -ACGGAACGTCTTACGAGTTCCGAT -ACGGAACGTCTTACGAGTTGGCAT -ACGGAACGTCTTACGAGTCGAGAT -ACGGAACGTCTTACGAGTTACCAC -ACGGAACGTCTTACGAGTCAGAAC -ACGGAACGTCTTACGAGTGTCTAC -ACGGAACGTCTTACGAGTACGTAC -ACGGAACGTCTTACGAGTAGTGAC -ACGGAACGTCTTACGAGTCTGTAG -ACGGAACGTCTTACGAGTCCTAAG -ACGGAACGTCTTACGAGTGTTCAG -ACGGAACGTCTTACGAGTGCATAG -ACGGAACGTCTTACGAGTGACAAG -ACGGAACGTCTTACGAGTAAGCAG -ACGGAACGTCTTACGAGTCGTCAA -ACGGAACGTCTTACGAGTGCTGAA -ACGGAACGTCTTACGAGTAGTACG -ACGGAACGTCTTACGAGTATCCGA -ACGGAACGTCTTACGAGTATGGGA -ACGGAACGTCTTACGAGTGTGCAA -ACGGAACGTCTTACGAGTGAGGAA -ACGGAACGTCTTACGAGTCAGGTA -ACGGAACGTCTTACGAGTGACTCT -ACGGAACGTCTTACGAGTAGTCCT -ACGGAACGTCTTACGAGTTAAGCC -ACGGAACGTCTTACGAGTATAGCC -ACGGAACGTCTTACGAGTTAACCG -ACGGAACGTCTTACGAGTATGCCA -ACGGAACGTCTTCGAATCGGAAAC -ACGGAACGTCTTCGAATCAACACC -ACGGAACGTCTTCGAATCATCGAG -ACGGAACGTCTTCGAATCCTCCTT -ACGGAACGTCTTCGAATCCCTGTT -ACGGAACGTCTTCGAATCCGGTTT -ACGGAACGTCTTCGAATCGTGGTT -ACGGAACGTCTTCGAATCGCCTTT -ACGGAACGTCTTCGAATCGGTCTT -ACGGAACGTCTTCGAATCACGCTT -ACGGAACGTCTTCGAATCAGCGTT -ACGGAACGTCTTCGAATCTTCGTC -ACGGAACGTCTTCGAATCTCTCTC -ACGGAACGTCTTCGAATCTGGATC -ACGGAACGTCTTCGAATCCACTTC -ACGGAACGTCTTCGAATCGTACTC -ACGGAACGTCTTCGAATCGATGTC -ACGGAACGTCTTCGAATCACAGTC -ACGGAACGTCTTCGAATCTTGCTG -ACGGAACGTCTTCGAATCTCCATG -ACGGAACGTCTTCGAATCTGTGTG -ACGGAACGTCTTCGAATCCTAGTG -ACGGAACGTCTTCGAATCCATCTG -ACGGAACGTCTTCGAATCGAGTTG -ACGGAACGTCTTCGAATCAGACTG -ACGGAACGTCTTCGAATCTCGGTA -ACGGAACGTCTTCGAATCTGCCTA -ACGGAACGTCTTCGAATCCCACTA -ACGGAACGTCTTCGAATCGGAGTA -ACGGAACGTCTTCGAATCTCGTCT -ACGGAACGTCTTCGAATCTGCACT -ACGGAACGTCTTCGAATCCTGACT -ACGGAACGTCTTCGAATCCAACCT -ACGGAACGTCTTCGAATCGCTACT -ACGGAACGTCTTCGAATCGGATCT -ACGGAACGTCTTCGAATCAAGGCT -ACGGAACGTCTTCGAATCTCAACC -ACGGAACGTCTTCGAATCTGTTCC -ACGGAACGTCTTCGAATCATTCCC -ACGGAACGTCTTCGAATCTTCTCG -ACGGAACGTCTTCGAATCTAGACG -ACGGAACGTCTTCGAATCGTAACG -ACGGAACGTCTTCGAATCACTTCG -ACGGAACGTCTTCGAATCTACGCA -ACGGAACGTCTTCGAATCCTTGCA -ACGGAACGTCTTCGAATCCGAACA -ACGGAACGTCTTCGAATCCAGTCA -ACGGAACGTCTTCGAATCGATCCA -ACGGAACGTCTTCGAATCACGACA -ACGGAACGTCTTCGAATCAGCTCA -ACGGAACGTCTTCGAATCTCACGT -ACGGAACGTCTTCGAATCCGTAGT -ACGGAACGTCTTCGAATCGTCAGT -ACGGAACGTCTTCGAATCGAAGGT -ACGGAACGTCTTCGAATCAACCGT -ACGGAACGTCTTCGAATCTTGTGC -ACGGAACGTCTTCGAATCCTAAGC -ACGGAACGTCTTCGAATCACTAGC -ACGGAACGTCTTCGAATCAGATGC -ACGGAACGTCTTCGAATCTGAAGG -ACGGAACGTCTTCGAATCCAATGG -ACGGAACGTCTTCGAATCATGAGG -ACGGAACGTCTTCGAATCAATGGG -ACGGAACGTCTTCGAATCTCCTGA -ACGGAACGTCTTCGAATCTAGCGA -ACGGAACGTCTTCGAATCCACAGA -ACGGAACGTCTTCGAATCGCAAGA -ACGGAACGTCTTCGAATCGGTTGA -ACGGAACGTCTTCGAATCTCCGAT -ACGGAACGTCTTCGAATCTGGCAT -ACGGAACGTCTTCGAATCCGAGAT -ACGGAACGTCTTCGAATCTACCAC -ACGGAACGTCTTCGAATCCAGAAC -ACGGAACGTCTTCGAATCGTCTAC -ACGGAACGTCTTCGAATCACGTAC -ACGGAACGTCTTCGAATCAGTGAC -ACGGAACGTCTTCGAATCCTGTAG -ACGGAACGTCTTCGAATCCCTAAG -ACGGAACGTCTTCGAATCGTTCAG -ACGGAACGTCTTCGAATCGCATAG -ACGGAACGTCTTCGAATCGACAAG -ACGGAACGTCTTCGAATCAAGCAG -ACGGAACGTCTTCGAATCCGTCAA -ACGGAACGTCTTCGAATCGCTGAA -ACGGAACGTCTTCGAATCAGTACG -ACGGAACGTCTTCGAATCATCCGA -ACGGAACGTCTTCGAATCATGGGA -ACGGAACGTCTTCGAATCGTGCAA -ACGGAACGTCTTCGAATCGAGGAA -ACGGAACGTCTTCGAATCCAGGTA -ACGGAACGTCTTCGAATCGACTCT -ACGGAACGTCTTCGAATCAGTCCT -ACGGAACGTCTTCGAATCTAAGCC -ACGGAACGTCTTCGAATCATAGCC -ACGGAACGTCTTCGAATCTAACCG -ACGGAACGTCTTCGAATCATGCCA -ACGGAACGTCTTGGAATGGGAAAC -ACGGAACGTCTTGGAATGAACACC -ACGGAACGTCTTGGAATGATCGAG -ACGGAACGTCTTGGAATGCTCCTT -ACGGAACGTCTTGGAATGCCTGTT -ACGGAACGTCTTGGAATGCGGTTT -ACGGAACGTCTTGGAATGGTGGTT -ACGGAACGTCTTGGAATGGCCTTT -ACGGAACGTCTTGGAATGGGTCTT -ACGGAACGTCTTGGAATGACGCTT -ACGGAACGTCTTGGAATGAGCGTT -ACGGAACGTCTTGGAATGTTCGTC -ACGGAACGTCTTGGAATGTCTCTC -ACGGAACGTCTTGGAATGTGGATC -ACGGAACGTCTTGGAATGCACTTC -ACGGAACGTCTTGGAATGGTACTC -ACGGAACGTCTTGGAATGGATGTC -ACGGAACGTCTTGGAATGACAGTC -ACGGAACGTCTTGGAATGTTGCTG -ACGGAACGTCTTGGAATGTCCATG -ACGGAACGTCTTGGAATGTGTGTG -ACGGAACGTCTTGGAATGCTAGTG -ACGGAACGTCTTGGAATGCATCTG -ACGGAACGTCTTGGAATGGAGTTG -ACGGAACGTCTTGGAATGAGACTG -ACGGAACGTCTTGGAATGTCGGTA -ACGGAACGTCTTGGAATGTGCCTA -ACGGAACGTCTTGGAATGCCACTA -ACGGAACGTCTTGGAATGGGAGTA -ACGGAACGTCTTGGAATGTCGTCT -ACGGAACGTCTTGGAATGTGCACT -ACGGAACGTCTTGGAATGCTGACT -ACGGAACGTCTTGGAATGCAACCT -ACGGAACGTCTTGGAATGGCTACT -ACGGAACGTCTTGGAATGGGATCT -ACGGAACGTCTTGGAATGAAGGCT -ACGGAACGTCTTGGAATGTCAACC -ACGGAACGTCTTGGAATGTGTTCC -ACGGAACGTCTTGGAATGATTCCC -ACGGAACGTCTTGGAATGTTCTCG -ACGGAACGTCTTGGAATGTAGACG -ACGGAACGTCTTGGAATGGTAACG -ACGGAACGTCTTGGAATGACTTCG -ACGGAACGTCTTGGAATGTACGCA -ACGGAACGTCTTGGAATGCTTGCA -ACGGAACGTCTTGGAATGCGAACA -ACGGAACGTCTTGGAATGCAGTCA -ACGGAACGTCTTGGAATGGATCCA -ACGGAACGTCTTGGAATGACGACA -ACGGAACGTCTTGGAATGAGCTCA -ACGGAACGTCTTGGAATGTCACGT -ACGGAACGTCTTGGAATGCGTAGT -ACGGAACGTCTTGGAATGGTCAGT -ACGGAACGTCTTGGAATGGAAGGT -ACGGAACGTCTTGGAATGAACCGT -ACGGAACGTCTTGGAATGTTGTGC -ACGGAACGTCTTGGAATGCTAAGC -ACGGAACGTCTTGGAATGACTAGC -ACGGAACGTCTTGGAATGAGATGC -ACGGAACGTCTTGGAATGTGAAGG -ACGGAACGTCTTGGAATGCAATGG -ACGGAACGTCTTGGAATGATGAGG -ACGGAACGTCTTGGAATGAATGGG -ACGGAACGTCTTGGAATGTCCTGA -ACGGAACGTCTTGGAATGTAGCGA -ACGGAACGTCTTGGAATGCACAGA -ACGGAACGTCTTGGAATGGCAAGA -ACGGAACGTCTTGGAATGGGTTGA -ACGGAACGTCTTGGAATGTCCGAT -ACGGAACGTCTTGGAATGTGGCAT -ACGGAACGTCTTGGAATGCGAGAT -ACGGAACGTCTTGGAATGTACCAC -ACGGAACGTCTTGGAATGCAGAAC -ACGGAACGTCTTGGAATGGTCTAC -ACGGAACGTCTTGGAATGACGTAC -ACGGAACGTCTTGGAATGAGTGAC -ACGGAACGTCTTGGAATGCTGTAG -ACGGAACGTCTTGGAATGCCTAAG -ACGGAACGTCTTGGAATGGTTCAG -ACGGAACGTCTTGGAATGGCATAG -ACGGAACGTCTTGGAATGGACAAG -ACGGAACGTCTTGGAATGAAGCAG -ACGGAACGTCTTGGAATGCGTCAA -ACGGAACGTCTTGGAATGGCTGAA -ACGGAACGTCTTGGAATGAGTACG -ACGGAACGTCTTGGAATGATCCGA -ACGGAACGTCTTGGAATGATGGGA -ACGGAACGTCTTGGAATGGTGCAA -ACGGAACGTCTTGGAATGGAGGAA -ACGGAACGTCTTGGAATGCAGGTA -ACGGAACGTCTTGGAATGGACTCT -ACGGAACGTCTTGGAATGAGTCCT -ACGGAACGTCTTGGAATGTAAGCC -ACGGAACGTCTTGGAATGATAGCC -ACGGAACGTCTTGGAATGTAACCG -ACGGAACGTCTTGGAATGATGCCA -ACGGAACGTCTTCAAGTGGGAAAC -ACGGAACGTCTTCAAGTGAACACC -ACGGAACGTCTTCAAGTGATCGAG -ACGGAACGTCTTCAAGTGCTCCTT -ACGGAACGTCTTCAAGTGCCTGTT -ACGGAACGTCTTCAAGTGCGGTTT -ACGGAACGTCTTCAAGTGGTGGTT -ACGGAACGTCTTCAAGTGGCCTTT -ACGGAACGTCTTCAAGTGGGTCTT -ACGGAACGTCTTCAAGTGACGCTT -ACGGAACGTCTTCAAGTGAGCGTT -ACGGAACGTCTTCAAGTGTTCGTC -ACGGAACGTCTTCAAGTGTCTCTC -ACGGAACGTCTTCAAGTGTGGATC -ACGGAACGTCTTCAAGTGCACTTC -ACGGAACGTCTTCAAGTGGTACTC -ACGGAACGTCTTCAAGTGGATGTC -ACGGAACGTCTTCAAGTGACAGTC -ACGGAACGTCTTCAAGTGTTGCTG -ACGGAACGTCTTCAAGTGTCCATG -ACGGAACGTCTTCAAGTGTGTGTG -ACGGAACGTCTTCAAGTGCTAGTG -ACGGAACGTCTTCAAGTGCATCTG -ACGGAACGTCTTCAAGTGGAGTTG -ACGGAACGTCTTCAAGTGAGACTG -ACGGAACGTCTTCAAGTGTCGGTA -ACGGAACGTCTTCAAGTGTGCCTA -ACGGAACGTCTTCAAGTGCCACTA -ACGGAACGTCTTCAAGTGGGAGTA -ACGGAACGTCTTCAAGTGTCGTCT -ACGGAACGTCTTCAAGTGTGCACT -ACGGAACGTCTTCAAGTGCTGACT -ACGGAACGTCTTCAAGTGCAACCT -ACGGAACGTCTTCAAGTGGCTACT -ACGGAACGTCTTCAAGTGGGATCT -ACGGAACGTCTTCAAGTGAAGGCT -ACGGAACGTCTTCAAGTGTCAACC -ACGGAACGTCTTCAAGTGTGTTCC -ACGGAACGTCTTCAAGTGATTCCC -ACGGAACGTCTTCAAGTGTTCTCG -ACGGAACGTCTTCAAGTGTAGACG -ACGGAACGTCTTCAAGTGGTAACG -ACGGAACGTCTTCAAGTGACTTCG -ACGGAACGTCTTCAAGTGTACGCA -ACGGAACGTCTTCAAGTGCTTGCA -ACGGAACGTCTTCAAGTGCGAACA -ACGGAACGTCTTCAAGTGCAGTCA -ACGGAACGTCTTCAAGTGGATCCA -ACGGAACGTCTTCAAGTGACGACA -ACGGAACGTCTTCAAGTGAGCTCA -ACGGAACGTCTTCAAGTGTCACGT -ACGGAACGTCTTCAAGTGCGTAGT -ACGGAACGTCTTCAAGTGGTCAGT -ACGGAACGTCTTCAAGTGGAAGGT -ACGGAACGTCTTCAAGTGAACCGT -ACGGAACGTCTTCAAGTGTTGTGC -ACGGAACGTCTTCAAGTGCTAAGC -ACGGAACGTCTTCAAGTGACTAGC -ACGGAACGTCTTCAAGTGAGATGC -ACGGAACGTCTTCAAGTGTGAAGG -ACGGAACGTCTTCAAGTGCAATGG -ACGGAACGTCTTCAAGTGATGAGG -ACGGAACGTCTTCAAGTGAATGGG -ACGGAACGTCTTCAAGTGTCCTGA -ACGGAACGTCTTCAAGTGTAGCGA -ACGGAACGTCTTCAAGTGCACAGA -ACGGAACGTCTTCAAGTGGCAAGA -ACGGAACGTCTTCAAGTGGGTTGA -ACGGAACGTCTTCAAGTGTCCGAT -ACGGAACGTCTTCAAGTGTGGCAT -ACGGAACGTCTTCAAGTGCGAGAT -ACGGAACGTCTTCAAGTGTACCAC -ACGGAACGTCTTCAAGTGCAGAAC -ACGGAACGTCTTCAAGTGGTCTAC -ACGGAACGTCTTCAAGTGACGTAC -ACGGAACGTCTTCAAGTGAGTGAC -ACGGAACGTCTTCAAGTGCTGTAG -ACGGAACGTCTTCAAGTGCCTAAG -ACGGAACGTCTTCAAGTGGTTCAG -ACGGAACGTCTTCAAGTGGCATAG -ACGGAACGTCTTCAAGTGGACAAG -ACGGAACGTCTTCAAGTGAAGCAG -ACGGAACGTCTTCAAGTGCGTCAA -ACGGAACGTCTTCAAGTGGCTGAA -ACGGAACGTCTTCAAGTGAGTACG -ACGGAACGTCTTCAAGTGATCCGA -ACGGAACGTCTTCAAGTGATGGGA -ACGGAACGTCTTCAAGTGGTGCAA -ACGGAACGTCTTCAAGTGGAGGAA -ACGGAACGTCTTCAAGTGCAGGTA -ACGGAACGTCTTCAAGTGGACTCT -ACGGAACGTCTTCAAGTGAGTCCT -ACGGAACGTCTTCAAGTGTAAGCC -ACGGAACGTCTTCAAGTGATAGCC -ACGGAACGTCTTCAAGTGTAACCG -ACGGAACGTCTTCAAGTGATGCCA -ACGGAACGTCTTGAAGAGGGAAAC -ACGGAACGTCTTGAAGAGAACACC -ACGGAACGTCTTGAAGAGATCGAG -ACGGAACGTCTTGAAGAGCTCCTT -ACGGAACGTCTTGAAGAGCCTGTT -ACGGAACGTCTTGAAGAGCGGTTT -ACGGAACGTCTTGAAGAGGTGGTT -ACGGAACGTCTTGAAGAGGCCTTT -ACGGAACGTCTTGAAGAGGGTCTT -ACGGAACGTCTTGAAGAGACGCTT -ACGGAACGTCTTGAAGAGAGCGTT -ACGGAACGTCTTGAAGAGTTCGTC -ACGGAACGTCTTGAAGAGTCTCTC -ACGGAACGTCTTGAAGAGTGGATC -ACGGAACGTCTTGAAGAGCACTTC -ACGGAACGTCTTGAAGAGGTACTC -ACGGAACGTCTTGAAGAGGATGTC -ACGGAACGTCTTGAAGAGACAGTC -ACGGAACGTCTTGAAGAGTTGCTG -ACGGAACGTCTTGAAGAGTCCATG -ACGGAACGTCTTGAAGAGTGTGTG -ACGGAACGTCTTGAAGAGCTAGTG -ACGGAACGTCTTGAAGAGCATCTG -ACGGAACGTCTTGAAGAGGAGTTG -ACGGAACGTCTTGAAGAGAGACTG -ACGGAACGTCTTGAAGAGTCGGTA -ACGGAACGTCTTGAAGAGTGCCTA -ACGGAACGTCTTGAAGAGCCACTA -ACGGAACGTCTTGAAGAGGGAGTA -ACGGAACGTCTTGAAGAGTCGTCT -ACGGAACGTCTTGAAGAGTGCACT -ACGGAACGTCTTGAAGAGCTGACT -ACGGAACGTCTTGAAGAGCAACCT -ACGGAACGTCTTGAAGAGGCTACT -ACGGAACGTCTTGAAGAGGGATCT -ACGGAACGTCTTGAAGAGAAGGCT -ACGGAACGTCTTGAAGAGTCAACC -ACGGAACGTCTTGAAGAGTGTTCC -ACGGAACGTCTTGAAGAGATTCCC -ACGGAACGTCTTGAAGAGTTCTCG -ACGGAACGTCTTGAAGAGTAGACG -ACGGAACGTCTTGAAGAGGTAACG -ACGGAACGTCTTGAAGAGACTTCG -ACGGAACGTCTTGAAGAGTACGCA -ACGGAACGTCTTGAAGAGCTTGCA -ACGGAACGTCTTGAAGAGCGAACA -ACGGAACGTCTTGAAGAGCAGTCA -ACGGAACGTCTTGAAGAGGATCCA -ACGGAACGTCTTGAAGAGACGACA -ACGGAACGTCTTGAAGAGAGCTCA -ACGGAACGTCTTGAAGAGTCACGT -ACGGAACGTCTTGAAGAGCGTAGT -ACGGAACGTCTTGAAGAGGTCAGT -ACGGAACGTCTTGAAGAGGAAGGT -ACGGAACGTCTTGAAGAGAACCGT -ACGGAACGTCTTGAAGAGTTGTGC -ACGGAACGTCTTGAAGAGCTAAGC -ACGGAACGTCTTGAAGAGACTAGC -ACGGAACGTCTTGAAGAGAGATGC -ACGGAACGTCTTGAAGAGTGAAGG -ACGGAACGTCTTGAAGAGCAATGG -ACGGAACGTCTTGAAGAGATGAGG -ACGGAACGTCTTGAAGAGAATGGG -ACGGAACGTCTTGAAGAGTCCTGA -ACGGAACGTCTTGAAGAGTAGCGA -ACGGAACGTCTTGAAGAGCACAGA -ACGGAACGTCTTGAAGAGGCAAGA -ACGGAACGTCTTGAAGAGGGTTGA -ACGGAACGTCTTGAAGAGTCCGAT -ACGGAACGTCTTGAAGAGTGGCAT -ACGGAACGTCTTGAAGAGCGAGAT -ACGGAACGTCTTGAAGAGTACCAC -ACGGAACGTCTTGAAGAGCAGAAC -ACGGAACGTCTTGAAGAGGTCTAC -ACGGAACGTCTTGAAGAGACGTAC -ACGGAACGTCTTGAAGAGAGTGAC -ACGGAACGTCTTGAAGAGCTGTAG -ACGGAACGTCTTGAAGAGCCTAAG -ACGGAACGTCTTGAAGAGGTTCAG -ACGGAACGTCTTGAAGAGGCATAG -ACGGAACGTCTTGAAGAGGACAAG -ACGGAACGTCTTGAAGAGAAGCAG -ACGGAACGTCTTGAAGAGCGTCAA -ACGGAACGTCTTGAAGAGGCTGAA -ACGGAACGTCTTGAAGAGAGTACG -ACGGAACGTCTTGAAGAGATCCGA -ACGGAACGTCTTGAAGAGATGGGA -ACGGAACGTCTTGAAGAGGTGCAA -ACGGAACGTCTTGAAGAGGAGGAA -ACGGAACGTCTTGAAGAGCAGGTA -ACGGAACGTCTTGAAGAGGACTCT -ACGGAACGTCTTGAAGAGAGTCCT -ACGGAACGTCTTGAAGAGTAAGCC -ACGGAACGTCTTGAAGAGATAGCC -ACGGAACGTCTTGAAGAGTAACCG -ACGGAACGTCTTGAAGAGATGCCA -ACGGAACGTCTTGTACAGGGAAAC -ACGGAACGTCTTGTACAGAACACC -ACGGAACGTCTTGTACAGATCGAG -ACGGAACGTCTTGTACAGCTCCTT -ACGGAACGTCTTGTACAGCCTGTT -ACGGAACGTCTTGTACAGCGGTTT -ACGGAACGTCTTGTACAGGTGGTT -ACGGAACGTCTTGTACAGGCCTTT -ACGGAACGTCTTGTACAGGGTCTT -ACGGAACGTCTTGTACAGACGCTT -ACGGAACGTCTTGTACAGAGCGTT -ACGGAACGTCTTGTACAGTTCGTC -ACGGAACGTCTTGTACAGTCTCTC -ACGGAACGTCTTGTACAGTGGATC -ACGGAACGTCTTGTACAGCACTTC -ACGGAACGTCTTGTACAGGTACTC -ACGGAACGTCTTGTACAGGATGTC -ACGGAACGTCTTGTACAGACAGTC -ACGGAACGTCTTGTACAGTTGCTG -ACGGAACGTCTTGTACAGTCCATG -ACGGAACGTCTTGTACAGTGTGTG -ACGGAACGTCTTGTACAGCTAGTG -ACGGAACGTCTTGTACAGCATCTG -ACGGAACGTCTTGTACAGGAGTTG -ACGGAACGTCTTGTACAGAGACTG -ACGGAACGTCTTGTACAGTCGGTA -ACGGAACGTCTTGTACAGTGCCTA -ACGGAACGTCTTGTACAGCCACTA -ACGGAACGTCTTGTACAGGGAGTA -ACGGAACGTCTTGTACAGTCGTCT -ACGGAACGTCTTGTACAGTGCACT -ACGGAACGTCTTGTACAGCTGACT -ACGGAACGTCTTGTACAGCAACCT -ACGGAACGTCTTGTACAGGCTACT -ACGGAACGTCTTGTACAGGGATCT -ACGGAACGTCTTGTACAGAAGGCT -ACGGAACGTCTTGTACAGTCAACC -ACGGAACGTCTTGTACAGTGTTCC -ACGGAACGTCTTGTACAGATTCCC -ACGGAACGTCTTGTACAGTTCTCG -ACGGAACGTCTTGTACAGTAGACG -ACGGAACGTCTTGTACAGGTAACG -ACGGAACGTCTTGTACAGACTTCG -ACGGAACGTCTTGTACAGTACGCA -ACGGAACGTCTTGTACAGCTTGCA -ACGGAACGTCTTGTACAGCGAACA -ACGGAACGTCTTGTACAGCAGTCA -ACGGAACGTCTTGTACAGGATCCA -ACGGAACGTCTTGTACAGACGACA -ACGGAACGTCTTGTACAGAGCTCA -ACGGAACGTCTTGTACAGTCACGT -ACGGAACGTCTTGTACAGCGTAGT -ACGGAACGTCTTGTACAGGTCAGT -ACGGAACGTCTTGTACAGGAAGGT -ACGGAACGTCTTGTACAGAACCGT -ACGGAACGTCTTGTACAGTTGTGC -ACGGAACGTCTTGTACAGCTAAGC -ACGGAACGTCTTGTACAGACTAGC -ACGGAACGTCTTGTACAGAGATGC -ACGGAACGTCTTGTACAGTGAAGG -ACGGAACGTCTTGTACAGCAATGG -ACGGAACGTCTTGTACAGATGAGG -ACGGAACGTCTTGTACAGAATGGG -ACGGAACGTCTTGTACAGTCCTGA -ACGGAACGTCTTGTACAGTAGCGA -ACGGAACGTCTTGTACAGCACAGA -ACGGAACGTCTTGTACAGGCAAGA -ACGGAACGTCTTGTACAGGGTTGA -ACGGAACGTCTTGTACAGTCCGAT -ACGGAACGTCTTGTACAGTGGCAT -ACGGAACGTCTTGTACAGCGAGAT -ACGGAACGTCTTGTACAGTACCAC -ACGGAACGTCTTGTACAGCAGAAC -ACGGAACGTCTTGTACAGGTCTAC -ACGGAACGTCTTGTACAGACGTAC -ACGGAACGTCTTGTACAGAGTGAC -ACGGAACGTCTTGTACAGCTGTAG -ACGGAACGTCTTGTACAGCCTAAG -ACGGAACGTCTTGTACAGGTTCAG -ACGGAACGTCTTGTACAGGCATAG -ACGGAACGTCTTGTACAGGACAAG -ACGGAACGTCTTGTACAGAAGCAG -ACGGAACGTCTTGTACAGCGTCAA -ACGGAACGTCTTGTACAGGCTGAA -ACGGAACGTCTTGTACAGAGTACG -ACGGAACGTCTTGTACAGATCCGA -ACGGAACGTCTTGTACAGATGGGA -ACGGAACGTCTTGTACAGGTGCAA -ACGGAACGTCTTGTACAGGAGGAA -ACGGAACGTCTTGTACAGCAGGTA -ACGGAACGTCTTGTACAGGACTCT -ACGGAACGTCTTGTACAGAGTCCT -ACGGAACGTCTTGTACAGTAAGCC -ACGGAACGTCTTGTACAGATAGCC -ACGGAACGTCTTGTACAGTAACCG -ACGGAACGTCTTGTACAGATGCCA -ACGGAACGTCTTTCTGACGGAAAC -ACGGAACGTCTTTCTGACAACACC -ACGGAACGTCTTTCTGACATCGAG -ACGGAACGTCTTTCTGACCTCCTT -ACGGAACGTCTTTCTGACCCTGTT -ACGGAACGTCTTTCTGACCGGTTT -ACGGAACGTCTTTCTGACGTGGTT -ACGGAACGTCTTTCTGACGCCTTT -ACGGAACGTCTTTCTGACGGTCTT -ACGGAACGTCTTTCTGACACGCTT -ACGGAACGTCTTTCTGACAGCGTT -ACGGAACGTCTTTCTGACTTCGTC -ACGGAACGTCTTTCTGACTCTCTC -ACGGAACGTCTTTCTGACTGGATC -ACGGAACGTCTTTCTGACCACTTC -ACGGAACGTCTTTCTGACGTACTC -ACGGAACGTCTTTCTGACGATGTC -ACGGAACGTCTTTCTGACACAGTC -ACGGAACGTCTTTCTGACTTGCTG -ACGGAACGTCTTTCTGACTCCATG -ACGGAACGTCTTTCTGACTGTGTG -ACGGAACGTCTTTCTGACCTAGTG -ACGGAACGTCTTTCTGACCATCTG -ACGGAACGTCTTTCTGACGAGTTG -ACGGAACGTCTTTCTGACAGACTG -ACGGAACGTCTTTCTGACTCGGTA -ACGGAACGTCTTTCTGACTGCCTA -ACGGAACGTCTTTCTGACCCACTA -ACGGAACGTCTTTCTGACGGAGTA -ACGGAACGTCTTTCTGACTCGTCT -ACGGAACGTCTTTCTGACTGCACT -ACGGAACGTCTTTCTGACCTGACT -ACGGAACGTCTTTCTGACCAACCT -ACGGAACGTCTTTCTGACGCTACT -ACGGAACGTCTTTCTGACGGATCT -ACGGAACGTCTTTCTGACAAGGCT -ACGGAACGTCTTTCTGACTCAACC -ACGGAACGTCTTTCTGACTGTTCC -ACGGAACGTCTTTCTGACATTCCC -ACGGAACGTCTTTCTGACTTCTCG -ACGGAACGTCTTTCTGACTAGACG -ACGGAACGTCTTTCTGACGTAACG -ACGGAACGTCTTTCTGACACTTCG -ACGGAACGTCTTTCTGACTACGCA -ACGGAACGTCTTTCTGACCTTGCA -ACGGAACGTCTTTCTGACCGAACA -ACGGAACGTCTTTCTGACCAGTCA -ACGGAACGTCTTTCTGACGATCCA -ACGGAACGTCTTTCTGACACGACA -ACGGAACGTCTTTCTGACAGCTCA -ACGGAACGTCTTTCTGACTCACGT -ACGGAACGTCTTTCTGACCGTAGT -ACGGAACGTCTTTCTGACGTCAGT -ACGGAACGTCTTTCTGACGAAGGT -ACGGAACGTCTTTCTGACAACCGT -ACGGAACGTCTTTCTGACTTGTGC -ACGGAACGTCTTTCTGACCTAAGC -ACGGAACGTCTTTCTGACACTAGC -ACGGAACGTCTTTCTGACAGATGC -ACGGAACGTCTTTCTGACTGAAGG -ACGGAACGTCTTTCTGACCAATGG -ACGGAACGTCTTTCTGACATGAGG -ACGGAACGTCTTTCTGACAATGGG -ACGGAACGTCTTTCTGACTCCTGA -ACGGAACGTCTTTCTGACTAGCGA -ACGGAACGTCTTTCTGACCACAGA -ACGGAACGTCTTTCTGACGCAAGA -ACGGAACGTCTTTCTGACGGTTGA -ACGGAACGTCTTTCTGACTCCGAT -ACGGAACGTCTTTCTGACTGGCAT -ACGGAACGTCTTTCTGACCGAGAT -ACGGAACGTCTTTCTGACTACCAC -ACGGAACGTCTTTCTGACCAGAAC -ACGGAACGTCTTTCTGACGTCTAC -ACGGAACGTCTTTCTGACACGTAC -ACGGAACGTCTTTCTGACAGTGAC -ACGGAACGTCTTTCTGACCTGTAG -ACGGAACGTCTTTCTGACCCTAAG -ACGGAACGTCTTTCTGACGTTCAG -ACGGAACGTCTTTCTGACGCATAG -ACGGAACGTCTTTCTGACGACAAG -ACGGAACGTCTTTCTGACAAGCAG -ACGGAACGTCTTTCTGACCGTCAA -ACGGAACGTCTTTCTGACGCTGAA -ACGGAACGTCTTTCTGACAGTACG -ACGGAACGTCTTTCTGACATCCGA -ACGGAACGTCTTTCTGACATGGGA -ACGGAACGTCTTTCTGACGTGCAA -ACGGAACGTCTTTCTGACGAGGAA -ACGGAACGTCTTTCTGACCAGGTA -ACGGAACGTCTTTCTGACGACTCT -ACGGAACGTCTTTCTGACAGTCCT -ACGGAACGTCTTTCTGACTAAGCC -ACGGAACGTCTTTCTGACATAGCC -ACGGAACGTCTTTCTGACTAACCG -ACGGAACGTCTTTCTGACATGCCA -ACGGAACGTCTTCCTAGTGGAAAC -ACGGAACGTCTTCCTAGTAACACC -ACGGAACGTCTTCCTAGTATCGAG -ACGGAACGTCTTCCTAGTCTCCTT -ACGGAACGTCTTCCTAGTCCTGTT -ACGGAACGTCTTCCTAGTCGGTTT -ACGGAACGTCTTCCTAGTGTGGTT -ACGGAACGTCTTCCTAGTGCCTTT -ACGGAACGTCTTCCTAGTGGTCTT -ACGGAACGTCTTCCTAGTACGCTT -ACGGAACGTCTTCCTAGTAGCGTT -ACGGAACGTCTTCCTAGTTTCGTC -ACGGAACGTCTTCCTAGTTCTCTC -ACGGAACGTCTTCCTAGTTGGATC -ACGGAACGTCTTCCTAGTCACTTC -ACGGAACGTCTTCCTAGTGTACTC -ACGGAACGTCTTCCTAGTGATGTC -ACGGAACGTCTTCCTAGTACAGTC -ACGGAACGTCTTCCTAGTTTGCTG -ACGGAACGTCTTCCTAGTTCCATG -ACGGAACGTCTTCCTAGTTGTGTG -ACGGAACGTCTTCCTAGTCTAGTG -ACGGAACGTCTTCCTAGTCATCTG -ACGGAACGTCTTCCTAGTGAGTTG -ACGGAACGTCTTCCTAGTAGACTG -ACGGAACGTCTTCCTAGTTCGGTA -ACGGAACGTCTTCCTAGTTGCCTA -ACGGAACGTCTTCCTAGTCCACTA -ACGGAACGTCTTCCTAGTGGAGTA -ACGGAACGTCTTCCTAGTTCGTCT -ACGGAACGTCTTCCTAGTTGCACT -ACGGAACGTCTTCCTAGTCTGACT -ACGGAACGTCTTCCTAGTCAACCT -ACGGAACGTCTTCCTAGTGCTACT -ACGGAACGTCTTCCTAGTGGATCT -ACGGAACGTCTTCCTAGTAAGGCT -ACGGAACGTCTTCCTAGTTCAACC -ACGGAACGTCTTCCTAGTTGTTCC -ACGGAACGTCTTCCTAGTATTCCC -ACGGAACGTCTTCCTAGTTTCTCG -ACGGAACGTCTTCCTAGTTAGACG -ACGGAACGTCTTCCTAGTGTAACG -ACGGAACGTCTTCCTAGTACTTCG -ACGGAACGTCTTCCTAGTTACGCA -ACGGAACGTCTTCCTAGTCTTGCA -ACGGAACGTCTTCCTAGTCGAACA -ACGGAACGTCTTCCTAGTCAGTCA -ACGGAACGTCTTCCTAGTGATCCA -ACGGAACGTCTTCCTAGTACGACA -ACGGAACGTCTTCCTAGTAGCTCA -ACGGAACGTCTTCCTAGTTCACGT -ACGGAACGTCTTCCTAGTCGTAGT -ACGGAACGTCTTCCTAGTGTCAGT -ACGGAACGTCTTCCTAGTGAAGGT -ACGGAACGTCTTCCTAGTAACCGT -ACGGAACGTCTTCCTAGTTTGTGC -ACGGAACGTCTTCCTAGTCTAAGC -ACGGAACGTCTTCCTAGTACTAGC -ACGGAACGTCTTCCTAGTAGATGC -ACGGAACGTCTTCCTAGTTGAAGG -ACGGAACGTCTTCCTAGTCAATGG -ACGGAACGTCTTCCTAGTATGAGG -ACGGAACGTCTTCCTAGTAATGGG -ACGGAACGTCTTCCTAGTTCCTGA -ACGGAACGTCTTCCTAGTTAGCGA -ACGGAACGTCTTCCTAGTCACAGA -ACGGAACGTCTTCCTAGTGCAAGA -ACGGAACGTCTTCCTAGTGGTTGA -ACGGAACGTCTTCCTAGTTCCGAT -ACGGAACGTCTTCCTAGTTGGCAT -ACGGAACGTCTTCCTAGTCGAGAT -ACGGAACGTCTTCCTAGTTACCAC -ACGGAACGTCTTCCTAGTCAGAAC -ACGGAACGTCTTCCTAGTGTCTAC -ACGGAACGTCTTCCTAGTACGTAC -ACGGAACGTCTTCCTAGTAGTGAC -ACGGAACGTCTTCCTAGTCTGTAG -ACGGAACGTCTTCCTAGTCCTAAG -ACGGAACGTCTTCCTAGTGTTCAG -ACGGAACGTCTTCCTAGTGCATAG -ACGGAACGTCTTCCTAGTGACAAG -ACGGAACGTCTTCCTAGTAAGCAG -ACGGAACGTCTTCCTAGTCGTCAA -ACGGAACGTCTTCCTAGTGCTGAA -ACGGAACGTCTTCCTAGTAGTACG -ACGGAACGTCTTCCTAGTATCCGA -ACGGAACGTCTTCCTAGTATGGGA -ACGGAACGTCTTCCTAGTGTGCAA -ACGGAACGTCTTCCTAGTGAGGAA -ACGGAACGTCTTCCTAGTCAGGTA -ACGGAACGTCTTCCTAGTGACTCT -ACGGAACGTCTTCCTAGTAGTCCT -ACGGAACGTCTTCCTAGTTAAGCC -ACGGAACGTCTTCCTAGTATAGCC -ACGGAACGTCTTCCTAGTTAACCG -ACGGAACGTCTTCCTAGTATGCCA -ACGGAACGTCTTGCCTAAGGAAAC -ACGGAACGTCTTGCCTAAAACACC -ACGGAACGTCTTGCCTAAATCGAG -ACGGAACGTCTTGCCTAACTCCTT -ACGGAACGTCTTGCCTAACCTGTT -ACGGAACGTCTTGCCTAACGGTTT -ACGGAACGTCTTGCCTAAGTGGTT -ACGGAACGTCTTGCCTAAGCCTTT -ACGGAACGTCTTGCCTAAGGTCTT -ACGGAACGTCTTGCCTAAACGCTT -ACGGAACGTCTTGCCTAAAGCGTT -ACGGAACGTCTTGCCTAATTCGTC -ACGGAACGTCTTGCCTAATCTCTC -ACGGAACGTCTTGCCTAATGGATC -ACGGAACGTCTTGCCTAACACTTC -ACGGAACGTCTTGCCTAAGTACTC -ACGGAACGTCTTGCCTAAGATGTC -ACGGAACGTCTTGCCTAAACAGTC -ACGGAACGTCTTGCCTAATTGCTG -ACGGAACGTCTTGCCTAATCCATG -ACGGAACGTCTTGCCTAATGTGTG -ACGGAACGTCTTGCCTAACTAGTG -ACGGAACGTCTTGCCTAACATCTG -ACGGAACGTCTTGCCTAAGAGTTG -ACGGAACGTCTTGCCTAAAGACTG -ACGGAACGTCTTGCCTAATCGGTA -ACGGAACGTCTTGCCTAATGCCTA -ACGGAACGTCTTGCCTAACCACTA -ACGGAACGTCTTGCCTAAGGAGTA -ACGGAACGTCTTGCCTAATCGTCT -ACGGAACGTCTTGCCTAATGCACT -ACGGAACGTCTTGCCTAACTGACT -ACGGAACGTCTTGCCTAACAACCT -ACGGAACGTCTTGCCTAAGCTACT -ACGGAACGTCTTGCCTAAGGATCT -ACGGAACGTCTTGCCTAAAAGGCT -ACGGAACGTCTTGCCTAATCAACC -ACGGAACGTCTTGCCTAATGTTCC -ACGGAACGTCTTGCCTAAATTCCC -ACGGAACGTCTTGCCTAATTCTCG -ACGGAACGTCTTGCCTAATAGACG -ACGGAACGTCTTGCCTAAGTAACG -ACGGAACGTCTTGCCTAAACTTCG -ACGGAACGTCTTGCCTAATACGCA -ACGGAACGTCTTGCCTAACTTGCA -ACGGAACGTCTTGCCTAACGAACA -ACGGAACGTCTTGCCTAACAGTCA -ACGGAACGTCTTGCCTAAGATCCA -ACGGAACGTCTTGCCTAAACGACA -ACGGAACGTCTTGCCTAAAGCTCA -ACGGAACGTCTTGCCTAATCACGT -ACGGAACGTCTTGCCTAACGTAGT -ACGGAACGTCTTGCCTAAGTCAGT -ACGGAACGTCTTGCCTAAGAAGGT -ACGGAACGTCTTGCCTAAAACCGT -ACGGAACGTCTTGCCTAATTGTGC -ACGGAACGTCTTGCCTAACTAAGC -ACGGAACGTCTTGCCTAAACTAGC -ACGGAACGTCTTGCCTAAAGATGC -ACGGAACGTCTTGCCTAATGAAGG -ACGGAACGTCTTGCCTAACAATGG -ACGGAACGTCTTGCCTAAATGAGG -ACGGAACGTCTTGCCTAAAATGGG -ACGGAACGTCTTGCCTAATCCTGA -ACGGAACGTCTTGCCTAATAGCGA -ACGGAACGTCTTGCCTAACACAGA -ACGGAACGTCTTGCCTAAGCAAGA -ACGGAACGTCTTGCCTAAGGTTGA -ACGGAACGTCTTGCCTAATCCGAT -ACGGAACGTCTTGCCTAATGGCAT -ACGGAACGTCTTGCCTAACGAGAT -ACGGAACGTCTTGCCTAATACCAC -ACGGAACGTCTTGCCTAACAGAAC -ACGGAACGTCTTGCCTAAGTCTAC -ACGGAACGTCTTGCCTAAACGTAC -ACGGAACGTCTTGCCTAAAGTGAC -ACGGAACGTCTTGCCTAACTGTAG -ACGGAACGTCTTGCCTAACCTAAG -ACGGAACGTCTTGCCTAAGTTCAG -ACGGAACGTCTTGCCTAAGCATAG -ACGGAACGTCTTGCCTAAGACAAG -ACGGAACGTCTTGCCTAAAAGCAG -ACGGAACGTCTTGCCTAACGTCAA -ACGGAACGTCTTGCCTAAGCTGAA -ACGGAACGTCTTGCCTAAAGTACG -ACGGAACGTCTTGCCTAAATCCGA -ACGGAACGTCTTGCCTAAATGGGA -ACGGAACGTCTTGCCTAAGTGCAA -ACGGAACGTCTTGCCTAAGAGGAA -ACGGAACGTCTTGCCTAACAGGTA -ACGGAACGTCTTGCCTAAGACTCT -ACGGAACGTCTTGCCTAAAGTCCT -ACGGAACGTCTTGCCTAATAAGCC -ACGGAACGTCTTGCCTAAATAGCC -ACGGAACGTCTTGCCTAATAACCG -ACGGAACGTCTTGCCTAAATGCCA -ACGGAACGTCTTGCCATAGGAAAC -ACGGAACGTCTTGCCATAAACACC -ACGGAACGTCTTGCCATAATCGAG -ACGGAACGTCTTGCCATACTCCTT -ACGGAACGTCTTGCCATACCTGTT -ACGGAACGTCTTGCCATACGGTTT -ACGGAACGTCTTGCCATAGTGGTT -ACGGAACGTCTTGCCATAGCCTTT -ACGGAACGTCTTGCCATAGGTCTT -ACGGAACGTCTTGCCATAACGCTT -ACGGAACGTCTTGCCATAAGCGTT -ACGGAACGTCTTGCCATATTCGTC -ACGGAACGTCTTGCCATATCTCTC -ACGGAACGTCTTGCCATATGGATC -ACGGAACGTCTTGCCATACACTTC -ACGGAACGTCTTGCCATAGTACTC -ACGGAACGTCTTGCCATAGATGTC -ACGGAACGTCTTGCCATAACAGTC -ACGGAACGTCTTGCCATATTGCTG -ACGGAACGTCTTGCCATATCCATG -ACGGAACGTCTTGCCATATGTGTG -ACGGAACGTCTTGCCATACTAGTG -ACGGAACGTCTTGCCATACATCTG -ACGGAACGTCTTGCCATAGAGTTG -ACGGAACGTCTTGCCATAAGACTG -ACGGAACGTCTTGCCATATCGGTA -ACGGAACGTCTTGCCATATGCCTA -ACGGAACGTCTTGCCATACCACTA -ACGGAACGTCTTGCCATAGGAGTA -ACGGAACGTCTTGCCATATCGTCT -ACGGAACGTCTTGCCATATGCACT -ACGGAACGTCTTGCCATACTGACT -ACGGAACGTCTTGCCATACAACCT -ACGGAACGTCTTGCCATAGCTACT -ACGGAACGTCTTGCCATAGGATCT -ACGGAACGTCTTGCCATAAAGGCT -ACGGAACGTCTTGCCATATCAACC -ACGGAACGTCTTGCCATATGTTCC -ACGGAACGTCTTGCCATAATTCCC -ACGGAACGTCTTGCCATATTCTCG -ACGGAACGTCTTGCCATATAGACG -ACGGAACGTCTTGCCATAGTAACG -ACGGAACGTCTTGCCATAACTTCG -ACGGAACGTCTTGCCATATACGCA -ACGGAACGTCTTGCCATACTTGCA -ACGGAACGTCTTGCCATACGAACA -ACGGAACGTCTTGCCATACAGTCA -ACGGAACGTCTTGCCATAGATCCA -ACGGAACGTCTTGCCATAACGACA -ACGGAACGTCTTGCCATAAGCTCA -ACGGAACGTCTTGCCATATCACGT -ACGGAACGTCTTGCCATACGTAGT -ACGGAACGTCTTGCCATAGTCAGT -ACGGAACGTCTTGCCATAGAAGGT -ACGGAACGTCTTGCCATAAACCGT -ACGGAACGTCTTGCCATATTGTGC -ACGGAACGTCTTGCCATACTAAGC -ACGGAACGTCTTGCCATAACTAGC -ACGGAACGTCTTGCCATAAGATGC -ACGGAACGTCTTGCCATATGAAGG -ACGGAACGTCTTGCCATACAATGG -ACGGAACGTCTTGCCATAATGAGG -ACGGAACGTCTTGCCATAAATGGG -ACGGAACGTCTTGCCATATCCTGA -ACGGAACGTCTTGCCATATAGCGA -ACGGAACGTCTTGCCATACACAGA -ACGGAACGTCTTGCCATAGCAAGA -ACGGAACGTCTTGCCATAGGTTGA -ACGGAACGTCTTGCCATATCCGAT -ACGGAACGTCTTGCCATATGGCAT -ACGGAACGTCTTGCCATACGAGAT -ACGGAACGTCTTGCCATATACCAC -ACGGAACGTCTTGCCATACAGAAC -ACGGAACGTCTTGCCATAGTCTAC -ACGGAACGTCTTGCCATAACGTAC -ACGGAACGTCTTGCCATAAGTGAC -ACGGAACGTCTTGCCATACTGTAG -ACGGAACGTCTTGCCATACCTAAG -ACGGAACGTCTTGCCATAGTTCAG -ACGGAACGTCTTGCCATAGCATAG -ACGGAACGTCTTGCCATAGACAAG -ACGGAACGTCTTGCCATAAAGCAG -ACGGAACGTCTTGCCATACGTCAA -ACGGAACGTCTTGCCATAGCTGAA -ACGGAACGTCTTGCCATAAGTACG -ACGGAACGTCTTGCCATAATCCGA -ACGGAACGTCTTGCCATAATGGGA -ACGGAACGTCTTGCCATAGTGCAA -ACGGAACGTCTTGCCATAGAGGAA -ACGGAACGTCTTGCCATACAGGTA -ACGGAACGTCTTGCCATAGACTCT -ACGGAACGTCTTGCCATAAGTCCT -ACGGAACGTCTTGCCATATAAGCC -ACGGAACGTCTTGCCATAATAGCC -ACGGAACGTCTTGCCATATAACCG -ACGGAACGTCTTGCCATAATGCCA -ACGGAACGTCTTCCGTAAGGAAAC -ACGGAACGTCTTCCGTAAAACACC -ACGGAACGTCTTCCGTAAATCGAG -ACGGAACGTCTTCCGTAACTCCTT -ACGGAACGTCTTCCGTAACCTGTT -ACGGAACGTCTTCCGTAACGGTTT -ACGGAACGTCTTCCGTAAGTGGTT -ACGGAACGTCTTCCGTAAGCCTTT -ACGGAACGTCTTCCGTAAGGTCTT -ACGGAACGTCTTCCGTAAACGCTT -ACGGAACGTCTTCCGTAAAGCGTT -ACGGAACGTCTTCCGTAATTCGTC -ACGGAACGTCTTCCGTAATCTCTC -ACGGAACGTCTTCCGTAATGGATC -ACGGAACGTCTTCCGTAACACTTC -ACGGAACGTCTTCCGTAAGTACTC -ACGGAACGTCTTCCGTAAGATGTC -ACGGAACGTCTTCCGTAAACAGTC -ACGGAACGTCTTCCGTAATTGCTG -ACGGAACGTCTTCCGTAATCCATG -ACGGAACGTCTTCCGTAATGTGTG -ACGGAACGTCTTCCGTAACTAGTG -ACGGAACGTCTTCCGTAACATCTG -ACGGAACGTCTTCCGTAAGAGTTG -ACGGAACGTCTTCCGTAAAGACTG -ACGGAACGTCTTCCGTAATCGGTA -ACGGAACGTCTTCCGTAATGCCTA -ACGGAACGTCTTCCGTAACCACTA -ACGGAACGTCTTCCGTAAGGAGTA -ACGGAACGTCTTCCGTAATCGTCT -ACGGAACGTCTTCCGTAATGCACT -ACGGAACGTCTTCCGTAACTGACT -ACGGAACGTCTTCCGTAACAACCT -ACGGAACGTCTTCCGTAAGCTACT -ACGGAACGTCTTCCGTAAGGATCT -ACGGAACGTCTTCCGTAAAAGGCT -ACGGAACGTCTTCCGTAATCAACC -ACGGAACGTCTTCCGTAATGTTCC -ACGGAACGTCTTCCGTAAATTCCC -ACGGAACGTCTTCCGTAATTCTCG -ACGGAACGTCTTCCGTAATAGACG -ACGGAACGTCTTCCGTAAGTAACG -ACGGAACGTCTTCCGTAAACTTCG -ACGGAACGTCTTCCGTAATACGCA -ACGGAACGTCTTCCGTAACTTGCA -ACGGAACGTCTTCCGTAACGAACA -ACGGAACGTCTTCCGTAACAGTCA -ACGGAACGTCTTCCGTAAGATCCA -ACGGAACGTCTTCCGTAAACGACA -ACGGAACGTCTTCCGTAAAGCTCA -ACGGAACGTCTTCCGTAATCACGT -ACGGAACGTCTTCCGTAACGTAGT -ACGGAACGTCTTCCGTAAGTCAGT -ACGGAACGTCTTCCGTAAGAAGGT -ACGGAACGTCTTCCGTAAAACCGT -ACGGAACGTCTTCCGTAATTGTGC -ACGGAACGTCTTCCGTAACTAAGC -ACGGAACGTCTTCCGTAAACTAGC -ACGGAACGTCTTCCGTAAAGATGC -ACGGAACGTCTTCCGTAATGAAGG -ACGGAACGTCTTCCGTAACAATGG -ACGGAACGTCTTCCGTAAATGAGG -ACGGAACGTCTTCCGTAAAATGGG -ACGGAACGTCTTCCGTAATCCTGA -ACGGAACGTCTTCCGTAATAGCGA -ACGGAACGTCTTCCGTAACACAGA -ACGGAACGTCTTCCGTAAGCAAGA -ACGGAACGTCTTCCGTAAGGTTGA -ACGGAACGTCTTCCGTAATCCGAT -ACGGAACGTCTTCCGTAATGGCAT -ACGGAACGTCTTCCGTAACGAGAT -ACGGAACGTCTTCCGTAATACCAC -ACGGAACGTCTTCCGTAACAGAAC -ACGGAACGTCTTCCGTAAGTCTAC -ACGGAACGTCTTCCGTAAACGTAC -ACGGAACGTCTTCCGTAAAGTGAC -ACGGAACGTCTTCCGTAACTGTAG -ACGGAACGTCTTCCGTAACCTAAG -ACGGAACGTCTTCCGTAAGTTCAG -ACGGAACGTCTTCCGTAAGCATAG -ACGGAACGTCTTCCGTAAGACAAG -ACGGAACGTCTTCCGTAAAAGCAG -ACGGAACGTCTTCCGTAACGTCAA -ACGGAACGTCTTCCGTAAGCTGAA -ACGGAACGTCTTCCGTAAAGTACG -ACGGAACGTCTTCCGTAAATCCGA -ACGGAACGTCTTCCGTAAATGGGA -ACGGAACGTCTTCCGTAAGTGCAA -ACGGAACGTCTTCCGTAAGAGGAA -ACGGAACGTCTTCCGTAACAGGTA -ACGGAACGTCTTCCGTAAGACTCT -ACGGAACGTCTTCCGTAAAGTCCT -ACGGAACGTCTTCCGTAATAAGCC -ACGGAACGTCTTCCGTAAATAGCC -ACGGAACGTCTTCCGTAATAACCG -ACGGAACGTCTTCCGTAAATGCCA -ACGGAACGTCTTCCAATGGGAAAC -ACGGAACGTCTTCCAATGAACACC -ACGGAACGTCTTCCAATGATCGAG -ACGGAACGTCTTCCAATGCTCCTT -ACGGAACGTCTTCCAATGCCTGTT -ACGGAACGTCTTCCAATGCGGTTT -ACGGAACGTCTTCCAATGGTGGTT -ACGGAACGTCTTCCAATGGCCTTT -ACGGAACGTCTTCCAATGGGTCTT -ACGGAACGTCTTCCAATGACGCTT -ACGGAACGTCTTCCAATGAGCGTT -ACGGAACGTCTTCCAATGTTCGTC -ACGGAACGTCTTCCAATGTCTCTC -ACGGAACGTCTTCCAATGTGGATC -ACGGAACGTCTTCCAATGCACTTC -ACGGAACGTCTTCCAATGGTACTC -ACGGAACGTCTTCCAATGGATGTC -ACGGAACGTCTTCCAATGACAGTC -ACGGAACGTCTTCCAATGTTGCTG -ACGGAACGTCTTCCAATGTCCATG -ACGGAACGTCTTCCAATGTGTGTG -ACGGAACGTCTTCCAATGCTAGTG -ACGGAACGTCTTCCAATGCATCTG -ACGGAACGTCTTCCAATGGAGTTG -ACGGAACGTCTTCCAATGAGACTG -ACGGAACGTCTTCCAATGTCGGTA -ACGGAACGTCTTCCAATGTGCCTA -ACGGAACGTCTTCCAATGCCACTA -ACGGAACGTCTTCCAATGGGAGTA -ACGGAACGTCTTCCAATGTCGTCT -ACGGAACGTCTTCCAATGTGCACT -ACGGAACGTCTTCCAATGCTGACT -ACGGAACGTCTTCCAATGCAACCT -ACGGAACGTCTTCCAATGGCTACT -ACGGAACGTCTTCCAATGGGATCT -ACGGAACGTCTTCCAATGAAGGCT -ACGGAACGTCTTCCAATGTCAACC -ACGGAACGTCTTCCAATGTGTTCC -ACGGAACGTCTTCCAATGATTCCC -ACGGAACGTCTTCCAATGTTCTCG -ACGGAACGTCTTCCAATGTAGACG -ACGGAACGTCTTCCAATGGTAACG -ACGGAACGTCTTCCAATGACTTCG -ACGGAACGTCTTCCAATGTACGCA -ACGGAACGTCTTCCAATGCTTGCA -ACGGAACGTCTTCCAATGCGAACA -ACGGAACGTCTTCCAATGCAGTCA -ACGGAACGTCTTCCAATGGATCCA -ACGGAACGTCTTCCAATGACGACA -ACGGAACGTCTTCCAATGAGCTCA -ACGGAACGTCTTCCAATGTCACGT -ACGGAACGTCTTCCAATGCGTAGT -ACGGAACGTCTTCCAATGGTCAGT -ACGGAACGTCTTCCAATGGAAGGT -ACGGAACGTCTTCCAATGAACCGT -ACGGAACGTCTTCCAATGTTGTGC -ACGGAACGTCTTCCAATGCTAAGC -ACGGAACGTCTTCCAATGACTAGC -ACGGAACGTCTTCCAATGAGATGC -ACGGAACGTCTTCCAATGTGAAGG -ACGGAACGTCTTCCAATGCAATGG -ACGGAACGTCTTCCAATGATGAGG -ACGGAACGTCTTCCAATGAATGGG -ACGGAACGTCTTCCAATGTCCTGA -ACGGAACGTCTTCCAATGTAGCGA -ACGGAACGTCTTCCAATGCACAGA -ACGGAACGTCTTCCAATGGCAAGA -ACGGAACGTCTTCCAATGGGTTGA -ACGGAACGTCTTCCAATGTCCGAT -ACGGAACGTCTTCCAATGTGGCAT -ACGGAACGTCTTCCAATGCGAGAT -ACGGAACGTCTTCCAATGTACCAC -ACGGAACGTCTTCCAATGCAGAAC -ACGGAACGTCTTCCAATGGTCTAC -ACGGAACGTCTTCCAATGACGTAC -ACGGAACGTCTTCCAATGAGTGAC -ACGGAACGTCTTCCAATGCTGTAG -ACGGAACGTCTTCCAATGCCTAAG -ACGGAACGTCTTCCAATGGTTCAG -ACGGAACGTCTTCCAATGGCATAG -ACGGAACGTCTTCCAATGGACAAG -ACGGAACGTCTTCCAATGAAGCAG -ACGGAACGTCTTCCAATGCGTCAA -ACGGAACGTCTTCCAATGGCTGAA -ACGGAACGTCTTCCAATGAGTACG -ACGGAACGTCTTCCAATGATCCGA -ACGGAACGTCTTCCAATGATGGGA -ACGGAACGTCTTCCAATGGTGCAA -ACGGAACGTCTTCCAATGGAGGAA -ACGGAACGTCTTCCAATGCAGGTA -ACGGAACGTCTTCCAATGGACTCT -ACGGAACGTCTTCCAATGAGTCCT -ACGGAACGTCTTCCAATGTAAGCC -ACGGAACGTCTTCCAATGATAGCC -ACGGAACGTCTTCCAATGTAACCG -ACGGAACGTCTTCCAATGATGCCA -ACGGAAGCACTTAACGGAGGAAAC -ACGGAAGCACTTAACGGAAACACC -ACGGAAGCACTTAACGGAATCGAG -ACGGAAGCACTTAACGGACTCCTT -ACGGAAGCACTTAACGGACCTGTT -ACGGAAGCACTTAACGGACGGTTT -ACGGAAGCACTTAACGGAGTGGTT -ACGGAAGCACTTAACGGAGCCTTT -ACGGAAGCACTTAACGGAGGTCTT -ACGGAAGCACTTAACGGAACGCTT -ACGGAAGCACTTAACGGAAGCGTT -ACGGAAGCACTTAACGGATTCGTC -ACGGAAGCACTTAACGGATCTCTC -ACGGAAGCACTTAACGGATGGATC -ACGGAAGCACTTAACGGACACTTC -ACGGAAGCACTTAACGGAGTACTC -ACGGAAGCACTTAACGGAGATGTC -ACGGAAGCACTTAACGGAACAGTC -ACGGAAGCACTTAACGGATTGCTG -ACGGAAGCACTTAACGGATCCATG -ACGGAAGCACTTAACGGATGTGTG -ACGGAAGCACTTAACGGACTAGTG -ACGGAAGCACTTAACGGACATCTG -ACGGAAGCACTTAACGGAGAGTTG -ACGGAAGCACTTAACGGAAGACTG -ACGGAAGCACTTAACGGATCGGTA -ACGGAAGCACTTAACGGATGCCTA -ACGGAAGCACTTAACGGACCACTA -ACGGAAGCACTTAACGGAGGAGTA -ACGGAAGCACTTAACGGATCGTCT -ACGGAAGCACTTAACGGATGCACT -ACGGAAGCACTTAACGGACTGACT -ACGGAAGCACTTAACGGACAACCT -ACGGAAGCACTTAACGGAGCTACT -ACGGAAGCACTTAACGGAGGATCT -ACGGAAGCACTTAACGGAAAGGCT -ACGGAAGCACTTAACGGATCAACC -ACGGAAGCACTTAACGGATGTTCC -ACGGAAGCACTTAACGGAATTCCC -ACGGAAGCACTTAACGGATTCTCG -ACGGAAGCACTTAACGGATAGACG -ACGGAAGCACTTAACGGAGTAACG -ACGGAAGCACTTAACGGAACTTCG -ACGGAAGCACTTAACGGATACGCA -ACGGAAGCACTTAACGGACTTGCA -ACGGAAGCACTTAACGGACGAACA -ACGGAAGCACTTAACGGACAGTCA -ACGGAAGCACTTAACGGAGATCCA -ACGGAAGCACTTAACGGAACGACA -ACGGAAGCACTTAACGGAAGCTCA -ACGGAAGCACTTAACGGATCACGT -ACGGAAGCACTTAACGGACGTAGT -ACGGAAGCACTTAACGGAGTCAGT -ACGGAAGCACTTAACGGAGAAGGT -ACGGAAGCACTTAACGGAAACCGT -ACGGAAGCACTTAACGGATTGTGC -ACGGAAGCACTTAACGGACTAAGC -ACGGAAGCACTTAACGGAACTAGC -ACGGAAGCACTTAACGGAAGATGC -ACGGAAGCACTTAACGGATGAAGG -ACGGAAGCACTTAACGGACAATGG -ACGGAAGCACTTAACGGAATGAGG -ACGGAAGCACTTAACGGAAATGGG -ACGGAAGCACTTAACGGATCCTGA -ACGGAAGCACTTAACGGATAGCGA -ACGGAAGCACTTAACGGACACAGA -ACGGAAGCACTTAACGGAGCAAGA -ACGGAAGCACTTAACGGAGGTTGA -ACGGAAGCACTTAACGGATCCGAT -ACGGAAGCACTTAACGGATGGCAT -ACGGAAGCACTTAACGGACGAGAT -ACGGAAGCACTTAACGGATACCAC -ACGGAAGCACTTAACGGACAGAAC -ACGGAAGCACTTAACGGAGTCTAC -ACGGAAGCACTTAACGGAACGTAC -ACGGAAGCACTTAACGGAAGTGAC -ACGGAAGCACTTAACGGACTGTAG -ACGGAAGCACTTAACGGACCTAAG -ACGGAAGCACTTAACGGAGTTCAG -ACGGAAGCACTTAACGGAGCATAG -ACGGAAGCACTTAACGGAGACAAG -ACGGAAGCACTTAACGGAAAGCAG -ACGGAAGCACTTAACGGACGTCAA -ACGGAAGCACTTAACGGAGCTGAA -ACGGAAGCACTTAACGGAAGTACG -ACGGAAGCACTTAACGGAATCCGA -ACGGAAGCACTTAACGGAATGGGA -ACGGAAGCACTTAACGGAGTGCAA -ACGGAAGCACTTAACGGAGAGGAA -ACGGAAGCACTTAACGGACAGGTA -ACGGAAGCACTTAACGGAGACTCT -ACGGAAGCACTTAACGGAAGTCCT -ACGGAAGCACTTAACGGATAAGCC -ACGGAAGCACTTAACGGAATAGCC -ACGGAAGCACTTAACGGATAACCG -ACGGAAGCACTTAACGGAATGCCA -ACGGAAGCACTTACCAACGGAAAC -ACGGAAGCACTTACCAACAACACC -ACGGAAGCACTTACCAACATCGAG -ACGGAAGCACTTACCAACCTCCTT -ACGGAAGCACTTACCAACCCTGTT -ACGGAAGCACTTACCAACCGGTTT -ACGGAAGCACTTACCAACGTGGTT -ACGGAAGCACTTACCAACGCCTTT -ACGGAAGCACTTACCAACGGTCTT -ACGGAAGCACTTACCAACACGCTT -ACGGAAGCACTTACCAACAGCGTT -ACGGAAGCACTTACCAACTTCGTC -ACGGAAGCACTTACCAACTCTCTC -ACGGAAGCACTTACCAACTGGATC -ACGGAAGCACTTACCAACCACTTC -ACGGAAGCACTTACCAACGTACTC -ACGGAAGCACTTACCAACGATGTC -ACGGAAGCACTTACCAACACAGTC -ACGGAAGCACTTACCAACTTGCTG -ACGGAAGCACTTACCAACTCCATG -ACGGAAGCACTTACCAACTGTGTG -ACGGAAGCACTTACCAACCTAGTG -ACGGAAGCACTTACCAACCATCTG -ACGGAAGCACTTACCAACGAGTTG -ACGGAAGCACTTACCAACAGACTG -ACGGAAGCACTTACCAACTCGGTA -ACGGAAGCACTTACCAACTGCCTA -ACGGAAGCACTTACCAACCCACTA -ACGGAAGCACTTACCAACGGAGTA -ACGGAAGCACTTACCAACTCGTCT -ACGGAAGCACTTACCAACTGCACT -ACGGAAGCACTTACCAACCTGACT -ACGGAAGCACTTACCAACCAACCT -ACGGAAGCACTTACCAACGCTACT -ACGGAAGCACTTACCAACGGATCT -ACGGAAGCACTTACCAACAAGGCT -ACGGAAGCACTTACCAACTCAACC -ACGGAAGCACTTACCAACTGTTCC -ACGGAAGCACTTACCAACATTCCC -ACGGAAGCACTTACCAACTTCTCG -ACGGAAGCACTTACCAACTAGACG -ACGGAAGCACTTACCAACGTAACG -ACGGAAGCACTTACCAACACTTCG -ACGGAAGCACTTACCAACTACGCA -ACGGAAGCACTTACCAACCTTGCA -ACGGAAGCACTTACCAACCGAACA -ACGGAAGCACTTACCAACCAGTCA -ACGGAAGCACTTACCAACGATCCA -ACGGAAGCACTTACCAACACGACA -ACGGAAGCACTTACCAACAGCTCA -ACGGAAGCACTTACCAACTCACGT -ACGGAAGCACTTACCAACCGTAGT -ACGGAAGCACTTACCAACGTCAGT -ACGGAAGCACTTACCAACGAAGGT -ACGGAAGCACTTACCAACAACCGT -ACGGAAGCACTTACCAACTTGTGC -ACGGAAGCACTTACCAACCTAAGC -ACGGAAGCACTTACCAACACTAGC -ACGGAAGCACTTACCAACAGATGC -ACGGAAGCACTTACCAACTGAAGG -ACGGAAGCACTTACCAACCAATGG -ACGGAAGCACTTACCAACATGAGG -ACGGAAGCACTTACCAACAATGGG -ACGGAAGCACTTACCAACTCCTGA -ACGGAAGCACTTACCAACTAGCGA -ACGGAAGCACTTACCAACCACAGA -ACGGAAGCACTTACCAACGCAAGA -ACGGAAGCACTTACCAACGGTTGA -ACGGAAGCACTTACCAACTCCGAT -ACGGAAGCACTTACCAACTGGCAT -ACGGAAGCACTTACCAACCGAGAT -ACGGAAGCACTTACCAACTACCAC -ACGGAAGCACTTACCAACCAGAAC -ACGGAAGCACTTACCAACGTCTAC -ACGGAAGCACTTACCAACACGTAC -ACGGAAGCACTTACCAACAGTGAC -ACGGAAGCACTTACCAACCTGTAG -ACGGAAGCACTTACCAACCCTAAG -ACGGAAGCACTTACCAACGTTCAG -ACGGAAGCACTTACCAACGCATAG -ACGGAAGCACTTACCAACGACAAG -ACGGAAGCACTTACCAACAAGCAG -ACGGAAGCACTTACCAACCGTCAA -ACGGAAGCACTTACCAACGCTGAA -ACGGAAGCACTTACCAACAGTACG -ACGGAAGCACTTACCAACATCCGA -ACGGAAGCACTTACCAACATGGGA -ACGGAAGCACTTACCAACGTGCAA -ACGGAAGCACTTACCAACGAGGAA -ACGGAAGCACTTACCAACCAGGTA -ACGGAAGCACTTACCAACGACTCT -ACGGAAGCACTTACCAACAGTCCT -ACGGAAGCACTTACCAACTAAGCC -ACGGAAGCACTTACCAACATAGCC -ACGGAAGCACTTACCAACTAACCG -ACGGAAGCACTTACCAACATGCCA -ACGGAAGCACTTGAGATCGGAAAC -ACGGAAGCACTTGAGATCAACACC -ACGGAAGCACTTGAGATCATCGAG -ACGGAAGCACTTGAGATCCTCCTT -ACGGAAGCACTTGAGATCCCTGTT -ACGGAAGCACTTGAGATCCGGTTT -ACGGAAGCACTTGAGATCGTGGTT -ACGGAAGCACTTGAGATCGCCTTT -ACGGAAGCACTTGAGATCGGTCTT -ACGGAAGCACTTGAGATCACGCTT -ACGGAAGCACTTGAGATCAGCGTT -ACGGAAGCACTTGAGATCTTCGTC -ACGGAAGCACTTGAGATCTCTCTC -ACGGAAGCACTTGAGATCTGGATC -ACGGAAGCACTTGAGATCCACTTC -ACGGAAGCACTTGAGATCGTACTC -ACGGAAGCACTTGAGATCGATGTC -ACGGAAGCACTTGAGATCACAGTC -ACGGAAGCACTTGAGATCTTGCTG -ACGGAAGCACTTGAGATCTCCATG -ACGGAAGCACTTGAGATCTGTGTG -ACGGAAGCACTTGAGATCCTAGTG -ACGGAAGCACTTGAGATCCATCTG -ACGGAAGCACTTGAGATCGAGTTG -ACGGAAGCACTTGAGATCAGACTG -ACGGAAGCACTTGAGATCTCGGTA -ACGGAAGCACTTGAGATCTGCCTA -ACGGAAGCACTTGAGATCCCACTA -ACGGAAGCACTTGAGATCGGAGTA -ACGGAAGCACTTGAGATCTCGTCT -ACGGAAGCACTTGAGATCTGCACT -ACGGAAGCACTTGAGATCCTGACT -ACGGAAGCACTTGAGATCCAACCT -ACGGAAGCACTTGAGATCGCTACT -ACGGAAGCACTTGAGATCGGATCT -ACGGAAGCACTTGAGATCAAGGCT -ACGGAAGCACTTGAGATCTCAACC -ACGGAAGCACTTGAGATCTGTTCC -ACGGAAGCACTTGAGATCATTCCC -ACGGAAGCACTTGAGATCTTCTCG -ACGGAAGCACTTGAGATCTAGACG -ACGGAAGCACTTGAGATCGTAACG -ACGGAAGCACTTGAGATCACTTCG -ACGGAAGCACTTGAGATCTACGCA -ACGGAAGCACTTGAGATCCTTGCA -ACGGAAGCACTTGAGATCCGAACA -ACGGAAGCACTTGAGATCCAGTCA -ACGGAAGCACTTGAGATCGATCCA -ACGGAAGCACTTGAGATCACGACA -ACGGAAGCACTTGAGATCAGCTCA -ACGGAAGCACTTGAGATCTCACGT -ACGGAAGCACTTGAGATCCGTAGT -ACGGAAGCACTTGAGATCGTCAGT -ACGGAAGCACTTGAGATCGAAGGT -ACGGAAGCACTTGAGATCAACCGT -ACGGAAGCACTTGAGATCTTGTGC -ACGGAAGCACTTGAGATCCTAAGC -ACGGAAGCACTTGAGATCACTAGC -ACGGAAGCACTTGAGATCAGATGC -ACGGAAGCACTTGAGATCTGAAGG -ACGGAAGCACTTGAGATCCAATGG -ACGGAAGCACTTGAGATCATGAGG -ACGGAAGCACTTGAGATCAATGGG -ACGGAAGCACTTGAGATCTCCTGA -ACGGAAGCACTTGAGATCTAGCGA -ACGGAAGCACTTGAGATCCACAGA -ACGGAAGCACTTGAGATCGCAAGA -ACGGAAGCACTTGAGATCGGTTGA -ACGGAAGCACTTGAGATCTCCGAT -ACGGAAGCACTTGAGATCTGGCAT -ACGGAAGCACTTGAGATCCGAGAT -ACGGAAGCACTTGAGATCTACCAC -ACGGAAGCACTTGAGATCCAGAAC -ACGGAAGCACTTGAGATCGTCTAC -ACGGAAGCACTTGAGATCACGTAC -ACGGAAGCACTTGAGATCAGTGAC -ACGGAAGCACTTGAGATCCTGTAG -ACGGAAGCACTTGAGATCCCTAAG -ACGGAAGCACTTGAGATCGTTCAG -ACGGAAGCACTTGAGATCGCATAG -ACGGAAGCACTTGAGATCGACAAG -ACGGAAGCACTTGAGATCAAGCAG -ACGGAAGCACTTGAGATCCGTCAA -ACGGAAGCACTTGAGATCGCTGAA -ACGGAAGCACTTGAGATCAGTACG -ACGGAAGCACTTGAGATCATCCGA -ACGGAAGCACTTGAGATCATGGGA -ACGGAAGCACTTGAGATCGTGCAA -ACGGAAGCACTTGAGATCGAGGAA -ACGGAAGCACTTGAGATCCAGGTA -ACGGAAGCACTTGAGATCGACTCT -ACGGAAGCACTTGAGATCAGTCCT -ACGGAAGCACTTGAGATCTAAGCC -ACGGAAGCACTTGAGATCATAGCC -ACGGAAGCACTTGAGATCTAACCG -ACGGAAGCACTTGAGATCATGCCA -ACGGAAGCACTTCTTCTCGGAAAC -ACGGAAGCACTTCTTCTCAACACC -ACGGAAGCACTTCTTCTCATCGAG -ACGGAAGCACTTCTTCTCCTCCTT -ACGGAAGCACTTCTTCTCCCTGTT -ACGGAAGCACTTCTTCTCCGGTTT -ACGGAAGCACTTCTTCTCGTGGTT -ACGGAAGCACTTCTTCTCGCCTTT -ACGGAAGCACTTCTTCTCGGTCTT -ACGGAAGCACTTCTTCTCACGCTT -ACGGAAGCACTTCTTCTCAGCGTT -ACGGAAGCACTTCTTCTCTTCGTC -ACGGAAGCACTTCTTCTCTCTCTC -ACGGAAGCACTTCTTCTCTGGATC -ACGGAAGCACTTCTTCTCCACTTC -ACGGAAGCACTTCTTCTCGTACTC -ACGGAAGCACTTCTTCTCGATGTC -ACGGAAGCACTTCTTCTCACAGTC -ACGGAAGCACTTCTTCTCTTGCTG -ACGGAAGCACTTCTTCTCTCCATG -ACGGAAGCACTTCTTCTCTGTGTG -ACGGAAGCACTTCTTCTCCTAGTG -ACGGAAGCACTTCTTCTCCATCTG -ACGGAAGCACTTCTTCTCGAGTTG -ACGGAAGCACTTCTTCTCAGACTG -ACGGAAGCACTTCTTCTCTCGGTA -ACGGAAGCACTTCTTCTCTGCCTA -ACGGAAGCACTTCTTCTCCCACTA -ACGGAAGCACTTCTTCTCGGAGTA -ACGGAAGCACTTCTTCTCTCGTCT -ACGGAAGCACTTCTTCTCTGCACT -ACGGAAGCACTTCTTCTCCTGACT -ACGGAAGCACTTCTTCTCCAACCT -ACGGAAGCACTTCTTCTCGCTACT -ACGGAAGCACTTCTTCTCGGATCT -ACGGAAGCACTTCTTCTCAAGGCT -ACGGAAGCACTTCTTCTCTCAACC -ACGGAAGCACTTCTTCTCTGTTCC -ACGGAAGCACTTCTTCTCATTCCC -ACGGAAGCACTTCTTCTCTTCTCG -ACGGAAGCACTTCTTCTCTAGACG -ACGGAAGCACTTCTTCTCGTAACG -ACGGAAGCACTTCTTCTCACTTCG -ACGGAAGCACTTCTTCTCTACGCA -ACGGAAGCACTTCTTCTCCTTGCA -ACGGAAGCACTTCTTCTCCGAACA -ACGGAAGCACTTCTTCTCCAGTCA -ACGGAAGCACTTCTTCTCGATCCA -ACGGAAGCACTTCTTCTCACGACA -ACGGAAGCACTTCTTCTCAGCTCA -ACGGAAGCACTTCTTCTCTCACGT -ACGGAAGCACTTCTTCTCCGTAGT -ACGGAAGCACTTCTTCTCGTCAGT -ACGGAAGCACTTCTTCTCGAAGGT -ACGGAAGCACTTCTTCTCAACCGT -ACGGAAGCACTTCTTCTCTTGTGC -ACGGAAGCACTTCTTCTCCTAAGC -ACGGAAGCACTTCTTCTCACTAGC -ACGGAAGCACTTCTTCTCAGATGC -ACGGAAGCACTTCTTCTCTGAAGG -ACGGAAGCACTTCTTCTCCAATGG -ACGGAAGCACTTCTTCTCATGAGG -ACGGAAGCACTTCTTCTCAATGGG -ACGGAAGCACTTCTTCTCTCCTGA -ACGGAAGCACTTCTTCTCTAGCGA -ACGGAAGCACTTCTTCTCCACAGA -ACGGAAGCACTTCTTCTCGCAAGA -ACGGAAGCACTTCTTCTCGGTTGA -ACGGAAGCACTTCTTCTCTCCGAT -ACGGAAGCACTTCTTCTCTGGCAT -ACGGAAGCACTTCTTCTCCGAGAT -ACGGAAGCACTTCTTCTCTACCAC -ACGGAAGCACTTCTTCTCCAGAAC -ACGGAAGCACTTCTTCTCGTCTAC -ACGGAAGCACTTCTTCTCACGTAC -ACGGAAGCACTTCTTCTCAGTGAC -ACGGAAGCACTTCTTCTCCTGTAG -ACGGAAGCACTTCTTCTCCCTAAG -ACGGAAGCACTTCTTCTCGTTCAG -ACGGAAGCACTTCTTCTCGCATAG -ACGGAAGCACTTCTTCTCGACAAG -ACGGAAGCACTTCTTCTCAAGCAG -ACGGAAGCACTTCTTCTCCGTCAA -ACGGAAGCACTTCTTCTCGCTGAA -ACGGAAGCACTTCTTCTCAGTACG -ACGGAAGCACTTCTTCTCATCCGA -ACGGAAGCACTTCTTCTCATGGGA -ACGGAAGCACTTCTTCTCGTGCAA -ACGGAAGCACTTCTTCTCGAGGAA -ACGGAAGCACTTCTTCTCCAGGTA -ACGGAAGCACTTCTTCTCGACTCT -ACGGAAGCACTTCTTCTCAGTCCT -ACGGAAGCACTTCTTCTCTAAGCC -ACGGAAGCACTTCTTCTCATAGCC -ACGGAAGCACTTCTTCTCTAACCG -ACGGAAGCACTTCTTCTCATGCCA -ACGGAAGCACTTGTTCCTGGAAAC -ACGGAAGCACTTGTTCCTAACACC -ACGGAAGCACTTGTTCCTATCGAG -ACGGAAGCACTTGTTCCTCTCCTT -ACGGAAGCACTTGTTCCTCCTGTT -ACGGAAGCACTTGTTCCTCGGTTT -ACGGAAGCACTTGTTCCTGTGGTT -ACGGAAGCACTTGTTCCTGCCTTT -ACGGAAGCACTTGTTCCTGGTCTT -ACGGAAGCACTTGTTCCTACGCTT -ACGGAAGCACTTGTTCCTAGCGTT -ACGGAAGCACTTGTTCCTTTCGTC -ACGGAAGCACTTGTTCCTTCTCTC -ACGGAAGCACTTGTTCCTTGGATC -ACGGAAGCACTTGTTCCTCACTTC -ACGGAAGCACTTGTTCCTGTACTC -ACGGAAGCACTTGTTCCTGATGTC -ACGGAAGCACTTGTTCCTACAGTC -ACGGAAGCACTTGTTCCTTTGCTG -ACGGAAGCACTTGTTCCTTCCATG -ACGGAAGCACTTGTTCCTTGTGTG -ACGGAAGCACTTGTTCCTCTAGTG -ACGGAAGCACTTGTTCCTCATCTG -ACGGAAGCACTTGTTCCTGAGTTG -ACGGAAGCACTTGTTCCTAGACTG -ACGGAAGCACTTGTTCCTTCGGTA -ACGGAAGCACTTGTTCCTTGCCTA -ACGGAAGCACTTGTTCCTCCACTA -ACGGAAGCACTTGTTCCTGGAGTA -ACGGAAGCACTTGTTCCTTCGTCT -ACGGAAGCACTTGTTCCTTGCACT -ACGGAAGCACTTGTTCCTCTGACT -ACGGAAGCACTTGTTCCTCAACCT -ACGGAAGCACTTGTTCCTGCTACT -ACGGAAGCACTTGTTCCTGGATCT -ACGGAAGCACTTGTTCCTAAGGCT -ACGGAAGCACTTGTTCCTTCAACC -ACGGAAGCACTTGTTCCTTGTTCC -ACGGAAGCACTTGTTCCTATTCCC -ACGGAAGCACTTGTTCCTTTCTCG -ACGGAAGCACTTGTTCCTTAGACG -ACGGAAGCACTTGTTCCTGTAACG -ACGGAAGCACTTGTTCCTACTTCG -ACGGAAGCACTTGTTCCTTACGCA -ACGGAAGCACTTGTTCCTCTTGCA -ACGGAAGCACTTGTTCCTCGAACA -ACGGAAGCACTTGTTCCTCAGTCA -ACGGAAGCACTTGTTCCTGATCCA -ACGGAAGCACTTGTTCCTACGACA -ACGGAAGCACTTGTTCCTAGCTCA -ACGGAAGCACTTGTTCCTTCACGT -ACGGAAGCACTTGTTCCTCGTAGT -ACGGAAGCACTTGTTCCTGTCAGT -ACGGAAGCACTTGTTCCTGAAGGT -ACGGAAGCACTTGTTCCTAACCGT -ACGGAAGCACTTGTTCCTTTGTGC -ACGGAAGCACTTGTTCCTCTAAGC -ACGGAAGCACTTGTTCCTACTAGC -ACGGAAGCACTTGTTCCTAGATGC -ACGGAAGCACTTGTTCCTTGAAGG -ACGGAAGCACTTGTTCCTCAATGG -ACGGAAGCACTTGTTCCTATGAGG -ACGGAAGCACTTGTTCCTAATGGG -ACGGAAGCACTTGTTCCTTCCTGA -ACGGAAGCACTTGTTCCTTAGCGA -ACGGAAGCACTTGTTCCTCACAGA -ACGGAAGCACTTGTTCCTGCAAGA -ACGGAAGCACTTGTTCCTGGTTGA -ACGGAAGCACTTGTTCCTTCCGAT -ACGGAAGCACTTGTTCCTTGGCAT -ACGGAAGCACTTGTTCCTCGAGAT -ACGGAAGCACTTGTTCCTTACCAC -ACGGAAGCACTTGTTCCTCAGAAC -ACGGAAGCACTTGTTCCTGTCTAC -ACGGAAGCACTTGTTCCTACGTAC -ACGGAAGCACTTGTTCCTAGTGAC -ACGGAAGCACTTGTTCCTCTGTAG -ACGGAAGCACTTGTTCCTCCTAAG -ACGGAAGCACTTGTTCCTGTTCAG -ACGGAAGCACTTGTTCCTGCATAG -ACGGAAGCACTTGTTCCTGACAAG -ACGGAAGCACTTGTTCCTAAGCAG -ACGGAAGCACTTGTTCCTCGTCAA -ACGGAAGCACTTGTTCCTGCTGAA -ACGGAAGCACTTGTTCCTAGTACG -ACGGAAGCACTTGTTCCTATCCGA -ACGGAAGCACTTGTTCCTATGGGA -ACGGAAGCACTTGTTCCTGTGCAA -ACGGAAGCACTTGTTCCTGAGGAA -ACGGAAGCACTTGTTCCTCAGGTA -ACGGAAGCACTTGTTCCTGACTCT -ACGGAAGCACTTGTTCCTAGTCCT -ACGGAAGCACTTGTTCCTTAAGCC -ACGGAAGCACTTGTTCCTATAGCC -ACGGAAGCACTTGTTCCTTAACCG -ACGGAAGCACTTGTTCCTATGCCA -ACGGAAGCACTTTTTCGGGGAAAC -ACGGAAGCACTTTTTCGGAACACC -ACGGAAGCACTTTTTCGGATCGAG -ACGGAAGCACTTTTTCGGCTCCTT -ACGGAAGCACTTTTTCGGCCTGTT -ACGGAAGCACTTTTTCGGCGGTTT -ACGGAAGCACTTTTTCGGGTGGTT -ACGGAAGCACTTTTTCGGGCCTTT -ACGGAAGCACTTTTTCGGGGTCTT -ACGGAAGCACTTTTTCGGACGCTT -ACGGAAGCACTTTTTCGGAGCGTT -ACGGAAGCACTTTTTCGGTTCGTC -ACGGAAGCACTTTTTCGGTCTCTC -ACGGAAGCACTTTTTCGGTGGATC -ACGGAAGCACTTTTTCGGCACTTC -ACGGAAGCACTTTTTCGGGTACTC -ACGGAAGCACTTTTTCGGGATGTC -ACGGAAGCACTTTTTCGGACAGTC -ACGGAAGCACTTTTTCGGTTGCTG -ACGGAAGCACTTTTTCGGTCCATG -ACGGAAGCACTTTTTCGGTGTGTG -ACGGAAGCACTTTTTCGGCTAGTG -ACGGAAGCACTTTTTCGGCATCTG -ACGGAAGCACTTTTTCGGGAGTTG -ACGGAAGCACTTTTTCGGAGACTG -ACGGAAGCACTTTTTCGGTCGGTA -ACGGAAGCACTTTTTCGGTGCCTA -ACGGAAGCACTTTTTCGGCCACTA -ACGGAAGCACTTTTTCGGGGAGTA -ACGGAAGCACTTTTTCGGTCGTCT -ACGGAAGCACTTTTTCGGTGCACT -ACGGAAGCACTTTTTCGGCTGACT -ACGGAAGCACTTTTTCGGCAACCT -ACGGAAGCACTTTTTCGGGCTACT -ACGGAAGCACTTTTTCGGGGATCT -ACGGAAGCACTTTTTCGGAAGGCT -ACGGAAGCACTTTTTCGGTCAACC -ACGGAAGCACTTTTTCGGTGTTCC -ACGGAAGCACTTTTTCGGATTCCC -ACGGAAGCACTTTTTCGGTTCTCG -ACGGAAGCACTTTTTCGGTAGACG -ACGGAAGCACTTTTTCGGGTAACG -ACGGAAGCACTTTTTCGGACTTCG -ACGGAAGCACTTTTTCGGTACGCA -ACGGAAGCACTTTTTCGGCTTGCA -ACGGAAGCACTTTTTCGGCGAACA -ACGGAAGCACTTTTTCGGCAGTCA -ACGGAAGCACTTTTTCGGGATCCA -ACGGAAGCACTTTTTCGGACGACA -ACGGAAGCACTTTTTCGGAGCTCA -ACGGAAGCACTTTTTCGGTCACGT -ACGGAAGCACTTTTTCGGCGTAGT -ACGGAAGCACTTTTTCGGGTCAGT -ACGGAAGCACTTTTTCGGGAAGGT -ACGGAAGCACTTTTTCGGAACCGT -ACGGAAGCACTTTTTCGGTTGTGC -ACGGAAGCACTTTTTCGGCTAAGC -ACGGAAGCACTTTTTCGGACTAGC -ACGGAAGCACTTTTTCGGAGATGC -ACGGAAGCACTTTTTCGGTGAAGG -ACGGAAGCACTTTTTCGGCAATGG -ACGGAAGCACTTTTTCGGATGAGG -ACGGAAGCACTTTTTCGGAATGGG -ACGGAAGCACTTTTTCGGTCCTGA -ACGGAAGCACTTTTTCGGTAGCGA -ACGGAAGCACTTTTTCGGCACAGA -ACGGAAGCACTTTTTCGGGCAAGA -ACGGAAGCACTTTTTCGGGGTTGA -ACGGAAGCACTTTTTCGGTCCGAT -ACGGAAGCACTTTTTCGGTGGCAT -ACGGAAGCACTTTTTCGGCGAGAT -ACGGAAGCACTTTTTCGGTACCAC -ACGGAAGCACTTTTTCGGCAGAAC -ACGGAAGCACTTTTTCGGGTCTAC -ACGGAAGCACTTTTTCGGACGTAC -ACGGAAGCACTTTTTCGGAGTGAC -ACGGAAGCACTTTTTCGGCTGTAG -ACGGAAGCACTTTTTCGGCCTAAG -ACGGAAGCACTTTTTCGGGTTCAG -ACGGAAGCACTTTTTCGGGCATAG -ACGGAAGCACTTTTTCGGGACAAG -ACGGAAGCACTTTTTCGGAAGCAG -ACGGAAGCACTTTTTCGGCGTCAA -ACGGAAGCACTTTTTCGGGCTGAA -ACGGAAGCACTTTTTCGGAGTACG -ACGGAAGCACTTTTTCGGATCCGA -ACGGAAGCACTTTTTCGGATGGGA -ACGGAAGCACTTTTTCGGGTGCAA -ACGGAAGCACTTTTTCGGGAGGAA -ACGGAAGCACTTTTTCGGCAGGTA -ACGGAAGCACTTTTTCGGGACTCT -ACGGAAGCACTTTTTCGGAGTCCT -ACGGAAGCACTTTTTCGGTAAGCC -ACGGAAGCACTTTTTCGGATAGCC -ACGGAAGCACTTTTTCGGTAACCG -ACGGAAGCACTTTTTCGGATGCCA -ACGGAAGCACTTGTTGTGGGAAAC -ACGGAAGCACTTGTTGTGAACACC -ACGGAAGCACTTGTTGTGATCGAG -ACGGAAGCACTTGTTGTGCTCCTT -ACGGAAGCACTTGTTGTGCCTGTT -ACGGAAGCACTTGTTGTGCGGTTT -ACGGAAGCACTTGTTGTGGTGGTT -ACGGAAGCACTTGTTGTGGCCTTT -ACGGAAGCACTTGTTGTGGGTCTT -ACGGAAGCACTTGTTGTGACGCTT -ACGGAAGCACTTGTTGTGAGCGTT -ACGGAAGCACTTGTTGTGTTCGTC -ACGGAAGCACTTGTTGTGTCTCTC -ACGGAAGCACTTGTTGTGTGGATC -ACGGAAGCACTTGTTGTGCACTTC -ACGGAAGCACTTGTTGTGGTACTC -ACGGAAGCACTTGTTGTGGATGTC -ACGGAAGCACTTGTTGTGACAGTC -ACGGAAGCACTTGTTGTGTTGCTG -ACGGAAGCACTTGTTGTGTCCATG -ACGGAAGCACTTGTTGTGTGTGTG -ACGGAAGCACTTGTTGTGCTAGTG -ACGGAAGCACTTGTTGTGCATCTG -ACGGAAGCACTTGTTGTGGAGTTG -ACGGAAGCACTTGTTGTGAGACTG -ACGGAAGCACTTGTTGTGTCGGTA -ACGGAAGCACTTGTTGTGTGCCTA -ACGGAAGCACTTGTTGTGCCACTA -ACGGAAGCACTTGTTGTGGGAGTA -ACGGAAGCACTTGTTGTGTCGTCT -ACGGAAGCACTTGTTGTGTGCACT -ACGGAAGCACTTGTTGTGCTGACT -ACGGAAGCACTTGTTGTGCAACCT -ACGGAAGCACTTGTTGTGGCTACT -ACGGAAGCACTTGTTGTGGGATCT -ACGGAAGCACTTGTTGTGAAGGCT -ACGGAAGCACTTGTTGTGTCAACC -ACGGAAGCACTTGTTGTGTGTTCC -ACGGAAGCACTTGTTGTGATTCCC -ACGGAAGCACTTGTTGTGTTCTCG -ACGGAAGCACTTGTTGTGTAGACG -ACGGAAGCACTTGTTGTGGTAACG -ACGGAAGCACTTGTTGTGACTTCG -ACGGAAGCACTTGTTGTGTACGCA -ACGGAAGCACTTGTTGTGCTTGCA -ACGGAAGCACTTGTTGTGCGAACA -ACGGAAGCACTTGTTGTGCAGTCA -ACGGAAGCACTTGTTGTGGATCCA -ACGGAAGCACTTGTTGTGACGACA -ACGGAAGCACTTGTTGTGAGCTCA -ACGGAAGCACTTGTTGTGTCACGT -ACGGAAGCACTTGTTGTGCGTAGT -ACGGAAGCACTTGTTGTGGTCAGT -ACGGAAGCACTTGTTGTGGAAGGT -ACGGAAGCACTTGTTGTGAACCGT -ACGGAAGCACTTGTTGTGTTGTGC -ACGGAAGCACTTGTTGTGCTAAGC -ACGGAAGCACTTGTTGTGACTAGC -ACGGAAGCACTTGTTGTGAGATGC -ACGGAAGCACTTGTTGTGTGAAGG -ACGGAAGCACTTGTTGTGCAATGG -ACGGAAGCACTTGTTGTGATGAGG -ACGGAAGCACTTGTTGTGAATGGG -ACGGAAGCACTTGTTGTGTCCTGA -ACGGAAGCACTTGTTGTGTAGCGA -ACGGAAGCACTTGTTGTGCACAGA -ACGGAAGCACTTGTTGTGGCAAGA -ACGGAAGCACTTGTTGTGGGTTGA -ACGGAAGCACTTGTTGTGTCCGAT -ACGGAAGCACTTGTTGTGTGGCAT -ACGGAAGCACTTGTTGTGCGAGAT -ACGGAAGCACTTGTTGTGTACCAC -ACGGAAGCACTTGTTGTGCAGAAC -ACGGAAGCACTTGTTGTGGTCTAC -ACGGAAGCACTTGTTGTGACGTAC -ACGGAAGCACTTGTTGTGAGTGAC -ACGGAAGCACTTGTTGTGCTGTAG -ACGGAAGCACTTGTTGTGCCTAAG -ACGGAAGCACTTGTTGTGGTTCAG -ACGGAAGCACTTGTTGTGGCATAG -ACGGAAGCACTTGTTGTGGACAAG -ACGGAAGCACTTGTTGTGAAGCAG -ACGGAAGCACTTGTTGTGCGTCAA -ACGGAAGCACTTGTTGTGGCTGAA -ACGGAAGCACTTGTTGTGAGTACG -ACGGAAGCACTTGTTGTGATCCGA -ACGGAAGCACTTGTTGTGATGGGA -ACGGAAGCACTTGTTGTGGTGCAA -ACGGAAGCACTTGTTGTGGAGGAA -ACGGAAGCACTTGTTGTGCAGGTA -ACGGAAGCACTTGTTGTGGACTCT -ACGGAAGCACTTGTTGTGAGTCCT -ACGGAAGCACTTGTTGTGTAAGCC -ACGGAAGCACTTGTTGTGATAGCC -ACGGAAGCACTTGTTGTGTAACCG -ACGGAAGCACTTGTTGTGATGCCA -ACGGAAGCACTTTTTGCCGGAAAC -ACGGAAGCACTTTTTGCCAACACC -ACGGAAGCACTTTTTGCCATCGAG -ACGGAAGCACTTTTTGCCCTCCTT -ACGGAAGCACTTTTTGCCCCTGTT -ACGGAAGCACTTTTTGCCCGGTTT -ACGGAAGCACTTTTTGCCGTGGTT -ACGGAAGCACTTTTTGCCGCCTTT -ACGGAAGCACTTTTTGCCGGTCTT -ACGGAAGCACTTTTTGCCACGCTT -ACGGAAGCACTTTTTGCCAGCGTT -ACGGAAGCACTTTTTGCCTTCGTC -ACGGAAGCACTTTTTGCCTCTCTC -ACGGAAGCACTTTTTGCCTGGATC -ACGGAAGCACTTTTTGCCCACTTC -ACGGAAGCACTTTTTGCCGTACTC -ACGGAAGCACTTTTTGCCGATGTC -ACGGAAGCACTTTTTGCCACAGTC -ACGGAAGCACTTTTTGCCTTGCTG -ACGGAAGCACTTTTTGCCTCCATG -ACGGAAGCACTTTTTGCCTGTGTG -ACGGAAGCACTTTTTGCCCTAGTG -ACGGAAGCACTTTTTGCCCATCTG -ACGGAAGCACTTTTTGCCGAGTTG -ACGGAAGCACTTTTTGCCAGACTG -ACGGAAGCACTTTTTGCCTCGGTA -ACGGAAGCACTTTTTGCCTGCCTA -ACGGAAGCACTTTTTGCCCCACTA -ACGGAAGCACTTTTTGCCGGAGTA -ACGGAAGCACTTTTTGCCTCGTCT -ACGGAAGCACTTTTTGCCTGCACT -ACGGAAGCACTTTTTGCCCTGACT -ACGGAAGCACTTTTTGCCCAACCT -ACGGAAGCACTTTTTGCCGCTACT -ACGGAAGCACTTTTTGCCGGATCT -ACGGAAGCACTTTTTGCCAAGGCT -ACGGAAGCACTTTTTGCCTCAACC -ACGGAAGCACTTTTTGCCTGTTCC -ACGGAAGCACTTTTTGCCATTCCC -ACGGAAGCACTTTTTGCCTTCTCG -ACGGAAGCACTTTTTGCCTAGACG -ACGGAAGCACTTTTTGCCGTAACG -ACGGAAGCACTTTTTGCCACTTCG -ACGGAAGCACTTTTTGCCTACGCA -ACGGAAGCACTTTTTGCCCTTGCA -ACGGAAGCACTTTTTGCCCGAACA -ACGGAAGCACTTTTTGCCCAGTCA -ACGGAAGCACTTTTTGCCGATCCA -ACGGAAGCACTTTTTGCCACGACA -ACGGAAGCACTTTTTGCCAGCTCA -ACGGAAGCACTTTTTGCCTCACGT -ACGGAAGCACTTTTTGCCCGTAGT -ACGGAAGCACTTTTTGCCGTCAGT -ACGGAAGCACTTTTTGCCGAAGGT -ACGGAAGCACTTTTTGCCAACCGT -ACGGAAGCACTTTTTGCCTTGTGC -ACGGAAGCACTTTTTGCCCTAAGC -ACGGAAGCACTTTTTGCCACTAGC -ACGGAAGCACTTTTTGCCAGATGC -ACGGAAGCACTTTTTGCCTGAAGG -ACGGAAGCACTTTTTGCCCAATGG -ACGGAAGCACTTTTTGCCATGAGG -ACGGAAGCACTTTTTGCCAATGGG -ACGGAAGCACTTTTTGCCTCCTGA -ACGGAAGCACTTTTTGCCTAGCGA -ACGGAAGCACTTTTTGCCCACAGA -ACGGAAGCACTTTTTGCCGCAAGA -ACGGAAGCACTTTTTGCCGGTTGA -ACGGAAGCACTTTTTGCCTCCGAT -ACGGAAGCACTTTTTGCCTGGCAT -ACGGAAGCACTTTTTGCCCGAGAT -ACGGAAGCACTTTTTGCCTACCAC -ACGGAAGCACTTTTTGCCCAGAAC -ACGGAAGCACTTTTTGCCGTCTAC -ACGGAAGCACTTTTTGCCACGTAC -ACGGAAGCACTTTTTGCCAGTGAC -ACGGAAGCACTTTTTGCCCTGTAG -ACGGAAGCACTTTTTGCCCCTAAG -ACGGAAGCACTTTTTGCCGTTCAG -ACGGAAGCACTTTTTGCCGCATAG -ACGGAAGCACTTTTTGCCGACAAG -ACGGAAGCACTTTTTGCCAAGCAG -ACGGAAGCACTTTTTGCCCGTCAA -ACGGAAGCACTTTTTGCCGCTGAA -ACGGAAGCACTTTTTGCCAGTACG -ACGGAAGCACTTTTTGCCATCCGA -ACGGAAGCACTTTTTGCCATGGGA -ACGGAAGCACTTTTTGCCGTGCAA -ACGGAAGCACTTTTTGCCGAGGAA -ACGGAAGCACTTTTTGCCCAGGTA -ACGGAAGCACTTTTTGCCGACTCT -ACGGAAGCACTTTTTGCCAGTCCT -ACGGAAGCACTTTTTGCCTAAGCC -ACGGAAGCACTTTTTGCCATAGCC -ACGGAAGCACTTTTTGCCTAACCG -ACGGAAGCACTTTTTGCCATGCCA -ACGGAAGCACTTCTTGGTGGAAAC -ACGGAAGCACTTCTTGGTAACACC -ACGGAAGCACTTCTTGGTATCGAG -ACGGAAGCACTTCTTGGTCTCCTT -ACGGAAGCACTTCTTGGTCCTGTT -ACGGAAGCACTTCTTGGTCGGTTT -ACGGAAGCACTTCTTGGTGTGGTT -ACGGAAGCACTTCTTGGTGCCTTT -ACGGAAGCACTTCTTGGTGGTCTT -ACGGAAGCACTTCTTGGTACGCTT -ACGGAAGCACTTCTTGGTAGCGTT -ACGGAAGCACTTCTTGGTTTCGTC -ACGGAAGCACTTCTTGGTTCTCTC -ACGGAAGCACTTCTTGGTTGGATC -ACGGAAGCACTTCTTGGTCACTTC -ACGGAAGCACTTCTTGGTGTACTC -ACGGAAGCACTTCTTGGTGATGTC -ACGGAAGCACTTCTTGGTACAGTC -ACGGAAGCACTTCTTGGTTTGCTG -ACGGAAGCACTTCTTGGTTCCATG -ACGGAAGCACTTCTTGGTTGTGTG -ACGGAAGCACTTCTTGGTCTAGTG -ACGGAAGCACTTCTTGGTCATCTG -ACGGAAGCACTTCTTGGTGAGTTG -ACGGAAGCACTTCTTGGTAGACTG -ACGGAAGCACTTCTTGGTTCGGTA -ACGGAAGCACTTCTTGGTTGCCTA -ACGGAAGCACTTCTTGGTCCACTA -ACGGAAGCACTTCTTGGTGGAGTA -ACGGAAGCACTTCTTGGTTCGTCT -ACGGAAGCACTTCTTGGTTGCACT -ACGGAAGCACTTCTTGGTCTGACT -ACGGAAGCACTTCTTGGTCAACCT -ACGGAAGCACTTCTTGGTGCTACT -ACGGAAGCACTTCTTGGTGGATCT -ACGGAAGCACTTCTTGGTAAGGCT -ACGGAAGCACTTCTTGGTTCAACC -ACGGAAGCACTTCTTGGTTGTTCC -ACGGAAGCACTTCTTGGTATTCCC -ACGGAAGCACTTCTTGGTTTCTCG -ACGGAAGCACTTCTTGGTTAGACG -ACGGAAGCACTTCTTGGTGTAACG -ACGGAAGCACTTCTTGGTACTTCG -ACGGAAGCACTTCTTGGTTACGCA -ACGGAAGCACTTCTTGGTCTTGCA -ACGGAAGCACTTCTTGGTCGAACA -ACGGAAGCACTTCTTGGTCAGTCA -ACGGAAGCACTTCTTGGTGATCCA -ACGGAAGCACTTCTTGGTACGACA -ACGGAAGCACTTCTTGGTAGCTCA -ACGGAAGCACTTCTTGGTTCACGT -ACGGAAGCACTTCTTGGTCGTAGT -ACGGAAGCACTTCTTGGTGTCAGT -ACGGAAGCACTTCTTGGTGAAGGT -ACGGAAGCACTTCTTGGTAACCGT -ACGGAAGCACTTCTTGGTTTGTGC -ACGGAAGCACTTCTTGGTCTAAGC -ACGGAAGCACTTCTTGGTACTAGC -ACGGAAGCACTTCTTGGTAGATGC -ACGGAAGCACTTCTTGGTTGAAGG -ACGGAAGCACTTCTTGGTCAATGG -ACGGAAGCACTTCTTGGTATGAGG -ACGGAAGCACTTCTTGGTAATGGG -ACGGAAGCACTTCTTGGTTCCTGA -ACGGAAGCACTTCTTGGTTAGCGA -ACGGAAGCACTTCTTGGTCACAGA -ACGGAAGCACTTCTTGGTGCAAGA -ACGGAAGCACTTCTTGGTGGTTGA -ACGGAAGCACTTCTTGGTTCCGAT -ACGGAAGCACTTCTTGGTTGGCAT -ACGGAAGCACTTCTTGGTCGAGAT -ACGGAAGCACTTCTTGGTTACCAC -ACGGAAGCACTTCTTGGTCAGAAC -ACGGAAGCACTTCTTGGTGTCTAC -ACGGAAGCACTTCTTGGTACGTAC -ACGGAAGCACTTCTTGGTAGTGAC -ACGGAAGCACTTCTTGGTCTGTAG -ACGGAAGCACTTCTTGGTCCTAAG -ACGGAAGCACTTCTTGGTGTTCAG -ACGGAAGCACTTCTTGGTGCATAG -ACGGAAGCACTTCTTGGTGACAAG -ACGGAAGCACTTCTTGGTAAGCAG -ACGGAAGCACTTCTTGGTCGTCAA -ACGGAAGCACTTCTTGGTGCTGAA -ACGGAAGCACTTCTTGGTAGTACG -ACGGAAGCACTTCTTGGTATCCGA -ACGGAAGCACTTCTTGGTATGGGA -ACGGAAGCACTTCTTGGTGTGCAA -ACGGAAGCACTTCTTGGTGAGGAA -ACGGAAGCACTTCTTGGTCAGGTA -ACGGAAGCACTTCTTGGTGACTCT -ACGGAAGCACTTCTTGGTAGTCCT -ACGGAAGCACTTCTTGGTTAAGCC -ACGGAAGCACTTCTTGGTATAGCC -ACGGAAGCACTTCTTGGTTAACCG -ACGGAAGCACTTCTTGGTATGCCA -ACGGAAGCACTTCTTACGGGAAAC -ACGGAAGCACTTCTTACGAACACC -ACGGAAGCACTTCTTACGATCGAG -ACGGAAGCACTTCTTACGCTCCTT -ACGGAAGCACTTCTTACGCCTGTT -ACGGAAGCACTTCTTACGCGGTTT -ACGGAAGCACTTCTTACGGTGGTT -ACGGAAGCACTTCTTACGGCCTTT -ACGGAAGCACTTCTTACGGGTCTT -ACGGAAGCACTTCTTACGACGCTT -ACGGAAGCACTTCTTACGAGCGTT -ACGGAAGCACTTCTTACGTTCGTC -ACGGAAGCACTTCTTACGTCTCTC -ACGGAAGCACTTCTTACGTGGATC -ACGGAAGCACTTCTTACGCACTTC -ACGGAAGCACTTCTTACGGTACTC -ACGGAAGCACTTCTTACGGATGTC -ACGGAAGCACTTCTTACGACAGTC -ACGGAAGCACTTCTTACGTTGCTG -ACGGAAGCACTTCTTACGTCCATG -ACGGAAGCACTTCTTACGTGTGTG -ACGGAAGCACTTCTTACGCTAGTG -ACGGAAGCACTTCTTACGCATCTG -ACGGAAGCACTTCTTACGGAGTTG -ACGGAAGCACTTCTTACGAGACTG -ACGGAAGCACTTCTTACGTCGGTA -ACGGAAGCACTTCTTACGTGCCTA -ACGGAAGCACTTCTTACGCCACTA -ACGGAAGCACTTCTTACGGGAGTA -ACGGAAGCACTTCTTACGTCGTCT -ACGGAAGCACTTCTTACGTGCACT -ACGGAAGCACTTCTTACGCTGACT -ACGGAAGCACTTCTTACGCAACCT -ACGGAAGCACTTCTTACGGCTACT -ACGGAAGCACTTCTTACGGGATCT -ACGGAAGCACTTCTTACGAAGGCT -ACGGAAGCACTTCTTACGTCAACC -ACGGAAGCACTTCTTACGTGTTCC -ACGGAAGCACTTCTTACGATTCCC -ACGGAAGCACTTCTTACGTTCTCG -ACGGAAGCACTTCTTACGTAGACG -ACGGAAGCACTTCTTACGGTAACG -ACGGAAGCACTTCTTACGACTTCG -ACGGAAGCACTTCTTACGTACGCA -ACGGAAGCACTTCTTACGCTTGCA -ACGGAAGCACTTCTTACGCGAACA -ACGGAAGCACTTCTTACGCAGTCA -ACGGAAGCACTTCTTACGGATCCA -ACGGAAGCACTTCTTACGACGACA -ACGGAAGCACTTCTTACGAGCTCA -ACGGAAGCACTTCTTACGTCACGT -ACGGAAGCACTTCTTACGCGTAGT -ACGGAAGCACTTCTTACGGTCAGT -ACGGAAGCACTTCTTACGGAAGGT -ACGGAAGCACTTCTTACGAACCGT -ACGGAAGCACTTCTTACGTTGTGC -ACGGAAGCACTTCTTACGCTAAGC -ACGGAAGCACTTCTTACGACTAGC -ACGGAAGCACTTCTTACGAGATGC -ACGGAAGCACTTCTTACGTGAAGG -ACGGAAGCACTTCTTACGCAATGG -ACGGAAGCACTTCTTACGATGAGG -ACGGAAGCACTTCTTACGAATGGG -ACGGAAGCACTTCTTACGTCCTGA -ACGGAAGCACTTCTTACGTAGCGA -ACGGAAGCACTTCTTACGCACAGA -ACGGAAGCACTTCTTACGGCAAGA -ACGGAAGCACTTCTTACGGGTTGA -ACGGAAGCACTTCTTACGTCCGAT -ACGGAAGCACTTCTTACGTGGCAT -ACGGAAGCACTTCTTACGCGAGAT -ACGGAAGCACTTCTTACGTACCAC -ACGGAAGCACTTCTTACGCAGAAC -ACGGAAGCACTTCTTACGGTCTAC -ACGGAAGCACTTCTTACGACGTAC -ACGGAAGCACTTCTTACGAGTGAC -ACGGAAGCACTTCTTACGCTGTAG -ACGGAAGCACTTCTTACGCCTAAG -ACGGAAGCACTTCTTACGGTTCAG -ACGGAAGCACTTCTTACGGCATAG -ACGGAAGCACTTCTTACGGACAAG -ACGGAAGCACTTCTTACGAAGCAG -ACGGAAGCACTTCTTACGCGTCAA -ACGGAAGCACTTCTTACGGCTGAA -ACGGAAGCACTTCTTACGAGTACG -ACGGAAGCACTTCTTACGATCCGA -ACGGAAGCACTTCTTACGATGGGA -ACGGAAGCACTTCTTACGGTGCAA -ACGGAAGCACTTCTTACGGAGGAA -ACGGAAGCACTTCTTACGCAGGTA -ACGGAAGCACTTCTTACGGACTCT -ACGGAAGCACTTCTTACGAGTCCT -ACGGAAGCACTTCTTACGTAAGCC -ACGGAAGCACTTCTTACGATAGCC -ACGGAAGCACTTCTTACGTAACCG -ACGGAAGCACTTCTTACGATGCCA -ACGGAAGCACTTGTTAGCGGAAAC -ACGGAAGCACTTGTTAGCAACACC -ACGGAAGCACTTGTTAGCATCGAG -ACGGAAGCACTTGTTAGCCTCCTT -ACGGAAGCACTTGTTAGCCCTGTT -ACGGAAGCACTTGTTAGCCGGTTT -ACGGAAGCACTTGTTAGCGTGGTT -ACGGAAGCACTTGTTAGCGCCTTT -ACGGAAGCACTTGTTAGCGGTCTT -ACGGAAGCACTTGTTAGCACGCTT -ACGGAAGCACTTGTTAGCAGCGTT -ACGGAAGCACTTGTTAGCTTCGTC -ACGGAAGCACTTGTTAGCTCTCTC -ACGGAAGCACTTGTTAGCTGGATC -ACGGAAGCACTTGTTAGCCACTTC -ACGGAAGCACTTGTTAGCGTACTC -ACGGAAGCACTTGTTAGCGATGTC -ACGGAAGCACTTGTTAGCACAGTC -ACGGAAGCACTTGTTAGCTTGCTG -ACGGAAGCACTTGTTAGCTCCATG -ACGGAAGCACTTGTTAGCTGTGTG -ACGGAAGCACTTGTTAGCCTAGTG -ACGGAAGCACTTGTTAGCCATCTG -ACGGAAGCACTTGTTAGCGAGTTG -ACGGAAGCACTTGTTAGCAGACTG -ACGGAAGCACTTGTTAGCTCGGTA -ACGGAAGCACTTGTTAGCTGCCTA -ACGGAAGCACTTGTTAGCCCACTA -ACGGAAGCACTTGTTAGCGGAGTA -ACGGAAGCACTTGTTAGCTCGTCT -ACGGAAGCACTTGTTAGCTGCACT -ACGGAAGCACTTGTTAGCCTGACT -ACGGAAGCACTTGTTAGCCAACCT -ACGGAAGCACTTGTTAGCGCTACT -ACGGAAGCACTTGTTAGCGGATCT -ACGGAAGCACTTGTTAGCAAGGCT -ACGGAAGCACTTGTTAGCTCAACC -ACGGAAGCACTTGTTAGCTGTTCC -ACGGAAGCACTTGTTAGCATTCCC -ACGGAAGCACTTGTTAGCTTCTCG -ACGGAAGCACTTGTTAGCTAGACG -ACGGAAGCACTTGTTAGCGTAACG -ACGGAAGCACTTGTTAGCACTTCG -ACGGAAGCACTTGTTAGCTACGCA -ACGGAAGCACTTGTTAGCCTTGCA -ACGGAAGCACTTGTTAGCCGAACA -ACGGAAGCACTTGTTAGCCAGTCA -ACGGAAGCACTTGTTAGCGATCCA -ACGGAAGCACTTGTTAGCACGACA -ACGGAAGCACTTGTTAGCAGCTCA -ACGGAAGCACTTGTTAGCTCACGT -ACGGAAGCACTTGTTAGCCGTAGT -ACGGAAGCACTTGTTAGCGTCAGT -ACGGAAGCACTTGTTAGCGAAGGT -ACGGAAGCACTTGTTAGCAACCGT -ACGGAAGCACTTGTTAGCTTGTGC -ACGGAAGCACTTGTTAGCCTAAGC -ACGGAAGCACTTGTTAGCACTAGC -ACGGAAGCACTTGTTAGCAGATGC -ACGGAAGCACTTGTTAGCTGAAGG -ACGGAAGCACTTGTTAGCCAATGG -ACGGAAGCACTTGTTAGCATGAGG -ACGGAAGCACTTGTTAGCAATGGG -ACGGAAGCACTTGTTAGCTCCTGA -ACGGAAGCACTTGTTAGCTAGCGA -ACGGAAGCACTTGTTAGCCACAGA -ACGGAAGCACTTGTTAGCGCAAGA -ACGGAAGCACTTGTTAGCGGTTGA -ACGGAAGCACTTGTTAGCTCCGAT -ACGGAAGCACTTGTTAGCTGGCAT -ACGGAAGCACTTGTTAGCCGAGAT -ACGGAAGCACTTGTTAGCTACCAC -ACGGAAGCACTTGTTAGCCAGAAC -ACGGAAGCACTTGTTAGCGTCTAC -ACGGAAGCACTTGTTAGCACGTAC -ACGGAAGCACTTGTTAGCAGTGAC -ACGGAAGCACTTGTTAGCCTGTAG -ACGGAAGCACTTGTTAGCCCTAAG -ACGGAAGCACTTGTTAGCGTTCAG -ACGGAAGCACTTGTTAGCGCATAG -ACGGAAGCACTTGTTAGCGACAAG -ACGGAAGCACTTGTTAGCAAGCAG -ACGGAAGCACTTGTTAGCCGTCAA -ACGGAAGCACTTGTTAGCGCTGAA -ACGGAAGCACTTGTTAGCAGTACG -ACGGAAGCACTTGTTAGCATCCGA -ACGGAAGCACTTGTTAGCATGGGA -ACGGAAGCACTTGTTAGCGTGCAA -ACGGAAGCACTTGTTAGCGAGGAA -ACGGAAGCACTTGTTAGCCAGGTA -ACGGAAGCACTTGTTAGCGACTCT -ACGGAAGCACTTGTTAGCAGTCCT -ACGGAAGCACTTGTTAGCTAAGCC -ACGGAAGCACTTGTTAGCATAGCC -ACGGAAGCACTTGTTAGCTAACCG -ACGGAAGCACTTGTTAGCATGCCA -ACGGAAGCACTTGTCTTCGGAAAC -ACGGAAGCACTTGTCTTCAACACC -ACGGAAGCACTTGTCTTCATCGAG -ACGGAAGCACTTGTCTTCCTCCTT -ACGGAAGCACTTGTCTTCCCTGTT -ACGGAAGCACTTGTCTTCCGGTTT -ACGGAAGCACTTGTCTTCGTGGTT -ACGGAAGCACTTGTCTTCGCCTTT -ACGGAAGCACTTGTCTTCGGTCTT -ACGGAAGCACTTGTCTTCACGCTT -ACGGAAGCACTTGTCTTCAGCGTT -ACGGAAGCACTTGTCTTCTTCGTC -ACGGAAGCACTTGTCTTCTCTCTC -ACGGAAGCACTTGTCTTCTGGATC -ACGGAAGCACTTGTCTTCCACTTC -ACGGAAGCACTTGTCTTCGTACTC -ACGGAAGCACTTGTCTTCGATGTC -ACGGAAGCACTTGTCTTCACAGTC -ACGGAAGCACTTGTCTTCTTGCTG -ACGGAAGCACTTGTCTTCTCCATG -ACGGAAGCACTTGTCTTCTGTGTG -ACGGAAGCACTTGTCTTCCTAGTG -ACGGAAGCACTTGTCTTCCATCTG -ACGGAAGCACTTGTCTTCGAGTTG -ACGGAAGCACTTGTCTTCAGACTG -ACGGAAGCACTTGTCTTCTCGGTA -ACGGAAGCACTTGTCTTCTGCCTA -ACGGAAGCACTTGTCTTCCCACTA -ACGGAAGCACTTGTCTTCGGAGTA -ACGGAAGCACTTGTCTTCTCGTCT -ACGGAAGCACTTGTCTTCTGCACT -ACGGAAGCACTTGTCTTCCTGACT -ACGGAAGCACTTGTCTTCCAACCT -ACGGAAGCACTTGTCTTCGCTACT -ACGGAAGCACTTGTCTTCGGATCT -ACGGAAGCACTTGTCTTCAAGGCT -ACGGAAGCACTTGTCTTCTCAACC -ACGGAAGCACTTGTCTTCTGTTCC -ACGGAAGCACTTGTCTTCATTCCC -ACGGAAGCACTTGTCTTCTTCTCG -ACGGAAGCACTTGTCTTCTAGACG -ACGGAAGCACTTGTCTTCGTAACG -ACGGAAGCACTTGTCTTCACTTCG -ACGGAAGCACTTGTCTTCTACGCA -ACGGAAGCACTTGTCTTCCTTGCA -ACGGAAGCACTTGTCTTCCGAACA -ACGGAAGCACTTGTCTTCCAGTCA -ACGGAAGCACTTGTCTTCGATCCA -ACGGAAGCACTTGTCTTCACGACA -ACGGAAGCACTTGTCTTCAGCTCA -ACGGAAGCACTTGTCTTCTCACGT -ACGGAAGCACTTGTCTTCCGTAGT -ACGGAAGCACTTGTCTTCGTCAGT -ACGGAAGCACTTGTCTTCGAAGGT -ACGGAAGCACTTGTCTTCAACCGT -ACGGAAGCACTTGTCTTCTTGTGC -ACGGAAGCACTTGTCTTCCTAAGC -ACGGAAGCACTTGTCTTCACTAGC -ACGGAAGCACTTGTCTTCAGATGC -ACGGAAGCACTTGTCTTCTGAAGG -ACGGAAGCACTTGTCTTCCAATGG -ACGGAAGCACTTGTCTTCATGAGG -ACGGAAGCACTTGTCTTCAATGGG -ACGGAAGCACTTGTCTTCTCCTGA -ACGGAAGCACTTGTCTTCTAGCGA -ACGGAAGCACTTGTCTTCCACAGA -ACGGAAGCACTTGTCTTCGCAAGA -ACGGAAGCACTTGTCTTCGGTTGA -ACGGAAGCACTTGTCTTCTCCGAT -ACGGAAGCACTTGTCTTCTGGCAT -ACGGAAGCACTTGTCTTCCGAGAT -ACGGAAGCACTTGTCTTCTACCAC -ACGGAAGCACTTGTCTTCCAGAAC -ACGGAAGCACTTGTCTTCGTCTAC -ACGGAAGCACTTGTCTTCACGTAC -ACGGAAGCACTTGTCTTCAGTGAC -ACGGAAGCACTTGTCTTCCTGTAG -ACGGAAGCACTTGTCTTCCCTAAG -ACGGAAGCACTTGTCTTCGTTCAG -ACGGAAGCACTTGTCTTCGCATAG -ACGGAAGCACTTGTCTTCGACAAG -ACGGAAGCACTTGTCTTCAAGCAG -ACGGAAGCACTTGTCTTCCGTCAA -ACGGAAGCACTTGTCTTCGCTGAA -ACGGAAGCACTTGTCTTCAGTACG -ACGGAAGCACTTGTCTTCATCCGA -ACGGAAGCACTTGTCTTCATGGGA -ACGGAAGCACTTGTCTTCGTGCAA -ACGGAAGCACTTGTCTTCGAGGAA -ACGGAAGCACTTGTCTTCCAGGTA -ACGGAAGCACTTGTCTTCGACTCT -ACGGAAGCACTTGTCTTCAGTCCT -ACGGAAGCACTTGTCTTCTAAGCC -ACGGAAGCACTTGTCTTCATAGCC -ACGGAAGCACTTGTCTTCTAACCG -ACGGAAGCACTTGTCTTCATGCCA -ACGGAAGCACTTCTCTCTGGAAAC -ACGGAAGCACTTCTCTCTAACACC -ACGGAAGCACTTCTCTCTATCGAG -ACGGAAGCACTTCTCTCTCTCCTT -ACGGAAGCACTTCTCTCTCCTGTT -ACGGAAGCACTTCTCTCTCGGTTT -ACGGAAGCACTTCTCTCTGTGGTT -ACGGAAGCACTTCTCTCTGCCTTT -ACGGAAGCACTTCTCTCTGGTCTT -ACGGAAGCACTTCTCTCTACGCTT -ACGGAAGCACTTCTCTCTAGCGTT -ACGGAAGCACTTCTCTCTTTCGTC -ACGGAAGCACTTCTCTCTTCTCTC -ACGGAAGCACTTCTCTCTTGGATC -ACGGAAGCACTTCTCTCTCACTTC -ACGGAAGCACTTCTCTCTGTACTC -ACGGAAGCACTTCTCTCTGATGTC -ACGGAAGCACTTCTCTCTACAGTC -ACGGAAGCACTTCTCTCTTTGCTG -ACGGAAGCACTTCTCTCTTCCATG -ACGGAAGCACTTCTCTCTTGTGTG -ACGGAAGCACTTCTCTCTCTAGTG -ACGGAAGCACTTCTCTCTCATCTG -ACGGAAGCACTTCTCTCTGAGTTG -ACGGAAGCACTTCTCTCTAGACTG -ACGGAAGCACTTCTCTCTTCGGTA -ACGGAAGCACTTCTCTCTTGCCTA -ACGGAAGCACTTCTCTCTCCACTA -ACGGAAGCACTTCTCTCTGGAGTA -ACGGAAGCACTTCTCTCTTCGTCT -ACGGAAGCACTTCTCTCTTGCACT -ACGGAAGCACTTCTCTCTCTGACT -ACGGAAGCACTTCTCTCTCAACCT -ACGGAAGCACTTCTCTCTGCTACT -ACGGAAGCACTTCTCTCTGGATCT -ACGGAAGCACTTCTCTCTAAGGCT -ACGGAAGCACTTCTCTCTTCAACC -ACGGAAGCACTTCTCTCTTGTTCC -ACGGAAGCACTTCTCTCTATTCCC -ACGGAAGCACTTCTCTCTTTCTCG -ACGGAAGCACTTCTCTCTTAGACG -ACGGAAGCACTTCTCTCTGTAACG -ACGGAAGCACTTCTCTCTACTTCG -ACGGAAGCACTTCTCTCTTACGCA -ACGGAAGCACTTCTCTCTCTTGCA -ACGGAAGCACTTCTCTCTCGAACA -ACGGAAGCACTTCTCTCTCAGTCA -ACGGAAGCACTTCTCTCTGATCCA -ACGGAAGCACTTCTCTCTACGACA -ACGGAAGCACTTCTCTCTAGCTCA -ACGGAAGCACTTCTCTCTTCACGT -ACGGAAGCACTTCTCTCTCGTAGT -ACGGAAGCACTTCTCTCTGTCAGT -ACGGAAGCACTTCTCTCTGAAGGT -ACGGAAGCACTTCTCTCTAACCGT -ACGGAAGCACTTCTCTCTTTGTGC -ACGGAAGCACTTCTCTCTCTAAGC -ACGGAAGCACTTCTCTCTACTAGC -ACGGAAGCACTTCTCTCTAGATGC -ACGGAAGCACTTCTCTCTTGAAGG -ACGGAAGCACTTCTCTCTCAATGG -ACGGAAGCACTTCTCTCTATGAGG -ACGGAAGCACTTCTCTCTAATGGG -ACGGAAGCACTTCTCTCTTCCTGA -ACGGAAGCACTTCTCTCTTAGCGA -ACGGAAGCACTTCTCTCTCACAGA -ACGGAAGCACTTCTCTCTGCAAGA -ACGGAAGCACTTCTCTCTGGTTGA -ACGGAAGCACTTCTCTCTTCCGAT -ACGGAAGCACTTCTCTCTTGGCAT -ACGGAAGCACTTCTCTCTCGAGAT -ACGGAAGCACTTCTCTCTTACCAC -ACGGAAGCACTTCTCTCTCAGAAC -ACGGAAGCACTTCTCTCTGTCTAC -ACGGAAGCACTTCTCTCTACGTAC -ACGGAAGCACTTCTCTCTAGTGAC -ACGGAAGCACTTCTCTCTCTGTAG -ACGGAAGCACTTCTCTCTCCTAAG -ACGGAAGCACTTCTCTCTGTTCAG -ACGGAAGCACTTCTCTCTGCATAG -ACGGAAGCACTTCTCTCTGACAAG -ACGGAAGCACTTCTCTCTAAGCAG -ACGGAAGCACTTCTCTCTCGTCAA -ACGGAAGCACTTCTCTCTGCTGAA -ACGGAAGCACTTCTCTCTAGTACG -ACGGAAGCACTTCTCTCTATCCGA -ACGGAAGCACTTCTCTCTATGGGA -ACGGAAGCACTTCTCTCTGTGCAA -ACGGAAGCACTTCTCTCTGAGGAA -ACGGAAGCACTTCTCTCTCAGGTA -ACGGAAGCACTTCTCTCTGACTCT -ACGGAAGCACTTCTCTCTAGTCCT -ACGGAAGCACTTCTCTCTTAAGCC -ACGGAAGCACTTCTCTCTATAGCC -ACGGAAGCACTTCTCTCTTAACCG -ACGGAAGCACTTCTCTCTATGCCA -ACGGAAGCACTTATCTGGGGAAAC -ACGGAAGCACTTATCTGGAACACC -ACGGAAGCACTTATCTGGATCGAG -ACGGAAGCACTTATCTGGCTCCTT -ACGGAAGCACTTATCTGGCCTGTT -ACGGAAGCACTTATCTGGCGGTTT -ACGGAAGCACTTATCTGGGTGGTT -ACGGAAGCACTTATCTGGGCCTTT -ACGGAAGCACTTATCTGGGGTCTT -ACGGAAGCACTTATCTGGACGCTT -ACGGAAGCACTTATCTGGAGCGTT -ACGGAAGCACTTATCTGGTTCGTC -ACGGAAGCACTTATCTGGTCTCTC -ACGGAAGCACTTATCTGGTGGATC -ACGGAAGCACTTATCTGGCACTTC -ACGGAAGCACTTATCTGGGTACTC -ACGGAAGCACTTATCTGGGATGTC -ACGGAAGCACTTATCTGGACAGTC -ACGGAAGCACTTATCTGGTTGCTG -ACGGAAGCACTTATCTGGTCCATG -ACGGAAGCACTTATCTGGTGTGTG -ACGGAAGCACTTATCTGGCTAGTG -ACGGAAGCACTTATCTGGCATCTG -ACGGAAGCACTTATCTGGGAGTTG -ACGGAAGCACTTATCTGGAGACTG -ACGGAAGCACTTATCTGGTCGGTA -ACGGAAGCACTTATCTGGTGCCTA -ACGGAAGCACTTATCTGGCCACTA -ACGGAAGCACTTATCTGGGGAGTA -ACGGAAGCACTTATCTGGTCGTCT -ACGGAAGCACTTATCTGGTGCACT -ACGGAAGCACTTATCTGGCTGACT -ACGGAAGCACTTATCTGGCAACCT -ACGGAAGCACTTATCTGGGCTACT -ACGGAAGCACTTATCTGGGGATCT -ACGGAAGCACTTATCTGGAAGGCT -ACGGAAGCACTTATCTGGTCAACC -ACGGAAGCACTTATCTGGTGTTCC -ACGGAAGCACTTATCTGGATTCCC -ACGGAAGCACTTATCTGGTTCTCG -ACGGAAGCACTTATCTGGTAGACG -ACGGAAGCACTTATCTGGGTAACG -ACGGAAGCACTTATCTGGACTTCG -ACGGAAGCACTTATCTGGTACGCA -ACGGAAGCACTTATCTGGCTTGCA -ACGGAAGCACTTATCTGGCGAACA -ACGGAAGCACTTATCTGGCAGTCA -ACGGAAGCACTTATCTGGGATCCA -ACGGAAGCACTTATCTGGACGACA -ACGGAAGCACTTATCTGGAGCTCA -ACGGAAGCACTTATCTGGTCACGT -ACGGAAGCACTTATCTGGCGTAGT -ACGGAAGCACTTATCTGGGTCAGT -ACGGAAGCACTTATCTGGGAAGGT -ACGGAAGCACTTATCTGGAACCGT -ACGGAAGCACTTATCTGGTTGTGC -ACGGAAGCACTTATCTGGCTAAGC -ACGGAAGCACTTATCTGGACTAGC -ACGGAAGCACTTATCTGGAGATGC -ACGGAAGCACTTATCTGGTGAAGG -ACGGAAGCACTTATCTGGCAATGG -ACGGAAGCACTTATCTGGATGAGG -ACGGAAGCACTTATCTGGAATGGG -ACGGAAGCACTTATCTGGTCCTGA -ACGGAAGCACTTATCTGGTAGCGA -ACGGAAGCACTTATCTGGCACAGA -ACGGAAGCACTTATCTGGGCAAGA -ACGGAAGCACTTATCTGGGGTTGA -ACGGAAGCACTTATCTGGTCCGAT -ACGGAAGCACTTATCTGGTGGCAT -ACGGAAGCACTTATCTGGCGAGAT -ACGGAAGCACTTATCTGGTACCAC -ACGGAAGCACTTATCTGGCAGAAC -ACGGAAGCACTTATCTGGGTCTAC -ACGGAAGCACTTATCTGGACGTAC -ACGGAAGCACTTATCTGGAGTGAC -ACGGAAGCACTTATCTGGCTGTAG -ACGGAAGCACTTATCTGGCCTAAG -ACGGAAGCACTTATCTGGGTTCAG -ACGGAAGCACTTATCTGGGCATAG -ACGGAAGCACTTATCTGGGACAAG -ACGGAAGCACTTATCTGGAAGCAG -ACGGAAGCACTTATCTGGCGTCAA -ACGGAAGCACTTATCTGGGCTGAA -ACGGAAGCACTTATCTGGAGTACG -ACGGAAGCACTTATCTGGATCCGA -ACGGAAGCACTTATCTGGATGGGA -ACGGAAGCACTTATCTGGGTGCAA -ACGGAAGCACTTATCTGGGAGGAA -ACGGAAGCACTTATCTGGCAGGTA -ACGGAAGCACTTATCTGGGACTCT -ACGGAAGCACTTATCTGGAGTCCT -ACGGAAGCACTTATCTGGTAAGCC -ACGGAAGCACTTATCTGGATAGCC -ACGGAAGCACTTATCTGGTAACCG -ACGGAAGCACTTATCTGGATGCCA -ACGGAAGCACTTTTCCACGGAAAC -ACGGAAGCACTTTTCCACAACACC -ACGGAAGCACTTTTCCACATCGAG -ACGGAAGCACTTTTCCACCTCCTT -ACGGAAGCACTTTTCCACCCTGTT -ACGGAAGCACTTTTCCACCGGTTT -ACGGAAGCACTTTTCCACGTGGTT -ACGGAAGCACTTTTCCACGCCTTT -ACGGAAGCACTTTTCCACGGTCTT -ACGGAAGCACTTTTCCACACGCTT -ACGGAAGCACTTTTCCACAGCGTT -ACGGAAGCACTTTTCCACTTCGTC -ACGGAAGCACTTTTCCACTCTCTC -ACGGAAGCACTTTTCCACTGGATC -ACGGAAGCACTTTTCCACCACTTC -ACGGAAGCACTTTTCCACGTACTC -ACGGAAGCACTTTTCCACGATGTC -ACGGAAGCACTTTTCCACACAGTC -ACGGAAGCACTTTTCCACTTGCTG -ACGGAAGCACTTTTCCACTCCATG -ACGGAAGCACTTTTCCACTGTGTG -ACGGAAGCACTTTTCCACCTAGTG -ACGGAAGCACTTTTCCACCATCTG -ACGGAAGCACTTTTCCACGAGTTG -ACGGAAGCACTTTTCCACAGACTG -ACGGAAGCACTTTTCCACTCGGTA -ACGGAAGCACTTTTCCACTGCCTA -ACGGAAGCACTTTTCCACCCACTA -ACGGAAGCACTTTTCCACGGAGTA -ACGGAAGCACTTTTCCACTCGTCT -ACGGAAGCACTTTTCCACTGCACT -ACGGAAGCACTTTTCCACCTGACT -ACGGAAGCACTTTTCCACCAACCT -ACGGAAGCACTTTTCCACGCTACT -ACGGAAGCACTTTTCCACGGATCT -ACGGAAGCACTTTTCCACAAGGCT -ACGGAAGCACTTTTCCACTCAACC -ACGGAAGCACTTTTCCACTGTTCC -ACGGAAGCACTTTTCCACATTCCC -ACGGAAGCACTTTTCCACTTCTCG -ACGGAAGCACTTTTCCACTAGACG -ACGGAAGCACTTTTCCACGTAACG -ACGGAAGCACTTTTCCACACTTCG -ACGGAAGCACTTTTCCACTACGCA -ACGGAAGCACTTTTCCACCTTGCA -ACGGAAGCACTTTTCCACCGAACA -ACGGAAGCACTTTTCCACCAGTCA -ACGGAAGCACTTTTCCACGATCCA -ACGGAAGCACTTTTCCACACGACA -ACGGAAGCACTTTTCCACAGCTCA -ACGGAAGCACTTTTCCACTCACGT -ACGGAAGCACTTTTCCACCGTAGT -ACGGAAGCACTTTTCCACGTCAGT -ACGGAAGCACTTTTCCACGAAGGT -ACGGAAGCACTTTTCCACAACCGT -ACGGAAGCACTTTTCCACTTGTGC -ACGGAAGCACTTTTCCACCTAAGC -ACGGAAGCACTTTTCCACACTAGC -ACGGAAGCACTTTTCCACAGATGC -ACGGAAGCACTTTTCCACTGAAGG -ACGGAAGCACTTTTCCACCAATGG -ACGGAAGCACTTTTCCACATGAGG -ACGGAAGCACTTTTCCACAATGGG -ACGGAAGCACTTTTCCACTCCTGA -ACGGAAGCACTTTTCCACTAGCGA -ACGGAAGCACTTTTCCACCACAGA -ACGGAAGCACTTTTCCACGCAAGA -ACGGAAGCACTTTTCCACGGTTGA -ACGGAAGCACTTTTCCACTCCGAT -ACGGAAGCACTTTTCCACTGGCAT -ACGGAAGCACTTTTCCACCGAGAT -ACGGAAGCACTTTTCCACTACCAC -ACGGAAGCACTTTTCCACCAGAAC -ACGGAAGCACTTTTCCACGTCTAC -ACGGAAGCACTTTTCCACACGTAC -ACGGAAGCACTTTTCCACAGTGAC -ACGGAAGCACTTTTCCACCTGTAG -ACGGAAGCACTTTTCCACCCTAAG -ACGGAAGCACTTTTCCACGTTCAG -ACGGAAGCACTTTTCCACGCATAG -ACGGAAGCACTTTTCCACGACAAG -ACGGAAGCACTTTTCCACAAGCAG -ACGGAAGCACTTTTCCACCGTCAA -ACGGAAGCACTTTTCCACGCTGAA -ACGGAAGCACTTTTCCACAGTACG -ACGGAAGCACTTTTCCACATCCGA -ACGGAAGCACTTTTCCACATGGGA -ACGGAAGCACTTTTCCACGTGCAA -ACGGAAGCACTTTTCCACGAGGAA -ACGGAAGCACTTTTCCACCAGGTA -ACGGAAGCACTTTTCCACGACTCT -ACGGAAGCACTTTTCCACAGTCCT -ACGGAAGCACTTTTCCACTAAGCC -ACGGAAGCACTTTTCCACATAGCC -ACGGAAGCACTTTTCCACTAACCG -ACGGAAGCACTTTTCCACATGCCA -ACGGAAGCACTTCTCGTAGGAAAC -ACGGAAGCACTTCTCGTAAACACC -ACGGAAGCACTTCTCGTAATCGAG -ACGGAAGCACTTCTCGTACTCCTT -ACGGAAGCACTTCTCGTACCTGTT -ACGGAAGCACTTCTCGTACGGTTT -ACGGAAGCACTTCTCGTAGTGGTT -ACGGAAGCACTTCTCGTAGCCTTT -ACGGAAGCACTTCTCGTAGGTCTT -ACGGAAGCACTTCTCGTAACGCTT -ACGGAAGCACTTCTCGTAAGCGTT -ACGGAAGCACTTCTCGTATTCGTC -ACGGAAGCACTTCTCGTATCTCTC -ACGGAAGCACTTCTCGTATGGATC -ACGGAAGCACTTCTCGTACACTTC -ACGGAAGCACTTCTCGTAGTACTC -ACGGAAGCACTTCTCGTAGATGTC -ACGGAAGCACTTCTCGTAACAGTC -ACGGAAGCACTTCTCGTATTGCTG -ACGGAAGCACTTCTCGTATCCATG -ACGGAAGCACTTCTCGTATGTGTG -ACGGAAGCACTTCTCGTACTAGTG -ACGGAAGCACTTCTCGTACATCTG -ACGGAAGCACTTCTCGTAGAGTTG -ACGGAAGCACTTCTCGTAAGACTG -ACGGAAGCACTTCTCGTATCGGTA -ACGGAAGCACTTCTCGTATGCCTA -ACGGAAGCACTTCTCGTACCACTA -ACGGAAGCACTTCTCGTAGGAGTA -ACGGAAGCACTTCTCGTATCGTCT -ACGGAAGCACTTCTCGTATGCACT -ACGGAAGCACTTCTCGTACTGACT -ACGGAAGCACTTCTCGTACAACCT -ACGGAAGCACTTCTCGTAGCTACT -ACGGAAGCACTTCTCGTAGGATCT -ACGGAAGCACTTCTCGTAAAGGCT -ACGGAAGCACTTCTCGTATCAACC -ACGGAAGCACTTCTCGTATGTTCC -ACGGAAGCACTTCTCGTAATTCCC -ACGGAAGCACTTCTCGTATTCTCG -ACGGAAGCACTTCTCGTATAGACG -ACGGAAGCACTTCTCGTAGTAACG -ACGGAAGCACTTCTCGTAACTTCG -ACGGAAGCACTTCTCGTATACGCA -ACGGAAGCACTTCTCGTACTTGCA -ACGGAAGCACTTCTCGTACGAACA -ACGGAAGCACTTCTCGTACAGTCA -ACGGAAGCACTTCTCGTAGATCCA -ACGGAAGCACTTCTCGTAACGACA -ACGGAAGCACTTCTCGTAAGCTCA -ACGGAAGCACTTCTCGTATCACGT -ACGGAAGCACTTCTCGTACGTAGT -ACGGAAGCACTTCTCGTAGTCAGT -ACGGAAGCACTTCTCGTAGAAGGT -ACGGAAGCACTTCTCGTAAACCGT -ACGGAAGCACTTCTCGTATTGTGC -ACGGAAGCACTTCTCGTACTAAGC -ACGGAAGCACTTCTCGTAACTAGC -ACGGAAGCACTTCTCGTAAGATGC -ACGGAAGCACTTCTCGTATGAAGG -ACGGAAGCACTTCTCGTACAATGG -ACGGAAGCACTTCTCGTAATGAGG -ACGGAAGCACTTCTCGTAAATGGG -ACGGAAGCACTTCTCGTATCCTGA -ACGGAAGCACTTCTCGTATAGCGA -ACGGAAGCACTTCTCGTACACAGA -ACGGAAGCACTTCTCGTAGCAAGA -ACGGAAGCACTTCTCGTAGGTTGA -ACGGAAGCACTTCTCGTATCCGAT -ACGGAAGCACTTCTCGTATGGCAT -ACGGAAGCACTTCTCGTACGAGAT -ACGGAAGCACTTCTCGTATACCAC -ACGGAAGCACTTCTCGTACAGAAC -ACGGAAGCACTTCTCGTAGTCTAC -ACGGAAGCACTTCTCGTAACGTAC -ACGGAAGCACTTCTCGTAAGTGAC -ACGGAAGCACTTCTCGTACTGTAG -ACGGAAGCACTTCTCGTACCTAAG -ACGGAAGCACTTCTCGTAGTTCAG -ACGGAAGCACTTCTCGTAGCATAG -ACGGAAGCACTTCTCGTAGACAAG -ACGGAAGCACTTCTCGTAAAGCAG -ACGGAAGCACTTCTCGTACGTCAA -ACGGAAGCACTTCTCGTAGCTGAA -ACGGAAGCACTTCTCGTAAGTACG -ACGGAAGCACTTCTCGTAATCCGA -ACGGAAGCACTTCTCGTAATGGGA -ACGGAAGCACTTCTCGTAGTGCAA -ACGGAAGCACTTCTCGTAGAGGAA -ACGGAAGCACTTCTCGTACAGGTA -ACGGAAGCACTTCTCGTAGACTCT -ACGGAAGCACTTCTCGTAAGTCCT -ACGGAAGCACTTCTCGTATAAGCC -ACGGAAGCACTTCTCGTAATAGCC -ACGGAAGCACTTCTCGTATAACCG -ACGGAAGCACTTCTCGTAATGCCA -ACGGAAGCACTTGTCGATGGAAAC -ACGGAAGCACTTGTCGATAACACC -ACGGAAGCACTTGTCGATATCGAG -ACGGAAGCACTTGTCGATCTCCTT -ACGGAAGCACTTGTCGATCCTGTT -ACGGAAGCACTTGTCGATCGGTTT -ACGGAAGCACTTGTCGATGTGGTT -ACGGAAGCACTTGTCGATGCCTTT -ACGGAAGCACTTGTCGATGGTCTT -ACGGAAGCACTTGTCGATACGCTT -ACGGAAGCACTTGTCGATAGCGTT -ACGGAAGCACTTGTCGATTTCGTC -ACGGAAGCACTTGTCGATTCTCTC -ACGGAAGCACTTGTCGATTGGATC -ACGGAAGCACTTGTCGATCACTTC -ACGGAAGCACTTGTCGATGTACTC -ACGGAAGCACTTGTCGATGATGTC -ACGGAAGCACTTGTCGATACAGTC -ACGGAAGCACTTGTCGATTTGCTG -ACGGAAGCACTTGTCGATTCCATG -ACGGAAGCACTTGTCGATTGTGTG -ACGGAAGCACTTGTCGATCTAGTG -ACGGAAGCACTTGTCGATCATCTG -ACGGAAGCACTTGTCGATGAGTTG -ACGGAAGCACTTGTCGATAGACTG -ACGGAAGCACTTGTCGATTCGGTA -ACGGAAGCACTTGTCGATTGCCTA -ACGGAAGCACTTGTCGATCCACTA -ACGGAAGCACTTGTCGATGGAGTA -ACGGAAGCACTTGTCGATTCGTCT -ACGGAAGCACTTGTCGATTGCACT -ACGGAAGCACTTGTCGATCTGACT -ACGGAAGCACTTGTCGATCAACCT -ACGGAAGCACTTGTCGATGCTACT -ACGGAAGCACTTGTCGATGGATCT -ACGGAAGCACTTGTCGATAAGGCT -ACGGAAGCACTTGTCGATTCAACC -ACGGAAGCACTTGTCGATTGTTCC -ACGGAAGCACTTGTCGATATTCCC -ACGGAAGCACTTGTCGATTTCTCG -ACGGAAGCACTTGTCGATTAGACG -ACGGAAGCACTTGTCGATGTAACG -ACGGAAGCACTTGTCGATACTTCG -ACGGAAGCACTTGTCGATTACGCA -ACGGAAGCACTTGTCGATCTTGCA -ACGGAAGCACTTGTCGATCGAACA -ACGGAAGCACTTGTCGATCAGTCA -ACGGAAGCACTTGTCGATGATCCA -ACGGAAGCACTTGTCGATACGACA -ACGGAAGCACTTGTCGATAGCTCA -ACGGAAGCACTTGTCGATTCACGT -ACGGAAGCACTTGTCGATCGTAGT -ACGGAAGCACTTGTCGATGTCAGT -ACGGAAGCACTTGTCGATGAAGGT -ACGGAAGCACTTGTCGATAACCGT -ACGGAAGCACTTGTCGATTTGTGC -ACGGAAGCACTTGTCGATCTAAGC -ACGGAAGCACTTGTCGATACTAGC -ACGGAAGCACTTGTCGATAGATGC -ACGGAAGCACTTGTCGATTGAAGG -ACGGAAGCACTTGTCGATCAATGG -ACGGAAGCACTTGTCGATATGAGG -ACGGAAGCACTTGTCGATAATGGG -ACGGAAGCACTTGTCGATTCCTGA -ACGGAAGCACTTGTCGATTAGCGA -ACGGAAGCACTTGTCGATCACAGA -ACGGAAGCACTTGTCGATGCAAGA -ACGGAAGCACTTGTCGATGGTTGA -ACGGAAGCACTTGTCGATTCCGAT -ACGGAAGCACTTGTCGATTGGCAT -ACGGAAGCACTTGTCGATCGAGAT -ACGGAAGCACTTGTCGATTACCAC -ACGGAAGCACTTGTCGATCAGAAC -ACGGAAGCACTTGTCGATGTCTAC -ACGGAAGCACTTGTCGATACGTAC -ACGGAAGCACTTGTCGATAGTGAC -ACGGAAGCACTTGTCGATCTGTAG -ACGGAAGCACTTGTCGATCCTAAG -ACGGAAGCACTTGTCGATGTTCAG -ACGGAAGCACTTGTCGATGCATAG -ACGGAAGCACTTGTCGATGACAAG -ACGGAAGCACTTGTCGATAAGCAG -ACGGAAGCACTTGTCGATCGTCAA -ACGGAAGCACTTGTCGATGCTGAA -ACGGAAGCACTTGTCGATAGTACG -ACGGAAGCACTTGTCGATATCCGA -ACGGAAGCACTTGTCGATATGGGA -ACGGAAGCACTTGTCGATGTGCAA -ACGGAAGCACTTGTCGATGAGGAA -ACGGAAGCACTTGTCGATCAGGTA -ACGGAAGCACTTGTCGATGACTCT -ACGGAAGCACTTGTCGATAGTCCT -ACGGAAGCACTTGTCGATTAAGCC -ACGGAAGCACTTGTCGATATAGCC -ACGGAAGCACTTGTCGATTAACCG -ACGGAAGCACTTGTCGATATGCCA -ACGGAAGCACTTGTCACAGGAAAC -ACGGAAGCACTTGTCACAAACACC -ACGGAAGCACTTGTCACAATCGAG -ACGGAAGCACTTGTCACACTCCTT -ACGGAAGCACTTGTCACACCTGTT -ACGGAAGCACTTGTCACACGGTTT -ACGGAAGCACTTGTCACAGTGGTT -ACGGAAGCACTTGTCACAGCCTTT -ACGGAAGCACTTGTCACAGGTCTT -ACGGAAGCACTTGTCACAACGCTT -ACGGAAGCACTTGTCACAAGCGTT -ACGGAAGCACTTGTCACATTCGTC -ACGGAAGCACTTGTCACATCTCTC -ACGGAAGCACTTGTCACATGGATC -ACGGAAGCACTTGTCACACACTTC -ACGGAAGCACTTGTCACAGTACTC -ACGGAAGCACTTGTCACAGATGTC -ACGGAAGCACTTGTCACAACAGTC -ACGGAAGCACTTGTCACATTGCTG -ACGGAAGCACTTGTCACATCCATG -ACGGAAGCACTTGTCACATGTGTG -ACGGAAGCACTTGTCACACTAGTG -ACGGAAGCACTTGTCACACATCTG -ACGGAAGCACTTGTCACAGAGTTG -ACGGAAGCACTTGTCACAAGACTG -ACGGAAGCACTTGTCACATCGGTA -ACGGAAGCACTTGTCACATGCCTA -ACGGAAGCACTTGTCACACCACTA -ACGGAAGCACTTGTCACAGGAGTA -ACGGAAGCACTTGTCACATCGTCT -ACGGAAGCACTTGTCACATGCACT -ACGGAAGCACTTGTCACACTGACT -ACGGAAGCACTTGTCACACAACCT -ACGGAAGCACTTGTCACAGCTACT -ACGGAAGCACTTGTCACAGGATCT -ACGGAAGCACTTGTCACAAAGGCT -ACGGAAGCACTTGTCACATCAACC -ACGGAAGCACTTGTCACATGTTCC -ACGGAAGCACTTGTCACAATTCCC -ACGGAAGCACTTGTCACATTCTCG -ACGGAAGCACTTGTCACATAGACG -ACGGAAGCACTTGTCACAGTAACG -ACGGAAGCACTTGTCACAACTTCG -ACGGAAGCACTTGTCACATACGCA -ACGGAAGCACTTGTCACACTTGCA -ACGGAAGCACTTGTCACACGAACA -ACGGAAGCACTTGTCACACAGTCA -ACGGAAGCACTTGTCACAGATCCA -ACGGAAGCACTTGTCACAACGACA -ACGGAAGCACTTGTCACAAGCTCA -ACGGAAGCACTTGTCACATCACGT -ACGGAAGCACTTGTCACACGTAGT -ACGGAAGCACTTGTCACAGTCAGT -ACGGAAGCACTTGTCACAGAAGGT -ACGGAAGCACTTGTCACAAACCGT -ACGGAAGCACTTGTCACATTGTGC -ACGGAAGCACTTGTCACACTAAGC -ACGGAAGCACTTGTCACAACTAGC -ACGGAAGCACTTGTCACAAGATGC -ACGGAAGCACTTGTCACATGAAGG -ACGGAAGCACTTGTCACACAATGG -ACGGAAGCACTTGTCACAATGAGG -ACGGAAGCACTTGTCACAAATGGG -ACGGAAGCACTTGTCACATCCTGA -ACGGAAGCACTTGTCACATAGCGA -ACGGAAGCACTTGTCACACACAGA -ACGGAAGCACTTGTCACAGCAAGA -ACGGAAGCACTTGTCACAGGTTGA -ACGGAAGCACTTGTCACATCCGAT -ACGGAAGCACTTGTCACATGGCAT -ACGGAAGCACTTGTCACACGAGAT -ACGGAAGCACTTGTCACATACCAC -ACGGAAGCACTTGTCACACAGAAC -ACGGAAGCACTTGTCACAGTCTAC -ACGGAAGCACTTGTCACAACGTAC -ACGGAAGCACTTGTCACAAGTGAC -ACGGAAGCACTTGTCACACTGTAG -ACGGAAGCACTTGTCACACCTAAG -ACGGAAGCACTTGTCACAGTTCAG -ACGGAAGCACTTGTCACAGCATAG -ACGGAAGCACTTGTCACAGACAAG -ACGGAAGCACTTGTCACAAAGCAG -ACGGAAGCACTTGTCACACGTCAA -ACGGAAGCACTTGTCACAGCTGAA -ACGGAAGCACTTGTCACAAGTACG -ACGGAAGCACTTGTCACAATCCGA -ACGGAAGCACTTGTCACAATGGGA -ACGGAAGCACTTGTCACAGTGCAA -ACGGAAGCACTTGTCACAGAGGAA -ACGGAAGCACTTGTCACACAGGTA -ACGGAAGCACTTGTCACAGACTCT -ACGGAAGCACTTGTCACAAGTCCT -ACGGAAGCACTTGTCACATAAGCC -ACGGAAGCACTTGTCACAATAGCC -ACGGAAGCACTTGTCACATAACCG -ACGGAAGCACTTGTCACAATGCCA -ACGGAAGCACTTCTGTTGGGAAAC -ACGGAAGCACTTCTGTTGAACACC -ACGGAAGCACTTCTGTTGATCGAG -ACGGAAGCACTTCTGTTGCTCCTT -ACGGAAGCACTTCTGTTGCCTGTT -ACGGAAGCACTTCTGTTGCGGTTT -ACGGAAGCACTTCTGTTGGTGGTT -ACGGAAGCACTTCTGTTGGCCTTT -ACGGAAGCACTTCTGTTGGGTCTT -ACGGAAGCACTTCTGTTGACGCTT -ACGGAAGCACTTCTGTTGAGCGTT -ACGGAAGCACTTCTGTTGTTCGTC -ACGGAAGCACTTCTGTTGTCTCTC -ACGGAAGCACTTCTGTTGTGGATC -ACGGAAGCACTTCTGTTGCACTTC -ACGGAAGCACTTCTGTTGGTACTC -ACGGAAGCACTTCTGTTGGATGTC -ACGGAAGCACTTCTGTTGACAGTC -ACGGAAGCACTTCTGTTGTTGCTG -ACGGAAGCACTTCTGTTGTCCATG -ACGGAAGCACTTCTGTTGTGTGTG -ACGGAAGCACTTCTGTTGCTAGTG -ACGGAAGCACTTCTGTTGCATCTG -ACGGAAGCACTTCTGTTGGAGTTG -ACGGAAGCACTTCTGTTGAGACTG -ACGGAAGCACTTCTGTTGTCGGTA -ACGGAAGCACTTCTGTTGTGCCTA -ACGGAAGCACTTCTGTTGCCACTA -ACGGAAGCACTTCTGTTGGGAGTA -ACGGAAGCACTTCTGTTGTCGTCT -ACGGAAGCACTTCTGTTGTGCACT -ACGGAAGCACTTCTGTTGCTGACT -ACGGAAGCACTTCTGTTGCAACCT -ACGGAAGCACTTCTGTTGGCTACT -ACGGAAGCACTTCTGTTGGGATCT -ACGGAAGCACTTCTGTTGAAGGCT -ACGGAAGCACTTCTGTTGTCAACC -ACGGAAGCACTTCTGTTGTGTTCC -ACGGAAGCACTTCTGTTGATTCCC -ACGGAAGCACTTCTGTTGTTCTCG -ACGGAAGCACTTCTGTTGTAGACG -ACGGAAGCACTTCTGTTGGTAACG -ACGGAAGCACTTCTGTTGACTTCG -ACGGAAGCACTTCTGTTGTACGCA -ACGGAAGCACTTCTGTTGCTTGCA -ACGGAAGCACTTCTGTTGCGAACA -ACGGAAGCACTTCTGTTGCAGTCA -ACGGAAGCACTTCTGTTGGATCCA -ACGGAAGCACTTCTGTTGACGACA -ACGGAAGCACTTCTGTTGAGCTCA -ACGGAAGCACTTCTGTTGTCACGT -ACGGAAGCACTTCTGTTGCGTAGT -ACGGAAGCACTTCTGTTGGTCAGT -ACGGAAGCACTTCTGTTGGAAGGT -ACGGAAGCACTTCTGTTGAACCGT -ACGGAAGCACTTCTGTTGTTGTGC -ACGGAAGCACTTCTGTTGCTAAGC -ACGGAAGCACTTCTGTTGACTAGC -ACGGAAGCACTTCTGTTGAGATGC -ACGGAAGCACTTCTGTTGTGAAGG -ACGGAAGCACTTCTGTTGCAATGG -ACGGAAGCACTTCTGTTGATGAGG -ACGGAAGCACTTCTGTTGAATGGG -ACGGAAGCACTTCTGTTGTCCTGA -ACGGAAGCACTTCTGTTGTAGCGA -ACGGAAGCACTTCTGTTGCACAGA -ACGGAAGCACTTCTGTTGGCAAGA -ACGGAAGCACTTCTGTTGGGTTGA -ACGGAAGCACTTCTGTTGTCCGAT -ACGGAAGCACTTCTGTTGTGGCAT -ACGGAAGCACTTCTGTTGCGAGAT -ACGGAAGCACTTCTGTTGTACCAC -ACGGAAGCACTTCTGTTGCAGAAC -ACGGAAGCACTTCTGTTGGTCTAC -ACGGAAGCACTTCTGTTGACGTAC -ACGGAAGCACTTCTGTTGAGTGAC -ACGGAAGCACTTCTGTTGCTGTAG -ACGGAAGCACTTCTGTTGCCTAAG -ACGGAAGCACTTCTGTTGGTTCAG -ACGGAAGCACTTCTGTTGGCATAG -ACGGAAGCACTTCTGTTGGACAAG -ACGGAAGCACTTCTGTTGAAGCAG -ACGGAAGCACTTCTGTTGCGTCAA -ACGGAAGCACTTCTGTTGGCTGAA -ACGGAAGCACTTCTGTTGAGTACG -ACGGAAGCACTTCTGTTGATCCGA -ACGGAAGCACTTCTGTTGATGGGA -ACGGAAGCACTTCTGTTGGTGCAA -ACGGAAGCACTTCTGTTGGAGGAA -ACGGAAGCACTTCTGTTGCAGGTA -ACGGAAGCACTTCTGTTGGACTCT -ACGGAAGCACTTCTGTTGAGTCCT -ACGGAAGCACTTCTGTTGTAAGCC -ACGGAAGCACTTCTGTTGATAGCC -ACGGAAGCACTTCTGTTGTAACCG -ACGGAAGCACTTCTGTTGATGCCA -ACGGAAGCACTTATGTCCGGAAAC -ACGGAAGCACTTATGTCCAACACC -ACGGAAGCACTTATGTCCATCGAG -ACGGAAGCACTTATGTCCCTCCTT -ACGGAAGCACTTATGTCCCCTGTT -ACGGAAGCACTTATGTCCCGGTTT -ACGGAAGCACTTATGTCCGTGGTT -ACGGAAGCACTTATGTCCGCCTTT -ACGGAAGCACTTATGTCCGGTCTT -ACGGAAGCACTTATGTCCACGCTT -ACGGAAGCACTTATGTCCAGCGTT -ACGGAAGCACTTATGTCCTTCGTC -ACGGAAGCACTTATGTCCTCTCTC -ACGGAAGCACTTATGTCCTGGATC -ACGGAAGCACTTATGTCCCACTTC -ACGGAAGCACTTATGTCCGTACTC -ACGGAAGCACTTATGTCCGATGTC -ACGGAAGCACTTATGTCCACAGTC -ACGGAAGCACTTATGTCCTTGCTG -ACGGAAGCACTTATGTCCTCCATG -ACGGAAGCACTTATGTCCTGTGTG -ACGGAAGCACTTATGTCCCTAGTG -ACGGAAGCACTTATGTCCCATCTG -ACGGAAGCACTTATGTCCGAGTTG -ACGGAAGCACTTATGTCCAGACTG -ACGGAAGCACTTATGTCCTCGGTA -ACGGAAGCACTTATGTCCTGCCTA -ACGGAAGCACTTATGTCCCCACTA -ACGGAAGCACTTATGTCCGGAGTA -ACGGAAGCACTTATGTCCTCGTCT -ACGGAAGCACTTATGTCCTGCACT -ACGGAAGCACTTATGTCCCTGACT -ACGGAAGCACTTATGTCCCAACCT -ACGGAAGCACTTATGTCCGCTACT -ACGGAAGCACTTATGTCCGGATCT -ACGGAAGCACTTATGTCCAAGGCT -ACGGAAGCACTTATGTCCTCAACC -ACGGAAGCACTTATGTCCTGTTCC -ACGGAAGCACTTATGTCCATTCCC -ACGGAAGCACTTATGTCCTTCTCG -ACGGAAGCACTTATGTCCTAGACG -ACGGAAGCACTTATGTCCGTAACG -ACGGAAGCACTTATGTCCACTTCG -ACGGAAGCACTTATGTCCTACGCA -ACGGAAGCACTTATGTCCCTTGCA -ACGGAAGCACTTATGTCCCGAACA -ACGGAAGCACTTATGTCCCAGTCA -ACGGAAGCACTTATGTCCGATCCA -ACGGAAGCACTTATGTCCACGACA -ACGGAAGCACTTATGTCCAGCTCA -ACGGAAGCACTTATGTCCTCACGT -ACGGAAGCACTTATGTCCCGTAGT -ACGGAAGCACTTATGTCCGTCAGT -ACGGAAGCACTTATGTCCGAAGGT -ACGGAAGCACTTATGTCCAACCGT -ACGGAAGCACTTATGTCCTTGTGC -ACGGAAGCACTTATGTCCCTAAGC -ACGGAAGCACTTATGTCCACTAGC -ACGGAAGCACTTATGTCCAGATGC -ACGGAAGCACTTATGTCCTGAAGG -ACGGAAGCACTTATGTCCCAATGG -ACGGAAGCACTTATGTCCATGAGG -ACGGAAGCACTTATGTCCAATGGG -ACGGAAGCACTTATGTCCTCCTGA -ACGGAAGCACTTATGTCCTAGCGA -ACGGAAGCACTTATGTCCCACAGA -ACGGAAGCACTTATGTCCGCAAGA -ACGGAAGCACTTATGTCCGGTTGA -ACGGAAGCACTTATGTCCTCCGAT -ACGGAAGCACTTATGTCCTGGCAT -ACGGAAGCACTTATGTCCCGAGAT -ACGGAAGCACTTATGTCCTACCAC -ACGGAAGCACTTATGTCCCAGAAC -ACGGAAGCACTTATGTCCGTCTAC -ACGGAAGCACTTATGTCCACGTAC -ACGGAAGCACTTATGTCCAGTGAC -ACGGAAGCACTTATGTCCCTGTAG -ACGGAAGCACTTATGTCCCCTAAG -ACGGAAGCACTTATGTCCGTTCAG -ACGGAAGCACTTATGTCCGCATAG -ACGGAAGCACTTATGTCCGACAAG -ACGGAAGCACTTATGTCCAAGCAG -ACGGAAGCACTTATGTCCCGTCAA -ACGGAAGCACTTATGTCCGCTGAA -ACGGAAGCACTTATGTCCAGTACG -ACGGAAGCACTTATGTCCATCCGA -ACGGAAGCACTTATGTCCATGGGA -ACGGAAGCACTTATGTCCGTGCAA -ACGGAAGCACTTATGTCCGAGGAA -ACGGAAGCACTTATGTCCCAGGTA -ACGGAAGCACTTATGTCCGACTCT -ACGGAAGCACTTATGTCCAGTCCT -ACGGAAGCACTTATGTCCTAAGCC -ACGGAAGCACTTATGTCCATAGCC -ACGGAAGCACTTATGTCCTAACCG -ACGGAAGCACTTATGTCCATGCCA -ACGGAAGCACTTGTGTGTGGAAAC -ACGGAAGCACTTGTGTGTAACACC -ACGGAAGCACTTGTGTGTATCGAG -ACGGAAGCACTTGTGTGTCTCCTT -ACGGAAGCACTTGTGTGTCCTGTT -ACGGAAGCACTTGTGTGTCGGTTT -ACGGAAGCACTTGTGTGTGTGGTT -ACGGAAGCACTTGTGTGTGCCTTT -ACGGAAGCACTTGTGTGTGGTCTT -ACGGAAGCACTTGTGTGTACGCTT -ACGGAAGCACTTGTGTGTAGCGTT -ACGGAAGCACTTGTGTGTTTCGTC -ACGGAAGCACTTGTGTGTTCTCTC -ACGGAAGCACTTGTGTGTTGGATC -ACGGAAGCACTTGTGTGTCACTTC -ACGGAAGCACTTGTGTGTGTACTC -ACGGAAGCACTTGTGTGTGATGTC -ACGGAAGCACTTGTGTGTACAGTC -ACGGAAGCACTTGTGTGTTTGCTG -ACGGAAGCACTTGTGTGTTCCATG -ACGGAAGCACTTGTGTGTTGTGTG -ACGGAAGCACTTGTGTGTCTAGTG -ACGGAAGCACTTGTGTGTCATCTG -ACGGAAGCACTTGTGTGTGAGTTG -ACGGAAGCACTTGTGTGTAGACTG -ACGGAAGCACTTGTGTGTTCGGTA -ACGGAAGCACTTGTGTGTTGCCTA -ACGGAAGCACTTGTGTGTCCACTA -ACGGAAGCACTTGTGTGTGGAGTA -ACGGAAGCACTTGTGTGTTCGTCT -ACGGAAGCACTTGTGTGTTGCACT -ACGGAAGCACTTGTGTGTCTGACT -ACGGAAGCACTTGTGTGTCAACCT -ACGGAAGCACTTGTGTGTGCTACT -ACGGAAGCACTTGTGTGTGGATCT -ACGGAAGCACTTGTGTGTAAGGCT -ACGGAAGCACTTGTGTGTTCAACC -ACGGAAGCACTTGTGTGTTGTTCC -ACGGAAGCACTTGTGTGTATTCCC -ACGGAAGCACTTGTGTGTTTCTCG -ACGGAAGCACTTGTGTGTTAGACG -ACGGAAGCACTTGTGTGTGTAACG -ACGGAAGCACTTGTGTGTACTTCG -ACGGAAGCACTTGTGTGTTACGCA -ACGGAAGCACTTGTGTGTCTTGCA -ACGGAAGCACTTGTGTGTCGAACA -ACGGAAGCACTTGTGTGTCAGTCA -ACGGAAGCACTTGTGTGTGATCCA -ACGGAAGCACTTGTGTGTACGACA -ACGGAAGCACTTGTGTGTAGCTCA -ACGGAAGCACTTGTGTGTTCACGT -ACGGAAGCACTTGTGTGTCGTAGT -ACGGAAGCACTTGTGTGTGTCAGT -ACGGAAGCACTTGTGTGTGAAGGT -ACGGAAGCACTTGTGTGTAACCGT -ACGGAAGCACTTGTGTGTTTGTGC -ACGGAAGCACTTGTGTGTCTAAGC -ACGGAAGCACTTGTGTGTACTAGC -ACGGAAGCACTTGTGTGTAGATGC -ACGGAAGCACTTGTGTGTTGAAGG -ACGGAAGCACTTGTGTGTCAATGG -ACGGAAGCACTTGTGTGTATGAGG -ACGGAAGCACTTGTGTGTAATGGG -ACGGAAGCACTTGTGTGTTCCTGA -ACGGAAGCACTTGTGTGTTAGCGA -ACGGAAGCACTTGTGTGTCACAGA -ACGGAAGCACTTGTGTGTGCAAGA -ACGGAAGCACTTGTGTGTGGTTGA -ACGGAAGCACTTGTGTGTTCCGAT -ACGGAAGCACTTGTGTGTTGGCAT -ACGGAAGCACTTGTGTGTCGAGAT -ACGGAAGCACTTGTGTGTTACCAC -ACGGAAGCACTTGTGTGTCAGAAC -ACGGAAGCACTTGTGTGTGTCTAC -ACGGAAGCACTTGTGTGTACGTAC -ACGGAAGCACTTGTGTGTAGTGAC -ACGGAAGCACTTGTGTGTCTGTAG -ACGGAAGCACTTGTGTGTCCTAAG -ACGGAAGCACTTGTGTGTGTTCAG -ACGGAAGCACTTGTGTGTGCATAG -ACGGAAGCACTTGTGTGTGACAAG -ACGGAAGCACTTGTGTGTAAGCAG -ACGGAAGCACTTGTGTGTCGTCAA -ACGGAAGCACTTGTGTGTGCTGAA -ACGGAAGCACTTGTGTGTAGTACG -ACGGAAGCACTTGTGTGTATCCGA -ACGGAAGCACTTGTGTGTATGGGA -ACGGAAGCACTTGTGTGTGTGCAA -ACGGAAGCACTTGTGTGTGAGGAA -ACGGAAGCACTTGTGTGTCAGGTA -ACGGAAGCACTTGTGTGTGACTCT -ACGGAAGCACTTGTGTGTAGTCCT -ACGGAAGCACTTGTGTGTTAAGCC -ACGGAAGCACTTGTGTGTATAGCC -ACGGAAGCACTTGTGTGTTAACCG -ACGGAAGCACTTGTGTGTATGCCA -ACGGAAGCACTTGTGCTAGGAAAC -ACGGAAGCACTTGTGCTAAACACC -ACGGAAGCACTTGTGCTAATCGAG -ACGGAAGCACTTGTGCTACTCCTT -ACGGAAGCACTTGTGCTACCTGTT -ACGGAAGCACTTGTGCTACGGTTT -ACGGAAGCACTTGTGCTAGTGGTT -ACGGAAGCACTTGTGCTAGCCTTT -ACGGAAGCACTTGTGCTAGGTCTT -ACGGAAGCACTTGTGCTAACGCTT -ACGGAAGCACTTGTGCTAAGCGTT -ACGGAAGCACTTGTGCTATTCGTC -ACGGAAGCACTTGTGCTATCTCTC -ACGGAAGCACTTGTGCTATGGATC -ACGGAAGCACTTGTGCTACACTTC -ACGGAAGCACTTGTGCTAGTACTC -ACGGAAGCACTTGTGCTAGATGTC -ACGGAAGCACTTGTGCTAACAGTC -ACGGAAGCACTTGTGCTATTGCTG -ACGGAAGCACTTGTGCTATCCATG -ACGGAAGCACTTGTGCTATGTGTG -ACGGAAGCACTTGTGCTACTAGTG -ACGGAAGCACTTGTGCTACATCTG -ACGGAAGCACTTGTGCTAGAGTTG -ACGGAAGCACTTGTGCTAAGACTG -ACGGAAGCACTTGTGCTATCGGTA -ACGGAAGCACTTGTGCTATGCCTA -ACGGAAGCACTTGTGCTACCACTA -ACGGAAGCACTTGTGCTAGGAGTA -ACGGAAGCACTTGTGCTATCGTCT -ACGGAAGCACTTGTGCTATGCACT -ACGGAAGCACTTGTGCTACTGACT -ACGGAAGCACTTGTGCTACAACCT -ACGGAAGCACTTGTGCTAGCTACT -ACGGAAGCACTTGTGCTAGGATCT -ACGGAAGCACTTGTGCTAAAGGCT -ACGGAAGCACTTGTGCTATCAACC -ACGGAAGCACTTGTGCTATGTTCC -ACGGAAGCACTTGTGCTAATTCCC -ACGGAAGCACTTGTGCTATTCTCG -ACGGAAGCACTTGTGCTATAGACG -ACGGAAGCACTTGTGCTAGTAACG -ACGGAAGCACTTGTGCTAACTTCG -ACGGAAGCACTTGTGCTATACGCA -ACGGAAGCACTTGTGCTACTTGCA -ACGGAAGCACTTGTGCTACGAACA -ACGGAAGCACTTGTGCTACAGTCA -ACGGAAGCACTTGTGCTAGATCCA -ACGGAAGCACTTGTGCTAACGACA -ACGGAAGCACTTGTGCTAAGCTCA -ACGGAAGCACTTGTGCTATCACGT -ACGGAAGCACTTGTGCTACGTAGT -ACGGAAGCACTTGTGCTAGTCAGT -ACGGAAGCACTTGTGCTAGAAGGT -ACGGAAGCACTTGTGCTAAACCGT -ACGGAAGCACTTGTGCTATTGTGC -ACGGAAGCACTTGTGCTACTAAGC -ACGGAAGCACTTGTGCTAACTAGC -ACGGAAGCACTTGTGCTAAGATGC -ACGGAAGCACTTGTGCTATGAAGG -ACGGAAGCACTTGTGCTACAATGG -ACGGAAGCACTTGTGCTAATGAGG -ACGGAAGCACTTGTGCTAAATGGG -ACGGAAGCACTTGTGCTATCCTGA -ACGGAAGCACTTGTGCTATAGCGA -ACGGAAGCACTTGTGCTACACAGA -ACGGAAGCACTTGTGCTAGCAAGA -ACGGAAGCACTTGTGCTAGGTTGA -ACGGAAGCACTTGTGCTATCCGAT -ACGGAAGCACTTGTGCTATGGCAT -ACGGAAGCACTTGTGCTACGAGAT -ACGGAAGCACTTGTGCTATACCAC -ACGGAAGCACTTGTGCTACAGAAC -ACGGAAGCACTTGTGCTAGTCTAC -ACGGAAGCACTTGTGCTAACGTAC -ACGGAAGCACTTGTGCTAAGTGAC -ACGGAAGCACTTGTGCTACTGTAG -ACGGAAGCACTTGTGCTACCTAAG -ACGGAAGCACTTGTGCTAGTTCAG -ACGGAAGCACTTGTGCTAGCATAG -ACGGAAGCACTTGTGCTAGACAAG -ACGGAAGCACTTGTGCTAAAGCAG -ACGGAAGCACTTGTGCTACGTCAA -ACGGAAGCACTTGTGCTAGCTGAA -ACGGAAGCACTTGTGCTAAGTACG -ACGGAAGCACTTGTGCTAATCCGA -ACGGAAGCACTTGTGCTAATGGGA -ACGGAAGCACTTGTGCTAGTGCAA -ACGGAAGCACTTGTGCTAGAGGAA -ACGGAAGCACTTGTGCTACAGGTA -ACGGAAGCACTTGTGCTAGACTCT -ACGGAAGCACTTGTGCTAAGTCCT -ACGGAAGCACTTGTGCTATAAGCC -ACGGAAGCACTTGTGCTAATAGCC -ACGGAAGCACTTGTGCTATAACCG -ACGGAAGCACTTGTGCTAATGCCA -ACGGAAGCACTTCTGCATGGAAAC -ACGGAAGCACTTCTGCATAACACC -ACGGAAGCACTTCTGCATATCGAG -ACGGAAGCACTTCTGCATCTCCTT -ACGGAAGCACTTCTGCATCCTGTT -ACGGAAGCACTTCTGCATCGGTTT -ACGGAAGCACTTCTGCATGTGGTT -ACGGAAGCACTTCTGCATGCCTTT -ACGGAAGCACTTCTGCATGGTCTT -ACGGAAGCACTTCTGCATACGCTT -ACGGAAGCACTTCTGCATAGCGTT -ACGGAAGCACTTCTGCATTTCGTC -ACGGAAGCACTTCTGCATTCTCTC -ACGGAAGCACTTCTGCATTGGATC -ACGGAAGCACTTCTGCATCACTTC -ACGGAAGCACTTCTGCATGTACTC -ACGGAAGCACTTCTGCATGATGTC -ACGGAAGCACTTCTGCATACAGTC -ACGGAAGCACTTCTGCATTTGCTG -ACGGAAGCACTTCTGCATTCCATG -ACGGAAGCACTTCTGCATTGTGTG -ACGGAAGCACTTCTGCATCTAGTG -ACGGAAGCACTTCTGCATCATCTG -ACGGAAGCACTTCTGCATGAGTTG -ACGGAAGCACTTCTGCATAGACTG -ACGGAAGCACTTCTGCATTCGGTA -ACGGAAGCACTTCTGCATTGCCTA -ACGGAAGCACTTCTGCATCCACTA -ACGGAAGCACTTCTGCATGGAGTA -ACGGAAGCACTTCTGCATTCGTCT -ACGGAAGCACTTCTGCATTGCACT -ACGGAAGCACTTCTGCATCTGACT -ACGGAAGCACTTCTGCATCAACCT -ACGGAAGCACTTCTGCATGCTACT -ACGGAAGCACTTCTGCATGGATCT -ACGGAAGCACTTCTGCATAAGGCT -ACGGAAGCACTTCTGCATTCAACC -ACGGAAGCACTTCTGCATTGTTCC -ACGGAAGCACTTCTGCATATTCCC -ACGGAAGCACTTCTGCATTTCTCG -ACGGAAGCACTTCTGCATTAGACG -ACGGAAGCACTTCTGCATGTAACG -ACGGAAGCACTTCTGCATACTTCG -ACGGAAGCACTTCTGCATTACGCA -ACGGAAGCACTTCTGCATCTTGCA -ACGGAAGCACTTCTGCATCGAACA -ACGGAAGCACTTCTGCATCAGTCA -ACGGAAGCACTTCTGCATGATCCA -ACGGAAGCACTTCTGCATACGACA -ACGGAAGCACTTCTGCATAGCTCA -ACGGAAGCACTTCTGCATTCACGT -ACGGAAGCACTTCTGCATCGTAGT -ACGGAAGCACTTCTGCATGTCAGT -ACGGAAGCACTTCTGCATGAAGGT -ACGGAAGCACTTCTGCATAACCGT -ACGGAAGCACTTCTGCATTTGTGC -ACGGAAGCACTTCTGCATCTAAGC -ACGGAAGCACTTCTGCATACTAGC -ACGGAAGCACTTCTGCATAGATGC -ACGGAAGCACTTCTGCATTGAAGG -ACGGAAGCACTTCTGCATCAATGG -ACGGAAGCACTTCTGCATATGAGG -ACGGAAGCACTTCTGCATAATGGG -ACGGAAGCACTTCTGCATTCCTGA -ACGGAAGCACTTCTGCATTAGCGA -ACGGAAGCACTTCTGCATCACAGA -ACGGAAGCACTTCTGCATGCAAGA -ACGGAAGCACTTCTGCATGGTTGA -ACGGAAGCACTTCTGCATTCCGAT -ACGGAAGCACTTCTGCATTGGCAT -ACGGAAGCACTTCTGCATCGAGAT -ACGGAAGCACTTCTGCATTACCAC -ACGGAAGCACTTCTGCATCAGAAC -ACGGAAGCACTTCTGCATGTCTAC -ACGGAAGCACTTCTGCATACGTAC -ACGGAAGCACTTCTGCATAGTGAC -ACGGAAGCACTTCTGCATCTGTAG -ACGGAAGCACTTCTGCATCCTAAG -ACGGAAGCACTTCTGCATGTTCAG -ACGGAAGCACTTCTGCATGCATAG -ACGGAAGCACTTCTGCATGACAAG -ACGGAAGCACTTCTGCATAAGCAG -ACGGAAGCACTTCTGCATCGTCAA -ACGGAAGCACTTCTGCATGCTGAA -ACGGAAGCACTTCTGCATAGTACG -ACGGAAGCACTTCTGCATATCCGA -ACGGAAGCACTTCTGCATATGGGA -ACGGAAGCACTTCTGCATGTGCAA -ACGGAAGCACTTCTGCATGAGGAA -ACGGAAGCACTTCTGCATCAGGTA -ACGGAAGCACTTCTGCATGACTCT -ACGGAAGCACTTCTGCATAGTCCT -ACGGAAGCACTTCTGCATTAAGCC -ACGGAAGCACTTCTGCATATAGCC -ACGGAAGCACTTCTGCATTAACCG -ACGGAAGCACTTCTGCATATGCCA -ACGGAAGCACTTTTGGAGGGAAAC -ACGGAAGCACTTTTGGAGAACACC -ACGGAAGCACTTTTGGAGATCGAG -ACGGAAGCACTTTTGGAGCTCCTT -ACGGAAGCACTTTTGGAGCCTGTT -ACGGAAGCACTTTTGGAGCGGTTT -ACGGAAGCACTTTTGGAGGTGGTT -ACGGAAGCACTTTTGGAGGCCTTT -ACGGAAGCACTTTTGGAGGGTCTT -ACGGAAGCACTTTTGGAGACGCTT -ACGGAAGCACTTTTGGAGAGCGTT -ACGGAAGCACTTTTGGAGTTCGTC -ACGGAAGCACTTTTGGAGTCTCTC -ACGGAAGCACTTTTGGAGTGGATC -ACGGAAGCACTTTTGGAGCACTTC -ACGGAAGCACTTTTGGAGGTACTC -ACGGAAGCACTTTTGGAGGATGTC -ACGGAAGCACTTTTGGAGACAGTC -ACGGAAGCACTTTTGGAGTTGCTG -ACGGAAGCACTTTTGGAGTCCATG -ACGGAAGCACTTTTGGAGTGTGTG -ACGGAAGCACTTTTGGAGCTAGTG -ACGGAAGCACTTTTGGAGCATCTG -ACGGAAGCACTTTTGGAGGAGTTG -ACGGAAGCACTTTTGGAGAGACTG -ACGGAAGCACTTTTGGAGTCGGTA -ACGGAAGCACTTTTGGAGTGCCTA -ACGGAAGCACTTTTGGAGCCACTA -ACGGAAGCACTTTTGGAGGGAGTA -ACGGAAGCACTTTTGGAGTCGTCT -ACGGAAGCACTTTTGGAGTGCACT -ACGGAAGCACTTTTGGAGCTGACT -ACGGAAGCACTTTTGGAGCAACCT -ACGGAAGCACTTTTGGAGGCTACT -ACGGAAGCACTTTTGGAGGGATCT -ACGGAAGCACTTTTGGAGAAGGCT -ACGGAAGCACTTTTGGAGTCAACC -ACGGAAGCACTTTTGGAGTGTTCC -ACGGAAGCACTTTTGGAGATTCCC -ACGGAAGCACTTTTGGAGTTCTCG -ACGGAAGCACTTTTGGAGTAGACG -ACGGAAGCACTTTTGGAGGTAACG -ACGGAAGCACTTTTGGAGACTTCG -ACGGAAGCACTTTTGGAGTACGCA -ACGGAAGCACTTTTGGAGCTTGCA -ACGGAAGCACTTTTGGAGCGAACA -ACGGAAGCACTTTTGGAGCAGTCA -ACGGAAGCACTTTTGGAGGATCCA -ACGGAAGCACTTTTGGAGACGACA -ACGGAAGCACTTTTGGAGAGCTCA -ACGGAAGCACTTTTGGAGTCACGT -ACGGAAGCACTTTTGGAGCGTAGT -ACGGAAGCACTTTTGGAGGTCAGT -ACGGAAGCACTTTTGGAGGAAGGT -ACGGAAGCACTTTTGGAGAACCGT -ACGGAAGCACTTTTGGAGTTGTGC -ACGGAAGCACTTTTGGAGCTAAGC -ACGGAAGCACTTTTGGAGACTAGC -ACGGAAGCACTTTTGGAGAGATGC -ACGGAAGCACTTTTGGAGTGAAGG -ACGGAAGCACTTTTGGAGCAATGG -ACGGAAGCACTTTTGGAGATGAGG -ACGGAAGCACTTTTGGAGAATGGG -ACGGAAGCACTTTTGGAGTCCTGA -ACGGAAGCACTTTTGGAGTAGCGA -ACGGAAGCACTTTTGGAGCACAGA -ACGGAAGCACTTTTGGAGGCAAGA -ACGGAAGCACTTTTGGAGGGTTGA -ACGGAAGCACTTTTGGAGTCCGAT -ACGGAAGCACTTTTGGAGTGGCAT -ACGGAAGCACTTTTGGAGCGAGAT -ACGGAAGCACTTTTGGAGTACCAC -ACGGAAGCACTTTTGGAGCAGAAC -ACGGAAGCACTTTTGGAGGTCTAC -ACGGAAGCACTTTTGGAGACGTAC -ACGGAAGCACTTTTGGAGAGTGAC -ACGGAAGCACTTTTGGAGCTGTAG -ACGGAAGCACTTTTGGAGCCTAAG -ACGGAAGCACTTTTGGAGGTTCAG -ACGGAAGCACTTTTGGAGGCATAG -ACGGAAGCACTTTTGGAGGACAAG -ACGGAAGCACTTTTGGAGAAGCAG -ACGGAAGCACTTTTGGAGCGTCAA -ACGGAAGCACTTTTGGAGGCTGAA -ACGGAAGCACTTTTGGAGAGTACG -ACGGAAGCACTTTTGGAGATCCGA -ACGGAAGCACTTTTGGAGATGGGA -ACGGAAGCACTTTTGGAGGTGCAA -ACGGAAGCACTTTTGGAGGAGGAA -ACGGAAGCACTTTTGGAGCAGGTA -ACGGAAGCACTTTTGGAGGACTCT -ACGGAAGCACTTTTGGAGAGTCCT -ACGGAAGCACTTTTGGAGTAAGCC -ACGGAAGCACTTTTGGAGATAGCC -ACGGAAGCACTTTTGGAGTAACCG -ACGGAAGCACTTTTGGAGATGCCA -ACGGAAGCACTTCTGAGAGGAAAC -ACGGAAGCACTTCTGAGAAACACC -ACGGAAGCACTTCTGAGAATCGAG -ACGGAAGCACTTCTGAGACTCCTT -ACGGAAGCACTTCTGAGACCTGTT -ACGGAAGCACTTCTGAGACGGTTT -ACGGAAGCACTTCTGAGAGTGGTT -ACGGAAGCACTTCTGAGAGCCTTT -ACGGAAGCACTTCTGAGAGGTCTT -ACGGAAGCACTTCTGAGAACGCTT -ACGGAAGCACTTCTGAGAAGCGTT -ACGGAAGCACTTCTGAGATTCGTC -ACGGAAGCACTTCTGAGATCTCTC -ACGGAAGCACTTCTGAGATGGATC -ACGGAAGCACTTCTGAGACACTTC -ACGGAAGCACTTCTGAGAGTACTC -ACGGAAGCACTTCTGAGAGATGTC -ACGGAAGCACTTCTGAGAACAGTC -ACGGAAGCACTTCTGAGATTGCTG -ACGGAAGCACTTCTGAGATCCATG -ACGGAAGCACTTCTGAGATGTGTG -ACGGAAGCACTTCTGAGACTAGTG -ACGGAAGCACTTCTGAGACATCTG -ACGGAAGCACTTCTGAGAGAGTTG -ACGGAAGCACTTCTGAGAAGACTG -ACGGAAGCACTTCTGAGATCGGTA -ACGGAAGCACTTCTGAGATGCCTA -ACGGAAGCACTTCTGAGACCACTA -ACGGAAGCACTTCTGAGAGGAGTA -ACGGAAGCACTTCTGAGATCGTCT -ACGGAAGCACTTCTGAGATGCACT -ACGGAAGCACTTCTGAGACTGACT -ACGGAAGCACTTCTGAGACAACCT -ACGGAAGCACTTCTGAGAGCTACT -ACGGAAGCACTTCTGAGAGGATCT -ACGGAAGCACTTCTGAGAAAGGCT -ACGGAAGCACTTCTGAGATCAACC -ACGGAAGCACTTCTGAGATGTTCC -ACGGAAGCACTTCTGAGAATTCCC -ACGGAAGCACTTCTGAGATTCTCG -ACGGAAGCACTTCTGAGATAGACG -ACGGAAGCACTTCTGAGAGTAACG -ACGGAAGCACTTCTGAGAACTTCG -ACGGAAGCACTTCTGAGATACGCA -ACGGAAGCACTTCTGAGACTTGCA -ACGGAAGCACTTCTGAGACGAACA -ACGGAAGCACTTCTGAGACAGTCA -ACGGAAGCACTTCTGAGAGATCCA -ACGGAAGCACTTCTGAGAACGACA -ACGGAAGCACTTCTGAGAAGCTCA -ACGGAAGCACTTCTGAGATCACGT -ACGGAAGCACTTCTGAGACGTAGT -ACGGAAGCACTTCTGAGAGTCAGT -ACGGAAGCACTTCTGAGAGAAGGT -ACGGAAGCACTTCTGAGAAACCGT -ACGGAAGCACTTCTGAGATTGTGC -ACGGAAGCACTTCTGAGACTAAGC -ACGGAAGCACTTCTGAGAACTAGC -ACGGAAGCACTTCTGAGAAGATGC -ACGGAAGCACTTCTGAGATGAAGG -ACGGAAGCACTTCTGAGACAATGG -ACGGAAGCACTTCTGAGAATGAGG -ACGGAAGCACTTCTGAGAAATGGG -ACGGAAGCACTTCTGAGATCCTGA -ACGGAAGCACTTCTGAGATAGCGA -ACGGAAGCACTTCTGAGACACAGA -ACGGAAGCACTTCTGAGAGCAAGA -ACGGAAGCACTTCTGAGAGGTTGA -ACGGAAGCACTTCTGAGATCCGAT -ACGGAAGCACTTCTGAGATGGCAT -ACGGAAGCACTTCTGAGACGAGAT -ACGGAAGCACTTCTGAGATACCAC -ACGGAAGCACTTCTGAGACAGAAC -ACGGAAGCACTTCTGAGAGTCTAC -ACGGAAGCACTTCTGAGAACGTAC -ACGGAAGCACTTCTGAGAAGTGAC -ACGGAAGCACTTCTGAGACTGTAG -ACGGAAGCACTTCTGAGACCTAAG -ACGGAAGCACTTCTGAGAGTTCAG -ACGGAAGCACTTCTGAGAGCATAG -ACGGAAGCACTTCTGAGAGACAAG -ACGGAAGCACTTCTGAGAAAGCAG -ACGGAAGCACTTCTGAGACGTCAA -ACGGAAGCACTTCTGAGAGCTGAA -ACGGAAGCACTTCTGAGAAGTACG -ACGGAAGCACTTCTGAGAATCCGA -ACGGAAGCACTTCTGAGAATGGGA -ACGGAAGCACTTCTGAGAGTGCAA -ACGGAAGCACTTCTGAGAGAGGAA -ACGGAAGCACTTCTGAGACAGGTA -ACGGAAGCACTTCTGAGAGACTCT -ACGGAAGCACTTCTGAGAAGTCCT -ACGGAAGCACTTCTGAGATAAGCC -ACGGAAGCACTTCTGAGAATAGCC -ACGGAAGCACTTCTGAGATAACCG -ACGGAAGCACTTCTGAGAATGCCA -ACGGAAGCACTTGTATCGGGAAAC -ACGGAAGCACTTGTATCGAACACC -ACGGAAGCACTTGTATCGATCGAG -ACGGAAGCACTTGTATCGCTCCTT -ACGGAAGCACTTGTATCGCCTGTT -ACGGAAGCACTTGTATCGCGGTTT -ACGGAAGCACTTGTATCGGTGGTT -ACGGAAGCACTTGTATCGGCCTTT -ACGGAAGCACTTGTATCGGGTCTT -ACGGAAGCACTTGTATCGACGCTT -ACGGAAGCACTTGTATCGAGCGTT -ACGGAAGCACTTGTATCGTTCGTC -ACGGAAGCACTTGTATCGTCTCTC -ACGGAAGCACTTGTATCGTGGATC -ACGGAAGCACTTGTATCGCACTTC -ACGGAAGCACTTGTATCGGTACTC -ACGGAAGCACTTGTATCGGATGTC -ACGGAAGCACTTGTATCGACAGTC -ACGGAAGCACTTGTATCGTTGCTG -ACGGAAGCACTTGTATCGTCCATG -ACGGAAGCACTTGTATCGTGTGTG -ACGGAAGCACTTGTATCGCTAGTG -ACGGAAGCACTTGTATCGCATCTG -ACGGAAGCACTTGTATCGGAGTTG -ACGGAAGCACTTGTATCGAGACTG -ACGGAAGCACTTGTATCGTCGGTA -ACGGAAGCACTTGTATCGTGCCTA -ACGGAAGCACTTGTATCGCCACTA -ACGGAAGCACTTGTATCGGGAGTA -ACGGAAGCACTTGTATCGTCGTCT -ACGGAAGCACTTGTATCGTGCACT -ACGGAAGCACTTGTATCGCTGACT -ACGGAAGCACTTGTATCGCAACCT -ACGGAAGCACTTGTATCGGCTACT -ACGGAAGCACTTGTATCGGGATCT -ACGGAAGCACTTGTATCGAAGGCT -ACGGAAGCACTTGTATCGTCAACC -ACGGAAGCACTTGTATCGTGTTCC -ACGGAAGCACTTGTATCGATTCCC -ACGGAAGCACTTGTATCGTTCTCG -ACGGAAGCACTTGTATCGTAGACG -ACGGAAGCACTTGTATCGGTAACG -ACGGAAGCACTTGTATCGACTTCG -ACGGAAGCACTTGTATCGTACGCA -ACGGAAGCACTTGTATCGCTTGCA -ACGGAAGCACTTGTATCGCGAACA -ACGGAAGCACTTGTATCGCAGTCA -ACGGAAGCACTTGTATCGGATCCA -ACGGAAGCACTTGTATCGACGACA -ACGGAAGCACTTGTATCGAGCTCA -ACGGAAGCACTTGTATCGTCACGT -ACGGAAGCACTTGTATCGCGTAGT -ACGGAAGCACTTGTATCGGTCAGT -ACGGAAGCACTTGTATCGGAAGGT -ACGGAAGCACTTGTATCGAACCGT -ACGGAAGCACTTGTATCGTTGTGC -ACGGAAGCACTTGTATCGCTAAGC -ACGGAAGCACTTGTATCGACTAGC -ACGGAAGCACTTGTATCGAGATGC -ACGGAAGCACTTGTATCGTGAAGG -ACGGAAGCACTTGTATCGCAATGG -ACGGAAGCACTTGTATCGATGAGG -ACGGAAGCACTTGTATCGAATGGG -ACGGAAGCACTTGTATCGTCCTGA -ACGGAAGCACTTGTATCGTAGCGA -ACGGAAGCACTTGTATCGCACAGA -ACGGAAGCACTTGTATCGGCAAGA -ACGGAAGCACTTGTATCGGGTTGA -ACGGAAGCACTTGTATCGTCCGAT -ACGGAAGCACTTGTATCGTGGCAT -ACGGAAGCACTTGTATCGCGAGAT -ACGGAAGCACTTGTATCGTACCAC -ACGGAAGCACTTGTATCGCAGAAC -ACGGAAGCACTTGTATCGGTCTAC -ACGGAAGCACTTGTATCGACGTAC -ACGGAAGCACTTGTATCGAGTGAC -ACGGAAGCACTTGTATCGCTGTAG -ACGGAAGCACTTGTATCGCCTAAG -ACGGAAGCACTTGTATCGGTTCAG -ACGGAAGCACTTGTATCGGCATAG -ACGGAAGCACTTGTATCGGACAAG -ACGGAAGCACTTGTATCGAAGCAG -ACGGAAGCACTTGTATCGCGTCAA -ACGGAAGCACTTGTATCGGCTGAA -ACGGAAGCACTTGTATCGAGTACG -ACGGAAGCACTTGTATCGATCCGA -ACGGAAGCACTTGTATCGATGGGA -ACGGAAGCACTTGTATCGGTGCAA -ACGGAAGCACTTGTATCGGAGGAA -ACGGAAGCACTTGTATCGCAGGTA -ACGGAAGCACTTGTATCGGACTCT -ACGGAAGCACTTGTATCGAGTCCT -ACGGAAGCACTTGTATCGTAAGCC -ACGGAAGCACTTGTATCGATAGCC -ACGGAAGCACTTGTATCGTAACCG -ACGGAAGCACTTGTATCGATGCCA -ACGGAAGCACTTCTATGCGGAAAC -ACGGAAGCACTTCTATGCAACACC -ACGGAAGCACTTCTATGCATCGAG -ACGGAAGCACTTCTATGCCTCCTT -ACGGAAGCACTTCTATGCCCTGTT -ACGGAAGCACTTCTATGCCGGTTT -ACGGAAGCACTTCTATGCGTGGTT -ACGGAAGCACTTCTATGCGCCTTT -ACGGAAGCACTTCTATGCGGTCTT -ACGGAAGCACTTCTATGCACGCTT -ACGGAAGCACTTCTATGCAGCGTT -ACGGAAGCACTTCTATGCTTCGTC -ACGGAAGCACTTCTATGCTCTCTC -ACGGAAGCACTTCTATGCTGGATC -ACGGAAGCACTTCTATGCCACTTC -ACGGAAGCACTTCTATGCGTACTC -ACGGAAGCACTTCTATGCGATGTC -ACGGAAGCACTTCTATGCACAGTC -ACGGAAGCACTTCTATGCTTGCTG -ACGGAAGCACTTCTATGCTCCATG -ACGGAAGCACTTCTATGCTGTGTG -ACGGAAGCACTTCTATGCCTAGTG -ACGGAAGCACTTCTATGCCATCTG -ACGGAAGCACTTCTATGCGAGTTG -ACGGAAGCACTTCTATGCAGACTG -ACGGAAGCACTTCTATGCTCGGTA -ACGGAAGCACTTCTATGCTGCCTA -ACGGAAGCACTTCTATGCCCACTA -ACGGAAGCACTTCTATGCGGAGTA -ACGGAAGCACTTCTATGCTCGTCT -ACGGAAGCACTTCTATGCTGCACT -ACGGAAGCACTTCTATGCCTGACT -ACGGAAGCACTTCTATGCCAACCT -ACGGAAGCACTTCTATGCGCTACT -ACGGAAGCACTTCTATGCGGATCT -ACGGAAGCACTTCTATGCAAGGCT -ACGGAAGCACTTCTATGCTCAACC -ACGGAAGCACTTCTATGCTGTTCC -ACGGAAGCACTTCTATGCATTCCC -ACGGAAGCACTTCTATGCTTCTCG -ACGGAAGCACTTCTATGCTAGACG -ACGGAAGCACTTCTATGCGTAACG -ACGGAAGCACTTCTATGCACTTCG -ACGGAAGCACTTCTATGCTACGCA -ACGGAAGCACTTCTATGCCTTGCA -ACGGAAGCACTTCTATGCCGAACA -ACGGAAGCACTTCTATGCCAGTCA -ACGGAAGCACTTCTATGCGATCCA -ACGGAAGCACTTCTATGCACGACA -ACGGAAGCACTTCTATGCAGCTCA -ACGGAAGCACTTCTATGCTCACGT -ACGGAAGCACTTCTATGCCGTAGT -ACGGAAGCACTTCTATGCGTCAGT -ACGGAAGCACTTCTATGCGAAGGT -ACGGAAGCACTTCTATGCAACCGT -ACGGAAGCACTTCTATGCTTGTGC -ACGGAAGCACTTCTATGCCTAAGC -ACGGAAGCACTTCTATGCACTAGC -ACGGAAGCACTTCTATGCAGATGC -ACGGAAGCACTTCTATGCTGAAGG -ACGGAAGCACTTCTATGCCAATGG -ACGGAAGCACTTCTATGCATGAGG -ACGGAAGCACTTCTATGCAATGGG -ACGGAAGCACTTCTATGCTCCTGA -ACGGAAGCACTTCTATGCTAGCGA -ACGGAAGCACTTCTATGCCACAGA -ACGGAAGCACTTCTATGCGCAAGA -ACGGAAGCACTTCTATGCGGTTGA -ACGGAAGCACTTCTATGCTCCGAT -ACGGAAGCACTTCTATGCTGGCAT -ACGGAAGCACTTCTATGCCGAGAT -ACGGAAGCACTTCTATGCTACCAC -ACGGAAGCACTTCTATGCCAGAAC -ACGGAAGCACTTCTATGCGTCTAC -ACGGAAGCACTTCTATGCACGTAC -ACGGAAGCACTTCTATGCAGTGAC -ACGGAAGCACTTCTATGCCTGTAG -ACGGAAGCACTTCTATGCCCTAAG -ACGGAAGCACTTCTATGCGTTCAG -ACGGAAGCACTTCTATGCGCATAG -ACGGAAGCACTTCTATGCGACAAG -ACGGAAGCACTTCTATGCAAGCAG -ACGGAAGCACTTCTATGCCGTCAA -ACGGAAGCACTTCTATGCGCTGAA -ACGGAAGCACTTCTATGCAGTACG -ACGGAAGCACTTCTATGCATCCGA -ACGGAAGCACTTCTATGCATGGGA -ACGGAAGCACTTCTATGCGTGCAA -ACGGAAGCACTTCTATGCGAGGAA -ACGGAAGCACTTCTATGCCAGGTA -ACGGAAGCACTTCTATGCGACTCT -ACGGAAGCACTTCTATGCAGTCCT -ACGGAAGCACTTCTATGCTAAGCC -ACGGAAGCACTTCTATGCATAGCC -ACGGAAGCACTTCTATGCTAACCG -ACGGAAGCACTTCTATGCATGCCA -ACGGAAGCACTTCTACCAGGAAAC -ACGGAAGCACTTCTACCAAACACC -ACGGAAGCACTTCTACCAATCGAG -ACGGAAGCACTTCTACCACTCCTT -ACGGAAGCACTTCTACCACCTGTT -ACGGAAGCACTTCTACCACGGTTT -ACGGAAGCACTTCTACCAGTGGTT -ACGGAAGCACTTCTACCAGCCTTT -ACGGAAGCACTTCTACCAGGTCTT -ACGGAAGCACTTCTACCAACGCTT -ACGGAAGCACTTCTACCAAGCGTT -ACGGAAGCACTTCTACCATTCGTC -ACGGAAGCACTTCTACCATCTCTC -ACGGAAGCACTTCTACCATGGATC -ACGGAAGCACTTCTACCACACTTC -ACGGAAGCACTTCTACCAGTACTC -ACGGAAGCACTTCTACCAGATGTC -ACGGAAGCACTTCTACCAACAGTC -ACGGAAGCACTTCTACCATTGCTG -ACGGAAGCACTTCTACCATCCATG -ACGGAAGCACTTCTACCATGTGTG -ACGGAAGCACTTCTACCACTAGTG -ACGGAAGCACTTCTACCACATCTG -ACGGAAGCACTTCTACCAGAGTTG -ACGGAAGCACTTCTACCAAGACTG -ACGGAAGCACTTCTACCATCGGTA -ACGGAAGCACTTCTACCATGCCTA -ACGGAAGCACTTCTACCACCACTA -ACGGAAGCACTTCTACCAGGAGTA -ACGGAAGCACTTCTACCATCGTCT -ACGGAAGCACTTCTACCATGCACT -ACGGAAGCACTTCTACCACTGACT -ACGGAAGCACTTCTACCACAACCT -ACGGAAGCACTTCTACCAGCTACT -ACGGAAGCACTTCTACCAGGATCT -ACGGAAGCACTTCTACCAAAGGCT -ACGGAAGCACTTCTACCATCAACC -ACGGAAGCACTTCTACCATGTTCC -ACGGAAGCACTTCTACCAATTCCC -ACGGAAGCACTTCTACCATTCTCG -ACGGAAGCACTTCTACCATAGACG -ACGGAAGCACTTCTACCAGTAACG -ACGGAAGCACTTCTACCAACTTCG -ACGGAAGCACTTCTACCATACGCA -ACGGAAGCACTTCTACCACTTGCA -ACGGAAGCACTTCTACCACGAACA -ACGGAAGCACTTCTACCACAGTCA -ACGGAAGCACTTCTACCAGATCCA -ACGGAAGCACTTCTACCAACGACA -ACGGAAGCACTTCTACCAAGCTCA -ACGGAAGCACTTCTACCATCACGT -ACGGAAGCACTTCTACCACGTAGT -ACGGAAGCACTTCTACCAGTCAGT -ACGGAAGCACTTCTACCAGAAGGT -ACGGAAGCACTTCTACCAAACCGT -ACGGAAGCACTTCTACCATTGTGC -ACGGAAGCACTTCTACCACTAAGC -ACGGAAGCACTTCTACCAACTAGC -ACGGAAGCACTTCTACCAAGATGC -ACGGAAGCACTTCTACCATGAAGG -ACGGAAGCACTTCTACCACAATGG -ACGGAAGCACTTCTACCAATGAGG -ACGGAAGCACTTCTACCAAATGGG -ACGGAAGCACTTCTACCATCCTGA -ACGGAAGCACTTCTACCATAGCGA -ACGGAAGCACTTCTACCACACAGA -ACGGAAGCACTTCTACCAGCAAGA -ACGGAAGCACTTCTACCAGGTTGA -ACGGAAGCACTTCTACCATCCGAT -ACGGAAGCACTTCTACCATGGCAT -ACGGAAGCACTTCTACCACGAGAT -ACGGAAGCACTTCTACCATACCAC -ACGGAAGCACTTCTACCACAGAAC -ACGGAAGCACTTCTACCAGTCTAC -ACGGAAGCACTTCTACCAACGTAC -ACGGAAGCACTTCTACCAAGTGAC -ACGGAAGCACTTCTACCACTGTAG -ACGGAAGCACTTCTACCACCTAAG -ACGGAAGCACTTCTACCAGTTCAG -ACGGAAGCACTTCTACCAGCATAG -ACGGAAGCACTTCTACCAGACAAG -ACGGAAGCACTTCTACCAAAGCAG -ACGGAAGCACTTCTACCACGTCAA -ACGGAAGCACTTCTACCAGCTGAA -ACGGAAGCACTTCTACCAAGTACG -ACGGAAGCACTTCTACCAATCCGA -ACGGAAGCACTTCTACCAATGGGA -ACGGAAGCACTTCTACCAGTGCAA -ACGGAAGCACTTCTACCAGAGGAA -ACGGAAGCACTTCTACCACAGGTA -ACGGAAGCACTTCTACCAGACTCT -ACGGAAGCACTTCTACCAAGTCCT -ACGGAAGCACTTCTACCATAAGCC -ACGGAAGCACTTCTACCAATAGCC -ACGGAAGCACTTCTACCATAACCG -ACGGAAGCACTTCTACCAATGCCA -ACGGAAGCACTTGTAGGAGGAAAC -ACGGAAGCACTTGTAGGAAACACC -ACGGAAGCACTTGTAGGAATCGAG -ACGGAAGCACTTGTAGGACTCCTT -ACGGAAGCACTTGTAGGACCTGTT -ACGGAAGCACTTGTAGGACGGTTT -ACGGAAGCACTTGTAGGAGTGGTT -ACGGAAGCACTTGTAGGAGCCTTT -ACGGAAGCACTTGTAGGAGGTCTT -ACGGAAGCACTTGTAGGAACGCTT -ACGGAAGCACTTGTAGGAAGCGTT -ACGGAAGCACTTGTAGGATTCGTC -ACGGAAGCACTTGTAGGATCTCTC -ACGGAAGCACTTGTAGGATGGATC -ACGGAAGCACTTGTAGGACACTTC -ACGGAAGCACTTGTAGGAGTACTC -ACGGAAGCACTTGTAGGAGATGTC -ACGGAAGCACTTGTAGGAACAGTC -ACGGAAGCACTTGTAGGATTGCTG -ACGGAAGCACTTGTAGGATCCATG -ACGGAAGCACTTGTAGGATGTGTG -ACGGAAGCACTTGTAGGACTAGTG -ACGGAAGCACTTGTAGGACATCTG -ACGGAAGCACTTGTAGGAGAGTTG -ACGGAAGCACTTGTAGGAAGACTG -ACGGAAGCACTTGTAGGATCGGTA -ACGGAAGCACTTGTAGGATGCCTA -ACGGAAGCACTTGTAGGACCACTA -ACGGAAGCACTTGTAGGAGGAGTA -ACGGAAGCACTTGTAGGATCGTCT -ACGGAAGCACTTGTAGGATGCACT -ACGGAAGCACTTGTAGGACTGACT -ACGGAAGCACTTGTAGGACAACCT -ACGGAAGCACTTGTAGGAGCTACT -ACGGAAGCACTTGTAGGAGGATCT -ACGGAAGCACTTGTAGGAAAGGCT -ACGGAAGCACTTGTAGGATCAACC -ACGGAAGCACTTGTAGGATGTTCC -ACGGAAGCACTTGTAGGAATTCCC -ACGGAAGCACTTGTAGGATTCTCG -ACGGAAGCACTTGTAGGATAGACG -ACGGAAGCACTTGTAGGAGTAACG -ACGGAAGCACTTGTAGGAACTTCG -ACGGAAGCACTTGTAGGATACGCA -ACGGAAGCACTTGTAGGACTTGCA -ACGGAAGCACTTGTAGGACGAACA -ACGGAAGCACTTGTAGGACAGTCA -ACGGAAGCACTTGTAGGAGATCCA -ACGGAAGCACTTGTAGGAACGACA -ACGGAAGCACTTGTAGGAAGCTCA -ACGGAAGCACTTGTAGGATCACGT -ACGGAAGCACTTGTAGGACGTAGT -ACGGAAGCACTTGTAGGAGTCAGT -ACGGAAGCACTTGTAGGAGAAGGT -ACGGAAGCACTTGTAGGAAACCGT -ACGGAAGCACTTGTAGGATTGTGC -ACGGAAGCACTTGTAGGACTAAGC -ACGGAAGCACTTGTAGGAACTAGC -ACGGAAGCACTTGTAGGAAGATGC -ACGGAAGCACTTGTAGGATGAAGG -ACGGAAGCACTTGTAGGACAATGG -ACGGAAGCACTTGTAGGAATGAGG -ACGGAAGCACTTGTAGGAAATGGG -ACGGAAGCACTTGTAGGATCCTGA -ACGGAAGCACTTGTAGGATAGCGA -ACGGAAGCACTTGTAGGACACAGA -ACGGAAGCACTTGTAGGAGCAAGA -ACGGAAGCACTTGTAGGAGGTTGA -ACGGAAGCACTTGTAGGATCCGAT -ACGGAAGCACTTGTAGGATGGCAT -ACGGAAGCACTTGTAGGACGAGAT -ACGGAAGCACTTGTAGGATACCAC -ACGGAAGCACTTGTAGGACAGAAC -ACGGAAGCACTTGTAGGAGTCTAC -ACGGAAGCACTTGTAGGAACGTAC -ACGGAAGCACTTGTAGGAAGTGAC -ACGGAAGCACTTGTAGGACTGTAG -ACGGAAGCACTTGTAGGACCTAAG -ACGGAAGCACTTGTAGGAGTTCAG -ACGGAAGCACTTGTAGGAGCATAG -ACGGAAGCACTTGTAGGAGACAAG -ACGGAAGCACTTGTAGGAAAGCAG -ACGGAAGCACTTGTAGGACGTCAA -ACGGAAGCACTTGTAGGAGCTGAA -ACGGAAGCACTTGTAGGAAGTACG -ACGGAAGCACTTGTAGGAATCCGA -ACGGAAGCACTTGTAGGAATGGGA -ACGGAAGCACTTGTAGGAGTGCAA -ACGGAAGCACTTGTAGGAGAGGAA -ACGGAAGCACTTGTAGGACAGGTA -ACGGAAGCACTTGTAGGAGACTCT -ACGGAAGCACTTGTAGGAAGTCCT -ACGGAAGCACTTGTAGGATAAGCC -ACGGAAGCACTTGTAGGAATAGCC -ACGGAAGCACTTGTAGGATAACCG -ACGGAAGCACTTGTAGGAATGCCA -ACGGAAGCACTTTCTTCGGGAAAC -ACGGAAGCACTTTCTTCGAACACC -ACGGAAGCACTTTCTTCGATCGAG -ACGGAAGCACTTTCTTCGCTCCTT -ACGGAAGCACTTTCTTCGCCTGTT -ACGGAAGCACTTTCTTCGCGGTTT -ACGGAAGCACTTTCTTCGGTGGTT -ACGGAAGCACTTTCTTCGGCCTTT -ACGGAAGCACTTTCTTCGGGTCTT -ACGGAAGCACTTTCTTCGACGCTT -ACGGAAGCACTTTCTTCGAGCGTT -ACGGAAGCACTTTCTTCGTTCGTC -ACGGAAGCACTTTCTTCGTCTCTC -ACGGAAGCACTTTCTTCGTGGATC -ACGGAAGCACTTTCTTCGCACTTC -ACGGAAGCACTTTCTTCGGTACTC -ACGGAAGCACTTTCTTCGGATGTC -ACGGAAGCACTTTCTTCGACAGTC -ACGGAAGCACTTTCTTCGTTGCTG -ACGGAAGCACTTTCTTCGTCCATG -ACGGAAGCACTTTCTTCGTGTGTG -ACGGAAGCACTTTCTTCGCTAGTG -ACGGAAGCACTTTCTTCGCATCTG -ACGGAAGCACTTTCTTCGGAGTTG -ACGGAAGCACTTTCTTCGAGACTG -ACGGAAGCACTTTCTTCGTCGGTA -ACGGAAGCACTTTCTTCGTGCCTA -ACGGAAGCACTTTCTTCGCCACTA -ACGGAAGCACTTTCTTCGGGAGTA -ACGGAAGCACTTTCTTCGTCGTCT -ACGGAAGCACTTTCTTCGTGCACT -ACGGAAGCACTTTCTTCGCTGACT -ACGGAAGCACTTTCTTCGCAACCT -ACGGAAGCACTTTCTTCGGCTACT -ACGGAAGCACTTTCTTCGGGATCT -ACGGAAGCACTTTCTTCGAAGGCT -ACGGAAGCACTTTCTTCGTCAACC -ACGGAAGCACTTTCTTCGTGTTCC -ACGGAAGCACTTTCTTCGATTCCC -ACGGAAGCACTTTCTTCGTTCTCG -ACGGAAGCACTTTCTTCGTAGACG -ACGGAAGCACTTTCTTCGGTAACG -ACGGAAGCACTTTCTTCGACTTCG -ACGGAAGCACTTTCTTCGTACGCA -ACGGAAGCACTTTCTTCGCTTGCA -ACGGAAGCACTTTCTTCGCGAACA -ACGGAAGCACTTTCTTCGCAGTCA -ACGGAAGCACTTTCTTCGGATCCA -ACGGAAGCACTTTCTTCGACGACA -ACGGAAGCACTTTCTTCGAGCTCA -ACGGAAGCACTTTCTTCGTCACGT -ACGGAAGCACTTTCTTCGCGTAGT -ACGGAAGCACTTTCTTCGGTCAGT -ACGGAAGCACTTTCTTCGGAAGGT -ACGGAAGCACTTTCTTCGAACCGT -ACGGAAGCACTTTCTTCGTTGTGC -ACGGAAGCACTTTCTTCGCTAAGC -ACGGAAGCACTTTCTTCGACTAGC -ACGGAAGCACTTTCTTCGAGATGC -ACGGAAGCACTTTCTTCGTGAAGG -ACGGAAGCACTTTCTTCGCAATGG -ACGGAAGCACTTTCTTCGATGAGG -ACGGAAGCACTTTCTTCGAATGGG -ACGGAAGCACTTTCTTCGTCCTGA -ACGGAAGCACTTTCTTCGTAGCGA -ACGGAAGCACTTTCTTCGCACAGA -ACGGAAGCACTTTCTTCGGCAAGA -ACGGAAGCACTTTCTTCGGGTTGA -ACGGAAGCACTTTCTTCGTCCGAT -ACGGAAGCACTTTCTTCGTGGCAT -ACGGAAGCACTTTCTTCGCGAGAT -ACGGAAGCACTTTCTTCGTACCAC -ACGGAAGCACTTTCTTCGCAGAAC -ACGGAAGCACTTTCTTCGGTCTAC -ACGGAAGCACTTTCTTCGACGTAC -ACGGAAGCACTTTCTTCGAGTGAC -ACGGAAGCACTTTCTTCGCTGTAG -ACGGAAGCACTTTCTTCGCCTAAG -ACGGAAGCACTTTCTTCGGTTCAG -ACGGAAGCACTTTCTTCGGCATAG -ACGGAAGCACTTTCTTCGGACAAG -ACGGAAGCACTTTCTTCGAAGCAG -ACGGAAGCACTTTCTTCGCGTCAA -ACGGAAGCACTTTCTTCGGCTGAA -ACGGAAGCACTTTCTTCGAGTACG -ACGGAAGCACTTTCTTCGATCCGA -ACGGAAGCACTTTCTTCGATGGGA -ACGGAAGCACTTTCTTCGGTGCAA -ACGGAAGCACTTTCTTCGGAGGAA -ACGGAAGCACTTTCTTCGCAGGTA -ACGGAAGCACTTTCTTCGGACTCT -ACGGAAGCACTTTCTTCGAGTCCT -ACGGAAGCACTTTCTTCGTAAGCC -ACGGAAGCACTTTCTTCGATAGCC -ACGGAAGCACTTTCTTCGTAACCG -ACGGAAGCACTTTCTTCGATGCCA -ACGGAAGCACTTACTTGCGGAAAC -ACGGAAGCACTTACTTGCAACACC -ACGGAAGCACTTACTTGCATCGAG -ACGGAAGCACTTACTTGCCTCCTT -ACGGAAGCACTTACTTGCCCTGTT -ACGGAAGCACTTACTTGCCGGTTT -ACGGAAGCACTTACTTGCGTGGTT -ACGGAAGCACTTACTTGCGCCTTT -ACGGAAGCACTTACTTGCGGTCTT -ACGGAAGCACTTACTTGCACGCTT -ACGGAAGCACTTACTTGCAGCGTT -ACGGAAGCACTTACTTGCTTCGTC -ACGGAAGCACTTACTTGCTCTCTC -ACGGAAGCACTTACTTGCTGGATC -ACGGAAGCACTTACTTGCCACTTC -ACGGAAGCACTTACTTGCGTACTC -ACGGAAGCACTTACTTGCGATGTC -ACGGAAGCACTTACTTGCACAGTC -ACGGAAGCACTTACTTGCTTGCTG -ACGGAAGCACTTACTTGCTCCATG -ACGGAAGCACTTACTTGCTGTGTG -ACGGAAGCACTTACTTGCCTAGTG -ACGGAAGCACTTACTTGCCATCTG -ACGGAAGCACTTACTTGCGAGTTG -ACGGAAGCACTTACTTGCAGACTG -ACGGAAGCACTTACTTGCTCGGTA -ACGGAAGCACTTACTTGCTGCCTA -ACGGAAGCACTTACTTGCCCACTA -ACGGAAGCACTTACTTGCGGAGTA -ACGGAAGCACTTACTTGCTCGTCT -ACGGAAGCACTTACTTGCTGCACT -ACGGAAGCACTTACTTGCCTGACT -ACGGAAGCACTTACTTGCCAACCT -ACGGAAGCACTTACTTGCGCTACT -ACGGAAGCACTTACTTGCGGATCT -ACGGAAGCACTTACTTGCAAGGCT -ACGGAAGCACTTACTTGCTCAACC -ACGGAAGCACTTACTTGCTGTTCC -ACGGAAGCACTTACTTGCATTCCC -ACGGAAGCACTTACTTGCTTCTCG -ACGGAAGCACTTACTTGCTAGACG -ACGGAAGCACTTACTTGCGTAACG -ACGGAAGCACTTACTTGCACTTCG -ACGGAAGCACTTACTTGCTACGCA -ACGGAAGCACTTACTTGCCTTGCA -ACGGAAGCACTTACTTGCCGAACA -ACGGAAGCACTTACTTGCCAGTCA -ACGGAAGCACTTACTTGCGATCCA -ACGGAAGCACTTACTTGCACGACA -ACGGAAGCACTTACTTGCAGCTCA -ACGGAAGCACTTACTTGCTCACGT -ACGGAAGCACTTACTTGCCGTAGT -ACGGAAGCACTTACTTGCGTCAGT -ACGGAAGCACTTACTTGCGAAGGT -ACGGAAGCACTTACTTGCAACCGT -ACGGAAGCACTTACTTGCTTGTGC -ACGGAAGCACTTACTTGCCTAAGC -ACGGAAGCACTTACTTGCACTAGC -ACGGAAGCACTTACTTGCAGATGC -ACGGAAGCACTTACTTGCTGAAGG -ACGGAAGCACTTACTTGCCAATGG -ACGGAAGCACTTACTTGCATGAGG -ACGGAAGCACTTACTTGCAATGGG -ACGGAAGCACTTACTTGCTCCTGA -ACGGAAGCACTTACTTGCTAGCGA -ACGGAAGCACTTACTTGCCACAGA -ACGGAAGCACTTACTTGCGCAAGA -ACGGAAGCACTTACTTGCGGTTGA -ACGGAAGCACTTACTTGCTCCGAT -ACGGAAGCACTTACTTGCTGGCAT -ACGGAAGCACTTACTTGCCGAGAT -ACGGAAGCACTTACTTGCTACCAC -ACGGAAGCACTTACTTGCCAGAAC -ACGGAAGCACTTACTTGCGTCTAC -ACGGAAGCACTTACTTGCACGTAC -ACGGAAGCACTTACTTGCAGTGAC -ACGGAAGCACTTACTTGCCTGTAG -ACGGAAGCACTTACTTGCCCTAAG -ACGGAAGCACTTACTTGCGTTCAG -ACGGAAGCACTTACTTGCGCATAG -ACGGAAGCACTTACTTGCGACAAG -ACGGAAGCACTTACTTGCAAGCAG -ACGGAAGCACTTACTTGCCGTCAA -ACGGAAGCACTTACTTGCGCTGAA -ACGGAAGCACTTACTTGCAGTACG -ACGGAAGCACTTACTTGCATCCGA -ACGGAAGCACTTACTTGCATGGGA -ACGGAAGCACTTACTTGCGTGCAA -ACGGAAGCACTTACTTGCGAGGAA -ACGGAAGCACTTACTTGCCAGGTA -ACGGAAGCACTTACTTGCGACTCT -ACGGAAGCACTTACTTGCAGTCCT -ACGGAAGCACTTACTTGCTAAGCC -ACGGAAGCACTTACTTGCATAGCC -ACGGAAGCACTTACTTGCTAACCG -ACGGAAGCACTTACTTGCATGCCA -ACGGAAGCACTTACTCTGGGAAAC -ACGGAAGCACTTACTCTGAACACC -ACGGAAGCACTTACTCTGATCGAG -ACGGAAGCACTTACTCTGCTCCTT -ACGGAAGCACTTACTCTGCCTGTT -ACGGAAGCACTTACTCTGCGGTTT -ACGGAAGCACTTACTCTGGTGGTT -ACGGAAGCACTTACTCTGGCCTTT -ACGGAAGCACTTACTCTGGGTCTT -ACGGAAGCACTTACTCTGACGCTT -ACGGAAGCACTTACTCTGAGCGTT -ACGGAAGCACTTACTCTGTTCGTC -ACGGAAGCACTTACTCTGTCTCTC -ACGGAAGCACTTACTCTGTGGATC -ACGGAAGCACTTACTCTGCACTTC -ACGGAAGCACTTACTCTGGTACTC -ACGGAAGCACTTACTCTGGATGTC -ACGGAAGCACTTACTCTGACAGTC -ACGGAAGCACTTACTCTGTTGCTG -ACGGAAGCACTTACTCTGTCCATG -ACGGAAGCACTTACTCTGTGTGTG -ACGGAAGCACTTACTCTGCTAGTG -ACGGAAGCACTTACTCTGCATCTG -ACGGAAGCACTTACTCTGGAGTTG -ACGGAAGCACTTACTCTGAGACTG -ACGGAAGCACTTACTCTGTCGGTA -ACGGAAGCACTTACTCTGTGCCTA -ACGGAAGCACTTACTCTGCCACTA -ACGGAAGCACTTACTCTGGGAGTA -ACGGAAGCACTTACTCTGTCGTCT -ACGGAAGCACTTACTCTGTGCACT -ACGGAAGCACTTACTCTGCTGACT -ACGGAAGCACTTACTCTGCAACCT -ACGGAAGCACTTACTCTGGCTACT -ACGGAAGCACTTACTCTGGGATCT -ACGGAAGCACTTACTCTGAAGGCT -ACGGAAGCACTTACTCTGTCAACC -ACGGAAGCACTTACTCTGTGTTCC -ACGGAAGCACTTACTCTGATTCCC -ACGGAAGCACTTACTCTGTTCTCG -ACGGAAGCACTTACTCTGTAGACG -ACGGAAGCACTTACTCTGGTAACG -ACGGAAGCACTTACTCTGACTTCG -ACGGAAGCACTTACTCTGTACGCA -ACGGAAGCACTTACTCTGCTTGCA -ACGGAAGCACTTACTCTGCGAACA -ACGGAAGCACTTACTCTGCAGTCA -ACGGAAGCACTTACTCTGGATCCA -ACGGAAGCACTTACTCTGACGACA -ACGGAAGCACTTACTCTGAGCTCA -ACGGAAGCACTTACTCTGTCACGT -ACGGAAGCACTTACTCTGCGTAGT -ACGGAAGCACTTACTCTGGTCAGT -ACGGAAGCACTTACTCTGGAAGGT -ACGGAAGCACTTACTCTGAACCGT -ACGGAAGCACTTACTCTGTTGTGC -ACGGAAGCACTTACTCTGCTAAGC -ACGGAAGCACTTACTCTGACTAGC -ACGGAAGCACTTACTCTGAGATGC -ACGGAAGCACTTACTCTGTGAAGG -ACGGAAGCACTTACTCTGCAATGG -ACGGAAGCACTTACTCTGATGAGG -ACGGAAGCACTTACTCTGAATGGG -ACGGAAGCACTTACTCTGTCCTGA -ACGGAAGCACTTACTCTGTAGCGA -ACGGAAGCACTTACTCTGCACAGA -ACGGAAGCACTTACTCTGGCAAGA -ACGGAAGCACTTACTCTGGGTTGA -ACGGAAGCACTTACTCTGTCCGAT -ACGGAAGCACTTACTCTGTGGCAT -ACGGAAGCACTTACTCTGCGAGAT -ACGGAAGCACTTACTCTGTACCAC -ACGGAAGCACTTACTCTGCAGAAC -ACGGAAGCACTTACTCTGGTCTAC -ACGGAAGCACTTACTCTGACGTAC -ACGGAAGCACTTACTCTGAGTGAC -ACGGAAGCACTTACTCTGCTGTAG -ACGGAAGCACTTACTCTGCCTAAG -ACGGAAGCACTTACTCTGGTTCAG -ACGGAAGCACTTACTCTGGCATAG -ACGGAAGCACTTACTCTGGACAAG -ACGGAAGCACTTACTCTGAAGCAG -ACGGAAGCACTTACTCTGCGTCAA -ACGGAAGCACTTACTCTGGCTGAA -ACGGAAGCACTTACTCTGAGTACG -ACGGAAGCACTTACTCTGATCCGA -ACGGAAGCACTTACTCTGATGGGA -ACGGAAGCACTTACTCTGGTGCAA -ACGGAAGCACTTACTCTGGAGGAA -ACGGAAGCACTTACTCTGCAGGTA -ACGGAAGCACTTACTCTGGACTCT -ACGGAAGCACTTACTCTGAGTCCT -ACGGAAGCACTTACTCTGTAAGCC -ACGGAAGCACTTACTCTGATAGCC -ACGGAAGCACTTACTCTGTAACCG -ACGGAAGCACTTACTCTGATGCCA -ACGGAAGCACTTCCTCAAGGAAAC -ACGGAAGCACTTCCTCAAAACACC -ACGGAAGCACTTCCTCAAATCGAG -ACGGAAGCACTTCCTCAACTCCTT -ACGGAAGCACTTCCTCAACCTGTT -ACGGAAGCACTTCCTCAACGGTTT -ACGGAAGCACTTCCTCAAGTGGTT -ACGGAAGCACTTCCTCAAGCCTTT -ACGGAAGCACTTCCTCAAGGTCTT -ACGGAAGCACTTCCTCAAACGCTT -ACGGAAGCACTTCCTCAAAGCGTT -ACGGAAGCACTTCCTCAATTCGTC -ACGGAAGCACTTCCTCAATCTCTC -ACGGAAGCACTTCCTCAATGGATC -ACGGAAGCACTTCCTCAACACTTC -ACGGAAGCACTTCCTCAAGTACTC -ACGGAAGCACTTCCTCAAGATGTC -ACGGAAGCACTTCCTCAAACAGTC -ACGGAAGCACTTCCTCAATTGCTG -ACGGAAGCACTTCCTCAATCCATG -ACGGAAGCACTTCCTCAATGTGTG -ACGGAAGCACTTCCTCAACTAGTG -ACGGAAGCACTTCCTCAACATCTG -ACGGAAGCACTTCCTCAAGAGTTG -ACGGAAGCACTTCCTCAAAGACTG -ACGGAAGCACTTCCTCAATCGGTA -ACGGAAGCACTTCCTCAATGCCTA -ACGGAAGCACTTCCTCAACCACTA -ACGGAAGCACTTCCTCAAGGAGTA -ACGGAAGCACTTCCTCAATCGTCT -ACGGAAGCACTTCCTCAATGCACT -ACGGAAGCACTTCCTCAACTGACT -ACGGAAGCACTTCCTCAACAACCT -ACGGAAGCACTTCCTCAAGCTACT -ACGGAAGCACTTCCTCAAGGATCT -ACGGAAGCACTTCCTCAAAAGGCT -ACGGAAGCACTTCCTCAATCAACC -ACGGAAGCACTTCCTCAATGTTCC -ACGGAAGCACTTCCTCAAATTCCC -ACGGAAGCACTTCCTCAATTCTCG -ACGGAAGCACTTCCTCAATAGACG -ACGGAAGCACTTCCTCAAGTAACG -ACGGAAGCACTTCCTCAAACTTCG -ACGGAAGCACTTCCTCAATACGCA -ACGGAAGCACTTCCTCAACTTGCA -ACGGAAGCACTTCCTCAACGAACA -ACGGAAGCACTTCCTCAACAGTCA -ACGGAAGCACTTCCTCAAGATCCA -ACGGAAGCACTTCCTCAAACGACA -ACGGAAGCACTTCCTCAAAGCTCA -ACGGAAGCACTTCCTCAATCACGT -ACGGAAGCACTTCCTCAACGTAGT -ACGGAAGCACTTCCTCAAGTCAGT -ACGGAAGCACTTCCTCAAGAAGGT -ACGGAAGCACTTCCTCAAAACCGT -ACGGAAGCACTTCCTCAATTGTGC -ACGGAAGCACTTCCTCAACTAAGC -ACGGAAGCACTTCCTCAAACTAGC -ACGGAAGCACTTCCTCAAAGATGC -ACGGAAGCACTTCCTCAATGAAGG -ACGGAAGCACTTCCTCAACAATGG -ACGGAAGCACTTCCTCAAATGAGG -ACGGAAGCACTTCCTCAAAATGGG -ACGGAAGCACTTCCTCAATCCTGA -ACGGAAGCACTTCCTCAATAGCGA -ACGGAAGCACTTCCTCAACACAGA -ACGGAAGCACTTCCTCAAGCAAGA -ACGGAAGCACTTCCTCAAGGTTGA -ACGGAAGCACTTCCTCAATCCGAT -ACGGAAGCACTTCCTCAATGGCAT -ACGGAAGCACTTCCTCAACGAGAT -ACGGAAGCACTTCCTCAATACCAC -ACGGAAGCACTTCCTCAACAGAAC -ACGGAAGCACTTCCTCAAGTCTAC -ACGGAAGCACTTCCTCAAACGTAC -ACGGAAGCACTTCCTCAAAGTGAC -ACGGAAGCACTTCCTCAACTGTAG -ACGGAAGCACTTCCTCAACCTAAG -ACGGAAGCACTTCCTCAAGTTCAG -ACGGAAGCACTTCCTCAAGCATAG -ACGGAAGCACTTCCTCAAGACAAG -ACGGAAGCACTTCCTCAAAAGCAG -ACGGAAGCACTTCCTCAACGTCAA -ACGGAAGCACTTCCTCAAGCTGAA -ACGGAAGCACTTCCTCAAAGTACG -ACGGAAGCACTTCCTCAAATCCGA -ACGGAAGCACTTCCTCAAATGGGA -ACGGAAGCACTTCCTCAAGTGCAA -ACGGAAGCACTTCCTCAAGAGGAA -ACGGAAGCACTTCCTCAACAGGTA -ACGGAAGCACTTCCTCAAGACTCT -ACGGAAGCACTTCCTCAAAGTCCT -ACGGAAGCACTTCCTCAATAAGCC -ACGGAAGCACTTCCTCAAATAGCC -ACGGAAGCACTTCCTCAATAACCG -ACGGAAGCACTTCCTCAAATGCCA -ACGGAAGCACTTACTGCTGGAAAC -ACGGAAGCACTTACTGCTAACACC -ACGGAAGCACTTACTGCTATCGAG -ACGGAAGCACTTACTGCTCTCCTT -ACGGAAGCACTTACTGCTCCTGTT -ACGGAAGCACTTACTGCTCGGTTT -ACGGAAGCACTTACTGCTGTGGTT -ACGGAAGCACTTACTGCTGCCTTT -ACGGAAGCACTTACTGCTGGTCTT -ACGGAAGCACTTACTGCTACGCTT -ACGGAAGCACTTACTGCTAGCGTT -ACGGAAGCACTTACTGCTTTCGTC -ACGGAAGCACTTACTGCTTCTCTC -ACGGAAGCACTTACTGCTTGGATC -ACGGAAGCACTTACTGCTCACTTC -ACGGAAGCACTTACTGCTGTACTC -ACGGAAGCACTTACTGCTGATGTC -ACGGAAGCACTTACTGCTACAGTC -ACGGAAGCACTTACTGCTTTGCTG -ACGGAAGCACTTACTGCTTCCATG -ACGGAAGCACTTACTGCTTGTGTG -ACGGAAGCACTTACTGCTCTAGTG -ACGGAAGCACTTACTGCTCATCTG -ACGGAAGCACTTACTGCTGAGTTG -ACGGAAGCACTTACTGCTAGACTG -ACGGAAGCACTTACTGCTTCGGTA -ACGGAAGCACTTACTGCTTGCCTA -ACGGAAGCACTTACTGCTCCACTA -ACGGAAGCACTTACTGCTGGAGTA -ACGGAAGCACTTACTGCTTCGTCT -ACGGAAGCACTTACTGCTTGCACT -ACGGAAGCACTTACTGCTCTGACT -ACGGAAGCACTTACTGCTCAACCT -ACGGAAGCACTTACTGCTGCTACT -ACGGAAGCACTTACTGCTGGATCT -ACGGAAGCACTTACTGCTAAGGCT -ACGGAAGCACTTACTGCTTCAACC -ACGGAAGCACTTACTGCTTGTTCC -ACGGAAGCACTTACTGCTATTCCC -ACGGAAGCACTTACTGCTTTCTCG -ACGGAAGCACTTACTGCTTAGACG -ACGGAAGCACTTACTGCTGTAACG -ACGGAAGCACTTACTGCTACTTCG -ACGGAAGCACTTACTGCTTACGCA -ACGGAAGCACTTACTGCTCTTGCA -ACGGAAGCACTTACTGCTCGAACA -ACGGAAGCACTTACTGCTCAGTCA -ACGGAAGCACTTACTGCTGATCCA -ACGGAAGCACTTACTGCTACGACA -ACGGAAGCACTTACTGCTAGCTCA -ACGGAAGCACTTACTGCTTCACGT -ACGGAAGCACTTACTGCTCGTAGT -ACGGAAGCACTTACTGCTGTCAGT -ACGGAAGCACTTACTGCTGAAGGT -ACGGAAGCACTTACTGCTAACCGT -ACGGAAGCACTTACTGCTTTGTGC -ACGGAAGCACTTACTGCTCTAAGC -ACGGAAGCACTTACTGCTACTAGC -ACGGAAGCACTTACTGCTAGATGC -ACGGAAGCACTTACTGCTTGAAGG -ACGGAAGCACTTACTGCTCAATGG -ACGGAAGCACTTACTGCTATGAGG -ACGGAAGCACTTACTGCTAATGGG -ACGGAAGCACTTACTGCTTCCTGA -ACGGAAGCACTTACTGCTTAGCGA -ACGGAAGCACTTACTGCTCACAGA -ACGGAAGCACTTACTGCTGCAAGA -ACGGAAGCACTTACTGCTGGTTGA -ACGGAAGCACTTACTGCTTCCGAT -ACGGAAGCACTTACTGCTTGGCAT -ACGGAAGCACTTACTGCTCGAGAT -ACGGAAGCACTTACTGCTTACCAC -ACGGAAGCACTTACTGCTCAGAAC -ACGGAAGCACTTACTGCTGTCTAC -ACGGAAGCACTTACTGCTACGTAC -ACGGAAGCACTTACTGCTAGTGAC -ACGGAAGCACTTACTGCTCTGTAG -ACGGAAGCACTTACTGCTCCTAAG -ACGGAAGCACTTACTGCTGTTCAG -ACGGAAGCACTTACTGCTGCATAG -ACGGAAGCACTTACTGCTGACAAG -ACGGAAGCACTTACTGCTAAGCAG -ACGGAAGCACTTACTGCTCGTCAA -ACGGAAGCACTTACTGCTGCTGAA -ACGGAAGCACTTACTGCTAGTACG -ACGGAAGCACTTACTGCTATCCGA -ACGGAAGCACTTACTGCTATGGGA -ACGGAAGCACTTACTGCTGTGCAA -ACGGAAGCACTTACTGCTGAGGAA -ACGGAAGCACTTACTGCTCAGGTA -ACGGAAGCACTTACTGCTGACTCT -ACGGAAGCACTTACTGCTAGTCCT -ACGGAAGCACTTACTGCTTAAGCC -ACGGAAGCACTTACTGCTATAGCC -ACGGAAGCACTTACTGCTTAACCG -ACGGAAGCACTTACTGCTATGCCA -ACGGAAGCACTTTCTGGAGGAAAC -ACGGAAGCACTTTCTGGAAACACC -ACGGAAGCACTTTCTGGAATCGAG -ACGGAAGCACTTTCTGGACTCCTT -ACGGAAGCACTTTCTGGACCTGTT -ACGGAAGCACTTTCTGGACGGTTT -ACGGAAGCACTTTCTGGAGTGGTT -ACGGAAGCACTTTCTGGAGCCTTT -ACGGAAGCACTTTCTGGAGGTCTT -ACGGAAGCACTTTCTGGAACGCTT -ACGGAAGCACTTTCTGGAAGCGTT -ACGGAAGCACTTTCTGGATTCGTC -ACGGAAGCACTTTCTGGATCTCTC -ACGGAAGCACTTTCTGGATGGATC -ACGGAAGCACTTTCTGGACACTTC -ACGGAAGCACTTTCTGGAGTACTC -ACGGAAGCACTTTCTGGAGATGTC -ACGGAAGCACTTTCTGGAACAGTC -ACGGAAGCACTTTCTGGATTGCTG -ACGGAAGCACTTTCTGGATCCATG -ACGGAAGCACTTTCTGGATGTGTG -ACGGAAGCACTTTCTGGACTAGTG -ACGGAAGCACTTTCTGGACATCTG -ACGGAAGCACTTTCTGGAGAGTTG -ACGGAAGCACTTTCTGGAAGACTG -ACGGAAGCACTTTCTGGATCGGTA -ACGGAAGCACTTTCTGGATGCCTA -ACGGAAGCACTTTCTGGACCACTA -ACGGAAGCACTTTCTGGAGGAGTA -ACGGAAGCACTTTCTGGATCGTCT -ACGGAAGCACTTTCTGGATGCACT -ACGGAAGCACTTTCTGGACTGACT -ACGGAAGCACTTTCTGGACAACCT -ACGGAAGCACTTTCTGGAGCTACT -ACGGAAGCACTTTCTGGAGGATCT -ACGGAAGCACTTTCTGGAAAGGCT -ACGGAAGCACTTTCTGGATCAACC -ACGGAAGCACTTTCTGGATGTTCC -ACGGAAGCACTTTCTGGAATTCCC -ACGGAAGCACTTTCTGGATTCTCG -ACGGAAGCACTTTCTGGATAGACG -ACGGAAGCACTTTCTGGAGTAACG -ACGGAAGCACTTTCTGGAACTTCG -ACGGAAGCACTTTCTGGATACGCA -ACGGAAGCACTTTCTGGACTTGCA -ACGGAAGCACTTTCTGGACGAACA -ACGGAAGCACTTTCTGGACAGTCA -ACGGAAGCACTTTCTGGAGATCCA -ACGGAAGCACTTTCTGGAACGACA -ACGGAAGCACTTTCTGGAAGCTCA -ACGGAAGCACTTTCTGGATCACGT -ACGGAAGCACTTTCTGGACGTAGT -ACGGAAGCACTTTCTGGAGTCAGT -ACGGAAGCACTTTCTGGAGAAGGT -ACGGAAGCACTTTCTGGAAACCGT -ACGGAAGCACTTTCTGGATTGTGC -ACGGAAGCACTTTCTGGACTAAGC -ACGGAAGCACTTTCTGGAACTAGC -ACGGAAGCACTTTCTGGAAGATGC -ACGGAAGCACTTTCTGGATGAAGG -ACGGAAGCACTTTCTGGACAATGG -ACGGAAGCACTTTCTGGAATGAGG -ACGGAAGCACTTTCTGGAAATGGG -ACGGAAGCACTTTCTGGATCCTGA -ACGGAAGCACTTTCTGGATAGCGA -ACGGAAGCACTTTCTGGACACAGA -ACGGAAGCACTTTCTGGAGCAAGA -ACGGAAGCACTTTCTGGAGGTTGA -ACGGAAGCACTTTCTGGATCCGAT -ACGGAAGCACTTTCTGGATGGCAT -ACGGAAGCACTTTCTGGACGAGAT -ACGGAAGCACTTTCTGGATACCAC -ACGGAAGCACTTTCTGGACAGAAC -ACGGAAGCACTTTCTGGAGTCTAC -ACGGAAGCACTTTCTGGAACGTAC -ACGGAAGCACTTTCTGGAAGTGAC -ACGGAAGCACTTTCTGGACTGTAG -ACGGAAGCACTTTCTGGACCTAAG -ACGGAAGCACTTTCTGGAGTTCAG -ACGGAAGCACTTTCTGGAGCATAG -ACGGAAGCACTTTCTGGAGACAAG -ACGGAAGCACTTTCTGGAAAGCAG -ACGGAAGCACTTTCTGGACGTCAA -ACGGAAGCACTTTCTGGAGCTGAA -ACGGAAGCACTTTCTGGAAGTACG -ACGGAAGCACTTTCTGGAATCCGA -ACGGAAGCACTTTCTGGAATGGGA -ACGGAAGCACTTTCTGGAGTGCAA -ACGGAAGCACTTTCTGGAGAGGAA -ACGGAAGCACTTTCTGGACAGGTA -ACGGAAGCACTTTCTGGAGACTCT -ACGGAAGCACTTTCTGGAAGTCCT -ACGGAAGCACTTTCTGGATAAGCC -ACGGAAGCACTTTCTGGAATAGCC -ACGGAAGCACTTTCTGGATAACCG -ACGGAAGCACTTTCTGGAATGCCA -ACGGAAGCACTTGCTAAGGGAAAC -ACGGAAGCACTTGCTAAGAACACC -ACGGAAGCACTTGCTAAGATCGAG -ACGGAAGCACTTGCTAAGCTCCTT -ACGGAAGCACTTGCTAAGCCTGTT -ACGGAAGCACTTGCTAAGCGGTTT -ACGGAAGCACTTGCTAAGGTGGTT -ACGGAAGCACTTGCTAAGGCCTTT -ACGGAAGCACTTGCTAAGGGTCTT -ACGGAAGCACTTGCTAAGACGCTT -ACGGAAGCACTTGCTAAGAGCGTT -ACGGAAGCACTTGCTAAGTTCGTC -ACGGAAGCACTTGCTAAGTCTCTC -ACGGAAGCACTTGCTAAGTGGATC -ACGGAAGCACTTGCTAAGCACTTC -ACGGAAGCACTTGCTAAGGTACTC -ACGGAAGCACTTGCTAAGGATGTC -ACGGAAGCACTTGCTAAGACAGTC -ACGGAAGCACTTGCTAAGTTGCTG -ACGGAAGCACTTGCTAAGTCCATG -ACGGAAGCACTTGCTAAGTGTGTG -ACGGAAGCACTTGCTAAGCTAGTG -ACGGAAGCACTTGCTAAGCATCTG -ACGGAAGCACTTGCTAAGGAGTTG -ACGGAAGCACTTGCTAAGAGACTG -ACGGAAGCACTTGCTAAGTCGGTA -ACGGAAGCACTTGCTAAGTGCCTA -ACGGAAGCACTTGCTAAGCCACTA -ACGGAAGCACTTGCTAAGGGAGTA -ACGGAAGCACTTGCTAAGTCGTCT -ACGGAAGCACTTGCTAAGTGCACT -ACGGAAGCACTTGCTAAGCTGACT -ACGGAAGCACTTGCTAAGCAACCT -ACGGAAGCACTTGCTAAGGCTACT -ACGGAAGCACTTGCTAAGGGATCT -ACGGAAGCACTTGCTAAGAAGGCT -ACGGAAGCACTTGCTAAGTCAACC -ACGGAAGCACTTGCTAAGTGTTCC -ACGGAAGCACTTGCTAAGATTCCC -ACGGAAGCACTTGCTAAGTTCTCG -ACGGAAGCACTTGCTAAGTAGACG -ACGGAAGCACTTGCTAAGGTAACG -ACGGAAGCACTTGCTAAGACTTCG -ACGGAAGCACTTGCTAAGTACGCA -ACGGAAGCACTTGCTAAGCTTGCA -ACGGAAGCACTTGCTAAGCGAACA -ACGGAAGCACTTGCTAAGCAGTCA -ACGGAAGCACTTGCTAAGGATCCA -ACGGAAGCACTTGCTAAGACGACA -ACGGAAGCACTTGCTAAGAGCTCA -ACGGAAGCACTTGCTAAGTCACGT -ACGGAAGCACTTGCTAAGCGTAGT -ACGGAAGCACTTGCTAAGGTCAGT -ACGGAAGCACTTGCTAAGGAAGGT -ACGGAAGCACTTGCTAAGAACCGT -ACGGAAGCACTTGCTAAGTTGTGC -ACGGAAGCACTTGCTAAGCTAAGC -ACGGAAGCACTTGCTAAGACTAGC -ACGGAAGCACTTGCTAAGAGATGC -ACGGAAGCACTTGCTAAGTGAAGG -ACGGAAGCACTTGCTAAGCAATGG -ACGGAAGCACTTGCTAAGATGAGG -ACGGAAGCACTTGCTAAGAATGGG -ACGGAAGCACTTGCTAAGTCCTGA -ACGGAAGCACTTGCTAAGTAGCGA -ACGGAAGCACTTGCTAAGCACAGA -ACGGAAGCACTTGCTAAGGCAAGA -ACGGAAGCACTTGCTAAGGGTTGA -ACGGAAGCACTTGCTAAGTCCGAT -ACGGAAGCACTTGCTAAGTGGCAT -ACGGAAGCACTTGCTAAGCGAGAT -ACGGAAGCACTTGCTAAGTACCAC -ACGGAAGCACTTGCTAAGCAGAAC -ACGGAAGCACTTGCTAAGGTCTAC -ACGGAAGCACTTGCTAAGACGTAC -ACGGAAGCACTTGCTAAGAGTGAC -ACGGAAGCACTTGCTAAGCTGTAG -ACGGAAGCACTTGCTAAGCCTAAG -ACGGAAGCACTTGCTAAGGTTCAG -ACGGAAGCACTTGCTAAGGCATAG -ACGGAAGCACTTGCTAAGGACAAG -ACGGAAGCACTTGCTAAGAAGCAG -ACGGAAGCACTTGCTAAGCGTCAA -ACGGAAGCACTTGCTAAGGCTGAA -ACGGAAGCACTTGCTAAGAGTACG -ACGGAAGCACTTGCTAAGATCCGA -ACGGAAGCACTTGCTAAGATGGGA -ACGGAAGCACTTGCTAAGGTGCAA -ACGGAAGCACTTGCTAAGGAGGAA -ACGGAAGCACTTGCTAAGCAGGTA -ACGGAAGCACTTGCTAAGGACTCT -ACGGAAGCACTTGCTAAGAGTCCT -ACGGAAGCACTTGCTAAGTAAGCC -ACGGAAGCACTTGCTAAGATAGCC -ACGGAAGCACTTGCTAAGTAACCG -ACGGAAGCACTTGCTAAGATGCCA -ACGGAAGCACTTACCTCAGGAAAC -ACGGAAGCACTTACCTCAAACACC -ACGGAAGCACTTACCTCAATCGAG -ACGGAAGCACTTACCTCACTCCTT -ACGGAAGCACTTACCTCACCTGTT -ACGGAAGCACTTACCTCACGGTTT -ACGGAAGCACTTACCTCAGTGGTT -ACGGAAGCACTTACCTCAGCCTTT -ACGGAAGCACTTACCTCAGGTCTT -ACGGAAGCACTTACCTCAACGCTT -ACGGAAGCACTTACCTCAAGCGTT -ACGGAAGCACTTACCTCATTCGTC -ACGGAAGCACTTACCTCATCTCTC -ACGGAAGCACTTACCTCATGGATC -ACGGAAGCACTTACCTCACACTTC -ACGGAAGCACTTACCTCAGTACTC -ACGGAAGCACTTACCTCAGATGTC -ACGGAAGCACTTACCTCAACAGTC -ACGGAAGCACTTACCTCATTGCTG -ACGGAAGCACTTACCTCATCCATG -ACGGAAGCACTTACCTCATGTGTG -ACGGAAGCACTTACCTCACTAGTG -ACGGAAGCACTTACCTCACATCTG -ACGGAAGCACTTACCTCAGAGTTG -ACGGAAGCACTTACCTCAAGACTG -ACGGAAGCACTTACCTCATCGGTA -ACGGAAGCACTTACCTCATGCCTA -ACGGAAGCACTTACCTCACCACTA -ACGGAAGCACTTACCTCAGGAGTA -ACGGAAGCACTTACCTCATCGTCT -ACGGAAGCACTTACCTCATGCACT -ACGGAAGCACTTACCTCACTGACT -ACGGAAGCACTTACCTCACAACCT -ACGGAAGCACTTACCTCAGCTACT -ACGGAAGCACTTACCTCAGGATCT -ACGGAAGCACTTACCTCAAAGGCT -ACGGAAGCACTTACCTCATCAACC -ACGGAAGCACTTACCTCATGTTCC -ACGGAAGCACTTACCTCAATTCCC -ACGGAAGCACTTACCTCATTCTCG -ACGGAAGCACTTACCTCATAGACG -ACGGAAGCACTTACCTCAGTAACG -ACGGAAGCACTTACCTCAACTTCG -ACGGAAGCACTTACCTCATACGCA -ACGGAAGCACTTACCTCACTTGCA -ACGGAAGCACTTACCTCACGAACA -ACGGAAGCACTTACCTCACAGTCA -ACGGAAGCACTTACCTCAGATCCA -ACGGAAGCACTTACCTCAACGACA -ACGGAAGCACTTACCTCAAGCTCA -ACGGAAGCACTTACCTCATCACGT -ACGGAAGCACTTACCTCACGTAGT -ACGGAAGCACTTACCTCAGTCAGT -ACGGAAGCACTTACCTCAGAAGGT -ACGGAAGCACTTACCTCAAACCGT -ACGGAAGCACTTACCTCATTGTGC -ACGGAAGCACTTACCTCACTAAGC -ACGGAAGCACTTACCTCAACTAGC -ACGGAAGCACTTACCTCAAGATGC -ACGGAAGCACTTACCTCATGAAGG -ACGGAAGCACTTACCTCACAATGG -ACGGAAGCACTTACCTCAATGAGG -ACGGAAGCACTTACCTCAAATGGG -ACGGAAGCACTTACCTCATCCTGA -ACGGAAGCACTTACCTCATAGCGA -ACGGAAGCACTTACCTCACACAGA -ACGGAAGCACTTACCTCAGCAAGA -ACGGAAGCACTTACCTCAGGTTGA -ACGGAAGCACTTACCTCATCCGAT -ACGGAAGCACTTACCTCATGGCAT -ACGGAAGCACTTACCTCACGAGAT -ACGGAAGCACTTACCTCATACCAC -ACGGAAGCACTTACCTCACAGAAC -ACGGAAGCACTTACCTCAGTCTAC -ACGGAAGCACTTACCTCAACGTAC -ACGGAAGCACTTACCTCAAGTGAC -ACGGAAGCACTTACCTCACTGTAG -ACGGAAGCACTTACCTCACCTAAG -ACGGAAGCACTTACCTCAGTTCAG -ACGGAAGCACTTACCTCAGCATAG -ACGGAAGCACTTACCTCAGACAAG -ACGGAAGCACTTACCTCAAAGCAG -ACGGAAGCACTTACCTCACGTCAA -ACGGAAGCACTTACCTCAGCTGAA -ACGGAAGCACTTACCTCAAGTACG -ACGGAAGCACTTACCTCAATCCGA -ACGGAAGCACTTACCTCAATGGGA -ACGGAAGCACTTACCTCAGTGCAA -ACGGAAGCACTTACCTCAGAGGAA -ACGGAAGCACTTACCTCACAGGTA -ACGGAAGCACTTACCTCAGACTCT -ACGGAAGCACTTACCTCAAGTCCT -ACGGAAGCACTTACCTCATAAGCC -ACGGAAGCACTTACCTCAATAGCC -ACGGAAGCACTTACCTCATAACCG -ACGGAAGCACTTACCTCAATGCCA -ACGGAAGCACTTTCCTGTGGAAAC -ACGGAAGCACTTTCCTGTAACACC -ACGGAAGCACTTTCCTGTATCGAG -ACGGAAGCACTTTCCTGTCTCCTT -ACGGAAGCACTTTCCTGTCCTGTT -ACGGAAGCACTTTCCTGTCGGTTT -ACGGAAGCACTTTCCTGTGTGGTT -ACGGAAGCACTTTCCTGTGCCTTT -ACGGAAGCACTTTCCTGTGGTCTT -ACGGAAGCACTTTCCTGTACGCTT -ACGGAAGCACTTTCCTGTAGCGTT -ACGGAAGCACTTTCCTGTTTCGTC -ACGGAAGCACTTTCCTGTTCTCTC -ACGGAAGCACTTTCCTGTTGGATC -ACGGAAGCACTTTCCTGTCACTTC -ACGGAAGCACTTTCCTGTGTACTC -ACGGAAGCACTTTCCTGTGATGTC -ACGGAAGCACTTTCCTGTACAGTC -ACGGAAGCACTTTCCTGTTTGCTG -ACGGAAGCACTTTCCTGTTCCATG -ACGGAAGCACTTTCCTGTTGTGTG -ACGGAAGCACTTTCCTGTCTAGTG -ACGGAAGCACTTTCCTGTCATCTG -ACGGAAGCACTTTCCTGTGAGTTG -ACGGAAGCACTTTCCTGTAGACTG -ACGGAAGCACTTTCCTGTTCGGTA -ACGGAAGCACTTTCCTGTTGCCTA -ACGGAAGCACTTTCCTGTCCACTA -ACGGAAGCACTTTCCTGTGGAGTA -ACGGAAGCACTTTCCTGTTCGTCT -ACGGAAGCACTTTCCTGTTGCACT -ACGGAAGCACTTTCCTGTCTGACT -ACGGAAGCACTTTCCTGTCAACCT -ACGGAAGCACTTTCCTGTGCTACT -ACGGAAGCACTTTCCTGTGGATCT -ACGGAAGCACTTTCCTGTAAGGCT -ACGGAAGCACTTTCCTGTTCAACC -ACGGAAGCACTTTCCTGTTGTTCC -ACGGAAGCACTTTCCTGTATTCCC -ACGGAAGCACTTTCCTGTTTCTCG -ACGGAAGCACTTTCCTGTTAGACG -ACGGAAGCACTTTCCTGTGTAACG -ACGGAAGCACTTTCCTGTACTTCG -ACGGAAGCACTTTCCTGTTACGCA -ACGGAAGCACTTTCCTGTCTTGCA -ACGGAAGCACTTTCCTGTCGAACA -ACGGAAGCACTTTCCTGTCAGTCA -ACGGAAGCACTTTCCTGTGATCCA -ACGGAAGCACTTTCCTGTACGACA -ACGGAAGCACTTTCCTGTAGCTCA -ACGGAAGCACTTTCCTGTTCACGT -ACGGAAGCACTTTCCTGTCGTAGT -ACGGAAGCACTTTCCTGTGTCAGT -ACGGAAGCACTTTCCTGTGAAGGT -ACGGAAGCACTTTCCTGTAACCGT -ACGGAAGCACTTTCCTGTTTGTGC -ACGGAAGCACTTTCCTGTCTAAGC -ACGGAAGCACTTTCCTGTACTAGC -ACGGAAGCACTTTCCTGTAGATGC -ACGGAAGCACTTTCCTGTTGAAGG -ACGGAAGCACTTTCCTGTCAATGG -ACGGAAGCACTTTCCTGTATGAGG -ACGGAAGCACTTTCCTGTAATGGG -ACGGAAGCACTTTCCTGTTCCTGA -ACGGAAGCACTTTCCTGTTAGCGA -ACGGAAGCACTTTCCTGTCACAGA -ACGGAAGCACTTTCCTGTGCAAGA -ACGGAAGCACTTTCCTGTGGTTGA -ACGGAAGCACTTTCCTGTTCCGAT -ACGGAAGCACTTTCCTGTTGGCAT -ACGGAAGCACTTTCCTGTCGAGAT -ACGGAAGCACTTTCCTGTTACCAC -ACGGAAGCACTTTCCTGTCAGAAC -ACGGAAGCACTTTCCTGTGTCTAC -ACGGAAGCACTTTCCTGTACGTAC -ACGGAAGCACTTTCCTGTAGTGAC -ACGGAAGCACTTTCCTGTCTGTAG -ACGGAAGCACTTTCCTGTCCTAAG -ACGGAAGCACTTTCCTGTGTTCAG -ACGGAAGCACTTTCCTGTGCATAG -ACGGAAGCACTTTCCTGTGACAAG -ACGGAAGCACTTTCCTGTAAGCAG -ACGGAAGCACTTTCCTGTCGTCAA -ACGGAAGCACTTTCCTGTGCTGAA -ACGGAAGCACTTTCCTGTAGTACG -ACGGAAGCACTTTCCTGTATCCGA -ACGGAAGCACTTTCCTGTATGGGA -ACGGAAGCACTTTCCTGTGTGCAA -ACGGAAGCACTTTCCTGTGAGGAA -ACGGAAGCACTTTCCTGTCAGGTA -ACGGAAGCACTTTCCTGTGACTCT -ACGGAAGCACTTTCCTGTAGTCCT -ACGGAAGCACTTTCCTGTTAAGCC -ACGGAAGCACTTTCCTGTATAGCC -ACGGAAGCACTTTCCTGTTAACCG -ACGGAAGCACTTTCCTGTATGCCA -ACGGAAGCACTTCCCATTGGAAAC -ACGGAAGCACTTCCCATTAACACC -ACGGAAGCACTTCCCATTATCGAG -ACGGAAGCACTTCCCATTCTCCTT -ACGGAAGCACTTCCCATTCCTGTT -ACGGAAGCACTTCCCATTCGGTTT -ACGGAAGCACTTCCCATTGTGGTT -ACGGAAGCACTTCCCATTGCCTTT -ACGGAAGCACTTCCCATTGGTCTT -ACGGAAGCACTTCCCATTACGCTT -ACGGAAGCACTTCCCATTAGCGTT -ACGGAAGCACTTCCCATTTTCGTC -ACGGAAGCACTTCCCATTTCTCTC -ACGGAAGCACTTCCCATTTGGATC -ACGGAAGCACTTCCCATTCACTTC -ACGGAAGCACTTCCCATTGTACTC -ACGGAAGCACTTCCCATTGATGTC -ACGGAAGCACTTCCCATTACAGTC -ACGGAAGCACTTCCCATTTTGCTG -ACGGAAGCACTTCCCATTTCCATG -ACGGAAGCACTTCCCATTTGTGTG -ACGGAAGCACTTCCCATTCTAGTG -ACGGAAGCACTTCCCATTCATCTG -ACGGAAGCACTTCCCATTGAGTTG -ACGGAAGCACTTCCCATTAGACTG -ACGGAAGCACTTCCCATTTCGGTA -ACGGAAGCACTTCCCATTTGCCTA -ACGGAAGCACTTCCCATTCCACTA -ACGGAAGCACTTCCCATTGGAGTA -ACGGAAGCACTTCCCATTTCGTCT -ACGGAAGCACTTCCCATTTGCACT -ACGGAAGCACTTCCCATTCTGACT -ACGGAAGCACTTCCCATTCAACCT -ACGGAAGCACTTCCCATTGCTACT -ACGGAAGCACTTCCCATTGGATCT -ACGGAAGCACTTCCCATTAAGGCT -ACGGAAGCACTTCCCATTTCAACC -ACGGAAGCACTTCCCATTTGTTCC -ACGGAAGCACTTCCCATTATTCCC -ACGGAAGCACTTCCCATTTTCTCG -ACGGAAGCACTTCCCATTTAGACG -ACGGAAGCACTTCCCATTGTAACG -ACGGAAGCACTTCCCATTACTTCG -ACGGAAGCACTTCCCATTTACGCA -ACGGAAGCACTTCCCATTCTTGCA -ACGGAAGCACTTCCCATTCGAACA -ACGGAAGCACTTCCCATTCAGTCA -ACGGAAGCACTTCCCATTGATCCA -ACGGAAGCACTTCCCATTACGACA -ACGGAAGCACTTCCCATTAGCTCA -ACGGAAGCACTTCCCATTTCACGT -ACGGAAGCACTTCCCATTCGTAGT -ACGGAAGCACTTCCCATTGTCAGT -ACGGAAGCACTTCCCATTGAAGGT -ACGGAAGCACTTCCCATTAACCGT -ACGGAAGCACTTCCCATTTTGTGC -ACGGAAGCACTTCCCATTCTAAGC -ACGGAAGCACTTCCCATTACTAGC -ACGGAAGCACTTCCCATTAGATGC -ACGGAAGCACTTCCCATTTGAAGG -ACGGAAGCACTTCCCATTCAATGG -ACGGAAGCACTTCCCATTATGAGG -ACGGAAGCACTTCCCATTAATGGG -ACGGAAGCACTTCCCATTTCCTGA -ACGGAAGCACTTCCCATTTAGCGA -ACGGAAGCACTTCCCATTCACAGA -ACGGAAGCACTTCCCATTGCAAGA -ACGGAAGCACTTCCCATTGGTTGA -ACGGAAGCACTTCCCATTTCCGAT -ACGGAAGCACTTCCCATTTGGCAT -ACGGAAGCACTTCCCATTCGAGAT -ACGGAAGCACTTCCCATTTACCAC -ACGGAAGCACTTCCCATTCAGAAC -ACGGAAGCACTTCCCATTGTCTAC -ACGGAAGCACTTCCCATTACGTAC -ACGGAAGCACTTCCCATTAGTGAC -ACGGAAGCACTTCCCATTCTGTAG -ACGGAAGCACTTCCCATTCCTAAG -ACGGAAGCACTTCCCATTGTTCAG -ACGGAAGCACTTCCCATTGCATAG -ACGGAAGCACTTCCCATTGACAAG -ACGGAAGCACTTCCCATTAAGCAG -ACGGAAGCACTTCCCATTCGTCAA -ACGGAAGCACTTCCCATTGCTGAA -ACGGAAGCACTTCCCATTAGTACG -ACGGAAGCACTTCCCATTATCCGA -ACGGAAGCACTTCCCATTATGGGA -ACGGAAGCACTTCCCATTGTGCAA -ACGGAAGCACTTCCCATTGAGGAA -ACGGAAGCACTTCCCATTCAGGTA -ACGGAAGCACTTCCCATTGACTCT -ACGGAAGCACTTCCCATTAGTCCT -ACGGAAGCACTTCCCATTTAAGCC -ACGGAAGCACTTCCCATTATAGCC -ACGGAAGCACTTCCCATTTAACCG -ACGGAAGCACTTCCCATTATGCCA -ACGGAAGCACTTTCGTTCGGAAAC -ACGGAAGCACTTTCGTTCAACACC -ACGGAAGCACTTTCGTTCATCGAG -ACGGAAGCACTTTCGTTCCTCCTT -ACGGAAGCACTTTCGTTCCCTGTT -ACGGAAGCACTTTCGTTCCGGTTT -ACGGAAGCACTTTCGTTCGTGGTT -ACGGAAGCACTTTCGTTCGCCTTT -ACGGAAGCACTTTCGTTCGGTCTT -ACGGAAGCACTTTCGTTCACGCTT -ACGGAAGCACTTTCGTTCAGCGTT -ACGGAAGCACTTTCGTTCTTCGTC -ACGGAAGCACTTTCGTTCTCTCTC -ACGGAAGCACTTTCGTTCTGGATC -ACGGAAGCACTTTCGTTCCACTTC -ACGGAAGCACTTTCGTTCGTACTC -ACGGAAGCACTTTCGTTCGATGTC -ACGGAAGCACTTTCGTTCACAGTC -ACGGAAGCACTTTCGTTCTTGCTG -ACGGAAGCACTTTCGTTCTCCATG -ACGGAAGCACTTTCGTTCTGTGTG -ACGGAAGCACTTTCGTTCCTAGTG -ACGGAAGCACTTTCGTTCCATCTG -ACGGAAGCACTTTCGTTCGAGTTG -ACGGAAGCACTTTCGTTCAGACTG -ACGGAAGCACTTTCGTTCTCGGTA -ACGGAAGCACTTTCGTTCTGCCTA -ACGGAAGCACTTTCGTTCCCACTA -ACGGAAGCACTTTCGTTCGGAGTA -ACGGAAGCACTTTCGTTCTCGTCT -ACGGAAGCACTTTCGTTCTGCACT -ACGGAAGCACTTTCGTTCCTGACT -ACGGAAGCACTTTCGTTCCAACCT -ACGGAAGCACTTTCGTTCGCTACT -ACGGAAGCACTTTCGTTCGGATCT -ACGGAAGCACTTTCGTTCAAGGCT -ACGGAAGCACTTTCGTTCTCAACC -ACGGAAGCACTTTCGTTCTGTTCC -ACGGAAGCACTTTCGTTCATTCCC -ACGGAAGCACTTTCGTTCTTCTCG -ACGGAAGCACTTTCGTTCTAGACG -ACGGAAGCACTTTCGTTCGTAACG -ACGGAAGCACTTTCGTTCACTTCG -ACGGAAGCACTTTCGTTCTACGCA -ACGGAAGCACTTTCGTTCCTTGCA -ACGGAAGCACTTTCGTTCCGAACA -ACGGAAGCACTTTCGTTCCAGTCA -ACGGAAGCACTTTCGTTCGATCCA -ACGGAAGCACTTTCGTTCACGACA -ACGGAAGCACTTTCGTTCAGCTCA -ACGGAAGCACTTTCGTTCTCACGT -ACGGAAGCACTTTCGTTCCGTAGT -ACGGAAGCACTTTCGTTCGTCAGT -ACGGAAGCACTTTCGTTCGAAGGT -ACGGAAGCACTTTCGTTCAACCGT -ACGGAAGCACTTTCGTTCTTGTGC -ACGGAAGCACTTTCGTTCCTAAGC -ACGGAAGCACTTTCGTTCACTAGC -ACGGAAGCACTTTCGTTCAGATGC -ACGGAAGCACTTTCGTTCTGAAGG -ACGGAAGCACTTTCGTTCCAATGG -ACGGAAGCACTTTCGTTCATGAGG -ACGGAAGCACTTTCGTTCAATGGG -ACGGAAGCACTTTCGTTCTCCTGA -ACGGAAGCACTTTCGTTCTAGCGA -ACGGAAGCACTTTCGTTCCACAGA -ACGGAAGCACTTTCGTTCGCAAGA -ACGGAAGCACTTTCGTTCGGTTGA -ACGGAAGCACTTTCGTTCTCCGAT -ACGGAAGCACTTTCGTTCTGGCAT -ACGGAAGCACTTTCGTTCCGAGAT -ACGGAAGCACTTTCGTTCTACCAC -ACGGAAGCACTTTCGTTCCAGAAC -ACGGAAGCACTTTCGTTCGTCTAC -ACGGAAGCACTTTCGTTCACGTAC -ACGGAAGCACTTTCGTTCAGTGAC -ACGGAAGCACTTTCGTTCCTGTAG -ACGGAAGCACTTTCGTTCCCTAAG -ACGGAAGCACTTTCGTTCGTTCAG -ACGGAAGCACTTTCGTTCGCATAG -ACGGAAGCACTTTCGTTCGACAAG -ACGGAAGCACTTTCGTTCAAGCAG -ACGGAAGCACTTTCGTTCCGTCAA -ACGGAAGCACTTTCGTTCGCTGAA -ACGGAAGCACTTTCGTTCAGTACG -ACGGAAGCACTTTCGTTCATCCGA -ACGGAAGCACTTTCGTTCATGGGA -ACGGAAGCACTTTCGTTCGTGCAA -ACGGAAGCACTTTCGTTCGAGGAA -ACGGAAGCACTTTCGTTCCAGGTA -ACGGAAGCACTTTCGTTCGACTCT -ACGGAAGCACTTTCGTTCAGTCCT -ACGGAAGCACTTTCGTTCTAAGCC -ACGGAAGCACTTTCGTTCATAGCC -ACGGAAGCACTTTCGTTCTAACCG -ACGGAAGCACTTTCGTTCATGCCA -ACGGAAGCACTTACGTAGGGAAAC -ACGGAAGCACTTACGTAGAACACC -ACGGAAGCACTTACGTAGATCGAG -ACGGAAGCACTTACGTAGCTCCTT -ACGGAAGCACTTACGTAGCCTGTT -ACGGAAGCACTTACGTAGCGGTTT -ACGGAAGCACTTACGTAGGTGGTT -ACGGAAGCACTTACGTAGGCCTTT -ACGGAAGCACTTACGTAGGGTCTT -ACGGAAGCACTTACGTAGACGCTT -ACGGAAGCACTTACGTAGAGCGTT -ACGGAAGCACTTACGTAGTTCGTC -ACGGAAGCACTTACGTAGTCTCTC -ACGGAAGCACTTACGTAGTGGATC -ACGGAAGCACTTACGTAGCACTTC -ACGGAAGCACTTACGTAGGTACTC -ACGGAAGCACTTACGTAGGATGTC -ACGGAAGCACTTACGTAGACAGTC -ACGGAAGCACTTACGTAGTTGCTG -ACGGAAGCACTTACGTAGTCCATG -ACGGAAGCACTTACGTAGTGTGTG -ACGGAAGCACTTACGTAGCTAGTG -ACGGAAGCACTTACGTAGCATCTG -ACGGAAGCACTTACGTAGGAGTTG -ACGGAAGCACTTACGTAGAGACTG -ACGGAAGCACTTACGTAGTCGGTA -ACGGAAGCACTTACGTAGTGCCTA -ACGGAAGCACTTACGTAGCCACTA -ACGGAAGCACTTACGTAGGGAGTA -ACGGAAGCACTTACGTAGTCGTCT -ACGGAAGCACTTACGTAGTGCACT -ACGGAAGCACTTACGTAGCTGACT -ACGGAAGCACTTACGTAGCAACCT -ACGGAAGCACTTACGTAGGCTACT -ACGGAAGCACTTACGTAGGGATCT -ACGGAAGCACTTACGTAGAAGGCT -ACGGAAGCACTTACGTAGTCAACC -ACGGAAGCACTTACGTAGTGTTCC -ACGGAAGCACTTACGTAGATTCCC -ACGGAAGCACTTACGTAGTTCTCG -ACGGAAGCACTTACGTAGTAGACG -ACGGAAGCACTTACGTAGGTAACG -ACGGAAGCACTTACGTAGACTTCG -ACGGAAGCACTTACGTAGTACGCA -ACGGAAGCACTTACGTAGCTTGCA -ACGGAAGCACTTACGTAGCGAACA -ACGGAAGCACTTACGTAGCAGTCA -ACGGAAGCACTTACGTAGGATCCA -ACGGAAGCACTTACGTAGACGACA -ACGGAAGCACTTACGTAGAGCTCA -ACGGAAGCACTTACGTAGTCACGT -ACGGAAGCACTTACGTAGCGTAGT -ACGGAAGCACTTACGTAGGTCAGT -ACGGAAGCACTTACGTAGGAAGGT -ACGGAAGCACTTACGTAGAACCGT -ACGGAAGCACTTACGTAGTTGTGC -ACGGAAGCACTTACGTAGCTAAGC -ACGGAAGCACTTACGTAGACTAGC -ACGGAAGCACTTACGTAGAGATGC -ACGGAAGCACTTACGTAGTGAAGG -ACGGAAGCACTTACGTAGCAATGG -ACGGAAGCACTTACGTAGATGAGG -ACGGAAGCACTTACGTAGAATGGG -ACGGAAGCACTTACGTAGTCCTGA -ACGGAAGCACTTACGTAGTAGCGA -ACGGAAGCACTTACGTAGCACAGA -ACGGAAGCACTTACGTAGGCAAGA -ACGGAAGCACTTACGTAGGGTTGA -ACGGAAGCACTTACGTAGTCCGAT -ACGGAAGCACTTACGTAGTGGCAT -ACGGAAGCACTTACGTAGCGAGAT -ACGGAAGCACTTACGTAGTACCAC -ACGGAAGCACTTACGTAGCAGAAC -ACGGAAGCACTTACGTAGGTCTAC -ACGGAAGCACTTACGTAGACGTAC -ACGGAAGCACTTACGTAGAGTGAC -ACGGAAGCACTTACGTAGCTGTAG -ACGGAAGCACTTACGTAGCCTAAG -ACGGAAGCACTTACGTAGGTTCAG -ACGGAAGCACTTACGTAGGCATAG -ACGGAAGCACTTACGTAGGACAAG -ACGGAAGCACTTACGTAGAAGCAG -ACGGAAGCACTTACGTAGCGTCAA -ACGGAAGCACTTACGTAGGCTGAA -ACGGAAGCACTTACGTAGAGTACG -ACGGAAGCACTTACGTAGATCCGA -ACGGAAGCACTTACGTAGATGGGA -ACGGAAGCACTTACGTAGGTGCAA -ACGGAAGCACTTACGTAGGAGGAA -ACGGAAGCACTTACGTAGCAGGTA -ACGGAAGCACTTACGTAGGACTCT -ACGGAAGCACTTACGTAGAGTCCT -ACGGAAGCACTTACGTAGTAAGCC -ACGGAAGCACTTACGTAGATAGCC -ACGGAAGCACTTACGTAGTAACCG -ACGGAAGCACTTACGTAGATGCCA -ACGGAAGCACTTACGGTAGGAAAC -ACGGAAGCACTTACGGTAAACACC -ACGGAAGCACTTACGGTAATCGAG -ACGGAAGCACTTACGGTACTCCTT -ACGGAAGCACTTACGGTACCTGTT -ACGGAAGCACTTACGGTACGGTTT -ACGGAAGCACTTACGGTAGTGGTT -ACGGAAGCACTTACGGTAGCCTTT -ACGGAAGCACTTACGGTAGGTCTT -ACGGAAGCACTTACGGTAACGCTT -ACGGAAGCACTTACGGTAAGCGTT -ACGGAAGCACTTACGGTATTCGTC -ACGGAAGCACTTACGGTATCTCTC -ACGGAAGCACTTACGGTATGGATC -ACGGAAGCACTTACGGTACACTTC -ACGGAAGCACTTACGGTAGTACTC -ACGGAAGCACTTACGGTAGATGTC -ACGGAAGCACTTACGGTAACAGTC -ACGGAAGCACTTACGGTATTGCTG -ACGGAAGCACTTACGGTATCCATG -ACGGAAGCACTTACGGTATGTGTG -ACGGAAGCACTTACGGTACTAGTG -ACGGAAGCACTTACGGTACATCTG -ACGGAAGCACTTACGGTAGAGTTG -ACGGAAGCACTTACGGTAAGACTG -ACGGAAGCACTTACGGTATCGGTA -ACGGAAGCACTTACGGTATGCCTA -ACGGAAGCACTTACGGTACCACTA -ACGGAAGCACTTACGGTAGGAGTA -ACGGAAGCACTTACGGTATCGTCT -ACGGAAGCACTTACGGTATGCACT -ACGGAAGCACTTACGGTACTGACT -ACGGAAGCACTTACGGTACAACCT -ACGGAAGCACTTACGGTAGCTACT -ACGGAAGCACTTACGGTAGGATCT -ACGGAAGCACTTACGGTAAAGGCT -ACGGAAGCACTTACGGTATCAACC -ACGGAAGCACTTACGGTATGTTCC -ACGGAAGCACTTACGGTAATTCCC -ACGGAAGCACTTACGGTATTCTCG -ACGGAAGCACTTACGGTATAGACG -ACGGAAGCACTTACGGTAGTAACG -ACGGAAGCACTTACGGTAACTTCG -ACGGAAGCACTTACGGTATACGCA -ACGGAAGCACTTACGGTACTTGCA -ACGGAAGCACTTACGGTACGAACA -ACGGAAGCACTTACGGTACAGTCA -ACGGAAGCACTTACGGTAGATCCA -ACGGAAGCACTTACGGTAACGACA -ACGGAAGCACTTACGGTAAGCTCA -ACGGAAGCACTTACGGTATCACGT -ACGGAAGCACTTACGGTACGTAGT -ACGGAAGCACTTACGGTAGTCAGT -ACGGAAGCACTTACGGTAGAAGGT -ACGGAAGCACTTACGGTAAACCGT -ACGGAAGCACTTACGGTATTGTGC -ACGGAAGCACTTACGGTACTAAGC -ACGGAAGCACTTACGGTAACTAGC -ACGGAAGCACTTACGGTAAGATGC -ACGGAAGCACTTACGGTATGAAGG -ACGGAAGCACTTACGGTACAATGG -ACGGAAGCACTTACGGTAATGAGG -ACGGAAGCACTTACGGTAAATGGG -ACGGAAGCACTTACGGTATCCTGA -ACGGAAGCACTTACGGTATAGCGA -ACGGAAGCACTTACGGTACACAGA -ACGGAAGCACTTACGGTAGCAAGA -ACGGAAGCACTTACGGTAGGTTGA -ACGGAAGCACTTACGGTATCCGAT -ACGGAAGCACTTACGGTATGGCAT -ACGGAAGCACTTACGGTACGAGAT -ACGGAAGCACTTACGGTATACCAC -ACGGAAGCACTTACGGTACAGAAC -ACGGAAGCACTTACGGTAGTCTAC -ACGGAAGCACTTACGGTAACGTAC -ACGGAAGCACTTACGGTAAGTGAC -ACGGAAGCACTTACGGTACTGTAG -ACGGAAGCACTTACGGTACCTAAG -ACGGAAGCACTTACGGTAGTTCAG -ACGGAAGCACTTACGGTAGCATAG -ACGGAAGCACTTACGGTAGACAAG -ACGGAAGCACTTACGGTAAAGCAG -ACGGAAGCACTTACGGTACGTCAA -ACGGAAGCACTTACGGTAGCTGAA -ACGGAAGCACTTACGGTAAGTACG -ACGGAAGCACTTACGGTAATCCGA -ACGGAAGCACTTACGGTAATGGGA -ACGGAAGCACTTACGGTAGTGCAA -ACGGAAGCACTTACGGTAGAGGAA -ACGGAAGCACTTACGGTACAGGTA -ACGGAAGCACTTACGGTAGACTCT -ACGGAAGCACTTACGGTAAGTCCT -ACGGAAGCACTTACGGTATAAGCC -ACGGAAGCACTTACGGTAATAGCC -ACGGAAGCACTTACGGTATAACCG -ACGGAAGCACTTACGGTAATGCCA -ACGGAAGCACTTTCGACTGGAAAC -ACGGAAGCACTTTCGACTAACACC -ACGGAAGCACTTTCGACTATCGAG -ACGGAAGCACTTTCGACTCTCCTT -ACGGAAGCACTTTCGACTCCTGTT -ACGGAAGCACTTTCGACTCGGTTT -ACGGAAGCACTTTCGACTGTGGTT -ACGGAAGCACTTTCGACTGCCTTT -ACGGAAGCACTTTCGACTGGTCTT -ACGGAAGCACTTTCGACTACGCTT -ACGGAAGCACTTTCGACTAGCGTT -ACGGAAGCACTTTCGACTTTCGTC -ACGGAAGCACTTTCGACTTCTCTC -ACGGAAGCACTTTCGACTTGGATC -ACGGAAGCACTTTCGACTCACTTC -ACGGAAGCACTTTCGACTGTACTC -ACGGAAGCACTTTCGACTGATGTC -ACGGAAGCACTTTCGACTACAGTC -ACGGAAGCACTTTCGACTTTGCTG -ACGGAAGCACTTTCGACTTCCATG -ACGGAAGCACTTTCGACTTGTGTG -ACGGAAGCACTTTCGACTCTAGTG -ACGGAAGCACTTTCGACTCATCTG -ACGGAAGCACTTTCGACTGAGTTG -ACGGAAGCACTTTCGACTAGACTG -ACGGAAGCACTTTCGACTTCGGTA -ACGGAAGCACTTTCGACTTGCCTA -ACGGAAGCACTTTCGACTCCACTA -ACGGAAGCACTTTCGACTGGAGTA -ACGGAAGCACTTTCGACTTCGTCT -ACGGAAGCACTTTCGACTTGCACT -ACGGAAGCACTTTCGACTCTGACT -ACGGAAGCACTTTCGACTCAACCT -ACGGAAGCACTTTCGACTGCTACT -ACGGAAGCACTTTCGACTGGATCT -ACGGAAGCACTTTCGACTAAGGCT -ACGGAAGCACTTTCGACTTCAACC -ACGGAAGCACTTTCGACTTGTTCC -ACGGAAGCACTTTCGACTATTCCC -ACGGAAGCACTTTCGACTTTCTCG -ACGGAAGCACTTTCGACTTAGACG -ACGGAAGCACTTTCGACTGTAACG -ACGGAAGCACTTTCGACTACTTCG -ACGGAAGCACTTTCGACTTACGCA -ACGGAAGCACTTTCGACTCTTGCA -ACGGAAGCACTTTCGACTCGAACA -ACGGAAGCACTTTCGACTCAGTCA -ACGGAAGCACTTTCGACTGATCCA -ACGGAAGCACTTTCGACTACGACA -ACGGAAGCACTTTCGACTAGCTCA -ACGGAAGCACTTTCGACTTCACGT -ACGGAAGCACTTTCGACTCGTAGT -ACGGAAGCACTTTCGACTGTCAGT -ACGGAAGCACTTTCGACTGAAGGT -ACGGAAGCACTTTCGACTAACCGT -ACGGAAGCACTTTCGACTTTGTGC -ACGGAAGCACTTTCGACTCTAAGC -ACGGAAGCACTTTCGACTACTAGC -ACGGAAGCACTTTCGACTAGATGC -ACGGAAGCACTTTCGACTTGAAGG -ACGGAAGCACTTTCGACTCAATGG -ACGGAAGCACTTTCGACTATGAGG -ACGGAAGCACTTTCGACTAATGGG -ACGGAAGCACTTTCGACTTCCTGA -ACGGAAGCACTTTCGACTTAGCGA -ACGGAAGCACTTTCGACTCACAGA -ACGGAAGCACTTTCGACTGCAAGA -ACGGAAGCACTTTCGACTGGTTGA -ACGGAAGCACTTTCGACTTCCGAT -ACGGAAGCACTTTCGACTTGGCAT -ACGGAAGCACTTTCGACTCGAGAT -ACGGAAGCACTTTCGACTTACCAC -ACGGAAGCACTTTCGACTCAGAAC -ACGGAAGCACTTTCGACTGTCTAC -ACGGAAGCACTTTCGACTACGTAC -ACGGAAGCACTTTCGACTAGTGAC -ACGGAAGCACTTTCGACTCTGTAG -ACGGAAGCACTTTCGACTCCTAAG -ACGGAAGCACTTTCGACTGTTCAG -ACGGAAGCACTTTCGACTGCATAG -ACGGAAGCACTTTCGACTGACAAG -ACGGAAGCACTTTCGACTAAGCAG -ACGGAAGCACTTTCGACTCGTCAA -ACGGAAGCACTTTCGACTGCTGAA -ACGGAAGCACTTTCGACTAGTACG -ACGGAAGCACTTTCGACTATCCGA -ACGGAAGCACTTTCGACTATGGGA -ACGGAAGCACTTTCGACTGTGCAA -ACGGAAGCACTTTCGACTGAGGAA -ACGGAAGCACTTTCGACTCAGGTA -ACGGAAGCACTTTCGACTGACTCT -ACGGAAGCACTTTCGACTAGTCCT -ACGGAAGCACTTTCGACTTAAGCC -ACGGAAGCACTTTCGACTATAGCC -ACGGAAGCACTTTCGACTTAACCG -ACGGAAGCACTTTCGACTATGCCA -ACGGAAGCACTTGCATACGGAAAC -ACGGAAGCACTTGCATACAACACC -ACGGAAGCACTTGCATACATCGAG -ACGGAAGCACTTGCATACCTCCTT -ACGGAAGCACTTGCATACCCTGTT -ACGGAAGCACTTGCATACCGGTTT -ACGGAAGCACTTGCATACGTGGTT -ACGGAAGCACTTGCATACGCCTTT -ACGGAAGCACTTGCATACGGTCTT -ACGGAAGCACTTGCATACACGCTT -ACGGAAGCACTTGCATACAGCGTT -ACGGAAGCACTTGCATACTTCGTC -ACGGAAGCACTTGCATACTCTCTC -ACGGAAGCACTTGCATACTGGATC -ACGGAAGCACTTGCATACCACTTC -ACGGAAGCACTTGCATACGTACTC -ACGGAAGCACTTGCATACGATGTC -ACGGAAGCACTTGCATACACAGTC -ACGGAAGCACTTGCATACTTGCTG -ACGGAAGCACTTGCATACTCCATG -ACGGAAGCACTTGCATACTGTGTG -ACGGAAGCACTTGCATACCTAGTG -ACGGAAGCACTTGCATACCATCTG -ACGGAAGCACTTGCATACGAGTTG -ACGGAAGCACTTGCATACAGACTG -ACGGAAGCACTTGCATACTCGGTA -ACGGAAGCACTTGCATACTGCCTA -ACGGAAGCACTTGCATACCCACTA -ACGGAAGCACTTGCATACGGAGTA -ACGGAAGCACTTGCATACTCGTCT -ACGGAAGCACTTGCATACTGCACT -ACGGAAGCACTTGCATACCTGACT -ACGGAAGCACTTGCATACCAACCT -ACGGAAGCACTTGCATACGCTACT -ACGGAAGCACTTGCATACGGATCT -ACGGAAGCACTTGCATACAAGGCT -ACGGAAGCACTTGCATACTCAACC -ACGGAAGCACTTGCATACTGTTCC -ACGGAAGCACTTGCATACATTCCC -ACGGAAGCACTTGCATACTTCTCG -ACGGAAGCACTTGCATACTAGACG -ACGGAAGCACTTGCATACGTAACG -ACGGAAGCACTTGCATACACTTCG -ACGGAAGCACTTGCATACTACGCA -ACGGAAGCACTTGCATACCTTGCA -ACGGAAGCACTTGCATACCGAACA -ACGGAAGCACTTGCATACCAGTCA -ACGGAAGCACTTGCATACGATCCA -ACGGAAGCACTTGCATACACGACA -ACGGAAGCACTTGCATACAGCTCA -ACGGAAGCACTTGCATACTCACGT -ACGGAAGCACTTGCATACCGTAGT -ACGGAAGCACTTGCATACGTCAGT -ACGGAAGCACTTGCATACGAAGGT -ACGGAAGCACTTGCATACAACCGT -ACGGAAGCACTTGCATACTTGTGC -ACGGAAGCACTTGCATACCTAAGC -ACGGAAGCACTTGCATACACTAGC -ACGGAAGCACTTGCATACAGATGC -ACGGAAGCACTTGCATACTGAAGG -ACGGAAGCACTTGCATACCAATGG -ACGGAAGCACTTGCATACATGAGG -ACGGAAGCACTTGCATACAATGGG -ACGGAAGCACTTGCATACTCCTGA -ACGGAAGCACTTGCATACTAGCGA -ACGGAAGCACTTGCATACCACAGA -ACGGAAGCACTTGCATACGCAAGA -ACGGAAGCACTTGCATACGGTTGA -ACGGAAGCACTTGCATACTCCGAT -ACGGAAGCACTTGCATACTGGCAT -ACGGAAGCACTTGCATACCGAGAT -ACGGAAGCACTTGCATACTACCAC -ACGGAAGCACTTGCATACCAGAAC -ACGGAAGCACTTGCATACGTCTAC -ACGGAAGCACTTGCATACACGTAC -ACGGAAGCACTTGCATACAGTGAC -ACGGAAGCACTTGCATACCTGTAG -ACGGAAGCACTTGCATACCCTAAG -ACGGAAGCACTTGCATACGTTCAG -ACGGAAGCACTTGCATACGCATAG -ACGGAAGCACTTGCATACGACAAG -ACGGAAGCACTTGCATACAAGCAG -ACGGAAGCACTTGCATACCGTCAA -ACGGAAGCACTTGCATACGCTGAA -ACGGAAGCACTTGCATACAGTACG -ACGGAAGCACTTGCATACATCCGA -ACGGAAGCACTTGCATACATGGGA -ACGGAAGCACTTGCATACGTGCAA -ACGGAAGCACTTGCATACGAGGAA -ACGGAAGCACTTGCATACCAGGTA -ACGGAAGCACTTGCATACGACTCT -ACGGAAGCACTTGCATACAGTCCT -ACGGAAGCACTTGCATACTAAGCC -ACGGAAGCACTTGCATACATAGCC -ACGGAAGCACTTGCATACTAACCG -ACGGAAGCACTTGCATACATGCCA -ACGGAAGCACTTGCACTTGGAAAC -ACGGAAGCACTTGCACTTAACACC -ACGGAAGCACTTGCACTTATCGAG -ACGGAAGCACTTGCACTTCTCCTT -ACGGAAGCACTTGCACTTCCTGTT -ACGGAAGCACTTGCACTTCGGTTT -ACGGAAGCACTTGCACTTGTGGTT -ACGGAAGCACTTGCACTTGCCTTT -ACGGAAGCACTTGCACTTGGTCTT -ACGGAAGCACTTGCACTTACGCTT -ACGGAAGCACTTGCACTTAGCGTT -ACGGAAGCACTTGCACTTTTCGTC -ACGGAAGCACTTGCACTTTCTCTC -ACGGAAGCACTTGCACTTTGGATC -ACGGAAGCACTTGCACTTCACTTC -ACGGAAGCACTTGCACTTGTACTC -ACGGAAGCACTTGCACTTGATGTC -ACGGAAGCACTTGCACTTACAGTC -ACGGAAGCACTTGCACTTTTGCTG -ACGGAAGCACTTGCACTTTCCATG -ACGGAAGCACTTGCACTTTGTGTG -ACGGAAGCACTTGCACTTCTAGTG -ACGGAAGCACTTGCACTTCATCTG -ACGGAAGCACTTGCACTTGAGTTG -ACGGAAGCACTTGCACTTAGACTG -ACGGAAGCACTTGCACTTTCGGTA -ACGGAAGCACTTGCACTTTGCCTA -ACGGAAGCACTTGCACTTCCACTA -ACGGAAGCACTTGCACTTGGAGTA -ACGGAAGCACTTGCACTTTCGTCT -ACGGAAGCACTTGCACTTTGCACT -ACGGAAGCACTTGCACTTCTGACT -ACGGAAGCACTTGCACTTCAACCT -ACGGAAGCACTTGCACTTGCTACT -ACGGAAGCACTTGCACTTGGATCT -ACGGAAGCACTTGCACTTAAGGCT -ACGGAAGCACTTGCACTTTCAACC -ACGGAAGCACTTGCACTTTGTTCC -ACGGAAGCACTTGCACTTATTCCC -ACGGAAGCACTTGCACTTTTCTCG -ACGGAAGCACTTGCACTTTAGACG -ACGGAAGCACTTGCACTTGTAACG -ACGGAAGCACTTGCACTTACTTCG -ACGGAAGCACTTGCACTTTACGCA -ACGGAAGCACTTGCACTTCTTGCA -ACGGAAGCACTTGCACTTCGAACA -ACGGAAGCACTTGCACTTCAGTCA -ACGGAAGCACTTGCACTTGATCCA -ACGGAAGCACTTGCACTTACGACA -ACGGAAGCACTTGCACTTAGCTCA -ACGGAAGCACTTGCACTTTCACGT -ACGGAAGCACTTGCACTTCGTAGT -ACGGAAGCACTTGCACTTGTCAGT -ACGGAAGCACTTGCACTTGAAGGT -ACGGAAGCACTTGCACTTAACCGT -ACGGAAGCACTTGCACTTTTGTGC -ACGGAAGCACTTGCACTTCTAAGC -ACGGAAGCACTTGCACTTACTAGC -ACGGAAGCACTTGCACTTAGATGC -ACGGAAGCACTTGCACTTTGAAGG -ACGGAAGCACTTGCACTTCAATGG -ACGGAAGCACTTGCACTTATGAGG -ACGGAAGCACTTGCACTTAATGGG -ACGGAAGCACTTGCACTTTCCTGA -ACGGAAGCACTTGCACTTTAGCGA -ACGGAAGCACTTGCACTTCACAGA -ACGGAAGCACTTGCACTTGCAAGA -ACGGAAGCACTTGCACTTGGTTGA -ACGGAAGCACTTGCACTTTCCGAT -ACGGAAGCACTTGCACTTTGGCAT -ACGGAAGCACTTGCACTTCGAGAT -ACGGAAGCACTTGCACTTTACCAC -ACGGAAGCACTTGCACTTCAGAAC -ACGGAAGCACTTGCACTTGTCTAC -ACGGAAGCACTTGCACTTACGTAC -ACGGAAGCACTTGCACTTAGTGAC -ACGGAAGCACTTGCACTTCTGTAG -ACGGAAGCACTTGCACTTCCTAAG -ACGGAAGCACTTGCACTTGTTCAG -ACGGAAGCACTTGCACTTGCATAG -ACGGAAGCACTTGCACTTGACAAG -ACGGAAGCACTTGCACTTAAGCAG -ACGGAAGCACTTGCACTTCGTCAA -ACGGAAGCACTTGCACTTGCTGAA -ACGGAAGCACTTGCACTTAGTACG -ACGGAAGCACTTGCACTTATCCGA -ACGGAAGCACTTGCACTTATGGGA -ACGGAAGCACTTGCACTTGTGCAA -ACGGAAGCACTTGCACTTGAGGAA -ACGGAAGCACTTGCACTTCAGGTA -ACGGAAGCACTTGCACTTGACTCT -ACGGAAGCACTTGCACTTAGTCCT -ACGGAAGCACTTGCACTTTAAGCC -ACGGAAGCACTTGCACTTATAGCC -ACGGAAGCACTTGCACTTTAACCG -ACGGAAGCACTTGCACTTATGCCA -ACGGAAGCACTTACACGAGGAAAC -ACGGAAGCACTTACACGAAACACC -ACGGAAGCACTTACACGAATCGAG -ACGGAAGCACTTACACGACTCCTT -ACGGAAGCACTTACACGACCTGTT -ACGGAAGCACTTACACGACGGTTT -ACGGAAGCACTTACACGAGTGGTT -ACGGAAGCACTTACACGAGCCTTT -ACGGAAGCACTTACACGAGGTCTT -ACGGAAGCACTTACACGAACGCTT -ACGGAAGCACTTACACGAAGCGTT -ACGGAAGCACTTACACGATTCGTC -ACGGAAGCACTTACACGATCTCTC -ACGGAAGCACTTACACGATGGATC -ACGGAAGCACTTACACGACACTTC -ACGGAAGCACTTACACGAGTACTC -ACGGAAGCACTTACACGAGATGTC -ACGGAAGCACTTACACGAACAGTC -ACGGAAGCACTTACACGATTGCTG -ACGGAAGCACTTACACGATCCATG -ACGGAAGCACTTACACGATGTGTG -ACGGAAGCACTTACACGACTAGTG -ACGGAAGCACTTACACGACATCTG -ACGGAAGCACTTACACGAGAGTTG -ACGGAAGCACTTACACGAAGACTG -ACGGAAGCACTTACACGATCGGTA -ACGGAAGCACTTACACGATGCCTA -ACGGAAGCACTTACACGACCACTA -ACGGAAGCACTTACACGAGGAGTA -ACGGAAGCACTTACACGATCGTCT -ACGGAAGCACTTACACGATGCACT -ACGGAAGCACTTACACGACTGACT -ACGGAAGCACTTACACGACAACCT -ACGGAAGCACTTACACGAGCTACT -ACGGAAGCACTTACACGAGGATCT -ACGGAAGCACTTACACGAAAGGCT -ACGGAAGCACTTACACGATCAACC -ACGGAAGCACTTACACGATGTTCC -ACGGAAGCACTTACACGAATTCCC -ACGGAAGCACTTACACGATTCTCG -ACGGAAGCACTTACACGATAGACG -ACGGAAGCACTTACACGAGTAACG -ACGGAAGCACTTACACGAACTTCG -ACGGAAGCACTTACACGATACGCA -ACGGAAGCACTTACACGACTTGCA -ACGGAAGCACTTACACGACGAACA -ACGGAAGCACTTACACGACAGTCA -ACGGAAGCACTTACACGAGATCCA -ACGGAAGCACTTACACGAACGACA -ACGGAAGCACTTACACGAAGCTCA -ACGGAAGCACTTACACGATCACGT -ACGGAAGCACTTACACGACGTAGT -ACGGAAGCACTTACACGAGTCAGT -ACGGAAGCACTTACACGAGAAGGT -ACGGAAGCACTTACACGAAACCGT -ACGGAAGCACTTACACGATTGTGC -ACGGAAGCACTTACACGACTAAGC -ACGGAAGCACTTACACGAACTAGC -ACGGAAGCACTTACACGAAGATGC -ACGGAAGCACTTACACGATGAAGG -ACGGAAGCACTTACACGACAATGG -ACGGAAGCACTTACACGAATGAGG -ACGGAAGCACTTACACGAAATGGG -ACGGAAGCACTTACACGATCCTGA -ACGGAAGCACTTACACGATAGCGA -ACGGAAGCACTTACACGACACAGA -ACGGAAGCACTTACACGAGCAAGA -ACGGAAGCACTTACACGAGGTTGA -ACGGAAGCACTTACACGATCCGAT -ACGGAAGCACTTACACGATGGCAT -ACGGAAGCACTTACACGACGAGAT -ACGGAAGCACTTACACGATACCAC -ACGGAAGCACTTACACGACAGAAC -ACGGAAGCACTTACACGAGTCTAC -ACGGAAGCACTTACACGAACGTAC -ACGGAAGCACTTACACGAAGTGAC -ACGGAAGCACTTACACGACTGTAG -ACGGAAGCACTTACACGACCTAAG -ACGGAAGCACTTACACGAGTTCAG -ACGGAAGCACTTACACGAGCATAG -ACGGAAGCACTTACACGAGACAAG -ACGGAAGCACTTACACGAAAGCAG -ACGGAAGCACTTACACGACGTCAA -ACGGAAGCACTTACACGAGCTGAA -ACGGAAGCACTTACACGAAGTACG -ACGGAAGCACTTACACGAATCCGA -ACGGAAGCACTTACACGAATGGGA -ACGGAAGCACTTACACGAGTGCAA -ACGGAAGCACTTACACGAGAGGAA -ACGGAAGCACTTACACGACAGGTA -ACGGAAGCACTTACACGAGACTCT -ACGGAAGCACTTACACGAAGTCCT -ACGGAAGCACTTACACGATAAGCC -ACGGAAGCACTTACACGAATAGCC -ACGGAAGCACTTACACGATAACCG -ACGGAAGCACTTACACGAATGCCA -ACGGAAGCACTTTCACAGGGAAAC -ACGGAAGCACTTTCACAGAACACC -ACGGAAGCACTTTCACAGATCGAG -ACGGAAGCACTTTCACAGCTCCTT -ACGGAAGCACTTTCACAGCCTGTT -ACGGAAGCACTTTCACAGCGGTTT -ACGGAAGCACTTTCACAGGTGGTT -ACGGAAGCACTTTCACAGGCCTTT -ACGGAAGCACTTTCACAGGGTCTT -ACGGAAGCACTTTCACAGACGCTT -ACGGAAGCACTTTCACAGAGCGTT -ACGGAAGCACTTTCACAGTTCGTC -ACGGAAGCACTTTCACAGTCTCTC -ACGGAAGCACTTTCACAGTGGATC -ACGGAAGCACTTTCACAGCACTTC -ACGGAAGCACTTTCACAGGTACTC -ACGGAAGCACTTTCACAGGATGTC -ACGGAAGCACTTTCACAGACAGTC -ACGGAAGCACTTTCACAGTTGCTG -ACGGAAGCACTTTCACAGTCCATG -ACGGAAGCACTTTCACAGTGTGTG -ACGGAAGCACTTTCACAGCTAGTG -ACGGAAGCACTTTCACAGCATCTG -ACGGAAGCACTTTCACAGGAGTTG -ACGGAAGCACTTTCACAGAGACTG -ACGGAAGCACTTTCACAGTCGGTA -ACGGAAGCACTTTCACAGTGCCTA -ACGGAAGCACTTTCACAGCCACTA -ACGGAAGCACTTTCACAGGGAGTA -ACGGAAGCACTTTCACAGTCGTCT -ACGGAAGCACTTTCACAGTGCACT -ACGGAAGCACTTTCACAGCTGACT -ACGGAAGCACTTTCACAGCAACCT -ACGGAAGCACTTTCACAGGCTACT -ACGGAAGCACTTTCACAGGGATCT -ACGGAAGCACTTTCACAGAAGGCT -ACGGAAGCACTTTCACAGTCAACC -ACGGAAGCACTTTCACAGTGTTCC -ACGGAAGCACTTTCACAGATTCCC -ACGGAAGCACTTTCACAGTTCTCG -ACGGAAGCACTTTCACAGTAGACG -ACGGAAGCACTTTCACAGGTAACG -ACGGAAGCACTTTCACAGACTTCG -ACGGAAGCACTTTCACAGTACGCA -ACGGAAGCACTTTCACAGCTTGCA -ACGGAAGCACTTTCACAGCGAACA -ACGGAAGCACTTTCACAGCAGTCA -ACGGAAGCACTTTCACAGGATCCA -ACGGAAGCACTTTCACAGACGACA -ACGGAAGCACTTTCACAGAGCTCA -ACGGAAGCACTTTCACAGTCACGT -ACGGAAGCACTTTCACAGCGTAGT -ACGGAAGCACTTTCACAGGTCAGT -ACGGAAGCACTTTCACAGGAAGGT -ACGGAAGCACTTTCACAGAACCGT -ACGGAAGCACTTTCACAGTTGTGC -ACGGAAGCACTTTCACAGCTAAGC -ACGGAAGCACTTTCACAGACTAGC -ACGGAAGCACTTTCACAGAGATGC -ACGGAAGCACTTTCACAGTGAAGG -ACGGAAGCACTTTCACAGCAATGG -ACGGAAGCACTTTCACAGATGAGG -ACGGAAGCACTTTCACAGAATGGG -ACGGAAGCACTTTCACAGTCCTGA -ACGGAAGCACTTTCACAGTAGCGA -ACGGAAGCACTTTCACAGCACAGA -ACGGAAGCACTTTCACAGGCAAGA -ACGGAAGCACTTTCACAGGGTTGA -ACGGAAGCACTTTCACAGTCCGAT -ACGGAAGCACTTTCACAGTGGCAT -ACGGAAGCACTTTCACAGCGAGAT -ACGGAAGCACTTTCACAGTACCAC -ACGGAAGCACTTTCACAGCAGAAC -ACGGAAGCACTTTCACAGGTCTAC -ACGGAAGCACTTTCACAGACGTAC -ACGGAAGCACTTTCACAGAGTGAC -ACGGAAGCACTTTCACAGCTGTAG -ACGGAAGCACTTTCACAGCCTAAG -ACGGAAGCACTTTCACAGGTTCAG -ACGGAAGCACTTTCACAGGCATAG -ACGGAAGCACTTTCACAGGACAAG -ACGGAAGCACTTTCACAGAAGCAG -ACGGAAGCACTTTCACAGCGTCAA -ACGGAAGCACTTTCACAGGCTGAA -ACGGAAGCACTTTCACAGAGTACG -ACGGAAGCACTTTCACAGATCCGA -ACGGAAGCACTTTCACAGATGGGA -ACGGAAGCACTTTCACAGGTGCAA -ACGGAAGCACTTTCACAGGAGGAA -ACGGAAGCACTTTCACAGCAGGTA -ACGGAAGCACTTTCACAGGACTCT -ACGGAAGCACTTTCACAGAGTCCT -ACGGAAGCACTTTCACAGTAAGCC -ACGGAAGCACTTTCACAGATAGCC -ACGGAAGCACTTTCACAGTAACCG -ACGGAAGCACTTTCACAGATGCCA -ACGGAAGCACTTCCAGATGGAAAC -ACGGAAGCACTTCCAGATAACACC -ACGGAAGCACTTCCAGATATCGAG -ACGGAAGCACTTCCAGATCTCCTT -ACGGAAGCACTTCCAGATCCTGTT -ACGGAAGCACTTCCAGATCGGTTT -ACGGAAGCACTTCCAGATGTGGTT -ACGGAAGCACTTCCAGATGCCTTT -ACGGAAGCACTTCCAGATGGTCTT -ACGGAAGCACTTCCAGATACGCTT -ACGGAAGCACTTCCAGATAGCGTT -ACGGAAGCACTTCCAGATTTCGTC -ACGGAAGCACTTCCAGATTCTCTC -ACGGAAGCACTTCCAGATTGGATC -ACGGAAGCACTTCCAGATCACTTC -ACGGAAGCACTTCCAGATGTACTC -ACGGAAGCACTTCCAGATGATGTC -ACGGAAGCACTTCCAGATACAGTC -ACGGAAGCACTTCCAGATTTGCTG -ACGGAAGCACTTCCAGATTCCATG -ACGGAAGCACTTCCAGATTGTGTG -ACGGAAGCACTTCCAGATCTAGTG -ACGGAAGCACTTCCAGATCATCTG -ACGGAAGCACTTCCAGATGAGTTG -ACGGAAGCACTTCCAGATAGACTG -ACGGAAGCACTTCCAGATTCGGTA -ACGGAAGCACTTCCAGATTGCCTA -ACGGAAGCACTTCCAGATCCACTA -ACGGAAGCACTTCCAGATGGAGTA -ACGGAAGCACTTCCAGATTCGTCT -ACGGAAGCACTTCCAGATTGCACT -ACGGAAGCACTTCCAGATCTGACT -ACGGAAGCACTTCCAGATCAACCT -ACGGAAGCACTTCCAGATGCTACT -ACGGAAGCACTTCCAGATGGATCT -ACGGAAGCACTTCCAGATAAGGCT -ACGGAAGCACTTCCAGATTCAACC -ACGGAAGCACTTCCAGATTGTTCC -ACGGAAGCACTTCCAGATATTCCC -ACGGAAGCACTTCCAGATTTCTCG -ACGGAAGCACTTCCAGATTAGACG -ACGGAAGCACTTCCAGATGTAACG -ACGGAAGCACTTCCAGATACTTCG -ACGGAAGCACTTCCAGATTACGCA -ACGGAAGCACTTCCAGATCTTGCA -ACGGAAGCACTTCCAGATCGAACA -ACGGAAGCACTTCCAGATCAGTCA -ACGGAAGCACTTCCAGATGATCCA -ACGGAAGCACTTCCAGATACGACA -ACGGAAGCACTTCCAGATAGCTCA -ACGGAAGCACTTCCAGATTCACGT -ACGGAAGCACTTCCAGATCGTAGT -ACGGAAGCACTTCCAGATGTCAGT -ACGGAAGCACTTCCAGATGAAGGT -ACGGAAGCACTTCCAGATAACCGT -ACGGAAGCACTTCCAGATTTGTGC -ACGGAAGCACTTCCAGATCTAAGC -ACGGAAGCACTTCCAGATACTAGC -ACGGAAGCACTTCCAGATAGATGC -ACGGAAGCACTTCCAGATTGAAGG -ACGGAAGCACTTCCAGATCAATGG -ACGGAAGCACTTCCAGATATGAGG -ACGGAAGCACTTCCAGATAATGGG -ACGGAAGCACTTCCAGATTCCTGA -ACGGAAGCACTTCCAGATTAGCGA -ACGGAAGCACTTCCAGATCACAGA -ACGGAAGCACTTCCAGATGCAAGA -ACGGAAGCACTTCCAGATGGTTGA -ACGGAAGCACTTCCAGATTCCGAT -ACGGAAGCACTTCCAGATTGGCAT -ACGGAAGCACTTCCAGATCGAGAT -ACGGAAGCACTTCCAGATTACCAC -ACGGAAGCACTTCCAGATCAGAAC -ACGGAAGCACTTCCAGATGTCTAC -ACGGAAGCACTTCCAGATACGTAC -ACGGAAGCACTTCCAGATAGTGAC -ACGGAAGCACTTCCAGATCTGTAG -ACGGAAGCACTTCCAGATCCTAAG -ACGGAAGCACTTCCAGATGTTCAG -ACGGAAGCACTTCCAGATGCATAG -ACGGAAGCACTTCCAGATGACAAG -ACGGAAGCACTTCCAGATAAGCAG -ACGGAAGCACTTCCAGATCGTCAA -ACGGAAGCACTTCCAGATGCTGAA -ACGGAAGCACTTCCAGATAGTACG -ACGGAAGCACTTCCAGATATCCGA -ACGGAAGCACTTCCAGATATGGGA -ACGGAAGCACTTCCAGATGTGCAA -ACGGAAGCACTTCCAGATGAGGAA -ACGGAAGCACTTCCAGATCAGGTA -ACGGAAGCACTTCCAGATGACTCT -ACGGAAGCACTTCCAGATAGTCCT -ACGGAAGCACTTCCAGATTAAGCC -ACGGAAGCACTTCCAGATATAGCC -ACGGAAGCACTTCCAGATTAACCG -ACGGAAGCACTTCCAGATATGCCA -ACGGAAGCACTTACAACGGGAAAC -ACGGAAGCACTTACAACGAACACC -ACGGAAGCACTTACAACGATCGAG -ACGGAAGCACTTACAACGCTCCTT -ACGGAAGCACTTACAACGCCTGTT -ACGGAAGCACTTACAACGCGGTTT -ACGGAAGCACTTACAACGGTGGTT -ACGGAAGCACTTACAACGGCCTTT -ACGGAAGCACTTACAACGGGTCTT -ACGGAAGCACTTACAACGACGCTT -ACGGAAGCACTTACAACGAGCGTT -ACGGAAGCACTTACAACGTTCGTC -ACGGAAGCACTTACAACGTCTCTC -ACGGAAGCACTTACAACGTGGATC -ACGGAAGCACTTACAACGCACTTC -ACGGAAGCACTTACAACGGTACTC -ACGGAAGCACTTACAACGGATGTC -ACGGAAGCACTTACAACGACAGTC -ACGGAAGCACTTACAACGTTGCTG -ACGGAAGCACTTACAACGTCCATG -ACGGAAGCACTTACAACGTGTGTG -ACGGAAGCACTTACAACGCTAGTG -ACGGAAGCACTTACAACGCATCTG -ACGGAAGCACTTACAACGGAGTTG -ACGGAAGCACTTACAACGAGACTG -ACGGAAGCACTTACAACGTCGGTA -ACGGAAGCACTTACAACGTGCCTA -ACGGAAGCACTTACAACGCCACTA -ACGGAAGCACTTACAACGGGAGTA -ACGGAAGCACTTACAACGTCGTCT -ACGGAAGCACTTACAACGTGCACT -ACGGAAGCACTTACAACGCTGACT -ACGGAAGCACTTACAACGCAACCT -ACGGAAGCACTTACAACGGCTACT -ACGGAAGCACTTACAACGGGATCT -ACGGAAGCACTTACAACGAAGGCT -ACGGAAGCACTTACAACGTCAACC -ACGGAAGCACTTACAACGTGTTCC -ACGGAAGCACTTACAACGATTCCC -ACGGAAGCACTTACAACGTTCTCG -ACGGAAGCACTTACAACGTAGACG -ACGGAAGCACTTACAACGGTAACG -ACGGAAGCACTTACAACGACTTCG -ACGGAAGCACTTACAACGTACGCA -ACGGAAGCACTTACAACGCTTGCA -ACGGAAGCACTTACAACGCGAACA -ACGGAAGCACTTACAACGCAGTCA -ACGGAAGCACTTACAACGGATCCA -ACGGAAGCACTTACAACGACGACA -ACGGAAGCACTTACAACGAGCTCA -ACGGAAGCACTTACAACGTCACGT -ACGGAAGCACTTACAACGCGTAGT -ACGGAAGCACTTACAACGGTCAGT -ACGGAAGCACTTACAACGGAAGGT -ACGGAAGCACTTACAACGAACCGT -ACGGAAGCACTTACAACGTTGTGC -ACGGAAGCACTTACAACGCTAAGC -ACGGAAGCACTTACAACGACTAGC -ACGGAAGCACTTACAACGAGATGC -ACGGAAGCACTTACAACGTGAAGG -ACGGAAGCACTTACAACGCAATGG -ACGGAAGCACTTACAACGATGAGG -ACGGAAGCACTTACAACGAATGGG -ACGGAAGCACTTACAACGTCCTGA -ACGGAAGCACTTACAACGTAGCGA -ACGGAAGCACTTACAACGCACAGA -ACGGAAGCACTTACAACGGCAAGA -ACGGAAGCACTTACAACGGGTTGA -ACGGAAGCACTTACAACGTCCGAT -ACGGAAGCACTTACAACGTGGCAT -ACGGAAGCACTTACAACGCGAGAT -ACGGAAGCACTTACAACGTACCAC -ACGGAAGCACTTACAACGCAGAAC -ACGGAAGCACTTACAACGGTCTAC -ACGGAAGCACTTACAACGACGTAC -ACGGAAGCACTTACAACGAGTGAC -ACGGAAGCACTTACAACGCTGTAG -ACGGAAGCACTTACAACGCCTAAG -ACGGAAGCACTTACAACGGTTCAG -ACGGAAGCACTTACAACGGCATAG -ACGGAAGCACTTACAACGGACAAG -ACGGAAGCACTTACAACGAAGCAG -ACGGAAGCACTTACAACGCGTCAA -ACGGAAGCACTTACAACGGCTGAA -ACGGAAGCACTTACAACGAGTACG -ACGGAAGCACTTACAACGATCCGA -ACGGAAGCACTTACAACGATGGGA -ACGGAAGCACTTACAACGGTGCAA -ACGGAAGCACTTACAACGGAGGAA -ACGGAAGCACTTACAACGCAGGTA -ACGGAAGCACTTACAACGGACTCT -ACGGAAGCACTTACAACGAGTCCT -ACGGAAGCACTTACAACGTAAGCC -ACGGAAGCACTTACAACGATAGCC -ACGGAAGCACTTACAACGTAACCG -ACGGAAGCACTTACAACGATGCCA -ACGGAAGCACTTTCAAGCGGAAAC -ACGGAAGCACTTTCAAGCAACACC -ACGGAAGCACTTTCAAGCATCGAG -ACGGAAGCACTTTCAAGCCTCCTT -ACGGAAGCACTTTCAAGCCCTGTT -ACGGAAGCACTTTCAAGCCGGTTT -ACGGAAGCACTTTCAAGCGTGGTT -ACGGAAGCACTTTCAAGCGCCTTT -ACGGAAGCACTTTCAAGCGGTCTT -ACGGAAGCACTTTCAAGCACGCTT -ACGGAAGCACTTTCAAGCAGCGTT -ACGGAAGCACTTTCAAGCTTCGTC -ACGGAAGCACTTTCAAGCTCTCTC -ACGGAAGCACTTTCAAGCTGGATC -ACGGAAGCACTTTCAAGCCACTTC -ACGGAAGCACTTTCAAGCGTACTC -ACGGAAGCACTTTCAAGCGATGTC -ACGGAAGCACTTTCAAGCACAGTC -ACGGAAGCACTTTCAAGCTTGCTG -ACGGAAGCACTTTCAAGCTCCATG -ACGGAAGCACTTTCAAGCTGTGTG -ACGGAAGCACTTTCAAGCCTAGTG -ACGGAAGCACTTTCAAGCCATCTG -ACGGAAGCACTTTCAAGCGAGTTG -ACGGAAGCACTTTCAAGCAGACTG -ACGGAAGCACTTTCAAGCTCGGTA -ACGGAAGCACTTTCAAGCTGCCTA -ACGGAAGCACTTTCAAGCCCACTA -ACGGAAGCACTTTCAAGCGGAGTA -ACGGAAGCACTTTCAAGCTCGTCT -ACGGAAGCACTTTCAAGCTGCACT -ACGGAAGCACTTTCAAGCCTGACT -ACGGAAGCACTTTCAAGCCAACCT -ACGGAAGCACTTTCAAGCGCTACT -ACGGAAGCACTTTCAAGCGGATCT -ACGGAAGCACTTTCAAGCAAGGCT -ACGGAAGCACTTTCAAGCTCAACC -ACGGAAGCACTTTCAAGCTGTTCC -ACGGAAGCACTTTCAAGCATTCCC -ACGGAAGCACTTTCAAGCTTCTCG -ACGGAAGCACTTTCAAGCTAGACG -ACGGAAGCACTTTCAAGCGTAACG -ACGGAAGCACTTTCAAGCACTTCG -ACGGAAGCACTTTCAAGCTACGCA -ACGGAAGCACTTTCAAGCCTTGCA -ACGGAAGCACTTTCAAGCCGAACA -ACGGAAGCACTTTCAAGCCAGTCA -ACGGAAGCACTTTCAAGCGATCCA -ACGGAAGCACTTTCAAGCACGACA -ACGGAAGCACTTTCAAGCAGCTCA -ACGGAAGCACTTTCAAGCTCACGT -ACGGAAGCACTTTCAAGCCGTAGT -ACGGAAGCACTTTCAAGCGTCAGT -ACGGAAGCACTTTCAAGCGAAGGT -ACGGAAGCACTTTCAAGCAACCGT -ACGGAAGCACTTTCAAGCTTGTGC -ACGGAAGCACTTTCAAGCCTAAGC -ACGGAAGCACTTTCAAGCACTAGC -ACGGAAGCACTTTCAAGCAGATGC -ACGGAAGCACTTTCAAGCTGAAGG -ACGGAAGCACTTTCAAGCCAATGG -ACGGAAGCACTTTCAAGCATGAGG -ACGGAAGCACTTTCAAGCAATGGG -ACGGAAGCACTTTCAAGCTCCTGA -ACGGAAGCACTTTCAAGCTAGCGA -ACGGAAGCACTTTCAAGCCACAGA -ACGGAAGCACTTTCAAGCGCAAGA -ACGGAAGCACTTTCAAGCGGTTGA -ACGGAAGCACTTTCAAGCTCCGAT -ACGGAAGCACTTTCAAGCTGGCAT -ACGGAAGCACTTTCAAGCCGAGAT -ACGGAAGCACTTTCAAGCTACCAC -ACGGAAGCACTTTCAAGCCAGAAC -ACGGAAGCACTTTCAAGCGTCTAC -ACGGAAGCACTTTCAAGCACGTAC -ACGGAAGCACTTTCAAGCAGTGAC -ACGGAAGCACTTTCAAGCCTGTAG -ACGGAAGCACTTTCAAGCCCTAAG -ACGGAAGCACTTTCAAGCGTTCAG -ACGGAAGCACTTTCAAGCGCATAG -ACGGAAGCACTTTCAAGCGACAAG -ACGGAAGCACTTTCAAGCAAGCAG -ACGGAAGCACTTTCAAGCCGTCAA -ACGGAAGCACTTTCAAGCGCTGAA -ACGGAAGCACTTTCAAGCAGTACG -ACGGAAGCACTTTCAAGCATCCGA -ACGGAAGCACTTTCAAGCATGGGA -ACGGAAGCACTTTCAAGCGTGCAA -ACGGAAGCACTTTCAAGCGAGGAA -ACGGAAGCACTTTCAAGCCAGGTA -ACGGAAGCACTTTCAAGCGACTCT -ACGGAAGCACTTTCAAGCAGTCCT -ACGGAAGCACTTTCAAGCTAAGCC -ACGGAAGCACTTTCAAGCATAGCC -ACGGAAGCACTTTCAAGCTAACCG -ACGGAAGCACTTTCAAGCATGCCA -ACGGAAGCACTTCGTTCAGGAAAC -ACGGAAGCACTTCGTTCAAACACC -ACGGAAGCACTTCGTTCAATCGAG -ACGGAAGCACTTCGTTCACTCCTT -ACGGAAGCACTTCGTTCACCTGTT -ACGGAAGCACTTCGTTCACGGTTT -ACGGAAGCACTTCGTTCAGTGGTT -ACGGAAGCACTTCGTTCAGCCTTT -ACGGAAGCACTTCGTTCAGGTCTT -ACGGAAGCACTTCGTTCAACGCTT -ACGGAAGCACTTCGTTCAAGCGTT -ACGGAAGCACTTCGTTCATTCGTC -ACGGAAGCACTTCGTTCATCTCTC -ACGGAAGCACTTCGTTCATGGATC -ACGGAAGCACTTCGTTCACACTTC -ACGGAAGCACTTCGTTCAGTACTC -ACGGAAGCACTTCGTTCAGATGTC -ACGGAAGCACTTCGTTCAACAGTC -ACGGAAGCACTTCGTTCATTGCTG -ACGGAAGCACTTCGTTCATCCATG -ACGGAAGCACTTCGTTCATGTGTG -ACGGAAGCACTTCGTTCACTAGTG -ACGGAAGCACTTCGTTCACATCTG -ACGGAAGCACTTCGTTCAGAGTTG -ACGGAAGCACTTCGTTCAAGACTG -ACGGAAGCACTTCGTTCATCGGTA -ACGGAAGCACTTCGTTCATGCCTA -ACGGAAGCACTTCGTTCACCACTA -ACGGAAGCACTTCGTTCAGGAGTA -ACGGAAGCACTTCGTTCATCGTCT -ACGGAAGCACTTCGTTCATGCACT -ACGGAAGCACTTCGTTCACTGACT -ACGGAAGCACTTCGTTCACAACCT -ACGGAAGCACTTCGTTCAGCTACT -ACGGAAGCACTTCGTTCAGGATCT -ACGGAAGCACTTCGTTCAAAGGCT -ACGGAAGCACTTCGTTCATCAACC -ACGGAAGCACTTCGTTCATGTTCC -ACGGAAGCACTTCGTTCAATTCCC -ACGGAAGCACTTCGTTCATTCTCG -ACGGAAGCACTTCGTTCATAGACG -ACGGAAGCACTTCGTTCAGTAACG -ACGGAAGCACTTCGTTCAACTTCG -ACGGAAGCACTTCGTTCATACGCA -ACGGAAGCACTTCGTTCACTTGCA -ACGGAAGCACTTCGTTCACGAACA -ACGGAAGCACTTCGTTCACAGTCA -ACGGAAGCACTTCGTTCAGATCCA -ACGGAAGCACTTCGTTCAACGACA -ACGGAAGCACTTCGTTCAAGCTCA -ACGGAAGCACTTCGTTCATCACGT -ACGGAAGCACTTCGTTCACGTAGT -ACGGAAGCACTTCGTTCAGTCAGT -ACGGAAGCACTTCGTTCAGAAGGT -ACGGAAGCACTTCGTTCAAACCGT -ACGGAAGCACTTCGTTCATTGTGC -ACGGAAGCACTTCGTTCACTAAGC -ACGGAAGCACTTCGTTCAACTAGC -ACGGAAGCACTTCGTTCAAGATGC -ACGGAAGCACTTCGTTCATGAAGG -ACGGAAGCACTTCGTTCACAATGG -ACGGAAGCACTTCGTTCAATGAGG -ACGGAAGCACTTCGTTCAAATGGG -ACGGAAGCACTTCGTTCATCCTGA -ACGGAAGCACTTCGTTCATAGCGA -ACGGAAGCACTTCGTTCACACAGA -ACGGAAGCACTTCGTTCAGCAAGA -ACGGAAGCACTTCGTTCAGGTTGA -ACGGAAGCACTTCGTTCATCCGAT -ACGGAAGCACTTCGTTCATGGCAT -ACGGAAGCACTTCGTTCACGAGAT -ACGGAAGCACTTCGTTCATACCAC -ACGGAAGCACTTCGTTCACAGAAC -ACGGAAGCACTTCGTTCAGTCTAC -ACGGAAGCACTTCGTTCAACGTAC -ACGGAAGCACTTCGTTCAAGTGAC -ACGGAAGCACTTCGTTCACTGTAG -ACGGAAGCACTTCGTTCACCTAAG -ACGGAAGCACTTCGTTCAGTTCAG -ACGGAAGCACTTCGTTCAGCATAG -ACGGAAGCACTTCGTTCAGACAAG -ACGGAAGCACTTCGTTCAAAGCAG -ACGGAAGCACTTCGTTCACGTCAA -ACGGAAGCACTTCGTTCAGCTGAA -ACGGAAGCACTTCGTTCAAGTACG -ACGGAAGCACTTCGTTCAATCCGA -ACGGAAGCACTTCGTTCAATGGGA -ACGGAAGCACTTCGTTCAGTGCAA -ACGGAAGCACTTCGTTCAGAGGAA -ACGGAAGCACTTCGTTCACAGGTA -ACGGAAGCACTTCGTTCAGACTCT -ACGGAAGCACTTCGTTCAAGTCCT -ACGGAAGCACTTCGTTCATAAGCC -ACGGAAGCACTTCGTTCAATAGCC -ACGGAAGCACTTCGTTCATAACCG -ACGGAAGCACTTCGTTCAATGCCA -ACGGAAGCACTTAGTCGTGGAAAC -ACGGAAGCACTTAGTCGTAACACC -ACGGAAGCACTTAGTCGTATCGAG -ACGGAAGCACTTAGTCGTCTCCTT -ACGGAAGCACTTAGTCGTCCTGTT -ACGGAAGCACTTAGTCGTCGGTTT -ACGGAAGCACTTAGTCGTGTGGTT -ACGGAAGCACTTAGTCGTGCCTTT -ACGGAAGCACTTAGTCGTGGTCTT -ACGGAAGCACTTAGTCGTACGCTT -ACGGAAGCACTTAGTCGTAGCGTT -ACGGAAGCACTTAGTCGTTTCGTC -ACGGAAGCACTTAGTCGTTCTCTC -ACGGAAGCACTTAGTCGTTGGATC -ACGGAAGCACTTAGTCGTCACTTC -ACGGAAGCACTTAGTCGTGTACTC -ACGGAAGCACTTAGTCGTGATGTC -ACGGAAGCACTTAGTCGTACAGTC -ACGGAAGCACTTAGTCGTTTGCTG -ACGGAAGCACTTAGTCGTTCCATG -ACGGAAGCACTTAGTCGTTGTGTG -ACGGAAGCACTTAGTCGTCTAGTG -ACGGAAGCACTTAGTCGTCATCTG -ACGGAAGCACTTAGTCGTGAGTTG -ACGGAAGCACTTAGTCGTAGACTG -ACGGAAGCACTTAGTCGTTCGGTA -ACGGAAGCACTTAGTCGTTGCCTA -ACGGAAGCACTTAGTCGTCCACTA -ACGGAAGCACTTAGTCGTGGAGTA -ACGGAAGCACTTAGTCGTTCGTCT -ACGGAAGCACTTAGTCGTTGCACT -ACGGAAGCACTTAGTCGTCTGACT -ACGGAAGCACTTAGTCGTCAACCT -ACGGAAGCACTTAGTCGTGCTACT -ACGGAAGCACTTAGTCGTGGATCT -ACGGAAGCACTTAGTCGTAAGGCT -ACGGAAGCACTTAGTCGTTCAACC -ACGGAAGCACTTAGTCGTTGTTCC -ACGGAAGCACTTAGTCGTATTCCC -ACGGAAGCACTTAGTCGTTTCTCG -ACGGAAGCACTTAGTCGTTAGACG -ACGGAAGCACTTAGTCGTGTAACG -ACGGAAGCACTTAGTCGTACTTCG -ACGGAAGCACTTAGTCGTTACGCA -ACGGAAGCACTTAGTCGTCTTGCA -ACGGAAGCACTTAGTCGTCGAACA -ACGGAAGCACTTAGTCGTCAGTCA -ACGGAAGCACTTAGTCGTGATCCA -ACGGAAGCACTTAGTCGTACGACA -ACGGAAGCACTTAGTCGTAGCTCA -ACGGAAGCACTTAGTCGTTCACGT -ACGGAAGCACTTAGTCGTCGTAGT -ACGGAAGCACTTAGTCGTGTCAGT -ACGGAAGCACTTAGTCGTGAAGGT -ACGGAAGCACTTAGTCGTAACCGT -ACGGAAGCACTTAGTCGTTTGTGC -ACGGAAGCACTTAGTCGTCTAAGC -ACGGAAGCACTTAGTCGTACTAGC -ACGGAAGCACTTAGTCGTAGATGC -ACGGAAGCACTTAGTCGTTGAAGG -ACGGAAGCACTTAGTCGTCAATGG -ACGGAAGCACTTAGTCGTATGAGG -ACGGAAGCACTTAGTCGTAATGGG -ACGGAAGCACTTAGTCGTTCCTGA -ACGGAAGCACTTAGTCGTTAGCGA -ACGGAAGCACTTAGTCGTCACAGA -ACGGAAGCACTTAGTCGTGCAAGA -ACGGAAGCACTTAGTCGTGGTTGA -ACGGAAGCACTTAGTCGTTCCGAT -ACGGAAGCACTTAGTCGTTGGCAT -ACGGAAGCACTTAGTCGTCGAGAT -ACGGAAGCACTTAGTCGTTACCAC -ACGGAAGCACTTAGTCGTCAGAAC -ACGGAAGCACTTAGTCGTGTCTAC -ACGGAAGCACTTAGTCGTACGTAC -ACGGAAGCACTTAGTCGTAGTGAC -ACGGAAGCACTTAGTCGTCTGTAG -ACGGAAGCACTTAGTCGTCCTAAG -ACGGAAGCACTTAGTCGTGTTCAG -ACGGAAGCACTTAGTCGTGCATAG -ACGGAAGCACTTAGTCGTGACAAG -ACGGAAGCACTTAGTCGTAAGCAG -ACGGAAGCACTTAGTCGTCGTCAA -ACGGAAGCACTTAGTCGTGCTGAA -ACGGAAGCACTTAGTCGTAGTACG -ACGGAAGCACTTAGTCGTATCCGA -ACGGAAGCACTTAGTCGTATGGGA -ACGGAAGCACTTAGTCGTGTGCAA -ACGGAAGCACTTAGTCGTGAGGAA -ACGGAAGCACTTAGTCGTCAGGTA -ACGGAAGCACTTAGTCGTGACTCT -ACGGAAGCACTTAGTCGTAGTCCT -ACGGAAGCACTTAGTCGTTAAGCC -ACGGAAGCACTTAGTCGTATAGCC -ACGGAAGCACTTAGTCGTTAACCG -ACGGAAGCACTTAGTCGTATGCCA -ACGGAAGCACTTAGTGTCGGAAAC -ACGGAAGCACTTAGTGTCAACACC -ACGGAAGCACTTAGTGTCATCGAG -ACGGAAGCACTTAGTGTCCTCCTT -ACGGAAGCACTTAGTGTCCCTGTT -ACGGAAGCACTTAGTGTCCGGTTT -ACGGAAGCACTTAGTGTCGTGGTT -ACGGAAGCACTTAGTGTCGCCTTT -ACGGAAGCACTTAGTGTCGGTCTT -ACGGAAGCACTTAGTGTCACGCTT -ACGGAAGCACTTAGTGTCAGCGTT -ACGGAAGCACTTAGTGTCTTCGTC -ACGGAAGCACTTAGTGTCTCTCTC -ACGGAAGCACTTAGTGTCTGGATC -ACGGAAGCACTTAGTGTCCACTTC -ACGGAAGCACTTAGTGTCGTACTC -ACGGAAGCACTTAGTGTCGATGTC -ACGGAAGCACTTAGTGTCACAGTC -ACGGAAGCACTTAGTGTCTTGCTG -ACGGAAGCACTTAGTGTCTCCATG -ACGGAAGCACTTAGTGTCTGTGTG -ACGGAAGCACTTAGTGTCCTAGTG -ACGGAAGCACTTAGTGTCCATCTG -ACGGAAGCACTTAGTGTCGAGTTG -ACGGAAGCACTTAGTGTCAGACTG -ACGGAAGCACTTAGTGTCTCGGTA -ACGGAAGCACTTAGTGTCTGCCTA -ACGGAAGCACTTAGTGTCCCACTA -ACGGAAGCACTTAGTGTCGGAGTA -ACGGAAGCACTTAGTGTCTCGTCT -ACGGAAGCACTTAGTGTCTGCACT -ACGGAAGCACTTAGTGTCCTGACT -ACGGAAGCACTTAGTGTCCAACCT -ACGGAAGCACTTAGTGTCGCTACT -ACGGAAGCACTTAGTGTCGGATCT -ACGGAAGCACTTAGTGTCAAGGCT -ACGGAAGCACTTAGTGTCTCAACC -ACGGAAGCACTTAGTGTCTGTTCC -ACGGAAGCACTTAGTGTCATTCCC -ACGGAAGCACTTAGTGTCTTCTCG -ACGGAAGCACTTAGTGTCTAGACG -ACGGAAGCACTTAGTGTCGTAACG -ACGGAAGCACTTAGTGTCACTTCG -ACGGAAGCACTTAGTGTCTACGCA -ACGGAAGCACTTAGTGTCCTTGCA -ACGGAAGCACTTAGTGTCCGAACA -ACGGAAGCACTTAGTGTCCAGTCA -ACGGAAGCACTTAGTGTCGATCCA -ACGGAAGCACTTAGTGTCACGACA -ACGGAAGCACTTAGTGTCAGCTCA -ACGGAAGCACTTAGTGTCTCACGT -ACGGAAGCACTTAGTGTCCGTAGT -ACGGAAGCACTTAGTGTCGTCAGT -ACGGAAGCACTTAGTGTCGAAGGT -ACGGAAGCACTTAGTGTCAACCGT -ACGGAAGCACTTAGTGTCTTGTGC -ACGGAAGCACTTAGTGTCCTAAGC -ACGGAAGCACTTAGTGTCACTAGC -ACGGAAGCACTTAGTGTCAGATGC -ACGGAAGCACTTAGTGTCTGAAGG -ACGGAAGCACTTAGTGTCCAATGG -ACGGAAGCACTTAGTGTCATGAGG -ACGGAAGCACTTAGTGTCAATGGG -ACGGAAGCACTTAGTGTCTCCTGA -ACGGAAGCACTTAGTGTCTAGCGA -ACGGAAGCACTTAGTGTCCACAGA -ACGGAAGCACTTAGTGTCGCAAGA -ACGGAAGCACTTAGTGTCGGTTGA -ACGGAAGCACTTAGTGTCTCCGAT -ACGGAAGCACTTAGTGTCTGGCAT -ACGGAAGCACTTAGTGTCCGAGAT -ACGGAAGCACTTAGTGTCTACCAC -ACGGAAGCACTTAGTGTCCAGAAC -ACGGAAGCACTTAGTGTCGTCTAC -ACGGAAGCACTTAGTGTCACGTAC -ACGGAAGCACTTAGTGTCAGTGAC -ACGGAAGCACTTAGTGTCCTGTAG -ACGGAAGCACTTAGTGTCCCTAAG -ACGGAAGCACTTAGTGTCGTTCAG -ACGGAAGCACTTAGTGTCGCATAG -ACGGAAGCACTTAGTGTCGACAAG -ACGGAAGCACTTAGTGTCAAGCAG -ACGGAAGCACTTAGTGTCCGTCAA -ACGGAAGCACTTAGTGTCGCTGAA -ACGGAAGCACTTAGTGTCAGTACG -ACGGAAGCACTTAGTGTCATCCGA -ACGGAAGCACTTAGTGTCATGGGA -ACGGAAGCACTTAGTGTCGTGCAA -ACGGAAGCACTTAGTGTCGAGGAA -ACGGAAGCACTTAGTGTCCAGGTA -ACGGAAGCACTTAGTGTCGACTCT -ACGGAAGCACTTAGTGTCAGTCCT -ACGGAAGCACTTAGTGTCTAAGCC -ACGGAAGCACTTAGTGTCATAGCC -ACGGAAGCACTTAGTGTCTAACCG -ACGGAAGCACTTAGTGTCATGCCA -ACGGAAGCACTTGGTGAAGGAAAC -ACGGAAGCACTTGGTGAAAACACC -ACGGAAGCACTTGGTGAAATCGAG -ACGGAAGCACTTGGTGAACTCCTT -ACGGAAGCACTTGGTGAACCTGTT -ACGGAAGCACTTGGTGAACGGTTT -ACGGAAGCACTTGGTGAAGTGGTT -ACGGAAGCACTTGGTGAAGCCTTT -ACGGAAGCACTTGGTGAAGGTCTT -ACGGAAGCACTTGGTGAAACGCTT -ACGGAAGCACTTGGTGAAAGCGTT -ACGGAAGCACTTGGTGAATTCGTC -ACGGAAGCACTTGGTGAATCTCTC -ACGGAAGCACTTGGTGAATGGATC -ACGGAAGCACTTGGTGAACACTTC -ACGGAAGCACTTGGTGAAGTACTC -ACGGAAGCACTTGGTGAAGATGTC -ACGGAAGCACTTGGTGAAACAGTC -ACGGAAGCACTTGGTGAATTGCTG -ACGGAAGCACTTGGTGAATCCATG -ACGGAAGCACTTGGTGAATGTGTG -ACGGAAGCACTTGGTGAACTAGTG -ACGGAAGCACTTGGTGAACATCTG -ACGGAAGCACTTGGTGAAGAGTTG -ACGGAAGCACTTGGTGAAAGACTG -ACGGAAGCACTTGGTGAATCGGTA -ACGGAAGCACTTGGTGAATGCCTA -ACGGAAGCACTTGGTGAACCACTA -ACGGAAGCACTTGGTGAAGGAGTA -ACGGAAGCACTTGGTGAATCGTCT -ACGGAAGCACTTGGTGAATGCACT -ACGGAAGCACTTGGTGAACTGACT -ACGGAAGCACTTGGTGAACAACCT -ACGGAAGCACTTGGTGAAGCTACT -ACGGAAGCACTTGGTGAAGGATCT -ACGGAAGCACTTGGTGAAAAGGCT -ACGGAAGCACTTGGTGAATCAACC -ACGGAAGCACTTGGTGAATGTTCC -ACGGAAGCACTTGGTGAAATTCCC -ACGGAAGCACTTGGTGAATTCTCG -ACGGAAGCACTTGGTGAATAGACG -ACGGAAGCACTTGGTGAAGTAACG -ACGGAAGCACTTGGTGAAACTTCG -ACGGAAGCACTTGGTGAATACGCA -ACGGAAGCACTTGGTGAACTTGCA -ACGGAAGCACTTGGTGAACGAACA -ACGGAAGCACTTGGTGAACAGTCA -ACGGAAGCACTTGGTGAAGATCCA -ACGGAAGCACTTGGTGAAACGACA -ACGGAAGCACTTGGTGAAAGCTCA -ACGGAAGCACTTGGTGAATCACGT -ACGGAAGCACTTGGTGAACGTAGT -ACGGAAGCACTTGGTGAAGTCAGT -ACGGAAGCACTTGGTGAAGAAGGT -ACGGAAGCACTTGGTGAAAACCGT -ACGGAAGCACTTGGTGAATTGTGC -ACGGAAGCACTTGGTGAACTAAGC -ACGGAAGCACTTGGTGAAACTAGC -ACGGAAGCACTTGGTGAAAGATGC -ACGGAAGCACTTGGTGAATGAAGG -ACGGAAGCACTTGGTGAACAATGG -ACGGAAGCACTTGGTGAAATGAGG -ACGGAAGCACTTGGTGAAAATGGG -ACGGAAGCACTTGGTGAATCCTGA -ACGGAAGCACTTGGTGAATAGCGA -ACGGAAGCACTTGGTGAACACAGA -ACGGAAGCACTTGGTGAAGCAAGA -ACGGAAGCACTTGGTGAAGGTTGA -ACGGAAGCACTTGGTGAATCCGAT -ACGGAAGCACTTGGTGAATGGCAT -ACGGAAGCACTTGGTGAACGAGAT -ACGGAAGCACTTGGTGAATACCAC -ACGGAAGCACTTGGTGAACAGAAC -ACGGAAGCACTTGGTGAAGTCTAC -ACGGAAGCACTTGGTGAAACGTAC -ACGGAAGCACTTGGTGAAAGTGAC -ACGGAAGCACTTGGTGAACTGTAG -ACGGAAGCACTTGGTGAACCTAAG -ACGGAAGCACTTGGTGAAGTTCAG -ACGGAAGCACTTGGTGAAGCATAG -ACGGAAGCACTTGGTGAAGACAAG -ACGGAAGCACTTGGTGAAAAGCAG -ACGGAAGCACTTGGTGAACGTCAA -ACGGAAGCACTTGGTGAAGCTGAA -ACGGAAGCACTTGGTGAAAGTACG -ACGGAAGCACTTGGTGAAATCCGA -ACGGAAGCACTTGGTGAAATGGGA -ACGGAAGCACTTGGTGAAGTGCAA -ACGGAAGCACTTGGTGAAGAGGAA -ACGGAAGCACTTGGTGAACAGGTA -ACGGAAGCACTTGGTGAAGACTCT -ACGGAAGCACTTGGTGAAAGTCCT -ACGGAAGCACTTGGTGAATAAGCC -ACGGAAGCACTTGGTGAAATAGCC -ACGGAAGCACTTGGTGAATAACCG -ACGGAAGCACTTGGTGAAATGCCA -ACGGAAGCACTTCGTAACGGAAAC -ACGGAAGCACTTCGTAACAACACC -ACGGAAGCACTTCGTAACATCGAG -ACGGAAGCACTTCGTAACCTCCTT -ACGGAAGCACTTCGTAACCCTGTT -ACGGAAGCACTTCGTAACCGGTTT -ACGGAAGCACTTCGTAACGTGGTT -ACGGAAGCACTTCGTAACGCCTTT -ACGGAAGCACTTCGTAACGGTCTT -ACGGAAGCACTTCGTAACACGCTT -ACGGAAGCACTTCGTAACAGCGTT -ACGGAAGCACTTCGTAACTTCGTC -ACGGAAGCACTTCGTAACTCTCTC -ACGGAAGCACTTCGTAACTGGATC -ACGGAAGCACTTCGTAACCACTTC -ACGGAAGCACTTCGTAACGTACTC -ACGGAAGCACTTCGTAACGATGTC -ACGGAAGCACTTCGTAACACAGTC -ACGGAAGCACTTCGTAACTTGCTG -ACGGAAGCACTTCGTAACTCCATG -ACGGAAGCACTTCGTAACTGTGTG -ACGGAAGCACTTCGTAACCTAGTG -ACGGAAGCACTTCGTAACCATCTG -ACGGAAGCACTTCGTAACGAGTTG -ACGGAAGCACTTCGTAACAGACTG -ACGGAAGCACTTCGTAACTCGGTA -ACGGAAGCACTTCGTAACTGCCTA -ACGGAAGCACTTCGTAACCCACTA -ACGGAAGCACTTCGTAACGGAGTA -ACGGAAGCACTTCGTAACTCGTCT -ACGGAAGCACTTCGTAACTGCACT -ACGGAAGCACTTCGTAACCTGACT -ACGGAAGCACTTCGTAACCAACCT -ACGGAAGCACTTCGTAACGCTACT -ACGGAAGCACTTCGTAACGGATCT -ACGGAAGCACTTCGTAACAAGGCT -ACGGAAGCACTTCGTAACTCAACC -ACGGAAGCACTTCGTAACTGTTCC -ACGGAAGCACTTCGTAACATTCCC -ACGGAAGCACTTCGTAACTTCTCG -ACGGAAGCACTTCGTAACTAGACG -ACGGAAGCACTTCGTAACGTAACG -ACGGAAGCACTTCGTAACACTTCG -ACGGAAGCACTTCGTAACTACGCA -ACGGAAGCACTTCGTAACCTTGCA -ACGGAAGCACTTCGTAACCGAACA -ACGGAAGCACTTCGTAACCAGTCA -ACGGAAGCACTTCGTAACGATCCA -ACGGAAGCACTTCGTAACACGACA -ACGGAAGCACTTCGTAACAGCTCA -ACGGAAGCACTTCGTAACTCACGT -ACGGAAGCACTTCGTAACCGTAGT -ACGGAAGCACTTCGTAACGTCAGT -ACGGAAGCACTTCGTAACGAAGGT -ACGGAAGCACTTCGTAACAACCGT -ACGGAAGCACTTCGTAACTTGTGC -ACGGAAGCACTTCGTAACCTAAGC -ACGGAAGCACTTCGTAACACTAGC -ACGGAAGCACTTCGTAACAGATGC -ACGGAAGCACTTCGTAACTGAAGG -ACGGAAGCACTTCGTAACCAATGG -ACGGAAGCACTTCGTAACATGAGG -ACGGAAGCACTTCGTAACAATGGG -ACGGAAGCACTTCGTAACTCCTGA -ACGGAAGCACTTCGTAACTAGCGA -ACGGAAGCACTTCGTAACCACAGA -ACGGAAGCACTTCGTAACGCAAGA -ACGGAAGCACTTCGTAACGGTTGA -ACGGAAGCACTTCGTAACTCCGAT -ACGGAAGCACTTCGTAACTGGCAT -ACGGAAGCACTTCGTAACCGAGAT -ACGGAAGCACTTCGTAACTACCAC -ACGGAAGCACTTCGTAACCAGAAC -ACGGAAGCACTTCGTAACGTCTAC -ACGGAAGCACTTCGTAACACGTAC -ACGGAAGCACTTCGTAACAGTGAC -ACGGAAGCACTTCGTAACCTGTAG -ACGGAAGCACTTCGTAACCCTAAG -ACGGAAGCACTTCGTAACGTTCAG -ACGGAAGCACTTCGTAACGCATAG -ACGGAAGCACTTCGTAACGACAAG -ACGGAAGCACTTCGTAACAAGCAG -ACGGAAGCACTTCGTAACCGTCAA -ACGGAAGCACTTCGTAACGCTGAA -ACGGAAGCACTTCGTAACAGTACG -ACGGAAGCACTTCGTAACATCCGA -ACGGAAGCACTTCGTAACATGGGA -ACGGAAGCACTTCGTAACGTGCAA -ACGGAAGCACTTCGTAACGAGGAA -ACGGAAGCACTTCGTAACCAGGTA -ACGGAAGCACTTCGTAACGACTCT -ACGGAAGCACTTCGTAACAGTCCT -ACGGAAGCACTTCGTAACTAAGCC -ACGGAAGCACTTCGTAACATAGCC -ACGGAAGCACTTCGTAACTAACCG -ACGGAAGCACTTCGTAACATGCCA -ACGGAAGCACTTTGCTTGGGAAAC -ACGGAAGCACTTTGCTTGAACACC -ACGGAAGCACTTTGCTTGATCGAG -ACGGAAGCACTTTGCTTGCTCCTT -ACGGAAGCACTTTGCTTGCCTGTT -ACGGAAGCACTTTGCTTGCGGTTT -ACGGAAGCACTTTGCTTGGTGGTT -ACGGAAGCACTTTGCTTGGCCTTT -ACGGAAGCACTTTGCTTGGGTCTT -ACGGAAGCACTTTGCTTGACGCTT -ACGGAAGCACTTTGCTTGAGCGTT -ACGGAAGCACTTTGCTTGTTCGTC -ACGGAAGCACTTTGCTTGTCTCTC -ACGGAAGCACTTTGCTTGTGGATC -ACGGAAGCACTTTGCTTGCACTTC -ACGGAAGCACTTTGCTTGGTACTC -ACGGAAGCACTTTGCTTGGATGTC -ACGGAAGCACTTTGCTTGACAGTC -ACGGAAGCACTTTGCTTGTTGCTG -ACGGAAGCACTTTGCTTGTCCATG -ACGGAAGCACTTTGCTTGTGTGTG -ACGGAAGCACTTTGCTTGCTAGTG -ACGGAAGCACTTTGCTTGCATCTG -ACGGAAGCACTTTGCTTGGAGTTG -ACGGAAGCACTTTGCTTGAGACTG -ACGGAAGCACTTTGCTTGTCGGTA -ACGGAAGCACTTTGCTTGTGCCTA -ACGGAAGCACTTTGCTTGCCACTA -ACGGAAGCACTTTGCTTGGGAGTA -ACGGAAGCACTTTGCTTGTCGTCT -ACGGAAGCACTTTGCTTGTGCACT -ACGGAAGCACTTTGCTTGCTGACT -ACGGAAGCACTTTGCTTGCAACCT -ACGGAAGCACTTTGCTTGGCTACT -ACGGAAGCACTTTGCTTGGGATCT -ACGGAAGCACTTTGCTTGAAGGCT -ACGGAAGCACTTTGCTTGTCAACC -ACGGAAGCACTTTGCTTGTGTTCC -ACGGAAGCACTTTGCTTGATTCCC -ACGGAAGCACTTTGCTTGTTCTCG -ACGGAAGCACTTTGCTTGTAGACG -ACGGAAGCACTTTGCTTGGTAACG -ACGGAAGCACTTTGCTTGACTTCG -ACGGAAGCACTTTGCTTGTACGCA -ACGGAAGCACTTTGCTTGCTTGCA -ACGGAAGCACTTTGCTTGCGAACA -ACGGAAGCACTTTGCTTGCAGTCA -ACGGAAGCACTTTGCTTGGATCCA -ACGGAAGCACTTTGCTTGACGACA -ACGGAAGCACTTTGCTTGAGCTCA -ACGGAAGCACTTTGCTTGTCACGT -ACGGAAGCACTTTGCTTGCGTAGT -ACGGAAGCACTTTGCTTGGTCAGT -ACGGAAGCACTTTGCTTGGAAGGT -ACGGAAGCACTTTGCTTGAACCGT -ACGGAAGCACTTTGCTTGTTGTGC -ACGGAAGCACTTTGCTTGCTAAGC -ACGGAAGCACTTTGCTTGACTAGC -ACGGAAGCACTTTGCTTGAGATGC -ACGGAAGCACTTTGCTTGTGAAGG -ACGGAAGCACTTTGCTTGCAATGG -ACGGAAGCACTTTGCTTGATGAGG -ACGGAAGCACTTTGCTTGAATGGG -ACGGAAGCACTTTGCTTGTCCTGA -ACGGAAGCACTTTGCTTGTAGCGA -ACGGAAGCACTTTGCTTGCACAGA -ACGGAAGCACTTTGCTTGGCAAGA -ACGGAAGCACTTTGCTTGGGTTGA -ACGGAAGCACTTTGCTTGTCCGAT -ACGGAAGCACTTTGCTTGTGGCAT -ACGGAAGCACTTTGCTTGCGAGAT -ACGGAAGCACTTTGCTTGTACCAC -ACGGAAGCACTTTGCTTGCAGAAC -ACGGAAGCACTTTGCTTGGTCTAC -ACGGAAGCACTTTGCTTGACGTAC -ACGGAAGCACTTTGCTTGAGTGAC -ACGGAAGCACTTTGCTTGCTGTAG -ACGGAAGCACTTTGCTTGCCTAAG -ACGGAAGCACTTTGCTTGGTTCAG -ACGGAAGCACTTTGCTTGGCATAG -ACGGAAGCACTTTGCTTGGACAAG -ACGGAAGCACTTTGCTTGAAGCAG -ACGGAAGCACTTTGCTTGCGTCAA -ACGGAAGCACTTTGCTTGGCTGAA -ACGGAAGCACTTTGCTTGAGTACG -ACGGAAGCACTTTGCTTGATCCGA -ACGGAAGCACTTTGCTTGATGGGA -ACGGAAGCACTTTGCTTGGTGCAA -ACGGAAGCACTTTGCTTGGAGGAA -ACGGAAGCACTTTGCTTGCAGGTA -ACGGAAGCACTTTGCTTGGACTCT -ACGGAAGCACTTTGCTTGAGTCCT -ACGGAAGCACTTTGCTTGTAAGCC -ACGGAAGCACTTTGCTTGATAGCC -ACGGAAGCACTTTGCTTGTAACCG -ACGGAAGCACTTTGCTTGATGCCA -ACGGAAGCACTTAGCCTAGGAAAC -ACGGAAGCACTTAGCCTAAACACC -ACGGAAGCACTTAGCCTAATCGAG -ACGGAAGCACTTAGCCTACTCCTT -ACGGAAGCACTTAGCCTACCTGTT -ACGGAAGCACTTAGCCTACGGTTT -ACGGAAGCACTTAGCCTAGTGGTT -ACGGAAGCACTTAGCCTAGCCTTT -ACGGAAGCACTTAGCCTAGGTCTT -ACGGAAGCACTTAGCCTAACGCTT -ACGGAAGCACTTAGCCTAAGCGTT -ACGGAAGCACTTAGCCTATTCGTC -ACGGAAGCACTTAGCCTATCTCTC -ACGGAAGCACTTAGCCTATGGATC -ACGGAAGCACTTAGCCTACACTTC -ACGGAAGCACTTAGCCTAGTACTC -ACGGAAGCACTTAGCCTAGATGTC -ACGGAAGCACTTAGCCTAACAGTC -ACGGAAGCACTTAGCCTATTGCTG -ACGGAAGCACTTAGCCTATCCATG -ACGGAAGCACTTAGCCTATGTGTG -ACGGAAGCACTTAGCCTACTAGTG -ACGGAAGCACTTAGCCTACATCTG -ACGGAAGCACTTAGCCTAGAGTTG -ACGGAAGCACTTAGCCTAAGACTG -ACGGAAGCACTTAGCCTATCGGTA -ACGGAAGCACTTAGCCTATGCCTA -ACGGAAGCACTTAGCCTACCACTA -ACGGAAGCACTTAGCCTAGGAGTA -ACGGAAGCACTTAGCCTATCGTCT -ACGGAAGCACTTAGCCTATGCACT -ACGGAAGCACTTAGCCTACTGACT -ACGGAAGCACTTAGCCTACAACCT -ACGGAAGCACTTAGCCTAGCTACT -ACGGAAGCACTTAGCCTAGGATCT -ACGGAAGCACTTAGCCTAAAGGCT -ACGGAAGCACTTAGCCTATCAACC -ACGGAAGCACTTAGCCTATGTTCC -ACGGAAGCACTTAGCCTAATTCCC -ACGGAAGCACTTAGCCTATTCTCG -ACGGAAGCACTTAGCCTATAGACG -ACGGAAGCACTTAGCCTAGTAACG -ACGGAAGCACTTAGCCTAACTTCG -ACGGAAGCACTTAGCCTATACGCA -ACGGAAGCACTTAGCCTACTTGCA -ACGGAAGCACTTAGCCTACGAACA -ACGGAAGCACTTAGCCTACAGTCA -ACGGAAGCACTTAGCCTAGATCCA -ACGGAAGCACTTAGCCTAACGACA -ACGGAAGCACTTAGCCTAAGCTCA -ACGGAAGCACTTAGCCTATCACGT -ACGGAAGCACTTAGCCTACGTAGT -ACGGAAGCACTTAGCCTAGTCAGT -ACGGAAGCACTTAGCCTAGAAGGT -ACGGAAGCACTTAGCCTAAACCGT -ACGGAAGCACTTAGCCTATTGTGC -ACGGAAGCACTTAGCCTACTAAGC -ACGGAAGCACTTAGCCTAACTAGC -ACGGAAGCACTTAGCCTAAGATGC -ACGGAAGCACTTAGCCTATGAAGG -ACGGAAGCACTTAGCCTACAATGG -ACGGAAGCACTTAGCCTAATGAGG -ACGGAAGCACTTAGCCTAAATGGG -ACGGAAGCACTTAGCCTATCCTGA -ACGGAAGCACTTAGCCTATAGCGA -ACGGAAGCACTTAGCCTACACAGA -ACGGAAGCACTTAGCCTAGCAAGA -ACGGAAGCACTTAGCCTAGGTTGA -ACGGAAGCACTTAGCCTATCCGAT -ACGGAAGCACTTAGCCTATGGCAT -ACGGAAGCACTTAGCCTACGAGAT -ACGGAAGCACTTAGCCTATACCAC -ACGGAAGCACTTAGCCTACAGAAC -ACGGAAGCACTTAGCCTAGTCTAC -ACGGAAGCACTTAGCCTAACGTAC -ACGGAAGCACTTAGCCTAAGTGAC -ACGGAAGCACTTAGCCTACTGTAG -ACGGAAGCACTTAGCCTACCTAAG -ACGGAAGCACTTAGCCTAGTTCAG -ACGGAAGCACTTAGCCTAGCATAG -ACGGAAGCACTTAGCCTAGACAAG -ACGGAAGCACTTAGCCTAAAGCAG -ACGGAAGCACTTAGCCTACGTCAA -ACGGAAGCACTTAGCCTAGCTGAA -ACGGAAGCACTTAGCCTAAGTACG -ACGGAAGCACTTAGCCTAATCCGA -ACGGAAGCACTTAGCCTAATGGGA -ACGGAAGCACTTAGCCTAGTGCAA -ACGGAAGCACTTAGCCTAGAGGAA -ACGGAAGCACTTAGCCTACAGGTA -ACGGAAGCACTTAGCCTAGACTCT -ACGGAAGCACTTAGCCTAAGTCCT -ACGGAAGCACTTAGCCTATAAGCC -ACGGAAGCACTTAGCCTAATAGCC -ACGGAAGCACTTAGCCTATAACCG -ACGGAAGCACTTAGCCTAATGCCA -ACGGAAGCACTTAGCACTGGAAAC -ACGGAAGCACTTAGCACTAACACC -ACGGAAGCACTTAGCACTATCGAG -ACGGAAGCACTTAGCACTCTCCTT -ACGGAAGCACTTAGCACTCCTGTT -ACGGAAGCACTTAGCACTCGGTTT -ACGGAAGCACTTAGCACTGTGGTT -ACGGAAGCACTTAGCACTGCCTTT -ACGGAAGCACTTAGCACTGGTCTT -ACGGAAGCACTTAGCACTACGCTT -ACGGAAGCACTTAGCACTAGCGTT -ACGGAAGCACTTAGCACTTTCGTC -ACGGAAGCACTTAGCACTTCTCTC -ACGGAAGCACTTAGCACTTGGATC -ACGGAAGCACTTAGCACTCACTTC -ACGGAAGCACTTAGCACTGTACTC -ACGGAAGCACTTAGCACTGATGTC -ACGGAAGCACTTAGCACTACAGTC -ACGGAAGCACTTAGCACTTTGCTG -ACGGAAGCACTTAGCACTTCCATG -ACGGAAGCACTTAGCACTTGTGTG -ACGGAAGCACTTAGCACTCTAGTG -ACGGAAGCACTTAGCACTCATCTG -ACGGAAGCACTTAGCACTGAGTTG -ACGGAAGCACTTAGCACTAGACTG -ACGGAAGCACTTAGCACTTCGGTA -ACGGAAGCACTTAGCACTTGCCTA -ACGGAAGCACTTAGCACTCCACTA -ACGGAAGCACTTAGCACTGGAGTA -ACGGAAGCACTTAGCACTTCGTCT -ACGGAAGCACTTAGCACTTGCACT -ACGGAAGCACTTAGCACTCTGACT -ACGGAAGCACTTAGCACTCAACCT -ACGGAAGCACTTAGCACTGCTACT -ACGGAAGCACTTAGCACTGGATCT -ACGGAAGCACTTAGCACTAAGGCT -ACGGAAGCACTTAGCACTTCAACC -ACGGAAGCACTTAGCACTTGTTCC -ACGGAAGCACTTAGCACTATTCCC -ACGGAAGCACTTAGCACTTTCTCG -ACGGAAGCACTTAGCACTTAGACG -ACGGAAGCACTTAGCACTGTAACG -ACGGAAGCACTTAGCACTACTTCG -ACGGAAGCACTTAGCACTTACGCA -ACGGAAGCACTTAGCACTCTTGCA -ACGGAAGCACTTAGCACTCGAACA -ACGGAAGCACTTAGCACTCAGTCA -ACGGAAGCACTTAGCACTGATCCA -ACGGAAGCACTTAGCACTACGACA -ACGGAAGCACTTAGCACTAGCTCA -ACGGAAGCACTTAGCACTTCACGT -ACGGAAGCACTTAGCACTCGTAGT -ACGGAAGCACTTAGCACTGTCAGT -ACGGAAGCACTTAGCACTGAAGGT -ACGGAAGCACTTAGCACTAACCGT -ACGGAAGCACTTAGCACTTTGTGC -ACGGAAGCACTTAGCACTCTAAGC -ACGGAAGCACTTAGCACTACTAGC -ACGGAAGCACTTAGCACTAGATGC -ACGGAAGCACTTAGCACTTGAAGG -ACGGAAGCACTTAGCACTCAATGG -ACGGAAGCACTTAGCACTATGAGG -ACGGAAGCACTTAGCACTAATGGG -ACGGAAGCACTTAGCACTTCCTGA -ACGGAAGCACTTAGCACTTAGCGA -ACGGAAGCACTTAGCACTCACAGA -ACGGAAGCACTTAGCACTGCAAGA -ACGGAAGCACTTAGCACTGGTTGA -ACGGAAGCACTTAGCACTTCCGAT -ACGGAAGCACTTAGCACTTGGCAT -ACGGAAGCACTTAGCACTCGAGAT -ACGGAAGCACTTAGCACTTACCAC -ACGGAAGCACTTAGCACTCAGAAC -ACGGAAGCACTTAGCACTGTCTAC -ACGGAAGCACTTAGCACTACGTAC -ACGGAAGCACTTAGCACTAGTGAC -ACGGAAGCACTTAGCACTCTGTAG -ACGGAAGCACTTAGCACTCCTAAG -ACGGAAGCACTTAGCACTGTTCAG -ACGGAAGCACTTAGCACTGCATAG -ACGGAAGCACTTAGCACTGACAAG -ACGGAAGCACTTAGCACTAAGCAG -ACGGAAGCACTTAGCACTCGTCAA -ACGGAAGCACTTAGCACTGCTGAA -ACGGAAGCACTTAGCACTAGTACG -ACGGAAGCACTTAGCACTATCCGA -ACGGAAGCACTTAGCACTATGGGA -ACGGAAGCACTTAGCACTGTGCAA -ACGGAAGCACTTAGCACTGAGGAA -ACGGAAGCACTTAGCACTCAGGTA -ACGGAAGCACTTAGCACTGACTCT -ACGGAAGCACTTAGCACTAGTCCT -ACGGAAGCACTTAGCACTTAAGCC -ACGGAAGCACTTAGCACTATAGCC -ACGGAAGCACTTAGCACTTAACCG -ACGGAAGCACTTAGCACTATGCCA -ACGGAAGCACTTTGCAGAGGAAAC -ACGGAAGCACTTTGCAGAAACACC -ACGGAAGCACTTTGCAGAATCGAG -ACGGAAGCACTTTGCAGACTCCTT -ACGGAAGCACTTTGCAGACCTGTT -ACGGAAGCACTTTGCAGACGGTTT -ACGGAAGCACTTTGCAGAGTGGTT -ACGGAAGCACTTTGCAGAGCCTTT -ACGGAAGCACTTTGCAGAGGTCTT -ACGGAAGCACTTTGCAGAACGCTT -ACGGAAGCACTTTGCAGAAGCGTT -ACGGAAGCACTTTGCAGATTCGTC -ACGGAAGCACTTTGCAGATCTCTC -ACGGAAGCACTTTGCAGATGGATC -ACGGAAGCACTTTGCAGACACTTC -ACGGAAGCACTTTGCAGAGTACTC -ACGGAAGCACTTTGCAGAGATGTC -ACGGAAGCACTTTGCAGAACAGTC -ACGGAAGCACTTTGCAGATTGCTG -ACGGAAGCACTTTGCAGATCCATG -ACGGAAGCACTTTGCAGATGTGTG -ACGGAAGCACTTTGCAGACTAGTG -ACGGAAGCACTTTGCAGACATCTG -ACGGAAGCACTTTGCAGAGAGTTG -ACGGAAGCACTTTGCAGAAGACTG -ACGGAAGCACTTTGCAGATCGGTA -ACGGAAGCACTTTGCAGATGCCTA -ACGGAAGCACTTTGCAGACCACTA -ACGGAAGCACTTTGCAGAGGAGTA -ACGGAAGCACTTTGCAGATCGTCT -ACGGAAGCACTTTGCAGATGCACT -ACGGAAGCACTTTGCAGACTGACT -ACGGAAGCACTTTGCAGACAACCT -ACGGAAGCACTTTGCAGAGCTACT -ACGGAAGCACTTTGCAGAGGATCT -ACGGAAGCACTTTGCAGAAAGGCT -ACGGAAGCACTTTGCAGATCAACC -ACGGAAGCACTTTGCAGATGTTCC -ACGGAAGCACTTTGCAGAATTCCC -ACGGAAGCACTTTGCAGATTCTCG -ACGGAAGCACTTTGCAGATAGACG -ACGGAAGCACTTTGCAGAGTAACG -ACGGAAGCACTTTGCAGAACTTCG -ACGGAAGCACTTTGCAGATACGCA -ACGGAAGCACTTTGCAGACTTGCA -ACGGAAGCACTTTGCAGACGAACA -ACGGAAGCACTTTGCAGACAGTCA -ACGGAAGCACTTTGCAGAGATCCA -ACGGAAGCACTTTGCAGAACGACA -ACGGAAGCACTTTGCAGAAGCTCA -ACGGAAGCACTTTGCAGATCACGT -ACGGAAGCACTTTGCAGACGTAGT -ACGGAAGCACTTTGCAGAGTCAGT -ACGGAAGCACTTTGCAGAGAAGGT -ACGGAAGCACTTTGCAGAAACCGT -ACGGAAGCACTTTGCAGATTGTGC -ACGGAAGCACTTTGCAGACTAAGC -ACGGAAGCACTTTGCAGAACTAGC -ACGGAAGCACTTTGCAGAAGATGC -ACGGAAGCACTTTGCAGATGAAGG -ACGGAAGCACTTTGCAGACAATGG -ACGGAAGCACTTTGCAGAATGAGG -ACGGAAGCACTTTGCAGAAATGGG -ACGGAAGCACTTTGCAGATCCTGA -ACGGAAGCACTTTGCAGATAGCGA -ACGGAAGCACTTTGCAGACACAGA -ACGGAAGCACTTTGCAGAGCAAGA -ACGGAAGCACTTTGCAGAGGTTGA -ACGGAAGCACTTTGCAGATCCGAT -ACGGAAGCACTTTGCAGATGGCAT -ACGGAAGCACTTTGCAGACGAGAT -ACGGAAGCACTTTGCAGATACCAC -ACGGAAGCACTTTGCAGACAGAAC -ACGGAAGCACTTTGCAGAGTCTAC -ACGGAAGCACTTTGCAGAACGTAC -ACGGAAGCACTTTGCAGAAGTGAC -ACGGAAGCACTTTGCAGACTGTAG -ACGGAAGCACTTTGCAGACCTAAG -ACGGAAGCACTTTGCAGAGTTCAG -ACGGAAGCACTTTGCAGAGCATAG -ACGGAAGCACTTTGCAGAGACAAG -ACGGAAGCACTTTGCAGAAAGCAG -ACGGAAGCACTTTGCAGACGTCAA -ACGGAAGCACTTTGCAGAGCTGAA -ACGGAAGCACTTTGCAGAAGTACG -ACGGAAGCACTTTGCAGAATCCGA -ACGGAAGCACTTTGCAGAATGGGA -ACGGAAGCACTTTGCAGAGTGCAA -ACGGAAGCACTTTGCAGAGAGGAA -ACGGAAGCACTTTGCAGACAGGTA -ACGGAAGCACTTTGCAGAGACTCT -ACGGAAGCACTTTGCAGAAGTCCT -ACGGAAGCACTTTGCAGATAAGCC -ACGGAAGCACTTTGCAGAATAGCC -ACGGAAGCACTTTGCAGATAACCG -ACGGAAGCACTTTGCAGAATGCCA -ACGGAAGCACTTAGGTGAGGAAAC -ACGGAAGCACTTAGGTGAAACACC -ACGGAAGCACTTAGGTGAATCGAG -ACGGAAGCACTTAGGTGACTCCTT -ACGGAAGCACTTAGGTGACCTGTT -ACGGAAGCACTTAGGTGACGGTTT -ACGGAAGCACTTAGGTGAGTGGTT -ACGGAAGCACTTAGGTGAGCCTTT -ACGGAAGCACTTAGGTGAGGTCTT -ACGGAAGCACTTAGGTGAACGCTT -ACGGAAGCACTTAGGTGAAGCGTT -ACGGAAGCACTTAGGTGATTCGTC -ACGGAAGCACTTAGGTGATCTCTC -ACGGAAGCACTTAGGTGATGGATC -ACGGAAGCACTTAGGTGACACTTC -ACGGAAGCACTTAGGTGAGTACTC -ACGGAAGCACTTAGGTGAGATGTC -ACGGAAGCACTTAGGTGAACAGTC -ACGGAAGCACTTAGGTGATTGCTG -ACGGAAGCACTTAGGTGATCCATG -ACGGAAGCACTTAGGTGATGTGTG -ACGGAAGCACTTAGGTGACTAGTG -ACGGAAGCACTTAGGTGACATCTG -ACGGAAGCACTTAGGTGAGAGTTG -ACGGAAGCACTTAGGTGAAGACTG -ACGGAAGCACTTAGGTGATCGGTA -ACGGAAGCACTTAGGTGATGCCTA -ACGGAAGCACTTAGGTGACCACTA -ACGGAAGCACTTAGGTGAGGAGTA -ACGGAAGCACTTAGGTGATCGTCT -ACGGAAGCACTTAGGTGATGCACT -ACGGAAGCACTTAGGTGACTGACT -ACGGAAGCACTTAGGTGACAACCT -ACGGAAGCACTTAGGTGAGCTACT -ACGGAAGCACTTAGGTGAGGATCT -ACGGAAGCACTTAGGTGAAAGGCT -ACGGAAGCACTTAGGTGATCAACC -ACGGAAGCACTTAGGTGATGTTCC -ACGGAAGCACTTAGGTGAATTCCC -ACGGAAGCACTTAGGTGATTCTCG -ACGGAAGCACTTAGGTGATAGACG -ACGGAAGCACTTAGGTGAGTAACG -ACGGAAGCACTTAGGTGAACTTCG -ACGGAAGCACTTAGGTGATACGCA -ACGGAAGCACTTAGGTGACTTGCA -ACGGAAGCACTTAGGTGACGAACA -ACGGAAGCACTTAGGTGACAGTCA -ACGGAAGCACTTAGGTGAGATCCA -ACGGAAGCACTTAGGTGAACGACA -ACGGAAGCACTTAGGTGAAGCTCA -ACGGAAGCACTTAGGTGATCACGT -ACGGAAGCACTTAGGTGACGTAGT -ACGGAAGCACTTAGGTGAGTCAGT -ACGGAAGCACTTAGGTGAGAAGGT -ACGGAAGCACTTAGGTGAAACCGT -ACGGAAGCACTTAGGTGATTGTGC -ACGGAAGCACTTAGGTGACTAAGC -ACGGAAGCACTTAGGTGAACTAGC -ACGGAAGCACTTAGGTGAAGATGC -ACGGAAGCACTTAGGTGATGAAGG -ACGGAAGCACTTAGGTGACAATGG -ACGGAAGCACTTAGGTGAATGAGG -ACGGAAGCACTTAGGTGAAATGGG -ACGGAAGCACTTAGGTGATCCTGA -ACGGAAGCACTTAGGTGATAGCGA -ACGGAAGCACTTAGGTGACACAGA -ACGGAAGCACTTAGGTGAGCAAGA -ACGGAAGCACTTAGGTGAGGTTGA -ACGGAAGCACTTAGGTGATCCGAT -ACGGAAGCACTTAGGTGATGGCAT -ACGGAAGCACTTAGGTGACGAGAT -ACGGAAGCACTTAGGTGATACCAC -ACGGAAGCACTTAGGTGACAGAAC -ACGGAAGCACTTAGGTGAGTCTAC -ACGGAAGCACTTAGGTGAACGTAC -ACGGAAGCACTTAGGTGAAGTGAC -ACGGAAGCACTTAGGTGACTGTAG -ACGGAAGCACTTAGGTGACCTAAG -ACGGAAGCACTTAGGTGAGTTCAG -ACGGAAGCACTTAGGTGAGCATAG -ACGGAAGCACTTAGGTGAGACAAG -ACGGAAGCACTTAGGTGAAAGCAG -ACGGAAGCACTTAGGTGACGTCAA -ACGGAAGCACTTAGGTGAGCTGAA -ACGGAAGCACTTAGGTGAAGTACG -ACGGAAGCACTTAGGTGAATCCGA -ACGGAAGCACTTAGGTGAATGGGA -ACGGAAGCACTTAGGTGAGTGCAA -ACGGAAGCACTTAGGTGAGAGGAA -ACGGAAGCACTTAGGTGACAGGTA -ACGGAAGCACTTAGGTGAGACTCT -ACGGAAGCACTTAGGTGAAGTCCT -ACGGAAGCACTTAGGTGATAAGCC -ACGGAAGCACTTAGGTGAATAGCC -ACGGAAGCACTTAGGTGATAACCG -ACGGAAGCACTTAGGTGAATGCCA -ACGGAAGCACTTTGGCAAGGAAAC -ACGGAAGCACTTTGGCAAAACACC -ACGGAAGCACTTTGGCAAATCGAG -ACGGAAGCACTTTGGCAACTCCTT -ACGGAAGCACTTTGGCAACCTGTT -ACGGAAGCACTTTGGCAACGGTTT -ACGGAAGCACTTTGGCAAGTGGTT -ACGGAAGCACTTTGGCAAGCCTTT -ACGGAAGCACTTTGGCAAGGTCTT -ACGGAAGCACTTTGGCAAACGCTT -ACGGAAGCACTTTGGCAAAGCGTT -ACGGAAGCACTTTGGCAATTCGTC -ACGGAAGCACTTTGGCAATCTCTC -ACGGAAGCACTTTGGCAATGGATC -ACGGAAGCACTTTGGCAACACTTC -ACGGAAGCACTTTGGCAAGTACTC -ACGGAAGCACTTTGGCAAGATGTC -ACGGAAGCACTTTGGCAAACAGTC -ACGGAAGCACTTTGGCAATTGCTG -ACGGAAGCACTTTGGCAATCCATG -ACGGAAGCACTTTGGCAATGTGTG -ACGGAAGCACTTTGGCAACTAGTG -ACGGAAGCACTTTGGCAACATCTG -ACGGAAGCACTTTGGCAAGAGTTG -ACGGAAGCACTTTGGCAAAGACTG -ACGGAAGCACTTTGGCAATCGGTA -ACGGAAGCACTTTGGCAATGCCTA -ACGGAAGCACTTTGGCAACCACTA -ACGGAAGCACTTTGGCAAGGAGTA -ACGGAAGCACTTTGGCAATCGTCT -ACGGAAGCACTTTGGCAATGCACT -ACGGAAGCACTTTGGCAACTGACT -ACGGAAGCACTTTGGCAACAACCT -ACGGAAGCACTTTGGCAAGCTACT -ACGGAAGCACTTTGGCAAGGATCT -ACGGAAGCACTTTGGCAAAAGGCT -ACGGAAGCACTTTGGCAATCAACC -ACGGAAGCACTTTGGCAATGTTCC -ACGGAAGCACTTTGGCAAATTCCC -ACGGAAGCACTTTGGCAATTCTCG -ACGGAAGCACTTTGGCAATAGACG -ACGGAAGCACTTTGGCAAGTAACG -ACGGAAGCACTTTGGCAAACTTCG -ACGGAAGCACTTTGGCAATACGCA -ACGGAAGCACTTTGGCAACTTGCA -ACGGAAGCACTTTGGCAACGAACA -ACGGAAGCACTTTGGCAACAGTCA -ACGGAAGCACTTTGGCAAGATCCA -ACGGAAGCACTTTGGCAAACGACA -ACGGAAGCACTTTGGCAAAGCTCA -ACGGAAGCACTTTGGCAATCACGT -ACGGAAGCACTTTGGCAACGTAGT -ACGGAAGCACTTTGGCAAGTCAGT -ACGGAAGCACTTTGGCAAGAAGGT -ACGGAAGCACTTTGGCAAAACCGT -ACGGAAGCACTTTGGCAATTGTGC -ACGGAAGCACTTTGGCAACTAAGC -ACGGAAGCACTTTGGCAAACTAGC -ACGGAAGCACTTTGGCAAAGATGC -ACGGAAGCACTTTGGCAATGAAGG -ACGGAAGCACTTTGGCAACAATGG -ACGGAAGCACTTTGGCAAATGAGG -ACGGAAGCACTTTGGCAAAATGGG -ACGGAAGCACTTTGGCAATCCTGA -ACGGAAGCACTTTGGCAATAGCGA -ACGGAAGCACTTTGGCAACACAGA -ACGGAAGCACTTTGGCAAGCAAGA -ACGGAAGCACTTTGGCAAGGTTGA -ACGGAAGCACTTTGGCAATCCGAT -ACGGAAGCACTTTGGCAATGGCAT -ACGGAAGCACTTTGGCAACGAGAT -ACGGAAGCACTTTGGCAATACCAC -ACGGAAGCACTTTGGCAACAGAAC -ACGGAAGCACTTTGGCAAGTCTAC -ACGGAAGCACTTTGGCAAACGTAC -ACGGAAGCACTTTGGCAAAGTGAC -ACGGAAGCACTTTGGCAACTGTAG -ACGGAAGCACTTTGGCAACCTAAG -ACGGAAGCACTTTGGCAAGTTCAG -ACGGAAGCACTTTGGCAAGCATAG -ACGGAAGCACTTTGGCAAGACAAG -ACGGAAGCACTTTGGCAAAAGCAG -ACGGAAGCACTTTGGCAACGTCAA -ACGGAAGCACTTTGGCAAGCTGAA -ACGGAAGCACTTTGGCAAAGTACG -ACGGAAGCACTTTGGCAAATCCGA -ACGGAAGCACTTTGGCAAATGGGA -ACGGAAGCACTTTGGCAAGTGCAA -ACGGAAGCACTTTGGCAAGAGGAA -ACGGAAGCACTTTGGCAACAGGTA -ACGGAAGCACTTTGGCAAGACTCT -ACGGAAGCACTTTGGCAAAGTCCT -ACGGAAGCACTTTGGCAATAAGCC -ACGGAAGCACTTTGGCAAATAGCC -ACGGAAGCACTTTGGCAATAACCG -ACGGAAGCACTTTGGCAAATGCCA -ACGGAAGCACTTAGGATGGGAAAC -ACGGAAGCACTTAGGATGAACACC -ACGGAAGCACTTAGGATGATCGAG -ACGGAAGCACTTAGGATGCTCCTT -ACGGAAGCACTTAGGATGCCTGTT -ACGGAAGCACTTAGGATGCGGTTT -ACGGAAGCACTTAGGATGGTGGTT -ACGGAAGCACTTAGGATGGCCTTT -ACGGAAGCACTTAGGATGGGTCTT -ACGGAAGCACTTAGGATGACGCTT -ACGGAAGCACTTAGGATGAGCGTT -ACGGAAGCACTTAGGATGTTCGTC -ACGGAAGCACTTAGGATGTCTCTC -ACGGAAGCACTTAGGATGTGGATC -ACGGAAGCACTTAGGATGCACTTC -ACGGAAGCACTTAGGATGGTACTC -ACGGAAGCACTTAGGATGGATGTC -ACGGAAGCACTTAGGATGACAGTC -ACGGAAGCACTTAGGATGTTGCTG -ACGGAAGCACTTAGGATGTCCATG -ACGGAAGCACTTAGGATGTGTGTG -ACGGAAGCACTTAGGATGCTAGTG -ACGGAAGCACTTAGGATGCATCTG -ACGGAAGCACTTAGGATGGAGTTG -ACGGAAGCACTTAGGATGAGACTG -ACGGAAGCACTTAGGATGTCGGTA -ACGGAAGCACTTAGGATGTGCCTA -ACGGAAGCACTTAGGATGCCACTA -ACGGAAGCACTTAGGATGGGAGTA -ACGGAAGCACTTAGGATGTCGTCT -ACGGAAGCACTTAGGATGTGCACT -ACGGAAGCACTTAGGATGCTGACT -ACGGAAGCACTTAGGATGCAACCT -ACGGAAGCACTTAGGATGGCTACT -ACGGAAGCACTTAGGATGGGATCT -ACGGAAGCACTTAGGATGAAGGCT -ACGGAAGCACTTAGGATGTCAACC -ACGGAAGCACTTAGGATGTGTTCC -ACGGAAGCACTTAGGATGATTCCC -ACGGAAGCACTTAGGATGTTCTCG -ACGGAAGCACTTAGGATGTAGACG -ACGGAAGCACTTAGGATGGTAACG -ACGGAAGCACTTAGGATGACTTCG -ACGGAAGCACTTAGGATGTACGCA -ACGGAAGCACTTAGGATGCTTGCA -ACGGAAGCACTTAGGATGCGAACA -ACGGAAGCACTTAGGATGCAGTCA -ACGGAAGCACTTAGGATGGATCCA -ACGGAAGCACTTAGGATGACGACA -ACGGAAGCACTTAGGATGAGCTCA -ACGGAAGCACTTAGGATGTCACGT -ACGGAAGCACTTAGGATGCGTAGT -ACGGAAGCACTTAGGATGGTCAGT -ACGGAAGCACTTAGGATGGAAGGT -ACGGAAGCACTTAGGATGAACCGT -ACGGAAGCACTTAGGATGTTGTGC -ACGGAAGCACTTAGGATGCTAAGC -ACGGAAGCACTTAGGATGACTAGC -ACGGAAGCACTTAGGATGAGATGC -ACGGAAGCACTTAGGATGTGAAGG -ACGGAAGCACTTAGGATGCAATGG -ACGGAAGCACTTAGGATGATGAGG -ACGGAAGCACTTAGGATGAATGGG -ACGGAAGCACTTAGGATGTCCTGA -ACGGAAGCACTTAGGATGTAGCGA -ACGGAAGCACTTAGGATGCACAGA -ACGGAAGCACTTAGGATGGCAAGA -ACGGAAGCACTTAGGATGGGTTGA -ACGGAAGCACTTAGGATGTCCGAT -ACGGAAGCACTTAGGATGTGGCAT -ACGGAAGCACTTAGGATGCGAGAT -ACGGAAGCACTTAGGATGTACCAC -ACGGAAGCACTTAGGATGCAGAAC -ACGGAAGCACTTAGGATGGTCTAC -ACGGAAGCACTTAGGATGACGTAC -ACGGAAGCACTTAGGATGAGTGAC -ACGGAAGCACTTAGGATGCTGTAG -ACGGAAGCACTTAGGATGCCTAAG -ACGGAAGCACTTAGGATGGTTCAG -ACGGAAGCACTTAGGATGGCATAG -ACGGAAGCACTTAGGATGGACAAG -ACGGAAGCACTTAGGATGAAGCAG -ACGGAAGCACTTAGGATGCGTCAA -ACGGAAGCACTTAGGATGGCTGAA -ACGGAAGCACTTAGGATGAGTACG -ACGGAAGCACTTAGGATGATCCGA -ACGGAAGCACTTAGGATGATGGGA -ACGGAAGCACTTAGGATGGTGCAA -ACGGAAGCACTTAGGATGGAGGAA -ACGGAAGCACTTAGGATGCAGGTA -ACGGAAGCACTTAGGATGGACTCT -ACGGAAGCACTTAGGATGAGTCCT -ACGGAAGCACTTAGGATGTAAGCC -ACGGAAGCACTTAGGATGATAGCC -ACGGAAGCACTTAGGATGTAACCG -ACGGAAGCACTTAGGATGATGCCA -ACGGAAGCACTTGGGAATGGAAAC -ACGGAAGCACTTGGGAATAACACC -ACGGAAGCACTTGGGAATATCGAG -ACGGAAGCACTTGGGAATCTCCTT -ACGGAAGCACTTGGGAATCCTGTT -ACGGAAGCACTTGGGAATCGGTTT -ACGGAAGCACTTGGGAATGTGGTT -ACGGAAGCACTTGGGAATGCCTTT -ACGGAAGCACTTGGGAATGGTCTT -ACGGAAGCACTTGGGAATACGCTT -ACGGAAGCACTTGGGAATAGCGTT -ACGGAAGCACTTGGGAATTTCGTC -ACGGAAGCACTTGGGAATTCTCTC -ACGGAAGCACTTGGGAATTGGATC -ACGGAAGCACTTGGGAATCACTTC -ACGGAAGCACTTGGGAATGTACTC -ACGGAAGCACTTGGGAATGATGTC -ACGGAAGCACTTGGGAATACAGTC -ACGGAAGCACTTGGGAATTTGCTG -ACGGAAGCACTTGGGAATTCCATG -ACGGAAGCACTTGGGAATTGTGTG -ACGGAAGCACTTGGGAATCTAGTG -ACGGAAGCACTTGGGAATCATCTG -ACGGAAGCACTTGGGAATGAGTTG -ACGGAAGCACTTGGGAATAGACTG -ACGGAAGCACTTGGGAATTCGGTA -ACGGAAGCACTTGGGAATTGCCTA -ACGGAAGCACTTGGGAATCCACTA -ACGGAAGCACTTGGGAATGGAGTA -ACGGAAGCACTTGGGAATTCGTCT -ACGGAAGCACTTGGGAATTGCACT -ACGGAAGCACTTGGGAATCTGACT -ACGGAAGCACTTGGGAATCAACCT -ACGGAAGCACTTGGGAATGCTACT -ACGGAAGCACTTGGGAATGGATCT -ACGGAAGCACTTGGGAATAAGGCT -ACGGAAGCACTTGGGAATTCAACC -ACGGAAGCACTTGGGAATTGTTCC -ACGGAAGCACTTGGGAATATTCCC -ACGGAAGCACTTGGGAATTTCTCG -ACGGAAGCACTTGGGAATTAGACG -ACGGAAGCACTTGGGAATGTAACG -ACGGAAGCACTTGGGAATACTTCG -ACGGAAGCACTTGGGAATTACGCA -ACGGAAGCACTTGGGAATCTTGCA -ACGGAAGCACTTGGGAATCGAACA -ACGGAAGCACTTGGGAATCAGTCA -ACGGAAGCACTTGGGAATGATCCA -ACGGAAGCACTTGGGAATACGACA -ACGGAAGCACTTGGGAATAGCTCA -ACGGAAGCACTTGGGAATTCACGT -ACGGAAGCACTTGGGAATCGTAGT -ACGGAAGCACTTGGGAATGTCAGT -ACGGAAGCACTTGGGAATGAAGGT -ACGGAAGCACTTGGGAATAACCGT -ACGGAAGCACTTGGGAATTTGTGC -ACGGAAGCACTTGGGAATCTAAGC -ACGGAAGCACTTGGGAATACTAGC -ACGGAAGCACTTGGGAATAGATGC -ACGGAAGCACTTGGGAATTGAAGG -ACGGAAGCACTTGGGAATCAATGG -ACGGAAGCACTTGGGAATATGAGG -ACGGAAGCACTTGGGAATAATGGG -ACGGAAGCACTTGGGAATTCCTGA -ACGGAAGCACTTGGGAATTAGCGA -ACGGAAGCACTTGGGAATCACAGA -ACGGAAGCACTTGGGAATGCAAGA -ACGGAAGCACTTGGGAATGGTTGA -ACGGAAGCACTTGGGAATTCCGAT -ACGGAAGCACTTGGGAATTGGCAT -ACGGAAGCACTTGGGAATCGAGAT -ACGGAAGCACTTGGGAATTACCAC -ACGGAAGCACTTGGGAATCAGAAC -ACGGAAGCACTTGGGAATGTCTAC -ACGGAAGCACTTGGGAATACGTAC -ACGGAAGCACTTGGGAATAGTGAC -ACGGAAGCACTTGGGAATCTGTAG -ACGGAAGCACTTGGGAATCCTAAG -ACGGAAGCACTTGGGAATGTTCAG -ACGGAAGCACTTGGGAATGCATAG -ACGGAAGCACTTGGGAATGACAAG -ACGGAAGCACTTGGGAATAAGCAG -ACGGAAGCACTTGGGAATCGTCAA -ACGGAAGCACTTGGGAATGCTGAA -ACGGAAGCACTTGGGAATAGTACG -ACGGAAGCACTTGGGAATATCCGA -ACGGAAGCACTTGGGAATATGGGA -ACGGAAGCACTTGGGAATGTGCAA -ACGGAAGCACTTGGGAATGAGGAA -ACGGAAGCACTTGGGAATCAGGTA -ACGGAAGCACTTGGGAATGACTCT -ACGGAAGCACTTGGGAATAGTCCT -ACGGAAGCACTTGGGAATTAAGCC -ACGGAAGCACTTGGGAATATAGCC -ACGGAAGCACTTGGGAATTAACCG -ACGGAAGCACTTGGGAATATGCCA -ACGGAAGCACTTTGATCCGGAAAC -ACGGAAGCACTTTGATCCAACACC -ACGGAAGCACTTTGATCCATCGAG -ACGGAAGCACTTTGATCCCTCCTT -ACGGAAGCACTTTGATCCCCTGTT -ACGGAAGCACTTTGATCCCGGTTT -ACGGAAGCACTTTGATCCGTGGTT -ACGGAAGCACTTTGATCCGCCTTT -ACGGAAGCACTTTGATCCGGTCTT -ACGGAAGCACTTTGATCCACGCTT -ACGGAAGCACTTTGATCCAGCGTT -ACGGAAGCACTTTGATCCTTCGTC -ACGGAAGCACTTTGATCCTCTCTC -ACGGAAGCACTTTGATCCTGGATC -ACGGAAGCACTTTGATCCCACTTC -ACGGAAGCACTTTGATCCGTACTC -ACGGAAGCACTTTGATCCGATGTC -ACGGAAGCACTTTGATCCACAGTC -ACGGAAGCACTTTGATCCTTGCTG -ACGGAAGCACTTTGATCCTCCATG -ACGGAAGCACTTTGATCCTGTGTG -ACGGAAGCACTTTGATCCCTAGTG -ACGGAAGCACTTTGATCCCATCTG -ACGGAAGCACTTTGATCCGAGTTG -ACGGAAGCACTTTGATCCAGACTG -ACGGAAGCACTTTGATCCTCGGTA -ACGGAAGCACTTTGATCCTGCCTA -ACGGAAGCACTTTGATCCCCACTA -ACGGAAGCACTTTGATCCGGAGTA -ACGGAAGCACTTTGATCCTCGTCT -ACGGAAGCACTTTGATCCTGCACT -ACGGAAGCACTTTGATCCCTGACT -ACGGAAGCACTTTGATCCCAACCT -ACGGAAGCACTTTGATCCGCTACT -ACGGAAGCACTTTGATCCGGATCT -ACGGAAGCACTTTGATCCAAGGCT -ACGGAAGCACTTTGATCCTCAACC -ACGGAAGCACTTTGATCCTGTTCC -ACGGAAGCACTTTGATCCATTCCC -ACGGAAGCACTTTGATCCTTCTCG -ACGGAAGCACTTTGATCCTAGACG -ACGGAAGCACTTTGATCCGTAACG -ACGGAAGCACTTTGATCCACTTCG -ACGGAAGCACTTTGATCCTACGCA -ACGGAAGCACTTTGATCCCTTGCA -ACGGAAGCACTTTGATCCCGAACA -ACGGAAGCACTTTGATCCCAGTCA -ACGGAAGCACTTTGATCCGATCCA -ACGGAAGCACTTTGATCCACGACA -ACGGAAGCACTTTGATCCAGCTCA -ACGGAAGCACTTTGATCCTCACGT -ACGGAAGCACTTTGATCCCGTAGT -ACGGAAGCACTTTGATCCGTCAGT -ACGGAAGCACTTTGATCCGAAGGT -ACGGAAGCACTTTGATCCAACCGT -ACGGAAGCACTTTGATCCTTGTGC -ACGGAAGCACTTTGATCCCTAAGC -ACGGAAGCACTTTGATCCACTAGC -ACGGAAGCACTTTGATCCAGATGC -ACGGAAGCACTTTGATCCTGAAGG -ACGGAAGCACTTTGATCCCAATGG -ACGGAAGCACTTTGATCCATGAGG -ACGGAAGCACTTTGATCCAATGGG -ACGGAAGCACTTTGATCCTCCTGA -ACGGAAGCACTTTGATCCTAGCGA -ACGGAAGCACTTTGATCCCACAGA -ACGGAAGCACTTTGATCCGCAAGA -ACGGAAGCACTTTGATCCGGTTGA -ACGGAAGCACTTTGATCCTCCGAT -ACGGAAGCACTTTGATCCTGGCAT -ACGGAAGCACTTTGATCCCGAGAT -ACGGAAGCACTTTGATCCTACCAC -ACGGAAGCACTTTGATCCCAGAAC -ACGGAAGCACTTTGATCCGTCTAC -ACGGAAGCACTTTGATCCACGTAC -ACGGAAGCACTTTGATCCAGTGAC -ACGGAAGCACTTTGATCCCTGTAG -ACGGAAGCACTTTGATCCCCTAAG -ACGGAAGCACTTTGATCCGTTCAG -ACGGAAGCACTTTGATCCGCATAG -ACGGAAGCACTTTGATCCGACAAG -ACGGAAGCACTTTGATCCAAGCAG -ACGGAAGCACTTTGATCCCGTCAA -ACGGAAGCACTTTGATCCGCTGAA -ACGGAAGCACTTTGATCCAGTACG -ACGGAAGCACTTTGATCCATCCGA -ACGGAAGCACTTTGATCCATGGGA -ACGGAAGCACTTTGATCCGTGCAA -ACGGAAGCACTTTGATCCGAGGAA -ACGGAAGCACTTTGATCCCAGGTA -ACGGAAGCACTTTGATCCGACTCT -ACGGAAGCACTTTGATCCAGTCCT -ACGGAAGCACTTTGATCCTAAGCC -ACGGAAGCACTTTGATCCATAGCC -ACGGAAGCACTTTGATCCTAACCG -ACGGAAGCACTTTGATCCATGCCA -ACGGAAGCACTTCGATAGGGAAAC -ACGGAAGCACTTCGATAGAACACC -ACGGAAGCACTTCGATAGATCGAG -ACGGAAGCACTTCGATAGCTCCTT -ACGGAAGCACTTCGATAGCCTGTT -ACGGAAGCACTTCGATAGCGGTTT -ACGGAAGCACTTCGATAGGTGGTT -ACGGAAGCACTTCGATAGGCCTTT -ACGGAAGCACTTCGATAGGGTCTT -ACGGAAGCACTTCGATAGACGCTT -ACGGAAGCACTTCGATAGAGCGTT -ACGGAAGCACTTCGATAGTTCGTC -ACGGAAGCACTTCGATAGTCTCTC -ACGGAAGCACTTCGATAGTGGATC -ACGGAAGCACTTCGATAGCACTTC -ACGGAAGCACTTCGATAGGTACTC -ACGGAAGCACTTCGATAGGATGTC -ACGGAAGCACTTCGATAGACAGTC -ACGGAAGCACTTCGATAGTTGCTG -ACGGAAGCACTTCGATAGTCCATG -ACGGAAGCACTTCGATAGTGTGTG -ACGGAAGCACTTCGATAGCTAGTG -ACGGAAGCACTTCGATAGCATCTG -ACGGAAGCACTTCGATAGGAGTTG -ACGGAAGCACTTCGATAGAGACTG -ACGGAAGCACTTCGATAGTCGGTA -ACGGAAGCACTTCGATAGTGCCTA -ACGGAAGCACTTCGATAGCCACTA -ACGGAAGCACTTCGATAGGGAGTA -ACGGAAGCACTTCGATAGTCGTCT -ACGGAAGCACTTCGATAGTGCACT -ACGGAAGCACTTCGATAGCTGACT -ACGGAAGCACTTCGATAGCAACCT -ACGGAAGCACTTCGATAGGCTACT -ACGGAAGCACTTCGATAGGGATCT -ACGGAAGCACTTCGATAGAAGGCT -ACGGAAGCACTTCGATAGTCAACC -ACGGAAGCACTTCGATAGTGTTCC -ACGGAAGCACTTCGATAGATTCCC -ACGGAAGCACTTCGATAGTTCTCG -ACGGAAGCACTTCGATAGTAGACG -ACGGAAGCACTTCGATAGGTAACG -ACGGAAGCACTTCGATAGACTTCG -ACGGAAGCACTTCGATAGTACGCA -ACGGAAGCACTTCGATAGCTTGCA -ACGGAAGCACTTCGATAGCGAACA -ACGGAAGCACTTCGATAGCAGTCA -ACGGAAGCACTTCGATAGGATCCA -ACGGAAGCACTTCGATAGACGACA -ACGGAAGCACTTCGATAGAGCTCA -ACGGAAGCACTTCGATAGTCACGT -ACGGAAGCACTTCGATAGCGTAGT -ACGGAAGCACTTCGATAGGTCAGT -ACGGAAGCACTTCGATAGGAAGGT -ACGGAAGCACTTCGATAGAACCGT -ACGGAAGCACTTCGATAGTTGTGC -ACGGAAGCACTTCGATAGCTAAGC -ACGGAAGCACTTCGATAGACTAGC -ACGGAAGCACTTCGATAGAGATGC -ACGGAAGCACTTCGATAGTGAAGG -ACGGAAGCACTTCGATAGCAATGG -ACGGAAGCACTTCGATAGATGAGG -ACGGAAGCACTTCGATAGAATGGG -ACGGAAGCACTTCGATAGTCCTGA -ACGGAAGCACTTCGATAGTAGCGA -ACGGAAGCACTTCGATAGCACAGA -ACGGAAGCACTTCGATAGGCAAGA -ACGGAAGCACTTCGATAGGGTTGA -ACGGAAGCACTTCGATAGTCCGAT -ACGGAAGCACTTCGATAGTGGCAT -ACGGAAGCACTTCGATAGCGAGAT -ACGGAAGCACTTCGATAGTACCAC -ACGGAAGCACTTCGATAGCAGAAC -ACGGAAGCACTTCGATAGGTCTAC -ACGGAAGCACTTCGATAGACGTAC -ACGGAAGCACTTCGATAGAGTGAC -ACGGAAGCACTTCGATAGCTGTAG -ACGGAAGCACTTCGATAGCCTAAG -ACGGAAGCACTTCGATAGGTTCAG -ACGGAAGCACTTCGATAGGCATAG -ACGGAAGCACTTCGATAGGACAAG -ACGGAAGCACTTCGATAGAAGCAG -ACGGAAGCACTTCGATAGCGTCAA -ACGGAAGCACTTCGATAGGCTGAA -ACGGAAGCACTTCGATAGAGTACG -ACGGAAGCACTTCGATAGATCCGA -ACGGAAGCACTTCGATAGATGGGA -ACGGAAGCACTTCGATAGGTGCAA -ACGGAAGCACTTCGATAGGAGGAA -ACGGAAGCACTTCGATAGCAGGTA -ACGGAAGCACTTCGATAGGACTCT -ACGGAAGCACTTCGATAGAGTCCT -ACGGAAGCACTTCGATAGTAAGCC -ACGGAAGCACTTCGATAGATAGCC -ACGGAAGCACTTCGATAGTAACCG -ACGGAAGCACTTCGATAGATGCCA -ACGGAAGCACTTAGACACGGAAAC -ACGGAAGCACTTAGACACAACACC -ACGGAAGCACTTAGACACATCGAG -ACGGAAGCACTTAGACACCTCCTT -ACGGAAGCACTTAGACACCCTGTT -ACGGAAGCACTTAGACACCGGTTT -ACGGAAGCACTTAGACACGTGGTT -ACGGAAGCACTTAGACACGCCTTT -ACGGAAGCACTTAGACACGGTCTT -ACGGAAGCACTTAGACACACGCTT -ACGGAAGCACTTAGACACAGCGTT -ACGGAAGCACTTAGACACTTCGTC -ACGGAAGCACTTAGACACTCTCTC -ACGGAAGCACTTAGACACTGGATC -ACGGAAGCACTTAGACACCACTTC -ACGGAAGCACTTAGACACGTACTC -ACGGAAGCACTTAGACACGATGTC -ACGGAAGCACTTAGACACACAGTC -ACGGAAGCACTTAGACACTTGCTG -ACGGAAGCACTTAGACACTCCATG -ACGGAAGCACTTAGACACTGTGTG -ACGGAAGCACTTAGACACCTAGTG -ACGGAAGCACTTAGACACCATCTG -ACGGAAGCACTTAGACACGAGTTG -ACGGAAGCACTTAGACACAGACTG -ACGGAAGCACTTAGACACTCGGTA -ACGGAAGCACTTAGACACTGCCTA -ACGGAAGCACTTAGACACCCACTA -ACGGAAGCACTTAGACACGGAGTA -ACGGAAGCACTTAGACACTCGTCT -ACGGAAGCACTTAGACACTGCACT -ACGGAAGCACTTAGACACCTGACT -ACGGAAGCACTTAGACACCAACCT -ACGGAAGCACTTAGACACGCTACT -ACGGAAGCACTTAGACACGGATCT -ACGGAAGCACTTAGACACAAGGCT -ACGGAAGCACTTAGACACTCAACC -ACGGAAGCACTTAGACACTGTTCC -ACGGAAGCACTTAGACACATTCCC -ACGGAAGCACTTAGACACTTCTCG -ACGGAAGCACTTAGACACTAGACG -ACGGAAGCACTTAGACACGTAACG -ACGGAAGCACTTAGACACACTTCG -ACGGAAGCACTTAGACACTACGCA -ACGGAAGCACTTAGACACCTTGCA -ACGGAAGCACTTAGACACCGAACA -ACGGAAGCACTTAGACACCAGTCA -ACGGAAGCACTTAGACACGATCCA -ACGGAAGCACTTAGACACACGACA -ACGGAAGCACTTAGACACAGCTCA -ACGGAAGCACTTAGACACTCACGT -ACGGAAGCACTTAGACACCGTAGT -ACGGAAGCACTTAGACACGTCAGT -ACGGAAGCACTTAGACACGAAGGT -ACGGAAGCACTTAGACACAACCGT -ACGGAAGCACTTAGACACTTGTGC -ACGGAAGCACTTAGACACCTAAGC -ACGGAAGCACTTAGACACACTAGC -ACGGAAGCACTTAGACACAGATGC -ACGGAAGCACTTAGACACTGAAGG -ACGGAAGCACTTAGACACCAATGG -ACGGAAGCACTTAGACACATGAGG -ACGGAAGCACTTAGACACAATGGG -ACGGAAGCACTTAGACACTCCTGA -ACGGAAGCACTTAGACACTAGCGA -ACGGAAGCACTTAGACACCACAGA -ACGGAAGCACTTAGACACGCAAGA -ACGGAAGCACTTAGACACGGTTGA -ACGGAAGCACTTAGACACTCCGAT -ACGGAAGCACTTAGACACTGGCAT -ACGGAAGCACTTAGACACCGAGAT -ACGGAAGCACTTAGACACTACCAC -ACGGAAGCACTTAGACACCAGAAC -ACGGAAGCACTTAGACACGTCTAC -ACGGAAGCACTTAGACACACGTAC -ACGGAAGCACTTAGACACAGTGAC -ACGGAAGCACTTAGACACCTGTAG -ACGGAAGCACTTAGACACCCTAAG -ACGGAAGCACTTAGACACGTTCAG -ACGGAAGCACTTAGACACGCATAG -ACGGAAGCACTTAGACACGACAAG -ACGGAAGCACTTAGACACAAGCAG -ACGGAAGCACTTAGACACCGTCAA -ACGGAAGCACTTAGACACGCTGAA -ACGGAAGCACTTAGACACAGTACG -ACGGAAGCACTTAGACACATCCGA -ACGGAAGCACTTAGACACATGGGA -ACGGAAGCACTTAGACACGTGCAA -ACGGAAGCACTTAGACACGAGGAA -ACGGAAGCACTTAGACACCAGGTA -ACGGAAGCACTTAGACACGACTCT -ACGGAAGCACTTAGACACAGTCCT -ACGGAAGCACTTAGACACTAAGCC -ACGGAAGCACTTAGACACATAGCC -ACGGAAGCACTTAGACACTAACCG -ACGGAAGCACTTAGACACATGCCA -ACGGAAGCACTTAGAGCAGGAAAC -ACGGAAGCACTTAGAGCAAACACC -ACGGAAGCACTTAGAGCAATCGAG -ACGGAAGCACTTAGAGCACTCCTT -ACGGAAGCACTTAGAGCACCTGTT -ACGGAAGCACTTAGAGCACGGTTT -ACGGAAGCACTTAGAGCAGTGGTT -ACGGAAGCACTTAGAGCAGCCTTT -ACGGAAGCACTTAGAGCAGGTCTT -ACGGAAGCACTTAGAGCAACGCTT -ACGGAAGCACTTAGAGCAAGCGTT -ACGGAAGCACTTAGAGCATTCGTC -ACGGAAGCACTTAGAGCATCTCTC -ACGGAAGCACTTAGAGCATGGATC -ACGGAAGCACTTAGAGCACACTTC -ACGGAAGCACTTAGAGCAGTACTC -ACGGAAGCACTTAGAGCAGATGTC -ACGGAAGCACTTAGAGCAACAGTC -ACGGAAGCACTTAGAGCATTGCTG -ACGGAAGCACTTAGAGCATCCATG -ACGGAAGCACTTAGAGCATGTGTG -ACGGAAGCACTTAGAGCACTAGTG -ACGGAAGCACTTAGAGCACATCTG -ACGGAAGCACTTAGAGCAGAGTTG -ACGGAAGCACTTAGAGCAAGACTG -ACGGAAGCACTTAGAGCATCGGTA -ACGGAAGCACTTAGAGCATGCCTA -ACGGAAGCACTTAGAGCACCACTA -ACGGAAGCACTTAGAGCAGGAGTA -ACGGAAGCACTTAGAGCATCGTCT -ACGGAAGCACTTAGAGCATGCACT -ACGGAAGCACTTAGAGCACTGACT -ACGGAAGCACTTAGAGCACAACCT -ACGGAAGCACTTAGAGCAGCTACT -ACGGAAGCACTTAGAGCAGGATCT -ACGGAAGCACTTAGAGCAAAGGCT -ACGGAAGCACTTAGAGCATCAACC -ACGGAAGCACTTAGAGCATGTTCC -ACGGAAGCACTTAGAGCAATTCCC -ACGGAAGCACTTAGAGCATTCTCG -ACGGAAGCACTTAGAGCATAGACG -ACGGAAGCACTTAGAGCAGTAACG -ACGGAAGCACTTAGAGCAACTTCG -ACGGAAGCACTTAGAGCATACGCA -ACGGAAGCACTTAGAGCACTTGCA -ACGGAAGCACTTAGAGCACGAACA -ACGGAAGCACTTAGAGCACAGTCA -ACGGAAGCACTTAGAGCAGATCCA -ACGGAAGCACTTAGAGCAACGACA -ACGGAAGCACTTAGAGCAAGCTCA -ACGGAAGCACTTAGAGCATCACGT -ACGGAAGCACTTAGAGCACGTAGT -ACGGAAGCACTTAGAGCAGTCAGT -ACGGAAGCACTTAGAGCAGAAGGT -ACGGAAGCACTTAGAGCAAACCGT -ACGGAAGCACTTAGAGCATTGTGC -ACGGAAGCACTTAGAGCACTAAGC -ACGGAAGCACTTAGAGCAACTAGC -ACGGAAGCACTTAGAGCAAGATGC -ACGGAAGCACTTAGAGCATGAAGG -ACGGAAGCACTTAGAGCACAATGG -ACGGAAGCACTTAGAGCAATGAGG -ACGGAAGCACTTAGAGCAAATGGG -ACGGAAGCACTTAGAGCATCCTGA -ACGGAAGCACTTAGAGCATAGCGA -ACGGAAGCACTTAGAGCACACAGA -ACGGAAGCACTTAGAGCAGCAAGA -ACGGAAGCACTTAGAGCAGGTTGA -ACGGAAGCACTTAGAGCATCCGAT -ACGGAAGCACTTAGAGCATGGCAT -ACGGAAGCACTTAGAGCACGAGAT -ACGGAAGCACTTAGAGCATACCAC -ACGGAAGCACTTAGAGCACAGAAC -ACGGAAGCACTTAGAGCAGTCTAC -ACGGAAGCACTTAGAGCAACGTAC -ACGGAAGCACTTAGAGCAAGTGAC -ACGGAAGCACTTAGAGCACTGTAG -ACGGAAGCACTTAGAGCACCTAAG -ACGGAAGCACTTAGAGCAGTTCAG -ACGGAAGCACTTAGAGCAGCATAG -ACGGAAGCACTTAGAGCAGACAAG -ACGGAAGCACTTAGAGCAAAGCAG -ACGGAAGCACTTAGAGCACGTCAA -ACGGAAGCACTTAGAGCAGCTGAA -ACGGAAGCACTTAGAGCAAGTACG -ACGGAAGCACTTAGAGCAATCCGA -ACGGAAGCACTTAGAGCAATGGGA -ACGGAAGCACTTAGAGCAGTGCAA -ACGGAAGCACTTAGAGCAGAGGAA -ACGGAAGCACTTAGAGCACAGGTA -ACGGAAGCACTTAGAGCAGACTCT -ACGGAAGCACTTAGAGCAAGTCCT -ACGGAAGCACTTAGAGCATAAGCC -ACGGAAGCACTTAGAGCAATAGCC -ACGGAAGCACTTAGAGCATAACCG -ACGGAAGCACTTAGAGCAATGCCA -ACGGAAGCACTTTGAGGTGGAAAC -ACGGAAGCACTTTGAGGTAACACC -ACGGAAGCACTTTGAGGTATCGAG -ACGGAAGCACTTTGAGGTCTCCTT -ACGGAAGCACTTTGAGGTCCTGTT -ACGGAAGCACTTTGAGGTCGGTTT -ACGGAAGCACTTTGAGGTGTGGTT -ACGGAAGCACTTTGAGGTGCCTTT -ACGGAAGCACTTTGAGGTGGTCTT -ACGGAAGCACTTTGAGGTACGCTT -ACGGAAGCACTTTGAGGTAGCGTT -ACGGAAGCACTTTGAGGTTTCGTC -ACGGAAGCACTTTGAGGTTCTCTC -ACGGAAGCACTTTGAGGTTGGATC -ACGGAAGCACTTTGAGGTCACTTC -ACGGAAGCACTTTGAGGTGTACTC -ACGGAAGCACTTTGAGGTGATGTC -ACGGAAGCACTTTGAGGTACAGTC -ACGGAAGCACTTTGAGGTTTGCTG -ACGGAAGCACTTTGAGGTTCCATG -ACGGAAGCACTTTGAGGTTGTGTG -ACGGAAGCACTTTGAGGTCTAGTG -ACGGAAGCACTTTGAGGTCATCTG -ACGGAAGCACTTTGAGGTGAGTTG -ACGGAAGCACTTTGAGGTAGACTG -ACGGAAGCACTTTGAGGTTCGGTA -ACGGAAGCACTTTGAGGTTGCCTA -ACGGAAGCACTTTGAGGTCCACTA -ACGGAAGCACTTTGAGGTGGAGTA -ACGGAAGCACTTTGAGGTTCGTCT -ACGGAAGCACTTTGAGGTTGCACT -ACGGAAGCACTTTGAGGTCTGACT -ACGGAAGCACTTTGAGGTCAACCT -ACGGAAGCACTTTGAGGTGCTACT -ACGGAAGCACTTTGAGGTGGATCT -ACGGAAGCACTTTGAGGTAAGGCT -ACGGAAGCACTTTGAGGTTCAACC -ACGGAAGCACTTTGAGGTTGTTCC -ACGGAAGCACTTTGAGGTATTCCC -ACGGAAGCACTTTGAGGTTTCTCG -ACGGAAGCACTTTGAGGTTAGACG -ACGGAAGCACTTTGAGGTGTAACG -ACGGAAGCACTTTGAGGTACTTCG -ACGGAAGCACTTTGAGGTTACGCA -ACGGAAGCACTTTGAGGTCTTGCA -ACGGAAGCACTTTGAGGTCGAACA -ACGGAAGCACTTTGAGGTCAGTCA -ACGGAAGCACTTTGAGGTGATCCA -ACGGAAGCACTTTGAGGTACGACA -ACGGAAGCACTTTGAGGTAGCTCA -ACGGAAGCACTTTGAGGTTCACGT -ACGGAAGCACTTTGAGGTCGTAGT -ACGGAAGCACTTTGAGGTGTCAGT -ACGGAAGCACTTTGAGGTGAAGGT -ACGGAAGCACTTTGAGGTAACCGT -ACGGAAGCACTTTGAGGTTTGTGC -ACGGAAGCACTTTGAGGTCTAAGC -ACGGAAGCACTTTGAGGTACTAGC -ACGGAAGCACTTTGAGGTAGATGC -ACGGAAGCACTTTGAGGTTGAAGG -ACGGAAGCACTTTGAGGTCAATGG -ACGGAAGCACTTTGAGGTATGAGG -ACGGAAGCACTTTGAGGTAATGGG -ACGGAAGCACTTTGAGGTTCCTGA -ACGGAAGCACTTTGAGGTTAGCGA -ACGGAAGCACTTTGAGGTCACAGA -ACGGAAGCACTTTGAGGTGCAAGA -ACGGAAGCACTTTGAGGTGGTTGA -ACGGAAGCACTTTGAGGTTCCGAT -ACGGAAGCACTTTGAGGTTGGCAT -ACGGAAGCACTTTGAGGTCGAGAT -ACGGAAGCACTTTGAGGTTACCAC -ACGGAAGCACTTTGAGGTCAGAAC -ACGGAAGCACTTTGAGGTGTCTAC -ACGGAAGCACTTTGAGGTACGTAC -ACGGAAGCACTTTGAGGTAGTGAC -ACGGAAGCACTTTGAGGTCTGTAG -ACGGAAGCACTTTGAGGTCCTAAG -ACGGAAGCACTTTGAGGTGTTCAG -ACGGAAGCACTTTGAGGTGCATAG -ACGGAAGCACTTTGAGGTGACAAG -ACGGAAGCACTTTGAGGTAAGCAG -ACGGAAGCACTTTGAGGTCGTCAA -ACGGAAGCACTTTGAGGTGCTGAA -ACGGAAGCACTTTGAGGTAGTACG -ACGGAAGCACTTTGAGGTATCCGA -ACGGAAGCACTTTGAGGTATGGGA -ACGGAAGCACTTTGAGGTGTGCAA -ACGGAAGCACTTTGAGGTGAGGAA -ACGGAAGCACTTTGAGGTCAGGTA -ACGGAAGCACTTTGAGGTGACTCT -ACGGAAGCACTTTGAGGTAGTCCT -ACGGAAGCACTTTGAGGTTAAGCC -ACGGAAGCACTTTGAGGTATAGCC -ACGGAAGCACTTTGAGGTTAACCG -ACGGAAGCACTTTGAGGTATGCCA -ACGGAAGCACTTGATTCCGGAAAC -ACGGAAGCACTTGATTCCAACACC -ACGGAAGCACTTGATTCCATCGAG -ACGGAAGCACTTGATTCCCTCCTT -ACGGAAGCACTTGATTCCCCTGTT -ACGGAAGCACTTGATTCCCGGTTT -ACGGAAGCACTTGATTCCGTGGTT -ACGGAAGCACTTGATTCCGCCTTT -ACGGAAGCACTTGATTCCGGTCTT -ACGGAAGCACTTGATTCCACGCTT -ACGGAAGCACTTGATTCCAGCGTT -ACGGAAGCACTTGATTCCTTCGTC -ACGGAAGCACTTGATTCCTCTCTC -ACGGAAGCACTTGATTCCTGGATC -ACGGAAGCACTTGATTCCCACTTC -ACGGAAGCACTTGATTCCGTACTC -ACGGAAGCACTTGATTCCGATGTC -ACGGAAGCACTTGATTCCACAGTC -ACGGAAGCACTTGATTCCTTGCTG -ACGGAAGCACTTGATTCCTCCATG -ACGGAAGCACTTGATTCCTGTGTG -ACGGAAGCACTTGATTCCCTAGTG -ACGGAAGCACTTGATTCCCATCTG -ACGGAAGCACTTGATTCCGAGTTG -ACGGAAGCACTTGATTCCAGACTG -ACGGAAGCACTTGATTCCTCGGTA -ACGGAAGCACTTGATTCCTGCCTA -ACGGAAGCACTTGATTCCCCACTA -ACGGAAGCACTTGATTCCGGAGTA -ACGGAAGCACTTGATTCCTCGTCT -ACGGAAGCACTTGATTCCTGCACT -ACGGAAGCACTTGATTCCCTGACT -ACGGAAGCACTTGATTCCCAACCT -ACGGAAGCACTTGATTCCGCTACT -ACGGAAGCACTTGATTCCGGATCT -ACGGAAGCACTTGATTCCAAGGCT -ACGGAAGCACTTGATTCCTCAACC -ACGGAAGCACTTGATTCCTGTTCC -ACGGAAGCACTTGATTCCATTCCC -ACGGAAGCACTTGATTCCTTCTCG -ACGGAAGCACTTGATTCCTAGACG -ACGGAAGCACTTGATTCCGTAACG -ACGGAAGCACTTGATTCCACTTCG -ACGGAAGCACTTGATTCCTACGCA -ACGGAAGCACTTGATTCCCTTGCA -ACGGAAGCACTTGATTCCCGAACA -ACGGAAGCACTTGATTCCCAGTCA -ACGGAAGCACTTGATTCCGATCCA -ACGGAAGCACTTGATTCCACGACA -ACGGAAGCACTTGATTCCAGCTCA -ACGGAAGCACTTGATTCCTCACGT -ACGGAAGCACTTGATTCCCGTAGT -ACGGAAGCACTTGATTCCGTCAGT -ACGGAAGCACTTGATTCCGAAGGT -ACGGAAGCACTTGATTCCAACCGT -ACGGAAGCACTTGATTCCTTGTGC -ACGGAAGCACTTGATTCCCTAAGC -ACGGAAGCACTTGATTCCACTAGC -ACGGAAGCACTTGATTCCAGATGC -ACGGAAGCACTTGATTCCTGAAGG -ACGGAAGCACTTGATTCCCAATGG -ACGGAAGCACTTGATTCCATGAGG -ACGGAAGCACTTGATTCCAATGGG -ACGGAAGCACTTGATTCCTCCTGA -ACGGAAGCACTTGATTCCTAGCGA -ACGGAAGCACTTGATTCCCACAGA -ACGGAAGCACTTGATTCCGCAAGA -ACGGAAGCACTTGATTCCGGTTGA -ACGGAAGCACTTGATTCCTCCGAT -ACGGAAGCACTTGATTCCTGGCAT -ACGGAAGCACTTGATTCCCGAGAT -ACGGAAGCACTTGATTCCTACCAC -ACGGAAGCACTTGATTCCCAGAAC -ACGGAAGCACTTGATTCCGTCTAC -ACGGAAGCACTTGATTCCACGTAC -ACGGAAGCACTTGATTCCAGTGAC -ACGGAAGCACTTGATTCCCTGTAG -ACGGAAGCACTTGATTCCCCTAAG -ACGGAAGCACTTGATTCCGTTCAG -ACGGAAGCACTTGATTCCGCATAG -ACGGAAGCACTTGATTCCGACAAG -ACGGAAGCACTTGATTCCAAGCAG -ACGGAAGCACTTGATTCCCGTCAA -ACGGAAGCACTTGATTCCGCTGAA -ACGGAAGCACTTGATTCCAGTACG -ACGGAAGCACTTGATTCCATCCGA -ACGGAAGCACTTGATTCCATGGGA -ACGGAAGCACTTGATTCCGTGCAA -ACGGAAGCACTTGATTCCGAGGAA -ACGGAAGCACTTGATTCCCAGGTA -ACGGAAGCACTTGATTCCGACTCT -ACGGAAGCACTTGATTCCAGTCCT -ACGGAAGCACTTGATTCCTAAGCC -ACGGAAGCACTTGATTCCATAGCC -ACGGAAGCACTTGATTCCTAACCG -ACGGAAGCACTTGATTCCATGCCA -ACGGAAGCACTTCATTGGGGAAAC -ACGGAAGCACTTCATTGGAACACC -ACGGAAGCACTTCATTGGATCGAG -ACGGAAGCACTTCATTGGCTCCTT -ACGGAAGCACTTCATTGGCCTGTT -ACGGAAGCACTTCATTGGCGGTTT -ACGGAAGCACTTCATTGGGTGGTT -ACGGAAGCACTTCATTGGGCCTTT -ACGGAAGCACTTCATTGGGGTCTT -ACGGAAGCACTTCATTGGACGCTT -ACGGAAGCACTTCATTGGAGCGTT -ACGGAAGCACTTCATTGGTTCGTC -ACGGAAGCACTTCATTGGTCTCTC -ACGGAAGCACTTCATTGGTGGATC -ACGGAAGCACTTCATTGGCACTTC -ACGGAAGCACTTCATTGGGTACTC -ACGGAAGCACTTCATTGGGATGTC -ACGGAAGCACTTCATTGGACAGTC -ACGGAAGCACTTCATTGGTTGCTG -ACGGAAGCACTTCATTGGTCCATG -ACGGAAGCACTTCATTGGTGTGTG -ACGGAAGCACTTCATTGGCTAGTG -ACGGAAGCACTTCATTGGCATCTG -ACGGAAGCACTTCATTGGGAGTTG -ACGGAAGCACTTCATTGGAGACTG -ACGGAAGCACTTCATTGGTCGGTA -ACGGAAGCACTTCATTGGTGCCTA -ACGGAAGCACTTCATTGGCCACTA -ACGGAAGCACTTCATTGGGGAGTA -ACGGAAGCACTTCATTGGTCGTCT -ACGGAAGCACTTCATTGGTGCACT -ACGGAAGCACTTCATTGGCTGACT -ACGGAAGCACTTCATTGGCAACCT -ACGGAAGCACTTCATTGGGCTACT -ACGGAAGCACTTCATTGGGGATCT -ACGGAAGCACTTCATTGGAAGGCT -ACGGAAGCACTTCATTGGTCAACC -ACGGAAGCACTTCATTGGTGTTCC -ACGGAAGCACTTCATTGGATTCCC -ACGGAAGCACTTCATTGGTTCTCG -ACGGAAGCACTTCATTGGTAGACG -ACGGAAGCACTTCATTGGGTAACG -ACGGAAGCACTTCATTGGACTTCG -ACGGAAGCACTTCATTGGTACGCA -ACGGAAGCACTTCATTGGCTTGCA -ACGGAAGCACTTCATTGGCGAACA -ACGGAAGCACTTCATTGGCAGTCA -ACGGAAGCACTTCATTGGGATCCA -ACGGAAGCACTTCATTGGACGACA -ACGGAAGCACTTCATTGGAGCTCA -ACGGAAGCACTTCATTGGTCACGT -ACGGAAGCACTTCATTGGCGTAGT -ACGGAAGCACTTCATTGGGTCAGT -ACGGAAGCACTTCATTGGGAAGGT -ACGGAAGCACTTCATTGGAACCGT -ACGGAAGCACTTCATTGGTTGTGC -ACGGAAGCACTTCATTGGCTAAGC -ACGGAAGCACTTCATTGGACTAGC -ACGGAAGCACTTCATTGGAGATGC -ACGGAAGCACTTCATTGGTGAAGG -ACGGAAGCACTTCATTGGCAATGG -ACGGAAGCACTTCATTGGATGAGG -ACGGAAGCACTTCATTGGAATGGG -ACGGAAGCACTTCATTGGTCCTGA -ACGGAAGCACTTCATTGGTAGCGA -ACGGAAGCACTTCATTGGCACAGA -ACGGAAGCACTTCATTGGGCAAGA -ACGGAAGCACTTCATTGGGGTTGA -ACGGAAGCACTTCATTGGTCCGAT -ACGGAAGCACTTCATTGGTGGCAT -ACGGAAGCACTTCATTGGCGAGAT -ACGGAAGCACTTCATTGGTACCAC -ACGGAAGCACTTCATTGGCAGAAC -ACGGAAGCACTTCATTGGGTCTAC -ACGGAAGCACTTCATTGGACGTAC -ACGGAAGCACTTCATTGGAGTGAC -ACGGAAGCACTTCATTGGCTGTAG -ACGGAAGCACTTCATTGGCCTAAG -ACGGAAGCACTTCATTGGGTTCAG -ACGGAAGCACTTCATTGGGCATAG -ACGGAAGCACTTCATTGGGACAAG -ACGGAAGCACTTCATTGGAAGCAG -ACGGAAGCACTTCATTGGCGTCAA -ACGGAAGCACTTCATTGGGCTGAA -ACGGAAGCACTTCATTGGAGTACG -ACGGAAGCACTTCATTGGATCCGA -ACGGAAGCACTTCATTGGATGGGA -ACGGAAGCACTTCATTGGGTGCAA -ACGGAAGCACTTCATTGGGAGGAA -ACGGAAGCACTTCATTGGCAGGTA -ACGGAAGCACTTCATTGGGACTCT -ACGGAAGCACTTCATTGGAGTCCT -ACGGAAGCACTTCATTGGTAAGCC -ACGGAAGCACTTCATTGGATAGCC -ACGGAAGCACTTCATTGGTAACCG -ACGGAAGCACTTCATTGGATGCCA -ACGGAAGCACTTGATCGAGGAAAC -ACGGAAGCACTTGATCGAAACACC -ACGGAAGCACTTGATCGAATCGAG -ACGGAAGCACTTGATCGACTCCTT -ACGGAAGCACTTGATCGACCTGTT -ACGGAAGCACTTGATCGACGGTTT -ACGGAAGCACTTGATCGAGTGGTT -ACGGAAGCACTTGATCGAGCCTTT -ACGGAAGCACTTGATCGAGGTCTT -ACGGAAGCACTTGATCGAACGCTT -ACGGAAGCACTTGATCGAAGCGTT -ACGGAAGCACTTGATCGATTCGTC -ACGGAAGCACTTGATCGATCTCTC -ACGGAAGCACTTGATCGATGGATC -ACGGAAGCACTTGATCGACACTTC -ACGGAAGCACTTGATCGAGTACTC -ACGGAAGCACTTGATCGAGATGTC -ACGGAAGCACTTGATCGAACAGTC -ACGGAAGCACTTGATCGATTGCTG -ACGGAAGCACTTGATCGATCCATG -ACGGAAGCACTTGATCGATGTGTG -ACGGAAGCACTTGATCGACTAGTG -ACGGAAGCACTTGATCGACATCTG -ACGGAAGCACTTGATCGAGAGTTG -ACGGAAGCACTTGATCGAAGACTG -ACGGAAGCACTTGATCGATCGGTA -ACGGAAGCACTTGATCGATGCCTA -ACGGAAGCACTTGATCGACCACTA -ACGGAAGCACTTGATCGAGGAGTA -ACGGAAGCACTTGATCGATCGTCT -ACGGAAGCACTTGATCGATGCACT -ACGGAAGCACTTGATCGACTGACT -ACGGAAGCACTTGATCGACAACCT -ACGGAAGCACTTGATCGAGCTACT -ACGGAAGCACTTGATCGAGGATCT -ACGGAAGCACTTGATCGAAAGGCT -ACGGAAGCACTTGATCGATCAACC -ACGGAAGCACTTGATCGATGTTCC -ACGGAAGCACTTGATCGAATTCCC -ACGGAAGCACTTGATCGATTCTCG -ACGGAAGCACTTGATCGATAGACG -ACGGAAGCACTTGATCGAGTAACG -ACGGAAGCACTTGATCGAACTTCG -ACGGAAGCACTTGATCGATACGCA -ACGGAAGCACTTGATCGACTTGCA -ACGGAAGCACTTGATCGACGAACA -ACGGAAGCACTTGATCGACAGTCA -ACGGAAGCACTTGATCGAGATCCA -ACGGAAGCACTTGATCGAACGACA -ACGGAAGCACTTGATCGAAGCTCA -ACGGAAGCACTTGATCGATCACGT -ACGGAAGCACTTGATCGACGTAGT -ACGGAAGCACTTGATCGAGTCAGT -ACGGAAGCACTTGATCGAGAAGGT -ACGGAAGCACTTGATCGAAACCGT -ACGGAAGCACTTGATCGATTGTGC -ACGGAAGCACTTGATCGACTAAGC -ACGGAAGCACTTGATCGAACTAGC -ACGGAAGCACTTGATCGAAGATGC -ACGGAAGCACTTGATCGATGAAGG -ACGGAAGCACTTGATCGACAATGG -ACGGAAGCACTTGATCGAATGAGG -ACGGAAGCACTTGATCGAAATGGG -ACGGAAGCACTTGATCGATCCTGA -ACGGAAGCACTTGATCGATAGCGA -ACGGAAGCACTTGATCGACACAGA -ACGGAAGCACTTGATCGAGCAAGA -ACGGAAGCACTTGATCGAGGTTGA -ACGGAAGCACTTGATCGATCCGAT -ACGGAAGCACTTGATCGATGGCAT -ACGGAAGCACTTGATCGACGAGAT -ACGGAAGCACTTGATCGATACCAC -ACGGAAGCACTTGATCGACAGAAC -ACGGAAGCACTTGATCGAGTCTAC -ACGGAAGCACTTGATCGAACGTAC -ACGGAAGCACTTGATCGAAGTGAC -ACGGAAGCACTTGATCGACTGTAG -ACGGAAGCACTTGATCGACCTAAG -ACGGAAGCACTTGATCGAGTTCAG -ACGGAAGCACTTGATCGAGCATAG -ACGGAAGCACTTGATCGAGACAAG -ACGGAAGCACTTGATCGAAAGCAG -ACGGAAGCACTTGATCGACGTCAA -ACGGAAGCACTTGATCGAGCTGAA -ACGGAAGCACTTGATCGAAGTACG -ACGGAAGCACTTGATCGAATCCGA -ACGGAAGCACTTGATCGAATGGGA -ACGGAAGCACTTGATCGAGTGCAA -ACGGAAGCACTTGATCGAGAGGAA -ACGGAAGCACTTGATCGACAGGTA -ACGGAAGCACTTGATCGAGACTCT -ACGGAAGCACTTGATCGAAGTCCT -ACGGAAGCACTTGATCGATAAGCC -ACGGAAGCACTTGATCGAATAGCC -ACGGAAGCACTTGATCGATAACCG -ACGGAAGCACTTGATCGAATGCCA -ACGGAAGCACTTCACTACGGAAAC -ACGGAAGCACTTCACTACAACACC -ACGGAAGCACTTCACTACATCGAG -ACGGAAGCACTTCACTACCTCCTT -ACGGAAGCACTTCACTACCCTGTT -ACGGAAGCACTTCACTACCGGTTT -ACGGAAGCACTTCACTACGTGGTT -ACGGAAGCACTTCACTACGCCTTT -ACGGAAGCACTTCACTACGGTCTT -ACGGAAGCACTTCACTACACGCTT -ACGGAAGCACTTCACTACAGCGTT -ACGGAAGCACTTCACTACTTCGTC -ACGGAAGCACTTCACTACTCTCTC -ACGGAAGCACTTCACTACTGGATC -ACGGAAGCACTTCACTACCACTTC -ACGGAAGCACTTCACTACGTACTC -ACGGAAGCACTTCACTACGATGTC -ACGGAAGCACTTCACTACACAGTC -ACGGAAGCACTTCACTACTTGCTG -ACGGAAGCACTTCACTACTCCATG -ACGGAAGCACTTCACTACTGTGTG -ACGGAAGCACTTCACTACCTAGTG -ACGGAAGCACTTCACTACCATCTG -ACGGAAGCACTTCACTACGAGTTG -ACGGAAGCACTTCACTACAGACTG -ACGGAAGCACTTCACTACTCGGTA -ACGGAAGCACTTCACTACTGCCTA -ACGGAAGCACTTCACTACCCACTA -ACGGAAGCACTTCACTACGGAGTA -ACGGAAGCACTTCACTACTCGTCT -ACGGAAGCACTTCACTACTGCACT -ACGGAAGCACTTCACTACCTGACT -ACGGAAGCACTTCACTACCAACCT -ACGGAAGCACTTCACTACGCTACT -ACGGAAGCACTTCACTACGGATCT -ACGGAAGCACTTCACTACAAGGCT -ACGGAAGCACTTCACTACTCAACC -ACGGAAGCACTTCACTACTGTTCC -ACGGAAGCACTTCACTACATTCCC -ACGGAAGCACTTCACTACTTCTCG -ACGGAAGCACTTCACTACTAGACG -ACGGAAGCACTTCACTACGTAACG -ACGGAAGCACTTCACTACACTTCG -ACGGAAGCACTTCACTACTACGCA -ACGGAAGCACTTCACTACCTTGCA -ACGGAAGCACTTCACTACCGAACA -ACGGAAGCACTTCACTACCAGTCA -ACGGAAGCACTTCACTACGATCCA -ACGGAAGCACTTCACTACACGACA -ACGGAAGCACTTCACTACAGCTCA -ACGGAAGCACTTCACTACTCACGT -ACGGAAGCACTTCACTACCGTAGT -ACGGAAGCACTTCACTACGTCAGT -ACGGAAGCACTTCACTACGAAGGT -ACGGAAGCACTTCACTACAACCGT -ACGGAAGCACTTCACTACTTGTGC -ACGGAAGCACTTCACTACCTAAGC -ACGGAAGCACTTCACTACACTAGC -ACGGAAGCACTTCACTACAGATGC -ACGGAAGCACTTCACTACTGAAGG -ACGGAAGCACTTCACTACCAATGG -ACGGAAGCACTTCACTACATGAGG -ACGGAAGCACTTCACTACAATGGG -ACGGAAGCACTTCACTACTCCTGA -ACGGAAGCACTTCACTACTAGCGA -ACGGAAGCACTTCACTACCACAGA -ACGGAAGCACTTCACTACGCAAGA -ACGGAAGCACTTCACTACGGTTGA -ACGGAAGCACTTCACTACTCCGAT -ACGGAAGCACTTCACTACTGGCAT -ACGGAAGCACTTCACTACCGAGAT -ACGGAAGCACTTCACTACTACCAC -ACGGAAGCACTTCACTACCAGAAC -ACGGAAGCACTTCACTACGTCTAC -ACGGAAGCACTTCACTACACGTAC -ACGGAAGCACTTCACTACAGTGAC -ACGGAAGCACTTCACTACCTGTAG -ACGGAAGCACTTCACTACCCTAAG -ACGGAAGCACTTCACTACGTTCAG -ACGGAAGCACTTCACTACGCATAG -ACGGAAGCACTTCACTACGACAAG -ACGGAAGCACTTCACTACAAGCAG -ACGGAAGCACTTCACTACCGTCAA -ACGGAAGCACTTCACTACGCTGAA -ACGGAAGCACTTCACTACAGTACG -ACGGAAGCACTTCACTACATCCGA -ACGGAAGCACTTCACTACATGGGA -ACGGAAGCACTTCACTACGTGCAA -ACGGAAGCACTTCACTACGAGGAA -ACGGAAGCACTTCACTACCAGGTA -ACGGAAGCACTTCACTACGACTCT -ACGGAAGCACTTCACTACAGTCCT -ACGGAAGCACTTCACTACTAAGCC -ACGGAAGCACTTCACTACATAGCC -ACGGAAGCACTTCACTACTAACCG -ACGGAAGCACTTCACTACATGCCA -ACGGAAGCACTTAACCAGGGAAAC -ACGGAAGCACTTAACCAGAACACC -ACGGAAGCACTTAACCAGATCGAG -ACGGAAGCACTTAACCAGCTCCTT -ACGGAAGCACTTAACCAGCCTGTT -ACGGAAGCACTTAACCAGCGGTTT -ACGGAAGCACTTAACCAGGTGGTT -ACGGAAGCACTTAACCAGGCCTTT -ACGGAAGCACTTAACCAGGGTCTT -ACGGAAGCACTTAACCAGACGCTT -ACGGAAGCACTTAACCAGAGCGTT -ACGGAAGCACTTAACCAGTTCGTC -ACGGAAGCACTTAACCAGTCTCTC -ACGGAAGCACTTAACCAGTGGATC -ACGGAAGCACTTAACCAGCACTTC -ACGGAAGCACTTAACCAGGTACTC -ACGGAAGCACTTAACCAGGATGTC -ACGGAAGCACTTAACCAGACAGTC -ACGGAAGCACTTAACCAGTTGCTG -ACGGAAGCACTTAACCAGTCCATG -ACGGAAGCACTTAACCAGTGTGTG -ACGGAAGCACTTAACCAGCTAGTG -ACGGAAGCACTTAACCAGCATCTG -ACGGAAGCACTTAACCAGGAGTTG -ACGGAAGCACTTAACCAGAGACTG -ACGGAAGCACTTAACCAGTCGGTA -ACGGAAGCACTTAACCAGTGCCTA -ACGGAAGCACTTAACCAGCCACTA -ACGGAAGCACTTAACCAGGGAGTA -ACGGAAGCACTTAACCAGTCGTCT -ACGGAAGCACTTAACCAGTGCACT -ACGGAAGCACTTAACCAGCTGACT -ACGGAAGCACTTAACCAGCAACCT -ACGGAAGCACTTAACCAGGCTACT -ACGGAAGCACTTAACCAGGGATCT -ACGGAAGCACTTAACCAGAAGGCT -ACGGAAGCACTTAACCAGTCAACC -ACGGAAGCACTTAACCAGTGTTCC -ACGGAAGCACTTAACCAGATTCCC -ACGGAAGCACTTAACCAGTTCTCG -ACGGAAGCACTTAACCAGTAGACG -ACGGAAGCACTTAACCAGGTAACG -ACGGAAGCACTTAACCAGACTTCG -ACGGAAGCACTTAACCAGTACGCA -ACGGAAGCACTTAACCAGCTTGCA -ACGGAAGCACTTAACCAGCGAACA -ACGGAAGCACTTAACCAGCAGTCA -ACGGAAGCACTTAACCAGGATCCA -ACGGAAGCACTTAACCAGACGACA -ACGGAAGCACTTAACCAGAGCTCA -ACGGAAGCACTTAACCAGTCACGT -ACGGAAGCACTTAACCAGCGTAGT -ACGGAAGCACTTAACCAGGTCAGT -ACGGAAGCACTTAACCAGGAAGGT -ACGGAAGCACTTAACCAGAACCGT -ACGGAAGCACTTAACCAGTTGTGC -ACGGAAGCACTTAACCAGCTAAGC -ACGGAAGCACTTAACCAGACTAGC -ACGGAAGCACTTAACCAGAGATGC -ACGGAAGCACTTAACCAGTGAAGG -ACGGAAGCACTTAACCAGCAATGG -ACGGAAGCACTTAACCAGATGAGG -ACGGAAGCACTTAACCAGAATGGG -ACGGAAGCACTTAACCAGTCCTGA -ACGGAAGCACTTAACCAGTAGCGA -ACGGAAGCACTTAACCAGCACAGA -ACGGAAGCACTTAACCAGGCAAGA -ACGGAAGCACTTAACCAGGGTTGA -ACGGAAGCACTTAACCAGTCCGAT -ACGGAAGCACTTAACCAGTGGCAT -ACGGAAGCACTTAACCAGCGAGAT -ACGGAAGCACTTAACCAGTACCAC -ACGGAAGCACTTAACCAGCAGAAC -ACGGAAGCACTTAACCAGGTCTAC -ACGGAAGCACTTAACCAGACGTAC -ACGGAAGCACTTAACCAGAGTGAC -ACGGAAGCACTTAACCAGCTGTAG -ACGGAAGCACTTAACCAGCCTAAG -ACGGAAGCACTTAACCAGGTTCAG -ACGGAAGCACTTAACCAGGCATAG -ACGGAAGCACTTAACCAGGACAAG -ACGGAAGCACTTAACCAGAAGCAG -ACGGAAGCACTTAACCAGCGTCAA -ACGGAAGCACTTAACCAGGCTGAA -ACGGAAGCACTTAACCAGAGTACG -ACGGAAGCACTTAACCAGATCCGA -ACGGAAGCACTTAACCAGATGGGA -ACGGAAGCACTTAACCAGGTGCAA -ACGGAAGCACTTAACCAGGAGGAA -ACGGAAGCACTTAACCAGCAGGTA -ACGGAAGCACTTAACCAGGACTCT -ACGGAAGCACTTAACCAGAGTCCT -ACGGAAGCACTTAACCAGTAAGCC -ACGGAAGCACTTAACCAGATAGCC -ACGGAAGCACTTAACCAGTAACCG -ACGGAAGCACTTAACCAGATGCCA -ACGGAAGCACTTTACGTCGGAAAC -ACGGAAGCACTTTACGTCAACACC -ACGGAAGCACTTTACGTCATCGAG -ACGGAAGCACTTTACGTCCTCCTT -ACGGAAGCACTTTACGTCCCTGTT -ACGGAAGCACTTTACGTCCGGTTT -ACGGAAGCACTTTACGTCGTGGTT -ACGGAAGCACTTTACGTCGCCTTT -ACGGAAGCACTTTACGTCGGTCTT -ACGGAAGCACTTTACGTCACGCTT -ACGGAAGCACTTTACGTCAGCGTT -ACGGAAGCACTTTACGTCTTCGTC -ACGGAAGCACTTTACGTCTCTCTC -ACGGAAGCACTTTACGTCTGGATC -ACGGAAGCACTTTACGTCCACTTC -ACGGAAGCACTTTACGTCGTACTC -ACGGAAGCACTTTACGTCGATGTC -ACGGAAGCACTTTACGTCACAGTC -ACGGAAGCACTTTACGTCTTGCTG -ACGGAAGCACTTTACGTCTCCATG -ACGGAAGCACTTTACGTCTGTGTG -ACGGAAGCACTTTACGTCCTAGTG -ACGGAAGCACTTTACGTCCATCTG -ACGGAAGCACTTTACGTCGAGTTG -ACGGAAGCACTTTACGTCAGACTG -ACGGAAGCACTTTACGTCTCGGTA -ACGGAAGCACTTTACGTCTGCCTA -ACGGAAGCACTTTACGTCCCACTA -ACGGAAGCACTTTACGTCGGAGTA -ACGGAAGCACTTTACGTCTCGTCT -ACGGAAGCACTTTACGTCTGCACT -ACGGAAGCACTTTACGTCCTGACT -ACGGAAGCACTTTACGTCCAACCT -ACGGAAGCACTTTACGTCGCTACT -ACGGAAGCACTTTACGTCGGATCT -ACGGAAGCACTTTACGTCAAGGCT -ACGGAAGCACTTTACGTCTCAACC -ACGGAAGCACTTTACGTCTGTTCC -ACGGAAGCACTTTACGTCATTCCC -ACGGAAGCACTTTACGTCTTCTCG -ACGGAAGCACTTTACGTCTAGACG -ACGGAAGCACTTTACGTCGTAACG -ACGGAAGCACTTTACGTCACTTCG -ACGGAAGCACTTTACGTCTACGCA -ACGGAAGCACTTTACGTCCTTGCA -ACGGAAGCACTTTACGTCCGAACA -ACGGAAGCACTTTACGTCCAGTCA -ACGGAAGCACTTTACGTCGATCCA -ACGGAAGCACTTTACGTCACGACA -ACGGAAGCACTTTACGTCAGCTCA -ACGGAAGCACTTTACGTCTCACGT -ACGGAAGCACTTTACGTCCGTAGT -ACGGAAGCACTTTACGTCGTCAGT -ACGGAAGCACTTTACGTCGAAGGT -ACGGAAGCACTTTACGTCAACCGT -ACGGAAGCACTTTACGTCTTGTGC -ACGGAAGCACTTTACGTCCTAAGC -ACGGAAGCACTTTACGTCACTAGC -ACGGAAGCACTTTACGTCAGATGC -ACGGAAGCACTTTACGTCTGAAGG -ACGGAAGCACTTTACGTCCAATGG -ACGGAAGCACTTTACGTCATGAGG -ACGGAAGCACTTTACGTCAATGGG -ACGGAAGCACTTTACGTCTCCTGA -ACGGAAGCACTTTACGTCTAGCGA -ACGGAAGCACTTTACGTCCACAGA -ACGGAAGCACTTTACGTCGCAAGA -ACGGAAGCACTTTACGTCGGTTGA -ACGGAAGCACTTTACGTCTCCGAT -ACGGAAGCACTTTACGTCTGGCAT -ACGGAAGCACTTTACGTCCGAGAT -ACGGAAGCACTTTACGTCTACCAC -ACGGAAGCACTTTACGTCCAGAAC -ACGGAAGCACTTTACGTCGTCTAC -ACGGAAGCACTTTACGTCACGTAC -ACGGAAGCACTTTACGTCAGTGAC -ACGGAAGCACTTTACGTCCTGTAG -ACGGAAGCACTTTACGTCCCTAAG -ACGGAAGCACTTTACGTCGTTCAG -ACGGAAGCACTTTACGTCGCATAG -ACGGAAGCACTTTACGTCGACAAG -ACGGAAGCACTTTACGTCAAGCAG -ACGGAAGCACTTTACGTCCGTCAA -ACGGAAGCACTTTACGTCGCTGAA -ACGGAAGCACTTTACGTCAGTACG -ACGGAAGCACTTTACGTCATCCGA -ACGGAAGCACTTTACGTCATGGGA -ACGGAAGCACTTTACGTCGTGCAA -ACGGAAGCACTTTACGTCGAGGAA -ACGGAAGCACTTTACGTCCAGGTA -ACGGAAGCACTTTACGTCGACTCT -ACGGAAGCACTTTACGTCAGTCCT -ACGGAAGCACTTTACGTCTAAGCC -ACGGAAGCACTTTACGTCATAGCC -ACGGAAGCACTTTACGTCTAACCG -ACGGAAGCACTTTACGTCATGCCA -ACGGAAGCACTTTACACGGGAAAC -ACGGAAGCACTTTACACGAACACC -ACGGAAGCACTTTACACGATCGAG -ACGGAAGCACTTTACACGCTCCTT -ACGGAAGCACTTTACACGCCTGTT -ACGGAAGCACTTTACACGCGGTTT -ACGGAAGCACTTTACACGGTGGTT -ACGGAAGCACTTTACACGGCCTTT -ACGGAAGCACTTTACACGGGTCTT -ACGGAAGCACTTTACACGACGCTT -ACGGAAGCACTTTACACGAGCGTT -ACGGAAGCACTTTACACGTTCGTC -ACGGAAGCACTTTACACGTCTCTC -ACGGAAGCACTTTACACGTGGATC -ACGGAAGCACTTTACACGCACTTC -ACGGAAGCACTTTACACGGTACTC -ACGGAAGCACTTTACACGGATGTC -ACGGAAGCACTTTACACGACAGTC -ACGGAAGCACTTTACACGTTGCTG -ACGGAAGCACTTTACACGTCCATG -ACGGAAGCACTTTACACGTGTGTG -ACGGAAGCACTTTACACGCTAGTG -ACGGAAGCACTTTACACGCATCTG -ACGGAAGCACTTTACACGGAGTTG -ACGGAAGCACTTTACACGAGACTG -ACGGAAGCACTTTACACGTCGGTA -ACGGAAGCACTTTACACGTGCCTA -ACGGAAGCACTTTACACGCCACTA -ACGGAAGCACTTTACACGGGAGTA -ACGGAAGCACTTTACACGTCGTCT -ACGGAAGCACTTTACACGTGCACT -ACGGAAGCACTTTACACGCTGACT -ACGGAAGCACTTTACACGCAACCT -ACGGAAGCACTTTACACGGCTACT -ACGGAAGCACTTTACACGGGATCT -ACGGAAGCACTTTACACGAAGGCT -ACGGAAGCACTTTACACGTCAACC -ACGGAAGCACTTTACACGTGTTCC -ACGGAAGCACTTTACACGATTCCC -ACGGAAGCACTTTACACGTTCTCG -ACGGAAGCACTTTACACGTAGACG -ACGGAAGCACTTTACACGGTAACG -ACGGAAGCACTTTACACGACTTCG -ACGGAAGCACTTTACACGTACGCA -ACGGAAGCACTTTACACGCTTGCA -ACGGAAGCACTTTACACGCGAACA -ACGGAAGCACTTTACACGCAGTCA -ACGGAAGCACTTTACACGGATCCA -ACGGAAGCACTTTACACGACGACA -ACGGAAGCACTTTACACGAGCTCA -ACGGAAGCACTTTACACGTCACGT -ACGGAAGCACTTTACACGCGTAGT -ACGGAAGCACTTTACACGGTCAGT -ACGGAAGCACTTTACACGGAAGGT -ACGGAAGCACTTTACACGAACCGT -ACGGAAGCACTTTACACGTTGTGC -ACGGAAGCACTTTACACGCTAAGC -ACGGAAGCACTTTACACGACTAGC -ACGGAAGCACTTTACACGAGATGC -ACGGAAGCACTTTACACGTGAAGG -ACGGAAGCACTTTACACGCAATGG -ACGGAAGCACTTTACACGATGAGG -ACGGAAGCACTTTACACGAATGGG -ACGGAAGCACTTTACACGTCCTGA -ACGGAAGCACTTTACACGTAGCGA -ACGGAAGCACTTTACACGCACAGA -ACGGAAGCACTTTACACGGCAAGA -ACGGAAGCACTTTACACGGGTTGA -ACGGAAGCACTTTACACGTCCGAT -ACGGAAGCACTTTACACGTGGCAT -ACGGAAGCACTTTACACGCGAGAT -ACGGAAGCACTTTACACGTACCAC -ACGGAAGCACTTTACACGCAGAAC -ACGGAAGCACTTTACACGGTCTAC -ACGGAAGCACTTTACACGACGTAC -ACGGAAGCACTTTACACGAGTGAC -ACGGAAGCACTTTACACGCTGTAG -ACGGAAGCACTTTACACGCCTAAG -ACGGAAGCACTTTACACGGTTCAG -ACGGAAGCACTTTACACGGCATAG -ACGGAAGCACTTTACACGGACAAG -ACGGAAGCACTTTACACGAAGCAG -ACGGAAGCACTTTACACGCGTCAA -ACGGAAGCACTTTACACGGCTGAA -ACGGAAGCACTTTACACGAGTACG -ACGGAAGCACTTTACACGATCCGA -ACGGAAGCACTTTACACGATGGGA -ACGGAAGCACTTTACACGGTGCAA -ACGGAAGCACTTTACACGGAGGAA -ACGGAAGCACTTTACACGCAGGTA -ACGGAAGCACTTTACACGGACTCT -ACGGAAGCACTTTACACGAGTCCT -ACGGAAGCACTTTACACGTAAGCC -ACGGAAGCACTTTACACGATAGCC -ACGGAAGCACTTTACACGTAACCG -ACGGAAGCACTTTACACGATGCCA -ACGGAAGCACTTGACAGTGGAAAC -ACGGAAGCACTTGACAGTAACACC -ACGGAAGCACTTGACAGTATCGAG -ACGGAAGCACTTGACAGTCTCCTT -ACGGAAGCACTTGACAGTCCTGTT -ACGGAAGCACTTGACAGTCGGTTT -ACGGAAGCACTTGACAGTGTGGTT -ACGGAAGCACTTGACAGTGCCTTT -ACGGAAGCACTTGACAGTGGTCTT -ACGGAAGCACTTGACAGTACGCTT -ACGGAAGCACTTGACAGTAGCGTT -ACGGAAGCACTTGACAGTTTCGTC -ACGGAAGCACTTGACAGTTCTCTC -ACGGAAGCACTTGACAGTTGGATC -ACGGAAGCACTTGACAGTCACTTC -ACGGAAGCACTTGACAGTGTACTC -ACGGAAGCACTTGACAGTGATGTC -ACGGAAGCACTTGACAGTACAGTC -ACGGAAGCACTTGACAGTTTGCTG -ACGGAAGCACTTGACAGTTCCATG -ACGGAAGCACTTGACAGTTGTGTG -ACGGAAGCACTTGACAGTCTAGTG -ACGGAAGCACTTGACAGTCATCTG -ACGGAAGCACTTGACAGTGAGTTG -ACGGAAGCACTTGACAGTAGACTG -ACGGAAGCACTTGACAGTTCGGTA -ACGGAAGCACTTGACAGTTGCCTA -ACGGAAGCACTTGACAGTCCACTA -ACGGAAGCACTTGACAGTGGAGTA -ACGGAAGCACTTGACAGTTCGTCT -ACGGAAGCACTTGACAGTTGCACT -ACGGAAGCACTTGACAGTCTGACT -ACGGAAGCACTTGACAGTCAACCT -ACGGAAGCACTTGACAGTGCTACT -ACGGAAGCACTTGACAGTGGATCT -ACGGAAGCACTTGACAGTAAGGCT -ACGGAAGCACTTGACAGTTCAACC -ACGGAAGCACTTGACAGTTGTTCC -ACGGAAGCACTTGACAGTATTCCC -ACGGAAGCACTTGACAGTTTCTCG -ACGGAAGCACTTGACAGTTAGACG -ACGGAAGCACTTGACAGTGTAACG -ACGGAAGCACTTGACAGTACTTCG -ACGGAAGCACTTGACAGTTACGCA -ACGGAAGCACTTGACAGTCTTGCA -ACGGAAGCACTTGACAGTCGAACA -ACGGAAGCACTTGACAGTCAGTCA -ACGGAAGCACTTGACAGTGATCCA -ACGGAAGCACTTGACAGTACGACA -ACGGAAGCACTTGACAGTAGCTCA -ACGGAAGCACTTGACAGTTCACGT -ACGGAAGCACTTGACAGTCGTAGT -ACGGAAGCACTTGACAGTGTCAGT -ACGGAAGCACTTGACAGTGAAGGT -ACGGAAGCACTTGACAGTAACCGT -ACGGAAGCACTTGACAGTTTGTGC -ACGGAAGCACTTGACAGTCTAAGC -ACGGAAGCACTTGACAGTACTAGC -ACGGAAGCACTTGACAGTAGATGC -ACGGAAGCACTTGACAGTTGAAGG -ACGGAAGCACTTGACAGTCAATGG -ACGGAAGCACTTGACAGTATGAGG -ACGGAAGCACTTGACAGTAATGGG -ACGGAAGCACTTGACAGTTCCTGA -ACGGAAGCACTTGACAGTTAGCGA -ACGGAAGCACTTGACAGTCACAGA -ACGGAAGCACTTGACAGTGCAAGA -ACGGAAGCACTTGACAGTGGTTGA -ACGGAAGCACTTGACAGTTCCGAT -ACGGAAGCACTTGACAGTTGGCAT -ACGGAAGCACTTGACAGTCGAGAT -ACGGAAGCACTTGACAGTTACCAC -ACGGAAGCACTTGACAGTCAGAAC -ACGGAAGCACTTGACAGTGTCTAC -ACGGAAGCACTTGACAGTACGTAC -ACGGAAGCACTTGACAGTAGTGAC -ACGGAAGCACTTGACAGTCTGTAG -ACGGAAGCACTTGACAGTCCTAAG -ACGGAAGCACTTGACAGTGTTCAG -ACGGAAGCACTTGACAGTGCATAG -ACGGAAGCACTTGACAGTGACAAG -ACGGAAGCACTTGACAGTAAGCAG -ACGGAAGCACTTGACAGTCGTCAA -ACGGAAGCACTTGACAGTGCTGAA -ACGGAAGCACTTGACAGTAGTACG -ACGGAAGCACTTGACAGTATCCGA -ACGGAAGCACTTGACAGTATGGGA -ACGGAAGCACTTGACAGTGTGCAA -ACGGAAGCACTTGACAGTGAGGAA -ACGGAAGCACTTGACAGTCAGGTA -ACGGAAGCACTTGACAGTGACTCT -ACGGAAGCACTTGACAGTAGTCCT -ACGGAAGCACTTGACAGTTAAGCC -ACGGAAGCACTTGACAGTATAGCC -ACGGAAGCACTTGACAGTTAACCG -ACGGAAGCACTTGACAGTATGCCA -ACGGAAGCACTTTAGCTGGGAAAC -ACGGAAGCACTTTAGCTGAACACC -ACGGAAGCACTTTAGCTGATCGAG -ACGGAAGCACTTTAGCTGCTCCTT -ACGGAAGCACTTTAGCTGCCTGTT -ACGGAAGCACTTTAGCTGCGGTTT -ACGGAAGCACTTTAGCTGGTGGTT -ACGGAAGCACTTTAGCTGGCCTTT -ACGGAAGCACTTTAGCTGGGTCTT -ACGGAAGCACTTTAGCTGACGCTT -ACGGAAGCACTTTAGCTGAGCGTT -ACGGAAGCACTTTAGCTGTTCGTC -ACGGAAGCACTTTAGCTGTCTCTC -ACGGAAGCACTTTAGCTGTGGATC -ACGGAAGCACTTTAGCTGCACTTC -ACGGAAGCACTTTAGCTGGTACTC -ACGGAAGCACTTTAGCTGGATGTC -ACGGAAGCACTTTAGCTGACAGTC -ACGGAAGCACTTTAGCTGTTGCTG -ACGGAAGCACTTTAGCTGTCCATG -ACGGAAGCACTTTAGCTGTGTGTG -ACGGAAGCACTTTAGCTGCTAGTG -ACGGAAGCACTTTAGCTGCATCTG -ACGGAAGCACTTTAGCTGGAGTTG -ACGGAAGCACTTTAGCTGAGACTG -ACGGAAGCACTTTAGCTGTCGGTA -ACGGAAGCACTTTAGCTGTGCCTA -ACGGAAGCACTTTAGCTGCCACTA -ACGGAAGCACTTTAGCTGGGAGTA -ACGGAAGCACTTTAGCTGTCGTCT -ACGGAAGCACTTTAGCTGTGCACT -ACGGAAGCACTTTAGCTGCTGACT -ACGGAAGCACTTTAGCTGCAACCT -ACGGAAGCACTTTAGCTGGCTACT -ACGGAAGCACTTTAGCTGGGATCT -ACGGAAGCACTTTAGCTGAAGGCT -ACGGAAGCACTTTAGCTGTCAACC -ACGGAAGCACTTTAGCTGTGTTCC -ACGGAAGCACTTTAGCTGATTCCC -ACGGAAGCACTTTAGCTGTTCTCG -ACGGAAGCACTTTAGCTGTAGACG -ACGGAAGCACTTTAGCTGGTAACG -ACGGAAGCACTTTAGCTGACTTCG -ACGGAAGCACTTTAGCTGTACGCA -ACGGAAGCACTTTAGCTGCTTGCA -ACGGAAGCACTTTAGCTGCGAACA -ACGGAAGCACTTTAGCTGCAGTCA -ACGGAAGCACTTTAGCTGGATCCA -ACGGAAGCACTTTAGCTGACGACA -ACGGAAGCACTTTAGCTGAGCTCA -ACGGAAGCACTTTAGCTGTCACGT -ACGGAAGCACTTTAGCTGCGTAGT -ACGGAAGCACTTTAGCTGGTCAGT -ACGGAAGCACTTTAGCTGGAAGGT -ACGGAAGCACTTTAGCTGAACCGT -ACGGAAGCACTTTAGCTGTTGTGC -ACGGAAGCACTTTAGCTGCTAAGC -ACGGAAGCACTTTAGCTGACTAGC -ACGGAAGCACTTTAGCTGAGATGC -ACGGAAGCACTTTAGCTGTGAAGG -ACGGAAGCACTTTAGCTGCAATGG -ACGGAAGCACTTTAGCTGATGAGG -ACGGAAGCACTTTAGCTGAATGGG -ACGGAAGCACTTTAGCTGTCCTGA -ACGGAAGCACTTTAGCTGTAGCGA -ACGGAAGCACTTTAGCTGCACAGA -ACGGAAGCACTTTAGCTGGCAAGA -ACGGAAGCACTTTAGCTGGGTTGA -ACGGAAGCACTTTAGCTGTCCGAT -ACGGAAGCACTTTAGCTGTGGCAT -ACGGAAGCACTTTAGCTGCGAGAT -ACGGAAGCACTTTAGCTGTACCAC -ACGGAAGCACTTTAGCTGCAGAAC -ACGGAAGCACTTTAGCTGGTCTAC -ACGGAAGCACTTTAGCTGACGTAC -ACGGAAGCACTTTAGCTGAGTGAC -ACGGAAGCACTTTAGCTGCTGTAG -ACGGAAGCACTTTAGCTGCCTAAG -ACGGAAGCACTTTAGCTGGTTCAG -ACGGAAGCACTTTAGCTGGCATAG -ACGGAAGCACTTTAGCTGGACAAG -ACGGAAGCACTTTAGCTGAAGCAG -ACGGAAGCACTTTAGCTGCGTCAA -ACGGAAGCACTTTAGCTGGCTGAA -ACGGAAGCACTTTAGCTGAGTACG -ACGGAAGCACTTTAGCTGATCCGA -ACGGAAGCACTTTAGCTGATGGGA -ACGGAAGCACTTTAGCTGGTGCAA -ACGGAAGCACTTTAGCTGGAGGAA -ACGGAAGCACTTTAGCTGCAGGTA -ACGGAAGCACTTTAGCTGGACTCT -ACGGAAGCACTTTAGCTGAGTCCT -ACGGAAGCACTTTAGCTGTAAGCC -ACGGAAGCACTTTAGCTGATAGCC -ACGGAAGCACTTTAGCTGTAACCG -ACGGAAGCACTTTAGCTGATGCCA -ACGGAAGCACTTAAGCCTGGAAAC -ACGGAAGCACTTAAGCCTAACACC -ACGGAAGCACTTAAGCCTATCGAG -ACGGAAGCACTTAAGCCTCTCCTT -ACGGAAGCACTTAAGCCTCCTGTT -ACGGAAGCACTTAAGCCTCGGTTT -ACGGAAGCACTTAAGCCTGTGGTT -ACGGAAGCACTTAAGCCTGCCTTT -ACGGAAGCACTTAAGCCTGGTCTT -ACGGAAGCACTTAAGCCTACGCTT -ACGGAAGCACTTAAGCCTAGCGTT -ACGGAAGCACTTAAGCCTTTCGTC -ACGGAAGCACTTAAGCCTTCTCTC -ACGGAAGCACTTAAGCCTTGGATC -ACGGAAGCACTTAAGCCTCACTTC -ACGGAAGCACTTAAGCCTGTACTC -ACGGAAGCACTTAAGCCTGATGTC -ACGGAAGCACTTAAGCCTACAGTC -ACGGAAGCACTTAAGCCTTTGCTG -ACGGAAGCACTTAAGCCTTCCATG -ACGGAAGCACTTAAGCCTTGTGTG -ACGGAAGCACTTAAGCCTCTAGTG -ACGGAAGCACTTAAGCCTCATCTG -ACGGAAGCACTTAAGCCTGAGTTG -ACGGAAGCACTTAAGCCTAGACTG -ACGGAAGCACTTAAGCCTTCGGTA -ACGGAAGCACTTAAGCCTTGCCTA -ACGGAAGCACTTAAGCCTCCACTA -ACGGAAGCACTTAAGCCTGGAGTA -ACGGAAGCACTTAAGCCTTCGTCT -ACGGAAGCACTTAAGCCTTGCACT -ACGGAAGCACTTAAGCCTCTGACT -ACGGAAGCACTTAAGCCTCAACCT -ACGGAAGCACTTAAGCCTGCTACT -ACGGAAGCACTTAAGCCTGGATCT -ACGGAAGCACTTAAGCCTAAGGCT -ACGGAAGCACTTAAGCCTTCAACC -ACGGAAGCACTTAAGCCTTGTTCC -ACGGAAGCACTTAAGCCTATTCCC -ACGGAAGCACTTAAGCCTTTCTCG -ACGGAAGCACTTAAGCCTTAGACG -ACGGAAGCACTTAAGCCTGTAACG -ACGGAAGCACTTAAGCCTACTTCG -ACGGAAGCACTTAAGCCTTACGCA -ACGGAAGCACTTAAGCCTCTTGCA -ACGGAAGCACTTAAGCCTCGAACA -ACGGAAGCACTTAAGCCTCAGTCA -ACGGAAGCACTTAAGCCTGATCCA -ACGGAAGCACTTAAGCCTACGACA -ACGGAAGCACTTAAGCCTAGCTCA -ACGGAAGCACTTAAGCCTTCACGT -ACGGAAGCACTTAAGCCTCGTAGT -ACGGAAGCACTTAAGCCTGTCAGT -ACGGAAGCACTTAAGCCTGAAGGT -ACGGAAGCACTTAAGCCTAACCGT -ACGGAAGCACTTAAGCCTTTGTGC -ACGGAAGCACTTAAGCCTCTAAGC -ACGGAAGCACTTAAGCCTACTAGC -ACGGAAGCACTTAAGCCTAGATGC -ACGGAAGCACTTAAGCCTTGAAGG -ACGGAAGCACTTAAGCCTCAATGG -ACGGAAGCACTTAAGCCTATGAGG -ACGGAAGCACTTAAGCCTAATGGG -ACGGAAGCACTTAAGCCTTCCTGA -ACGGAAGCACTTAAGCCTTAGCGA -ACGGAAGCACTTAAGCCTCACAGA -ACGGAAGCACTTAAGCCTGCAAGA -ACGGAAGCACTTAAGCCTGGTTGA -ACGGAAGCACTTAAGCCTTCCGAT -ACGGAAGCACTTAAGCCTTGGCAT -ACGGAAGCACTTAAGCCTCGAGAT -ACGGAAGCACTTAAGCCTTACCAC -ACGGAAGCACTTAAGCCTCAGAAC -ACGGAAGCACTTAAGCCTGTCTAC -ACGGAAGCACTTAAGCCTACGTAC -ACGGAAGCACTTAAGCCTAGTGAC -ACGGAAGCACTTAAGCCTCTGTAG -ACGGAAGCACTTAAGCCTCCTAAG -ACGGAAGCACTTAAGCCTGTTCAG -ACGGAAGCACTTAAGCCTGCATAG -ACGGAAGCACTTAAGCCTGACAAG -ACGGAAGCACTTAAGCCTAAGCAG -ACGGAAGCACTTAAGCCTCGTCAA -ACGGAAGCACTTAAGCCTGCTGAA -ACGGAAGCACTTAAGCCTAGTACG -ACGGAAGCACTTAAGCCTATCCGA -ACGGAAGCACTTAAGCCTATGGGA -ACGGAAGCACTTAAGCCTGTGCAA -ACGGAAGCACTTAAGCCTGAGGAA -ACGGAAGCACTTAAGCCTCAGGTA -ACGGAAGCACTTAAGCCTGACTCT -ACGGAAGCACTTAAGCCTAGTCCT -ACGGAAGCACTTAAGCCTTAAGCC -ACGGAAGCACTTAAGCCTATAGCC -ACGGAAGCACTTAAGCCTTAACCG -ACGGAAGCACTTAAGCCTATGCCA -ACGGAAGCACTTCAGGTTGGAAAC -ACGGAAGCACTTCAGGTTAACACC -ACGGAAGCACTTCAGGTTATCGAG -ACGGAAGCACTTCAGGTTCTCCTT -ACGGAAGCACTTCAGGTTCCTGTT -ACGGAAGCACTTCAGGTTCGGTTT -ACGGAAGCACTTCAGGTTGTGGTT -ACGGAAGCACTTCAGGTTGCCTTT -ACGGAAGCACTTCAGGTTGGTCTT -ACGGAAGCACTTCAGGTTACGCTT -ACGGAAGCACTTCAGGTTAGCGTT -ACGGAAGCACTTCAGGTTTTCGTC -ACGGAAGCACTTCAGGTTTCTCTC -ACGGAAGCACTTCAGGTTTGGATC -ACGGAAGCACTTCAGGTTCACTTC -ACGGAAGCACTTCAGGTTGTACTC -ACGGAAGCACTTCAGGTTGATGTC -ACGGAAGCACTTCAGGTTACAGTC -ACGGAAGCACTTCAGGTTTTGCTG -ACGGAAGCACTTCAGGTTTCCATG -ACGGAAGCACTTCAGGTTTGTGTG -ACGGAAGCACTTCAGGTTCTAGTG -ACGGAAGCACTTCAGGTTCATCTG -ACGGAAGCACTTCAGGTTGAGTTG -ACGGAAGCACTTCAGGTTAGACTG -ACGGAAGCACTTCAGGTTTCGGTA -ACGGAAGCACTTCAGGTTTGCCTA -ACGGAAGCACTTCAGGTTCCACTA -ACGGAAGCACTTCAGGTTGGAGTA -ACGGAAGCACTTCAGGTTTCGTCT -ACGGAAGCACTTCAGGTTTGCACT -ACGGAAGCACTTCAGGTTCTGACT -ACGGAAGCACTTCAGGTTCAACCT -ACGGAAGCACTTCAGGTTGCTACT -ACGGAAGCACTTCAGGTTGGATCT -ACGGAAGCACTTCAGGTTAAGGCT -ACGGAAGCACTTCAGGTTTCAACC -ACGGAAGCACTTCAGGTTTGTTCC -ACGGAAGCACTTCAGGTTATTCCC -ACGGAAGCACTTCAGGTTTTCTCG -ACGGAAGCACTTCAGGTTTAGACG -ACGGAAGCACTTCAGGTTGTAACG -ACGGAAGCACTTCAGGTTACTTCG -ACGGAAGCACTTCAGGTTTACGCA -ACGGAAGCACTTCAGGTTCTTGCA -ACGGAAGCACTTCAGGTTCGAACA -ACGGAAGCACTTCAGGTTCAGTCA -ACGGAAGCACTTCAGGTTGATCCA -ACGGAAGCACTTCAGGTTACGACA -ACGGAAGCACTTCAGGTTAGCTCA -ACGGAAGCACTTCAGGTTTCACGT -ACGGAAGCACTTCAGGTTCGTAGT -ACGGAAGCACTTCAGGTTGTCAGT -ACGGAAGCACTTCAGGTTGAAGGT -ACGGAAGCACTTCAGGTTAACCGT -ACGGAAGCACTTCAGGTTTTGTGC -ACGGAAGCACTTCAGGTTCTAAGC -ACGGAAGCACTTCAGGTTACTAGC -ACGGAAGCACTTCAGGTTAGATGC -ACGGAAGCACTTCAGGTTTGAAGG -ACGGAAGCACTTCAGGTTCAATGG -ACGGAAGCACTTCAGGTTATGAGG -ACGGAAGCACTTCAGGTTAATGGG -ACGGAAGCACTTCAGGTTTCCTGA -ACGGAAGCACTTCAGGTTTAGCGA -ACGGAAGCACTTCAGGTTCACAGA -ACGGAAGCACTTCAGGTTGCAAGA -ACGGAAGCACTTCAGGTTGGTTGA -ACGGAAGCACTTCAGGTTTCCGAT -ACGGAAGCACTTCAGGTTTGGCAT -ACGGAAGCACTTCAGGTTCGAGAT -ACGGAAGCACTTCAGGTTTACCAC -ACGGAAGCACTTCAGGTTCAGAAC -ACGGAAGCACTTCAGGTTGTCTAC -ACGGAAGCACTTCAGGTTACGTAC -ACGGAAGCACTTCAGGTTAGTGAC -ACGGAAGCACTTCAGGTTCTGTAG -ACGGAAGCACTTCAGGTTCCTAAG -ACGGAAGCACTTCAGGTTGTTCAG -ACGGAAGCACTTCAGGTTGCATAG -ACGGAAGCACTTCAGGTTGACAAG -ACGGAAGCACTTCAGGTTAAGCAG -ACGGAAGCACTTCAGGTTCGTCAA -ACGGAAGCACTTCAGGTTGCTGAA -ACGGAAGCACTTCAGGTTAGTACG -ACGGAAGCACTTCAGGTTATCCGA -ACGGAAGCACTTCAGGTTATGGGA -ACGGAAGCACTTCAGGTTGTGCAA -ACGGAAGCACTTCAGGTTGAGGAA -ACGGAAGCACTTCAGGTTCAGGTA -ACGGAAGCACTTCAGGTTGACTCT -ACGGAAGCACTTCAGGTTAGTCCT -ACGGAAGCACTTCAGGTTTAAGCC -ACGGAAGCACTTCAGGTTATAGCC -ACGGAAGCACTTCAGGTTTAACCG -ACGGAAGCACTTCAGGTTATGCCA -ACGGAAGCACTTTAGGCAGGAAAC -ACGGAAGCACTTTAGGCAAACACC -ACGGAAGCACTTTAGGCAATCGAG -ACGGAAGCACTTTAGGCACTCCTT -ACGGAAGCACTTTAGGCACCTGTT -ACGGAAGCACTTTAGGCACGGTTT -ACGGAAGCACTTTAGGCAGTGGTT -ACGGAAGCACTTTAGGCAGCCTTT -ACGGAAGCACTTTAGGCAGGTCTT -ACGGAAGCACTTTAGGCAACGCTT -ACGGAAGCACTTTAGGCAAGCGTT -ACGGAAGCACTTTAGGCATTCGTC -ACGGAAGCACTTTAGGCATCTCTC -ACGGAAGCACTTTAGGCATGGATC -ACGGAAGCACTTTAGGCACACTTC -ACGGAAGCACTTTAGGCAGTACTC -ACGGAAGCACTTTAGGCAGATGTC -ACGGAAGCACTTTAGGCAACAGTC -ACGGAAGCACTTTAGGCATTGCTG -ACGGAAGCACTTTAGGCATCCATG -ACGGAAGCACTTTAGGCATGTGTG -ACGGAAGCACTTTAGGCACTAGTG -ACGGAAGCACTTTAGGCACATCTG -ACGGAAGCACTTTAGGCAGAGTTG -ACGGAAGCACTTTAGGCAAGACTG -ACGGAAGCACTTTAGGCATCGGTA -ACGGAAGCACTTTAGGCATGCCTA -ACGGAAGCACTTTAGGCACCACTA -ACGGAAGCACTTTAGGCAGGAGTA -ACGGAAGCACTTTAGGCATCGTCT -ACGGAAGCACTTTAGGCATGCACT -ACGGAAGCACTTTAGGCACTGACT -ACGGAAGCACTTTAGGCACAACCT -ACGGAAGCACTTTAGGCAGCTACT -ACGGAAGCACTTTAGGCAGGATCT -ACGGAAGCACTTTAGGCAAAGGCT -ACGGAAGCACTTTAGGCATCAACC -ACGGAAGCACTTTAGGCATGTTCC -ACGGAAGCACTTTAGGCAATTCCC -ACGGAAGCACTTTAGGCATTCTCG -ACGGAAGCACTTTAGGCATAGACG -ACGGAAGCACTTTAGGCAGTAACG -ACGGAAGCACTTTAGGCAACTTCG -ACGGAAGCACTTTAGGCATACGCA -ACGGAAGCACTTTAGGCACTTGCA -ACGGAAGCACTTTAGGCACGAACA -ACGGAAGCACTTTAGGCACAGTCA -ACGGAAGCACTTTAGGCAGATCCA -ACGGAAGCACTTTAGGCAACGACA -ACGGAAGCACTTTAGGCAAGCTCA -ACGGAAGCACTTTAGGCATCACGT -ACGGAAGCACTTTAGGCACGTAGT -ACGGAAGCACTTTAGGCAGTCAGT -ACGGAAGCACTTTAGGCAGAAGGT -ACGGAAGCACTTTAGGCAAACCGT -ACGGAAGCACTTTAGGCATTGTGC -ACGGAAGCACTTTAGGCACTAAGC -ACGGAAGCACTTTAGGCAACTAGC -ACGGAAGCACTTTAGGCAAGATGC -ACGGAAGCACTTTAGGCATGAAGG -ACGGAAGCACTTTAGGCACAATGG -ACGGAAGCACTTTAGGCAATGAGG -ACGGAAGCACTTTAGGCAAATGGG -ACGGAAGCACTTTAGGCATCCTGA -ACGGAAGCACTTTAGGCATAGCGA -ACGGAAGCACTTTAGGCACACAGA -ACGGAAGCACTTTAGGCAGCAAGA -ACGGAAGCACTTTAGGCAGGTTGA -ACGGAAGCACTTTAGGCATCCGAT -ACGGAAGCACTTTAGGCATGGCAT -ACGGAAGCACTTTAGGCACGAGAT -ACGGAAGCACTTTAGGCATACCAC -ACGGAAGCACTTTAGGCACAGAAC -ACGGAAGCACTTTAGGCAGTCTAC -ACGGAAGCACTTTAGGCAACGTAC -ACGGAAGCACTTTAGGCAAGTGAC -ACGGAAGCACTTTAGGCACTGTAG -ACGGAAGCACTTTAGGCACCTAAG -ACGGAAGCACTTTAGGCAGTTCAG -ACGGAAGCACTTTAGGCAGCATAG -ACGGAAGCACTTTAGGCAGACAAG -ACGGAAGCACTTTAGGCAAAGCAG -ACGGAAGCACTTTAGGCACGTCAA -ACGGAAGCACTTTAGGCAGCTGAA -ACGGAAGCACTTTAGGCAAGTACG -ACGGAAGCACTTTAGGCAATCCGA -ACGGAAGCACTTTAGGCAATGGGA -ACGGAAGCACTTTAGGCAGTGCAA -ACGGAAGCACTTTAGGCAGAGGAA -ACGGAAGCACTTTAGGCACAGGTA -ACGGAAGCACTTTAGGCAGACTCT -ACGGAAGCACTTTAGGCAAGTCCT -ACGGAAGCACTTTAGGCATAAGCC -ACGGAAGCACTTTAGGCAATAGCC -ACGGAAGCACTTTAGGCATAACCG -ACGGAAGCACTTTAGGCAATGCCA -ACGGAAGCACTTAAGGACGGAAAC -ACGGAAGCACTTAAGGACAACACC -ACGGAAGCACTTAAGGACATCGAG -ACGGAAGCACTTAAGGACCTCCTT -ACGGAAGCACTTAAGGACCCTGTT -ACGGAAGCACTTAAGGACCGGTTT -ACGGAAGCACTTAAGGACGTGGTT -ACGGAAGCACTTAAGGACGCCTTT -ACGGAAGCACTTAAGGACGGTCTT -ACGGAAGCACTTAAGGACACGCTT -ACGGAAGCACTTAAGGACAGCGTT -ACGGAAGCACTTAAGGACTTCGTC -ACGGAAGCACTTAAGGACTCTCTC -ACGGAAGCACTTAAGGACTGGATC -ACGGAAGCACTTAAGGACCACTTC -ACGGAAGCACTTAAGGACGTACTC -ACGGAAGCACTTAAGGACGATGTC -ACGGAAGCACTTAAGGACACAGTC -ACGGAAGCACTTAAGGACTTGCTG -ACGGAAGCACTTAAGGACTCCATG -ACGGAAGCACTTAAGGACTGTGTG -ACGGAAGCACTTAAGGACCTAGTG -ACGGAAGCACTTAAGGACCATCTG -ACGGAAGCACTTAAGGACGAGTTG -ACGGAAGCACTTAAGGACAGACTG -ACGGAAGCACTTAAGGACTCGGTA -ACGGAAGCACTTAAGGACTGCCTA -ACGGAAGCACTTAAGGACCCACTA -ACGGAAGCACTTAAGGACGGAGTA -ACGGAAGCACTTAAGGACTCGTCT -ACGGAAGCACTTAAGGACTGCACT -ACGGAAGCACTTAAGGACCTGACT -ACGGAAGCACTTAAGGACCAACCT -ACGGAAGCACTTAAGGACGCTACT -ACGGAAGCACTTAAGGACGGATCT -ACGGAAGCACTTAAGGACAAGGCT -ACGGAAGCACTTAAGGACTCAACC -ACGGAAGCACTTAAGGACTGTTCC -ACGGAAGCACTTAAGGACATTCCC -ACGGAAGCACTTAAGGACTTCTCG -ACGGAAGCACTTAAGGACTAGACG -ACGGAAGCACTTAAGGACGTAACG -ACGGAAGCACTTAAGGACACTTCG -ACGGAAGCACTTAAGGACTACGCA -ACGGAAGCACTTAAGGACCTTGCA -ACGGAAGCACTTAAGGACCGAACA -ACGGAAGCACTTAAGGACCAGTCA -ACGGAAGCACTTAAGGACGATCCA -ACGGAAGCACTTAAGGACACGACA -ACGGAAGCACTTAAGGACAGCTCA -ACGGAAGCACTTAAGGACTCACGT -ACGGAAGCACTTAAGGACCGTAGT -ACGGAAGCACTTAAGGACGTCAGT -ACGGAAGCACTTAAGGACGAAGGT -ACGGAAGCACTTAAGGACAACCGT -ACGGAAGCACTTAAGGACTTGTGC -ACGGAAGCACTTAAGGACCTAAGC -ACGGAAGCACTTAAGGACACTAGC -ACGGAAGCACTTAAGGACAGATGC -ACGGAAGCACTTAAGGACTGAAGG -ACGGAAGCACTTAAGGACCAATGG -ACGGAAGCACTTAAGGACATGAGG -ACGGAAGCACTTAAGGACAATGGG -ACGGAAGCACTTAAGGACTCCTGA -ACGGAAGCACTTAAGGACTAGCGA -ACGGAAGCACTTAAGGACCACAGA -ACGGAAGCACTTAAGGACGCAAGA -ACGGAAGCACTTAAGGACGGTTGA -ACGGAAGCACTTAAGGACTCCGAT -ACGGAAGCACTTAAGGACTGGCAT -ACGGAAGCACTTAAGGACCGAGAT -ACGGAAGCACTTAAGGACTACCAC -ACGGAAGCACTTAAGGACCAGAAC -ACGGAAGCACTTAAGGACGTCTAC -ACGGAAGCACTTAAGGACACGTAC -ACGGAAGCACTTAAGGACAGTGAC -ACGGAAGCACTTAAGGACCTGTAG -ACGGAAGCACTTAAGGACCCTAAG -ACGGAAGCACTTAAGGACGTTCAG -ACGGAAGCACTTAAGGACGCATAG -ACGGAAGCACTTAAGGACGACAAG -ACGGAAGCACTTAAGGACAAGCAG -ACGGAAGCACTTAAGGACCGTCAA -ACGGAAGCACTTAAGGACGCTGAA -ACGGAAGCACTTAAGGACAGTACG -ACGGAAGCACTTAAGGACATCCGA -ACGGAAGCACTTAAGGACATGGGA -ACGGAAGCACTTAAGGACGTGCAA -ACGGAAGCACTTAAGGACGAGGAA -ACGGAAGCACTTAAGGACCAGGTA -ACGGAAGCACTTAAGGACGACTCT -ACGGAAGCACTTAAGGACAGTCCT -ACGGAAGCACTTAAGGACTAAGCC -ACGGAAGCACTTAAGGACATAGCC -ACGGAAGCACTTAAGGACTAACCG -ACGGAAGCACTTAAGGACATGCCA -ACGGAAGCACTTCAGAAGGGAAAC -ACGGAAGCACTTCAGAAGAACACC -ACGGAAGCACTTCAGAAGATCGAG -ACGGAAGCACTTCAGAAGCTCCTT -ACGGAAGCACTTCAGAAGCCTGTT -ACGGAAGCACTTCAGAAGCGGTTT -ACGGAAGCACTTCAGAAGGTGGTT -ACGGAAGCACTTCAGAAGGCCTTT -ACGGAAGCACTTCAGAAGGGTCTT -ACGGAAGCACTTCAGAAGACGCTT -ACGGAAGCACTTCAGAAGAGCGTT -ACGGAAGCACTTCAGAAGTTCGTC -ACGGAAGCACTTCAGAAGTCTCTC -ACGGAAGCACTTCAGAAGTGGATC -ACGGAAGCACTTCAGAAGCACTTC -ACGGAAGCACTTCAGAAGGTACTC -ACGGAAGCACTTCAGAAGGATGTC -ACGGAAGCACTTCAGAAGACAGTC -ACGGAAGCACTTCAGAAGTTGCTG -ACGGAAGCACTTCAGAAGTCCATG -ACGGAAGCACTTCAGAAGTGTGTG -ACGGAAGCACTTCAGAAGCTAGTG -ACGGAAGCACTTCAGAAGCATCTG -ACGGAAGCACTTCAGAAGGAGTTG -ACGGAAGCACTTCAGAAGAGACTG -ACGGAAGCACTTCAGAAGTCGGTA -ACGGAAGCACTTCAGAAGTGCCTA -ACGGAAGCACTTCAGAAGCCACTA -ACGGAAGCACTTCAGAAGGGAGTA -ACGGAAGCACTTCAGAAGTCGTCT -ACGGAAGCACTTCAGAAGTGCACT -ACGGAAGCACTTCAGAAGCTGACT -ACGGAAGCACTTCAGAAGCAACCT -ACGGAAGCACTTCAGAAGGCTACT -ACGGAAGCACTTCAGAAGGGATCT -ACGGAAGCACTTCAGAAGAAGGCT -ACGGAAGCACTTCAGAAGTCAACC -ACGGAAGCACTTCAGAAGTGTTCC -ACGGAAGCACTTCAGAAGATTCCC -ACGGAAGCACTTCAGAAGTTCTCG -ACGGAAGCACTTCAGAAGTAGACG -ACGGAAGCACTTCAGAAGGTAACG -ACGGAAGCACTTCAGAAGACTTCG -ACGGAAGCACTTCAGAAGTACGCA -ACGGAAGCACTTCAGAAGCTTGCA -ACGGAAGCACTTCAGAAGCGAACA -ACGGAAGCACTTCAGAAGCAGTCA -ACGGAAGCACTTCAGAAGGATCCA -ACGGAAGCACTTCAGAAGACGACA -ACGGAAGCACTTCAGAAGAGCTCA -ACGGAAGCACTTCAGAAGTCACGT -ACGGAAGCACTTCAGAAGCGTAGT -ACGGAAGCACTTCAGAAGGTCAGT -ACGGAAGCACTTCAGAAGGAAGGT -ACGGAAGCACTTCAGAAGAACCGT -ACGGAAGCACTTCAGAAGTTGTGC -ACGGAAGCACTTCAGAAGCTAAGC -ACGGAAGCACTTCAGAAGACTAGC -ACGGAAGCACTTCAGAAGAGATGC -ACGGAAGCACTTCAGAAGTGAAGG -ACGGAAGCACTTCAGAAGCAATGG -ACGGAAGCACTTCAGAAGATGAGG -ACGGAAGCACTTCAGAAGAATGGG -ACGGAAGCACTTCAGAAGTCCTGA -ACGGAAGCACTTCAGAAGTAGCGA -ACGGAAGCACTTCAGAAGCACAGA -ACGGAAGCACTTCAGAAGGCAAGA -ACGGAAGCACTTCAGAAGGGTTGA -ACGGAAGCACTTCAGAAGTCCGAT -ACGGAAGCACTTCAGAAGTGGCAT -ACGGAAGCACTTCAGAAGCGAGAT -ACGGAAGCACTTCAGAAGTACCAC -ACGGAAGCACTTCAGAAGCAGAAC -ACGGAAGCACTTCAGAAGGTCTAC -ACGGAAGCACTTCAGAAGACGTAC -ACGGAAGCACTTCAGAAGAGTGAC -ACGGAAGCACTTCAGAAGCTGTAG -ACGGAAGCACTTCAGAAGCCTAAG -ACGGAAGCACTTCAGAAGGTTCAG -ACGGAAGCACTTCAGAAGGCATAG -ACGGAAGCACTTCAGAAGGACAAG -ACGGAAGCACTTCAGAAGAAGCAG -ACGGAAGCACTTCAGAAGCGTCAA -ACGGAAGCACTTCAGAAGGCTGAA -ACGGAAGCACTTCAGAAGAGTACG -ACGGAAGCACTTCAGAAGATCCGA -ACGGAAGCACTTCAGAAGATGGGA -ACGGAAGCACTTCAGAAGGTGCAA -ACGGAAGCACTTCAGAAGGAGGAA -ACGGAAGCACTTCAGAAGCAGGTA -ACGGAAGCACTTCAGAAGGACTCT -ACGGAAGCACTTCAGAAGAGTCCT -ACGGAAGCACTTCAGAAGTAAGCC -ACGGAAGCACTTCAGAAGATAGCC -ACGGAAGCACTTCAGAAGTAACCG -ACGGAAGCACTTCAGAAGATGCCA -ACGGAAGCACTTCAACGTGGAAAC -ACGGAAGCACTTCAACGTAACACC -ACGGAAGCACTTCAACGTATCGAG -ACGGAAGCACTTCAACGTCTCCTT -ACGGAAGCACTTCAACGTCCTGTT -ACGGAAGCACTTCAACGTCGGTTT -ACGGAAGCACTTCAACGTGTGGTT -ACGGAAGCACTTCAACGTGCCTTT -ACGGAAGCACTTCAACGTGGTCTT -ACGGAAGCACTTCAACGTACGCTT -ACGGAAGCACTTCAACGTAGCGTT -ACGGAAGCACTTCAACGTTTCGTC -ACGGAAGCACTTCAACGTTCTCTC -ACGGAAGCACTTCAACGTTGGATC -ACGGAAGCACTTCAACGTCACTTC -ACGGAAGCACTTCAACGTGTACTC -ACGGAAGCACTTCAACGTGATGTC -ACGGAAGCACTTCAACGTACAGTC -ACGGAAGCACTTCAACGTTTGCTG -ACGGAAGCACTTCAACGTTCCATG -ACGGAAGCACTTCAACGTTGTGTG -ACGGAAGCACTTCAACGTCTAGTG -ACGGAAGCACTTCAACGTCATCTG -ACGGAAGCACTTCAACGTGAGTTG -ACGGAAGCACTTCAACGTAGACTG -ACGGAAGCACTTCAACGTTCGGTA -ACGGAAGCACTTCAACGTTGCCTA -ACGGAAGCACTTCAACGTCCACTA -ACGGAAGCACTTCAACGTGGAGTA -ACGGAAGCACTTCAACGTTCGTCT -ACGGAAGCACTTCAACGTTGCACT -ACGGAAGCACTTCAACGTCTGACT -ACGGAAGCACTTCAACGTCAACCT -ACGGAAGCACTTCAACGTGCTACT -ACGGAAGCACTTCAACGTGGATCT -ACGGAAGCACTTCAACGTAAGGCT -ACGGAAGCACTTCAACGTTCAACC -ACGGAAGCACTTCAACGTTGTTCC -ACGGAAGCACTTCAACGTATTCCC -ACGGAAGCACTTCAACGTTTCTCG -ACGGAAGCACTTCAACGTTAGACG -ACGGAAGCACTTCAACGTGTAACG -ACGGAAGCACTTCAACGTACTTCG -ACGGAAGCACTTCAACGTTACGCA -ACGGAAGCACTTCAACGTCTTGCA -ACGGAAGCACTTCAACGTCGAACA -ACGGAAGCACTTCAACGTCAGTCA -ACGGAAGCACTTCAACGTGATCCA -ACGGAAGCACTTCAACGTACGACA -ACGGAAGCACTTCAACGTAGCTCA -ACGGAAGCACTTCAACGTTCACGT -ACGGAAGCACTTCAACGTCGTAGT -ACGGAAGCACTTCAACGTGTCAGT -ACGGAAGCACTTCAACGTGAAGGT -ACGGAAGCACTTCAACGTAACCGT -ACGGAAGCACTTCAACGTTTGTGC -ACGGAAGCACTTCAACGTCTAAGC -ACGGAAGCACTTCAACGTACTAGC -ACGGAAGCACTTCAACGTAGATGC -ACGGAAGCACTTCAACGTTGAAGG -ACGGAAGCACTTCAACGTCAATGG -ACGGAAGCACTTCAACGTATGAGG -ACGGAAGCACTTCAACGTAATGGG -ACGGAAGCACTTCAACGTTCCTGA -ACGGAAGCACTTCAACGTTAGCGA -ACGGAAGCACTTCAACGTCACAGA -ACGGAAGCACTTCAACGTGCAAGA -ACGGAAGCACTTCAACGTGGTTGA -ACGGAAGCACTTCAACGTTCCGAT -ACGGAAGCACTTCAACGTTGGCAT -ACGGAAGCACTTCAACGTCGAGAT -ACGGAAGCACTTCAACGTTACCAC -ACGGAAGCACTTCAACGTCAGAAC -ACGGAAGCACTTCAACGTGTCTAC -ACGGAAGCACTTCAACGTACGTAC -ACGGAAGCACTTCAACGTAGTGAC -ACGGAAGCACTTCAACGTCTGTAG -ACGGAAGCACTTCAACGTCCTAAG -ACGGAAGCACTTCAACGTGTTCAG -ACGGAAGCACTTCAACGTGCATAG -ACGGAAGCACTTCAACGTGACAAG -ACGGAAGCACTTCAACGTAAGCAG -ACGGAAGCACTTCAACGTCGTCAA -ACGGAAGCACTTCAACGTGCTGAA -ACGGAAGCACTTCAACGTAGTACG -ACGGAAGCACTTCAACGTATCCGA -ACGGAAGCACTTCAACGTATGGGA -ACGGAAGCACTTCAACGTGTGCAA -ACGGAAGCACTTCAACGTGAGGAA -ACGGAAGCACTTCAACGTCAGGTA -ACGGAAGCACTTCAACGTGACTCT -ACGGAAGCACTTCAACGTAGTCCT -ACGGAAGCACTTCAACGTTAAGCC -ACGGAAGCACTTCAACGTATAGCC -ACGGAAGCACTTCAACGTTAACCG -ACGGAAGCACTTCAACGTATGCCA -ACGGAAGCACTTGAAGCTGGAAAC -ACGGAAGCACTTGAAGCTAACACC -ACGGAAGCACTTGAAGCTATCGAG -ACGGAAGCACTTGAAGCTCTCCTT -ACGGAAGCACTTGAAGCTCCTGTT -ACGGAAGCACTTGAAGCTCGGTTT -ACGGAAGCACTTGAAGCTGTGGTT -ACGGAAGCACTTGAAGCTGCCTTT -ACGGAAGCACTTGAAGCTGGTCTT -ACGGAAGCACTTGAAGCTACGCTT -ACGGAAGCACTTGAAGCTAGCGTT -ACGGAAGCACTTGAAGCTTTCGTC -ACGGAAGCACTTGAAGCTTCTCTC -ACGGAAGCACTTGAAGCTTGGATC -ACGGAAGCACTTGAAGCTCACTTC -ACGGAAGCACTTGAAGCTGTACTC -ACGGAAGCACTTGAAGCTGATGTC -ACGGAAGCACTTGAAGCTACAGTC -ACGGAAGCACTTGAAGCTTTGCTG -ACGGAAGCACTTGAAGCTTCCATG -ACGGAAGCACTTGAAGCTTGTGTG -ACGGAAGCACTTGAAGCTCTAGTG -ACGGAAGCACTTGAAGCTCATCTG -ACGGAAGCACTTGAAGCTGAGTTG -ACGGAAGCACTTGAAGCTAGACTG -ACGGAAGCACTTGAAGCTTCGGTA -ACGGAAGCACTTGAAGCTTGCCTA -ACGGAAGCACTTGAAGCTCCACTA -ACGGAAGCACTTGAAGCTGGAGTA -ACGGAAGCACTTGAAGCTTCGTCT -ACGGAAGCACTTGAAGCTTGCACT -ACGGAAGCACTTGAAGCTCTGACT -ACGGAAGCACTTGAAGCTCAACCT -ACGGAAGCACTTGAAGCTGCTACT -ACGGAAGCACTTGAAGCTGGATCT -ACGGAAGCACTTGAAGCTAAGGCT -ACGGAAGCACTTGAAGCTTCAACC -ACGGAAGCACTTGAAGCTTGTTCC -ACGGAAGCACTTGAAGCTATTCCC -ACGGAAGCACTTGAAGCTTTCTCG -ACGGAAGCACTTGAAGCTTAGACG -ACGGAAGCACTTGAAGCTGTAACG -ACGGAAGCACTTGAAGCTACTTCG -ACGGAAGCACTTGAAGCTTACGCA -ACGGAAGCACTTGAAGCTCTTGCA -ACGGAAGCACTTGAAGCTCGAACA -ACGGAAGCACTTGAAGCTCAGTCA -ACGGAAGCACTTGAAGCTGATCCA -ACGGAAGCACTTGAAGCTACGACA -ACGGAAGCACTTGAAGCTAGCTCA -ACGGAAGCACTTGAAGCTTCACGT -ACGGAAGCACTTGAAGCTCGTAGT -ACGGAAGCACTTGAAGCTGTCAGT -ACGGAAGCACTTGAAGCTGAAGGT -ACGGAAGCACTTGAAGCTAACCGT -ACGGAAGCACTTGAAGCTTTGTGC -ACGGAAGCACTTGAAGCTCTAAGC -ACGGAAGCACTTGAAGCTACTAGC -ACGGAAGCACTTGAAGCTAGATGC -ACGGAAGCACTTGAAGCTTGAAGG -ACGGAAGCACTTGAAGCTCAATGG -ACGGAAGCACTTGAAGCTATGAGG -ACGGAAGCACTTGAAGCTAATGGG -ACGGAAGCACTTGAAGCTTCCTGA -ACGGAAGCACTTGAAGCTTAGCGA -ACGGAAGCACTTGAAGCTCACAGA -ACGGAAGCACTTGAAGCTGCAAGA -ACGGAAGCACTTGAAGCTGGTTGA -ACGGAAGCACTTGAAGCTTCCGAT -ACGGAAGCACTTGAAGCTTGGCAT -ACGGAAGCACTTGAAGCTCGAGAT -ACGGAAGCACTTGAAGCTTACCAC -ACGGAAGCACTTGAAGCTCAGAAC -ACGGAAGCACTTGAAGCTGTCTAC -ACGGAAGCACTTGAAGCTACGTAC -ACGGAAGCACTTGAAGCTAGTGAC -ACGGAAGCACTTGAAGCTCTGTAG -ACGGAAGCACTTGAAGCTCCTAAG -ACGGAAGCACTTGAAGCTGTTCAG -ACGGAAGCACTTGAAGCTGCATAG -ACGGAAGCACTTGAAGCTGACAAG -ACGGAAGCACTTGAAGCTAAGCAG -ACGGAAGCACTTGAAGCTCGTCAA -ACGGAAGCACTTGAAGCTGCTGAA -ACGGAAGCACTTGAAGCTAGTACG -ACGGAAGCACTTGAAGCTATCCGA -ACGGAAGCACTTGAAGCTATGGGA -ACGGAAGCACTTGAAGCTGTGCAA -ACGGAAGCACTTGAAGCTGAGGAA -ACGGAAGCACTTGAAGCTCAGGTA -ACGGAAGCACTTGAAGCTGACTCT -ACGGAAGCACTTGAAGCTAGTCCT -ACGGAAGCACTTGAAGCTTAAGCC -ACGGAAGCACTTGAAGCTATAGCC -ACGGAAGCACTTGAAGCTTAACCG -ACGGAAGCACTTGAAGCTATGCCA -ACGGAAGCACTTACGAGTGGAAAC -ACGGAAGCACTTACGAGTAACACC -ACGGAAGCACTTACGAGTATCGAG -ACGGAAGCACTTACGAGTCTCCTT -ACGGAAGCACTTACGAGTCCTGTT -ACGGAAGCACTTACGAGTCGGTTT -ACGGAAGCACTTACGAGTGTGGTT -ACGGAAGCACTTACGAGTGCCTTT -ACGGAAGCACTTACGAGTGGTCTT -ACGGAAGCACTTACGAGTACGCTT -ACGGAAGCACTTACGAGTAGCGTT -ACGGAAGCACTTACGAGTTTCGTC -ACGGAAGCACTTACGAGTTCTCTC -ACGGAAGCACTTACGAGTTGGATC -ACGGAAGCACTTACGAGTCACTTC -ACGGAAGCACTTACGAGTGTACTC -ACGGAAGCACTTACGAGTGATGTC -ACGGAAGCACTTACGAGTACAGTC -ACGGAAGCACTTACGAGTTTGCTG -ACGGAAGCACTTACGAGTTCCATG -ACGGAAGCACTTACGAGTTGTGTG -ACGGAAGCACTTACGAGTCTAGTG -ACGGAAGCACTTACGAGTCATCTG -ACGGAAGCACTTACGAGTGAGTTG -ACGGAAGCACTTACGAGTAGACTG -ACGGAAGCACTTACGAGTTCGGTA -ACGGAAGCACTTACGAGTTGCCTA -ACGGAAGCACTTACGAGTCCACTA -ACGGAAGCACTTACGAGTGGAGTA -ACGGAAGCACTTACGAGTTCGTCT -ACGGAAGCACTTACGAGTTGCACT -ACGGAAGCACTTACGAGTCTGACT -ACGGAAGCACTTACGAGTCAACCT -ACGGAAGCACTTACGAGTGCTACT -ACGGAAGCACTTACGAGTGGATCT -ACGGAAGCACTTACGAGTAAGGCT -ACGGAAGCACTTACGAGTTCAACC -ACGGAAGCACTTACGAGTTGTTCC -ACGGAAGCACTTACGAGTATTCCC -ACGGAAGCACTTACGAGTTTCTCG -ACGGAAGCACTTACGAGTTAGACG -ACGGAAGCACTTACGAGTGTAACG -ACGGAAGCACTTACGAGTACTTCG -ACGGAAGCACTTACGAGTTACGCA -ACGGAAGCACTTACGAGTCTTGCA -ACGGAAGCACTTACGAGTCGAACA -ACGGAAGCACTTACGAGTCAGTCA -ACGGAAGCACTTACGAGTGATCCA -ACGGAAGCACTTACGAGTACGACA -ACGGAAGCACTTACGAGTAGCTCA -ACGGAAGCACTTACGAGTTCACGT -ACGGAAGCACTTACGAGTCGTAGT -ACGGAAGCACTTACGAGTGTCAGT -ACGGAAGCACTTACGAGTGAAGGT -ACGGAAGCACTTACGAGTAACCGT -ACGGAAGCACTTACGAGTTTGTGC -ACGGAAGCACTTACGAGTCTAAGC -ACGGAAGCACTTACGAGTACTAGC -ACGGAAGCACTTACGAGTAGATGC -ACGGAAGCACTTACGAGTTGAAGG -ACGGAAGCACTTACGAGTCAATGG -ACGGAAGCACTTACGAGTATGAGG -ACGGAAGCACTTACGAGTAATGGG -ACGGAAGCACTTACGAGTTCCTGA -ACGGAAGCACTTACGAGTTAGCGA -ACGGAAGCACTTACGAGTCACAGA -ACGGAAGCACTTACGAGTGCAAGA -ACGGAAGCACTTACGAGTGGTTGA -ACGGAAGCACTTACGAGTTCCGAT -ACGGAAGCACTTACGAGTTGGCAT -ACGGAAGCACTTACGAGTCGAGAT -ACGGAAGCACTTACGAGTTACCAC -ACGGAAGCACTTACGAGTCAGAAC -ACGGAAGCACTTACGAGTGTCTAC -ACGGAAGCACTTACGAGTACGTAC -ACGGAAGCACTTACGAGTAGTGAC -ACGGAAGCACTTACGAGTCTGTAG -ACGGAAGCACTTACGAGTCCTAAG -ACGGAAGCACTTACGAGTGTTCAG -ACGGAAGCACTTACGAGTGCATAG -ACGGAAGCACTTACGAGTGACAAG -ACGGAAGCACTTACGAGTAAGCAG -ACGGAAGCACTTACGAGTCGTCAA -ACGGAAGCACTTACGAGTGCTGAA -ACGGAAGCACTTACGAGTAGTACG -ACGGAAGCACTTACGAGTATCCGA -ACGGAAGCACTTACGAGTATGGGA -ACGGAAGCACTTACGAGTGTGCAA -ACGGAAGCACTTACGAGTGAGGAA -ACGGAAGCACTTACGAGTCAGGTA -ACGGAAGCACTTACGAGTGACTCT -ACGGAAGCACTTACGAGTAGTCCT -ACGGAAGCACTTACGAGTTAAGCC -ACGGAAGCACTTACGAGTATAGCC -ACGGAAGCACTTACGAGTTAACCG -ACGGAAGCACTTACGAGTATGCCA -ACGGAAGCACTTCGAATCGGAAAC -ACGGAAGCACTTCGAATCAACACC -ACGGAAGCACTTCGAATCATCGAG -ACGGAAGCACTTCGAATCCTCCTT -ACGGAAGCACTTCGAATCCCTGTT -ACGGAAGCACTTCGAATCCGGTTT -ACGGAAGCACTTCGAATCGTGGTT -ACGGAAGCACTTCGAATCGCCTTT -ACGGAAGCACTTCGAATCGGTCTT -ACGGAAGCACTTCGAATCACGCTT -ACGGAAGCACTTCGAATCAGCGTT -ACGGAAGCACTTCGAATCTTCGTC -ACGGAAGCACTTCGAATCTCTCTC -ACGGAAGCACTTCGAATCTGGATC -ACGGAAGCACTTCGAATCCACTTC -ACGGAAGCACTTCGAATCGTACTC -ACGGAAGCACTTCGAATCGATGTC -ACGGAAGCACTTCGAATCACAGTC -ACGGAAGCACTTCGAATCTTGCTG -ACGGAAGCACTTCGAATCTCCATG -ACGGAAGCACTTCGAATCTGTGTG -ACGGAAGCACTTCGAATCCTAGTG -ACGGAAGCACTTCGAATCCATCTG -ACGGAAGCACTTCGAATCGAGTTG -ACGGAAGCACTTCGAATCAGACTG -ACGGAAGCACTTCGAATCTCGGTA -ACGGAAGCACTTCGAATCTGCCTA -ACGGAAGCACTTCGAATCCCACTA -ACGGAAGCACTTCGAATCGGAGTA -ACGGAAGCACTTCGAATCTCGTCT -ACGGAAGCACTTCGAATCTGCACT -ACGGAAGCACTTCGAATCCTGACT -ACGGAAGCACTTCGAATCCAACCT -ACGGAAGCACTTCGAATCGCTACT -ACGGAAGCACTTCGAATCGGATCT -ACGGAAGCACTTCGAATCAAGGCT -ACGGAAGCACTTCGAATCTCAACC -ACGGAAGCACTTCGAATCTGTTCC -ACGGAAGCACTTCGAATCATTCCC -ACGGAAGCACTTCGAATCTTCTCG -ACGGAAGCACTTCGAATCTAGACG -ACGGAAGCACTTCGAATCGTAACG -ACGGAAGCACTTCGAATCACTTCG -ACGGAAGCACTTCGAATCTACGCA -ACGGAAGCACTTCGAATCCTTGCA -ACGGAAGCACTTCGAATCCGAACA -ACGGAAGCACTTCGAATCCAGTCA -ACGGAAGCACTTCGAATCGATCCA -ACGGAAGCACTTCGAATCACGACA -ACGGAAGCACTTCGAATCAGCTCA -ACGGAAGCACTTCGAATCTCACGT -ACGGAAGCACTTCGAATCCGTAGT -ACGGAAGCACTTCGAATCGTCAGT -ACGGAAGCACTTCGAATCGAAGGT -ACGGAAGCACTTCGAATCAACCGT -ACGGAAGCACTTCGAATCTTGTGC -ACGGAAGCACTTCGAATCCTAAGC -ACGGAAGCACTTCGAATCACTAGC -ACGGAAGCACTTCGAATCAGATGC -ACGGAAGCACTTCGAATCTGAAGG -ACGGAAGCACTTCGAATCCAATGG -ACGGAAGCACTTCGAATCATGAGG -ACGGAAGCACTTCGAATCAATGGG -ACGGAAGCACTTCGAATCTCCTGA -ACGGAAGCACTTCGAATCTAGCGA -ACGGAAGCACTTCGAATCCACAGA -ACGGAAGCACTTCGAATCGCAAGA -ACGGAAGCACTTCGAATCGGTTGA -ACGGAAGCACTTCGAATCTCCGAT -ACGGAAGCACTTCGAATCTGGCAT -ACGGAAGCACTTCGAATCCGAGAT -ACGGAAGCACTTCGAATCTACCAC -ACGGAAGCACTTCGAATCCAGAAC -ACGGAAGCACTTCGAATCGTCTAC -ACGGAAGCACTTCGAATCACGTAC -ACGGAAGCACTTCGAATCAGTGAC -ACGGAAGCACTTCGAATCCTGTAG -ACGGAAGCACTTCGAATCCCTAAG -ACGGAAGCACTTCGAATCGTTCAG -ACGGAAGCACTTCGAATCGCATAG -ACGGAAGCACTTCGAATCGACAAG -ACGGAAGCACTTCGAATCAAGCAG -ACGGAAGCACTTCGAATCCGTCAA -ACGGAAGCACTTCGAATCGCTGAA -ACGGAAGCACTTCGAATCAGTACG -ACGGAAGCACTTCGAATCATCCGA -ACGGAAGCACTTCGAATCATGGGA -ACGGAAGCACTTCGAATCGTGCAA -ACGGAAGCACTTCGAATCGAGGAA -ACGGAAGCACTTCGAATCCAGGTA -ACGGAAGCACTTCGAATCGACTCT -ACGGAAGCACTTCGAATCAGTCCT -ACGGAAGCACTTCGAATCTAAGCC -ACGGAAGCACTTCGAATCATAGCC -ACGGAAGCACTTCGAATCTAACCG -ACGGAAGCACTTCGAATCATGCCA -ACGGAAGCACTTGGAATGGGAAAC -ACGGAAGCACTTGGAATGAACACC -ACGGAAGCACTTGGAATGATCGAG -ACGGAAGCACTTGGAATGCTCCTT -ACGGAAGCACTTGGAATGCCTGTT -ACGGAAGCACTTGGAATGCGGTTT -ACGGAAGCACTTGGAATGGTGGTT -ACGGAAGCACTTGGAATGGCCTTT -ACGGAAGCACTTGGAATGGGTCTT -ACGGAAGCACTTGGAATGACGCTT -ACGGAAGCACTTGGAATGAGCGTT -ACGGAAGCACTTGGAATGTTCGTC -ACGGAAGCACTTGGAATGTCTCTC -ACGGAAGCACTTGGAATGTGGATC -ACGGAAGCACTTGGAATGCACTTC -ACGGAAGCACTTGGAATGGTACTC -ACGGAAGCACTTGGAATGGATGTC -ACGGAAGCACTTGGAATGACAGTC -ACGGAAGCACTTGGAATGTTGCTG -ACGGAAGCACTTGGAATGTCCATG -ACGGAAGCACTTGGAATGTGTGTG -ACGGAAGCACTTGGAATGCTAGTG -ACGGAAGCACTTGGAATGCATCTG -ACGGAAGCACTTGGAATGGAGTTG -ACGGAAGCACTTGGAATGAGACTG -ACGGAAGCACTTGGAATGTCGGTA -ACGGAAGCACTTGGAATGTGCCTA -ACGGAAGCACTTGGAATGCCACTA -ACGGAAGCACTTGGAATGGGAGTA -ACGGAAGCACTTGGAATGTCGTCT -ACGGAAGCACTTGGAATGTGCACT -ACGGAAGCACTTGGAATGCTGACT -ACGGAAGCACTTGGAATGCAACCT -ACGGAAGCACTTGGAATGGCTACT -ACGGAAGCACTTGGAATGGGATCT -ACGGAAGCACTTGGAATGAAGGCT -ACGGAAGCACTTGGAATGTCAACC -ACGGAAGCACTTGGAATGTGTTCC -ACGGAAGCACTTGGAATGATTCCC -ACGGAAGCACTTGGAATGTTCTCG -ACGGAAGCACTTGGAATGTAGACG -ACGGAAGCACTTGGAATGGTAACG -ACGGAAGCACTTGGAATGACTTCG -ACGGAAGCACTTGGAATGTACGCA -ACGGAAGCACTTGGAATGCTTGCA -ACGGAAGCACTTGGAATGCGAACA -ACGGAAGCACTTGGAATGCAGTCA -ACGGAAGCACTTGGAATGGATCCA -ACGGAAGCACTTGGAATGACGACA -ACGGAAGCACTTGGAATGAGCTCA -ACGGAAGCACTTGGAATGTCACGT -ACGGAAGCACTTGGAATGCGTAGT -ACGGAAGCACTTGGAATGGTCAGT -ACGGAAGCACTTGGAATGGAAGGT -ACGGAAGCACTTGGAATGAACCGT -ACGGAAGCACTTGGAATGTTGTGC -ACGGAAGCACTTGGAATGCTAAGC -ACGGAAGCACTTGGAATGACTAGC -ACGGAAGCACTTGGAATGAGATGC -ACGGAAGCACTTGGAATGTGAAGG -ACGGAAGCACTTGGAATGCAATGG -ACGGAAGCACTTGGAATGATGAGG -ACGGAAGCACTTGGAATGAATGGG -ACGGAAGCACTTGGAATGTCCTGA -ACGGAAGCACTTGGAATGTAGCGA -ACGGAAGCACTTGGAATGCACAGA -ACGGAAGCACTTGGAATGGCAAGA -ACGGAAGCACTTGGAATGGGTTGA -ACGGAAGCACTTGGAATGTCCGAT -ACGGAAGCACTTGGAATGTGGCAT -ACGGAAGCACTTGGAATGCGAGAT -ACGGAAGCACTTGGAATGTACCAC -ACGGAAGCACTTGGAATGCAGAAC -ACGGAAGCACTTGGAATGGTCTAC -ACGGAAGCACTTGGAATGACGTAC -ACGGAAGCACTTGGAATGAGTGAC -ACGGAAGCACTTGGAATGCTGTAG -ACGGAAGCACTTGGAATGCCTAAG -ACGGAAGCACTTGGAATGGTTCAG -ACGGAAGCACTTGGAATGGCATAG -ACGGAAGCACTTGGAATGGACAAG -ACGGAAGCACTTGGAATGAAGCAG -ACGGAAGCACTTGGAATGCGTCAA -ACGGAAGCACTTGGAATGGCTGAA -ACGGAAGCACTTGGAATGAGTACG -ACGGAAGCACTTGGAATGATCCGA -ACGGAAGCACTTGGAATGATGGGA -ACGGAAGCACTTGGAATGGTGCAA -ACGGAAGCACTTGGAATGGAGGAA -ACGGAAGCACTTGGAATGCAGGTA -ACGGAAGCACTTGGAATGGACTCT -ACGGAAGCACTTGGAATGAGTCCT -ACGGAAGCACTTGGAATGTAAGCC -ACGGAAGCACTTGGAATGATAGCC -ACGGAAGCACTTGGAATGTAACCG -ACGGAAGCACTTGGAATGATGCCA -ACGGAAGCACTTCAAGTGGGAAAC -ACGGAAGCACTTCAAGTGAACACC -ACGGAAGCACTTCAAGTGATCGAG -ACGGAAGCACTTCAAGTGCTCCTT -ACGGAAGCACTTCAAGTGCCTGTT -ACGGAAGCACTTCAAGTGCGGTTT -ACGGAAGCACTTCAAGTGGTGGTT -ACGGAAGCACTTCAAGTGGCCTTT -ACGGAAGCACTTCAAGTGGGTCTT -ACGGAAGCACTTCAAGTGACGCTT -ACGGAAGCACTTCAAGTGAGCGTT -ACGGAAGCACTTCAAGTGTTCGTC -ACGGAAGCACTTCAAGTGTCTCTC -ACGGAAGCACTTCAAGTGTGGATC -ACGGAAGCACTTCAAGTGCACTTC -ACGGAAGCACTTCAAGTGGTACTC -ACGGAAGCACTTCAAGTGGATGTC -ACGGAAGCACTTCAAGTGACAGTC -ACGGAAGCACTTCAAGTGTTGCTG -ACGGAAGCACTTCAAGTGTCCATG -ACGGAAGCACTTCAAGTGTGTGTG -ACGGAAGCACTTCAAGTGCTAGTG -ACGGAAGCACTTCAAGTGCATCTG -ACGGAAGCACTTCAAGTGGAGTTG -ACGGAAGCACTTCAAGTGAGACTG -ACGGAAGCACTTCAAGTGTCGGTA -ACGGAAGCACTTCAAGTGTGCCTA -ACGGAAGCACTTCAAGTGCCACTA -ACGGAAGCACTTCAAGTGGGAGTA -ACGGAAGCACTTCAAGTGTCGTCT -ACGGAAGCACTTCAAGTGTGCACT -ACGGAAGCACTTCAAGTGCTGACT -ACGGAAGCACTTCAAGTGCAACCT -ACGGAAGCACTTCAAGTGGCTACT -ACGGAAGCACTTCAAGTGGGATCT -ACGGAAGCACTTCAAGTGAAGGCT -ACGGAAGCACTTCAAGTGTCAACC -ACGGAAGCACTTCAAGTGTGTTCC -ACGGAAGCACTTCAAGTGATTCCC -ACGGAAGCACTTCAAGTGTTCTCG -ACGGAAGCACTTCAAGTGTAGACG -ACGGAAGCACTTCAAGTGGTAACG -ACGGAAGCACTTCAAGTGACTTCG -ACGGAAGCACTTCAAGTGTACGCA -ACGGAAGCACTTCAAGTGCTTGCA -ACGGAAGCACTTCAAGTGCGAACA -ACGGAAGCACTTCAAGTGCAGTCA -ACGGAAGCACTTCAAGTGGATCCA -ACGGAAGCACTTCAAGTGACGACA -ACGGAAGCACTTCAAGTGAGCTCA -ACGGAAGCACTTCAAGTGTCACGT -ACGGAAGCACTTCAAGTGCGTAGT -ACGGAAGCACTTCAAGTGGTCAGT -ACGGAAGCACTTCAAGTGGAAGGT -ACGGAAGCACTTCAAGTGAACCGT -ACGGAAGCACTTCAAGTGTTGTGC -ACGGAAGCACTTCAAGTGCTAAGC -ACGGAAGCACTTCAAGTGACTAGC -ACGGAAGCACTTCAAGTGAGATGC -ACGGAAGCACTTCAAGTGTGAAGG -ACGGAAGCACTTCAAGTGCAATGG -ACGGAAGCACTTCAAGTGATGAGG -ACGGAAGCACTTCAAGTGAATGGG -ACGGAAGCACTTCAAGTGTCCTGA -ACGGAAGCACTTCAAGTGTAGCGA -ACGGAAGCACTTCAAGTGCACAGA -ACGGAAGCACTTCAAGTGGCAAGA -ACGGAAGCACTTCAAGTGGGTTGA -ACGGAAGCACTTCAAGTGTCCGAT -ACGGAAGCACTTCAAGTGTGGCAT -ACGGAAGCACTTCAAGTGCGAGAT -ACGGAAGCACTTCAAGTGTACCAC -ACGGAAGCACTTCAAGTGCAGAAC -ACGGAAGCACTTCAAGTGGTCTAC -ACGGAAGCACTTCAAGTGACGTAC -ACGGAAGCACTTCAAGTGAGTGAC -ACGGAAGCACTTCAAGTGCTGTAG -ACGGAAGCACTTCAAGTGCCTAAG -ACGGAAGCACTTCAAGTGGTTCAG -ACGGAAGCACTTCAAGTGGCATAG -ACGGAAGCACTTCAAGTGGACAAG -ACGGAAGCACTTCAAGTGAAGCAG -ACGGAAGCACTTCAAGTGCGTCAA -ACGGAAGCACTTCAAGTGGCTGAA -ACGGAAGCACTTCAAGTGAGTACG -ACGGAAGCACTTCAAGTGATCCGA -ACGGAAGCACTTCAAGTGATGGGA -ACGGAAGCACTTCAAGTGGTGCAA -ACGGAAGCACTTCAAGTGGAGGAA -ACGGAAGCACTTCAAGTGCAGGTA -ACGGAAGCACTTCAAGTGGACTCT -ACGGAAGCACTTCAAGTGAGTCCT -ACGGAAGCACTTCAAGTGTAAGCC -ACGGAAGCACTTCAAGTGATAGCC -ACGGAAGCACTTCAAGTGTAACCG -ACGGAAGCACTTCAAGTGATGCCA -ACGGAAGCACTTGAAGAGGGAAAC -ACGGAAGCACTTGAAGAGAACACC -ACGGAAGCACTTGAAGAGATCGAG -ACGGAAGCACTTGAAGAGCTCCTT -ACGGAAGCACTTGAAGAGCCTGTT -ACGGAAGCACTTGAAGAGCGGTTT -ACGGAAGCACTTGAAGAGGTGGTT -ACGGAAGCACTTGAAGAGGCCTTT -ACGGAAGCACTTGAAGAGGGTCTT -ACGGAAGCACTTGAAGAGACGCTT -ACGGAAGCACTTGAAGAGAGCGTT -ACGGAAGCACTTGAAGAGTTCGTC -ACGGAAGCACTTGAAGAGTCTCTC -ACGGAAGCACTTGAAGAGTGGATC -ACGGAAGCACTTGAAGAGCACTTC -ACGGAAGCACTTGAAGAGGTACTC -ACGGAAGCACTTGAAGAGGATGTC -ACGGAAGCACTTGAAGAGACAGTC -ACGGAAGCACTTGAAGAGTTGCTG -ACGGAAGCACTTGAAGAGTCCATG -ACGGAAGCACTTGAAGAGTGTGTG -ACGGAAGCACTTGAAGAGCTAGTG -ACGGAAGCACTTGAAGAGCATCTG -ACGGAAGCACTTGAAGAGGAGTTG -ACGGAAGCACTTGAAGAGAGACTG -ACGGAAGCACTTGAAGAGTCGGTA -ACGGAAGCACTTGAAGAGTGCCTA -ACGGAAGCACTTGAAGAGCCACTA -ACGGAAGCACTTGAAGAGGGAGTA -ACGGAAGCACTTGAAGAGTCGTCT -ACGGAAGCACTTGAAGAGTGCACT -ACGGAAGCACTTGAAGAGCTGACT -ACGGAAGCACTTGAAGAGCAACCT -ACGGAAGCACTTGAAGAGGCTACT -ACGGAAGCACTTGAAGAGGGATCT -ACGGAAGCACTTGAAGAGAAGGCT -ACGGAAGCACTTGAAGAGTCAACC -ACGGAAGCACTTGAAGAGTGTTCC -ACGGAAGCACTTGAAGAGATTCCC -ACGGAAGCACTTGAAGAGTTCTCG -ACGGAAGCACTTGAAGAGTAGACG -ACGGAAGCACTTGAAGAGGTAACG -ACGGAAGCACTTGAAGAGACTTCG -ACGGAAGCACTTGAAGAGTACGCA -ACGGAAGCACTTGAAGAGCTTGCA -ACGGAAGCACTTGAAGAGCGAACA -ACGGAAGCACTTGAAGAGCAGTCA -ACGGAAGCACTTGAAGAGGATCCA -ACGGAAGCACTTGAAGAGACGACA -ACGGAAGCACTTGAAGAGAGCTCA -ACGGAAGCACTTGAAGAGTCACGT -ACGGAAGCACTTGAAGAGCGTAGT -ACGGAAGCACTTGAAGAGGTCAGT -ACGGAAGCACTTGAAGAGGAAGGT -ACGGAAGCACTTGAAGAGAACCGT -ACGGAAGCACTTGAAGAGTTGTGC -ACGGAAGCACTTGAAGAGCTAAGC -ACGGAAGCACTTGAAGAGACTAGC -ACGGAAGCACTTGAAGAGAGATGC -ACGGAAGCACTTGAAGAGTGAAGG -ACGGAAGCACTTGAAGAGCAATGG -ACGGAAGCACTTGAAGAGATGAGG -ACGGAAGCACTTGAAGAGAATGGG -ACGGAAGCACTTGAAGAGTCCTGA -ACGGAAGCACTTGAAGAGTAGCGA -ACGGAAGCACTTGAAGAGCACAGA -ACGGAAGCACTTGAAGAGGCAAGA -ACGGAAGCACTTGAAGAGGGTTGA -ACGGAAGCACTTGAAGAGTCCGAT -ACGGAAGCACTTGAAGAGTGGCAT -ACGGAAGCACTTGAAGAGCGAGAT -ACGGAAGCACTTGAAGAGTACCAC -ACGGAAGCACTTGAAGAGCAGAAC -ACGGAAGCACTTGAAGAGGTCTAC -ACGGAAGCACTTGAAGAGACGTAC -ACGGAAGCACTTGAAGAGAGTGAC -ACGGAAGCACTTGAAGAGCTGTAG -ACGGAAGCACTTGAAGAGCCTAAG -ACGGAAGCACTTGAAGAGGTTCAG -ACGGAAGCACTTGAAGAGGCATAG -ACGGAAGCACTTGAAGAGGACAAG -ACGGAAGCACTTGAAGAGAAGCAG -ACGGAAGCACTTGAAGAGCGTCAA -ACGGAAGCACTTGAAGAGGCTGAA -ACGGAAGCACTTGAAGAGAGTACG -ACGGAAGCACTTGAAGAGATCCGA -ACGGAAGCACTTGAAGAGATGGGA -ACGGAAGCACTTGAAGAGGTGCAA -ACGGAAGCACTTGAAGAGGAGGAA -ACGGAAGCACTTGAAGAGCAGGTA -ACGGAAGCACTTGAAGAGGACTCT -ACGGAAGCACTTGAAGAGAGTCCT -ACGGAAGCACTTGAAGAGTAAGCC -ACGGAAGCACTTGAAGAGATAGCC -ACGGAAGCACTTGAAGAGTAACCG -ACGGAAGCACTTGAAGAGATGCCA -ACGGAAGCACTTGTACAGGGAAAC -ACGGAAGCACTTGTACAGAACACC -ACGGAAGCACTTGTACAGATCGAG -ACGGAAGCACTTGTACAGCTCCTT -ACGGAAGCACTTGTACAGCCTGTT -ACGGAAGCACTTGTACAGCGGTTT -ACGGAAGCACTTGTACAGGTGGTT -ACGGAAGCACTTGTACAGGCCTTT -ACGGAAGCACTTGTACAGGGTCTT -ACGGAAGCACTTGTACAGACGCTT -ACGGAAGCACTTGTACAGAGCGTT -ACGGAAGCACTTGTACAGTTCGTC -ACGGAAGCACTTGTACAGTCTCTC -ACGGAAGCACTTGTACAGTGGATC -ACGGAAGCACTTGTACAGCACTTC -ACGGAAGCACTTGTACAGGTACTC -ACGGAAGCACTTGTACAGGATGTC -ACGGAAGCACTTGTACAGACAGTC -ACGGAAGCACTTGTACAGTTGCTG -ACGGAAGCACTTGTACAGTCCATG -ACGGAAGCACTTGTACAGTGTGTG -ACGGAAGCACTTGTACAGCTAGTG -ACGGAAGCACTTGTACAGCATCTG -ACGGAAGCACTTGTACAGGAGTTG -ACGGAAGCACTTGTACAGAGACTG -ACGGAAGCACTTGTACAGTCGGTA -ACGGAAGCACTTGTACAGTGCCTA -ACGGAAGCACTTGTACAGCCACTA -ACGGAAGCACTTGTACAGGGAGTA -ACGGAAGCACTTGTACAGTCGTCT -ACGGAAGCACTTGTACAGTGCACT -ACGGAAGCACTTGTACAGCTGACT -ACGGAAGCACTTGTACAGCAACCT -ACGGAAGCACTTGTACAGGCTACT -ACGGAAGCACTTGTACAGGGATCT -ACGGAAGCACTTGTACAGAAGGCT -ACGGAAGCACTTGTACAGTCAACC -ACGGAAGCACTTGTACAGTGTTCC -ACGGAAGCACTTGTACAGATTCCC -ACGGAAGCACTTGTACAGTTCTCG -ACGGAAGCACTTGTACAGTAGACG -ACGGAAGCACTTGTACAGGTAACG -ACGGAAGCACTTGTACAGACTTCG -ACGGAAGCACTTGTACAGTACGCA -ACGGAAGCACTTGTACAGCTTGCA -ACGGAAGCACTTGTACAGCGAACA -ACGGAAGCACTTGTACAGCAGTCA -ACGGAAGCACTTGTACAGGATCCA -ACGGAAGCACTTGTACAGACGACA -ACGGAAGCACTTGTACAGAGCTCA -ACGGAAGCACTTGTACAGTCACGT -ACGGAAGCACTTGTACAGCGTAGT -ACGGAAGCACTTGTACAGGTCAGT -ACGGAAGCACTTGTACAGGAAGGT -ACGGAAGCACTTGTACAGAACCGT -ACGGAAGCACTTGTACAGTTGTGC -ACGGAAGCACTTGTACAGCTAAGC -ACGGAAGCACTTGTACAGACTAGC -ACGGAAGCACTTGTACAGAGATGC -ACGGAAGCACTTGTACAGTGAAGG -ACGGAAGCACTTGTACAGCAATGG -ACGGAAGCACTTGTACAGATGAGG -ACGGAAGCACTTGTACAGAATGGG -ACGGAAGCACTTGTACAGTCCTGA -ACGGAAGCACTTGTACAGTAGCGA -ACGGAAGCACTTGTACAGCACAGA -ACGGAAGCACTTGTACAGGCAAGA -ACGGAAGCACTTGTACAGGGTTGA -ACGGAAGCACTTGTACAGTCCGAT -ACGGAAGCACTTGTACAGTGGCAT -ACGGAAGCACTTGTACAGCGAGAT -ACGGAAGCACTTGTACAGTACCAC -ACGGAAGCACTTGTACAGCAGAAC -ACGGAAGCACTTGTACAGGTCTAC -ACGGAAGCACTTGTACAGACGTAC -ACGGAAGCACTTGTACAGAGTGAC -ACGGAAGCACTTGTACAGCTGTAG -ACGGAAGCACTTGTACAGCCTAAG -ACGGAAGCACTTGTACAGGTTCAG -ACGGAAGCACTTGTACAGGCATAG -ACGGAAGCACTTGTACAGGACAAG -ACGGAAGCACTTGTACAGAAGCAG -ACGGAAGCACTTGTACAGCGTCAA -ACGGAAGCACTTGTACAGGCTGAA -ACGGAAGCACTTGTACAGAGTACG -ACGGAAGCACTTGTACAGATCCGA -ACGGAAGCACTTGTACAGATGGGA -ACGGAAGCACTTGTACAGGTGCAA -ACGGAAGCACTTGTACAGGAGGAA -ACGGAAGCACTTGTACAGCAGGTA -ACGGAAGCACTTGTACAGGACTCT -ACGGAAGCACTTGTACAGAGTCCT -ACGGAAGCACTTGTACAGTAAGCC -ACGGAAGCACTTGTACAGATAGCC -ACGGAAGCACTTGTACAGTAACCG -ACGGAAGCACTTGTACAGATGCCA -ACGGAAGCACTTTCTGACGGAAAC -ACGGAAGCACTTTCTGACAACACC -ACGGAAGCACTTTCTGACATCGAG -ACGGAAGCACTTTCTGACCTCCTT -ACGGAAGCACTTTCTGACCCTGTT -ACGGAAGCACTTTCTGACCGGTTT -ACGGAAGCACTTTCTGACGTGGTT -ACGGAAGCACTTTCTGACGCCTTT -ACGGAAGCACTTTCTGACGGTCTT -ACGGAAGCACTTTCTGACACGCTT -ACGGAAGCACTTTCTGACAGCGTT -ACGGAAGCACTTTCTGACTTCGTC -ACGGAAGCACTTTCTGACTCTCTC -ACGGAAGCACTTTCTGACTGGATC -ACGGAAGCACTTTCTGACCACTTC -ACGGAAGCACTTTCTGACGTACTC -ACGGAAGCACTTTCTGACGATGTC -ACGGAAGCACTTTCTGACACAGTC -ACGGAAGCACTTTCTGACTTGCTG -ACGGAAGCACTTTCTGACTCCATG -ACGGAAGCACTTTCTGACTGTGTG -ACGGAAGCACTTTCTGACCTAGTG -ACGGAAGCACTTTCTGACCATCTG -ACGGAAGCACTTTCTGACGAGTTG -ACGGAAGCACTTTCTGACAGACTG -ACGGAAGCACTTTCTGACTCGGTA -ACGGAAGCACTTTCTGACTGCCTA -ACGGAAGCACTTTCTGACCCACTA -ACGGAAGCACTTTCTGACGGAGTA -ACGGAAGCACTTTCTGACTCGTCT -ACGGAAGCACTTTCTGACTGCACT -ACGGAAGCACTTTCTGACCTGACT -ACGGAAGCACTTTCTGACCAACCT -ACGGAAGCACTTTCTGACGCTACT -ACGGAAGCACTTTCTGACGGATCT -ACGGAAGCACTTTCTGACAAGGCT -ACGGAAGCACTTTCTGACTCAACC -ACGGAAGCACTTTCTGACTGTTCC -ACGGAAGCACTTTCTGACATTCCC -ACGGAAGCACTTTCTGACTTCTCG -ACGGAAGCACTTTCTGACTAGACG -ACGGAAGCACTTTCTGACGTAACG -ACGGAAGCACTTTCTGACACTTCG -ACGGAAGCACTTTCTGACTACGCA -ACGGAAGCACTTTCTGACCTTGCA -ACGGAAGCACTTTCTGACCGAACA -ACGGAAGCACTTTCTGACCAGTCA -ACGGAAGCACTTTCTGACGATCCA -ACGGAAGCACTTTCTGACACGACA -ACGGAAGCACTTTCTGACAGCTCA -ACGGAAGCACTTTCTGACTCACGT -ACGGAAGCACTTTCTGACCGTAGT -ACGGAAGCACTTTCTGACGTCAGT -ACGGAAGCACTTTCTGACGAAGGT -ACGGAAGCACTTTCTGACAACCGT -ACGGAAGCACTTTCTGACTTGTGC -ACGGAAGCACTTTCTGACCTAAGC -ACGGAAGCACTTTCTGACACTAGC -ACGGAAGCACTTTCTGACAGATGC -ACGGAAGCACTTTCTGACTGAAGG -ACGGAAGCACTTTCTGACCAATGG -ACGGAAGCACTTTCTGACATGAGG -ACGGAAGCACTTTCTGACAATGGG -ACGGAAGCACTTTCTGACTCCTGA -ACGGAAGCACTTTCTGACTAGCGA -ACGGAAGCACTTTCTGACCACAGA -ACGGAAGCACTTTCTGACGCAAGA -ACGGAAGCACTTTCTGACGGTTGA -ACGGAAGCACTTTCTGACTCCGAT -ACGGAAGCACTTTCTGACTGGCAT -ACGGAAGCACTTTCTGACCGAGAT -ACGGAAGCACTTTCTGACTACCAC -ACGGAAGCACTTTCTGACCAGAAC -ACGGAAGCACTTTCTGACGTCTAC -ACGGAAGCACTTTCTGACACGTAC -ACGGAAGCACTTTCTGACAGTGAC -ACGGAAGCACTTTCTGACCTGTAG -ACGGAAGCACTTTCTGACCCTAAG -ACGGAAGCACTTTCTGACGTTCAG -ACGGAAGCACTTTCTGACGCATAG -ACGGAAGCACTTTCTGACGACAAG -ACGGAAGCACTTTCTGACAAGCAG -ACGGAAGCACTTTCTGACCGTCAA -ACGGAAGCACTTTCTGACGCTGAA -ACGGAAGCACTTTCTGACAGTACG -ACGGAAGCACTTTCTGACATCCGA -ACGGAAGCACTTTCTGACATGGGA -ACGGAAGCACTTTCTGACGTGCAA -ACGGAAGCACTTTCTGACGAGGAA -ACGGAAGCACTTTCTGACCAGGTA -ACGGAAGCACTTTCTGACGACTCT -ACGGAAGCACTTTCTGACAGTCCT -ACGGAAGCACTTTCTGACTAAGCC -ACGGAAGCACTTTCTGACATAGCC -ACGGAAGCACTTTCTGACTAACCG -ACGGAAGCACTTTCTGACATGCCA -ACGGAAGCACTTCCTAGTGGAAAC -ACGGAAGCACTTCCTAGTAACACC -ACGGAAGCACTTCCTAGTATCGAG -ACGGAAGCACTTCCTAGTCTCCTT -ACGGAAGCACTTCCTAGTCCTGTT -ACGGAAGCACTTCCTAGTCGGTTT -ACGGAAGCACTTCCTAGTGTGGTT -ACGGAAGCACTTCCTAGTGCCTTT -ACGGAAGCACTTCCTAGTGGTCTT -ACGGAAGCACTTCCTAGTACGCTT -ACGGAAGCACTTCCTAGTAGCGTT -ACGGAAGCACTTCCTAGTTTCGTC -ACGGAAGCACTTCCTAGTTCTCTC -ACGGAAGCACTTCCTAGTTGGATC -ACGGAAGCACTTCCTAGTCACTTC -ACGGAAGCACTTCCTAGTGTACTC -ACGGAAGCACTTCCTAGTGATGTC -ACGGAAGCACTTCCTAGTACAGTC -ACGGAAGCACTTCCTAGTTTGCTG -ACGGAAGCACTTCCTAGTTCCATG -ACGGAAGCACTTCCTAGTTGTGTG -ACGGAAGCACTTCCTAGTCTAGTG -ACGGAAGCACTTCCTAGTCATCTG -ACGGAAGCACTTCCTAGTGAGTTG -ACGGAAGCACTTCCTAGTAGACTG -ACGGAAGCACTTCCTAGTTCGGTA -ACGGAAGCACTTCCTAGTTGCCTA -ACGGAAGCACTTCCTAGTCCACTA -ACGGAAGCACTTCCTAGTGGAGTA -ACGGAAGCACTTCCTAGTTCGTCT -ACGGAAGCACTTCCTAGTTGCACT -ACGGAAGCACTTCCTAGTCTGACT -ACGGAAGCACTTCCTAGTCAACCT -ACGGAAGCACTTCCTAGTGCTACT -ACGGAAGCACTTCCTAGTGGATCT -ACGGAAGCACTTCCTAGTAAGGCT -ACGGAAGCACTTCCTAGTTCAACC -ACGGAAGCACTTCCTAGTTGTTCC -ACGGAAGCACTTCCTAGTATTCCC -ACGGAAGCACTTCCTAGTTTCTCG -ACGGAAGCACTTCCTAGTTAGACG -ACGGAAGCACTTCCTAGTGTAACG -ACGGAAGCACTTCCTAGTACTTCG -ACGGAAGCACTTCCTAGTTACGCA -ACGGAAGCACTTCCTAGTCTTGCA -ACGGAAGCACTTCCTAGTCGAACA -ACGGAAGCACTTCCTAGTCAGTCA -ACGGAAGCACTTCCTAGTGATCCA -ACGGAAGCACTTCCTAGTACGACA -ACGGAAGCACTTCCTAGTAGCTCA -ACGGAAGCACTTCCTAGTTCACGT -ACGGAAGCACTTCCTAGTCGTAGT -ACGGAAGCACTTCCTAGTGTCAGT -ACGGAAGCACTTCCTAGTGAAGGT -ACGGAAGCACTTCCTAGTAACCGT -ACGGAAGCACTTCCTAGTTTGTGC -ACGGAAGCACTTCCTAGTCTAAGC -ACGGAAGCACTTCCTAGTACTAGC -ACGGAAGCACTTCCTAGTAGATGC -ACGGAAGCACTTCCTAGTTGAAGG -ACGGAAGCACTTCCTAGTCAATGG -ACGGAAGCACTTCCTAGTATGAGG -ACGGAAGCACTTCCTAGTAATGGG -ACGGAAGCACTTCCTAGTTCCTGA -ACGGAAGCACTTCCTAGTTAGCGA -ACGGAAGCACTTCCTAGTCACAGA -ACGGAAGCACTTCCTAGTGCAAGA -ACGGAAGCACTTCCTAGTGGTTGA -ACGGAAGCACTTCCTAGTTCCGAT -ACGGAAGCACTTCCTAGTTGGCAT -ACGGAAGCACTTCCTAGTCGAGAT -ACGGAAGCACTTCCTAGTTACCAC -ACGGAAGCACTTCCTAGTCAGAAC -ACGGAAGCACTTCCTAGTGTCTAC -ACGGAAGCACTTCCTAGTACGTAC -ACGGAAGCACTTCCTAGTAGTGAC -ACGGAAGCACTTCCTAGTCTGTAG -ACGGAAGCACTTCCTAGTCCTAAG -ACGGAAGCACTTCCTAGTGTTCAG -ACGGAAGCACTTCCTAGTGCATAG -ACGGAAGCACTTCCTAGTGACAAG -ACGGAAGCACTTCCTAGTAAGCAG -ACGGAAGCACTTCCTAGTCGTCAA -ACGGAAGCACTTCCTAGTGCTGAA -ACGGAAGCACTTCCTAGTAGTACG -ACGGAAGCACTTCCTAGTATCCGA -ACGGAAGCACTTCCTAGTATGGGA -ACGGAAGCACTTCCTAGTGTGCAA -ACGGAAGCACTTCCTAGTGAGGAA -ACGGAAGCACTTCCTAGTCAGGTA -ACGGAAGCACTTCCTAGTGACTCT -ACGGAAGCACTTCCTAGTAGTCCT -ACGGAAGCACTTCCTAGTTAAGCC -ACGGAAGCACTTCCTAGTATAGCC -ACGGAAGCACTTCCTAGTTAACCG -ACGGAAGCACTTCCTAGTATGCCA -ACGGAAGCACTTGCCTAAGGAAAC -ACGGAAGCACTTGCCTAAAACACC -ACGGAAGCACTTGCCTAAATCGAG -ACGGAAGCACTTGCCTAACTCCTT -ACGGAAGCACTTGCCTAACCTGTT -ACGGAAGCACTTGCCTAACGGTTT -ACGGAAGCACTTGCCTAAGTGGTT -ACGGAAGCACTTGCCTAAGCCTTT -ACGGAAGCACTTGCCTAAGGTCTT -ACGGAAGCACTTGCCTAAACGCTT -ACGGAAGCACTTGCCTAAAGCGTT -ACGGAAGCACTTGCCTAATTCGTC -ACGGAAGCACTTGCCTAATCTCTC -ACGGAAGCACTTGCCTAATGGATC -ACGGAAGCACTTGCCTAACACTTC -ACGGAAGCACTTGCCTAAGTACTC -ACGGAAGCACTTGCCTAAGATGTC -ACGGAAGCACTTGCCTAAACAGTC -ACGGAAGCACTTGCCTAATTGCTG -ACGGAAGCACTTGCCTAATCCATG -ACGGAAGCACTTGCCTAATGTGTG -ACGGAAGCACTTGCCTAACTAGTG -ACGGAAGCACTTGCCTAACATCTG -ACGGAAGCACTTGCCTAAGAGTTG -ACGGAAGCACTTGCCTAAAGACTG -ACGGAAGCACTTGCCTAATCGGTA -ACGGAAGCACTTGCCTAATGCCTA -ACGGAAGCACTTGCCTAACCACTA -ACGGAAGCACTTGCCTAAGGAGTA -ACGGAAGCACTTGCCTAATCGTCT -ACGGAAGCACTTGCCTAATGCACT -ACGGAAGCACTTGCCTAACTGACT -ACGGAAGCACTTGCCTAACAACCT -ACGGAAGCACTTGCCTAAGCTACT -ACGGAAGCACTTGCCTAAGGATCT -ACGGAAGCACTTGCCTAAAAGGCT -ACGGAAGCACTTGCCTAATCAACC -ACGGAAGCACTTGCCTAATGTTCC -ACGGAAGCACTTGCCTAAATTCCC -ACGGAAGCACTTGCCTAATTCTCG -ACGGAAGCACTTGCCTAATAGACG -ACGGAAGCACTTGCCTAAGTAACG -ACGGAAGCACTTGCCTAAACTTCG -ACGGAAGCACTTGCCTAATACGCA -ACGGAAGCACTTGCCTAACTTGCA -ACGGAAGCACTTGCCTAACGAACA -ACGGAAGCACTTGCCTAACAGTCA -ACGGAAGCACTTGCCTAAGATCCA -ACGGAAGCACTTGCCTAAACGACA -ACGGAAGCACTTGCCTAAAGCTCA -ACGGAAGCACTTGCCTAATCACGT -ACGGAAGCACTTGCCTAACGTAGT -ACGGAAGCACTTGCCTAAGTCAGT -ACGGAAGCACTTGCCTAAGAAGGT -ACGGAAGCACTTGCCTAAAACCGT -ACGGAAGCACTTGCCTAATTGTGC -ACGGAAGCACTTGCCTAACTAAGC -ACGGAAGCACTTGCCTAAACTAGC -ACGGAAGCACTTGCCTAAAGATGC -ACGGAAGCACTTGCCTAATGAAGG -ACGGAAGCACTTGCCTAACAATGG -ACGGAAGCACTTGCCTAAATGAGG -ACGGAAGCACTTGCCTAAAATGGG -ACGGAAGCACTTGCCTAATCCTGA -ACGGAAGCACTTGCCTAATAGCGA -ACGGAAGCACTTGCCTAACACAGA -ACGGAAGCACTTGCCTAAGCAAGA -ACGGAAGCACTTGCCTAAGGTTGA -ACGGAAGCACTTGCCTAATCCGAT -ACGGAAGCACTTGCCTAATGGCAT -ACGGAAGCACTTGCCTAACGAGAT -ACGGAAGCACTTGCCTAATACCAC -ACGGAAGCACTTGCCTAACAGAAC -ACGGAAGCACTTGCCTAAGTCTAC -ACGGAAGCACTTGCCTAAACGTAC -ACGGAAGCACTTGCCTAAAGTGAC -ACGGAAGCACTTGCCTAACTGTAG -ACGGAAGCACTTGCCTAACCTAAG -ACGGAAGCACTTGCCTAAGTTCAG -ACGGAAGCACTTGCCTAAGCATAG -ACGGAAGCACTTGCCTAAGACAAG -ACGGAAGCACTTGCCTAAAAGCAG -ACGGAAGCACTTGCCTAACGTCAA -ACGGAAGCACTTGCCTAAGCTGAA -ACGGAAGCACTTGCCTAAAGTACG -ACGGAAGCACTTGCCTAAATCCGA -ACGGAAGCACTTGCCTAAATGGGA -ACGGAAGCACTTGCCTAAGTGCAA -ACGGAAGCACTTGCCTAAGAGGAA -ACGGAAGCACTTGCCTAACAGGTA -ACGGAAGCACTTGCCTAAGACTCT -ACGGAAGCACTTGCCTAAAGTCCT -ACGGAAGCACTTGCCTAATAAGCC -ACGGAAGCACTTGCCTAAATAGCC -ACGGAAGCACTTGCCTAATAACCG -ACGGAAGCACTTGCCTAAATGCCA -ACGGAAGCACTTGCCATAGGAAAC -ACGGAAGCACTTGCCATAAACACC -ACGGAAGCACTTGCCATAATCGAG -ACGGAAGCACTTGCCATACTCCTT -ACGGAAGCACTTGCCATACCTGTT -ACGGAAGCACTTGCCATACGGTTT -ACGGAAGCACTTGCCATAGTGGTT -ACGGAAGCACTTGCCATAGCCTTT -ACGGAAGCACTTGCCATAGGTCTT -ACGGAAGCACTTGCCATAACGCTT -ACGGAAGCACTTGCCATAAGCGTT -ACGGAAGCACTTGCCATATTCGTC -ACGGAAGCACTTGCCATATCTCTC -ACGGAAGCACTTGCCATATGGATC -ACGGAAGCACTTGCCATACACTTC -ACGGAAGCACTTGCCATAGTACTC -ACGGAAGCACTTGCCATAGATGTC -ACGGAAGCACTTGCCATAACAGTC -ACGGAAGCACTTGCCATATTGCTG -ACGGAAGCACTTGCCATATCCATG -ACGGAAGCACTTGCCATATGTGTG -ACGGAAGCACTTGCCATACTAGTG -ACGGAAGCACTTGCCATACATCTG -ACGGAAGCACTTGCCATAGAGTTG -ACGGAAGCACTTGCCATAAGACTG -ACGGAAGCACTTGCCATATCGGTA -ACGGAAGCACTTGCCATATGCCTA -ACGGAAGCACTTGCCATACCACTA -ACGGAAGCACTTGCCATAGGAGTA -ACGGAAGCACTTGCCATATCGTCT -ACGGAAGCACTTGCCATATGCACT -ACGGAAGCACTTGCCATACTGACT -ACGGAAGCACTTGCCATACAACCT -ACGGAAGCACTTGCCATAGCTACT -ACGGAAGCACTTGCCATAGGATCT -ACGGAAGCACTTGCCATAAAGGCT -ACGGAAGCACTTGCCATATCAACC -ACGGAAGCACTTGCCATATGTTCC -ACGGAAGCACTTGCCATAATTCCC -ACGGAAGCACTTGCCATATTCTCG -ACGGAAGCACTTGCCATATAGACG -ACGGAAGCACTTGCCATAGTAACG -ACGGAAGCACTTGCCATAACTTCG -ACGGAAGCACTTGCCATATACGCA -ACGGAAGCACTTGCCATACTTGCA -ACGGAAGCACTTGCCATACGAACA -ACGGAAGCACTTGCCATACAGTCA -ACGGAAGCACTTGCCATAGATCCA -ACGGAAGCACTTGCCATAACGACA -ACGGAAGCACTTGCCATAAGCTCA -ACGGAAGCACTTGCCATATCACGT -ACGGAAGCACTTGCCATACGTAGT -ACGGAAGCACTTGCCATAGTCAGT -ACGGAAGCACTTGCCATAGAAGGT -ACGGAAGCACTTGCCATAAACCGT -ACGGAAGCACTTGCCATATTGTGC -ACGGAAGCACTTGCCATACTAAGC -ACGGAAGCACTTGCCATAACTAGC -ACGGAAGCACTTGCCATAAGATGC -ACGGAAGCACTTGCCATATGAAGG -ACGGAAGCACTTGCCATACAATGG -ACGGAAGCACTTGCCATAATGAGG -ACGGAAGCACTTGCCATAAATGGG -ACGGAAGCACTTGCCATATCCTGA -ACGGAAGCACTTGCCATATAGCGA -ACGGAAGCACTTGCCATACACAGA -ACGGAAGCACTTGCCATAGCAAGA -ACGGAAGCACTTGCCATAGGTTGA -ACGGAAGCACTTGCCATATCCGAT -ACGGAAGCACTTGCCATATGGCAT -ACGGAAGCACTTGCCATACGAGAT -ACGGAAGCACTTGCCATATACCAC -ACGGAAGCACTTGCCATACAGAAC -ACGGAAGCACTTGCCATAGTCTAC -ACGGAAGCACTTGCCATAACGTAC -ACGGAAGCACTTGCCATAAGTGAC -ACGGAAGCACTTGCCATACTGTAG -ACGGAAGCACTTGCCATACCTAAG -ACGGAAGCACTTGCCATAGTTCAG -ACGGAAGCACTTGCCATAGCATAG -ACGGAAGCACTTGCCATAGACAAG -ACGGAAGCACTTGCCATAAAGCAG -ACGGAAGCACTTGCCATACGTCAA -ACGGAAGCACTTGCCATAGCTGAA -ACGGAAGCACTTGCCATAAGTACG -ACGGAAGCACTTGCCATAATCCGA -ACGGAAGCACTTGCCATAATGGGA -ACGGAAGCACTTGCCATAGTGCAA -ACGGAAGCACTTGCCATAGAGGAA -ACGGAAGCACTTGCCATACAGGTA -ACGGAAGCACTTGCCATAGACTCT -ACGGAAGCACTTGCCATAAGTCCT -ACGGAAGCACTTGCCATATAAGCC -ACGGAAGCACTTGCCATAATAGCC -ACGGAAGCACTTGCCATATAACCG -ACGGAAGCACTTGCCATAATGCCA -ACGGAAGCACTTCCGTAAGGAAAC -ACGGAAGCACTTCCGTAAAACACC -ACGGAAGCACTTCCGTAAATCGAG -ACGGAAGCACTTCCGTAACTCCTT -ACGGAAGCACTTCCGTAACCTGTT -ACGGAAGCACTTCCGTAACGGTTT -ACGGAAGCACTTCCGTAAGTGGTT -ACGGAAGCACTTCCGTAAGCCTTT -ACGGAAGCACTTCCGTAAGGTCTT -ACGGAAGCACTTCCGTAAACGCTT -ACGGAAGCACTTCCGTAAAGCGTT -ACGGAAGCACTTCCGTAATTCGTC -ACGGAAGCACTTCCGTAATCTCTC -ACGGAAGCACTTCCGTAATGGATC -ACGGAAGCACTTCCGTAACACTTC -ACGGAAGCACTTCCGTAAGTACTC -ACGGAAGCACTTCCGTAAGATGTC -ACGGAAGCACTTCCGTAAACAGTC -ACGGAAGCACTTCCGTAATTGCTG -ACGGAAGCACTTCCGTAATCCATG -ACGGAAGCACTTCCGTAATGTGTG -ACGGAAGCACTTCCGTAACTAGTG -ACGGAAGCACTTCCGTAACATCTG -ACGGAAGCACTTCCGTAAGAGTTG -ACGGAAGCACTTCCGTAAAGACTG -ACGGAAGCACTTCCGTAATCGGTA -ACGGAAGCACTTCCGTAATGCCTA -ACGGAAGCACTTCCGTAACCACTA -ACGGAAGCACTTCCGTAAGGAGTA -ACGGAAGCACTTCCGTAATCGTCT -ACGGAAGCACTTCCGTAATGCACT -ACGGAAGCACTTCCGTAACTGACT -ACGGAAGCACTTCCGTAACAACCT -ACGGAAGCACTTCCGTAAGCTACT -ACGGAAGCACTTCCGTAAGGATCT -ACGGAAGCACTTCCGTAAAAGGCT -ACGGAAGCACTTCCGTAATCAACC -ACGGAAGCACTTCCGTAATGTTCC -ACGGAAGCACTTCCGTAAATTCCC -ACGGAAGCACTTCCGTAATTCTCG -ACGGAAGCACTTCCGTAATAGACG -ACGGAAGCACTTCCGTAAGTAACG -ACGGAAGCACTTCCGTAAACTTCG -ACGGAAGCACTTCCGTAATACGCA -ACGGAAGCACTTCCGTAACTTGCA -ACGGAAGCACTTCCGTAACGAACA -ACGGAAGCACTTCCGTAACAGTCA -ACGGAAGCACTTCCGTAAGATCCA -ACGGAAGCACTTCCGTAAACGACA -ACGGAAGCACTTCCGTAAAGCTCA -ACGGAAGCACTTCCGTAATCACGT -ACGGAAGCACTTCCGTAACGTAGT -ACGGAAGCACTTCCGTAAGTCAGT -ACGGAAGCACTTCCGTAAGAAGGT -ACGGAAGCACTTCCGTAAAACCGT -ACGGAAGCACTTCCGTAATTGTGC -ACGGAAGCACTTCCGTAACTAAGC -ACGGAAGCACTTCCGTAAACTAGC -ACGGAAGCACTTCCGTAAAGATGC -ACGGAAGCACTTCCGTAATGAAGG -ACGGAAGCACTTCCGTAACAATGG -ACGGAAGCACTTCCGTAAATGAGG -ACGGAAGCACTTCCGTAAAATGGG -ACGGAAGCACTTCCGTAATCCTGA -ACGGAAGCACTTCCGTAATAGCGA -ACGGAAGCACTTCCGTAACACAGA -ACGGAAGCACTTCCGTAAGCAAGA -ACGGAAGCACTTCCGTAAGGTTGA -ACGGAAGCACTTCCGTAATCCGAT -ACGGAAGCACTTCCGTAATGGCAT -ACGGAAGCACTTCCGTAACGAGAT -ACGGAAGCACTTCCGTAATACCAC -ACGGAAGCACTTCCGTAACAGAAC -ACGGAAGCACTTCCGTAAGTCTAC -ACGGAAGCACTTCCGTAAACGTAC -ACGGAAGCACTTCCGTAAAGTGAC -ACGGAAGCACTTCCGTAACTGTAG -ACGGAAGCACTTCCGTAACCTAAG -ACGGAAGCACTTCCGTAAGTTCAG -ACGGAAGCACTTCCGTAAGCATAG -ACGGAAGCACTTCCGTAAGACAAG -ACGGAAGCACTTCCGTAAAAGCAG -ACGGAAGCACTTCCGTAACGTCAA -ACGGAAGCACTTCCGTAAGCTGAA -ACGGAAGCACTTCCGTAAAGTACG -ACGGAAGCACTTCCGTAAATCCGA -ACGGAAGCACTTCCGTAAATGGGA -ACGGAAGCACTTCCGTAAGTGCAA -ACGGAAGCACTTCCGTAAGAGGAA -ACGGAAGCACTTCCGTAACAGGTA -ACGGAAGCACTTCCGTAAGACTCT -ACGGAAGCACTTCCGTAAAGTCCT -ACGGAAGCACTTCCGTAATAAGCC -ACGGAAGCACTTCCGTAAATAGCC -ACGGAAGCACTTCCGTAATAACCG -ACGGAAGCACTTCCGTAAATGCCA -ACGGAAGCACTTCCAATGGGAAAC -ACGGAAGCACTTCCAATGAACACC -ACGGAAGCACTTCCAATGATCGAG -ACGGAAGCACTTCCAATGCTCCTT -ACGGAAGCACTTCCAATGCCTGTT -ACGGAAGCACTTCCAATGCGGTTT -ACGGAAGCACTTCCAATGGTGGTT -ACGGAAGCACTTCCAATGGCCTTT -ACGGAAGCACTTCCAATGGGTCTT -ACGGAAGCACTTCCAATGACGCTT -ACGGAAGCACTTCCAATGAGCGTT -ACGGAAGCACTTCCAATGTTCGTC -ACGGAAGCACTTCCAATGTCTCTC -ACGGAAGCACTTCCAATGTGGATC -ACGGAAGCACTTCCAATGCACTTC -ACGGAAGCACTTCCAATGGTACTC -ACGGAAGCACTTCCAATGGATGTC -ACGGAAGCACTTCCAATGACAGTC -ACGGAAGCACTTCCAATGTTGCTG -ACGGAAGCACTTCCAATGTCCATG -ACGGAAGCACTTCCAATGTGTGTG -ACGGAAGCACTTCCAATGCTAGTG -ACGGAAGCACTTCCAATGCATCTG -ACGGAAGCACTTCCAATGGAGTTG -ACGGAAGCACTTCCAATGAGACTG -ACGGAAGCACTTCCAATGTCGGTA -ACGGAAGCACTTCCAATGTGCCTA -ACGGAAGCACTTCCAATGCCACTA -ACGGAAGCACTTCCAATGGGAGTA -ACGGAAGCACTTCCAATGTCGTCT -ACGGAAGCACTTCCAATGTGCACT -ACGGAAGCACTTCCAATGCTGACT -ACGGAAGCACTTCCAATGCAACCT -ACGGAAGCACTTCCAATGGCTACT -ACGGAAGCACTTCCAATGGGATCT -ACGGAAGCACTTCCAATGAAGGCT -ACGGAAGCACTTCCAATGTCAACC -ACGGAAGCACTTCCAATGTGTTCC -ACGGAAGCACTTCCAATGATTCCC -ACGGAAGCACTTCCAATGTTCTCG -ACGGAAGCACTTCCAATGTAGACG -ACGGAAGCACTTCCAATGGTAACG -ACGGAAGCACTTCCAATGACTTCG -ACGGAAGCACTTCCAATGTACGCA -ACGGAAGCACTTCCAATGCTTGCA -ACGGAAGCACTTCCAATGCGAACA -ACGGAAGCACTTCCAATGCAGTCA -ACGGAAGCACTTCCAATGGATCCA -ACGGAAGCACTTCCAATGACGACA -ACGGAAGCACTTCCAATGAGCTCA -ACGGAAGCACTTCCAATGTCACGT -ACGGAAGCACTTCCAATGCGTAGT -ACGGAAGCACTTCCAATGGTCAGT -ACGGAAGCACTTCCAATGGAAGGT -ACGGAAGCACTTCCAATGAACCGT -ACGGAAGCACTTCCAATGTTGTGC -ACGGAAGCACTTCCAATGCTAAGC -ACGGAAGCACTTCCAATGACTAGC -ACGGAAGCACTTCCAATGAGATGC -ACGGAAGCACTTCCAATGTGAAGG -ACGGAAGCACTTCCAATGCAATGG -ACGGAAGCACTTCCAATGATGAGG -ACGGAAGCACTTCCAATGAATGGG -ACGGAAGCACTTCCAATGTCCTGA -ACGGAAGCACTTCCAATGTAGCGA -ACGGAAGCACTTCCAATGCACAGA -ACGGAAGCACTTCCAATGGCAAGA -ACGGAAGCACTTCCAATGGGTTGA -ACGGAAGCACTTCCAATGTCCGAT -ACGGAAGCACTTCCAATGTGGCAT -ACGGAAGCACTTCCAATGCGAGAT -ACGGAAGCACTTCCAATGTACCAC -ACGGAAGCACTTCCAATGCAGAAC -ACGGAAGCACTTCCAATGGTCTAC -ACGGAAGCACTTCCAATGACGTAC -ACGGAAGCACTTCCAATGAGTGAC -ACGGAAGCACTTCCAATGCTGTAG -ACGGAAGCACTTCCAATGCCTAAG -ACGGAAGCACTTCCAATGGTTCAG -ACGGAAGCACTTCCAATGGCATAG -ACGGAAGCACTTCCAATGGACAAG -ACGGAAGCACTTCCAATGAAGCAG -ACGGAAGCACTTCCAATGCGTCAA -ACGGAAGCACTTCCAATGGCTGAA -ACGGAAGCACTTCCAATGAGTACG -ACGGAAGCACTTCCAATGATCCGA -ACGGAAGCACTTCCAATGATGGGA -ACGGAAGCACTTCCAATGGTGCAA -ACGGAAGCACTTCCAATGGAGGAA -ACGGAAGCACTTCCAATGCAGGTA -ACGGAAGCACTTCCAATGGACTCT -ACGGAAGCACTTCCAATGAGTCCT -ACGGAAGCACTTCCAATGTAAGCC -ACGGAAGCACTTCCAATGATAGCC -ACGGAAGCACTTCCAATGTAACCG -ACGGAAGCACTTCCAATGATGCCA -ACGGAATGACTCAACGGAGGAAAC -ACGGAATGACTCAACGGAAACACC -ACGGAATGACTCAACGGAATCGAG -ACGGAATGACTCAACGGACTCCTT -ACGGAATGACTCAACGGACCTGTT -ACGGAATGACTCAACGGACGGTTT -ACGGAATGACTCAACGGAGTGGTT -ACGGAATGACTCAACGGAGCCTTT -ACGGAATGACTCAACGGAGGTCTT -ACGGAATGACTCAACGGAACGCTT -ACGGAATGACTCAACGGAAGCGTT -ACGGAATGACTCAACGGATTCGTC -ACGGAATGACTCAACGGATCTCTC -ACGGAATGACTCAACGGATGGATC -ACGGAATGACTCAACGGACACTTC -ACGGAATGACTCAACGGAGTACTC -ACGGAATGACTCAACGGAGATGTC -ACGGAATGACTCAACGGAACAGTC -ACGGAATGACTCAACGGATTGCTG -ACGGAATGACTCAACGGATCCATG -ACGGAATGACTCAACGGATGTGTG -ACGGAATGACTCAACGGACTAGTG -ACGGAATGACTCAACGGACATCTG -ACGGAATGACTCAACGGAGAGTTG -ACGGAATGACTCAACGGAAGACTG -ACGGAATGACTCAACGGATCGGTA -ACGGAATGACTCAACGGATGCCTA -ACGGAATGACTCAACGGACCACTA -ACGGAATGACTCAACGGAGGAGTA -ACGGAATGACTCAACGGATCGTCT -ACGGAATGACTCAACGGATGCACT -ACGGAATGACTCAACGGACTGACT -ACGGAATGACTCAACGGACAACCT -ACGGAATGACTCAACGGAGCTACT -ACGGAATGACTCAACGGAGGATCT -ACGGAATGACTCAACGGAAAGGCT -ACGGAATGACTCAACGGATCAACC -ACGGAATGACTCAACGGATGTTCC -ACGGAATGACTCAACGGAATTCCC -ACGGAATGACTCAACGGATTCTCG -ACGGAATGACTCAACGGATAGACG -ACGGAATGACTCAACGGAGTAACG -ACGGAATGACTCAACGGAACTTCG -ACGGAATGACTCAACGGATACGCA -ACGGAATGACTCAACGGACTTGCA -ACGGAATGACTCAACGGACGAACA -ACGGAATGACTCAACGGACAGTCA -ACGGAATGACTCAACGGAGATCCA -ACGGAATGACTCAACGGAACGACA -ACGGAATGACTCAACGGAAGCTCA -ACGGAATGACTCAACGGATCACGT -ACGGAATGACTCAACGGACGTAGT -ACGGAATGACTCAACGGAGTCAGT -ACGGAATGACTCAACGGAGAAGGT -ACGGAATGACTCAACGGAAACCGT -ACGGAATGACTCAACGGATTGTGC -ACGGAATGACTCAACGGACTAAGC -ACGGAATGACTCAACGGAACTAGC -ACGGAATGACTCAACGGAAGATGC -ACGGAATGACTCAACGGATGAAGG -ACGGAATGACTCAACGGACAATGG -ACGGAATGACTCAACGGAATGAGG -ACGGAATGACTCAACGGAAATGGG -ACGGAATGACTCAACGGATCCTGA -ACGGAATGACTCAACGGATAGCGA -ACGGAATGACTCAACGGACACAGA -ACGGAATGACTCAACGGAGCAAGA -ACGGAATGACTCAACGGAGGTTGA -ACGGAATGACTCAACGGATCCGAT -ACGGAATGACTCAACGGATGGCAT -ACGGAATGACTCAACGGACGAGAT -ACGGAATGACTCAACGGATACCAC -ACGGAATGACTCAACGGACAGAAC -ACGGAATGACTCAACGGAGTCTAC -ACGGAATGACTCAACGGAACGTAC -ACGGAATGACTCAACGGAAGTGAC -ACGGAATGACTCAACGGACTGTAG -ACGGAATGACTCAACGGACCTAAG -ACGGAATGACTCAACGGAGTTCAG -ACGGAATGACTCAACGGAGCATAG -ACGGAATGACTCAACGGAGACAAG -ACGGAATGACTCAACGGAAAGCAG -ACGGAATGACTCAACGGACGTCAA -ACGGAATGACTCAACGGAGCTGAA -ACGGAATGACTCAACGGAAGTACG -ACGGAATGACTCAACGGAATCCGA -ACGGAATGACTCAACGGAATGGGA -ACGGAATGACTCAACGGAGTGCAA -ACGGAATGACTCAACGGAGAGGAA -ACGGAATGACTCAACGGACAGGTA -ACGGAATGACTCAACGGAGACTCT -ACGGAATGACTCAACGGAAGTCCT -ACGGAATGACTCAACGGATAAGCC -ACGGAATGACTCAACGGAATAGCC -ACGGAATGACTCAACGGATAACCG -ACGGAATGACTCAACGGAATGCCA -ACGGAATGACTCACCAACGGAAAC -ACGGAATGACTCACCAACAACACC -ACGGAATGACTCACCAACATCGAG -ACGGAATGACTCACCAACCTCCTT -ACGGAATGACTCACCAACCCTGTT -ACGGAATGACTCACCAACCGGTTT -ACGGAATGACTCACCAACGTGGTT -ACGGAATGACTCACCAACGCCTTT -ACGGAATGACTCACCAACGGTCTT -ACGGAATGACTCACCAACACGCTT -ACGGAATGACTCACCAACAGCGTT -ACGGAATGACTCACCAACTTCGTC -ACGGAATGACTCACCAACTCTCTC -ACGGAATGACTCACCAACTGGATC -ACGGAATGACTCACCAACCACTTC -ACGGAATGACTCACCAACGTACTC -ACGGAATGACTCACCAACGATGTC -ACGGAATGACTCACCAACACAGTC -ACGGAATGACTCACCAACTTGCTG -ACGGAATGACTCACCAACTCCATG -ACGGAATGACTCACCAACTGTGTG -ACGGAATGACTCACCAACCTAGTG -ACGGAATGACTCACCAACCATCTG -ACGGAATGACTCACCAACGAGTTG -ACGGAATGACTCACCAACAGACTG -ACGGAATGACTCACCAACTCGGTA -ACGGAATGACTCACCAACTGCCTA -ACGGAATGACTCACCAACCCACTA -ACGGAATGACTCACCAACGGAGTA -ACGGAATGACTCACCAACTCGTCT -ACGGAATGACTCACCAACTGCACT -ACGGAATGACTCACCAACCTGACT -ACGGAATGACTCACCAACCAACCT -ACGGAATGACTCACCAACGCTACT -ACGGAATGACTCACCAACGGATCT -ACGGAATGACTCACCAACAAGGCT -ACGGAATGACTCACCAACTCAACC -ACGGAATGACTCACCAACTGTTCC -ACGGAATGACTCACCAACATTCCC -ACGGAATGACTCACCAACTTCTCG -ACGGAATGACTCACCAACTAGACG -ACGGAATGACTCACCAACGTAACG -ACGGAATGACTCACCAACACTTCG -ACGGAATGACTCACCAACTACGCA -ACGGAATGACTCACCAACCTTGCA -ACGGAATGACTCACCAACCGAACA -ACGGAATGACTCACCAACCAGTCA -ACGGAATGACTCACCAACGATCCA -ACGGAATGACTCACCAACACGACA -ACGGAATGACTCACCAACAGCTCA -ACGGAATGACTCACCAACTCACGT -ACGGAATGACTCACCAACCGTAGT -ACGGAATGACTCACCAACGTCAGT -ACGGAATGACTCACCAACGAAGGT -ACGGAATGACTCACCAACAACCGT -ACGGAATGACTCACCAACTTGTGC -ACGGAATGACTCACCAACCTAAGC -ACGGAATGACTCACCAACACTAGC -ACGGAATGACTCACCAACAGATGC -ACGGAATGACTCACCAACTGAAGG -ACGGAATGACTCACCAACCAATGG -ACGGAATGACTCACCAACATGAGG -ACGGAATGACTCACCAACAATGGG -ACGGAATGACTCACCAACTCCTGA -ACGGAATGACTCACCAACTAGCGA -ACGGAATGACTCACCAACCACAGA -ACGGAATGACTCACCAACGCAAGA -ACGGAATGACTCACCAACGGTTGA -ACGGAATGACTCACCAACTCCGAT -ACGGAATGACTCACCAACTGGCAT -ACGGAATGACTCACCAACCGAGAT -ACGGAATGACTCACCAACTACCAC -ACGGAATGACTCACCAACCAGAAC -ACGGAATGACTCACCAACGTCTAC -ACGGAATGACTCACCAACACGTAC -ACGGAATGACTCACCAACAGTGAC -ACGGAATGACTCACCAACCTGTAG -ACGGAATGACTCACCAACCCTAAG -ACGGAATGACTCACCAACGTTCAG -ACGGAATGACTCACCAACGCATAG -ACGGAATGACTCACCAACGACAAG -ACGGAATGACTCACCAACAAGCAG -ACGGAATGACTCACCAACCGTCAA -ACGGAATGACTCACCAACGCTGAA -ACGGAATGACTCACCAACAGTACG -ACGGAATGACTCACCAACATCCGA -ACGGAATGACTCACCAACATGGGA -ACGGAATGACTCACCAACGTGCAA -ACGGAATGACTCACCAACGAGGAA -ACGGAATGACTCACCAACCAGGTA -ACGGAATGACTCACCAACGACTCT -ACGGAATGACTCACCAACAGTCCT -ACGGAATGACTCACCAACTAAGCC -ACGGAATGACTCACCAACATAGCC -ACGGAATGACTCACCAACTAACCG -ACGGAATGACTCACCAACATGCCA -ACGGAATGACTCGAGATCGGAAAC -ACGGAATGACTCGAGATCAACACC -ACGGAATGACTCGAGATCATCGAG -ACGGAATGACTCGAGATCCTCCTT -ACGGAATGACTCGAGATCCCTGTT -ACGGAATGACTCGAGATCCGGTTT -ACGGAATGACTCGAGATCGTGGTT -ACGGAATGACTCGAGATCGCCTTT -ACGGAATGACTCGAGATCGGTCTT -ACGGAATGACTCGAGATCACGCTT -ACGGAATGACTCGAGATCAGCGTT -ACGGAATGACTCGAGATCTTCGTC -ACGGAATGACTCGAGATCTCTCTC -ACGGAATGACTCGAGATCTGGATC -ACGGAATGACTCGAGATCCACTTC -ACGGAATGACTCGAGATCGTACTC -ACGGAATGACTCGAGATCGATGTC -ACGGAATGACTCGAGATCACAGTC -ACGGAATGACTCGAGATCTTGCTG -ACGGAATGACTCGAGATCTCCATG -ACGGAATGACTCGAGATCTGTGTG -ACGGAATGACTCGAGATCCTAGTG -ACGGAATGACTCGAGATCCATCTG -ACGGAATGACTCGAGATCGAGTTG -ACGGAATGACTCGAGATCAGACTG -ACGGAATGACTCGAGATCTCGGTA -ACGGAATGACTCGAGATCTGCCTA -ACGGAATGACTCGAGATCCCACTA -ACGGAATGACTCGAGATCGGAGTA -ACGGAATGACTCGAGATCTCGTCT -ACGGAATGACTCGAGATCTGCACT -ACGGAATGACTCGAGATCCTGACT -ACGGAATGACTCGAGATCCAACCT -ACGGAATGACTCGAGATCGCTACT -ACGGAATGACTCGAGATCGGATCT -ACGGAATGACTCGAGATCAAGGCT -ACGGAATGACTCGAGATCTCAACC -ACGGAATGACTCGAGATCTGTTCC -ACGGAATGACTCGAGATCATTCCC -ACGGAATGACTCGAGATCTTCTCG -ACGGAATGACTCGAGATCTAGACG -ACGGAATGACTCGAGATCGTAACG -ACGGAATGACTCGAGATCACTTCG -ACGGAATGACTCGAGATCTACGCA -ACGGAATGACTCGAGATCCTTGCA -ACGGAATGACTCGAGATCCGAACA -ACGGAATGACTCGAGATCCAGTCA -ACGGAATGACTCGAGATCGATCCA -ACGGAATGACTCGAGATCACGACA -ACGGAATGACTCGAGATCAGCTCA -ACGGAATGACTCGAGATCTCACGT -ACGGAATGACTCGAGATCCGTAGT -ACGGAATGACTCGAGATCGTCAGT -ACGGAATGACTCGAGATCGAAGGT -ACGGAATGACTCGAGATCAACCGT -ACGGAATGACTCGAGATCTTGTGC -ACGGAATGACTCGAGATCCTAAGC -ACGGAATGACTCGAGATCACTAGC -ACGGAATGACTCGAGATCAGATGC -ACGGAATGACTCGAGATCTGAAGG -ACGGAATGACTCGAGATCCAATGG -ACGGAATGACTCGAGATCATGAGG -ACGGAATGACTCGAGATCAATGGG -ACGGAATGACTCGAGATCTCCTGA -ACGGAATGACTCGAGATCTAGCGA -ACGGAATGACTCGAGATCCACAGA -ACGGAATGACTCGAGATCGCAAGA -ACGGAATGACTCGAGATCGGTTGA -ACGGAATGACTCGAGATCTCCGAT -ACGGAATGACTCGAGATCTGGCAT -ACGGAATGACTCGAGATCCGAGAT -ACGGAATGACTCGAGATCTACCAC -ACGGAATGACTCGAGATCCAGAAC -ACGGAATGACTCGAGATCGTCTAC -ACGGAATGACTCGAGATCACGTAC -ACGGAATGACTCGAGATCAGTGAC -ACGGAATGACTCGAGATCCTGTAG -ACGGAATGACTCGAGATCCCTAAG -ACGGAATGACTCGAGATCGTTCAG -ACGGAATGACTCGAGATCGCATAG -ACGGAATGACTCGAGATCGACAAG -ACGGAATGACTCGAGATCAAGCAG -ACGGAATGACTCGAGATCCGTCAA -ACGGAATGACTCGAGATCGCTGAA -ACGGAATGACTCGAGATCAGTACG -ACGGAATGACTCGAGATCATCCGA -ACGGAATGACTCGAGATCATGGGA -ACGGAATGACTCGAGATCGTGCAA -ACGGAATGACTCGAGATCGAGGAA -ACGGAATGACTCGAGATCCAGGTA -ACGGAATGACTCGAGATCGACTCT -ACGGAATGACTCGAGATCAGTCCT -ACGGAATGACTCGAGATCTAAGCC -ACGGAATGACTCGAGATCATAGCC -ACGGAATGACTCGAGATCTAACCG -ACGGAATGACTCGAGATCATGCCA -ACGGAATGACTCCTTCTCGGAAAC -ACGGAATGACTCCTTCTCAACACC -ACGGAATGACTCCTTCTCATCGAG -ACGGAATGACTCCTTCTCCTCCTT -ACGGAATGACTCCTTCTCCCTGTT -ACGGAATGACTCCTTCTCCGGTTT -ACGGAATGACTCCTTCTCGTGGTT -ACGGAATGACTCCTTCTCGCCTTT -ACGGAATGACTCCTTCTCGGTCTT -ACGGAATGACTCCTTCTCACGCTT -ACGGAATGACTCCTTCTCAGCGTT -ACGGAATGACTCCTTCTCTTCGTC -ACGGAATGACTCCTTCTCTCTCTC -ACGGAATGACTCCTTCTCTGGATC -ACGGAATGACTCCTTCTCCACTTC -ACGGAATGACTCCTTCTCGTACTC -ACGGAATGACTCCTTCTCGATGTC -ACGGAATGACTCCTTCTCACAGTC -ACGGAATGACTCCTTCTCTTGCTG -ACGGAATGACTCCTTCTCTCCATG -ACGGAATGACTCCTTCTCTGTGTG -ACGGAATGACTCCTTCTCCTAGTG -ACGGAATGACTCCTTCTCCATCTG -ACGGAATGACTCCTTCTCGAGTTG -ACGGAATGACTCCTTCTCAGACTG -ACGGAATGACTCCTTCTCTCGGTA -ACGGAATGACTCCTTCTCTGCCTA -ACGGAATGACTCCTTCTCCCACTA -ACGGAATGACTCCTTCTCGGAGTA -ACGGAATGACTCCTTCTCTCGTCT -ACGGAATGACTCCTTCTCTGCACT -ACGGAATGACTCCTTCTCCTGACT -ACGGAATGACTCCTTCTCCAACCT -ACGGAATGACTCCTTCTCGCTACT -ACGGAATGACTCCTTCTCGGATCT -ACGGAATGACTCCTTCTCAAGGCT -ACGGAATGACTCCTTCTCTCAACC -ACGGAATGACTCCTTCTCTGTTCC -ACGGAATGACTCCTTCTCATTCCC -ACGGAATGACTCCTTCTCTTCTCG -ACGGAATGACTCCTTCTCTAGACG -ACGGAATGACTCCTTCTCGTAACG -ACGGAATGACTCCTTCTCACTTCG -ACGGAATGACTCCTTCTCTACGCA -ACGGAATGACTCCTTCTCCTTGCA -ACGGAATGACTCCTTCTCCGAACA -ACGGAATGACTCCTTCTCCAGTCA -ACGGAATGACTCCTTCTCGATCCA -ACGGAATGACTCCTTCTCACGACA -ACGGAATGACTCCTTCTCAGCTCA -ACGGAATGACTCCTTCTCTCACGT -ACGGAATGACTCCTTCTCCGTAGT -ACGGAATGACTCCTTCTCGTCAGT -ACGGAATGACTCCTTCTCGAAGGT -ACGGAATGACTCCTTCTCAACCGT -ACGGAATGACTCCTTCTCTTGTGC -ACGGAATGACTCCTTCTCCTAAGC -ACGGAATGACTCCTTCTCACTAGC -ACGGAATGACTCCTTCTCAGATGC -ACGGAATGACTCCTTCTCTGAAGG -ACGGAATGACTCCTTCTCCAATGG -ACGGAATGACTCCTTCTCATGAGG -ACGGAATGACTCCTTCTCAATGGG -ACGGAATGACTCCTTCTCTCCTGA -ACGGAATGACTCCTTCTCTAGCGA -ACGGAATGACTCCTTCTCCACAGA -ACGGAATGACTCCTTCTCGCAAGA -ACGGAATGACTCCTTCTCGGTTGA -ACGGAATGACTCCTTCTCTCCGAT -ACGGAATGACTCCTTCTCTGGCAT -ACGGAATGACTCCTTCTCCGAGAT -ACGGAATGACTCCTTCTCTACCAC -ACGGAATGACTCCTTCTCCAGAAC -ACGGAATGACTCCTTCTCGTCTAC -ACGGAATGACTCCTTCTCACGTAC -ACGGAATGACTCCTTCTCAGTGAC -ACGGAATGACTCCTTCTCCTGTAG -ACGGAATGACTCCTTCTCCCTAAG -ACGGAATGACTCCTTCTCGTTCAG -ACGGAATGACTCCTTCTCGCATAG -ACGGAATGACTCCTTCTCGACAAG -ACGGAATGACTCCTTCTCAAGCAG -ACGGAATGACTCCTTCTCCGTCAA -ACGGAATGACTCCTTCTCGCTGAA -ACGGAATGACTCCTTCTCAGTACG -ACGGAATGACTCCTTCTCATCCGA -ACGGAATGACTCCTTCTCATGGGA -ACGGAATGACTCCTTCTCGTGCAA -ACGGAATGACTCCTTCTCGAGGAA -ACGGAATGACTCCTTCTCCAGGTA -ACGGAATGACTCCTTCTCGACTCT -ACGGAATGACTCCTTCTCAGTCCT -ACGGAATGACTCCTTCTCTAAGCC -ACGGAATGACTCCTTCTCATAGCC -ACGGAATGACTCCTTCTCTAACCG -ACGGAATGACTCCTTCTCATGCCA -ACGGAATGACTCGTTCCTGGAAAC -ACGGAATGACTCGTTCCTAACACC -ACGGAATGACTCGTTCCTATCGAG -ACGGAATGACTCGTTCCTCTCCTT -ACGGAATGACTCGTTCCTCCTGTT -ACGGAATGACTCGTTCCTCGGTTT -ACGGAATGACTCGTTCCTGTGGTT -ACGGAATGACTCGTTCCTGCCTTT -ACGGAATGACTCGTTCCTGGTCTT -ACGGAATGACTCGTTCCTACGCTT -ACGGAATGACTCGTTCCTAGCGTT -ACGGAATGACTCGTTCCTTTCGTC -ACGGAATGACTCGTTCCTTCTCTC -ACGGAATGACTCGTTCCTTGGATC -ACGGAATGACTCGTTCCTCACTTC -ACGGAATGACTCGTTCCTGTACTC -ACGGAATGACTCGTTCCTGATGTC -ACGGAATGACTCGTTCCTACAGTC -ACGGAATGACTCGTTCCTTTGCTG -ACGGAATGACTCGTTCCTTCCATG -ACGGAATGACTCGTTCCTTGTGTG -ACGGAATGACTCGTTCCTCTAGTG -ACGGAATGACTCGTTCCTCATCTG -ACGGAATGACTCGTTCCTGAGTTG -ACGGAATGACTCGTTCCTAGACTG -ACGGAATGACTCGTTCCTTCGGTA -ACGGAATGACTCGTTCCTTGCCTA -ACGGAATGACTCGTTCCTCCACTA -ACGGAATGACTCGTTCCTGGAGTA -ACGGAATGACTCGTTCCTTCGTCT -ACGGAATGACTCGTTCCTTGCACT -ACGGAATGACTCGTTCCTCTGACT -ACGGAATGACTCGTTCCTCAACCT -ACGGAATGACTCGTTCCTGCTACT -ACGGAATGACTCGTTCCTGGATCT -ACGGAATGACTCGTTCCTAAGGCT -ACGGAATGACTCGTTCCTTCAACC -ACGGAATGACTCGTTCCTTGTTCC -ACGGAATGACTCGTTCCTATTCCC -ACGGAATGACTCGTTCCTTTCTCG -ACGGAATGACTCGTTCCTTAGACG -ACGGAATGACTCGTTCCTGTAACG -ACGGAATGACTCGTTCCTACTTCG -ACGGAATGACTCGTTCCTTACGCA -ACGGAATGACTCGTTCCTCTTGCA -ACGGAATGACTCGTTCCTCGAACA -ACGGAATGACTCGTTCCTCAGTCA -ACGGAATGACTCGTTCCTGATCCA -ACGGAATGACTCGTTCCTACGACA -ACGGAATGACTCGTTCCTAGCTCA -ACGGAATGACTCGTTCCTTCACGT -ACGGAATGACTCGTTCCTCGTAGT -ACGGAATGACTCGTTCCTGTCAGT -ACGGAATGACTCGTTCCTGAAGGT -ACGGAATGACTCGTTCCTAACCGT -ACGGAATGACTCGTTCCTTTGTGC -ACGGAATGACTCGTTCCTCTAAGC -ACGGAATGACTCGTTCCTACTAGC -ACGGAATGACTCGTTCCTAGATGC -ACGGAATGACTCGTTCCTTGAAGG -ACGGAATGACTCGTTCCTCAATGG -ACGGAATGACTCGTTCCTATGAGG -ACGGAATGACTCGTTCCTAATGGG -ACGGAATGACTCGTTCCTTCCTGA -ACGGAATGACTCGTTCCTTAGCGA -ACGGAATGACTCGTTCCTCACAGA -ACGGAATGACTCGTTCCTGCAAGA -ACGGAATGACTCGTTCCTGGTTGA -ACGGAATGACTCGTTCCTTCCGAT -ACGGAATGACTCGTTCCTTGGCAT -ACGGAATGACTCGTTCCTCGAGAT -ACGGAATGACTCGTTCCTTACCAC -ACGGAATGACTCGTTCCTCAGAAC -ACGGAATGACTCGTTCCTGTCTAC -ACGGAATGACTCGTTCCTACGTAC -ACGGAATGACTCGTTCCTAGTGAC -ACGGAATGACTCGTTCCTCTGTAG -ACGGAATGACTCGTTCCTCCTAAG -ACGGAATGACTCGTTCCTGTTCAG -ACGGAATGACTCGTTCCTGCATAG -ACGGAATGACTCGTTCCTGACAAG -ACGGAATGACTCGTTCCTAAGCAG -ACGGAATGACTCGTTCCTCGTCAA -ACGGAATGACTCGTTCCTGCTGAA -ACGGAATGACTCGTTCCTAGTACG -ACGGAATGACTCGTTCCTATCCGA -ACGGAATGACTCGTTCCTATGGGA -ACGGAATGACTCGTTCCTGTGCAA -ACGGAATGACTCGTTCCTGAGGAA -ACGGAATGACTCGTTCCTCAGGTA -ACGGAATGACTCGTTCCTGACTCT -ACGGAATGACTCGTTCCTAGTCCT -ACGGAATGACTCGTTCCTTAAGCC -ACGGAATGACTCGTTCCTATAGCC -ACGGAATGACTCGTTCCTTAACCG -ACGGAATGACTCGTTCCTATGCCA -ACGGAATGACTCTTTCGGGGAAAC -ACGGAATGACTCTTTCGGAACACC -ACGGAATGACTCTTTCGGATCGAG -ACGGAATGACTCTTTCGGCTCCTT -ACGGAATGACTCTTTCGGCCTGTT -ACGGAATGACTCTTTCGGCGGTTT -ACGGAATGACTCTTTCGGGTGGTT -ACGGAATGACTCTTTCGGGCCTTT -ACGGAATGACTCTTTCGGGGTCTT -ACGGAATGACTCTTTCGGACGCTT -ACGGAATGACTCTTTCGGAGCGTT -ACGGAATGACTCTTTCGGTTCGTC -ACGGAATGACTCTTTCGGTCTCTC -ACGGAATGACTCTTTCGGTGGATC -ACGGAATGACTCTTTCGGCACTTC -ACGGAATGACTCTTTCGGGTACTC -ACGGAATGACTCTTTCGGGATGTC -ACGGAATGACTCTTTCGGACAGTC -ACGGAATGACTCTTTCGGTTGCTG -ACGGAATGACTCTTTCGGTCCATG -ACGGAATGACTCTTTCGGTGTGTG -ACGGAATGACTCTTTCGGCTAGTG -ACGGAATGACTCTTTCGGCATCTG -ACGGAATGACTCTTTCGGGAGTTG -ACGGAATGACTCTTTCGGAGACTG -ACGGAATGACTCTTTCGGTCGGTA -ACGGAATGACTCTTTCGGTGCCTA -ACGGAATGACTCTTTCGGCCACTA -ACGGAATGACTCTTTCGGGGAGTA -ACGGAATGACTCTTTCGGTCGTCT -ACGGAATGACTCTTTCGGTGCACT -ACGGAATGACTCTTTCGGCTGACT -ACGGAATGACTCTTTCGGCAACCT -ACGGAATGACTCTTTCGGGCTACT -ACGGAATGACTCTTTCGGGGATCT -ACGGAATGACTCTTTCGGAAGGCT -ACGGAATGACTCTTTCGGTCAACC -ACGGAATGACTCTTTCGGTGTTCC -ACGGAATGACTCTTTCGGATTCCC -ACGGAATGACTCTTTCGGTTCTCG -ACGGAATGACTCTTTCGGTAGACG -ACGGAATGACTCTTTCGGGTAACG -ACGGAATGACTCTTTCGGACTTCG -ACGGAATGACTCTTTCGGTACGCA -ACGGAATGACTCTTTCGGCTTGCA -ACGGAATGACTCTTTCGGCGAACA -ACGGAATGACTCTTTCGGCAGTCA -ACGGAATGACTCTTTCGGGATCCA -ACGGAATGACTCTTTCGGACGACA -ACGGAATGACTCTTTCGGAGCTCA -ACGGAATGACTCTTTCGGTCACGT -ACGGAATGACTCTTTCGGCGTAGT -ACGGAATGACTCTTTCGGGTCAGT -ACGGAATGACTCTTTCGGGAAGGT -ACGGAATGACTCTTTCGGAACCGT -ACGGAATGACTCTTTCGGTTGTGC -ACGGAATGACTCTTTCGGCTAAGC -ACGGAATGACTCTTTCGGACTAGC -ACGGAATGACTCTTTCGGAGATGC -ACGGAATGACTCTTTCGGTGAAGG -ACGGAATGACTCTTTCGGCAATGG -ACGGAATGACTCTTTCGGATGAGG -ACGGAATGACTCTTTCGGAATGGG -ACGGAATGACTCTTTCGGTCCTGA -ACGGAATGACTCTTTCGGTAGCGA -ACGGAATGACTCTTTCGGCACAGA -ACGGAATGACTCTTTCGGGCAAGA -ACGGAATGACTCTTTCGGGGTTGA -ACGGAATGACTCTTTCGGTCCGAT -ACGGAATGACTCTTTCGGTGGCAT -ACGGAATGACTCTTTCGGCGAGAT -ACGGAATGACTCTTTCGGTACCAC -ACGGAATGACTCTTTCGGCAGAAC -ACGGAATGACTCTTTCGGGTCTAC -ACGGAATGACTCTTTCGGACGTAC -ACGGAATGACTCTTTCGGAGTGAC -ACGGAATGACTCTTTCGGCTGTAG -ACGGAATGACTCTTTCGGCCTAAG -ACGGAATGACTCTTTCGGGTTCAG -ACGGAATGACTCTTTCGGGCATAG -ACGGAATGACTCTTTCGGGACAAG -ACGGAATGACTCTTTCGGAAGCAG -ACGGAATGACTCTTTCGGCGTCAA -ACGGAATGACTCTTTCGGGCTGAA -ACGGAATGACTCTTTCGGAGTACG -ACGGAATGACTCTTTCGGATCCGA -ACGGAATGACTCTTTCGGATGGGA -ACGGAATGACTCTTTCGGGTGCAA -ACGGAATGACTCTTTCGGGAGGAA -ACGGAATGACTCTTTCGGCAGGTA -ACGGAATGACTCTTTCGGGACTCT -ACGGAATGACTCTTTCGGAGTCCT -ACGGAATGACTCTTTCGGTAAGCC -ACGGAATGACTCTTTCGGATAGCC -ACGGAATGACTCTTTCGGTAACCG -ACGGAATGACTCTTTCGGATGCCA -ACGGAATGACTCGTTGTGGGAAAC -ACGGAATGACTCGTTGTGAACACC -ACGGAATGACTCGTTGTGATCGAG -ACGGAATGACTCGTTGTGCTCCTT -ACGGAATGACTCGTTGTGCCTGTT -ACGGAATGACTCGTTGTGCGGTTT -ACGGAATGACTCGTTGTGGTGGTT -ACGGAATGACTCGTTGTGGCCTTT -ACGGAATGACTCGTTGTGGGTCTT -ACGGAATGACTCGTTGTGACGCTT -ACGGAATGACTCGTTGTGAGCGTT -ACGGAATGACTCGTTGTGTTCGTC -ACGGAATGACTCGTTGTGTCTCTC -ACGGAATGACTCGTTGTGTGGATC -ACGGAATGACTCGTTGTGCACTTC -ACGGAATGACTCGTTGTGGTACTC -ACGGAATGACTCGTTGTGGATGTC -ACGGAATGACTCGTTGTGACAGTC -ACGGAATGACTCGTTGTGTTGCTG -ACGGAATGACTCGTTGTGTCCATG -ACGGAATGACTCGTTGTGTGTGTG -ACGGAATGACTCGTTGTGCTAGTG -ACGGAATGACTCGTTGTGCATCTG -ACGGAATGACTCGTTGTGGAGTTG -ACGGAATGACTCGTTGTGAGACTG -ACGGAATGACTCGTTGTGTCGGTA -ACGGAATGACTCGTTGTGTGCCTA -ACGGAATGACTCGTTGTGCCACTA -ACGGAATGACTCGTTGTGGGAGTA -ACGGAATGACTCGTTGTGTCGTCT -ACGGAATGACTCGTTGTGTGCACT -ACGGAATGACTCGTTGTGCTGACT -ACGGAATGACTCGTTGTGCAACCT -ACGGAATGACTCGTTGTGGCTACT -ACGGAATGACTCGTTGTGGGATCT -ACGGAATGACTCGTTGTGAAGGCT -ACGGAATGACTCGTTGTGTCAACC -ACGGAATGACTCGTTGTGTGTTCC -ACGGAATGACTCGTTGTGATTCCC -ACGGAATGACTCGTTGTGTTCTCG -ACGGAATGACTCGTTGTGTAGACG -ACGGAATGACTCGTTGTGGTAACG -ACGGAATGACTCGTTGTGACTTCG -ACGGAATGACTCGTTGTGTACGCA -ACGGAATGACTCGTTGTGCTTGCA -ACGGAATGACTCGTTGTGCGAACA -ACGGAATGACTCGTTGTGCAGTCA -ACGGAATGACTCGTTGTGGATCCA -ACGGAATGACTCGTTGTGACGACA -ACGGAATGACTCGTTGTGAGCTCA -ACGGAATGACTCGTTGTGTCACGT -ACGGAATGACTCGTTGTGCGTAGT -ACGGAATGACTCGTTGTGGTCAGT -ACGGAATGACTCGTTGTGGAAGGT -ACGGAATGACTCGTTGTGAACCGT -ACGGAATGACTCGTTGTGTTGTGC -ACGGAATGACTCGTTGTGCTAAGC -ACGGAATGACTCGTTGTGACTAGC -ACGGAATGACTCGTTGTGAGATGC -ACGGAATGACTCGTTGTGTGAAGG -ACGGAATGACTCGTTGTGCAATGG -ACGGAATGACTCGTTGTGATGAGG -ACGGAATGACTCGTTGTGAATGGG -ACGGAATGACTCGTTGTGTCCTGA -ACGGAATGACTCGTTGTGTAGCGA -ACGGAATGACTCGTTGTGCACAGA -ACGGAATGACTCGTTGTGGCAAGA -ACGGAATGACTCGTTGTGGGTTGA -ACGGAATGACTCGTTGTGTCCGAT -ACGGAATGACTCGTTGTGTGGCAT -ACGGAATGACTCGTTGTGCGAGAT -ACGGAATGACTCGTTGTGTACCAC -ACGGAATGACTCGTTGTGCAGAAC -ACGGAATGACTCGTTGTGGTCTAC -ACGGAATGACTCGTTGTGACGTAC -ACGGAATGACTCGTTGTGAGTGAC -ACGGAATGACTCGTTGTGCTGTAG -ACGGAATGACTCGTTGTGCCTAAG -ACGGAATGACTCGTTGTGGTTCAG -ACGGAATGACTCGTTGTGGCATAG -ACGGAATGACTCGTTGTGGACAAG -ACGGAATGACTCGTTGTGAAGCAG -ACGGAATGACTCGTTGTGCGTCAA -ACGGAATGACTCGTTGTGGCTGAA -ACGGAATGACTCGTTGTGAGTACG -ACGGAATGACTCGTTGTGATCCGA -ACGGAATGACTCGTTGTGATGGGA -ACGGAATGACTCGTTGTGGTGCAA -ACGGAATGACTCGTTGTGGAGGAA -ACGGAATGACTCGTTGTGCAGGTA -ACGGAATGACTCGTTGTGGACTCT -ACGGAATGACTCGTTGTGAGTCCT -ACGGAATGACTCGTTGTGTAAGCC -ACGGAATGACTCGTTGTGATAGCC -ACGGAATGACTCGTTGTGTAACCG -ACGGAATGACTCGTTGTGATGCCA -ACGGAATGACTCTTTGCCGGAAAC -ACGGAATGACTCTTTGCCAACACC -ACGGAATGACTCTTTGCCATCGAG -ACGGAATGACTCTTTGCCCTCCTT -ACGGAATGACTCTTTGCCCCTGTT -ACGGAATGACTCTTTGCCCGGTTT -ACGGAATGACTCTTTGCCGTGGTT -ACGGAATGACTCTTTGCCGCCTTT -ACGGAATGACTCTTTGCCGGTCTT -ACGGAATGACTCTTTGCCACGCTT -ACGGAATGACTCTTTGCCAGCGTT -ACGGAATGACTCTTTGCCTTCGTC -ACGGAATGACTCTTTGCCTCTCTC -ACGGAATGACTCTTTGCCTGGATC -ACGGAATGACTCTTTGCCCACTTC -ACGGAATGACTCTTTGCCGTACTC -ACGGAATGACTCTTTGCCGATGTC -ACGGAATGACTCTTTGCCACAGTC -ACGGAATGACTCTTTGCCTTGCTG -ACGGAATGACTCTTTGCCTCCATG -ACGGAATGACTCTTTGCCTGTGTG -ACGGAATGACTCTTTGCCCTAGTG -ACGGAATGACTCTTTGCCCATCTG -ACGGAATGACTCTTTGCCGAGTTG -ACGGAATGACTCTTTGCCAGACTG -ACGGAATGACTCTTTGCCTCGGTA -ACGGAATGACTCTTTGCCTGCCTA -ACGGAATGACTCTTTGCCCCACTA -ACGGAATGACTCTTTGCCGGAGTA -ACGGAATGACTCTTTGCCTCGTCT -ACGGAATGACTCTTTGCCTGCACT -ACGGAATGACTCTTTGCCCTGACT -ACGGAATGACTCTTTGCCCAACCT -ACGGAATGACTCTTTGCCGCTACT -ACGGAATGACTCTTTGCCGGATCT -ACGGAATGACTCTTTGCCAAGGCT -ACGGAATGACTCTTTGCCTCAACC -ACGGAATGACTCTTTGCCTGTTCC -ACGGAATGACTCTTTGCCATTCCC -ACGGAATGACTCTTTGCCTTCTCG -ACGGAATGACTCTTTGCCTAGACG -ACGGAATGACTCTTTGCCGTAACG -ACGGAATGACTCTTTGCCACTTCG -ACGGAATGACTCTTTGCCTACGCA -ACGGAATGACTCTTTGCCCTTGCA -ACGGAATGACTCTTTGCCCGAACA -ACGGAATGACTCTTTGCCCAGTCA -ACGGAATGACTCTTTGCCGATCCA -ACGGAATGACTCTTTGCCACGACA -ACGGAATGACTCTTTGCCAGCTCA -ACGGAATGACTCTTTGCCTCACGT -ACGGAATGACTCTTTGCCCGTAGT -ACGGAATGACTCTTTGCCGTCAGT -ACGGAATGACTCTTTGCCGAAGGT -ACGGAATGACTCTTTGCCAACCGT -ACGGAATGACTCTTTGCCTTGTGC -ACGGAATGACTCTTTGCCCTAAGC -ACGGAATGACTCTTTGCCACTAGC -ACGGAATGACTCTTTGCCAGATGC -ACGGAATGACTCTTTGCCTGAAGG -ACGGAATGACTCTTTGCCCAATGG -ACGGAATGACTCTTTGCCATGAGG -ACGGAATGACTCTTTGCCAATGGG -ACGGAATGACTCTTTGCCTCCTGA -ACGGAATGACTCTTTGCCTAGCGA -ACGGAATGACTCTTTGCCCACAGA -ACGGAATGACTCTTTGCCGCAAGA -ACGGAATGACTCTTTGCCGGTTGA -ACGGAATGACTCTTTGCCTCCGAT -ACGGAATGACTCTTTGCCTGGCAT -ACGGAATGACTCTTTGCCCGAGAT -ACGGAATGACTCTTTGCCTACCAC -ACGGAATGACTCTTTGCCCAGAAC -ACGGAATGACTCTTTGCCGTCTAC -ACGGAATGACTCTTTGCCACGTAC -ACGGAATGACTCTTTGCCAGTGAC -ACGGAATGACTCTTTGCCCTGTAG -ACGGAATGACTCTTTGCCCCTAAG -ACGGAATGACTCTTTGCCGTTCAG -ACGGAATGACTCTTTGCCGCATAG -ACGGAATGACTCTTTGCCGACAAG -ACGGAATGACTCTTTGCCAAGCAG -ACGGAATGACTCTTTGCCCGTCAA -ACGGAATGACTCTTTGCCGCTGAA -ACGGAATGACTCTTTGCCAGTACG -ACGGAATGACTCTTTGCCATCCGA -ACGGAATGACTCTTTGCCATGGGA -ACGGAATGACTCTTTGCCGTGCAA -ACGGAATGACTCTTTGCCGAGGAA -ACGGAATGACTCTTTGCCCAGGTA -ACGGAATGACTCTTTGCCGACTCT -ACGGAATGACTCTTTGCCAGTCCT -ACGGAATGACTCTTTGCCTAAGCC -ACGGAATGACTCTTTGCCATAGCC -ACGGAATGACTCTTTGCCTAACCG -ACGGAATGACTCTTTGCCATGCCA -ACGGAATGACTCCTTGGTGGAAAC -ACGGAATGACTCCTTGGTAACACC -ACGGAATGACTCCTTGGTATCGAG -ACGGAATGACTCCTTGGTCTCCTT -ACGGAATGACTCCTTGGTCCTGTT -ACGGAATGACTCCTTGGTCGGTTT -ACGGAATGACTCCTTGGTGTGGTT -ACGGAATGACTCCTTGGTGCCTTT -ACGGAATGACTCCTTGGTGGTCTT -ACGGAATGACTCCTTGGTACGCTT -ACGGAATGACTCCTTGGTAGCGTT -ACGGAATGACTCCTTGGTTTCGTC -ACGGAATGACTCCTTGGTTCTCTC -ACGGAATGACTCCTTGGTTGGATC -ACGGAATGACTCCTTGGTCACTTC -ACGGAATGACTCCTTGGTGTACTC -ACGGAATGACTCCTTGGTGATGTC -ACGGAATGACTCCTTGGTACAGTC -ACGGAATGACTCCTTGGTTTGCTG -ACGGAATGACTCCTTGGTTCCATG -ACGGAATGACTCCTTGGTTGTGTG -ACGGAATGACTCCTTGGTCTAGTG -ACGGAATGACTCCTTGGTCATCTG -ACGGAATGACTCCTTGGTGAGTTG -ACGGAATGACTCCTTGGTAGACTG -ACGGAATGACTCCTTGGTTCGGTA -ACGGAATGACTCCTTGGTTGCCTA -ACGGAATGACTCCTTGGTCCACTA -ACGGAATGACTCCTTGGTGGAGTA -ACGGAATGACTCCTTGGTTCGTCT -ACGGAATGACTCCTTGGTTGCACT -ACGGAATGACTCCTTGGTCTGACT -ACGGAATGACTCCTTGGTCAACCT -ACGGAATGACTCCTTGGTGCTACT -ACGGAATGACTCCTTGGTGGATCT -ACGGAATGACTCCTTGGTAAGGCT -ACGGAATGACTCCTTGGTTCAACC -ACGGAATGACTCCTTGGTTGTTCC -ACGGAATGACTCCTTGGTATTCCC -ACGGAATGACTCCTTGGTTTCTCG -ACGGAATGACTCCTTGGTTAGACG -ACGGAATGACTCCTTGGTGTAACG -ACGGAATGACTCCTTGGTACTTCG -ACGGAATGACTCCTTGGTTACGCA -ACGGAATGACTCCTTGGTCTTGCA -ACGGAATGACTCCTTGGTCGAACA -ACGGAATGACTCCTTGGTCAGTCA -ACGGAATGACTCCTTGGTGATCCA -ACGGAATGACTCCTTGGTACGACA -ACGGAATGACTCCTTGGTAGCTCA -ACGGAATGACTCCTTGGTTCACGT -ACGGAATGACTCCTTGGTCGTAGT -ACGGAATGACTCCTTGGTGTCAGT -ACGGAATGACTCCTTGGTGAAGGT -ACGGAATGACTCCTTGGTAACCGT -ACGGAATGACTCCTTGGTTTGTGC -ACGGAATGACTCCTTGGTCTAAGC -ACGGAATGACTCCTTGGTACTAGC -ACGGAATGACTCCTTGGTAGATGC -ACGGAATGACTCCTTGGTTGAAGG -ACGGAATGACTCCTTGGTCAATGG -ACGGAATGACTCCTTGGTATGAGG -ACGGAATGACTCCTTGGTAATGGG -ACGGAATGACTCCTTGGTTCCTGA -ACGGAATGACTCCTTGGTTAGCGA -ACGGAATGACTCCTTGGTCACAGA -ACGGAATGACTCCTTGGTGCAAGA -ACGGAATGACTCCTTGGTGGTTGA -ACGGAATGACTCCTTGGTTCCGAT -ACGGAATGACTCCTTGGTTGGCAT -ACGGAATGACTCCTTGGTCGAGAT -ACGGAATGACTCCTTGGTTACCAC -ACGGAATGACTCCTTGGTCAGAAC -ACGGAATGACTCCTTGGTGTCTAC -ACGGAATGACTCCTTGGTACGTAC -ACGGAATGACTCCTTGGTAGTGAC -ACGGAATGACTCCTTGGTCTGTAG -ACGGAATGACTCCTTGGTCCTAAG -ACGGAATGACTCCTTGGTGTTCAG -ACGGAATGACTCCTTGGTGCATAG -ACGGAATGACTCCTTGGTGACAAG -ACGGAATGACTCCTTGGTAAGCAG -ACGGAATGACTCCTTGGTCGTCAA -ACGGAATGACTCCTTGGTGCTGAA -ACGGAATGACTCCTTGGTAGTACG -ACGGAATGACTCCTTGGTATCCGA -ACGGAATGACTCCTTGGTATGGGA -ACGGAATGACTCCTTGGTGTGCAA -ACGGAATGACTCCTTGGTGAGGAA -ACGGAATGACTCCTTGGTCAGGTA -ACGGAATGACTCCTTGGTGACTCT -ACGGAATGACTCCTTGGTAGTCCT -ACGGAATGACTCCTTGGTTAAGCC -ACGGAATGACTCCTTGGTATAGCC -ACGGAATGACTCCTTGGTTAACCG -ACGGAATGACTCCTTGGTATGCCA -ACGGAATGACTCCTTACGGGAAAC -ACGGAATGACTCCTTACGAACACC -ACGGAATGACTCCTTACGATCGAG -ACGGAATGACTCCTTACGCTCCTT -ACGGAATGACTCCTTACGCCTGTT -ACGGAATGACTCCTTACGCGGTTT -ACGGAATGACTCCTTACGGTGGTT -ACGGAATGACTCCTTACGGCCTTT -ACGGAATGACTCCTTACGGGTCTT -ACGGAATGACTCCTTACGACGCTT -ACGGAATGACTCCTTACGAGCGTT -ACGGAATGACTCCTTACGTTCGTC -ACGGAATGACTCCTTACGTCTCTC -ACGGAATGACTCCTTACGTGGATC -ACGGAATGACTCCTTACGCACTTC -ACGGAATGACTCCTTACGGTACTC -ACGGAATGACTCCTTACGGATGTC -ACGGAATGACTCCTTACGACAGTC -ACGGAATGACTCCTTACGTTGCTG -ACGGAATGACTCCTTACGTCCATG -ACGGAATGACTCCTTACGTGTGTG -ACGGAATGACTCCTTACGCTAGTG -ACGGAATGACTCCTTACGCATCTG -ACGGAATGACTCCTTACGGAGTTG -ACGGAATGACTCCTTACGAGACTG -ACGGAATGACTCCTTACGTCGGTA -ACGGAATGACTCCTTACGTGCCTA -ACGGAATGACTCCTTACGCCACTA -ACGGAATGACTCCTTACGGGAGTA -ACGGAATGACTCCTTACGTCGTCT -ACGGAATGACTCCTTACGTGCACT -ACGGAATGACTCCTTACGCTGACT -ACGGAATGACTCCTTACGCAACCT -ACGGAATGACTCCTTACGGCTACT -ACGGAATGACTCCTTACGGGATCT -ACGGAATGACTCCTTACGAAGGCT -ACGGAATGACTCCTTACGTCAACC -ACGGAATGACTCCTTACGTGTTCC -ACGGAATGACTCCTTACGATTCCC -ACGGAATGACTCCTTACGTTCTCG -ACGGAATGACTCCTTACGTAGACG -ACGGAATGACTCCTTACGGTAACG -ACGGAATGACTCCTTACGACTTCG -ACGGAATGACTCCTTACGTACGCA -ACGGAATGACTCCTTACGCTTGCA -ACGGAATGACTCCTTACGCGAACA -ACGGAATGACTCCTTACGCAGTCA -ACGGAATGACTCCTTACGGATCCA -ACGGAATGACTCCTTACGACGACA -ACGGAATGACTCCTTACGAGCTCA -ACGGAATGACTCCTTACGTCACGT -ACGGAATGACTCCTTACGCGTAGT -ACGGAATGACTCCTTACGGTCAGT -ACGGAATGACTCCTTACGGAAGGT -ACGGAATGACTCCTTACGAACCGT -ACGGAATGACTCCTTACGTTGTGC -ACGGAATGACTCCTTACGCTAAGC -ACGGAATGACTCCTTACGACTAGC -ACGGAATGACTCCTTACGAGATGC -ACGGAATGACTCCTTACGTGAAGG -ACGGAATGACTCCTTACGCAATGG -ACGGAATGACTCCTTACGATGAGG -ACGGAATGACTCCTTACGAATGGG -ACGGAATGACTCCTTACGTCCTGA -ACGGAATGACTCCTTACGTAGCGA -ACGGAATGACTCCTTACGCACAGA -ACGGAATGACTCCTTACGGCAAGA -ACGGAATGACTCCTTACGGGTTGA -ACGGAATGACTCCTTACGTCCGAT -ACGGAATGACTCCTTACGTGGCAT -ACGGAATGACTCCTTACGCGAGAT -ACGGAATGACTCCTTACGTACCAC -ACGGAATGACTCCTTACGCAGAAC -ACGGAATGACTCCTTACGGTCTAC -ACGGAATGACTCCTTACGACGTAC -ACGGAATGACTCCTTACGAGTGAC -ACGGAATGACTCCTTACGCTGTAG -ACGGAATGACTCCTTACGCCTAAG -ACGGAATGACTCCTTACGGTTCAG -ACGGAATGACTCCTTACGGCATAG -ACGGAATGACTCCTTACGGACAAG -ACGGAATGACTCCTTACGAAGCAG -ACGGAATGACTCCTTACGCGTCAA -ACGGAATGACTCCTTACGGCTGAA -ACGGAATGACTCCTTACGAGTACG -ACGGAATGACTCCTTACGATCCGA -ACGGAATGACTCCTTACGATGGGA -ACGGAATGACTCCTTACGGTGCAA -ACGGAATGACTCCTTACGGAGGAA -ACGGAATGACTCCTTACGCAGGTA -ACGGAATGACTCCTTACGGACTCT -ACGGAATGACTCCTTACGAGTCCT -ACGGAATGACTCCTTACGTAAGCC -ACGGAATGACTCCTTACGATAGCC -ACGGAATGACTCCTTACGTAACCG -ACGGAATGACTCCTTACGATGCCA -ACGGAATGACTCGTTAGCGGAAAC -ACGGAATGACTCGTTAGCAACACC -ACGGAATGACTCGTTAGCATCGAG -ACGGAATGACTCGTTAGCCTCCTT -ACGGAATGACTCGTTAGCCCTGTT -ACGGAATGACTCGTTAGCCGGTTT -ACGGAATGACTCGTTAGCGTGGTT -ACGGAATGACTCGTTAGCGCCTTT -ACGGAATGACTCGTTAGCGGTCTT -ACGGAATGACTCGTTAGCACGCTT -ACGGAATGACTCGTTAGCAGCGTT -ACGGAATGACTCGTTAGCTTCGTC -ACGGAATGACTCGTTAGCTCTCTC -ACGGAATGACTCGTTAGCTGGATC -ACGGAATGACTCGTTAGCCACTTC -ACGGAATGACTCGTTAGCGTACTC -ACGGAATGACTCGTTAGCGATGTC -ACGGAATGACTCGTTAGCACAGTC -ACGGAATGACTCGTTAGCTTGCTG -ACGGAATGACTCGTTAGCTCCATG -ACGGAATGACTCGTTAGCTGTGTG -ACGGAATGACTCGTTAGCCTAGTG -ACGGAATGACTCGTTAGCCATCTG -ACGGAATGACTCGTTAGCGAGTTG -ACGGAATGACTCGTTAGCAGACTG -ACGGAATGACTCGTTAGCTCGGTA -ACGGAATGACTCGTTAGCTGCCTA -ACGGAATGACTCGTTAGCCCACTA -ACGGAATGACTCGTTAGCGGAGTA -ACGGAATGACTCGTTAGCTCGTCT -ACGGAATGACTCGTTAGCTGCACT -ACGGAATGACTCGTTAGCCTGACT -ACGGAATGACTCGTTAGCCAACCT -ACGGAATGACTCGTTAGCGCTACT -ACGGAATGACTCGTTAGCGGATCT -ACGGAATGACTCGTTAGCAAGGCT -ACGGAATGACTCGTTAGCTCAACC -ACGGAATGACTCGTTAGCTGTTCC -ACGGAATGACTCGTTAGCATTCCC -ACGGAATGACTCGTTAGCTTCTCG -ACGGAATGACTCGTTAGCTAGACG -ACGGAATGACTCGTTAGCGTAACG -ACGGAATGACTCGTTAGCACTTCG -ACGGAATGACTCGTTAGCTACGCA -ACGGAATGACTCGTTAGCCTTGCA -ACGGAATGACTCGTTAGCCGAACA -ACGGAATGACTCGTTAGCCAGTCA -ACGGAATGACTCGTTAGCGATCCA -ACGGAATGACTCGTTAGCACGACA -ACGGAATGACTCGTTAGCAGCTCA -ACGGAATGACTCGTTAGCTCACGT -ACGGAATGACTCGTTAGCCGTAGT -ACGGAATGACTCGTTAGCGTCAGT -ACGGAATGACTCGTTAGCGAAGGT -ACGGAATGACTCGTTAGCAACCGT -ACGGAATGACTCGTTAGCTTGTGC -ACGGAATGACTCGTTAGCCTAAGC -ACGGAATGACTCGTTAGCACTAGC -ACGGAATGACTCGTTAGCAGATGC -ACGGAATGACTCGTTAGCTGAAGG -ACGGAATGACTCGTTAGCCAATGG -ACGGAATGACTCGTTAGCATGAGG -ACGGAATGACTCGTTAGCAATGGG -ACGGAATGACTCGTTAGCTCCTGA -ACGGAATGACTCGTTAGCTAGCGA -ACGGAATGACTCGTTAGCCACAGA -ACGGAATGACTCGTTAGCGCAAGA -ACGGAATGACTCGTTAGCGGTTGA -ACGGAATGACTCGTTAGCTCCGAT -ACGGAATGACTCGTTAGCTGGCAT -ACGGAATGACTCGTTAGCCGAGAT -ACGGAATGACTCGTTAGCTACCAC -ACGGAATGACTCGTTAGCCAGAAC -ACGGAATGACTCGTTAGCGTCTAC -ACGGAATGACTCGTTAGCACGTAC -ACGGAATGACTCGTTAGCAGTGAC -ACGGAATGACTCGTTAGCCTGTAG -ACGGAATGACTCGTTAGCCCTAAG -ACGGAATGACTCGTTAGCGTTCAG -ACGGAATGACTCGTTAGCGCATAG -ACGGAATGACTCGTTAGCGACAAG -ACGGAATGACTCGTTAGCAAGCAG -ACGGAATGACTCGTTAGCCGTCAA -ACGGAATGACTCGTTAGCGCTGAA -ACGGAATGACTCGTTAGCAGTACG -ACGGAATGACTCGTTAGCATCCGA -ACGGAATGACTCGTTAGCATGGGA -ACGGAATGACTCGTTAGCGTGCAA -ACGGAATGACTCGTTAGCGAGGAA -ACGGAATGACTCGTTAGCCAGGTA -ACGGAATGACTCGTTAGCGACTCT -ACGGAATGACTCGTTAGCAGTCCT -ACGGAATGACTCGTTAGCTAAGCC -ACGGAATGACTCGTTAGCATAGCC -ACGGAATGACTCGTTAGCTAACCG -ACGGAATGACTCGTTAGCATGCCA -ACGGAATGACTCGTCTTCGGAAAC -ACGGAATGACTCGTCTTCAACACC -ACGGAATGACTCGTCTTCATCGAG -ACGGAATGACTCGTCTTCCTCCTT -ACGGAATGACTCGTCTTCCCTGTT -ACGGAATGACTCGTCTTCCGGTTT -ACGGAATGACTCGTCTTCGTGGTT -ACGGAATGACTCGTCTTCGCCTTT -ACGGAATGACTCGTCTTCGGTCTT -ACGGAATGACTCGTCTTCACGCTT -ACGGAATGACTCGTCTTCAGCGTT -ACGGAATGACTCGTCTTCTTCGTC -ACGGAATGACTCGTCTTCTCTCTC -ACGGAATGACTCGTCTTCTGGATC -ACGGAATGACTCGTCTTCCACTTC -ACGGAATGACTCGTCTTCGTACTC -ACGGAATGACTCGTCTTCGATGTC -ACGGAATGACTCGTCTTCACAGTC -ACGGAATGACTCGTCTTCTTGCTG -ACGGAATGACTCGTCTTCTCCATG -ACGGAATGACTCGTCTTCTGTGTG -ACGGAATGACTCGTCTTCCTAGTG -ACGGAATGACTCGTCTTCCATCTG -ACGGAATGACTCGTCTTCGAGTTG -ACGGAATGACTCGTCTTCAGACTG -ACGGAATGACTCGTCTTCTCGGTA -ACGGAATGACTCGTCTTCTGCCTA -ACGGAATGACTCGTCTTCCCACTA -ACGGAATGACTCGTCTTCGGAGTA -ACGGAATGACTCGTCTTCTCGTCT -ACGGAATGACTCGTCTTCTGCACT -ACGGAATGACTCGTCTTCCTGACT -ACGGAATGACTCGTCTTCCAACCT -ACGGAATGACTCGTCTTCGCTACT -ACGGAATGACTCGTCTTCGGATCT -ACGGAATGACTCGTCTTCAAGGCT -ACGGAATGACTCGTCTTCTCAACC -ACGGAATGACTCGTCTTCTGTTCC -ACGGAATGACTCGTCTTCATTCCC -ACGGAATGACTCGTCTTCTTCTCG -ACGGAATGACTCGTCTTCTAGACG -ACGGAATGACTCGTCTTCGTAACG -ACGGAATGACTCGTCTTCACTTCG -ACGGAATGACTCGTCTTCTACGCA -ACGGAATGACTCGTCTTCCTTGCA -ACGGAATGACTCGTCTTCCGAACA -ACGGAATGACTCGTCTTCCAGTCA -ACGGAATGACTCGTCTTCGATCCA -ACGGAATGACTCGTCTTCACGACA -ACGGAATGACTCGTCTTCAGCTCA -ACGGAATGACTCGTCTTCTCACGT -ACGGAATGACTCGTCTTCCGTAGT -ACGGAATGACTCGTCTTCGTCAGT -ACGGAATGACTCGTCTTCGAAGGT -ACGGAATGACTCGTCTTCAACCGT -ACGGAATGACTCGTCTTCTTGTGC -ACGGAATGACTCGTCTTCCTAAGC -ACGGAATGACTCGTCTTCACTAGC -ACGGAATGACTCGTCTTCAGATGC -ACGGAATGACTCGTCTTCTGAAGG -ACGGAATGACTCGTCTTCCAATGG -ACGGAATGACTCGTCTTCATGAGG -ACGGAATGACTCGTCTTCAATGGG -ACGGAATGACTCGTCTTCTCCTGA -ACGGAATGACTCGTCTTCTAGCGA -ACGGAATGACTCGTCTTCCACAGA -ACGGAATGACTCGTCTTCGCAAGA -ACGGAATGACTCGTCTTCGGTTGA -ACGGAATGACTCGTCTTCTCCGAT -ACGGAATGACTCGTCTTCTGGCAT -ACGGAATGACTCGTCTTCCGAGAT -ACGGAATGACTCGTCTTCTACCAC -ACGGAATGACTCGTCTTCCAGAAC -ACGGAATGACTCGTCTTCGTCTAC -ACGGAATGACTCGTCTTCACGTAC -ACGGAATGACTCGTCTTCAGTGAC -ACGGAATGACTCGTCTTCCTGTAG -ACGGAATGACTCGTCTTCCCTAAG -ACGGAATGACTCGTCTTCGTTCAG -ACGGAATGACTCGTCTTCGCATAG -ACGGAATGACTCGTCTTCGACAAG -ACGGAATGACTCGTCTTCAAGCAG -ACGGAATGACTCGTCTTCCGTCAA -ACGGAATGACTCGTCTTCGCTGAA -ACGGAATGACTCGTCTTCAGTACG -ACGGAATGACTCGTCTTCATCCGA -ACGGAATGACTCGTCTTCATGGGA -ACGGAATGACTCGTCTTCGTGCAA -ACGGAATGACTCGTCTTCGAGGAA -ACGGAATGACTCGTCTTCCAGGTA -ACGGAATGACTCGTCTTCGACTCT -ACGGAATGACTCGTCTTCAGTCCT -ACGGAATGACTCGTCTTCTAAGCC -ACGGAATGACTCGTCTTCATAGCC -ACGGAATGACTCGTCTTCTAACCG -ACGGAATGACTCGTCTTCATGCCA -ACGGAATGACTCCTCTCTGGAAAC -ACGGAATGACTCCTCTCTAACACC -ACGGAATGACTCCTCTCTATCGAG -ACGGAATGACTCCTCTCTCTCCTT -ACGGAATGACTCCTCTCTCCTGTT -ACGGAATGACTCCTCTCTCGGTTT -ACGGAATGACTCCTCTCTGTGGTT -ACGGAATGACTCCTCTCTGCCTTT -ACGGAATGACTCCTCTCTGGTCTT -ACGGAATGACTCCTCTCTACGCTT -ACGGAATGACTCCTCTCTAGCGTT -ACGGAATGACTCCTCTCTTTCGTC -ACGGAATGACTCCTCTCTTCTCTC -ACGGAATGACTCCTCTCTTGGATC -ACGGAATGACTCCTCTCTCACTTC -ACGGAATGACTCCTCTCTGTACTC -ACGGAATGACTCCTCTCTGATGTC -ACGGAATGACTCCTCTCTACAGTC -ACGGAATGACTCCTCTCTTTGCTG -ACGGAATGACTCCTCTCTTCCATG -ACGGAATGACTCCTCTCTTGTGTG -ACGGAATGACTCCTCTCTCTAGTG -ACGGAATGACTCCTCTCTCATCTG -ACGGAATGACTCCTCTCTGAGTTG -ACGGAATGACTCCTCTCTAGACTG -ACGGAATGACTCCTCTCTTCGGTA -ACGGAATGACTCCTCTCTTGCCTA -ACGGAATGACTCCTCTCTCCACTA -ACGGAATGACTCCTCTCTGGAGTA -ACGGAATGACTCCTCTCTTCGTCT -ACGGAATGACTCCTCTCTTGCACT -ACGGAATGACTCCTCTCTCTGACT -ACGGAATGACTCCTCTCTCAACCT -ACGGAATGACTCCTCTCTGCTACT -ACGGAATGACTCCTCTCTGGATCT -ACGGAATGACTCCTCTCTAAGGCT -ACGGAATGACTCCTCTCTTCAACC -ACGGAATGACTCCTCTCTTGTTCC -ACGGAATGACTCCTCTCTATTCCC -ACGGAATGACTCCTCTCTTTCTCG -ACGGAATGACTCCTCTCTTAGACG -ACGGAATGACTCCTCTCTGTAACG -ACGGAATGACTCCTCTCTACTTCG -ACGGAATGACTCCTCTCTTACGCA -ACGGAATGACTCCTCTCTCTTGCA -ACGGAATGACTCCTCTCTCGAACA -ACGGAATGACTCCTCTCTCAGTCA -ACGGAATGACTCCTCTCTGATCCA -ACGGAATGACTCCTCTCTACGACA -ACGGAATGACTCCTCTCTAGCTCA -ACGGAATGACTCCTCTCTTCACGT -ACGGAATGACTCCTCTCTCGTAGT -ACGGAATGACTCCTCTCTGTCAGT -ACGGAATGACTCCTCTCTGAAGGT -ACGGAATGACTCCTCTCTAACCGT -ACGGAATGACTCCTCTCTTTGTGC -ACGGAATGACTCCTCTCTCTAAGC -ACGGAATGACTCCTCTCTACTAGC -ACGGAATGACTCCTCTCTAGATGC -ACGGAATGACTCCTCTCTTGAAGG -ACGGAATGACTCCTCTCTCAATGG -ACGGAATGACTCCTCTCTATGAGG -ACGGAATGACTCCTCTCTAATGGG -ACGGAATGACTCCTCTCTTCCTGA -ACGGAATGACTCCTCTCTTAGCGA -ACGGAATGACTCCTCTCTCACAGA -ACGGAATGACTCCTCTCTGCAAGA -ACGGAATGACTCCTCTCTGGTTGA -ACGGAATGACTCCTCTCTTCCGAT -ACGGAATGACTCCTCTCTTGGCAT -ACGGAATGACTCCTCTCTCGAGAT -ACGGAATGACTCCTCTCTTACCAC -ACGGAATGACTCCTCTCTCAGAAC -ACGGAATGACTCCTCTCTGTCTAC -ACGGAATGACTCCTCTCTACGTAC -ACGGAATGACTCCTCTCTAGTGAC -ACGGAATGACTCCTCTCTCTGTAG -ACGGAATGACTCCTCTCTCCTAAG -ACGGAATGACTCCTCTCTGTTCAG -ACGGAATGACTCCTCTCTGCATAG -ACGGAATGACTCCTCTCTGACAAG -ACGGAATGACTCCTCTCTAAGCAG -ACGGAATGACTCCTCTCTCGTCAA -ACGGAATGACTCCTCTCTGCTGAA -ACGGAATGACTCCTCTCTAGTACG -ACGGAATGACTCCTCTCTATCCGA -ACGGAATGACTCCTCTCTATGGGA -ACGGAATGACTCCTCTCTGTGCAA -ACGGAATGACTCCTCTCTGAGGAA -ACGGAATGACTCCTCTCTCAGGTA -ACGGAATGACTCCTCTCTGACTCT -ACGGAATGACTCCTCTCTAGTCCT -ACGGAATGACTCCTCTCTTAAGCC -ACGGAATGACTCCTCTCTATAGCC -ACGGAATGACTCCTCTCTTAACCG -ACGGAATGACTCCTCTCTATGCCA -ACGGAATGACTCATCTGGGGAAAC -ACGGAATGACTCATCTGGAACACC -ACGGAATGACTCATCTGGATCGAG -ACGGAATGACTCATCTGGCTCCTT -ACGGAATGACTCATCTGGCCTGTT -ACGGAATGACTCATCTGGCGGTTT -ACGGAATGACTCATCTGGGTGGTT -ACGGAATGACTCATCTGGGCCTTT -ACGGAATGACTCATCTGGGGTCTT -ACGGAATGACTCATCTGGACGCTT -ACGGAATGACTCATCTGGAGCGTT -ACGGAATGACTCATCTGGTTCGTC -ACGGAATGACTCATCTGGTCTCTC -ACGGAATGACTCATCTGGTGGATC -ACGGAATGACTCATCTGGCACTTC -ACGGAATGACTCATCTGGGTACTC -ACGGAATGACTCATCTGGGATGTC -ACGGAATGACTCATCTGGACAGTC -ACGGAATGACTCATCTGGTTGCTG -ACGGAATGACTCATCTGGTCCATG -ACGGAATGACTCATCTGGTGTGTG -ACGGAATGACTCATCTGGCTAGTG -ACGGAATGACTCATCTGGCATCTG -ACGGAATGACTCATCTGGGAGTTG -ACGGAATGACTCATCTGGAGACTG -ACGGAATGACTCATCTGGTCGGTA -ACGGAATGACTCATCTGGTGCCTA -ACGGAATGACTCATCTGGCCACTA -ACGGAATGACTCATCTGGGGAGTA -ACGGAATGACTCATCTGGTCGTCT -ACGGAATGACTCATCTGGTGCACT -ACGGAATGACTCATCTGGCTGACT -ACGGAATGACTCATCTGGCAACCT -ACGGAATGACTCATCTGGGCTACT -ACGGAATGACTCATCTGGGGATCT -ACGGAATGACTCATCTGGAAGGCT -ACGGAATGACTCATCTGGTCAACC -ACGGAATGACTCATCTGGTGTTCC -ACGGAATGACTCATCTGGATTCCC -ACGGAATGACTCATCTGGTTCTCG -ACGGAATGACTCATCTGGTAGACG -ACGGAATGACTCATCTGGGTAACG -ACGGAATGACTCATCTGGACTTCG -ACGGAATGACTCATCTGGTACGCA -ACGGAATGACTCATCTGGCTTGCA -ACGGAATGACTCATCTGGCGAACA -ACGGAATGACTCATCTGGCAGTCA -ACGGAATGACTCATCTGGGATCCA -ACGGAATGACTCATCTGGACGACA -ACGGAATGACTCATCTGGAGCTCA -ACGGAATGACTCATCTGGTCACGT -ACGGAATGACTCATCTGGCGTAGT -ACGGAATGACTCATCTGGGTCAGT -ACGGAATGACTCATCTGGGAAGGT -ACGGAATGACTCATCTGGAACCGT -ACGGAATGACTCATCTGGTTGTGC -ACGGAATGACTCATCTGGCTAAGC -ACGGAATGACTCATCTGGACTAGC -ACGGAATGACTCATCTGGAGATGC -ACGGAATGACTCATCTGGTGAAGG -ACGGAATGACTCATCTGGCAATGG -ACGGAATGACTCATCTGGATGAGG -ACGGAATGACTCATCTGGAATGGG -ACGGAATGACTCATCTGGTCCTGA -ACGGAATGACTCATCTGGTAGCGA -ACGGAATGACTCATCTGGCACAGA -ACGGAATGACTCATCTGGGCAAGA -ACGGAATGACTCATCTGGGGTTGA -ACGGAATGACTCATCTGGTCCGAT -ACGGAATGACTCATCTGGTGGCAT -ACGGAATGACTCATCTGGCGAGAT -ACGGAATGACTCATCTGGTACCAC -ACGGAATGACTCATCTGGCAGAAC -ACGGAATGACTCATCTGGGTCTAC -ACGGAATGACTCATCTGGACGTAC -ACGGAATGACTCATCTGGAGTGAC -ACGGAATGACTCATCTGGCTGTAG -ACGGAATGACTCATCTGGCCTAAG -ACGGAATGACTCATCTGGGTTCAG -ACGGAATGACTCATCTGGGCATAG -ACGGAATGACTCATCTGGGACAAG -ACGGAATGACTCATCTGGAAGCAG -ACGGAATGACTCATCTGGCGTCAA -ACGGAATGACTCATCTGGGCTGAA -ACGGAATGACTCATCTGGAGTACG -ACGGAATGACTCATCTGGATCCGA -ACGGAATGACTCATCTGGATGGGA -ACGGAATGACTCATCTGGGTGCAA -ACGGAATGACTCATCTGGGAGGAA -ACGGAATGACTCATCTGGCAGGTA -ACGGAATGACTCATCTGGGACTCT -ACGGAATGACTCATCTGGAGTCCT -ACGGAATGACTCATCTGGTAAGCC -ACGGAATGACTCATCTGGATAGCC -ACGGAATGACTCATCTGGTAACCG -ACGGAATGACTCATCTGGATGCCA -ACGGAATGACTCTTCCACGGAAAC -ACGGAATGACTCTTCCACAACACC -ACGGAATGACTCTTCCACATCGAG -ACGGAATGACTCTTCCACCTCCTT -ACGGAATGACTCTTCCACCCTGTT -ACGGAATGACTCTTCCACCGGTTT -ACGGAATGACTCTTCCACGTGGTT -ACGGAATGACTCTTCCACGCCTTT -ACGGAATGACTCTTCCACGGTCTT -ACGGAATGACTCTTCCACACGCTT -ACGGAATGACTCTTCCACAGCGTT -ACGGAATGACTCTTCCACTTCGTC -ACGGAATGACTCTTCCACTCTCTC -ACGGAATGACTCTTCCACTGGATC -ACGGAATGACTCTTCCACCACTTC -ACGGAATGACTCTTCCACGTACTC -ACGGAATGACTCTTCCACGATGTC -ACGGAATGACTCTTCCACACAGTC -ACGGAATGACTCTTCCACTTGCTG -ACGGAATGACTCTTCCACTCCATG -ACGGAATGACTCTTCCACTGTGTG -ACGGAATGACTCTTCCACCTAGTG -ACGGAATGACTCTTCCACCATCTG -ACGGAATGACTCTTCCACGAGTTG -ACGGAATGACTCTTCCACAGACTG -ACGGAATGACTCTTCCACTCGGTA -ACGGAATGACTCTTCCACTGCCTA -ACGGAATGACTCTTCCACCCACTA -ACGGAATGACTCTTCCACGGAGTA -ACGGAATGACTCTTCCACTCGTCT -ACGGAATGACTCTTCCACTGCACT -ACGGAATGACTCTTCCACCTGACT -ACGGAATGACTCTTCCACCAACCT -ACGGAATGACTCTTCCACGCTACT -ACGGAATGACTCTTCCACGGATCT -ACGGAATGACTCTTCCACAAGGCT -ACGGAATGACTCTTCCACTCAACC -ACGGAATGACTCTTCCACTGTTCC -ACGGAATGACTCTTCCACATTCCC -ACGGAATGACTCTTCCACTTCTCG -ACGGAATGACTCTTCCACTAGACG -ACGGAATGACTCTTCCACGTAACG -ACGGAATGACTCTTCCACACTTCG -ACGGAATGACTCTTCCACTACGCA -ACGGAATGACTCTTCCACCTTGCA -ACGGAATGACTCTTCCACCGAACA -ACGGAATGACTCTTCCACCAGTCA -ACGGAATGACTCTTCCACGATCCA -ACGGAATGACTCTTCCACACGACA -ACGGAATGACTCTTCCACAGCTCA -ACGGAATGACTCTTCCACTCACGT -ACGGAATGACTCTTCCACCGTAGT -ACGGAATGACTCTTCCACGTCAGT -ACGGAATGACTCTTCCACGAAGGT -ACGGAATGACTCTTCCACAACCGT -ACGGAATGACTCTTCCACTTGTGC -ACGGAATGACTCTTCCACCTAAGC -ACGGAATGACTCTTCCACACTAGC -ACGGAATGACTCTTCCACAGATGC -ACGGAATGACTCTTCCACTGAAGG -ACGGAATGACTCTTCCACCAATGG -ACGGAATGACTCTTCCACATGAGG -ACGGAATGACTCTTCCACAATGGG -ACGGAATGACTCTTCCACTCCTGA -ACGGAATGACTCTTCCACTAGCGA -ACGGAATGACTCTTCCACCACAGA -ACGGAATGACTCTTCCACGCAAGA -ACGGAATGACTCTTCCACGGTTGA -ACGGAATGACTCTTCCACTCCGAT -ACGGAATGACTCTTCCACTGGCAT -ACGGAATGACTCTTCCACCGAGAT -ACGGAATGACTCTTCCACTACCAC -ACGGAATGACTCTTCCACCAGAAC -ACGGAATGACTCTTCCACGTCTAC -ACGGAATGACTCTTCCACACGTAC -ACGGAATGACTCTTCCACAGTGAC -ACGGAATGACTCTTCCACCTGTAG -ACGGAATGACTCTTCCACCCTAAG -ACGGAATGACTCTTCCACGTTCAG -ACGGAATGACTCTTCCACGCATAG -ACGGAATGACTCTTCCACGACAAG -ACGGAATGACTCTTCCACAAGCAG -ACGGAATGACTCTTCCACCGTCAA -ACGGAATGACTCTTCCACGCTGAA -ACGGAATGACTCTTCCACAGTACG -ACGGAATGACTCTTCCACATCCGA -ACGGAATGACTCTTCCACATGGGA -ACGGAATGACTCTTCCACGTGCAA -ACGGAATGACTCTTCCACGAGGAA -ACGGAATGACTCTTCCACCAGGTA -ACGGAATGACTCTTCCACGACTCT -ACGGAATGACTCTTCCACAGTCCT -ACGGAATGACTCTTCCACTAAGCC -ACGGAATGACTCTTCCACATAGCC -ACGGAATGACTCTTCCACTAACCG -ACGGAATGACTCTTCCACATGCCA -ACGGAATGACTCCTCGTAGGAAAC -ACGGAATGACTCCTCGTAAACACC -ACGGAATGACTCCTCGTAATCGAG -ACGGAATGACTCCTCGTACTCCTT -ACGGAATGACTCCTCGTACCTGTT -ACGGAATGACTCCTCGTACGGTTT -ACGGAATGACTCCTCGTAGTGGTT -ACGGAATGACTCCTCGTAGCCTTT -ACGGAATGACTCCTCGTAGGTCTT -ACGGAATGACTCCTCGTAACGCTT -ACGGAATGACTCCTCGTAAGCGTT -ACGGAATGACTCCTCGTATTCGTC -ACGGAATGACTCCTCGTATCTCTC -ACGGAATGACTCCTCGTATGGATC -ACGGAATGACTCCTCGTACACTTC -ACGGAATGACTCCTCGTAGTACTC -ACGGAATGACTCCTCGTAGATGTC -ACGGAATGACTCCTCGTAACAGTC -ACGGAATGACTCCTCGTATTGCTG -ACGGAATGACTCCTCGTATCCATG -ACGGAATGACTCCTCGTATGTGTG -ACGGAATGACTCCTCGTACTAGTG -ACGGAATGACTCCTCGTACATCTG -ACGGAATGACTCCTCGTAGAGTTG -ACGGAATGACTCCTCGTAAGACTG -ACGGAATGACTCCTCGTATCGGTA -ACGGAATGACTCCTCGTATGCCTA -ACGGAATGACTCCTCGTACCACTA -ACGGAATGACTCCTCGTAGGAGTA -ACGGAATGACTCCTCGTATCGTCT -ACGGAATGACTCCTCGTATGCACT -ACGGAATGACTCCTCGTACTGACT -ACGGAATGACTCCTCGTACAACCT -ACGGAATGACTCCTCGTAGCTACT -ACGGAATGACTCCTCGTAGGATCT -ACGGAATGACTCCTCGTAAAGGCT -ACGGAATGACTCCTCGTATCAACC -ACGGAATGACTCCTCGTATGTTCC -ACGGAATGACTCCTCGTAATTCCC -ACGGAATGACTCCTCGTATTCTCG -ACGGAATGACTCCTCGTATAGACG -ACGGAATGACTCCTCGTAGTAACG -ACGGAATGACTCCTCGTAACTTCG -ACGGAATGACTCCTCGTATACGCA -ACGGAATGACTCCTCGTACTTGCA -ACGGAATGACTCCTCGTACGAACA -ACGGAATGACTCCTCGTACAGTCA -ACGGAATGACTCCTCGTAGATCCA -ACGGAATGACTCCTCGTAACGACA -ACGGAATGACTCCTCGTAAGCTCA -ACGGAATGACTCCTCGTATCACGT -ACGGAATGACTCCTCGTACGTAGT -ACGGAATGACTCCTCGTAGTCAGT -ACGGAATGACTCCTCGTAGAAGGT -ACGGAATGACTCCTCGTAAACCGT -ACGGAATGACTCCTCGTATTGTGC -ACGGAATGACTCCTCGTACTAAGC -ACGGAATGACTCCTCGTAACTAGC -ACGGAATGACTCCTCGTAAGATGC -ACGGAATGACTCCTCGTATGAAGG -ACGGAATGACTCCTCGTACAATGG -ACGGAATGACTCCTCGTAATGAGG -ACGGAATGACTCCTCGTAAATGGG -ACGGAATGACTCCTCGTATCCTGA -ACGGAATGACTCCTCGTATAGCGA -ACGGAATGACTCCTCGTACACAGA -ACGGAATGACTCCTCGTAGCAAGA -ACGGAATGACTCCTCGTAGGTTGA -ACGGAATGACTCCTCGTATCCGAT -ACGGAATGACTCCTCGTATGGCAT -ACGGAATGACTCCTCGTACGAGAT -ACGGAATGACTCCTCGTATACCAC -ACGGAATGACTCCTCGTACAGAAC -ACGGAATGACTCCTCGTAGTCTAC -ACGGAATGACTCCTCGTAACGTAC -ACGGAATGACTCCTCGTAAGTGAC -ACGGAATGACTCCTCGTACTGTAG -ACGGAATGACTCCTCGTACCTAAG -ACGGAATGACTCCTCGTAGTTCAG -ACGGAATGACTCCTCGTAGCATAG -ACGGAATGACTCCTCGTAGACAAG -ACGGAATGACTCCTCGTAAAGCAG -ACGGAATGACTCCTCGTACGTCAA -ACGGAATGACTCCTCGTAGCTGAA -ACGGAATGACTCCTCGTAAGTACG -ACGGAATGACTCCTCGTAATCCGA -ACGGAATGACTCCTCGTAATGGGA -ACGGAATGACTCCTCGTAGTGCAA -ACGGAATGACTCCTCGTAGAGGAA -ACGGAATGACTCCTCGTACAGGTA -ACGGAATGACTCCTCGTAGACTCT -ACGGAATGACTCCTCGTAAGTCCT -ACGGAATGACTCCTCGTATAAGCC -ACGGAATGACTCCTCGTAATAGCC -ACGGAATGACTCCTCGTATAACCG -ACGGAATGACTCCTCGTAATGCCA -ACGGAATGACTCGTCGATGGAAAC -ACGGAATGACTCGTCGATAACACC -ACGGAATGACTCGTCGATATCGAG -ACGGAATGACTCGTCGATCTCCTT -ACGGAATGACTCGTCGATCCTGTT -ACGGAATGACTCGTCGATCGGTTT -ACGGAATGACTCGTCGATGTGGTT -ACGGAATGACTCGTCGATGCCTTT -ACGGAATGACTCGTCGATGGTCTT -ACGGAATGACTCGTCGATACGCTT -ACGGAATGACTCGTCGATAGCGTT -ACGGAATGACTCGTCGATTTCGTC -ACGGAATGACTCGTCGATTCTCTC -ACGGAATGACTCGTCGATTGGATC -ACGGAATGACTCGTCGATCACTTC -ACGGAATGACTCGTCGATGTACTC -ACGGAATGACTCGTCGATGATGTC -ACGGAATGACTCGTCGATACAGTC -ACGGAATGACTCGTCGATTTGCTG -ACGGAATGACTCGTCGATTCCATG -ACGGAATGACTCGTCGATTGTGTG -ACGGAATGACTCGTCGATCTAGTG -ACGGAATGACTCGTCGATCATCTG -ACGGAATGACTCGTCGATGAGTTG -ACGGAATGACTCGTCGATAGACTG -ACGGAATGACTCGTCGATTCGGTA -ACGGAATGACTCGTCGATTGCCTA -ACGGAATGACTCGTCGATCCACTA -ACGGAATGACTCGTCGATGGAGTA -ACGGAATGACTCGTCGATTCGTCT -ACGGAATGACTCGTCGATTGCACT -ACGGAATGACTCGTCGATCTGACT -ACGGAATGACTCGTCGATCAACCT -ACGGAATGACTCGTCGATGCTACT -ACGGAATGACTCGTCGATGGATCT -ACGGAATGACTCGTCGATAAGGCT -ACGGAATGACTCGTCGATTCAACC -ACGGAATGACTCGTCGATTGTTCC -ACGGAATGACTCGTCGATATTCCC -ACGGAATGACTCGTCGATTTCTCG -ACGGAATGACTCGTCGATTAGACG -ACGGAATGACTCGTCGATGTAACG -ACGGAATGACTCGTCGATACTTCG -ACGGAATGACTCGTCGATTACGCA -ACGGAATGACTCGTCGATCTTGCA -ACGGAATGACTCGTCGATCGAACA -ACGGAATGACTCGTCGATCAGTCA -ACGGAATGACTCGTCGATGATCCA -ACGGAATGACTCGTCGATACGACA -ACGGAATGACTCGTCGATAGCTCA -ACGGAATGACTCGTCGATTCACGT -ACGGAATGACTCGTCGATCGTAGT -ACGGAATGACTCGTCGATGTCAGT -ACGGAATGACTCGTCGATGAAGGT -ACGGAATGACTCGTCGATAACCGT -ACGGAATGACTCGTCGATTTGTGC -ACGGAATGACTCGTCGATCTAAGC -ACGGAATGACTCGTCGATACTAGC -ACGGAATGACTCGTCGATAGATGC -ACGGAATGACTCGTCGATTGAAGG -ACGGAATGACTCGTCGATCAATGG -ACGGAATGACTCGTCGATATGAGG -ACGGAATGACTCGTCGATAATGGG -ACGGAATGACTCGTCGATTCCTGA -ACGGAATGACTCGTCGATTAGCGA -ACGGAATGACTCGTCGATCACAGA -ACGGAATGACTCGTCGATGCAAGA -ACGGAATGACTCGTCGATGGTTGA -ACGGAATGACTCGTCGATTCCGAT -ACGGAATGACTCGTCGATTGGCAT -ACGGAATGACTCGTCGATCGAGAT -ACGGAATGACTCGTCGATTACCAC -ACGGAATGACTCGTCGATCAGAAC -ACGGAATGACTCGTCGATGTCTAC -ACGGAATGACTCGTCGATACGTAC -ACGGAATGACTCGTCGATAGTGAC -ACGGAATGACTCGTCGATCTGTAG -ACGGAATGACTCGTCGATCCTAAG -ACGGAATGACTCGTCGATGTTCAG -ACGGAATGACTCGTCGATGCATAG -ACGGAATGACTCGTCGATGACAAG -ACGGAATGACTCGTCGATAAGCAG -ACGGAATGACTCGTCGATCGTCAA -ACGGAATGACTCGTCGATGCTGAA -ACGGAATGACTCGTCGATAGTACG -ACGGAATGACTCGTCGATATCCGA -ACGGAATGACTCGTCGATATGGGA -ACGGAATGACTCGTCGATGTGCAA -ACGGAATGACTCGTCGATGAGGAA -ACGGAATGACTCGTCGATCAGGTA -ACGGAATGACTCGTCGATGACTCT -ACGGAATGACTCGTCGATAGTCCT -ACGGAATGACTCGTCGATTAAGCC -ACGGAATGACTCGTCGATATAGCC -ACGGAATGACTCGTCGATTAACCG -ACGGAATGACTCGTCGATATGCCA -ACGGAATGACTCGTCACAGGAAAC -ACGGAATGACTCGTCACAAACACC -ACGGAATGACTCGTCACAATCGAG -ACGGAATGACTCGTCACACTCCTT -ACGGAATGACTCGTCACACCTGTT -ACGGAATGACTCGTCACACGGTTT -ACGGAATGACTCGTCACAGTGGTT -ACGGAATGACTCGTCACAGCCTTT -ACGGAATGACTCGTCACAGGTCTT -ACGGAATGACTCGTCACAACGCTT -ACGGAATGACTCGTCACAAGCGTT -ACGGAATGACTCGTCACATTCGTC -ACGGAATGACTCGTCACATCTCTC -ACGGAATGACTCGTCACATGGATC -ACGGAATGACTCGTCACACACTTC -ACGGAATGACTCGTCACAGTACTC -ACGGAATGACTCGTCACAGATGTC -ACGGAATGACTCGTCACAACAGTC -ACGGAATGACTCGTCACATTGCTG -ACGGAATGACTCGTCACATCCATG -ACGGAATGACTCGTCACATGTGTG -ACGGAATGACTCGTCACACTAGTG -ACGGAATGACTCGTCACACATCTG -ACGGAATGACTCGTCACAGAGTTG -ACGGAATGACTCGTCACAAGACTG -ACGGAATGACTCGTCACATCGGTA -ACGGAATGACTCGTCACATGCCTA -ACGGAATGACTCGTCACACCACTA -ACGGAATGACTCGTCACAGGAGTA -ACGGAATGACTCGTCACATCGTCT -ACGGAATGACTCGTCACATGCACT -ACGGAATGACTCGTCACACTGACT -ACGGAATGACTCGTCACACAACCT -ACGGAATGACTCGTCACAGCTACT -ACGGAATGACTCGTCACAGGATCT -ACGGAATGACTCGTCACAAAGGCT -ACGGAATGACTCGTCACATCAACC -ACGGAATGACTCGTCACATGTTCC -ACGGAATGACTCGTCACAATTCCC -ACGGAATGACTCGTCACATTCTCG -ACGGAATGACTCGTCACATAGACG -ACGGAATGACTCGTCACAGTAACG -ACGGAATGACTCGTCACAACTTCG -ACGGAATGACTCGTCACATACGCA -ACGGAATGACTCGTCACACTTGCA -ACGGAATGACTCGTCACACGAACA -ACGGAATGACTCGTCACACAGTCA -ACGGAATGACTCGTCACAGATCCA -ACGGAATGACTCGTCACAACGACA -ACGGAATGACTCGTCACAAGCTCA -ACGGAATGACTCGTCACATCACGT -ACGGAATGACTCGTCACACGTAGT -ACGGAATGACTCGTCACAGTCAGT -ACGGAATGACTCGTCACAGAAGGT -ACGGAATGACTCGTCACAAACCGT -ACGGAATGACTCGTCACATTGTGC -ACGGAATGACTCGTCACACTAAGC -ACGGAATGACTCGTCACAACTAGC -ACGGAATGACTCGTCACAAGATGC -ACGGAATGACTCGTCACATGAAGG -ACGGAATGACTCGTCACACAATGG -ACGGAATGACTCGTCACAATGAGG -ACGGAATGACTCGTCACAAATGGG -ACGGAATGACTCGTCACATCCTGA -ACGGAATGACTCGTCACATAGCGA -ACGGAATGACTCGTCACACACAGA -ACGGAATGACTCGTCACAGCAAGA -ACGGAATGACTCGTCACAGGTTGA -ACGGAATGACTCGTCACATCCGAT -ACGGAATGACTCGTCACATGGCAT -ACGGAATGACTCGTCACACGAGAT -ACGGAATGACTCGTCACATACCAC -ACGGAATGACTCGTCACACAGAAC -ACGGAATGACTCGTCACAGTCTAC -ACGGAATGACTCGTCACAACGTAC -ACGGAATGACTCGTCACAAGTGAC -ACGGAATGACTCGTCACACTGTAG -ACGGAATGACTCGTCACACCTAAG -ACGGAATGACTCGTCACAGTTCAG -ACGGAATGACTCGTCACAGCATAG -ACGGAATGACTCGTCACAGACAAG -ACGGAATGACTCGTCACAAAGCAG -ACGGAATGACTCGTCACACGTCAA -ACGGAATGACTCGTCACAGCTGAA -ACGGAATGACTCGTCACAAGTACG -ACGGAATGACTCGTCACAATCCGA -ACGGAATGACTCGTCACAATGGGA -ACGGAATGACTCGTCACAGTGCAA -ACGGAATGACTCGTCACAGAGGAA -ACGGAATGACTCGTCACACAGGTA -ACGGAATGACTCGTCACAGACTCT -ACGGAATGACTCGTCACAAGTCCT -ACGGAATGACTCGTCACATAAGCC -ACGGAATGACTCGTCACAATAGCC -ACGGAATGACTCGTCACATAACCG -ACGGAATGACTCGTCACAATGCCA -ACGGAATGACTCCTGTTGGGAAAC -ACGGAATGACTCCTGTTGAACACC -ACGGAATGACTCCTGTTGATCGAG -ACGGAATGACTCCTGTTGCTCCTT -ACGGAATGACTCCTGTTGCCTGTT -ACGGAATGACTCCTGTTGCGGTTT -ACGGAATGACTCCTGTTGGTGGTT -ACGGAATGACTCCTGTTGGCCTTT -ACGGAATGACTCCTGTTGGGTCTT -ACGGAATGACTCCTGTTGACGCTT -ACGGAATGACTCCTGTTGAGCGTT -ACGGAATGACTCCTGTTGTTCGTC -ACGGAATGACTCCTGTTGTCTCTC -ACGGAATGACTCCTGTTGTGGATC -ACGGAATGACTCCTGTTGCACTTC -ACGGAATGACTCCTGTTGGTACTC -ACGGAATGACTCCTGTTGGATGTC -ACGGAATGACTCCTGTTGACAGTC -ACGGAATGACTCCTGTTGTTGCTG -ACGGAATGACTCCTGTTGTCCATG -ACGGAATGACTCCTGTTGTGTGTG -ACGGAATGACTCCTGTTGCTAGTG -ACGGAATGACTCCTGTTGCATCTG -ACGGAATGACTCCTGTTGGAGTTG -ACGGAATGACTCCTGTTGAGACTG -ACGGAATGACTCCTGTTGTCGGTA -ACGGAATGACTCCTGTTGTGCCTA -ACGGAATGACTCCTGTTGCCACTA -ACGGAATGACTCCTGTTGGGAGTA -ACGGAATGACTCCTGTTGTCGTCT -ACGGAATGACTCCTGTTGTGCACT -ACGGAATGACTCCTGTTGCTGACT -ACGGAATGACTCCTGTTGCAACCT -ACGGAATGACTCCTGTTGGCTACT -ACGGAATGACTCCTGTTGGGATCT -ACGGAATGACTCCTGTTGAAGGCT -ACGGAATGACTCCTGTTGTCAACC -ACGGAATGACTCCTGTTGTGTTCC -ACGGAATGACTCCTGTTGATTCCC -ACGGAATGACTCCTGTTGTTCTCG -ACGGAATGACTCCTGTTGTAGACG -ACGGAATGACTCCTGTTGGTAACG -ACGGAATGACTCCTGTTGACTTCG -ACGGAATGACTCCTGTTGTACGCA -ACGGAATGACTCCTGTTGCTTGCA -ACGGAATGACTCCTGTTGCGAACA -ACGGAATGACTCCTGTTGCAGTCA -ACGGAATGACTCCTGTTGGATCCA -ACGGAATGACTCCTGTTGACGACA -ACGGAATGACTCCTGTTGAGCTCA -ACGGAATGACTCCTGTTGTCACGT -ACGGAATGACTCCTGTTGCGTAGT -ACGGAATGACTCCTGTTGGTCAGT -ACGGAATGACTCCTGTTGGAAGGT -ACGGAATGACTCCTGTTGAACCGT -ACGGAATGACTCCTGTTGTTGTGC -ACGGAATGACTCCTGTTGCTAAGC -ACGGAATGACTCCTGTTGACTAGC -ACGGAATGACTCCTGTTGAGATGC -ACGGAATGACTCCTGTTGTGAAGG -ACGGAATGACTCCTGTTGCAATGG -ACGGAATGACTCCTGTTGATGAGG -ACGGAATGACTCCTGTTGAATGGG -ACGGAATGACTCCTGTTGTCCTGA -ACGGAATGACTCCTGTTGTAGCGA -ACGGAATGACTCCTGTTGCACAGA -ACGGAATGACTCCTGTTGGCAAGA -ACGGAATGACTCCTGTTGGGTTGA -ACGGAATGACTCCTGTTGTCCGAT -ACGGAATGACTCCTGTTGTGGCAT -ACGGAATGACTCCTGTTGCGAGAT -ACGGAATGACTCCTGTTGTACCAC -ACGGAATGACTCCTGTTGCAGAAC -ACGGAATGACTCCTGTTGGTCTAC -ACGGAATGACTCCTGTTGACGTAC -ACGGAATGACTCCTGTTGAGTGAC -ACGGAATGACTCCTGTTGCTGTAG -ACGGAATGACTCCTGTTGCCTAAG -ACGGAATGACTCCTGTTGGTTCAG -ACGGAATGACTCCTGTTGGCATAG -ACGGAATGACTCCTGTTGGACAAG -ACGGAATGACTCCTGTTGAAGCAG -ACGGAATGACTCCTGTTGCGTCAA -ACGGAATGACTCCTGTTGGCTGAA -ACGGAATGACTCCTGTTGAGTACG -ACGGAATGACTCCTGTTGATCCGA -ACGGAATGACTCCTGTTGATGGGA -ACGGAATGACTCCTGTTGGTGCAA -ACGGAATGACTCCTGTTGGAGGAA -ACGGAATGACTCCTGTTGCAGGTA -ACGGAATGACTCCTGTTGGACTCT -ACGGAATGACTCCTGTTGAGTCCT -ACGGAATGACTCCTGTTGTAAGCC -ACGGAATGACTCCTGTTGATAGCC -ACGGAATGACTCCTGTTGTAACCG -ACGGAATGACTCCTGTTGATGCCA -ACGGAATGACTCATGTCCGGAAAC -ACGGAATGACTCATGTCCAACACC -ACGGAATGACTCATGTCCATCGAG -ACGGAATGACTCATGTCCCTCCTT -ACGGAATGACTCATGTCCCCTGTT -ACGGAATGACTCATGTCCCGGTTT -ACGGAATGACTCATGTCCGTGGTT -ACGGAATGACTCATGTCCGCCTTT -ACGGAATGACTCATGTCCGGTCTT -ACGGAATGACTCATGTCCACGCTT -ACGGAATGACTCATGTCCAGCGTT -ACGGAATGACTCATGTCCTTCGTC -ACGGAATGACTCATGTCCTCTCTC -ACGGAATGACTCATGTCCTGGATC -ACGGAATGACTCATGTCCCACTTC -ACGGAATGACTCATGTCCGTACTC -ACGGAATGACTCATGTCCGATGTC -ACGGAATGACTCATGTCCACAGTC -ACGGAATGACTCATGTCCTTGCTG -ACGGAATGACTCATGTCCTCCATG -ACGGAATGACTCATGTCCTGTGTG -ACGGAATGACTCATGTCCCTAGTG -ACGGAATGACTCATGTCCCATCTG -ACGGAATGACTCATGTCCGAGTTG -ACGGAATGACTCATGTCCAGACTG -ACGGAATGACTCATGTCCTCGGTA -ACGGAATGACTCATGTCCTGCCTA -ACGGAATGACTCATGTCCCCACTA -ACGGAATGACTCATGTCCGGAGTA -ACGGAATGACTCATGTCCTCGTCT -ACGGAATGACTCATGTCCTGCACT -ACGGAATGACTCATGTCCCTGACT -ACGGAATGACTCATGTCCCAACCT -ACGGAATGACTCATGTCCGCTACT -ACGGAATGACTCATGTCCGGATCT -ACGGAATGACTCATGTCCAAGGCT -ACGGAATGACTCATGTCCTCAACC -ACGGAATGACTCATGTCCTGTTCC -ACGGAATGACTCATGTCCATTCCC -ACGGAATGACTCATGTCCTTCTCG -ACGGAATGACTCATGTCCTAGACG -ACGGAATGACTCATGTCCGTAACG -ACGGAATGACTCATGTCCACTTCG -ACGGAATGACTCATGTCCTACGCA -ACGGAATGACTCATGTCCCTTGCA -ACGGAATGACTCATGTCCCGAACA -ACGGAATGACTCATGTCCCAGTCA -ACGGAATGACTCATGTCCGATCCA -ACGGAATGACTCATGTCCACGACA -ACGGAATGACTCATGTCCAGCTCA -ACGGAATGACTCATGTCCTCACGT -ACGGAATGACTCATGTCCCGTAGT -ACGGAATGACTCATGTCCGTCAGT -ACGGAATGACTCATGTCCGAAGGT -ACGGAATGACTCATGTCCAACCGT -ACGGAATGACTCATGTCCTTGTGC -ACGGAATGACTCATGTCCCTAAGC -ACGGAATGACTCATGTCCACTAGC -ACGGAATGACTCATGTCCAGATGC -ACGGAATGACTCATGTCCTGAAGG -ACGGAATGACTCATGTCCCAATGG -ACGGAATGACTCATGTCCATGAGG -ACGGAATGACTCATGTCCAATGGG -ACGGAATGACTCATGTCCTCCTGA -ACGGAATGACTCATGTCCTAGCGA -ACGGAATGACTCATGTCCCACAGA -ACGGAATGACTCATGTCCGCAAGA -ACGGAATGACTCATGTCCGGTTGA -ACGGAATGACTCATGTCCTCCGAT -ACGGAATGACTCATGTCCTGGCAT -ACGGAATGACTCATGTCCCGAGAT -ACGGAATGACTCATGTCCTACCAC -ACGGAATGACTCATGTCCCAGAAC -ACGGAATGACTCATGTCCGTCTAC -ACGGAATGACTCATGTCCACGTAC -ACGGAATGACTCATGTCCAGTGAC -ACGGAATGACTCATGTCCCTGTAG -ACGGAATGACTCATGTCCCCTAAG -ACGGAATGACTCATGTCCGTTCAG -ACGGAATGACTCATGTCCGCATAG -ACGGAATGACTCATGTCCGACAAG -ACGGAATGACTCATGTCCAAGCAG -ACGGAATGACTCATGTCCCGTCAA -ACGGAATGACTCATGTCCGCTGAA -ACGGAATGACTCATGTCCAGTACG -ACGGAATGACTCATGTCCATCCGA -ACGGAATGACTCATGTCCATGGGA -ACGGAATGACTCATGTCCGTGCAA -ACGGAATGACTCATGTCCGAGGAA -ACGGAATGACTCATGTCCCAGGTA -ACGGAATGACTCATGTCCGACTCT -ACGGAATGACTCATGTCCAGTCCT -ACGGAATGACTCATGTCCTAAGCC -ACGGAATGACTCATGTCCATAGCC -ACGGAATGACTCATGTCCTAACCG -ACGGAATGACTCATGTCCATGCCA -ACGGAATGACTCGTGTGTGGAAAC -ACGGAATGACTCGTGTGTAACACC -ACGGAATGACTCGTGTGTATCGAG -ACGGAATGACTCGTGTGTCTCCTT -ACGGAATGACTCGTGTGTCCTGTT -ACGGAATGACTCGTGTGTCGGTTT -ACGGAATGACTCGTGTGTGTGGTT -ACGGAATGACTCGTGTGTGCCTTT -ACGGAATGACTCGTGTGTGGTCTT -ACGGAATGACTCGTGTGTACGCTT -ACGGAATGACTCGTGTGTAGCGTT -ACGGAATGACTCGTGTGTTTCGTC -ACGGAATGACTCGTGTGTTCTCTC -ACGGAATGACTCGTGTGTTGGATC -ACGGAATGACTCGTGTGTCACTTC -ACGGAATGACTCGTGTGTGTACTC -ACGGAATGACTCGTGTGTGATGTC -ACGGAATGACTCGTGTGTACAGTC -ACGGAATGACTCGTGTGTTTGCTG -ACGGAATGACTCGTGTGTTCCATG -ACGGAATGACTCGTGTGTTGTGTG -ACGGAATGACTCGTGTGTCTAGTG -ACGGAATGACTCGTGTGTCATCTG -ACGGAATGACTCGTGTGTGAGTTG -ACGGAATGACTCGTGTGTAGACTG -ACGGAATGACTCGTGTGTTCGGTA -ACGGAATGACTCGTGTGTTGCCTA -ACGGAATGACTCGTGTGTCCACTA -ACGGAATGACTCGTGTGTGGAGTA -ACGGAATGACTCGTGTGTTCGTCT -ACGGAATGACTCGTGTGTTGCACT -ACGGAATGACTCGTGTGTCTGACT -ACGGAATGACTCGTGTGTCAACCT -ACGGAATGACTCGTGTGTGCTACT -ACGGAATGACTCGTGTGTGGATCT -ACGGAATGACTCGTGTGTAAGGCT -ACGGAATGACTCGTGTGTTCAACC -ACGGAATGACTCGTGTGTTGTTCC -ACGGAATGACTCGTGTGTATTCCC -ACGGAATGACTCGTGTGTTTCTCG -ACGGAATGACTCGTGTGTTAGACG -ACGGAATGACTCGTGTGTGTAACG -ACGGAATGACTCGTGTGTACTTCG -ACGGAATGACTCGTGTGTTACGCA -ACGGAATGACTCGTGTGTCTTGCA -ACGGAATGACTCGTGTGTCGAACA -ACGGAATGACTCGTGTGTCAGTCA -ACGGAATGACTCGTGTGTGATCCA -ACGGAATGACTCGTGTGTACGACA -ACGGAATGACTCGTGTGTAGCTCA -ACGGAATGACTCGTGTGTTCACGT -ACGGAATGACTCGTGTGTCGTAGT -ACGGAATGACTCGTGTGTGTCAGT -ACGGAATGACTCGTGTGTGAAGGT -ACGGAATGACTCGTGTGTAACCGT -ACGGAATGACTCGTGTGTTTGTGC -ACGGAATGACTCGTGTGTCTAAGC -ACGGAATGACTCGTGTGTACTAGC -ACGGAATGACTCGTGTGTAGATGC -ACGGAATGACTCGTGTGTTGAAGG -ACGGAATGACTCGTGTGTCAATGG -ACGGAATGACTCGTGTGTATGAGG -ACGGAATGACTCGTGTGTAATGGG -ACGGAATGACTCGTGTGTTCCTGA -ACGGAATGACTCGTGTGTTAGCGA -ACGGAATGACTCGTGTGTCACAGA -ACGGAATGACTCGTGTGTGCAAGA -ACGGAATGACTCGTGTGTGGTTGA -ACGGAATGACTCGTGTGTTCCGAT -ACGGAATGACTCGTGTGTTGGCAT -ACGGAATGACTCGTGTGTCGAGAT -ACGGAATGACTCGTGTGTTACCAC -ACGGAATGACTCGTGTGTCAGAAC -ACGGAATGACTCGTGTGTGTCTAC -ACGGAATGACTCGTGTGTACGTAC -ACGGAATGACTCGTGTGTAGTGAC -ACGGAATGACTCGTGTGTCTGTAG -ACGGAATGACTCGTGTGTCCTAAG -ACGGAATGACTCGTGTGTGTTCAG -ACGGAATGACTCGTGTGTGCATAG -ACGGAATGACTCGTGTGTGACAAG -ACGGAATGACTCGTGTGTAAGCAG -ACGGAATGACTCGTGTGTCGTCAA -ACGGAATGACTCGTGTGTGCTGAA -ACGGAATGACTCGTGTGTAGTACG -ACGGAATGACTCGTGTGTATCCGA -ACGGAATGACTCGTGTGTATGGGA -ACGGAATGACTCGTGTGTGTGCAA -ACGGAATGACTCGTGTGTGAGGAA -ACGGAATGACTCGTGTGTCAGGTA -ACGGAATGACTCGTGTGTGACTCT -ACGGAATGACTCGTGTGTAGTCCT -ACGGAATGACTCGTGTGTTAAGCC -ACGGAATGACTCGTGTGTATAGCC -ACGGAATGACTCGTGTGTTAACCG -ACGGAATGACTCGTGTGTATGCCA -ACGGAATGACTCGTGCTAGGAAAC -ACGGAATGACTCGTGCTAAACACC -ACGGAATGACTCGTGCTAATCGAG -ACGGAATGACTCGTGCTACTCCTT -ACGGAATGACTCGTGCTACCTGTT -ACGGAATGACTCGTGCTACGGTTT -ACGGAATGACTCGTGCTAGTGGTT -ACGGAATGACTCGTGCTAGCCTTT -ACGGAATGACTCGTGCTAGGTCTT -ACGGAATGACTCGTGCTAACGCTT -ACGGAATGACTCGTGCTAAGCGTT -ACGGAATGACTCGTGCTATTCGTC -ACGGAATGACTCGTGCTATCTCTC -ACGGAATGACTCGTGCTATGGATC -ACGGAATGACTCGTGCTACACTTC -ACGGAATGACTCGTGCTAGTACTC -ACGGAATGACTCGTGCTAGATGTC -ACGGAATGACTCGTGCTAACAGTC -ACGGAATGACTCGTGCTATTGCTG -ACGGAATGACTCGTGCTATCCATG -ACGGAATGACTCGTGCTATGTGTG -ACGGAATGACTCGTGCTACTAGTG -ACGGAATGACTCGTGCTACATCTG -ACGGAATGACTCGTGCTAGAGTTG -ACGGAATGACTCGTGCTAAGACTG -ACGGAATGACTCGTGCTATCGGTA -ACGGAATGACTCGTGCTATGCCTA -ACGGAATGACTCGTGCTACCACTA -ACGGAATGACTCGTGCTAGGAGTA -ACGGAATGACTCGTGCTATCGTCT -ACGGAATGACTCGTGCTATGCACT -ACGGAATGACTCGTGCTACTGACT -ACGGAATGACTCGTGCTACAACCT -ACGGAATGACTCGTGCTAGCTACT -ACGGAATGACTCGTGCTAGGATCT -ACGGAATGACTCGTGCTAAAGGCT -ACGGAATGACTCGTGCTATCAACC -ACGGAATGACTCGTGCTATGTTCC -ACGGAATGACTCGTGCTAATTCCC -ACGGAATGACTCGTGCTATTCTCG -ACGGAATGACTCGTGCTATAGACG -ACGGAATGACTCGTGCTAGTAACG -ACGGAATGACTCGTGCTAACTTCG -ACGGAATGACTCGTGCTATACGCA -ACGGAATGACTCGTGCTACTTGCA -ACGGAATGACTCGTGCTACGAACA -ACGGAATGACTCGTGCTACAGTCA -ACGGAATGACTCGTGCTAGATCCA -ACGGAATGACTCGTGCTAACGACA -ACGGAATGACTCGTGCTAAGCTCA -ACGGAATGACTCGTGCTATCACGT -ACGGAATGACTCGTGCTACGTAGT -ACGGAATGACTCGTGCTAGTCAGT -ACGGAATGACTCGTGCTAGAAGGT -ACGGAATGACTCGTGCTAAACCGT -ACGGAATGACTCGTGCTATTGTGC -ACGGAATGACTCGTGCTACTAAGC -ACGGAATGACTCGTGCTAACTAGC -ACGGAATGACTCGTGCTAAGATGC -ACGGAATGACTCGTGCTATGAAGG -ACGGAATGACTCGTGCTACAATGG -ACGGAATGACTCGTGCTAATGAGG -ACGGAATGACTCGTGCTAAATGGG -ACGGAATGACTCGTGCTATCCTGA -ACGGAATGACTCGTGCTATAGCGA -ACGGAATGACTCGTGCTACACAGA -ACGGAATGACTCGTGCTAGCAAGA -ACGGAATGACTCGTGCTAGGTTGA -ACGGAATGACTCGTGCTATCCGAT -ACGGAATGACTCGTGCTATGGCAT -ACGGAATGACTCGTGCTACGAGAT -ACGGAATGACTCGTGCTATACCAC -ACGGAATGACTCGTGCTACAGAAC -ACGGAATGACTCGTGCTAGTCTAC -ACGGAATGACTCGTGCTAACGTAC -ACGGAATGACTCGTGCTAAGTGAC -ACGGAATGACTCGTGCTACTGTAG -ACGGAATGACTCGTGCTACCTAAG -ACGGAATGACTCGTGCTAGTTCAG -ACGGAATGACTCGTGCTAGCATAG -ACGGAATGACTCGTGCTAGACAAG -ACGGAATGACTCGTGCTAAAGCAG -ACGGAATGACTCGTGCTACGTCAA -ACGGAATGACTCGTGCTAGCTGAA -ACGGAATGACTCGTGCTAAGTACG -ACGGAATGACTCGTGCTAATCCGA -ACGGAATGACTCGTGCTAATGGGA -ACGGAATGACTCGTGCTAGTGCAA -ACGGAATGACTCGTGCTAGAGGAA -ACGGAATGACTCGTGCTACAGGTA -ACGGAATGACTCGTGCTAGACTCT -ACGGAATGACTCGTGCTAAGTCCT -ACGGAATGACTCGTGCTATAAGCC -ACGGAATGACTCGTGCTAATAGCC -ACGGAATGACTCGTGCTATAACCG -ACGGAATGACTCGTGCTAATGCCA -ACGGAATGACTCCTGCATGGAAAC -ACGGAATGACTCCTGCATAACACC -ACGGAATGACTCCTGCATATCGAG -ACGGAATGACTCCTGCATCTCCTT -ACGGAATGACTCCTGCATCCTGTT -ACGGAATGACTCCTGCATCGGTTT -ACGGAATGACTCCTGCATGTGGTT -ACGGAATGACTCCTGCATGCCTTT -ACGGAATGACTCCTGCATGGTCTT -ACGGAATGACTCCTGCATACGCTT -ACGGAATGACTCCTGCATAGCGTT -ACGGAATGACTCCTGCATTTCGTC -ACGGAATGACTCCTGCATTCTCTC -ACGGAATGACTCCTGCATTGGATC -ACGGAATGACTCCTGCATCACTTC -ACGGAATGACTCCTGCATGTACTC -ACGGAATGACTCCTGCATGATGTC -ACGGAATGACTCCTGCATACAGTC -ACGGAATGACTCCTGCATTTGCTG -ACGGAATGACTCCTGCATTCCATG -ACGGAATGACTCCTGCATTGTGTG -ACGGAATGACTCCTGCATCTAGTG -ACGGAATGACTCCTGCATCATCTG -ACGGAATGACTCCTGCATGAGTTG -ACGGAATGACTCCTGCATAGACTG -ACGGAATGACTCCTGCATTCGGTA -ACGGAATGACTCCTGCATTGCCTA -ACGGAATGACTCCTGCATCCACTA -ACGGAATGACTCCTGCATGGAGTA -ACGGAATGACTCCTGCATTCGTCT -ACGGAATGACTCCTGCATTGCACT -ACGGAATGACTCCTGCATCTGACT -ACGGAATGACTCCTGCATCAACCT -ACGGAATGACTCCTGCATGCTACT -ACGGAATGACTCCTGCATGGATCT -ACGGAATGACTCCTGCATAAGGCT -ACGGAATGACTCCTGCATTCAACC -ACGGAATGACTCCTGCATTGTTCC -ACGGAATGACTCCTGCATATTCCC -ACGGAATGACTCCTGCATTTCTCG -ACGGAATGACTCCTGCATTAGACG -ACGGAATGACTCCTGCATGTAACG -ACGGAATGACTCCTGCATACTTCG -ACGGAATGACTCCTGCATTACGCA -ACGGAATGACTCCTGCATCTTGCA -ACGGAATGACTCCTGCATCGAACA -ACGGAATGACTCCTGCATCAGTCA -ACGGAATGACTCCTGCATGATCCA -ACGGAATGACTCCTGCATACGACA -ACGGAATGACTCCTGCATAGCTCA -ACGGAATGACTCCTGCATTCACGT -ACGGAATGACTCCTGCATCGTAGT -ACGGAATGACTCCTGCATGTCAGT -ACGGAATGACTCCTGCATGAAGGT -ACGGAATGACTCCTGCATAACCGT -ACGGAATGACTCCTGCATTTGTGC -ACGGAATGACTCCTGCATCTAAGC -ACGGAATGACTCCTGCATACTAGC -ACGGAATGACTCCTGCATAGATGC -ACGGAATGACTCCTGCATTGAAGG -ACGGAATGACTCCTGCATCAATGG -ACGGAATGACTCCTGCATATGAGG -ACGGAATGACTCCTGCATAATGGG -ACGGAATGACTCCTGCATTCCTGA -ACGGAATGACTCCTGCATTAGCGA -ACGGAATGACTCCTGCATCACAGA -ACGGAATGACTCCTGCATGCAAGA -ACGGAATGACTCCTGCATGGTTGA -ACGGAATGACTCCTGCATTCCGAT -ACGGAATGACTCCTGCATTGGCAT -ACGGAATGACTCCTGCATCGAGAT -ACGGAATGACTCCTGCATTACCAC -ACGGAATGACTCCTGCATCAGAAC -ACGGAATGACTCCTGCATGTCTAC -ACGGAATGACTCCTGCATACGTAC -ACGGAATGACTCCTGCATAGTGAC -ACGGAATGACTCCTGCATCTGTAG -ACGGAATGACTCCTGCATCCTAAG -ACGGAATGACTCCTGCATGTTCAG -ACGGAATGACTCCTGCATGCATAG -ACGGAATGACTCCTGCATGACAAG -ACGGAATGACTCCTGCATAAGCAG -ACGGAATGACTCCTGCATCGTCAA -ACGGAATGACTCCTGCATGCTGAA -ACGGAATGACTCCTGCATAGTACG -ACGGAATGACTCCTGCATATCCGA -ACGGAATGACTCCTGCATATGGGA -ACGGAATGACTCCTGCATGTGCAA -ACGGAATGACTCCTGCATGAGGAA -ACGGAATGACTCCTGCATCAGGTA -ACGGAATGACTCCTGCATGACTCT -ACGGAATGACTCCTGCATAGTCCT -ACGGAATGACTCCTGCATTAAGCC -ACGGAATGACTCCTGCATATAGCC -ACGGAATGACTCCTGCATTAACCG -ACGGAATGACTCCTGCATATGCCA -ACGGAATGACTCTTGGAGGGAAAC -ACGGAATGACTCTTGGAGAACACC -ACGGAATGACTCTTGGAGATCGAG -ACGGAATGACTCTTGGAGCTCCTT -ACGGAATGACTCTTGGAGCCTGTT -ACGGAATGACTCTTGGAGCGGTTT -ACGGAATGACTCTTGGAGGTGGTT -ACGGAATGACTCTTGGAGGCCTTT -ACGGAATGACTCTTGGAGGGTCTT -ACGGAATGACTCTTGGAGACGCTT -ACGGAATGACTCTTGGAGAGCGTT -ACGGAATGACTCTTGGAGTTCGTC -ACGGAATGACTCTTGGAGTCTCTC -ACGGAATGACTCTTGGAGTGGATC -ACGGAATGACTCTTGGAGCACTTC -ACGGAATGACTCTTGGAGGTACTC -ACGGAATGACTCTTGGAGGATGTC -ACGGAATGACTCTTGGAGACAGTC -ACGGAATGACTCTTGGAGTTGCTG -ACGGAATGACTCTTGGAGTCCATG -ACGGAATGACTCTTGGAGTGTGTG -ACGGAATGACTCTTGGAGCTAGTG -ACGGAATGACTCTTGGAGCATCTG -ACGGAATGACTCTTGGAGGAGTTG -ACGGAATGACTCTTGGAGAGACTG -ACGGAATGACTCTTGGAGTCGGTA -ACGGAATGACTCTTGGAGTGCCTA -ACGGAATGACTCTTGGAGCCACTA -ACGGAATGACTCTTGGAGGGAGTA -ACGGAATGACTCTTGGAGTCGTCT -ACGGAATGACTCTTGGAGTGCACT -ACGGAATGACTCTTGGAGCTGACT -ACGGAATGACTCTTGGAGCAACCT -ACGGAATGACTCTTGGAGGCTACT -ACGGAATGACTCTTGGAGGGATCT -ACGGAATGACTCTTGGAGAAGGCT -ACGGAATGACTCTTGGAGTCAACC -ACGGAATGACTCTTGGAGTGTTCC -ACGGAATGACTCTTGGAGATTCCC -ACGGAATGACTCTTGGAGTTCTCG -ACGGAATGACTCTTGGAGTAGACG -ACGGAATGACTCTTGGAGGTAACG -ACGGAATGACTCTTGGAGACTTCG -ACGGAATGACTCTTGGAGTACGCA -ACGGAATGACTCTTGGAGCTTGCA -ACGGAATGACTCTTGGAGCGAACA -ACGGAATGACTCTTGGAGCAGTCA -ACGGAATGACTCTTGGAGGATCCA -ACGGAATGACTCTTGGAGACGACA -ACGGAATGACTCTTGGAGAGCTCA -ACGGAATGACTCTTGGAGTCACGT -ACGGAATGACTCTTGGAGCGTAGT -ACGGAATGACTCTTGGAGGTCAGT -ACGGAATGACTCTTGGAGGAAGGT -ACGGAATGACTCTTGGAGAACCGT -ACGGAATGACTCTTGGAGTTGTGC -ACGGAATGACTCTTGGAGCTAAGC -ACGGAATGACTCTTGGAGACTAGC -ACGGAATGACTCTTGGAGAGATGC -ACGGAATGACTCTTGGAGTGAAGG -ACGGAATGACTCTTGGAGCAATGG -ACGGAATGACTCTTGGAGATGAGG -ACGGAATGACTCTTGGAGAATGGG -ACGGAATGACTCTTGGAGTCCTGA -ACGGAATGACTCTTGGAGTAGCGA -ACGGAATGACTCTTGGAGCACAGA -ACGGAATGACTCTTGGAGGCAAGA -ACGGAATGACTCTTGGAGGGTTGA -ACGGAATGACTCTTGGAGTCCGAT -ACGGAATGACTCTTGGAGTGGCAT -ACGGAATGACTCTTGGAGCGAGAT -ACGGAATGACTCTTGGAGTACCAC -ACGGAATGACTCTTGGAGCAGAAC -ACGGAATGACTCTTGGAGGTCTAC -ACGGAATGACTCTTGGAGACGTAC -ACGGAATGACTCTTGGAGAGTGAC -ACGGAATGACTCTTGGAGCTGTAG -ACGGAATGACTCTTGGAGCCTAAG -ACGGAATGACTCTTGGAGGTTCAG -ACGGAATGACTCTTGGAGGCATAG -ACGGAATGACTCTTGGAGGACAAG -ACGGAATGACTCTTGGAGAAGCAG -ACGGAATGACTCTTGGAGCGTCAA -ACGGAATGACTCTTGGAGGCTGAA -ACGGAATGACTCTTGGAGAGTACG -ACGGAATGACTCTTGGAGATCCGA -ACGGAATGACTCTTGGAGATGGGA -ACGGAATGACTCTTGGAGGTGCAA -ACGGAATGACTCTTGGAGGAGGAA -ACGGAATGACTCTTGGAGCAGGTA -ACGGAATGACTCTTGGAGGACTCT -ACGGAATGACTCTTGGAGAGTCCT -ACGGAATGACTCTTGGAGTAAGCC -ACGGAATGACTCTTGGAGATAGCC -ACGGAATGACTCTTGGAGTAACCG -ACGGAATGACTCTTGGAGATGCCA -ACGGAATGACTCCTGAGAGGAAAC -ACGGAATGACTCCTGAGAAACACC -ACGGAATGACTCCTGAGAATCGAG -ACGGAATGACTCCTGAGACTCCTT -ACGGAATGACTCCTGAGACCTGTT -ACGGAATGACTCCTGAGACGGTTT -ACGGAATGACTCCTGAGAGTGGTT -ACGGAATGACTCCTGAGAGCCTTT -ACGGAATGACTCCTGAGAGGTCTT -ACGGAATGACTCCTGAGAACGCTT -ACGGAATGACTCCTGAGAAGCGTT -ACGGAATGACTCCTGAGATTCGTC -ACGGAATGACTCCTGAGATCTCTC -ACGGAATGACTCCTGAGATGGATC -ACGGAATGACTCCTGAGACACTTC -ACGGAATGACTCCTGAGAGTACTC -ACGGAATGACTCCTGAGAGATGTC -ACGGAATGACTCCTGAGAACAGTC -ACGGAATGACTCCTGAGATTGCTG -ACGGAATGACTCCTGAGATCCATG -ACGGAATGACTCCTGAGATGTGTG -ACGGAATGACTCCTGAGACTAGTG -ACGGAATGACTCCTGAGACATCTG -ACGGAATGACTCCTGAGAGAGTTG -ACGGAATGACTCCTGAGAAGACTG -ACGGAATGACTCCTGAGATCGGTA -ACGGAATGACTCCTGAGATGCCTA -ACGGAATGACTCCTGAGACCACTA -ACGGAATGACTCCTGAGAGGAGTA -ACGGAATGACTCCTGAGATCGTCT -ACGGAATGACTCCTGAGATGCACT -ACGGAATGACTCCTGAGACTGACT -ACGGAATGACTCCTGAGACAACCT -ACGGAATGACTCCTGAGAGCTACT -ACGGAATGACTCCTGAGAGGATCT -ACGGAATGACTCCTGAGAAAGGCT -ACGGAATGACTCCTGAGATCAACC -ACGGAATGACTCCTGAGATGTTCC -ACGGAATGACTCCTGAGAATTCCC -ACGGAATGACTCCTGAGATTCTCG -ACGGAATGACTCCTGAGATAGACG -ACGGAATGACTCCTGAGAGTAACG -ACGGAATGACTCCTGAGAACTTCG -ACGGAATGACTCCTGAGATACGCA -ACGGAATGACTCCTGAGACTTGCA -ACGGAATGACTCCTGAGACGAACA -ACGGAATGACTCCTGAGACAGTCA -ACGGAATGACTCCTGAGAGATCCA -ACGGAATGACTCCTGAGAACGACA -ACGGAATGACTCCTGAGAAGCTCA -ACGGAATGACTCCTGAGATCACGT -ACGGAATGACTCCTGAGACGTAGT -ACGGAATGACTCCTGAGAGTCAGT -ACGGAATGACTCCTGAGAGAAGGT -ACGGAATGACTCCTGAGAAACCGT -ACGGAATGACTCCTGAGATTGTGC -ACGGAATGACTCCTGAGACTAAGC -ACGGAATGACTCCTGAGAACTAGC -ACGGAATGACTCCTGAGAAGATGC -ACGGAATGACTCCTGAGATGAAGG -ACGGAATGACTCCTGAGACAATGG -ACGGAATGACTCCTGAGAATGAGG -ACGGAATGACTCCTGAGAAATGGG -ACGGAATGACTCCTGAGATCCTGA -ACGGAATGACTCCTGAGATAGCGA -ACGGAATGACTCCTGAGACACAGA -ACGGAATGACTCCTGAGAGCAAGA -ACGGAATGACTCCTGAGAGGTTGA -ACGGAATGACTCCTGAGATCCGAT -ACGGAATGACTCCTGAGATGGCAT -ACGGAATGACTCCTGAGACGAGAT -ACGGAATGACTCCTGAGATACCAC -ACGGAATGACTCCTGAGACAGAAC -ACGGAATGACTCCTGAGAGTCTAC -ACGGAATGACTCCTGAGAACGTAC -ACGGAATGACTCCTGAGAAGTGAC -ACGGAATGACTCCTGAGACTGTAG -ACGGAATGACTCCTGAGACCTAAG -ACGGAATGACTCCTGAGAGTTCAG -ACGGAATGACTCCTGAGAGCATAG -ACGGAATGACTCCTGAGAGACAAG -ACGGAATGACTCCTGAGAAAGCAG -ACGGAATGACTCCTGAGACGTCAA -ACGGAATGACTCCTGAGAGCTGAA -ACGGAATGACTCCTGAGAAGTACG -ACGGAATGACTCCTGAGAATCCGA -ACGGAATGACTCCTGAGAATGGGA -ACGGAATGACTCCTGAGAGTGCAA -ACGGAATGACTCCTGAGAGAGGAA -ACGGAATGACTCCTGAGACAGGTA -ACGGAATGACTCCTGAGAGACTCT -ACGGAATGACTCCTGAGAAGTCCT -ACGGAATGACTCCTGAGATAAGCC -ACGGAATGACTCCTGAGAATAGCC -ACGGAATGACTCCTGAGATAACCG -ACGGAATGACTCCTGAGAATGCCA -ACGGAATGACTCGTATCGGGAAAC -ACGGAATGACTCGTATCGAACACC -ACGGAATGACTCGTATCGATCGAG -ACGGAATGACTCGTATCGCTCCTT -ACGGAATGACTCGTATCGCCTGTT -ACGGAATGACTCGTATCGCGGTTT -ACGGAATGACTCGTATCGGTGGTT -ACGGAATGACTCGTATCGGCCTTT -ACGGAATGACTCGTATCGGGTCTT -ACGGAATGACTCGTATCGACGCTT -ACGGAATGACTCGTATCGAGCGTT -ACGGAATGACTCGTATCGTTCGTC -ACGGAATGACTCGTATCGTCTCTC -ACGGAATGACTCGTATCGTGGATC -ACGGAATGACTCGTATCGCACTTC -ACGGAATGACTCGTATCGGTACTC -ACGGAATGACTCGTATCGGATGTC -ACGGAATGACTCGTATCGACAGTC -ACGGAATGACTCGTATCGTTGCTG -ACGGAATGACTCGTATCGTCCATG -ACGGAATGACTCGTATCGTGTGTG -ACGGAATGACTCGTATCGCTAGTG -ACGGAATGACTCGTATCGCATCTG -ACGGAATGACTCGTATCGGAGTTG -ACGGAATGACTCGTATCGAGACTG -ACGGAATGACTCGTATCGTCGGTA -ACGGAATGACTCGTATCGTGCCTA -ACGGAATGACTCGTATCGCCACTA -ACGGAATGACTCGTATCGGGAGTA -ACGGAATGACTCGTATCGTCGTCT -ACGGAATGACTCGTATCGTGCACT -ACGGAATGACTCGTATCGCTGACT -ACGGAATGACTCGTATCGCAACCT -ACGGAATGACTCGTATCGGCTACT -ACGGAATGACTCGTATCGGGATCT -ACGGAATGACTCGTATCGAAGGCT -ACGGAATGACTCGTATCGTCAACC -ACGGAATGACTCGTATCGTGTTCC -ACGGAATGACTCGTATCGATTCCC -ACGGAATGACTCGTATCGTTCTCG -ACGGAATGACTCGTATCGTAGACG -ACGGAATGACTCGTATCGGTAACG -ACGGAATGACTCGTATCGACTTCG -ACGGAATGACTCGTATCGTACGCA -ACGGAATGACTCGTATCGCTTGCA -ACGGAATGACTCGTATCGCGAACA -ACGGAATGACTCGTATCGCAGTCA -ACGGAATGACTCGTATCGGATCCA -ACGGAATGACTCGTATCGACGACA -ACGGAATGACTCGTATCGAGCTCA -ACGGAATGACTCGTATCGTCACGT -ACGGAATGACTCGTATCGCGTAGT -ACGGAATGACTCGTATCGGTCAGT -ACGGAATGACTCGTATCGGAAGGT -ACGGAATGACTCGTATCGAACCGT -ACGGAATGACTCGTATCGTTGTGC -ACGGAATGACTCGTATCGCTAAGC -ACGGAATGACTCGTATCGACTAGC -ACGGAATGACTCGTATCGAGATGC -ACGGAATGACTCGTATCGTGAAGG -ACGGAATGACTCGTATCGCAATGG -ACGGAATGACTCGTATCGATGAGG -ACGGAATGACTCGTATCGAATGGG -ACGGAATGACTCGTATCGTCCTGA -ACGGAATGACTCGTATCGTAGCGA -ACGGAATGACTCGTATCGCACAGA -ACGGAATGACTCGTATCGGCAAGA -ACGGAATGACTCGTATCGGGTTGA -ACGGAATGACTCGTATCGTCCGAT -ACGGAATGACTCGTATCGTGGCAT -ACGGAATGACTCGTATCGCGAGAT -ACGGAATGACTCGTATCGTACCAC -ACGGAATGACTCGTATCGCAGAAC -ACGGAATGACTCGTATCGGTCTAC -ACGGAATGACTCGTATCGACGTAC -ACGGAATGACTCGTATCGAGTGAC -ACGGAATGACTCGTATCGCTGTAG -ACGGAATGACTCGTATCGCCTAAG -ACGGAATGACTCGTATCGGTTCAG -ACGGAATGACTCGTATCGGCATAG -ACGGAATGACTCGTATCGGACAAG -ACGGAATGACTCGTATCGAAGCAG -ACGGAATGACTCGTATCGCGTCAA -ACGGAATGACTCGTATCGGCTGAA -ACGGAATGACTCGTATCGAGTACG -ACGGAATGACTCGTATCGATCCGA -ACGGAATGACTCGTATCGATGGGA -ACGGAATGACTCGTATCGGTGCAA -ACGGAATGACTCGTATCGGAGGAA -ACGGAATGACTCGTATCGCAGGTA -ACGGAATGACTCGTATCGGACTCT -ACGGAATGACTCGTATCGAGTCCT -ACGGAATGACTCGTATCGTAAGCC -ACGGAATGACTCGTATCGATAGCC -ACGGAATGACTCGTATCGTAACCG -ACGGAATGACTCGTATCGATGCCA -ACGGAATGACTCCTATGCGGAAAC -ACGGAATGACTCCTATGCAACACC -ACGGAATGACTCCTATGCATCGAG -ACGGAATGACTCCTATGCCTCCTT -ACGGAATGACTCCTATGCCCTGTT -ACGGAATGACTCCTATGCCGGTTT -ACGGAATGACTCCTATGCGTGGTT -ACGGAATGACTCCTATGCGCCTTT -ACGGAATGACTCCTATGCGGTCTT -ACGGAATGACTCCTATGCACGCTT -ACGGAATGACTCCTATGCAGCGTT -ACGGAATGACTCCTATGCTTCGTC -ACGGAATGACTCCTATGCTCTCTC -ACGGAATGACTCCTATGCTGGATC -ACGGAATGACTCCTATGCCACTTC -ACGGAATGACTCCTATGCGTACTC -ACGGAATGACTCCTATGCGATGTC -ACGGAATGACTCCTATGCACAGTC -ACGGAATGACTCCTATGCTTGCTG -ACGGAATGACTCCTATGCTCCATG -ACGGAATGACTCCTATGCTGTGTG -ACGGAATGACTCCTATGCCTAGTG -ACGGAATGACTCCTATGCCATCTG -ACGGAATGACTCCTATGCGAGTTG -ACGGAATGACTCCTATGCAGACTG -ACGGAATGACTCCTATGCTCGGTA -ACGGAATGACTCCTATGCTGCCTA -ACGGAATGACTCCTATGCCCACTA -ACGGAATGACTCCTATGCGGAGTA -ACGGAATGACTCCTATGCTCGTCT -ACGGAATGACTCCTATGCTGCACT -ACGGAATGACTCCTATGCCTGACT -ACGGAATGACTCCTATGCCAACCT -ACGGAATGACTCCTATGCGCTACT -ACGGAATGACTCCTATGCGGATCT -ACGGAATGACTCCTATGCAAGGCT -ACGGAATGACTCCTATGCTCAACC -ACGGAATGACTCCTATGCTGTTCC -ACGGAATGACTCCTATGCATTCCC -ACGGAATGACTCCTATGCTTCTCG -ACGGAATGACTCCTATGCTAGACG -ACGGAATGACTCCTATGCGTAACG -ACGGAATGACTCCTATGCACTTCG -ACGGAATGACTCCTATGCTACGCA -ACGGAATGACTCCTATGCCTTGCA -ACGGAATGACTCCTATGCCGAACA -ACGGAATGACTCCTATGCCAGTCA -ACGGAATGACTCCTATGCGATCCA -ACGGAATGACTCCTATGCACGACA -ACGGAATGACTCCTATGCAGCTCA -ACGGAATGACTCCTATGCTCACGT -ACGGAATGACTCCTATGCCGTAGT -ACGGAATGACTCCTATGCGTCAGT -ACGGAATGACTCCTATGCGAAGGT -ACGGAATGACTCCTATGCAACCGT -ACGGAATGACTCCTATGCTTGTGC -ACGGAATGACTCCTATGCCTAAGC -ACGGAATGACTCCTATGCACTAGC -ACGGAATGACTCCTATGCAGATGC -ACGGAATGACTCCTATGCTGAAGG -ACGGAATGACTCCTATGCCAATGG -ACGGAATGACTCCTATGCATGAGG -ACGGAATGACTCCTATGCAATGGG -ACGGAATGACTCCTATGCTCCTGA -ACGGAATGACTCCTATGCTAGCGA -ACGGAATGACTCCTATGCCACAGA -ACGGAATGACTCCTATGCGCAAGA -ACGGAATGACTCCTATGCGGTTGA -ACGGAATGACTCCTATGCTCCGAT -ACGGAATGACTCCTATGCTGGCAT -ACGGAATGACTCCTATGCCGAGAT -ACGGAATGACTCCTATGCTACCAC -ACGGAATGACTCCTATGCCAGAAC -ACGGAATGACTCCTATGCGTCTAC -ACGGAATGACTCCTATGCACGTAC -ACGGAATGACTCCTATGCAGTGAC -ACGGAATGACTCCTATGCCTGTAG -ACGGAATGACTCCTATGCCCTAAG -ACGGAATGACTCCTATGCGTTCAG -ACGGAATGACTCCTATGCGCATAG -ACGGAATGACTCCTATGCGACAAG -ACGGAATGACTCCTATGCAAGCAG -ACGGAATGACTCCTATGCCGTCAA -ACGGAATGACTCCTATGCGCTGAA -ACGGAATGACTCCTATGCAGTACG -ACGGAATGACTCCTATGCATCCGA -ACGGAATGACTCCTATGCATGGGA -ACGGAATGACTCCTATGCGTGCAA -ACGGAATGACTCCTATGCGAGGAA -ACGGAATGACTCCTATGCCAGGTA -ACGGAATGACTCCTATGCGACTCT -ACGGAATGACTCCTATGCAGTCCT -ACGGAATGACTCCTATGCTAAGCC -ACGGAATGACTCCTATGCATAGCC -ACGGAATGACTCCTATGCTAACCG -ACGGAATGACTCCTATGCATGCCA -ACGGAATGACTCCTACCAGGAAAC -ACGGAATGACTCCTACCAAACACC -ACGGAATGACTCCTACCAATCGAG -ACGGAATGACTCCTACCACTCCTT -ACGGAATGACTCCTACCACCTGTT -ACGGAATGACTCCTACCACGGTTT -ACGGAATGACTCCTACCAGTGGTT -ACGGAATGACTCCTACCAGCCTTT -ACGGAATGACTCCTACCAGGTCTT -ACGGAATGACTCCTACCAACGCTT -ACGGAATGACTCCTACCAAGCGTT -ACGGAATGACTCCTACCATTCGTC -ACGGAATGACTCCTACCATCTCTC -ACGGAATGACTCCTACCATGGATC -ACGGAATGACTCCTACCACACTTC -ACGGAATGACTCCTACCAGTACTC -ACGGAATGACTCCTACCAGATGTC -ACGGAATGACTCCTACCAACAGTC -ACGGAATGACTCCTACCATTGCTG -ACGGAATGACTCCTACCATCCATG -ACGGAATGACTCCTACCATGTGTG -ACGGAATGACTCCTACCACTAGTG -ACGGAATGACTCCTACCACATCTG -ACGGAATGACTCCTACCAGAGTTG -ACGGAATGACTCCTACCAAGACTG -ACGGAATGACTCCTACCATCGGTA -ACGGAATGACTCCTACCATGCCTA -ACGGAATGACTCCTACCACCACTA -ACGGAATGACTCCTACCAGGAGTA -ACGGAATGACTCCTACCATCGTCT -ACGGAATGACTCCTACCATGCACT -ACGGAATGACTCCTACCACTGACT -ACGGAATGACTCCTACCACAACCT -ACGGAATGACTCCTACCAGCTACT -ACGGAATGACTCCTACCAGGATCT -ACGGAATGACTCCTACCAAAGGCT -ACGGAATGACTCCTACCATCAACC -ACGGAATGACTCCTACCATGTTCC -ACGGAATGACTCCTACCAATTCCC -ACGGAATGACTCCTACCATTCTCG -ACGGAATGACTCCTACCATAGACG -ACGGAATGACTCCTACCAGTAACG -ACGGAATGACTCCTACCAACTTCG -ACGGAATGACTCCTACCATACGCA -ACGGAATGACTCCTACCACTTGCA -ACGGAATGACTCCTACCACGAACA -ACGGAATGACTCCTACCACAGTCA -ACGGAATGACTCCTACCAGATCCA -ACGGAATGACTCCTACCAACGACA -ACGGAATGACTCCTACCAAGCTCA -ACGGAATGACTCCTACCATCACGT -ACGGAATGACTCCTACCACGTAGT -ACGGAATGACTCCTACCAGTCAGT -ACGGAATGACTCCTACCAGAAGGT -ACGGAATGACTCCTACCAAACCGT -ACGGAATGACTCCTACCATTGTGC -ACGGAATGACTCCTACCACTAAGC -ACGGAATGACTCCTACCAACTAGC -ACGGAATGACTCCTACCAAGATGC -ACGGAATGACTCCTACCATGAAGG -ACGGAATGACTCCTACCACAATGG -ACGGAATGACTCCTACCAATGAGG -ACGGAATGACTCCTACCAAATGGG -ACGGAATGACTCCTACCATCCTGA -ACGGAATGACTCCTACCATAGCGA -ACGGAATGACTCCTACCACACAGA -ACGGAATGACTCCTACCAGCAAGA -ACGGAATGACTCCTACCAGGTTGA -ACGGAATGACTCCTACCATCCGAT -ACGGAATGACTCCTACCATGGCAT -ACGGAATGACTCCTACCACGAGAT -ACGGAATGACTCCTACCATACCAC -ACGGAATGACTCCTACCACAGAAC -ACGGAATGACTCCTACCAGTCTAC -ACGGAATGACTCCTACCAACGTAC -ACGGAATGACTCCTACCAAGTGAC -ACGGAATGACTCCTACCACTGTAG -ACGGAATGACTCCTACCACCTAAG -ACGGAATGACTCCTACCAGTTCAG -ACGGAATGACTCCTACCAGCATAG -ACGGAATGACTCCTACCAGACAAG -ACGGAATGACTCCTACCAAAGCAG -ACGGAATGACTCCTACCACGTCAA -ACGGAATGACTCCTACCAGCTGAA -ACGGAATGACTCCTACCAAGTACG -ACGGAATGACTCCTACCAATCCGA -ACGGAATGACTCCTACCAATGGGA -ACGGAATGACTCCTACCAGTGCAA -ACGGAATGACTCCTACCAGAGGAA -ACGGAATGACTCCTACCACAGGTA -ACGGAATGACTCCTACCAGACTCT -ACGGAATGACTCCTACCAAGTCCT -ACGGAATGACTCCTACCATAAGCC -ACGGAATGACTCCTACCAATAGCC -ACGGAATGACTCCTACCATAACCG -ACGGAATGACTCCTACCAATGCCA -ACGGAATGACTCGTAGGAGGAAAC -ACGGAATGACTCGTAGGAAACACC -ACGGAATGACTCGTAGGAATCGAG -ACGGAATGACTCGTAGGACTCCTT -ACGGAATGACTCGTAGGACCTGTT -ACGGAATGACTCGTAGGACGGTTT -ACGGAATGACTCGTAGGAGTGGTT -ACGGAATGACTCGTAGGAGCCTTT -ACGGAATGACTCGTAGGAGGTCTT -ACGGAATGACTCGTAGGAACGCTT -ACGGAATGACTCGTAGGAAGCGTT -ACGGAATGACTCGTAGGATTCGTC -ACGGAATGACTCGTAGGATCTCTC -ACGGAATGACTCGTAGGATGGATC -ACGGAATGACTCGTAGGACACTTC -ACGGAATGACTCGTAGGAGTACTC -ACGGAATGACTCGTAGGAGATGTC -ACGGAATGACTCGTAGGAACAGTC -ACGGAATGACTCGTAGGATTGCTG -ACGGAATGACTCGTAGGATCCATG -ACGGAATGACTCGTAGGATGTGTG -ACGGAATGACTCGTAGGACTAGTG -ACGGAATGACTCGTAGGACATCTG -ACGGAATGACTCGTAGGAGAGTTG -ACGGAATGACTCGTAGGAAGACTG -ACGGAATGACTCGTAGGATCGGTA -ACGGAATGACTCGTAGGATGCCTA -ACGGAATGACTCGTAGGACCACTA -ACGGAATGACTCGTAGGAGGAGTA -ACGGAATGACTCGTAGGATCGTCT -ACGGAATGACTCGTAGGATGCACT -ACGGAATGACTCGTAGGACTGACT -ACGGAATGACTCGTAGGACAACCT -ACGGAATGACTCGTAGGAGCTACT -ACGGAATGACTCGTAGGAGGATCT -ACGGAATGACTCGTAGGAAAGGCT -ACGGAATGACTCGTAGGATCAACC -ACGGAATGACTCGTAGGATGTTCC -ACGGAATGACTCGTAGGAATTCCC -ACGGAATGACTCGTAGGATTCTCG -ACGGAATGACTCGTAGGATAGACG -ACGGAATGACTCGTAGGAGTAACG -ACGGAATGACTCGTAGGAACTTCG -ACGGAATGACTCGTAGGATACGCA -ACGGAATGACTCGTAGGACTTGCA -ACGGAATGACTCGTAGGACGAACA -ACGGAATGACTCGTAGGACAGTCA -ACGGAATGACTCGTAGGAGATCCA -ACGGAATGACTCGTAGGAACGACA -ACGGAATGACTCGTAGGAAGCTCA -ACGGAATGACTCGTAGGATCACGT -ACGGAATGACTCGTAGGACGTAGT -ACGGAATGACTCGTAGGAGTCAGT -ACGGAATGACTCGTAGGAGAAGGT -ACGGAATGACTCGTAGGAAACCGT -ACGGAATGACTCGTAGGATTGTGC -ACGGAATGACTCGTAGGACTAAGC -ACGGAATGACTCGTAGGAACTAGC -ACGGAATGACTCGTAGGAAGATGC -ACGGAATGACTCGTAGGATGAAGG -ACGGAATGACTCGTAGGACAATGG -ACGGAATGACTCGTAGGAATGAGG -ACGGAATGACTCGTAGGAAATGGG -ACGGAATGACTCGTAGGATCCTGA -ACGGAATGACTCGTAGGATAGCGA -ACGGAATGACTCGTAGGACACAGA -ACGGAATGACTCGTAGGAGCAAGA -ACGGAATGACTCGTAGGAGGTTGA -ACGGAATGACTCGTAGGATCCGAT -ACGGAATGACTCGTAGGATGGCAT -ACGGAATGACTCGTAGGACGAGAT -ACGGAATGACTCGTAGGATACCAC -ACGGAATGACTCGTAGGACAGAAC -ACGGAATGACTCGTAGGAGTCTAC -ACGGAATGACTCGTAGGAACGTAC -ACGGAATGACTCGTAGGAAGTGAC -ACGGAATGACTCGTAGGACTGTAG -ACGGAATGACTCGTAGGACCTAAG -ACGGAATGACTCGTAGGAGTTCAG -ACGGAATGACTCGTAGGAGCATAG -ACGGAATGACTCGTAGGAGACAAG -ACGGAATGACTCGTAGGAAAGCAG -ACGGAATGACTCGTAGGACGTCAA -ACGGAATGACTCGTAGGAGCTGAA -ACGGAATGACTCGTAGGAAGTACG -ACGGAATGACTCGTAGGAATCCGA -ACGGAATGACTCGTAGGAATGGGA -ACGGAATGACTCGTAGGAGTGCAA -ACGGAATGACTCGTAGGAGAGGAA -ACGGAATGACTCGTAGGACAGGTA -ACGGAATGACTCGTAGGAGACTCT -ACGGAATGACTCGTAGGAAGTCCT -ACGGAATGACTCGTAGGATAAGCC -ACGGAATGACTCGTAGGAATAGCC -ACGGAATGACTCGTAGGATAACCG -ACGGAATGACTCGTAGGAATGCCA -ACGGAATGACTCTCTTCGGGAAAC -ACGGAATGACTCTCTTCGAACACC -ACGGAATGACTCTCTTCGATCGAG -ACGGAATGACTCTCTTCGCTCCTT -ACGGAATGACTCTCTTCGCCTGTT -ACGGAATGACTCTCTTCGCGGTTT -ACGGAATGACTCTCTTCGGTGGTT -ACGGAATGACTCTCTTCGGCCTTT -ACGGAATGACTCTCTTCGGGTCTT -ACGGAATGACTCTCTTCGACGCTT -ACGGAATGACTCTCTTCGAGCGTT -ACGGAATGACTCTCTTCGTTCGTC -ACGGAATGACTCTCTTCGTCTCTC -ACGGAATGACTCTCTTCGTGGATC -ACGGAATGACTCTCTTCGCACTTC -ACGGAATGACTCTCTTCGGTACTC -ACGGAATGACTCTCTTCGGATGTC -ACGGAATGACTCTCTTCGACAGTC -ACGGAATGACTCTCTTCGTTGCTG -ACGGAATGACTCTCTTCGTCCATG -ACGGAATGACTCTCTTCGTGTGTG -ACGGAATGACTCTCTTCGCTAGTG -ACGGAATGACTCTCTTCGCATCTG -ACGGAATGACTCTCTTCGGAGTTG -ACGGAATGACTCTCTTCGAGACTG -ACGGAATGACTCTCTTCGTCGGTA -ACGGAATGACTCTCTTCGTGCCTA -ACGGAATGACTCTCTTCGCCACTA -ACGGAATGACTCTCTTCGGGAGTA -ACGGAATGACTCTCTTCGTCGTCT -ACGGAATGACTCTCTTCGTGCACT -ACGGAATGACTCTCTTCGCTGACT -ACGGAATGACTCTCTTCGCAACCT -ACGGAATGACTCTCTTCGGCTACT -ACGGAATGACTCTCTTCGGGATCT -ACGGAATGACTCTCTTCGAAGGCT -ACGGAATGACTCTCTTCGTCAACC -ACGGAATGACTCTCTTCGTGTTCC -ACGGAATGACTCTCTTCGATTCCC -ACGGAATGACTCTCTTCGTTCTCG -ACGGAATGACTCTCTTCGTAGACG -ACGGAATGACTCTCTTCGGTAACG -ACGGAATGACTCTCTTCGACTTCG -ACGGAATGACTCTCTTCGTACGCA -ACGGAATGACTCTCTTCGCTTGCA -ACGGAATGACTCTCTTCGCGAACA -ACGGAATGACTCTCTTCGCAGTCA -ACGGAATGACTCTCTTCGGATCCA -ACGGAATGACTCTCTTCGACGACA -ACGGAATGACTCTCTTCGAGCTCA -ACGGAATGACTCTCTTCGTCACGT -ACGGAATGACTCTCTTCGCGTAGT -ACGGAATGACTCTCTTCGGTCAGT -ACGGAATGACTCTCTTCGGAAGGT -ACGGAATGACTCTCTTCGAACCGT -ACGGAATGACTCTCTTCGTTGTGC -ACGGAATGACTCTCTTCGCTAAGC -ACGGAATGACTCTCTTCGACTAGC -ACGGAATGACTCTCTTCGAGATGC -ACGGAATGACTCTCTTCGTGAAGG -ACGGAATGACTCTCTTCGCAATGG -ACGGAATGACTCTCTTCGATGAGG -ACGGAATGACTCTCTTCGAATGGG -ACGGAATGACTCTCTTCGTCCTGA -ACGGAATGACTCTCTTCGTAGCGA -ACGGAATGACTCTCTTCGCACAGA -ACGGAATGACTCTCTTCGGCAAGA -ACGGAATGACTCTCTTCGGGTTGA -ACGGAATGACTCTCTTCGTCCGAT -ACGGAATGACTCTCTTCGTGGCAT -ACGGAATGACTCTCTTCGCGAGAT -ACGGAATGACTCTCTTCGTACCAC -ACGGAATGACTCTCTTCGCAGAAC -ACGGAATGACTCTCTTCGGTCTAC -ACGGAATGACTCTCTTCGACGTAC -ACGGAATGACTCTCTTCGAGTGAC -ACGGAATGACTCTCTTCGCTGTAG -ACGGAATGACTCTCTTCGCCTAAG -ACGGAATGACTCTCTTCGGTTCAG -ACGGAATGACTCTCTTCGGCATAG -ACGGAATGACTCTCTTCGGACAAG -ACGGAATGACTCTCTTCGAAGCAG -ACGGAATGACTCTCTTCGCGTCAA -ACGGAATGACTCTCTTCGGCTGAA -ACGGAATGACTCTCTTCGAGTACG -ACGGAATGACTCTCTTCGATCCGA -ACGGAATGACTCTCTTCGATGGGA -ACGGAATGACTCTCTTCGGTGCAA -ACGGAATGACTCTCTTCGGAGGAA -ACGGAATGACTCTCTTCGCAGGTA -ACGGAATGACTCTCTTCGGACTCT -ACGGAATGACTCTCTTCGAGTCCT -ACGGAATGACTCTCTTCGTAAGCC -ACGGAATGACTCTCTTCGATAGCC -ACGGAATGACTCTCTTCGTAACCG -ACGGAATGACTCTCTTCGATGCCA -ACGGAATGACTCACTTGCGGAAAC -ACGGAATGACTCACTTGCAACACC -ACGGAATGACTCACTTGCATCGAG -ACGGAATGACTCACTTGCCTCCTT -ACGGAATGACTCACTTGCCCTGTT -ACGGAATGACTCACTTGCCGGTTT -ACGGAATGACTCACTTGCGTGGTT -ACGGAATGACTCACTTGCGCCTTT -ACGGAATGACTCACTTGCGGTCTT -ACGGAATGACTCACTTGCACGCTT -ACGGAATGACTCACTTGCAGCGTT -ACGGAATGACTCACTTGCTTCGTC -ACGGAATGACTCACTTGCTCTCTC -ACGGAATGACTCACTTGCTGGATC -ACGGAATGACTCACTTGCCACTTC -ACGGAATGACTCACTTGCGTACTC -ACGGAATGACTCACTTGCGATGTC -ACGGAATGACTCACTTGCACAGTC -ACGGAATGACTCACTTGCTTGCTG -ACGGAATGACTCACTTGCTCCATG -ACGGAATGACTCACTTGCTGTGTG -ACGGAATGACTCACTTGCCTAGTG -ACGGAATGACTCACTTGCCATCTG -ACGGAATGACTCACTTGCGAGTTG -ACGGAATGACTCACTTGCAGACTG -ACGGAATGACTCACTTGCTCGGTA -ACGGAATGACTCACTTGCTGCCTA -ACGGAATGACTCACTTGCCCACTA -ACGGAATGACTCACTTGCGGAGTA -ACGGAATGACTCACTTGCTCGTCT -ACGGAATGACTCACTTGCTGCACT -ACGGAATGACTCACTTGCCTGACT -ACGGAATGACTCACTTGCCAACCT -ACGGAATGACTCACTTGCGCTACT -ACGGAATGACTCACTTGCGGATCT -ACGGAATGACTCACTTGCAAGGCT -ACGGAATGACTCACTTGCTCAACC -ACGGAATGACTCACTTGCTGTTCC -ACGGAATGACTCACTTGCATTCCC -ACGGAATGACTCACTTGCTTCTCG -ACGGAATGACTCACTTGCTAGACG -ACGGAATGACTCACTTGCGTAACG -ACGGAATGACTCACTTGCACTTCG -ACGGAATGACTCACTTGCTACGCA -ACGGAATGACTCACTTGCCTTGCA -ACGGAATGACTCACTTGCCGAACA -ACGGAATGACTCACTTGCCAGTCA -ACGGAATGACTCACTTGCGATCCA -ACGGAATGACTCACTTGCACGACA -ACGGAATGACTCACTTGCAGCTCA -ACGGAATGACTCACTTGCTCACGT -ACGGAATGACTCACTTGCCGTAGT -ACGGAATGACTCACTTGCGTCAGT -ACGGAATGACTCACTTGCGAAGGT -ACGGAATGACTCACTTGCAACCGT -ACGGAATGACTCACTTGCTTGTGC -ACGGAATGACTCACTTGCCTAAGC -ACGGAATGACTCACTTGCACTAGC -ACGGAATGACTCACTTGCAGATGC -ACGGAATGACTCACTTGCTGAAGG -ACGGAATGACTCACTTGCCAATGG -ACGGAATGACTCACTTGCATGAGG -ACGGAATGACTCACTTGCAATGGG -ACGGAATGACTCACTTGCTCCTGA -ACGGAATGACTCACTTGCTAGCGA -ACGGAATGACTCACTTGCCACAGA -ACGGAATGACTCACTTGCGCAAGA -ACGGAATGACTCACTTGCGGTTGA -ACGGAATGACTCACTTGCTCCGAT -ACGGAATGACTCACTTGCTGGCAT -ACGGAATGACTCACTTGCCGAGAT -ACGGAATGACTCACTTGCTACCAC -ACGGAATGACTCACTTGCCAGAAC -ACGGAATGACTCACTTGCGTCTAC -ACGGAATGACTCACTTGCACGTAC -ACGGAATGACTCACTTGCAGTGAC -ACGGAATGACTCACTTGCCTGTAG -ACGGAATGACTCACTTGCCCTAAG -ACGGAATGACTCACTTGCGTTCAG -ACGGAATGACTCACTTGCGCATAG -ACGGAATGACTCACTTGCGACAAG -ACGGAATGACTCACTTGCAAGCAG -ACGGAATGACTCACTTGCCGTCAA -ACGGAATGACTCACTTGCGCTGAA -ACGGAATGACTCACTTGCAGTACG -ACGGAATGACTCACTTGCATCCGA -ACGGAATGACTCACTTGCATGGGA -ACGGAATGACTCACTTGCGTGCAA -ACGGAATGACTCACTTGCGAGGAA -ACGGAATGACTCACTTGCCAGGTA -ACGGAATGACTCACTTGCGACTCT -ACGGAATGACTCACTTGCAGTCCT -ACGGAATGACTCACTTGCTAAGCC -ACGGAATGACTCACTTGCATAGCC -ACGGAATGACTCACTTGCTAACCG -ACGGAATGACTCACTTGCATGCCA -ACGGAATGACTCACTCTGGGAAAC -ACGGAATGACTCACTCTGAACACC -ACGGAATGACTCACTCTGATCGAG -ACGGAATGACTCACTCTGCTCCTT -ACGGAATGACTCACTCTGCCTGTT -ACGGAATGACTCACTCTGCGGTTT -ACGGAATGACTCACTCTGGTGGTT -ACGGAATGACTCACTCTGGCCTTT -ACGGAATGACTCACTCTGGGTCTT -ACGGAATGACTCACTCTGACGCTT -ACGGAATGACTCACTCTGAGCGTT -ACGGAATGACTCACTCTGTTCGTC -ACGGAATGACTCACTCTGTCTCTC -ACGGAATGACTCACTCTGTGGATC -ACGGAATGACTCACTCTGCACTTC -ACGGAATGACTCACTCTGGTACTC -ACGGAATGACTCACTCTGGATGTC -ACGGAATGACTCACTCTGACAGTC -ACGGAATGACTCACTCTGTTGCTG -ACGGAATGACTCACTCTGTCCATG -ACGGAATGACTCACTCTGTGTGTG -ACGGAATGACTCACTCTGCTAGTG -ACGGAATGACTCACTCTGCATCTG -ACGGAATGACTCACTCTGGAGTTG -ACGGAATGACTCACTCTGAGACTG -ACGGAATGACTCACTCTGTCGGTA -ACGGAATGACTCACTCTGTGCCTA -ACGGAATGACTCACTCTGCCACTA -ACGGAATGACTCACTCTGGGAGTA -ACGGAATGACTCACTCTGTCGTCT -ACGGAATGACTCACTCTGTGCACT -ACGGAATGACTCACTCTGCTGACT -ACGGAATGACTCACTCTGCAACCT -ACGGAATGACTCACTCTGGCTACT -ACGGAATGACTCACTCTGGGATCT -ACGGAATGACTCACTCTGAAGGCT -ACGGAATGACTCACTCTGTCAACC -ACGGAATGACTCACTCTGTGTTCC -ACGGAATGACTCACTCTGATTCCC -ACGGAATGACTCACTCTGTTCTCG -ACGGAATGACTCACTCTGTAGACG -ACGGAATGACTCACTCTGGTAACG -ACGGAATGACTCACTCTGACTTCG -ACGGAATGACTCACTCTGTACGCA -ACGGAATGACTCACTCTGCTTGCA -ACGGAATGACTCACTCTGCGAACA -ACGGAATGACTCACTCTGCAGTCA -ACGGAATGACTCACTCTGGATCCA -ACGGAATGACTCACTCTGACGACA -ACGGAATGACTCACTCTGAGCTCA -ACGGAATGACTCACTCTGTCACGT -ACGGAATGACTCACTCTGCGTAGT -ACGGAATGACTCACTCTGGTCAGT -ACGGAATGACTCACTCTGGAAGGT -ACGGAATGACTCACTCTGAACCGT -ACGGAATGACTCACTCTGTTGTGC -ACGGAATGACTCACTCTGCTAAGC -ACGGAATGACTCACTCTGACTAGC -ACGGAATGACTCACTCTGAGATGC -ACGGAATGACTCACTCTGTGAAGG -ACGGAATGACTCACTCTGCAATGG -ACGGAATGACTCACTCTGATGAGG -ACGGAATGACTCACTCTGAATGGG -ACGGAATGACTCACTCTGTCCTGA -ACGGAATGACTCACTCTGTAGCGA -ACGGAATGACTCACTCTGCACAGA -ACGGAATGACTCACTCTGGCAAGA -ACGGAATGACTCACTCTGGGTTGA -ACGGAATGACTCACTCTGTCCGAT -ACGGAATGACTCACTCTGTGGCAT -ACGGAATGACTCACTCTGCGAGAT -ACGGAATGACTCACTCTGTACCAC -ACGGAATGACTCACTCTGCAGAAC -ACGGAATGACTCACTCTGGTCTAC -ACGGAATGACTCACTCTGACGTAC -ACGGAATGACTCACTCTGAGTGAC -ACGGAATGACTCACTCTGCTGTAG -ACGGAATGACTCACTCTGCCTAAG -ACGGAATGACTCACTCTGGTTCAG -ACGGAATGACTCACTCTGGCATAG -ACGGAATGACTCACTCTGGACAAG -ACGGAATGACTCACTCTGAAGCAG -ACGGAATGACTCACTCTGCGTCAA -ACGGAATGACTCACTCTGGCTGAA -ACGGAATGACTCACTCTGAGTACG -ACGGAATGACTCACTCTGATCCGA -ACGGAATGACTCACTCTGATGGGA -ACGGAATGACTCACTCTGGTGCAA -ACGGAATGACTCACTCTGGAGGAA -ACGGAATGACTCACTCTGCAGGTA -ACGGAATGACTCACTCTGGACTCT -ACGGAATGACTCACTCTGAGTCCT -ACGGAATGACTCACTCTGTAAGCC -ACGGAATGACTCACTCTGATAGCC -ACGGAATGACTCACTCTGTAACCG -ACGGAATGACTCACTCTGATGCCA -ACGGAATGACTCCCTCAAGGAAAC -ACGGAATGACTCCCTCAAAACACC -ACGGAATGACTCCCTCAAATCGAG -ACGGAATGACTCCCTCAACTCCTT -ACGGAATGACTCCCTCAACCTGTT -ACGGAATGACTCCCTCAACGGTTT -ACGGAATGACTCCCTCAAGTGGTT -ACGGAATGACTCCCTCAAGCCTTT -ACGGAATGACTCCCTCAAGGTCTT -ACGGAATGACTCCCTCAAACGCTT -ACGGAATGACTCCCTCAAAGCGTT -ACGGAATGACTCCCTCAATTCGTC -ACGGAATGACTCCCTCAATCTCTC -ACGGAATGACTCCCTCAATGGATC -ACGGAATGACTCCCTCAACACTTC -ACGGAATGACTCCCTCAAGTACTC -ACGGAATGACTCCCTCAAGATGTC -ACGGAATGACTCCCTCAAACAGTC -ACGGAATGACTCCCTCAATTGCTG -ACGGAATGACTCCCTCAATCCATG -ACGGAATGACTCCCTCAATGTGTG -ACGGAATGACTCCCTCAACTAGTG -ACGGAATGACTCCCTCAACATCTG -ACGGAATGACTCCCTCAAGAGTTG -ACGGAATGACTCCCTCAAAGACTG -ACGGAATGACTCCCTCAATCGGTA -ACGGAATGACTCCCTCAATGCCTA -ACGGAATGACTCCCTCAACCACTA -ACGGAATGACTCCCTCAAGGAGTA -ACGGAATGACTCCCTCAATCGTCT -ACGGAATGACTCCCTCAATGCACT -ACGGAATGACTCCCTCAACTGACT -ACGGAATGACTCCCTCAACAACCT -ACGGAATGACTCCCTCAAGCTACT -ACGGAATGACTCCCTCAAGGATCT -ACGGAATGACTCCCTCAAAAGGCT -ACGGAATGACTCCCTCAATCAACC -ACGGAATGACTCCCTCAATGTTCC -ACGGAATGACTCCCTCAAATTCCC -ACGGAATGACTCCCTCAATTCTCG -ACGGAATGACTCCCTCAATAGACG -ACGGAATGACTCCCTCAAGTAACG -ACGGAATGACTCCCTCAAACTTCG -ACGGAATGACTCCCTCAATACGCA -ACGGAATGACTCCCTCAACTTGCA -ACGGAATGACTCCCTCAACGAACA -ACGGAATGACTCCCTCAACAGTCA -ACGGAATGACTCCCTCAAGATCCA -ACGGAATGACTCCCTCAAACGACA -ACGGAATGACTCCCTCAAAGCTCA -ACGGAATGACTCCCTCAATCACGT -ACGGAATGACTCCCTCAACGTAGT -ACGGAATGACTCCCTCAAGTCAGT -ACGGAATGACTCCCTCAAGAAGGT -ACGGAATGACTCCCTCAAAACCGT -ACGGAATGACTCCCTCAATTGTGC -ACGGAATGACTCCCTCAACTAAGC -ACGGAATGACTCCCTCAAACTAGC -ACGGAATGACTCCCTCAAAGATGC -ACGGAATGACTCCCTCAATGAAGG -ACGGAATGACTCCCTCAACAATGG -ACGGAATGACTCCCTCAAATGAGG -ACGGAATGACTCCCTCAAAATGGG -ACGGAATGACTCCCTCAATCCTGA -ACGGAATGACTCCCTCAATAGCGA -ACGGAATGACTCCCTCAACACAGA -ACGGAATGACTCCCTCAAGCAAGA -ACGGAATGACTCCCTCAAGGTTGA -ACGGAATGACTCCCTCAATCCGAT -ACGGAATGACTCCCTCAATGGCAT -ACGGAATGACTCCCTCAACGAGAT -ACGGAATGACTCCCTCAATACCAC -ACGGAATGACTCCCTCAACAGAAC -ACGGAATGACTCCCTCAAGTCTAC -ACGGAATGACTCCCTCAAACGTAC -ACGGAATGACTCCCTCAAAGTGAC -ACGGAATGACTCCCTCAACTGTAG -ACGGAATGACTCCCTCAACCTAAG -ACGGAATGACTCCCTCAAGTTCAG -ACGGAATGACTCCCTCAAGCATAG -ACGGAATGACTCCCTCAAGACAAG -ACGGAATGACTCCCTCAAAAGCAG -ACGGAATGACTCCCTCAACGTCAA -ACGGAATGACTCCCTCAAGCTGAA -ACGGAATGACTCCCTCAAAGTACG -ACGGAATGACTCCCTCAAATCCGA -ACGGAATGACTCCCTCAAATGGGA -ACGGAATGACTCCCTCAAGTGCAA -ACGGAATGACTCCCTCAAGAGGAA -ACGGAATGACTCCCTCAACAGGTA -ACGGAATGACTCCCTCAAGACTCT -ACGGAATGACTCCCTCAAAGTCCT -ACGGAATGACTCCCTCAATAAGCC -ACGGAATGACTCCCTCAAATAGCC -ACGGAATGACTCCCTCAATAACCG -ACGGAATGACTCCCTCAAATGCCA -ACGGAATGACTCACTGCTGGAAAC -ACGGAATGACTCACTGCTAACACC -ACGGAATGACTCACTGCTATCGAG -ACGGAATGACTCACTGCTCTCCTT -ACGGAATGACTCACTGCTCCTGTT -ACGGAATGACTCACTGCTCGGTTT -ACGGAATGACTCACTGCTGTGGTT -ACGGAATGACTCACTGCTGCCTTT -ACGGAATGACTCACTGCTGGTCTT -ACGGAATGACTCACTGCTACGCTT -ACGGAATGACTCACTGCTAGCGTT -ACGGAATGACTCACTGCTTTCGTC -ACGGAATGACTCACTGCTTCTCTC -ACGGAATGACTCACTGCTTGGATC -ACGGAATGACTCACTGCTCACTTC -ACGGAATGACTCACTGCTGTACTC -ACGGAATGACTCACTGCTGATGTC -ACGGAATGACTCACTGCTACAGTC -ACGGAATGACTCACTGCTTTGCTG -ACGGAATGACTCACTGCTTCCATG -ACGGAATGACTCACTGCTTGTGTG -ACGGAATGACTCACTGCTCTAGTG -ACGGAATGACTCACTGCTCATCTG -ACGGAATGACTCACTGCTGAGTTG -ACGGAATGACTCACTGCTAGACTG -ACGGAATGACTCACTGCTTCGGTA -ACGGAATGACTCACTGCTTGCCTA -ACGGAATGACTCACTGCTCCACTA -ACGGAATGACTCACTGCTGGAGTA -ACGGAATGACTCACTGCTTCGTCT -ACGGAATGACTCACTGCTTGCACT -ACGGAATGACTCACTGCTCTGACT -ACGGAATGACTCACTGCTCAACCT -ACGGAATGACTCACTGCTGCTACT -ACGGAATGACTCACTGCTGGATCT -ACGGAATGACTCACTGCTAAGGCT -ACGGAATGACTCACTGCTTCAACC -ACGGAATGACTCACTGCTTGTTCC -ACGGAATGACTCACTGCTATTCCC -ACGGAATGACTCACTGCTTTCTCG -ACGGAATGACTCACTGCTTAGACG -ACGGAATGACTCACTGCTGTAACG -ACGGAATGACTCACTGCTACTTCG -ACGGAATGACTCACTGCTTACGCA -ACGGAATGACTCACTGCTCTTGCA -ACGGAATGACTCACTGCTCGAACA -ACGGAATGACTCACTGCTCAGTCA -ACGGAATGACTCACTGCTGATCCA -ACGGAATGACTCACTGCTACGACA -ACGGAATGACTCACTGCTAGCTCA -ACGGAATGACTCACTGCTTCACGT -ACGGAATGACTCACTGCTCGTAGT -ACGGAATGACTCACTGCTGTCAGT -ACGGAATGACTCACTGCTGAAGGT -ACGGAATGACTCACTGCTAACCGT -ACGGAATGACTCACTGCTTTGTGC -ACGGAATGACTCACTGCTCTAAGC -ACGGAATGACTCACTGCTACTAGC -ACGGAATGACTCACTGCTAGATGC -ACGGAATGACTCACTGCTTGAAGG -ACGGAATGACTCACTGCTCAATGG -ACGGAATGACTCACTGCTATGAGG -ACGGAATGACTCACTGCTAATGGG -ACGGAATGACTCACTGCTTCCTGA -ACGGAATGACTCACTGCTTAGCGA -ACGGAATGACTCACTGCTCACAGA -ACGGAATGACTCACTGCTGCAAGA -ACGGAATGACTCACTGCTGGTTGA -ACGGAATGACTCACTGCTTCCGAT -ACGGAATGACTCACTGCTTGGCAT -ACGGAATGACTCACTGCTCGAGAT -ACGGAATGACTCACTGCTTACCAC -ACGGAATGACTCACTGCTCAGAAC -ACGGAATGACTCACTGCTGTCTAC -ACGGAATGACTCACTGCTACGTAC -ACGGAATGACTCACTGCTAGTGAC -ACGGAATGACTCACTGCTCTGTAG -ACGGAATGACTCACTGCTCCTAAG -ACGGAATGACTCACTGCTGTTCAG -ACGGAATGACTCACTGCTGCATAG -ACGGAATGACTCACTGCTGACAAG -ACGGAATGACTCACTGCTAAGCAG -ACGGAATGACTCACTGCTCGTCAA -ACGGAATGACTCACTGCTGCTGAA -ACGGAATGACTCACTGCTAGTACG -ACGGAATGACTCACTGCTATCCGA -ACGGAATGACTCACTGCTATGGGA -ACGGAATGACTCACTGCTGTGCAA -ACGGAATGACTCACTGCTGAGGAA -ACGGAATGACTCACTGCTCAGGTA -ACGGAATGACTCACTGCTGACTCT -ACGGAATGACTCACTGCTAGTCCT -ACGGAATGACTCACTGCTTAAGCC -ACGGAATGACTCACTGCTATAGCC -ACGGAATGACTCACTGCTTAACCG -ACGGAATGACTCACTGCTATGCCA -ACGGAATGACTCTCTGGAGGAAAC -ACGGAATGACTCTCTGGAAACACC -ACGGAATGACTCTCTGGAATCGAG -ACGGAATGACTCTCTGGACTCCTT -ACGGAATGACTCTCTGGACCTGTT -ACGGAATGACTCTCTGGACGGTTT -ACGGAATGACTCTCTGGAGTGGTT -ACGGAATGACTCTCTGGAGCCTTT -ACGGAATGACTCTCTGGAGGTCTT -ACGGAATGACTCTCTGGAACGCTT -ACGGAATGACTCTCTGGAAGCGTT -ACGGAATGACTCTCTGGATTCGTC -ACGGAATGACTCTCTGGATCTCTC -ACGGAATGACTCTCTGGATGGATC -ACGGAATGACTCTCTGGACACTTC -ACGGAATGACTCTCTGGAGTACTC -ACGGAATGACTCTCTGGAGATGTC -ACGGAATGACTCTCTGGAACAGTC -ACGGAATGACTCTCTGGATTGCTG -ACGGAATGACTCTCTGGATCCATG -ACGGAATGACTCTCTGGATGTGTG -ACGGAATGACTCTCTGGACTAGTG -ACGGAATGACTCTCTGGACATCTG -ACGGAATGACTCTCTGGAGAGTTG -ACGGAATGACTCTCTGGAAGACTG -ACGGAATGACTCTCTGGATCGGTA -ACGGAATGACTCTCTGGATGCCTA -ACGGAATGACTCTCTGGACCACTA -ACGGAATGACTCTCTGGAGGAGTA -ACGGAATGACTCTCTGGATCGTCT -ACGGAATGACTCTCTGGATGCACT -ACGGAATGACTCTCTGGACTGACT -ACGGAATGACTCTCTGGACAACCT -ACGGAATGACTCTCTGGAGCTACT -ACGGAATGACTCTCTGGAGGATCT -ACGGAATGACTCTCTGGAAAGGCT -ACGGAATGACTCTCTGGATCAACC -ACGGAATGACTCTCTGGATGTTCC -ACGGAATGACTCTCTGGAATTCCC -ACGGAATGACTCTCTGGATTCTCG -ACGGAATGACTCTCTGGATAGACG -ACGGAATGACTCTCTGGAGTAACG -ACGGAATGACTCTCTGGAACTTCG -ACGGAATGACTCTCTGGATACGCA -ACGGAATGACTCTCTGGACTTGCA -ACGGAATGACTCTCTGGACGAACA -ACGGAATGACTCTCTGGACAGTCA -ACGGAATGACTCTCTGGAGATCCA -ACGGAATGACTCTCTGGAACGACA -ACGGAATGACTCTCTGGAAGCTCA -ACGGAATGACTCTCTGGATCACGT -ACGGAATGACTCTCTGGACGTAGT -ACGGAATGACTCTCTGGAGTCAGT -ACGGAATGACTCTCTGGAGAAGGT -ACGGAATGACTCTCTGGAAACCGT -ACGGAATGACTCTCTGGATTGTGC -ACGGAATGACTCTCTGGACTAAGC -ACGGAATGACTCTCTGGAACTAGC -ACGGAATGACTCTCTGGAAGATGC -ACGGAATGACTCTCTGGATGAAGG -ACGGAATGACTCTCTGGACAATGG -ACGGAATGACTCTCTGGAATGAGG -ACGGAATGACTCTCTGGAAATGGG -ACGGAATGACTCTCTGGATCCTGA -ACGGAATGACTCTCTGGATAGCGA -ACGGAATGACTCTCTGGACACAGA -ACGGAATGACTCTCTGGAGCAAGA -ACGGAATGACTCTCTGGAGGTTGA -ACGGAATGACTCTCTGGATCCGAT -ACGGAATGACTCTCTGGATGGCAT -ACGGAATGACTCTCTGGACGAGAT -ACGGAATGACTCTCTGGATACCAC -ACGGAATGACTCTCTGGACAGAAC -ACGGAATGACTCTCTGGAGTCTAC -ACGGAATGACTCTCTGGAACGTAC -ACGGAATGACTCTCTGGAAGTGAC -ACGGAATGACTCTCTGGACTGTAG -ACGGAATGACTCTCTGGACCTAAG -ACGGAATGACTCTCTGGAGTTCAG -ACGGAATGACTCTCTGGAGCATAG -ACGGAATGACTCTCTGGAGACAAG -ACGGAATGACTCTCTGGAAAGCAG -ACGGAATGACTCTCTGGACGTCAA -ACGGAATGACTCTCTGGAGCTGAA -ACGGAATGACTCTCTGGAAGTACG -ACGGAATGACTCTCTGGAATCCGA -ACGGAATGACTCTCTGGAATGGGA -ACGGAATGACTCTCTGGAGTGCAA -ACGGAATGACTCTCTGGAGAGGAA -ACGGAATGACTCTCTGGACAGGTA -ACGGAATGACTCTCTGGAGACTCT -ACGGAATGACTCTCTGGAAGTCCT -ACGGAATGACTCTCTGGATAAGCC -ACGGAATGACTCTCTGGAATAGCC -ACGGAATGACTCTCTGGATAACCG -ACGGAATGACTCTCTGGAATGCCA -ACGGAATGACTCGCTAAGGGAAAC -ACGGAATGACTCGCTAAGAACACC -ACGGAATGACTCGCTAAGATCGAG -ACGGAATGACTCGCTAAGCTCCTT -ACGGAATGACTCGCTAAGCCTGTT -ACGGAATGACTCGCTAAGCGGTTT -ACGGAATGACTCGCTAAGGTGGTT -ACGGAATGACTCGCTAAGGCCTTT -ACGGAATGACTCGCTAAGGGTCTT -ACGGAATGACTCGCTAAGACGCTT -ACGGAATGACTCGCTAAGAGCGTT -ACGGAATGACTCGCTAAGTTCGTC -ACGGAATGACTCGCTAAGTCTCTC -ACGGAATGACTCGCTAAGTGGATC -ACGGAATGACTCGCTAAGCACTTC -ACGGAATGACTCGCTAAGGTACTC -ACGGAATGACTCGCTAAGGATGTC -ACGGAATGACTCGCTAAGACAGTC -ACGGAATGACTCGCTAAGTTGCTG -ACGGAATGACTCGCTAAGTCCATG -ACGGAATGACTCGCTAAGTGTGTG -ACGGAATGACTCGCTAAGCTAGTG -ACGGAATGACTCGCTAAGCATCTG -ACGGAATGACTCGCTAAGGAGTTG -ACGGAATGACTCGCTAAGAGACTG -ACGGAATGACTCGCTAAGTCGGTA -ACGGAATGACTCGCTAAGTGCCTA -ACGGAATGACTCGCTAAGCCACTA -ACGGAATGACTCGCTAAGGGAGTA -ACGGAATGACTCGCTAAGTCGTCT -ACGGAATGACTCGCTAAGTGCACT -ACGGAATGACTCGCTAAGCTGACT -ACGGAATGACTCGCTAAGCAACCT -ACGGAATGACTCGCTAAGGCTACT -ACGGAATGACTCGCTAAGGGATCT -ACGGAATGACTCGCTAAGAAGGCT -ACGGAATGACTCGCTAAGTCAACC -ACGGAATGACTCGCTAAGTGTTCC -ACGGAATGACTCGCTAAGATTCCC -ACGGAATGACTCGCTAAGTTCTCG -ACGGAATGACTCGCTAAGTAGACG -ACGGAATGACTCGCTAAGGTAACG -ACGGAATGACTCGCTAAGACTTCG -ACGGAATGACTCGCTAAGTACGCA -ACGGAATGACTCGCTAAGCTTGCA -ACGGAATGACTCGCTAAGCGAACA -ACGGAATGACTCGCTAAGCAGTCA -ACGGAATGACTCGCTAAGGATCCA -ACGGAATGACTCGCTAAGACGACA -ACGGAATGACTCGCTAAGAGCTCA -ACGGAATGACTCGCTAAGTCACGT -ACGGAATGACTCGCTAAGCGTAGT -ACGGAATGACTCGCTAAGGTCAGT -ACGGAATGACTCGCTAAGGAAGGT -ACGGAATGACTCGCTAAGAACCGT -ACGGAATGACTCGCTAAGTTGTGC -ACGGAATGACTCGCTAAGCTAAGC -ACGGAATGACTCGCTAAGACTAGC -ACGGAATGACTCGCTAAGAGATGC -ACGGAATGACTCGCTAAGTGAAGG -ACGGAATGACTCGCTAAGCAATGG -ACGGAATGACTCGCTAAGATGAGG -ACGGAATGACTCGCTAAGAATGGG -ACGGAATGACTCGCTAAGTCCTGA -ACGGAATGACTCGCTAAGTAGCGA -ACGGAATGACTCGCTAAGCACAGA -ACGGAATGACTCGCTAAGGCAAGA -ACGGAATGACTCGCTAAGGGTTGA -ACGGAATGACTCGCTAAGTCCGAT -ACGGAATGACTCGCTAAGTGGCAT -ACGGAATGACTCGCTAAGCGAGAT -ACGGAATGACTCGCTAAGTACCAC -ACGGAATGACTCGCTAAGCAGAAC -ACGGAATGACTCGCTAAGGTCTAC -ACGGAATGACTCGCTAAGACGTAC -ACGGAATGACTCGCTAAGAGTGAC -ACGGAATGACTCGCTAAGCTGTAG -ACGGAATGACTCGCTAAGCCTAAG -ACGGAATGACTCGCTAAGGTTCAG -ACGGAATGACTCGCTAAGGCATAG -ACGGAATGACTCGCTAAGGACAAG -ACGGAATGACTCGCTAAGAAGCAG -ACGGAATGACTCGCTAAGCGTCAA -ACGGAATGACTCGCTAAGGCTGAA -ACGGAATGACTCGCTAAGAGTACG -ACGGAATGACTCGCTAAGATCCGA -ACGGAATGACTCGCTAAGATGGGA -ACGGAATGACTCGCTAAGGTGCAA -ACGGAATGACTCGCTAAGGAGGAA -ACGGAATGACTCGCTAAGCAGGTA -ACGGAATGACTCGCTAAGGACTCT -ACGGAATGACTCGCTAAGAGTCCT -ACGGAATGACTCGCTAAGTAAGCC -ACGGAATGACTCGCTAAGATAGCC -ACGGAATGACTCGCTAAGTAACCG -ACGGAATGACTCGCTAAGATGCCA -ACGGAATGACTCACCTCAGGAAAC -ACGGAATGACTCACCTCAAACACC -ACGGAATGACTCACCTCAATCGAG -ACGGAATGACTCACCTCACTCCTT -ACGGAATGACTCACCTCACCTGTT -ACGGAATGACTCACCTCACGGTTT -ACGGAATGACTCACCTCAGTGGTT -ACGGAATGACTCACCTCAGCCTTT -ACGGAATGACTCACCTCAGGTCTT -ACGGAATGACTCACCTCAACGCTT -ACGGAATGACTCACCTCAAGCGTT -ACGGAATGACTCACCTCATTCGTC -ACGGAATGACTCACCTCATCTCTC -ACGGAATGACTCACCTCATGGATC -ACGGAATGACTCACCTCACACTTC -ACGGAATGACTCACCTCAGTACTC -ACGGAATGACTCACCTCAGATGTC -ACGGAATGACTCACCTCAACAGTC -ACGGAATGACTCACCTCATTGCTG -ACGGAATGACTCACCTCATCCATG -ACGGAATGACTCACCTCATGTGTG -ACGGAATGACTCACCTCACTAGTG -ACGGAATGACTCACCTCACATCTG -ACGGAATGACTCACCTCAGAGTTG -ACGGAATGACTCACCTCAAGACTG -ACGGAATGACTCACCTCATCGGTA -ACGGAATGACTCACCTCATGCCTA -ACGGAATGACTCACCTCACCACTA -ACGGAATGACTCACCTCAGGAGTA -ACGGAATGACTCACCTCATCGTCT -ACGGAATGACTCACCTCATGCACT -ACGGAATGACTCACCTCACTGACT -ACGGAATGACTCACCTCACAACCT -ACGGAATGACTCACCTCAGCTACT -ACGGAATGACTCACCTCAGGATCT -ACGGAATGACTCACCTCAAAGGCT -ACGGAATGACTCACCTCATCAACC -ACGGAATGACTCACCTCATGTTCC -ACGGAATGACTCACCTCAATTCCC -ACGGAATGACTCACCTCATTCTCG -ACGGAATGACTCACCTCATAGACG -ACGGAATGACTCACCTCAGTAACG -ACGGAATGACTCACCTCAACTTCG -ACGGAATGACTCACCTCATACGCA -ACGGAATGACTCACCTCACTTGCA -ACGGAATGACTCACCTCACGAACA -ACGGAATGACTCACCTCACAGTCA -ACGGAATGACTCACCTCAGATCCA -ACGGAATGACTCACCTCAACGACA -ACGGAATGACTCACCTCAAGCTCA -ACGGAATGACTCACCTCATCACGT -ACGGAATGACTCACCTCACGTAGT -ACGGAATGACTCACCTCAGTCAGT -ACGGAATGACTCACCTCAGAAGGT -ACGGAATGACTCACCTCAAACCGT -ACGGAATGACTCACCTCATTGTGC -ACGGAATGACTCACCTCACTAAGC -ACGGAATGACTCACCTCAACTAGC -ACGGAATGACTCACCTCAAGATGC -ACGGAATGACTCACCTCATGAAGG -ACGGAATGACTCACCTCACAATGG -ACGGAATGACTCACCTCAATGAGG -ACGGAATGACTCACCTCAAATGGG -ACGGAATGACTCACCTCATCCTGA -ACGGAATGACTCACCTCATAGCGA -ACGGAATGACTCACCTCACACAGA -ACGGAATGACTCACCTCAGCAAGA -ACGGAATGACTCACCTCAGGTTGA -ACGGAATGACTCACCTCATCCGAT -ACGGAATGACTCACCTCATGGCAT -ACGGAATGACTCACCTCACGAGAT -ACGGAATGACTCACCTCATACCAC -ACGGAATGACTCACCTCACAGAAC -ACGGAATGACTCACCTCAGTCTAC -ACGGAATGACTCACCTCAACGTAC -ACGGAATGACTCACCTCAAGTGAC -ACGGAATGACTCACCTCACTGTAG -ACGGAATGACTCACCTCACCTAAG -ACGGAATGACTCACCTCAGTTCAG -ACGGAATGACTCACCTCAGCATAG -ACGGAATGACTCACCTCAGACAAG -ACGGAATGACTCACCTCAAAGCAG -ACGGAATGACTCACCTCACGTCAA -ACGGAATGACTCACCTCAGCTGAA -ACGGAATGACTCACCTCAAGTACG -ACGGAATGACTCACCTCAATCCGA -ACGGAATGACTCACCTCAATGGGA -ACGGAATGACTCACCTCAGTGCAA -ACGGAATGACTCACCTCAGAGGAA -ACGGAATGACTCACCTCACAGGTA -ACGGAATGACTCACCTCAGACTCT -ACGGAATGACTCACCTCAAGTCCT -ACGGAATGACTCACCTCATAAGCC -ACGGAATGACTCACCTCAATAGCC -ACGGAATGACTCACCTCATAACCG -ACGGAATGACTCACCTCAATGCCA -ACGGAATGACTCTCCTGTGGAAAC -ACGGAATGACTCTCCTGTAACACC -ACGGAATGACTCTCCTGTATCGAG -ACGGAATGACTCTCCTGTCTCCTT -ACGGAATGACTCTCCTGTCCTGTT -ACGGAATGACTCTCCTGTCGGTTT -ACGGAATGACTCTCCTGTGTGGTT -ACGGAATGACTCTCCTGTGCCTTT -ACGGAATGACTCTCCTGTGGTCTT -ACGGAATGACTCTCCTGTACGCTT -ACGGAATGACTCTCCTGTAGCGTT -ACGGAATGACTCTCCTGTTTCGTC -ACGGAATGACTCTCCTGTTCTCTC -ACGGAATGACTCTCCTGTTGGATC -ACGGAATGACTCTCCTGTCACTTC -ACGGAATGACTCTCCTGTGTACTC -ACGGAATGACTCTCCTGTGATGTC -ACGGAATGACTCTCCTGTACAGTC -ACGGAATGACTCTCCTGTTTGCTG -ACGGAATGACTCTCCTGTTCCATG -ACGGAATGACTCTCCTGTTGTGTG -ACGGAATGACTCTCCTGTCTAGTG -ACGGAATGACTCTCCTGTCATCTG -ACGGAATGACTCTCCTGTGAGTTG -ACGGAATGACTCTCCTGTAGACTG -ACGGAATGACTCTCCTGTTCGGTA -ACGGAATGACTCTCCTGTTGCCTA -ACGGAATGACTCTCCTGTCCACTA -ACGGAATGACTCTCCTGTGGAGTA -ACGGAATGACTCTCCTGTTCGTCT -ACGGAATGACTCTCCTGTTGCACT -ACGGAATGACTCTCCTGTCTGACT -ACGGAATGACTCTCCTGTCAACCT -ACGGAATGACTCTCCTGTGCTACT -ACGGAATGACTCTCCTGTGGATCT -ACGGAATGACTCTCCTGTAAGGCT -ACGGAATGACTCTCCTGTTCAACC -ACGGAATGACTCTCCTGTTGTTCC -ACGGAATGACTCTCCTGTATTCCC -ACGGAATGACTCTCCTGTTTCTCG -ACGGAATGACTCTCCTGTTAGACG -ACGGAATGACTCTCCTGTGTAACG -ACGGAATGACTCTCCTGTACTTCG -ACGGAATGACTCTCCTGTTACGCA -ACGGAATGACTCTCCTGTCTTGCA -ACGGAATGACTCTCCTGTCGAACA -ACGGAATGACTCTCCTGTCAGTCA -ACGGAATGACTCTCCTGTGATCCA -ACGGAATGACTCTCCTGTACGACA -ACGGAATGACTCTCCTGTAGCTCA -ACGGAATGACTCTCCTGTTCACGT -ACGGAATGACTCTCCTGTCGTAGT -ACGGAATGACTCTCCTGTGTCAGT -ACGGAATGACTCTCCTGTGAAGGT -ACGGAATGACTCTCCTGTAACCGT -ACGGAATGACTCTCCTGTTTGTGC -ACGGAATGACTCTCCTGTCTAAGC -ACGGAATGACTCTCCTGTACTAGC -ACGGAATGACTCTCCTGTAGATGC -ACGGAATGACTCTCCTGTTGAAGG -ACGGAATGACTCTCCTGTCAATGG -ACGGAATGACTCTCCTGTATGAGG -ACGGAATGACTCTCCTGTAATGGG -ACGGAATGACTCTCCTGTTCCTGA -ACGGAATGACTCTCCTGTTAGCGA -ACGGAATGACTCTCCTGTCACAGA -ACGGAATGACTCTCCTGTGCAAGA -ACGGAATGACTCTCCTGTGGTTGA -ACGGAATGACTCTCCTGTTCCGAT -ACGGAATGACTCTCCTGTTGGCAT -ACGGAATGACTCTCCTGTCGAGAT -ACGGAATGACTCTCCTGTTACCAC -ACGGAATGACTCTCCTGTCAGAAC -ACGGAATGACTCTCCTGTGTCTAC -ACGGAATGACTCTCCTGTACGTAC -ACGGAATGACTCTCCTGTAGTGAC -ACGGAATGACTCTCCTGTCTGTAG -ACGGAATGACTCTCCTGTCCTAAG -ACGGAATGACTCTCCTGTGTTCAG -ACGGAATGACTCTCCTGTGCATAG -ACGGAATGACTCTCCTGTGACAAG -ACGGAATGACTCTCCTGTAAGCAG -ACGGAATGACTCTCCTGTCGTCAA -ACGGAATGACTCTCCTGTGCTGAA -ACGGAATGACTCTCCTGTAGTACG -ACGGAATGACTCTCCTGTATCCGA -ACGGAATGACTCTCCTGTATGGGA -ACGGAATGACTCTCCTGTGTGCAA -ACGGAATGACTCTCCTGTGAGGAA -ACGGAATGACTCTCCTGTCAGGTA -ACGGAATGACTCTCCTGTGACTCT -ACGGAATGACTCTCCTGTAGTCCT -ACGGAATGACTCTCCTGTTAAGCC -ACGGAATGACTCTCCTGTATAGCC -ACGGAATGACTCTCCTGTTAACCG -ACGGAATGACTCTCCTGTATGCCA -ACGGAATGACTCCCCATTGGAAAC -ACGGAATGACTCCCCATTAACACC -ACGGAATGACTCCCCATTATCGAG -ACGGAATGACTCCCCATTCTCCTT -ACGGAATGACTCCCCATTCCTGTT -ACGGAATGACTCCCCATTCGGTTT -ACGGAATGACTCCCCATTGTGGTT -ACGGAATGACTCCCCATTGCCTTT -ACGGAATGACTCCCCATTGGTCTT -ACGGAATGACTCCCCATTACGCTT -ACGGAATGACTCCCCATTAGCGTT -ACGGAATGACTCCCCATTTTCGTC -ACGGAATGACTCCCCATTTCTCTC -ACGGAATGACTCCCCATTTGGATC -ACGGAATGACTCCCCATTCACTTC -ACGGAATGACTCCCCATTGTACTC -ACGGAATGACTCCCCATTGATGTC -ACGGAATGACTCCCCATTACAGTC -ACGGAATGACTCCCCATTTTGCTG -ACGGAATGACTCCCCATTTCCATG -ACGGAATGACTCCCCATTTGTGTG -ACGGAATGACTCCCCATTCTAGTG -ACGGAATGACTCCCCATTCATCTG -ACGGAATGACTCCCCATTGAGTTG -ACGGAATGACTCCCCATTAGACTG -ACGGAATGACTCCCCATTTCGGTA -ACGGAATGACTCCCCATTTGCCTA -ACGGAATGACTCCCCATTCCACTA -ACGGAATGACTCCCCATTGGAGTA -ACGGAATGACTCCCCATTTCGTCT -ACGGAATGACTCCCCATTTGCACT -ACGGAATGACTCCCCATTCTGACT -ACGGAATGACTCCCCATTCAACCT -ACGGAATGACTCCCCATTGCTACT -ACGGAATGACTCCCCATTGGATCT -ACGGAATGACTCCCCATTAAGGCT -ACGGAATGACTCCCCATTTCAACC -ACGGAATGACTCCCCATTTGTTCC -ACGGAATGACTCCCCATTATTCCC -ACGGAATGACTCCCCATTTTCTCG -ACGGAATGACTCCCCATTTAGACG -ACGGAATGACTCCCCATTGTAACG -ACGGAATGACTCCCCATTACTTCG -ACGGAATGACTCCCCATTTACGCA -ACGGAATGACTCCCCATTCTTGCA -ACGGAATGACTCCCCATTCGAACA -ACGGAATGACTCCCCATTCAGTCA -ACGGAATGACTCCCCATTGATCCA -ACGGAATGACTCCCCATTACGACA -ACGGAATGACTCCCCATTAGCTCA -ACGGAATGACTCCCCATTTCACGT -ACGGAATGACTCCCCATTCGTAGT -ACGGAATGACTCCCCATTGTCAGT -ACGGAATGACTCCCCATTGAAGGT -ACGGAATGACTCCCCATTAACCGT -ACGGAATGACTCCCCATTTTGTGC -ACGGAATGACTCCCCATTCTAAGC -ACGGAATGACTCCCCATTACTAGC -ACGGAATGACTCCCCATTAGATGC -ACGGAATGACTCCCCATTTGAAGG -ACGGAATGACTCCCCATTCAATGG -ACGGAATGACTCCCCATTATGAGG -ACGGAATGACTCCCCATTAATGGG -ACGGAATGACTCCCCATTTCCTGA -ACGGAATGACTCCCCATTTAGCGA -ACGGAATGACTCCCCATTCACAGA -ACGGAATGACTCCCCATTGCAAGA -ACGGAATGACTCCCCATTGGTTGA -ACGGAATGACTCCCCATTTCCGAT -ACGGAATGACTCCCCATTTGGCAT -ACGGAATGACTCCCCATTCGAGAT -ACGGAATGACTCCCCATTTACCAC -ACGGAATGACTCCCCATTCAGAAC -ACGGAATGACTCCCCATTGTCTAC -ACGGAATGACTCCCCATTACGTAC -ACGGAATGACTCCCCATTAGTGAC -ACGGAATGACTCCCCATTCTGTAG -ACGGAATGACTCCCCATTCCTAAG -ACGGAATGACTCCCCATTGTTCAG -ACGGAATGACTCCCCATTGCATAG -ACGGAATGACTCCCCATTGACAAG -ACGGAATGACTCCCCATTAAGCAG -ACGGAATGACTCCCCATTCGTCAA -ACGGAATGACTCCCCATTGCTGAA -ACGGAATGACTCCCCATTAGTACG -ACGGAATGACTCCCCATTATCCGA -ACGGAATGACTCCCCATTATGGGA -ACGGAATGACTCCCCATTGTGCAA -ACGGAATGACTCCCCATTGAGGAA -ACGGAATGACTCCCCATTCAGGTA -ACGGAATGACTCCCCATTGACTCT -ACGGAATGACTCCCCATTAGTCCT -ACGGAATGACTCCCCATTTAAGCC -ACGGAATGACTCCCCATTATAGCC -ACGGAATGACTCCCCATTTAACCG -ACGGAATGACTCCCCATTATGCCA -ACGGAATGACTCTCGTTCGGAAAC -ACGGAATGACTCTCGTTCAACACC -ACGGAATGACTCTCGTTCATCGAG -ACGGAATGACTCTCGTTCCTCCTT -ACGGAATGACTCTCGTTCCCTGTT -ACGGAATGACTCTCGTTCCGGTTT -ACGGAATGACTCTCGTTCGTGGTT -ACGGAATGACTCTCGTTCGCCTTT -ACGGAATGACTCTCGTTCGGTCTT -ACGGAATGACTCTCGTTCACGCTT -ACGGAATGACTCTCGTTCAGCGTT -ACGGAATGACTCTCGTTCTTCGTC -ACGGAATGACTCTCGTTCTCTCTC -ACGGAATGACTCTCGTTCTGGATC -ACGGAATGACTCTCGTTCCACTTC -ACGGAATGACTCTCGTTCGTACTC -ACGGAATGACTCTCGTTCGATGTC -ACGGAATGACTCTCGTTCACAGTC -ACGGAATGACTCTCGTTCTTGCTG -ACGGAATGACTCTCGTTCTCCATG -ACGGAATGACTCTCGTTCTGTGTG -ACGGAATGACTCTCGTTCCTAGTG -ACGGAATGACTCTCGTTCCATCTG -ACGGAATGACTCTCGTTCGAGTTG -ACGGAATGACTCTCGTTCAGACTG -ACGGAATGACTCTCGTTCTCGGTA -ACGGAATGACTCTCGTTCTGCCTA -ACGGAATGACTCTCGTTCCCACTA -ACGGAATGACTCTCGTTCGGAGTA -ACGGAATGACTCTCGTTCTCGTCT -ACGGAATGACTCTCGTTCTGCACT -ACGGAATGACTCTCGTTCCTGACT -ACGGAATGACTCTCGTTCCAACCT -ACGGAATGACTCTCGTTCGCTACT -ACGGAATGACTCTCGTTCGGATCT -ACGGAATGACTCTCGTTCAAGGCT -ACGGAATGACTCTCGTTCTCAACC -ACGGAATGACTCTCGTTCTGTTCC -ACGGAATGACTCTCGTTCATTCCC -ACGGAATGACTCTCGTTCTTCTCG -ACGGAATGACTCTCGTTCTAGACG -ACGGAATGACTCTCGTTCGTAACG -ACGGAATGACTCTCGTTCACTTCG -ACGGAATGACTCTCGTTCTACGCA -ACGGAATGACTCTCGTTCCTTGCA -ACGGAATGACTCTCGTTCCGAACA -ACGGAATGACTCTCGTTCCAGTCA -ACGGAATGACTCTCGTTCGATCCA -ACGGAATGACTCTCGTTCACGACA -ACGGAATGACTCTCGTTCAGCTCA -ACGGAATGACTCTCGTTCTCACGT -ACGGAATGACTCTCGTTCCGTAGT -ACGGAATGACTCTCGTTCGTCAGT -ACGGAATGACTCTCGTTCGAAGGT -ACGGAATGACTCTCGTTCAACCGT -ACGGAATGACTCTCGTTCTTGTGC -ACGGAATGACTCTCGTTCCTAAGC -ACGGAATGACTCTCGTTCACTAGC -ACGGAATGACTCTCGTTCAGATGC -ACGGAATGACTCTCGTTCTGAAGG -ACGGAATGACTCTCGTTCCAATGG -ACGGAATGACTCTCGTTCATGAGG -ACGGAATGACTCTCGTTCAATGGG -ACGGAATGACTCTCGTTCTCCTGA -ACGGAATGACTCTCGTTCTAGCGA -ACGGAATGACTCTCGTTCCACAGA -ACGGAATGACTCTCGTTCGCAAGA -ACGGAATGACTCTCGTTCGGTTGA -ACGGAATGACTCTCGTTCTCCGAT -ACGGAATGACTCTCGTTCTGGCAT -ACGGAATGACTCTCGTTCCGAGAT -ACGGAATGACTCTCGTTCTACCAC -ACGGAATGACTCTCGTTCCAGAAC -ACGGAATGACTCTCGTTCGTCTAC -ACGGAATGACTCTCGTTCACGTAC -ACGGAATGACTCTCGTTCAGTGAC -ACGGAATGACTCTCGTTCCTGTAG -ACGGAATGACTCTCGTTCCCTAAG -ACGGAATGACTCTCGTTCGTTCAG -ACGGAATGACTCTCGTTCGCATAG -ACGGAATGACTCTCGTTCGACAAG -ACGGAATGACTCTCGTTCAAGCAG -ACGGAATGACTCTCGTTCCGTCAA -ACGGAATGACTCTCGTTCGCTGAA -ACGGAATGACTCTCGTTCAGTACG -ACGGAATGACTCTCGTTCATCCGA -ACGGAATGACTCTCGTTCATGGGA -ACGGAATGACTCTCGTTCGTGCAA -ACGGAATGACTCTCGTTCGAGGAA -ACGGAATGACTCTCGTTCCAGGTA -ACGGAATGACTCTCGTTCGACTCT -ACGGAATGACTCTCGTTCAGTCCT -ACGGAATGACTCTCGTTCTAAGCC -ACGGAATGACTCTCGTTCATAGCC -ACGGAATGACTCTCGTTCTAACCG -ACGGAATGACTCTCGTTCATGCCA -ACGGAATGACTCACGTAGGGAAAC -ACGGAATGACTCACGTAGAACACC -ACGGAATGACTCACGTAGATCGAG -ACGGAATGACTCACGTAGCTCCTT -ACGGAATGACTCACGTAGCCTGTT -ACGGAATGACTCACGTAGCGGTTT -ACGGAATGACTCACGTAGGTGGTT -ACGGAATGACTCACGTAGGCCTTT -ACGGAATGACTCACGTAGGGTCTT -ACGGAATGACTCACGTAGACGCTT -ACGGAATGACTCACGTAGAGCGTT -ACGGAATGACTCACGTAGTTCGTC -ACGGAATGACTCACGTAGTCTCTC -ACGGAATGACTCACGTAGTGGATC -ACGGAATGACTCACGTAGCACTTC -ACGGAATGACTCACGTAGGTACTC -ACGGAATGACTCACGTAGGATGTC -ACGGAATGACTCACGTAGACAGTC -ACGGAATGACTCACGTAGTTGCTG -ACGGAATGACTCACGTAGTCCATG -ACGGAATGACTCACGTAGTGTGTG -ACGGAATGACTCACGTAGCTAGTG -ACGGAATGACTCACGTAGCATCTG -ACGGAATGACTCACGTAGGAGTTG -ACGGAATGACTCACGTAGAGACTG -ACGGAATGACTCACGTAGTCGGTA -ACGGAATGACTCACGTAGTGCCTA -ACGGAATGACTCACGTAGCCACTA -ACGGAATGACTCACGTAGGGAGTA -ACGGAATGACTCACGTAGTCGTCT -ACGGAATGACTCACGTAGTGCACT -ACGGAATGACTCACGTAGCTGACT -ACGGAATGACTCACGTAGCAACCT -ACGGAATGACTCACGTAGGCTACT -ACGGAATGACTCACGTAGGGATCT -ACGGAATGACTCACGTAGAAGGCT -ACGGAATGACTCACGTAGTCAACC -ACGGAATGACTCACGTAGTGTTCC -ACGGAATGACTCACGTAGATTCCC -ACGGAATGACTCACGTAGTTCTCG -ACGGAATGACTCACGTAGTAGACG -ACGGAATGACTCACGTAGGTAACG -ACGGAATGACTCACGTAGACTTCG -ACGGAATGACTCACGTAGTACGCA -ACGGAATGACTCACGTAGCTTGCA -ACGGAATGACTCACGTAGCGAACA -ACGGAATGACTCACGTAGCAGTCA -ACGGAATGACTCACGTAGGATCCA -ACGGAATGACTCACGTAGACGACA -ACGGAATGACTCACGTAGAGCTCA -ACGGAATGACTCACGTAGTCACGT -ACGGAATGACTCACGTAGCGTAGT -ACGGAATGACTCACGTAGGTCAGT -ACGGAATGACTCACGTAGGAAGGT -ACGGAATGACTCACGTAGAACCGT -ACGGAATGACTCACGTAGTTGTGC -ACGGAATGACTCACGTAGCTAAGC -ACGGAATGACTCACGTAGACTAGC -ACGGAATGACTCACGTAGAGATGC -ACGGAATGACTCACGTAGTGAAGG -ACGGAATGACTCACGTAGCAATGG -ACGGAATGACTCACGTAGATGAGG -ACGGAATGACTCACGTAGAATGGG -ACGGAATGACTCACGTAGTCCTGA -ACGGAATGACTCACGTAGTAGCGA -ACGGAATGACTCACGTAGCACAGA -ACGGAATGACTCACGTAGGCAAGA -ACGGAATGACTCACGTAGGGTTGA -ACGGAATGACTCACGTAGTCCGAT -ACGGAATGACTCACGTAGTGGCAT -ACGGAATGACTCACGTAGCGAGAT -ACGGAATGACTCACGTAGTACCAC -ACGGAATGACTCACGTAGCAGAAC -ACGGAATGACTCACGTAGGTCTAC -ACGGAATGACTCACGTAGACGTAC -ACGGAATGACTCACGTAGAGTGAC -ACGGAATGACTCACGTAGCTGTAG -ACGGAATGACTCACGTAGCCTAAG -ACGGAATGACTCACGTAGGTTCAG -ACGGAATGACTCACGTAGGCATAG -ACGGAATGACTCACGTAGGACAAG -ACGGAATGACTCACGTAGAAGCAG -ACGGAATGACTCACGTAGCGTCAA -ACGGAATGACTCACGTAGGCTGAA -ACGGAATGACTCACGTAGAGTACG -ACGGAATGACTCACGTAGATCCGA -ACGGAATGACTCACGTAGATGGGA -ACGGAATGACTCACGTAGGTGCAA -ACGGAATGACTCACGTAGGAGGAA -ACGGAATGACTCACGTAGCAGGTA -ACGGAATGACTCACGTAGGACTCT -ACGGAATGACTCACGTAGAGTCCT -ACGGAATGACTCACGTAGTAAGCC -ACGGAATGACTCACGTAGATAGCC -ACGGAATGACTCACGTAGTAACCG -ACGGAATGACTCACGTAGATGCCA -ACGGAATGACTCACGGTAGGAAAC -ACGGAATGACTCACGGTAAACACC -ACGGAATGACTCACGGTAATCGAG -ACGGAATGACTCACGGTACTCCTT -ACGGAATGACTCACGGTACCTGTT -ACGGAATGACTCACGGTACGGTTT -ACGGAATGACTCACGGTAGTGGTT -ACGGAATGACTCACGGTAGCCTTT -ACGGAATGACTCACGGTAGGTCTT -ACGGAATGACTCACGGTAACGCTT -ACGGAATGACTCACGGTAAGCGTT -ACGGAATGACTCACGGTATTCGTC -ACGGAATGACTCACGGTATCTCTC -ACGGAATGACTCACGGTATGGATC -ACGGAATGACTCACGGTACACTTC -ACGGAATGACTCACGGTAGTACTC -ACGGAATGACTCACGGTAGATGTC -ACGGAATGACTCACGGTAACAGTC -ACGGAATGACTCACGGTATTGCTG -ACGGAATGACTCACGGTATCCATG -ACGGAATGACTCACGGTATGTGTG -ACGGAATGACTCACGGTACTAGTG -ACGGAATGACTCACGGTACATCTG -ACGGAATGACTCACGGTAGAGTTG -ACGGAATGACTCACGGTAAGACTG -ACGGAATGACTCACGGTATCGGTA -ACGGAATGACTCACGGTATGCCTA -ACGGAATGACTCACGGTACCACTA -ACGGAATGACTCACGGTAGGAGTA -ACGGAATGACTCACGGTATCGTCT -ACGGAATGACTCACGGTATGCACT -ACGGAATGACTCACGGTACTGACT -ACGGAATGACTCACGGTACAACCT -ACGGAATGACTCACGGTAGCTACT -ACGGAATGACTCACGGTAGGATCT -ACGGAATGACTCACGGTAAAGGCT -ACGGAATGACTCACGGTATCAACC -ACGGAATGACTCACGGTATGTTCC -ACGGAATGACTCACGGTAATTCCC -ACGGAATGACTCACGGTATTCTCG -ACGGAATGACTCACGGTATAGACG -ACGGAATGACTCACGGTAGTAACG -ACGGAATGACTCACGGTAACTTCG -ACGGAATGACTCACGGTATACGCA -ACGGAATGACTCACGGTACTTGCA -ACGGAATGACTCACGGTACGAACA -ACGGAATGACTCACGGTACAGTCA -ACGGAATGACTCACGGTAGATCCA -ACGGAATGACTCACGGTAACGACA -ACGGAATGACTCACGGTAAGCTCA -ACGGAATGACTCACGGTATCACGT -ACGGAATGACTCACGGTACGTAGT -ACGGAATGACTCACGGTAGTCAGT -ACGGAATGACTCACGGTAGAAGGT -ACGGAATGACTCACGGTAAACCGT -ACGGAATGACTCACGGTATTGTGC -ACGGAATGACTCACGGTACTAAGC -ACGGAATGACTCACGGTAACTAGC -ACGGAATGACTCACGGTAAGATGC -ACGGAATGACTCACGGTATGAAGG -ACGGAATGACTCACGGTACAATGG -ACGGAATGACTCACGGTAATGAGG -ACGGAATGACTCACGGTAAATGGG -ACGGAATGACTCACGGTATCCTGA -ACGGAATGACTCACGGTATAGCGA -ACGGAATGACTCACGGTACACAGA -ACGGAATGACTCACGGTAGCAAGA -ACGGAATGACTCACGGTAGGTTGA -ACGGAATGACTCACGGTATCCGAT -ACGGAATGACTCACGGTATGGCAT -ACGGAATGACTCACGGTACGAGAT -ACGGAATGACTCACGGTATACCAC -ACGGAATGACTCACGGTACAGAAC -ACGGAATGACTCACGGTAGTCTAC -ACGGAATGACTCACGGTAACGTAC -ACGGAATGACTCACGGTAAGTGAC -ACGGAATGACTCACGGTACTGTAG -ACGGAATGACTCACGGTACCTAAG -ACGGAATGACTCACGGTAGTTCAG -ACGGAATGACTCACGGTAGCATAG -ACGGAATGACTCACGGTAGACAAG -ACGGAATGACTCACGGTAAAGCAG -ACGGAATGACTCACGGTACGTCAA -ACGGAATGACTCACGGTAGCTGAA -ACGGAATGACTCACGGTAAGTACG -ACGGAATGACTCACGGTAATCCGA -ACGGAATGACTCACGGTAATGGGA -ACGGAATGACTCACGGTAGTGCAA -ACGGAATGACTCACGGTAGAGGAA -ACGGAATGACTCACGGTACAGGTA -ACGGAATGACTCACGGTAGACTCT -ACGGAATGACTCACGGTAAGTCCT -ACGGAATGACTCACGGTATAAGCC -ACGGAATGACTCACGGTAATAGCC -ACGGAATGACTCACGGTATAACCG -ACGGAATGACTCACGGTAATGCCA -ACGGAATGACTCTCGACTGGAAAC -ACGGAATGACTCTCGACTAACACC -ACGGAATGACTCTCGACTATCGAG -ACGGAATGACTCTCGACTCTCCTT -ACGGAATGACTCTCGACTCCTGTT -ACGGAATGACTCTCGACTCGGTTT -ACGGAATGACTCTCGACTGTGGTT -ACGGAATGACTCTCGACTGCCTTT -ACGGAATGACTCTCGACTGGTCTT -ACGGAATGACTCTCGACTACGCTT -ACGGAATGACTCTCGACTAGCGTT -ACGGAATGACTCTCGACTTTCGTC -ACGGAATGACTCTCGACTTCTCTC -ACGGAATGACTCTCGACTTGGATC -ACGGAATGACTCTCGACTCACTTC -ACGGAATGACTCTCGACTGTACTC -ACGGAATGACTCTCGACTGATGTC -ACGGAATGACTCTCGACTACAGTC -ACGGAATGACTCTCGACTTTGCTG -ACGGAATGACTCTCGACTTCCATG -ACGGAATGACTCTCGACTTGTGTG -ACGGAATGACTCTCGACTCTAGTG -ACGGAATGACTCTCGACTCATCTG -ACGGAATGACTCTCGACTGAGTTG -ACGGAATGACTCTCGACTAGACTG -ACGGAATGACTCTCGACTTCGGTA -ACGGAATGACTCTCGACTTGCCTA -ACGGAATGACTCTCGACTCCACTA -ACGGAATGACTCTCGACTGGAGTA -ACGGAATGACTCTCGACTTCGTCT -ACGGAATGACTCTCGACTTGCACT -ACGGAATGACTCTCGACTCTGACT -ACGGAATGACTCTCGACTCAACCT -ACGGAATGACTCTCGACTGCTACT -ACGGAATGACTCTCGACTGGATCT -ACGGAATGACTCTCGACTAAGGCT -ACGGAATGACTCTCGACTTCAACC -ACGGAATGACTCTCGACTTGTTCC -ACGGAATGACTCTCGACTATTCCC -ACGGAATGACTCTCGACTTTCTCG -ACGGAATGACTCTCGACTTAGACG -ACGGAATGACTCTCGACTGTAACG -ACGGAATGACTCTCGACTACTTCG -ACGGAATGACTCTCGACTTACGCA -ACGGAATGACTCTCGACTCTTGCA -ACGGAATGACTCTCGACTCGAACA -ACGGAATGACTCTCGACTCAGTCA -ACGGAATGACTCTCGACTGATCCA -ACGGAATGACTCTCGACTACGACA -ACGGAATGACTCTCGACTAGCTCA -ACGGAATGACTCTCGACTTCACGT -ACGGAATGACTCTCGACTCGTAGT -ACGGAATGACTCTCGACTGTCAGT -ACGGAATGACTCTCGACTGAAGGT -ACGGAATGACTCTCGACTAACCGT -ACGGAATGACTCTCGACTTTGTGC -ACGGAATGACTCTCGACTCTAAGC -ACGGAATGACTCTCGACTACTAGC -ACGGAATGACTCTCGACTAGATGC -ACGGAATGACTCTCGACTTGAAGG -ACGGAATGACTCTCGACTCAATGG -ACGGAATGACTCTCGACTATGAGG -ACGGAATGACTCTCGACTAATGGG -ACGGAATGACTCTCGACTTCCTGA -ACGGAATGACTCTCGACTTAGCGA -ACGGAATGACTCTCGACTCACAGA -ACGGAATGACTCTCGACTGCAAGA -ACGGAATGACTCTCGACTGGTTGA -ACGGAATGACTCTCGACTTCCGAT -ACGGAATGACTCTCGACTTGGCAT -ACGGAATGACTCTCGACTCGAGAT -ACGGAATGACTCTCGACTTACCAC -ACGGAATGACTCTCGACTCAGAAC -ACGGAATGACTCTCGACTGTCTAC -ACGGAATGACTCTCGACTACGTAC -ACGGAATGACTCTCGACTAGTGAC -ACGGAATGACTCTCGACTCTGTAG -ACGGAATGACTCTCGACTCCTAAG -ACGGAATGACTCTCGACTGTTCAG -ACGGAATGACTCTCGACTGCATAG -ACGGAATGACTCTCGACTGACAAG -ACGGAATGACTCTCGACTAAGCAG -ACGGAATGACTCTCGACTCGTCAA -ACGGAATGACTCTCGACTGCTGAA -ACGGAATGACTCTCGACTAGTACG -ACGGAATGACTCTCGACTATCCGA -ACGGAATGACTCTCGACTATGGGA -ACGGAATGACTCTCGACTGTGCAA -ACGGAATGACTCTCGACTGAGGAA -ACGGAATGACTCTCGACTCAGGTA -ACGGAATGACTCTCGACTGACTCT -ACGGAATGACTCTCGACTAGTCCT -ACGGAATGACTCTCGACTTAAGCC -ACGGAATGACTCTCGACTATAGCC -ACGGAATGACTCTCGACTTAACCG -ACGGAATGACTCTCGACTATGCCA -ACGGAATGACTCGCATACGGAAAC -ACGGAATGACTCGCATACAACACC -ACGGAATGACTCGCATACATCGAG -ACGGAATGACTCGCATACCTCCTT -ACGGAATGACTCGCATACCCTGTT -ACGGAATGACTCGCATACCGGTTT -ACGGAATGACTCGCATACGTGGTT -ACGGAATGACTCGCATACGCCTTT -ACGGAATGACTCGCATACGGTCTT -ACGGAATGACTCGCATACACGCTT -ACGGAATGACTCGCATACAGCGTT -ACGGAATGACTCGCATACTTCGTC -ACGGAATGACTCGCATACTCTCTC -ACGGAATGACTCGCATACTGGATC -ACGGAATGACTCGCATACCACTTC -ACGGAATGACTCGCATACGTACTC -ACGGAATGACTCGCATACGATGTC -ACGGAATGACTCGCATACACAGTC -ACGGAATGACTCGCATACTTGCTG -ACGGAATGACTCGCATACTCCATG -ACGGAATGACTCGCATACTGTGTG -ACGGAATGACTCGCATACCTAGTG -ACGGAATGACTCGCATACCATCTG -ACGGAATGACTCGCATACGAGTTG -ACGGAATGACTCGCATACAGACTG -ACGGAATGACTCGCATACTCGGTA -ACGGAATGACTCGCATACTGCCTA -ACGGAATGACTCGCATACCCACTA -ACGGAATGACTCGCATACGGAGTA -ACGGAATGACTCGCATACTCGTCT -ACGGAATGACTCGCATACTGCACT -ACGGAATGACTCGCATACCTGACT -ACGGAATGACTCGCATACCAACCT -ACGGAATGACTCGCATACGCTACT -ACGGAATGACTCGCATACGGATCT -ACGGAATGACTCGCATACAAGGCT -ACGGAATGACTCGCATACTCAACC -ACGGAATGACTCGCATACTGTTCC -ACGGAATGACTCGCATACATTCCC -ACGGAATGACTCGCATACTTCTCG -ACGGAATGACTCGCATACTAGACG -ACGGAATGACTCGCATACGTAACG -ACGGAATGACTCGCATACACTTCG -ACGGAATGACTCGCATACTACGCA -ACGGAATGACTCGCATACCTTGCA -ACGGAATGACTCGCATACCGAACA -ACGGAATGACTCGCATACCAGTCA -ACGGAATGACTCGCATACGATCCA -ACGGAATGACTCGCATACACGACA -ACGGAATGACTCGCATACAGCTCA -ACGGAATGACTCGCATACTCACGT -ACGGAATGACTCGCATACCGTAGT -ACGGAATGACTCGCATACGTCAGT -ACGGAATGACTCGCATACGAAGGT -ACGGAATGACTCGCATACAACCGT -ACGGAATGACTCGCATACTTGTGC -ACGGAATGACTCGCATACCTAAGC -ACGGAATGACTCGCATACACTAGC -ACGGAATGACTCGCATACAGATGC -ACGGAATGACTCGCATACTGAAGG -ACGGAATGACTCGCATACCAATGG -ACGGAATGACTCGCATACATGAGG -ACGGAATGACTCGCATACAATGGG -ACGGAATGACTCGCATACTCCTGA -ACGGAATGACTCGCATACTAGCGA -ACGGAATGACTCGCATACCACAGA -ACGGAATGACTCGCATACGCAAGA -ACGGAATGACTCGCATACGGTTGA -ACGGAATGACTCGCATACTCCGAT -ACGGAATGACTCGCATACTGGCAT -ACGGAATGACTCGCATACCGAGAT -ACGGAATGACTCGCATACTACCAC -ACGGAATGACTCGCATACCAGAAC -ACGGAATGACTCGCATACGTCTAC -ACGGAATGACTCGCATACACGTAC -ACGGAATGACTCGCATACAGTGAC -ACGGAATGACTCGCATACCTGTAG -ACGGAATGACTCGCATACCCTAAG -ACGGAATGACTCGCATACGTTCAG -ACGGAATGACTCGCATACGCATAG -ACGGAATGACTCGCATACGACAAG -ACGGAATGACTCGCATACAAGCAG -ACGGAATGACTCGCATACCGTCAA -ACGGAATGACTCGCATACGCTGAA -ACGGAATGACTCGCATACAGTACG -ACGGAATGACTCGCATACATCCGA -ACGGAATGACTCGCATACATGGGA -ACGGAATGACTCGCATACGTGCAA -ACGGAATGACTCGCATACGAGGAA -ACGGAATGACTCGCATACCAGGTA -ACGGAATGACTCGCATACGACTCT -ACGGAATGACTCGCATACAGTCCT -ACGGAATGACTCGCATACTAAGCC -ACGGAATGACTCGCATACATAGCC -ACGGAATGACTCGCATACTAACCG -ACGGAATGACTCGCATACATGCCA -ACGGAATGACTCGCACTTGGAAAC -ACGGAATGACTCGCACTTAACACC -ACGGAATGACTCGCACTTATCGAG -ACGGAATGACTCGCACTTCTCCTT -ACGGAATGACTCGCACTTCCTGTT -ACGGAATGACTCGCACTTCGGTTT -ACGGAATGACTCGCACTTGTGGTT -ACGGAATGACTCGCACTTGCCTTT -ACGGAATGACTCGCACTTGGTCTT -ACGGAATGACTCGCACTTACGCTT -ACGGAATGACTCGCACTTAGCGTT -ACGGAATGACTCGCACTTTTCGTC -ACGGAATGACTCGCACTTTCTCTC -ACGGAATGACTCGCACTTTGGATC -ACGGAATGACTCGCACTTCACTTC -ACGGAATGACTCGCACTTGTACTC -ACGGAATGACTCGCACTTGATGTC -ACGGAATGACTCGCACTTACAGTC -ACGGAATGACTCGCACTTTTGCTG -ACGGAATGACTCGCACTTTCCATG -ACGGAATGACTCGCACTTTGTGTG -ACGGAATGACTCGCACTTCTAGTG -ACGGAATGACTCGCACTTCATCTG -ACGGAATGACTCGCACTTGAGTTG -ACGGAATGACTCGCACTTAGACTG -ACGGAATGACTCGCACTTTCGGTA -ACGGAATGACTCGCACTTTGCCTA -ACGGAATGACTCGCACTTCCACTA -ACGGAATGACTCGCACTTGGAGTA -ACGGAATGACTCGCACTTTCGTCT -ACGGAATGACTCGCACTTTGCACT -ACGGAATGACTCGCACTTCTGACT -ACGGAATGACTCGCACTTCAACCT -ACGGAATGACTCGCACTTGCTACT -ACGGAATGACTCGCACTTGGATCT -ACGGAATGACTCGCACTTAAGGCT -ACGGAATGACTCGCACTTTCAACC -ACGGAATGACTCGCACTTTGTTCC -ACGGAATGACTCGCACTTATTCCC -ACGGAATGACTCGCACTTTTCTCG -ACGGAATGACTCGCACTTTAGACG -ACGGAATGACTCGCACTTGTAACG -ACGGAATGACTCGCACTTACTTCG -ACGGAATGACTCGCACTTTACGCA -ACGGAATGACTCGCACTTCTTGCA -ACGGAATGACTCGCACTTCGAACA -ACGGAATGACTCGCACTTCAGTCA -ACGGAATGACTCGCACTTGATCCA -ACGGAATGACTCGCACTTACGACA -ACGGAATGACTCGCACTTAGCTCA -ACGGAATGACTCGCACTTTCACGT -ACGGAATGACTCGCACTTCGTAGT -ACGGAATGACTCGCACTTGTCAGT -ACGGAATGACTCGCACTTGAAGGT -ACGGAATGACTCGCACTTAACCGT -ACGGAATGACTCGCACTTTTGTGC -ACGGAATGACTCGCACTTCTAAGC -ACGGAATGACTCGCACTTACTAGC -ACGGAATGACTCGCACTTAGATGC -ACGGAATGACTCGCACTTTGAAGG -ACGGAATGACTCGCACTTCAATGG -ACGGAATGACTCGCACTTATGAGG -ACGGAATGACTCGCACTTAATGGG -ACGGAATGACTCGCACTTTCCTGA -ACGGAATGACTCGCACTTTAGCGA -ACGGAATGACTCGCACTTCACAGA -ACGGAATGACTCGCACTTGCAAGA -ACGGAATGACTCGCACTTGGTTGA -ACGGAATGACTCGCACTTTCCGAT -ACGGAATGACTCGCACTTTGGCAT -ACGGAATGACTCGCACTTCGAGAT -ACGGAATGACTCGCACTTTACCAC -ACGGAATGACTCGCACTTCAGAAC -ACGGAATGACTCGCACTTGTCTAC -ACGGAATGACTCGCACTTACGTAC -ACGGAATGACTCGCACTTAGTGAC -ACGGAATGACTCGCACTTCTGTAG -ACGGAATGACTCGCACTTCCTAAG -ACGGAATGACTCGCACTTGTTCAG -ACGGAATGACTCGCACTTGCATAG -ACGGAATGACTCGCACTTGACAAG -ACGGAATGACTCGCACTTAAGCAG -ACGGAATGACTCGCACTTCGTCAA -ACGGAATGACTCGCACTTGCTGAA -ACGGAATGACTCGCACTTAGTACG -ACGGAATGACTCGCACTTATCCGA -ACGGAATGACTCGCACTTATGGGA -ACGGAATGACTCGCACTTGTGCAA -ACGGAATGACTCGCACTTGAGGAA -ACGGAATGACTCGCACTTCAGGTA -ACGGAATGACTCGCACTTGACTCT -ACGGAATGACTCGCACTTAGTCCT -ACGGAATGACTCGCACTTTAAGCC -ACGGAATGACTCGCACTTATAGCC -ACGGAATGACTCGCACTTTAACCG -ACGGAATGACTCGCACTTATGCCA -ACGGAATGACTCACACGAGGAAAC -ACGGAATGACTCACACGAAACACC -ACGGAATGACTCACACGAATCGAG -ACGGAATGACTCACACGACTCCTT -ACGGAATGACTCACACGACCTGTT -ACGGAATGACTCACACGACGGTTT -ACGGAATGACTCACACGAGTGGTT -ACGGAATGACTCACACGAGCCTTT -ACGGAATGACTCACACGAGGTCTT -ACGGAATGACTCACACGAACGCTT -ACGGAATGACTCACACGAAGCGTT -ACGGAATGACTCACACGATTCGTC -ACGGAATGACTCACACGATCTCTC -ACGGAATGACTCACACGATGGATC -ACGGAATGACTCACACGACACTTC -ACGGAATGACTCACACGAGTACTC -ACGGAATGACTCACACGAGATGTC -ACGGAATGACTCACACGAACAGTC -ACGGAATGACTCACACGATTGCTG -ACGGAATGACTCACACGATCCATG -ACGGAATGACTCACACGATGTGTG -ACGGAATGACTCACACGACTAGTG -ACGGAATGACTCACACGACATCTG -ACGGAATGACTCACACGAGAGTTG -ACGGAATGACTCACACGAAGACTG -ACGGAATGACTCACACGATCGGTA -ACGGAATGACTCACACGATGCCTA -ACGGAATGACTCACACGACCACTA -ACGGAATGACTCACACGAGGAGTA -ACGGAATGACTCACACGATCGTCT -ACGGAATGACTCACACGATGCACT -ACGGAATGACTCACACGACTGACT -ACGGAATGACTCACACGACAACCT -ACGGAATGACTCACACGAGCTACT -ACGGAATGACTCACACGAGGATCT -ACGGAATGACTCACACGAAAGGCT -ACGGAATGACTCACACGATCAACC -ACGGAATGACTCACACGATGTTCC -ACGGAATGACTCACACGAATTCCC -ACGGAATGACTCACACGATTCTCG -ACGGAATGACTCACACGATAGACG -ACGGAATGACTCACACGAGTAACG -ACGGAATGACTCACACGAACTTCG -ACGGAATGACTCACACGATACGCA -ACGGAATGACTCACACGACTTGCA -ACGGAATGACTCACACGACGAACA -ACGGAATGACTCACACGACAGTCA -ACGGAATGACTCACACGAGATCCA -ACGGAATGACTCACACGAACGACA -ACGGAATGACTCACACGAAGCTCA -ACGGAATGACTCACACGATCACGT -ACGGAATGACTCACACGACGTAGT -ACGGAATGACTCACACGAGTCAGT -ACGGAATGACTCACACGAGAAGGT -ACGGAATGACTCACACGAAACCGT -ACGGAATGACTCACACGATTGTGC -ACGGAATGACTCACACGACTAAGC -ACGGAATGACTCACACGAACTAGC -ACGGAATGACTCACACGAAGATGC -ACGGAATGACTCACACGATGAAGG -ACGGAATGACTCACACGACAATGG -ACGGAATGACTCACACGAATGAGG -ACGGAATGACTCACACGAAATGGG -ACGGAATGACTCACACGATCCTGA -ACGGAATGACTCACACGATAGCGA -ACGGAATGACTCACACGACACAGA -ACGGAATGACTCACACGAGCAAGA -ACGGAATGACTCACACGAGGTTGA -ACGGAATGACTCACACGATCCGAT -ACGGAATGACTCACACGATGGCAT -ACGGAATGACTCACACGACGAGAT -ACGGAATGACTCACACGATACCAC -ACGGAATGACTCACACGACAGAAC -ACGGAATGACTCACACGAGTCTAC -ACGGAATGACTCACACGAACGTAC -ACGGAATGACTCACACGAAGTGAC -ACGGAATGACTCACACGACTGTAG -ACGGAATGACTCACACGACCTAAG -ACGGAATGACTCACACGAGTTCAG -ACGGAATGACTCACACGAGCATAG -ACGGAATGACTCACACGAGACAAG -ACGGAATGACTCACACGAAAGCAG -ACGGAATGACTCACACGACGTCAA -ACGGAATGACTCACACGAGCTGAA -ACGGAATGACTCACACGAAGTACG -ACGGAATGACTCACACGAATCCGA -ACGGAATGACTCACACGAATGGGA -ACGGAATGACTCACACGAGTGCAA -ACGGAATGACTCACACGAGAGGAA -ACGGAATGACTCACACGACAGGTA -ACGGAATGACTCACACGAGACTCT -ACGGAATGACTCACACGAAGTCCT -ACGGAATGACTCACACGATAAGCC -ACGGAATGACTCACACGAATAGCC -ACGGAATGACTCACACGATAACCG -ACGGAATGACTCACACGAATGCCA -ACGGAATGACTCTCACAGGGAAAC -ACGGAATGACTCTCACAGAACACC -ACGGAATGACTCTCACAGATCGAG -ACGGAATGACTCTCACAGCTCCTT -ACGGAATGACTCTCACAGCCTGTT -ACGGAATGACTCTCACAGCGGTTT -ACGGAATGACTCTCACAGGTGGTT -ACGGAATGACTCTCACAGGCCTTT -ACGGAATGACTCTCACAGGGTCTT -ACGGAATGACTCTCACAGACGCTT -ACGGAATGACTCTCACAGAGCGTT -ACGGAATGACTCTCACAGTTCGTC -ACGGAATGACTCTCACAGTCTCTC -ACGGAATGACTCTCACAGTGGATC -ACGGAATGACTCTCACAGCACTTC -ACGGAATGACTCTCACAGGTACTC -ACGGAATGACTCTCACAGGATGTC -ACGGAATGACTCTCACAGACAGTC -ACGGAATGACTCTCACAGTTGCTG -ACGGAATGACTCTCACAGTCCATG -ACGGAATGACTCTCACAGTGTGTG -ACGGAATGACTCTCACAGCTAGTG -ACGGAATGACTCTCACAGCATCTG -ACGGAATGACTCTCACAGGAGTTG -ACGGAATGACTCTCACAGAGACTG -ACGGAATGACTCTCACAGTCGGTA -ACGGAATGACTCTCACAGTGCCTA -ACGGAATGACTCTCACAGCCACTA -ACGGAATGACTCTCACAGGGAGTA -ACGGAATGACTCTCACAGTCGTCT -ACGGAATGACTCTCACAGTGCACT -ACGGAATGACTCTCACAGCTGACT -ACGGAATGACTCTCACAGCAACCT -ACGGAATGACTCTCACAGGCTACT -ACGGAATGACTCTCACAGGGATCT -ACGGAATGACTCTCACAGAAGGCT -ACGGAATGACTCTCACAGTCAACC -ACGGAATGACTCTCACAGTGTTCC -ACGGAATGACTCTCACAGATTCCC -ACGGAATGACTCTCACAGTTCTCG -ACGGAATGACTCTCACAGTAGACG -ACGGAATGACTCTCACAGGTAACG -ACGGAATGACTCTCACAGACTTCG -ACGGAATGACTCTCACAGTACGCA -ACGGAATGACTCTCACAGCTTGCA -ACGGAATGACTCTCACAGCGAACA -ACGGAATGACTCTCACAGCAGTCA -ACGGAATGACTCTCACAGGATCCA -ACGGAATGACTCTCACAGACGACA -ACGGAATGACTCTCACAGAGCTCA -ACGGAATGACTCTCACAGTCACGT -ACGGAATGACTCTCACAGCGTAGT -ACGGAATGACTCTCACAGGTCAGT -ACGGAATGACTCTCACAGGAAGGT -ACGGAATGACTCTCACAGAACCGT -ACGGAATGACTCTCACAGTTGTGC -ACGGAATGACTCTCACAGCTAAGC -ACGGAATGACTCTCACAGACTAGC -ACGGAATGACTCTCACAGAGATGC -ACGGAATGACTCTCACAGTGAAGG -ACGGAATGACTCTCACAGCAATGG -ACGGAATGACTCTCACAGATGAGG -ACGGAATGACTCTCACAGAATGGG -ACGGAATGACTCTCACAGTCCTGA -ACGGAATGACTCTCACAGTAGCGA -ACGGAATGACTCTCACAGCACAGA -ACGGAATGACTCTCACAGGCAAGA -ACGGAATGACTCTCACAGGGTTGA -ACGGAATGACTCTCACAGTCCGAT -ACGGAATGACTCTCACAGTGGCAT -ACGGAATGACTCTCACAGCGAGAT -ACGGAATGACTCTCACAGTACCAC -ACGGAATGACTCTCACAGCAGAAC -ACGGAATGACTCTCACAGGTCTAC -ACGGAATGACTCTCACAGACGTAC -ACGGAATGACTCTCACAGAGTGAC -ACGGAATGACTCTCACAGCTGTAG -ACGGAATGACTCTCACAGCCTAAG -ACGGAATGACTCTCACAGGTTCAG -ACGGAATGACTCTCACAGGCATAG -ACGGAATGACTCTCACAGGACAAG -ACGGAATGACTCTCACAGAAGCAG -ACGGAATGACTCTCACAGCGTCAA -ACGGAATGACTCTCACAGGCTGAA -ACGGAATGACTCTCACAGAGTACG -ACGGAATGACTCTCACAGATCCGA -ACGGAATGACTCTCACAGATGGGA -ACGGAATGACTCTCACAGGTGCAA -ACGGAATGACTCTCACAGGAGGAA -ACGGAATGACTCTCACAGCAGGTA -ACGGAATGACTCTCACAGGACTCT -ACGGAATGACTCTCACAGAGTCCT -ACGGAATGACTCTCACAGTAAGCC -ACGGAATGACTCTCACAGATAGCC -ACGGAATGACTCTCACAGTAACCG -ACGGAATGACTCTCACAGATGCCA -ACGGAATGACTCCCAGATGGAAAC -ACGGAATGACTCCCAGATAACACC -ACGGAATGACTCCCAGATATCGAG -ACGGAATGACTCCCAGATCTCCTT -ACGGAATGACTCCCAGATCCTGTT -ACGGAATGACTCCCAGATCGGTTT -ACGGAATGACTCCCAGATGTGGTT -ACGGAATGACTCCCAGATGCCTTT -ACGGAATGACTCCCAGATGGTCTT -ACGGAATGACTCCCAGATACGCTT -ACGGAATGACTCCCAGATAGCGTT -ACGGAATGACTCCCAGATTTCGTC -ACGGAATGACTCCCAGATTCTCTC -ACGGAATGACTCCCAGATTGGATC -ACGGAATGACTCCCAGATCACTTC -ACGGAATGACTCCCAGATGTACTC -ACGGAATGACTCCCAGATGATGTC -ACGGAATGACTCCCAGATACAGTC -ACGGAATGACTCCCAGATTTGCTG -ACGGAATGACTCCCAGATTCCATG -ACGGAATGACTCCCAGATTGTGTG -ACGGAATGACTCCCAGATCTAGTG -ACGGAATGACTCCCAGATCATCTG -ACGGAATGACTCCCAGATGAGTTG -ACGGAATGACTCCCAGATAGACTG -ACGGAATGACTCCCAGATTCGGTA -ACGGAATGACTCCCAGATTGCCTA -ACGGAATGACTCCCAGATCCACTA -ACGGAATGACTCCCAGATGGAGTA -ACGGAATGACTCCCAGATTCGTCT -ACGGAATGACTCCCAGATTGCACT -ACGGAATGACTCCCAGATCTGACT -ACGGAATGACTCCCAGATCAACCT -ACGGAATGACTCCCAGATGCTACT -ACGGAATGACTCCCAGATGGATCT -ACGGAATGACTCCCAGATAAGGCT -ACGGAATGACTCCCAGATTCAACC -ACGGAATGACTCCCAGATTGTTCC -ACGGAATGACTCCCAGATATTCCC -ACGGAATGACTCCCAGATTTCTCG -ACGGAATGACTCCCAGATTAGACG -ACGGAATGACTCCCAGATGTAACG -ACGGAATGACTCCCAGATACTTCG -ACGGAATGACTCCCAGATTACGCA -ACGGAATGACTCCCAGATCTTGCA -ACGGAATGACTCCCAGATCGAACA -ACGGAATGACTCCCAGATCAGTCA -ACGGAATGACTCCCAGATGATCCA -ACGGAATGACTCCCAGATACGACA -ACGGAATGACTCCCAGATAGCTCA -ACGGAATGACTCCCAGATTCACGT -ACGGAATGACTCCCAGATCGTAGT -ACGGAATGACTCCCAGATGTCAGT -ACGGAATGACTCCCAGATGAAGGT -ACGGAATGACTCCCAGATAACCGT -ACGGAATGACTCCCAGATTTGTGC -ACGGAATGACTCCCAGATCTAAGC -ACGGAATGACTCCCAGATACTAGC -ACGGAATGACTCCCAGATAGATGC -ACGGAATGACTCCCAGATTGAAGG -ACGGAATGACTCCCAGATCAATGG -ACGGAATGACTCCCAGATATGAGG -ACGGAATGACTCCCAGATAATGGG -ACGGAATGACTCCCAGATTCCTGA -ACGGAATGACTCCCAGATTAGCGA -ACGGAATGACTCCCAGATCACAGA -ACGGAATGACTCCCAGATGCAAGA -ACGGAATGACTCCCAGATGGTTGA -ACGGAATGACTCCCAGATTCCGAT -ACGGAATGACTCCCAGATTGGCAT -ACGGAATGACTCCCAGATCGAGAT -ACGGAATGACTCCCAGATTACCAC -ACGGAATGACTCCCAGATCAGAAC -ACGGAATGACTCCCAGATGTCTAC -ACGGAATGACTCCCAGATACGTAC -ACGGAATGACTCCCAGATAGTGAC -ACGGAATGACTCCCAGATCTGTAG -ACGGAATGACTCCCAGATCCTAAG -ACGGAATGACTCCCAGATGTTCAG -ACGGAATGACTCCCAGATGCATAG -ACGGAATGACTCCCAGATGACAAG -ACGGAATGACTCCCAGATAAGCAG -ACGGAATGACTCCCAGATCGTCAA -ACGGAATGACTCCCAGATGCTGAA -ACGGAATGACTCCCAGATAGTACG -ACGGAATGACTCCCAGATATCCGA -ACGGAATGACTCCCAGATATGGGA -ACGGAATGACTCCCAGATGTGCAA -ACGGAATGACTCCCAGATGAGGAA -ACGGAATGACTCCCAGATCAGGTA -ACGGAATGACTCCCAGATGACTCT -ACGGAATGACTCCCAGATAGTCCT -ACGGAATGACTCCCAGATTAAGCC -ACGGAATGACTCCCAGATATAGCC -ACGGAATGACTCCCAGATTAACCG -ACGGAATGACTCCCAGATATGCCA -ACGGAATGACTCACAACGGGAAAC -ACGGAATGACTCACAACGAACACC -ACGGAATGACTCACAACGATCGAG -ACGGAATGACTCACAACGCTCCTT -ACGGAATGACTCACAACGCCTGTT -ACGGAATGACTCACAACGCGGTTT -ACGGAATGACTCACAACGGTGGTT -ACGGAATGACTCACAACGGCCTTT -ACGGAATGACTCACAACGGGTCTT -ACGGAATGACTCACAACGACGCTT -ACGGAATGACTCACAACGAGCGTT -ACGGAATGACTCACAACGTTCGTC -ACGGAATGACTCACAACGTCTCTC -ACGGAATGACTCACAACGTGGATC -ACGGAATGACTCACAACGCACTTC -ACGGAATGACTCACAACGGTACTC -ACGGAATGACTCACAACGGATGTC -ACGGAATGACTCACAACGACAGTC -ACGGAATGACTCACAACGTTGCTG -ACGGAATGACTCACAACGTCCATG -ACGGAATGACTCACAACGTGTGTG -ACGGAATGACTCACAACGCTAGTG -ACGGAATGACTCACAACGCATCTG -ACGGAATGACTCACAACGGAGTTG -ACGGAATGACTCACAACGAGACTG -ACGGAATGACTCACAACGTCGGTA -ACGGAATGACTCACAACGTGCCTA -ACGGAATGACTCACAACGCCACTA -ACGGAATGACTCACAACGGGAGTA -ACGGAATGACTCACAACGTCGTCT -ACGGAATGACTCACAACGTGCACT -ACGGAATGACTCACAACGCTGACT -ACGGAATGACTCACAACGCAACCT -ACGGAATGACTCACAACGGCTACT -ACGGAATGACTCACAACGGGATCT -ACGGAATGACTCACAACGAAGGCT -ACGGAATGACTCACAACGTCAACC -ACGGAATGACTCACAACGTGTTCC -ACGGAATGACTCACAACGATTCCC -ACGGAATGACTCACAACGTTCTCG -ACGGAATGACTCACAACGTAGACG -ACGGAATGACTCACAACGGTAACG -ACGGAATGACTCACAACGACTTCG -ACGGAATGACTCACAACGTACGCA -ACGGAATGACTCACAACGCTTGCA -ACGGAATGACTCACAACGCGAACA -ACGGAATGACTCACAACGCAGTCA -ACGGAATGACTCACAACGGATCCA -ACGGAATGACTCACAACGACGACA -ACGGAATGACTCACAACGAGCTCA -ACGGAATGACTCACAACGTCACGT -ACGGAATGACTCACAACGCGTAGT -ACGGAATGACTCACAACGGTCAGT -ACGGAATGACTCACAACGGAAGGT -ACGGAATGACTCACAACGAACCGT -ACGGAATGACTCACAACGTTGTGC -ACGGAATGACTCACAACGCTAAGC -ACGGAATGACTCACAACGACTAGC -ACGGAATGACTCACAACGAGATGC -ACGGAATGACTCACAACGTGAAGG -ACGGAATGACTCACAACGCAATGG -ACGGAATGACTCACAACGATGAGG -ACGGAATGACTCACAACGAATGGG -ACGGAATGACTCACAACGTCCTGA -ACGGAATGACTCACAACGTAGCGA -ACGGAATGACTCACAACGCACAGA -ACGGAATGACTCACAACGGCAAGA -ACGGAATGACTCACAACGGGTTGA -ACGGAATGACTCACAACGTCCGAT -ACGGAATGACTCACAACGTGGCAT -ACGGAATGACTCACAACGCGAGAT -ACGGAATGACTCACAACGTACCAC -ACGGAATGACTCACAACGCAGAAC -ACGGAATGACTCACAACGGTCTAC -ACGGAATGACTCACAACGACGTAC -ACGGAATGACTCACAACGAGTGAC -ACGGAATGACTCACAACGCTGTAG -ACGGAATGACTCACAACGCCTAAG -ACGGAATGACTCACAACGGTTCAG -ACGGAATGACTCACAACGGCATAG -ACGGAATGACTCACAACGGACAAG -ACGGAATGACTCACAACGAAGCAG -ACGGAATGACTCACAACGCGTCAA -ACGGAATGACTCACAACGGCTGAA -ACGGAATGACTCACAACGAGTACG -ACGGAATGACTCACAACGATCCGA -ACGGAATGACTCACAACGATGGGA -ACGGAATGACTCACAACGGTGCAA -ACGGAATGACTCACAACGGAGGAA -ACGGAATGACTCACAACGCAGGTA -ACGGAATGACTCACAACGGACTCT -ACGGAATGACTCACAACGAGTCCT -ACGGAATGACTCACAACGTAAGCC -ACGGAATGACTCACAACGATAGCC -ACGGAATGACTCACAACGTAACCG -ACGGAATGACTCACAACGATGCCA -ACGGAATGACTCTCAAGCGGAAAC -ACGGAATGACTCTCAAGCAACACC -ACGGAATGACTCTCAAGCATCGAG -ACGGAATGACTCTCAAGCCTCCTT -ACGGAATGACTCTCAAGCCCTGTT -ACGGAATGACTCTCAAGCCGGTTT -ACGGAATGACTCTCAAGCGTGGTT -ACGGAATGACTCTCAAGCGCCTTT -ACGGAATGACTCTCAAGCGGTCTT -ACGGAATGACTCTCAAGCACGCTT -ACGGAATGACTCTCAAGCAGCGTT -ACGGAATGACTCTCAAGCTTCGTC -ACGGAATGACTCTCAAGCTCTCTC -ACGGAATGACTCTCAAGCTGGATC -ACGGAATGACTCTCAAGCCACTTC -ACGGAATGACTCTCAAGCGTACTC -ACGGAATGACTCTCAAGCGATGTC -ACGGAATGACTCTCAAGCACAGTC -ACGGAATGACTCTCAAGCTTGCTG -ACGGAATGACTCTCAAGCTCCATG -ACGGAATGACTCTCAAGCTGTGTG -ACGGAATGACTCTCAAGCCTAGTG -ACGGAATGACTCTCAAGCCATCTG -ACGGAATGACTCTCAAGCGAGTTG -ACGGAATGACTCTCAAGCAGACTG -ACGGAATGACTCTCAAGCTCGGTA -ACGGAATGACTCTCAAGCTGCCTA -ACGGAATGACTCTCAAGCCCACTA -ACGGAATGACTCTCAAGCGGAGTA -ACGGAATGACTCTCAAGCTCGTCT -ACGGAATGACTCTCAAGCTGCACT -ACGGAATGACTCTCAAGCCTGACT -ACGGAATGACTCTCAAGCCAACCT -ACGGAATGACTCTCAAGCGCTACT -ACGGAATGACTCTCAAGCGGATCT -ACGGAATGACTCTCAAGCAAGGCT -ACGGAATGACTCTCAAGCTCAACC -ACGGAATGACTCTCAAGCTGTTCC -ACGGAATGACTCTCAAGCATTCCC -ACGGAATGACTCTCAAGCTTCTCG -ACGGAATGACTCTCAAGCTAGACG -ACGGAATGACTCTCAAGCGTAACG -ACGGAATGACTCTCAAGCACTTCG -ACGGAATGACTCTCAAGCTACGCA -ACGGAATGACTCTCAAGCCTTGCA -ACGGAATGACTCTCAAGCCGAACA -ACGGAATGACTCTCAAGCCAGTCA -ACGGAATGACTCTCAAGCGATCCA -ACGGAATGACTCTCAAGCACGACA -ACGGAATGACTCTCAAGCAGCTCA -ACGGAATGACTCTCAAGCTCACGT -ACGGAATGACTCTCAAGCCGTAGT -ACGGAATGACTCTCAAGCGTCAGT -ACGGAATGACTCTCAAGCGAAGGT -ACGGAATGACTCTCAAGCAACCGT -ACGGAATGACTCTCAAGCTTGTGC -ACGGAATGACTCTCAAGCCTAAGC -ACGGAATGACTCTCAAGCACTAGC -ACGGAATGACTCTCAAGCAGATGC -ACGGAATGACTCTCAAGCTGAAGG -ACGGAATGACTCTCAAGCCAATGG -ACGGAATGACTCTCAAGCATGAGG -ACGGAATGACTCTCAAGCAATGGG -ACGGAATGACTCTCAAGCTCCTGA -ACGGAATGACTCTCAAGCTAGCGA -ACGGAATGACTCTCAAGCCACAGA -ACGGAATGACTCTCAAGCGCAAGA -ACGGAATGACTCTCAAGCGGTTGA -ACGGAATGACTCTCAAGCTCCGAT -ACGGAATGACTCTCAAGCTGGCAT -ACGGAATGACTCTCAAGCCGAGAT -ACGGAATGACTCTCAAGCTACCAC -ACGGAATGACTCTCAAGCCAGAAC -ACGGAATGACTCTCAAGCGTCTAC -ACGGAATGACTCTCAAGCACGTAC -ACGGAATGACTCTCAAGCAGTGAC -ACGGAATGACTCTCAAGCCTGTAG -ACGGAATGACTCTCAAGCCCTAAG -ACGGAATGACTCTCAAGCGTTCAG -ACGGAATGACTCTCAAGCGCATAG -ACGGAATGACTCTCAAGCGACAAG -ACGGAATGACTCTCAAGCAAGCAG -ACGGAATGACTCTCAAGCCGTCAA -ACGGAATGACTCTCAAGCGCTGAA -ACGGAATGACTCTCAAGCAGTACG -ACGGAATGACTCTCAAGCATCCGA -ACGGAATGACTCTCAAGCATGGGA -ACGGAATGACTCTCAAGCGTGCAA -ACGGAATGACTCTCAAGCGAGGAA -ACGGAATGACTCTCAAGCCAGGTA -ACGGAATGACTCTCAAGCGACTCT -ACGGAATGACTCTCAAGCAGTCCT -ACGGAATGACTCTCAAGCTAAGCC -ACGGAATGACTCTCAAGCATAGCC -ACGGAATGACTCTCAAGCTAACCG -ACGGAATGACTCTCAAGCATGCCA -ACGGAATGACTCCGTTCAGGAAAC -ACGGAATGACTCCGTTCAAACACC -ACGGAATGACTCCGTTCAATCGAG -ACGGAATGACTCCGTTCACTCCTT -ACGGAATGACTCCGTTCACCTGTT -ACGGAATGACTCCGTTCACGGTTT -ACGGAATGACTCCGTTCAGTGGTT -ACGGAATGACTCCGTTCAGCCTTT -ACGGAATGACTCCGTTCAGGTCTT -ACGGAATGACTCCGTTCAACGCTT -ACGGAATGACTCCGTTCAAGCGTT -ACGGAATGACTCCGTTCATTCGTC -ACGGAATGACTCCGTTCATCTCTC -ACGGAATGACTCCGTTCATGGATC -ACGGAATGACTCCGTTCACACTTC -ACGGAATGACTCCGTTCAGTACTC -ACGGAATGACTCCGTTCAGATGTC -ACGGAATGACTCCGTTCAACAGTC -ACGGAATGACTCCGTTCATTGCTG -ACGGAATGACTCCGTTCATCCATG -ACGGAATGACTCCGTTCATGTGTG -ACGGAATGACTCCGTTCACTAGTG -ACGGAATGACTCCGTTCACATCTG -ACGGAATGACTCCGTTCAGAGTTG -ACGGAATGACTCCGTTCAAGACTG -ACGGAATGACTCCGTTCATCGGTA -ACGGAATGACTCCGTTCATGCCTA -ACGGAATGACTCCGTTCACCACTA -ACGGAATGACTCCGTTCAGGAGTA -ACGGAATGACTCCGTTCATCGTCT -ACGGAATGACTCCGTTCATGCACT -ACGGAATGACTCCGTTCACTGACT -ACGGAATGACTCCGTTCACAACCT -ACGGAATGACTCCGTTCAGCTACT -ACGGAATGACTCCGTTCAGGATCT -ACGGAATGACTCCGTTCAAAGGCT -ACGGAATGACTCCGTTCATCAACC -ACGGAATGACTCCGTTCATGTTCC -ACGGAATGACTCCGTTCAATTCCC -ACGGAATGACTCCGTTCATTCTCG -ACGGAATGACTCCGTTCATAGACG -ACGGAATGACTCCGTTCAGTAACG -ACGGAATGACTCCGTTCAACTTCG -ACGGAATGACTCCGTTCATACGCA -ACGGAATGACTCCGTTCACTTGCA -ACGGAATGACTCCGTTCACGAACA -ACGGAATGACTCCGTTCACAGTCA -ACGGAATGACTCCGTTCAGATCCA -ACGGAATGACTCCGTTCAACGACA -ACGGAATGACTCCGTTCAAGCTCA -ACGGAATGACTCCGTTCATCACGT -ACGGAATGACTCCGTTCACGTAGT -ACGGAATGACTCCGTTCAGTCAGT -ACGGAATGACTCCGTTCAGAAGGT -ACGGAATGACTCCGTTCAAACCGT -ACGGAATGACTCCGTTCATTGTGC -ACGGAATGACTCCGTTCACTAAGC -ACGGAATGACTCCGTTCAACTAGC -ACGGAATGACTCCGTTCAAGATGC -ACGGAATGACTCCGTTCATGAAGG -ACGGAATGACTCCGTTCACAATGG -ACGGAATGACTCCGTTCAATGAGG -ACGGAATGACTCCGTTCAAATGGG -ACGGAATGACTCCGTTCATCCTGA -ACGGAATGACTCCGTTCATAGCGA -ACGGAATGACTCCGTTCACACAGA -ACGGAATGACTCCGTTCAGCAAGA -ACGGAATGACTCCGTTCAGGTTGA -ACGGAATGACTCCGTTCATCCGAT -ACGGAATGACTCCGTTCATGGCAT -ACGGAATGACTCCGTTCACGAGAT -ACGGAATGACTCCGTTCATACCAC -ACGGAATGACTCCGTTCACAGAAC -ACGGAATGACTCCGTTCAGTCTAC -ACGGAATGACTCCGTTCAACGTAC -ACGGAATGACTCCGTTCAAGTGAC -ACGGAATGACTCCGTTCACTGTAG -ACGGAATGACTCCGTTCACCTAAG -ACGGAATGACTCCGTTCAGTTCAG -ACGGAATGACTCCGTTCAGCATAG -ACGGAATGACTCCGTTCAGACAAG -ACGGAATGACTCCGTTCAAAGCAG -ACGGAATGACTCCGTTCACGTCAA -ACGGAATGACTCCGTTCAGCTGAA -ACGGAATGACTCCGTTCAAGTACG -ACGGAATGACTCCGTTCAATCCGA -ACGGAATGACTCCGTTCAATGGGA -ACGGAATGACTCCGTTCAGTGCAA -ACGGAATGACTCCGTTCAGAGGAA -ACGGAATGACTCCGTTCACAGGTA -ACGGAATGACTCCGTTCAGACTCT -ACGGAATGACTCCGTTCAAGTCCT -ACGGAATGACTCCGTTCATAAGCC -ACGGAATGACTCCGTTCAATAGCC -ACGGAATGACTCCGTTCATAACCG -ACGGAATGACTCCGTTCAATGCCA -ACGGAATGACTCAGTCGTGGAAAC -ACGGAATGACTCAGTCGTAACACC -ACGGAATGACTCAGTCGTATCGAG -ACGGAATGACTCAGTCGTCTCCTT -ACGGAATGACTCAGTCGTCCTGTT -ACGGAATGACTCAGTCGTCGGTTT -ACGGAATGACTCAGTCGTGTGGTT -ACGGAATGACTCAGTCGTGCCTTT -ACGGAATGACTCAGTCGTGGTCTT -ACGGAATGACTCAGTCGTACGCTT -ACGGAATGACTCAGTCGTAGCGTT -ACGGAATGACTCAGTCGTTTCGTC -ACGGAATGACTCAGTCGTTCTCTC -ACGGAATGACTCAGTCGTTGGATC -ACGGAATGACTCAGTCGTCACTTC -ACGGAATGACTCAGTCGTGTACTC -ACGGAATGACTCAGTCGTGATGTC -ACGGAATGACTCAGTCGTACAGTC -ACGGAATGACTCAGTCGTTTGCTG -ACGGAATGACTCAGTCGTTCCATG -ACGGAATGACTCAGTCGTTGTGTG -ACGGAATGACTCAGTCGTCTAGTG -ACGGAATGACTCAGTCGTCATCTG -ACGGAATGACTCAGTCGTGAGTTG -ACGGAATGACTCAGTCGTAGACTG -ACGGAATGACTCAGTCGTTCGGTA -ACGGAATGACTCAGTCGTTGCCTA -ACGGAATGACTCAGTCGTCCACTA -ACGGAATGACTCAGTCGTGGAGTA -ACGGAATGACTCAGTCGTTCGTCT -ACGGAATGACTCAGTCGTTGCACT -ACGGAATGACTCAGTCGTCTGACT -ACGGAATGACTCAGTCGTCAACCT -ACGGAATGACTCAGTCGTGCTACT -ACGGAATGACTCAGTCGTGGATCT -ACGGAATGACTCAGTCGTAAGGCT -ACGGAATGACTCAGTCGTTCAACC -ACGGAATGACTCAGTCGTTGTTCC -ACGGAATGACTCAGTCGTATTCCC -ACGGAATGACTCAGTCGTTTCTCG -ACGGAATGACTCAGTCGTTAGACG -ACGGAATGACTCAGTCGTGTAACG -ACGGAATGACTCAGTCGTACTTCG -ACGGAATGACTCAGTCGTTACGCA -ACGGAATGACTCAGTCGTCTTGCA -ACGGAATGACTCAGTCGTCGAACA -ACGGAATGACTCAGTCGTCAGTCA -ACGGAATGACTCAGTCGTGATCCA -ACGGAATGACTCAGTCGTACGACA -ACGGAATGACTCAGTCGTAGCTCA -ACGGAATGACTCAGTCGTTCACGT -ACGGAATGACTCAGTCGTCGTAGT -ACGGAATGACTCAGTCGTGTCAGT -ACGGAATGACTCAGTCGTGAAGGT -ACGGAATGACTCAGTCGTAACCGT -ACGGAATGACTCAGTCGTTTGTGC -ACGGAATGACTCAGTCGTCTAAGC -ACGGAATGACTCAGTCGTACTAGC -ACGGAATGACTCAGTCGTAGATGC -ACGGAATGACTCAGTCGTTGAAGG -ACGGAATGACTCAGTCGTCAATGG -ACGGAATGACTCAGTCGTATGAGG -ACGGAATGACTCAGTCGTAATGGG -ACGGAATGACTCAGTCGTTCCTGA -ACGGAATGACTCAGTCGTTAGCGA -ACGGAATGACTCAGTCGTCACAGA -ACGGAATGACTCAGTCGTGCAAGA -ACGGAATGACTCAGTCGTGGTTGA -ACGGAATGACTCAGTCGTTCCGAT -ACGGAATGACTCAGTCGTTGGCAT -ACGGAATGACTCAGTCGTCGAGAT -ACGGAATGACTCAGTCGTTACCAC -ACGGAATGACTCAGTCGTCAGAAC -ACGGAATGACTCAGTCGTGTCTAC -ACGGAATGACTCAGTCGTACGTAC -ACGGAATGACTCAGTCGTAGTGAC -ACGGAATGACTCAGTCGTCTGTAG -ACGGAATGACTCAGTCGTCCTAAG -ACGGAATGACTCAGTCGTGTTCAG -ACGGAATGACTCAGTCGTGCATAG -ACGGAATGACTCAGTCGTGACAAG -ACGGAATGACTCAGTCGTAAGCAG -ACGGAATGACTCAGTCGTCGTCAA -ACGGAATGACTCAGTCGTGCTGAA -ACGGAATGACTCAGTCGTAGTACG -ACGGAATGACTCAGTCGTATCCGA -ACGGAATGACTCAGTCGTATGGGA -ACGGAATGACTCAGTCGTGTGCAA -ACGGAATGACTCAGTCGTGAGGAA -ACGGAATGACTCAGTCGTCAGGTA -ACGGAATGACTCAGTCGTGACTCT -ACGGAATGACTCAGTCGTAGTCCT -ACGGAATGACTCAGTCGTTAAGCC -ACGGAATGACTCAGTCGTATAGCC -ACGGAATGACTCAGTCGTTAACCG -ACGGAATGACTCAGTCGTATGCCA -ACGGAATGACTCAGTGTCGGAAAC -ACGGAATGACTCAGTGTCAACACC -ACGGAATGACTCAGTGTCATCGAG -ACGGAATGACTCAGTGTCCTCCTT -ACGGAATGACTCAGTGTCCCTGTT -ACGGAATGACTCAGTGTCCGGTTT -ACGGAATGACTCAGTGTCGTGGTT -ACGGAATGACTCAGTGTCGCCTTT -ACGGAATGACTCAGTGTCGGTCTT -ACGGAATGACTCAGTGTCACGCTT -ACGGAATGACTCAGTGTCAGCGTT -ACGGAATGACTCAGTGTCTTCGTC -ACGGAATGACTCAGTGTCTCTCTC -ACGGAATGACTCAGTGTCTGGATC -ACGGAATGACTCAGTGTCCACTTC -ACGGAATGACTCAGTGTCGTACTC -ACGGAATGACTCAGTGTCGATGTC -ACGGAATGACTCAGTGTCACAGTC -ACGGAATGACTCAGTGTCTTGCTG -ACGGAATGACTCAGTGTCTCCATG -ACGGAATGACTCAGTGTCTGTGTG -ACGGAATGACTCAGTGTCCTAGTG -ACGGAATGACTCAGTGTCCATCTG -ACGGAATGACTCAGTGTCGAGTTG -ACGGAATGACTCAGTGTCAGACTG -ACGGAATGACTCAGTGTCTCGGTA -ACGGAATGACTCAGTGTCTGCCTA -ACGGAATGACTCAGTGTCCCACTA -ACGGAATGACTCAGTGTCGGAGTA -ACGGAATGACTCAGTGTCTCGTCT -ACGGAATGACTCAGTGTCTGCACT -ACGGAATGACTCAGTGTCCTGACT -ACGGAATGACTCAGTGTCCAACCT -ACGGAATGACTCAGTGTCGCTACT -ACGGAATGACTCAGTGTCGGATCT -ACGGAATGACTCAGTGTCAAGGCT -ACGGAATGACTCAGTGTCTCAACC -ACGGAATGACTCAGTGTCTGTTCC -ACGGAATGACTCAGTGTCATTCCC -ACGGAATGACTCAGTGTCTTCTCG -ACGGAATGACTCAGTGTCTAGACG -ACGGAATGACTCAGTGTCGTAACG -ACGGAATGACTCAGTGTCACTTCG -ACGGAATGACTCAGTGTCTACGCA -ACGGAATGACTCAGTGTCCTTGCA -ACGGAATGACTCAGTGTCCGAACA -ACGGAATGACTCAGTGTCCAGTCA -ACGGAATGACTCAGTGTCGATCCA -ACGGAATGACTCAGTGTCACGACA -ACGGAATGACTCAGTGTCAGCTCA -ACGGAATGACTCAGTGTCTCACGT -ACGGAATGACTCAGTGTCCGTAGT -ACGGAATGACTCAGTGTCGTCAGT -ACGGAATGACTCAGTGTCGAAGGT -ACGGAATGACTCAGTGTCAACCGT -ACGGAATGACTCAGTGTCTTGTGC -ACGGAATGACTCAGTGTCCTAAGC -ACGGAATGACTCAGTGTCACTAGC -ACGGAATGACTCAGTGTCAGATGC -ACGGAATGACTCAGTGTCTGAAGG -ACGGAATGACTCAGTGTCCAATGG -ACGGAATGACTCAGTGTCATGAGG -ACGGAATGACTCAGTGTCAATGGG -ACGGAATGACTCAGTGTCTCCTGA -ACGGAATGACTCAGTGTCTAGCGA -ACGGAATGACTCAGTGTCCACAGA -ACGGAATGACTCAGTGTCGCAAGA -ACGGAATGACTCAGTGTCGGTTGA -ACGGAATGACTCAGTGTCTCCGAT -ACGGAATGACTCAGTGTCTGGCAT -ACGGAATGACTCAGTGTCCGAGAT -ACGGAATGACTCAGTGTCTACCAC -ACGGAATGACTCAGTGTCCAGAAC -ACGGAATGACTCAGTGTCGTCTAC -ACGGAATGACTCAGTGTCACGTAC -ACGGAATGACTCAGTGTCAGTGAC -ACGGAATGACTCAGTGTCCTGTAG -ACGGAATGACTCAGTGTCCCTAAG -ACGGAATGACTCAGTGTCGTTCAG -ACGGAATGACTCAGTGTCGCATAG -ACGGAATGACTCAGTGTCGACAAG -ACGGAATGACTCAGTGTCAAGCAG -ACGGAATGACTCAGTGTCCGTCAA -ACGGAATGACTCAGTGTCGCTGAA -ACGGAATGACTCAGTGTCAGTACG -ACGGAATGACTCAGTGTCATCCGA -ACGGAATGACTCAGTGTCATGGGA -ACGGAATGACTCAGTGTCGTGCAA -ACGGAATGACTCAGTGTCGAGGAA -ACGGAATGACTCAGTGTCCAGGTA -ACGGAATGACTCAGTGTCGACTCT -ACGGAATGACTCAGTGTCAGTCCT -ACGGAATGACTCAGTGTCTAAGCC -ACGGAATGACTCAGTGTCATAGCC -ACGGAATGACTCAGTGTCTAACCG -ACGGAATGACTCAGTGTCATGCCA -ACGGAATGACTCGGTGAAGGAAAC -ACGGAATGACTCGGTGAAAACACC -ACGGAATGACTCGGTGAAATCGAG -ACGGAATGACTCGGTGAACTCCTT -ACGGAATGACTCGGTGAACCTGTT -ACGGAATGACTCGGTGAACGGTTT -ACGGAATGACTCGGTGAAGTGGTT -ACGGAATGACTCGGTGAAGCCTTT -ACGGAATGACTCGGTGAAGGTCTT -ACGGAATGACTCGGTGAAACGCTT -ACGGAATGACTCGGTGAAAGCGTT -ACGGAATGACTCGGTGAATTCGTC -ACGGAATGACTCGGTGAATCTCTC -ACGGAATGACTCGGTGAATGGATC -ACGGAATGACTCGGTGAACACTTC -ACGGAATGACTCGGTGAAGTACTC -ACGGAATGACTCGGTGAAGATGTC -ACGGAATGACTCGGTGAAACAGTC -ACGGAATGACTCGGTGAATTGCTG -ACGGAATGACTCGGTGAATCCATG -ACGGAATGACTCGGTGAATGTGTG -ACGGAATGACTCGGTGAACTAGTG -ACGGAATGACTCGGTGAACATCTG -ACGGAATGACTCGGTGAAGAGTTG -ACGGAATGACTCGGTGAAAGACTG -ACGGAATGACTCGGTGAATCGGTA -ACGGAATGACTCGGTGAATGCCTA -ACGGAATGACTCGGTGAACCACTA -ACGGAATGACTCGGTGAAGGAGTA -ACGGAATGACTCGGTGAATCGTCT -ACGGAATGACTCGGTGAATGCACT -ACGGAATGACTCGGTGAACTGACT -ACGGAATGACTCGGTGAACAACCT -ACGGAATGACTCGGTGAAGCTACT -ACGGAATGACTCGGTGAAGGATCT -ACGGAATGACTCGGTGAAAAGGCT -ACGGAATGACTCGGTGAATCAACC -ACGGAATGACTCGGTGAATGTTCC -ACGGAATGACTCGGTGAAATTCCC -ACGGAATGACTCGGTGAATTCTCG -ACGGAATGACTCGGTGAATAGACG -ACGGAATGACTCGGTGAAGTAACG -ACGGAATGACTCGGTGAAACTTCG -ACGGAATGACTCGGTGAATACGCA -ACGGAATGACTCGGTGAACTTGCA -ACGGAATGACTCGGTGAACGAACA -ACGGAATGACTCGGTGAACAGTCA -ACGGAATGACTCGGTGAAGATCCA -ACGGAATGACTCGGTGAAACGACA -ACGGAATGACTCGGTGAAAGCTCA -ACGGAATGACTCGGTGAATCACGT -ACGGAATGACTCGGTGAACGTAGT -ACGGAATGACTCGGTGAAGTCAGT -ACGGAATGACTCGGTGAAGAAGGT -ACGGAATGACTCGGTGAAAACCGT -ACGGAATGACTCGGTGAATTGTGC -ACGGAATGACTCGGTGAACTAAGC -ACGGAATGACTCGGTGAAACTAGC -ACGGAATGACTCGGTGAAAGATGC -ACGGAATGACTCGGTGAATGAAGG -ACGGAATGACTCGGTGAACAATGG -ACGGAATGACTCGGTGAAATGAGG -ACGGAATGACTCGGTGAAAATGGG -ACGGAATGACTCGGTGAATCCTGA -ACGGAATGACTCGGTGAATAGCGA -ACGGAATGACTCGGTGAACACAGA -ACGGAATGACTCGGTGAAGCAAGA -ACGGAATGACTCGGTGAAGGTTGA -ACGGAATGACTCGGTGAATCCGAT -ACGGAATGACTCGGTGAATGGCAT -ACGGAATGACTCGGTGAACGAGAT -ACGGAATGACTCGGTGAATACCAC -ACGGAATGACTCGGTGAACAGAAC -ACGGAATGACTCGGTGAAGTCTAC -ACGGAATGACTCGGTGAAACGTAC -ACGGAATGACTCGGTGAAAGTGAC -ACGGAATGACTCGGTGAACTGTAG -ACGGAATGACTCGGTGAACCTAAG -ACGGAATGACTCGGTGAAGTTCAG -ACGGAATGACTCGGTGAAGCATAG -ACGGAATGACTCGGTGAAGACAAG -ACGGAATGACTCGGTGAAAAGCAG -ACGGAATGACTCGGTGAACGTCAA -ACGGAATGACTCGGTGAAGCTGAA -ACGGAATGACTCGGTGAAAGTACG -ACGGAATGACTCGGTGAAATCCGA -ACGGAATGACTCGGTGAAATGGGA -ACGGAATGACTCGGTGAAGTGCAA -ACGGAATGACTCGGTGAAGAGGAA -ACGGAATGACTCGGTGAACAGGTA -ACGGAATGACTCGGTGAAGACTCT -ACGGAATGACTCGGTGAAAGTCCT -ACGGAATGACTCGGTGAATAAGCC -ACGGAATGACTCGGTGAAATAGCC -ACGGAATGACTCGGTGAATAACCG -ACGGAATGACTCGGTGAAATGCCA -ACGGAATGACTCCGTAACGGAAAC -ACGGAATGACTCCGTAACAACACC -ACGGAATGACTCCGTAACATCGAG -ACGGAATGACTCCGTAACCTCCTT -ACGGAATGACTCCGTAACCCTGTT -ACGGAATGACTCCGTAACCGGTTT -ACGGAATGACTCCGTAACGTGGTT -ACGGAATGACTCCGTAACGCCTTT -ACGGAATGACTCCGTAACGGTCTT -ACGGAATGACTCCGTAACACGCTT -ACGGAATGACTCCGTAACAGCGTT -ACGGAATGACTCCGTAACTTCGTC -ACGGAATGACTCCGTAACTCTCTC -ACGGAATGACTCCGTAACTGGATC -ACGGAATGACTCCGTAACCACTTC -ACGGAATGACTCCGTAACGTACTC -ACGGAATGACTCCGTAACGATGTC -ACGGAATGACTCCGTAACACAGTC -ACGGAATGACTCCGTAACTTGCTG -ACGGAATGACTCCGTAACTCCATG -ACGGAATGACTCCGTAACTGTGTG -ACGGAATGACTCCGTAACCTAGTG -ACGGAATGACTCCGTAACCATCTG -ACGGAATGACTCCGTAACGAGTTG -ACGGAATGACTCCGTAACAGACTG -ACGGAATGACTCCGTAACTCGGTA -ACGGAATGACTCCGTAACTGCCTA -ACGGAATGACTCCGTAACCCACTA -ACGGAATGACTCCGTAACGGAGTA -ACGGAATGACTCCGTAACTCGTCT -ACGGAATGACTCCGTAACTGCACT -ACGGAATGACTCCGTAACCTGACT -ACGGAATGACTCCGTAACCAACCT -ACGGAATGACTCCGTAACGCTACT -ACGGAATGACTCCGTAACGGATCT -ACGGAATGACTCCGTAACAAGGCT -ACGGAATGACTCCGTAACTCAACC -ACGGAATGACTCCGTAACTGTTCC -ACGGAATGACTCCGTAACATTCCC -ACGGAATGACTCCGTAACTTCTCG -ACGGAATGACTCCGTAACTAGACG -ACGGAATGACTCCGTAACGTAACG -ACGGAATGACTCCGTAACACTTCG -ACGGAATGACTCCGTAACTACGCA -ACGGAATGACTCCGTAACCTTGCA -ACGGAATGACTCCGTAACCGAACA -ACGGAATGACTCCGTAACCAGTCA -ACGGAATGACTCCGTAACGATCCA -ACGGAATGACTCCGTAACACGACA -ACGGAATGACTCCGTAACAGCTCA -ACGGAATGACTCCGTAACTCACGT -ACGGAATGACTCCGTAACCGTAGT -ACGGAATGACTCCGTAACGTCAGT -ACGGAATGACTCCGTAACGAAGGT -ACGGAATGACTCCGTAACAACCGT -ACGGAATGACTCCGTAACTTGTGC -ACGGAATGACTCCGTAACCTAAGC -ACGGAATGACTCCGTAACACTAGC -ACGGAATGACTCCGTAACAGATGC -ACGGAATGACTCCGTAACTGAAGG -ACGGAATGACTCCGTAACCAATGG -ACGGAATGACTCCGTAACATGAGG -ACGGAATGACTCCGTAACAATGGG -ACGGAATGACTCCGTAACTCCTGA -ACGGAATGACTCCGTAACTAGCGA -ACGGAATGACTCCGTAACCACAGA -ACGGAATGACTCCGTAACGCAAGA -ACGGAATGACTCCGTAACGGTTGA -ACGGAATGACTCCGTAACTCCGAT -ACGGAATGACTCCGTAACTGGCAT -ACGGAATGACTCCGTAACCGAGAT -ACGGAATGACTCCGTAACTACCAC -ACGGAATGACTCCGTAACCAGAAC -ACGGAATGACTCCGTAACGTCTAC -ACGGAATGACTCCGTAACACGTAC -ACGGAATGACTCCGTAACAGTGAC -ACGGAATGACTCCGTAACCTGTAG -ACGGAATGACTCCGTAACCCTAAG -ACGGAATGACTCCGTAACGTTCAG -ACGGAATGACTCCGTAACGCATAG -ACGGAATGACTCCGTAACGACAAG -ACGGAATGACTCCGTAACAAGCAG -ACGGAATGACTCCGTAACCGTCAA -ACGGAATGACTCCGTAACGCTGAA -ACGGAATGACTCCGTAACAGTACG -ACGGAATGACTCCGTAACATCCGA -ACGGAATGACTCCGTAACATGGGA -ACGGAATGACTCCGTAACGTGCAA -ACGGAATGACTCCGTAACGAGGAA -ACGGAATGACTCCGTAACCAGGTA -ACGGAATGACTCCGTAACGACTCT -ACGGAATGACTCCGTAACAGTCCT -ACGGAATGACTCCGTAACTAAGCC -ACGGAATGACTCCGTAACATAGCC -ACGGAATGACTCCGTAACTAACCG -ACGGAATGACTCCGTAACATGCCA -ACGGAATGACTCTGCTTGGGAAAC -ACGGAATGACTCTGCTTGAACACC -ACGGAATGACTCTGCTTGATCGAG -ACGGAATGACTCTGCTTGCTCCTT -ACGGAATGACTCTGCTTGCCTGTT -ACGGAATGACTCTGCTTGCGGTTT -ACGGAATGACTCTGCTTGGTGGTT -ACGGAATGACTCTGCTTGGCCTTT -ACGGAATGACTCTGCTTGGGTCTT -ACGGAATGACTCTGCTTGACGCTT -ACGGAATGACTCTGCTTGAGCGTT -ACGGAATGACTCTGCTTGTTCGTC -ACGGAATGACTCTGCTTGTCTCTC -ACGGAATGACTCTGCTTGTGGATC -ACGGAATGACTCTGCTTGCACTTC -ACGGAATGACTCTGCTTGGTACTC -ACGGAATGACTCTGCTTGGATGTC -ACGGAATGACTCTGCTTGACAGTC -ACGGAATGACTCTGCTTGTTGCTG -ACGGAATGACTCTGCTTGTCCATG -ACGGAATGACTCTGCTTGTGTGTG -ACGGAATGACTCTGCTTGCTAGTG -ACGGAATGACTCTGCTTGCATCTG -ACGGAATGACTCTGCTTGGAGTTG -ACGGAATGACTCTGCTTGAGACTG -ACGGAATGACTCTGCTTGTCGGTA -ACGGAATGACTCTGCTTGTGCCTA -ACGGAATGACTCTGCTTGCCACTA -ACGGAATGACTCTGCTTGGGAGTA -ACGGAATGACTCTGCTTGTCGTCT -ACGGAATGACTCTGCTTGTGCACT -ACGGAATGACTCTGCTTGCTGACT -ACGGAATGACTCTGCTTGCAACCT -ACGGAATGACTCTGCTTGGCTACT -ACGGAATGACTCTGCTTGGGATCT -ACGGAATGACTCTGCTTGAAGGCT -ACGGAATGACTCTGCTTGTCAACC -ACGGAATGACTCTGCTTGTGTTCC -ACGGAATGACTCTGCTTGATTCCC -ACGGAATGACTCTGCTTGTTCTCG -ACGGAATGACTCTGCTTGTAGACG -ACGGAATGACTCTGCTTGGTAACG -ACGGAATGACTCTGCTTGACTTCG -ACGGAATGACTCTGCTTGTACGCA -ACGGAATGACTCTGCTTGCTTGCA -ACGGAATGACTCTGCTTGCGAACA -ACGGAATGACTCTGCTTGCAGTCA -ACGGAATGACTCTGCTTGGATCCA -ACGGAATGACTCTGCTTGACGACA -ACGGAATGACTCTGCTTGAGCTCA -ACGGAATGACTCTGCTTGTCACGT -ACGGAATGACTCTGCTTGCGTAGT -ACGGAATGACTCTGCTTGGTCAGT -ACGGAATGACTCTGCTTGGAAGGT -ACGGAATGACTCTGCTTGAACCGT -ACGGAATGACTCTGCTTGTTGTGC -ACGGAATGACTCTGCTTGCTAAGC -ACGGAATGACTCTGCTTGACTAGC -ACGGAATGACTCTGCTTGAGATGC -ACGGAATGACTCTGCTTGTGAAGG -ACGGAATGACTCTGCTTGCAATGG -ACGGAATGACTCTGCTTGATGAGG -ACGGAATGACTCTGCTTGAATGGG -ACGGAATGACTCTGCTTGTCCTGA -ACGGAATGACTCTGCTTGTAGCGA -ACGGAATGACTCTGCTTGCACAGA -ACGGAATGACTCTGCTTGGCAAGA -ACGGAATGACTCTGCTTGGGTTGA -ACGGAATGACTCTGCTTGTCCGAT -ACGGAATGACTCTGCTTGTGGCAT -ACGGAATGACTCTGCTTGCGAGAT -ACGGAATGACTCTGCTTGTACCAC -ACGGAATGACTCTGCTTGCAGAAC -ACGGAATGACTCTGCTTGGTCTAC -ACGGAATGACTCTGCTTGACGTAC -ACGGAATGACTCTGCTTGAGTGAC -ACGGAATGACTCTGCTTGCTGTAG -ACGGAATGACTCTGCTTGCCTAAG -ACGGAATGACTCTGCTTGGTTCAG -ACGGAATGACTCTGCTTGGCATAG -ACGGAATGACTCTGCTTGGACAAG -ACGGAATGACTCTGCTTGAAGCAG -ACGGAATGACTCTGCTTGCGTCAA -ACGGAATGACTCTGCTTGGCTGAA -ACGGAATGACTCTGCTTGAGTACG -ACGGAATGACTCTGCTTGATCCGA -ACGGAATGACTCTGCTTGATGGGA -ACGGAATGACTCTGCTTGGTGCAA -ACGGAATGACTCTGCTTGGAGGAA -ACGGAATGACTCTGCTTGCAGGTA -ACGGAATGACTCTGCTTGGACTCT -ACGGAATGACTCTGCTTGAGTCCT -ACGGAATGACTCTGCTTGTAAGCC -ACGGAATGACTCTGCTTGATAGCC -ACGGAATGACTCTGCTTGTAACCG -ACGGAATGACTCTGCTTGATGCCA -ACGGAATGACTCAGCCTAGGAAAC -ACGGAATGACTCAGCCTAAACACC -ACGGAATGACTCAGCCTAATCGAG -ACGGAATGACTCAGCCTACTCCTT -ACGGAATGACTCAGCCTACCTGTT -ACGGAATGACTCAGCCTACGGTTT -ACGGAATGACTCAGCCTAGTGGTT -ACGGAATGACTCAGCCTAGCCTTT -ACGGAATGACTCAGCCTAGGTCTT -ACGGAATGACTCAGCCTAACGCTT -ACGGAATGACTCAGCCTAAGCGTT -ACGGAATGACTCAGCCTATTCGTC -ACGGAATGACTCAGCCTATCTCTC -ACGGAATGACTCAGCCTATGGATC -ACGGAATGACTCAGCCTACACTTC -ACGGAATGACTCAGCCTAGTACTC -ACGGAATGACTCAGCCTAGATGTC -ACGGAATGACTCAGCCTAACAGTC -ACGGAATGACTCAGCCTATTGCTG -ACGGAATGACTCAGCCTATCCATG -ACGGAATGACTCAGCCTATGTGTG -ACGGAATGACTCAGCCTACTAGTG -ACGGAATGACTCAGCCTACATCTG -ACGGAATGACTCAGCCTAGAGTTG -ACGGAATGACTCAGCCTAAGACTG -ACGGAATGACTCAGCCTATCGGTA -ACGGAATGACTCAGCCTATGCCTA -ACGGAATGACTCAGCCTACCACTA -ACGGAATGACTCAGCCTAGGAGTA -ACGGAATGACTCAGCCTATCGTCT -ACGGAATGACTCAGCCTATGCACT -ACGGAATGACTCAGCCTACTGACT -ACGGAATGACTCAGCCTACAACCT -ACGGAATGACTCAGCCTAGCTACT -ACGGAATGACTCAGCCTAGGATCT -ACGGAATGACTCAGCCTAAAGGCT -ACGGAATGACTCAGCCTATCAACC -ACGGAATGACTCAGCCTATGTTCC -ACGGAATGACTCAGCCTAATTCCC -ACGGAATGACTCAGCCTATTCTCG -ACGGAATGACTCAGCCTATAGACG -ACGGAATGACTCAGCCTAGTAACG -ACGGAATGACTCAGCCTAACTTCG -ACGGAATGACTCAGCCTATACGCA -ACGGAATGACTCAGCCTACTTGCA -ACGGAATGACTCAGCCTACGAACA -ACGGAATGACTCAGCCTACAGTCA -ACGGAATGACTCAGCCTAGATCCA -ACGGAATGACTCAGCCTAACGACA -ACGGAATGACTCAGCCTAAGCTCA -ACGGAATGACTCAGCCTATCACGT -ACGGAATGACTCAGCCTACGTAGT -ACGGAATGACTCAGCCTAGTCAGT -ACGGAATGACTCAGCCTAGAAGGT -ACGGAATGACTCAGCCTAAACCGT -ACGGAATGACTCAGCCTATTGTGC -ACGGAATGACTCAGCCTACTAAGC -ACGGAATGACTCAGCCTAACTAGC -ACGGAATGACTCAGCCTAAGATGC -ACGGAATGACTCAGCCTATGAAGG -ACGGAATGACTCAGCCTACAATGG -ACGGAATGACTCAGCCTAATGAGG -ACGGAATGACTCAGCCTAAATGGG -ACGGAATGACTCAGCCTATCCTGA -ACGGAATGACTCAGCCTATAGCGA -ACGGAATGACTCAGCCTACACAGA -ACGGAATGACTCAGCCTAGCAAGA -ACGGAATGACTCAGCCTAGGTTGA -ACGGAATGACTCAGCCTATCCGAT -ACGGAATGACTCAGCCTATGGCAT -ACGGAATGACTCAGCCTACGAGAT -ACGGAATGACTCAGCCTATACCAC -ACGGAATGACTCAGCCTACAGAAC -ACGGAATGACTCAGCCTAGTCTAC -ACGGAATGACTCAGCCTAACGTAC -ACGGAATGACTCAGCCTAAGTGAC -ACGGAATGACTCAGCCTACTGTAG -ACGGAATGACTCAGCCTACCTAAG -ACGGAATGACTCAGCCTAGTTCAG -ACGGAATGACTCAGCCTAGCATAG -ACGGAATGACTCAGCCTAGACAAG -ACGGAATGACTCAGCCTAAAGCAG -ACGGAATGACTCAGCCTACGTCAA -ACGGAATGACTCAGCCTAGCTGAA -ACGGAATGACTCAGCCTAAGTACG -ACGGAATGACTCAGCCTAATCCGA -ACGGAATGACTCAGCCTAATGGGA -ACGGAATGACTCAGCCTAGTGCAA -ACGGAATGACTCAGCCTAGAGGAA -ACGGAATGACTCAGCCTACAGGTA -ACGGAATGACTCAGCCTAGACTCT -ACGGAATGACTCAGCCTAAGTCCT -ACGGAATGACTCAGCCTATAAGCC -ACGGAATGACTCAGCCTAATAGCC -ACGGAATGACTCAGCCTATAACCG -ACGGAATGACTCAGCCTAATGCCA -ACGGAATGACTCAGCACTGGAAAC -ACGGAATGACTCAGCACTAACACC -ACGGAATGACTCAGCACTATCGAG -ACGGAATGACTCAGCACTCTCCTT -ACGGAATGACTCAGCACTCCTGTT -ACGGAATGACTCAGCACTCGGTTT -ACGGAATGACTCAGCACTGTGGTT -ACGGAATGACTCAGCACTGCCTTT -ACGGAATGACTCAGCACTGGTCTT -ACGGAATGACTCAGCACTACGCTT -ACGGAATGACTCAGCACTAGCGTT -ACGGAATGACTCAGCACTTTCGTC -ACGGAATGACTCAGCACTTCTCTC -ACGGAATGACTCAGCACTTGGATC -ACGGAATGACTCAGCACTCACTTC -ACGGAATGACTCAGCACTGTACTC -ACGGAATGACTCAGCACTGATGTC -ACGGAATGACTCAGCACTACAGTC -ACGGAATGACTCAGCACTTTGCTG -ACGGAATGACTCAGCACTTCCATG -ACGGAATGACTCAGCACTTGTGTG -ACGGAATGACTCAGCACTCTAGTG -ACGGAATGACTCAGCACTCATCTG -ACGGAATGACTCAGCACTGAGTTG -ACGGAATGACTCAGCACTAGACTG -ACGGAATGACTCAGCACTTCGGTA -ACGGAATGACTCAGCACTTGCCTA -ACGGAATGACTCAGCACTCCACTA -ACGGAATGACTCAGCACTGGAGTA -ACGGAATGACTCAGCACTTCGTCT -ACGGAATGACTCAGCACTTGCACT -ACGGAATGACTCAGCACTCTGACT -ACGGAATGACTCAGCACTCAACCT -ACGGAATGACTCAGCACTGCTACT -ACGGAATGACTCAGCACTGGATCT -ACGGAATGACTCAGCACTAAGGCT -ACGGAATGACTCAGCACTTCAACC -ACGGAATGACTCAGCACTTGTTCC -ACGGAATGACTCAGCACTATTCCC -ACGGAATGACTCAGCACTTTCTCG -ACGGAATGACTCAGCACTTAGACG -ACGGAATGACTCAGCACTGTAACG -ACGGAATGACTCAGCACTACTTCG -ACGGAATGACTCAGCACTTACGCA -ACGGAATGACTCAGCACTCTTGCA -ACGGAATGACTCAGCACTCGAACA -ACGGAATGACTCAGCACTCAGTCA -ACGGAATGACTCAGCACTGATCCA -ACGGAATGACTCAGCACTACGACA -ACGGAATGACTCAGCACTAGCTCA -ACGGAATGACTCAGCACTTCACGT -ACGGAATGACTCAGCACTCGTAGT -ACGGAATGACTCAGCACTGTCAGT -ACGGAATGACTCAGCACTGAAGGT -ACGGAATGACTCAGCACTAACCGT -ACGGAATGACTCAGCACTTTGTGC -ACGGAATGACTCAGCACTCTAAGC -ACGGAATGACTCAGCACTACTAGC -ACGGAATGACTCAGCACTAGATGC -ACGGAATGACTCAGCACTTGAAGG -ACGGAATGACTCAGCACTCAATGG -ACGGAATGACTCAGCACTATGAGG -ACGGAATGACTCAGCACTAATGGG -ACGGAATGACTCAGCACTTCCTGA -ACGGAATGACTCAGCACTTAGCGA -ACGGAATGACTCAGCACTCACAGA -ACGGAATGACTCAGCACTGCAAGA -ACGGAATGACTCAGCACTGGTTGA -ACGGAATGACTCAGCACTTCCGAT -ACGGAATGACTCAGCACTTGGCAT -ACGGAATGACTCAGCACTCGAGAT -ACGGAATGACTCAGCACTTACCAC -ACGGAATGACTCAGCACTCAGAAC -ACGGAATGACTCAGCACTGTCTAC -ACGGAATGACTCAGCACTACGTAC -ACGGAATGACTCAGCACTAGTGAC -ACGGAATGACTCAGCACTCTGTAG -ACGGAATGACTCAGCACTCCTAAG -ACGGAATGACTCAGCACTGTTCAG -ACGGAATGACTCAGCACTGCATAG -ACGGAATGACTCAGCACTGACAAG -ACGGAATGACTCAGCACTAAGCAG -ACGGAATGACTCAGCACTCGTCAA -ACGGAATGACTCAGCACTGCTGAA -ACGGAATGACTCAGCACTAGTACG -ACGGAATGACTCAGCACTATCCGA -ACGGAATGACTCAGCACTATGGGA -ACGGAATGACTCAGCACTGTGCAA -ACGGAATGACTCAGCACTGAGGAA -ACGGAATGACTCAGCACTCAGGTA -ACGGAATGACTCAGCACTGACTCT -ACGGAATGACTCAGCACTAGTCCT -ACGGAATGACTCAGCACTTAAGCC -ACGGAATGACTCAGCACTATAGCC -ACGGAATGACTCAGCACTTAACCG -ACGGAATGACTCAGCACTATGCCA -ACGGAATGACTCTGCAGAGGAAAC -ACGGAATGACTCTGCAGAAACACC -ACGGAATGACTCTGCAGAATCGAG -ACGGAATGACTCTGCAGACTCCTT -ACGGAATGACTCTGCAGACCTGTT -ACGGAATGACTCTGCAGACGGTTT -ACGGAATGACTCTGCAGAGTGGTT -ACGGAATGACTCTGCAGAGCCTTT -ACGGAATGACTCTGCAGAGGTCTT -ACGGAATGACTCTGCAGAACGCTT -ACGGAATGACTCTGCAGAAGCGTT -ACGGAATGACTCTGCAGATTCGTC -ACGGAATGACTCTGCAGATCTCTC -ACGGAATGACTCTGCAGATGGATC -ACGGAATGACTCTGCAGACACTTC -ACGGAATGACTCTGCAGAGTACTC -ACGGAATGACTCTGCAGAGATGTC -ACGGAATGACTCTGCAGAACAGTC -ACGGAATGACTCTGCAGATTGCTG -ACGGAATGACTCTGCAGATCCATG -ACGGAATGACTCTGCAGATGTGTG -ACGGAATGACTCTGCAGACTAGTG -ACGGAATGACTCTGCAGACATCTG -ACGGAATGACTCTGCAGAGAGTTG -ACGGAATGACTCTGCAGAAGACTG -ACGGAATGACTCTGCAGATCGGTA -ACGGAATGACTCTGCAGATGCCTA -ACGGAATGACTCTGCAGACCACTA -ACGGAATGACTCTGCAGAGGAGTA -ACGGAATGACTCTGCAGATCGTCT -ACGGAATGACTCTGCAGATGCACT -ACGGAATGACTCTGCAGACTGACT -ACGGAATGACTCTGCAGACAACCT -ACGGAATGACTCTGCAGAGCTACT -ACGGAATGACTCTGCAGAGGATCT -ACGGAATGACTCTGCAGAAAGGCT -ACGGAATGACTCTGCAGATCAACC -ACGGAATGACTCTGCAGATGTTCC -ACGGAATGACTCTGCAGAATTCCC -ACGGAATGACTCTGCAGATTCTCG -ACGGAATGACTCTGCAGATAGACG -ACGGAATGACTCTGCAGAGTAACG -ACGGAATGACTCTGCAGAACTTCG -ACGGAATGACTCTGCAGATACGCA -ACGGAATGACTCTGCAGACTTGCA -ACGGAATGACTCTGCAGACGAACA -ACGGAATGACTCTGCAGACAGTCA -ACGGAATGACTCTGCAGAGATCCA -ACGGAATGACTCTGCAGAACGACA -ACGGAATGACTCTGCAGAAGCTCA -ACGGAATGACTCTGCAGATCACGT -ACGGAATGACTCTGCAGACGTAGT -ACGGAATGACTCTGCAGAGTCAGT -ACGGAATGACTCTGCAGAGAAGGT -ACGGAATGACTCTGCAGAAACCGT -ACGGAATGACTCTGCAGATTGTGC -ACGGAATGACTCTGCAGACTAAGC -ACGGAATGACTCTGCAGAACTAGC -ACGGAATGACTCTGCAGAAGATGC -ACGGAATGACTCTGCAGATGAAGG -ACGGAATGACTCTGCAGACAATGG -ACGGAATGACTCTGCAGAATGAGG -ACGGAATGACTCTGCAGAAATGGG -ACGGAATGACTCTGCAGATCCTGA -ACGGAATGACTCTGCAGATAGCGA -ACGGAATGACTCTGCAGACACAGA -ACGGAATGACTCTGCAGAGCAAGA -ACGGAATGACTCTGCAGAGGTTGA -ACGGAATGACTCTGCAGATCCGAT -ACGGAATGACTCTGCAGATGGCAT -ACGGAATGACTCTGCAGACGAGAT -ACGGAATGACTCTGCAGATACCAC -ACGGAATGACTCTGCAGACAGAAC -ACGGAATGACTCTGCAGAGTCTAC -ACGGAATGACTCTGCAGAACGTAC -ACGGAATGACTCTGCAGAAGTGAC -ACGGAATGACTCTGCAGACTGTAG -ACGGAATGACTCTGCAGACCTAAG -ACGGAATGACTCTGCAGAGTTCAG -ACGGAATGACTCTGCAGAGCATAG -ACGGAATGACTCTGCAGAGACAAG -ACGGAATGACTCTGCAGAAAGCAG -ACGGAATGACTCTGCAGACGTCAA -ACGGAATGACTCTGCAGAGCTGAA -ACGGAATGACTCTGCAGAAGTACG -ACGGAATGACTCTGCAGAATCCGA -ACGGAATGACTCTGCAGAATGGGA -ACGGAATGACTCTGCAGAGTGCAA -ACGGAATGACTCTGCAGAGAGGAA -ACGGAATGACTCTGCAGACAGGTA -ACGGAATGACTCTGCAGAGACTCT -ACGGAATGACTCTGCAGAAGTCCT -ACGGAATGACTCTGCAGATAAGCC -ACGGAATGACTCTGCAGAATAGCC -ACGGAATGACTCTGCAGATAACCG -ACGGAATGACTCTGCAGAATGCCA -ACGGAATGACTCAGGTGAGGAAAC -ACGGAATGACTCAGGTGAAACACC -ACGGAATGACTCAGGTGAATCGAG -ACGGAATGACTCAGGTGACTCCTT -ACGGAATGACTCAGGTGACCTGTT -ACGGAATGACTCAGGTGACGGTTT -ACGGAATGACTCAGGTGAGTGGTT -ACGGAATGACTCAGGTGAGCCTTT -ACGGAATGACTCAGGTGAGGTCTT -ACGGAATGACTCAGGTGAACGCTT -ACGGAATGACTCAGGTGAAGCGTT -ACGGAATGACTCAGGTGATTCGTC -ACGGAATGACTCAGGTGATCTCTC -ACGGAATGACTCAGGTGATGGATC -ACGGAATGACTCAGGTGACACTTC -ACGGAATGACTCAGGTGAGTACTC -ACGGAATGACTCAGGTGAGATGTC -ACGGAATGACTCAGGTGAACAGTC -ACGGAATGACTCAGGTGATTGCTG -ACGGAATGACTCAGGTGATCCATG -ACGGAATGACTCAGGTGATGTGTG -ACGGAATGACTCAGGTGACTAGTG -ACGGAATGACTCAGGTGACATCTG -ACGGAATGACTCAGGTGAGAGTTG -ACGGAATGACTCAGGTGAAGACTG -ACGGAATGACTCAGGTGATCGGTA -ACGGAATGACTCAGGTGATGCCTA -ACGGAATGACTCAGGTGACCACTA -ACGGAATGACTCAGGTGAGGAGTA -ACGGAATGACTCAGGTGATCGTCT -ACGGAATGACTCAGGTGATGCACT -ACGGAATGACTCAGGTGACTGACT -ACGGAATGACTCAGGTGACAACCT -ACGGAATGACTCAGGTGAGCTACT -ACGGAATGACTCAGGTGAGGATCT -ACGGAATGACTCAGGTGAAAGGCT -ACGGAATGACTCAGGTGATCAACC -ACGGAATGACTCAGGTGATGTTCC -ACGGAATGACTCAGGTGAATTCCC -ACGGAATGACTCAGGTGATTCTCG -ACGGAATGACTCAGGTGATAGACG -ACGGAATGACTCAGGTGAGTAACG -ACGGAATGACTCAGGTGAACTTCG -ACGGAATGACTCAGGTGATACGCA -ACGGAATGACTCAGGTGACTTGCA -ACGGAATGACTCAGGTGACGAACA -ACGGAATGACTCAGGTGACAGTCA -ACGGAATGACTCAGGTGAGATCCA -ACGGAATGACTCAGGTGAACGACA -ACGGAATGACTCAGGTGAAGCTCA -ACGGAATGACTCAGGTGATCACGT -ACGGAATGACTCAGGTGACGTAGT -ACGGAATGACTCAGGTGAGTCAGT -ACGGAATGACTCAGGTGAGAAGGT -ACGGAATGACTCAGGTGAAACCGT -ACGGAATGACTCAGGTGATTGTGC -ACGGAATGACTCAGGTGACTAAGC -ACGGAATGACTCAGGTGAACTAGC -ACGGAATGACTCAGGTGAAGATGC -ACGGAATGACTCAGGTGATGAAGG -ACGGAATGACTCAGGTGACAATGG -ACGGAATGACTCAGGTGAATGAGG -ACGGAATGACTCAGGTGAAATGGG -ACGGAATGACTCAGGTGATCCTGA -ACGGAATGACTCAGGTGATAGCGA -ACGGAATGACTCAGGTGACACAGA -ACGGAATGACTCAGGTGAGCAAGA -ACGGAATGACTCAGGTGAGGTTGA -ACGGAATGACTCAGGTGATCCGAT -ACGGAATGACTCAGGTGATGGCAT -ACGGAATGACTCAGGTGACGAGAT -ACGGAATGACTCAGGTGATACCAC -ACGGAATGACTCAGGTGACAGAAC -ACGGAATGACTCAGGTGAGTCTAC -ACGGAATGACTCAGGTGAACGTAC -ACGGAATGACTCAGGTGAAGTGAC -ACGGAATGACTCAGGTGACTGTAG -ACGGAATGACTCAGGTGACCTAAG -ACGGAATGACTCAGGTGAGTTCAG -ACGGAATGACTCAGGTGAGCATAG -ACGGAATGACTCAGGTGAGACAAG -ACGGAATGACTCAGGTGAAAGCAG -ACGGAATGACTCAGGTGACGTCAA -ACGGAATGACTCAGGTGAGCTGAA -ACGGAATGACTCAGGTGAAGTACG -ACGGAATGACTCAGGTGAATCCGA -ACGGAATGACTCAGGTGAATGGGA -ACGGAATGACTCAGGTGAGTGCAA -ACGGAATGACTCAGGTGAGAGGAA -ACGGAATGACTCAGGTGACAGGTA -ACGGAATGACTCAGGTGAGACTCT -ACGGAATGACTCAGGTGAAGTCCT -ACGGAATGACTCAGGTGATAAGCC -ACGGAATGACTCAGGTGAATAGCC -ACGGAATGACTCAGGTGATAACCG -ACGGAATGACTCAGGTGAATGCCA -ACGGAATGACTCTGGCAAGGAAAC -ACGGAATGACTCTGGCAAAACACC -ACGGAATGACTCTGGCAAATCGAG -ACGGAATGACTCTGGCAACTCCTT -ACGGAATGACTCTGGCAACCTGTT -ACGGAATGACTCTGGCAACGGTTT -ACGGAATGACTCTGGCAAGTGGTT -ACGGAATGACTCTGGCAAGCCTTT -ACGGAATGACTCTGGCAAGGTCTT -ACGGAATGACTCTGGCAAACGCTT -ACGGAATGACTCTGGCAAAGCGTT -ACGGAATGACTCTGGCAATTCGTC -ACGGAATGACTCTGGCAATCTCTC -ACGGAATGACTCTGGCAATGGATC -ACGGAATGACTCTGGCAACACTTC -ACGGAATGACTCTGGCAAGTACTC -ACGGAATGACTCTGGCAAGATGTC -ACGGAATGACTCTGGCAAACAGTC -ACGGAATGACTCTGGCAATTGCTG -ACGGAATGACTCTGGCAATCCATG -ACGGAATGACTCTGGCAATGTGTG -ACGGAATGACTCTGGCAACTAGTG -ACGGAATGACTCTGGCAACATCTG -ACGGAATGACTCTGGCAAGAGTTG -ACGGAATGACTCTGGCAAAGACTG -ACGGAATGACTCTGGCAATCGGTA -ACGGAATGACTCTGGCAATGCCTA -ACGGAATGACTCTGGCAACCACTA -ACGGAATGACTCTGGCAAGGAGTA -ACGGAATGACTCTGGCAATCGTCT -ACGGAATGACTCTGGCAATGCACT -ACGGAATGACTCTGGCAACTGACT -ACGGAATGACTCTGGCAACAACCT -ACGGAATGACTCTGGCAAGCTACT -ACGGAATGACTCTGGCAAGGATCT -ACGGAATGACTCTGGCAAAAGGCT -ACGGAATGACTCTGGCAATCAACC -ACGGAATGACTCTGGCAATGTTCC -ACGGAATGACTCTGGCAAATTCCC -ACGGAATGACTCTGGCAATTCTCG -ACGGAATGACTCTGGCAATAGACG -ACGGAATGACTCTGGCAAGTAACG -ACGGAATGACTCTGGCAAACTTCG -ACGGAATGACTCTGGCAATACGCA -ACGGAATGACTCTGGCAACTTGCA -ACGGAATGACTCTGGCAACGAACA -ACGGAATGACTCTGGCAACAGTCA -ACGGAATGACTCTGGCAAGATCCA -ACGGAATGACTCTGGCAAACGACA -ACGGAATGACTCTGGCAAAGCTCA -ACGGAATGACTCTGGCAATCACGT -ACGGAATGACTCTGGCAACGTAGT -ACGGAATGACTCTGGCAAGTCAGT -ACGGAATGACTCTGGCAAGAAGGT -ACGGAATGACTCTGGCAAAACCGT -ACGGAATGACTCTGGCAATTGTGC -ACGGAATGACTCTGGCAACTAAGC -ACGGAATGACTCTGGCAAACTAGC -ACGGAATGACTCTGGCAAAGATGC -ACGGAATGACTCTGGCAATGAAGG -ACGGAATGACTCTGGCAACAATGG -ACGGAATGACTCTGGCAAATGAGG -ACGGAATGACTCTGGCAAAATGGG -ACGGAATGACTCTGGCAATCCTGA -ACGGAATGACTCTGGCAATAGCGA -ACGGAATGACTCTGGCAACACAGA -ACGGAATGACTCTGGCAAGCAAGA -ACGGAATGACTCTGGCAAGGTTGA -ACGGAATGACTCTGGCAATCCGAT -ACGGAATGACTCTGGCAATGGCAT -ACGGAATGACTCTGGCAACGAGAT -ACGGAATGACTCTGGCAATACCAC -ACGGAATGACTCTGGCAACAGAAC -ACGGAATGACTCTGGCAAGTCTAC -ACGGAATGACTCTGGCAAACGTAC -ACGGAATGACTCTGGCAAAGTGAC -ACGGAATGACTCTGGCAACTGTAG -ACGGAATGACTCTGGCAACCTAAG -ACGGAATGACTCTGGCAAGTTCAG -ACGGAATGACTCTGGCAAGCATAG -ACGGAATGACTCTGGCAAGACAAG -ACGGAATGACTCTGGCAAAAGCAG -ACGGAATGACTCTGGCAACGTCAA -ACGGAATGACTCTGGCAAGCTGAA -ACGGAATGACTCTGGCAAAGTACG -ACGGAATGACTCTGGCAAATCCGA -ACGGAATGACTCTGGCAAATGGGA -ACGGAATGACTCTGGCAAGTGCAA -ACGGAATGACTCTGGCAAGAGGAA -ACGGAATGACTCTGGCAACAGGTA -ACGGAATGACTCTGGCAAGACTCT -ACGGAATGACTCTGGCAAAGTCCT -ACGGAATGACTCTGGCAATAAGCC -ACGGAATGACTCTGGCAAATAGCC -ACGGAATGACTCTGGCAATAACCG -ACGGAATGACTCTGGCAAATGCCA -ACGGAATGACTCAGGATGGGAAAC -ACGGAATGACTCAGGATGAACACC -ACGGAATGACTCAGGATGATCGAG -ACGGAATGACTCAGGATGCTCCTT -ACGGAATGACTCAGGATGCCTGTT -ACGGAATGACTCAGGATGCGGTTT -ACGGAATGACTCAGGATGGTGGTT -ACGGAATGACTCAGGATGGCCTTT -ACGGAATGACTCAGGATGGGTCTT -ACGGAATGACTCAGGATGACGCTT -ACGGAATGACTCAGGATGAGCGTT -ACGGAATGACTCAGGATGTTCGTC -ACGGAATGACTCAGGATGTCTCTC -ACGGAATGACTCAGGATGTGGATC -ACGGAATGACTCAGGATGCACTTC -ACGGAATGACTCAGGATGGTACTC -ACGGAATGACTCAGGATGGATGTC -ACGGAATGACTCAGGATGACAGTC -ACGGAATGACTCAGGATGTTGCTG -ACGGAATGACTCAGGATGTCCATG -ACGGAATGACTCAGGATGTGTGTG -ACGGAATGACTCAGGATGCTAGTG -ACGGAATGACTCAGGATGCATCTG -ACGGAATGACTCAGGATGGAGTTG -ACGGAATGACTCAGGATGAGACTG -ACGGAATGACTCAGGATGTCGGTA -ACGGAATGACTCAGGATGTGCCTA -ACGGAATGACTCAGGATGCCACTA -ACGGAATGACTCAGGATGGGAGTA -ACGGAATGACTCAGGATGTCGTCT -ACGGAATGACTCAGGATGTGCACT -ACGGAATGACTCAGGATGCTGACT -ACGGAATGACTCAGGATGCAACCT -ACGGAATGACTCAGGATGGCTACT -ACGGAATGACTCAGGATGGGATCT -ACGGAATGACTCAGGATGAAGGCT -ACGGAATGACTCAGGATGTCAACC -ACGGAATGACTCAGGATGTGTTCC -ACGGAATGACTCAGGATGATTCCC -ACGGAATGACTCAGGATGTTCTCG -ACGGAATGACTCAGGATGTAGACG -ACGGAATGACTCAGGATGGTAACG -ACGGAATGACTCAGGATGACTTCG -ACGGAATGACTCAGGATGTACGCA -ACGGAATGACTCAGGATGCTTGCA -ACGGAATGACTCAGGATGCGAACA -ACGGAATGACTCAGGATGCAGTCA -ACGGAATGACTCAGGATGGATCCA -ACGGAATGACTCAGGATGACGACA -ACGGAATGACTCAGGATGAGCTCA -ACGGAATGACTCAGGATGTCACGT -ACGGAATGACTCAGGATGCGTAGT -ACGGAATGACTCAGGATGGTCAGT -ACGGAATGACTCAGGATGGAAGGT -ACGGAATGACTCAGGATGAACCGT -ACGGAATGACTCAGGATGTTGTGC -ACGGAATGACTCAGGATGCTAAGC -ACGGAATGACTCAGGATGACTAGC -ACGGAATGACTCAGGATGAGATGC -ACGGAATGACTCAGGATGTGAAGG -ACGGAATGACTCAGGATGCAATGG -ACGGAATGACTCAGGATGATGAGG -ACGGAATGACTCAGGATGAATGGG -ACGGAATGACTCAGGATGTCCTGA -ACGGAATGACTCAGGATGTAGCGA -ACGGAATGACTCAGGATGCACAGA -ACGGAATGACTCAGGATGGCAAGA -ACGGAATGACTCAGGATGGGTTGA -ACGGAATGACTCAGGATGTCCGAT -ACGGAATGACTCAGGATGTGGCAT -ACGGAATGACTCAGGATGCGAGAT -ACGGAATGACTCAGGATGTACCAC -ACGGAATGACTCAGGATGCAGAAC -ACGGAATGACTCAGGATGGTCTAC -ACGGAATGACTCAGGATGACGTAC -ACGGAATGACTCAGGATGAGTGAC -ACGGAATGACTCAGGATGCTGTAG -ACGGAATGACTCAGGATGCCTAAG -ACGGAATGACTCAGGATGGTTCAG -ACGGAATGACTCAGGATGGCATAG -ACGGAATGACTCAGGATGGACAAG -ACGGAATGACTCAGGATGAAGCAG -ACGGAATGACTCAGGATGCGTCAA -ACGGAATGACTCAGGATGGCTGAA -ACGGAATGACTCAGGATGAGTACG -ACGGAATGACTCAGGATGATCCGA -ACGGAATGACTCAGGATGATGGGA -ACGGAATGACTCAGGATGGTGCAA -ACGGAATGACTCAGGATGGAGGAA -ACGGAATGACTCAGGATGCAGGTA -ACGGAATGACTCAGGATGGACTCT -ACGGAATGACTCAGGATGAGTCCT -ACGGAATGACTCAGGATGTAAGCC -ACGGAATGACTCAGGATGATAGCC -ACGGAATGACTCAGGATGTAACCG -ACGGAATGACTCAGGATGATGCCA -ACGGAATGACTCGGGAATGGAAAC -ACGGAATGACTCGGGAATAACACC -ACGGAATGACTCGGGAATATCGAG -ACGGAATGACTCGGGAATCTCCTT -ACGGAATGACTCGGGAATCCTGTT -ACGGAATGACTCGGGAATCGGTTT -ACGGAATGACTCGGGAATGTGGTT -ACGGAATGACTCGGGAATGCCTTT -ACGGAATGACTCGGGAATGGTCTT -ACGGAATGACTCGGGAATACGCTT -ACGGAATGACTCGGGAATAGCGTT -ACGGAATGACTCGGGAATTTCGTC -ACGGAATGACTCGGGAATTCTCTC -ACGGAATGACTCGGGAATTGGATC -ACGGAATGACTCGGGAATCACTTC -ACGGAATGACTCGGGAATGTACTC -ACGGAATGACTCGGGAATGATGTC -ACGGAATGACTCGGGAATACAGTC -ACGGAATGACTCGGGAATTTGCTG -ACGGAATGACTCGGGAATTCCATG -ACGGAATGACTCGGGAATTGTGTG -ACGGAATGACTCGGGAATCTAGTG -ACGGAATGACTCGGGAATCATCTG -ACGGAATGACTCGGGAATGAGTTG -ACGGAATGACTCGGGAATAGACTG -ACGGAATGACTCGGGAATTCGGTA -ACGGAATGACTCGGGAATTGCCTA -ACGGAATGACTCGGGAATCCACTA -ACGGAATGACTCGGGAATGGAGTA -ACGGAATGACTCGGGAATTCGTCT -ACGGAATGACTCGGGAATTGCACT -ACGGAATGACTCGGGAATCTGACT -ACGGAATGACTCGGGAATCAACCT -ACGGAATGACTCGGGAATGCTACT -ACGGAATGACTCGGGAATGGATCT -ACGGAATGACTCGGGAATAAGGCT -ACGGAATGACTCGGGAATTCAACC -ACGGAATGACTCGGGAATTGTTCC -ACGGAATGACTCGGGAATATTCCC -ACGGAATGACTCGGGAATTTCTCG -ACGGAATGACTCGGGAATTAGACG -ACGGAATGACTCGGGAATGTAACG -ACGGAATGACTCGGGAATACTTCG -ACGGAATGACTCGGGAATTACGCA -ACGGAATGACTCGGGAATCTTGCA -ACGGAATGACTCGGGAATCGAACA -ACGGAATGACTCGGGAATCAGTCA -ACGGAATGACTCGGGAATGATCCA -ACGGAATGACTCGGGAATACGACA -ACGGAATGACTCGGGAATAGCTCA -ACGGAATGACTCGGGAATTCACGT -ACGGAATGACTCGGGAATCGTAGT -ACGGAATGACTCGGGAATGTCAGT -ACGGAATGACTCGGGAATGAAGGT -ACGGAATGACTCGGGAATAACCGT -ACGGAATGACTCGGGAATTTGTGC -ACGGAATGACTCGGGAATCTAAGC -ACGGAATGACTCGGGAATACTAGC -ACGGAATGACTCGGGAATAGATGC -ACGGAATGACTCGGGAATTGAAGG -ACGGAATGACTCGGGAATCAATGG -ACGGAATGACTCGGGAATATGAGG -ACGGAATGACTCGGGAATAATGGG -ACGGAATGACTCGGGAATTCCTGA -ACGGAATGACTCGGGAATTAGCGA -ACGGAATGACTCGGGAATCACAGA -ACGGAATGACTCGGGAATGCAAGA -ACGGAATGACTCGGGAATGGTTGA -ACGGAATGACTCGGGAATTCCGAT -ACGGAATGACTCGGGAATTGGCAT -ACGGAATGACTCGGGAATCGAGAT -ACGGAATGACTCGGGAATTACCAC -ACGGAATGACTCGGGAATCAGAAC -ACGGAATGACTCGGGAATGTCTAC -ACGGAATGACTCGGGAATACGTAC -ACGGAATGACTCGGGAATAGTGAC -ACGGAATGACTCGGGAATCTGTAG -ACGGAATGACTCGGGAATCCTAAG -ACGGAATGACTCGGGAATGTTCAG -ACGGAATGACTCGGGAATGCATAG -ACGGAATGACTCGGGAATGACAAG -ACGGAATGACTCGGGAATAAGCAG -ACGGAATGACTCGGGAATCGTCAA -ACGGAATGACTCGGGAATGCTGAA -ACGGAATGACTCGGGAATAGTACG -ACGGAATGACTCGGGAATATCCGA -ACGGAATGACTCGGGAATATGGGA -ACGGAATGACTCGGGAATGTGCAA -ACGGAATGACTCGGGAATGAGGAA -ACGGAATGACTCGGGAATCAGGTA -ACGGAATGACTCGGGAATGACTCT -ACGGAATGACTCGGGAATAGTCCT -ACGGAATGACTCGGGAATTAAGCC -ACGGAATGACTCGGGAATATAGCC -ACGGAATGACTCGGGAATTAACCG -ACGGAATGACTCGGGAATATGCCA -ACGGAATGACTCTGATCCGGAAAC -ACGGAATGACTCTGATCCAACACC -ACGGAATGACTCTGATCCATCGAG -ACGGAATGACTCTGATCCCTCCTT -ACGGAATGACTCTGATCCCCTGTT -ACGGAATGACTCTGATCCCGGTTT -ACGGAATGACTCTGATCCGTGGTT -ACGGAATGACTCTGATCCGCCTTT -ACGGAATGACTCTGATCCGGTCTT -ACGGAATGACTCTGATCCACGCTT -ACGGAATGACTCTGATCCAGCGTT -ACGGAATGACTCTGATCCTTCGTC -ACGGAATGACTCTGATCCTCTCTC -ACGGAATGACTCTGATCCTGGATC -ACGGAATGACTCTGATCCCACTTC -ACGGAATGACTCTGATCCGTACTC -ACGGAATGACTCTGATCCGATGTC -ACGGAATGACTCTGATCCACAGTC -ACGGAATGACTCTGATCCTTGCTG -ACGGAATGACTCTGATCCTCCATG -ACGGAATGACTCTGATCCTGTGTG -ACGGAATGACTCTGATCCCTAGTG -ACGGAATGACTCTGATCCCATCTG -ACGGAATGACTCTGATCCGAGTTG -ACGGAATGACTCTGATCCAGACTG -ACGGAATGACTCTGATCCTCGGTA -ACGGAATGACTCTGATCCTGCCTA -ACGGAATGACTCTGATCCCCACTA -ACGGAATGACTCTGATCCGGAGTA -ACGGAATGACTCTGATCCTCGTCT -ACGGAATGACTCTGATCCTGCACT -ACGGAATGACTCTGATCCCTGACT -ACGGAATGACTCTGATCCCAACCT -ACGGAATGACTCTGATCCGCTACT -ACGGAATGACTCTGATCCGGATCT -ACGGAATGACTCTGATCCAAGGCT -ACGGAATGACTCTGATCCTCAACC -ACGGAATGACTCTGATCCTGTTCC -ACGGAATGACTCTGATCCATTCCC -ACGGAATGACTCTGATCCTTCTCG -ACGGAATGACTCTGATCCTAGACG -ACGGAATGACTCTGATCCGTAACG -ACGGAATGACTCTGATCCACTTCG -ACGGAATGACTCTGATCCTACGCA -ACGGAATGACTCTGATCCCTTGCA -ACGGAATGACTCTGATCCCGAACA -ACGGAATGACTCTGATCCCAGTCA -ACGGAATGACTCTGATCCGATCCA -ACGGAATGACTCTGATCCACGACA -ACGGAATGACTCTGATCCAGCTCA -ACGGAATGACTCTGATCCTCACGT -ACGGAATGACTCTGATCCCGTAGT -ACGGAATGACTCTGATCCGTCAGT -ACGGAATGACTCTGATCCGAAGGT -ACGGAATGACTCTGATCCAACCGT -ACGGAATGACTCTGATCCTTGTGC -ACGGAATGACTCTGATCCCTAAGC -ACGGAATGACTCTGATCCACTAGC -ACGGAATGACTCTGATCCAGATGC -ACGGAATGACTCTGATCCTGAAGG -ACGGAATGACTCTGATCCCAATGG -ACGGAATGACTCTGATCCATGAGG -ACGGAATGACTCTGATCCAATGGG -ACGGAATGACTCTGATCCTCCTGA -ACGGAATGACTCTGATCCTAGCGA -ACGGAATGACTCTGATCCCACAGA -ACGGAATGACTCTGATCCGCAAGA -ACGGAATGACTCTGATCCGGTTGA -ACGGAATGACTCTGATCCTCCGAT -ACGGAATGACTCTGATCCTGGCAT -ACGGAATGACTCTGATCCCGAGAT -ACGGAATGACTCTGATCCTACCAC -ACGGAATGACTCTGATCCCAGAAC -ACGGAATGACTCTGATCCGTCTAC -ACGGAATGACTCTGATCCACGTAC -ACGGAATGACTCTGATCCAGTGAC -ACGGAATGACTCTGATCCCTGTAG -ACGGAATGACTCTGATCCCCTAAG -ACGGAATGACTCTGATCCGTTCAG -ACGGAATGACTCTGATCCGCATAG -ACGGAATGACTCTGATCCGACAAG -ACGGAATGACTCTGATCCAAGCAG -ACGGAATGACTCTGATCCCGTCAA -ACGGAATGACTCTGATCCGCTGAA -ACGGAATGACTCTGATCCAGTACG -ACGGAATGACTCTGATCCATCCGA -ACGGAATGACTCTGATCCATGGGA -ACGGAATGACTCTGATCCGTGCAA -ACGGAATGACTCTGATCCGAGGAA -ACGGAATGACTCTGATCCCAGGTA -ACGGAATGACTCTGATCCGACTCT -ACGGAATGACTCTGATCCAGTCCT -ACGGAATGACTCTGATCCTAAGCC -ACGGAATGACTCTGATCCATAGCC -ACGGAATGACTCTGATCCTAACCG -ACGGAATGACTCTGATCCATGCCA -ACGGAATGACTCCGATAGGGAAAC -ACGGAATGACTCCGATAGAACACC -ACGGAATGACTCCGATAGATCGAG -ACGGAATGACTCCGATAGCTCCTT -ACGGAATGACTCCGATAGCCTGTT -ACGGAATGACTCCGATAGCGGTTT -ACGGAATGACTCCGATAGGTGGTT -ACGGAATGACTCCGATAGGCCTTT -ACGGAATGACTCCGATAGGGTCTT -ACGGAATGACTCCGATAGACGCTT -ACGGAATGACTCCGATAGAGCGTT -ACGGAATGACTCCGATAGTTCGTC -ACGGAATGACTCCGATAGTCTCTC -ACGGAATGACTCCGATAGTGGATC -ACGGAATGACTCCGATAGCACTTC -ACGGAATGACTCCGATAGGTACTC -ACGGAATGACTCCGATAGGATGTC -ACGGAATGACTCCGATAGACAGTC -ACGGAATGACTCCGATAGTTGCTG -ACGGAATGACTCCGATAGTCCATG -ACGGAATGACTCCGATAGTGTGTG -ACGGAATGACTCCGATAGCTAGTG -ACGGAATGACTCCGATAGCATCTG -ACGGAATGACTCCGATAGGAGTTG -ACGGAATGACTCCGATAGAGACTG -ACGGAATGACTCCGATAGTCGGTA -ACGGAATGACTCCGATAGTGCCTA -ACGGAATGACTCCGATAGCCACTA -ACGGAATGACTCCGATAGGGAGTA -ACGGAATGACTCCGATAGTCGTCT -ACGGAATGACTCCGATAGTGCACT -ACGGAATGACTCCGATAGCTGACT -ACGGAATGACTCCGATAGCAACCT -ACGGAATGACTCCGATAGGCTACT -ACGGAATGACTCCGATAGGGATCT -ACGGAATGACTCCGATAGAAGGCT -ACGGAATGACTCCGATAGTCAACC -ACGGAATGACTCCGATAGTGTTCC -ACGGAATGACTCCGATAGATTCCC -ACGGAATGACTCCGATAGTTCTCG -ACGGAATGACTCCGATAGTAGACG -ACGGAATGACTCCGATAGGTAACG -ACGGAATGACTCCGATAGACTTCG -ACGGAATGACTCCGATAGTACGCA -ACGGAATGACTCCGATAGCTTGCA -ACGGAATGACTCCGATAGCGAACA -ACGGAATGACTCCGATAGCAGTCA -ACGGAATGACTCCGATAGGATCCA -ACGGAATGACTCCGATAGACGACA -ACGGAATGACTCCGATAGAGCTCA -ACGGAATGACTCCGATAGTCACGT -ACGGAATGACTCCGATAGCGTAGT -ACGGAATGACTCCGATAGGTCAGT -ACGGAATGACTCCGATAGGAAGGT -ACGGAATGACTCCGATAGAACCGT -ACGGAATGACTCCGATAGTTGTGC -ACGGAATGACTCCGATAGCTAAGC -ACGGAATGACTCCGATAGACTAGC -ACGGAATGACTCCGATAGAGATGC -ACGGAATGACTCCGATAGTGAAGG -ACGGAATGACTCCGATAGCAATGG -ACGGAATGACTCCGATAGATGAGG -ACGGAATGACTCCGATAGAATGGG -ACGGAATGACTCCGATAGTCCTGA -ACGGAATGACTCCGATAGTAGCGA -ACGGAATGACTCCGATAGCACAGA -ACGGAATGACTCCGATAGGCAAGA -ACGGAATGACTCCGATAGGGTTGA -ACGGAATGACTCCGATAGTCCGAT -ACGGAATGACTCCGATAGTGGCAT -ACGGAATGACTCCGATAGCGAGAT -ACGGAATGACTCCGATAGTACCAC -ACGGAATGACTCCGATAGCAGAAC -ACGGAATGACTCCGATAGGTCTAC -ACGGAATGACTCCGATAGACGTAC -ACGGAATGACTCCGATAGAGTGAC -ACGGAATGACTCCGATAGCTGTAG -ACGGAATGACTCCGATAGCCTAAG -ACGGAATGACTCCGATAGGTTCAG -ACGGAATGACTCCGATAGGCATAG -ACGGAATGACTCCGATAGGACAAG -ACGGAATGACTCCGATAGAAGCAG -ACGGAATGACTCCGATAGCGTCAA -ACGGAATGACTCCGATAGGCTGAA -ACGGAATGACTCCGATAGAGTACG -ACGGAATGACTCCGATAGATCCGA -ACGGAATGACTCCGATAGATGGGA -ACGGAATGACTCCGATAGGTGCAA -ACGGAATGACTCCGATAGGAGGAA -ACGGAATGACTCCGATAGCAGGTA -ACGGAATGACTCCGATAGGACTCT -ACGGAATGACTCCGATAGAGTCCT -ACGGAATGACTCCGATAGTAAGCC -ACGGAATGACTCCGATAGATAGCC -ACGGAATGACTCCGATAGTAACCG -ACGGAATGACTCCGATAGATGCCA -ACGGAATGACTCAGACACGGAAAC -ACGGAATGACTCAGACACAACACC -ACGGAATGACTCAGACACATCGAG -ACGGAATGACTCAGACACCTCCTT -ACGGAATGACTCAGACACCCTGTT -ACGGAATGACTCAGACACCGGTTT -ACGGAATGACTCAGACACGTGGTT -ACGGAATGACTCAGACACGCCTTT -ACGGAATGACTCAGACACGGTCTT -ACGGAATGACTCAGACACACGCTT -ACGGAATGACTCAGACACAGCGTT -ACGGAATGACTCAGACACTTCGTC -ACGGAATGACTCAGACACTCTCTC -ACGGAATGACTCAGACACTGGATC -ACGGAATGACTCAGACACCACTTC -ACGGAATGACTCAGACACGTACTC -ACGGAATGACTCAGACACGATGTC -ACGGAATGACTCAGACACACAGTC -ACGGAATGACTCAGACACTTGCTG -ACGGAATGACTCAGACACTCCATG -ACGGAATGACTCAGACACTGTGTG -ACGGAATGACTCAGACACCTAGTG -ACGGAATGACTCAGACACCATCTG -ACGGAATGACTCAGACACGAGTTG -ACGGAATGACTCAGACACAGACTG -ACGGAATGACTCAGACACTCGGTA -ACGGAATGACTCAGACACTGCCTA -ACGGAATGACTCAGACACCCACTA -ACGGAATGACTCAGACACGGAGTA -ACGGAATGACTCAGACACTCGTCT -ACGGAATGACTCAGACACTGCACT -ACGGAATGACTCAGACACCTGACT -ACGGAATGACTCAGACACCAACCT -ACGGAATGACTCAGACACGCTACT -ACGGAATGACTCAGACACGGATCT -ACGGAATGACTCAGACACAAGGCT -ACGGAATGACTCAGACACTCAACC -ACGGAATGACTCAGACACTGTTCC -ACGGAATGACTCAGACACATTCCC -ACGGAATGACTCAGACACTTCTCG -ACGGAATGACTCAGACACTAGACG -ACGGAATGACTCAGACACGTAACG -ACGGAATGACTCAGACACACTTCG -ACGGAATGACTCAGACACTACGCA -ACGGAATGACTCAGACACCTTGCA -ACGGAATGACTCAGACACCGAACA -ACGGAATGACTCAGACACCAGTCA -ACGGAATGACTCAGACACGATCCA -ACGGAATGACTCAGACACACGACA -ACGGAATGACTCAGACACAGCTCA -ACGGAATGACTCAGACACTCACGT -ACGGAATGACTCAGACACCGTAGT -ACGGAATGACTCAGACACGTCAGT -ACGGAATGACTCAGACACGAAGGT -ACGGAATGACTCAGACACAACCGT -ACGGAATGACTCAGACACTTGTGC -ACGGAATGACTCAGACACCTAAGC -ACGGAATGACTCAGACACACTAGC -ACGGAATGACTCAGACACAGATGC -ACGGAATGACTCAGACACTGAAGG -ACGGAATGACTCAGACACCAATGG -ACGGAATGACTCAGACACATGAGG -ACGGAATGACTCAGACACAATGGG -ACGGAATGACTCAGACACTCCTGA -ACGGAATGACTCAGACACTAGCGA -ACGGAATGACTCAGACACCACAGA -ACGGAATGACTCAGACACGCAAGA -ACGGAATGACTCAGACACGGTTGA -ACGGAATGACTCAGACACTCCGAT -ACGGAATGACTCAGACACTGGCAT -ACGGAATGACTCAGACACCGAGAT -ACGGAATGACTCAGACACTACCAC -ACGGAATGACTCAGACACCAGAAC -ACGGAATGACTCAGACACGTCTAC -ACGGAATGACTCAGACACACGTAC -ACGGAATGACTCAGACACAGTGAC -ACGGAATGACTCAGACACCTGTAG -ACGGAATGACTCAGACACCCTAAG -ACGGAATGACTCAGACACGTTCAG -ACGGAATGACTCAGACACGCATAG -ACGGAATGACTCAGACACGACAAG -ACGGAATGACTCAGACACAAGCAG -ACGGAATGACTCAGACACCGTCAA -ACGGAATGACTCAGACACGCTGAA -ACGGAATGACTCAGACACAGTACG -ACGGAATGACTCAGACACATCCGA -ACGGAATGACTCAGACACATGGGA -ACGGAATGACTCAGACACGTGCAA -ACGGAATGACTCAGACACGAGGAA -ACGGAATGACTCAGACACCAGGTA -ACGGAATGACTCAGACACGACTCT -ACGGAATGACTCAGACACAGTCCT -ACGGAATGACTCAGACACTAAGCC -ACGGAATGACTCAGACACATAGCC -ACGGAATGACTCAGACACTAACCG -ACGGAATGACTCAGACACATGCCA -ACGGAATGACTCAGAGCAGGAAAC -ACGGAATGACTCAGAGCAAACACC -ACGGAATGACTCAGAGCAATCGAG -ACGGAATGACTCAGAGCACTCCTT -ACGGAATGACTCAGAGCACCTGTT -ACGGAATGACTCAGAGCACGGTTT -ACGGAATGACTCAGAGCAGTGGTT -ACGGAATGACTCAGAGCAGCCTTT -ACGGAATGACTCAGAGCAGGTCTT -ACGGAATGACTCAGAGCAACGCTT -ACGGAATGACTCAGAGCAAGCGTT -ACGGAATGACTCAGAGCATTCGTC -ACGGAATGACTCAGAGCATCTCTC -ACGGAATGACTCAGAGCATGGATC -ACGGAATGACTCAGAGCACACTTC -ACGGAATGACTCAGAGCAGTACTC -ACGGAATGACTCAGAGCAGATGTC -ACGGAATGACTCAGAGCAACAGTC -ACGGAATGACTCAGAGCATTGCTG -ACGGAATGACTCAGAGCATCCATG -ACGGAATGACTCAGAGCATGTGTG -ACGGAATGACTCAGAGCACTAGTG -ACGGAATGACTCAGAGCACATCTG -ACGGAATGACTCAGAGCAGAGTTG -ACGGAATGACTCAGAGCAAGACTG -ACGGAATGACTCAGAGCATCGGTA -ACGGAATGACTCAGAGCATGCCTA -ACGGAATGACTCAGAGCACCACTA -ACGGAATGACTCAGAGCAGGAGTA -ACGGAATGACTCAGAGCATCGTCT -ACGGAATGACTCAGAGCATGCACT -ACGGAATGACTCAGAGCACTGACT -ACGGAATGACTCAGAGCACAACCT -ACGGAATGACTCAGAGCAGCTACT -ACGGAATGACTCAGAGCAGGATCT -ACGGAATGACTCAGAGCAAAGGCT -ACGGAATGACTCAGAGCATCAACC -ACGGAATGACTCAGAGCATGTTCC -ACGGAATGACTCAGAGCAATTCCC -ACGGAATGACTCAGAGCATTCTCG -ACGGAATGACTCAGAGCATAGACG -ACGGAATGACTCAGAGCAGTAACG -ACGGAATGACTCAGAGCAACTTCG -ACGGAATGACTCAGAGCATACGCA -ACGGAATGACTCAGAGCACTTGCA -ACGGAATGACTCAGAGCACGAACA -ACGGAATGACTCAGAGCACAGTCA -ACGGAATGACTCAGAGCAGATCCA -ACGGAATGACTCAGAGCAACGACA -ACGGAATGACTCAGAGCAAGCTCA -ACGGAATGACTCAGAGCATCACGT -ACGGAATGACTCAGAGCACGTAGT -ACGGAATGACTCAGAGCAGTCAGT -ACGGAATGACTCAGAGCAGAAGGT -ACGGAATGACTCAGAGCAAACCGT -ACGGAATGACTCAGAGCATTGTGC -ACGGAATGACTCAGAGCACTAAGC -ACGGAATGACTCAGAGCAACTAGC -ACGGAATGACTCAGAGCAAGATGC -ACGGAATGACTCAGAGCATGAAGG -ACGGAATGACTCAGAGCACAATGG -ACGGAATGACTCAGAGCAATGAGG -ACGGAATGACTCAGAGCAAATGGG -ACGGAATGACTCAGAGCATCCTGA -ACGGAATGACTCAGAGCATAGCGA -ACGGAATGACTCAGAGCACACAGA -ACGGAATGACTCAGAGCAGCAAGA -ACGGAATGACTCAGAGCAGGTTGA -ACGGAATGACTCAGAGCATCCGAT -ACGGAATGACTCAGAGCATGGCAT -ACGGAATGACTCAGAGCACGAGAT -ACGGAATGACTCAGAGCATACCAC -ACGGAATGACTCAGAGCACAGAAC -ACGGAATGACTCAGAGCAGTCTAC -ACGGAATGACTCAGAGCAACGTAC -ACGGAATGACTCAGAGCAAGTGAC -ACGGAATGACTCAGAGCACTGTAG -ACGGAATGACTCAGAGCACCTAAG -ACGGAATGACTCAGAGCAGTTCAG -ACGGAATGACTCAGAGCAGCATAG -ACGGAATGACTCAGAGCAGACAAG -ACGGAATGACTCAGAGCAAAGCAG -ACGGAATGACTCAGAGCACGTCAA -ACGGAATGACTCAGAGCAGCTGAA -ACGGAATGACTCAGAGCAAGTACG -ACGGAATGACTCAGAGCAATCCGA -ACGGAATGACTCAGAGCAATGGGA -ACGGAATGACTCAGAGCAGTGCAA -ACGGAATGACTCAGAGCAGAGGAA -ACGGAATGACTCAGAGCACAGGTA -ACGGAATGACTCAGAGCAGACTCT -ACGGAATGACTCAGAGCAAGTCCT -ACGGAATGACTCAGAGCATAAGCC -ACGGAATGACTCAGAGCAATAGCC -ACGGAATGACTCAGAGCATAACCG -ACGGAATGACTCAGAGCAATGCCA -ACGGAATGACTCTGAGGTGGAAAC -ACGGAATGACTCTGAGGTAACACC -ACGGAATGACTCTGAGGTATCGAG -ACGGAATGACTCTGAGGTCTCCTT -ACGGAATGACTCTGAGGTCCTGTT -ACGGAATGACTCTGAGGTCGGTTT -ACGGAATGACTCTGAGGTGTGGTT -ACGGAATGACTCTGAGGTGCCTTT -ACGGAATGACTCTGAGGTGGTCTT -ACGGAATGACTCTGAGGTACGCTT -ACGGAATGACTCTGAGGTAGCGTT -ACGGAATGACTCTGAGGTTTCGTC -ACGGAATGACTCTGAGGTTCTCTC -ACGGAATGACTCTGAGGTTGGATC -ACGGAATGACTCTGAGGTCACTTC -ACGGAATGACTCTGAGGTGTACTC -ACGGAATGACTCTGAGGTGATGTC -ACGGAATGACTCTGAGGTACAGTC -ACGGAATGACTCTGAGGTTTGCTG -ACGGAATGACTCTGAGGTTCCATG -ACGGAATGACTCTGAGGTTGTGTG -ACGGAATGACTCTGAGGTCTAGTG -ACGGAATGACTCTGAGGTCATCTG -ACGGAATGACTCTGAGGTGAGTTG -ACGGAATGACTCTGAGGTAGACTG -ACGGAATGACTCTGAGGTTCGGTA -ACGGAATGACTCTGAGGTTGCCTA -ACGGAATGACTCTGAGGTCCACTA -ACGGAATGACTCTGAGGTGGAGTA -ACGGAATGACTCTGAGGTTCGTCT -ACGGAATGACTCTGAGGTTGCACT -ACGGAATGACTCTGAGGTCTGACT -ACGGAATGACTCTGAGGTCAACCT -ACGGAATGACTCTGAGGTGCTACT -ACGGAATGACTCTGAGGTGGATCT -ACGGAATGACTCTGAGGTAAGGCT -ACGGAATGACTCTGAGGTTCAACC -ACGGAATGACTCTGAGGTTGTTCC -ACGGAATGACTCTGAGGTATTCCC -ACGGAATGACTCTGAGGTTTCTCG -ACGGAATGACTCTGAGGTTAGACG -ACGGAATGACTCTGAGGTGTAACG -ACGGAATGACTCTGAGGTACTTCG -ACGGAATGACTCTGAGGTTACGCA -ACGGAATGACTCTGAGGTCTTGCA -ACGGAATGACTCTGAGGTCGAACA -ACGGAATGACTCTGAGGTCAGTCA -ACGGAATGACTCTGAGGTGATCCA -ACGGAATGACTCTGAGGTACGACA -ACGGAATGACTCTGAGGTAGCTCA -ACGGAATGACTCTGAGGTTCACGT -ACGGAATGACTCTGAGGTCGTAGT -ACGGAATGACTCTGAGGTGTCAGT -ACGGAATGACTCTGAGGTGAAGGT -ACGGAATGACTCTGAGGTAACCGT -ACGGAATGACTCTGAGGTTTGTGC -ACGGAATGACTCTGAGGTCTAAGC -ACGGAATGACTCTGAGGTACTAGC -ACGGAATGACTCTGAGGTAGATGC -ACGGAATGACTCTGAGGTTGAAGG -ACGGAATGACTCTGAGGTCAATGG -ACGGAATGACTCTGAGGTATGAGG -ACGGAATGACTCTGAGGTAATGGG -ACGGAATGACTCTGAGGTTCCTGA -ACGGAATGACTCTGAGGTTAGCGA -ACGGAATGACTCTGAGGTCACAGA -ACGGAATGACTCTGAGGTGCAAGA -ACGGAATGACTCTGAGGTGGTTGA -ACGGAATGACTCTGAGGTTCCGAT -ACGGAATGACTCTGAGGTTGGCAT -ACGGAATGACTCTGAGGTCGAGAT -ACGGAATGACTCTGAGGTTACCAC -ACGGAATGACTCTGAGGTCAGAAC -ACGGAATGACTCTGAGGTGTCTAC -ACGGAATGACTCTGAGGTACGTAC -ACGGAATGACTCTGAGGTAGTGAC -ACGGAATGACTCTGAGGTCTGTAG -ACGGAATGACTCTGAGGTCCTAAG -ACGGAATGACTCTGAGGTGTTCAG -ACGGAATGACTCTGAGGTGCATAG -ACGGAATGACTCTGAGGTGACAAG -ACGGAATGACTCTGAGGTAAGCAG -ACGGAATGACTCTGAGGTCGTCAA -ACGGAATGACTCTGAGGTGCTGAA -ACGGAATGACTCTGAGGTAGTACG -ACGGAATGACTCTGAGGTATCCGA -ACGGAATGACTCTGAGGTATGGGA -ACGGAATGACTCTGAGGTGTGCAA -ACGGAATGACTCTGAGGTGAGGAA -ACGGAATGACTCTGAGGTCAGGTA -ACGGAATGACTCTGAGGTGACTCT -ACGGAATGACTCTGAGGTAGTCCT -ACGGAATGACTCTGAGGTTAAGCC -ACGGAATGACTCTGAGGTATAGCC -ACGGAATGACTCTGAGGTTAACCG -ACGGAATGACTCTGAGGTATGCCA -ACGGAATGACTCGATTCCGGAAAC -ACGGAATGACTCGATTCCAACACC -ACGGAATGACTCGATTCCATCGAG -ACGGAATGACTCGATTCCCTCCTT -ACGGAATGACTCGATTCCCCTGTT -ACGGAATGACTCGATTCCCGGTTT -ACGGAATGACTCGATTCCGTGGTT -ACGGAATGACTCGATTCCGCCTTT -ACGGAATGACTCGATTCCGGTCTT -ACGGAATGACTCGATTCCACGCTT -ACGGAATGACTCGATTCCAGCGTT -ACGGAATGACTCGATTCCTTCGTC -ACGGAATGACTCGATTCCTCTCTC -ACGGAATGACTCGATTCCTGGATC -ACGGAATGACTCGATTCCCACTTC -ACGGAATGACTCGATTCCGTACTC -ACGGAATGACTCGATTCCGATGTC -ACGGAATGACTCGATTCCACAGTC -ACGGAATGACTCGATTCCTTGCTG -ACGGAATGACTCGATTCCTCCATG -ACGGAATGACTCGATTCCTGTGTG -ACGGAATGACTCGATTCCCTAGTG -ACGGAATGACTCGATTCCCATCTG -ACGGAATGACTCGATTCCGAGTTG -ACGGAATGACTCGATTCCAGACTG -ACGGAATGACTCGATTCCTCGGTA -ACGGAATGACTCGATTCCTGCCTA -ACGGAATGACTCGATTCCCCACTA -ACGGAATGACTCGATTCCGGAGTA -ACGGAATGACTCGATTCCTCGTCT -ACGGAATGACTCGATTCCTGCACT -ACGGAATGACTCGATTCCCTGACT -ACGGAATGACTCGATTCCCAACCT -ACGGAATGACTCGATTCCGCTACT -ACGGAATGACTCGATTCCGGATCT -ACGGAATGACTCGATTCCAAGGCT -ACGGAATGACTCGATTCCTCAACC -ACGGAATGACTCGATTCCTGTTCC -ACGGAATGACTCGATTCCATTCCC -ACGGAATGACTCGATTCCTTCTCG -ACGGAATGACTCGATTCCTAGACG -ACGGAATGACTCGATTCCGTAACG -ACGGAATGACTCGATTCCACTTCG -ACGGAATGACTCGATTCCTACGCA -ACGGAATGACTCGATTCCCTTGCA -ACGGAATGACTCGATTCCCGAACA -ACGGAATGACTCGATTCCCAGTCA -ACGGAATGACTCGATTCCGATCCA -ACGGAATGACTCGATTCCACGACA -ACGGAATGACTCGATTCCAGCTCA -ACGGAATGACTCGATTCCTCACGT -ACGGAATGACTCGATTCCCGTAGT -ACGGAATGACTCGATTCCGTCAGT -ACGGAATGACTCGATTCCGAAGGT -ACGGAATGACTCGATTCCAACCGT -ACGGAATGACTCGATTCCTTGTGC -ACGGAATGACTCGATTCCCTAAGC -ACGGAATGACTCGATTCCACTAGC -ACGGAATGACTCGATTCCAGATGC -ACGGAATGACTCGATTCCTGAAGG -ACGGAATGACTCGATTCCCAATGG -ACGGAATGACTCGATTCCATGAGG -ACGGAATGACTCGATTCCAATGGG -ACGGAATGACTCGATTCCTCCTGA -ACGGAATGACTCGATTCCTAGCGA -ACGGAATGACTCGATTCCCACAGA -ACGGAATGACTCGATTCCGCAAGA -ACGGAATGACTCGATTCCGGTTGA -ACGGAATGACTCGATTCCTCCGAT -ACGGAATGACTCGATTCCTGGCAT -ACGGAATGACTCGATTCCCGAGAT -ACGGAATGACTCGATTCCTACCAC -ACGGAATGACTCGATTCCCAGAAC -ACGGAATGACTCGATTCCGTCTAC -ACGGAATGACTCGATTCCACGTAC -ACGGAATGACTCGATTCCAGTGAC -ACGGAATGACTCGATTCCCTGTAG -ACGGAATGACTCGATTCCCCTAAG -ACGGAATGACTCGATTCCGTTCAG -ACGGAATGACTCGATTCCGCATAG -ACGGAATGACTCGATTCCGACAAG -ACGGAATGACTCGATTCCAAGCAG -ACGGAATGACTCGATTCCCGTCAA -ACGGAATGACTCGATTCCGCTGAA -ACGGAATGACTCGATTCCAGTACG -ACGGAATGACTCGATTCCATCCGA -ACGGAATGACTCGATTCCATGGGA -ACGGAATGACTCGATTCCGTGCAA -ACGGAATGACTCGATTCCGAGGAA -ACGGAATGACTCGATTCCCAGGTA -ACGGAATGACTCGATTCCGACTCT -ACGGAATGACTCGATTCCAGTCCT -ACGGAATGACTCGATTCCTAAGCC -ACGGAATGACTCGATTCCATAGCC -ACGGAATGACTCGATTCCTAACCG -ACGGAATGACTCGATTCCATGCCA -ACGGAATGACTCCATTGGGGAAAC -ACGGAATGACTCCATTGGAACACC -ACGGAATGACTCCATTGGATCGAG -ACGGAATGACTCCATTGGCTCCTT -ACGGAATGACTCCATTGGCCTGTT -ACGGAATGACTCCATTGGCGGTTT -ACGGAATGACTCCATTGGGTGGTT -ACGGAATGACTCCATTGGGCCTTT -ACGGAATGACTCCATTGGGGTCTT -ACGGAATGACTCCATTGGACGCTT -ACGGAATGACTCCATTGGAGCGTT -ACGGAATGACTCCATTGGTTCGTC -ACGGAATGACTCCATTGGTCTCTC -ACGGAATGACTCCATTGGTGGATC -ACGGAATGACTCCATTGGCACTTC -ACGGAATGACTCCATTGGGTACTC -ACGGAATGACTCCATTGGGATGTC -ACGGAATGACTCCATTGGACAGTC -ACGGAATGACTCCATTGGTTGCTG -ACGGAATGACTCCATTGGTCCATG -ACGGAATGACTCCATTGGTGTGTG -ACGGAATGACTCCATTGGCTAGTG -ACGGAATGACTCCATTGGCATCTG -ACGGAATGACTCCATTGGGAGTTG -ACGGAATGACTCCATTGGAGACTG -ACGGAATGACTCCATTGGTCGGTA -ACGGAATGACTCCATTGGTGCCTA -ACGGAATGACTCCATTGGCCACTA -ACGGAATGACTCCATTGGGGAGTA -ACGGAATGACTCCATTGGTCGTCT -ACGGAATGACTCCATTGGTGCACT -ACGGAATGACTCCATTGGCTGACT -ACGGAATGACTCCATTGGCAACCT -ACGGAATGACTCCATTGGGCTACT -ACGGAATGACTCCATTGGGGATCT -ACGGAATGACTCCATTGGAAGGCT -ACGGAATGACTCCATTGGTCAACC -ACGGAATGACTCCATTGGTGTTCC -ACGGAATGACTCCATTGGATTCCC -ACGGAATGACTCCATTGGTTCTCG -ACGGAATGACTCCATTGGTAGACG -ACGGAATGACTCCATTGGGTAACG -ACGGAATGACTCCATTGGACTTCG -ACGGAATGACTCCATTGGTACGCA -ACGGAATGACTCCATTGGCTTGCA -ACGGAATGACTCCATTGGCGAACA -ACGGAATGACTCCATTGGCAGTCA -ACGGAATGACTCCATTGGGATCCA -ACGGAATGACTCCATTGGACGACA -ACGGAATGACTCCATTGGAGCTCA -ACGGAATGACTCCATTGGTCACGT -ACGGAATGACTCCATTGGCGTAGT -ACGGAATGACTCCATTGGGTCAGT -ACGGAATGACTCCATTGGGAAGGT -ACGGAATGACTCCATTGGAACCGT -ACGGAATGACTCCATTGGTTGTGC -ACGGAATGACTCCATTGGCTAAGC -ACGGAATGACTCCATTGGACTAGC -ACGGAATGACTCCATTGGAGATGC -ACGGAATGACTCCATTGGTGAAGG -ACGGAATGACTCCATTGGCAATGG -ACGGAATGACTCCATTGGATGAGG -ACGGAATGACTCCATTGGAATGGG -ACGGAATGACTCCATTGGTCCTGA -ACGGAATGACTCCATTGGTAGCGA -ACGGAATGACTCCATTGGCACAGA -ACGGAATGACTCCATTGGGCAAGA -ACGGAATGACTCCATTGGGGTTGA -ACGGAATGACTCCATTGGTCCGAT -ACGGAATGACTCCATTGGTGGCAT -ACGGAATGACTCCATTGGCGAGAT -ACGGAATGACTCCATTGGTACCAC -ACGGAATGACTCCATTGGCAGAAC -ACGGAATGACTCCATTGGGTCTAC -ACGGAATGACTCCATTGGACGTAC -ACGGAATGACTCCATTGGAGTGAC -ACGGAATGACTCCATTGGCTGTAG -ACGGAATGACTCCATTGGCCTAAG -ACGGAATGACTCCATTGGGTTCAG -ACGGAATGACTCCATTGGGCATAG -ACGGAATGACTCCATTGGGACAAG -ACGGAATGACTCCATTGGAAGCAG -ACGGAATGACTCCATTGGCGTCAA -ACGGAATGACTCCATTGGGCTGAA -ACGGAATGACTCCATTGGAGTACG -ACGGAATGACTCCATTGGATCCGA -ACGGAATGACTCCATTGGATGGGA -ACGGAATGACTCCATTGGGTGCAA -ACGGAATGACTCCATTGGGAGGAA -ACGGAATGACTCCATTGGCAGGTA -ACGGAATGACTCCATTGGGACTCT -ACGGAATGACTCCATTGGAGTCCT -ACGGAATGACTCCATTGGTAAGCC -ACGGAATGACTCCATTGGATAGCC -ACGGAATGACTCCATTGGTAACCG -ACGGAATGACTCCATTGGATGCCA -ACGGAATGACTCGATCGAGGAAAC -ACGGAATGACTCGATCGAAACACC -ACGGAATGACTCGATCGAATCGAG -ACGGAATGACTCGATCGACTCCTT -ACGGAATGACTCGATCGACCTGTT -ACGGAATGACTCGATCGACGGTTT -ACGGAATGACTCGATCGAGTGGTT -ACGGAATGACTCGATCGAGCCTTT -ACGGAATGACTCGATCGAGGTCTT -ACGGAATGACTCGATCGAACGCTT -ACGGAATGACTCGATCGAAGCGTT -ACGGAATGACTCGATCGATTCGTC -ACGGAATGACTCGATCGATCTCTC -ACGGAATGACTCGATCGATGGATC -ACGGAATGACTCGATCGACACTTC -ACGGAATGACTCGATCGAGTACTC -ACGGAATGACTCGATCGAGATGTC -ACGGAATGACTCGATCGAACAGTC -ACGGAATGACTCGATCGATTGCTG -ACGGAATGACTCGATCGATCCATG -ACGGAATGACTCGATCGATGTGTG -ACGGAATGACTCGATCGACTAGTG -ACGGAATGACTCGATCGACATCTG -ACGGAATGACTCGATCGAGAGTTG -ACGGAATGACTCGATCGAAGACTG -ACGGAATGACTCGATCGATCGGTA -ACGGAATGACTCGATCGATGCCTA -ACGGAATGACTCGATCGACCACTA -ACGGAATGACTCGATCGAGGAGTA -ACGGAATGACTCGATCGATCGTCT -ACGGAATGACTCGATCGATGCACT -ACGGAATGACTCGATCGACTGACT -ACGGAATGACTCGATCGACAACCT -ACGGAATGACTCGATCGAGCTACT -ACGGAATGACTCGATCGAGGATCT -ACGGAATGACTCGATCGAAAGGCT -ACGGAATGACTCGATCGATCAACC -ACGGAATGACTCGATCGATGTTCC -ACGGAATGACTCGATCGAATTCCC -ACGGAATGACTCGATCGATTCTCG -ACGGAATGACTCGATCGATAGACG -ACGGAATGACTCGATCGAGTAACG -ACGGAATGACTCGATCGAACTTCG -ACGGAATGACTCGATCGATACGCA -ACGGAATGACTCGATCGACTTGCA -ACGGAATGACTCGATCGACGAACA -ACGGAATGACTCGATCGACAGTCA -ACGGAATGACTCGATCGAGATCCA -ACGGAATGACTCGATCGAACGACA -ACGGAATGACTCGATCGAAGCTCA -ACGGAATGACTCGATCGATCACGT -ACGGAATGACTCGATCGACGTAGT -ACGGAATGACTCGATCGAGTCAGT -ACGGAATGACTCGATCGAGAAGGT -ACGGAATGACTCGATCGAAACCGT -ACGGAATGACTCGATCGATTGTGC -ACGGAATGACTCGATCGACTAAGC -ACGGAATGACTCGATCGAACTAGC -ACGGAATGACTCGATCGAAGATGC -ACGGAATGACTCGATCGATGAAGG -ACGGAATGACTCGATCGACAATGG -ACGGAATGACTCGATCGAATGAGG -ACGGAATGACTCGATCGAAATGGG -ACGGAATGACTCGATCGATCCTGA -ACGGAATGACTCGATCGATAGCGA -ACGGAATGACTCGATCGACACAGA -ACGGAATGACTCGATCGAGCAAGA -ACGGAATGACTCGATCGAGGTTGA -ACGGAATGACTCGATCGATCCGAT -ACGGAATGACTCGATCGATGGCAT -ACGGAATGACTCGATCGACGAGAT -ACGGAATGACTCGATCGATACCAC -ACGGAATGACTCGATCGACAGAAC -ACGGAATGACTCGATCGAGTCTAC -ACGGAATGACTCGATCGAACGTAC -ACGGAATGACTCGATCGAAGTGAC -ACGGAATGACTCGATCGACTGTAG -ACGGAATGACTCGATCGACCTAAG -ACGGAATGACTCGATCGAGTTCAG -ACGGAATGACTCGATCGAGCATAG -ACGGAATGACTCGATCGAGACAAG -ACGGAATGACTCGATCGAAAGCAG -ACGGAATGACTCGATCGACGTCAA -ACGGAATGACTCGATCGAGCTGAA -ACGGAATGACTCGATCGAAGTACG -ACGGAATGACTCGATCGAATCCGA -ACGGAATGACTCGATCGAATGGGA -ACGGAATGACTCGATCGAGTGCAA -ACGGAATGACTCGATCGAGAGGAA -ACGGAATGACTCGATCGACAGGTA -ACGGAATGACTCGATCGAGACTCT -ACGGAATGACTCGATCGAAGTCCT -ACGGAATGACTCGATCGATAAGCC -ACGGAATGACTCGATCGAATAGCC -ACGGAATGACTCGATCGATAACCG -ACGGAATGACTCGATCGAATGCCA -ACGGAATGACTCCACTACGGAAAC -ACGGAATGACTCCACTACAACACC -ACGGAATGACTCCACTACATCGAG -ACGGAATGACTCCACTACCTCCTT -ACGGAATGACTCCACTACCCTGTT -ACGGAATGACTCCACTACCGGTTT -ACGGAATGACTCCACTACGTGGTT -ACGGAATGACTCCACTACGCCTTT -ACGGAATGACTCCACTACGGTCTT -ACGGAATGACTCCACTACACGCTT -ACGGAATGACTCCACTACAGCGTT -ACGGAATGACTCCACTACTTCGTC -ACGGAATGACTCCACTACTCTCTC -ACGGAATGACTCCACTACTGGATC -ACGGAATGACTCCACTACCACTTC -ACGGAATGACTCCACTACGTACTC -ACGGAATGACTCCACTACGATGTC -ACGGAATGACTCCACTACACAGTC -ACGGAATGACTCCACTACTTGCTG -ACGGAATGACTCCACTACTCCATG -ACGGAATGACTCCACTACTGTGTG -ACGGAATGACTCCACTACCTAGTG -ACGGAATGACTCCACTACCATCTG -ACGGAATGACTCCACTACGAGTTG -ACGGAATGACTCCACTACAGACTG -ACGGAATGACTCCACTACTCGGTA -ACGGAATGACTCCACTACTGCCTA -ACGGAATGACTCCACTACCCACTA -ACGGAATGACTCCACTACGGAGTA -ACGGAATGACTCCACTACTCGTCT -ACGGAATGACTCCACTACTGCACT -ACGGAATGACTCCACTACCTGACT -ACGGAATGACTCCACTACCAACCT -ACGGAATGACTCCACTACGCTACT -ACGGAATGACTCCACTACGGATCT -ACGGAATGACTCCACTACAAGGCT -ACGGAATGACTCCACTACTCAACC -ACGGAATGACTCCACTACTGTTCC -ACGGAATGACTCCACTACATTCCC -ACGGAATGACTCCACTACTTCTCG -ACGGAATGACTCCACTACTAGACG -ACGGAATGACTCCACTACGTAACG -ACGGAATGACTCCACTACACTTCG -ACGGAATGACTCCACTACTACGCA -ACGGAATGACTCCACTACCTTGCA -ACGGAATGACTCCACTACCGAACA -ACGGAATGACTCCACTACCAGTCA -ACGGAATGACTCCACTACGATCCA -ACGGAATGACTCCACTACACGACA -ACGGAATGACTCCACTACAGCTCA -ACGGAATGACTCCACTACTCACGT -ACGGAATGACTCCACTACCGTAGT -ACGGAATGACTCCACTACGTCAGT -ACGGAATGACTCCACTACGAAGGT -ACGGAATGACTCCACTACAACCGT -ACGGAATGACTCCACTACTTGTGC -ACGGAATGACTCCACTACCTAAGC -ACGGAATGACTCCACTACACTAGC -ACGGAATGACTCCACTACAGATGC -ACGGAATGACTCCACTACTGAAGG -ACGGAATGACTCCACTACCAATGG -ACGGAATGACTCCACTACATGAGG -ACGGAATGACTCCACTACAATGGG -ACGGAATGACTCCACTACTCCTGA -ACGGAATGACTCCACTACTAGCGA -ACGGAATGACTCCACTACCACAGA -ACGGAATGACTCCACTACGCAAGA -ACGGAATGACTCCACTACGGTTGA -ACGGAATGACTCCACTACTCCGAT -ACGGAATGACTCCACTACTGGCAT -ACGGAATGACTCCACTACCGAGAT -ACGGAATGACTCCACTACTACCAC -ACGGAATGACTCCACTACCAGAAC -ACGGAATGACTCCACTACGTCTAC -ACGGAATGACTCCACTACACGTAC -ACGGAATGACTCCACTACAGTGAC -ACGGAATGACTCCACTACCTGTAG -ACGGAATGACTCCACTACCCTAAG -ACGGAATGACTCCACTACGTTCAG -ACGGAATGACTCCACTACGCATAG -ACGGAATGACTCCACTACGACAAG -ACGGAATGACTCCACTACAAGCAG -ACGGAATGACTCCACTACCGTCAA -ACGGAATGACTCCACTACGCTGAA -ACGGAATGACTCCACTACAGTACG -ACGGAATGACTCCACTACATCCGA -ACGGAATGACTCCACTACATGGGA -ACGGAATGACTCCACTACGTGCAA -ACGGAATGACTCCACTACGAGGAA -ACGGAATGACTCCACTACCAGGTA -ACGGAATGACTCCACTACGACTCT -ACGGAATGACTCCACTACAGTCCT -ACGGAATGACTCCACTACTAAGCC -ACGGAATGACTCCACTACATAGCC -ACGGAATGACTCCACTACTAACCG -ACGGAATGACTCCACTACATGCCA -ACGGAATGACTCAACCAGGGAAAC -ACGGAATGACTCAACCAGAACACC -ACGGAATGACTCAACCAGATCGAG -ACGGAATGACTCAACCAGCTCCTT -ACGGAATGACTCAACCAGCCTGTT -ACGGAATGACTCAACCAGCGGTTT -ACGGAATGACTCAACCAGGTGGTT -ACGGAATGACTCAACCAGGCCTTT -ACGGAATGACTCAACCAGGGTCTT -ACGGAATGACTCAACCAGACGCTT -ACGGAATGACTCAACCAGAGCGTT -ACGGAATGACTCAACCAGTTCGTC -ACGGAATGACTCAACCAGTCTCTC -ACGGAATGACTCAACCAGTGGATC -ACGGAATGACTCAACCAGCACTTC -ACGGAATGACTCAACCAGGTACTC -ACGGAATGACTCAACCAGGATGTC -ACGGAATGACTCAACCAGACAGTC -ACGGAATGACTCAACCAGTTGCTG -ACGGAATGACTCAACCAGTCCATG -ACGGAATGACTCAACCAGTGTGTG -ACGGAATGACTCAACCAGCTAGTG -ACGGAATGACTCAACCAGCATCTG -ACGGAATGACTCAACCAGGAGTTG -ACGGAATGACTCAACCAGAGACTG -ACGGAATGACTCAACCAGTCGGTA -ACGGAATGACTCAACCAGTGCCTA -ACGGAATGACTCAACCAGCCACTA -ACGGAATGACTCAACCAGGGAGTA -ACGGAATGACTCAACCAGTCGTCT -ACGGAATGACTCAACCAGTGCACT -ACGGAATGACTCAACCAGCTGACT -ACGGAATGACTCAACCAGCAACCT -ACGGAATGACTCAACCAGGCTACT -ACGGAATGACTCAACCAGGGATCT -ACGGAATGACTCAACCAGAAGGCT -ACGGAATGACTCAACCAGTCAACC -ACGGAATGACTCAACCAGTGTTCC -ACGGAATGACTCAACCAGATTCCC -ACGGAATGACTCAACCAGTTCTCG -ACGGAATGACTCAACCAGTAGACG -ACGGAATGACTCAACCAGGTAACG -ACGGAATGACTCAACCAGACTTCG -ACGGAATGACTCAACCAGTACGCA -ACGGAATGACTCAACCAGCTTGCA -ACGGAATGACTCAACCAGCGAACA -ACGGAATGACTCAACCAGCAGTCA -ACGGAATGACTCAACCAGGATCCA -ACGGAATGACTCAACCAGACGACA -ACGGAATGACTCAACCAGAGCTCA -ACGGAATGACTCAACCAGTCACGT -ACGGAATGACTCAACCAGCGTAGT -ACGGAATGACTCAACCAGGTCAGT -ACGGAATGACTCAACCAGGAAGGT -ACGGAATGACTCAACCAGAACCGT -ACGGAATGACTCAACCAGTTGTGC -ACGGAATGACTCAACCAGCTAAGC -ACGGAATGACTCAACCAGACTAGC -ACGGAATGACTCAACCAGAGATGC -ACGGAATGACTCAACCAGTGAAGG -ACGGAATGACTCAACCAGCAATGG -ACGGAATGACTCAACCAGATGAGG -ACGGAATGACTCAACCAGAATGGG -ACGGAATGACTCAACCAGTCCTGA -ACGGAATGACTCAACCAGTAGCGA -ACGGAATGACTCAACCAGCACAGA -ACGGAATGACTCAACCAGGCAAGA -ACGGAATGACTCAACCAGGGTTGA -ACGGAATGACTCAACCAGTCCGAT -ACGGAATGACTCAACCAGTGGCAT -ACGGAATGACTCAACCAGCGAGAT -ACGGAATGACTCAACCAGTACCAC -ACGGAATGACTCAACCAGCAGAAC -ACGGAATGACTCAACCAGGTCTAC -ACGGAATGACTCAACCAGACGTAC -ACGGAATGACTCAACCAGAGTGAC -ACGGAATGACTCAACCAGCTGTAG -ACGGAATGACTCAACCAGCCTAAG -ACGGAATGACTCAACCAGGTTCAG -ACGGAATGACTCAACCAGGCATAG -ACGGAATGACTCAACCAGGACAAG -ACGGAATGACTCAACCAGAAGCAG -ACGGAATGACTCAACCAGCGTCAA -ACGGAATGACTCAACCAGGCTGAA -ACGGAATGACTCAACCAGAGTACG -ACGGAATGACTCAACCAGATCCGA -ACGGAATGACTCAACCAGATGGGA -ACGGAATGACTCAACCAGGTGCAA -ACGGAATGACTCAACCAGGAGGAA -ACGGAATGACTCAACCAGCAGGTA -ACGGAATGACTCAACCAGGACTCT -ACGGAATGACTCAACCAGAGTCCT -ACGGAATGACTCAACCAGTAAGCC -ACGGAATGACTCAACCAGATAGCC -ACGGAATGACTCAACCAGTAACCG -ACGGAATGACTCAACCAGATGCCA -ACGGAATGACTCTACGTCGGAAAC -ACGGAATGACTCTACGTCAACACC -ACGGAATGACTCTACGTCATCGAG -ACGGAATGACTCTACGTCCTCCTT -ACGGAATGACTCTACGTCCCTGTT -ACGGAATGACTCTACGTCCGGTTT -ACGGAATGACTCTACGTCGTGGTT -ACGGAATGACTCTACGTCGCCTTT -ACGGAATGACTCTACGTCGGTCTT -ACGGAATGACTCTACGTCACGCTT -ACGGAATGACTCTACGTCAGCGTT -ACGGAATGACTCTACGTCTTCGTC -ACGGAATGACTCTACGTCTCTCTC -ACGGAATGACTCTACGTCTGGATC -ACGGAATGACTCTACGTCCACTTC -ACGGAATGACTCTACGTCGTACTC -ACGGAATGACTCTACGTCGATGTC -ACGGAATGACTCTACGTCACAGTC -ACGGAATGACTCTACGTCTTGCTG -ACGGAATGACTCTACGTCTCCATG -ACGGAATGACTCTACGTCTGTGTG -ACGGAATGACTCTACGTCCTAGTG -ACGGAATGACTCTACGTCCATCTG -ACGGAATGACTCTACGTCGAGTTG -ACGGAATGACTCTACGTCAGACTG -ACGGAATGACTCTACGTCTCGGTA -ACGGAATGACTCTACGTCTGCCTA -ACGGAATGACTCTACGTCCCACTA -ACGGAATGACTCTACGTCGGAGTA -ACGGAATGACTCTACGTCTCGTCT -ACGGAATGACTCTACGTCTGCACT -ACGGAATGACTCTACGTCCTGACT -ACGGAATGACTCTACGTCCAACCT -ACGGAATGACTCTACGTCGCTACT -ACGGAATGACTCTACGTCGGATCT -ACGGAATGACTCTACGTCAAGGCT -ACGGAATGACTCTACGTCTCAACC -ACGGAATGACTCTACGTCTGTTCC -ACGGAATGACTCTACGTCATTCCC -ACGGAATGACTCTACGTCTTCTCG -ACGGAATGACTCTACGTCTAGACG -ACGGAATGACTCTACGTCGTAACG -ACGGAATGACTCTACGTCACTTCG -ACGGAATGACTCTACGTCTACGCA -ACGGAATGACTCTACGTCCTTGCA -ACGGAATGACTCTACGTCCGAACA -ACGGAATGACTCTACGTCCAGTCA -ACGGAATGACTCTACGTCGATCCA -ACGGAATGACTCTACGTCACGACA -ACGGAATGACTCTACGTCAGCTCA -ACGGAATGACTCTACGTCTCACGT -ACGGAATGACTCTACGTCCGTAGT -ACGGAATGACTCTACGTCGTCAGT -ACGGAATGACTCTACGTCGAAGGT -ACGGAATGACTCTACGTCAACCGT -ACGGAATGACTCTACGTCTTGTGC -ACGGAATGACTCTACGTCCTAAGC -ACGGAATGACTCTACGTCACTAGC -ACGGAATGACTCTACGTCAGATGC -ACGGAATGACTCTACGTCTGAAGG -ACGGAATGACTCTACGTCCAATGG -ACGGAATGACTCTACGTCATGAGG -ACGGAATGACTCTACGTCAATGGG -ACGGAATGACTCTACGTCTCCTGA -ACGGAATGACTCTACGTCTAGCGA -ACGGAATGACTCTACGTCCACAGA -ACGGAATGACTCTACGTCGCAAGA -ACGGAATGACTCTACGTCGGTTGA -ACGGAATGACTCTACGTCTCCGAT -ACGGAATGACTCTACGTCTGGCAT -ACGGAATGACTCTACGTCCGAGAT -ACGGAATGACTCTACGTCTACCAC -ACGGAATGACTCTACGTCCAGAAC -ACGGAATGACTCTACGTCGTCTAC -ACGGAATGACTCTACGTCACGTAC -ACGGAATGACTCTACGTCAGTGAC -ACGGAATGACTCTACGTCCTGTAG -ACGGAATGACTCTACGTCCCTAAG -ACGGAATGACTCTACGTCGTTCAG -ACGGAATGACTCTACGTCGCATAG -ACGGAATGACTCTACGTCGACAAG -ACGGAATGACTCTACGTCAAGCAG -ACGGAATGACTCTACGTCCGTCAA -ACGGAATGACTCTACGTCGCTGAA -ACGGAATGACTCTACGTCAGTACG -ACGGAATGACTCTACGTCATCCGA -ACGGAATGACTCTACGTCATGGGA -ACGGAATGACTCTACGTCGTGCAA -ACGGAATGACTCTACGTCGAGGAA -ACGGAATGACTCTACGTCCAGGTA -ACGGAATGACTCTACGTCGACTCT -ACGGAATGACTCTACGTCAGTCCT -ACGGAATGACTCTACGTCTAAGCC -ACGGAATGACTCTACGTCATAGCC -ACGGAATGACTCTACGTCTAACCG -ACGGAATGACTCTACGTCATGCCA -ACGGAATGACTCTACACGGGAAAC -ACGGAATGACTCTACACGAACACC -ACGGAATGACTCTACACGATCGAG -ACGGAATGACTCTACACGCTCCTT -ACGGAATGACTCTACACGCCTGTT -ACGGAATGACTCTACACGCGGTTT -ACGGAATGACTCTACACGGTGGTT -ACGGAATGACTCTACACGGCCTTT -ACGGAATGACTCTACACGGGTCTT -ACGGAATGACTCTACACGACGCTT -ACGGAATGACTCTACACGAGCGTT -ACGGAATGACTCTACACGTTCGTC -ACGGAATGACTCTACACGTCTCTC -ACGGAATGACTCTACACGTGGATC -ACGGAATGACTCTACACGCACTTC -ACGGAATGACTCTACACGGTACTC -ACGGAATGACTCTACACGGATGTC -ACGGAATGACTCTACACGACAGTC -ACGGAATGACTCTACACGTTGCTG -ACGGAATGACTCTACACGTCCATG -ACGGAATGACTCTACACGTGTGTG -ACGGAATGACTCTACACGCTAGTG -ACGGAATGACTCTACACGCATCTG -ACGGAATGACTCTACACGGAGTTG -ACGGAATGACTCTACACGAGACTG -ACGGAATGACTCTACACGTCGGTA -ACGGAATGACTCTACACGTGCCTA -ACGGAATGACTCTACACGCCACTA -ACGGAATGACTCTACACGGGAGTA -ACGGAATGACTCTACACGTCGTCT -ACGGAATGACTCTACACGTGCACT -ACGGAATGACTCTACACGCTGACT -ACGGAATGACTCTACACGCAACCT -ACGGAATGACTCTACACGGCTACT -ACGGAATGACTCTACACGGGATCT -ACGGAATGACTCTACACGAAGGCT -ACGGAATGACTCTACACGTCAACC -ACGGAATGACTCTACACGTGTTCC -ACGGAATGACTCTACACGATTCCC -ACGGAATGACTCTACACGTTCTCG -ACGGAATGACTCTACACGTAGACG -ACGGAATGACTCTACACGGTAACG -ACGGAATGACTCTACACGACTTCG -ACGGAATGACTCTACACGTACGCA -ACGGAATGACTCTACACGCTTGCA -ACGGAATGACTCTACACGCGAACA -ACGGAATGACTCTACACGCAGTCA -ACGGAATGACTCTACACGGATCCA -ACGGAATGACTCTACACGACGACA -ACGGAATGACTCTACACGAGCTCA -ACGGAATGACTCTACACGTCACGT -ACGGAATGACTCTACACGCGTAGT -ACGGAATGACTCTACACGGTCAGT -ACGGAATGACTCTACACGGAAGGT -ACGGAATGACTCTACACGAACCGT -ACGGAATGACTCTACACGTTGTGC -ACGGAATGACTCTACACGCTAAGC -ACGGAATGACTCTACACGACTAGC -ACGGAATGACTCTACACGAGATGC -ACGGAATGACTCTACACGTGAAGG -ACGGAATGACTCTACACGCAATGG -ACGGAATGACTCTACACGATGAGG -ACGGAATGACTCTACACGAATGGG -ACGGAATGACTCTACACGTCCTGA -ACGGAATGACTCTACACGTAGCGA -ACGGAATGACTCTACACGCACAGA -ACGGAATGACTCTACACGGCAAGA -ACGGAATGACTCTACACGGGTTGA -ACGGAATGACTCTACACGTCCGAT -ACGGAATGACTCTACACGTGGCAT -ACGGAATGACTCTACACGCGAGAT -ACGGAATGACTCTACACGTACCAC -ACGGAATGACTCTACACGCAGAAC -ACGGAATGACTCTACACGGTCTAC -ACGGAATGACTCTACACGACGTAC -ACGGAATGACTCTACACGAGTGAC -ACGGAATGACTCTACACGCTGTAG -ACGGAATGACTCTACACGCCTAAG -ACGGAATGACTCTACACGGTTCAG -ACGGAATGACTCTACACGGCATAG -ACGGAATGACTCTACACGGACAAG -ACGGAATGACTCTACACGAAGCAG -ACGGAATGACTCTACACGCGTCAA -ACGGAATGACTCTACACGGCTGAA -ACGGAATGACTCTACACGAGTACG -ACGGAATGACTCTACACGATCCGA -ACGGAATGACTCTACACGATGGGA -ACGGAATGACTCTACACGGTGCAA -ACGGAATGACTCTACACGGAGGAA -ACGGAATGACTCTACACGCAGGTA -ACGGAATGACTCTACACGGACTCT -ACGGAATGACTCTACACGAGTCCT -ACGGAATGACTCTACACGTAAGCC -ACGGAATGACTCTACACGATAGCC -ACGGAATGACTCTACACGTAACCG -ACGGAATGACTCTACACGATGCCA -ACGGAATGACTCGACAGTGGAAAC -ACGGAATGACTCGACAGTAACACC -ACGGAATGACTCGACAGTATCGAG -ACGGAATGACTCGACAGTCTCCTT -ACGGAATGACTCGACAGTCCTGTT -ACGGAATGACTCGACAGTCGGTTT -ACGGAATGACTCGACAGTGTGGTT -ACGGAATGACTCGACAGTGCCTTT -ACGGAATGACTCGACAGTGGTCTT -ACGGAATGACTCGACAGTACGCTT -ACGGAATGACTCGACAGTAGCGTT -ACGGAATGACTCGACAGTTTCGTC -ACGGAATGACTCGACAGTTCTCTC -ACGGAATGACTCGACAGTTGGATC -ACGGAATGACTCGACAGTCACTTC -ACGGAATGACTCGACAGTGTACTC -ACGGAATGACTCGACAGTGATGTC -ACGGAATGACTCGACAGTACAGTC -ACGGAATGACTCGACAGTTTGCTG -ACGGAATGACTCGACAGTTCCATG -ACGGAATGACTCGACAGTTGTGTG -ACGGAATGACTCGACAGTCTAGTG -ACGGAATGACTCGACAGTCATCTG -ACGGAATGACTCGACAGTGAGTTG -ACGGAATGACTCGACAGTAGACTG -ACGGAATGACTCGACAGTTCGGTA -ACGGAATGACTCGACAGTTGCCTA -ACGGAATGACTCGACAGTCCACTA -ACGGAATGACTCGACAGTGGAGTA -ACGGAATGACTCGACAGTTCGTCT -ACGGAATGACTCGACAGTTGCACT -ACGGAATGACTCGACAGTCTGACT -ACGGAATGACTCGACAGTCAACCT -ACGGAATGACTCGACAGTGCTACT -ACGGAATGACTCGACAGTGGATCT -ACGGAATGACTCGACAGTAAGGCT -ACGGAATGACTCGACAGTTCAACC -ACGGAATGACTCGACAGTTGTTCC -ACGGAATGACTCGACAGTATTCCC -ACGGAATGACTCGACAGTTTCTCG -ACGGAATGACTCGACAGTTAGACG -ACGGAATGACTCGACAGTGTAACG -ACGGAATGACTCGACAGTACTTCG -ACGGAATGACTCGACAGTTACGCA -ACGGAATGACTCGACAGTCTTGCA -ACGGAATGACTCGACAGTCGAACA -ACGGAATGACTCGACAGTCAGTCA -ACGGAATGACTCGACAGTGATCCA -ACGGAATGACTCGACAGTACGACA -ACGGAATGACTCGACAGTAGCTCA -ACGGAATGACTCGACAGTTCACGT -ACGGAATGACTCGACAGTCGTAGT -ACGGAATGACTCGACAGTGTCAGT -ACGGAATGACTCGACAGTGAAGGT -ACGGAATGACTCGACAGTAACCGT -ACGGAATGACTCGACAGTTTGTGC -ACGGAATGACTCGACAGTCTAAGC -ACGGAATGACTCGACAGTACTAGC -ACGGAATGACTCGACAGTAGATGC -ACGGAATGACTCGACAGTTGAAGG -ACGGAATGACTCGACAGTCAATGG -ACGGAATGACTCGACAGTATGAGG -ACGGAATGACTCGACAGTAATGGG -ACGGAATGACTCGACAGTTCCTGA -ACGGAATGACTCGACAGTTAGCGA -ACGGAATGACTCGACAGTCACAGA -ACGGAATGACTCGACAGTGCAAGA -ACGGAATGACTCGACAGTGGTTGA -ACGGAATGACTCGACAGTTCCGAT -ACGGAATGACTCGACAGTTGGCAT -ACGGAATGACTCGACAGTCGAGAT -ACGGAATGACTCGACAGTTACCAC -ACGGAATGACTCGACAGTCAGAAC -ACGGAATGACTCGACAGTGTCTAC -ACGGAATGACTCGACAGTACGTAC -ACGGAATGACTCGACAGTAGTGAC -ACGGAATGACTCGACAGTCTGTAG -ACGGAATGACTCGACAGTCCTAAG -ACGGAATGACTCGACAGTGTTCAG -ACGGAATGACTCGACAGTGCATAG -ACGGAATGACTCGACAGTGACAAG -ACGGAATGACTCGACAGTAAGCAG -ACGGAATGACTCGACAGTCGTCAA -ACGGAATGACTCGACAGTGCTGAA -ACGGAATGACTCGACAGTAGTACG -ACGGAATGACTCGACAGTATCCGA -ACGGAATGACTCGACAGTATGGGA -ACGGAATGACTCGACAGTGTGCAA -ACGGAATGACTCGACAGTGAGGAA -ACGGAATGACTCGACAGTCAGGTA -ACGGAATGACTCGACAGTGACTCT -ACGGAATGACTCGACAGTAGTCCT -ACGGAATGACTCGACAGTTAAGCC -ACGGAATGACTCGACAGTATAGCC -ACGGAATGACTCGACAGTTAACCG -ACGGAATGACTCGACAGTATGCCA -ACGGAATGACTCTAGCTGGGAAAC -ACGGAATGACTCTAGCTGAACACC -ACGGAATGACTCTAGCTGATCGAG -ACGGAATGACTCTAGCTGCTCCTT -ACGGAATGACTCTAGCTGCCTGTT -ACGGAATGACTCTAGCTGCGGTTT -ACGGAATGACTCTAGCTGGTGGTT -ACGGAATGACTCTAGCTGGCCTTT -ACGGAATGACTCTAGCTGGGTCTT -ACGGAATGACTCTAGCTGACGCTT -ACGGAATGACTCTAGCTGAGCGTT -ACGGAATGACTCTAGCTGTTCGTC -ACGGAATGACTCTAGCTGTCTCTC -ACGGAATGACTCTAGCTGTGGATC -ACGGAATGACTCTAGCTGCACTTC -ACGGAATGACTCTAGCTGGTACTC -ACGGAATGACTCTAGCTGGATGTC -ACGGAATGACTCTAGCTGACAGTC -ACGGAATGACTCTAGCTGTTGCTG -ACGGAATGACTCTAGCTGTCCATG -ACGGAATGACTCTAGCTGTGTGTG -ACGGAATGACTCTAGCTGCTAGTG -ACGGAATGACTCTAGCTGCATCTG -ACGGAATGACTCTAGCTGGAGTTG -ACGGAATGACTCTAGCTGAGACTG -ACGGAATGACTCTAGCTGTCGGTA -ACGGAATGACTCTAGCTGTGCCTA -ACGGAATGACTCTAGCTGCCACTA -ACGGAATGACTCTAGCTGGGAGTA -ACGGAATGACTCTAGCTGTCGTCT -ACGGAATGACTCTAGCTGTGCACT -ACGGAATGACTCTAGCTGCTGACT -ACGGAATGACTCTAGCTGCAACCT -ACGGAATGACTCTAGCTGGCTACT -ACGGAATGACTCTAGCTGGGATCT -ACGGAATGACTCTAGCTGAAGGCT -ACGGAATGACTCTAGCTGTCAACC -ACGGAATGACTCTAGCTGTGTTCC -ACGGAATGACTCTAGCTGATTCCC -ACGGAATGACTCTAGCTGTTCTCG -ACGGAATGACTCTAGCTGTAGACG -ACGGAATGACTCTAGCTGGTAACG -ACGGAATGACTCTAGCTGACTTCG -ACGGAATGACTCTAGCTGTACGCA -ACGGAATGACTCTAGCTGCTTGCA -ACGGAATGACTCTAGCTGCGAACA -ACGGAATGACTCTAGCTGCAGTCA -ACGGAATGACTCTAGCTGGATCCA -ACGGAATGACTCTAGCTGACGACA -ACGGAATGACTCTAGCTGAGCTCA -ACGGAATGACTCTAGCTGTCACGT -ACGGAATGACTCTAGCTGCGTAGT -ACGGAATGACTCTAGCTGGTCAGT -ACGGAATGACTCTAGCTGGAAGGT -ACGGAATGACTCTAGCTGAACCGT -ACGGAATGACTCTAGCTGTTGTGC -ACGGAATGACTCTAGCTGCTAAGC -ACGGAATGACTCTAGCTGACTAGC -ACGGAATGACTCTAGCTGAGATGC -ACGGAATGACTCTAGCTGTGAAGG -ACGGAATGACTCTAGCTGCAATGG -ACGGAATGACTCTAGCTGATGAGG -ACGGAATGACTCTAGCTGAATGGG -ACGGAATGACTCTAGCTGTCCTGA -ACGGAATGACTCTAGCTGTAGCGA -ACGGAATGACTCTAGCTGCACAGA -ACGGAATGACTCTAGCTGGCAAGA -ACGGAATGACTCTAGCTGGGTTGA -ACGGAATGACTCTAGCTGTCCGAT -ACGGAATGACTCTAGCTGTGGCAT -ACGGAATGACTCTAGCTGCGAGAT -ACGGAATGACTCTAGCTGTACCAC -ACGGAATGACTCTAGCTGCAGAAC -ACGGAATGACTCTAGCTGGTCTAC -ACGGAATGACTCTAGCTGACGTAC -ACGGAATGACTCTAGCTGAGTGAC -ACGGAATGACTCTAGCTGCTGTAG -ACGGAATGACTCTAGCTGCCTAAG -ACGGAATGACTCTAGCTGGTTCAG -ACGGAATGACTCTAGCTGGCATAG -ACGGAATGACTCTAGCTGGACAAG -ACGGAATGACTCTAGCTGAAGCAG -ACGGAATGACTCTAGCTGCGTCAA -ACGGAATGACTCTAGCTGGCTGAA -ACGGAATGACTCTAGCTGAGTACG -ACGGAATGACTCTAGCTGATCCGA -ACGGAATGACTCTAGCTGATGGGA -ACGGAATGACTCTAGCTGGTGCAA -ACGGAATGACTCTAGCTGGAGGAA -ACGGAATGACTCTAGCTGCAGGTA -ACGGAATGACTCTAGCTGGACTCT -ACGGAATGACTCTAGCTGAGTCCT -ACGGAATGACTCTAGCTGTAAGCC -ACGGAATGACTCTAGCTGATAGCC -ACGGAATGACTCTAGCTGTAACCG -ACGGAATGACTCTAGCTGATGCCA -ACGGAATGACTCAAGCCTGGAAAC -ACGGAATGACTCAAGCCTAACACC -ACGGAATGACTCAAGCCTATCGAG -ACGGAATGACTCAAGCCTCTCCTT -ACGGAATGACTCAAGCCTCCTGTT -ACGGAATGACTCAAGCCTCGGTTT -ACGGAATGACTCAAGCCTGTGGTT -ACGGAATGACTCAAGCCTGCCTTT -ACGGAATGACTCAAGCCTGGTCTT -ACGGAATGACTCAAGCCTACGCTT -ACGGAATGACTCAAGCCTAGCGTT -ACGGAATGACTCAAGCCTTTCGTC -ACGGAATGACTCAAGCCTTCTCTC -ACGGAATGACTCAAGCCTTGGATC -ACGGAATGACTCAAGCCTCACTTC -ACGGAATGACTCAAGCCTGTACTC -ACGGAATGACTCAAGCCTGATGTC -ACGGAATGACTCAAGCCTACAGTC -ACGGAATGACTCAAGCCTTTGCTG -ACGGAATGACTCAAGCCTTCCATG -ACGGAATGACTCAAGCCTTGTGTG -ACGGAATGACTCAAGCCTCTAGTG -ACGGAATGACTCAAGCCTCATCTG -ACGGAATGACTCAAGCCTGAGTTG -ACGGAATGACTCAAGCCTAGACTG -ACGGAATGACTCAAGCCTTCGGTA -ACGGAATGACTCAAGCCTTGCCTA -ACGGAATGACTCAAGCCTCCACTA -ACGGAATGACTCAAGCCTGGAGTA -ACGGAATGACTCAAGCCTTCGTCT -ACGGAATGACTCAAGCCTTGCACT -ACGGAATGACTCAAGCCTCTGACT -ACGGAATGACTCAAGCCTCAACCT -ACGGAATGACTCAAGCCTGCTACT -ACGGAATGACTCAAGCCTGGATCT -ACGGAATGACTCAAGCCTAAGGCT -ACGGAATGACTCAAGCCTTCAACC -ACGGAATGACTCAAGCCTTGTTCC -ACGGAATGACTCAAGCCTATTCCC -ACGGAATGACTCAAGCCTTTCTCG -ACGGAATGACTCAAGCCTTAGACG -ACGGAATGACTCAAGCCTGTAACG -ACGGAATGACTCAAGCCTACTTCG -ACGGAATGACTCAAGCCTTACGCA -ACGGAATGACTCAAGCCTCTTGCA -ACGGAATGACTCAAGCCTCGAACA -ACGGAATGACTCAAGCCTCAGTCA -ACGGAATGACTCAAGCCTGATCCA -ACGGAATGACTCAAGCCTACGACA -ACGGAATGACTCAAGCCTAGCTCA -ACGGAATGACTCAAGCCTTCACGT -ACGGAATGACTCAAGCCTCGTAGT -ACGGAATGACTCAAGCCTGTCAGT -ACGGAATGACTCAAGCCTGAAGGT -ACGGAATGACTCAAGCCTAACCGT -ACGGAATGACTCAAGCCTTTGTGC -ACGGAATGACTCAAGCCTCTAAGC -ACGGAATGACTCAAGCCTACTAGC -ACGGAATGACTCAAGCCTAGATGC -ACGGAATGACTCAAGCCTTGAAGG -ACGGAATGACTCAAGCCTCAATGG -ACGGAATGACTCAAGCCTATGAGG -ACGGAATGACTCAAGCCTAATGGG -ACGGAATGACTCAAGCCTTCCTGA -ACGGAATGACTCAAGCCTTAGCGA -ACGGAATGACTCAAGCCTCACAGA -ACGGAATGACTCAAGCCTGCAAGA -ACGGAATGACTCAAGCCTGGTTGA -ACGGAATGACTCAAGCCTTCCGAT -ACGGAATGACTCAAGCCTTGGCAT -ACGGAATGACTCAAGCCTCGAGAT -ACGGAATGACTCAAGCCTTACCAC -ACGGAATGACTCAAGCCTCAGAAC -ACGGAATGACTCAAGCCTGTCTAC -ACGGAATGACTCAAGCCTACGTAC -ACGGAATGACTCAAGCCTAGTGAC -ACGGAATGACTCAAGCCTCTGTAG -ACGGAATGACTCAAGCCTCCTAAG -ACGGAATGACTCAAGCCTGTTCAG -ACGGAATGACTCAAGCCTGCATAG -ACGGAATGACTCAAGCCTGACAAG -ACGGAATGACTCAAGCCTAAGCAG -ACGGAATGACTCAAGCCTCGTCAA -ACGGAATGACTCAAGCCTGCTGAA -ACGGAATGACTCAAGCCTAGTACG -ACGGAATGACTCAAGCCTATCCGA -ACGGAATGACTCAAGCCTATGGGA -ACGGAATGACTCAAGCCTGTGCAA -ACGGAATGACTCAAGCCTGAGGAA -ACGGAATGACTCAAGCCTCAGGTA -ACGGAATGACTCAAGCCTGACTCT -ACGGAATGACTCAAGCCTAGTCCT -ACGGAATGACTCAAGCCTTAAGCC -ACGGAATGACTCAAGCCTATAGCC -ACGGAATGACTCAAGCCTTAACCG -ACGGAATGACTCAAGCCTATGCCA -ACGGAATGACTCCAGGTTGGAAAC -ACGGAATGACTCCAGGTTAACACC -ACGGAATGACTCCAGGTTATCGAG -ACGGAATGACTCCAGGTTCTCCTT -ACGGAATGACTCCAGGTTCCTGTT -ACGGAATGACTCCAGGTTCGGTTT -ACGGAATGACTCCAGGTTGTGGTT -ACGGAATGACTCCAGGTTGCCTTT -ACGGAATGACTCCAGGTTGGTCTT -ACGGAATGACTCCAGGTTACGCTT -ACGGAATGACTCCAGGTTAGCGTT -ACGGAATGACTCCAGGTTTTCGTC -ACGGAATGACTCCAGGTTTCTCTC -ACGGAATGACTCCAGGTTTGGATC -ACGGAATGACTCCAGGTTCACTTC -ACGGAATGACTCCAGGTTGTACTC -ACGGAATGACTCCAGGTTGATGTC -ACGGAATGACTCCAGGTTACAGTC -ACGGAATGACTCCAGGTTTTGCTG -ACGGAATGACTCCAGGTTTCCATG -ACGGAATGACTCCAGGTTTGTGTG -ACGGAATGACTCCAGGTTCTAGTG -ACGGAATGACTCCAGGTTCATCTG -ACGGAATGACTCCAGGTTGAGTTG -ACGGAATGACTCCAGGTTAGACTG -ACGGAATGACTCCAGGTTTCGGTA -ACGGAATGACTCCAGGTTTGCCTA -ACGGAATGACTCCAGGTTCCACTA -ACGGAATGACTCCAGGTTGGAGTA -ACGGAATGACTCCAGGTTTCGTCT -ACGGAATGACTCCAGGTTTGCACT -ACGGAATGACTCCAGGTTCTGACT -ACGGAATGACTCCAGGTTCAACCT -ACGGAATGACTCCAGGTTGCTACT -ACGGAATGACTCCAGGTTGGATCT -ACGGAATGACTCCAGGTTAAGGCT -ACGGAATGACTCCAGGTTTCAACC -ACGGAATGACTCCAGGTTTGTTCC -ACGGAATGACTCCAGGTTATTCCC -ACGGAATGACTCCAGGTTTTCTCG -ACGGAATGACTCCAGGTTTAGACG -ACGGAATGACTCCAGGTTGTAACG -ACGGAATGACTCCAGGTTACTTCG -ACGGAATGACTCCAGGTTTACGCA -ACGGAATGACTCCAGGTTCTTGCA -ACGGAATGACTCCAGGTTCGAACA -ACGGAATGACTCCAGGTTCAGTCA -ACGGAATGACTCCAGGTTGATCCA -ACGGAATGACTCCAGGTTACGACA -ACGGAATGACTCCAGGTTAGCTCA -ACGGAATGACTCCAGGTTTCACGT -ACGGAATGACTCCAGGTTCGTAGT -ACGGAATGACTCCAGGTTGTCAGT -ACGGAATGACTCCAGGTTGAAGGT -ACGGAATGACTCCAGGTTAACCGT -ACGGAATGACTCCAGGTTTTGTGC -ACGGAATGACTCCAGGTTCTAAGC -ACGGAATGACTCCAGGTTACTAGC -ACGGAATGACTCCAGGTTAGATGC -ACGGAATGACTCCAGGTTTGAAGG -ACGGAATGACTCCAGGTTCAATGG -ACGGAATGACTCCAGGTTATGAGG -ACGGAATGACTCCAGGTTAATGGG -ACGGAATGACTCCAGGTTTCCTGA -ACGGAATGACTCCAGGTTTAGCGA -ACGGAATGACTCCAGGTTCACAGA -ACGGAATGACTCCAGGTTGCAAGA -ACGGAATGACTCCAGGTTGGTTGA -ACGGAATGACTCCAGGTTTCCGAT -ACGGAATGACTCCAGGTTTGGCAT -ACGGAATGACTCCAGGTTCGAGAT -ACGGAATGACTCCAGGTTTACCAC -ACGGAATGACTCCAGGTTCAGAAC -ACGGAATGACTCCAGGTTGTCTAC -ACGGAATGACTCCAGGTTACGTAC -ACGGAATGACTCCAGGTTAGTGAC -ACGGAATGACTCCAGGTTCTGTAG -ACGGAATGACTCCAGGTTCCTAAG -ACGGAATGACTCCAGGTTGTTCAG -ACGGAATGACTCCAGGTTGCATAG -ACGGAATGACTCCAGGTTGACAAG -ACGGAATGACTCCAGGTTAAGCAG -ACGGAATGACTCCAGGTTCGTCAA -ACGGAATGACTCCAGGTTGCTGAA -ACGGAATGACTCCAGGTTAGTACG -ACGGAATGACTCCAGGTTATCCGA -ACGGAATGACTCCAGGTTATGGGA -ACGGAATGACTCCAGGTTGTGCAA -ACGGAATGACTCCAGGTTGAGGAA -ACGGAATGACTCCAGGTTCAGGTA -ACGGAATGACTCCAGGTTGACTCT -ACGGAATGACTCCAGGTTAGTCCT -ACGGAATGACTCCAGGTTTAAGCC -ACGGAATGACTCCAGGTTATAGCC -ACGGAATGACTCCAGGTTTAACCG -ACGGAATGACTCCAGGTTATGCCA -ACGGAATGACTCTAGGCAGGAAAC -ACGGAATGACTCTAGGCAAACACC -ACGGAATGACTCTAGGCAATCGAG -ACGGAATGACTCTAGGCACTCCTT -ACGGAATGACTCTAGGCACCTGTT -ACGGAATGACTCTAGGCACGGTTT -ACGGAATGACTCTAGGCAGTGGTT -ACGGAATGACTCTAGGCAGCCTTT -ACGGAATGACTCTAGGCAGGTCTT -ACGGAATGACTCTAGGCAACGCTT -ACGGAATGACTCTAGGCAAGCGTT -ACGGAATGACTCTAGGCATTCGTC -ACGGAATGACTCTAGGCATCTCTC -ACGGAATGACTCTAGGCATGGATC -ACGGAATGACTCTAGGCACACTTC -ACGGAATGACTCTAGGCAGTACTC -ACGGAATGACTCTAGGCAGATGTC -ACGGAATGACTCTAGGCAACAGTC -ACGGAATGACTCTAGGCATTGCTG -ACGGAATGACTCTAGGCATCCATG -ACGGAATGACTCTAGGCATGTGTG -ACGGAATGACTCTAGGCACTAGTG -ACGGAATGACTCTAGGCACATCTG -ACGGAATGACTCTAGGCAGAGTTG -ACGGAATGACTCTAGGCAAGACTG -ACGGAATGACTCTAGGCATCGGTA -ACGGAATGACTCTAGGCATGCCTA -ACGGAATGACTCTAGGCACCACTA -ACGGAATGACTCTAGGCAGGAGTA -ACGGAATGACTCTAGGCATCGTCT -ACGGAATGACTCTAGGCATGCACT -ACGGAATGACTCTAGGCACTGACT -ACGGAATGACTCTAGGCACAACCT -ACGGAATGACTCTAGGCAGCTACT -ACGGAATGACTCTAGGCAGGATCT -ACGGAATGACTCTAGGCAAAGGCT -ACGGAATGACTCTAGGCATCAACC -ACGGAATGACTCTAGGCATGTTCC -ACGGAATGACTCTAGGCAATTCCC -ACGGAATGACTCTAGGCATTCTCG -ACGGAATGACTCTAGGCATAGACG -ACGGAATGACTCTAGGCAGTAACG -ACGGAATGACTCTAGGCAACTTCG -ACGGAATGACTCTAGGCATACGCA -ACGGAATGACTCTAGGCACTTGCA -ACGGAATGACTCTAGGCACGAACA -ACGGAATGACTCTAGGCACAGTCA -ACGGAATGACTCTAGGCAGATCCA -ACGGAATGACTCTAGGCAACGACA -ACGGAATGACTCTAGGCAAGCTCA -ACGGAATGACTCTAGGCATCACGT -ACGGAATGACTCTAGGCACGTAGT -ACGGAATGACTCTAGGCAGTCAGT -ACGGAATGACTCTAGGCAGAAGGT -ACGGAATGACTCTAGGCAAACCGT -ACGGAATGACTCTAGGCATTGTGC -ACGGAATGACTCTAGGCACTAAGC -ACGGAATGACTCTAGGCAACTAGC -ACGGAATGACTCTAGGCAAGATGC -ACGGAATGACTCTAGGCATGAAGG -ACGGAATGACTCTAGGCACAATGG -ACGGAATGACTCTAGGCAATGAGG -ACGGAATGACTCTAGGCAAATGGG -ACGGAATGACTCTAGGCATCCTGA -ACGGAATGACTCTAGGCATAGCGA -ACGGAATGACTCTAGGCACACAGA -ACGGAATGACTCTAGGCAGCAAGA -ACGGAATGACTCTAGGCAGGTTGA -ACGGAATGACTCTAGGCATCCGAT -ACGGAATGACTCTAGGCATGGCAT -ACGGAATGACTCTAGGCACGAGAT -ACGGAATGACTCTAGGCATACCAC -ACGGAATGACTCTAGGCACAGAAC -ACGGAATGACTCTAGGCAGTCTAC -ACGGAATGACTCTAGGCAACGTAC -ACGGAATGACTCTAGGCAAGTGAC -ACGGAATGACTCTAGGCACTGTAG -ACGGAATGACTCTAGGCACCTAAG -ACGGAATGACTCTAGGCAGTTCAG -ACGGAATGACTCTAGGCAGCATAG -ACGGAATGACTCTAGGCAGACAAG -ACGGAATGACTCTAGGCAAAGCAG -ACGGAATGACTCTAGGCACGTCAA -ACGGAATGACTCTAGGCAGCTGAA -ACGGAATGACTCTAGGCAAGTACG -ACGGAATGACTCTAGGCAATCCGA -ACGGAATGACTCTAGGCAATGGGA -ACGGAATGACTCTAGGCAGTGCAA -ACGGAATGACTCTAGGCAGAGGAA -ACGGAATGACTCTAGGCACAGGTA -ACGGAATGACTCTAGGCAGACTCT -ACGGAATGACTCTAGGCAAGTCCT -ACGGAATGACTCTAGGCATAAGCC -ACGGAATGACTCTAGGCAATAGCC -ACGGAATGACTCTAGGCATAACCG -ACGGAATGACTCTAGGCAATGCCA -ACGGAATGACTCAAGGACGGAAAC -ACGGAATGACTCAAGGACAACACC -ACGGAATGACTCAAGGACATCGAG -ACGGAATGACTCAAGGACCTCCTT -ACGGAATGACTCAAGGACCCTGTT -ACGGAATGACTCAAGGACCGGTTT -ACGGAATGACTCAAGGACGTGGTT -ACGGAATGACTCAAGGACGCCTTT -ACGGAATGACTCAAGGACGGTCTT -ACGGAATGACTCAAGGACACGCTT -ACGGAATGACTCAAGGACAGCGTT -ACGGAATGACTCAAGGACTTCGTC -ACGGAATGACTCAAGGACTCTCTC -ACGGAATGACTCAAGGACTGGATC -ACGGAATGACTCAAGGACCACTTC -ACGGAATGACTCAAGGACGTACTC -ACGGAATGACTCAAGGACGATGTC -ACGGAATGACTCAAGGACACAGTC -ACGGAATGACTCAAGGACTTGCTG -ACGGAATGACTCAAGGACTCCATG -ACGGAATGACTCAAGGACTGTGTG -ACGGAATGACTCAAGGACCTAGTG -ACGGAATGACTCAAGGACCATCTG -ACGGAATGACTCAAGGACGAGTTG -ACGGAATGACTCAAGGACAGACTG -ACGGAATGACTCAAGGACTCGGTA -ACGGAATGACTCAAGGACTGCCTA -ACGGAATGACTCAAGGACCCACTA -ACGGAATGACTCAAGGACGGAGTA -ACGGAATGACTCAAGGACTCGTCT -ACGGAATGACTCAAGGACTGCACT -ACGGAATGACTCAAGGACCTGACT -ACGGAATGACTCAAGGACCAACCT -ACGGAATGACTCAAGGACGCTACT -ACGGAATGACTCAAGGACGGATCT -ACGGAATGACTCAAGGACAAGGCT -ACGGAATGACTCAAGGACTCAACC -ACGGAATGACTCAAGGACTGTTCC -ACGGAATGACTCAAGGACATTCCC -ACGGAATGACTCAAGGACTTCTCG -ACGGAATGACTCAAGGACTAGACG -ACGGAATGACTCAAGGACGTAACG -ACGGAATGACTCAAGGACACTTCG -ACGGAATGACTCAAGGACTACGCA -ACGGAATGACTCAAGGACCTTGCA -ACGGAATGACTCAAGGACCGAACA -ACGGAATGACTCAAGGACCAGTCA -ACGGAATGACTCAAGGACGATCCA -ACGGAATGACTCAAGGACACGACA -ACGGAATGACTCAAGGACAGCTCA -ACGGAATGACTCAAGGACTCACGT -ACGGAATGACTCAAGGACCGTAGT -ACGGAATGACTCAAGGACGTCAGT -ACGGAATGACTCAAGGACGAAGGT -ACGGAATGACTCAAGGACAACCGT -ACGGAATGACTCAAGGACTTGTGC -ACGGAATGACTCAAGGACCTAAGC -ACGGAATGACTCAAGGACACTAGC -ACGGAATGACTCAAGGACAGATGC -ACGGAATGACTCAAGGACTGAAGG -ACGGAATGACTCAAGGACCAATGG -ACGGAATGACTCAAGGACATGAGG -ACGGAATGACTCAAGGACAATGGG -ACGGAATGACTCAAGGACTCCTGA -ACGGAATGACTCAAGGACTAGCGA -ACGGAATGACTCAAGGACCACAGA -ACGGAATGACTCAAGGACGCAAGA -ACGGAATGACTCAAGGACGGTTGA -ACGGAATGACTCAAGGACTCCGAT -ACGGAATGACTCAAGGACTGGCAT -ACGGAATGACTCAAGGACCGAGAT -ACGGAATGACTCAAGGACTACCAC -ACGGAATGACTCAAGGACCAGAAC -ACGGAATGACTCAAGGACGTCTAC -ACGGAATGACTCAAGGACACGTAC -ACGGAATGACTCAAGGACAGTGAC -ACGGAATGACTCAAGGACCTGTAG -ACGGAATGACTCAAGGACCCTAAG -ACGGAATGACTCAAGGACGTTCAG -ACGGAATGACTCAAGGACGCATAG -ACGGAATGACTCAAGGACGACAAG -ACGGAATGACTCAAGGACAAGCAG -ACGGAATGACTCAAGGACCGTCAA -ACGGAATGACTCAAGGACGCTGAA -ACGGAATGACTCAAGGACAGTACG -ACGGAATGACTCAAGGACATCCGA -ACGGAATGACTCAAGGACATGGGA -ACGGAATGACTCAAGGACGTGCAA -ACGGAATGACTCAAGGACGAGGAA -ACGGAATGACTCAAGGACCAGGTA -ACGGAATGACTCAAGGACGACTCT -ACGGAATGACTCAAGGACAGTCCT -ACGGAATGACTCAAGGACTAAGCC -ACGGAATGACTCAAGGACATAGCC -ACGGAATGACTCAAGGACTAACCG -ACGGAATGACTCAAGGACATGCCA -ACGGAATGACTCCAGAAGGGAAAC -ACGGAATGACTCCAGAAGAACACC -ACGGAATGACTCCAGAAGATCGAG -ACGGAATGACTCCAGAAGCTCCTT -ACGGAATGACTCCAGAAGCCTGTT -ACGGAATGACTCCAGAAGCGGTTT -ACGGAATGACTCCAGAAGGTGGTT -ACGGAATGACTCCAGAAGGCCTTT -ACGGAATGACTCCAGAAGGGTCTT -ACGGAATGACTCCAGAAGACGCTT -ACGGAATGACTCCAGAAGAGCGTT -ACGGAATGACTCCAGAAGTTCGTC -ACGGAATGACTCCAGAAGTCTCTC -ACGGAATGACTCCAGAAGTGGATC -ACGGAATGACTCCAGAAGCACTTC -ACGGAATGACTCCAGAAGGTACTC -ACGGAATGACTCCAGAAGGATGTC -ACGGAATGACTCCAGAAGACAGTC -ACGGAATGACTCCAGAAGTTGCTG -ACGGAATGACTCCAGAAGTCCATG -ACGGAATGACTCCAGAAGTGTGTG -ACGGAATGACTCCAGAAGCTAGTG -ACGGAATGACTCCAGAAGCATCTG -ACGGAATGACTCCAGAAGGAGTTG -ACGGAATGACTCCAGAAGAGACTG -ACGGAATGACTCCAGAAGTCGGTA -ACGGAATGACTCCAGAAGTGCCTA -ACGGAATGACTCCAGAAGCCACTA -ACGGAATGACTCCAGAAGGGAGTA -ACGGAATGACTCCAGAAGTCGTCT -ACGGAATGACTCCAGAAGTGCACT -ACGGAATGACTCCAGAAGCTGACT -ACGGAATGACTCCAGAAGCAACCT -ACGGAATGACTCCAGAAGGCTACT -ACGGAATGACTCCAGAAGGGATCT -ACGGAATGACTCCAGAAGAAGGCT -ACGGAATGACTCCAGAAGTCAACC -ACGGAATGACTCCAGAAGTGTTCC -ACGGAATGACTCCAGAAGATTCCC -ACGGAATGACTCCAGAAGTTCTCG -ACGGAATGACTCCAGAAGTAGACG -ACGGAATGACTCCAGAAGGTAACG -ACGGAATGACTCCAGAAGACTTCG -ACGGAATGACTCCAGAAGTACGCA -ACGGAATGACTCCAGAAGCTTGCA -ACGGAATGACTCCAGAAGCGAACA -ACGGAATGACTCCAGAAGCAGTCA -ACGGAATGACTCCAGAAGGATCCA -ACGGAATGACTCCAGAAGACGACA -ACGGAATGACTCCAGAAGAGCTCA -ACGGAATGACTCCAGAAGTCACGT -ACGGAATGACTCCAGAAGCGTAGT -ACGGAATGACTCCAGAAGGTCAGT -ACGGAATGACTCCAGAAGGAAGGT -ACGGAATGACTCCAGAAGAACCGT -ACGGAATGACTCCAGAAGTTGTGC -ACGGAATGACTCCAGAAGCTAAGC -ACGGAATGACTCCAGAAGACTAGC -ACGGAATGACTCCAGAAGAGATGC -ACGGAATGACTCCAGAAGTGAAGG -ACGGAATGACTCCAGAAGCAATGG -ACGGAATGACTCCAGAAGATGAGG -ACGGAATGACTCCAGAAGAATGGG -ACGGAATGACTCCAGAAGTCCTGA -ACGGAATGACTCCAGAAGTAGCGA -ACGGAATGACTCCAGAAGCACAGA -ACGGAATGACTCCAGAAGGCAAGA -ACGGAATGACTCCAGAAGGGTTGA -ACGGAATGACTCCAGAAGTCCGAT -ACGGAATGACTCCAGAAGTGGCAT -ACGGAATGACTCCAGAAGCGAGAT -ACGGAATGACTCCAGAAGTACCAC -ACGGAATGACTCCAGAAGCAGAAC -ACGGAATGACTCCAGAAGGTCTAC -ACGGAATGACTCCAGAAGACGTAC -ACGGAATGACTCCAGAAGAGTGAC -ACGGAATGACTCCAGAAGCTGTAG -ACGGAATGACTCCAGAAGCCTAAG -ACGGAATGACTCCAGAAGGTTCAG -ACGGAATGACTCCAGAAGGCATAG -ACGGAATGACTCCAGAAGGACAAG -ACGGAATGACTCCAGAAGAAGCAG -ACGGAATGACTCCAGAAGCGTCAA -ACGGAATGACTCCAGAAGGCTGAA -ACGGAATGACTCCAGAAGAGTACG -ACGGAATGACTCCAGAAGATCCGA -ACGGAATGACTCCAGAAGATGGGA -ACGGAATGACTCCAGAAGGTGCAA -ACGGAATGACTCCAGAAGGAGGAA -ACGGAATGACTCCAGAAGCAGGTA -ACGGAATGACTCCAGAAGGACTCT -ACGGAATGACTCCAGAAGAGTCCT -ACGGAATGACTCCAGAAGTAAGCC -ACGGAATGACTCCAGAAGATAGCC -ACGGAATGACTCCAGAAGTAACCG -ACGGAATGACTCCAGAAGATGCCA -ACGGAATGACTCCAACGTGGAAAC -ACGGAATGACTCCAACGTAACACC -ACGGAATGACTCCAACGTATCGAG -ACGGAATGACTCCAACGTCTCCTT -ACGGAATGACTCCAACGTCCTGTT -ACGGAATGACTCCAACGTCGGTTT -ACGGAATGACTCCAACGTGTGGTT -ACGGAATGACTCCAACGTGCCTTT -ACGGAATGACTCCAACGTGGTCTT -ACGGAATGACTCCAACGTACGCTT -ACGGAATGACTCCAACGTAGCGTT -ACGGAATGACTCCAACGTTTCGTC -ACGGAATGACTCCAACGTTCTCTC -ACGGAATGACTCCAACGTTGGATC -ACGGAATGACTCCAACGTCACTTC -ACGGAATGACTCCAACGTGTACTC -ACGGAATGACTCCAACGTGATGTC -ACGGAATGACTCCAACGTACAGTC -ACGGAATGACTCCAACGTTTGCTG -ACGGAATGACTCCAACGTTCCATG -ACGGAATGACTCCAACGTTGTGTG -ACGGAATGACTCCAACGTCTAGTG -ACGGAATGACTCCAACGTCATCTG -ACGGAATGACTCCAACGTGAGTTG -ACGGAATGACTCCAACGTAGACTG -ACGGAATGACTCCAACGTTCGGTA -ACGGAATGACTCCAACGTTGCCTA -ACGGAATGACTCCAACGTCCACTA -ACGGAATGACTCCAACGTGGAGTA -ACGGAATGACTCCAACGTTCGTCT -ACGGAATGACTCCAACGTTGCACT -ACGGAATGACTCCAACGTCTGACT -ACGGAATGACTCCAACGTCAACCT -ACGGAATGACTCCAACGTGCTACT -ACGGAATGACTCCAACGTGGATCT -ACGGAATGACTCCAACGTAAGGCT -ACGGAATGACTCCAACGTTCAACC -ACGGAATGACTCCAACGTTGTTCC -ACGGAATGACTCCAACGTATTCCC -ACGGAATGACTCCAACGTTTCTCG -ACGGAATGACTCCAACGTTAGACG -ACGGAATGACTCCAACGTGTAACG -ACGGAATGACTCCAACGTACTTCG -ACGGAATGACTCCAACGTTACGCA -ACGGAATGACTCCAACGTCTTGCA -ACGGAATGACTCCAACGTCGAACA -ACGGAATGACTCCAACGTCAGTCA -ACGGAATGACTCCAACGTGATCCA -ACGGAATGACTCCAACGTACGACA -ACGGAATGACTCCAACGTAGCTCA -ACGGAATGACTCCAACGTTCACGT -ACGGAATGACTCCAACGTCGTAGT -ACGGAATGACTCCAACGTGTCAGT -ACGGAATGACTCCAACGTGAAGGT -ACGGAATGACTCCAACGTAACCGT -ACGGAATGACTCCAACGTTTGTGC -ACGGAATGACTCCAACGTCTAAGC -ACGGAATGACTCCAACGTACTAGC -ACGGAATGACTCCAACGTAGATGC -ACGGAATGACTCCAACGTTGAAGG -ACGGAATGACTCCAACGTCAATGG -ACGGAATGACTCCAACGTATGAGG -ACGGAATGACTCCAACGTAATGGG -ACGGAATGACTCCAACGTTCCTGA -ACGGAATGACTCCAACGTTAGCGA -ACGGAATGACTCCAACGTCACAGA -ACGGAATGACTCCAACGTGCAAGA -ACGGAATGACTCCAACGTGGTTGA -ACGGAATGACTCCAACGTTCCGAT -ACGGAATGACTCCAACGTTGGCAT -ACGGAATGACTCCAACGTCGAGAT -ACGGAATGACTCCAACGTTACCAC -ACGGAATGACTCCAACGTCAGAAC -ACGGAATGACTCCAACGTGTCTAC -ACGGAATGACTCCAACGTACGTAC -ACGGAATGACTCCAACGTAGTGAC -ACGGAATGACTCCAACGTCTGTAG -ACGGAATGACTCCAACGTCCTAAG -ACGGAATGACTCCAACGTGTTCAG -ACGGAATGACTCCAACGTGCATAG -ACGGAATGACTCCAACGTGACAAG -ACGGAATGACTCCAACGTAAGCAG -ACGGAATGACTCCAACGTCGTCAA -ACGGAATGACTCCAACGTGCTGAA -ACGGAATGACTCCAACGTAGTACG -ACGGAATGACTCCAACGTATCCGA -ACGGAATGACTCCAACGTATGGGA -ACGGAATGACTCCAACGTGTGCAA -ACGGAATGACTCCAACGTGAGGAA -ACGGAATGACTCCAACGTCAGGTA -ACGGAATGACTCCAACGTGACTCT -ACGGAATGACTCCAACGTAGTCCT -ACGGAATGACTCCAACGTTAAGCC -ACGGAATGACTCCAACGTATAGCC -ACGGAATGACTCCAACGTTAACCG -ACGGAATGACTCCAACGTATGCCA -ACGGAATGACTCGAAGCTGGAAAC -ACGGAATGACTCGAAGCTAACACC -ACGGAATGACTCGAAGCTATCGAG -ACGGAATGACTCGAAGCTCTCCTT -ACGGAATGACTCGAAGCTCCTGTT -ACGGAATGACTCGAAGCTCGGTTT -ACGGAATGACTCGAAGCTGTGGTT -ACGGAATGACTCGAAGCTGCCTTT -ACGGAATGACTCGAAGCTGGTCTT -ACGGAATGACTCGAAGCTACGCTT -ACGGAATGACTCGAAGCTAGCGTT -ACGGAATGACTCGAAGCTTTCGTC -ACGGAATGACTCGAAGCTTCTCTC -ACGGAATGACTCGAAGCTTGGATC -ACGGAATGACTCGAAGCTCACTTC -ACGGAATGACTCGAAGCTGTACTC -ACGGAATGACTCGAAGCTGATGTC -ACGGAATGACTCGAAGCTACAGTC -ACGGAATGACTCGAAGCTTTGCTG -ACGGAATGACTCGAAGCTTCCATG -ACGGAATGACTCGAAGCTTGTGTG -ACGGAATGACTCGAAGCTCTAGTG -ACGGAATGACTCGAAGCTCATCTG -ACGGAATGACTCGAAGCTGAGTTG -ACGGAATGACTCGAAGCTAGACTG -ACGGAATGACTCGAAGCTTCGGTA -ACGGAATGACTCGAAGCTTGCCTA -ACGGAATGACTCGAAGCTCCACTA -ACGGAATGACTCGAAGCTGGAGTA -ACGGAATGACTCGAAGCTTCGTCT -ACGGAATGACTCGAAGCTTGCACT -ACGGAATGACTCGAAGCTCTGACT -ACGGAATGACTCGAAGCTCAACCT -ACGGAATGACTCGAAGCTGCTACT -ACGGAATGACTCGAAGCTGGATCT -ACGGAATGACTCGAAGCTAAGGCT -ACGGAATGACTCGAAGCTTCAACC -ACGGAATGACTCGAAGCTTGTTCC -ACGGAATGACTCGAAGCTATTCCC -ACGGAATGACTCGAAGCTTTCTCG -ACGGAATGACTCGAAGCTTAGACG -ACGGAATGACTCGAAGCTGTAACG -ACGGAATGACTCGAAGCTACTTCG -ACGGAATGACTCGAAGCTTACGCA -ACGGAATGACTCGAAGCTCTTGCA -ACGGAATGACTCGAAGCTCGAACA -ACGGAATGACTCGAAGCTCAGTCA -ACGGAATGACTCGAAGCTGATCCA -ACGGAATGACTCGAAGCTACGACA -ACGGAATGACTCGAAGCTAGCTCA -ACGGAATGACTCGAAGCTTCACGT -ACGGAATGACTCGAAGCTCGTAGT -ACGGAATGACTCGAAGCTGTCAGT -ACGGAATGACTCGAAGCTGAAGGT -ACGGAATGACTCGAAGCTAACCGT -ACGGAATGACTCGAAGCTTTGTGC -ACGGAATGACTCGAAGCTCTAAGC -ACGGAATGACTCGAAGCTACTAGC -ACGGAATGACTCGAAGCTAGATGC -ACGGAATGACTCGAAGCTTGAAGG -ACGGAATGACTCGAAGCTCAATGG -ACGGAATGACTCGAAGCTATGAGG -ACGGAATGACTCGAAGCTAATGGG -ACGGAATGACTCGAAGCTTCCTGA -ACGGAATGACTCGAAGCTTAGCGA -ACGGAATGACTCGAAGCTCACAGA -ACGGAATGACTCGAAGCTGCAAGA -ACGGAATGACTCGAAGCTGGTTGA -ACGGAATGACTCGAAGCTTCCGAT -ACGGAATGACTCGAAGCTTGGCAT -ACGGAATGACTCGAAGCTCGAGAT -ACGGAATGACTCGAAGCTTACCAC -ACGGAATGACTCGAAGCTCAGAAC -ACGGAATGACTCGAAGCTGTCTAC -ACGGAATGACTCGAAGCTACGTAC -ACGGAATGACTCGAAGCTAGTGAC -ACGGAATGACTCGAAGCTCTGTAG -ACGGAATGACTCGAAGCTCCTAAG -ACGGAATGACTCGAAGCTGTTCAG -ACGGAATGACTCGAAGCTGCATAG -ACGGAATGACTCGAAGCTGACAAG -ACGGAATGACTCGAAGCTAAGCAG -ACGGAATGACTCGAAGCTCGTCAA -ACGGAATGACTCGAAGCTGCTGAA -ACGGAATGACTCGAAGCTAGTACG -ACGGAATGACTCGAAGCTATCCGA -ACGGAATGACTCGAAGCTATGGGA -ACGGAATGACTCGAAGCTGTGCAA -ACGGAATGACTCGAAGCTGAGGAA -ACGGAATGACTCGAAGCTCAGGTA -ACGGAATGACTCGAAGCTGACTCT -ACGGAATGACTCGAAGCTAGTCCT -ACGGAATGACTCGAAGCTTAAGCC -ACGGAATGACTCGAAGCTATAGCC -ACGGAATGACTCGAAGCTTAACCG -ACGGAATGACTCGAAGCTATGCCA -ACGGAATGACTCACGAGTGGAAAC -ACGGAATGACTCACGAGTAACACC -ACGGAATGACTCACGAGTATCGAG -ACGGAATGACTCACGAGTCTCCTT -ACGGAATGACTCACGAGTCCTGTT -ACGGAATGACTCACGAGTCGGTTT -ACGGAATGACTCACGAGTGTGGTT -ACGGAATGACTCACGAGTGCCTTT -ACGGAATGACTCACGAGTGGTCTT -ACGGAATGACTCACGAGTACGCTT -ACGGAATGACTCACGAGTAGCGTT -ACGGAATGACTCACGAGTTTCGTC -ACGGAATGACTCACGAGTTCTCTC -ACGGAATGACTCACGAGTTGGATC -ACGGAATGACTCACGAGTCACTTC -ACGGAATGACTCACGAGTGTACTC -ACGGAATGACTCACGAGTGATGTC -ACGGAATGACTCACGAGTACAGTC -ACGGAATGACTCACGAGTTTGCTG -ACGGAATGACTCACGAGTTCCATG -ACGGAATGACTCACGAGTTGTGTG -ACGGAATGACTCACGAGTCTAGTG -ACGGAATGACTCACGAGTCATCTG -ACGGAATGACTCACGAGTGAGTTG -ACGGAATGACTCACGAGTAGACTG -ACGGAATGACTCACGAGTTCGGTA -ACGGAATGACTCACGAGTTGCCTA -ACGGAATGACTCACGAGTCCACTA -ACGGAATGACTCACGAGTGGAGTA -ACGGAATGACTCACGAGTTCGTCT -ACGGAATGACTCACGAGTTGCACT -ACGGAATGACTCACGAGTCTGACT -ACGGAATGACTCACGAGTCAACCT -ACGGAATGACTCACGAGTGCTACT -ACGGAATGACTCACGAGTGGATCT -ACGGAATGACTCACGAGTAAGGCT -ACGGAATGACTCACGAGTTCAACC -ACGGAATGACTCACGAGTTGTTCC -ACGGAATGACTCACGAGTATTCCC -ACGGAATGACTCACGAGTTTCTCG -ACGGAATGACTCACGAGTTAGACG -ACGGAATGACTCACGAGTGTAACG -ACGGAATGACTCACGAGTACTTCG -ACGGAATGACTCACGAGTTACGCA -ACGGAATGACTCACGAGTCTTGCA -ACGGAATGACTCACGAGTCGAACA -ACGGAATGACTCACGAGTCAGTCA -ACGGAATGACTCACGAGTGATCCA -ACGGAATGACTCACGAGTACGACA -ACGGAATGACTCACGAGTAGCTCA -ACGGAATGACTCACGAGTTCACGT -ACGGAATGACTCACGAGTCGTAGT -ACGGAATGACTCACGAGTGTCAGT -ACGGAATGACTCACGAGTGAAGGT -ACGGAATGACTCACGAGTAACCGT -ACGGAATGACTCACGAGTTTGTGC -ACGGAATGACTCACGAGTCTAAGC -ACGGAATGACTCACGAGTACTAGC -ACGGAATGACTCACGAGTAGATGC -ACGGAATGACTCACGAGTTGAAGG -ACGGAATGACTCACGAGTCAATGG -ACGGAATGACTCACGAGTATGAGG -ACGGAATGACTCACGAGTAATGGG -ACGGAATGACTCACGAGTTCCTGA -ACGGAATGACTCACGAGTTAGCGA -ACGGAATGACTCACGAGTCACAGA -ACGGAATGACTCACGAGTGCAAGA -ACGGAATGACTCACGAGTGGTTGA -ACGGAATGACTCACGAGTTCCGAT -ACGGAATGACTCACGAGTTGGCAT -ACGGAATGACTCACGAGTCGAGAT -ACGGAATGACTCACGAGTTACCAC -ACGGAATGACTCACGAGTCAGAAC -ACGGAATGACTCACGAGTGTCTAC -ACGGAATGACTCACGAGTACGTAC -ACGGAATGACTCACGAGTAGTGAC -ACGGAATGACTCACGAGTCTGTAG -ACGGAATGACTCACGAGTCCTAAG -ACGGAATGACTCACGAGTGTTCAG -ACGGAATGACTCACGAGTGCATAG -ACGGAATGACTCACGAGTGACAAG -ACGGAATGACTCACGAGTAAGCAG -ACGGAATGACTCACGAGTCGTCAA -ACGGAATGACTCACGAGTGCTGAA -ACGGAATGACTCACGAGTAGTACG -ACGGAATGACTCACGAGTATCCGA -ACGGAATGACTCACGAGTATGGGA -ACGGAATGACTCACGAGTGTGCAA -ACGGAATGACTCACGAGTGAGGAA -ACGGAATGACTCACGAGTCAGGTA -ACGGAATGACTCACGAGTGACTCT -ACGGAATGACTCACGAGTAGTCCT -ACGGAATGACTCACGAGTTAAGCC -ACGGAATGACTCACGAGTATAGCC -ACGGAATGACTCACGAGTTAACCG -ACGGAATGACTCACGAGTATGCCA -ACGGAATGACTCCGAATCGGAAAC -ACGGAATGACTCCGAATCAACACC -ACGGAATGACTCCGAATCATCGAG -ACGGAATGACTCCGAATCCTCCTT -ACGGAATGACTCCGAATCCCTGTT -ACGGAATGACTCCGAATCCGGTTT -ACGGAATGACTCCGAATCGTGGTT -ACGGAATGACTCCGAATCGCCTTT -ACGGAATGACTCCGAATCGGTCTT -ACGGAATGACTCCGAATCACGCTT -ACGGAATGACTCCGAATCAGCGTT -ACGGAATGACTCCGAATCTTCGTC -ACGGAATGACTCCGAATCTCTCTC -ACGGAATGACTCCGAATCTGGATC -ACGGAATGACTCCGAATCCACTTC -ACGGAATGACTCCGAATCGTACTC -ACGGAATGACTCCGAATCGATGTC -ACGGAATGACTCCGAATCACAGTC -ACGGAATGACTCCGAATCTTGCTG -ACGGAATGACTCCGAATCTCCATG -ACGGAATGACTCCGAATCTGTGTG -ACGGAATGACTCCGAATCCTAGTG -ACGGAATGACTCCGAATCCATCTG -ACGGAATGACTCCGAATCGAGTTG -ACGGAATGACTCCGAATCAGACTG -ACGGAATGACTCCGAATCTCGGTA -ACGGAATGACTCCGAATCTGCCTA -ACGGAATGACTCCGAATCCCACTA -ACGGAATGACTCCGAATCGGAGTA -ACGGAATGACTCCGAATCTCGTCT -ACGGAATGACTCCGAATCTGCACT -ACGGAATGACTCCGAATCCTGACT -ACGGAATGACTCCGAATCCAACCT -ACGGAATGACTCCGAATCGCTACT -ACGGAATGACTCCGAATCGGATCT -ACGGAATGACTCCGAATCAAGGCT -ACGGAATGACTCCGAATCTCAACC -ACGGAATGACTCCGAATCTGTTCC -ACGGAATGACTCCGAATCATTCCC -ACGGAATGACTCCGAATCTTCTCG -ACGGAATGACTCCGAATCTAGACG -ACGGAATGACTCCGAATCGTAACG -ACGGAATGACTCCGAATCACTTCG -ACGGAATGACTCCGAATCTACGCA -ACGGAATGACTCCGAATCCTTGCA -ACGGAATGACTCCGAATCCGAACA -ACGGAATGACTCCGAATCCAGTCA -ACGGAATGACTCCGAATCGATCCA -ACGGAATGACTCCGAATCACGACA -ACGGAATGACTCCGAATCAGCTCA -ACGGAATGACTCCGAATCTCACGT -ACGGAATGACTCCGAATCCGTAGT -ACGGAATGACTCCGAATCGTCAGT -ACGGAATGACTCCGAATCGAAGGT -ACGGAATGACTCCGAATCAACCGT -ACGGAATGACTCCGAATCTTGTGC -ACGGAATGACTCCGAATCCTAAGC -ACGGAATGACTCCGAATCACTAGC -ACGGAATGACTCCGAATCAGATGC -ACGGAATGACTCCGAATCTGAAGG -ACGGAATGACTCCGAATCCAATGG -ACGGAATGACTCCGAATCATGAGG -ACGGAATGACTCCGAATCAATGGG -ACGGAATGACTCCGAATCTCCTGA -ACGGAATGACTCCGAATCTAGCGA -ACGGAATGACTCCGAATCCACAGA -ACGGAATGACTCCGAATCGCAAGA -ACGGAATGACTCCGAATCGGTTGA -ACGGAATGACTCCGAATCTCCGAT -ACGGAATGACTCCGAATCTGGCAT -ACGGAATGACTCCGAATCCGAGAT -ACGGAATGACTCCGAATCTACCAC -ACGGAATGACTCCGAATCCAGAAC -ACGGAATGACTCCGAATCGTCTAC -ACGGAATGACTCCGAATCACGTAC -ACGGAATGACTCCGAATCAGTGAC -ACGGAATGACTCCGAATCCTGTAG -ACGGAATGACTCCGAATCCCTAAG -ACGGAATGACTCCGAATCGTTCAG -ACGGAATGACTCCGAATCGCATAG -ACGGAATGACTCCGAATCGACAAG -ACGGAATGACTCCGAATCAAGCAG -ACGGAATGACTCCGAATCCGTCAA -ACGGAATGACTCCGAATCGCTGAA -ACGGAATGACTCCGAATCAGTACG -ACGGAATGACTCCGAATCATCCGA -ACGGAATGACTCCGAATCATGGGA -ACGGAATGACTCCGAATCGTGCAA -ACGGAATGACTCCGAATCGAGGAA -ACGGAATGACTCCGAATCCAGGTA -ACGGAATGACTCCGAATCGACTCT -ACGGAATGACTCCGAATCAGTCCT -ACGGAATGACTCCGAATCTAAGCC -ACGGAATGACTCCGAATCATAGCC -ACGGAATGACTCCGAATCTAACCG -ACGGAATGACTCCGAATCATGCCA -ACGGAATGACTCGGAATGGGAAAC -ACGGAATGACTCGGAATGAACACC -ACGGAATGACTCGGAATGATCGAG -ACGGAATGACTCGGAATGCTCCTT -ACGGAATGACTCGGAATGCCTGTT -ACGGAATGACTCGGAATGCGGTTT -ACGGAATGACTCGGAATGGTGGTT -ACGGAATGACTCGGAATGGCCTTT -ACGGAATGACTCGGAATGGGTCTT -ACGGAATGACTCGGAATGACGCTT -ACGGAATGACTCGGAATGAGCGTT -ACGGAATGACTCGGAATGTTCGTC -ACGGAATGACTCGGAATGTCTCTC -ACGGAATGACTCGGAATGTGGATC -ACGGAATGACTCGGAATGCACTTC -ACGGAATGACTCGGAATGGTACTC -ACGGAATGACTCGGAATGGATGTC -ACGGAATGACTCGGAATGACAGTC -ACGGAATGACTCGGAATGTTGCTG -ACGGAATGACTCGGAATGTCCATG -ACGGAATGACTCGGAATGTGTGTG -ACGGAATGACTCGGAATGCTAGTG -ACGGAATGACTCGGAATGCATCTG -ACGGAATGACTCGGAATGGAGTTG -ACGGAATGACTCGGAATGAGACTG -ACGGAATGACTCGGAATGTCGGTA -ACGGAATGACTCGGAATGTGCCTA -ACGGAATGACTCGGAATGCCACTA -ACGGAATGACTCGGAATGGGAGTA -ACGGAATGACTCGGAATGTCGTCT -ACGGAATGACTCGGAATGTGCACT -ACGGAATGACTCGGAATGCTGACT -ACGGAATGACTCGGAATGCAACCT -ACGGAATGACTCGGAATGGCTACT -ACGGAATGACTCGGAATGGGATCT -ACGGAATGACTCGGAATGAAGGCT -ACGGAATGACTCGGAATGTCAACC -ACGGAATGACTCGGAATGTGTTCC -ACGGAATGACTCGGAATGATTCCC -ACGGAATGACTCGGAATGTTCTCG -ACGGAATGACTCGGAATGTAGACG -ACGGAATGACTCGGAATGGTAACG -ACGGAATGACTCGGAATGACTTCG -ACGGAATGACTCGGAATGTACGCA -ACGGAATGACTCGGAATGCTTGCA -ACGGAATGACTCGGAATGCGAACA -ACGGAATGACTCGGAATGCAGTCA -ACGGAATGACTCGGAATGGATCCA -ACGGAATGACTCGGAATGACGACA -ACGGAATGACTCGGAATGAGCTCA -ACGGAATGACTCGGAATGTCACGT -ACGGAATGACTCGGAATGCGTAGT -ACGGAATGACTCGGAATGGTCAGT -ACGGAATGACTCGGAATGGAAGGT -ACGGAATGACTCGGAATGAACCGT -ACGGAATGACTCGGAATGTTGTGC -ACGGAATGACTCGGAATGCTAAGC -ACGGAATGACTCGGAATGACTAGC -ACGGAATGACTCGGAATGAGATGC -ACGGAATGACTCGGAATGTGAAGG -ACGGAATGACTCGGAATGCAATGG -ACGGAATGACTCGGAATGATGAGG -ACGGAATGACTCGGAATGAATGGG -ACGGAATGACTCGGAATGTCCTGA -ACGGAATGACTCGGAATGTAGCGA -ACGGAATGACTCGGAATGCACAGA -ACGGAATGACTCGGAATGGCAAGA -ACGGAATGACTCGGAATGGGTTGA -ACGGAATGACTCGGAATGTCCGAT -ACGGAATGACTCGGAATGTGGCAT -ACGGAATGACTCGGAATGCGAGAT -ACGGAATGACTCGGAATGTACCAC -ACGGAATGACTCGGAATGCAGAAC -ACGGAATGACTCGGAATGGTCTAC -ACGGAATGACTCGGAATGACGTAC -ACGGAATGACTCGGAATGAGTGAC -ACGGAATGACTCGGAATGCTGTAG -ACGGAATGACTCGGAATGCCTAAG -ACGGAATGACTCGGAATGGTTCAG -ACGGAATGACTCGGAATGGCATAG -ACGGAATGACTCGGAATGGACAAG -ACGGAATGACTCGGAATGAAGCAG -ACGGAATGACTCGGAATGCGTCAA -ACGGAATGACTCGGAATGGCTGAA -ACGGAATGACTCGGAATGAGTACG -ACGGAATGACTCGGAATGATCCGA -ACGGAATGACTCGGAATGATGGGA -ACGGAATGACTCGGAATGGTGCAA -ACGGAATGACTCGGAATGGAGGAA -ACGGAATGACTCGGAATGCAGGTA -ACGGAATGACTCGGAATGGACTCT -ACGGAATGACTCGGAATGAGTCCT -ACGGAATGACTCGGAATGTAAGCC -ACGGAATGACTCGGAATGATAGCC -ACGGAATGACTCGGAATGTAACCG -ACGGAATGACTCGGAATGATGCCA -ACGGAATGACTCCAAGTGGGAAAC -ACGGAATGACTCCAAGTGAACACC -ACGGAATGACTCCAAGTGATCGAG -ACGGAATGACTCCAAGTGCTCCTT -ACGGAATGACTCCAAGTGCCTGTT -ACGGAATGACTCCAAGTGCGGTTT -ACGGAATGACTCCAAGTGGTGGTT -ACGGAATGACTCCAAGTGGCCTTT -ACGGAATGACTCCAAGTGGGTCTT -ACGGAATGACTCCAAGTGACGCTT -ACGGAATGACTCCAAGTGAGCGTT -ACGGAATGACTCCAAGTGTTCGTC -ACGGAATGACTCCAAGTGTCTCTC -ACGGAATGACTCCAAGTGTGGATC -ACGGAATGACTCCAAGTGCACTTC -ACGGAATGACTCCAAGTGGTACTC -ACGGAATGACTCCAAGTGGATGTC -ACGGAATGACTCCAAGTGACAGTC -ACGGAATGACTCCAAGTGTTGCTG -ACGGAATGACTCCAAGTGTCCATG -ACGGAATGACTCCAAGTGTGTGTG -ACGGAATGACTCCAAGTGCTAGTG -ACGGAATGACTCCAAGTGCATCTG -ACGGAATGACTCCAAGTGGAGTTG -ACGGAATGACTCCAAGTGAGACTG -ACGGAATGACTCCAAGTGTCGGTA -ACGGAATGACTCCAAGTGTGCCTA -ACGGAATGACTCCAAGTGCCACTA -ACGGAATGACTCCAAGTGGGAGTA -ACGGAATGACTCCAAGTGTCGTCT -ACGGAATGACTCCAAGTGTGCACT -ACGGAATGACTCCAAGTGCTGACT -ACGGAATGACTCCAAGTGCAACCT -ACGGAATGACTCCAAGTGGCTACT -ACGGAATGACTCCAAGTGGGATCT -ACGGAATGACTCCAAGTGAAGGCT -ACGGAATGACTCCAAGTGTCAACC -ACGGAATGACTCCAAGTGTGTTCC -ACGGAATGACTCCAAGTGATTCCC -ACGGAATGACTCCAAGTGTTCTCG -ACGGAATGACTCCAAGTGTAGACG -ACGGAATGACTCCAAGTGGTAACG -ACGGAATGACTCCAAGTGACTTCG -ACGGAATGACTCCAAGTGTACGCA -ACGGAATGACTCCAAGTGCTTGCA -ACGGAATGACTCCAAGTGCGAACA -ACGGAATGACTCCAAGTGCAGTCA -ACGGAATGACTCCAAGTGGATCCA -ACGGAATGACTCCAAGTGACGACA -ACGGAATGACTCCAAGTGAGCTCA -ACGGAATGACTCCAAGTGTCACGT -ACGGAATGACTCCAAGTGCGTAGT -ACGGAATGACTCCAAGTGGTCAGT -ACGGAATGACTCCAAGTGGAAGGT -ACGGAATGACTCCAAGTGAACCGT -ACGGAATGACTCCAAGTGTTGTGC -ACGGAATGACTCCAAGTGCTAAGC -ACGGAATGACTCCAAGTGACTAGC -ACGGAATGACTCCAAGTGAGATGC -ACGGAATGACTCCAAGTGTGAAGG -ACGGAATGACTCCAAGTGCAATGG -ACGGAATGACTCCAAGTGATGAGG -ACGGAATGACTCCAAGTGAATGGG -ACGGAATGACTCCAAGTGTCCTGA -ACGGAATGACTCCAAGTGTAGCGA -ACGGAATGACTCCAAGTGCACAGA -ACGGAATGACTCCAAGTGGCAAGA -ACGGAATGACTCCAAGTGGGTTGA -ACGGAATGACTCCAAGTGTCCGAT -ACGGAATGACTCCAAGTGTGGCAT -ACGGAATGACTCCAAGTGCGAGAT -ACGGAATGACTCCAAGTGTACCAC -ACGGAATGACTCCAAGTGCAGAAC -ACGGAATGACTCCAAGTGGTCTAC -ACGGAATGACTCCAAGTGACGTAC -ACGGAATGACTCCAAGTGAGTGAC -ACGGAATGACTCCAAGTGCTGTAG -ACGGAATGACTCCAAGTGCCTAAG -ACGGAATGACTCCAAGTGGTTCAG -ACGGAATGACTCCAAGTGGCATAG -ACGGAATGACTCCAAGTGGACAAG -ACGGAATGACTCCAAGTGAAGCAG -ACGGAATGACTCCAAGTGCGTCAA -ACGGAATGACTCCAAGTGGCTGAA -ACGGAATGACTCCAAGTGAGTACG -ACGGAATGACTCCAAGTGATCCGA -ACGGAATGACTCCAAGTGATGGGA -ACGGAATGACTCCAAGTGGTGCAA -ACGGAATGACTCCAAGTGGAGGAA -ACGGAATGACTCCAAGTGCAGGTA -ACGGAATGACTCCAAGTGGACTCT -ACGGAATGACTCCAAGTGAGTCCT -ACGGAATGACTCCAAGTGTAAGCC -ACGGAATGACTCCAAGTGATAGCC -ACGGAATGACTCCAAGTGTAACCG -ACGGAATGACTCCAAGTGATGCCA -ACGGAATGACTCGAAGAGGGAAAC -ACGGAATGACTCGAAGAGAACACC -ACGGAATGACTCGAAGAGATCGAG -ACGGAATGACTCGAAGAGCTCCTT -ACGGAATGACTCGAAGAGCCTGTT -ACGGAATGACTCGAAGAGCGGTTT -ACGGAATGACTCGAAGAGGTGGTT -ACGGAATGACTCGAAGAGGCCTTT -ACGGAATGACTCGAAGAGGGTCTT -ACGGAATGACTCGAAGAGACGCTT -ACGGAATGACTCGAAGAGAGCGTT -ACGGAATGACTCGAAGAGTTCGTC -ACGGAATGACTCGAAGAGTCTCTC -ACGGAATGACTCGAAGAGTGGATC -ACGGAATGACTCGAAGAGCACTTC -ACGGAATGACTCGAAGAGGTACTC -ACGGAATGACTCGAAGAGGATGTC -ACGGAATGACTCGAAGAGACAGTC -ACGGAATGACTCGAAGAGTTGCTG -ACGGAATGACTCGAAGAGTCCATG -ACGGAATGACTCGAAGAGTGTGTG -ACGGAATGACTCGAAGAGCTAGTG -ACGGAATGACTCGAAGAGCATCTG -ACGGAATGACTCGAAGAGGAGTTG -ACGGAATGACTCGAAGAGAGACTG -ACGGAATGACTCGAAGAGTCGGTA -ACGGAATGACTCGAAGAGTGCCTA -ACGGAATGACTCGAAGAGCCACTA -ACGGAATGACTCGAAGAGGGAGTA -ACGGAATGACTCGAAGAGTCGTCT -ACGGAATGACTCGAAGAGTGCACT -ACGGAATGACTCGAAGAGCTGACT -ACGGAATGACTCGAAGAGCAACCT -ACGGAATGACTCGAAGAGGCTACT -ACGGAATGACTCGAAGAGGGATCT -ACGGAATGACTCGAAGAGAAGGCT -ACGGAATGACTCGAAGAGTCAACC -ACGGAATGACTCGAAGAGTGTTCC -ACGGAATGACTCGAAGAGATTCCC -ACGGAATGACTCGAAGAGTTCTCG -ACGGAATGACTCGAAGAGTAGACG -ACGGAATGACTCGAAGAGGTAACG -ACGGAATGACTCGAAGAGACTTCG -ACGGAATGACTCGAAGAGTACGCA -ACGGAATGACTCGAAGAGCTTGCA -ACGGAATGACTCGAAGAGCGAACA -ACGGAATGACTCGAAGAGCAGTCA -ACGGAATGACTCGAAGAGGATCCA -ACGGAATGACTCGAAGAGACGACA -ACGGAATGACTCGAAGAGAGCTCA -ACGGAATGACTCGAAGAGTCACGT -ACGGAATGACTCGAAGAGCGTAGT -ACGGAATGACTCGAAGAGGTCAGT -ACGGAATGACTCGAAGAGGAAGGT -ACGGAATGACTCGAAGAGAACCGT -ACGGAATGACTCGAAGAGTTGTGC -ACGGAATGACTCGAAGAGCTAAGC -ACGGAATGACTCGAAGAGACTAGC -ACGGAATGACTCGAAGAGAGATGC -ACGGAATGACTCGAAGAGTGAAGG -ACGGAATGACTCGAAGAGCAATGG -ACGGAATGACTCGAAGAGATGAGG -ACGGAATGACTCGAAGAGAATGGG -ACGGAATGACTCGAAGAGTCCTGA -ACGGAATGACTCGAAGAGTAGCGA -ACGGAATGACTCGAAGAGCACAGA -ACGGAATGACTCGAAGAGGCAAGA -ACGGAATGACTCGAAGAGGGTTGA -ACGGAATGACTCGAAGAGTCCGAT -ACGGAATGACTCGAAGAGTGGCAT -ACGGAATGACTCGAAGAGCGAGAT -ACGGAATGACTCGAAGAGTACCAC -ACGGAATGACTCGAAGAGCAGAAC -ACGGAATGACTCGAAGAGGTCTAC -ACGGAATGACTCGAAGAGACGTAC -ACGGAATGACTCGAAGAGAGTGAC -ACGGAATGACTCGAAGAGCTGTAG -ACGGAATGACTCGAAGAGCCTAAG -ACGGAATGACTCGAAGAGGTTCAG -ACGGAATGACTCGAAGAGGCATAG -ACGGAATGACTCGAAGAGGACAAG -ACGGAATGACTCGAAGAGAAGCAG -ACGGAATGACTCGAAGAGCGTCAA -ACGGAATGACTCGAAGAGGCTGAA -ACGGAATGACTCGAAGAGAGTACG -ACGGAATGACTCGAAGAGATCCGA -ACGGAATGACTCGAAGAGATGGGA -ACGGAATGACTCGAAGAGGTGCAA -ACGGAATGACTCGAAGAGGAGGAA -ACGGAATGACTCGAAGAGCAGGTA -ACGGAATGACTCGAAGAGGACTCT -ACGGAATGACTCGAAGAGAGTCCT -ACGGAATGACTCGAAGAGTAAGCC -ACGGAATGACTCGAAGAGATAGCC -ACGGAATGACTCGAAGAGTAACCG -ACGGAATGACTCGAAGAGATGCCA -ACGGAATGACTCGTACAGGGAAAC -ACGGAATGACTCGTACAGAACACC -ACGGAATGACTCGTACAGATCGAG -ACGGAATGACTCGTACAGCTCCTT -ACGGAATGACTCGTACAGCCTGTT -ACGGAATGACTCGTACAGCGGTTT -ACGGAATGACTCGTACAGGTGGTT -ACGGAATGACTCGTACAGGCCTTT -ACGGAATGACTCGTACAGGGTCTT -ACGGAATGACTCGTACAGACGCTT -ACGGAATGACTCGTACAGAGCGTT -ACGGAATGACTCGTACAGTTCGTC -ACGGAATGACTCGTACAGTCTCTC -ACGGAATGACTCGTACAGTGGATC -ACGGAATGACTCGTACAGCACTTC -ACGGAATGACTCGTACAGGTACTC -ACGGAATGACTCGTACAGGATGTC -ACGGAATGACTCGTACAGACAGTC -ACGGAATGACTCGTACAGTTGCTG -ACGGAATGACTCGTACAGTCCATG -ACGGAATGACTCGTACAGTGTGTG -ACGGAATGACTCGTACAGCTAGTG -ACGGAATGACTCGTACAGCATCTG -ACGGAATGACTCGTACAGGAGTTG -ACGGAATGACTCGTACAGAGACTG -ACGGAATGACTCGTACAGTCGGTA -ACGGAATGACTCGTACAGTGCCTA -ACGGAATGACTCGTACAGCCACTA -ACGGAATGACTCGTACAGGGAGTA -ACGGAATGACTCGTACAGTCGTCT -ACGGAATGACTCGTACAGTGCACT -ACGGAATGACTCGTACAGCTGACT -ACGGAATGACTCGTACAGCAACCT -ACGGAATGACTCGTACAGGCTACT -ACGGAATGACTCGTACAGGGATCT -ACGGAATGACTCGTACAGAAGGCT -ACGGAATGACTCGTACAGTCAACC -ACGGAATGACTCGTACAGTGTTCC -ACGGAATGACTCGTACAGATTCCC -ACGGAATGACTCGTACAGTTCTCG -ACGGAATGACTCGTACAGTAGACG -ACGGAATGACTCGTACAGGTAACG -ACGGAATGACTCGTACAGACTTCG -ACGGAATGACTCGTACAGTACGCA -ACGGAATGACTCGTACAGCTTGCA -ACGGAATGACTCGTACAGCGAACA -ACGGAATGACTCGTACAGCAGTCA -ACGGAATGACTCGTACAGGATCCA -ACGGAATGACTCGTACAGACGACA -ACGGAATGACTCGTACAGAGCTCA -ACGGAATGACTCGTACAGTCACGT -ACGGAATGACTCGTACAGCGTAGT -ACGGAATGACTCGTACAGGTCAGT -ACGGAATGACTCGTACAGGAAGGT -ACGGAATGACTCGTACAGAACCGT -ACGGAATGACTCGTACAGTTGTGC -ACGGAATGACTCGTACAGCTAAGC -ACGGAATGACTCGTACAGACTAGC -ACGGAATGACTCGTACAGAGATGC -ACGGAATGACTCGTACAGTGAAGG -ACGGAATGACTCGTACAGCAATGG -ACGGAATGACTCGTACAGATGAGG -ACGGAATGACTCGTACAGAATGGG -ACGGAATGACTCGTACAGTCCTGA -ACGGAATGACTCGTACAGTAGCGA -ACGGAATGACTCGTACAGCACAGA -ACGGAATGACTCGTACAGGCAAGA -ACGGAATGACTCGTACAGGGTTGA -ACGGAATGACTCGTACAGTCCGAT -ACGGAATGACTCGTACAGTGGCAT -ACGGAATGACTCGTACAGCGAGAT -ACGGAATGACTCGTACAGTACCAC -ACGGAATGACTCGTACAGCAGAAC -ACGGAATGACTCGTACAGGTCTAC -ACGGAATGACTCGTACAGACGTAC -ACGGAATGACTCGTACAGAGTGAC -ACGGAATGACTCGTACAGCTGTAG -ACGGAATGACTCGTACAGCCTAAG -ACGGAATGACTCGTACAGGTTCAG -ACGGAATGACTCGTACAGGCATAG -ACGGAATGACTCGTACAGGACAAG -ACGGAATGACTCGTACAGAAGCAG -ACGGAATGACTCGTACAGCGTCAA -ACGGAATGACTCGTACAGGCTGAA -ACGGAATGACTCGTACAGAGTACG -ACGGAATGACTCGTACAGATCCGA -ACGGAATGACTCGTACAGATGGGA -ACGGAATGACTCGTACAGGTGCAA -ACGGAATGACTCGTACAGGAGGAA -ACGGAATGACTCGTACAGCAGGTA -ACGGAATGACTCGTACAGGACTCT -ACGGAATGACTCGTACAGAGTCCT -ACGGAATGACTCGTACAGTAAGCC -ACGGAATGACTCGTACAGATAGCC -ACGGAATGACTCGTACAGTAACCG -ACGGAATGACTCGTACAGATGCCA -ACGGAATGACTCTCTGACGGAAAC -ACGGAATGACTCTCTGACAACACC -ACGGAATGACTCTCTGACATCGAG -ACGGAATGACTCTCTGACCTCCTT -ACGGAATGACTCTCTGACCCTGTT -ACGGAATGACTCTCTGACCGGTTT -ACGGAATGACTCTCTGACGTGGTT -ACGGAATGACTCTCTGACGCCTTT -ACGGAATGACTCTCTGACGGTCTT -ACGGAATGACTCTCTGACACGCTT -ACGGAATGACTCTCTGACAGCGTT -ACGGAATGACTCTCTGACTTCGTC -ACGGAATGACTCTCTGACTCTCTC -ACGGAATGACTCTCTGACTGGATC -ACGGAATGACTCTCTGACCACTTC -ACGGAATGACTCTCTGACGTACTC -ACGGAATGACTCTCTGACGATGTC -ACGGAATGACTCTCTGACACAGTC -ACGGAATGACTCTCTGACTTGCTG -ACGGAATGACTCTCTGACTCCATG -ACGGAATGACTCTCTGACTGTGTG -ACGGAATGACTCTCTGACCTAGTG -ACGGAATGACTCTCTGACCATCTG -ACGGAATGACTCTCTGACGAGTTG -ACGGAATGACTCTCTGACAGACTG -ACGGAATGACTCTCTGACTCGGTA -ACGGAATGACTCTCTGACTGCCTA -ACGGAATGACTCTCTGACCCACTA -ACGGAATGACTCTCTGACGGAGTA -ACGGAATGACTCTCTGACTCGTCT -ACGGAATGACTCTCTGACTGCACT -ACGGAATGACTCTCTGACCTGACT -ACGGAATGACTCTCTGACCAACCT -ACGGAATGACTCTCTGACGCTACT -ACGGAATGACTCTCTGACGGATCT -ACGGAATGACTCTCTGACAAGGCT -ACGGAATGACTCTCTGACTCAACC -ACGGAATGACTCTCTGACTGTTCC -ACGGAATGACTCTCTGACATTCCC -ACGGAATGACTCTCTGACTTCTCG -ACGGAATGACTCTCTGACTAGACG -ACGGAATGACTCTCTGACGTAACG -ACGGAATGACTCTCTGACACTTCG -ACGGAATGACTCTCTGACTACGCA -ACGGAATGACTCTCTGACCTTGCA -ACGGAATGACTCTCTGACCGAACA -ACGGAATGACTCTCTGACCAGTCA -ACGGAATGACTCTCTGACGATCCA -ACGGAATGACTCTCTGACACGACA -ACGGAATGACTCTCTGACAGCTCA -ACGGAATGACTCTCTGACTCACGT -ACGGAATGACTCTCTGACCGTAGT -ACGGAATGACTCTCTGACGTCAGT -ACGGAATGACTCTCTGACGAAGGT -ACGGAATGACTCTCTGACAACCGT -ACGGAATGACTCTCTGACTTGTGC -ACGGAATGACTCTCTGACCTAAGC -ACGGAATGACTCTCTGACACTAGC -ACGGAATGACTCTCTGACAGATGC -ACGGAATGACTCTCTGACTGAAGG -ACGGAATGACTCTCTGACCAATGG -ACGGAATGACTCTCTGACATGAGG -ACGGAATGACTCTCTGACAATGGG -ACGGAATGACTCTCTGACTCCTGA -ACGGAATGACTCTCTGACTAGCGA -ACGGAATGACTCTCTGACCACAGA -ACGGAATGACTCTCTGACGCAAGA -ACGGAATGACTCTCTGACGGTTGA -ACGGAATGACTCTCTGACTCCGAT -ACGGAATGACTCTCTGACTGGCAT -ACGGAATGACTCTCTGACCGAGAT -ACGGAATGACTCTCTGACTACCAC -ACGGAATGACTCTCTGACCAGAAC -ACGGAATGACTCTCTGACGTCTAC -ACGGAATGACTCTCTGACACGTAC -ACGGAATGACTCTCTGACAGTGAC -ACGGAATGACTCTCTGACCTGTAG -ACGGAATGACTCTCTGACCCTAAG -ACGGAATGACTCTCTGACGTTCAG -ACGGAATGACTCTCTGACGCATAG -ACGGAATGACTCTCTGACGACAAG -ACGGAATGACTCTCTGACAAGCAG -ACGGAATGACTCTCTGACCGTCAA -ACGGAATGACTCTCTGACGCTGAA -ACGGAATGACTCTCTGACAGTACG -ACGGAATGACTCTCTGACATCCGA -ACGGAATGACTCTCTGACATGGGA -ACGGAATGACTCTCTGACGTGCAA -ACGGAATGACTCTCTGACGAGGAA -ACGGAATGACTCTCTGACCAGGTA -ACGGAATGACTCTCTGACGACTCT -ACGGAATGACTCTCTGACAGTCCT -ACGGAATGACTCTCTGACTAAGCC -ACGGAATGACTCTCTGACATAGCC -ACGGAATGACTCTCTGACTAACCG -ACGGAATGACTCTCTGACATGCCA -ACGGAATGACTCCCTAGTGGAAAC -ACGGAATGACTCCCTAGTAACACC -ACGGAATGACTCCCTAGTATCGAG -ACGGAATGACTCCCTAGTCTCCTT -ACGGAATGACTCCCTAGTCCTGTT -ACGGAATGACTCCCTAGTCGGTTT -ACGGAATGACTCCCTAGTGTGGTT -ACGGAATGACTCCCTAGTGCCTTT -ACGGAATGACTCCCTAGTGGTCTT -ACGGAATGACTCCCTAGTACGCTT -ACGGAATGACTCCCTAGTAGCGTT -ACGGAATGACTCCCTAGTTTCGTC -ACGGAATGACTCCCTAGTTCTCTC -ACGGAATGACTCCCTAGTTGGATC -ACGGAATGACTCCCTAGTCACTTC -ACGGAATGACTCCCTAGTGTACTC -ACGGAATGACTCCCTAGTGATGTC -ACGGAATGACTCCCTAGTACAGTC -ACGGAATGACTCCCTAGTTTGCTG -ACGGAATGACTCCCTAGTTCCATG -ACGGAATGACTCCCTAGTTGTGTG -ACGGAATGACTCCCTAGTCTAGTG -ACGGAATGACTCCCTAGTCATCTG -ACGGAATGACTCCCTAGTGAGTTG -ACGGAATGACTCCCTAGTAGACTG -ACGGAATGACTCCCTAGTTCGGTA -ACGGAATGACTCCCTAGTTGCCTA -ACGGAATGACTCCCTAGTCCACTA -ACGGAATGACTCCCTAGTGGAGTA -ACGGAATGACTCCCTAGTTCGTCT -ACGGAATGACTCCCTAGTTGCACT -ACGGAATGACTCCCTAGTCTGACT -ACGGAATGACTCCCTAGTCAACCT -ACGGAATGACTCCCTAGTGCTACT -ACGGAATGACTCCCTAGTGGATCT -ACGGAATGACTCCCTAGTAAGGCT -ACGGAATGACTCCCTAGTTCAACC -ACGGAATGACTCCCTAGTTGTTCC -ACGGAATGACTCCCTAGTATTCCC -ACGGAATGACTCCCTAGTTTCTCG -ACGGAATGACTCCCTAGTTAGACG -ACGGAATGACTCCCTAGTGTAACG -ACGGAATGACTCCCTAGTACTTCG -ACGGAATGACTCCCTAGTTACGCA -ACGGAATGACTCCCTAGTCTTGCA -ACGGAATGACTCCCTAGTCGAACA -ACGGAATGACTCCCTAGTCAGTCA -ACGGAATGACTCCCTAGTGATCCA -ACGGAATGACTCCCTAGTACGACA -ACGGAATGACTCCCTAGTAGCTCA -ACGGAATGACTCCCTAGTTCACGT -ACGGAATGACTCCCTAGTCGTAGT -ACGGAATGACTCCCTAGTGTCAGT -ACGGAATGACTCCCTAGTGAAGGT -ACGGAATGACTCCCTAGTAACCGT -ACGGAATGACTCCCTAGTTTGTGC -ACGGAATGACTCCCTAGTCTAAGC -ACGGAATGACTCCCTAGTACTAGC -ACGGAATGACTCCCTAGTAGATGC -ACGGAATGACTCCCTAGTTGAAGG -ACGGAATGACTCCCTAGTCAATGG -ACGGAATGACTCCCTAGTATGAGG -ACGGAATGACTCCCTAGTAATGGG -ACGGAATGACTCCCTAGTTCCTGA -ACGGAATGACTCCCTAGTTAGCGA -ACGGAATGACTCCCTAGTCACAGA -ACGGAATGACTCCCTAGTGCAAGA -ACGGAATGACTCCCTAGTGGTTGA -ACGGAATGACTCCCTAGTTCCGAT -ACGGAATGACTCCCTAGTTGGCAT -ACGGAATGACTCCCTAGTCGAGAT -ACGGAATGACTCCCTAGTTACCAC -ACGGAATGACTCCCTAGTCAGAAC -ACGGAATGACTCCCTAGTGTCTAC -ACGGAATGACTCCCTAGTACGTAC -ACGGAATGACTCCCTAGTAGTGAC -ACGGAATGACTCCCTAGTCTGTAG -ACGGAATGACTCCCTAGTCCTAAG -ACGGAATGACTCCCTAGTGTTCAG -ACGGAATGACTCCCTAGTGCATAG -ACGGAATGACTCCCTAGTGACAAG -ACGGAATGACTCCCTAGTAAGCAG -ACGGAATGACTCCCTAGTCGTCAA -ACGGAATGACTCCCTAGTGCTGAA -ACGGAATGACTCCCTAGTAGTACG -ACGGAATGACTCCCTAGTATCCGA -ACGGAATGACTCCCTAGTATGGGA -ACGGAATGACTCCCTAGTGTGCAA -ACGGAATGACTCCCTAGTGAGGAA -ACGGAATGACTCCCTAGTCAGGTA -ACGGAATGACTCCCTAGTGACTCT -ACGGAATGACTCCCTAGTAGTCCT -ACGGAATGACTCCCTAGTTAAGCC -ACGGAATGACTCCCTAGTATAGCC -ACGGAATGACTCCCTAGTTAACCG -ACGGAATGACTCCCTAGTATGCCA -ACGGAATGACTCGCCTAAGGAAAC -ACGGAATGACTCGCCTAAAACACC -ACGGAATGACTCGCCTAAATCGAG -ACGGAATGACTCGCCTAACTCCTT -ACGGAATGACTCGCCTAACCTGTT -ACGGAATGACTCGCCTAACGGTTT -ACGGAATGACTCGCCTAAGTGGTT -ACGGAATGACTCGCCTAAGCCTTT -ACGGAATGACTCGCCTAAGGTCTT -ACGGAATGACTCGCCTAAACGCTT -ACGGAATGACTCGCCTAAAGCGTT -ACGGAATGACTCGCCTAATTCGTC -ACGGAATGACTCGCCTAATCTCTC -ACGGAATGACTCGCCTAATGGATC -ACGGAATGACTCGCCTAACACTTC -ACGGAATGACTCGCCTAAGTACTC -ACGGAATGACTCGCCTAAGATGTC -ACGGAATGACTCGCCTAAACAGTC -ACGGAATGACTCGCCTAATTGCTG -ACGGAATGACTCGCCTAATCCATG -ACGGAATGACTCGCCTAATGTGTG -ACGGAATGACTCGCCTAACTAGTG -ACGGAATGACTCGCCTAACATCTG -ACGGAATGACTCGCCTAAGAGTTG -ACGGAATGACTCGCCTAAAGACTG -ACGGAATGACTCGCCTAATCGGTA -ACGGAATGACTCGCCTAATGCCTA -ACGGAATGACTCGCCTAACCACTA -ACGGAATGACTCGCCTAAGGAGTA -ACGGAATGACTCGCCTAATCGTCT -ACGGAATGACTCGCCTAATGCACT -ACGGAATGACTCGCCTAACTGACT -ACGGAATGACTCGCCTAACAACCT -ACGGAATGACTCGCCTAAGCTACT -ACGGAATGACTCGCCTAAGGATCT -ACGGAATGACTCGCCTAAAAGGCT -ACGGAATGACTCGCCTAATCAACC -ACGGAATGACTCGCCTAATGTTCC -ACGGAATGACTCGCCTAAATTCCC -ACGGAATGACTCGCCTAATTCTCG -ACGGAATGACTCGCCTAATAGACG -ACGGAATGACTCGCCTAAGTAACG -ACGGAATGACTCGCCTAAACTTCG -ACGGAATGACTCGCCTAATACGCA -ACGGAATGACTCGCCTAACTTGCA -ACGGAATGACTCGCCTAACGAACA -ACGGAATGACTCGCCTAACAGTCA -ACGGAATGACTCGCCTAAGATCCA -ACGGAATGACTCGCCTAAACGACA -ACGGAATGACTCGCCTAAAGCTCA -ACGGAATGACTCGCCTAATCACGT -ACGGAATGACTCGCCTAACGTAGT -ACGGAATGACTCGCCTAAGTCAGT -ACGGAATGACTCGCCTAAGAAGGT -ACGGAATGACTCGCCTAAAACCGT -ACGGAATGACTCGCCTAATTGTGC -ACGGAATGACTCGCCTAACTAAGC -ACGGAATGACTCGCCTAAACTAGC -ACGGAATGACTCGCCTAAAGATGC -ACGGAATGACTCGCCTAATGAAGG -ACGGAATGACTCGCCTAACAATGG -ACGGAATGACTCGCCTAAATGAGG -ACGGAATGACTCGCCTAAAATGGG -ACGGAATGACTCGCCTAATCCTGA -ACGGAATGACTCGCCTAATAGCGA -ACGGAATGACTCGCCTAACACAGA -ACGGAATGACTCGCCTAAGCAAGA -ACGGAATGACTCGCCTAAGGTTGA -ACGGAATGACTCGCCTAATCCGAT -ACGGAATGACTCGCCTAATGGCAT -ACGGAATGACTCGCCTAACGAGAT -ACGGAATGACTCGCCTAATACCAC -ACGGAATGACTCGCCTAACAGAAC -ACGGAATGACTCGCCTAAGTCTAC -ACGGAATGACTCGCCTAAACGTAC -ACGGAATGACTCGCCTAAAGTGAC -ACGGAATGACTCGCCTAACTGTAG -ACGGAATGACTCGCCTAACCTAAG -ACGGAATGACTCGCCTAAGTTCAG -ACGGAATGACTCGCCTAAGCATAG -ACGGAATGACTCGCCTAAGACAAG -ACGGAATGACTCGCCTAAAAGCAG -ACGGAATGACTCGCCTAACGTCAA -ACGGAATGACTCGCCTAAGCTGAA -ACGGAATGACTCGCCTAAAGTACG -ACGGAATGACTCGCCTAAATCCGA -ACGGAATGACTCGCCTAAATGGGA -ACGGAATGACTCGCCTAAGTGCAA -ACGGAATGACTCGCCTAAGAGGAA -ACGGAATGACTCGCCTAACAGGTA -ACGGAATGACTCGCCTAAGACTCT -ACGGAATGACTCGCCTAAAGTCCT -ACGGAATGACTCGCCTAATAAGCC -ACGGAATGACTCGCCTAAATAGCC -ACGGAATGACTCGCCTAATAACCG -ACGGAATGACTCGCCTAAATGCCA -ACGGAATGACTCGCCATAGGAAAC -ACGGAATGACTCGCCATAAACACC -ACGGAATGACTCGCCATAATCGAG -ACGGAATGACTCGCCATACTCCTT -ACGGAATGACTCGCCATACCTGTT -ACGGAATGACTCGCCATACGGTTT -ACGGAATGACTCGCCATAGTGGTT -ACGGAATGACTCGCCATAGCCTTT -ACGGAATGACTCGCCATAGGTCTT -ACGGAATGACTCGCCATAACGCTT -ACGGAATGACTCGCCATAAGCGTT -ACGGAATGACTCGCCATATTCGTC -ACGGAATGACTCGCCATATCTCTC -ACGGAATGACTCGCCATATGGATC -ACGGAATGACTCGCCATACACTTC -ACGGAATGACTCGCCATAGTACTC -ACGGAATGACTCGCCATAGATGTC -ACGGAATGACTCGCCATAACAGTC -ACGGAATGACTCGCCATATTGCTG -ACGGAATGACTCGCCATATCCATG -ACGGAATGACTCGCCATATGTGTG -ACGGAATGACTCGCCATACTAGTG -ACGGAATGACTCGCCATACATCTG -ACGGAATGACTCGCCATAGAGTTG -ACGGAATGACTCGCCATAAGACTG -ACGGAATGACTCGCCATATCGGTA -ACGGAATGACTCGCCATATGCCTA -ACGGAATGACTCGCCATACCACTA -ACGGAATGACTCGCCATAGGAGTA -ACGGAATGACTCGCCATATCGTCT -ACGGAATGACTCGCCATATGCACT -ACGGAATGACTCGCCATACTGACT -ACGGAATGACTCGCCATACAACCT -ACGGAATGACTCGCCATAGCTACT -ACGGAATGACTCGCCATAGGATCT -ACGGAATGACTCGCCATAAAGGCT -ACGGAATGACTCGCCATATCAACC -ACGGAATGACTCGCCATATGTTCC -ACGGAATGACTCGCCATAATTCCC -ACGGAATGACTCGCCATATTCTCG -ACGGAATGACTCGCCATATAGACG -ACGGAATGACTCGCCATAGTAACG -ACGGAATGACTCGCCATAACTTCG -ACGGAATGACTCGCCATATACGCA -ACGGAATGACTCGCCATACTTGCA -ACGGAATGACTCGCCATACGAACA -ACGGAATGACTCGCCATACAGTCA -ACGGAATGACTCGCCATAGATCCA -ACGGAATGACTCGCCATAACGACA -ACGGAATGACTCGCCATAAGCTCA -ACGGAATGACTCGCCATATCACGT -ACGGAATGACTCGCCATACGTAGT -ACGGAATGACTCGCCATAGTCAGT -ACGGAATGACTCGCCATAGAAGGT -ACGGAATGACTCGCCATAAACCGT -ACGGAATGACTCGCCATATTGTGC -ACGGAATGACTCGCCATACTAAGC -ACGGAATGACTCGCCATAACTAGC -ACGGAATGACTCGCCATAAGATGC -ACGGAATGACTCGCCATATGAAGG -ACGGAATGACTCGCCATACAATGG -ACGGAATGACTCGCCATAATGAGG -ACGGAATGACTCGCCATAAATGGG -ACGGAATGACTCGCCATATCCTGA -ACGGAATGACTCGCCATATAGCGA -ACGGAATGACTCGCCATACACAGA -ACGGAATGACTCGCCATAGCAAGA -ACGGAATGACTCGCCATAGGTTGA -ACGGAATGACTCGCCATATCCGAT -ACGGAATGACTCGCCATATGGCAT -ACGGAATGACTCGCCATACGAGAT -ACGGAATGACTCGCCATATACCAC -ACGGAATGACTCGCCATACAGAAC -ACGGAATGACTCGCCATAGTCTAC -ACGGAATGACTCGCCATAACGTAC -ACGGAATGACTCGCCATAAGTGAC -ACGGAATGACTCGCCATACTGTAG -ACGGAATGACTCGCCATACCTAAG -ACGGAATGACTCGCCATAGTTCAG -ACGGAATGACTCGCCATAGCATAG -ACGGAATGACTCGCCATAGACAAG -ACGGAATGACTCGCCATAAAGCAG -ACGGAATGACTCGCCATACGTCAA -ACGGAATGACTCGCCATAGCTGAA -ACGGAATGACTCGCCATAAGTACG -ACGGAATGACTCGCCATAATCCGA -ACGGAATGACTCGCCATAATGGGA -ACGGAATGACTCGCCATAGTGCAA -ACGGAATGACTCGCCATAGAGGAA -ACGGAATGACTCGCCATACAGGTA -ACGGAATGACTCGCCATAGACTCT -ACGGAATGACTCGCCATAAGTCCT -ACGGAATGACTCGCCATATAAGCC -ACGGAATGACTCGCCATAATAGCC -ACGGAATGACTCGCCATATAACCG -ACGGAATGACTCGCCATAATGCCA -ACGGAATGACTCCCGTAAGGAAAC -ACGGAATGACTCCCGTAAAACACC -ACGGAATGACTCCCGTAAATCGAG -ACGGAATGACTCCCGTAACTCCTT -ACGGAATGACTCCCGTAACCTGTT -ACGGAATGACTCCCGTAACGGTTT -ACGGAATGACTCCCGTAAGTGGTT -ACGGAATGACTCCCGTAAGCCTTT -ACGGAATGACTCCCGTAAGGTCTT -ACGGAATGACTCCCGTAAACGCTT -ACGGAATGACTCCCGTAAAGCGTT -ACGGAATGACTCCCGTAATTCGTC -ACGGAATGACTCCCGTAATCTCTC -ACGGAATGACTCCCGTAATGGATC -ACGGAATGACTCCCGTAACACTTC -ACGGAATGACTCCCGTAAGTACTC -ACGGAATGACTCCCGTAAGATGTC -ACGGAATGACTCCCGTAAACAGTC -ACGGAATGACTCCCGTAATTGCTG -ACGGAATGACTCCCGTAATCCATG -ACGGAATGACTCCCGTAATGTGTG -ACGGAATGACTCCCGTAACTAGTG -ACGGAATGACTCCCGTAACATCTG -ACGGAATGACTCCCGTAAGAGTTG -ACGGAATGACTCCCGTAAAGACTG -ACGGAATGACTCCCGTAATCGGTA -ACGGAATGACTCCCGTAATGCCTA -ACGGAATGACTCCCGTAACCACTA -ACGGAATGACTCCCGTAAGGAGTA -ACGGAATGACTCCCGTAATCGTCT -ACGGAATGACTCCCGTAATGCACT -ACGGAATGACTCCCGTAACTGACT -ACGGAATGACTCCCGTAACAACCT -ACGGAATGACTCCCGTAAGCTACT -ACGGAATGACTCCCGTAAGGATCT -ACGGAATGACTCCCGTAAAAGGCT -ACGGAATGACTCCCGTAATCAACC -ACGGAATGACTCCCGTAATGTTCC -ACGGAATGACTCCCGTAAATTCCC -ACGGAATGACTCCCGTAATTCTCG -ACGGAATGACTCCCGTAATAGACG -ACGGAATGACTCCCGTAAGTAACG -ACGGAATGACTCCCGTAAACTTCG -ACGGAATGACTCCCGTAATACGCA -ACGGAATGACTCCCGTAACTTGCA -ACGGAATGACTCCCGTAACGAACA -ACGGAATGACTCCCGTAACAGTCA -ACGGAATGACTCCCGTAAGATCCA -ACGGAATGACTCCCGTAAACGACA -ACGGAATGACTCCCGTAAAGCTCA -ACGGAATGACTCCCGTAATCACGT -ACGGAATGACTCCCGTAACGTAGT -ACGGAATGACTCCCGTAAGTCAGT -ACGGAATGACTCCCGTAAGAAGGT -ACGGAATGACTCCCGTAAAACCGT -ACGGAATGACTCCCGTAATTGTGC -ACGGAATGACTCCCGTAACTAAGC -ACGGAATGACTCCCGTAAACTAGC -ACGGAATGACTCCCGTAAAGATGC -ACGGAATGACTCCCGTAATGAAGG -ACGGAATGACTCCCGTAACAATGG -ACGGAATGACTCCCGTAAATGAGG -ACGGAATGACTCCCGTAAAATGGG -ACGGAATGACTCCCGTAATCCTGA -ACGGAATGACTCCCGTAATAGCGA -ACGGAATGACTCCCGTAACACAGA -ACGGAATGACTCCCGTAAGCAAGA -ACGGAATGACTCCCGTAAGGTTGA -ACGGAATGACTCCCGTAATCCGAT -ACGGAATGACTCCCGTAATGGCAT -ACGGAATGACTCCCGTAACGAGAT -ACGGAATGACTCCCGTAATACCAC -ACGGAATGACTCCCGTAACAGAAC -ACGGAATGACTCCCGTAAGTCTAC -ACGGAATGACTCCCGTAAACGTAC -ACGGAATGACTCCCGTAAAGTGAC -ACGGAATGACTCCCGTAACTGTAG -ACGGAATGACTCCCGTAACCTAAG -ACGGAATGACTCCCGTAAGTTCAG -ACGGAATGACTCCCGTAAGCATAG -ACGGAATGACTCCCGTAAGACAAG -ACGGAATGACTCCCGTAAAAGCAG -ACGGAATGACTCCCGTAACGTCAA -ACGGAATGACTCCCGTAAGCTGAA -ACGGAATGACTCCCGTAAAGTACG -ACGGAATGACTCCCGTAAATCCGA -ACGGAATGACTCCCGTAAATGGGA -ACGGAATGACTCCCGTAAGTGCAA -ACGGAATGACTCCCGTAAGAGGAA -ACGGAATGACTCCCGTAACAGGTA -ACGGAATGACTCCCGTAAGACTCT -ACGGAATGACTCCCGTAAAGTCCT -ACGGAATGACTCCCGTAATAAGCC -ACGGAATGACTCCCGTAAATAGCC -ACGGAATGACTCCCGTAATAACCG -ACGGAATGACTCCCGTAAATGCCA -ACGGAATGACTCCCAATGGGAAAC -ACGGAATGACTCCCAATGAACACC -ACGGAATGACTCCCAATGATCGAG -ACGGAATGACTCCCAATGCTCCTT -ACGGAATGACTCCCAATGCCTGTT -ACGGAATGACTCCCAATGCGGTTT -ACGGAATGACTCCCAATGGTGGTT -ACGGAATGACTCCCAATGGCCTTT -ACGGAATGACTCCCAATGGGTCTT -ACGGAATGACTCCCAATGACGCTT -ACGGAATGACTCCCAATGAGCGTT -ACGGAATGACTCCCAATGTTCGTC -ACGGAATGACTCCCAATGTCTCTC -ACGGAATGACTCCCAATGTGGATC -ACGGAATGACTCCCAATGCACTTC -ACGGAATGACTCCCAATGGTACTC -ACGGAATGACTCCCAATGGATGTC -ACGGAATGACTCCCAATGACAGTC -ACGGAATGACTCCCAATGTTGCTG -ACGGAATGACTCCCAATGTCCATG -ACGGAATGACTCCCAATGTGTGTG -ACGGAATGACTCCCAATGCTAGTG -ACGGAATGACTCCCAATGCATCTG -ACGGAATGACTCCCAATGGAGTTG -ACGGAATGACTCCCAATGAGACTG -ACGGAATGACTCCCAATGTCGGTA -ACGGAATGACTCCCAATGTGCCTA -ACGGAATGACTCCCAATGCCACTA -ACGGAATGACTCCCAATGGGAGTA -ACGGAATGACTCCCAATGTCGTCT -ACGGAATGACTCCCAATGTGCACT -ACGGAATGACTCCCAATGCTGACT -ACGGAATGACTCCCAATGCAACCT -ACGGAATGACTCCCAATGGCTACT -ACGGAATGACTCCCAATGGGATCT -ACGGAATGACTCCCAATGAAGGCT -ACGGAATGACTCCCAATGTCAACC -ACGGAATGACTCCCAATGTGTTCC -ACGGAATGACTCCCAATGATTCCC -ACGGAATGACTCCCAATGTTCTCG -ACGGAATGACTCCCAATGTAGACG -ACGGAATGACTCCCAATGGTAACG -ACGGAATGACTCCCAATGACTTCG -ACGGAATGACTCCCAATGTACGCA -ACGGAATGACTCCCAATGCTTGCA -ACGGAATGACTCCCAATGCGAACA -ACGGAATGACTCCCAATGCAGTCA -ACGGAATGACTCCCAATGGATCCA -ACGGAATGACTCCCAATGACGACA -ACGGAATGACTCCCAATGAGCTCA -ACGGAATGACTCCCAATGTCACGT -ACGGAATGACTCCCAATGCGTAGT -ACGGAATGACTCCCAATGGTCAGT -ACGGAATGACTCCCAATGGAAGGT -ACGGAATGACTCCCAATGAACCGT -ACGGAATGACTCCCAATGTTGTGC -ACGGAATGACTCCCAATGCTAAGC -ACGGAATGACTCCCAATGACTAGC -ACGGAATGACTCCCAATGAGATGC -ACGGAATGACTCCCAATGTGAAGG -ACGGAATGACTCCCAATGCAATGG -ACGGAATGACTCCCAATGATGAGG -ACGGAATGACTCCCAATGAATGGG -ACGGAATGACTCCCAATGTCCTGA -ACGGAATGACTCCCAATGTAGCGA -ACGGAATGACTCCCAATGCACAGA -ACGGAATGACTCCCAATGGCAAGA -ACGGAATGACTCCCAATGGGTTGA -ACGGAATGACTCCCAATGTCCGAT -ACGGAATGACTCCCAATGTGGCAT -ACGGAATGACTCCCAATGCGAGAT -ACGGAATGACTCCCAATGTACCAC -ACGGAATGACTCCCAATGCAGAAC -ACGGAATGACTCCCAATGGTCTAC -ACGGAATGACTCCCAATGACGTAC -ACGGAATGACTCCCAATGAGTGAC -ACGGAATGACTCCCAATGCTGTAG -ACGGAATGACTCCCAATGCCTAAG -ACGGAATGACTCCCAATGGTTCAG -ACGGAATGACTCCCAATGGCATAG -ACGGAATGACTCCCAATGGACAAG -ACGGAATGACTCCCAATGAAGCAG -ACGGAATGACTCCCAATGCGTCAA -ACGGAATGACTCCCAATGGCTGAA -ACGGAATGACTCCCAATGAGTACG -ACGGAATGACTCCCAATGATCCGA -ACGGAATGACTCCCAATGATGGGA -ACGGAATGACTCCCAATGGTGCAA -ACGGAATGACTCCCAATGGAGGAA -ACGGAATGACTCCCAATGCAGGTA -ACGGAATGACTCCCAATGGACTCT -ACGGAATGACTCCCAATGAGTCCT -ACGGAATGACTCCCAATGTAAGCC -ACGGAATGACTCCCAATGATAGCC -ACGGAATGACTCCCAATGTAACCG -ACGGAATGACTCCCAATGATGCCA -ACGGAAAACCTCAACGGAGGAAAC -ACGGAAAACCTCAACGGAAACACC -ACGGAAAACCTCAACGGAATCGAG -ACGGAAAACCTCAACGGACTCCTT -ACGGAAAACCTCAACGGACCTGTT -ACGGAAAACCTCAACGGACGGTTT -ACGGAAAACCTCAACGGAGTGGTT -ACGGAAAACCTCAACGGAGCCTTT -ACGGAAAACCTCAACGGAGGTCTT -ACGGAAAACCTCAACGGAACGCTT -ACGGAAAACCTCAACGGAAGCGTT -ACGGAAAACCTCAACGGATTCGTC -ACGGAAAACCTCAACGGATCTCTC -ACGGAAAACCTCAACGGATGGATC -ACGGAAAACCTCAACGGACACTTC -ACGGAAAACCTCAACGGAGTACTC -ACGGAAAACCTCAACGGAGATGTC -ACGGAAAACCTCAACGGAACAGTC -ACGGAAAACCTCAACGGATTGCTG -ACGGAAAACCTCAACGGATCCATG -ACGGAAAACCTCAACGGATGTGTG -ACGGAAAACCTCAACGGACTAGTG -ACGGAAAACCTCAACGGACATCTG -ACGGAAAACCTCAACGGAGAGTTG -ACGGAAAACCTCAACGGAAGACTG -ACGGAAAACCTCAACGGATCGGTA -ACGGAAAACCTCAACGGATGCCTA -ACGGAAAACCTCAACGGACCACTA -ACGGAAAACCTCAACGGAGGAGTA -ACGGAAAACCTCAACGGATCGTCT -ACGGAAAACCTCAACGGATGCACT -ACGGAAAACCTCAACGGACTGACT -ACGGAAAACCTCAACGGACAACCT -ACGGAAAACCTCAACGGAGCTACT -ACGGAAAACCTCAACGGAGGATCT -ACGGAAAACCTCAACGGAAAGGCT -ACGGAAAACCTCAACGGATCAACC -ACGGAAAACCTCAACGGATGTTCC -ACGGAAAACCTCAACGGAATTCCC -ACGGAAAACCTCAACGGATTCTCG -ACGGAAAACCTCAACGGATAGACG -ACGGAAAACCTCAACGGAGTAACG -ACGGAAAACCTCAACGGAACTTCG -ACGGAAAACCTCAACGGATACGCA -ACGGAAAACCTCAACGGACTTGCA -ACGGAAAACCTCAACGGACGAACA -ACGGAAAACCTCAACGGACAGTCA -ACGGAAAACCTCAACGGAGATCCA -ACGGAAAACCTCAACGGAACGACA -ACGGAAAACCTCAACGGAAGCTCA -ACGGAAAACCTCAACGGATCACGT -ACGGAAAACCTCAACGGACGTAGT -ACGGAAAACCTCAACGGAGTCAGT -ACGGAAAACCTCAACGGAGAAGGT -ACGGAAAACCTCAACGGAAACCGT -ACGGAAAACCTCAACGGATTGTGC -ACGGAAAACCTCAACGGACTAAGC -ACGGAAAACCTCAACGGAACTAGC -ACGGAAAACCTCAACGGAAGATGC -ACGGAAAACCTCAACGGATGAAGG -ACGGAAAACCTCAACGGACAATGG -ACGGAAAACCTCAACGGAATGAGG -ACGGAAAACCTCAACGGAAATGGG -ACGGAAAACCTCAACGGATCCTGA -ACGGAAAACCTCAACGGATAGCGA -ACGGAAAACCTCAACGGACACAGA -ACGGAAAACCTCAACGGAGCAAGA -ACGGAAAACCTCAACGGAGGTTGA -ACGGAAAACCTCAACGGATCCGAT -ACGGAAAACCTCAACGGATGGCAT -ACGGAAAACCTCAACGGACGAGAT -ACGGAAAACCTCAACGGATACCAC -ACGGAAAACCTCAACGGACAGAAC -ACGGAAAACCTCAACGGAGTCTAC -ACGGAAAACCTCAACGGAACGTAC -ACGGAAAACCTCAACGGAAGTGAC -ACGGAAAACCTCAACGGACTGTAG -ACGGAAAACCTCAACGGACCTAAG -ACGGAAAACCTCAACGGAGTTCAG -ACGGAAAACCTCAACGGAGCATAG -ACGGAAAACCTCAACGGAGACAAG -ACGGAAAACCTCAACGGAAAGCAG -ACGGAAAACCTCAACGGACGTCAA -ACGGAAAACCTCAACGGAGCTGAA -ACGGAAAACCTCAACGGAAGTACG -ACGGAAAACCTCAACGGAATCCGA -ACGGAAAACCTCAACGGAATGGGA -ACGGAAAACCTCAACGGAGTGCAA -ACGGAAAACCTCAACGGAGAGGAA -ACGGAAAACCTCAACGGACAGGTA -ACGGAAAACCTCAACGGAGACTCT -ACGGAAAACCTCAACGGAAGTCCT -ACGGAAAACCTCAACGGATAAGCC -ACGGAAAACCTCAACGGAATAGCC -ACGGAAAACCTCAACGGATAACCG -ACGGAAAACCTCAACGGAATGCCA -ACGGAAAACCTCACCAACGGAAAC -ACGGAAAACCTCACCAACAACACC -ACGGAAAACCTCACCAACATCGAG -ACGGAAAACCTCACCAACCTCCTT -ACGGAAAACCTCACCAACCCTGTT -ACGGAAAACCTCACCAACCGGTTT -ACGGAAAACCTCACCAACGTGGTT -ACGGAAAACCTCACCAACGCCTTT -ACGGAAAACCTCACCAACGGTCTT -ACGGAAAACCTCACCAACACGCTT -ACGGAAAACCTCACCAACAGCGTT -ACGGAAAACCTCACCAACTTCGTC -ACGGAAAACCTCACCAACTCTCTC -ACGGAAAACCTCACCAACTGGATC -ACGGAAAACCTCACCAACCACTTC -ACGGAAAACCTCACCAACGTACTC -ACGGAAAACCTCACCAACGATGTC -ACGGAAAACCTCACCAACACAGTC -ACGGAAAACCTCACCAACTTGCTG -ACGGAAAACCTCACCAACTCCATG -ACGGAAAACCTCACCAACTGTGTG -ACGGAAAACCTCACCAACCTAGTG -ACGGAAAACCTCACCAACCATCTG -ACGGAAAACCTCACCAACGAGTTG -ACGGAAAACCTCACCAACAGACTG -ACGGAAAACCTCACCAACTCGGTA -ACGGAAAACCTCACCAACTGCCTA -ACGGAAAACCTCACCAACCCACTA -ACGGAAAACCTCACCAACGGAGTA -ACGGAAAACCTCACCAACTCGTCT -ACGGAAAACCTCACCAACTGCACT -ACGGAAAACCTCACCAACCTGACT -ACGGAAAACCTCACCAACCAACCT -ACGGAAAACCTCACCAACGCTACT -ACGGAAAACCTCACCAACGGATCT -ACGGAAAACCTCACCAACAAGGCT -ACGGAAAACCTCACCAACTCAACC -ACGGAAAACCTCACCAACTGTTCC -ACGGAAAACCTCACCAACATTCCC -ACGGAAAACCTCACCAACTTCTCG -ACGGAAAACCTCACCAACTAGACG -ACGGAAAACCTCACCAACGTAACG -ACGGAAAACCTCACCAACACTTCG -ACGGAAAACCTCACCAACTACGCA -ACGGAAAACCTCACCAACCTTGCA -ACGGAAAACCTCACCAACCGAACA -ACGGAAAACCTCACCAACCAGTCA -ACGGAAAACCTCACCAACGATCCA -ACGGAAAACCTCACCAACACGACA -ACGGAAAACCTCACCAACAGCTCA -ACGGAAAACCTCACCAACTCACGT -ACGGAAAACCTCACCAACCGTAGT -ACGGAAAACCTCACCAACGTCAGT -ACGGAAAACCTCACCAACGAAGGT -ACGGAAAACCTCACCAACAACCGT -ACGGAAAACCTCACCAACTTGTGC -ACGGAAAACCTCACCAACCTAAGC -ACGGAAAACCTCACCAACACTAGC -ACGGAAAACCTCACCAACAGATGC -ACGGAAAACCTCACCAACTGAAGG -ACGGAAAACCTCACCAACCAATGG -ACGGAAAACCTCACCAACATGAGG -ACGGAAAACCTCACCAACAATGGG -ACGGAAAACCTCACCAACTCCTGA -ACGGAAAACCTCACCAACTAGCGA -ACGGAAAACCTCACCAACCACAGA -ACGGAAAACCTCACCAACGCAAGA -ACGGAAAACCTCACCAACGGTTGA -ACGGAAAACCTCACCAACTCCGAT -ACGGAAAACCTCACCAACTGGCAT -ACGGAAAACCTCACCAACCGAGAT -ACGGAAAACCTCACCAACTACCAC -ACGGAAAACCTCACCAACCAGAAC -ACGGAAAACCTCACCAACGTCTAC -ACGGAAAACCTCACCAACACGTAC -ACGGAAAACCTCACCAACAGTGAC -ACGGAAAACCTCACCAACCTGTAG -ACGGAAAACCTCACCAACCCTAAG -ACGGAAAACCTCACCAACGTTCAG -ACGGAAAACCTCACCAACGCATAG -ACGGAAAACCTCACCAACGACAAG -ACGGAAAACCTCACCAACAAGCAG -ACGGAAAACCTCACCAACCGTCAA -ACGGAAAACCTCACCAACGCTGAA -ACGGAAAACCTCACCAACAGTACG -ACGGAAAACCTCACCAACATCCGA -ACGGAAAACCTCACCAACATGGGA -ACGGAAAACCTCACCAACGTGCAA -ACGGAAAACCTCACCAACGAGGAA -ACGGAAAACCTCACCAACCAGGTA -ACGGAAAACCTCACCAACGACTCT -ACGGAAAACCTCACCAACAGTCCT -ACGGAAAACCTCACCAACTAAGCC -ACGGAAAACCTCACCAACATAGCC -ACGGAAAACCTCACCAACTAACCG -ACGGAAAACCTCACCAACATGCCA -ACGGAAAACCTCGAGATCGGAAAC -ACGGAAAACCTCGAGATCAACACC -ACGGAAAACCTCGAGATCATCGAG -ACGGAAAACCTCGAGATCCTCCTT -ACGGAAAACCTCGAGATCCCTGTT -ACGGAAAACCTCGAGATCCGGTTT -ACGGAAAACCTCGAGATCGTGGTT -ACGGAAAACCTCGAGATCGCCTTT -ACGGAAAACCTCGAGATCGGTCTT -ACGGAAAACCTCGAGATCACGCTT -ACGGAAAACCTCGAGATCAGCGTT -ACGGAAAACCTCGAGATCTTCGTC -ACGGAAAACCTCGAGATCTCTCTC -ACGGAAAACCTCGAGATCTGGATC -ACGGAAAACCTCGAGATCCACTTC -ACGGAAAACCTCGAGATCGTACTC -ACGGAAAACCTCGAGATCGATGTC -ACGGAAAACCTCGAGATCACAGTC -ACGGAAAACCTCGAGATCTTGCTG -ACGGAAAACCTCGAGATCTCCATG -ACGGAAAACCTCGAGATCTGTGTG -ACGGAAAACCTCGAGATCCTAGTG -ACGGAAAACCTCGAGATCCATCTG -ACGGAAAACCTCGAGATCGAGTTG -ACGGAAAACCTCGAGATCAGACTG -ACGGAAAACCTCGAGATCTCGGTA -ACGGAAAACCTCGAGATCTGCCTA -ACGGAAAACCTCGAGATCCCACTA -ACGGAAAACCTCGAGATCGGAGTA -ACGGAAAACCTCGAGATCTCGTCT -ACGGAAAACCTCGAGATCTGCACT -ACGGAAAACCTCGAGATCCTGACT -ACGGAAAACCTCGAGATCCAACCT -ACGGAAAACCTCGAGATCGCTACT -ACGGAAAACCTCGAGATCGGATCT -ACGGAAAACCTCGAGATCAAGGCT -ACGGAAAACCTCGAGATCTCAACC -ACGGAAAACCTCGAGATCTGTTCC -ACGGAAAACCTCGAGATCATTCCC -ACGGAAAACCTCGAGATCTTCTCG -ACGGAAAACCTCGAGATCTAGACG -ACGGAAAACCTCGAGATCGTAACG -ACGGAAAACCTCGAGATCACTTCG -ACGGAAAACCTCGAGATCTACGCA -ACGGAAAACCTCGAGATCCTTGCA -ACGGAAAACCTCGAGATCCGAACA -ACGGAAAACCTCGAGATCCAGTCA -ACGGAAAACCTCGAGATCGATCCA -ACGGAAAACCTCGAGATCACGACA -ACGGAAAACCTCGAGATCAGCTCA -ACGGAAAACCTCGAGATCTCACGT -ACGGAAAACCTCGAGATCCGTAGT -ACGGAAAACCTCGAGATCGTCAGT -ACGGAAAACCTCGAGATCGAAGGT -ACGGAAAACCTCGAGATCAACCGT -ACGGAAAACCTCGAGATCTTGTGC -ACGGAAAACCTCGAGATCCTAAGC -ACGGAAAACCTCGAGATCACTAGC -ACGGAAAACCTCGAGATCAGATGC -ACGGAAAACCTCGAGATCTGAAGG -ACGGAAAACCTCGAGATCCAATGG -ACGGAAAACCTCGAGATCATGAGG -ACGGAAAACCTCGAGATCAATGGG -ACGGAAAACCTCGAGATCTCCTGA -ACGGAAAACCTCGAGATCTAGCGA -ACGGAAAACCTCGAGATCCACAGA -ACGGAAAACCTCGAGATCGCAAGA -ACGGAAAACCTCGAGATCGGTTGA -ACGGAAAACCTCGAGATCTCCGAT -ACGGAAAACCTCGAGATCTGGCAT -ACGGAAAACCTCGAGATCCGAGAT -ACGGAAAACCTCGAGATCTACCAC -ACGGAAAACCTCGAGATCCAGAAC -ACGGAAAACCTCGAGATCGTCTAC -ACGGAAAACCTCGAGATCACGTAC -ACGGAAAACCTCGAGATCAGTGAC -ACGGAAAACCTCGAGATCCTGTAG -ACGGAAAACCTCGAGATCCCTAAG -ACGGAAAACCTCGAGATCGTTCAG -ACGGAAAACCTCGAGATCGCATAG -ACGGAAAACCTCGAGATCGACAAG -ACGGAAAACCTCGAGATCAAGCAG -ACGGAAAACCTCGAGATCCGTCAA -ACGGAAAACCTCGAGATCGCTGAA -ACGGAAAACCTCGAGATCAGTACG -ACGGAAAACCTCGAGATCATCCGA -ACGGAAAACCTCGAGATCATGGGA -ACGGAAAACCTCGAGATCGTGCAA -ACGGAAAACCTCGAGATCGAGGAA -ACGGAAAACCTCGAGATCCAGGTA -ACGGAAAACCTCGAGATCGACTCT -ACGGAAAACCTCGAGATCAGTCCT -ACGGAAAACCTCGAGATCTAAGCC -ACGGAAAACCTCGAGATCATAGCC -ACGGAAAACCTCGAGATCTAACCG -ACGGAAAACCTCGAGATCATGCCA -ACGGAAAACCTCCTTCTCGGAAAC -ACGGAAAACCTCCTTCTCAACACC -ACGGAAAACCTCCTTCTCATCGAG -ACGGAAAACCTCCTTCTCCTCCTT -ACGGAAAACCTCCTTCTCCCTGTT -ACGGAAAACCTCCTTCTCCGGTTT -ACGGAAAACCTCCTTCTCGTGGTT -ACGGAAAACCTCCTTCTCGCCTTT -ACGGAAAACCTCCTTCTCGGTCTT -ACGGAAAACCTCCTTCTCACGCTT -ACGGAAAACCTCCTTCTCAGCGTT -ACGGAAAACCTCCTTCTCTTCGTC -ACGGAAAACCTCCTTCTCTCTCTC -ACGGAAAACCTCCTTCTCTGGATC -ACGGAAAACCTCCTTCTCCACTTC -ACGGAAAACCTCCTTCTCGTACTC -ACGGAAAACCTCCTTCTCGATGTC -ACGGAAAACCTCCTTCTCACAGTC -ACGGAAAACCTCCTTCTCTTGCTG -ACGGAAAACCTCCTTCTCTCCATG -ACGGAAAACCTCCTTCTCTGTGTG -ACGGAAAACCTCCTTCTCCTAGTG -ACGGAAAACCTCCTTCTCCATCTG -ACGGAAAACCTCCTTCTCGAGTTG -ACGGAAAACCTCCTTCTCAGACTG -ACGGAAAACCTCCTTCTCTCGGTA -ACGGAAAACCTCCTTCTCTGCCTA -ACGGAAAACCTCCTTCTCCCACTA -ACGGAAAACCTCCTTCTCGGAGTA -ACGGAAAACCTCCTTCTCTCGTCT -ACGGAAAACCTCCTTCTCTGCACT -ACGGAAAACCTCCTTCTCCTGACT -ACGGAAAACCTCCTTCTCCAACCT -ACGGAAAACCTCCTTCTCGCTACT -ACGGAAAACCTCCTTCTCGGATCT -ACGGAAAACCTCCTTCTCAAGGCT -ACGGAAAACCTCCTTCTCTCAACC -ACGGAAAACCTCCTTCTCTGTTCC -ACGGAAAACCTCCTTCTCATTCCC -ACGGAAAACCTCCTTCTCTTCTCG -ACGGAAAACCTCCTTCTCTAGACG -ACGGAAAACCTCCTTCTCGTAACG -ACGGAAAACCTCCTTCTCACTTCG -ACGGAAAACCTCCTTCTCTACGCA -ACGGAAAACCTCCTTCTCCTTGCA -ACGGAAAACCTCCTTCTCCGAACA -ACGGAAAACCTCCTTCTCCAGTCA -ACGGAAAACCTCCTTCTCGATCCA -ACGGAAAACCTCCTTCTCACGACA -ACGGAAAACCTCCTTCTCAGCTCA -ACGGAAAACCTCCTTCTCTCACGT -ACGGAAAACCTCCTTCTCCGTAGT -ACGGAAAACCTCCTTCTCGTCAGT -ACGGAAAACCTCCTTCTCGAAGGT -ACGGAAAACCTCCTTCTCAACCGT -ACGGAAAACCTCCTTCTCTTGTGC -ACGGAAAACCTCCTTCTCCTAAGC -ACGGAAAACCTCCTTCTCACTAGC -ACGGAAAACCTCCTTCTCAGATGC -ACGGAAAACCTCCTTCTCTGAAGG -ACGGAAAACCTCCTTCTCCAATGG -ACGGAAAACCTCCTTCTCATGAGG -ACGGAAAACCTCCTTCTCAATGGG -ACGGAAAACCTCCTTCTCTCCTGA -ACGGAAAACCTCCTTCTCTAGCGA -ACGGAAAACCTCCTTCTCCACAGA -ACGGAAAACCTCCTTCTCGCAAGA -ACGGAAAACCTCCTTCTCGGTTGA -ACGGAAAACCTCCTTCTCTCCGAT -ACGGAAAACCTCCTTCTCTGGCAT -ACGGAAAACCTCCTTCTCCGAGAT -ACGGAAAACCTCCTTCTCTACCAC -ACGGAAAACCTCCTTCTCCAGAAC -ACGGAAAACCTCCTTCTCGTCTAC -ACGGAAAACCTCCTTCTCACGTAC -ACGGAAAACCTCCTTCTCAGTGAC -ACGGAAAACCTCCTTCTCCTGTAG -ACGGAAAACCTCCTTCTCCCTAAG -ACGGAAAACCTCCTTCTCGTTCAG -ACGGAAAACCTCCTTCTCGCATAG -ACGGAAAACCTCCTTCTCGACAAG -ACGGAAAACCTCCTTCTCAAGCAG -ACGGAAAACCTCCTTCTCCGTCAA -ACGGAAAACCTCCTTCTCGCTGAA -ACGGAAAACCTCCTTCTCAGTACG -ACGGAAAACCTCCTTCTCATCCGA -ACGGAAAACCTCCTTCTCATGGGA -ACGGAAAACCTCCTTCTCGTGCAA -ACGGAAAACCTCCTTCTCGAGGAA -ACGGAAAACCTCCTTCTCCAGGTA -ACGGAAAACCTCCTTCTCGACTCT -ACGGAAAACCTCCTTCTCAGTCCT -ACGGAAAACCTCCTTCTCTAAGCC -ACGGAAAACCTCCTTCTCATAGCC -ACGGAAAACCTCCTTCTCTAACCG -ACGGAAAACCTCCTTCTCATGCCA -ACGGAAAACCTCGTTCCTGGAAAC -ACGGAAAACCTCGTTCCTAACACC -ACGGAAAACCTCGTTCCTATCGAG -ACGGAAAACCTCGTTCCTCTCCTT -ACGGAAAACCTCGTTCCTCCTGTT -ACGGAAAACCTCGTTCCTCGGTTT -ACGGAAAACCTCGTTCCTGTGGTT -ACGGAAAACCTCGTTCCTGCCTTT -ACGGAAAACCTCGTTCCTGGTCTT -ACGGAAAACCTCGTTCCTACGCTT -ACGGAAAACCTCGTTCCTAGCGTT -ACGGAAAACCTCGTTCCTTTCGTC -ACGGAAAACCTCGTTCCTTCTCTC -ACGGAAAACCTCGTTCCTTGGATC -ACGGAAAACCTCGTTCCTCACTTC -ACGGAAAACCTCGTTCCTGTACTC -ACGGAAAACCTCGTTCCTGATGTC -ACGGAAAACCTCGTTCCTACAGTC -ACGGAAAACCTCGTTCCTTTGCTG -ACGGAAAACCTCGTTCCTTCCATG -ACGGAAAACCTCGTTCCTTGTGTG -ACGGAAAACCTCGTTCCTCTAGTG -ACGGAAAACCTCGTTCCTCATCTG -ACGGAAAACCTCGTTCCTGAGTTG -ACGGAAAACCTCGTTCCTAGACTG -ACGGAAAACCTCGTTCCTTCGGTA -ACGGAAAACCTCGTTCCTTGCCTA -ACGGAAAACCTCGTTCCTCCACTA -ACGGAAAACCTCGTTCCTGGAGTA -ACGGAAAACCTCGTTCCTTCGTCT -ACGGAAAACCTCGTTCCTTGCACT -ACGGAAAACCTCGTTCCTCTGACT -ACGGAAAACCTCGTTCCTCAACCT -ACGGAAAACCTCGTTCCTGCTACT -ACGGAAAACCTCGTTCCTGGATCT -ACGGAAAACCTCGTTCCTAAGGCT -ACGGAAAACCTCGTTCCTTCAACC -ACGGAAAACCTCGTTCCTTGTTCC -ACGGAAAACCTCGTTCCTATTCCC -ACGGAAAACCTCGTTCCTTTCTCG -ACGGAAAACCTCGTTCCTTAGACG -ACGGAAAACCTCGTTCCTGTAACG -ACGGAAAACCTCGTTCCTACTTCG -ACGGAAAACCTCGTTCCTTACGCA -ACGGAAAACCTCGTTCCTCTTGCA -ACGGAAAACCTCGTTCCTCGAACA -ACGGAAAACCTCGTTCCTCAGTCA -ACGGAAAACCTCGTTCCTGATCCA -ACGGAAAACCTCGTTCCTACGACA -ACGGAAAACCTCGTTCCTAGCTCA -ACGGAAAACCTCGTTCCTTCACGT -ACGGAAAACCTCGTTCCTCGTAGT -ACGGAAAACCTCGTTCCTGTCAGT -ACGGAAAACCTCGTTCCTGAAGGT -ACGGAAAACCTCGTTCCTAACCGT -ACGGAAAACCTCGTTCCTTTGTGC -ACGGAAAACCTCGTTCCTCTAAGC -ACGGAAAACCTCGTTCCTACTAGC -ACGGAAAACCTCGTTCCTAGATGC -ACGGAAAACCTCGTTCCTTGAAGG -ACGGAAAACCTCGTTCCTCAATGG -ACGGAAAACCTCGTTCCTATGAGG -ACGGAAAACCTCGTTCCTAATGGG -ACGGAAAACCTCGTTCCTTCCTGA -ACGGAAAACCTCGTTCCTTAGCGA -ACGGAAAACCTCGTTCCTCACAGA -ACGGAAAACCTCGTTCCTGCAAGA -ACGGAAAACCTCGTTCCTGGTTGA -ACGGAAAACCTCGTTCCTTCCGAT -ACGGAAAACCTCGTTCCTTGGCAT -ACGGAAAACCTCGTTCCTCGAGAT -ACGGAAAACCTCGTTCCTTACCAC -ACGGAAAACCTCGTTCCTCAGAAC -ACGGAAAACCTCGTTCCTGTCTAC -ACGGAAAACCTCGTTCCTACGTAC -ACGGAAAACCTCGTTCCTAGTGAC -ACGGAAAACCTCGTTCCTCTGTAG -ACGGAAAACCTCGTTCCTCCTAAG -ACGGAAAACCTCGTTCCTGTTCAG -ACGGAAAACCTCGTTCCTGCATAG -ACGGAAAACCTCGTTCCTGACAAG -ACGGAAAACCTCGTTCCTAAGCAG -ACGGAAAACCTCGTTCCTCGTCAA -ACGGAAAACCTCGTTCCTGCTGAA -ACGGAAAACCTCGTTCCTAGTACG -ACGGAAAACCTCGTTCCTATCCGA -ACGGAAAACCTCGTTCCTATGGGA -ACGGAAAACCTCGTTCCTGTGCAA -ACGGAAAACCTCGTTCCTGAGGAA -ACGGAAAACCTCGTTCCTCAGGTA -ACGGAAAACCTCGTTCCTGACTCT -ACGGAAAACCTCGTTCCTAGTCCT -ACGGAAAACCTCGTTCCTTAAGCC -ACGGAAAACCTCGTTCCTATAGCC -ACGGAAAACCTCGTTCCTTAACCG -ACGGAAAACCTCGTTCCTATGCCA -ACGGAAAACCTCTTTCGGGGAAAC -ACGGAAAACCTCTTTCGGAACACC -ACGGAAAACCTCTTTCGGATCGAG -ACGGAAAACCTCTTTCGGCTCCTT -ACGGAAAACCTCTTTCGGCCTGTT -ACGGAAAACCTCTTTCGGCGGTTT -ACGGAAAACCTCTTTCGGGTGGTT -ACGGAAAACCTCTTTCGGGCCTTT -ACGGAAAACCTCTTTCGGGGTCTT -ACGGAAAACCTCTTTCGGACGCTT -ACGGAAAACCTCTTTCGGAGCGTT -ACGGAAAACCTCTTTCGGTTCGTC -ACGGAAAACCTCTTTCGGTCTCTC -ACGGAAAACCTCTTTCGGTGGATC -ACGGAAAACCTCTTTCGGCACTTC -ACGGAAAACCTCTTTCGGGTACTC -ACGGAAAACCTCTTTCGGGATGTC -ACGGAAAACCTCTTTCGGACAGTC -ACGGAAAACCTCTTTCGGTTGCTG -ACGGAAAACCTCTTTCGGTCCATG -ACGGAAAACCTCTTTCGGTGTGTG -ACGGAAAACCTCTTTCGGCTAGTG -ACGGAAAACCTCTTTCGGCATCTG -ACGGAAAACCTCTTTCGGGAGTTG -ACGGAAAACCTCTTTCGGAGACTG -ACGGAAAACCTCTTTCGGTCGGTA -ACGGAAAACCTCTTTCGGTGCCTA -ACGGAAAACCTCTTTCGGCCACTA -ACGGAAAACCTCTTTCGGGGAGTA -ACGGAAAACCTCTTTCGGTCGTCT -ACGGAAAACCTCTTTCGGTGCACT -ACGGAAAACCTCTTTCGGCTGACT -ACGGAAAACCTCTTTCGGCAACCT -ACGGAAAACCTCTTTCGGGCTACT -ACGGAAAACCTCTTTCGGGGATCT -ACGGAAAACCTCTTTCGGAAGGCT -ACGGAAAACCTCTTTCGGTCAACC -ACGGAAAACCTCTTTCGGTGTTCC -ACGGAAAACCTCTTTCGGATTCCC -ACGGAAAACCTCTTTCGGTTCTCG -ACGGAAAACCTCTTTCGGTAGACG -ACGGAAAACCTCTTTCGGGTAACG -ACGGAAAACCTCTTTCGGACTTCG -ACGGAAAACCTCTTTCGGTACGCA -ACGGAAAACCTCTTTCGGCTTGCA -ACGGAAAACCTCTTTCGGCGAACA -ACGGAAAACCTCTTTCGGCAGTCA -ACGGAAAACCTCTTTCGGGATCCA -ACGGAAAACCTCTTTCGGACGACA -ACGGAAAACCTCTTTCGGAGCTCA -ACGGAAAACCTCTTTCGGTCACGT -ACGGAAAACCTCTTTCGGCGTAGT -ACGGAAAACCTCTTTCGGGTCAGT -ACGGAAAACCTCTTTCGGGAAGGT -ACGGAAAACCTCTTTCGGAACCGT -ACGGAAAACCTCTTTCGGTTGTGC -ACGGAAAACCTCTTTCGGCTAAGC -ACGGAAAACCTCTTTCGGACTAGC -ACGGAAAACCTCTTTCGGAGATGC -ACGGAAAACCTCTTTCGGTGAAGG -ACGGAAAACCTCTTTCGGCAATGG -ACGGAAAACCTCTTTCGGATGAGG -ACGGAAAACCTCTTTCGGAATGGG -ACGGAAAACCTCTTTCGGTCCTGA -ACGGAAAACCTCTTTCGGTAGCGA -ACGGAAAACCTCTTTCGGCACAGA -ACGGAAAACCTCTTTCGGGCAAGA -ACGGAAAACCTCTTTCGGGGTTGA -ACGGAAAACCTCTTTCGGTCCGAT -ACGGAAAACCTCTTTCGGTGGCAT -ACGGAAAACCTCTTTCGGCGAGAT -ACGGAAAACCTCTTTCGGTACCAC -ACGGAAAACCTCTTTCGGCAGAAC -ACGGAAAACCTCTTTCGGGTCTAC -ACGGAAAACCTCTTTCGGACGTAC -ACGGAAAACCTCTTTCGGAGTGAC -ACGGAAAACCTCTTTCGGCTGTAG -ACGGAAAACCTCTTTCGGCCTAAG -ACGGAAAACCTCTTTCGGGTTCAG -ACGGAAAACCTCTTTCGGGCATAG -ACGGAAAACCTCTTTCGGGACAAG -ACGGAAAACCTCTTTCGGAAGCAG -ACGGAAAACCTCTTTCGGCGTCAA -ACGGAAAACCTCTTTCGGGCTGAA -ACGGAAAACCTCTTTCGGAGTACG -ACGGAAAACCTCTTTCGGATCCGA -ACGGAAAACCTCTTTCGGATGGGA -ACGGAAAACCTCTTTCGGGTGCAA -ACGGAAAACCTCTTTCGGGAGGAA -ACGGAAAACCTCTTTCGGCAGGTA -ACGGAAAACCTCTTTCGGGACTCT -ACGGAAAACCTCTTTCGGAGTCCT -ACGGAAAACCTCTTTCGGTAAGCC -ACGGAAAACCTCTTTCGGATAGCC -ACGGAAAACCTCTTTCGGTAACCG -ACGGAAAACCTCTTTCGGATGCCA -ACGGAAAACCTCGTTGTGGGAAAC -ACGGAAAACCTCGTTGTGAACACC -ACGGAAAACCTCGTTGTGATCGAG -ACGGAAAACCTCGTTGTGCTCCTT -ACGGAAAACCTCGTTGTGCCTGTT -ACGGAAAACCTCGTTGTGCGGTTT -ACGGAAAACCTCGTTGTGGTGGTT -ACGGAAAACCTCGTTGTGGCCTTT -ACGGAAAACCTCGTTGTGGGTCTT -ACGGAAAACCTCGTTGTGACGCTT -ACGGAAAACCTCGTTGTGAGCGTT -ACGGAAAACCTCGTTGTGTTCGTC -ACGGAAAACCTCGTTGTGTCTCTC -ACGGAAAACCTCGTTGTGTGGATC -ACGGAAAACCTCGTTGTGCACTTC -ACGGAAAACCTCGTTGTGGTACTC -ACGGAAAACCTCGTTGTGGATGTC -ACGGAAAACCTCGTTGTGACAGTC -ACGGAAAACCTCGTTGTGTTGCTG -ACGGAAAACCTCGTTGTGTCCATG -ACGGAAAACCTCGTTGTGTGTGTG -ACGGAAAACCTCGTTGTGCTAGTG -ACGGAAAACCTCGTTGTGCATCTG -ACGGAAAACCTCGTTGTGGAGTTG -ACGGAAAACCTCGTTGTGAGACTG -ACGGAAAACCTCGTTGTGTCGGTA -ACGGAAAACCTCGTTGTGTGCCTA -ACGGAAAACCTCGTTGTGCCACTA -ACGGAAAACCTCGTTGTGGGAGTA -ACGGAAAACCTCGTTGTGTCGTCT -ACGGAAAACCTCGTTGTGTGCACT -ACGGAAAACCTCGTTGTGCTGACT -ACGGAAAACCTCGTTGTGCAACCT -ACGGAAAACCTCGTTGTGGCTACT -ACGGAAAACCTCGTTGTGGGATCT -ACGGAAAACCTCGTTGTGAAGGCT -ACGGAAAACCTCGTTGTGTCAACC -ACGGAAAACCTCGTTGTGTGTTCC -ACGGAAAACCTCGTTGTGATTCCC -ACGGAAAACCTCGTTGTGTTCTCG -ACGGAAAACCTCGTTGTGTAGACG -ACGGAAAACCTCGTTGTGGTAACG -ACGGAAAACCTCGTTGTGACTTCG -ACGGAAAACCTCGTTGTGTACGCA -ACGGAAAACCTCGTTGTGCTTGCA -ACGGAAAACCTCGTTGTGCGAACA -ACGGAAAACCTCGTTGTGCAGTCA -ACGGAAAACCTCGTTGTGGATCCA -ACGGAAAACCTCGTTGTGACGACA -ACGGAAAACCTCGTTGTGAGCTCA -ACGGAAAACCTCGTTGTGTCACGT -ACGGAAAACCTCGTTGTGCGTAGT -ACGGAAAACCTCGTTGTGGTCAGT -ACGGAAAACCTCGTTGTGGAAGGT -ACGGAAAACCTCGTTGTGAACCGT -ACGGAAAACCTCGTTGTGTTGTGC -ACGGAAAACCTCGTTGTGCTAAGC -ACGGAAAACCTCGTTGTGACTAGC -ACGGAAAACCTCGTTGTGAGATGC -ACGGAAAACCTCGTTGTGTGAAGG -ACGGAAAACCTCGTTGTGCAATGG -ACGGAAAACCTCGTTGTGATGAGG -ACGGAAAACCTCGTTGTGAATGGG -ACGGAAAACCTCGTTGTGTCCTGA -ACGGAAAACCTCGTTGTGTAGCGA -ACGGAAAACCTCGTTGTGCACAGA -ACGGAAAACCTCGTTGTGGCAAGA -ACGGAAAACCTCGTTGTGGGTTGA -ACGGAAAACCTCGTTGTGTCCGAT -ACGGAAAACCTCGTTGTGTGGCAT -ACGGAAAACCTCGTTGTGCGAGAT -ACGGAAAACCTCGTTGTGTACCAC -ACGGAAAACCTCGTTGTGCAGAAC -ACGGAAAACCTCGTTGTGGTCTAC -ACGGAAAACCTCGTTGTGACGTAC -ACGGAAAACCTCGTTGTGAGTGAC -ACGGAAAACCTCGTTGTGCTGTAG -ACGGAAAACCTCGTTGTGCCTAAG -ACGGAAAACCTCGTTGTGGTTCAG -ACGGAAAACCTCGTTGTGGCATAG -ACGGAAAACCTCGTTGTGGACAAG -ACGGAAAACCTCGTTGTGAAGCAG -ACGGAAAACCTCGTTGTGCGTCAA -ACGGAAAACCTCGTTGTGGCTGAA -ACGGAAAACCTCGTTGTGAGTACG -ACGGAAAACCTCGTTGTGATCCGA -ACGGAAAACCTCGTTGTGATGGGA -ACGGAAAACCTCGTTGTGGTGCAA -ACGGAAAACCTCGTTGTGGAGGAA -ACGGAAAACCTCGTTGTGCAGGTA -ACGGAAAACCTCGTTGTGGACTCT -ACGGAAAACCTCGTTGTGAGTCCT -ACGGAAAACCTCGTTGTGTAAGCC -ACGGAAAACCTCGTTGTGATAGCC -ACGGAAAACCTCGTTGTGTAACCG -ACGGAAAACCTCGTTGTGATGCCA -ACGGAAAACCTCTTTGCCGGAAAC -ACGGAAAACCTCTTTGCCAACACC -ACGGAAAACCTCTTTGCCATCGAG -ACGGAAAACCTCTTTGCCCTCCTT -ACGGAAAACCTCTTTGCCCCTGTT -ACGGAAAACCTCTTTGCCCGGTTT -ACGGAAAACCTCTTTGCCGTGGTT -ACGGAAAACCTCTTTGCCGCCTTT -ACGGAAAACCTCTTTGCCGGTCTT -ACGGAAAACCTCTTTGCCACGCTT -ACGGAAAACCTCTTTGCCAGCGTT -ACGGAAAACCTCTTTGCCTTCGTC -ACGGAAAACCTCTTTGCCTCTCTC -ACGGAAAACCTCTTTGCCTGGATC -ACGGAAAACCTCTTTGCCCACTTC -ACGGAAAACCTCTTTGCCGTACTC -ACGGAAAACCTCTTTGCCGATGTC -ACGGAAAACCTCTTTGCCACAGTC -ACGGAAAACCTCTTTGCCTTGCTG -ACGGAAAACCTCTTTGCCTCCATG -ACGGAAAACCTCTTTGCCTGTGTG -ACGGAAAACCTCTTTGCCCTAGTG -ACGGAAAACCTCTTTGCCCATCTG -ACGGAAAACCTCTTTGCCGAGTTG -ACGGAAAACCTCTTTGCCAGACTG -ACGGAAAACCTCTTTGCCTCGGTA -ACGGAAAACCTCTTTGCCTGCCTA -ACGGAAAACCTCTTTGCCCCACTA -ACGGAAAACCTCTTTGCCGGAGTA -ACGGAAAACCTCTTTGCCTCGTCT -ACGGAAAACCTCTTTGCCTGCACT -ACGGAAAACCTCTTTGCCCTGACT -ACGGAAAACCTCTTTGCCCAACCT -ACGGAAAACCTCTTTGCCGCTACT -ACGGAAAACCTCTTTGCCGGATCT -ACGGAAAACCTCTTTGCCAAGGCT -ACGGAAAACCTCTTTGCCTCAACC -ACGGAAAACCTCTTTGCCTGTTCC -ACGGAAAACCTCTTTGCCATTCCC -ACGGAAAACCTCTTTGCCTTCTCG -ACGGAAAACCTCTTTGCCTAGACG -ACGGAAAACCTCTTTGCCGTAACG -ACGGAAAACCTCTTTGCCACTTCG -ACGGAAAACCTCTTTGCCTACGCA -ACGGAAAACCTCTTTGCCCTTGCA -ACGGAAAACCTCTTTGCCCGAACA -ACGGAAAACCTCTTTGCCCAGTCA -ACGGAAAACCTCTTTGCCGATCCA -ACGGAAAACCTCTTTGCCACGACA -ACGGAAAACCTCTTTGCCAGCTCA -ACGGAAAACCTCTTTGCCTCACGT -ACGGAAAACCTCTTTGCCCGTAGT -ACGGAAAACCTCTTTGCCGTCAGT -ACGGAAAACCTCTTTGCCGAAGGT -ACGGAAAACCTCTTTGCCAACCGT -ACGGAAAACCTCTTTGCCTTGTGC -ACGGAAAACCTCTTTGCCCTAAGC -ACGGAAAACCTCTTTGCCACTAGC -ACGGAAAACCTCTTTGCCAGATGC -ACGGAAAACCTCTTTGCCTGAAGG -ACGGAAAACCTCTTTGCCCAATGG -ACGGAAAACCTCTTTGCCATGAGG -ACGGAAAACCTCTTTGCCAATGGG -ACGGAAAACCTCTTTGCCTCCTGA -ACGGAAAACCTCTTTGCCTAGCGA -ACGGAAAACCTCTTTGCCCACAGA -ACGGAAAACCTCTTTGCCGCAAGA -ACGGAAAACCTCTTTGCCGGTTGA -ACGGAAAACCTCTTTGCCTCCGAT -ACGGAAAACCTCTTTGCCTGGCAT -ACGGAAAACCTCTTTGCCCGAGAT -ACGGAAAACCTCTTTGCCTACCAC -ACGGAAAACCTCTTTGCCCAGAAC -ACGGAAAACCTCTTTGCCGTCTAC -ACGGAAAACCTCTTTGCCACGTAC -ACGGAAAACCTCTTTGCCAGTGAC -ACGGAAAACCTCTTTGCCCTGTAG -ACGGAAAACCTCTTTGCCCCTAAG -ACGGAAAACCTCTTTGCCGTTCAG -ACGGAAAACCTCTTTGCCGCATAG -ACGGAAAACCTCTTTGCCGACAAG -ACGGAAAACCTCTTTGCCAAGCAG -ACGGAAAACCTCTTTGCCCGTCAA -ACGGAAAACCTCTTTGCCGCTGAA -ACGGAAAACCTCTTTGCCAGTACG -ACGGAAAACCTCTTTGCCATCCGA -ACGGAAAACCTCTTTGCCATGGGA -ACGGAAAACCTCTTTGCCGTGCAA -ACGGAAAACCTCTTTGCCGAGGAA -ACGGAAAACCTCTTTGCCCAGGTA -ACGGAAAACCTCTTTGCCGACTCT -ACGGAAAACCTCTTTGCCAGTCCT -ACGGAAAACCTCTTTGCCTAAGCC -ACGGAAAACCTCTTTGCCATAGCC -ACGGAAAACCTCTTTGCCTAACCG -ACGGAAAACCTCTTTGCCATGCCA -ACGGAAAACCTCCTTGGTGGAAAC -ACGGAAAACCTCCTTGGTAACACC -ACGGAAAACCTCCTTGGTATCGAG -ACGGAAAACCTCCTTGGTCTCCTT -ACGGAAAACCTCCTTGGTCCTGTT -ACGGAAAACCTCCTTGGTCGGTTT -ACGGAAAACCTCCTTGGTGTGGTT -ACGGAAAACCTCCTTGGTGCCTTT -ACGGAAAACCTCCTTGGTGGTCTT -ACGGAAAACCTCCTTGGTACGCTT -ACGGAAAACCTCCTTGGTAGCGTT -ACGGAAAACCTCCTTGGTTTCGTC -ACGGAAAACCTCCTTGGTTCTCTC -ACGGAAAACCTCCTTGGTTGGATC -ACGGAAAACCTCCTTGGTCACTTC -ACGGAAAACCTCCTTGGTGTACTC -ACGGAAAACCTCCTTGGTGATGTC -ACGGAAAACCTCCTTGGTACAGTC -ACGGAAAACCTCCTTGGTTTGCTG -ACGGAAAACCTCCTTGGTTCCATG -ACGGAAAACCTCCTTGGTTGTGTG -ACGGAAAACCTCCTTGGTCTAGTG -ACGGAAAACCTCCTTGGTCATCTG -ACGGAAAACCTCCTTGGTGAGTTG -ACGGAAAACCTCCTTGGTAGACTG -ACGGAAAACCTCCTTGGTTCGGTA -ACGGAAAACCTCCTTGGTTGCCTA -ACGGAAAACCTCCTTGGTCCACTA -ACGGAAAACCTCCTTGGTGGAGTA -ACGGAAAACCTCCTTGGTTCGTCT -ACGGAAAACCTCCTTGGTTGCACT -ACGGAAAACCTCCTTGGTCTGACT -ACGGAAAACCTCCTTGGTCAACCT -ACGGAAAACCTCCTTGGTGCTACT -ACGGAAAACCTCCTTGGTGGATCT -ACGGAAAACCTCCTTGGTAAGGCT -ACGGAAAACCTCCTTGGTTCAACC -ACGGAAAACCTCCTTGGTTGTTCC -ACGGAAAACCTCCTTGGTATTCCC -ACGGAAAACCTCCTTGGTTTCTCG -ACGGAAAACCTCCTTGGTTAGACG -ACGGAAAACCTCCTTGGTGTAACG -ACGGAAAACCTCCTTGGTACTTCG -ACGGAAAACCTCCTTGGTTACGCA -ACGGAAAACCTCCTTGGTCTTGCA -ACGGAAAACCTCCTTGGTCGAACA -ACGGAAAACCTCCTTGGTCAGTCA -ACGGAAAACCTCCTTGGTGATCCA -ACGGAAAACCTCCTTGGTACGACA -ACGGAAAACCTCCTTGGTAGCTCA -ACGGAAAACCTCCTTGGTTCACGT -ACGGAAAACCTCCTTGGTCGTAGT -ACGGAAAACCTCCTTGGTGTCAGT -ACGGAAAACCTCCTTGGTGAAGGT -ACGGAAAACCTCCTTGGTAACCGT -ACGGAAAACCTCCTTGGTTTGTGC -ACGGAAAACCTCCTTGGTCTAAGC -ACGGAAAACCTCCTTGGTACTAGC -ACGGAAAACCTCCTTGGTAGATGC -ACGGAAAACCTCCTTGGTTGAAGG -ACGGAAAACCTCCTTGGTCAATGG -ACGGAAAACCTCCTTGGTATGAGG -ACGGAAAACCTCCTTGGTAATGGG -ACGGAAAACCTCCTTGGTTCCTGA -ACGGAAAACCTCCTTGGTTAGCGA -ACGGAAAACCTCCTTGGTCACAGA -ACGGAAAACCTCCTTGGTGCAAGA -ACGGAAAACCTCCTTGGTGGTTGA -ACGGAAAACCTCCTTGGTTCCGAT -ACGGAAAACCTCCTTGGTTGGCAT -ACGGAAAACCTCCTTGGTCGAGAT -ACGGAAAACCTCCTTGGTTACCAC -ACGGAAAACCTCCTTGGTCAGAAC -ACGGAAAACCTCCTTGGTGTCTAC -ACGGAAAACCTCCTTGGTACGTAC -ACGGAAAACCTCCTTGGTAGTGAC -ACGGAAAACCTCCTTGGTCTGTAG -ACGGAAAACCTCCTTGGTCCTAAG -ACGGAAAACCTCCTTGGTGTTCAG -ACGGAAAACCTCCTTGGTGCATAG -ACGGAAAACCTCCTTGGTGACAAG -ACGGAAAACCTCCTTGGTAAGCAG -ACGGAAAACCTCCTTGGTCGTCAA -ACGGAAAACCTCCTTGGTGCTGAA -ACGGAAAACCTCCTTGGTAGTACG -ACGGAAAACCTCCTTGGTATCCGA -ACGGAAAACCTCCTTGGTATGGGA -ACGGAAAACCTCCTTGGTGTGCAA -ACGGAAAACCTCCTTGGTGAGGAA -ACGGAAAACCTCCTTGGTCAGGTA -ACGGAAAACCTCCTTGGTGACTCT -ACGGAAAACCTCCTTGGTAGTCCT -ACGGAAAACCTCCTTGGTTAAGCC -ACGGAAAACCTCCTTGGTATAGCC -ACGGAAAACCTCCTTGGTTAACCG -ACGGAAAACCTCCTTGGTATGCCA -ACGGAAAACCTCCTTACGGGAAAC -ACGGAAAACCTCCTTACGAACACC -ACGGAAAACCTCCTTACGATCGAG -ACGGAAAACCTCCTTACGCTCCTT -ACGGAAAACCTCCTTACGCCTGTT -ACGGAAAACCTCCTTACGCGGTTT -ACGGAAAACCTCCTTACGGTGGTT -ACGGAAAACCTCCTTACGGCCTTT -ACGGAAAACCTCCTTACGGGTCTT -ACGGAAAACCTCCTTACGACGCTT -ACGGAAAACCTCCTTACGAGCGTT -ACGGAAAACCTCCTTACGTTCGTC -ACGGAAAACCTCCTTACGTCTCTC -ACGGAAAACCTCCTTACGTGGATC -ACGGAAAACCTCCTTACGCACTTC -ACGGAAAACCTCCTTACGGTACTC -ACGGAAAACCTCCTTACGGATGTC -ACGGAAAACCTCCTTACGACAGTC -ACGGAAAACCTCCTTACGTTGCTG -ACGGAAAACCTCCTTACGTCCATG -ACGGAAAACCTCCTTACGTGTGTG -ACGGAAAACCTCCTTACGCTAGTG -ACGGAAAACCTCCTTACGCATCTG -ACGGAAAACCTCCTTACGGAGTTG -ACGGAAAACCTCCTTACGAGACTG -ACGGAAAACCTCCTTACGTCGGTA -ACGGAAAACCTCCTTACGTGCCTA -ACGGAAAACCTCCTTACGCCACTA -ACGGAAAACCTCCTTACGGGAGTA -ACGGAAAACCTCCTTACGTCGTCT -ACGGAAAACCTCCTTACGTGCACT -ACGGAAAACCTCCTTACGCTGACT -ACGGAAAACCTCCTTACGCAACCT -ACGGAAAACCTCCTTACGGCTACT -ACGGAAAACCTCCTTACGGGATCT -ACGGAAAACCTCCTTACGAAGGCT -ACGGAAAACCTCCTTACGTCAACC -ACGGAAAACCTCCTTACGTGTTCC -ACGGAAAACCTCCTTACGATTCCC -ACGGAAAACCTCCTTACGTTCTCG -ACGGAAAACCTCCTTACGTAGACG -ACGGAAAACCTCCTTACGGTAACG -ACGGAAAACCTCCTTACGACTTCG -ACGGAAAACCTCCTTACGTACGCA -ACGGAAAACCTCCTTACGCTTGCA -ACGGAAAACCTCCTTACGCGAACA -ACGGAAAACCTCCTTACGCAGTCA -ACGGAAAACCTCCTTACGGATCCA -ACGGAAAACCTCCTTACGACGACA -ACGGAAAACCTCCTTACGAGCTCA -ACGGAAAACCTCCTTACGTCACGT -ACGGAAAACCTCCTTACGCGTAGT -ACGGAAAACCTCCTTACGGTCAGT -ACGGAAAACCTCCTTACGGAAGGT -ACGGAAAACCTCCTTACGAACCGT -ACGGAAAACCTCCTTACGTTGTGC -ACGGAAAACCTCCTTACGCTAAGC -ACGGAAAACCTCCTTACGACTAGC -ACGGAAAACCTCCTTACGAGATGC -ACGGAAAACCTCCTTACGTGAAGG -ACGGAAAACCTCCTTACGCAATGG -ACGGAAAACCTCCTTACGATGAGG -ACGGAAAACCTCCTTACGAATGGG -ACGGAAAACCTCCTTACGTCCTGA -ACGGAAAACCTCCTTACGTAGCGA -ACGGAAAACCTCCTTACGCACAGA -ACGGAAAACCTCCTTACGGCAAGA -ACGGAAAACCTCCTTACGGGTTGA -ACGGAAAACCTCCTTACGTCCGAT -ACGGAAAACCTCCTTACGTGGCAT -ACGGAAAACCTCCTTACGCGAGAT -ACGGAAAACCTCCTTACGTACCAC -ACGGAAAACCTCCTTACGCAGAAC -ACGGAAAACCTCCTTACGGTCTAC -ACGGAAAACCTCCTTACGACGTAC -ACGGAAAACCTCCTTACGAGTGAC -ACGGAAAACCTCCTTACGCTGTAG -ACGGAAAACCTCCTTACGCCTAAG -ACGGAAAACCTCCTTACGGTTCAG -ACGGAAAACCTCCTTACGGCATAG -ACGGAAAACCTCCTTACGGACAAG -ACGGAAAACCTCCTTACGAAGCAG -ACGGAAAACCTCCTTACGCGTCAA -ACGGAAAACCTCCTTACGGCTGAA -ACGGAAAACCTCCTTACGAGTACG -ACGGAAAACCTCCTTACGATCCGA -ACGGAAAACCTCCTTACGATGGGA -ACGGAAAACCTCCTTACGGTGCAA -ACGGAAAACCTCCTTACGGAGGAA -ACGGAAAACCTCCTTACGCAGGTA -ACGGAAAACCTCCTTACGGACTCT -ACGGAAAACCTCCTTACGAGTCCT -ACGGAAAACCTCCTTACGTAAGCC -ACGGAAAACCTCCTTACGATAGCC -ACGGAAAACCTCCTTACGTAACCG -ACGGAAAACCTCCTTACGATGCCA -ACGGAAAACCTCGTTAGCGGAAAC -ACGGAAAACCTCGTTAGCAACACC -ACGGAAAACCTCGTTAGCATCGAG -ACGGAAAACCTCGTTAGCCTCCTT -ACGGAAAACCTCGTTAGCCCTGTT -ACGGAAAACCTCGTTAGCCGGTTT -ACGGAAAACCTCGTTAGCGTGGTT -ACGGAAAACCTCGTTAGCGCCTTT -ACGGAAAACCTCGTTAGCGGTCTT -ACGGAAAACCTCGTTAGCACGCTT -ACGGAAAACCTCGTTAGCAGCGTT -ACGGAAAACCTCGTTAGCTTCGTC -ACGGAAAACCTCGTTAGCTCTCTC -ACGGAAAACCTCGTTAGCTGGATC -ACGGAAAACCTCGTTAGCCACTTC -ACGGAAAACCTCGTTAGCGTACTC -ACGGAAAACCTCGTTAGCGATGTC -ACGGAAAACCTCGTTAGCACAGTC -ACGGAAAACCTCGTTAGCTTGCTG -ACGGAAAACCTCGTTAGCTCCATG -ACGGAAAACCTCGTTAGCTGTGTG -ACGGAAAACCTCGTTAGCCTAGTG -ACGGAAAACCTCGTTAGCCATCTG -ACGGAAAACCTCGTTAGCGAGTTG -ACGGAAAACCTCGTTAGCAGACTG -ACGGAAAACCTCGTTAGCTCGGTA -ACGGAAAACCTCGTTAGCTGCCTA -ACGGAAAACCTCGTTAGCCCACTA -ACGGAAAACCTCGTTAGCGGAGTA -ACGGAAAACCTCGTTAGCTCGTCT -ACGGAAAACCTCGTTAGCTGCACT -ACGGAAAACCTCGTTAGCCTGACT -ACGGAAAACCTCGTTAGCCAACCT -ACGGAAAACCTCGTTAGCGCTACT -ACGGAAAACCTCGTTAGCGGATCT -ACGGAAAACCTCGTTAGCAAGGCT -ACGGAAAACCTCGTTAGCTCAACC -ACGGAAAACCTCGTTAGCTGTTCC -ACGGAAAACCTCGTTAGCATTCCC -ACGGAAAACCTCGTTAGCTTCTCG -ACGGAAAACCTCGTTAGCTAGACG -ACGGAAAACCTCGTTAGCGTAACG -ACGGAAAACCTCGTTAGCACTTCG -ACGGAAAACCTCGTTAGCTACGCA -ACGGAAAACCTCGTTAGCCTTGCA -ACGGAAAACCTCGTTAGCCGAACA -ACGGAAAACCTCGTTAGCCAGTCA -ACGGAAAACCTCGTTAGCGATCCA -ACGGAAAACCTCGTTAGCACGACA -ACGGAAAACCTCGTTAGCAGCTCA -ACGGAAAACCTCGTTAGCTCACGT -ACGGAAAACCTCGTTAGCCGTAGT -ACGGAAAACCTCGTTAGCGTCAGT -ACGGAAAACCTCGTTAGCGAAGGT -ACGGAAAACCTCGTTAGCAACCGT -ACGGAAAACCTCGTTAGCTTGTGC -ACGGAAAACCTCGTTAGCCTAAGC -ACGGAAAACCTCGTTAGCACTAGC -ACGGAAAACCTCGTTAGCAGATGC -ACGGAAAACCTCGTTAGCTGAAGG -ACGGAAAACCTCGTTAGCCAATGG -ACGGAAAACCTCGTTAGCATGAGG -ACGGAAAACCTCGTTAGCAATGGG -ACGGAAAACCTCGTTAGCTCCTGA -ACGGAAAACCTCGTTAGCTAGCGA -ACGGAAAACCTCGTTAGCCACAGA -ACGGAAAACCTCGTTAGCGCAAGA -ACGGAAAACCTCGTTAGCGGTTGA -ACGGAAAACCTCGTTAGCTCCGAT -ACGGAAAACCTCGTTAGCTGGCAT -ACGGAAAACCTCGTTAGCCGAGAT -ACGGAAAACCTCGTTAGCTACCAC -ACGGAAAACCTCGTTAGCCAGAAC -ACGGAAAACCTCGTTAGCGTCTAC -ACGGAAAACCTCGTTAGCACGTAC -ACGGAAAACCTCGTTAGCAGTGAC -ACGGAAAACCTCGTTAGCCTGTAG -ACGGAAAACCTCGTTAGCCCTAAG -ACGGAAAACCTCGTTAGCGTTCAG -ACGGAAAACCTCGTTAGCGCATAG -ACGGAAAACCTCGTTAGCGACAAG -ACGGAAAACCTCGTTAGCAAGCAG -ACGGAAAACCTCGTTAGCCGTCAA -ACGGAAAACCTCGTTAGCGCTGAA -ACGGAAAACCTCGTTAGCAGTACG -ACGGAAAACCTCGTTAGCATCCGA -ACGGAAAACCTCGTTAGCATGGGA -ACGGAAAACCTCGTTAGCGTGCAA -ACGGAAAACCTCGTTAGCGAGGAA -ACGGAAAACCTCGTTAGCCAGGTA -ACGGAAAACCTCGTTAGCGACTCT -ACGGAAAACCTCGTTAGCAGTCCT -ACGGAAAACCTCGTTAGCTAAGCC -ACGGAAAACCTCGTTAGCATAGCC -ACGGAAAACCTCGTTAGCTAACCG -ACGGAAAACCTCGTTAGCATGCCA -ACGGAAAACCTCGTCTTCGGAAAC -ACGGAAAACCTCGTCTTCAACACC -ACGGAAAACCTCGTCTTCATCGAG -ACGGAAAACCTCGTCTTCCTCCTT -ACGGAAAACCTCGTCTTCCCTGTT -ACGGAAAACCTCGTCTTCCGGTTT -ACGGAAAACCTCGTCTTCGTGGTT -ACGGAAAACCTCGTCTTCGCCTTT -ACGGAAAACCTCGTCTTCGGTCTT -ACGGAAAACCTCGTCTTCACGCTT -ACGGAAAACCTCGTCTTCAGCGTT -ACGGAAAACCTCGTCTTCTTCGTC -ACGGAAAACCTCGTCTTCTCTCTC -ACGGAAAACCTCGTCTTCTGGATC -ACGGAAAACCTCGTCTTCCACTTC -ACGGAAAACCTCGTCTTCGTACTC -ACGGAAAACCTCGTCTTCGATGTC -ACGGAAAACCTCGTCTTCACAGTC -ACGGAAAACCTCGTCTTCTTGCTG -ACGGAAAACCTCGTCTTCTCCATG -ACGGAAAACCTCGTCTTCTGTGTG -ACGGAAAACCTCGTCTTCCTAGTG -ACGGAAAACCTCGTCTTCCATCTG -ACGGAAAACCTCGTCTTCGAGTTG -ACGGAAAACCTCGTCTTCAGACTG -ACGGAAAACCTCGTCTTCTCGGTA -ACGGAAAACCTCGTCTTCTGCCTA -ACGGAAAACCTCGTCTTCCCACTA -ACGGAAAACCTCGTCTTCGGAGTA -ACGGAAAACCTCGTCTTCTCGTCT -ACGGAAAACCTCGTCTTCTGCACT -ACGGAAAACCTCGTCTTCCTGACT -ACGGAAAACCTCGTCTTCCAACCT -ACGGAAAACCTCGTCTTCGCTACT -ACGGAAAACCTCGTCTTCGGATCT -ACGGAAAACCTCGTCTTCAAGGCT -ACGGAAAACCTCGTCTTCTCAACC -ACGGAAAACCTCGTCTTCTGTTCC -ACGGAAAACCTCGTCTTCATTCCC -ACGGAAAACCTCGTCTTCTTCTCG -ACGGAAAACCTCGTCTTCTAGACG -ACGGAAAACCTCGTCTTCGTAACG -ACGGAAAACCTCGTCTTCACTTCG -ACGGAAAACCTCGTCTTCTACGCA -ACGGAAAACCTCGTCTTCCTTGCA -ACGGAAAACCTCGTCTTCCGAACA -ACGGAAAACCTCGTCTTCCAGTCA -ACGGAAAACCTCGTCTTCGATCCA -ACGGAAAACCTCGTCTTCACGACA -ACGGAAAACCTCGTCTTCAGCTCA -ACGGAAAACCTCGTCTTCTCACGT -ACGGAAAACCTCGTCTTCCGTAGT -ACGGAAAACCTCGTCTTCGTCAGT -ACGGAAAACCTCGTCTTCGAAGGT -ACGGAAAACCTCGTCTTCAACCGT -ACGGAAAACCTCGTCTTCTTGTGC -ACGGAAAACCTCGTCTTCCTAAGC -ACGGAAAACCTCGTCTTCACTAGC -ACGGAAAACCTCGTCTTCAGATGC -ACGGAAAACCTCGTCTTCTGAAGG -ACGGAAAACCTCGTCTTCCAATGG -ACGGAAAACCTCGTCTTCATGAGG -ACGGAAAACCTCGTCTTCAATGGG -ACGGAAAACCTCGTCTTCTCCTGA -ACGGAAAACCTCGTCTTCTAGCGA -ACGGAAAACCTCGTCTTCCACAGA -ACGGAAAACCTCGTCTTCGCAAGA -ACGGAAAACCTCGTCTTCGGTTGA -ACGGAAAACCTCGTCTTCTCCGAT -ACGGAAAACCTCGTCTTCTGGCAT -ACGGAAAACCTCGTCTTCCGAGAT -ACGGAAAACCTCGTCTTCTACCAC -ACGGAAAACCTCGTCTTCCAGAAC -ACGGAAAACCTCGTCTTCGTCTAC -ACGGAAAACCTCGTCTTCACGTAC -ACGGAAAACCTCGTCTTCAGTGAC -ACGGAAAACCTCGTCTTCCTGTAG -ACGGAAAACCTCGTCTTCCCTAAG -ACGGAAAACCTCGTCTTCGTTCAG -ACGGAAAACCTCGTCTTCGCATAG -ACGGAAAACCTCGTCTTCGACAAG -ACGGAAAACCTCGTCTTCAAGCAG -ACGGAAAACCTCGTCTTCCGTCAA -ACGGAAAACCTCGTCTTCGCTGAA -ACGGAAAACCTCGTCTTCAGTACG -ACGGAAAACCTCGTCTTCATCCGA -ACGGAAAACCTCGTCTTCATGGGA -ACGGAAAACCTCGTCTTCGTGCAA -ACGGAAAACCTCGTCTTCGAGGAA -ACGGAAAACCTCGTCTTCCAGGTA -ACGGAAAACCTCGTCTTCGACTCT -ACGGAAAACCTCGTCTTCAGTCCT -ACGGAAAACCTCGTCTTCTAAGCC -ACGGAAAACCTCGTCTTCATAGCC -ACGGAAAACCTCGTCTTCTAACCG -ACGGAAAACCTCGTCTTCATGCCA -ACGGAAAACCTCCTCTCTGGAAAC -ACGGAAAACCTCCTCTCTAACACC -ACGGAAAACCTCCTCTCTATCGAG -ACGGAAAACCTCCTCTCTCTCCTT -ACGGAAAACCTCCTCTCTCCTGTT -ACGGAAAACCTCCTCTCTCGGTTT -ACGGAAAACCTCCTCTCTGTGGTT -ACGGAAAACCTCCTCTCTGCCTTT -ACGGAAAACCTCCTCTCTGGTCTT -ACGGAAAACCTCCTCTCTACGCTT -ACGGAAAACCTCCTCTCTAGCGTT -ACGGAAAACCTCCTCTCTTTCGTC -ACGGAAAACCTCCTCTCTTCTCTC -ACGGAAAACCTCCTCTCTTGGATC -ACGGAAAACCTCCTCTCTCACTTC -ACGGAAAACCTCCTCTCTGTACTC -ACGGAAAACCTCCTCTCTGATGTC -ACGGAAAACCTCCTCTCTACAGTC -ACGGAAAACCTCCTCTCTTTGCTG -ACGGAAAACCTCCTCTCTTCCATG -ACGGAAAACCTCCTCTCTTGTGTG -ACGGAAAACCTCCTCTCTCTAGTG -ACGGAAAACCTCCTCTCTCATCTG -ACGGAAAACCTCCTCTCTGAGTTG -ACGGAAAACCTCCTCTCTAGACTG -ACGGAAAACCTCCTCTCTTCGGTA -ACGGAAAACCTCCTCTCTTGCCTA -ACGGAAAACCTCCTCTCTCCACTA -ACGGAAAACCTCCTCTCTGGAGTA -ACGGAAAACCTCCTCTCTTCGTCT -ACGGAAAACCTCCTCTCTTGCACT -ACGGAAAACCTCCTCTCTCTGACT -ACGGAAAACCTCCTCTCTCAACCT -ACGGAAAACCTCCTCTCTGCTACT -ACGGAAAACCTCCTCTCTGGATCT -ACGGAAAACCTCCTCTCTAAGGCT -ACGGAAAACCTCCTCTCTTCAACC -ACGGAAAACCTCCTCTCTTGTTCC -ACGGAAAACCTCCTCTCTATTCCC -ACGGAAAACCTCCTCTCTTTCTCG -ACGGAAAACCTCCTCTCTTAGACG -ACGGAAAACCTCCTCTCTGTAACG -ACGGAAAACCTCCTCTCTACTTCG -ACGGAAAACCTCCTCTCTTACGCA -ACGGAAAACCTCCTCTCTCTTGCA -ACGGAAAACCTCCTCTCTCGAACA -ACGGAAAACCTCCTCTCTCAGTCA -ACGGAAAACCTCCTCTCTGATCCA -ACGGAAAACCTCCTCTCTACGACA -ACGGAAAACCTCCTCTCTAGCTCA -ACGGAAAACCTCCTCTCTTCACGT -ACGGAAAACCTCCTCTCTCGTAGT -ACGGAAAACCTCCTCTCTGTCAGT -ACGGAAAACCTCCTCTCTGAAGGT -ACGGAAAACCTCCTCTCTAACCGT -ACGGAAAACCTCCTCTCTTTGTGC -ACGGAAAACCTCCTCTCTCTAAGC -ACGGAAAACCTCCTCTCTACTAGC -ACGGAAAACCTCCTCTCTAGATGC -ACGGAAAACCTCCTCTCTTGAAGG -ACGGAAAACCTCCTCTCTCAATGG -ACGGAAAACCTCCTCTCTATGAGG -ACGGAAAACCTCCTCTCTAATGGG -ACGGAAAACCTCCTCTCTTCCTGA -ACGGAAAACCTCCTCTCTTAGCGA -ACGGAAAACCTCCTCTCTCACAGA -ACGGAAAACCTCCTCTCTGCAAGA -ACGGAAAACCTCCTCTCTGGTTGA -ACGGAAAACCTCCTCTCTTCCGAT -ACGGAAAACCTCCTCTCTTGGCAT -ACGGAAAACCTCCTCTCTCGAGAT -ACGGAAAACCTCCTCTCTTACCAC -ACGGAAAACCTCCTCTCTCAGAAC -ACGGAAAACCTCCTCTCTGTCTAC -ACGGAAAACCTCCTCTCTACGTAC -ACGGAAAACCTCCTCTCTAGTGAC -ACGGAAAACCTCCTCTCTCTGTAG -ACGGAAAACCTCCTCTCTCCTAAG -ACGGAAAACCTCCTCTCTGTTCAG -ACGGAAAACCTCCTCTCTGCATAG -ACGGAAAACCTCCTCTCTGACAAG -ACGGAAAACCTCCTCTCTAAGCAG -ACGGAAAACCTCCTCTCTCGTCAA -ACGGAAAACCTCCTCTCTGCTGAA -ACGGAAAACCTCCTCTCTAGTACG -ACGGAAAACCTCCTCTCTATCCGA -ACGGAAAACCTCCTCTCTATGGGA -ACGGAAAACCTCCTCTCTGTGCAA -ACGGAAAACCTCCTCTCTGAGGAA -ACGGAAAACCTCCTCTCTCAGGTA -ACGGAAAACCTCCTCTCTGACTCT -ACGGAAAACCTCCTCTCTAGTCCT -ACGGAAAACCTCCTCTCTTAAGCC -ACGGAAAACCTCCTCTCTATAGCC -ACGGAAAACCTCCTCTCTTAACCG -ACGGAAAACCTCCTCTCTATGCCA -ACGGAAAACCTCATCTGGGGAAAC -ACGGAAAACCTCATCTGGAACACC -ACGGAAAACCTCATCTGGATCGAG -ACGGAAAACCTCATCTGGCTCCTT -ACGGAAAACCTCATCTGGCCTGTT -ACGGAAAACCTCATCTGGCGGTTT -ACGGAAAACCTCATCTGGGTGGTT -ACGGAAAACCTCATCTGGGCCTTT -ACGGAAAACCTCATCTGGGGTCTT -ACGGAAAACCTCATCTGGACGCTT -ACGGAAAACCTCATCTGGAGCGTT -ACGGAAAACCTCATCTGGTTCGTC -ACGGAAAACCTCATCTGGTCTCTC -ACGGAAAACCTCATCTGGTGGATC -ACGGAAAACCTCATCTGGCACTTC -ACGGAAAACCTCATCTGGGTACTC -ACGGAAAACCTCATCTGGGATGTC -ACGGAAAACCTCATCTGGACAGTC -ACGGAAAACCTCATCTGGTTGCTG -ACGGAAAACCTCATCTGGTCCATG -ACGGAAAACCTCATCTGGTGTGTG -ACGGAAAACCTCATCTGGCTAGTG -ACGGAAAACCTCATCTGGCATCTG -ACGGAAAACCTCATCTGGGAGTTG -ACGGAAAACCTCATCTGGAGACTG -ACGGAAAACCTCATCTGGTCGGTA -ACGGAAAACCTCATCTGGTGCCTA -ACGGAAAACCTCATCTGGCCACTA -ACGGAAAACCTCATCTGGGGAGTA -ACGGAAAACCTCATCTGGTCGTCT -ACGGAAAACCTCATCTGGTGCACT -ACGGAAAACCTCATCTGGCTGACT -ACGGAAAACCTCATCTGGCAACCT -ACGGAAAACCTCATCTGGGCTACT -ACGGAAAACCTCATCTGGGGATCT -ACGGAAAACCTCATCTGGAAGGCT -ACGGAAAACCTCATCTGGTCAACC -ACGGAAAACCTCATCTGGTGTTCC -ACGGAAAACCTCATCTGGATTCCC -ACGGAAAACCTCATCTGGTTCTCG -ACGGAAAACCTCATCTGGTAGACG -ACGGAAAACCTCATCTGGGTAACG -ACGGAAAACCTCATCTGGACTTCG -ACGGAAAACCTCATCTGGTACGCA -ACGGAAAACCTCATCTGGCTTGCA -ACGGAAAACCTCATCTGGCGAACA -ACGGAAAACCTCATCTGGCAGTCA -ACGGAAAACCTCATCTGGGATCCA -ACGGAAAACCTCATCTGGACGACA -ACGGAAAACCTCATCTGGAGCTCA -ACGGAAAACCTCATCTGGTCACGT -ACGGAAAACCTCATCTGGCGTAGT -ACGGAAAACCTCATCTGGGTCAGT -ACGGAAAACCTCATCTGGGAAGGT -ACGGAAAACCTCATCTGGAACCGT -ACGGAAAACCTCATCTGGTTGTGC -ACGGAAAACCTCATCTGGCTAAGC -ACGGAAAACCTCATCTGGACTAGC -ACGGAAAACCTCATCTGGAGATGC -ACGGAAAACCTCATCTGGTGAAGG -ACGGAAAACCTCATCTGGCAATGG -ACGGAAAACCTCATCTGGATGAGG -ACGGAAAACCTCATCTGGAATGGG -ACGGAAAACCTCATCTGGTCCTGA -ACGGAAAACCTCATCTGGTAGCGA -ACGGAAAACCTCATCTGGCACAGA -ACGGAAAACCTCATCTGGGCAAGA -ACGGAAAACCTCATCTGGGGTTGA -ACGGAAAACCTCATCTGGTCCGAT -ACGGAAAACCTCATCTGGTGGCAT -ACGGAAAACCTCATCTGGCGAGAT -ACGGAAAACCTCATCTGGTACCAC -ACGGAAAACCTCATCTGGCAGAAC -ACGGAAAACCTCATCTGGGTCTAC -ACGGAAAACCTCATCTGGACGTAC -ACGGAAAACCTCATCTGGAGTGAC -ACGGAAAACCTCATCTGGCTGTAG -ACGGAAAACCTCATCTGGCCTAAG -ACGGAAAACCTCATCTGGGTTCAG -ACGGAAAACCTCATCTGGGCATAG -ACGGAAAACCTCATCTGGGACAAG -ACGGAAAACCTCATCTGGAAGCAG -ACGGAAAACCTCATCTGGCGTCAA -ACGGAAAACCTCATCTGGGCTGAA -ACGGAAAACCTCATCTGGAGTACG -ACGGAAAACCTCATCTGGATCCGA -ACGGAAAACCTCATCTGGATGGGA -ACGGAAAACCTCATCTGGGTGCAA -ACGGAAAACCTCATCTGGGAGGAA -ACGGAAAACCTCATCTGGCAGGTA -ACGGAAAACCTCATCTGGGACTCT -ACGGAAAACCTCATCTGGAGTCCT -ACGGAAAACCTCATCTGGTAAGCC -ACGGAAAACCTCATCTGGATAGCC -ACGGAAAACCTCATCTGGTAACCG -ACGGAAAACCTCATCTGGATGCCA -ACGGAAAACCTCTTCCACGGAAAC -ACGGAAAACCTCTTCCACAACACC -ACGGAAAACCTCTTCCACATCGAG -ACGGAAAACCTCTTCCACCTCCTT -ACGGAAAACCTCTTCCACCCTGTT -ACGGAAAACCTCTTCCACCGGTTT -ACGGAAAACCTCTTCCACGTGGTT -ACGGAAAACCTCTTCCACGCCTTT -ACGGAAAACCTCTTCCACGGTCTT -ACGGAAAACCTCTTCCACACGCTT -ACGGAAAACCTCTTCCACAGCGTT -ACGGAAAACCTCTTCCACTTCGTC -ACGGAAAACCTCTTCCACTCTCTC -ACGGAAAACCTCTTCCACTGGATC -ACGGAAAACCTCTTCCACCACTTC -ACGGAAAACCTCTTCCACGTACTC -ACGGAAAACCTCTTCCACGATGTC -ACGGAAAACCTCTTCCACACAGTC -ACGGAAAACCTCTTCCACTTGCTG -ACGGAAAACCTCTTCCACTCCATG -ACGGAAAACCTCTTCCACTGTGTG -ACGGAAAACCTCTTCCACCTAGTG -ACGGAAAACCTCTTCCACCATCTG -ACGGAAAACCTCTTCCACGAGTTG -ACGGAAAACCTCTTCCACAGACTG -ACGGAAAACCTCTTCCACTCGGTA -ACGGAAAACCTCTTCCACTGCCTA -ACGGAAAACCTCTTCCACCCACTA -ACGGAAAACCTCTTCCACGGAGTA -ACGGAAAACCTCTTCCACTCGTCT -ACGGAAAACCTCTTCCACTGCACT -ACGGAAAACCTCTTCCACCTGACT -ACGGAAAACCTCTTCCACCAACCT -ACGGAAAACCTCTTCCACGCTACT -ACGGAAAACCTCTTCCACGGATCT -ACGGAAAACCTCTTCCACAAGGCT -ACGGAAAACCTCTTCCACTCAACC -ACGGAAAACCTCTTCCACTGTTCC -ACGGAAAACCTCTTCCACATTCCC -ACGGAAAACCTCTTCCACTTCTCG -ACGGAAAACCTCTTCCACTAGACG -ACGGAAAACCTCTTCCACGTAACG -ACGGAAAACCTCTTCCACACTTCG -ACGGAAAACCTCTTCCACTACGCA -ACGGAAAACCTCTTCCACCTTGCA -ACGGAAAACCTCTTCCACCGAACA -ACGGAAAACCTCTTCCACCAGTCA -ACGGAAAACCTCTTCCACGATCCA -ACGGAAAACCTCTTCCACACGACA -ACGGAAAACCTCTTCCACAGCTCA -ACGGAAAACCTCTTCCACTCACGT -ACGGAAAACCTCTTCCACCGTAGT -ACGGAAAACCTCTTCCACGTCAGT -ACGGAAAACCTCTTCCACGAAGGT -ACGGAAAACCTCTTCCACAACCGT -ACGGAAAACCTCTTCCACTTGTGC -ACGGAAAACCTCTTCCACCTAAGC -ACGGAAAACCTCTTCCACACTAGC -ACGGAAAACCTCTTCCACAGATGC -ACGGAAAACCTCTTCCACTGAAGG -ACGGAAAACCTCTTCCACCAATGG -ACGGAAAACCTCTTCCACATGAGG -ACGGAAAACCTCTTCCACAATGGG -ACGGAAAACCTCTTCCACTCCTGA -ACGGAAAACCTCTTCCACTAGCGA -ACGGAAAACCTCTTCCACCACAGA -ACGGAAAACCTCTTCCACGCAAGA -ACGGAAAACCTCTTCCACGGTTGA -ACGGAAAACCTCTTCCACTCCGAT -ACGGAAAACCTCTTCCACTGGCAT -ACGGAAAACCTCTTCCACCGAGAT -ACGGAAAACCTCTTCCACTACCAC -ACGGAAAACCTCTTCCACCAGAAC -ACGGAAAACCTCTTCCACGTCTAC -ACGGAAAACCTCTTCCACACGTAC -ACGGAAAACCTCTTCCACAGTGAC -ACGGAAAACCTCTTCCACCTGTAG -ACGGAAAACCTCTTCCACCCTAAG -ACGGAAAACCTCTTCCACGTTCAG -ACGGAAAACCTCTTCCACGCATAG -ACGGAAAACCTCTTCCACGACAAG -ACGGAAAACCTCTTCCACAAGCAG -ACGGAAAACCTCTTCCACCGTCAA -ACGGAAAACCTCTTCCACGCTGAA -ACGGAAAACCTCTTCCACAGTACG -ACGGAAAACCTCTTCCACATCCGA -ACGGAAAACCTCTTCCACATGGGA -ACGGAAAACCTCTTCCACGTGCAA -ACGGAAAACCTCTTCCACGAGGAA -ACGGAAAACCTCTTCCACCAGGTA -ACGGAAAACCTCTTCCACGACTCT -ACGGAAAACCTCTTCCACAGTCCT -ACGGAAAACCTCTTCCACTAAGCC -ACGGAAAACCTCTTCCACATAGCC -ACGGAAAACCTCTTCCACTAACCG -ACGGAAAACCTCTTCCACATGCCA -ACGGAAAACCTCCTCGTAGGAAAC -ACGGAAAACCTCCTCGTAAACACC -ACGGAAAACCTCCTCGTAATCGAG -ACGGAAAACCTCCTCGTACTCCTT -ACGGAAAACCTCCTCGTACCTGTT -ACGGAAAACCTCCTCGTACGGTTT -ACGGAAAACCTCCTCGTAGTGGTT -ACGGAAAACCTCCTCGTAGCCTTT -ACGGAAAACCTCCTCGTAGGTCTT -ACGGAAAACCTCCTCGTAACGCTT -ACGGAAAACCTCCTCGTAAGCGTT -ACGGAAAACCTCCTCGTATTCGTC -ACGGAAAACCTCCTCGTATCTCTC -ACGGAAAACCTCCTCGTATGGATC -ACGGAAAACCTCCTCGTACACTTC -ACGGAAAACCTCCTCGTAGTACTC -ACGGAAAACCTCCTCGTAGATGTC -ACGGAAAACCTCCTCGTAACAGTC -ACGGAAAACCTCCTCGTATTGCTG -ACGGAAAACCTCCTCGTATCCATG -ACGGAAAACCTCCTCGTATGTGTG -ACGGAAAACCTCCTCGTACTAGTG -ACGGAAAACCTCCTCGTACATCTG -ACGGAAAACCTCCTCGTAGAGTTG -ACGGAAAACCTCCTCGTAAGACTG -ACGGAAAACCTCCTCGTATCGGTA -ACGGAAAACCTCCTCGTATGCCTA -ACGGAAAACCTCCTCGTACCACTA -ACGGAAAACCTCCTCGTAGGAGTA -ACGGAAAACCTCCTCGTATCGTCT -ACGGAAAACCTCCTCGTATGCACT -ACGGAAAACCTCCTCGTACTGACT -ACGGAAAACCTCCTCGTACAACCT -ACGGAAAACCTCCTCGTAGCTACT -ACGGAAAACCTCCTCGTAGGATCT -ACGGAAAACCTCCTCGTAAAGGCT -ACGGAAAACCTCCTCGTATCAACC -ACGGAAAACCTCCTCGTATGTTCC -ACGGAAAACCTCCTCGTAATTCCC -ACGGAAAACCTCCTCGTATTCTCG -ACGGAAAACCTCCTCGTATAGACG -ACGGAAAACCTCCTCGTAGTAACG -ACGGAAAACCTCCTCGTAACTTCG -ACGGAAAACCTCCTCGTATACGCA -ACGGAAAACCTCCTCGTACTTGCA -ACGGAAAACCTCCTCGTACGAACA -ACGGAAAACCTCCTCGTACAGTCA -ACGGAAAACCTCCTCGTAGATCCA -ACGGAAAACCTCCTCGTAACGACA -ACGGAAAACCTCCTCGTAAGCTCA -ACGGAAAACCTCCTCGTATCACGT -ACGGAAAACCTCCTCGTACGTAGT -ACGGAAAACCTCCTCGTAGTCAGT -ACGGAAAACCTCCTCGTAGAAGGT -ACGGAAAACCTCCTCGTAAACCGT -ACGGAAAACCTCCTCGTATTGTGC -ACGGAAAACCTCCTCGTACTAAGC -ACGGAAAACCTCCTCGTAACTAGC -ACGGAAAACCTCCTCGTAAGATGC -ACGGAAAACCTCCTCGTATGAAGG -ACGGAAAACCTCCTCGTACAATGG -ACGGAAAACCTCCTCGTAATGAGG -ACGGAAAACCTCCTCGTAAATGGG -ACGGAAAACCTCCTCGTATCCTGA -ACGGAAAACCTCCTCGTATAGCGA -ACGGAAAACCTCCTCGTACACAGA -ACGGAAAACCTCCTCGTAGCAAGA -ACGGAAAACCTCCTCGTAGGTTGA -ACGGAAAACCTCCTCGTATCCGAT -ACGGAAAACCTCCTCGTATGGCAT -ACGGAAAACCTCCTCGTACGAGAT -ACGGAAAACCTCCTCGTATACCAC -ACGGAAAACCTCCTCGTACAGAAC -ACGGAAAACCTCCTCGTAGTCTAC -ACGGAAAACCTCCTCGTAACGTAC -ACGGAAAACCTCCTCGTAAGTGAC -ACGGAAAACCTCCTCGTACTGTAG -ACGGAAAACCTCCTCGTACCTAAG -ACGGAAAACCTCCTCGTAGTTCAG -ACGGAAAACCTCCTCGTAGCATAG -ACGGAAAACCTCCTCGTAGACAAG -ACGGAAAACCTCCTCGTAAAGCAG -ACGGAAAACCTCCTCGTACGTCAA -ACGGAAAACCTCCTCGTAGCTGAA -ACGGAAAACCTCCTCGTAAGTACG -ACGGAAAACCTCCTCGTAATCCGA -ACGGAAAACCTCCTCGTAATGGGA -ACGGAAAACCTCCTCGTAGTGCAA -ACGGAAAACCTCCTCGTAGAGGAA -ACGGAAAACCTCCTCGTACAGGTA -ACGGAAAACCTCCTCGTAGACTCT -ACGGAAAACCTCCTCGTAAGTCCT -ACGGAAAACCTCCTCGTATAAGCC -ACGGAAAACCTCCTCGTAATAGCC -ACGGAAAACCTCCTCGTATAACCG -ACGGAAAACCTCCTCGTAATGCCA -ACGGAAAACCTCGTCGATGGAAAC -ACGGAAAACCTCGTCGATAACACC -ACGGAAAACCTCGTCGATATCGAG -ACGGAAAACCTCGTCGATCTCCTT -ACGGAAAACCTCGTCGATCCTGTT -ACGGAAAACCTCGTCGATCGGTTT -ACGGAAAACCTCGTCGATGTGGTT -ACGGAAAACCTCGTCGATGCCTTT -ACGGAAAACCTCGTCGATGGTCTT -ACGGAAAACCTCGTCGATACGCTT -ACGGAAAACCTCGTCGATAGCGTT -ACGGAAAACCTCGTCGATTTCGTC -ACGGAAAACCTCGTCGATTCTCTC -ACGGAAAACCTCGTCGATTGGATC -ACGGAAAACCTCGTCGATCACTTC -ACGGAAAACCTCGTCGATGTACTC -ACGGAAAACCTCGTCGATGATGTC -ACGGAAAACCTCGTCGATACAGTC -ACGGAAAACCTCGTCGATTTGCTG -ACGGAAAACCTCGTCGATTCCATG -ACGGAAAACCTCGTCGATTGTGTG -ACGGAAAACCTCGTCGATCTAGTG -ACGGAAAACCTCGTCGATCATCTG -ACGGAAAACCTCGTCGATGAGTTG -ACGGAAAACCTCGTCGATAGACTG -ACGGAAAACCTCGTCGATTCGGTA -ACGGAAAACCTCGTCGATTGCCTA -ACGGAAAACCTCGTCGATCCACTA -ACGGAAAACCTCGTCGATGGAGTA -ACGGAAAACCTCGTCGATTCGTCT -ACGGAAAACCTCGTCGATTGCACT -ACGGAAAACCTCGTCGATCTGACT -ACGGAAAACCTCGTCGATCAACCT -ACGGAAAACCTCGTCGATGCTACT -ACGGAAAACCTCGTCGATGGATCT -ACGGAAAACCTCGTCGATAAGGCT -ACGGAAAACCTCGTCGATTCAACC -ACGGAAAACCTCGTCGATTGTTCC -ACGGAAAACCTCGTCGATATTCCC -ACGGAAAACCTCGTCGATTTCTCG -ACGGAAAACCTCGTCGATTAGACG -ACGGAAAACCTCGTCGATGTAACG -ACGGAAAACCTCGTCGATACTTCG -ACGGAAAACCTCGTCGATTACGCA -ACGGAAAACCTCGTCGATCTTGCA -ACGGAAAACCTCGTCGATCGAACA -ACGGAAAACCTCGTCGATCAGTCA -ACGGAAAACCTCGTCGATGATCCA -ACGGAAAACCTCGTCGATACGACA -ACGGAAAACCTCGTCGATAGCTCA -ACGGAAAACCTCGTCGATTCACGT -ACGGAAAACCTCGTCGATCGTAGT -ACGGAAAACCTCGTCGATGTCAGT -ACGGAAAACCTCGTCGATGAAGGT -ACGGAAAACCTCGTCGATAACCGT -ACGGAAAACCTCGTCGATTTGTGC -ACGGAAAACCTCGTCGATCTAAGC -ACGGAAAACCTCGTCGATACTAGC -ACGGAAAACCTCGTCGATAGATGC -ACGGAAAACCTCGTCGATTGAAGG -ACGGAAAACCTCGTCGATCAATGG -ACGGAAAACCTCGTCGATATGAGG -ACGGAAAACCTCGTCGATAATGGG -ACGGAAAACCTCGTCGATTCCTGA -ACGGAAAACCTCGTCGATTAGCGA -ACGGAAAACCTCGTCGATCACAGA -ACGGAAAACCTCGTCGATGCAAGA -ACGGAAAACCTCGTCGATGGTTGA -ACGGAAAACCTCGTCGATTCCGAT -ACGGAAAACCTCGTCGATTGGCAT -ACGGAAAACCTCGTCGATCGAGAT -ACGGAAAACCTCGTCGATTACCAC -ACGGAAAACCTCGTCGATCAGAAC -ACGGAAAACCTCGTCGATGTCTAC -ACGGAAAACCTCGTCGATACGTAC -ACGGAAAACCTCGTCGATAGTGAC -ACGGAAAACCTCGTCGATCTGTAG -ACGGAAAACCTCGTCGATCCTAAG -ACGGAAAACCTCGTCGATGTTCAG -ACGGAAAACCTCGTCGATGCATAG -ACGGAAAACCTCGTCGATGACAAG -ACGGAAAACCTCGTCGATAAGCAG -ACGGAAAACCTCGTCGATCGTCAA -ACGGAAAACCTCGTCGATGCTGAA -ACGGAAAACCTCGTCGATAGTACG -ACGGAAAACCTCGTCGATATCCGA -ACGGAAAACCTCGTCGATATGGGA -ACGGAAAACCTCGTCGATGTGCAA -ACGGAAAACCTCGTCGATGAGGAA -ACGGAAAACCTCGTCGATCAGGTA -ACGGAAAACCTCGTCGATGACTCT -ACGGAAAACCTCGTCGATAGTCCT -ACGGAAAACCTCGTCGATTAAGCC -ACGGAAAACCTCGTCGATATAGCC -ACGGAAAACCTCGTCGATTAACCG -ACGGAAAACCTCGTCGATATGCCA -ACGGAAAACCTCGTCACAGGAAAC -ACGGAAAACCTCGTCACAAACACC -ACGGAAAACCTCGTCACAATCGAG -ACGGAAAACCTCGTCACACTCCTT -ACGGAAAACCTCGTCACACCTGTT -ACGGAAAACCTCGTCACACGGTTT -ACGGAAAACCTCGTCACAGTGGTT -ACGGAAAACCTCGTCACAGCCTTT -ACGGAAAACCTCGTCACAGGTCTT -ACGGAAAACCTCGTCACAACGCTT -ACGGAAAACCTCGTCACAAGCGTT -ACGGAAAACCTCGTCACATTCGTC -ACGGAAAACCTCGTCACATCTCTC -ACGGAAAACCTCGTCACATGGATC -ACGGAAAACCTCGTCACACACTTC -ACGGAAAACCTCGTCACAGTACTC -ACGGAAAACCTCGTCACAGATGTC -ACGGAAAACCTCGTCACAACAGTC -ACGGAAAACCTCGTCACATTGCTG -ACGGAAAACCTCGTCACATCCATG -ACGGAAAACCTCGTCACATGTGTG -ACGGAAAACCTCGTCACACTAGTG -ACGGAAAACCTCGTCACACATCTG -ACGGAAAACCTCGTCACAGAGTTG -ACGGAAAACCTCGTCACAAGACTG -ACGGAAAACCTCGTCACATCGGTA -ACGGAAAACCTCGTCACATGCCTA -ACGGAAAACCTCGTCACACCACTA -ACGGAAAACCTCGTCACAGGAGTA -ACGGAAAACCTCGTCACATCGTCT -ACGGAAAACCTCGTCACATGCACT -ACGGAAAACCTCGTCACACTGACT -ACGGAAAACCTCGTCACACAACCT -ACGGAAAACCTCGTCACAGCTACT -ACGGAAAACCTCGTCACAGGATCT -ACGGAAAACCTCGTCACAAAGGCT -ACGGAAAACCTCGTCACATCAACC -ACGGAAAACCTCGTCACATGTTCC -ACGGAAAACCTCGTCACAATTCCC -ACGGAAAACCTCGTCACATTCTCG -ACGGAAAACCTCGTCACATAGACG -ACGGAAAACCTCGTCACAGTAACG -ACGGAAAACCTCGTCACAACTTCG -ACGGAAAACCTCGTCACATACGCA -ACGGAAAACCTCGTCACACTTGCA -ACGGAAAACCTCGTCACACGAACA -ACGGAAAACCTCGTCACACAGTCA -ACGGAAAACCTCGTCACAGATCCA -ACGGAAAACCTCGTCACAACGACA -ACGGAAAACCTCGTCACAAGCTCA -ACGGAAAACCTCGTCACATCACGT -ACGGAAAACCTCGTCACACGTAGT -ACGGAAAACCTCGTCACAGTCAGT -ACGGAAAACCTCGTCACAGAAGGT -ACGGAAAACCTCGTCACAAACCGT -ACGGAAAACCTCGTCACATTGTGC -ACGGAAAACCTCGTCACACTAAGC -ACGGAAAACCTCGTCACAACTAGC -ACGGAAAACCTCGTCACAAGATGC -ACGGAAAACCTCGTCACATGAAGG -ACGGAAAACCTCGTCACACAATGG -ACGGAAAACCTCGTCACAATGAGG -ACGGAAAACCTCGTCACAAATGGG -ACGGAAAACCTCGTCACATCCTGA -ACGGAAAACCTCGTCACATAGCGA -ACGGAAAACCTCGTCACACACAGA -ACGGAAAACCTCGTCACAGCAAGA -ACGGAAAACCTCGTCACAGGTTGA -ACGGAAAACCTCGTCACATCCGAT -ACGGAAAACCTCGTCACATGGCAT -ACGGAAAACCTCGTCACACGAGAT -ACGGAAAACCTCGTCACATACCAC -ACGGAAAACCTCGTCACACAGAAC -ACGGAAAACCTCGTCACAGTCTAC -ACGGAAAACCTCGTCACAACGTAC -ACGGAAAACCTCGTCACAAGTGAC -ACGGAAAACCTCGTCACACTGTAG -ACGGAAAACCTCGTCACACCTAAG -ACGGAAAACCTCGTCACAGTTCAG -ACGGAAAACCTCGTCACAGCATAG -ACGGAAAACCTCGTCACAGACAAG -ACGGAAAACCTCGTCACAAAGCAG -ACGGAAAACCTCGTCACACGTCAA -ACGGAAAACCTCGTCACAGCTGAA -ACGGAAAACCTCGTCACAAGTACG -ACGGAAAACCTCGTCACAATCCGA -ACGGAAAACCTCGTCACAATGGGA -ACGGAAAACCTCGTCACAGTGCAA -ACGGAAAACCTCGTCACAGAGGAA -ACGGAAAACCTCGTCACACAGGTA -ACGGAAAACCTCGTCACAGACTCT -ACGGAAAACCTCGTCACAAGTCCT -ACGGAAAACCTCGTCACATAAGCC -ACGGAAAACCTCGTCACAATAGCC -ACGGAAAACCTCGTCACATAACCG -ACGGAAAACCTCGTCACAATGCCA -ACGGAAAACCTCCTGTTGGGAAAC -ACGGAAAACCTCCTGTTGAACACC -ACGGAAAACCTCCTGTTGATCGAG -ACGGAAAACCTCCTGTTGCTCCTT -ACGGAAAACCTCCTGTTGCCTGTT -ACGGAAAACCTCCTGTTGCGGTTT -ACGGAAAACCTCCTGTTGGTGGTT -ACGGAAAACCTCCTGTTGGCCTTT -ACGGAAAACCTCCTGTTGGGTCTT -ACGGAAAACCTCCTGTTGACGCTT -ACGGAAAACCTCCTGTTGAGCGTT -ACGGAAAACCTCCTGTTGTTCGTC -ACGGAAAACCTCCTGTTGTCTCTC -ACGGAAAACCTCCTGTTGTGGATC -ACGGAAAACCTCCTGTTGCACTTC -ACGGAAAACCTCCTGTTGGTACTC -ACGGAAAACCTCCTGTTGGATGTC -ACGGAAAACCTCCTGTTGACAGTC -ACGGAAAACCTCCTGTTGTTGCTG -ACGGAAAACCTCCTGTTGTCCATG -ACGGAAAACCTCCTGTTGTGTGTG -ACGGAAAACCTCCTGTTGCTAGTG -ACGGAAAACCTCCTGTTGCATCTG -ACGGAAAACCTCCTGTTGGAGTTG -ACGGAAAACCTCCTGTTGAGACTG -ACGGAAAACCTCCTGTTGTCGGTA -ACGGAAAACCTCCTGTTGTGCCTA -ACGGAAAACCTCCTGTTGCCACTA -ACGGAAAACCTCCTGTTGGGAGTA -ACGGAAAACCTCCTGTTGTCGTCT -ACGGAAAACCTCCTGTTGTGCACT -ACGGAAAACCTCCTGTTGCTGACT -ACGGAAAACCTCCTGTTGCAACCT -ACGGAAAACCTCCTGTTGGCTACT -ACGGAAAACCTCCTGTTGGGATCT -ACGGAAAACCTCCTGTTGAAGGCT -ACGGAAAACCTCCTGTTGTCAACC -ACGGAAAACCTCCTGTTGTGTTCC -ACGGAAAACCTCCTGTTGATTCCC -ACGGAAAACCTCCTGTTGTTCTCG -ACGGAAAACCTCCTGTTGTAGACG -ACGGAAAACCTCCTGTTGGTAACG -ACGGAAAACCTCCTGTTGACTTCG -ACGGAAAACCTCCTGTTGTACGCA -ACGGAAAACCTCCTGTTGCTTGCA -ACGGAAAACCTCCTGTTGCGAACA -ACGGAAAACCTCCTGTTGCAGTCA -ACGGAAAACCTCCTGTTGGATCCA -ACGGAAAACCTCCTGTTGACGACA -ACGGAAAACCTCCTGTTGAGCTCA -ACGGAAAACCTCCTGTTGTCACGT -ACGGAAAACCTCCTGTTGCGTAGT -ACGGAAAACCTCCTGTTGGTCAGT -ACGGAAAACCTCCTGTTGGAAGGT -ACGGAAAACCTCCTGTTGAACCGT -ACGGAAAACCTCCTGTTGTTGTGC -ACGGAAAACCTCCTGTTGCTAAGC -ACGGAAAACCTCCTGTTGACTAGC -ACGGAAAACCTCCTGTTGAGATGC -ACGGAAAACCTCCTGTTGTGAAGG -ACGGAAAACCTCCTGTTGCAATGG -ACGGAAAACCTCCTGTTGATGAGG -ACGGAAAACCTCCTGTTGAATGGG -ACGGAAAACCTCCTGTTGTCCTGA -ACGGAAAACCTCCTGTTGTAGCGA -ACGGAAAACCTCCTGTTGCACAGA -ACGGAAAACCTCCTGTTGGCAAGA -ACGGAAAACCTCCTGTTGGGTTGA -ACGGAAAACCTCCTGTTGTCCGAT -ACGGAAAACCTCCTGTTGTGGCAT -ACGGAAAACCTCCTGTTGCGAGAT -ACGGAAAACCTCCTGTTGTACCAC -ACGGAAAACCTCCTGTTGCAGAAC -ACGGAAAACCTCCTGTTGGTCTAC -ACGGAAAACCTCCTGTTGACGTAC -ACGGAAAACCTCCTGTTGAGTGAC -ACGGAAAACCTCCTGTTGCTGTAG -ACGGAAAACCTCCTGTTGCCTAAG -ACGGAAAACCTCCTGTTGGTTCAG -ACGGAAAACCTCCTGTTGGCATAG -ACGGAAAACCTCCTGTTGGACAAG -ACGGAAAACCTCCTGTTGAAGCAG -ACGGAAAACCTCCTGTTGCGTCAA -ACGGAAAACCTCCTGTTGGCTGAA -ACGGAAAACCTCCTGTTGAGTACG -ACGGAAAACCTCCTGTTGATCCGA -ACGGAAAACCTCCTGTTGATGGGA -ACGGAAAACCTCCTGTTGGTGCAA -ACGGAAAACCTCCTGTTGGAGGAA -ACGGAAAACCTCCTGTTGCAGGTA -ACGGAAAACCTCCTGTTGGACTCT -ACGGAAAACCTCCTGTTGAGTCCT -ACGGAAAACCTCCTGTTGTAAGCC -ACGGAAAACCTCCTGTTGATAGCC -ACGGAAAACCTCCTGTTGTAACCG -ACGGAAAACCTCCTGTTGATGCCA -ACGGAAAACCTCATGTCCGGAAAC -ACGGAAAACCTCATGTCCAACACC -ACGGAAAACCTCATGTCCATCGAG -ACGGAAAACCTCATGTCCCTCCTT -ACGGAAAACCTCATGTCCCCTGTT -ACGGAAAACCTCATGTCCCGGTTT -ACGGAAAACCTCATGTCCGTGGTT -ACGGAAAACCTCATGTCCGCCTTT -ACGGAAAACCTCATGTCCGGTCTT -ACGGAAAACCTCATGTCCACGCTT -ACGGAAAACCTCATGTCCAGCGTT -ACGGAAAACCTCATGTCCTTCGTC -ACGGAAAACCTCATGTCCTCTCTC -ACGGAAAACCTCATGTCCTGGATC -ACGGAAAACCTCATGTCCCACTTC -ACGGAAAACCTCATGTCCGTACTC -ACGGAAAACCTCATGTCCGATGTC -ACGGAAAACCTCATGTCCACAGTC -ACGGAAAACCTCATGTCCTTGCTG -ACGGAAAACCTCATGTCCTCCATG -ACGGAAAACCTCATGTCCTGTGTG -ACGGAAAACCTCATGTCCCTAGTG -ACGGAAAACCTCATGTCCCATCTG -ACGGAAAACCTCATGTCCGAGTTG -ACGGAAAACCTCATGTCCAGACTG -ACGGAAAACCTCATGTCCTCGGTA -ACGGAAAACCTCATGTCCTGCCTA -ACGGAAAACCTCATGTCCCCACTA -ACGGAAAACCTCATGTCCGGAGTA -ACGGAAAACCTCATGTCCTCGTCT -ACGGAAAACCTCATGTCCTGCACT -ACGGAAAACCTCATGTCCCTGACT -ACGGAAAACCTCATGTCCCAACCT -ACGGAAAACCTCATGTCCGCTACT -ACGGAAAACCTCATGTCCGGATCT -ACGGAAAACCTCATGTCCAAGGCT -ACGGAAAACCTCATGTCCTCAACC -ACGGAAAACCTCATGTCCTGTTCC -ACGGAAAACCTCATGTCCATTCCC -ACGGAAAACCTCATGTCCTTCTCG -ACGGAAAACCTCATGTCCTAGACG -ACGGAAAACCTCATGTCCGTAACG -ACGGAAAACCTCATGTCCACTTCG -ACGGAAAACCTCATGTCCTACGCA -ACGGAAAACCTCATGTCCCTTGCA -ACGGAAAACCTCATGTCCCGAACA -ACGGAAAACCTCATGTCCCAGTCA -ACGGAAAACCTCATGTCCGATCCA -ACGGAAAACCTCATGTCCACGACA -ACGGAAAACCTCATGTCCAGCTCA -ACGGAAAACCTCATGTCCTCACGT -ACGGAAAACCTCATGTCCCGTAGT -ACGGAAAACCTCATGTCCGTCAGT -ACGGAAAACCTCATGTCCGAAGGT -ACGGAAAACCTCATGTCCAACCGT -ACGGAAAACCTCATGTCCTTGTGC -ACGGAAAACCTCATGTCCCTAAGC -ACGGAAAACCTCATGTCCACTAGC -ACGGAAAACCTCATGTCCAGATGC -ACGGAAAACCTCATGTCCTGAAGG -ACGGAAAACCTCATGTCCCAATGG -ACGGAAAACCTCATGTCCATGAGG -ACGGAAAACCTCATGTCCAATGGG -ACGGAAAACCTCATGTCCTCCTGA -ACGGAAAACCTCATGTCCTAGCGA -ACGGAAAACCTCATGTCCCACAGA -ACGGAAAACCTCATGTCCGCAAGA -ACGGAAAACCTCATGTCCGGTTGA -ACGGAAAACCTCATGTCCTCCGAT -ACGGAAAACCTCATGTCCTGGCAT -ACGGAAAACCTCATGTCCCGAGAT -ACGGAAAACCTCATGTCCTACCAC -ACGGAAAACCTCATGTCCCAGAAC -ACGGAAAACCTCATGTCCGTCTAC -ACGGAAAACCTCATGTCCACGTAC -ACGGAAAACCTCATGTCCAGTGAC -ACGGAAAACCTCATGTCCCTGTAG -ACGGAAAACCTCATGTCCCCTAAG -ACGGAAAACCTCATGTCCGTTCAG -ACGGAAAACCTCATGTCCGCATAG -ACGGAAAACCTCATGTCCGACAAG -ACGGAAAACCTCATGTCCAAGCAG -ACGGAAAACCTCATGTCCCGTCAA -ACGGAAAACCTCATGTCCGCTGAA -ACGGAAAACCTCATGTCCAGTACG -ACGGAAAACCTCATGTCCATCCGA -ACGGAAAACCTCATGTCCATGGGA -ACGGAAAACCTCATGTCCGTGCAA -ACGGAAAACCTCATGTCCGAGGAA -ACGGAAAACCTCATGTCCCAGGTA -ACGGAAAACCTCATGTCCGACTCT -ACGGAAAACCTCATGTCCAGTCCT -ACGGAAAACCTCATGTCCTAAGCC -ACGGAAAACCTCATGTCCATAGCC -ACGGAAAACCTCATGTCCTAACCG -ACGGAAAACCTCATGTCCATGCCA -ACGGAAAACCTCGTGTGTGGAAAC -ACGGAAAACCTCGTGTGTAACACC -ACGGAAAACCTCGTGTGTATCGAG -ACGGAAAACCTCGTGTGTCTCCTT -ACGGAAAACCTCGTGTGTCCTGTT -ACGGAAAACCTCGTGTGTCGGTTT -ACGGAAAACCTCGTGTGTGTGGTT -ACGGAAAACCTCGTGTGTGCCTTT -ACGGAAAACCTCGTGTGTGGTCTT -ACGGAAAACCTCGTGTGTACGCTT -ACGGAAAACCTCGTGTGTAGCGTT -ACGGAAAACCTCGTGTGTTTCGTC -ACGGAAAACCTCGTGTGTTCTCTC -ACGGAAAACCTCGTGTGTTGGATC -ACGGAAAACCTCGTGTGTCACTTC -ACGGAAAACCTCGTGTGTGTACTC -ACGGAAAACCTCGTGTGTGATGTC -ACGGAAAACCTCGTGTGTACAGTC -ACGGAAAACCTCGTGTGTTTGCTG -ACGGAAAACCTCGTGTGTTCCATG -ACGGAAAACCTCGTGTGTTGTGTG -ACGGAAAACCTCGTGTGTCTAGTG -ACGGAAAACCTCGTGTGTCATCTG -ACGGAAAACCTCGTGTGTGAGTTG -ACGGAAAACCTCGTGTGTAGACTG -ACGGAAAACCTCGTGTGTTCGGTA -ACGGAAAACCTCGTGTGTTGCCTA -ACGGAAAACCTCGTGTGTCCACTA -ACGGAAAACCTCGTGTGTGGAGTA -ACGGAAAACCTCGTGTGTTCGTCT -ACGGAAAACCTCGTGTGTTGCACT -ACGGAAAACCTCGTGTGTCTGACT -ACGGAAAACCTCGTGTGTCAACCT -ACGGAAAACCTCGTGTGTGCTACT -ACGGAAAACCTCGTGTGTGGATCT -ACGGAAAACCTCGTGTGTAAGGCT -ACGGAAAACCTCGTGTGTTCAACC -ACGGAAAACCTCGTGTGTTGTTCC -ACGGAAAACCTCGTGTGTATTCCC -ACGGAAAACCTCGTGTGTTTCTCG -ACGGAAAACCTCGTGTGTTAGACG -ACGGAAAACCTCGTGTGTGTAACG -ACGGAAAACCTCGTGTGTACTTCG -ACGGAAAACCTCGTGTGTTACGCA -ACGGAAAACCTCGTGTGTCTTGCA -ACGGAAAACCTCGTGTGTCGAACA -ACGGAAAACCTCGTGTGTCAGTCA -ACGGAAAACCTCGTGTGTGATCCA -ACGGAAAACCTCGTGTGTACGACA -ACGGAAAACCTCGTGTGTAGCTCA -ACGGAAAACCTCGTGTGTTCACGT -ACGGAAAACCTCGTGTGTCGTAGT -ACGGAAAACCTCGTGTGTGTCAGT -ACGGAAAACCTCGTGTGTGAAGGT -ACGGAAAACCTCGTGTGTAACCGT -ACGGAAAACCTCGTGTGTTTGTGC -ACGGAAAACCTCGTGTGTCTAAGC -ACGGAAAACCTCGTGTGTACTAGC -ACGGAAAACCTCGTGTGTAGATGC -ACGGAAAACCTCGTGTGTTGAAGG -ACGGAAAACCTCGTGTGTCAATGG -ACGGAAAACCTCGTGTGTATGAGG -ACGGAAAACCTCGTGTGTAATGGG -ACGGAAAACCTCGTGTGTTCCTGA -ACGGAAAACCTCGTGTGTTAGCGA -ACGGAAAACCTCGTGTGTCACAGA -ACGGAAAACCTCGTGTGTGCAAGA -ACGGAAAACCTCGTGTGTGGTTGA -ACGGAAAACCTCGTGTGTTCCGAT -ACGGAAAACCTCGTGTGTTGGCAT -ACGGAAAACCTCGTGTGTCGAGAT -ACGGAAAACCTCGTGTGTTACCAC -ACGGAAAACCTCGTGTGTCAGAAC -ACGGAAAACCTCGTGTGTGTCTAC -ACGGAAAACCTCGTGTGTACGTAC -ACGGAAAACCTCGTGTGTAGTGAC -ACGGAAAACCTCGTGTGTCTGTAG -ACGGAAAACCTCGTGTGTCCTAAG -ACGGAAAACCTCGTGTGTGTTCAG -ACGGAAAACCTCGTGTGTGCATAG -ACGGAAAACCTCGTGTGTGACAAG -ACGGAAAACCTCGTGTGTAAGCAG -ACGGAAAACCTCGTGTGTCGTCAA -ACGGAAAACCTCGTGTGTGCTGAA -ACGGAAAACCTCGTGTGTAGTACG -ACGGAAAACCTCGTGTGTATCCGA -ACGGAAAACCTCGTGTGTATGGGA -ACGGAAAACCTCGTGTGTGTGCAA -ACGGAAAACCTCGTGTGTGAGGAA -ACGGAAAACCTCGTGTGTCAGGTA -ACGGAAAACCTCGTGTGTGACTCT -ACGGAAAACCTCGTGTGTAGTCCT -ACGGAAAACCTCGTGTGTTAAGCC -ACGGAAAACCTCGTGTGTATAGCC -ACGGAAAACCTCGTGTGTTAACCG -ACGGAAAACCTCGTGTGTATGCCA -ACGGAAAACCTCGTGCTAGGAAAC -ACGGAAAACCTCGTGCTAAACACC -ACGGAAAACCTCGTGCTAATCGAG -ACGGAAAACCTCGTGCTACTCCTT -ACGGAAAACCTCGTGCTACCTGTT -ACGGAAAACCTCGTGCTACGGTTT -ACGGAAAACCTCGTGCTAGTGGTT -ACGGAAAACCTCGTGCTAGCCTTT -ACGGAAAACCTCGTGCTAGGTCTT -ACGGAAAACCTCGTGCTAACGCTT -ACGGAAAACCTCGTGCTAAGCGTT -ACGGAAAACCTCGTGCTATTCGTC -ACGGAAAACCTCGTGCTATCTCTC -ACGGAAAACCTCGTGCTATGGATC -ACGGAAAACCTCGTGCTACACTTC -ACGGAAAACCTCGTGCTAGTACTC -ACGGAAAACCTCGTGCTAGATGTC -ACGGAAAACCTCGTGCTAACAGTC -ACGGAAAACCTCGTGCTATTGCTG -ACGGAAAACCTCGTGCTATCCATG -ACGGAAAACCTCGTGCTATGTGTG -ACGGAAAACCTCGTGCTACTAGTG -ACGGAAAACCTCGTGCTACATCTG -ACGGAAAACCTCGTGCTAGAGTTG -ACGGAAAACCTCGTGCTAAGACTG -ACGGAAAACCTCGTGCTATCGGTA -ACGGAAAACCTCGTGCTATGCCTA -ACGGAAAACCTCGTGCTACCACTA -ACGGAAAACCTCGTGCTAGGAGTA -ACGGAAAACCTCGTGCTATCGTCT -ACGGAAAACCTCGTGCTATGCACT -ACGGAAAACCTCGTGCTACTGACT -ACGGAAAACCTCGTGCTACAACCT -ACGGAAAACCTCGTGCTAGCTACT -ACGGAAAACCTCGTGCTAGGATCT -ACGGAAAACCTCGTGCTAAAGGCT -ACGGAAAACCTCGTGCTATCAACC -ACGGAAAACCTCGTGCTATGTTCC -ACGGAAAACCTCGTGCTAATTCCC -ACGGAAAACCTCGTGCTATTCTCG -ACGGAAAACCTCGTGCTATAGACG -ACGGAAAACCTCGTGCTAGTAACG -ACGGAAAACCTCGTGCTAACTTCG -ACGGAAAACCTCGTGCTATACGCA -ACGGAAAACCTCGTGCTACTTGCA -ACGGAAAACCTCGTGCTACGAACA -ACGGAAAACCTCGTGCTACAGTCA -ACGGAAAACCTCGTGCTAGATCCA -ACGGAAAACCTCGTGCTAACGACA -ACGGAAAACCTCGTGCTAAGCTCA -ACGGAAAACCTCGTGCTATCACGT -ACGGAAAACCTCGTGCTACGTAGT -ACGGAAAACCTCGTGCTAGTCAGT -ACGGAAAACCTCGTGCTAGAAGGT -ACGGAAAACCTCGTGCTAAACCGT -ACGGAAAACCTCGTGCTATTGTGC -ACGGAAAACCTCGTGCTACTAAGC -ACGGAAAACCTCGTGCTAACTAGC -ACGGAAAACCTCGTGCTAAGATGC -ACGGAAAACCTCGTGCTATGAAGG -ACGGAAAACCTCGTGCTACAATGG -ACGGAAAACCTCGTGCTAATGAGG -ACGGAAAACCTCGTGCTAAATGGG -ACGGAAAACCTCGTGCTATCCTGA -ACGGAAAACCTCGTGCTATAGCGA -ACGGAAAACCTCGTGCTACACAGA -ACGGAAAACCTCGTGCTAGCAAGA -ACGGAAAACCTCGTGCTAGGTTGA -ACGGAAAACCTCGTGCTATCCGAT -ACGGAAAACCTCGTGCTATGGCAT -ACGGAAAACCTCGTGCTACGAGAT -ACGGAAAACCTCGTGCTATACCAC -ACGGAAAACCTCGTGCTACAGAAC -ACGGAAAACCTCGTGCTAGTCTAC -ACGGAAAACCTCGTGCTAACGTAC -ACGGAAAACCTCGTGCTAAGTGAC -ACGGAAAACCTCGTGCTACTGTAG -ACGGAAAACCTCGTGCTACCTAAG -ACGGAAAACCTCGTGCTAGTTCAG -ACGGAAAACCTCGTGCTAGCATAG -ACGGAAAACCTCGTGCTAGACAAG -ACGGAAAACCTCGTGCTAAAGCAG -ACGGAAAACCTCGTGCTACGTCAA -ACGGAAAACCTCGTGCTAGCTGAA -ACGGAAAACCTCGTGCTAAGTACG -ACGGAAAACCTCGTGCTAATCCGA -ACGGAAAACCTCGTGCTAATGGGA -ACGGAAAACCTCGTGCTAGTGCAA -ACGGAAAACCTCGTGCTAGAGGAA -ACGGAAAACCTCGTGCTACAGGTA -ACGGAAAACCTCGTGCTAGACTCT -ACGGAAAACCTCGTGCTAAGTCCT -ACGGAAAACCTCGTGCTATAAGCC -ACGGAAAACCTCGTGCTAATAGCC -ACGGAAAACCTCGTGCTATAACCG -ACGGAAAACCTCGTGCTAATGCCA -ACGGAAAACCTCCTGCATGGAAAC -ACGGAAAACCTCCTGCATAACACC -ACGGAAAACCTCCTGCATATCGAG -ACGGAAAACCTCCTGCATCTCCTT -ACGGAAAACCTCCTGCATCCTGTT -ACGGAAAACCTCCTGCATCGGTTT -ACGGAAAACCTCCTGCATGTGGTT -ACGGAAAACCTCCTGCATGCCTTT -ACGGAAAACCTCCTGCATGGTCTT -ACGGAAAACCTCCTGCATACGCTT -ACGGAAAACCTCCTGCATAGCGTT -ACGGAAAACCTCCTGCATTTCGTC -ACGGAAAACCTCCTGCATTCTCTC -ACGGAAAACCTCCTGCATTGGATC -ACGGAAAACCTCCTGCATCACTTC -ACGGAAAACCTCCTGCATGTACTC -ACGGAAAACCTCCTGCATGATGTC -ACGGAAAACCTCCTGCATACAGTC -ACGGAAAACCTCCTGCATTTGCTG -ACGGAAAACCTCCTGCATTCCATG -ACGGAAAACCTCCTGCATTGTGTG -ACGGAAAACCTCCTGCATCTAGTG -ACGGAAAACCTCCTGCATCATCTG -ACGGAAAACCTCCTGCATGAGTTG -ACGGAAAACCTCCTGCATAGACTG -ACGGAAAACCTCCTGCATTCGGTA -ACGGAAAACCTCCTGCATTGCCTA -ACGGAAAACCTCCTGCATCCACTA -ACGGAAAACCTCCTGCATGGAGTA -ACGGAAAACCTCCTGCATTCGTCT -ACGGAAAACCTCCTGCATTGCACT -ACGGAAAACCTCCTGCATCTGACT -ACGGAAAACCTCCTGCATCAACCT -ACGGAAAACCTCCTGCATGCTACT -ACGGAAAACCTCCTGCATGGATCT -ACGGAAAACCTCCTGCATAAGGCT -ACGGAAAACCTCCTGCATTCAACC -ACGGAAAACCTCCTGCATTGTTCC -ACGGAAAACCTCCTGCATATTCCC -ACGGAAAACCTCCTGCATTTCTCG -ACGGAAAACCTCCTGCATTAGACG -ACGGAAAACCTCCTGCATGTAACG -ACGGAAAACCTCCTGCATACTTCG -ACGGAAAACCTCCTGCATTACGCA -ACGGAAAACCTCCTGCATCTTGCA -ACGGAAAACCTCCTGCATCGAACA -ACGGAAAACCTCCTGCATCAGTCA -ACGGAAAACCTCCTGCATGATCCA -ACGGAAAACCTCCTGCATACGACA -ACGGAAAACCTCCTGCATAGCTCA -ACGGAAAACCTCCTGCATTCACGT -ACGGAAAACCTCCTGCATCGTAGT -ACGGAAAACCTCCTGCATGTCAGT -ACGGAAAACCTCCTGCATGAAGGT -ACGGAAAACCTCCTGCATAACCGT -ACGGAAAACCTCCTGCATTTGTGC -ACGGAAAACCTCCTGCATCTAAGC -ACGGAAAACCTCCTGCATACTAGC -ACGGAAAACCTCCTGCATAGATGC -ACGGAAAACCTCCTGCATTGAAGG -ACGGAAAACCTCCTGCATCAATGG -ACGGAAAACCTCCTGCATATGAGG -ACGGAAAACCTCCTGCATAATGGG -ACGGAAAACCTCCTGCATTCCTGA -ACGGAAAACCTCCTGCATTAGCGA -ACGGAAAACCTCCTGCATCACAGA -ACGGAAAACCTCCTGCATGCAAGA -ACGGAAAACCTCCTGCATGGTTGA -ACGGAAAACCTCCTGCATTCCGAT -ACGGAAAACCTCCTGCATTGGCAT -ACGGAAAACCTCCTGCATCGAGAT -ACGGAAAACCTCCTGCATTACCAC -ACGGAAAACCTCCTGCATCAGAAC -ACGGAAAACCTCCTGCATGTCTAC -ACGGAAAACCTCCTGCATACGTAC -ACGGAAAACCTCCTGCATAGTGAC -ACGGAAAACCTCCTGCATCTGTAG -ACGGAAAACCTCCTGCATCCTAAG -ACGGAAAACCTCCTGCATGTTCAG -ACGGAAAACCTCCTGCATGCATAG -ACGGAAAACCTCCTGCATGACAAG -ACGGAAAACCTCCTGCATAAGCAG -ACGGAAAACCTCCTGCATCGTCAA -ACGGAAAACCTCCTGCATGCTGAA -ACGGAAAACCTCCTGCATAGTACG -ACGGAAAACCTCCTGCATATCCGA -ACGGAAAACCTCCTGCATATGGGA -ACGGAAAACCTCCTGCATGTGCAA -ACGGAAAACCTCCTGCATGAGGAA -ACGGAAAACCTCCTGCATCAGGTA -ACGGAAAACCTCCTGCATGACTCT -ACGGAAAACCTCCTGCATAGTCCT -ACGGAAAACCTCCTGCATTAAGCC -ACGGAAAACCTCCTGCATATAGCC -ACGGAAAACCTCCTGCATTAACCG -ACGGAAAACCTCCTGCATATGCCA -ACGGAAAACCTCTTGGAGGGAAAC -ACGGAAAACCTCTTGGAGAACACC -ACGGAAAACCTCTTGGAGATCGAG -ACGGAAAACCTCTTGGAGCTCCTT -ACGGAAAACCTCTTGGAGCCTGTT -ACGGAAAACCTCTTGGAGCGGTTT -ACGGAAAACCTCTTGGAGGTGGTT -ACGGAAAACCTCTTGGAGGCCTTT -ACGGAAAACCTCTTGGAGGGTCTT -ACGGAAAACCTCTTGGAGACGCTT -ACGGAAAACCTCTTGGAGAGCGTT -ACGGAAAACCTCTTGGAGTTCGTC -ACGGAAAACCTCTTGGAGTCTCTC -ACGGAAAACCTCTTGGAGTGGATC -ACGGAAAACCTCTTGGAGCACTTC -ACGGAAAACCTCTTGGAGGTACTC -ACGGAAAACCTCTTGGAGGATGTC -ACGGAAAACCTCTTGGAGACAGTC -ACGGAAAACCTCTTGGAGTTGCTG -ACGGAAAACCTCTTGGAGTCCATG -ACGGAAAACCTCTTGGAGTGTGTG -ACGGAAAACCTCTTGGAGCTAGTG -ACGGAAAACCTCTTGGAGCATCTG -ACGGAAAACCTCTTGGAGGAGTTG -ACGGAAAACCTCTTGGAGAGACTG -ACGGAAAACCTCTTGGAGTCGGTA -ACGGAAAACCTCTTGGAGTGCCTA -ACGGAAAACCTCTTGGAGCCACTA -ACGGAAAACCTCTTGGAGGGAGTA -ACGGAAAACCTCTTGGAGTCGTCT -ACGGAAAACCTCTTGGAGTGCACT -ACGGAAAACCTCTTGGAGCTGACT -ACGGAAAACCTCTTGGAGCAACCT -ACGGAAAACCTCTTGGAGGCTACT -ACGGAAAACCTCTTGGAGGGATCT -ACGGAAAACCTCTTGGAGAAGGCT -ACGGAAAACCTCTTGGAGTCAACC -ACGGAAAACCTCTTGGAGTGTTCC -ACGGAAAACCTCTTGGAGATTCCC -ACGGAAAACCTCTTGGAGTTCTCG -ACGGAAAACCTCTTGGAGTAGACG -ACGGAAAACCTCTTGGAGGTAACG -ACGGAAAACCTCTTGGAGACTTCG -ACGGAAAACCTCTTGGAGTACGCA -ACGGAAAACCTCTTGGAGCTTGCA -ACGGAAAACCTCTTGGAGCGAACA -ACGGAAAACCTCTTGGAGCAGTCA -ACGGAAAACCTCTTGGAGGATCCA -ACGGAAAACCTCTTGGAGACGACA -ACGGAAAACCTCTTGGAGAGCTCA -ACGGAAAACCTCTTGGAGTCACGT -ACGGAAAACCTCTTGGAGCGTAGT -ACGGAAAACCTCTTGGAGGTCAGT -ACGGAAAACCTCTTGGAGGAAGGT -ACGGAAAACCTCTTGGAGAACCGT -ACGGAAAACCTCTTGGAGTTGTGC -ACGGAAAACCTCTTGGAGCTAAGC -ACGGAAAACCTCTTGGAGACTAGC -ACGGAAAACCTCTTGGAGAGATGC -ACGGAAAACCTCTTGGAGTGAAGG -ACGGAAAACCTCTTGGAGCAATGG -ACGGAAAACCTCTTGGAGATGAGG -ACGGAAAACCTCTTGGAGAATGGG -ACGGAAAACCTCTTGGAGTCCTGA -ACGGAAAACCTCTTGGAGTAGCGA -ACGGAAAACCTCTTGGAGCACAGA -ACGGAAAACCTCTTGGAGGCAAGA -ACGGAAAACCTCTTGGAGGGTTGA -ACGGAAAACCTCTTGGAGTCCGAT -ACGGAAAACCTCTTGGAGTGGCAT -ACGGAAAACCTCTTGGAGCGAGAT -ACGGAAAACCTCTTGGAGTACCAC -ACGGAAAACCTCTTGGAGCAGAAC -ACGGAAAACCTCTTGGAGGTCTAC -ACGGAAAACCTCTTGGAGACGTAC -ACGGAAAACCTCTTGGAGAGTGAC -ACGGAAAACCTCTTGGAGCTGTAG -ACGGAAAACCTCTTGGAGCCTAAG -ACGGAAAACCTCTTGGAGGTTCAG -ACGGAAAACCTCTTGGAGGCATAG -ACGGAAAACCTCTTGGAGGACAAG -ACGGAAAACCTCTTGGAGAAGCAG -ACGGAAAACCTCTTGGAGCGTCAA -ACGGAAAACCTCTTGGAGGCTGAA -ACGGAAAACCTCTTGGAGAGTACG -ACGGAAAACCTCTTGGAGATCCGA -ACGGAAAACCTCTTGGAGATGGGA -ACGGAAAACCTCTTGGAGGTGCAA -ACGGAAAACCTCTTGGAGGAGGAA -ACGGAAAACCTCTTGGAGCAGGTA -ACGGAAAACCTCTTGGAGGACTCT -ACGGAAAACCTCTTGGAGAGTCCT -ACGGAAAACCTCTTGGAGTAAGCC -ACGGAAAACCTCTTGGAGATAGCC -ACGGAAAACCTCTTGGAGTAACCG -ACGGAAAACCTCTTGGAGATGCCA -ACGGAAAACCTCCTGAGAGGAAAC -ACGGAAAACCTCCTGAGAAACACC -ACGGAAAACCTCCTGAGAATCGAG -ACGGAAAACCTCCTGAGACTCCTT -ACGGAAAACCTCCTGAGACCTGTT -ACGGAAAACCTCCTGAGACGGTTT -ACGGAAAACCTCCTGAGAGTGGTT -ACGGAAAACCTCCTGAGAGCCTTT -ACGGAAAACCTCCTGAGAGGTCTT -ACGGAAAACCTCCTGAGAACGCTT -ACGGAAAACCTCCTGAGAAGCGTT -ACGGAAAACCTCCTGAGATTCGTC -ACGGAAAACCTCCTGAGATCTCTC -ACGGAAAACCTCCTGAGATGGATC -ACGGAAAACCTCCTGAGACACTTC -ACGGAAAACCTCCTGAGAGTACTC -ACGGAAAACCTCCTGAGAGATGTC -ACGGAAAACCTCCTGAGAACAGTC -ACGGAAAACCTCCTGAGATTGCTG -ACGGAAAACCTCCTGAGATCCATG -ACGGAAAACCTCCTGAGATGTGTG -ACGGAAAACCTCCTGAGACTAGTG -ACGGAAAACCTCCTGAGACATCTG -ACGGAAAACCTCCTGAGAGAGTTG -ACGGAAAACCTCCTGAGAAGACTG -ACGGAAAACCTCCTGAGATCGGTA -ACGGAAAACCTCCTGAGATGCCTA -ACGGAAAACCTCCTGAGACCACTA -ACGGAAAACCTCCTGAGAGGAGTA -ACGGAAAACCTCCTGAGATCGTCT -ACGGAAAACCTCCTGAGATGCACT -ACGGAAAACCTCCTGAGACTGACT -ACGGAAAACCTCCTGAGACAACCT -ACGGAAAACCTCCTGAGAGCTACT -ACGGAAAACCTCCTGAGAGGATCT -ACGGAAAACCTCCTGAGAAAGGCT -ACGGAAAACCTCCTGAGATCAACC -ACGGAAAACCTCCTGAGATGTTCC -ACGGAAAACCTCCTGAGAATTCCC -ACGGAAAACCTCCTGAGATTCTCG -ACGGAAAACCTCCTGAGATAGACG -ACGGAAAACCTCCTGAGAGTAACG -ACGGAAAACCTCCTGAGAACTTCG -ACGGAAAACCTCCTGAGATACGCA -ACGGAAAACCTCCTGAGACTTGCA -ACGGAAAACCTCCTGAGACGAACA -ACGGAAAACCTCCTGAGACAGTCA -ACGGAAAACCTCCTGAGAGATCCA -ACGGAAAACCTCCTGAGAACGACA -ACGGAAAACCTCCTGAGAAGCTCA -ACGGAAAACCTCCTGAGATCACGT -ACGGAAAACCTCCTGAGACGTAGT -ACGGAAAACCTCCTGAGAGTCAGT -ACGGAAAACCTCCTGAGAGAAGGT -ACGGAAAACCTCCTGAGAAACCGT -ACGGAAAACCTCCTGAGATTGTGC -ACGGAAAACCTCCTGAGACTAAGC -ACGGAAAACCTCCTGAGAACTAGC -ACGGAAAACCTCCTGAGAAGATGC -ACGGAAAACCTCCTGAGATGAAGG -ACGGAAAACCTCCTGAGACAATGG -ACGGAAAACCTCCTGAGAATGAGG -ACGGAAAACCTCCTGAGAAATGGG -ACGGAAAACCTCCTGAGATCCTGA -ACGGAAAACCTCCTGAGATAGCGA -ACGGAAAACCTCCTGAGACACAGA -ACGGAAAACCTCCTGAGAGCAAGA -ACGGAAAACCTCCTGAGAGGTTGA -ACGGAAAACCTCCTGAGATCCGAT -ACGGAAAACCTCCTGAGATGGCAT -ACGGAAAACCTCCTGAGACGAGAT -ACGGAAAACCTCCTGAGATACCAC -ACGGAAAACCTCCTGAGACAGAAC -ACGGAAAACCTCCTGAGAGTCTAC -ACGGAAAACCTCCTGAGAACGTAC -ACGGAAAACCTCCTGAGAAGTGAC -ACGGAAAACCTCCTGAGACTGTAG -ACGGAAAACCTCCTGAGACCTAAG -ACGGAAAACCTCCTGAGAGTTCAG -ACGGAAAACCTCCTGAGAGCATAG -ACGGAAAACCTCCTGAGAGACAAG -ACGGAAAACCTCCTGAGAAAGCAG -ACGGAAAACCTCCTGAGACGTCAA -ACGGAAAACCTCCTGAGAGCTGAA -ACGGAAAACCTCCTGAGAAGTACG -ACGGAAAACCTCCTGAGAATCCGA -ACGGAAAACCTCCTGAGAATGGGA -ACGGAAAACCTCCTGAGAGTGCAA -ACGGAAAACCTCCTGAGAGAGGAA -ACGGAAAACCTCCTGAGACAGGTA -ACGGAAAACCTCCTGAGAGACTCT -ACGGAAAACCTCCTGAGAAGTCCT -ACGGAAAACCTCCTGAGATAAGCC -ACGGAAAACCTCCTGAGAATAGCC -ACGGAAAACCTCCTGAGATAACCG -ACGGAAAACCTCCTGAGAATGCCA -ACGGAAAACCTCGTATCGGGAAAC -ACGGAAAACCTCGTATCGAACACC -ACGGAAAACCTCGTATCGATCGAG -ACGGAAAACCTCGTATCGCTCCTT -ACGGAAAACCTCGTATCGCCTGTT -ACGGAAAACCTCGTATCGCGGTTT -ACGGAAAACCTCGTATCGGTGGTT -ACGGAAAACCTCGTATCGGCCTTT -ACGGAAAACCTCGTATCGGGTCTT -ACGGAAAACCTCGTATCGACGCTT -ACGGAAAACCTCGTATCGAGCGTT -ACGGAAAACCTCGTATCGTTCGTC -ACGGAAAACCTCGTATCGTCTCTC -ACGGAAAACCTCGTATCGTGGATC -ACGGAAAACCTCGTATCGCACTTC -ACGGAAAACCTCGTATCGGTACTC -ACGGAAAACCTCGTATCGGATGTC -ACGGAAAACCTCGTATCGACAGTC -ACGGAAAACCTCGTATCGTTGCTG -ACGGAAAACCTCGTATCGTCCATG -ACGGAAAACCTCGTATCGTGTGTG -ACGGAAAACCTCGTATCGCTAGTG -ACGGAAAACCTCGTATCGCATCTG -ACGGAAAACCTCGTATCGGAGTTG -ACGGAAAACCTCGTATCGAGACTG -ACGGAAAACCTCGTATCGTCGGTA -ACGGAAAACCTCGTATCGTGCCTA -ACGGAAAACCTCGTATCGCCACTA -ACGGAAAACCTCGTATCGGGAGTA -ACGGAAAACCTCGTATCGTCGTCT -ACGGAAAACCTCGTATCGTGCACT -ACGGAAAACCTCGTATCGCTGACT -ACGGAAAACCTCGTATCGCAACCT -ACGGAAAACCTCGTATCGGCTACT -ACGGAAAACCTCGTATCGGGATCT -ACGGAAAACCTCGTATCGAAGGCT -ACGGAAAACCTCGTATCGTCAACC -ACGGAAAACCTCGTATCGTGTTCC -ACGGAAAACCTCGTATCGATTCCC -ACGGAAAACCTCGTATCGTTCTCG -ACGGAAAACCTCGTATCGTAGACG -ACGGAAAACCTCGTATCGGTAACG -ACGGAAAACCTCGTATCGACTTCG -ACGGAAAACCTCGTATCGTACGCA -ACGGAAAACCTCGTATCGCTTGCA -ACGGAAAACCTCGTATCGCGAACA -ACGGAAAACCTCGTATCGCAGTCA -ACGGAAAACCTCGTATCGGATCCA -ACGGAAAACCTCGTATCGACGACA -ACGGAAAACCTCGTATCGAGCTCA -ACGGAAAACCTCGTATCGTCACGT -ACGGAAAACCTCGTATCGCGTAGT -ACGGAAAACCTCGTATCGGTCAGT -ACGGAAAACCTCGTATCGGAAGGT -ACGGAAAACCTCGTATCGAACCGT -ACGGAAAACCTCGTATCGTTGTGC -ACGGAAAACCTCGTATCGCTAAGC -ACGGAAAACCTCGTATCGACTAGC -ACGGAAAACCTCGTATCGAGATGC -ACGGAAAACCTCGTATCGTGAAGG -ACGGAAAACCTCGTATCGCAATGG -ACGGAAAACCTCGTATCGATGAGG -ACGGAAAACCTCGTATCGAATGGG -ACGGAAAACCTCGTATCGTCCTGA -ACGGAAAACCTCGTATCGTAGCGA -ACGGAAAACCTCGTATCGCACAGA -ACGGAAAACCTCGTATCGGCAAGA -ACGGAAAACCTCGTATCGGGTTGA -ACGGAAAACCTCGTATCGTCCGAT -ACGGAAAACCTCGTATCGTGGCAT -ACGGAAAACCTCGTATCGCGAGAT -ACGGAAAACCTCGTATCGTACCAC -ACGGAAAACCTCGTATCGCAGAAC -ACGGAAAACCTCGTATCGGTCTAC -ACGGAAAACCTCGTATCGACGTAC -ACGGAAAACCTCGTATCGAGTGAC -ACGGAAAACCTCGTATCGCTGTAG -ACGGAAAACCTCGTATCGCCTAAG -ACGGAAAACCTCGTATCGGTTCAG -ACGGAAAACCTCGTATCGGCATAG -ACGGAAAACCTCGTATCGGACAAG -ACGGAAAACCTCGTATCGAAGCAG -ACGGAAAACCTCGTATCGCGTCAA -ACGGAAAACCTCGTATCGGCTGAA -ACGGAAAACCTCGTATCGAGTACG -ACGGAAAACCTCGTATCGATCCGA -ACGGAAAACCTCGTATCGATGGGA -ACGGAAAACCTCGTATCGGTGCAA -ACGGAAAACCTCGTATCGGAGGAA -ACGGAAAACCTCGTATCGCAGGTA -ACGGAAAACCTCGTATCGGACTCT -ACGGAAAACCTCGTATCGAGTCCT -ACGGAAAACCTCGTATCGTAAGCC -ACGGAAAACCTCGTATCGATAGCC -ACGGAAAACCTCGTATCGTAACCG -ACGGAAAACCTCGTATCGATGCCA -ACGGAAAACCTCCTATGCGGAAAC -ACGGAAAACCTCCTATGCAACACC -ACGGAAAACCTCCTATGCATCGAG -ACGGAAAACCTCCTATGCCTCCTT -ACGGAAAACCTCCTATGCCCTGTT -ACGGAAAACCTCCTATGCCGGTTT -ACGGAAAACCTCCTATGCGTGGTT -ACGGAAAACCTCCTATGCGCCTTT -ACGGAAAACCTCCTATGCGGTCTT -ACGGAAAACCTCCTATGCACGCTT -ACGGAAAACCTCCTATGCAGCGTT -ACGGAAAACCTCCTATGCTTCGTC -ACGGAAAACCTCCTATGCTCTCTC -ACGGAAAACCTCCTATGCTGGATC -ACGGAAAACCTCCTATGCCACTTC -ACGGAAAACCTCCTATGCGTACTC -ACGGAAAACCTCCTATGCGATGTC -ACGGAAAACCTCCTATGCACAGTC -ACGGAAAACCTCCTATGCTTGCTG -ACGGAAAACCTCCTATGCTCCATG -ACGGAAAACCTCCTATGCTGTGTG -ACGGAAAACCTCCTATGCCTAGTG -ACGGAAAACCTCCTATGCCATCTG -ACGGAAAACCTCCTATGCGAGTTG -ACGGAAAACCTCCTATGCAGACTG -ACGGAAAACCTCCTATGCTCGGTA -ACGGAAAACCTCCTATGCTGCCTA -ACGGAAAACCTCCTATGCCCACTA -ACGGAAAACCTCCTATGCGGAGTA -ACGGAAAACCTCCTATGCTCGTCT -ACGGAAAACCTCCTATGCTGCACT -ACGGAAAACCTCCTATGCCTGACT -ACGGAAAACCTCCTATGCCAACCT -ACGGAAAACCTCCTATGCGCTACT -ACGGAAAACCTCCTATGCGGATCT -ACGGAAAACCTCCTATGCAAGGCT -ACGGAAAACCTCCTATGCTCAACC -ACGGAAAACCTCCTATGCTGTTCC -ACGGAAAACCTCCTATGCATTCCC -ACGGAAAACCTCCTATGCTTCTCG -ACGGAAAACCTCCTATGCTAGACG -ACGGAAAACCTCCTATGCGTAACG -ACGGAAAACCTCCTATGCACTTCG -ACGGAAAACCTCCTATGCTACGCA -ACGGAAAACCTCCTATGCCTTGCA -ACGGAAAACCTCCTATGCCGAACA -ACGGAAAACCTCCTATGCCAGTCA -ACGGAAAACCTCCTATGCGATCCA -ACGGAAAACCTCCTATGCACGACA -ACGGAAAACCTCCTATGCAGCTCA -ACGGAAAACCTCCTATGCTCACGT -ACGGAAAACCTCCTATGCCGTAGT -ACGGAAAACCTCCTATGCGTCAGT -ACGGAAAACCTCCTATGCGAAGGT -ACGGAAAACCTCCTATGCAACCGT -ACGGAAAACCTCCTATGCTTGTGC -ACGGAAAACCTCCTATGCCTAAGC -ACGGAAAACCTCCTATGCACTAGC -ACGGAAAACCTCCTATGCAGATGC -ACGGAAAACCTCCTATGCTGAAGG -ACGGAAAACCTCCTATGCCAATGG -ACGGAAAACCTCCTATGCATGAGG -ACGGAAAACCTCCTATGCAATGGG -ACGGAAAACCTCCTATGCTCCTGA -ACGGAAAACCTCCTATGCTAGCGA -ACGGAAAACCTCCTATGCCACAGA -ACGGAAAACCTCCTATGCGCAAGA -ACGGAAAACCTCCTATGCGGTTGA -ACGGAAAACCTCCTATGCTCCGAT -ACGGAAAACCTCCTATGCTGGCAT -ACGGAAAACCTCCTATGCCGAGAT -ACGGAAAACCTCCTATGCTACCAC -ACGGAAAACCTCCTATGCCAGAAC -ACGGAAAACCTCCTATGCGTCTAC -ACGGAAAACCTCCTATGCACGTAC -ACGGAAAACCTCCTATGCAGTGAC -ACGGAAAACCTCCTATGCCTGTAG -ACGGAAAACCTCCTATGCCCTAAG -ACGGAAAACCTCCTATGCGTTCAG -ACGGAAAACCTCCTATGCGCATAG -ACGGAAAACCTCCTATGCGACAAG -ACGGAAAACCTCCTATGCAAGCAG -ACGGAAAACCTCCTATGCCGTCAA -ACGGAAAACCTCCTATGCGCTGAA -ACGGAAAACCTCCTATGCAGTACG -ACGGAAAACCTCCTATGCATCCGA -ACGGAAAACCTCCTATGCATGGGA -ACGGAAAACCTCCTATGCGTGCAA -ACGGAAAACCTCCTATGCGAGGAA -ACGGAAAACCTCCTATGCCAGGTA -ACGGAAAACCTCCTATGCGACTCT -ACGGAAAACCTCCTATGCAGTCCT -ACGGAAAACCTCCTATGCTAAGCC -ACGGAAAACCTCCTATGCATAGCC -ACGGAAAACCTCCTATGCTAACCG -ACGGAAAACCTCCTATGCATGCCA -ACGGAAAACCTCCTACCAGGAAAC -ACGGAAAACCTCCTACCAAACACC -ACGGAAAACCTCCTACCAATCGAG -ACGGAAAACCTCCTACCACTCCTT -ACGGAAAACCTCCTACCACCTGTT -ACGGAAAACCTCCTACCACGGTTT -ACGGAAAACCTCCTACCAGTGGTT -ACGGAAAACCTCCTACCAGCCTTT -ACGGAAAACCTCCTACCAGGTCTT -ACGGAAAACCTCCTACCAACGCTT -ACGGAAAACCTCCTACCAAGCGTT -ACGGAAAACCTCCTACCATTCGTC -ACGGAAAACCTCCTACCATCTCTC -ACGGAAAACCTCCTACCATGGATC -ACGGAAAACCTCCTACCACACTTC -ACGGAAAACCTCCTACCAGTACTC -ACGGAAAACCTCCTACCAGATGTC -ACGGAAAACCTCCTACCAACAGTC -ACGGAAAACCTCCTACCATTGCTG -ACGGAAAACCTCCTACCATCCATG -ACGGAAAACCTCCTACCATGTGTG -ACGGAAAACCTCCTACCACTAGTG -ACGGAAAACCTCCTACCACATCTG -ACGGAAAACCTCCTACCAGAGTTG -ACGGAAAACCTCCTACCAAGACTG -ACGGAAAACCTCCTACCATCGGTA -ACGGAAAACCTCCTACCATGCCTA -ACGGAAAACCTCCTACCACCACTA -ACGGAAAACCTCCTACCAGGAGTA -ACGGAAAACCTCCTACCATCGTCT -ACGGAAAACCTCCTACCATGCACT -ACGGAAAACCTCCTACCACTGACT -ACGGAAAACCTCCTACCACAACCT -ACGGAAAACCTCCTACCAGCTACT -ACGGAAAACCTCCTACCAGGATCT -ACGGAAAACCTCCTACCAAAGGCT -ACGGAAAACCTCCTACCATCAACC -ACGGAAAACCTCCTACCATGTTCC -ACGGAAAACCTCCTACCAATTCCC -ACGGAAAACCTCCTACCATTCTCG -ACGGAAAACCTCCTACCATAGACG -ACGGAAAACCTCCTACCAGTAACG -ACGGAAAACCTCCTACCAACTTCG -ACGGAAAACCTCCTACCATACGCA -ACGGAAAACCTCCTACCACTTGCA -ACGGAAAACCTCCTACCACGAACA -ACGGAAAACCTCCTACCACAGTCA -ACGGAAAACCTCCTACCAGATCCA -ACGGAAAACCTCCTACCAACGACA -ACGGAAAACCTCCTACCAAGCTCA -ACGGAAAACCTCCTACCATCACGT -ACGGAAAACCTCCTACCACGTAGT -ACGGAAAACCTCCTACCAGTCAGT -ACGGAAAACCTCCTACCAGAAGGT -ACGGAAAACCTCCTACCAAACCGT -ACGGAAAACCTCCTACCATTGTGC -ACGGAAAACCTCCTACCACTAAGC -ACGGAAAACCTCCTACCAACTAGC -ACGGAAAACCTCCTACCAAGATGC -ACGGAAAACCTCCTACCATGAAGG -ACGGAAAACCTCCTACCACAATGG -ACGGAAAACCTCCTACCAATGAGG -ACGGAAAACCTCCTACCAAATGGG -ACGGAAAACCTCCTACCATCCTGA -ACGGAAAACCTCCTACCATAGCGA -ACGGAAAACCTCCTACCACACAGA -ACGGAAAACCTCCTACCAGCAAGA -ACGGAAAACCTCCTACCAGGTTGA -ACGGAAAACCTCCTACCATCCGAT -ACGGAAAACCTCCTACCATGGCAT -ACGGAAAACCTCCTACCACGAGAT -ACGGAAAACCTCCTACCATACCAC -ACGGAAAACCTCCTACCACAGAAC -ACGGAAAACCTCCTACCAGTCTAC -ACGGAAAACCTCCTACCAACGTAC -ACGGAAAACCTCCTACCAAGTGAC -ACGGAAAACCTCCTACCACTGTAG -ACGGAAAACCTCCTACCACCTAAG -ACGGAAAACCTCCTACCAGTTCAG -ACGGAAAACCTCCTACCAGCATAG -ACGGAAAACCTCCTACCAGACAAG -ACGGAAAACCTCCTACCAAAGCAG -ACGGAAAACCTCCTACCACGTCAA -ACGGAAAACCTCCTACCAGCTGAA -ACGGAAAACCTCCTACCAAGTACG -ACGGAAAACCTCCTACCAATCCGA -ACGGAAAACCTCCTACCAATGGGA -ACGGAAAACCTCCTACCAGTGCAA -ACGGAAAACCTCCTACCAGAGGAA -ACGGAAAACCTCCTACCACAGGTA -ACGGAAAACCTCCTACCAGACTCT -ACGGAAAACCTCCTACCAAGTCCT -ACGGAAAACCTCCTACCATAAGCC -ACGGAAAACCTCCTACCAATAGCC -ACGGAAAACCTCCTACCATAACCG -ACGGAAAACCTCCTACCAATGCCA -ACGGAAAACCTCGTAGGAGGAAAC -ACGGAAAACCTCGTAGGAAACACC -ACGGAAAACCTCGTAGGAATCGAG -ACGGAAAACCTCGTAGGACTCCTT -ACGGAAAACCTCGTAGGACCTGTT -ACGGAAAACCTCGTAGGACGGTTT -ACGGAAAACCTCGTAGGAGTGGTT -ACGGAAAACCTCGTAGGAGCCTTT -ACGGAAAACCTCGTAGGAGGTCTT -ACGGAAAACCTCGTAGGAACGCTT -ACGGAAAACCTCGTAGGAAGCGTT -ACGGAAAACCTCGTAGGATTCGTC -ACGGAAAACCTCGTAGGATCTCTC -ACGGAAAACCTCGTAGGATGGATC -ACGGAAAACCTCGTAGGACACTTC -ACGGAAAACCTCGTAGGAGTACTC -ACGGAAAACCTCGTAGGAGATGTC -ACGGAAAACCTCGTAGGAACAGTC -ACGGAAAACCTCGTAGGATTGCTG -ACGGAAAACCTCGTAGGATCCATG -ACGGAAAACCTCGTAGGATGTGTG -ACGGAAAACCTCGTAGGACTAGTG -ACGGAAAACCTCGTAGGACATCTG -ACGGAAAACCTCGTAGGAGAGTTG -ACGGAAAACCTCGTAGGAAGACTG -ACGGAAAACCTCGTAGGATCGGTA -ACGGAAAACCTCGTAGGATGCCTA -ACGGAAAACCTCGTAGGACCACTA -ACGGAAAACCTCGTAGGAGGAGTA -ACGGAAAACCTCGTAGGATCGTCT -ACGGAAAACCTCGTAGGATGCACT -ACGGAAAACCTCGTAGGACTGACT -ACGGAAAACCTCGTAGGACAACCT -ACGGAAAACCTCGTAGGAGCTACT -ACGGAAAACCTCGTAGGAGGATCT -ACGGAAAACCTCGTAGGAAAGGCT -ACGGAAAACCTCGTAGGATCAACC -ACGGAAAACCTCGTAGGATGTTCC -ACGGAAAACCTCGTAGGAATTCCC -ACGGAAAACCTCGTAGGATTCTCG -ACGGAAAACCTCGTAGGATAGACG -ACGGAAAACCTCGTAGGAGTAACG -ACGGAAAACCTCGTAGGAACTTCG -ACGGAAAACCTCGTAGGATACGCA -ACGGAAAACCTCGTAGGACTTGCA -ACGGAAAACCTCGTAGGACGAACA -ACGGAAAACCTCGTAGGACAGTCA -ACGGAAAACCTCGTAGGAGATCCA -ACGGAAAACCTCGTAGGAACGACA -ACGGAAAACCTCGTAGGAAGCTCA -ACGGAAAACCTCGTAGGATCACGT -ACGGAAAACCTCGTAGGACGTAGT -ACGGAAAACCTCGTAGGAGTCAGT -ACGGAAAACCTCGTAGGAGAAGGT -ACGGAAAACCTCGTAGGAAACCGT -ACGGAAAACCTCGTAGGATTGTGC -ACGGAAAACCTCGTAGGACTAAGC -ACGGAAAACCTCGTAGGAACTAGC -ACGGAAAACCTCGTAGGAAGATGC -ACGGAAAACCTCGTAGGATGAAGG -ACGGAAAACCTCGTAGGACAATGG -ACGGAAAACCTCGTAGGAATGAGG -ACGGAAAACCTCGTAGGAAATGGG -ACGGAAAACCTCGTAGGATCCTGA -ACGGAAAACCTCGTAGGATAGCGA -ACGGAAAACCTCGTAGGACACAGA -ACGGAAAACCTCGTAGGAGCAAGA -ACGGAAAACCTCGTAGGAGGTTGA -ACGGAAAACCTCGTAGGATCCGAT -ACGGAAAACCTCGTAGGATGGCAT -ACGGAAAACCTCGTAGGACGAGAT -ACGGAAAACCTCGTAGGATACCAC -ACGGAAAACCTCGTAGGACAGAAC -ACGGAAAACCTCGTAGGAGTCTAC -ACGGAAAACCTCGTAGGAACGTAC -ACGGAAAACCTCGTAGGAAGTGAC -ACGGAAAACCTCGTAGGACTGTAG -ACGGAAAACCTCGTAGGACCTAAG -ACGGAAAACCTCGTAGGAGTTCAG -ACGGAAAACCTCGTAGGAGCATAG -ACGGAAAACCTCGTAGGAGACAAG -ACGGAAAACCTCGTAGGAAAGCAG -ACGGAAAACCTCGTAGGACGTCAA -ACGGAAAACCTCGTAGGAGCTGAA -ACGGAAAACCTCGTAGGAAGTACG -ACGGAAAACCTCGTAGGAATCCGA -ACGGAAAACCTCGTAGGAATGGGA -ACGGAAAACCTCGTAGGAGTGCAA -ACGGAAAACCTCGTAGGAGAGGAA -ACGGAAAACCTCGTAGGACAGGTA -ACGGAAAACCTCGTAGGAGACTCT -ACGGAAAACCTCGTAGGAAGTCCT -ACGGAAAACCTCGTAGGATAAGCC -ACGGAAAACCTCGTAGGAATAGCC -ACGGAAAACCTCGTAGGATAACCG -ACGGAAAACCTCGTAGGAATGCCA -ACGGAAAACCTCTCTTCGGGAAAC -ACGGAAAACCTCTCTTCGAACACC -ACGGAAAACCTCTCTTCGATCGAG -ACGGAAAACCTCTCTTCGCTCCTT -ACGGAAAACCTCTCTTCGCCTGTT -ACGGAAAACCTCTCTTCGCGGTTT -ACGGAAAACCTCTCTTCGGTGGTT -ACGGAAAACCTCTCTTCGGCCTTT -ACGGAAAACCTCTCTTCGGGTCTT -ACGGAAAACCTCTCTTCGACGCTT -ACGGAAAACCTCTCTTCGAGCGTT -ACGGAAAACCTCTCTTCGTTCGTC -ACGGAAAACCTCTCTTCGTCTCTC -ACGGAAAACCTCTCTTCGTGGATC -ACGGAAAACCTCTCTTCGCACTTC -ACGGAAAACCTCTCTTCGGTACTC -ACGGAAAACCTCTCTTCGGATGTC -ACGGAAAACCTCTCTTCGACAGTC -ACGGAAAACCTCTCTTCGTTGCTG -ACGGAAAACCTCTCTTCGTCCATG -ACGGAAAACCTCTCTTCGTGTGTG -ACGGAAAACCTCTCTTCGCTAGTG -ACGGAAAACCTCTCTTCGCATCTG -ACGGAAAACCTCTCTTCGGAGTTG -ACGGAAAACCTCTCTTCGAGACTG -ACGGAAAACCTCTCTTCGTCGGTA -ACGGAAAACCTCTCTTCGTGCCTA -ACGGAAAACCTCTCTTCGCCACTA -ACGGAAAACCTCTCTTCGGGAGTA -ACGGAAAACCTCTCTTCGTCGTCT -ACGGAAAACCTCTCTTCGTGCACT -ACGGAAAACCTCTCTTCGCTGACT -ACGGAAAACCTCTCTTCGCAACCT -ACGGAAAACCTCTCTTCGGCTACT -ACGGAAAACCTCTCTTCGGGATCT -ACGGAAAACCTCTCTTCGAAGGCT -ACGGAAAACCTCTCTTCGTCAACC -ACGGAAAACCTCTCTTCGTGTTCC -ACGGAAAACCTCTCTTCGATTCCC -ACGGAAAACCTCTCTTCGTTCTCG -ACGGAAAACCTCTCTTCGTAGACG -ACGGAAAACCTCTCTTCGGTAACG -ACGGAAAACCTCTCTTCGACTTCG -ACGGAAAACCTCTCTTCGTACGCA -ACGGAAAACCTCTCTTCGCTTGCA -ACGGAAAACCTCTCTTCGCGAACA -ACGGAAAACCTCTCTTCGCAGTCA -ACGGAAAACCTCTCTTCGGATCCA -ACGGAAAACCTCTCTTCGACGACA -ACGGAAAACCTCTCTTCGAGCTCA -ACGGAAAACCTCTCTTCGTCACGT -ACGGAAAACCTCTCTTCGCGTAGT -ACGGAAAACCTCTCTTCGGTCAGT -ACGGAAAACCTCTCTTCGGAAGGT -ACGGAAAACCTCTCTTCGAACCGT -ACGGAAAACCTCTCTTCGTTGTGC -ACGGAAAACCTCTCTTCGCTAAGC -ACGGAAAACCTCTCTTCGACTAGC -ACGGAAAACCTCTCTTCGAGATGC -ACGGAAAACCTCTCTTCGTGAAGG -ACGGAAAACCTCTCTTCGCAATGG -ACGGAAAACCTCTCTTCGATGAGG -ACGGAAAACCTCTCTTCGAATGGG -ACGGAAAACCTCTCTTCGTCCTGA -ACGGAAAACCTCTCTTCGTAGCGA -ACGGAAAACCTCTCTTCGCACAGA -ACGGAAAACCTCTCTTCGGCAAGA -ACGGAAAACCTCTCTTCGGGTTGA -ACGGAAAACCTCTCTTCGTCCGAT -ACGGAAAACCTCTCTTCGTGGCAT -ACGGAAAACCTCTCTTCGCGAGAT -ACGGAAAACCTCTCTTCGTACCAC -ACGGAAAACCTCTCTTCGCAGAAC -ACGGAAAACCTCTCTTCGGTCTAC -ACGGAAAACCTCTCTTCGACGTAC -ACGGAAAACCTCTCTTCGAGTGAC -ACGGAAAACCTCTCTTCGCTGTAG -ACGGAAAACCTCTCTTCGCCTAAG -ACGGAAAACCTCTCTTCGGTTCAG -ACGGAAAACCTCTCTTCGGCATAG -ACGGAAAACCTCTCTTCGGACAAG -ACGGAAAACCTCTCTTCGAAGCAG -ACGGAAAACCTCTCTTCGCGTCAA -ACGGAAAACCTCTCTTCGGCTGAA -ACGGAAAACCTCTCTTCGAGTACG -ACGGAAAACCTCTCTTCGATCCGA -ACGGAAAACCTCTCTTCGATGGGA -ACGGAAAACCTCTCTTCGGTGCAA -ACGGAAAACCTCTCTTCGGAGGAA -ACGGAAAACCTCTCTTCGCAGGTA -ACGGAAAACCTCTCTTCGGACTCT -ACGGAAAACCTCTCTTCGAGTCCT -ACGGAAAACCTCTCTTCGTAAGCC -ACGGAAAACCTCTCTTCGATAGCC -ACGGAAAACCTCTCTTCGTAACCG -ACGGAAAACCTCTCTTCGATGCCA -ACGGAAAACCTCACTTGCGGAAAC -ACGGAAAACCTCACTTGCAACACC -ACGGAAAACCTCACTTGCATCGAG -ACGGAAAACCTCACTTGCCTCCTT -ACGGAAAACCTCACTTGCCCTGTT -ACGGAAAACCTCACTTGCCGGTTT -ACGGAAAACCTCACTTGCGTGGTT -ACGGAAAACCTCACTTGCGCCTTT -ACGGAAAACCTCACTTGCGGTCTT -ACGGAAAACCTCACTTGCACGCTT -ACGGAAAACCTCACTTGCAGCGTT -ACGGAAAACCTCACTTGCTTCGTC -ACGGAAAACCTCACTTGCTCTCTC -ACGGAAAACCTCACTTGCTGGATC -ACGGAAAACCTCACTTGCCACTTC -ACGGAAAACCTCACTTGCGTACTC -ACGGAAAACCTCACTTGCGATGTC -ACGGAAAACCTCACTTGCACAGTC -ACGGAAAACCTCACTTGCTTGCTG -ACGGAAAACCTCACTTGCTCCATG -ACGGAAAACCTCACTTGCTGTGTG -ACGGAAAACCTCACTTGCCTAGTG -ACGGAAAACCTCACTTGCCATCTG -ACGGAAAACCTCACTTGCGAGTTG -ACGGAAAACCTCACTTGCAGACTG -ACGGAAAACCTCACTTGCTCGGTA -ACGGAAAACCTCACTTGCTGCCTA -ACGGAAAACCTCACTTGCCCACTA -ACGGAAAACCTCACTTGCGGAGTA -ACGGAAAACCTCACTTGCTCGTCT -ACGGAAAACCTCACTTGCTGCACT -ACGGAAAACCTCACTTGCCTGACT -ACGGAAAACCTCACTTGCCAACCT -ACGGAAAACCTCACTTGCGCTACT -ACGGAAAACCTCACTTGCGGATCT -ACGGAAAACCTCACTTGCAAGGCT -ACGGAAAACCTCACTTGCTCAACC -ACGGAAAACCTCACTTGCTGTTCC -ACGGAAAACCTCACTTGCATTCCC -ACGGAAAACCTCACTTGCTTCTCG -ACGGAAAACCTCACTTGCTAGACG -ACGGAAAACCTCACTTGCGTAACG -ACGGAAAACCTCACTTGCACTTCG -ACGGAAAACCTCACTTGCTACGCA -ACGGAAAACCTCACTTGCCTTGCA -ACGGAAAACCTCACTTGCCGAACA -ACGGAAAACCTCACTTGCCAGTCA -ACGGAAAACCTCACTTGCGATCCA -ACGGAAAACCTCACTTGCACGACA -ACGGAAAACCTCACTTGCAGCTCA -ACGGAAAACCTCACTTGCTCACGT -ACGGAAAACCTCACTTGCCGTAGT -ACGGAAAACCTCACTTGCGTCAGT -ACGGAAAACCTCACTTGCGAAGGT -ACGGAAAACCTCACTTGCAACCGT -ACGGAAAACCTCACTTGCTTGTGC -ACGGAAAACCTCACTTGCCTAAGC -ACGGAAAACCTCACTTGCACTAGC -ACGGAAAACCTCACTTGCAGATGC -ACGGAAAACCTCACTTGCTGAAGG -ACGGAAAACCTCACTTGCCAATGG -ACGGAAAACCTCACTTGCATGAGG -ACGGAAAACCTCACTTGCAATGGG -ACGGAAAACCTCACTTGCTCCTGA -ACGGAAAACCTCACTTGCTAGCGA -ACGGAAAACCTCACTTGCCACAGA -ACGGAAAACCTCACTTGCGCAAGA -ACGGAAAACCTCACTTGCGGTTGA -ACGGAAAACCTCACTTGCTCCGAT -ACGGAAAACCTCACTTGCTGGCAT -ACGGAAAACCTCACTTGCCGAGAT -ACGGAAAACCTCACTTGCTACCAC -ACGGAAAACCTCACTTGCCAGAAC -ACGGAAAACCTCACTTGCGTCTAC -ACGGAAAACCTCACTTGCACGTAC -ACGGAAAACCTCACTTGCAGTGAC -ACGGAAAACCTCACTTGCCTGTAG -ACGGAAAACCTCACTTGCCCTAAG -ACGGAAAACCTCACTTGCGTTCAG -ACGGAAAACCTCACTTGCGCATAG -ACGGAAAACCTCACTTGCGACAAG -ACGGAAAACCTCACTTGCAAGCAG -ACGGAAAACCTCACTTGCCGTCAA -ACGGAAAACCTCACTTGCGCTGAA -ACGGAAAACCTCACTTGCAGTACG -ACGGAAAACCTCACTTGCATCCGA -ACGGAAAACCTCACTTGCATGGGA -ACGGAAAACCTCACTTGCGTGCAA -ACGGAAAACCTCACTTGCGAGGAA -ACGGAAAACCTCACTTGCCAGGTA -ACGGAAAACCTCACTTGCGACTCT -ACGGAAAACCTCACTTGCAGTCCT -ACGGAAAACCTCACTTGCTAAGCC -ACGGAAAACCTCACTTGCATAGCC -ACGGAAAACCTCACTTGCTAACCG -ACGGAAAACCTCACTTGCATGCCA -ACGGAAAACCTCACTCTGGGAAAC -ACGGAAAACCTCACTCTGAACACC -ACGGAAAACCTCACTCTGATCGAG -ACGGAAAACCTCACTCTGCTCCTT -ACGGAAAACCTCACTCTGCCTGTT -ACGGAAAACCTCACTCTGCGGTTT -ACGGAAAACCTCACTCTGGTGGTT -ACGGAAAACCTCACTCTGGCCTTT -ACGGAAAACCTCACTCTGGGTCTT -ACGGAAAACCTCACTCTGACGCTT -ACGGAAAACCTCACTCTGAGCGTT -ACGGAAAACCTCACTCTGTTCGTC -ACGGAAAACCTCACTCTGTCTCTC -ACGGAAAACCTCACTCTGTGGATC -ACGGAAAACCTCACTCTGCACTTC -ACGGAAAACCTCACTCTGGTACTC -ACGGAAAACCTCACTCTGGATGTC -ACGGAAAACCTCACTCTGACAGTC -ACGGAAAACCTCACTCTGTTGCTG -ACGGAAAACCTCACTCTGTCCATG -ACGGAAAACCTCACTCTGTGTGTG -ACGGAAAACCTCACTCTGCTAGTG -ACGGAAAACCTCACTCTGCATCTG -ACGGAAAACCTCACTCTGGAGTTG -ACGGAAAACCTCACTCTGAGACTG -ACGGAAAACCTCACTCTGTCGGTA -ACGGAAAACCTCACTCTGTGCCTA -ACGGAAAACCTCACTCTGCCACTA -ACGGAAAACCTCACTCTGGGAGTA -ACGGAAAACCTCACTCTGTCGTCT -ACGGAAAACCTCACTCTGTGCACT -ACGGAAAACCTCACTCTGCTGACT -ACGGAAAACCTCACTCTGCAACCT -ACGGAAAACCTCACTCTGGCTACT -ACGGAAAACCTCACTCTGGGATCT -ACGGAAAACCTCACTCTGAAGGCT -ACGGAAAACCTCACTCTGTCAACC -ACGGAAAACCTCACTCTGTGTTCC -ACGGAAAACCTCACTCTGATTCCC -ACGGAAAACCTCACTCTGTTCTCG -ACGGAAAACCTCACTCTGTAGACG -ACGGAAAACCTCACTCTGGTAACG -ACGGAAAACCTCACTCTGACTTCG -ACGGAAAACCTCACTCTGTACGCA -ACGGAAAACCTCACTCTGCTTGCA -ACGGAAAACCTCACTCTGCGAACA -ACGGAAAACCTCACTCTGCAGTCA -ACGGAAAACCTCACTCTGGATCCA -ACGGAAAACCTCACTCTGACGACA -ACGGAAAACCTCACTCTGAGCTCA -ACGGAAAACCTCACTCTGTCACGT -ACGGAAAACCTCACTCTGCGTAGT -ACGGAAAACCTCACTCTGGTCAGT -ACGGAAAACCTCACTCTGGAAGGT -ACGGAAAACCTCACTCTGAACCGT -ACGGAAAACCTCACTCTGTTGTGC -ACGGAAAACCTCACTCTGCTAAGC -ACGGAAAACCTCACTCTGACTAGC -ACGGAAAACCTCACTCTGAGATGC -ACGGAAAACCTCACTCTGTGAAGG -ACGGAAAACCTCACTCTGCAATGG -ACGGAAAACCTCACTCTGATGAGG -ACGGAAAACCTCACTCTGAATGGG -ACGGAAAACCTCACTCTGTCCTGA -ACGGAAAACCTCACTCTGTAGCGA -ACGGAAAACCTCACTCTGCACAGA -ACGGAAAACCTCACTCTGGCAAGA -ACGGAAAACCTCACTCTGGGTTGA -ACGGAAAACCTCACTCTGTCCGAT -ACGGAAAACCTCACTCTGTGGCAT -ACGGAAAACCTCACTCTGCGAGAT -ACGGAAAACCTCACTCTGTACCAC -ACGGAAAACCTCACTCTGCAGAAC -ACGGAAAACCTCACTCTGGTCTAC -ACGGAAAACCTCACTCTGACGTAC -ACGGAAAACCTCACTCTGAGTGAC -ACGGAAAACCTCACTCTGCTGTAG -ACGGAAAACCTCACTCTGCCTAAG -ACGGAAAACCTCACTCTGGTTCAG -ACGGAAAACCTCACTCTGGCATAG -ACGGAAAACCTCACTCTGGACAAG -ACGGAAAACCTCACTCTGAAGCAG -ACGGAAAACCTCACTCTGCGTCAA -ACGGAAAACCTCACTCTGGCTGAA -ACGGAAAACCTCACTCTGAGTACG -ACGGAAAACCTCACTCTGATCCGA -ACGGAAAACCTCACTCTGATGGGA -ACGGAAAACCTCACTCTGGTGCAA -ACGGAAAACCTCACTCTGGAGGAA -ACGGAAAACCTCACTCTGCAGGTA -ACGGAAAACCTCACTCTGGACTCT -ACGGAAAACCTCACTCTGAGTCCT -ACGGAAAACCTCACTCTGTAAGCC -ACGGAAAACCTCACTCTGATAGCC -ACGGAAAACCTCACTCTGTAACCG -ACGGAAAACCTCACTCTGATGCCA -ACGGAAAACCTCCCTCAAGGAAAC -ACGGAAAACCTCCCTCAAAACACC -ACGGAAAACCTCCCTCAAATCGAG -ACGGAAAACCTCCCTCAACTCCTT -ACGGAAAACCTCCCTCAACCTGTT -ACGGAAAACCTCCCTCAACGGTTT -ACGGAAAACCTCCCTCAAGTGGTT -ACGGAAAACCTCCCTCAAGCCTTT -ACGGAAAACCTCCCTCAAGGTCTT -ACGGAAAACCTCCCTCAAACGCTT -ACGGAAAACCTCCCTCAAAGCGTT -ACGGAAAACCTCCCTCAATTCGTC -ACGGAAAACCTCCCTCAATCTCTC -ACGGAAAACCTCCCTCAATGGATC -ACGGAAAACCTCCCTCAACACTTC -ACGGAAAACCTCCCTCAAGTACTC -ACGGAAAACCTCCCTCAAGATGTC -ACGGAAAACCTCCCTCAAACAGTC -ACGGAAAACCTCCCTCAATTGCTG -ACGGAAAACCTCCCTCAATCCATG -ACGGAAAACCTCCCTCAATGTGTG -ACGGAAAACCTCCCTCAACTAGTG -ACGGAAAACCTCCCTCAACATCTG -ACGGAAAACCTCCCTCAAGAGTTG -ACGGAAAACCTCCCTCAAAGACTG -ACGGAAAACCTCCCTCAATCGGTA -ACGGAAAACCTCCCTCAATGCCTA -ACGGAAAACCTCCCTCAACCACTA -ACGGAAAACCTCCCTCAAGGAGTA -ACGGAAAACCTCCCTCAATCGTCT -ACGGAAAACCTCCCTCAATGCACT -ACGGAAAACCTCCCTCAACTGACT -ACGGAAAACCTCCCTCAACAACCT -ACGGAAAACCTCCCTCAAGCTACT -ACGGAAAACCTCCCTCAAGGATCT -ACGGAAAACCTCCCTCAAAAGGCT -ACGGAAAACCTCCCTCAATCAACC -ACGGAAAACCTCCCTCAATGTTCC -ACGGAAAACCTCCCTCAAATTCCC -ACGGAAAACCTCCCTCAATTCTCG -ACGGAAAACCTCCCTCAATAGACG -ACGGAAAACCTCCCTCAAGTAACG -ACGGAAAACCTCCCTCAAACTTCG -ACGGAAAACCTCCCTCAATACGCA -ACGGAAAACCTCCCTCAACTTGCA -ACGGAAAACCTCCCTCAACGAACA -ACGGAAAACCTCCCTCAACAGTCA -ACGGAAAACCTCCCTCAAGATCCA -ACGGAAAACCTCCCTCAAACGACA -ACGGAAAACCTCCCTCAAAGCTCA -ACGGAAAACCTCCCTCAATCACGT -ACGGAAAACCTCCCTCAACGTAGT -ACGGAAAACCTCCCTCAAGTCAGT -ACGGAAAACCTCCCTCAAGAAGGT -ACGGAAAACCTCCCTCAAAACCGT -ACGGAAAACCTCCCTCAATTGTGC -ACGGAAAACCTCCCTCAACTAAGC -ACGGAAAACCTCCCTCAAACTAGC -ACGGAAAACCTCCCTCAAAGATGC -ACGGAAAACCTCCCTCAATGAAGG -ACGGAAAACCTCCCTCAACAATGG -ACGGAAAACCTCCCTCAAATGAGG -ACGGAAAACCTCCCTCAAAATGGG -ACGGAAAACCTCCCTCAATCCTGA -ACGGAAAACCTCCCTCAATAGCGA -ACGGAAAACCTCCCTCAACACAGA -ACGGAAAACCTCCCTCAAGCAAGA -ACGGAAAACCTCCCTCAAGGTTGA -ACGGAAAACCTCCCTCAATCCGAT -ACGGAAAACCTCCCTCAATGGCAT -ACGGAAAACCTCCCTCAACGAGAT -ACGGAAAACCTCCCTCAATACCAC -ACGGAAAACCTCCCTCAACAGAAC -ACGGAAAACCTCCCTCAAGTCTAC -ACGGAAAACCTCCCTCAAACGTAC -ACGGAAAACCTCCCTCAAAGTGAC -ACGGAAAACCTCCCTCAACTGTAG -ACGGAAAACCTCCCTCAACCTAAG -ACGGAAAACCTCCCTCAAGTTCAG -ACGGAAAACCTCCCTCAAGCATAG -ACGGAAAACCTCCCTCAAGACAAG -ACGGAAAACCTCCCTCAAAAGCAG -ACGGAAAACCTCCCTCAACGTCAA -ACGGAAAACCTCCCTCAAGCTGAA -ACGGAAAACCTCCCTCAAAGTACG -ACGGAAAACCTCCCTCAAATCCGA -ACGGAAAACCTCCCTCAAATGGGA -ACGGAAAACCTCCCTCAAGTGCAA -ACGGAAAACCTCCCTCAAGAGGAA -ACGGAAAACCTCCCTCAACAGGTA -ACGGAAAACCTCCCTCAAGACTCT -ACGGAAAACCTCCCTCAAAGTCCT -ACGGAAAACCTCCCTCAATAAGCC -ACGGAAAACCTCCCTCAAATAGCC -ACGGAAAACCTCCCTCAATAACCG -ACGGAAAACCTCCCTCAAATGCCA -ACGGAAAACCTCACTGCTGGAAAC -ACGGAAAACCTCACTGCTAACACC -ACGGAAAACCTCACTGCTATCGAG -ACGGAAAACCTCACTGCTCTCCTT -ACGGAAAACCTCACTGCTCCTGTT -ACGGAAAACCTCACTGCTCGGTTT -ACGGAAAACCTCACTGCTGTGGTT -ACGGAAAACCTCACTGCTGCCTTT -ACGGAAAACCTCACTGCTGGTCTT -ACGGAAAACCTCACTGCTACGCTT -ACGGAAAACCTCACTGCTAGCGTT -ACGGAAAACCTCACTGCTTTCGTC -ACGGAAAACCTCACTGCTTCTCTC -ACGGAAAACCTCACTGCTTGGATC -ACGGAAAACCTCACTGCTCACTTC -ACGGAAAACCTCACTGCTGTACTC -ACGGAAAACCTCACTGCTGATGTC -ACGGAAAACCTCACTGCTACAGTC -ACGGAAAACCTCACTGCTTTGCTG -ACGGAAAACCTCACTGCTTCCATG -ACGGAAAACCTCACTGCTTGTGTG -ACGGAAAACCTCACTGCTCTAGTG -ACGGAAAACCTCACTGCTCATCTG -ACGGAAAACCTCACTGCTGAGTTG -ACGGAAAACCTCACTGCTAGACTG -ACGGAAAACCTCACTGCTTCGGTA -ACGGAAAACCTCACTGCTTGCCTA -ACGGAAAACCTCACTGCTCCACTA -ACGGAAAACCTCACTGCTGGAGTA -ACGGAAAACCTCACTGCTTCGTCT -ACGGAAAACCTCACTGCTTGCACT -ACGGAAAACCTCACTGCTCTGACT -ACGGAAAACCTCACTGCTCAACCT -ACGGAAAACCTCACTGCTGCTACT -ACGGAAAACCTCACTGCTGGATCT -ACGGAAAACCTCACTGCTAAGGCT -ACGGAAAACCTCACTGCTTCAACC -ACGGAAAACCTCACTGCTTGTTCC -ACGGAAAACCTCACTGCTATTCCC -ACGGAAAACCTCACTGCTTTCTCG -ACGGAAAACCTCACTGCTTAGACG -ACGGAAAACCTCACTGCTGTAACG -ACGGAAAACCTCACTGCTACTTCG -ACGGAAAACCTCACTGCTTACGCA -ACGGAAAACCTCACTGCTCTTGCA -ACGGAAAACCTCACTGCTCGAACA -ACGGAAAACCTCACTGCTCAGTCA -ACGGAAAACCTCACTGCTGATCCA -ACGGAAAACCTCACTGCTACGACA -ACGGAAAACCTCACTGCTAGCTCA -ACGGAAAACCTCACTGCTTCACGT -ACGGAAAACCTCACTGCTCGTAGT -ACGGAAAACCTCACTGCTGTCAGT -ACGGAAAACCTCACTGCTGAAGGT -ACGGAAAACCTCACTGCTAACCGT -ACGGAAAACCTCACTGCTTTGTGC -ACGGAAAACCTCACTGCTCTAAGC -ACGGAAAACCTCACTGCTACTAGC -ACGGAAAACCTCACTGCTAGATGC -ACGGAAAACCTCACTGCTTGAAGG -ACGGAAAACCTCACTGCTCAATGG -ACGGAAAACCTCACTGCTATGAGG -ACGGAAAACCTCACTGCTAATGGG -ACGGAAAACCTCACTGCTTCCTGA -ACGGAAAACCTCACTGCTTAGCGA -ACGGAAAACCTCACTGCTCACAGA -ACGGAAAACCTCACTGCTGCAAGA -ACGGAAAACCTCACTGCTGGTTGA -ACGGAAAACCTCACTGCTTCCGAT -ACGGAAAACCTCACTGCTTGGCAT -ACGGAAAACCTCACTGCTCGAGAT -ACGGAAAACCTCACTGCTTACCAC -ACGGAAAACCTCACTGCTCAGAAC -ACGGAAAACCTCACTGCTGTCTAC -ACGGAAAACCTCACTGCTACGTAC -ACGGAAAACCTCACTGCTAGTGAC -ACGGAAAACCTCACTGCTCTGTAG -ACGGAAAACCTCACTGCTCCTAAG -ACGGAAAACCTCACTGCTGTTCAG -ACGGAAAACCTCACTGCTGCATAG -ACGGAAAACCTCACTGCTGACAAG -ACGGAAAACCTCACTGCTAAGCAG -ACGGAAAACCTCACTGCTCGTCAA -ACGGAAAACCTCACTGCTGCTGAA -ACGGAAAACCTCACTGCTAGTACG -ACGGAAAACCTCACTGCTATCCGA -ACGGAAAACCTCACTGCTATGGGA -ACGGAAAACCTCACTGCTGTGCAA -ACGGAAAACCTCACTGCTGAGGAA -ACGGAAAACCTCACTGCTCAGGTA -ACGGAAAACCTCACTGCTGACTCT -ACGGAAAACCTCACTGCTAGTCCT -ACGGAAAACCTCACTGCTTAAGCC -ACGGAAAACCTCACTGCTATAGCC -ACGGAAAACCTCACTGCTTAACCG -ACGGAAAACCTCACTGCTATGCCA -ACGGAAAACCTCTCTGGAGGAAAC -ACGGAAAACCTCTCTGGAAACACC -ACGGAAAACCTCTCTGGAATCGAG -ACGGAAAACCTCTCTGGACTCCTT -ACGGAAAACCTCTCTGGACCTGTT -ACGGAAAACCTCTCTGGACGGTTT -ACGGAAAACCTCTCTGGAGTGGTT -ACGGAAAACCTCTCTGGAGCCTTT -ACGGAAAACCTCTCTGGAGGTCTT -ACGGAAAACCTCTCTGGAACGCTT -ACGGAAAACCTCTCTGGAAGCGTT -ACGGAAAACCTCTCTGGATTCGTC -ACGGAAAACCTCTCTGGATCTCTC -ACGGAAAACCTCTCTGGATGGATC -ACGGAAAACCTCTCTGGACACTTC -ACGGAAAACCTCTCTGGAGTACTC -ACGGAAAACCTCTCTGGAGATGTC -ACGGAAAACCTCTCTGGAACAGTC -ACGGAAAACCTCTCTGGATTGCTG -ACGGAAAACCTCTCTGGATCCATG -ACGGAAAACCTCTCTGGATGTGTG -ACGGAAAACCTCTCTGGACTAGTG -ACGGAAAACCTCTCTGGACATCTG -ACGGAAAACCTCTCTGGAGAGTTG -ACGGAAAACCTCTCTGGAAGACTG -ACGGAAAACCTCTCTGGATCGGTA -ACGGAAAACCTCTCTGGATGCCTA -ACGGAAAACCTCTCTGGACCACTA -ACGGAAAACCTCTCTGGAGGAGTA -ACGGAAAACCTCTCTGGATCGTCT -ACGGAAAACCTCTCTGGATGCACT -ACGGAAAACCTCTCTGGACTGACT -ACGGAAAACCTCTCTGGACAACCT -ACGGAAAACCTCTCTGGAGCTACT -ACGGAAAACCTCTCTGGAGGATCT -ACGGAAAACCTCTCTGGAAAGGCT -ACGGAAAACCTCTCTGGATCAACC -ACGGAAAACCTCTCTGGATGTTCC -ACGGAAAACCTCTCTGGAATTCCC -ACGGAAAACCTCTCTGGATTCTCG -ACGGAAAACCTCTCTGGATAGACG -ACGGAAAACCTCTCTGGAGTAACG -ACGGAAAACCTCTCTGGAACTTCG -ACGGAAAACCTCTCTGGATACGCA -ACGGAAAACCTCTCTGGACTTGCA -ACGGAAAACCTCTCTGGACGAACA -ACGGAAAACCTCTCTGGACAGTCA -ACGGAAAACCTCTCTGGAGATCCA -ACGGAAAACCTCTCTGGAACGACA -ACGGAAAACCTCTCTGGAAGCTCA -ACGGAAAACCTCTCTGGATCACGT -ACGGAAAACCTCTCTGGACGTAGT -ACGGAAAACCTCTCTGGAGTCAGT -ACGGAAAACCTCTCTGGAGAAGGT -ACGGAAAACCTCTCTGGAAACCGT -ACGGAAAACCTCTCTGGATTGTGC -ACGGAAAACCTCTCTGGACTAAGC -ACGGAAAACCTCTCTGGAACTAGC -ACGGAAAACCTCTCTGGAAGATGC -ACGGAAAACCTCTCTGGATGAAGG -ACGGAAAACCTCTCTGGACAATGG -ACGGAAAACCTCTCTGGAATGAGG -ACGGAAAACCTCTCTGGAAATGGG -ACGGAAAACCTCTCTGGATCCTGA -ACGGAAAACCTCTCTGGATAGCGA -ACGGAAAACCTCTCTGGACACAGA -ACGGAAAACCTCTCTGGAGCAAGA -ACGGAAAACCTCTCTGGAGGTTGA -ACGGAAAACCTCTCTGGATCCGAT -ACGGAAAACCTCTCTGGATGGCAT -ACGGAAAACCTCTCTGGACGAGAT -ACGGAAAACCTCTCTGGATACCAC -ACGGAAAACCTCTCTGGACAGAAC -ACGGAAAACCTCTCTGGAGTCTAC -ACGGAAAACCTCTCTGGAACGTAC -ACGGAAAACCTCTCTGGAAGTGAC -ACGGAAAACCTCTCTGGACTGTAG -ACGGAAAACCTCTCTGGACCTAAG -ACGGAAAACCTCTCTGGAGTTCAG -ACGGAAAACCTCTCTGGAGCATAG -ACGGAAAACCTCTCTGGAGACAAG -ACGGAAAACCTCTCTGGAAAGCAG -ACGGAAAACCTCTCTGGACGTCAA -ACGGAAAACCTCTCTGGAGCTGAA -ACGGAAAACCTCTCTGGAAGTACG -ACGGAAAACCTCTCTGGAATCCGA -ACGGAAAACCTCTCTGGAATGGGA -ACGGAAAACCTCTCTGGAGTGCAA -ACGGAAAACCTCTCTGGAGAGGAA -ACGGAAAACCTCTCTGGACAGGTA -ACGGAAAACCTCTCTGGAGACTCT -ACGGAAAACCTCTCTGGAAGTCCT -ACGGAAAACCTCTCTGGATAAGCC -ACGGAAAACCTCTCTGGAATAGCC -ACGGAAAACCTCTCTGGATAACCG -ACGGAAAACCTCTCTGGAATGCCA -ACGGAAAACCTCGCTAAGGGAAAC -ACGGAAAACCTCGCTAAGAACACC -ACGGAAAACCTCGCTAAGATCGAG -ACGGAAAACCTCGCTAAGCTCCTT -ACGGAAAACCTCGCTAAGCCTGTT -ACGGAAAACCTCGCTAAGCGGTTT -ACGGAAAACCTCGCTAAGGTGGTT -ACGGAAAACCTCGCTAAGGCCTTT -ACGGAAAACCTCGCTAAGGGTCTT -ACGGAAAACCTCGCTAAGACGCTT -ACGGAAAACCTCGCTAAGAGCGTT -ACGGAAAACCTCGCTAAGTTCGTC -ACGGAAAACCTCGCTAAGTCTCTC -ACGGAAAACCTCGCTAAGTGGATC -ACGGAAAACCTCGCTAAGCACTTC -ACGGAAAACCTCGCTAAGGTACTC -ACGGAAAACCTCGCTAAGGATGTC -ACGGAAAACCTCGCTAAGACAGTC -ACGGAAAACCTCGCTAAGTTGCTG -ACGGAAAACCTCGCTAAGTCCATG -ACGGAAAACCTCGCTAAGTGTGTG -ACGGAAAACCTCGCTAAGCTAGTG -ACGGAAAACCTCGCTAAGCATCTG -ACGGAAAACCTCGCTAAGGAGTTG -ACGGAAAACCTCGCTAAGAGACTG -ACGGAAAACCTCGCTAAGTCGGTA -ACGGAAAACCTCGCTAAGTGCCTA -ACGGAAAACCTCGCTAAGCCACTA -ACGGAAAACCTCGCTAAGGGAGTA -ACGGAAAACCTCGCTAAGTCGTCT -ACGGAAAACCTCGCTAAGTGCACT -ACGGAAAACCTCGCTAAGCTGACT -ACGGAAAACCTCGCTAAGCAACCT -ACGGAAAACCTCGCTAAGGCTACT -ACGGAAAACCTCGCTAAGGGATCT -ACGGAAAACCTCGCTAAGAAGGCT -ACGGAAAACCTCGCTAAGTCAACC -ACGGAAAACCTCGCTAAGTGTTCC -ACGGAAAACCTCGCTAAGATTCCC -ACGGAAAACCTCGCTAAGTTCTCG -ACGGAAAACCTCGCTAAGTAGACG -ACGGAAAACCTCGCTAAGGTAACG -ACGGAAAACCTCGCTAAGACTTCG -ACGGAAAACCTCGCTAAGTACGCA -ACGGAAAACCTCGCTAAGCTTGCA -ACGGAAAACCTCGCTAAGCGAACA -ACGGAAAACCTCGCTAAGCAGTCA -ACGGAAAACCTCGCTAAGGATCCA -ACGGAAAACCTCGCTAAGACGACA -ACGGAAAACCTCGCTAAGAGCTCA -ACGGAAAACCTCGCTAAGTCACGT -ACGGAAAACCTCGCTAAGCGTAGT -ACGGAAAACCTCGCTAAGGTCAGT -ACGGAAAACCTCGCTAAGGAAGGT -ACGGAAAACCTCGCTAAGAACCGT -ACGGAAAACCTCGCTAAGTTGTGC -ACGGAAAACCTCGCTAAGCTAAGC -ACGGAAAACCTCGCTAAGACTAGC -ACGGAAAACCTCGCTAAGAGATGC -ACGGAAAACCTCGCTAAGTGAAGG -ACGGAAAACCTCGCTAAGCAATGG -ACGGAAAACCTCGCTAAGATGAGG -ACGGAAAACCTCGCTAAGAATGGG -ACGGAAAACCTCGCTAAGTCCTGA -ACGGAAAACCTCGCTAAGTAGCGA -ACGGAAAACCTCGCTAAGCACAGA -ACGGAAAACCTCGCTAAGGCAAGA -ACGGAAAACCTCGCTAAGGGTTGA -ACGGAAAACCTCGCTAAGTCCGAT -ACGGAAAACCTCGCTAAGTGGCAT -ACGGAAAACCTCGCTAAGCGAGAT -ACGGAAAACCTCGCTAAGTACCAC -ACGGAAAACCTCGCTAAGCAGAAC -ACGGAAAACCTCGCTAAGGTCTAC -ACGGAAAACCTCGCTAAGACGTAC -ACGGAAAACCTCGCTAAGAGTGAC -ACGGAAAACCTCGCTAAGCTGTAG -ACGGAAAACCTCGCTAAGCCTAAG -ACGGAAAACCTCGCTAAGGTTCAG -ACGGAAAACCTCGCTAAGGCATAG -ACGGAAAACCTCGCTAAGGACAAG -ACGGAAAACCTCGCTAAGAAGCAG -ACGGAAAACCTCGCTAAGCGTCAA -ACGGAAAACCTCGCTAAGGCTGAA -ACGGAAAACCTCGCTAAGAGTACG -ACGGAAAACCTCGCTAAGATCCGA -ACGGAAAACCTCGCTAAGATGGGA -ACGGAAAACCTCGCTAAGGTGCAA -ACGGAAAACCTCGCTAAGGAGGAA -ACGGAAAACCTCGCTAAGCAGGTA -ACGGAAAACCTCGCTAAGGACTCT -ACGGAAAACCTCGCTAAGAGTCCT -ACGGAAAACCTCGCTAAGTAAGCC -ACGGAAAACCTCGCTAAGATAGCC -ACGGAAAACCTCGCTAAGTAACCG -ACGGAAAACCTCGCTAAGATGCCA -ACGGAAAACCTCACCTCAGGAAAC -ACGGAAAACCTCACCTCAAACACC -ACGGAAAACCTCACCTCAATCGAG -ACGGAAAACCTCACCTCACTCCTT -ACGGAAAACCTCACCTCACCTGTT -ACGGAAAACCTCACCTCACGGTTT -ACGGAAAACCTCACCTCAGTGGTT -ACGGAAAACCTCACCTCAGCCTTT -ACGGAAAACCTCACCTCAGGTCTT -ACGGAAAACCTCACCTCAACGCTT -ACGGAAAACCTCACCTCAAGCGTT -ACGGAAAACCTCACCTCATTCGTC -ACGGAAAACCTCACCTCATCTCTC -ACGGAAAACCTCACCTCATGGATC -ACGGAAAACCTCACCTCACACTTC -ACGGAAAACCTCACCTCAGTACTC -ACGGAAAACCTCACCTCAGATGTC -ACGGAAAACCTCACCTCAACAGTC -ACGGAAAACCTCACCTCATTGCTG -ACGGAAAACCTCACCTCATCCATG -ACGGAAAACCTCACCTCATGTGTG -ACGGAAAACCTCACCTCACTAGTG -ACGGAAAACCTCACCTCACATCTG -ACGGAAAACCTCACCTCAGAGTTG -ACGGAAAACCTCACCTCAAGACTG -ACGGAAAACCTCACCTCATCGGTA -ACGGAAAACCTCACCTCATGCCTA -ACGGAAAACCTCACCTCACCACTA -ACGGAAAACCTCACCTCAGGAGTA -ACGGAAAACCTCACCTCATCGTCT -ACGGAAAACCTCACCTCATGCACT -ACGGAAAACCTCACCTCACTGACT -ACGGAAAACCTCACCTCACAACCT -ACGGAAAACCTCACCTCAGCTACT -ACGGAAAACCTCACCTCAGGATCT -ACGGAAAACCTCACCTCAAAGGCT -ACGGAAAACCTCACCTCATCAACC -ACGGAAAACCTCACCTCATGTTCC -ACGGAAAACCTCACCTCAATTCCC -ACGGAAAACCTCACCTCATTCTCG -ACGGAAAACCTCACCTCATAGACG -ACGGAAAACCTCACCTCAGTAACG -ACGGAAAACCTCACCTCAACTTCG -ACGGAAAACCTCACCTCATACGCA -ACGGAAAACCTCACCTCACTTGCA -ACGGAAAACCTCACCTCACGAACA -ACGGAAAACCTCACCTCACAGTCA -ACGGAAAACCTCACCTCAGATCCA -ACGGAAAACCTCACCTCAACGACA -ACGGAAAACCTCACCTCAAGCTCA -ACGGAAAACCTCACCTCATCACGT -ACGGAAAACCTCACCTCACGTAGT -ACGGAAAACCTCACCTCAGTCAGT -ACGGAAAACCTCACCTCAGAAGGT -ACGGAAAACCTCACCTCAAACCGT -ACGGAAAACCTCACCTCATTGTGC -ACGGAAAACCTCACCTCACTAAGC -ACGGAAAACCTCACCTCAACTAGC -ACGGAAAACCTCACCTCAAGATGC -ACGGAAAACCTCACCTCATGAAGG -ACGGAAAACCTCACCTCACAATGG -ACGGAAAACCTCACCTCAATGAGG -ACGGAAAACCTCACCTCAAATGGG -ACGGAAAACCTCACCTCATCCTGA -ACGGAAAACCTCACCTCATAGCGA -ACGGAAAACCTCACCTCACACAGA -ACGGAAAACCTCACCTCAGCAAGA -ACGGAAAACCTCACCTCAGGTTGA -ACGGAAAACCTCACCTCATCCGAT -ACGGAAAACCTCACCTCATGGCAT -ACGGAAAACCTCACCTCACGAGAT -ACGGAAAACCTCACCTCATACCAC -ACGGAAAACCTCACCTCACAGAAC -ACGGAAAACCTCACCTCAGTCTAC -ACGGAAAACCTCACCTCAACGTAC -ACGGAAAACCTCACCTCAAGTGAC -ACGGAAAACCTCACCTCACTGTAG -ACGGAAAACCTCACCTCACCTAAG -ACGGAAAACCTCACCTCAGTTCAG -ACGGAAAACCTCACCTCAGCATAG -ACGGAAAACCTCACCTCAGACAAG -ACGGAAAACCTCACCTCAAAGCAG -ACGGAAAACCTCACCTCACGTCAA -ACGGAAAACCTCACCTCAGCTGAA -ACGGAAAACCTCACCTCAAGTACG -ACGGAAAACCTCACCTCAATCCGA -ACGGAAAACCTCACCTCAATGGGA -ACGGAAAACCTCACCTCAGTGCAA -ACGGAAAACCTCACCTCAGAGGAA -ACGGAAAACCTCACCTCACAGGTA -ACGGAAAACCTCACCTCAGACTCT -ACGGAAAACCTCACCTCAAGTCCT -ACGGAAAACCTCACCTCATAAGCC -ACGGAAAACCTCACCTCAATAGCC -ACGGAAAACCTCACCTCATAACCG -ACGGAAAACCTCACCTCAATGCCA -ACGGAAAACCTCTCCTGTGGAAAC -ACGGAAAACCTCTCCTGTAACACC -ACGGAAAACCTCTCCTGTATCGAG -ACGGAAAACCTCTCCTGTCTCCTT -ACGGAAAACCTCTCCTGTCCTGTT -ACGGAAAACCTCTCCTGTCGGTTT -ACGGAAAACCTCTCCTGTGTGGTT -ACGGAAAACCTCTCCTGTGCCTTT -ACGGAAAACCTCTCCTGTGGTCTT -ACGGAAAACCTCTCCTGTACGCTT -ACGGAAAACCTCTCCTGTAGCGTT -ACGGAAAACCTCTCCTGTTTCGTC -ACGGAAAACCTCTCCTGTTCTCTC -ACGGAAAACCTCTCCTGTTGGATC -ACGGAAAACCTCTCCTGTCACTTC -ACGGAAAACCTCTCCTGTGTACTC -ACGGAAAACCTCTCCTGTGATGTC -ACGGAAAACCTCTCCTGTACAGTC -ACGGAAAACCTCTCCTGTTTGCTG -ACGGAAAACCTCTCCTGTTCCATG -ACGGAAAACCTCTCCTGTTGTGTG -ACGGAAAACCTCTCCTGTCTAGTG -ACGGAAAACCTCTCCTGTCATCTG -ACGGAAAACCTCTCCTGTGAGTTG -ACGGAAAACCTCTCCTGTAGACTG -ACGGAAAACCTCTCCTGTTCGGTA -ACGGAAAACCTCTCCTGTTGCCTA -ACGGAAAACCTCTCCTGTCCACTA -ACGGAAAACCTCTCCTGTGGAGTA -ACGGAAAACCTCTCCTGTTCGTCT -ACGGAAAACCTCTCCTGTTGCACT -ACGGAAAACCTCTCCTGTCTGACT -ACGGAAAACCTCTCCTGTCAACCT -ACGGAAAACCTCTCCTGTGCTACT -ACGGAAAACCTCTCCTGTGGATCT -ACGGAAAACCTCTCCTGTAAGGCT -ACGGAAAACCTCTCCTGTTCAACC -ACGGAAAACCTCTCCTGTTGTTCC -ACGGAAAACCTCTCCTGTATTCCC -ACGGAAAACCTCTCCTGTTTCTCG -ACGGAAAACCTCTCCTGTTAGACG -ACGGAAAACCTCTCCTGTGTAACG -ACGGAAAACCTCTCCTGTACTTCG -ACGGAAAACCTCTCCTGTTACGCA -ACGGAAAACCTCTCCTGTCTTGCA -ACGGAAAACCTCTCCTGTCGAACA -ACGGAAAACCTCTCCTGTCAGTCA -ACGGAAAACCTCTCCTGTGATCCA -ACGGAAAACCTCTCCTGTACGACA -ACGGAAAACCTCTCCTGTAGCTCA -ACGGAAAACCTCTCCTGTTCACGT -ACGGAAAACCTCTCCTGTCGTAGT -ACGGAAAACCTCTCCTGTGTCAGT -ACGGAAAACCTCTCCTGTGAAGGT -ACGGAAAACCTCTCCTGTAACCGT -ACGGAAAACCTCTCCTGTTTGTGC -ACGGAAAACCTCTCCTGTCTAAGC -ACGGAAAACCTCTCCTGTACTAGC -ACGGAAAACCTCTCCTGTAGATGC -ACGGAAAACCTCTCCTGTTGAAGG -ACGGAAAACCTCTCCTGTCAATGG -ACGGAAAACCTCTCCTGTATGAGG -ACGGAAAACCTCTCCTGTAATGGG -ACGGAAAACCTCTCCTGTTCCTGA -ACGGAAAACCTCTCCTGTTAGCGA -ACGGAAAACCTCTCCTGTCACAGA -ACGGAAAACCTCTCCTGTGCAAGA -ACGGAAAACCTCTCCTGTGGTTGA -ACGGAAAACCTCTCCTGTTCCGAT -ACGGAAAACCTCTCCTGTTGGCAT -ACGGAAAACCTCTCCTGTCGAGAT -ACGGAAAACCTCTCCTGTTACCAC -ACGGAAAACCTCTCCTGTCAGAAC -ACGGAAAACCTCTCCTGTGTCTAC -ACGGAAAACCTCTCCTGTACGTAC -ACGGAAAACCTCTCCTGTAGTGAC -ACGGAAAACCTCTCCTGTCTGTAG -ACGGAAAACCTCTCCTGTCCTAAG -ACGGAAAACCTCTCCTGTGTTCAG -ACGGAAAACCTCTCCTGTGCATAG -ACGGAAAACCTCTCCTGTGACAAG -ACGGAAAACCTCTCCTGTAAGCAG -ACGGAAAACCTCTCCTGTCGTCAA -ACGGAAAACCTCTCCTGTGCTGAA -ACGGAAAACCTCTCCTGTAGTACG -ACGGAAAACCTCTCCTGTATCCGA -ACGGAAAACCTCTCCTGTATGGGA -ACGGAAAACCTCTCCTGTGTGCAA -ACGGAAAACCTCTCCTGTGAGGAA -ACGGAAAACCTCTCCTGTCAGGTA -ACGGAAAACCTCTCCTGTGACTCT -ACGGAAAACCTCTCCTGTAGTCCT -ACGGAAAACCTCTCCTGTTAAGCC -ACGGAAAACCTCTCCTGTATAGCC -ACGGAAAACCTCTCCTGTTAACCG -ACGGAAAACCTCTCCTGTATGCCA -ACGGAAAACCTCCCCATTGGAAAC -ACGGAAAACCTCCCCATTAACACC -ACGGAAAACCTCCCCATTATCGAG -ACGGAAAACCTCCCCATTCTCCTT -ACGGAAAACCTCCCCATTCCTGTT -ACGGAAAACCTCCCCATTCGGTTT -ACGGAAAACCTCCCCATTGTGGTT -ACGGAAAACCTCCCCATTGCCTTT -ACGGAAAACCTCCCCATTGGTCTT -ACGGAAAACCTCCCCATTACGCTT -ACGGAAAACCTCCCCATTAGCGTT -ACGGAAAACCTCCCCATTTTCGTC -ACGGAAAACCTCCCCATTTCTCTC -ACGGAAAACCTCCCCATTTGGATC -ACGGAAAACCTCCCCATTCACTTC -ACGGAAAACCTCCCCATTGTACTC -ACGGAAAACCTCCCCATTGATGTC -ACGGAAAACCTCCCCATTACAGTC -ACGGAAAACCTCCCCATTTTGCTG -ACGGAAAACCTCCCCATTTCCATG -ACGGAAAACCTCCCCATTTGTGTG -ACGGAAAACCTCCCCATTCTAGTG -ACGGAAAACCTCCCCATTCATCTG -ACGGAAAACCTCCCCATTGAGTTG -ACGGAAAACCTCCCCATTAGACTG -ACGGAAAACCTCCCCATTTCGGTA -ACGGAAAACCTCCCCATTTGCCTA -ACGGAAAACCTCCCCATTCCACTA -ACGGAAAACCTCCCCATTGGAGTA -ACGGAAAACCTCCCCATTTCGTCT -ACGGAAAACCTCCCCATTTGCACT -ACGGAAAACCTCCCCATTCTGACT -ACGGAAAACCTCCCCATTCAACCT -ACGGAAAACCTCCCCATTGCTACT -ACGGAAAACCTCCCCATTGGATCT -ACGGAAAACCTCCCCATTAAGGCT -ACGGAAAACCTCCCCATTTCAACC -ACGGAAAACCTCCCCATTTGTTCC -ACGGAAAACCTCCCCATTATTCCC -ACGGAAAACCTCCCCATTTTCTCG -ACGGAAAACCTCCCCATTTAGACG -ACGGAAAACCTCCCCATTGTAACG -ACGGAAAACCTCCCCATTACTTCG -ACGGAAAACCTCCCCATTTACGCA -ACGGAAAACCTCCCCATTCTTGCA -ACGGAAAACCTCCCCATTCGAACA -ACGGAAAACCTCCCCATTCAGTCA -ACGGAAAACCTCCCCATTGATCCA -ACGGAAAACCTCCCCATTACGACA -ACGGAAAACCTCCCCATTAGCTCA -ACGGAAAACCTCCCCATTTCACGT -ACGGAAAACCTCCCCATTCGTAGT -ACGGAAAACCTCCCCATTGTCAGT -ACGGAAAACCTCCCCATTGAAGGT -ACGGAAAACCTCCCCATTAACCGT -ACGGAAAACCTCCCCATTTTGTGC -ACGGAAAACCTCCCCATTCTAAGC -ACGGAAAACCTCCCCATTACTAGC -ACGGAAAACCTCCCCATTAGATGC -ACGGAAAACCTCCCCATTTGAAGG -ACGGAAAACCTCCCCATTCAATGG -ACGGAAAACCTCCCCATTATGAGG -ACGGAAAACCTCCCCATTAATGGG -ACGGAAAACCTCCCCATTTCCTGA -ACGGAAAACCTCCCCATTTAGCGA -ACGGAAAACCTCCCCATTCACAGA -ACGGAAAACCTCCCCATTGCAAGA -ACGGAAAACCTCCCCATTGGTTGA -ACGGAAAACCTCCCCATTTCCGAT -ACGGAAAACCTCCCCATTTGGCAT -ACGGAAAACCTCCCCATTCGAGAT -ACGGAAAACCTCCCCATTTACCAC -ACGGAAAACCTCCCCATTCAGAAC -ACGGAAAACCTCCCCATTGTCTAC -ACGGAAAACCTCCCCATTACGTAC -ACGGAAAACCTCCCCATTAGTGAC -ACGGAAAACCTCCCCATTCTGTAG -ACGGAAAACCTCCCCATTCCTAAG -ACGGAAAACCTCCCCATTGTTCAG -ACGGAAAACCTCCCCATTGCATAG -ACGGAAAACCTCCCCATTGACAAG -ACGGAAAACCTCCCCATTAAGCAG -ACGGAAAACCTCCCCATTCGTCAA -ACGGAAAACCTCCCCATTGCTGAA -ACGGAAAACCTCCCCATTAGTACG -ACGGAAAACCTCCCCATTATCCGA -ACGGAAAACCTCCCCATTATGGGA -ACGGAAAACCTCCCCATTGTGCAA -ACGGAAAACCTCCCCATTGAGGAA -ACGGAAAACCTCCCCATTCAGGTA -ACGGAAAACCTCCCCATTGACTCT -ACGGAAAACCTCCCCATTAGTCCT -ACGGAAAACCTCCCCATTTAAGCC -ACGGAAAACCTCCCCATTATAGCC -ACGGAAAACCTCCCCATTTAACCG -ACGGAAAACCTCCCCATTATGCCA -ACGGAAAACCTCTCGTTCGGAAAC -ACGGAAAACCTCTCGTTCAACACC -ACGGAAAACCTCTCGTTCATCGAG -ACGGAAAACCTCTCGTTCCTCCTT -ACGGAAAACCTCTCGTTCCCTGTT -ACGGAAAACCTCTCGTTCCGGTTT -ACGGAAAACCTCTCGTTCGTGGTT -ACGGAAAACCTCTCGTTCGCCTTT -ACGGAAAACCTCTCGTTCGGTCTT -ACGGAAAACCTCTCGTTCACGCTT -ACGGAAAACCTCTCGTTCAGCGTT -ACGGAAAACCTCTCGTTCTTCGTC -ACGGAAAACCTCTCGTTCTCTCTC -ACGGAAAACCTCTCGTTCTGGATC -ACGGAAAACCTCTCGTTCCACTTC -ACGGAAAACCTCTCGTTCGTACTC -ACGGAAAACCTCTCGTTCGATGTC -ACGGAAAACCTCTCGTTCACAGTC -ACGGAAAACCTCTCGTTCTTGCTG -ACGGAAAACCTCTCGTTCTCCATG -ACGGAAAACCTCTCGTTCTGTGTG -ACGGAAAACCTCTCGTTCCTAGTG -ACGGAAAACCTCTCGTTCCATCTG -ACGGAAAACCTCTCGTTCGAGTTG -ACGGAAAACCTCTCGTTCAGACTG -ACGGAAAACCTCTCGTTCTCGGTA -ACGGAAAACCTCTCGTTCTGCCTA -ACGGAAAACCTCTCGTTCCCACTA -ACGGAAAACCTCTCGTTCGGAGTA -ACGGAAAACCTCTCGTTCTCGTCT -ACGGAAAACCTCTCGTTCTGCACT -ACGGAAAACCTCTCGTTCCTGACT -ACGGAAAACCTCTCGTTCCAACCT -ACGGAAAACCTCTCGTTCGCTACT -ACGGAAAACCTCTCGTTCGGATCT -ACGGAAAACCTCTCGTTCAAGGCT -ACGGAAAACCTCTCGTTCTCAACC -ACGGAAAACCTCTCGTTCTGTTCC -ACGGAAAACCTCTCGTTCATTCCC -ACGGAAAACCTCTCGTTCTTCTCG -ACGGAAAACCTCTCGTTCTAGACG -ACGGAAAACCTCTCGTTCGTAACG -ACGGAAAACCTCTCGTTCACTTCG -ACGGAAAACCTCTCGTTCTACGCA -ACGGAAAACCTCTCGTTCCTTGCA -ACGGAAAACCTCTCGTTCCGAACA -ACGGAAAACCTCTCGTTCCAGTCA -ACGGAAAACCTCTCGTTCGATCCA -ACGGAAAACCTCTCGTTCACGACA -ACGGAAAACCTCTCGTTCAGCTCA -ACGGAAAACCTCTCGTTCTCACGT -ACGGAAAACCTCTCGTTCCGTAGT -ACGGAAAACCTCTCGTTCGTCAGT -ACGGAAAACCTCTCGTTCGAAGGT -ACGGAAAACCTCTCGTTCAACCGT -ACGGAAAACCTCTCGTTCTTGTGC -ACGGAAAACCTCTCGTTCCTAAGC -ACGGAAAACCTCTCGTTCACTAGC -ACGGAAAACCTCTCGTTCAGATGC -ACGGAAAACCTCTCGTTCTGAAGG -ACGGAAAACCTCTCGTTCCAATGG -ACGGAAAACCTCTCGTTCATGAGG -ACGGAAAACCTCTCGTTCAATGGG -ACGGAAAACCTCTCGTTCTCCTGA -ACGGAAAACCTCTCGTTCTAGCGA -ACGGAAAACCTCTCGTTCCACAGA -ACGGAAAACCTCTCGTTCGCAAGA -ACGGAAAACCTCTCGTTCGGTTGA -ACGGAAAACCTCTCGTTCTCCGAT -ACGGAAAACCTCTCGTTCTGGCAT -ACGGAAAACCTCTCGTTCCGAGAT -ACGGAAAACCTCTCGTTCTACCAC -ACGGAAAACCTCTCGTTCCAGAAC -ACGGAAAACCTCTCGTTCGTCTAC -ACGGAAAACCTCTCGTTCACGTAC -ACGGAAAACCTCTCGTTCAGTGAC -ACGGAAAACCTCTCGTTCCTGTAG -ACGGAAAACCTCTCGTTCCCTAAG -ACGGAAAACCTCTCGTTCGTTCAG -ACGGAAAACCTCTCGTTCGCATAG -ACGGAAAACCTCTCGTTCGACAAG -ACGGAAAACCTCTCGTTCAAGCAG -ACGGAAAACCTCTCGTTCCGTCAA -ACGGAAAACCTCTCGTTCGCTGAA -ACGGAAAACCTCTCGTTCAGTACG -ACGGAAAACCTCTCGTTCATCCGA -ACGGAAAACCTCTCGTTCATGGGA -ACGGAAAACCTCTCGTTCGTGCAA -ACGGAAAACCTCTCGTTCGAGGAA -ACGGAAAACCTCTCGTTCCAGGTA -ACGGAAAACCTCTCGTTCGACTCT -ACGGAAAACCTCTCGTTCAGTCCT -ACGGAAAACCTCTCGTTCTAAGCC -ACGGAAAACCTCTCGTTCATAGCC -ACGGAAAACCTCTCGTTCTAACCG -ACGGAAAACCTCTCGTTCATGCCA -ACGGAAAACCTCACGTAGGGAAAC -ACGGAAAACCTCACGTAGAACACC -ACGGAAAACCTCACGTAGATCGAG -ACGGAAAACCTCACGTAGCTCCTT -ACGGAAAACCTCACGTAGCCTGTT -ACGGAAAACCTCACGTAGCGGTTT -ACGGAAAACCTCACGTAGGTGGTT -ACGGAAAACCTCACGTAGGCCTTT -ACGGAAAACCTCACGTAGGGTCTT -ACGGAAAACCTCACGTAGACGCTT -ACGGAAAACCTCACGTAGAGCGTT -ACGGAAAACCTCACGTAGTTCGTC -ACGGAAAACCTCACGTAGTCTCTC -ACGGAAAACCTCACGTAGTGGATC -ACGGAAAACCTCACGTAGCACTTC -ACGGAAAACCTCACGTAGGTACTC -ACGGAAAACCTCACGTAGGATGTC -ACGGAAAACCTCACGTAGACAGTC -ACGGAAAACCTCACGTAGTTGCTG -ACGGAAAACCTCACGTAGTCCATG -ACGGAAAACCTCACGTAGTGTGTG -ACGGAAAACCTCACGTAGCTAGTG -ACGGAAAACCTCACGTAGCATCTG -ACGGAAAACCTCACGTAGGAGTTG -ACGGAAAACCTCACGTAGAGACTG -ACGGAAAACCTCACGTAGTCGGTA -ACGGAAAACCTCACGTAGTGCCTA -ACGGAAAACCTCACGTAGCCACTA -ACGGAAAACCTCACGTAGGGAGTA -ACGGAAAACCTCACGTAGTCGTCT -ACGGAAAACCTCACGTAGTGCACT -ACGGAAAACCTCACGTAGCTGACT -ACGGAAAACCTCACGTAGCAACCT -ACGGAAAACCTCACGTAGGCTACT -ACGGAAAACCTCACGTAGGGATCT -ACGGAAAACCTCACGTAGAAGGCT -ACGGAAAACCTCACGTAGTCAACC -ACGGAAAACCTCACGTAGTGTTCC -ACGGAAAACCTCACGTAGATTCCC -ACGGAAAACCTCACGTAGTTCTCG -ACGGAAAACCTCACGTAGTAGACG -ACGGAAAACCTCACGTAGGTAACG -ACGGAAAACCTCACGTAGACTTCG -ACGGAAAACCTCACGTAGTACGCA -ACGGAAAACCTCACGTAGCTTGCA -ACGGAAAACCTCACGTAGCGAACA -ACGGAAAACCTCACGTAGCAGTCA -ACGGAAAACCTCACGTAGGATCCA -ACGGAAAACCTCACGTAGACGACA -ACGGAAAACCTCACGTAGAGCTCA -ACGGAAAACCTCACGTAGTCACGT -ACGGAAAACCTCACGTAGCGTAGT -ACGGAAAACCTCACGTAGGTCAGT -ACGGAAAACCTCACGTAGGAAGGT -ACGGAAAACCTCACGTAGAACCGT -ACGGAAAACCTCACGTAGTTGTGC -ACGGAAAACCTCACGTAGCTAAGC -ACGGAAAACCTCACGTAGACTAGC -ACGGAAAACCTCACGTAGAGATGC -ACGGAAAACCTCACGTAGTGAAGG -ACGGAAAACCTCACGTAGCAATGG -ACGGAAAACCTCACGTAGATGAGG -ACGGAAAACCTCACGTAGAATGGG -ACGGAAAACCTCACGTAGTCCTGA -ACGGAAAACCTCACGTAGTAGCGA -ACGGAAAACCTCACGTAGCACAGA -ACGGAAAACCTCACGTAGGCAAGA -ACGGAAAACCTCACGTAGGGTTGA -ACGGAAAACCTCACGTAGTCCGAT -ACGGAAAACCTCACGTAGTGGCAT -ACGGAAAACCTCACGTAGCGAGAT -ACGGAAAACCTCACGTAGTACCAC -ACGGAAAACCTCACGTAGCAGAAC -ACGGAAAACCTCACGTAGGTCTAC -ACGGAAAACCTCACGTAGACGTAC -ACGGAAAACCTCACGTAGAGTGAC -ACGGAAAACCTCACGTAGCTGTAG -ACGGAAAACCTCACGTAGCCTAAG -ACGGAAAACCTCACGTAGGTTCAG -ACGGAAAACCTCACGTAGGCATAG -ACGGAAAACCTCACGTAGGACAAG -ACGGAAAACCTCACGTAGAAGCAG -ACGGAAAACCTCACGTAGCGTCAA -ACGGAAAACCTCACGTAGGCTGAA -ACGGAAAACCTCACGTAGAGTACG -ACGGAAAACCTCACGTAGATCCGA -ACGGAAAACCTCACGTAGATGGGA -ACGGAAAACCTCACGTAGGTGCAA -ACGGAAAACCTCACGTAGGAGGAA -ACGGAAAACCTCACGTAGCAGGTA -ACGGAAAACCTCACGTAGGACTCT -ACGGAAAACCTCACGTAGAGTCCT -ACGGAAAACCTCACGTAGTAAGCC -ACGGAAAACCTCACGTAGATAGCC -ACGGAAAACCTCACGTAGTAACCG -ACGGAAAACCTCACGTAGATGCCA -ACGGAAAACCTCACGGTAGGAAAC -ACGGAAAACCTCACGGTAAACACC -ACGGAAAACCTCACGGTAATCGAG -ACGGAAAACCTCACGGTACTCCTT -ACGGAAAACCTCACGGTACCTGTT -ACGGAAAACCTCACGGTACGGTTT -ACGGAAAACCTCACGGTAGTGGTT -ACGGAAAACCTCACGGTAGCCTTT -ACGGAAAACCTCACGGTAGGTCTT -ACGGAAAACCTCACGGTAACGCTT -ACGGAAAACCTCACGGTAAGCGTT -ACGGAAAACCTCACGGTATTCGTC -ACGGAAAACCTCACGGTATCTCTC -ACGGAAAACCTCACGGTATGGATC -ACGGAAAACCTCACGGTACACTTC -ACGGAAAACCTCACGGTAGTACTC -ACGGAAAACCTCACGGTAGATGTC -ACGGAAAACCTCACGGTAACAGTC -ACGGAAAACCTCACGGTATTGCTG -ACGGAAAACCTCACGGTATCCATG -ACGGAAAACCTCACGGTATGTGTG -ACGGAAAACCTCACGGTACTAGTG -ACGGAAAACCTCACGGTACATCTG -ACGGAAAACCTCACGGTAGAGTTG -ACGGAAAACCTCACGGTAAGACTG -ACGGAAAACCTCACGGTATCGGTA -ACGGAAAACCTCACGGTATGCCTA -ACGGAAAACCTCACGGTACCACTA -ACGGAAAACCTCACGGTAGGAGTA -ACGGAAAACCTCACGGTATCGTCT -ACGGAAAACCTCACGGTATGCACT -ACGGAAAACCTCACGGTACTGACT -ACGGAAAACCTCACGGTACAACCT -ACGGAAAACCTCACGGTAGCTACT -ACGGAAAACCTCACGGTAGGATCT -ACGGAAAACCTCACGGTAAAGGCT -ACGGAAAACCTCACGGTATCAACC -ACGGAAAACCTCACGGTATGTTCC -ACGGAAAACCTCACGGTAATTCCC -ACGGAAAACCTCACGGTATTCTCG -ACGGAAAACCTCACGGTATAGACG -ACGGAAAACCTCACGGTAGTAACG -ACGGAAAACCTCACGGTAACTTCG -ACGGAAAACCTCACGGTATACGCA -ACGGAAAACCTCACGGTACTTGCA -ACGGAAAACCTCACGGTACGAACA -ACGGAAAACCTCACGGTACAGTCA -ACGGAAAACCTCACGGTAGATCCA -ACGGAAAACCTCACGGTAACGACA -ACGGAAAACCTCACGGTAAGCTCA -ACGGAAAACCTCACGGTATCACGT -ACGGAAAACCTCACGGTACGTAGT -ACGGAAAACCTCACGGTAGTCAGT -ACGGAAAACCTCACGGTAGAAGGT -ACGGAAAACCTCACGGTAAACCGT -ACGGAAAACCTCACGGTATTGTGC -ACGGAAAACCTCACGGTACTAAGC -ACGGAAAACCTCACGGTAACTAGC -ACGGAAAACCTCACGGTAAGATGC -ACGGAAAACCTCACGGTATGAAGG -ACGGAAAACCTCACGGTACAATGG -ACGGAAAACCTCACGGTAATGAGG -ACGGAAAACCTCACGGTAAATGGG -ACGGAAAACCTCACGGTATCCTGA -ACGGAAAACCTCACGGTATAGCGA -ACGGAAAACCTCACGGTACACAGA -ACGGAAAACCTCACGGTAGCAAGA -ACGGAAAACCTCACGGTAGGTTGA -ACGGAAAACCTCACGGTATCCGAT -ACGGAAAACCTCACGGTATGGCAT -ACGGAAAACCTCACGGTACGAGAT -ACGGAAAACCTCACGGTATACCAC -ACGGAAAACCTCACGGTACAGAAC -ACGGAAAACCTCACGGTAGTCTAC -ACGGAAAACCTCACGGTAACGTAC -ACGGAAAACCTCACGGTAAGTGAC -ACGGAAAACCTCACGGTACTGTAG -ACGGAAAACCTCACGGTACCTAAG -ACGGAAAACCTCACGGTAGTTCAG -ACGGAAAACCTCACGGTAGCATAG -ACGGAAAACCTCACGGTAGACAAG -ACGGAAAACCTCACGGTAAAGCAG -ACGGAAAACCTCACGGTACGTCAA -ACGGAAAACCTCACGGTAGCTGAA -ACGGAAAACCTCACGGTAAGTACG -ACGGAAAACCTCACGGTAATCCGA -ACGGAAAACCTCACGGTAATGGGA -ACGGAAAACCTCACGGTAGTGCAA -ACGGAAAACCTCACGGTAGAGGAA -ACGGAAAACCTCACGGTACAGGTA -ACGGAAAACCTCACGGTAGACTCT -ACGGAAAACCTCACGGTAAGTCCT -ACGGAAAACCTCACGGTATAAGCC -ACGGAAAACCTCACGGTAATAGCC -ACGGAAAACCTCACGGTATAACCG -ACGGAAAACCTCACGGTAATGCCA -ACGGAAAACCTCTCGACTGGAAAC -ACGGAAAACCTCTCGACTAACACC -ACGGAAAACCTCTCGACTATCGAG -ACGGAAAACCTCTCGACTCTCCTT -ACGGAAAACCTCTCGACTCCTGTT -ACGGAAAACCTCTCGACTCGGTTT -ACGGAAAACCTCTCGACTGTGGTT -ACGGAAAACCTCTCGACTGCCTTT -ACGGAAAACCTCTCGACTGGTCTT -ACGGAAAACCTCTCGACTACGCTT -ACGGAAAACCTCTCGACTAGCGTT -ACGGAAAACCTCTCGACTTTCGTC -ACGGAAAACCTCTCGACTTCTCTC -ACGGAAAACCTCTCGACTTGGATC -ACGGAAAACCTCTCGACTCACTTC -ACGGAAAACCTCTCGACTGTACTC -ACGGAAAACCTCTCGACTGATGTC -ACGGAAAACCTCTCGACTACAGTC -ACGGAAAACCTCTCGACTTTGCTG -ACGGAAAACCTCTCGACTTCCATG -ACGGAAAACCTCTCGACTTGTGTG -ACGGAAAACCTCTCGACTCTAGTG -ACGGAAAACCTCTCGACTCATCTG -ACGGAAAACCTCTCGACTGAGTTG -ACGGAAAACCTCTCGACTAGACTG -ACGGAAAACCTCTCGACTTCGGTA -ACGGAAAACCTCTCGACTTGCCTA -ACGGAAAACCTCTCGACTCCACTA -ACGGAAAACCTCTCGACTGGAGTA -ACGGAAAACCTCTCGACTTCGTCT -ACGGAAAACCTCTCGACTTGCACT -ACGGAAAACCTCTCGACTCTGACT -ACGGAAAACCTCTCGACTCAACCT -ACGGAAAACCTCTCGACTGCTACT -ACGGAAAACCTCTCGACTGGATCT -ACGGAAAACCTCTCGACTAAGGCT -ACGGAAAACCTCTCGACTTCAACC -ACGGAAAACCTCTCGACTTGTTCC -ACGGAAAACCTCTCGACTATTCCC -ACGGAAAACCTCTCGACTTTCTCG -ACGGAAAACCTCTCGACTTAGACG -ACGGAAAACCTCTCGACTGTAACG -ACGGAAAACCTCTCGACTACTTCG -ACGGAAAACCTCTCGACTTACGCA -ACGGAAAACCTCTCGACTCTTGCA -ACGGAAAACCTCTCGACTCGAACA -ACGGAAAACCTCTCGACTCAGTCA -ACGGAAAACCTCTCGACTGATCCA -ACGGAAAACCTCTCGACTACGACA -ACGGAAAACCTCTCGACTAGCTCA -ACGGAAAACCTCTCGACTTCACGT -ACGGAAAACCTCTCGACTCGTAGT -ACGGAAAACCTCTCGACTGTCAGT -ACGGAAAACCTCTCGACTGAAGGT -ACGGAAAACCTCTCGACTAACCGT -ACGGAAAACCTCTCGACTTTGTGC -ACGGAAAACCTCTCGACTCTAAGC -ACGGAAAACCTCTCGACTACTAGC -ACGGAAAACCTCTCGACTAGATGC -ACGGAAAACCTCTCGACTTGAAGG -ACGGAAAACCTCTCGACTCAATGG -ACGGAAAACCTCTCGACTATGAGG -ACGGAAAACCTCTCGACTAATGGG -ACGGAAAACCTCTCGACTTCCTGA -ACGGAAAACCTCTCGACTTAGCGA -ACGGAAAACCTCTCGACTCACAGA -ACGGAAAACCTCTCGACTGCAAGA -ACGGAAAACCTCTCGACTGGTTGA -ACGGAAAACCTCTCGACTTCCGAT -ACGGAAAACCTCTCGACTTGGCAT -ACGGAAAACCTCTCGACTCGAGAT -ACGGAAAACCTCTCGACTTACCAC -ACGGAAAACCTCTCGACTCAGAAC -ACGGAAAACCTCTCGACTGTCTAC -ACGGAAAACCTCTCGACTACGTAC -ACGGAAAACCTCTCGACTAGTGAC -ACGGAAAACCTCTCGACTCTGTAG -ACGGAAAACCTCTCGACTCCTAAG -ACGGAAAACCTCTCGACTGTTCAG -ACGGAAAACCTCTCGACTGCATAG -ACGGAAAACCTCTCGACTGACAAG -ACGGAAAACCTCTCGACTAAGCAG -ACGGAAAACCTCTCGACTCGTCAA -ACGGAAAACCTCTCGACTGCTGAA -ACGGAAAACCTCTCGACTAGTACG -ACGGAAAACCTCTCGACTATCCGA -ACGGAAAACCTCTCGACTATGGGA -ACGGAAAACCTCTCGACTGTGCAA -ACGGAAAACCTCTCGACTGAGGAA -ACGGAAAACCTCTCGACTCAGGTA -ACGGAAAACCTCTCGACTGACTCT -ACGGAAAACCTCTCGACTAGTCCT -ACGGAAAACCTCTCGACTTAAGCC -ACGGAAAACCTCTCGACTATAGCC -ACGGAAAACCTCTCGACTTAACCG -ACGGAAAACCTCTCGACTATGCCA -ACGGAAAACCTCGCATACGGAAAC -ACGGAAAACCTCGCATACAACACC -ACGGAAAACCTCGCATACATCGAG -ACGGAAAACCTCGCATACCTCCTT -ACGGAAAACCTCGCATACCCTGTT -ACGGAAAACCTCGCATACCGGTTT -ACGGAAAACCTCGCATACGTGGTT -ACGGAAAACCTCGCATACGCCTTT -ACGGAAAACCTCGCATACGGTCTT -ACGGAAAACCTCGCATACACGCTT -ACGGAAAACCTCGCATACAGCGTT -ACGGAAAACCTCGCATACTTCGTC -ACGGAAAACCTCGCATACTCTCTC -ACGGAAAACCTCGCATACTGGATC -ACGGAAAACCTCGCATACCACTTC -ACGGAAAACCTCGCATACGTACTC -ACGGAAAACCTCGCATACGATGTC -ACGGAAAACCTCGCATACACAGTC -ACGGAAAACCTCGCATACTTGCTG -ACGGAAAACCTCGCATACTCCATG -ACGGAAAACCTCGCATACTGTGTG -ACGGAAAACCTCGCATACCTAGTG -ACGGAAAACCTCGCATACCATCTG -ACGGAAAACCTCGCATACGAGTTG -ACGGAAAACCTCGCATACAGACTG -ACGGAAAACCTCGCATACTCGGTA -ACGGAAAACCTCGCATACTGCCTA -ACGGAAAACCTCGCATACCCACTA -ACGGAAAACCTCGCATACGGAGTA -ACGGAAAACCTCGCATACTCGTCT -ACGGAAAACCTCGCATACTGCACT -ACGGAAAACCTCGCATACCTGACT -ACGGAAAACCTCGCATACCAACCT -ACGGAAAACCTCGCATACGCTACT -ACGGAAAACCTCGCATACGGATCT -ACGGAAAACCTCGCATACAAGGCT -ACGGAAAACCTCGCATACTCAACC -ACGGAAAACCTCGCATACTGTTCC -ACGGAAAACCTCGCATACATTCCC -ACGGAAAACCTCGCATACTTCTCG -ACGGAAAACCTCGCATACTAGACG -ACGGAAAACCTCGCATACGTAACG -ACGGAAAACCTCGCATACACTTCG -ACGGAAAACCTCGCATACTACGCA -ACGGAAAACCTCGCATACCTTGCA -ACGGAAAACCTCGCATACCGAACA -ACGGAAAACCTCGCATACCAGTCA -ACGGAAAACCTCGCATACGATCCA -ACGGAAAACCTCGCATACACGACA -ACGGAAAACCTCGCATACAGCTCA -ACGGAAAACCTCGCATACTCACGT -ACGGAAAACCTCGCATACCGTAGT -ACGGAAAACCTCGCATACGTCAGT -ACGGAAAACCTCGCATACGAAGGT -ACGGAAAACCTCGCATACAACCGT -ACGGAAAACCTCGCATACTTGTGC -ACGGAAAACCTCGCATACCTAAGC -ACGGAAAACCTCGCATACACTAGC -ACGGAAAACCTCGCATACAGATGC -ACGGAAAACCTCGCATACTGAAGG -ACGGAAAACCTCGCATACCAATGG -ACGGAAAACCTCGCATACATGAGG -ACGGAAAACCTCGCATACAATGGG -ACGGAAAACCTCGCATACTCCTGA -ACGGAAAACCTCGCATACTAGCGA -ACGGAAAACCTCGCATACCACAGA -ACGGAAAACCTCGCATACGCAAGA -ACGGAAAACCTCGCATACGGTTGA -ACGGAAAACCTCGCATACTCCGAT -ACGGAAAACCTCGCATACTGGCAT -ACGGAAAACCTCGCATACCGAGAT -ACGGAAAACCTCGCATACTACCAC -ACGGAAAACCTCGCATACCAGAAC -ACGGAAAACCTCGCATACGTCTAC -ACGGAAAACCTCGCATACACGTAC -ACGGAAAACCTCGCATACAGTGAC -ACGGAAAACCTCGCATACCTGTAG -ACGGAAAACCTCGCATACCCTAAG -ACGGAAAACCTCGCATACGTTCAG -ACGGAAAACCTCGCATACGCATAG -ACGGAAAACCTCGCATACGACAAG -ACGGAAAACCTCGCATACAAGCAG -ACGGAAAACCTCGCATACCGTCAA -ACGGAAAACCTCGCATACGCTGAA -ACGGAAAACCTCGCATACAGTACG -ACGGAAAACCTCGCATACATCCGA -ACGGAAAACCTCGCATACATGGGA -ACGGAAAACCTCGCATACGTGCAA -ACGGAAAACCTCGCATACGAGGAA -ACGGAAAACCTCGCATACCAGGTA -ACGGAAAACCTCGCATACGACTCT -ACGGAAAACCTCGCATACAGTCCT -ACGGAAAACCTCGCATACTAAGCC -ACGGAAAACCTCGCATACATAGCC -ACGGAAAACCTCGCATACTAACCG -ACGGAAAACCTCGCATACATGCCA -ACGGAAAACCTCGCACTTGGAAAC -ACGGAAAACCTCGCACTTAACACC -ACGGAAAACCTCGCACTTATCGAG -ACGGAAAACCTCGCACTTCTCCTT -ACGGAAAACCTCGCACTTCCTGTT -ACGGAAAACCTCGCACTTCGGTTT -ACGGAAAACCTCGCACTTGTGGTT -ACGGAAAACCTCGCACTTGCCTTT -ACGGAAAACCTCGCACTTGGTCTT -ACGGAAAACCTCGCACTTACGCTT -ACGGAAAACCTCGCACTTAGCGTT -ACGGAAAACCTCGCACTTTTCGTC -ACGGAAAACCTCGCACTTTCTCTC -ACGGAAAACCTCGCACTTTGGATC -ACGGAAAACCTCGCACTTCACTTC -ACGGAAAACCTCGCACTTGTACTC -ACGGAAAACCTCGCACTTGATGTC -ACGGAAAACCTCGCACTTACAGTC -ACGGAAAACCTCGCACTTTTGCTG -ACGGAAAACCTCGCACTTTCCATG -ACGGAAAACCTCGCACTTTGTGTG -ACGGAAAACCTCGCACTTCTAGTG -ACGGAAAACCTCGCACTTCATCTG -ACGGAAAACCTCGCACTTGAGTTG -ACGGAAAACCTCGCACTTAGACTG -ACGGAAAACCTCGCACTTTCGGTA -ACGGAAAACCTCGCACTTTGCCTA -ACGGAAAACCTCGCACTTCCACTA -ACGGAAAACCTCGCACTTGGAGTA -ACGGAAAACCTCGCACTTTCGTCT -ACGGAAAACCTCGCACTTTGCACT -ACGGAAAACCTCGCACTTCTGACT -ACGGAAAACCTCGCACTTCAACCT -ACGGAAAACCTCGCACTTGCTACT -ACGGAAAACCTCGCACTTGGATCT -ACGGAAAACCTCGCACTTAAGGCT -ACGGAAAACCTCGCACTTTCAACC -ACGGAAAACCTCGCACTTTGTTCC -ACGGAAAACCTCGCACTTATTCCC -ACGGAAAACCTCGCACTTTTCTCG -ACGGAAAACCTCGCACTTTAGACG -ACGGAAAACCTCGCACTTGTAACG -ACGGAAAACCTCGCACTTACTTCG -ACGGAAAACCTCGCACTTTACGCA -ACGGAAAACCTCGCACTTCTTGCA -ACGGAAAACCTCGCACTTCGAACA -ACGGAAAACCTCGCACTTCAGTCA -ACGGAAAACCTCGCACTTGATCCA -ACGGAAAACCTCGCACTTACGACA -ACGGAAAACCTCGCACTTAGCTCA -ACGGAAAACCTCGCACTTTCACGT -ACGGAAAACCTCGCACTTCGTAGT -ACGGAAAACCTCGCACTTGTCAGT -ACGGAAAACCTCGCACTTGAAGGT -ACGGAAAACCTCGCACTTAACCGT -ACGGAAAACCTCGCACTTTTGTGC -ACGGAAAACCTCGCACTTCTAAGC -ACGGAAAACCTCGCACTTACTAGC -ACGGAAAACCTCGCACTTAGATGC -ACGGAAAACCTCGCACTTTGAAGG -ACGGAAAACCTCGCACTTCAATGG -ACGGAAAACCTCGCACTTATGAGG -ACGGAAAACCTCGCACTTAATGGG -ACGGAAAACCTCGCACTTTCCTGA -ACGGAAAACCTCGCACTTTAGCGA -ACGGAAAACCTCGCACTTCACAGA -ACGGAAAACCTCGCACTTGCAAGA -ACGGAAAACCTCGCACTTGGTTGA -ACGGAAAACCTCGCACTTTCCGAT -ACGGAAAACCTCGCACTTTGGCAT -ACGGAAAACCTCGCACTTCGAGAT -ACGGAAAACCTCGCACTTTACCAC -ACGGAAAACCTCGCACTTCAGAAC -ACGGAAAACCTCGCACTTGTCTAC -ACGGAAAACCTCGCACTTACGTAC -ACGGAAAACCTCGCACTTAGTGAC -ACGGAAAACCTCGCACTTCTGTAG -ACGGAAAACCTCGCACTTCCTAAG -ACGGAAAACCTCGCACTTGTTCAG -ACGGAAAACCTCGCACTTGCATAG -ACGGAAAACCTCGCACTTGACAAG -ACGGAAAACCTCGCACTTAAGCAG -ACGGAAAACCTCGCACTTCGTCAA -ACGGAAAACCTCGCACTTGCTGAA -ACGGAAAACCTCGCACTTAGTACG -ACGGAAAACCTCGCACTTATCCGA -ACGGAAAACCTCGCACTTATGGGA -ACGGAAAACCTCGCACTTGTGCAA -ACGGAAAACCTCGCACTTGAGGAA -ACGGAAAACCTCGCACTTCAGGTA -ACGGAAAACCTCGCACTTGACTCT -ACGGAAAACCTCGCACTTAGTCCT -ACGGAAAACCTCGCACTTTAAGCC -ACGGAAAACCTCGCACTTATAGCC -ACGGAAAACCTCGCACTTTAACCG -ACGGAAAACCTCGCACTTATGCCA -ACGGAAAACCTCACACGAGGAAAC -ACGGAAAACCTCACACGAAACACC -ACGGAAAACCTCACACGAATCGAG -ACGGAAAACCTCACACGACTCCTT -ACGGAAAACCTCACACGACCTGTT -ACGGAAAACCTCACACGACGGTTT -ACGGAAAACCTCACACGAGTGGTT -ACGGAAAACCTCACACGAGCCTTT -ACGGAAAACCTCACACGAGGTCTT -ACGGAAAACCTCACACGAACGCTT -ACGGAAAACCTCACACGAAGCGTT -ACGGAAAACCTCACACGATTCGTC -ACGGAAAACCTCACACGATCTCTC -ACGGAAAACCTCACACGATGGATC -ACGGAAAACCTCACACGACACTTC -ACGGAAAACCTCACACGAGTACTC -ACGGAAAACCTCACACGAGATGTC -ACGGAAAACCTCACACGAACAGTC -ACGGAAAACCTCACACGATTGCTG -ACGGAAAACCTCACACGATCCATG -ACGGAAAACCTCACACGATGTGTG -ACGGAAAACCTCACACGACTAGTG -ACGGAAAACCTCACACGACATCTG -ACGGAAAACCTCACACGAGAGTTG -ACGGAAAACCTCACACGAAGACTG -ACGGAAAACCTCACACGATCGGTA -ACGGAAAACCTCACACGATGCCTA -ACGGAAAACCTCACACGACCACTA -ACGGAAAACCTCACACGAGGAGTA -ACGGAAAACCTCACACGATCGTCT -ACGGAAAACCTCACACGATGCACT -ACGGAAAACCTCACACGACTGACT -ACGGAAAACCTCACACGACAACCT -ACGGAAAACCTCACACGAGCTACT -ACGGAAAACCTCACACGAGGATCT -ACGGAAAACCTCACACGAAAGGCT -ACGGAAAACCTCACACGATCAACC -ACGGAAAACCTCACACGATGTTCC -ACGGAAAACCTCACACGAATTCCC -ACGGAAAACCTCACACGATTCTCG -ACGGAAAACCTCACACGATAGACG -ACGGAAAACCTCACACGAGTAACG -ACGGAAAACCTCACACGAACTTCG -ACGGAAAACCTCACACGATACGCA -ACGGAAAACCTCACACGACTTGCA -ACGGAAAACCTCACACGACGAACA -ACGGAAAACCTCACACGACAGTCA -ACGGAAAACCTCACACGAGATCCA -ACGGAAAACCTCACACGAACGACA -ACGGAAAACCTCACACGAAGCTCA -ACGGAAAACCTCACACGATCACGT -ACGGAAAACCTCACACGACGTAGT -ACGGAAAACCTCACACGAGTCAGT -ACGGAAAACCTCACACGAGAAGGT -ACGGAAAACCTCACACGAAACCGT -ACGGAAAACCTCACACGATTGTGC -ACGGAAAACCTCACACGACTAAGC -ACGGAAAACCTCACACGAACTAGC -ACGGAAAACCTCACACGAAGATGC -ACGGAAAACCTCACACGATGAAGG -ACGGAAAACCTCACACGACAATGG -ACGGAAAACCTCACACGAATGAGG -ACGGAAAACCTCACACGAAATGGG -ACGGAAAACCTCACACGATCCTGA -ACGGAAAACCTCACACGATAGCGA -ACGGAAAACCTCACACGACACAGA -ACGGAAAACCTCACACGAGCAAGA -ACGGAAAACCTCACACGAGGTTGA -ACGGAAAACCTCACACGATCCGAT -ACGGAAAACCTCACACGATGGCAT -ACGGAAAACCTCACACGACGAGAT -ACGGAAAACCTCACACGATACCAC -ACGGAAAACCTCACACGACAGAAC -ACGGAAAACCTCACACGAGTCTAC -ACGGAAAACCTCACACGAACGTAC -ACGGAAAACCTCACACGAAGTGAC -ACGGAAAACCTCACACGACTGTAG -ACGGAAAACCTCACACGACCTAAG -ACGGAAAACCTCACACGAGTTCAG -ACGGAAAACCTCACACGAGCATAG -ACGGAAAACCTCACACGAGACAAG -ACGGAAAACCTCACACGAAAGCAG -ACGGAAAACCTCACACGACGTCAA -ACGGAAAACCTCACACGAGCTGAA -ACGGAAAACCTCACACGAAGTACG -ACGGAAAACCTCACACGAATCCGA -ACGGAAAACCTCACACGAATGGGA -ACGGAAAACCTCACACGAGTGCAA -ACGGAAAACCTCACACGAGAGGAA -ACGGAAAACCTCACACGACAGGTA -ACGGAAAACCTCACACGAGACTCT -ACGGAAAACCTCACACGAAGTCCT -ACGGAAAACCTCACACGATAAGCC -ACGGAAAACCTCACACGAATAGCC -ACGGAAAACCTCACACGATAACCG -ACGGAAAACCTCACACGAATGCCA -ACGGAAAACCTCTCACAGGGAAAC -ACGGAAAACCTCTCACAGAACACC -ACGGAAAACCTCTCACAGATCGAG -ACGGAAAACCTCTCACAGCTCCTT -ACGGAAAACCTCTCACAGCCTGTT -ACGGAAAACCTCTCACAGCGGTTT -ACGGAAAACCTCTCACAGGTGGTT -ACGGAAAACCTCTCACAGGCCTTT -ACGGAAAACCTCTCACAGGGTCTT -ACGGAAAACCTCTCACAGACGCTT -ACGGAAAACCTCTCACAGAGCGTT -ACGGAAAACCTCTCACAGTTCGTC -ACGGAAAACCTCTCACAGTCTCTC -ACGGAAAACCTCTCACAGTGGATC -ACGGAAAACCTCTCACAGCACTTC -ACGGAAAACCTCTCACAGGTACTC -ACGGAAAACCTCTCACAGGATGTC -ACGGAAAACCTCTCACAGACAGTC -ACGGAAAACCTCTCACAGTTGCTG -ACGGAAAACCTCTCACAGTCCATG -ACGGAAAACCTCTCACAGTGTGTG -ACGGAAAACCTCTCACAGCTAGTG -ACGGAAAACCTCTCACAGCATCTG -ACGGAAAACCTCTCACAGGAGTTG -ACGGAAAACCTCTCACAGAGACTG -ACGGAAAACCTCTCACAGTCGGTA -ACGGAAAACCTCTCACAGTGCCTA -ACGGAAAACCTCTCACAGCCACTA -ACGGAAAACCTCTCACAGGGAGTA -ACGGAAAACCTCTCACAGTCGTCT -ACGGAAAACCTCTCACAGTGCACT -ACGGAAAACCTCTCACAGCTGACT -ACGGAAAACCTCTCACAGCAACCT -ACGGAAAACCTCTCACAGGCTACT -ACGGAAAACCTCTCACAGGGATCT -ACGGAAAACCTCTCACAGAAGGCT -ACGGAAAACCTCTCACAGTCAACC -ACGGAAAACCTCTCACAGTGTTCC -ACGGAAAACCTCTCACAGATTCCC -ACGGAAAACCTCTCACAGTTCTCG -ACGGAAAACCTCTCACAGTAGACG -ACGGAAAACCTCTCACAGGTAACG -ACGGAAAACCTCTCACAGACTTCG -ACGGAAAACCTCTCACAGTACGCA -ACGGAAAACCTCTCACAGCTTGCA -ACGGAAAACCTCTCACAGCGAACA -ACGGAAAACCTCTCACAGCAGTCA -ACGGAAAACCTCTCACAGGATCCA -ACGGAAAACCTCTCACAGACGACA -ACGGAAAACCTCTCACAGAGCTCA -ACGGAAAACCTCTCACAGTCACGT -ACGGAAAACCTCTCACAGCGTAGT -ACGGAAAACCTCTCACAGGTCAGT -ACGGAAAACCTCTCACAGGAAGGT -ACGGAAAACCTCTCACAGAACCGT -ACGGAAAACCTCTCACAGTTGTGC -ACGGAAAACCTCTCACAGCTAAGC -ACGGAAAACCTCTCACAGACTAGC -ACGGAAAACCTCTCACAGAGATGC -ACGGAAAACCTCTCACAGTGAAGG -ACGGAAAACCTCTCACAGCAATGG -ACGGAAAACCTCTCACAGATGAGG -ACGGAAAACCTCTCACAGAATGGG -ACGGAAAACCTCTCACAGTCCTGA -ACGGAAAACCTCTCACAGTAGCGA -ACGGAAAACCTCTCACAGCACAGA -ACGGAAAACCTCTCACAGGCAAGA -ACGGAAAACCTCTCACAGGGTTGA -ACGGAAAACCTCTCACAGTCCGAT -ACGGAAAACCTCTCACAGTGGCAT -ACGGAAAACCTCTCACAGCGAGAT -ACGGAAAACCTCTCACAGTACCAC -ACGGAAAACCTCTCACAGCAGAAC -ACGGAAAACCTCTCACAGGTCTAC -ACGGAAAACCTCTCACAGACGTAC -ACGGAAAACCTCTCACAGAGTGAC -ACGGAAAACCTCTCACAGCTGTAG -ACGGAAAACCTCTCACAGCCTAAG -ACGGAAAACCTCTCACAGGTTCAG -ACGGAAAACCTCTCACAGGCATAG -ACGGAAAACCTCTCACAGGACAAG -ACGGAAAACCTCTCACAGAAGCAG -ACGGAAAACCTCTCACAGCGTCAA -ACGGAAAACCTCTCACAGGCTGAA -ACGGAAAACCTCTCACAGAGTACG -ACGGAAAACCTCTCACAGATCCGA -ACGGAAAACCTCTCACAGATGGGA -ACGGAAAACCTCTCACAGGTGCAA -ACGGAAAACCTCTCACAGGAGGAA -ACGGAAAACCTCTCACAGCAGGTA -ACGGAAAACCTCTCACAGGACTCT -ACGGAAAACCTCTCACAGAGTCCT -ACGGAAAACCTCTCACAGTAAGCC -ACGGAAAACCTCTCACAGATAGCC -ACGGAAAACCTCTCACAGTAACCG -ACGGAAAACCTCTCACAGATGCCA -ACGGAAAACCTCCCAGATGGAAAC -ACGGAAAACCTCCCAGATAACACC -ACGGAAAACCTCCCAGATATCGAG -ACGGAAAACCTCCCAGATCTCCTT -ACGGAAAACCTCCCAGATCCTGTT -ACGGAAAACCTCCCAGATCGGTTT -ACGGAAAACCTCCCAGATGTGGTT -ACGGAAAACCTCCCAGATGCCTTT -ACGGAAAACCTCCCAGATGGTCTT -ACGGAAAACCTCCCAGATACGCTT -ACGGAAAACCTCCCAGATAGCGTT -ACGGAAAACCTCCCAGATTTCGTC -ACGGAAAACCTCCCAGATTCTCTC -ACGGAAAACCTCCCAGATTGGATC -ACGGAAAACCTCCCAGATCACTTC -ACGGAAAACCTCCCAGATGTACTC -ACGGAAAACCTCCCAGATGATGTC -ACGGAAAACCTCCCAGATACAGTC -ACGGAAAACCTCCCAGATTTGCTG -ACGGAAAACCTCCCAGATTCCATG -ACGGAAAACCTCCCAGATTGTGTG -ACGGAAAACCTCCCAGATCTAGTG -ACGGAAAACCTCCCAGATCATCTG -ACGGAAAACCTCCCAGATGAGTTG -ACGGAAAACCTCCCAGATAGACTG -ACGGAAAACCTCCCAGATTCGGTA -ACGGAAAACCTCCCAGATTGCCTA -ACGGAAAACCTCCCAGATCCACTA -ACGGAAAACCTCCCAGATGGAGTA -ACGGAAAACCTCCCAGATTCGTCT -ACGGAAAACCTCCCAGATTGCACT -ACGGAAAACCTCCCAGATCTGACT -ACGGAAAACCTCCCAGATCAACCT -ACGGAAAACCTCCCAGATGCTACT -ACGGAAAACCTCCCAGATGGATCT -ACGGAAAACCTCCCAGATAAGGCT -ACGGAAAACCTCCCAGATTCAACC -ACGGAAAACCTCCCAGATTGTTCC -ACGGAAAACCTCCCAGATATTCCC -ACGGAAAACCTCCCAGATTTCTCG -ACGGAAAACCTCCCAGATTAGACG -ACGGAAAACCTCCCAGATGTAACG -ACGGAAAACCTCCCAGATACTTCG -ACGGAAAACCTCCCAGATTACGCA -ACGGAAAACCTCCCAGATCTTGCA -ACGGAAAACCTCCCAGATCGAACA -ACGGAAAACCTCCCAGATCAGTCA -ACGGAAAACCTCCCAGATGATCCA -ACGGAAAACCTCCCAGATACGACA -ACGGAAAACCTCCCAGATAGCTCA -ACGGAAAACCTCCCAGATTCACGT -ACGGAAAACCTCCCAGATCGTAGT -ACGGAAAACCTCCCAGATGTCAGT -ACGGAAAACCTCCCAGATGAAGGT -ACGGAAAACCTCCCAGATAACCGT -ACGGAAAACCTCCCAGATTTGTGC -ACGGAAAACCTCCCAGATCTAAGC -ACGGAAAACCTCCCAGATACTAGC -ACGGAAAACCTCCCAGATAGATGC -ACGGAAAACCTCCCAGATTGAAGG -ACGGAAAACCTCCCAGATCAATGG -ACGGAAAACCTCCCAGATATGAGG -ACGGAAAACCTCCCAGATAATGGG -ACGGAAAACCTCCCAGATTCCTGA -ACGGAAAACCTCCCAGATTAGCGA -ACGGAAAACCTCCCAGATCACAGA -ACGGAAAACCTCCCAGATGCAAGA -ACGGAAAACCTCCCAGATGGTTGA -ACGGAAAACCTCCCAGATTCCGAT -ACGGAAAACCTCCCAGATTGGCAT -ACGGAAAACCTCCCAGATCGAGAT -ACGGAAAACCTCCCAGATTACCAC -ACGGAAAACCTCCCAGATCAGAAC -ACGGAAAACCTCCCAGATGTCTAC -ACGGAAAACCTCCCAGATACGTAC -ACGGAAAACCTCCCAGATAGTGAC -ACGGAAAACCTCCCAGATCTGTAG -ACGGAAAACCTCCCAGATCCTAAG -ACGGAAAACCTCCCAGATGTTCAG -ACGGAAAACCTCCCAGATGCATAG -ACGGAAAACCTCCCAGATGACAAG -ACGGAAAACCTCCCAGATAAGCAG -ACGGAAAACCTCCCAGATCGTCAA -ACGGAAAACCTCCCAGATGCTGAA -ACGGAAAACCTCCCAGATAGTACG -ACGGAAAACCTCCCAGATATCCGA -ACGGAAAACCTCCCAGATATGGGA -ACGGAAAACCTCCCAGATGTGCAA -ACGGAAAACCTCCCAGATGAGGAA -ACGGAAAACCTCCCAGATCAGGTA -ACGGAAAACCTCCCAGATGACTCT -ACGGAAAACCTCCCAGATAGTCCT -ACGGAAAACCTCCCAGATTAAGCC -ACGGAAAACCTCCCAGATATAGCC -ACGGAAAACCTCCCAGATTAACCG -ACGGAAAACCTCCCAGATATGCCA -ACGGAAAACCTCACAACGGGAAAC -ACGGAAAACCTCACAACGAACACC -ACGGAAAACCTCACAACGATCGAG -ACGGAAAACCTCACAACGCTCCTT -ACGGAAAACCTCACAACGCCTGTT -ACGGAAAACCTCACAACGCGGTTT -ACGGAAAACCTCACAACGGTGGTT -ACGGAAAACCTCACAACGGCCTTT -ACGGAAAACCTCACAACGGGTCTT -ACGGAAAACCTCACAACGACGCTT -ACGGAAAACCTCACAACGAGCGTT -ACGGAAAACCTCACAACGTTCGTC -ACGGAAAACCTCACAACGTCTCTC -ACGGAAAACCTCACAACGTGGATC -ACGGAAAACCTCACAACGCACTTC -ACGGAAAACCTCACAACGGTACTC -ACGGAAAACCTCACAACGGATGTC -ACGGAAAACCTCACAACGACAGTC -ACGGAAAACCTCACAACGTTGCTG -ACGGAAAACCTCACAACGTCCATG -ACGGAAAACCTCACAACGTGTGTG -ACGGAAAACCTCACAACGCTAGTG -ACGGAAAACCTCACAACGCATCTG -ACGGAAAACCTCACAACGGAGTTG -ACGGAAAACCTCACAACGAGACTG -ACGGAAAACCTCACAACGTCGGTA -ACGGAAAACCTCACAACGTGCCTA -ACGGAAAACCTCACAACGCCACTA -ACGGAAAACCTCACAACGGGAGTA -ACGGAAAACCTCACAACGTCGTCT -ACGGAAAACCTCACAACGTGCACT -ACGGAAAACCTCACAACGCTGACT -ACGGAAAACCTCACAACGCAACCT -ACGGAAAACCTCACAACGGCTACT -ACGGAAAACCTCACAACGGGATCT -ACGGAAAACCTCACAACGAAGGCT -ACGGAAAACCTCACAACGTCAACC -ACGGAAAACCTCACAACGTGTTCC -ACGGAAAACCTCACAACGATTCCC -ACGGAAAACCTCACAACGTTCTCG -ACGGAAAACCTCACAACGTAGACG -ACGGAAAACCTCACAACGGTAACG -ACGGAAAACCTCACAACGACTTCG -ACGGAAAACCTCACAACGTACGCA -ACGGAAAACCTCACAACGCTTGCA -ACGGAAAACCTCACAACGCGAACA -ACGGAAAACCTCACAACGCAGTCA -ACGGAAAACCTCACAACGGATCCA -ACGGAAAACCTCACAACGACGACA -ACGGAAAACCTCACAACGAGCTCA -ACGGAAAACCTCACAACGTCACGT -ACGGAAAACCTCACAACGCGTAGT -ACGGAAAACCTCACAACGGTCAGT -ACGGAAAACCTCACAACGGAAGGT -ACGGAAAACCTCACAACGAACCGT -ACGGAAAACCTCACAACGTTGTGC -ACGGAAAACCTCACAACGCTAAGC -ACGGAAAACCTCACAACGACTAGC -ACGGAAAACCTCACAACGAGATGC -ACGGAAAACCTCACAACGTGAAGG -ACGGAAAACCTCACAACGCAATGG -ACGGAAAACCTCACAACGATGAGG -ACGGAAAACCTCACAACGAATGGG -ACGGAAAACCTCACAACGTCCTGA -ACGGAAAACCTCACAACGTAGCGA -ACGGAAAACCTCACAACGCACAGA -ACGGAAAACCTCACAACGGCAAGA -ACGGAAAACCTCACAACGGGTTGA -ACGGAAAACCTCACAACGTCCGAT -ACGGAAAACCTCACAACGTGGCAT -ACGGAAAACCTCACAACGCGAGAT -ACGGAAAACCTCACAACGTACCAC -ACGGAAAACCTCACAACGCAGAAC -ACGGAAAACCTCACAACGGTCTAC -ACGGAAAACCTCACAACGACGTAC -ACGGAAAACCTCACAACGAGTGAC -ACGGAAAACCTCACAACGCTGTAG -ACGGAAAACCTCACAACGCCTAAG -ACGGAAAACCTCACAACGGTTCAG -ACGGAAAACCTCACAACGGCATAG -ACGGAAAACCTCACAACGGACAAG -ACGGAAAACCTCACAACGAAGCAG -ACGGAAAACCTCACAACGCGTCAA -ACGGAAAACCTCACAACGGCTGAA -ACGGAAAACCTCACAACGAGTACG -ACGGAAAACCTCACAACGATCCGA -ACGGAAAACCTCACAACGATGGGA -ACGGAAAACCTCACAACGGTGCAA -ACGGAAAACCTCACAACGGAGGAA -ACGGAAAACCTCACAACGCAGGTA -ACGGAAAACCTCACAACGGACTCT -ACGGAAAACCTCACAACGAGTCCT -ACGGAAAACCTCACAACGTAAGCC -ACGGAAAACCTCACAACGATAGCC -ACGGAAAACCTCACAACGTAACCG -ACGGAAAACCTCACAACGATGCCA -ACGGAAAACCTCTCAAGCGGAAAC -ACGGAAAACCTCTCAAGCAACACC -ACGGAAAACCTCTCAAGCATCGAG -ACGGAAAACCTCTCAAGCCTCCTT -ACGGAAAACCTCTCAAGCCCTGTT -ACGGAAAACCTCTCAAGCCGGTTT -ACGGAAAACCTCTCAAGCGTGGTT -ACGGAAAACCTCTCAAGCGCCTTT -ACGGAAAACCTCTCAAGCGGTCTT -ACGGAAAACCTCTCAAGCACGCTT -ACGGAAAACCTCTCAAGCAGCGTT -ACGGAAAACCTCTCAAGCTTCGTC -ACGGAAAACCTCTCAAGCTCTCTC -ACGGAAAACCTCTCAAGCTGGATC -ACGGAAAACCTCTCAAGCCACTTC -ACGGAAAACCTCTCAAGCGTACTC -ACGGAAAACCTCTCAAGCGATGTC -ACGGAAAACCTCTCAAGCACAGTC -ACGGAAAACCTCTCAAGCTTGCTG -ACGGAAAACCTCTCAAGCTCCATG -ACGGAAAACCTCTCAAGCTGTGTG -ACGGAAAACCTCTCAAGCCTAGTG -ACGGAAAACCTCTCAAGCCATCTG -ACGGAAAACCTCTCAAGCGAGTTG -ACGGAAAACCTCTCAAGCAGACTG -ACGGAAAACCTCTCAAGCTCGGTA -ACGGAAAACCTCTCAAGCTGCCTA -ACGGAAAACCTCTCAAGCCCACTA -ACGGAAAACCTCTCAAGCGGAGTA -ACGGAAAACCTCTCAAGCTCGTCT -ACGGAAAACCTCTCAAGCTGCACT -ACGGAAAACCTCTCAAGCCTGACT -ACGGAAAACCTCTCAAGCCAACCT -ACGGAAAACCTCTCAAGCGCTACT -ACGGAAAACCTCTCAAGCGGATCT -ACGGAAAACCTCTCAAGCAAGGCT -ACGGAAAACCTCTCAAGCTCAACC -ACGGAAAACCTCTCAAGCTGTTCC -ACGGAAAACCTCTCAAGCATTCCC -ACGGAAAACCTCTCAAGCTTCTCG -ACGGAAAACCTCTCAAGCTAGACG -ACGGAAAACCTCTCAAGCGTAACG -ACGGAAAACCTCTCAAGCACTTCG -ACGGAAAACCTCTCAAGCTACGCA -ACGGAAAACCTCTCAAGCCTTGCA -ACGGAAAACCTCTCAAGCCGAACA -ACGGAAAACCTCTCAAGCCAGTCA -ACGGAAAACCTCTCAAGCGATCCA -ACGGAAAACCTCTCAAGCACGACA -ACGGAAAACCTCTCAAGCAGCTCA -ACGGAAAACCTCTCAAGCTCACGT -ACGGAAAACCTCTCAAGCCGTAGT -ACGGAAAACCTCTCAAGCGTCAGT -ACGGAAAACCTCTCAAGCGAAGGT -ACGGAAAACCTCTCAAGCAACCGT -ACGGAAAACCTCTCAAGCTTGTGC -ACGGAAAACCTCTCAAGCCTAAGC -ACGGAAAACCTCTCAAGCACTAGC -ACGGAAAACCTCTCAAGCAGATGC -ACGGAAAACCTCTCAAGCTGAAGG -ACGGAAAACCTCTCAAGCCAATGG -ACGGAAAACCTCTCAAGCATGAGG -ACGGAAAACCTCTCAAGCAATGGG -ACGGAAAACCTCTCAAGCTCCTGA -ACGGAAAACCTCTCAAGCTAGCGA -ACGGAAAACCTCTCAAGCCACAGA -ACGGAAAACCTCTCAAGCGCAAGA -ACGGAAAACCTCTCAAGCGGTTGA -ACGGAAAACCTCTCAAGCTCCGAT -ACGGAAAACCTCTCAAGCTGGCAT -ACGGAAAACCTCTCAAGCCGAGAT -ACGGAAAACCTCTCAAGCTACCAC -ACGGAAAACCTCTCAAGCCAGAAC -ACGGAAAACCTCTCAAGCGTCTAC -ACGGAAAACCTCTCAAGCACGTAC -ACGGAAAACCTCTCAAGCAGTGAC -ACGGAAAACCTCTCAAGCCTGTAG -ACGGAAAACCTCTCAAGCCCTAAG -ACGGAAAACCTCTCAAGCGTTCAG -ACGGAAAACCTCTCAAGCGCATAG -ACGGAAAACCTCTCAAGCGACAAG -ACGGAAAACCTCTCAAGCAAGCAG -ACGGAAAACCTCTCAAGCCGTCAA -ACGGAAAACCTCTCAAGCGCTGAA -ACGGAAAACCTCTCAAGCAGTACG -ACGGAAAACCTCTCAAGCATCCGA -ACGGAAAACCTCTCAAGCATGGGA -ACGGAAAACCTCTCAAGCGTGCAA -ACGGAAAACCTCTCAAGCGAGGAA -ACGGAAAACCTCTCAAGCCAGGTA -ACGGAAAACCTCTCAAGCGACTCT -ACGGAAAACCTCTCAAGCAGTCCT -ACGGAAAACCTCTCAAGCTAAGCC -ACGGAAAACCTCTCAAGCATAGCC -ACGGAAAACCTCTCAAGCTAACCG -ACGGAAAACCTCTCAAGCATGCCA -ACGGAAAACCTCCGTTCAGGAAAC -ACGGAAAACCTCCGTTCAAACACC -ACGGAAAACCTCCGTTCAATCGAG -ACGGAAAACCTCCGTTCACTCCTT -ACGGAAAACCTCCGTTCACCTGTT -ACGGAAAACCTCCGTTCACGGTTT -ACGGAAAACCTCCGTTCAGTGGTT -ACGGAAAACCTCCGTTCAGCCTTT -ACGGAAAACCTCCGTTCAGGTCTT -ACGGAAAACCTCCGTTCAACGCTT -ACGGAAAACCTCCGTTCAAGCGTT -ACGGAAAACCTCCGTTCATTCGTC -ACGGAAAACCTCCGTTCATCTCTC -ACGGAAAACCTCCGTTCATGGATC -ACGGAAAACCTCCGTTCACACTTC -ACGGAAAACCTCCGTTCAGTACTC -ACGGAAAACCTCCGTTCAGATGTC -ACGGAAAACCTCCGTTCAACAGTC -ACGGAAAACCTCCGTTCATTGCTG -ACGGAAAACCTCCGTTCATCCATG -ACGGAAAACCTCCGTTCATGTGTG -ACGGAAAACCTCCGTTCACTAGTG -ACGGAAAACCTCCGTTCACATCTG -ACGGAAAACCTCCGTTCAGAGTTG -ACGGAAAACCTCCGTTCAAGACTG -ACGGAAAACCTCCGTTCATCGGTA -ACGGAAAACCTCCGTTCATGCCTA -ACGGAAAACCTCCGTTCACCACTA -ACGGAAAACCTCCGTTCAGGAGTA -ACGGAAAACCTCCGTTCATCGTCT -ACGGAAAACCTCCGTTCATGCACT -ACGGAAAACCTCCGTTCACTGACT -ACGGAAAACCTCCGTTCACAACCT -ACGGAAAACCTCCGTTCAGCTACT -ACGGAAAACCTCCGTTCAGGATCT -ACGGAAAACCTCCGTTCAAAGGCT -ACGGAAAACCTCCGTTCATCAACC -ACGGAAAACCTCCGTTCATGTTCC -ACGGAAAACCTCCGTTCAATTCCC -ACGGAAAACCTCCGTTCATTCTCG -ACGGAAAACCTCCGTTCATAGACG -ACGGAAAACCTCCGTTCAGTAACG -ACGGAAAACCTCCGTTCAACTTCG -ACGGAAAACCTCCGTTCATACGCA -ACGGAAAACCTCCGTTCACTTGCA -ACGGAAAACCTCCGTTCACGAACA -ACGGAAAACCTCCGTTCACAGTCA -ACGGAAAACCTCCGTTCAGATCCA -ACGGAAAACCTCCGTTCAACGACA -ACGGAAAACCTCCGTTCAAGCTCA -ACGGAAAACCTCCGTTCATCACGT -ACGGAAAACCTCCGTTCACGTAGT -ACGGAAAACCTCCGTTCAGTCAGT -ACGGAAAACCTCCGTTCAGAAGGT -ACGGAAAACCTCCGTTCAAACCGT -ACGGAAAACCTCCGTTCATTGTGC -ACGGAAAACCTCCGTTCACTAAGC -ACGGAAAACCTCCGTTCAACTAGC -ACGGAAAACCTCCGTTCAAGATGC -ACGGAAAACCTCCGTTCATGAAGG -ACGGAAAACCTCCGTTCACAATGG -ACGGAAAACCTCCGTTCAATGAGG -ACGGAAAACCTCCGTTCAAATGGG -ACGGAAAACCTCCGTTCATCCTGA -ACGGAAAACCTCCGTTCATAGCGA -ACGGAAAACCTCCGTTCACACAGA -ACGGAAAACCTCCGTTCAGCAAGA -ACGGAAAACCTCCGTTCAGGTTGA -ACGGAAAACCTCCGTTCATCCGAT -ACGGAAAACCTCCGTTCATGGCAT -ACGGAAAACCTCCGTTCACGAGAT -ACGGAAAACCTCCGTTCATACCAC -ACGGAAAACCTCCGTTCACAGAAC -ACGGAAAACCTCCGTTCAGTCTAC -ACGGAAAACCTCCGTTCAACGTAC -ACGGAAAACCTCCGTTCAAGTGAC -ACGGAAAACCTCCGTTCACTGTAG -ACGGAAAACCTCCGTTCACCTAAG -ACGGAAAACCTCCGTTCAGTTCAG -ACGGAAAACCTCCGTTCAGCATAG -ACGGAAAACCTCCGTTCAGACAAG -ACGGAAAACCTCCGTTCAAAGCAG -ACGGAAAACCTCCGTTCACGTCAA -ACGGAAAACCTCCGTTCAGCTGAA -ACGGAAAACCTCCGTTCAAGTACG -ACGGAAAACCTCCGTTCAATCCGA -ACGGAAAACCTCCGTTCAATGGGA -ACGGAAAACCTCCGTTCAGTGCAA -ACGGAAAACCTCCGTTCAGAGGAA -ACGGAAAACCTCCGTTCACAGGTA -ACGGAAAACCTCCGTTCAGACTCT -ACGGAAAACCTCCGTTCAAGTCCT -ACGGAAAACCTCCGTTCATAAGCC -ACGGAAAACCTCCGTTCAATAGCC -ACGGAAAACCTCCGTTCATAACCG -ACGGAAAACCTCCGTTCAATGCCA -ACGGAAAACCTCAGTCGTGGAAAC -ACGGAAAACCTCAGTCGTAACACC -ACGGAAAACCTCAGTCGTATCGAG -ACGGAAAACCTCAGTCGTCTCCTT -ACGGAAAACCTCAGTCGTCCTGTT -ACGGAAAACCTCAGTCGTCGGTTT -ACGGAAAACCTCAGTCGTGTGGTT -ACGGAAAACCTCAGTCGTGCCTTT -ACGGAAAACCTCAGTCGTGGTCTT -ACGGAAAACCTCAGTCGTACGCTT -ACGGAAAACCTCAGTCGTAGCGTT -ACGGAAAACCTCAGTCGTTTCGTC -ACGGAAAACCTCAGTCGTTCTCTC -ACGGAAAACCTCAGTCGTTGGATC -ACGGAAAACCTCAGTCGTCACTTC -ACGGAAAACCTCAGTCGTGTACTC -ACGGAAAACCTCAGTCGTGATGTC -ACGGAAAACCTCAGTCGTACAGTC -ACGGAAAACCTCAGTCGTTTGCTG -ACGGAAAACCTCAGTCGTTCCATG -ACGGAAAACCTCAGTCGTTGTGTG -ACGGAAAACCTCAGTCGTCTAGTG -ACGGAAAACCTCAGTCGTCATCTG -ACGGAAAACCTCAGTCGTGAGTTG -ACGGAAAACCTCAGTCGTAGACTG -ACGGAAAACCTCAGTCGTTCGGTA -ACGGAAAACCTCAGTCGTTGCCTA -ACGGAAAACCTCAGTCGTCCACTA -ACGGAAAACCTCAGTCGTGGAGTA -ACGGAAAACCTCAGTCGTTCGTCT -ACGGAAAACCTCAGTCGTTGCACT -ACGGAAAACCTCAGTCGTCTGACT -ACGGAAAACCTCAGTCGTCAACCT -ACGGAAAACCTCAGTCGTGCTACT -ACGGAAAACCTCAGTCGTGGATCT -ACGGAAAACCTCAGTCGTAAGGCT -ACGGAAAACCTCAGTCGTTCAACC -ACGGAAAACCTCAGTCGTTGTTCC -ACGGAAAACCTCAGTCGTATTCCC -ACGGAAAACCTCAGTCGTTTCTCG -ACGGAAAACCTCAGTCGTTAGACG -ACGGAAAACCTCAGTCGTGTAACG -ACGGAAAACCTCAGTCGTACTTCG -ACGGAAAACCTCAGTCGTTACGCA -ACGGAAAACCTCAGTCGTCTTGCA -ACGGAAAACCTCAGTCGTCGAACA -ACGGAAAACCTCAGTCGTCAGTCA -ACGGAAAACCTCAGTCGTGATCCA -ACGGAAAACCTCAGTCGTACGACA -ACGGAAAACCTCAGTCGTAGCTCA -ACGGAAAACCTCAGTCGTTCACGT -ACGGAAAACCTCAGTCGTCGTAGT -ACGGAAAACCTCAGTCGTGTCAGT -ACGGAAAACCTCAGTCGTGAAGGT -ACGGAAAACCTCAGTCGTAACCGT -ACGGAAAACCTCAGTCGTTTGTGC -ACGGAAAACCTCAGTCGTCTAAGC -ACGGAAAACCTCAGTCGTACTAGC -ACGGAAAACCTCAGTCGTAGATGC -ACGGAAAACCTCAGTCGTTGAAGG -ACGGAAAACCTCAGTCGTCAATGG -ACGGAAAACCTCAGTCGTATGAGG -ACGGAAAACCTCAGTCGTAATGGG -ACGGAAAACCTCAGTCGTTCCTGA -ACGGAAAACCTCAGTCGTTAGCGA -ACGGAAAACCTCAGTCGTCACAGA -ACGGAAAACCTCAGTCGTGCAAGA -ACGGAAAACCTCAGTCGTGGTTGA -ACGGAAAACCTCAGTCGTTCCGAT -ACGGAAAACCTCAGTCGTTGGCAT -ACGGAAAACCTCAGTCGTCGAGAT -ACGGAAAACCTCAGTCGTTACCAC -ACGGAAAACCTCAGTCGTCAGAAC -ACGGAAAACCTCAGTCGTGTCTAC -ACGGAAAACCTCAGTCGTACGTAC -ACGGAAAACCTCAGTCGTAGTGAC -ACGGAAAACCTCAGTCGTCTGTAG -ACGGAAAACCTCAGTCGTCCTAAG -ACGGAAAACCTCAGTCGTGTTCAG -ACGGAAAACCTCAGTCGTGCATAG -ACGGAAAACCTCAGTCGTGACAAG -ACGGAAAACCTCAGTCGTAAGCAG -ACGGAAAACCTCAGTCGTCGTCAA -ACGGAAAACCTCAGTCGTGCTGAA -ACGGAAAACCTCAGTCGTAGTACG -ACGGAAAACCTCAGTCGTATCCGA -ACGGAAAACCTCAGTCGTATGGGA -ACGGAAAACCTCAGTCGTGTGCAA -ACGGAAAACCTCAGTCGTGAGGAA -ACGGAAAACCTCAGTCGTCAGGTA -ACGGAAAACCTCAGTCGTGACTCT -ACGGAAAACCTCAGTCGTAGTCCT -ACGGAAAACCTCAGTCGTTAAGCC -ACGGAAAACCTCAGTCGTATAGCC -ACGGAAAACCTCAGTCGTTAACCG -ACGGAAAACCTCAGTCGTATGCCA -ACGGAAAACCTCAGTGTCGGAAAC -ACGGAAAACCTCAGTGTCAACACC -ACGGAAAACCTCAGTGTCATCGAG -ACGGAAAACCTCAGTGTCCTCCTT -ACGGAAAACCTCAGTGTCCCTGTT -ACGGAAAACCTCAGTGTCCGGTTT -ACGGAAAACCTCAGTGTCGTGGTT -ACGGAAAACCTCAGTGTCGCCTTT -ACGGAAAACCTCAGTGTCGGTCTT -ACGGAAAACCTCAGTGTCACGCTT -ACGGAAAACCTCAGTGTCAGCGTT -ACGGAAAACCTCAGTGTCTTCGTC -ACGGAAAACCTCAGTGTCTCTCTC -ACGGAAAACCTCAGTGTCTGGATC -ACGGAAAACCTCAGTGTCCACTTC -ACGGAAAACCTCAGTGTCGTACTC -ACGGAAAACCTCAGTGTCGATGTC -ACGGAAAACCTCAGTGTCACAGTC -ACGGAAAACCTCAGTGTCTTGCTG -ACGGAAAACCTCAGTGTCTCCATG -ACGGAAAACCTCAGTGTCTGTGTG -ACGGAAAACCTCAGTGTCCTAGTG -ACGGAAAACCTCAGTGTCCATCTG -ACGGAAAACCTCAGTGTCGAGTTG -ACGGAAAACCTCAGTGTCAGACTG -ACGGAAAACCTCAGTGTCTCGGTA -ACGGAAAACCTCAGTGTCTGCCTA -ACGGAAAACCTCAGTGTCCCACTA -ACGGAAAACCTCAGTGTCGGAGTA -ACGGAAAACCTCAGTGTCTCGTCT -ACGGAAAACCTCAGTGTCTGCACT -ACGGAAAACCTCAGTGTCCTGACT -ACGGAAAACCTCAGTGTCCAACCT -ACGGAAAACCTCAGTGTCGCTACT -ACGGAAAACCTCAGTGTCGGATCT -ACGGAAAACCTCAGTGTCAAGGCT -ACGGAAAACCTCAGTGTCTCAACC -ACGGAAAACCTCAGTGTCTGTTCC -ACGGAAAACCTCAGTGTCATTCCC -ACGGAAAACCTCAGTGTCTTCTCG -ACGGAAAACCTCAGTGTCTAGACG -ACGGAAAACCTCAGTGTCGTAACG -ACGGAAAACCTCAGTGTCACTTCG -ACGGAAAACCTCAGTGTCTACGCA -ACGGAAAACCTCAGTGTCCTTGCA -ACGGAAAACCTCAGTGTCCGAACA -ACGGAAAACCTCAGTGTCCAGTCA -ACGGAAAACCTCAGTGTCGATCCA -ACGGAAAACCTCAGTGTCACGACA -ACGGAAAACCTCAGTGTCAGCTCA -ACGGAAAACCTCAGTGTCTCACGT -ACGGAAAACCTCAGTGTCCGTAGT -ACGGAAAACCTCAGTGTCGTCAGT -ACGGAAAACCTCAGTGTCGAAGGT -ACGGAAAACCTCAGTGTCAACCGT -ACGGAAAACCTCAGTGTCTTGTGC -ACGGAAAACCTCAGTGTCCTAAGC -ACGGAAAACCTCAGTGTCACTAGC -ACGGAAAACCTCAGTGTCAGATGC -ACGGAAAACCTCAGTGTCTGAAGG -ACGGAAAACCTCAGTGTCCAATGG -ACGGAAAACCTCAGTGTCATGAGG -ACGGAAAACCTCAGTGTCAATGGG -ACGGAAAACCTCAGTGTCTCCTGA -ACGGAAAACCTCAGTGTCTAGCGA -ACGGAAAACCTCAGTGTCCACAGA -ACGGAAAACCTCAGTGTCGCAAGA -ACGGAAAACCTCAGTGTCGGTTGA -ACGGAAAACCTCAGTGTCTCCGAT -ACGGAAAACCTCAGTGTCTGGCAT -ACGGAAAACCTCAGTGTCCGAGAT -ACGGAAAACCTCAGTGTCTACCAC -ACGGAAAACCTCAGTGTCCAGAAC -ACGGAAAACCTCAGTGTCGTCTAC -ACGGAAAACCTCAGTGTCACGTAC -ACGGAAAACCTCAGTGTCAGTGAC -ACGGAAAACCTCAGTGTCCTGTAG -ACGGAAAACCTCAGTGTCCCTAAG -ACGGAAAACCTCAGTGTCGTTCAG -ACGGAAAACCTCAGTGTCGCATAG -ACGGAAAACCTCAGTGTCGACAAG -ACGGAAAACCTCAGTGTCAAGCAG -ACGGAAAACCTCAGTGTCCGTCAA -ACGGAAAACCTCAGTGTCGCTGAA -ACGGAAAACCTCAGTGTCAGTACG -ACGGAAAACCTCAGTGTCATCCGA -ACGGAAAACCTCAGTGTCATGGGA -ACGGAAAACCTCAGTGTCGTGCAA -ACGGAAAACCTCAGTGTCGAGGAA -ACGGAAAACCTCAGTGTCCAGGTA -ACGGAAAACCTCAGTGTCGACTCT -ACGGAAAACCTCAGTGTCAGTCCT -ACGGAAAACCTCAGTGTCTAAGCC -ACGGAAAACCTCAGTGTCATAGCC -ACGGAAAACCTCAGTGTCTAACCG -ACGGAAAACCTCAGTGTCATGCCA -ACGGAAAACCTCGGTGAAGGAAAC -ACGGAAAACCTCGGTGAAAACACC -ACGGAAAACCTCGGTGAAATCGAG -ACGGAAAACCTCGGTGAACTCCTT -ACGGAAAACCTCGGTGAACCTGTT -ACGGAAAACCTCGGTGAACGGTTT -ACGGAAAACCTCGGTGAAGTGGTT -ACGGAAAACCTCGGTGAAGCCTTT -ACGGAAAACCTCGGTGAAGGTCTT -ACGGAAAACCTCGGTGAAACGCTT -ACGGAAAACCTCGGTGAAAGCGTT -ACGGAAAACCTCGGTGAATTCGTC -ACGGAAAACCTCGGTGAATCTCTC -ACGGAAAACCTCGGTGAATGGATC -ACGGAAAACCTCGGTGAACACTTC -ACGGAAAACCTCGGTGAAGTACTC -ACGGAAAACCTCGGTGAAGATGTC -ACGGAAAACCTCGGTGAAACAGTC -ACGGAAAACCTCGGTGAATTGCTG -ACGGAAAACCTCGGTGAATCCATG -ACGGAAAACCTCGGTGAATGTGTG -ACGGAAAACCTCGGTGAACTAGTG -ACGGAAAACCTCGGTGAACATCTG -ACGGAAAACCTCGGTGAAGAGTTG -ACGGAAAACCTCGGTGAAAGACTG -ACGGAAAACCTCGGTGAATCGGTA -ACGGAAAACCTCGGTGAATGCCTA -ACGGAAAACCTCGGTGAACCACTA -ACGGAAAACCTCGGTGAAGGAGTA -ACGGAAAACCTCGGTGAATCGTCT -ACGGAAAACCTCGGTGAATGCACT -ACGGAAAACCTCGGTGAACTGACT -ACGGAAAACCTCGGTGAACAACCT -ACGGAAAACCTCGGTGAAGCTACT -ACGGAAAACCTCGGTGAAGGATCT -ACGGAAAACCTCGGTGAAAAGGCT -ACGGAAAACCTCGGTGAATCAACC -ACGGAAAACCTCGGTGAATGTTCC -ACGGAAAACCTCGGTGAAATTCCC -ACGGAAAACCTCGGTGAATTCTCG -ACGGAAAACCTCGGTGAATAGACG -ACGGAAAACCTCGGTGAAGTAACG -ACGGAAAACCTCGGTGAAACTTCG -ACGGAAAACCTCGGTGAATACGCA -ACGGAAAACCTCGGTGAACTTGCA -ACGGAAAACCTCGGTGAACGAACA -ACGGAAAACCTCGGTGAACAGTCA -ACGGAAAACCTCGGTGAAGATCCA -ACGGAAAACCTCGGTGAAACGACA -ACGGAAAACCTCGGTGAAAGCTCA -ACGGAAAACCTCGGTGAATCACGT -ACGGAAAACCTCGGTGAACGTAGT -ACGGAAAACCTCGGTGAAGTCAGT -ACGGAAAACCTCGGTGAAGAAGGT -ACGGAAAACCTCGGTGAAAACCGT -ACGGAAAACCTCGGTGAATTGTGC -ACGGAAAACCTCGGTGAACTAAGC -ACGGAAAACCTCGGTGAAACTAGC -ACGGAAAACCTCGGTGAAAGATGC -ACGGAAAACCTCGGTGAATGAAGG -ACGGAAAACCTCGGTGAACAATGG -ACGGAAAACCTCGGTGAAATGAGG -ACGGAAAACCTCGGTGAAAATGGG -ACGGAAAACCTCGGTGAATCCTGA -ACGGAAAACCTCGGTGAATAGCGA -ACGGAAAACCTCGGTGAACACAGA -ACGGAAAACCTCGGTGAAGCAAGA -ACGGAAAACCTCGGTGAAGGTTGA -ACGGAAAACCTCGGTGAATCCGAT -ACGGAAAACCTCGGTGAATGGCAT -ACGGAAAACCTCGGTGAACGAGAT -ACGGAAAACCTCGGTGAATACCAC -ACGGAAAACCTCGGTGAACAGAAC -ACGGAAAACCTCGGTGAAGTCTAC -ACGGAAAACCTCGGTGAAACGTAC -ACGGAAAACCTCGGTGAAAGTGAC -ACGGAAAACCTCGGTGAACTGTAG -ACGGAAAACCTCGGTGAACCTAAG -ACGGAAAACCTCGGTGAAGTTCAG -ACGGAAAACCTCGGTGAAGCATAG -ACGGAAAACCTCGGTGAAGACAAG -ACGGAAAACCTCGGTGAAAAGCAG -ACGGAAAACCTCGGTGAACGTCAA -ACGGAAAACCTCGGTGAAGCTGAA -ACGGAAAACCTCGGTGAAAGTACG -ACGGAAAACCTCGGTGAAATCCGA -ACGGAAAACCTCGGTGAAATGGGA -ACGGAAAACCTCGGTGAAGTGCAA -ACGGAAAACCTCGGTGAAGAGGAA -ACGGAAAACCTCGGTGAACAGGTA -ACGGAAAACCTCGGTGAAGACTCT -ACGGAAAACCTCGGTGAAAGTCCT -ACGGAAAACCTCGGTGAATAAGCC -ACGGAAAACCTCGGTGAAATAGCC -ACGGAAAACCTCGGTGAATAACCG -ACGGAAAACCTCGGTGAAATGCCA -ACGGAAAACCTCCGTAACGGAAAC -ACGGAAAACCTCCGTAACAACACC -ACGGAAAACCTCCGTAACATCGAG -ACGGAAAACCTCCGTAACCTCCTT -ACGGAAAACCTCCGTAACCCTGTT -ACGGAAAACCTCCGTAACCGGTTT -ACGGAAAACCTCCGTAACGTGGTT -ACGGAAAACCTCCGTAACGCCTTT -ACGGAAAACCTCCGTAACGGTCTT -ACGGAAAACCTCCGTAACACGCTT -ACGGAAAACCTCCGTAACAGCGTT -ACGGAAAACCTCCGTAACTTCGTC -ACGGAAAACCTCCGTAACTCTCTC -ACGGAAAACCTCCGTAACTGGATC -ACGGAAAACCTCCGTAACCACTTC -ACGGAAAACCTCCGTAACGTACTC -ACGGAAAACCTCCGTAACGATGTC -ACGGAAAACCTCCGTAACACAGTC -ACGGAAAACCTCCGTAACTTGCTG -ACGGAAAACCTCCGTAACTCCATG -ACGGAAAACCTCCGTAACTGTGTG -ACGGAAAACCTCCGTAACCTAGTG -ACGGAAAACCTCCGTAACCATCTG -ACGGAAAACCTCCGTAACGAGTTG -ACGGAAAACCTCCGTAACAGACTG -ACGGAAAACCTCCGTAACTCGGTA -ACGGAAAACCTCCGTAACTGCCTA -ACGGAAAACCTCCGTAACCCACTA -ACGGAAAACCTCCGTAACGGAGTA -ACGGAAAACCTCCGTAACTCGTCT -ACGGAAAACCTCCGTAACTGCACT -ACGGAAAACCTCCGTAACCTGACT -ACGGAAAACCTCCGTAACCAACCT -ACGGAAAACCTCCGTAACGCTACT -ACGGAAAACCTCCGTAACGGATCT -ACGGAAAACCTCCGTAACAAGGCT -ACGGAAAACCTCCGTAACTCAACC -ACGGAAAACCTCCGTAACTGTTCC -ACGGAAAACCTCCGTAACATTCCC -ACGGAAAACCTCCGTAACTTCTCG -ACGGAAAACCTCCGTAACTAGACG -ACGGAAAACCTCCGTAACGTAACG -ACGGAAAACCTCCGTAACACTTCG -ACGGAAAACCTCCGTAACTACGCA -ACGGAAAACCTCCGTAACCTTGCA -ACGGAAAACCTCCGTAACCGAACA -ACGGAAAACCTCCGTAACCAGTCA -ACGGAAAACCTCCGTAACGATCCA -ACGGAAAACCTCCGTAACACGACA -ACGGAAAACCTCCGTAACAGCTCA -ACGGAAAACCTCCGTAACTCACGT -ACGGAAAACCTCCGTAACCGTAGT -ACGGAAAACCTCCGTAACGTCAGT -ACGGAAAACCTCCGTAACGAAGGT -ACGGAAAACCTCCGTAACAACCGT -ACGGAAAACCTCCGTAACTTGTGC -ACGGAAAACCTCCGTAACCTAAGC -ACGGAAAACCTCCGTAACACTAGC -ACGGAAAACCTCCGTAACAGATGC -ACGGAAAACCTCCGTAACTGAAGG -ACGGAAAACCTCCGTAACCAATGG -ACGGAAAACCTCCGTAACATGAGG -ACGGAAAACCTCCGTAACAATGGG -ACGGAAAACCTCCGTAACTCCTGA -ACGGAAAACCTCCGTAACTAGCGA -ACGGAAAACCTCCGTAACCACAGA -ACGGAAAACCTCCGTAACGCAAGA -ACGGAAAACCTCCGTAACGGTTGA -ACGGAAAACCTCCGTAACTCCGAT -ACGGAAAACCTCCGTAACTGGCAT -ACGGAAAACCTCCGTAACCGAGAT -ACGGAAAACCTCCGTAACTACCAC -ACGGAAAACCTCCGTAACCAGAAC -ACGGAAAACCTCCGTAACGTCTAC -ACGGAAAACCTCCGTAACACGTAC -ACGGAAAACCTCCGTAACAGTGAC -ACGGAAAACCTCCGTAACCTGTAG -ACGGAAAACCTCCGTAACCCTAAG -ACGGAAAACCTCCGTAACGTTCAG -ACGGAAAACCTCCGTAACGCATAG -ACGGAAAACCTCCGTAACGACAAG -ACGGAAAACCTCCGTAACAAGCAG -ACGGAAAACCTCCGTAACCGTCAA -ACGGAAAACCTCCGTAACGCTGAA -ACGGAAAACCTCCGTAACAGTACG -ACGGAAAACCTCCGTAACATCCGA -ACGGAAAACCTCCGTAACATGGGA -ACGGAAAACCTCCGTAACGTGCAA -ACGGAAAACCTCCGTAACGAGGAA -ACGGAAAACCTCCGTAACCAGGTA -ACGGAAAACCTCCGTAACGACTCT -ACGGAAAACCTCCGTAACAGTCCT -ACGGAAAACCTCCGTAACTAAGCC -ACGGAAAACCTCCGTAACATAGCC -ACGGAAAACCTCCGTAACTAACCG -ACGGAAAACCTCCGTAACATGCCA -ACGGAAAACCTCTGCTTGGGAAAC -ACGGAAAACCTCTGCTTGAACACC -ACGGAAAACCTCTGCTTGATCGAG -ACGGAAAACCTCTGCTTGCTCCTT -ACGGAAAACCTCTGCTTGCCTGTT -ACGGAAAACCTCTGCTTGCGGTTT -ACGGAAAACCTCTGCTTGGTGGTT -ACGGAAAACCTCTGCTTGGCCTTT -ACGGAAAACCTCTGCTTGGGTCTT -ACGGAAAACCTCTGCTTGACGCTT -ACGGAAAACCTCTGCTTGAGCGTT -ACGGAAAACCTCTGCTTGTTCGTC -ACGGAAAACCTCTGCTTGTCTCTC -ACGGAAAACCTCTGCTTGTGGATC -ACGGAAAACCTCTGCTTGCACTTC -ACGGAAAACCTCTGCTTGGTACTC -ACGGAAAACCTCTGCTTGGATGTC -ACGGAAAACCTCTGCTTGACAGTC -ACGGAAAACCTCTGCTTGTTGCTG -ACGGAAAACCTCTGCTTGTCCATG -ACGGAAAACCTCTGCTTGTGTGTG -ACGGAAAACCTCTGCTTGCTAGTG -ACGGAAAACCTCTGCTTGCATCTG -ACGGAAAACCTCTGCTTGGAGTTG -ACGGAAAACCTCTGCTTGAGACTG -ACGGAAAACCTCTGCTTGTCGGTA -ACGGAAAACCTCTGCTTGTGCCTA -ACGGAAAACCTCTGCTTGCCACTA -ACGGAAAACCTCTGCTTGGGAGTA -ACGGAAAACCTCTGCTTGTCGTCT -ACGGAAAACCTCTGCTTGTGCACT -ACGGAAAACCTCTGCTTGCTGACT -ACGGAAAACCTCTGCTTGCAACCT -ACGGAAAACCTCTGCTTGGCTACT -ACGGAAAACCTCTGCTTGGGATCT -ACGGAAAACCTCTGCTTGAAGGCT -ACGGAAAACCTCTGCTTGTCAACC -ACGGAAAACCTCTGCTTGTGTTCC -ACGGAAAACCTCTGCTTGATTCCC -ACGGAAAACCTCTGCTTGTTCTCG -ACGGAAAACCTCTGCTTGTAGACG -ACGGAAAACCTCTGCTTGGTAACG -ACGGAAAACCTCTGCTTGACTTCG -ACGGAAAACCTCTGCTTGTACGCA -ACGGAAAACCTCTGCTTGCTTGCA -ACGGAAAACCTCTGCTTGCGAACA -ACGGAAAACCTCTGCTTGCAGTCA -ACGGAAAACCTCTGCTTGGATCCA -ACGGAAAACCTCTGCTTGACGACA -ACGGAAAACCTCTGCTTGAGCTCA -ACGGAAAACCTCTGCTTGTCACGT -ACGGAAAACCTCTGCTTGCGTAGT -ACGGAAAACCTCTGCTTGGTCAGT -ACGGAAAACCTCTGCTTGGAAGGT -ACGGAAAACCTCTGCTTGAACCGT -ACGGAAAACCTCTGCTTGTTGTGC -ACGGAAAACCTCTGCTTGCTAAGC -ACGGAAAACCTCTGCTTGACTAGC -ACGGAAAACCTCTGCTTGAGATGC -ACGGAAAACCTCTGCTTGTGAAGG -ACGGAAAACCTCTGCTTGCAATGG -ACGGAAAACCTCTGCTTGATGAGG -ACGGAAAACCTCTGCTTGAATGGG -ACGGAAAACCTCTGCTTGTCCTGA -ACGGAAAACCTCTGCTTGTAGCGA -ACGGAAAACCTCTGCTTGCACAGA -ACGGAAAACCTCTGCTTGGCAAGA -ACGGAAAACCTCTGCTTGGGTTGA -ACGGAAAACCTCTGCTTGTCCGAT -ACGGAAAACCTCTGCTTGTGGCAT -ACGGAAAACCTCTGCTTGCGAGAT -ACGGAAAACCTCTGCTTGTACCAC -ACGGAAAACCTCTGCTTGCAGAAC -ACGGAAAACCTCTGCTTGGTCTAC -ACGGAAAACCTCTGCTTGACGTAC -ACGGAAAACCTCTGCTTGAGTGAC -ACGGAAAACCTCTGCTTGCTGTAG -ACGGAAAACCTCTGCTTGCCTAAG -ACGGAAAACCTCTGCTTGGTTCAG -ACGGAAAACCTCTGCTTGGCATAG -ACGGAAAACCTCTGCTTGGACAAG -ACGGAAAACCTCTGCTTGAAGCAG -ACGGAAAACCTCTGCTTGCGTCAA -ACGGAAAACCTCTGCTTGGCTGAA -ACGGAAAACCTCTGCTTGAGTACG -ACGGAAAACCTCTGCTTGATCCGA -ACGGAAAACCTCTGCTTGATGGGA -ACGGAAAACCTCTGCTTGGTGCAA -ACGGAAAACCTCTGCTTGGAGGAA -ACGGAAAACCTCTGCTTGCAGGTA -ACGGAAAACCTCTGCTTGGACTCT -ACGGAAAACCTCTGCTTGAGTCCT -ACGGAAAACCTCTGCTTGTAAGCC -ACGGAAAACCTCTGCTTGATAGCC -ACGGAAAACCTCTGCTTGTAACCG -ACGGAAAACCTCTGCTTGATGCCA -ACGGAAAACCTCAGCCTAGGAAAC -ACGGAAAACCTCAGCCTAAACACC -ACGGAAAACCTCAGCCTAATCGAG -ACGGAAAACCTCAGCCTACTCCTT -ACGGAAAACCTCAGCCTACCTGTT -ACGGAAAACCTCAGCCTACGGTTT -ACGGAAAACCTCAGCCTAGTGGTT -ACGGAAAACCTCAGCCTAGCCTTT -ACGGAAAACCTCAGCCTAGGTCTT -ACGGAAAACCTCAGCCTAACGCTT -ACGGAAAACCTCAGCCTAAGCGTT -ACGGAAAACCTCAGCCTATTCGTC -ACGGAAAACCTCAGCCTATCTCTC -ACGGAAAACCTCAGCCTATGGATC -ACGGAAAACCTCAGCCTACACTTC -ACGGAAAACCTCAGCCTAGTACTC -ACGGAAAACCTCAGCCTAGATGTC -ACGGAAAACCTCAGCCTAACAGTC -ACGGAAAACCTCAGCCTATTGCTG -ACGGAAAACCTCAGCCTATCCATG -ACGGAAAACCTCAGCCTATGTGTG -ACGGAAAACCTCAGCCTACTAGTG -ACGGAAAACCTCAGCCTACATCTG -ACGGAAAACCTCAGCCTAGAGTTG -ACGGAAAACCTCAGCCTAAGACTG -ACGGAAAACCTCAGCCTATCGGTA -ACGGAAAACCTCAGCCTATGCCTA -ACGGAAAACCTCAGCCTACCACTA -ACGGAAAACCTCAGCCTAGGAGTA -ACGGAAAACCTCAGCCTATCGTCT -ACGGAAAACCTCAGCCTATGCACT -ACGGAAAACCTCAGCCTACTGACT -ACGGAAAACCTCAGCCTACAACCT -ACGGAAAACCTCAGCCTAGCTACT -ACGGAAAACCTCAGCCTAGGATCT -ACGGAAAACCTCAGCCTAAAGGCT -ACGGAAAACCTCAGCCTATCAACC -ACGGAAAACCTCAGCCTATGTTCC -ACGGAAAACCTCAGCCTAATTCCC -ACGGAAAACCTCAGCCTATTCTCG -ACGGAAAACCTCAGCCTATAGACG -ACGGAAAACCTCAGCCTAGTAACG -ACGGAAAACCTCAGCCTAACTTCG -ACGGAAAACCTCAGCCTATACGCA -ACGGAAAACCTCAGCCTACTTGCA -ACGGAAAACCTCAGCCTACGAACA -ACGGAAAACCTCAGCCTACAGTCA -ACGGAAAACCTCAGCCTAGATCCA -ACGGAAAACCTCAGCCTAACGACA -ACGGAAAACCTCAGCCTAAGCTCA -ACGGAAAACCTCAGCCTATCACGT -ACGGAAAACCTCAGCCTACGTAGT -ACGGAAAACCTCAGCCTAGTCAGT -ACGGAAAACCTCAGCCTAGAAGGT -ACGGAAAACCTCAGCCTAAACCGT -ACGGAAAACCTCAGCCTATTGTGC -ACGGAAAACCTCAGCCTACTAAGC -ACGGAAAACCTCAGCCTAACTAGC -ACGGAAAACCTCAGCCTAAGATGC -ACGGAAAACCTCAGCCTATGAAGG -ACGGAAAACCTCAGCCTACAATGG -ACGGAAAACCTCAGCCTAATGAGG -ACGGAAAACCTCAGCCTAAATGGG -ACGGAAAACCTCAGCCTATCCTGA -ACGGAAAACCTCAGCCTATAGCGA -ACGGAAAACCTCAGCCTACACAGA -ACGGAAAACCTCAGCCTAGCAAGA -ACGGAAAACCTCAGCCTAGGTTGA -ACGGAAAACCTCAGCCTATCCGAT -ACGGAAAACCTCAGCCTATGGCAT -ACGGAAAACCTCAGCCTACGAGAT -ACGGAAAACCTCAGCCTATACCAC -ACGGAAAACCTCAGCCTACAGAAC -ACGGAAAACCTCAGCCTAGTCTAC -ACGGAAAACCTCAGCCTAACGTAC -ACGGAAAACCTCAGCCTAAGTGAC -ACGGAAAACCTCAGCCTACTGTAG -ACGGAAAACCTCAGCCTACCTAAG -ACGGAAAACCTCAGCCTAGTTCAG -ACGGAAAACCTCAGCCTAGCATAG -ACGGAAAACCTCAGCCTAGACAAG -ACGGAAAACCTCAGCCTAAAGCAG -ACGGAAAACCTCAGCCTACGTCAA -ACGGAAAACCTCAGCCTAGCTGAA -ACGGAAAACCTCAGCCTAAGTACG -ACGGAAAACCTCAGCCTAATCCGA -ACGGAAAACCTCAGCCTAATGGGA -ACGGAAAACCTCAGCCTAGTGCAA -ACGGAAAACCTCAGCCTAGAGGAA -ACGGAAAACCTCAGCCTACAGGTA -ACGGAAAACCTCAGCCTAGACTCT -ACGGAAAACCTCAGCCTAAGTCCT -ACGGAAAACCTCAGCCTATAAGCC -ACGGAAAACCTCAGCCTAATAGCC -ACGGAAAACCTCAGCCTATAACCG -ACGGAAAACCTCAGCCTAATGCCA -ACGGAAAACCTCAGCACTGGAAAC -ACGGAAAACCTCAGCACTAACACC -ACGGAAAACCTCAGCACTATCGAG -ACGGAAAACCTCAGCACTCTCCTT -ACGGAAAACCTCAGCACTCCTGTT -ACGGAAAACCTCAGCACTCGGTTT -ACGGAAAACCTCAGCACTGTGGTT -ACGGAAAACCTCAGCACTGCCTTT -ACGGAAAACCTCAGCACTGGTCTT -ACGGAAAACCTCAGCACTACGCTT -ACGGAAAACCTCAGCACTAGCGTT -ACGGAAAACCTCAGCACTTTCGTC -ACGGAAAACCTCAGCACTTCTCTC -ACGGAAAACCTCAGCACTTGGATC -ACGGAAAACCTCAGCACTCACTTC -ACGGAAAACCTCAGCACTGTACTC -ACGGAAAACCTCAGCACTGATGTC -ACGGAAAACCTCAGCACTACAGTC -ACGGAAAACCTCAGCACTTTGCTG -ACGGAAAACCTCAGCACTTCCATG -ACGGAAAACCTCAGCACTTGTGTG -ACGGAAAACCTCAGCACTCTAGTG -ACGGAAAACCTCAGCACTCATCTG -ACGGAAAACCTCAGCACTGAGTTG -ACGGAAAACCTCAGCACTAGACTG -ACGGAAAACCTCAGCACTTCGGTA -ACGGAAAACCTCAGCACTTGCCTA -ACGGAAAACCTCAGCACTCCACTA -ACGGAAAACCTCAGCACTGGAGTA -ACGGAAAACCTCAGCACTTCGTCT -ACGGAAAACCTCAGCACTTGCACT -ACGGAAAACCTCAGCACTCTGACT -ACGGAAAACCTCAGCACTCAACCT -ACGGAAAACCTCAGCACTGCTACT -ACGGAAAACCTCAGCACTGGATCT -ACGGAAAACCTCAGCACTAAGGCT -ACGGAAAACCTCAGCACTTCAACC -ACGGAAAACCTCAGCACTTGTTCC -ACGGAAAACCTCAGCACTATTCCC -ACGGAAAACCTCAGCACTTTCTCG -ACGGAAAACCTCAGCACTTAGACG -ACGGAAAACCTCAGCACTGTAACG -ACGGAAAACCTCAGCACTACTTCG -ACGGAAAACCTCAGCACTTACGCA -ACGGAAAACCTCAGCACTCTTGCA -ACGGAAAACCTCAGCACTCGAACA -ACGGAAAACCTCAGCACTCAGTCA -ACGGAAAACCTCAGCACTGATCCA -ACGGAAAACCTCAGCACTACGACA -ACGGAAAACCTCAGCACTAGCTCA -ACGGAAAACCTCAGCACTTCACGT -ACGGAAAACCTCAGCACTCGTAGT -ACGGAAAACCTCAGCACTGTCAGT -ACGGAAAACCTCAGCACTGAAGGT -ACGGAAAACCTCAGCACTAACCGT -ACGGAAAACCTCAGCACTTTGTGC -ACGGAAAACCTCAGCACTCTAAGC -ACGGAAAACCTCAGCACTACTAGC -ACGGAAAACCTCAGCACTAGATGC -ACGGAAAACCTCAGCACTTGAAGG -ACGGAAAACCTCAGCACTCAATGG -ACGGAAAACCTCAGCACTATGAGG -ACGGAAAACCTCAGCACTAATGGG -ACGGAAAACCTCAGCACTTCCTGA -ACGGAAAACCTCAGCACTTAGCGA -ACGGAAAACCTCAGCACTCACAGA -ACGGAAAACCTCAGCACTGCAAGA -ACGGAAAACCTCAGCACTGGTTGA -ACGGAAAACCTCAGCACTTCCGAT -ACGGAAAACCTCAGCACTTGGCAT -ACGGAAAACCTCAGCACTCGAGAT -ACGGAAAACCTCAGCACTTACCAC -ACGGAAAACCTCAGCACTCAGAAC -ACGGAAAACCTCAGCACTGTCTAC -ACGGAAAACCTCAGCACTACGTAC -ACGGAAAACCTCAGCACTAGTGAC -ACGGAAAACCTCAGCACTCTGTAG -ACGGAAAACCTCAGCACTCCTAAG -ACGGAAAACCTCAGCACTGTTCAG -ACGGAAAACCTCAGCACTGCATAG -ACGGAAAACCTCAGCACTGACAAG -ACGGAAAACCTCAGCACTAAGCAG -ACGGAAAACCTCAGCACTCGTCAA -ACGGAAAACCTCAGCACTGCTGAA -ACGGAAAACCTCAGCACTAGTACG -ACGGAAAACCTCAGCACTATCCGA -ACGGAAAACCTCAGCACTATGGGA -ACGGAAAACCTCAGCACTGTGCAA -ACGGAAAACCTCAGCACTGAGGAA -ACGGAAAACCTCAGCACTCAGGTA -ACGGAAAACCTCAGCACTGACTCT -ACGGAAAACCTCAGCACTAGTCCT -ACGGAAAACCTCAGCACTTAAGCC -ACGGAAAACCTCAGCACTATAGCC -ACGGAAAACCTCAGCACTTAACCG -ACGGAAAACCTCAGCACTATGCCA -ACGGAAAACCTCTGCAGAGGAAAC -ACGGAAAACCTCTGCAGAAACACC -ACGGAAAACCTCTGCAGAATCGAG -ACGGAAAACCTCTGCAGACTCCTT -ACGGAAAACCTCTGCAGACCTGTT -ACGGAAAACCTCTGCAGACGGTTT -ACGGAAAACCTCTGCAGAGTGGTT -ACGGAAAACCTCTGCAGAGCCTTT -ACGGAAAACCTCTGCAGAGGTCTT -ACGGAAAACCTCTGCAGAACGCTT -ACGGAAAACCTCTGCAGAAGCGTT -ACGGAAAACCTCTGCAGATTCGTC -ACGGAAAACCTCTGCAGATCTCTC -ACGGAAAACCTCTGCAGATGGATC -ACGGAAAACCTCTGCAGACACTTC -ACGGAAAACCTCTGCAGAGTACTC -ACGGAAAACCTCTGCAGAGATGTC -ACGGAAAACCTCTGCAGAACAGTC -ACGGAAAACCTCTGCAGATTGCTG -ACGGAAAACCTCTGCAGATCCATG -ACGGAAAACCTCTGCAGATGTGTG -ACGGAAAACCTCTGCAGACTAGTG -ACGGAAAACCTCTGCAGACATCTG -ACGGAAAACCTCTGCAGAGAGTTG -ACGGAAAACCTCTGCAGAAGACTG -ACGGAAAACCTCTGCAGATCGGTA -ACGGAAAACCTCTGCAGATGCCTA -ACGGAAAACCTCTGCAGACCACTA -ACGGAAAACCTCTGCAGAGGAGTA -ACGGAAAACCTCTGCAGATCGTCT -ACGGAAAACCTCTGCAGATGCACT -ACGGAAAACCTCTGCAGACTGACT -ACGGAAAACCTCTGCAGACAACCT -ACGGAAAACCTCTGCAGAGCTACT -ACGGAAAACCTCTGCAGAGGATCT -ACGGAAAACCTCTGCAGAAAGGCT -ACGGAAAACCTCTGCAGATCAACC -ACGGAAAACCTCTGCAGATGTTCC -ACGGAAAACCTCTGCAGAATTCCC -ACGGAAAACCTCTGCAGATTCTCG -ACGGAAAACCTCTGCAGATAGACG -ACGGAAAACCTCTGCAGAGTAACG -ACGGAAAACCTCTGCAGAACTTCG -ACGGAAAACCTCTGCAGATACGCA -ACGGAAAACCTCTGCAGACTTGCA -ACGGAAAACCTCTGCAGACGAACA -ACGGAAAACCTCTGCAGACAGTCA -ACGGAAAACCTCTGCAGAGATCCA -ACGGAAAACCTCTGCAGAACGACA -ACGGAAAACCTCTGCAGAAGCTCA -ACGGAAAACCTCTGCAGATCACGT -ACGGAAAACCTCTGCAGACGTAGT -ACGGAAAACCTCTGCAGAGTCAGT -ACGGAAAACCTCTGCAGAGAAGGT -ACGGAAAACCTCTGCAGAAACCGT -ACGGAAAACCTCTGCAGATTGTGC -ACGGAAAACCTCTGCAGACTAAGC -ACGGAAAACCTCTGCAGAACTAGC -ACGGAAAACCTCTGCAGAAGATGC -ACGGAAAACCTCTGCAGATGAAGG -ACGGAAAACCTCTGCAGACAATGG -ACGGAAAACCTCTGCAGAATGAGG -ACGGAAAACCTCTGCAGAAATGGG -ACGGAAAACCTCTGCAGATCCTGA -ACGGAAAACCTCTGCAGATAGCGA -ACGGAAAACCTCTGCAGACACAGA -ACGGAAAACCTCTGCAGAGCAAGA -ACGGAAAACCTCTGCAGAGGTTGA -ACGGAAAACCTCTGCAGATCCGAT -ACGGAAAACCTCTGCAGATGGCAT -ACGGAAAACCTCTGCAGACGAGAT -ACGGAAAACCTCTGCAGATACCAC -ACGGAAAACCTCTGCAGACAGAAC -ACGGAAAACCTCTGCAGAGTCTAC -ACGGAAAACCTCTGCAGAACGTAC -ACGGAAAACCTCTGCAGAAGTGAC -ACGGAAAACCTCTGCAGACTGTAG -ACGGAAAACCTCTGCAGACCTAAG -ACGGAAAACCTCTGCAGAGTTCAG -ACGGAAAACCTCTGCAGAGCATAG -ACGGAAAACCTCTGCAGAGACAAG -ACGGAAAACCTCTGCAGAAAGCAG -ACGGAAAACCTCTGCAGACGTCAA -ACGGAAAACCTCTGCAGAGCTGAA -ACGGAAAACCTCTGCAGAAGTACG -ACGGAAAACCTCTGCAGAATCCGA -ACGGAAAACCTCTGCAGAATGGGA -ACGGAAAACCTCTGCAGAGTGCAA -ACGGAAAACCTCTGCAGAGAGGAA -ACGGAAAACCTCTGCAGACAGGTA -ACGGAAAACCTCTGCAGAGACTCT -ACGGAAAACCTCTGCAGAAGTCCT -ACGGAAAACCTCTGCAGATAAGCC -ACGGAAAACCTCTGCAGAATAGCC -ACGGAAAACCTCTGCAGATAACCG -ACGGAAAACCTCTGCAGAATGCCA -ACGGAAAACCTCAGGTGAGGAAAC -ACGGAAAACCTCAGGTGAAACACC -ACGGAAAACCTCAGGTGAATCGAG -ACGGAAAACCTCAGGTGACTCCTT -ACGGAAAACCTCAGGTGACCTGTT -ACGGAAAACCTCAGGTGACGGTTT -ACGGAAAACCTCAGGTGAGTGGTT -ACGGAAAACCTCAGGTGAGCCTTT -ACGGAAAACCTCAGGTGAGGTCTT -ACGGAAAACCTCAGGTGAACGCTT -ACGGAAAACCTCAGGTGAAGCGTT -ACGGAAAACCTCAGGTGATTCGTC -ACGGAAAACCTCAGGTGATCTCTC -ACGGAAAACCTCAGGTGATGGATC -ACGGAAAACCTCAGGTGACACTTC -ACGGAAAACCTCAGGTGAGTACTC -ACGGAAAACCTCAGGTGAGATGTC -ACGGAAAACCTCAGGTGAACAGTC -ACGGAAAACCTCAGGTGATTGCTG -ACGGAAAACCTCAGGTGATCCATG -ACGGAAAACCTCAGGTGATGTGTG -ACGGAAAACCTCAGGTGACTAGTG -ACGGAAAACCTCAGGTGACATCTG -ACGGAAAACCTCAGGTGAGAGTTG -ACGGAAAACCTCAGGTGAAGACTG -ACGGAAAACCTCAGGTGATCGGTA -ACGGAAAACCTCAGGTGATGCCTA -ACGGAAAACCTCAGGTGACCACTA -ACGGAAAACCTCAGGTGAGGAGTA -ACGGAAAACCTCAGGTGATCGTCT -ACGGAAAACCTCAGGTGATGCACT -ACGGAAAACCTCAGGTGACTGACT -ACGGAAAACCTCAGGTGACAACCT -ACGGAAAACCTCAGGTGAGCTACT -ACGGAAAACCTCAGGTGAGGATCT -ACGGAAAACCTCAGGTGAAAGGCT -ACGGAAAACCTCAGGTGATCAACC -ACGGAAAACCTCAGGTGATGTTCC -ACGGAAAACCTCAGGTGAATTCCC -ACGGAAAACCTCAGGTGATTCTCG -ACGGAAAACCTCAGGTGATAGACG -ACGGAAAACCTCAGGTGAGTAACG -ACGGAAAACCTCAGGTGAACTTCG -ACGGAAAACCTCAGGTGATACGCA -ACGGAAAACCTCAGGTGACTTGCA -ACGGAAAACCTCAGGTGACGAACA -ACGGAAAACCTCAGGTGACAGTCA -ACGGAAAACCTCAGGTGAGATCCA -ACGGAAAACCTCAGGTGAACGACA -ACGGAAAACCTCAGGTGAAGCTCA -ACGGAAAACCTCAGGTGATCACGT -ACGGAAAACCTCAGGTGACGTAGT -ACGGAAAACCTCAGGTGAGTCAGT -ACGGAAAACCTCAGGTGAGAAGGT -ACGGAAAACCTCAGGTGAAACCGT -ACGGAAAACCTCAGGTGATTGTGC -ACGGAAAACCTCAGGTGACTAAGC -ACGGAAAACCTCAGGTGAACTAGC -ACGGAAAACCTCAGGTGAAGATGC -ACGGAAAACCTCAGGTGATGAAGG -ACGGAAAACCTCAGGTGACAATGG -ACGGAAAACCTCAGGTGAATGAGG -ACGGAAAACCTCAGGTGAAATGGG -ACGGAAAACCTCAGGTGATCCTGA -ACGGAAAACCTCAGGTGATAGCGA -ACGGAAAACCTCAGGTGACACAGA -ACGGAAAACCTCAGGTGAGCAAGA -ACGGAAAACCTCAGGTGAGGTTGA -ACGGAAAACCTCAGGTGATCCGAT -ACGGAAAACCTCAGGTGATGGCAT -ACGGAAAACCTCAGGTGACGAGAT -ACGGAAAACCTCAGGTGATACCAC -ACGGAAAACCTCAGGTGACAGAAC -ACGGAAAACCTCAGGTGAGTCTAC -ACGGAAAACCTCAGGTGAACGTAC -ACGGAAAACCTCAGGTGAAGTGAC -ACGGAAAACCTCAGGTGACTGTAG -ACGGAAAACCTCAGGTGACCTAAG -ACGGAAAACCTCAGGTGAGTTCAG -ACGGAAAACCTCAGGTGAGCATAG -ACGGAAAACCTCAGGTGAGACAAG -ACGGAAAACCTCAGGTGAAAGCAG -ACGGAAAACCTCAGGTGACGTCAA -ACGGAAAACCTCAGGTGAGCTGAA -ACGGAAAACCTCAGGTGAAGTACG -ACGGAAAACCTCAGGTGAATCCGA -ACGGAAAACCTCAGGTGAATGGGA -ACGGAAAACCTCAGGTGAGTGCAA -ACGGAAAACCTCAGGTGAGAGGAA -ACGGAAAACCTCAGGTGACAGGTA -ACGGAAAACCTCAGGTGAGACTCT -ACGGAAAACCTCAGGTGAAGTCCT -ACGGAAAACCTCAGGTGATAAGCC -ACGGAAAACCTCAGGTGAATAGCC -ACGGAAAACCTCAGGTGATAACCG -ACGGAAAACCTCAGGTGAATGCCA -ACGGAAAACCTCTGGCAAGGAAAC -ACGGAAAACCTCTGGCAAAACACC -ACGGAAAACCTCTGGCAAATCGAG -ACGGAAAACCTCTGGCAACTCCTT -ACGGAAAACCTCTGGCAACCTGTT -ACGGAAAACCTCTGGCAACGGTTT -ACGGAAAACCTCTGGCAAGTGGTT -ACGGAAAACCTCTGGCAAGCCTTT -ACGGAAAACCTCTGGCAAGGTCTT -ACGGAAAACCTCTGGCAAACGCTT -ACGGAAAACCTCTGGCAAAGCGTT -ACGGAAAACCTCTGGCAATTCGTC -ACGGAAAACCTCTGGCAATCTCTC -ACGGAAAACCTCTGGCAATGGATC -ACGGAAAACCTCTGGCAACACTTC -ACGGAAAACCTCTGGCAAGTACTC -ACGGAAAACCTCTGGCAAGATGTC -ACGGAAAACCTCTGGCAAACAGTC -ACGGAAAACCTCTGGCAATTGCTG -ACGGAAAACCTCTGGCAATCCATG -ACGGAAAACCTCTGGCAATGTGTG -ACGGAAAACCTCTGGCAACTAGTG -ACGGAAAACCTCTGGCAACATCTG -ACGGAAAACCTCTGGCAAGAGTTG -ACGGAAAACCTCTGGCAAAGACTG -ACGGAAAACCTCTGGCAATCGGTA -ACGGAAAACCTCTGGCAATGCCTA -ACGGAAAACCTCTGGCAACCACTA -ACGGAAAACCTCTGGCAAGGAGTA -ACGGAAAACCTCTGGCAATCGTCT -ACGGAAAACCTCTGGCAATGCACT -ACGGAAAACCTCTGGCAACTGACT -ACGGAAAACCTCTGGCAACAACCT -ACGGAAAACCTCTGGCAAGCTACT -ACGGAAAACCTCTGGCAAGGATCT -ACGGAAAACCTCTGGCAAAAGGCT -ACGGAAAACCTCTGGCAATCAACC -ACGGAAAACCTCTGGCAATGTTCC -ACGGAAAACCTCTGGCAAATTCCC -ACGGAAAACCTCTGGCAATTCTCG -ACGGAAAACCTCTGGCAATAGACG -ACGGAAAACCTCTGGCAAGTAACG -ACGGAAAACCTCTGGCAAACTTCG -ACGGAAAACCTCTGGCAATACGCA -ACGGAAAACCTCTGGCAACTTGCA -ACGGAAAACCTCTGGCAACGAACA -ACGGAAAACCTCTGGCAACAGTCA -ACGGAAAACCTCTGGCAAGATCCA -ACGGAAAACCTCTGGCAAACGACA -ACGGAAAACCTCTGGCAAAGCTCA -ACGGAAAACCTCTGGCAATCACGT -ACGGAAAACCTCTGGCAACGTAGT -ACGGAAAACCTCTGGCAAGTCAGT -ACGGAAAACCTCTGGCAAGAAGGT -ACGGAAAACCTCTGGCAAAACCGT -ACGGAAAACCTCTGGCAATTGTGC -ACGGAAAACCTCTGGCAACTAAGC -ACGGAAAACCTCTGGCAAACTAGC -ACGGAAAACCTCTGGCAAAGATGC -ACGGAAAACCTCTGGCAATGAAGG -ACGGAAAACCTCTGGCAACAATGG -ACGGAAAACCTCTGGCAAATGAGG -ACGGAAAACCTCTGGCAAAATGGG -ACGGAAAACCTCTGGCAATCCTGA -ACGGAAAACCTCTGGCAATAGCGA -ACGGAAAACCTCTGGCAACACAGA -ACGGAAAACCTCTGGCAAGCAAGA -ACGGAAAACCTCTGGCAAGGTTGA -ACGGAAAACCTCTGGCAATCCGAT -ACGGAAAACCTCTGGCAATGGCAT -ACGGAAAACCTCTGGCAACGAGAT -ACGGAAAACCTCTGGCAATACCAC -ACGGAAAACCTCTGGCAACAGAAC -ACGGAAAACCTCTGGCAAGTCTAC -ACGGAAAACCTCTGGCAAACGTAC -ACGGAAAACCTCTGGCAAAGTGAC -ACGGAAAACCTCTGGCAACTGTAG -ACGGAAAACCTCTGGCAACCTAAG -ACGGAAAACCTCTGGCAAGTTCAG -ACGGAAAACCTCTGGCAAGCATAG -ACGGAAAACCTCTGGCAAGACAAG -ACGGAAAACCTCTGGCAAAAGCAG -ACGGAAAACCTCTGGCAACGTCAA -ACGGAAAACCTCTGGCAAGCTGAA -ACGGAAAACCTCTGGCAAAGTACG -ACGGAAAACCTCTGGCAAATCCGA -ACGGAAAACCTCTGGCAAATGGGA -ACGGAAAACCTCTGGCAAGTGCAA -ACGGAAAACCTCTGGCAAGAGGAA -ACGGAAAACCTCTGGCAACAGGTA -ACGGAAAACCTCTGGCAAGACTCT -ACGGAAAACCTCTGGCAAAGTCCT -ACGGAAAACCTCTGGCAATAAGCC -ACGGAAAACCTCTGGCAAATAGCC -ACGGAAAACCTCTGGCAATAACCG -ACGGAAAACCTCTGGCAAATGCCA -ACGGAAAACCTCAGGATGGGAAAC -ACGGAAAACCTCAGGATGAACACC -ACGGAAAACCTCAGGATGATCGAG -ACGGAAAACCTCAGGATGCTCCTT -ACGGAAAACCTCAGGATGCCTGTT -ACGGAAAACCTCAGGATGCGGTTT -ACGGAAAACCTCAGGATGGTGGTT -ACGGAAAACCTCAGGATGGCCTTT -ACGGAAAACCTCAGGATGGGTCTT -ACGGAAAACCTCAGGATGACGCTT -ACGGAAAACCTCAGGATGAGCGTT -ACGGAAAACCTCAGGATGTTCGTC -ACGGAAAACCTCAGGATGTCTCTC -ACGGAAAACCTCAGGATGTGGATC -ACGGAAAACCTCAGGATGCACTTC -ACGGAAAACCTCAGGATGGTACTC -ACGGAAAACCTCAGGATGGATGTC -ACGGAAAACCTCAGGATGACAGTC -ACGGAAAACCTCAGGATGTTGCTG -ACGGAAAACCTCAGGATGTCCATG -ACGGAAAACCTCAGGATGTGTGTG -ACGGAAAACCTCAGGATGCTAGTG -ACGGAAAACCTCAGGATGCATCTG -ACGGAAAACCTCAGGATGGAGTTG -ACGGAAAACCTCAGGATGAGACTG -ACGGAAAACCTCAGGATGTCGGTA -ACGGAAAACCTCAGGATGTGCCTA -ACGGAAAACCTCAGGATGCCACTA -ACGGAAAACCTCAGGATGGGAGTA -ACGGAAAACCTCAGGATGTCGTCT -ACGGAAAACCTCAGGATGTGCACT -ACGGAAAACCTCAGGATGCTGACT -ACGGAAAACCTCAGGATGCAACCT -ACGGAAAACCTCAGGATGGCTACT -ACGGAAAACCTCAGGATGGGATCT -ACGGAAAACCTCAGGATGAAGGCT -ACGGAAAACCTCAGGATGTCAACC -ACGGAAAACCTCAGGATGTGTTCC -ACGGAAAACCTCAGGATGATTCCC -ACGGAAAACCTCAGGATGTTCTCG -ACGGAAAACCTCAGGATGTAGACG -ACGGAAAACCTCAGGATGGTAACG -ACGGAAAACCTCAGGATGACTTCG -ACGGAAAACCTCAGGATGTACGCA -ACGGAAAACCTCAGGATGCTTGCA -ACGGAAAACCTCAGGATGCGAACA -ACGGAAAACCTCAGGATGCAGTCA -ACGGAAAACCTCAGGATGGATCCA -ACGGAAAACCTCAGGATGACGACA -ACGGAAAACCTCAGGATGAGCTCA -ACGGAAAACCTCAGGATGTCACGT -ACGGAAAACCTCAGGATGCGTAGT -ACGGAAAACCTCAGGATGGTCAGT -ACGGAAAACCTCAGGATGGAAGGT -ACGGAAAACCTCAGGATGAACCGT -ACGGAAAACCTCAGGATGTTGTGC -ACGGAAAACCTCAGGATGCTAAGC -ACGGAAAACCTCAGGATGACTAGC -ACGGAAAACCTCAGGATGAGATGC -ACGGAAAACCTCAGGATGTGAAGG -ACGGAAAACCTCAGGATGCAATGG -ACGGAAAACCTCAGGATGATGAGG -ACGGAAAACCTCAGGATGAATGGG -ACGGAAAACCTCAGGATGTCCTGA -ACGGAAAACCTCAGGATGTAGCGA -ACGGAAAACCTCAGGATGCACAGA -ACGGAAAACCTCAGGATGGCAAGA -ACGGAAAACCTCAGGATGGGTTGA -ACGGAAAACCTCAGGATGTCCGAT -ACGGAAAACCTCAGGATGTGGCAT -ACGGAAAACCTCAGGATGCGAGAT -ACGGAAAACCTCAGGATGTACCAC -ACGGAAAACCTCAGGATGCAGAAC -ACGGAAAACCTCAGGATGGTCTAC -ACGGAAAACCTCAGGATGACGTAC -ACGGAAAACCTCAGGATGAGTGAC -ACGGAAAACCTCAGGATGCTGTAG -ACGGAAAACCTCAGGATGCCTAAG -ACGGAAAACCTCAGGATGGTTCAG -ACGGAAAACCTCAGGATGGCATAG -ACGGAAAACCTCAGGATGGACAAG -ACGGAAAACCTCAGGATGAAGCAG -ACGGAAAACCTCAGGATGCGTCAA -ACGGAAAACCTCAGGATGGCTGAA -ACGGAAAACCTCAGGATGAGTACG -ACGGAAAACCTCAGGATGATCCGA -ACGGAAAACCTCAGGATGATGGGA -ACGGAAAACCTCAGGATGGTGCAA -ACGGAAAACCTCAGGATGGAGGAA -ACGGAAAACCTCAGGATGCAGGTA -ACGGAAAACCTCAGGATGGACTCT -ACGGAAAACCTCAGGATGAGTCCT -ACGGAAAACCTCAGGATGTAAGCC -ACGGAAAACCTCAGGATGATAGCC -ACGGAAAACCTCAGGATGTAACCG -ACGGAAAACCTCAGGATGATGCCA -ACGGAAAACCTCGGGAATGGAAAC -ACGGAAAACCTCGGGAATAACACC -ACGGAAAACCTCGGGAATATCGAG -ACGGAAAACCTCGGGAATCTCCTT -ACGGAAAACCTCGGGAATCCTGTT -ACGGAAAACCTCGGGAATCGGTTT -ACGGAAAACCTCGGGAATGTGGTT -ACGGAAAACCTCGGGAATGCCTTT -ACGGAAAACCTCGGGAATGGTCTT -ACGGAAAACCTCGGGAATACGCTT -ACGGAAAACCTCGGGAATAGCGTT -ACGGAAAACCTCGGGAATTTCGTC -ACGGAAAACCTCGGGAATTCTCTC -ACGGAAAACCTCGGGAATTGGATC -ACGGAAAACCTCGGGAATCACTTC -ACGGAAAACCTCGGGAATGTACTC -ACGGAAAACCTCGGGAATGATGTC -ACGGAAAACCTCGGGAATACAGTC -ACGGAAAACCTCGGGAATTTGCTG -ACGGAAAACCTCGGGAATTCCATG -ACGGAAAACCTCGGGAATTGTGTG -ACGGAAAACCTCGGGAATCTAGTG -ACGGAAAACCTCGGGAATCATCTG -ACGGAAAACCTCGGGAATGAGTTG -ACGGAAAACCTCGGGAATAGACTG -ACGGAAAACCTCGGGAATTCGGTA -ACGGAAAACCTCGGGAATTGCCTA -ACGGAAAACCTCGGGAATCCACTA -ACGGAAAACCTCGGGAATGGAGTA -ACGGAAAACCTCGGGAATTCGTCT -ACGGAAAACCTCGGGAATTGCACT -ACGGAAAACCTCGGGAATCTGACT -ACGGAAAACCTCGGGAATCAACCT -ACGGAAAACCTCGGGAATGCTACT -ACGGAAAACCTCGGGAATGGATCT -ACGGAAAACCTCGGGAATAAGGCT -ACGGAAAACCTCGGGAATTCAACC -ACGGAAAACCTCGGGAATTGTTCC -ACGGAAAACCTCGGGAATATTCCC -ACGGAAAACCTCGGGAATTTCTCG -ACGGAAAACCTCGGGAATTAGACG -ACGGAAAACCTCGGGAATGTAACG -ACGGAAAACCTCGGGAATACTTCG -ACGGAAAACCTCGGGAATTACGCA -ACGGAAAACCTCGGGAATCTTGCA -ACGGAAAACCTCGGGAATCGAACA -ACGGAAAACCTCGGGAATCAGTCA -ACGGAAAACCTCGGGAATGATCCA -ACGGAAAACCTCGGGAATACGACA -ACGGAAAACCTCGGGAATAGCTCA -ACGGAAAACCTCGGGAATTCACGT -ACGGAAAACCTCGGGAATCGTAGT -ACGGAAAACCTCGGGAATGTCAGT -ACGGAAAACCTCGGGAATGAAGGT -ACGGAAAACCTCGGGAATAACCGT -ACGGAAAACCTCGGGAATTTGTGC -ACGGAAAACCTCGGGAATCTAAGC -ACGGAAAACCTCGGGAATACTAGC -ACGGAAAACCTCGGGAATAGATGC -ACGGAAAACCTCGGGAATTGAAGG -ACGGAAAACCTCGGGAATCAATGG -ACGGAAAACCTCGGGAATATGAGG -ACGGAAAACCTCGGGAATAATGGG -ACGGAAAACCTCGGGAATTCCTGA -ACGGAAAACCTCGGGAATTAGCGA -ACGGAAAACCTCGGGAATCACAGA -ACGGAAAACCTCGGGAATGCAAGA -ACGGAAAACCTCGGGAATGGTTGA -ACGGAAAACCTCGGGAATTCCGAT -ACGGAAAACCTCGGGAATTGGCAT -ACGGAAAACCTCGGGAATCGAGAT -ACGGAAAACCTCGGGAATTACCAC -ACGGAAAACCTCGGGAATCAGAAC -ACGGAAAACCTCGGGAATGTCTAC -ACGGAAAACCTCGGGAATACGTAC -ACGGAAAACCTCGGGAATAGTGAC -ACGGAAAACCTCGGGAATCTGTAG -ACGGAAAACCTCGGGAATCCTAAG -ACGGAAAACCTCGGGAATGTTCAG -ACGGAAAACCTCGGGAATGCATAG -ACGGAAAACCTCGGGAATGACAAG -ACGGAAAACCTCGGGAATAAGCAG -ACGGAAAACCTCGGGAATCGTCAA -ACGGAAAACCTCGGGAATGCTGAA -ACGGAAAACCTCGGGAATAGTACG -ACGGAAAACCTCGGGAATATCCGA -ACGGAAAACCTCGGGAATATGGGA -ACGGAAAACCTCGGGAATGTGCAA -ACGGAAAACCTCGGGAATGAGGAA -ACGGAAAACCTCGGGAATCAGGTA -ACGGAAAACCTCGGGAATGACTCT -ACGGAAAACCTCGGGAATAGTCCT -ACGGAAAACCTCGGGAATTAAGCC -ACGGAAAACCTCGGGAATATAGCC -ACGGAAAACCTCGGGAATTAACCG -ACGGAAAACCTCGGGAATATGCCA -ACGGAAAACCTCTGATCCGGAAAC -ACGGAAAACCTCTGATCCAACACC -ACGGAAAACCTCTGATCCATCGAG -ACGGAAAACCTCTGATCCCTCCTT -ACGGAAAACCTCTGATCCCCTGTT -ACGGAAAACCTCTGATCCCGGTTT -ACGGAAAACCTCTGATCCGTGGTT -ACGGAAAACCTCTGATCCGCCTTT -ACGGAAAACCTCTGATCCGGTCTT -ACGGAAAACCTCTGATCCACGCTT -ACGGAAAACCTCTGATCCAGCGTT -ACGGAAAACCTCTGATCCTTCGTC -ACGGAAAACCTCTGATCCTCTCTC -ACGGAAAACCTCTGATCCTGGATC -ACGGAAAACCTCTGATCCCACTTC -ACGGAAAACCTCTGATCCGTACTC -ACGGAAAACCTCTGATCCGATGTC -ACGGAAAACCTCTGATCCACAGTC -ACGGAAAACCTCTGATCCTTGCTG -ACGGAAAACCTCTGATCCTCCATG -ACGGAAAACCTCTGATCCTGTGTG -ACGGAAAACCTCTGATCCCTAGTG -ACGGAAAACCTCTGATCCCATCTG -ACGGAAAACCTCTGATCCGAGTTG -ACGGAAAACCTCTGATCCAGACTG -ACGGAAAACCTCTGATCCTCGGTA -ACGGAAAACCTCTGATCCTGCCTA -ACGGAAAACCTCTGATCCCCACTA -ACGGAAAACCTCTGATCCGGAGTA -ACGGAAAACCTCTGATCCTCGTCT -ACGGAAAACCTCTGATCCTGCACT -ACGGAAAACCTCTGATCCCTGACT -ACGGAAAACCTCTGATCCCAACCT -ACGGAAAACCTCTGATCCGCTACT -ACGGAAAACCTCTGATCCGGATCT -ACGGAAAACCTCTGATCCAAGGCT -ACGGAAAACCTCTGATCCTCAACC -ACGGAAAACCTCTGATCCTGTTCC -ACGGAAAACCTCTGATCCATTCCC -ACGGAAAACCTCTGATCCTTCTCG -ACGGAAAACCTCTGATCCTAGACG -ACGGAAAACCTCTGATCCGTAACG -ACGGAAAACCTCTGATCCACTTCG -ACGGAAAACCTCTGATCCTACGCA -ACGGAAAACCTCTGATCCCTTGCA -ACGGAAAACCTCTGATCCCGAACA -ACGGAAAACCTCTGATCCCAGTCA -ACGGAAAACCTCTGATCCGATCCA -ACGGAAAACCTCTGATCCACGACA -ACGGAAAACCTCTGATCCAGCTCA -ACGGAAAACCTCTGATCCTCACGT -ACGGAAAACCTCTGATCCCGTAGT -ACGGAAAACCTCTGATCCGTCAGT -ACGGAAAACCTCTGATCCGAAGGT -ACGGAAAACCTCTGATCCAACCGT -ACGGAAAACCTCTGATCCTTGTGC -ACGGAAAACCTCTGATCCCTAAGC -ACGGAAAACCTCTGATCCACTAGC -ACGGAAAACCTCTGATCCAGATGC -ACGGAAAACCTCTGATCCTGAAGG -ACGGAAAACCTCTGATCCCAATGG -ACGGAAAACCTCTGATCCATGAGG -ACGGAAAACCTCTGATCCAATGGG -ACGGAAAACCTCTGATCCTCCTGA -ACGGAAAACCTCTGATCCTAGCGA -ACGGAAAACCTCTGATCCCACAGA -ACGGAAAACCTCTGATCCGCAAGA -ACGGAAAACCTCTGATCCGGTTGA -ACGGAAAACCTCTGATCCTCCGAT -ACGGAAAACCTCTGATCCTGGCAT -ACGGAAAACCTCTGATCCCGAGAT -ACGGAAAACCTCTGATCCTACCAC -ACGGAAAACCTCTGATCCCAGAAC -ACGGAAAACCTCTGATCCGTCTAC -ACGGAAAACCTCTGATCCACGTAC -ACGGAAAACCTCTGATCCAGTGAC -ACGGAAAACCTCTGATCCCTGTAG -ACGGAAAACCTCTGATCCCCTAAG -ACGGAAAACCTCTGATCCGTTCAG -ACGGAAAACCTCTGATCCGCATAG -ACGGAAAACCTCTGATCCGACAAG -ACGGAAAACCTCTGATCCAAGCAG -ACGGAAAACCTCTGATCCCGTCAA -ACGGAAAACCTCTGATCCGCTGAA -ACGGAAAACCTCTGATCCAGTACG -ACGGAAAACCTCTGATCCATCCGA -ACGGAAAACCTCTGATCCATGGGA -ACGGAAAACCTCTGATCCGTGCAA -ACGGAAAACCTCTGATCCGAGGAA -ACGGAAAACCTCTGATCCCAGGTA -ACGGAAAACCTCTGATCCGACTCT -ACGGAAAACCTCTGATCCAGTCCT -ACGGAAAACCTCTGATCCTAAGCC -ACGGAAAACCTCTGATCCATAGCC -ACGGAAAACCTCTGATCCTAACCG -ACGGAAAACCTCTGATCCATGCCA -ACGGAAAACCTCCGATAGGGAAAC -ACGGAAAACCTCCGATAGAACACC -ACGGAAAACCTCCGATAGATCGAG -ACGGAAAACCTCCGATAGCTCCTT -ACGGAAAACCTCCGATAGCCTGTT -ACGGAAAACCTCCGATAGCGGTTT -ACGGAAAACCTCCGATAGGTGGTT -ACGGAAAACCTCCGATAGGCCTTT -ACGGAAAACCTCCGATAGGGTCTT -ACGGAAAACCTCCGATAGACGCTT -ACGGAAAACCTCCGATAGAGCGTT -ACGGAAAACCTCCGATAGTTCGTC -ACGGAAAACCTCCGATAGTCTCTC -ACGGAAAACCTCCGATAGTGGATC -ACGGAAAACCTCCGATAGCACTTC -ACGGAAAACCTCCGATAGGTACTC -ACGGAAAACCTCCGATAGGATGTC -ACGGAAAACCTCCGATAGACAGTC -ACGGAAAACCTCCGATAGTTGCTG -ACGGAAAACCTCCGATAGTCCATG -ACGGAAAACCTCCGATAGTGTGTG -ACGGAAAACCTCCGATAGCTAGTG -ACGGAAAACCTCCGATAGCATCTG -ACGGAAAACCTCCGATAGGAGTTG -ACGGAAAACCTCCGATAGAGACTG -ACGGAAAACCTCCGATAGTCGGTA -ACGGAAAACCTCCGATAGTGCCTA -ACGGAAAACCTCCGATAGCCACTA -ACGGAAAACCTCCGATAGGGAGTA -ACGGAAAACCTCCGATAGTCGTCT -ACGGAAAACCTCCGATAGTGCACT -ACGGAAAACCTCCGATAGCTGACT -ACGGAAAACCTCCGATAGCAACCT -ACGGAAAACCTCCGATAGGCTACT -ACGGAAAACCTCCGATAGGGATCT -ACGGAAAACCTCCGATAGAAGGCT -ACGGAAAACCTCCGATAGTCAACC -ACGGAAAACCTCCGATAGTGTTCC -ACGGAAAACCTCCGATAGATTCCC -ACGGAAAACCTCCGATAGTTCTCG -ACGGAAAACCTCCGATAGTAGACG -ACGGAAAACCTCCGATAGGTAACG -ACGGAAAACCTCCGATAGACTTCG -ACGGAAAACCTCCGATAGTACGCA -ACGGAAAACCTCCGATAGCTTGCA -ACGGAAAACCTCCGATAGCGAACA -ACGGAAAACCTCCGATAGCAGTCA -ACGGAAAACCTCCGATAGGATCCA -ACGGAAAACCTCCGATAGACGACA -ACGGAAAACCTCCGATAGAGCTCA -ACGGAAAACCTCCGATAGTCACGT -ACGGAAAACCTCCGATAGCGTAGT -ACGGAAAACCTCCGATAGGTCAGT -ACGGAAAACCTCCGATAGGAAGGT -ACGGAAAACCTCCGATAGAACCGT -ACGGAAAACCTCCGATAGTTGTGC -ACGGAAAACCTCCGATAGCTAAGC -ACGGAAAACCTCCGATAGACTAGC -ACGGAAAACCTCCGATAGAGATGC -ACGGAAAACCTCCGATAGTGAAGG -ACGGAAAACCTCCGATAGCAATGG -ACGGAAAACCTCCGATAGATGAGG -ACGGAAAACCTCCGATAGAATGGG -ACGGAAAACCTCCGATAGTCCTGA -ACGGAAAACCTCCGATAGTAGCGA -ACGGAAAACCTCCGATAGCACAGA -ACGGAAAACCTCCGATAGGCAAGA -ACGGAAAACCTCCGATAGGGTTGA -ACGGAAAACCTCCGATAGTCCGAT -ACGGAAAACCTCCGATAGTGGCAT -ACGGAAAACCTCCGATAGCGAGAT -ACGGAAAACCTCCGATAGTACCAC -ACGGAAAACCTCCGATAGCAGAAC -ACGGAAAACCTCCGATAGGTCTAC -ACGGAAAACCTCCGATAGACGTAC -ACGGAAAACCTCCGATAGAGTGAC -ACGGAAAACCTCCGATAGCTGTAG -ACGGAAAACCTCCGATAGCCTAAG -ACGGAAAACCTCCGATAGGTTCAG -ACGGAAAACCTCCGATAGGCATAG -ACGGAAAACCTCCGATAGGACAAG -ACGGAAAACCTCCGATAGAAGCAG -ACGGAAAACCTCCGATAGCGTCAA -ACGGAAAACCTCCGATAGGCTGAA -ACGGAAAACCTCCGATAGAGTACG -ACGGAAAACCTCCGATAGATCCGA -ACGGAAAACCTCCGATAGATGGGA -ACGGAAAACCTCCGATAGGTGCAA -ACGGAAAACCTCCGATAGGAGGAA -ACGGAAAACCTCCGATAGCAGGTA -ACGGAAAACCTCCGATAGGACTCT -ACGGAAAACCTCCGATAGAGTCCT -ACGGAAAACCTCCGATAGTAAGCC -ACGGAAAACCTCCGATAGATAGCC -ACGGAAAACCTCCGATAGTAACCG -ACGGAAAACCTCCGATAGATGCCA -ACGGAAAACCTCAGACACGGAAAC -ACGGAAAACCTCAGACACAACACC -ACGGAAAACCTCAGACACATCGAG -ACGGAAAACCTCAGACACCTCCTT -ACGGAAAACCTCAGACACCCTGTT -ACGGAAAACCTCAGACACCGGTTT -ACGGAAAACCTCAGACACGTGGTT -ACGGAAAACCTCAGACACGCCTTT -ACGGAAAACCTCAGACACGGTCTT -ACGGAAAACCTCAGACACACGCTT -ACGGAAAACCTCAGACACAGCGTT -ACGGAAAACCTCAGACACTTCGTC -ACGGAAAACCTCAGACACTCTCTC -ACGGAAAACCTCAGACACTGGATC -ACGGAAAACCTCAGACACCACTTC -ACGGAAAACCTCAGACACGTACTC -ACGGAAAACCTCAGACACGATGTC -ACGGAAAACCTCAGACACACAGTC -ACGGAAAACCTCAGACACTTGCTG -ACGGAAAACCTCAGACACTCCATG -ACGGAAAACCTCAGACACTGTGTG -ACGGAAAACCTCAGACACCTAGTG -ACGGAAAACCTCAGACACCATCTG -ACGGAAAACCTCAGACACGAGTTG -ACGGAAAACCTCAGACACAGACTG -ACGGAAAACCTCAGACACTCGGTA -ACGGAAAACCTCAGACACTGCCTA -ACGGAAAACCTCAGACACCCACTA -ACGGAAAACCTCAGACACGGAGTA -ACGGAAAACCTCAGACACTCGTCT -ACGGAAAACCTCAGACACTGCACT -ACGGAAAACCTCAGACACCTGACT -ACGGAAAACCTCAGACACCAACCT -ACGGAAAACCTCAGACACGCTACT -ACGGAAAACCTCAGACACGGATCT -ACGGAAAACCTCAGACACAAGGCT -ACGGAAAACCTCAGACACTCAACC -ACGGAAAACCTCAGACACTGTTCC -ACGGAAAACCTCAGACACATTCCC -ACGGAAAACCTCAGACACTTCTCG -ACGGAAAACCTCAGACACTAGACG -ACGGAAAACCTCAGACACGTAACG -ACGGAAAACCTCAGACACACTTCG -ACGGAAAACCTCAGACACTACGCA -ACGGAAAACCTCAGACACCTTGCA -ACGGAAAACCTCAGACACCGAACA -ACGGAAAACCTCAGACACCAGTCA -ACGGAAAACCTCAGACACGATCCA -ACGGAAAACCTCAGACACACGACA -ACGGAAAACCTCAGACACAGCTCA -ACGGAAAACCTCAGACACTCACGT -ACGGAAAACCTCAGACACCGTAGT -ACGGAAAACCTCAGACACGTCAGT -ACGGAAAACCTCAGACACGAAGGT -ACGGAAAACCTCAGACACAACCGT -ACGGAAAACCTCAGACACTTGTGC -ACGGAAAACCTCAGACACCTAAGC -ACGGAAAACCTCAGACACACTAGC -ACGGAAAACCTCAGACACAGATGC -ACGGAAAACCTCAGACACTGAAGG -ACGGAAAACCTCAGACACCAATGG -ACGGAAAACCTCAGACACATGAGG -ACGGAAAACCTCAGACACAATGGG -ACGGAAAACCTCAGACACTCCTGA -ACGGAAAACCTCAGACACTAGCGA -ACGGAAAACCTCAGACACCACAGA -ACGGAAAACCTCAGACACGCAAGA -ACGGAAAACCTCAGACACGGTTGA -ACGGAAAACCTCAGACACTCCGAT -ACGGAAAACCTCAGACACTGGCAT -ACGGAAAACCTCAGACACCGAGAT -ACGGAAAACCTCAGACACTACCAC -ACGGAAAACCTCAGACACCAGAAC -ACGGAAAACCTCAGACACGTCTAC -ACGGAAAACCTCAGACACACGTAC -ACGGAAAACCTCAGACACAGTGAC -ACGGAAAACCTCAGACACCTGTAG -ACGGAAAACCTCAGACACCCTAAG -ACGGAAAACCTCAGACACGTTCAG -ACGGAAAACCTCAGACACGCATAG -ACGGAAAACCTCAGACACGACAAG -ACGGAAAACCTCAGACACAAGCAG -ACGGAAAACCTCAGACACCGTCAA -ACGGAAAACCTCAGACACGCTGAA -ACGGAAAACCTCAGACACAGTACG -ACGGAAAACCTCAGACACATCCGA -ACGGAAAACCTCAGACACATGGGA -ACGGAAAACCTCAGACACGTGCAA -ACGGAAAACCTCAGACACGAGGAA -ACGGAAAACCTCAGACACCAGGTA -ACGGAAAACCTCAGACACGACTCT -ACGGAAAACCTCAGACACAGTCCT -ACGGAAAACCTCAGACACTAAGCC -ACGGAAAACCTCAGACACATAGCC -ACGGAAAACCTCAGACACTAACCG -ACGGAAAACCTCAGACACATGCCA -ACGGAAAACCTCAGAGCAGGAAAC -ACGGAAAACCTCAGAGCAAACACC -ACGGAAAACCTCAGAGCAATCGAG -ACGGAAAACCTCAGAGCACTCCTT -ACGGAAAACCTCAGAGCACCTGTT -ACGGAAAACCTCAGAGCACGGTTT -ACGGAAAACCTCAGAGCAGTGGTT -ACGGAAAACCTCAGAGCAGCCTTT -ACGGAAAACCTCAGAGCAGGTCTT -ACGGAAAACCTCAGAGCAACGCTT -ACGGAAAACCTCAGAGCAAGCGTT -ACGGAAAACCTCAGAGCATTCGTC -ACGGAAAACCTCAGAGCATCTCTC -ACGGAAAACCTCAGAGCATGGATC -ACGGAAAACCTCAGAGCACACTTC -ACGGAAAACCTCAGAGCAGTACTC -ACGGAAAACCTCAGAGCAGATGTC -ACGGAAAACCTCAGAGCAACAGTC -ACGGAAAACCTCAGAGCATTGCTG -ACGGAAAACCTCAGAGCATCCATG -ACGGAAAACCTCAGAGCATGTGTG -ACGGAAAACCTCAGAGCACTAGTG -ACGGAAAACCTCAGAGCACATCTG -ACGGAAAACCTCAGAGCAGAGTTG -ACGGAAAACCTCAGAGCAAGACTG -ACGGAAAACCTCAGAGCATCGGTA -ACGGAAAACCTCAGAGCATGCCTA -ACGGAAAACCTCAGAGCACCACTA -ACGGAAAACCTCAGAGCAGGAGTA -ACGGAAAACCTCAGAGCATCGTCT -ACGGAAAACCTCAGAGCATGCACT -ACGGAAAACCTCAGAGCACTGACT -ACGGAAAACCTCAGAGCACAACCT -ACGGAAAACCTCAGAGCAGCTACT -ACGGAAAACCTCAGAGCAGGATCT -ACGGAAAACCTCAGAGCAAAGGCT -ACGGAAAACCTCAGAGCATCAACC -ACGGAAAACCTCAGAGCATGTTCC -ACGGAAAACCTCAGAGCAATTCCC -ACGGAAAACCTCAGAGCATTCTCG -ACGGAAAACCTCAGAGCATAGACG -ACGGAAAACCTCAGAGCAGTAACG -ACGGAAAACCTCAGAGCAACTTCG -ACGGAAAACCTCAGAGCATACGCA -ACGGAAAACCTCAGAGCACTTGCA -ACGGAAAACCTCAGAGCACGAACA -ACGGAAAACCTCAGAGCACAGTCA -ACGGAAAACCTCAGAGCAGATCCA -ACGGAAAACCTCAGAGCAACGACA -ACGGAAAACCTCAGAGCAAGCTCA -ACGGAAAACCTCAGAGCATCACGT -ACGGAAAACCTCAGAGCACGTAGT -ACGGAAAACCTCAGAGCAGTCAGT -ACGGAAAACCTCAGAGCAGAAGGT -ACGGAAAACCTCAGAGCAAACCGT -ACGGAAAACCTCAGAGCATTGTGC -ACGGAAAACCTCAGAGCACTAAGC -ACGGAAAACCTCAGAGCAACTAGC -ACGGAAAACCTCAGAGCAAGATGC -ACGGAAAACCTCAGAGCATGAAGG -ACGGAAAACCTCAGAGCACAATGG -ACGGAAAACCTCAGAGCAATGAGG -ACGGAAAACCTCAGAGCAAATGGG -ACGGAAAACCTCAGAGCATCCTGA -ACGGAAAACCTCAGAGCATAGCGA -ACGGAAAACCTCAGAGCACACAGA -ACGGAAAACCTCAGAGCAGCAAGA -ACGGAAAACCTCAGAGCAGGTTGA -ACGGAAAACCTCAGAGCATCCGAT -ACGGAAAACCTCAGAGCATGGCAT -ACGGAAAACCTCAGAGCACGAGAT -ACGGAAAACCTCAGAGCATACCAC -ACGGAAAACCTCAGAGCACAGAAC -ACGGAAAACCTCAGAGCAGTCTAC -ACGGAAAACCTCAGAGCAACGTAC -ACGGAAAACCTCAGAGCAAGTGAC -ACGGAAAACCTCAGAGCACTGTAG -ACGGAAAACCTCAGAGCACCTAAG -ACGGAAAACCTCAGAGCAGTTCAG -ACGGAAAACCTCAGAGCAGCATAG -ACGGAAAACCTCAGAGCAGACAAG -ACGGAAAACCTCAGAGCAAAGCAG -ACGGAAAACCTCAGAGCACGTCAA -ACGGAAAACCTCAGAGCAGCTGAA -ACGGAAAACCTCAGAGCAAGTACG -ACGGAAAACCTCAGAGCAATCCGA -ACGGAAAACCTCAGAGCAATGGGA -ACGGAAAACCTCAGAGCAGTGCAA -ACGGAAAACCTCAGAGCAGAGGAA -ACGGAAAACCTCAGAGCACAGGTA -ACGGAAAACCTCAGAGCAGACTCT -ACGGAAAACCTCAGAGCAAGTCCT -ACGGAAAACCTCAGAGCATAAGCC -ACGGAAAACCTCAGAGCAATAGCC -ACGGAAAACCTCAGAGCATAACCG -ACGGAAAACCTCAGAGCAATGCCA -ACGGAAAACCTCTGAGGTGGAAAC -ACGGAAAACCTCTGAGGTAACACC -ACGGAAAACCTCTGAGGTATCGAG -ACGGAAAACCTCTGAGGTCTCCTT -ACGGAAAACCTCTGAGGTCCTGTT -ACGGAAAACCTCTGAGGTCGGTTT -ACGGAAAACCTCTGAGGTGTGGTT -ACGGAAAACCTCTGAGGTGCCTTT -ACGGAAAACCTCTGAGGTGGTCTT -ACGGAAAACCTCTGAGGTACGCTT -ACGGAAAACCTCTGAGGTAGCGTT -ACGGAAAACCTCTGAGGTTTCGTC -ACGGAAAACCTCTGAGGTTCTCTC -ACGGAAAACCTCTGAGGTTGGATC -ACGGAAAACCTCTGAGGTCACTTC -ACGGAAAACCTCTGAGGTGTACTC -ACGGAAAACCTCTGAGGTGATGTC -ACGGAAAACCTCTGAGGTACAGTC -ACGGAAAACCTCTGAGGTTTGCTG -ACGGAAAACCTCTGAGGTTCCATG -ACGGAAAACCTCTGAGGTTGTGTG -ACGGAAAACCTCTGAGGTCTAGTG -ACGGAAAACCTCTGAGGTCATCTG -ACGGAAAACCTCTGAGGTGAGTTG -ACGGAAAACCTCTGAGGTAGACTG -ACGGAAAACCTCTGAGGTTCGGTA -ACGGAAAACCTCTGAGGTTGCCTA -ACGGAAAACCTCTGAGGTCCACTA -ACGGAAAACCTCTGAGGTGGAGTA -ACGGAAAACCTCTGAGGTTCGTCT -ACGGAAAACCTCTGAGGTTGCACT -ACGGAAAACCTCTGAGGTCTGACT -ACGGAAAACCTCTGAGGTCAACCT -ACGGAAAACCTCTGAGGTGCTACT -ACGGAAAACCTCTGAGGTGGATCT -ACGGAAAACCTCTGAGGTAAGGCT -ACGGAAAACCTCTGAGGTTCAACC -ACGGAAAACCTCTGAGGTTGTTCC -ACGGAAAACCTCTGAGGTATTCCC -ACGGAAAACCTCTGAGGTTTCTCG -ACGGAAAACCTCTGAGGTTAGACG -ACGGAAAACCTCTGAGGTGTAACG -ACGGAAAACCTCTGAGGTACTTCG -ACGGAAAACCTCTGAGGTTACGCA -ACGGAAAACCTCTGAGGTCTTGCA -ACGGAAAACCTCTGAGGTCGAACA -ACGGAAAACCTCTGAGGTCAGTCA -ACGGAAAACCTCTGAGGTGATCCA -ACGGAAAACCTCTGAGGTACGACA -ACGGAAAACCTCTGAGGTAGCTCA -ACGGAAAACCTCTGAGGTTCACGT -ACGGAAAACCTCTGAGGTCGTAGT -ACGGAAAACCTCTGAGGTGTCAGT -ACGGAAAACCTCTGAGGTGAAGGT -ACGGAAAACCTCTGAGGTAACCGT -ACGGAAAACCTCTGAGGTTTGTGC -ACGGAAAACCTCTGAGGTCTAAGC -ACGGAAAACCTCTGAGGTACTAGC -ACGGAAAACCTCTGAGGTAGATGC -ACGGAAAACCTCTGAGGTTGAAGG -ACGGAAAACCTCTGAGGTCAATGG -ACGGAAAACCTCTGAGGTATGAGG -ACGGAAAACCTCTGAGGTAATGGG -ACGGAAAACCTCTGAGGTTCCTGA -ACGGAAAACCTCTGAGGTTAGCGA -ACGGAAAACCTCTGAGGTCACAGA -ACGGAAAACCTCTGAGGTGCAAGA -ACGGAAAACCTCTGAGGTGGTTGA -ACGGAAAACCTCTGAGGTTCCGAT -ACGGAAAACCTCTGAGGTTGGCAT -ACGGAAAACCTCTGAGGTCGAGAT -ACGGAAAACCTCTGAGGTTACCAC -ACGGAAAACCTCTGAGGTCAGAAC -ACGGAAAACCTCTGAGGTGTCTAC -ACGGAAAACCTCTGAGGTACGTAC -ACGGAAAACCTCTGAGGTAGTGAC -ACGGAAAACCTCTGAGGTCTGTAG -ACGGAAAACCTCTGAGGTCCTAAG -ACGGAAAACCTCTGAGGTGTTCAG -ACGGAAAACCTCTGAGGTGCATAG -ACGGAAAACCTCTGAGGTGACAAG -ACGGAAAACCTCTGAGGTAAGCAG -ACGGAAAACCTCTGAGGTCGTCAA -ACGGAAAACCTCTGAGGTGCTGAA -ACGGAAAACCTCTGAGGTAGTACG -ACGGAAAACCTCTGAGGTATCCGA -ACGGAAAACCTCTGAGGTATGGGA -ACGGAAAACCTCTGAGGTGTGCAA -ACGGAAAACCTCTGAGGTGAGGAA -ACGGAAAACCTCTGAGGTCAGGTA -ACGGAAAACCTCTGAGGTGACTCT -ACGGAAAACCTCTGAGGTAGTCCT -ACGGAAAACCTCTGAGGTTAAGCC -ACGGAAAACCTCTGAGGTATAGCC -ACGGAAAACCTCTGAGGTTAACCG -ACGGAAAACCTCTGAGGTATGCCA -ACGGAAAACCTCGATTCCGGAAAC -ACGGAAAACCTCGATTCCAACACC -ACGGAAAACCTCGATTCCATCGAG -ACGGAAAACCTCGATTCCCTCCTT -ACGGAAAACCTCGATTCCCCTGTT -ACGGAAAACCTCGATTCCCGGTTT -ACGGAAAACCTCGATTCCGTGGTT -ACGGAAAACCTCGATTCCGCCTTT -ACGGAAAACCTCGATTCCGGTCTT -ACGGAAAACCTCGATTCCACGCTT -ACGGAAAACCTCGATTCCAGCGTT -ACGGAAAACCTCGATTCCTTCGTC -ACGGAAAACCTCGATTCCTCTCTC -ACGGAAAACCTCGATTCCTGGATC -ACGGAAAACCTCGATTCCCACTTC -ACGGAAAACCTCGATTCCGTACTC -ACGGAAAACCTCGATTCCGATGTC -ACGGAAAACCTCGATTCCACAGTC -ACGGAAAACCTCGATTCCTTGCTG -ACGGAAAACCTCGATTCCTCCATG -ACGGAAAACCTCGATTCCTGTGTG -ACGGAAAACCTCGATTCCCTAGTG -ACGGAAAACCTCGATTCCCATCTG -ACGGAAAACCTCGATTCCGAGTTG -ACGGAAAACCTCGATTCCAGACTG -ACGGAAAACCTCGATTCCTCGGTA -ACGGAAAACCTCGATTCCTGCCTA -ACGGAAAACCTCGATTCCCCACTA -ACGGAAAACCTCGATTCCGGAGTA -ACGGAAAACCTCGATTCCTCGTCT -ACGGAAAACCTCGATTCCTGCACT -ACGGAAAACCTCGATTCCCTGACT -ACGGAAAACCTCGATTCCCAACCT -ACGGAAAACCTCGATTCCGCTACT -ACGGAAAACCTCGATTCCGGATCT -ACGGAAAACCTCGATTCCAAGGCT -ACGGAAAACCTCGATTCCTCAACC -ACGGAAAACCTCGATTCCTGTTCC -ACGGAAAACCTCGATTCCATTCCC -ACGGAAAACCTCGATTCCTTCTCG -ACGGAAAACCTCGATTCCTAGACG -ACGGAAAACCTCGATTCCGTAACG -ACGGAAAACCTCGATTCCACTTCG -ACGGAAAACCTCGATTCCTACGCA -ACGGAAAACCTCGATTCCCTTGCA -ACGGAAAACCTCGATTCCCGAACA -ACGGAAAACCTCGATTCCCAGTCA -ACGGAAAACCTCGATTCCGATCCA -ACGGAAAACCTCGATTCCACGACA -ACGGAAAACCTCGATTCCAGCTCA -ACGGAAAACCTCGATTCCTCACGT -ACGGAAAACCTCGATTCCCGTAGT -ACGGAAAACCTCGATTCCGTCAGT -ACGGAAAACCTCGATTCCGAAGGT -ACGGAAAACCTCGATTCCAACCGT -ACGGAAAACCTCGATTCCTTGTGC -ACGGAAAACCTCGATTCCCTAAGC -ACGGAAAACCTCGATTCCACTAGC -ACGGAAAACCTCGATTCCAGATGC -ACGGAAAACCTCGATTCCTGAAGG -ACGGAAAACCTCGATTCCCAATGG -ACGGAAAACCTCGATTCCATGAGG -ACGGAAAACCTCGATTCCAATGGG -ACGGAAAACCTCGATTCCTCCTGA -ACGGAAAACCTCGATTCCTAGCGA -ACGGAAAACCTCGATTCCCACAGA -ACGGAAAACCTCGATTCCGCAAGA -ACGGAAAACCTCGATTCCGGTTGA -ACGGAAAACCTCGATTCCTCCGAT -ACGGAAAACCTCGATTCCTGGCAT -ACGGAAAACCTCGATTCCCGAGAT -ACGGAAAACCTCGATTCCTACCAC -ACGGAAAACCTCGATTCCCAGAAC -ACGGAAAACCTCGATTCCGTCTAC -ACGGAAAACCTCGATTCCACGTAC -ACGGAAAACCTCGATTCCAGTGAC -ACGGAAAACCTCGATTCCCTGTAG -ACGGAAAACCTCGATTCCCCTAAG -ACGGAAAACCTCGATTCCGTTCAG -ACGGAAAACCTCGATTCCGCATAG -ACGGAAAACCTCGATTCCGACAAG -ACGGAAAACCTCGATTCCAAGCAG -ACGGAAAACCTCGATTCCCGTCAA -ACGGAAAACCTCGATTCCGCTGAA -ACGGAAAACCTCGATTCCAGTACG -ACGGAAAACCTCGATTCCATCCGA -ACGGAAAACCTCGATTCCATGGGA -ACGGAAAACCTCGATTCCGTGCAA -ACGGAAAACCTCGATTCCGAGGAA -ACGGAAAACCTCGATTCCCAGGTA -ACGGAAAACCTCGATTCCGACTCT -ACGGAAAACCTCGATTCCAGTCCT -ACGGAAAACCTCGATTCCTAAGCC -ACGGAAAACCTCGATTCCATAGCC -ACGGAAAACCTCGATTCCTAACCG -ACGGAAAACCTCGATTCCATGCCA -ACGGAAAACCTCCATTGGGGAAAC -ACGGAAAACCTCCATTGGAACACC -ACGGAAAACCTCCATTGGATCGAG -ACGGAAAACCTCCATTGGCTCCTT -ACGGAAAACCTCCATTGGCCTGTT -ACGGAAAACCTCCATTGGCGGTTT -ACGGAAAACCTCCATTGGGTGGTT -ACGGAAAACCTCCATTGGGCCTTT -ACGGAAAACCTCCATTGGGGTCTT -ACGGAAAACCTCCATTGGACGCTT -ACGGAAAACCTCCATTGGAGCGTT -ACGGAAAACCTCCATTGGTTCGTC -ACGGAAAACCTCCATTGGTCTCTC -ACGGAAAACCTCCATTGGTGGATC -ACGGAAAACCTCCATTGGCACTTC -ACGGAAAACCTCCATTGGGTACTC -ACGGAAAACCTCCATTGGGATGTC -ACGGAAAACCTCCATTGGACAGTC -ACGGAAAACCTCCATTGGTTGCTG -ACGGAAAACCTCCATTGGTCCATG -ACGGAAAACCTCCATTGGTGTGTG -ACGGAAAACCTCCATTGGCTAGTG -ACGGAAAACCTCCATTGGCATCTG -ACGGAAAACCTCCATTGGGAGTTG -ACGGAAAACCTCCATTGGAGACTG -ACGGAAAACCTCCATTGGTCGGTA -ACGGAAAACCTCCATTGGTGCCTA -ACGGAAAACCTCCATTGGCCACTA -ACGGAAAACCTCCATTGGGGAGTA -ACGGAAAACCTCCATTGGTCGTCT -ACGGAAAACCTCCATTGGTGCACT -ACGGAAAACCTCCATTGGCTGACT -ACGGAAAACCTCCATTGGCAACCT -ACGGAAAACCTCCATTGGGCTACT -ACGGAAAACCTCCATTGGGGATCT -ACGGAAAACCTCCATTGGAAGGCT -ACGGAAAACCTCCATTGGTCAACC -ACGGAAAACCTCCATTGGTGTTCC -ACGGAAAACCTCCATTGGATTCCC -ACGGAAAACCTCCATTGGTTCTCG -ACGGAAAACCTCCATTGGTAGACG -ACGGAAAACCTCCATTGGGTAACG -ACGGAAAACCTCCATTGGACTTCG -ACGGAAAACCTCCATTGGTACGCA -ACGGAAAACCTCCATTGGCTTGCA -ACGGAAAACCTCCATTGGCGAACA -ACGGAAAACCTCCATTGGCAGTCA -ACGGAAAACCTCCATTGGGATCCA -ACGGAAAACCTCCATTGGACGACA -ACGGAAAACCTCCATTGGAGCTCA -ACGGAAAACCTCCATTGGTCACGT -ACGGAAAACCTCCATTGGCGTAGT -ACGGAAAACCTCCATTGGGTCAGT -ACGGAAAACCTCCATTGGGAAGGT -ACGGAAAACCTCCATTGGAACCGT -ACGGAAAACCTCCATTGGTTGTGC -ACGGAAAACCTCCATTGGCTAAGC -ACGGAAAACCTCCATTGGACTAGC -ACGGAAAACCTCCATTGGAGATGC -ACGGAAAACCTCCATTGGTGAAGG -ACGGAAAACCTCCATTGGCAATGG -ACGGAAAACCTCCATTGGATGAGG -ACGGAAAACCTCCATTGGAATGGG -ACGGAAAACCTCCATTGGTCCTGA -ACGGAAAACCTCCATTGGTAGCGA -ACGGAAAACCTCCATTGGCACAGA -ACGGAAAACCTCCATTGGGCAAGA -ACGGAAAACCTCCATTGGGGTTGA -ACGGAAAACCTCCATTGGTCCGAT -ACGGAAAACCTCCATTGGTGGCAT -ACGGAAAACCTCCATTGGCGAGAT -ACGGAAAACCTCCATTGGTACCAC -ACGGAAAACCTCCATTGGCAGAAC -ACGGAAAACCTCCATTGGGTCTAC -ACGGAAAACCTCCATTGGACGTAC -ACGGAAAACCTCCATTGGAGTGAC -ACGGAAAACCTCCATTGGCTGTAG -ACGGAAAACCTCCATTGGCCTAAG -ACGGAAAACCTCCATTGGGTTCAG -ACGGAAAACCTCCATTGGGCATAG -ACGGAAAACCTCCATTGGGACAAG -ACGGAAAACCTCCATTGGAAGCAG -ACGGAAAACCTCCATTGGCGTCAA -ACGGAAAACCTCCATTGGGCTGAA -ACGGAAAACCTCCATTGGAGTACG -ACGGAAAACCTCCATTGGATCCGA -ACGGAAAACCTCCATTGGATGGGA -ACGGAAAACCTCCATTGGGTGCAA -ACGGAAAACCTCCATTGGGAGGAA -ACGGAAAACCTCCATTGGCAGGTA -ACGGAAAACCTCCATTGGGACTCT -ACGGAAAACCTCCATTGGAGTCCT -ACGGAAAACCTCCATTGGTAAGCC -ACGGAAAACCTCCATTGGATAGCC -ACGGAAAACCTCCATTGGTAACCG -ACGGAAAACCTCCATTGGATGCCA -ACGGAAAACCTCGATCGAGGAAAC -ACGGAAAACCTCGATCGAAACACC -ACGGAAAACCTCGATCGAATCGAG -ACGGAAAACCTCGATCGACTCCTT -ACGGAAAACCTCGATCGACCTGTT -ACGGAAAACCTCGATCGACGGTTT -ACGGAAAACCTCGATCGAGTGGTT -ACGGAAAACCTCGATCGAGCCTTT -ACGGAAAACCTCGATCGAGGTCTT -ACGGAAAACCTCGATCGAACGCTT -ACGGAAAACCTCGATCGAAGCGTT -ACGGAAAACCTCGATCGATTCGTC -ACGGAAAACCTCGATCGATCTCTC -ACGGAAAACCTCGATCGATGGATC -ACGGAAAACCTCGATCGACACTTC -ACGGAAAACCTCGATCGAGTACTC -ACGGAAAACCTCGATCGAGATGTC -ACGGAAAACCTCGATCGAACAGTC -ACGGAAAACCTCGATCGATTGCTG -ACGGAAAACCTCGATCGATCCATG -ACGGAAAACCTCGATCGATGTGTG -ACGGAAAACCTCGATCGACTAGTG -ACGGAAAACCTCGATCGACATCTG -ACGGAAAACCTCGATCGAGAGTTG -ACGGAAAACCTCGATCGAAGACTG -ACGGAAAACCTCGATCGATCGGTA -ACGGAAAACCTCGATCGATGCCTA -ACGGAAAACCTCGATCGACCACTA -ACGGAAAACCTCGATCGAGGAGTA -ACGGAAAACCTCGATCGATCGTCT -ACGGAAAACCTCGATCGATGCACT -ACGGAAAACCTCGATCGACTGACT -ACGGAAAACCTCGATCGACAACCT -ACGGAAAACCTCGATCGAGCTACT -ACGGAAAACCTCGATCGAGGATCT -ACGGAAAACCTCGATCGAAAGGCT -ACGGAAAACCTCGATCGATCAACC -ACGGAAAACCTCGATCGATGTTCC -ACGGAAAACCTCGATCGAATTCCC -ACGGAAAACCTCGATCGATTCTCG -ACGGAAAACCTCGATCGATAGACG -ACGGAAAACCTCGATCGAGTAACG -ACGGAAAACCTCGATCGAACTTCG -ACGGAAAACCTCGATCGATACGCA -ACGGAAAACCTCGATCGACTTGCA -ACGGAAAACCTCGATCGACGAACA -ACGGAAAACCTCGATCGACAGTCA -ACGGAAAACCTCGATCGAGATCCA -ACGGAAAACCTCGATCGAACGACA -ACGGAAAACCTCGATCGAAGCTCA -ACGGAAAACCTCGATCGATCACGT -ACGGAAAACCTCGATCGACGTAGT -ACGGAAAACCTCGATCGAGTCAGT -ACGGAAAACCTCGATCGAGAAGGT -ACGGAAAACCTCGATCGAAACCGT -ACGGAAAACCTCGATCGATTGTGC -ACGGAAAACCTCGATCGACTAAGC -ACGGAAAACCTCGATCGAACTAGC -ACGGAAAACCTCGATCGAAGATGC -ACGGAAAACCTCGATCGATGAAGG -ACGGAAAACCTCGATCGACAATGG -ACGGAAAACCTCGATCGAATGAGG -ACGGAAAACCTCGATCGAAATGGG -ACGGAAAACCTCGATCGATCCTGA -ACGGAAAACCTCGATCGATAGCGA -ACGGAAAACCTCGATCGACACAGA -ACGGAAAACCTCGATCGAGCAAGA -ACGGAAAACCTCGATCGAGGTTGA -ACGGAAAACCTCGATCGATCCGAT -ACGGAAAACCTCGATCGATGGCAT -ACGGAAAACCTCGATCGACGAGAT -ACGGAAAACCTCGATCGATACCAC -ACGGAAAACCTCGATCGACAGAAC -ACGGAAAACCTCGATCGAGTCTAC -ACGGAAAACCTCGATCGAACGTAC -ACGGAAAACCTCGATCGAAGTGAC -ACGGAAAACCTCGATCGACTGTAG -ACGGAAAACCTCGATCGACCTAAG -ACGGAAAACCTCGATCGAGTTCAG -ACGGAAAACCTCGATCGAGCATAG -ACGGAAAACCTCGATCGAGACAAG -ACGGAAAACCTCGATCGAAAGCAG -ACGGAAAACCTCGATCGACGTCAA -ACGGAAAACCTCGATCGAGCTGAA -ACGGAAAACCTCGATCGAAGTACG -ACGGAAAACCTCGATCGAATCCGA -ACGGAAAACCTCGATCGAATGGGA -ACGGAAAACCTCGATCGAGTGCAA -ACGGAAAACCTCGATCGAGAGGAA -ACGGAAAACCTCGATCGACAGGTA -ACGGAAAACCTCGATCGAGACTCT -ACGGAAAACCTCGATCGAAGTCCT -ACGGAAAACCTCGATCGATAAGCC -ACGGAAAACCTCGATCGAATAGCC -ACGGAAAACCTCGATCGATAACCG -ACGGAAAACCTCGATCGAATGCCA -ACGGAAAACCTCCACTACGGAAAC -ACGGAAAACCTCCACTACAACACC -ACGGAAAACCTCCACTACATCGAG -ACGGAAAACCTCCACTACCTCCTT -ACGGAAAACCTCCACTACCCTGTT -ACGGAAAACCTCCACTACCGGTTT -ACGGAAAACCTCCACTACGTGGTT -ACGGAAAACCTCCACTACGCCTTT -ACGGAAAACCTCCACTACGGTCTT -ACGGAAAACCTCCACTACACGCTT -ACGGAAAACCTCCACTACAGCGTT -ACGGAAAACCTCCACTACTTCGTC -ACGGAAAACCTCCACTACTCTCTC -ACGGAAAACCTCCACTACTGGATC -ACGGAAAACCTCCACTACCACTTC -ACGGAAAACCTCCACTACGTACTC -ACGGAAAACCTCCACTACGATGTC -ACGGAAAACCTCCACTACACAGTC -ACGGAAAACCTCCACTACTTGCTG -ACGGAAAACCTCCACTACTCCATG -ACGGAAAACCTCCACTACTGTGTG -ACGGAAAACCTCCACTACCTAGTG -ACGGAAAACCTCCACTACCATCTG -ACGGAAAACCTCCACTACGAGTTG -ACGGAAAACCTCCACTACAGACTG -ACGGAAAACCTCCACTACTCGGTA -ACGGAAAACCTCCACTACTGCCTA -ACGGAAAACCTCCACTACCCACTA -ACGGAAAACCTCCACTACGGAGTA -ACGGAAAACCTCCACTACTCGTCT -ACGGAAAACCTCCACTACTGCACT -ACGGAAAACCTCCACTACCTGACT -ACGGAAAACCTCCACTACCAACCT -ACGGAAAACCTCCACTACGCTACT -ACGGAAAACCTCCACTACGGATCT -ACGGAAAACCTCCACTACAAGGCT -ACGGAAAACCTCCACTACTCAACC -ACGGAAAACCTCCACTACTGTTCC -ACGGAAAACCTCCACTACATTCCC -ACGGAAAACCTCCACTACTTCTCG -ACGGAAAACCTCCACTACTAGACG -ACGGAAAACCTCCACTACGTAACG -ACGGAAAACCTCCACTACACTTCG -ACGGAAAACCTCCACTACTACGCA -ACGGAAAACCTCCACTACCTTGCA -ACGGAAAACCTCCACTACCGAACA -ACGGAAAACCTCCACTACCAGTCA -ACGGAAAACCTCCACTACGATCCA -ACGGAAAACCTCCACTACACGACA -ACGGAAAACCTCCACTACAGCTCA -ACGGAAAACCTCCACTACTCACGT -ACGGAAAACCTCCACTACCGTAGT -ACGGAAAACCTCCACTACGTCAGT -ACGGAAAACCTCCACTACGAAGGT -ACGGAAAACCTCCACTACAACCGT -ACGGAAAACCTCCACTACTTGTGC -ACGGAAAACCTCCACTACCTAAGC -ACGGAAAACCTCCACTACACTAGC -ACGGAAAACCTCCACTACAGATGC -ACGGAAAACCTCCACTACTGAAGG -ACGGAAAACCTCCACTACCAATGG -ACGGAAAACCTCCACTACATGAGG -ACGGAAAACCTCCACTACAATGGG -ACGGAAAACCTCCACTACTCCTGA -ACGGAAAACCTCCACTACTAGCGA -ACGGAAAACCTCCACTACCACAGA -ACGGAAAACCTCCACTACGCAAGA -ACGGAAAACCTCCACTACGGTTGA -ACGGAAAACCTCCACTACTCCGAT -ACGGAAAACCTCCACTACTGGCAT -ACGGAAAACCTCCACTACCGAGAT -ACGGAAAACCTCCACTACTACCAC -ACGGAAAACCTCCACTACCAGAAC -ACGGAAAACCTCCACTACGTCTAC -ACGGAAAACCTCCACTACACGTAC -ACGGAAAACCTCCACTACAGTGAC -ACGGAAAACCTCCACTACCTGTAG -ACGGAAAACCTCCACTACCCTAAG -ACGGAAAACCTCCACTACGTTCAG -ACGGAAAACCTCCACTACGCATAG -ACGGAAAACCTCCACTACGACAAG -ACGGAAAACCTCCACTACAAGCAG -ACGGAAAACCTCCACTACCGTCAA -ACGGAAAACCTCCACTACGCTGAA -ACGGAAAACCTCCACTACAGTACG -ACGGAAAACCTCCACTACATCCGA -ACGGAAAACCTCCACTACATGGGA -ACGGAAAACCTCCACTACGTGCAA -ACGGAAAACCTCCACTACGAGGAA -ACGGAAAACCTCCACTACCAGGTA -ACGGAAAACCTCCACTACGACTCT -ACGGAAAACCTCCACTACAGTCCT -ACGGAAAACCTCCACTACTAAGCC -ACGGAAAACCTCCACTACATAGCC -ACGGAAAACCTCCACTACTAACCG -ACGGAAAACCTCCACTACATGCCA -ACGGAAAACCTCAACCAGGGAAAC -ACGGAAAACCTCAACCAGAACACC -ACGGAAAACCTCAACCAGATCGAG -ACGGAAAACCTCAACCAGCTCCTT -ACGGAAAACCTCAACCAGCCTGTT -ACGGAAAACCTCAACCAGCGGTTT -ACGGAAAACCTCAACCAGGTGGTT -ACGGAAAACCTCAACCAGGCCTTT -ACGGAAAACCTCAACCAGGGTCTT -ACGGAAAACCTCAACCAGACGCTT -ACGGAAAACCTCAACCAGAGCGTT -ACGGAAAACCTCAACCAGTTCGTC -ACGGAAAACCTCAACCAGTCTCTC -ACGGAAAACCTCAACCAGTGGATC -ACGGAAAACCTCAACCAGCACTTC -ACGGAAAACCTCAACCAGGTACTC -ACGGAAAACCTCAACCAGGATGTC -ACGGAAAACCTCAACCAGACAGTC -ACGGAAAACCTCAACCAGTTGCTG -ACGGAAAACCTCAACCAGTCCATG -ACGGAAAACCTCAACCAGTGTGTG -ACGGAAAACCTCAACCAGCTAGTG -ACGGAAAACCTCAACCAGCATCTG -ACGGAAAACCTCAACCAGGAGTTG -ACGGAAAACCTCAACCAGAGACTG -ACGGAAAACCTCAACCAGTCGGTA -ACGGAAAACCTCAACCAGTGCCTA -ACGGAAAACCTCAACCAGCCACTA -ACGGAAAACCTCAACCAGGGAGTA -ACGGAAAACCTCAACCAGTCGTCT -ACGGAAAACCTCAACCAGTGCACT -ACGGAAAACCTCAACCAGCTGACT -ACGGAAAACCTCAACCAGCAACCT -ACGGAAAACCTCAACCAGGCTACT -ACGGAAAACCTCAACCAGGGATCT -ACGGAAAACCTCAACCAGAAGGCT -ACGGAAAACCTCAACCAGTCAACC -ACGGAAAACCTCAACCAGTGTTCC -ACGGAAAACCTCAACCAGATTCCC -ACGGAAAACCTCAACCAGTTCTCG -ACGGAAAACCTCAACCAGTAGACG -ACGGAAAACCTCAACCAGGTAACG -ACGGAAAACCTCAACCAGACTTCG -ACGGAAAACCTCAACCAGTACGCA -ACGGAAAACCTCAACCAGCTTGCA -ACGGAAAACCTCAACCAGCGAACA -ACGGAAAACCTCAACCAGCAGTCA -ACGGAAAACCTCAACCAGGATCCA -ACGGAAAACCTCAACCAGACGACA -ACGGAAAACCTCAACCAGAGCTCA -ACGGAAAACCTCAACCAGTCACGT -ACGGAAAACCTCAACCAGCGTAGT -ACGGAAAACCTCAACCAGGTCAGT -ACGGAAAACCTCAACCAGGAAGGT -ACGGAAAACCTCAACCAGAACCGT -ACGGAAAACCTCAACCAGTTGTGC -ACGGAAAACCTCAACCAGCTAAGC -ACGGAAAACCTCAACCAGACTAGC -ACGGAAAACCTCAACCAGAGATGC -ACGGAAAACCTCAACCAGTGAAGG -ACGGAAAACCTCAACCAGCAATGG -ACGGAAAACCTCAACCAGATGAGG -ACGGAAAACCTCAACCAGAATGGG -ACGGAAAACCTCAACCAGTCCTGA -ACGGAAAACCTCAACCAGTAGCGA -ACGGAAAACCTCAACCAGCACAGA -ACGGAAAACCTCAACCAGGCAAGA -ACGGAAAACCTCAACCAGGGTTGA -ACGGAAAACCTCAACCAGTCCGAT -ACGGAAAACCTCAACCAGTGGCAT -ACGGAAAACCTCAACCAGCGAGAT -ACGGAAAACCTCAACCAGTACCAC -ACGGAAAACCTCAACCAGCAGAAC -ACGGAAAACCTCAACCAGGTCTAC -ACGGAAAACCTCAACCAGACGTAC -ACGGAAAACCTCAACCAGAGTGAC -ACGGAAAACCTCAACCAGCTGTAG -ACGGAAAACCTCAACCAGCCTAAG -ACGGAAAACCTCAACCAGGTTCAG -ACGGAAAACCTCAACCAGGCATAG -ACGGAAAACCTCAACCAGGACAAG -ACGGAAAACCTCAACCAGAAGCAG -ACGGAAAACCTCAACCAGCGTCAA -ACGGAAAACCTCAACCAGGCTGAA -ACGGAAAACCTCAACCAGAGTACG -ACGGAAAACCTCAACCAGATCCGA -ACGGAAAACCTCAACCAGATGGGA -ACGGAAAACCTCAACCAGGTGCAA -ACGGAAAACCTCAACCAGGAGGAA -ACGGAAAACCTCAACCAGCAGGTA -ACGGAAAACCTCAACCAGGACTCT -ACGGAAAACCTCAACCAGAGTCCT -ACGGAAAACCTCAACCAGTAAGCC -ACGGAAAACCTCAACCAGATAGCC -ACGGAAAACCTCAACCAGTAACCG -ACGGAAAACCTCAACCAGATGCCA -ACGGAAAACCTCTACGTCGGAAAC -ACGGAAAACCTCTACGTCAACACC -ACGGAAAACCTCTACGTCATCGAG -ACGGAAAACCTCTACGTCCTCCTT -ACGGAAAACCTCTACGTCCCTGTT -ACGGAAAACCTCTACGTCCGGTTT -ACGGAAAACCTCTACGTCGTGGTT -ACGGAAAACCTCTACGTCGCCTTT -ACGGAAAACCTCTACGTCGGTCTT -ACGGAAAACCTCTACGTCACGCTT -ACGGAAAACCTCTACGTCAGCGTT -ACGGAAAACCTCTACGTCTTCGTC -ACGGAAAACCTCTACGTCTCTCTC -ACGGAAAACCTCTACGTCTGGATC -ACGGAAAACCTCTACGTCCACTTC -ACGGAAAACCTCTACGTCGTACTC -ACGGAAAACCTCTACGTCGATGTC -ACGGAAAACCTCTACGTCACAGTC -ACGGAAAACCTCTACGTCTTGCTG -ACGGAAAACCTCTACGTCTCCATG -ACGGAAAACCTCTACGTCTGTGTG -ACGGAAAACCTCTACGTCCTAGTG -ACGGAAAACCTCTACGTCCATCTG -ACGGAAAACCTCTACGTCGAGTTG -ACGGAAAACCTCTACGTCAGACTG -ACGGAAAACCTCTACGTCTCGGTA -ACGGAAAACCTCTACGTCTGCCTA -ACGGAAAACCTCTACGTCCCACTA -ACGGAAAACCTCTACGTCGGAGTA -ACGGAAAACCTCTACGTCTCGTCT -ACGGAAAACCTCTACGTCTGCACT -ACGGAAAACCTCTACGTCCTGACT -ACGGAAAACCTCTACGTCCAACCT -ACGGAAAACCTCTACGTCGCTACT -ACGGAAAACCTCTACGTCGGATCT -ACGGAAAACCTCTACGTCAAGGCT -ACGGAAAACCTCTACGTCTCAACC -ACGGAAAACCTCTACGTCTGTTCC -ACGGAAAACCTCTACGTCATTCCC -ACGGAAAACCTCTACGTCTTCTCG -ACGGAAAACCTCTACGTCTAGACG -ACGGAAAACCTCTACGTCGTAACG -ACGGAAAACCTCTACGTCACTTCG -ACGGAAAACCTCTACGTCTACGCA -ACGGAAAACCTCTACGTCCTTGCA -ACGGAAAACCTCTACGTCCGAACA -ACGGAAAACCTCTACGTCCAGTCA -ACGGAAAACCTCTACGTCGATCCA -ACGGAAAACCTCTACGTCACGACA -ACGGAAAACCTCTACGTCAGCTCA -ACGGAAAACCTCTACGTCTCACGT -ACGGAAAACCTCTACGTCCGTAGT -ACGGAAAACCTCTACGTCGTCAGT -ACGGAAAACCTCTACGTCGAAGGT -ACGGAAAACCTCTACGTCAACCGT -ACGGAAAACCTCTACGTCTTGTGC -ACGGAAAACCTCTACGTCCTAAGC -ACGGAAAACCTCTACGTCACTAGC -ACGGAAAACCTCTACGTCAGATGC -ACGGAAAACCTCTACGTCTGAAGG -ACGGAAAACCTCTACGTCCAATGG -ACGGAAAACCTCTACGTCATGAGG -ACGGAAAACCTCTACGTCAATGGG -ACGGAAAACCTCTACGTCTCCTGA -ACGGAAAACCTCTACGTCTAGCGA -ACGGAAAACCTCTACGTCCACAGA -ACGGAAAACCTCTACGTCGCAAGA -ACGGAAAACCTCTACGTCGGTTGA -ACGGAAAACCTCTACGTCTCCGAT -ACGGAAAACCTCTACGTCTGGCAT -ACGGAAAACCTCTACGTCCGAGAT -ACGGAAAACCTCTACGTCTACCAC -ACGGAAAACCTCTACGTCCAGAAC -ACGGAAAACCTCTACGTCGTCTAC -ACGGAAAACCTCTACGTCACGTAC -ACGGAAAACCTCTACGTCAGTGAC -ACGGAAAACCTCTACGTCCTGTAG -ACGGAAAACCTCTACGTCCCTAAG -ACGGAAAACCTCTACGTCGTTCAG -ACGGAAAACCTCTACGTCGCATAG -ACGGAAAACCTCTACGTCGACAAG -ACGGAAAACCTCTACGTCAAGCAG -ACGGAAAACCTCTACGTCCGTCAA -ACGGAAAACCTCTACGTCGCTGAA -ACGGAAAACCTCTACGTCAGTACG -ACGGAAAACCTCTACGTCATCCGA -ACGGAAAACCTCTACGTCATGGGA -ACGGAAAACCTCTACGTCGTGCAA -ACGGAAAACCTCTACGTCGAGGAA -ACGGAAAACCTCTACGTCCAGGTA -ACGGAAAACCTCTACGTCGACTCT -ACGGAAAACCTCTACGTCAGTCCT -ACGGAAAACCTCTACGTCTAAGCC -ACGGAAAACCTCTACGTCATAGCC -ACGGAAAACCTCTACGTCTAACCG -ACGGAAAACCTCTACGTCATGCCA -ACGGAAAACCTCTACACGGGAAAC -ACGGAAAACCTCTACACGAACACC -ACGGAAAACCTCTACACGATCGAG -ACGGAAAACCTCTACACGCTCCTT -ACGGAAAACCTCTACACGCCTGTT -ACGGAAAACCTCTACACGCGGTTT -ACGGAAAACCTCTACACGGTGGTT -ACGGAAAACCTCTACACGGCCTTT -ACGGAAAACCTCTACACGGGTCTT -ACGGAAAACCTCTACACGACGCTT -ACGGAAAACCTCTACACGAGCGTT -ACGGAAAACCTCTACACGTTCGTC -ACGGAAAACCTCTACACGTCTCTC -ACGGAAAACCTCTACACGTGGATC -ACGGAAAACCTCTACACGCACTTC -ACGGAAAACCTCTACACGGTACTC -ACGGAAAACCTCTACACGGATGTC -ACGGAAAACCTCTACACGACAGTC -ACGGAAAACCTCTACACGTTGCTG -ACGGAAAACCTCTACACGTCCATG -ACGGAAAACCTCTACACGTGTGTG -ACGGAAAACCTCTACACGCTAGTG -ACGGAAAACCTCTACACGCATCTG -ACGGAAAACCTCTACACGGAGTTG -ACGGAAAACCTCTACACGAGACTG -ACGGAAAACCTCTACACGTCGGTA -ACGGAAAACCTCTACACGTGCCTA -ACGGAAAACCTCTACACGCCACTA -ACGGAAAACCTCTACACGGGAGTA -ACGGAAAACCTCTACACGTCGTCT -ACGGAAAACCTCTACACGTGCACT -ACGGAAAACCTCTACACGCTGACT -ACGGAAAACCTCTACACGCAACCT -ACGGAAAACCTCTACACGGCTACT -ACGGAAAACCTCTACACGGGATCT -ACGGAAAACCTCTACACGAAGGCT -ACGGAAAACCTCTACACGTCAACC -ACGGAAAACCTCTACACGTGTTCC -ACGGAAAACCTCTACACGATTCCC -ACGGAAAACCTCTACACGTTCTCG -ACGGAAAACCTCTACACGTAGACG -ACGGAAAACCTCTACACGGTAACG -ACGGAAAACCTCTACACGACTTCG -ACGGAAAACCTCTACACGTACGCA -ACGGAAAACCTCTACACGCTTGCA -ACGGAAAACCTCTACACGCGAACA -ACGGAAAACCTCTACACGCAGTCA -ACGGAAAACCTCTACACGGATCCA -ACGGAAAACCTCTACACGACGACA -ACGGAAAACCTCTACACGAGCTCA -ACGGAAAACCTCTACACGTCACGT -ACGGAAAACCTCTACACGCGTAGT -ACGGAAAACCTCTACACGGTCAGT -ACGGAAAACCTCTACACGGAAGGT -ACGGAAAACCTCTACACGAACCGT -ACGGAAAACCTCTACACGTTGTGC -ACGGAAAACCTCTACACGCTAAGC -ACGGAAAACCTCTACACGACTAGC -ACGGAAAACCTCTACACGAGATGC -ACGGAAAACCTCTACACGTGAAGG -ACGGAAAACCTCTACACGCAATGG -ACGGAAAACCTCTACACGATGAGG -ACGGAAAACCTCTACACGAATGGG -ACGGAAAACCTCTACACGTCCTGA -ACGGAAAACCTCTACACGTAGCGA -ACGGAAAACCTCTACACGCACAGA -ACGGAAAACCTCTACACGGCAAGA -ACGGAAAACCTCTACACGGGTTGA -ACGGAAAACCTCTACACGTCCGAT -ACGGAAAACCTCTACACGTGGCAT -ACGGAAAACCTCTACACGCGAGAT -ACGGAAAACCTCTACACGTACCAC -ACGGAAAACCTCTACACGCAGAAC -ACGGAAAACCTCTACACGGTCTAC -ACGGAAAACCTCTACACGACGTAC -ACGGAAAACCTCTACACGAGTGAC -ACGGAAAACCTCTACACGCTGTAG -ACGGAAAACCTCTACACGCCTAAG -ACGGAAAACCTCTACACGGTTCAG -ACGGAAAACCTCTACACGGCATAG -ACGGAAAACCTCTACACGGACAAG -ACGGAAAACCTCTACACGAAGCAG -ACGGAAAACCTCTACACGCGTCAA -ACGGAAAACCTCTACACGGCTGAA -ACGGAAAACCTCTACACGAGTACG -ACGGAAAACCTCTACACGATCCGA -ACGGAAAACCTCTACACGATGGGA -ACGGAAAACCTCTACACGGTGCAA -ACGGAAAACCTCTACACGGAGGAA -ACGGAAAACCTCTACACGCAGGTA -ACGGAAAACCTCTACACGGACTCT -ACGGAAAACCTCTACACGAGTCCT -ACGGAAAACCTCTACACGTAAGCC -ACGGAAAACCTCTACACGATAGCC -ACGGAAAACCTCTACACGTAACCG -ACGGAAAACCTCTACACGATGCCA -ACGGAAAACCTCGACAGTGGAAAC -ACGGAAAACCTCGACAGTAACACC -ACGGAAAACCTCGACAGTATCGAG -ACGGAAAACCTCGACAGTCTCCTT -ACGGAAAACCTCGACAGTCCTGTT -ACGGAAAACCTCGACAGTCGGTTT -ACGGAAAACCTCGACAGTGTGGTT -ACGGAAAACCTCGACAGTGCCTTT -ACGGAAAACCTCGACAGTGGTCTT -ACGGAAAACCTCGACAGTACGCTT -ACGGAAAACCTCGACAGTAGCGTT -ACGGAAAACCTCGACAGTTTCGTC -ACGGAAAACCTCGACAGTTCTCTC -ACGGAAAACCTCGACAGTTGGATC -ACGGAAAACCTCGACAGTCACTTC -ACGGAAAACCTCGACAGTGTACTC -ACGGAAAACCTCGACAGTGATGTC -ACGGAAAACCTCGACAGTACAGTC -ACGGAAAACCTCGACAGTTTGCTG -ACGGAAAACCTCGACAGTTCCATG -ACGGAAAACCTCGACAGTTGTGTG -ACGGAAAACCTCGACAGTCTAGTG -ACGGAAAACCTCGACAGTCATCTG -ACGGAAAACCTCGACAGTGAGTTG -ACGGAAAACCTCGACAGTAGACTG -ACGGAAAACCTCGACAGTTCGGTA -ACGGAAAACCTCGACAGTTGCCTA -ACGGAAAACCTCGACAGTCCACTA -ACGGAAAACCTCGACAGTGGAGTA -ACGGAAAACCTCGACAGTTCGTCT -ACGGAAAACCTCGACAGTTGCACT -ACGGAAAACCTCGACAGTCTGACT -ACGGAAAACCTCGACAGTCAACCT -ACGGAAAACCTCGACAGTGCTACT -ACGGAAAACCTCGACAGTGGATCT -ACGGAAAACCTCGACAGTAAGGCT -ACGGAAAACCTCGACAGTTCAACC -ACGGAAAACCTCGACAGTTGTTCC -ACGGAAAACCTCGACAGTATTCCC -ACGGAAAACCTCGACAGTTTCTCG -ACGGAAAACCTCGACAGTTAGACG -ACGGAAAACCTCGACAGTGTAACG -ACGGAAAACCTCGACAGTACTTCG -ACGGAAAACCTCGACAGTTACGCA -ACGGAAAACCTCGACAGTCTTGCA -ACGGAAAACCTCGACAGTCGAACA -ACGGAAAACCTCGACAGTCAGTCA -ACGGAAAACCTCGACAGTGATCCA -ACGGAAAACCTCGACAGTACGACA -ACGGAAAACCTCGACAGTAGCTCA -ACGGAAAACCTCGACAGTTCACGT -ACGGAAAACCTCGACAGTCGTAGT -ACGGAAAACCTCGACAGTGTCAGT -ACGGAAAACCTCGACAGTGAAGGT -ACGGAAAACCTCGACAGTAACCGT -ACGGAAAACCTCGACAGTTTGTGC -ACGGAAAACCTCGACAGTCTAAGC -ACGGAAAACCTCGACAGTACTAGC -ACGGAAAACCTCGACAGTAGATGC -ACGGAAAACCTCGACAGTTGAAGG -ACGGAAAACCTCGACAGTCAATGG -ACGGAAAACCTCGACAGTATGAGG -ACGGAAAACCTCGACAGTAATGGG -ACGGAAAACCTCGACAGTTCCTGA -ACGGAAAACCTCGACAGTTAGCGA -ACGGAAAACCTCGACAGTCACAGA -ACGGAAAACCTCGACAGTGCAAGA -ACGGAAAACCTCGACAGTGGTTGA -ACGGAAAACCTCGACAGTTCCGAT -ACGGAAAACCTCGACAGTTGGCAT -ACGGAAAACCTCGACAGTCGAGAT -ACGGAAAACCTCGACAGTTACCAC -ACGGAAAACCTCGACAGTCAGAAC -ACGGAAAACCTCGACAGTGTCTAC -ACGGAAAACCTCGACAGTACGTAC -ACGGAAAACCTCGACAGTAGTGAC -ACGGAAAACCTCGACAGTCTGTAG -ACGGAAAACCTCGACAGTCCTAAG -ACGGAAAACCTCGACAGTGTTCAG -ACGGAAAACCTCGACAGTGCATAG -ACGGAAAACCTCGACAGTGACAAG -ACGGAAAACCTCGACAGTAAGCAG -ACGGAAAACCTCGACAGTCGTCAA -ACGGAAAACCTCGACAGTGCTGAA -ACGGAAAACCTCGACAGTAGTACG -ACGGAAAACCTCGACAGTATCCGA -ACGGAAAACCTCGACAGTATGGGA -ACGGAAAACCTCGACAGTGTGCAA -ACGGAAAACCTCGACAGTGAGGAA -ACGGAAAACCTCGACAGTCAGGTA -ACGGAAAACCTCGACAGTGACTCT -ACGGAAAACCTCGACAGTAGTCCT -ACGGAAAACCTCGACAGTTAAGCC -ACGGAAAACCTCGACAGTATAGCC -ACGGAAAACCTCGACAGTTAACCG -ACGGAAAACCTCGACAGTATGCCA -ACGGAAAACCTCTAGCTGGGAAAC -ACGGAAAACCTCTAGCTGAACACC -ACGGAAAACCTCTAGCTGATCGAG -ACGGAAAACCTCTAGCTGCTCCTT -ACGGAAAACCTCTAGCTGCCTGTT -ACGGAAAACCTCTAGCTGCGGTTT -ACGGAAAACCTCTAGCTGGTGGTT -ACGGAAAACCTCTAGCTGGCCTTT -ACGGAAAACCTCTAGCTGGGTCTT -ACGGAAAACCTCTAGCTGACGCTT -ACGGAAAACCTCTAGCTGAGCGTT -ACGGAAAACCTCTAGCTGTTCGTC -ACGGAAAACCTCTAGCTGTCTCTC -ACGGAAAACCTCTAGCTGTGGATC -ACGGAAAACCTCTAGCTGCACTTC -ACGGAAAACCTCTAGCTGGTACTC -ACGGAAAACCTCTAGCTGGATGTC -ACGGAAAACCTCTAGCTGACAGTC -ACGGAAAACCTCTAGCTGTTGCTG -ACGGAAAACCTCTAGCTGTCCATG -ACGGAAAACCTCTAGCTGTGTGTG -ACGGAAAACCTCTAGCTGCTAGTG -ACGGAAAACCTCTAGCTGCATCTG -ACGGAAAACCTCTAGCTGGAGTTG -ACGGAAAACCTCTAGCTGAGACTG -ACGGAAAACCTCTAGCTGTCGGTA -ACGGAAAACCTCTAGCTGTGCCTA -ACGGAAAACCTCTAGCTGCCACTA -ACGGAAAACCTCTAGCTGGGAGTA -ACGGAAAACCTCTAGCTGTCGTCT -ACGGAAAACCTCTAGCTGTGCACT -ACGGAAAACCTCTAGCTGCTGACT -ACGGAAAACCTCTAGCTGCAACCT -ACGGAAAACCTCTAGCTGGCTACT -ACGGAAAACCTCTAGCTGGGATCT -ACGGAAAACCTCTAGCTGAAGGCT -ACGGAAAACCTCTAGCTGTCAACC -ACGGAAAACCTCTAGCTGTGTTCC -ACGGAAAACCTCTAGCTGATTCCC -ACGGAAAACCTCTAGCTGTTCTCG -ACGGAAAACCTCTAGCTGTAGACG -ACGGAAAACCTCTAGCTGGTAACG -ACGGAAAACCTCTAGCTGACTTCG -ACGGAAAACCTCTAGCTGTACGCA -ACGGAAAACCTCTAGCTGCTTGCA -ACGGAAAACCTCTAGCTGCGAACA -ACGGAAAACCTCTAGCTGCAGTCA -ACGGAAAACCTCTAGCTGGATCCA -ACGGAAAACCTCTAGCTGACGACA -ACGGAAAACCTCTAGCTGAGCTCA -ACGGAAAACCTCTAGCTGTCACGT -ACGGAAAACCTCTAGCTGCGTAGT -ACGGAAAACCTCTAGCTGGTCAGT -ACGGAAAACCTCTAGCTGGAAGGT -ACGGAAAACCTCTAGCTGAACCGT -ACGGAAAACCTCTAGCTGTTGTGC -ACGGAAAACCTCTAGCTGCTAAGC -ACGGAAAACCTCTAGCTGACTAGC -ACGGAAAACCTCTAGCTGAGATGC -ACGGAAAACCTCTAGCTGTGAAGG -ACGGAAAACCTCTAGCTGCAATGG -ACGGAAAACCTCTAGCTGATGAGG -ACGGAAAACCTCTAGCTGAATGGG -ACGGAAAACCTCTAGCTGTCCTGA -ACGGAAAACCTCTAGCTGTAGCGA -ACGGAAAACCTCTAGCTGCACAGA -ACGGAAAACCTCTAGCTGGCAAGA -ACGGAAAACCTCTAGCTGGGTTGA -ACGGAAAACCTCTAGCTGTCCGAT -ACGGAAAACCTCTAGCTGTGGCAT -ACGGAAAACCTCTAGCTGCGAGAT -ACGGAAAACCTCTAGCTGTACCAC -ACGGAAAACCTCTAGCTGCAGAAC -ACGGAAAACCTCTAGCTGGTCTAC -ACGGAAAACCTCTAGCTGACGTAC -ACGGAAAACCTCTAGCTGAGTGAC -ACGGAAAACCTCTAGCTGCTGTAG -ACGGAAAACCTCTAGCTGCCTAAG -ACGGAAAACCTCTAGCTGGTTCAG -ACGGAAAACCTCTAGCTGGCATAG -ACGGAAAACCTCTAGCTGGACAAG -ACGGAAAACCTCTAGCTGAAGCAG -ACGGAAAACCTCTAGCTGCGTCAA -ACGGAAAACCTCTAGCTGGCTGAA -ACGGAAAACCTCTAGCTGAGTACG -ACGGAAAACCTCTAGCTGATCCGA -ACGGAAAACCTCTAGCTGATGGGA -ACGGAAAACCTCTAGCTGGTGCAA -ACGGAAAACCTCTAGCTGGAGGAA -ACGGAAAACCTCTAGCTGCAGGTA -ACGGAAAACCTCTAGCTGGACTCT -ACGGAAAACCTCTAGCTGAGTCCT -ACGGAAAACCTCTAGCTGTAAGCC -ACGGAAAACCTCTAGCTGATAGCC -ACGGAAAACCTCTAGCTGTAACCG -ACGGAAAACCTCTAGCTGATGCCA -ACGGAAAACCTCAAGCCTGGAAAC -ACGGAAAACCTCAAGCCTAACACC -ACGGAAAACCTCAAGCCTATCGAG -ACGGAAAACCTCAAGCCTCTCCTT -ACGGAAAACCTCAAGCCTCCTGTT -ACGGAAAACCTCAAGCCTCGGTTT -ACGGAAAACCTCAAGCCTGTGGTT -ACGGAAAACCTCAAGCCTGCCTTT -ACGGAAAACCTCAAGCCTGGTCTT -ACGGAAAACCTCAAGCCTACGCTT -ACGGAAAACCTCAAGCCTAGCGTT -ACGGAAAACCTCAAGCCTTTCGTC -ACGGAAAACCTCAAGCCTTCTCTC -ACGGAAAACCTCAAGCCTTGGATC -ACGGAAAACCTCAAGCCTCACTTC -ACGGAAAACCTCAAGCCTGTACTC -ACGGAAAACCTCAAGCCTGATGTC -ACGGAAAACCTCAAGCCTACAGTC -ACGGAAAACCTCAAGCCTTTGCTG -ACGGAAAACCTCAAGCCTTCCATG -ACGGAAAACCTCAAGCCTTGTGTG -ACGGAAAACCTCAAGCCTCTAGTG -ACGGAAAACCTCAAGCCTCATCTG -ACGGAAAACCTCAAGCCTGAGTTG -ACGGAAAACCTCAAGCCTAGACTG -ACGGAAAACCTCAAGCCTTCGGTA -ACGGAAAACCTCAAGCCTTGCCTA -ACGGAAAACCTCAAGCCTCCACTA -ACGGAAAACCTCAAGCCTGGAGTA -ACGGAAAACCTCAAGCCTTCGTCT -ACGGAAAACCTCAAGCCTTGCACT -ACGGAAAACCTCAAGCCTCTGACT -ACGGAAAACCTCAAGCCTCAACCT -ACGGAAAACCTCAAGCCTGCTACT -ACGGAAAACCTCAAGCCTGGATCT -ACGGAAAACCTCAAGCCTAAGGCT -ACGGAAAACCTCAAGCCTTCAACC -ACGGAAAACCTCAAGCCTTGTTCC -ACGGAAAACCTCAAGCCTATTCCC -ACGGAAAACCTCAAGCCTTTCTCG -ACGGAAAACCTCAAGCCTTAGACG -ACGGAAAACCTCAAGCCTGTAACG -ACGGAAAACCTCAAGCCTACTTCG -ACGGAAAACCTCAAGCCTTACGCA -ACGGAAAACCTCAAGCCTCTTGCA -ACGGAAAACCTCAAGCCTCGAACA -ACGGAAAACCTCAAGCCTCAGTCA -ACGGAAAACCTCAAGCCTGATCCA -ACGGAAAACCTCAAGCCTACGACA -ACGGAAAACCTCAAGCCTAGCTCA -ACGGAAAACCTCAAGCCTTCACGT -ACGGAAAACCTCAAGCCTCGTAGT -ACGGAAAACCTCAAGCCTGTCAGT -ACGGAAAACCTCAAGCCTGAAGGT -ACGGAAAACCTCAAGCCTAACCGT -ACGGAAAACCTCAAGCCTTTGTGC -ACGGAAAACCTCAAGCCTCTAAGC -ACGGAAAACCTCAAGCCTACTAGC -ACGGAAAACCTCAAGCCTAGATGC -ACGGAAAACCTCAAGCCTTGAAGG -ACGGAAAACCTCAAGCCTCAATGG -ACGGAAAACCTCAAGCCTATGAGG -ACGGAAAACCTCAAGCCTAATGGG -ACGGAAAACCTCAAGCCTTCCTGA -ACGGAAAACCTCAAGCCTTAGCGA -ACGGAAAACCTCAAGCCTCACAGA -ACGGAAAACCTCAAGCCTGCAAGA -ACGGAAAACCTCAAGCCTGGTTGA -ACGGAAAACCTCAAGCCTTCCGAT -ACGGAAAACCTCAAGCCTTGGCAT -ACGGAAAACCTCAAGCCTCGAGAT -ACGGAAAACCTCAAGCCTTACCAC -ACGGAAAACCTCAAGCCTCAGAAC -ACGGAAAACCTCAAGCCTGTCTAC -ACGGAAAACCTCAAGCCTACGTAC -ACGGAAAACCTCAAGCCTAGTGAC -ACGGAAAACCTCAAGCCTCTGTAG -ACGGAAAACCTCAAGCCTCCTAAG -ACGGAAAACCTCAAGCCTGTTCAG -ACGGAAAACCTCAAGCCTGCATAG -ACGGAAAACCTCAAGCCTGACAAG -ACGGAAAACCTCAAGCCTAAGCAG -ACGGAAAACCTCAAGCCTCGTCAA -ACGGAAAACCTCAAGCCTGCTGAA -ACGGAAAACCTCAAGCCTAGTACG -ACGGAAAACCTCAAGCCTATCCGA -ACGGAAAACCTCAAGCCTATGGGA -ACGGAAAACCTCAAGCCTGTGCAA -ACGGAAAACCTCAAGCCTGAGGAA -ACGGAAAACCTCAAGCCTCAGGTA -ACGGAAAACCTCAAGCCTGACTCT -ACGGAAAACCTCAAGCCTAGTCCT -ACGGAAAACCTCAAGCCTTAAGCC -ACGGAAAACCTCAAGCCTATAGCC -ACGGAAAACCTCAAGCCTTAACCG -ACGGAAAACCTCAAGCCTATGCCA -ACGGAAAACCTCCAGGTTGGAAAC -ACGGAAAACCTCCAGGTTAACACC -ACGGAAAACCTCCAGGTTATCGAG -ACGGAAAACCTCCAGGTTCTCCTT -ACGGAAAACCTCCAGGTTCCTGTT -ACGGAAAACCTCCAGGTTCGGTTT -ACGGAAAACCTCCAGGTTGTGGTT -ACGGAAAACCTCCAGGTTGCCTTT -ACGGAAAACCTCCAGGTTGGTCTT -ACGGAAAACCTCCAGGTTACGCTT -ACGGAAAACCTCCAGGTTAGCGTT -ACGGAAAACCTCCAGGTTTTCGTC -ACGGAAAACCTCCAGGTTTCTCTC -ACGGAAAACCTCCAGGTTTGGATC -ACGGAAAACCTCCAGGTTCACTTC -ACGGAAAACCTCCAGGTTGTACTC -ACGGAAAACCTCCAGGTTGATGTC -ACGGAAAACCTCCAGGTTACAGTC -ACGGAAAACCTCCAGGTTTTGCTG -ACGGAAAACCTCCAGGTTTCCATG -ACGGAAAACCTCCAGGTTTGTGTG -ACGGAAAACCTCCAGGTTCTAGTG -ACGGAAAACCTCCAGGTTCATCTG -ACGGAAAACCTCCAGGTTGAGTTG -ACGGAAAACCTCCAGGTTAGACTG -ACGGAAAACCTCCAGGTTTCGGTA -ACGGAAAACCTCCAGGTTTGCCTA -ACGGAAAACCTCCAGGTTCCACTA -ACGGAAAACCTCCAGGTTGGAGTA -ACGGAAAACCTCCAGGTTTCGTCT -ACGGAAAACCTCCAGGTTTGCACT -ACGGAAAACCTCCAGGTTCTGACT -ACGGAAAACCTCCAGGTTCAACCT -ACGGAAAACCTCCAGGTTGCTACT -ACGGAAAACCTCCAGGTTGGATCT -ACGGAAAACCTCCAGGTTAAGGCT -ACGGAAAACCTCCAGGTTTCAACC -ACGGAAAACCTCCAGGTTTGTTCC -ACGGAAAACCTCCAGGTTATTCCC -ACGGAAAACCTCCAGGTTTTCTCG -ACGGAAAACCTCCAGGTTTAGACG -ACGGAAAACCTCCAGGTTGTAACG -ACGGAAAACCTCCAGGTTACTTCG -ACGGAAAACCTCCAGGTTTACGCA -ACGGAAAACCTCCAGGTTCTTGCA -ACGGAAAACCTCCAGGTTCGAACA -ACGGAAAACCTCCAGGTTCAGTCA -ACGGAAAACCTCCAGGTTGATCCA -ACGGAAAACCTCCAGGTTACGACA -ACGGAAAACCTCCAGGTTAGCTCA -ACGGAAAACCTCCAGGTTTCACGT -ACGGAAAACCTCCAGGTTCGTAGT -ACGGAAAACCTCCAGGTTGTCAGT -ACGGAAAACCTCCAGGTTGAAGGT -ACGGAAAACCTCCAGGTTAACCGT -ACGGAAAACCTCCAGGTTTTGTGC -ACGGAAAACCTCCAGGTTCTAAGC -ACGGAAAACCTCCAGGTTACTAGC -ACGGAAAACCTCCAGGTTAGATGC -ACGGAAAACCTCCAGGTTTGAAGG -ACGGAAAACCTCCAGGTTCAATGG -ACGGAAAACCTCCAGGTTATGAGG -ACGGAAAACCTCCAGGTTAATGGG -ACGGAAAACCTCCAGGTTTCCTGA -ACGGAAAACCTCCAGGTTTAGCGA -ACGGAAAACCTCCAGGTTCACAGA -ACGGAAAACCTCCAGGTTGCAAGA -ACGGAAAACCTCCAGGTTGGTTGA -ACGGAAAACCTCCAGGTTTCCGAT -ACGGAAAACCTCCAGGTTTGGCAT -ACGGAAAACCTCCAGGTTCGAGAT -ACGGAAAACCTCCAGGTTTACCAC -ACGGAAAACCTCCAGGTTCAGAAC -ACGGAAAACCTCCAGGTTGTCTAC -ACGGAAAACCTCCAGGTTACGTAC -ACGGAAAACCTCCAGGTTAGTGAC -ACGGAAAACCTCCAGGTTCTGTAG -ACGGAAAACCTCCAGGTTCCTAAG -ACGGAAAACCTCCAGGTTGTTCAG -ACGGAAAACCTCCAGGTTGCATAG -ACGGAAAACCTCCAGGTTGACAAG -ACGGAAAACCTCCAGGTTAAGCAG -ACGGAAAACCTCCAGGTTCGTCAA -ACGGAAAACCTCCAGGTTGCTGAA -ACGGAAAACCTCCAGGTTAGTACG -ACGGAAAACCTCCAGGTTATCCGA -ACGGAAAACCTCCAGGTTATGGGA -ACGGAAAACCTCCAGGTTGTGCAA -ACGGAAAACCTCCAGGTTGAGGAA -ACGGAAAACCTCCAGGTTCAGGTA -ACGGAAAACCTCCAGGTTGACTCT -ACGGAAAACCTCCAGGTTAGTCCT -ACGGAAAACCTCCAGGTTTAAGCC -ACGGAAAACCTCCAGGTTATAGCC -ACGGAAAACCTCCAGGTTTAACCG -ACGGAAAACCTCCAGGTTATGCCA -ACGGAAAACCTCTAGGCAGGAAAC -ACGGAAAACCTCTAGGCAAACACC -ACGGAAAACCTCTAGGCAATCGAG -ACGGAAAACCTCTAGGCACTCCTT -ACGGAAAACCTCTAGGCACCTGTT -ACGGAAAACCTCTAGGCACGGTTT -ACGGAAAACCTCTAGGCAGTGGTT -ACGGAAAACCTCTAGGCAGCCTTT -ACGGAAAACCTCTAGGCAGGTCTT -ACGGAAAACCTCTAGGCAACGCTT -ACGGAAAACCTCTAGGCAAGCGTT -ACGGAAAACCTCTAGGCATTCGTC -ACGGAAAACCTCTAGGCATCTCTC -ACGGAAAACCTCTAGGCATGGATC -ACGGAAAACCTCTAGGCACACTTC -ACGGAAAACCTCTAGGCAGTACTC -ACGGAAAACCTCTAGGCAGATGTC -ACGGAAAACCTCTAGGCAACAGTC -ACGGAAAACCTCTAGGCATTGCTG -ACGGAAAACCTCTAGGCATCCATG -ACGGAAAACCTCTAGGCATGTGTG -ACGGAAAACCTCTAGGCACTAGTG -ACGGAAAACCTCTAGGCACATCTG -ACGGAAAACCTCTAGGCAGAGTTG -ACGGAAAACCTCTAGGCAAGACTG -ACGGAAAACCTCTAGGCATCGGTA -ACGGAAAACCTCTAGGCATGCCTA -ACGGAAAACCTCTAGGCACCACTA -ACGGAAAACCTCTAGGCAGGAGTA -ACGGAAAACCTCTAGGCATCGTCT -ACGGAAAACCTCTAGGCATGCACT -ACGGAAAACCTCTAGGCACTGACT -ACGGAAAACCTCTAGGCACAACCT -ACGGAAAACCTCTAGGCAGCTACT -ACGGAAAACCTCTAGGCAGGATCT -ACGGAAAACCTCTAGGCAAAGGCT -ACGGAAAACCTCTAGGCATCAACC -ACGGAAAACCTCTAGGCATGTTCC -ACGGAAAACCTCTAGGCAATTCCC -ACGGAAAACCTCTAGGCATTCTCG -ACGGAAAACCTCTAGGCATAGACG -ACGGAAAACCTCTAGGCAGTAACG -ACGGAAAACCTCTAGGCAACTTCG -ACGGAAAACCTCTAGGCATACGCA -ACGGAAAACCTCTAGGCACTTGCA -ACGGAAAACCTCTAGGCACGAACA -ACGGAAAACCTCTAGGCACAGTCA -ACGGAAAACCTCTAGGCAGATCCA -ACGGAAAACCTCTAGGCAACGACA -ACGGAAAACCTCTAGGCAAGCTCA -ACGGAAAACCTCTAGGCATCACGT -ACGGAAAACCTCTAGGCACGTAGT -ACGGAAAACCTCTAGGCAGTCAGT -ACGGAAAACCTCTAGGCAGAAGGT -ACGGAAAACCTCTAGGCAAACCGT -ACGGAAAACCTCTAGGCATTGTGC -ACGGAAAACCTCTAGGCACTAAGC -ACGGAAAACCTCTAGGCAACTAGC -ACGGAAAACCTCTAGGCAAGATGC -ACGGAAAACCTCTAGGCATGAAGG -ACGGAAAACCTCTAGGCACAATGG -ACGGAAAACCTCTAGGCAATGAGG -ACGGAAAACCTCTAGGCAAATGGG -ACGGAAAACCTCTAGGCATCCTGA -ACGGAAAACCTCTAGGCATAGCGA -ACGGAAAACCTCTAGGCACACAGA -ACGGAAAACCTCTAGGCAGCAAGA -ACGGAAAACCTCTAGGCAGGTTGA -ACGGAAAACCTCTAGGCATCCGAT -ACGGAAAACCTCTAGGCATGGCAT -ACGGAAAACCTCTAGGCACGAGAT -ACGGAAAACCTCTAGGCATACCAC -ACGGAAAACCTCTAGGCACAGAAC -ACGGAAAACCTCTAGGCAGTCTAC -ACGGAAAACCTCTAGGCAACGTAC -ACGGAAAACCTCTAGGCAAGTGAC -ACGGAAAACCTCTAGGCACTGTAG -ACGGAAAACCTCTAGGCACCTAAG -ACGGAAAACCTCTAGGCAGTTCAG -ACGGAAAACCTCTAGGCAGCATAG -ACGGAAAACCTCTAGGCAGACAAG -ACGGAAAACCTCTAGGCAAAGCAG -ACGGAAAACCTCTAGGCACGTCAA -ACGGAAAACCTCTAGGCAGCTGAA -ACGGAAAACCTCTAGGCAAGTACG -ACGGAAAACCTCTAGGCAATCCGA -ACGGAAAACCTCTAGGCAATGGGA -ACGGAAAACCTCTAGGCAGTGCAA -ACGGAAAACCTCTAGGCAGAGGAA -ACGGAAAACCTCTAGGCACAGGTA -ACGGAAAACCTCTAGGCAGACTCT -ACGGAAAACCTCTAGGCAAGTCCT -ACGGAAAACCTCTAGGCATAAGCC -ACGGAAAACCTCTAGGCAATAGCC -ACGGAAAACCTCTAGGCATAACCG -ACGGAAAACCTCTAGGCAATGCCA -ACGGAAAACCTCAAGGACGGAAAC -ACGGAAAACCTCAAGGACAACACC -ACGGAAAACCTCAAGGACATCGAG -ACGGAAAACCTCAAGGACCTCCTT -ACGGAAAACCTCAAGGACCCTGTT -ACGGAAAACCTCAAGGACCGGTTT -ACGGAAAACCTCAAGGACGTGGTT -ACGGAAAACCTCAAGGACGCCTTT -ACGGAAAACCTCAAGGACGGTCTT -ACGGAAAACCTCAAGGACACGCTT -ACGGAAAACCTCAAGGACAGCGTT -ACGGAAAACCTCAAGGACTTCGTC -ACGGAAAACCTCAAGGACTCTCTC -ACGGAAAACCTCAAGGACTGGATC -ACGGAAAACCTCAAGGACCACTTC -ACGGAAAACCTCAAGGACGTACTC -ACGGAAAACCTCAAGGACGATGTC -ACGGAAAACCTCAAGGACACAGTC -ACGGAAAACCTCAAGGACTTGCTG -ACGGAAAACCTCAAGGACTCCATG -ACGGAAAACCTCAAGGACTGTGTG -ACGGAAAACCTCAAGGACCTAGTG -ACGGAAAACCTCAAGGACCATCTG -ACGGAAAACCTCAAGGACGAGTTG -ACGGAAAACCTCAAGGACAGACTG -ACGGAAAACCTCAAGGACTCGGTA -ACGGAAAACCTCAAGGACTGCCTA -ACGGAAAACCTCAAGGACCCACTA -ACGGAAAACCTCAAGGACGGAGTA -ACGGAAAACCTCAAGGACTCGTCT -ACGGAAAACCTCAAGGACTGCACT -ACGGAAAACCTCAAGGACCTGACT -ACGGAAAACCTCAAGGACCAACCT -ACGGAAAACCTCAAGGACGCTACT -ACGGAAAACCTCAAGGACGGATCT -ACGGAAAACCTCAAGGACAAGGCT -ACGGAAAACCTCAAGGACTCAACC -ACGGAAAACCTCAAGGACTGTTCC -ACGGAAAACCTCAAGGACATTCCC -ACGGAAAACCTCAAGGACTTCTCG -ACGGAAAACCTCAAGGACTAGACG -ACGGAAAACCTCAAGGACGTAACG -ACGGAAAACCTCAAGGACACTTCG -ACGGAAAACCTCAAGGACTACGCA -ACGGAAAACCTCAAGGACCTTGCA -ACGGAAAACCTCAAGGACCGAACA -ACGGAAAACCTCAAGGACCAGTCA -ACGGAAAACCTCAAGGACGATCCA -ACGGAAAACCTCAAGGACACGACA -ACGGAAAACCTCAAGGACAGCTCA -ACGGAAAACCTCAAGGACTCACGT -ACGGAAAACCTCAAGGACCGTAGT -ACGGAAAACCTCAAGGACGTCAGT -ACGGAAAACCTCAAGGACGAAGGT -ACGGAAAACCTCAAGGACAACCGT -ACGGAAAACCTCAAGGACTTGTGC -ACGGAAAACCTCAAGGACCTAAGC -ACGGAAAACCTCAAGGACACTAGC -ACGGAAAACCTCAAGGACAGATGC -ACGGAAAACCTCAAGGACTGAAGG -ACGGAAAACCTCAAGGACCAATGG -ACGGAAAACCTCAAGGACATGAGG -ACGGAAAACCTCAAGGACAATGGG -ACGGAAAACCTCAAGGACTCCTGA -ACGGAAAACCTCAAGGACTAGCGA -ACGGAAAACCTCAAGGACCACAGA -ACGGAAAACCTCAAGGACGCAAGA -ACGGAAAACCTCAAGGACGGTTGA -ACGGAAAACCTCAAGGACTCCGAT -ACGGAAAACCTCAAGGACTGGCAT -ACGGAAAACCTCAAGGACCGAGAT -ACGGAAAACCTCAAGGACTACCAC -ACGGAAAACCTCAAGGACCAGAAC -ACGGAAAACCTCAAGGACGTCTAC -ACGGAAAACCTCAAGGACACGTAC -ACGGAAAACCTCAAGGACAGTGAC -ACGGAAAACCTCAAGGACCTGTAG -ACGGAAAACCTCAAGGACCCTAAG -ACGGAAAACCTCAAGGACGTTCAG -ACGGAAAACCTCAAGGACGCATAG -ACGGAAAACCTCAAGGACGACAAG -ACGGAAAACCTCAAGGACAAGCAG -ACGGAAAACCTCAAGGACCGTCAA -ACGGAAAACCTCAAGGACGCTGAA -ACGGAAAACCTCAAGGACAGTACG -ACGGAAAACCTCAAGGACATCCGA -ACGGAAAACCTCAAGGACATGGGA -ACGGAAAACCTCAAGGACGTGCAA -ACGGAAAACCTCAAGGACGAGGAA -ACGGAAAACCTCAAGGACCAGGTA -ACGGAAAACCTCAAGGACGACTCT -ACGGAAAACCTCAAGGACAGTCCT -ACGGAAAACCTCAAGGACTAAGCC -ACGGAAAACCTCAAGGACATAGCC -ACGGAAAACCTCAAGGACTAACCG -ACGGAAAACCTCAAGGACATGCCA -ACGGAAAACCTCCAGAAGGGAAAC -ACGGAAAACCTCCAGAAGAACACC -ACGGAAAACCTCCAGAAGATCGAG -ACGGAAAACCTCCAGAAGCTCCTT -ACGGAAAACCTCCAGAAGCCTGTT -ACGGAAAACCTCCAGAAGCGGTTT -ACGGAAAACCTCCAGAAGGTGGTT -ACGGAAAACCTCCAGAAGGCCTTT -ACGGAAAACCTCCAGAAGGGTCTT -ACGGAAAACCTCCAGAAGACGCTT -ACGGAAAACCTCCAGAAGAGCGTT -ACGGAAAACCTCCAGAAGTTCGTC -ACGGAAAACCTCCAGAAGTCTCTC -ACGGAAAACCTCCAGAAGTGGATC -ACGGAAAACCTCCAGAAGCACTTC -ACGGAAAACCTCCAGAAGGTACTC -ACGGAAAACCTCCAGAAGGATGTC -ACGGAAAACCTCCAGAAGACAGTC -ACGGAAAACCTCCAGAAGTTGCTG -ACGGAAAACCTCCAGAAGTCCATG -ACGGAAAACCTCCAGAAGTGTGTG -ACGGAAAACCTCCAGAAGCTAGTG -ACGGAAAACCTCCAGAAGCATCTG -ACGGAAAACCTCCAGAAGGAGTTG -ACGGAAAACCTCCAGAAGAGACTG -ACGGAAAACCTCCAGAAGTCGGTA -ACGGAAAACCTCCAGAAGTGCCTA -ACGGAAAACCTCCAGAAGCCACTA -ACGGAAAACCTCCAGAAGGGAGTA -ACGGAAAACCTCCAGAAGTCGTCT -ACGGAAAACCTCCAGAAGTGCACT -ACGGAAAACCTCCAGAAGCTGACT -ACGGAAAACCTCCAGAAGCAACCT -ACGGAAAACCTCCAGAAGGCTACT -ACGGAAAACCTCCAGAAGGGATCT -ACGGAAAACCTCCAGAAGAAGGCT -ACGGAAAACCTCCAGAAGTCAACC -ACGGAAAACCTCCAGAAGTGTTCC -ACGGAAAACCTCCAGAAGATTCCC -ACGGAAAACCTCCAGAAGTTCTCG -ACGGAAAACCTCCAGAAGTAGACG -ACGGAAAACCTCCAGAAGGTAACG -ACGGAAAACCTCCAGAAGACTTCG -ACGGAAAACCTCCAGAAGTACGCA -ACGGAAAACCTCCAGAAGCTTGCA -ACGGAAAACCTCCAGAAGCGAACA -ACGGAAAACCTCCAGAAGCAGTCA -ACGGAAAACCTCCAGAAGGATCCA -ACGGAAAACCTCCAGAAGACGACA -ACGGAAAACCTCCAGAAGAGCTCA -ACGGAAAACCTCCAGAAGTCACGT -ACGGAAAACCTCCAGAAGCGTAGT -ACGGAAAACCTCCAGAAGGTCAGT -ACGGAAAACCTCCAGAAGGAAGGT -ACGGAAAACCTCCAGAAGAACCGT -ACGGAAAACCTCCAGAAGTTGTGC -ACGGAAAACCTCCAGAAGCTAAGC -ACGGAAAACCTCCAGAAGACTAGC -ACGGAAAACCTCCAGAAGAGATGC -ACGGAAAACCTCCAGAAGTGAAGG -ACGGAAAACCTCCAGAAGCAATGG -ACGGAAAACCTCCAGAAGATGAGG -ACGGAAAACCTCCAGAAGAATGGG -ACGGAAAACCTCCAGAAGTCCTGA -ACGGAAAACCTCCAGAAGTAGCGA -ACGGAAAACCTCCAGAAGCACAGA -ACGGAAAACCTCCAGAAGGCAAGA -ACGGAAAACCTCCAGAAGGGTTGA -ACGGAAAACCTCCAGAAGTCCGAT -ACGGAAAACCTCCAGAAGTGGCAT -ACGGAAAACCTCCAGAAGCGAGAT -ACGGAAAACCTCCAGAAGTACCAC -ACGGAAAACCTCCAGAAGCAGAAC -ACGGAAAACCTCCAGAAGGTCTAC -ACGGAAAACCTCCAGAAGACGTAC -ACGGAAAACCTCCAGAAGAGTGAC -ACGGAAAACCTCCAGAAGCTGTAG -ACGGAAAACCTCCAGAAGCCTAAG -ACGGAAAACCTCCAGAAGGTTCAG -ACGGAAAACCTCCAGAAGGCATAG -ACGGAAAACCTCCAGAAGGACAAG -ACGGAAAACCTCCAGAAGAAGCAG -ACGGAAAACCTCCAGAAGCGTCAA -ACGGAAAACCTCCAGAAGGCTGAA -ACGGAAAACCTCCAGAAGAGTACG -ACGGAAAACCTCCAGAAGATCCGA -ACGGAAAACCTCCAGAAGATGGGA -ACGGAAAACCTCCAGAAGGTGCAA -ACGGAAAACCTCCAGAAGGAGGAA -ACGGAAAACCTCCAGAAGCAGGTA -ACGGAAAACCTCCAGAAGGACTCT -ACGGAAAACCTCCAGAAGAGTCCT -ACGGAAAACCTCCAGAAGTAAGCC -ACGGAAAACCTCCAGAAGATAGCC -ACGGAAAACCTCCAGAAGTAACCG -ACGGAAAACCTCCAGAAGATGCCA -ACGGAAAACCTCCAACGTGGAAAC -ACGGAAAACCTCCAACGTAACACC -ACGGAAAACCTCCAACGTATCGAG -ACGGAAAACCTCCAACGTCTCCTT -ACGGAAAACCTCCAACGTCCTGTT -ACGGAAAACCTCCAACGTCGGTTT -ACGGAAAACCTCCAACGTGTGGTT -ACGGAAAACCTCCAACGTGCCTTT -ACGGAAAACCTCCAACGTGGTCTT -ACGGAAAACCTCCAACGTACGCTT -ACGGAAAACCTCCAACGTAGCGTT -ACGGAAAACCTCCAACGTTTCGTC -ACGGAAAACCTCCAACGTTCTCTC -ACGGAAAACCTCCAACGTTGGATC -ACGGAAAACCTCCAACGTCACTTC -ACGGAAAACCTCCAACGTGTACTC -ACGGAAAACCTCCAACGTGATGTC -ACGGAAAACCTCCAACGTACAGTC -ACGGAAAACCTCCAACGTTTGCTG -ACGGAAAACCTCCAACGTTCCATG -ACGGAAAACCTCCAACGTTGTGTG -ACGGAAAACCTCCAACGTCTAGTG -ACGGAAAACCTCCAACGTCATCTG -ACGGAAAACCTCCAACGTGAGTTG -ACGGAAAACCTCCAACGTAGACTG -ACGGAAAACCTCCAACGTTCGGTA -ACGGAAAACCTCCAACGTTGCCTA -ACGGAAAACCTCCAACGTCCACTA -ACGGAAAACCTCCAACGTGGAGTA -ACGGAAAACCTCCAACGTTCGTCT -ACGGAAAACCTCCAACGTTGCACT -ACGGAAAACCTCCAACGTCTGACT -ACGGAAAACCTCCAACGTCAACCT -ACGGAAAACCTCCAACGTGCTACT -ACGGAAAACCTCCAACGTGGATCT -ACGGAAAACCTCCAACGTAAGGCT -ACGGAAAACCTCCAACGTTCAACC -ACGGAAAACCTCCAACGTTGTTCC -ACGGAAAACCTCCAACGTATTCCC -ACGGAAAACCTCCAACGTTTCTCG -ACGGAAAACCTCCAACGTTAGACG -ACGGAAAACCTCCAACGTGTAACG -ACGGAAAACCTCCAACGTACTTCG -ACGGAAAACCTCCAACGTTACGCA -ACGGAAAACCTCCAACGTCTTGCA -ACGGAAAACCTCCAACGTCGAACA -ACGGAAAACCTCCAACGTCAGTCA -ACGGAAAACCTCCAACGTGATCCA -ACGGAAAACCTCCAACGTACGACA -ACGGAAAACCTCCAACGTAGCTCA -ACGGAAAACCTCCAACGTTCACGT -ACGGAAAACCTCCAACGTCGTAGT -ACGGAAAACCTCCAACGTGTCAGT -ACGGAAAACCTCCAACGTGAAGGT -ACGGAAAACCTCCAACGTAACCGT -ACGGAAAACCTCCAACGTTTGTGC -ACGGAAAACCTCCAACGTCTAAGC -ACGGAAAACCTCCAACGTACTAGC -ACGGAAAACCTCCAACGTAGATGC -ACGGAAAACCTCCAACGTTGAAGG -ACGGAAAACCTCCAACGTCAATGG -ACGGAAAACCTCCAACGTATGAGG -ACGGAAAACCTCCAACGTAATGGG -ACGGAAAACCTCCAACGTTCCTGA -ACGGAAAACCTCCAACGTTAGCGA -ACGGAAAACCTCCAACGTCACAGA -ACGGAAAACCTCCAACGTGCAAGA -ACGGAAAACCTCCAACGTGGTTGA -ACGGAAAACCTCCAACGTTCCGAT -ACGGAAAACCTCCAACGTTGGCAT -ACGGAAAACCTCCAACGTCGAGAT -ACGGAAAACCTCCAACGTTACCAC -ACGGAAAACCTCCAACGTCAGAAC -ACGGAAAACCTCCAACGTGTCTAC -ACGGAAAACCTCCAACGTACGTAC -ACGGAAAACCTCCAACGTAGTGAC -ACGGAAAACCTCCAACGTCTGTAG -ACGGAAAACCTCCAACGTCCTAAG -ACGGAAAACCTCCAACGTGTTCAG -ACGGAAAACCTCCAACGTGCATAG -ACGGAAAACCTCCAACGTGACAAG -ACGGAAAACCTCCAACGTAAGCAG -ACGGAAAACCTCCAACGTCGTCAA -ACGGAAAACCTCCAACGTGCTGAA -ACGGAAAACCTCCAACGTAGTACG -ACGGAAAACCTCCAACGTATCCGA -ACGGAAAACCTCCAACGTATGGGA -ACGGAAAACCTCCAACGTGTGCAA -ACGGAAAACCTCCAACGTGAGGAA -ACGGAAAACCTCCAACGTCAGGTA -ACGGAAAACCTCCAACGTGACTCT -ACGGAAAACCTCCAACGTAGTCCT -ACGGAAAACCTCCAACGTTAAGCC -ACGGAAAACCTCCAACGTATAGCC -ACGGAAAACCTCCAACGTTAACCG -ACGGAAAACCTCCAACGTATGCCA -ACGGAAAACCTCGAAGCTGGAAAC -ACGGAAAACCTCGAAGCTAACACC -ACGGAAAACCTCGAAGCTATCGAG -ACGGAAAACCTCGAAGCTCTCCTT -ACGGAAAACCTCGAAGCTCCTGTT -ACGGAAAACCTCGAAGCTCGGTTT -ACGGAAAACCTCGAAGCTGTGGTT -ACGGAAAACCTCGAAGCTGCCTTT -ACGGAAAACCTCGAAGCTGGTCTT -ACGGAAAACCTCGAAGCTACGCTT -ACGGAAAACCTCGAAGCTAGCGTT -ACGGAAAACCTCGAAGCTTTCGTC -ACGGAAAACCTCGAAGCTTCTCTC -ACGGAAAACCTCGAAGCTTGGATC -ACGGAAAACCTCGAAGCTCACTTC -ACGGAAAACCTCGAAGCTGTACTC -ACGGAAAACCTCGAAGCTGATGTC -ACGGAAAACCTCGAAGCTACAGTC -ACGGAAAACCTCGAAGCTTTGCTG -ACGGAAAACCTCGAAGCTTCCATG -ACGGAAAACCTCGAAGCTTGTGTG -ACGGAAAACCTCGAAGCTCTAGTG -ACGGAAAACCTCGAAGCTCATCTG -ACGGAAAACCTCGAAGCTGAGTTG -ACGGAAAACCTCGAAGCTAGACTG -ACGGAAAACCTCGAAGCTTCGGTA -ACGGAAAACCTCGAAGCTTGCCTA -ACGGAAAACCTCGAAGCTCCACTA -ACGGAAAACCTCGAAGCTGGAGTA -ACGGAAAACCTCGAAGCTTCGTCT -ACGGAAAACCTCGAAGCTTGCACT -ACGGAAAACCTCGAAGCTCTGACT -ACGGAAAACCTCGAAGCTCAACCT -ACGGAAAACCTCGAAGCTGCTACT -ACGGAAAACCTCGAAGCTGGATCT -ACGGAAAACCTCGAAGCTAAGGCT -ACGGAAAACCTCGAAGCTTCAACC -ACGGAAAACCTCGAAGCTTGTTCC -ACGGAAAACCTCGAAGCTATTCCC -ACGGAAAACCTCGAAGCTTTCTCG -ACGGAAAACCTCGAAGCTTAGACG -ACGGAAAACCTCGAAGCTGTAACG -ACGGAAAACCTCGAAGCTACTTCG -ACGGAAAACCTCGAAGCTTACGCA -ACGGAAAACCTCGAAGCTCTTGCA -ACGGAAAACCTCGAAGCTCGAACA -ACGGAAAACCTCGAAGCTCAGTCA -ACGGAAAACCTCGAAGCTGATCCA -ACGGAAAACCTCGAAGCTACGACA -ACGGAAAACCTCGAAGCTAGCTCA -ACGGAAAACCTCGAAGCTTCACGT -ACGGAAAACCTCGAAGCTCGTAGT -ACGGAAAACCTCGAAGCTGTCAGT -ACGGAAAACCTCGAAGCTGAAGGT -ACGGAAAACCTCGAAGCTAACCGT -ACGGAAAACCTCGAAGCTTTGTGC -ACGGAAAACCTCGAAGCTCTAAGC -ACGGAAAACCTCGAAGCTACTAGC -ACGGAAAACCTCGAAGCTAGATGC -ACGGAAAACCTCGAAGCTTGAAGG -ACGGAAAACCTCGAAGCTCAATGG -ACGGAAAACCTCGAAGCTATGAGG -ACGGAAAACCTCGAAGCTAATGGG -ACGGAAAACCTCGAAGCTTCCTGA -ACGGAAAACCTCGAAGCTTAGCGA -ACGGAAAACCTCGAAGCTCACAGA -ACGGAAAACCTCGAAGCTGCAAGA -ACGGAAAACCTCGAAGCTGGTTGA -ACGGAAAACCTCGAAGCTTCCGAT -ACGGAAAACCTCGAAGCTTGGCAT -ACGGAAAACCTCGAAGCTCGAGAT -ACGGAAAACCTCGAAGCTTACCAC -ACGGAAAACCTCGAAGCTCAGAAC -ACGGAAAACCTCGAAGCTGTCTAC -ACGGAAAACCTCGAAGCTACGTAC -ACGGAAAACCTCGAAGCTAGTGAC -ACGGAAAACCTCGAAGCTCTGTAG -ACGGAAAACCTCGAAGCTCCTAAG -ACGGAAAACCTCGAAGCTGTTCAG -ACGGAAAACCTCGAAGCTGCATAG -ACGGAAAACCTCGAAGCTGACAAG -ACGGAAAACCTCGAAGCTAAGCAG -ACGGAAAACCTCGAAGCTCGTCAA -ACGGAAAACCTCGAAGCTGCTGAA -ACGGAAAACCTCGAAGCTAGTACG -ACGGAAAACCTCGAAGCTATCCGA -ACGGAAAACCTCGAAGCTATGGGA -ACGGAAAACCTCGAAGCTGTGCAA -ACGGAAAACCTCGAAGCTGAGGAA -ACGGAAAACCTCGAAGCTCAGGTA -ACGGAAAACCTCGAAGCTGACTCT -ACGGAAAACCTCGAAGCTAGTCCT -ACGGAAAACCTCGAAGCTTAAGCC -ACGGAAAACCTCGAAGCTATAGCC -ACGGAAAACCTCGAAGCTTAACCG -ACGGAAAACCTCGAAGCTATGCCA -ACGGAAAACCTCACGAGTGGAAAC -ACGGAAAACCTCACGAGTAACACC -ACGGAAAACCTCACGAGTATCGAG -ACGGAAAACCTCACGAGTCTCCTT -ACGGAAAACCTCACGAGTCCTGTT -ACGGAAAACCTCACGAGTCGGTTT -ACGGAAAACCTCACGAGTGTGGTT -ACGGAAAACCTCACGAGTGCCTTT -ACGGAAAACCTCACGAGTGGTCTT -ACGGAAAACCTCACGAGTACGCTT -ACGGAAAACCTCACGAGTAGCGTT -ACGGAAAACCTCACGAGTTTCGTC -ACGGAAAACCTCACGAGTTCTCTC -ACGGAAAACCTCACGAGTTGGATC -ACGGAAAACCTCACGAGTCACTTC -ACGGAAAACCTCACGAGTGTACTC -ACGGAAAACCTCACGAGTGATGTC -ACGGAAAACCTCACGAGTACAGTC -ACGGAAAACCTCACGAGTTTGCTG -ACGGAAAACCTCACGAGTTCCATG -ACGGAAAACCTCACGAGTTGTGTG -ACGGAAAACCTCACGAGTCTAGTG -ACGGAAAACCTCACGAGTCATCTG -ACGGAAAACCTCACGAGTGAGTTG -ACGGAAAACCTCACGAGTAGACTG -ACGGAAAACCTCACGAGTTCGGTA -ACGGAAAACCTCACGAGTTGCCTA -ACGGAAAACCTCACGAGTCCACTA -ACGGAAAACCTCACGAGTGGAGTA -ACGGAAAACCTCACGAGTTCGTCT -ACGGAAAACCTCACGAGTTGCACT -ACGGAAAACCTCACGAGTCTGACT -ACGGAAAACCTCACGAGTCAACCT -ACGGAAAACCTCACGAGTGCTACT -ACGGAAAACCTCACGAGTGGATCT -ACGGAAAACCTCACGAGTAAGGCT -ACGGAAAACCTCACGAGTTCAACC -ACGGAAAACCTCACGAGTTGTTCC -ACGGAAAACCTCACGAGTATTCCC -ACGGAAAACCTCACGAGTTTCTCG -ACGGAAAACCTCACGAGTTAGACG -ACGGAAAACCTCACGAGTGTAACG -ACGGAAAACCTCACGAGTACTTCG -ACGGAAAACCTCACGAGTTACGCA -ACGGAAAACCTCACGAGTCTTGCA -ACGGAAAACCTCACGAGTCGAACA -ACGGAAAACCTCACGAGTCAGTCA -ACGGAAAACCTCACGAGTGATCCA -ACGGAAAACCTCACGAGTACGACA -ACGGAAAACCTCACGAGTAGCTCA -ACGGAAAACCTCACGAGTTCACGT -ACGGAAAACCTCACGAGTCGTAGT -ACGGAAAACCTCACGAGTGTCAGT -ACGGAAAACCTCACGAGTGAAGGT -ACGGAAAACCTCACGAGTAACCGT -ACGGAAAACCTCACGAGTTTGTGC -ACGGAAAACCTCACGAGTCTAAGC -ACGGAAAACCTCACGAGTACTAGC -ACGGAAAACCTCACGAGTAGATGC -ACGGAAAACCTCACGAGTTGAAGG -ACGGAAAACCTCACGAGTCAATGG -ACGGAAAACCTCACGAGTATGAGG -ACGGAAAACCTCACGAGTAATGGG -ACGGAAAACCTCACGAGTTCCTGA -ACGGAAAACCTCACGAGTTAGCGA -ACGGAAAACCTCACGAGTCACAGA -ACGGAAAACCTCACGAGTGCAAGA -ACGGAAAACCTCACGAGTGGTTGA -ACGGAAAACCTCACGAGTTCCGAT -ACGGAAAACCTCACGAGTTGGCAT -ACGGAAAACCTCACGAGTCGAGAT -ACGGAAAACCTCACGAGTTACCAC -ACGGAAAACCTCACGAGTCAGAAC -ACGGAAAACCTCACGAGTGTCTAC -ACGGAAAACCTCACGAGTACGTAC -ACGGAAAACCTCACGAGTAGTGAC -ACGGAAAACCTCACGAGTCTGTAG -ACGGAAAACCTCACGAGTCCTAAG -ACGGAAAACCTCACGAGTGTTCAG -ACGGAAAACCTCACGAGTGCATAG -ACGGAAAACCTCACGAGTGACAAG -ACGGAAAACCTCACGAGTAAGCAG -ACGGAAAACCTCACGAGTCGTCAA -ACGGAAAACCTCACGAGTGCTGAA -ACGGAAAACCTCACGAGTAGTACG -ACGGAAAACCTCACGAGTATCCGA -ACGGAAAACCTCACGAGTATGGGA -ACGGAAAACCTCACGAGTGTGCAA -ACGGAAAACCTCACGAGTGAGGAA -ACGGAAAACCTCACGAGTCAGGTA -ACGGAAAACCTCACGAGTGACTCT -ACGGAAAACCTCACGAGTAGTCCT -ACGGAAAACCTCACGAGTTAAGCC -ACGGAAAACCTCACGAGTATAGCC -ACGGAAAACCTCACGAGTTAACCG -ACGGAAAACCTCACGAGTATGCCA -ACGGAAAACCTCCGAATCGGAAAC -ACGGAAAACCTCCGAATCAACACC -ACGGAAAACCTCCGAATCATCGAG -ACGGAAAACCTCCGAATCCTCCTT -ACGGAAAACCTCCGAATCCCTGTT -ACGGAAAACCTCCGAATCCGGTTT -ACGGAAAACCTCCGAATCGTGGTT -ACGGAAAACCTCCGAATCGCCTTT -ACGGAAAACCTCCGAATCGGTCTT -ACGGAAAACCTCCGAATCACGCTT -ACGGAAAACCTCCGAATCAGCGTT -ACGGAAAACCTCCGAATCTTCGTC -ACGGAAAACCTCCGAATCTCTCTC -ACGGAAAACCTCCGAATCTGGATC -ACGGAAAACCTCCGAATCCACTTC -ACGGAAAACCTCCGAATCGTACTC -ACGGAAAACCTCCGAATCGATGTC -ACGGAAAACCTCCGAATCACAGTC -ACGGAAAACCTCCGAATCTTGCTG -ACGGAAAACCTCCGAATCTCCATG -ACGGAAAACCTCCGAATCTGTGTG -ACGGAAAACCTCCGAATCCTAGTG -ACGGAAAACCTCCGAATCCATCTG -ACGGAAAACCTCCGAATCGAGTTG -ACGGAAAACCTCCGAATCAGACTG -ACGGAAAACCTCCGAATCTCGGTA -ACGGAAAACCTCCGAATCTGCCTA -ACGGAAAACCTCCGAATCCCACTA -ACGGAAAACCTCCGAATCGGAGTA -ACGGAAAACCTCCGAATCTCGTCT -ACGGAAAACCTCCGAATCTGCACT -ACGGAAAACCTCCGAATCCTGACT -ACGGAAAACCTCCGAATCCAACCT -ACGGAAAACCTCCGAATCGCTACT -ACGGAAAACCTCCGAATCGGATCT -ACGGAAAACCTCCGAATCAAGGCT -ACGGAAAACCTCCGAATCTCAACC -ACGGAAAACCTCCGAATCTGTTCC -ACGGAAAACCTCCGAATCATTCCC -ACGGAAAACCTCCGAATCTTCTCG -ACGGAAAACCTCCGAATCTAGACG -ACGGAAAACCTCCGAATCGTAACG -ACGGAAAACCTCCGAATCACTTCG -ACGGAAAACCTCCGAATCTACGCA -ACGGAAAACCTCCGAATCCTTGCA -ACGGAAAACCTCCGAATCCGAACA -ACGGAAAACCTCCGAATCCAGTCA -ACGGAAAACCTCCGAATCGATCCA -ACGGAAAACCTCCGAATCACGACA -ACGGAAAACCTCCGAATCAGCTCA -ACGGAAAACCTCCGAATCTCACGT -ACGGAAAACCTCCGAATCCGTAGT -ACGGAAAACCTCCGAATCGTCAGT -ACGGAAAACCTCCGAATCGAAGGT -ACGGAAAACCTCCGAATCAACCGT -ACGGAAAACCTCCGAATCTTGTGC -ACGGAAAACCTCCGAATCCTAAGC -ACGGAAAACCTCCGAATCACTAGC -ACGGAAAACCTCCGAATCAGATGC -ACGGAAAACCTCCGAATCTGAAGG -ACGGAAAACCTCCGAATCCAATGG -ACGGAAAACCTCCGAATCATGAGG -ACGGAAAACCTCCGAATCAATGGG -ACGGAAAACCTCCGAATCTCCTGA -ACGGAAAACCTCCGAATCTAGCGA -ACGGAAAACCTCCGAATCCACAGA -ACGGAAAACCTCCGAATCGCAAGA -ACGGAAAACCTCCGAATCGGTTGA -ACGGAAAACCTCCGAATCTCCGAT -ACGGAAAACCTCCGAATCTGGCAT -ACGGAAAACCTCCGAATCCGAGAT -ACGGAAAACCTCCGAATCTACCAC -ACGGAAAACCTCCGAATCCAGAAC -ACGGAAAACCTCCGAATCGTCTAC -ACGGAAAACCTCCGAATCACGTAC -ACGGAAAACCTCCGAATCAGTGAC -ACGGAAAACCTCCGAATCCTGTAG -ACGGAAAACCTCCGAATCCCTAAG -ACGGAAAACCTCCGAATCGTTCAG -ACGGAAAACCTCCGAATCGCATAG -ACGGAAAACCTCCGAATCGACAAG -ACGGAAAACCTCCGAATCAAGCAG -ACGGAAAACCTCCGAATCCGTCAA -ACGGAAAACCTCCGAATCGCTGAA -ACGGAAAACCTCCGAATCAGTACG -ACGGAAAACCTCCGAATCATCCGA -ACGGAAAACCTCCGAATCATGGGA -ACGGAAAACCTCCGAATCGTGCAA -ACGGAAAACCTCCGAATCGAGGAA -ACGGAAAACCTCCGAATCCAGGTA -ACGGAAAACCTCCGAATCGACTCT -ACGGAAAACCTCCGAATCAGTCCT -ACGGAAAACCTCCGAATCTAAGCC -ACGGAAAACCTCCGAATCATAGCC -ACGGAAAACCTCCGAATCTAACCG -ACGGAAAACCTCCGAATCATGCCA -ACGGAAAACCTCGGAATGGGAAAC -ACGGAAAACCTCGGAATGAACACC -ACGGAAAACCTCGGAATGATCGAG -ACGGAAAACCTCGGAATGCTCCTT -ACGGAAAACCTCGGAATGCCTGTT -ACGGAAAACCTCGGAATGCGGTTT -ACGGAAAACCTCGGAATGGTGGTT -ACGGAAAACCTCGGAATGGCCTTT -ACGGAAAACCTCGGAATGGGTCTT -ACGGAAAACCTCGGAATGACGCTT -ACGGAAAACCTCGGAATGAGCGTT -ACGGAAAACCTCGGAATGTTCGTC -ACGGAAAACCTCGGAATGTCTCTC -ACGGAAAACCTCGGAATGTGGATC -ACGGAAAACCTCGGAATGCACTTC -ACGGAAAACCTCGGAATGGTACTC -ACGGAAAACCTCGGAATGGATGTC -ACGGAAAACCTCGGAATGACAGTC -ACGGAAAACCTCGGAATGTTGCTG -ACGGAAAACCTCGGAATGTCCATG -ACGGAAAACCTCGGAATGTGTGTG -ACGGAAAACCTCGGAATGCTAGTG -ACGGAAAACCTCGGAATGCATCTG -ACGGAAAACCTCGGAATGGAGTTG -ACGGAAAACCTCGGAATGAGACTG -ACGGAAAACCTCGGAATGTCGGTA -ACGGAAAACCTCGGAATGTGCCTA -ACGGAAAACCTCGGAATGCCACTA -ACGGAAAACCTCGGAATGGGAGTA -ACGGAAAACCTCGGAATGTCGTCT -ACGGAAAACCTCGGAATGTGCACT -ACGGAAAACCTCGGAATGCTGACT -ACGGAAAACCTCGGAATGCAACCT -ACGGAAAACCTCGGAATGGCTACT -ACGGAAAACCTCGGAATGGGATCT -ACGGAAAACCTCGGAATGAAGGCT -ACGGAAAACCTCGGAATGTCAACC -ACGGAAAACCTCGGAATGTGTTCC -ACGGAAAACCTCGGAATGATTCCC -ACGGAAAACCTCGGAATGTTCTCG -ACGGAAAACCTCGGAATGTAGACG -ACGGAAAACCTCGGAATGGTAACG -ACGGAAAACCTCGGAATGACTTCG -ACGGAAAACCTCGGAATGTACGCA -ACGGAAAACCTCGGAATGCTTGCA -ACGGAAAACCTCGGAATGCGAACA -ACGGAAAACCTCGGAATGCAGTCA -ACGGAAAACCTCGGAATGGATCCA -ACGGAAAACCTCGGAATGACGACA -ACGGAAAACCTCGGAATGAGCTCA -ACGGAAAACCTCGGAATGTCACGT -ACGGAAAACCTCGGAATGCGTAGT -ACGGAAAACCTCGGAATGGTCAGT -ACGGAAAACCTCGGAATGGAAGGT -ACGGAAAACCTCGGAATGAACCGT -ACGGAAAACCTCGGAATGTTGTGC -ACGGAAAACCTCGGAATGCTAAGC -ACGGAAAACCTCGGAATGACTAGC -ACGGAAAACCTCGGAATGAGATGC -ACGGAAAACCTCGGAATGTGAAGG -ACGGAAAACCTCGGAATGCAATGG -ACGGAAAACCTCGGAATGATGAGG -ACGGAAAACCTCGGAATGAATGGG -ACGGAAAACCTCGGAATGTCCTGA -ACGGAAAACCTCGGAATGTAGCGA -ACGGAAAACCTCGGAATGCACAGA -ACGGAAAACCTCGGAATGGCAAGA -ACGGAAAACCTCGGAATGGGTTGA -ACGGAAAACCTCGGAATGTCCGAT -ACGGAAAACCTCGGAATGTGGCAT -ACGGAAAACCTCGGAATGCGAGAT -ACGGAAAACCTCGGAATGTACCAC -ACGGAAAACCTCGGAATGCAGAAC -ACGGAAAACCTCGGAATGGTCTAC -ACGGAAAACCTCGGAATGACGTAC -ACGGAAAACCTCGGAATGAGTGAC -ACGGAAAACCTCGGAATGCTGTAG -ACGGAAAACCTCGGAATGCCTAAG -ACGGAAAACCTCGGAATGGTTCAG -ACGGAAAACCTCGGAATGGCATAG -ACGGAAAACCTCGGAATGGACAAG -ACGGAAAACCTCGGAATGAAGCAG -ACGGAAAACCTCGGAATGCGTCAA -ACGGAAAACCTCGGAATGGCTGAA -ACGGAAAACCTCGGAATGAGTACG -ACGGAAAACCTCGGAATGATCCGA -ACGGAAAACCTCGGAATGATGGGA -ACGGAAAACCTCGGAATGGTGCAA -ACGGAAAACCTCGGAATGGAGGAA -ACGGAAAACCTCGGAATGCAGGTA -ACGGAAAACCTCGGAATGGACTCT -ACGGAAAACCTCGGAATGAGTCCT -ACGGAAAACCTCGGAATGTAAGCC -ACGGAAAACCTCGGAATGATAGCC -ACGGAAAACCTCGGAATGTAACCG -ACGGAAAACCTCGGAATGATGCCA -ACGGAAAACCTCCAAGTGGGAAAC -ACGGAAAACCTCCAAGTGAACACC -ACGGAAAACCTCCAAGTGATCGAG -ACGGAAAACCTCCAAGTGCTCCTT -ACGGAAAACCTCCAAGTGCCTGTT -ACGGAAAACCTCCAAGTGCGGTTT -ACGGAAAACCTCCAAGTGGTGGTT -ACGGAAAACCTCCAAGTGGCCTTT -ACGGAAAACCTCCAAGTGGGTCTT -ACGGAAAACCTCCAAGTGACGCTT -ACGGAAAACCTCCAAGTGAGCGTT -ACGGAAAACCTCCAAGTGTTCGTC -ACGGAAAACCTCCAAGTGTCTCTC -ACGGAAAACCTCCAAGTGTGGATC -ACGGAAAACCTCCAAGTGCACTTC -ACGGAAAACCTCCAAGTGGTACTC -ACGGAAAACCTCCAAGTGGATGTC -ACGGAAAACCTCCAAGTGACAGTC -ACGGAAAACCTCCAAGTGTTGCTG -ACGGAAAACCTCCAAGTGTCCATG -ACGGAAAACCTCCAAGTGTGTGTG -ACGGAAAACCTCCAAGTGCTAGTG -ACGGAAAACCTCCAAGTGCATCTG -ACGGAAAACCTCCAAGTGGAGTTG -ACGGAAAACCTCCAAGTGAGACTG -ACGGAAAACCTCCAAGTGTCGGTA -ACGGAAAACCTCCAAGTGTGCCTA -ACGGAAAACCTCCAAGTGCCACTA -ACGGAAAACCTCCAAGTGGGAGTA -ACGGAAAACCTCCAAGTGTCGTCT -ACGGAAAACCTCCAAGTGTGCACT -ACGGAAAACCTCCAAGTGCTGACT -ACGGAAAACCTCCAAGTGCAACCT -ACGGAAAACCTCCAAGTGGCTACT -ACGGAAAACCTCCAAGTGGGATCT -ACGGAAAACCTCCAAGTGAAGGCT -ACGGAAAACCTCCAAGTGTCAACC -ACGGAAAACCTCCAAGTGTGTTCC -ACGGAAAACCTCCAAGTGATTCCC -ACGGAAAACCTCCAAGTGTTCTCG -ACGGAAAACCTCCAAGTGTAGACG -ACGGAAAACCTCCAAGTGGTAACG -ACGGAAAACCTCCAAGTGACTTCG -ACGGAAAACCTCCAAGTGTACGCA -ACGGAAAACCTCCAAGTGCTTGCA -ACGGAAAACCTCCAAGTGCGAACA -ACGGAAAACCTCCAAGTGCAGTCA -ACGGAAAACCTCCAAGTGGATCCA -ACGGAAAACCTCCAAGTGACGACA -ACGGAAAACCTCCAAGTGAGCTCA -ACGGAAAACCTCCAAGTGTCACGT -ACGGAAAACCTCCAAGTGCGTAGT -ACGGAAAACCTCCAAGTGGTCAGT -ACGGAAAACCTCCAAGTGGAAGGT -ACGGAAAACCTCCAAGTGAACCGT -ACGGAAAACCTCCAAGTGTTGTGC -ACGGAAAACCTCCAAGTGCTAAGC -ACGGAAAACCTCCAAGTGACTAGC -ACGGAAAACCTCCAAGTGAGATGC -ACGGAAAACCTCCAAGTGTGAAGG -ACGGAAAACCTCCAAGTGCAATGG -ACGGAAAACCTCCAAGTGATGAGG -ACGGAAAACCTCCAAGTGAATGGG -ACGGAAAACCTCCAAGTGTCCTGA -ACGGAAAACCTCCAAGTGTAGCGA -ACGGAAAACCTCCAAGTGCACAGA -ACGGAAAACCTCCAAGTGGCAAGA -ACGGAAAACCTCCAAGTGGGTTGA -ACGGAAAACCTCCAAGTGTCCGAT -ACGGAAAACCTCCAAGTGTGGCAT -ACGGAAAACCTCCAAGTGCGAGAT -ACGGAAAACCTCCAAGTGTACCAC -ACGGAAAACCTCCAAGTGCAGAAC -ACGGAAAACCTCCAAGTGGTCTAC -ACGGAAAACCTCCAAGTGACGTAC -ACGGAAAACCTCCAAGTGAGTGAC -ACGGAAAACCTCCAAGTGCTGTAG -ACGGAAAACCTCCAAGTGCCTAAG -ACGGAAAACCTCCAAGTGGTTCAG -ACGGAAAACCTCCAAGTGGCATAG -ACGGAAAACCTCCAAGTGGACAAG -ACGGAAAACCTCCAAGTGAAGCAG -ACGGAAAACCTCCAAGTGCGTCAA -ACGGAAAACCTCCAAGTGGCTGAA -ACGGAAAACCTCCAAGTGAGTACG -ACGGAAAACCTCCAAGTGATCCGA -ACGGAAAACCTCCAAGTGATGGGA -ACGGAAAACCTCCAAGTGGTGCAA -ACGGAAAACCTCCAAGTGGAGGAA -ACGGAAAACCTCCAAGTGCAGGTA -ACGGAAAACCTCCAAGTGGACTCT -ACGGAAAACCTCCAAGTGAGTCCT -ACGGAAAACCTCCAAGTGTAAGCC -ACGGAAAACCTCCAAGTGATAGCC -ACGGAAAACCTCCAAGTGTAACCG -ACGGAAAACCTCCAAGTGATGCCA -ACGGAAAACCTCGAAGAGGGAAAC -ACGGAAAACCTCGAAGAGAACACC -ACGGAAAACCTCGAAGAGATCGAG -ACGGAAAACCTCGAAGAGCTCCTT -ACGGAAAACCTCGAAGAGCCTGTT -ACGGAAAACCTCGAAGAGCGGTTT -ACGGAAAACCTCGAAGAGGTGGTT -ACGGAAAACCTCGAAGAGGCCTTT -ACGGAAAACCTCGAAGAGGGTCTT -ACGGAAAACCTCGAAGAGACGCTT -ACGGAAAACCTCGAAGAGAGCGTT -ACGGAAAACCTCGAAGAGTTCGTC -ACGGAAAACCTCGAAGAGTCTCTC -ACGGAAAACCTCGAAGAGTGGATC -ACGGAAAACCTCGAAGAGCACTTC -ACGGAAAACCTCGAAGAGGTACTC -ACGGAAAACCTCGAAGAGGATGTC -ACGGAAAACCTCGAAGAGACAGTC -ACGGAAAACCTCGAAGAGTTGCTG -ACGGAAAACCTCGAAGAGTCCATG -ACGGAAAACCTCGAAGAGTGTGTG -ACGGAAAACCTCGAAGAGCTAGTG -ACGGAAAACCTCGAAGAGCATCTG -ACGGAAAACCTCGAAGAGGAGTTG -ACGGAAAACCTCGAAGAGAGACTG -ACGGAAAACCTCGAAGAGTCGGTA -ACGGAAAACCTCGAAGAGTGCCTA -ACGGAAAACCTCGAAGAGCCACTA -ACGGAAAACCTCGAAGAGGGAGTA -ACGGAAAACCTCGAAGAGTCGTCT -ACGGAAAACCTCGAAGAGTGCACT -ACGGAAAACCTCGAAGAGCTGACT -ACGGAAAACCTCGAAGAGCAACCT -ACGGAAAACCTCGAAGAGGCTACT -ACGGAAAACCTCGAAGAGGGATCT -ACGGAAAACCTCGAAGAGAAGGCT -ACGGAAAACCTCGAAGAGTCAACC -ACGGAAAACCTCGAAGAGTGTTCC -ACGGAAAACCTCGAAGAGATTCCC -ACGGAAAACCTCGAAGAGTTCTCG -ACGGAAAACCTCGAAGAGTAGACG -ACGGAAAACCTCGAAGAGGTAACG -ACGGAAAACCTCGAAGAGACTTCG -ACGGAAAACCTCGAAGAGTACGCA -ACGGAAAACCTCGAAGAGCTTGCA -ACGGAAAACCTCGAAGAGCGAACA -ACGGAAAACCTCGAAGAGCAGTCA -ACGGAAAACCTCGAAGAGGATCCA -ACGGAAAACCTCGAAGAGACGACA -ACGGAAAACCTCGAAGAGAGCTCA -ACGGAAAACCTCGAAGAGTCACGT -ACGGAAAACCTCGAAGAGCGTAGT -ACGGAAAACCTCGAAGAGGTCAGT -ACGGAAAACCTCGAAGAGGAAGGT -ACGGAAAACCTCGAAGAGAACCGT -ACGGAAAACCTCGAAGAGTTGTGC -ACGGAAAACCTCGAAGAGCTAAGC -ACGGAAAACCTCGAAGAGACTAGC -ACGGAAAACCTCGAAGAGAGATGC -ACGGAAAACCTCGAAGAGTGAAGG -ACGGAAAACCTCGAAGAGCAATGG -ACGGAAAACCTCGAAGAGATGAGG -ACGGAAAACCTCGAAGAGAATGGG -ACGGAAAACCTCGAAGAGTCCTGA -ACGGAAAACCTCGAAGAGTAGCGA -ACGGAAAACCTCGAAGAGCACAGA -ACGGAAAACCTCGAAGAGGCAAGA -ACGGAAAACCTCGAAGAGGGTTGA -ACGGAAAACCTCGAAGAGTCCGAT -ACGGAAAACCTCGAAGAGTGGCAT -ACGGAAAACCTCGAAGAGCGAGAT -ACGGAAAACCTCGAAGAGTACCAC -ACGGAAAACCTCGAAGAGCAGAAC -ACGGAAAACCTCGAAGAGGTCTAC -ACGGAAAACCTCGAAGAGACGTAC -ACGGAAAACCTCGAAGAGAGTGAC -ACGGAAAACCTCGAAGAGCTGTAG -ACGGAAAACCTCGAAGAGCCTAAG -ACGGAAAACCTCGAAGAGGTTCAG -ACGGAAAACCTCGAAGAGGCATAG -ACGGAAAACCTCGAAGAGGACAAG -ACGGAAAACCTCGAAGAGAAGCAG -ACGGAAAACCTCGAAGAGCGTCAA -ACGGAAAACCTCGAAGAGGCTGAA -ACGGAAAACCTCGAAGAGAGTACG -ACGGAAAACCTCGAAGAGATCCGA -ACGGAAAACCTCGAAGAGATGGGA -ACGGAAAACCTCGAAGAGGTGCAA -ACGGAAAACCTCGAAGAGGAGGAA -ACGGAAAACCTCGAAGAGCAGGTA -ACGGAAAACCTCGAAGAGGACTCT -ACGGAAAACCTCGAAGAGAGTCCT -ACGGAAAACCTCGAAGAGTAAGCC -ACGGAAAACCTCGAAGAGATAGCC -ACGGAAAACCTCGAAGAGTAACCG -ACGGAAAACCTCGAAGAGATGCCA -ACGGAAAACCTCGTACAGGGAAAC -ACGGAAAACCTCGTACAGAACACC -ACGGAAAACCTCGTACAGATCGAG -ACGGAAAACCTCGTACAGCTCCTT -ACGGAAAACCTCGTACAGCCTGTT -ACGGAAAACCTCGTACAGCGGTTT -ACGGAAAACCTCGTACAGGTGGTT -ACGGAAAACCTCGTACAGGCCTTT -ACGGAAAACCTCGTACAGGGTCTT -ACGGAAAACCTCGTACAGACGCTT -ACGGAAAACCTCGTACAGAGCGTT -ACGGAAAACCTCGTACAGTTCGTC -ACGGAAAACCTCGTACAGTCTCTC -ACGGAAAACCTCGTACAGTGGATC -ACGGAAAACCTCGTACAGCACTTC -ACGGAAAACCTCGTACAGGTACTC -ACGGAAAACCTCGTACAGGATGTC -ACGGAAAACCTCGTACAGACAGTC -ACGGAAAACCTCGTACAGTTGCTG -ACGGAAAACCTCGTACAGTCCATG -ACGGAAAACCTCGTACAGTGTGTG -ACGGAAAACCTCGTACAGCTAGTG -ACGGAAAACCTCGTACAGCATCTG -ACGGAAAACCTCGTACAGGAGTTG -ACGGAAAACCTCGTACAGAGACTG -ACGGAAAACCTCGTACAGTCGGTA -ACGGAAAACCTCGTACAGTGCCTA -ACGGAAAACCTCGTACAGCCACTA -ACGGAAAACCTCGTACAGGGAGTA -ACGGAAAACCTCGTACAGTCGTCT -ACGGAAAACCTCGTACAGTGCACT -ACGGAAAACCTCGTACAGCTGACT -ACGGAAAACCTCGTACAGCAACCT -ACGGAAAACCTCGTACAGGCTACT -ACGGAAAACCTCGTACAGGGATCT -ACGGAAAACCTCGTACAGAAGGCT -ACGGAAAACCTCGTACAGTCAACC -ACGGAAAACCTCGTACAGTGTTCC -ACGGAAAACCTCGTACAGATTCCC -ACGGAAAACCTCGTACAGTTCTCG -ACGGAAAACCTCGTACAGTAGACG -ACGGAAAACCTCGTACAGGTAACG -ACGGAAAACCTCGTACAGACTTCG -ACGGAAAACCTCGTACAGTACGCA -ACGGAAAACCTCGTACAGCTTGCA -ACGGAAAACCTCGTACAGCGAACA -ACGGAAAACCTCGTACAGCAGTCA -ACGGAAAACCTCGTACAGGATCCA -ACGGAAAACCTCGTACAGACGACA -ACGGAAAACCTCGTACAGAGCTCA -ACGGAAAACCTCGTACAGTCACGT -ACGGAAAACCTCGTACAGCGTAGT -ACGGAAAACCTCGTACAGGTCAGT -ACGGAAAACCTCGTACAGGAAGGT -ACGGAAAACCTCGTACAGAACCGT -ACGGAAAACCTCGTACAGTTGTGC -ACGGAAAACCTCGTACAGCTAAGC -ACGGAAAACCTCGTACAGACTAGC -ACGGAAAACCTCGTACAGAGATGC -ACGGAAAACCTCGTACAGTGAAGG -ACGGAAAACCTCGTACAGCAATGG -ACGGAAAACCTCGTACAGATGAGG -ACGGAAAACCTCGTACAGAATGGG -ACGGAAAACCTCGTACAGTCCTGA -ACGGAAAACCTCGTACAGTAGCGA -ACGGAAAACCTCGTACAGCACAGA -ACGGAAAACCTCGTACAGGCAAGA -ACGGAAAACCTCGTACAGGGTTGA -ACGGAAAACCTCGTACAGTCCGAT -ACGGAAAACCTCGTACAGTGGCAT -ACGGAAAACCTCGTACAGCGAGAT -ACGGAAAACCTCGTACAGTACCAC -ACGGAAAACCTCGTACAGCAGAAC -ACGGAAAACCTCGTACAGGTCTAC -ACGGAAAACCTCGTACAGACGTAC -ACGGAAAACCTCGTACAGAGTGAC -ACGGAAAACCTCGTACAGCTGTAG -ACGGAAAACCTCGTACAGCCTAAG -ACGGAAAACCTCGTACAGGTTCAG -ACGGAAAACCTCGTACAGGCATAG -ACGGAAAACCTCGTACAGGACAAG -ACGGAAAACCTCGTACAGAAGCAG -ACGGAAAACCTCGTACAGCGTCAA -ACGGAAAACCTCGTACAGGCTGAA -ACGGAAAACCTCGTACAGAGTACG -ACGGAAAACCTCGTACAGATCCGA -ACGGAAAACCTCGTACAGATGGGA -ACGGAAAACCTCGTACAGGTGCAA -ACGGAAAACCTCGTACAGGAGGAA -ACGGAAAACCTCGTACAGCAGGTA -ACGGAAAACCTCGTACAGGACTCT -ACGGAAAACCTCGTACAGAGTCCT -ACGGAAAACCTCGTACAGTAAGCC -ACGGAAAACCTCGTACAGATAGCC -ACGGAAAACCTCGTACAGTAACCG -ACGGAAAACCTCGTACAGATGCCA -ACGGAAAACCTCTCTGACGGAAAC -ACGGAAAACCTCTCTGACAACACC -ACGGAAAACCTCTCTGACATCGAG -ACGGAAAACCTCTCTGACCTCCTT -ACGGAAAACCTCTCTGACCCTGTT -ACGGAAAACCTCTCTGACCGGTTT -ACGGAAAACCTCTCTGACGTGGTT -ACGGAAAACCTCTCTGACGCCTTT -ACGGAAAACCTCTCTGACGGTCTT -ACGGAAAACCTCTCTGACACGCTT -ACGGAAAACCTCTCTGACAGCGTT -ACGGAAAACCTCTCTGACTTCGTC -ACGGAAAACCTCTCTGACTCTCTC -ACGGAAAACCTCTCTGACTGGATC -ACGGAAAACCTCTCTGACCACTTC -ACGGAAAACCTCTCTGACGTACTC -ACGGAAAACCTCTCTGACGATGTC -ACGGAAAACCTCTCTGACACAGTC -ACGGAAAACCTCTCTGACTTGCTG -ACGGAAAACCTCTCTGACTCCATG -ACGGAAAACCTCTCTGACTGTGTG -ACGGAAAACCTCTCTGACCTAGTG -ACGGAAAACCTCTCTGACCATCTG -ACGGAAAACCTCTCTGACGAGTTG -ACGGAAAACCTCTCTGACAGACTG -ACGGAAAACCTCTCTGACTCGGTA -ACGGAAAACCTCTCTGACTGCCTA -ACGGAAAACCTCTCTGACCCACTA -ACGGAAAACCTCTCTGACGGAGTA -ACGGAAAACCTCTCTGACTCGTCT -ACGGAAAACCTCTCTGACTGCACT -ACGGAAAACCTCTCTGACCTGACT -ACGGAAAACCTCTCTGACCAACCT -ACGGAAAACCTCTCTGACGCTACT -ACGGAAAACCTCTCTGACGGATCT -ACGGAAAACCTCTCTGACAAGGCT -ACGGAAAACCTCTCTGACTCAACC -ACGGAAAACCTCTCTGACTGTTCC -ACGGAAAACCTCTCTGACATTCCC -ACGGAAAACCTCTCTGACTTCTCG -ACGGAAAACCTCTCTGACTAGACG -ACGGAAAACCTCTCTGACGTAACG -ACGGAAAACCTCTCTGACACTTCG -ACGGAAAACCTCTCTGACTACGCA -ACGGAAAACCTCTCTGACCTTGCA -ACGGAAAACCTCTCTGACCGAACA -ACGGAAAACCTCTCTGACCAGTCA -ACGGAAAACCTCTCTGACGATCCA -ACGGAAAACCTCTCTGACACGACA -ACGGAAAACCTCTCTGACAGCTCA -ACGGAAAACCTCTCTGACTCACGT -ACGGAAAACCTCTCTGACCGTAGT -ACGGAAAACCTCTCTGACGTCAGT -ACGGAAAACCTCTCTGACGAAGGT -ACGGAAAACCTCTCTGACAACCGT -ACGGAAAACCTCTCTGACTTGTGC -ACGGAAAACCTCTCTGACCTAAGC -ACGGAAAACCTCTCTGACACTAGC -ACGGAAAACCTCTCTGACAGATGC -ACGGAAAACCTCTCTGACTGAAGG -ACGGAAAACCTCTCTGACCAATGG -ACGGAAAACCTCTCTGACATGAGG -ACGGAAAACCTCTCTGACAATGGG -ACGGAAAACCTCTCTGACTCCTGA -ACGGAAAACCTCTCTGACTAGCGA -ACGGAAAACCTCTCTGACCACAGA -ACGGAAAACCTCTCTGACGCAAGA -ACGGAAAACCTCTCTGACGGTTGA -ACGGAAAACCTCTCTGACTCCGAT -ACGGAAAACCTCTCTGACTGGCAT -ACGGAAAACCTCTCTGACCGAGAT -ACGGAAAACCTCTCTGACTACCAC -ACGGAAAACCTCTCTGACCAGAAC -ACGGAAAACCTCTCTGACGTCTAC -ACGGAAAACCTCTCTGACACGTAC -ACGGAAAACCTCTCTGACAGTGAC -ACGGAAAACCTCTCTGACCTGTAG -ACGGAAAACCTCTCTGACCCTAAG -ACGGAAAACCTCTCTGACGTTCAG -ACGGAAAACCTCTCTGACGCATAG -ACGGAAAACCTCTCTGACGACAAG -ACGGAAAACCTCTCTGACAAGCAG -ACGGAAAACCTCTCTGACCGTCAA -ACGGAAAACCTCTCTGACGCTGAA -ACGGAAAACCTCTCTGACAGTACG -ACGGAAAACCTCTCTGACATCCGA -ACGGAAAACCTCTCTGACATGGGA -ACGGAAAACCTCTCTGACGTGCAA -ACGGAAAACCTCTCTGACGAGGAA -ACGGAAAACCTCTCTGACCAGGTA -ACGGAAAACCTCTCTGACGACTCT -ACGGAAAACCTCTCTGACAGTCCT -ACGGAAAACCTCTCTGACTAAGCC -ACGGAAAACCTCTCTGACATAGCC -ACGGAAAACCTCTCTGACTAACCG -ACGGAAAACCTCTCTGACATGCCA -ACGGAAAACCTCCCTAGTGGAAAC -ACGGAAAACCTCCCTAGTAACACC -ACGGAAAACCTCCCTAGTATCGAG -ACGGAAAACCTCCCTAGTCTCCTT -ACGGAAAACCTCCCTAGTCCTGTT -ACGGAAAACCTCCCTAGTCGGTTT -ACGGAAAACCTCCCTAGTGTGGTT -ACGGAAAACCTCCCTAGTGCCTTT -ACGGAAAACCTCCCTAGTGGTCTT -ACGGAAAACCTCCCTAGTACGCTT -ACGGAAAACCTCCCTAGTAGCGTT -ACGGAAAACCTCCCTAGTTTCGTC -ACGGAAAACCTCCCTAGTTCTCTC -ACGGAAAACCTCCCTAGTTGGATC -ACGGAAAACCTCCCTAGTCACTTC -ACGGAAAACCTCCCTAGTGTACTC -ACGGAAAACCTCCCTAGTGATGTC -ACGGAAAACCTCCCTAGTACAGTC -ACGGAAAACCTCCCTAGTTTGCTG -ACGGAAAACCTCCCTAGTTCCATG -ACGGAAAACCTCCCTAGTTGTGTG -ACGGAAAACCTCCCTAGTCTAGTG -ACGGAAAACCTCCCTAGTCATCTG -ACGGAAAACCTCCCTAGTGAGTTG -ACGGAAAACCTCCCTAGTAGACTG -ACGGAAAACCTCCCTAGTTCGGTA -ACGGAAAACCTCCCTAGTTGCCTA -ACGGAAAACCTCCCTAGTCCACTA -ACGGAAAACCTCCCTAGTGGAGTA -ACGGAAAACCTCCCTAGTTCGTCT -ACGGAAAACCTCCCTAGTTGCACT -ACGGAAAACCTCCCTAGTCTGACT -ACGGAAAACCTCCCTAGTCAACCT -ACGGAAAACCTCCCTAGTGCTACT -ACGGAAAACCTCCCTAGTGGATCT -ACGGAAAACCTCCCTAGTAAGGCT -ACGGAAAACCTCCCTAGTTCAACC -ACGGAAAACCTCCCTAGTTGTTCC -ACGGAAAACCTCCCTAGTATTCCC -ACGGAAAACCTCCCTAGTTTCTCG -ACGGAAAACCTCCCTAGTTAGACG -ACGGAAAACCTCCCTAGTGTAACG -ACGGAAAACCTCCCTAGTACTTCG -ACGGAAAACCTCCCTAGTTACGCA -ACGGAAAACCTCCCTAGTCTTGCA -ACGGAAAACCTCCCTAGTCGAACA -ACGGAAAACCTCCCTAGTCAGTCA -ACGGAAAACCTCCCTAGTGATCCA -ACGGAAAACCTCCCTAGTACGACA -ACGGAAAACCTCCCTAGTAGCTCA -ACGGAAAACCTCCCTAGTTCACGT -ACGGAAAACCTCCCTAGTCGTAGT -ACGGAAAACCTCCCTAGTGTCAGT -ACGGAAAACCTCCCTAGTGAAGGT -ACGGAAAACCTCCCTAGTAACCGT -ACGGAAAACCTCCCTAGTTTGTGC -ACGGAAAACCTCCCTAGTCTAAGC -ACGGAAAACCTCCCTAGTACTAGC -ACGGAAAACCTCCCTAGTAGATGC -ACGGAAAACCTCCCTAGTTGAAGG -ACGGAAAACCTCCCTAGTCAATGG -ACGGAAAACCTCCCTAGTATGAGG -ACGGAAAACCTCCCTAGTAATGGG -ACGGAAAACCTCCCTAGTTCCTGA -ACGGAAAACCTCCCTAGTTAGCGA -ACGGAAAACCTCCCTAGTCACAGA -ACGGAAAACCTCCCTAGTGCAAGA -ACGGAAAACCTCCCTAGTGGTTGA -ACGGAAAACCTCCCTAGTTCCGAT -ACGGAAAACCTCCCTAGTTGGCAT -ACGGAAAACCTCCCTAGTCGAGAT -ACGGAAAACCTCCCTAGTTACCAC -ACGGAAAACCTCCCTAGTCAGAAC -ACGGAAAACCTCCCTAGTGTCTAC -ACGGAAAACCTCCCTAGTACGTAC -ACGGAAAACCTCCCTAGTAGTGAC -ACGGAAAACCTCCCTAGTCTGTAG -ACGGAAAACCTCCCTAGTCCTAAG -ACGGAAAACCTCCCTAGTGTTCAG -ACGGAAAACCTCCCTAGTGCATAG -ACGGAAAACCTCCCTAGTGACAAG -ACGGAAAACCTCCCTAGTAAGCAG -ACGGAAAACCTCCCTAGTCGTCAA -ACGGAAAACCTCCCTAGTGCTGAA -ACGGAAAACCTCCCTAGTAGTACG -ACGGAAAACCTCCCTAGTATCCGA -ACGGAAAACCTCCCTAGTATGGGA -ACGGAAAACCTCCCTAGTGTGCAA -ACGGAAAACCTCCCTAGTGAGGAA -ACGGAAAACCTCCCTAGTCAGGTA -ACGGAAAACCTCCCTAGTGACTCT -ACGGAAAACCTCCCTAGTAGTCCT -ACGGAAAACCTCCCTAGTTAAGCC -ACGGAAAACCTCCCTAGTATAGCC -ACGGAAAACCTCCCTAGTTAACCG -ACGGAAAACCTCCCTAGTATGCCA -ACGGAAAACCTCGCCTAAGGAAAC -ACGGAAAACCTCGCCTAAAACACC -ACGGAAAACCTCGCCTAAATCGAG -ACGGAAAACCTCGCCTAACTCCTT -ACGGAAAACCTCGCCTAACCTGTT -ACGGAAAACCTCGCCTAACGGTTT -ACGGAAAACCTCGCCTAAGTGGTT -ACGGAAAACCTCGCCTAAGCCTTT -ACGGAAAACCTCGCCTAAGGTCTT -ACGGAAAACCTCGCCTAAACGCTT -ACGGAAAACCTCGCCTAAAGCGTT -ACGGAAAACCTCGCCTAATTCGTC -ACGGAAAACCTCGCCTAATCTCTC -ACGGAAAACCTCGCCTAATGGATC -ACGGAAAACCTCGCCTAACACTTC -ACGGAAAACCTCGCCTAAGTACTC -ACGGAAAACCTCGCCTAAGATGTC -ACGGAAAACCTCGCCTAAACAGTC -ACGGAAAACCTCGCCTAATTGCTG -ACGGAAAACCTCGCCTAATCCATG -ACGGAAAACCTCGCCTAATGTGTG -ACGGAAAACCTCGCCTAACTAGTG -ACGGAAAACCTCGCCTAACATCTG -ACGGAAAACCTCGCCTAAGAGTTG -ACGGAAAACCTCGCCTAAAGACTG -ACGGAAAACCTCGCCTAATCGGTA -ACGGAAAACCTCGCCTAATGCCTA -ACGGAAAACCTCGCCTAACCACTA -ACGGAAAACCTCGCCTAAGGAGTA -ACGGAAAACCTCGCCTAATCGTCT -ACGGAAAACCTCGCCTAATGCACT -ACGGAAAACCTCGCCTAACTGACT -ACGGAAAACCTCGCCTAACAACCT -ACGGAAAACCTCGCCTAAGCTACT -ACGGAAAACCTCGCCTAAGGATCT -ACGGAAAACCTCGCCTAAAAGGCT -ACGGAAAACCTCGCCTAATCAACC -ACGGAAAACCTCGCCTAATGTTCC -ACGGAAAACCTCGCCTAAATTCCC -ACGGAAAACCTCGCCTAATTCTCG -ACGGAAAACCTCGCCTAATAGACG -ACGGAAAACCTCGCCTAAGTAACG -ACGGAAAACCTCGCCTAAACTTCG -ACGGAAAACCTCGCCTAATACGCA -ACGGAAAACCTCGCCTAACTTGCA -ACGGAAAACCTCGCCTAACGAACA -ACGGAAAACCTCGCCTAACAGTCA -ACGGAAAACCTCGCCTAAGATCCA -ACGGAAAACCTCGCCTAAACGACA -ACGGAAAACCTCGCCTAAAGCTCA -ACGGAAAACCTCGCCTAATCACGT -ACGGAAAACCTCGCCTAACGTAGT -ACGGAAAACCTCGCCTAAGTCAGT -ACGGAAAACCTCGCCTAAGAAGGT -ACGGAAAACCTCGCCTAAAACCGT -ACGGAAAACCTCGCCTAATTGTGC -ACGGAAAACCTCGCCTAACTAAGC -ACGGAAAACCTCGCCTAAACTAGC -ACGGAAAACCTCGCCTAAAGATGC -ACGGAAAACCTCGCCTAATGAAGG -ACGGAAAACCTCGCCTAACAATGG -ACGGAAAACCTCGCCTAAATGAGG -ACGGAAAACCTCGCCTAAAATGGG -ACGGAAAACCTCGCCTAATCCTGA -ACGGAAAACCTCGCCTAATAGCGA -ACGGAAAACCTCGCCTAACACAGA -ACGGAAAACCTCGCCTAAGCAAGA -ACGGAAAACCTCGCCTAAGGTTGA -ACGGAAAACCTCGCCTAATCCGAT -ACGGAAAACCTCGCCTAATGGCAT -ACGGAAAACCTCGCCTAACGAGAT -ACGGAAAACCTCGCCTAATACCAC -ACGGAAAACCTCGCCTAACAGAAC -ACGGAAAACCTCGCCTAAGTCTAC -ACGGAAAACCTCGCCTAAACGTAC -ACGGAAAACCTCGCCTAAAGTGAC -ACGGAAAACCTCGCCTAACTGTAG -ACGGAAAACCTCGCCTAACCTAAG -ACGGAAAACCTCGCCTAAGTTCAG -ACGGAAAACCTCGCCTAAGCATAG -ACGGAAAACCTCGCCTAAGACAAG -ACGGAAAACCTCGCCTAAAAGCAG -ACGGAAAACCTCGCCTAACGTCAA -ACGGAAAACCTCGCCTAAGCTGAA -ACGGAAAACCTCGCCTAAAGTACG -ACGGAAAACCTCGCCTAAATCCGA -ACGGAAAACCTCGCCTAAATGGGA -ACGGAAAACCTCGCCTAAGTGCAA -ACGGAAAACCTCGCCTAAGAGGAA -ACGGAAAACCTCGCCTAACAGGTA -ACGGAAAACCTCGCCTAAGACTCT -ACGGAAAACCTCGCCTAAAGTCCT -ACGGAAAACCTCGCCTAATAAGCC -ACGGAAAACCTCGCCTAAATAGCC -ACGGAAAACCTCGCCTAATAACCG -ACGGAAAACCTCGCCTAAATGCCA -ACGGAAAACCTCGCCATAGGAAAC -ACGGAAAACCTCGCCATAAACACC -ACGGAAAACCTCGCCATAATCGAG -ACGGAAAACCTCGCCATACTCCTT -ACGGAAAACCTCGCCATACCTGTT -ACGGAAAACCTCGCCATACGGTTT -ACGGAAAACCTCGCCATAGTGGTT -ACGGAAAACCTCGCCATAGCCTTT -ACGGAAAACCTCGCCATAGGTCTT -ACGGAAAACCTCGCCATAACGCTT -ACGGAAAACCTCGCCATAAGCGTT -ACGGAAAACCTCGCCATATTCGTC -ACGGAAAACCTCGCCATATCTCTC -ACGGAAAACCTCGCCATATGGATC -ACGGAAAACCTCGCCATACACTTC -ACGGAAAACCTCGCCATAGTACTC -ACGGAAAACCTCGCCATAGATGTC -ACGGAAAACCTCGCCATAACAGTC -ACGGAAAACCTCGCCATATTGCTG -ACGGAAAACCTCGCCATATCCATG -ACGGAAAACCTCGCCATATGTGTG -ACGGAAAACCTCGCCATACTAGTG -ACGGAAAACCTCGCCATACATCTG -ACGGAAAACCTCGCCATAGAGTTG -ACGGAAAACCTCGCCATAAGACTG -ACGGAAAACCTCGCCATATCGGTA -ACGGAAAACCTCGCCATATGCCTA -ACGGAAAACCTCGCCATACCACTA -ACGGAAAACCTCGCCATAGGAGTA -ACGGAAAACCTCGCCATATCGTCT -ACGGAAAACCTCGCCATATGCACT -ACGGAAAACCTCGCCATACTGACT -ACGGAAAACCTCGCCATACAACCT -ACGGAAAACCTCGCCATAGCTACT -ACGGAAAACCTCGCCATAGGATCT -ACGGAAAACCTCGCCATAAAGGCT -ACGGAAAACCTCGCCATATCAACC -ACGGAAAACCTCGCCATATGTTCC -ACGGAAAACCTCGCCATAATTCCC -ACGGAAAACCTCGCCATATTCTCG -ACGGAAAACCTCGCCATATAGACG -ACGGAAAACCTCGCCATAGTAACG -ACGGAAAACCTCGCCATAACTTCG -ACGGAAAACCTCGCCATATACGCA -ACGGAAAACCTCGCCATACTTGCA -ACGGAAAACCTCGCCATACGAACA -ACGGAAAACCTCGCCATACAGTCA -ACGGAAAACCTCGCCATAGATCCA -ACGGAAAACCTCGCCATAACGACA -ACGGAAAACCTCGCCATAAGCTCA -ACGGAAAACCTCGCCATATCACGT -ACGGAAAACCTCGCCATACGTAGT -ACGGAAAACCTCGCCATAGTCAGT -ACGGAAAACCTCGCCATAGAAGGT -ACGGAAAACCTCGCCATAAACCGT -ACGGAAAACCTCGCCATATTGTGC -ACGGAAAACCTCGCCATACTAAGC -ACGGAAAACCTCGCCATAACTAGC -ACGGAAAACCTCGCCATAAGATGC -ACGGAAAACCTCGCCATATGAAGG -ACGGAAAACCTCGCCATACAATGG -ACGGAAAACCTCGCCATAATGAGG -ACGGAAAACCTCGCCATAAATGGG -ACGGAAAACCTCGCCATATCCTGA -ACGGAAAACCTCGCCATATAGCGA -ACGGAAAACCTCGCCATACACAGA -ACGGAAAACCTCGCCATAGCAAGA -ACGGAAAACCTCGCCATAGGTTGA -ACGGAAAACCTCGCCATATCCGAT -ACGGAAAACCTCGCCATATGGCAT -ACGGAAAACCTCGCCATACGAGAT -ACGGAAAACCTCGCCATATACCAC -ACGGAAAACCTCGCCATACAGAAC -ACGGAAAACCTCGCCATAGTCTAC -ACGGAAAACCTCGCCATAACGTAC -ACGGAAAACCTCGCCATAAGTGAC -ACGGAAAACCTCGCCATACTGTAG -ACGGAAAACCTCGCCATACCTAAG -ACGGAAAACCTCGCCATAGTTCAG -ACGGAAAACCTCGCCATAGCATAG -ACGGAAAACCTCGCCATAGACAAG -ACGGAAAACCTCGCCATAAAGCAG -ACGGAAAACCTCGCCATACGTCAA -ACGGAAAACCTCGCCATAGCTGAA -ACGGAAAACCTCGCCATAAGTACG -ACGGAAAACCTCGCCATAATCCGA -ACGGAAAACCTCGCCATAATGGGA -ACGGAAAACCTCGCCATAGTGCAA -ACGGAAAACCTCGCCATAGAGGAA -ACGGAAAACCTCGCCATACAGGTA -ACGGAAAACCTCGCCATAGACTCT -ACGGAAAACCTCGCCATAAGTCCT -ACGGAAAACCTCGCCATATAAGCC -ACGGAAAACCTCGCCATAATAGCC -ACGGAAAACCTCGCCATATAACCG -ACGGAAAACCTCGCCATAATGCCA -ACGGAAAACCTCCCGTAAGGAAAC -ACGGAAAACCTCCCGTAAAACACC -ACGGAAAACCTCCCGTAAATCGAG -ACGGAAAACCTCCCGTAACTCCTT -ACGGAAAACCTCCCGTAACCTGTT -ACGGAAAACCTCCCGTAACGGTTT -ACGGAAAACCTCCCGTAAGTGGTT -ACGGAAAACCTCCCGTAAGCCTTT -ACGGAAAACCTCCCGTAAGGTCTT -ACGGAAAACCTCCCGTAAACGCTT -ACGGAAAACCTCCCGTAAAGCGTT -ACGGAAAACCTCCCGTAATTCGTC -ACGGAAAACCTCCCGTAATCTCTC -ACGGAAAACCTCCCGTAATGGATC -ACGGAAAACCTCCCGTAACACTTC -ACGGAAAACCTCCCGTAAGTACTC -ACGGAAAACCTCCCGTAAGATGTC -ACGGAAAACCTCCCGTAAACAGTC -ACGGAAAACCTCCCGTAATTGCTG -ACGGAAAACCTCCCGTAATCCATG -ACGGAAAACCTCCCGTAATGTGTG -ACGGAAAACCTCCCGTAACTAGTG -ACGGAAAACCTCCCGTAACATCTG -ACGGAAAACCTCCCGTAAGAGTTG -ACGGAAAACCTCCCGTAAAGACTG -ACGGAAAACCTCCCGTAATCGGTA -ACGGAAAACCTCCCGTAATGCCTA -ACGGAAAACCTCCCGTAACCACTA -ACGGAAAACCTCCCGTAAGGAGTA -ACGGAAAACCTCCCGTAATCGTCT -ACGGAAAACCTCCCGTAATGCACT -ACGGAAAACCTCCCGTAACTGACT -ACGGAAAACCTCCCGTAACAACCT -ACGGAAAACCTCCCGTAAGCTACT -ACGGAAAACCTCCCGTAAGGATCT -ACGGAAAACCTCCCGTAAAAGGCT -ACGGAAAACCTCCCGTAATCAACC -ACGGAAAACCTCCCGTAATGTTCC -ACGGAAAACCTCCCGTAAATTCCC -ACGGAAAACCTCCCGTAATTCTCG -ACGGAAAACCTCCCGTAATAGACG -ACGGAAAACCTCCCGTAAGTAACG -ACGGAAAACCTCCCGTAAACTTCG -ACGGAAAACCTCCCGTAATACGCA -ACGGAAAACCTCCCGTAACTTGCA -ACGGAAAACCTCCCGTAACGAACA -ACGGAAAACCTCCCGTAACAGTCA -ACGGAAAACCTCCCGTAAGATCCA -ACGGAAAACCTCCCGTAAACGACA -ACGGAAAACCTCCCGTAAAGCTCA -ACGGAAAACCTCCCGTAATCACGT -ACGGAAAACCTCCCGTAACGTAGT -ACGGAAAACCTCCCGTAAGTCAGT -ACGGAAAACCTCCCGTAAGAAGGT -ACGGAAAACCTCCCGTAAAACCGT -ACGGAAAACCTCCCGTAATTGTGC -ACGGAAAACCTCCCGTAACTAAGC -ACGGAAAACCTCCCGTAAACTAGC -ACGGAAAACCTCCCGTAAAGATGC -ACGGAAAACCTCCCGTAATGAAGG -ACGGAAAACCTCCCGTAACAATGG -ACGGAAAACCTCCCGTAAATGAGG -ACGGAAAACCTCCCGTAAAATGGG -ACGGAAAACCTCCCGTAATCCTGA -ACGGAAAACCTCCCGTAATAGCGA -ACGGAAAACCTCCCGTAACACAGA -ACGGAAAACCTCCCGTAAGCAAGA -ACGGAAAACCTCCCGTAAGGTTGA -ACGGAAAACCTCCCGTAATCCGAT -ACGGAAAACCTCCCGTAATGGCAT -ACGGAAAACCTCCCGTAACGAGAT -ACGGAAAACCTCCCGTAATACCAC -ACGGAAAACCTCCCGTAACAGAAC -ACGGAAAACCTCCCGTAAGTCTAC -ACGGAAAACCTCCCGTAAACGTAC -ACGGAAAACCTCCCGTAAAGTGAC -ACGGAAAACCTCCCGTAACTGTAG -ACGGAAAACCTCCCGTAACCTAAG -ACGGAAAACCTCCCGTAAGTTCAG -ACGGAAAACCTCCCGTAAGCATAG -ACGGAAAACCTCCCGTAAGACAAG -ACGGAAAACCTCCCGTAAAAGCAG -ACGGAAAACCTCCCGTAACGTCAA -ACGGAAAACCTCCCGTAAGCTGAA -ACGGAAAACCTCCCGTAAAGTACG -ACGGAAAACCTCCCGTAAATCCGA -ACGGAAAACCTCCCGTAAATGGGA -ACGGAAAACCTCCCGTAAGTGCAA -ACGGAAAACCTCCCGTAAGAGGAA -ACGGAAAACCTCCCGTAACAGGTA -ACGGAAAACCTCCCGTAAGACTCT -ACGGAAAACCTCCCGTAAAGTCCT -ACGGAAAACCTCCCGTAATAAGCC -ACGGAAAACCTCCCGTAAATAGCC -ACGGAAAACCTCCCGTAATAACCG -ACGGAAAACCTCCCGTAAATGCCA -ACGGAAAACCTCCCAATGGGAAAC -ACGGAAAACCTCCCAATGAACACC -ACGGAAAACCTCCCAATGATCGAG -ACGGAAAACCTCCCAATGCTCCTT -ACGGAAAACCTCCCAATGCCTGTT -ACGGAAAACCTCCCAATGCGGTTT -ACGGAAAACCTCCCAATGGTGGTT -ACGGAAAACCTCCCAATGGCCTTT -ACGGAAAACCTCCCAATGGGTCTT -ACGGAAAACCTCCCAATGACGCTT -ACGGAAAACCTCCCAATGAGCGTT -ACGGAAAACCTCCCAATGTTCGTC -ACGGAAAACCTCCCAATGTCTCTC -ACGGAAAACCTCCCAATGTGGATC -ACGGAAAACCTCCCAATGCACTTC -ACGGAAAACCTCCCAATGGTACTC -ACGGAAAACCTCCCAATGGATGTC -ACGGAAAACCTCCCAATGACAGTC -ACGGAAAACCTCCCAATGTTGCTG -ACGGAAAACCTCCCAATGTCCATG -ACGGAAAACCTCCCAATGTGTGTG -ACGGAAAACCTCCCAATGCTAGTG -ACGGAAAACCTCCCAATGCATCTG -ACGGAAAACCTCCCAATGGAGTTG -ACGGAAAACCTCCCAATGAGACTG -ACGGAAAACCTCCCAATGTCGGTA -ACGGAAAACCTCCCAATGTGCCTA -ACGGAAAACCTCCCAATGCCACTA -ACGGAAAACCTCCCAATGGGAGTA -ACGGAAAACCTCCCAATGTCGTCT -ACGGAAAACCTCCCAATGTGCACT -ACGGAAAACCTCCCAATGCTGACT -ACGGAAAACCTCCCAATGCAACCT -ACGGAAAACCTCCCAATGGCTACT -ACGGAAAACCTCCCAATGGGATCT -ACGGAAAACCTCCCAATGAAGGCT -ACGGAAAACCTCCCAATGTCAACC -ACGGAAAACCTCCCAATGTGTTCC -ACGGAAAACCTCCCAATGATTCCC -ACGGAAAACCTCCCAATGTTCTCG -ACGGAAAACCTCCCAATGTAGACG -ACGGAAAACCTCCCAATGGTAACG -ACGGAAAACCTCCCAATGACTTCG -ACGGAAAACCTCCCAATGTACGCA -ACGGAAAACCTCCCAATGCTTGCA -ACGGAAAACCTCCCAATGCGAACA -ACGGAAAACCTCCCAATGCAGTCA -ACGGAAAACCTCCCAATGGATCCA -ACGGAAAACCTCCCAATGACGACA -ACGGAAAACCTCCCAATGAGCTCA -ACGGAAAACCTCCCAATGTCACGT -ACGGAAAACCTCCCAATGCGTAGT -ACGGAAAACCTCCCAATGGTCAGT -ACGGAAAACCTCCCAATGGAAGGT -ACGGAAAACCTCCCAATGAACCGT -ACGGAAAACCTCCCAATGTTGTGC -ACGGAAAACCTCCCAATGCTAAGC -ACGGAAAACCTCCCAATGACTAGC -ACGGAAAACCTCCCAATGAGATGC -ACGGAAAACCTCCCAATGTGAAGG -ACGGAAAACCTCCCAATGCAATGG -ACGGAAAACCTCCCAATGATGAGG -ACGGAAAACCTCCCAATGAATGGG -ACGGAAAACCTCCCAATGTCCTGA -ACGGAAAACCTCCCAATGTAGCGA -ACGGAAAACCTCCCAATGCACAGA -ACGGAAAACCTCCCAATGGCAAGA -ACGGAAAACCTCCCAATGGGTTGA -ACGGAAAACCTCCCAATGTCCGAT -ACGGAAAACCTCCCAATGTGGCAT -ACGGAAAACCTCCCAATGCGAGAT -ACGGAAAACCTCCCAATGTACCAC -ACGGAAAACCTCCCAATGCAGAAC -ACGGAAAACCTCCCAATGGTCTAC -ACGGAAAACCTCCCAATGACGTAC -ACGGAAAACCTCCCAATGAGTGAC -ACGGAAAACCTCCCAATGCTGTAG -ACGGAAAACCTCCCAATGCCTAAG -ACGGAAAACCTCCCAATGGTTCAG -ACGGAAAACCTCCCAATGGCATAG -ACGGAAAACCTCCCAATGGACAAG -ACGGAAAACCTCCCAATGAAGCAG -ACGGAAAACCTCCCAATGCGTCAA -ACGGAAAACCTCCCAATGGCTGAA -ACGGAAAACCTCCCAATGAGTACG -ACGGAAAACCTCCCAATGATCCGA -ACGGAAAACCTCCCAATGATGGGA -ACGGAAAACCTCCCAATGGTGCAA -ACGGAAAACCTCCCAATGGAGGAA -ACGGAAAACCTCCCAATGCAGGTA -ACGGAAAACCTCCCAATGGACTCT -ACGGAAAACCTCCCAATGAGTCCT -ACGGAAAACCTCCCAATGTAAGCC -ACGGAAAACCTCCCAATGATAGCC -ACGGAAAACCTCCCAATGTAACCG -ACGGAAAACCTCCCAATGATGCCA -ACGGAACTACTGAACGGAGGAAAC -ACGGAACTACTGAACGGAAACACC -ACGGAACTACTGAACGGAATCGAG -ACGGAACTACTGAACGGACTCCTT -ACGGAACTACTGAACGGACCTGTT -ACGGAACTACTGAACGGACGGTTT -ACGGAACTACTGAACGGAGTGGTT -ACGGAACTACTGAACGGAGCCTTT -ACGGAACTACTGAACGGAGGTCTT -ACGGAACTACTGAACGGAACGCTT -ACGGAACTACTGAACGGAAGCGTT -ACGGAACTACTGAACGGATTCGTC -ACGGAACTACTGAACGGATCTCTC -ACGGAACTACTGAACGGATGGATC -ACGGAACTACTGAACGGACACTTC -ACGGAACTACTGAACGGAGTACTC -ACGGAACTACTGAACGGAGATGTC -ACGGAACTACTGAACGGAACAGTC -ACGGAACTACTGAACGGATTGCTG -ACGGAACTACTGAACGGATCCATG -ACGGAACTACTGAACGGATGTGTG -ACGGAACTACTGAACGGACTAGTG -ACGGAACTACTGAACGGACATCTG -ACGGAACTACTGAACGGAGAGTTG -ACGGAACTACTGAACGGAAGACTG -ACGGAACTACTGAACGGATCGGTA -ACGGAACTACTGAACGGATGCCTA -ACGGAACTACTGAACGGACCACTA -ACGGAACTACTGAACGGAGGAGTA -ACGGAACTACTGAACGGATCGTCT -ACGGAACTACTGAACGGATGCACT -ACGGAACTACTGAACGGACTGACT -ACGGAACTACTGAACGGACAACCT -ACGGAACTACTGAACGGAGCTACT -ACGGAACTACTGAACGGAGGATCT -ACGGAACTACTGAACGGAAAGGCT -ACGGAACTACTGAACGGATCAACC -ACGGAACTACTGAACGGATGTTCC -ACGGAACTACTGAACGGAATTCCC -ACGGAACTACTGAACGGATTCTCG -ACGGAACTACTGAACGGATAGACG -ACGGAACTACTGAACGGAGTAACG -ACGGAACTACTGAACGGAACTTCG -ACGGAACTACTGAACGGATACGCA -ACGGAACTACTGAACGGACTTGCA -ACGGAACTACTGAACGGACGAACA -ACGGAACTACTGAACGGACAGTCA -ACGGAACTACTGAACGGAGATCCA -ACGGAACTACTGAACGGAACGACA -ACGGAACTACTGAACGGAAGCTCA -ACGGAACTACTGAACGGATCACGT -ACGGAACTACTGAACGGACGTAGT -ACGGAACTACTGAACGGAGTCAGT -ACGGAACTACTGAACGGAGAAGGT -ACGGAACTACTGAACGGAAACCGT -ACGGAACTACTGAACGGATTGTGC -ACGGAACTACTGAACGGACTAAGC -ACGGAACTACTGAACGGAACTAGC -ACGGAACTACTGAACGGAAGATGC -ACGGAACTACTGAACGGATGAAGG -ACGGAACTACTGAACGGACAATGG -ACGGAACTACTGAACGGAATGAGG -ACGGAACTACTGAACGGAAATGGG -ACGGAACTACTGAACGGATCCTGA -ACGGAACTACTGAACGGATAGCGA -ACGGAACTACTGAACGGACACAGA -ACGGAACTACTGAACGGAGCAAGA -ACGGAACTACTGAACGGAGGTTGA -ACGGAACTACTGAACGGATCCGAT -ACGGAACTACTGAACGGATGGCAT -ACGGAACTACTGAACGGACGAGAT -ACGGAACTACTGAACGGATACCAC -ACGGAACTACTGAACGGACAGAAC -ACGGAACTACTGAACGGAGTCTAC -ACGGAACTACTGAACGGAACGTAC -ACGGAACTACTGAACGGAAGTGAC -ACGGAACTACTGAACGGACTGTAG -ACGGAACTACTGAACGGACCTAAG -ACGGAACTACTGAACGGAGTTCAG -ACGGAACTACTGAACGGAGCATAG -ACGGAACTACTGAACGGAGACAAG -ACGGAACTACTGAACGGAAAGCAG -ACGGAACTACTGAACGGACGTCAA -ACGGAACTACTGAACGGAGCTGAA -ACGGAACTACTGAACGGAAGTACG -ACGGAACTACTGAACGGAATCCGA -ACGGAACTACTGAACGGAATGGGA -ACGGAACTACTGAACGGAGTGCAA -ACGGAACTACTGAACGGAGAGGAA -ACGGAACTACTGAACGGACAGGTA -ACGGAACTACTGAACGGAGACTCT -ACGGAACTACTGAACGGAAGTCCT -ACGGAACTACTGAACGGATAAGCC -ACGGAACTACTGAACGGAATAGCC -ACGGAACTACTGAACGGATAACCG -ACGGAACTACTGAACGGAATGCCA -ACGGAACTACTGACCAACGGAAAC -ACGGAACTACTGACCAACAACACC -ACGGAACTACTGACCAACATCGAG -ACGGAACTACTGACCAACCTCCTT -ACGGAACTACTGACCAACCCTGTT -ACGGAACTACTGACCAACCGGTTT -ACGGAACTACTGACCAACGTGGTT -ACGGAACTACTGACCAACGCCTTT -ACGGAACTACTGACCAACGGTCTT -ACGGAACTACTGACCAACACGCTT -ACGGAACTACTGACCAACAGCGTT -ACGGAACTACTGACCAACTTCGTC -ACGGAACTACTGACCAACTCTCTC -ACGGAACTACTGACCAACTGGATC -ACGGAACTACTGACCAACCACTTC -ACGGAACTACTGACCAACGTACTC -ACGGAACTACTGACCAACGATGTC -ACGGAACTACTGACCAACACAGTC -ACGGAACTACTGACCAACTTGCTG -ACGGAACTACTGACCAACTCCATG -ACGGAACTACTGACCAACTGTGTG -ACGGAACTACTGACCAACCTAGTG -ACGGAACTACTGACCAACCATCTG -ACGGAACTACTGACCAACGAGTTG -ACGGAACTACTGACCAACAGACTG -ACGGAACTACTGACCAACTCGGTA -ACGGAACTACTGACCAACTGCCTA -ACGGAACTACTGACCAACCCACTA -ACGGAACTACTGACCAACGGAGTA -ACGGAACTACTGACCAACTCGTCT -ACGGAACTACTGACCAACTGCACT -ACGGAACTACTGACCAACCTGACT -ACGGAACTACTGACCAACCAACCT -ACGGAACTACTGACCAACGCTACT -ACGGAACTACTGACCAACGGATCT -ACGGAACTACTGACCAACAAGGCT -ACGGAACTACTGACCAACTCAACC -ACGGAACTACTGACCAACTGTTCC -ACGGAACTACTGACCAACATTCCC -ACGGAACTACTGACCAACTTCTCG -ACGGAACTACTGACCAACTAGACG -ACGGAACTACTGACCAACGTAACG -ACGGAACTACTGACCAACACTTCG -ACGGAACTACTGACCAACTACGCA -ACGGAACTACTGACCAACCTTGCA -ACGGAACTACTGACCAACCGAACA -ACGGAACTACTGACCAACCAGTCA -ACGGAACTACTGACCAACGATCCA -ACGGAACTACTGACCAACACGACA -ACGGAACTACTGACCAACAGCTCA -ACGGAACTACTGACCAACTCACGT -ACGGAACTACTGACCAACCGTAGT -ACGGAACTACTGACCAACGTCAGT -ACGGAACTACTGACCAACGAAGGT -ACGGAACTACTGACCAACAACCGT -ACGGAACTACTGACCAACTTGTGC -ACGGAACTACTGACCAACCTAAGC -ACGGAACTACTGACCAACACTAGC -ACGGAACTACTGACCAACAGATGC -ACGGAACTACTGACCAACTGAAGG -ACGGAACTACTGACCAACCAATGG -ACGGAACTACTGACCAACATGAGG -ACGGAACTACTGACCAACAATGGG -ACGGAACTACTGACCAACTCCTGA -ACGGAACTACTGACCAACTAGCGA -ACGGAACTACTGACCAACCACAGA -ACGGAACTACTGACCAACGCAAGA -ACGGAACTACTGACCAACGGTTGA -ACGGAACTACTGACCAACTCCGAT -ACGGAACTACTGACCAACTGGCAT -ACGGAACTACTGACCAACCGAGAT -ACGGAACTACTGACCAACTACCAC -ACGGAACTACTGACCAACCAGAAC -ACGGAACTACTGACCAACGTCTAC -ACGGAACTACTGACCAACACGTAC -ACGGAACTACTGACCAACAGTGAC -ACGGAACTACTGACCAACCTGTAG -ACGGAACTACTGACCAACCCTAAG -ACGGAACTACTGACCAACGTTCAG -ACGGAACTACTGACCAACGCATAG -ACGGAACTACTGACCAACGACAAG -ACGGAACTACTGACCAACAAGCAG -ACGGAACTACTGACCAACCGTCAA -ACGGAACTACTGACCAACGCTGAA -ACGGAACTACTGACCAACAGTACG -ACGGAACTACTGACCAACATCCGA -ACGGAACTACTGACCAACATGGGA -ACGGAACTACTGACCAACGTGCAA -ACGGAACTACTGACCAACGAGGAA -ACGGAACTACTGACCAACCAGGTA -ACGGAACTACTGACCAACGACTCT -ACGGAACTACTGACCAACAGTCCT -ACGGAACTACTGACCAACTAAGCC -ACGGAACTACTGACCAACATAGCC -ACGGAACTACTGACCAACTAACCG -ACGGAACTACTGACCAACATGCCA -ACGGAACTACTGGAGATCGGAAAC -ACGGAACTACTGGAGATCAACACC -ACGGAACTACTGGAGATCATCGAG -ACGGAACTACTGGAGATCCTCCTT -ACGGAACTACTGGAGATCCCTGTT -ACGGAACTACTGGAGATCCGGTTT -ACGGAACTACTGGAGATCGTGGTT -ACGGAACTACTGGAGATCGCCTTT -ACGGAACTACTGGAGATCGGTCTT -ACGGAACTACTGGAGATCACGCTT -ACGGAACTACTGGAGATCAGCGTT -ACGGAACTACTGGAGATCTTCGTC -ACGGAACTACTGGAGATCTCTCTC -ACGGAACTACTGGAGATCTGGATC -ACGGAACTACTGGAGATCCACTTC -ACGGAACTACTGGAGATCGTACTC -ACGGAACTACTGGAGATCGATGTC -ACGGAACTACTGGAGATCACAGTC -ACGGAACTACTGGAGATCTTGCTG -ACGGAACTACTGGAGATCTCCATG -ACGGAACTACTGGAGATCTGTGTG -ACGGAACTACTGGAGATCCTAGTG -ACGGAACTACTGGAGATCCATCTG -ACGGAACTACTGGAGATCGAGTTG -ACGGAACTACTGGAGATCAGACTG -ACGGAACTACTGGAGATCTCGGTA -ACGGAACTACTGGAGATCTGCCTA -ACGGAACTACTGGAGATCCCACTA -ACGGAACTACTGGAGATCGGAGTA -ACGGAACTACTGGAGATCTCGTCT -ACGGAACTACTGGAGATCTGCACT -ACGGAACTACTGGAGATCCTGACT -ACGGAACTACTGGAGATCCAACCT -ACGGAACTACTGGAGATCGCTACT -ACGGAACTACTGGAGATCGGATCT -ACGGAACTACTGGAGATCAAGGCT -ACGGAACTACTGGAGATCTCAACC -ACGGAACTACTGGAGATCTGTTCC -ACGGAACTACTGGAGATCATTCCC -ACGGAACTACTGGAGATCTTCTCG -ACGGAACTACTGGAGATCTAGACG -ACGGAACTACTGGAGATCGTAACG -ACGGAACTACTGGAGATCACTTCG -ACGGAACTACTGGAGATCTACGCA -ACGGAACTACTGGAGATCCTTGCA -ACGGAACTACTGGAGATCCGAACA -ACGGAACTACTGGAGATCCAGTCA -ACGGAACTACTGGAGATCGATCCA -ACGGAACTACTGGAGATCACGACA -ACGGAACTACTGGAGATCAGCTCA -ACGGAACTACTGGAGATCTCACGT -ACGGAACTACTGGAGATCCGTAGT -ACGGAACTACTGGAGATCGTCAGT -ACGGAACTACTGGAGATCGAAGGT -ACGGAACTACTGGAGATCAACCGT -ACGGAACTACTGGAGATCTTGTGC -ACGGAACTACTGGAGATCCTAAGC -ACGGAACTACTGGAGATCACTAGC -ACGGAACTACTGGAGATCAGATGC -ACGGAACTACTGGAGATCTGAAGG -ACGGAACTACTGGAGATCCAATGG -ACGGAACTACTGGAGATCATGAGG -ACGGAACTACTGGAGATCAATGGG -ACGGAACTACTGGAGATCTCCTGA -ACGGAACTACTGGAGATCTAGCGA -ACGGAACTACTGGAGATCCACAGA -ACGGAACTACTGGAGATCGCAAGA -ACGGAACTACTGGAGATCGGTTGA -ACGGAACTACTGGAGATCTCCGAT -ACGGAACTACTGGAGATCTGGCAT -ACGGAACTACTGGAGATCCGAGAT -ACGGAACTACTGGAGATCTACCAC -ACGGAACTACTGGAGATCCAGAAC -ACGGAACTACTGGAGATCGTCTAC -ACGGAACTACTGGAGATCACGTAC -ACGGAACTACTGGAGATCAGTGAC -ACGGAACTACTGGAGATCCTGTAG -ACGGAACTACTGGAGATCCCTAAG -ACGGAACTACTGGAGATCGTTCAG -ACGGAACTACTGGAGATCGCATAG -ACGGAACTACTGGAGATCGACAAG -ACGGAACTACTGGAGATCAAGCAG -ACGGAACTACTGGAGATCCGTCAA -ACGGAACTACTGGAGATCGCTGAA -ACGGAACTACTGGAGATCAGTACG -ACGGAACTACTGGAGATCATCCGA -ACGGAACTACTGGAGATCATGGGA -ACGGAACTACTGGAGATCGTGCAA -ACGGAACTACTGGAGATCGAGGAA -ACGGAACTACTGGAGATCCAGGTA -ACGGAACTACTGGAGATCGACTCT -ACGGAACTACTGGAGATCAGTCCT -ACGGAACTACTGGAGATCTAAGCC -ACGGAACTACTGGAGATCATAGCC -ACGGAACTACTGGAGATCTAACCG -ACGGAACTACTGGAGATCATGCCA -ACGGAACTACTGCTTCTCGGAAAC -ACGGAACTACTGCTTCTCAACACC -ACGGAACTACTGCTTCTCATCGAG -ACGGAACTACTGCTTCTCCTCCTT -ACGGAACTACTGCTTCTCCCTGTT -ACGGAACTACTGCTTCTCCGGTTT -ACGGAACTACTGCTTCTCGTGGTT -ACGGAACTACTGCTTCTCGCCTTT -ACGGAACTACTGCTTCTCGGTCTT -ACGGAACTACTGCTTCTCACGCTT -ACGGAACTACTGCTTCTCAGCGTT -ACGGAACTACTGCTTCTCTTCGTC -ACGGAACTACTGCTTCTCTCTCTC -ACGGAACTACTGCTTCTCTGGATC -ACGGAACTACTGCTTCTCCACTTC -ACGGAACTACTGCTTCTCGTACTC -ACGGAACTACTGCTTCTCGATGTC -ACGGAACTACTGCTTCTCACAGTC -ACGGAACTACTGCTTCTCTTGCTG -ACGGAACTACTGCTTCTCTCCATG -ACGGAACTACTGCTTCTCTGTGTG -ACGGAACTACTGCTTCTCCTAGTG -ACGGAACTACTGCTTCTCCATCTG -ACGGAACTACTGCTTCTCGAGTTG -ACGGAACTACTGCTTCTCAGACTG -ACGGAACTACTGCTTCTCTCGGTA -ACGGAACTACTGCTTCTCTGCCTA -ACGGAACTACTGCTTCTCCCACTA -ACGGAACTACTGCTTCTCGGAGTA -ACGGAACTACTGCTTCTCTCGTCT -ACGGAACTACTGCTTCTCTGCACT -ACGGAACTACTGCTTCTCCTGACT -ACGGAACTACTGCTTCTCCAACCT -ACGGAACTACTGCTTCTCGCTACT -ACGGAACTACTGCTTCTCGGATCT -ACGGAACTACTGCTTCTCAAGGCT -ACGGAACTACTGCTTCTCTCAACC -ACGGAACTACTGCTTCTCTGTTCC -ACGGAACTACTGCTTCTCATTCCC -ACGGAACTACTGCTTCTCTTCTCG -ACGGAACTACTGCTTCTCTAGACG -ACGGAACTACTGCTTCTCGTAACG -ACGGAACTACTGCTTCTCACTTCG -ACGGAACTACTGCTTCTCTACGCA -ACGGAACTACTGCTTCTCCTTGCA -ACGGAACTACTGCTTCTCCGAACA -ACGGAACTACTGCTTCTCCAGTCA -ACGGAACTACTGCTTCTCGATCCA -ACGGAACTACTGCTTCTCACGACA -ACGGAACTACTGCTTCTCAGCTCA -ACGGAACTACTGCTTCTCTCACGT -ACGGAACTACTGCTTCTCCGTAGT -ACGGAACTACTGCTTCTCGTCAGT -ACGGAACTACTGCTTCTCGAAGGT -ACGGAACTACTGCTTCTCAACCGT -ACGGAACTACTGCTTCTCTTGTGC -ACGGAACTACTGCTTCTCCTAAGC -ACGGAACTACTGCTTCTCACTAGC -ACGGAACTACTGCTTCTCAGATGC -ACGGAACTACTGCTTCTCTGAAGG -ACGGAACTACTGCTTCTCCAATGG -ACGGAACTACTGCTTCTCATGAGG -ACGGAACTACTGCTTCTCAATGGG -ACGGAACTACTGCTTCTCTCCTGA -ACGGAACTACTGCTTCTCTAGCGA -ACGGAACTACTGCTTCTCCACAGA -ACGGAACTACTGCTTCTCGCAAGA -ACGGAACTACTGCTTCTCGGTTGA -ACGGAACTACTGCTTCTCTCCGAT -ACGGAACTACTGCTTCTCTGGCAT -ACGGAACTACTGCTTCTCCGAGAT -ACGGAACTACTGCTTCTCTACCAC -ACGGAACTACTGCTTCTCCAGAAC -ACGGAACTACTGCTTCTCGTCTAC -ACGGAACTACTGCTTCTCACGTAC -ACGGAACTACTGCTTCTCAGTGAC -ACGGAACTACTGCTTCTCCTGTAG -ACGGAACTACTGCTTCTCCCTAAG -ACGGAACTACTGCTTCTCGTTCAG -ACGGAACTACTGCTTCTCGCATAG -ACGGAACTACTGCTTCTCGACAAG -ACGGAACTACTGCTTCTCAAGCAG -ACGGAACTACTGCTTCTCCGTCAA -ACGGAACTACTGCTTCTCGCTGAA -ACGGAACTACTGCTTCTCAGTACG -ACGGAACTACTGCTTCTCATCCGA -ACGGAACTACTGCTTCTCATGGGA -ACGGAACTACTGCTTCTCGTGCAA -ACGGAACTACTGCTTCTCGAGGAA -ACGGAACTACTGCTTCTCCAGGTA -ACGGAACTACTGCTTCTCGACTCT -ACGGAACTACTGCTTCTCAGTCCT -ACGGAACTACTGCTTCTCTAAGCC -ACGGAACTACTGCTTCTCATAGCC -ACGGAACTACTGCTTCTCTAACCG -ACGGAACTACTGCTTCTCATGCCA -ACGGAACTACTGGTTCCTGGAAAC -ACGGAACTACTGGTTCCTAACACC -ACGGAACTACTGGTTCCTATCGAG -ACGGAACTACTGGTTCCTCTCCTT -ACGGAACTACTGGTTCCTCCTGTT -ACGGAACTACTGGTTCCTCGGTTT -ACGGAACTACTGGTTCCTGTGGTT -ACGGAACTACTGGTTCCTGCCTTT -ACGGAACTACTGGTTCCTGGTCTT -ACGGAACTACTGGTTCCTACGCTT -ACGGAACTACTGGTTCCTAGCGTT -ACGGAACTACTGGTTCCTTTCGTC -ACGGAACTACTGGTTCCTTCTCTC -ACGGAACTACTGGTTCCTTGGATC -ACGGAACTACTGGTTCCTCACTTC -ACGGAACTACTGGTTCCTGTACTC -ACGGAACTACTGGTTCCTGATGTC -ACGGAACTACTGGTTCCTACAGTC -ACGGAACTACTGGTTCCTTTGCTG -ACGGAACTACTGGTTCCTTCCATG -ACGGAACTACTGGTTCCTTGTGTG -ACGGAACTACTGGTTCCTCTAGTG -ACGGAACTACTGGTTCCTCATCTG -ACGGAACTACTGGTTCCTGAGTTG -ACGGAACTACTGGTTCCTAGACTG -ACGGAACTACTGGTTCCTTCGGTA -ACGGAACTACTGGTTCCTTGCCTA -ACGGAACTACTGGTTCCTCCACTA -ACGGAACTACTGGTTCCTGGAGTA -ACGGAACTACTGGTTCCTTCGTCT -ACGGAACTACTGGTTCCTTGCACT -ACGGAACTACTGGTTCCTCTGACT -ACGGAACTACTGGTTCCTCAACCT -ACGGAACTACTGGTTCCTGCTACT -ACGGAACTACTGGTTCCTGGATCT -ACGGAACTACTGGTTCCTAAGGCT -ACGGAACTACTGGTTCCTTCAACC -ACGGAACTACTGGTTCCTTGTTCC -ACGGAACTACTGGTTCCTATTCCC -ACGGAACTACTGGTTCCTTTCTCG -ACGGAACTACTGGTTCCTTAGACG -ACGGAACTACTGGTTCCTGTAACG -ACGGAACTACTGGTTCCTACTTCG -ACGGAACTACTGGTTCCTTACGCA -ACGGAACTACTGGTTCCTCTTGCA -ACGGAACTACTGGTTCCTCGAACA -ACGGAACTACTGGTTCCTCAGTCA -ACGGAACTACTGGTTCCTGATCCA -ACGGAACTACTGGTTCCTACGACA -ACGGAACTACTGGTTCCTAGCTCA -ACGGAACTACTGGTTCCTTCACGT -ACGGAACTACTGGTTCCTCGTAGT -ACGGAACTACTGGTTCCTGTCAGT -ACGGAACTACTGGTTCCTGAAGGT -ACGGAACTACTGGTTCCTAACCGT -ACGGAACTACTGGTTCCTTTGTGC -ACGGAACTACTGGTTCCTCTAAGC -ACGGAACTACTGGTTCCTACTAGC -ACGGAACTACTGGTTCCTAGATGC -ACGGAACTACTGGTTCCTTGAAGG -ACGGAACTACTGGTTCCTCAATGG -ACGGAACTACTGGTTCCTATGAGG -ACGGAACTACTGGTTCCTAATGGG -ACGGAACTACTGGTTCCTTCCTGA -ACGGAACTACTGGTTCCTTAGCGA -ACGGAACTACTGGTTCCTCACAGA -ACGGAACTACTGGTTCCTGCAAGA -ACGGAACTACTGGTTCCTGGTTGA -ACGGAACTACTGGTTCCTTCCGAT -ACGGAACTACTGGTTCCTTGGCAT -ACGGAACTACTGGTTCCTCGAGAT -ACGGAACTACTGGTTCCTTACCAC -ACGGAACTACTGGTTCCTCAGAAC -ACGGAACTACTGGTTCCTGTCTAC -ACGGAACTACTGGTTCCTACGTAC -ACGGAACTACTGGTTCCTAGTGAC -ACGGAACTACTGGTTCCTCTGTAG -ACGGAACTACTGGTTCCTCCTAAG -ACGGAACTACTGGTTCCTGTTCAG -ACGGAACTACTGGTTCCTGCATAG -ACGGAACTACTGGTTCCTGACAAG -ACGGAACTACTGGTTCCTAAGCAG -ACGGAACTACTGGTTCCTCGTCAA -ACGGAACTACTGGTTCCTGCTGAA -ACGGAACTACTGGTTCCTAGTACG -ACGGAACTACTGGTTCCTATCCGA -ACGGAACTACTGGTTCCTATGGGA -ACGGAACTACTGGTTCCTGTGCAA -ACGGAACTACTGGTTCCTGAGGAA -ACGGAACTACTGGTTCCTCAGGTA -ACGGAACTACTGGTTCCTGACTCT -ACGGAACTACTGGTTCCTAGTCCT -ACGGAACTACTGGTTCCTTAAGCC -ACGGAACTACTGGTTCCTATAGCC -ACGGAACTACTGGTTCCTTAACCG -ACGGAACTACTGGTTCCTATGCCA -ACGGAACTACTGTTTCGGGGAAAC -ACGGAACTACTGTTTCGGAACACC -ACGGAACTACTGTTTCGGATCGAG -ACGGAACTACTGTTTCGGCTCCTT -ACGGAACTACTGTTTCGGCCTGTT -ACGGAACTACTGTTTCGGCGGTTT -ACGGAACTACTGTTTCGGGTGGTT -ACGGAACTACTGTTTCGGGCCTTT -ACGGAACTACTGTTTCGGGGTCTT -ACGGAACTACTGTTTCGGACGCTT -ACGGAACTACTGTTTCGGAGCGTT -ACGGAACTACTGTTTCGGTTCGTC -ACGGAACTACTGTTTCGGTCTCTC -ACGGAACTACTGTTTCGGTGGATC -ACGGAACTACTGTTTCGGCACTTC -ACGGAACTACTGTTTCGGGTACTC -ACGGAACTACTGTTTCGGGATGTC -ACGGAACTACTGTTTCGGACAGTC -ACGGAACTACTGTTTCGGTTGCTG -ACGGAACTACTGTTTCGGTCCATG -ACGGAACTACTGTTTCGGTGTGTG -ACGGAACTACTGTTTCGGCTAGTG -ACGGAACTACTGTTTCGGCATCTG -ACGGAACTACTGTTTCGGGAGTTG -ACGGAACTACTGTTTCGGAGACTG -ACGGAACTACTGTTTCGGTCGGTA -ACGGAACTACTGTTTCGGTGCCTA -ACGGAACTACTGTTTCGGCCACTA -ACGGAACTACTGTTTCGGGGAGTA -ACGGAACTACTGTTTCGGTCGTCT -ACGGAACTACTGTTTCGGTGCACT -ACGGAACTACTGTTTCGGCTGACT -ACGGAACTACTGTTTCGGCAACCT -ACGGAACTACTGTTTCGGGCTACT -ACGGAACTACTGTTTCGGGGATCT -ACGGAACTACTGTTTCGGAAGGCT -ACGGAACTACTGTTTCGGTCAACC -ACGGAACTACTGTTTCGGTGTTCC -ACGGAACTACTGTTTCGGATTCCC -ACGGAACTACTGTTTCGGTTCTCG -ACGGAACTACTGTTTCGGTAGACG -ACGGAACTACTGTTTCGGGTAACG -ACGGAACTACTGTTTCGGACTTCG -ACGGAACTACTGTTTCGGTACGCA -ACGGAACTACTGTTTCGGCTTGCA -ACGGAACTACTGTTTCGGCGAACA -ACGGAACTACTGTTTCGGCAGTCA -ACGGAACTACTGTTTCGGGATCCA -ACGGAACTACTGTTTCGGACGACA -ACGGAACTACTGTTTCGGAGCTCA -ACGGAACTACTGTTTCGGTCACGT -ACGGAACTACTGTTTCGGCGTAGT -ACGGAACTACTGTTTCGGGTCAGT -ACGGAACTACTGTTTCGGGAAGGT -ACGGAACTACTGTTTCGGAACCGT -ACGGAACTACTGTTTCGGTTGTGC -ACGGAACTACTGTTTCGGCTAAGC -ACGGAACTACTGTTTCGGACTAGC -ACGGAACTACTGTTTCGGAGATGC -ACGGAACTACTGTTTCGGTGAAGG -ACGGAACTACTGTTTCGGCAATGG -ACGGAACTACTGTTTCGGATGAGG -ACGGAACTACTGTTTCGGAATGGG -ACGGAACTACTGTTTCGGTCCTGA -ACGGAACTACTGTTTCGGTAGCGA -ACGGAACTACTGTTTCGGCACAGA -ACGGAACTACTGTTTCGGGCAAGA -ACGGAACTACTGTTTCGGGGTTGA -ACGGAACTACTGTTTCGGTCCGAT -ACGGAACTACTGTTTCGGTGGCAT -ACGGAACTACTGTTTCGGCGAGAT -ACGGAACTACTGTTTCGGTACCAC -ACGGAACTACTGTTTCGGCAGAAC -ACGGAACTACTGTTTCGGGTCTAC -ACGGAACTACTGTTTCGGACGTAC -ACGGAACTACTGTTTCGGAGTGAC -ACGGAACTACTGTTTCGGCTGTAG -ACGGAACTACTGTTTCGGCCTAAG -ACGGAACTACTGTTTCGGGTTCAG -ACGGAACTACTGTTTCGGGCATAG -ACGGAACTACTGTTTCGGGACAAG -ACGGAACTACTGTTTCGGAAGCAG -ACGGAACTACTGTTTCGGCGTCAA -ACGGAACTACTGTTTCGGGCTGAA -ACGGAACTACTGTTTCGGAGTACG -ACGGAACTACTGTTTCGGATCCGA -ACGGAACTACTGTTTCGGATGGGA -ACGGAACTACTGTTTCGGGTGCAA -ACGGAACTACTGTTTCGGGAGGAA -ACGGAACTACTGTTTCGGCAGGTA -ACGGAACTACTGTTTCGGGACTCT -ACGGAACTACTGTTTCGGAGTCCT -ACGGAACTACTGTTTCGGTAAGCC -ACGGAACTACTGTTTCGGATAGCC -ACGGAACTACTGTTTCGGTAACCG -ACGGAACTACTGTTTCGGATGCCA -ACGGAACTACTGGTTGTGGGAAAC -ACGGAACTACTGGTTGTGAACACC -ACGGAACTACTGGTTGTGATCGAG -ACGGAACTACTGGTTGTGCTCCTT -ACGGAACTACTGGTTGTGCCTGTT -ACGGAACTACTGGTTGTGCGGTTT -ACGGAACTACTGGTTGTGGTGGTT -ACGGAACTACTGGTTGTGGCCTTT -ACGGAACTACTGGTTGTGGGTCTT -ACGGAACTACTGGTTGTGACGCTT -ACGGAACTACTGGTTGTGAGCGTT -ACGGAACTACTGGTTGTGTTCGTC -ACGGAACTACTGGTTGTGTCTCTC -ACGGAACTACTGGTTGTGTGGATC -ACGGAACTACTGGTTGTGCACTTC -ACGGAACTACTGGTTGTGGTACTC -ACGGAACTACTGGTTGTGGATGTC -ACGGAACTACTGGTTGTGACAGTC -ACGGAACTACTGGTTGTGTTGCTG -ACGGAACTACTGGTTGTGTCCATG -ACGGAACTACTGGTTGTGTGTGTG -ACGGAACTACTGGTTGTGCTAGTG -ACGGAACTACTGGTTGTGCATCTG -ACGGAACTACTGGTTGTGGAGTTG -ACGGAACTACTGGTTGTGAGACTG -ACGGAACTACTGGTTGTGTCGGTA -ACGGAACTACTGGTTGTGTGCCTA -ACGGAACTACTGGTTGTGCCACTA -ACGGAACTACTGGTTGTGGGAGTA -ACGGAACTACTGGTTGTGTCGTCT -ACGGAACTACTGGTTGTGTGCACT -ACGGAACTACTGGTTGTGCTGACT -ACGGAACTACTGGTTGTGCAACCT -ACGGAACTACTGGTTGTGGCTACT -ACGGAACTACTGGTTGTGGGATCT -ACGGAACTACTGGTTGTGAAGGCT -ACGGAACTACTGGTTGTGTCAACC -ACGGAACTACTGGTTGTGTGTTCC -ACGGAACTACTGGTTGTGATTCCC -ACGGAACTACTGGTTGTGTTCTCG -ACGGAACTACTGGTTGTGTAGACG -ACGGAACTACTGGTTGTGGTAACG -ACGGAACTACTGGTTGTGACTTCG -ACGGAACTACTGGTTGTGTACGCA -ACGGAACTACTGGTTGTGCTTGCA -ACGGAACTACTGGTTGTGCGAACA -ACGGAACTACTGGTTGTGCAGTCA -ACGGAACTACTGGTTGTGGATCCA -ACGGAACTACTGGTTGTGACGACA -ACGGAACTACTGGTTGTGAGCTCA -ACGGAACTACTGGTTGTGTCACGT -ACGGAACTACTGGTTGTGCGTAGT -ACGGAACTACTGGTTGTGGTCAGT -ACGGAACTACTGGTTGTGGAAGGT -ACGGAACTACTGGTTGTGAACCGT -ACGGAACTACTGGTTGTGTTGTGC -ACGGAACTACTGGTTGTGCTAAGC -ACGGAACTACTGGTTGTGACTAGC -ACGGAACTACTGGTTGTGAGATGC -ACGGAACTACTGGTTGTGTGAAGG -ACGGAACTACTGGTTGTGCAATGG -ACGGAACTACTGGTTGTGATGAGG -ACGGAACTACTGGTTGTGAATGGG -ACGGAACTACTGGTTGTGTCCTGA -ACGGAACTACTGGTTGTGTAGCGA -ACGGAACTACTGGTTGTGCACAGA -ACGGAACTACTGGTTGTGGCAAGA -ACGGAACTACTGGTTGTGGGTTGA -ACGGAACTACTGGTTGTGTCCGAT -ACGGAACTACTGGTTGTGTGGCAT -ACGGAACTACTGGTTGTGCGAGAT -ACGGAACTACTGGTTGTGTACCAC -ACGGAACTACTGGTTGTGCAGAAC -ACGGAACTACTGGTTGTGGTCTAC -ACGGAACTACTGGTTGTGACGTAC -ACGGAACTACTGGTTGTGAGTGAC -ACGGAACTACTGGTTGTGCTGTAG -ACGGAACTACTGGTTGTGCCTAAG -ACGGAACTACTGGTTGTGGTTCAG -ACGGAACTACTGGTTGTGGCATAG -ACGGAACTACTGGTTGTGGACAAG -ACGGAACTACTGGTTGTGAAGCAG -ACGGAACTACTGGTTGTGCGTCAA -ACGGAACTACTGGTTGTGGCTGAA -ACGGAACTACTGGTTGTGAGTACG -ACGGAACTACTGGTTGTGATCCGA -ACGGAACTACTGGTTGTGATGGGA -ACGGAACTACTGGTTGTGGTGCAA -ACGGAACTACTGGTTGTGGAGGAA -ACGGAACTACTGGTTGTGCAGGTA -ACGGAACTACTGGTTGTGGACTCT -ACGGAACTACTGGTTGTGAGTCCT -ACGGAACTACTGGTTGTGTAAGCC -ACGGAACTACTGGTTGTGATAGCC -ACGGAACTACTGGTTGTGTAACCG -ACGGAACTACTGGTTGTGATGCCA -ACGGAACTACTGTTTGCCGGAAAC -ACGGAACTACTGTTTGCCAACACC -ACGGAACTACTGTTTGCCATCGAG -ACGGAACTACTGTTTGCCCTCCTT -ACGGAACTACTGTTTGCCCCTGTT -ACGGAACTACTGTTTGCCCGGTTT -ACGGAACTACTGTTTGCCGTGGTT -ACGGAACTACTGTTTGCCGCCTTT -ACGGAACTACTGTTTGCCGGTCTT -ACGGAACTACTGTTTGCCACGCTT -ACGGAACTACTGTTTGCCAGCGTT -ACGGAACTACTGTTTGCCTTCGTC -ACGGAACTACTGTTTGCCTCTCTC -ACGGAACTACTGTTTGCCTGGATC -ACGGAACTACTGTTTGCCCACTTC -ACGGAACTACTGTTTGCCGTACTC -ACGGAACTACTGTTTGCCGATGTC -ACGGAACTACTGTTTGCCACAGTC -ACGGAACTACTGTTTGCCTTGCTG -ACGGAACTACTGTTTGCCTCCATG -ACGGAACTACTGTTTGCCTGTGTG -ACGGAACTACTGTTTGCCCTAGTG -ACGGAACTACTGTTTGCCCATCTG -ACGGAACTACTGTTTGCCGAGTTG -ACGGAACTACTGTTTGCCAGACTG -ACGGAACTACTGTTTGCCTCGGTA -ACGGAACTACTGTTTGCCTGCCTA -ACGGAACTACTGTTTGCCCCACTA -ACGGAACTACTGTTTGCCGGAGTA -ACGGAACTACTGTTTGCCTCGTCT -ACGGAACTACTGTTTGCCTGCACT -ACGGAACTACTGTTTGCCCTGACT -ACGGAACTACTGTTTGCCCAACCT -ACGGAACTACTGTTTGCCGCTACT -ACGGAACTACTGTTTGCCGGATCT -ACGGAACTACTGTTTGCCAAGGCT -ACGGAACTACTGTTTGCCTCAACC -ACGGAACTACTGTTTGCCTGTTCC -ACGGAACTACTGTTTGCCATTCCC -ACGGAACTACTGTTTGCCTTCTCG -ACGGAACTACTGTTTGCCTAGACG -ACGGAACTACTGTTTGCCGTAACG -ACGGAACTACTGTTTGCCACTTCG -ACGGAACTACTGTTTGCCTACGCA -ACGGAACTACTGTTTGCCCTTGCA -ACGGAACTACTGTTTGCCCGAACA -ACGGAACTACTGTTTGCCCAGTCA -ACGGAACTACTGTTTGCCGATCCA -ACGGAACTACTGTTTGCCACGACA -ACGGAACTACTGTTTGCCAGCTCA -ACGGAACTACTGTTTGCCTCACGT -ACGGAACTACTGTTTGCCCGTAGT -ACGGAACTACTGTTTGCCGTCAGT -ACGGAACTACTGTTTGCCGAAGGT -ACGGAACTACTGTTTGCCAACCGT -ACGGAACTACTGTTTGCCTTGTGC -ACGGAACTACTGTTTGCCCTAAGC -ACGGAACTACTGTTTGCCACTAGC -ACGGAACTACTGTTTGCCAGATGC -ACGGAACTACTGTTTGCCTGAAGG -ACGGAACTACTGTTTGCCCAATGG -ACGGAACTACTGTTTGCCATGAGG -ACGGAACTACTGTTTGCCAATGGG -ACGGAACTACTGTTTGCCTCCTGA -ACGGAACTACTGTTTGCCTAGCGA -ACGGAACTACTGTTTGCCCACAGA -ACGGAACTACTGTTTGCCGCAAGA -ACGGAACTACTGTTTGCCGGTTGA -ACGGAACTACTGTTTGCCTCCGAT -ACGGAACTACTGTTTGCCTGGCAT -ACGGAACTACTGTTTGCCCGAGAT -ACGGAACTACTGTTTGCCTACCAC -ACGGAACTACTGTTTGCCCAGAAC -ACGGAACTACTGTTTGCCGTCTAC -ACGGAACTACTGTTTGCCACGTAC -ACGGAACTACTGTTTGCCAGTGAC -ACGGAACTACTGTTTGCCCTGTAG -ACGGAACTACTGTTTGCCCCTAAG -ACGGAACTACTGTTTGCCGTTCAG -ACGGAACTACTGTTTGCCGCATAG -ACGGAACTACTGTTTGCCGACAAG -ACGGAACTACTGTTTGCCAAGCAG -ACGGAACTACTGTTTGCCCGTCAA -ACGGAACTACTGTTTGCCGCTGAA -ACGGAACTACTGTTTGCCAGTACG -ACGGAACTACTGTTTGCCATCCGA -ACGGAACTACTGTTTGCCATGGGA -ACGGAACTACTGTTTGCCGTGCAA -ACGGAACTACTGTTTGCCGAGGAA -ACGGAACTACTGTTTGCCCAGGTA -ACGGAACTACTGTTTGCCGACTCT -ACGGAACTACTGTTTGCCAGTCCT -ACGGAACTACTGTTTGCCTAAGCC -ACGGAACTACTGTTTGCCATAGCC -ACGGAACTACTGTTTGCCTAACCG -ACGGAACTACTGTTTGCCATGCCA -ACGGAACTACTGCTTGGTGGAAAC -ACGGAACTACTGCTTGGTAACACC -ACGGAACTACTGCTTGGTATCGAG -ACGGAACTACTGCTTGGTCTCCTT -ACGGAACTACTGCTTGGTCCTGTT -ACGGAACTACTGCTTGGTCGGTTT -ACGGAACTACTGCTTGGTGTGGTT -ACGGAACTACTGCTTGGTGCCTTT -ACGGAACTACTGCTTGGTGGTCTT -ACGGAACTACTGCTTGGTACGCTT -ACGGAACTACTGCTTGGTAGCGTT -ACGGAACTACTGCTTGGTTTCGTC -ACGGAACTACTGCTTGGTTCTCTC -ACGGAACTACTGCTTGGTTGGATC -ACGGAACTACTGCTTGGTCACTTC -ACGGAACTACTGCTTGGTGTACTC -ACGGAACTACTGCTTGGTGATGTC -ACGGAACTACTGCTTGGTACAGTC -ACGGAACTACTGCTTGGTTTGCTG -ACGGAACTACTGCTTGGTTCCATG -ACGGAACTACTGCTTGGTTGTGTG -ACGGAACTACTGCTTGGTCTAGTG -ACGGAACTACTGCTTGGTCATCTG -ACGGAACTACTGCTTGGTGAGTTG -ACGGAACTACTGCTTGGTAGACTG -ACGGAACTACTGCTTGGTTCGGTA -ACGGAACTACTGCTTGGTTGCCTA -ACGGAACTACTGCTTGGTCCACTA -ACGGAACTACTGCTTGGTGGAGTA -ACGGAACTACTGCTTGGTTCGTCT -ACGGAACTACTGCTTGGTTGCACT -ACGGAACTACTGCTTGGTCTGACT -ACGGAACTACTGCTTGGTCAACCT -ACGGAACTACTGCTTGGTGCTACT -ACGGAACTACTGCTTGGTGGATCT -ACGGAACTACTGCTTGGTAAGGCT -ACGGAACTACTGCTTGGTTCAACC -ACGGAACTACTGCTTGGTTGTTCC -ACGGAACTACTGCTTGGTATTCCC -ACGGAACTACTGCTTGGTTTCTCG -ACGGAACTACTGCTTGGTTAGACG -ACGGAACTACTGCTTGGTGTAACG -ACGGAACTACTGCTTGGTACTTCG -ACGGAACTACTGCTTGGTTACGCA -ACGGAACTACTGCTTGGTCTTGCA -ACGGAACTACTGCTTGGTCGAACA -ACGGAACTACTGCTTGGTCAGTCA -ACGGAACTACTGCTTGGTGATCCA -ACGGAACTACTGCTTGGTACGACA -ACGGAACTACTGCTTGGTAGCTCA -ACGGAACTACTGCTTGGTTCACGT -ACGGAACTACTGCTTGGTCGTAGT -ACGGAACTACTGCTTGGTGTCAGT -ACGGAACTACTGCTTGGTGAAGGT -ACGGAACTACTGCTTGGTAACCGT -ACGGAACTACTGCTTGGTTTGTGC -ACGGAACTACTGCTTGGTCTAAGC -ACGGAACTACTGCTTGGTACTAGC -ACGGAACTACTGCTTGGTAGATGC -ACGGAACTACTGCTTGGTTGAAGG -ACGGAACTACTGCTTGGTCAATGG -ACGGAACTACTGCTTGGTATGAGG -ACGGAACTACTGCTTGGTAATGGG -ACGGAACTACTGCTTGGTTCCTGA -ACGGAACTACTGCTTGGTTAGCGA -ACGGAACTACTGCTTGGTCACAGA -ACGGAACTACTGCTTGGTGCAAGA -ACGGAACTACTGCTTGGTGGTTGA -ACGGAACTACTGCTTGGTTCCGAT -ACGGAACTACTGCTTGGTTGGCAT -ACGGAACTACTGCTTGGTCGAGAT -ACGGAACTACTGCTTGGTTACCAC -ACGGAACTACTGCTTGGTCAGAAC -ACGGAACTACTGCTTGGTGTCTAC -ACGGAACTACTGCTTGGTACGTAC -ACGGAACTACTGCTTGGTAGTGAC -ACGGAACTACTGCTTGGTCTGTAG -ACGGAACTACTGCTTGGTCCTAAG -ACGGAACTACTGCTTGGTGTTCAG -ACGGAACTACTGCTTGGTGCATAG -ACGGAACTACTGCTTGGTGACAAG -ACGGAACTACTGCTTGGTAAGCAG -ACGGAACTACTGCTTGGTCGTCAA -ACGGAACTACTGCTTGGTGCTGAA -ACGGAACTACTGCTTGGTAGTACG -ACGGAACTACTGCTTGGTATCCGA -ACGGAACTACTGCTTGGTATGGGA -ACGGAACTACTGCTTGGTGTGCAA -ACGGAACTACTGCTTGGTGAGGAA -ACGGAACTACTGCTTGGTCAGGTA -ACGGAACTACTGCTTGGTGACTCT -ACGGAACTACTGCTTGGTAGTCCT -ACGGAACTACTGCTTGGTTAAGCC -ACGGAACTACTGCTTGGTATAGCC -ACGGAACTACTGCTTGGTTAACCG -ACGGAACTACTGCTTGGTATGCCA -ACGGAACTACTGCTTACGGGAAAC -ACGGAACTACTGCTTACGAACACC -ACGGAACTACTGCTTACGATCGAG -ACGGAACTACTGCTTACGCTCCTT -ACGGAACTACTGCTTACGCCTGTT -ACGGAACTACTGCTTACGCGGTTT -ACGGAACTACTGCTTACGGTGGTT -ACGGAACTACTGCTTACGGCCTTT -ACGGAACTACTGCTTACGGGTCTT -ACGGAACTACTGCTTACGACGCTT -ACGGAACTACTGCTTACGAGCGTT -ACGGAACTACTGCTTACGTTCGTC -ACGGAACTACTGCTTACGTCTCTC -ACGGAACTACTGCTTACGTGGATC -ACGGAACTACTGCTTACGCACTTC -ACGGAACTACTGCTTACGGTACTC -ACGGAACTACTGCTTACGGATGTC -ACGGAACTACTGCTTACGACAGTC -ACGGAACTACTGCTTACGTTGCTG -ACGGAACTACTGCTTACGTCCATG -ACGGAACTACTGCTTACGTGTGTG -ACGGAACTACTGCTTACGCTAGTG -ACGGAACTACTGCTTACGCATCTG -ACGGAACTACTGCTTACGGAGTTG -ACGGAACTACTGCTTACGAGACTG -ACGGAACTACTGCTTACGTCGGTA -ACGGAACTACTGCTTACGTGCCTA -ACGGAACTACTGCTTACGCCACTA -ACGGAACTACTGCTTACGGGAGTA -ACGGAACTACTGCTTACGTCGTCT -ACGGAACTACTGCTTACGTGCACT -ACGGAACTACTGCTTACGCTGACT -ACGGAACTACTGCTTACGCAACCT -ACGGAACTACTGCTTACGGCTACT -ACGGAACTACTGCTTACGGGATCT -ACGGAACTACTGCTTACGAAGGCT -ACGGAACTACTGCTTACGTCAACC -ACGGAACTACTGCTTACGTGTTCC -ACGGAACTACTGCTTACGATTCCC -ACGGAACTACTGCTTACGTTCTCG -ACGGAACTACTGCTTACGTAGACG -ACGGAACTACTGCTTACGGTAACG -ACGGAACTACTGCTTACGACTTCG -ACGGAACTACTGCTTACGTACGCA -ACGGAACTACTGCTTACGCTTGCA -ACGGAACTACTGCTTACGCGAACA -ACGGAACTACTGCTTACGCAGTCA -ACGGAACTACTGCTTACGGATCCA -ACGGAACTACTGCTTACGACGACA -ACGGAACTACTGCTTACGAGCTCA -ACGGAACTACTGCTTACGTCACGT -ACGGAACTACTGCTTACGCGTAGT -ACGGAACTACTGCTTACGGTCAGT -ACGGAACTACTGCTTACGGAAGGT -ACGGAACTACTGCTTACGAACCGT -ACGGAACTACTGCTTACGTTGTGC -ACGGAACTACTGCTTACGCTAAGC -ACGGAACTACTGCTTACGACTAGC -ACGGAACTACTGCTTACGAGATGC -ACGGAACTACTGCTTACGTGAAGG -ACGGAACTACTGCTTACGCAATGG -ACGGAACTACTGCTTACGATGAGG -ACGGAACTACTGCTTACGAATGGG -ACGGAACTACTGCTTACGTCCTGA -ACGGAACTACTGCTTACGTAGCGA -ACGGAACTACTGCTTACGCACAGA -ACGGAACTACTGCTTACGGCAAGA -ACGGAACTACTGCTTACGGGTTGA -ACGGAACTACTGCTTACGTCCGAT -ACGGAACTACTGCTTACGTGGCAT -ACGGAACTACTGCTTACGCGAGAT -ACGGAACTACTGCTTACGTACCAC -ACGGAACTACTGCTTACGCAGAAC -ACGGAACTACTGCTTACGGTCTAC -ACGGAACTACTGCTTACGACGTAC -ACGGAACTACTGCTTACGAGTGAC -ACGGAACTACTGCTTACGCTGTAG -ACGGAACTACTGCTTACGCCTAAG -ACGGAACTACTGCTTACGGTTCAG -ACGGAACTACTGCTTACGGCATAG -ACGGAACTACTGCTTACGGACAAG -ACGGAACTACTGCTTACGAAGCAG -ACGGAACTACTGCTTACGCGTCAA -ACGGAACTACTGCTTACGGCTGAA -ACGGAACTACTGCTTACGAGTACG -ACGGAACTACTGCTTACGATCCGA -ACGGAACTACTGCTTACGATGGGA -ACGGAACTACTGCTTACGGTGCAA -ACGGAACTACTGCTTACGGAGGAA -ACGGAACTACTGCTTACGCAGGTA -ACGGAACTACTGCTTACGGACTCT -ACGGAACTACTGCTTACGAGTCCT -ACGGAACTACTGCTTACGTAAGCC -ACGGAACTACTGCTTACGATAGCC -ACGGAACTACTGCTTACGTAACCG -ACGGAACTACTGCTTACGATGCCA -ACGGAACTACTGGTTAGCGGAAAC -ACGGAACTACTGGTTAGCAACACC -ACGGAACTACTGGTTAGCATCGAG -ACGGAACTACTGGTTAGCCTCCTT -ACGGAACTACTGGTTAGCCCTGTT -ACGGAACTACTGGTTAGCCGGTTT -ACGGAACTACTGGTTAGCGTGGTT -ACGGAACTACTGGTTAGCGCCTTT -ACGGAACTACTGGTTAGCGGTCTT -ACGGAACTACTGGTTAGCACGCTT -ACGGAACTACTGGTTAGCAGCGTT -ACGGAACTACTGGTTAGCTTCGTC -ACGGAACTACTGGTTAGCTCTCTC -ACGGAACTACTGGTTAGCTGGATC -ACGGAACTACTGGTTAGCCACTTC -ACGGAACTACTGGTTAGCGTACTC -ACGGAACTACTGGTTAGCGATGTC -ACGGAACTACTGGTTAGCACAGTC -ACGGAACTACTGGTTAGCTTGCTG -ACGGAACTACTGGTTAGCTCCATG -ACGGAACTACTGGTTAGCTGTGTG -ACGGAACTACTGGTTAGCCTAGTG -ACGGAACTACTGGTTAGCCATCTG -ACGGAACTACTGGTTAGCGAGTTG -ACGGAACTACTGGTTAGCAGACTG -ACGGAACTACTGGTTAGCTCGGTA -ACGGAACTACTGGTTAGCTGCCTA -ACGGAACTACTGGTTAGCCCACTA -ACGGAACTACTGGTTAGCGGAGTA -ACGGAACTACTGGTTAGCTCGTCT -ACGGAACTACTGGTTAGCTGCACT -ACGGAACTACTGGTTAGCCTGACT -ACGGAACTACTGGTTAGCCAACCT -ACGGAACTACTGGTTAGCGCTACT -ACGGAACTACTGGTTAGCGGATCT -ACGGAACTACTGGTTAGCAAGGCT -ACGGAACTACTGGTTAGCTCAACC -ACGGAACTACTGGTTAGCTGTTCC -ACGGAACTACTGGTTAGCATTCCC -ACGGAACTACTGGTTAGCTTCTCG -ACGGAACTACTGGTTAGCTAGACG -ACGGAACTACTGGTTAGCGTAACG -ACGGAACTACTGGTTAGCACTTCG -ACGGAACTACTGGTTAGCTACGCA -ACGGAACTACTGGTTAGCCTTGCA -ACGGAACTACTGGTTAGCCGAACA -ACGGAACTACTGGTTAGCCAGTCA -ACGGAACTACTGGTTAGCGATCCA -ACGGAACTACTGGTTAGCACGACA -ACGGAACTACTGGTTAGCAGCTCA -ACGGAACTACTGGTTAGCTCACGT -ACGGAACTACTGGTTAGCCGTAGT -ACGGAACTACTGGTTAGCGTCAGT -ACGGAACTACTGGTTAGCGAAGGT -ACGGAACTACTGGTTAGCAACCGT -ACGGAACTACTGGTTAGCTTGTGC -ACGGAACTACTGGTTAGCCTAAGC -ACGGAACTACTGGTTAGCACTAGC -ACGGAACTACTGGTTAGCAGATGC -ACGGAACTACTGGTTAGCTGAAGG -ACGGAACTACTGGTTAGCCAATGG -ACGGAACTACTGGTTAGCATGAGG -ACGGAACTACTGGTTAGCAATGGG -ACGGAACTACTGGTTAGCTCCTGA -ACGGAACTACTGGTTAGCTAGCGA -ACGGAACTACTGGTTAGCCACAGA -ACGGAACTACTGGTTAGCGCAAGA -ACGGAACTACTGGTTAGCGGTTGA -ACGGAACTACTGGTTAGCTCCGAT -ACGGAACTACTGGTTAGCTGGCAT -ACGGAACTACTGGTTAGCCGAGAT -ACGGAACTACTGGTTAGCTACCAC -ACGGAACTACTGGTTAGCCAGAAC -ACGGAACTACTGGTTAGCGTCTAC -ACGGAACTACTGGTTAGCACGTAC -ACGGAACTACTGGTTAGCAGTGAC -ACGGAACTACTGGTTAGCCTGTAG -ACGGAACTACTGGTTAGCCCTAAG -ACGGAACTACTGGTTAGCGTTCAG -ACGGAACTACTGGTTAGCGCATAG -ACGGAACTACTGGTTAGCGACAAG -ACGGAACTACTGGTTAGCAAGCAG -ACGGAACTACTGGTTAGCCGTCAA -ACGGAACTACTGGTTAGCGCTGAA -ACGGAACTACTGGTTAGCAGTACG -ACGGAACTACTGGTTAGCATCCGA -ACGGAACTACTGGTTAGCATGGGA -ACGGAACTACTGGTTAGCGTGCAA -ACGGAACTACTGGTTAGCGAGGAA -ACGGAACTACTGGTTAGCCAGGTA -ACGGAACTACTGGTTAGCGACTCT -ACGGAACTACTGGTTAGCAGTCCT -ACGGAACTACTGGTTAGCTAAGCC -ACGGAACTACTGGTTAGCATAGCC -ACGGAACTACTGGTTAGCTAACCG -ACGGAACTACTGGTTAGCATGCCA -ACGGAACTACTGGTCTTCGGAAAC -ACGGAACTACTGGTCTTCAACACC -ACGGAACTACTGGTCTTCATCGAG -ACGGAACTACTGGTCTTCCTCCTT -ACGGAACTACTGGTCTTCCCTGTT -ACGGAACTACTGGTCTTCCGGTTT -ACGGAACTACTGGTCTTCGTGGTT -ACGGAACTACTGGTCTTCGCCTTT -ACGGAACTACTGGTCTTCGGTCTT -ACGGAACTACTGGTCTTCACGCTT -ACGGAACTACTGGTCTTCAGCGTT -ACGGAACTACTGGTCTTCTTCGTC -ACGGAACTACTGGTCTTCTCTCTC -ACGGAACTACTGGTCTTCTGGATC -ACGGAACTACTGGTCTTCCACTTC -ACGGAACTACTGGTCTTCGTACTC -ACGGAACTACTGGTCTTCGATGTC -ACGGAACTACTGGTCTTCACAGTC -ACGGAACTACTGGTCTTCTTGCTG -ACGGAACTACTGGTCTTCTCCATG -ACGGAACTACTGGTCTTCTGTGTG -ACGGAACTACTGGTCTTCCTAGTG -ACGGAACTACTGGTCTTCCATCTG -ACGGAACTACTGGTCTTCGAGTTG -ACGGAACTACTGGTCTTCAGACTG -ACGGAACTACTGGTCTTCTCGGTA -ACGGAACTACTGGTCTTCTGCCTA -ACGGAACTACTGGTCTTCCCACTA -ACGGAACTACTGGTCTTCGGAGTA -ACGGAACTACTGGTCTTCTCGTCT -ACGGAACTACTGGTCTTCTGCACT -ACGGAACTACTGGTCTTCCTGACT -ACGGAACTACTGGTCTTCCAACCT -ACGGAACTACTGGTCTTCGCTACT -ACGGAACTACTGGTCTTCGGATCT -ACGGAACTACTGGTCTTCAAGGCT -ACGGAACTACTGGTCTTCTCAACC -ACGGAACTACTGGTCTTCTGTTCC -ACGGAACTACTGGTCTTCATTCCC -ACGGAACTACTGGTCTTCTTCTCG -ACGGAACTACTGGTCTTCTAGACG -ACGGAACTACTGGTCTTCGTAACG -ACGGAACTACTGGTCTTCACTTCG -ACGGAACTACTGGTCTTCTACGCA -ACGGAACTACTGGTCTTCCTTGCA -ACGGAACTACTGGTCTTCCGAACA -ACGGAACTACTGGTCTTCCAGTCA -ACGGAACTACTGGTCTTCGATCCA -ACGGAACTACTGGTCTTCACGACA -ACGGAACTACTGGTCTTCAGCTCA -ACGGAACTACTGGTCTTCTCACGT -ACGGAACTACTGGTCTTCCGTAGT -ACGGAACTACTGGTCTTCGTCAGT -ACGGAACTACTGGTCTTCGAAGGT -ACGGAACTACTGGTCTTCAACCGT -ACGGAACTACTGGTCTTCTTGTGC -ACGGAACTACTGGTCTTCCTAAGC -ACGGAACTACTGGTCTTCACTAGC -ACGGAACTACTGGTCTTCAGATGC -ACGGAACTACTGGTCTTCTGAAGG -ACGGAACTACTGGTCTTCCAATGG -ACGGAACTACTGGTCTTCATGAGG -ACGGAACTACTGGTCTTCAATGGG -ACGGAACTACTGGTCTTCTCCTGA -ACGGAACTACTGGTCTTCTAGCGA -ACGGAACTACTGGTCTTCCACAGA -ACGGAACTACTGGTCTTCGCAAGA -ACGGAACTACTGGTCTTCGGTTGA -ACGGAACTACTGGTCTTCTCCGAT -ACGGAACTACTGGTCTTCTGGCAT -ACGGAACTACTGGTCTTCCGAGAT -ACGGAACTACTGGTCTTCTACCAC -ACGGAACTACTGGTCTTCCAGAAC -ACGGAACTACTGGTCTTCGTCTAC -ACGGAACTACTGGTCTTCACGTAC -ACGGAACTACTGGTCTTCAGTGAC -ACGGAACTACTGGTCTTCCTGTAG -ACGGAACTACTGGTCTTCCCTAAG -ACGGAACTACTGGTCTTCGTTCAG -ACGGAACTACTGGTCTTCGCATAG -ACGGAACTACTGGTCTTCGACAAG -ACGGAACTACTGGTCTTCAAGCAG -ACGGAACTACTGGTCTTCCGTCAA -ACGGAACTACTGGTCTTCGCTGAA -ACGGAACTACTGGTCTTCAGTACG -ACGGAACTACTGGTCTTCATCCGA -ACGGAACTACTGGTCTTCATGGGA -ACGGAACTACTGGTCTTCGTGCAA -ACGGAACTACTGGTCTTCGAGGAA -ACGGAACTACTGGTCTTCCAGGTA -ACGGAACTACTGGTCTTCGACTCT -ACGGAACTACTGGTCTTCAGTCCT -ACGGAACTACTGGTCTTCTAAGCC -ACGGAACTACTGGTCTTCATAGCC -ACGGAACTACTGGTCTTCTAACCG -ACGGAACTACTGGTCTTCATGCCA -ACGGAACTACTGCTCTCTGGAAAC -ACGGAACTACTGCTCTCTAACACC -ACGGAACTACTGCTCTCTATCGAG -ACGGAACTACTGCTCTCTCTCCTT -ACGGAACTACTGCTCTCTCCTGTT -ACGGAACTACTGCTCTCTCGGTTT -ACGGAACTACTGCTCTCTGTGGTT -ACGGAACTACTGCTCTCTGCCTTT -ACGGAACTACTGCTCTCTGGTCTT -ACGGAACTACTGCTCTCTACGCTT -ACGGAACTACTGCTCTCTAGCGTT -ACGGAACTACTGCTCTCTTTCGTC -ACGGAACTACTGCTCTCTTCTCTC -ACGGAACTACTGCTCTCTTGGATC -ACGGAACTACTGCTCTCTCACTTC -ACGGAACTACTGCTCTCTGTACTC -ACGGAACTACTGCTCTCTGATGTC -ACGGAACTACTGCTCTCTACAGTC -ACGGAACTACTGCTCTCTTTGCTG -ACGGAACTACTGCTCTCTTCCATG -ACGGAACTACTGCTCTCTTGTGTG -ACGGAACTACTGCTCTCTCTAGTG -ACGGAACTACTGCTCTCTCATCTG -ACGGAACTACTGCTCTCTGAGTTG -ACGGAACTACTGCTCTCTAGACTG -ACGGAACTACTGCTCTCTTCGGTA -ACGGAACTACTGCTCTCTTGCCTA -ACGGAACTACTGCTCTCTCCACTA -ACGGAACTACTGCTCTCTGGAGTA -ACGGAACTACTGCTCTCTTCGTCT -ACGGAACTACTGCTCTCTTGCACT -ACGGAACTACTGCTCTCTCTGACT -ACGGAACTACTGCTCTCTCAACCT -ACGGAACTACTGCTCTCTGCTACT -ACGGAACTACTGCTCTCTGGATCT -ACGGAACTACTGCTCTCTAAGGCT -ACGGAACTACTGCTCTCTTCAACC -ACGGAACTACTGCTCTCTTGTTCC -ACGGAACTACTGCTCTCTATTCCC -ACGGAACTACTGCTCTCTTTCTCG -ACGGAACTACTGCTCTCTTAGACG -ACGGAACTACTGCTCTCTGTAACG -ACGGAACTACTGCTCTCTACTTCG -ACGGAACTACTGCTCTCTTACGCA -ACGGAACTACTGCTCTCTCTTGCA -ACGGAACTACTGCTCTCTCGAACA -ACGGAACTACTGCTCTCTCAGTCA -ACGGAACTACTGCTCTCTGATCCA -ACGGAACTACTGCTCTCTACGACA -ACGGAACTACTGCTCTCTAGCTCA -ACGGAACTACTGCTCTCTTCACGT -ACGGAACTACTGCTCTCTCGTAGT -ACGGAACTACTGCTCTCTGTCAGT -ACGGAACTACTGCTCTCTGAAGGT -ACGGAACTACTGCTCTCTAACCGT -ACGGAACTACTGCTCTCTTTGTGC -ACGGAACTACTGCTCTCTCTAAGC -ACGGAACTACTGCTCTCTACTAGC -ACGGAACTACTGCTCTCTAGATGC -ACGGAACTACTGCTCTCTTGAAGG -ACGGAACTACTGCTCTCTCAATGG -ACGGAACTACTGCTCTCTATGAGG -ACGGAACTACTGCTCTCTAATGGG -ACGGAACTACTGCTCTCTTCCTGA -ACGGAACTACTGCTCTCTTAGCGA -ACGGAACTACTGCTCTCTCACAGA -ACGGAACTACTGCTCTCTGCAAGA -ACGGAACTACTGCTCTCTGGTTGA -ACGGAACTACTGCTCTCTTCCGAT -ACGGAACTACTGCTCTCTTGGCAT -ACGGAACTACTGCTCTCTCGAGAT -ACGGAACTACTGCTCTCTTACCAC -ACGGAACTACTGCTCTCTCAGAAC -ACGGAACTACTGCTCTCTGTCTAC -ACGGAACTACTGCTCTCTACGTAC -ACGGAACTACTGCTCTCTAGTGAC -ACGGAACTACTGCTCTCTCTGTAG -ACGGAACTACTGCTCTCTCCTAAG -ACGGAACTACTGCTCTCTGTTCAG -ACGGAACTACTGCTCTCTGCATAG -ACGGAACTACTGCTCTCTGACAAG -ACGGAACTACTGCTCTCTAAGCAG -ACGGAACTACTGCTCTCTCGTCAA -ACGGAACTACTGCTCTCTGCTGAA -ACGGAACTACTGCTCTCTAGTACG -ACGGAACTACTGCTCTCTATCCGA -ACGGAACTACTGCTCTCTATGGGA -ACGGAACTACTGCTCTCTGTGCAA -ACGGAACTACTGCTCTCTGAGGAA -ACGGAACTACTGCTCTCTCAGGTA -ACGGAACTACTGCTCTCTGACTCT -ACGGAACTACTGCTCTCTAGTCCT -ACGGAACTACTGCTCTCTTAAGCC -ACGGAACTACTGCTCTCTATAGCC -ACGGAACTACTGCTCTCTTAACCG -ACGGAACTACTGCTCTCTATGCCA -ACGGAACTACTGATCTGGGGAAAC -ACGGAACTACTGATCTGGAACACC -ACGGAACTACTGATCTGGATCGAG -ACGGAACTACTGATCTGGCTCCTT -ACGGAACTACTGATCTGGCCTGTT -ACGGAACTACTGATCTGGCGGTTT -ACGGAACTACTGATCTGGGTGGTT -ACGGAACTACTGATCTGGGCCTTT -ACGGAACTACTGATCTGGGGTCTT -ACGGAACTACTGATCTGGACGCTT -ACGGAACTACTGATCTGGAGCGTT -ACGGAACTACTGATCTGGTTCGTC -ACGGAACTACTGATCTGGTCTCTC -ACGGAACTACTGATCTGGTGGATC -ACGGAACTACTGATCTGGCACTTC -ACGGAACTACTGATCTGGGTACTC -ACGGAACTACTGATCTGGGATGTC -ACGGAACTACTGATCTGGACAGTC -ACGGAACTACTGATCTGGTTGCTG -ACGGAACTACTGATCTGGTCCATG -ACGGAACTACTGATCTGGTGTGTG -ACGGAACTACTGATCTGGCTAGTG -ACGGAACTACTGATCTGGCATCTG -ACGGAACTACTGATCTGGGAGTTG -ACGGAACTACTGATCTGGAGACTG -ACGGAACTACTGATCTGGTCGGTA -ACGGAACTACTGATCTGGTGCCTA -ACGGAACTACTGATCTGGCCACTA -ACGGAACTACTGATCTGGGGAGTA -ACGGAACTACTGATCTGGTCGTCT -ACGGAACTACTGATCTGGTGCACT -ACGGAACTACTGATCTGGCTGACT -ACGGAACTACTGATCTGGCAACCT -ACGGAACTACTGATCTGGGCTACT -ACGGAACTACTGATCTGGGGATCT -ACGGAACTACTGATCTGGAAGGCT -ACGGAACTACTGATCTGGTCAACC -ACGGAACTACTGATCTGGTGTTCC -ACGGAACTACTGATCTGGATTCCC -ACGGAACTACTGATCTGGTTCTCG -ACGGAACTACTGATCTGGTAGACG -ACGGAACTACTGATCTGGGTAACG -ACGGAACTACTGATCTGGACTTCG -ACGGAACTACTGATCTGGTACGCA -ACGGAACTACTGATCTGGCTTGCA -ACGGAACTACTGATCTGGCGAACA -ACGGAACTACTGATCTGGCAGTCA -ACGGAACTACTGATCTGGGATCCA -ACGGAACTACTGATCTGGACGACA -ACGGAACTACTGATCTGGAGCTCA -ACGGAACTACTGATCTGGTCACGT -ACGGAACTACTGATCTGGCGTAGT -ACGGAACTACTGATCTGGGTCAGT -ACGGAACTACTGATCTGGGAAGGT -ACGGAACTACTGATCTGGAACCGT -ACGGAACTACTGATCTGGTTGTGC -ACGGAACTACTGATCTGGCTAAGC -ACGGAACTACTGATCTGGACTAGC -ACGGAACTACTGATCTGGAGATGC -ACGGAACTACTGATCTGGTGAAGG -ACGGAACTACTGATCTGGCAATGG -ACGGAACTACTGATCTGGATGAGG -ACGGAACTACTGATCTGGAATGGG -ACGGAACTACTGATCTGGTCCTGA -ACGGAACTACTGATCTGGTAGCGA -ACGGAACTACTGATCTGGCACAGA -ACGGAACTACTGATCTGGGCAAGA -ACGGAACTACTGATCTGGGGTTGA -ACGGAACTACTGATCTGGTCCGAT -ACGGAACTACTGATCTGGTGGCAT -ACGGAACTACTGATCTGGCGAGAT -ACGGAACTACTGATCTGGTACCAC -ACGGAACTACTGATCTGGCAGAAC -ACGGAACTACTGATCTGGGTCTAC -ACGGAACTACTGATCTGGACGTAC -ACGGAACTACTGATCTGGAGTGAC -ACGGAACTACTGATCTGGCTGTAG -ACGGAACTACTGATCTGGCCTAAG -ACGGAACTACTGATCTGGGTTCAG -ACGGAACTACTGATCTGGGCATAG -ACGGAACTACTGATCTGGGACAAG -ACGGAACTACTGATCTGGAAGCAG -ACGGAACTACTGATCTGGCGTCAA -ACGGAACTACTGATCTGGGCTGAA -ACGGAACTACTGATCTGGAGTACG -ACGGAACTACTGATCTGGATCCGA -ACGGAACTACTGATCTGGATGGGA -ACGGAACTACTGATCTGGGTGCAA -ACGGAACTACTGATCTGGGAGGAA -ACGGAACTACTGATCTGGCAGGTA -ACGGAACTACTGATCTGGGACTCT -ACGGAACTACTGATCTGGAGTCCT -ACGGAACTACTGATCTGGTAAGCC -ACGGAACTACTGATCTGGATAGCC -ACGGAACTACTGATCTGGTAACCG -ACGGAACTACTGATCTGGATGCCA -ACGGAACTACTGTTCCACGGAAAC -ACGGAACTACTGTTCCACAACACC -ACGGAACTACTGTTCCACATCGAG -ACGGAACTACTGTTCCACCTCCTT -ACGGAACTACTGTTCCACCCTGTT -ACGGAACTACTGTTCCACCGGTTT -ACGGAACTACTGTTCCACGTGGTT -ACGGAACTACTGTTCCACGCCTTT -ACGGAACTACTGTTCCACGGTCTT -ACGGAACTACTGTTCCACACGCTT -ACGGAACTACTGTTCCACAGCGTT -ACGGAACTACTGTTCCACTTCGTC -ACGGAACTACTGTTCCACTCTCTC -ACGGAACTACTGTTCCACTGGATC -ACGGAACTACTGTTCCACCACTTC -ACGGAACTACTGTTCCACGTACTC -ACGGAACTACTGTTCCACGATGTC -ACGGAACTACTGTTCCACACAGTC -ACGGAACTACTGTTCCACTTGCTG -ACGGAACTACTGTTCCACTCCATG -ACGGAACTACTGTTCCACTGTGTG -ACGGAACTACTGTTCCACCTAGTG -ACGGAACTACTGTTCCACCATCTG -ACGGAACTACTGTTCCACGAGTTG -ACGGAACTACTGTTCCACAGACTG -ACGGAACTACTGTTCCACTCGGTA -ACGGAACTACTGTTCCACTGCCTA -ACGGAACTACTGTTCCACCCACTA -ACGGAACTACTGTTCCACGGAGTA -ACGGAACTACTGTTCCACTCGTCT -ACGGAACTACTGTTCCACTGCACT -ACGGAACTACTGTTCCACCTGACT -ACGGAACTACTGTTCCACCAACCT -ACGGAACTACTGTTCCACGCTACT -ACGGAACTACTGTTCCACGGATCT -ACGGAACTACTGTTCCACAAGGCT -ACGGAACTACTGTTCCACTCAACC -ACGGAACTACTGTTCCACTGTTCC -ACGGAACTACTGTTCCACATTCCC -ACGGAACTACTGTTCCACTTCTCG -ACGGAACTACTGTTCCACTAGACG -ACGGAACTACTGTTCCACGTAACG -ACGGAACTACTGTTCCACACTTCG -ACGGAACTACTGTTCCACTACGCA -ACGGAACTACTGTTCCACCTTGCA -ACGGAACTACTGTTCCACCGAACA -ACGGAACTACTGTTCCACCAGTCA -ACGGAACTACTGTTCCACGATCCA -ACGGAACTACTGTTCCACACGACA -ACGGAACTACTGTTCCACAGCTCA -ACGGAACTACTGTTCCACTCACGT -ACGGAACTACTGTTCCACCGTAGT -ACGGAACTACTGTTCCACGTCAGT -ACGGAACTACTGTTCCACGAAGGT -ACGGAACTACTGTTCCACAACCGT -ACGGAACTACTGTTCCACTTGTGC -ACGGAACTACTGTTCCACCTAAGC -ACGGAACTACTGTTCCACACTAGC -ACGGAACTACTGTTCCACAGATGC -ACGGAACTACTGTTCCACTGAAGG -ACGGAACTACTGTTCCACCAATGG -ACGGAACTACTGTTCCACATGAGG -ACGGAACTACTGTTCCACAATGGG -ACGGAACTACTGTTCCACTCCTGA -ACGGAACTACTGTTCCACTAGCGA -ACGGAACTACTGTTCCACCACAGA -ACGGAACTACTGTTCCACGCAAGA -ACGGAACTACTGTTCCACGGTTGA -ACGGAACTACTGTTCCACTCCGAT -ACGGAACTACTGTTCCACTGGCAT -ACGGAACTACTGTTCCACCGAGAT -ACGGAACTACTGTTCCACTACCAC -ACGGAACTACTGTTCCACCAGAAC -ACGGAACTACTGTTCCACGTCTAC -ACGGAACTACTGTTCCACACGTAC -ACGGAACTACTGTTCCACAGTGAC -ACGGAACTACTGTTCCACCTGTAG -ACGGAACTACTGTTCCACCCTAAG -ACGGAACTACTGTTCCACGTTCAG -ACGGAACTACTGTTCCACGCATAG -ACGGAACTACTGTTCCACGACAAG -ACGGAACTACTGTTCCACAAGCAG -ACGGAACTACTGTTCCACCGTCAA -ACGGAACTACTGTTCCACGCTGAA -ACGGAACTACTGTTCCACAGTACG -ACGGAACTACTGTTCCACATCCGA -ACGGAACTACTGTTCCACATGGGA -ACGGAACTACTGTTCCACGTGCAA -ACGGAACTACTGTTCCACGAGGAA -ACGGAACTACTGTTCCACCAGGTA -ACGGAACTACTGTTCCACGACTCT -ACGGAACTACTGTTCCACAGTCCT -ACGGAACTACTGTTCCACTAAGCC -ACGGAACTACTGTTCCACATAGCC -ACGGAACTACTGTTCCACTAACCG -ACGGAACTACTGTTCCACATGCCA -ACGGAACTACTGCTCGTAGGAAAC -ACGGAACTACTGCTCGTAAACACC -ACGGAACTACTGCTCGTAATCGAG -ACGGAACTACTGCTCGTACTCCTT -ACGGAACTACTGCTCGTACCTGTT -ACGGAACTACTGCTCGTACGGTTT -ACGGAACTACTGCTCGTAGTGGTT -ACGGAACTACTGCTCGTAGCCTTT -ACGGAACTACTGCTCGTAGGTCTT -ACGGAACTACTGCTCGTAACGCTT -ACGGAACTACTGCTCGTAAGCGTT -ACGGAACTACTGCTCGTATTCGTC -ACGGAACTACTGCTCGTATCTCTC -ACGGAACTACTGCTCGTATGGATC -ACGGAACTACTGCTCGTACACTTC -ACGGAACTACTGCTCGTAGTACTC -ACGGAACTACTGCTCGTAGATGTC -ACGGAACTACTGCTCGTAACAGTC -ACGGAACTACTGCTCGTATTGCTG -ACGGAACTACTGCTCGTATCCATG -ACGGAACTACTGCTCGTATGTGTG -ACGGAACTACTGCTCGTACTAGTG -ACGGAACTACTGCTCGTACATCTG -ACGGAACTACTGCTCGTAGAGTTG -ACGGAACTACTGCTCGTAAGACTG -ACGGAACTACTGCTCGTATCGGTA -ACGGAACTACTGCTCGTATGCCTA -ACGGAACTACTGCTCGTACCACTA -ACGGAACTACTGCTCGTAGGAGTA -ACGGAACTACTGCTCGTATCGTCT -ACGGAACTACTGCTCGTATGCACT -ACGGAACTACTGCTCGTACTGACT -ACGGAACTACTGCTCGTACAACCT -ACGGAACTACTGCTCGTAGCTACT -ACGGAACTACTGCTCGTAGGATCT -ACGGAACTACTGCTCGTAAAGGCT -ACGGAACTACTGCTCGTATCAACC -ACGGAACTACTGCTCGTATGTTCC -ACGGAACTACTGCTCGTAATTCCC -ACGGAACTACTGCTCGTATTCTCG -ACGGAACTACTGCTCGTATAGACG -ACGGAACTACTGCTCGTAGTAACG -ACGGAACTACTGCTCGTAACTTCG -ACGGAACTACTGCTCGTATACGCA -ACGGAACTACTGCTCGTACTTGCA -ACGGAACTACTGCTCGTACGAACA -ACGGAACTACTGCTCGTACAGTCA -ACGGAACTACTGCTCGTAGATCCA -ACGGAACTACTGCTCGTAACGACA -ACGGAACTACTGCTCGTAAGCTCA -ACGGAACTACTGCTCGTATCACGT -ACGGAACTACTGCTCGTACGTAGT -ACGGAACTACTGCTCGTAGTCAGT -ACGGAACTACTGCTCGTAGAAGGT -ACGGAACTACTGCTCGTAAACCGT -ACGGAACTACTGCTCGTATTGTGC -ACGGAACTACTGCTCGTACTAAGC -ACGGAACTACTGCTCGTAACTAGC -ACGGAACTACTGCTCGTAAGATGC -ACGGAACTACTGCTCGTATGAAGG -ACGGAACTACTGCTCGTACAATGG -ACGGAACTACTGCTCGTAATGAGG -ACGGAACTACTGCTCGTAAATGGG -ACGGAACTACTGCTCGTATCCTGA -ACGGAACTACTGCTCGTATAGCGA -ACGGAACTACTGCTCGTACACAGA -ACGGAACTACTGCTCGTAGCAAGA -ACGGAACTACTGCTCGTAGGTTGA -ACGGAACTACTGCTCGTATCCGAT -ACGGAACTACTGCTCGTATGGCAT -ACGGAACTACTGCTCGTACGAGAT -ACGGAACTACTGCTCGTATACCAC -ACGGAACTACTGCTCGTACAGAAC -ACGGAACTACTGCTCGTAGTCTAC -ACGGAACTACTGCTCGTAACGTAC -ACGGAACTACTGCTCGTAAGTGAC -ACGGAACTACTGCTCGTACTGTAG -ACGGAACTACTGCTCGTACCTAAG -ACGGAACTACTGCTCGTAGTTCAG -ACGGAACTACTGCTCGTAGCATAG -ACGGAACTACTGCTCGTAGACAAG -ACGGAACTACTGCTCGTAAAGCAG -ACGGAACTACTGCTCGTACGTCAA -ACGGAACTACTGCTCGTAGCTGAA -ACGGAACTACTGCTCGTAAGTACG -ACGGAACTACTGCTCGTAATCCGA -ACGGAACTACTGCTCGTAATGGGA -ACGGAACTACTGCTCGTAGTGCAA -ACGGAACTACTGCTCGTAGAGGAA -ACGGAACTACTGCTCGTACAGGTA -ACGGAACTACTGCTCGTAGACTCT -ACGGAACTACTGCTCGTAAGTCCT -ACGGAACTACTGCTCGTATAAGCC -ACGGAACTACTGCTCGTAATAGCC -ACGGAACTACTGCTCGTATAACCG -ACGGAACTACTGCTCGTAATGCCA -ACGGAACTACTGGTCGATGGAAAC -ACGGAACTACTGGTCGATAACACC -ACGGAACTACTGGTCGATATCGAG -ACGGAACTACTGGTCGATCTCCTT -ACGGAACTACTGGTCGATCCTGTT -ACGGAACTACTGGTCGATCGGTTT -ACGGAACTACTGGTCGATGTGGTT -ACGGAACTACTGGTCGATGCCTTT -ACGGAACTACTGGTCGATGGTCTT -ACGGAACTACTGGTCGATACGCTT -ACGGAACTACTGGTCGATAGCGTT -ACGGAACTACTGGTCGATTTCGTC -ACGGAACTACTGGTCGATTCTCTC -ACGGAACTACTGGTCGATTGGATC -ACGGAACTACTGGTCGATCACTTC -ACGGAACTACTGGTCGATGTACTC -ACGGAACTACTGGTCGATGATGTC -ACGGAACTACTGGTCGATACAGTC -ACGGAACTACTGGTCGATTTGCTG -ACGGAACTACTGGTCGATTCCATG -ACGGAACTACTGGTCGATTGTGTG -ACGGAACTACTGGTCGATCTAGTG -ACGGAACTACTGGTCGATCATCTG -ACGGAACTACTGGTCGATGAGTTG -ACGGAACTACTGGTCGATAGACTG -ACGGAACTACTGGTCGATTCGGTA -ACGGAACTACTGGTCGATTGCCTA -ACGGAACTACTGGTCGATCCACTA -ACGGAACTACTGGTCGATGGAGTA -ACGGAACTACTGGTCGATTCGTCT -ACGGAACTACTGGTCGATTGCACT -ACGGAACTACTGGTCGATCTGACT -ACGGAACTACTGGTCGATCAACCT -ACGGAACTACTGGTCGATGCTACT -ACGGAACTACTGGTCGATGGATCT -ACGGAACTACTGGTCGATAAGGCT -ACGGAACTACTGGTCGATTCAACC -ACGGAACTACTGGTCGATTGTTCC -ACGGAACTACTGGTCGATATTCCC -ACGGAACTACTGGTCGATTTCTCG -ACGGAACTACTGGTCGATTAGACG -ACGGAACTACTGGTCGATGTAACG -ACGGAACTACTGGTCGATACTTCG -ACGGAACTACTGGTCGATTACGCA -ACGGAACTACTGGTCGATCTTGCA -ACGGAACTACTGGTCGATCGAACA -ACGGAACTACTGGTCGATCAGTCA -ACGGAACTACTGGTCGATGATCCA -ACGGAACTACTGGTCGATACGACA -ACGGAACTACTGGTCGATAGCTCA -ACGGAACTACTGGTCGATTCACGT -ACGGAACTACTGGTCGATCGTAGT -ACGGAACTACTGGTCGATGTCAGT -ACGGAACTACTGGTCGATGAAGGT -ACGGAACTACTGGTCGATAACCGT -ACGGAACTACTGGTCGATTTGTGC -ACGGAACTACTGGTCGATCTAAGC -ACGGAACTACTGGTCGATACTAGC -ACGGAACTACTGGTCGATAGATGC -ACGGAACTACTGGTCGATTGAAGG -ACGGAACTACTGGTCGATCAATGG -ACGGAACTACTGGTCGATATGAGG -ACGGAACTACTGGTCGATAATGGG -ACGGAACTACTGGTCGATTCCTGA -ACGGAACTACTGGTCGATTAGCGA -ACGGAACTACTGGTCGATCACAGA -ACGGAACTACTGGTCGATGCAAGA -ACGGAACTACTGGTCGATGGTTGA -ACGGAACTACTGGTCGATTCCGAT -ACGGAACTACTGGTCGATTGGCAT -ACGGAACTACTGGTCGATCGAGAT -ACGGAACTACTGGTCGATTACCAC -ACGGAACTACTGGTCGATCAGAAC -ACGGAACTACTGGTCGATGTCTAC -ACGGAACTACTGGTCGATACGTAC -ACGGAACTACTGGTCGATAGTGAC -ACGGAACTACTGGTCGATCTGTAG -ACGGAACTACTGGTCGATCCTAAG -ACGGAACTACTGGTCGATGTTCAG -ACGGAACTACTGGTCGATGCATAG -ACGGAACTACTGGTCGATGACAAG -ACGGAACTACTGGTCGATAAGCAG -ACGGAACTACTGGTCGATCGTCAA -ACGGAACTACTGGTCGATGCTGAA -ACGGAACTACTGGTCGATAGTACG -ACGGAACTACTGGTCGATATCCGA -ACGGAACTACTGGTCGATATGGGA -ACGGAACTACTGGTCGATGTGCAA -ACGGAACTACTGGTCGATGAGGAA -ACGGAACTACTGGTCGATCAGGTA -ACGGAACTACTGGTCGATGACTCT -ACGGAACTACTGGTCGATAGTCCT -ACGGAACTACTGGTCGATTAAGCC -ACGGAACTACTGGTCGATATAGCC -ACGGAACTACTGGTCGATTAACCG -ACGGAACTACTGGTCGATATGCCA -ACGGAACTACTGGTCACAGGAAAC -ACGGAACTACTGGTCACAAACACC -ACGGAACTACTGGTCACAATCGAG -ACGGAACTACTGGTCACACTCCTT -ACGGAACTACTGGTCACACCTGTT -ACGGAACTACTGGTCACACGGTTT -ACGGAACTACTGGTCACAGTGGTT -ACGGAACTACTGGTCACAGCCTTT -ACGGAACTACTGGTCACAGGTCTT -ACGGAACTACTGGTCACAACGCTT -ACGGAACTACTGGTCACAAGCGTT -ACGGAACTACTGGTCACATTCGTC -ACGGAACTACTGGTCACATCTCTC -ACGGAACTACTGGTCACATGGATC -ACGGAACTACTGGTCACACACTTC -ACGGAACTACTGGTCACAGTACTC -ACGGAACTACTGGTCACAGATGTC -ACGGAACTACTGGTCACAACAGTC -ACGGAACTACTGGTCACATTGCTG -ACGGAACTACTGGTCACATCCATG -ACGGAACTACTGGTCACATGTGTG -ACGGAACTACTGGTCACACTAGTG -ACGGAACTACTGGTCACACATCTG -ACGGAACTACTGGTCACAGAGTTG -ACGGAACTACTGGTCACAAGACTG -ACGGAACTACTGGTCACATCGGTA -ACGGAACTACTGGTCACATGCCTA -ACGGAACTACTGGTCACACCACTA -ACGGAACTACTGGTCACAGGAGTA -ACGGAACTACTGGTCACATCGTCT -ACGGAACTACTGGTCACATGCACT -ACGGAACTACTGGTCACACTGACT -ACGGAACTACTGGTCACACAACCT -ACGGAACTACTGGTCACAGCTACT -ACGGAACTACTGGTCACAGGATCT -ACGGAACTACTGGTCACAAAGGCT -ACGGAACTACTGGTCACATCAACC -ACGGAACTACTGGTCACATGTTCC -ACGGAACTACTGGTCACAATTCCC -ACGGAACTACTGGTCACATTCTCG -ACGGAACTACTGGTCACATAGACG -ACGGAACTACTGGTCACAGTAACG -ACGGAACTACTGGTCACAACTTCG -ACGGAACTACTGGTCACATACGCA -ACGGAACTACTGGTCACACTTGCA -ACGGAACTACTGGTCACACGAACA -ACGGAACTACTGGTCACACAGTCA -ACGGAACTACTGGTCACAGATCCA -ACGGAACTACTGGTCACAACGACA -ACGGAACTACTGGTCACAAGCTCA -ACGGAACTACTGGTCACATCACGT -ACGGAACTACTGGTCACACGTAGT -ACGGAACTACTGGTCACAGTCAGT -ACGGAACTACTGGTCACAGAAGGT -ACGGAACTACTGGTCACAAACCGT -ACGGAACTACTGGTCACATTGTGC -ACGGAACTACTGGTCACACTAAGC -ACGGAACTACTGGTCACAACTAGC -ACGGAACTACTGGTCACAAGATGC -ACGGAACTACTGGTCACATGAAGG -ACGGAACTACTGGTCACACAATGG -ACGGAACTACTGGTCACAATGAGG -ACGGAACTACTGGTCACAAATGGG -ACGGAACTACTGGTCACATCCTGA -ACGGAACTACTGGTCACATAGCGA -ACGGAACTACTGGTCACACACAGA -ACGGAACTACTGGTCACAGCAAGA -ACGGAACTACTGGTCACAGGTTGA -ACGGAACTACTGGTCACATCCGAT -ACGGAACTACTGGTCACATGGCAT -ACGGAACTACTGGTCACACGAGAT -ACGGAACTACTGGTCACATACCAC -ACGGAACTACTGGTCACACAGAAC -ACGGAACTACTGGTCACAGTCTAC -ACGGAACTACTGGTCACAACGTAC -ACGGAACTACTGGTCACAAGTGAC -ACGGAACTACTGGTCACACTGTAG -ACGGAACTACTGGTCACACCTAAG -ACGGAACTACTGGTCACAGTTCAG -ACGGAACTACTGGTCACAGCATAG -ACGGAACTACTGGTCACAGACAAG -ACGGAACTACTGGTCACAAAGCAG -ACGGAACTACTGGTCACACGTCAA -ACGGAACTACTGGTCACAGCTGAA -ACGGAACTACTGGTCACAAGTACG -ACGGAACTACTGGTCACAATCCGA -ACGGAACTACTGGTCACAATGGGA -ACGGAACTACTGGTCACAGTGCAA -ACGGAACTACTGGTCACAGAGGAA -ACGGAACTACTGGTCACACAGGTA -ACGGAACTACTGGTCACAGACTCT -ACGGAACTACTGGTCACAAGTCCT -ACGGAACTACTGGTCACATAAGCC -ACGGAACTACTGGTCACAATAGCC -ACGGAACTACTGGTCACATAACCG -ACGGAACTACTGGTCACAATGCCA -ACGGAACTACTGCTGTTGGGAAAC -ACGGAACTACTGCTGTTGAACACC -ACGGAACTACTGCTGTTGATCGAG -ACGGAACTACTGCTGTTGCTCCTT -ACGGAACTACTGCTGTTGCCTGTT -ACGGAACTACTGCTGTTGCGGTTT -ACGGAACTACTGCTGTTGGTGGTT -ACGGAACTACTGCTGTTGGCCTTT -ACGGAACTACTGCTGTTGGGTCTT -ACGGAACTACTGCTGTTGACGCTT -ACGGAACTACTGCTGTTGAGCGTT -ACGGAACTACTGCTGTTGTTCGTC -ACGGAACTACTGCTGTTGTCTCTC -ACGGAACTACTGCTGTTGTGGATC -ACGGAACTACTGCTGTTGCACTTC -ACGGAACTACTGCTGTTGGTACTC -ACGGAACTACTGCTGTTGGATGTC -ACGGAACTACTGCTGTTGACAGTC -ACGGAACTACTGCTGTTGTTGCTG -ACGGAACTACTGCTGTTGTCCATG -ACGGAACTACTGCTGTTGTGTGTG -ACGGAACTACTGCTGTTGCTAGTG -ACGGAACTACTGCTGTTGCATCTG -ACGGAACTACTGCTGTTGGAGTTG -ACGGAACTACTGCTGTTGAGACTG -ACGGAACTACTGCTGTTGTCGGTA -ACGGAACTACTGCTGTTGTGCCTA -ACGGAACTACTGCTGTTGCCACTA -ACGGAACTACTGCTGTTGGGAGTA -ACGGAACTACTGCTGTTGTCGTCT -ACGGAACTACTGCTGTTGTGCACT -ACGGAACTACTGCTGTTGCTGACT -ACGGAACTACTGCTGTTGCAACCT -ACGGAACTACTGCTGTTGGCTACT -ACGGAACTACTGCTGTTGGGATCT -ACGGAACTACTGCTGTTGAAGGCT -ACGGAACTACTGCTGTTGTCAACC -ACGGAACTACTGCTGTTGTGTTCC -ACGGAACTACTGCTGTTGATTCCC -ACGGAACTACTGCTGTTGTTCTCG -ACGGAACTACTGCTGTTGTAGACG -ACGGAACTACTGCTGTTGGTAACG -ACGGAACTACTGCTGTTGACTTCG -ACGGAACTACTGCTGTTGTACGCA -ACGGAACTACTGCTGTTGCTTGCA -ACGGAACTACTGCTGTTGCGAACA -ACGGAACTACTGCTGTTGCAGTCA -ACGGAACTACTGCTGTTGGATCCA -ACGGAACTACTGCTGTTGACGACA -ACGGAACTACTGCTGTTGAGCTCA -ACGGAACTACTGCTGTTGTCACGT -ACGGAACTACTGCTGTTGCGTAGT -ACGGAACTACTGCTGTTGGTCAGT -ACGGAACTACTGCTGTTGGAAGGT -ACGGAACTACTGCTGTTGAACCGT -ACGGAACTACTGCTGTTGTTGTGC -ACGGAACTACTGCTGTTGCTAAGC -ACGGAACTACTGCTGTTGACTAGC -ACGGAACTACTGCTGTTGAGATGC -ACGGAACTACTGCTGTTGTGAAGG -ACGGAACTACTGCTGTTGCAATGG -ACGGAACTACTGCTGTTGATGAGG -ACGGAACTACTGCTGTTGAATGGG -ACGGAACTACTGCTGTTGTCCTGA -ACGGAACTACTGCTGTTGTAGCGA -ACGGAACTACTGCTGTTGCACAGA -ACGGAACTACTGCTGTTGGCAAGA -ACGGAACTACTGCTGTTGGGTTGA -ACGGAACTACTGCTGTTGTCCGAT -ACGGAACTACTGCTGTTGTGGCAT -ACGGAACTACTGCTGTTGCGAGAT -ACGGAACTACTGCTGTTGTACCAC -ACGGAACTACTGCTGTTGCAGAAC -ACGGAACTACTGCTGTTGGTCTAC -ACGGAACTACTGCTGTTGACGTAC -ACGGAACTACTGCTGTTGAGTGAC -ACGGAACTACTGCTGTTGCTGTAG -ACGGAACTACTGCTGTTGCCTAAG -ACGGAACTACTGCTGTTGGTTCAG -ACGGAACTACTGCTGTTGGCATAG -ACGGAACTACTGCTGTTGGACAAG -ACGGAACTACTGCTGTTGAAGCAG -ACGGAACTACTGCTGTTGCGTCAA -ACGGAACTACTGCTGTTGGCTGAA -ACGGAACTACTGCTGTTGAGTACG -ACGGAACTACTGCTGTTGATCCGA -ACGGAACTACTGCTGTTGATGGGA -ACGGAACTACTGCTGTTGGTGCAA -ACGGAACTACTGCTGTTGGAGGAA -ACGGAACTACTGCTGTTGCAGGTA -ACGGAACTACTGCTGTTGGACTCT -ACGGAACTACTGCTGTTGAGTCCT -ACGGAACTACTGCTGTTGTAAGCC -ACGGAACTACTGCTGTTGATAGCC -ACGGAACTACTGCTGTTGTAACCG -ACGGAACTACTGCTGTTGATGCCA -ACGGAACTACTGATGTCCGGAAAC -ACGGAACTACTGATGTCCAACACC -ACGGAACTACTGATGTCCATCGAG -ACGGAACTACTGATGTCCCTCCTT -ACGGAACTACTGATGTCCCCTGTT -ACGGAACTACTGATGTCCCGGTTT -ACGGAACTACTGATGTCCGTGGTT -ACGGAACTACTGATGTCCGCCTTT -ACGGAACTACTGATGTCCGGTCTT -ACGGAACTACTGATGTCCACGCTT -ACGGAACTACTGATGTCCAGCGTT -ACGGAACTACTGATGTCCTTCGTC -ACGGAACTACTGATGTCCTCTCTC -ACGGAACTACTGATGTCCTGGATC -ACGGAACTACTGATGTCCCACTTC -ACGGAACTACTGATGTCCGTACTC -ACGGAACTACTGATGTCCGATGTC -ACGGAACTACTGATGTCCACAGTC -ACGGAACTACTGATGTCCTTGCTG -ACGGAACTACTGATGTCCTCCATG -ACGGAACTACTGATGTCCTGTGTG -ACGGAACTACTGATGTCCCTAGTG -ACGGAACTACTGATGTCCCATCTG -ACGGAACTACTGATGTCCGAGTTG -ACGGAACTACTGATGTCCAGACTG -ACGGAACTACTGATGTCCTCGGTA -ACGGAACTACTGATGTCCTGCCTA -ACGGAACTACTGATGTCCCCACTA -ACGGAACTACTGATGTCCGGAGTA -ACGGAACTACTGATGTCCTCGTCT -ACGGAACTACTGATGTCCTGCACT -ACGGAACTACTGATGTCCCTGACT -ACGGAACTACTGATGTCCCAACCT -ACGGAACTACTGATGTCCGCTACT -ACGGAACTACTGATGTCCGGATCT -ACGGAACTACTGATGTCCAAGGCT -ACGGAACTACTGATGTCCTCAACC -ACGGAACTACTGATGTCCTGTTCC -ACGGAACTACTGATGTCCATTCCC -ACGGAACTACTGATGTCCTTCTCG -ACGGAACTACTGATGTCCTAGACG -ACGGAACTACTGATGTCCGTAACG -ACGGAACTACTGATGTCCACTTCG -ACGGAACTACTGATGTCCTACGCA -ACGGAACTACTGATGTCCCTTGCA -ACGGAACTACTGATGTCCCGAACA -ACGGAACTACTGATGTCCCAGTCA -ACGGAACTACTGATGTCCGATCCA -ACGGAACTACTGATGTCCACGACA -ACGGAACTACTGATGTCCAGCTCA -ACGGAACTACTGATGTCCTCACGT -ACGGAACTACTGATGTCCCGTAGT -ACGGAACTACTGATGTCCGTCAGT -ACGGAACTACTGATGTCCGAAGGT -ACGGAACTACTGATGTCCAACCGT -ACGGAACTACTGATGTCCTTGTGC -ACGGAACTACTGATGTCCCTAAGC -ACGGAACTACTGATGTCCACTAGC -ACGGAACTACTGATGTCCAGATGC -ACGGAACTACTGATGTCCTGAAGG -ACGGAACTACTGATGTCCCAATGG -ACGGAACTACTGATGTCCATGAGG -ACGGAACTACTGATGTCCAATGGG -ACGGAACTACTGATGTCCTCCTGA -ACGGAACTACTGATGTCCTAGCGA -ACGGAACTACTGATGTCCCACAGA -ACGGAACTACTGATGTCCGCAAGA -ACGGAACTACTGATGTCCGGTTGA -ACGGAACTACTGATGTCCTCCGAT -ACGGAACTACTGATGTCCTGGCAT -ACGGAACTACTGATGTCCCGAGAT -ACGGAACTACTGATGTCCTACCAC -ACGGAACTACTGATGTCCCAGAAC -ACGGAACTACTGATGTCCGTCTAC -ACGGAACTACTGATGTCCACGTAC -ACGGAACTACTGATGTCCAGTGAC -ACGGAACTACTGATGTCCCTGTAG -ACGGAACTACTGATGTCCCCTAAG -ACGGAACTACTGATGTCCGTTCAG -ACGGAACTACTGATGTCCGCATAG -ACGGAACTACTGATGTCCGACAAG -ACGGAACTACTGATGTCCAAGCAG -ACGGAACTACTGATGTCCCGTCAA -ACGGAACTACTGATGTCCGCTGAA -ACGGAACTACTGATGTCCAGTACG -ACGGAACTACTGATGTCCATCCGA -ACGGAACTACTGATGTCCATGGGA -ACGGAACTACTGATGTCCGTGCAA -ACGGAACTACTGATGTCCGAGGAA -ACGGAACTACTGATGTCCCAGGTA -ACGGAACTACTGATGTCCGACTCT -ACGGAACTACTGATGTCCAGTCCT -ACGGAACTACTGATGTCCTAAGCC -ACGGAACTACTGATGTCCATAGCC -ACGGAACTACTGATGTCCTAACCG -ACGGAACTACTGATGTCCATGCCA -ACGGAACTACTGGTGTGTGGAAAC -ACGGAACTACTGGTGTGTAACACC -ACGGAACTACTGGTGTGTATCGAG -ACGGAACTACTGGTGTGTCTCCTT -ACGGAACTACTGGTGTGTCCTGTT -ACGGAACTACTGGTGTGTCGGTTT -ACGGAACTACTGGTGTGTGTGGTT -ACGGAACTACTGGTGTGTGCCTTT -ACGGAACTACTGGTGTGTGGTCTT -ACGGAACTACTGGTGTGTACGCTT -ACGGAACTACTGGTGTGTAGCGTT -ACGGAACTACTGGTGTGTTTCGTC -ACGGAACTACTGGTGTGTTCTCTC -ACGGAACTACTGGTGTGTTGGATC -ACGGAACTACTGGTGTGTCACTTC -ACGGAACTACTGGTGTGTGTACTC -ACGGAACTACTGGTGTGTGATGTC -ACGGAACTACTGGTGTGTACAGTC -ACGGAACTACTGGTGTGTTTGCTG -ACGGAACTACTGGTGTGTTCCATG -ACGGAACTACTGGTGTGTTGTGTG -ACGGAACTACTGGTGTGTCTAGTG -ACGGAACTACTGGTGTGTCATCTG -ACGGAACTACTGGTGTGTGAGTTG -ACGGAACTACTGGTGTGTAGACTG -ACGGAACTACTGGTGTGTTCGGTA -ACGGAACTACTGGTGTGTTGCCTA -ACGGAACTACTGGTGTGTCCACTA -ACGGAACTACTGGTGTGTGGAGTA -ACGGAACTACTGGTGTGTTCGTCT -ACGGAACTACTGGTGTGTTGCACT -ACGGAACTACTGGTGTGTCTGACT -ACGGAACTACTGGTGTGTCAACCT -ACGGAACTACTGGTGTGTGCTACT -ACGGAACTACTGGTGTGTGGATCT -ACGGAACTACTGGTGTGTAAGGCT -ACGGAACTACTGGTGTGTTCAACC -ACGGAACTACTGGTGTGTTGTTCC -ACGGAACTACTGGTGTGTATTCCC -ACGGAACTACTGGTGTGTTTCTCG -ACGGAACTACTGGTGTGTTAGACG -ACGGAACTACTGGTGTGTGTAACG -ACGGAACTACTGGTGTGTACTTCG -ACGGAACTACTGGTGTGTTACGCA -ACGGAACTACTGGTGTGTCTTGCA -ACGGAACTACTGGTGTGTCGAACA -ACGGAACTACTGGTGTGTCAGTCA -ACGGAACTACTGGTGTGTGATCCA -ACGGAACTACTGGTGTGTACGACA -ACGGAACTACTGGTGTGTAGCTCA -ACGGAACTACTGGTGTGTTCACGT -ACGGAACTACTGGTGTGTCGTAGT -ACGGAACTACTGGTGTGTGTCAGT -ACGGAACTACTGGTGTGTGAAGGT -ACGGAACTACTGGTGTGTAACCGT -ACGGAACTACTGGTGTGTTTGTGC -ACGGAACTACTGGTGTGTCTAAGC -ACGGAACTACTGGTGTGTACTAGC -ACGGAACTACTGGTGTGTAGATGC -ACGGAACTACTGGTGTGTTGAAGG -ACGGAACTACTGGTGTGTCAATGG -ACGGAACTACTGGTGTGTATGAGG -ACGGAACTACTGGTGTGTAATGGG -ACGGAACTACTGGTGTGTTCCTGA -ACGGAACTACTGGTGTGTTAGCGA -ACGGAACTACTGGTGTGTCACAGA -ACGGAACTACTGGTGTGTGCAAGA -ACGGAACTACTGGTGTGTGGTTGA -ACGGAACTACTGGTGTGTTCCGAT -ACGGAACTACTGGTGTGTTGGCAT -ACGGAACTACTGGTGTGTCGAGAT -ACGGAACTACTGGTGTGTTACCAC -ACGGAACTACTGGTGTGTCAGAAC -ACGGAACTACTGGTGTGTGTCTAC -ACGGAACTACTGGTGTGTACGTAC -ACGGAACTACTGGTGTGTAGTGAC -ACGGAACTACTGGTGTGTCTGTAG -ACGGAACTACTGGTGTGTCCTAAG -ACGGAACTACTGGTGTGTGTTCAG -ACGGAACTACTGGTGTGTGCATAG -ACGGAACTACTGGTGTGTGACAAG -ACGGAACTACTGGTGTGTAAGCAG -ACGGAACTACTGGTGTGTCGTCAA -ACGGAACTACTGGTGTGTGCTGAA -ACGGAACTACTGGTGTGTAGTACG -ACGGAACTACTGGTGTGTATCCGA -ACGGAACTACTGGTGTGTATGGGA -ACGGAACTACTGGTGTGTGTGCAA -ACGGAACTACTGGTGTGTGAGGAA -ACGGAACTACTGGTGTGTCAGGTA -ACGGAACTACTGGTGTGTGACTCT -ACGGAACTACTGGTGTGTAGTCCT -ACGGAACTACTGGTGTGTTAAGCC -ACGGAACTACTGGTGTGTATAGCC -ACGGAACTACTGGTGTGTTAACCG -ACGGAACTACTGGTGTGTATGCCA -ACGGAACTACTGGTGCTAGGAAAC -ACGGAACTACTGGTGCTAAACACC -ACGGAACTACTGGTGCTAATCGAG -ACGGAACTACTGGTGCTACTCCTT -ACGGAACTACTGGTGCTACCTGTT -ACGGAACTACTGGTGCTACGGTTT -ACGGAACTACTGGTGCTAGTGGTT -ACGGAACTACTGGTGCTAGCCTTT -ACGGAACTACTGGTGCTAGGTCTT -ACGGAACTACTGGTGCTAACGCTT -ACGGAACTACTGGTGCTAAGCGTT -ACGGAACTACTGGTGCTATTCGTC -ACGGAACTACTGGTGCTATCTCTC -ACGGAACTACTGGTGCTATGGATC -ACGGAACTACTGGTGCTACACTTC -ACGGAACTACTGGTGCTAGTACTC -ACGGAACTACTGGTGCTAGATGTC -ACGGAACTACTGGTGCTAACAGTC -ACGGAACTACTGGTGCTATTGCTG -ACGGAACTACTGGTGCTATCCATG -ACGGAACTACTGGTGCTATGTGTG -ACGGAACTACTGGTGCTACTAGTG -ACGGAACTACTGGTGCTACATCTG -ACGGAACTACTGGTGCTAGAGTTG -ACGGAACTACTGGTGCTAAGACTG -ACGGAACTACTGGTGCTATCGGTA -ACGGAACTACTGGTGCTATGCCTA -ACGGAACTACTGGTGCTACCACTA -ACGGAACTACTGGTGCTAGGAGTA -ACGGAACTACTGGTGCTATCGTCT -ACGGAACTACTGGTGCTATGCACT -ACGGAACTACTGGTGCTACTGACT -ACGGAACTACTGGTGCTACAACCT -ACGGAACTACTGGTGCTAGCTACT -ACGGAACTACTGGTGCTAGGATCT -ACGGAACTACTGGTGCTAAAGGCT -ACGGAACTACTGGTGCTATCAACC -ACGGAACTACTGGTGCTATGTTCC -ACGGAACTACTGGTGCTAATTCCC -ACGGAACTACTGGTGCTATTCTCG -ACGGAACTACTGGTGCTATAGACG -ACGGAACTACTGGTGCTAGTAACG -ACGGAACTACTGGTGCTAACTTCG -ACGGAACTACTGGTGCTATACGCA -ACGGAACTACTGGTGCTACTTGCA -ACGGAACTACTGGTGCTACGAACA -ACGGAACTACTGGTGCTACAGTCA -ACGGAACTACTGGTGCTAGATCCA -ACGGAACTACTGGTGCTAACGACA -ACGGAACTACTGGTGCTAAGCTCA -ACGGAACTACTGGTGCTATCACGT -ACGGAACTACTGGTGCTACGTAGT -ACGGAACTACTGGTGCTAGTCAGT -ACGGAACTACTGGTGCTAGAAGGT -ACGGAACTACTGGTGCTAAACCGT -ACGGAACTACTGGTGCTATTGTGC -ACGGAACTACTGGTGCTACTAAGC -ACGGAACTACTGGTGCTAACTAGC -ACGGAACTACTGGTGCTAAGATGC -ACGGAACTACTGGTGCTATGAAGG -ACGGAACTACTGGTGCTACAATGG -ACGGAACTACTGGTGCTAATGAGG -ACGGAACTACTGGTGCTAAATGGG -ACGGAACTACTGGTGCTATCCTGA -ACGGAACTACTGGTGCTATAGCGA -ACGGAACTACTGGTGCTACACAGA -ACGGAACTACTGGTGCTAGCAAGA -ACGGAACTACTGGTGCTAGGTTGA -ACGGAACTACTGGTGCTATCCGAT -ACGGAACTACTGGTGCTATGGCAT -ACGGAACTACTGGTGCTACGAGAT -ACGGAACTACTGGTGCTATACCAC -ACGGAACTACTGGTGCTACAGAAC -ACGGAACTACTGGTGCTAGTCTAC -ACGGAACTACTGGTGCTAACGTAC -ACGGAACTACTGGTGCTAAGTGAC -ACGGAACTACTGGTGCTACTGTAG -ACGGAACTACTGGTGCTACCTAAG -ACGGAACTACTGGTGCTAGTTCAG -ACGGAACTACTGGTGCTAGCATAG -ACGGAACTACTGGTGCTAGACAAG -ACGGAACTACTGGTGCTAAAGCAG -ACGGAACTACTGGTGCTACGTCAA -ACGGAACTACTGGTGCTAGCTGAA -ACGGAACTACTGGTGCTAAGTACG -ACGGAACTACTGGTGCTAATCCGA -ACGGAACTACTGGTGCTAATGGGA -ACGGAACTACTGGTGCTAGTGCAA -ACGGAACTACTGGTGCTAGAGGAA -ACGGAACTACTGGTGCTACAGGTA -ACGGAACTACTGGTGCTAGACTCT -ACGGAACTACTGGTGCTAAGTCCT -ACGGAACTACTGGTGCTATAAGCC -ACGGAACTACTGGTGCTAATAGCC -ACGGAACTACTGGTGCTATAACCG -ACGGAACTACTGGTGCTAATGCCA -ACGGAACTACTGCTGCATGGAAAC -ACGGAACTACTGCTGCATAACACC -ACGGAACTACTGCTGCATATCGAG -ACGGAACTACTGCTGCATCTCCTT -ACGGAACTACTGCTGCATCCTGTT -ACGGAACTACTGCTGCATCGGTTT -ACGGAACTACTGCTGCATGTGGTT -ACGGAACTACTGCTGCATGCCTTT -ACGGAACTACTGCTGCATGGTCTT -ACGGAACTACTGCTGCATACGCTT -ACGGAACTACTGCTGCATAGCGTT -ACGGAACTACTGCTGCATTTCGTC -ACGGAACTACTGCTGCATTCTCTC -ACGGAACTACTGCTGCATTGGATC -ACGGAACTACTGCTGCATCACTTC -ACGGAACTACTGCTGCATGTACTC -ACGGAACTACTGCTGCATGATGTC -ACGGAACTACTGCTGCATACAGTC -ACGGAACTACTGCTGCATTTGCTG -ACGGAACTACTGCTGCATTCCATG -ACGGAACTACTGCTGCATTGTGTG -ACGGAACTACTGCTGCATCTAGTG -ACGGAACTACTGCTGCATCATCTG -ACGGAACTACTGCTGCATGAGTTG -ACGGAACTACTGCTGCATAGACTG -ACGGAACTACTGCTGCATTCGGTA -ACGGAACTACTGCTGCATTGCCTA -ACGGAACTACTGCTGCATCCACTA -ACGGAACTACTGCTGCATGGAGTA -ACGGAACTACTGCTGCATTCGTCT -ACGGAACTACTGCTGCATTGCACT -ACGGAACTACTGCTGCATCTGACT -ACGGAACTACTGCTGCATCAACCT -ACGGAACTACTGCTGCATGCTACT -ACGGAACTACTGCTGCATGGATCT -ACGGAACTACTGCTGCATAAGGCT -ACGGAACTACTGCTGCATTCAACC -ACGGAACTACTGCTGCATTGTTCC -ACGGAACTACTGCTGCATATTCCC -ACGGAACTACTGCTGCATTTCTCG -ACGGAACTACTGCTGCATTAGACG -ACGGAACTACTGCTGCATGTAACG -ACGGAACTACTGCTGCATACTTCG -ACGGAACTACTGCTGCATTACGCA -ACGGAACTACTGCTGCATCTTGCA -ACGGAACTACTGCTGCATCGAACA -ACGGAACTACTGCTGCATCAGTCA -ACGGAACTACTGCTGCATGATCCA -ACGGAACTACTGCTGCATACGACA -ACGGAACTACTGCTGCATAGCTCA -ACGGAACTACTGCTGCATTCACGT -ACGGAACTACTGCTGCATCGTAGT -ACGGAACTACTGCTGCATGTCAGT -ACGGAACTACTGCTGCATGAAGGT -ACGGAACTACTGCTGCATAACCGT -ACGGAACTACTGCTGCATTTGTGC -ACGGAACTACTGCTGCATCTAAGC -ACGGAACTACTGCTGCATACTAGC -ACGGAACTACTGCTGCATAGATGC -ACGGAACTACTGCTGCATTGAAGG -ACGGAACTACTGCTGCATCAATGG -ACGGAACTACTGCTGCATATGAGG -ACGGAACTACTGCTGCATAATGGG -ACGGAACTACTGCTGCATTCCTGA -ACGGAACTACTGCTGCATTAGCGA -ACGGAACTACTGCTGCATCACAGA -ACGGAACTACTGCTGCATGCAAGA -ACGGAACTACTGCTGCATGGTTGA -ACGGAACTACTGCTGCATTCCGAT -ACGGAACTACTGCTGCATTGGCAT -ACGGAACTACTGCTGCATCGAGAT -ACGGAACTACTGCTGCATTACCAC -ACGGAACTACTGCTGCATCAGAAC -ACGGAACTACTGCTGCATGTCTAC -ACGGAACTACTGCTGCATACGTAC -ACGGAACTACTGCTGCATAGTGAC -ACGGAACTACTGCTGCATCTGTAG -ACGGAACTACTGCTGCATCCTAAG -ACGGAACTACTGCTGCATGTTCAG -ACGGAACTACTGCTGCATGCATAG -ACGGAACTACTGCTGCATGACAAG -ACGGAACTACTGCTGCATAAGCAG -ACGGAACTACTGCTGCATCGTCAA -ACGGAACTACTGCTGCATGCTGAA -ACGGAACTACTGCTGCATAGTACG -ACGGAACTACTGCTGCATATCCGA -ACGGAACTACTGCTGCATATGGGA -ACGGAACTACTGCTGCATGTGCAA -ACGGAACTACTGCTGCATGAGGAA -ACGGAACTACTGCTGCATCAGGTA -ACGGAACTACTGCTGCATGACTCT -ACGGAACTACTGCTGCATAGTCCT -ACGGAACTACTGCTGCATTAAGCC -ACGGAACTACTGCTGCATATAGCC -ACGGAACTACTGCTGCATTAACCG -ACGGAACTACTGCTGCATATGCCA -ACGGAACTACTGTTGGAGGGAAAC -ACGGAACTACTGTTGGAGAACACC -ACGGAACTACTGTTGGAGATCGAG -ACGGAACTACTGTTGGAGCTCCTT -ACGGAACTACTGTTGGAGCCTGTT -ACGGAACTACTGTTGGAGCGGTTT -ACGGAACTACTGTTGGAGGTGGTT -ACGGAACTACTGTTGGAGGCCTTT -ACGGAACTACTGTTGGAGGGTCTT -ACGGAACTACTGTTGGAGACGCTT -ACGGAACTACTGTTGGAGAGCGTT -ACGGAACTACTGTTGGAGTTCGTC -ACGGAACTACTGTTGGAGTCTCTC -ACGGAACTACTGTTGGAGTGGATC -ACGGAACTACTGTTGGAGCACTTC -ACGGAACTACTGTTGGAGGTACTC -ACGGAACTACTGTTGGAGGATGTC -ACGGAACTACTGTTGGAGACAGTC -ACGGAACTACTGTTGGAGTTGCTG -ACGGAACTACTGTTGGAGTCCATG -ACGGAACTACTGTTGGAGTGTGTG -ACGGAACTACTGTTGGAGCTAGTG -ACGGAACTACTGTTGGAGCATCTG -ACGGAACTACTGTTGGAGGAGTTG -ACGGAACTACTGTTGGAGAGACTG -ACGGAACTACTGTTGGAGTCGGTA -ACGGAACTACTGTTGGAGTGCCTA -ACGGAACTACTGTTGGAGCCACTA -ACGGAACTACTGTTGGAGGGAGTA -ACGGAACTACTGTTGGAGTCGTCT -ACGGAACTACTGTTGGAGTGCACT -ACGGAACTACTGTTGGAGCTGACT -ACGGAACTACTGTTGGAGCAACCT -ACGGAACTACTGTTGGAGGCTACT -ACGGAACTACTGTTGGAGGGATCT -ACGGAACTACTGTTGGAGAAGGCT -ACGGAACTACTGTTGGAGTCAACC -ACGGAACTACTGTTGGAGTGTTCC -ACGGAACTACTGTTGGAGATTCCC -ACGGAACTACTGTTGGAGTTCTCG -ACGGAACTACTGTTGGAGTAGACG -ACGGAACTACTGTTGGAGGTAACG -ACGGAACTACTGTTGGAGACTTCG -ACGGAACTACTGTTGGAGTACGCA -ACGGAACTACTGTTGGAGCTTGCA -ACGGAACTACTGTTGGAGCGAACA -ACGGAACTACTGTTGGAGCAGTCA -ACGGAACTACTGTTGGAGGATCCA -ACGGAACTACTGTTGGAGACGACA -ACGGAACTACTGTTGGAGAGCTCA -ACGGAACTACTGTTGGAGTCACGT -ACGGAACTACTGTTGGAGCGTAGT -ACGGAACTACTGTTGGAGGTCAGT -ACGGAACTACTGTTGGAGGAAGGT -ACGGAACTACTGTTGGAGAACCGT -ACGGAACTACTGTTGGAGTTGTGC -ACGGAACTACTGTTGGAGCTAAGC -ACGGAACTACTGTTGGAGACTAGC -ACGGAACTACTGTTGGAGAGATGC -ACGGAACTACTGTTGGAGTGAAGG -ACGGAACTACTGTTGGAGCAATGG -ACGGAACTACTGTTGGAGATGAGG -ACGGAACTACTGTTGGAGAATGGG -ACGGAACTACTGTTGGAGTCCTGA -ACGGAACTACTGTTGGAGTAGCGA -ACGGAACTACTGTTGGAGCACAGA -ACGGAACTACTGTTGGAGGCAAGA -ACGGAACTACTGTTGGAGGGTTGA -ACGGAACTACTGTTGGAGTCCGAT -ACGGAACTACTGTTGGAGTGGCAT -ACGGAACTACTGTTGGAGCGAGAT -ACGGAACTACTGTTGGAGTACCAC -ACGGAACTACTGTTGGAGCAGAAC -ACGGAACTACTGTTGGAGGTCTAC -ACGGAACTACTGTTGGAGACGTAC -ACGGAACTACTGTTGGAGAGTGAC -ACGGAACTACTGTTGGAGCTGTAG -ACGGAACTACTGTTGGAGCCTAAG -ACGGAACTACTGTTGGAGGTTCAG -ACGGAACTACTGTTGGAGGCATAG -ACGGAACTACTGTTGGAGGACAAG -ACGGAACTACTGTTGGAGAAGCAG -ACGGAACTACTGTTGGAGCGTCAA -ACGGAACTACTGTTGGAGGCTGAA -ACGGAACTACTGTTGGAGAGTACG -ACGGAACTACTGTTGGAGATCCGA -ACGGAACTACTGTTGGAGATGGGA -ACGGAACTACTGTTGGAGGTGCAA -ACGGAACTACTGTTGGAGGAGGAA -ACGGAACTACTGTTGGAGCAGGTA -ACGGAACTACTGTTGGAGGACTCT -ACGGAACTACTGTTGGAGAGTCCT -ACGGAACTACTGTTGGAGTAAGCC -ACGGAACTACTGTTGGAGATAGCC -ACGGAACTACTGTTGGAGTAACCG -ACGGAACTACTGTTGGAGATGCCA -ACGGAACTACTGCTGAGAGGAAAC -ACGGAACTACTGCTGAGAAACACC -ACGGAACTACTGCTGAGAATCGAG -ACGGAACTACTGCTGAGACTCCTT -ACGGAACTACTGCTGAGACCTGTT -ACGGAACTACTGCTGAGACGGTTT -ACGGAACTACTGCTGAGAGTGGTT -ACGGAACTACTGCTGAGAGCCTTT -ACGGAACTACTGCTGAGAGGTCTT -ACGGAACTACTGCTGAGAACGCTT -ACGGAACTACTGCTGAGAAGCGTT -ACGGAACTACTGCTGAGATTCGTC -ACGGAACTACTGCTGAGATCTCTC -ACGGAACTACTGCTGAGATGGATC -ACGGAACTACTGCTGAGACACTTC -ACGGAACTACTGCTGAGAGTACTC -ACGGAACTACTGCTGAGAGATGTC -ACGGAACTACTGCTGAGAACAGTC -ACGGAACTACTGCTGAGATTGCTG -ACGGAACTACTGCTGAGATCCATG -ACGGAACTACTGCTGAGATGTGTG -ACGGAACTACTGCTGAGACTAGTG -ACGGAACTACTGCTGAGACATCTG -ACGGAACTACTGCTGAGAGAGTTG -ACGGAACTACTGCTGAGAAGACTG -ACGGAACTACTGCTGAGATCGGTA -ACGGAACTACTGCTGAGATGCCTA -ACGGAACTACTGCTGAGACCACTA -ACGGAACTACTGCTGAGAGGAGTA -ACGGAACTACTGCTGAGATCGTCT -ACGGAACTACTGCTGAGATGCACT -ACGGAACTACTGCTGAGACTGACT -ACGGAACTACTGCTGAGACAACCT -ACGGAACTACTGCTGAGAGCTACT -ACGGAACTACTGCTGAGAGGATCT -ACGGAACTACTGCTGAGAAAGGCT -ACGGAACTACTGCTGAGATCAACC -ACGGAACTACTGCTGAGATGTTCC -ACGGAACTACTGCTGAGAATTCCC -ACGGAACTACTGCTGAGATTCTCG -ACGGAACTACTGCTGAGATAGACG -ACGGAACTACTGCTGAGAGTAACG -ACGGAACTACTGCTGAGAACTTCG -ACGGAACTACTGCTGAGATACGCA -ACGGAACTACTGCTGAGACTTGCA -ACGGAACTACTGCTGAGACGAACA -ACGGAACTACTGCTGAGACAGTCA -ACGGAACTACTGCTGAGAGATCCA -ACGGAACTACTGCTGAGAACGACA -ACGGAACTACTGCTGAGAAGCTCA -ACGGAACTACTGCTGAGATCACGT -ACGGAACTACTGCTGAGACGTAGT -ACGGAACTACTGCTGAGAGTCAGT -ACGGAACTACTGCTGAGAGAAGGT -ACGGAACTACTGCTGAGAAACCGT -ACGGAACTACTGCTGAGATTGTGC -ACGGAACTACTGCTGAGACTAAGC -ACGGAACTACTGCTGAGAACTAGC -ACGGAACTACTGCTGAGAAGATGC -ACGGAACTACTGCTGAGATGAAGG -ACGGAACTACTGCTGAGACAATGG -ACGGAACTACTGCTGAGAATGAGG -ACGGAACTACTGCTGAGAAATGGG -ACGGAACTACTGCTGAGATCCTGA -ACGGAACTACTGCTGAGATAGCGA -ACGGAACTACTGCTGAGACACAGA -ACGGAACTACTGCTGAGAGCAAGA -ACGGAACTACTGCTGAGAGGTTGA -ACGGAACTACTGCTGAGATCCGAT -ACGGAACTACTGCTGAGATGGCAT -ACGGAACTACTGCTGAGACGAGAT -ACGGAACTACTGCTGAGATACCAC -ACGGAACTACTGCTGAGACAGAAC -ACGGAACTACTGCTGAGAGTCTAC -ACGGAACTACTGCTGAGAACGTAC -ACGGAACTACTGCTGAGAAGTGAC -ACGGAACTACTGCTGAGACTGTAG -ACGGAACTACTGCTGAGACCTAAG -ACGGAACTACTGCTGAGAGTTCAG -ACGGAACTACTGCTGAGAGCATAG -ACGGAACTACTGCTGAGAGACAAG -ACGGAACTACTGCTGAGAAAGCAG -ACGGAACTACTGCTGAGACGTCAA -ACGGAACTACTGCTGAGAGCTGAA -ACGGAACTACTGCTGAGAAGTACG -ACGGAACTACTGCTGAGAATCCGA -ACGGAACTACTGCTGAGAATGGGA -ACGGAACTACTGCTGAGAGTGCAA -ACGGAACTACTGCTGAGAGAGGAA -ACGGAACTACTGCTGAGACAGGTA -ACGGAACTACTGCTGAGAGACTCT -ACGGAACTACTGCTGAGAAGTCCT -ACGGAACTACTGCTGAGATAAGCC -ACGGAACTACTGCTGAGAATAGCC -ACGGAACTACTGCTGAGATAACCG -ACGGAACTACTGCTGAGAATGCCA -ACGGAACTACTGGTATCGGGAAAC -ACGGAACTACTGGTATCGAACACC -ACGGAACTACTGGTATCGATCGAG -ACGGAACTACTGGTATCGCTCCTT -ACGGAACTACTGGTATCGCCTGTT -ACGGAACTACTGGTATCGCGGTTT -ACGGAACTACTGGTATCGGTGGTT -ACGGAACTACTGGTATCGGCCTTT -ACGGAACTACTGGTATCGGGTCTT -ACGGAACTACTGGTATCGACGCTT -ACGGAACTACTGGTATCGAGCGTT -ACGGAACTACTGGTATCGTTCGTC -ACGGAACTACTGGTATCGTCTCTC -ACGGAACTACTGGTATCGTGGATC -ACGGAACTACTGGTATCGCACTTC -ACGGAACTACTGGTATCGGTACTC -ACGGAACTACTGGTATCGGATGTC -ACGGAACTACTGGTATCGACAGTC -ACGGAACTACTGGTATCGTTGCTG -ACGGAACTACTGGTATCGTCCATG -ACGGAACTACTGGTATCGTGTGTG -ACGGAACTACTGGTATCGCTAGTG -ACGGAACTACTGGTATCGCATCTG -ACGGAACTACTGGTATCGGAGTTG -ACGGAACTACTGGTATCGAGACTG -ACGGAACTACTGGTATCGTCGGTA -ACGGAACTACTGGTATCGTGCCTA -ACGGAACTACTGGTATCGCCACTA -ACGGAACTACTGGTATCGGGAGTA -ACGGAACTACTGGTATCGTCGTCT -ACGGAACTACTGGTATCGTGCACT -ACGGAACTACTGGTATCGCTGACT -ACGGAACTACTGGTATCGCAACCT -ACGGAACTACTGGTATCGGCTACT -ACGGAACTACTGGTATCGGGATCT -ACGGAACTACTGGTATCGAAGGCT -ACGGAACTACTGGTATCGTCAACC -ACGGAACTACTGGTATCGTGTTCC -ACGGAACTACTGGTATCGATTCCC -ACGGAACTACTGGTATCGTTCTCG -ACGGAACTACTGGTATCGTAGACG -ACGGAACTACTGGTATCGGTAACG -ACGGAACTACTGGTATCGACTTCG -ACGGAACTACTGGTATCGTACGCA -ACGGAACTACTGGTATCGCTTGCA -ACGGAACTACTGGTATCGCGAACA -ACGGAACTACTGGTATCGCAGTCA -ACGGAACTACTGGTATCGGATCCA -ACGGAACTACTGGTATCGACGACA -ACGGAACTACTGGTATCGAGCTCA -ACGGAACTACTGGTATCGTCACGT -ACGGAACTACTGGTATCGCGTAGT -ACGGAACTACTGGTATCGGTCAGT -ACGGAACTACTGGTATCGGAAGGT -ACGGAACTACTGGTATCGAACCGT -ACGGAACTACTGGTATCGTTGTGC -ACGGAACTACTGGTATCGCTAAGC -ACGGAACTACTGGTATCGACTAGC -ACGGAACTACTGGTATCGAGATGC -ACGGAACTACTGGTATCGTGAAGG -ACGGAACTACTGGTATCGCAATGG -ACGGAACTACTGGTATCGATGAGG -ACGGAACTACTGGTATCGAATGGG -ACGGAACTACTGGTATCGTCCTGA -ACGGAACTACTGGTATCGTAGCGA -ACGGAACTACTGGTATCGCACAGA -ACGGAACTACTGGTATCGGCAAGA -ACGGAACTACTGGTATCGGGTTGA -ACGGAACTACTGGTATCGTCCGAT -ACGGAACTACTGGTATCGTGGCAT -ACGGAACTACTGGTATCGCGAGAT -ACGGAACTACTGGTATCGTACCAC -ACGGAACTACTGGTATCGCAGAAC -ACGGAACTACTGGTATCGGTCTAC -ACGGAACTACTGGTATCGACGTAC -ACGGAACTACTGGTATCGAGTGAC -ACGGAACTACTGGTATCGCTGTAG -ACGGAACTACTGGTATCGCCTAAG -ACGGAACTACTGGTATCGGTTCAG -ACGGAACTACTGGTATCGGCATAG -ACGGAACTACTGGTATCGGACAAG -ACGGAACTACTGGTATCGAAGCAG -ACGGAACTACTGGTATCGCGTCAA -ACGGAACTACTGGTATCGGCTGAA -ACGGAACTACTGGTATCGAGTACG -ACGGAACTACTGGTATCGATCCGA -ACGGAACTACTGGTATCGATGGGA -ACGGAACTACTGGTATCGGTGCAA -ACGGAACTACTGGTATCGGAGGAA -ACGGAACTACTGGTATCGCAGGTA -ACGGAACTACTGGTATCGGACTCT -ACGGAACTACTGGTATCGAGTCCT -ACGGAACTACTGGTATCGTAAGCC -ACGGAACTACTGGTATCGATAGCC -ACGGAACTACTGGTATCGTAACCG -ACGGAACTACTGGTATCGATGCCA -ACGGAACTACTGCTATGCGGAAAC -ACGGAACTACTGCTATGCAACACC -ACGGAACTACTGCTATGCATCGAG -ACGGAACTACTGCTATGCCTCCTT -ACGGAACTACTGCTATGCCCTGTT -ACGGAACTACTGCTATGCCGGTTT -ACGGAACTACTGCTATGCGTGGTT -ACGGAACTACTGCTATGCGCCTTT -ACGGAACTACTGCTATGCGGTCTT -ACGGAACTACTGCTATGCACGCTT -ACGGAACTACTGCTATGCAGCGTT -ACGGAACTACTGCTATGCTTCGTC -ACGGAACTACTGCTATGCTCTCTC -ACGGAACTACTGCTATGCTGGATC -ACGGAACTACTGCTATGCCACTTC -ACGGAACTACTGCTATGCGTACTC -ACGGAACTACTGCTATGCGATGTC -ACGGAACTACTGCTATGCACAGTC -ACGGAACTACTGCTATGCTTGCTG -ACGGAACTACTGCTATGCTCCATG -ACGGAACTACTGCTATGCTGTGTG -ACGGAACTACTGCTATGCCTAGTG -ACGGAACTACTGCTATGCCATCTG -ACGGAACTACTGCTATGCGAGTTG -ACGGAACTACTGCTATGCAGACTG -ACGGAACTACTGCTATGCTCGGTA -ACGGAACTACTGCTATGCTGCCTA -ACGGAACTACTGCTATGCCCACTA -ACGGAACTACTGCTATGCGGAGTA -ACGGAACTACTGCTATGCTCGTCT -ACGGAACTACTGCTATGCTGCACT -ACGGAACTACTGCTATGCCTGACT -ACGGAACTACTGCTATGCCAACCT -ACGGAACTACTGCTATGCGCTACT -ACGGAACTACTGCTATGCGGATCT -ACGGAACTACTGCTATGCAAGGCT -ACGGAACTACTGCTATGCTCAACC -ACGGAACTACTGCTATGCTGTTCC -ACGGAACTACTGCTATGCATTCCC -ACGGAACTACTGCTATGCTTCTCG -ACGGAACTACTGCTATGCTAGACG -ACGGAACTACTGCTATGCGTAACG -ACGGAACTACTGCTATGCACTTCG -ACGGAACTACTGCTATGCTACGCA -ACGGAACTACTGCTATGCCTTGCA -ACGGAACTACTGCTATGCCGAACA -ACGGAACTACTGCTATGCCAGTCA -ACGGAACTACTGCTATGCGATCCA -ACGGAACTACTGCTATGCACGACA -ACGGAACTACTGCTATGCAGCTCA -ACGGAACTACTGCTATGCTCACGT -ACGGAACTACTGCTATGCCGTAGT -ACGGAACTACTGCTATGCGTCAGT -ACGGAACTACTGCTATGCGAAGGT -ACGGAACTACTGCTATGCAACCGT -ACGGAACTACTGCTATGCTTGTGC -ACGGAACTACTGCTATGCCTAAGC -ACGGAACTACTGCTATGCACTAGC -ACGGAACTACTGCTATGCAGATGC -ACGGAACTACTGCTATGCTGAAGG -ACGGAACTACTGCTATGCCAATGG -ACGGAACTACTGCTATGCATGAGG -ACGGAACTACTGCTATGCAATGGG -ACGGAACTACTGCTATGCTCCTGA -ACGGAACTACTGCTATGCTAGCGA -ACGGAACTACTGCTATGCCACAGA -ACGGAACTACTGCTATGCGCAAGA -ACGGAACTACTGCTATGCGGTTGA -ACGGAACTACTGCTATGCTCCGAT -ACGGAACTACTGCTATGCTGGCAT -ACGGAACTACTGCTATGCCGAGAT -ACGGAACTACTGCTATGCTACCAC -ACGGAACTACTGCTATGCCAGAAC -ACGGAACTACTGCTATGCGTCTAC -ACGGAACTACTGCTATGCACGTAC -ACGGAACTACTGCTATGCAGTGAC -ACGGAACTACTGCTATGCCTGTAG -ACGGAACTACTGCTATGCCCTAAG -ACGGAACTACTGCTATGCGTTCAG -ACGGAACTACTGCTATGCGCATAG -ACGGAACTACTGCTATGCGACAAG -ACGGAACTACTGCTATGCAAGCAG -ACGGAACTACTGCTATGCCGTCAA -ACGGAACTACTGCTATGCGCTGAA -ACGGAACTACTGCTATGCAGTACG -ACGGAACTACTGCTATGCATCCGA -ACGGAACTACTGCTATGCATGGGA -ACGGAACTACTGCTATGCGTGCAA -ACGGAACTACTGCTATGCGAGGAA -ACGGAACTACTGCTATGCCAGGTA -ACGGAACTACTGCTATGCGACTCT -ACGGAACTACTGCTATGCAGTCCT -ACGGAACTACTGCTATGCTAAGCC -ACGGAACTACTGCTATGCATAGCC -ACGGAACTACTGCTATGCTAACCG -ACGGAACTACTGCTATGCATGCCA -ACGGAACTACTGCTACCAGGAAAC -ACGGAACTACTGCTACCAAACACC -ACGGAACTACTGCTACCAATCGAG -ACGGAACTACTGCTACCACTCCTT -ACGGAACTACTGCTACCACCTGTT -ACGGAACTACTGCTACCACGGTTT -ACGGAACTACTGCTACCAGTGGTT -ACGGAACTACTGCTACCAGCCTTT -ACGGAACTACTGCTACCAGGTCTT -ACGGAACTACTGCTACCAACGCTT -ACGGAACTACTGCTACCAAGCGTT -ACGGAACTACTGCTACCATTCGTC -ACGGAACTACTGCTACCATCTCTC -ACGGAACTACTGCTACCATGGATC -ACGGAACTACTGCTACCACACTTC -ACGGAACTACTGCTACCAGTACTC -ACGGAACTACTGCTACCAGATGTC -ACGGAACTACTGCTACCAACAGTC -ACGGAACTACTGCTACCATTGCTG -ACGGAACTACTGCTACCATCCATG -ACGGAACTACTGCTACCATGTGTG -ACGGAACTACTGCTACCACTAGTG -ACGGAACTACTGCTACCACATCTG -ACGGAACTACTGCTACCAGAGTTG -ACGGAACTACTGCTACCAAGACTG -ACGGAACTACTGCTACCATCGGTA -ACGGAACTACTGCTACCATGCCTA -ACGGAACTACTGCTACCACCACTA -ACGGAACTACTGCTACCAGGAGTA -ACGGAACTACTGCTACCATCGTCT -ACGGAACTACTGCTACCATGCACT -ACGGAACTACTGCTACCACTGACT -ACGGAACTACTGCTACCACAACCT -ACGGAACTACTGCTACCAGCTACT -ACGGAACTACTGCTACCAGGATCT -ACGGAACTACTGCTACCAAAGGCT -ACGGAACTACTGCTACCATCAACC -ACGGAACTACTGCTACCATGTTCC -ACGGAACTACTGCTACCAATTCCC -ACGGAACTACTGCTACCATTCTCG -ACGGAACTACTGCTACCATAGACG -ACGGAACTACTGCTACCAGTAACG -ACGGAACTACTGCTACCAACTTCG -ACGGAACTACTGCTACCATACGCA -ACGGAACTACTGCTACCACTTGCA -ACGGAACTACTGCTACCACGAACA -ACGGAACTACTGCTACCACAGTCA -ACGGAACTACTGCTACCAGATCCA -ACGGAACTACTGCTACCAACGACA -ACGGAACTACTGCTACCAAGCTCA -ACGGAACTACTGCTACCATCACGT -ACGGAACTACTGCTACCACGTAGT -ACGGAACTACTGCTACCAGTCAGT -ACGGAACTACTGCTACCAGAAGGT -ACGGAACTACTGCTACCAAACCGT -ACGGAACTACTGCTACCATTGTGC -ACGGAACTACTGCTACCACTAAGC -ACGGAACTACTGCTACCAACTAGC -ACGGAACTACTGCTACCAAGATGC -ACGGAACTACTGCTACCATGAAGG -ACGGAACTACTGCTACCACAATGG -ACGGAACTACTGCTACCAATGAGG -ACGGAACTACTGCTACCAAATGGG -ACGGAACTACTGCTACCATCCTGA -ACGGAACTACTGCTACCATAGCGA -ACGGAACTACTGCTACCACACAGA -ACGGAACTACTGCTACCAGCAAGA -ACGGAACTACTGCTACCAGGTTGA -ACGGAACTACTGCTACCATCCGAT -ACGGAACTACTGCTACCATGGCAT -ACGGAACTACTGCTACCACGAGAT -ACGGAACTACTGCTACCATACCAC -ACGGAACTACTGCTACCACAGAAC -ACGGAACTACTGCTACCAGTCTAC -ACGGAACTACTGCTACCAACGTAC -ACGGAACTACTGCTACCAAGTGAC -ACGGAACTACTGCTACCACTGTAG -ACGGAACTACTGCTACCACCTAAG -ACGGAACTACTGCTACCAGTTCAG -ACGGAACTACTGCTACCAGCATAG -ACGGAACTACTGCTACCAGACAAG -ACGGAACTACTGCTACCAAAGCAG -ACGGAACTACTGCTACCACGTCAA -ACGGAACTACTGCTACCAGCTGAA -ACGGAACTACTGCTACCAAGTACG -ACGGAACTACTGCTACCAATCCGA -ACGGAACTACTGCTACCAATGGGA -ACGGAACTACTGCTACCAGTGCAA -ACGGAACTACTGCTACCAGAGGAA -ACGGAACTACTGCTACCACAGGTA -ACGGAACTACTGCTACCAGACTCT -ACGGAACTACTGCTACCAAGTCCT -ACGGAACTACTGCTACCATAAGCC -ACGGAACTACTGCTACCAATAGCC -ACGGAACTACTGCTACCATAACCG -ACGGAACTACTGCTACCAATGCCA -ACGGAACTACTGGTAGGAGGAAAC -ACGGAACTACTGGTAGGAAACACC -ACGGAACTACTGGTAGGAATCGAG -ACGGAACTACTGGTAGGACTCCTT -ACGGAACTACTGGTAGGACCTGTT -ACGGAACTACTGGTAGGACGGTTT -ACGGAACTACTGGTAGGAGTGGTT -ACGGAACTACTGGTAGGAGCCTTT -ACGGAACTACTGGTAGGAGGTCTT -ACGGAACTACTGGTAGGAACGCTT -ACGGAACTACTGGTAGGAAGCGTT -ACGGAACTACTGGTAGGATTCGTC -ACGGAACTACTGGTAGGATCTCTC -ACGGAACTACTGGTAGGATGGATC -ACGGAACTACTGGTAGGACACTTC -ACGGAACTACTGGTAGGAGTACTC -ACGGAACTACTGGTAGGAGATGTC -ACGGAACTACTGGTAGGAACAGTC -ACGGAACTACTGGTAGGATTGCTG -ACGGAACTACTGGTAGGATCCATG -ACGGAACTACTGGTAGGATGTGTG -ACGGAACTACTGGTAGGACTAGTG -ACGGAACTACTGGTAGGACATCTG -ACGGAACTACTGGTAGGAGAGTTG -ACGGAACTACTGGTAGGAAGACTG -ACGGAACTACTGGTAGGATCGGTA -ACGGAACTACTGGTAGGATGCCTA -ACGGAACTACTGGTAGGACCACTA -ACGGAACTACTGGTAGGAGGAGTA -ACGGAACTACTGGTAGGATCGTCT -ACGGAACTACTGGTAGGATGCACT -ACGGAACTACTGGTAGGACTGACT -ACGGAACTACTGGTAGGACAACCT -ACGGAACTACTGGTAGGAGCTACT -ACGGAACTACTGGTAGGAGGATCT -ACGGAACTACTGGTAGGAAAGGCT -ACGGAACTACTGGTAGGATCAACC -ACGGAACTACTGGTAGGATGTTCC -ACGGAACTACTGGTAGGAATTCCC -ACGGAACTACTGGTAGGATTCTCG -ACGGAACTACTGGTAGGATAGACG -ACGGAACTACTGGTAGGAGTAACG -ACGGAACTACTGGTAGGAACTTCG -ACGGAACTACTGGTAGGATACGCA -ACGGAACTACTGGTAGGACTTGCA -ACGGAACTACTGGTAGGACGAACA -ACGGAACTACTGGTAGGACAGTCA -ACGGAACTACTGGTAGGAGATCCA -ACGGAACTACTGGTAGGAACGACA -ACGGAACTACTGGTAGGAAGCTCA -ACGGAACTACTGGTAGGATCACGT -ACGGAACTACTGGTAGGACGTAGT -ACGGAACTACTGGTAGGAGTCAGT -ACGGAACTACTGGTAGGAGAAGGT -ACGGAACTACTGGTAGGAAACCGT -ACGGAACTACTGGTAGGATTGTGC -ACGGAACTACTGGTAGGACTAAGC -ACGGAACTACTGGTAGGAACTAGC -ACGGAACTACTGGTAGGAAGATGC -ACGGAACTACTGGTAGGATGAAGG -ACGGAACTACTGGTAGGACAATGG -ACGGAACTACTGGTAGGAATGAGG -ACGGAACTACTGGTAGGAAATGGG -ACGGAACTACTGGTAGGATCCTGA -ACGGAACTACTGGTAGGATAGCGA -ACGGAACTACTGGTAGGACACAGA -ACGGAACTACTGGTAGGAGCAAGA -ACGGAACTACTGGTAGGAGGTTGA -ACGGAACTACTGGTAGGATCCGAT -ACGGAACTACTGGTAGGATGGCAT -ACGGAACTACTGGTAGGACGAGAT -ACGGAACTACTGGTAGGATACCAC -ACGGAACTACTGGTAGGACAGAAC -ACGGAACTACTGGTAGGAGTCTAC -ACGGAACTACTGGTAGGAACGTAC -ACGGAACTACTGGTAGGAAGTGAC -ACGGAACTACTGGTAGGACTGTAG -ACGGAACTACTGGTAGGACCTAAG -ACGGAACTACTGGTAGGAGTTCAG -ACGGAACTACTGGTAGGAGCATAG -ACGGAACTACTGGTAGGAGACAAG -ACGGAACTACTGGTAGGAAAGCAG -ACGGAACTACTGGTAGGACGTCAA -ACGGAACTACTGGTAGGAGCTGAA -ACGGAACTACTGGTAGGAAGTACG -ACGGAACTACTGGTAGGAATCCGA -ACGGAACTACTGGTAGGAATGGGA -ACGGAACTACTGGTAGGAGTGCAA -ACGGAACTACTGGTAGGAGAGGAA -ACGGAACTACTGGTAGGACAGGTA -ACGGAACTACTGGTAGGAGACTCT -ACGGAACTACTGGTAGGAAGTCCT -ACGGAACTACTGGTAGGATAAGCC -ACGGAACTACTGGTAGGAATAGCC -ACGGAACTACTGGTAGGATAACCG -ACGGAACTACTGGTAGGAATGCCA -ACGGAACTACTGTCTTCGGGAAAC -ACGGAACTACTGTCTTCGAACACC -ACGGAACTACTGTCTTCGATCGAG -ACGGAACTACTGTCTTCGCTCCTT -ACGGAACTACTGTCTTCGCCTGTT -ACGGAACTACTGTCTTCGCGGTTT -ACGGAACTACTGTCTTCGGTGGTT -ACGGAACTACTGTCTTCGGCCTTT -ACGGAACTACTGTCTTCGGGTCTT -ACGGAACTACTGTCTTCGACGCTT -ACGGAACTACTGTCTTCGAGCGTT -ACGGAACTACTGTCTTCGTTCGTC -ACGGAACTACTGTCTTCGTCTCTC -ACGGAACTACTGTCTTCGTGGATC -ACGGAACTACTGTCTTCGCACTTC -ACGGAACTACTGTCTTCGGTACTC -ACGGAACTACTGTCTTCGGATGTC -ACGGAACTACTGTCTTCGACAGTC -ACGGAACTACTGTCTTCGTTGCTG -ACGGAACTACTGTCTTCGTCCATG -ACGGAACTACTGTCTTCGTGTGTG -ACGGAACTACTGTCTTCGCTAGTG -ACGGAACTACTGTCTTCGCATCTG -ACGGAACTACTGTCTTCGGAGTTG -ACGGAACTACTGTCTTCGAGACTG -ACGGAACTACTGTCTTCGTCGGTA -ACGGAACTACTGTCTTCGTGCCTA -ACGGAACTACTGTCTTCGCCACTA -ACGGAACTACTGTCTTCGGGAGTA -ACGGAACTACTGTCTTCGTCGTCT -ACGGAACTACTGTCTTCGTGCACT -ACGGAACTACTGTCTTCGCTGACT -ACGGAACTACTGTCTTCGCAACCT -ACGGAACTACTGTCTTCGGCTACT -ACGGAACTACTGTCTTCGGGATCT -ACGGAACTACTGTCTTCGAAGGCT -ACGGAACTACTGTCTTCGTCAACC -ACGGAACTACTGTCTTCGTGTTCC -ACGGAACTACTGTCTTCGATTCCC -ACGGAACTACTGTCTTCGTTCTCG -ACGGAACTACTGTCTTCGTAGACG -ACGGAACTACTGTCTTCGGTAACG -ACGGAACTACTGTCTTCGACTTCG -ACGGAACTACTGTCTTCGTACGCA -ACGGAACTACTGTCTTCGCTTGCA -ACGGAACTACTGTCTTCGCGAACA -ACGGAACTACTGTCTTCGCAGTCA -ACGGAACTACTGTCTTCGGATCCA -ACGGAACTACTGTCTTCGACGACA -ACGGAACTACTGTCTTCGAGCTCA -ACGGAACTACTGTCTTCGTCACGT -ACGGAACTACTGTCTTCGCGTAGT -ACGGAACTACTGTCTTCGGTCAGT -ACGGAACTACTGTCTTCGGAAGGT -ACGGAACTACTGTCTTCGAACCGT -ACGGAACTACTGTCTTCGTTGTGC -ACGGAACTACTGTCTTCGCTAAGC -ACGGAACTACTGTCTTCGACTAGC -ACGGAACTACTGTCTTCGAGATGC -ACGGAACTACTGTCTTCGTGAAGG -ACGGAACTACTGTCTTCGCAATGG -ACGGAACTACTGTCTTCGATGAGG -ACGGAACTACTGTCTTCGAATGGG -ACGGAACTACTGTCTTCGTCCTGA -ACGGAACTACTGTCTTCGTAGCGA -ACGGAACTACTGTCTTCGCACAGA -ACGGAACTACTGTCTTCGGCAAGA -ACGGAACTACTGTCTTCGGGTTGA -ACGGAACTACTGTCTTCGTCCGAT -ACGGAACTACTGTCTTCGTGGCAT -ACGGAACTACTGTCTTCGCGAGAT -ACGGAACTACTGTCTTCGTACCAC -ACGGAACTACTGTCTTCGCAGAAC -ACGGAACTACTGTCTTCGGTCTAC -ACGGAACTACTGTCTTCGACGTAC -ACGGAACTACTGTCTTCGAGTGAC -ACGGAACTACTGTCTTCGCTGTAG -ACGGAACTACTGTCTTCGCCTAAG -ACGGAACTACTGTCTTCGGTTCAG -ACGGAACTACTGTCTTCGGCATAG -ACGGAACTACTGTCTTCGGACAAG -ACGGAACTACTGTCTTCGAAGCAG -ACGGAACTACTGTCTTCGCGTCAA -ACGGAACTACTGTCTTCGGCTGAA -ACGGAACTACTGTCTTCGAGTACG -ACGGAACTACTGTCTTCGATCCGA -ACGGAACTACTGTCTTCGATGGGA -ACGGAACTACTGTCTTCGGTGCAA -ACGGAACTACTGTCTTCGGAGGAA -ACGGAACTACTGTCTTCGCAGGTA -ACGGAACTACTGTCTTCGGACTCT -ACGGAACTACTGTCTTCGAGTCCT -ACGGAACTACTGTCTTCGTAAGCC -ACGGAACTACTGTCTTCGATAGCC -ACGGAACTACTGTCTTCGTAACCG -ACGGAACTACTGTCTTCGATGCCA -ACGGAACTACTGACTTGCGGAAAC -ACGGAACTACTGACTTGCAACACC -ACGGAACTACTGACTTGCATCGAG -ACGGAACTACTGACTTGCCTCCTT -ACGGAACTACTGACTTGCCCTGTT -ACGGAACTACTGACTTGCCGGTTT -ACGGAACTACTGACTTGCGTGGTT -ACGGAACTACTGACTTGCGCCTTT -ACGGAACTACTGACTTGCGGTCTT -ACGGAACTACTGACTTGCACGCTT -ACGGAACTACTGACTTGCAGCGTT -ACGGAACTACTGACTTGCTTCGTC -ACGGAACTACTGACTTGCTCTCTC -ACGGAACTACTGACTTGCTGGATC -ACGGAACTACTGACTTGCCACTTC -ACGGAACTACTGACTTGCGTACTC -ACGGAACTACTGACTTGCGATGTC -ACGGAACTACTGACTTGCACAGTC -ACGGAACTACTGACTTGCTTGCTG -ACGGAACTACTGACTTGCTCCATG -ACGGAACTACTGACTTGCTGTGTG -ACGGAACTACTGACTTGCCTAGTG -ACGGAACTACTGACTTGCCATCTG -ACGGAACTACTGACTTGCGAGTTG -ACGGAACTACTGACTTGCAGACTG -ACGGAACTACTGACTTGCTCGGTA -ACGGAACTACTGACTTGCTGCCTA -ACGGAACTACTGACTTGCCCACTA -ACGGAACTACTGACTTGCGGAGTA -ACGGAACTACTGACTTGCTCGTCT -ACGGAACTACTGACTTGCTGCACT -ACGGAACTACTGACTTGCCTGACT -ACGGAACTACTGACTTGCCAACCT -ACGGAACTACTGACTTGCGCTACT -ACGGAACTACTGACTTGCGGATCT -ACGGAACTACTGACTTGCAAGGCT -ACGGAACTACTGACTTGCTCAACC -ACGGAACTACTGACTTGCTGTTCC -ACGGAACTACTGACTTGCATTCCC -ACGGAACTACTGACTTGCTTCTCG -ACGGAACTACTGACTTGCTAGACG -ACGGAACTACTGACTTGCGTAACG -ACGGAACTACTGACTTGCACTTCG -ACGGAACTACTGACTTGCTACGCA -ACGGAACTACTGACTTGCCTTGCA -ACGGAACTACTGACTTGCCGAACA -ACGGAACTACTGACTTGCCAGTCA -ACGGAACTACTGACTTGCGATCCA -ACGGAACTACTGACTTGCACGACA -ACGGAACTACTGACTTGCAGCTCA -ACGGAACTACTGACTTGCTCACGT -ACGGAACTACTGACTTGCCGTAGT -ACGGAACTACTGACTTGCGTCAGT -ACGGAACTACTGACTTGCGAAGGT -ACGGAACTACTGACTTGCAACCGT -ACGGAACTACTGACTTGCTTGTGC -ACGGAACTACTGACTTGCCTAAGC -ACGGAACTACTGACTTGCACTAGC -ACGGAACTACTGACTTGCAGATGC -ACGGAACTACTGACTTGCTGAAGG -ACGGAACTACTGACTTGCCAATGG -ACGGAACTACTGACTTGCATGAGG -ACGGAACTACTGACTTGCAATGGG -ACGGAACTACTGACTTGCTCCTGA -ACGGAACTACTGACTTGCTAGCGA -ACGGAACTACTGACTTGCCACAGA -ACGGAACTACTGACTTGCGCAAGA -ACGGAACTACTGACTTGCGGTTGA -ACGGAACTACTGACTTGCTCCGAT -ACGGAACTACTGACTTGCTGGCAT -ACGGAACTACTGACTTGCCGAGAT -ACGGAACTACTGACTTGCTACCAC -ACGGAACTACTGACTTGCCAGAAC -ACGGAACTACTGACTTGCGTCTAC -ACGGAACTACTGACTTGCACGTAC -ACGGAACTACTGACTTGCAGTGAC -ACGGAACTACTGACTTGCCTGTAG -ACGGAACTACTGACTTGCCCTAAG -ACGGAACTACTGACTTGCGTTCAG -ACGGAACTACTGACTTGCGCATAG -ACGGAACTACTGACTTGCGACAAG -ACGGAACTACTGACTTGCAAGCAG -ACGGAACTACTGACTTGCCGTCAA -ACGGAACTACTGACTTGCGCTGAA -ACGGAACTACTGACTTGCAGTACG -ACGGAACTACTGACTTGCATCCGA -ACGGAACTACTGACTTGCATGGGA -ACGGAACTACTGACTTGCGTGCAA -ACGGAACTACTGACTTGCGAGGAA -ACGGAACTACTGACTTGCCAGGTA -ACGGAACTACTGACTTGCGACTCT -ACGGAACTACTGACTTGCAGTCCT -ACGGAACTACTGACTTGCTAAGCC -ACGGAACTACTGACTTGCATAGCC -ACGGAACTACTGACTTGCTAACCG -ACGGAACTACTGACTTGCATGCCA -ACGGAACTACTGACTCTGGGAAAC -ACGGAACTACTGACTCTGAACACC -ACGGAACTACTGACTCTGATCGAG -ACGGAACTACTGACTCTGCTCCTT -ACGGAACTACTGACTCTGCCTGTT -ACGGAACTACTGACTCTGCGGTTT -ACGGAACTACTGACTCTGGTGGTT -ACGGAACTACTGACTCTGGCCTTT -ACGGAACTACTGACTCTGGGTCTT -ACGGAACTACTGACTCTGACGCTT -ACGGAACTACTGACTCTGAGCGTT -ACGGAACTACTGACTCTGTTCGTC -ACGGAACTACTGACTCTGTCTCTC -ACGGAACTACTGACTCTGTGGATC -ACGGAACTACTGACTCTGCACTTC -ACGGAACTACTGACTCTGGTACTC -ACGGAACTACTGACTCTGGATGTC -ACGGAACTACTGACTCTGACAGTC -ACGGAACTACTGACTCTGTTGCTG -ACGGAACTACTGACTCTGTCCATG -ACGGAACTACTGACTCTGTGTGTG -ACGGAACTACTGACTCTGCTAGTG -ACGGAACTACTGACTCTGCATCTG -ACGGAACTACTGACTCTGGAGTTG -ACGGAACTACTGACTCTGAGACTG -ACGGAACTACTGACTCTGTCGGTA -ACGGAACTACTGACTCTGTGCCTA -ACGGAACTACTGACTCTGCCACTA -ACGGAACTACTGACTCTGGGAGTA -ACGGAACTACTGACTCTGTCGTCT -ACGGAACTACTGACTCTGTGCACT -ACGGAACTACTGACTCTGCTGACT -ACGGAACTACTGACTCTGCAACCT -ACGGAACTACTGACTCTGGCTACT -ACGGAACTACTGACTCTGGGATCT -ACGGAACTACTGACTCTGAAGGCT -ACGGAACTACTGACTCTGTCAACC -ACGGAACTACTGACTCTGTGTTCC -ACGGAACTACTGACTCTGATTCCC -ACGGAACTACTGACTCTGTTCTCG -ACGGAACTACTGACTCTGTAGACG -ACGGAACTACTGACTCTGGTAACG -ACGGAACTACTGACTCTGACTTCG -ACGGAACTACTGACTCTGTACGCA -ACGGAACTACTGACTCTGCTTGCA -ACGGAACTACTGACTCTGCGAACA -ACGGAACTACTGACTCTGCAGTCA -ACGGAACTACTGACTCTGGATCCA -ACGGAACTACTGACTCTGACGACA -ACGGAACTACTGACTCTGAGCTCA -ACGGAACTACTGACTCTGTCACGT -ACGGAACTACTGACTCTGCGTAGT -ACGGAACTACTGACTCTGGTCAGT -ACGGAACTACTGACTCTGGAAGGT -ACGGAACTACTGACTCTGAACCGT -ACGGAACTACTGACTCTGTTGTGC -ACGGAACTACTGACTCTGCTAAGC -ACGGAACTACTGACTCTGACTAGC -ACGGAACTACTGACTCTGAGATGC -ACGGAACTACTGACTCTGTGAAGG -ACGGAACTACTGACTCTGCAATGG -ACGGAACTACTGACTCTGATGAGG -ACGGAACTACTGACTCTGAATGGG -ACGGAACTACTGACTCTGTCCTGA -ACGGAACTACTGACTCTGTAGCGA -ACGGAACTACTGACTCTGCACAGA -ACGGAACTACTGACTCTGGCAAGA -ACGGAACTACTGACTCTGGGTTGA -ACGGAACTACTGACTCTGTCCGAT -ACGGAACTACTGACTCTGTGGCAT -ACGGAACTACTGACTCTGCGAGAT -ACGGAACTACTGACTCTGTACCAC -ACGGAACTACTGACTCTGCAGAAC -ACGGAACTACTGACTCTGGTCTAC -ACGGAACTACTGACTCTGACGTAC -ACGGAACTACTGACTCTGAGTGAC -ACGGAACTACTGACTCTGCTGTAG -ACGGAACTACTGACTCTGCCTAAG -ACGGAACTACTGACTCTGGTTCAG -ACGGAACTACTGACTCTGGCATAG -ACGGAACTACTGACTCTGGACAAG -ACGGAACTACTGACTCTGAAGCAG -ACGGAACTACTGACTCTGCGTCAA -ACGGAACTACTGACTCTGGCTGAA -ACGGAACTACTGACTCTGAGTACG -ACGGAACTACTGACTCTGATCCGA -ACGGAACTACTGACTCTGATGGGA -ACGGAACTACTGACTCTGGTGCAA -ACGGAACTACTGACTCTGGAGGAA -ACGGAACTACTGACTCTGCAGGTA -ACGGAACTACTGACTCTGGACTCT -ACGGAACTACTGACTCTGAGTCCT -ACGGAACTACTGACTCTGTAAGCC -ACGGAACTACTGACTCTGATAGCC -ACGGAACTACTGACTCTGTAACCG -ACGGAACTACTGACTCTGATGCCA -ACGGAACTACTGCCTCAAGGAAAC -ACGGAACTACTGCCTCAAAACACC -ACGGAACTACTGCCTCAAATCGAG -ACGGAACTACTGCCTCAACTCCTT -ACGGAACTACTGCCTCAACCTGTT -ACGGAACTACTGCCTCAACGGTTT -ACGGAACTACTGCCTCAAGTGGTT -ACGGAACTACTGCCTCAAGCCTTT -ACGGAACTACTGCCTCAAGGTCTT -ACGGAACTACTGCCTCAAACGCTT -ACGGAACTACTGCCTCAAAGCGTT -ACGGAACTACTGCCTCAATTCGTC -ACGGAACTACTGCCTCAATCTCTC -ACGGAACTACTGCCTCAATGGATC -ACGGAACTACTGCCTCAACACTTC -ACGGAACTACTGCCTCAAGTACTC -ACGGAACTACTGCCTCAAGATGTC -ACGGAACTACTGCCTCAAACAGTC -ACGGAACTACTGCCTCAATTGCTG -ACGGAACTACTGCCTCAATCCATG -ACGGAACTACTGCCTCAATGTGTG -ACGGAACTACTGCCTCAACTAGTG -ACGGAACTACTGCCTCAACATCTG -ACGGAACTACTGCCTCAAGAGTTG -ACGGAACTACTGCCTCAAAGACTG -ACGGAACTACTGCCTCAATCGGTA -ACGGAACTACTGCCTCAATGCCTA -ACGGAACTACTGCCTCAACCACTA -ACGGAACTACTGCCTCAAGGAGTA -ACGGAACTACTGCCTCAATCGTCT -ACGGAACTACTGCCTCAATGCACT -ACGGAACTACTGCCTCAACTGACT -ACGGAACTACTGCCTCAACAACCT -ACGGAACTACTGCCTCAAGCTACT -ACGGAACTACTGCCTCAAGGATCT -ACGGAACTACTGCCTCAAAAGGCT -ACGGAACTACTGCCTCAATCAACC -ACGGAACTACTGCCTCAATGTTCC -ACGGAACTACTGCCTCAAATTCCC -ACGGAACTACTGCCTCAATTCTCG -ACGGAACTACTGCCTCAATAGACG -ACGGAACTACTGCCTCAAGTAACG -ACGGAACTACTGCCTCAAACTTCG -ACGGAACTACTGCCTCAATACGCA -ACGGAACTACTGCCTCAACTTGCA -ACGGAACTACTGCCTCAACGAACA -ACGGAACTACTGCCTCAACAGTCA -ACGGAACTACTGCCTCAAGATCCA -ACGGAACTACTGCCTCAAACGACA -ACGGAACTACTGCCTCAAAGCTCA -ACGGAACTACTGCCTCAATCACGT -ACGGAACTACTGCCTCAACGTAGT -ACGGAACTACTGCCTCAAGTCAGT -ACGGAACTACTGCCTCAAGAAGGT -ACGGAACTACTGCCTCAAAACCGT -ACGGAACTACTGCCTCAATTGTGC -ACGGAACTACTGCCTCAACTAAGC -ACGGAACTACTGCCTCAAACTAGC -ACGGAACTACTGCCTCAAAGATGC -ACGGAACTACTGCCTCAATGAAGG -ACGGAACTACTGCCTCAACAATGG -ACGGAACTACTGCCTCAAATGAGG -ACGGAACTACTGCCTCAAAATGGG -ACGGAACTACTGCCTCAATCCTGA -ACGGAACTACTGCCTCAATAGCGA -ACGGAACTACTGCCTCAACACAGA -ACGGAACTACTGCCTCAAGCAAGA -ACGGAACTACTGCCTCAAGGTTGA -ACGGAACTACTGCCTCAATCCGAT -ACGGAACTACTGCCTCAATGGCAT -ACGGAACTACTGCCTCAACGAGAT -ACGGAACTACTGCCTCAATACCAC -ACGGAACTACTGCCTCAACAGAAC -ACGGAACTACTGCCTCAAGTCTAC -ACGGAACTACTGCCTCAAACGTAC -ACGGAACTACTGCCTCAAAGTGAC -ACGGAACTACTGCCTCAACTGTAG -ACGGAACTACTGCCTCAACCTAAG -ACGGAACTACTGCCTCAAGTTCAG -ACGGAACTACTGCCTCAAGCATAG -ACGGAACTACTGCCTCAAGACAAG -ACGGAACTACTGCCTCAAAAGCAG -ACGGAACTACTGCCTCAACGTCAA -ACGGAACTACTGCCTCAAGCTGAA -ACGGAACTACTGCCTCAAAGTACG -ACGGAACTACTGCCTCAAATCCGA -ACGGAACTACTGCCTCAAATGGGA -ACGGAACTACTGCCTCAAGTGCAA -ACGGAACTACTGCCTCAAGAGGAA -ACGGAACTACTGCCTCAACAGGTA -ACGGAACTACTGCCTCAAGACTCT -ACGGAACTACTGCCTCAAAGTCCT -ACGGAACTACTGCCTCAATAAGCC -ACGGAACTACTGCCTCAAATAGCC -ACGGAACTACTGCCTCAATAACCG -ACGGAACTACTGCCTCAAATGCCA -ACGGAACTACTGACTGCTGGAAAC -ACGGAACTACTGACTGCTAACACC -ACGGAACTACTGACTGCTATCGAG -ACGGAACTACTGACTGCTCTCCTT -ACGGAACTACTGACTGCTCCTGTT -ACGGAACTACTGACTGCTCGGTTT -ACGGAACTACTGACTGCTGTGGTT -ACGGAACTACTGACTGCTGCCTTT -ACGGAACTACTGACTGCTGGTCTT -ACGGAACTACTGACTGCTACGCTT -ACGGAACTACTGACTGCTAGCGTT -ACGGAACTACTGACTGCTTTCGTC -ACGGAACTACTGACTGCTTCTCTC -ACGGAACTACTGACTGCTTGGATC -ACGGAACTACTGACTGCTCACTTC -ACGGAACTACTGACTGCTGTACTC -ACGGAACTACTGACTGCTGATGTC -ACGGAACTACTGACTGCTACAGTC -ACGGAACTACTGACTGCTTTGCTG -ACGGAACTACTGACTGCTTCCATG -ACGGAACTACTGACTGCTTGTGTG -ACGGAACTACTGACTGCTCTAGTG -ACGGAACTACTGACTGCTCATCTG -ACGGAACTACTGACTGCTGAGTTG -ACGGAACTACTGACTGCTAGACTG -ACGGAACTACTGACTGCTTCGGTA -ACGGAACTACTGACTGCTTGCCTA -ACGGAACTACTGACTGCTCCACTA -ACGGAACTACTGACTGCTGGAGTA -ACGGAACTACTGACTGCTTCGTCT -ACGGAACTACTGACTGCTTGCACT -ACGGAACTACTGACTGCTCTGACT -ACGGAACTACTGACTGCTCAACCT -ACGGAACTACTGACTGCTGCTACT -ACGGAACTACTGACTGCTGGATCT -ACGGAACTACTGACTGCTAAGGCT -ACGGAACTACTGACTGCTTCAACC -ACGGAACTACTGACTGCTTGTTCC -ACGGAACTACTGACTGCTATTCCC -ACGGAACTACTGACTGCTTTCTCG -ACGGAACTACTGACTGCTTAGACG -ACGGAACTACTGACTGCTGTAACG -ACGGAACTACTGACTGCTACTTCG -ACGGAACTACTGACTGCTTACGCA -ACGGAACTACTGACTGCTCTTGCA -ACGGAACTACTGACTGCTCGAACA -ACGGAACTACTGACTGCTCAGTCA -ACGGAACTACTGACTGCTGATCCA -ACGGAACTACTGACTGCTACGACA -ACGGAACTACTGACTGCTAGCTCA -ACGGAACTACTGACTGCTTCACGT -ACGGAACTACTGACTGCTCGTAGT -ACGGAACTACTGACTGCTGTCAGT -ACGGAACTACTGACTGCTGAAGGT -ACGGAACTACTGACTGCTAACCGT -ACGGAACTACTGACTGCTTTGTGC -ACGGAACTACTGACTGCTCTAAGC -ACGGAACTACTGACTGCTACTAGC -ACGGAACTACTGACTGCTAGATGC -ACGGAACTACTGACTGCTTGAAGG -ACGGAACTACTGACTGCTCAATGG -ACGGAACTACTGACTGCTATGAGG -ACGGAACTACTGACTGCTAATGGG -ACGGAACTACTGACTGCTTCCTGA -ACGGAACTACTGACTGCTTAGCGA -ACGGAACTACTGACTGCTCACAGA -ACGGAACTACTGACTGCTGCAAGA -ACGGAACTACTGACTGCTGGTTGA -ACGGAACTACTGACTGCTTCCGAT -ACGGAACTACTGACTGCTTGGCAT -ACGGAACTACTGACTGCTCGAGAT -ACGGAACTACTGACTGCTTACCAC -ACGGAACTACTGACTGCTCAGAAC -ACGGAACTACTGACTGCTGTCTAC -ACGGAACTACTGACTGCTACGTAC -ACGGAACTACTGACTGCTAGTGAC -ACGGAACTACTGACTGCTCTGTAG -ACGGAACTACTGACTGCTCCTAAG -ACGGAACTACTGACTGCTGTTCAG -ACGGAACTACTGACTGCTGCATAG -ACGGAACTACTGACTGCTGACAAG -ACGGAACTACTGACTGCTAAGCAG -ACGGAACTACTGACTGCTCGTCAA -ACGGAACTACTGACTGCTGCTGAA -ACGGAACTACTGACTGCTAGTACG -ACGGAACTACTGACTGCTATCCGA -ACGGAACTACTGACTGCTATGGGA -ACGGAACTACTGACTGCTGTGCAA -ACGGAACTACTGACTGCTGAGGAA -ACGGAACTACTGACTGCTCAGGTA -ACGGAACTACTGACTGCTGACTCT -ACGGAACTACTGACTGCTAGTCCT -ACGGAACTACTGACTGCTTAAGCC -ACGGAACTACTGACTGCTATAGCC -ACGGAACTACTGACTGCTTAACCG -ACGGAACTACTGACTGCTATGCCA -ACGGAACTACTGTCTGGAGGAAAC -ACGGAACTACTGTCTGGAAACACC -ACGGAACTACTGTCTGGAATCGAG -ACGGAACTACTGTCTGGACTCCTT -ACGGAACTACTGTCTGGACCTGTT -ACGGAACTACTGTCTGGACGGTTT -ACGGAACTACTGTCTGGAGTGGTT -ACGGAACTACTGTCTGGAGCCTTT -ACGGAACTACTGTCTGGAGGTCTT -ACGGAACTACTGTCTGGAACGCTT -ACGGAACTACTGTCTGGAAGCGTT -ACGGAACTACTGTCTGGATTCGTC -ACGGAACTACTGTCTGGATCTCTC -ACGGAACTACTGTCTGGATGGATC -ACGGAACTACTGTCTGGACACTTC -ACGGAACTACTGTCTGGAGTACTC -ACGGAACTACTGTCTGGAGATGTC -ACGGAACTACTGTCTGGAACAGTC -ACGGAACTACTGTCTGGATTGCTG -ACGGAACTACTGTCTGGATCCATG -ACGGAACTACTGTCTGGATGTGTG -ACGGAACTACTGTCTGGACTAGTG -ACGGAACTACTGTCTGGACATCTG -ACGGAACTACTGTCTGGAGAGTTG -ACGGAACTACTGTCTGGAAGACTG -ACGGAACTACTGTCTGGATCGGTA -ACGGAACTACTGTCTGGATGCCTA -ACGGAACTACTGTCTGGACCACTA -ACGGAACTACTGTCTGGAGGAGTA -ACGGAACTACTGTCTGGATCGTCT -ACGGAACTACTGTCTGGATGCACT -ACGGAACTACTGTCTGGACTGACT -ACGGAACTACTGTCTGGACAACCT -ACGGAACTACTGTCTGGAGCTACT -ACGGAACTACTGTCTGGAGGATCT -ACGGAACTACTGTCTGGAAAGGCT -ACGGAACTACTGTCTGGATCAACC -ACGGAACTACTGTCTGGATGTTCC -ACGGAACTACTGTCTGGAATTCCC -ACGGAACTACTGTCTGGATTCTCG -ACGGAACTACTGTCTGGATAGACG -ACGGAACTACTGTCTGGAGTAACG -ACGGAACTACTGTCTGGAACTTCG -ACGGAACTACTGTCTGGATACGCA -ACGGAACTACTGTCTGGACTTGCA -ACGGAACTACTGTCTGGACGAACA -ACGGAACTACTGTCTGGACAGTCA -ACGGAACTACTGTCTGGAGATCCA -ACGGAACTACTGTCTGGAACGACA -ACGGAACTACTGTCTGGAAGCTCA -ACGGAACTACTGTCTGGATCACGT -ACGGAACTACTGTCTGGACGTAGT -ACGGAACTACTGTCTGGAGTCAGT -ACGGAACTACTGTCTGGAGAAGGT -ACGGAACTACTGTCTGGAAACCGT -ACGGAACTACTGTCTGGATTGTGC -ACGGAACTACTGTCTGGACTAAGC -ACGGAACTACTGTCTGGAACTAGC -ACGGAACTACTGTCTGGAAGATGC -ACGGAACTACTGTCTGGATGAAGG -ACGGAACTACTGTCTGGACAATGG -ACGGAACTACTGTCTGGAATGAGG -ACGGAACTACTGTCTGGAAATGGG -ACGGAACTACTGTCTGGATCCTGA -ACGGAACTACTGTCTGGATAGCGA -ACGGAACTACTGTCTGGACACAGA -ACGGAACTACTGTCTGGAGCAAGA -ACGGAACTACTGTCTGGAGGTTGA -ACGGAACTACTGTCTGGATCCGAT -ACGGAACTACTGTCTGGATGGCAT -ACGGAACTACTGTCTGGACGAGAT -ACGGAACTACTGTCTGGATACCAC -ACGGAACTACTGTCTGGACAGAAC -ACGGAACTACTGTCTGGAGTCTAC -ACGGAACTACTGTCTGGAACGTAC -ACGGAACTACTGTCTGGAAGTGAC -ACGGAACTACTGTCTGGACTGTAG -ACGGAACTACTGTCTGGACCTAAG -ACGGAACTACTGTCTGGAGTTCAG -ACGGAACTACTGTCTGGAGCATAG -ACGGAACTACTGTCTGGAGACAAG -ACGGAACTACTGTCTGGAAAGCAG -ACGGAACTACTGTCTGGACGTCAA -ACGGAACTACTGTCTGGAGCTGAA -ACGGAACTACTGTCTGGAAGTACG -ACGGAACTACTGTCTGGAATCCGA -ACGGAACTACTGTCTGGAATGGGA -ACGGAACTACTGTCTGGAGTGCAA -ACGGAACTACTGTCTGGAGAGGAA -ACGGAACTACTGTCTGGACAGGTA -ACGGAACTACTGTCTGGAGACTCT -ACGGAACTACTGTCTGGAAGTCCT -ACGGAACTACTGTCTGGATAAGCC -ACGGAACTACTGTCTGGAATAGCC -ACGGAACTACTGTCTGGATAACCG -ACGGAACTACTGTCTGGAATGCCA -ACGGAACTACTGGCTAAGGGAAAC -ACGGAACTACTGGCTAAGAACACC -ACGGAACTACTGGCTAAGATCGAG -ACGGAACTACTGGCTAAGCTCCTT -ACGGAACTACTGGCTAAGCCTGTT -ACGGAACTACTGGCTAAGCGGTTT -ACGGAACTACTGGCTAAGGTGGTT -ACGGAACTACTGGCTAAGGCCTTT -ACGGAACTACTGGCTAAGGGTCTT -ACGGAACTACTGGCTAAGACGCTT -ACGGAACTACTGGCTAAGAGCGTT -ACGGAACTACTGGCTAAGTTCGTC -ACGGAACTACTGGCTAAGTCTCTC -ACGGAACTACTGGCTAAGTGGATC -ACGGAACTACTGGCTAAGCACTTC -ACGGAACTACTGGCTAAGGTACTC -ACGGAACTACTGGCTAAGGATGTC -ACGGAACTACTGGCTAAGACAGTC -ACGGAACTACTGGCTAAGTTGCTG -ACGGAACTACTGGCTAAGTCCATG -ACGGAACTACTGGCTAAGTGTGTG -ACGGAACTACTGGCTAAGCTAGTG -ACGGAACTACTGGCTAAGCATCTG -ACGGAACTACTGGCTAAGGAGTTG -ACGGAACTACTGGCTAAGAGACTG -ACGGAACTACTGGCTAAGTCGGTA -ACGGAACTACTGGCTAAGTGCCTA -ACGGAACTACTGGCTAAGCCACTA -ACGGAACTACTGGCTAAGGGAGTA -ACGGAACTACTGGCTAAGTCGTCT -ACGGAACTACTGGCTAAGTGCACT -ACGGAACTACTGGCTAAGCTGACT -ACGGAACTACTGGCTAAGCAACCT -ACGGAACTACTGGCTAAGGCTACT -ACGGAACTACTGGCTAAGGGATCT -ACGGAACTACTGGCTAAGAAGGCT -ACGGAACTACTGGCTAAGTCAACC -ACGGAACTACTGGCTAAGTGTTCC -ACGGAACTACTGGCTAAGATTCCC -ACGGAACTACTGGCTAAGTTCTCG -ACGGAACTACTGGCTAAGTAGACG -ACGGAACTACTGGCTAAGGTAACG -ACGGAACTACTGGCTAAGACTTCG -ACGGAACTACTGGCTAAGTACGCA -ACGGAACTACTGGCTAAGCTTGCA -ACGGAACTACTGGCTAAGCGAACA -ACGGAACTACTGGCTAAGCAGTCA -ACGGAACTACTGGCTAAGGATCCA -ACGGAACTACTGGCTAAGACGACA -ACGGAACTACTGGCTAAGAGCTCA -ACGGAACTACTGGCTAAGTCACGT -ACGGAACTACTGGCTAAGCGTAGT -ACGGAACTACTGGCTAAGGTCAGT -ACGGAACTACTGGCTAAGGAAGGT -ACGGAACTACTGGCTAAGAACCGT -ACGGAACTACTGGCTAAGTTGTGC -ACGGAACTACTGGCTAAGCTAAGC -ACGGAACTACTGGCTAAGACTAGC -ACGGAACTACTGGCTAAGAGATGC -ACGGAACTACTGGCTAAGTGAAGG -ACGGAACTACTGGCTAAGCAATGG -ACGGAACTACTGGCTAAGATGAGG -ACGGAACTACTGGCTAAGAATGGG -ACGGAACTACTGGCTAAGTCCTGA -ACGGAACTACTGGCTAAGTAGCGA -ACGGAACTACTGGCTAAGCACAGA -ACGGAACTACTGGCTAAGGCAAGA -ACGGAACTACTGGCTAAGGGTTGA -ACGGAACTACTGGCTAAGTCCGAT -ACGGAACTACTGGCTAAGTGGCAT -ACGGAACTACTGGCTAAGCGAGAT -ACGGAACTACTGGCTAAGTACCAC -ACGGAACTACTGGCTAAGCAGAAC -ACGGAACTACTGGCTAAGGTCTAC -ACGGAACTACTGGCTAAGACGTAC -ACGGAACTACTGGCTAAGAGTGAC -ACGGAACTACTGGCTAAGCTGTAG -ACGGAACTACTGGCTAAGCCTAAG -ACGGAACTACTGGCTAAGGTTCAG -ACGGAACTACTGGCTAAGGCATAG -ACGGAACTACTGGCTAAGGACAAG -ACGGAACTACTGGCTAAGAAGCAG -ACGGAACTACTGGCTAAGCGTCAA -ACGGAACTACTGGCTAAGGCTGAA -ACGGAACTACTGGCTAAGAGTACG -ACGGAACTACTGGCTAAGATCCGA -ACGGAACTACTGGCTAAGATGGGA -ACGGAACTACTGGCTAAGGTGCAA -ACGGAACTACTGGCTAAGGAGGAA -ACGGAACTACTGGCTAAGCAGGTA -ACGGAACTACTGGCTAAGGACTCT -ACGGAACTACTGGCTAAGAGTCCT -ACGGAACTACTGGCTAAGTAAGCC -ACGGAACTACTGGCTAAGATAGCC -ACGGAACTACTGGCTAAGTAACCG -ACGGAACTACTGGCTAAGATGCCA -ACGGAACTACTGACCTCAGGAAAC -ACGGAACTACTGACCTCAAACACC -ACGGAACTACTGACCTCAATCGAG -ACGGAACTACTGACCTCACTCCTT -ACGGAACTACTGACCTCACCTGTT -ACGGAACTACTGACCTCACGGTTT -ACGGAACTACTGACCTCAGTGGTT -ACGGAACTACTGACCTCAGCCTTT -ACGGAACTACTGACCTCAGGTCTT -ACGGAACTACTGACCTCAACGCTT -ACGGAACTACTGACCTCAAGCGTT -ACGGAACTACTGACCTCATTCGTC -ACGGAACTACTGACCTCATCTCTC -ACGGAACTACTGACCTCATGGATC -ACGGAACTACTGACCTCACACTTC -ACGGAACTACTGACCTCAGTACTC -ACGGAACTACTGACCTCAGATGTC -ACGGAACTACTGACCTCAACAGTC -ACGGAACTACTGACCTCATTGCTG -ACGGAACTACTGACCTCATCCATG -ACGGAACTACTGACCTCATGTGTG -ACGGAACTACTGACCTCACTAGTG -ACGGAACTACTGACCTCACATCTG -ACGGAACTACTGACCTCAGAGTTG -ACGGAACTACTGACCTCAAGACTG -ACGGAACTACTGACCTCATCGGTA -ACGGAACTACTGACCTCATGCCTA -ACGGAACTACTGACCTCACCACTA -ACGGAACTACTGACCTCAGGAGTA -ACGGAACTACTGACCTCATCGTCT -ACGGAACTACTGACCTCATGCACT -ACGGAACTACTGACCTCACTGACT -ACGGAACTACTGACCTCACAACCT -ACGGAACTACTGACCTCAGCTACT -ACGGAACTACTGACCTCAGGATCT -ACGGAACTACTGACCTCAAAGGCT -ACGGAACTACTGACCTCATCAACC -ACGGAACTACTGACCTCATGTTCC -ACGGAACTACTGACCTCAATTCCC -ACGGAACTACTGACCTCATTCTCG -ACGGAACTACTGACCTCATAGACG -ACGGAACTACTGACCTCAGTAACG -ACGGAACTACTGACCTCAACTTCG -ACGGAACTACTGACCTCATACGCA -ACGGAACTACTGACCTCACTTGCA -ACGGAACTACTGACCTCACGAACA -ACGGAACTACTGACCTCACAGTCA -ACGGAACTACTGACCTCAGATCCA -ACGGAACTACTGACCTCAACGACA -ACGGAACTACTGACCTCAAGCTCA -ACGGAACTACTGACCTCATCACGT -ACGGAACTACTGACCTCACGTAGT -ACGGAACTACTGACCTCAGTCAGT -ACGGAACTACTGACCTCAGAAGGT -ACGGAACTACTGACCTCAAACCGT -ACGGAACTACTGACCTCATTGTGC -ACGGAACTACTGACCTCACTAAGC -ACGGAACTACTGACCTCAACTAGC -ACGGAACTACTGACCTCAAGATGC -ACGGAACTACTGACCTCATGAAGG -ACGGAACTACTGACCTCACAATGG -ACGGAACTACTGACCTCAATGAGG -ACGGAACTACTGACCTCAAATGGG -ACGGAACTACTGACCTCATCCTGA -ACGGAACTACTGACCTCATAGCGA -ACGGAACTACTGACCTCACACAGA -ACGGAACTACTGACCTCAGCAAGA -ACGGAACTACTGACCTCAGGTTGA -ACGGAACTACTGACCTCATCCGAT -ACGGAACTACTGACCTCATGGCAT -ACGGAACTACTGACCTCACGAGAT -ACGGAACTACTGACCTCATACCAC -ACGGAACTACTGACCTCACAGAAC -ACGGAACTACTGACCTCAGTCTAC -ACGGAACTACTGACCTCAACGTAC -ACGGAACTACTGACCTCAAGTGAC -ACGGAACTACTGACCTCACTGTAG -ACGGAACTACTGACCTCACCTAAG -ACGGAACTACTGACCTCAGTTCAG -ACGGAACTACTGACCTCAGCATAG -ACGGAACTACTGACCTCAGACAAG -ACGGAACTACTGACCTCAAAGCAG -ACGGAACTACTGACCTCACGTCAA -ACGGAACTACTGACCTCAGCTGAA -ACGGAACTACTGACCTCAAGTACG -ACGGAACTACTGACCTCAATCCGA -ACGGAACTACTGACCTCAATGGGA -ACGGAACTACTGACCTCAGTGCAA -ACGGAACTACTGACCTCAGAGGAA -ACGGAACTACTGACCTCACAGGTA -ACGGAACTACTGACCTCAGACTCT -ACGGAACTACTGACCTCAAGTCCT -ACGGAACTACTGACCTCATAAGCC -ACGGAACTACTGACCTCAATAGCC -ACGGAACTACTGACCTCATAACCG -ACGGAACTACTGACCTCAATGCCA -ACGGAACTACTGTCCTGTGGAAAC -ACGGAACTACTGTCCTGTAACACC -ACGGAACTACTGTCCTGTATCGAG -ACGGAACTACTGTCCTGTCTCCTT -ACGGAACTACTGTCCTGTCCTGTT -ACGGAACTACTGTCCTGTCGGTTT -ACGGAACTACTGTCCTGTGTGGTT -ACGGAACTACTGTCCTGTGCCTTT -ACGGAACTACTGTCCTGTGGTCTT -ACGGAACTACTGTCCTGTACGCTT -ACGGAACTACTGTCCTGTAGCGTT -ACGGAACTACTGTCCTGTTTCGTC -ACGGAACTACTGTCCTGTTCTCTC -ACGGAACTACTGTCCTGTTGGATC -ACGGAACTACTGTCCTGTCACTTC -ACGGAACTACTGTCCTGTGTACTC -ACGGAACTACTGTCCTGTGATGTC -ACGGAACTACTGTCCTGTACAGTC -ACGGAACTACTGTCCTGTTTGCTG -ACGGAACTACTGTCCTGTTCCATG -ACGGAACTACTGTCCTGTTGTGTG -ACGGAACTACTGTCCTGTCTAGTG -ACGGAACTACTGTCCTGTCATCTG -ACGGAACTACTGTCCTGTGAGTTG -ACGGAACTACTGTCCTGTAGACTG -ACGGAACTACTGTCCTGTTCGGTA -ACGGAACTACTGTCCTGTTGCCTA -ACGGAACTACTGTCCTGTCCACTA -ACGGAACTACTGTCCTGTGGAGTA -ACGGAACTACTGTCCTGTTCGTCT -ACGGAACTACTGTCCTGTTGCACT -ACGGAACTACTGTCCTGTCTGACT -ACGGAACTACTGTCCTGTCAACCT -ACGGAACTACTGTCCTGTGCTACT -ACGGAACTACTGTCCTGTGGATCT -ACGGAACTACTGTCCTGTAAGGCT -ACGGAACTACTGTCCTGTTCAACC -ACGGAACTACTGTCCTGTTGTTCC -ACGGAACTACTGTCCTGTATTCCC -ACGGAACTACTGTCCTGTTTCTCG -ACGGAACTACTGTCCTGTTAGACG -ACGGAACTACTGTCCTGTGTAACG -ACGGAACTACTGTCCTGTACTTCG -ACGGAACTACTGTCCTGTTACGCA -ACGGAACTACTGTCCTGTCTTGCA -ACGGAACTACTGTCCTGTCGAACA -ACGGAACTACTGTCCTGTCAGTCA -ACGGAACTACTGTCCTGTGATCCA -ACGGAACTACTGTCCTGTACGACA -ACGGAACTACTGTCCTGTAGCTCA -ACGGAACTACTGTCCTGTTCACGT -ACGGAACTACTGTCCTGTCGTAGT -ACGGAACTACTGTCCTGTGTCAGT -ACGGAACTACTGTCCTGTGAAGGT -ACGGAACTACTGTCCTGTAACCGT -ACGGAACTACTGTCCTGTTTGTGC -ACGGAACTACTGTCCTGTCTAAGC -ACGGAACTACTGTCCTGTACTAGC -ACGGAACTACTGTCCTGTAGATGC -ACGGAACTACTGTCCTGTTGAAGG -ACGGAACTACTGTCCTGTCAATGG -ACGGAACTACTGTCCTGTATGAGG -ACGGAACTACTGTCCTGTAATGGG -ACGGAACTACTGTCCTGTTCCTGA -ACGGAACTACTGTCCTGTTAGCGA -ACGGAACTACTGTCCTGTCACAGA -ACGGAACTACTGTCCTGTGCAAGA -ACGGAACTACTGTCCTGTGGTTGA -ACGGAACTACTGTCCTGTTCCGAT -ACGGAACTACTGTCCTGTTGGCAT -ACGGAACTACTGTCCTGTCGAGAT -ACGGAACTACTGTCCTGTTACCAC -ACGGAACTACTGTCCTGTCAGAAC -ACGGAACTACTGTCCTGTGTCTAC -ACGGAACTACTGTCCTGTACGTAC -ACGGAACTACTGTCCTGTAGTGAC -ACGGAACTACTGTCCTGTCTGTAG -ACGGAACTACTGTCCTGTCCTAAG -ACGGAACTACTGTCCTGTGTTCAG -ACGGAACTACTGTCCTGTGCATAG -ACGGAACTACTGTCCTGTGACAAG -ACGGAACTACTGTCCTGTAAGCAG -ACGGAACTACTGTCCTGTCGTCAA -ACGGAACTACTGTCCTGTGCTGAA -ACGGAACTACTGTCCTGTAGTACG -ACGGAACTACTGTCCTGTATCCGA -ACGGAACTACTGTCCTGTATGGGA -ACGGAACTACTGTCCTGTGTGCAA -ACGGAACTACTGTCCTGTGAGGAA -ACGGAACTACTGTCCTGTCAGGTA -ACGGAACTACTGTCCTGTGACTCT -ACGGAACTACTGTCCTGTAGTCCT -ACGGAACTACTGTCCTGTTAAGCC -ACGGAACTACTGTCCTGTATAGCC -ACGGAACTACTGTCCTGTTAACCG -ACGGAACTACTGTCCTGTATGCCA -ACGGAACTACTGCCCATTGGAAAC -ACGGAACTACTGCCCATTAACACC -ACGGAACTACTGCCCATTATCGAG -ACGGAACTACTGCCCATTCTCCTT -ACGGAACTACTGCCCATTCCTGTT -ACGGAACTACTGCCCATTCGGTTT -ACGGAACTACTGCCCATTGTGGTT -ACGGAACTACTGCCCATTGCCTTT -ACGGAACTACTGCCCATTGGTCTT -ACGGAACTACTGCCCATTACGCTT -ACGGAACTACTGCCCATTAGCGTT -ACGGAACTACTGCCCATTTTCGTC -ACGGAACTACTGCCCATTTCTCTC -ACGGAACTACTGCCCATTTGGATC -ACGGAACTACTGCCCATTCACTTC -ACGGAACTACTGCCCATTGTACTC -ACGGAACTACTGCCCATTGATGTC -ACGGAACTACTGCCCATTACAGTC -ACGGAACTACTGCCCATTTTGCTG -ACGGAACTACTGCCCATTTCCATG -ACGGAACTACTGCCCATTTGTGTG -ACGGAACTACTGCCCATTCTAGTG -ACGGAACTACTGCCCATTCATCTG -ACGGAACTACTGCCCATTGAGTTG -ACGGAACTACTGCCCATTAGACTG -ACGGAACTACTGCCCATTTCGGTA -ACGGAACTACTGCCCATTTGCCTA -ACGGAACTACTGCCCATTCCACTA -ACGGAACTACTGCCCATTGGAGTA -ACGGAACTACTGCCCATTTCGTCT -ACGGAACTACTGCCCATTTGCACT -ACGGAACTACTGCCCATTCTGACT -ACGGAACTACTGCCCATTCAACCT -ACGGAACTACTGCCCATTGCTACT -ACGGAACTACTGCCCATTGGATCT -ACGGAACTACTGCCCATTAAGGCT -ACGGAACTACTGCCCATTTCAACC -ACGGAACTACTGCCCATTTGTTCC -ACGGAACTACTGCCCATTATTCCC -ACGGAACTACTGCCCATTTTCTCG -ACGGAACTACTGCCCATTTAGACG -ACGGAACTACTGCCCATTGTAACG -ACGGAACTACTGCCCATTACTTCG -ACGGAACTACTGCCCATTTACGCA -ACGGAACTACTGCCCATTCTTGCA -ACGGAACTACTGCCCATTCGAACA -ACGGAACTACTGCCCATTCAGTCA -ACGGAACTACTGCCCATTGATCCA -ACGGAACTACTGCCCATTACGACA -ACGGAACTACTGCCCATTAGCTCA -ACGGAACTACTGCCCATTTCACGT -ACGGAACTACTGCCCATTCGTAGT -ACGGAACTACTGCCCATTGTCAGT -ACGGAACTACTGCCCATTGAAGGT -ACGGAACTACTGCCCATTAACCGT -ACGGAACTACTGCCCATTTTGTGC -ACGGAACTACTGCCCATTCTAAGC -ACGGAACTACTGCCCATTACTAGC -ACGGAACTACTGCCCATTAGATGC -ACGGAACTACTGCCCATTTGAAGG -ACGGAACTACTGCCCATTCAATGG -ACGGAACTACTGCCCATTATGAGG -ACGGAACTACTGCCCATTAATGGG -ACGGAACTACTGCCCATTTCCTGA -ACGGAACTACTGCCCATTTAGCGA -ACGGAACTACTGCCCATTCACAGA -ACGGAACTACTGCCCATTGCAAGA -ACGGAACTACTGCCCATTGGTTGA -ACGGAACTACTGCCCATTTCCGAT -ACGGAACTACTGCCCATTTGGCAT -ACGGAACTACTGCCCATTCGAGAT -ACGGAACTACTGCCCATTTACCAC -ACGGAACTACTGCCCATTCAGAAC -ACGGAACTACTGCCCATTGTCTAC -ACGGAACTACTGCCCATTACGTAC -ACGGAACTACTGCCCATTAGTGAC -ACGGAACTACTGCCCATTCTGTAG -ACGGAACTACTGCCCATTCCTAAG -ACGGAACTACTGCCCATTGTTCAG -ACGGAACTACTGCCCATTGCATAG -ACGGAACTACTGCCCATTGACAAG -ACGGAACTACTGCCCATTAAGCAG -ACGGAACTACTGCCCATTCGTCAA -ACGGAACTACTGCCCATTGCTGAA -ACGGAACTACTGCCCATTAGTACG -ACGGAACTACTGCCCATTATCCGA -ACGGAACTACTGCCCATTATGGGA -ACGGAACTACTGCCCATTGTGCAA -ACGGAACTACTGCCCATTGAGGAA -ACGGAACTACTGCCCATTCAGGTA -ACGGAACTACTGCCCATTGACTCT -ACGGAACTACTGCCCATTAGTCCT -ACGGAACTACTGCCCATTTAAGCC -ACGGAACTACTGCCCATTATAGCC -ACGGAACTACTGCCCATTTAACCG -ACGGAACTACTGCCCATTATGCCA -ACGGAACTACTGTCGTTCGGAAAC -ACGGAACTACTGTCGTTCAACACC -ACGGAACTACTGTCGTTCATCGAG -ACGGAACTACTGTCGTTCCTCCTT -ACGGAACTACTGTCGTTCCCTGTT -ACGGAACTACTGTCGTTCCGGTTT -ACGGAACTACTGTCGTTCGTGGTT -ACGGAACTACTGTCGTTCGCCTTT -ACGGAACTACTGTCGTTCGGTCTT -ACGGAACTACTGTCGTTCACGCTT -ACGGAACTACTGTCGTTCAGCGTT -ACGGAACTACTGTCGTTCTTCGTC -ACGGAACTACTGTCGTTCTCTCTC -ACGGAACTACTGTCGTTCTGGATC -ACGGAACTACTGTCGTTCCACTTC -ACGGAACTACTGTCGTTCGTACTC -ACGGAACTACTGTCGTTCGATGTC -ACGGAACTACTGTCGTTCACAGTC -ACGGAACTACTGTCGTTCTTGCTG -ACGGAACTACTGTCGTTCTCCATG -ACGGAACTACTGTCGTTCTGTGTG -ACGGAACTACTGTCGTTCCTAGTG -ACGGAACTACTGTCGTTCCATCTG -ACGGAACTACTGTCGTTCGAGTTG -ACGGAACTACTGTCGTTCAGACTG -ACGGAACTACTGTCGTTCTCGGTA -ACGGAACTACTGTCGTTCTGCCTA -ACGGAACTACTGTCGTTCCCACTA -ACGGAACTACTGTCGTTCGGAGTA -ACGGAACTACTGTCGTTCTCGTCT -ACGGAACTACTGTCGTTCTGCACT -ACGGAACTACTGTCGTTCCTGACT -ACGGAACTACTGTCGTTCCAACCT -ACGGAACTACTGTCGTTCGCTACT -ACGGAACTACTGTCGTTCGGATCT -ACGGAACTACTGTCGTTCAAGGCT -ACGGAACTACTGTCGTTCTCAACC -ACGGAACTACTGTCGTTCTGTTCC -ACGGAACTACTGTCGTTCATTCCC -ACGGAACTACTGTCGTTCTTCTCG -ACGGAACTACTGTCGTTCTAGACG -ACGGAACTACTGTCGTTCGTAACG -ACGGAACTACTGTCGTTCACTTCG -ACGGAACTACTGTCGTTCTACGCA -ACGGAACTACTGTCGTTCCTTGCA -ACGGAACTACTGTCGTTCCGAACA -ACGGAACTACTGTCGTTCCAGTCA -ACGGAACTACTGTCGTTCGATCCA -ACGGAACTACTGTCGTTCACGACA -ACGGAACTACTGTCGTTCAGCTCA -ACGGAACTACTGTCGTTCTCACGT -ACGGAACTACTGTCGTTCCGTAGT -ACGGAACTACTGTCGTTCGTCAGT -ACGGAACTACTGTCGTTCGAAGGT -ACGGAACTACTGTCGTTCAACCGT -ACGGAACTACTGTCGTTCTTGTGC -ACGGAACTACTGTCGTTCCTAAGC -ACGGAACTACTGTCGTTCACTAGC -ACGGAACTACTGTCGTTCAGATGC -ACGGAACTACTGTCGTTCTGAAGG -ACGGAACTACTGTCGTTCCAATGG -ACGGAACTACTGTCGTTCATGAGG -ACGGAACTACTGTCGTTCAATGGG -ACGGAACTACTGTCGTTCTCCTGA -ACGGAACTACTGTCGTTCTAGCGA -ACGGAACTACTGTCGTTCCACAGA -ACGGAACTACTGTCGTTCGCAAGA -ACGGAACTACTGTCGTTCGGTTGA -ACGGAACTACTGTCGTTCTCCGAT -ACGGAACTACTGTCGTTCTGGCAT -ACGGAACTACTGTCGTTCCGAGAT -ACGGAACTACTGTCGTTCTACCAC -ACGGAACTACTGTCGTTCCAGAAC -ACGGAACTACTGTCGTTCGTCTAC -ACGGAACTACTGTCGTTCACGTAC -ACGGAACTACTGTCGTTCAGTGAC -ACGGAACTACTGTCGTTCCTGTAG -ACGGAACTACTGTCGTTCCCTAAG -ACGGAACTACTGTCGTTCGTTCAG -ACGGAACTACTGTCGTTCGCATAG -ACGGAACTACTGTCGTTCGACAAG -ACGGAACTACTGTCGTTCAAGCAG -ACGGAACTACTGTCGTTCCGTCAA -ACGGAACTACTGTCGTTCGCTGAA -ACGGAACTACTGTCGTTCAGTACG -ACGGAACTACTGTCGTTCATCCGA -ACGGAACTACTGTCGTTCATGGGA -ACGGAACTACTGTCGTTCGTGCAA -ACGGAACTACTGTCGTTCGAGGAA -ACGGAACTACTGTCGTTCCAGGTA -ACGGAACTACTGTCGTTCGACTCT -ACGGAACTACTGTCGTTCAGTCCT -ACGGAACTACTGTCGTTCTAAGCC -ACGGAACTACTGTCGTTCATAGCC -ACGGAACTACTGTCGTTCTAACCG -ACGGAACTACTGTCGTTCATGCCA -ACGGAACTACTGACGTAGGGAAAC -ACGGAACTACTGACGTAGAACACC -ACGGAACTACTGACGTAGATCGAG -ACGGAACTACTGACGTAGCTCCTT -ACGGAACTACTGACGTAGCCTGTT -ACGGAACTACTGACGTAGCGGTTT -ACGGAACTACTGACGTAGGTGGTT -ACGGAACTACTGACGTAGGCCTTT -ACGGAACTACTGACGTAGGGTCTT -ACGGAACTACTGACGTAGACGCTT -ACGGAACTACTGACGTAGAGCGTT -ACGGAACTACTGACGTAGTTCGTC -ACGGAACTACTGACGTAGTCTCTC -ACGGAACTACTGACGTAGTGGATC -ACGGAACTACTGACGTAGCACTTC -ACGGAACTACTGACGTAGGTACTC -ACGGAACTACTGACGTAGGATGTC -ACGGAACTACTGACGTAGACAGTC -ACGGAACTACTGACGTAGTTGCTG -ACGGAACTACTGACGTAGTCCATG -ACGGAACTACTGACGTAGTGTGTG -ACGGAACTACTGACGTAGCTAGTG -ACGGAACTACTGACGTAGCATCTG -ACGGAACTACTGACGTAGGAGTTG -ACGGAACTACTGACGTAGAGACTG -ACGGAACTACTGACGTAGTCGGTA -ACGGAACTACTGACGTAGTGCCTA -ACGGAACTACTGACGTAGCCACTA -ACGGAACTACTGACGTAGGGAGTA -ACGGAACTACTGACGTAGTCGTCT -ACGGAACTACTGACGTAGTGCACT -ACGGAACTACTGACGTAGCTGACT -ACGGAACTACTGACGTAGCAACCT -ACGGAACTACTGACGTAGGCTACT -ACGGAACTACTGACGTAGGGATCT -ACGGAACTACTGACGTAGAAGGCT -ACGGAACTACTGACGTAGTCAACC -ACGGAACTACTGACGTAGTGTTCC -ACGGAACTACTGACGTAGATTCCC -ACGGAACTACTGACGTAGTTCTCG -ACGGAACTACTGACGTAGTAGACG -ACGGAACTACTGACGTAGGTAACG -ACGGAACTACTGACGTAGACTTCG -ACGGAACTACTGACGTAGTACGCA -ACGGAACTACTGACGTAGCTTGCA -ACGGAACTACTGACGTAGCGAACA -ACGGAACTACTGACGTAGCAGTCA -ACGGAACTACTGACGTAGGATCCA -ACGGAACTACTGACGTAGACGACA -ACGGAACTACTGACGTAGAGCTCA -ACGGAACTACTGACGTAGTCACGT -ACGGAACTACTGACGTAGCGTAGT -ACGGAACTACTGACGTAGGTCAGT -ACGGAACTACTGACGTAGGAAGGT -ACGGAACTACTGACGTAGAACCGT -ACGGAACTACTGACGTAGTTGTGC -ACGGAACTACTGACGTAGCTAAGC -ACGGAACTACTGACGTAGACTAGC -ACGGAACTACTGACGTAGAGATGC -ACGGAACTACTGACGTAGTGAAGG -ACGGAACTACTGACGTAGCAATGG -ACGGAACTACTGACGTAGATGAGG -ACGGAACTACTGACGTAGAATGGG -ACGGAACTACTGACGTAGTCCTGA -ACGGAACTACTGACGTAGTAGCGA -ACGGAACTACTGACGTAGCACAGA -ACGGAACTACTGACGTAGGCAAGA -ACGGAACTACTGACGTAGGGTTGA -ACGGAACTACTGACGTAGTCCGAT -ACGGAACTACTGACGTAGTGGCAT -ACGGAACTACTGACGTAGCGAGAT -ACGGAACTACTGACGTAGTACCAC -ACGGAACTACTGACGTAGCAGAAC -ACGGAACTACTGACGTAGGTCTAC -ACGGAACTACTGACGTAGACGTAC -ACGGAACTACTGACGTAGAGTGAC -ACGGAACTACTGACGTAGCTGTAG -ACGGAACTACTGACGTAGCCTAAG -ACGGAACTACTGACGTAGGTTCAG -ACGGAACTACTGACGTAGGCATAG -ACGGAACTACTGACGTAGGACAAG -ACGGAACTACTGACGTAGAAGCAG -ACGGAACTACTGACGTAGCGTCAA -ACGGAACTACTGACGTAGGCTGAA -ACGGAACTACTGACGTAGAGTACG -ACGGAACTACTGACGTAGATCCGA -ACGGAACTACTGACGTAGATGGGA -ACGGAACTACTGACGTAGGTGCAA -ACGGAACTACTGACGTAGGAGGAA -ACGGAACTACTGACGTAGCAGGTA -ACGGAACTACTGACGTAGGACTCT -ACGGAACTACTGACGTAGAGTCCT -ACGGAACTACTGACGTAGTAAGCC -ACGGAACTACTGACGTAGATAGCC -ACGGAACTACTGACGTAGTAACCG -ACGGAACTACTGACGTAGATGCCA -ACGGAACTACTGACGGTAGGAAAC -ACGGAACTACTGACGGTAAACACC -ACGGAACTACTGACGGTAATCGAG -ACGGAACTACTGACGGTACTCCTT -ACGGAACTACTGACGGTACCTGTT -ACGGAACTACTGACGGTACGGTTT -ACGGAACTACTGACGGTAGTGGTT -ACGGAACTACTGACGGTAGCCTTT -ACGGAACTACTGACGGTAGGTCTT -ACGGAACTACTGACGGTAACGCTT -ACGGAACTACTGACGGTAAGCGTT -ACGGAACTACTGACGGTATTCGTC -ACGGAACTACTGACGGTATCTCTC -ACGGAACTACTGACGGTATGGATC -ACGGAACTACTGACGGTACACTTC -ACGGAACTACTGACGGTAGTACTC -ACGGAACTACTGACGGTAGATGTC -ACGGAACTACTGACGGTAACAGTC -ACGGAACTACTGACGGTATTGCTG -ACGGAACTACTGACGGTATCCATG -ACGGAACTACTGACGGTATGTGTG -ACGGAACTACTGACGGTACTAGTG -ACGGAACTACTGACGGTACATCTG -ACGGAACTACTGACGGTAGAGTTG -ACGGAACTACTGACGGTAAGACTG -ACGGAACTACTGACGGTATCGGTA -ACGGAACTACTGACGGTATGCCTA -ACGGAACTACTGACGGTACCACTA -ACGGAACTACTGACGGTAGGAGTA -ACGGAACTACTGACGGTATCGTCT -ACGGAACTACTGACGGTATGCACT -ACGGAACTACTGACGGTACTGACT -ACGGAACTACTGACGGTACAACCT -ACGGAACTACTGACGGTAGCTACT -ACGGAACTACTGACGGTAGGATCT -ACGGAACTACTGACGGTAAAGGCT -ACGGAACTACTGACGGTATCAACC -ACGGAACTACTGACGGTATGTTCC -ACGGAACTACTGACGGTAATTCCC -ACGGAACTACTGACGGTATTCTCG -ACGGAACTACTGACGGTATAGACG -ACGGAACTACTGACGGTAGTAACG -ACGGAACTACTGACGGTAACTTCG -ACGGAACTACTGACGGTATACGCA -ACGGAACTACTGACGGTACTTGCA -ACGGAACTACTGACGGTACGAACA -ACGGAACTACTGACGGTACAGTCA -ACGGAACTACTGACGGTAGATCCA -ACGGAACTACTGACGGTAACGACA -ACGGAACTACTGACGGTAAGCTCA -ACGGAACTACTGACGGTATCACGT -ACGGAACTACTGACGGTACGTAGT -ACGGAACTACTGACGGTAGTCAGT -ACGGAACTACTGACGGTAGAAGGT -ACGGAACTACTGACGGTAAACCGT -ACGGAACTACTGACGGTATTGTGC -ACGGAACTACTGACGGTACTAAGC -ACGGAACTACTGACGGTAACTAGC -ACGGAACTACTGACGGTAAGATGC -ACGGAACTACTGACGGTATGAAGG -ACGGAACTACTGACGGTACAATGG -ACGGAACTACTGACGGTAATGAGG -ACGGAACTACTGACGGTAAATGGG -ACGGAACTACTGACGGTATCCTGA -ACGGAACTACTGACGGTATAGCGA -ACGGAACTACTGACGGTACACAGA -ACGGAACTACTGACGGTAGCAAGA -ACGGAACTACTGACGGTAGGTTGA -ACGGAACTACTGACGGTATCCGAT -ACGGAACTACTGACGGTATGGCAT -ACGGAACTACTGACGGTACGAGAT -ACGGAACTACTGACGGTATACCAC -ACGGAACTACTGACGGTACAGAAC -ACGGAACTACTGACGGTAGTCTAC -ACGGAACTACTGACGGTAACGTAC -ACGGAACTACTGACGGTAAGTGAC -ACGGAACTACTGACGGTACTGTAG -ACGGAACTACTGACGGTACCTAAG -ACGGAACTACTGACGGTAGTTCAG -ACGGAACTACTGACGGTAGCATAG -ACGGAACTACTGACGGTAGACAAG -ACGGAACTACTGACGGTAAAGCAG -ACGGAACTACTGACGGTACGTCAA -ACGGAACTACTGACGGTAGCTGAA -ACGGAACTACTGACGGTAAGTACG -ACGGAACTACTGACGGTAATCCGA -ACGGAACTACTGACGGTAATGGGA -ACGGAACTACTGACGGTAGTGCAA -ACGGAACTACTGACGGTAGAGGAA -ACGGAACTACTGACGGTACAGGTA -ACGGAACTACTGACGGTAGACTCT -ACGGAACTACTGACGGTAAGTCCT -ACGGAACTACTGACGGTATAAGCC -ACGGAACTACTGACGGTAATAGCC -ACGGAACTACTGACGGTATAACCG -ACGGAACTACTGACGGTAATGCCA -ACGGAACTACTGTCGACTGGAAAC -ACGGAACTACTGTCGACTAACACC -ACGGAACTACTGTCGACTATCGAG -ACGGAACTACTGTCGACTCTCCTT -ACGGAACTACTGTCGACTCCTGTT -ACGGAACTACTGTCGACTCGGTTT -ACGGAACTACTGTCGACTGTGGTT -ACGGAACTACTGTCGACTGCCTTT -ACGGAACTACTGTCGACTGGTCTT -ACGGAACTACTGTCGACTACGCTT -ACGGAACTACTGTCGACTAGCGTT -ACGGAACTACTGTCGACTTTCGTC -ACGGAACTACTGTCGACTTCTCTC -ACGGAACTACTGTCGACTTGGATC -ACGGAACTACTGTCGACTCACTTC -ACGGAACTACTGTCGACTGTACTC -ACGGAACTACTGTCGACTGATGTC -ACGGAACTACTGTCGACTACAGTC -ACGGAACTACTGTCGACTTTGCTG -ACGGAACTACTGTCGACTTCCATG -ACGGAACTACTGTCGACTTGTGTG -ACGGAACTACTGTCGACTCTAGTG -ACGGAACTACTGTCGACTCATCTG -ACGGAACTACTGTCGACTGAGTTG -ACGGAACTACTGTCGACTAGACTG -ACGGAACTACTGTCGACTTCGGTA -ACGGAACTACTGTCGACTTGCCTA -ACGGAACTACTGTCGACTCCACTA -ACGGAACTACTGTCGACTGGAGTA -ACGGAACTACTGTCGACTTCGTCT -ACGGAACTACTGTCGACTTGCACT -ACGGAACTACTGTCGACTCTGACT -ACGGAACTACTGTCGACTCAACCT -ACGGAACTACTGTCGACTGCTACT -ACGGAACTACTGTCGACTGGATCT -ACGGAACTACTGTCGACTAAGGCT -ACGGAACTACTGTCGACTTCAACC -ACGGAACTACTGTCGACTTGTTCC -ACGGAACTACTGTCGACTATTCCC -ACGGAACTACTGTCGACTTTCTCG -ACGGAACTACTGTCGACTTAGACG -ACGGAACTACTGTCGACTGTAACG -ACGGAACTACTGTCGACTACTTCG -ACGGAACTACTGTCGACTTACGCA -ACGGAACTACTGTCGACTCTTGCA -ACGGAACTACTGTCGACTCGAACA -ACGGAACTACTGTCGACTCAGTCA -ACGGAACTACTGTCGACTGATCCA -ACGGAACTACTGTCGACTACGACA -ACGGAACTACTGTCGACTAGCTCA -ACGGAACTACTGTCGACTTCACGT -ACGGAACTACTGTCGACTCGTAGT -ACGGAACTACTGTCGACTGTCAGT -ACGGAACTACTGTCGACTGAAGGT -ACGGAACTACTGTCGACTAACCGT -ACGGAACTACTGTCGACTTTGTGC -ACGGAACTACTGTCGACTCTAAGC -ACGGAACTACTGTCGACTACTAGC -ACGGAACTACTGTCGACTAGATGC -ACGGAACTACTGTCGACTTGAAGG -ACGGAACTACTGTCGACTCAATGG -ACGGAACTACTGTCGACTATGAGG -ACGGAACTACTGTCGACTAATGGG -ACGGAACTACTGTCGACTTCCTGA -ACGGAACTACTGTCGACTTAGCGA -ACGGAACTACTGTCGACTCACAGA -ACGGAACTACTGTCGACTGCAAGA -ACGGAACTACTGTCGACTGGTTGA -ACGGAACTACTGTCGACTTCCGAT -ACGGAACTACTGTCGACTTGGCAT -ACGGAACTACTGTCGACTCGAGAT -ACGGAACTACTGTCGACTTACCAC -ACGGAACTACTGTCGACTCAGAAC -ACGGAACTACTGTCGACTGTCTAC -ACGGAACTACTGTCGACTACGTAC -ACGGAACTACTGTCGACTAGTGAC -ACGGAACTACTGTCGACTCTGTAG -ACGGAACTACTGTCGACTCCTAAG -ACGGAACTACTGTCGACTGTTCAG -ACGGAACTACTGTCGACTGCATAG -ACGGAACTACTGTCGACTGACAAG -ACGGAACTACTGTCGACTAAGCAG -ACGGAACTACTGTCGACTCGTCAA -ACGGAACTACTGTCGACTGCTGAA -ACGGAACTACTGTCGACTAGTACG -ACGGAACTACTGTCGACTATCCGA -ACGGAACTACTGTCGACTATGGGA -ACGGAACTACTGTCGACTGTGCAA -ACGGAACTACTGTCGACTGAGGAA -ACGGAACTACTGTCGACTCAGGTA -ACGGAACTACTGTCGACTGACTCT -ACGGAACTACTGTCGACTAGTCCT -ACGGAACTACTGTCGACTTAAGCC -ACGGAACTACTGTCGACTATAGCC -ACGGAACTACTGTCGACTTAACCG -ACGGAACTACTGTCGACTATGCCA -ACGGAACTACTGGCATACGGAAAC -ACGGAACTACTGGCATACAACACC -ACGGAACTACTGGCATACATCGAG -ACGGAACTACTGGCATACCTCCTT -ACGGAACTACTGGCATACCCTGTT -ACGGAACTACTGGCATACCGGTTT -ACGGAACTACTGGCATACGTGGTT -ACGGAACTACTGGCATACGCCTTT -ACGGAACTACTGGCATACGGTCTT -ACGGAACTACTGGCATACACGCTT -ACGGAACTACTGGCATACAGCGTT -ACGGAACTACTGGCATACTTCGTC -ACGGAACTACTGGCATACTCTCTC -ACGGAACTACTGGCATACTGGATC -ACGGAACTACTGGCATACCACTTC -ACGGAACTACTGGCATACGTACTC -ACGGAACTACTGGCATACGATGTC -ACGGAACTACTGGCATACACAGTC -ACGGAACTACTGGCATACTTGCTG -ACGGAACTACTGGCATACTCCATG -ACGGAACTACTGGCATACTGTGTG -ACGGAACTACTGGCATACCTAGTG -ACGGAACTACTGGCATACCATCTG -ACGGAACTACTGGCATACGAGTTG -ACGGAACTACTGGCATACAGACTG -ACGGAACTACTGGCATACTCGGTA -ACGGAACTACTGGCATACTGCCTA -ACGGAACTACTGGCATACCCACTA -ACGGAACTACTGGCATACGGAGTA -ACGGAACTACTGGCATACTCGTCT -ACGGAACTACTGGCATACTGCACT -ACGGAACTACTGGCATACCTGACT -ACGGAACTACTGGCATACCAACCT -ACGGAACTACTGGCATACGCTACT -ACGGAACTACTGGCATACGGATCT -ACGGAACTACTGGCATACAAGGCT -ACGGAACTACTGGCATACTCAACC -ACGGAACTACTGGCATACTGTTCC -ACGGAACTACTGGCATACATTCCC -ACGGAACTACTGGCATACTTCTCG -ACGGAACTACTGGCATACTAGACG -ACGGAACTACTGGCATACGTAACG -ACGGAACTACTGGCATACACTTCG -ACGGAACTACTGGCATACTACGCA -ACGGAACTACTGGCATACCTTGCA -ACGGAACTACTGGCATACCGAACA -ACGGAACTACTGGCATACCAGTCA -ACGGAACTACTGGCATACGATCCA -ACGGAACTACTGGCATACACGACA -ACGGAACTACTGGCATACAGCTCA -ACGGAACTACTGGCATACTCACGT -ACGGAACTACTGGCATACCGTAGT -ACGGAACTACTGGCATACGTCAGT -ACGGAACTACTGGCATACGAAGGT -ACGGAACTACTGGCATACAACCGT -ACGGAACTACTGGCATACTTGTGC -ACGGAACTACTGGCATACCTAAGC -ACGGAACTACTGGCATACACTAGC -ACGGAACTACTGGCATACAGATGC -ACGGAACTACTGGCATACTGAAGG -ACGGAACTACTGGCATACCAATGG -ACGGAACTACTGGCATACATGAGG -ACGGAACTACTGGCATACAATGGG -ACGGAACTACTGGCATACTCCTGA -ACGGAACTACTGGCATACTAGCGA -ACGGAACTACTGGCATACCACAGA -ACGGAACTACTGGCATACGCAAGA -ACGGAACTACTGGCATACGGTTGA -ACGGAACTACTGGCATACTCCGAT -ACGGAACTACTGGCATACTGGCAT -ACGGAACTACTGGCATACCGAGAT -ACGGAACTACTGGCATACTACCAC -ACGGAACTACTGGCATACCAGAAC -ACGGAACTACTGGCATACGTCTAC -ACGGAACTACTGGCATACACGTAC -ACGGAACTACTGGCATACAGTGAC -ACGGAACTACTGGCATACCTGTAG -ACGGAACTACTGGCATACCCTAAG -ACGGAACTACTGGCATACGTTCAG -ACGGAACTACTGGCATACGCATAG -ACGGAACTACTGGCATACGACAAG -ACGGAACTACTGGCATACAAGCAG -ACGGAACTACTGGCATACCGTCAA -ACGGAACTACTGGCATACGCTGAA -ACGGAACTACTGGCATACAGTACG -ACGGAACTACTGGCATACATCCGA -ACGGAACTACTGGCATACATGGGA -ACGGAACTACTGGCATACGTGCAA -ACGGAACTACTGGCATACGAGGAA -ACGGAACTACTGGCATACCAGGTA -ACGGAACTACTGGCATACGACTCT -ACGGAACTACTGGCATACAGTCCT -ACGGAACTACTGGCATACTAAGCC -ACGGAACTACTGGCATACATAGCC -ACGGAACTACTGGCATACTAACCG -ACGGAACTACTGGCATACATGCCA -ACGGAACTACTGGCACTTGGAAAC -ACGGAACTACTGGCACTTAACACC -ACGGAACTACTGGCACTTATCGAG -ACGGAACTACTGGCACTTCTCCTT -ACGGAACTACTGGCACTTCCTGTT -ACGGAACTACTGGCACTTCGGTTT -ACGGAACTACTGGCACTTGTGGTT -ACGGAACTACTGGCACTTGCCTTT -ACGGAACTACTGGCACTTGGTCTT -ACGGAACTACTGGCACTTACGCTT -ACGGAACTACTGGCACTTAGCGTT -ACGGAACTACTGGCACTTTTCGTC -ACGGAACTACTGGCACTTTCTCTC -ACGGAACTACTGGCACTTTGGATC -ACGGAACTACTGGCACTTCACTTC -ACGGAACTACTGGCACTTGTACTC -ACGGAACTACTGGCACTTGATGTC -ACGGAACTACTGGCACTTACAGTC -ACGGAACTACTGGCACTTTTGCTG -ACGGAACTACTGGCACTTTCCATG -ACGGAACTACTGGCACTTTGTGTG -ACGGAACTACTGGCACTTCTAGTG -ACGGAACTACTGGCACTTCATCTG -ACGGAACTACTGGCACTTGAGTTG -ACGGAACTACTGGCACTTAGACTG -ACGGAACTACTGGCACTTTCGGTA -ACGGAACTACTGGCACTTTGCCTA -ACGGAACTACTGGCACTTCCACTA -ACGGAACTACTGGCACTTGGAGTA -ACGGAACTACTGGCACTTTCGTCT -ACGGAACTACTGGCACTTTGCACT -ACGGAACTACTGGCACTTCTGACT -ACGGAACTACTGGCACTTCAACCT -ACGGAACTACTGGCACTTGCTACT -ACGGAACTACTGGCACTTGGATCT -ACGGAACTACTGGCACTTAAGGCT -ACGGAACTACTGGCACTTTCAACC -ACGGAACTACTGGCACTTTGTTCC -ACGGAACTACTGGCACTTATTCCC -ACGGAACTACTGGCACTTTTCTCG -ACGGAACTACTGGCACTTTAGACG -ACGGAACTACTGGCACTTGTAACG -ACGGAACTACTGGCACTTACTTCG -ACGGAACTACTGGCACTTTACGCA -ACGGAACTACTGGCACTTCTTGCA -ACGGAACTACTGGCACTTCGAACA -ACGGAACTACTGGCACTTCAGTCA -ACGGAACTACTGGCACTTGATCCA -ACGGAACTACTGGCACTTACGACA -ACGGAACTACTGGCACTTAGCTCA -ACGGAACTACTGGCACTTTCACGT -ACGGAACTACTGGCACTTCGTAGT -ACGGAACTACTGGCACTTGTCAGT -ACGGAACTACTGGCACTTGAAGGT -ACGGAACTACTGGCACTTAACCGT -ACGGAACTACTGGCACTTTTGTGC -ACGGAACTACTGGCACTTCTAAGC -ACGGAACTACTGGCACTTACTAGC -ACGGAACTACTGGCACTTAGATGC -ACGGAACTACTGGCACTTTGAAGG -ACGGAACTACTGGCACTTCAATGG -ACGGAACTACTGGCACTTATGAGG -ACGGAACTACTGGCACTTAATGGG -ACGGAACTACTGGCACTTTCCTGA -ACGGAACTACTGGCACTTTAGCGA -ACGGAACTACTGGCACTTCACAGA -ACGGAACTACTGGCACTTGCAAGA -ACGGAACTACTGGCACTTGGTTGA -ACGGAACTACTGGCACTTTCCGAT -ACGGAACTACTGGCACTTTGGCAT -ACGGAACTACTGGCACTTCGAGAT -ACGGAACTACTGGCACTTTACCAC -ACGGAACTACTGGCACTTCAGAAC -ACGGAACTACTGGCACTTGTCTAC -ACGGAACTACTGGCACTTACGTAC -ACGGAACTACTGGCACTTAGTGAC -ACGGAACTACTGGCACTTCTGTAG -ACGGAACTACTGGCACTTCCTAAG -ACGGAACTACTGGCACTTGTTCAG -ACGGAACTACTGGCACTTGCATAG -ACGGAACTACTGGCACTTGACAAG -ACGGAACTACTGGCACTTAAGCAG -ACGGAACTACTGGCACTTCGTCAA -ACGGAACTACTGGCACTTGCTGAA -ACGGAACTACTGGCACTTAGTACG -ACGGAACTACTGGCACTTATCCGA -ACGGAACTACTGGCACTTATGGGA -ACGGAACTACTGGCACTTGTGCAA -ACGGAACTACTGGCACTTGAGGAA -ACGGAACTACTGGCACTTCAGGTA -ACGGAACTACTGGCACTTGACTCT -ACGGAACTACTGGCACTTAGTCCT -ACGGAACTACTGGCACTTTAAGCC -ACGGAACTACTGGCACTTATAGCC -ACGGAACTACTGGCACTTTAACCG -ACGGAACTACTGGCACTTATGCCA -ACGGAACTACTGACACGAGGAAAC -ACGGAACTACTGACACGAAACACC -ACGGAACTACTGACACGAATCGAG -ACGGAACTACTGACACGACTCCTT -ACGGAACTACTGACACGACCTGTT -ACGGAACTACTGACACGACGGTTT -ACGGAACTACTGACACGAGTGGTT -ACGGAACTACTGACACGAGCCTTT -ACGGAACTACTGACACGAGGTCTT -ACGGAACTACTGACACGAACGCTT -ACGGAACTACTGACACGAAGCGTT -ACGGAACTACTGACACGATTCGTC -ACGGAACTACTGACACGATCTCTC -ACGGAACTACTGACACGATGGATC -ACGGAACTACTGACACGACACTTC -ACGGAACTACTGACACGAGTACTC -ACGGAACTACTGACACGAGATGTC -ACGGAACTACTGACACGAACAGTC -ACGGAACTACTGACACGATTGCTG -ACGGAACTACTGACACGATCCATG -ACGGAACTACTGACACGATGTGTG -ACGGAACTACTGACACGACTAGTG -ACGGAACTACTGACACGACATCTG -ACGGAACTACTGACACGAGAGTTG -ACGGAACTACTGACACGAAGACTG -ACGGAACTACTGACACGATCGGTA -ACGGAACTACTGACACGATGCCTA -ACGGAACTACTGACACGACCACTA -ACGGAACTACTGACACGAGGAGTA -ACGGAACTACTGACACGATCGTCT -ACGGAACTACTGACACGATGCACT -ACGGAACTACTGACACGACTGACT -ACGGAACTACTGACACGACAACCT -ACGGAACTACTGACACGAGCTACT -ACGGAACTACTGACACGAGGATCT -ACGGAACTACTGACACGAAAGGCT -ACGGAACTACTGACACGATCAACC -ACGGAACTACTGACACGATGTTCC -ACGGAACTACTGACACGAATTCCC -ACGGAACTACTGACACGATTCTCG -ACGGAACTACTGACACGATAGACG -ACGGAACTACTGACACGAGTAACG -ACGGAACTACTGACACGAACTTCG -ACGGAACTACTGACACGATACGCA -ACGGAACTACTGACACGACTTGCA -ACGGAACTACTGACACGACGAACA -ACGGAACTACTGACACGACAGTCA -ACGGAACTACTGACACGAGATCCA -ACGGAACTACTGACACGAACGACA -ACGGAACTACTGACACGAAGCTCA -ACGGAACTACTGACACGATCACGT -ACGGAACTACTGACACGACGTAGT -ACGGAACTACTGACACGAGTCAGT -ACGGAACTACTGACACGAGAAGGT -ACGGAACTACTGACACGAAACCGT -ACGGAACTACTGACACGATTGTGC -ACGGAACTACTGACACGACTAAGC -ACGGAACTACTGACACGAACTAGC -ACGGAACTACTGACACGAAGATGC -ACGGAACTACTGACACGATGAAGG -ACGGAACTACTGACACGACAATGG -ACGGAACTACTGACACGAATGAGG -ACGGAACTACTGACACGAAATGGG -ACGGAACTACTGACACGATCCTGA -ACGGAACTACTGACACGATAGCGA -ACGGAACTACTGACACGACACAGA -ACGGAACTACTGACACGAGCAAGA -ACGGAACTACTGACACGAGGTTGA -ACGGAACTACTGACACGATCCGAT -ACGGAACTACTGACACGATGGCAT -ACGGAACTACTGACACGACGAGAT -ACGGAACTACTGACACGATACCAC -ACGGAACTACTGACACGACAGAAC -ACGGAACTACTGACACGAGTCTAC -ACGGAACTACTGACACGAACGTAC -ACGGAACTACTGACACGAAGTGAC -ACGGAACTACTGACACGACTGTAG -ACGGAACTACTGACACGACCTAAG -ACGGAACTACTGACACGAGTTCAG -ACGGAACTACTGACACGAGCATAG -ACGGAACTACTGACACGAGACAAG -ACGGAACTACTGACACGAAAGCAG -ACGGAACTACTGACACGACGTCAA -ACGGAACTACTGACACGAGCTGAA -ACGGAACTACTGACACGAAGTACG -ACGGAACTACTGACACGAATCCGA -ACGGAACTACTGACACGAATGGGA -ACGGAACTACTGACACGAGTGCAA -ACGGAACTACTGACACGAGAGGAA -ACGGAACTACTGACACGACAGGTA -ACGGAACTACTGACACGAGACTCT -ACGGAACTACTGACACGAAGTCCT -ACGGAACTACTGACACGATAAGCC -ACGGAACTACTGACACGAATAGCC -ACGGAACTACTGACACGATAACCG -ACGGAACTACTGACACGAATGCCA -ACGGAACTACTGTCACAGGGAAAC -ACGGAACTACTGTCACAGAACACC -ACGGAACTACTGTCACAGATCGAG -ACGGAACTACTGTCACAGCTCCTT -ACGGAACTACTGTCACAGCCTGTT -ACGGAACTACTGTCACAGCGGTTT -ACGGAACTACTGTCACAGGTGGTT -ACGGAACTACTGTCACAGGCCTTT -ACGGAACTACTGTCACAGGGTCTT -ACGGAACTACTGTCACAGACGCTT -ACGGAACTACTGTCACAGAGCGTT -ACGGAACTACTGTCACAGTTCGTC -ACGGAACTACTGTCACAGTCTCTC -ACGGAACTACTGTCACAGTGGATC -ACGGAACTACTGTCACAGCACTTC -ACGGAACTACTGTCACAGGTACTC -ACGGAACTACTGTCACAGGATGTC -ACGGAACTACTGTCACAGACAGTC -ACGGAACTACTGTCACAGTTGCTG -ACGGAACTACTGTCACAGTCCATG -ACGGAACTACTGTCACAGTGTGTG -ACGGAACTACTGTCACAGCTAGTG -ACGGAACTACTGTCACAGCATCTG -ACGGAACTACTGTCACAGGAGTTG -ACGGAACTACTGTCACAGAGACTG -ACGGAACTACTGTCACAGTCGGTA -ACGGAACTACTGTCACAGTGCCTA -ACGGAACTACTGTCACAGCCACTA -ACGGAACTACTGTCACAGGGAGTA -ACGGAACTACTGTCACAGTCGTCT -ACGGAACTACTGTCACAGTGCACT -ACGGAACTACTGTCACAGCTGACT -ACGGAACTACTGTCACAGCAACCT -ACGGAACTACTGTCACAGGCTACT -ACGGAACTACTGTCACAGGGATCT -ACGGAACTACTGTCACAGAAGGCT -ACGGAACTACTGTCACAGTCAACC -ACGGAACTACTGTCACAGTGTTCC -ACGGAACTACTGTCACAGATTCCC -ACGGAACTACTGTCACAGTTCTCG -ACGGAACTACTGTCACAGTAGACG -ACGGAACTACTGTCACAGGTAACG -ACGGAACTACTGTCACAGACTTCG -ACGGAACTACTGTCACAGTACGCA -ACGGAACTACTGTCACAGCTTGCA -ACGGAACTACTGTCACAGCGAACA -ACGGAACTACTGTCACAGCAGTCA -ACGGAACTACTGTCACAGGATCCA -ACGGAACTACTGTCACAGACGACA -ACGGAACTACTGTCACAGAGCTCA -ACGGAACTACTGTCACAGTCACGT -ACGGAACTACTGTCACAGCGTAGT -ACGGAACTACTGTCACAGGTCAGT -ACGGAACTACTGTCACAGGAAGGT -ACGGAACTACTGTCACAGAACCGT -ACGGAACTACTGTCACAGTTGTGC -ACGGAACTACTGTCACAGCTAAGC -ACGGAACTACTGTCACAGACTAGC -ACGGAACTACTGTCACAGAGATGC -ACGGAACTACTGTCACAGTGAAGG -ACGGAACTACTGTCACAGCAATGG -ACGGAACTACTGTCACAGATGAGG -ACGGAACTACTGTCACAGAATGGG -ACGGAACTACTGTCACAGTCCTGA -ACGGAACTACTGTCACAGTAGCGA -ACGGAACTACTGTCACAGCACAGA -ACGGAACTACTGTCACAGGCAAGA -ACGGAACTACTGTCACAGGGTTGA -ACGGAACTACTGTCACAGTCCGAT -ACGGAACTACTGTCACAGTGGCAT -ACGGAACTACTGTCACAGCGAGAT -ACGGAACTACTGTCACAGTACCAC -ACGGAACTACTGTCACAGCAGAAC -ACGGAACTACTGTCACAGGTCTAC -ACGGAACTACTGTCACAGACGTAC -ACGGAACTACTGTCACAGAGTGAC -ACGGAACTACTGTCACAGCTGTAG -ACGGAACTACTGTCACAGCCTAAG -ACGGAACTACTGTCACAGGTTCAG -ACGGAACTACTGTCACAGGCATAG -ACGGAACTACTGTCACAGGACAAG -ACGGAACTACTGTCACAGAAGCAG -ACGGAACTACTGTCACAGCGTCAA -ACGGAACTACTGTCACAGGCTGAA -ACGGAACTACTGTCACAGAGTACG -ACGGAACTACTGTCACAGATCCGA -ACGGAACTACTGTCACAGATGGGA -ACGGAACTACTGTCACAGGTGCAA -ACGGAACTACTGTCACAGGAGGAA -ACGGAACTACTGTCACAGCAGGTA -ACGGAACTACTGTCACAGGACTCT -ACGGAACTACTGTCACAGAGTCCT -ACGGAACTACTGTCACAGTAAGCC -ACGGAACTACTGTCACAGATAGCC -ACGGAACTACTGTCACAGTAACCG -ACGGAACTACTGTCACAGATGCCA -ACGGAACTACTGCCAGATGGAAAC -ACGGAACTACTGCCAGATAACACC -ACGGAACTACTGCCAGATATCGAG -ACGGAACTACTGCCAGATCTCCTT -ACGGAACTACTGCCAGATCCTGTT -ACGGAACTACTGCCAGATCGGTTT -ACGGAACTACTGCCAGATGTGGTT -ACGGAACTACTGCCAGATGCCTTT -ACGGAACTACTGCCAGATGGTCTT -ACGGAACTACTGCCAGATACGCTT -ACGGAACTACTGCCAGATAGCGTT -ACGGAACTACTGCCAGATTTCGTC -ACGGAACTACTGCCAGATTCTCTC -ACGGAACTACTGCCAGATTGGATC -ACGGAACTACTGCCAGATCACTTC -ACGGAACTACTGCCAGATGTACTC -ACGGAACTACTGCCAGATGATGTC -ACGGAACTACTGCCAGATACAGTC -ACGGAACTACTGCCAGATTTGCTG -ACGGAACTACTGCCAGATTCCATG -ACGGAACTACTGCCAGATTGTGTG -ACGGAACTACTGCCAGATCTAGTG -ACGGAACTACTGCCAGATCATCTG -ACGGAACTACTGCCAGATGAGTTG -ACGGAACTACTGCCAGATAGACTG -ACGGAACTACTGCCAGATTCGGTA -ACGGAACTACTGCCAGATTGCCTA -ACGGAACTACTGCCAGATCCACTA -ACGGAACTACTGCCAGATGGAGTA -ACGGAACTACTGCCAGATTCGTCT -ACGGAACTACTGCCAGATTGCACT -ACGGAACTACTGCCAGATCTGACT -ACGGAACTACTGCCAGATCAACCT -ACGGAACTACTGCCAGATGCTACT -ACGGAACTACTGCCAGATGGATCT -ACGGAACTACTGCCAGATAAGGCT -ACGGAACTACTGCCAGATTCAACC -ACGGAACTACTGCCAGATTGTTCC -ACGGAACTACTGCCAGATATTCCC -ACGGAACTACTGCCAGATTTCTCG -ACGGAACTACTGCCAGATTAGACG -ACGGAACTACTGCCAGATGTAACG -ACGGAACTACTGCCAGATACTTCG -ACGGAACTACTGCCAGATTACGCA -ACGGAACTACTGCCAGATCTTGCA -ACGGAACTACTGCCAGATCGAACA -ACGGAACTACTGCCAGATCAGTCA -ACGGAACTACTGCCAGATGATCCA -ACGGAACTACTGCCAGATACGACA -ACGGAACTACTGCCAGATAGCTCA -ACGGAACTACTGCCAGATTCACGT -ACGGAACTACTGCCAGATCGTAGT -ACGGAACTACTGCCAGATGTCAGT -ACGGAACTACTGCCAGATGAAGGT -ACGGAACTACTGCCAGATAACCGT -ACGGAACTACTGCCAGATTTGTGC -ACGGAACTACTGCCAGATCTAAGC -ACGGAACTACTGCCAGATACTAGC -ACGGAACTACTGCCAGATAGATGC -ACGGAACTACTGCCAGATTGAAGG -ACGGAACTACTGCCAGATCAATGG -ACGGAACTACTGCCAGATATGAGG -ACGGAACTACTGCCAGATAATGGG -ACGGAACTACTGCCAGATTCCTGA -ACGGAACTACTGCCAGATTAGCGA -ACGGAACTACTGCCAGATCACAGA -ACGGAACTACTGCCAGATGCAAGA -ACGGAACTACTGCCAGATGGTTGA -ACGGAACTACTGCCAGATTCCGAT -ACGGAACTACTGCCAGATTGGCAT -ACGGAACTACTGCCAGATCGAGAT -ACGGAACTACTGCCAGATTACCAC -ACGGAACTACTGCCAGATCAGAAC -ACGGAACTACTGCCAGATGTCTAC -ACGGAACTACTGCCAGATACGTAC -ACGGAACTACTGCCAGATAGTGAC -ACGGAACTACTGCCAGATCTGTAG -ACGGAACTACTGCCAGATCCTAAG -ACGGAACTACTGCCAGATGTTCAG -ACGGAACTACTGCCAGATGCATAG -ACGGAACTACTGCCAGATGACAAG -ACGGAACTACTGCCAGATAAGCAG -ACGGAACTACTGCCAGATCGTCAA -ACGGAACTACTGCCAGATGCTGAA -ACGGAACTACTGCCAGATAGTACG -ACGGAACTACTGCCAGATATCCGA -ACGGAACTACTGCCAGATATGGGA -ACGGAACTACTGCCAGATGTGCAA -ACGGAACTACTGCCAGATGAGGAA -ACGGAACTACTGCCAGATCAGGTA -ACGGAACTACTGCCAGATGACTCT -ACGGAACTACTGCCAGATAGTCCT -ACGGAACTACTGCCAGATTAAGCC -ACGGAACTACTGCCAGATATAGCC -ACGGAACTACTGCCAGATTAACCG -ACGGAACTACTGCCAGATATGCCA -ACGGAACTACTGACAACGGGAAAC -ACGGAACTACTGACAACGAACACC -ACGGAACTACTGACAACGATCGAG -ACGGAACTACTGACAACGCTCCTT -ACGGAACTACTGACAACGCCTGTT -ACGGAACTACTGACAACGCGGTTT -ACGGAACTACTGACAACGGTGGTT -ACGGAACTACTGACAACGGCCTTT -ACGGAACTACTGACAACGGGTCTT -ACGGAACTACTGACAACGACGCTT -ACGGAACTACTGACAACGAGCGTT -ACGGAACTACTGACAACGTTCGTC -ACGGAACTACTGACAACGTCTCTC -ACGGAACTACTGACAACGTGGATC -ACGGAACTACTGACAACGCACTTC -ACGGAACTACTGACAACGGTACTC -ACGGAACTACTGACAACGGATGTC -ACGGAACTACTGACAACGACAGTC -ACGGAACTACTGACAACGTTGCTG -ACGGAACTACTGACAACGTCCATG -ACGGAACTACTGACAACGTGTGTG -ACGGAACTACTGACAACGCTAGTG -ACGGAACTACTGACAACGCATCTG -ACGGAACTACTGACAACGGAGTTG -ACGGAACTACTGACAACGAGACTG -ACGGAACTACTGACAACGTCGGTA -ACGGAACTACTGACAACGTGCCTA -ACGGAACTACTGACAACGCCACTA -ACGGAACTACTGACAACGGGAGTA -ACGGAACTACTGACAACGTCGTCT -ACGGAACTACTGACAACGTGCACT -ACGGAACTACTGACAACGCTGACT -ACGGAACTACTGACAACGCAACCT -ACGGAACTACTGACAACGGCTACT -ACGGAACTACTGACAACGGGATCT -ACGGAACTACTGACAACGAAGGCT -ACGGAACTACTGACAACGTCAACC -ACGGAACTACTGACAACGTGTTCC -ACGGAACTACTGACAACGATTCCC -ACGGAACTACTGACAACGTTCTCG -ACGGAACTACTGACAACGTAGACG -ACGGAACTACTGACAACGGTAACG -ACGGAACTACTGACAACGACTTCG -ACGGAACTACTGACAACGTACGCA -ACGGAACTACTGACAACGCTTGCA -ACGGAACTACTGACAACGCGAACA -ACGGAACTACTGACAACGCAGTCA -ACGGAACTACTGACAACGGATCCA -ACGGAACTACTGACAACGACGACA -ACGGAACTACTGACAACGAGCTCA -ACGGAACTACTGACAACGTCACGT -ACGGAACTACTGACAACGCGTAGT -ACGGAACTACTGACAACGGTCAGT -ACGGAACTACTGACAACGGAAGGT -ACGGAACTACTGACAACGAACCGT -ACGGAACTACTGACAACGTTGTGC -ACGGAACTACTGACAACGCTAAGC -ACGGAACTACTGACAACGACTAGC -ACGGAACTACTGACAACGAGATGC -ACGGAACTACTGACAACGTGAAGG -ACGGAACTACTGACAACGCAATGG -ACGGAACTACTGACAACGATGAGG -ACGGAACTACTGACAACGAATGGG -ACGGAACTACTGACAACGTCCTGA -ACGGAACTACTGACAACGTAGCGA -ACGGAACTACTGACAACGCACAGA -ACGGAACTACTGACAACGGCAAGA -ACGGAACTACTGACAACGGGTTGA -ACGGAACTACTGACAACGTCCGAT -ACGGAACTACTGACAACGTGGCAT -ACGGAACTACTGACAACGCGAGAT -ACGGAACTACTGACAACGTACCAC -ACGGAACTACTGACAACGCAGAAC -ACGGAACTACTGACAACGGTCTAC -ACGGAACTACTGACAACGACGTAC -ACGGAACTACTGACAACGAGTGAC -ACGGAACTACTGACAACGCTGTAG -ACGGAACTACTGACAACGCCTAAG -ACGGAACTACTGACAACGGTTCAG -ACGGAACTACTGACAACGGCATAG -ACGGAACTACTGACAACGGACAAG -ACGGAACTACTGACAACGAAGCAG -ACGGAACTACTGACAACGCGTCAA -ACGGAACTACTGACAACGGCTGAA -ACGGAACTACTGACAACGAGTACG -ACGGAACTACTGACAACGATCCGA -ACGGAACTACTGACAACGATGGGA -ACGGAACTACTGACAACGGTGCAA -ACGGAACTACTGACAACGGAGGAA -ACGGAACTACTGACAACGCAGGTA -ACGGAACTACTGACAACGGACTCT -ACGGAACTACTGACAACGAGTCCT -ACGGAACTACTGACAACGTAAGCC -ACGGAACTACTGACAACGATAGCC -ACGGAACTACTGACAACGTAACCG -ACGGAACTACTGACAACGATGCCA -ACGGAACTACTGTCAAGCGGAAAC -ACGGAACTACTGTCAAGCAACACC -ACGGAACTACTGTCAAGCATCGAG -ACGGAACTACTGTCAAGCCTCCTT -ACGGAACTACTGTCAAGCCCTGTT -ACGGAACTACTGTCAAGCCGGTTT -ACGGAACTACTGTCAAGCGTGGTT -ACGGAACTACTGTCAAGCGCCTTT -ACGGAACTACTGTCAAGCGGTCTT -ACGGAACTACTGTCAAGCACGCTT -ACGGAACTACTGTCAAGCAGCGTT -ACGGAACTACTGTCAAGCTTCGTC -ACGGAACTACTGTCAAGCTCTCTC -ACGGAACTACTGTCAAGCTGGATC -ACGGAACTACTGTCAAGCCACTTC -ACGGAACTACTGTCAAGCGTACTC -ACGGAACTACTGTCAAGCGATGTC -ACGGAACTACTGTCAAGCACAGTC -ACGGAACTACTGTCAAGCTTGCTG -ACGGAACTACTGTCAAGCTCCATG -ACGGAACTACTGTCAAGCTGTGTG -ACGGAACTACTGTCAAGCCTAGTG -ACGGAACTACTGTCAAGCCATCTG -ACGGAACTACTGTCAAGCGAGTTG -ACGGAACTACTGTCAAGCAGACTG -ACGGAACTACTGTCAAGCTCGGTA -ACGGAACTACTGTCAAGCTGCCTA -ACGGAACTACTGTCAAGCCCACTA -ACGGAACTACTGTCAAGCGGAGTA -ACGGAACTACTGTCAAGCTCGTCT -ACGGAACTACTGTCAAGCTGCACT -ACGGAACTACTGTCAAGCCTGACT -ACGGAACTACTGTCAAGCCAACCT -ACGGAACTACTGTCAAGCGCTACT -ACGGAACTACTGTCAAGCGGATCT -ACGGAACTACTGTCAAGCAAGGCT -ACGGAACTACTGTCAAGCTCAACC -ACGGAACTACTGTCAAGCTGTTCC -ACGGAACTACTGTCAAGCATTCCC -ACGGAACTACTGTCAAGCTTCTCG -ACGGAACTACTGTCAAGCTAGACG -ACGGAACTACTGTCAAGCGTAACG -ACGGAACTACTGTCAAGCACTTCG -ACGGAACTACTGTCAAGCTACGCA -ACGGAACTACTGTCAAGCCTTGCA -ACGGAACTACTGTCAAGCCGAACA -ACGGAACTACTGTCAAGCCAGTCA -ACGGAACTACTGTCAAGCGATCCA -ACGGAACTACTGTCAAGCACGACA -ACGGAACTACTGTCAAGCAGCTCA -ACGGAACTACTGTCAAGCTCACGT -ACGGAACTACTGTCAAGCCGTAGT -ACGGAACTACTGTCAAGCGTCAGT -ACGGAACTACTGTCAAGCGAAGGT -ACGGAACTACTGTCAAGCAACCGT -ACGGAACTACTGTCAAGCTTGTGC -ACGGAACTACTGTCAAGCCTAAGC -ACGGAACTACTGTCAAGCACTAGC -ACGGAACTACTGTCAAGCAGATGC -ACGGAACTACTGTCAAGCTGAAGG -ACGGAACTACTGTCAAGCCAATGG -ACGGAACTACTGTCAAGCATGAGG -ACGGAACTACTGTCAAGCAATGGG -ACGGAACTACTGTCAAGCTCCTGA -ACGGAACTACTGTCAAGCTAGCGA -ACGGAACTACTGTCAAGCCACAGA -ACGGAACTACTGTCAAGCGCAAGA -ACGGAACTACTGTCAAGCGGTTGA -ACGGAACTACTGTCAAGCTCCGAT -ACGGAACTACTGTCAAGCTGGCAT -ACGGAACTACTGTCAAGCCGAGAT -ACGGAACTACTGTCAAGCTACCAC -ACGGAACTACTGTCAAGCCAGAAC -ACGGAACTACTGTCAAGCGTCTAC -ACGGAACTACTGTCAAGCACGTAC -ACGGAACTACTGTCAAGCAGTGAC -ACGGAACTACTGTCAAGCCTGTAG -ACGGAACTACTGTCAAGCCCTAAG -ACGGAACTACTGTCAAGCGTTCAG -ACGGAACTACTGTCAAGCGCATAG -ACGGAACTACTGTCAAGCGACAAG -ACGGAACTACTGTCAAGCAAGCAG -ACGGAACTACTGTCAAGCCGTCAA -ACGGAACTACTGTCAAGCGCTGAA -ACGGAACTACTGTCAAGCAGTACG -ACGGAACTACTGTCAAGCATCCGA -ACGGAACTACTGTCAAGCATGGGA -ACGGAACTACTGTCAAGCGTGCAA -ACGGAACTACTGTCAAGCGAGGAA -ACGGAACTACTGTCAAGCCAGGTA -ACGGAACTACTGTCAAGCGACTCT -ACGGAACTACTGTCAAGCAGTCCT -ACGGAACTACTGTCAAGCTAAGCC -ACGGAACTACTGTCAAGCATAGCC -ACGGAACTACTGTCAAGCTAACCG -ACGGAACTACTGTCAAGCATGCCA -ACGGAACTACTGCGTTCAGGAAAC -ACGGAACTACTGCGTTCAAACACC -ACGGAACTACTGCGTTCAATCGAG -ACGGAACTACTGCGTTCACTCCTT -ACGGAACTACTGCGTTCACCTGTT -ACGGAACTACTGCGTTCACGGTTT -ACGGAACTACTGCGTTCAGTGGTT -ACGGAACTACTGCGTTCAGCCTTT -ACGGAACTACTGCGTTCAGGTCTT -ACGGAACTACTGCGTTCAACGCTT -ACGGAACTACTGCGTTCAAGCGTT -ACGGAACTACTGCGTTCATTCGTC -ACGGAACTACTGCGTTCATCTCTC -ACGGAACTACTGCGTTCATGGATC -ACGGAACTACTGCGTTCACACTTC -ACGGAACTACTGCGTTCAGTACTC -ACGGAACTACTGCGTTCAGATGTC -ACGGAACTACTGCGTTCAACAGTC -ACGGAACTACTGCGTTCATTGCTG -ACGGAACTACTGCGTTCATCCATG -ACGGAACTACTGCGTTCATGTGTG -ACGGAACTACTGCGTTCACTAGTG -ACGGAACTACTGCGTTCACATCTG -ACGGAACTACTGCGTTCAGAGTTG -ACGGAACTACTGCGTTCAAGACTG -ACGGAACTACTGCGTTCATCGGTA -ACGGAACTACTGCGTTCATGCCTA -ACGGAACTACTGCGTTCACCACTA -ACGGAACTACTGCGTTCAGGAGTA -ACGGAACTACTGCGTTCATCGTCT -ACGGAACTACTGCGTTCATGCACT -ACGGAACTACTGCGTTCACTGACT -ACGGAACTACTGCGTTCACAACCT -ACGGAACTACTGCGTTCAGCTACT -ACGGAACTACTGCGTTCAGGATCT -ACGGAACTACTGCGTTCAAAGGCT -ACGGAACTACTGCGTTCATCAACC -ACGGAACTACTGCGTTCATGTTCC -ACGGAACTACTGCGTTCAATTCCC -ACGGAACTACTGCGTTCATTCTCG -ACGGAACTACTGCGTTCATAGACG -ACGGAACTACTGCGTTCAGTAACG -ACGGAACTACTGCGTTCAACTTCG -ACGGAACTACTGCGTTCATACGCA -ACGGAACTACTGCGTTCACTTGCA -ACGGAACTACTGCGTTCACGAACA -ACGGAACTACTGCGTTCACAGTCA -ACGGAACTACTGCGTTCAGATCCA -ACGGAACTACTGCGTTCAACGACA -ACGGAACTACTGCGTTCAAGCTCA -ACGGAACTACTGCGTTCATCACGT -ACGGAACTACTGCGTTCACGTAGT -ACGGAACTACTGCGTTCAGTCAGT -ACGGAACTACTGCGTTCAGAAGGT -ACGGAACTACTGCGTTCAAACCGT -ACGGAACTACTGCGTTCATTGTGC -ACGGAACTACTGCGTTCACTAAGC -ACGGAACTACTGCGTTCAACTAGC -ACGGAACTACTGCGTTCAAGATGC -ACGGAACTACTGCGTTCATGAAGG -ACGGAACTACTGCGTTCACAATGG -ACGGAACTACTGCGTTCAATGAGG -ACGGAACTACTGCGTTCAAATGGG -ACGGAACTACTGCGTTCATCCTGA -ACGGAACTACTGCGTTCATAGCGA -ACGGAACTACTGCGTTCACACAGA -ACGGAACTACTGCGTTCAGCAAGA -ACGGAACTACTGCGTTCAGGTTGA -ACGGAACTACTGCGTTCATCCGAT -ACGGAACTACTGCGTTCATGGCAT -ACGGAACTACTGCGTTCACGAGAT -ACGGAACTACTGCGTTCATACCAC -ACGGAACTACTGCGTTCACAGAAC -ACGGAACTACTGCGTTCAGTCTAC -ACGGAACTACTGCGTTCAACGTAC -ACGGAACTACTGCGTTCAAGTGAC -ACGGAACTACTGCGTTCACTGTAG -ACGGAACTACTGCGTTCACCTAAG -ACGGAACTACTGCGTTCAGTTCAG -ACGGAACTACTGCGTTCAGCATAG -ACGGAACTACTGCGTTCAGACAAG -ACGGAACTACTGCGTTCAAAGCAG -ACGGAACTACTGCGTTCACGTCAA -ACGGAACTACTGCGTTCAGCTGAA -ACGGAACTACTGCGTTCAAGTACG -ACGGAACTACTGCGTTCAATCCGA -ACGGAACTACTGCGTTCAATGGGA -ACGGAACTACTGCGTTCAGTGCAA -ACGGAACTACTGCGTTCAGAGGAA -ACGGAACTACTGCGTTCACAGGTA -ACGGAACTACTGCGTTCAGACTCT -ACGGAACTACTGCGTTCAAGTCCT -ACGGAACTACTGCGTTCATAAGCC -ACGGAACTACTGCGTTCAATAGCC -ACGGAACTACTGCGTTCATAACCG -ACGGAACTACTGCGTTCAATGCCA -ACGGAACTACTGAGTCGTGGAAAC -ACGGAACTACTGAGTCGTAACACC -ACGGAACTACTGAGTCGTATCGAG -ACGGAACTACTGAGTCGTCTCCTT -ACGGAACTACTGAGTCGTCCTGTT -ACGGAACTACTGAGTCGTCGGTTT -ACGGAACTACTGAGTCGTGTGGTT -ACGGAACTACTGAGTCGTGCCTTT -ACGGAACTACTGAGTCGTGGTCTT -ACGGAACTACTGAGTCGTACGCTT -ACGGAACTACTGAGTCGTAGCGTT -ACGGAACTACTGAGTCGTTTCGTC -ACGGAACTACTGAGTCGTTCTCTC -ACGGAACTACTGAGTCGTTGGATC -ACGGAACTACTGAGTCGTCACTTC -ACGGAACTACTGAGTCGTGTACTC -ACGGAACTACTGAGTCGTGATGTC -ACGGAACTACTGAGTCGTACAGTC -ACGGAACTACTGAGTCGTTTGCTG -ACGGAACTACTGAGTCGTTCCATG -ACGGAACTACTGAGTCGTTGTGTG -ACGGAACTACTGAGTCGTCTAGTG -ACGGAACTACTGAGTCGTCATCTG -ACGGAACTACTGAGTCGTGAGTTG -ACGGAACTACTGAGTCGTAGACTG -ACGGAACTACTGAGTCGTTCGGTA -ACGGAACTACTGAGTCGTTGCCTA -ACGGAACTACTGAGTCGTCCACTA -ACGGAACTACTGAGTCGTGGAGTA -ACGGAACTACTGAGTCGTTCGTCT -ACGGAACTACTGAGTCGTTGCACT -ACGGAACTACTGAGTCGTCTGACT -ACGGAACTACTGAGTCGTCAACCT -ACGGAACTACTGAGTCGTGCTACT -ACGGAACTACTGAGTCGTGGATCT -ACGGAACTACTGAGTCGTAAGGCT -ACGGAACTACTGAGTCGTTCAACC -ACGGAACTACTGAGTCGTTGTTCC -ACGGAACTACTGAGTCGTATTCCC -ACGGAACTACTGAGTCGTTTCTCG -ACGGAACTACTGAGTCGTTAGACG -ACGGAACTACTGAGTCGTGTAACG -ACGGAACTACTGAGTCGTACTTCG -ACGGAACTACTGAGTCGTTACGCA -ACGGAACTACTGAGTCGTCTTGCA -ACGGAACTACTGAGTCGTCGAACA -ACGGAACTACTGAGTCGTCAGTCA -ACGGAACTACTGAGTCGTGATCCA -ACGGAACTACTGAGTCGTACGACA -ACGGAACTACTGAGTCGTAGCTCA -ACGGAACTACTGAGTCGTTCACGT -ACGGAACTACTGAGTCGTCGTAGT -ACGGAACTACTGAGTCGTGTCAGT -ACGGAACTACTGAGTCGTGAAGGT -ACGGAACTACTGAGTCGTAACCGT -ACGGAACTACTGAGTCGTTTGTGC -ACGGAACTACTGAGTCGTCTAAGC -ACGGAACTACTGAGTCGTACTAGC -ACGGAACTACTGAGTCGTAGATGC -ACGGAACTACTGAGTCGTTGAAGG -ACGGAACTACTGAGTCGTCAATGG -ACGGAACTACTGAGTCGTATGAGG -ACGGAACTACTGAGTCGTAATGGG -ACGGAACTACTGAGTCGTTCCTGA -ACGGAACTACTGAGTCGTTAGCGA -ACGGAACTACTGAGTCGTCACAGA -ACGGAACTACTGAGTCGTGCAAGA -ACGGAACTACTGAGTCGTGGTTGA -ACGGAACTACTGAGTCGTTCCGAT -ACGGAACTACTGAGTCGTTGGCAT -ACGGAACTACTGAGTCGTCGAGAT -ACGGAACTACTGAGTCGTTACCAC -ACGGAACTACTGAGTCGTCAGAAC -ACGGAACTACTGAGTCGTGTCTAC -ACGGAACTACTGAGTCGTACGTAC -ACGGAACTACTGAGTCGTAGTGAC -ACGGAACTACTGAGTCGTCTGTAG -ACGGAACTACTGAGTCGTCCTAAG -ACGGAACTACTGAGTCGTGTTCAG -ACGGAACTACTGAGTCGTGCATAG -ACGGAACTACTGAGTCGTGACAAG -ACGGAACTACTGAGTCGTAAGCAG -ACGGAACTACTGAGTCGTCGTCAA -ACGGAACTACTGAGTCGTGCTGAA -ACGGAACTACTGAGTCGTAGTACG -ACGGAACTACTGAGTCGTATCCGA -ACGGAACTACTGAGTCGTATGGGA -ACGGAACTACTGAGTCGTGTGCAA -ACGGAACTACTGAGTCGTGAGGAA -ACGGAACTACTGAGTCGTCAGGTA -ACGGAACTACTGAGTCGTGACTCT -ACGGAACTACTGAGTCGTAGTCCT -ACGGAACTACTGAGTCGTTAAGCC -ACGGAACTACTGAGTCGTATAGCC -ACGGAACTACTGAGTCGTTAACCG -ACGGAACTACTGAGTCGTATGCCA -ACGGAACTACTGAGTGTCGGAAAC -ACGGAACTACTGAGTGTCAACACC -ACGGAACTACTGAGTGTCATCGAG -ACGGAACTACTGAGTGTCCTCCTT -ACGGAACTACTGAGTGTCCCTGTT -ACGGAACTACTGAGTGTCCGGTTT -ACGGAACTACTGAGTGTCGTGGTT -ACGGAACTACTGAGTGTCGCCTTT -ACGGAACTACTGAGTGTCGGTCTT -ACGGAACTACTGAGTGTCACGCTT -ACGGAACTACTGAGTGTCAGCGTT -ACGGAACTACTGAGTGTCTTCGTC -ACGGAACTACTGAGTGTCTCTCTC -ACGGAACTACTGAGTGTCTGGATC -ACGGAACTACTGAGTGTCCACTTC -ACGGAACTACTGAGTGTCGTACTC -ACGGAACTACTGAGTGTCGATGTC -ACGGAACTACTGAGTGTCACAGTC -ACGGAACTACTGAGTGTCTTGCTG -ACGGAACTACTGAGTGTCTCCATG -ACGGAACTACTGAGTGTCTGTGTG -ACGGAACTACTGAGTGTCCTAGTG -ACGGAACTACTGAGTGTCCATCTG -ACGGAACTACTGAGTGTCGAGTTG -ACGGAACTACTGAGTGTCAGACTG -ACGGAACTACTGAGTGTCTCGGTA -ACGGAACTACTGAGTGTCTGCCTA -ACGGAACTACTGAGTGTCCCACTA -ACGGAACTACTGAGTGTCGGAGTA -ACGGAACTACTGAGTGTCTCGTCT -ACGGAACTACTGAGTGTCTGCACT -ACGGAACTACTGAGTGTCCTGACT -ACGGAACTACTGAGTGTCCAACCT -ACGGAACTACTGAGTGTCGCTACT -ACGGAACTACTGAGTGTCGGATCT -ACGGAACTACTGAGTGTCAAGGCT -ACGGAACTACTGAGTGTCTCAACC -ACGGAACTACTGAGTGTCTGTTCC -ACGGAACTACTGAGTGTCATTCCC -ACGGAACTACTGAGTGTCTTCTCG -ACGGAACTACTGAGTGTCTAGACG -ACGGAACTACTGAGTGTCGTAACG -ACGGAACTACTGAGTGTCACTTCG -ACGGAACTACTGAGTGTCTACGCA -ACGGAACTACTGAGTGTCCTTGCA -ACGGAACTACTGAGTGTCCGAACA -ACGGAACTACTGAGTGTCCAGTCA -ACGGAACTACTGAGTGTCGATCCA -ACGGAACTACTGAGTGTCACGACA -ACGGAACTACTGAGTGTCAGCTCA -ACGGAACTACTGAGTGTCTCACGT -ACGGAACTACTGAGTGTCCGTAGT -ACGGAACTACTGAGTGTCGTCAGT -ACGGAACTACTGAGTGTCGAAGGT -ACGGAACTACTGAGTGTCAACCGT -ACGGAACTACTGAGTGTCTTGTGC -ACGGAACTACTGAGTGTCCTAAGC -ACGGAACTACTGAGTGTCACTAGC -ACGGAACTACTGAGTGTCAGATGC -ACGGAACTACTGAGTGTCTGAAGG -ACGGAACTACTGAGTGTCCAATGG -ACGGAACTACTGAGTGTCATGAGG -ACGGAACTACTGAGTGTCAATGGG -ACGGAACTACTGAGTGTCTCCTGA -ACGGAACTACTGAGTGTCTAGCGA -ACGGAACTACTGAGTGTCCACAGA -ACGGAACTACTGAGTGTCGCAAGA -ACGGAACTACTGAGTGTCGGTTGA -ACGGAACTACTGAGTGTCTCCGAT -ACGGAACTACTGAGTGTCTGGCAT -ACGGAACTACTGAGTGTCCGAGAT -ACGGAACTACTGAGTGTCTACCAC -ACGGAACTACTGAGTGTCCAGAAC -ACGGAACTACTGAGTGTCGTCTAC -ACGGAACTACTGAGTGTCACGTAC -ACGGAACTACTGAGTGTCAGTGAC -ACGGAACTACTGAGTGTCCTGTAG -ACGGAACTACTGAGTGTCCCTAAG -ACGGAACTACTGAGTGTCGTTCAG -ACGGAACTACTGAGTGTCGCATAG -ACGGAACTACTGAGTGTCGACAAG -ACGGAACTACTGAGTGTCAAGCAG -ACGGAACTACTGAGTGTCCGTCAA -ACGGAACTACTGAGTGTCGCTGAA -ACGGAACTACTGAGTGTCAGTACG -ACGGAACTACTGAGTGTCATCCGA -ACGGAACTACTGAGTGTCATGGGA -ACGGAACTACTGAGTGTCGTGCAA -ACGGAACTACTGAGTGTCGAGGAA -ACGGAACTACTGAGTGTCCAGGTA -ACGGAACTACTGAGTGTCGACTCT -ACGGAACTACTGAGTGTCAGTCCT -ACGGAACTACTGAGTGTCTAAGCC -ACGGAACTACTGAGTGTCATAGCC -ACGGAACTACTGAGTGTCTAACCG -ACGGAACTACTGAGTGTCATGCCA -ACGGAACTACTGGGTGAAGGAAAC -ACGGAACTACTGGGTGAAAACACC -ACGGAACTACTGGGTGAAATCGAG -ACGGAACTACTGGGTGAACTCCTT -ACGGAACTACTGGGTGAACCTGTT -ACGGAACTACTGGGTGAACGGTTT -ACGGAACTACTGGGTGAAGTGGTT -ACGGAACTACTGGGTGAAGCCTTT -ACGGAACTACTGGGTGAAGGTCTT -ACGGAACTACTGGGTGAAACGCTT -ACGGAACTACTGGGTGAAAGCGTT -ACGGAACTACTGGGTGAATTCGTC -ACGGAACTACTGGGTGAATCTCTC -ACGGAACTACTGGGTGAATGGATC -ACGGAACTACTGGGTGAACACTTC -ACGGAACTACTGGGTGAAGTACTC -ACGGAACTACTGGGTGAAGATGTC -ACGGAACTACTGGGTGAAACAGTC -ACGGAACTACTGGGTGAATTGCTG -ACGGAACTACTGGGTGAATCCATG -ACGGAACTACTGGGTGAATGTGTG -ACGGAACTACTGGGTGAACTAGTG -ACGGAACTACTGGGTGAACATCTG -ACGGAACTACTGGGTGAAGAGTTG -ACGGAACTACTGGGTGAAAGACTG -ACGGAACTACTGGGTGAATCGGTA -ACGGAACTACTGGGTGAATGCCTA -ACGGAACTACTGGGTGAACCACTA -ACGGAACTACTGGGTGAAGGAGTA -ACGGAACTACTGGGTGAATCGTCT -ACGGAACTACTGGGTGAATGCACT -ACGGAACTACTGGGTGAACTGACT -ACGGAACTACTGGGTGAACAACCT -ACGGAACTACTGGGTGAAGCTACT -ACGGAACTACTGGGTGAAGGATCT -ACGGAACTACTGGGTGAAAAGGCT -ACGGAACTACTGGGTGAATCAACC -ACGGAACTACTGGGTGAATGTTCC -ACGGAACTACTGGGTGAAATTCCC -ACGGAACTACTGGGTGAATTCTCG -ACGGAACTACTGGGTGAATAGACG -ACGGAACTACTGGGTGAAGTAACG -ACGGAACTACTGGGTGAAACTTCG -ACGGAACTACTGGGTGAATACGCA -ACGGAACTACTGGGTGAACTTGCA -ACGGAACTACTGGGTGAACGAACA -ACGGAACTACTGGGTGAACAGTCA -ACGGAACTACTGGGTGAAGATCCA -ACGGAACTACTGGGTGAAACGACA -ACGGAACTACTGGGTGAAAGCTCA -ACGGAACTACTGGGTGAATCACGT -ACGGAACTACTGGGTGAACGTAGT -ACGGAACTACTGGGTGAAGTCAGT -ACGGAACTACTGGGTGAAGAAGGT -ACGGAACTACTGGGTGAAAACCGT -ACGGAACTACTGGGTGAATTGTGC -ACGGAACTACTGGGTGAACTAAGC -ACGGAACTACTGGGTGAAACTAGC -ACGGAACTACTGGGTGAAAGATGC -ACGGAACTACTGGGTGAATGAAGG -ACGGAACTACTGGGTGAACAATGG -ACGGAACTACTGGGTGAAATGAGG -ACGGAACTACTGGGTGAAAATGGG -ACGGAACTACTGGGTGAATCCTGA -ACGGAACTACTGGGTGAATAGCGA -ACGGAACTACTGGGTGAACACAGA -ACGGAACTACTGGGTGAAGCAAGA -ACGGAACTACTGGGTGAAGGTTGA -ACGGAACTACTGGGTGAATCCGAT -ACGGAACTACTGGGTGAATGGCAT -ACGGAACTACTGGGTGAACGAGAT -ACGGAACTACTGGGTGAATACCAC -ACGGAACTACTGGGTGAACAGAAC -ACGGAACTACTGGGTGAAGTCTAC -ACGGAACTACTGGGTGAAACGTAC -ACGGAACTACTGGGTGAAAGTGAC -ACGGAACTACTGGGTGAACTGTAG -ACGGAACTACTGGGTGAACCTAAG -ACGGAACTACTGGGTGAAGTTCAG -ACGGAACTACTGGGTGAAGCATAG -ACGGAACTACTGGGTGAAGACAAG -ACGGAACTACTGGGTGAAAAGCAG -ACGGAACTACTGGGTGAACGTCAA -ACGGAACTACTGGGTGAAGCTGAA -ACGGAACTACTGGGTGAAAGTACG -ACGGAACTACTGGGTGAAATCCGA -ACGGAACTACTGGGTGAAATGGGA -ACGGAACTACTGGGTGAAGTGCAA -ACGGAACTACTGGGTGAAGAGGAA -ACGGAACTACTGGGTGAACAGGTA -ACGGAACTACTGGGTGAAGACTCT -ACGGAACTACTGGGTGAAAGTCCT -ACGGAACTACTGGGTGAATAAGCC -ACGGAACTACTGGGTGAAATAGCC -ACGGAACTACTGGGTGAATAACCG -ACGGAACTACTGGGTGAAATGCCA -ACGGAACTACTGCGTAACGGAAAC -ACGGAACTACTGCGTAACAACACC -ACGGAACTACTGCGTAACATCGAG -ACGGAACTACTGCGTAACCTCCTT -ACGGAACTACTGCGTAACCCTGTT -ACGGAACTACTGCGTAACCGGTTT -ACGGAACTACTGCGTAACGTGGTT -ACGGAACTACTGCGTAACGCCTTT -ACGGAACTACTGCGTAACGGTCTT -ACGGAACTACTGCGTAACACGCTT -ACGGAACTACTGCGTAACAGCGTT -ACGGAACTACTGCGTAACTTCGTC -ACGGAACTACTGCGTAACTCTCTC -ACGGAACTACTGCGTAACTGGATC -ACGGAACTACTGCGTAACCACTTC -ACGGAACTACTGCGTAACGTACTC -ACGGAACTACTGCGTAACGATGTC -ACGGAACTACTGCGTAACACAGTC -ACGGAACTACTGCGTAACTTGCTG -ACGGAACTACTGCGTAACTCCATG -ACGGAACTACTGCGTAACTGTGTG -ACGGAACTACTGCGTAACCTAGTG -ACGGAACTACTGCGTAACCATCTG -ACGGAACTACTGCGTAACGAGTTG -ACGGAACTACTGCGTAACAGACTG -ACGGAACTACTGCGTAACTCGGTA -ACGGAACTACTGCGTAACTGCCTA -ACGGAACTACTGCGTAACCCACTA -ACGGAACTACTGCGTAACGGAGTA -ACGGAACTACTGCGTAACTCGTCT -ACGGAACTACTGCGTAACTGCACT -ACGGAACTACTGCGTAACCTGACT -ACGGAACTACTGCGTAACCAACCT -ACGGAACTACTGCGTAACGCTACT -ACGGAACTACTGCGTAACGGATCT -ACGGAACTACTGCGTAACAAGGCT -ACGGAACTACTGCGTAACTCAACC -ACGGAACTACTGCGTAACTGTTCC -ACGGAACTACTGCGTAACATTCCC -ACGGAACTACTGCGTAACTTCTCG -ACGGAACTACTGCGTAACTAGACG -ACGGAACTACTGCGTAACGTAACG -ACGGAACTACTGCGTAACACTTCG -ACGGAACTACTGCGTAACTACGCA -ACGGAACTACTGCGTAACCTTGCA -ACGGAACTACTGCGTAACCGAACA -ACGGAACTACTGCGTAACCAGTCA -ACGGAACTACTGCGTAACGATCCA -ACGGAACTACTGCGTAACACGACA -ACGGAACTACTGCGTAACAGCTCA -ACGGAACTACTGCGTAACTCACGT -ACGGAACTACTGCGTAACCGTAGT -ACGGAACTACTGCGTAACGTCAGT -ACGGAACTACTGCGTAACGAAGGT -ACGGAACTACTGCGTAACAACCGT -ACGGAACTACTGCGTAACTTGTGC -ACGGAACTACTGCGTAACCTAAGC -ACGGAACTACTGCGTAACACTAGC -ACGGAACTACTGCGTAACAGATGC -ACGGAACTACTGCGTAACTGAAGG -ACGGAACTACTGCGTAACCAATGG -ACGGAACTACTGCGTAACATGAGG -ACGGAACTACTGCGTAACAATGGG -ACGGAACTACTGCGTAACTCCTGA -ACGGAACTACTGCGTAACTAGCGA -ACGGAACTACTGCGTAACCACAGA -ACGGAACTACTGCGTAACGCAAGA -ACGGAACTACTGCGTAACGGTTGA -ACGGAACTACTGCGTAACTCCGAT -ACGGAACTACTGCGTAACTGGCAT -ACGGAACTACTGCGTAACCGAGAT -ACGGAACTACTGCGTAACTACCAC -ACGGAACTACTGCGTAACCAGAAC -ACGGAACTACTGCGTAACGTCTAC -ACGGAACTACTGCGTAACACGTAC -ACGGAACTACTGCGTAACAGTGAC -ACGGAACTACTGCGTAACCTGTAG -ACGGAACTACTGCGTAACCCTAAG -ACGGAACTACTGCGTAACGTTCAG -ACGGAACTACTGCGTAACGCATAG -ACGGAACTACTGCGTAACGACAAG -ACGGAACTACTGCGTAACAAGCAG -ACGGAACTACTGCGTAACCGTCAA -ACGGAACTACTGCGTAACGCTGAA -ACGGAACTACTGCGTAACAGTACG -ACGGAACTACTGCGTAACATCCGA -ACGGAACTACTGCGTAACATGGGA -ACGGAACTACTGCGTAACGTGCAA -ACGGAACTACTGCGTAACGAGGAA -ACGGAACTACTGCGTAACCAGGTA -ACGGAACTACTGCGTAACGACTCT -ACGGAACTACTGCGTAACAGTCCT -ACGGAACTACTGCGTAACTAAGCC -ACGGAACTACTGCGTAACATAGCC -ACGGAACTACTGCGTAACTAACCG -ACGGAACTACTGCGTAACATGCCA -ACGGAACTACTGTGCTTGGGAAAC -ACGGAACTACTGTGCTTGAACACC -ACGGAACTACTGTGCTTGATCGAG -ACGGAACTACTGTGCTTGCTCCTT -ACGGAACTACTGTGCTTGCCTGTT -ACGGAACTACTGTGCTTGCGGTTT -ACGGAACTACTGTGCTTGGTGGTT -ACGGAACTACTGTGCTTGGCCTTT -ACGGAACTACTGTGCTTGGGTCTT -ACGGAACTACTGTGCTTGACGCTT -ACGGAACTACTGTGCTTGAGCGTT -ACGGAACTACTGTGCTTGTTCGTC -ACGGAACTACTGTGCTTGTCTCTC -ACGGAACTACTGTGCTTGTGGATC -ACGGAACTACTGTGCTTGCACTTC -ACGGAACTACTGTGCTTGGTACTC -ACGGAACTACTGTGCTTGGATGTC -ACGGAACTACTGTGCTTGACAGTC -ACGGAACTACTGTGCTTGTTGCTG -ACGGAACTACTGTGCTTGTCCATG -ACGGAACTACTGTGCTTGTGTGTG -ACGGAACTACTGTGCTTGCTAGTG -ACGGAACTACTGTGCTTGCATCTG -ACGGAACTACTGTGCTTGGAGTTG -ACGGAACTACTGTGCTTGAGACTG -ACGGAACTACTGTGCTTGTCGGTA -ACGGAACTACTGTGCTTGTGCCTA -ACGGAACTACTGTGCTTGCCACTA -ACGGAACTACTGTGCTTGGGAGTA -ACGGAACTACTGTGCTTGTCGTCT -ACGGAACTACTGTGCTTGTGCACT -ACGGAACTACTGTGCTTGCTGACT -ACGGAACTACTGTGCTTGCAACCT -ACGGAACTACTGTGCTTGGCTACT -ACGGAACTACTGTGCTTGGGATCT -ACGGAACTACTGTGCTTGAAGGCT -ACGGAACTACTGTGCTTGTCAACC -ACGGAACTACTGTGCTTGTGTTCC -ACGGAACTACTGTGCTTGATTCCC -ACGGAACTACTGTGCTTGTTCTCG -ACGGAACTACTGTGCTTGTAGACG -ACGGAACTACTGTGCTTGGTAACG -ACGGAACTACTGTGCTTGACTTCG -ACGGAACTACTGTGCTTGTACGCA -ACGGAACTACTGTGCTTGCTTGCA -ACGGAACTACTGTGCTTGCGAACA -ACGGAACTACTGTGCTTGCAGTCA -ACGGAACTACTGTGCTTGGATCCA -ACGGAACTACTGTGCTTGACGACA -ACGGAACTACTGTGCTTGAGCTCA -ACGGAACTACTGTGCTTGTCACGT -ACGGAACTACTGTGCTTGCGTAGT -ACGGAACTACTGTGCTTGGTCAGT -ACGGAACTACTGTGCTTGGAAGGT -ACGGAACTACTGTGCTTGAACCGT -ACGGAACTACTGTGCTTGTTGTGC -ACGGAACTACTGTGCTTGCTAAGC -ACGGAACTACTGTGCTTGACTAGC -ACGGAACTACTGTGCTTGAGATGC -ACGGAACTACTGTGCTTGTGAAGG -ACGGAACTACTGTGCTTGCAATGG -ACGGAACTACTGTGCTTGATGAGG -ACGGAACTACTGTGCTTGAATGGG -ACGGAACTACTGTGCTTGTCCTGA -ACGGAACTACTGTGCTTGTAGCGA -ACGGAACTACTGTGCTTGCACAGA -ACGGAACTACTGTGCTTGGCAAGA -ACGGAACTACTGTGCTTGGGTTGA -ACGGAACTACTGTGCTTGTCCGAT -ACGGAACTACTGTGCTTGTGGCAT -ACGGAACTACTGTGCTTGCGAGAT -ACGGAACTACTGTGCTTGTACCAC -ACGGAACTACTGTGCTTGCAGAAC -ACGGAACTACTGTGCTTGGTCTAC -ACGGAACTACTGTGCTTGACGTAC -ACGGAACTACTGTGCTTGAGTGAC -ACGGAACTACTGTGCTTGCTGTAG -ACGGAACTACTGTGCTTGCCTAAG -ACGGAACTACTGTGCTTGGTTCAG -ACGGAACTACTGTGCTTGGCATAG -ACGGAACTACTGTGCTTGGACAAG -ACGGAACTACTGTGCTTGAAGCAG -ACGGAACTACTGTGCTTGCGTCAA -ACGGAACTACTGTGCTTGGCTGAA -ACGGAACTACTGTGCTTGAGTACG -ACGGAACTACTGTGCTTGATCCGA -ACGGAACTACTGTGCTTGATGGGA -ACGGAACTACTGTGCTTGGTGCAA -ACGGAACTACTGTGCTTGGAGGAA -ACGGAACTACTGTGCTTGCAGGTA -ACGGAACTACTGTGCTTGGACTCT -ACGGAACTACTGTGCTTGAGTCCT -ACGGAACTACTGTGCTTGTAAGCC -ACGGAACTACTGTGCTTGATAGCC -ACGGAACTACTGTGCTTGTAACCG -ACGGAACTACTGTGCTTGATGCCA -ACGGAACTACTGAGCCTAGGAAAC -ACGGAACTACTGAGCCTAAACACC -ACGGAACTACTGAGCCTAATCGAG -ACGGAACTACTGAGCCTACTCCTT -ACGGAACTACTGAGCCTACCTGTT -ACGGAACTACTGAGCCTACGGTTT -ACGGAACTACTGAGCCTAGTGGTT -ACGGAACTACTGAGCCTAGCCTTT -ACGGAACTACTGAGCCTAGGTCTT -ACGGAACTACTGAGCCTAACGCTT -ACGGAACTACTGAGCCTAAGCGTT -ACGGAACTACTGAGCCTATTCGTC -ACGGAACTACTGAGCCTATCTCTC -ACGGAACTACTGAGCCTATGGATC -ACGGAACTACTGAGCCTACACTTC -ACGGAACTACTGAGCCTAGTACTC -ACGGAACTACTGAGCCTAGATGTC -ACGGAACTACTGAGCCTAACAGTC -ACGGAACTACTGAGCCTATTGCTG -ACGGAACTACTGAGCCTATCCATG -ACGGAACTACTGAGCCTATGTGTG -ACGGAACTACTGAGCCTACTAGTG -ACGGAACTACTGAGCCTACATCTG -ACGGAACTACTGAGCCTAGAGTTG -ACGGAACTACTGAGCCTAAGACTG -ACGGAACTACTGAGCCTATCGGTA -ACGGAACTACTGAGCCTATGCCTA -ACGGAACTACTGAGCCTACCACTA -ACGGAACTACTGAGCCTAGGAGTA -ACGGAACTACTGAGCCTATCGTCT -ACGGAACTACTGAGCCTATGCACT -ACGGAACTACTGAGCCTACTGACT -ACGGAACTACTGAGCCTACAACCT -ACGGAACTACTGAGCCTAGCTACT -ACGGAACTACTGAGCCTAGGATCT -ACGGAACTACTGAGCCTAAAGGCT -ACGGAACTACTGAGCCTATCAACC -ACGGAACTACTGAGCCTATGTTCC -ACGGAACTACTGAGCCTAATTCCC -ACGGAACTACTGAGCCTATTCTCG -ACGGAACTACTGAGCCTATAGACG -ACGGAACTACTGAGCCTAGTAACG -ACGGAACTACTGAGCCTAACTTCG -ACGGAACTACTGAGCCTATACGCA -ACGGAACTACTGAGCCTACTTGCA -ACGGAACTACTGAGCCTACGAACA -ACGGAACTACTGAGCCTACAGTCA -ACGGAACTACTGAGCCTAGATCCA -ACGGAACTACTGAGCCTAACGACA -ACGGAACTACTGAGCCTAAGCTCA -ACGGAACTACTGAGCCTATCACGT -ACGGAACTACTGAGCCTACGTAGT -ACGGAACTACTGAGCCTAGTCAGT -ACGGAACTACTGAGCCTAGAAGGT -ACGGAACTACTGAGCCTAAACCGT -ACGGAACTACTGAGCCTATTGTGC -ACGGAACTACTGAGCCTACTAAGC -ACGGAACTACTGAGCCTAACTAGC -ACGGAACTACTGAGCCTAAGATGC -ACGGAACTACTGAGCCTATGAAGG -ACGGAACTACTGAGCCTACAATGG -ACGGAACTACTGAGCCTAATGAGG -ACGGAACTACTGAGCCTAAATGGG -ACGGAACTACTGAGCCTATCCTGA -ACGGAACTACTGAGCCTATAGCGA -ACGGAACTACTGAGCCTACACAGA -ACGGAACTACTGAGCCTAGCAAGA -ACGGAACTACTGAGCCTAGGTTGA -ACGGAACTACTGAGCCTATCCGAT -ACGGAACTACTGAGCCTATGGCAT -ACGGAACTACTGAGCCTACGAGAT -ACGGAACTACTGAGCCTATACCAC -ACGGAACTACTGAGCCTACAGAAC -ACGGAACTACTGAGCCTAGTCTAC -ACGGAACTACTGAGCCTAACGTAC -ACGGAACTACTGAGCCTAAGTGAC -ACGGAACTACTGAGCCTACTGTAG -ACGGAACTACTGAGCCTACCTAAG -ACGGAACTACTGAGCCTAGTTCAG -ACGGAACTACTGAGCCTAGCATAG -ACGGAACTACTGAGCCTAGACAAG -ACGGAACTACTGAGCCTAAAGCAG -ACGGAACTACTGAGCCTACGTCAA -ACGGAACTACTGAGCCTAGCTGAA -ACGGAACTACTGAGCCTAAGTACG -ACGGAACTACTGAGCCTAATCCGA -ACGGAACTACTGAGCCTAATGGGA -ACGGAACTACTGAGCCTAGTGCAA -ACGGAACTACTGAGCCTAGAGGAA -ACGGAACTACTGAGCCTACAGGTA -ACGGAACTACTGAGCCTAGACTCT -ACGGAACTACTGAGCCTAAGTCCT -ACGGAACTACTGAGCCTATAAGCC -ACGGAACTACTGAGCCTAATAGCC -ACGGAACTACTGAGCCTATAACCG -ACGGAACTACTGAGCCTAATGCCA -ACGGAACTACTGAGCACTGGAAAC -ACGGAACTACTGAGCACTAACACC -ACGGAACTACTGAGCACTATCGAG -ACGGAACTACTGAGCACTCTCCTT -ACGGAACTACTGAGCACTCCTGTT -ACGGAACTACTGAGCACTCGGTTT -ACGGAACTACTGAGCACTGTGGTT -ACGGAACTACTGAGCACTGCCTTT -ACGGAACTACTGAGCACTGGTCTT -ACGGAACTACTGAGCACTACGCTT -ACGGAACTACTGAGCACTAGCGTT -ACGGAACTACTGAGCACTTTCGTC -ACGGAACTACTGAGCACTTCTCTC -ACGGAACTACTGAGCACTTGGATC -ACGGAACTACTGAGCACTCACTTC -ACGGAACTACTGAGCACTGTACTC -ACGGAACTACTGAGCACTGATGTC -ACGGAACTACTGAGCACTACAGTC -ACGGAACTACTGAGCACTTTGCTG -ACGGAACTACTGAGCACTTCCATG -ACGGAACTACTGAGCACTTGTGTG -ACGGAACTACTGAGCACTCTAGTG -ACGGAACTACTGAGCACTCATCTG -ACGGAACTACTGAGCACTGAGTTG -ACGGAACTACTGAGCACTAGACTG -ACGGAACTACTGAGCACTTCGGTA -ACGGAACTACTGAGCACTTGCCTA -ACGGAACTACTGAGCACTCCACTA -ACGGAACTACTGAGCACTGGAGTA -ACGGAACTACTGAGCACTTCGTCT -ACGGAACTACTGAGCACTTGCACT -ACGGAACTACTGAGCACTCTGACT -ACGGAACTACTGAGCACTCAACCT -ACGGAACTACTGAGCACTGCTACT -ACGGAACTACTGAGCACTGGATCT -ACGGAACTACTGAGCACTAAGGCT -ACGGAACTACTGAGCACTTCAACC -ACGGAACTACTGAGCACTTGTTCC -ACGGAACTACTGAGCACTATTCCC -ACGGAACTACTGAGCACTTTCTCG -ACGGAACTACTGAGCACTTAGACG -ACGGAACTACTGAGCACTGTAACG -ACGGAACTACTGAGCACTACTTCG -ACGGAACTACTGAGCACTTACGCA -ACGGAACTACTGAGCACTCTTGCA -ACGGAACTACTGAGCACTCGAACA -ACGGAACTACTGAGCACTCAGTCA -ACGGAACTACTGAGCACTGATCCA -ACGGAACTACTGAGCACTACGACA -ACGGAACTACTGAGCACTAGCTCA -ACGGAACTACTGAGCACTTCACGT -ACGGAACTACTGAGCACTCGTAGT -ACGGAACTACTGAGCACTGTCAGT -ACGGAACTACTGAGCACTGAAGGT -ACGGAACTACTGAGCACTAACCGT -ACGGAACTACTGAGCACTTTGTGC -ACGGAACTACTGAGCACTCTAAGC -ACGGAACTACTGAGCACTACTAGC -ACGGAACTACTGAGCACTAGATGC -ACGGAACTACTGAGCACTTGAAGG -ACGGAACTACTGAGCACTCAATGG -ACGGAACTACTGAGCACTATGAGG -ACGGAACTACTGAGCACTAATGGG -ACGGAACTACTGAGCACTTCCTGA -ACGGAACTACTGAGCACTTAGCGA -ACGGAACTACTGAGCACTCACAGA -ACGGAACTACTGAGCACTGCAAGA -ACGGAACTACTGAGCACTGGTTGA -ACGGAACTACTGAGCACTTCCGAT -ACGGAACTACTGAGCACTTGGCAT -ACGGAACTACTGAGCACTCGAGAT -ACGGAACTACTGAGCACTTACCAC -ACGGAACTACTGAGCACTCAGAAC -ACGGAACTACTGAGCACTGTCTAC -ACGGAACTACTGAGCACTACGTAC -ACGGAACTACTGAGCACTAGTGAC -ACGGAACTACTGAGCACTCTGTAG -ACGGAACTACTGAGCACTCCTAAG -ACGGAACTACTGAGCACTGTTCAG -ACGGAACTACTGAGCACTGCATAG -ACGGAACTACTGAGCACTGACAAG -ACGGAACTACTGAGCACTAAGCAG -ACGGAACTACTGAGCACTCGTCAA -ACGGAACTACTGAGCACTGCTGAA -ACGGAACTACTGAGCACTAGTACG -ACGGAACTACTGAGCACTATCCGA -ACGGAACTACTGAGCACTATGGGA -ACGGAACTACTGAGCACTGTGCAA -ACGGAACTACTGAGCACTGAGGAA -ACGGAACTACTGAGCACTCAGGTA -ACGGAACTACTGAGCACTGACTCT -ACGGAACTACTGAGCACTAGTCCT -ACGGAACTACTGAGCACTTAAGCC -ACGGAACTACTGAGCACTATAGCC -ACGGAACTACTGAGCACTTAACCG -ACGGAACTACTGAGCACTATGCCA -ACGGAACTACTGTGCAGAGGAAAC -ACGGAACTACTGTGCAGAAACACC -ACGGAACTACTGTGCAGAATCGAG -ACGGAACTACTGTGCAGACTCCTT -ACGGAACTACTGTGCAGACCTGTT -ACGGAACTACTGTGCAGACGGTTT -ACGGAACTACTGTGCAGAGTGGTT -ACGGAACTACTGTGCAGAGCCTTT -ACGGAACTACTGTGCAGAGGTCTT -ACGGAACTACTGTGCAGAACGCTT -ACGGAACTACTGTGCAGAAGCGTT -ACGGAACTACTGTGCAGATTCGTC -ACGGAACTACTGTGCAGATCTCTC -ACGGAACTACTGTGCAGATGGATC -ACGGAACTACTGTGCAGACACTTC -ACGGAACTACTGTGCAGAGTACTC -ACGGAACTACTGTGCAGAGATGTC -ACGGAACTACTGTGCAGAACAGTC -ACGGAACTACTGTGCAGATTGCTG -ACGGAACTACTGTGCAGATCCATG -ACGGAACTACTGTGCAGATGTGTG -ACGGAACTACTGTGCAGACTAGTG -ACGGAACTACTGTGCAGACATCTG -ACGGAACTACTGTGCAGAGAGTTG -ACGGAACTACTGTGCAGAAGACTG -ACGGAACTACTGTGCAGATCGGTA -ACGGAACTACTGTGCAGATGCCTA -ACGGAACTACTGTGCAGACCACTA -ACGGAACTACTGTGCAGAGGAGTA -ACGGAACTACTGTGCAGATCGTCT -ACGGAACTACTGTGCAGATGCACT -ACGGAACTACTGTGCAGACTGACT -ACGGAACTACTGTGCAGACAACCT -ACGGAACTACTGTGCAGAGCTACT -ACGGAACTACTGTGCAGAGGATCT -ACGGAACTACTGTGCAGAAAGGCT -ACGGAACTACTGTGCAGATCAACC -ACGGAACTACTGTGCAGATGTTCC -ACGGAACTACTGTGCAGAATTCCC -ACGGAACTACTGTGCAGATTCTCG -ACGGAACTACTGTGCAGATAGACG -ACGGAACTACTGTGCAGAGTAACG -ACGGAACTACTGTGCAGAACTTCG -ACGGAACTACTGTGCAGATACGCA -ACGGAACTACTGTGCAGACTTGCA -ACGGAACTACTGTGCAGACGAACA -ACGGAACTACTGTGCAGACAGTCA -ACGGAACTACTGTGCAGAGATCCA -ACGGAACTACTGTGCAGAACGACA -ACGGAACTACTGTGCAGAAGCTCA -ACGGAACTACTGTGCAGATCACGT -ACGGAACTACTGTGCAGACGTAGT -ACGGAACTACTGTGCAGAGTCAGT -ACGGAACTACTGTGCAGAGAAGGT -ACGGAACTACTGTGCAGAAACCGT -ACGGAACTACTGTGCAGATTGTGC -ACGGAACTACTGTGCAGACTAAGC -ACGGAACTACTGTGCAGAACTAGC -ACGGAACTACTGTGCAGAAGATGC -ACGGAACTACTGTGCAGATGAAGG -ACGGAACTACTGTGCAGACAATGG -ACGGAACTACTGTGCAGAATGAGG -ACGGAACTACTGTGCAGAAATGGG -ACGGAACTACTGTGCAGATCCTGA -ACGGAACTACTGTGCAGATAGCGA -ACGGAACTACTGTGCAGACACAGA -ACGGAACTACTGTGCAGAGCAAGA -ACGGAACTACTGTGCAGAGGTTGA -ACGGAACTACTGTGCAGATCCGAT -ACGGAACTACTGTGCAGATGGCAT -ACGGAACTACTGTGCAGACGAGAT -ACGGAACTACTGTGCAGATACCAC -ACGGAACTACTGTGCAGACAGAAC -ACGGAACTACTGTGCAGAGTCTAC -ACGGAACTACTGTGCAGAACGTAC -ACGGAACTACTGTGCAGAAGTGAC -ACGGAACTACTGTGCAGACTGTAG -ACGGAACTACTGTGCAGACCTAAG -ACGGAACTACTGTGCAGAGTTCAG -ACGGAACTACTGTGCAGAGCATAG -ACGGAACTACTGTGCAGAGACAAG -ACGGAACTACTGTGCAGAAAGCAG -ACGGAACTACTGTGCAGACGTCAA -ACGGAACTACTGTGCAGAGCTGAA -ACGGAACTACTGTGCAGAAGTACG -ACGGAACTACTGTGCAGAATCCGA -ACGGAACTACTGTGCAGAATGGGA -ACGGAACTACTGTGCAGAGTGCAA -ACGGAACTACTGTGCAGAGAGGAA -ACGGAACTACTGTGCAGACAGGTA -ACGGAACTACTGTGCAGAGACTCT -ACGGAACTACTGTGCAGAAGTCCT -ACGGAACTACTGTGCAGATAAGCC -ACGGAACTACTGTGCAGAATAGCC -ACGGAACTACTGTGCAGATAACCG -ACGGAACTACTGTGCAGAATGCCA -ACGGAACTACTGAGGTGAGGAAAC -ACGGAACTACTGAGGTGAAACACC -ACGGAACTACTGAGGTGAATCGAG -ACGGAACTACTGAGGTGACTCCTT -ACGGAACTACTGAGGTGACCTGTT -ACGGAACTACTGAGGTGACGGTTT -ACGGAACTACTGAGGTGAGTGGTT -ACGGAACTACTGAGGTGAGCCTTT -ACGGAACTACTGAGGTGAGGTCTT -ACGGAACTACTGAGGTGAACGCTT -ACGGAACTACTGAGGTGAAGCGTT -ACGGAACTACTGAGGTGATTCGTC -ACGGAACTACTGAGGTGATCTCTC -ACGGAACTACTGAGGTGATGGATC -ACGGAACTACTGAGGTGACACTTC -ACGGAACTACTGAGGTGAGTACTC -ACGGAACTACTGAGGTGAGATGTC -ACGGAACTACTGAGGTGAACAGTC -ACGGAACTACTGAGGTGATTGCTG -ACGGAACTACTGAGGTGATCCATG -ACGGAACTACTGAGGTGATGTGTG -ACGGAACTACTGAGGTGACTAGTG -ACGGAACTACTGAGGTGACATCTG -ACGGAACTACTGAGGTGAGAGTTG -ACGGAACTACTGAGGTGAAGACTG -ACGGAACTACTGAGGTGATCGGTA -ACGGAACTACTGAGGTGATGCCTA -ACGGAACTACTGAGGTGACCACTA -ACGGAACTACTGAGGTGAGGAGTA -ACGGAACTACTGAGGTGATCGTCT -ACGGAACTACTGAGGTGATGCACT -ACGGAACTACTGAGGTGACTGACT -ACGGAACTACTGAGGTGACAACCT -ACGGAACTACTGAGGTGAGCTACT -ACGGAACTACTGAGGTGAGGATCT -ACGGAACTACTGAGGTGAAAGGCT -ACGGAACTACTGAGGTGATCAACC -ACGGAACTACTGAGGTGATGTTCC -ACGGAACTACTGAGGTGAATTCCC -ACGGAACTACTGAGGTGATTCTCG -ACGGAACTACTGAGGTGATAGACG -ACGGAACTACTGAGGTGAGTAACG -ACGGAACTACTGAGGTGAACTTCG -ACGGAACTACTGAGGTGATACGCA -ACGGAACTACTGAGGTGACTTGCA -ACGGAACTACTGAGGTGACGAACA -ACGGAACTACTGAGGTGACAGTCA -ACGGAACTACTGAGGTGAGATCCA -ACGGAACTACTGAGGTGAACGACA -ACGGAACTACTGAGGTGAAGCTCA -ACGGAACTACTGAGGTGATCACGT -ACGGAACTACTGAGGTGACGTAGT -ACGGAACTACTGAGGTGAGTCAGT -ACGGAACTACTGAGGTGAGAAGGT -ACGGAACTACTGAGGTGAAACCGT -ACGGAACTACTGAGGTGATTGTGC -ACGGAACTACTGAGGTGACTAAGC -ACGGAACTACTGAGGTGAACTAGC -ACGGAACTACTGAGGTGAAGATGC -ACGGAACTACTGAGGTGATGAAGG -ACGGAACTACTGAGGTGACAATGG -ACGGAACTACTGAGGTGAATGAGG -ACGGAACTACTGAGGTGAAATGGG -ACGGAACTACTGAGGTGATCCTGA -ACGGAACTACTGAGGTGATAGCGA -ACGGAACTACTGAGGTGACACAGA -ACGGAACTACTGAGGTGAGCAAGA -ACGGAACTACTGAGGTGAGGTTGA -ACGGAACTACTGAGGTGATCCGAT -ACGGAACTACTGAGGTGATGGCAT -ACGGAACTACTGAGGTGACGAGAT -ACGGAACTACTGAGGTGATACCAC -ACGGAACTACTGAGGTGACAGAAC -ACGGAACTACTGAGGTGAGTCTAC -ACGGAACTACTGAGGTGAACGTAC -ACGGAACTACTGAGGTGAAGTGAC -ACGGAACTACTGAGGTGACTGTAG -ACGGAACTACTGAGGTGACCTAAG -ACGGAACTACTGAGGTGAGTTCAG -ACGGAACTACTGAGGTGAGCATAG -ACGGAACTACTGAGGTGAGACAAG -ACGGAACTACTGAGGTGAAAGCAG -ACGGAACTACTGAGGTGACGTCAA -ACGGAACTACTGAGGTGAGCTGAA -ACGGAACTACTGAGGTGAAGTACG -ACGGAACTACTGAGGTGAATCCGA -ACGGAACTACTGAGGTGAATGGGA -ACGGAACTACTGAGGTGAGTGCAA -ACGGAACTACTGAGGTGAGAGGAA -ACGGAACTACTGAGGTGACAGGTA -ACGGAACTACTGAGGTGAGACTCT -ACGGAACTACTGAGGTGAAGTCCT -ACGGAACTACTGAGGTGATAAGCC -ACGGAACTACTGAGGTGAATAGCC -ACGGAACTACTGAGGTGATAACCG -ACGGAACTACTGAGGTGAATGCCA -ACGGAACTACTGTGGCAAGGAAAC -ACGGAACTACTGTGGCAAAACACC -ACGGAACTACTGTGGCAAATCGAG -ACGGAACTACTGTGGCAACTCCTT -ACGGAACTACTGTGGCAACCTGTT -ACGGAACTACTGTGGCAACGGTTT -ACGGAACTACTGTGGCAAGTGGTT -ACGGAACTACTGTGGCAAGCCTTT -ACGGAACTACTGTGGCAAGGTCTT -ACGGAACTACTGTGGCAAACGCTT -ACGGAACTACTGTGGCAAAGCGTT -ACGGAACTACTGTGGCAATTCGTC -ACGGAACTACTGTGGCAATCTCTC -ACGGAACTACTGTGGCAATGGATC -ACGGAACTACTGTGGCAACACTTC -ACGGAACTACTGTGGCAAGTACTC -ACGGAACTACTGTGGCAAGATGTC -ACGGAACTACTGTGGCAAACAGTC -ACGGAACTACTGTGGCAATTGCTG -ACGGAACTACTGTGGCAATCCATG -ACGGAACTACTGTGGCAATGTGTG -ACGGAACTACTGTGGCAACTAGTG -ACGGAACTACTGTGGCAACATCTG -ACGGAACTACTGTGGCAAGAGTTG -ACGGAACTACTGTGGCAAAGACTG -ACGGAACTACTGTGGCAATCGGTA -ACGGAACTACTGTGGCAATGCCTA -ACGGAACTACTGTGGCAACCACTA -ACGGAACTACTGTGGCAAGGAGTA -ACGGAACTACTGTGGCAATCGTCT -ACGGAACTACTGTGGCAATGCACT -ACGGAACTACTGTGGCAACTGACT -ACGGAACTACTGTGGCAACAACCT -ACGGAACTACTGTGGCAAGCTACT -ACGGAACTACTGTGGCAAGGATCT -ACGGAACTACTGTGGCAAAAGGCT -ACGGAACTACTGTGGCAATCAACC -ACGGAACTACTGTGGCAATGTTCC -ACGGAACTACTGTGGCAAATTCCC -ACGGAACTACTGTGGCAATTCTCG -ACGGAACTACTGTGGCAATAGACG -ACGGAACTACTGTGGCAAGTAACG -ACGGAACTACTGTGGCAAACTTCG -ACGGAACTACTGTGGCAATACGCA -ACGGAACTACTGTGGCAACTTGCA -ACGGAACTACTGTGGCAACGAACA -ACGGAACTACTGTGGCAACAGTCA -ACGGAACTACTGTGGCAAGATCCA -ACGGAACTACTGTGGCAAACGACA -ACGGAACTACTGTGGCAAAGCTCA -ACGGAACTACTGTGGCAATCACGT -ACGGAACTACTGTGGCAACGTAGT -ACGGAACTACTGTGGCAAGTCAGT -ACGGAACTACTGTGGCAAGAAGGT -ACGGAACTACTGTGGCAAAACCGT -ACGGAACTACTGTGGCAATTGTGC -ACGGAACTACTGTGGCAACTAAGC -ACGGAACTACTGTGGCAAACTAGC -ACGGAACTACTGTGGCAAAGATGC -ACGGAACTACTGTGGCAATGAAGG -ACGGAACTACTGTGGCAACAATGG -ACGGAACTACTGTGGCAAATGAGG -ACGGAACTACTGTGGCAAAATGGG -ACGGAACTACTGTGGCAATCCTGA -ACGGAACTACTGTGGCAATAGCGA -ACGGAACTACTGTGGCAACACAGA -ACGGAACTACTGTGGCAAGCAAGA -ACGGAACTACTGTGGCAAGGTTGA -ACGGAACTACTGTGGCAATCCGAT -ACGGAACTACTGTGGCAATGGCAT -ACGGAACTACTGTGGCAACGAGAT -ACGGAACTACTGTGGCAATACCAC -ACGGAACTACTGTGGCAACAGAAC -ACGGAACTACTGTGGCAAGTCTAC -ACGGAACTACTGTGGCAAACGTAC -ACGGAACTACTGTGGCAAAGTGAC -ACGGAACTACTGTGGCAACTGTAG -ACGGAACTACTGTGGCAACCTAAG -ACGGAACTACTGTGGCAAGTTCAG -ACGGAACTACTGTGGCAAGCATAG -ACGGAACTACTGTGGCAAGACAAG -ACGGAACTACTGTGGCAAAAGCAG -ACGGAACTACTGTGGCAACGTCAA -ACGGAACTACTGTGGCAAGCTGAA -ACGGAACTACTGTGGCAAAGTACG -ACGGAACTACTGTGGCAAATCCGA -ACGGAACTACTGTGGCAAATGGGA -ACGGAACTACTGTGGCAAGTGCAA -ACGGAACTACTGTGGCAAGAGGAA -ACGGAACTACTGTGGCAACAGGTA -ACGGAACTACTGTGGCAAGACTCT -ACGGAACTACTGTGGCAAAGTCCT -ACGGAACTACTGTGGCAATAAGCC -ACGGAACTACTGTGGCAAATAGCC -ACGGAACTACTGTGGCAATAACCG -ACGGAACTACTGTGGCAAATGCCA -ACGGAACTACTGAGGATGGGAAAC -ACGGAACTACTGAGGATGAACACC -ACGGAACTACTGAGGATGATCGAG -ACGGAACTACTGAGGATGCTCCTT -ACGGAACTACTGAGGATGCCTGTT -ACGGAACTACTGAGGATGCGGTTT -ACGGAACTACTGAGGATGGTGGTT -ACGGAACTACTGAGGATGGCCTTT -ACGGAACTACTGAGGATGGGTCTT -ACGGAACTACTGAGGATGACGCTT -ACGGAACTACTGAGGATGAGCGTT -ACGGAACTACTGAGGATGTTCGTC -ACGGAACTACTGAGGATGTCTCTC -ACGGAACTACTGAGGATGTGGATC -ACGGAACTACTGAGGATGCACTTC -ACGGAACTACTGAGGATGGTACTC -ACGGAACTACTGAGGATGGATGTC -ACGGAACTACTGAGGATGACAGTC -ACGGAACTACTGAGGATGTTGCTG -ACGGAACTACTGAGGATGTCCATG -ACGGAACTACTGAGGATGTGTGTG -ACGGAACTACTGAGGATGCTAGTG -ACGGAACTACTGAGGATGCATCTG -ACGGAACTACTGAGGATGGAGTTG -ACGGAACTACTGAGGATGAGACTG -ACGGAACTACTGAGGATGTCGGTA -ACGGAACTACTGAGGATGTGCCTA -ACGGAACTACTGAGGATGCCACTA -ACGGAACTACTGAGGATGGGAGTA -ACGGAACTACTGAGGATGTCGTCT -ACGGAACTACTGAGGATGTGCACT -ACGGAACTACTGAGGATGCTGACT -ACGGAACTACTGAGGATGCAACCT -ACGGAACTACTGAGGATGGCTACT -ACGGAACTACTGAGGATGGGATCT -ACGGAACTACTGAGGATGAAGGCT -ACGGAACTACTGAGGATGTCAACC -ACGGAACTACTGAGGATGTGTTCC -ACGGAACTACTGAGGATGATTCCC -ACGGAACTACTGAGGATGTTCTCG -ACGGAACTACTGAGGATGTAGACG -ACGGAACTACTGAGGATGGTAACG -ACGGAACTACTGAGGATGACTTCG -ACGGAACTACTGAGGATGTACGCA -ACGGAACTACTGAGGATGCTTGCA -ACGGAACTACTGAGGATGCGAACA -ACGGAACTACTGAGGATGCAGTCA -ACGGAACTACTGAGGATGGATCCA -ACGGAACTACTGAGGATGACGACA -ACGGAACTACTGAGGATGAGCTCA -ACGGAACTACTGAGGATGTCACGT -ACGGAACTACTGAGGATGCGTAGT -ACGGAACTACTGAGGATGGTCAGT -ACGGAACTACTGAGGATGGAAGGT -ACGGAACTACTGAGGATGAACCGT -ACGGAACTACTGAGGATGTTGTGC -ACGGAACTACTGAGGATGCTAAGC -ACGGAACTACTGAGGATGACTAGC -ACGGAACTACTGAGGATGAGATGC -ACGGAACTACTGAGGATGTGAAGG -ACGGAACTACTGAGGATGCAATGG -ACGGAACTACTGAGGATGATGAGG -ACGGAACTACTGAGGATGAATGGG -ACGGAACTACTGAGGATGTCCTGA -ACGGAACTACTGAGGATGTAGCGA -ACGGAACTACTGAGGATGCACAGA -ACGGAACTACTGAGGATGGCAAGA -ACGGAACTACTGAGGATGGGTTGA -ACGGAACTACTGAGGATGTCCGAT -ACGGAACTACTGAGGATGTGGCAT -ACGGAACTACTGAGGATGCGAGAT -ACGGAACTACTGAGGATGTACCAC -ACGGAACTACTGAGGATGCAGAAC -ACGGAACTACTGAGGATGGTCTAC -ACGGAACTACTGAGGATGACGTAC -ACGGAACTACTGAGGATGAGTGAC -ACGGAACTACTGAGGATGCTGTAG -ACGGAACTACTGAGGATGCCTAAG -ACGGAACTACTGAGGATGGTTCAG -ACGGAACTACTGAGGATGGCATAG -ACGGAACTACTGAGGATGGACAAG -ACGGAACTACTGAGGATGAAGCAG -ACGGAACTACTGAGGATGCGTCAA -ACGGAACTACTGAGGATGGCTGAA -ACGGAACTACTGAGGATGAGTACG -ACGGAACTACTGAGGATGATCCGA -ACGGAACTACTGAGGATGATGGGA -ACGGAACTACTGAGGATGGTGCAA -ACGGAACTACTGAGGATGGAGGAA -ACGGAACTACTGAGGATGCAGGTA -ACGGAACTACTGAGGATGGACTCT -ACGGAACTACTGAGGATGAGTCCT -ACGGAACTACTGAGGATGTAAGCC -ACGGAACTACTGAGGATGATAGCC -ACGGAACTACTGAGGATGTAACCG -ACGGAACTACTGAGGATGATGCCA -ACGGAACTACTGGGGAATGGAAAC -ACGGAACTACTGGGGAATAACACC -ACGGAACTACTGGGGAATATCGAG -ACGGAACTACTGGGGAATCTCCTT -ACGGAACTACTGGGGAATCCTGTT -ACGGAACTACTGGGGAATCGGTTT -ACGGAACTACTGGGGAATGTGGTT -ACGGAACTACTGGGGAATGCCTTT -ACGGAACTACTGGGGAATGGTCTT -ACGGAACTACTGGGGAATACGCTT -ACGGAACTACTGGGGAATAGCGTT -ACGGAACTACTGGGGAATTTCGTC -ACGGAACTACTGGGGAATTCTCTC -ACGGAACTACTGGGGAATTGGATC -ACGGAACTACTGGGGAATCACTTC -ACGGAACTACTGGGGAATGTACTC -ACGGAACTACTGGGGAATGATGTC -ACGGAACTACTGGGGAATACAGTC -ACGGAACTACTGGGGAATTTGCTG -ACGGAACTACTGGGGAATTCCATG -ACGGAACTACTGGGGAATTGTGTG -ACGGAACTACTGGGGAATCTAGTG -ACGGAACTACTGGGGAATCATCTG -ACGGAACTACTGGGGAATGAGTTG -ACGGAACTACTGGGGAATAGACTG -ACGGAACTACTGGGGAATTCGGTA -ACGGAACTACTGGGGAATTGCCTA -ACGGAACTACTGGGGAATCCACTA -ACGGAACTACTGGGGAATGGAGTA -ACGGAACTACTGGGGAATTCGTCT -ACGGAACTACTGGGGAATTGCACT -ACGGAACTACTGGGGAATCTGACT -ACGGAACTACTGGGGAATCAACCT -ACGGAACTACTGGGGAATGCTACT -ACGGAACTACTGGGGAATGGATCT -ACGGAACTACTGGGGAATAAGGCT -ACGGAACTACTGGGGAATTCAACC -ACGGAACTACTGGGGAATTGTTCC -ACGGAACTACTGGGGAATATTCCC -ACGGAACTACTGGGGAATTTCTCG -ACGGAACTACTGGGGAATTAGACG -ACGGAACTACTGGGGAATGTAACG -ACGGAACTACTGGGGAATACTTCG -ACGGAACTACTGGGGAATTACGCA -ACGGAACTACTGGGGAATCTTGCA -ACGGAACTACTGGGGAATCGAACA -ACGGAACTACTGGGGAATCAGTCA -ACGGAACTACTGGGGAATGATCCA -ACGGAACTACTGGGGAATACGACA -ACGGAACTACTGGGGAATAGCTCA -ACGGAACTACTGGGGAATTCACGT -ACGGAACTACTGGGGAATCGTAGT -ACGGAACTACTGGGGAATGTCAGT -ACGGAACTACTGGGGAATGAAGGT -ACGGAACTACTGGGGAATAACCGT -ACGGAACTACTGGGGAATTTGTGC -ACGGAACTACTGGGGAATCTAAGC -ACGGAACTACTGGGGAATACTAGC -ACGGAACTACTGGGGAATAGATGC -ACGGAACTACTGGGGAATTGAAGG -ACGGAACTACTGGGGAATCAATGG -ACGGAACTACTGGGGAATATGAGG -ACGGAACTACTGGGGAATAATGGG -ACGGAACTACTGGGGAATTCCTGA -ACGGAACTACTGGGGAATTAGCGA -ACGGAACTACTGGGGAATCACAGA -ACGGAACTACTGGGGAATGCAAGA -ACGGAACTACTGGGGAATGGTTGA -ACGGAACTACTGGGGAATTCCGAT -ACGGAACTACTGGGGAATTGGCAT -ACGGAACTACTGGGGAATCGAGAT -ACGGAACTACTGGGGAATTACCAC -ACGGAACTACTGGGGAATCAGAAC -ACGGAACTACTGGGGAATGTCTAC -ACGGAACTACTGGGGAATACGTAC -ACGGAACTACTGGGGAATAGTGAC -ACGGAACTACTGGGGAATCTGTAG -ACGGAACTACTGGGGAATCCTAAG -ACGGAACTACTGGGGAATGTTCAG -ACGGAACTACTGGGGAATGCATAG -ACGGAACTACTGGGGAATGACAAG -ACGGAACTACTGGGGAATAAGCAG -ACGGAACTACTGGGGAATCGTCAA -ACGGAACTACTGGGGAATGCTGAA -ACGGAACTACTGGGGAATAGTACG -ACGGAACTACTGGGGAATATCCGA -ACGGAACTACTGGGGAATATGGGA -ACGGAACTACTGGGGAATGTGCAA -ACGGAACTACTGGGGAATGAGGAA -ACGGAACTACTGGGGAATCAGGTA -ACGGAACTACTGGGGAATGACTCT -ACGGAACTACTGGGGAATAGTCCT -ACGGAACTACTGGGGAATTAAGCC -ACGGAACTACTGGGGAATATAGCC -ACGGAACTACTGGGGAATTAACCG -ACGGAACTACTGGGGAATATGCCA -ACGGAACTACTGTGATCCGGAAAC -ACGGAACTACTGTGATCCAACACC -ACGGAACTACTGTGATCCATCGAG -ACGGAACTACTGTGATCCCTCCTT -ACGGAACTACTGTGATCCCCTGTT -ACGGAACTACTGTGATCCCGGTTT -ACGGAACTACTGTGATCCGTGGTT -ACGGAACTACTGTGATCCGCCTTT -ACGGAACTACTGTGATCCGGTCTT -ACGGAACTACTGTGATCCACGCTT -ACGGAACTACTGTGATCCAGCGTT -ACGGAACTACTGTGATCCTTCGTC -ACGGAACTACTGTGATCCTCTCTC -ACGGAACTACTGTGATCCTGGATC -ACGGAACTACTGTGATCCCACTTC -ACGGAACTACTGTGATCCGTACTC -ACGGAACTACTGTGATCCGATGTC -ACGGAACTACTGTGATCCACAGTC -ACGGAACTACTGTGATCCTTGCTG -ACGGAACTACTGTGATCCTCCATG -ACGGAACTACTGTGATCCTGTGTG -ACGGAACTACTGTGATCCCTAGTG -ACGGAACTACTGTGATCCCATCTG -ACGGAACTACTGTGATCCGAGTTG -ACGGAACTACTGTGATCCAGACTG -ACGGAACTACTGTGATCCTCGGTA -ACGGAACTACTGTGATCCTGCCTA -ACGGAACTACTGTGATCCCCACTA -ACGGAACTACTGTGATCCGGAGTA -ACGGAACTACTGTGATCCTCGTCT -ACGGAACTACTGTGATCCTGCACT -ACGGAACTACTGTGATCCCTGACT -ACGGAACTACTGTGATCCCAACCT -ACGGAACTACTGTGATCCGCTACT -ACGGAACTACTGTGATCCGGATCT -ACGGAACTACTGTGATCCAAGGCT -ACGGAACTACTGTGATCCTCAACC -ACGGAACTACTGTGATCCTGTTCC -ACGGAACTACTGTGATCCATTCCC -ACGGAACTACTGTGATCCTTCTCG -ACGGAACTACTGTGATCCTAGACG -ACGGAACTACTGTGATCCGTAACG -ACGGAACTACTGTGATCCACTTCG -ACGGAACTACTGTGATCCTACGCA -ACGGAACTACTGTGATCCCTTGCA -ACGGAACTACTGTGATCCCGAACA -ACGGAACTACTGTGATCCCAGTCA -ACGGAACTACTGTGATCCGATCCA -ACGGAACTACTGTGATCCACGACA -ACGGAACTACTGTGATCCAGCTCA -ACGGAACTACTGTGATCCTCACGT -ACGGAACTACTGTGATCCCGTAGT -ACGGAACTACTGTGATCCGTCAGT -ACGGAACTACTGTGATCCGAAGGT -ACGGAACTACTGTGATCCAACCGT -ACGGAACTACTGTGATCCTTGTGC -ACGGAACTACTGTGATCCCTAAGC -ACGGAACTACTGTGATCCACTAGC -ACGGAACTACTGTGATCCAGATGC -ACGGAACTACTGTGATCCTGAAGG -ACGGAACTACTGTGATCCCAATGG -ACGGAACTACTGTGATCCATGAGG -ACGGAACTACTGTGATCCAATGGG -ACGGAACTACTGTGATCCTCCTGA -ACGGAACTACTGTGATCCTAGCGA -ACGGAACTACTGTGATCCCACAGA -ACGGAACTACTGTGATCCGCAAGA -ACGGAACTACTGTGATCCGGTTGA -ACGGAACTACTGTGATCCTCCGAT -ACGGAACTACTGTGATCCTGGCAT -ACGGAACTACTGTGATCCCGAGAT -ACGGAACTACTGTGATCCTACCAC -ACGGAACTACTGTGATCCCAGAAC -ACGGAACTACTGTGATCCGTCTAC -ACGGAACTACTGTGATCCACGTAC -ACGGAACTACTGTGATCCAGTGAC -ACGGAACTACTGTGATCCCTGTAG -ACGGAACTACTGTGATCCCCTAAG -ACGGAACTACTGTGATCCGTTCAG -ACGGAACTACTGTGATCCGCATAG -ACGGAACTACTGTGATCCGACAAG -ACGGAACTACTGTGATCCAAGCAG -ACGGAACTACTGTGATCCCGTCAA -ACGGAACTACTGTGATCCGCTGAA -ACGGAACTACTGTGATCCAGTACG -ACGGAACTACTGTGATCCATCCGA -ACGGAACTACTGTGATCCATGGGA -ACGGAACTACTGTGATCCGTGCAA -ACGGAACTACTGTGATCCGAGGAA -ACGGAACTACTGTGATCCCAGGTA -ACGGAACTACTGTGATCCGACTCT -ACGGAACTACTGTGATCCAGTCCT -ACGGAACTACTGTGATCCTAAGCC -ACGGAACTACTGTGATCCATAGCC -ACGGAACTACTGTGATCCTAACCG -ACGGAACTACTGTGATCCATGCCA -ACGGAACTACTGCGATAGGGAAAC -ACGGAACTACTGCGATAGAACACC -ACGGAACTACTGCGATAGATCGAG -ACGGAACTACTGCGATAGCTCCTT -ACGGAACTACTGCGATAGCCTGTT -ACGGAACTACTGCGATAGCGGTTT -ACGGAACTACTGCGATAGGTGGTT -ACGGAACTACTGCGATAGGCCTTT -ACGGAACTACTGCGATAGGGTCTT -ACGGAACTACTGCGATAGACGCTT -ACGGAACTACTGCGATAGAGCGTT -ACGGAACTACTGCGATAGTTCGTC -ACGGAACTACTGCGATAGTCTCTC -ACGGAACTACTGCGATAGTGGATC -ACGGAACTACTGCGATAGCACTTC -ACGGAACTACTGCGATAGGTACTC -ACGGAACTACTGCGATAGGATGTC -ACGGAACTACTGCGATAGACAGTC -ACGGAACTACTGCGATAGTTGCTG -ACGGAACTACTGCGATAGTCCATG -ACGGAACTACTGCGATAGTGTGTG -ACGGAACTACTGCGATAGCTAGTG -ACGGAACTACTGCGATAGCATCTG -ACGGAACTACTGCGATAGGAGTTG -ACGGAACTACTGCGATAGAGACTG -ACGGAACTACTGCGATAGTCGGTA -ACGGAACTACTGCGATAGTGCCTA -ACGGAACTACTGCGATAGCCACTA -ACGGAACTACTGCGATAGGGAGTA -ACGGAACTACTGCGATAGTCGTCT -ACGGAACTACTGCGATAGTGCACT -ACGGAACTACTGCGATAGCTGACT -ACGGAACTACTGCGATAGCAACCT -ACGGAACTACTGCGATAGGCTACT -ACGGAACTACTGCGATAGGGATCT -ACGGAACTACTGCGATAGAAGGCT -ACGGAACTACTGCGATAGTCAACC -ACGGAACTACTGCGATAGTGTTCC -ACGGAACTACTGCGATAGATTCCC -ACGGAACTACTGCGATAGTTCTCG -ACGGAACTACTGCGATAGTAGACG -ACGGAACTACTGCGATAGGTAACG -ACGGAACTACTGCGATAGACTTCG -ACGGAACTACTGCGATAGTACGCA -ACGGAACTACTGCGATAGCTTGCA -ACGGAACTACTGCGATAGCGAACA -ACGGAACTACTGCGATAGCAGTCA -ACGGAACTACTGCGATAGGATCCA -ACGGAACTACTGCGATAGACGACA -ACGGAACTACTGCGATAGAGCTCA -ACGGAACTACTGCGATAGTCACGT -ACGGAACTACTGCGATAGCGTAGT -ACGGAACTACTGCGATAGGTCAGT -ACGGAACTACTGCGATAGGAAGGT -ACGGAACTACTGCGATAGAACCGT -ACGGAACTACTGCGATAGTTGTGC -ACGGAACTACTGCGATAGCTAAGC -ACGGAACTACTGCGATAGACTAGC -ACGGAACTACTGCGATAGAGATGC -ACGGAACTACTGCGATAGTGAAGG -ACGGAACTACTGCGATAGCAATGG -ACGGAACTACTGCGATAGATGAGG -ACGGAACTACTGCGATAGAATGGG -ACGGAACTACTGCGATAGTCCTGA -ACGGAACTACTGCGATAGTAGCGA -ACGGAACTACTGCGATAGCACAGA -ACGGAACTACTGCGATAGGCAAGA -ACGGAACTACTGCGATAGGGTTGA -ACGGAACTACTGCGATAGTCCGAT -ACGGAACTACTGCGATAGTGGCAT -ACGGAACTACTGCGATAGCGAGAT -ACGGAACTACTGCGATAGTACCAC -ACGGAACTACTGCGATAGCAGAAC -ACGGAACTACTGCGATAGGTCTAC -ACGGAACTACTGCGATAGACGTAC -ACGGAACTACTGCGATAGAGTGAC -ACGGAACTACTGCGATAGCTGTAG -ACGGAACTACTGCGATAGCCTAAG -ACGGAACTACTGCGATAGGTTCAG -ACGGAACTACTGCGATAGGCATAG -ACGGAACTACTGCGATAGGACAAG -ACGGAACTACTGCGATAGAAGCAG -ACGGAACTACTGCGATAGCGTCAA -ACGGAACTACTGCGATAGGCTGAA -ACGGAACTACTGCGATAGAGTACG -ACGGAACTACTGCGATAGATCCGA -ACGGAACTACTGCGATAGATGGGA -ACGGAACTACTGCGATAGGTGCAA -ACGGAACTACTGCGATAGGAGGAA -ACGGAACTACTGCGATAGCAGGTA -ACGGAACTACTGCGATAGGACTCT -ACGGAACTACTGCGATAGAGTCCT -ACGGAACTACTGCGATAGTAAGCC -ACGGAACTACTGCGATAGATAGCC -ACGGAACTACTGCGATAGTAACCG -ACGGAACTACTGCGATAGATGCCA -ACGGAACTACTGAGACACGGAAAC -ACGGAACTACTGAGACACAACACC -ACGGAACTACTGAGACACATCGAG -ACGGAACTACTGAGACACCTCCTT -ACGGAACTACTGAGACACCCTGTT -ACGGAACTACTGAGACACCGGTTT -ACGGAACTACTGAGACACGTGGTT -ACGGAACTACTGAGACACGCCTTT -ACGGAACTACTGAGACACGGTCTT -ACGGAACTACTGAGACACACGCTT -ACGGAACTACTGAGACACAGCGTT -ACGGAACTACTGAGACACTTCGTC -ACGGAACTACTGAGACACTCTCTC -ACGGAACTACTGAGACACTGGATC -ACGGAACTACTGAGACACCACTTC -ACGGAACTACTGAGACACGTACTC -ACGGAACTACTGAGACACGATGTC -ACGGAACTACTGAGACACACAGTC -ACGGAACTACTGAGACACTTGCTG -ACGGAACTACTGAGACACTCCATG -ACGGAACTACTGAGACACTGTGTG -ACGGAACTACTGAGACACCTAGTG -ACGGAACTACTGAGACACCATCTG -ACGGAACTACTGAGACACGAGTTG -ACGGAACTACTGAGACACAGACTG -ACGGAACTACTGAGACACTCGGTA -ACGGAACTACTGAGACACTGCCTA -ACGGAACTACTGAGACACCCACTA -ACGGAACTACTGAGACACGGAGTA -ACGGAACTACTGAGACACTCGTCT -ACGGAACTACTGAGACACTGCACT -ACGGAACTACTGAGACACCTGACT -ACGGAACTACTGAGACACCAACCT -ACGGAACTACTGAGACACGCTACT -ACGGAACTACTGAGACACGGATCT -ACGGAACTACTGAGACACAAGGCT -ACGGAACTACTGAGACACTCAACC -ACGGAACTACTGAGACACTGTTCC -ACGGAACTACTGAGACACATTCCC -ACGGAACTACTGAGACACTTCTCG -ACGGAACTACTGAGACACTAGACG -ACGGAACTACTGAGACACGTAACG -ACGGAACTACTGAGACACACTTCG -ACGGAACTACTGAGACACTACGCA -ACGGAACTACTGAGACACCTTGCA -ACGGAACTACTGAGACACCGAACA -ACGGAACTACTGAGACACCAGTCA -ACGGAACTACTGAGACACGATCCA -ACGGAACTACTGAGACACACGACA -ACGGAACTACTGAGACACAGCTCA -ACGGAACTACTGAGACACTCACGT -ACGGAACTACTGAGACACCGTAGT -ACGGAACTACTGAGACACGTCAGT -ACGGAACTACTGAGACACGAAGGT -ACGGAACTACTGAGACACAACCGT -ACGGAACTACTGAGACACTTGTGC -ACGGAACTACTGAGACACCTAAGC -ACGGAACTACTGAGACACACTAGC -ACGGAACTACTGAGACACAGATGC -ACGGAACTACTGAGACACTGAAGG -ACGGAACTACTGAGACACCAATGG -ACGGAACTACTGAGACACATGAGG -ACGGAACTACTGAGACACAATGGG -ACGGAACTACTGAGACACTCCTGA -ACGGAACTACTGAGACACTAGCGA -ACGGAACTACTGAGACACCACAGA -ACGGAACTACTGAGACACGCAAGA -ACGGAACTACTGAGACACGGTTGA -ACGGAACTACTGAGACACTCCGAT -ACGGAACTACTGAGACACTGGCAT -ACGGAACTACTGAGACACCGAGAT -ACGGAACTACTGAGACACTACCAC -ACGGAACTACTGAGACACCAGAAC -ACGGAACTACTGAGACACGTCTAC -ACGGAACTACTGAGACACACGTAC -ACGGAACTACTGAGACACAGTGAC -ACGGAACTACTGAGACACCTGTAG -ACGGAACTACTGAGACACCCTAAG -ACGGAACTACTGAGACACGTTCAG -ACGGAACTACTGAGACACGCATAG -ACGGAACTACTGAGACACGACAAG -ACGGAACTACTGAGACACAAGCAG -ACGGAACTACTGAGACACCGTCAA -ACGGAACTACTGAGACACGCTGAA -ACGGAACTACTGAGACACAGTACG -ACGGAACTACTGAGACACATCCGA -ACGGAACTACTGAGACACATGGGA -ACGGAACTACTGAGACACGTGCAA -ACGGAACTACTGAGACACGAGGAA -ACGGAACTACTGAGACACCAGGTA -ACGGAACTACTGAGACACGACTCT -ACGGAACTACTGAGACACAGTCCT -ACGGAACTACTGAGACACTAAGCC -ACGGAACTACTGAGACACATAGCC -ACGGAACTACTGAGACACTAACCG -ACGGAACTACTGAGACACATGCCA -ACGGAACTACTGAGAGCAGGAAAC -ACGGAACTACTGAGAGCAAACACC -ACGGAACTACTGAGAGCAATCGAG -ACGGAACTACTGAGAGCACTCCTT -ACGGAACTACTGAGAGCACCTGTT -ACGGAACTACTGAGAGCACGGTTT -ACGGAACTACTGAGAGCAGTGGTT -ACGGAACTACTGAGAGCAGCCTTT -ACGGAACTACTGAGAGCAGGTCTT -ACGGAACTACTGAGAGCAACGCTT -ACGGAACTACTGAGAGCAAGCGTT -ACGGAACTACTGAGAGCATTCGTC -ACGGAACTACTGAGAGCATCTCTC -ACGGAACTACTGAGAGCATGGATC -ACGGAACTACTGAGAGCACACTTC -ACGGAACTACTGAGAGCAGTACTC -ACGGAACTACTGAGAGCAGATGTC -ACGGAACTACTGAGAGCAACAGTC -ACGGAACTACTGAGAGCATTGCTG -ACGGAACTACTGAGAGCATCCATG -ACGGAACTACTGAGAGCATGTGTG -ACGGAACTACTGAGAGCACTAGTG -ACGGAACTACTGAGAGCACATCTG -ACGGAACTACTGAGAGCAGAGTTG -ACGGAACTACTGAGAGCAAGACTG -ACGGAACTACTGAGAGCATCGGTA -ACGGAACTACTGAGAGCATGCCTA -ACGGAACTACTGAGAGCACCACTA -ACGGAACTACTGAGAGCAGGAGTA -ACGGAACTACTGAGAGCATCGTCT -ACGGAACTACTGAGAGCATGCACT -ACGGAACTACTGAGAGCACTGACT -ACGGAACTACTGAGAGCACAACCT -ACGGAACTACTGAGAGCAGCTACT -ACGGAACTACTGAGAGCAGGATCT -ACGGAACTACTGAGAGCAAAGGCT -ACGGAACTACTGAGAGCATCAACC -ACGGAACTACTGAGAGCATGTTCC -ACGGAACTACTGAGAGCAATTCCC -ACGGAACTACTGAGAGCATTCTCG -ACGGAACTACTGAGAGCATAGACG -ACGGAACTACTGAGAGCAGTAACG -ACGGAACTACTGAGAGCAACTTCG -ACGGAACTACTGAGAGCATACGCA -ACGGAACTACTGAGAGCACTTGCA -ACGGAACTACTGAGAGCACGAACA -ACGGAACTACTGAGAGCACAGTCA -ACGGAACTACTGAGAGCAGATCCA -ACGGAACTACTGAGAGCAACGACA -ACGGAACTACTGAGAGCAAGCTCA -ACGGAACTACTGAGAGCATCACGT -ACGGAACTACTGAGAGCACGTAGT -ACGGAACTACTGAGAGCAGTCAGT -ACGGAACTACTGAGAGCAGAAGGT -ACGGAACTACTGAGAGCAAACCGT -ACGGAACTACTGAGAGCATTGTGC -ACGGAACTACTGAGAGCACTAAGC -ACGGAACTACTGAGAGCAACTAGC -ACGGAACTACTGAGAGCAAGATGC -ACGGAACTACTGAGAGCATGAAGG -ACGGAACTACTGAGAGCACAATGG -ACGGAACTACTGAGAGCAATGAGG -ACGGAACTACTGAGAGCAAATGGG -ACGGAACTACTGAGAGCATCCTGA -ACGGAACTACTGAGAGCATAGCGA -ACGGAACTACTGAGAGCACACAGA -ACGGAACTACTGAGAGCAGCAAGA -ACGGAACTACTGAGAGCAGGTTGA -ACGGAACTACTGAGAGCATCCGAT -ACGGAACTACTGAGAGCATGGCAT -ACGGAACTACTGAGAGCACGAGAT -ACGGAACTACTGAGAGCATACCAC -ACGGAACTACTGAGAGCACAGAAC -ACGGAACTACTGAGAGCAGTCTAC -ACGGAACTACTGAGAGCAACGTAC -ACGGAACTACTGAGAGCAAGTGAC -ACGGAACTACTGAGAGCACTGTAG -ACGGAACTACTGAGAGCACCTAAG -ACGGAACTACTGAGAGCAGTTCAG -ACGGAACTACTGAGAGCAGCATAG -ACGGAACTACTGAGAGCAGACAAG -ACGGAACTACTGAGAGCAAAGCAG -ACGGAACTACTGAGAGCACGTCAA -ACGGAACTACTGAGAGCAGCTGAA -ACGGAACTACTGAGAGCAAGTACG -ACGGAACTACTGAGAGCAATCCGA -ACGGAACTACTGAGAGCAATGGGA -ACGGAACTACTGAGAGCAGTGCAA -ACGGAACTACTGAGAGCAGAGGAA -ACGGAACTACTGAGAGCACAGGTA -ACGGAACTACTGAGAGCAGACTCT -ACGGAACTACTGAGAGCAAGTCCT -ACGGAACTACTGAGAGCATAAGCC -ACGGAACTACTGAGAGCAATAGCC -ACGGAACTACTGAGAGCATAACCG -ACGGAACTACTGAGAGCAATGCCA -ACGGAACTACTGTGAGGTGGAAAC -ACGGAACTACTGTGAGGTAACACC -ACGGAACTACTGTGAGGTATCGAG -ACGGAACTACTGTGAGGTCTCCTT -ACGGAACTACTGTGAGGTCCTGTT -ACGGAACTACTGTGAGGTCGGTTT -ACGGAACTACTGTGAGGTGTGGTT -ACGGAACTACTGTGAGGTGCCTTT -ACGGAACTACTGTGAGGTGGTCTT -ACGGAACTACTGTGAGGTACGCTT -ACGGAACTACTGTGAGGTAGCGTT -ACGGAACTACTGTGAGGTTTCGTC -ACGGAACTACTGTGAGGTTCTCTC -ACGGAACTACTGTGAGGTTGGATC -ACGGAACTACTGTGAGGTCACTTC -ACGGAACTACTGTGAGGTGTACTC -ACGGAACTACTGTGAGGTGATGTC -ACGGAACTACTGTGAGGTACAGTC -ACGGAACTACTGTGAGGTTTGCTG -ACGGAACTACTGTGAGGTTCCATG -ACGGAACTACTGTGAGGTTGTGTG -ACGGAACTACTGTGAGGTCTAGTG -ACGGAACTACTGTGAGGTCATCTG -ACGGAACTACTGTGAGGTGAGTTG -ACGGAACTACTGTGAGGTAGACTG -ACGGAACTACTGTGAGGTTCGGTA -ACGGAACTACTGTGAGGTTGCCTA -ACGGAACTACTGTGAGGTCCACTA -ACGGAACTACTGTGAGGTGGAGTA -ACGGAACTACTGTGAGGTTCGTCT -ACGGAACTACTGTGAGGTTGCACT -ACGGAACTACTGTGAGGTCTGACT -ACGGAACTACTGTGAGGTCAACCT -ACGGAACTACTGTGAGGTGCTACT -ACGGAACTACTGTGAGGTGGATCT -ACGGAACTACTGTGAGGTAAGGCT -ACGGAACTACTGTGAGGTTCAACC -ACGGAACTACTGTGAGGTTGTTCC -ACGGAACTACTGTGAGGTATTCCC -ACGGAACTACTGTGAGGTTTCTCG -ACGGAACTACTGTGAGGTTAGACG -ACGGAACTACTGTGAGGTGTAACG -ACGGAACTACTGTGAGGTACTTCG -ACGGAACTACTGTGAGGTTACGCA -ACGGAACTACTGTGAGGTCTTGCA -ACGGAACTACTGTGAGGTCGAACA -ACGGAACTACTGTGAGGTCAGTCA -ACGGAACTACTGTGAGGTGATCCA -ACGGAACTACTGTGAGGTACGACA -ACGGAACTACTGTGAGGTAGCTCA -ACGGAACTACTGTGAGGTTCACGT -ACGGAACTACTGTGAGGTCGTAGT -ACGGAACTACTGTGAGGTGTCAGT -ACGGAACTACTGTGAGGTGAAGGT -ACGGAACTACTGTGAGGTAACCGT -ACGGAACTACTGTGAGGTTTGTGC -ACGGAACTACTGTGAGGTCTAAGC -ACGGAACTACTGTGAGGTACTAGC -ACGGAACTACTGTGAGGTAGATGC -ACGGAACTACTGTGAGGTTGAAGG -ACGGAACTACTGTGAGGTCAATGG -ACGGAACTACTGTGAGGTATGAGG -ACGGAACTACTGTGAGGTAATGGG -ACGGAACTACTGTGAGGTTCCTGA -ACGGAACTACTGTGAGGTTAGCGA -ACGGAACTACTGTGAGGTCACAGA -ACGGAACTACTGTGAGGTGCAAGA -ACGGAACTACTGTGAGGTGGTTGA -ACGGAACTACTGTGAGGTTCCGAT -ACGGAACTACTGTGAGGTTGGCAT -ACGGAACTACTGTGAGGTCGAGAT -ACGGAACTACTGTGAGGTTACCAC -ACGGAACTACTGTGAGGTCAGAAC -ACGGAACTACTGTGAGGTGTCTAC -ACGGAACTACTGTGAGGTACGTAC -ACGGAACTACTGTGAGGTAGTGAC -ACGGAACTACTGTGAGGTCTGTAG -ACGGAACTACTGTGAGGTCCTAAG -ACGGAACTACTGTGAGGTGTTCAG -ACGGAACTACTGTGAGGTGCATAG -ACGGAACTACTGTGAGGTGACAAG -ACGGAACTACTGTGAGGTAAGCAG -ACGGAACTACTGTGAGGTCGTCAA -ACGGAACTACTGTGAGGTGCTGAA -ACGGAACTACTGTGAGGTAGTACG -ACGGAACTACTGTGAGGTATCCGA -ACGGAACTACTGTGAGGTATGGGA -ACGGAACTACTGTGAGGTGTGCAA -ACGGAACTACTGTGAGGTGAGGAA -ACGGAACTACTGTGAGGTCAGGTA -ACGGAACTACTGTGAGGTGACTCT -ACGGAACTACTGTGAGGTAGTCCT -ACGGAACTACTGTGAGGTTAAGCC -ACGGAACTACTGTGAGGTATAGCC -ACGGAACTACTGTGAGGTTAACCG -ACGGAACTACTGTGAGGTATGCCA -ACGGAACTACTGGATTCCGGAAAC -ACGGAACTACTGGATTCCAACACC -ACGGAACTACTGGATTCCATCGAG -ACGGAACTACTGGATTCCCTCCTT -ACGGAACTACTGGATTCCCCTGTT -ACGGAACTACTGGATTCCCGGTTT -ACGGAACTACTGGATTCCGTGGTT -ACGGAACTACTGGATTCCGCCTTT -ACGGAACTACTGGATTCCGGTCTT -ACGGAACTACTGGATTCCACGCTT -ACGGAACTACTGGATTCCAGCGTT -ACGGAACTACTGGATTCCTTCGTC -ACGGAACTACTGGATTCCTCTCTC -ACGGAACTACTGGATTCCTGGATC -ACGGAACTACTGGATTCCCACTTC -ACGGAACTACTGGATTCCGTACTC -ACGGAACTACTGGATTCCGATGTC -ACGGAACTACTGGATTCCACAGTC -ACGGAACTACTGGATTCCTTGCTG -ACGGAACTACTGGATTCCTCCATG -ACGGAACTACTGGATTCCTGTGTG -ACGGAACTACTGGATTCCCTAGTG -ACGGAACTACTGGATTCCCATCTG -ACGGAACTACTGGATTCCGAGTTG -ACGGAACTACTGGATTCCAGACTG -ACGGAACTACTGGATTCCTCGGTA -ACGGAACTACTGGATTCCTGCCTA -ACGGAACTACTGGATTCCCCACTA -ACGGAACTACTGGATTCCGGAGTA -ACGGAACTACTGGATTCCTCGTCT -ACGGAACTACTGGATTCCTGCACT -ACGGAACTACTGGATTCCCTGACT -ACGGAACTACTGGATTCCCAACCT -ACGGAACTACTGGATTCCGCTACT -ACGGAACTACTGGATTCCGGATCT -ACGGAACTACTGGATTCCAAGGCT -ACGGAACTACTGGATTCCTCAACC -ACGGAACTACTGGATTCCTGTTCC -ACGGAACTACTGGATTCCATTCCC -ACGGAACTACTGGATTCCTTCTCG -ACGGAACTACTGGATTCCTAGACG -ACGGAACTACTGGATTCCGTAACG -ACGGAACTACTGGATTCCACTTCG -ACGGAACTACTGGATTCCTACGCA -ACGGAACTACTGGATTCCCTTGCA -ACGGAACTACTGGATTCCCGAACA -ACGGAACTACTGGATTCCCAGTCA -ACGGAACTACTGGATTCCGATCCA -ACGGAACTACTGGATTCCACGACA -ACGGAACTACTGGATTCCAGCTCA -ACGGAACTACTGGATTCCTCACGT -ACGGAACTACTGGATTCCCGTAGT -ACGGAACTACTGGATTCCGTCAGT -ACGGAACTACTGGATTCCGAAGGT -ACGGAACTACTGGATTCCAACCGT -ACGGAACTACTGGATTCCTTGTGC -ACGGAACTACTGGATTCCCTAAGC -ACGGAACTACTGGATTCCACTAGC -ACGGAACTACTGGATTCCAGATGC -ACGGAACTACTGGATTCCTGAAGG -ACGGAACTACTGGATTCCCAATGG -ACGGAACTACTGGATTCCATGAGG -ACGGAACTACTGGATTCCAATGGG -ACGGAACTACTGGATTCCTCCTGA -ACGGAACTACTGGATTCCTAGCGA -ACGGAACTACTGGATTCCCACAGA -ACGGAACTACTGGATTCCGCAAGA -ACGGAACTACTGGATTCCGGTTGA -ACGGAACTACTGGATTCCTCCGAT -ACGGAACTACTGGATTCCTGGCAT -ACGGAACTACTGGATTCCCGAGAT -ACGGAACTACTGGATTCCTACCAC -ACGGAACTACTGGATTCCCAGAAC -ACGGAACTACTGGATTCCGTCTAC -ACGGAACTACTGGATTCCACGTAC -ACGGAACTACTGGATTCCAGTGAC -ACGGAACTACTGGATTCCCTGTAG -ACGGAACTACTGGATTCCCCTAAG -ACGGAACTACTGGATTCCGTTCAG -ACGGAACTACTGGATTCCGCATAG -ACGGAACTACTGGATTCCGACAAG -ACGGAACTACTGGATTCCAAGCAG -ACGGAACTACTGGATTCCCGTCAA -ACGGAACTACTGGATTCCGCTGAA -ACGGAACTACTGGATTCCAGTACG -ACGGAACTACTGGATTCCATCCGA -ACGGAACTACTGGATTCCATGGGA -ACGGAACTACTGGATTCCGTGCAA -ACGGAACTACTGGATTCCGAGGAA -ACGGAACTACTGGATTCCCAGGTA -ACGGAACTACTGGATTCCGACTCT -ACGGAACTACTGGATTCCAGTCCT -ACGGAACTACTGGATTCCTAAGCC -ACGGAACTACTGGATTCCATAGCC -ACGGAACTACTGGATTCCTAACCG -ACGGAACTACTGGATTCCATGCCA -ACGGAACTACTGCATTGGGGAAAC -ACGGAACTACTGCATTGGAACACC -ACGGAACTACTGCATTGGATCGAG -ACGGAACTACTGCATTGGCTCCTT -ACGGAACTACTGCATTGGCCTGTT -ACGGAACTACTGCATTGGCGGTTT -ACGGAACTACTGCATTGGGTGGTT -ACGGAACTACTGCATTGGGCCTTT -ACGGAACTACTGCATTGGGGTCTT -ACGGAACTACTGCATTGGACGCTT -ACGGAACTACTGCATTGGAGCGTT -ACGGAACTACTGCATTGGTTCGTC -ACGGAACTACTGCATTGGTCTCTC -ACGGAACTACTGCATTGGTGGATC -ACGGAACTACTGCATTGGCACTTC -ACGGAACTACTGCATTGGGTACTC -ACGGAACTACTGCATTGGGATGTC -ACGGAACTACTGCATTGGACAGTC -ACGGAACTACTGCATTGGTTGCTG -ACGGAACTACTGCATTGGTCCATG -ACGGAACTACTGCATTGGTGTGTG -ACGGAACTACTGCATTGGCTAGTG -ACGGAACTACTGCATTGGCATCTG -ACGGAACTACTGCATTGGGAGTTG -ACGGAACTACTGCATTGGAGACTG -ACGGAACTACTGCATTGGTCGGTA -ACGGAACTACTGCATTGGTGCCTA -ACGGAACTACTGCATTGGCCACTA -ACGGAACTACTGCATTGGGGAGTA -ACGGAACTACTGCATTGGTCGTCT -ACGGAACTACTGCATTGGTGCACT -ACGGAACTACTGCATTGGCTGACT -ACGGAACTACTGCATTGGCAACCT -ACGGAACTACTGCATTGGGCTACT -ACGGAACTACTGCATTGGGGATCT -ACGGAACTACTGCATTGGAAGGCT -ACGGAACTACTGCATTGGTCAACC -ACGGAACTACTGCATTGGTGTTCC -ACGGAACTACTGCATTGGATTCCC -ACGGAACTACTGCATTGGTTCTCG -ACGGAACTACTGCATTGGTAGACG -ACGGAACTACTGCATTGGGTAACG -ACGGAACTACTGCATTGGACTTCG -ACGGAACTACTGCATTGGTACGCA -ACGGAACTACTGCATTGGCTTGCA -ACGGAACTACTGCATTGGCGAACA -ACGGAACTACTGCATTGGCAGTCA -ACGGAACTACTGCATTGGGATCCA -ACGGAACTACTGCATTGGACGACA -ACGGAACTACTGCATTGGAGCTCA -ACGGAACTACTGCATTGGTCACGT -ACGGAACTACTGCATTGGCGTAGT -ACGGAACTACTGCATTGGGTCAGT -ACGGAACTACTGCATTGGGAAGGT -ACGGAACTACTGCATTGGAACCGT -ACGGAACTACTGCATTGGTTGTGC -ACGGAACTACTGCATTGGCTAAGC -ACGGAACTACTGCATTGGACTAGC -ACGGAACTACTGCATTGGAGATGC -ACGGAACTACTGCATTGGTGAAGG -ACGGAACTACTGCATTGGCAATGG -ACGGAACTACTGCATTGGATGAGG -ACGGAACTACTGCATTGGAATGGG -ACGGAACTACTGCATTGGTCCTGA -ACGGAACTACTGCATTGGTAGCGA -ACGGAACTACTGCATTGGCACAGA -ACGGAACTACTGCATTGGGCAAGA -ACGGAACTACTGCATTGGGGTTGA -ACGGAACTACTGCATTGGTCCGAT -ACGGAACTACTGCATTGGTGGCAT -ACGGAACTACTGCATTGGCGAGAT -ACGGAACTACTGCATTGGTACCAC -ACGGAACTACTGCATTGGCAGAAC -ACGGAACTACTGCATTGGGTCTAC -ACGGAACTACTGCATTGGACGTAC -ACGGAACTACTGCATTGGAGTGAC -ACGGAACTACTGCATTGGCTGTAG -ACGGAACTACTGCATTGGCCTAAG -ACGGAACTACTGCATTGGGTTCAG -ACGGAACTACTGCATTGGGCATAG -ACGGAACTACTGCATTGGGACAAG -ACGGAACTACTGCATTGGAAGCAG -ACGGAACTACTGCATTGGCGTCAA -ACGGAACTACTGCATTGGGCTGAA -ACGGAACTACTGCATTGGAGTACG -ACGGAACTACTGCATTGGATCCGA -ACGGAACTACTGCATTGGATGGGA -ACGGAACTACTGCATTGGGTGCAA -ACGGAACTACTGCATTGGGAGGAA -ACGGAACTACTGCATTGGCAGGTA -ACGGAACTACTGCATTGGGACTCT -ACGGAACTACTGCATTGGAGTCCT -ACGGAACTACTGCATTGGTAAGCC -ACGGAACTACTGCATTGGATAGCC -ACGGAACTACTGCATTGGTAACCG -ACGGAACTACTGCATTGGATGCCA -ACGGAACTACTGGATCGAGGAAAC -ACGGAACTACTGGATCGAAACACC -ACGGAACTACTGGATCGAATCGAG -ACGGAACTACTGGATCGACTCCTT -ACGGAACTACTGGATCGACCTGTT -ACGGAACTACTGGATCGACGGTTT -ACGGAACTACTGGATCGAGTGGTT -ACGGAACTACTGGATCGAGCCTTT -ACGGAACTACTGGATCGAGGTCTT -ACGGAACTACTGGATCGAACGCTT -ACGGAACTACTGGATCGAAGCGTT -ACGGAACTACTGGATCGATTCGTC -ACGGAACTACTGGATCGATCTCTC -ACGGAACTACTGGATCGATGGATC -ACGGAACTACTGGATCGACACTTC -ACGGAACTACTGGATCGAGTACTC -ACGGAACTACTGGATCGAGATGTC -ACGGAACTACTGGATCGAACAGTC -ACGGAACTACTGGATCGATTGCTG -ACGGAACTACTGGATCGATCCATG -ACGGAACTACTGGATCGATGTGTG -ACGGAACTACTGGATCGACTAGTG -ACGGAACTACTGGATCGACATCTG -ACGGAACTACTGGATCGAGAGTTG -ACGGAACTACTGGATCGAAGACTG -ACGGAACTACTGGATCGATCGGTA -ACGGAACTACTGGATCGATGCCTA -ACGGAACTACTGGATCGACCACTA -ACGGAACTACTGGATCGAGGAGTA -ACGGAACTACTGGATCGATCGTCT -ACGGAACTACTGGATCGATGCACT -ACGGAACTACTGGATCGACTGACT -ACGGAACTACTGGATCGACAACCT -ACGGAACTACTGGATCGAGCTACT -ACGGAACTACTGGATCGAGGATCT -ACGGAACTACTGGATCGAAAGGCT -ACGGAACTACTGGATCGATCAACC -ACGGAACTACTGGATCGATGTTCC -ACGGAACTACTGGATCGAATTCCC -ACGGAACTACTGGATCGATTCTCG -ACGGAACTACTGGATCGATAGACG -ACGGAACTACTGGATCGAGTAACG -ACGGAACTACTGGATCGAACTTCG -ACGGAACTACTGGATCGATACGCA -ACGGAACTACTGGATCGACTTGCA -ACGGAACTACTGGATCGACGAACA -ACGGAACTACTGGATCGACAGTCA -ACGGAACTACTGGATCGAGATCCA -ACGGAACTACTGGATCGAACGACA -ACGGAACTACTGGATCGAAGCTCA -ACGGAACTACTGGATCGATCACGT -ACGGAACTACTGGATCGACGTAGT -ACGGAACTACTGGATCGAGTCAGT -ACGGAACTACTGGATCGAGAAGGT -ACGGAACTACTGGATCGAAACCGT -ACGGAACTACTGGATCGATTGTGC -ACGGAACTACTGGATCGACTAAGC -ACGGAACTACTGGATCGAACTAGC -ACGGAACTACTGGATCGAAGATGC -ACGGAACTACTGGATCGATGAAGG -ACGGAACTACTGGATCGACAATGG -ACGGAACTACTGGATCGAATGAGG -ACGGAACTACTGGATCGAAATGGG -ACGGAACTACTGGATCGATCCTGA -ACGGAACTACTGGATCGATAGCGA -ACGGAACTACTGGATCGACACAGA -ACGGAACTACTGGATCGAGCAAGA -ACGGAACTACTGGATCGAGGTTGA -ACGGAACTACTGGATCGATCCGAT -ACGGAACTACTGGATCGATGGCAT -ACGGAACTACTGGATCGACGAGAT -ACGGAACTACTGGATCGATACCAC -ACGGAACTACTGGATCGACAGAAC -ACGGAACTACTGGATCGAGTCTAC -ACGGAACTACTGGATCGAACGTAC -ACGGAACTACTGGATCGAAGTGAC -ACGGAACTACTGGATCGACTGTAG -ACGGAACTACTGGATCGACCTAAG -ACGGAACTACTGGATCGAGTTCAG -ACGGAACTACTGGATCGAGCATAG -ACGGAACTACTGGATCGAGACAAG -ACGGAACTACTGGATCGAAAGCAG -ACGGAACTACTGGATCGACGTCAA -ACGGAACTACTGGATCGAGCTGAA -ACGGAACTACTGGATCGAAGTACG -ACGGAACTACTGGATCGAATCCGA -ACGGAACTACTGGATCGAATGGGA -ACGGAACTACTGGATCGAGTGCAA -ACGGAACTACTGGATCGAGAGGAA -ACGGAACTACTGGATCGACAGGTA -ACGGAACTACTGGATCGAGACTCT -ACGGAACTACTGGATCGAAGTCCT -ACGGAACTACTGGATCGATAAGCC -ACGGAACTACTGGATCGAATAGCC -ACGGAACTACTGGATCGATAACCG -ACGGAACTACTGGATCGAATGCCA -ACGGAACTACTGCACTACGGAAAC -ACGGAACTACTGCACTACAACACC -ACGGAACTACTGCACTACATCGAG -ACGGAACTACTGCACTACCTCCTT -ACGGAACTACTGCACTACCCTGTT -ACGGAACTACTGCACTACCGGTTT -ACGGAACTACTGCACTACGTGGTT -ACGGAACTACTGCACTACGCCTTT -ACGGAACTACTGCACTACGGTCTT -ACGGAACTACTGCACTACACGCTT -ACGGAACTACTGCACTACAGCGTT -ACGGAACTACTGCACTACTTCGTC -ACGGAACTACTGCACTACTCTCTC -ACGGAACTACTGCACTACTGGATC -ACGGAACTACTGCACTACCACTTC -ACGGAACTACTGCACTACGTACTC -ACGGAACTACTGCACTACGATGTC -ACGGAACTACTGCACTACACAGTC -ACGGAACTACTGCACTACTTGCTG -ACGGAACTACTGCACTACTCCATG -ACGGAACTACTGCACTACTGTGTG -ACGGAACTACTGCACTACCTAGTG -ACGGAACTACTGCACTACCATCTG -ACGGAACTACTGCACTACGAGTTG -ACGGAACTACTGCACTACAGACTG -ACGGAACTACTGCACTACTCGGTA -ACGGAACTACTGCACTACTGCCTA -ACGGAACTACTGCACTACCCACTA -ACGGAACTACTGCACTACGGAGTA -ACGGAACTACTGCACTACTCGTCT -ACGGAACTACTGCACTACTGCACT -ACGGAACTACTGCACTACCTGACT -ACGGAACTACTGCACTACCAACCT -ACGGAACTACTGCACTACGCTACT -ACGGAACTACTGCACTACGGATCT -ACGGAACTACTGCACTACAAGGCT -ACGGAACTACTGCACTACTCAACC -ACGGAACTACTGCACTACTGTTCC -ACGGAACTACTGCACTACATTCCC -ACGGAACTACTGCACTACTTCTCG -ACGGAACTACTGCACTACTAGACG -ACGGAACTACTGCACTACGTAACG -ACGGAACTACTGCACTACACTTCG -ACGGAACTACTGCACTACTACGCA -ACGGAACTACTGCACTACCTTGCA -ACGGAACTACTGCACTACCGAACA -ACGGAACTACTGCACTACCAGTCA -ACGGAACTACTGCACTACGATCCA -ACGGAACTACTGCACTACACGACA -ACGGAACTACTGCACTACAGCTCA -ACGGAACTACTGCACTACTCACGT -ACGGAACTACTGCACTACCGTAGT -ACGGAACTACTGCACTACGTCAGT -ACGGAACTACTGCACTACGAAGGT -ACGGAACTACTGCACTACAACCGT -ACGGAACTACTGCACTACTTGTGC -ACGGAACTACTGCACTACCTAAGC -ACGGAACTACTGCACTACACTAGC -ACGGAACTACTGCACTACAGATGC -ACGGAACTACTGCACTACTGAAGG -ACGGAACTACTGCACTACCAATGG -ACGGAACTACTGCACTACATGAGG -ACGGAACTACTGCACTACAATGGG -ACGGAACTACTGCACTACTCCTGA -ACGGAACTACTGCACTACTAGCGA -ACGGAACTACTGCACTACCACAGA -ACGGAACTACTGCACTACGCAAGA -ACGGAACTACTGCACTACGGTTGA -ACGGAACTACTGCACTACTCCGAT -ACGGAACTACTGCACTACTGGCAT -ACGGAACTACTGCACTACCGAGAT -ACGGAACTACTGCACTACTACCAC -ACGGAACTACTGCACTACCAGAAC -ACGGAACTACTGCACTACGTCTAC -ACGGAACTACTGCACTACACGTAC -ACGGAACTACTGCACTACAGTGAC -ACGGAACTACTGCACTACCTGTAG -ACGGAACTACTGCACTACCCTAAG -ACGGAACTACTGCACTACGTTCAG -ACGGAACTACTGCACTACGCATAG -ACGGAACTACTGCACTACGACAAG -ACGGAACTACTGCACTACAAGCAG -ACGGAACTACTGCACTACCGTCAA -ACGGAACTACTGCACTACGCTGAA -ACGGAACTACTGCACTACAGTACG -ACGGAACTACTGCACTACATCCGA -ACGGAACTACTGCACTACATGGGA -ACGGAACTACTGCACTACGTGCAA -ACGGAACTACTGCACTACGAGGAA -ACGGAACTACTGCACTACCAGGTA -ACGGAACTACTGCACTACGACTCT -ACGGAACTACTGCACTACAGTCCT -ACGGAACTACTGCACTACTAAGCC -ACGGAACTACTGCACTACATAGCC -ACGGAACTACTGCACTACTAACCG -ACGGAACTACTGCACTACATGCCA -ACGGAACTACTGAACCAGGGAAAC -ACGGAACTACTGAACCAGAACACC -ACGGAACTACTGAACCAGATCGAG -ACGGAACTACTGAACCAGCTCCTT -ACGGAACTACTGAACCAGCCTGTT -ACGGAACTACTGAACCAGCGGTTT -ACGGAACTACTGAACCAGGTGGTT -ACGGAACTACTGAACCAGGCCTTT -ACGGAACTACTGAACCAGGGTCTT -ACGGAACTACTGAACCAGACGCTT -ACGGAACTACTGAACCAGAGCGTT -ACGGAACTACTGAACCAGTTCGTC -ACGGAACTACTGAACCAGTCTCTC -ACGGAACTACTGAACCAGTGGATC -ACGGAACTACTGAACCAGCACTTC -ACGGAACTACTGAACCAGGTACTC -ACGGAACTACTGAACCAGGATGTC -ACGGAACTACTGAACCAGACAGTC -ACGGAACTACTGAACCAGTTGCTG -ACGGAACTACTGAACCAGTCCATG -ACGGAACTACTGAACCAGTGTGTG -ACGGAACTACTGAACCAGCTAGTG -ACGGAACTACTGAACCAGCATCTG -ACGGAACTACTGAACCAGGAGTTG -ACGGAACTACTGAACCAGAGACTG -ACGGAACTACTGAACCAGTCGGTA -ACGGAACTACTGAACCAGTGCCTA -ACGGAACTACTGAACCAGCCACTA -ACGGAACTACTGAACCAGGGAGTA -ACGGAACTACTGAACCAGTCGTCT -ACGGAACTACTGAACCAGTGCACT -ACGGAACTACTGAACCAGCTGACT -ACGGAACTACTGAACCAGCAACCT -ACGGAACTACTGAACCAGGCTACT -ACGGAACTACTGAACCAGGGATCT -ACGGAACTACTGAACCAGAAGGCT -ACGGAACTACTGAACCAGTCAACC -ACGGAACTACTGAACCAGTGTTCC -ACGGAACTACTGAACCAGATTCCC -ACGGAACTACTGAACCAGTTCTCG -ACGGAACTACTGAACCAGTAGACG -ACGGAACTACTGAACCAGGTAACG -ACGGAACTACTGAACCAGACTTCG -ACGGAACTACTGAACCAGTACGCA -ACGGAACTACTGAACCAGCTTGCA -ACGGAACTACTGAACCAGCGAACA -ACGGAACTACTGAACCAGCAGTCA -ACGGAACTACTGAACCAGGATCCA -ACGGAACTACTGAACCAGACGACA -ACGGAACTACTGAACCAGAGCTCA -ACGGAACTACTGAACCAGTCACGT -ACGGAACTACTGAACCAGCGTAGT -ACGGAACTACTGAACCAGGTCAGT -ACGGAACTACTGAACCAGGAAGGT -ACGGAACTACTGAACCAGAACCGT -ACGGAACTACTGAACCAGTTGTGC -ACGGAACTACTGAACCAGCTAAGC -ACGGAACTACTGAACCAGACTAGC -ACGGAACTACTGAACCAGAGATGC -ACGGAACTACTGAACCAGTGAAGG -ACGGAACTACTGAACCAGCAATGG -ACGGAACTACTGAACCAGATGAGG -ACGGAACTACTGAACCAGAATGGG -ACGGAACTACTGAACCAGTCCTGA -ACGGAACTACTGAACCAGTAGCGA -ACGGAACTACTGAACCAGCACAGA -ACGGAACTACTGAACCAGGCAAGA -ACGGAACTACTGAACCAGGGTTGA -ACGGAACTACTGAACCAGTCCGAT -ACGGAACTACTGAACCAGTGGCAT -ACGGAACTACTGAACCAGCGAGAT -ACGGAACTACTGAACCAGTACCAC -ACGGAACTACTGAACCAGCAGAAC -ACGGAACTACTGAACCAGGTCTAC -ACGGAACTACTGAACCAGACGTAC -ACGGAACTACTGAACCAGAGTGAC -ACGGAACTACTGAACCAGCTGTAG -ACGGAACTACTGAACCAGCCTAAG -ACGGAACTACTGAACCAGGTTCAG -ACGGAACTACTGAACCAGGCATAG -ACGGAACTACTGAACCAGGACAAG -ACGGAACTACTGAACCAGAAGCAG -ACGGAACTACTGAACCAGCGTCAA -ACGGAACTACTGAACCAGGCTGAA -ACGGAACTACTGAACCAGAGTACG -ACGGAACTACTGAACCAGATCCGA -ACGGAACTACTGAACCAGATGGGA -ACGGAACTACTGAACCAGGTGCAA -ACGGAACTACTGAACCAGGAGGAA -ACGGAACTACTGAACCAGCAGGTA -ACGGAACTACTGAACCAGGACTCT -ACGGAACTACTGAACCAGAGTCCT -ACGGAACTACTGAACCAGTAAGCC -ACGGAACTACTGAACCAGATAGCC -ACGGAACTACTGAACCAGTAACCG -ACGGAACTACTGAACCAGATGCCA -ACGGAACTACTGTACGTCGGAAAC -ACGGAACTACTGTACGTCAACACC -ACGGAACTACTGTACGTCATCGAG -ACGGAACTACTGTACGTCCTCCTT -ACGGAACTACTGTACGTCCCTGTT -ACGGAACTACTGTACGTCCGGTTT -ACGGAACTACTGTACGTCGTGGTT -ACGGAACTACTGTACGTCGCCTTT -ACGGAACTACTGTACGTCGGTCTT -ACGGAACTACTGTACGTCACGCTT -ACGGAACTACTGTACGTCAGCGTT -ACGGAACTACTGTACGTCTTCGTC -ACGGAACTACTGTACGTCTCTCTC -ACGGAACTACTGTACGTCTGGATC -ACGGAACTACTGTACGTCCACTTC -ACGGAACTACTGTACGTCGTACTC -ACGGAACTACTGTACGTCGATGTC -ACGGAACTACTGTACGTCACAGTC -ACGGAACTACTGTACGTCTTGCTG -ACGGAACTACTGTACGTCTCCATG -ACGGAACTACTGTACGTCTGTGTG -ACGGAACTACTGTACGTCCTAGTG -ACGGAACTACTGTACGTCCATCTG -ACGGAACTACTGTACGTCGAGTTG -ACGGAACTACTGTACGTCAGACTG -ACGGAACTACTGTACGTCTCGGTA -ACGGAACTACTGTACGTCTGCCTA -ACGGAACTACTGTACGTCCCACTA -ACGGAACTACTGTACGTCGGAGTA -ACGGAACTACTGTACGTCTCGTCT -ACGGAACTACTGTACGTCTGCACT -ACGGAACTACTGTACGTCCTGACT -ACGGAACTACTGTACGTCCAACCT -ACGGAACTACTGTACGTCGCTACT -ACGGAACTACTGTACGTCGGATCT -ACGGAACTACTGTACGTCAAGGCT -ACGGAACTACTGTACGTCTCAACC -ACGGAACTACTGTACGTCTGTTCC -ACGGAACTACTGTACGTCATTCCC -ACGGAACTACTGTACGTCTTCTCG -ACGGAACTACTGTACGTCTAGACG -ACGGAACTACTGTACGTCGTAACG -ACGGAACTACTGTACGTCACTTCG -ACGGAACTACTGTACGTCTACGCA -ACGGAACTACTGTACGTCCTTGCA -ACGGAACTACTGTACGTCCGAACA -ACGGAACTACTGTACGTCCAGTCA -ACGGAACTACTGTACGTCGATCCA -ACGGAACTACTGTACGTCACGACA -ACGGAACTACTGTACGTCAGCTCA -ACGGAACTACTGTACGTCTCACGT -ACGGAACTACTGTACGTCCGTAGT -ACGGAACTACTGTACGTCGTCAGT -ACGGAACTACTGTACGTCGAAGGT -ACGGAACTACTGTACGTCAACCGT -ACGGAACTACTGTACGTCTTGTGC -ACGGAACTACTGTACGTCCTAAGC -ACGGAACTACTGTACGTCACTAGC -ACGGAACTACTGTACGTCAGATGC -ACGGAACTACTGTACGTCTGAAGG -ACGGAACTACTGTACGTCCAATGG -ACGGAACTACTGTACGTCATGAGG -ACGGAACTACTGTACGTCAATGGG -ACGGAACTACTGTACGTCTCCTGA -ACGGAACTACTGTACGTCTAGCGA -ACGGAACTACTGTACGTCCACAGA -ACGGAACTACTGTACGTCGCAAGA -ACGGAACTACTGTACGTCGGTTGA -ACGGAACTACTGTACGTCTCCGAT -ACGGAACTACTGTACGTCTGGCAT -ACGGAACTACTGTACGTCCGAGAT -ACGGAACTACTGTACGTCTACCAC -ACGGAACTACTGTACGTCCAGAAC -ACGGAACTACTGTACGTCGTCTAC -ACGGAACTACTGTACGTCACGTAC -ACGGAACTACTGTACGTCAGTGAC -ACGGAACTACTGTACGTCCTGTAG -ACGGAACTACTGTACGTCCCTAAG -ACGGAACTACTGTACGTCGTTCAG -ACGGAACTACTGTACGTCGCATAG -ACGGAACTACTGTACGTCGACAAG -ACGGAACTACTGTACGTCAAGCAG -ACGGAACTACTGTACGTCCGTCAA -ACGGAACTACTGTACGTCGCTGAA -ACGGAACTACTGTACGTCAGTACG -ACGGAACTACTGTACGTCATCCGA -ACGGAACTACTGTACGTCATGGGA -ACGGAACTACTGTACGTCGTGCAA -ACGGAACTACTGTACGTCGAGGAA -ACGGAACTACTGTACGTCCAGGTA -ACGGAACTACTGTACGTCGACTCT -ACGGAACTACTGTACGTCAGTCCT -ACGGAACTACTGTACGTCTAAGCC -ACGGAACTACTGTACGTCATAGCC -ACGGAACTACTGTACGTCTAACCG -ACGGAACTACTGTACGTCATGCCA -ACGGAACTACTGTACACGGGAAAC -ACGGAACTACTGTACACGAACACC -ACGGAACTACTGTACACGATCGAG -ACGGAACTACTGTACACGCTCCTT -ACGGAACTACTGTACACGCCTGTT -ACGGAACTACTGTACACGCGGTTT -ACGGAACTACTGTACACGGTGGTT -ACGGAACTACTGTACACGGCCTTT -ACGGAACTACTGTACACGGGTCTT -ACGGAACTACTGTACACGACGCTT -ACGGAACTACTGTACACGAGCGTT -ACGGAACTACTGTACACGTTCGTC -ACGGAACTACTGTACACGTCTCTC -ACGGAACTACTGTACACGTGGATC -ACGGAACTACTGTACACGCACTTC -ACGGAACTACTGTACACGGTACTC -ACGGAACTACTGTACACGGATGTC -ACGGAACTACTGTACACGACAGTC -ACGGAACTACTGTACACGTTGCTG -ACGGAACTACTGTACACGTCCATG -ACGGAACTACTGTACACGTGTGTG -ACGGAACTACTGTACACGCTAGTG -ACGGAACTACTGTACACGCATCTG -ACGGAACTACTGTACACGGAGTTG -ACGGAACTACTGTACACGAGACTG -ACGGAACTACTGTACACGTCGGTA -ACGGAACTACTGTACACGTGCCTA -ACGGAACTACTGTACACGCCACTA -ACGGAACTACTGTACACGGGAGTA -ACGGAACTACTGTACACGTCGTCT -ACGGAACTACTGTACACGTGCACT -ACGGAACTACTGTACACGCTGACT -ACGGAACTACTGTACACGCAACCT -ACGGAACTACTGTACACGGCTACT -ACGGAACTACTGTACACGGGATCT -ACGGAACTACTGTACACGAAGGCT -ACGGAACTACTGTACACGTCAACC -ACGGAACTACTGTACACGTGTTCC -ACGGAACTACTGTACACGATTCCC -ACGGAACTACTGTACACGTTCTCG -ACGGAACTACTGTACACGTAGACG -ACGGAACTACTGTACACGGTAACG -ACGGAACTACTGTACACGACTTCG -ACGGAACTACTGTACACGTACGCA -ACGGAACTACTGTACACGCTTGCA -ACGGAACTACTGTACACGCGAACA -ACGGAACTACTGTACACGCAGTCA -ACGGAACTACTGTACACGGATCCA -ACGGAACTACTGTACACGACGACA -ACGGAACTACTGTACACGAGCTCA -ACGGAACTACTGTACACGTCACGT -ACGGAACTACTGTACACGCGTAGT -ACGGAACTACTGTACACGGTCAGT -ACGGAACTACTGTACACGGAAGGT -ACGGAACTACTGTACACGAACCGT -ACGGAACTACTGTACACGTTGTGC -ACGGAACTACTGTACACGCTAAGC -ACGGAACTACTGTACACGACTAGC -ACGGAACTACTGTACACGAGATGC -ACGGAACTACTGTACACGTGAAGG -ACGGAACTACTGTACACGCAATGG -ACGGAACTACTGTACACGATGAGG -ACGGAACTACTGTACACGAATGGG -ACGGAACTACTGTACACGTCCTGA -ACGGAACTACTGTACACGTAGCGA -ACGGAACTACTGTACACGCACAGA -ACGGAACTACTGTACACGGCAAGA -ACGGAACTACTGTACACGGGTTGA -ACGGAACTACTGTACACGTCCGAT -ACGGAACTACTGTACACGTGGCAT -ACGGAACTACTGTACACGCGAGAT -ACGGAACTACTGTACACGTACCAC -ACGGAACTACTGTACACGCAGAAC -ACGGAACTACTGTACACGGTCTAC -ACGGAACTACTGTACACGACGTAC -ACGGAACTACTGTACACGAGTGAC -ACGGAACTACTGTACACGCTGTAG -ACGGAACTACTGTACACGCCTAAG -ACGGAACTACTGTACACGGTTCAG -ACGGAACTACTGTACACGGCATAG -ACGGAACTACTGTACACGGACAAG -ACGGAACTACTGTACACGAAGCAG -ACGGAACTACTGTACACGCGTCAA -ACGGAACTACTGTACACGGCTGAA -ACGGAACTACTGTACACGAGTACG -ACGGAACTACTGTACACGATCCGA -ACGGAACTACTGTACACGATGGGA -ACGGAACTACTGTACACGGTGCAA -ACGGAACTACTGTACACGGAGGAA -ACGGAACTACTGTACACGCAGGTA -ACGGAACTACTGTACACGGACTCT -ACGGAACTACTGTACACGAGTCCT -ACGGAACTACTGTACACGTAAGCC -ACGGAACTACTGTACACGATAGCC -ACGGAACTACTGTACACGTAACCG -ACGGAACTACTGTACACGATGCCA -ACGGAACTACTGGACAGTGGAAAC -ACGGAACTACTGGACAGTAACACC -ACGGAACTACTGGACAGTATCGAG -ACGGAACTACTGGACAGTCTCCTT -ACGGAACTACTGGACAGTCCTGTT -ACGGAACTACTGGACAGTCGGTTT -ACGGAACTACTGGACAGTGTGGTT -ACGGAACTACTGGACAGTGCCTTT -ACGGAACTACTGGACAGTGGTCTT -ACGGAACTACTGGACAGTACGCTT -ACGGAACTACTGGACAGTAGCGTT -ACGGAACTACTGGACAGTTTCGTC -ACGGAACTACTGGACAGTTCTCTC -ACGGAACTACTGGACAGTTGGATC -ACGGAACTACTGGACAGTCACTTC -ACGGAACTACTGGACAGTGTACTC -ACGGAACTACTGGACAGTGATGTC -ACGGAACTACTGGACAGTACAGTC -ACGGAACTACTGGACAGTTTGCTG -ACGGAACTACTGGACAGTTCCATG -ACGGAACTACTGGACAGTTGTGTG -ACGGAACTACTGGACAGTCTAGTG -ACGGAACTACTGGACAGTCATCTG -ACGGAACTACTGGACAGTGAGTTG -ACGGAACTACTGGACAGTAGACTG -ACGGAACTACTGGACAGTTCGGTA -ACGGAACTACTGGACAGTTGCCTA -ACGGAACTACTGGACAGTCCACTA -ACGGAACTACTGGACAGTGGAGTA -ACGGAACTACTGGACAGTTCGTCT -ACGGAACTACTGGACAGTTGCACT -ACGGAACTACTGGACAGTCTGACT -ACGGAACTACTGGACAGTCAACCT -ACGGAACTACTGGACAGTGCTACT -ACGGAACTACTGGACAGTGGATCT -ACGGAACTACTGGACAGTAAGGCT -ACGGAACTACTGGACAGTTCAACC -ACGGAACTACTGGACAGTTGTTCC -ACGGAACTACTGGACAGTATTCCC -ACGGAACTACTGGACAGTTTCTCG -ACGGAACTACTGGACAGTTAGACG -ACGGAACTACTGGACAGTGTAACG -ACGGAACTACTGGACAGTACTTCG -ACGGAACTACTGGACAGTTACGCA -ACGGAACTACTGGACAGTCTTGCA -ACGGAACTACTGGACAGTCGAACA -ACGGAACTACTGGACAGTCAGTCA -ACGGAACTACTGGACAGTGATCCA -ACGGAACTACTGGACAGTACGACA -ACGGAACTACTGGACAGTAGCTCA -ACGGAACTACTGGACAGTTCACGT -ACGGAACTACTGGACAGTCGTAGT -ACGGAACTACTGGACAGTGTCAGT -ACGGAACTACTGGACAGTGAAGGT -ACGGAACTACTGGACAGTAACCGT -ACGGAACTACTGGACAGTTTGTGC -ACGGAACTACTGGACAGTCTAAGC -ACGGAACTACTGGACAGTACTAGC -ACGGAACTACTGGACAGTAGATGC -ACGGAACTACTGGACAGTTGAAGG -ACGGAACTACTGGACAGTCAATGG -ACGGAACTACTGGACAGTATGAGG -ACGGAACTACTGGACAGTAATGGG -ACGGAACTACTGGACAGTTCCTGA -ACGGAACTACTGGACAGTTAGCGA -ACGGAACTACTGGACAGTCACAGA -ACGGAACTACTGGACAGTGCAAGA -ACGGAACTACTGGACAGTGGTTGA -ACGGAACTACTGGACAGTTCCGAT -ACGGAACTACTGGACAGTTGGCAT -ACGGAACTACTGGACAGTCGAGAT -ACGGAACTACTGGACAGTTACCAC -ACGGAACTACTGGACAGTCAGAAC -ACGGAACTACTGGACAGTGTCTAC -ACGGAACTACTGGACAGTACGTAC -ACGGAACTACTGGACAGTAGTGAC -ACGGAACTACTGGACAGTCTGTAG -ACGGAACTACTGGACAGTCCTAAG -ACGGAACTACTGGACAGTGTTCAG -ACGGAACTACTGGACAGTGCATAG -ACGGAACTACTGGACAGTGACAAG -ACGGAACTACTGGACAGTAAGCAG -ACGGAACTACTGGACAGTCGTCAA -ACGGAACTACTGGACAGTGCTGAA -ACGGAACTACTGGACAGTAGTACG -ACGGAACTACTGGACAGTATCCGA -ACGGAACTACTGGACAGTATGGGA -ACGGAACTACTGGACAGTGTGCAA -ACGGAACTACTGGACAGTGAGGAA -ACGGAACTACTGGACAGTCAGGTA -ACGGAACTACTGGACAGTGACTCT -ACGGAACTACTGGACAGTAGTCCT -ACGGAACTACTGGACAGTTAAGCC -ACGGAACTACTGGACAGTATAGCC -ACGGAACTACTGGACAGTTAACCG -ACGGAACTACTGGACAGTATGCCA -ACGGAACTACTGTAGCTGGGAAAC -ACGGAACTACTGTAGCTGAACACC -ACGGAACTACTGTAGCTGATCGAG -ACGGAACTACTGTAGCTGCTCCTT -ACGGAACTACTGTAGCTGCCTGTT -ACGGAACTACTGTAGCTGCGGTTT -ACGGAACTACTGTAGCTGGTGGTT -ACGGAACTACTGTAGCTGGCCTTT -ACGGAACTACTGTAGCTGGGTCTT -ACGGAACTACTGTAGCTGACGCTT -ACGGAACTACTGTAGCTGAGCGTT -ACGGAACTACTGTAGCTGTTCGTC -ACGGAACTACTGTAGCTGTCTCTC -ACGGAACTACTGTAGCTGTGGATC -ACGGAACTACTGTAGCTGCACTTC -ACGGAACTACTGTAGCTGGTACTC -ACGGAACTACTGTAGCTGGATGTC -ACGGAACTACTGTAGCTGACAGTC -ACGGAACTACTGTAGCTGTTGCTG -ACGGAACTACTGTAGCTGTCCATG -ACGGAACTACTGTAGCTGTGTGTG -ACGGAACTACTGTAGCTGCTAGTG -ACGGAACTACTGTAGCTGCATCTG -ACGGAACTACTGTAGCTGGAGTTG -ACGGAACTACTGTAGCTGAGACTG -ACGGAACTACTGTAGCTGTCGGTA -ACGGAACTACTGTAGCTGTGCCTA -ACGGAACTACTGTAGCTGCCACTA -ACGGAACTACTGTAGCTGGGAGTA -ACGGAACTACTGTAGCTGTCGTCT -ACGGAACTACTGTAGCTGTGCACT -ACGGAACTACTGTAGCTGCTGACT -ACGGAACTACTGTAGCTGCAACCT -ACGGAACTACTGTAGCTGGCTACT -ACGGAACTACTGTAGCTGGGATCT -ACGGAACTACTGTAGCTGAAGGCT -ACGGAACTACTGTAGCTGTCAACC -ACGGAACTACTGTAGCTGTGTTCC -ACGGAACTACTGTAGCTGATTCCC -ACGGAACTACTGTAGCTGTTCTCG -ACGGAACTACTGTAGCTGTAGACG -ACGGAACTACTGTAGCTGGTAACG -ACGGAACTACTGTAGCTGACTTCG -ACGGAACTACTGTAGCTGTACGCA -ACGGAACTACTGTAGCTGCTTGCA -ACGGAACTACTGTAGCTGCGAACA -ACGGAACTACTGTAGCTGCAGTCA -ACGGAACTACTGTAGCTGGATCCA -ACGGAACTACTGTAGCTGACGACA -ACGGAACTACTGTAGCTGAGCTCA -ACGGAACTACTGTAGCTGTCACGT -ACGGAACTACTGTAGCTGCGTAGT -ACGGAACTACTGTAGCTGGTCAGT -ACGGAACTACTGTAGCTGGAAGGT -ACGGAACTACTGTAGCTGAACCGT -ACGGAACTACTGTAGCTGTTGTGC -ACGGAACTACTGTAGCTGCTAAGC -ACGGAACTACTGTAGCTGACTAGC -ACGGAACTACTGTAGCTGAGATGC -ACGGAACTACTGTAGCTGTGAAGG -ACGGAACTACTGTAGCTGCAATGG -ACGGAACTACTGTAGCTGATGAGG -ACGGAACTACTGTAGCTGAATGGG -ACGGAACTACTGTAGCTGTCCTGA -ACGGAACTACTGTAGCTGTAGCGA -ACGGAACTACTGTAGCTGCACAGA -ACGGAACTACTGTAGCTGGCAAGA -ACGGAACTACTGTAGCTGGGTTGA -ACGGAACTACTGTAGCTGTCCGAT -ACGGAACTACTGTAGCTGTGGCAT -ACGGAACTACTGTAGCTGCGAGAT -ACGGAACTACTGTAGCTGTACCAC -ACGGAACTACTGTAGCTGCAGAAC -ACGGAACTACTGTAGCTGGTCTAC -ACGGAACTACTGTAGCTGACGTAC -ACGGAACTACTGTAGCTGAGTGAC -ACGGAACTACTGTAGCTGCTGTAG -ACGGAACTACTGTAGCTGCCTAAG -ACGGAACTACTGTAGCTGGTTCAG -ACGGAACTACTGTAGCTGGCATAG -ACGGAACTACTGTAGCTGGACAAG -ACGGAACTACTGTAGCTGAAGCAG -ACGGAACTACTGTAGCTGCGTCAA -ACGGAACTACTGTAGCTGGCTGAA -ACGGAACTACTGTAGCTGAGTACG -ACGGAACTACTGTAGCTGATCCGA -ACGGAACTACTGTAGCTGATGGGA -ACGGAACTACTGTAGCTGGTGCAA -ACGGAACTACTGTAGCTGGAGGAA -ACGGAACTACTGTAGCTGCAGGTA -ACGGAACTACTGTAGCTGGACTCT -ACGGAACTACTGTAGCTGAGTCCT -ACGGAACTACTGTAGCTGTAAGCC -ACGGAACTACTGTAGCTGATAGCC -ACGGAACTACTGTAGCTGTAACCG -ACGGAACTACTGTAGCTGATGCCA -ACGGAACTACTGAAGCCTGGAAAC -ACGGAACTACTGAAGCCTAACACC -ACGGAACTACTGAAGCCTATCGAG -ACGGAACTACTGAAGCCTCTCCTT -ACGGAACTACTGAAGCCTCCTGTT -ACGGAACTACTGAAGCCTCGGTTT -ACGGAACTACTGAAGCCTGTGGTT -ACGGAACTACTGAAGCCTGCCTTT -ACGGAACTACTGAAGCCTGGTCTT -ACGGAACTACTGAAGCCTACGCTT -ACGGAACTACTGAAGCCTAGCGTT -ACGGAACTACTGAAGCCTTTCGTC -ACGGAACTACTGAAGCCTTCTCTC -ACGGAACTACTGAAGCCTTGGATC -ACGGAACTACTGAAGCCTCACTTC -ACGGAACTACTGAAGCCTGTACTC -ACGGAACTACTGAAGCCTGATGTC -ACGGAACTACTGAAGCCTACAGTC -ACGGAACTACTGAAGCCTTTGCTG -ACGGAACTACTGAAGCCTTCCATG -ACGGAACTACTGAAGCCTTGTGTG -ACGGAACTACTGAAGCCTCTAGTG -ACGGAACTACTGAAGCCTCATCTG -ACGGAACTACTGAAGCCTGAGTTG -ACGGAACTACTGAAGCCTAGACTG -ACGGAACTACTGAAGCCTTCGGTA -ACGGAACTACTGAAGCCTTGCCTA -ACGGAACTACTGAAGCCTCCACTA -ACGGAACTACTGAAGCCTGGAGTA -ACGGAACTACTGAAGCCTTCGTCT -ACGGAACTACTGAAGCCTTGCACT -ACGGAACTACTGAAGCCTCTGACT -ACGGAACTACTGAAGCCTCAACCT -ACGGAACTACTGAAGCCTGCTACT -ACGGAACTACTGAAGCCTGGATCT -ACGGAACTACTGAAGCCTAAGGCT -ACGGAACTACTGAAGCCTTCAACC -ACGGAACTACTGAAGCCTTGTTCC -ACGGAACTACTGAAGCCTATTCCC -ACGGAACTACTGAAGCCTTTCTCG -ACGGAACTACTGAAGCCTTAGACG -ACGGAACTACTGAAGCCTGTAACG -ACGGAACTACTGAAGCCTACTTCG -ACGGAACTACTGAAGCCTTACGCA -ACGGAACTACTGAAGCCTCTTGCA -ACGGAACTACTGAAGCCTCGAACA -ACGGAACTACTGAAGCCTCAGTCA -ACGGAACTACTGAAGCCTGATCCA -ACGGAACTACTGAAGCCTACGACA -ACGGAACTACTGAAGCCTAGCTCA -ACGGAACTACTGAAGCCTTCACGT -ACGGAACTACTGAAGCCTCGTAGT -ACGGAACTACTGAAGCCTGTCAGT -ACGGAACTACTGAAGCCTGAAGGT -ACGGAACTACTGAAGCCTAACCGT -ACGGAACTACTGAAGCCTTTGTGC -ACGGAACTACTGAAGCCTCTAAGC -ACGGAACTACTGAAGCCTACTAGC -ACGGAACTACTGAAGCCTAGATGC -ACGGAACTACTGAAGCCTTGAAGG -ACGGAACTACTGAAGCCTCAATGG -ACGGAACTACTGAAGCCTATGAGG -ACGGAACTACTGAAGCCTAATGGG -ACGGAACTACTGAAGCCTTCCTGA -ACGGAACTACTGAAGCCTTAGCGA -ACGGAACTACTGAAGCCTCACAGA -ACGGAACTACTGAAGCCTGCAAGA -ACGGAACTACTGAAGCCTGGTTGA -ACGGAACTACTGAAGCCTTCCGAT -ACGGAACTACTGAAGCCTTGGCAT -ACGGAACTACTGAAGCCTCGAGAT -ACGGAACTACTGAAGCCTTACCAC -ACGGAACTACTGAAGCCTCAGAAC -ACGGAACTACTGAAGCCTGTCTAC -ACGGAACTACTGAAGCCTACGTAC -ACGGAACTACTGAAGCCTAGTGAC -ACGGAACTACTGAAGCCTCTGTAG -ACGGAACTACTGAAGCCTCCTAAG -ACGGAACTACTGAAGCCTGTTCAG -ACGGAACTACTGAAGCCTGCATAG -ACGGAACTACTGAAGCCTGACAAG -ACGGAACTACTGAAGCCTAAGCAG -ACGGAACTACTGAAGCCTCGTCAA -ACGGAACTACTGAAGCCTGCTGAA -ACGGAACTACTGAAGCCTAGTACG -ACGGAACTACTGAAGCCTATCCGA -ACGGAACTACTGAAGCCTATGGGA -ACGGAACTACTGAAGCCTGTGCAA -ACGGAACTACTGAAGCCTGAGGAA -ACGGAACTACTGAAGCCTCAGGTA -ACGGAACTACTGAAGCCTGACTCT -ACGGAACTACTGAAGCCTAGTCCT -ACGGAACTACTGAAGCCTTAAGCC -ACGGAACTACTGAAGCCTATAGCC -ACGGAACTACTGAAGCCTTAACCG -ACGGAACTACTGAAGCCTATGCCA -ACGGAACTACTGCAGGTTGGAAAC -ACGGAACTACTGCAGGTTAACACC -ACGGAACTACTGCAGGTTATCGAG -ACGGAACTACTGCAGGTTCTCCTT -ACGGAACTACTGCAGGTTCCTGTT -ACGGAACTACTGCAGGTTCGGTTT -ACGGAACTACTGCAGGTTGTGGTT -ACGGAACTACTGCAGGTTGCCTTT -ACGGAACTACTGCAGGTTGGTCTT -ACGGAACTACTGCAGGTTACGCTT -ACGGAACTACTGCAGGTTAGCGTT -ACGGAACTACTGCAGGTTTTCGTC -ACGGAACTACTGCAGGTTTCTCTC -ACGGAACTACTGCAGGTTTGGATC -ACGGAACTACTGCAGGTTCACTTC -ACGGAACTACTGCAGGTTGTACTC -ACGGAACTACTGCAGGTTGATGTC -ACGGAACTACTGCAGGTTACAGTC -ACGGAACTACTGCAGGTTTTGCTG -ACGGAACTACTGCAGGTTTCCATG -ACGGAACTACTGCAGGTTTGTGTG -ACGGAACTACTGCAGGTTCTAGTG -ACGGAACTACTGCAGGTTCATCTG -ACGGAACTACTGCAGGTTGAGTTG -ACGGAACTACTGCAGGTTAGACTG -ACGGAACTACTGCAGGTTTCGGTA -ACGGAACTACTGCAGGTTTGCCTA -ACGGAACTACTGCAGGTTCCACTA -ACGGAACTACTGCAGGTTGGAGTA -ACGGAACTACTGCAGGTTTCGTCT -ACGGAACTACTGCAGGTTTGCACT -ACGGAACTACTGCAGGTTCTGACT -ACGGAACTACTGCAGGTTCAACCT -ACGGAACTACTGCAGGTTGCTACT -ACGGAACTACTGCAGGTTGGATCT -ACGGAACTACTGCAGGTTAAGGCT -ACGGAACTACTGCAGGTTTCAACC -ACGGAACTACTGCAGGTTTGTTCC -ACGGAACTACTGCAGGTTATTCCC -ACGGAACTACTGCAGGTTTTCTCG -ACGGAACTACTGCAGGTTTAGACG -ACGGAACTACTGCAGGTTGTAACG -ACGGAACTACTGCAGGTTACTTCG -ACGGAACTACTGCAGGTTTACGCA -ACGGAACTACTGCAGGTTCTTGCA -ACGGAACTACTGCAGGTTCGAACA -ACGGAACTACTGCAGGTTCAGTCA -ACGGAACTACTGCAGGTTGATCCA -ACGGAACTACTGCAGGTTACGACA -ACGGAACTACTGCAGGTTAGCTCA -ACGGAACTACTGCAGGTTTCACGT -ACGGAACTACTGCAGGTTCGTAGT -ACGGAACTACTGCAGGTTGTCAGT -ACGGAACTACTGCAGGTTGAAGGT -ACGGAACTACTGCAGGTTAACCGT -ACGGAACTACTGCAGGTTTTGTGC -ACGGAACTACTGCAGGTTCTAAGC -ACGGAACTACTGCAGGTTACTAGC -ACGGAACTACTGCAGGTTAGATGC -ACGGAACTACTGCAGGTTTGAAGG -ACGGAACTACTGCAGGTTCAATGG -ACGGAACTACTGCAGGTTATGAGG -ACGGAACTACTGCAGGTTAATGGG -ACGGAACTACTGCAGGTTTCCTGA -ACGGAACTACTGCAGGTTTAGCGA -ACGGAACTACTGCAGGTTCACAGA -ACGGAACTACTGCAGGTTGCAAGA -ACGGAACTACTGCAGGTTGGTTGA -ACGGAACTACTGCAGGTTTCCGAT -ACGGAACTACTGCAGGTTTGGCAT -ACGGAACTACTGCAGGTTCGAGAT -ACGGAACTACTGCAGGTTTACCAC -ACGGAACTACTGCAGGTTCAGAAC -ACGGAACTACTGCAGGTTGTCTAC -ACGGAACTACTGCAGGTTACGTAC -ACGGAACTACTGCAGGTTAGTGAC -ACGGAACTACTGCAGGTTCTGTAG -ACGGAACTACTGCAGGTTCCTAAG -ACGGAACTACTGCAGGTTGTTCAG -ACGGAACTACTGCAGGTTGCATAG -ACGGAACTACTGCAGGTTGACAAG -ACGGAACTACTGCAGGTTAAGCAG -ACGGAACTACTGCAGGTTCGTCAA -ACGGAACTACTGCAGGTTGCTGAA -ACGGAACTACTGCAGGTTAGTACG -ACGGAACTACTGCAGGTTATCCGA -ACGGAACTACTGCAGGTTATGGGA -ACGGAACTACTGCAGGTTGTGCAA -ACGGAACTACTGCAGGTTGAGGAA -ACGGAACTACTGCAGGTTCAGGTA -ACGGAACTACTGCAGGTTGACTCT -ACGGAACTACTGCAGGTTAGTCCT -ACGGAACTACTGCAGGTTTAAGCC -ACGGAACTACTGCAGGTTATAGCC -ACGGAACTACTGCAGGTTTAACCG -ACGGAACTACTGCAGGTTATGCCA -ACGGAACTACTGTAGGCAGGAAAC -ACGGAACTACTGTAGGCAAACACC -ACGGAACTACTGTAGGCAATCGAG -ACGGAACTACTGTAGGCACTCCTT -ACGGAACTACTGTAGGCACCTGTT -ACGGAACTACTGTAGGCACGGTTT -ACGGAACTACTGTAGGCAGTGGTT -ACGGAACTACTGTAGGCAGCCTTT -ACGGAACTACTGTAGGCAGGTCTT -ACGGAACTACTGTAGGCAACGCTT -ACGGAACTACTGTAGGCAAGCGTT -ACGGAACTACTGTAGGCATTCGTC -ACGGAACTACTGTAGGCATCTCTC -ACGGAACTACTGTAGGCATGGATC -ACGGAACTACTGTAGGCACACTTC -ACGGAACTACTGTAGGCAGTACTC -ACGGAACTACTGTAGGCAGATGTC -ACGGAACTACTGTAGGCAACAGTC -ACGGAACTACTGTAGGCATTGCTG -ACGGAACTACTGTAGGCATCCATG -ACGGAACTACTGTAGGCATGTGTG -ACGGAACTACTGTAGGCACTAGTG -ACGGAACTACTGTAGGCACATCTG -ACGGAACTACTGTAGGCAGAGTTG -ACGGAACTACTGTAGGCAAGACTG -ACGGAACTACTGTAGGCATCGGTA -ACGGAACTACTGTAGGCATGCCTA -ACGGAACTACTGTAGGCACCACTA -ACGGAACTACTGTAGGCAGGAGTA -ACGGAACTACTGTAGGCATCGTCT -ACGGAACTACTGTAGGCATGCACT -ACGGAACTACTGTAGGCACTGACT -ACGGAACTACTGTAGGCACAACCT -ACGGAACTACTGTAGGCAGCTACT -ACGGAACTACTGTAGGCAGGATCT -ACGGAACTACTGTAGGCAAAGGCT -ACGGAACTACTGTAGGCATCAACC -ACGGAACTACTGTAGGCATGTTCC -ACGGAACTACTGTAGGCAATTCCC -ACGGAACTACTGTAGGCATTCTCG -ACGGAACTACTGTAGGCATAGACG -ACGGAACTACTGTAGGCAGTAACG -ACGGAACTACTGTAGGCAACTTCG -ACGGAACTACTGTAGGCATACGCA -ACGGAACTACTGTAGGCACTTGCA -ACGGAACTACTGTAGGCACGAACA -ACGGAACTACTGTAGGCACAGTCA -ACGGAACTACTGTAGGCAGATCCA -ACGGAACTACTGTAGGCAACGACA -ACGGAACTACTGTAGGCAAGCTCA -ACGGAACTACTGTAGGCATCACGT -ACGGAACTACTGTAGGCACGTAGT -ACGGAACTACTGTAGGCAGTCAGT -ACGGAACTACTGTAGGCAGAAGGT -ACGGAACTACTGTAGGCAAACCGT -ACGGAACTACTGTAGGCATTGTGC -ACGGAACTACTGTAGGCACTAAGC -ACGGAACTACTGTAGGCAACTAGC -ACGGAACTACTGTAGGCAAGATGC -ACGGAACTACTGTAGGCATGAAGG -ACGGAACTACTGTAGGCACAATGG -ACGGAACTACTGTAGGCAATGAGG -ACGGAACTACTGTAGGCAAATGGG -ACGGAACTACTGTAGGCATCCTGA -ACGGAACTACTGTAGGCATAGCGA -ACGGAACTACTGTAGGCACACAGA -ACGGAACTACTGTAGGCAGCAAGA -ACGGAACTACTGTAGGCAGGTTGA -ACGGAACTACTGTAGGCATCCGAT -ACGGAACTACTGTAGGCATGGCAT -ACGGAACTACTGTAGGCACGAGAT -ACGGAACTACTGTAGGCATACCAC -ACGGAACTACTGTAGGCACAGAAC -ACGGAACTACTGTAGGCAGTCTAC -ACGGAACTACTGTAGGCAACGTAC -ACGGAACTACTGTAGGCAAGTGAC -ACGGAACTACTGTAGGCACTGTAG -ACGGAACTACTGTAGGCACCTAAG -ACGGAACTACTGTAGGCAGTTCAG -ACGGAACTACTGTAGGCAGCATAG -ACGGAACTACTGTAGGCAGACAAG -ACGGAACTACTGTAGGCAAAGCAG -ACGGAACTACTGTAGGCACGTCAA -ACGGAACTACTGTAGGCAGCTGAA -ACGGAACTACTGTAGGCAAGTACG -ACGGAACTACTGTAGGCAATCCGA -ACGGAACTACTGTAGGCAATGGGA -ACGGAACTACTGTAGGCAGTGCAA -ACGGAACTACTGTAGGCAGAGGAA -ACGGAACTACTGTAGGCACAGGTA -ACGGAACTACTGTAGGCAGACTCT -ACGGAACTACTGTAGGCAAGTCCT -ACGGAACTACTGTAGGCATAAGCC -ACGGAACTACTGTAGGCAATAGCC -ACGGAACTACTGTAGGCATAACCG -ACGGAACTACTGTAGGCAATGCCA -ACGGAACTACTGAAGGACGGAAAC -ACGGAACTACTGAAGGACAACACC -ACGGAACTACTGAAGGACATCGAG -ACGGAACTACTGAAGGACCTCCTT -ACGGAACTACTGAAGGACCCTGTT -ACGGAACTACTGAAGGACCGGTTT -ACGGAACTACTGAAGGACGTGGTT -ACGGAACTACTGAAGGACGCCTTT -ACGGAACTACTGAAGGACGGTCTT -ACGGAACTACTGAAGGACACGCTT -ACGGAACTACTGAAGGACAGCGTT -ACGGAACTACTGAAGGACTTCGTC -ACGGAACTACTGAAGGACTCTCTC -ACGGAACTACTGAAGGACTGGATC -ACGGAACTACTGAAGGACCACTTC -ACGGAACTACTGAAGGACGTACTC -ACGGAACTACTGAAGGACGATGTC -ACGGAACTACTGAAGGACACAGTC -ACGGAACTACTGAAGGACTTGCTG -ACGGAACTACTGAAGGACTCCATG -ACGGAACTACTGAAGGACTGTGTG -ACGGAACTACTGAAGGACCTAGTG -ACGGAACTACTGAAGGACCATCTG -ACGGAACTACTGAAGGACGAGTTG -ACGGAACTACTGAAGGACAGACTG -ACGGAACTACTGAAGGACTCGGTA -ACGGAACTACTGAAGGACTGCCTA -ACGGAACTACTGAAGGACCCACTA -ACGGAACTACTGAAGGACGGAGTA -ACGGAACTACTGAAGGACTCGTCT -ACGGAACTACTGAAGGACTGCACT -ACGGAACTACTGAAGGACCTGACT -ACGGAACTACTGAAGGACCAACCT -ACGGAACTACTGAAGGACGCTACT -ACGGAACTACTGAAGGACGGATCT -ACGGAACTACTGAAGGACAAGGCT -ACGGAACTACTGAAGGACTCAACC -ACGGAACTACTGAAGGACTGTTCC -ACGGAACTACTGAAGGACATTCCC -ACGGAACTACTGAAGGACTTCTCG -ACGGAACTACTGAAGGACTAGACG -ACGGAACTACTGAAGGACGTAACG -ACGGAACTACTGAAGGACACTTCG -ACGGAACTACTGAAGGACTACGCA -ACGGAACTACTGAAGGACCTTGCA -ACGGAACTACTGAAGGACCGAACA -ACGGAACTACTGAAGGACCAGTCA -ACGGAACTACTGAAGGACGATCCA -ACGGAACTACTGAAGGACACGACA -ACGGAACTACTGAAGGACAGCTCA -ACGGAACTACTGAAGGACTCACGT -ACGGAACTACTGAAGGACCGTAGT -ACGGAACTACTGAAGGACGTCAGT -ACGGAACTACTGAAGGACGAAGGT -ACGGAACTACTGAAGGACAACCGT -ACGGAACTACTGAAGGACTTGTGC -ACGGAACTACTGAAGGACCTAAGC -ACGGAACTACTGAAGGACACTAGC -ACGGAACTACTGAAGGACAGATGC -ACGGAACTACTGAAGGACTGAAGG -ACGGAACTACTGAAGGACCAATGG -ACGGAACTACTGAAGGACATGAGG -ACGGAACTACTGAAGGACAATGGG -ACGGAACTACTGAAGGACTCCTGA -ACGGAACTACTGAAGGACTAGCGA -ACGGAACTACTGAAGGACCACAGA -ACGGAACTACTGAAGGACGCAAGA -ACGGAACTACTGAAGGACGGTTGA -ACGGAACTACTGAAGGACTCCGAT -ACGGAACTACTGAAGGACTGGCAT -ACGGAACTACTGAAGGACCGAGAT -ACGGAACTACTGAAGGACTACCAC -ACGGAACTACTGAAGGACCAGAAC -ACGGAACTACTGAAGGACGTCTAC -ACGGAACTACTGAAGGACACGTAC -ACGGAACTACTGAAGGACAGTGAC -ACGGAACTACTGAAGGACCTGTAG -ACGGAACTACTGAAGGACCCTAAG -ACGGAACTACTGAAGGACGTTCAG -ACGGAACTACTGAAGGACGCATAG -ACGGAACTACTGAAGGACGACAAG -ACGGAACTACTGAAGGACAAGCAG -ACGGAACTACTGAAGGACCGTCAA -ACGGAACTACTGAAGGACGCTGAA -ACGGAACTACTGAAGGACAGTACG -ACGGAACTACTGAAGGACATCCGA -ACGGAACTACTGAAGGACATGGGA -ACGGAACTACTGAAGGACGTGCAA -ACGGAACTACTGAAGGACGAGGAA -ACGGAACTACTGAAGGACCAGGTA -ACGGAACTACTGAAGGACGACTCT -ACGGAACTACTGAAGGACAGTCCT -ACGGAACTACTGAAGGACTAAGCC -ACGGAACTACTGAAGGACATAGCC -ACGGAACTACTGAAGGACTAACCG -ACGGAACTACTGAAGGACATGCCA -ACGGAACTACTGCAGAAGGGAAAC -ACGGAACTACTGCAGAAGAACACC -ACGGAACTACTGCAGAAGATCGAG -ACGGAACTACTGCAGAAGCTCCTT -ACGGAACTACTGCAGAAGCCTGTT -ACGGAACTACTGCAGAAGCGGTTT -ACGGAACTACTGCAGAAGGTGGTT -ACGGAACTACTGCAGAAGGCCTTT -ACGGAACTACTGCAGAAGGGTCTT -ACGGAACTACTGCAGAAGACGCTT -ACGGAACTACTGCAGAAGAGCGTT -ACGGAACTACTGCAGAAGTTCGTC -ACGGAACTACTGCAGAAGTCTCTC -ACGGAACTACTGCAGAAGTGGATC -ACGGAACTACTGCAGAAGCACTTC -ACGGAACTACTGCAGAAGGTACTC -ACGGAACTACTGCAGAAGGATGTC -ACGGAACTACTGCAGAAGACAGTC -ACGGAACTACTGCAGAAGTTGCTG -ACGGAACTACTGCAGAAGTCCATG -ACGGAACTACTGCAGAAGTGTGTG -ACGGAACTACTGCAGAAGCTAGTG -ACGGAACTACTGCAGAAGCATCTG -ACGGAACTACTGCAGAAGGAGTTG -ACGGAACTACTGCAGAAGAGACTG -ACGGAACTACTGCAGAAGTCGGTA -ACGGAACTACTGCAGAAGTGCCTA -ACGGAACTACTGCAGAAGCCACTA -ACGGAACTACTGCAGAAGGGAGTA -ACGGAACTACTGCAGAAGTCGTCT -ACGGAACTACTGCAGAAGTGCACT -ACGGAACTACTGCAGAAGCTGACT -ACGGAACTACTGCAGAAGCAACCT -ACGGAACTACTGCAGAAGGCTACT -ACGGAACTACTGCAGAAGGGATCT -ACGGAACTACTGCAGAAGAAGGCT -ACGGAACTACTGCAGAAGTCAACC -ACGGAACTACTGCAGAAGTGTTCC -ACGGAACTACTGCAGAAGATTCCC -ACGGAACTACTGCAGAAGTTCTCG -ACGGAACTACTGCAGAAGTAGACG -ACGGAACTACTGCAGAAGGTAACG -ACGGAACTACTGCAGAAGACTTCG -ACGGAACTACTGCAGAAGTACGCA -ACGGAACTACTGCAGAAGCTTGCA -ACGGAACTACTGCAGAAGCGAACA -ACGGAACTACTGCAGAAGCAGTCA -ACGGAACTACTGCAGAAGGATCCA -ACGGAACTACTGCAGAAGACGACA -ACGGAACTACTGCAGAAGAGCTCA -ACGGAACTACTGCAGAAGTCACGT -ACGGAACTACTGCAGAAGCGTAGT -ACGGAACTACTGCAGAAGGTCAGT -ACGGAACTACTGCAGAAGGAAGGT -ACGGAACTACTGCAGAAGAACCGT -ACGGAACTACTGCAGAAGTTGTGC -ACGGAACTACTGCAGAAGCTAAGC -ACGGAACTACTGCAGAAGACTAGC -ACGGAACTACTGCAGAAGAGATGC -ACGGAACTACTGCAGAAGTGAAGG -ACGGAACTACTGCAGAAGCAATGG -ACGGAACTACTGCAGAAGATGAGG -ACGGAACTACTGCAGAAGAATGGG -ACGGAACTACTGCAGAAGTCCTGA -ACGGAACTACTGCAGAAGTAGCGA -ACGGAACTACTGCAGAAGCACAGA -ACGGAACTACTGCAGAAGGCAAGA -ACGGAACTACTGCAGAAGGGTTGA -ACGGAACTACTGCAGAAGTCCGAT -ACGGAACTACTGCAGAAGTGGCAT -ACGGAACTACTGCAGAAGCGAGAT -ACGGAACTACTGCAGAAGTACCAC -ACGGAACTACTGCAGAAGCAGAAC -ACGGAACTACTGCAGAAGGTCTAC -ACGGAACTACTGCAGAAGACGTAC -ACGGAACTACTGCAGAAGAGTGAC -ACGGAACTACTGCAGAAGCTGTAG -ACGGAACTACTGCAGAAGCCTAAG -ACGGAACTACTGCAGAAGGTTCAG -ACGGAACTACTGCAGAAGGCATAG -ACGGAACTACTGCAGAAGGACAAG -ACGGAACTACTGCAGAAGAAGCAG -ACGGAACTACTGCAGAAGCGTCAA -ACGGAACTACTGCAGAAGGCTGAA -ACGGAACTACTGCAGAAGAGTACG -ACGGAACTACTGCAGAAGATCCGA -ACGGAACTACTGCAGAAGATGGGA -ACGGAACTACTGCAGAAGGTGCAA -ACGGAACTACTGCAGAAGGAGGAA -ACGGAACTACTGCAGAAGCAGGTA -ACGGAACTACTGCAGAAGGACTCT -ACGGAACTACTGCAGAAGAGTCCT -ACGGAACTACTGCAGAAGTAAGCC -ACGGAACTACTGCAGAAGATAGCC -ACGGAACTACTGCAGAAGTAACCG -ACGGAACTACTGCAGAAGATGCCA -ACGGAACTACTGCAACGTGGAAAC -ACGGAACTACTGCAACGTAACACC -ACGGAACTACTGCAACGTATCGAG -ACGGAACTACTGCAACGTCTCCTT -ACGGAACTACTGCAACGTCCTGTT -ACGGAACTACTGCAACGTCGGTTT -ACGGAACTACTGCAACGTGTGGTT -ACGGAACTACTGCAACGTGCCTTT -ACGGAACTACTGCAACGTGGTCTT -ACGGAACTACTGCAACGTACGCTT -ACGGAACTACTGCAACGTAGCGTT -ACGGAACTACTGCAACGTTTCGTC -ACGGAACTACTGCAACGTTCTCTC -ACGGAACTACTGCAACGTTGGATC -ACGGAACTACTGCAACGTCACTTC -ACGGAACTACTGCAACGTGTACTC -ACGGAACTACTGCAACGTGATGTC -ACGGAACTACTGCAACGTACAGTC -ACGGAACTACTGCAACGTTTGCTG -ACGGAACTACTGCAACGTTCCATG -ACGGAACTACTGCAACGTTGTGTG -ACGGAACTACTGCAACGTCTAGTG -ACGGAACTACTGCAACGTCATCTG -ACGGAACTACTGCAACGTGAGTTG -ACGGAACTACTGCAACGTAGACTG -ACGGAACTACTGCAACGTTCGGTA -ACGGAACTACTGCAACGTTGCCTA -ACGGAACTACTGCAACGTCCACTA -ACGGAACTACTGCAACGTGGAGTA -ACGGAACTACTGCAACGTTCGTCT -ACGGAACTACTGCAACGTTGCACT -ACGGAACTACTGCAACGTCTGACT -ACGGAACTACTGCAACGTCAACCT -ACGGAACTACTGCAACGTGCTACT -ACGGAACTACTGCAACGTGGATCT -ACGGAACTACTGCAACGTAAGGCT -ACGGAACTACTGCAACGTTCAACC -ACGGAACTACTGCAACGTTGTTCC -ACGGAACTACTGCAACGTATTCCC -ACGGAACTACTGCAACGTTTCTCG -ACGGAACTACTGCAACGTTAGACG -ACGGAACTACTGCAACGTGTAACG -ACGGAACTACTGCAACGTACTTCG -ACGGAACTACTGCAACGTTACGCA -ACGGAACTACTGCAACGTCTTGCA -ACGGAACTACTGCAACGTCGAACA -ACGGAACTACTGCAACGTCAGTCA -ACGGAACTACTGCAACGTGATCCA -ACGGAACTACTGCAACGTACGACA -ACGGAACTACTGCAACGTAGCTCA -ACGGAACTACTGCAACGTTCACGT -ACGGAACTACTGCAACGTCGTAGT -ACGGAACTACTGCAACGTGTCAGT -ACGGAACTACTGCAACGTGAAGGT -ACGGAACTACTGCAACGTAACCGT -ACGGAACTACTGCAACGTTTGTGC -ACGGAACTACTGCAACGTCTAAGC -ACGGAACTACTGCAACGTACTAGC -ACGGAACTACTGCAACGTAGATGC -ACGGAACTACTGCAACGTTGAAGG -ACGGAACTACTGCAACGTCAATGG -ACGGAACTACTGCAACGTATGAGG -ACGGAACTACTGCAACGTAATGGG -ACGGAACTACTGCAACGTTCCTGA -ACGGAACTACTGCAACGTTAGCGA -ACGGAACTACTGCAACGTCACAGA -ACGGAACTACTGCAACGTGCAAGA -ACGGAACTACTGCAACGTGGTTGA -ACGGAACTACTGCAACGTTCCGAT -ACGGAACTACTGCAACGTTGGCAT -ACGGAACTACTGCAACGTCGAGAT -ACGGAACTACTGCAACGTTACCAC -ACGGAACTACTGCAACGTCAGAAC -ACGGAACTACTGCAACGTGTCTAC -ACGGAACTACTGCAACGTACGTAC -ACGGAACTACTGCAACGTAGTGAC -ACGGAACTACTGCAACGTCTGTAG -ACGGAACTACTGCAACGTCCTAAG -ACGGAACTACTGCAACGTGTTCAG -ACGGAACTACTGCAACGTGCATAG -ACGGAACTACTGCAACGTGACAAG -ACGGAACTACTGCAACGTAAGCAG -ACGGAACTACTGCAACGTCGTCAA -ACGGAACTACTGCAACGTGCTGAA -ACGGAACTACTGCAACGTAGTACG -ACGGAACTACTGCAACGTATCCGA -ACGGAACTACTGCAACGTATGGGA -ACGGAACTACTGCAACGTGTGCAA -ACGGAACTACTGCAACGTGAGGAA -ACGGAACTACTGCAACGTCAGGTA -ACGGAACTACTGCAACGTGACTCT -ACGGAACTACTGCAACGTAGTCCT -ACGGAACTACTGCAACGTTAAGCC -ACGGAACTACTGCAACGTATAGCC -ACGGAACTACTGCAACGTTAACCG -ACGGAACTACTGCAACGTATGCCA -ACGGAACTACTGGAAGCTGGAAAC -ACGGAACTACTGGAAGCTAACACC -ACGGAACTACTGGAAGCTATCGAG -ACGGAACTACTGGAAGCTCTCCTT -ACGGAACTACTGGAAGCTCCTGTT -ACGGAACTACTGGAAGCTCGGTTT -ACGGAACTACTGGAAGCTGTGGTT -ACGGAACTACTGGAAGCTGCCTTT -ACGGAACTACTGGAAGCTGGTCTT -ACGGAACTACTGGAAGCTACGCTT -ACGGAACTACTGGAAGCTAGCGTT -ACGGAACTACTGGAAGCTTTCGTC -ACGGAACTACTGGAAGCTTCTCTC -ACGGAACTACTGGAAGCTTGGATC -ACGGAACTACTGGAAGCTCACTTC -ACGGAACTACTGGAAGCTGTACTC -ACGGAACTACTGGAAGCTGATGTC -ACGGAACTACTGGAAGCTACAGTC -ACGGAACTACTGGAAGCTTTGCTG -ACGGAACTACTGGAAGCTTCCATG -ACGGAACTACTGGAAGCTTGTGTG -ACGGAACTACTGGAAGCTCTAGTG -ACGGAACTACTGGAAGCTCATCTG -ACGGAACTACTGGAAGCTGAGTTG -ACGGAACTACTGGAAGCTAGACTG -ACGGAACTACTGGAAGCTTCGGTA -ACGGAACTACTGGAAGCTTGCCTA -ACGGAACTACTGGAAGCTCCACTA -ACGGAACTACTGGAAGCTGGAGTA -ACGGAACTACTGGAAGCTTCGTCT -ACGGAACTACTGGAAGCTTGCACT -ACGGAACTACTGGAAGCTCTGACT -ACGGAACTACTGGAAGCTCAACCT -ACGGAACTACTGGAAGCTGCTACT -ACGGAACTACTGGAAGCTGGATCT -ACGGAACTACTGGAAGCTAAGGCT -ACGGAACTACTGGAAGCTTCAACC -ACGGAACTACTGGAAGCTTGTTCC -ACGGAACTACTGGAAGCTATTCCC -ACGGAACTACTGGAAGCTTTCTCG -ACGGAACTACTGGAAGCTTAGACG -ACGGAACTACTGGAAGCTGTAACG -ACGGAACTACTGGAAGCTACTTCG -ACGGAACTACTGGAAGCTTACGCA -ACGGAACTACTGGAAGCTCTTGCA -ACGGAACTACTGGAAGCTCGAACA -ACGGAACTACTGGAAGCTCAGTCA -ACGGAACTACTGGAAGCTGATCCA -ACGGAACTACTGGAAGCTACGACA -ACGGAACTACTGGAAGCTAGCTCA -ACGGAACTACTGGAAGCTTCACGT -ACGGAACTACTGGAAGCTCGTAGT -ACGGAACTACTGGAAGCTGTCAGT -ACGGAACTACTGGAAGCTGAAGGT -ACGGAACTACTGGAAGCTAACCGT -ACGGAACTACTGGAAGCTTTGTGC -ACGGAACTACTGGAAGCTCTAAGC -ACGGAACTACTGGAAGCTACTAGC -ACGGAACTACTGGAAGCTAGATGC -ACGGAACTACTGGAAGCTTGAAGG -ACGGAACTACTGGAAGCTCAATGG -ACGGAACTACTGGAAGCTATGAGG -ACGGAACTACTGGAAGCTAATGGG -ACGGAACTACTGGAAGCTTCCTGA -ACGGAACTACTGGAAGCTTAGCGA -ACGGAACTACTGGAAGCTCACAGA -ACGGAACTACTGGAAGCTGCAAGA -ACGGAACTACTGGAAGCTGGTTGA -ACGGAACTACTGGAAGCTTCCGAT -ACGGAACTACTGGAAGCTTGGCAT -ACGGAACTACTGGAAGCTCGAGAT -ACGGAACTACTGGAAGCTTACCAC -ACGGAACTACTGGAAGCTCAGAAC -ACGGAACTACTGGAAGCTGTCTAC -ACGGAACTACTGGAAGCTACGTAC -ACGGAACTACTGGAAGCTAGTGAC -ACGGAACTACTGGAAGCTCTGTAG -ACGGAACTACTGGAAGCTCCTAAG -ACGGAACTACTGGAAGCTGTTCAG -ACGGAACTACTGGAAGCTGCATAG -ACGGAACTACTGGAAGCTGACAAG -ACGGAACTACTGGAAGCTAAGCAG -ACGGAACTACTGGAAGCTCGTCAA -ACGGAACTACTGGAAGCTGCTGAA -ACGGAACTACTGGAAGCTAGTACG -ACGGAACTACTGGAAGCTATCCGA -ACGGAACTACTGGAAGCTATGGGA -ACGGAACTACTGGAAGCTGTGCAA -ACGGAACTACTGGAAGCTGAGGAA -ACGGAACTACTGGAAGCTCAGGTA -ACGGAACTACTGGAAGCTGACTCT -ACGGAACTACTGGAAGCTAGTCCT -ACGGAACTACTGGAAGCTTAAGCC -ACGGAACTACTGGAAGCTATAGCC -ACGGAACTACTGGAAGCTTAACCG -ACGGAACTACTGGAAGCTATGCCA -ACGGAACTACTGACGAGTGGAAAC -ACGGAACTACTGACGAGTAACACC -ACGGAACTACTGACGAGTATCGAG -ACGGAACTACTGACGAGTCTCCTT -ACGGAACTACTGACGAGTCCTGTT -ACGGAACTACTGACGAGTCGGTTT -ACGGAACTACTGACGAGTGTGGTT -ACGGAACTACTGACGAGTGCCTTT -ACGGAACTACTGACGAGTGGTCTT -ACGGAACTACTGACGAGTACGCTT -ACGGAACTACTGACGAGTAGCGTT -ACGGAACTACTGACGAGTTTCGTC -ACGGAACTACTGACGAGTTCTCTC -ACGGAACTACTGACGAGTTGGATC -ACGGAACTACTGACGAGTCACTTC -ACGGAACTACTGACGAGTGTACTC -ACGGAACTACTGACGAGTGATGTC -ACGGAACTACTGACGAGTACAGTC -ACGGAACTACTGACGAGTTTGCTG -ACGGAACTACTGACGAGTTCCATG -ACGGAACTACTGACGAGTTGTGTG -ACGGAACTACTGACGAGTCTAGTG -ACGGAACTACTGACGAGTCATCTG -ACGGAACTACTGACGAGTGAGTTG -ACGGAACTACTGACGAGTAGACTG -ACGGAACTACTGACGAGTTCGGTA -ACGGAACTACTGACGAGTTGCCTA -ACGGAACTACTGACGAGTCCACTA -ACGGAACTACTGACGAGTGGAGTA -ACGGAACTACTGACGAGTTCGTCT -ACGGAACTACTGACGAGTTGCACT -ACGGAACTACTGACGAGTCTGACT -ACGGAACTACTGACGAGTCAACCT -ACGGAACTACTGACGAGTGCTACT -ACGGAACTACTGACGAGTGGATCT -ACGGAACTACTGACGAGTAAGGCT -ACGGAACTACTGACGAGTTCAACC -ACGGAACTACTGACGAGTTGTTCC -ACGGAACTACTGACGAGTATTCCC -ACGGAACTACTGACGAGTTTCTCG -ACGGAACTACTGACGAGTTAGACG -ACGGAACTACTGACGAGTGTAACG -ACGGAACTACTGACGAGTACTTCG -ACGGAACTACTGACGAGTTACGCA -ACGGAACTACTGACGAGTCTTGCA -ACGGAACTACTGACGAGTCGAACA -ACGGAACTACTGACGAGTCAGTCA -ACGGAACTACTGACGAGTGATCCA -ACGGAACTACTGACGAGTACGACA -ACGGAACTACTGACGAGTAGCTCA -ACGGAACTACTGACGAGTTCACGT -ACGGAACTACTGACGAGTCGTAGT -ACGGAACTACTGACGAGTGTCAGT -ACGGAACTACTGACGAGTGAAGGT -ACGGAACTACTGACGAGTAACCGT -ACGGAACTACTGACGAGTTTGTGC -ACGGAACTACTGACGAGTCTAAGC -ACGGAACTACTGACGAGTACTAGC -ACGGAACTACTGACGAGTAGATGC -ACGGAACTACTGACGAGTTGAAGG -ACGGAACTACTGACGAGTCAATGG -ACGGAACTACTGACGAGTATGAGG -ACGGAACTACTGACGAGTAATGGG -ACGGAACTACTGACGAGTTCCTGA -ACGGAACTACTGACGAGTTAGCGA -ACGGAACTACTGACGAGTCACAGA -ACGGAACTACTGACGAGTGCAAGA -ACGGAACTACTGACGAGTGGTTGA -ACGGAACTACTGACGAGTTCCGAT -ACGGAACTACTGACGAGTTGGCAT -ACGGAACTACTGACGAGTCGAGAT -ACGGAACTACTGACGAGTTACCAC -ACGGAACTACTGACGAGTCAGAAC -ACGGAACTACTGACGAGTGTCTAC -ACGGAACTACTGACGAGTACGTAC -ACGGAACTACTGACGAGTAGTGAC -ACGGAACTACTGACGAGTCTGTAG -ACGGAACTACTGACGAGTCCTAAG -ACGGAACTACTGACGAGTGTTCAG -ACGGAACTACTGACGAGTGCATAG -ACGGAACTACTGACGAGTGACAAG -ACGGAACTACTGACGAGTAAGCAG -ACGGAACTACTGACGAGTCGTCAA -ACGGAACTACTGACGAGTGCTGAA -ACGGAACTACTGACGAGTAGTACG -ACGGAACTACTGACGAGTATCCGA -ACGGAACTACTGACGAGTATGGGA -ACGGAACTACTGACGAGTGTGCAA -ACGGAACTACTGACGAGTGAGGAA -ACGGAACTACTGACGAGTCAGGTA -ACGGAACTACTGACGAGTGACTCT -ACGGAACTACTGACGAGTAGTCCT -ACGGAACTACTGACGAGTTAAGCC -ACGGAACTACTGACGAGTATAGCC -ACGGAACTACTGACGAGTTAACCG -ACGGAACTACTGACGAGTATGCCA -ACGGAACTACTGCGAATCGGAAAC -ACGGAACTACTGCGAATCAACACC -ACGGAACTACTGCGAATCATCGAG -ACGGAACTACTGCGAATCCTCCTT -ACGGAACTACTGCGAATCCCTGTT -ACGGAACTACTGCGAATCCGGTTT -ACGGAACTACTGCGAATCGTGGTT -ACGGAACTACTGCGAATCGCCTTT -ACGGAACTACTGCGAATCGGTCTT -ACGGAACTACTGCGAATCACGCTT -ACGGAACTACTGCGAATCAGCGTT -ACGGAACTACTGCGAATCTTCGTC -ACGGAACTACTGCGAATCTCTCTC -ACGGAACTACTGCGAATCTGGATC -ACGGAACTACTGCGAATCCACTTC -ACGGAACTACTGCGAATCGTACTC -ACGGAACTACTGCGAATCGATGTC -ACGGAACTACTGCGAATCACAGTC -ACGGAACTACTGCGAATCTTGCTG -ACGGAACTACTGCGAATCTCCATG -ACGGAACTACTGCGAATCTGTGTG -ACGGAACTACTGCGAATCCTAGTG -ACGGAACTACTGCGAATCCATCTG -ACGGAACTACTGCGAATCGAGTTG -ACGGAACTACTGCGAATCAGACTG -ACGGAACTACTGCGAATCTCGGTA -ACGGAACTACTGCGAATCTGCCTA -ACGGAACTACTGCGAATCCCACTA -ACGGAACTACTGCGAATCGGAGTA -ACGGAACTACTGCGAATCTCGTCT -ACGGAACTACTGCGAATCTGCACT -ACGGAACTACTGCGAATCCTGACT -ACGGAACTACTGCGAATCCAACCT -ACGGAACTACTGCGAATCGCTACT -ACGGAACTACTGCGAATCGGATCT -ACGGAACTACTGCGAATCAAGGCT -ACGGAACTACTGCGAATCTCAACC -ACGGAACTACTGCGAATCTGTTCC -ACGGAACTACTGCGAATCATTCCC -ACGGAACTACTGCGAATCTTCTCG -ACGGAACTACTGCGAATCTAGACG -ACGGAACTACTGCGAATCGTAACG -ACGGAACTACTGCGAATCACTTCG -ACGGAACTACTGCGAATCTACGCA -ACGGAACTACTGCGAATCCTTGCA -ACGGAACTACTGCGAATCCGAACA -ACGGAACTACTGCGAATCCAGTCA -ACGGAACTACTGCGAATCGATCCA -ACGGAACTACTGCGAATCACGACA -ACGGAACTACTGCGAATCAGCTCA -ACGGAACTACTGCGAATCTCACGT -ACGGAACTACTGCGAATCCGTAGT -ACGGAACTACTGCGAATCGTCAGT -ACGGAACTACTGCGAATCGAAGGT -ACGGAACTACTGCGAATCAACCGT -ACGGAACTACTGCGAATCTTGTGC -ACGGAACTACTGCGAATCCTAAGC -ACGGAACTACTGCGAATCACTAGC -ACGGAACTACTGCGAATCAGATGC -ACGGAACTACTGCGAATCTGAAGG -ACGGAACTACTGCGAATCCAATGG -ACGGAACTACTGCGAATCATGAGG -ACGGAACTACTGCGAATCAATGGG -ACGGAACTACTGCGAATCTCCTGA -ACGGAACTACTGCGAATCTAGCGA -ACGGAACTACTGCGAATCCACAGA -ACGGAACTACTGCGAATCGCAAGA -ACGGAACTACTGCGAATCGGTTGA -ACGGAACTACTGCGAATCTCCGAT -ACGGAACTACTGCGAATCTGGCAT -ACGGAACTACTGCGAATCCGAGAT -ACGGAACTACTGCGAATCTACCAC -ACGGAACTACTGCGAATCCAGAAC -ACGGAACTACTGCGAATCGTCTAC -ACGGAACTACTGCGAATCACGTAC -ACGGAACTACTGCGAATCAGTGAC -ACGGAACTACTGCGAATCCTGTAG -ACGGAACTACTGCGAATCCCTAAG -ACGGAACTACTGCGAATCGTTCAG -ACGGAACTACTGCGAATCGCATAG -ACGGAACTACTGCGAATCGACAAG -ACGGAACTACTGCGAATCAAGCAG -ACGGAACTACTGCGAATCCGTCAA -ACGGAACTACTGCGAATCGCTGAA -ACGGAACTACTGCGAATCAGTACG -ACGGAACTACTGCGAATCATCCGA -ACGGAACTACTGCGAATCATGGGA -ACGGAACTACTGCGAATCGTGCAA -ACGGAACTACTGCGAATCGAGGAA -ACGGAACTACTGCGAATCCAGGTA -ACGGAACTACTGCGAATCGACTCT -ACGGAACTACTGCGAATCAGTCCT -ACGGAACTACTGCGAATCTAAGCC -ACGGAACTACTGCGAATCATAGCC -ACGGAACTACTGCGAATCTAACCG -ACGGAACTACTGCGAATCATGCCA -ACGGAACTACTGGGAATGGGAAAC -ACGGAACTACTGGGAATGAACACC -ACGGAACTACTGGGAATGATCGAG -ACGGAACTACTGGGAATGCTCCTT -ACGGAACTACTGGGAATGCCTGTT -ACGGAACTACTGGGAATGCGGTTT -ACGGAACTACTGGGAATGGTGGTT -ACGGAACTACTGGGAATGGCCTTT -ACGGAACTACTGGGAATGGGTCTT -ACGGAACTACTGGGAATGACGCTT -ACGGAACTACTGGGAATGAGCGTT -ACGGAACTACTGGGAATGTTCGTC -ACGGAACTACTGGGAATGTCTCTC -ACGGAACTACTGGGAATGTGGATC -ACGGAACTACTGGGAATGCACTTC -ACGGAACTACTGGGAATGGTACTC -ACGGAACTACTGGGAATGGATGTC -ACGGAACTACTGGGAATGACAGTC -ACGGAACTACTGGGAATGTTGCTG -ACGGAACTACTGGGAATGTCCATG -ACGGAACTACTGGGAATGTGTGTG -ACGGAACTACTGGGAATGCTAGTG -ACGGAACTACTGGGAATGCATCTG -ACGGAACTACTGGGAATGGAGTTG -ACGGAACTACTGGGAATGAGACTG -ACGGAACTACTGGGAATGTCGGTA -ACGGAACTACTGGGAATGTGCCTA -ACGGAACTACTGGGAATGCCACTA -ACGGAACTACTGGGAATGGGAGTA -ACGGAACTACTGGGAATGTCGTCT -ACGGAACTACTGGGAATGTGCACT -ACGGAACTACTGGGAATGCTGACT -ACGGAACTACTGGGAATGCAACCT -ACGGAACTACTGGGAATGGCTACT -ACGGAACTACTGGGAATGGGATCT -ACGGAACTACTGGGAATGAAGGCT -ACGGAACTACTGGGAATGTCAACC -ACGGAACTACTGGGAATGTGTTCC -ACGGAACTACTGGGAATGATTCCC -ACGGAACTACTGGGAATGTTCTCG -ACGGAACTACTGGGAATGTAGACG -ACGGAACTACTGGGAATGGTAACG -ACGGAACTACTGGGAATGACTTCG -ACGGAACTACTGGGAATGTACGCA -ACGGAACTACTGGGAATGCTTGCA -ACGGAACTACTGGGAATGCGAACA -ACGGAACTACTGGGAATGCAGTCA -ACGGAACTACTGGGAATGGATCCA -ACGGAACTACTGGGAATGACGACA -ACGGAACTACTGGGAATGAGCTCA -ACGGAACTACTGGGAATGTCACGT -ACGGAACTACTGGGAATGCGTAGT -ACGGAACTACTGGGAATGGTCAGT -ACGGAACTACTGGGAATGGAAGGT -ACGGAACTACTGGGAATGAACCGT -ACGGAACTACTGGGAATGTTGTGC -ACGGAACTACTGGGAATGCTAAGC -ACGGAACTACTGGGAATGACTAGC -ACGGAACTACTGGGAATGAGATGC -ACGGAACTACTGGGAATGTGAAGG -ACGGAACTACTGGGAATGCAATGG -ACGGAACTACTGGGAATGATGAGG -ACGGAACTACTGGGAATGAATGGG -ACGGAACTACTGGGAATGTCCTGA -ACGGAACTACTGGGAATGTAGCGA -ACGGAACTACTGGGAATGCACAGA -ACGGAACTACTGGGAATGGCAAGA -ACGGAACTACTGGGAATGGGTTGA -ACGGAACTACTGGGAATGTCCGAT -ACGGAACTACTGGGAATGTGGCAT -ACGGAACTACTGGGAATGCGAGAT -ACGGAACTACTGGGAATGTACCAC -ACGGAACTACTGGGAATGCAGAAC -ACGGAACTACTGGGAATGGTCTAC -ACGGAACTACTGGGAATGACGTAC -ACGGAACTACTGGGAATGAGTGAC -ACGGAACTACTGGGAATGCTGTAG -ACGGAACTACTGGGAATGCCTAAG -ACGGAACTACTGGGAATGGTTCAG -ACGGAACTACTGGGAATGGCATAG -ACGGAACTACTGGGAATGGACAAG -ACGGAACTACTGGGAATGAAGCAG -ACGGAACTACTGGGAATGCGTCAA -ACGGAACTACTGGGAATGGCTGAA -ACGGAACTACTGGGAATGAGTACG -ACGGAACTACTGGGAATGATCCGA -ACGGAACTACTGGGAATGATGGGA -ACGGAACTACTGGGAATGGTGCAA -ACGGAACTACTGGGAATGGAGGAA -ACGGAACTACTGGGAATGCAGGTA -ACGGAACTACTGGGAATGGACTCT -ACGGAACTACTGGGAATGAGTCCT -ACGGAACTACTGGGAATGTAAGCC -ACGGAACTACTGGGAATGATAGCC -ACGGAACTACTGGGAATGTAACCG -ACGGAACTACTGGGAATGATGCCA -ACGGAACTACTGCAAGTGGGAAAC -ACGGAACTACTGCAAGTGAACACC -ACGGAACTACTGCAAGTGATCGAG -ACGGAACTACTGCAAGTGCTCCTT -ACGGAACTACTGCAAGTGCCTGTT -ACGGAACTACTGCAAGTGCGGTTT -ACGGAACTACTGCAAGTGGTGGTT -ACGGAACTACTGCAAGTGGCCTTT -ACGGAACTACTGCAAGTGGGTCTT -ACGGAACTACTGCAAGTGACGCTT -ACGGAACTACTGCAAGTGAGCGTT -ACGGAACTACTGCAAGTGTTCGTC -ACGGAACTACTGCAAGTGTCTCTC -ACGGAACTACTGCAAGTGTGGATC -ACGGAACTACTGCAAGTGCACTTC -ACGGAACTACTGCAAGTGGTACTC -ACGGAACTACTGCAAGTGGATGTC -ACGGAACTACTGCAAGTGACAGTC -ACGGAACTACTGCAAGTGTTGCTG -ACGGAACTACTGCAAGTGTCCATG -ACGGAACTACTGCAAGTGTGTGTG -ACGGAACTACTGCAAGTGCTAGTG -ACGGAACTACTGCAAGTGCATCTG -ACGGAACTACTGCAAGTGGAGTTG -ACGGAACTACTGCAAGTGAGACTG -ACGGAACTACTGCAAGTGTCGGTA -ACGGAACTACTGCAAGTGTGCCTA -ACGGAACTACTGCAAGTGCCACTA -ACGGAACTACTGCAAGTGGGAGTA -ACGGAACTACTGCAAGTGTCGTCT -ACGGAACTACTGCAAGTGTGCACT -ACGGAACTACTGCAAGTGCTGACT -ACGGAACTACTGCAAGTGCAACCT -ACGGAACTACTGCAAGTGGCTACT -ACGGAACTACTGCAAGTGGGATCT -ACGGAACTACTGCAAGTGAAGGCT -ACGGAACTACTGCAAGTGTCAACC -ACGGAACTACTGCAAGTGTGTTCC -ACGGAACTACTGCAAGTGATTCCC -ACGGAACTACTGCAAGTGTTCTCG -ACGGAACTACTGCAAGTGTAGACG -ACGGAACTACTGCAAGTGGTAACG -ACGGAACTACTGCAAGTGACTTCG -ACGGAACTACTGCAAGTGTACGCA -ACGGAACTACTGCAAGTGCTTGCA -ACGGAACTACTGCAAGTGCGAACA -ACGGAACTACTGCAAGTGCAGTCA -ACGGAACTACTGCAAGTGGATCCA -ACGGAACTACTGCAAGTGACGACA -ACGGAACTACTGCAAGTGAGCTCA -ACGGAACTACTGCAAGTGTCACGT -ACGGAACTACTGCAAGTGCGTAGT -ACGGAACTACTGCAAGTGGTCAGT -ACGGAACTACTGCAAGTGGAAGGT -ACGGAACTACTGCAAGTGAACCGT -ACGGAACTACTGCAAGTGTTGTGC -ACGGAACTACTGCAAGTGCTAAGC -ACGGAACTACTGCAAGTGACTAGC -ACGGAACTACTGCAAGTGAGATGC -ACGGAACTACTGCAAGTGTGAAGG -ACGGAACTACTGCAAGTGCAATGG -ACGGAACTACTGCAAGTGATGAGG -ACGGAACTACTGCAAGTGAATGGG -ACGGAACTACTGCAAGTGTCCTGA -ACGGAACTACTGCAAGTGTAGCGA -ACGGAACTACTGCAAGTGCACAGA -ACGGAACTACTGCAAGTGGCAAGA -ACGGAACTACTGCAAGTGGGTTGA -ACGGAACTACTGCAAGTGTCCGAT -ACGGAACTACTGCAAGTGTGGCAT -ACGGAACTACTGCAAGTGCGAGAT -ACGGAACTACTGCAAGTGTACCAC -ACGGAACTACTGCAAGTGCAGAAC -ACGGAACTACTGCAAGTGGTCTAC -ACGGAACTACTGCAAGTGACGTAC -ACGGAACTACTGCAAGTGAGTGAC -ACGGAACTACTGCAAGTGCTGTAG -ACGGAACTACTGCAAGTGCCTAAG -ACGGAACTACTGCAAGTGGTTCAG -ACGGAACTACTGCAAGTGGCATAG -ACGGAACTACTGCAAGTGGACAAG -ACGGAACTACTGCAAGTGAAGCAG -ACGGAACTACTGCAAGTGCGTCAA -ACGGAACTACTGCAAGTGGCTGAA -ACGGAACTACTGCAAGTGAGTACG -ACGGAACTACTGCAAGTGATCCGA -ACGGAACTACTGCAAGTGATGGGA -ACGGAACTACTGCAAGTGGTGCAA -ACGGAACTACTGCAAGTGGAGGAA -ACGGAACTACTGCAAGTGCAGGTA -ACGGAACTACTGCAAGTGGACTCT -ACGGAACTACTGCAAGTGAGTCCT -ACGGAACTACTGCAAGTGTAAGCC -ACGGAACTACTGCAAGTGATAGCC -ACGGAACTACTGCAAGTGTAACCG -ACGGAACTACTGCAAGTGATGCCA -ACGGAACTACTGGAAGAGGGAAAC -ACGGAACTACTGGAAGAGAACACC -ACGGAACTACTGGAAGAGATCGAG -ACGGAACTACTGGAAGAGCTCCTT -ACGGAACTACTGGAAGAGCCTGTT -ACGGAACTACTGGAAGAGCGGTTT -ACGGAACTACTGGAAGAGGTGGTT -ACGGAACTACTGGAAGAGGCCTTT -ACGGAACTACTGGAAGAGGGTCTT -ACGGAACTACTGGAAGAGACGCTT -ACGGAACTACTGGAAGAGAGCGTT -ACGGAACTACTGGAAGAGTTCGTC -ACGGAACTACTGGAAGAGTCTCTC -ACGGAACTACTGGAAGAGTGGATC -ACGGAACTACTGGAAGAGCACTTC -ACGGAACTACTGGAAGAGGTACTC -ACGGAACTACTGGAAGAGGATGTC -ACGGAACTACTGGAAGAGACAGTC -ACGGAACTACTGGAAGAGTTGCTG -ACGGAACTACTGGAAGAGTCCATG -ACGGAACTACTGGAAGAGTGTGTG -ACGGAACTACTGGAAGAGCTAGTG -ACGGAACTACTGGAAGAGCATCTG -ACGGAACTACTGGAAGAGGAGTTG -ACGGAACTACTGGAAGAGAGACTG -ACGGAACTACTGGAAGAGTCGGTA -ACGGAACTACTGGAAGAGTGCCTA -ACGGAACTACTGGAAGAGCCACTA -ACGGAACTACTGGAAGAGGGAGTA -ACGGAACTACTGGAAGAGTCGTCT -ACGGAACTACTGGAAGAGTGCACT -ACGGAACTACTGGAAGAGCTGACT -ACGGAACTACTGGAAGAGCAACCT -ACGGAACTACTGGAAGAGGCTACT -ACGGAACTACTGGAAGAGGGATCT -ACGGAACTACTGGAAGAGAAGGCT -ACGGAACTACTGGAAGAGTCAACC -ACGGAACTACTGGAAGAGTGTTCC -ACGGAACTACTGGAAGAGATTCCC -ACGGAACTACTGGAAGAGTTCTCG -ACGGAACTACTGGAAGAGTAGACG -ACGGAACTACTGGAAGAGGTAACG -ACGGAACTACTGGAAGAGACTTCG -ACGGAACTACTGGAAGAGTACGCA -ACGGAACTACTGGAAGAGCTTGCA -ACGGAACTACTGGAAGAGCGAACA -ACGGAACTACTGGAAGAGCAGTCA -ACGGAACTACTGGAAGAGGATCCA -ACGGAACTACTGGAAGAGACGACA -ACGGAACTACTGGAAGAGAGCTCA -ACGGAACTACTGGAAGAGTCACGT -ACGGAACTACTGGAAGAGCGTAGT -ACGGAACTACTGGAAGAGGTCAGT -ACGGAACTACTGGAAGAGGAAGGT -ACGGAACTACTGGAAGAGAACCGT -ACGGAACTACTGGAAGAGTTGTGC -ACGGAACTACTGGAAGAGCTAAGC -ACGGAACTACTGGAAGAGACTAGC -ACGGAACTACTGGAAGAGAGATGC -ACGGAACTACTGGAAGAGTGAAGG -ACGGAACTACTGGAAGAGCAATGG -ACGGAACTACTGGAAGAGATGAGG -ACGGAACTACTGGAAGAGAATGGG -ACGGAACTACTGGAAGAGTCCTGA -ACGGAACTACTGGAAGAGTAGCGA -ACGGAACTACTGGAAGAGCACAGA -ACGGAACTACTGGAAGAGGCAAGA -ACGGAACTACTGGAAGAGGGTTGA -ACGGAACTACTGGAAGAGTCCGAT -ACGGAACTACTGGAAGAGTGGCAT -ACGGAACTACTGGAAGAGCGAGAT -ACGGAACTACTGGAAGAGTACCAC -ACGGAACTACTGGAAGAGCAGAAC -ACGGAACTACTGGAAGAGGTCTAC -ACGGAACTACTGGAAGAGACGTAC -ACGGAACTACTGGAAGAGAGTGAC -ACGGAACTACTGGAAGAGCTGTAG -ACGGAACTACTGGAAGAGCCTAAG -ACGGAACTACTGGAAGAGGTTCAG -ACGGAACTACTGGAAGAGGCATAG -ACGGAACTACTGGAAGAGGACAAG -ACGGAACTACTGGAAGAGAAGCAG -ACGGAACTACTGGAAGAGCGTCAA -ACGGAACTACTGGAAGAGGCTGAA -ACGGAACTACTGGAAGAGAGTACG -ACGGAACTACTGGAAGAGATCCGA -ACGGAACTACTGGAAGAGATGGGA -ACGGAACTACTGGAAGAGGTGCAA -ACGGAACTACTGGAAGAGGAGGAA -ACGGAACTACTGGAAGAGCAGGTA -ACGGAACTACTGGAAGAGGACTCT -ACGGAACTACTGGAAGAGAGTCCT -ACGGAACTACTGGAAGAGTAAGCC -ACGGAACTACTGGAAGAGATAGCC -ACGGAACTACTGGAAGAGTAACCG -ACGGAACTACTGGAAGAGATGCCA -ACGGAACTACTGGTACAGGGAAAC -ACGGAACTACTGGTACAGAACACC -ACGGAACTACTGGTACAGATCGAG -ACGGAACTACTGGTACAGCTCCTT -ACGGAACTACTGGTACAGCCTGTT -ACGGAACTACTGGTACAGCGGTTT -ACGGAACTACTGGTACAGGTGGTT -ACGGAACTACTGGTACAGGCCTTT -ACGGAACTACTGGTACAGGGTCTT -ACGGAACTACTGGTACAGACGCTT -ACGGAACTACTGGTACAGAGCGTT -ACGGAACTACTGGTACAGTTCGTC -ACGGAACTACTGGTACAGTCTCTC -ACGGAACTACTGGTACAGTGGATC -ACGGAACTACTGGTACAGCACTTC -ACGGAACTACTGGTACAGGTACTC -ACGGAACTACTGGTACAGGATGTC -ACGGAACTACTGGTACAGACAGTC -ACGGAACTACTGGTACAGTTGCTG -ACGGAACTACTGGTACAGTCCATG -ACGGAACTACTGGTACAGTGTGTG -ACGGAACTACTGGTACAGCTAGTG -ACGGAACTACTGGTACAGCATCTG -ACGGAACTACTGGTACAGGAGTTG -ACGGAACTACTGGTACAGAGACTG -ACGGAACTACTGGTACAGTCGGTA -ACGGAACTACTGGTACAGTGCCTA -ACGGAACTACTGGTACAGCCACTA -ACGGAACTACTGGTACAGGGAGTA -ACGGAACTACTGGTACAGTCGTCT -ACGGAACTACTGGTACAGTGCACT -ACGGAACTACTGGTACAGCTGACT -ACGGAACTACTGGTACAGCAACCT -ACGGAACTACTGGTACAGGCTACT -ACGGAACTACTGGTACAGGGATCT -ACGGAACTACTGGTACAGAAGGCT -ACGGAACTACTGGTACAGTCAACC -ACGGAACTACTGGTACAGTGTTCC -ACGGAACTACTGGTACAGATTCCC -ACGGAACTACTGGTACAGTTCTCG -ACGGAACTACTGGTACAGTAGACG -ACGGAACTACTGGTACAGGTAACG -ACGGAACTACTGGTACAGACTTCG -ACGGAACTACTGGTACAGTACGCA -ACGGAACTACTGGTACAGCTTGCA -ACGGAACTACTGGTACAGCGAACA -ACGGAACTACTGGTACAGCAGTCA -ACGGAACTACTGGTACAGGATCCA -ACGGAACTACTGGTACAGACGACA -ACGGAACTACTGGTACAGAGCTCA -ACGGAACTACTGGTACAGTCACGT -ACGGAACTACTGGTACAGCGTAGT -ACGGAACTACTGGTACAGGTCAGT -ACGGAACTACTGGTACAGGAAGGT -ACGGAACTACTGGTACAGAACCGT -ACGGAACTACTGGTACAGTTGTGC -ACGGAACTACTGGTACAGCTAAGC -ACGGAACTACTGGTACAGACTAGC -ACGGAACTACTGGTACAGAGATGC -ACGGAACTACTGGTACAGTGAAGG -ACGGAACTACTGGTACAGCAATGG -ACGGAACTACTGGTACAGATGAGG -ACGGAACTACTGGTACAGAATGGG -ACGGAACTACTGGTACAGTCCTGA -ACGGAACTACTGGTACAGTAGCGA -ACGGAACTACTGGTACAGCACAGA -ACGGAACTACTGGTACAGGCAAGA -ACGGAACTACTGGTACAGGGTTGA -ACGGAACTACTGGTACAGTCCGAT -ACGGAACTACTGGTACAGTGGCAT -ACGGAACTACTGGTACAGCGAGAT -ACGGAACTACTGGTACAGTACCAC -ACGGAACTACTGGTACAGCAGAAC -ACGGAACTACTGGTACAGGTCTAC -ACGGAACTACTGGTACAGACGTAC -ACGGAACTACTGGTACAGAGTGAC -ACGGAACTACTGGTACAGCTGTAG -ACGGAACTACTGGTACAGCCTAAG -ACGGAACTACTGGTACAGGTTCAG -ACGGAACTACTGGTACAGGCATAG -ACGGAACTACTGGTACAGGACAAG -ACGGAACTACTGGTACAGAAGCAG -ACGGAACTACTGGTACAGCGTCAA -ACGGAACTACTGGTACAGGCTGAA -ACGGAACTACTGGTACAGAGTACG -ACGGAACTACTGGTACAGATCCGA -ACGGAACTACTGGTACAGATGGGA -ACGGAACTACTGGTACAGGTGCAA -ACGGAACTACTGGTACAGGAGGAA -ACGGAACTACTGGTACAGCAGGTA -ACGGAACTACTGGTACAGGACTCT -ACGGAACTACTGGTACAGAGTCCT -ACGGAACTACTGGTACAGTAAGCC -ACGGAACTACTGGTACAGATAGCC -ACGGAACTACTGGTACAGTAACCG -ACGGAACTACTGGTACAGATGCCA -ACGGAACTACTGTCTGACGGAAAC -ACGGAACTACTGTCTGACAACACC -ACGGAACTACTGTCTGACATCGAG -ACGGAACTACTGTCTGACCTCCTT -ACGGAACTACTGTCTGACCCTGTT -ACGGAACTACTGTCTGACCGGTTT -ACGGAACTACTGTCTGACGTGGTT -ACGGAACTACTGTCTGACGCCTTT -ACGGAACTACTGTCTGACGGTCTT -ACGGAACTACTGTCTGACACGCTT -ACGGAACTACTGTCTGACAGCGTT -ACGGAACTACTGTCTGACTTCGTC -ACGGAACTACTGTCTGACTCTCTC -ACGGAACTACTGTCTGACTGGATC -ACGGAACTACTGTCTGACCACTTC -ACGGAACTACTGTCTGACGTACTC -ACGGAACTACTGTCTGACGATGTC -ACGGAACTACTGTCTGACACAGTC -ACGGAACTACTGTCTGACTTGCTG -ACGGAACTACTGTCTGACTCCATG -ACGGAACTACTGTCTGACTGTGTG -ACGGAACTACTGTCTGACCTAGTG -ACGGAACTACTGTCTGACCATCTG -ACGGAACTACTGTCTGACGAGTTG -ACGGAACTACTGTCTGACAGACTG -ACGGAACTACTGTCTGACTCGGTA -ACGGAACTACTGTCTGACTGCCTA -ACGGAACTACTGTCTGACCCACTA -ACGGAACTACTGTCTGACGGAGTA -ACGGAACTACTGTCTGACTCGTCT -ACGGAACTACTGTCTGACTGCACT -ACGGAACTACTGTCTGACCTGACT -ACGGAACTACTGTCTGACCAACCT -ACGGAACTACTGTCTGACGCTACT -ACGGAACTACTGTCTGACGGATCT -ACGGAACTACTGTCTGACAAGGCT -ACGGAACTACTGTCTGACTCAACC -ACGGAACTACTGTCTGACTGTTCC -ACGGAACTACTGTCTGACATTCCC -ACGGAACTACTGTCTGACTTCTCG -ACGGAACTACTGTCTGACTAGACG -ACGGAACTACTGTCTGACGTAACG -ACGGAACTACTGTCTGACACTTCG -ACGGAACTACTGTCTGACTACGCA -ACGGAACTACTGTCTGACCTTGCA -ACGGAACTACTGTCTGACCGAACA -ACGGAACTACTGTCTGACCAGTCA -ACGGAACTACTGTCTGACGATCCA -ACGGAACTACTGTCTGACACGACA -ACGGAACTACTGTCTGACAGCTCA -ACGGAACTACTGTCTGACTCACGT -ACGGAACTACTGTCTGACCGTAGT -ACGGAACTACTGTCTGACGTCAGT -ACGGAACTACTGTCTGACGAAGGT -ACGGAACTACTGTCTGACAACCGT -ACGGAACTACTGTCTGACTTGTGC -ACGGAACTACTGTCTGACCTAAGC -ACGGAACTACTGTCTGACACTAGC -ACGGAACTACTGTCTGACAGATGC -ACGGAACTACTGTCTGACTGAAGG -ACGGAACTACTGTCTGACCAATGG -ACGGAACTACTGTCTGACATGAGG -ACGGAACTACTGTCTGACAATGGG -ACGGAACTACTGTCTGACTCCTGA -ACGGAACTACTGTCTGACTAGCGA -ACGGAACTACTGTCTGACCACAGA -ACGGAACTACTGTCTGACGCAAGA -ACGGAACTACTGTCTGACGGTTGA -ACGGAACTACTGTCTGACTCCGAT -ACGGAACTACTGTCTGACTGGCAT -ACGGAACTACTGTCTGACCGAGAT -ACGGAACTACTGTCTGACTACCAC -ACGGAACTACTGTCTGACCAGAAC -ACGGAACTACTGTCTGACGTCTAC -ACGGAACTACTGTCTGACACGTAC -ACGGAACTACTGTCTGACAGTGAC -ACGGAACTACTGTCTGACCTGTAG -ACGGAACTACTGTCTGACCCTAAG -ACGGAACTACTGTCTGACGTTCAG -ACGGAACTACTGTCTGACGCATAG -ACGGAACTACTGTCTGACGACAAG -ACGGAACTACTGTCTGACAAGCAG -ACGGAACTACTGTCTGACCGTCAA -ACGGAACTACTGTCTGACGCTGAA -ACGGAACTACTGTCTGACAGTACG -ACGGAACTACTGTCTGACATCCGA -ACGGAACTACTGTCTGACATGGGA -ACGGAACTACTGTCTGACGTGCAA -ACGGAACTACTGTCTGACGAGGAA -ACGGAACTACTGTCTGACCAGGTA -ACGGAACTACTGTCTGACGACTCT -ACGGAACTACTGTCTGACAGTCCT -ACGGAACTACTGTCTGACTAAGCC -ACGGAACTACTGTCTGACATAGCC -ACGGAACTACTGTCTGACTAACCG -ACGGAACTACTGTCTGACATGCCA -ACGGAACTACTGCCTAGTGGAAAC -ACGGAACTACTGCCTAGTAACACC -ACGGAACTACTGCCTAGTATCGAG -ACGGAACTACTGCCTAGTCTCCTT -ACGGAACTACTGCCTAGTCCTGTT -ACGGAACTACTGCCTAGTCGGTTT -ACGGAACTACTGCCTAGTGTGGTT -ACGGAACTACTGCCTAGTGCCTTT -ACGGAACTACTGCCTAGTGGTCTT -ACGGAACTACTGCCTAGTACGCTT -ACGGAACTACTGCCTAGTAGCGTT -ACGGAACTACTGCCTAGTTTCGTC -ACGGAACTACTGCCTAGTTCTCTC -ACGGAACTACTGCCTAGTTGGATC -ACGGAACTACTGCCTAGTCACTTC -ACGGAACTACTGCCTAGTGTACTC -ACGGAACTACTGCCTAGTGATGTC -ACGGAACTACTGCCTAGTACAGTC -ACGGAACTACTGCCTAGTTTGCTG -ACGGAACTACTGCCTAGTTCCATG -ACGGAACTACTGCCTAGTTGTGTG -ACGGAACTACTGCCTAGTCTAGTG -ACGGAACTACTGCCTAGTCATCTG -ACGGAACTACTGCCTAGTGAGTTG -ACGGAACTACTGCCTAGTAGACTG -ACGGAACTACTGCCTAGTTCGGTA -ACGGAACTACTGCCTAGTTGCCTA -ACGGAACTACTGCCTAGTCCACTA -ACGGAACTACTGCCTAGTGGAGTA -ACGGAACTACTGCCTAGTTCGTCT -ACGGAACTACTGCCTAGTTGCACT -ACGGAACTACTGCCTAGTCTGACT -ACGGAACTACTGCCTAGTCAACCT -ACGGAACTACTGCCTAGTGCTACT -ACGGAACTACTGCCTAGTGGATCT -ACGGAACTACTGCCTAGTAAGGCT -ACGGAACTACTGCCTAGTTCAACC -ACGGAACTACTGCCTAGTTGTTCC -ACGGAACTACTGCCTAGTATTCCC -ACGGAACTACTGCCTAGTTTCTCG -ACGGAACTACTGCCTAGTTAGACG -ACGGAACTACTGCCTAGTGTAACG -ACGGAACTACTGCCTAGTACTTCG -ACGGAACTACTGCCTAGTTACGCA -ACGGAACTACTGCCTAGTCTTGCA -ACGGAACTACTGCCTAGTCGAACA -ACGGAACTACTGCCTAGTCAGTCA -ACGGAACTACTGCCTAGTGATCCA -ACGGAACTACTGCCTAGTACGACA -ACGGAACTACTGCCTAGTAGCTCA -ACGGAACTACTGCCTAGTTCACGT -ACGGAACTACTGCCTAGTCGTAGT -ACGGAACTACTGCCTAGTGTCAGT -ACGGAACTACTGCCTAGTGAAGGT -ACGGAACTACTGCCTAGTAACCGT -ACGGAACTACTGCCTAGTTTGTGC -ACGGAACTACTGCCTAGTCTAAGC -ACGGAACTACTGCCTAGTACTAGC -ACGGAACTACTGCCTAGTAGATGC -ACGGAACTACTGCCTAGTTGAAGG -ACGGAACTACTGCCTAGTCAATGG -ACGGAACTACTGCCTAGTATGAGG -ACGGAACTACTGCCTAGTAATGGG -ACGGAACTACTGCCTAGTTCCTGA -ACGGAACTACTGCCTAGTTAGCGA -ACGGAACTACTGCCTAGTCACAGA -ACGGAACTACTGCCTAGTGCAAGA -ACGGAACTACTGCCTAGTGGTTGA -ACGGAACTACTGCCTAGTTCCGAT -ACGGAACTACTGCCTAGTTGGCAT -ACGGAACTACTGCCTAGTCGAGAT -ACGGAACTACTGCCTAGTTACCAC -ACGGAACTACTGCCTAGTCAGAAC -ACGGAACTACTGCCTAGTGTCTAC -ACGGAACTACTGCCTAGTACGTAC -ACGGAACTACTGCCTAGTAGTGAC -ACGGAACTACTGCCTAGTCTGTAG -ACGGAACTACTGCCTAGTCCTAAG -ACGGAACTACTGCCTAGTGTTCAG -ACGGAACTACTGCCTAGTGCATAG -ACGGAACTACTGCCTAGTGACAAG -ACGGAACTACTGCCTAGTAAGCAG -ACGGAACTACTGCCTAGTCGTCAA -ACGGAACTACTGCCTAGTGCTGAA -ACGGAACTACTGCCTAGTAGTACG -ACGGAACTACTGCCTAGTATCCGA -ACGGAACTACTGCCTAGTATGGGA -ACGGAACTACTGCCTAGTGTGCAA -ACGGAACTACTGCCTAGTGAGGAA -ACGGAACTACTGCCTAGTCAGGTA -ACGGAACTACTGCCTAGTGACTCT -ACGGAACTACTGCCTAGTAGTCCT -ACGGAACTACTGCCTAGTTAAGCC -ACGGAACTACTGCCTAGTATAGCC -ACGGAACTACTGCCTAGTTAACCG -ACGGAACTACTGCCTAGTATGCCA -ACGGAACTACTGGCCTAAGGAAAC -ACGGAACTACTGGCCTAAAACACC -ACGGAACTACTGGCCTAAATCGAG -ACGGAACTACTGGCCTAACTCCTT -ACGGAACTACTGGCCTAACCTGTT -ACGGAACTACTGGCCTAACGGTTT -ACGGAACTACTGGCCTAAGTGGTT -ACGGAACTACTGGCCTAAGCCTTT -ACGGAACTACTGGCCTAAGGTCTT -ACGGAACTACTGGCCTAAACGCTT -ACGGAACTACTGGCCTAAAGCGTT -ACGGAACTACTGGCCTAATTCGTC -ACGGAACTACTGGCCTAATCTCTC -ACGGAACTACTGGCCTAATGGATC -ACGGAACTACTGGCCTAACACTTC -ACGGAACTACTGGCCTAAGTACTC -ACGGAACTACTGGCCTAAGATGTC -ACGGAACTACTGGCCTAAACAGTC -ACGGAACTACTGGCCTAATTGCTG -ACGGAACTACTGGCCTAATCCATG -ACGGAACTACTGGCCTAATGTGTG -ACGGAACTACTGGCCTAACTAGTG -ACGGAACTACTGGCCTAACATCTG -ACGGAACTACTGGCCTAAGAGTTG -ACGGAACTACTGGCCTAAAGACTG -ACGGAACTACTGGCCTAATCGGTA -ACGGAACTACTGGCCTAATGCCTA -ACGGAACTACTGGCCTAACCACTA -ACGGAACTACTGGCCTAAGGAGTA -ACGGAACTACTGGCCTAATCGTCT -ACGGAACTACTGGCCTAATGCACT -ACGGAACTACTGGCCTAACTGACT -ACGGAACTACTGGCCTAACAACCT -ACGGAACTACTGGCCTAAGCTACT -ACGGAACTACTGGCCTAAGGATCT -ACGGAACTACTGGCCTAAAAGGCT -ACGGAACTACTGGCCTAATCAACC -ACGGAACTACTGGCCTAATGTTCC -ACGGAACTACTGGCCTAAATTCCC -ACGGAACTACTGGCCTAATTCTCG -ACGGAACTACTGGCCTAATAGACG -ACGGAACTACTGGCCTAAGTAACG -ACGGAACTACTGGCCTAAACTTCG -ACGGAACTACTGGCCTAATACGCA -ACGGAACTACTGGCCTAACTTGCA -ACGGAACTACTGGCCTAACGAACA -ACGGAACTACTGGCCTAACAGTCA -ACGGAACTACTGGCCTAAGATCCA -ACGGAACTACTGGCCTAAACGACA -ACGGAACTACTGGCCTAAAGCTCA -ACGGAACTACTGGCCTAATCACGT -ACGGAACTACTGGCCTAACGTAGT -ACGGAACTACTGGCCTAAGTCAGT -ACGGAACTACTGGCCTAAGAAGGT -ACGGAACTACTGGCCTAAAACCGT -ACGGAACTACTGGCCTAATTGTGC -ACGGAACTACTGGCCTAACTAAGC -ACGGAACTACTGGCCTAAACTAGC -ACGGAACTACTGGCCTAAAGATGC -ACGGAACTACTGGCCTAATGAAGG -ACGGAACTACTGGCCTAACAATGG -ACGGAACTACTGGCCTAAATGAGG -ACGGAACTACTGGCCTAAAATGGG -ACGGAACTACTGGCCTAATCCTGA -ACGGAACTACTGGCCTAATAGCGA -ACGGAACTACTGGCCTAACACAGA -ACGGAACTACTGGCCTAAGCAAGA -ACGGAACTACTGGCCTAAGGTTGA -ACGGAACTACTGGCCTAATCCGAT -ACGGAACTACTGGCCTAATGGCAT -ACGGAACTACTGGCCTAACGAGAT -ACGGAACTACTGGCCTAATACCAC -ACGGAACTACTGGCCTAACAGAAC -ACGGAACTACTGGCCTAAGTCTAC -ACGGAACTACTGGCCTAAACGTAC -ACGGAACTACTGGCCTAAAGTGAC -ACGGAACTACTGGCCTAACTGTAG -ACGGAACTACTGGCCTAACCTAAG -ACGGAACTACTGGCCTAAGTTCAG -ACGGAACTACTGGCCTAAGCATAG -ACGGAACTACTGGCCTAAGACAAG -ACGGAACTACTGGCCTAAAAGCAG -ACGGAACTACTGGCCTAACGTCAA -ACGGAACTACTGGCCTAAGCTGAA -ACGGAACTACTGGCCTAAAGTACG -ACGGAACTACTGGCCTAAATCCGA -ACGGAACTACTGGCCTAAATGGGA -ACGGAACTACTGGCCTAAGTGCAA -ACGGAACTACTGGCCTAAGAGGAA -ACGGAACTACTGGCCTAACAGGTA -ACGGAACTACTGGCCTAAGACTCT -ACGGAACTACTGGCCTAAAGTCCT -ACGGAACTACTGGCCTAATAAGCC -ACGGAACTACTGGCCTAAATAGCC -ACGGAACTACTGGCCTAATAACCG -ACGGAACTACTGGCCTAAATGCCA -ACGGAACTACTGGCCATAGGAAAC -ACGGAACTACTGGCCATAAACACC -ACGGAACTACTGGCCATAATCGAG -ACGGAACTACTGGCCATACTCCTT -ACGGAACTACTGGCCATACCTGTT -ACGGAACTACTGGCCATACGGTTT -ACGGAACTACTGGCCATAGTGGTT -ACGGAACTACTGGCCATAGCCTTT -ACGGAACTACTGGCCATAGGTCTT -ACGGAACTACTGGCCATAACGCTT -ACGGAACTACTGGCCATAAGCGTT -ACGGAACTACTGGCCATATTCGTC -ACGGAACTACTGGCCATATCTCTC -ACGGAACTACTGGCCATATGGATC -ACGGAACTACTGGCCATACACTTC -ACGGAACTACTGGCCATAGTACTC -ACGGAACTACTGGCCATAGATGTC -ACGGAACTACTGGCCATAACAGTC -ACGGAACTACTGGCCATATTGCTG -ACGGAACTACTGGCCATATCCATG -ACGGAACTACTGGCCATATGTGTG -ACGGAACTACTGGCCATACTAGTG -ACGGAACTACTGGCCATACATCTG -ACGGAACTACTGGCCATAGAGTTG -ACGGAACTACTGGCCATAAGACTG -ACGGAACTACTGGCCATATCGGTA -ACGGAACTACTGGCCATATGCCTA -ACGGAACTACTGGCCATACCACTA -ACGGAACTACTGGCCATAGGAGTA -ACGGAACTACTGGCCATATCGTCT -ACGGAACTACTGGCCATATGCACT -ACGGAACTACTGGCCATACTGACT -ACGGAACTACTGGCCATACAACCT -ACGGAACTACTGGCCATAGCTACT -ACGGAACTACTGGCCATAGGATCT -ACGGAACTACTGGCCATAAAGGCT -ACGGAACTACTGGCCATATCAACC -ACGGAACTACTGGCCATATGTTCC -ACGGAACTACTGGCCATAATTCCC -ACGGAACTACTGGCCATATTCTCG -ACGGAACTACTGGCCATATAGACG -ACGGAACTACTGGCCATAGTAACG -ACGGAACTACTGGCCATAACTTCG -ACGGAACTACTGGCCATATACGCA -ACGGAACTACTGGCCATACTTGCA -ACGGAACTACTGGCCATACGAACA -ACGGAACTACTGGCCATACAGTCA -ACGGAACTACTGGCCATAGATCCA -ACGGAACTACTGGCCATAACGACA -ACGGAACTACTGGCCATAAGCTCA -ACGGAACTACTGGCCATATCACGT -ACGGAACTACTGGCCATACGTAGT -ACGGAACTACTGGCCATAGTCAGT -ACGGAACTACTGGCCATAGAAGGT -ACGGAACTACTGGCCATAAACCGT -ACGGAACTACTGGCCATATTGTGC -ACGGAACTACTGGCCATACTAAGC -ACGGAACTACTGGCCATAACTAGC -ACGGAACTACTGGCCATAAGATGC -ACGGAACTACTGGCCATATGAAGG -ACGGAACTACTGGCCATACAATGG -ACGGAACTACTGGCCATAATGAGG -ACGGAACTACTGGCCATAAATGGG -ACGGAACTACTGGCCATATCCTGA -ACGGAACTACTGGCCATATAGCGA -ACGGAACTACTGGCCATACACAGA -ACGGAACTACTGGCCATAGCAAGA -ACGGAACTACTGGCCATAGGTTGA -ACGGAACTACTGGCCATATCCGAT -ACGGAACTACTGGCCATATGGCAT -ACGGAACTACTGGCCATACGAGAT -ACGGAACTACTGGCCATATACCAC -ACGGAACTACTGGCCATACAGAAC -ACGGAACTACTGGCCATAGTCTAC -ACGGAACTACTGGCCATAACGTAC -ACGGAACTACTGGCCATAAGTGAC -ACGGAACTACTGGCCATACTGTAG -ACGGAACTACTGGCCATACCTAAG -ACGGAACTACTGGCCATAGTTCAG -ACGGAACTACTGGCCATAGCATAG -ACGGAACTACTGGCCATAGACAAG -ACGGAACTACTGGCCATAAAGCAG -ACGGAACTACTGGCCATACGTCAA -ACGGAACTACTGGCCATAGCTGAA -ACGGAACTACTGGCCATAAGTACG -ACGGAACTACTGGCCATAATCCGA -ACGGAACTACTGGCCATAATGGGA -ACGGAACTACTGGCCATAGTGCAA -ACGGAACTACTGGCCATAGAGGAA -ACGGAACTACTGGCCATACAGGTA -ACGGAACTACTGGCCATAGACTCT -ACGGAACTACTGGCCATAAGTCCT -ACGGAACTACTGGCCATATAAGCC -ACGGAACTACTGGCCATAATAGCC -ACGGAACTACTGGCCATATAACCG -ACGGAACTACTGGCCATAATGCCA -ACGGAACTACTGCCGTAAGGAAAC -ACGGAACTACTGCCGTAAAACACC -ACGGAACTACTGCCGTAAATCGAG -ACGGAACTACTGCCGTAACTCCTT -ACGGAACTACTGCCGTAACCTGTT -ACGGAACTACTGCCGTAACGGTTT -ACGGAACTACTGCCGTAAGTGGTT -ACGGAACTACTGCCGTAAGCCTTT -ACGGAACTACTGCCGTAAGGTCTT -ACGGAACTACTGCCGTAAACGCTT -ACGGAACTACTGCCGTAAAGCGTT -ACGGAACTACTGCCGTAATTCGTC -ACGGAACTACTGCCGTAATCTCTC -ACGGAACTACTGCCGTAATGGATC -ACGGAACTACTGCCGTAACACTTC -ACGGAACTACTGCCGTAAGTACTC -ACGGAACTACTGCCGTAAGATGTC -ACGGAACTACTGCCGTAAACAGTC -ACGGAACTACTGCCGTAATTGCTG -ACGGAACTACTGCCGTAATCCATG -ACGGAACTACTGCCGTAATGTGTG -ACGGAACTACTGCCGTAACTAGTG -ACGGAACTACTGCCGTAACATCTG -ACGGAACTACTGCCGTAAGAGTTG -ACGGAACTACTGCCGTAAAGACTG -ACGGAACTACTGCCGTAATCGGTA -ACGGAACTACTGCCGTAATGCCTA -ACGGAACTACTGCCGTAACCACTA -ACGGAACTACTGCCGTAAGGAGTA -ACGGAACTACTGCCGTAATCGTCT -ACGGAACTACTGCCGTAATGCACT -ACGGAACTACTGCCGTAACTGACT -ACGGAACTACTGCCGTAACAACCT -ACGGAACTACTGCCGTAAGCTACT -ACGGAACTACTGCCGTAAGGATCT -ACGGAACTACTGCCGTAAAAGGCT -ACGGAACTACTGCCGTAATCAACC -ACGGAACTACTGCCGTAATGTTCC -ACGGAACTACTGCCGTAAATTCCC -ACGGAACTACTGCCGTAATTCTCG -ACGGAACTACTGCCGTAATAGACG -ACGGAACTACTGCCGTAAGTAACG -ACGGAACTACTGCCGTAAACTTCG -ACGGAACTACTGCCGTAATACGCA -ACGGAACTACTGCCGTAACTTGCA -ACGGAACTACTGCCGTAACGAACA -ACGGAACTACTGCCGTAACAGTCA -ACGGAACTACTGCCGTAAGATCCA -ACGGAACTACTGCCGTAAACGACA -ACGGAACTACTGCCGTAAAGCTCA -ACGGAACTACTGCCGTAATCACGT -ACGGAACTACTGCCGTAACGTAGT -ACGGAACTACTGCCGTAAGTCAGT -ACGGAACTACTGCCGTAAGAAGGT -ACGGAACTACTGCCGTAAAACCGT -ACGGAACTACTGCCGTAATTGTGC -ACGGAACTACTGCCGTAACTAAGC -ACGGAACTACTGCCGTAAACTAGC -ACGGAACTACTGCCGTAAAGATGC -ACGGAACTACTGCCGTAATGAAGG -ACGGAACTACTGCCGTAACAATGG -ACGGAACTACTGCCGTAAATGAGG -ACGGAACTACTGCCGTAAAATGGG -ACGGAACTACTGCCGTAATCCTGA -ACGGAACTACTGCCGTAATAGCGA -ACGGAACTACTGCCGTAACACAGA -ACGGAACTACTGCCGTAAGCAAGA -ACGGAACTACTGCCGTAAGGTTGA -ACGGAACTACTGCCGTAATCCGAT -ACGGAACTACTGCCGTAATGGCAT -ACGGAACTACTGCCGTAACGAGAT -ACGGAACTACTGCCGTAATACCAC -ACGGAACTACTGCCGTAACAGAAC -ACGGAACTACTGCCGTAAGTCTAC -ACGGAACTACTGCCGTAAACGTAC -ACGGAACTACTGCCGTAAAGTGAC -ACGGAACTACTGCCGTAACTGTAG -ACGGAACTACTGCCGTAACCTAAG -ACGGAACTACTGCCGTAAGTTCAG -ACGGAACTACTGCCGTAAGCATAG -ACGGAACTACTGCCGTAAGACAAG -ACGGAACTACTGCCGTAAAAGCAG -ACGGAACTACTGCCGTAACGTCAA -ACGGAACTACTGCCGTAAGCTGAA -ACGGAACTACTGCCGTAAAGTACG -ACGGAACTACTGCCGTAAATCCGA -ACGGAACTACTGCCGTAAATGGGA -ACGGAACTACTGCCGTAAGTGCAA -ACGGAACTACTGCCGTAAGAGGAA -ACGGAACTACTGCCGTAACAGGTA -ACGGAACTACTGCCGTAAGACTCT -ACGGAACTACTGCCGTAAAGTCCT -ACGGAACTACTGCCGTAATAAGCC -ACGGAACTACTGCCGTAAATAGCC -ACGGAACTACTGCCGTAATAACCG -ACGGAACTACTGCCGTAAATGCCA -ACGGAACTACTGCCAATGGGAAAC -ACGGAACTACTGCCAATGAACACC -ACGGAACTACTGCCAATGATCGAG -ACGGAACTACTGCCAATGCTCCTT -ACGGAACTACTGCCAATGCCTGTT -ACGGAACTACTGCCAATGCGGTTT -ACGGAACTACTGCCAATGGTGGTT -ACGGAACTACTGCCAATGGCCTTT -ACGGAACTACTGCCAATGGGTCTT -ACGGAACTACTGCCAATGACGCTT -ACGGAACTACTGCCAATGAGCGTT -ACGGAACTACTGCCAATGTTCGTC -ACGGAACTACTGCCAATGTCTCTC -ACGGAACTACTGCCAATGTGGATC -ACGGAACTACTGCCAATGCACTTC -ACGGAACTACTGCCAATGGTACTC -ACGGAACTACTGCCAATGGATGTC -ACGGAACTACTGCCAATGACAGTC -ACGGAACTACTGCCAATGTTGCTG -ACGGAACTACTGCCAATGTCCATG -ACGGAACTACTGCCAATGTGTGTG -ACGGAACTACTGCCAATGCTAGTG -ACGGAACTACTGCCAATGCATCTG -ACGGAACTACTGCCAATGGAGTTG -ACGGAACTACTGCCAATGAGACTG -ACGGAACTACTGCCAATGTCGGTA -ACGGAACTACTGCCAATGTGCCTA -ACGGAACTACTGCCAATGCCACTA -ACGGAACTACTGCCAATGGGAGTA -ACGGAACTACTGCCAATGTCGTCT -ACGGAACTACTGCCAATGTGCACT -ACGGAACTACTGCCAATGCTGACT -ACGGAACTACTGCCAATGCAACCT -ACGGAACTACTGCCAATGGCTACT -ACGGAACTACTGCCAATGGGATCT -ACGGAACTACTGCCAATGAAGGCT -ACGGAACTACTGCCAATGTCAACC -ACGGAACTACTGCCAATGTGTTCC -ACGGAACTACTGCCAATGATTCCC -ACGGAACTACTGCCAATGTTCTCG -ACGGAACTACTGCCAATGTAGACG -ACGGAACTACTGCCAATGGTAACG -ACGGAACTACTGCCAATGACTTCG -ACGGAACTACTGCCAATGTACGCA -ACGGAACTACTGCCAATGCTTGCA -ACGGAACTACTGCCAATGCGAACA -ACGGAACTACTGCCAATGCAGTCA -ACGGAACTACTGCCAATGGATCCA -ACGGAACTACTGCCAATGACGACA -ACGGAACTACTGCCAATGAGCTCA -ACGGAACTACTGCCAATGTCACGT -ACGGAACTACTGCCAATGCGTAGT -ACGGAACTACTGCCAATGGTCAGT -ACGGAACTACTGCCAATGGAAGGT -ACGGAACTACTGCCAATGAACCGT -ACGGAACTACTGCCAATGTTGTGC -ACGGAACTACTGCCAATGCTAAGC -ACGGAACTACTGCCAATGACTAGC -ACGGAACTACTGCCAATGAGATGC -ACGGAACTACTGCCAATGTGAAGG -ACGGAACTACTGCCAATGCAATGG -ACGGAACTACTGCCAATGATGAGG -ACGGAACTACTGCCAATGAATGGG -ACGGAACTACTGCCAATGTCCTGA -ACGGAACTACTGCCAATGTAGCGA -ACGGAACTACTGCCAATGCACAGA -ACGGAACTACTGCCAATGGCAAGA -ACGGAACTACTGCCAATGGGTTGA -ACGGAACTACTGCCAATGTCCGAT -ACGGAACTACTGCCAATGTGGCAT -ACGGAACTACTGCCAATGCGAGAT -ACGGAACTACTGCCAATGTACCAC -ACGGAACTACTGCCAATGCAGAAC -ACGGAACTACTGCCAATGGTCTAC -ACGGAACTACTGCCAATGACGTAC -ACGGAACTACTGCCAATGAGTGAC -ACGGAACTACTGCCAATGCTGTAG -ACGGAACTACTGCCAATGCCTAAG -ACGGAACTACTGCCAATGGTTCAG -ACGGAACTACTGCCAATGGCATAG -ACGGAACTACTGCCAATGGACAAG -ACGGAACTACTGCCAATGAAGCAG -ACGGAACTACTGCCAATGCGTCAA -ACGGAACTACTGCCAATGGCTGAA -ACGGAACTACTGCCAATGAGTACG -ACGGAACTACTGCCAATGATCCGA -ACGGAACTACTGCCAATGATGGGA -ACGGAACTACTGCCAATGGTGCAA -ACGGAACTACTGCCAATGGAGGAA -ACGGAACTACTGCCAATGCAGGTA -ACGGAACTACTGCCAATGGACTCT -ACGGAACTACTGCCAATGAGTCCT -ACGGAACTACTGCCAATGTAAGCC -ACGGAACTACTGCCAATGATAGCC -ACGGAACTACTGCCAATGTAACCG -ACGGAACTACTGCCAATGATGCCA -ACGGAAGATCTGAACGGAGGAAAC -ACGGAAGATCTGAACGGAAACACC -ACGGAAGATCTGAACGGAATCGAG -ACGGAAGATCTGAACGGACTCCTT -ACGGAAGATCTGAACGGACCTGTT -ACGGAAGATCTGAACGGACGGTTT -ACGGAAGATCTGAACGGAGTGGTT -ACGGAAGATCTGAACGGAGCCTTT -ACGGAAGATCTGAACGGAGGTCTT -ACGGAAGATCTGAACGGAACGCTT -ACGGAAGATCTGAACGGAAGCGTT -ACGGAAGATCTGAACGGATTCGTC -ACGGAAGATCTGAACGGATCTCTC -ACGGAAGATCTGAACGGATGGATC -ACGGAAGATCTGAACGGACACTTC -ACGGAAGATCTGAACGGAGTACTC -ACGGAAGATCTGAACGGAGATGTC -ACGGAAGATCTGAACGGAACAGTC -ACGGAAGATCTGAACGGATTGCTG -ACGGAAGATCTGAACGGATCCATG -ACGGAAGATCTGAACGGATGTGTG -ACGGAAGATCTGAACGGACTAGTG -ACGGAAGATCTGAACGGACATCTG -ACGGAAGATCTGAACGGAGAGTTG -ACGGAAGATCTGAACGGAAGACTG -ACGGAAGATCTGAACGGATCGGTA -ACGGAAGATCTGAACGGATGCCTA -ACGGAAGATCTGAACGGACCACTA -ACGGAAGATCTGAACGGAGGAGTA -ACGGAAGATCTGAACGGATCGTCT -ACGGAAGATCTGAACGGATGCACT -ACGGAAGATCTGAACGGACTGACT -ACGGAAGATCTGAACGGACAACCT -ACGGAAGATCTGAACGGAGCTACT -ACGGAAGATCTGAACGGAGGATCT -ACGGAAGATCTGAACGGAAAGGCT -ACGGAAGATCTGAACGGATCAACC -ACGGAAGATCTGAACGGATGTTCC -ACGGAAGATCTGAACGGAATTCCC -ACGGAAGATCTGAACGGATTCTCG -ACGGAAGATCTGAACGGATAGACG -ACGGAAGATCTGAACGGAGTAACG -ACGGAAGATCTGAACGGAACTTCG -ACGGAAGATCTGAACGGATACGCA -ACGGAAGATCTGAACGGACTTGCA -ACGGAAGATCTGAACGGACGAACA -ACGGAAGATCTGAACGGACAGTCA -ACGGAAGATCTGAACGGAGATCCA -ACGGAAGATCTGAACGGAACGACA -ACGGAAGATCTGAACGGAAGCTCA -ACGGAAGATCTGAACGGATCACGT -ACGGAAGATCTGAACGGACGTAGT -ACGGAAGATCTGAACGGAGTCAGT -ACGGAAGATCTGAACGGAGAAGGT -ACGGAAGATCTGAACGGAAACCGT -ACGGAAGATCTGAACGGATTGTGC -ACGGAAGATCTGAACGGACTAAGC -ACGGAAGATCTGAACGGAACTAGC -ACGGAAGATCTGAACGGAAGATGC -ACGGAAGATCTGAACGGATGAAGG -ACGGAAGATCTGAACGGACAATGG -ACGGAAGATCTGAACGGAATGAGG -ACGGAAGATCTGAACGGAAATGGG -ACGGAAGATCTGAACGGATCCTGA -ACGGAAGATCTGAACGGATAGCGA -ACGGAAGATCTGAACGGACACAGA -ACGGAAGATCTGAACGGAGCAAGA -ACGGAAGATCTGAACGGAGGTTGA -ACGGAAGATCTGAACGGATCCGAT -ACGGAAGATCTGAACGGATGGCAT -ACGGAAGATCTGAACGGACGAGAT -ACGGAAGATCTGAACGGATACCAC -ACGGAAGATCTGAACGGACAGAAC -ACGGAAGATCTGAACGGAGTCTAC -ACGGAAGATCTGAACGGAACGTAC -ACGGAAGATCTGAACGGAAGTGAC -ACGGAAGATCTGAACGGACTGTAG -ACGGAAGATCTGAACGGACCTAAG -ACGGAAGATCTGAACGGAGTTCAG -ACGGAAGATCTGAACGGAGCATAG -ACGGAAGATCTGAACGGAGACAAG -ACGGAAGATCTGAACGGAAAGCAG -ACGGAAGATCTGAACGGACGTCAA -ACGGAAGATCTGAACGGAGCTGAA -ACGGAAGATCTGAACGGAAGTACG -ACGGAAGATCTGAACGGAATCCGA -ACGGAAGATCTGAACGGAATGGGA -ACGGAAGATCTGAACGGAGTGCAA -ACGGAAGATCTGAACGGAGAGGAA -ACGGAAGATCTGAACGGACAGGTA -ACGGAAGATCTGAACGGAGACTCT -ACGGAAGATCTGAACGGAAGTCCT -ACGGAAGATCTGAACGGATAAGCC -ACGGAAGATCTGAACGGAATAGCC -ACGGAAGATCTGAACGGATAACCG -ACGGAAGATCTGAACGGAATGCCA -ACGGAAGATCTGACCAACGGAAAC -ACGGAAGATCTGACCAACAACACC -ACGGAAGATCTGACCAACATCGAG -ACGGAAGATCTGACCAACCTCCTT -ACGGAAGATCTGACCAACCCTGTT -ACGGAAGATCTGACCAACCGGTTT -ACGGAAGATCTGACCAACGTGGTT -ACGGAAGATCTGACCAACGCCTTT -ACGGAAGATCTGACCAACGGTCTT -ACGGAAGATCTGACCAACACGCTT -ACGGAAGATCTGACCAACAGCGTT -ACGGAAGATCTGACCAACTTCGTC -ACGGAAGATCTGACCAACTCTCTC -ACGGAAGATCTGACCAACTGGATC -ACGGAAGATCTGACCAACCACTTC -ACGGAAGATCTGACCAACGTACTC -ACGGAAGATCTGACCAACGATGTC -ACGGAAGATCTGACCAACACAGTC -ACGGAAGATCTGACCAACTTGCTG -ACGGAAGATCTGACCAACTCCATG -ACGGAAGATCTGACCAACTGTGTG -ACGGAAGATCTGACCAACCTAGTG -ACGGAAGATCTGACCAACCATCTG -ACGGAAGATCTGACCAACGAGTTG -ACGGAAGATCTGACCAACAGACTG -ACGGAAGATCTGACCAACTCGGTA -ACGGAAGATCTGACCAACTGCCTA -ACGGAAGATCTGACCAACCCACTA -ACGGAAGATCTGACCAACGGAGTA -ACGGAAGATCTGACCAACTCGTCT -ACGGAAGATCTGACCAACTGCACT -ACGGAAGATCTGACCAACCTGACT -ACGGAAGATCTGACCAACCAACCT -ACGGAAGATCTGACCAACGCTACT -ACGGAAGATCTGACCAACGGATCT -ACGGAAGATCTGACCAACAAGGCT -ACGGAAGATCTGACCAACTCAACC -ACGGAAGATCTGACCAACTGTTCC -ACGGAAGATCTGACCAACATTCCC -ACGGAAGATCTGACCAACTTCTCG -ACGGAAGATCTGACCAACTAGACG -ACGGAAGATCTGACCAACGTAACG -ACGGAAGATCTGACCAACACTTCG -ACGGAAGATCTGACCAACTACGCA -ACGGAAGATCTGACCAACCTTGCA -ACGGAAGATCTGACCAACCGAACA -ACGGAAGATCTGACCAACCAGTCA -ACGGAAGATCTGACCAACGATCCA -ACGGAAGATCTGACCAACACGACA -ACGGAAGATCTGACCAACAGCTCA -ACGGAAGATCTGACCAACTCACGT -ACGGAAGATCTGACCAACCGTAGT -ACGGAAGATCTGACCAACGTCAGT -ACGGAAGATCTGACCAACGAAGGT -ACGGAAGATCTGACCAACAACCGT -ACGGAAGATCTGACCAACTTGTGC -ACGGAAGATCTGACCAACCTAAGC -ACGGAAGATCTGACCAACACTAGC -ACGGAAGATCTGACCAACAGATGC -ACGGAAGATCTGACCAACTGAAGG -ACGGAAGATCTGACCAACCAATGG -ACGGAAGATCTGACCAACATGAGG -ACGGAAGATCTGACCAACAATGGG -ACGGAAGATCTGACCAACTCCTGA -ACGGAAGATCTGACCAACTAGCGA -ACGGAAGATCTGACCAACCACAGA -ACGGAAGATCTGACCAACGCAAGA -ACGGAAGATCTGACCAACGGTTGA -ACGGAAGATCTGACCAACTCCGAT -ACGGAAGATCTGACCAACTGGCAT -ACGGAAGATCTGACCAACCGAGAT -ACGGAAGATCTGACCAACTACCAC -ACGGAAGATCTGACCAACCAGAAC -ACGGAAGATCTGACCAACGTCTAC -ACGGAAGATCTGACCAACACGTAC -ACGGAAGATCTGACCAACAGTGAC -ACGGAAGATCTGACCAACCTGTAG -ACGGAAGATCTGACCAACCCTAAG -ACGGAAGATCTGACCAACGTTCAG -ACGGAAGATCTGACCAACGCATAG -ACGGAAGATCTGACCAACGACAAG -ACGGAAGATCTGACCAACAAGCAG -ACGGAAGATCTGACCAACCGTCAA -ACGGAAGATCTGACCAACGCTGAA -ACGGAAGATCTGACCAACAGTACG -ACGGAAGATCTGACCAACATCCGA -ACGGAAGATCTGACCAACATGGGA -ACGGAAGATCTGACCAACGTGCAA -ACGGAAGATCTGACCAACGAGGAA -ACGGAAGATCTGACCAACCAGGTA -ACGGAAGATCTGACCAACGACTCT -ACGGAAGATCTGACCAACAGTCCT -ACGGAAGATCTGACCAACTAAGCC -ACGGAAGATCTGACCAACATAGCC -ACGGAAGATCTGACCAACTAACCG -ACGGAAGATCTGACCAACATGCCA -ACGGAAGATCTGGAGATCGGAAAC -ACGGAAGATCTGGAGATCAACACC -ACGGAAGATCTGGAGATCATCGAG -ACGGAAGATCTGGAGATCCTCCTT -ACGGAAGATCTGGAGATCCCTGTT -ACGGAAGATCTGGAGATCCGGTTT -ACGGAAGATCTGGAGATCGTGGTT -ACGGAAGATCTGGAGATCGCCTTT -ACGGAAGATCTGGAGATCGGTCTT -ACGGAAGATCTGGAGATCACGCTT -ACGGAAGATCTGGAGATCAGCGTT -ACGGAAGATCTGGAGATCTTCGTC -ACGGAAGATCTGGAGATCTCTCTC -ACGGAAGATCTGGAGATCTGGATC -ACGGAAGATCTGGAGATCCACTTC -ACGGAAGATCTGGAGATCGTACTC -ACGGAAGATCTGGAGATCGATGTC -ACGGAAGATCTGGAGATCACAGTC -ACGGAAGATCTGGAGATCTTGCTG -ACGGAAGATCTGGAGATCTCCATG -ACGGAAGATCTGGAGATCTGTGTG -ACGGAAGATCTGGAGATCCTAGTG -ACGGAAGATCTGGAGATCCATCTG -ACGGAAGATCTGGAGATCGAGTTG -ACGGAAGATCTGGAGATCAGACTG -ACGGAAGATCTGGAGATCTCGGTA -ACGGAAGATCTGGAGATCTGCCTA -ACGGAAGATCTGGAGATCCCACTA -ACGGAAGATCTGGAGATCGGAGTA -ACGGAAGATCTGGAGATCTCGTCT -ACGGAAGATCTGGAGATCTGCACT -ACGGAAGATCTGGAGATCCTGACT -ACGGAAGATCTGGAGATCCAACCT -ACGGAAGATCTGGAGATCGCTACT -ACGGAAGATCTGGAGATCGGATCT -ACGGAAGATCTGGAGATCAAGGCT -ACGGAAGATCTGGAGATCTCAACC -ACGGAAGATCTGGAGATCTGTTCC -ACGGAAGATCTGGAGATCATTCCC -ACGGAAGATCTGGAGATCTTCTCG -ACGGAAGATCTGGAGATCTAGACG -ACGGAAGATCTGGAGATCGTAACG -ACGGAAGATCTGGAGATCACTTCG -ACGGAAGATCTGGAGATCTACGCA -ACGGAAGATCTGGAGATCCTTGCA -ACGGAAGATCTGGAGATCCGAACA -ACGGAAGATCTGGAGATCCAGTCA -ACGGAAGATCTGGAGATCGATCCA -ACGGAAGATCTGGAGATCACGACA -ACGGAAGATCTGGAGATCAGCTCA -ACGGAAGATCTGGAGATCTCACGT -ACGGAAGATCTGGAGATCCGTAGT -ACGGAAGATCTGGAGATCGTCAGT -ACGGAAGATCTGGAGATCGAAGGT -ACGGAAGATCTGGAGATCAACCGT -ACGGAAGATCTGGAGATCTTGTGC -ACGGAAGATCTGGAGATCCTAAGC -ACGGAAGATCTGGAGATCACTAGC -ACGGAAGATCTGGAGATCAGATGC -ACGGAAGATCTGGAGATCTGAAGG -ACGGAAGATCTGGAGATCCAATGG -ACGGAAGATCTGGAGATCATGAGG -ACGGAAGATCTGGAGATCAATGGG -ACGGAAGATCTGGAGATCTCCTGA -ACGGAAGATCTGGAGATCTAGCGA -ACGGAAGATCTGGAGATCCACAGA -ACGGAAGATCTGGAGATCGCAAGA -ACGGAAGATCTGGAGATCGGTTGA -ACGGAAGATCTGGAGATCTCCGAT -ACGGAAGATCTGGAGATCTGGCAT -ACGGAAGATCTGGAGATCCGAGAT -ACGGAAGATCTGGAGATCTACCAC -ACGGAAGATCTGGAGATCCAGAAC -ACGGAAGATCTGGAGATCGTCTAC -ACGGAAGATCTGGAGATCACGTAC -ACGGAAGATCTGGAGATCAGTGAC -ACGGAAGATCTGGAGATCCTGTAG -ACGGAAGATCTGGAGATCCCTAAG -ACGGAAGATCTGGAGATCGTTCAG -ACGGAAGATCTGGAGATCGCATAG -ACGGAAGATCTGGAGATCGACAAG -ACGGAAGATCTGGAGATCAAGCAG -ACGGAAGATCTGGAGATCCGTCAA -ACGGAAGATCTGGAGATCGCTGAA -ACGGAAGATCTGGAGATCAGTACG -ACGGAAGATCTGGAGATCATCCGA -ACGGAAGATCTGGAGATCATGGGA -ACGGAAGATCTGGAGATCGTGCAA -ACGGAAGATCTGGAGATCGAGGAA -ACGGAAGATCTGGAGATCCAGGTA -ACGGAAGATCTGGAGATCGACTCT -ACGGAAGATCTGGAGATCAGTCCT -ACGGAAGATCTGGAGATCTAAGCC -ACGGAAGATCTGGAGATCATAGCC -ACGGAAGATCTGGAGATCTAACCG -ACGGAAGATCTGGAGATCATGCCA -ACGGAAGATCTGCTTCTCGGAAAC -ACGGAAGATCTGCTTCTCAACACC -ACGGAAGATCTGCTTCTCATCGAG -ACGGAAGATCTGCTTCTCCTCCTT -ACGGAAGATCTGCTTCTCCCTGTT -ACGGAAGATCTGCTTCTCCGGTTT -ACGGAAGATCTGCTTCTCGTGGTT -ACGGAAGATCTGCTTCTCGCCTTT -ACGGAAGATCTGCTTCTCGGTCTT -ACGGAAGATCTGCTTCTCACGCTT -ACGGAAGATCTGCTTCTCAGCGTT -ACGGAAGATCTGCTTCTCTTCGTC -ACGGAAGATCTGCTTCTCTCTCTC -ACGGAAGATCTGCTTCTCTGGATC -ACGGAAGATCTGCTTCTCCACTTC -ACGGAAGATCTGCTTCTCGTACTC -ACGGAAGATCTGCTTCTCGATGTC -ACGGAAGATCTGCTTCTCACAGTC -ACGGAAGATCTGCTTCTCTTGCTG -ACGGAAGATCTGCTTCTCTCCATG -ACGGAAGATCTGCTTCTCTGTGTG -ACGGAAGATCTGCTTCTCCTAGTG -ACGGAAGATCTGCTTCTCCATCTG -ACGGAAGATCTGCTTCTCGAGTTG -ACGGAAGATCTGCTTCTCAGACTG -ACGGAAGATCTGCTTCTCTCGGTA -ACGGAAGATCTGCTTCTCTGCCTA -ACGGAAGATCTGCTTCTCCCACTA -ACGGAAGATCTGCTTCTCGGAGTA -ACGGAAGATCTGCTTCTCTCGTCT -ACGGAAGATCTGCTTCTCTGCACT -ACGGAAGATCTGCTTCTCCTGACT -ACGGAAGATCTGCTTCTCCAACCT -ACGGAAGATCTGCTTCTCGCTACT -ACGGAAGATCTGCTTCTCGGATCT -ACGGAAGATCTGCTTCTCAAGGCT -ACGGAAGATCTGCTTCTCTCAACC -ACGGAAGATCTGCTTCTCTGTTCC -ACGGAAGATCTGCTTCTCATTCCC -ACGGAAGATCTGCTTCTCTTCTCG -ACGGAAGATCTGCTTCTCTAGACG -ACGGAAGATCTGCTTCTCGTAACG -ACGGAAGATCTGCTTCTCACTTCG -ACGGAAGATCTGCTTCTCTACGCA -ACGGAAGATCTGCTTCTCCTTGCA -ACGGAAGATCTGCTTCTCCGAACA -ACGGAAGATCTGCTTCTCCAGTCA -ACGGAAGATCTGCTTCTCGATCCA -ACGGAAGATCTGCTTCTCACGACA -ACGGAAGATCTGCTTCTCAGCTCA -ACGGAAGATCTGCTTCTCTCACGT -ACGGAAGATCTGCTTCTCCGTAGT -ACGGAAGATCTGCTTCTCGTCAGT -ACGGAAGATCTGCTTCTCGAAGGT -ACGGAAGATCTGCTTCTCAACCGT -ACGGAAGATCTGCTTCTCTTGTGC -ACGGAAGATCTGCTTCTCCTAAGC -ACGGAAGATCTGCTTCTCACTAGC -ACGGAAGATCTGCTTCTCAGATGC -ACGGAAGATCTGCTTCTCTGAAGG -ACGGAAGATCTGCTTCTCCAATGG -ACGGAAGATCTGCTTCTCATGAGG -ACGGAAGATCTGCTTCTCAATGGG -ACGGAAGATCTGCTTCTCTCCTGA -ACGGAAGATCTGCTTCTCTAGCGA -ACGGAAGATCTGCTTCTCCACAGA -ACGGAAGATCTGCTTCTCGCAAGA -ACGGAAGATCTGCTTCTCGGTTGA -ACGGAAGATCTGCTTCTCTCCGAT -ACGGAAGATCTGCTTCTCTGGCAT -ACGGAAGATCTGCTTCTCCGAGAT -ACGGAAGATCTGCTTCTCTACCAC -ACGGAAGATCTGCTTCTCCAGAAC -ACGGAAGATCTGCTTCTCGTCTAC -ACGGAAGATCTGCTTCTCACGTAC -ACGGAAGATCTGCTTCTCAGTGAC -ACGGAAGATCTGCTTCTCCTGTAG -ACGGAAGATCTGCTTCTCCCTAAG -ACGGAAGATCTGCTTCTCGTTCAG -ACGGAAGATCTGCTTCTCGCATAG -ACGGAAGATCTGCTTCTCGACAAG -ACGGAAGATCTGCTTCTCAAGCAG -ACGGAAGATCTGCTTCTCCGTCAA -ACGGAAGATCTGCTTCTCGCTGAA -ACGGAAGATCTGCTTCTCAGTACG -ACGGAAGATCTGCTTCTCATCCGA -ACGGAAGATCTGCTTCTCATGGGA -ACGGAAGATCTGCTTCTCGTGCAA -ACGGAAGATCTGCTTCTCGAGGAA -ACGGAAGATCTGCTTCTCCAGGTA -ACGGAAGATCTGCTTCTCGACTCT -ACGGAAGATCTGCTTCTCAGTCCT -ACGGAAGATCTGCTTCTCTAAGCC -ACGGAAGATCTGCTTCTCATAGCC -ACGGAAGATCTGCTTCTCTAACCG -ACGGAAGATCTGCTTCTCATGCCA -ACGGAAGATCTGGTTCCTGGAAAC -ACGGAAGATCTGGTTCCTAACACC -ACGGAAGATCTGGTTCCTATCGAG -ACGGAAGATCTGGTTCCTCTCCTT -ACGGAAGATCTGGTTCCTCCTGTT -ACGGAAGATCTGGTTCCTCGGTTT -ACGGAAGATCTGGTTCCTGTGGTT -ACGGAAGATCTGGTTCCTGCCTTT -ACGGAAGATCTGGTTCCTGGTCTT -ACGGAAGATCTGGTTCCTACGCTT -ACGGAAGATCTGGTTCCTAGCGTT -ACGGAAGATCTGGTTCCTTTCGTC -ACGGAAGATCTGGTTCCTTCTCTC -ACGGAAGATCTGGTTCCTTGGATC -ACGGAAGATCTGGTTCCTCACTTC -ACGGAAGATCTGGTTCCTGTACTC -ACGGAAGATCTGGTTCCTGATGTC -ACGGAAGATCTGGTTCCTACAGTC -ACGGAAGATCTGGTTCCTTTGCTG -ACGGAAGATCTGGTTCCTTCCATG -ACGGAAGATCTGGTTCCTTGTGTG -ACGGAAGATCTGGTTCCTCTAGTG -ACGGAAGATCTGGTTCCTCATCTG -ACGGAAGATCTGGTTCCTGAGTTG -ACGGAAGATCTGGTTCCTAGACTG -ACGGAAGATCTGGTTCCTTCGGTA -ACGGAAGATCTGGTTCCTTGCCTA -ACGGAAGATCTGGTTCCTCCACTA -ACGGAAGATCTGGTTCCTGGAGTA -ACGGAAGATCTGGTTCCTTCGTCT -ACGGAAGATCTGGTTCCTTGCACT -ACGGAAGATCTGGTTCCTCTGACT -ACGGAAGATCTGGTTCCTCAACCT -ACGGAAGATCTGGTTCCTGCTACT -ACGGAAGATCTGGTTCCTGGATCT -ACGGAAGATCTGGTTCCTAAGGCT -ACGGAAGATCTGGTTCCTTCAACC -ACGGAAGATCTGGTTCCTTGTTCC -ACGGAAGATCTGGTTCCTATTCCC -ACGGAAGATCTGGTTCCTTTCTCG -ACGGAAGATCTGGTTCCTTAGACG -ACGGAAGATCTGGTTCCTGTAACG -ACGGAAGATCTGGTTCCTACTTCG -ACGGAAGATCTGGTTCCTTACGCA -ACGGAAGATCTGGTTCCTCTTGCA -ACGGAAGATCTGGTTCCTCGAACA -ACGGAAGATCTGGTTCCTCAGTCA -ACGGAAGATCTGGTTCCTGATCCA -ACGGAAGATCTGGTTCCTACGACA -ACGGAAGATCTGGTTCCTAGCTCA -ACGGAAGATCTGGTTCCTTCACGT -ACGGAAGATCTGGTTCCTCGTAGT -ACGGAAGATCTGGTTCCTGTCAGT -ACGGAAGATCTGGTTCCTGAAGGT -ACGGAAGATCTGGTTCCTAACCGT -ACGGAAGATCTGGTTCCTTTGTGC -ACGGAAGATCTGGTTCCTCTAAGC -ACGGAAGATCTGGTTCCTACTAGC -ACGGAAGATCTGGTTCCTAGATGC -ACGGAAGATCTGGTTCCTTGAAGG -ACGGAAGATCTGGTTCCTCAATGG -ACGGAAGATCTGGTTCCTATGAGG -ACGGAAGATCTGGTTCCTAATGGG -ACGGAAGATCTGGTTCCTTCCTGA -ACGGAAGATCTGGTTCCTTAGCGA -ACGGAAGATCTGGTTCCTCACAGA -ACGGAAGATCTGGTTCCTGCAAGA -ACGGAAGATCTGGTTCCTGGTTGA -ACGGAAGATCTGGTTCCTTCCGAT -ACGGAAGATCTGGTTCCTTGGCAT -ACGGAAGATCTGGTTCCTCGAGAT -ACGGAAGATCTGGTTCCTTACCAC -ACGGAAGATCTGGTTCCTCAGAAC -ACGGAAGATCTGGTTCCTGTCTAC -ACGGAAGATCTGGTTCCTACGTAC -ACGGAAGATCTGGTTCCTAGTGAC -ACGGAAGATCTGGTTCCTCTGTAG -ACGGAAGATCTGGTTCCTCCTAAG -ACGGAAGATCTGGTTCCTGTTCAG -ACGGAAGATCTGGTTCCTGCATAG -ACGGAAGATCTGGTTCCTGACAAG -ACGGAAGATCTGGTTCCTAAGCAG -ACGGAAGATCTGGTTCCTCGTCAA -ACGGAAGATCTGGTTCCTGCTGAA -ACGGAAGATCTGGTTCCTAGTACG -ACGGAAGATCTGGTTCCTATCCGA -ACGGAAGATCTGGTTCCTATGGGA -ACGGAAGATCTGGTTCCTGTGCAA -ACGGAAGATCTGGTTCCTGAGGAA -ACGGAAGATCTGGTTCCTCAGGTA -ACGGAAGATCTGGTTCCTGACTCT -ACGGAAGATCTGGTTCCTAGTCCT -ACGGAAGATCTGGTTCCTTAAGCC -ACGGAAGATCTGGTTCCTATAGCC -ACGGAAGATCTGGTTCCTTAACCG -ACGGAAGATCTGGTTCCTATGCCA -ACGGAAGATCTGTTTCGGGGAAAC -ACGGAAGATCTGTTTCGGAACACC -ACGGAAGATCTGTTTCGGATCGAG -ACGGAAGATCTGTTTCGGCTCCTT -ACGGAAGATCTGTTTCGGCCTGTT -ACGGAAGATCTGTTTCGGCGGTTT -ACGGAAGATCTGTTTCGGGTGGTT -ACGGAAGATCTGTTTCGGGCCTTT -ACGGAAGATCTGTTTCGGGGTCTT -ACGGAAGATCTGTTTCGGACGCTT -ACGGAAGATCTGTTTCGGAGCGTT -ACGGAAGATCTGTTTCGGTTCGTC -ACGGAAGATCTGTTTCGGTCTCTC -ACGGAAGATCTGTTTCGGTGGATC -ACGGAAGATCTGTTTCGGCACTTC -ACGGAAGATCTGTTTCGGGTACTC -ACGGAAGATCTGTTTCGGGATGTC -ACGGAAGATCTGTTTCGGACAGTC -ACGGAAGATCTGTTTCGGTTGCTG -ACGGAAGATCTGTTTCGGTCCATG -ACGGAAGATCTGTTTCGGTGTGTG -ACGGAAGATCTGTTTCGGCTAGTG -ACGGAAGATCTGTTTCGGCATCTG -ACGGAAGATCTGTTTCGGGAGTTG -ACGGAAGATCTGTTTCGGAGACTG -ACGGAAGATCTGTTTCGGTCGGTA -ACGGAAGATCTGTTTCGGTGCCTA -ACGGAAGATCTGTTTCGGCCACTA -ACGGAAGATCTGTTTCGGGGAGTA -ACGGAAGATCTGTTTCGGTCGTCT -ACGGAAGATCTGTTTCGGTGCACT -ACGGAAGATCTGTTTCGGCTGACT -ACGGAAGATCTGTTTCGGCAACCT -ACGGAAGATCTGTTTCGGGCTACT -ACGGAAGATCTGTTTCGGGGATCT -ACGGAAGATCTGTTTCGGAAGGCT -ACGGAAGATCTGTTTCGGTCAACC -ACGGAAGATCTGTTTCGGTGTTCC -ACGGAAGATCTGTTTCGGATTCCC -ACGGAAGATCTGTTTCGGTTCTCG -ACGGAAGATCTGTTTCGGTAGACG -ACGGAAGATCTGTTTCGGGTAACG -ACGGAAGATCTGTTTCGGACTTCG -ACGGAAGATCTGTTTCGGTACGCA -ACGGAAGATCTGTTTCGGCTTGCA -ACGGAAGATCTGTTTCGGCGAACA -ACGGAAGATCTGTTTCGGCAGTCA -ACGGAAGATCTGTTTCGGGATCCA -ACGGAAGATCTGTTTCGGACGACA -ACGGAAGATCTGTTTCGGAGCTCA -ACGGAAGATCTGTTTCGGTCACGT -ACGGAAGATCTGTTTCGGCGTAGT -ACGGAAGATCTGTTTCGGGTCAGT -ACGGAAGATCTGTTTCGGGAAGGT -ACGGAAGATCTGTTTCGGAACCGT -ACGGAAGATCTGTTTCGGTTGTGC -ACGGAAGATCTGTTTCGGCTAAGC -ACGGAAGATCTGTTTCGGACTAGC -ACGGAAGATCTGTTTCGGAGATGC -ACGGAAGATCTGTTTCGGTGAAGG -ACGGAAGATCTGTTTCGGCAATGG -ACGGAAGATCTGTTTCGGATGAGG -ACGGAAGATCTGTTTCGGAATGGG -ACGGAAGATCTGTTTCGGTCCTGA -ACGGAAGATCTGTTTCGGTAGCGA -ACGGAAGATCTGTTTCGGCACAGA -ACGGAAGATCTGTTTCGGGCAAGA -ACGGAAGATCTGTTTCGGGGTTGA -ACGGAAGATCTGTTTCGGTCCGAT -ACGGAAGATCTGTTTCGGTGGCAT -ACGGAAGATCTGTTTCGGCGAGAT -ACGGAAGATCTGTTTCGGTACCAC -ACGGAAGATCTGTTTCGGCAGAAC -ACGGAAGATCTGTTTCGGGTCTAC -ACGGAAGATCTGTTTCGGACGTAC -ACGGAAGATCTGTTTCGGAGTGAC -ACGGAAGATCTGTTTCGGCTGTAG -ACGGAAGATCTGTTTCGGCCTAAG -ACGGAAGATCTGTTTCGGGTTCAG -ACGGAAGATCTGTTTCGGGCATAG -ACGGAAGATCTGTTTCGGGACAAG -ACGGAAGATCTGTTTCGGAAGCAG -ACGGAAGATCTGTTTCGGCGTCAA -ACGGAAGATCTGTTTCGGGCTGAA -ACGGAAGATCTGTTTCGGAGTACG -ACGGAAGATCTGTTTCGGATCCGA -ACGGAAGATCTGTTTCGGATGGGA -ACGGAAGATCTGTTTCGGGTGCAA -ACGGAAGATCTGTTTCGGGAGGAA -ACGGAAGATCTGTTTCGGCAGGTA -ACGGAAGATCTGTTTCGGGACTCT -ACGGAAGATCTGTTTCGGAGTCCT -ACGGAAGATCTGTTTCGGTAAGCC -ACGGAAGATCTGTTTCGGATAGCC -ACGGAAGATCTGTTTCGGTAACCG -ACGGAAGATCTGTTTCGGATGCCA -ACGGAAGATCTGGTTGTGGGAAAC -ACGGAAGATCTGGTTGTGAACACC -ACGGAAGATCTGGTTGTGATCGAG -ACGGAAGATCTGGTTGTGCTCCTT -ACGGAAGATCTGGTTGTGCCTGTT -ACGGAAGATCTGGTTGTGCGGTTT -ACGGAAGATCTGGTTGTGGTGGTT -ACGGAAGATCTGGTTGTGGCCTTT -ACGGAAGATCTGGTTGTGGGTCTT -ACGGAAGATCTGGTTGTGACGCTT -ACGGAAGATCTGGTTGTGAGCGTT -ACGGAAGATCTGGTTGTGTTCGTC -ACGGAAGATCTGGTTGTGTCTCTC -ACGGAAGATCTGGTTGTGTGGATC -ACGGAAGATCTGGTTGTGCACTTC -ACGGAAGATCTGGTTGTGGTACTC -ACGGAAGATCTGGTTGTGGATGTC -ACGGAAGATCTGGTTGTGACAGTC -ACGGAAGATCTGGTTGTGTTGCTG -ACGGAAGATCTGGTTGTGTCCATG -ACGGAAGATCTGGTTGTGTGTGTG -ACGGAAGATCTGGTTGTGCTAGTG -ACGGAAGATCTGGTTGTGCATCTG -ACGGAAGATCTGGTTGTGGAGTTG -ACGGAAGATCTGGTTGTGAGACTG -ACGGAAGATCTGGTTGTGTCGGTA -ACGGAAGATCTGGTTGTGTGCCTA -ACGGAAGATCTGGTTGTGCCACTA -ACGGAAGATCTGGTTGTGGGAGTA -ACGGAAGATCTGGTTGTGTCGTCT -ACGGAAGATCTGGTTGTGTGCACT -ACGGAAGATCTGGTTGTGCTGACT -ACGGAAGATCTGGTTGTGCAACCT -ACGGAAGATCTGGTTGTGGCTACT -ACGGAAGATCTGGTTGTGGGATCT -ACGGAAGATCTGGTTGTGAAGGCT -ACGGAAGATCTGGTTGTGTCAACC -ACGGAAGATCTGGTTGTGTGTTCC -ACGGAAGATCTGGTTGTGATTCCC -ACGGAAGATCTGGTTGTGTTCTCG -ACGGAAGATCTGGTTGTGTAGACG -ACGGAAGATCTGGTTGTGGTAACG -ACGGAAGATCTGGTTGTGACTTCG -ACGGAAGATCTGGTTGTGTACGCA -ACGGAAGATCTGGTTGTGCTTGCA -ACGGAAGATCTGGTTGTGCGAACA -ACGGAAGATCTGGTTGTGCAGTCA -ACGGAAGATCTGGTTGTGGATCCA -ACGGAAGATCTGGTTGTGACGACA -ACGGAAGATCTGGTTGTGAGCTCA -ACGGAAGATCTGGTTGTGTCACGT -ACGGAAGATCTGGTTGTGCGTAGT -ACGGAAGATCTGGTTGTGGTCAGT -ACGGAAGATCTGGTTGTGGAAGGT -ACGGAAGATCTGGTTGTGAACCGT -ACGGAAGATCTGGTTGTGTTGTGC -ACGGAAGATCTGGTTGTGCTAAGC -ACGGAAGATCTGGTTGTGACTAGC -ACGGAAGATCTGGTTGTGAGATGC -ACGGAAGATCTGGTTGTGTGAAGG -ACGGAAGATCTGGTTGTGCAATGG -ACGGAAGATCTGGTTGTGATGAGG -ACGGAAGATCTGGTTGTGAATGGG -ACGGAAGATCTGGTTGTGTCCTGA -ACGGAAGATCTGGTTGTGTAGCGA -ACGGAAGATCTGGTTGTGCACAGA -ACGGAAGATCTGGTTGTGGCAAGA -ACGGAAGATCTGGTTGTGGGTTGA -ACGGAAGATCTGGTTGTGTCCGAT -ACGGAAGATCTGGTTGTGTGGCAT -ACGGAAGATCTGGTTGTGCGAGAT -ACGGAAGATCTGGTTGTGTACCAC -ACGGAAGATCTGGTTGTGCAGAAC -ACGGAAGATCTGGTTGTGGTCTAC -ACGGAAGATCTGGTTGTGACGTAC -ACGGAAGATCTGGTTGTGAGTGAC -ACGGAAGATCTGGTTGTGCTGTAG -ACGGAAGATCTGGTTGTGCCTAAG -ACGGAAGATCTGGTTGTGGTTCAG -ACGGAAGATCTGGTTGTGGCATAG -ACGGAAGATCTGGTTGTGGACAAG -ACGGAAGATCTGGTTGTGAAGCAG -ACGGAAGATCTGGTTGTGCGTCAA -ACGGAAGATCTGGTTGTGGCTGAA -ACGGAAGATCTGGTTGTGAGTACG -ACGGAAGATCTGGTTGTGATCCGA -ACGGAAGATCTGGTTGTGATGGGA -ACGGAAGATCTGGTTGTGGTGCAA -ACGGAAGATCTGGTTGTGGAGGAA -ACGGAAGATCTGGTTGTGCAGGTA -ACGGAAGATCTGGTTGTGGACTCT -ACGGAAGATCTGGTTGTGAGTCCT -ACGGAAGATCTGGTTGTGTAAGCC -ACGGAAGATCTGGTTGTGATAGCC -ACGGAAGATCTGGTTGTGTAACCG -ACGGAAGATCTGGTTGTGATGCCA -ACGGAAGATCTGTTTGCCGGAAAC -ACGGAAGATCTGTTTGCCAACACC -ACGGAAGATCTGTTTGCCATCGAG -ACGGAAGATCTGTTTGCCCTCCTT -ACGGAAGATCTGTTTGCCCCTGTT -ACGGAAGATCTGTTTGCCCGGTTT -ACGGAAGATCTGTTTGCCGTGGTT -ACGGAAGATCTGTTTGCCGCCTTT -ACGGAAGATCTGTTTGCCGGTCTT -ACGGAAGATCTGTTTGCCACGCTT -ACGGAAGATCTGTTTGCCAGCGTT -ACGGAAGATCTGTTTGCCTTCGTC -ACGGAAGATCTGTTTGCCTCTCTC -ACGGAAGATCTGTTTGCCTGGATC -ACGGAAGATCTGTTTGCCCACTTC -ACGGAAGATCTGTTTGCCGTACTC -ACGGAAGATCTGTTTGCCGATGTC -ACGGAAGATCTGTTTGCCACAGTC -ACGGAAGATCTGTTTGCCTTGCTG -ACGGAAGATCTGTTTGCCTCCATG -ACGGAAGATCTGTTTGCCTGTGTG -ACGGAAGATCTGTTTGCCCTAGTG -ACGGAAGATCTGTTTGCCCATCTG -ACGGAAGATCTGTTTGCCGAGTTG -ACGGAAGATCTGTTTGCCAGACTG -ACGGAAGATCTGTTTGCCTCGGTA -ACGGAAGATCTGTTTGCCTGCCTA -ACGGAAGATCTGTTTGCCCCACTA -ACGGAAGATCTGTTTGCCGGAGTA -ACGGAAGATCTGTTTGCCTCGTCT -ACGGAAGATCTGTTTGCCTGCACT -ACGGAAGATCTGTTTGCCCTGACT -ACGGAAGATCTGTTTGCCCAACCT -ACGGAAGATCTGTTTGCCGCTACT -ACGGAAGATCTGTTTGCCGGATCT -ACGGAAGATCTGTTTGCCAAGGCT -ACGGAAGATCTGTTTGCCTCAACC -ACGGAAGATCTGTTTGCCTGTTCC -ACGGAAGATCTGTTTGCCATTCCC -ACGGAAGATCTGTTTGCCTTCTCG -ACGGAAGATCTGTTTGCCTAGACG -ACGGAAGATCTGTTTGCCGTAACG -ACGGAAGATCTGTTTGCCACTTCG -ACGGAAGATCTGTTTGCCTACGCA -ACGGAAGATCTGTTTGCCCTTGCA -ACGGAAGATCTGTTTGCCCGAACA -ACGGAAGATCTGTTTGCCCAGTCA -ACGGAAGATCTGTTTGCCGATCCA -ACGGAAGATCTGTTTGCCACGACA -ACGGAAGATCTGTTTGCCAGCTCA -ACGGAAGATCTGTTTGCCTCACGT -ACGGAAGATCTGTTTGCCCGTAGT -ACGGAAGATCTGTTTGCCGTCAGT -ACGGAAGATCTGTTTGCCGAAGGT -ACGGAAGATCTGTTTGCCAACCGT -ACGGAAGATCTGTTTGCCTTGTGC -ACGGAAGATCTGTTTGCCCTAAGC -ACGGAAGATCTGTTTGCCACTAGC -ACGGAAGATCTGTTTGCCAGATGC -ACGGAAGATCTGTTTGCCTGAAGG -ACGGAAGATCTGTTTGCCCAATGG -ACGGAAGATCTGTTTGCCATGAGG -ACGGAAGATCTGTTTGCCAATGGG -ACGGAAGATCTGTTTGCCTCCTGA -ACGGAAGATCTGTTTGCCTAGCGA -ACGGAAGATCTGTTTGCCCACAGA -ACGGAAGATCTGTTTGCCGCAAGA -ACGGAAGATCTGTTTGCCGGTTGA -ACGGAAGATCTGTTTGCCTCCGAT -ACGGAAGATCTGTTTGCCTGGCAT -ACGGAAGATCTGTTTGCCCGAGAT -ACGGAAGATCTGTTTGCCTACCAC -ACGGAAGATCTGTTTGCCCAGAAC -ACGGAAGATCTGTTTGCCGTCTAC -ACGGAAGATCTGTTTGCCACGTAC -ACGGAAGATCTGTTTGCCAGTGAC -ACGGAAGATCTGTTTGCCCTGTAG -ACGGAAGATCTGTTTGCCCCTAAG -ACGGAAGATCTGTTTGCCGTTCAG -ACGGAAGATCTGTTTGCCGCATAG -ACGGAAGATCTGTTTGCCGACAAG -ACGGAAGATCTGTTTGCCAAGCAG -ACGGAAGATCTGTTTGCCCGTCAA -ACGGAAGATCTGTTTGCCGCTGAA -ACGGAAGATCTGTTTGCCAGTACG -ACGGAAGATCTGTTTGCCATCCGA -ACGGAAGATCTGTTTGCCATGGGA -ACGGAAGATCTGTTTGCCGTGCAA -ACGGAAGATCTGTTTGCCGAGGAA -ACGGAAGATCTGTTTGCCCAGGTA -ACGGAAGATCTGTTTGCCGACTCT -ACGGAAGATCTGTTTGCCAGTCCT -ACGGAAGATCTGTTTGCCTAAGCC -ACGGAAGATCTGTTTGCCATAGCC -ACGGAAGATCTGTTTGCCTAACCG -ACGGAAGATCTGTTTGCCATGCCA -ACGGAAGATCTGCTTGGTGGAAAC -ACGGAAGATCTGCTTGGTAACACC -ACGGAAGATCTGCTTGGTATCGAG -ACGGAAGATCTGCTTGGTCTCCTT -ACGGAAGATCTGCTTGGTCCTGTT -ACGGAAGATCTGCTTGGTCGGTTT -ACGGAAGATCTGCTTGGTGTGGTT -ACGGAAGATCTGCTTGGTGCCTTT -ACGGAAGATCTGCTTGGTGGTCTT -ACGGAAGATCTGCTTGGTACGCTT -ACGGAAGATCTGCTTGGTAGCGTT -ACGGAAGATCTGCTTGGTTTCGTC -ACGGAAGATCTGCTTGGTTCTCTC -ACGGAAGATCTGCTTGGTTGGATC -ACGGAAGATCTGCTTGGTCACTTC -ACGGAAGATCTGCTTGGTGTACTC -ACGGAAGATCTGCTTGGTGATGTC -ACGGAAGATCTGCTTGGTACAGTC -ACGGAAGATCTGCTTGGTTTGCTG -ACGGAAGATCTGCTTGGTTCCATG -ACGGAAGATCTGCTTGGTTGTGTG -ACGGAAGATCTGCTTGGTCTAGTG -ACGGAAGATCTGCTTGGTCATCTG -ACGGAAGATCTGCTTGGTGAGTTG -ACGGAAGATCTGCTTGGTAGACTG -ACGGAAGATCTGCTTGGTTCGGTA -ACGGAAGATCTGCTTGGTTGCCTA -ACGGAAGATCTGCTTGGTCCACTA -ACGGAAGATCTGCTTGGTGGAGTA -ACGGAAGATCTGCTTGGTTCGTCT -ACGGAAGATCTGCTTGGTTGCACT -ACGGAAGATCTGCTTGGTCTGACT -ACGGAAGATCTGCTTGGTCAACCT -ACGGAAGATCTGCTTGGTGCTACT -ACGGAAGATCTGCTTGGTGGATCT -ACGGAAGATCTGCTTGGTAAGGCT -ACGGAAGATCTGCTTGGTTCAACC -ACGGAAGATCTGCTTGGTTGTTCC -ACGGAAGATCTGCTTGGTATTCCC -ACGGAAGATCTGCTTGGTTTCTCG -ACGGAAGATCTGCTTGGTTAGACG -ACGGAAGATCTGCTTGGTGTAACG -ACGGAAGATCTGCTTGGTACTTCG -ACGGAAGATCTGCTTGGTTACGCA -ACGGAAGATCTGCTTGGTCTTGCA -ACGGAAGATCTGCTTGGTCGAACA -ACGGAAGATCTGCTTGGTCAGTCA -ACGGAAGATCTGCTTGGTGATCCA -ACGGAAGATCTGCTTGGTACGACA -ACGGAAGATCTGCTTGGTAGCTCA -ACGGAAGATCTGCTTGGTTCACGT -ACGGAAGATCTGCTTGGTCGTAGT -ACGGAAGATCTGCTTGGTGTCAGT -ACGGAAGATCTGCTTGGTGAAGGT -ACGGAAGATCTGCTTGGTAACCGT -ACGGAAGATCTGCTTGGTTTGTGC -ACGGAAGATCTGCTTGGTCTAAGC -ACGGAAGATCTGCTTGGTACTAGC -ACGGAAGATCTGCTTGGTAGATGC -ACGGAAGATCTGCTTGGTTGAAGG -ACGGAAGATCTGCTTGGTCAATGG -ACGGAAGATCTGCTTGGTATGAGG -ACGGAAGATCTGCTTGGTAATGGG -ACGGAAGATCTGCTTGGTTCCTGA -ACGGAAGATCTGCTTGGTTAGCGA -ACGGAAGATCTGCTTGGTCACAGA -ACGGAAGATCTGCTTGGTGCAAGA -ACGGAAGATCTGCTTGGTGGTTGA -ACGGAAGATCTGCTTGGTTCCGAT -ACGGAAGATCTGCTTGGTTGGCAT -ACGGAAGATCTGCTTGGTCGAGAT -ACGGAAGATCTGCTTGGTTACCAC -ACGGAAGATCTGCTTGGTCAGAAC -ACGGAAGATCTGCTTGGTGTCTAC -ACGGAAGATCTGCTTGGTACGTAC -ACGGAAGATCTGCTTGGTAGTGAC -ACGGAAGATCTGCTTGGTCTGTAG -ACGGAAGATCTGCTTGGTCCTAAG -ACGGAAGATCTGCTTGGTGTTCAG -ACGGAAGATCTGCTTGGTGCATAG -ACGGAAGATCTGCTTGGTGACAAG -ACGGAAGATCTGCTTGGTAAGCAG -ACGGAAGATCTGCTTGGTCGTCAA -ACGGAAGATCTGCTTGGTGCTGAA -ACGGAAGATCTGCTTGGTAGTACG -ACGGAAGATCTGCTTGGTATCCGA -ACGGAAGATCTGCTTGGTATGGGA -ACGGAAGATCTGCTTGGTGTGCAA -ACGGAAGATCTGCTTGGTGAGGAA -ACGGAAGATCTGCTTGGTCAGGTA -ACGGAAGATCTGCTTGGTGACTCT -ACGGAAGATCTGCTTGGTAGTCCT -ACGGAAGATCTGCTTGGTTAAGCC -ACGGAAGATCTGCTTGGTATAGCC -ACGGAAGATCTGCTTGGTTAACCG -ACGGAAGATCTGCTTGGTATGCCA -ACGGAAGATCTGCTTACGGGAAAC -ACGGAAGATCTGCTTACGAACACC -ACGGAAGATCTGCTTACGATCGAG -ACGGAAGATCTGCTTACGCTCCTT -ACGGAAGATCTGCTTACGCCTGTT -ACGGAAGATCTGCTTACGCGGTTT -ACGGAAGATCTGCTTACGGTGGTT -ACGGAAGATCTGCTTACGGCCTTT -ACGGAAGATCTGCTTACGGGTCTT -ACGGAAGATCTGCTTACGACGCTT -ACGGAAGATCTGCTTACGAGCGTT -ACGGAAGATCTGCTTACGTTCGTC -ACGGAAGATCTGCTTACGTCTCTC -ACGGAAGATCTGCTTACGTGGATC -ACGGAAGATCTGCTTACGCACTTC -ACGGAAGATCTGCTTACGGTACTC -ACGGAAGATCTGCTTACGGATGTC -ACGGAAGATCTGCTTACGACAGTC -ACGGAAGATCTGCTTACGTTGCTG -ACGGAAGATCTGCTTACGTCCATG -ACGGAAGATCTGCTTACGTGTGTG -ACGGAAGATCTGCTTACGCTAGTG -ACGGAAGATCTGCTTACGCATCTG -ACGGAAGATCTGCTTACGGAGTTG -ACGGAAGATCTGCTTACGAGACTG -ACGGAAGATCTGCTTACGTCGGTA -ACGGAAGATCTGCTTACGTGCCTA -ACGGAAGATCTGCTTACGCCACTA -ACGGAAGATCTGCTTACGGGAGTA -ACGGAAGATCTGCTTACGTCGTCT -ACGGAAGATCTGCTTACGTGCACT -ACGGAAGATCTGCTTACGCTGACT -ACGGAAGATCTGCTTACGCAACCT -ACGGAAGATCTGCTTACGGCTACT -ACGGAAGATCTGCTTACGGGATCT -ACGGAAGATCTGCTTACGAAGGCT -ACGGAAGATCTGCTTACGTCAACC -ACGGAAGATCTGCTTACGTGTTCC -ACGGAAGATCTGCTTACGATTCCC -ACGGAAGATCTGCTTACGTTCTCG -ACGGAAGATCTGCTTACGTAGACG -ACGGAAGATCTGCTTACGGTAACG -ACGGAAGATCTGCTTACGACTTCG -ACGGAAGATCTGCTTACGTACGCA -ACGGAAGATCTGCTTACGCTTGCA -ACGGAAGATCTGCTTACGCGAACA -ACGGAAGATCTGCTTACGCAGTCA -ACGGAAGATCTGCTTACGGATCCA -ACGGAAGATCTGCTTACGACGACA -ACGGAAGATCTGCTTACGAGCTCA -ACGGAAGATCTGCTTACGTCACGT -ACGGAAGATCTGCTTACGCGTAGT -ACGGAAGATCTGCTTACGGTCAGT -ACGGAAGATCTGCTTACGGAAGGT -ACGGAAGATCTGCTTACGAACCGT -ACGGAAGATCTGCTTACGTTGTGC -ACGGAAGATCTGCTTACGCTAAGC -ACGGAAGATCTGCTTACGACTAGC -ACGGAAGATCTGCTTACGAGATGC -ACGGAAGATCTGCTTACGTGAAGG -ACGGAAGATCTGCTTACGCAATGG -ACGGAAGATCTGCTTACGATGAGG -ACGGAAGATCTGCTTACGAATGGG -ACGGAAGATCTGCTTACGTCCTGA -ACGGAAGATCTGCTTACGTAGCGA -ACGGAAGATCTGCTTACGCACAGA -ACGGAAGATCTGCTTACGGCAAGA -ACGGAAGATCTGCTTACGGGTTGA -ACGGAAGATCTGCTTACGTCCGAT -ACGGAAGATCTGCTTACGTGGCAT -ACGGAAGATCTGCTTACGCGAGAT -ACGGAAGATCTGCTTACGTACCAC -ACGGAAGATCTGCTTACGCAGAAC -ACGGAAGATCTGCTTACGGTCTAC -ACGGAAGATCTGCTTACGACGTAC -ACGGAAGATCTGCTTACGAGTGAC -ACGGAAGATCTGCTTACGCTGTAG -ACGGAAGATCTGCTTACGCCTAAG -ACGGAAGATCTGCTTACGGTTCAG -ACGGAAGATCTGCTTACGGCATAG -ACGGAAGATCTGCTTACGGACAAG -ACGGAAGATCTGCTTACGAAGCAG -ACGGAAGATCTGCTTACGCGTCAA -ACGGAAGATCTGCTTACGGCTGAA -ACGGAAGATCTGCTTACGAGTACG -ACGGAAGATCTGCTTACGATCCGA -ACGGAAGATCTGCTTACGATGGGA -ACGGAAGATCTGCTTACGGTGCAA -ACGGAAGATCTGCTTACGGAGGAA -ACGGAAGATCTGCTTACGCAGGTA -ACGGAAGATCTGCTTACGGACTCT -ACGGAAGATCTGCTTACGAGTCCT -ACGGAAGATCTGCTTACGTAAGCC -ACGGAAGATCTGCTTACGATAGCC -ACGGAAGATCTGCTTACGTAACCG -ACGGAAGATCTGCTTACGATGCCA -ACGGAAGATCTGGTTAGCGGAAAC -ACGGAAGATCTGGTTAGCAACACC -ACGGAAGATCTGGTTAGCATCGAG -ACGGAAGATCTGGTTAGCCTCCTT -ACGGAAGATCTGGTTAGCCCTGTT -ACGGAAGATCTGGTTAGCCGGTTT -ACGGAAGATCTGGTTAGCGTGGTT -ACGGAAGATCTGGTTAGCGCCTTT -ACGGAAGATCTGGTTAGCGGTCTT -ACGGAAGATCTGGTTAGCACGCTT -ACGGAAGATCTGGTTAGCAGCGTT -ACGGAAGATCTGGTTAGCTTCGTC -ACGGAAGATCTGGTTAGCTCTCTC -ACGGAAGATCTGGTTAGCTGGATC -ACGGAAGATCTGGTTAGCCACTTC -ACGGAAGATCTGGTTAGCGTACTC -ACGGAAGATCTGGTTAGCGATGTC -ACGGAAGATCTGGTTAGCACAGTC -ACGGAAGATCTGGTTAGCTTGCTG -ACGGAAGATCTGGTTAGCTCCATG -ACGGAAGATCTGGTTAGCTGTGTG -ACGGAAGATCTGGTTAGCCTAGTG -ACGGAAGATCTGGTTAGCCATCTG -ACGGAAGATCTGGTTAGCGAGTTG -ACGGAAGATCTGGTTAGCAGACTG -ACGGAAGATCTGGTTAGCTCGGTA -ACGGAAGATCTGGTTAGCTGCCTA -ACGGAAGATCTGGTTAGCCCACTA -ACGGAAGATCTGGTTAGCGGAGTA -ACGGAAGATCTGGTTAGCTCGTCT -ACGGAAGATCTGGTTAGCTGCACT -ACGGAAGATCTGGTTAGCCTGACT -ACGGAAGATCTGGTTAGCCAACCT -ACGGAAGATCTGGTTAGCGCTACT -ACGGAAGATCTGGTTAGCGGATCT -ACGGAAGATCTGGTTAGCAAGGCT -ACGGAAGATCTGGTTAGCTCAACC -ACGGAAGATCTGGTTAGCTGTTCC -ACGGAAGATCTGGTTAGCATTCCC -ACGGAAGATCTGGTTAGCTTCTCG -ACGGAAGATCTGGTTAGCTAGACG -ACGGAAGATCTGGTTAGCGTAACG -ACGGAAGATCTGGTTAGCACTTCG -ACGGAAGATCTGGTTAGCTACGCA -ACGGAAGATCTGGTTAGCCTTGCA -ACGGAAGATCTGGTTAGCCGAACA -ACGGAAGATCTGGTTAGCCAGTCA -ACGGAAGATCTGGTTAGCGATCCA -ACGGAAGATCTGGTTAGCACGACA -ACGGAAGATCTGGTTAGCAGCTCA -ACGGAAGATCTGGTTAGCTCACGT -ACGGAAGATCTGGTTAGCCGTAGT -ACGGAAGATCTGGTTAGCGTCAGT -ACGGAAGATCTGGTTAGCGAAGGT -ACGGAAGATCTGGTTAGCAACCGT -ACGGAAGATCTGGTTAGCTTGTGC -ACGGAAGATCTGGTTAGCCTAAGC -ACGGAAGATCTGGTTAGCACTAGC -ACGGAAGATCTGGTTAGCAGATGC -ACGGAAGATCTGGTTAGCTGAAGG -ACGGAAGATCTGGTTAGCCAATGG -ACGGAAGATCTGGTTAGCATGAGG -ACGGAAGATCTGGTTAGCAATGGG -ACGGAAGATCTGGTTAGCTCCTGA -ACGGAAGATCTGGTTAGCTAGCGA -ACGGAAGATCTGGTTAGCCACAGA -ACGGAAGATCTGGTTAGCGCAAGA -ACGGAAGATCTGGTTAGCGGTTGA -ACGGAAGATCTGGTTAGCTCCGAT -ACGGAAGATCTGGTTAGCTGGCAT -ACGGAAGATCTGGTTAGCCGAGAT -ACGGAAGATCTGGTTAGCTACCAC -ACGGAAGATCTGGTTAGCCAGAAC -ACGGAAGATCTGGTTAGCGTCTAC -ACGGAAGATCTGGTTAGCACGTAC -ACGGAAGATCTGGTTAGCAGTGAC -ACGGAAGATCTGGTTAGCCTGTAG -ACGGAAGATCTGGTTAGCCCTAAG -ACGGAAGATCTGGTTAGCGTTCAG -ACGGAAGATCTGGTTAGCGCATAG -ACGGAAGATCTGGTTAGCGACAAG -ACGGAAGATCTGGTTAGCAAGCAG -ACGGAAGATCTGGTTAGCCGTCAA -ACGGAAGATCTGGTTAGCGCTGAA -ACGGAAGATCTGGTTAGCAGTACG -ACGGAAGATCTGGTTAGCATCCGA -ACGGAAGATCTGGTTAGCATGGGA -ACGGAAGATCTGGTTAGCGTGCAA -ACGGAAGATCTGGTTAGCGAGGAA -ACGGAAGATCTGGTTAGCCAGGTA -ACGGAAGATCTGGTTAGCGACTCT -ACGGAAGATCTGGTTAGCAGTCCT -ACGGAAGATCTGGTTAGCTAAGCC -ACGGAAGATCTGGTTAGCATAGCC -ACGGAAGATCTGGTTAGCTAACCG -ACGGAAGATCTGGTTAGCATGCCA -ACGGAAGATCTGGTCTTCGGAAAC -ACGGAAGATCTGGTCTTCAACACC -ACGGAAGATCTGGTCTTCATCGAG -ACGGAAGATCTGGTCTTCCTCCTT -ACGGAAGATCTGGTCTTCCCTGTT -ACGGAAGATCTGGTCTTCCGGTTT -ACGGAAGATCTGGTCTTCGTGGTT -ACGGAAGATCTGGTCTTCGCCTTT -ACGGAAGATCTGGTCTTCGGTCTT -ACGGAAGATCTGGTCTTCACGCTT -ACGGAAGATCTGGTCTTCAGCGTT -ACGGAAGATCTGGTCTTCTTCGTC -ACGGAAGATCTGGTCTTCTCTCTC -ACGGAAGATCTGGTCTTCTGGATC -ACGGAAGATCTGGTCTTCCACTTC -ACGGAAGATCTGGTCTTCGTACTC -ACGGAAGATCTGGTCTTCGATGTC -ACGGAAGATCTGGTCTTCACAGTC -ACGGAAGATCTGGTCTTCTTGCTG -ACGGAAGATCTGGTCTTCTCCATG -ACGGAAGATCTGGTCTTCTGTGTG -ACGGAAGATCTGGTCTTCCTAGTG -ACGGAAGATCTGGTCTTCCATCTG -ACGGAAGATCTGGTCTTCGAGTTG -ACGGAAGATCTGGTCTTCAGACTG -ACGGAAGATCTGGTCTTCTCGGTA -ACGGAAGATCTGGTCTTCTGCCTA -ACGGAAGATCTGGTCTTCCCACTA -ACGGAAGATCTGGTCTTCGGAGTA -ACGGAAGATCTGGTCTTCTCGTCT -ACGGAAGATCTGGTCTTCTGCACT -ACGGAAGATCTGGTCTTCCTGACT -ACGGAAGATCTGGTCTTCCAACCT -ACGGAAGATCTGGTCTTCGCTACT -ACGGAAGATCTGGTCTTCGGATCT -ACGGAAGATCTGGTCTTCAAGGCT -ACGGAAGATCTGGTCTTCTCAACC -ACGGAAGATCTGGTCTTCTGTTCC -ACGGAAGATCTGGTCTTCATTCCC -ACGGAAGATCTGGTCTTCTTCTCG -ACGGAAGATCTGGTCTTCTAGACG -ACGGAAGATCTGGTCTTCGTAACG -ACGGAAGATCTGGTCTTCACTTCG -ACGGAAGATCTGGTCTTCTACGCA -ACGGAAGATCTGGTCTTCCTTGCA -ACGGAAGATCTGGTCTTCCGAACA -ACGGAAGATCTGGTCTTCCAGTCA -ACGGAAGATCTGGTCTTCGATCCA -ACGGAAGATCTGGTCTTCACGACA -ACGGAAGATCTGGTCTTCAGCTCA -ACGGAAGATCTGGTCTTCTCACGT -ACGGAAGATCTGGTCTTCCGTAGT -ACGGAAGATCTGGTCTTCGTCAGT -ACGGAAGATCTGGTCTTCGAAGGT -ACGGAAGATCTGGTCTTCAACCGT -ACGGAAGATCTGGTCTTCTTGTGC -ACGGAAGATCTGGTCTTCCTAAGC -ACGGAAGATCTGGTCTTCACTAGC -ACGGAAGATCTGGTCTTCAGATGC -ACGGAAGATCTGGTCTTCTGAAGG -ACGGAAGATCTGGTCTTCCAATGG -ACGGAAGATCTGGTCTTCATGAGG -ACGGAAGATCTGGTCTTCAATGGG -ACGGAAGATCTGGTCTTCTCCTGA -ACGGAAGATCTGGTCTTCTAGCGA -ACGGAAGATCTGGTCTTCCACAGA -ACGGAAGATCTGGTCTTCGCAAGA -ACGGAAGATCTGGTCTTCGGTTGA -ACGGAAGATCTGGTCTTCTCCGAT -ACGGAAGATCTGGTCTTCTGGCAT -ACGGAAGATCTGGTCTTCCGAGAT -ACGGAAGATCTGGTCTTCTACCAC -ACGGAAGATCTGGTCTTCCAGAAC -ACGGAAGATCTGGTCTTCGTCTAC -ACGGAAGATCTGGTCTTCACGTAC -ACGGAAGATCTGGTCTTCAGTGAC -ACGGAAGATCTGGTCTTCCTGTAG -ACGGAAGATCTGGTCTTCCCTAAG -ACGGAAGATCTGGTCTTCGTTCAG -ACGGAAGATCTGGTCTTCGCATAG -ACGGAAGATCTGGTCTTCGACAAG -ACGGAAGATCTGGTCTTCAAGCAG -ACGGAAGATCTGGTCTTCCGTCAA -ACGGAAGATCTGGTCTTCGCTGAA -ACGGAAGATCTGGTCTTCAGTACG -ACGGAAGATCTGGTCTTCATCCGA -ACGGAAGATCTGGTCTTCATGGGA -ACGGAAGATCTGGTCTTCGTGCAA -ACGGAAGATCTGGTCTTCGAGGAA -ACGGAAGATCTGGTCTTCCAGGTA -ACGGAAGATCTGGTCTTCGACTCT -ACGGAAGATCTGGTCTTCAGTCCT -ACGGAAGATCTGGTCTTCTAAGCC -ACGGAAGATCTGGTCTTCATAGCC -ACGGAAGATCTGGTCTTCTAACCG -ACGGAAGATCTGGTCTTCATGCCA -ACGGAAGATCTGCTCTCTGGAAAC -ACGGAAGATCTGCTCTCTAACACC -ACGGAAGATCTGCTCTCTATCGAG -ACGGAAGATCTGCTCTCTCTCCTT -ACGGAAGATCTGCTCTCTCCTGTT -ACGGAAGATCTGCTCTCTCGGTTT -ACGGAAGATCTGCTCTCTGTGGTT -ACGGAAGATCTGCTCTCTGCCTTT -ACGGAAGATCTGCTCTCTGGTCTT -ACGGAAGATCTGCTCTCTACGCTT -ACGGAAGATCTGCTCTCTAGCGTT -ACGGAAGATCTGCTCTCTTTCGTC -ACGGAAGATCTGCTCTCTTCTCTC -ACGGAAGATCTGCTCTCTTGGATC -ACGGAAGATCTGCTCTCTCACTTC -ACGGAAGATCTGCTCTCTGTACTC -ACGGAAGATCTGCTCTCTGATGTC -ACGGAAGATCTGCTCTCTACAGTC -ACGGAAGATCTGCTCTCTTTGCTG -ACGGAAGATCTGCTCTCTTCCATG -ACGGAAGATCTGCTCTCTTGTGTG -ACGGAAGATCTGCTCTCTCTAGTG -ACGGAAGATCTGCTCTCTCATCTG -ACGGAAGATCTGCTCTCTGAGTTG -ACGGAAGATCTGCTCTCTAGACTG -ACGGAAGATCTGCTCTCTTCGGTA -ACGGAAGATCTGCTCTCTTGCCTA -ACGGAAGATCTGCTCTCTCCACTA -ACGGAAGATCTGCTCTCTGGAGTA -ACGGAAGATCTGCTCTCTTCGTCT -ACGGAAGATCTGCTCTCTTGCACT -ACGGAAGATCTGCTCTCTCTGACT -ACGGAAGATCTGCTCTCTCAACCT -ACGGAAGATCTGCTCTCTGCTACT -ACGGAAGATCTGCTCTCTGGATCT -ACGGAAGATCTGCTCTCTAAGGCT -ACGGAAGATCTGCTCTCTTCAACC -ACGGAAGATCTGCTCTCTTGTTCC -ACGGAAGATCTGCTCTCTATTCCC -ACGGAAGATCTGCTCTCTTTCTCG -ACGGAAGATCTGCTCTCTTAGACG -ACGGAAGATCTGCTCTCTGTAACG -ACGGAAGATCTGCTCTCTACTTCG -ACGGAAGATCTGCTCTCTTACGCA -ACGGAAGATCTGCTCTCTCTTGCA -ACGGAAGATCTGCTCTCTCGAACA -ACGGAAGATCTGCTCTCTCAGTCA -ACGGAAGATCTGCTCTCTGATCCA -ACGGAAGATCTGCTCTCTACGACA -ACGGAAGATCTGCTCTCTAGCTCA -ACGGAAGATCTGCTCTCTTCACGT -ACGGAAGATCTGCTCTCTCGTAGT -ACGGAAGATCTGCTCTCTGTCAGT -ACGGAAGATCTGCTCTCTGAAGGT -ACGGAAGATCTGCTCTCTAACCGT -ACGGAAGATCTGCTCTCTTTGTGC -ACGGAAGATCTGCTCTCTCTAAGC -ACGGAAGATCTGCTCTCTACTAGC -ACGGAAGATCTGCTCTCTAGATGC -ACGGAAGATCTGCTCTCTTGAAGG -ACGGAAGATCTGCTCTCTCAATGG -ACGGAAGATCTGCTCTCTATGAGG -ACGGAAGATCTGCTCTCTAATGGG -ACGGAAGATCTGCTCTCTTCCTGA -ACGGAAGATCTGCTCTCTTAGCGA -ACGGAAGATCTGCTCTCTCACAGA -ACGGAAGATCTGCTCTCTGCAAGA -ACGGAAGATCTGCTCTCTGGTTGA -ACGGAAGATCTGCTCTCTTCCGAT -ACGGAAGATCTGCTCTCTTGGCAT -ACGGAAGATCTGCTCTCTCGAGAT -ACGGAAGATCTGCTCTCTTACCAC -ACGGAAGATCTGCTCTCTCAGAAC -ACGGAAGATCTGCTCTCTGTCTAC -ACGGAAGATCTGCTCTCTACGTAC -ACGGAAGATCTGCTCTCTAGTGAC -ACGGAAGATCTGCTCTCTCTGTAG -ACGGAAGATCTGCTCTCTCCTAAG -ACGGAAGATCTGCTCTCTGTTCAG -ACGGAAGATCTGCTCTCTGCATAG -ACGGAAGATCTGCTCTCTGACAAG -ACGGAAGATCTGCTCTCTAAGCAG -ACGGAAGATCTGCTCTCTCGTCAA -ACGGAAGATCTGCTCTCTGCTGAA -ACGGAAGATCTGCTCTCTAGTACG -ACGGAAGATCTGCTCTCTATCCGA -ACGGAAGATCTGCTCTCTATGGGA -ACGGAAGATCTGCTCTCTGTGCAA -ACGGAAGATCTGCTCTCTGAGGAA -ACGGAAGATCTGCTCTCTCAGGTA -ACGGAAGATCTGCTCTCTGACTCT -ACGGAAGATCTGCTCTCTAGTCCT -ACGGAAGATCTGCTCTCTTAAGCC -ACGGAAGATCTGCTCTCTATAGCC -ACGGAAGATCTGCTCTCTTAACCG -ACGGAAGATCTGCTCTCTATGCCA -ACGGAAGATCTGATCTGGGGAAAC -ACGGAAGATCTGATCTGGAACACC -ACGGAAGATCTGATCTGGATCGAG -ACGGAAGATCTGATCTGGCTCCTT -ACGGAAGATCTGATCTGGCCTGTT -ACGGAAGATCTGATCTGGCGGTTT -ACGGAAGATCTGATCTGGGTGGTT -ACGGAAGATCTGATCTGGGCCTTT -ACGGAAGATCTGATCTGGGGTCTT -ACGGAAGATCTGATCTGGACGCTT -ACGGAAGATCTGATCTGGAGCGTT -ACGGAAGATCTGATCTGGTTCGTC -ACGGAAGATCTGATCTGGTCTCTC -ACGGAAGATCTGATCTGGTGGATC -ACGGAAGATCTGATCTGGCACTTC -ACGGAAGATCTGATCTGGGTACTC -ACGGAAGATCTGATCTGGGATGTC -ACGGAAGATCTGATCTGGACAGTC -ACGGAAGATCTGATCTGGTTGCTG -ACGGAAGATCTGATCTGGTCCATG -ACGGAAGATCTGATCTGGTGTGTG -ACGGAAGATCTGATCTGGCTAGTG -ACGGAAGATCTGATCTGGCATCTG -ACGGAAGATCTGATCTGGGAGTTG -ACGGAAGATCTGATCTGGAGACTG -ACGGAAGATCTGATCTGGTCGGTA -ACGGAAGATCTGATCTGGTGCCTA -ACGGAAGATCTGATCTGGCCACTA -ACGGAAGATCTGATCTGGGGAGTA -ACGGAAGATCTGATCTGGTCGTCT -ACGGAAGATCTGATCTGGTGCACT -ACGGAAGATCTGATCTGGCTGACT -ACGGAAGATCTGATCTGGCAACCT -ACGGAAGATCTGATCTGGGCTACT -ACGGAAGATCTGATCTGGGGATCT -ACGGAAGATCTGATCTGGAAGGCT -ACGGAAGATCTGATCTGGTCAACC -ACGGAAGATCTGATCTGGTGTTCC -ACGGAAGATCTGATCTGGATTCCC -ACGGAAGATCTGATCTGGTTCTCG -ACGGAAGATCTGATCTGGTAGACG -ACGGAAGATCTGATCTGGGTAACG -ACGGAAGATCTGATCTGGACTTCG -ACGGAAGATCTGATCTGGTACGCA -ACGGAAGATCTGATCTGGCTTGCA -ACGGAAGATCTGATCTGGCGAACA -ACGGAAGATCTGATCTGGCAGTCA -ACGGAAGATCTGATCTGGGATCCA -ACGGAAGATCTGATCTGGACGACA -ACGGAAGATCTGATCTGGAGCTCA -ACGGAAGATCTGATCTGGTCACGT -ACGGAAGATCTGATCTGGCGTAGT -ACGGAAGATCTGATCTGGGTCAGT -ACGGAAGATCTGATCTGGGAAGGT -ACGGAAGATCTGATCTGGAACCGT -ACGGAAGATCTGATCTGGTTGTGC -ACGGAAGATCTGATCTGGCTAAGC -ACGGAAGATCTGATCTGGACTAGC -ACGGAAGATCTGATCTGGAGATGC -ACGGAAGATCTGATCTGGTGAAGG -ACGGAAGATCTGATCTGGCAATGG -ACGGAAGATCTGATCTGGATGAGG -ACGGAAGATCTGATCTGGAATGGG -ACGGAAGATCTGATCTGGTCCTGA -ACGGAAGATCTGATCTGGTAGCGA -ACGGAAGATCTGATCTGGCACAGA -ACGGAAGATCTGATCTGGGCAAGA -ACGGAAGATCTGATCTGGGGTTGA -ACGGAAGATCTGATCTGGTCCGAT -ACGGAAGATCTGATCTGGTGGCAT -ACGGAAGATCTGATCTGGCGAGAT -ACGGAAGATCTGATCTGGTACCAC -ACGGAAGATCTGATCTGGCAGAAC -ACGGAAGATCTGATCTGGGTCTAC -ACGGAAGATCTGATCTGGACGTAC -ACGGAAGATCTGATCTGGAGTGAC -ACGGAAGATCTGATCTGGCTGTAG -ACGGAAGATCTGATCTGGCCTAAG -ACGGAAGATCTGATCTGGGTTCAG -ACGGAAGATCTGATCTGGGCATAG -ACGGAAGATCTGATCTGGGACAAG -ACGGAAGATCTGATCTGGAAGCAG -ACGGAAGATCTGATCTGGCGTCAA -ACGGAAGATCTGATCTGGGCTGAA -ACGGAAGATCTGATCTGGAGTACG -ACGGAAGATCTGATCTGGATCCGA -ACGGAAGATCTGATCTGGATGGGA -ACGGAAGATCTGATCTGGGTGCAA -ACGGAAGATCTGATCTGGGAGGAA -ACGGAAGATCTGATCTGGCAGGTA -ACGGAAGATCTGATCTGGGACTCT -ACGGAAGATCTGATCTGGAGTCCT -ACGGAAGATCTGATCTGGTAAGCC -ACGGAAGATCTGATCTGGATAGCC -ACGGAAGATCTGATCTGGTAACCG -ACGGAAGATCTGATCTGGATGCCA -ACGGAAGATCTGTTCCACGGAAAC -ACGGAAGATCTGTTCCACAACACC -ACGGAAGATCTGTTCCACATCGAG -ACGGAAGATCTGTTCCACCTCCTT -ACGGAAGATCTGTTCCACCCTGTT -ACGGAAGATCTGTTCCACCGGTTT -ACGGAAGATCTGTTCCACGTGGTT -ACGGAAGATCTGTTCCACGCCTTT -ACGGAAGATCTGTTCCACGGTCTT -ACGGAAGATCTGTTCCACACGCTT -ACGGAAGATCTGTTCCACAGCGTT -ACGGAAGATCTGTTCCACTTCGTC -ACGGAAGATCTGTTCCACTCTCTC -ACGGAAGATCTGTTCCACTGGATC -ACGGAAGATCTGTTCCACCACTTC -ACGGAAGATCTGTTCCACGTACTC -ACGGAAGATCTGTTCCACGATGTC -ACGGAAGATCTGTTCCACACAGTC -ACGGAAGATCTGTTCCACTTGCTG -ACGGAAGATCTGTTCCACTCCATG -ACGGAAGATCTGTTCCACTGTGTG -ACGGAAGATCTGTTCCACCTAGTG -ACGGAAGATCTGTTCCACCATCTG -ACGGAAGATCTGTTCCACGAGTTG -ACGGAAGATCTGTTCCACAGACTG -ACGGAAGATCTGTTCCACTCGGTA -ACGGAAGATCTGTTCCACTGCCTA -ACGGAAGATCTGTTCCACCCACTA -ACGGAAGATCTGTTCCACGGAGTA -ACGGAAGATCTGTTCCACTCGTCT -ACGGAAGATCTGTTCCACTGCACT -ACGGAAGATCTGTTCCACCTGACT -ACGGAAGATCTGTTCCACCAACCT -ACGGAAGATCTGTTCCACGCTACT -ACGGAAGATCTGTTCCACGGATCT -ACGGAAGATCTGTTCCACAAGGCT -ACGGAAGATCTGTTCCACTCAACC -ACGGAAGATCTGTTCCACTGTTCC -ACGGAAGATCTGTTCCACATTCCC -ACGGAAGATCTGTTCCACTTCTCG -ACGGAAGATCTGTTCCACTAGACG -ACGGAAGATCTGTTCCACGTAACG -ACGGAAGATCTGTTCCACACTTCG -ACGGAAGATCTGTTCCACTACGCA -ACGGAAGATCTGTTCCACCTTGCA -ACGGAAGATCTGTTCCACCGAACA -ACGGAAGATCTGTTCCACCAGTCA -ACGGAAGATCTGTTCCACGATCCA -ACGGAAGATCTGTTCCACACGACA -ACGGAAGATCTGTTCCACAGCTCA -ACGGAAGATCTGTTCCACTCACGT -ACGGAAGATCTGTTCCACCGTAGT -ACGGAAGATCTGTTCCACGTCAGT -ACGGAAGATCTGTTCCACGAAGGT -ACGGAAGATCTGTTCCACAACCGT -ACGGAAGATCTGTTCCACTTGTGC -ACGGAAGATCTGTTCCACCTAAGC -ACGGAAGATCTGTTCCACACTAGC -ACGGAAGATCTGTTCCACAGATGC -ACGGAAGATCTGTTCCACTGAAGG -ACGGAAGATCTGTTCCACCAATGG -ACGGAAGATCTGTTCCACATGAGG -ACGGAAGATCTGTTCCACAATGGG -ACGGAAGATCTGTTCCACTCCTGA -ACGGAAGATCTGTTCCACTAGCGA -ACGGAAGATCTGTTCCACCACAGA -ACGGAAGATCTGTTCCACGCAAGA -ACGGAAGATCTGTTCCACGGTTGA -ACGGAAGATCTGTTCCACTCCGAT -ACGGAAGATCTGTTCCACTGGCAT -ACGGAAGATCTGTTCCACCGAGAT -ACGGAAGATCTGTTCCACTACCAC -ACGGAAGATCTGTTCCACCAGAAC -ACGGAAGATCTGTTCCACGTCTAC -ACGGAAGATCTGTTCCACACGTAC -ACGGAAGATCTGTTCCACAGTGAC -ACGGAAGATCTGTTCCACCTGTAG -ACGGAAGATCTGTTCCACCCTAAG -ACGGAAGATCTGTTCCACGTTCAG -ACGGAAGATCTGTTCCACGCATAG -ACGGAAGATCTGTTCCACGACAAG -ACGGAAGATCTGTTCCACAAGCAG -ACGGAAGATCTGTTCCACCGTCAA -ACGGAAGATCTGTTCCACGCTGAA -ACGGAAGATCTGTTCCACAGTACG -ACGGAAGATCTGTTCCACATCCGA -ACGGAAGATCTGTTCCACATGGGA -ACGGAAGATCTGTTCCACGTGCAA -ACGGAAGATCTGTTCCACGAGGAA -ACGGAAGATCTGTTCCACCAGGTA -ACGGAAGATCTGTTCCACGACTCT -ACGGAAGATCTGTTCCACAGTCCT -ACGGAAGATCTGTTCCACTAAGCC -ACGGAAGATCTGTTCCACATAGCC -ACGGAAGATCTGTTCCACTAACCG -ACGGAAGATCTGTTCCACATGCCA -ACGGAAGATCTGCTCGTAGGAAAC -ACGGAAGATCTGCTCGTAAACACC -ACGGAAGATCTGCTCGTAATCGAG -ACGGAAGATCTGCTCGTACTCCTT -ACGGAAGATCTGCTCGTACCTGTT -ACGGAAGATCTGCTCGTACGGTTT -ACGGAAGATCTGCTCGTAGTGGTT -ACGGAAGATCTGCTCGTAGCCTTT -ACGGAAGATCTGCTCGTAGGTCTT -ACGGAAGATCTGCTCGTAACGCTT -ACGGAAGATCTGCTCGTAAGCGTT -ACGGAAGATCTGCTCGTATTCGTC -ACGGAAGATCTGCTCGTATCTCTC -ACGGAAGATCTGCTCGTATGGATC -ACGGAAGATCTGCTCGTACACTTC -ACGGAAGATCTGCTCGTAGTACTC -ACGGAAGATCTGCTCGTAGATGTC -ACGGAAGATCTGCTCGTAACAGTC -ACGGAAGATCTGCTCGTATTGCTG -ACGGAAGATCTGCTCGTATCCATG -ACGGAAGATCTGCTCGTATGTGTG -ACGGAAGATCTGCTCGTACTAGTG -ACGGAAGATCTGCTCGTACATCTG -ACGGAAGATCTGCTCGTAGAGTTG -ACGGAAGATCTGCTCGTAAGACTG -ACGGAAGATCTGCTCGTATCGGTA -ACGGAAGATCTGCTCGTATGCCTA -ACGGAAGATCTGCTCGTACCACTA -ACGGAAGATCTGCTCGTAGGAGTA -ACGGAAGATCTGCTCGTATCGTCT -ACGGAAGATCTGCTCGTATGCACT -ACGGAAGATCTGCTCGTACTGACT -ACGGAAGATCTGCTCGTACAACCT -ACGGAAGATCTGCTCGTAGCTACT -ACGGAAGATCTGCTCGTAGGATCT -ACGGAAGATCTGCTCGTAAAGGCT -ACGGAAGATCTGCTCGTATCAACC -ACGGAAGATCTGCTCGTATGTTCC -ACGGAAGATCTGCTCGTAATTCCC -ACGGAAGATCTGCTCGTATTCTCG -ACGGAAGATCTGCTCGTATAGACG -ACGGAAGATCTGCTCGTAGTAACG -ACGGAAGATCTGCTCGTAACTTCG -ACGGAAGATCTGCTCGTATACGCA -ACGGAAGATCTGCTCGTACTTGCA -ACGGAAGATCTGCTCGTACGAACA -ACGGAAGATCTGCTCGTACAGTCA -ACGGAAGATCTGCTCGTAGATCCA -ACGGAAGATCTGCTCGTAACGACA -ACGGAAGATCTGCTCGTAAGCTCA -ACGGAAGATCTGCTCGTATCACGT -ACGGAAGATCTGCTCGTACGTAGT -ACGGAAGATCTGCTCGTAGTCAGT -ACGGAAGATCTGCTCGTAGAAGGT -ACGGAAGATCTGCTCGTAAACCGT -ACGGAAGATCTGCTCGTATTGTGC -ACGGAAGATCTGCTCGTACTAAGC -ACGGAAGATCTGCTCGTAACTAGC -ACGGAAGATCTGCTCGTAAGATGC -ACGGAAGATCTGCTCGTATGAAGG -ACGGAAGATCTGCTCGTACAATGG -ACGGAAGATCTGCTCGTAATGAGG -ACGGAAGATCTGCTCGTAAATGGG -ACGGAAGATCTGCTCGTATCCTGA -ACGGAAGATCTGCTCGTATAGCGA -ACGGAAGATCTGCTCGTACACAGA -ACGGAAGATCTGCTCGTAGCAAGA -ACGGAAGATCTGCTCGTAGGTTGA -ACGGAAGATCTGCTCGTATCCGAT -ACGGAAGATCTGCTCGTATGGCAT -ACGGAAGATCTGCTCGTACGAGAT -ACGGAAGATCTGCTCGTATACCAC -ACGGAAGATCTGCTCGTACAGAAC -ACGGAAGATCTGCTCGTAGTCTAC -ACGGAAGATCTGCTCGTAACGTAC -ACGGAAGATCTGCTCGTAAGTGAC -ACGGAAGATCTGCTCGTACTGTAG -ACGGAAGATCTGCTCGTACCTAAG -ACGGAAGATCTGCTCGTAGTTCAG -ACGGAAGATCTGCTCGTAGCATAG -ACGGAAGATCTGCTCGTAGACAAG -ACGGAAGATCTGCTCGTAAAGCAG -ACGGAAGATCTGCTCGTACGTCAA -ACGGAAGATCTGCTCGTAGCTGAA -ACGGAAGATCTGCTCGTAAGTACG -ACGGAAGATCTGCTCGTAATCCGA -ACGGAAGATCTGCTCGTAATGGGA -ACGGAAGATCTGCTCGTAGTGCAA -ACGGAAGATCTGCTCGTAGAGGAA -ACGGAAGATCTGCTCGTACAGGTA -ACGGAAGATCTGCTCGTAGACTCT -ACGGAAGATCTGCTCGTAAGTCCT -ACGGAAGATCTGCTCGTATAAGCC -ACGGAAGATCTGCTCGTAATAGCC -ACGGAAGATCTGCTCGTATAACCG -ACGGAAGATCTGCTCGTAATGCCA -ACGGAAGATCTGGTCGATGGAAAC -ACGGAAGATCTGGTCGATAACACC -ACGGAAGATCTGGTCGATATCGAG -ACGGAAGATCTGGTCGATCTCCTT -ACGGAAGATCTGGTCGATCCTGTT -ACGGAAGATCTGGTCGATCGGTTT -ACGGAAGATCTGGTCGATGTGGTT -ACGGAAGATCTGGTCGATGCCTTT -ACGGAAGATCTGGTCGATGGTCTT -ACGGAAGATCTGGTCGATACGCTT -ACGGAAGATCTGGTCGATAGCGTT -ACGGAAGATCTGGTCGATTTCGTC -ACGGAAGATCTGGTCGATTCTCTC -ACGGAAGATCTGGTCGATTGGATC -ACGGAAGATCTGGTCGATCACTTC -ACGGAAGATCTGGTCGATGTACTC -ACGGAAGATCTGGTCGATGATGTC -ACGGAAGATCTGGTCGATACAGTC -ACGGAAGATCTGGTCGATTTGCTG -ACGGAAGATCTGGTCGATTCCATG -ACGGAAGATCTGGTCGATTGTGTG -ACGGAAGATCTGGTCGATCTAGTG -ACGGAAGATCTGGTCGATCATCTG -ACGGAAGATCTGGTCGATGAGTTG -ACGGAAGATCTGGTCGATAGACTG -ACGGAAGATCTGGTCGATTCGGTA -ACGGAAGATCTGGTCGATTGCCTA -ACGGAAGATCTGGTCGATCCACTA -ACGGAAGATCTGGTCGATGGAGTA -ACGGAAGATCTGGTCGATTCGTCT -ACGGAAGATCTGGTCGATTGCACT -ACGGAAGATCTGGTCGATCTGACT -ACGGAAGATCTGGTCGATCAACCT -ACGGAAGATCTGGTCGATGCTACT -ACGGAAGATCTGGTCGATGGATCT -ACGGAAGATCTGGTCGATAAGGCT -ACGGAAGATCTGGTCGATTCAACC -ACGGAAGATCTGGTCGATTGTTCC -ACGGAAGATCTGGTCGATATTCCC -ACGGAAGATCTGGTCGATTTCTCG -ACGGAAGATCTGGTCGATTAGACG -ACGGAAGATCTGGTCGATGTAACG -ACGGAAGATCTGGTCGATACTTCG -ACGGAAGATCTGGTCGATTACGCA -ACGGAAGATCTGGTCGATCTTGCA -ACGGAAGATCTGGTCGATCGAACA -ACGGAAGATCTGGTCGATCAGTCA -ACGGAAGATCTGGTCGATGATCCA -ACGGAAGATCTGGTCGATACGACA -ACGGAAGATCTGGTCGATAGCTCA -ACGGAAGATCTGGTCGATTCACGT -ACGGAAGATCTGGTCGATCGTAGT -ACGGAAGATCTGGTCGATGTCAGT -ACGGAAGATCTGGTCGATGAAGGT -ACGGAAGATCTGGTCGATAACCGT -ACGGAAGATCTGGTCGATTTGTGC -ACGGAAGATCTGGTCGATCTAAGC -ACGGAAGATCTGGTCGATACTAGC -ACGGAAGATCTGGTCGATAGATGC -ACGGAAGATCTGGTCGATTGAAGG -ACGGAAGATCTGGTCGATCAATGG -ACGGAAGATCTGGTCGATATGAGG -ACGGAAGATCTGGTCGATAATGGG -ACGGAAGATCTGGTCGATTCCTGA -ACGGAAGATCTGGTCGATTAGCGA -ACGGAAGATCTGGTCGATCACAGA -ACGGAAGATCTGGTCGATGCAAGA -ACGGAAGATCTGGTCGATGGTTGA -ACGGAAGATCTGGTCGATTCCGAT -ACGGAAGATCTGGTCGATTGGCAT -ACGGAAGATCTGGTCGATCGAGAT -ACGGAAGATCTGGTCGATTACCAC -ACGGAAGATCTGGTCGATCAGAAC -ACGGAAGATCTGGTCGATGTCTAC -ACGGAAGATCTGGTCGATACGTAC -ACGGAAGATCTGGTCGATAGTGAC -ACGGAAGATCTGGTCGATCTGTAG -ACGGAAGATCTGGTCGATCCTAAG -ACGGAAGATCTGGTCGATGTTCAG -ACGGAAGATCTGGTCGATGCATAG -ACGGAAGATCTGGTCGATGACAAG -ACGGAAGATCTGGTCGATAAGCAG -ACGGAAGATCTGGTCGATCGTCAA -ACGGAAGATCTGGTCGATGCTGAA -ACGGAAGATCTGGTCGATAGTACG -ACGGAAGATCTGGTCGATATCCGA -ACGGAAGATCTGGTCGATATGGGA -ACGGAAGATCTGGTCGATGTGCAA -ACGGAAGATCTGGTCGATGAGGAA -ACGGAAGATCTGGTCGATCAGGTA -ACGGAAGATCTGGTCGATGACTCT -ACGGAAGATCTGGTCGATAGTCCT -ACGGAAGATCTGGTCGATTAAGCC -ACGGAAGATCTGGTCGATATAGCC -ACGGAAGATCTGGTCGATTAACCG -ACGGAAGATCTGGTCGATATGCCA -ACGGAAGATCTGGTCACAGGAAAC -ACGGAAGATCTGGTCACAAACACC -ACGGAAGATCTGGTCACAATCGAG -ACGGAAGATCTGGTCACACTCCTT -ACGGAAGATCTGGTCACACCTGTT -ACGGAAGATCTGGTCACACGGTTT -ACGGAAGATCTGGTCACAGTGGTT -ACGGAAGATCTGGTCACAGCCTTT -ACGGAAGATCTGGTCACAGGTCTT -ACGGAAGATCTGGTCACAACGCTT -ACGGAAGATCTGGTCACAAGCGTT -ACGGAAGATCTGGTCACATTCGTC -ACGGAAGATCTGGTCACATCTCTC -ACGGAAGATCTGGTCACATGGATC -ACGGAAGATCTGGTCACACACTTC -ACGGAAGATCTGGTCACAGTACTC -ACGGAAGATCTGGTCACAGATGTC -ACGGAAGATCTGGTCACAACAGTC -ACGGAAGATCTGGTCACATTGCTG -ACGGAAGATCTGGTCACATCCATG -ACGGAAGATCTGGTCACATGTGTG -ACGGAAGATCTGGTCACACTAGTG -ACGGAAGATCTGGTCACACATCTG -ACGGAAGATCTGGTCACAGAGTTG -ACGGAAGATCTGGTCACAAGACTG -ACGGAAGATCTGGTCACATCGGTA -ACGGAAGATCTGGTCACATGCCTA -ACGGAAGATCTGGTCACACCACTA -ACGGAAGATCTGGTCACAGGAGTA -ACGGAAGATCTGGTCACATCGTCT -ACGGAAGATCTGGTCACATGCACT -ACGGAAGATCTGGTCACACTGACT -ACGGAAGATCTGGTCACACAACCT -ACGGAAGATCTGGTCACAGCTACT -ACGGAAGATCTGGTCACAGGATCT -ACGGAAGATCTGGTCACAAAGGCT -ACGGAAGATCTGGTCACATCAACC -ACGGAAGATCTGGTCACATGTTCC -ACGGAAGATCTGGTCACAATTCCC -ACGGAAGATCTGGTCACATTCTCG -ACGGAAGATCTGGTCACATAGACG -ACGGAAGATCTGGTCACAGTAACG -ACGGAAGATCTGGTCACAACTTCG -ACGGAAGATCTGGTCACATACGCA -ACGGAAGATCTGGTCACACTTGCA -ACGGAAGATCTGGTCACACGAACA -ACGGAAGATCTGGTCACACAGTCA -ACGGAAGATCTGGTCACAGATCCA -ACGGAAGATCTGGTCACAACGACA -ACGGAAGATCTGGTCACAAGCTCA -ACGGAAGATCTGGTCACATCACGT -ACGGAAGATCTGGTCACACGTAGT -ACGGAAGATCTGGTCACAGTCAGT -ACGGAAGATCTGGTCACAGAAGGT -ACGGAAGATCTGGTCACAAACCGT -ACGGAAGATCTGGTCACATTGTGC -ACGGAAGATCTGGTCACACTAAGC -ACGGAAGATCTGGTCACAACTAGC -ACGGAAGATCTGGTCACAAGATGC -ACGGAAGATCTGGTCACATGAAGG -ACGGAAGATCTGGTCACACAATGG -ACGGAAGATCTGGTCACAATGAGG -ACGGAAGATCTGGTCACAAATGGG -ACGGAAGATCTGGTCACATCCTGA -ACGGAAGATCTGGTCACATAGCGA -ACGGAAGATCTGGTCACACACAGA -ACGGAAGATCTGGTCACAGCAAGA -ACGGAAGATCTGGTCACAGGTTGA -ACGGAAGATCTGGTCACATCCGAT -ACGGAAGATCTGGTCACATGGCAT -ACGGAAGATCTGGTCACACGAGAT -ACGGAAGATCTGGTCACATACCAC -ACGGAAGATCTGGTCACACAGAAC -ACGGAAGATCTGGTCACAGTCTAC -ACGGAAGATCTGGTCACAACGTAC -ACGGAAGATCTGGTCACAAGTGAC -ACGGAAGATCTGGTCACACTGTAG -ACGGAAGATCTGGTCACACCTAAG -ACGGAAGATCTGGTCACAGTTCAG -ACGGAAGATCTGGTCACAGCATAG -ACGGAAGATCTGGTCACAGACAAG -ACGGAAGATCTGGTCACAAAGCAG -ACGGAAGATCTGGTCACACGTCAA -ACGGAAGATCTGGTCACAGCTGAA -ACGGAAGATCTGGTCACAAGTACG -ACGGAAGATCTGGTCACAATCCGA -ACGGAAGATCTGGTCACAATGGGA -ACGGAAGATCTGGTCACAGTGCAA -ACGGAAGATCTGGTCACAGAGGAA -ACGGAAGATCTGGTCACACAGGTA -ACGGAAGATCTGGTCACAGACTCT -ACGGAAGATCTGGTCACAAGTCCT -ACGGAAGATCTGGTCACATAAGCC -ACGGAAGATCTGGTCACAATAGCC -ACGGAAGATCTGGTCACATAACCG -ACGGAAGATCTGGTCACAATGCCA -ACGGAAGATCTGCTGTTGGGAAAC -ACGGAAGATCTGCTGTTGAACACC -ACGGAAGATCTGCTGTTGATCGAG -ACGGAAGATCTGCTGTTGCTCCTT -ACGGAAGATCTGCTGTTGCCTGTT -ACGGAAGATCTGCTGTTGCGGTTT -ACGGAAGATCTGCTGTTGGTGGTT -ACGGAAGATCTGCTGTTGGCCTTT -ACGGAAGATCTGCTGTTGGGTCTT -ACGGAAGATCTGCTGTTGACGCTT -ACGGAAGATCTGCTGTTGAGCGTT -ACGGAAGATCTGCTGTTGTTCGTC -ACGGAAGATCTGCTGTTGTCTCTC -ACGGAAGATCTGCTGTTGTGGATC -ACGGAAGATCTGCTGTTGCACTTC -ACGGAAGATCTGCTGTTGGTACTC -ACGGAAGATCTGCTGTTGGATGTC -ACGGAAGATCTGCTGTTGACAGTC -ACGGAAGATCTGCTGTTGTTGCTG -ACGGAAGATCTGCTGTTGTCCATG -ACGGAAGATCTGCTGTTGTGTGTG -ACGGAAGATCTGCTGTTGCTAGTG -ACGGAAGATCTGCTGTTGCATCTG -ACGGAAGATCTGCTGTTGGAGTTG -ACGGAAGATCTGCTGTTGAGACTG -ACGGAAGATCTGCTGTTGTCGGTA -ACGGAAGATCTGCTGTTGTGCCTA -ACGGAAGATCTGCTGTTGCCACTA -ACGGAAGATCTGCTGTTGGGAGTA -ACGGAAGATCTGCTGTTGTCGTCT -ACGGAAGATCTGCTGTTGTGCACT -ACGGAAGATCTGCTGTTGCTGACT -ACGGAAGATCTGCTGTTGCAACCT -ACGGAAGATCTGCTGTTGGCTACT -ACGGAAGATCTGCTGTTGGGATCT -ACGGAAGATCTGCTGTTGAAGGCT -ACGGAAGATCTGCTGTTGTCAACC -ACGGAAGATCTGCTGTTGTGTTCC -ACGGAAGATCTGCTGTTGATTCCC -ACGGAAGATCTGCTGTTGTTCTCG -ACGGAAGATCTGCTGTTGTAGACG -ACGGAAGATCTGCTGTTGGTAACG -ACGGAAGATCTGCTGTTGACTTCG -ACGGAAGATCTGCTGTTGTACGCA -ACGGAAGATCTGCTGTTGCTTGCA -ACGGAAGATCTGCTGTTGCGAACA -ACGGAAGATCTGCTGTTGCAGTCA -ACGGAAGATCTGCTGTTGGATCCA -ACGGAAGATCTGCTGTTGACGACA -ACGGAAGATCTGCTGTTGAGCTCA -ACGGAAGATCTGCTGTTGTCACGT -ACGGAAGATCTGCTGTTGCGTAGT -ACGGAAGATCTGCTGTTGGTCAGT -ACGGAAGATCTGCTGTTGGAAGGT -ACGGAAGATCTGCTGTTGAACCGT -ACGGAAGATCTGCTGTTGTTGTGC -ACGGAAGATCTGCTGTTGCTAAGC -ACGGAAGATCTGCTGTTGACTAGC -ACGGAAGATCTGCTGTTGAGATGC -ACGGAAGATCTGCTGTTGTGAAGG -ACGGAAGATCTGCTGTTGCAATGG -ACGGAAGATCTGCTGTTGATGAGG -ACGGAAGATCTGCTGTTGAATGGG -ACGGAAGATCTGCTGTTGTCCTGA -ACGGAAGATCTGCTGTTGTAGCGA -ACGGAAGATCTGCTGTTGCACAGA -ACGGAAGATCTGCTGTTGGCAAGA -ACGGAAGATCTGCTGTTGGGTTGA -ACGGAAGATCTGCTGTTGTCCGAT -ACGGAAGATCTGCTGTTGTGGCAT -ACGGAAGATCTGCTGTTGCGAGAT -ACGGAAGATCTGCTGTTGTACCAC -ACGGAAGATCTGCTGTTGCAGAAC -ACGGAAGATCTGCTGTTGGTCTAC -ACGGAAGATCTGCTGTTGACGTAC -ACGGAAGATCTGCTGTTGAGTGAC -ACGGAAGATCTGCTGTTGCTGTAG -ACGGAAGATCTGCTGTTGCCTAAG -ACGGAAGATCTGCTGTTGGTTCAG -ACGGAAGATCTGCTGTTGGCATAG -ACGGAAGATCTGCTGTTGGACAAG -ACGGAAGATCTGCTGTTGAAGCAG -ACGGAAGATCTGCTGTTGCGTCAA -ACGGAAGATCTGCTGTTGGCTGAA -ACGGAAGATCTGCTGTTGAGTACG -ACGGAAGATCTGCTGTTGATCCGA -ACGGAAGATCTGCTGTTGATGGGA -ACGGAAGATCTGCTGTTGGTGCAA -ACGGAAGATCTGCTGTTGGAGGAA -ACGGAAGATCTGCTGTTGCAGGTA -ACGGAAGATCTGCTGTTGGACTCT -ACGGAAGATCTGCTGTTGAGTCCT -ACGGAAGATCTGCTGTTGTAAGCC -ACGGAAGATCTGCTGTTGATAGCC -ACGGAAGATCTGCTGTTGTAACCG -ACGGAAGATCTGCTGTTGATGCCA -ACGGAAGATCTGATGTCCGGAAAC -ACGGAAGATCTGATGTCCAACACC -ACGGAAGATCTGATGTCCATCGAG -ACGGAAGATCTGATGTCCCTCCTT -ACGGAAGATCTGATGTCCCCTGTT -ACGGAAGATCTGATGTCCCGGTTT -ACGGAAGATCTGATGTCCGTGGTT -ACGGAAGATCTGATGTCCGCCTTT -ACGGAAGATCTGATGTCCGGTCTT -ACGGAAGATCTGATGTCCACGCTT -ACGGAAGATCTGATGTCCAGCGTT -ACGGAAGATCTGATGTCCTTCGTC -ACGGAAGATCTGATGTCCTCTCTC -ACGGAAGATCTGATGTCCTGGATC -ACGGAAGATCTGATGTCCCACTTC -ACGGAAGATCTGATGTCCGTACTC -ACGGAAGATCTGATGTCCGATGTC -ACGGAAGATCTGATGTCCACAGTC -ACGGAAGATCTGATGTCCTTGCTG -ACGGAAGATCTGATGTCCTCCATG -ACGGAAGATCTGATGTCCTGTGTG -ACGGAAGATCTGATGTCCCTAGTG -ACGGAAGATCTGATGTCCCATCTG -ACGGAAGATCTGATGTCCGAGTTG -ACGGAAGATCTGATGTCCAGACTG -ACGGAAGATCTGATGTCCTCGGTA -ACGGAAGATCTGATGTCCTGCCTA -ACGGAAGATCTGATGTCCCCACTA -ACGGAAGATCTGATGTCCGGAGTA -ACGGAAGATCTGATGTCCTCGTCT -ACGGAAGATCTGATGTCCTGCACT -ACGGAAGATCTGATGTCCCTGACT -ACGGAAGATCTGATGTCCCAACCT -ACGGAAGATCTGATGTCCGCTACT -ACGGAAGATCTGATGTCCGGATCT -ACGGAAGATCTGATGTCCAAGGCT -ACGGAAGATCTGATGTCCTCAACC -ACGGAAGATCTGATGTCCTGTTCC -ACGGAAGATCTGATGTCCATTCCC -ACGGAAGATCTGATGTCCTTCTCG -ACGGAAGATCTGATGTCCTAGACG -ACGGAAGATCTGATGTCCGTAACG -ACGGAAGATCTGATGTCCACTTCG -ACGGAAGATCTGATGTCCTACGCA -ACGGAAGATCTGATGTCCCTTGCA -ACGGAAGATCTGATGTCCCGAACA -ACGGAAGATCTGATGTCCCAGTCA -ACGGAAGATCTGATGTCCGATCCA -ACGGAAGATCTGATGTCCACGACA -ACGGAAGATCTGATGTCCAGCTCA -ACGGAAGATCTGATGTCCTCACGT -ACGGAAGATCTGATGTCCCGTAGT -ACGGAAGATCTGATGTCCGTCAGT -ACGGAAGATCTGATGTCCGAAGGT -ACGGAAGATCTGATGTCCAACCGT -ACGGAAGATCTGATGTCCTTGTGC -ACGGAAGATCTGATGTCCCTAAGC -ACGGAAGATCTGATGTCCACTAGC -ACGGAAGATCTGATGTCCAGATGC -ACGGAAGATCTGATGTCCTGAAGG -ACGGAAGATCTGATGTCCCAATGG -ACGGAAGATCTGATGTCCATGAGG -ACGGAAGATCTGATGTCCAATGGG -ACGGAAGATCTGATGTCCTCCTGA -ACGGAAGATCTGATGTCCTAGCGA -ACGGAAGATCTGATGTCCCACAGA -ACGGAAGATCTGATGTCCGCAAGA -ACGGAAGATCTGATGTCCGGTTGA -ACGGAAGATCTGATGTCCTCCGAT -ACGGAAGATCTGATGTCCTGGCAT -ACGGAAGATCTGATGTCCCGAGAT -ACGGAAGATCTGATGTCCTACCAC -ACGGAAGATCTGATGTCCCAGAAC -ACGGAAGATCTGATGTCCGTCTAC -ACGGAAGATCTGATGTCCACGTAC -ACGGAAGATCTGATGTCCAGTGAC -ACGGAAGATCTGATGTCCCTGTAG -ACGGAAGATCTGATGTCCCCTAAG -ACGGAAGATCTGATGTCCGTTCAG -ACGGAAGATCTGATGTCCGCATAG -ACGGAAGATCTGATGTCCGACAAG -ACGGAAGATCTGATGTCCAAGCAG -ACGGAAGATCTGATGTCCCGTCAA -ACGGAAGATCTGATGTCCGCTGAA -ACGGAAGATCTGATGTCCAGTACG -ACGGAAGATCTGATGTCCATCCGA -ACGGAAGATCTGATGTCCATGGGA -ACGGAAGATCTGATGTCCGTGCAA -ACGGAAGATCTGATGTCCGAGGAA -ACGGAAGATCTGATGTCCCAGGTA -ACGGAAGATCTGATGTCCGACTCT -ACGGAAGATCTGATGTCCAGTCCT -ACGGAAGATCTGATGTCCTAAGCC -ACGGAAGATCTGATGTCCATAGCC -ACGGAAGATCTGATGTCCTAACCG -ACGGAAGATCTGATGTCCATGCCA -ACGGAAGATCTGGTGTGTGGAAAC -ACGGAAGATCTGGTGTGTAACACC -ACGGAAGATCTGGTGTGTATCGAG -ACGGAAGATCTGGTGTGTCTCCTT -ACGGAAGATCTGGTGTGTCCTGTT -ACGGAAGATCTGGTGTGTCGGTTT -ACGGAAGATCTGGTGTGTGTGGTT -ACGGAAGATCTGGTGTGTGCCTTT -ACGGAAGATCTGGTGTGTGGTCTT -ACGGAAGATCTGGTGTGTACGCTT -ACGGAAGATCTGGTGTGTAGCGTT -ACGGAAGATCTGGTGTGTTTCGTC -ACGGAAGATCTGGTGTGTTCTCTC -ACGGAAGATCTGGTGTGTTGGATC -ACGGAAGATCTGGTGTGTCACTTC -ACGGAAGATCTGGTGTGTGTACTC -ACGGAAGATCTGGTGTGTGATGTC -ACGGAAGATCTGGTGTGTACAGTC -ACGGAAGATCTGGTGTGTTTGCTG -ACGGAAGATCTGGTGTGTTCCATG -ACGGAAGATCTGGTGTGTTGTGTG -ACGGAAGATCTGGTGTGTCTAGTG -ACGGAAGATCTGGTGTGTCATCTG -ACGGAAGATCTGGTGTGTGAGTTG -ACGGAAGATCTGGTGTGTAGACTG -ACGGAAGATCTGGTGTGTTCGGTA -ACGGAAGATCTGGTGTGTTGCCTA -ACGGAAGATCTGGTGTGTCCACTA -ACGGAAGATCTGGTGTGTGGAGTA -ACGGAAGATCTGGTGTGTTCGTCT -ACGGAAGATCTGGTGTGTTGCACT -ACGGAAGATCTGGTGTGTCTGACT -ACGGAAGATCTGGTGTGTCAACCT -ACGGAAGATCTGGTGTGTGCTACT -ACGGAAGATCTGGTGTGTGGATCT -ACGGAAGATCTGGTGTGTAAGGCT -ACGGAAGATCTGGTGTGTTCAACC -ACGGAAGATCTGGTGTGTTGTTCC -ACGGAAGATCTGGTGTGTATTCCC -ACGGAAGATCTGGTGTGTTTCTCG -ACGGAAGATCTGGTGTGTTAGACG -ACGGAAGATCTGGTGTGTGTAACG -ACGGAAGATCTGGTGTGTACTTCG -ACGGAAGATCTGGTGTGTTACGCA -ACGGAAGATCTGGTGTGTCTTGCA -ACGGAAGATCTGGTGTGTCGAACA -ACGGAAGATCTGGTGTGTCAGTCA -ACGGAAGATCTGGTGTGTGATCCA -ACGGAAGATCTGGTGTGTACGACA -ACGGAAGATCTGGTGTGTAGCTCA -ACGGAAGATCTGGTGTGTTCACGT -ACGGAAGATCTGGTGTGTCGTAGT -ACGGAAGATCTGGTGTGTGTCAGT -ACGGAAGATCTGGTGTGTGAAGGT -ACGGAAGATCTGGTGTGTAACCGT -ACGGAAGATCTGGTGTGTTTGTGC -ACGGAAGATCTGGTGTGTCTAAGC -ACGGAAGATCTGGTGTGTACTAGC -ACGGAAGATCTGGTGTGTAGATGC -ACGGAAGATCTGGTGTGTTGAAGG -ACGGAAGATCTGGTGTGTCAATGG -ACGGAAGATCTGGTGTGTATGAGG -ACGGAAGATCTGGTGTGTAATGGG -ACGGAAGATCTGGTGTGTTCCTGA -ACGGAAGATCTGGTGTGTTAGCGA -ACGGAAGATCTGGTGTGTCACAGA -ACGGAAGATCTGGTGTGTGCAAGA -ACGGAAGATCTGGTGTGTGGTTGA -ACGGAAGATCTGGTGTGTTCCGAT -ACGGAAGATCTGGTGTGTTGGCAT -ACGGAAGATCTGGTGTGTCGAGAT -ACGGAAGATCTGGTGTGTTACCAC -ACGGAAGATCTGGTGTGTCAGAAC -ACGGAAGATCTGGTGTGTGTCTAC -ACGGAAGATCTGGTGTGTACGTAC -ACGGAAGATCTGGTGTGTAGTGAC -ACGGAAGATCTGGTGTGTCTGTAG -ACGGAAGATCTGGTGTGTCCTAAG -ACGGAAGATCTGGTGTGTGTTCAG -ACGGAAGATCTGGTGTGTGCATAG -ACGGAAGATCTGGTGTGTGACAAG -ACGGAAGATCTGGTGTGTAAGCAG -ACGGAAGATCTGGTGTGTCGTCAA -ACGGAAGATCTGGTGTGTGCTGAA -ACGGAAGATCTGGTGTGTAGTACG -ACGGAAGATCTGGTGTGTATCCGA -ACGGAAGATCTGGTGTGTATGGGA -ACGGAAGATCTGGTGTGTGTGCAA -ACGGAAGATCTGGTGTGTGAGGAA -ACGGAAGATCTGGTGTGTCAGGTA -ACGGAAGATCTGGTGTGTGACTCT -ACGGAAGATCTGGTGTGTAGTCCT -ACGGAAGATCTGGTGTGTTAAGCC -ACGGAAGATCTGGTGTGTATAGCC -ACGGAAGATCTGGTGTGTTAACCG -ACGGAAGATCTGGTGTGTATGCCA -ACGGAAGATCTGGTGCTAGGAAAC -ACGGAAGATCTGGTGCTAAACACC -ACGGAAGATCTGGTGCTAATCGAG -ACGGAAGATCTGGTGCTACTCCTT -ACGGAAGATCTGGTGCTACCTGTT -ACGGAAGATCTGGTGCTACGGTTT -ACGGAAGATCTGGTGCTAGTGGTT -ACGGAAGATCTGGTGCTAGCCTTT -ACGGAAGATCTGGTGCTAGGTCTT -ACGGAAGATCTGGTGCTAACGCTT -ACGGAAGATCTGGTGCTAAGCGTT -ACGGAAGATCTGGTGCTATTCGTC -ACGGAAGATCTGGTGCTATCTCTC -ACGGAAGATCTGGTGCTATGGATC -ACGGAAGATCTGGTGCTACACTTC -ACGGAAGATCTGGTGCTAGTACTC -ACGGAAGATCTGGTGCTAGATGTC -ACGGAAGATCTGGTGCTAACAGTC -ACGGAAGATCTGGTGCTATTGCTG -ACGGAAGATCTGGTGCTATCCATG -ACGGAAGATCTGGTGCTATGTGTG -ACGGAAGATCTGGTGCTACTAGTG -ACGGAAGATCTGGTGCTACATCTG -ACGGAAGATCTGGTGCTAGAGTTG -ACGGAAGATCTGGTGCTAAGACTG -ACGGAAGATCTGGTGCTATCGGTA -ACGGAAGATCTGGTGCTATGCCTA -ACGGAAGATCTGGTGCTACCACTA -ACGGAAGATCTGGTGCTAGGAGTA -ACGGAAGATCTGGTGCTATCGTCT -ACGGAAGATCTGGTGCTATGCACT -ACGGAAGATCTGGTGCTACTGACT -ACGGAAGATCTGGTGCTACAACCT -ACGGAAGATCTGGTGCTAGCTACT -ACGGAAGATCTGGTGCTAGGATCT -ACGGAAGATCTGGTGCTAAAGGCT -ACGGAAGATCTGGTGCTATCAACC -ACGGAAGATCTGGTGCTATGTTCC -ACGGAAGATCTGGTGCTAATTCCC -ACGGAAGATCTGGTGCTATTCTCG -ACGGAAGATCTGGTGCTATAGACG -ACGGAAGATCTGGTGCTAGTAACG -ACGGAAGATCTGGTGCTAACTTCG -ACGGAAGATCTGGTGCTATACGCA -ACGGAAGATCTGGTGCTACTTGCA -ACGGAAGATCTGGTGCTACGAACA -ACGGAAGATCTGGTGCTACAGTCA -ACGGAAGATCTGGTGCTAGATCCA -ACGGAAGATCTGGTGCTAACGACA -ACGGAAGATCTGGTGCTAAGCTCA -ACGGAAGATCTGGTGCTATCACGT -ACGGAAGATCTGGTGCTACGTAGT -ACGGAAGATCTGGTGCTAGTCAGT -ACGGAAGATCTGGTGCTAGAAGGT -ACGGAAGATCTGGTGCTAAACCGT -ACGGAAGATCTGGTGCTATTGTGC -ACGGAAGATCTGGTGCTACTAAGC -ACGGAAGATCTGGTGCTAACTAGC -ACGGAAGATCTGGTGCTAAGATGC -ACGGAAGATCTGGTGCTATGAAGG -ACGGAAGATCTGGTGCTACAATGG -ACGGAAGATCTGGTGCTAATGAGG -ACGGAAGATCTGGTGCTAAATGGG -ACGGAAGATCTGGTGCTATCCTGA -ACGGAAGATCTGGTGCTATAGCGA -ACGGAAGATCTGGTGCTACACAGA -ACGGAAGATCTGGTGCTAGCAAGA -ACGGAAGATCTGGTGCTAGGTTGA -ACGGAAGATCTGGTGCTATCCGAT -ACGGAAGATCTGGTGCTATGGCAT -ACGGAAGATCTGGTGCTACGAGAT -ACGGAAGATCTGGTGCTATACCAC -ACGGAAGATCTGGTGCTACAGAAC -ACGGAAGATCTGGTGCTAGTCTAC -ACGGAAGATCTGGTGCTAACGTAC -ACGGAAGATCTGGTGCTAAGTGAC -ACGGAAGATCTGGTGCTACTGTAG -ACGGAAGATCTGGTGCTACCTAAG -ACGGAAGATCTGGTGCTAGTTCAG -ACGGAAGATCTGGTGCTAGCATAG -ACGGAAGATCTGGTGCTAGACAAG -ACGGAAGATCTGGTGCTAAAGCAG -ACGGAAGATCTGGTGCTACGTCAA -ACGGAAGATCTGGTGCTAGCTGAA -ACGGAAGATCTGGTGCTAAGTACG -ACGGAAGATCTGGTGCTAATCCGA -ACGGAAGATCTGGTGCTAATGGGA -ACGGAAGATCTGGTGCTAGTGCAA -ACGGAAGATCTGGTGCTAGAGGAA -ACGGAAGATCTGGTGCTACAGGTA -ACGGAAGATCTGGTGCTAGACTCT -ACGGAAGATCTGGTGCTAAGTCCT -ACGGAAGATCTGGTGCTATAAGCC -ACGGAAGATCTGGTGCTAATAGCC -ACGGAAGATCTGGTGCTATAACCG -ACGGAAGATCTGGTGCTAATGCCA -ACGGAAGATCTGCTGCATGGAAAC -ACGGAAGATCTGCTGCATAACACC -ACGGAAGATCTGCTGCATATCGAG -ACGGAAGATCTGCTGCATCTCCTT -ACGGAAGATCTGCTGCATCCTGTT -ACGGAAGATCTGCTGCATCGGTTT -ACGGAAGATCTGCTGCATGTGGTT -ACGGAAGATCTGCTGCATGCCTTT -ACGGAAGATCTGCTGCATGGTCTT -ACGGAAGATCTGCTGCATACGCTT -ACGGAAGATCTGCTGCATAGCGTT -ACGGAAGATCTGCTGCATTTCGTC -ACGGAAGATCTGCTGCATTCTCTC -ACGGAAGATCTGCTGCATTGGATC -ACGGAAGATCTGCTGCATCACTTC -ACGGAAGATCTGCTGCATGTACTC -ACGGAAGATCTGCTGCATGATGTC -ACGGAAGATCTGCTGCATACAGTC -ACGGAAGATCTGCTGCATTTGCTG -ACGGAAGATCTGCTGCATTCCATG -ACGGAAGATCTGCTGCATTGTGTG -ACGGAAGATCTGCTGCATCTAGTG -ACGGAAGATCTGCTGCATCATCTG -ACGGAAGATCTGCTGCATGAGTTG -ACGGAAGATCTGCTGCATAGACTG -ACGGAAGATCTGCTGCATTCGGTA -ACGGAAGATCTGCTGCATTGCCTA -ACGGAAGATCTGCTGCATCCACTA -ACGGAAGATCTGCTGCATGGAGTA -ACGGAAGATCTGCTGCATTCGTCT -ACGGAAGATCTGCTGCATTGCACT -ACGGAAGATCTGCTGCATCTGACT -ACGGAAGATCTGCTGCATCAACCT -ACGGAAGATCTGCTGCATGCTACT -ACGGAAGATCTGCTGCATGGATCT -ACGGAAGATCTGCTGCATAAGGCT -ACGGAAGATCTGCTGCATTCAACC -ACGGAAGATCTGCTGCATTGTTCC -ACGGAAGATCTGCTGCATATTCCC -ACGGAAGATCTGCTGCATTTCTCG -ACGGAAGATCTGCTGCATTAGACG -ACGGAAGATCTGCTGCATGTAACG -ACGGAAGATCTGCTGCATACTTCG -ACGGAAGATCTGCTGCATTACGCA -ACGGAAGATCTGCTGCATCTTGCA -ACGGAAGATCTGCTGCATCGAACA -ACGGAAGATCTGCTGCATCAGTCA -ACGGAAGATCTGCTGCATGATCCA -ACGGAAGATCTGCTGCATACGACA -ACGGAAGATCTGCTGCATAGCTCA -ACGGAAGATCTGCTGCATTCACGT -ACGGAAGATCTGCTGCATCGTAGT -ACGGAAGATCTGCTGCATGTCAGT -ACGGAAGATCTGCTGCATGAAGGT -ACGGAAGATCTGCTGCATAACCGT -ACGGAAGATCTGCTGCATTTGTGC -ACGGAAGATCTGCTGCATCTAAGC -ACGGAAGATCTGCTGCATACTAGC -ACGGAAGATCTGCTGCATAGATGC -ACGGAAGATCTGCTGCATTGAAGG -ACGGAAGATCTGCTGCATCAATGG -ACGGAAGATCTGCTGCATATGAGG -ACGGAAGATCTGCTGCATAATGGG -ACGGAAGATCTGCTGCATTCCTGA -ACGGAAGATCTGCTGCATTAGCGA -ACGGAAGATCTGCTGCATCACAGA -ACGGAAGATCTGCTGCATGCAAGA -ACGGAAGATCTGCTGCATGGTTGA -ACGGAAGATCTGCTGCATTCCGAT -ACGGAAGATCTGCTGCATTGGCAT -ACGGAAGATCTGCTGCATCGAGAT -ACGGAAGATCTGCTGCATTACCAC -ACGGAAGATCTGCTGCATCAGAAC -ACGGAAGATCTGCTGCATGTCTAC -ACGGAAGATCTGCTGCATACGTAC -ACGGAAGATCTGCTGCATAGTGAC -ACGGAAGATCTGCTGCATCTGTAG -ACGGAAGATCTGCTGCATCCTAAG -ACGGAAGATCTGCTGCATGTTCAG -ACGGAAGATCTGCTGCATGCATAG -ACGGAAGATCTGCTGCATGACAAG -ACGGAAGATCTGCTGCATAAGCAG -ACGGAAGATCTGCTGCATCGTCAA -ACGGAAGATCTGCTGCATGCTGAA -ACGGAAGATCTGCTGCATAGTACG -ACGGAAGATCTGCTGCATATCCGA -ACGGAAGATCTGCTGCATATGGGA -ACGGAAGATCTGCTGCATGTGCAA -ACGGAAGATCTGCTGCATGAGGAA -ACGGAAGATCTGCTGCATCAGGTA -ACGGAAGATCTGCTGCATGACTCT -ACGGAAGATCTGCTGCATAGTCCT -ACGGAAGATCTGCTGCATTAAGCC -ACGGAAGATCTGCTGCATATAGCC -ACGGAAGATCTGCTGCATTAACCG -ACGGAAGATCTGCTGCATATGCCA -ACGGAAGATCTGTTGGAGGGAAAC -ACGGAAGATCTGTTGGAGAACACC -ACGGAAGATCTGTTGGAGATCGAG -ACGGAAGATCTGTTGGAGCTCCTT -ACGGAAGATCTGTTGGAGCCTGTT -ACGGAAGATCTGTTGGAGCGGTTT -ACGGAAGATCTGTTGGAGGTGGTT -ACGGAAGATCTGTTGGAGGCCTTT -ACGGAAGATCTGTTGGAGGGTCTT -ACGGAAGATCTGTTGGAGACGCTT -ACGGAAGATCTGTTGGAGAGCGTT -ACGGAAGATCTGTTGGAGTTCGTC -ACGGAAGATCTGTTGGAGTCTCTC -ACGGAAGATCTGTTGGAGTGGATC -ACGGAAGATCTGTTGGAGCACTTC -ACGGAAGATCTGTTGGAGGTACTC -ACGGAAGATCTGTTGGAGGATGTC -ACGGAAGATCTGTTGGAGACAGTC -ACGGAAGATCTGTTGGAGTTGCTG -ACGGAAGATCTGTTGGAGTCCATG -ACGGAAGATCTGTTGGAGTGTGTG -ACGGAAGATCTGTTGGAGCTAGTG -ACGGAAGATCTGTTGGAGCATCTG -ACGGAAGATCTGTTGGAGGAGTTG -ACGGAAGATCTGTTGGAGAGACTG -ACGGAAGATCTGTTGGAGTCGGTA -ACGGAAGATCTGTTGGAGTGCCTA -ACGGAAGATCTGTTGGAGCCACTA -ACGGAAGATCTGTTGGAGGGAGTA -ACGGAAGATCTGTTGGAGTCGTCT -ACGGAAGATCTGTTGGAGTGCACT -ACGGAAGATCTGTTGGAGCTGACT -ACGGAAGATCTGTTGGAGCAACCT -ACGGAAGATCTGTTGGAGGCTACT -ACGGAAGATCTGTTGGAGGGATCT -ACGGAAGATCTGTTGGAGAAGGCT -ACGGAAGATCTGTTGGAGTCAACC -ACGGAAGATCTGTTGGAGTGTTCC -ACGGAAGATCTGTTGGAGATTCCC -ACGGAAGATCTGTTGGAGTTCTCG -ACGGAAGATCTGTTGGAGTAGACG -ACGGAAGATCTGTTGGAGGTAACG -ACGGAAGATCTGTTGGAGACTTCG -ACGGAAGATCTGTTGGAGTACGCA -ACGGAAGATCTGTTGGAGCTTGCA -ACGGAAGATCTGTTGGAGCGAACA -ACGGAAGATCTGTTGGAGCAGTCA -ACGGAAGATCTGTTGGAGGATCCA -ACGGAAGATCTGTTGGAGACGACA -ACGGAAGATCTGTTGGAGAGCTCA -ACGGAAGATCTGTTGGAGTCACGT -ACGGAAGATCTGTTGGAGCGTAGT -ACGGAAGATCTGTTGGAGGTCAGT -ACGGAAGATCTGTTGGAGGAAGGT -ACGGAAGATCTGTTGGAGAACCGT -ACGGAAGATCTGTTGGAGTTGTGC -ACGGAAGATCTGTTGGAGCTAAGC -ACGGAAGATCTGTTGGAGACTAGC -ACGGAAGATCTGTTGGAGAGATGC -ACGGAAGATCTGTTGGAGTGAAGG -ACGGAAGATCTGTTGGAGCAATGG -ACGGAAGATCTGTTGGAGATGAGG -ACGGAAGATCTGTTGGAGAATGGG -ACGGAAGATCTGTTGGAGTCCTGA -ACGGAAGATCTGTTGGAGTAGCGA -ACGGAAGATCTGTTGGAGCACAGA -ACGGAAGATCTGTTGGAGGCAAGA -ACGGAAGATCTGTTGGAGGGTTGA -ACGGAAGATCTGTTGGAGTCCGAT -ACGGAAGATCTGTTGGAGTGGCAT -ACGGAAGATCTGTTGGAGCGAGAT -ACGGAAGATCTGTTGGAGTACCAC -ACGGAAGATCTGTTGGAGCAGAAC -ACGGAAGATCTGTTGGAGGTCTAC -ACGGAAGATCTGTTGGAGACGTAC -ACGGAAGATCTGTTGGAGAGTGAC -ACGGAAGATCTGTTGGAGCTGTAG -ACGGAAGATCTGTTGGAGCCTAAG -ACGGAAGATCTGTTGGAGGTTCAG -ACGGAAGATCTGTTGGAGGCATAG -ACGGAAGATCTGTTGGAGGACAAG -ACGGAAGATCTGTTGGAGAAGCAG -ACGGAAGATCTGTTGGAGCGTCAA -ACGGAAGATCTGTTGGAGGCTGAA -ACGGAAGATCTGTTGGAGAGTACG -ACGGAAGATCTGTTGGAGATCCGA -ACGGAAGATCTGTTGGAGATGGGA -ACGGAAGATCTGTTGGAGGTGCAA -ACGGAAGATCTGTTGGAGGAGGAA -ACGGAAGATCTGTTGGAGCAGGTA -ACGGAAGATCTGTTGGAGGACTCT -ACGGAAGATCTGTTGGAGAGTCCT -ACGGAAGATCTGTTGGAGTAAGCC -ACGGAAGATCTGTTGGAGATAGCC -ACGGAAGATCTGTTGGAGTAACCG -ACGGAAGATCTGTTGGAGATGCCA -ACGGAAGATCTGCTGAGAGGAAAC -ACGGAAGATCTGCTGAGAAACACC -ACGGAAGATCTGCTGAGAATCGAG -ACGGAAGATCTGCTGAGACTCCTT -ACGGAAGATCTGCTGAGACCTGTT -ACGGAAGATCTGCTGAGACGGTTT -ACGGAAGATCTGCTGAGAGTGGTT -ACGGAAGATCTGCTGAGAGCCTTT -ACGGAAGATCTGCTGAGAGGTCTT -ACGGAAGATCTGCTGAGAACGCTT -ACGGAAGATCTGCTGAGAAGCGTT -ACGGAAGATCTGCTGAGATTCGTC -ACGGAAGATCTGCTGAGATCTCTC -ACGGAAGATCTGCTGAGATGGATC -ACGGAAGATCTGCTGAGACACTTC -ACGGAAGATCTGCTGAGAGTACTC -ACGGAAGATCTGCTGAGAGATGTC -ACGGAAGATCTGCTGAGAACAGTC -ACGGAAGATCTGCTGAGATTGCTG -ACGGAAGATCTGCTGAGATCCATG -ACGGAAGATCTGCTGAGATGTGTG -ACGGAAGATCTGCTGAGACTAGTG -ACGGAAGATCTGCTGAGACATCTG -ACGGAAGATCTGCTGAGAGAGTTG -ACGGAAGATCTGCTGAGAAGACTG -ACGGAAGATCTGCTGAGATCGGTA -ACGGAAGATCTGCTGAGATGCCTA -ACGGAAGATCTGCTGAGACCACTA -ACGGAAGATCTGCTGAGAGGAGTA -ACGGAAGATCTGCTGAGATCGTCT -ACGGAAGATCTGCTGAGATGCACT -ACGGAAGATCTGCTGAGACTGACT -ACGGAAGATCTGCTGAGACAACCT -ACGGAAGATCTGCTGAGAGCTACT -ACGGAAGATCTGCTGAGAGGATCT -ACGGAAGATCTGCTGAGAAAGGCT -ACGGAAGATCTGCTGAGATCAACC -ACGGAAGATCTGCTGAGATGTTCC -ACGGAAGATCTGCTGAGAATTCCC -ACGGAAGATCTGCTGAGATTCTCG -ACGGAAGATCTGCTGAGATAGACG -ACGGAAGATCTGCTGAGAGTAACG -ACGGAAGATCTGCTGAGAACTTCG -ACGGAAGATCTGCTGAGATACGCA -ACGGAAGATCTGCTGAGACTTGCA -ACGGAAGATCTGCTGAGACGAACA -ACGGAAGATCTGCTGAGACAGTCA -ACGGAAGATCTGCTGAGAGATCCA -ACGGAAGATCTGCTGAGAACGACA -ACGGAAGATCTGCTGAGAAGCTCA -ACGGAAGATCTGCTGAGATCACGT -ACGGAAGATCTGCTGAGACGTAGT -ACGGAAGATCTGCTGAGAGTCAGT -ACGGAAGATCTGCTGAGAGAAGGT -ACGGAAGATCTGCTGAGAAACCGT -ACGGAAGATCTGCTGAGATTGTGC -ACGGAAGATCTGCTGAGACTAAGC -ACGGAAGATCTGCTGAGAACTAGC -ACGGAAGATCTGCTGAGAAGATGC -ACGGAAGATCTGCTGAGATGAAGG -ACGGAAGATCTGCTGAGACAATGG -ACGGAAGATCTGCTGAGAATGAGG -ACGGAAGATCTGCTGAGAAATGGG -ACGGAAGATCTGCTGAGATCCTGA -ACGGAAGATCTGCTGAGATAGCGA -ACGGAAGATCTGCTGAGACACAGA -ACGGAAGATCTGCTGAGAGCAAGA -ACGGAAGATCTGCTGAGAGGTTGA -ACGGAAGATCTGCTGAGATCCGAT -ACGGAAGATCTGCTGAGATGGCAT -ACGGAAGATCTGCTGAGACGAGAT -ACGGAAGATCTGCTGAGATACCAC -ACGGAAGATCTGCTGAGACAGAAC -ACGGAAGATCTGCTGAGAGTCTAC -ACGGAAGATCTGCTGAGAACGTAC -ACGGAAGATCTGCTGAGAAGTGAC -ACGGAAGATCTGCTGAGACTGTAG -ACGGAAGATCTGCTGAGACCTAAG -ACGGAAGATCTGCTGAGAGTTCAG -ACGGAAGATCTGCTGAGAGCATAG -ACGGAAGATCTGCTGAGAGACAAG -ACGGAAGATCTGCTGAGAAAGCAG -ACGGAAGATCTGCTGAGACGTCAA -ACGGAAGATCTGCTGAGAGCTGAA -ACGGAAGATCTGCTGAGAAGTACG -ACGGAAGATCTGCTGAGAATCCGA -ACGGAAGATCTGCTGAGAATGGGA -ACGGAAGATCTGCTGAGAGTGCAA -ACGGAAGATCTGCTGAGAGAGGAA -ACGGAAGATCTGCTGAGACAGGTA -ACGGAAGATCTGCTGAGAGACTCT -ACGGAAGATCTGCTGAGAAGTCCT -ACGGAAGATCTGCTGAGATAAGCC -ACGGAAGATCTGCTGAGAATAGCC -ACGGAAGATCTGCTGAGATAACCG -ACGGAAGATCTGCTGAGAATGCCA -ACGGAAGATCTGGTATCGGGAAAC -ACGGAAGATCTGGTATCGAACACC -ACGGAAGATCTGGTATCGATCGAG -ACGGAAGATCTGGTATCGCTCCTT -ACGGAAGATCTGGTATCGCCTGTT -ACGGAAGATCTGGTATCGCGGTTT -ACGGAAGATCTGGTATCGGTGGTT -ACGGAAGATCTGGTATCGGCCTTT -ACGGAAGATCTGGTATCGGGTCTT -ACGGAAGATCTGGTATCGACGCTT -ACGGAAGATCTGGTATCGAGCGTT -ACGGAAGATCTGGTATCGTTCGTC -ACGGAAGATCTGGTATCGTCTCTC -ACGGAAGATCTGGTATCGTGGATC -ACGGAAGATCTGGTATCGCACTTC -ACGGAAGATCTGGTATCGGTACTC -ACGGAAGATCTGGTATCGGATGTC -ACGGAAGATCTGGTATCGACAGTC -ACGGAAGATCTGGTATCGTTGCTG -ACGGAAGATCTGGTATCGTCCATG -ACGGAAGATCTGGTATCGTGTGTG -ACGGAAGATCTGGTATCGCTAGTG -ACGGAAGATCTGGTATCGCATCTG -ACGGAAGATCTGGTATCGGAGTTG -ACGGAAGATCTGGTATCGAGACTG -ACGGAAGATCTGGTATCGTCGGTA -ACGGAAGATCTGGTATCGTGCCTA -ACGGAAGATCTGGTATCGCCACTA -ACGGAAGATCTGGTATCGGGAGTA -ACGGAAGATCTGGTATCGTCGTCT -ACGGAAGATCTGGTATCGTGCACT -ACGGAAGATCTGGTATCGCTGACT -ACGGAAGATCTGGTATCGCAACCT -ACGGAAGATCTGGTATCGGCTACT -ACGGAAGATCTGGTATCGGGATCT -ACGGAAGATCTGGTATCGAAGGCT -ACGGAAGATCTGGTATCGTCAACC -ACGGAAGATCTGGTATCGTGTTCC -ACGGAAGATCTGGTATCGATTCCC -ACGGAAGATCTGGTATCGTTCTCG -ACGGAAGATCTGGTATCGTAGACG -ACGGAAGATCTGGTATCGGTAACG -ACGGAAGATCTGGTATCGACTTCG -ACGGAAGATCTGGTATCGTACGCA -ACGGAAGATCTGGTATCGCTTGCA -ACGGAAGATCTGGTATCGCGAACA -ACGGAAGATCTGGTATCGCAGTCA -ACGGAAGATCTGGTATCGGATCCA -ACGGAAGATCTGGTATCGACGACA -ACGGAAGATCTGGTATCGAGCTCA -ACGGAAGATCTGGTATCGTCACGT -ACGGAAGATCTGGTATCGCGTAGT -ACGGAAGATCTGGTATCGGTCAGT -ACGGAAGATCTGGTATCGGAAGGT -ACGGAAGATCTGGTATCGAACCGT -ACGGAAGATCTGGTATCGTTGTGC -ACGGAAGATCTGGTATCGCTAAGC -ACGGAAGATCTGGTATCGACTAGC -ACGGAAGATCTGGTATCGAGATGC -ACGGAAGATCTGGTATCGTGAAGG -ACGGAAGATCTGGTATCGCAATGG -ACGGAAGATCTGGTATCGATGAGG -ACGGAAGATCTGGTATCGAATGGG -ACGGAAGATCTGGTATCGTCCTGA -ACGGAAGATCTGGTATCGTAGCGA -ACGGAAGATCTGGTATCGCACAGA -ACGGAAGATCTGGTATCGGCAAGA -ACGGAAGATCTGGTATCGGGTTGA -ACGGAAGATCTGGTATCGTCCGAT -ACGGAAGATCTGGTATCGTGGCAT -ACGGAAGATCTGGTATCGCGAGAT -ACGGAAGATCTGGTATCGTACCAC -ACGGAAGATCTGGTATCGCAGAAC -ACGGAAGATCTGGTATCGGTCTAC -ACGGAAGATCTGGTATCGACGTAC -ACGGAAGATCTGGTATCGAGTGAC -ACGGAAGATCTGGTATCGCTGTAG -ACGGAAGATCTGGTATCGCCTAAG -ACGGAAGATCTGGTATCGGTTCAG -ACGGAAGATCTGGTATCGGCATAG -ACGGAAGATCTGGTATCGGACAAG -ACGGAAGATCTGGTATCGAAGCAG -ACGGAAGATCTGGTATCGCGTCAA -ACGGAAGATCTGGTATCGGCTGAA -ACGGAAGATCTGGTATCGAGTACG -ACGGAAGATCTGGTATCGATCCGA -ACGGAAGATCTGGTATCGATGGGA -ACGGAAGATCTGGTATCGGTGCAA -ACGGAAGATCTGGTATCGGAGGAA -ACGGAAGATCTGGTATCGCAGGTA -ACGGAAGATCTGGTATCGGACTCT -ACGGAAGATCTGGTATCGAGTCCT -ACGGAAGATCTGGTATCGTAAGCC -ACGGAAGATCTGGTATCGATAGCC -ACGGAAGATCTGGTATCGTAACCG -ACGGAAGATCTGGTATCGATGCCA -ACGGAAGATCTGCTATGCGGAAAC -ACGGAAGATCTGCTATGCAACACC -ACGGAAGATCTGCTATGCATCGAG -ACGGAAGATCTGCTATGCCTCCTT -ACGGAAGATCTGCTATGCCCTGTT -ACGGAAGATCTGCTATGCCGGTTT -ACGGAAGATCTGCTATGCGTGGTT -ACGGAAGATCTGCTATGCGCCTTT -ACGGAAGATCTGCTATGCGGTCTT -ACGGAAGATCTGCTATGCACGCTT -ACGGAAGATCTGCTATGCAGCGTT -ACGGAAGATCTGCTATGCTTCGTC -ACGGAAGATCTGCTATGCTCTCTC -ACGGAAGATCTGCTATGCTGGATC -ACGGAAGATCTGCTATGCCACTTC -ACGGAAGATCTGCTATGCGTACTC -ACGGAAGATCTGCTATGCGATGTC -ACGGAAGATCTGCTATGCACAGTC -ACGGAAGATCTGCTATGCTTGCTG -ACGGAAGATCTGCTATGCTCCATG -ACGGAAGATCTGCTATGCTGTGTG -ACGGAAGATCTGCTATGCCTAGTG -ACGGAAGATCTGCTATGCCATCTG -ACGGAAGATCTGCTATGCGAGTTG -ACGGAAGATCTGCTATGCAGACTG -ACGGAAGATCTGCTATGCTCGGTA -ACGGAAGATCTGCTATGCTGCCTA -ACGGAAGATCTGCTATGCCCACTA -ACGGAAGATCTGCTATGCGGAGTA -ACGGAAGATCTGCTATGCTCGTCT -ACGGAAGATCTGCTATGCTGCACT -ACGGAAGATCTGCTATGCCTGACT -ACGGAAGATCTGCTATGCCAACCT -ACGGAAGATCTGCTATGCGCTACT -ACGGAAGATCTGCTATGCGGATCT -ACGGAAGATCTGCTATGCAAGGCT -ACGGAAGATCTGCTATGCTCAACC -ACGGAAGATCTGCTATGCTGTTCC -ACGGAAGATCTGCTATGCATTCCC -ACGGAAGATCTGCTATGCTTCTCG -ACGGAAGATCTGCTATGCTAGACG -ACGGAAGATCTGCTATGCGTAACG -ACGGAAGATCTGCTATGCACTTCG -ACGGAAGATCTGCTATGCTACGCA -ACGGAAGATCTGCTATGCCTTGCA -ACGGAAGATCTGCTATGCCGAACA -ACGGAAGATCTGCTATGCCAGTCA -ACGGAAGATCTGCTATGCGATCCA -ACGGAAGATCTGCTATGCACGACA -ACGGAAGATCTGCTATGCAGCTCA -ACGGAAGATCTGCTATGCTCACGT -ACGGAAGATCTGCTATGCCGTAGT -ACGGAAGATCTGCTATGCGTCAGT -ACGGAAGATCTGCTATGCGAAGGT -ACGGAAGATCTGCTATGCAACCGT -ACGGAAGATCTGCTATGCTTGTGC -ACGGAAGATCTGCTATGCCTAAGC -ACGGAAGATCTGCTATGCACTAGC -ACGGAAGATCTGCTATGCAGATGC -ACGGAAGATCTGCTATGCTGAAGG -ACGGAAGATCTGCTATGCCAATGG -ACGGAAGATCTGCTATGCATGAGG -ACGGAAGATCTGCTATGCAATGGG -ACGGAAGATCTGCTATGCTCCTGA -ACGGAAGATCTGCTATGCTAGCGA -ACGGAAGATCTGCTATGCCACAGA -ACGGAAGATCTGCTATGCGCAAGA -ACGGAAGATCTGCTATGCGGTTGA -ACGGAAGATCTGCTATGCTCCGAT -ACGGAAGATCTGCTATGCTGGCAT -ACGGAAGATCTGCTATGCCGAGAT -ACGGAAGATCTGCTATGCTACCAC -ACGGAAGATCTGCTATGCCAGAAC -ACGGAAGATCTGCTATGCGTCTAC -ACGGAAGATCTGCTATGCACGTAC -ACGGAAGATCTGCTATGCAGTGAC -ACGGAAGATCTGCTATGCCTGTAG -ACGGAAGATCTGCTATGCCCTAAG -ACGGAAGATCTGCTATGCGTTCAG -ACGGAAGATCTGCTATGCGCATAG -ACGGAAGATCTGCTATGCGACAAG -ACGGAAGATCTGCTATGCAAGCAG -ACGGAAGATCTGCTATGCCGTCAA -ACGGAAGATCTGCTATGCGCTGAA -ACGGAAGATCTGCTATGCAGTACG -ACGGAAGATCTGCTATGCATCCGA -ACGGAAGATCTGCTATGCATGGGA -ACGGAAGATCTGCTATGCGTGCAA -ACGGAAGATCTGCTATGCGAGGAA -ACGGAAGATCTGCTATGCCAGGTA -ACGGAAGATCTGCTATGCGACTCT -ACGGAAGATCTGCTATGCAGTCCT -ACGGAAGATCTGCTATGCTAAGCC -ACGGAAGATCTGCTATGCATAGCC -ACGGAAGATCTGCTATGCTAACCG -ACGGAAGATCTGCTATGCATGCCA -ACGGAAGATCTGCTACCAGGAAAC -ACGGAAGATCTGCTACCAAACACC -ACGGAAGATCTGCTACCAATCGAG -ACGGAAGATCTGCTACCACTCCTT -ACGGAAGATCTGCTACCACCTGTT -ACGGAAGATCTGCTACCACGGTTT -ACGGAAGATCTGCTACCAGTGGTT -ACGGAAGATCTGCTACCAGCCTTT -ACGGAAGATCTGCTACCAGGTCTT -ACGGAAGATCTGCTACCAACGCTT -ACGGAAGATCTGCTACCAAGCGTT -ACGGAAGATCTGCTACCATTCGTC -ACGGAAGATCTGCTACCATCTCTC -ACGGAAGATCTGCTACCATGGATC -ACGGAAGATCTGCTACCACACTTC -ACGGAAGATCTGCTACCAGTACTC -ACGGAAGATCTGCTACCAGATGTC -ACGGAAGATCTGCTACCAACAGTC -ACGGAAGATCTGCTACCATTGCTG -ACGGAAGATCTGCTACCATCCATG -ACGGAAGATCTGCTACCATGTGTG -ACGGAAGATCTGCTACCACTAGTG -ACGGAAGATCTGCTACCACATCTG -ACGGAAGATCTGCTACCAGAGTTG -ACGGAAGATCTGCTACCAAGACTG -ACGGAAGATCTGCTACCATCGGTA -ACGGAAGATCTGCTACCATGCCTA -ACGGAAGATCTGCTACCACCACTA -ACGGAAGATCTGCTACCAGGAGTA -ACGGAAGATCTGCTACCATCGTCT -ACGGAAGATCTGCTACCATGCACT -ACGGAAGATCTGCTACCACTGACT -ACGGAAGATCTGCTACCACAACCT -ACGGAAGATCTGCTACCAGCTACT -ACGGAAGATCTGCTACCAGGATCT -ACGGAAGATCTGCTACCAAAGGCT -ACGGAAGATCTGCTACCATCAACC -ACGGAAGATCTGCTACCATGTTCC -ACGGAAGATCTGCTACCAATTCCC -ACGGAAGATCTGCTACCATTCTCG -ACGGAAGATCTGCTACCATAGACG -ACGGAAGATCTGCTACCAGTAACG -ACGGAAGATCTGCTACCAACTTCG -ACGGAAGATCTGCTACCATACGCA -ACGGAAGATCTGCTACCACTTGCA -ACGGAAGATCTGCTACCACGAACA -ACGGAAGATCTGCTACCACAGTCA -ACGGAAGATCTGCTACCAGATCCA -ACGGAAGATCTGCTACCAACGACA -ACGGAAGATCTGCTACCAAGCTCA -ACGGAAGATCTGCTACCATCACGT -ACGGAAGATCTGCTACCACGTAGT -ACGGAAGATCTGCTACCAGTCAGT -ACGGAAGATCTGCTACCAGAAGGT -ACGGAAGATCTGCTACCAAACCGT -ACGGAAGATCTGCTACCATTGTGC -ACGGAAGATCTGCTACCACTAAGC -ACGGAAGATCTGCTACCAACTAGC -ACGGAAGATCTGCTACCAAGATGC -ACGGAAGATCTGCTACCATGAAGG -ACGGAAGATCTGCTACCACAATGG -ACGGAAGATCTGCTACCAATGAGG -ACGGAAGATCTGCTACCAAATGGG -ACGGAAGATCTGCTACCATCCTGA -ACGGAAGATCTGCTACCATAGCGA -ACGGAAGATCTGCTACCACACAGA -ACGGAAGATCTGCTACCAGCAAGA -ACGGAAGATCTGCTACCAGGTTGA -ACGGAAGATCTGCTACCATCCGAT -ACGGAAGATCTGCTACCATGGCAT -ACGGAAGATCTGCTACCACGAGAT -ACGGAAGATCTGCTACCATACCAC -ACGGAAGATCTGCTACCACAGAAC -ACGGAAGATCTGCTACCAGTCTAC -ACGGAAGATCTGCTACCAACGTAC -ACGGAAGATCTGCTACCAAGTGAC -ACGGAAGATCTGCTACCACTGTAG -ACGGAAGATCTGCTACCACCTAAG -ACGGAAGATCTGCTACCAGTTCAG -ACGGAAGATCTGCTACCAGCATAG -ACGGAAGATCTGCTACCAGACAAG -ACGGAAGATCTGCTACCAAAGCAG -ACGGAAGATCTGCTACCACGTCAA -ACGGAAGATCTGCTACCAGCTGAA -ACGGAAGATCTGCTACCAAGTACG -ACGGAAGATCTGCTACCAATCCGA -ACGGAAGATCTGCTACCAATGGGA -ACGGAAGATCTGCTACCAGTGCAA -ACGGAAGATCTGCTACCAGAGGAA -ACGGAAGATCTGCTACCACAGGTA -ACGGAAGATCTGCTACCAGACTCT -ACGGAAGATCTGCTACCAAGTCCT -ACGGAAGATCTGCTACCATAAGCC -ACGGAAGATCTGCTACCAATAGCC -ACGGAAGATCTGCTACCATAACCG -ACGGAAGATCTGCTACCAATGCCA -ACGGAAGATCTGGTAGGAGGAAAC -ACGGAAGATCTGGTAGGAAACACC -ACGGAAGATCTGGTAGGAATCGAG -ACGGAAGATCTGGTAGGACTCCTT -ACGGAAGATCTGGTAGGACCTGTT -ACGGAAGATCTGGTAGGACGGTTT -ACGGAAGATCTGGTAGGAGTGGTT -ACGGAAGATCTGGTAGGAGCCTTT -ACGGAAGATCTGGTAGGAGGTCTT -ACGGAAGATCTGGTAGGAACGCTT -ACGGAAGATCTGGTAGGAAGCGTT -ACGGAAGATCTGGTAGGATTCGTC -ACGGAAGATCTGGTAGGATCTCTC -ACGGAAGATCTGGTAGGATGGATC -ACGGAAGATCTGGTAGGACACTTC -ACGGAAGATCTGGTAGGAGTACTC -ACGGAAGATCTGGTAGGAGATGTC -ACGGAAGATCTGGTAGGAACAGTC -ACGGAAGATCTGGTAGGATTGCTG -ACGGAAGATCTGGTAGGATCCATG -ACGGAAGATCTGGTAGGATGTGTG -ACGGAAGATCTGGTAGGACTAGTG -ACGGAAGATCTGGTAGGACATCTG -ACGGAAGATCTGGTAGGAGAGTTG -ACGGAAGATCTGGTAGGAAGACTG -ACGGAAGATCTGGTAGGATCGGTA -ACGGAAGATCTGGTAGGATGCCTA -ACGGAAGATCTGGTAGGACCACTA -ACGGAAGATCTGGTAGGAGGAGTA -ACGGAAGATCTGGTAGGATCGTCT -ACGGAAGATCTGGTAGGATGCACT -ACGGAAGATCTGGTAGGACTGACT -ACGGAAGATCTGGTAGGACAACCT -ACGGAAGATCTGGTAGGAGCTACT -ACGGAAGATCTGGTAGGAGGATCT -ACGGAAGATCTGGTAGGAAAGGCT -ACGGAAGATCTGGTAGGATCAACC -ACGGAAGATCTGGTAGGATGTTCC -ACGGAAGATCTGGTAGGAATTCCC -ACGGAAGATCTGGTAGGATTCTCG -ACGGAAGATCTGGTAGGATAGACG -ACGGAAGATCTGGTAGGAGTAACG -ACGGAAGATCTGGTAGGAACTTCG -ACGGAAGATCTGGTAGGATACGCA -ACGGAAGATCTGGTAGGACTTGCA -ACGGAAGATCTGGTAGGACGAACA -ACGGAAGATCTGGTAGGACAGTCA -ACGGAAGATCTGGTAGGAGATCCA -ACGGAAGATCTGGTAGGAACGACA -ACGGAAGATCTGGTAGGAAGCTCA -ACGGAAGATCTGGTAGGATCACGT -ACGGAAGATCTGGTAGGACGTAGT -ACGGAAGATCTGGTAGGAGTCAGT -ACGGAAGATCTGGTAGGAGAAGGT -ACGGAAGATCTGGTAGGAAACCGT -ACGGAAGATCTGGTAGGATTGTGC -ACGGAAGATCTGGTAGGACTAAGC -ACGGAAGATCTGGTAGGAACTAGC -ACGGAAGATCTGGTAGGAAGATGC -ACGGAAGATCTGGTAGGATGAAGG -ACGGAAGATCTGGTAGGACAATGG -ACGGAAGATCTGGTAGGAATGAGG -ACGGAAGATCTGGTAGGAAATGGG -ACGGAAGATCTGGTAGGATCCTGA -ACGGAAGATCTGGTAGGATAGCGA -ACGGAAGATCTGGTAGGACACAGA -ACGGAAGATCTGGTAGGAGCAAGA -ACGGAAGATCTGGTAGGAGGTTGA -ACGGAAGATCTGGTAGGATCCGAT -ACGGAAGATCTGGTAGGATGGCAT -ACGGAAGATCTGGTAGGACGAGAT -ACGGAAGATCTGGTAGGATACCAC -ACGGAAGATCTGGTAGGACAGAAC -ACGGAAGATCTGGTAGGAGTCTAC -ACGGAAGATCTGGTAGGAACGTAC -ACGGAAGATCTGGTAGGAAGTGAC -ACGGAAGATCTGGTAGGACTGTAG -ACGGAAGATCTGGTAGGACCTAAG -ACGGAAGATCTGGTAGGAGTTCAG -ACGGAAGATCTGGTAGGAGCATAG -ACGGAAGATCTGGTAGGAGACAAG -ACGGAAGATCTGGTAGGAAAGCAG -ACGGAAGATCTGGTAGGACGTCAA -ACGGAAGATCTGGTAGGAGCTGAA -ACGGAAGATCTGGTAGGAAGTACG -ACGGAAGATCTGGTAGGAATCCGA -ACGGAAGATCTGGTAGGAATGGGA -ACGGAAGATCTGGTAGGAGTGCAA -ACGGAAGATCTGGTAGGAGAGGAA -ACGGAAGATCTGGTAGGACAGGTA -ACGGAAGATCTGGTAGGAGACTCT -ACGGAAGATCTGGTAGGAAGTCCT -ACGGAAGATCTGGTAGGATAAGCC -ACGGAAGATCTGGTAGGAATAGCC -ACGGAAGATCTGGTAGGATAACCG -ACGGAAGATCTGGTAGGAATGCCA -ACGGAAGATCTGTCTTCGGGAAAC -ACGGAAGATCTGTCTTCGAACACC -ACGGAAGATCTGTCTTCGATCGAG -ACGGAAGATCTGTCTTCGCTCCTT -ACGGAAGATCTGTCTTCGCCTGTT -ACGGAAGATCTGTCTTCGCGGTTT -ACGGAAGATCTGTCTTCGGTGGTT -ACGGAAGATCTGTCTTCGGCCTTT -ACGGAAGATCTGTCTTCGGGTCTT -ACGGAAGATCTGTCTTCGACGCTT -ACGGAAGATCTGTCTTCGAGCGTT -ACGGAAGATCTGTCTTCGTTCGTC -ACGGAAGATCTGTCTTCGTCTCTC -ACGGAAGATCTGTCTTCGTGGATC -ACGGAAGATCTGTCTTCGCACTTC -ACGGAAGATCTGTCTTCGGTACTC -ACGGAAGATCTGTCTTCGGATGTC -ACGGAAGATCTGTCTTCGACAGTC -ACGGAAGATCTGTCTTCGTTGCTG -ACGGAAGATCTGTCTTCGTCCATG -ACGGAAGATCTGTCTTCGTGTGTG -ACGGAAGATCTGTCTTCGCTAGTG -ACGGAAGATCTGTCTTCGCATCTG -ACGGAAGATCTGTCTTCGGAGTTG -ACGGAAGATCTGTCTTCGAGACTG -ACGGAAGATCTGTCTTCGTCGGTA -ACGGAAGATCTGTCTTCGTGCCTA -ACGGAAGATCTGTCTTCGCCACTA -ACGGAAGATCTGTCTTCGGGAGTA -ACGGAAGATCTGTCTTCGTCGTCT -ACGGAAGATCTGTCTTCGTGCACT -ACGGAAGATCTGTCTTCGCTGACT -ACGGAAGATCTGTCTTCGCAACCT -ACGGAAGATCTGTCTTCGGCTACT -ACGGAAGATCTGTCTTCGGGATCT -ACGGAAGATCTGTCTTCGAAGGCT -ACGGAAGATCTGTCTTCGTCAACC -ACGGAAGATCTGTCTTCGTGTTCC -ACGGAAGATCTGTCTTCGATTCCC -ACGGAAGATCTGTCTTCGTTCTCG -ACGGAAGATCTGTCTTCGTAGACG -ACGGAAGATCTGTCTTCGGTAACG -ACGGAAGATCTGTCTTCGACTTCG -ACGGAAGATCTGTCTTCGTACGCA -ACGGAAGATCTGTCTTCGCTTGCA -ACGGAAGATCTGTCTTCGCGAACA -ACGGAAGATCTGTCTTCGCAGTCA -ACGGAAGATCTGTCTTCGGATCCA -ACGGAAGATCTGTCTTCGACGACA -ACGGAAGATCTGTCTTCGAGCTCA -ACGGAAGATCTGTCTTCGTCACGT -ACGGAAGATCTGTCTTCGCGTAGT -ACGGAAGATCTGTCTTCGGTCAGT -ACGGAAGATCTGTCTTCGGAAGGT -ACGGAAGATCTGTCTTCGAACCGT -ACGGAAGATCTGTCTTCGTTGTGC -ACGGAAGATCTGTCTTCGCTAAGC -ACGGAAGATCTGTCTTCGACTAGC -ACGGAAGATCTGTCTTCGAGATGC -ACGGAAGATCTGTCTTCGTGAAGG -ACGGAAGATCTGTCTTCGCAATGG -ACGGAAGATCTGTCTTCGATGAGG -ACGGAAGATCTGTCTTCGAATGGG -ACGGAAGATCTGTCTTCGTCCTGA -ACGGAAGATCTGTCTTCGTAGCGA -ACGGAAGATCTGTCTTCGCACAGA -ACGGAAGATCTGTCTTCGGCAAGA -ACGGAAGATCTGTCTTCGGGTTGA -ACGGAAGATCTGTCTTCGTCCGAT -ACGGAAGATCTGTCTTCGTGGCAT -ACGGAAGATCTGTCTTCGCGAGAT -ACGGAAGATCTGTCTTCGTACCAC -ACGGAAGATCTGTCTTCGCAGAAC -ACGGAAGATCTGTCTTCGGTCTAC -ACGGAAGATCTGTCTTCGACGTAC -ACGGAAGATCTGTCTTCGAGTGAC -ACGGAAGATCTGTCTTCGCTGTAG -ACGGAAGATCTGTCTTCGCCTAAG -ACGGAAGATCTGTCTTCGGTTCAG -ACGGAAGATCTGTCTTCGGCATAG -ACGGAAGATCTGTCTTCGGACAAG -ACGGAAGATCTGTCTTCGAAGCAG -ACGGAAGATCTGTCTTCGCGTCAA -ACGGAAGATCTGTCTTCGGCTGAA -ACGGAAGATCTGTCTTCGAGTACG -ACGGAAGATCTGTCTTCGATCCGA -ACGGAAGATCTGTCTTCGATGGGA -ACGGAAGATCTGTCTTCGGTGCAA -ACGGAAGATCTGTCTTCGGAGGAA -ACGGAAGATCTGTCTTCGCAGGTA -ACGGAAGATCTGTCTTCGGACTCT -ACGGAAGATCTGTCTTCGAGTCCT -ACGGAAGATCTGTCTTCGTAAGCC -ACGGAAGATCTGTCTTCGATAGCC -ACGGAAGATCTGTCTTCGTAACCG -ACGGAAGATCTGTCTTCGATGCCA -ACGGAAGATCTGACTTGCGGAAAC -ACGGAAGATCTGACTTGCAACACC -ACGGAAGATCTGACTTGCATCGAG -ACGGAAGATCTGACTTGCCTCCTT -ACGGAAGATCTGACTTGCCCTGTT -ACGGAAGATCTGACTTGCCGGTTT -ACGGAAGATCTGACTTGCGTGGTT -ACGGAAGATCTGACTTGCGCCTTT -ACGGAAGATCTGACTTGCGGTCTT -ACGGAAGATCTGACTTGCACGCTT -ACGGAAGATCTGACTTGCAGCGTT -ACGGAAGATCTGACTTGCTTCGTC -ACGGAAGATCTGACTTGCTCTCTC -ACGGAAGATCTGACTTGCTGGATC -ACGGAAGATCTGACTTGCCACTTC -ACGGAAGATCTGACTTGCGTACTC -ACGGAAGATCTGACTTGCGATGTC -ACGGAAGATCTGACTTGCACAGTC -ACGGAAGATCTGACTTGCTTGCTG -ACGGAAGATCTGACTTGCTCCATG -ACGGAAGATCTGACTTGCTGTGTG -ACGGAAGATCTGACTTGCCTAGTG -ACGGAAGATCTGACTTGCCATCTG -ACGGAAGATCTGACTTGCGAGTTG -ACGGAAGATCTGACTTGCAGACTG -ACGGAAGATCTGACTTGCTCGGTA -ACGGAAGATCTGACTTGCTGCCTA -ACGGAAGATCTGACTTGCCCACTA -ACGGAAGATCTGACTTGCGGAGTA -ACGGAAGATCTGACTTGCTCGTCT -ACGGAAGATCTGACTTGCTGCACT -ACGGAAGATCTGACTTGCCTGACT -ACGGAAGATCTGACTTGCCAACCT -ACGGAAGATCTGACTTGCGCTACT -ACGGAAGATCTGACTTGCGGATCT -ACGGAAGATCTGACTTGCAAGGCT -ACGGAAGATCTGACTTGCTCAACC -ACGGAAGATCTGACTTGCTGTTCC -ACGGAAGATCTGACTTGCATTCCC -ACGGAAGATCTGACTTGCTTCTCG -ACGGAAGATCTGACTTGCTAGACG -ACGGAAGATCTGACTTGCGTAACG -ACGGAAGATCTGACTTGCACTTCG -ACGGAAGATCTGACTTGCTACGCA -ACGGAAGATCTGACTTGCCTTGCA -ACGGAAGATCTGACTTGCCGAACA -ACGGAAGATCTGACTTGCCAGTCA -ACGGAAGATCTGACTTGCGATCCA -ACGGAAGATCTGACTTGCACGACA -ACGGAAGATCTGACTTGCAGCTCA -ACGGAAGATCTGACTTGCTCACGT -ACGGAAGATCTGACTTGCCGTAGT -ACGGAAGATCTGACTTGCGTCAGT -ACGGAAGATCTGACTTGCGAAGGT -ACGGAAGATCTGACTTGCAACCGT -ACGGAAGATCTGACTTGCTTGTGC -ACGGAAGATCTGACTTGCCTAAGC -ACGGAAGATCTGACTTGCACTAGC -ACGGAAGATCTGACTTGCAGATGC -ACGGAAGATCTGACTTGCTGAAGG -ACGGAAGATCTGACTTGCCAATGG -ACGGAAGATCTGACTTGCATGAGG -ACGGAAGATCTGACTTGCAATGGG -ACGGAAGATCTGACTTGCTCCTGA -ACGGAAGATCTGACTTGCTAGCGA -ACGGAAGATCTGACTTGCCACAGA -ACGGAAGATCTGACTTGCGCAAGA -ACGGAAGATCTGACTTGCGGTTGA -ACGGAAGATCTGACTTGCTCCGAT -ACGGAAGATCTGACTTGCTGGCAT -ACGGAAGATCTGACTTGCCGAGAT -ACGGAAGATCTGACTTGCTACCAC -ACGGAAGATCTGACTTGCCAGAAC -ACGGAAGATCTGACTTGCGTCTAC -ACGGAAGATCTGACTTGCACGTAC -ACGGAAGATCTGACTTGCAGTGAC -ACGGAAGATCTGACTTGCCTGTAG -ACGGAAGATCTGACTTGCCCTAAG -ACGGAAGATCTGACTTGCGTTCAG -ACGGAAGATCTGACTTGCGCATAG -ACGGAAGATCTGACTTGCGACAAG -ACGGAAGATCTGACTTGCAAGCAG -ACGGAAGATCTGACTTGCCGTCAA -ACGGAAGATCTGACTTGCGCTGAA -ACGGAAGATCTGACTTGCAGTACG -ACGGAAGATCTGACTTGCATCCGA -ACGGAAGATCTGACTTGCATGGGA -ACGGAAGATCTGACTTGCGTGCAA -ACGGAAGATCTGACTTGCGAGGAA -ACGGAAGATCTGACTTGCCAGGTA -ACGGAAGATCTGACTTGCGACTCT -ACGGAAGATCTGACTTGCAGTCCT -ACGGAAGATCTGACTTGCTAAGCC -ACGGAAGATCTGACTTGCATAGCC -ACGGAAGATCTGACTTGCTAACCG -ACGGAAGATCTGACTTGCATGCCA -ACGGAAGATCTGACTCTGGGAAAC -ACGGAAGATCTGACTCTGAACACC -ACGGAAGATCTGACTCTGATCGAG -ACGGAAGATCTGACTCTGCTCCTT -ACGGAAGATCTGACTCTGCCTGTT -ACGGAAGATCTGACTCTGCGGTTT -ACGGAAGATCTGACTCTGGTGGTT -ACGGAAGATCTGACTCTGGCCTTT -ACGGAAGATCTGACTCTGGGTCTT -ACGGAAGATCTGACTCTGACGCTT -ACGGAAGATCTGACTCTGAGCGTT -ACGGAAGATCTGACTCTGTTCGTC -ACGGAAGATCTGACTCTGTCTCTC -ACGGAAGATCTGACTCTGTGGATC -ACGGAAGATCTGACTCTGCACTTC -ACGGAAGATCTGACTCTGGTACTC -ACGGAAGATCTGACTCTGGATGTC -ACGGAAGATCTGACTCTGACAGTC -ACGGAAGATCTGACTCTGTTGCTG -ACGGAAGATCTGACTCTGTCCATG -ACGGAAGATCTGACTCTGTGTGTG -ACGGAAGATCTGACTCTGCTAGTG -ACGGAAGATCTGACTCTGCATCTG -ACGGAAGATCTGACTCTGGAGTTG -ACGGAAGATCTGACTCTGAGACTG -ACGGAAGATCTGACTCTGTCGGTA -ACGGAAGATCTGACTCTGTGCCTA -ACGGAAGATCTGACTCTGCCACTA -ACGGAAGATCTGACTCTGGGAGTA -ACGGAAGATCTGACTCTGTCGTCT -ACGGAAGATCTGACTCTGTGCACT -ACGGAAGATCTGACTCTGCTGACT -ACGGAAGATCTGACTCTGCAACCT -ACGGAAGATCTGACTCTGGCTACT -ACGGAAGATCTGACTCTGGGATCT -ACGGAAGATCTGACTCTGAAGGCT -ACGGAAGATCTGACTCTGTCAACC -ACGGAAGATCTGACTCTGTGTTCC -ACGGAAGATCTGACTCTGATTCCC -ACGGAAGATCTGACTCTGTTCTCG -ACGGAAGATCTGACTCTGTAGACG -ACGGAAGATCTGACTCTGGTAACG -ACGGAAGATCTGACTCTGACTTCG -ACGGAAGATCTGACTCTGTACGCA -ACGGAAGATCTGACTCTGCTTGCA -ACGGAAGATCTGACTCTGCGAACA -ACGGAAGATCTGACTCTGCAGTCA -ACGGAAGATCTGACTCTGGATCCA -ACGGAAGATCTGACTCTGACGACA -ACGGAAGATCTGACTCTGAGCTCA -ACGGAAGATCTGACTCTGTCACGT -ACGGAAGATCTGACTCTGCGTAGT -ACGGAAGATCTGACTCTGGTCAGT -ACGGAAGATCTGACTCTGGAAGGT -ACGGAAGATCTGACTCTGAACCGT -ACGGAAGATCTGACTCTGTTGTGC -ACGGAAGATCTGACTCTGCTAAGC -ACGGAAGATCTGACTCTGACTAGC -ACGGAAGATCTGACTCTGAGATGC -ACGGAAGATCTGACTCTGTGAAGG -ACGGAAGATCTGACTCTGCAATGG -ACGGAAGATCTGACTCTGATGAGG -ACGGAAGATCTGACTCTGAATGGG -ACGGAAGATCTGACTCTGTCCTGA -ACGGAAGATCTGACTCTGTAGCGA -ACGGAAGATCTGACTCTGCACAGA -ACGGAAGATCTGACTCTGGCAAGA -ACGGAAGATCTGACTCTGGGTTGA -ACGGAAGATCTGACTCTGTCCGAT -ACGGAAGATCTGACTCTGTGGCAT -ACGGAAGATCTGACTCTGCGAGAT -ACGGAAGATCTGACTCTGTACCAC -ACGGAAGATCTGACTCTGCAGAAC -ACGGAAGATCTGACTCTGGTCTAC -ACGGAAGATCTGACTCTGACGTAC -ACGGAAGATCTGACTCTGAGTGAC -ACGGAAGATCTGACTCTGCTGTAG -ACGGAAGATCTGACTCTGCCTAAG -ACGGAAGATCTGACTCTGGTTCAG -ACGGAAGATCTGACTCTGGCATAG -ACGGAAGATCTGACTCTGGACAAG -ACGGAAGATCTGACTCTGAAGCAG -ACGGAAGATCTGACTCTGCGTCAA -ACGGAAGATCTGACTCTGGCTGAA -ACGGAAGATCTGACTCTGAGTACG -ACGGAAGATCTGACTCTGATCCGA -ACGGAAGATCTGACTCTGATGGGA -ACGGAAGATCTGACTCTGGTGCAA -ACGGAAGATCTGACTCTGGAGGAA -ACGGAAGATCTGACTCTGCAGGTA -ACGGAAGATCTGACTCTGGACTCT -ACGGAAGATCTGACTCTGAGTCCT -ACGGAAGATCTGACTCTGTAAGCC -ACGGAAGATCTGACTCTGATAGCC -ACGGAAGATCTGACTCTGTAACCG -ACGGAAGATCTGACTCTGATGCCA -ACGGAAGATCTGCCTCAAGGAAAC -ACGGAAGATCTGCCTCAAAACACC -ACGGAAGATCTGCCTCAAATCGAG -ACGGAAGATCTGCCTCAACTCCTT -ACGGAAGATCTGCCTCAACCTGTT -ACGGAAGATCTGCCTCAACGGTTT -ACGGAAGATCTGCCTCAAGTGGTT -ACGGAAGATCTGCCTCAAGCCTTT -ACGGAAGATCTGCCTCAAGGTCTT -ACGGAAGATCTGCCTCAAACGCTT -ACGGAAGATCTGCCTCAAAGCGTT -ACGGAAGATCTGCCTCAATTCGTC -ACGGAAGATCTGCCTCAATCTCTC -ACGGAAGATCTGCCTCAATGGATC -ACGGAAGATCTGCCTCAACACTTC -ACGGAAGATCTGCCTCAAGTACTC -ACGGAAGATCTGCCTCAAGATGTC -ACGGAAGATCTGCCTCAAACAGTC -ACGGAAGATCTGCCTCAATTGCTG -ACGGAAGATCTGCCTCAATCCATG -ACGGAAGATCTGCCTCAATGTGTG -ACGGAAGATCTGCCTCAACTAGTG -ACGGAAGATCTGCCTCAACATCTG -ACGGAAGATCTGCCTCAAGAGTTG -ACGGAAGATCTGCCTCAAAGACTG -ACGGAAGATCTGCCTCAATCGGTA -ACGGAAGATCTGCCTCAATGCCTA -ACGGAAGATCTGCCTCAACCACTA -ACGGAAGATCTGCCTCAAGGAGTA -ACGGAAGATCTGCCTCAATCGTCT -ACGGAAGATCTGCCTCAATGCACT -ACGGAAGATCTGCCTCAACTGACT -ACGGAAGATCTGCCTCAACAACCT -ACGGAAGATCTGCCTCAAGCTACT -ACGGAAGATCTGCCTCAAGGATCT -ACGGAAGATCTGCCTCAAAAGGCT -ACGGAAGATCTGCCTCAATCAACC -ACGGAAGATCTGCCTCAATGTTCC -ACGGAAGATCTGCCTCAAATTCCC -ACGGAAGATCTGCCTCAATTCTCG -ACGGAAGATCTGCCTCAATAGACG -ACGGAAGATCTGCCTCAAGTAACG -ACGGAAGATCTGCCTCAAACTTCG -ACGGAAGATCTGCCTCAATACGCA -ACGGAAGATCTGCCTCAACTTGCA -ACGGAAGATCTGCCTCAACGAACA -ACGGAAGATCTGCCTCAACAGTCA -ACGGAAGATCTGCCTCAAGATCCA -ACGGAAGATCTGCCTCAAACGACA -ACGGAAGATCTGCCTCAAAGCTCA -ACGGAAGATCTGCCTCAATCACGT -ACGGAAGATCTGCCTCAACGTAGT -ACGGAAGATCTGCCTCAAGTCAGT -ACGGAAGATCTGCCTCAAGAAGGT -ACGGAAGATCTGCCTCAAAACCGT -ACGGAAGATCTGCCTCAATTGTGC -ACGGAAGATCTGCCTCAACTAAGC -ACGGAAGATCTGCCTCAAACTAGC -ACGGAAGATCTGCCTCAAAGATGC -ACGGAAGATCTGCCTCAATGAAGG -ACGGAAGATCTGCCTCAACAATGG -ACGGAAGATCTGCCTCAAATGAGG -ACGGAAGATCTGCCTCAAAATGGG -ACGGAAGATCTGCCTCAATCCTGA -ACGGAAGATCTGCCTCAATAGCGA -ACGGAAGATCTGCCTCAACACAGA -ACGGAAGATCTGCCTCAAGCAAGA -ACGGAAGATCTGCCTCAAGGTTGA -ACGGAAGATCTGCCTCAATCCGAT -ACGGAAGATCTGCCTCAATGGCAT -ACGGAAGATCTGCCTCAACGAGAT -ACGGAAGATCTGCCTCAATACCAC -ACGGAAGATCTGCCTCAACAGAAC -ACGGAAGATCTGCCTCAAGTCTAC -ACGGAAGATCTGCCTCAAACGTAC -ACGGAAGATCTGCCTCAAAGTGAC -ACGGAAGATCTGCCTCAACTGTAG -ACGGAAGATCTGCCTCAACCTAAG -ACGGAAGATCTGCCTCAAGTTCAG -ACGGAAGATCTGCCTCAAGCATAG -ACGGAAGATCTGCCTCAAGACAAG -ACGGAAGATCTGCCTCAAAAGCAG -ACGGAAGATCTGCCTCAACGTCAA -ACGGAAGATCTGCCTCAAGCTGAA -ACGGAAGATCTGCCTCAAAGTACG -ACGGAAGATCTGCCTCAAATCCGA -ACGGAAGATCTGCCTCAAATGGGA -ACGGAAGATCTGCCTCAAGTGCAA -ACGGAAGATCTGCCTCAAGAGGAA -ACGGAAGATCTGCCTCAACAGGTA -ACGGAAGATCTGCCTCAAGACTCT -ACGGAAGATCTGCCTCAAAGTCCT -ACGGAAGATCTGCCTCAATAAGCC -ACGGAAGATCTGCCTCAAATAGCC -ACGGAAGATCTGCCTCAATAACCG -ACGGAAGATCTGCCTCAAATGCCA -ACGGAAGATCTGACTGCTGGAAAC -ACGGAAGATCTGACTGCTAACACC -ACGGAAGATCTGACTGCTATCGAG -ACGGAAGATCTGACTGCTCTCCTT -ACGGAAGATCTGACTGCTCCTGTT -ACGGAAGATCTGACTGCTCGGTTT -ACGGAAGATCTGACTGCTGTGGTT -ACGGAAGATCTGACTGCTGCCTTT -ACGGAAGATCTGACTGCTGGTCTT -ACGGAAGATCTGACTGCTACGCTT -ACGGAAGATCTGACTGCTAGCGTT -ACGGAAGATCTGACTGCTTTCGTC -ACGGAAGATCTGACTGCTTCTCTC -ACGGAAGATCTGACTGCTTGGATC -ACGGAAGATCTGACTGCTCACTTC -ACGGAAGATCTGACTGCTGTACTC -ACGGAAGATCTGACTGCTGATGTC -ACGGAAGATCTGACTGCTACAGTC -ACGGAAGATCTGACTGCTTTGCTG -ACGGAAGATCTGACTGCTTCCATG -ACGGAAGATCTGACTGCTTGTGTG -ACGGAAGATCTGACTGCTCTAGTG -ACGGAAGATCTGACTGCTCATCTG -ACGGAAGATCTGACTGCTGAGTTG -ACGGAAGATCTGACTGCTAGACTG -ACGGAAGATCTGACTGCTTCGGTA -ACGGAAGATCTGACTGCTTGCCTA -ACGGAAGATCTGACTGCTCCACTA -ACGGAAGATCTGACTGCTGGAGTA -ACGGAAGATCTGACTGCTTCGTCT -ACGGAAGATCTGACTGCTTGCACT -ACGGAAGATCTGACTGCTCTGACT -ACGGAAGATCTGACTGCTCAACCT -ACGGAAGATCTGACTGCTGCTACT -ACGGAAGATCTGACTGCTGGATCT -ACGGAAGATCTGACTGCTAAGGCT -ACGGAAGATCTGACTGCTTCAACC -ACGGAAGATCTGACTGCTTGTTCC -ACGGAAGATCTGACTGCTATTCCC -ACGGAAGATCTGACTGCTTTCTCG -ACGGAAGATCTGACTGCTTAGACG -ACGGAAGATCTGACTGCTGTAACG -ACGGAAGATCTGACTGCTACTTCG -ACGGAAGATCTGACTGCTTACGCA -ACGGAAGATCTGACTGCTCTTGCA -ACGGAAGATCTGACTGCTCGAACA -ACGGAAGATCTGACTGCTCAGTCA -ACGGAAGATCTGACTGCTGATCCA -ACGGAAGATCTGACTGCTACGACA -ACGGAAGATCTGACTGCTAGCTCA -ACGGAAGATCTGACTGCTTCACGT -ACGGAAGATCTGACTGCTCGTAGT -ACGGAAGATCTGACTGCTGTCAGT -ACGGAAGATCTGACTGCTGAAGGT -ACGGAAGATCTGACTGCTAACCGT -ACGGAAGATCTGACTGCTTTGTGC -ACGGAAGATCTGACTGCTCTAAGC -ACGGAAGATCTGACTGCTACTAGC -ACGGAAGATCTGACTGCTAGATGC -ACGGAAGATCTGACTGCTTGAAGG -ACGGAAGATCTGACTGCTCAATGG -ACGGAAGATCTGACTGCTATGAGG -ACGGAAGATCTGACTGCTAATGGG -ACGGAAGATCTGACTGCTTCCTGA -ACGGAAGATCTGACTGCTTAGCGA -ACGGAAGATCTGACTGCTCACAGA -ACGGAAGATCTGACTGCTGCAAGA -ACGGAAGATCTGACTGCTGGTTGA -ACGGAAGATCTGACTGCTTCCGAT -ACGGAAGATCTGACTGCTTGGCAT -ACGGAAGATCTGACTGCTCGAGAT -ACGGAAGATCTGACTGCTTACCAC -ACGGAAGATCTGACTGCTCAGAAC -ACGGAAGATCTGACTGCTGTCTAC -ACGGAAGATCTGACTGCTACGTAC -ACGGAAGATCTGACTGCTAGTGAC -ACGGAAGATCTGACTGCTCTGTAG -ACGGAAGATCTGACTGCTCCTAAG -ACGGAAGATCTGACTGCTGTTCAG -ACGGAAGATCTGACTGCTGCATAG -ACGGAAGATCTGACTGCTGACAAG -ACGGAAGATCTGACTGCTAAGCAG -ACGGAAGATCTGACTGCTCGTCAA -ACGGAAGATCTGACTGCTGCTGAA -ACGGAAGATCTGACTGCTAGTACG -ACGGAAGATCTGACTGCTATCCGA -ACGGAAGATCTGACTGCTATGGGA -ACGGAAGATCTGACTGCTGTGCAA -ACGGAAGATCTGACTGCTGAGGAA -ACGGAAGATCTGACTGCTCAGGTA -ACGGAAGATCTGACTGCTGACTCT -ACGGAAGATCTGACTGCTAGTCCT -ACGGAAGATCTGACTGCTTAAGCC -ACGGAAGATCTGACTGCTATAGCC -ACGGAAGATCTGACTGCTTAACCG -ACGGAAGATCTGACTGCTATGCCA -ACGGAAGATCTGTCTGGAGGAAAC -ACGGAAGATCTGTCTGGAAACACC -ACGGAAGATCTGTCTGGAATCGAG -ACGGAAGATCTGTCTGGACTCCTT -ACGGAAGATCTGTCTGGACCTGTT -ACGGAAGATCTGTCTGGACGGTTT -ACGGAAGATCTGTCTGGAGTGGTT -ACGGAAGATCTGTCTGGAGCCTTT -ACGGAAGATCTGTCTGGAGGTCTT -ACGGAAGATCTGTCTGGAACGCTT -ACGGAAGATCTGTCTGGAAGCGTT -ACGGAAGATCTGTCTGGATTCGTC -ACGGAAGATCTGTCTGGATCTCTC -ACGGAAGATCTGTCTGGATGGATC -ACGGAAGATCTGTCTGGACACTTC -ACGGAAGATCTGTCTGGAGTACTC -ACGGAAGATCTGTCTGGAGATGTC -ACGGAAGATCTGTCTGGAACAGTC -ACGGAAGATCTGTCTGGATTGCTG -ACGGAAGATCTGTCTGGATCCATG -ACGGAAGATCTGTCTGGATGTGTG -ACGGAAGATCTGTCTGGACTAGTG -ACGGAAGATCTGTCTGGACATCTG -ACGGAAGATCTGTCTGGAGAGTTG -ACGGAAGATCTGTCTGGAAGACTG -ACGGAAGATCTGTCTGGATCGGTA -ACGGAAGATCTGTCTGGATGCCTA -ACGGAAGATCTGTCTGGACCACTA -ACGGAAGATCTGTCTGGAGGAGTA -ACGGAAGATCTGTCTGGATCGTCT -ACGGAAGATCTGTCTGGATGCACT -ACGGAAGATCTGTCTGGACTGACT -ACGGAAGATCTGTCTGGACAACCT -ACGGAAGATCTGTCTGGAGCTACT -ACGGAAGATCTGTCTGGAGGATCT -ACGGAAGATCTGTCTGGAAAGGCT -ACGGAAGATCTGTCTGGATCAACC -ACGGAAGATCTGTCTGGATGTTCC -ACGGAAGATCTGTCTGGAATTCCC -ACGGAAGATCTGTCTGGATTCTCG -ACGGAAGATCTGTCTGGATAGACG -ACGGAAGATCTGTCTGGAGTAACG -ACGGAAGATCTGTCTGGAACTTCG -ACGGAAGATCTGTCTGGATACGCA -ACGGAAGATCTGTCTGGACTTGCA -ACGGAAGATCTGTCTGGACGAACA -ACGGAAGATCTGTCTGGACAGTCA -ACGGAAGATCTGTCTGGAGATCCA -ACGGAAGATCTGTCTGGAACGACA -ACGGAAGATCTGTCTGGAAGCTCA -ACGGAAGATCTGTCTGGATCACGT -ACGGAAGATCTGTCTGGACGTAGT -ACGGAAGATCTGTCTGGAGTCAGT -ACGGAAGATCTGTCTGGAGAAGGT -ACGGAAGATCTGTCTGGAAACCGT -ACGGAAGATCTGTCTGGATTGTGC -ACGGAAGATCTGTCTGGACTAAGC -ACGGAAGATCTGTCTGGAACTAGC -ACGGAAGATCTGTCTGGAAGATGC -ACGGAAGATCTGTCTGGATGAAGG -ACGGAAGATCTGTCTGGACAATGG -ACGGAAGATCTGTCTGGAATGAGG -ACGGAAGATCTGTCTGGAAATGGG -ACGGAAGATCTGTCTGGATCCTGA -ACGGAAGATCTGTCTGGATAGCGA -ACGGAAGATCTGTCTGGACACAGA -ACGGAAGATCTGTCTGGAGCAAGA -ACGGAAGATCTGTCTGGAGGTTGA -ACGGAAGATCTGTCTGGATCCGAT -ACGGAAGATCTGTCTGGATGGCAT -ACGGAAGATCTGTCTGGACGAGAT -ACGGAAGATCTGTCTGGATACCAC -ACGGAAGATCTGTCTGGACAGAAC -ACGGAAGATCTGTCTGGAGTCTAC -ACGGAAGATCTGTCTGGAACGTAC -ACGGAAGATCTGTCTGGAAGTGAC -ACGGAAGATCTGTCTGGACTGTAG -ACGGAAGATCTGTCTGGACCTAAG -ACGGAAGATCTGTCTGGAGTTCAG -ACGGAAGATCTGTCTGGAGCATAG -ACGGAAGATCTGTCTGGAGACAAG -ACGGAAGATCTGTCTGGAAAGCAG -ACGGAAGATCTGTCTGGACGTCAA -ACGGAAGATCTGTCTGGAGCTGAA -ACGGAAGATCTGTCTGGAAGTACG -ACGGAAGATCTGTCTGGAATCCGA -ACGGAAGATCTGTCTGGAATGGGA -ACGGAAGATCTGTCTGGAGTGCAA -ACGGAAGATCTGTCTGGAGAGGAA -ACGGAAGATCTGTCTGGACAGGTA -ACGGAAGATCTGTCTGGAGACTCT -ACGGAAGATCTGTCTGGAAGTCCT -ACGGAAGATCTGTCTGGATAAGCC -ACGGAAGATCTGTCTGGAATAGCC -ACGGAAGATCTGTCTGGATAACCG -ACGGAAGATCTGTCTGGAATGCCA -ACGGAAGATCTGGCTAAGGGAAAC -ACGGAAGATCTGGCTAAGAACACC -ACGGAAGATCTGGCTAAGATCGAG -ACGGAAGATCTGGCTAAGCTCCTT -ACGGAAGATCTGGCTAAGCCTGTT -ACGGAAGATCTGGCTAAGCGGTTT -ACGGAAGATCTGGCTAAGGTGGTT -ACGGAAGATCTGGCTAAGGCCTTT -ACGGAAGATCTGGCTAAGGGTCTT -ACGGAAGATCTGGCTAAGACGCTT -ACGGAAGATCTGGCTAAGAGCGTT -ACGGAAGATCTGGCTAAGTTCGTC -ACGGAAGATCTGGCTAAGTCTCTC -ACGGAAGATCTGGCTAAGTGGATC -ACGGAAGATCTGGCTAAGCACTTC -ACGGAAGATCTGGCTAAGGTACTC -ACGGAAGATCTGGCTAAGGATGTC -ACGGAAGATCTGGCTAAGACAGTC -ACGGAAGATCTGGCTAAGTTGCTG -ACGGAAGATCTGGCTAAGTCCATG -ACGGAAGATCTGGCTAAGTGTGTG -ACGGAAGATCTGGCTAAGCTAGTG -ACGGAAGATCTGGCTAAGCATCTG -ACGGAAGATCTGGCTAAGGAGTTG -ACGGAAGATCTGGCTAAGAGACTG -ACGGAAGATCTGGCTAAGTCGGTA -ACGGAAGATCTGGCTAAGTGCCTA -ACGGAAGATCTGGCTAAGCCACTA -ACGGAAGATCTGGCTAAGGGAGTA -ACGGAAGATCTGGCTAAGTCGTCT -ACGGAAGATCTGGCTAAGTGCACT -ACGGAAGATCTGGCTAAGCTGACT -ACGGAAGATCTGGCTAAGCAACCT -ACGGAAGATCTGGCTAAGGCTACT -ACGGAAGATCTGGCTAAGGGATCT -ACGGAAGATCTGGCTAAGAAGGCT -ACGGAAGATCTGGCTAAGTCAACC -ACGGAAGATCTGGCTAAGTGTTCC -ACGGAAGATCTGGCTAAGATTCCC -ACGGAAGATCTGGCTAAGTTCTCG -ACGGAAGATCTGGCTAAGTAGACG -ACGGAAGATCTGGCTAAGGTAACG -ACGGAAGATCTGGCTAAGACTTCG -ACGGAAGATCTGGCTAAGTACGCA -ACGGAAGATCTGGCTAAGCTTGCA -ACGGAAGATCTGGCTAAGCGAACA -ACGGAAGATCTGGCTAAGCAGTCA -ACGGAAGATCTGGCTAAGGATCCA -ACGGAAGATCTGGCTAAGACGACA -ACGGAAGATCTGGCTAAGAGCTCA -ACGGAAGATCTGGCTAAGTCACGT -ACGGAAGATCTGGCTAAGCGTAGT -ACGGAAGATCTGGCTAAGGTCAGT -ACGGAAGATCTGGCTAAGGAAGGT -ACGGAAGATCTGGCTAAGAACCGT -ACGGAAGATCTGGCTAAGTTGTGC -ACGGAAGATCTGGCTAAGCTAAGC -ACGGAAGATCTGGCTAAGACTAGC -ACGGAAGATCTGGCTAAGAGATGC -ACGGAAGATCTGGCTAAGTGAAGG -ACGGAAGATCTGGCTAAGCAATGG -ACGGAAGATCTGGCTAAGATGAGG -ACGGAAGATCTGGCTAAGAATGGG -ACGGAAGATCTGGCTAAGTCCTGA -ACGGAAGATCTGGCTAAGTAGCGA -ACGGAAGATCTGGCTAAGCACAGA -ACGGAAGATCTGGCTAAGGCAAGA -ACGGAAGATCTGGCTAAGGGTTGA -ACGGAAGATCTGGCTAAGTCCGAT -ACGGAAGATCTGGCTAAGTGGCAT -ACGGAAGATCTGGCTAAGCGAGAT -ACGGAAGATCTGGCTAAGTACCAC -ACGGAAGATCTGGCTAAGCAGAAC -ACGGAAGATCTGGCTAAGGTCTAC -ACGGAAGATCTGGCTAAGACGTAC -ACGGAAGATCTGGCTAAGAGTGAC -ACGGAAGATCTGGCTAAGCTGTAG -ACGGAAGATCTGGCTAAGCCTAAG -ACGGAAGATCTGGCTAAGGTTCAG -ACGGAAGATCTGGCTAAGGCATAG -ACGGAAGATCTGGCTAAGGACAAG -ACGGAAGATCTGGCTAAGAAGCAG -ACGGAAGATCTGGCTAAGCGTCAA -ACGGAAGATCTGGCTAAGGCTGAA -ACGGAAGATCTGGCTAAGAGTACG -ACGGAAGATCTGGCTAAGATCCGA -ACGGAAGATCTGGCTAAGATGGGA -ACGGAAGATCTGGCTAAGGTGCAA -ACGGAAGATCTGGCTAAGGAGGAA -ACGGAAGATCTGGCTAAGCAGGTA -ACGGAAGATCTGGCTAAGGACTCT -ACGGAAGATCTGGCTAAGAGTCCT -ACGGAAGATCTGGCTAAGTAAGCC -ACGGAAGATCTGGCTAAGATAGCC -ACGGAAGATCTGGCTAAGTAACCG -ACGGAAGATCTGGCTAAGATGCCA -ACGGAAGATCTGACCTCAGGAAAC -ACGGAAGATCTGACCTCAAACACC -ACGGAAGATCTGACCTCAATCGAG -ACGGAAGATCTGACCTCACTCCTT -ACGGAAGATCTGACCTCACCTGTT -ACGGAAGATCTGACCTCACGGTTT -ACGGAAGATCTGACCTCAGTGGTT -ACGGAAGATCTGACCTCAGCCTTT -ACGGAAGATCTGACCTCAGGTCTT -ACGGAAGATCTGACCTCAACGCTT -ACGGAAGATCTGACCTCAAGCGTT -ACGGAAGATCTGACCTCATTCGTC -ACGGAAGATCTGACCTCATCTCTC -ACGGAAGATCTGACCTCATGGATC -ACGGAAGATCTGACCTCACACTTC -ACGGAAGATCTGACCTCAGTACTC -ACGGAAGATCTGACCTCAGATGTC -ACGGAAGATCTGACCTCAACAGTC -ACGGAAGATCTGACCTCATTGCTG -ACGGAAGATCTGACCTCATCCATG -ACGGAAGATCTGACCTCATGTGTG -ACGGAAGATCTGACCTCACTAGTG -ACGGAAGATCTGACCTCACATCTG -ACGGAAGATCTGACCTCAGAGTTG -ACGGAAGATCTGACCTCAAGACTG -ACGGAAGATCTGACCTCATCGGTA -ACGGAAGATCTGACCTCATGCCTA -ACGGAAGATCTGACCTCACCACTA -ACGGAAGATCTGACCTCAGGAGTA -ACGGAAGATCTGACCTCATCGTCT -ACGGAAGATCTGACCTCATGCACT -ACGGAAGATCTGACCTCACTGACT -ACGGAAGATCTGACCTCACAACCT -ACGGAAGATCTGACCTCAGCTACT -ACGGAAGATCTGACCTCAGGATCT -ACGGAAGATCTGACCTCAAAGGCT -ACGGAAGATCTGACCTCATCAACC -ACGGAAGATCTGACCTCATGTTCC -ACGGAAGATCTGACCTCAATTCCC -ACGGAAGATCTGACCTCATTCTCG -ACGGAAGATCTGACCTCATAGACG -ACGGAAGATCTGACCTCAGTAACG -ACGGAAGATCTGACCTCAACTTCG -ACGGAAGATCTGACCTCATACGCA -ACGGAAGATCTGACCTCACTTGCA -ACGGAAGATCTGACCTCACGAACA -ACGGAAGATCTGACCTCACAGTCA -ACGGAAGATCTGACCTCAGATCCA -ACGGAAGATCTGACCTCAACGACA -ACGGAAGATCTGACCTCAAGCTCA -ACGGAAGATCTGACCTCATCACGT -ACGGAAGATCTGACCTCACGTAGT -ACGGAAGATCTGACCTCAGTCAGT -ACGGAAGATCTGACCTCAGAAGGT -ACGGAAGATCTGACCTCAAACCGT -ACGGAAGATCTGACCTCATTGTGC -ACGGAAGATCTGACCTCACTAAGC -ACGGAAGATCTGACCTCAACTAGC -ACGGAAGATCTGACCTCAAGATGC -ACGGAAGATCTGACCTCATGAAGG -ACGGAAGATCTGACCTCACAATGG -ACGGAAGATCTGACCTCAATGAGG -ACGGAAGATCTGACCTCAAATGGG -ACGGAAGATCTGACCTCATCCTGA -ACGGAAGATCTGACCTCATAGCGA -ACGGAAGATCTGACCTCACACAGA -ACGGAAGATCTGACCTCAGCAAGA -ACGGAAGATCTGACCTCAGGTTGA -ACGGAAGATCTGACCTCATCCGAT -ACGGAAGATCTGACCTCATGGCAT -ACGGAAGATCTGACCTCACGAGAT -ACGGAAGATCTGACCTCATACCAC -ACGGAAGATCTGACCTCACAGAAC -ACGGAAGATCTGACCTCAGTCTAC -ACGGAAGATCTGACCTCAACGTAC -ACGGAAGATCTGACCTCAAGTGAC -ACGGAAGATCTGACCTCACTGTAG -ACGGAAGATCTGACCTCACCTAAG -ACGGAAGATCTGACCTCAGTTCAG -ACGGAAGATCTGACCTCAGCATAG -ACGGAAGATCTGACCTCAGACAAG -ACGGAAGATCTGACCTCAAAGCAG -ACGGAAGATCTGACCTCACGTCAA -ACGGAAGATCTGACCTCAGCTGAA -ACGGAAGATCTGACCTCAAGTACG -ACGGAAGATCTGACCTCAATCCGA -ACGGAAGATCTGACCTCAATGGGA -ACGGAAGATCTGACCTCAGTGCAA -ACGGAAGATCTGACCTCAGAGGAA -ACGGAAGATCTGACCTCACAGGTA -ACGGAAGATCTGACCTCAGACTCT -ACGGAAGATCTGACCTCAAGTCCT -ACGGAAGATCTGACCTCATAAGCC -ACGGAAGATCTGACCTCAATAGCC -ACGGAAGATCTGACCTCATAACCG -ACGGAAGATCTGACCTCAATGCCA -ACGGAAGATCTGTCCTGTGGAAAC -ACGGAAGATCTGTCCTGTAACACC -ACGGAAGATCTGTCCTGTATCGAG -ACGGAAGATCTGTCCTGTCTCCTT -ACGGAAGATCTGTCCTGTCCTGTT -ACGGAAGATCTGTCCTGTCGGTTT -ACGGAAGATCTGTCCTGTGTGGTT -ACGGAAGATCTGTCCTGTGCCTTT -ACGGAAGATCTGTCCTGTGGTCTT -ACGGAAGATCTGTCCTGTACGCTT -ACGGAAGATCTGTCCTGTAGCGTT -ACGGAAGATCTGTCCTGTTTCGTC -ACGGAAGATCTGTCCTGTTCTCTC -ACGGAAGATCTGTCCTGTTGGATC -ACGGAAGATCTGTCCTGTCACTTC -ACGGAAGATCTGTCCTGTGTACTC -ACGGAAGATCTGTCCTGTGATGTC -ACGGAAGATCTGTCCTGTACAGTC -ACGGAAGATCTGTCCTGTTTGCTG -ACGGAAGATCTGTCCTGTTCCATG -ACGGAAGATCTGTCCTGTTGTGTG -ACGGAAGATCTGTCCTGTCTAGTG -ACGGAAGATCTGTCCTGTCATCTG -ACGGAAGATCTGTCCTGTGAGTTG -ACGGAAGATCTGTCCTGTAGACTG -ACGGAAGATCTGTCCTGTTCGGTA -ACGGAAGATCTGTCCTGTTGCCTA -ACGGAAGATCTGTCCTGTCCACTA -ACGGAAGATCTGTCCTGTGGAGTA -ACGGAAGATCTGTCCTGTTCGTCT -ACGGAAGATCTGTCCTGTTGCACT -ACGGAAGATCTGTCCTGTCTGACT -ACGGAAGATCTGTCCTGTCAACCT -ACGGAAGATCTGTCCTGTGCTACT -ACGGAAGATCTGTCCTGTGGATCT -ACGGAAGATCTGTCCTGTAAGGCT -ACGGAAGATCTGTCCTGTTCAACC -ACGGAAGATCTGTCCTGTTGTTCC -ACGGAAGATCTGTCCTGTATTCCC -ACGGAAGATCTGTCCTGTTTCTCG -ACGGAAGATCTGTCCTGTTAGACG -ACGGAAGATCTGTCCTGTGTAACG -ACGGAAGATCTGTCCTGTACTTCG -ACGGAAGATCTGTCCTGTTACGCA -ACGGAAGATCTGTCCTGTCTTGCA -ACGGAAGATCTGTCCTGTCGAACA -ACGGAAGATCTGTCCTGTCAGTCA -ACGGAAGATCTGTCCTGTGATCCA -ACGGAAGATCTGTCCTGTACGACA -ACGGAAGATCTGTCCTGTAGCTCA -ACGGAAGATCTGTCCTGTTCACGT -ACGGAAGATCTGTCCTGTCGTAGT -ACGGAAGATCTGTCCTGTGTCAGT -ACGGAAGATCTGTCCTGTGAAGGT -ACGGAAGATCTGTCCTGTAACCGT -ACGGAAGATCTGTCCTGTTTGTGC -ACGGAAGATCTGTCCTGTCTAAGC -ACGGAAGATCTGTCCTGTACTAGC -ACGGAAGATCTGTCCTGTAGATGC -ACGGAAGATCTGTCCTGTTGAAGG -ACGGAAGATCTGTCCTGTCAATGG -ACGGAAGATCTGTCCTGTATGAGG -ACGGAAGATCTGTCCTGTAATGGG -ACGGAAGATCTGTCCTGTTCCTGA -ACGGAAGATCTGTCCTGTTAGCGA -ACGGAAGATCTGTCCTGTCACAGA -ACGGAAGATCTGTCCTGTGCAAGA -ACGGAAGATCTGTCCTGTGGTTGA -ACGGAAGATCTGTCCTGTTCCGAT -ACGGAAGATCTGTCCTGTTGGCAT -ACGGAAGATCTGTCCTGTCGAGAT -ACGGAAGATCTGTCCTGTTACCAC -ACGGAAGATCTGTCCTGTCAGAAC -ACGGAAGATCTGTCCTGTGTCTAC -ACGGAAGATCTGTCCTGTACGTAC -ACGGAAGATCTGTCCTGTAGTGAC -ACGGAAGATCTGTCCTGTCTGTAG -ACGGAAGATCTGTCCTGTCCTAAG -ACGGAAGATCTGTCCTGTGTTCAG -ACGGAAGATCTGTCCTGTGCATAG -ACGGAAGATCTGTCCTGTGACAAG -ACGGAAGATCTGTCCTGTAAGCAG -ACGGAAGATCTGTCCTGTCGTCAA -ACGGAAGATCTGTCCTGTGCTGAA -ACGGAAGATCTGTCCTGTAGTACG -ACGGAAGATCTGTCCTGTATCCGA -ACGGAAGATCTGTCCTGTATGGGA -ACGGAAGATCTGTCCTGTGTGCAA -ACGGAAGATCTGTCCTGTGAGGAA -ACGGAAGATCTGTCCTGTCAGGTA -ACGGAAGATCTGTCCTGTGACTCT -ACGGAAGATCTGTCCTGTAGTCCT -ACGGAAGATCTGTCCTGTTAAGCC -ACGGAAGATCTGTCCTGTATAGCC -ACGGAAGATCTGTCCTGTTAACCG -ACGGAAGATCTGTCCTGTATGCCA -ACGGAAGATCTGCCCATTGGAAAC -ACGGAAGATCTGCCCATTAACACC -ACGGAAGATCTGCCCATTATCGAG -ACGGAAGATCTGCCCATTCTCCTT -ACGGAAGATCTGCCCATTCCTGTT -ACGGAAGATCTGCCCATTCGGTTT -ACGGAAGATCTGCCCATTGTGGTT -ACGGAAGATCTGCCCATTGCCTTT -ACGGAAGATCTGCCCATTGGTCTT -ACGGAAGATCTGCCCATTACGCTT -ACGGAAGATCTGCCCATTAGCGTT -ACGGAAGATCTGCCCATTTTCGTC -ACGGAAGATCTGCCCATTTCTCTC -ACGGAAGATCTGCCCATTTGGATC -ACGGAAGATCTGCCCATTCACTTC -ACGGAAGATCTGCCCATTGTACTC -ACGGAAGATCTGCCCATTGATGTC -ACGGAAGATCTGCCCATTACAGTC -ACGGAAGATCTGCCCATTTTGCTG -ACGGAAGATCTGCCCATTTCCATG -ACGGAAGATCTGCCCATTTGTGTG -ACGGAAGATCTGCCCATTCTAGTG -ACGGAAGATCTGCCCATTCATCTG -ACGGAAGATCTGCCCATTGAGTTG -ACGGAAGATCTGCCCATTAGACTG -ACGGAAGATCTGCCCATTTCGGTA -ACGGAAGATCTGCCCATTTGCCTA -ACGGAAGATCTGCCCATTCCACTA -ACGGAAGATCTGCCCATTGGAGTA -ACGGAAGATCTGCCCATTTCGTCT -ACGGAAGATCTGCCCATTTGCACT -ACGGAAGATCTGCCCATTCTGACT -ACGGAAGATCTGCCCATTCAACCT -ACGGAAGATCTGCCCATTGCTACT -ACGGAAGATCTGCCCATTGGATCT -ACGGAAGATCTGCCCATTAAGGCT -ACGGAAGATCTGCCCATTTCAACC -ACGGAAGATCTGCCCATTTGTTCC -ACGGAAGATCTGCCCATTATTCCC -ACGGAAGATCTGCCCATTTTCTCG -ACGGAAGATCTGCCCATTTAGACG -ACGGAAGATCTGCCCATTGTAACG -ACGGAAGATCTGCCCATTACTTCG -ACGGAAGATCTGCCCATTTACGCA -ACGGAAGATCTGCCCATTCTTGCA -ACGGAAGATCTGCCCATTCGAACA -ACGGAAGATCTGCCCATTCAGTCA -ACGGAAGATCTGCCCATTGATCCA -ACGGAAGATCTGCCCATTACGACA -ACGGAAGATCTGCCCATTAGCTCA -ACGGAAGATCTGCCCATTTCACGT -ACGGAAGATCTGCCCATTCGTAGT -ACGGAAGATCTGCCCATTGTCAGT -ACGGAAGATCTGCCCATTGAAGGT -ACGGAAGATCTGCCCATTAACCGT -ACGGAAGATCTGCCCATTTTGTGC -ACGGAAGATCTGCCCATTCTAAGC -ACGGAAGATCTGCCCATTACTAGC -ACGGAAGATCTGCCCATTAGATGC -ACGGAAGATCTGCCCATTTGAAGG -ACGGAAGATCTGCCCATTCAATGG -ACGGAAGATCTGCCCATTATGAGG -ACGGAAGATCTGCCCATTAATGGG -ACGGAAGATCTGCCCATTTCCTGA -ACGGAAGATCTGCCCATTTAGCGA -ACGGAAGATCTGCCCATTCACAGA -ACGGAAGATCTGCCCATTGCAAGA -ACGGAAGATCTGCCCATTGGTTGA -ACGGAAGATCTGCCCATTTCCGAT -ACGGAAGATCTGCCCATTTGGCAT -ACGGAAGATCTGCCCATTCGAGAT -ACGGAAGATCTGCCCATTTACCAC -ACGGAAGATCTGCCCATTCAGAAC -ACGGAAGATCTGCCCATTGTCTAC -ACGGAAGATCTGCCCATTACGTAC -ACGGAAGATCTGCCCATTAGTGAC -ACGGAAGATCTGCCCATTCTGTAG -ACGGAAGATCTGCCCATTCCTAAG -ACGGAAGATCTGCCCATTGTTCAG -ACGGAAGATCTGCCCATTGCATAG -ACGGAAGATCTGCCCATTGACAAG -ACGGAAGATCTGCCCATTAAGCAG -ACGGAAGATCTGCCCATTCGTCAA -ACGGAAGATCTGCCCATTGCTGAA -ACGGAAGATCTGCCCATTAGTACG -ACGGAAGATCTGCCCATTATCCGA -ACGGAAGATCTGCCCATTATGGGA -ACGGAAGATCTGCCCATTGTGCAA -ACGGAAGATCTGCCCATTGAGGAA -ACGGAAGATCTGCCCATTCAGGTA -ACGGAAGATCTGCCCATTGACTCT -ACGGAAGATCTGCCCATTAGTCCT -ACGGAAGATCTGCCCATTTAAGCC -ACGGAAGATCTGCCCATTATAGCC -ACGGAAGATCTGCCCATTTAACCG -ACGGAAGATCTGCCCATTATGCCA -ACGGAAGATCTGTCGTTCGGAAAC -ACGGAAGATCTGTCGTTCAACACC -ACGGAAGATCTGTCGTTCATCGAG -ACGGAAGATCTGTCGTTCCTCCTT -ACGGAAGATCTGTCGTTCCCTGTT -ACGGAAGATCTGTCGTTCCGGTTT -ACGGAAGATCTGTCGTTCGTGGTT -ACGGAAGATCTGTCGTTCGCCTTT -ACGGAAGATCTGTCGTTCGGTCTT -ACGGAAGATCTGTCGTTCACGCTT -ACGGAAGATCTGTCGTTCAGCGTT -ACGGAAGATCTGTCGTTCTTCGTC -ACGGAAGATCTGTCGTTCTCTCTC -ACGGAAGATCTGTCGTTCTGGATC -ACGGAAGATCTGTCGTTCCACTTC -ACGGAAGATCTGTCGTTCGTACTC -ACGGAAGATCTGTCGTTCGATGTC -ACGGAAGATCTGTCGTTCACAGTC -ACGGAAGATCTGTCGTTCTTGCTG -ACGGAAGATCTGTCGTTCTCCATG -ACGGAAGATCTGTCGTTCTGTGTG -ACGGAAGATCTGTCGTTCCTAGTG -ACGGAAGATCTGTCGTTCCATCTG -ACGGAAGATCTGTCGTTCGAGTTG -ACGGAAGATCTGTCGTTCAGACTG -ACGGAAGATCTGTCGTTCTCGGTA -ACGGAAGATCTGTCGTTCTGCCTA -ACGGAAGATCTGTCGTTCCCACTA -ACGGAAGATCTGTCGTTCGGAGTA -ACGGAAGATCTGTCGTTCTCGTCT -ACGGAAGATCTGTCGTTCTGCACT -ACGGAAGATCTGTCGTTCCTGACT -ACGGAAGATCTGTCGTTCCAACCT -ACGGAAGATCTGTCGTTCGCTACT -ACGGAAGATCTGTCGTTCGGATCT -ACGGAAGATCTGTCGTTCAAGGCT -ACGGAAGATCTGTCGTTCTCAACC -ACGGAAGATCTGTCGTTCTGTTCC -ACGGAAGATCTGTCGTTCATTCCC -ACGGAAGATCTGTCGTTCTTCTCG -ACGGAAGATCTGTCGTTCTAGACG -ACGGAAGATCTGTCGTTCGTAACG -ACGGAAGATCTGTCGTTCACTTCG -ACGGAAGATCTGTCGTTCTACGCA -ACGGAAGATCTGTCGTTCCTTGCA -ACGGAAGATCTGTCGTTCCGAACA -ACGGAAGATCTGTCGTTCCAGTCA -ACGGAAGATCTGTCGTTCGATCCA -ACGGAAGATCTGTCGTTCACGACA -ACGGAAGATCTGTCGTTCAGCTCA -ACGGAAGATCTGTCGTTCTCACGT -ACGGAAGATCTGTCGTTCCGTAGT -ACGGAAGATCTGTCGTTCGTCAGT -ACGGAAGATCTGTCGTTCGAAGGT -ACGGAAGATCTGTCGTTCAACCGT -ACGGAAGATCTGTCGTTCTTGTGC -ACGGAAGATCTGTCGTTCCTAAGC -ACGGAAGATCTGTCGTTCACTAGC -ACGGAAGATCTGTCGTTCAGATGC -ACGGAAGATCTGTCGTTCTGAAGG -ACGGAAGATCTGTCGTTCCAATGG -ACGGAAGATCTGTCGTTCATGAGG -ACGGAAGATCTGTCGTTCAATGGG -ACGGAAGATCTGTCGTTCTCCTGA -ACGGAAGATCTGTCGTTCTAGCGA -ACGGAAGATCTGTCGTTCCACAGA -ACGGAAGATCTGTCGTTCGCAAGA -ACGGAAGATCTGTCGTTCGGTTGA -ACGGAAGATCTGTCGTTCTCCGAT -ACGGAAGATCTGTCGTTCTGGCAT -ACGGAAGATCTGTCGTTCCGAGAT -ACGGAAGATCTGTCGTTCTACCAC -ACGGAAGATCTGTCGTTCCAGAAC -ACGGAAGATCTGTCGTTCGTCTAC -ACGGAAGATCTGTCGTTCACGTAC -ACGGAAGATCTGTCGTTCAGTGAC -ACGGAAGATCTGTCGTTCCTGTAG -ACGGAAGATCTGTCGTTCCCTAAG -ACGGAAGATCTGTCGTTCGTTCAG -ACGGAAGATCTGTCGTTCGCATAG -ACGGAAGATCTGTCGTTCGACAAG -ACGGAAGATCTGTCGTTCAAGCAG -ACGGAAGATCTGTCGTTCCGTCAA -ACGGAAGATCTGTCGTTCGCTGAA -ACGGAAGATCTGTCGTTCAGTACG -ACGGAAGATCTGTCGTTCATCCGA -ACGGAAGATCTGTCGTTCATGGGA -ACGGAAGATCTGTCGTTCGTGCAA -ACGGAAGATCTGTCGTTCGAGGAA -ACGGAAGATCTGTCGTTCCAGGTA -ACGGAAGATCTGTCGTTCGACTCT -ACGGAAGATCTGTCGTTCAGTCCT -ACGGAAGATCTGTCGTTCTAAGCC -ACGGAAGATCTGTCGTTCATAGCC -ACGGAAGATCTGTCGTTCTAACCG -ACGGAAGATCTGTCGTTCATGCCA -ACGGAAGATCTGACGTAGGGAAAC -ACGGAAGATCTGACGTAGAACACC -ACGGAAGATCTGACGTAGATCGAG -ACGGAAGATCTGACGTAGCTCCTT -ACGGAAGATCTGACGTAGCCTGTT -ACGGAAGATCTGACGTAGCGGTTT -ACGGAAGATCTGACGTAGGTGGTT -ACGGAAGATCTGACGTAGGCCTTT -ACGGAAGATCTGACGTAGGGTCTT -ACGGAAGATCTGACGTAGACGCTT -ACGGAAGATCTGACGTAGAGCGTT -ACGGAAGATCTGACGTAGTTCGTC -ACGGAAGATCTGACGTAGTCTCTC -ACGGAAGATCTGACGTAGTGGATC -ACGGAAGATCTGACGTAGCACTTC -ACGGAAGATCTGACGTAGGTACTC -ACGGAAGATCTGACGTAGGATGTC -ACGGAAGATCTGACGTAGACAGTC -ACGGAAGATCTGACGTAGTTGCTG -ACGGAAGATCTGACGTAGTCCATG -ACGGAAGATCTGACGTAGTGTGTG -ACGGAAGATCTGACGTAGCTAGTG -ACGGAAGATCTGACGTAGCATCTG -ACGGAAGATCTGACGTAGGAGTTG -ACGGAAGATCTGACGTAGAGACTG -ACGGAAGATCTGACGTAGTCGGTA -ACGGAAGATCTGACGTAGTGCCTA -ACGGAAGATCTGACGTAGCCACTA -ACGGAAGATCTGACGTAGGGAGTA -ACGGAAGATCTGACGTAGTCGTCT -ACGGAAGATCTGACGTAGTGCACT -ACGGAAGATCTGACGTAGCTGACT -ACGGAAGATCTGACGTAGCAACCT -ACGGAAGATCTGACGTAGGCTACT -ACGGAAGATCTGACGTAGGGATCT -ACGGAAGATCTGACGTAGAAGGCT -ACGGAAGATCTGACGTAGTCAACC -ACGGAAGATCTGACGTAGTGTTCC -ACGGAAGATCTGACGTAGATTCCC -ACGGAAGATCTGACGTAGTTCTCG -ACGGAAGATCTGACGTAGTAGACG -ACGGAAGATCTGACGTAGGTAACG -ACGGAAGATCTGACGTAGACTTCG -ACGGAAGATCTGACGTAGTACGCA -ACGGAAGATCTGACGTAGCTTGCA -ACGGAAGATCTGACGTAGCGAACA -ACGGAAGATCTGACGTAGCAGTCA -ACGGAAGATCTGACGTAGGATCCA -ACGGAAGATCTGACGTAGACGACA -ACGGAAGATCTGACGTAGAGCTCA -ACGGAAGATCTGACGTAGTCACGT -ACGGAAGATCTGACGTAGCGTAGT -ACGGAAGATCTGACGTAGGTCAGT -ACGGAAGATCTGACGTAGGAAGGT -ACGGAAGATCTGACGTAGAACCGT -ACGGAAGATCTGACGTAGTTGTGC -ACGGAAGATCTGACGTAGCTAAGC -ACGGAAGATCTGACGTAGACTAGC -ACGGAAGATCTGACGTAGAGATGC -ACGGAAGATCTGACGTAGTGAAGG -ACGGAAGATCTGACGTAGCAATGG -ACGGAAGATCTGACGTAGATGAGG -ACGGAAGATCTGACGTAGAATGGG -ACGGAAGATCTGACGTAGTCCTGA -ACGGAAGATCTGACGTAGTAGCGA -ACGGAAGATCTGACGTAGCACAGA -ACGGAAGATCTGACGTAGGCAAGA -ACGGAAGATCTGACGTAGGGTTGA -ACGGAAGATCTGACGTAGTCCGAT -ACGGAAGATCTGACGTAGTGGCAT -ACGGAAGATCTGACGTAGCGAGAT -ACGGAAGATCTGACGTAGTACCAC -ACGGAAGATCTGACGTAGCAGAAC -ACGGAAGATCTGACGTAGGTCTAC -ACGGAAGATCTGACGTAGACGTAC -ACGGAAGATCTGACGTAGAGTGAC -ACGGAAGATCTGACGTAGCTGTAG -ACGGAAGATCTGACGTAGCCTAAG -ACGGAAGATCTGACGTAGGTTCAG -ACGGAAGATCTGACGTAGGCATAG -ACGGAAGATCTGACGTAGGACAAG -ACGGAAGATCTGACGTAGAAGCAG -ACGGAAGATCTGACGTAGCGTCAA -ACGGAAGATCTGACGTAGGCTGAA -ACGGAAGATCTGACGTAGAGTACG -ACGGAAGATCTGACGTAGATCCGA -ACGGAAGATCTGACGTAGATGGGA -ACGGAAGATCTGACGTAGGTGCAA -ACGGAAGATCTGACGTAGGAGGAA -ACGGAAGATCTGACGTAGCAGGTA -ACGGAAGATCTGACGTAGGACTCT -ACGGAAGATCTGACGTAGAGTCCT -ACGGAAGATCTGACGTAGTAAGCC -ACGGAAGATCTGACGTAGATAGCC -ACGGAAGATCTGACGTAGTAACCG -ACGGAAGATCTGACGTAGATGCCA -ACGGAAGATCTGACGGTAGGAAAC -ACGGAAGATCTGACGGTAAACACC -ACGGAAGATCTGACGGTAATCGAG -ACGGAAGATCTGACGGTACTCCTT -ACGGAAGATCTGACGGTACCTGTT -ACGGAAGATCTGACGGTACGGTTT -ACGGAAGATCTGACGGTAGTGGTT -ACGGAAGATCTGACGGTAGCCTTT -ACGGAAGATCTGACGGTAGGTCTT -ACGGAAGATCTGACGGTAACGCTT -ACGGAAGATCTGACGGTAAGCGTT -ACGGAAGATCTGACGGTATTCGTC -ACGGAAGATCTGACGGTATCTCTC -ACGGAAGATCTGACGGTATGGATC -ACGGAAGATCTGACGGTACACTTC -ACGGAAGATCTGACGGTAGTACTC -ACGGAAGATCTGACGGTAGATGTC -ACGGAAGATCTGACGGTAACAGTC -ACGGAAGATCTGACGGTATTGCTG -ACGGAAGATCTGACGGTATCCATG -ACGGAAGATCTGACGGTATGTGTG -ACGGAAGATCTGACGGTACTAGTG -ACGGAAGATCTGACGGTACATCTG -ACGGAAGATCTGACGGTAGAGTTG -ACGGAAGATCTGACGGTAAGACTG -ACGGAAGATCTGACGGTATCGGTA -ACGGAAGATCTGACGGTATGCCTA -ACGGAAGATCTGACGGTACCACTA -ACGGAAGATCTGACGGTAGGAGTA -ACGGAAGATCTGACGGTATCGTCT -ACGGAAGATCTGACGGTATGCACT -ACGGAAGATCTGACGGTACTGACT -ACGGAAGATCTGACGGTACAACCT -ACGGAAGATCTGACGGTAGCTACT -ACGGAAGATCTGACGGTAGGATCT -ACGGAAGATCTGACGGTAAAGGCT -ACGGAAGATCTGACGGTATCAACC -ACGGAAGATCTGACGGTATGTTCC -ACGGAAGATCTGACGGTAATTCCC -ACGGAAGATCTGACGGTATTCTCG -ACGGAAGATCTGACGGTATAGACG -ACGGAAGATCTGACGGTAGTAACG -ACGGAAGATCTGACGGTAACTTCG -ACGGAAGATCTGACGGTATACGCA -ACGGAAGATCTGACGGTACTTGCA -ACGGAAGATCTGACGGTACGAACA -ACGGAAGATCTGACGGTACAGTCA -ACGGAAGATCTGACGGTAGATCCA -ACGGAAGATCTGACGGTAACGACA -ACGGAAGATCTGACGGTAAGCTCA -ACGGAAGATCTGACGGTATCACGT -ACGGAAGATCTGACGGTACGTAGT -ACGGAAGATCTGACGGTAGTCAGT -ACGGAAGATCTGACGGTAGAAGGT -ACGGAAGATCTGACGGTAAACCGT -ACGGAAGATCTGACGGTATTGTGC -ACGGAAGATCTGACGGTACTAAGC -ACGGAAGATCTGACGGTAACTAGC -ACGGAAGATCTGACGGTAAGATGC -ACGGAAGATCTGACGGTATGAAGG -ACGGAAGATCTGACGGTACAATGG -ACGGAAGATCTGACGGTAATGAGG -ACGGAAGATCTGACGGTAAATGGG -ACGGAAGATCTGACGGTATCCTGA -ACGGAAGATCTGACGGTATAGCGA -ACGGAAGATCTGACGGTACACAGA -ACGGAAGATCTGACGGTAGCAAGA -ACGGAAGATCTGACGGTAGGTTGA -ACGGAAGATCTGACGGTATCCGAT -ACGGAAGATCTGACGGTATGGCAT -ACGGAAGATCTGACGGTACGAGAT -ACGGAAGATCTGACGGTATACCAC -ACGGAAGATCTGACGGTACAGAAC -ACGGAAGATCTGACGGTAGTCTAC -ACGGAAGATCTGACGGTAACGTAC -ACGGAAGATCTGACGGTAAGTGAC -ACGGAAGATCTGACGGTACTGTAG -ACGGAAGATCTGACGGTACCTAAG -ACGGAAGATCTGACGGTAGTTCAG -ACGGAAGATCTGACGGTAGCATAG -ACGGAAGATCTGACGGTAGACAAG -ACGGAAGATCTGACGGTAAAGCAG -ACGGAAGATCTGACGGTACGTCAA -ACGGAAGATCTGACGGTAGCTGAA -ACGGAAGATCTGACGGTAAGTACG -ACGGAAGATCTGACGGTAATCCGA -ACGGAAGATCTGACGGTAATGGGA -ACGGAAGATCTGACGGTAGTGCAA -ACGGAAGATCTGACGGTAGAGGAA -ACGGAAGATCTGACGGTACAGGTA -ACGGAAGATCTGACGGTAGACTCT -ACGGAAGATCTGACGGTAAGTCCT -ACGGAAGATCTGACGGTATAAGCC -ACGGAAGATCTGACGGTAATAGCC -ACGGAAGATCTGACGGTATAACCG -ACGGAAGATCTGACGGTAATGCCA -ACGGAAGATCTGTCGACTGGAAAC -ACGGAAGATCTGTCGACTAACACC -ACGGAAGATCTGTCGACTATCGAG -ACGGAAGATCTGTCGACTCTCCTT -ACGGAAGATCTGTCGACTCCTGTT -ACGGAAGATCTGTCGACTCGGTTT -ACGGAAGATCTGTCGACTGTGGTT -ACGGAAGATCTGTCGACTGCCTTT -ACGGAAGATCTGTCGACTGGTCTT -ACGGAAGATCTGTCGACTACGCTT -ACGGAAGATCTGTCGACTAGCGTT -ACGGAAGATCTGTCGACTTTCGTC -ACGGAAGATCTGTCGACTTCTCTC -ACGGAAGATCTGTCGACTTGGATC -ACGGAAGATCTGTCGACTCACTTC -ACGGAAGATCTGTCGACTGTACTC -ACGGAAGATCTGTCGACTGATGTC -ACGGAAGATCTGTCGACTACAGTC -ACGGAAGATCTGTCGACTTTGCTG -ACGGAAGATCTGTCGACTTCCATG -ACGGAAGATCTGTCGACTTGTGTG -ACGGAAGATCTGTCGACTCTAGTG -ACGGAAGATCTGTCGACTCATCTG -ACGGAAGATCTGTCGACTGAGTTG -ACGGAAGATCTGTCGACTAGACTG -ACGGAAGATCTGTCGACTTCGGTA -ACGGAAGATCTGTCGACTTGCCTA -ACGGAAGATCTGTCGACTCCACTA -ACGGAAGATCTGTCGACTGGAGTA -ACGGAAGATCTGTCGACTTCGTCT -ACGGAAGATCTGTCGACTTGCACT -ACGGAAGATCTGTCGACTCTGACT -ACGGAAGATCTGTCGACTCAACCT -ACGGAAGATCTGTCGACTGCTACT -ACGGAAGATCTGTCGACTGGATCT -ACGGAAGATCTGTCGACTAAGGCT -ACGGAAGATCTGTCGACTTCAACC -ACGGAAGATCTGTCGACTTGTTCC -ACGGAAGATCTGTCGACTATTCCC -ACGGAAGATCTGTCGACTTTCTCG -ACGGAAGATCTGTCGACTTAGACG -ACGGAAGATCTGTCGACTGTAACG -ACGGAAGATCTGTCGACTACTTCG -ACGGAAGATCTGTCGACTTACGCA -ACGGAAGATCTGTCGACTCTTGCA -ACGGAAGATCTGTCGACTCGAACA -ACGGAAGATCTGTCGACTCAGTCA -ACGGAAGATCTGTCGACTGATCCA -ACGGAAGATCTGTCGACTACGACA -ACGGAAGATCTGTCGACTAGCTCA -ACGGAAGATCTGTCGACTTCACGT -ACGGAAGATCTGTCGACTCGTAGT -ACGGAAGATCTGTCGACTGTCAGT -ACGGAAGATCTGTCGACTGAAGGT -ACGGAAGATCTGTCGACTAACCGT -ACGGAAGATCTGTCGACTTTGTGC -ACGGAAGATCTGTCGACTCTAAGC -ACGGAAGATCTGTCGACTACTAGC -ACGGAAGATCTGTCGACTAGATGC -ACGGAAGATCTGTCGACTTGAAGG -ACGGAAGATCTGTCGACTCAATGG -ACGGAAGATCTGTCGACTATGAGG -ACGGAAGATCTGTCGACTAATGGG -ACGGAAGATCTGTCGACTTCCTGA -ACGGAAGATCTGTCGACTTAGCGA -ACGGAAGATCTGTCGACTCACAGA -ACGGAAGATCTGTCGACTGCAAGA -ACGGAAGATCTGTCGACTGGTTGA -ACGGAAGATCTGTCGACTTCCGAT -ACGGAAGATCTGTCGACTTGGCAT -ACGGAAGATCTGTCGACTCGAGAT -ACGGAAGATCTGTCGACTTACCAC -ACGGAAGATCTGTCGACTCAGAAC -ACGGAAGATCTGTCGACTGTCTAC -ACGGAAGATCTGTCGACTACGTAC -ACGGAAGATCTGTCGACTAGTGAC -ACGGAAGATCTGTCGACTCTGTAG -ACGGAAGATCTGTCGACTCCTAAG -ACGGAAGATCTGTCGACTGTTCAG -ACGGAAGATCTGTCGACTGCATAG -ACGGAAGATCTGTCGACTGACAAG -ACGGAAGATCTGTCGACTAAGCAG -ACGGAAGATCTGTCGACTCGTCAA -ACGGAAGATCTGTCGACTGCTGAA -ACGGAAGATCTGTCGACTAGTACG -ACGGAAGATCTGTCGACTATCCGA -ACGGAAGATCTGTCGACTATGGGA -ACGGAAGATCTGTCGACTGTGCAA -ACGGAAGATCTGTCGACTGAGGAA -ACGGAAGATCTGTCGACTCAGGTA -ACGGAAGATCTGTCGACTGACTCT -ACGGAAGATCTGTCGACTAGTCCT -ACGGAAGATCTGTCGACTTAAGCC -ACGGAAGATCTGTCGACTATAGCC -ACGGAAGATCTGTCGACTTAACCG -ACGGAAGATCTGTCGACTATGCCA -ACGGAAGATCTGGCATACGGAAAC -ACGGAAGATCTGGCATACAACACC -ACGGAAGATCTGGCATACATCGAG -ACGGAAGATCTGGCATACCTCCTT -ACGGAAGATCTGGCATACCCTGTT -ACGGAAGATCTGGCATACCGGTTT -ACGGAAGATCTGGCATACGTGGTT -ACGGAAGATCTGGCATACGCCTTT -ACGGAAGATCTGGCATACGGTCTT -ACGGAAGATCTGGCATACACGCTT -ACGGAAGATCTGGCATACAGCGTT -ACGGAAGATCTGGCATACTTCGTC -ACGGAAGATCTGGCATACTCTCTC -ACGGAAGATCTGGCATACTGGATC -ACGGAAGATCTGGCATACCACTTC -ACGGAAGATCTGGCATACGTACTC -ACGGAAGATCTGGCATACGATGTC -ACGGAAGATCTGGCATACACAGTC -ACGGAAGATCTGGCATACTTGCTG -ACGGAAGATCTGGCATACTCCATG -ACGGAAGATCTGGCATACTGTGTG -ACGGAAGATCTGGCATACCTAGTG -ACGGAAGATCTGGCATACCATCTG -ACGGAAGATCTGGCATACGAGTTG -ACGGAAGATCTGGCATACAGACTG -ACGGAAGATCTGGCATACTCGGTA -ACGGAAGATCTGGCATACTGCCTA -ACGGAAGATCTGGCATACCCACTA -ACGGAAGATCTGGCATACGGAGTA -ACGGAAGATCTGGCATACTCGTCT -ACGGAAGATCTGGCATACTGCACT -ACGGAAGATCTGGCATACCTGACT -ACGGAAGATCTGGCATACCAACCT -ACGGAAGATCTGGCATACGCTACT -ACGGAAGATCTGGCATACGGATCT -ACGGAAGATCTGGCATACAAGGCT -ACGGAAGATCTGGCATACTCAACC -ACGGAAGATCTGGCATACTGTTCC -ACGGAAGATCTGGCATACATTCCC -ACGGAAGATCTGGCATACTTCTCG -ACGGAAGATCTGGCATACTAGACG -ACGGAAGATCTGGCATACGTAACG -ACGGAAGATCTGGCATACACTTCG -ACGGAAGATCTGGCATACTACGCA -ACGGAAGATCTGGCATACCTTGCA -ACGGAAGATCTGGCATACCGAACA -ACGGAAGATCTGGCATACCAGTCA -ACGGAAGATCTGGCATACGATCCA -ACGGAAGATCTGGCATACACGACA -ACGGAAGATCTGGCATACAGCTCA -ACGGAAGATCTGGCATACTCACGT -ACGGAAGATCTGGCATACCGTAGT -ACGGAAGATCTGGCATACGTCAGT -ACGGAAGATCTGGCATACGAAGGT -ACGGAAGATCTGGCATACAACCGT -ACGGAAGATCTGGCATACTTGTGC -ACGGAAGATCTGGCATACCTAAGC -ACGGAAGATCTGGCATACACTAGC -ACGGAAGATCTGGCATACAGATGC -ACGGAAGATCTGGCATACTGAAGG -ACGGAAGATCTGGCATACCAATGG -ACGGAAGATCTGGCATACATGAGG -ACGGAAGATCTGGCATACAATGGG -ACGGAAGATCTGGCATACTCCTGA -ACGGAAGATCTGGCATACTAGCGA -ACGGAAGATCTGGCATACCACAGA -ACGGAAGATCTGGCATACGCAAGA -ACGGAAGATCTGGCATACGGTTGA -ACGGAAGATCTGGCATACTCCGAT -ACGGAAGATCTGGCATACTGGCAT -ACGGAAGATCTGGCATACCGAGAT -ACGGAAGATCTGGCATACTACCAC -ACGGAAGATCTGGCATACCAGAAC -ACGGAAGATCTGGCATACGTCTAC -ACGGAAGATCTGGCATACACGTAC -ACGGAAGATCTGGCATACAGTGAC -ACGGAAGATCTGGCATACCTGTAG -ACGGAAGATCTGGCATACCCTAAG -ACGGAAGATCTGGCATACGTTCAG -ACGGAAGATCTGGCATACGCATAG -ACGGAAGATCTGGCATACGACAAG -ACGGAAGATCTGGCATACAAGCAG -ACGGAAGATCTGGCATACCGTCAA -ACGGAAGATCTGGCATACGCTGAA -ACGGAAGATCTGGCATACAGTACG -ACGGAAGATCTGGCATACATCCGA -ACGGAAGATCTGGCATACATGGGA -ACGGAAGATCTGGCATACGTGCAA -ACGGAAGATCTGGCATACGAGGAA -ACGGAAGATCTGGCATACCAGGTA -ACGGAAGATCTGGCATACGACTCT -ACGGAAGATCTGGCATACAGTCCT -ACGGAAGATCTGGCATACTAAGCC -ACGGAAGATCTGGCATACATAGCC -ACGGAAGATCTGGCATACTAACCG -ACGGAAGATCTGGCATACATGCCA -ACGGAAGATCTGGCACTTGGAAAC -ACGGAAGATCTGGCACTTAACACC -ACGGAAGATCTGGCACTTATCGAG -ACGGAAGATCTGGCACTTCTCCTT -ACGGAAGATCTGGCACTTCCTGTT -ACGGAAGATCTGGCACTTCGGTTT -ACGGAAGATCTGGCACTTGTGGTT -ACGGAAGATCTGGCACTTGCCTTT -ACGGAAGATCTGGCACTTGGTCTT -ACGGAAGATCTGGCACTTACGCTT -ACGGAAGATCTGGCACTTAGCGTT -ACGGAAGATCTGGCACTTTTCGTC -ACGGAAGATCTGGCACTTTCTCTC -ACGGAAGATCTGGCACTTTGGATC -ACGGAAGATCTGGCACTTCACTTC -ACGGAAGATCTGGCACTTGTACTC -ACGGAAGATCTGGCACTTGATGTC -ACGGAAGATCTGGCACTTACAGTC -ACGGAAGATCTGGCACTTTTGCTG -ACGGAAGATCTGGCACTTTCCATG -ACGGAAGATCTGGCACTTTGTGTG -ACGGAAGATCTGGCACTTCTAGTG -ACGGAAGATCTGGCACTTCATCTG -ACGGAAGATCTGGCACTTGAGTTG -ACGGAAGATCTGGCACTTAGACTG -ACGGAAGATCTGGCACTTTCGGTA -ACGGAAGATCTGGCACTTTGCCTA -ACGGAAGATCTGGCACTTCCACTA -ACGGAAGATCTGGCACTTGGAGTA -ACGGAAGATCTGGCACTTTCGTCT -ACGGAAGATCTGGCACTTTGCACT -ACGGAAGATCTGGCACTTCTGACT -ACGGAAGATCTGGCACTTCAACCT -ACGGAAGATCTGGCACTTGCTACT -ACGGAAGATCTGGCACTTGGATCT -ACGGAAGATCTGGCACTTAAGGCT -ACGGAAGATCTGGCACTTTCAACC -ACGGAAGATCTGGCACTTTGTTCC -ACGGAAGATCTGGCACTTATTCCC -ACGGAAGATCTGGCACTTTTCTCG -ACGGAAGATCTGGCACTTTAGACG -ACGGAAGATCTGGCACTTGTAACG -ACGGAAGATCTGGCACTTACTTCG -ACGGAAGATCTGGCACTTTACGCA -ACGGAAGATCTGGCACTTCTTGCA -ACGGAAGATCTGGCACTTCGAACA -ACGGAAGATCTGGCACTTCAGTCA -ACGGAAGATCTGGCACTTGATCCA -ACGGAAGATCTGGCACTTACGACA -ACGGAAGATCTGGCACTTAGCTCA -ACGGAAGATCTGGCACTTTCACGT -ACGGAAGATCTGGCACTTCGTAGT -ACGGAAGATCTGGCACTTGTCAGT -ACGGAAGATCTGGCACTTGAAGGT -ACGGAAGATCTGGCACTTAACCGT -ACGGAAGATCTGGCACTTTTGTGC -ACGGAAGATCTGGCACTTCTAAGC -ACGGAAGATCTGGCACTTACTAGC -ACGGAAGATCTGGCACTTAGATGC -ACGGAAGATCTGGCACTTTGAAGG -ACGGAAGATCTGGCACTTCAATGG -ACGGAAGATCTGGCACTTATGAGG -ACGGAAGATCTGGCACTTAATGGG -ACGGAAGATCTGGCACTTTCCTGA -ACGGAAGATCTGGCACTTTAGCGA -ACGGAAGATCTGGCACTTCACAGA -ACGGAAGATCTGGCACTTGCAAGA -ACGGAAGATCTGGCACTTGGTTGA -ACGGAAGATCTGGCACTTTCCGAT -ACGGAAGATCTGGCACTTTGGCAT -ACGGAAGATCTGGCACTTCGAGAT -ACGGAAGATCTGGCACTTTACCAC -ACGGAAGATCTGGCACTTCAGAAC -ACGGAAGATCTGGCACTTGTCTAC -ACGGAAGATCTGGCACTTACGTAC -ACGGAAGATCTGGCACTTAGTGAC -ACGGAAGATCTGGCACTTCTGTAG -ACGGAAGATCTGGCACTTCCTAAG -ACGGAAGATCTGGCACTTGTTCAG -ACGGAAGATCTGGCACTTGCATAG -ACGGAAGATCTGGCACTTGACAAG -ACGGAAGATCTGGCACTTAAGCAG -ACGGAAGATCTGGCACTTCGTCAA -ACGGAAGATCTGGCACTTGCTGAA -ACGGAAGATCTGGCACTTAGTACG -ACGGAAGATCTGGCACTTATCCGA -ACGGAAGATCTGGCACTTATGGGA -ACGGAAGATCTGGCACTTGTGCAA -ACGGAAGATCTGGCACTTGAGGAA -ACGGAAGATCTGGCACTTCAGGTA -ACGGAAGATCTGGCACTTGACTCT -ACGGAAGATCTGGCACTTAGTCCT -ACGGAAGATCTGGCACTTTAAGCC -ACGGAAGATCTGGCACTTATAGCC -ACGGAAGATCTGGCACTTTAACCG -ACGGAAGATCTGGCACTTATGCCA -ACGGAAGATCTGACACGAGGAAAC -ACGGAAGATCTGACACGAAACACC -ACGGAAGATCTGACACGAATCGAG -ACGGAAGATCTGACACGACTCCTT -ACGGAAGATCTGACACGACCTGTT -ACGGAAGATCTGACACGACGGTTT -ACGGAAGATCTGACACGAGTGGTT -ACGGAAGATCTGACACGAGCCTTT -ACGGAAGATCTGACACGAGGTCTT -ACGGAAGATCTGACACGAACGCTT -ACGGAAGATCTGACACGAAGCGTT -ACGGAAGATCTGACACGATTCGTC -ACGGAAGATCTGACACGATCTCTC -ACGGAAGATCTGACACGATGGATC -ACGGAAGATCTGACACGACACTTC -ACGGAAGATCTGACACGAGTACTC -ACGGAAGATCTGACACGAGATGTC -ACGGAAGATCTGACACGAACAGTC -ACGGAAGATCTGACACGATTGCTG -ACGGAAGATCTGACACGATCCATG -ACGGAAGATCTGACACGATGTGTG -ACGGAAGATCTGACACGACTAGTG -ACGGAAGATCTGACACGACATCTG -ACGGAAGATCTGACACGAGAGTTG -ACGGAAGATCTGACACGAAGACTG -ACGGAAGATCTGACACGATCGGTA -ACGGAAGATCTGACACGATGCCTA -ACGGAAGATCTGACACGACCACTA -ACGGAAGATCTGACACGAGGAGTA -ACGGAAGATCTGACACGATCGTCT -ACGGAAGATCTGACACGATGCACT -ACGGAAGATCTGACACGACTGACT -ACGGAAGATCTGACACGACAACCT -ACGGAAGATCTGACACGAGCTACT -ACGGAAGATCTGACACGAGGATCT -ACGGAAGATCTGACACGAAAGGCT -ACGGAAGATCTGACACGATCAACC -ACGGAAGATCTGACACGATGTTCC -ACGGAAGATCTGACACGAATTCCC -ACGGAAGATCTGACACGATTCTCG -ACGGAAGATCTGACACGATAGACG -ACGGAAGATCTGACACGAGTAACG -ACGGAAGATCTGACACGAACTTCG -ACGGAAGATCTGACACGATACGCA -ACGGAAGATCTGACACGACTTGCA -ACGGAAGATCTGACACGACGAACA -ACGGAAGATCTGACACGACAGTCA -ACGGAAGATCTGACACGAGATCCA -ACGGAAGATCTGACACGAACGACA -ACGGAAGATCTGACACGAAGCTCA -ACGGAAGATCTGACACGATCACGT -ACGGAAGATCTGACACGACGTAGT -ACGGAAGATCTGACACGAGTCAGT -ACGGAAGATCTGACACGAGAAGGT -ACGGAAGATCTGACACGAAACCGT -ACGGAAGATCTGACACGATTGTGC -ACGGAAGATCTGACACGACTAAGC -ACGGAAGATCTGACACGAACTAGC -ACGGAAGATCTGACACGAAGATGC -ACGGAAGATCTGACACGATGAAGG -ACGGAAGATCTGACACGACAATGG -ACGGAAGATCTGACACGAATGAGG -ACGGAAGATCTGACACGAAATGGG -ACGGAAGATCTGACACGATCCTGA -ACGGAAGATCTGACACGATAGCGA -ACGGAAGATCTGACACGACACAGA -ACGGAAGATCTGACACGAGCAAGA -ACGGAAGATCTGACACGAGGTTGA -ACGGAAGATCTGACACGATCCGAT -ACGGAAGATCTGACACGATGGCAT -ACGGAAGATCTGACACGACGAGAT -ACGGAAGATCTGACACGATACCAC -ACGGAAGATCTGACACGACAGAAC -ACGGAAGATCTGACACGAGTCTAC -ACGGAAGATCTGACACGAACGTAC -ACGGAAGATCTGACACGAAGTGAC -ACGGAAGATCTGACACGACTGTAG -ACGGAAGATCTGACACGACCTAAG -ACGGAAGATCTGACACGAGTTCAG -ACGGAAGATCTGACACGAGCATAG -ACGGAAGATCTGACACGAGACAAG -ACGGAAGATCTGACACGAAAGCAG -ACGGAAGATCTGACACGACGTCAA -ACGGAAGATCTGACACGAGCTGAA -ACGGAAGATCTGACACGAAGTACG -ACGGAAGATCTGACACGAATCCGA -ACGGAAGATCTGACACGAATGGGA -ACGGAAGATCTGACACGAGTGCAA -ACGGAAGATCTGACACGAGAGGAA -ACGGAAGATCTGACACGACAGGTA -ACGGAAGATCTGACACGAGACTCT -ACGGAAGATCTGACACGAAGTCCT -ACGGAAGATCTGACACGATAAGCC -ACGGAAGATCTGACACGAATAGCC -ACGGAAGATCTGACACGATAACCG -ACGGAAGATCTGACACGAATGCCA -ACGGAAGATCTGTCACAGGGAAAC -ACGGAAGATCTGTCACAGAACACC -ACGGAAGATCTGTCACAGATCGAG -ACGGAAGATCTGTCACAGCTCCTT -ACGGAAGATCTGTCACAGCCTGTT -ACGGAAGATCTGTCACAGCGGTTT -ACGGAAGATCTGTCACAGGTGGTT -ACGGAAGATCTGTCACAGGCCTTT -ACGGAAGATCTGTCACAGGGTCTT -ACGGAAGATCTGTCACAGACGCTT -ACGGAAGATCTGTCACAGAGCGTT -ACGGAAGATCTGTCACAGTTCGTC -ACGGAAGATCTGTCACAGTCTCTC -ACGGAAGATCTGTCACAGTGGATC -ACGGAAGATCTGTCACAGCACTTC -ACGGAAGATCTGTCACAGGTACTC -ACGGAAGATCTGTCACAGGATGTC -ACGGAAGATCTGTCACAGACAGTC -ACGGAAGATCTGTCACAGTTGCTG -ACGGAAGATCTGTCACAGTCCATG -ACGGAAGATCTGTCACAGTGTGTG -ACGGAAGATCTGTCACAGCTAGTG -ACGGAAGATCTGTCACAGCATCTG -ACGGAAGATCTGTCACAGGAGTTG -ACGGAAGATCTGTCACAGAGACTG -ACGGAAGATCTGTCACAGTCGGTA -ACGGAAGATCTGTCACAGTGCCTA -ACGGAAGATCTGTCACAGCCACTA -ACGGAAGATCTGTCACAGGGAGTA -ACGGAAGATCTGTCACAGTCGTCT -ACGGAAGATCTGTCACAGTGCACT -ACGGAAGATCTGTCACAGCTGACT -ACGGAAGATCTGTCACAGCAACCT -ACGGAAGATCTGTCACAGGCTACT -ACGGAAGATCTGTCACAGGGATCT -ACGGAAGATCTGTCACAGAAGGCT -ACGGAAGATCTGTCACAGTCAACC -ACGGAAGATCTGTCACAGTGTTCC -ACGGAAGATCTGTCACAGATTCCC -ACGGAAGATCTGTCACAGTTCTCG -ACGGAAGATCTGTCACAGTAGACG -ACGGAAGATCTGTCACAGGTAACG -ACGGAAGATCTGTCACAGACTTCG -ACGGAAGATCTGTCACAGTACGCA -ACGGAAGATCTGTCACAGCTTGCA -ACGGAAGATCTGTCACAGCGAACA -ACGGAAGATCTGTCACAGCAGTCA -ACGGAAGATCTGTCACAGGATCCA -ACGGAAGATCTGTCACAGACGACA -ACGGAAGATCTGTCACAGAGCTCA -ACGGAAGATCTGTCACAGTCACGT -ACGGAAGATCTGTCACAGCGTAGT -ACGGAAGATCTGTCACAGGTCAGT -ACGGAAGATCTGTCACAGGAAGGT -ACGGAAGATCTGTCACAGAACCGT -ACGGAAGATCTGTCACAGTTGTGC -ACGGAAGATCTGTCACAGCTAAGC -ACGGAAGATCTGTCACAGACTAGC -ACGGAAGATCTGTCACAGAGATGC -ACGGAAGATCTGTCACAGTGAAGG -ACGGAAGATCTGTCACAGCAATGG -ACGGAAGATCTGTCACAGATGAGG -ACGGAAGATCTGTCACAGAATGGG -ACGGAAGATCTGTCACAGTCCTGA -ACGGAAGATCTGTCACAGTAGCGA -ACGGAAGATCTGTCACAGCACAGA -ACGGAAGATCTGTCACAGGCAAGA -ACGGAAGATCTGTCACAGGGTTGA -ACGGAAGATCTGTCACAGTCCGAT -ACGGAAGATCTGTCACAGTGGCAT -ACGGAAGATCTGTCACAGCGAGAT -ACGGAAGATCTGTCACAGTACCAC -ACGGAAGATCTGTCACAGCAGAAC -ACGGAAGATCTGTCACAGGTCTAC -ACGGAAGATCTGTCACAGACGTAC -ACGGAAGATCTGTCACAGAGTGAC -ACGGAAGATCTGTCACAGCTGTAG -ACGGAAGATCTGTCACAGCCTAAG -ACGGAAGATCTGTCACAGGTTCAG -ACGGAAGATCTGTCACAGGCATAG -ACGGAAGATCTGTCACAGGACAAG -ACGGAAGATCTGTCACAGAAGCAG -ACGGAAGATCTGTCACAGCGTCAA -ACGGAAGATCTGTCACAGGCTGAA -ACGGAAGATCTGTCACAGAGTACG -ACGGAAGATCTGTCACAGATCCGA -ACGGAAGATCTGTCACAGATGGGA -ACGGAAGATCTGTCACAGGTGCAA -ACGGAAGATCTGTCACAGGAGGAA -ACGGAAGATCTGTCACAGCAGGTA -ACGGAAGATCTGTCACAGGACTCT -ACGGAAGATCTGTCACAGAGTCCT -ACGGAAGATCTGTCACAGTAAGCC -ACGGAAGATCTGTCACAGATAGCC -ACGGAAGATCTGTCACAGTAACCG -ACGGAAGATCTGTCACAGATGCCA -ACGGAAGATCTGCCAGATGGAAAC -ACGGAAGATCTGCCAGATAACACC -ACGGAAGATCTGCCAGATATCGAG -ACGGAAGATCTGCCAGATCTCCTT -ACGGAAGATCTGCCAGATCCTGTT -ACGGAAGATCTGCCAGATCGGTTT -ACGGAAGATCTGCCAGATGTGGTT -ACGGAAGATCTGCCAGATGCCTTT -ACGGAAGATCTGCCAGATGGTCTT -ACGGAAGATCTGCCAGATACGCTT -ACGGAAGATCTGCCAGATAGCGTT -ACGGAAGATCTGCCAGATTTCGTC -ACGGAAGATCTGCCAGATTCTCTC -ACGGAAGATCTGCCAGATTGGATC -ACGGAAGATCTGCCAGATCACTTC -ACGGAAGATCTGCCAGATGTACTC -ACGGAAGATCTGCCAGATGATGTC -ACGGAAGATCTGCCAGATACAGTC -ACGGAAGATCTGCCAGATTTGCTG -ACGGAAGATCTGCCAGATTCCATG -ACGGAAGATCTGCCAGATTGTGTG -ACGGAAGATCTGCCAGATCTAGTG -ACGGAAGATCTGCCAGATCATCTG -ACGGAAGATCTGCCAGATGAGTTG -ACGGAAGATCTGCCAGATAGACTG -ACGGAAGATCTGCCAGATTCGGTA -ACGGAAGATCTGCCAGATTGCCTA -ACGGAAGATCTGCCAGATCCACTA -ACGGAAGATCTGCCAGATGGAGTA -ACGGAAGATCTGCCAGATTCGTCT -ACGGAAGATCTGCCAGATTGCACT -ACGGAAGATCTGCCAGATCTGACT -ACGGAAGATCTGCCAGATCAACCT -ACGGAAGATCTGCCAGATGCTACT -ACGGAAGATCTGCCAGATGGATCT -ACGGAAGATCTGCCAGATAAGGCT -ACGGAAGATCTGCCAGATTCAACC -ACGGAAGATCTGCCAGATTGTTCC -ACGGAAGATCTGCCAGATATTCCC -ACGGAAGATCTGCCAGATTTCTCG -ACGGAAGATCTGCCAGATTAGACG -ACGGAAGATCTGCCAGATGTAACG -ACGGAAGATCTGCCAGATACTTCG -ACGGAAGATCTGCCAGATTACGCA -ACGGAAGATCTGCCAGATCTTGCA -ACGGAAGATCTGCCAGATCGAACA -ACGGAAGATCTGCCAGATCAGTCA -ACGGAAGATCTGCCAGATGATCCA -ACGGAAGATCTGCCAGATACGACA -ACGGAAGATCTGCCAGATAGCTCA -ACGGAAGATCTGCCAGATTCACGT -ACGGAAGATCTGCCAGATCGTAGT -ACGGAAGATCTGCCAGATGTCAGT -ACGGAAGATCTGCCAGATGAAGGT -ACGGAAGATCTGCCAGATAACCGT -ACGGAAGATCTGCCAGATTTGTGC -ACGGAAGATCTGCCAGATCTAAGC -ACGGAAGATCTGCCAGATACTAGC -ACGGAAGATCTGCCAGATAGATGC -ACGGAAGATCTGCCAGATTGAAGG -ACGGAAGATCTGCCAGATCAATGG -ACGGAAGATCTGCCAGATATGAGG -ACGGAAGATCTGCCAGATAATGGG -ACGGAAGATCTGCCAGATTCCTGA -ACGGAAGATCTGCCAGATTAGCGA -ACGGAAGATCTGCCAGATCACAGA -ACGGAAGATCTGCCAGATGCAAGA -ACGGAAGATCTGCCAGATGGTTGA -ACGGAAGATCTGCCAGATTCCGAT -ACGGAAGATCTGCCAGATTGGCAT -ACGGAAGATCTGCCAGATCGAGAT -ACGGAAGATCTGCCAGATTACCAC -ACGGAAGATCTGCCAGATCAGAAC -ACGGAAGATCTGCCAGATGTCTAC -ACGGAAGATCTGCCAGATACGTAC -ACGGAAGATCTGCCAGATAGTGAC -ACGGAAGATCTGCCAGATCTGTAG -ACGGAAGATCTGCCAGATCCTAAG -ACGGAAGATCTGCCAGATGTTCAG -ACGGAAGATCTGCCAGATGCATAG -ACGGAAGATCTGCCAGATGACAAG -ACGGAAGATCTGCCAGATAAGCAG -ACGGAAGATCTGCCAGATCGTCAA -ACGGAAGATCTGCCAGATGCTGAA -ACGGAAGATCTGCCAGATAGTACG -ACGGAAGATCTGCCAGATATCCGA -ACGGAAGATCTGCCAGATATGGGA -ACGGAAGATCTGCCAGATGTGCAA -ACGGAAGATCTGCCAGATGAGGAA -ACGGAAGATCTGCCAGATCAGGTA -ACGGAAGATCTGCCAGATGACTCT -ACGGAAGATCTGCCAGATAGTCCT -ACGGAAGATCTGCCAGATTAAGCC -ACGGAAGATCTGCCAGATATAGCC -ACGGAAGATCTGCCAGATTAACCG -ACGGAAGATCTGCCAGATATGCCA -ACGGAAGATCTGACAACGGGAAAC -ACGGAAGATCTGACAACGAACACC -ACGGAAGATCTGACAACGATCGAG -ACGGAAGATCTGACAACGCTCCTT -ACGGAAGATCTGACAACGCCTGTT -ACGGAAGATCTGACAACGCGGTTT -ACGGAAGATCTGACAACGGTGGTT -ACGGAAGATCTGACAACGGCCTTT -ACGGAAGATCTGACAACGGGTCTT -ACGGAAGATCTGACAACGACGCTT -ACGGAAGATCTGACAACGAGCGTT -ACGGAAGATCTGACAACGTTCGTC -ACGGAAGATCTGACAACGTCTCTC -ACGGAAGATCTGACAACGTGGATC -ACGGAAGATCTGACAACGCACTTC -ACGGAAGATCTGACAACGGTACTC -ACGGAAGATCTGACAACGGATGTC -ACGGAAGATCTGACAACGACAGTC -ACGGAAGATCTGACAACGTTGCTG -ACGGAAGATCTGACAACGTCCATG -ACGGAAGATCTGACAACGTGTGTG -ACGGAAGATCTGACAACGCTAGTG -ACGGAAGATCTGACAACGCATCTG -ACGGAAGATCTGACAACGGAGTTG -ACGGAAGATCTGACAACGAGACTG -ACGGAAGATCTGACAACGTCGGTA -ACGGAAGATCTGACAACGTGCCTA -ACGGAAGATCTGACAACGCCACTA -ACGGAAGATCTGACAACGGGAGTA -ACGGAAGATCTGACAACGTCGTCT -ACGGAAGATCTGACAACGTGCACT -ACGGAAGATCTGACAACGCTGACT -ACGGAAGATCTGACAACGCAACCT -ACGGAAGATCTGACAACGGCTACT -ACGGAAGATCTGACAACGGGATCT -ACGGAAGATCTGACAACGAAGGCT -ACGGAAGATCTGACAACGTCAACC -ACGGAAGATCTGACAACGTGTTCC -ACGGAAGATCTGACAACGATTCCC -ACGGAAGATCTGACAACGTTCTCG -ACGGAAGATCTGACAACGTAGACG -ACGGAAGATCTGACAACGGTAACG -ACGGAAGATCTGACAACGACTTCG -ACGGAAGATCTGACAACGTACGCA -ACGGAAGATCTGACAACGCTTGCA -ACGGAAGATCTGACAACGCGAACA -ACGGAAGATCTGACAACGCAGTCA -ACGGAAGATCTGACAACGGATCCA -ACGGAAGATCTGACAACGACGACA -ACGGAAGATCTGACAACGAGCTCA -ACGGAAGATCTGACAACGTCACGT -ACGGAAGATCTGACAACGCGTAGT -ACGGAAGATCTGACAACGGTCAGT -ACGGAAGATCTGACAACGGAAGGT -ACGGAAGATCTGACAACGAACCGT -ACGGAAGATCTGACAACGTTGTGC -ACGGAAGATCTGACAACGCTAAGC -ACGGAAGATCTGACAACGACTAGC -ACGGAAGATCTGACAACGAGATGC -ACGGAAGATCTGACAACGTGAAGG -ACGGAAGATCTGACAACGCAATGG -ACGGAAGATCTGACAACGATGAGG -ACGGAAGATCTGACAACGAATGGG -ACGGAAGATCTGACAACGTCCTGA -ACGGAAGATCTGACAACGTAGCGA -ACGGAAGATCTGACAACGCACAGA -ACGGAAGATCTGACAACGGCAAGA -ACGGAAGATCTGACAACGGGTTGA -ACGGAAGATCTGACAACGTCCGAT -ACGGAAGATCTGACAACGTGGCAT -ACGGAAGATCTGACAACGCGAGAT -ACGGAAGATCTGACAACGTACCAC -ACGGAAGATCTGACAACGCAGAAC -ACGGAAGATCTGACAACGGTCTAC -ACGGAAGATCTGACAACGACGTAC -ACGGAAGATCTGACAACGAGTGAC -ACGGAAGATCTGACAACGCTGTAG -ACGGAAGATCTGACAACGCCTAAG -ACGGAAGATCTGACAACGGTTCAG -ACGGAAGATCTGACAACGGCATAG -ACGGAAGATCTGACAACGGACAAG -ACGGAAGATCTGACAACGAAGCAG -ACGGAAGATCTGACAACGCGTCAA -ACGGAAGATCTGACAACGGCTGAA -ACGGAAGATCTGACAACGAGTACG -ACGGAAGATCTGACAACGATCCGA -ACGGAAGATCTGACAACGATGGGA -ACGGAAGATCTGACAACGGTGCAA -ACGGAAGATCTGACAACGGAGGAA -ACGGAAGATCTGACAACGCAGGTA -ACGGAAGATCTGACAACGGACTCT -ACGGAAGATCTGACAACGAGTCCT -ACGGAAGATCTGACAACGTAAGCC -ACGGAAGATCTGACAACGATAGCC -ACGGAAGATCTGACAACGTAACCG -ACGGAAGATCTGACAACGATGCCA -ACGGAAGATCTGTCAAGCGGAAAC -ACGGAAGATCTGTCAAGCAACACC -ACGGAAGATCTGTCAAGCATCGAG -ACGGAAGATCTGTCAAGCCTCCTT -ACGGAAGATCTGTCAAGCCCTGTT -ACGGAAGATCTGTCAAGCCGGTTT -ACGGAAGATCTGTCAAGCGTGGTT -ACGGAAGATCTGTCAAGCGCCTTT -ACGGAAGATCTGTCAAGCGGTCTT -ACGGAAGATCTGTCAAGCACGCTT -ACGGAAGATCTGTCAAGCAGCGTT -ACGGAAGATCTGTCAAGCTTCGTC -ACGGAAGATCTGTCAAGCTCTCTC -ACGGAAGATCTGTCAAGCTGGATC -ACGGAAGATCTGTCAAGCCACTTC -ACGGAAGATCTGTCAAGCGTACTC -ACGGAAGATCTGTCAAGCGATGTC -ACGGAAGATCTGTCAAGCACAGTC -ACGGAAGATCTGTCAAGCTTGCTG -ACGGAAGATCTGTCAAGCTCCATG -ACGGAAGATCTGTCAAGCTGTGTG -ACGGAAGATCTGTCAAGCCTAGTG -ACGGAAGATCTGTCAAGCCATCTG -ACGGAAGATCTGTCAAGCGAGTTG -ACGGAAGATCTGTCAAGCAGACTG -ACGGAAGATCTGTCAAGCTCGGTA -ACGGAAGATCTGTCAAGCTGCCTA -ACGGAAGATCTGTCAAGCCCACTA -ACGGAAGATCTGTCAAGCGGAGTA -ACGGAAGATCTGTCAAGCTCGTCT -ACGGAAGATCTGTCAAGCTGCACT -ACGGAAGATCTGTCAAGCCTGACT -ACGGAAGATCTGTCAAGCCAACCT -ACGGAAGATCTGTCAAGCGCTACT -ACGGAAGATCTGTCAAGCGGATCT -ACGGAAGATCTGTCAAGCAAGGCT -ACGGAAGATCTGTCAAGCTCAACC -ACGGAAGATCTGTCAAGCTGTTCC -ACGGAAGATCTGTCAAGCATTCCC -ACGGAAGATCTGTCAAGCTTCTCG -ACGGAAGATCTGTCAAGCTAGACG -ACGGAAGATCTGTCAAGCGTAACG -ACGGAAGATCTGTCAAGCACTTCG -ACGGAAGATCTGTCAAGCTACGCA -ACGGAAGATCTGTCAAGCCTTGCA -ACGGAAGATCTGTCAAGCCGAACA -ACGGAAGATCTGTCAAGCCAGTCA -ACGGAAGATCTGTCAAGCGATCCA -ACGGAAGATCTGTCAAGCACGACA -ACGGAAGATCTGTCAAGCAGCTCA -ACGGAAGATCTGTCAAGCTCACGT -ACGGAAGATCTGTCAAGCCGTAGT -ACGGAAGATCTGTCAAGCGTCAGT -ACGGAAGATCTGTCAAGCGAAGGT -ACGGAAGATCTGTCAAGCAACCGT -ACGGAAGATCTGTCAAGCTTGTGC -ACGGAAGATCTGTCAAGCCTAAGC -ACGGAAGATCTGTCAAGCACTAGC -ACGGAAGATCTGTCAAGCAGATGC -ACGGAAGATCTGTCAAGCTGAAGG -ACGGAAGATCTGTCAAGCCAATGG -ACGGAAGATCTGTCAAGCATGAGG -ACGGAAGATCTGTCAAGCAATGGG -ACGGAAGATCTGTCAAGCTCCTGA -ACGGAAGATCTGTCAAGCTAGCGA -ACGGAAGATCTGTCAAGCCACAGA -ACGGAAGATCTGTCAAGCGCAAGA -ACGGAAGATCTGTCAAGCGGTTGA -ACGGAAGATCTGTCAAGCTCCGAT -ACGGAAGATCTGTCAAGCTGGCAT -ACGGAAGATCTGTCAAGCCGAGAT -ACGGAAGATCTGTCAAGCTACCAC -ACGGAAGATCTGTCAAGCCAGAAC -ACGGAAGATCTGTCAAGCGTCTAC -ACGGAAGATCTGTCAAGCACGTAC -ACGGAAGATCTGTCAAGCAGTGAC -ACGGAAGATCTGTCAAGCCTGTAG -ACGGAAGATCTGTCAAGCCCTAAG -ACGGAAGATCTGTCAAGCGTTCAG -ACGGAAGATCTGTCAAGCGCATAG -ACGGAAGATCTGTCAAGCGACAAG -ACGGAAGATCTGTCAAGCAAGCAG -ACGGAAGATCTGTCAAGCCGTCAA -ACGGAAGATCTGTCAAGCGCTGAA -ACGGAAGATCTGTCAAGCAGTACG -ACGGAAGATCTGTCAAGCATCCGA -ACGGAAGATCTGTCAAGCATGGGA -ACGGAAGATCTGTCAAGCGTGCAA -ACGGAAGATCTGTCAAGCGAGGAA -ACGGAAGATCTGTCAAGCCAGGTA -ACGGAAGATCTGTCAAGCGACTCT -ACGGAAGATCTGTCAAGCAGTCCT -ACGGAAGATCTGTCAAGCTAAGCC -ACGGAAGATCTGTCAAGCATAGCC -ACGGAAGATCTGTCAAGCTAACCG -ACGGAAGATCTGTCAAGCATGCCA -ACGGAAGATCTGCGTTCAGGAAAC -ACGGAAGATCTGCGTTCAAACACC -ACGGAAGATCTGCGTTCAATCGAG -ACGGAAGATCTGCGTTCACTCCTT -ACGGAAGATCTGCGTTCACCTGTT -ACGGAAGATCTGCGTTCACGGTTT -ACGGAAGATCTGCGTTCAGTGGTT -ACGGAAGATCTGCGTTCAGCCTTT -ACGGAAGATCTGCGTTCAGGTCTT -ACGGAAGATCTGCGTTCAACGCTT -ACGGAAGATCTGCGTTCAAGCGTT -ACGGAAGATCTGCGTTCATTCGTC -ACGGAAGATCTGCGTTCATCTCTC -ACGGAAGATCTGCGTTCATGGATC -ACGGAAGATCTGCGTTCACACTTC -ACGGAAGATCTGCGTTCAGTACTC -ACGGAAGATCTGCGTTCAGATGTC -ACGGAAGATCTGCGTTCAACAGTC -ACGGAAGATCTGCGTTCATTGCTG -ACGGAAGATCTGCGTTCATCCATG -ACGGAAGATCTGCGTTCATGTGTG -ACGGAAGATCTGCGTTCACTAGTG -ACGGAAGATCTGCGTTCACATCTG -ACGGAAGATCTGCGTTCAGAGTTG -ACGGAAGATCTGCGTTCAAGACTG -ACGGAAGATCTGCGTTCATCGGTA -ACGGAAGATCTGCGTTCATGCCTA -ACGGAAGATCTGCGTTCACCACTA -ACGGAAGATCTGCGTTCAGGAGTA -ACGGAAGATCTGCGTTCATCGTCT -ACGGAAGATCTGCGTTCATGCACT -ACGGAAGATCTGCGTTCACTGACT -ACGGAAGATCTGCGTTCACAACCT -ACGGAAGATCTGCGTTCAGCTACT -ACGGAAGATCTGCGTTCAGGATCT -ACGGAAGATCTGCGTTCAAAGGCT -ACGGAAGATCTGCGTTCATCAACC -ACGGAAGATCTGCGTTCATGTTCC -ACGGAAGATCTGCGTTCAATTCCC -ACGGAAGATCTGCGTTCATTCTCG -ACGGAAGATCTGCGTTCATAGACG -ACGGAAGATCTGCGTTCAGTAACG -ACGGAAGATCTGCGTTCAACTTCG -ACGGAAGATCTGCGTTCATACGCA -ACGGAAGATCTGCGTTCACTTGCA -ACGGAAGATCTGCGTTCACGAACA -ACGGAAGATCTGCGTTCACAGTCA -ACGGAAGATCTGCGTTCAGATCCA -ACGGAAGATCTGCGTTCAACGACA -ACGGAAGATCTGCGTTCAAGCTCA -ACGGAAGATCTGCGTTCATCACGT -ACGGAAGATCTGCGTTCACGTAGT -ACGGAAGATCTGCGTTCAGTCAGT -ACGGAAGATCTGCGTTCAGAAGGT -ACGGAAGATCTGCGTTCAAACCGT -ACGGAAGATCTGCGTTCATTGTGC -ACGGAAGATCTGCGTTCACTAAGC -ACGGAAGATCTGCGTTCAACTAGC -ACGGAAGATCTGCGTTCAAGATGC -ACGGAAGATCTGCGTTCATGAAGG -ACGGAAGATCTGCGTTCACAATGG -ACGGAAGATCTGCGTTCAATGAGG -ACGGAAGATCTGCGTTCAAATGGG -ACGGAAGATCTGCGTTCATCCTGA -ACGGAAGATCTGCGTTCATAGCGA -ACGGAAGATCTGCGTTCACACAGA -ACGGAAGATCTGCGTTCAGCAAGA -ACGGAAGATCTGCGTTCAGGTTGA -ACGGAAGATCTGCGTTCATCCGAT -ACGGAAGATCTGCGTTCATGGCAT -ACGGAAGATCTGCGTTCACGAGAT -ACGGAAGATCTGCGTTCATACCAC -ACGGAAGATCTGCGTTCACAGAAC -ACGGAAGATCTGCGTTCAGTCTAC -ACGGAAGATCTGCGTTCAACGTAC -ACGGAAGATCTGCGTTCAAGTGAC -ACGGAAGATCTGCGTTCACTGTAG -ACGGAAGATCTGCGTTCACCTAAG -ACGGAAGATCTGCGTTCAGTTCAG -ACGGAAGATCTGCGTTCAGCATAG -ACGGAAGATCTGCGTTCAGACAAG -ACGGAAGATCTGCGTTCAAAGCAG -ACGGAAGATCTGCGTTCACGTCAA -ACGGAAGATCTGCGTTCAGCTGAA -ACGGAAGATCTGCGTTCAAGTACG -ACGGAAGATCTGCGTTCAATCCGA -ACGGAAGATCTGCGTTCAATGGGA -ACGGAAGATCTGCGTTCAGTGCAA -ACGGAAGATCTGCGTTCAGAGGAA -ACGGAAGATCTGCGTTCACAGGTA -ACGGAAGATCTGCGTTCAGACTCT -ACGGAAGATCTGCGTTCAAGTCCT -ACGGAAGATCTGCGTTCATAAGCC -ACGGAAGATCTGCGTTCAATAGCC -ACGGAAGATCTGCGTTCATAACCG -ACGGAAGATCTGCGTTCAATGCCA -ACGGAAGATCTGAGTCGTGGAAAC -ACGGAAGATCTGAGTCGTAACACC -ACGGAAGATCTGAGTCGTATCGAG -ACGGAAGATCTGAGTCGTCTCCTT -ACGGAAGATCTGAGTCGTCCTGTT -ACGGAAGATCTGAGTCGTCGGTTT -ACGGAAGATCTGAGTCGTGTGGTT -ACGGAAGATCTGAGTCGTGCCTTT -ACGGAAGATCTGAGTCGTGGTCTT -ACGGAAGATCTGAGTCGTACGCTT -ACGGAAGATCTGAGTCGTAGCGTT -ACGGAAGATCTGAGTCGTTTCGTC -ACGGAAGATCTGAGTCGTTCTCTC -ACGGAAGATCTGAGTCGTTGGATC -ACGGAAGATCTGAGTCGTCACTTC -ACGGAAGATCTGAGTCGTGTACTC -ACGGAAGATCTGAGTCGTGATGTC -ACGGAAGATCTGAGTCGTACAGTC -ACGGAAGATCTGAGTCGTTTGCTG -ACGGAAGATCTGAGTCGTTCCATG -ACGGAAGATCTGAGTCGTTGTGTG -ACGGAAGATCTGAGTCGTCTAGTG -ACGGAAGATCTGAGTCGTCATCTG -ACGGAAGATCTGAGTCGTGAGTTG -ACGGAAGATCTGAGTCGTAGACTG -ACGGAAGATCTGAGTCGTTCGGTA -ACGGAAGATCTGAGTCGTTGCCTA -ACGGAAGATCTGAGTCGTCCACTA -ACGGAAGATCTGAGTCGTGGAGTA -ACGGAAGATCTGAGTCGTTCGTCT -ACGGAAGATCTGAGTCGTTGCACT -ACGGAAGATCTGAGTCGTCTGACT -ACGGAAGATCTGAGTCGTCAACCT -ACGGAAGATCTGAGTCGTGCTACT -ACGGAAGATCTGAGTCGTGGATCT -ACGGAAGATCTGAGTCGTAAGGCT -ACGGAAGATCTGAGTCGTTCAACC -ACGGAAGATCTGAGTCGTTGTTCC -ACGGAAGATCTGAGTCGTATTCCC -ACGGAAGATCTGAGTCGTTTCTCG -ACGGAAGATCTGAGTCGTTAGACG -ACGGAAGATCTGAGTCGTGTAACG -ACGGAAGATCTGAGTCGTACTTCG -ACGGAAGATCTGAGTCGTTACGCA -ACGGAAGATCTGAGTCGTCTTGCA -ACGGAAGATCTGAGTCGTCGAACA -ACGGAAGATCTGAGTCGTCAGTCA -ACGGAAGATCTGAGTCGTGATCCA -ACGGAAGATCTGAGTCGTACGACA -ACGGAAGATCTGAGTCGTAGCTCA -ACGGAAGATCTGAGTCGTTCACGT -ACGGAAGATCTGAGTCGTCGTAGT -ACGGAAGATCTGAGTCGTGTCAGT -ACGGAAGATCTGAGTCGTGAAGGT -ACGGAAGATCTGAGTCGTAACCGT -ACGGAAGATCTGAGTCGTTTGTGC -ACGGAAGATCTGAGTCGTCTAAGC -ACGGAAGATCTGAGTCGTACTAGC -ACGGAAGATCTGAGTCGTAGATGC -ACGGAAGATCTGAGTCGTTGAAGG -ACGGAAGATCTGAGTCGTCAATGG -ACGGAAGATCTGAGTCGTATGAGG -ACGGAAGATCTGAGTCGTAATGGG -ACGGAAGATCTGAGTCGTTCCTGA -ACGGAAGATCTGAGTCGTTAGCGA -ACGGAAGATCTGAGTCGTCACAGA -ACGGAAGATCTGAGTCGTGCAAGA -ACGGAAGATCTGAGTCGTGGTTGA -ACGGAAGATCTGAGTCGTTCCGAT -ACGGAAGATCTGAGTCGTTGGCAT -ACGGAAGATCTGAGTCGTCGAGAT -ACGGAAGATCTGAGTCGTTACCAC -ACGGAAGATCTGAGTCGTCAGAAC -ACGGAAGATCTGAGTCGTGTCTAC -ACGGAAGATCTGAGTCGTACGTAC -ACGGAAGATCTGAGTCGTAGTGAC -ACGGAAGATCTGAGTCGTCTGTAG -ACGGAAGATCTGAGTCGTCCTAAG -ACGGAAGATCTGAGTCGTGTTCAG -ACGGAAGATCTGAGTCGTGCATAG -ACGGAAGATCTGAGTCGTGACAAG -ACGGAAGATCTGAGTCGTAAGCAG -ACGGAAGATCTGAGTCGTCGTCAA -ACGGAAGATCTGAGTCGTGCTGAA -ACGGAAGATCTGAGTCGTAGTACG -ACGGAAGATCTGAGTCGTATCCGA -ACGGAAGATCTGAGTCGTATGGGA -ACGGAAGATCTGAGTCGTGTGCAA -ACGGAAGATCTGAGTCGTGAGGAA -ACGGAAGATCTGAGTCGTCAGGTA -ACGGAAGATCTGAGTCGTGACTCT -ACGGAAGATCTGAGTCGTAGTCCT -ACGGAAGATCTGAGTCGTTAAGCC -ACGGAAGATCTGAGTCGTATAGCC -ACGGAAGATCTGAGTCGTTAACCG -ACGGAAGATCTGAGTCGTATGCCA -ACGGAAGATCTGAGTGTCGGAAAC -ACGGAAGATCTGAGTGTCAACACC -ACGGAAGATCTGAGTGTCATCGAG -ACGGAAGATCTGAGTGTCCTCCTT -ACGGAAGATCTGAGTGTCCCTGTT -ACGGAAGATCTGAGTGTCCGGTTT -ACGGAAGATCTGAGTGTCGTGGTT -ACGGAAGATCTGAGTGTCGCCTTT -ACGGAAGATCTGAGTGTCGGTCTT -ACGGAAGATCTGAGTGTCACGCTT -ACGGAAGATCTGAGTGTCAGCGTT -ACGGAAGATCTGAGTGTCTTCGTC -ACGGAAGATCTGAGTGTCTCTCTC -ACGGAAGATCTGAGTGTCTGGATC -ACGGAAGATCTGAGTGTCCACTTC -ACGGAAGATCTGAGTGTCGTACTC -ACGGAAGATCTGAGTGTCGATGTC -ACGGAAGATCTGAGTGTCACAGTC -ACGGAAGATCTGAGTGTCTTGCTG -ACGGAAGATCTGAGTGTCTCCATG -ACGGAAGATCTGAGTGTCTGTGTG -ACGGAAGATCTGAGTGTCCTAGTG -ACGGAAGATCTGAGTGTCCATCTG -ACGGAAGATCTGAGTGTCGAGTTG -ACGGAAGATCTGAGTGTCAGACTG -ACGGAAGATCTGAGTGTCTCGGTA -ACGGAAGATCTGAGTGTCTGCCTA -ACGGAAGATCTGAGTGTCCCACTA -ACGGAAGATCTGAGTGTCGGAGTA -ACGGAAGATCTGAGTGTCTCGTCT -ACGGAAGATCTGAGTGTCTGCACT -ACGGAAGATCTGAGTGTCCTGACT -ACGGAAGATCTGAGTGTCCAACCT -ACGGAAGATCTGAGTGTCGCTACT -ACGGAAGATCTGAGTGTCGGATCT -ACGGAAGATCTGAGTGTCAAGGCT -ACGGAAGATCTGAGTGTCTCAACC -ACGGAAGATCTGAGTGTCTGTTCC -ACGGAAGATCTGAGTGTCATTCCC -ACGGAAGATCTGAGTGTCTTCTCG -ACGGAAGATCTGAGTGTCTAGACG -ACGGAAGATCTGAGTGTCGTAACG -ACGGAAGATCTGAGTGTCACTTCG -ACGGAAGATCTGAGTGTCTACGCA -ACGGAAGATCTGAGTGTCCTTGCA -ACGGAAGATCTGAGTGTCCGAACA -ACGGAAGATCTGAGTGTCCAGTCA -ACGGAAGATCTGAGTGTCGATCCA -ACGGAAGATCTGAGTGTCACGACA -ACGGAAGATCTGAGTGTCAGCTCA -ACGGAAGATCTGAGTGTCTCACGT -ACGGAAGATCTGAGTGTCCGTAGT -ACGGAAGATCTGAGTGTCGTCAGT -ACGGAAGATCTGAGTGTCGAAGGT -ACGGAAGATCTGAGTGTCAACCGT -ACGGAAGATCTGAGTGTCTTGTGC -ACGGAAGATCTGAGTGTCCTAAGC -ACGGAAGATCTGAGTGTCACTAGC -ACGGAAGATCTGAGTGTCAGATGC -ACGGAAGATCTGAGTGTCTGAAGG -ACGGAAGATCTGAGTGTCCAATGG -ACGGAAGATCTGAGTGTCATGAGG -ACGGAAGATCTGAGTGTCAATGGG -ACGGAAGATCTGAGTGTCTCCTGA -ACGGAAGATCTGAGTGTCTAGCGA -ACGGAAGATCTGAGTGTCCACAGA -ACGGAAGATCTGAGTGTCGCAAGA -ACGGAAGATCTGAGTGTCGGTTGA -ACGGAAGATCTGAGTGTCTCCGAT -ACGGAAGATCTGAGTGTCTGGCAT -ACGGAAGATCTGAGTGTCCGAGAT -ACGGAAGATCTGAGTGTCTACCAC -ACGGAAGATCTGAGTGTCCAGAAC -ACGGAAGATCTGAGTGTCGTCTAC -ACGGAAGATCTGAGTGTCACGTAC -ACGGAAGATCTGAGTGTCAGTGAC -ACGGAAGATCTGAGTGTCCTGTAG -ACGGAAGATCTGAGTGTCCCTAAG -ACGGAAGATCTGAGTGTCGTTCAG -ACGGAAGATCTGAGTGTCGCATAG -ACGGAAGATCTGAGTGTCGACAAG -ACGGAAGATCTGAGTGTCAAGCAG -ACGGAAGATCTGAGTGTCCGTCAA -ACGGAAGATCTGAGTGTCGCTGAA -ACGGAAGATCTGAGTGTCAGTACG -ACGGAAGATCTGAGTGTCATCCGA -ACGGAAGATCTGAGTGTCATGGGA -ACGGAAGATCTGAGTGTCGTGCAA -ACGGAAGATCTGAGTGTCGAGGAA -ACGGAAGATCTGAGTGTCCAGGTA -ACGGAAGATCTGAGTGTCGACTCT -ACGGAAGATCTGAGTGTCAGTCCT -ACGGAAGATCTGAGTGTCTAAGCC -ACGGAAGATCTGAGTGTCATAGCC -ACGGAAGATCTGAGTGTCTAACCG -ACGGAAGATCTGAGTGTCATGCCA -ACGGAAGATCTGGGTGAAGGAAAC -ACGGAAGATCTGGGTGAAAACACC -ACGGAAGATCTGGGTGAAATCGAG -ACGGAAGATCTGGGTGAACTCCTT -ACGGAAGATCTGGGTGAACCTGTT -ACGGAAGATCTGGGTGAACGGTTT -ACGGAAGATCTGGGTGAAGTGGTT -ACGGAAGATCTGGGTGAAGCCTTT -ACGGAAGATCTGGGTGAAGGTCTT -ACGGAAGATCTGGGTGAAACGCTT -ACGGAAGATCTGGGTGAAAGCGTT -ACGGAAGATCTGGGTGAATTCGTC -ACGGAAGATCTGGGTGAATCTCTC -ACGGAAGATCTGGGTGAATGGATC -ACGGAAGATCTGGGTGAACACTTC -ACGGAAGATCTGGGTGAAGTACTC -ACGGAAGATCTGGGTGAAGATGTC -ACGGAAGATCTGGGTGAAACAGTC -ACGGAAGATCTGGGTGAATTGCTG -ACGGAAGATCTGGGTGAATCCATG -ACGGAAGATCTGGGTGAATGTGTG -ACGGAAGATCTGGGTGAACTAGTG -ACGGAAGATCTGGGTGAACATCTG -ACGGAAGATCTGGGTGAAGAGTTG -ACGGAAGATCTGGGTGAAAGACTG -ACGGAAGATCTGGGTGAATCGGTA -ACGGAAGATCTGGGTGAATGCCTA -ACGGAAGATCTGGGTGAACCACTA -ACGGAAGATCTGGGTGAAGGAGTA -ACGGAAGATCTGGGTGAATCGTCT -ACGGAAGATCTGGGTGAATGCACT -ACGGAAGATCTGGGTGAACTGACT -ACGGAAGATCTGGGTGAACAACCT -ACGGAAGATCTGGGTGAAGCTACT -ACGGAAGATCTGGGTGAAGGATCT -ACGGAAGATCTGGGTGAAAAGGCT -ACGGAAGATCTGGGTGAATCAACC -ACGGAAGATCTGGGTGAATGTTCC -ACGGAAGATCTGGGTGAAATTCCC -ACGGAAGATCTGGGTGAATTCTCG -ACGGAAGATCTGGGTGAATAGACG -ACGGAAGATCTGGGTGAAGTAACG -ACGGAAGATCTGGGTGAAACTTCG -ACGGAAGATCTGGGTGAATACGCA -ACGGAAGATCTGGGTGAACTTGCA -ACGGAAGATCTGGGTGAACGAACA -ACGGAAGATCTGGGTGAACAGTCA -ACGGAAGATCTGGGTGAAGATCCA -ACGGAAGATCTGGGTGAAACGACA -ACGGAAGATCTGGGTGAAAGCTCA -ACGGAAGATCTGGGTGAATCACGT -ACGGAAGATCTGGGTGAACGTAGT -ACGGAAGATCTGGGTGAAGTCAGT -ACGGAAGATCTGGGTGAAGAAGGT -ACGGAAGATCTGGGTGAAAACCGT -ACGGAAGATCTGGGTGAATTGTGC -ACGGAAGATCTGGGTGAACTAAGC -ACGGAAGATCTGGGTGAAACTAGC -ACGGAAGATCTGGGTGAAAGATGC -ACGGAAGATCTGGGTGAATGAAGG -ACGGAAGATCTGGGTGAACAATGG -ACGGAAGATCTGGGTGAAATGAGG -ACGGAAGATCTGGGTGAAAATGGG -ACGGAAGATCTGGGTGAATCCTGA -ACGGAAGATCTGGGTGAATAGCGA -ACGGAAGATCTGGGTGAACACAGA -ACGGAAGATCTGGGTGAAGCAAGA -ACGGAAGATCTGGGTGAAGGTTGA -ACGGAAGATCTGGGTGAATCCGAT -ACGGAAGATCTGGGTGAATGGCAT -ACGGAAGATCTGGGTGAACGAGAT -ACGGAAGATCTGGGTGAATACCAC -ACGGAAGATCTGGGTGAACAGAAC -ACGGAAGATCTGGGTGAAGTCTAC -ACGGAAGATCTGGGTGAAACGTAC -ACGGAAGATCTGGGTGAAAGTGAC -ACGGAAGATCTGGGTGAACTGTAG -ACGGAAGATCTGGGTGAACCTAAG -ACGGAAGATCTGGGTGAAGTTCAG -ACGGAAGATCTGGGTGAAGCATAG -ACGGAAGATCTGGGTGAAGACAAG -ACGGAAGATCTGGGTGAAAAGCAG -ACGGAAGATCTGGGTGAACGTCAA -ACGGAAGATCTGGGTGAAGCTGAA -ACGGAAGATCTGGGTGAAAGTACG -ACGGAAGATCTGGGTGAAATCCGA -ACGGAAGATCTGGGTGAAATGGGA -ACGGAAGATCTGGGTGAAGTGCAA -ACGGAAGATCTGGGTGAAGAGGAA -ACGGAAGATCTGGGTGAACAGGTA -ACGGAAGATCTGGGTGAAGACTCT -ACGGAAGATCTGGGTGAAAGTCCT -ACGGAAGATCTGGGTGAATAAGCC -ACGGAAGATCTGGGTGAAATAGCC -ACGGAAGATCTGGGTGAATAACCG -ACGGAAGATCTGGGTGAAATGCCA -ACGGAAGATCTGCGTAACGGAAAC -ACGGAAGATCTGCGTAACAACACC -ACGGAAGATCTGCGTAACATCGAG -ACGGAAGATCTGCGTAACCTCCTT -ACGGAAGATCTGCGTAACCCTGTT -ACGGAAGATCTGCGTAACCGGTTT -ACGGAAGATCTGCGTAACGTGGTT -ACGGAAGATCTGCGTAACGCCTTT -ACGGAAGATCTGCGTAACGGTCTT -ACGGAAGATCTGCGTAACACGCTT -ACGGAAGATCTGCGTAACAGCGTT -ACGGAAGATCTGCGTAACTTCGTC -ACGGAAGATCTGCGTAACTCTCTC -ACGGAAGATCTGCGTAACTGGATC -ACGGAAGATCTGCGTAACCACTTC -ACGGAAGATCTGCGTAACGTACTC -ACGGAAGATCTGCGTAACGATGTC -ACGGAAGATCTGCGTAACACAGTC -ACGGAAGATCTGCGTAACTTGCTG -ACGGAAGATCTGCGTAACTCCATG -ACGGAAGATCTGCGTAACTGTGTG -ACGGAAGATCTGCGTAACCTAGTG -ACGGAAGATCTGCGTAACCATCTG -ACGGAAGATCTGCGTAACGAGTTG -ACGGAAGATCTGCGTAACAGACTG -ACGGAAGATCTGCGTAACTCGGTA -ACGGAAGATCTGCGTAACTGCCTA -ACGGAAGATCTGCGTAACCCACTA -ACGGAAGATCTGCGTAACGGAGTA -ACGGAAGATCTGCGTAACTCGTCT -ACGGAAGATCTGCGTAACTGCACT -ACGGAAGATCTGCGTAACCTGACT -ACGGAAGATCTGCGTAACCAACCT -ACGGAAGATCTGCGTAACGCTACT -ACGGAAGATCTGCGTAACGGATCT -ACGGAAGATCTGCGTAACAAGGCT -ACGGAAGATCTGCGTAACTCAACC -ACGGAAGATCTGCGTAACTGTTCC -ACGGAAGATCTGCGTAACATTCCC -ACGGAAGATCTGCGTAACTTCTCG -ACGGAAGATCTGCGTAACTAGACG -ACGGAAGATCTGCGTAACGTAACG -ACGGAAGATCTGCGTAACACTTCG -ACGGAAGATCTGCGTAACTACGCA -ACGGAAGATCTGCGTAACCTTGCA -ACGGAAGATCTGCGTAACCGAACA -ACGGAAGATCTGCGTAACCAGTCA -ACGGAAGATCTGCGTAACGATCCA -ACGGAAGATCTGCGTAACACGACA -ACGGAAGATCTGCGTAACAGCTCA -ACGGAAGATCTGCGTAACTCACGT -ACGGAAGATCTGCGTAACCGTAGT -ACGGAAGATCTGCGTAACGTCAGT -ACGGAAGATCTGCGTAACGAAGGT -ACGGAAGATCTGCGTAACAACCGT -ACGGAAGATCTGCGTAACTTGTGC -ACGGAAGATCTGCGTAACCTAAGC -ACGGAAGATCTGCGTAACACTAGC -ACGGAAGATCTGCGTAACAGATGC -ACGGAAGATCTGCGTAACTGAAGG -ACGGAAGATCTGCGTAACCAATGG -ACGGAAGATCTGCGTAACATGAGG -ACGGAAGATCTGCGTAACAATGGG -ACGGAAGATCTGCGTAACTCCTGA -ACGGAAGATCTGCGTAACTAGCGA -ACGGAAGATCTGCGTAACCACAGA -ACGGAAGATCTGCGTAACGCAAGA -ACGGAAGATCTGCGTAACGGTTGA -ACGGAAGATCTGCGTAACTCCGAT -ACGGAAGATCTGCGTAACTGGCAT -ACGGAAGATCTGCGTAACCGAGAT -ACGGAAGATCTGCGTAACTACCAC -ACGGAAGATCTGCGTAACCAGAAC -ACGGAAGATCTGCGTAACGTCTAC -ACGGAAGATCTGCGTAACACGTAC -ACGGAAGATCTGCGTAACAGTGAC -ACGGAAGATCTGCGTAACCTGTAG -ACGGAAGATCTGCGTAACCCTAAG -ACGGAAGATCTGCGTAACGTTCAG -ACGGAAGATCTGCGTAACGCATAG -ACGGAAGATCTGCGTAACGACAAG -ACGGAAGATCTGCGTAACAAGCAG -ACGGAAGATCTGCGTAACCGTCAA -ACGGAAGATCTGCGTAACGCTGAA -ACGGAAGATCTGCGTAACAGTACG -ACGGAAGATCTGCGTAACATCCGA -ACGGAAGATCTGCGTAACATGGGA -ACGGAAGATCTGCGTAACGTGCAA -ACGGAAGATCTGCGTAACGAGGAA -ACGGAAGATCTGCGTAACCAGGTA -ACGGAAGATCTGCGTAACGACTCT -ACGGAAGATCTGCGTAACAGTCCT -ACGGAAGATCTGCGTAACTAAGCC -ACGGAAGATCTGCGTAACATAGCC -ACGGAAGATCTGCGTAACTAACCG -ACGGAAGATCTGCGTAACATGCCA -ACGGAAGATCTGTGCTTGGGAAAC -ACGGAAGATCTGTGCTTGAACACC -ACGGAAGATCTGTGCTTGATCGAG -ACGGAAGATCTGTGCTTGCTCCTT -ACGGAAGATCTGTGCTTGCCTGTT -ACGGAAGATCTGTGCTTGCGGTTT -ACGGAAGATCTGTGCTTGGTGGTT -ACGGAAGATCTGTGCTTGGCCTTT -ACGGAAGATCTGTGCTTGGGTCTT -ACGGAAGATCTGTGCTTGACGCTT -ACGGAAGATCTGTGCTTGAGCGTT -ACGGAAGATCTGTGCTTGTTCGTC -ACGGAAGATCTGTGCTTGTCTCTC -ACGGAAGATCTGTGCTTGTGGATC -ACGGAAGATCTGTGCTTGCACTTC -ACGGAAGATCTGTGCTTGGTACTC -ACGGAAGATCTGTGCTTGGATGTC -ACGGAAGATCTGTGCTTGACAGTC -ACGGAAGATCTGTGCTTGTTGCTG -ACGGAAGATCTGTGCTTGTCCATG -ACGGAAGATCTGTGCTTGTGTGTG -ACGGAAGATCTGTGCTTGCTAGTG -ACGGAAGATCTGTGCTTGCATCTG -ACGGAAGATCTGTGCTTGGAGTTG -ACGGAAGATCTGTGCTTGAGACTG -ACGGAAGATCTGTGCTTGTCGGTA -ACGGAAGATCTGTGCTTGTGCCTA -ACGGAAGATCTGTGCTTGCCACTA -ACGGAAGATCTGTGCTTGGGAGTA -ACGGAAGATCTGTGCTTGTCGTCT -ACGGAAGATCTGTGCTTGTGCACT -ACGGAAGATCTGTGCTTGCTGACT -ACGGAAGATCTGTGCTTGCAACCT -ACGGAAGATCTGTGCTTGGCTACT -ACGGAAGATCTGTGCTTGGGATCT -ACGGAAGATCTGTGCTTGAAGGCT -ACGGAAGATCTGTGCTTGTCAACC -ACGGAAGATCTGTGCTTGTGTTCC -ACGGAAGATCTGTGCTTGATTCCC -ACGGAAGATCTGTGCTTGTTCTCG -ACGGAAGATCTGTGCTTGTAGACG -ACGGAAGATCTGTGCTTGGTAACG -ACGGAAGATCTGTGCTTGACTTCG -ACGGAAGATCTGTGCTTGTACGCA -ACGGAAGATCTGTGCTTGCTTGCA -ACGGAAGATCTGTGCTTGCGAACA -ACGGAAGATCTGTGCTTGCAGTCA -ACGGAAGATCTGTGCTTGGATCCA -ACGGAAGATCTGTGCTTGACGACA -ACGGAAGATCTGTGCTTGAGCTCA -ACGGAAGATCTGTGCTTGTCACGT -ACGGAAGATCTGTGCTTGCGTAGT -ACGGAAGATCTGTGCTTGGTCAGT -ACGGAAGATCTGTGCTTGGAAGGT -ACGGAAGATCTGTGCTTGAACCGT -ACGGAAGATCTGTGCTTGTTGTGC -ACGGAAGATCTGTGCTTGCTAAGC -ACGGAAGATCTGTGCTTGACTAGC -ACGGAAGATCTGTGCTTGAGATGC -ACGGAAGATCTGTGCTTGTGAAGG -ACGGAAGATCTGTGCTTGCAATGG -ACGGAAGATCTGTGCTTGATGAGG -ACGGAAGATCTGTGCTTGAATGGG -ACGGAAGATCTGTGCTTGTCCTGA -ACGGAAGATCTGTGCTTGTAGCGA -ACGGAAGATCTGTGCTTGCACAGA -ACGGAAGATCTGTGCTTGGCAAGA -ACGGAAGATCTGTGCTTGGGTTGA -ACGGAAGATCTGTGCTTGTCCGAT -ACGGAAGATCTGTGCTTGTGGCAT -ACGGAAGATCTGTGCTTGCGAGAT -ACGGAAGATCTGTGCTTGTACCAC -ACGGAAGATCTGTGCTTGCAGAAC -ACGGAAGATCTGTGCTTGGTCTAC -ACGGAAGATCTGTGCTTGACGTAC -ACGGAAGATCTGTGCTTGAGTGAC -ACGGAAGATCTGTGCTTGCTGTAG -ACGGAAGATCTGTGCTTGCCTAAG -ACGGAAGATCTGTGCTTGGTTCAG -ACGGAAGATCTGTGCTTGGCATAG -ACGGAAGATCTGTGCTTGGACAAG -ACGGAAGATCTGTGCTTGAAGCAG -ACGGAAGATCTGTGCTTGCGTCAA -ACGGAAGATCTGTGCTTGGCTGAA -ACGGAAGATCTGTGCTTGAGTACG -ACGGAAGATCTGTGCTTGATCCGA -ACGGAAGATCTGTGCTTGATGGGA -ACGGAAGATCTGTGCTTGGTGCAA -ACGGAAGATCTGTGCTTGGAGGAA -ACGGAAGATCTGTGCTTGCAGGTA -ACGGAAGATCTGTGCTTGGACTCT -ACGGAAGATCTGTGCTTGAGTCCT -ACGGAAGATCTGTGCTTGTAAGCC -ACGGAAGATCTGTGCTTGATAGCC -ACGGAAGATCTGTGCTTGTAACCG -ACGGAAGATCTGTGCTTGATGCCA -ACGGAAGATCTGAGCCTAGGAAAC -ACGGAAGATCTGAGCCTAAACACC -ACGGAAGATCTGAGCCTAATCGAG -ACGGAAGATCTGAGCCTACTCCTT -ACGGAAGATCTGAGCCTACCTGTT -ACGGAAGATCTGAGCCTACGGTTT -ACGGAAGATCTGAGCCTAGTGGTT -ACGGAAGATCTGAGCCTAGCCTTT -ACGGAAGATCTGAGCCTAGGTCTT -ACGGAAGATCTGAGCCTAACGCTT -ACGGAAGATCTGAGCCTAAGCGTT -ACGGAAGATCTGAGCCTATTCGTC -ACGGAAGATCTGAGCCTATCTCTC -ACGGAAGATCTGAGCCTATGGATC -ACGGAAGATCTGAGCCTACACTTC -ACGGAAGATCTGAGCCTAGTACTC -ACGGAAGATCTGAGCCTAGATGTC -ACGGAAGATCTGAGCCTAACAGTC -ACGGAAGATCTGAGCCTATTGCTG -ACGGAAGATCTGAGCCTATCCATG -ACGGAAGATCTGAGCCTATGTGTG -ACGGAAGATCTGAGCCTACTAGTG -ACGGAAGATCTGAGCCTACATCTG -ACGGAAGATCTGAGCCTAGAGTTG -ACGGAAGATCTGAGCCTAAGACTG -ACGGAAGATCTGAGCCTATCGGTA -ACGGAAGATCTGAGCCTATGCCTA -ACGGAAGATCTGAGCCTACCACTA -ACGGAAGATCTGAGCCTAGGAGTA -ACGGAAGATCTGAGCCTATCGTCT -ACGGAAGATCTGAGCCTATGCACT -ACGGAAGATCTGAGCCTACTGACT -ACGGAAGATCTGAGCCTACAACCT -ACGGAAGATCTGAGCCTAGCTACT -ACGGAAGATCTGAGCCTAGGATCT -ACGGAAGATCTGAGCCTAAAGGCT -ACGGAAGATCTGAGCCTATCAACC -ACGGAAGATCTGAGCCTATGTTCC -ACGGAAGATCTGAGCCTAATTCCC -ACGGAAGATCTGAGCCTATTCTCG -ACGGAAGATCTGAGCCTATAGACG -ACGGAAGATCTGAGCCTAGTAACG -ACGGAAGATCTGAGCCTAACTTCG -ACGGAAGATCTGAGCCTATACGCA -ACGGAAGATCTGAGCCTACTTGCA -ACGGAAGATCTGAGCCTACGAACA -ACGGAAGATCTGAGCCTACAGTCA -ACGGAAGATCTGAGCCTAGATCCA -ACGGAAGATCTGAGCCTAACGACA -ACGGAAGATCTGAGCCTAAGCTCA -ACGGAAGATCTGAGCCTATCACGT -ACGGAAGATCTGAGCCTACGTAGT -ACGGAAGATCTGAGCCTAGTCAGT -ACGGAAGATCTGAGCCTAGAAGGT -ACGGAAGATCTGAGCCTAAACCGT -ACGGAAGATCTGAGCCTATTGTGC -ACGGAAGATCTGAGCCTACTAAGC -ACGGAAGATCTGAGCCTAACTAGC -ACGGAAGATCTGAGCCTAAGATGC -ACGGAAGATCTGAGCCTATGAAGG -ACGGAAGATCTGAGCCTACAATGG -ACGGAAGATCTGAGCCTAATGAGG -ACGGAAGATCTGAGCCTAAATGGG -ACGGAAGATCTGAGCCTATCCTGA -ACGGAAGATCTGAGCCTATAGCGA -ACGGAAGATCTGAGCCTACACAGA -ACGGAAGATCTGAGCCTAGCAAGA -ACGGAAGATCTGAGCCTAGGTTGA -ACGGAAGATCTGAGCCTATCCGAT -ACGGAAGATCTGAGCCTATGGCAT -ACGGAAGATCTGAGCCTACGAGAT -ACGGAAGATCTGAGCCTATACCAC -ACGGAAGATCTGAGCCTACAGAAC -ACGGAAGATCTGAGCCTAGTCTAC -ACGGAAGATCTGAGCCTAACGTAC -ACGGAAGATCTGAGCCTAAGTGAC -ACGGAAGATCTGAGCCTACTGTAG -ACGGAAGATCTGAGCCTACCTAAG -ACGGAAGATCTGAGCCTAGTTCAG -ACGGAAGATCTGAGCCTAGCATAG -ACGGAAGATCTGAGCCTAGACAAG -ACGGAAGATCTGAGCCTAAAGCAG -ACGGAAGATCTGAGCCTACGTCAA -ACGGAAGATCTGAGCCTAGCTGAA -ACGGAAGATCTGAGCCTAAGTACG -ACGGAAGATCTGAGCCTAATCCGA -ACGGAAGATCTGAGCCTAATGGGA -ACGGAAGATCTGAGCCTAGTGCAA -ACGGAAGATCTGAGCCTAGAGGAA -ACGGAAGATCTGAGCCTACAGGTA -ACGGAAGATCTGAGCCTAGACTCT -ACGGAAGATCTGAGCCTAAGTCCT -ACGGAAGATCTGAGCCTATAAGCC -ACGGAAGATCTGAGCCTAATAGCC -ACGGAAGATCTGAGCCTATAACCG -ACGGAAGATCTGAGCCTAATGCCA -ACGGAAGATCTGAGCACTGGAAAC -ACGGAAGATCTGAGCACTAACACC -ACGGAAGATCTGAGCACTATCGAG -ACGGAAGATCTGAGCACTCTCCTT -ACGGAAGATCTGAGCACTCCTGTT -ACGGAAGATCTGAGCACTCGGTTT -ACGGAAGATCTGAGCACTGTGGTT -ACGGAAGATCTGAGCACTGCCTTT -ACGGAAGATCTGAGCACTGGTCTT -ACGGAAGATCTGAGCACTACGCTT -ACGGAAGATCTGAGCACTAGCGTT -ACGGAAGATCTGAGCACTTTCGTC -ACGGAAGATCTGAGCACTTCTCTC -ACGGAAGATCTGAGCACTTGGATC -ACGGAAGATCTGAGCACTCACTTC -ACGGAAGATCTGAGCACTGTACTC -ACGGAAGATCTGAGCACTGATGTC -ACGGAAGATCTGAGCACTACAGTC -ACGGAAGATCTGAGCACTTTGCTG -ACGGAAGATCTGAGCACTTCCATG -ACGGAAGATCTGAGCACTTGTGTG -ACGGAAGATCTGAGCACTCTAGTG -ACGGAAGATCTGAGCACTCATCTG -ACGGAAGATCTGAGCACTGAGTTG -ACGGAAGATCTGAGCACTAGACTG -ACGGAAGATCTGAGCACTTCGGTA -ACGGAAGATCTGAGCACTTGCCTA -ACGGAAGATCTGAGCACTCCACTA -ACGGAAGATCTGAGCACTGGAGTA -ACGGAAGATCTGAGCACTTCGTCT -ACGGAAGATCTGAGCACTTGCACT -ACGGAAGATCTGAGCACTCTGACT -ACGGAAGATCTGAGCACTCAACCT -ACGGAAGATCTGAGCACTGCTACT -ACGGAAGATCTGAGCACTGGATCT -ACGGAAGATCTGAGCACTAAGGCT -ACGGAAGATCTGAGCACTTCAACC -ACGGAAGATCTGAGCACTTGTTCC -ACGGAAGATCTGAGCACTATTCCC -ACGGAAGATCTGAGCACTTTCTCG -ACGGAAGATCTGAGCACTTAGACG -ACGGAAGATCTGAGCACTGTAACG -ACGGAAGATCTGAGCACTACTTCG -ACGGAAGATCTGAGCACTTACGCA -ACGGAAGATCTGAGCACTCTTGCA -ACGGAAGATCTGAGCACTCGAACA -ACGGAAGATCTGAGCACTCAGTCA -ACGGAAGATCTGAGCACTGATCCA -ACGGAAGATCTGAGCACTACGACA -ACGGAAGATCTGAGCACTAGCTCA -ACGGAAGATCTGAGCACTTCACGT -ACGGAAGATCTGAGCACTCGTAGT -ACGGAAGATCTGAGCACTGTCAGT -ACGGAAGATCTGAGCACTGAAGGT -ACGGAAGATCTGAGCACTAACCGT -ACGGAAGATCTGAGCACTTTGTGC -ACGGAAGATCTGAGCACTCTAAGC -ACGGAAGATCTGAGCACTACTAGC -ACGGAAGATCTGAGCACTAGATGC -ACGGAAGATCTGAGCACTTGAAGG -ACGGAAGATCTGAGCACTCAATGG -ACGGAAGATCTGAGCACTATGAGG -ACGGAAGATCTGAGCACTAATGGG -ACGGAAGATCTGAGCACTTCCTGA -ACGGAAGATCTGAGCACTTAGCGA -ACGGAAGATCTGAGCACTCACAGA -ACGGAAGATCTGAGCACTGCAAGA -ACGGAAGATCTGAGCACTGGTTGA -ACGGAAGATCTGAGCACTTCCGAT -ACGGAAGATCTGAGCACTTGGCAT -ACGGAAGATCTGAGCACTCGAGAT -ACGGAAGATCTGAGCACTTACCAC -ACGGAAGATCTGAGCACTCAGAAC -ACGGAAGATCTGAGCACTGTCTAC -ACGGAAGATCTGAGCACTACGTAC -ACGGAAGATCTGAGCACTAGTGAC -ACGGAAGATCTGAGCACTCTGTAG -ACGGAAGATCTGAGCACTCCTAAG -ACGGAAGATCTGAGCACTGTTCAG -ACGGAAGATCTGAGCACTGCATAG -ACGGAAGATCTGAGCACTGACAAG -ACGGAAGATCTGAGCACTAAGCAG -ACGGAAGATCTGAGCACTCGTCAA -ACGGAAGATCTGAGCACTGCTGAA -ACGGAAGATCTGAGCACTAGTACG -ACGGAAGATCTGAGCACTATCCGA -ACGGAAGATCTGAGCACTATGGGA -ACGGAAGATCTGAGCACTGTGCAA -ACGGAAGATCTGAGCACTGAGGAA -ACGGAAGATCTGAGCACTCAGGTA -ACGGAAGATCTGAGCACTGACTCT -ACGGAAGATCTGAGCACTAGTCCT -ACGGAAGATCTGAGCACTTAAGCC -ACGGAAGATCTGAGCACTATAGCC -ACGGAAGATCTGAGCACTTAACCG -ACGGAAGATCTGAGCACTATGCCA -ACGGAAGATCTGTGCAGAGGAAAC -ACGGAAGATCTGTGCAGAAACACC -ACGGAAGATCTGTGCAGAATCGAG -ACGGAAGATCTGTGCAGACTCCTT -ACGGAAGATCTGTGCAGACCTGTT -ACGGAAGATCTGTGCAGACGGTTT -ACGGAAGATCTGTGCAGAGTGGTT -ACGGAAGATCTGTGCAGAGCCTTT -ACGGAAGATCTGTGCAGAGGTCTT -ACGGAAGATCTGTGCAGAACGCTT -ACGGAAGATCTGTGCAGAAGCGTT -ACGGAAGATCTGTGCAGATTCGTC -ACGGAAGATCTGTGCAGATCTCTC -ACGGAAGATCTGTGCAGATGGATC -ACGGAAGATCTGTGCAGACACTTC -ACGGAAGATCTGTGCAGAGTACTC -ACGGAAGATCTGTGCAGAGATGTC -ACGGAAGATCTGTGCAGAACAGTC -ACGGAAGATCTGTGCAGATTGCTG -ACGGAAGATCTGTGCAGATCCATG -ACGGAAGATCTGTGCAGATGTGTG -ACGGAAGATCTGTGCAGACTAGTG -ACGGAAGATCTGTGCAGACATCTG -ACGGAAGATCTGTGCAGAGAGTTG -ACGGAAGATCTGTGCAGAAGACTG -ACGGAAGATCTGTGCAGATCGGTA -ACGGAAGATCTGTGCAGATGCCTA -ACGGAAGATCTGTGCAGACCACTA -ACGGAAGATCTGTGCAGAGGAGTA -ACGGAAGATCTGTGCAGATCGTCT -ACGGAAGATCTGTGCAGATGCACT -ACGGAAGATCTGTGCAGACTGACT -ACGGAAGATCTGTGCAGACAACCT -ACGGAAGATCTGTGCAGAGCTACT -ACGGAAGATCTGTGCAGAGGATCT -ACGGAAGATCTGTGCAGAAAGGCT -ACGGAAGATCTGTGCAGATCAACC -ACGGAAGATCTGTGCAGATGTTCC -ACGGAAGATCTGTGCAGAATTCCC -ACGGAAGATCTGTGCAGATTCTCG -ACGGAAGATCTGTGCAGATAGACG -ACGGAAGATCTGTGCAGAGTAACG -ACGGAAGATCTGTGCAGAACTTCG -ACGGAAGATCTGTGCAGATACGCA -ACGGAAGATCTGTGCAGACTTGCA -ACGGAAGATCTGTGCAGACGAACA -ACGGAAGATCTGTGCAGACAGTCA -ACGGAAGATCTGTGCAGAGATCCA -ACGGAAGATCTGTGCAGAACGACA -ACGGAAGATCTGTGCAGAAGCTCA -ACGGAAGATCTGTGCAGATCACGT -ACGGAAGATCTGTGCAGACGTAGT -ACGGAAGATCTGTGCAGAGTCAGT -ACGGAAGATCTGTGCAGAGAAGGT -ACGGAAGATCTGTGCAGAAACCGT -ACGGAAGATCTGTGCAGATTGTGC -ACGGAAGATCTGTGCAGACTAAGC -ACGGAAGATCTGTGCAGAACTAGC -ACGGAAGATCTGTGCAGAAGATGC -ACGGAAGATCTGTGCAGATGAAGG -ACGGAAGATCTGTGCAGACAATGG -ACGGAAGATCTGTGCAGAATGAGG -ACGGAAGATCTGTGCAGAAATGGG -ACGGAAGATCTGTGCAGATCCTGA -ACGGAAGATCTGTGCAGATAGCGA -ACGGAAGATCTGTGCAGACACAGA -ACGGAAGATCTGTGCAGAGCAAGA -ACGGAAGATCTGTGCAGAGGTTGA -ACGGAAGATCTGTGCAGATCCGAT -ACGGAAGATCTGTGCAGATGGCAT -ACGGAAGATCTGTGCAGACGAGAT -ACGGAAGATCTGTGCAGATACCAC -ACGGAAGATCTGTGCAGACAGAAC -ACGGAAGATCTGTGCAGAGTCTAC -ACGGAAGATCTGTGCAGAACGTAC -ACGGAAGATCTGTGCAGAAGTGAC -ACGGAAGATCTGTGCAGACTGTAG -ACGGAAGATCTGTGCAGACCTAAG -ACGGAAGATCTGTGCAGAGTTCAG -ACGGAAGATCTGTGCAGAGCATAG -ACGGAAGATCTGTGCAGAGACAAG -ACGGAAGATCTGTGCAGAAAGCAG -ACGGAAGATCTGTGCAGACGTCAA -ACGGAAGATCTGTGCAGAGCTGAA -ACGGAAGATCTGTGCAGAAGTACG -ACGGAAGATCTGTGCAGAATCCGA -ACGGAAGATCTGTGCAGAATGGGA -ACGGAAGATCTGTGCAGAGTGCAA -ACGGAAGATCTGTGCAGAGAGGAA -ACGGAAGATCTGTGCAGACAGGTA -ACGGAAGATCTGTGCAGAGACTCT -ACGGAAGATCTGTGCAGAAGTCCT -ACGGAAGATCTGTGCAGATAAGCC -ACGGAAGATCTGTGCAGAATAGCC -ACGGAAGATCTGTGCAGATAACCG -ACGGAAGATCTGTGCAGAATGCCA -ACGGAAGATCTGAGGTGAGGAAAC -ACGGAAGATCTGAGGTGAAACACC -ACGGAAGATCTGAGGTGAATCGAG -ACGGAAGATCTGAGGTGACTCCTT -ACGGAAGATCTGAGGTGACCTGTT -ACGGAAGATCTGAGGTGACGGTTT -ACGGAAGATCTGAGGTGAGTGGTT -ACGGAAGATCTGAGGTGAGCCTTT -ACGGAAGATCTGAGGTGAGGTCTT -ACGGAAGATCTGAGGTGAACGCTT -ACGGAAGATCTGAGGTGAAGCGTT -ACGGAAGATCTGAGGTGATTCGTC -ACGGAAGATCTGAGGTGATCTCTC -ACGGAAGATCTGAGGTGATGGATC -ACGGAAGATCTGAGGTGACACTTC -ACGGAAGATCTGAGGTGAGTACTC -ACGGAAGATCTGAGGTGAGATGTC -ACGGAAGATCTGAGGTGAACAGTC -ACGGAAGATCTGAGGTGATTGCTG -ACGGAAGATCTGAGGTGATCCATG -ACGGAAGATCTGAGGTGATGTGTG -ACGGAAGATCTGAGGTGACTAGTG -ACGGAAGATCTGAGGTGACATCTG -ACGGAAGATCTGAGGTGAGAGTTG -ACGGAAGATCTGAGGTGAAGACTG -ACGGAAGATCTGAGGTGATCGGTA -ACGGAAGATCTGAGGTGATGCCTA -ACGGAAGATCTGAGGTGACCACTA -ACGGAAGATCTGAGGTGAGGAGTA -ACGGAAGATCTGAGGTGATCGTCT -ACGGAAGATCTGAGGTGATGCACT -ACGGAAGATCTGAGGTGACTGACT -ACGGAAGATCTGAGGTGACAACCT -ACGGAAGATCTGAGGTGAGCTACT -ACGGAAGATCTGAGGTGAGGATCT -ACGGAAGATCTGAGGTGAAAGGCT -ACGGAAGATCTGAGGTGATCAACC -ACGGAAGATCTGAGGTGATGTTCC -ACGGAAGATCTGAGGTGAATTCCC -ACGGAAGATCTGAGGTGATTCTCG -ACGGAAGATCTGAGGTGATAGACG -ACGGAAGATCTGAGGTGAGTAACG -ACGGAAGATCTGAGGTGAACTTCG -ACGGAAGATCTGAGGTGATACGCA -ACGGAAGATCTGAGGTGACTTGCA -ACGGAAGATCTGAGGTGACGAACA -ACGGAAGATCTGAGGTGACAGTCA -ACGGAAGATCTGAGGTGAGATCCA -ACGGAAGATCTGAGGTGAACGACA -ACGGAAGATCTGAGGTGAAGCTCA -ACGGAAGATCTGAGGTGATCACGT -ACGGAAGATCTGAGGTGACGTAGT -ACGGAAGATCTGAGGTGAGTCAGT -ACGGAAGATCTGAGGTGAGAAGGT -ACGGAAGATCTGAGGTGAAACCGT -ACGGAAGATCTGAGGTGATTGTGC -ACGGAAGATCTGAGGTGACTAAGC -ACGGAAGATCTGAGGTGAACTAGC -ACGGAAGATCTGAGGTGAAGATGC -ACGGAAGATCTGAGGTGATGAAGG -ACGGAAGATCTGAGGTGACAATGG -ACGGAAGATCTGAGGTGAATGAGG -ACGGAAGATCTGAGGTGAAATGGG -ACGGAAGATCTGAGGTGATCCTGA -ACGGAAGATCTGAGGTGATAGCGA -ACGGAAGATCTGAGGTGACACAGA -ACGGAAGATCTGAGGTGAGCAAGA -ACGGAAGATCTGAGGTGAGGTTGA -ACGGAAGATCTGAGGTGATCCGAT -ACGGAAGATCTGAGGTGATGGCAT -ACGGAAGATCTGAGGTGACGAGAT -ACGGAAGATCTGAGGTGATACCAC -ACGGAAGATCTGAGGTGACAGAAC -ACGGAAGATCTGAGGTGAGTCTAC -ACGGAAGATCTGAGGTGAACGTAC -ACGGAAGATCTGAGGTGAAGTGAC -ACGGAAGATCTGAGGTGACTGTAG -ACGGAAGATCTGAGGTGACCTAAG -ACGGAAGATCTGAGGTGAGTTCAG -ACGGAAGATCTGAGGTGAGCATAG -ACGGAAGATCTGAGGTGAGACAAG -ACGGAAGATCTGAGGTGAAAGCAG -ACGGAAGATCTGAGGTGACGTCAA -ACGGAAGATCTGAGGTGAGCTGAA -ACGGAAGATCTGAGGTGAAGTACG -ACGGAAGATCTGAGGTGAATCCGA -ACGGAAGATCTGAGGTGAATGGGA -ACGGAAGATCTGAGGTGAGTGCAA -ACGGAAGATCTGAGGTGAGAGGAA -ACGGAAGATCTGAGGTGACAGGTA -ACGGAAGATCTGAGGTGAGACTCT -ACGGAAGATCTGAGGTGAAGTCCT -ACGGAAGATCTGAGGTGATAAGCC -ACGGAAGATCTGAGGTGAATAGCC -ACGGAAGATCTGAGGTGATAACCG -ACGGAAGATCTGAGGTGAATGCCA -ACGGAAGATCTGTGGCAAGGAAAC -ACGGAAGATCTGTGGCAAAACACC -ACGGAAGATCTGTGGCAAATCGAG -ACGGAAGATCTGTGGCAACTCCTT -ACGGAAGATCTGTGGCAACCTGTT -ACGGAAGATCTGTGGCAACGGTTT -ACGGAAGATCTGTGGCAAGTGGTT -ACGGAAGATCTGTGGCAAGCCTTT -ACGGAAGATCTGTGGCAAGGTCTT -ACGGAAGATCTGTGGCAAACGCTT -ACGGAAGATCTGTGGCAAAGCGTT -ACGGAAGATCTGTGGCAATTCGTC -ACGGAAGATCTGTGGCAATCTCTC -ACGGAAGATCTGTGGCAATGGATC -ACGGAAGATCTGTGGCAACACTTC -ACGGAAGATCTGTGGCAAGTACTC -ACGGAAGATCTGTGGCAAGATGTC -ACGGAAGATCTGTGGCAAACAGTC -ACGGAAGATCTGTGGCAATTGCTG -ACGGAAGATCTGTGGCAATCCATG -ACGGAAGATCTGTGGCAATGTGTG -ACGGAAGATCTGTGGCAACTAGTG -ACGGAAGATCTGTGGCAACATCTG -ACGGAAGATCTGTGGCAAGAGTTG -ACGGAAGATCTGTGGCAAAGACTG -ACGGAAGATCTGTGGCAATCGGTA -ACGGAAGATCTGTGGCAATGCCTA -ACGGAAGATCTGTGGCAACCACTA -ACGGAAGATCTGTGGCAAGGAGTA -ACGGAAGATCTGTGGCAATCGTCT -ACGGAAGATCTGTGGCAATGCACT -ACGGAAGATCTGTGGCAACTGACT -ACGGAAGATCTGTGGCAACAACCT -ACGGAAGATCTGTGGCAAGCTACT -ACGGAAGATCTGTGGCAAGGATCT -ACGGAAGATCTGTGGCAAAAGGCT -ACGGAAGATCTGTGGCAATCAACC -ACGGAAGATCTGTGGCAATGTTCC -ACGGAAGATCTGTGGCAAATTCCC -ACGGAAGATCTGTGGCAATTCTCG -ACGGAAGATCTGTGGCAATAGACG -ACGGAAGATCTGTGGCAAGTAACG -ACGGAAGATCTGTGGCAAACTTCG -ACGGAAGATCTGTGGCAATACGCA -ACGGAAGATCTGTGGCAACTTGCA -ACGGAAGATCTGTGGCAACGAACA -ACGGAAGATCTGTGGCAACAGTCA -ACGGAAGATCTGTGGCAAGATCCA -ACGGAAGATCTGTGGCAAACGACA -ACGGAAGATCTGTGGCAAAGCTCA -ACGGAAGATCTGTGGCAATCACGT -ACGGAAGATCTGTGGCAACGTAGT -ACGGAAGATCTGTGGCAAGTCAGT -ACGGAAGATCTGTGGCAAGAAGGT -ACGGAAGATCTGTGGCAAAACCGT -ACGGAAGATCTGTGGCAATTGTGC -ACGGAAGATCTGTGGCAACTAAGC -ACGGAAGATCTGTGGCAAACTAGC -ACGGAAGATCTGTGGCAAAGATGC -ACGGAAGATCTGTGGCAATGAAGG -ACGGAAGATCTGTGGCAACAATGG -ACGGAAGATCTGTGGCAAATGAGG -ACGGAAGATCTGTGGCAAAATGGG -ACGGAAGATCTGTGGCAATCCTGA -ACGGAAGATCTGTGGCAATAGCGA -ACGGAAGATCTGTGGCAACACAGA -ACGGAAGATCTGTGGCAAGCAAGA -ACGGAAGATCTGTGGCAAGGTTGA -ACGGAAGATCTGTGGCAATCCGAT -ACGGAAGATCTGTGGCAATGGCAT -ACGGAAGATCTGTGGCAACGAGAT -ACGGAAGATCTGTGGCAATACCAC -ACGGAAGATCTGTGGCAACAGAAC -ACGGAAGATCTGTGGCAAGTCTAC -ACGGAAGATCTGTGGCAAACGTAC -ACGGAAGATCTGTGGCAAAGTGAC -ACGGAAGATCTGTGGCAACTGTAG -ACGGAAGATCTGTGGCAACCTAAG -ACGGAAGATCTGTGGCAAGTTCAG -ACGGAAGATCTGTGGCAAGCATAG -ACGGAAGATCTGTGGCAAGACAAG -ACGGAAGATCTGTGGCAAAAGCAG -ACGGAAGATCTGTGGCAACGTCAA -ACGGAAGATCTGTGGCAAGCTGAA -ACGGAAGATCTGTGGCAAAGTACG -ACGGAAGATCTGTGGCAAATCCGA -ACGGAAGATCTGTGGCAAATGGGA -ACGGAAGATCTGTGGCAAGTGCAA -ACGGAAGATCTGTGGCAAGAGGAA -ACGGAAGATCTGTGGCAACAGGTA -ACGGAAGATCTGTGGCAAGACTCT -ACGGAAGATCTGTGGCAAAGTCCT -ACGGAAGATCTGTGGCAATAAGCC -ACGGAAGATCTGTGGCAAATAGCC -ACGGAAGATCTGTGGCAATAACCG -ACGGAAGATCTGTGGCAAATGCCA -ACGGAAGATCTGAGGATGGGAAAC -ACGGAAGATCTGAGGATGAACACC -ACGGAAGATCTGAGGATGATCGAG -ACGGAAGATCTGAGGATGCTCCTT -ACGGAAGATCTGAGGATGCCTGTT -ACGGAAGATCTGAGGATGCGGTTT -ACGGAAGATCTGAGGATGGTGGTT -ACGGAAGATCTGAGGATGGCCTTT -ACGGAAGATCTGAGGATGGGTCTT -ACGGAAGATCTGAGGATGACGCTT -ACGGAAGATCTGAGGATGAGCGTT -ACGGAAGATCTGAGGATGTTCGTC -ACGGAAGATCTGAGGATGTCTCTC -ACGGAAGATCTGAGGATGTGGATC -ACGGAAGATCTGAGGATGCACTTC -ACGGAAGATCTGAGGATGGTACTC -ACGGAAGATCTGAGGATGGATGTC -ACGGAAGATCTGAGGATGACAGTC -ACGGAAGATCTGAGGATGTTGCTG -ACGGAAGATCTGAGGATGTCCATG -ACGGAAGATCTGAGGATGTGTGTG -ACGGAAGATCTGAGGATGCTAGTG -ACGGAAGATCTGAGGATGCATCTG -ACGGAAGATCTGAGGATGGAGTTG -ACGGAAGATCTGAGGATGAGACTG -ACGGAAGATCTGAGGATGTCGGTA -ACGGAAGATCTGAGGATGTGCCTA -ACGGAAGATCTGAGGATGCCACTA -ACGGAAGATCTGAGGATGGGAGTA -ACGGAAGATCTGAGGATGTCGTCT -ACGGAAGATCTGAGGATGTGCACT -ACGGAAGATCTGAGGATGCTGACT -ACGGAAGATCTGAGGATGCAACCT -ACGGAAGATCTGAGGATGGCTACT -ACGGAAGATCTGAGGATGGGATCT -ACGGAAGATCTGAGGATGAAGGCT -ACGGAAGATCTGAGGATGTCAACC -ACGGAAGATCTGAGGATGTGTTCC -ACGGAAGATCTGAGGATGATTCCC -ACGGAAGATCTGAGGATGTTCTCG -ACGGAAGATCTGAGGATGTAGACG -ACGGAAGATCTGAGGATGGTAACG -ACGGAAGATCTGAGGATGACTTCG -ACGGAAGATCTGAGGATGTACGCA -ACGGAAGATCTGAGGATGCTTGCA -ACGGAAGATCTGAGGATGCGAACA -ACGGAAGATCTGAGGATGCAGTCA -ACGGAAGATCTGAGGATGGATCCA -ACGGAAGATCTGAGGATGACGACA -ACGGAAGATCTGAGGATGAGCTCA -ACGGAAGATCTGAGGATGTCACGT -ACGGAAGATCTGAGGATGCGTAGT -ACGGAAGATCTGAGGATGGTCAGT -ACGGAAGATCTGAGGATGGAAGGT -ACGGAAGATCTGAGGATGAACCGT -ACGGAAGATCTGAGGATGTTGTGC -ACGGAAGATCTGAGGATGCTAAGC -ACGGAAGATCTGAGGATGACTAGC -ACGGAAGATCTGAGGATGAGATGC -ACGGAAGATCTGAGGATGTGAAGG -ACGGAAGATCTGAGGATGCAATGG -ACGGAAGATCTGAGGATGATGAGG -ACGGAAGATCTGAGGATGAATGGG -ACGGAAGATCTGAGGATGTCCTGA -ACGGAAGATCTGAGGATGTAGCGA -ACGGAAGATCTGAGGATGCACAGA -ACGGAAGATCTGAGGATGGCAAGA -ACGGAAGATCTGAGGATGGGTTGA -ACGGAAGATCTGAGGATGTCCGAT -ACGGAAGATCTGAGGATGTGGCAT -ACGGAAGATCTGAGGATGCGAGAT -ACGGAAGATCTGAGGATGTACCAC -ACGGAAGATCTGAGGATGCAGAAC -ACGGAAGATCTGAGGATGGTCTAC -ACGGAAGATCTGAGGATGACGTAC -ACGGAAGATCTGAGGATGAGTGAC -ACGGAAGATCTGAGGATGCTGTAG -ACGGAAGATCTGAGGATGCCTAAG -ACGGAAGATCTGAGGATGGTTCAG -ACGGAAGATCTGAGGATGGCATAG -ACGGAAGATCTGAGGATGGACAAG -ACGGAAGATCTGAGGATGAAGCAG -ACGGAAGATCTGAGGATGCGTCAA -ACGGAAGATCTGAGGATGGCTGAA -ACGGAAGATCTGAGGATGAGTACG -ACGGAAGATCTGAGGATGATCCGA -ACGGAAGATCTGAGGATGATGGGA -ACGGAAGATCTGAGGATGGTGCAA -ACGGAAGATCTGAGGATGGAGGAA -ACGGAAGATCTGAGGATGCAGGTA -ACGGAAGATCTGAGGATGGACTCT -ACGGAAGATCTGAGGATGAGTCCT -ACGGAAGATCTGAGGATGTAAGCC -ACGGAAGATCTGAGGATGATAGCC -ACGGAAGATCTGAGGATGTAACCG -ACGGAAGATCTGAGGATGATGCCA -ACGGAAGATCTGGGGAATGGAAAC -ACGGAAGATCTGGGGAATAACACC -ACGGAAGATCTGGGGAATATCGAG -ACGGAAGATCTGGGGAATCTCCTT -ACGGAAGATCTGGGGAATCCTGTT -ACGGAAGATCTGGGGAATCGGTTT -ACGGAAGATCTGGGGAATGTGGTT -ACGGAAGATCTGGGGAATGCCTTT -ACGGAAGATCTGGGGAATGGTCTT -ACGGAAGATCTGGGGAATACGCTT -ACGGAAGATCTGGGGAATAGCGTT -ACGGAAGATCTGGGGAATTTCGTC -ACGGAAGATCTGGGGAATTCTCTC -ACGGAAGATCTGGGGAATTGGATC -ACGGAAGATCTGGGGAATCACTTC -ACGGAAGATCTGGGGAATGTACTC -ACGGAAGATCTGGGGAATGATGTC -ACGGAAGATCTGGGGAATACAGTC -ACGGAAGATCTGGGGAATTTGCTG -ACGGAAGATCTGGGGAATTCCATG -ACGGAAGATCTGGGGAATTGTGTG -ACGGAAGATCTGGGGAATCTAGTG -ACGGAAGATCTGGGGAATCATCTG -ACGGAAGATCTGGGGAATGAGTTG -ACGGAAGATCTGGGGAATAGACTG -ACGGAAGATCTGGGGAATTCGGTA -ACGGAAGATCTGGGGAATTGCCTA -ACGGAAGATCTGGGGAATCCACTA -ACGGAAGATCTGGGGAATGGAGTA -ACGGAAGATCTGGGGAATTCGTCT -ACGGAAGATCTGGGGAATTGCACT -ACGGAAGATCTGGGGAATCTGACT -ACGGAAGATCTGGGGAATCAACCT -ACGGAAGATCTGGGGAATGCTACT -ACGGAAGATCTGGGGAATGGATCT -ACGGAAGATCTGGGGAATAAGGCT -ACGGAAGATCTGGGGAATTCAACC -ACGGAAGATCTGGGGAATTGTTCC -ACGGAAGATCTGGGGAATATTCCC -ACGGAAGATCTGGGGAATTTCTCG -ACGGAAGATCTGGGGAATTAGACG -ACGGAAGATCTGGGGAATGTAACG -ACGGAAGATCTGGGGAATACTTCG -ACGGAAGATCTGGGGAATTACGCA -ACGGAAGATCTGGGGAATCTTGCA -ACGGAAGATCTGGGGAATCGAACA -ACGGAAGATCTGGGGAATCAGTCA -ACGGAAGATCTGGGGAATGATCCA -ACGGAAGATCTGGGGAATACGACA -ACGGAAGATCTGGGGAATAGCTCA -ACGGAAGATCTGGGGAATTCACGT -ACGGAAGATCTGGGGAATCGTAGT -ACGGAAGATCTGGGGAATGTCAGT -ACGGAAGATCTGGGGAATGAAGGT -ACGGAAGATCTGGGGAATAACCGT -ACGGAAGATCTGGGGAATTTGTGC -ACGGAAGATCTGGGGAATCTAAGC -ACGGAAGATCTGGGGAATACTAGC -ACGGAAGATCTGGGGAATAGATGC -ACGGAAGATCTGGGGAATTGAAGG -ACGGAAGATCTGGGGAATCAATGG -ACGGAAGATCTGGGGAATATGAGG -ACGGAAGATCTGGGGAATAATGGG -ACGGAAGATCTGGGGAATTCCTGA -ACGGAAGATCTGGGGAATTAGCGA -ACGGAAGATCTGGGGAATCACAGA -ACGGAAGATCTGGGGAATGCAAGA -ACGGAAGATCTGGGGAATGGTTGA -ACGGAAGATCTGGGGAATTCCGAT -ACGGAAGATCTGGGGAATTGGCAT -ACGGAAGATCTGGGGAATCGAGAT -ACGGAAGATCTGGGGAATTACCAC -ACGGAAGATCTGGGGAATCAGAAC -ACGGAAGATCTGGGGAATGTCTAC -ACGGAAGATCTGGGGAATACGTAC -ACGGAAGATCTGGGGAATAGTGAC -ACGGAAGATCTGGGGAATCTGTAG -ACGGAAGATCTGGGGAATCCTAAG -ACGGAAGATCTGGGGAATGTTCAG -ACGGAAGATCTGGGGAATGCATAG -ACGGAAGATCTGGGGAATGACAAG -ACGGAAGATCTGGGGAATAAGCAG -ACGGAAGATCTGGGGAATCGTCAA -ACGGAAGATCTGGGGAATGCTGAA -ACGGAAGATCTGGGGAATAGTACG -ACGGAAGATCTGGGGAATATCCGA -ACGGAAGATCTGGGGAATATGGGA -ACGGAAGATCTGGGGAATGTGCAA -ACGGAAGATCTGGGGAATGAGGAA -ACGGAAGATCTGGGGAATCAGGTA -ACGGAAGATCTGGGGAATGACTCT -ACGGAAGATCTGGGGAATAGTCCT -ACGGAAGATCTGGGGAATTAAGCC -ACGGAAGATCTGGGGAATATAGCC -ACGGAAGATCTGGGGAATTAACCG -ACGGAAGATCTGGGGAATATGCCA -ACGGAAGATCTGTGATCCGGAAAC -ACGGAAGATCTGTGATCCAACACC -ACGGAAGATCTGTGATCCATCGAG -ACGGAAGATCTGTGATCCCTCCTT -ACGGAAGATCTGTGATCCCCTGTT -ACGGAAGATCTGTGATCCCGGTTT -ACGGAAGATCTGTGATCCGTGGTT -ACGGAAGATCTGTGATCCGCCTTT -ACGGAAGATCTGTGATCCGGTCTT -ACGGAAGATCTGTGATCCACGCTT -ACGGAAGATCTGTGATCCAGCGTT -ACGGAAGATCTGTGATCCTTCGTC -ACGGAAGATCTGTGATCCTCTCTC -ACGGAAGATCTGTGATCCTGGATC -ACGGAAGATCTGTGATCCCACTTC -ACGGAAGATCTGTGATCCGTACTC -ACGGAAGATCTGTGATCCGATGTC -ACGGAAGATCTGTGATCCACAGTC -ACGGAAGATCTGTGATCCTTGCTG -ACGGAAGATCTGTGATCCTCCATG -ACGGAAGATCTGTGATCCTGTGTG -ACGGAAGATCTGTGATCCCTAGTG -ACGGAAGATCTGTGATCCCATCTG -ACGGAAGATCTGTGATCCGAGTTG -ACGGAAGATCTGTGATCCAGACTG -ACGGAAGATCTGTGATCCTCGGTA -ACGGAAGATCTGTGATCCTGCCTA -ACGGAAGATCTGTGATCCCCACTA -ACGGAAGATCTGTGATCCGGAGTA -ACGGAAGATCTGTGATCCTCGTCT -ACGGAAGATCTGTGATCCTGCACT -ACGGAAGATCTGTGATCCCTGACT -ACGGAAGATCTGTGATCCCAACCT -ACGGAAGATCTGTGATCCGCTACT -ACGGAAGATCTGTGATCCGGATCT -ACGGAAGATCTGTGATCCAAGGCT -ACGGAAGATCTGTGATCCTCAACC -ACGGAAGATCTGTGATCCTGTTCC -ACGGAAGATCTGTGATCCATTCCC -ACGGAAGATCTGTGATCCTTCTCG -ACGGAAGATCTGTGATCCTAGACG -ACGGAAGATCTGTGATCCGTAACG -ACGGAAGATCTGTGATCCACTTCG -ACGGAAGATCTGTGATCCTACGCA -ACGGAAGATCTGTGATCCCTTGCA -ACGGAAGATCTGTGATCCCGAACA -ACGGAAGATCTGTGATCCCAGTCA -ACGGAAGATCTGTGATCCGATCCA -ACGGAAGATCTGTGATCCACGACA -ACGGAAGATCTGTGATCCAGCTCA -ACGGAAGATCTGTGATCCTCACGT -ACGGAAGATCTGTGATCCCGTAGT -ACGGAAGATCTGTGATCCGTCAGT -ACGGAAGATCTGTGATCCGAAGGT -ACGGAAGATCTGTGATCCAACCGT -ACGGAAGATCTGTGATCCTTGTGC -ACGGAAGATCTGTGATCCCTAAGC -ACGGAAGATCTGTGATCCACTAGC -ACGGAAGATCTGTGATCCAGATGC -ACGGAAGATCTGTGATCCTGAAGG -ACGGAAGATCTGTGATCCCAATGG -ACGGAAGATCTGTGATCCATGAGG -ACGGAAGATCTGTGATCCAATGGG -ACGGAAGATCTGTGATCCTCCTGA -ACGGAAGATCTGTGATCCTAGCGA -ACGGAAGATCTGTGATCCCACAGA -ACGGAAGATCTGTGATCCGCAAGA -ACGGAAGATCTGTGATCCGGTTGA -ACGGAAGATCTGTGATCCTCCGAT -ACGGAAGATCTGTGATCCTGGCAT -ACGGAAGATCTGTGATCCCGAGAT -ACGGAAGATCTGTGATCCTACCAC -ACGGAAGATCTGTGATCCCAGAAC -ACGGAAGATCTGTGATCCGTCTAC -ACGGAAGATCTGTGATCCACGTAC -ACGGAAGATCTGTGATCCAGTGAC -ACGGAAGATCTGTGATCCCTGTAG -ACGGAAGATCTGTGATCCCCTAAG -ACGGAAGATCTGTGATCCGTTCAG -ACGGAAGATCTGTGATCCGCATAG -ACGGAAGATCTGTGATCCGACAAG -ACGGAAGATCTGTGATCCAAGCAG -ACGGAAGATCTGTGATCCCGTCAA -ACGGAAGATCTGTGATCCGCTGAA -ACGGAAGATCTGTGATCCAGTACG -ACGGAAGATCTGTGATCCATCCGA -ACGGAAGATCTGTGATCCATGGGA -ACGGAAGATCTGTGATCCGTGCAA -ACGGAAGATCTGTGATCCGAGGAA -ACGGAAGATCTGTGATCCCAGGTA -ACGGAAGATCTGTGATCCGACTCT -ACGGAAGATCTGTGATCCAGTCCT -ACGGAAGATCTGTGATCCTAAGCC -ACGGAAGATCTGTGATCCATAGCC -ACGGAAGATCTGTGATCCTAACCG -ACGGAAGATCTGTGATCCATGCCA -ACGGAAGATCTGCGATAGGGAAAC -ACGGAAGATCTGCGATAGAACACC -ACGGAAGATCTGCGATAGATCGAG -ACGGAAGATCTGCGATAGCTCCTT -ACGGAAGATCTGCGATAGCCTGTT -ACGGAAGATCTGCGATAGCGGTTT -ACGGAAGATCTGCGATAGGTGGTT -ACGGAAGATCTGCGATAGGCCTTT -ACGGAAGATCTGCGATAGGGTCTT -ACGGAAGATCTGCGATAGACGCTT -ACGGAAGATCTGCGATAGAGCGTT -ACGGAAGATCTGCGATAGTTCGTC -ACGGAAGATCTGCGATAGTCTCTC -ACGGAAGATCTGCGATAGTGGATC -ACGGAAGATCTGCGATAGCACTTC -ACGGAAGATCTGCGATAGGTACTC -ACGGAAGATCTGCGATAGGATGTC -ACGGAAGATCTGCGATAGACAGTC -ACGGAAGATCTGCGATAGTTGCTG -ACGGAAGATCTGCGATAGTCCATG -ACGGAAGATCTGCGATAGTGTGTG -ACGGAAGATCTGCGATAGCTAGTG -ACGGAAGATCTGCGATAGCATCTG -ACGGAAGATCTGCGATAGGAGTTG -ACGGAAGATCTGCGATAGAGACTG -ACGGAAGATCTGCGATAGTCGGTA -ACGGAAGATCTGCGATAGTGCCTA -ACGGAAGATCTGCGATAGCCACTA -ACGGAAGATCTGCGATAGGGAGTA -ACGGAAGATCTGCGATAGTCGTCT -ACGGAAGATCTGCGATAGTGCACT -ACGGAAGATCTGCGATAGCTGACT -ACGGAAGATCTGCGATAGCAACCT -ACGGAAGATCTGCGATAGGCTACT -ACGGAAGATCTGCGATAGGGATCT -ACGGAAGATCTGCGATAGAAGGCT -ACGGAAGATCTGCGATAGTCAACC -ACGGAAGATCTGCGATAGTGTTCC -ACGGAAGATCTGCGATAGATTCCC -ACGGAAGATCTGCGATAGTTCTCG -ACGGAAGATCTGCGATAGTAGACG -ACGGAAGATCTGCGATAGGTAACG -ACGGAAGATCTGCGATAGACTTCG -ACGGAAGATCTGCGATAGTACGCA -ACGGAAGATCTGCGATAGCTTGCA -ACGGAAGATCTGCGATAGCGAACA -ACGGAAGATCTGCGATAGCAGTCA -ACGGAAGATCTGCGATAGGATCCA -ACGGAAGATCTGCGATAGACGACA -ACGGAAGATCTGCGATAGAGCTCA -ACGGAAGATCTGCGATAGTCACGT -ACGGAAGATCTGCGATAGCGTAGT -ACGGAAGATCTGCGATAGGTCAGT -ACGGAAGATCTGCGATAGGAAGGT -ACGGAAGATCTGCGATAGAACCGT -ACGGAAGATCTGCGATAGTTGTGC -ACGGAAGATCTGCGATAGCTAAGC -ACGGAAGATCTGCGATAGACTAGC -ACGGAAGATCTGCGATAGAGATGC -ACGGAAGATCTGCGATAGTGAAGG -ACGGAAGATCTGCGATAGCAATGG -ACGGAAGATCTGCGATAGATGAGG -ACGGAAGATCTGCGATAGAATGGG -ACGGAAGATCTGCGATAGTCCTGA -ACGGAAGATCTGCGATAGTAGCGA -ACGGAAGATCTGCGATAGCACAGA -ACGGAAGATCTGCGATAGGCAAGA -ACGGAAGATCTGCGATAGGGTTGA -ACGGAAGATCTGCGATAGTCCGAT -ACGGAAGATCTGCGATAGTGGCAT -ACGGAAGATCTGCGATAGCGAGAT -ACGGAAGATCTGCGATAGTACCAC -ACGGAAGATCTGCGATAGCAGAAC -ACGGAAGATCTGCGATAGGTCTAC -ACGGAAGATCTGCGATAGACGTAC -ACGGAAGATCTGCGATAGAGTGAC -ACGGAAGATCTGCGATAGCTGTAG -ACGGAAGATCTGCGATAGCCTAAG -ACGGAAGATCTGCGATAGGTTCAG -ACGGAAGATCTGCGATAGGCATAG -ACGGAAGATCTGCGATAGGACAAG -ACGGAAGATCTGCGATAGAAGCAG -ACGGAAGATCTGCGATAGCGTCAA -ACGGAAGATCTGCGATAGGCTGAA -ACGGAAGATCTGCGATAGAGTACG -ACGGAAGATCTGCGATAGATCCGA -ACGGAAGATCTGCGATAGATGGGA -ACGGAAGATCTGCGATAGGTGCAA -ACGGAAGATCTGCGATAGGAGGAA -ACGGAAGATCTGCGATAGCAGGTA -ACGGAAGATCTGCGATAGGACTCT -ACGGAAGATCTGCGATAGAGTCCT -ACGGAAGATCTGCGATAGTAAGCC -ACGGAAGATCTGCGATAGATAGCC -ACGGAAGATCTGCGATAGTAACCG -ACGGAAGATCTGCGATAGATGCCA -ACGGAAGATCTGAGACACGGAAAC -ACGGAAGATCTGAGACACAACACC -ACGGAAGATCTGAGACACATCGAG -ACGGAAGATCTGAGACACCTCCTT -ACGGAAGATCTGAGACACCCTGTT -ACGGAAGATCTGAGACACCGGTTT -ACGGAAGATCTGAGACACGTGGTT -ACGGAAGATCTGAGACACGCCTTT -ACGGAAGATCTGAGACACGGTCTT -ACGGAAGATCTGAGACACACGCTT -ACGGAAGATCTGAGACACAGCGTT -ACGGAAGATCTGAGACACTTCGTC -ACGGAAGATCTGAGACACTCTCTC -ACGGAAGATCTGAGACACTGGATC -ACGGAAGATCTGAGACACCACTTC -ACGGAAGATCTGAGACACGTACTC -ACGGAAGATCTGAGACACGATGTC -ACGGAAGATCTGAGACACACAGTC -ACGGAAGATCTGAGACACTTGCTG -ACGGAAGATCTGAGACACTCCATG -ACGGAAGATCTGAGACACTGTGTG -ACGGAAGATCTGAGACACCTAGTG -ACGGAAGATCTGAGACACCATCTG -ACGGAAGATCTGAGACACGAGTTG -ACGGAAGATCTGAGACACAGACTG -ACGGAAGATCTGAGACACTCGGTA -ACGGAAGATCTGAGACACTGCCTA -ACGGAAGATCTGAGACACCCACTA -ACGGAAGATCTGAGACACGGAGTA -ACGGAAGATCTGAGACACTCGTCT -ACGGAAGATCTGAGACACTGCACT -ACGGAAGATCTGAGACACCTGACT -ACGGAAGATCTGAGACACCAACCT -ACGGAAGATCTGAGACACGCTACT -ACGGAAGATCTGAGACACGGATCT -ACGGAAGATCTGAGACACAAGGCT -ACGGAAGATCTGAGACACTCAACC -ACGGAAGATCTGAGACACTGTTCC -ACGGAAGATCTGAGACACATTCCC -ACGGAAGATCTGAGACACTTCTCG -ACGGAAGATCTGAGACACTAGACG -ACGGAAGATCTGAGACACGTAACG -ACGGAAGATCTGAGACACACTTCG -ACGGAAGATCTGAGACACTACGCA -ACGGAAGATCTGAGACACCTTGCA -ACGGAAGATCTGAGACACCGAACA -ACGGAAGATCTGAGACACCAGTCA -ACGGAAGATCTGAGACACGATCCA -ACGGAAGATCTGAGACACACGACA -ACGGAAGATCTGAGACACAGCTCA -ACGGAAGATCTGAGACACTCACGT -ACGGAAGATCTGAGACACCGTAGT -ACGGAAGATCTGAGACACGTCAGT -ACGGAAGATCTGAGACACGAAGGT -ACGGAAGATCTGAGACACAACCGT -ACGGAAGATCTGAGACACTTGTGC -ACGGAAGATCTGAGACACCTAAGC -ACGGAAGATCTGAGACACACTAGC -ACGGAAGATCTGAGACACAGATGC -ACGGAAGATCTGAGACACTGAAGG -ACGGAAGATCTGAGACACCAATGG -ACGGAAGATCTGAGACACATGAGG -ACGGAAGATCTGAGACACAATGGG -ACGGAAGATCTGAGACACTCCTGA -ACGGAAGATCTGAGACACTAGCGA -ACGGAAGATCTGAGACACCACAGA -ACGGAAGATCTGAGACACGCAAGA -ACGGAAGATCTGAGACACGGTTGA -ACGGAAGATCTGAGACACTCCGAT -ACGGAAGATCTGAGACACTGGCAT -ACGGAAGATCTGAGACACCGAGAT -ACGGAAGATCTGAGACACTACCAC -ACGGAAGATCTGAGACACCAGAAC -ACGGAAGATCTGAGACACGTCTAC -ACGGAAGATCTGAGACACACGTAC -ACGGAAGATCTGAGACACAGTGAC -ACGGAAGATCTGAGACACCTGTAG -ACGGAAGATCTGAGACACCCTAAG -ACGGAAGATCTGAGACACGTTCAG -ACGGAAGATCTGAGACACGCATAG -ACGGAAGATCTGAGACACGACAAG -ACGGAAGATCTGAGACACAAGCAG -ACGGAAGATCTGAGACACCGTCAA -ACGGAAGATCTGAGACACGCTGAA -ACGGAAGATCTGAGACACAGTACG -ACGGAAGATCTGAGACACATCCGA -ACGGAAGATCTGAGACACATGGGA -ACGGAAGATCTGAGACACGTGCAA -ACGGAAGATCTGAGACACGAGGAA -ACGGAAGATCTGAGACACCAGGTA -ACGGAAGATCTGAGACACGACTCT -ACGGAAGATCTGAGACACAGTCCT -ACGGAAGATCTGAGACACTAAGCC -ACGGAAGATCTGAGACACATAGCC -ACGGAAGATCTGAGACACTAACCG -ACGGAAGATCTGAGACACATGCCA -ACGGAAGATCTGAGAGCAGGAAAC -ACGGAAGATCTGAGAGCAAACACC -ACGGAAGATCTGAGAGCAATCGAG -ACGGAAGATCTGAGAGCACTCCTT -ACGGAAGATCTGAGAGCACCTGTT -ACGGAAGATCTGAGAGCACGGTTT -ACGGAAGATCTGAGAGCAGTGGTT -ACGGAAGATCTGAGAGCAGCCTTT -ACGGAAGATCTGAGAGCAGGTCTT -ACGGAAGATCTGAGAGCAACGCTT -ACGGAAGATCTGAGAGCAAGCGTT -ACGGAAGATCTGAGAGCATTCGTC -ACGGAAGATCTGAGAGCATCTCTC -ACGGAAGATCTGAGAGCATGGATC -ACGGAAGATCTGAGAGCACACTTC -ACGGAAGATCTGAGAGCAGTACTC -ACGGAAGATCTGAGAGCAGATGTC -ACGGAAGATCTGAGAGCAACAGTC -ACGGAAGATCTGAGAGCATTGCTG -ACGGAAGATCTGAGAGCATCCATG -ACGGAAGATCTGAGAGCATGTGTG -ACGGAAGATCTGAGAGCACTAGTG -ACGGAAGATCTGAGAGCACATCTG -ACGGAAGATCTGAGAGCAGAGTTG -ACGGAAGATCTGAGAGCAAGACTG -ACGGAAGATCTGAGAGCATCGGTA -ACGGAAGATCTGAGAGCATGCCTA -ACGGAAGATCTGAGAGCACCACTA -ACGGAAGATCTGAGAGCAGGAGTA -ACGGAAGATCTGAGAGCATCGTCT -ACGGAAGATCTGAGAGCATGCACT -ACGGAAGATCTGAGAGCACTGACT -ACGGAAGATCTGAGAGCACAACCT -ACGGAAGATCTGAGAGCAGCTACT -ACGGAAGATCTGAGAGCAGGATCT -ACGGAAGATCTGAGAGCAAAGGCT -ACGGAAGATCTGAGAGCATCAACC -ACGGAAGATCTGAGAGCATGTTCC -ACGGAAGATCTGAGAGCAATTCCC -ACGGAAGATCTGAGAGCATTCTCG -ACGGAAGATCTGAGAGCATAGACG -ACGGAAGATCTGAGAGCAGTAACG -ACGGAAGATCTGAGAGCAACTTCG -ACGGAAGATCTGAGAGCATACGCA -ACGGAAGATCTGAGAGCACTTGCA -ACGGAAGATCTGAGAGCACGAACA -ACGGAAGATCTGAGAGCACAGTCA -ACGGAAGATCTGAGAGCAGATCCA -ACGGAAGATCTGAGAGCAACGACA -ACGGAAGATCTGAGAGCAAGCTCA -ACGGAAGATCTGAGAGCATCACGT -ACGGAAGATCTGAGAGCACGTAGT -ACGGAAGATCTGAGAGCAGTCAGT -ACGGAAGATCTGAGAGCAGAAGGT -ACGGAAGATCTGAGAGCAAACCGT -ACGGAAGATCTGAGAGCATTGTGC -ACGGAAGATCTGAGAGCACTAAGC -ACGGAAGATCTGAGAGCAACTAGC -ACGGAAGATCTGAGAGCAAGATGC -ACGGAAGATCTGAGAGCATGAAGG -ACGGAAGATCTGAGAGCACAATGG -ACGGAAGATCTGAGAGCAATGAGG -ACGGAAGATCTGAGAGCAAATGGG -ACGGAAGATCTGAGAGCATCCTGA -ACGGAAGATCTGAGAGCATAGCGA -ACGGAAGATCTGAGAGCACACAGA -ACGGAAGATCTGAGAGCAGCAAGA -ACGGAAGATCTGAGAGCAGGTTGA -ACGGAAGATCTGAGAGCATCCGAT -ACGGAAGATCTGAGAGCATGGCAT -ACGGAAGATCTGAGAGCACGAGAT -ACGGAAGATCTGAGAGCATACCAC -ACGGAAGATCTGAGAGCACAGAAC -ACGGAAGATCTGAGAGCAGTCTAC -ACGGAAGATCTGAGAGCAACGTAC -ACGGAAGATCTGAGAGCAAGTGAC -ACGGAAGATCTGAGAGCACTGTAG -ACGGAAGATCTGAGAGCACCTAAG -ACGGAAGATCTGAGAGCAGTTCAG -ACGGAAGATCTGAGAGCAGCATAG -ACGGAAGATCTGAGAGCAGACAAG -ACGGAAGATCTGAGAGCAAAGCAG -ACGGAAGATCTGAGAGCACGTCAA -ACGGAAGATCTGAGAGCAGCTGAA -ACGGAAGATCTGAGAGCAAGTACG -ACGGAAGATCTGAGAGCAATCCGA -ACGGAAGATCTGAGAGCAATGGGA -ACGGAAGATCTGAGAGCAGTGCAA -ACGGAAGATCTGAGAGCAGAGGAA -ACGGAAGATCTGAGAGCACAGGTA -ACGGAAGATCTGAGAGCAGACTCT -ACGGAAGATCTGAGAGCAAGTCCT -ACGGAAGATCTGAGAGCATAAGCC -ACGGAAGATCTGAGAGCAATAGCC -ACGGAAGATCTGAGAGCATAACCG -ACGGAAGATCTGAGAGCAATGCCA -ACGGAAGATCTGTGAGGTGGAAAC -ACGGAAGATCTGTGAGGTAACACC -ACGGAAGATCTGTGAGGTATCGAG -ACGGAAGATCTGTGAGGTCTCCTT -ACGGAAGATCTGTGAGGTCCTGTT -ACGGAAGATCTGTGAGGTCGGTTT -ACGGAAGATCTGTGAGGTGTGGTT -ACGGAAGATCTGTGAGGTGCCTTT -ACGGAAGATCTGTGAGGTGGTCTT -ACGGAAGATCTGTGAGGTACGCTT -ACGGAAGATCTGTGAGGTAGCGTT -ACGGAAGATCTGTGAGGTTTCGTC -ACGGAAGATCTGTGAGGTTCTCTC -ACGGAAGATCTGTGAGGTTGGATC -ACGGAAGATCTGTGAGGTCACTTC -ACGGAAGATCTGTGAGGTGTACTC -ACGGAAGATCTGTGAGGTGATGTC -ACGGAAGATCTGTGAGGTACAGTC -ACGGAAGATCTGTGAGGTTTGCTG -ACGGAAGATCTGTGAGGTTCCATG -ACGGAAGATCTGTGAGGTTGTGTG -ACGGAAGATCTGTGAGGTCTAGTG -ACGGAAGATCTGTGAGGTCATCTG -ACGGAAGATCTGTGAGGTGAGTTG -ACGGAAGATCTGTGAGGTAGACTG -ACGGAAGATCTGTGAGGTTCGGTA -ACGGAAGATCTGTGAGGTTGCCTA -ACGGAAGATCTGTGAGGTCCACTA -ACGGAAGATCTGTGAGGTGGAGTA -ACGGAAGATCTGTGAGGTTCGTCT -ACGGAAGATCTGTGAGGTTGCACT -ACGGAAGATCTGTGAGGTCTGACT -ACGGAAGATCTGTGAGGTCAACCT -ACGGAAGATCTGTGAGGTGCTACT -ACGGAAGATCTGTGAGGTGGATCT -ACGGAAGATCTGTGAGGTAAGGCT -ACGGAAGATCTGTGAGGTTCAACC -ACGGAAGATCTGTGAGGTTGTTCC -ACGGAAGATCTGTGAGGTATTCCC -ACGGAAGATCTGTGAGGTTTCTCG -ACGGAAGATCTGTGAGGTTAGACG -ACGGAAGATCTGTGAGGTGTAACG -ACGGAAGATCTGTGAGGTACTTCG -ACGGAAGATCTGTGAGGTTACGCA -ACGGAAGATCTGTGAGGTCTTGCA -ACGGAAGATCTGTGAGGTCGAACA -ACGGAAGATCTGTGAGGTCAGTCA -ACGGAAGATCTGTGAGGTGATCCA -ACGGAAGATCTGTGAGGTACGACA -ACGGAAGATCTGTGAGGTAGCTCA -ACGGAAGATCTGTGAGGTTCACGT -ACGGAAGATCTGTGAGGTCGTAGT -ACGGAAGATCTGTGAGGTGTCAGT -ACGGAAGATCTGTGAGGTGAAGGT -ACGGAAGATCTGTGAGGTAACCGT -ACGGAAGATCTGTGAGGTTTGTGC -ACGGAAGATCTGTGAGGTCTAAGC -ACGGAAGATCTGTGAGGTACTAGC -ACGGAAGATCTGTGAGGTAGATGC -ACGGAAGATCTGTGAGGTTGAAGG -ACGGAAGATCTGTGAGGTCAATGG -ACGGAAGATCTGTGAGGTATGAGG -ACGGAAGATCTGTGAGGTAATGGG -ACGGAAGATCTGTGAGGTTCCTGA -ACGGAAGATCTGTGAGGTTAGCGA -ACGGAAGATCTGTGAGGTCACAGA -ACGGAAGATCTGTGAGGTGCAAGA -ACGGAAGATCTGTGAGGTGGTTGA -ACGGAAGATCTGTGAGGTTCCGAT -ACGGAAGATCTGTGAGGTTGGCAT -ACGGAAGATCTGTGAGGTCGAGAT -ACGGAAGATCTGTGAGGTTACCAC -ACGGAAGATCTGTGAGGTCAGAAC -ACGGAAGATCTGTGAGGTGTCTAC -ACGGAAGATCTGTGAGGTACGTAC -ACGGAAGATCTGTGAGGTAGTGAC -ACGGAAGATCTGTGAGGTCTGTAG -ACGGAAGATCTGTGAGGTCCTAAG -ACGGAAGATCTGTGAGGTGTTCAG -ACGGAAGATCTGTGAGGTGCATAG -ACGGAAGATCTGTGAGGTGACAAG -ACGGAAGATCTGTGAGGTAAGCAG -ACGGAAGATCTGTGAGGTCGTCAA -ACGGAAGATCTGTGAGGTGCTGAA -ACGGAAGATCTGTGAGGTAGTACG -ACGGAAGATCTGTGAGGTATCCGA -ACGGAAGATCTGTGAGGTATGGGA -ACGGAAGATCTGTGAGGTGTGCAA -ACGGAAGATCTGTGAGGTGAGGAA -ACGGAAGATCTGTGAGGTCAGGTA -ACGGAAGATCTGTGAGGTGACTCT -ACGGAAGATCTGTGAGGTAGTCCT -ACGGAAGATCTGTGAGGTTAAGCC -ACGGAAGATCTGTGAGGTATAGCC -ACGGAAGATCTGTGAGGTTAACCG -ACGGAAGATCTGTGAGGTATGCCA -ACGGAAGATCTGGATTCCGGAAAC -ACGGAAGATCTGGATTCCAACACC -ACGGAAGATCTGGATTCCATCGAG -ACGGAAGATCTGGATTCCCTCCTT -ACGGAAGATCTGGATTCCCCTGTT -ACGGAAGATCTGGATTCCCGGTTT -ACGGAAGATCTGGATTCCGTGGTT -ACGGAAGATCTGGATTCCGCCTTT -ACGGAAGATCTGGATTCCGGTCTT -ACGGAAGATCTGGATTCCACGCTT -ACGGAAGATCTGGATTCCAGCGTT -ACGGAAGATCTGGATTCCTTCGTC -ACGGAAGATCTGGATTCCTCTCTC -ACGGAAGATCTGGATTCCTGGATC -ACGGAAGATCTGGATTCCCACTTC -ACGGAAGATCTGGATTCCGTACTC -ACGGAAGATCTGGATTCCGATGTC -ACGGAAGATCTGGATTCCACAGTC -ACGGAAGATCTGGATTCCTTGCTG -ACGGAAGATCTGGATTCCTCCATG -ACGGAAGATCTGGATTCCTGTGTG -ACGGAAGATCTGGATTCCCTAGTG -ACGGAAGATCTGGATTCCCATCTG -ACGGAAGATCTGGATTCCGAGTTG -ACGGAAGATCTGGATTCCAGACTG -ACGGAAGATCTGGATTCCTCGGTA -ACGGAAGATCTGGATTCCTGCCTA -ACGGAAGATCTGGATTCCCCACTA -ACGGAAGATCTGGATTCCGGAGTA -ACGGAAGATCTGGATTCCTCGTCT -ACGGAAGATCTGGATTCCTGCACT -ACGGAAGATCTGGATTCCCTGACT -ACGGAAGATCTGGATTCCCAACCT -ACGGAAGATCTGGATTCCGCTACT -ACGGAAGATCTGGATTCCGGATCT -ACGGAAGATCTGGATTCCAAGGCT -ACGGAAGATCTGGATTCCTCAACC -ACGGAAGATCTGGATTCCTGTTCC -ACGGAAGATCTGGATTCCATTCCC -ACGGAAGATCTGGATTCCTTCTCG -ACGGAAGATCTGGATTCCTAGACG -ACGGAAGATCTGGATTCCGTAACG -ACGGAAGATCTGGATTCCACTTCG -ACGGAAGATCTGGATTCCTACGCA -ACGGAAGATCTGGATTCCCTTGCA -ACGGAAGATCTGGATTCCCGAACA -ACGGAAGATCTGGATTCCCAGTCA -ACGGAAGATCTGGATTCCGATCCA -ACGGAAGATCTGGATTCCACGACA -ACGGAAGATCTGGATTCCAGCTCA -ACGGAAGATCTGGATTCCTCACGT -ACGGAAGATCTGGATTCCCGTAGT -ACGGAAGATCTGGATTCCGTCAGT -ACGGAAGATCTGGATTCCGAAGGT -ACGGAAGATCTGGATTCCAACCGT -ACGGAAGATCTGGATTCCTTGTGC -ACGGAAGATCTGGATTCCCTAAGC -ACGGAAGATCTGGATTCCACTAGC -ACGGAAGATCTGGATTCCAGATGC -ACGGAAGATCTGGATTCCTGAAGG -ACGGAAGATCTGGATTCCCAATGG -ACGGAAGATCTGGATTCCATGAGG -ACGGAAGATCTGGATTCCAATGGG -ACGGAAGATCTGGATTCCTCCTGA -ACGGAAGATCTGGATTCCTAGCGA -ACGGAAGATCTGGATTCCCACAGA -ACGGAAGATCTGGATTCCGCAAGA -ACGGAAGATCTGGATTCCGGTTGA -ACGGAAGATCTGGATTCCTCCGAT -ACGGAAGATCTGGATTCCTGGCAT -ACGGAAGATCTGGATTCCCGAGAT -ACGGAAGATCTGGATTCCTACCAC -ACGGAAGATCTGGATTCCCAGAAC -ACGGAAGATCTGGATTCCGTCTAC -ACGGAAGATCTGGATTCCACGTAC -ACGGAAGATCTGGATTCCAGTGAC -ACGGAAGATCTGGATTCCCTGTAG -ACGGAAGATCTGGATTCCCCTAAG -ACGGAAGATCTGGATTCCGTTCAG -ACGGAAGATCTGGATTCCGCATAG -ACGGAAGATCTGGATTCCGACAAG -ACGGAAGATCTGGATTCCAAGCAG -ACGGAAGATCTGGATTCCCGTCAA -ACGGAAGATCTGGATTCCGCTGAA -ACGGAAGATCTGGATTCCAGTACG -ACGGAAGATCTGGATTCCATCCGA -ACGGAAGATCTGGATTCCATGGGA -ACGGAAGATCTGGATTCCGTGCAA -ACGGAAGATCTGGATTCCGAGGAA -ACGGAAGATCTGGATTCCCAGGTA -ACGGAAGATCTGGATTCCGACTCT -ACGGAAGATCTGGATTCCAGTCCT -ACGGAAGATCTGGATTCCTAAGCC -ACGGAAGATCTGGATTCCATAGCC -ACGGAAGATCTGGATTCCTAACCG -ACGGAAGATCTGGATTCCATGCCA -ACGGAAGATCTGCATTGGGGAAAC -ACGGAAGATCTGCATTGGAACACC -ACGGAAGATCTGCATTGGATCGAG -ACGGAAGATCTGCATTGGCTCCTT -ACGGAAGATCTGCATTGGCCTGTT -ACGGAAGATCTGCATTGGCGGTTT -ACGGAAGATCTGCATTGGGTGGTT -ACGGAAGATCTGCATTGGGCCTTT -ACGGAAGATCTGCATTGGGGTCTT -ACGGAAGATCTGCATTGGACGCTT -ACGGAAGATCTGCATTGGAGCGTT -ACGGAAGATCTGCATTGGTTCGTC -ACGGAAGATCTGCATTGGTCTCTC -ACGGAAGATCTGCATTGGTGGATC -ACGGAAGATCTGCATTGGCACTTC -ACGGAAGATCTGCATTGGGTACTC -ACGGAAGATCTGCATTGGGATGTC -ACGGAAGATCTGCATTGGACAGTC -ACGGAAGATCTGCATTGGTTGCTG -ACGGAAGATCTGCATTGGTCCATG -ACGGAAGATCTGCATTGGTGTGTG -ACGGAAGATCTGCATTGGCTAGTG -ACGGAAGATCTGCATTGGCATCTG -ACGGAAGATCTGCATTGGGAGTTG -ACGGAAGATCTGCATTGGAGACTG -ACGGAAGATCTGCATTGGTCGGTA -ACGGAAGATCTGCATTGGTGCCTA -ACGGAAGATCTGCATTGGCCACTA -ACGGAAGATCTGCATTGGGGAGTA -ACGGAAGATCTGCATTGGTCGTCT -ACGGAAGATCTGCATTGGTGCACT -ACGGAAGATCTGCATTGGCTGACT -ACGGAAGATCTGCATTGGCAACCT -ACGGAAGATCTGCATTGGGCTACT -ACGGAAGATCTGCATTGGGGATCT -ACGGAAGATCTGCATTGGAAGGCT -ACGGAAGATCTGCATTGGTCAACC -ACGGAAGATCTGCATTGGTGTTCC -ACGGAAGATCTGCATTGGATTCCC -ACGGAAGATCTGCATTGGTTCTCG -ACGGAAGATCTGCATTGGTAGACG -ACGGAAGATCTGCATTGGGTAACG -ACGGAAGATCTGCATTGGACTTCG -ACGGAAGATCTGCATTGGTACGCA -ACGGAAGATCTGCATTGGCTTGCA -ACGGAAGATCTGCATTGGCGAACA -ACGGAAGATCTGCATTGGCAGTCA -ACGGAAGATCTGCATTGGGATCCA -ACGGAAGATCTGCATTGGACGACA -ACGGAAGATCTGCATTGGAGCTCA -ACGGAAGATCTGCATTGGTCACGT -ACGGAAGATCTGCATTGGCGTAGT -ACGGAAGATCTGCATTGGGTCAGT -ACGGAAGATCTGCATTGGGAAGGT -ACGGAAGATCTGCATTGGAACCGT -ACGGAAGATCTGCATTGGTTGTGC -ACGGAAGATCTGCATTGGCTAAGC -ACGGAAGATCTGCATTGGACTAGC -ACGGAAGATCTGCATTGGAGATGC -ACGGAAGATCTGCATTGGTGAAGG -ACGGAAGATCTGCATTGGCAATGG -ACGGAAGATCTGCATTGGATGAGG -ACGGAAGATCTGCATTGGAATGGG -ACGGAAGATCTGCATTGGTCCTGA -ACGGAAGATCTGCATTGGTAGCGA -ACGGAAGATCTGCATTGGCACAGA -ACGGAAGATCTGCATTGGGCAAGA -ACGGAAGATCTGCATTGGGGTTGA -ACGGAAGATCTGCATTGGTCCGAT -ACGGAAGATCTGCATTGGTGGCAT -ACGGAAGATCTGCATTGGCGAGAT -ACGGAAGATCTGCATTGGTACCAC -ACGGAAGATCTGCATTGGCAGAAC -ACGGAAGATCTGCATTGGGTCTAC -ACGGAAGATCTGCATTGGACGTAC -ACGGAAGATCTGCATTGGAGTGAC -ACGGAAGATCTGCATTGGCTGTAG -ACGGAAGATCTGCATTGGCCTAAG -ACGGAAGATCTGCATTGGGTTCAG -ACGGAAGATCTGCATTGGGCATAG -ACGGAAGATCTGCATTGGGACAAG -ACGGAAGATCTGCATTGGAAGCAG -ACGGAAGATCTGCATTGGCGTCAA -ACGGAAGATCTGCATTGGGCTGAA -ACGGAAGATCTGCATTGGAGTACG -ACGGAAGATCTGCATTGGATCCGA -ACGGAAGATCTGCATTGGATGGGA -ACGGAAGATCTGCATTGGGTGCAA -ACGGAAGATCTGCATTGGGAGGAA -ACGGAAGATCTGCATTGGCAGGTA -ACGGAAGATCTGCATTGGGACTCT -ACGGAAGATCTGCATTGGAGTCCT -ACGGAAGATCTGCATTGGTAAGCC -ACGGAAGATCTGCATTGGATAGCC -ACGGAAGATCTGCATTGGTAACCG -ACGGAAGATCTGCATTGGATGCCA -ACGGAAGATCTGGATCGAGGAAAC -ACGGAAGATCTGGATCGAAACACC -ACGGAAGATCTGGATCGAATCGAG -ACGGAAGATCTGGATCGACTCCTT -ACGGAAGATCTGGATCGACCTGTT -ACGGAAGATCTGGATCGACGGTTT -ACGGAAGATCTGGATCGAGTGGTT -ACGGAAGATCTGGATCGAGCCTTT -ACGGAAGATCTGGATCGAGGTCTT -ACGGAAGATCTGGATCGAACGCTT -ACGGAAGATCTGGATCGAAGCGTT -ACGGAAGATCTGGATCGATTCGTC -ACGGAAGATCTGGATCGATCTCTC -ACGGAAGATCTGGATCGATGGATC -ACGGAAGATCTGGATCGACACTTC -ACGGAAGATCTGGATCGAGTACTC -ACGGAAGATCTGGATCGAGATGTC -ACGGAAGATCTGGATCGAACAGTC -ACGGAAGATCTGGATCGATTGCTG -ACGGAAGATCTGGATCGATCCATG -ACGGAAGATCTGGATCGATGTGTG -ACGGAAGATCTGGATCGACTAGTG -ACGGAAGATCTGGATCGACATCTG -ACGGAAGATCTGGATCGAGAGTTG -ACGGAAGATCTGGATCGAAGACTG -ACGGAAGATCTGGATCGATCGGTA -ACGGAAGATCTGGATCGATGCCTA -ACGGAAGATCTGGATCGACCACTA -ACGGAAGATCTGGATCGAGGAGTA -ACGGAAGATCTGGATCGATCGTCT -ACGGAAGATCTGGATCGATGCACT -ACGGAAGATCTGGATCGACTGACT -ACGGAAGATCTGGATCGACAACCT -ACGGAAGATCTGGATCGAGCTACT -ACGGAAGATCTGGATCGAGGATCT -ACGGAAGATCTGGATCGAAAGGCT -ACGGAAGATCTGGATCGATCAACC -ACGGAAGATCTGGATCGATGTTCC -ACGGAAGATCTGGATCGAATTCCC -ACGGAAGATCTGGATCGATTCTCG -ACGGAAGATCTGGATCGATAGACG -ACGGAAGATCTGGATCGAGTAACG -ACGGAAGATCTGGATCGAACTTCG -ACGGAAGATCTGGATCGATACGCA -ACGGAAGATCTGGATCGACTTGCA -ACGGAAGATCTGGATCGACGAACA -ACGGAAGATCTGGATCGACAGTCA -ACGGAAGATCTGGATCGAGATCCA -ACGGAAGATCTGGATCGAACGACA -ACGGAAGATCTGGATCGAAGCTCA -ACGGAAGATCTGGATCGATCACGT -ACGGAAGATCTGGATCGACGTAGT -ACGGAAGATCTGGATCGAGTCAGT -ACGGAAGATCTGGATCGAGAAGGT -ACGGAAGATCTGGATCGAAACCGT -ACGGAAGATCTGGATCGATTGTGC -ACGGAAGATCTGGATCGACTAAGC -ACGGAAGATCTGGATCGAACTAGC -ACGGAAGATCTGGATCGAAGATGC -ACGGAAGATCTGGATCGATGAAGG -ACGGAAGATCTGGATCGACAATGG -ACGGAAGATCTGGATCGAATGAGG -ACGGAAGATCTGGATCGAAATGGG -ACGGAAGATCTGGATCGATCCTGA -ACGGAAGATCTGGATCGATAGCGA -ACGGAAGATCTGGATCGACACAGA -ACGGAAGATCTGGATCGAGCAAGA -ACGGAAGATCTGGATCGAGGTTGA -ACGGAAGATCTGGATCGATCCGAT -ACGGAAGATCTGGATCGATGGCAT -ACGGAAGATCTGGATCGACGAGAT -ACGGAAGATCTGGATCGATACCAC -ACGGAAGATCTGGATCGACAGAAC -ACGGAAGATCTGGATCGAGTCTAC -ACGGAAGATCTGGATCGAACGTAC -ACGGAAGATCTGGATCGAAGTGAC -ACGGAAGATCTGGATCGACTGTAG -ACGGAAGATCTGGATCGACCTAAG -ACGGAAGATCTGGATCGAGTTCAG -ACGGAAGATCTGGATCGAGCATAG -ACGGAAGATCTGGATCGAGACAAG -ACGGAAGATCTGGATCGAAAGCAG -ACGGAAGATCTGGATCGACGTCAA -ACGGAAGATCTGGATCGAGCTGAA -ACGGAAGATCTGGATCGAAGTACG -ACGGAAGATCTGGATCGAATCCGA -ACGGAAGATCTGGATCGAATGGGA -ACGGAAGATCTGGATCGAGTGCAA -ACGGAAGATCTGGATCGAGAGGAA -ACGGAAGATCTGGATCGACAGGTA -ACGGAAGATCTGGATCGAGACTCT -ACGGAAGATCTGGATCGAAGTCCT -ACGGAAGATCTGGATCGATAAGCC -ACGGAAGATCTGGATCGAATAGCC -ACGGAAGATCTGGATCGATAACCG -ACGGAAGATCTGGATCGAATGCCA -ACGGAAGATCTGCACTACGGAAAC -ACGGAAGATCTGCACTACAACACC -ACGGAAGATCTGCACTACATCGAG -ACGGAAGATCTGCACTACCTCCTT -ACGGAAGATCTGCACTACCCTGTT -ACGGAAGATCTGCACTACCGGTTT -ACGGAAGATCTGCACTACGTGGTT -ACGGAAGATCTGCACTACGCCTTT -ACGGAAGATCTGCACTACGGTCTT -ACGGAAGATCTGCACTACACGCTT -ACGGAAGATCTGCACTACAGCGTT -ACGGAAGATCTGCACTACTTCGTC -ACGGAAGATCTGCACTACTCTCTC -ACGGAAGATCTGCACTACTGGATC -ACGGAAGATCTGCACTACCACTTC -ACGGAAGATCTGCACTACGTACTC -ACGGAAGATCTGCACTACGATGTC -ACGGAAGATCTGCACTACACAGTC -ACGGAAGATCTGCACTACTTGCTG -ACGGAAGATCTGCACTACTCCATG -ACGGAAGATCTGCACTACTGTGTG -ACGGAAGATCTGCACTACCTAGTG -ACGGAAGATCTGCACTACCATCTG -ACGGAAGATCTGCACTACGAGTTG -ACGGAAGATCTGCACTACAGACTG -ACGGAAGATCTGCACTACTCGGTA -ACGGAAGATCTGCACTACTGCCTA -ACGGAAGATCTGCACTACCCACTA -ACGGAAGATCTGCACTACGGAGTA -ACGGAAGATCTGCACTACTCGTCT -ACGGAAGATCTGCACTACTGCACT -ACGGAAGATCTGCACTACCTGACT -ACGGAAGATCTGCACTACCAACCT -ACGGAAGATCTGCACTACGCTACT -ACGGAAGATCTGCACTACGGATCT -ACGGAAGATCTGCACTACAAGGCT -ACGGAAGATCTGCACTACTCAACC -ACGGAAGATCTGCACTACTGTTCC -ACGGAAGATCTGCACTACATTCCC -ACGGAAGATCTGCACTACTTCTCG -ACGGAAGATCTGCACTACTAGACG -ACGGAAGATCTGCACTACGTAACG -ACGGAAGATCTGCACTACACTTCG -ACGGAAGATCTGCACTACTACGCA -ACGGAAGATCTGCACTACCTTGCA -ACGGAAGATCTGCACTACCGAACA -ACGGAAGATCTGCACTACCAGTCA -ACGGAAGATCTGCACTACGATCCA -ACGGAAGATCTGCACTACACGACA -ACGGAAGATCTGCACTACAGCTCA -ACGGAAGATCTGCACTACTCACGT -ACGGAAGATCTGCACTACCGTAGT -ACGGAAGATCTGCACTACGTCAGT -ACGGAAGATCTGCACTACGAAGGT -ACGGAAGATCTGCACTACAACCGT -ACGGAAGATCTGCACTACTTGTGC -ACGGAAGATCTGCACTACCTAAGC -ACGGAAGATCTGCACTACACTAGC -ACGGAAGATCTGCACTACAGATGC -ACGGAAGATCTGCACTACTGAAGG -ACGGAAGATCTGCACTACCAATGG -ACGGAAGATCTGCACTACATGAGG -ACGGAAGATCTGCACTACAATGGG -ACGGAAGATCTGCACTACTCCTGA -ACGGAAGATCTGCACTACTAGCGA -ACGGAAGATCTGCACTACCACAGA -ACGGAAGATCTGCACTACGCAAGA -ACGGAAGATCTGCACTACGGTTGA -ACGGAAGATCTGCACTACTCCGAT -ACGGAAGATCTGCACTACTGGCAT -ACGGAAGATCTGCACTACCGAGAT -ACGGAAGATCTGCACTACTACCAC -ACGGAAGATCTGCACTACCAGAAC -ACGGAAGATCTGCACTACGTCTAC -ACGGAAGATCTGCACTACACGTAC -ACGGAAGATCTGCACTACAGTGAC -ACGGAAGATCTGCACTACCTGTAG -ACGGAAGATCTGCACTACCCTAAG -ACGGAAGATCTGCACTACGTTCAG -ACGGAAGATCTGCACTACGCATAG -ACGGAAGATCTGCACTACGACAAG -ACGGAAGATCTGCACTACAAGCAG -ACGGAAGATCTGCACTACCGTCAA -ACGGAAGATCTGCACTACGCTGAA -ACGGAAGATCTGCACTACAGTACG -ACGGAAGATCTGCACTACATCCGA -ACGGAAGATCTGCACTACATGGGA -ACGGAAGATCTGCACTACGTGCAA -ACGGAAGATCTGCACTACGAGGAA -ACGGAAGATCTGCACTACCAGGTA -ACGGAAGATCTGCACTACGACTCT -ACGGAAGATCTGCACTACAGTCCT -ACGGAAGATCTGCACTACTAAGCC -ACGGAAGATCTGCACTACATAGCC -ACGGAAGATCTGCACTACTAACCG -ACGGAAGATCTGCACTACATGCCA -ACGGAAGATCTGAACCAGGGAAAC -ACGGAAGATCTGAACCAGAACACC -ACGGAAGATCTGAACCAGATCGAG -ACGGAAGATCTGAACCAGCTCCTT -ACGGAAGATCTGAACCAGCCTGTT -ACGGAAGATCTGAACCAGCGGTTT -ACGGAAGATCTGAACCAGGTGGTT -ACGGAAGATCTGAACCAGGCCTTT -ACGGAAGATCTGAACCAGGGTCTT -ACGGAAGATCTGAACCAGACGCTT -ACGGAAGATCTGAACCAGAGCGTT -ACGGAAGATCTGAACCAGTTCGTC -ACGGAAGATCTGAACCAGTCTCTC -ACGGAAGATCTGAACCAGTGGATC -ACGGAAGATCTGAACCAGCACTTC -ACGGAAGATCTGAACCAGGTACTC -ACGGAAGATCTGAACCAGGATGTC -ACGGAAGATCTGAACCAGACAGTC -ACGGAAGATCTGAACCAGTTGCTG -ACGGAAGATCTGAACCAGTCCATG -ACGGAAGATCTGAACCAGTGTGTG -ACGGAAGATCTGAACCAGCTAGTG -ACGGAAGATCTGAACCAGCATCTG -ACGGAAGATCTGAACCAGGAGTTG -ACGGAAGATCTGAACCAGAGACTG -ACGGAAGATCTGAACCAGTCGGTA -ACGGAAGATCTGAACCAGTGCCTA -ACGGAAGATCTGAACCAGCCACTA -ACGGAAGATCTGAACCAGGGAGTA -ACGGAAGATCTGAACCAGTCGTCT -ACGGAAGATCTGAACCAGTGCACT -ACGGAAGATCTGAACCAGCTGACT -ACGGAAGATCTGAACCAGCAACCT -ACGGAAGATCTGAACCAGGCTACT -ACGGAAGATCTGAACCAGGGATCT -ACGGAAGATCTGAACCAGAAGGCT -ACGGAAGATCTGAACCAGTCAACC -ACGGAAGATCTGAACCAGTGTTCC -ACGGAAGATCTGAACCAGATTCCC -ACGGAAGATCTGAACCAGTTCTCG -ACGGAAGATCTGAACCAGTAGACG -ACGGAAGATCTGAACCAGGTAACG -ACGGAAGATCTGAACCAGACTTCG -ACGGAAGATCTGAACCAGTACGCA -ACGGAAGATCTGAACCAGCTTGCA -ACGGAAGATCTGAACCAGCGAACA -ACGGAAGATCTGAACCAGCAGTCA -ACGGAAGATCTGAACCAGGATCCA -ACGGAAGATCTGAACCAGACGACA -ACGGAAGATCTGAACCAGAGCTCA -ACGGAAGATCTGAACCAGTCACGT -ACGGAAGATCTGAACCAGCGTAGT -ACGGAAGATCTGAACCAGGTCAGT -ACGGAAGATCTGAACCAGGAAGGT -ACGGAAGATCTGAACCAGAACCGT -ACGGAAGATCTGAACCAGTTGTGC -ACGGAAGATCTGAACCAGCTAAGC -ACGGAAGATCTGAACCAGACTAGC -ACGGAAGATCTGAACCAGAGATGC -ACGGAAGATCTGAACCAGTGAAGG -ACGGAAGATCTGAACCAGCAATGG -ACGGAAGATCTGAACCAGATGAGG -ACGGAAGATCTGAACCAGAATGGG -ACGGAAGATCTGAACCAGTCCTGA -ACGGAAGATCTGAACCAGTAGCGA -ACGGAAGATCTGAACCAGCACAGA -ACGGAAGATCTGAACCAGGCAAGA -ACGGAAGATCTGAACCAGGGTTGA -ACGGAAGATCTGAACCAGTCCGAT -ACGGAAGATCTGAACCAGTGGCAT -ACGGAAGATCTGAACCAGCGAGAT -ACGGAAGATCTGAACCAGTACCAC -ACGGAAGATCTGAACCAGCAGAAC -ACGGAAGATCTGAACCAGGTCTAC -ACGGAAGATCTGAACCAGACGTAC -ACGGAAGATCTGAACCAGAGTGAC -ACGGAAGATCTGAACCAGCTGTAG -ACGGAAGATCTGAACCAGCCTAAG -ACGGAAGATCTGAACCAGGTTCAG -ACGGAAGATCTGAACCAGGCATAG -ACGGAAGATCTGAACCAGGACAAG -ACGGAAGATCTGAACCAGAAGCAG -ACGGAAGATCTGAACCAGCGTCAA -ACGGAAGATCTGAACCAGGCTGAA -ACGGAAGATCTGAACCAGAGTACG -ACGGAAGATCTGAACCAGATCCGA -ACGGAAGATCTGAACCAGATGGGA -ACGGAAGATCTGAACCAGGTGCAA -ACGGAAGATCTGAACCAGGAGGAA -ACGGAAGATCTGAACCAGCAGGTA -ACGGAAGATCTGAACCAGGACTCT -ACGGAAGATCTGAACCAGAGTCCT -ACGGAAGATCTGAACCAGTAAGCC -ACGGAAGATCTGAACCAGATAGCC -ACGGAAGATCTGAACCAGTAACCG -ACGGAAGATCTGAACCAGATGCCA -ACGGAAGATCTGTACGTCGGAAAC -ACGGAAGATCTGTACGTCAACACC -ACGGAAGATCTGTACGTCATCGAG -ACGGAAGATCTGTACGTCCTCCTT -ACGGAAGATCTGTACGTCCCTGTT -ACGGAAGATCTGTACGTCCGGTTT -ACGGAAGATCTGTACGTCGTGGTT -ACGGAAGATCTGTACGTCGCCTTT -ACGGAAGATCTGTACGTCGGTCTT -ACGGAAGATCTGTACGTCACGCTT -ACGGAAGATCTGTACGTCAGCGTT -ACGGAAGATCTGTACGTCTTCGTC -ACGGAAGATCTGTACGTCTCTCTC -ACGGAAGATCTGTACGTCTGGATC -ACGGAAGATCTGTACGTCCACTTC -ACGGAAGATCTGTACGTCGTACTC -ACGGAAGATCTGTACGTCGATGTC -ACGGAAGATCTGTACGTCACAGTC -ACGGAAGATCTGTACGTCTTGCTG -ACGGAAGATCTGTACGTCTCCATG -ACGGAAGATCTGTACGTCTGTGTG -ACGGAAGATCTGTACGTCCTAGTG -ACGGAAGATCTGTACGTCCATCTG -ACGGAAGATCTGTACGTCGAGTTG -ACGGAAGATCTGTACGTCAGACTG -ACGGAAGATCTGTACGTCTCGGTA -ACGGAAGATCTGTACGTCTGCCTA -ACGGAAGATCTGTACGTCCCACTA -ACGGAAGATCTGTACGTCGGAGTA -ACGGAAGATCTGTACGTCTCGTCT -ACGGAAGATCTGTACGTCTGCACT -ACGGAAGATCTGTACGTCCTGACT -ACGGAAGATCTGTACGTCCAACCT -ACGGAAGATCTGTACGTCGCTACT -ACGGAAGATCTGTACGTCGGATCT -ACGGAAGATCTGTACGTCAAGGCT -ACGGAAGATCTGTACGTCTCAACC -ACGGAAGATCTGTACGTCTGTTCC -ACGGAAGATCTGTACGTCATTCCC -ACGGAAGATCTGTACGTCTTCTCG -ACGGAAGATCTGTACGTCTAGACG -ACGGAAGATCTGTACGTCGTAACG -ACGGAAGATCTGTACGTCACTTCG -ACGGAAGATCTGTACGTCTACGCA -ACGGAAGATCTGTACGTCCTTGCA -ACGGAAGATCTGTACGTCCGAACA -ACGGAAGATCTGTACGTCCAGTCA -ACGGAAGATCTGTACGTCGATCCA -ACGGAAGATCTGTACGTCACGACA -ACGGAAGATCTGTACGTCAGCTCA -ACGGAAGATCTGTACGTCTCACGT -ACGGAAGATCTGTACGTCCGTAGT -ACGGAAGATCTGTACGTCGTCAGT -ACGGAAGATCTGTACGTCGAAGGT -ACGGAAGATCTGTACGTCAACCGT -ACGGAAGATCTGTACGTCTTGTGC -ACGGAAGATCTGTACGTCCTAAGC -ACGGAAGATCTGTACGTCACTAGC -ACGGAAGATCTGTACGTCAGATGC -ACGGAAGATCTGTACGTCTGAAGG -ACGGAAGATCTGTACGTCCAATGG -ACGGAAGATCTGTACGTCATGAGG -ACGGAAGATCTGTACGTCAATGGG -ACGGAAGATCTGTACGTCTCCTGA -ACGGAAGATCTGTACGTCTAGCGA -ACGGAAGATCTGTACGTCCACAGA -ACGGAAGATCTGTACGTCGCAAGA -ACGGAAGATCTGTACGTCGGTTGA -ACGGAAGATCTGTACGTCTCCGAT -ACGGAAGATCTGTACGTCTGGCAT -ACGGAAGATCTGTACGTCCGAGAT -ACGGAAGATCTGTACGTCTACCAC -ACGGAAGATCTGTACGTCCAGAAC -ACGGAAGATCTGTACGTCGTCTAC -ACGGAAGATCTGTACGTCACGTAC -ACGGAAGATCTGTACGTCAGTGAC -ACGGAAGATCTGTACGTCCTGTAG -ACGGAAGATCTGTACGTCCCTAAG -ACGGAAGATCTGTACGTCGTTCAG -ACGGAAGATCTGTACGTCGCATAG -ACGGAAGATCTGTACGTCGACAAG -ACGGAAGATCTGTACGTCAAGCAG -ACGGAAGATCTGTACGTCCGTCAA -ACGGAAGATCTGTACGTCGCTGAA -ACGGAAGATCTGTACGTCAGTACG -ACGGAAGATCTGTACGTCATCCGA -ACGGAAGATCTGTACGTCATGGGA -ACGGAAGATCTGTACGTCGTGCAA -ACGGAAGATCTGTACGTCGAGGAA -ACGGAAGATCTGTACGTCCAGGTA -ACGGAAGATCTGTACGTCGACTCT -ACGGAAGATCTGTACGTCAGTCCT -ACGGAAGATCTGTACGTCTAAGCC -ACGGAAGATCTGTACGTCATAGCC -ACGGAAGATCTGTACGTCTAACCG -ACGGAAGATCTGTACGTCATGCCA -ACGGAAGATCTGTACACGGGAAAC -ACGGAAGATCTGTACACGAACACC -ACGGAAGATCTGTACACGATCGAG -ACGGAAGATCTGTACACGCTCCTT -ACGGAAGATCTGTACACGCCTGTT -ACGGAAGATCTGTACACGCGGTTT -ACGGAAGATCTGTACACGGTGGTT -ACGGAAGATCTGTACACGGCCTTT -ACGGAAGATCTGTACACGGGTCTT -ACGGAAGATCTGTACACGACGCTT -ACGGAAGATCTGTACACGAGCGTT -ACGGAAGATCTGTACACGTTCGTC -ACGGAAGATCTGTACACGTCTCTC -ACGGAAGATCTGTACACGTGGATC -ACGGAAGATCTGTACACGCACTTC -ACGGAAGATCTGTACACGGTACTC -ACGGAAGATCTGTACACGGATGTC -ACGGAAGATCTGTACACGACAGTC -ACGGAAGATCTGTACACGTTGCTG -ACGGAAGATCTGTACACGTCCATG -ACGGAAGATCTGTACACGTGTGTG -ACGGAAGATCTGTACACGCTAGTG -ACGGAAGATCTGTACACGCATCTG -ACGGAAGATCTGTACACGGAGTTG -ACGGAAGATCTGTACACGAGACTG -ACGGAAGATCTGTACACGTCGGTA -ACGGAAGATCTGTACACGTGCCTA -ACGGAAGATCTGTACACGCCACTA -ACGGAAGATCTGTACACGGGAGTA -ACGGAAGATCTGTACACGTCGTCT -ACGGAAGATCTGTACACGTGCACT -ACGGAAGATCTGTACACGCTGACT -ACGGAAGATCTGTACACGCAACCT -ACGGAAGATCTGTACACGGCTACT -ACGGAAGATCTGTACACGGGATCT -ACGGAAGATCTGTACACGAAGGCT -ACGGAAGATCTGTACACGTCAACC -ACGGAAGATCTGTACACGTGTTCC -ACGGAAGATCTGTACACGATTCCC -ACGGAAGATCTGTACACGTTCTCG -ACGGAAGATCTGTACACGTAGACG -ACGGAAGATCTGTACACGGTAACG -ACGGAAGATCTGTACACGACTTCG -ACGGAAGATCTGTACACGTACGCA -ACGGAAGATCTGTACACGCTTGCA -ACGGAAGATCTGTACACGCGAACA -ACGGAAGATCTGTACACGCAGTCA -ACGGAAGATCTGTACACGGATCCA -ACGGAAGATCTGTACACGACGACA -ACGGAAGATCTGTACACGAGCTCA -ACGGAAGATCTGTACACGTCACGT -ACGGAAGATCTGTACACGCGTAGT -ACGGAAGATCTGTACACGGTCAGT -ACGGAAGATCTGTACACGGAAGGT -ACGGAAGATCTGTACACGAACCGT -ACGGAAGATCTGTACACGTTGTGC -ACGGAAGATCTGTACACGCTAAGC -ACGGAAGATCTGTACACGACTAGC -ACGGAAGATCTGTACACGAGATGC -ACGGAAGATCTGTACACGTGAAGG -ACGGAAGATCTGTACACGCAATGG -ACGGAAGATCTGTACACGATGAGG -ACGGAAGATCTGTACACGAATGGG -ACGGAAGATCTGTACACGTCCTGA -ACGGAAGATCTGTACACGTAGCGA -ACGGAAGATCTGTACACGCACAGA -ACGGAAGATCTGTACACGGCAAGA -ACGGAAGATCTGTACACGGGTTGA -ACGGAAGATCTGTACACGTCCGAT -ACGGAAGATCTGTACACGTGGCAT -ACGGAAGATCTGTACACGCGAGAT -ACGGAAGATCTGTACACGTACCAC -ACGGAAGATCTGTACACGCAGAAC -ACGGAAGATCTGTACACGGTCTAC -ACGGAAGATCTGTACACGACGTAC -ACGGAAGATCTGTACACGAGTGAC -ACGGAAGATCTGTACACGCTGTAG -ACGGAAGATCTGTACACGCCTAAG -ACGGAAGATCTGTACACGGTTCAG -ACGGAAGATCTGTACACGGCATAG -ACGGAAGATCTGTACACGGACAAG -ACGGAAGATCTGTACACGAAGCAG -ACGGAAGATCTGTACACGCGTCAA -ACGGAAGATCTGTACACGGCTGAA -ACGGAAGATCTGTACACGAGTACG -ACGGAAGATCTGTACACGATCCGA -ACGGAAGATCTGTACACGATGGGA -ACGGAAGATCTGTACACGGTGCAA -ACGGAAGATCTGTACACGGAGGAA -ACGGAAGATCTGTACACGCAGGTA -ACGGAAGATCTGTACACGGACTCT -ACGGAAGATCTGTACACGAGTCCT -ACGGAAGATCTGTACACGTAAGCC -ACGGAAGATCTGTACACGATAGCC -ACGGAAGATCTGTACACGTAACCG -ACGGAAGATCTGTACACGATGCCA -ACGGAAGATCTGGACAGTGGAAAC -ACGGAAGATCTGGACAGTAACACC -ACGGAAGATCTGGACAGTATCGAG -ACGGAAGATCTGGACAGTCTCCTT -ACGGAAGATCTGGACAGTCCTGTT -ACGGAAGATCTGGACAGTCGGTTT -ACGGAAGATCTGGACAGTGTGGTT -ACGGAAGATCTGGACAGTGCCTTT -ACGGAAGATCTGGACAGTGGTCTT -ACGGAAGATCTGGACAGTACGCTT -ACGGAAGATCTGGACAGTAGCGTT -ACGGAAGATCTGGACAGTTTCGTC -ACGGAAGATCTGGACAGTTCTCTC -ACGGAAGATCTGGACAGTTGGATC -ACGGAAGATCTGGACAGTCACTTC -ACGGAAGATCTGGACAGTGTACTC -ACGGAAGATCTGGACAGTGATGTC -ACGGAAGATCTGGACAGTACAGTC -ACGGAAGATCTGGACAGTTTGCTG -ACGGAAGATCTGGACAGTTCCATG -ACGGAAGATCTGGACAGTTGTGTG -ACGGAAGATCTGGACAGTCTAGTG -ACGGAAGATCTGGACAGTCATCTG -ACGGAAGATCTGGACAGTGAGTTG -ACGGAAGATCTGGACAGTAGACTG -ACGGAAGATCTGGACAGTTCGGTA -ACGGAAGATCTGGACAGTTGCCTA -ACGGAAGATCTGGACAGTCCACTA -ACGGAAGATCTGGACAGTGGAGTA -ACGGAAGATCTGGACAGTTCGTCT -ACGGAAGATCTGGACAGTTGCACT -ACGGAAGATCTGGACAGTCTGACT -ACGGAAGATCTGGACAGTCAACCT -ACGGAAGATCTGGACAGTGCTACT -ACGGAAGATCTGGACAGTGGATCT -ACGGAAGATCTGGACAGTAAGGCT -ACGGAAGATCTGGACAGTTCAACC -ACGGAAGATCTGGACAGTTGTTCC -ACGGAAGATCTGGACAGTATTCCC -ACGGAAGATCTGGACAGTTTCTCG -ACGGAAGATCTGGACAGTTAGACG -ACGGAAGATCTGGACAGTGTAACG -ACGGAAGATCTGGACAGTACTTCG -ACGGAAGATCTGGACAGTTACGCA -ACGGAAGATCTGGACAGTCTTGCA -ACGGAAGATCTGGACAGTCGAACA -ACGGAAGATCTGGACAGTCAGTCA -ACGGAAGATCTGGACAGTGATCCA -ACGGAAGATCTGGACAGTACGACA -ACGGAAGATCTGGACAGTAGCTCA -ACGGAAGATCTGGACAGTTCACGT -ACGGAAGATCTGGACAGTCGTAGT -ACGGAAGATCTGGACAGTGTCAGT -ACGGAAGATCTGGACAGTGAAGGT -ACGGAAGATCTGGACAGTAACCGT -ACGGAAGATCTGGACAGTTTGTGC -ACGGAAGATCTGGACAGTCTAAGC -ACGGAAGATCTGGACAGTACTAGC -ACGGAAGATCTGGACAGTAGATGC -ACGGAAGATCTGGACAGTTGAAGG -ACGGAAGATCTGGACAGTCAATGG -ACGGAAGATCTGGACAGTATGAGG -ACGGAAGATCTGGACAGTAATGGG -ACGGAAGATCTGGACAGTTCCTGA -ACGGAAGATCTGGACAGTTAGCGA -ACGGAAGATCTGGACAGTCACAGA -ACGGAAGATCTGGACAGTGCAAGA -ACGGAAGATCTGGACAGTGGTTGA -ACGGAAGATCTGGACAGTTCCGAT -ACGGAAGATCTGGACAGTTGGCAT -ACGGAAGATCTGGACAGTCGAGAT -ACGGAAGATCTGGACAGTTACCAC -ACGGAAGATCTGGACAGTCAGAAC -ACGGAAGATCTGGACAGTGTCTAC -ACGGAAGATCTGGACAGTACGTAC -ACGGAAGATCTGGACAGTAGTGAC -ACGGAAGATCTGGACAGTCTGTAG -ACGGAAGATCTGGACAGTCCTAAG -ACGGAAGATCTGGACAGTGTTCAG -ACGGAAGATCTGGACAGTGCATAG -ACGGAAGATCTGGACAGTGACAAG -ACGGAAGATCTGGACAGTAAGCAG -ACGGAAGATCTGGACAGTCGTCAA -ACGGAAGATCTGGACAGTGCTGAA -ACGGAAGATCTGGACAGTAGTACG -ACGGAAGATCTGGACAGTATCCGA -ACGGAAGATCTGGACAGTATGGGA -ACGGAAGATCTGGACAGTGTGCAA -ACGGAAGATCTGGACAGTGAGGAA -ACGGAAGATCTGGACAGTCAGGTA -ACGGAAGATCTGGACAGTGACTCT -ACGGAAGATCTGGACAGTAGTCCT -ACGGAAGATCTGGACAGTTAAGCC -ACGGAAGATCTGGACAGTATAGCC -ACGGAAGATCTGGACAGTTAACCG -ACGGAAGATCTGGACAGTATGCCA -ACGGAAGATCTGTAGCTGGGAAAC -ACGGAAGATCTGTAGCTGAACACC -ACGGAAGATCTGTAGCTGATCGAG -ACGGAAGATCTGTAGCTGCTCCTT -ACGGAAGATCTGTAGCTGCCTGTT -ACGGAAGATCTGTAGCTGCGGTTT -ACGGAAGATCTGTAGCTGGTGGTT -ACGGAAGATCTGTAGCTGGCCTTT -ACGGAAGATCTGTAGCTGGGTCTT -ACGGAAGATCTGTAGCTGACGCTT -ACGGAAGATCTGTAGCTGAGCGTT -ACGGAAGATCTGTAGCTGTTCGTC -ACGGAAGATCTGTAGCTGTCTCTC -ACGGAAGATCTGTAGCTGTGGATC -ACGGAAGATCTGTAGCTGCACTTC -ACGGAAGATCTGTAGCTGGTACTC -ACGGAAGATCTGTAGCTGGATGTC -ACGGAAGATCTGTAGCTGACAGTC -ACGGAAGATCTGTAGCTGTTGCTG -ACGGAAGATCTGTAGCTGTCCATG -ACGGAAGATCTGTAGCTGTGTGTG -ACGGAAGATCTGTAGCTGCTAGTG -ACGGAAGATCTGTAGCTGCATCTG -ACGGAAGATCTGTAGCTGGAGTTG -ACGGAAGATCTGTAGCTGAGACTG -ACGGAAGATCTGTAGCTGTCGGTA -ACGGAAGATCTGTAGCTGTGCCTA -ACGGAAGATCTGTAGCTGCCACTA -ACGGAAGATCTGTAGCTGGGAGTA -ACGGAAGATCTGTAGCTGTCGTCT -ACGGAAGATCTGTAGCTGTGCACT -ACGGAAGATCTGTAGCTGCTGACT -ACGGAAGATCTGTAGCTGCAACCT -ACGGAAGATCTGTAGCTGGCTACT -ACGGAAGATCTGTAGCTGGGATCT -ACGGAAGATCTGTAGCTGAAGGCT -ACGGAAGATCTGTAGCTGTCAACC -ACGGAAGATCTGTAGCTGTGTTCC -ACGGAAGATCTGTAGCTGATTCCC -ACGGAAGATCTGTAGCTGTTCTCG -ACGGAAGATCTGTAGCTGTAGACG -ACGGAAGATCTGTAGCTGGTAACG -ACGGAAGATCTGTAGCTGACTTCG -ACGGAAGATCTGTAGCTGTACGCA -ACGGAAGATCTGTAGCTGCTTGCA -ACGGAAGATCTGTAGCTGCGAACA -ACGGAAGATCTGTAGCTGCAGTCA -ACGGAAGATCTGTAGCTGGATCCA -ACGGAAGATCTGTAGCTGACGACA -ACGGAAGATCTGTAGCTGAGCTCA -ACGGAAGATCTGTAGCTGTCACGT -ACGGAAGATCTGTAGCTGCGTAGT -ACGGAAGATCTGTAGCTGGTCAGT -ACGGAAGATCTGTAGCTGGAAGGT -ACGGAAGATCTGTAGCTGAACCGT -ACGGAAGATCTGTAGCTGTTGTGC -ACGGAAGATCTGTAGCTGCTAAGC -ACGGAAGATCTGTAGCTGACTAGC -ACGGAAGATCTGTAGCTGAGATGC -ACGGAAGATCTGTAGCTGTGAAGG -ACGGAAGATCTGTAGCTGCAATGG -ACGGAAGATCTGTAGCTGATGAGG -ACGGAAGATCTGTAGCTGAATGGG -ACGGAAGATCTGTAGCTGTCCTGA -ACGGAAGATCTGTAGCTGTAGCGA -ACGGAAGATCTGTAGCTGCACAGA -ACGGAAGATCTGTAGCTGGCAAGA -ACGGAAGATCTGTAGCTGGGTTGA -ACGGAAGATCTGTAGCTGTCCGAT -ACGGAAGATCTGTAGCTGTGGCAT -ACGGAAGATCTGTAGCTGCGAGAT -ACGGAAGATCTGTAGCTGTACCAC -ACGGAAGATCTGTAGCTGCAGAAC -ACGGAAGATCTGTAGCTGGTCTAC -ACGGAAGATCTGTAGCTGACGTAC -ACGGAAGATCTGTAGCTGAGTGAC -ACGGAAGATCTGTAGCTGCTGTAG -ACGGAAGATCTGTAGCTGCCTAAG -ACGGAAGATCTGTAGCTGGTTCAG -ACGGAAGATCTGTAGCTGGCATAG -ACGGAAGATCTGTAGCTGGACAAG -ACGGAAGATCTGTAGCTGAAGCAG -ACGGAAGATCTGTAGCTGCGTCAA -ACGGAAGATCTGTAGCTGGCTGAA -ACGGAAGATCTGTAGCTGAGTACG -ACGGAAGATCTGTAGCTGATCCGA -ACGGAAGATCTGTAGCTGATGGGA -ACGGAAGATCTGTAGCTGGTGCAA -ACGGAAGATCTGTAGCTGGAGGAA -ACGGAAGATCTGTAGCTGCAGGTA -ACGGAAGATCTGTAGCTGGACTCT -ACGGAAGATCTGTAGCTGAGTCCT -ACGGAAGATCTGTAGCTGTAAGCC -ACGGAAGATCTGTAGCTGATAGCC -ACGGAAGATCTGTAGCTGTAACCG -ACGGAAGATCTGTAGCTGATGCCA -ACGGAAGATCTGAAGCCTGGAAAC -ACGGAAGATCTGAAGCCTAACACC -ACGGAAGATCTGAAGCCTATCGAG -ACGGAAGATCTGAAGCCTCTCCTT -ACGGAAGATCTGAAGCCTCCTGTT -ACGGAAGATCTGAAGCCTCGGTTT -ACGGAAGATCTGAAGCCTGTGGTT -ACGGAAGATCTGAAGCCTGCCTTT -ACGGAAGATCTGAAGCCTGGTCTT -ACGGAAGATCTGAAGCCTACGCTT -ACGGAAGATCTGAAGCCTAGCGTT -ACGGAAGATCTGAAGCCTTTCGTC -ACGGAAGATCTGAAGCCTTCTCTC -ACGGAAGATCTGAAGCCTTGGATC -ACGGAAGATCTGAAGCCTCACTTC -ACGGAAGATCTGAAGCCTGTACTC -ACGGAAGATCTGAAGCCTGATGTC -ACGGAAGATCTGAAGCCTACAGTC -ACGGAAGATCTGAAGCCTTTGCTG -ACGGAAGATCTGAAGCCTTCCATG -ACGGAAGATCTGAAGCCTTGTGTG -ACGGAAGATCTGAAGCCTCTAGTG -ACGGAAGATCTGAAGCCTCATCTG -ACGGAAGATCTGAAGCCTGAGTTG -ACGGAAGATCTGAAGCCTAGACTG -ACGGAAGATCTGAAGCCTTCGGTA -ACGGAAGATCTGAAGCCTTGCCTA -ACGGAAGATCTGAAGCCTCCACTA -ACGGAAGATCTGAAGCCTGGAGTA -ACGGAAGATCTGAAGCCTTCGTCT -ACGGAAGATCTGAAGCCTTGCACT -ACGGAAGATCTGAAGCCTCTGACT -ACGGAAGATCTGAAGCCTCAACCT -ACGGAAGATCTGAAGCCTGCTACT -ACGGAAGATCTGAAGCCTGGATCT -ACGGAAGATCTGAAGCCTAAGGCT -ACGGAAGATCTGAAGCCTTCAACC -ACGGAAGATCTGAAGCCTTGTTCC -ACGGAAGATCTGAAGCCTATTCCC -ACGGAAGATCTGAAGCCTTTCTCG -ACGGAAGATCTGAAGCCTTAGACG -ACGGAAGATCTGAAGCCTGTAACG -ACGGAAGATCTGAAGCCTACTTCG -ACGGAAGATCTGAAGCCTTACGCA -ACGGAAGATCTGAAGCCTCTTGCA -ACGGAAGATCTGAAGCCTCGAACA -ACGGAAGATCTGAAGCCTCAGTCA -ACGGAAGATCTGAAGCCTGATCCA -ACGGAAGATCTGAAGCCTACGACA -ACGGAAGATCTGAAGCCTAGCTCA -ACGGAAGATCTGAAGCCTTCACGT -ACGGAAGATCTGAAGCCTCGTAGT -ACGGAAGATCTGAAGCCTGTCAGT -ACGGAAGATCTGAAGCCTGAAGGT -ACGGAAGATCTGAAGCCTAACCGT -ACGGAAGATCTGAAGCCTTTGTGC -ACGGAAGATCTGAAGCCTCTAAGC -ACGGAAGATCTGAAGCCTACTAGC -ACGGAAGATCTGAAGCCTAGATGC -ACGGAAGATCTGAAGCCTTGAAGG -ACGGAAGATCTGAAGCCTCAATGG -ACGGAAGATCTGAAGCCTATGAGG -ACGGAAGATCTGAAGCCTAATGGG -ACGGAAGATCTGAAGCCTTCCTGA -ACGGAAGATCTGAAGCCTTAGCGA -ACGGAAGATCTGAAGCCTCACAGA -ACGGAAGATCTGAAGCCTGCAAGA -ACGGAAGATCTGAAGCCTGGTTGA -ACGGAAGATCTGAAGCCTTCCGAT -ACGGAAGATCTGAAGCCTTGGCAT -ACGGAAGATCTGAAGCCTCGAGAT -ACGGAAGATCTGAAGCCTTACCAC -ACGGAAGATCTGAAGCCTCAGAAC -ACGGAAGATCTGAAGCCTGTCTAC -ACGGAAGATCTGAAGCCTACGTAC -ACGGAAGATCTGAAGCCTAGTGAC -ACGGAAGATCTGAAGCCTCTGTAG -ACGGAAGATCTGAAGCCTCCTAAG -ACGGAAGATCTGAAGCCTGTTCAG -ACGGAAGATCTGAAGCCTGCATAG -ACGGAAGATCTGAAGCCTGACAAG -ACGGAAGATCTGAAGCCTAAGCAG -ACGGAAGATCTGAAGCCTCGTCAA -ACGGAAGATCTGAAGCCTGCTGAA -ACGGAAGATCTGAAGCCTAGTACG -ACGGAAGATCTGAAGCCTATCCGA -ACGGAAGATCTGAAGCCTATGGGA -ACGGAAGATCTGAAGCCTGTGCAA -ACGGAAGATCTGAAGCCTGAGGAA -ACGGAAGATCTGAAGCCTCAGGTA -ACGGAAGATCTGAAGCCTGACTCT -ACGGAAGATCTGAAGCCTAGTCCT -ACGGAAGATCTGAAGCCTTAAGCC -ACGGAAGATCTGAAGCCTATAGCC -ACGGAAGATCTGAAGCCTTAACCG -ACGGAAGATCTGAAGCCTATGCCA -ACGGAAGATCTGCAGGTTGGAAAC -ACGGAAGATCTGCAGGTTAACACC -ACGGAAGATCTGCAGGTTATCGAG -ACGGAAGATCTGCAGGTTCTCCTT -ACGGAAGATCTGCAGGTTCCTGTT -ACGGAAGATCTGCAGGTTCGGTTT -ACGGAAGATCTGCAGGTTGTGGTT -ACGGAAGATCTGCAGGTTGCCTTT -ACGGAAGATCTGCAGGTTGGTCTT -ACGGAAGATCTGCAGGTTACGCTT -ACGGAAGATCTGCAGGTTAGCGTT -ACGGAAGATCTGCAGGTTTTCGTC -ACGGAAGATCTGCAGGTTTCTCTC -ACGGAAGATCTGCAGGTTTGGATC -ACGGAAGATCTGCAGGTTCACTTC -ACGGAAGATCTGCAGGTTGTACTC -ACGGAAGATCTGCAGGTTGATGTC -ACGGAAGATCTGCAGGTTACAGTC -ACGGAAGATCTGCAGGTTTTGCTG -ACGGAAGATCTGCAGGTTTCCATG -ACGGAAGATCTGCAGGTTTGTGTG -ACGGAAGATCTGCAGGTTCTAGTG -ACGGAAGATCTGCAGGTTCATCTG -ACGGAAGATCTGCAGGTTGAGTTG -ACGGAAGATCTGCAGGTTAGACTG -ACGGAAGATCTGCAGGTTTCGGTA -ACGGAAGATCTGCAGGTTTGCCTA -ACGGAAGATCTGCAGGTTCCACTA -ACGGAAGATCTGCAGGTTGGAGTA -ACGGAAGATCTGCAGGTTTCGTCT -ACGGAAGATCTGCAGGTTTGCACT -ACGGAAGATCTGCAGGTTCTGACT -ACGGAAGATCTGCAGGTTCAACCT -ACGGAAGATCTGCAGGTTGCTACT -ACGGAAGATCTGCAGGTTGGATCT -ACGGAAGATCTGCAGGTTAAGGCT -ACGGAAGATCTGCAGGTTTCAACC -ACGGAAGATCTGCAGGTTTGTTCC -ACGGAAGATCTGCAGGTTATTCCC -ACGGAAGATCTGCAGGTTTTCTCG -ACGGAAGATCTGCAGGTTTAGACG -ACGGAAGATCTGCAGGTTGTAACG -ACGGAAGATCTGCAGGTTACTTCG -ACGGAAGATCTGCAGGTTTACGCA -ACGGAAGATCTGCAGGTTCTTGCA -ACGGAAGATCTGCAGGTTCGAACA -ACGGAAGATCTGCAGGTTCAGTCA -ACGGAAGATCTGCAGGTTGATCCA -ACGGAAGATCTGCAGGTTACGACA -ACGGAAGATCTGCAGGTTAGCTCA -ACGGAAGATCTGCAGGTTTCACGT -ACGGAAGATCTGCAGGTTCGTAGT -ACGGAAGATCTGCAGGTTGTCAGT -ACGGAAGATCTGCAGGTTGAAGGT -ACGGAAGATCTGCAGGTTAACCGT -ACGGAAGATCTGCAGGTTTTGTGC -ACGGAAGATCTGCAGGTTCTAAGC -ACGGAAGATCTGCAGGTTACTAGC -ACGGAAGATCTGCAGGTTAGATGC -ACGGAAGATCTGCAGGTTTGAAGG -ACGGAAGATCTGCAGGTTCAATGG -ACGGAAGATCTGCAGGTTATGAGG -ACGGAAGATCTGCAGGTTAATGGG -ACGGAAGATCTGCAGGTTTCCTGA -ACGGAAGATCTGCAGGTTTAGCGA -ACGGAAGATCTGCAGGTTCACAGA -ACGGAAGATCTGCAGGTTGCAAGA -ACGGAAGATCTGCAGGTTGGTTGA -ACGGAAGATCTGCAGGTTTCCGAT -ACGGAAGATCTGCAGGTTTGGCAT -ACGGAAGATCTGCAGGTTCGAGAT -ACGGAAGATCTGCAGGTTTACCAC -ACGGAAGATCTGCAGGTTCAGAAC -ACGGAAGATCTGCAGGTTGTCTAC -ACGGAAGATCTGCAGGTTACGTAC -ACGGAAGATCTGCAGGTTAGTGAC -ACGGAAGATCTGCAGGTTCTGTAG -ACGGAAGATCTGCAGGTTCCTAAG -ACGGAAGATCTGCAGGTTGTTCAG -ACGGAAGATCTGCAGGTTGCATAG -ACGGAAGATCTGCAGGTTGACAAG -ACGGAAGATCTGCAGGTTAAGCAG -ACGGAAGATCTGCAGGTTCGTCAA -ACGGAAGATCTGCAGGTTGCTGAA -ACGGAAGATCTGCAGGTTAGTACG -ACGGAAGATCTGCAGGTTATCCGA -ACGGAAGATCTGCAGGTTATGGGA -ACGGAAGATCTGCAGGTTGTGCAA -ACGGAAGATCTGCAGGTTGAGGAA -ACGGAAGATCTGCAGGTTCAGGTA -ACGGAAGATCTGCAGGTTGACTCT -ACGGAAGATCTGCAGGTTAGTCCT -ACGGAAGATCTGCAGGTTTAAGCC -ACGGAAGATCTGCAGGTTATAGCC -ACGGAAGATCTGCAGGTTTAACCG -ACGGAAGATCTGCAGGTTATGCCA -ACGGAAGATCTGTAGGCAGGAAAC -ACGGAAGATCTGTAGGCAAACACC -ACGGAAGATCTGTAGGCAATCGAG -ACGGAAGATCTGTAGGCACTCCTT -ACGGAAGATCTGTAGGCACCTGTT -ACGGAAGATCTGTAGGCACGGTTT -ACGGAAGATCTGTAGGCAGTGGTT -ACGGAAGATCTGTAGGCAGCCTTT -ACGGAAGATCTGTAGGCAGGTCTT -ACGGAAGATCTGTAGGCAACGCTT -ACGGAAGATCTGTAGGCAAGCGTT -ACGGAAGATCTGTAGGCATTCGTC -ACGGAAGATCTGTAGGCATCTCTC -ACGGAAGATCTGTAGGCATGGATC -ACGGAAGATCTGTAGGCACACTTC -ACGGAAGATCTGTAGGCAGTACTC -ACGGAAGATCTGTAGGCAGATGTC -ACGGAAGATCTGTAGGCAACAGTC -ACGGAAGATCTGTAGGCATTGCTG -ACGGAAGATCTGTAGGCATCCATG -ACGGAAGATCTGTAGGCATGTGTG -ACGGAAGATCTGTAGGCACTAGTG -ACGGAAGATCTGTAGGCACATCTG -ACGGAAGATCTGTAGGCAGAGTTG -ACGGAAGATCTGTAGGCAAGACTG -ACGGAAGATCTGTAGGCATCGGTA -ACGGAAGATCTGTAGGCATGCCTA -ACGGAAGATCTGTAGGCACCACTA -ACGGAAGATCTGTAGGCAGGAGTA -ACGGAAGATCTGTAGGCATCGTCT -ACGGAAGATCTGTAGGCATGCACT -ACGGAAGATCTGTAGGCACTGACT -ACGGAAGATCTGTAGGCACAACCT -ACGGAAGATCTGTAGGCAGCTACT -ACGGAAGATCTGTAGGCAGGATCT -ACGGAAGATCTGTAGGCAAAGGCT -ACGGAAGATCTGTAGGCATCAACC -ACGGAAGATCTGTAGGCATGTTCC -ACGGAAGATCTGTAGGCAATTCCC -ACGGAAGATCTGTAGGCATTCTCG -ACGGAAGATCTGTAGGCATAGACG -ACGGAAGATCTGTAGGCAGTAACG -ACGGAAGATCTGTAGGCAACTTCG -ACGGAAGATCTGTAGGCATACGCA -ACGGAAGATCTGTAGGCACTTGCA -ACGGAAGATCTGTAGGCACGAACA -ACGGAAGATCTGTAGGCACAGTCA -ACGGAAGATCTGTAGGCAGATCCA -ACGGAAGATCTGTAGGCAACGACA -ACGGAAGATCTGTAGGCAAGCTCA -ACGGAAGATCTGTAGGCATCACGT -ACGGAAGATCTGTAGGCACGTAGT -ACGGAAGATCTGTAGGCAGTCAGT -ACGGAAGATCTGTAGGCAGAAGGT -ACGGAAGATCTGTAGGCAAACCGT -ACGGAAGATCTGTAGGCATTGTGC -ACGGAAGATCTGTAGGCACTAAGC -ACGGAAGATCTGTAGGCAACTAGC -ACGGAAGATCTGTAGGCAAGATGC -ACGGAAGATCTGTAGGCATGAAGG -ACGGAAGATCTGTAGGCACAATGG -ACGGAAGATCTGTAGGCAATGAGG -ACGGAAGATCTGTAGGCAAATGGG -ACGGAAGATCTGTAGGCATCCTGA -ACGGAAGATCTGTAGGCATAGCGA -ACGGAAGATCTGTAGGCACACAGA -ACGGAAGATCTGTAGGCAGCAAGA -ACGGAAGATCTGTAGGCAGGTTGA -ACGGAAGATCTGTAGGCATCCGAT -ACGGAAGATCTGTAGGCATGGCAT -ACGGAAGATCTGTAGGCACGAGAT -ACGGAAGATCTGTAGGCATACCAC -ACGGAAGATCTGTAGGCACAGAAC -ACGGAAGATCTGTAGGCAGTCTAC -ACGGAAGATCTGTAGGCAACGTAC -ACGGAAGATCTGTAGGCAAGTGAC -ACGGAAGATCTGTAGGCACTGTAG -ACGGAAGATCTGTAGGCACCTAAG -ACGGAAGATCTGTAGGCAGTTCAG -ACGGAAGATCTGTAGGCAGCATAG -ACGGAAGATCTGTAGGCAGACAAG -ACGGAAGATCTGTAGGCAAAGCAG -ACGGAAGATCTGTAGGCACGTCAA -ACGGAAGATCTGTAGGCAGCTGAA -ACGGAAGATCTGTAGGCAAGTACG -ACGGAAGATCTGTAGGCAATCCGA -ACGGAAGATCTGTAGGCAATGGGA -ACGGAAGATCTGTAGGCAGTGCAA -ACGGAAGATCTGTAGGCAGAGGAA -ACGGAAGATCTGTAGGCACAGGTA -ACGGAAGATCTGTAGGCAGACTCT -ACGGAAGATCTGTAGGCAAGTCCT -ACGGAAGATCTGTAGGCATAAGCC -ACGGAAGATCTGTAGGCAATAGCC -ACGGAAGATCTGTAGGCATAACCG -ACGGAAGATCTGTAGGCAATGCCA -ACGGAAGATCTGAAGGACGGAAAC -ACGGAAGATCTGAAGGACAACACC -ACGGAAGATCTGAAGGACATCGAG -ACGGAAGATCTGAAGGACCTCCTT -ACGGAAGATCTGAAGGACCCTGTT -ACGGAAGATCTGAAGGACCGGTTT -ACGGAAGATCTGAAGGACGTGGTT -ACGGAAGATCTGAAGGACGCCTTT -ACGGAAGATCTGAAGGACGGTCTT -ACGGAAGATCTGAAGGACACGCTT -ACGGAAGATCTGAAGGACAGCGTT -ACGGAAGATCTGAAGGACTTCGTC -ACGGAAGATCTGAAGGACTCTCTC -ACGGAAGATCTGAAGGACTGGATC -ACGGAAGATCTGAAGGACCACTTC -ACGGAAGATCTGAAGGACGTACTC -ACGGAAGATCTGAAGGACGATGTC -ACGGAAGATCTGAAGGACACAGTC -ACGGAAGATCTGAAGGACTTGCTG -ACGGAAGATCTGAAGGACTCCATG -ACGGAAGATCTGAAGGACTGTGTG -ACGGAAGATCTGAAGGACCTAGTG -ACGGAAGATCTGAAGGACCATCTG -ACGGAAGATCTGAAGGACGAGTTG -ACGGAAGATCTGAAGGACAGACTG -ACGGAAGATCTGAAGGACTCGGTA -ACGGAAGATCTGAAGGACTGCCTA -ACGGAAGATCTGAAGGACCCACTA -ACGGAAGATCTGAAGGACGGAGTA -ACGGAAGATCTGAAGGACTCGTCT -ACGGAAGATCTGAAGGACTGCACT -ACGGAAGATCTGAAGGACCTGACT -ACGGAAGATCTGAAGGACCAACCT -ACGGAAGATCTGAAGGACGCTACT -ACGGAAGATCTGAAGGACGGATCT -ACGGAAGATCTGAAGGACAAGGCT -ACGGAAGATCTGAAGGACTCAACC -ACGGAAGATCTGAAGGACTGTTCC -ACGGAAGATCTGAAGGACATTCCC -ACGGAAGATCTGAAGGACTTCTCG -ACGGAAGATCTGAAGGACTAGACG -ACGGAAGATCTGAAGGACGTAACG -ACGGAAGATCTGAAGGACACTTCG -ACGGAAGATCTGAAGGACTACGCA -ACGGAAGATCTGAAGGACCTTGCA -ACGGAAGATCTGAAGGACCGAACA -ACGGAAGATCTGAAGGACCAGTCA -ACGGAAGATCTGAAGGACGATCCA -ACGGAAGATCTGAAGGACACGACA -ACGGAAGATCTGAAGGACAGCTCA -ACGGAAGATCTGAAGGACTCACGT -ACGGAAGATCTGAAGGACCGTAGT -ACGGAAGATCTGAAGGACGTCAGT -ACGGAAGATCTGAAGGACGAAGGT -ACGGAAGATCTGAAGGACAACCGT -ACGGAAGATCTGAAGGACTTGTGC -ACGGAAGATCTGAAGGACCTAAGC -ACGGAAGATCTGAAGGACACTAGC -ACGGAAGATCTGAAGGACAGATGC -ACGGAAGATCTGAAGGACTGAAGG -ACGGAAGATCTGAAGGACCAATGG -ACGGAAGATCTGAAGGACATGAGG -ACGGAAGATCTGAAGGACAATGGG -ACGGAAGATCTGAAGGACTCCTGA -ACGGAAGATCTGAAGGACTAGCGA -ACGGAAGATCTGAAGGACCACAGA -ACGGAAGATCTGAAGGACGCAAGA -ACGGAAGATCTGAAGGACGGTTGA -ACGGAAGATCTGAAGGACTCCGAT -ACGGAAGATCTGAAGGACTGGCAT -ACGGAAGATCTGAAGGACCGAGAT -ACGGAAGATCTGAAGGACTACCAC -ACGGAAGATCTGAAGGACCAGAAC -ACGGAAGATCTGAAGGACGTCTAC -ACGGAAGATCTGAAGGACACGTAC -ACGGAAGATCTGAAGGACAGTGAC -ACGGAAGATCTGAAGGACCTGTAG -ACGGAAGATCTGAAGGACCCTAAG -ACGGAAGATCTGAAGGACGTTCAG -ACGGAAGATCTGAAGGACGCATAG -ACGGAAGATCTGAAGGACGACAAG -ACGGAAGATCTGAAGGACAAGCAG -ACGGAAGATCTGAAGGACCGTCAA -ACGGAAGATCTGAAGGACGCTGAA -ACGGAAGATCTGAAGGACAGTACG -ACGGAAGATCTGAAGGACATCCGA -ACGGAAGATCTGAAGGACATGGGA -ACGGAAGATCTGAAGGACGTGCAA -ACGGAAGATCTGAAGGACGAGGAA -ACGGAAGATCTGAAGGACCAGGTA -ACGGAAGATCTGAAGGACGACTCT -ACGGAAGATCTGAAGGACAGTCCT -ACGGAAGATCTGAAGGACTAAGCC -ACGGAAGATCTGAAGGACATAGCC -ACGGAAGATCTGAAGGACTAACCG -ACGGAAGATCTGAAGGACATGCCA -ACGGAAGATCTGCAGAAGGGAAAC -ACGGAAGATCTGCAGAAGAACACC -ACGGAAGATCTGCAGAAGATCGAG -ACGGAAGATCTGCAGAAGCTCCTT -ACGGAAGATCTGCAGAAGCCTGTT -ACGGAAGATCTGCAGAAGCGGTTT -ACGGAAGATCTGCAGAAGGTGGTT -ACGGAAGATCTGCAGAAGGCCTTT -ACGGAAGATCTGCAGAAGGGTCTT -ACGGAAGATCTGCAGAAGACGCTT -ACGGAAGATCTGCAGAAGAGCGTT -ACGGAAGATCTGCAGAAGTTCGTC -ACGGAAGATCTGCAGAAGTCTCTC -ACGGAAGATCTGCAGAAGTGGATC -ACGGAAGATCTGCAGAAGCACTTC -ACGGAAGATCTGCAGAAGGTACTC -ACGGAAGATCTGCAGAAGGATGTC -ACGGAAGATCTGCAGAAGACAGTC -ACGGAAGATCTGCAGAAGTTGCTG -ACGGAAGATCTGCAGAAGTCCATG -ACGGAAGATCTGCAGAAGTGTGTG -ACGGAAGATCTGCAGAAGCTAGTG -ACGGAAGATCTGCAGAAGCATCTG -ACGGAAGATCTGCAGAAGGAGTTG -ACGGAAGATCTGCAGAAGAGACTG -ACGGAAGATCTGCAGAAGTCGGTA -ACGGAAGATCTGCAGAAGTGCCTA -ACGGAAGATCTGCAGAAGCCACTA -ACGGAAGATCTGCAGAAGGGAGTA -ACGGAAGATCTGCAGAAGTCGTCT -ACGGAAGATCTGCAGAAGTGCACT -ACGGAAGATCTGCAGAAGCTGACT -ACGGAAGATCTGCAGAAGCAACCT -ACGGAAGATCTGCAGAAGGCTACT -ACGGAAGATCTGCAGAAGGGATCT -ACGGAAGATCTGCAGAAGAAGGCT -ACGGAAGATCTGCAGAAGTCAACC -ACGGAAGATCTGCAGAAGTGTTCC -ACGGAAGATCTGCAGAAGATTCCC -ACGGAAGATCTGCAGAAGTTCTCG -ACGGAAGATCTGCAGAAGTAGACG -ACGGAAGATCTGCAGAAGGTAACG -ACGGAAGATCTGCAGAAGACTTCG -ACGGAAGATCTGCAGAAGTACGCA -ACGGAAGATCTGCAGAAGCTTGCA -ACGGAAGATCTGCAGAAGCGAACA -ACGGAAGATCTGCAGAAGCAGTCA -ACGGAAGATCTGCAGAAGGATCCA -ACGGAAGATCTGCAGAAGACGACA -ACGGAAGATCTGCAGAAGAGCTCA -ACGGAAGATCTGCAGAAGTCACGT -ACGGAAGATCTGCAGAAGCGTAGT -ACGGAAGATCTGCAGAAGGTCAGT -ACGGAAGATCTGCAGAAGGAAGGT -ACGGAAGATCTGCAGAAGAACCGT -ACGGAAGATCTGCAGAAGTTGTGC -ACGGAAGATCTGCAGAAGCTAAGC -ACGGAAGATCTGCAGAAGACTAGC -ACGGAAGATCTGCAGAAGAGATGC -ACGGAAGATCTGCAGAAGTGAAGG -ACGGAAGATCTGCAGAAGCAATGG -ACGGAAGATCTGCAGAAGATGAGG -ACGGAAGATCTGCAGAAGAATGGG -ACGGAAGATCTGCAGAAGTCCTGA -ACGGAAGATCTGCAGAAGTAGCGA -ACGGAAGATCTGCAGAAGCACAGA -ACGGAAGATCTGCAGAAGGCAAGA -ACGGAAGATCTGCAGAAGGGTTGA -ACGGAAGATCTGCAGAAGTCCGAT -ACGGAAGATCTGCAGAAGTGGCAT -ACGGAAGATCTGCAGAAGCGAGAT -ACGGAAGATCTGCAGAAGTACCAC -ACGGAAGATCTGCAGAAGCAGAAC -ACGGAAGATCTGCAGAAGGTCTAC -ACGGAAGATCTGCAGAAGACGTAC -ACGGAAGATCTGCAGAAGAGTGAC -ACGGAAGATCTGCAGAAGCTGTAG -ACGGAAGATCTGCAGAAGCCTAAG -ACGGAAGATCTGCAGAAGGTTCAG -ACGGAAGATCTGCAGAAGGCATAG -ACGGAAGATCTGCAGAAGGACAAG -ACGGAAGATCTGCAGAAGAAGCAG -ACGGAAGATCTGCAGAAGCGTCAA -ACGGAAGATCTGCAGAAGGCTGAA -ACGGAAGATCTGCAGAAGAGTACG -ACGGAAGATCTGCAGAAGATCCGA -ACGGAAGATCTGCAGAAGATGGGA -ACGGAAGATCTGCAGAAGGTGCAA -ACGGAAGATCTGCAGAAGGAGGAA -ACGGAAGATCTGCAGAAGCAGGTA -ACGGAAGATCTGCAGAAGGACTCT -ACGGAAGATCTGCAGAAGAGTCCT -ACGGAAGATCTGCAGAAGTAAGCC -ACGGAAGATCTGCAGAAGATAGCC -ACGGAAGATCTGCAGAAGTAACCG -ACGGAAGATCTGCAGAAGATGCCA -ACGGAAGATCTGCAACGTGGAAAC -ACGGAAGATCTGCAACGTAACACC -ACGGAAGATCTGCAACGTATCGAG -ACGGAAGATCTGCAACGTCTCCTT -ACGGAAGATCTGCAACGTCCTGTT -ACGGAAGATCTGCAACGTCGGTTT -ACGGAAGATCTGCAACGTGTGGTT -ACGGAAGATCTGCAACGTGCCTTT -ACGGAAGATCTGCAACGTGGTCTT -ACGGAAGATCTGCAACGTACGCTT -ACGGAAGATCTGCAACGTAGCGTT -ACGGAAGATCTGCAACGTTTCGTC -ACGGAAGATCTGCAACGTTCTCTC -ACGGAAGATCTGCAACGTTGGATC -ACGGAAGATCTGCAACGTCACTTC -ACGGAAGATCTGCAACGTGTACTC -ACGGAAGATCTGCAACGTGATGTC -ACGGAAGATCTGCAACGTACAGTC -ACGGAAGATCTGCAACGTTTGCTG -ACGGAAGATCTGCAACGTTCCATG -ACGGAAGATCTGCAACGTTGTGTG -ACGGAAGATCTGCAACGTCTAGTG -ACGGAAGATCTGCAACGTCATCTG -ACGGAAGATCTGCAACGTGAGTTG -ACGGAAGATCTGCAACGTAGACTG -ACGGAAGATCTGCAACGTTCGGTA -ACGGAAGATCTGCAACGTTGCCTA -ACGGAAGATCTGCAACGTCCACTA -ACGGAAGATCTGCAACGTGGAGTA -ACGGAAGATCTGCAACGTTCGTCT -ACGGAAGATCTGCAACGTTGCACT -ACGGAAGATCTGCAACGTCTGACT -ACGGAAGATCTGCAACGTCAACCT -ACGGAAGATCTGCAACGTGCTACT -ACGGAAGATCTGCAACGTGGATCT -ACGGAAGATCTGCAACGTAAGGCT -ACGGAAGATCTGCAACGTTCAACC -ACGGAAGATCTGCAACGTTGTTCC -ACGGAAGATCTGCAACGTATTCCC -ACGGAAGATCTGCAACGTTTCTCG -ACGGAAGATCTGCAACGTTAGACG -ACGGAAGATCTGCAACGTGTAACG -ACGGAAGATCTGCAACGTACTTCG -ACGGAAGATCTGCAACGTTACGCA -ACGGAAGATCTGCAACGTCTTGCA -ACGGAAGATCTGCAACGTCGAACA -ACGGAAGATCTGCAACGTCAGTCA -ACGGAAGATCTGCAACGTGATCCA -ACGGAAGATCTGCAACGTACGACA -ACGGAAGATCTGCAACGTAGCTCA -ACGGAAGATCTGCAACGTTCACGT -ACGGAAGATCTGCAACGTCGTAGT -ACGGAAGATCTGCAACGTGTCAGT -ACGGAAGATCTGCAACGTGAAGGT -ACGGAAGATCTGCAACGTAACCGT -ACGGAAGATCTGCAACGTTTGTGC -ACGGAAGATCTGCAACGTCTAAGC -ACGGAAGATCTGCAACGTACTAGC -ACGGAAGATCTGCAACGTAGATGC -ACGGAAGATCTGCAACGTTGAAGG -ACGGAAGATCTGCAACGTCAATGG -ACGGAAGATCTGCAACGTATGAGG -ACGGAAGATCTGCAACGTAATGGG -ACGGAAGATCTGCAACGTTCCTGA -ACGGAAGATCTGCAACGTTAGCGA -ACGGAAGATCTGCAACGTCACAGA -ACGGAAGATCTGCAACGTGCAAGA -ACGGAAGATCTGCAACGTGGTTGA -ACGGAAGATCTGCAACGTTCCGAT -ACGGAAGATCTGCAACGTTGGCAT -ACGGAAGATCTGCAACGTCGAGAT -ACGGAAGATCTGCAACGTTACCAC -ACGGAAGATCTGCAACGTCAGAAC -ACGGAAGATCTGCAACGTGTCTAC -ACGGAAGATCTGCAACGTACGTAC -ACGGAAGATCTGCAACGTAGTGAC -ACGGAAGATCTGCAACGTCTGTAG -ACGGAAGATCTGCAACGTCCTAAG -ACGGAAGATCTGCAACGTGTTCAG -ACGGAAGATCTGCAACGTGCATAG -ACGGAAGATCTGCAACGTGACAAG -ACGGAAGATCTGCAACGTAAGCAG -ACGGAAGATCTGCAACGTCGTCAA -ACGGAAGATCTGCAACGTGCTGAA -ACGGAAGATCTGCAACGTAGTACG -ACGGAAGATCTGCAACGTATCCGA -ACGGAAGATCTGCAACGTATGGGA -ACGGAAGATCTGCAACGTGTGCAA -ACGGAAGATCTGCAACGTGAGGAA -ACGGAAGATCTGCAACGTCAGGTA -ACGGAAGATCTGCAACGTGACTCT -ACGGAAGATCTGCAACGTAGTCCT -ACGGAAGATCTGCAACGTTAAGCC -ACGGAAGATCTGCAACGTATAGCC -ACGGAAGATCTGCAACGTTAACCG -ACGGAAGATCTGCAACGTATGCCA -ACGGAAGATCTGGAAGCTGGAAAC -ACGGAAGATCTGGAAGCTAACACC -ACGGAAGATCTGGAAGCTATCGAG -ACGGAAGATCTGGAAGCTCTCCTT -ACGGAAGATCTGGAAGCTCCTGTT -ACGGAAGATCTGGAAGCTCGGTTT -ACGGAAGATCTGGAAGCTGTGGTT -ACGGAAGATCTGGAAGCTGCCTTT -ACGGAAGATCTGGAAGCTGGTCTT -ACGGAAGATCTGGAAGCTACGCTT -ACGGAAGATCTGGAAGCTAGCGTT -ACGGAAGATCTGGAAGCTTTCGTC -ACGGAAGATCTGGAAGCTTCTCTC -ACGGAAGATCTGGAAGCTTGGATC -ACGGAAGATCTGGAAGCTCACTTC -ACGGAAGATCTGGAAGCTGTACTC -ACGGAAGATCTGGAAGCTGATGTC -ACGGAAGATCTGGAAGCTACAGTC -ACGGAAGATCTGGAAGCTTTGCTG -ACGGAAGATCTGGAAGCTTCCATG -ACGGAAGATCTGGAAGCTTGTGTG -ACGGAAGATCTGGAAGCTCTAGTG -ACGGAAGATCTGGAAGCTCATCTG -ACGGAAGATCTGGAAGCTGAGTTG -ACGGAAGATCTGGAAGCTAGACTG -ACGGAAGATCTGGAAGCTTCGGTA -ACGGAAGATCTGGAAGCTTGCCTA -ACGGAAGATCTGGAAGCTCCACTA -ACGGAAGATCTGGAAGCTGGAGTA -ACGGAAGATCTGGAAGCTTCGTCT -ACGGAAGATCTGGAAGCTTGCACT -ACGGAAGATCTGGAAGCTCTGACT -ACGGAAGATCTGGAAGCTCAACCT -ACGGAAGATCTGGAAGCTGCTACT -ACGGAAGATCTGGAAGCTGGATCT -ACGGAAGATCTGGAAGCTAAGGCT -ACGGAAGATCTGGAAGCTTCAACC -ACGGAAGATCTGGAAGCTTGTTCC -ACGGAAGATCTGGAAGCTATTCCC -ACGGAAGATCTGGAAGCTTTCTCG -ACGGAAGATCTGGAAGCTTAGACG -ACGGAAGATCTGGAAGCTGTAACG -ACGGAAGATCTGGAAGCTACTTCG -ACGGAAGATCTGGAAGCTTACGCA -ACGGAAGATCTGGAAGCTCTTGCA -ACGGAAGATCTGGAAGCTCGAACA -ACGGAAGATCTGGAAGCTCAGTCA -ACGGAAGATCTGGAAGCTGATCCA -ACGGAAGATCTGGAAGCTACGACA -ACGGAAGATCTGGAAGCTAGCTCA -ACGGAAGATCTGGAAGCTTCACGT -ACGGAAGATCTGGAAGCTCGTAGT -ACGGAAGATCTGGAAGCTGTCAGT -ACGGAAGATCTGGAAGCTGAAGGT -ACGGAAGATCTGGAAGCTAACCGT -ACGGAAGATCTGGAAGCTTTGTGC -ACGGAAGATCTGGAAGCTCTAAGC -ACGGAAGATCTGGAAGCTACTAGC -ACGGAAGATCTGGAAGCTAGATGC -ACGGAAGATCTGGAAGCTTGAAGG -ACGGAAGATCTGGAAGCTCAATGG -ACGGAAGATCTGGAAGCTATGAGG -ACGGAAGATCTGGAAGCTAATGGG -ACGGAAGATCTGGAAGCTTCCTGA -ACGGAAGATCTGGAAGCTTAGCGA -ACGGAAGATCTGGAAGCTCACAGA -ACGGAAGATCTGGAAGCTGCAAGA -ACGGAAGATCTGGAAGCTGGTTGA -ACGGAAGATCTGGAAGCTTCCGAT -ACGGAAGATCTGGAAGCTTGGCAT -ACGGAAGATCTGGAAGCTCGAGAT -ACGGAAGATCTGGAAGCTTACCAC -ACGGAAGATCTGGAAGCTCAGAAC -ACGGAAGATCTGGAAGCTGTCTAC -ACGGAAGATCTGGAAGCTACGTAC -ACGGAAGATCTGGAAGCTAGTGAC -ACGGAAGATCTGGAAGCTCTGTAG -ACGGAAGATCTGGAAGCTCCTAAG -ACGGAAGATCTGGAAGCTGTTCAG -ACGGAAGATCTGGAAGCTGCATAG -ACGGAAGATCTGGAAGCTGACAAG -ACGGAAGATCTGGAAGCTAAGCAG -ACGGAAGATCTGGAAGCTCGTCAA -ACGGAAGATCTGGAAGCTGCTGAA -ACGGAAGATCTGGAAGCTAGTACG -ACGGAAGATCTGGAAGCTATCCGA -ACGGAAGATCTGGAAGCTATGGGA -ACGGAAGATCTGGAAGCTGTGCAA -ACGGAAGATCTGGAAGCTGAGGAA -ACGGAAGATCTGGAAGCTCAGGTA -ACGGAAGATCTGGAAGCTGACTCT -ACGGAAGATCTGGAAGCTAGTCCT -ACGGAAGATCTGGAAGCTTAAGCC -ACGGAAGATCTGGAAGCTATAGCC -ACGGAAGATCTGGAAGCTTAACCG -ACGGAAGATCTGGAAGCTATGCCA -ACGGAAGATCTGACGAGTGGAAAC -ACGGAAGATCTGACGAGTAACACC -ACGGAAGATCTGACGAGTATCGAG -ACGGAAGATCTGACGAGTCTCCTT -ACGGAAGATCTGACGAGTCCTGTT -ACGGAAGATCTGACGAGTCGGTTT -ACGGAAGATCTGACGAGTGTGGTT -ACGGAAGATCTGACGAGTGCCTTT -ACGGAAGATCTGACGAGTGGTCTT -ACGGAAGATCTGACGAGTACGCTT -ACGGAAGATCTGACGAGTAGCGTT -ACGGAAGATCTGACGAGTTTCGTC -ACGGAAGATCTGACGAGTTCTCTC -ACGGAAGATCTGACGAGTTGGATC -ACGGAAGATCTGACGAGTCACTTC -ACGGAAGATCTGACGAGTGTACTC -ACGGAAGATCTGACGAGTGATGTC -ACGGAAGATCTGACGAGTACAGTC -ACGGAAGATCTGACGAGTTTGCTG -ACGGAAGATCTGACGAGTTCCATG -ACGGAAGATCTGACGAGTTGTGTG -ACGGAAGATCTGACGAGTCTAGTG -ACGGAAGATCTGACGAGTCATCTG -ACGGAAGATCTGACGAGTGAGTTG -ACGGAAGATCTGACGAGTAGACTG -ACGGAAGATCTGACGAGTTCGGTA -ACGGAAGATCTGACGAGTTGCCTA -ACGGAAGATCTGACGAGTCCACTA -ACGGAAGATCTGACGAGTGGAGTA -ACGGAAGATCTGACGAGTTCGTCT -ACGGAAGATCTGACGAGTTGCACT -ACGGAAGATCTGACGAGTCTGACT -ACGGAAGATCTGACGAGTCAACCT -ACGGAAGATCTGACGAGTGCTACT -ACGGAAGATCTGACGAGTGGATCT -ACGGAAGATCTGACGAGTAAGGCT -ACGGAAGATCTGACGAGTTCAACC -ACGGAAGATCTGACGAGTTGTTCC -ACGGAAGATCTGACGAGTATTCCC -ACGGAAGATCTGACGAGTTTCTCG -ACGGAAGATCTGACGAGTTAGACG -ACGGAAGATCTGACGAGTGTAACG -ACGGAAGATCTGACGAGTACTTCG -ACGGAAGATCTGACGAGTTACGCA -ACGGAAGATCTGACGAGTCTTGCA -ACGGAAGATCTGACGAGTCGAACA -ACGGAAGATCTGACGAGTCAGTCA -ACGGAAGATCTGACGAGTGATCCA -ACGGAAGATCTGACGAGTACGACA -ACGGAAGATCTGACGAGTAGCTCA -ACGGAAGATCTGACGAGTTCACGT -ACGGAAGATCTGACGAGTCGTAGT -ACGGAAGATCTGACGAGTGTCAGT -ACGGAAGATCTGACGAGTGAAGGT -ACGGAAGATCTGACGAGTAACCGT -ACGGAAGATCTGACGAGTTTGTGC -ACGGAAGATCTGACGAGTCTAAGC -ACGGAAGATCTGACGAGTACTAGC -ACGGAAGATCTGACGAGTAGATGC -ACGGAAGATCTGACGAGTTGAAGG -ACGGAAGATCTGACGAGTCAATGG -ACGGAAGATCTGACGAGTATGAGG -ACGGAAGATCTGACGAGTAATGGG -ACGGAAGATCTGACGAGTTCCTGA -ACGGAAGATCTGACGAGTTAGCGA -ACGGAAGATCTGACGAGTCACAGA -ACGGAAGATCTGACGAGTGCAAGA -ACGGAAGATCTGACGAGTGGTTGA -ACGGAAGATCTGACGAGTTCCGAT -ACGGAAGATCTGACGAGTTGGCAT -ACGGAAGATCTGACGAGTCGAGAT -ACGGAAGATCTGACGAGTTACCAC -ACGGAAGATCTGACGAGTCAGAAC -ACGGAAGATCTGACGAGTGTCTAC -ACGGAAGATCTGACGAGTACGTAC -ACGGAAGATCTGACGAGTAGTGAC -ACGGAAGATCTGACGAGTCTGTAG -ACGGAAGATCTGACGAGTCCTAAG -ACGGAAGATCTGACGAGTGTTCAG -ACGGAAGATCTGACGAGTGCATAG -ACGGAAGATCTGACGAGTGACAAG -ACGGAAGATCTGACGAGTAAGCAG -ACGGAAGATCTGACGAGTCGTCAA -ACGGAAGATCTGACGAGTGCTGAA -ACGGAAGATCTGACGAGTAGTACG -ACGGAAGATCTGACGAGTATCCGA -ACGGAAGATCTGACGAGTATGGGA -ACGGAAGATCTGACGAGTGTGCAA -ACGGAAGATCTGACGAGTGAGGAA -ACGGAAGATCTGACGAGTCAGGTA -ACGGAAGATCTGACGAGTGACTCT -ACGGAAGATCTGACGAGTAGTCCT -ACGGAAGATCTGACGAGTTAAGCC -ACGGAAGATCTGACGAGTATAGCC -ACGGAAGATCTGACGAGTTAACCG -ACGGAAGATCTGACGAGTATGCCA -ACGGAAGATCTGCGAATCGGAAAC -ACGGAAGATCTGCGAATCAACACC -ACGGAAGATCTGCGAATCATCGAG -ACGGAAGATCTGCGAATCCTCCTT -ACGGAAGATCTGCGAATCCCTGTT -ACGGAAGATCTGCGAATCCGGTTT -ACGGAAGATCTGCGAATCGTGGTT -ACGGAAGATCTGCGAATCGCCTTT -ACGGAAGATCTGCGAATCGGTCTT -ACGGAAGATCTGCGAATCACGCTT -ACGGAAGATCTGCGAATCAGCGTT -ACGGAAGATCTGCGAATCTTCGTC -ACGGAAGATCTGCGAATCTCTCTC -ACGGAAGATCTGCGAATCTGGATC -ACGGAAGATCTGCGAATCCACTTC -ACGGAAGATCTGCGAATCGTACTC -ACGGAAGATCTGCGAATCGATGTC -ACGGAAGATCTGCGAATCACAGTC -ACGGAAGATCTGCGAATCTTGCTG -ACGGAAGATCTGCGAATCTCCATG -ACGGAAGATCTGCGAATCTGTGTG -ACGGAAGATCTGCGAATCCTAGTG -ACGGAAGATCTGCGAATCCATCTG -ACGGAAGATCTGCGAATCGAGTTG -ACGGAAGATCTGCGAATCAGACTG -ACGGAAGATCTGCGAATCTCGGTA -ACGGAAGATCTGCGAATCTGCCTA -ACGGAAGATCTGCGAATCCCACTA -ACGGAAGATCTGCGAATCGGAGTA -ACGGAAGATCTGCGAATCTCGTCT -ACGGAAGATCTGCGAATCTGCACT -ACGGAAGATCTGCGAATCCTGACT -ACGGAAGATCTGCGAATCCAACCT -ACGGAAGATCTGCGAATCGCTACT -ACGGAAGATCTGCGAATCGGATCT -ACGGAAGATCTGCGAATCAAGGCT -ACGGAAGATCTGCGAATCTCAACC -ACGGAAGATCTGCGAATCTGTTCC -ACGGAAGATCTGCGAATCATTCCC -ACGGAAGATCTGCGAATCTTCTCG -ACGGAAGATCTGCGAATCTAGACG -ACGGAAGATCTGCGAATCGTAACG -ACGGAAGATCTGCGAATCACTTCG -ACGGAAGATCTGCGAATCTACGCA -ACGGAAGATCTGCGAATCCTTGCA -ACGGAAGATCTGCGAATCCGAACA -ACGGAAGATCTGCGAATCCAGTCA -ACGGAAGATCTGCGAATCGATCCA -ACGGAAGATCTGCGAATCACGACA -ACGGAAGATCTGCGAATCAGCTCA -ACGGAAGATCTGCGAATCTCACGT -ACGGAAGATCTGCGAATCCGTAGT -ACGGAAGATCTGCGAATCGTCAGT -ACGGAAGATCTGCGAATCGAAGGT -ACGGAAGATCTGCGAATCAACCGT -ACGGAAGATCTGCGAATCTTGTGC -ACGGAAGATCTGCGAATCCTAAGC -ACGGAAGATCTGCGAATCACTAGC -ACGGAAGATCTGCGAATCAGATGC -ACGGAAGATCTGCGAATCTGAAGG -ACGGAAGATCTGCGAATCCAATGG -ACGGAAGATCTGCGAATCATGAGG -ACGGAAGATCTGCGAATCAATGGG -ACGGAAGATCTGCGAATCTCCTGA -ACGGAAGATCTGCGAATCTAGCGA -ACGGAAGATCTGCGAATCCACAGA -ACGGAAGATCTGCGAATCGCAAGA -ACGGAAGATCTGCGAATCGGTTGA -ACGGAAGATCTGCGAATCTCCGAT -ACGGAAGATCTGCGAATCTGGCAT -ACGGAAGATCTGCGAATCCGAGAT -ACGGAAGATCTGCGAATCTACCAC -ACGGAAGATCTGCGAATCCAGAAC -ACGGAAGATCTGCGAATCGTCTAC -ACGGAAGATCTGCGAATCACGTAC -ACGGAAGATCTGCGAATCAGTGAC -ACGGAAGATCTGCGAATCCTGTAG -ACGGAAGATCTGCGAATCCCTAAG -ACGGAAGATCTGCGAATCGTTCAG -ACGGAAGATCTGCGAATCGCATAG -ACGGAAGATCTGCGAATCGACAAG -ACGGAAGATCTGCGAATCAAGCAG -ACGGAAGATCTGCGAATCCGTCAA -ACGGAAGATCTGCGAATCGCTGAA -ACGGAAGATCTGCGAATCAGTACG -ACGGAAGATCTGCGAATCATCCGA -ACGGAAGATCTGCGAATCATGGGA -ACGGAAGATCTGCGAATCGTGCAA -ACGGAAGATCTGCGAATCGAGGAA -ACGGAAGATCTGCGAATCCAGGTA -ACGGAAGATCTGCGAATCGACTCT -ACGGAAGATCTGCGAATCAGTCCT -ACGGAAGATCTGCGAATCTAAGCC -ACGGAAGATCTGCGAATCATAGCC -ACGGAAGATCTGCGAATCTAACCG -ACGGAAGATCTGCGAATCATGCCA -ACGGAAGATCTGGGAATGGGAAAC -ACGGAAGATCTGGGAATGAACACC -ACGGAAGATCTGGGAATGATCGAG -ACGGAAGATCTGGGAATGCTCCTT -ACGGAAGATCTGGGAATGCCTGTT -ACGGAAGATCTGGGAATGCGGTTT -ACGGAAGATCTGGGAATGGTGGTT -ACGGAAGATCTGGGAATGGCCTTT -ACGGAAGATCTGGGAATGGGTCTT -ACGGAAGATCTGGGAATGACGCTT -ACGGAAGATCTGGGAATGAGCGTT -ACGGAAGATCTGGGAATGTTCGTC -ACGGAAGATCTGGGAATGTCTCTC -ACGGAAGATCTGGGAATGTGGATC -ACGGAAGATCTGGGAATGCACTTC -ACGGAAGATCTGGGAATGGTACTC -ACGGAAGATCTGGGAATGGATGTC -ACGGAAGATCTGGGAATGACAGTC -ACGGAAGATCTGGGAATGTTGCTG -ACGGAAGATCTGGGAATGTCCATG -ACGGAAGATCTGGGAATGTGTGTG -ACGGAAGATCTGGGAATGCTAGTG -ACGGAAGATCTGGGAATGCATCTG -ACGGAAGATCTGGGAATGGAGTTG -ACGGAAGATCTGGGAATGAGACTG -ACGGAAGATCTGGGAATGTCGGTA -ACGGAAGATCTGGGAATGTGCCTA -ACGGAAGATCTGGGAATGCCACTA -ACGGAAGATCTGGGAATGGGAGTA -ACGGAAGATCTGGGAATGTCGTCT -ACGGAAGATCTGGGAATGTGCACT -ACGGAAGATCTGGGAATGCTGACT -ACGGAAGATCTGGGAATGCAACCT -ACGGAAGATCTGGGAATGGCTACT -ACGGAAGATCTGGGAATGGGATCT -ACGGAAGATCTGGGAATGAAGGCT -ACGGAAGATCTGGGAATGTCAACC -ACGGAAGATCTGGGAATGTGTTCC -ACGGAAGATCTGGGAATGATTCCC -ACGGAAGATCTGGGAATGTTCTCG -ACGGAAGATCTGGGAATGTAGACG -ACGGAAGATCTGGGAATGGTAACG -ACGGAAGATCTGGGAATGACTTCG -ACGGAAGATCTGGGAATGTACGCA -ACGGAAGATCTGGGAATGCTTGCA -ACGGAAGATCTGGGAATGCGAACA -ACGGAAGATCTGGGAATGCAGTCA -ACGGAAGATCTGGGAATGGATCCA -ACGGAAGATCTGGGAATGACGACA -ACGGAAGATCTGGGAATGAGCTCA -ACGGAAGATCTGGGAATGTCACGT -ACGGAAGATCTGGGAATGCGTAGT -ACGGAAGATCTGGGAATGGTCAGT -ACGGAAGATCTGGGAATGGAAGGT -ACGGAAGATCTGGGAATGAACCGT -ACGGAAGATCTGGGAATGTTGTGC -ACGGAAGATCTGGGAATGCTAAGC -ACGGAAGATCTGGGAATGACTAGC -ACGGAAGATCTGGGAATGAGATGC -ACGGAAGATCTGGGAATGTGAAGG -ACGGAAGATCTGGGAATGCAATGG -ACGGAAGATCTGGGAATGATGAGG -ACGGAAGATCTGGGAATGAATGGG -ACGGAAGATCTGGGAATGTCCTGA -ACGGAAGATCTGGGAATGTAGCGA -ACGGAAGATCTGGGAATGCACAGA -ACGGAAGATCTGGGAATGGCAAGA -ACGGAAGATCTGGGAATGGGTTGA -ACGGAAGATCTGGGAATGTCCGAT -ACGGAAGATCTGGGAATGTGGCAT -ACGGAAGATCTGGGAATGCGAGAT -ACGGAAGATCTGGGAATGTACCAC -ACGGAAGATCTGGGAATGCAGAAC -ACGGAAGATCTGGGAATGGTCTAC -ACGGAAGATCTGGGAATGACGTAC -ACGGAAGATCTGGGAATGAGTGAC -ACGGAAGATCTGGGAATGCTGTAG -ACGGAAGATCTGGGAATGCCTAAG -ACGGAAGATCTGGGAATGGTTCAG -ACGGAAGATCTGGGAATGGCATAG -ACGGAAGATCTGGGAATGGACAAG -ACGGAAGATCTGGGAATGAAGCAG -ACGGAAGATCTGGGAATGCGTCAA -ACGGAAGATCTGGGAATGGCTGAA -ACGGAAGATCTGGGAATGAGTACG -ACGGAAGATCTGGGAATGATCCGA -ACGGAAGATCTGGGAATGATGGGA -ACGGAAGATCTGGGAATGGTGCAA -ACGGAAGATCTGGGAATGGAGGAA -ACGGAAGATCTGGGAATGCAGGTA -ACGGAAGATCTGGGAATGGACTCT -ACGGAAGATCTGGGAATGAGTCCT -ACGGAAGATCTGGGAATGTAAGCC -ACGGAAGATCTGGGAATGATAGCC -ACGGAAGATCTGGGAATGTAACCG -ACGGAAGATCTGGGAATGATGCCA -ACGGAAGATCTGCAAGTGGGAAAC -ACGGAAGATCTGCAAGTGAACACC -ACGGAAGATCTGCAAGTGATCGAG -ACGGAAGATCTGCAAGTGCTCCTT -ACGGAAGATCTGCAAGTGCCTGTT -ACGGAAGATCTGCAAGTGCGGTTT -ACGGAAGATCTGCAAGTGGTGGTT -ACGGAAGATCTGCAAGTGGCCTTT -ACGGAAGATCTGCAAGTGGGTCTT -ACGGAAGATCTGCAAGTGACGCTT -ACGGAAGATCTGCAAGTGAGCGTT -ACGGAAGATCTGCAAGTGTTCGTC -ACGGAAGATCTGCAAGTGTCTCTC -ACGGAAGATCTGCAAGTGTGGATC -ACGGAAGATCTGCAAGTGCACTTC -ACGGAAGATCTGCAAGTGGTACTC -ACGGAAGATCTGCAAGTGGATGTC -ACGGAAGATCTGCAAGTGACAGTC -ACGGAAGATCTGCAAGTGTTGCTG -ACGGAAGATCTGCAAGTGTCCATG -ACGGAAGATCTGCAAGTGTGTGTG -ACGGAAGATCTGCAAGTGCTAGTG -ACGGAAGATCTGCAAGTGCATCTG -ACGGAAGATCTGCAAGTGGAGTTG -ACGGAAGATCTGCAAGTGAGACTG -ACGGAAGATCTGCAAGTGTCGGTA -ACGGAAGATCTGCAAGTGTGCCTA -ACGGAAGATCTGCAAGTGCCACTA -ACGGAAGATCTGCAAGTGGGAGTA -ACGGAAGATCTGCAAGTGTCGTCT -ACGGAAGATCTGCAAGTGTGCACT -ACGGAAGATCTGCAAGTGCTGACT -ACGGAAGATCTGCAAGTGCAACCT -ACGGAAGATCTGCAAGTGGCTACT -ACGGAAGATCTGCAAGTGGGATCT -ACGGAAGATCTGCAAGTGAAGGCT -ACGGAAGATCTGCAAGTGTCAACC -ACGGAAGATCTGCAAGTGTGTTCC -ACGGAAGATCTGCAAGTGATTCCC -ACGGAAGATCTGCAAGTGTTCTCG -ACGGAAGATCTGCAAGTGTAGACG -ACGGAAGATCTGCAAGTGGTAACG -ACGGAAGATCTGCAAGTGACTTCG -ACGGAAGATCTGCAAGTGTACGCA -ACGGAAGATCTGCAAGTGCTTGCA -ACGGAAGATCTGCAAGTGCGAACA -ACGGAAGATCTGCAAGTGCAGTCA -ACGGAAGATCTGCAAGTGGATCCA -ACGGAAGATCTGCAAGTGACGACA -ACGGAAGATCTGCAAGTGAGCTCA -ACGGAAGATCTGCAAGTGTCACGT -ACGGAAGATCTGCAAGTGCGTAGT -ACGGAAGATCTGCAAGTGGTCAGT -ACGGAAGATCTGCAAGTGGAAGGT -ACGGAAGATCTGCAAGTGAACCGT -ACGGAAGATCTGCAAGTGTTGTGC -ACGGAAGATCTGCAAGTGCTAAGC -ACGGAAGATCTGCAAGTGACTAGC -ACGGAAGATCTGCAAGTGAGATGC -ACGGAAGATCTGCAAGTGTGAAGG -ACGGAAGATCTGCAAGTGCAATGG -ACGGAAGATCTGCAAGTGATGAGG -ACGGAAGATCTGCAAGTGAATGGG -ACGGAAGATCTGCAAGTGTCCTGA -ACGGAAGATCTGCAAGTGTAGCGA -ACGGAAGATCTGCAAGTGCACAGA -ACGGAAGATCTGCAAGTGGCAAGA -ACGGAAGATCTGCAAGTGGGTTGA -ACGGAAGATCTGCAAGTGTCCGAT -ACGGAAGATCTGCAAGTGTGGCAT -ACGGAAGATCTGCAAGTGCGAGAT -ACGGAAGATCTGCAAGTGTACCAC -ACGGAAGATCTGCAAGTGCAGAAC -ACGGAAGATCTGCAAGTGGTCTAC -ACGGAAGATCTGCAAGTGACGTAC -ACGGAAGATCTGCAAGTGAGTGAC -ACGGAAGATCTGCAAGTGCTGTAG -ACGGAAGATCTGCAAGTGCCTAAG -ACGGAAGATCTGCAAGTGGTTCAG -ACGGAAGATCTGCAAGTGGCATAG -ACGGAAGATCTGCAAGTGGACAAG -ACGGAAGATCTGCAAGTGAAGCAG -ACGGAAGATCTGCAAGTGCGTCAA -ACGGAAGATCTGCAAGTGGCTGAA -ACGGAAGATCTGCAAGTGAGTACG -ACGGAAGATCTGCAAGTGATCCGA -ACGGAAGATCTGCAAGTGATGGGA -ACGGAAGATCTGCAAGTGGTGCAA -ACGGAAGATCTGCAAGTGGAGGAA -ACGGAAGATCTGCAAGTGCAGGTA -ACGGAAGATCTGCAAGTGGACTCT -ACGGAAGATCTGCAAGTGAGTCCT -ACGGAAGATCTGCAAGTGTAAGCC -ACGGAAGATCTGCAAGTGATAGCC -ACGGAAGATCTGCAAGTGTAACCG -ACGGAAGATCTGCAAGTGATGCCA -ACGGAAGATCTGGAAGAGGGAAAC -ACGGAAGATCTGGAAGAGAACACC -ACGGAAGATCTGGAAGAGATCGAG -ACGGAAGATCTGGAAGAGCTCCTT -ACGGAAGATCTGGAAGAGCCTGTT -ACGGAAGATCTGGAAGAGCGGTTT -ACGGAAGATCTGGAAGAGGTGGTT -ACGGAAGATCTGGAAGAGGCCTTT -ACGGAAGATCTGGAAGAGGGTCTT -ACGGAAGATCTGGAAGAGACGCTT -ACGGAAGATCTGGAAGAGAGCGTT -ACGGAAGATCTGGAAGAGTTCGTC -ACGGAAGATCTGGAAGAGTCTCTC -ACGGAAGATCTGGAAGAGTGGATC -ACGGAAGATCTGGAAGAGCACTTC -ACGGAAGATCTGGAAGAGGTACTC -ACGGAAGATCTGGAAGAGGATGTC -ACGGAAGATCTGGAAGAGACAGTC -ACGGAAGATCTGGAAGAGTTGCTG -ACGGAAGATCTGGAAGAGTCCATG -ACGGAAGATCTGGAAGAGTGTGTG -ACGGAAGATCTGGAAGAGCTAGTG -ACGGAAGATCTGGAAGAGCATCTG -ACGGAAGATCTGGAAGAGGAGTTG -ACGGAAGATCTGGAAGAGAGACTG -ACGGAAGATCTGGAAGAGTCGGTA -ACGGAAGATCTGGAAGAGTGCCTA -ACGGAAGATCTGGAAGAGCCACTA -ACGGAAGATCTGGAAGAGGGAGTA -ACGGAAGATCTGGAAGAGTCGTCT -ACGGAAGATCTGGAAGAGTGCACT -ACGGAAGATCTGGAAGAGCTGACT -ACGGAAGATCTGGAAGAGCAACCT -ACGGAAGATCTGGAAGAGGCTACT -ACGGAAGATCTGGAAGAGGGATCT -ACGGAAGATCTGGAAGAGAAGGCT -ACGGAAGATCTGGAAGAGTCAACC -ACGGAAGATCTGGAAGAGTGTTCC -ACGGAAGATCTGGAAGAGATTCCC -ACGGAAGATCTGGAAGAGTTCTCG -ACGGAAGATCTGGAAGAGTAGACG -ACGGAAGATCTGGAAGAGGTAACG -ACGGAAGATCTGGAAGAGACTTCG -ACGGAAGATCTGGAAGAGTACGCA -ACGGAAGATCTGGAAGAGCTTGCA -ACGGAAGATCTGGAAGAGCGAACA -ACGGAAGATCTGGAAGAGCAGTCA -ACGGAAGATCTGGAAGAGGATCCA -ACGGAAGATCTGGAAGAGACGACA -ACGGAAGATCTGGAAGAGAGCTCA -ACGGAAGATCTGGAAGAGTCACGT -ACGGAAGATCTGGAAGAGCGTAGT -ACGGAAGATCTGGAAGAGGTCAGT -ACGGAAGATCTGGAAGAGGAAGGT -ACGGAAGATCTGGAAGAGAACCGT -ACGGAAGATCTGGAAGAGTTGTGC -ACGGAAGATCTGGAAGAGCTAAGC -ACGGAAGATCTGGAAGAGACTAGC -ACGGAAGATCTGGAAGAGAGATGC -ACGGAAGATCTGGAAGAGTGAAGG -ACGGAAGATCTGGAAGAGCAATGG -ACGGAAGATCTGGAAGAGATGAGG -ACGGAAGATCTGGAAGAGAATGGG -ACGGAAGATCTGGAAGAGTCCTGA -ACGGAAGATCTGGAAGAGTAGCGA -ACGGAAGATCTGGAAGAGCACAGA -ACGGAAGATCTGGAAGAGGCAAGA -ACGGAAGATCTGGAAGAGGGTTGA -ACGGAAGATCTGGAAGAGTCCGAT -ACGGAAGATCTGGAAGAGTGGCAT -ACGGAAGATCTGGAAGAGCGAGAT -ACGGAAGATCTGGAAGAGTACCAC -ACGGAAGATCTGGAAGAGCAGAAC -ACGGAAGATCTGGAAGAGGTCTAC -ACGGAAGATCTGGAAGAGACGTAC -ACGGAAGATCTGGAAGAGAGTGAC -ACGGAAGATCTGGAAGAGCTGTAG -ACGGAAGATCTGGAAGAGCCTAAG -ACGGAAGATCTGGAAGAGGTTCAG -ACGGAAGATCTGGAAGAGGCATAG -ACGGAAGATCTGGAAGAGGACAAG -ACGGAAGATCTGGAAGAGAAGCAG -ACGGAAGATCTGGAAGAGCGTCAA -ACGGAAGATCTGGAAGAGGCTGAA -ACGGAAGATCTGGAAGAGAGTACG -ACGGAAGATCTGGAAGAGATCCGA -ACGGAAGATCTGGAAGAGATGGGA -ACGGAAGATCTGGAAGAGGTGCAA -ACGGAAGATCTGGAAGAGGAGGAA -ACGGAAGATCTGGAAGAGCAGGTA -ACGGAAGATCTGGAAGAGGACTCT -ACGGAAGATCTGGAAGAGAGTCCT -ACGGAAGATCTGGAAGAGTAAGCC -ACGGAAGATCTGGAAGAGATAGCC -ACGGAAGATCTGGAAGAGTAACCG -ACGGAAGATCTGGAAGAGATGCCA -ACGGAAGATCTGGTACAGGGAAAC -ACGGAAGATCTGGTACAGAACACC -ACGGAAGATCTGGTACAGATCGAG -ACGGAAGATCTGGTACAGCTCCTT -ACGGAAGATCTGGTACAGCCTGTT -ACGGAAGATCTGGTACAGCGGTTT -ACGGAAGATCTGGTACAGGTGGTT -ACGGAAGATCTGGTACAGGCCTTT -ACGGAAGATCTGGTACAGGGTCTT -ACGGAAGATCTGGTACAGACGCTT -ACGGAAGATCTGGTACAGAGCGTT -ACGGAAGATCTGGTACAGTTCGTC -ACGGAAGATCTGGTACAGTCTCTC -ACGGAAGATCTGGTACAGTGGATC -ACGGAAGATCTGGTACAGCACTTC -ACGGAAGATCTGGTACAGGTACTC -ACGGAAGATCTGGTACAGGATGTC -ACGGAAGATCTGGTACAGACAGTC -ACGGAAGATCTGGTACAGTTGCTG -ACGGAAGATCTGGTACAGTCCATG -ACGGAAGATCTGGTACAGTGTGTG -ACGGAAGATCTGGTACAGCTAGTG -ACGGAAGATCTGGTACAGCATCTG -ACGGAAGATCTGGTACAGGAGTTG -ACGGAAGATCTGGTACAGAGACTG -ACGGAAGATCTGGTACAGTCGGTA -ACGGAAGATCTGGTACAGTGCCTA -ACGGAAGATCTGGTACAGCCACTA -ACGGAAGATCTGGTACAGGGAGTA -ACGGAAGATCTGGTACAGTCGTCT -ACGGAAGATCTGGTACAGTGCACT -ACGGAAGATCTGGTACAGCTGACT -ACGGAAGATCTGGTACAGCAACCT -ACGGAAGATCTGGTACAGGCTACT -ACGGAAGATCTGGTACAGGGATCT -ACGGAAGATCTGGTACAGAAGGCT -ACGGAAGATCTGGTACAGTCAACC -ACGGAAGATCTGGTACAGTGTTCC -ACGGAAGATCTGGTACAGATTCCC -ACGGAAGATCTGGTACAGTTCTCG -ACGGAAGATCTGGTACAGTAGACG -ACGGAAGATCTGGTACAGGTAACG -ACGGAAGATCTGGTACAGACTTCG -ACGGAAGATCTGGTACAGTACGCA -ACGGAAGATCTGGTACAGCTTGCA -ACGGAAGATCTGGTACAGCGAACA -ACGGAAGATCTGGTACAGCAGTCA -ACGGAAGATCTGGTACAGGATCCA -ACGGAAGATCTGGTACAGACGACA -ACGGAAGATCTGGTACAGAGCTCA -ACGGAAGATCTGGTACAGTCACGT -ACGGAAGATCTGGTACAGCGTAGT -ACGGAAGATCTGGTACAGGTCAGT -ACGGAAGATCTGGTACAGGAAGGT -ACGGAAGATCTGGTACAGAACCGT -ACGGAAGATCTGGTACAGTTGTGC -ACGGAAGATCTGGTACAGCTAAGC -ACGGAAGATCTGGTACAGACTAGC -ACGGAAGATCTGGTACAGAGATGC -ACGGAAGATCTGGTACAGTGAAGG -ACGGAAGATCTGGTACAGCAATGG -ACGGAAGATCTGGTACAGATGAGG -ACGGAAGATCTGGTACAGAATGGG -ACGGAAGATCTGGTACAGTCCTGA -ACGGAAGATCTGGTACAGTAGCGA -ACGGAAGATCTGGTACAGCACAGA -ACGGAAGATCTGGTACAGGCAAGA -ACGGAAGATCTGGTACAGGGTTGA -ACGGAAGATCTGGTACAGTCCGAT -ACGGAAGATCTGGTACAGTGGCAT -ACGGAAGATCTGGTACAGCGAGAT -ACGGAAGATCTGGTACAGTACCAC -ACGGAAGATCTGGTACAGCAGAAC -ACGGAAGATCTGGTACAGGTCTAC -ACGGAAGATCTGGTACAGACGTAC -ACGGAAGATCTGGTACAGAGTGAC -ACGGAAGATCTGGTACAGCTGTAG -ACGGAAGATCTGGTACAGCCTAAG -ACGGAAGATCTGGTACAGGTTCAG -ACGGAAGATCTGGTACAGGCATAG -ACGGAAGATCTGGTACAGGACAAG -ACGGAAGATCTGGTACAGAAGCAG -ACGGAAGATCTGGTACAGCGTCAA -ACGGAAGATCTGGTACAGGCTGAA -ACGGAAGATCTGGTACAGAGTACG -ACGGAAGATCTGGTACAGATCCGA -ACGGAAGATCTGGTACAGATGGGA -ACGGAAGATCTGGTACAGGTGCAA -ACGGAAGATCTGGTACAGGAGGAA -ACGGAAGATCTGGTACAGCAGGTA -ACGGAAGATCTGGTACAGGACTCT -ACGGAAGATCTGGTACAGAGTCCT -ACGGAAGATCTGGTACAGTAAGCC -ACGGAAGATCTGGTACAGATAGCC -ACGGAAGATCTGGTACAGTAACCG -ACGGAAGATCTGGTACAGATGCCA -ACGGAAGATCTGTCTGACGGAAAC -ACGGAAGATCTGTCTGACAACACC -ACGGAAGATCTGTCTGACATCGAG -ACGGAAGATCTGTCTGACCTCCTT -ACGGAAGATCTGTCTGACCCTGTT -ACGGAAGATCTGTCTGACCGGTTT -ACGGAAGATCTGTCTGACGTGGTT -ACGGAAGATCTGTCTGACGCCTTT -ACGGAAGATCTGTCTGACGGTCTT -ACGGAAGATCTGTCTGACACGCTT -ACGGAAGATCTGTCTGACAGCGTT -ACGGAAGATCTGTCTGACTTCGTC -ACGGAAGATCTGTCTGACTCTCTC -ACGGAAGATCTGTCTGACTGGATC -ACGGAAGATCTGTCTGACCACTTC -ACGGAAGATCTGTCTGACGTACTC -ACGGAAGATCTGTCTGACGATGTC -ACGGAAGATCTGTCTGACACAGTC -ACGGAAGATCTGTCTGACTTGCTG -ACGGAAGATCTGTCTGACTCCATG -ACGGAAGATCTGTCTGACTGTGTG -ACGGAAGATCTGTCTGACCTAGTG -ACGGAAGATCTGTCTGACCATCTG -ACGGAAGATCTGTCTGACGAGTTG -ACGGAAGATCTGTCTGACAGACTG -ACGGAAGATCTGTCTGACTCGGTA -ACGGAAGATCTGTCTGACTGCCTA -ACGGAAGATCTGTCTGACCCACTA -ACGGAAGATCTGTCTGACGGAGTA -ACGGAAGATCTGTCTGACTCGTCT -ACGGAAGATCTGTCTGACTGCACT -ACGGAAGATCTGTCTGACCTGACT -ACGGAAGATCTGTCTGACCAACCT -ACGGAAGATCTGTCTGACGCTACT -ACGGAAGATCTGTCTGACGGATCT -ACGGAAGATCTGTCTGACAAGGCT -ACGGAAGATCTGTCTGACTCAACC -ACGGAAGATCTGTCTGACTGTTCC -ACGGAAGATCTGTCTGACATTCCC -ACGGAAGATCTGTCTGACTTCTCG -ACGGAAGATCTGTCTGACTAGACG -ACGGAAGATCTGTCTGACGTAACG -ACGGAAGATCTGTCTGACACTTCG -ACGGAAGATCTGTCTGACTACGCA -ACGGAAGATCTGTCTGACCTTGCA -ACGGAAGATCTGTCTGACCGAACA -ACGGAAGATCTGTCTGACCAGTCA -ACGGAAGATCTGTCTGACGATCCA -ACGGAAGATCTGTCTGACACGACA -ACGGAAGATCTGTCTGACAGCTCA -ACGGAAGATCTGTCTGACTCACGT -ACGGAAGATCTGTCTGACCGTAGT -ACGGAAGATCTGTCTGACGTCAGT -ACGGAAGATCTGTCTGACGAAGGT -ACGGAAGATCTGTCTGACAACCGT -ACGGAAGATCTGTCTGACTTGTGC -ACGGAAGATCTGTCTGACCTAAGC -ACGGAAGATCTGTCTGACACTAGC -ACGGAAGATCTGTCTGACAGATGC -ACGGAAGATCTGTCTGACTGAAGG -ACGGAAGATCTGTCTGACCAATGG -ACGGAAGATCTGTCTGACATGAGG -ACGGAAGATCTGTCTGACAATGGG -ACGGAAGATCTGTCTGACTCCTGA -ACGGAAGATCTGTCTGACTAGCGA -ACGGAAGATCTGTCTGACCACAGA -ACGGAAGATCTGTCTGACGCAAGA -ACGGAAGATCTGTCTGACGGTTGA -ACGGAAGATCTGTCTGACTCCGAT -ACGGAAGATCTGTCTGACTGGCAT -ACGGAAGATCTGTCTGACCGAGAT -ACGGAAGATCTGTCTGACTACCAC -ACGGAAGATCTGTCTGACCAGAAC -ACGGAAGATCTGTCTGACGTCTAC -ACGGAAGATCTGTCTGACACGTAC -ACGGAAGATCTGTCTGACAGTGAC -ACGGAAGATCTGTCTGACCTGTAG -ACGGAAGATCTGTCTGACCCTAAG -ACGGAAGATCTGTCTGACGTTCAG -ACGGAAGATCTGTCTGACGCATAG -ACGGAAGATCTGTCTGACGACAAG -ACGGAAGATCTGTCTGACAAGCAG -ACGGAAGATCTGTCTGACCGTCAA -ACGGAAGATCTGTCTGACGCTGAA -ACGGAAGATCTGTCTGACAGTACG -ACGGAAGATCTGTCTGACATCCGA -ACGGAAGATCTGTCTGACATGGGA -ACGGAAGATCTGTCTGACGTGCAA -ACGGAAGATCTGTCTGACGAGGAA -ACGGAAGATCTGTCTGACCAGGTA -ACGGAAGATCTGTCTGACGACTCT -ACGGAAGATCTGTCTGACAGTCCT -ACGGAAGATCTGTCTGACTAAGCC -ACGGAAGATCTGTCTGACATAGCC -ACGGAAGATCTGTCTGACTAACCG -ACGGAAGATCTGTCTGACATGCCA -ACGGAAGATCTGCCTAGTGGAAAC -ACGGAAGATCTGCCTAGTAACACC -ACGGAAGATCTGCCTAGTATCGAG -ACGGAAGATCTGCCTAGTCTCCTT -ACGGAAGATCTGCCTAGTCCTGTT -ACGGAAGATCTGCCTAGTCGGTTT -ACGGAAGATCTGCCTAGTGTGGTT -ACGGAAGATCTGCCTAGTGCCTTT -ACGGAAGATCTGCCTAGTGGTCTT -ACGGAAGATCTGCCTAGTACGCTT -ACGGAAGATCTGCCTAGTAGCGTT -ACGGAAGATCTGCCTAGTTTCGTC -ACGGAAGATCTGCCTAGTTCTCTC -ACGGAAGATCTGCCTAGTTGGATC -ACGGAAGATCTGCCTAGTCACTTC -ACGGAAGATCTGCCTAGTGTACTC -ACGGAAGATCTGCCTAGTGATGTC -ACGGAAGATCTGCCTAGTACAGTC -ACGGAAGATCTGCCTAGTTTGCTG -ACGGAAGATCTGCCTAGTTCCATG -ACGGAAGATCTGCCTAGTTGTGTG -ACGGAAGATCTGCCTAGTCTAGTG -ACGGAAGATCTGCCTAGTCATCTG -ACGGAAGATCTGCCTAGTGAGTTG -ACGGAAGATCTGCCTAGTAGACTG -ACGGAAGATCTGCCTAGTTCGGTA -ACGGAAGATCTGCCTAGTTGCCTA -ACGGAAGATCTGCCTAGTCCACTA -ACGGAAGATCTGCCTAGTGGAGTA -ACGGAAGATCTGCCTAGTTCGTCT -ACGGAAGATCTGCCTAGTTGCACT -ACGGAAGATCTGCCTAGTCTGACT -ACGGAAGATCTGCCTAGTCAACCT -ACGGAAGATCTGCCTAGTGCTACT -ACGGAAGATCTGCCTAGTGGATCT -ACGGAAGATCTGCCTAGTAAGGCT -ACGGAAGATCTGCCTAGTTCAACC -ACGGAAGATCTGCCTAGTTGTTCC -ACGGAAGATCTGCCTAGTATTCCC -ACGGAAGATCTGCCTAGTTTCTCG -ACGGAAGATCTGCCTAGTTAGACG -ACGGAAGATCTGCCTAGTGTAACG -ACGGAAGATCTGCCTAGTACTTCG -ACGGAAGATCTGCCTAGTTACGCA -ACGGAAGATCTGCCTAGTCTTGCA -ACGGAAGATCTGCCTAGTCGAACA -ACGGAAGATCTGCCTAGTCAGTCA -ACGGAAGATCTGCCTAGTGATCCA -ACGGAAGATCTGCCTAGTACGACA -ACGGAAGATCTGCCTAGTAGCTCA -ACGGAAGATCTGCCTAGTTCACGT -ACGGAAGATCTGCCTAGTCGTAGT -ACGGAAGATCTGCCTAGTGTCAGT -ACGGAAGATCTGCCTAGTGAAGGT -ACGGAAGATCTGCCTAGTAACCGT -ACGGAAGATCTGCCTAGTTTGTGC -ACGGAAGATCTGCCTAGTCTAAGC -ACGGAAGATCTGCCTAGTACTAGC -ACGGAAGATCTGCCTAGTAGATGC -ACGGAAGATCTGCCTAGTTGAAGG -ACGGAAGATCTGCCTAGTCAATGG -ACGGAAGATCTGCCTAGTATGAGG -ACGGAAGATCTGCCTAGTAATGGG -ACGGAAGATCTGCCTAGTTCCTGA -ACGGAAGATCTGCCTAGTTAGCGA -ACGGAAGATCTGCCTAGTCACAGA -ACGGAAGATCTGCCTAGTGCAAGA -ACGGAAGATCTGCCTAGTGGTTGA -ACGGAAGATCTGCCTAGTTCCGAT -ACGGAAGATCTGCCTAGTTGGCAT -ACGGAAGATCTGCCTAGTCGAGAT -ACGGAAGATCTGCCTAGTTACCAC -ACGGAAGATCTGCCTAGTCAGAAC -ACGGAAGATCTGCCTAGTGTCTAC -ACGGAAGATCTGCCTAGTACGTAC -ACGGAAGATCTGCCTAGTAGTGAC -ACGGAAGATCTGCCTAGTCTGTAG -ACGGAAGATCTGCCTAGTCCTAAG -ACGGAAGATCTGCCTAGTGTTCAG -ACGGAAGATCTGCCTAGTGCATAG -ACGGAAGATCTGCCTAGTGACAAG -ACGGAAGATCTGCCTAGTAAGCAG -ACGGAAGATCTGCCTAGTCGTCAA -ACGGAAGATCTGCCTAGTGCTGAA -ACGGAAGATCTGCCTAGTAGTACG -ACGGAAGATCTGCCTAGTATCCGA -ACGGAAGATCTGCCTAGTATGGGA -ACGGAAGATCTGCCTAGTGTGCAA -ACGGAAGATCTGCCTAGTGAGGAA -ACGGAAGATCTGCCTAGTCAGGTA -ACGGAAGATCTGCCTAGTGACTCT -ACGGAAGATCTGCCTAGTAGTCCT -ACGGAAGATCTGCCTAGTTAAGCC -ACGGAAGATCTGCCTAGTATAGCC -ACGGAAGATCTGCCTAGTTAACCG -ACGGAAGATCTGCCTAGTATGCCA -ACGGAAGATCTGGCCTAAGGAAAC -ACGGAAGATCTGGCCTAAAACACC -ACGGAAGATCTGGCCTAAATCGAG -ACGGAAGATCTGGCCTAACTCCTT -ACGGAAGATCTGGCCTAACCTGTT -ACGGAAGATCTGGCCTAACGGTTT -ACGGAAGATCTGGCCTAAGTGGTT -ACGGAAGATCTGGCCTAAGCCTTT -ACGGAAGATCTGGCCTAAGGTCTT -ACGGAAGATCTGGCCTAAACGCTT -ACGGAAGATCTGGCCTAAAGCGTT -ACGGAAGATCTGGCCTAATTCGTC -ACGGAAGATCTGGCCTAATCTCTC -ACGGAAGATCTGGCCTAATGGATC -ACGGAAGATCTGGCCTAACACTTC -ACGGAAGATCTGGCCTAAGTACTC -ACGGAAGATCTGGCCTAAGATGTC -ACGGAAGATCTGGCCTAAACAGTC -ACGGAAGATCTGGCCTAATTGCTG -ACGGAAGATCTGGCCTAATCCATG -ACGGAAGATCTGGCCTAATGTGTG -ACGGAAGATCTGGCCTAACTAGTG -ACGGAAGATCTGGCCTAACATCTG -ACGGAAGATCTGGCCTAAGAGTTG -ACGGAAGATCTGGCCTAAAGACTG -ACGGAAGATCTGGCCTAATCGGTA -ACGGAAGATCTGGCCTAATGCCTA -ACGGAAGATCTGGCCTAACCACTA -ACGGAAGATCTGGCCTAAGGAGTA -ACGGAAGATCTGGCCTAATCGTCT -ACGGAAGATCTGGCCTAATGCACT -ACGGAAGATCTGGCCTAACTGACT -ACGGAAGATCTGGCCTAACAACCT -ACGGAAGATCTGGCCTAAGCTACT -ACGGAAGATCTGGCCTAAGGATCT -ACGGAAGATCTGGCCTAAAAGGCT -ACGGAAGATCTGGCCTAATCAACC -ACGGAAGATCTGGCCTAATGTTCC -ACGGAAGATCTGGCCTAAATTCCC -ACGGAAGATCTGGCCTAATTCTCG -ACGGAAGATCTGGCCTAATAGACG -ACGGAAGATCTGGCCTAAGTAACG -ACGGAAGATCTGGCCTAAACTTCG -ACGGAAGATCTGGCCTAATACGCA -ACGGAAGATCTGGCCTAACTTGCA -ACGGAAGATCTGGCCTAACGAACA -ACGGAAGATCTGGCCTAACAGTCA -ACGGAAGATCTGGCCTAAGATCCA -ACGGAAGATCTGGCCTAAACGACA -ACGGAAGATCTGGCCTAAAGCTCA -ACGGAAGATCTGGCCTAATCACGT -ACGGAAGATCTGGCCTAACGTAGT -ACGGAAGATCTGGCCTAAGTCAGT -ACGGAAGATCTGGCCTAAGAAGGT -ACGGAAGATCTGGCCTAAAACCGT -ACGGAAGATCTGGCCTAATTGTGC -ACGGAAGATCTGGCCTAACTAAGC -ACGGAAGATCTGGCCTAAACTAGC -ACGGAAGATCTGGCCTAAAGATGC -ACGGAAGATCTGGCCTAATGAAGG -ACGGAAGATCTGGCCTAACAATGG -ACGGAAGATCTGGCCTAAATGAGG -ACGGAAGATCTGGCCTAAAATGGG -ACGGAAGATCTGGCCTAATCCTGA -ACGGAAGATCTGGCCTAATAGCGA -ACGGAAGATCTGGCCTAACACAGA -ACGGAAGATCTGGCCTAAGCAAGA -ACGGAAGATCTGGCCTAAGGTTGA -ACGGAAGATCTGGCCTAATCCGAT -ACGGAAGATCTGGCCTAATGGCAT -ACGGAAGATCTGGCCTAACGAGAT -ACGGAAGATCTGGCCTAATACCAC -ACGGAAGATCTGGCCTAACAGAAC -ACGGAAGATCTGGCCTAAGTCTAC -ACGGAAGATCTGGCCTAAACGTAC -ACGGAAGATCTGGCCTAAAGTGAC -ACGGAAGATCTGGCCTAACTGTAG -ACGGAAGATCTGGCCTAACCTAAG -ACGGAAGATCTGGCCTAAGTTCAG -ACGGAAGATCTGGCCTAAGCATAG -ACGGAAGATCTGGCCTAAGACAAG -ACGGAAGATCTGGCCTAAAAGCAG -ACGGAAGATCTGGCCTAACGTCAA -ACGGAAGATCTGGCCTAAGCTGAA -ACGGAAGATCTGGCCTAAAGTACG -ACGGAAGATCTGGCCTAAATCCGA -ACGGAAGATCTGGCCTAAATGGGA -ACGGAAGATCTGGCCTAAGTGCAA -ACGGAAGATCTGGCCTAAGAGGAA -ACGGAAGATCTGGCCTAACAGGTA -ACGGAAGATCTGGCCTAAGACTCT -ACGGAAGATCTGGCCTAAAGTCCT -ACGGAAGATCTGGCCTAATAAGCC -ACGGAAGATCTGGCCTAAATAGCC -ACGGAAGATCTGGCCTAATAACCG -ACGGAAGATCTGGCCTAAATGCCA -ACGGAAGATCTGGCCATAGGAAAC -ACGGAAGATCTGGCCATAAACACC -ACGGAAGATCTGGCCATAATCGAG -ACGGAAGATCTGGCCATACTCCTT -ACGGAAGATCTGGCCATACCTGTT -ACGGAAGATCTGGCCATACGGTTT -ACGGAAGATCTGGCCATAGTGGTT -ACGGAAGATCTGGCCATAGCCTTT -ACGGAAGATCTGGCCATAGGTCTT -ACGGAAGATCTGGCCATAACGCTT -ACGGAAGATCTGGCCATAAGCGTT -ACGGAAGATCTGGCCATATTCGTC -ACGGAAGATCTGGCCATATCTCTC -ACGGAAGATCTGGCCATATGGATC -ACGGAAGATCTGGCCATACACTTC -ACGGAAGATCTGGCCATAGTACTC -ACGGAAGATCTGGCCATAGATGTC -ACGGAAGATCTGGCCATAACAGTC -ACGGAAGATCTGGCCATATTGCTG -ACGGAAGATCTGGCCATATCCATG -ACGGAAGATCTGGCCATATGTGTG -ACGGAAGATCTGGCCATACTAGTG -ACGGAAGATCTGGCCATACATCTG -ACGGAAGATCTGGCCATAGAGTTG -ACGGAAGATCTGGCCATAAGACTG -ACGGAAGATCTGGCCATATCGGTA -ACGGAAGATCTGGCCATATGCCTA -ACGGAAGATCTGGCCATACCACTA -ACGGAAGATCTGGCCATAGGAGTA -ACGGAAGATCTGGCCATATCGTCT -ACGGAAGATCTGGCCATATGCACT -ACGGAAGATCTGGCCATACTGACT -ACGGAAGATCTGGCCATACAACCT -ACGGAAGATCTGGCCATAGCTACT -ACGGAAGATCTGGCCATAGGATCT -ACGGAAGATCTGGCCATAAAGGCT -ACGGAAGATCTGGCCATATCAACC -ACGGAAGATCTGGCCATATGTTCC -ACGGAAGATCTGGCCATAATTCCC -ACGGAAGATCTGGCCATATTCTCG -ACGGAAGATCTGGCCATATAGACG -ACGGAAGATCTGGCCATAGTAACG -ACGGAAGATCTGGCCATAACTTCG -ACGGAAGATCTGGCCATATACGCA -ACGGAAGATCTGGCCATACTTGCA -ACGGAAGATCTGGCCATACGAACA -ACGGAAGATCTGGCCATACAGTCA -ACGGAAGATCTGGCCATAGATCCA -ACGGAAGATCTGGCCATAACGACA -ACGGAAGATCTGGCCATAAGCTCA -ACGGAAGATCTGGCCATATCACGT -ACGGAAGATCTGGCCATACGTAGT -ACGGAAGATCTGGCCATAGTCAGT -ACGGAAGATCTGGCCATAGAAGGT -ACGGAAGATCTGGCCATAAACCGT -ACGGAAGATCTGGCCATATTGTGC -ACGGAAGATCTGGCCATACTAAGC -ACGGAAGATCTGGCCATAACTAGC -ACGGAAGATCTGGCCATAAGATGC -ACGGAAGATCTGGCCATATGAAGG -ACGGAAGATCTGGCCATACAATGG -ACGGAAGATCTGGCCATAATGAGG -ACGGAAGATCTGGCCATAAATGGG -ACGGAAGATCTGGCCATATCCTGA -ACGGAAGATCTGGCCATATAGCGA -ACGGAAGATCTGGCCATACACAGA -ACGGAAGATCTGGCCATAGCAAGA -ACGGAAGATCTGGCCATAGGTTGA -ACGGAAGATCTGGCCATATCCGAT -ACGGAAGATCTGGCCATATGGCAT -ACGGAAGATCTGGCCATACGAGAT -ACGGAAGATCTGGCCATATACCAC -ACGGAAGATCTGGCCATACAGAAC -ACGGAAGATCTGGCCATAGTCTAC -ACGGAAGATCTGGCCATAACGTAC -ACGGAAGATCTGGCCATAAGTGAC -ACGGAAGATCTGGCCATACTGTAG -ACGGAAGATCTGGCCATACCTAAG -ACGGAAGATCTGGCCATAGTTCAG -ACGGAAGATCTGGCCATAGCATAG -ACGGAAGATCTGGCCATAGACAAG -ACGGAAGATCTGGCCATAAAGCAG -ACGGAAGATCTGGCCATACGTCAA -ACGGAAGATCTGGCCATAGCTGAA -ACGGAAGATCTGGCCATAAGTACG -ACGGAAGATCTGGCCATAATCCGA -ACGGAAGATCTGGCCATAATGGGA -ACGGAAGATCTGGCCATAGTGCAA -ACGGAAGATCTGGCCATAGAGGAA -ACGGAAGATCTGGCCATACAGGTA -ACGGAAGATCTGGCCATAGACTCT -ACGGAAGATCTGGCCATAAGTCCT -ACGGAAGATCTGGCCATATAAGCC -ACGGAAGATCTGGCCATAATAGCC -ACGGAAGATCTGGCCATATAACCG -ACGGAAGATCTGGCCATAATGCCA -ACGGAAGATCTGCCGTAAGGAAAC -ACGGAAGATCTGCCGTAAAACACC -ACGGAAGATCTGCCGTAAATCGAG -ACGGAAGATCTGCCGTAACTCCTT -ACGGAAGATCTGCCGTAACCTGTT -ACGGAAGATCTGCCGTAACGGTTT -ACGGAAGATCTGCCGTAAGTGGTT -ACGGAAGATCTGCCGTAAGCCTTT -ACGGAAGATCTGCCGTAAGGTCTT -ACGGAAGATCTGCCGTAAACGCTT -ACGGAAGATCTGCCGTAAAGCGTT -ACGGAAGATCTGCCGTAATTCGTC -ACGGAAGATCTGCCGTAATCTCTC -ACGGAAGATCTGCCGTAATGGATC -ACGGAAGATCTGCCGTAACACTTC -ACGGAAGATCTGCCGTAAGTACTC -ACGGAAGATCTGCCGTAAGATGTC -ACGGAAGATCTGCCGTAAACAGTC -ACGGAAGATCTGCCGTAATTGCTG -ACGGAAGATCTGCCGTAATCCATG -ACGGAAGATCTGCCGTAATGTGTG -ACGGAAGATCTGCCGTAACTAGTG -ACGGAAGATCTGCCGTAACATCTG -ACGGAAGATCTGCCGTAAGAGTTG -ACGGAAGATCTGCCGTAAAGACTG -ACGGAAGATCTGCCGTAATCGGTA -ACGGAAGATCTGCCGTAATGCCTA -ACGGAAGATCTGCCGTAACCACTA -ACGGAAGATCTGCCGTAAGGAGTA -ACGGAAGATCTGCCGTAATCGTCT -ACGGAAGATCTGCCGTAATGCACT -ACGGAAGATCTGCCGTAACTGACT -ACGGAAGATCTGCCGTAACAACCT -ACGGAAGATCTGCCGTAAGCTACT -ACGGAAGATCTGCCGTAAGGATCT -ACGGAAGATCTGCCGTAAAAGGCT -ACGGAAGATCTGCCGTAATCAACC -ACGGAAGATCTGCCGTAATGTTCC -ACGGAAGATCTGCCGTAAATTCCC -ACGGAAGATCTGCCGTAATTCTCG -ACGGAAGATCTGCCGTAATAGACG -ACGGAAGATCTGCCGTAAGTAACG -ACGGAAGATCTGCCGTAAACTTCG -ACGGAAGATCTGCCGTAATACGCA -ACGGAAGATCTGCCGTAACTTGCA -ACGGAAGATCTGCCGTAACGAACA -ACGGAAGATCTGCCGTAACAGTCA -ACGGAAGATCTGCCGTAAGATCCA -ACGGAAGATCTGCCGTAAACGACA -ACGGAAGATCTGCCGTAAAGCTCA -ACGGAAGATCTGCCGTAATCACGT -ACGGAAGATCTGCCGTAACGTAGT -ACGGAAGATCTGCCGTAAGTCAGT -ACGGAAGATCTGCCGTAAGAAGGT -ACGGAAGATCTGCCGTAAAACCGT -ACGGAAGATCTGCCGTAATTGTGC -ACGGAAGATCTGCCGTAACTAAGC -ACGGAAGATCTGCCGTAAACTAGC -ACGGAAGATCTGCCGTAAAGATGC -ACGGAAGATCTGCCGTAATGAAGG -ACGGAAGATCTGCCGTAACAATGG -ACGGAAGATCTGCCGTAAATGAGG -ACGGAAGATCTGCCGTAAAATGGG -ACGGAAGATCTGCCGTAATCCTGA -ACGGAAGATCTGCCGTAATAGCGA -ACGGAAGATCTGCCGTAACACAGA -ACGGAAGATCTGCCGTAAGCAAGA -ACGGAAGATCTGCCGTAAGGTTGA -ACGGAAGATCTGCCGTAATCCGAT -ACGGAAGATCTGCCGTAATGGCAT -ACGGAAGATCTGCCGTAACGAGAT -ACGGAAGATCTGCCGTAATACCAC -ACGGAAGATCTGCCGTAACAGAAC -ACGGAAGATCTGCCGTAAGTCTAC -ACGGAAGATCTGCCGTAAACGTAC -ACGGAAGATCTGCCGTAAAGTGAC -ACGGAAGATCTGCCGTAACTGTAG -ACGGAAGATCTGCCGTAACCTAAG -ACGGAAGATCTGCCGTAAGTTCAG -ACGGAAGATCTGCCGTAAGCATAG -ACGGAAGATCTGCCGTAAGACAAG -ACGGAAGATCTGCCGTAAAAGCAG -ACGGAAGATCTGCCGTAACGTCAA -ACGGAAGATCTGCCGTAAGCTGAA -ACGGAAGATCTGCCGTAAAGTACG -ACGGAAGATCTGCCGTAAATCCGA -ACGGAAGATCTGCCGTAAATGGGA -ACGGAAGATCTGCCGTAAGTGCAA -ACGGAAGATCTGCCGTAAGAGGAA -ACGGAAGATCTGCCGTAACAGGTA -ACGGAAGATCTGCCGTAAGACTCT -ACGGAAGATCTGCCGTAAAGTCCT -ACGGAAGATCTGCCGTAATAAGCC -ACGGAAGATCTGCCGTAAATAGCC -ACGGAAGATCTGCCGTAATAACCG -ACGGAAGATCTGCCGTAAATGCCA -ACGGAAGATCTGCCAATGGGAAAC -ACGGAAGATCTGCCAATGAACACC -ACGGAAGATCTGCCAATGATCGAG -ACGGAAGATCTGCCAATGCTCCTT -ACGGAAGATCTGCCAATGCCTGTT -ACGGAAGATCTGCCAATGCGGTTT -ACGGAAGATCTGCCAATGGTGGTT -ACGGAAGATCTGCCAATGGCCTTT -ACGGAAGATCTGCCAATGGGTCTT -ACGGAAGATCTGCCAATGACGCTT -ACGGAAGATCTGCCAATGAGCGTT -ACGGAAGATCTGCCAATGTTCGTC -ACGGAAGATCTGCCAATGTCTCTC -ACGGAAGATCTGCCAATGTGGATC -ACGGAAGATCTGCCAATGCACTTC -ACGGAAGATCTGCCAATGGTACTC -ACGGAAGATCTGCCAATGGATGTC -ACGGAAGATCTGCCAATGACAGTC -ACGGAAGATCTGCCAATGTTGCTG -ACGGAAGATCTGCCAATGTCCATG -ACGGAAGATCTGCCAATGTGTGTG -ACGGAAGATCTGCCAATGCTAGTG -ACGGAAGATCTGCCAATGCATCTG -ACGGAAGATCTGCCAATGGAGTTG -ACGGAAGATCTGCCAATGAGACTG -ACGGAAGATCTGCCAATGTCGGTA -ACGGAAGATCTGCCAATGTGCCTA -ACGGAAGATCTGCCAATGCCACTA -ACGGAAGATCTGCCAATGGGAGTA -ACGGAAGATCTGCCAATGTCGTCT -ACGGAAGATCTGCCAATGTGCACT -ACGGAAGATCTGCCAATGCTGACT -ACGGAAGATCTGCCAATGCAACCT -ACGGAAGATCTGCCAATGGCTACT -ACGGAAGATCTGCCAATGGGATCT -ACGGAAGATCTGCCAATGAAGGCT -ACGGAAGATCTGCCAATGTCAACC -ACGGAAGATCTGCCAATGTGTTCC -ACGGAAGATCTGCCAATGATTCCC -ACGGAAGATCTGCCAATGTTCTCG -ACGGAAGATCTGCCAATGTAGACG -ACGGAAGATCTGCCAATGGTAACG -ACGGAAGATCTGCCAATGACTTCG -ACGGAAGATCTGCCAATGTACGCA -ACGGAAGATCTGCCAATGCTTGCA -ACGGAAGATCTGCCAATGCGAACA -ACGGAAGATCTGCCAATGCAGTCA -ACGGAAGATCTGCCAATGGATCCA -ACGGAAGATCTGCCAATGACGACA -ACGGAAGATCTGCCAATGAGCTCA -ACGGAAGATCTGCCAATGTCACGT -ACGGAAGATCTGCCAATGCGTAGT -ACGGAAGATCTGCCAATGGTCAGT -ACGGAAGATCTGCCAATGGAAGGT -ACGGAAGATCTGCCAATGAACCGT -ACGGAAGATCTGCCAATGTTGTGC -ACGGAAGATCTGCCAATGCTAAGC -ACGGAAGATCTGCCAATGACTAGC -ACGGAAGATCTGCCAATGAGATGC -ACGGAAGATCTGCCAATGTGAAGG -ACGGAAGATCTGCCAATGCAATGG -ACGGAAGATCTGCCAATGATGAGG -ACGGAAGATCTGCCAATGAATGGG -ACGGAAGATCTGCCAATGTCCTGA -ACGGAAGATCTGCCAATGTAGCGA -ACGGAAGATCTGCCAATGCACAGA -ACGGAAGATCTGCCAATGGCAAGA -ACGGAAGATCTGCCAATGGGTTGA -ACGGAAGATCTGCCAATGTCCGAT -ACGGAAGATCTGCCAATGTGGCAT -ACGGAAGATCTGCCAATGCGAGAT -ACGGAAGATCTGCCAATGTACCAC -ACGGAAGATCTGCCAATGCAGAAC -ACGGAAGATCTGCCAATGGTCTAC -ACGGAAGATCTGCCAATGACGTAC -ACGGAAGATCTGCCAATGAGTGAC -ACGGAAGATCTGCCAATGCTGTAG -ACGGAAGATCTGCCAATGCCTAAG -ACGGAAGATCTGCCAATGGTTCAG -ACGGAAGATCTGCCAATGGCATAG -ACGGAAGATCTGCCAATGGACAAG -ACGGAAGATCTGCCAATGAAGCAG -ACGGAAGATCTGCCAATGCGTCAA -ACGGAAGATCTGCCAATGGCTGAA -ACGGAAGATCTGCCAATGAGTACG -ACGGAAGATCTGCCAATGATCCGA -ACGGAAGATCTGCCAATGATGGGA -ACGGAAGATCTGCCAATGGTGCAA -ACGGAAGATCTGCCAATGGAGGAA -ACGGAAGATCTGCCAATGCAGGTA -ACGGAAGATCTGCCAATGGACTCT -ACGGAAGATCTGCCAATGAGTCCT -ACGGAAGATCTGCCAATGTAAGCC -ACGGAAGATCTGCCAATGATAGCC -ACGGAAGATCTGCCAATGTAACCG -ACGGAAGATCTGCCAATGATGCCA -ACGGAAAGGCTAAACGGAGGAAAC -ACGGAAAGGCTAAACGGAAACACC -ACGGAAAGGCTAAACGGAATCGAG -ACGGAAAGGCTAAACGGACTCCTT -ACGGAAAGGCTAAACGGACCTGTT -ACGGAAAGGCTAAACGGACGGTTT -ACGGAAAGGCTAAACGGAGTGGTT -ACGGAAAGGCTAAACGGAGCCTTT -ACGGAAAGGCTAAACGGAGGTCTT -ACGGAAAGGCTAAACGGAACGCTT -ACGGAAAGGCTAAACGGAAGCGTT -ACGGAAAGGCTAAACGGATTCGTC -ACGGAAAGGCTAAACGGATCTCTC -ACGGAAAGGCTAAACGGATGGATC -ACGGAAAGGCTAAACGGACACTTC -ACGGAAAGGCTAAACGGAGTACTC -ACGGAAAGGCTAAACGGAGATGTC -ACGGAAAGGCTAAACGGAACAGTC -ACGGAAAGGCTAAACGGATTGCTG -ACGGAAAGGCTAAACGGATCCATG -ACGGAAAGGCTAAACGGATGTGTG -ACGGAAAGGCTAAACGGACTAGTG -ACGGAAAGGCTAAACGGACATCTG -ACGGAAAGGCTAAACGGAGAGTTG -ACGGAAAGGCTAAACGGAAGACTG -ACGGAAAGGCTAAACGGATCGGTA -ACGGAAAGGCTAAACGGATGCCTA -ACGGAAAGGCTAAACGGACCACTA -ACGGAAAGGCTAAACGGAGGAGTA -ACGGAAAGGCTAAACGGATCGTCT -ACGGAAAGGCTAAACGGATGCACT -ACGGAAAGGCTAAACGGACTGACT -ACGGAAAGGCTAAACGGACAACCT -ACGGAAAGGCTAAACGGAGCTACT -ACGGAAAGGCTAAACGGAGGATCT -ACGGAAAGGCTAAACGGAAAGGCT -ACGGAAAGGCTAAACGGATCAACC -ACGGAAAGGCTAAACGGATGTTCC -ACGGAAAGGCTAAACGGAATTCCC -ACGGAAAGGCTAAACGGATTCTCG -ACGGAAAGGCTAAACGGATAGACG -ACGGAAAGGCTAAACGGAGTAACG -ACGGAAAGGCTAAACGGAACTTCG -ACGGAAAGGCTAAACGGATACGCA -ACGGAAAGGCTAAACGGACTTGCA -ACGGAAAGGCTAAACGGACGAACA -ACGGAAAGGCTAAACGGACAGTCA -ACGGAAAGGCTAAACGGAGATCCA -ACGGAAAGGCTAAACGGAACGACA -ACGGAAAGGCTAAACGGAAGCTCA -ACGGAAAGGCTAAACGGATCACGT -ACGGAAAGGCTAAACGGACGTAGT -ACGGAAAGGCTAAACGGAGTCAGT -ACGGAAAGGCTAAACGGAGAAGGT -ACGGAAAGGCTAAACGGAAACCGT -ACGGAAAGGCTAAACGGATTGTGC -ACGGAAAGGCTAAACGGACTAAGC -ACGGAAAGGCTAAACGGAACTAGC -ACGGAAAGGCTAAACGGAAGATGC -ACGGAAAGGCTAAACGGATGAAGG -ACGGAAAGGCTAAACGGACAATGG -ACGGAAAGGCTAAACGGAATGAGG -ACGGAAAGGCTAAACGGAAATGGG -ACGGAAAGGCTAAACGGATCCTGA -ACGGAAAGGCTAAACGGATAGCGA -ACGGAAAGGCTAAACGGACACAGA -ACGGAAAGGCTAAACGGAGCAAGA -ACGGAAAGGCTAAACGGAGGTTGA -ACGGAAAGGCTAAACGGATCCGAT -ACGGAAAGGCTAAACGGATGGCAT -ACGGAAAGGCTAAACGGACGAGAT -ACGGAAAGGCTAAACGGATACCAC -ACGGAAAGGCTAAACGGACAGAAC -ACGGAAAGGCTAAACGGAGTCTAC -ACGGAAAGGCTAAACGGAACGTAC -ACGGAAAGGCTAAACGGAAGTGAC -ACGGAAAGGCTAAACGGACTGTAG -ACGGAAAGGCTAAACGGACCTAAG -ACGGAAAGGCTAAACGGAGTTCAG -ACGGAAAGGCTAAACGGAGCATAG -ACGGAAAGGCTAAACGGAGACAAG -ACGGAAAGGCTAAACGGAAAGCAG -ACGGAAAGGCTAAACGGACGTCAA -ACGGAAAGGCTAAACGGAGCTGAA -ACGGAAAGGCTAAACGGAAGTACG -ACGGAAAGGCTAAACGGAATCCGA -ACGGAAAGGCTAAACGGAATGGGA -ACGGAAAGGCTAAACGGAGTGCAA -ACGGAAAGGCTAAACGGAGAGGAA -ACGGAAAGGCTAAACGGACAGGTA -ACGGAAAGGCTAAACGGAGACTCT -ACGGAAAGGCTAAACGGAAGTCCT -ACGGAAAGGCTAAACGGATAAGCC -ACGGAAAGGCTAAACGGAATAGCC -ACGGAAAGGCTAAACGGATAACCG -ACGGAAAGGCTAAACGGAATGCCA -ACGGAAAGGCTAACCAACGGAAAC -ACGGAAAGGCTAACCAACAACACC -ACGGAAAGGCTAACCAACATCGAG -ACGGAAAGGCTAACCAACCTCCTT -ACGGAAAGGCTAACCAACCCTGTT -ACGGAAAGGCTAACCAACCGGTTT -ACGGAAAGGCTAACCAACGTGGTT -ACGGAAAGGCTAACCAACGCCTTT -ACGGAAAGGCTAACCAACGGTCTT -ACGGAAAGGCTAACCAACACGCTT -ACGGAAAGGCTAACCAACAGCGTT -ACGGAAAGGCTAACCAACTTCGTC -ACGGAAAGGCTAACCAACTCTCTC -ACGGAAAGGCTAACCAACTGGATC -ACGGAAAGGCTAACCAACCACTTC -ACGGAAAGGCTAACCAACGTACTC -ACGGAAAGGCTAACCAACGATGTC -ACGGAAAGGCTAACCAACACAGTC -ACGGAAAGGCTAACCAACTTGCTG -ACGGAAAGGCTAACCAACTCCATG -ACGGAAAGGCTAACCAACTGTGTG -ACGGAAAGGCTAACCAACCTAGTG -ACGGAAAGGCTAACCAACCATCTG -ACGGAAAGGCTAACCAACGAGTTG -ACGGAAAGGCTAACCAACAGACTG -ACGGAAAGGCTAACCAACTCGGTA -ACGGAAAGGCTAACCAACTGCCTA -ACGGAAAGGCTAACCAACCCACTA -ACGGAAAGGCTAACCAACGGAGTA -ACGGAAAGGCTAACCAACTCGTCT -ACGGAAAGGCTAACCAACTGCACT -ACGGAAAGGCTAACCAACCTGACT -ACGGAAAGGCTAACCAACCAACCT -ACGGAAAGGCTAACCAACGCTACT -ACGGAAAGGCTAACCAACGGATCT -ACGGAAAGGCTAACCAACAAGGCT -ACGGAAAGGCTAACCAACTCAACC -ACGGAAAGGCTAACCAACTGTTCC -ACGGAAAGGCTAACCAACATTCCC -ACGGAAAGGCTAACCAACTTCTCG -ACGGAAAGGCTAACCAACTAGACG -ACGGAAAGGCTAACCAACGTAACG -ACGGAAAGGCTAACCAACACTTCG -ACGGAAAGGCTAACCAACTACGCA -ACGGAAAGGCTAACCAACCTTGCA -ACGGAAAGGCTAACCAACCGAACA -ACGGAAAGGCTAACCAACCAGTCA -ACGGAAAGGCTAACCAACGATCCA -ACGGAAAGGCTAACCAACACGACA -ACGGAAAGGCTAACCAACAGCTCA -ACGGAAAGGCTAACCAACTCACGT -ACGGAAAGGCTAACCAACCGTAGT -ACGGAAAGGCTAACCAACGTCAGT -ACGGAAAGGCTAACCAACGAAGGT -ACGGAAAGGCTAACCAACAACCGT -ACGGAAAGGCTAACCAACTTGTGC -ACGGAAAGGCTAACCAACCTAAGC -ACGGAAAGGCTAACCAACACTAGC -ACGGAAAGGCTAACCAACAGATGC -ACGGAAAGGCTAACCAACTGAAGG -ACGGAAAGGCTAACCAACCAATGG -ACGGAAAGGCTAACCAACATGAGG -ACGGAAAGGCTAACCAACAATGGG -ACGGAAAGGCTAACCAACTCCTGA -ACGGAAAGGCTAACCAACTAGCGA -ACGGAAAGGCTAACCAACCACAGA -ACGGAAAGGCTAACCAACGCAAGA -ACGGAAAGGCTAACCAACGGTTGA -ACGGAAAGGCTAACCAACTCCGAT -ACGGAAAGGCTAACCAACTGGCAT -ACGGAAAGGCTAACCAACCGAGAT -ACGGAAAGGCTAACCAACTACCAC -ACGGAAAGGCTAACCAACCAGAAC -ACGGAAAGGCTAACCAACGTCTAC -ACGGAAAGGCTAACCAACACGTAC -ACGGAAAGGCTAACCAACAGTGAC -ACGGAAAGGCTAACCAACCTGTAG -ACGGAAAGGCTAACCAACCCTAAG -ACGGAAAGGCTAACCAACGTTCAG -ACGGAAAGGCTAACCAACGCATAG -ACGGAAAGGCTAACCAACGACAAG -ACGGAAAGGCTAACCAACAAGCAG -ACGGAAAGGCTAACCAACCGTCAA -ACGGAAAGGCTAACCAACGCTGAA -ACGGAAAGGCTAACCAACAGTACG -ACGGAAAGGCTAACCAACATCCGA -ACGGAAAGGCTAACCAACATGGGA -ACGGAAAGGCTAACCAACGTGCAA -ACGGAAAGGCTAACCAACGAGGAA -ACGGAAAGGCTAACCAACCAGGTA -ACGGAAAGGCTAACCAACGACTCT -ACGGAAAGGCTAACCAACAGTCCT -ACGGAAAGGCTAACCAACTAAGCC -ACGGAAAGGCTAACCAACATAGCC -ACGGAAAGGCTAACCAACTAACCG -ACGGAAAGGCTAACCAACATGCCA -ACGGAAAGGCTAGAGATCGGAAAC -ACGGAAAGGCTAGAGATCAACACC -ACGGAAAGGCTAGAGATCATCGAG -ACGGAAAGGCTAGAGATCCTCCTT -ACGGAAAGGCTAGAGATCCCTGTT -ACGGAAAGGCTAGAGATCCGGTTT -ACGGAAAGGCTAGAGATCGTGGTT -ACGGAAAGGCTAGAGATCGCCTTT -ACGGAAAGGCTAGAGATCGGTCTT -ACGGAAAGGCTAGAGATCACGCTT -ACGGAAAGGCTAGAGATCAGCGTT -ACGGAAAGGCTAGAGATCTTCGTC -ACGGAAAGGCTAGAGATCTCTCTC -ACGGAAAGGCTAGAGATCTGGATC -ACGGAAAGGCTAGAGATCCACTTC -ACGGAAAGGCTAGAGATCGTACTC -ACGGAAAGGCTAGAGATCGATGTC -ACGGAAAGGCTAGAGATCACAGTC -ACGGAAAGGCTAGAGATCTTGCTG -ACGGAAAGGCTAGAGATCTCCATG -ACGGAAAGGCTAGAGATCTGTGTG -ACGGAAAGGCTAGAGATCCTAGTG -ACGGAAAGGCTAGAGATCCATCTG -ACGGAAAGGCTAGAGATCGAGTTG -ACGGAAAGGCTAGAGATCAGACTG -ACGGAAAGGCTAGAGATCTCGGTA -ACGGAAAGGCTAGAGATCTGCCTA -ACGGAAAGGCTAGAGATCCCACTA -ACGGAAAGGCTAGAGATCGGAGTA -ACGGAAAGGCTAGAGATCTCGTCT -ACGGAAAGGCTAGAGATCTGCACT -ACGGAAAGGCTAGAGATCCTGACT -ACGGAAAGGCTAGAGATCCAACCT -ACGGAAAGGCTAGAGATCGCTACT -ACGGAAAGGCTAGAGATCGGATCT -ACGGAAAGGCTAGAGATCAAGGCT -ACGGAAAGGCTAGAGATCTCAACC -ACGGAAAGGCTAGAGATCTGTTCC -ACGGAAAGGCTAGAGATCATTCCC -ACGGAAAGGCTAGAGATCTTCTCG -ACGGAAAGGCTAGAGATCTAGACG -ACGGAAAGGCTAGAGATCGTAACG -ACGGAAAGGCTAGAGATCACTTCG -ACGGAAAGGCTAGAGATCTACGCA -ACGGAAAGGCTAGAGATCCTTGCA -ACGGAAAGGCTAGAGATCCGAACA -ACGGAAAGGCTAGAGATCCAGTCA -ACGGAAAGGCTAGAGATCGATCCA -ACGGAAAGGCTAGAGATCACGACA -ACGGAAAGGCTAGAGATCAGCTCA -ACGGAAAGGCTAGAGATCTCACGT -ACGGAAAGGCTAGAGATCCGTAGT -ACGGAAAGGCTAGAGATCGTCAGT -ACGGAAAGGCTAGAGATCGAAGGT -ACGGAAAGGCTAGAGATCAACCGT -ACGGAAAGGCTAGAGATCTTGTGC -ACGGAAAGGCTAGAGATCCTAAGC -ACGGAAAGGCTAGAGATCACTAGC -ACGGAAAGGCTAGAGATCAGATGC -ACGGAAAGGCTAGAGATCTGAAGG -ACGGAAAGGCTAGAGATCCAATGG -ACGGAAAGGCTAGAGATCATGAGG -ACGGAAAGGCTAGAGATCAATGGG -ACGGAAAGGCTAGAGATCTCCTGA -ACGGAAAGGCTAGAGATCTAGCGA -ACGGAAAGGCTAGAGATCCACAGA -ACGGAAAGGCTAGAGATCGCAAGA -ACGGAAAGGCTAGAGATCGGTTGA -ACGGAAAGGCTAGAGATCTCCGAT -ACGGAAAGGCTAGAGATCTGGCAT -ACGGAAAGGCTAGAGATCCGAGAT -ACGGAAAGGCTAGAGATCTACCAC -ACGGAAAGGCTAGAGATCCAGAAC -ACGGAAAGGCTAGAGATCGTCTAC -ACGGAAAGGCTAGAGATCACGTAC -ACGGAAAGGCTAGAGATCAGTGAC -ACGGAAAGGCTAGAGATCCTGTAG -ACGGAAAGGCTAGAGATCCCTAAG -ACGGAAAGGCTAGAGATCGTTCAG -ACGGAAAGGCTAGAGATCGCATAG -ACGGAAAGGCTAGAGATCGACAAG -ACGGAAAGGCTAGAGATCAAGCAG -ACGGAAAGGCTAGAGATCCGTCAA -ACGGAAAGGCTAGAGATCGCTGAA -ACGGAAAGGCTAGAGATCAGTACG -ACGGAAAGGCTAGAGATCATCCGA -ACGGAAAGGCTAGAGATCATGGGA -ACGGAAAGGCTAGAGATCGTGCAA -ACGGAAAGGCTAGAGATCGAGGAA -ACGGAAAGGCTAGAGATCCAGGTA -ACGGAAAGGCTAGAGATCGACTCT -ACGGAAAGGCTAGAGATCAGTCCT -ACGGAAAGGCTAGAGATCTAAGCC -ACGGAAAGGCTAGAGATCATAGCC -ACGGAAAGGCTAGAGATCTAACCG -ACGGAAAGGCTAGAGATCATGCCA -ACGGAAAGGCTACTTCTCGGAAAC -ACGGAAAGGCTACTTCTCAACACC -ACGGAAAGGCTACTTCTCATCGAG -ACGGAAAGGCTACTTCTCCTCCTT -ACGGAAAGGCTACTTCTCCCTGTT -ACGGAAAGGCTACTTCTCCGGTTT -ACGGAAAGGCTACTTCTCGTGGTT -ACGGAAAGGCTACTTCTCGCCTTT -ACGGAAAGGCTACTTCTCGGTCTT -ACGGAAAGGCTACTTCTCACGCTT -ACGGAAAGGCTACTTCTCAGCGTT -ACGGAAAGGCTACTTCTCTTCGTC -ACGGAAAGGCTACTTCTCTCTCTC -ACGGAAAGGCTACTTCTCTGGATC -ACGGAAAGGCTACTTCTCCACTTC -ACGGAAAGGCTACTTCTCGTACTC -ACGGAAAGGCTACTTCTCGATGTC -ACGGAAAGGCTACTTCTCACAGTC -ACGGAAAGGCTACTTCTCTTGCTG -ACGGAAAGGCTACTTCTCTCCATG -ACGGAAAGGCTACTTCTCTGTGTG -ACGGAAAGGCTACTTCTCCTAGTG -ACGGAAAGGCTACTTCTCCATCTG -ACGGAAAGGCTACTTCTCGAGTTG -ACGGAAAGGCTACTTCTCAGACTG -ACGGAAAGGCTACTTCTCTCGGTA -ACGGAAAGGCTACTTCTCTGCCTA -ACGGAAAGGCTACTTCTCCCACTA -ACGGAAAGGCTACTTCTCGGAGTA -ACGGAAAGGCTACTTCTCTCGTCT -ACGGAAAGGCTACTTCTCTGCACT -ACGGAAAGGCTACTTCTCCTGACT -ACGGAAAGGCTACTTCTCCAACCT -ACGGAAAGGCTACTTCTCGCTACT -ACGGAAAGGCTACTTCTCGGATCT -ACGGAAAGGCTACTTCTCAAGGCT -ACGGAAAGGCTACTTCTCTCAACC -ACGGAAAGGCTACTTCTCTGTTCC -ACGGAAAGGCTACTTCTCATTCCC -ACGGAAAGGCTACTTCTCTTCTCG -ACGGAAAGGCTACTTCTCTAGACG -ACGGAAAGGCTACTTCTCGTAACG -ACGGAAAGGCTACTTCTCACTTCG -ACGGAAAGGCTACTTCTCTACGCA -ACGGAAAGGCTACTTCTCCTTGCA -ACGGAAAGGCTACTTCTCCGAACA -ACGGAAAGGCTACTTCTCCAGTCA -ACGGAAAGGCTACTTCTCGATCCA -ACGGAAAGGCTACTTCTCACGACA -ACGGAAAGGCTACTTCTCAGCTCA -ACGGAAAGGCTACTTCTCTCACGT -ACGGAAAGGCTACTTCTCCGTAGT -ACGGAAAGGCTACTTCTCGTCAGT -ACGGAAAGGCTACTTCTCGAAGGT -ACGGAAAGGCTACTTCTCAACCGT -ACGGAAAGGCTACTTCTCTTGTGC -ACGGAAAGGCTACTTCTCCTAAGC -ACGGAAAGGCTACTTCTCACTAGC -ACGGAAAGGCTACTTCTCAGATGC -ACGGAAAGGCTACTTCTCTGAAGG -ACGGAAAGGCTACTTCTCCAATGG -ACGGAAAGGCTACTTCTCATGAGG -ACGGAAAGGCTACTTCTCAATGGG -ACGGAAAGGCTACTTCTCTCCTGA -ACGGAAAGGCTACTTCTCTAGCGA -ACGGAAAGGCTACTTCTCCACAGA -ACGGAAAGGCTACTTCTCGCAAGA -ACGGAAAGGCTACTTCTCGGTTGA -ACGGAAAGGCTACTTCTCTCCGAT -ACGGAAAGGCTACTTCTCTGGCAT -ACGGAAAGGCTACTTCTCCGAGAT -ACGGAAAGGCTACTTCTCTACCAC -ACGGAAAGGCTACTTCTCCAGAAC -ACGGAAAGGCTACTTCTCGTCTAC -ACGGAAAGGCTACTTCTCACGTAC -ACGGAAAGGCTACTTCTCAGTGAC -ACGGAAAGGCTACTTCTCCTGTAG -ACGGAAAGGCTACTTCTCCCTAAG -ACGGAAAGGCTACTTCTCGTTCAG -ACGGAAAGGCTACTTCTCGCATAG -ACGGAAAGGCTACTTCTCGACAAG -ACGGAAAGGCTACTTCTCAAGCAG -ACGGAAAGGCTACTTCTCCGTCAA -ACGGAAAGGCTACTTCTCGCTGAA -ACGGAAAGGCTACTTCTCAGTACG -ACGGAAAGGCTACTTCTCATCCGA -ACGGAAAGGCTACTTCTCATGGGA -ACGGAAAGGCTACTTCTCGTGCAA -ACGGAAAGGCTACTTCTCGAGGAA -ACGGAAAGGCTACTTCTCCAGGTA -ACGGAAAGGCTACTTCTCGACTCT -ACGGAAAGGCTACTTCTCAGTCCT -ACGGAAAGGCTACTTCTCTAAGCC -ACGGAAAGGCTACTTCTCATAGCC -ACGGAAAGGCTACTTCTCTAACCG -ACGGAAAGGCTACTTCTCATGCCA -ACGGAAAGGCTAGTTCCTGGAAAC -ACGGAAAGGCTAGTTCCTAACACC -ACGGAAAGGCTAGTTCCTATCGAG -ACGGAAAGGCTAGTTCCTCTCCTT -ACGGAAAGGCTAGTTCCTCCTGTT -ACGGAAAGGCTAGTTCCTCGGTTT -ACGGAAAGGCTAGTTCCTGTGGTT -ACGGAAAGGCTAGTTCCTGCCTTT -ACGGAAAGGCTAGTTCCTGGTCTT -ACGGAAAGGCTAGTTCCTACGCTT -ACGGAAAGGCTAGTTCCTAGCGTT -ACGGAAAGGCTAGTTCCTTTCGTC -ACGGAAAGGCTAGTTCCTTCTCTC -ACGGAAAGGCTAGTTCCTTGGATC -ACGGAAAGGCTAGTTCCTCACTTC -ACGGAAAGGCTAGTTCCTGTACTC -ACGGAAAGGCTAGTTCCTGATGTC -ACGGAAAGGCTAGTTCCTACAGTC -ACGGAAAGGCTAGTTCCTTTGCTG -ACGGAAAGGCTAGTTCCTTCCATG -ACGGAAAGGCTAGTTCCTTGTGTG -ACGGAAAGGCTAGTTCCTCTAGTG -ACGGAAAGGCTAGTTCCTCATCTG -ACGGAAAGGCTAGTTCCTGAGTTG -ACGGAAAGGCTAGTTCCTAGACTG -ACGGAAAGGCTAGTTCCTTCGGTA -ACGGAAAGGCTAGTTCCTTGCCTA -ACGGAAAGGCTAGTTCCTCCACTA -ACGGAAAGGCTAGTTCCTGGAGTA -ACGGAAAGGCTAGTTCCTTCGTCT -ACGGAAAGGCTAGTTCCTTGCACT -ACGGAAAGGCTAGTTCCTCTGACT -ACGGAAAGGCTAGTTCCTCAACCT -ACGGAAAGGCTAGTTCCTGCTACT -ACGGAAAGGCTAGTTCCTGGATCT -ACGGAAAGGCTAGTTCCTAAGGCT -ACGGAAAGGCTAGTTCCTTCAACC -ACGGAAAGGCTAGTTCCTTGTTCC -ACGGAAAGGCTAGTTCCTATTCCC -ACGGAAAGGCTAGTTCCTTTCTCG -ACGGAAAGGCTAGTTCCTTAGACG -ACGGAAAGGCTAGTTCCTGTAACG -ACGGAAAGGCTAGTTCCTACTTCG -ACGGAAAGGCTAGTTCCTTACGCA -ACGGAAAGGCTAGTTCCTCTTGCA -ACGGAAAGGCTAGTTCCTCGAACA -ACGGAAAGGCTAGTTCCTCAGTCA -ACGGAAAGGCTAGTTCCTGATCCA -ACGGAAAGGCTAGTTCCTACGACA -ACGGAAAGGCTAGTTCCTAGCTCA -ACGGAAAGGCTAGTTCCTTCACGT -ACGGAAAGGCTAGTTCCTCGTAGT -ACGGAAAGGCTAGTTCCTGTCAGT -ACGGAAAGGCTAGTTCCTGAAGGT -ACGGAAAGGCTAGTTCCTAACCGT -ACGGAAAGGCTAGTTCCTTTGTGC -ACGGAAAGGCTAGTTCCTCTAAGC -ACGGAAAGGCTAGTTCCTACTAGC -ACGGAAAGGCTAGTTCCTAGATGC -ACGGAAAGGCTAGTTCCTTGAAGG -ACGGAAAGGCTAGTTCCTCAATGG -ACGGAAAGGCTAGTTCCTATGAGG -ACGGAAAGGCTAGTTCCTAATGGG -ACGGAAAGGCTAGTTCCTTCCTGA -ACGGAAAGGCTAGTTCCTTAGCGA -ACGGAAAGGCTAGTTCCTCACAGA -ACGGAAAGGCTAGTTCCTGCAAGA -ACGGAAAGGCTAGTTCCTGGTTGA -ACGGAAAGGCTAGTTCCTTCCGAT -ACGGAAAGGCTAGTTCCTTGGCAT -ACGGAAAGGCTAGTTCCTCGAGAT -ACGGAAAGGCTAGTTCCTTACCAC -ACGGAAAGGCTAGTTCCTCAGAAC -ACGGAAAGGCTAGTTCCTGTCTAC -ACGGAAAGGCTAGTTCCTACGTAC -ACGGAAAGGCTAGTTCCTAGTGAC -ACGGAAAGGCTAGTTCCTCTGTAG -ACGGAAAGGCTAGTTCCTCCTAAG -ACGGAAAGGCTAGTTCCTGTTCAG -ACGGAAAGGCTAGTTCCTGCATAG -ACGGAAAGGCTAGTTCCTGACAAG -ACGGAAAGGCTAGTTCCTAAGCAG -ACGGAAAGGCTAGTTCCTCGTCAA -ACGGAAAGGCTAGTTCCTGCTGAA -ACGGAAAGGCTAGTTCCTAGTACG -ACGGAAAGGCTAGTTCCTATCCGA -ACGGAAAGGCTAGTTCCTATGGGA -ACGGAAAGGCTAGTTCCTGTGCAA -ACGGAAAGGCTAGTTCCTGAGGAA -ACGGAAAGGCTAGTTCCTCAGGTA -ACGGAAAGGCTAGTTCCTGACTCT -ACGGAAAGGCTAGTTCCTAGTCCT -ACGGAAAGGCTAGTTCCTTAAGCC -ACGGAAAGGCTAGTTCCTATAGCC -ACGGAAAGGCTAGTTCCTTAACCG -ACGGAAAGGCTAGTTCCTATGCCA -ACGGAAAGGCTATTTCGGGGAAAC -ACGGAAAGGCTATTTCGGAACACC -ACGGAAAGGCTATTTCGGATCGAG -ACGGAAAGGCTATTTCGGCTCCTT -ACGGAAAGGCTATTTCGGCCTGTT -ACGGAAAGGCTATTTCGGCGGTTT -ACGGAAAGGCTATTTCGGGTGGTT -ACGGAAAGGCTATTTCGGGCCTTT -ACGGAAAGGCTATTTCGGGGTCTT -ACGGAAAGGCTATTTCGGACGCTT -ACGGAAAGGCTATTTCGGAGCGTT -ACGGAAAGGCTATTTCGGTTCGTC -ACGGAAAGGCTATTTCGGTCTCTC -ACGGAAAGGCTATTTCGGTGGATC -ACGGAAAGGCTATTTCGGCACTTC -ACGGAAAGGCTATTTCGGGTACTC -ACGGAAAGGCTATTTCGGGATGTC -ACGGAAAGGCTATTTCGGACAGTC -ACGGAAAGGCTATTTCGGTTGCTG -ACGGAAAGGCTATTTCGGTCCATG -ACGGAAAGGCTATTTCGGTGTGTG -ACGGAAAGGCTATTTCGGCTAGTG -ACGGAAAGGCTATTTCGGCATCTG -ACGGAAAGGCTATTTCGGGAGTTG -ACGGAAAGGCTATTTCGGAGACTG -ACGGAAAGGCTATTTCGGTCGGTA -ACGGAAAGGCTATTTCGGTGCCTA -ACGGAAAGGCTATTTCGGCCACTA -ACGGAAAGGCTATTTCGGGGAGTA -ACGGAAAGGCTATTTCGGTCGTCT -ACGGAAAGGCTATTTCGGTGCACT -ACGGAAAGGCTATTTCGGCTGACT -ACGGAAAGGCTATTTCGGCAACCT -ACGGAAAGGCTATTTCGGGCTACT -ACGGAAAGGCTATTTCGGGGATCT -ACGGAAAGGCTATTTCGGAAGGCT -ACGGAAAGGCTATTTCGGTCAACC -ACGGAAAGGCTATTTCGGTGTTCC -ACGGAAAGGCTATTTCGGATTCCC -ACGGAAAGGCTATTTCGGTTCTCG -ACGGAAAGGCTATTTCGGTAGACG -ACGGAAAGGCTATTTCGGGTAACG -ACGGAAAGGCTATTTCGGACTTCG -ACGGAAAGGCTATTTCGGTACGCA -ACGGAAAGGCTATTTCGGCTTGCA -ACGGAAAGGCTATTTCGGCGAACA -ACGGAAAGGCTATTTCGGCAGTCA -ACGGAAAGGCTATTTCGGGATCCA -ACGGAAAGGCTATTTCGGACGACA -ACGGAAAGGCTATTTCGGAGCTCA -ACGGAAAGGCTATTTCGGTCACGT -ACGGAAAGGCTATTTCGGCGTAGT -ACGGAAAGGCTATTTCGGGTCAGT -ACGGAAAGGCTATTTCGGGAAGGT -ACGGAAAGGCTATTTCGGAACCGT -ACGGAAAGGCTATTTCGGTTGTGC -ACGGAAAGGCTATTTCGGCTAAGC -ACGGAAAGGCTATTTCGGACTAGC -ACGGAAAGGCTATTTCGGAGATGC -ACGGAAAGGCTATTTCGGTGAAGG -ACGGAAAGGCTATTTCGGCAATGG -ACGGAAAGGCTATTTCGGATGAGG -ACGGAAAGGCTATTTCGGAATGGG -ACGGAAAGGCTATTTCGGTCCTGA -ACGGAAAGGCTATTTCGGTAGCGA -ACGGAAAGGCTATTTCGGCACAGA -ACGGAAAGGCTATTTCGGGCAAGA -ACGGAAAGGCTATTTCGGGGTTGA -ACGGAAAGGCTATTTCGGTCCGAT -ACGGAAAGGCTATTTCGGTGGCAT -ACGGAAAGGCTATTTCGGCGAGAT -ACGGAAAGGCTATTTCGGTACCAC -ACGGAAAGGCTATTTCGGCAGAAC -ACGGAAAGGCTATTTCGGGTCTAC -ACGGAAAGGCTATTTCGGACGTAC -ACGGAAAGGCTATTTCGGAGTGAC -ACGGAAAGGCTATTTCGGCTGTAG -ACGGAAAGGCTATTTCGGCCTAAG -ACGGAAAGGCTATTTCGGGTTCAG -ACGGAAAGGCTATTTCGGGCATAG -ACGGAAAGGCTATTTCGGGACAAG -ACGGAAAGGCTATTTCGGAAGCAG -ACGGAAAGGCTATTTCGGCGTCAA -ACGGAAAGGCTATTTCGGGCTGAA -ACGGAAAGGCTATTTCGGAGTACG -ACGGAAAGGCTATTTCGGATCCGA -ACGGAAAGGCTATTTCGGATGGGA -ACGGAAAGGCTATTTCGGGTGCAA -ACGGAAAGGCTATTTCGGGAGGAA -ACGGAAAGGCTATTTCGGCAGGTA -ACGGAAAGGCTATTTCGGGACTCT -ACGGAAAGGCTATTTCGGAGTCCT -ACGGAAAGGCTATTTCGGTAAGCC -ACGGAAAGGCTATTTCGGATAGCC -ACGGAAAGGCTATTTCGGTAACCG -ACGGAAAGGCTATTTCGGATGCCA -ACGGAAAGGCTAGTTGTGGGAAAC -ACGGAAAGGCTAGTTGTGAACACC -ACGGAAAGGCTAGTTGTGATCGAG -ACGGAAAGGCTAGTTGTGCTCCTT -ACGGAAAGGCTAGTTGTGCCTGTT -ACGGAAAGGCTAGTTGTGCGGTTT -ACGGAAAGGCTAGTTGTGGTGGTT -ACGGAAAGGCTAGTTGTGGCCTTT -ACGGAAAGGCTAGTTGTGGGTCTT -ACGGAAAGGCTAGTTGTGACGCTT -ACGGAAAGGCTAGTTGTGAGCGTT -ACGGAAAGGCTAGTTGTGTTCGTC -ACGGAAAGGCTAGTTGTGTCTCTC -ACGGAAAGGCTAGTTGTGTGGATC -ACGGAAAGGCTAGTTGTGCACTTC -ACGGAAAGGCTAGTTGTGGTACTC -ACGGAAAGGCTAGTTGTGGATGTC -ACGGAAAGGCTAGTTGTGACAGTC -ACGGAAAGGCTAGTTGTGTTGCTG -ACGGAAAGGCTAGTTGTGTCCATG -ACGGAAAGGCTAGTTGTGTGTGTG -ACGGAAAGGCTAGTTGTGCTAGTG -ACGGAAAGGCTAGTTGTGCATCTG -ACGGAAAGGCTAGTTGTGGAGTTG -ACGGAAAGGCTAGTTGTGAGACTG -ACGGAAAGGCTAGTTGTGTCGGTA -ACGGAAAGGCTAGTTGTGTGCCTA -ACGGAAAGGCTAGTTGTGCCACTA -ACGGAAAGGCTAGTTGTGGGAGTA -ACGGAAAGGCTAGTTGTGTCGTCT -ACGGAAAGGCTAGTTGTGTGCACT -ACGGAAAGGCTAGTTGTGCTGACT -ACGGAAAGGCTAGTTGTGCAACCT -ACGGAAAGGCTAGTTGTGGCTACT -ACGGAAAGGCTAGTTGTGGGATCT -ACGGAAAGGCTAGTTGTGAAGGCT -ACGGAAAGGCTAGTTGTGTCAACC -ACGGAAAGGCTAGTTGTGTGTTCC -ACGGAAAGGCTAGTTGTGATTCCC -ACGGAAAGGCTAGTTGTGTTCTCG -ACGGAAAGGCTAGTTGTGTAGACG -ACGGAAAGGCTAGTTGTGGTAACG -ACGGAAAGGCTAGTTGTGACTTCG -ACGGAAAGGCTAGTTGTGTACGCA -ACGGAAAGGCTAGTTGTGCTTGCA -ACGGAAAGGCTAGTTGTGCGAACA -ACGGAAAGGCTAGTTGTGCAGTCA -ACGGAAAGGCTAGTTGTGGATCCA -ACGGAAAGGCTAGTTGTGACGACA -ACGGAAAGGCTAGTTGTGAGCTCA -ACGGAAAGGCTAGTTGTGTCACGT -ACGGAAAGGCTAGTTGTGCGTAGT -ACGGAAAGGCTAGTTGTGGTCAGT -ACGGAAAGGCTAGTTGTGGAAGGT -ACGGAAAGGCTAGTTGTGAACCGT -ACGGAAAGGCTAGTTGTGTTGTGC -ACGGAAAGGCTAGTTGTGCTAAGC -ACGGAAAGGCTAGTTGTGACTAGC -ACGGAAAGGCTAGTTGTGAGATGC -ACGGAAAGGCTAGTTGTGTGAAGG -ACGGAAAGGCTAGTTGTGCAATGG -ACGGAAAGGCTAGTTGTGATGAGG -ACGGAAAGGCTAGTTGTGAATGGG -ACGGAAAGGCTAGTTGTGTCCTGA -ACGGAAAGGCTAGTTGTGTAGCGA -ACGGAAAGGCTAGTTGTGCACAGA -ACGGAAAGGCTAGTTGTGGCAAGA -ACGGAAAGGCTAGTTGTGGGTTGA -ACGGAAAGGCTAGTTGTGTCCGAT -ACGGAAAGGCTAGTTGTGTGGCAT -ACGGAAAGGCTAGTTGTGCGAGAT -ACGGAAAGGCTAGTTGTGTACCAC -ACGGAAAGGCTAGTTGTGCAGAAC -ACGGAAAGGCTAGTTGTGGTCTAC -ACGGAAAGGCTAGTTGTGACGTAC -ACGGAAAGGCTAGTTGTGAGTGAC -ACGGAAAGGCTAGTTGTGCTGTAG -ACGGAAAGGCTAGTTGTGCCTAAG -ACGGAAAGGCTAGTTGTGGTTCAG -ACGGAAAGGCTAGTTGTGGCATAG -ACGGAAAGGCTAGTTGTGGACAAG -ACGGAAAGGCTAGTTGTGAAGCAG -ACGGAAAGGCTAGTTGTGCGTCAA -ACGGAAAGGCTAGTTGTGGCTGAA -ACGGAAAGGCTAGTTGTGAGTACG -ACGGAAAGGCTAGTTGTGATCCGA -ACGGAAAGGCTAGTTGTGATGGGA -ACGGAAAGGCTAGTTGTGGTGCAA -ACGGAAAGGCTAGTTGTGGAGGAA -ACGGAAAGGCTAGTTGTGCAGGTA -ACGGAAAGGCTAGTTGTGGACTCT -ACGGAAAGGCTAGTTGTGAGTCCT -ACGGAAAGGCTAGTTGTGTAAGCC -ACGGAAAGGCTAGTTGTGATAGCC -ACGGAAAGGCTAGTTGTGTAACCG -ACGGAAAGGCTAGTTGTGATGCCA -ACGGAAAGGCTATTTGCCGGAAAC -ACGGAAAGGCTATTTGCCAACACC -ACGGAAAGGCTATTTGCCATCGAG -ACGGAAAGGCTATTTGCCCTCCTT -ACGGAAAGGCTATTTGCCCCTGTT -ACGGAAAGGCTATTTGCCCGGTTT -ACGGAAAGGCTATTTGCCGTGGTT -ACGGAAAGGCTATTTGCCGCCTTT -ACGGAAAGGCTATTTGCCGGTCTT -ACGGAAAGGCTATTTGCCACGCTT -ACGGAAAGGCTATTTGCCAGCGTT -ACGGAAAGGCTATTTGCCTTCGTC -ACGGAAAGGCTATTTGCCTCTCTC -ACGGAAAGGCTATTTGCCTGGATC -ACGGAAAGGCTATTTGCCCACTTC -ACGGAAAGGCTATTTGCCGTACTC -ACGGAAAGGCTATTTGCCGATGTC -ACGGAAAGGCTATTTGCCACAGTC -ACGGAAAGGCTATTTGCCTTGCTG -ACGGAAAGGCTATTTGCCTCCATG -ACGGAAAGGCTATTTGCCTGTGTG -ACGGAAAGGCTATTTGCCCTAGTG -ACGGAAAGGCTATTTGCCCATCTG -ACGGAAAGGCTATTTGCCGAGTTG -ACGGAAAGGCTATTTGCCAGACTG -ACGGAAAGGCTATTTGCCTCGGTA -ACGGAAAGGCTATTTGCCTGCCTA -ACGGAAAGGCTATTTGCCCCACTA -ACGGAAAGGCTATTTGCCGGAGTA -ACGGAAAGGCTATTTGCCTCGTCT -ACGGAAAGGCTATTTGCCTGCACT -ACGGAAAGGCTATTTGCCCTGACT -ACGGAAAGGCTATTTGCCCAACCT -ACGGAAAGGCTATTTGCCGCTACT -ACGGAAAGGCTATTTGCCGGATCT -ACGGAAAGGCTATTTGCCAAGGCT -ACGGAAAGGCTATTTGCCTCAACC -ACGGAAAGGCTATTTGCCTGTTCC -ACGGAAAGGCTATTTGCCATTCCC -ACGGAAAGGCTATTTGCCTTCTCG -ACGGAAAGGCTATTTGCCTAGACG -ACGGAAAGGCTATTTGCCGTAACG -ACGGAAAGGCTATTTGCCACTTCG -ACGGAAAGGCTATTTGCCTACGCA -ACGGAAAGGCTATTTGCCCTTGCA -ACGGAAAGGCTATTTGCCCGAACA -ACGGAAAGGCTATTTGCCCAGTCA -ACGGAAAGGCTATTTGCCGATCCA -ACGGAAAGGCTATTTGCCACGACA -ACGGAAAGGCTATTTGCCAGCTCA -ACGGAAAGGCTATTTGCCTCACGT -ACGGAAAGGCTATTTGCCCGTAGT -ACGGAAAGGCTATTTGCCGTCAGT -ACGGAAAGGCTATTTGCCGAAGGT -ACGGAAAGGCTATTTGCCAACCGT -ACGGAAAGGCTATTTGCCTTGTGC -ACGGAAAGGCTATTTGCCCTAAGC -ACGGAAAGGCTATTTGCCACTAGC -ACGGAAAGGCTATTTGCCAGATGC -ACGGAAAGGCTATTTGCCTGAAGG -ACGGAAAGGCTATTTGCCCAATGG -ACGGAAAGGCTATTTGCCATGAGG -ACGGAAAGGCTATTTGCCAATGGG -ACGGAAAGGCTATTTGCCTCCTGA -ACGGAAAGGCTATTTGCCTAGCGA -ACGGAAAGGCTATTTGCCCACAGA -ACGGAAAGGCTATTTGCCGCAAGA -ACGGAAAGGCTATTTGCCGGTTGA -ACGGAAAGGCTATTTGCCTCCGAT -ACGGAAAGGCTATTTGCCTGGCAT -ACGGAAAGGCTATTTGCCCGAGAT -ACGGAAAGGCTATTTGCCTACCAC -ACGGAAAGGCTATTTGCCCAGAAC -ACGGAAAGGCTATTTGCCGTCTAC -ACGGAAAGGCTATTTGCCACGTAC -ACGGAAAGGCTATTTGCCAGTGAC -ACGGAAAGGCTATTTGCCCTGTAG -ACGGAAAGGCTATTTGCCCCTAAG -ACGGAAAGGCTATTTGCCGTTCAG -ACGGAAAGGCTATTTGCCGCATAG -ACGGAAAGGCTATTTGCCGACAAG -ACGGAAAGGCTATTTGCCAAGCAG -ACGGAAAGGCTATTTGCCCGTCAA -ACGGAAAGGCTATTTGCCGCTGAA -ACGGAAAGGCTATTTGCCAGTACG -ACGGAAAGGCTATTTGCCATCCGA -ACGGAAAGGCTATTTGCCATGGGA -ACGGAAAGGCTATTTGCCGTGCAA -ACGGAAAGGCTATTTGCCGAGGAA -ACGGAAAGGCTATTTGCCCAGGTA -ACGGAAAGGCTATTTGCCGACTCT -ACGGAAAGGCTATTTGCCAGTCCT -ACGGAAAGGCTATTTGCCTAAGCC -ACGGAAAGGCTATTTGCCATAGCC -ACGGAAAGGCTATTTGCCTAACCG -ACGGAAAGGCTATTTGCCATGCCA -ACGGAAAGGCTACTTGGTGGAAAC -ACGGAAAGGCTACTTGGTAACACC -ACGGAAAGGCTACTTGGTATCGAG -ACGGAAAGGCTACTTGGTCTCCTT -ACGGAAAGGCTACTTGGTCCTGTT -ACGGAAAGGCTACTTGGTCGGTTT -ACGGAAAGGCTACTTGGTGTGGTT -ACGGAAAGGCTACTTGGTGCCTTT -ACGGAAAGGCTACTTGGTGGTCTT -ACGGAAAGGCTACTTGGTACGCTT -ACGGAAAGGCTACTTGGTAGCGTT -ACGGAAAGGCTACTTGGTTTCGTC -ACGGAAAGGCTACTTGGTTCTCTC -ACGGAAAGGCTACTTGGTTGGATC -ACGGAAAGGCTACTTGGTCACTTC -ACGGAAAGGCTACTTGGTGTACTC -ACGGAAAGGCTACTTGGTGATGTC -ACGGAAAGGCTACTTGGTACAGTC -ACGGAAAGGCTACTTGGTTTGCTG -ACGGAAAGGCTACTTGGTTCCATG -ACGGAAAGGCTACTTGGTTGTGTG -ACGGAAAGGCTACTTGGTCTAGTG -ACGGAAAGGCTACTTGGTCATCTG -ACGGAAAGGCTACTTGGTGAGTTG -ACGGAAAGGCTACTTGGTAGACTG -ACGGAAAGGCTACTTGGTTCGGTA -ACGGAAAGGCTACTTGGTTGCCTA -ACGGAAAGGCTACTTGGTCCACTA -ACGGAAAGGCTACTTGGTGGAGTA -ACGGAAAGGCTACTTGGTTCGTCT -ACGGAAAGGCTACTTGGTTGCACT -ACGGAAAGGCTACTTGGTCTGACT -ACGGAAAGGCTACTTGGTCAACCT -ACGGAAAGGCTACTTGGTGCTACT -ACGGAAAGGCTACTTGGTGGATCT -ACGGAAAGGCTACTTGGTAAGGCT -ACGGAAAGGCTACTTGGTTCAACC -ACGGAAAGGCTACTTGGTTGTTCC -ACGGAAAGGCTACTTGGTATTCCC -ACGGAAAGGCTACTTGGTTTCTCG -ACGGAAAGGCTACTTGGTTAGACG -ACGGAAAGGCTACTTGGTGTAACG -ACGGAAAGGCTACTTGGTACTTCG -ACGGAAAGGCTACTTGGTTACGCA -ACGGAAAGGCTACTTGGTCTTGCA -ACGGAAAGGCTACTTGGTCGAACA -ACGGAAAGGCTACTTGGTCAGTCA -ACGGAAAGGCTACTTGGTGATCCA -ACGGAAAGGCTACTTGGTACGACA -ACGGAAAGGCTACTTGGTAGCTCA -ACGGAAAGGCTACTTGGTTCACGT -ACGGAAAGGCTACTTGGTCGTAGT -ACGGAAAGGCTACTTGGTGTCAGT -ACGGAAAGGCTACTTGGTGAAGGT -ACGGAAAGGCTACTTGGTAACCGT -ACGGAAAGGCTACTTGGTTTGTGC -ACGGAAAGGCTACTTGGTCTAAGC -ACGGAAAGGCTACTTGGTACTAGC -ACGGAAAGGCTACTTGGTAGATGC -ACGGAAAGGCTACTTGGTTGAAGG -ACGGAAAGGCTACTTGGTCAATGG -ACGGAAAGGCTACTTGGTATGAGG -ACGGAAAGGCTACTTGGTAATGGG -ACGGAAAGGCTACTTGGTTCCTGA -ACGGAAAGGCTACTTGGTTAGCGA -ACGGAAAGGCTACTTGGTCACAGA -ACGGAAAGGCTACTTGGTGCAAGA -ACGGAAAGGCTACTTGGTGGTTGA -ACGGAAAGGCTACTTGGTTCCGAT -ACGGAAAGGCTACTTGGTTGGCAT -ACGGAAAGGCTACTTGGTCGAGAT -ACGGAAAGGCTACTTGGTTACCAC -ACGGAAAGGCTACTTGGTCAGAAC -ACGGAAAGGCTACTTGGTGTCTAC -ACGGAAAGGCTACTTGGTACGTAC -ACGGAAAGGCTACTTGGTAGTGAC -ACGGAAAGGCTACTTGGTCTGTAG -ACGGAAAGGCTACTTGGTCCTAAG -ACGGAAAGGCTACTTGGTGTTCAG -ACGGAAAGGCTACTTGGTGCATAG -ACGGAAAGGCTACTTGGTGACAAG -ACGGAAAGGCTACTTGGTAAGCAG -ACGGAAAGGCTACTTGGTCGTCAA -ACGGAAAGGCTACTTGGTGCTGAA -ACGGAAAGGCTACTTGGTAGTACG -ACGGAAAGGCTACTTGGTATCCGA -ACGGAAAGGCTACTTGGTATGGGA -ACGGAAAGGCTACTTGGTGTGCAA -ACGGAAAGGCTACTTGGTGAGGAA -ACGGAAAGGCTACTTGGTCAGGTA -ACGGAAAGGCTACTTGGTGACTCT -ACGGAAAGGCTACTTGGTAGTCCT -ACGGAAAGGCTACTTGGTTAAGCC -ACGGAAAGGCTACTTGGTATAGCC -ACGGAAAGGCTACTTGGTTAACCG -ACGGAAAGGCTACTTGGTATGCCA -ACGGAAAGGCTACTTACGGGAAAC -ACGGAAAGGCTACTTACGAACACC -ACGGAAAGGCTACTTACGATCGAG -ACGGAAAGGCTACTTACGCTCCTT -ACGGAAAGGCTACTTACGCCTGTT -ACGGAAAGGCTACTTACGCGGTTT -ACGGAAAGGCTACTTACGGTGGTT -ACGGAAAGGCTACTTACGGCCTTT -ACGGAAAGGCTACTTACGGGTCTT -ACGGAAAGGCTACTTACGACGCTT -ACGGAAAGGCTACTTACGAGCGTT -ACGGAAAGGCTACTTACGTTCGTC -ACGGAAAGGCTACTTACGTCTCTC -ACGGAAAGGCTACTTACGTGGATC -ACGGAAAGGCTACTTACGCACTTC -ACGGAAAGGCTACTTACGGTACTC -ACGGAAAGGCTACTTACGGATGTC -ACGGAAAGGCTACTTACGACAGTC -ACGGAAAGGCTACTTACGTTGCTG -ACGGAAAGGCTACTTACGTCCATG -ACGGAAAGGCTACTTACGTGTGTG -ACGGAAAGGCTACTTACGCTAGTG -ACGGAAAGGCTACTTACGCATCTG -ACGGAAAGGCTACTTACGGAGTTG -ACGGAAAGGCTACTTACGAGACTG -ACGGAAAGGCTACTTACGTCGGTA -ACGGAAAGGCTACTTACGTGCCTA -ACGGAAAGGCTACTTACGCCACTA -ACGGAAAGGCTACTTACGGGAGTA -ACGGAAAGGCTACTTACGTCGTCT -ACGGAAAGGCTACTTACGTGCACT -ACGGAAAGGCTACTTACGCTGACT -ACGGAAAGGCTACTTACGCAACCT -ACGGAAAGGCTACTTACGGCTACT -ACGGAAAGGCTACTTACGGGATCT -ACGGAAAGGCTACTTACGAAGGCT -ACGGAAAGGCTACTTACGTCAACC -ACGGAAAGGCTACTTACGTGTTCC -ACGGAAAGGCTACTTACGATTCCC -ACGGAAAGGCTACTTACGTTCTCG -ACGGAAAGGCTACTTACGTAGACG -ACGGAAAGGCTACTTACGGTAACG -ACGGAAAGGCTACTTACGACTTCG -ACGGAAAGGCTACTTACGTACGCA -ACGGAAAGGCTACTTACGCTTGCA -ACGGAAAGGCTACTTACGCGAACA -ACGGAAAGGCTACTTACGCAGTCA -ACGGAAAGGCTACTTACGGATCCA -ACGGAAAGGCTACTTACGACGACA -ACGGAAAGGCTACTTACGAGCTCA -ACGGAAAGGCTACTTACGTCACGT -ACGGAAAGGCTACTTACGCGTAGT -ACGGAAAGGCTACTTACGGTCAGT -ACGGAAAGGCTACTTACGGAAGGT -ACGGAAAGGCTACTTACGAACCGT -ACGGAAAGGCTACTTACGTTGTGC -ACGGAAAGGCTACTTACGCTAAGC -ACGGAAAGGCTACTTACGACTAGC -ACGGAAAGGCTACTTACGAGATGC -ACGGAAAGGCTACTTACGTGAAGG -ACGGAAAGGCTACTTACGCAATGG -ACGGAAAGGCTACTTACGATGAGG -ACGGAAAGGCTACTTACGAATGGG -ACGGAAAGGCTACTTACGTCCTGA -ACGGAAAGGCTACTTACGTAGCGA -ACGGAAAGGCTACTTACGCACAGA -ACGGAAAGGCTACTTACGGCAAGA -ACGGAAAGGCTACTTACGGGTTGA -ACGGAAAGGCTACTTACGTCCGAT -ACGGAAAGGCTACTTACGTGGCAT -ACGGAAAGGCTACTTACGCGAGAT -ACGGAAAGGCTACTTACGTACCAC -ACGGAAAGGCTACTTACGCAGAAC -ACGGAAAGGCTACTTACGGTCTAC -ACGGAAAGGCTACTTACGACGTAC -ACGGAAAGGCTACTTACGAGTGAC -ACGGAAAGGCTACTTACGCTGTAG -ACGGAAAGGCTACTTACGCCTAAG -ACGGAAAGGCTACTTACGGTTCAG -ACGGAAAGGCTACTTACGGCATAG -ACGGAAAGGCTACTTACGGACAAG -ACGGAAAGGCTACTTACGAAGCAG -ACGGAAAGGCTACTTACGCGTCAA -ACGGAAAGGCTACTTACGGCTGAA -ACGGAAAGGCTACTTACGAGTACG -ACGGAAAGGCTACTTACGATCCGA -ACGGAAAGGCTACTTACGATGGGA -ACGGAAAGGCTACTTACGGTGCAA -ACGGAAAGGCTACTTACGGAGGAA -ACGGAAAGGCTACTTACGCAGGTA -ACGGAAAGGCTACTTACGGACTCT -ACGGAAAGGCTACTTACGAGTCCT -ACGGAAAGGCTACTTACGTAAGCC -ACGGAAAGGCTACTTACGATAGCC -ACGGAAAGGCTACTTACGTAACCG -ACGGAAAGGCTACTTACGATGCCA -ACGGAAAGGCTAGTTAGCGGAAAC -ACGGAAAGGCTAGTTAGCAACACC -ACGGAAAGGCTAGTTAGCATCGAG -ACGGAAAGGCTAGTTAGCCTCCTT -ACGGAAAGGCTAGTTAGCCCTGTT -ACGGAAAGGCTAGTTAGCCGGTTT -ACGGAAAGGCTAGTTAGCGTGGTT -ACGGAAAGGCTAGTTAGCGCCTTT -ACGGAAAGGCTAGTTAGCGGTCTT -ACGGAAAGGCTAGTTAGCACGCTT -ACGGAAAGGCTAGTTAGCAGCGTT -ACGGAAAGGCTAGTTAGCTTCGTC -ACGGAAAGGCTAGTTAGCTCTCTC -ACGGAAAGGCTAGTTAGCTGGATC -ACGGAAAGGCTAGTTAGCCACTTC -ACGGAAAGGCTAGTTAGCGTACTC -ACGGAAAGGCTAGTTAGCGATGTC -ACGGAAAGGCTAGTTAGCACAGTC -ACGGAAAGGCTAGTTAGCTTGCTG -ACGGAAAGGCTAGTTAGCTCCATG -ACGGAAAGGCTAGTTAGCTGTGTG -ACGGAAAGGCTAGTTAGCCTAGTG -ACGGAAAGGCTAGTTAGCCATCTG -ACGGAAAGGCTAGTTAGCGAGTTG -ACGGAAAGGCTAGTTAGCAGACTG -ACGGAAAGGCTAGTTAGCTCGGTA -ACGGAAAGGCTAGTTAGCTGCCTA -ACGGAAAGGCTAGTTAGCCCACTA -ACGGAAAGGCTAGTTAGCGGAGTA -ACGGAAAGGCTAGTTAGCTCGTCT -ACGGAAAGGCTAGTTAGCTGCACT -ACGGAAAGGCTAGTTAGCCTGACT -ACGGAAAGGCTAGTTAGCCAACCT -ACGGAAAGGCTAGTTAGCGCTACT -ACGGAAAGGCTAGTTAGCGGATCT -ACGGAAAGGCTAGTTAGCAAGGCT -ACGGAAAGGCTAGTTAGCTCAACC -ACGGAAAGGCTAGTTAGCTGTTCC -ACGGAAAGGCTAGTTAGCATTCCC -ACGGAAAGGCTAGTTAGCTTCTCG -ACGGAAAGGCTAGTTAGCTAGACG -ACGGAAAGGCTAGTTAGCGTAACG -ACGGAAAGGCTAGTTAGCACTTCG -ACGGAAAGGCTAGTTAGCTACGCA -ACGGAAAGGCTAGTTAGCCTTGCA -ACGGAAAGGCTAGTTAGCCGAACA -ACGGAAAGGCTAGTTAGCCAGTCA -ACGGAAAGGCTAGTTAGCGATCCA -ACGGAAAGGCTAGTTAGCACGACA -ACGGAAAGGCTAGTTAGCAGCTCA -ACGGAAAGGCTAGTTAGCTCACGT -ACGGAAAGGCTAGTTAGCCGTAGT -ACGGAAAGGCTAGTTAGCGTCAGT -ACGGAAAGGCTAGTTAGCGAAGGT -ACGGAAAGGCTAGTTAGCAACCGT -ACGGAAAGGCTAGTTAGCTTGTGC -ACGGAAAGGCTAGTTAGCCTAAGC -ACGGAAAGGCTAGTTAGCACTAGC -ACGGAAAGGCTAGTTAGCAGATGC -ACGGAAAGGCTAGTTAGCTGAAGG -ACGGAAAGGCTAGTTAGCCAATGG -ACGGAAAGGCTAGTTAGCATGAGG -ACGGAAAGGCTAGTTAGCAATGGG -ACGGAAAGGCTAGTTAGCTCCTGA -ACGGAAAGGCTAGTTAGCTAGCGA -ACGGAAAGGCTAGTTAGCCACAGA -ACGGAAAGGCTAGTTAGCGCAAGA -ACGGAAAGGCTAGTTAGCGGTTGA -ACGGAAAGGCTAGTTAGCTCCGAT -ACGGAAAGGCTAGTTAGCTGGCAT -ACGGAAAGGCTAGTTAGCCGAGAT -ACGGAAAGGCTAGTTAGCTACCAC -ACGGAAAGGCTAGTTAGCCAGAAC -ACGGAAAGGCTAGTTAGCGTCTAC -ACGGAAAGGCTAGTTAGCACGTAC -ACGGAAAGGCTAGTTAGCAGTGAC -ACGGAAAGGCTAGTTAGCCTGTAG -ACGGAAAGGCTAGTTAGCCCTAAG -ACGGAAAGGCTAGTTAGCGTTCAG -ACGGAAAGGCTAGTTAGCGCATAG -ACGGAAAGGCTAGTTAGCGACAAG -ACGGAAAGGCTAGTTAGCAAGCAG -ACGGAAAGGCTAGTTAGCCGTCAA -ACGGAAAGGCTAGTTAGCGCTGAA -ACGGAAAGGCTAGTTAGCAGTACG -ACGGAAAGGCTAGTTAGCATCCGA -ACGGAAAGGCTAGTTAGCATGGGA -ACGGAAAGGCTAGTTAGCGTGCAA -ACGGAAAGGCTAGTTAGCGAGGAA -ACGGAAAGGCTAGTTAGCCAGGTA -ACGGAAAGGCTAGTTAGCGACTCT -ACGGAAAGGCTAGTTAGCAGTCCT -ACGGAAAGGCTAGTTAGCTAAGCC -ACGGAAAGGCTAGTTAGCATAGCC -ACGGAAAGGCTAGTTAGCTAACCG -ACGGAAAGGCTAGTTAGCATGCCA -ACGGAAAGGCTAGTCTTCGGAAAC -ACGGAAAGGCTAGTCTTCAACACC -ACGGAAAGGCTAGTCTTCATCGAG -ACGGAAAGGCTAGTCTTCCTCCTT -ACGGAAAGGCTAGTCTTCCCTGTT -ACGGAAAGGCTAGTCTTCCGGTTT -ACGGAAAGGCTAGTCTTCGTGGTT -ACGGAAAGGCTAGTCTTCGCCTTT -ACGGAAAGGCTAGTCTTCGGTCTT -ACGGAAAGGCTAGTCTTCACGCTT -ACGGAAAGGCTAGTCTTCAGCGTT -ACGGAAAGGCTAGTCTTCTTCGTC -ACGGAAAGGCTAGTCTTCTCTCTC -ACGGAAAGGCTAGTCTTCTGGATC -ACGGAAAGGCTAGTCTTCCACTTC -ACGGAAAGGCTAGTCTTCGTACTC -ACGGAAAGGCTAGTCTTCGATGTC -ACGGAAAGGCTAGTCTTCACAGTC -ACGGAAAGGCTAGTCTTCTTGCTG -ACGGAAAGGCTAGTCTTCTCCATG -ACGGAAAGGCTAGTCTTCTGTGTG -ACGGAAAGGCTAGTCTTCCTAGTG -ACGGAAAGGCTAGTCTTCCATCTG -ACGGAAAGGCTAGTCTTCGAGTTG -ACGGAAAGGCTAGTCTTCAGACTG -ACGGAAAGGCTAGTCTTCTCGGTA -ACGGAAAGGCTAGTCTTCTGCCTA -ACGGAAAGGCTAGTCTTCCCACTA -ACGGAAAGGCTAGTCTTCGGAGTA -ACGGAAAGGCTAGTCTTCTCGTCT -ACGGAAAGGCTAGTCTTCTGCACT -ACGGAAAGGCTAGTCTTCCTGACT -ACGGAAAGGCTAGTCTTCCAACCT -ACGGAAAGGCTAGTCTTCGCTACT -ACGGAAAGGCTAGTCTTCGGATCT -ACGGAAAGGCTAGTCTTCAAGGCT -ACGGAAAGGCTAGTCTTCTCAACC -ACGGAAAGGCTAGTCTTCTGTTCC -ACGGAAAGGCTAGTCTTCATTCCC -ACGGAAAGGCTAGTCTTCTTCTCG -ACGGAAAGGCTAGTCTTCTAGACG -ACGGAAAGGCTAGTCTTCGTAACG -ACGGAAAGGCTAGTCTTCACTTCG -ACGGAAAGGCTAGTCTTCTACGCA -ACGGAAAGGCTAGTCTTCCTTGCA -ACGGAAAGGCTAGTCTTCCGAACA -ACGGAAAGGCTAGTCTTCCAGTCA -ACGGAAAGGCTAGTCTTCGATCCA -ACGGAAAGGCTAGTCTTCACGACA -ACGGAAAGGCTAGTCTTCAGCTCA -ACGGAAAGGCTAGTCTTCTCACGT -ACGGAAAGGCTAGTCTTCCGTAGT -ACGGAAAGGCTAGTCTTCGTCAGT -ACGGAAAGGCTAGTCTTCGAAGGT -ACGGAAAGGCTAGTCTTCAACCGT -ACGGAAAGGCTAGTCTTCTTGTGC -ACGGAAAGGCTAGTCTTCCTAAGC -ACGGAAAGGCTAGTCTTCACTAGC -ACGGAAAGGCTAGTCTTCAGATGC -ACGGAAAGGCTAGTCTTCTGAAGG -ACGGAAAGGCTAGTCTTCCAATGG -ACGGAAAGGCTAGTCTTCATGAGG -ACGGAAAGGCTAGTCTTCAATGGG -ACGGAAAGGCTAGTCTTCTCCTGA -ACGGAAAGGCTAGTCTTCTAGCGA -ACGGAAAGGCTAGTCTTCCACAGA -ACGGAAAGGCTAGTCTTCGCAAGA -ACGGAAAGGCTAGTCTTCGGTTGA -ACGGAAAGGCTAGTCTTCTCCGAT -ACGGAAAGGCTAGTCTTCTGGCAT -ACGGAAAGGCTAGTCTTCCGAGAT -ACGGAAAGGCTAGTCTTCTACCAC -ACGGAAAGGCTAGTCTTCCAGAAC -ACGGAAAGGCTAGTCTTCGTCTAC -ACGGAAAGGCTAGTCTTCACGTAC -ACGGAAAGGCTAGTCTTCAGTGAC -ACGGAAAGGCTAGTCTTCCTGTAG -ACGGAAAGGCTAGTCTTCCCTAAG -ACGGAAAGGCTAGTCTTCGTTCAG -ACGGAAAGGCTAGTCTTCGCATAG -ACGGAAAGGCTAGTCTTCGACAAG -ACGGAAAGGCTAGTCTTCAAGCAG -ACGGAAAGGCTAGTCTTCCGTCAA -ACGGAAAGGCTAGTCTTCGCTGAA -ACGGAAAGGCTAGTCTTCAGTACG -ACGGAAAGGCTAGTCTTCATCCGA -ACGGAAAGGCTAGTCTTCATGGGA -ACGGAAAGGCTAGTCTTCGTGCAA -ACGGAAAGGCTAGTCTTCGAGGAA -ACGGAAAGGCTAGTCTTCCAGGTA -ACGGAAAGGCTAGTCTTCGACTCT -ACGGAAAGGCTAGTCTTCAGTCCT -ACGGAAAGGCTAGTCTTCTAAGCC -ACGGAAAGGCTAGTCTTCATAGCC -ACGGAAAGGCTAGTCTTCTAACCG -ACGGAAAGGCTAGTCTTCATGCCA -ACGGAAAGGCTACTCTCTGGAAAC -ACGGAAAGGCTACTCTCTAACACC -ACGGAAAGGCTACTCTCTATCGAG -ACGGAAAGGCTACTCTCTCTCCTT -ACGGAAAGGCTACTCTCTCCTGTT -ACGGAAAGGCTACTCTCTCGGTTT -ACGGAAAGGCTACTCTCTGTGGTT -ACGGAAAGGCTACTCTCTGCCTTT -ACGGAAAGGCTACTCTCTGGTCTT -ACGGAAAGGCTACTCTCTACGCTT -ACGGAAAGGCTACTCTCTAGCGTT -ACGGAAAGGCTACTCTCTTTCGTC -ACGGAAAGGCTACTCTCTTCTCTC -ACGGAAAGGCTACTCTCTTGGATC -ACGGAAAGGCTACTCTCTCACTTC -ACGGAAAGGCTACTCTCTGTACTC -ACGGAAAGGCTACTCTCTGATGTC -ACGGAAAGGCTACTCTCTACAGTC -ACGGAAAGGCTACTCTCTTTGCTG -ACGGAAAGGCTACTCTCTTCCATG -ACGGAAAGGCTACTCTCTTGTGTG -ACGGAAAGGCTACTCTCTCTAGTG -ACGGAAAGGCTACTCTCTCATCTG -ACGGAAAGGCTACTCTCTGAGTTG -ACGGAAAGGCTACTCTCTAGACTG -ACGGAAAGGCTACTCTCTTCGGTA -ACGGAAAGGCTACTCTCTTGCCTA -ACGGAAAGGCTACTCTCTCCACTA -ACGGAAAGGCTACTCTCTGGAGTA -ACGGAAAGGCTACTCTCTTCGTCT -ACGGAAAGGCTACTCTCTTGCACT -ACGGAAAGGCTACTCTCTCTGACT -ACGGAAAGGCTACTCTCTCAACCT -ACGGAAAGGCTACTCTCTGCTACT -ACGGAAAGGCTACTCTCTGGATCT -ACGGAAAGGCTACTCTCTAAGGCT -ACGGAAAGGCTACTCTCTTCAACC -ACGGAAAGGCTACTCTCTTGTTCC -ACGGAAAGGCTACTCTCTATTCCC -ACGGAAAGGCTACTCTCTTTCTCG -ACGGAAAGGCTACTCTCTTAGACG -ACGGAAAGGCTACTCTCTGTAACG -ACGGAAAGGCTACTCTCTACTTCG -ACGGAAAGGCTACTCTCTTACGCA -ACGGAAAGGCTACTCTCTCTTGCA -ACGGAAAGGCTACTCTCTCGAACA -ACGGAAAGGCTACTCTCTCAGTCA -ACGGAAAGGCTACTCTCTGATCCA -ACGGAAAGGCTACTCTCTACGACA -ACGGAAAGGCTACTCTCTAGCTCA -ACGGAAAGGCTACTCTCTTCACGT -ACGGAAAGGCTACTCTCTCGTAGT -ACGGAAAGGCTACTCTCTGTCAGT -ACGGAAAGGCTACTCTCTGAAGGT -ACGGAAAGGCTACTCTCTAACCGT -ACGGAAAGGCTACTCTCTTTGTGC -ACGGAAAGGCTACTCTCTCTAAGC -ACGGAAAGGCTACTCTCTACTAGC -ACGGAAAGGCTACTCTCTAGATGC -ACGGAAAGGCTACTCTCTTGAAGG -ACGGAAAGGCTACTCTCTCAATGG -ACGGAAAGGCTACTCTCTATGAGG -ACGGAAAGGCTACTCTCTAATGGG -ACGGAAAGGCTACTCTCTTCCTGA -ACGGAAAGGCTACTCTCTTAGCGA -ACGGAAAGGCTACTCTCTCACAGA -ACGGAAAGGCTACTCTCTGCAAGA -ACGGAAAGGCTACTCTCTGGTTGA -ACGGAAAGGCTACTCTCTTCCGAT -ACGGAAAGGCTACTCTCTTGGCAT -ACGGAAAGGCTACTCTCTCGAGAT -ACGGAAAGGCTACTCTCTTACCAC -ACGGAAAGGCTACTCTCTCAGAAC -ACGGAAAGGCTACTCTCTGTCTAC -ACGGAAAGGCTACTCTCTACGTAC -ACGGAAAGGCTACTCTCTAGTGAC -ACGGAAAGGCTACTCTCTCTGTAG -ACGGAAAGGCTACTCTCTCCTAAG -ACGGAAAGGCTACTCTCTGTTCAG -ACGGAAAGGCTACTCTCTGCATAG -ACGGAAAGGCTACTCTCTGACAAG -ACGGAAAGGCTACTCTCTAAGCAG -ACGGAAAGGCTACTCTCTCGTCAA -ACGGAAAGGCTACTCTCTGCTGAA -ACGGAAAGGCTACTCTCTAGTACG -ACGGAAAGGCTACTCTCTATCCGA -ACGGAAAGGCTACTCTCTATGGGA -ACGGAAAGGCTACTCTCTGTGCAA -ACGGAAAGGCTACTCTCTGAGGAA -ACGGAAAGGCTACTCTCTCAGGTA -ACGGAAAGGCTACTCTCTGACTCT -ACGGAAAGGCTACTCTCTAGTCCT -ACGGAAAGGCTACTCTCTTAAGCC -ACGGAAAGGCTACTCTCTATAGCC -ACGGAAAGGCTACTCTCTTAACCG -ACGGAAAGGCTACTCTCTATGCCA -ACGGAAAGGCTAATCTGGGGAAAC -ACGGAAAGGCTAATCTGGAACACC -ACGGAAAGGCTAATCTGGATCGAG -ACGGAAAGGCTAATCTGGCTCCTT -ACGGAAAGGCTAATCTGGCCTGTT -ACGGAAAGGCTAATCTGGCGGTTT -ACGGAAAGGCTAATCTGGGTGGTT -ACGGAAAGGCTAATCTGGGCCTTT -ACGGAAAGGCTAATCTGGGGTCTT -ACGGAAAGGCTAATCTGGACGCTT -ACGGAAAGGCTAATCTGGAGCGTT -ACGGAAAGGCTAATCTGGTTCGTC -ACGGAAAGGCTAATCTGGTCTCTC -ACGGAAAGGCTAATCTGGTGGATC -ACGGAAAGGCTAATCTGGCACTTC -ACGGAAAGGCTAATCTGGGTACTC -ACGGAAAGGCTAATCTGGGATGTC -ACGGAAAGGCTAATCTGGACAGTC -ACGGAAAGGCTAATCTGGTTGCTG -ACGGAAAGGCTAATCTGGTCCATG -ACGGAAAGGCTAATCTGGTGTGTG -ACGGAAAGGCTAATCTGGCTAGTG -ACGGAAAGGCTAATCTGGCATCTG -ACGGAAAGGCTAATCTGGGAGTTG -ACGGAAAGGCTAATCTGGAGACTG -ACGGAAAGGCTAATCTGGTCGGTA -ACGGAAAGGCTAATCTGGTGCCTA -ACGGAAAGGCTAATCTGGCCACTA -ACGGAAAGGCTAATCTGGGGAGTA -ACGGAAAGGCTAATCTGGTCGTCT -ACGGAAAGGCTAATCTGGTGCACT -ACGGAAAGGCTAATCTGGCTGACT -ACGGAAAGGCTAATCTGGCAACCT -ACGGAAAGGCTAATCTGGGCTACT -ACGGAAAGGCTAATCTGGGGATCT -ACGGAAAGGCTAATCTGGAAGGCT -ACGGAAAGGCTAATCTGGTCAACC -ACGGAAAGGCTAATCTGGTGTTCC -ACGGAAAGGCTAATCTGGATTCCC -ACGGAAAGGCTAATCTGGTTCTCG -ACGGAAAGGCTAATCTGGTAGACG -ACGGAAAGGCTAATCTGGGTAACG -ACGGAAAGGCTAATCTGGACTTCG -ACGGAAAGGCTAATCTGGTACGCA -ACGGAAAGGCTAATCTGGCTTGCA -ACGGAAAGGCTAATCTGGCGAACA -ACGGAAAGGCTAATCTGGCAGTCA -ACGGAAAGGCTAATCTGGGATCCA -ACGGAAAGGCTAATCTGGACGACA -ACGGAAAGGCTAATCTGGAGCTCA -ACGGAAAGGCTAATCTGGTCACGT -ACGGAAAGGCTAATCTGGCGTAGT -ACGGAAAGGCTAATCTGGGTCAGT -ACGGAAAGGCTAATCTGGGAAGGT -ACGGAAAGGCTAATCTGGAACCGT -ACGGAAAGGCTAATCTGGTTGTGC -ACGGAAAGGCTAATCTGGCTAAGC -ACGGAAAGGCTAATCTGGACTAGC -ACGGAAAGGCTAATCTGGAGATGC -ACGGAAAGGCTAATCTGGTGAAGG -ACGGAAAGGCTAATCTGGCAATGG -ACGGAAAGGCTAATCTGGATGAGG -ACGGAAAGGCTAATCTGGAATGGG -ACGGAAAGGCTAATCTGGTCCTGA -ACGGAAAGGCTAATCTGGTAGCGA -ACGGAAAGGCTAATCTGGCACAGA -ACGGAAAGGCTAATCTGGGCAAGA -ACGGAAAGGCTAATCTGGGGTTGA -ACGGAAAGGCTAATCTGGTCCGAT -ACGGAAAGGCTAATCTGGTGGCAT -ACGGAAAGGCTAATCTGGCGAGAT -ACGGAAAGGCTAATCTGGTACCAC -ACGGAAAGGCTAATCTGGCAGAAC -ACGGAAAGGCTAATCTGGGTCTAC -ACGGAAAGGCTAATCTGGACGTAC -ACGGAAAGGCTAATCTGGAGTGAC -ACGGAAAGGCTAATCTGGCTGTAG -ACGGAAAGGCTAATCTGGCCTAAG -ACGGAAAGGCTAATCTGGGTTCAG -ACGGAAAGGCTAATCTGGGCATAG -ACGGAAAGGCTAATCTGGGACAAG -ACGGAAAGGCTAATCTGGAAGCAG -ACGGAAAGGCTAATCTGGCGTCAA -ACGGAAAGGCTAATCTGGGCTGAA -ACGGAAAGGCTAATCTGGAGTACG -ACGGAAAGGCTAATCTGGATCCGA -ACGGAAAGGCTAATCTGGATGGGA -ACGGAAAGGCTAATCTGGGTGCAA -ACGGAAAGGCTAATCTGGGAGGAA -ACGGAAAGGCTAATCTGGCAGGTA -ACGGAAAGGCTAATCTGGGACTCT -ACGGAAAGGCTAATCTGGAGTCCT -ACGGAAAGGCTAATCTGGTAAGCC -ACGGAAAGGCTAATCTGGATAGCC -ACGGAAAGGCTAATCTGGTAACCG -ACGGAAAGGCTAATCTGGATGCCA -ACGGAAAGGCTATTCCACGGAAAC -ACGGAAAGGCTATTCCACAACACC -ACGGAAAGGCTATTCCACATCGAG -ACGGAAAGGCTATTCCACCTCCTT -ACGGAAAGGCTATTCCACCCTGTT -ACGGAAAGGCTATTCCACCGGTTT -ACGGAAAGGCTATTCCACGTGGTT -ACGGAAAGGCTATTCCACGCCTTT -ACGGAAAGGCTATTCCACGGTCTT -ACGGAAAGGCTATTCCACACGCTT -ACGGAAAGGCTATTCCACAGCGTT -ACGGAAAGGCTATTCCACTTCGTC -ACGGAAAGGCTATTCCACTCTCTC -ACGGAAAGGCTATTCCACTGGATC -ACGGAAAGGCTATTCCACCACTTC -ACGGAAAGGCTATTCCACGTACTC -ACGGAAAGGCTATTCCACGATGTC -ACGGAAAGGCTATTCCACACAGTC -ACGGAAAGGCTATTCCACTTGCTG -ACGGAAAGGCTATTCCACTCCATG -ACGGAAAGGCTATTCCACTGTGTG -ACGGAAAGGCTATTCCACCTAGTG -ACGGAAAGGCTATTCCACCATCTG -ACGGAAAGGCTATTCCACGAGTTG -ACGGAAAGGCTATTCCACAGACTG -ACGGAAAGGCTATTCCACTCGGTA -ACGGAAAGGCTATTCCACTGCCTA -ACGGAAAGGCTATTCCACCCACTA -ACGGAAAGGCTATTCCACGGAGTA -ACGGAAAGGCTATTCCACTCGTCT -ACGGAAAGGCTATTCCACTGCACT -ACGGAAAGGCTATTCCACCTGACT -ACGGAAAGGCTATTCCACCAACCT -ACGGAAAGGCTATTCCACGCTACT -ACGGAAAGGCTATTCCACGGATCT -ACGGAAAGGCTATTCCACAAGGCT -ACGGAAAGGCTATTCCACTCAACC -ACGGAAAGGCTATTCCACTGTTCC -ACGGAAAGGCTATTCCACATTCCC -ACGGAAAGGCTATTCCACTTCTCG -ACGGAAAGGCTATTCCACTAGACG -ACGGAAAGGCTATTCCACGTAACG -ACGGAAAGGCTATTCCACACTTCG -ACGGAAAGGCTATTCCACTACGCA -ACGGAAAGGCTATTCCACCTTGCA -ACGGAAAGGCTATTCCACCGAACA -ACGGAAAGGCTATTCCACCAGTCA -ACGGAAAGGCTATTCCACGATCCA -ACGGAAAGGCTATTCCACACGACA -ACGGAAAGGCTATTCCACAGCTCA -ACGGAAAGGCTATTCCACTCACGT -ACGGAAAGGCTATTCCACCGTAGT -ACGGAAAGGCTATTCCACGTCAGT -ACGGAAAGGCTATTCCACGAAGGT -ACGGAAAGGCTATTCCACAACCGT -ACGGAAAGGCTATTCCACTTGTGC -ACGGAAAGGCTATTCCACCTAAGC -ACGGAAAGGCTATTCCACACTAGC -ACGGAAAGGCTATTCCACAGATGC -ACGGAAAGGCTATTCCACTGAAGG -ACGGAAAGGCTATTCCACCAATGG -ACGGAAAGGCTATTCCACATGAGG -ACGGAAAGGCTATTCCACAATGGG -ACGGAAAGGCTATTCCACTCCTGA -ACGGAAAGGCTATTCCACTAGCGA -ACGGAAAGGCTATTCCACCACAGA -ACGGAAAGGCTATTCCACGCAAGA -ACGGAAAGGCTATTCCACGGTTGA -ACGGAAAGGCTATTCCACTCCGAT -ACGGAAAGGCTATTCCACTGGCAT -ACGGAAAGGCTATTCCACCGAGAT -ACGGAAAGGCTATTCCACTACCAC -ACGGAAAGGCTATTCCACCAGAAC -ACGGAAAGGCTATTCCACGTCTAC -ACGGAAAGGCTATTCCACACGTAC -ACGGAAAGGCTATTCCACAGTGAC -ACGGAAAGGCTATTCCACCTGTAG -ACGGAAAGGCTATTCCACCCTAAG -ACGGAAAGGCTATTCCACGTTCAG -ACGGAAAGGCTATTCCACGCATAG -ACGGAAAGGCTATTCCACGACAAG -ACGGAAAGGCTATTCCACAAGCAG -ACGGAAAGGCTATTCCACCGTCAA -ACGGAAAGGCTATTCCACGCTGAA -ACGGAAAGGCTATTCCACAGTACG -ACGGAAAGGCTATTCCACATCCGA -ACGGAAAGGCTATTCCACATGGGA -ACGGAAAGGCTATTCCACGTGCAA -ACGGAAAGGCTATTCCACGAGGAA -ACGGAAAGGCTATTCCACCAGGTA -ACGGAAAGGCTATTCCACGACTCT -ACGGAAAGGCTATTCCACAGTCCT -ACGGAAAGGCTATTCCACTAAGCC -ACGGAAAGGCTATTCCACATAGCC -ACGGAAAGGCTATTCCACTAACCG -ACGGAAAGGCTATTCCACATGCCA -ACGGAAAGGCTACTCGTAGGAAAC -ACGGAAAGGCTACTCGTAAACACC -ACGGAAAGGCTACTCGTAATCGAG -ACGGAAAGGCTACTCGTACTCCTT -ACGGAAAGGCTACTCGTACCTGTT -ACGGAAAGGCTACTCGTACGGTTT -ACGGAAAGGCTACTCGTAGTGGTT -ACGGAAAGGCTACTCGTAGCCTTT -ACGGAAAGGCTACTCGTAGGTCTT -ACGGAAAGGCTACTCGTAACGCTT -ACGGAAAGGCTACTCGTAAGCGTT -ACGGAAAGGCTACTCGTATTCGTC -ACGGAAAGGCTACTCGTATCTCTC -ACGGAAAGGCTACTCGTATGGATC -ACGGAAAGGCTACTCGTACACTTC -ACGGAAAGGCTACTCGTAGTACTC -ACGGAAAGGCTACTCGTAGATGTC -ACGGAAAGGCTACTCGTAACAGTC -ACGGAAAGGCTACTCGTATTGCTG -ACGGAAAGGCTACTCGTATCCATG -ACGGAAAGGCTACTCGTATGTGTG -ACGGAAAGGCTACTCGTACTAGTG -ACGGAAAGGCTACTCGTACATCTG -ACGGAAAGGCTACTCGTAGAGTTG -ACGGAAAGGCTACTCGTAAGACTG -ACGGAAAGGCTACTCGTATCGGTA -ACGGAAAGGCTACTCGTATGCCTA -ACGGAAAGGCTACTCGTACCACTA -ACGGAAAGGCTACTCGTAGGAGTA -ACGGAAAGGCTACTCGTATCGTCT -ACGGAAAGGCTACTCGTATGCACT -ACGGAAAGGCTACTCGTACTGACT -ACGGAAAGGCTACTCGTACAACCT -ACGGAAAGGCTACTCGTAGCTACT -ACGGAAAGGCTACTCGTAGGATCT -ACGGAAAGGCTACTCGTAAAGGCT -ACGGAAAGGCTACTCGTATCAACC -ACGGAAAGGCTACTCGTATGTTCC -ACGGAAAGGCTACTCGTAATTCCC -ACGGAAAGGCTACTCGTATTCTCG -ACGGAAAGGCTACTCGTATAGACG -ACGGAAAGGCTACTCGTAGTAACG -ACGGAAAGGCTACTCGTAACTTCG -ACGGAAAGGCTACTCGTATACGCA -ACGGAAAGGCTACTCGTACTTGCA -ACGGAAAGGCTACTCGTACGAACA -ACGGAAAGGCTACTCGTACAGTCA -ACGGAAAGGCTACTCGTAGATCCA -ACGGAAAGGCTACTCGTAACGACA -ACGGAAAGGCTACTCGTAAGCTCA -ACGGAAAGGCTACTCGTATCACGT -ACGGAAAGGCTACTCGTACGTAGT -ACGGAAAGGCTACTCGTAGTCAGT -ACGGAAAGGCTACTCGTAGAAGGT -ACGGAAAGGCTACTCGTAAACCGT -ACGGAAAGGCTACTCGTATTGTGC -ACGGAAAGGCTACTCGTACTAAGC -ACGGAAAGGCTACTCGTAACTAGC -ACGGAAAGGCTACTCGTAAGATGC -ACGGAAAGGCTACTCGTATGAAGG -ACGGAAAGGCTACTCGTACAATGG -ACGGAAAGGCTACTCGTAATGAGG -ACGGAAAGGCTACTCGTAAATGGG -ACGGAAAGGCTACTCGTATCCTGA -ACGGAAAGGCTACTCGTATAGCGA -ACGGAAAGGCTACTCGTACACAGA -ACGGAAAGGCTACTCGTAGCAAGA -ACGGAAAGGCTACTCGTAGGTTGA -ACGGAAAGGCTACTCGTATCCGAT -ACGGAAAGGCTACTCGTATGGCAT -ACGGAAAGGCTACTCGTACGAGAT -ACGGAAAGGCTACTCGTATACCAC -ACGGAAAGGCTACTCGTACAGAAC -ACGGAAAGGCTACTCGTAGTCTAC -ACGGAAAGGCTACTCGTAACGTAC -ACGGAAAGGCTACTCGTAAGTGAC -ACGGAAAGGCTACTCGTACTGTAG -ACGGAAAGGCTACTCGTACCTAAG -ACGGAAAGGCTACTCGTAGTTCAG -ACGGAAAGGCTACTCGTAGCATAG -ACGGAAAGGCTACTCGTAGACAAG -ACGGAAAGGCTACTCGTAAAGCAG -ACGGAAAGGCTACTCGTACGTCAA -ACGGAAAGGCTACTCGTAGCTGAA -ACGGAAAGGCTACTCGTAAGTACG -ACGGAAAGGCTACTCGTAATCCGA -ACGGAAAGGCTACTCGTAATGGGA -ACGGAAAGGCTACTCGTAGTGCAA -ACGGAAAGGCTACTCGTAGAGGAA -ACGGAAAGGCTACTCGTACAGGTA -ACGGAAAGGCTACTCGTAGACTCT -ACGGAAAGGCTACTCGTAAGTCCT -ACGGAAAGGCTACTCGTATAAGCC -ACGGAAAGGCTACTCGTAATAGCC -ACGGAAAGGCTACTCGTATAACCG -ACGGAAAGGCTACTCGTAATGCCA -ACGGAAAGGCTAGTCGATGGAAAC -ACGGAAAGGCTAGTCGATAACACC -ACGGAAAGGCTAGTCGATATCGAG -ACGGAAAGGCTAGTCGATCTCCTT -ACGGAAAGGCTAGTCGATCCTGTT -ACGGAAAGGCTAGTCGATCGGTTT -ACGGAAAGGCTAGTCGATGTGGTT -ACGGAAAGGCTAGTCGATGCCTTT -ACGGAAAGGCTAGTCGATGGTCTT -ACGGAAAGGCTAGTCGATACGCTT -ACGGAAAGGCTAGTCGATAGCGTT -ACGGAAAGGCTAGTCGATTTCGTC -ACGGAAAGGCTAGTCGATTCTCTC -ACGGAAAGGCTAGTCGATTGGATC -ACGGAAAGGCTAGTCGATCACTTC -ACGGAAAGGCTAGTCGATGTACTC -ACGGAAAGGCTAGTCGATGATGTC -ACGGAAAGGCTAGTCGATACAGTC -ACGGAAAGGCTAGTCGATTTGCTG -ACGGAAAGGCTAGTCGATTCCATG -ACGGAAAGGCTAGTCGATTGTGTG -ACGGAAAGGCTAGTCGATCTAGTG -ACGGAAAGGCTAGTCGATCATCTG -ACGGAAAGGCTAGTCGATGAGTTG -ACGGAAAGGCTAGTCGATAGACTG -ACGGAAAGGCTAGTCGATTCGGTA -ACGGAAAGGCTAGTCGATTGCCTA -ACGGAAAGGCTAGTCGATCCACTA -ACGGAAAGGCTAGTCGATGGAGTA -ACGGAAAGGCTAGTCGATTCGTCT -ACGGAAAGGCTAGTCGATTGCACT -ACGGAAAGGCTAGTCGATCTGACT -ACGGAAAGGCTAGTCGATCAACCT -ACGGAAAGGCTAGTCGATGCTACT -ACGGAAAGGCTAGTCGATGGATCT -ACGGAAAGGCTAGTCGATAAGGCT -ACGGAAAGGCTAGTCGATTCAACC -ACGGAAAGGCTAGTCGATTGTTCC -ACGGAAAGGCTAGTCGATATTCCC -ACGGAAAGGCTAGTCGATTTCTCG -ACGGAAAGGCTAGTCGATTAGACG -ACGGAAAGGCTAGTCGATGTAACG -ACGGAAAGGCTAGTCGATACTTCG -ACGGAAAGGCTAGTCGATTACGCA -ACGGAAAGGCTAGTCGATCTTGCA -ACGGAAAGGCTAGTCGATCGAACA -ACGGAAAGGCTAGTCGATCAGTCA -ACGGAAAGGCTAGTCGATGATCCA -ACGGAAAGGCTAGTCGATACGACA -ACGGAAAGGCTAGTCGATAGCTCA -ACGGAAAGGCTAGTCGATTCACGT -ACGGAAAGGCTAGTCGATCGTAGT -ACGGAAAGGCTAGTCGATGTCAGT -ACGGAAAGGCTAGTCGATGAAGGT -ACGGAAAGGCTAGTCGATAACCGT -ACGGAAAGGCTAGTCGATTTGTGC -ACGGAAAGGCTAGTCGATCTAAGC -ACGGAAAGGCTAGTCGATACTAGC -ACGGAAAGGCTAGTCGATAGATGC -ACGGAAAGGCTAGTCGATTGAAGG -ACGGAAAGGCTAGTCGATCAATGG -ACGGAAAGGCTAGTCGATATGAGG -ACGGAAAGGCTAGTCGATAATGGG -ACGGAAAGGCTAGTCGATTCCTGA -ACGGAAAGGCTAGTCGATTAGCGA -ACGGAAAGGCTAGTCGATCACAGA -ACGGAAAGGCTAGTCGATGCAAGA -ACGGAAAGGCTAGTCGATGGTTGA -ACGGAAAGGCTAGTCGATTCCGAT -ACGGAAAGGCTAGTCGATTGGCAT -ACGGAAAGGCTAGTCGATCGAGAT -ACGGAAAGGCTAGTCGATTACCAC -ACGGAAAGGCTAGTCGATCAGAAC -ACGGAAAGGCTAGTCGATGTCTAC -ACGGAAAGGCTAGTCGATACGTAC -ACGGAAAGGCTAGTCGATAGTGAC -ACGGAAAGGCTAGTCGATCTGTAG -ACGGAAAGGCTAGTCGATCCTAAG -ACGGAAAGGCTAGTCGATGTTCAG -ACGGAAAGGCTAGTCGATGCATAG -ACGGAAAGGCTAGTCGATGACAAG -ACGGAAAGGCTAGTCGATAAGCAG -ACGGAAAGGCTAGTCGATCGTCAA -ACGGAAAGGCTAGTCGATGCTGAA -ACGGAAAGGCTAGTCGATAGTACG -ACGGAAAGGCTAGTCGATATCCGA -ACGGAAAGGCTAGTCGATATGGGA -ACGGAAAGGCTAGTCGATGTGCAA -ACGGAAAGGCTAGTCGATGAGGAA -ACGGAAAGGCTAGTCGATCAGGTA -ACGGAAAGGCTAGTCGATGACTCT -ACGGAAAGGCTAGTCGATAGTCCT -ACGGAAAGGCTAGTCGATTAAGCC -ACGGAAAGGCTAGTCGATATAGCC -ACGGAAAGGCTAGTCGATTAACCG -ACGGAAAGGCTAGTCGATATGCCA -ACGGAAAGGCTAGTCACAGGAAAC -ACGGAAAGGCTAGTCACAAACACC -ACGGAAAGGCTAGTCACAATCGAG -ACGGAAAGGCTAGTCACACTCCTT -ACGGAAAGGCTAGTCACACCTGTT -ACGGAAAGGCTAGTCACACGGTTT -ACGGAAAGGCTAGTCACAGTGGTT -ACGGAAAGGCTAGTCACAGCCTTT -ACGGAAAGGCTAGTCACAGGTCTT -ACGGAAAGGCTAGTCACAACGCTT -ACGGAAAGGCTAGTCACAAGCGTT -ACGGAAAGGCTAGTCACATTCGTC -ACGGAAAGGCTAGTCACATCTCTC -ACGGAAAGGCTAGTCACATGGATC -ACGGAAAGGCTAGTCACACACTTC -ACGGAAAGGCTAGTCACAGTACTC -ACGGAAAGGCTAGTCACAGATGTC -ACGGAAAGGCTAGTCACAACAGTC -ACGGAAAGGCTAGTCACATTGCTG -ACGGAAAGGCTAGTCACATCCATG -ACGGAAAGGCTAGTCACATGTGTG -ACGGAAAGGCTAGTCACACTAGTG -ACGGAAAGGCTAGTCACACATCTG -ACGGAAAGGCTAGTCACAGAGTTG -ACGGAAAGGCTAGTCACAAGACTG -ACGGAAAGGCTAGTCACATCGGTA -ACGGAAAGGCTAGTCACATGCCTA -ACGGAAAGGCTAGTCACACCACTA -ACGGAAAGGCTAGTCACAGGAGTA -ACGGAAAGGCTAGTCACATCGTCT -ACGGAAAGGCTAGTCACATGCACT -ACGGAAAGGCTAGTCACACTGACT -ACGGAAAGGCTAGTCACACAACCT -ACGGAAAGGCTAGTCACAGCTACT -ACGGAAAGGCTAGTCACAGGATCT -ACGGAAAGGCTAGTCACAAAGGCT -ACGGAAAGGCTAGTCACATCAACC -ACGGAAAGGCTAGTCACATGTTCC -ACGGAAAGGCTAGTCACAATTCCC -ACGGAAAGGCTAGTCACATTCTCG -ACGGAAAGGCTAGTCACATAGACG -ACGGAAAGGCTAGTCACAGTAACG -ACGGAAAGGCTAGTCACAACTTCG -ACGGAAAGGCTAGTCACATACGCA -ACGGAAAGGCTAGTCACACTTGCA -ACGGAAAGGCTAGTCACACGAACA -ACGGAAAGGCTAGTCACACAGTCA -ACGGAAAGGCTAGTCACAGATCCA -ACGGAAAGGCTAGTCACAACGACA -ACGGAAAGGCTAGTCACAAGCTCA -ACGGAAAGGCTAGTCACATCACGT -ACGGAAAGGCTAGTCACACGTAGT -ACGGAAAGGCTAGTCACAGTCAGT -ACGGAAAGGCTAGTCACAGAAGGT -ACGGAAAGGCTAGTCACAAACCGT -ACGGAAAGGCTAGTCACATTGTGC -ACGGAAAGGCTAGTCACACTAAGC -ACGGAAAGGCTAGTCACAACTAGC -ACGGAAAGGCTAGTCACAAGATGC -ACGGAAAGGCTAGTCACATGAAGG -ACGGAAAGGCTAGTCACACAATGG -ACGGAAAGGCTAGTCACAATGAGG -ACGGAAAGGCTAGTCACAAATGGG -ACGGAAAGGCTAGTCACATCCTGA -ACGGAAAGGCTAGTCACATAGCGA -ACGGAAAGGCTAGTCACACACAGA -ACGGAAAGGCTAGTCACAGCAAGA -ACGGAAAGGCTAGTCACAGGTTGA -ACGGAAAGGCTAGTCACATCCGAT -ACGGAAAGGCTAGTCACATGGCAT -ACGGAAAGGCTAGTCACACGAGAT -ACGGAAAGGCTAGTCACATACCAC -ACGGAAAGGCTAGTCACACAGAAC -ACGGAAAGGCTAGTCACAGTCTAC -ACGGAAAGGCTAGTCACAACGTAC -ACGGAAAGGCTAGTCACAAGTGAC -ACGGAAAGGCTAGTCACACTGTAG -ACGGAAAGGCTAGTCACACCTAAG -ACGGAAAGGCTAGTCACAGTTCAG -ACGGAAAGGCTAGTCACAGCATAG -ACGGAAAGGCTAGTCACAGACAAG -ACGGAAAGGCTAGTCACAAAGCAG -ACGGAAAGGCTAGTCACACGTCAA -ACGGAAAGGCTAGTCACAGCTGAA -ACGGAAAGGCTAGTCACAAGTACG -ACGGAAAGGCTAGTCACAATCCGA -ACGGAAAGGCTAGTCACAATGGGA -ACGGAAAGGCTAGTCACAGTGCAA -ACGGAAAGGCTAGTCACAGAGGAA -ACGGAAAGGCTAGTCACACAGGTA -ACGGAAAGGCTAGTCACAGACTCT -ACGGAAAGGCTAGTCACAAGTCCT -ACGGAAAGGCTAGTCACATAAGCC -ACGGAAAGGCTAGTCACAATAGCC -ACGGAAAGGCTAGTCACATAACCG -ACGGAAAGGCTAGTCACAATGCCA -ACGGAAAGGCTACTGTTGGGAAAC -ACGGAAAGGCTACTGTTGAACACC -ACGGAAAGGCTACTGTTGATCGAG -ACGGAAAGGCTACTGTTGCTCCTT -ACGGAAAGGCTACTGTTGCCTGTT -ACGGAAAGGCTACTGTTGCGGTTT -ACGGAAAGGCTACTGTTGGTGGTT -ACGGAAAGGCTACTGTTGGCCTTT -ACGGAAAGGCTACTGTTGGGTCTT -ACGGAAAGGCTACTGTTGACGCTT -ACGGAAAGGCTACTGTTGAGCGTT -ACGGAAAGGCTACTGTTGTTCGTC -ACGGAAAGGCTACTGTTGTCTCTC -ACGGAAAGGCTACTGTTGTGGATC -ACGGAAAGGCTACTGTTGCACTTC -ACGGAAAGGCTACTGTTGGTACTC -ACGGAAAGGCTACTGTTGGATGTC -ACGGAAAGGCTACTGTTGACAGTC -ACGGAAAGGCTACTGTTGTTGCTG -ACGGAAAGGCTACTGTTGTCCATG -ACGGAAAGGCTACTGTTGTGTGTG -ACGGAAAGGCTACTGTTGCTAGTG -ACGGAAAGGCTACTGTTGCATCTG -ACGGAAAGGCTACTGTTGGAGTTG -ACGGAAAGGCTACTGTTGAGACTG -ACGGAAAGGCTACTGTTGTCGGTA -ACGGAAAGGCTACTGTTGTGCCTA -ACGGAAAGGCTACTGTTGCCACTA -ACGGAAAGGCTACTGTTGGGAGTA -ACGGAAAGGCTACTGTTGTCGTCT -ACGGAAAGGCTACTGTTGTGCACT -ACGGAAAGGCTACTGTTGCTGACT -ACGGAAAGGCTACTGTTGCAACCT -ACGGAAAGGCTACTGTTGGCTACT -ACGGAAAGGCTACTGTTGGGATCT -ACGGAAAGGCTACTGTTGAAGGCT -ACGGAAAGGCTACTGTTGTCAACC -ACGGAAAGGCTACTGTTGTGTTCC -ACGGAAAGGCTACTGTTGATTCCC -ACGGAAAGGCTACTGTTGTTCTCG -ACGGAAAGGCTACTGTTGTAGACG -ACGGAAAGGCTACTGTTGGTAACG -ACGGAAAGGCTACTGTTGACTTCG -ACGGAAAGGCTACTGTTGTACGCA -ACGGAAAGGCTACTGTTGCTTGCA -ACGGAAAGGCTACTGTTGCGAACA -ACGGAAAGGCTACTGTTGCAGTCA -ACGGAAAGGCTACTGTTGGATCCA -ACGGAAAGGCTACTGTTGACGACA -ACGGAAAGGCTACTGTTGAGCTCA -ACGGAAAGGCTACTGTTGTCACGT -ACGGAAAGGCTACTGTTGCGTAGT -ACGGAAAGGCTACTGTTGGTCAGT -ACGGAAAGGCTACTGTTGGAAGGT -ACGGAAAGGCTACTGTTGAACCGT -ACGGAAAGGCTACTGTTGTTGTGC -ACGGAAAGGCTACTGTTGCTAAGC -ACGGAAAGGCTACTGTTGACTAGC -ACGGAAAGGCTACTGTTGAGATGC -ACGGAAAGGCTACTGTTGTGAAGG -ACGGAAAGGCTACTGTTGCAATGG -ACGGAAAGGCTACTGTTGATGAGG -ACGGAAAGGCTACTGTTGAATGGG -ACGGAAAGGCTACTGTTGTCCTGA -ACGGAAAGGCTACTGTTGTAGCGA -ACGGAAAGGCTACTGTTGCACAGA -ACGGAAAGGCTACTGTTGGCAAGA -ACGGAAAGGCTACTGTTGGGTTGA -ACGGAAAGGCTACTGTTGTCCGAT -ACGGAAAGGCTACTGTTGTGGCAT -ACGGAAAGGCTACTGTTGCGAGAT -ACGGAAAGGCTACTGTTGTACCAC -ACGGAAAGGCTACTGTTGCAGAAC -ACGGAAAGGCTACTGTTGGTCTAC -ACGGAAAGGCTACTGTTGACGTAC -ACGGAAAGGCTACTGTTGAGTGAC -ACGGAAAGGCTACTGTTGCTGTAG -ACGGAAAGGCTACTGTTGCCTAAG -ACGGAAAGGCTACTGTTGGTTCAG -ACGGAAAGGCTACTGTTGGCATAG -ACGGAAAGGCTACTGTTGGACAAG -ACGGAAAGGCTACTGTTGAAGCAG -ACGGAAAGGCTACTGTTGCGTCAA -ACGGAAAGGCTACTGTTGGCTGAA -ACGGAAAGGCTACTGTTGAGTACG -ACGGAAAGGCTACTGTTGATCCGA -ACGGAAAGGCTACTGTTGATGGGA -ACGGAAAGGCTACTGTTGGTGCAA -ACGGAAAGGCTACTGTTGGAGGAA -ACGGAAAGGCTACTGTTGCAGGTA -ACGGAAAGGCTACTGTTGGACTCT -ACGGAAAGGCTACTGTTGAGTCCT -ACGGAAAGGCTACTGTTGTAAGCC -ACGGAAAGGCTACTGTTGATAGCC -ACGGAAAGGCTACTGTTGTAACCG -ACGGAAAGGCTACTGTTGATGCCA -ACGGAAAGGCTAATGTCCGGAAAC -ACGGAAAGGCTAATGTCCAACACC -ACGGAAAGGCTAATGTCCATCGAG -ACGGAAAGGCTAATGTCCCTCCTT -ACGGAAAGGCTAATGTCCCCTGTT -ACGGAAAGGCTAATGTCCCGGTTT -ACGGAAAGGCTAATGTCCGTGGTT -ACGGAAAGGCTAATGTCCGCCTTT -ACGGAAAGGCTAATGTCCGGTCTT -ACGGAAAGGCTAATGTCCACGCTT -ACGGAAAGGCTAATGTCCAGCGTT -ACGGAAAGGCTAATGTCCTTCGTC -ACGGAAAGGCTAATGTCCTCTCTC -ACGGAAAGGCTAATGTCCTGGATC -ACGGAAAGGCTAATGTCCCACTTC -ACGGAAAGGCTAATGTCCGTACTC -ACGGAAAGGCTAATGTCCGATGTC -ACGGAAAGGCTAATGTCCACAGTC -ACGGAAAGGCTAATGTCCTTGCTG -ACGGAAAGGCTAATGTCCTCCATG -ACGGAAAGGCTAATGTCCTGTGTG -ACGGAAAGGCTAATGTCCCTAGTG -ACGGAAAGGCTAATGTCCCATCTG -ACGGAAAGGCTAATGTCCGAGTTG -ACGGAAAGGCTAATGTCCAGACTG -ACGGAAAGGCTAATGTCCTCGGTA -ACGGAAAGGCTAATGTCCTGCCTA -ACGGAAAGGCTAATGTCCCCACTA -ACGGAAAGGCTAATGTCCGGAGTA -ACGGAAAGGCTAATGTCCTCGTCT -ACGGAAAGGCTAATGTCCTGCACT -ACGGAAAGGCTAATGTCCCTGACT -ACGGAAAGGCTAATGTCCCAACCT -ACGGAAAGGCTAATGTCCGCTACT -ACGGAAAGGCTAATGTCCGGATCT -ACGGAAAGGCTAATGTCCAAGGCT -ACGGAAAGGCTAATGTCCTCAACC -ACGGAAAGGCTAATGTCCTGTTCC -ACGGAAAGGCTAATGTCCATTCCC -ACGGAAAGGCTAATGTCCTTCTCG -ACGGAAAGGCTAATGTCCTAGACG -ACGGAAAGGCTAATGTCCGTAACG -ACGGAAAGGCTAATGTCCACTTCG -ACGGAAAGGCTAATGTCCTACGCA -ACGGAAAGGCTAATGTCCCTTGCA -ACGGAAAGGCTAATGTCCCGAACA -ACGGAAAGGCTAATGTCCCAGTCA -ACGGAAAGGCTAATGTCCGATCCA -ACGGAAAGGCTAATGTCCACGACA -ACGGAAAGGCTAATGTCCAGCTCA -ACGGAAAGGCTAATGTCCTCACGT -ACGGAAAGGCTAATGTCCCGTAGT -ACGGAAAGGCTAATGTCCGTCAGT -ACGGAAAGGCTAATGTCCGAAGGT -ACGGAAAGGCTAATGTCCAACCGT -ACGGAAAGGCTAATGTCCTTGTGC -ACGGAAAGGCTAATGTCCCTAAGC -ACGGAAAGGCTAATGTCCACTAGC -ACGGAAAGGCTAATGTCCAGATGC -ACGGAAAGGCTAATGTCCTGAAGG -ACGGAAAGGCTAATGTCCCAATGG -ACGGAAAGGCTAATGTCCATGAGG -ACGGAAAGGCTAATGTCCAATGGG -ACGGAAAGGCTAATGTCCTCCTGA -ACGGAAAGGCTAATGTCCTAGCGA -ACGGAAAGGCTAATGTCCCACAGA -ACGGAAAGGCTAATGTCCGCAAGA -ACGGAAAGGCTAATGTCCGGTTGA -ACGGAAAGGCTAATGTCCTCCGAT -ACGGAAAGGCTAATGTCCTGGCAT -ACGGAAAGGCTAATGTCCCGAGAT -ACGGAAAGGCTAATGTCCTACCAC -ACGGAAAGGCTAATGTCCCAGAAC -ACGGAAAGGCTAATGTCCGTCTAC -ACGGAAAGGCTAATGTCCACGTAC -ACGGAAAGGCTAATGTCCAGTGAC -ACGGAAAGGCTAATGTCCCTGTAG -ACGGAAAGGCTAATGTCCCCTAAG -ACGGAAAGGCTAATGTCCGTTCAG -ACGGAAAGGCTAATGTCCGCATAG -ACGGAAAGGCTAATGTCCGACAAG -ACGGAAAGGCTAATGTCCAAGCAG -ACGGAAAGGCTAATGTCCCGTCAA -ACGGAAAGGCTAATGTCCGCTGAA -ACGGAAAGGCTAATGTCCAGTACG -ACGGAAAGGCTAATGTCCATCCGA -ACGGAAAGGCTAATGTCCATGGGA -ACGGAAAGGCTAATGTCCGTGCAA -ACGGAAAGGCTAATGTCCGAGGAA -ACGGAAAGGCTAATGTCCCAGGTA -ACGGAAAGGCTAATGTCCGACTCT -ACGGAAAGGCTAATGTCCAGTCCT -ACGGAAAGGCTAATGTCCTAAGCC -ACGGAAAGGCTAATGTCCATAGCC -ACGGAAAGGCTAATGTCCTAACCG -ACGGAAAGGCTAATGTCCATGCCA -ACGGAAAGGCTAGTGTGTGGAAAC -ACGGAAAGGCTAGTGTGTAACACC -ACGGAAAGGCTAGTGTGTATCGAG -ACGGAAAGGCTAGTGTGTCTCCTT -ACGGAAAGGCTAGTGTGTCCTGTT -ACGGAAAGGCTAGTGTGTCGGTTT -ACGGAAAGGCTAGTGTGTGTGGTT -ACGGAAAGGCTAGTGTGTGCCTTT -ACGGAAAGGCTAGTGTGTGGTCTT -ACGGAAAGGCTAGTGTGTACGCTT -ACGGAAAGGCTAGTGTGTAGCGTT -ACGGAAAGGCTAGTGTGTTTCGTC -ACGGAAAGGCTAGTGTGTTCTCTC -ACGGAAAGGCTAGTGTGTTGGATC -ACGGAAAGGCTAGTGTGTCACTTC -ACGGAAAGGCTAGTGTGTGTACTC -ACGGAAAGGCTAGTGTGTGATGTC -ACGGAAAGGCTAGTGTGTACAGTC -ACGGAAAGGCTAGTGTGTTTGCTG -ACGGAAAGGCTAGTGTGTTCCATG -ACGGAAAGGCTAGTGTGTTGTGTG -ACGGAAAGGCTAGTGTGTCTAGTG -ACGGAAAGGCTAGTGTGTCATCTG -ACGGAAAGGCTAGTGTGTGAGTTG -ACGGAAAGGCTAGTGTGTAGACTG -ACGGAAAGGCTAGTGTGTTCGGTA -ACGGAAAGGCTAGTGTGTTGCCTA -ACGGAAAGGCTAGTGTGTCCACTA -ACGGAAAGGCTAGTGTGTGGAGTA -ACGGAAAGGCTAGTGTGTTCGTCT -ACGGAAAGGCTAGTGTGTTGCACT -ACGGAAAGGCTAGTGTGTCTGACT -ACGGAAAGGCTAGTGTGTCAACCT -ACGGAAAGGCTAGTGTGTGCTACT -ACGGAAAGGCTAGTGTGTGGATCT -ACGGAAAGGCTAGTGTGTAAGGCT -ACGGAAAGGCTAGTGTGTTCAACC -ACGGAAAGGCTAGTGTGTTGTTCC -ACGGAAAGGCTAGTGTGTATTCCC -ACGGAAAGGCTAGTGTGTTTCTCG -ACGGAAAGGCTAGTGTGTTAGACG -ACGGAAAGGCTAGTGTGTGTAACG -ACGGAAAGGCTAGTGTGTACTTCG -ACGGAAAGGCTAGTGTGTTACGCA -ACGGAAAGGCTAGTGTGTCTTGCA -ACGGAAAGGCTAGTGTGTCGAACA -ACGGAAAGGCTAGTGTGTCAGTCA -ACGGAAAGGCTAGTGTGTGATCCA -ACGGAAAGGCTAGTGTGTACGACA -ACGGAAAGGCTAGTGTGTAGCTCA -ACGGAAAGGCTAGTGTGTTCACGT -ACGGAAAGGCTAGTGTGTCGTAGT -ACGGAAAGGCTAGTGTGTGTCAGT -ACGGAAAGGCTAGTGTGTGAAGGT -ACGGAAAGGCTAGTGTGTAACCGT -ACGGAAAGGCTAGTGTGTTTGTGC -ACGGAAAGGCTAGTGTGTCTAAGC -ACGGAAAGGCTAGTGTGTACTAGC -ACGGAAAGGCTAGTGTGTAGATGC -ACGGAAAGGCTAGTGTGTTGAAGG -ACGGAAAGGCTAGTGTGTCAATGG -ACGGAAAGGCTAGTGTGTATGAGG -ACGGAAAGGCTAGTGTGTAATGGG -ACGGAAAGGCTAGTGTGTTCCTGA -ACGGAAAGGCTAGTGTGTTAGCGA -ACGGAAAGGCTAGTGTGTCACAGA -ACGGAAAGGCTAGTGTGTGCAAGA -ACGGAAAGGCTAGTGTGTGGTTGA -ACGGAAAGGCTAGTGTGTTCCGAT -ACGGAAAGGCTAGTGTGTTGGCAT -ACGGAAAGGCTAGTGTGTCGAGAT -ACGGAAAGGCTAGTGTGTTACCAC -ACGGAAAGGCTAGTGTGTCAGAAC -ACGGAAAGGCTAGTGTGTGTCTAC -ACGGAAAGGCTAGTGTGTACGTAC -ACGGAAAGGCTAGTGTGTAGTGAC -ACGGAAAGGCTAGTGTGTCTGTAG -ACGGAAAGGCTAGTGTGTCCTAAG -ACGGAAAGGCTAGTGTGTGTTCAG -ACGGAAAGGCTAGTGTGTGCATAG -ACGGAAAGGCTAGTGTGTGACAAG -ACGGAAAGGCTAGTGTGTAAGCAG -ACGGAAAGGCTAGTGTGTCGTCAA -ACGGAAAGGCTAGTGTGTGCTGAA -ACGGAAAGGCTAGTGTGTAGTACG -ACGGAAAGGCTAGTGTGTATCCGA -ACGGAAAGGCTAGTGTGTATGGGA -ACGGAAAGGCTAGTGTGTGTGCAA -ACGGAAAGGCTAGTGTGTGAGGAA -ACGGAAAGGCTAGTGTGTCAGGTA -ACGGAAAGGCTAGTGTGTGACTCT -ACGGAAAGGCTAGTGTGTAGTCCT -ACGGAAAGGCTAGTGTGTTAAGCC -ACGGAAAGGCTAGTGTGTATAGCC -ACGGAAAGGCTAGTGTGTTAACCG -ACGGAAAGGCTAGTGTGTATGCCA -ACGGAAAGGCTAGTGCTAGGAAAC -ACGGAAAGGCTAGTGCTAAACACC -ACGGAAAGGCTAGTGCTAATCGAG -ACGGAAAGGCTAGTGCTACTCCTT -ACGGAAAGGCTAGTGCTACCTGTT -ACGGAAAGGCTAGTGCTACGGTTT -ACGGAAAGGCTAGTGCTAGTGGTT -ACGGAAAGGCTAGTGCTAGCCTTT -ACGGAAAGGCTAGTGCTAGGTCTT -ACGGAAAGGCTAGTGCTAACGCTT -ACGGAAAGGCTAGTGCTAAGCGTT -ACGGAAAGGCTAGTGCTATTCGTC -ACGGAAAGGCTAGTGCTATCTCTC -ACGGAAAGGCTAGTGCTATGGATC -ACGGAAAGGCTAGTGCTACACTTC -ACGGAAAGGCTAGTGCTAGTACTC -ACGGAAAGGCTAGTGCTAGATGTC -ACGGAAAGGCTAGTGCTAACAGTC -ACGGAAAGGCTAGTGCTATTGCTG -ACGGAAAGGCTAGTGCTATCCATG -ACGGAAAGGCTAGTGCTATGTGTG -ACGGAAAGGCTAGTGCTACTAGTG -ACGGAAAGGCTAGTGCTACATCTG -ACGGAAAGGCTAGTGCTAGAGTTG -ACGGAAAGGCTAGTGCTAAGACTG -ACGGAAAGGCTAGTGCTATCGGTA -ACGGAAAGGCTAGTGCTATGCCTA -ACGGAAAGGCTAGTGCTACCACTA -ACGGAAAGGCTAGTGCTAGGAGTA -ACGGAAAGGCTAGTGCTATCGTCT -ACGGAAAGGCTAGTGCTATGCACT -ACGGAAAGGCTAGTGCTACTGACT -ACGGAAAGGCTAGTGCTACAACCT -ACGGAAAGGCTAGTGCTAGCTACT -ACGGAAAGGCTAGTGCTAGGATCT -ACGGAAAGGCTAGTGCTAAAGGCT -ACGGAAAGGCTAGTGCTATCAACC -ACGGAAAGGCTAGTGCTATGTTCC -ACGGAAAGGCTAGTGCTAATTCCC -ACGGAAAGGCTAGTGCTATTCTCG -ACGGAAAGGCTAGTGCTATAGACG -ACGGAAAGGCTAGTGCTAGTAACG -ACGGAAAGGCTAGTGCTAACTTCG -ACGGAAAGGCTAGTGCTATACGCA -ACGGAAAGGCTAGTGCTACTTGCA -ACGGAAAGGCTAGTGCTACGAACA -ACGGAAAGGCTAGTGCTACAGTCA -ACGGAAAGGCTAGTGCTAGATCCA -ACGGAAAGGCTAGTGCTAACGACA -ACGGAAAGGCTAGTGCTAAGCTCA -ACGGAAAGGCTAGTGCTATCACGT -ACGGAAAGGCTAGTGCTACGTAGT -ACGGAAAGGCTAGTGCTAGTCAGT -ACGGAAAGGCTAGTGCTAGAAGGT -ACGGAAAGGCTAGTGCTAAACCGT -ACGGAAAGGCTAGTGCTATTGTGC -ACGGAAAGGCTAGTGCTACTAAGC -ACGGAAAGGCTAGTGCTAACTAGC -ACGGAAAGGCTAGTGCTAAGATGC -ACGGAAAGGCTAGTGCTATGAAGG -ACGGAAAGGCTAGTGCTACAATGG -ACGGAAAGGCTAGTGCTAATGAGG -ACGGAAAGGCTAGTGCTAAATGGG -ACGGAAAGGCTAGTGCTATCCTGA -ACGGAAAGGCTAGTGCTATAGCGA -ACGGAAAGGCTAGTGCTACACAGA -ACGGAAAGGCTAGTGCTAGCAAGA -ACGGAAAGGCTAGTGCTAGGTTGA -ACGGAAAGGCTAGTGCTATCCGAT -ACGGAAAGGCTAGTGCTATGGCAT -ACGGAAAGGCTAGTGCTACGAGAT -ACGGAAAGGCTAGTGCTATACCAC -ACGGAAAGGCTAGTGCTACAGAAC -ACGGAAAGGCTAGTGCTAGTCTAC -ACGGAAAGGCTAGTGCTAACGTAC -ACGGAAAGGCTAGTGCTAAGTGAC -ACGGAAAGGCTAGTGCTACTGTAG -ACGGAAAGGCTAGTGCTACCTAAG -ACGGAAAGGCTAGTGCTAGTTCAG -ACGGAAAGGCTAGTGCTAGCATAG -ACGGAAAGGCTAGTGCTAGACAAG -ACGGAAAGGCTAGTGCTAAAGCAG -ACGGAAAGGCTAGTGCTACGTCAA -ACGGAAAGGCTAGTGCTAGCTGAA -ACGGAAAGGCTAGTGCTAAGTACG -ACGGAAAGGCTAGTGCTAATCCGA -ACGGAAAGGCTAGTGCTAATGGGA -ACGGAAAGGCTAGTGCTAGTGCAA -ACGGAAAGGCTAGTGCTAGAGGAA -ACGGAAAGGCTAGTGCTACAGGTA -ACGGAAAGGCTAGTGCTAGACTCT -ACGGAAAGGCTAGTGCTAAGTCCT -ACGGAAAGGCTAGTGCTATAAGCC -ACGGAAAGGCTAGTGCTAATAGCC -ACGGAAAGGCTAGTGCTATAACCG -ACGGAAAGGCTAGTGCTAATGCCA -ACGGAAAGGCTACTGCATGGAAAC -ACGGAAAGGCTACTGCATAACACC -ACGGAAAGGCTACTGCATATCGAG -ACGGAAAGGCTACTGCATCTCCTT -ACGGAAAGGCTACTGCATCCTGTT -ACGGAAAGGCTACTGCATCGGTTT -ACGGAAAGGCTACTGCATGTGGTT -ACGGAAAGGCTACTGCATGCCTTT -ACGGAAAGGCTACTGCATGGTCTT -ACGGAAAGGCTACTGCATACGCTT -ACGGAAAGGCTACTGCATAGCGTT -ACGGAAAGGCTACTGCATTTCGTC -ACGGAAAGGCTACTGCATTCTCTC -ACGGAAAGGCTACTGCATTGGATC -ACGGAAAGGCTACTGCATCACTTC -ACGGAAAGGCTACTGCATGTACTC -ACGGAAAGGCTACTGCATGATGTC -ACGGAAAGGCTACTGCATACAGTC -ACGGAAAGGCTACTGCATTTGCTG -ACGGAAAGGCTACTGCATTCCATG -ACGGAAAGGCTACTGCATTGTGTG -ACGGAAAGGCTACTGCATCTAGTG -ACGGAAAGGCTACTGCATCATCTG -ACGGAAAGGCTACTGCATGAGTTG -ACGGAAAGGCTACTGCATAGACTG -ACGGAAAGGCTACTGCATTCGGTA -ACGGAAAGGCTACTGCATTGCCTA -ACGGAAAGGCTACTGCATCCACTA -ACGGAAAGGCTACTGCATGGAGTA -ACGGAAAGGCTACTGCATTCGTCT -ACGGAAAGGCTACTGCATTGCACT -ACGGAAAGGCTACTGCATCTGACT -ACGGAAAGGCTACTGCATCAACCT -ACGGAAAGGCTACTGCATGCTACT -ACGGAAAGGCTACTGCATGGATCT -ACGGAAAGGCTACTGCATAAGGCT -ACGGAAAGGCTACTGCATTCAACC -ACGGAAAGGCTACTGCATTGTTCC -ACGGAAAGGCTACTGCATATTCCC -ACGGAAAGGCTACTGCATTTCTCG -ACGGAAAGGCTACTGCATTAGACG -ACGGAAAGGCTACTGCATGTAACG -ACGGAAAGGCTACTGCATACTTCG -ACGGAAAGGCTACTGCATTACGCA -ACGGAAAGGCTACTGCATCTTGCA -ACGGAAAGGCTACTGCATCGAACA -ACGGAAAGGCTACTGCATCAGTCA -ACGGAAAGGCTACTGCATGATCCA -ACGGAAAGGCTACTGCATACGACA -ACGGAAAGGCTACTGCATAGCTCA -ACGGAAAGGCTACTGCATTCACGT -ACGGAAAGGCTACTGCATCGTAGT -ACGGAAAGGCTACTGCATGTCAGT -ACGGAAAGGCTACTGCATGAAGGT -ACGGAAAGGCTACTGCATAACCGT -ACGGAAAGGCTACTGCATTTGTGC -ACGGAAAGGCTACTGCATCTAAGC -ACGGAAAGGCTACTGCATACTAGC -ACGGAAAGGCTACTGCATAGATGC -ACGGAAAGGCTACTGCATTGAAGG -ACGGAAAGGCTACTGCATCAATGG -ACGGAAAGGCTACTGCATATGAGG -ACGGAAAGGCTACTGCATAATGGG -ACGGAAAGGCTACTGCATTCCTGA -ACGGAAAGGCTACTGCATTAGCGA -ACGGAAAGGCTACTGCATCACAGA -ACGGAAAGGCTACTGCATGCAAGA -ACGGAAAGGCTACTGCATGGTTGA -ACGGAAAGGCTACTGCATTCCGAT -ACGGAAAGGCTACTGCATTGGCAT -ACGGAAAGGCTACTGCATCGAGAT -ACGGAAAGGCTACTGCATTACCAC -ACGGAAAGGCTACTGCATCAGAAC -ACGGAAAGGCTACTGCATGTCTAC -ACGGAAAGGCTACTGCATACGTAC -ACGGAAAGGCTACTGCATAGTGAC -ACGGAAAGGCTACTGCATCTGTAG -ACGGAAAGGCTACTGCATCCTAAG -ACGGAAAGGCTACTGCATGTTCAG -ACGGAAAGGCTACTGCATGCATAG -ACGGAAAGGCTACTGCATGACAAG -ACGGAAAGGCTACTGCATAAGCAG -ACGGAAAGGCTACTGCATCGTCAA -ACGGAAAGGCTACTGCATGCTGAA -ACGGAAAGGCTACTGCATAGTACG -ACGGAAAGGCTACTGCATATCCGA -ACGGAAAGGCTACTGCATATGGGA -ACGGAAAGGCTACTGCATGTGCAA -ACGGAAAGGCTACTGCATGAGGAA -ACGGAAAGGCTACTGCATCAGGTA -ACGGAAAGGCTACTGCATGACTCT -ACGGAAAGGCTACTGCATAGTCCT -ACGGAAAGGCTACTGCATTAAGCC -ACGGAAAGGCTACTGCATATAGCC -ACGGAAAGGCTACTGCATTAACCG -ACGGAAAGGCTACTGCATATGCCA -ACGGAAAGGCTATTGGAGGGAAAC -ACGGAAAGGCTATTGGAGAACACC -ACGGAAAGGCTATTGGAGATCGAG -ACGGAAAGGCTATTGGAGCTCCTT -ACGGAAAGGCTATTGGAGCCTGTT -ACGGAAAGGCTATTGGAGCGGTTT -ACGGAAAGGCTATTGGAGGTGGTT -ACGGAAAGGCTATTGGAGGCCTTT -ACGGAAAGGCTATTGGAGGGTCTT -ACGGAAAGGCTATTGGAGACGCTT -ACGGAAAGGCTATTGGAGAGCGTT -ACGGAAAGGCTATTGGAGTTCGTC -ACGGAAAGGCTATTGGAGTCTCTC -ACGGAAAGGCTATTGGAGTGGATC -ACGGAAAGGCTATTGGAGCACTTC -ACGGAAAGGCTATTGGAGGTACTC -ACGGAAAGGCTATTGGAGGATGTC -ACGGAAAGGCTATTGGAGACAGTC -ACGGAAAGGCTATTGGAGTTGCTG -ACGGAAAGGCTATTGGAGTCCATG -ACGGAAAGGCTATTGGAGTGTGTG -ACGGAAAGGCTATTGGAGCTAGTG -ACGGAAAGGCTATTGGAGCATCTG -ACGGAAAGGCTATTGGAGGAGTTG -ACGGAAAGGCTATTGGAGAGACTG -ACGGAAAGGCTATTGGAGTCGGTA -ACGGAAAGGCTATTGGAGTGCCTA -ACGGAAAGGCTATTGGAGCCACTA -ACGGAAAGGCTATTGGAGGGAGTA -ACGGAAAGGCTATTGGAGTCGTCT -ACGGAAAGGCTATTGGAGTGCACT -ACGGAAAGGCTATTGGAGCTGACT -ACGGAAAGGCTATTGGAGCAACCT -ACGGAAAGGCTATTGGAGGCTACT -ACGGAAAGGCTATTGGAGGGATCT -ACGGAAAGGCTATTGGAGAAGGCT -ACGGAAAGGCTATTGGAGTCAACC -ACGGAAAGGCTATTGGAGTGTTCC -ACGGAAAGGCTATTGGAGATTCCC -ACGGAAAGGCTATTGGAGTTCTCG -ACGGAAAGGCTATTGGAGTAGACG -ACGGAAAGGCTATTGGAGGTAACG -ACGGAAAGGCTATTGGAGACTTCG -ACGGAAAGGCTATTGGAGTACGCA -ACGGAAAGGCTATTGGAGCTTGCA -ACGGAAAGGCTATTGGAGCGAACA -ACGGAAAGGCTATTGGAGCAGTCA -ACGGAAAGGCTATTGGAGGATCCA -ACGGAAAGGCTATTGGAGACGACA -ACGGAAAGGCTATTGGAGAGCTCA -ACGGAAAGGCTATTGGAGTCACGT -ACGGAAAGGCTATTGGAGCGTAGT -ACGGAAAGGCTATTGGAGGTCAGT -ACGGAAAGGCTATTGGAGGAAGGT -ACGGAAAGGCTATTGGAGAACCGT -ACGGAAAGGCTATTGGAGTTGTGC -ACGGAAAGGCTATTGGAGCTAAGC -ACGGAAAGGCTATTGGAGACTAGC -ACGGAAAGGCTATTGGAGAGATGC -ACGGAAAGGCTATTGGAGTGAAGG -ACGGAAAGGCTATTGGAGCAATGG -ACGGAAAGGCTATTGGAGATGAGG -ACGGAAAGGCTATTGGAGAATGGG -ACGGAAAGGCTATTGGAGTCCTGA -ACGGAAAGGCTATTGGAGTAGCGA -ACGGAAAGGCTATTGGAGCACAGA -ACGGAAAGGCTATTGGAGGCAAGA -ACGGAAAGGCTATTGGAGGGTTGA -ACGGAAAGGCTATTGGAGTCCGAT -ACGGAAAGGCTATTGGAGTGGCAT -ACGGAAAGGCTATTGGAGCGAGAT -ACGGAAAGGCTATTGGAGTACCAC -ACGGAAAGGCTATTGGAGCAGAAC -ACGGAAAGGCTATTGGAGGTCTAC -ACGGAAAGGCTATTGGAGACGTAC -ACGGAAAGGCTATTGGAGAGTGAC -ACGGAAAGGCTATTGGAGCTGTAG -ACGGAAAGGCTATTGGAGCCTAAG -ACGGAAAGGCTATTGGAGGTTCAG -ACGGAAAGGCTATTGGAGGCATAG -ACGGAAAGGCTATTGGAGGACAAG -ACGGAAAGGCTATTGGAGAAGCAG -ACGGAAAGGCTATTGGAGCGTCAA -ACGGAAAGGCTATTGGAGGCTGAA -ACGGAAAGGCTATTGGAGAGTACG -ACGGAAAGGCTATTGGAGATCCGA -ACGGAAAGGCTATTGGAGATGGGA -ACGGAAAGGCTATTGGAGGTGCAA -ACGGAAAGGCTATTGGAGGAGGAA -ACGGAAAGGCTATTGGAGCAGGTA -ACGGAAAGGCTATTGGAGGACTCT -ACGGAAAGGCTATTGGAGAGTCCT -ACGGAAAGGCTATTGGAGTAAGCC -ACGGAAAGGCTATTGGAGATAGCC -ACGGAAAGGCTATTGGAGTAACCG -ACGGAAAGGCTATTGGAGATGCCA -ACGGAAAGGCTACTGAGAGGAAAC -ACGGAAAGGCTACTGAGAAACACC -ACGGAAAGGCTACTGAGAATCGAG -ACGGAAAGGCTACTGAGACTCCTT -ACGGAAAGGCTACTGAGACCTGTT -ACGGAAAGGCTACTGAGACGGTTT -ACGGAAAGGCTACTGAGAGTGGTT -ACGGAAAGGCTACTGAGAGCCTTT -ACGGAAAGGCTACTGAGAGGTCTT -ACGGAAAGGCTACTGAGAACGCTT -ACGGAAAGGCTACTGAGAAGCGTT -ACGGAAAGGCTACTGAGATTCGTC -ACGGAAAGGCTACTGAGATCTCTC -ACGGAAAGGCTACTGAGATGGATC -ACGGAAAGGCTACTGAGACACTTC -ACGGAAAGGCTACTGAGAGTACTC -ACGGAAAGGCTACTGAGAGATGTC -ACGGAAAGGCTACTGAGAACAGTC -ACGGAAAGGCTACTGAGATTGCTG -ACGGAAAGGCTACTGAGATCCATG -ACGGAAAGGCTACTGAGATGTGTG -ACGGAAAGGCTACTGAGACTAGTG -ACGGAAAGGCTACTGAGACATCTG -ACGGAAAGGCTACTGAGAGAGTTG -ACGGAAAGGCTACTGAGAAGACTG -ACGGAAAGGCTACTGAGATCGGTA -ACGGAAAGGCTACTGAGATGCCTA -ACGGAAAGGCTACTGAGACCACTA -ACGGAAAGGCTACTGAGAGGAGTA -ACGGAAAGGCTACTGAGATCGTCT -ACGGAAAGGCTACTGAGATGCACT -ACGGAAAGGCTACTGAGACTGACT -ACGGAAAGGCTACTGAGACAACCT -ACGGAAAGGCTACTGAGAGCTACT -ACGGAAAGGCTACTGAGAGGATCT -ACGGAAAGGCTACTGAGAAAGGCT -ACGGAAAGGCTACTGAGATCAACC -ACGGAAAGGCTACTGAGATGTTCC -ACGGAAAGGCTACTGAGAATTCCC -ACGGAAAGGCTACTGAGATTCTCG -ACGGAAAGGCTACTGAGATAGACG -ACGGAAAGGCTACTGAGAGTAACG -ACGGAAAGGCTACTGAGAACTTCG -ACGGAAAGGCTACTGAGATACGCA -ACGGAAAGGCTACTGAGACTTGCA -ACGGAAAGGCTACTGAGACGAACA -ACGGAAAGGCTACTGAGACAGTCA -ACGGAAAGGCTACTGAGAGATCCA -ACGGAAAGGCTACTGAGAACGACA -ACGGAAAGGCTACTGAGAAGCTCA -ACGGAAAGGCTACTGAGATCACGT -ACGGAAAGGCTACTGAGACGTAGT -ACGGAAAGGCTACTGAGAGTCAGT -ACGGAAAGGCTACTGAGAGAAGGT -ACGGAAAGGCTACTGAGAAACCGT -ACGGAAAGGCTACTGAGATTGTGC -ACGGAAAGGCTACTGAGACTAAGC -ACGGAAAGGCTACTGAGAACTAGC -ACGGAAAGGCTACTGAGAAGATGC -ACGGAAAGGCTACTGAGATGAAGG -ACGGAAAGGCTACTGAGACAATGG -ACGGAAAGGCTACTGAGAATGAGG -ACGGAAAGGCTACTGAGAAATGGG -ACGGAAAGGCTACTGAGATCCTGA -ACGGAAAGGCTACTGAGATAGCGA -ACGGAAAGGCTACTGAGACACAGA -ACGGAAAGGCTACTGAGAGCAAGA -ACGGAAAGGCTACTGAGAGGTTGA -ACGGAAAGGCTACTGAGATCCGAT -ACGGAAAGGCTACTGAGATGGCAT -ACGGAAAGGCTACTGAGACGAGAT -ACGGAAAGGCTACTGAGATACCAC -ACGGAAAGGCTACTGAGACAGAAC -ACGGAAAGGCTACTGAGAGTCTAC -ACGGAAAGGCTACTGAGAACGTAC -ACGGAAAGGCTACTGAGAAGTGAC -ACGGAAAGGCTACTGAGACTGTAG -ACGGAAAGGCTACTGAGACCTAAG -ACGGAAAGGCTACTGAGAGTTCAG -ACGGAAAGGCTACTGAGAGCATAG -ACGGAAAGGCTACTGAGAGACAAG -ACGGAAAGGCTACTGAGAAAGCAG -ACGGAAAGGCTACTGAGACGTCAA -ACGGAAAGGCTACTGAGAGCTGAA -ACGGAAAGGCTACTGAGAAGTACG -ACGGAAAGGCTACTGAGAATCCGA -ACGGAAAGGCTACTGAGAATGGGA -ACGGAAAGGCTACTGAGAGTGCAA -ACGGAAAGGCTACTGAGAGAGGAA -ACGGAAAGGCTACTGAGACAGGTA -ACGGAAAGGCTACTGAGAGACTCT -ACGGAAAGGCTACTGAGAAGTCCT -ACGGAAAGGCTACTGAGATAAGCC -ACGGAAAGGCTACTGAGAATAGCC -ACGGAAAGGCTACTGAGATAACCG -ACGGAAAGGCTACTGAGAATGCCA -ACGGAAAGGCTAGTATCGGGAAAC -ACGGAAAGGCTAGTATCGAACACC -ACGGAAAGGCTAGTATCGATCGAG -ACGGAAAGGCTAGTATCGCTCCTT -ACGGAAAGGCTAGTATCGCCTGTT -ACGGAAAGGCTAGTATCGCGGTTT -ACGGAAAGGCTAGTATCGGTGGTT -ACGGAAAGGCTAGTATCGGCCTTT -ACGGAAAGGCTAGTATCGGGTCTT -ACGGAAAGGCTAGTATCGACGCTT -ACGGAAAGGCTAGTATCGAGCGTT -ACGGAAAGGCTAGTATCGTTCGTC -ACGGAAAGGCTAGTATCGTCTCTC -ACGGAAAGGCTAGTATCGTGGATC -ACGGAAAGGCTAGTATCGCACTTC -ACGGAAAGGCTAGTATCGGTACTC -ACGGAAAGGCTAGTATCGGATGTC -ACGGAAAGGCTAGTATCGACAGTC -ACGGAAAGGCTAGTATCGTTGCTG -ACGGAAAGGCTAGTATCGTCCATG -ACGGAAAGGCTAGTATCGTGTGTG -ACGGAAAGGCTAGTATCGCTAGTG -ACGGAAAGGCTAGTATCGCATCTG -ACGGAAAGGCTAGTATCGGAGTTG -ACGGAAAGGCTAGTATCGAGACTG -ACGGAAAGGCTAGTATCGTCGGTA -ACGGAAAGGCTAGTATCGTGCCTA -ACGGAAAGGCTAGTATCGCCACTA -ACGGAAAGGCTAGTATCGGGAGTA -ACGGAAAGGCTAGTATCGTCGTCT -ACGGAAAGGCTAGTATCGTGCACT -ACGGAAAGGCTAGTATCGCTGACT -ACGGAAAGGCTAGTATCGCAACCT -ACGGAAAGGCTAGTATCGGCTACT -ACGGAAAGGCTAGTATCGGGATCT -ACGGAAAGGCTAGTATCGAAGGCT -ACGGAAAGGCTAGTATCGTCAACC -ACGGAAAGGCTAGTATCGTGTTCC -ACGGAAAGGCTAGTATCGATTCCC -ACGGAAAGGCTAGTATCGTTCTCG -ACGGAAAGGCTAGTATCGTAGACG -ACGGAAAGGCTAGTATCGGTAACG -ACGGAAAGGCTAGTATCGACTTCG -ACGGAAAGGCTAGTATCGTACGCA -ACGGAAAGGCTAGTATCGCTTGCA -ACGGAAAGGCTAGTATCGCGAACA -ACGGAAAGGCTAGTATCGCAGTCA -ACGGAAAGGCTAGTATCGGATCCA -ACGGAAAGGCTAGTATCGACGACA -ACGGAAAGGCTAGTATCGAGCTCA -ACGGAAAGGCTAGTATCGTCACGT -ACGGAAAGGCTAGTATCGCGTAGT -ACGGAAAGGCTAGTATCGGTCAGT -ACGGAAAGGCTAGTATCGGAAGGT -ACGGAAAGGCTAGTATCGAACCGT -ACGGAAAGGCTAGTATCGTTGTGC -ACGGAAAGGCTAGTATCGCTAAGC -ACGGAAAGGCTAGTATCGACTAGC -ACGGAAAGGCTAGTATCGAGATGC -ACGGAAAGGCTAGTATCGTGAAGG -ACGGAAAGGCTAGTATCGCAATGG -ACGGAAAGGCTAGTATCGATGAGG -ACGGAAAGGCTAGTATCGAATGGG -ACGGAAAGGCTAGTATCGTCCTGA -ACGGAAAGGCTAGTATCGTAGCGA -ACGGAAAGGCTAGTATCGCACAGA -ACGGAAAGGCTAGTATCGGCAAGA -ACGGAAAGGCTAGTATCGGGTTGA -ACGGAAAGGCTAGTATCGTCCGAT -ACGGAAAGGCTAGTATCGTGGCAT -ACGGAAAGGCTAGTATCGCGAGAT -ACGGAAAGGCTAGTATCGTACCAC -ACGGAAAGGCTAGTATCGCAGAAC -ACGGAAAGGCTAGTATCGGTCTAC -ACGGAAAGGCTAGTATCGACGTAC -ACGGAAAGGCTAGTATCGAGTGAC -ACGGAAAGGCTAGTATCGCTGTAG -ACGGAAAGGCTAGTATCGCCTAAG -ACGGAAAGGCTAGTATCGGTTCAG -ACGGAAAGGCTAGTATCGGCATAG -ACGGAAAGGCTAGTATCGGACAAG -ACGGAAAGGCTAGTATCGAAGCAG -ACGGAAAGGCTAGTATCGCGTCAA -ACGGAAAGGCTAGTATCGGCTGAA -ACGGAAAGGCTAGTATCGAGTACG -ACGGAAAGGCTAGTATCGATCCGA -ACGGAAAGGCTAGTATCGATGGGA -ACGGAAAGGCTAGTATCGGTGCAA -ACGGAAAGGCTAGTATCGGAGGAA -ACGGAAAGGCTAGTATCGCAGGTA -ACGGAAAGGCTAGTATCGGACTCT -ACGGAAAGGCTAGTATCGAGTCCT -ACGGAAAGGCTAGTATCGTAAGCC -ACGGAAAGGCTAGTATCGATAGCC -ACGGAAAGGCTAGTATCGTAACCG -ACGGAAAGGCTAGTATCGATGCCA -ACGGAAAGGCTACTATGCGGAAAC -ACGGAAAGGCTACTATGCAACACC -ACGGAAAGGCTACTATGCATCGAG -ACGGAAAGGCTACTATGCCTCCTT -ACGGAAAGGCTACTATGCCCTGTT -ACGGAAAGGCTACTATGCCGGTTT -ACGGAAAGGCTACTATGCGTGGTT -ACGGAAAGGCTACTATGCGCCTTT -ACGGAAAGGCTACTATGCGGTCTT -ACGGAAAGGCTACTATGCACGCTT -ACGGAAAGGCTACTATGCAGCGTT -ACGGAAAGGCTACTATGCTTCGTC -ACGGAAAGGCTACTATGCTCTCTC -ACGGAAAGGCTACTATGCTGGATC -ACGGAAAGGCTACTATGCCACTTC -ACGGAAAGGCTACTATGCGTACTC -ACGGAAAGGCTACTATGCGATGTC -ACGGAAAGGCTACTATGCACAGTC -ACGGAAAGGCTACTATGCTTGCTG -ACGGAAAGGCTACTATGCTCCATG -ACGGAAAGGCTACTATGCTGTGTG -ACGGAAAGGCTACTATGCCTAGTG -ACGGAAAGGCTACTATGCCATCTG -ACGGAAAGGCTACTATGCGAGTTG -ACGGAAAGGCTACTATGCAGACTG -ACGGAAAGGCTACTATGCTCGGTA -ACGGAAAGGCTACTATGCTGCCTA -ACGGAAAGGCTACTATGCCCACTA -ACGGAAAGGCTACTATGCGGAGTA -ACGGAAAGGCTACTATGCTCGTCT -ACGGAAAGGCTACTATGCTGCACT -ACGGAAAGGCTACTATGCCTGACT -ACGGAAAGGCTACTATGCCAACCT -ACGGAAAGGCTACTATGCGCTACT -ACGGAAAGGCTACTATGCGGATCT -ACGGAAAGGCTACTATGCAAGGCT -ACGGAAAGGCTACTATGCTCAACC -ACGGAAAGGCTACTATGCTGTTCC -ACGGAAAGGCTACTATGCATTCCC -ACGGAAAGGCTACTATGCTTCTCG -ACGGAAAGGCTACTATGCTAGACG -ACGGAAAGGCTACTATGCGTAACG -ACGGAAAGGCTACTATGCACTTCG -ACGGAAAGGCTACTATGCTACGCA -ACGGAAAGGCTACTATGCCTTGCA -ACGGAAAGGCTACTATGCCGAACA -ACGGAAAGGCTACTATGCCAGTCA -ACGGAAAGGCTACTATGCGATCCA -ACGGAAAGGCTACTATGCACGACA -ACGGAAAGGCTACTATGCAGCTCA -ACGGAAAGGCTACTATGCTCACGT -ACGGAAAGGCTACTATGCCGTAGT -ACGGAAAGGCTACTATGCGTCAGT -ACGGAAAGGCTACTATGCGAAGGT -ACGGAAAGGCTACTATGCAACCGT -ACGGAAAGGCTACTATGCTTGTGC -ACGGAAAGGCTACTATGCCTAAGC -ACGGAAAGGCTACTATGCACTAGC -ACGGAAAGGCTACTATGCAGATGC -ACGGAAAGGCTACTATGCTGAAGG -ACGGAAAGGCTACTATGCCAATGG -ACGGAAAGGCTACTATGCATGAGG -ACGGAAAGGCTACTATGCAATGGG -ACGGAAAGGCTACTATGCTCCTGA -ACGGAAAGGCTACTATGCTAGCGA -ACGGAAAGGCTACTATGCCACAGA -ACGGAAAGGCTACTATGCGCAAGA -ACGGAAAGGCTACTATGCGGTTGA -ACGGAAAGGCTACTATGCTCCGAT -ACGGAAAGGCTACTATGCTGGCAT -ACGGAAAGGCTACTATGCCGAGAT -ACGGAAAGGCTACTATGCTACCAC -ACGGAAAGGCTACTATGCCAGAAC -ACGGAAAGGCTACTATGCGTCTAC -ACGGAAAGGCTACTATGCACGTAC -ACGGAAAGGCTACTATGCAGTGAC -ACGGAAAGGCTACTATGCCTGTAG -ACGGAAAGGCTACTATGCCCTAAG -ACGGAAAGGCTACTATGCGTTCAG -ACGGAAAGGCTACTATGCGCATAG -ACGGAAAGGCTACTATGCGACAAG -ACGGAAAGGCTACTATGCAAGCAG -ACGGAAAGGCTACTATGCCGTCAA -ACGGAAAGGCTACTATGCGCTGAA -ACGGAAAGGCTACTATGCAGTACG -ACGGAAAGGCTACTATGCATCCGA -ACGGAAAGGCTACTATGCATGGGA -ACGGAAAGGCTACTATGCGTGCAA -ACGGAAAGGCTACTATGCGAGGAA -ACGGAAAGGCTACTATGCCAGGTA -ACGGAAAGGCTACTATGCGACTCT -ACGGAAAGGCTACTATGCAGTCCT -ACGGAAAGGCTACTATGCTAAGCC -ACGGAAAGGCTACTATGCATAGCC -ACGGAAAGGCTACTATGCTAACCG -ACGGAAAGGCTACTATGCATGCCA -ACGGAAAGGCTACTACCAGGAAAC -ACGGAAAGGCTACTACCAAACACC -ACGGAAAGGCTACTACCAATCGAG -ACGGAAAGGCTACTACCACTCCTT -ACGGAAAGGCTACTACCACCTGTT -ACGGAAAGGCTACTACCACGGTTT -ACGGAAAGGCTACTACCAGTGGTT -ACGGAAAGGCTACTACCAGCCTTT -ACGGAAAGGCTACTACCAGGTCTT -ACGGAAAGGCTACTACCAACGCTT -ACGGAAAGGCTACTACCAAGCGTT -ACGGAAAGGCTACTACCATTCGTC -ACGGAAAGGCTACTACCATCTCTC -ACGGAAAGGCTACTACCATGGATC -ACGGAAAGGCTACTACCACACTTC -ACGGAAAGGCTACTACCAGTACTC -ACGGAAAGGCTACTACCAGATGTC -ACGGAAAGGCTACTACCAACAGTC -ACGGAAAGGCTACTACCATTGCTG -ACGGAAAGGCTACTACCATCCATG -ACGGAAAGGCTACTACCATGTGTG -ACGGAAAGGCTACTACCACTAGTG -ACGGAAAGGCTACTACCACATCTG -ACGGAAAGGCTACTACCAGAGTTG -ACGGAAAGGCTACTACCAAGACTG -ACGGAAAGGCTACTACCATCGGTA -ACGGAAAGGCTACTACCATGCCTA -ACGGAAAGGCTACTACCACCACTA -ACGGAAAGGCTACTACCAGGAGTA -ACGGAAAGGCTACTACCATCGTCT -ACGGAAAGGCTACTACCATGCACT -ACGGAAAGGCTACTACCACTGACT -ACGGAAAGGCTACTACCACAACCT -ACGGAAAGGCTACTACCAGCTACT -ACGGAAAGGCTACTACCAGGATCT -ACGGAAAGGCTACTACCAAAGGCT -ACGGAAAGGCTACTACCATCAACC -ACGGAAAGGCTACTACCATGTTCC -ACGGAAAGGCTACTACCAATTCCC -ACGGAAAGGCTACTACCATTCTCG -ACGGAAAGGCTACTACCATAGACG -ACGGAAAGGCTACTACCAGTAACG -ACGGAAAGGCTACTACCAACTTCG -ACGGAAAGGCTACTACCATACGCA -ACGGAAAGGCTACTACCACTTGCA -ACGGAAAGGCTACTACCACGAACA -ACGGAAAGGCTACTACCACAGTCA -ACGGAAAGGCTACTACCAGATCCA -ACGGAAAGGCTACTACCAACGACA -ACGGAAAGGCTACTACCAAGCTCA -ACGGAAAGGCTACTACCATCACGT -ACGGAAAGGCTACTACCACGTAGT -ACGGAAAGGCTACTACCAGTCAGT -ACGGAAAGGCTACTACCAGAAGGT -ACGGAAAGGCTACTACCAAACCGT -ACGGAAAGGCTACTACCATTGTGC -ACGGAAAGGCTACTACCACTAAGC -ACGGAAAGGCTACTACCAACTAGC -ACGGAAAGGCTACTACCAAGATGC -ACGGAAAGGCTACTACCATGAAGG -ACGGAAAGGCTACTACCACAATGG -ACGGAAAGGCTACTACCAATGAGG -ACGGAAAGGCTACTACCAAATGGG -ACGGAAAGGCTACTACCATCCTGA -ACGGAAAGGCTACTACCATAGCGA -ACGGAAAGGCTACTACCACACAGA -ACGGAAAGGCTACTACCAGCAAGA -ACGGAAAGGCTACTACCAGGTTGA -ACGGAAAGGCTACTACCATCCGAT -ACGGAAAGGCTACTACCATGGCAT -ACGGAAAGGCTACTACCACGAGAT -ACGGAAAGGCTACTACCATACCAC -ACGGAAAGGCTACTACCACAGAAC -ACGGAAAGGCTACTACCAGTCTAC -ACGGAAAGGCTACTACCAACGTAC -ACGGAAAGGCTACTACCAAGTGAC -ACGGAAAGGCTACTACCACTGTAG -ACGGAAAGGCTACTACCACCTAAG -ACGGAAAGGCTACTACCAGTTCAG -ACGGAAAGGCTACTACCAGCATAG -ACGGAAAGGCTACTACCAGACAAG -ACGGAAAGGCTACTACCAAAGCAG -ACGGAAAGGCTACTACCACGTCAA -ACGGAAAGGCTACTACCAGCTGAA -ACGGAAAGGCTACTACCAAGTACG -ACGGAAAGGCTACTACCAATCCGA -ACGGAAAGGCTACTACCAATGGGA -ACGGAAAGGCTACTACCAGTGCAA -ACGGAAAGGCTACTACCAGAGGAA -ACGGAAAGGCTACTACCACAGGTA -ACGGAAAGGCTACTACCAGACTCT -ACGGAAAGGCTACTACCAAGTCCT -ACGGAAAGGCTACTACCATAAGCC -ACGGAAAGGCTACTACCAATAGCC -ACGGAAAGGCTACTACCATAACCG -ACGGAAAGGCTACTACCAATGCCA -ACGGAAAGGCTAGTAGGAGGAAAC -ACGGAAAGGCTAGTAGGAAACACC -ACGGAAAGGCTAGTAGGAATCGAG -ACGGAAAGGCTAGTAGGACTCCTT -ACGGAAAGGCTAGTAGGACCTGTT -ACGGAAAGGCTAGTAGGACGGTTT -ACGGAAAGGCTAGTAGGAGTGGTT -ACGGAAAGGCTAGTAGGAGCCTTT -ACGGAAAGGCTAGTAGGAGGTCTT -ACGGAAAGGCTAGTAGGAACGCTT -ACGGAAAGGCTAGTAGGAAGCGTT -ACGGAAAGGCTAGTAGGATTCGTC -ACGGAAAGGCTAGTAGGATCTCTC -ACGGAAAGGCTAGTAGGATGGATC -ACGGAAAGGCTAGTAGGACACTTC -ACGGAAAGGCTAGTAGGAGTACTC -ACGGAAAGGCTAGTAGGAGATGTC -ACGGAAAGGCTAGTAGGAACAGTC -ACGGAAAGGCTAGTAGGATTGCTG -ACGGAAAGGCTAGTAGGATCCATG -ACGGAAAGGCTAGTAGGATGTGTG -ACGGAAAGGCTAGTAGGACTAGTG -ACGGAAAGGCTAGTAGGACATCTG -ACGGAAAGGCTAGTAGGAGAGTTG -ACGGAAAGGCTAGTAGGAAGACTG -ACGGAAAGGCTAGTAGGATCGGTA -ACGGAAAGGCTAGTAGGATGCCTA -ACGGAAAGGCTAGTAGGACCACTA -ACGGAAAGGCTAGTAGGAGGAGTA -ACGGAAAGGCTAGTAGGATCGTCT -ACGGAAAGGCTAGTAGGATGCACT -ACGGAAAGGCTAGTAGGACTGACT -ACGGAAAGGCTAGTAGGACAACCT -ACGGAAAGGCTAGTAGGAGCTACT -ACGGAAAGGCTAGTAGGAGGATCT -ACGGAAAGGCTAGTAGGAAAGGCT -ACGGAAAGGCTAGTAGGATCAACC -ACGGAAAGGCTAGTAGGATGTTCC -ACGGAAAGGCTAGTAGGAATTCCC -ACGGAAAGGCTAGTAGGATTCTCG -ACGGAAAGGCTAGTAGGATAGACG -ACGGAAAGGCTAGTAGGAGTAACG -ACGGAAAGGCTAGTAGGAACTTCG -ACGGAAAGGCTAGTAGGATACGCA -ACGGAAAGGCTAGTAGGACTTGCA -ACGGAAAGGCTAGTAGGACGAACA -ACGGAAAGGCTAGTAGGACAGTCA -ACGGAAAGGCTAGTAGGAGATCCA -ACGGAAAGGCTAGTAGGAACGACA -ACGGAAAGGCTAGTAGGAAGCTCA -ACGGAAAGGCTAGTAGGATCACGT -ACGGAAAGGCTAGTAGGACGTAGT -ACGGAAAGGCTAGTAGGAGTCAGT -ACGGAAAGGCTAGTAGGAGAAGGT -ACGGAAAGGCTAGTAGGAAACCGT -ACGGAAAGGCTAGTAGGATTGTGC -ACGGAAAGGCTAGTAGGACTAAGC -ACGGAAAGGCTAGTAGGAACTAGC -ACGGAAAGGCTAGTAGGAAGATGC -ACGGAAAGGCTAGTAGGATGAAGG -ACGGAAAGGCTAGTAGGACAATGG -ACGGAAAGGCTAGTAGGAATGAGG -ACGGAAAGGCTAGTAGGAAATGGG -ACGGAAAGGCTAGTAGGATCCTGA -ACGGAAAGGCTAGTAGGATAGCGA -ACGGAAAGGCTAGTAGGACACAGA -ACGGAAAGGCTAGTAGGAGCAAGA -ACGGAAAGGCTAGTAGGAGGTTGA -ACGGAAAGGCTAGTAGGATCCGAT -ACGGAAAGGCTAGTAGGATGGCAT -ACGGAAAGGCTAGTAGGACGAGAT -ACGGAAAGGCTAGTAGGATACCAC -ACGGAAAGGCTAGTAGGACAGAAC -ACGGAAAGGCTAGTAGGAGTCTAC -ACGGAAAGGCTAGTAGGAACGTAC -ACGGAAAGGCTAGTAGGAAGTGAC -ACGGAAAGGCTAGTAGGACTGTAG -ACGGAAAGGCTAGTAGGACCTAAG -ACGGAAAGGCTAGTAGGAGTTCAG -ACGGAAAGGCTAGTAGGAGCATAG -ACGGAAAGGCTAGTAGGAGACAAG -ACGGAAAGGCTAGTAGGAAAGCAG -ACGGAAAGGCTAGTAGGACGTCAA -ACGGAAAGGCTAGTAGGAGCTGAA -ACGGAAAGGCTAGTAGGAAGTACG -ACGGAAAGGCTAGTAGGAATCCGA -ACGGAAAGGCTAGTAGGAATGGGA -ACGGAAAGGCTAGTAGGAGTGCAA -ACGGAAAGGCTAGTAGGAGAGGAA -ACGGAAAGGCTAGTAGGACAGGTA -ACGGAAAGGCTAGTAGGAGACTCT -ACGGAAAGGCTAGTAGGAAGTCCT -ACGGAAAGGCTAGTAGGATAAGCC -ACGGAAAGGCTAGTAGGAATAGCC -ACGGAAAGGCTAGTAGGATAACCG -ACGGAAAGGCTAGTAGGAATGCCA -ACGGAAAGGCTATCTTCGGGAAAC -ACGGAAAGGCTATCTTCGAACACC -ACGGAAAGGCTATCTTCGATCGAG -ACGGAAAGGCTATCTTCGCTCCTT -ACGGAAAGGCTATCTTCGCCTGTT -ACGGAAAGGCTATCTTCGCGGTTT -ACGGAAAGGCTATCTTCGGTGGTT -ACGGAAAGGCTATCTTCGGCCTTT -ACGGAAAGGCTATCTTCGGGTCTT -ACGGAAAGGCTATCTTCGACGCTT -ACGGAAAGGCTATCTTCGAGCGTT -ACGGAAAGGCTATCTTCGTTCGTC -ACGGAAAGGCTATCTTCGTCTCTC -ACGGAAAGGCTATCTTCGTGGATC -ACGGAAAGGCTATCTTCGCACTTC -ACGGAAAGGCTATCTTCGGTACTC -ACGGAAAGGCTATCTTCGGATGTC -ACGGAAAGGCTATCTTCGACAGTC -ACGGAAAGGCTATCTTCGTTGCTG -ACGGAAAGGCTATCTTCGTCCATG -ACGGAAAGGCTATCTTCGTGTGTG -ACGGAAAGGCTATCTTCGCTAGTG -ACGGAAAGGCTATCTTCGCATCTG -ACGGAAAGGCTATCTTCGGAGTTG -ACGGAAAGGCTATCTTCGAGACTG -ACGGAAAGGCTATCTTCGTCGGTA -ACGGAAAGGCTATCTTCGTGCCTA -ACGGAAAGGCTATCTTCGCCACTA -ACGGAAAGGCTATCTTCGGGAGTA -ACGGAAAGGCTATCTTCGTCGTCT -ACGGAAAGGCTATCTTCGTGCACT -ACGGAAAGGCTATCTTCGCTGACT -ACGGAAAGGCTATCTTCGCAACCT -ACGGAAAGGCTATCTTCGGCTACT -ACGGAAAGGCTATCTTCGGGATCT -ACGGAAAGGCTATCTTCGAAGGCT -ACGGAAAGGCTATCTTCGTCAACC -ACGGAAAGGCTATCTTCGTGTTCC -ACGGAAAGGCTATCTTCGATTCCC -ACGGAAAGGCTATCTTCGTTCTCG -ACGGAAAGGCTATCTTCGTAGACG -ACGGAAAGGCTATCTTCGGTAACG -ACGGAAAGGCTATCTTCGACTTCG -ACGGAAAGGCTATCTTCGTACGCA -ACGGAAAGGCTATCTTCGCTTGCA -ACGGAAAGGCTATCTTCGCGAACA -ACGGAAAGGCTATCTTCGCAGTCA -ACGGAAAGGCTATCTTCGGATCCA -ACGGAAAGGCTATCTTCGACGACA -ACGGAAAGGCTATCTTCGAGCTCA -ACGGAAAGGCTATCTTCGTCACGT -ACGGAAAGGCTATCTTCGCGTAGT -ACGGAAAGGCTATCTTCGGTCAGT -ACGGAAAGGCTATCTTCGGAAGGT -ACGGAAAGGCTATCTTCGAACCGT -ACGGAAAGGCTATCTTCGTTGTGC -ACGGAAAGGCTATCTTCGCTAAGC -ACGGAAAGGCTATCTTCGACTAGC -ACGGAAAGGCTATCTTCGAGATGC -ACGGAAAGGCTATCTTCGTGAAGG -ACGGAAAGGCTATCTTCGCAATGG -ACGGAAAGGCTATCTTCGATGAGG -ACGGAAAGGCTATCTTCGAATGGG -ACGGAAAGGCTATCTTCGTCCTGA -ACGGAAAGGCTATCTTCGTAGCGA -ACGGAAAGGCTATCTTCGCACAGA -ACGGAAAGGCTATCTTCGGCAAGA -ACGGAAAGGCTATCTTCGGGTTGA -ACGGAAAGGCTATCTTCGTCCGAT -ACGGAAAGGCTATCTTCGTGGCAT -ACGGAAAGGCTATCTTCGCGAGAT -ACGGAAAGGCTATCTTCGTACCAC -ACGGAAAGGCTATCTTCGCAGAAC -ACGGAAAGGCTATCTTCGGTCTAC -ACGGAAAGGCTATCTTCGACGTAC -ACGGAAAGGCTATCTTCGAGTGAC -ACGGAAAGGCTATCTTCGCTGTAG -ACGGAAAGGCTATCTTCGCCTAAG -ACGGAAAGGCTATCTTCGGTTCAG -ACGGAAAGGCTATCTTCGGCATAG -ACGGAAAGGCTATCTTCGGACAAG -ACGGAAAGGCTATCTTCGAAGCAG -ACGGAAAGGCTATCTTCGCGTCAA -ACGGAAAGGCTATCTTCGGCTGAA -ACGGAAAGGCTATCTTCGAGTACG -ACGGAAAGGCTATCTTCGATCCGA -ACGGAAAGGCTATCTTCGATGGGA -ACGGAAAGGCTATCTTCGGTGCAA -ACGGAAAGGCTATCTTCGGAGGAA -ACGGAAAGGCTATCTTCGCAGGTA -ACGGAAAGGCTATCTTCGGACTCT -ACGGAAAGGCTATCTTCGAGTCCT -ACGGAAAGGCTATCTTCGTAAGCC -ACGGAAAGGCTATCTTCGATAGCC -ACGGAAAGGCTATCTTCGTAACCG -ACGGAAAGGCTATCTTCGATGCCA -ACGGAAAGGCTAACTTGCGGAAAC -ACGGAAAGGCTAACTTGCAACACC -ACGGAAAGGCTAACTTGCATCGAG -ACGGAAAGGCTAACTTGCCTCCTT -ACGGAAAGGCTAACTTGCCCTGTT -ACGGAAAGGCTAACTTGCCGGTTT -ACGGAAAGGCTAACTTGCGTGGTT -ACGGAAAGGCTAACTTGCGCCTTT -ACGGAAAGGCTAACTTGCGGTCTT -ACGGAAAGGCTAACTTGCACGCTT -ACGGAAAGGCTAACTTGCAGCGTT -ACGGAAAGGCTAACTTGCTTCGTC -ACGGAAAGGCTAACTTGCTCTCTC -ACGGAAAGGCTAACTTGCTGGATC -ACGGAAAGGCTAACTTGCCACTTC -ACGGAAAGGCTAACTTGCGTACTC -ACGGAAAGGCTAACTTGCGATGTC -ACGGAAAGGCTAACTTGCACAGTC -ACGGAAAGGCTAACTTGCTTGCTG -ACGGAAAGGCTAACTTGCTCCATG -ACGGAAAGGCTAACTTGCTGTGTG -ACGGAAAGGCTAACTTGCCTAGTG -ACGGAAAGGCTAACTTGCCATCTG -ACGGAAAGGCTAACTTGCGAGTTG -ACGGAAAGGCTAACTTGCAGACTG -ACGGAAAGGCTAACTTGCTCGGTA -ACGGAAAGGCTAACTTGCTGCCTA -ACGGAAAGGCTAACTTGCCCACTA -ACGGAAAGGCTAACTTGCGGAGTA -ACGGAAAGGCTAACTTGCTCGTCT -ACGGAAAGGCTAACTTGCTGCACT -ACGGAAAGGCTAACTTGCCTGACT -ACGGAAAGGCTAACTTGCCAACCT -ACGGAAAGGCTAACTTGCGCTACT -ACGGAAAGGCTAACTTGCGGATCT -ACGGAAAGGCTAACTTGCAAGGCT -ACGGAAAGGCTAACTTGCTCAACC -ACGGAAAGGCTAACTTGCTGTTCC -ACGGAAAGGCTAACTTGCATTCCC -ACGGAAAGGCTAACTTGCTTCTCG -ACGGAAAGGCTAACTTGCTAGACG -ACGGAAAGGCTAACTTGCGTAACG -ACGGAAAGGCTAACTTGCACTTCG -ACGGAAAGGCTAACTTGCTACGCA -ACGGAAAGGCTAACTTGCCTTGCA -ACGGAAAGGCTAACTTGCCGAACA -ACGGAAAGGCTAACTTGCCAGTCA -ACGGAAAGGCTAACTTGCGATCCA -ACGGAAAGGCTAACTTGCACGACA -ACGGAAAGGCTAACTTGCAGCTCA -ACGGAAAGGCTAACTTGCTCACGT -ACGGAAAGGCTAACTTGCCGTAGT -ACGGAAAGGCTAACTTGCGTCAGT -ACGGAAAGGCTAACTTGCGAAGGT -ACGGAAAGGCTAACTTGCAACCGT -ACGGAAAGGCTAACTTGCTTGTGC -ACGGAAAGGCTAACTTGCCTAAGC -ACGGAAAGGCTAACTTGCACTAGC -ACGGAAAGGCTAACTTGCAGATGC -ACGGAAAGGCTAACTTGCTGAAGG -ACGGAAAGGCTAACTTGCCAATGG -ACGGAAAGGCTAACTTGCATGAGG -ACGGAAAGGCTAACTTGCAATGGG -ACGGAAAGGCTAACTTGCTCCTGA -ACGGAAAGGCTAACTTGCTAGCGA -ACGGAAAGGCTAACTTGCCACAGA -ACGGAAAGGCTAACTTGCGCAAGA -ACGGAAAGGCTAACTTGCGGTTGA -ACGGAAAGGCTAACTTGCTCCGAT -ACGGAAAGGCTAACTTGCTGGCAT -ACGGAAAGGCTAACTTGCCGAGAT -ACGGAAAGGCTAACTTGCTACCAC -ACGGAAAGGCTAACTTGCCAGAAC -ACGGAAAGGCTAACTTGCGTCTAC -ACGGAAAGGCTAACTTGCACGTAC -ACGGAAAGGCTAACTTGCAGTGAC -ACGGAAAGGCTAACTTGCCTGTAG -ACGGAAAGGCTAACTTGCCCTAAG -ACGGAAAGGCTAACTTGCGTTCAG -ACGGAAAGGCTAACTTGCGCATAG -ACGGAAAGGCTAACTTGCGACAAG -ACGGAAAGGCTAACTTGCAAGCAG -ACGGAAAGGCTAACTTGCCGTCAA -ACGGAAAGGCTAACTTGCGCTGAA -ACGGAAAGGCTAACTTGCAGTACG -ACGGAAAGGCTAACTTGCATCCGA -ACGGAAAGGCTAACTTGCATGGGA -ACGGAAAGGCTAACTTGCGTGCAA -ACGGAAAGGCTAACTTGCGAGGAA -ACGGAAAGGCTAACTTGCCAGGTA -ACGGAAAGGCTAACTTGCGACTCT -ACGGAAAGGCTAACTTGCAGTCCT -ACGGAAAGGCTAACTTGCTAAGCC -ACGGAAAGGCTAACTTGCATAGCC -ACGGAAAGGCTAACTTGCTAACCG -ACGGAAAGGCTAACTTGCATGCCA -ACGGAAAGGCTAACTCTGGGAAAC -ACGGAAAGGCTAACTCTGAACACC -ACGGAAAGGCTAACTCTGATCGAG -ACGGAAAGGCTAACTCTGCTCCTT -ACGGAAAGGCTAACTCTGCCTGTT -ACGGAAAGGCTAACTCTGCGGTTT -ACGGAAAGGCTAACTCTGGTGGTT -ACGGAAAGGCTAACTCTGGCCTTT -ACGGAAAGGCTAACTCTGGGTCTT -ACGGAAAGGCTAACTCTGACGCTT -ACGGAAAGGCTAACTCTGAGCGTT -ACGGAAAGGCTAACTCTGTTCGTC -ACGGAAAGGCTAACTCTGTCTCTC -ACGGAAAGGCTAACTCTGTGGATC -ACGGAAAGGCTAACTCTGCACTTC -ACGGAAAGGCTAACTCTGGTACTC -ACGGAAAGGCTAACTCTGGATGTC -ACGGAAAGGCTAACTCTGACAGTC -ACGGAAAGGCTAACTCTGTTGCTG -ACGGAAAGGCTAACTCTGTCCATG -ACGGAAAGGCTAACTCTGTGTGTG -ACGGAAAGGCTAACTCTGCTAGTG -ACGGAAAGGCTAACTCTGCATCTG -ACGGAAAGGCTAACTCTGGAGTTG -ACGGAAAGGCTAACTCTGAGACTG -ACGGAAAGGCTAACTCTGTCGGTA -ACGGAAAGGCTAACTCTGTGCCTA -ACGGAAAGGCTAACTCTGCCACTA -ACGGAAAGGCTAACTCTGGGAGTA -ACGGAAAGGCTAACTCTGTCGTCT -ACGGAAAGGCTAACTCTGTGCACT -ACGGAAAGGCTAACTCTGCTGACT -ACGGAAAGGCTAACTCTGCAACCT -ACGGAAAGGCTAACTCTGGCTACT -ACGGAAAGGCTAACTCTGGGATCT -ACGGAAAGGCTAACTCTGAAGGCT -ACGGAAAGGCTAACTCTGTCAACC -ACGGAAAGGCTAACTCTGTGTTCC -ACGGAAAGGCTAACTCTGATTCCC -ACGGAAAGGCTAACTCTGTTCTCG -ACGGAAAGGCTAACTCTGTAGACG -ACGGAAAGGCTAACTCTGGTAACG -ACGGAAAGGCTAACTCTGACTTCG -ACGGAAAGGCTAACTCTGTACGCA -ACGGAAAGGCTAACTCTGCTTGCA -ACGGAAAGGCTAACTCTGCGAACA -ACGGAAAGGCTAACTCTGCAGTCA -ACGGAAAGGCTAACTCTGGATCCA -ACGGAAAGGCTAACTCTGACGACA -ACGGAAAGGCTAACTCTGAGCTCA -ACGGAAAGGCTAACTCTGTCACGT -ACGGAAAGGCTAACTCTGCGTAGT -ACGGAAAGGCTAACTCTGGTCAGT -ACGGAAAGGCTAACTCTGGAAGGT -ACGGAAAGGCTAACTCTGAACCGT -ACGGAAAGGCTAACTCTGTTGTGC -ACGGAAAGGCTAACTCTGCTAAGC -ACGGAAAGGCTAACTCTGACTAGC -ACGGAAAGGCTAACTCTGAGATGC -ACGGAAAGGCTAACTCTGTGAAGG -ACGGAAAGGCTAACTCTGCAATGG -ACGGAAAGGCTAACTCTGATGAGG -ACGGAAAGGCTAACTCTGAATGGG -ACGGAAAGGCTAACTCTGTCCTGA -ACGGAAAGGCTAACTCTGTAGCGA -ACGGAAAGGCTAACTCTGCACAGA -ACGGAAAGGCTAACTCTGGCAAGA -ACGGAAAGGCTAACTCTGGGTTGA -ACGGAAAGGCTAACTCTGTCCGAT -ACGGAAAGGCTAACTCTGTGGCAT -ACGGAAAGGCTAACTCTGCGAGAT -ACGGAAAGGCTAACTCTGTACCAC -ACGGAAAGGCTAACTCTGCAGAAC -ACGGAAAGGCTAACTCTGGTCTAC -ACGGAAAGGCTAACTCTGACGTAC -ACGGAAAGGCTAACTCTGAGTGAC -ACGGAAAGGCTAACTCTGCTGTAG -ACGGAAAGGCTAACTCTGCCTAAG -ACGGAAAGGCTAACTCTGGTTCAG -ACGGAAAGGCTAACTCTGGCATAG -ACGGAAAGGCTAACTCTGGACAAG -ACGGAAAGGCTAACTCTGAAGCAG -ACGGAAAGGCTAACTCTGCGTCAA -ACGGAAAGGCTAACTCTGGCTGAA -ACGGAAAGGCTAACTCTGAGTACG -ACGGAAAGGCTAACTCTGATCCGA -ACGGAAAGGCTAACTCTGATGGGA -ACGGAAAGGCTAACTCTGGTGCAA -ACGGAAAGGCTAACTCTGGAGGAA -ACGGAAAGGCTAACTCTGCAGGTA -ACGGAAAGGCTAACTCTGGACTCT -ACGGAAAGGCTAACTCTGAGTCCT -ACGGAAAGGCTAACTCTGTAAGCC -ACGGAAAGGCTAACTCTGATAGCC -ACGGAAAGGCTAACTCTGTAACCG -ACGGAAAGGCTAACTCTGATGCCA -ACGGAAAGGCTACCTCAAGGAAAC -ACGGAAAGGCTACCTCAAAACACC -ACGGAAAGGCTACCTCAAATCGAG -ACGGAAAGGCTACCTCAACTCCTT -ACGGAAAGGCTACCTCAACCTGTT -ACGGAAAGGCTACCTCAACGGTTT -ACGGAAAGGCTACCTCAAGTGGTT -ACGGAAAGGCTACCTCAAGCCTTT -ACGGAAAGGCTACCTCAAGGTCTT -ACGGAAAGGCTACCTCAAACGCTT -ACGGAAAGGCTACCTCAAAGCGTT -ACGGAAAGGCTACCTCAATTCGTC -ACGGAAAGGCTACCTCAATCTCTC -ACGGAAAGGCTACCTCAATGGATC -ACGGAAAGGCTACCTCAACACTTC -ACGGAAAGGCTACCTCAAGTACTC -ACGGAAAGGCTACCTCAAGATGTC -ACGGAAAGGCTACCTCAAACAGTC -ACGGAAAGGCTACCTCAATTGCTG -ACGGAAAGGCTACCTCAATCCATG -ACGGAAAGGCTACCTCAATGTGTG -ACGGAAAGGCTACCTCAACTAGTG -ACGGAAAGGCTACCTCAACATCTG -ACGGAAAGGCTACCTCAAGAGTTG -ACGGAAAGGCTACCTCAAAGACTG -ACGGAAAGGCTACCTCAATCGGTA -ACGGAAAGGCTACCTCAATGCCTA -ACGGAAAGGCTACCTCAACCACTA -ACGGAAAGGCTACCTCAAGGAGTA -ACGGAAAGGCTACCTCAATCGTCT -ACGGAAAGGCTACCTCAATGCACT -ACGGAAAGGCTACCTCAACTGACT -ACGGAAAGGCTACCTCAACAACCT -ACGGAAAGGCTACCTCAAGCTACT -ACGGAAAGGCTACCTCAAGGATCT -ACGGAAAGGCTACCTCAAAAGGCT -ACGGAAAGGCTACCTCAATCAACC -ACGGAAAGGCTACCTCAATGTTCC -ACGGAAAGGCTACCTCAAATTCCC -ACGGAAAGGCTACCTCAATTCTCG -ACGGAAAGGCTACCTCAATAGACG -ACGGAAAGGCTACCTCAAGTAACG -ACGGAAAGGCTACCTCAAACTTCG -ACGGAAAGGCTACCTCAATACGCA -ACGGAAAGGCTACCTCAACTTGCA -ACGGAAAGGCTACCTCAACGAACA -ACGGAAAGGCTACCTCAACAGTCA -ACGGAAAGGCTACCTCAAGATCCA -ACGGAAAGGCTACCTCAAACGACA -ACGGAAAGGCTACCTCAAAGCTCA -ACGGAAAGGCTACCTCAATCACGT -ACGGAAAGGCTACCTCAACGTAGT -ACGGAAAGGCTACCTCAAGTCAGT -ACGGAAAGGCTACCTCAAGAAGGT -ACGGAAAGGCTACCTCAAAACCGT -ACGGAAAGGCTACCTCAATTGTGC -ACGGAAAGGCTACCTCAACTAAGC -ACGGAAAGGCTACCTCAAACTAGC -ACGGAAAGGCTACCTCAAAGATGC -ACGGAAAGGCTACCTCAATGAAGG -ACGGAAAGGCTACCTCAACAATGG -ACGGAAAGGCTACCTCAAATGAGG -ACGGAAAGGCTACCTCAAAATGGG -ACGGAAAGGCTACCTCAATCCTGA -ACGGAAAGGCTACCTCAATAGCGA -ACGGAAAGGCTACCTCAACACAGA -ACGGAAAGGCTACCTCAAGCAAGA -ACGGAAAGGCTACCTCAAGGTTGA -ACGGAAAGGCTACCTCAATCCGAT -ACGGAAAGGCTACCTCAATGGCAT -ACGGAAAGGCTACCTCAACGAGAT -ACGGAAAGGCTACCTCAATACCAC -ACGGAAAGGCTACCTCAACAGAAC -ACGGAAAGGCTACCTCAAGTCTAC -ACGGAAAGGCTACCTCAAACGTAC -ACGGAAAGGCTACCTCAAAGTGAC -ACGGAAAGGCTACCTCAACTGTAG -ACGGAAAGGCTACCTCAACCTAAG -ACGGAAAGGCTACCTCAAGTTCAG -ACGGAAAGGCTACCTCAAGCATAG -ACGGAAAGGCTACCTCAAGACAAG -ACGGAAAGGCTACCTCAAAAGCAG -ACGGAAAGGCTACCTCAACGTCAA -ACGGAAAGGCTACCTCAAGCTGAA -ACGGAAAGGCTACCTCAAAGTACG -ACGGAAAGGCTACCTCAAATCCGA -ACGGAAAGGCTACCTCAAATGGGA -ACGGAAAGGCTACCTCAAGTGCAA -ACGGAAAGGCTACCTCAAGAGGAA -ACGGAAAGGCTACCTCAACAGGTA -ACGGAAAGGCTACCTCAAGACTCT -ACGGAAAGGCTACCTCAAAGTCCT -ACGGAAAGGCTACCTCAATAAGCC -ACGGAAAGGCTACCTCAAATAGCC -ACGGAAAGGCTACCTCAATAACCG -ACGGAAAGGCTACCTCAAATGCCA -ACGGAAAGGCTAACTGCTGGAAAC -ACGGAAAGGCTAACTGCTAACACC -ACGGAAAGGCTAACTGCTATCGAG -ACGGAAAGGCTAACTGCTCTCCTT -ACGGAAAGGCTAACTGCTCCTGTT -ACGGAAAGGCTAACTGCTCGGTTT -ACGGAAAGGCTAACTGCTGTGGTT -ACGGAAAGGCTAACTGCTGCCTTT -ACGGAAAGGCTAACTGCTGGTCTT -ACGGAAAGGCTAACTGCTACGCTT -ACGGAAAGGCTAACTGCTAGCGTT -ACGGAAAGGCTAACTGCTTTCGTC -ACGGAAAGGCTAACTGCTTCTCTC -ACGGAAAGGCTAACTGCTTGGATC -ACGGAAAGGCTAACTGCTCACTTC -ACGGAAAGGCTAACTGCTGTACTC -ACGGAAAGGCTAACTGCTGATGTC -ACGGAAAGGCTAACTGCTACAGTC -ACGGAAAGGCTAACTGCTTTGCTG -ACGGAAAGGCTAACTGCTTCCATG -ACGGAAAGGCTAACTGCTTGTGTG -ACGGAAAGGCTAACTGCTCTAGTG -ACGGAAAGGCTAACTGCTCATCTG -ACGGAAAGGCTAACTGCTGAGTTG -ACGGAAAGGCTAACTGCTAGACTG -ACGGAAAGGCTAACTGCTTCGGTA -ACGGAAAGGCTAACTGCTTGCCTA -ACGGAAAGGCTAACTGCTCCACTA -ACGGAAAGGCTAACTGCTGGAGTA -ACGGAAAGGCTAACTGCTTCGTCT -ACGGAAAGGCTAACTGCTTGCACT -ACGGAAAGGCTAACTGCTCTGACT -ACGGAAAGGCTAACTGCTCAACCT -ACGGAAAGGCTAACTGCTGCTACT -ACGGAAAGGCTAACTGCTGGATCT -ACGGAAAGGCTAACTGCTAAGGCT -ACGGAAAGGCTAACTGCTTCAACC -ACGGAAAGGCTAACTGCTTGTTCC -ACGGAAAGGCTAACTGCTATTCCC -ACGGAAAGGCTAACTGCTTTCTCG -ACGGAAAGGCTAACTGCTTAGACG -ACGGAAAGGCTAACTGCTGTAACG -ACGGAAAGGCTAACTGCTACTTCG -ACGGAAAGGCTAACTGCTTACGCA -ACGGAAAGGCTAACTGCTCTTGCA -ACGGAAAGGCTAACTGCTCGAACA -ACGGAAAGGCTAACTGCTCAGTCA -ACGGAAAGGCTAACTGCTGATCCA -ACGGAAAGGCTAACTGCTACGACA -ACGGAAAGGCTAACTGCTAGCTCA -ACGGAAAGGCTAACTGCTTCACGT -ACGGAAAGGCTAACTGCTCGTAGT -ACGGAAAGGCTAACTGCTGTCAGT -ACGGAAAGGCTAACTGCTGAAGGT -ACGGAAAGGCTAACTGCTAACCGT -ACGGAAAGGCTAACTGCTTTGTGC -ACGGAAAGGCTAACTGCTCTAAGC -ACGGAAAGGCTAACTGCTACTAGC -ACGGAAAGGCTAACTGCTAGATGC -ACGGAAAGGCTAACTGCTTGAAGG -ACGGAAAGGCTAACTGCTCAATGG -ACGGAAAGGCTAACTGCTATGAGG -ACGGAAAGGCTAACTGCTAATGGG -ACGGAAAGGCTAACTGCTTCCTGA -ACGGAAAGGCTAACTGCTTAGCGA -ACGGAAAGGCTAACTGCTCACAGA -ACGGAAAGGCTAACTGCTGCAAGA -ACGGAAAGGCTAACTGCTGGTTGA -ACGGAAAGGCTAACTGCTTCCGAT -ACGGAAAGGCTAACTGCTTGGCAT -ACGGAAAGGCTAACTGCTCGAGAT -ACGGAAAGGCTAACTGCTTACCAC -ACGGAAAGGCTAACTGCTCAGAAC -ACGGAAAGGCTAACTGCTGTCTAC -ACGGAAAGGCTAACTGCTACGTAC -ACGGAAAGGCTAACTGCTAGTGAC -ACGGAAAGGCTAACTGCTCTGTAG -ACGGAAAGGCTAACTGCTCCTAAG -ACGGAAAGGCTAACTGCTGTTCAG -ACGGAAAGGCTAACTGCTGCATAG -ACGGAAAGGCTAACTGCTGACAAG -ACGGAAAGGCTAACTGCTAAGCAG -ACGGAAAGGCTAACTGCTCGTCAA -ACGGAAAGGCTAACTGCTGCTGAA -ACGGAAAGGCTAACTGCTAGTACG -ACGGAAAGGCTAACTGCTATCCGA -ACGGAAAGGCTAACTGCTATGGGA -ACGGAAAGGCTAACTGCTGTGCAA -ACGGAAAGGCTAACTGCTGAGGAA -ACGGAAAGGCTAACTGCTCAGGTA -ACGGAAAGGCTAACTGCTGACTCT -ACGGAAAGGCTAACTGCTAGTCCT -ACGGAAAGGCTAACTGCTTAAGCC -ACGGAAAGGCTAACTGCTATAGCC -ACGGAAAGGCTAACTGCTTAACCG -ACGGAAAGGCTAACTGCTATGCCA -ACGGAAAGGCTATCTGGAGGAAAC -ACGGAAAGGCTATCTGGAAACACC -ACGGAAAGGCTATCTGGAATCGAG -ACGGAAAGGCTATCTGGACTCCTT -ACGGAAAGGCTATCTGGACCTGTT -ACGGAAAGGCTATCTGGACGGTTT -ACGGAAAGGCTATCTGGAGTGGTT -ACGGAAAGGCTATCTGGAGCCTTT -ACGGAAAGGCTATCTGGAGGTCTT -ACGGAAAGGCTATCTGGAACGCTT -ACGGAAAGGCTATCTGGAAGCGTT -ACGGAAAGGCTATCTGGATTCGTC -ACGGAAAGGCTATCTGGATCTCTC -ACGGAAAGGCTATCTGGATGGATC -ACGGAAAGGCTATCTGGACACTTC -ACGGAAAGGCTATCTGGAGTACTC -ACGGAAAGGCTATCTGGAGATGTC -ACGGAAAGGCTATCTGGAACAGTC -ACGGAAAGGCTATCTGGATTGCTG -ACGGAAAGGCTATCTGGATCCATG -ACGGAAAGGCTATCTGGATGTGTG -ACGGAAAGGCTATCTGGACTAGTG -ACGGAAAGGCTATCTGGACATCTG -ACGGAAAGGCTATCTGGAGAGTTG -ACGGAAAGGCTATCTGGAAGACTG -ACGGAAAGGCTATCTGGATCGGTA -ACGGAAAGGCTATCTGGATGCCTA -ACGGAAAGGCTATCTGGACCACTA -ACGGAAAGGCTATCTGGAGGAGTA -ACGGAAAGGCTATCTGGATCGTCT -ACGGAAAGGCTATCTGGATGCACT -ACGGAAAGGCTATCTGGACTGACT -ACGGAAAGGCTATCTGGACAACCT -ACGGAAAGGCTATCTGGAGCTACT -ACGGAAAGGCTATCTGGAGGATCT -ACGGAAAGGCTATCTGGAAAGGCT -ACGGAAAGGCTATCTGGATCAACC -ACGGAAAGGCTATCTGGATGTTCC -ACGGAAAGGCTATCTGGAATTCCC -ACGGAAAGGCTATCTGGATTCTCG -ACGGAAAGGCTATCTGGATAGACG -ACGGAAAGGCTATCTGGAGTAACG -ACGGAAAGGCTATCTGGAACTTCG -ACGGAAAGGCTATCTGGATACGCA -ACGGAAAGGCTATCTGGACTTGCA -ACGGAAAGGCTATCTGGACGAACA -ACGGAAAGGCTATCTGGACAGTCA -ACGGAAAGGCTATCTGGAGATCCA -ACGGAAAGGCTATCTGGAACGACA -ACGGAAAGGCTATCTGGAAGCTCA -ACGGAAAGGCTATCTGGATCACGT -ACGGAAAGGCTATCTGGACGTAGT -ACGGAAAGGCTATCTGGAGTCAGT -ACGGAAAGGCTATCTGGAGAAGGT -ACGGAAAGGCTATCTGGAAACCGT -ACGGAAAGGCTATCTGGATTGTGC -ACGGAAAGGCTATCTGGACTAAGC -ACGGAAAGGCTATCTGGAACTAGC -ACGGAAAGGCTATCTGGAAGATGC -ACGGAAAGGCTATCTGGATGAAGG -ACGGAAAGGCTATCTGGACAATGG -ACGGAAAGGCTATCTGGAATGAGG -ACGGAAAGGCTATCTGGAAATGGG -ACGGAAAGGCTATCTGGATCCTGA -ACGGAAAGGCTATCTGGATAGCGA -ACGGAAAGGCTATCTGGACACAGA -ACGGAAAGGCTATCTGGAGCAAGA -ACGGAAAGGCTATCTGGAGGTTGA -ACGGAAAGGCTATCTGGATCCGAT -ACGGAAAGGCTATCTGGATGGCAT -ACGGAAAGGCTATCTGGACGAGAT -ACGGAAAGGCTATCTGGATACCAC -ACGGAAAGGCTATCTGGACAGAAC -ACGGAAAGGCTATCTGGAGTCTAC -ACGGAAAGGCTATCTGGAACGTAC -ACGGAAAGGCTATCTGGAAGTGAC -ACGGAAAGGCTATCTGGACTGTAG -ACGGAAAGGCTATCTGGACCTAAG -ACGGAAAGGCTATCTGGAGTTCAG -ACGGAAAGGCTATCTGGAGCATAG -ACGGAAAGGCTATCTGGAGACAAG -ACGGAAAGGCTATCTGGAAAGCAG -ACGGAAAGGCTATCTGGACGTCAA -ACGGAAAGGCTATCTGGAGCTGAA -ACGGAAAGGCTATCTGGAAGTACG -ACGGAAAGGCTATCTGGAATCCGA -ACGGAAAGGCTATCTGGAATGGGA -ACGGAAAGGCTATCTGGAGTGCAA -ACGGAAAGGCTATCTGGAGAGGAA -ACGGAAAGGCTATCTGGACAGGTA -ACGGAAAGGCTATCTGGAGACTCT -ACGGAAAGGCTATCTGGAAGTCCT -ACGGAAAGGCTATCTGGATAAGCC -ACGGAAAGGCTATCTGGAATAGCC -ACGGAAAGGCTATCTGGATAACCG -ACGGAAAGGCTATCTGGAATGCCA -ACGGAAAGGCTAGCTAAGGGAAAC -ACGGAAAGGCTAGCTAAGAACACC -ACGGAAAGGCTAGCTAAGATCGAG -ACGGAAAGGCTAGCTAAGCTCCTT -ACGGAAAGGCTAGCTAAGCCTGTT -ACGGAAAGGCTAGCTAAGCGGTTT -ACGGAAAGGCTAGCTAAGGTGGTT -ACGGAAAGGCTAGCTAAGGCCTTT -ACGGAAAGGCTAGCTAAGGGTCTT -ACGGAAAGGCTAGCTAAGACGCTT -ACGGAAAGGCTAGCTAAGAGCGTT -ACGGAAAGGCTAGCTAAGTTCGTC -ACGGAAAGGCTAGCTAAGTCTCTC -ACGGAAAGGCTAGCTAAGTGGATC -ACGGAAAGGCTAGCTAAGCACTTC -ACGGAAAGGCTAGCTAAGGTACTC -ACGGAAAGGCTAGCTAAGGATGTC -ACGGAAAGGCTAGCTAAGACAGTC -ACGGAAAGGCTAGCTAAGTTGCTG -ACGGAAAGGCTAGCTAAGTCCATG -ACGGAAAGGCTAGCTAAGTGTGTG -ACGGAAAGGCTAGCTAAGCTAGTG -ACGGAAAGGCTAGCTAAGCATCTG -ACGGAAAGGCTAGCTAAGGAGTTG -ACGGAAAGGCTAGCTAAGAGACTG -ACGGAAAGGCTAGCTAAGTCGGTA -ACGGAAAGGCTAGCTAAGTGCCTA -ACGGAAAGGCTAGCTAAGCCACTA -ACGGAAAGGCTAGCTAAGGGAGTA -ACGGAAAGGCTAGCTAAGTCGTCT -ACGGAAAGGCTAGCTAAGTGCACT -ACGGAAAGGCTAGCTAAGCTGACT -ACGGAAAGGCTAGCTAAGCAACCT -ACGGAAAGGCTAGCTAAGGCTACT -ACGGAAAGGCTAGCTAAGGGATCT -ACGGAAAGGCTAGCTAAGAAGGCT -ACGGAAAGGCTAGCTAAGTCAACC -ACGGAAAGGCTAGCTAAGTGTTCC -ACGGAAAGGCTAGCTAAGATTCCC -ACGGAAAGGCTAGCTAAGTTCTCG -ACGGAAAGGCTAGCTAAGTAGACG -ACGGAAAGGCTAGCTAAGGTAACG -ACGGAAAGGCTAGCTAAGACTTCG -ACGGAAAGGCTAGCTAAGTACGCA -ACGGAAAGGCTAGCTAAGCTTGCA -ACGGAAAGGCTAGCTAAGCGAACA -ACGGAAAGGCTAGCTAAGCAGTCA -ACGGAAAGGCTAGCTAAGGATCCA -ACGGAAAGGCTAGCTAAGACGACA -ACGGAAAGGCTAGCTAAGAGCTCA -ACGGAAAGGCTAGCTAAGTCACGT -ACGGAAAGGCTAGCTAAGCGTAGT -ACGGAAAGGCTAGCTAAGGTCAGT -ACGGAAAGGCTAGCTAAGGAAGGT -ACGGAAAGGCTAGCTAAGAACCGT -ACGGAAAGGCTAGCTAAGTTGTGC -ACGGAAAGGCTAGCTAAGCTAAGC -ACGGAAAGGCTAGCTAAGACTAGC -ACGGAAAGGCTAGCTAAGAGATGC -ACGGAAAGGCTAGCTAAGTGAAGG -ACGGAAAGGCTAGCTAAGCAATGG -ACGGAAAGGCTAGCTAAGATGAGG -ACGGAAAGGCTAGCTAAGAATGGG -ACGGAAAGGCTAGCTAAGTCCTGA -ACGGAAAGGCTAGCTAAGTAGCGA -ACGGAAAGGCTAGCTAAGCACAGA -ACGGAAAGGCTAGCTAAGGCAAGA -ACGGAAAGGCTAGCTAAGGGTTGA -ACGGAAAGGCTAGCTAAGTCCGAT -ACGGAAAGGCTAGCTAAGTGGCAT -ACGGAAAGGCTAGCTAAGCGAGAT -ACGGAAAGGCTAGCTAAGTACCAC -ACGGAAAGGCTAGCTAAGCAGAAC -ACGGAAAGGCTAGCTAAGGTCTAC -ACGGAAAGGCTAGCTAAGACGTAC -ACGGAAAGGCTAGCTAAGAGTGAC -ACGGAAAGGCTAGCTAAGCTGTAG -ACGGAAAGGCTAGCTAAGCCTAAG -ACGGAAAGGCTAGCTAAGGTTCAG -ACGGAAAGGCTAGCTAAGGCATAG -ACGGAAAGGCTAGCTAAGGACAAG -ACGGAAAGGCTAGCTAAGAAGCAG -ACGGAAAGGCTAGCTAAGCGTCAA -ACGGAAAGGCTAGCTAAGGCTGAA -ACGGAAAGGCTAGCTAAGAGTACG -ACGGAAAGGCTAGCTAAGATCCGA -ACGGAAAGGCTAGCTAAGATGGGA -ACGGAAAGGCTAGCTAAGGTGCAA -ACGGAAAGGCTAGCTAAGGAGGAA -ACGGAAAGGCTAGCTAAGCAGGTA -ACGGAAAGGCTAGCTAAGGACTCT -ACGGAAAGGCTAGCTAAGAGTCCT -ACGGAAAGGCTAGCTAAGTAAGCC -ACGGAAAGGCTAGCTAAGATAGCC -ACGGAAAGGCTAGCTAAGTAACCG -ACGGAAAGGCTAGCTAAGATGCCA -ACGGAAAGGCTAACCTCAGGAAAC -ACGGAAAGGCTAACCTCAAACACC -ACGGAAAGGCTAACCTCAATCGAG -ACGGAAAGGCTAACCTCACTCCTT -ACGGAAAGGCTAACCTCACCTGTT -ACGGAAAGGCTAACCTCACGGTTT -ACGGAAAGGCTAACCTCAGTGGTT -ACGGAAAGGCTAACCTCAGCCTTT -ACGGAAAGGCTAACCTCAGGTCTT -ACGGAAAGGCTAACCTCAACGCTT -ACGGAAAGGCTAACCTCAAGCGTT -ACGGAAAGGCTAACCTCATTCGTC -ACGGAAAGGCTAACCTCATCTCTC -ACGGAAAGGCTAACCTCATGGATC -ACGGAAAGGCTAACCTCACACTTC -ACGGAAAGGCTAACCTCAGTACTC -ACGGAAAGGCTAACCTCAGATGTC -ACGGAAAGGCTAACCTCAACAGTC -ACGGAAAGGCTAACCTCATTGCTG -ACGGAAAGGCTAACCTCATCCATG -ACGGAAAGGCTAACCTCATGTGTG -ACGGAAAGGCTAACCTCACTAGTG -ACGGAAAGGCTAACCTCACATCTG -ACGGAAAGGCTAACCTCAGAGTTG -ACGGAAAGGCTAACCTCAAGACTG -ACGGAAAGGCTAACCTCATCGGTA -ACGGAAAGGCTAACCTCATGCCTA -ACGGAAAGGCTAACCTCACCACTA -ACGGAAAGGCTAACCTCAGGAGTA -ACGGAAAGGCTAACCTCATCGTCT -ACGGAAAGGCTAACCTCATGCACT -ACGGAAAGGCTAACCTCACTGACT -ACGGAAAGGCTAACCTCACAACCT -ACGGAAAGGCTAACCTCAGCTACT -ACGGAAAGGCTAACCTCAGGATCT -ACGGAAAGGCTAACCTCAAAGGCT -ACGGAAAGGCTAACCTCATCAACC -ACGGAAAGGCTAACCTCATGTTCC -ACGGAAAGGCTAACCTCAATTCCC -ACGGAAAGGCTAACCTCATTCTCG -ACGGAAAGGCTAACCTCATAGACG -ACGGAAAGGCTAACCTCAGTAACG -ACGGAAAGGCTAACCTCAACTTCG -ACGGAAAGGCTAACCTCATACGCA -ACGGAAAGGCTAACCTCACTTGCA -ACGGAAAGGCTAACCTCACGAACA -ACGGAAAGGCTAACCTCACAGTCA -ACGGAAAGGCTAACCTCAGATCCA -ACGGAAAGGCTAACCTCAACGACA -ACGGAAAGGCTAACCTCAAGCTCA -ACGGAAAGGCTAACCTCATCACGT -ACGGAAAGGCTAACCTCACGTAGT -ACGGAAAGGCTAACCTCAGTCAGT -ACGGAAAGGCTAACCTCAGAAGGT -ACGGAAAGGCTAACCTCAAACCGT -ACGGAAAGGCTAACCTCATTGTGC -ACGGAAAGGCTAACCTCACTAAGC -ACGGAAAGGCTAACCTCAACTAGC -ACGGAAAGGCTAACCTCAAGATGC -ACGGAAAGGCTAACCTCATGAAGG -ACGGAAAGGCTAACCTCACAATGG -ACGGAAAGGCTAACCTCAATGAGG -ACGGAAAGGCTAACCTCAAATGGG -ACGGAAAGGCTAACCTCATCCTGA -ACGGAAAGGCTAACCTCATAGCGA -ACGGAAAGGCTAACCTCACACAGA -ACGGAAAGGCTAACCTCAGCAAGA -ACGGAAAGGCTAACCTCAGGTTGA -ACGGAAAGGCTAACCTCATCCGAT -ACGGAAAGGCTAACCTCATGGCAT -ACGGAAAGGCTAACCTCACGAGAT -ACGGAAAGGCTAACCTCATACCAC -ACGGAAAGGCTAACCTCACAGAAC -ACGGAAAGGCTAACCTCAGTCTAC -ACGGAAAGGCTAACCTCAACGTAC -ACGGAAAGGCTAACCTCAAGTGAC -ACGGAAAGGCTAACCTCACTGTAG -ACGGAAAGGCTAACCTCACCTAAG -ACGGAAAGGCTAACCTCAGTTCAG -ACGGAAAGGCTAACCTCAGCATAG -ACGGAAAGGCTAACCTCAGACAAG -ACGGAAAGGCTAACCTCAAAGCAG -ACGGAAAGGCTAACCTCACGTCAA -ACGGAAAGGCTAACCTCAGCTGAA -ACGGAAAGGCTAACCTCAAGTACG -ACGGAAAGGCTAACCTCAATCCGA -ACGGAAAGGCTAACCTCAATGGGA -ACGGAAAGGCTAACCTCAGTGCAA -ACGGAAAGGCTAACCTCAGAGGAA -ACGGAAAGGCTAACCTCACAGGTA -ACGGAAAGGCTAACCTCAGACTCT -ACGGAAAGGCTAACCTCAAGTCCT -ACGGAAAGGCTAACCTCATAAGCC -ACGGAAAGGCTAACCTCAATAGCC -ACGGAAAGGCTAACCTCATAACCG -ACGGAAAGGCTAACCTCAATGCCA -ACGGAAAGGCTATCCTGTGGAAAC -ACGGAAAGGCTATCCTGTAACACC -ACGGAAAGGCTATCCTGTATCGAG -ACGGAAAGGCTATCCTGTCTCCTT -ACGGAAAGGCTATCCTGTCCTGTT -ACGGAAAGGCTATCCTGTCGGTTT -ACGGAAAGGCTATCCTGTGTGGTT -ACGGAAAGGCTATCCTGTGCCTTT -ACGGAAAGGCTATCCTGTGGTCTT -ACGGAAAGGCTATCCTGTACGCTT -ACGGAAAGGCTATCCTGTAGCGTT -ACGGAAAGGCTATCCTGTTTCGTC -ACGGAAAGGCTATCCTGTTCTCTC -ACGGAAAGGCTATCCTGTTGGATC -ACGGAAAGGCTATCCTGTCACTTC -ACGGAAAGGCTATCCTGTGTACTC -ACGGAAAGGCTATCCTGTGATGTC -ACGGAAAGGCTATCCTGTACAGTC -ACGGAAAGGCTATCCTGTTTGCTG -ACGGAAAGGCTATCCTGTTCCATG -ACGGAAAGGCTATCCTGTTGTGTG -ACGGAAAGGCTATCCTGTCTAGTG -ACGGAAAGGCTATCCTGTCATCTG -ACGGAAAGGCTATCCTGTGAGTTG -ACGGAAAGGCTATCCTGTAGACTG -ACGGAAAGGCTATCCTGTTCGGTA -ACGGAAAGGCTATCCTGTTGCCTA -ACGGAAAGGCTATCCTGTCCACTA -ACGGAAAGGCTATCCTGTGGAGTA -ACGGAAAGGCTATCCTGTTCGTCT -ACGGAAAGGCTATCCTGTTGCACT -ACGGAAAGGCTATCCTGTCTGACT -ACGGAAAGGCTATCCTGTCAACCT -ACGGAAAGGCTATCCTGTGCTACT -ACGGAAAGGCTATCCTGTGGATCT -ACGGAAAGGCTATCCTGTAAGGCT -ACGGAAAGGCTATCCTGTTCAACC -ACGGAAAGGCTATCCTGTTGTTCC -ACGGAAAGGCTATCCTGTATTCCC -ACGGAAAGGCTATCCTGTTTCTCG -ACGGAAAGGCTATCCTGTTAGACG -ACGGAAAGGCTATCCTGTGTAACG -ACGGAAAGGCTATCCTGTACTTCG -ACGGAAAGGCTATCCTGTTACGCA -ACGGAAAGGCTATCCTGTCTTGCA -ACGGAAAGGCTATCCTGTCGAACA -ACGGAAAGGCTATCCTGTCAGTCA -ACGGAAAGGCTATCCTGTGATCCA -ACGGAAAGGCTATCCTGTACGACA -ACGGAAAGGCTATCCTGTAGCTCA -ACGGAAAGGCTATCCTGTTCACGT -ACGGAAAGGCTATCCTGTCGTAGT -ACGGAAAGGCTATCCTGTGTCAGT -ACGGAAAGGCTATCCTGTGAAGGT -ACGGAAAGGCTATCCTGTAACCGT -ACGGAAAGGCTATCCTGTTTGTGC -ACGGAAAGGCTATCCTGTCTAAGC -ACGGAAAGGCTATCCTGTACTAGC -ACGGAAAGGCTATCCTGTAGATGC -ACGGAAAGGCTATCCTGTTGAAGG -ACGGAAAGGCTATCCTGTCAATGG -ACGGAAAGGCTATCCTGTATGAGG -ACGGAAAGGCTATCCTGTAATGGG -ACGGAAAGGCTATCCTGTTCCTGA -ACGGAAAGGCTATCCTGTTAGCGA -ACGGAAAGGCTATCCTGTCACAGA -ACGGAAAGGCTATCCTGTGCAAGA -ACGGAAAGGCTATCCTGTGGTTGA -ACGGAAAGGCTATCCTGTTCCGAT -ACGGAAAGGCTATCCTGTTGGCAT -ACGGAAAGGCTATCCTGTCGAGAT -ACGGAAAGGCTATCCTGTTACCAC -ACGGAAAGGCTATCCTGTCAGAAC -ACGGAAAGGCTATCCTGTGTCTAC -ACGGAAAGGCTATCCTGTACGTAC -ACGGAAAGGCTATCCTGTAGTGAC -ACGGAAAGGCTATCCTGTCTGTAG -ACGGAAAGGCTATCCTGTCCTAAG -ACGGAAAGGCTATCCTGTGTTCAG -ACGGAAAGGCTATCCTGTGCATAG -ACGGAAAGGCTATCCTGTGACAAG -ACGGAAAGGCTATCCTGTAAGCAG -ACGGAAAGGCTATCCTGTCGTCAA -ACGGAAAGGCTATCCTGTGCTGAA -ACGGAAAGGCTATCCTGTAGTACG -ACGGAAAGGCTATCCTGTATCCGA -ACGGAAAGGCTATCCTGTATGGGA -ACGGAAAGGCTATCCTGTGTGCAA -ACGGAAAGGCTATCCTGTGAGGAA -ACGGAAAGGCTATCCTGTCAGGTA -ACGGAAAGGCTATCCTGTGACTCT -ACGGAAAGGCTATCCTGTAGTCCT -ACGGAAAGGCTATCCTGTTAAGCC -ACGGAAAGGCTATCCTGTATAGCC -ACGGAAAGGCTATCCTGTTAACCG -ACGGAAAGGCTATCCTGTATGCCA -ACGGAAAGGCTACCCATTGGAAAC -ACGGAAAGGCTACCCATTAACACC -ACGGAAAGGCTACCCATTATCGAG -ACGGAAAGGCTACCCATTCTCCTT -ACGGAAAGGCTACCCATTCCTGTT -ACGGAAAGGCTACCCATTCGGTTT -ACGGAAAGGCTACCCATTGTGGTT -ACGGAAAGGCTACCCATTGCCTTT -ACGGAAAGGCTACCCATTGGTCTT -ACGGAAAGGCTACCCATTACGCTT -ACGGAAAGGCTACCCATTAGCGTT -ACGGAAAGGCTACCCATTTTCGTC -ACGGAAAGGCTACCCATTTCTCTC -ACGGAAAGGCTACCCATTTGGATC -ACGGAAAGGCTACCCATTCACTTC -ACGGAAAGGCTACCCATTGTACTC -ACGGAAAGGCTACCCATTGATGTC -ACGGAAAGGCTACCCATTACAGTC -ACGGAAAGGCTACCCATTTTGCTG -ACGGAAAGGCTACCCATTTCCATG -ACGGAAAGGCTACCCATTTGTGTG -ACGGAAAGGCTACCCATTCTAGTG -ACGGAAAGGCTACCCATTCATCTG -ACGGAAAGGCTACCCATTGAGTTG -ACGGAAAGGCTACCCATTAGACTG -ACGGAAAGGCTACCCATTTCGGTA -ACGGAAAGGCTACCCATTTGCCTA -ACGGAAAGGCTACCCATTCCACTA -ACGGAAAGGCTACCCATTGGAGTA -ACGGAAAGGCTACCCATTTCGTCT -ACGGAAAGGCTACCCATTTGCACT -ACGGAAAGGCTACCCATTCTGACT -ACGGAAAGGCTACCCATTCAACCT -ACGGAAAGGCTACCCATTGCTACT -ACGGAAAGGCTACCCATTGGATCT -ACGGAAAGGCTACCCATTAAGGCT -ACGGAAAGGCTACCCATTTCAACC -ACGGAAAGGCTACCCATTTGTTCC -ACGGAAAGGCTACCCATTATTCCC -ACGGAAAGGCTACCCATTTTCTCG -ACGGAAAGGCTACCCATTTAGACG -ACGGAAAGGCTACCCATTGTAACG -ACGGAAAGGCTACCCATTACTTCG -ACGGAAAGGCTACCCATTTACGCA -ACGGAAAGGCTACCCATTCTTGCA -ACGGAAAGGCTACCCATTCGAACA -ACGGAAAGGCTACCCATTCAGTCA -ACGGAAAGGCTACCCATTGATCCA -ACGGAAAGGCTACCCATTACGACA -ACGGAAAGGCTACCCATTAGCTCA -ACGGAAAGGCTACCCATTTCACGT -ACGGAAAGGCTACCCATTCGTAGT -ACGGAAAGGCTACCCATTGTCAGT -ACGGAAAGGCTACCCATTGAAGGT -ACGGAAAGGCTACCCATTAACCGT -ACGGAAAGGCTACCCATTTTGTGC -ACGGAAAGGCTACCCATTCTAAGC -ACGGAAAGGCTACCCATTACTAGC -ACGGAAAGGCTACCCATTAGATGC -ACGGAAAGGCTACCCATTTGAAGG -ACGGAAAGGCTACCCATTCAATGG -ACGGAAAGGCTACCCATTATGAGG -ACGGAAAGGCTACCCATTAATGGG -ACGGAAAGGCTACCCATTTCCTGA -ACGGAAAGGCTACCCATTTAGCGA -ACGGAAAGGCTACCCATTCACAGA -ACGGAAAGGCTACCCATTGCAAGA -ACGGAAAGGCTACCCATTGGTTGA -ACGGAAAGGCTACCCATTTCCGAT -ACGGAAAGGCTACCCATTTGGCAT -ACGGAAAGGCTACCCATTCGAGAT -ACGGAAAGGCTACCCATTTACCAC -ACGGAAAGGCTACCCATTCAGAAC -ACGGAAAGGCTACCCATTGTCTAC -ACGGAAAGGCTACCCATTACGTAC -ACGGAAAGGCTACCCATTAGTGAC -ACGGAAAGGCTACCCATTCTGTAG -ACGGAAAGGCTACCCATTCCTAAG -ACGGAAAGGCTACCCATTGTTCAG -ACGGAAAGGCTACCCATTGCATAG -ACGGAAAGGCTACCCATTGACAAG -ACGGAAAGGCTACCCATTAAGCAG -ACGGAAAGGCTACCCATTCGTCAA -ACGGAAAGGCTACCCATTGCTGAA -ACGGAAAGGCTACCCATTAGTACG -ACGGAAAGGCTACCCATTATCCGA -ACGGAAAGGCTACCCATTATGGGA -ACGGAAAGGCTACCCATTGTGCAA -ACGGAAAGGCTACCCATTGAGGAA -ACGGAAAGGCTACCCATTCAGGTA -ACGGAAAGGCTACCCATTGACTCT -ACGGAAAGGCTACCCATTAGTCCT -ACGGAAAGGCTACCCATTTAAGCC -ACGGAAAGGCTACCCATTATAGCC -ACGGAAAGGCTACCCATTTAACCG -ACGGAAAGGCTACCCATTATGCCA -ACGGAAAGGCTATCGTTCGGAAAC -ACGGAAAGGCTATCGTTCAACACC -ACGGAAAGGCTATCGTTCATCGAG -ACGGAAAGGCTATCGTTCCTCCTT -ACGGAAAGGCTATCGTTCCCTGTT -ACGGAAAGGCTATCGTTCCGGTTT -ACGGAAAGGCTATCGTTCGTGGTT -ACGGAAAGGCTATCGTTCGCCTTT -ACGGAAAGGCTATCGTTCGGTCTT -ACGGAAAGGCTATCGTTCACGCTT -ACGGAAAGGCTATCGTTCAGCGTT -ACGGAAAGGCTATCGTTCTTCGTC -ACGGAAAGGCTATCGTTCTCTCTC -ACGGAAAGGCTATCGTTCTGGATC -ACGGAAAGGCTATCGTTCCACTTC -ACGGAAAGGCTATCGTTCGTACTC -ACGGAAAGGCTATCGTTCGATGTC -ACGGAAAGGCTATCGTTCACAGTC -ACGGAAAGGCTATCGTTCTTGCTG -ACGGAAAGGCTATCGTTCTCCATG -ACGGAAAGGCTATCGTTCTGTGTG -ACGGAAAGGCTATCGTTCCTAGTG -ACGGAAAGGCTATCGTTCCATCTG -ACGGAAAGGCTATCGTTCGAGTTG -ACGGAAAGGCTATCGTTCAGACTG -ACGGAAAGGCTATCGTTCTCGGTA -ACGGAAAGGCTATCGTTCTGCCTA -ACGGAAAGGCTATCGTTCCCACTA -ACGGAAAGGCTATCGTTCGGAGTA -ACGGAAAGGCTATCGTTCTCGTCT -ACGGAAAGGCTATCGTTCTGCACT -ACGGAAAGGCTATCGTTCCTGACT -ACGGAAAGGCTATCGTTCCAACCT -ACGGAAAGGCTATCGTTCGCTACT -ACGGAAAGGCTATCGTTCGGATCT -ACGGAAAGGCTATCGTTCAAGGCT -ACGGAAAGGCTATCGTTCTCAACC -ACGGAAAGGCTATCGTTCTGTTCC -ACGGAAAGGCTATCGTTCATTCCC -ACGGAAAGGCTATCGTTCTTCTCG -ACGGAAAGGCTATCGTTCTAGACG -ACGGAAAGGCTATCGTTCGTAACG -ACGGAAAGGCTATCGTTCACTTCG -ACGGAAAGGCTATCGTTCTACGCA -ACGGAAAGGCTATCGTTCCTTGCA -ACGGAAAGGCTATCGTTCCGAACA -ACGGAAAGGCTATCGTTCCAGTCA -ACGGAAAGGCTATCGTTCGATCCA -ACGGAAAGGCTATCGTTCACGACA -ACGGAAAGGCTATCGTTCAGCTCA -ACGGAAAGGCTATCGTTCTCACGT -ACGGAAAGGCTATCGTTCCGTAGT -ACGGAAAGGCTATCGTTCGTCAGT -ACGGAAAGGCTATCGTTCGAAGGT -ACGGAAAGGCTATCGTTCAACCGT -ACGGAAAGGCTATCGTTCTTGTGC -ACGGAAAGGCTATCGTTCCTAAGC -ACGGAAAGGCTATCGTTCACTAGC -ACGGAAAGGCTATCGTTCAGATGC -ACGGAAAGGCTATCGTTCTGAAGG -ACGGAAAGGCTATCGTTCCAATGG -ACGGAAAGGCTATCGTTCATGAGG -ACGGAAAGGCTATCGTTCAATGGG -ACGGAAAGGCTATCGTTCTCCTGA -ACGGAAAGGCTATCGTTCTAGCGA -ACGGAAAGGCTATCGTTCCACAGA -ACGGAAAGGCTATCGTTCGCAAGA -ACGGAAAGGCTATCGTTCGGTTGA -ACGGAAAGGCTATCGTTCTCCGAT -ACGGAAAGGCTATCGTTCTGGCAT -ACGGAAAGGCTATCGTTCCGAGAT -ACGGAAAGGCTATCGTTCTACCAC -ACGGAAAGGCTATCGTTCCAGAAC -ACGGAAAGGCTATCGTTCGTCTAC -ACGGAAAGGCTATCGTTCACGTAC -ACGGAAAGGCTATCGTTCAGTGAC -ACGGAAAGGCTATCGTTCCTGTAG -ACGGAAAGGCTATCGTTCCCTAAG -ACGGAAAGGCTATCGTTCGTTCAG -ACGGAAAGGCTATCGTTCGCATAG -ACGGAAAGGCTATCGTTCGACAAG -ACGGAAAGGCTATCGTTCAAGCAG -ACGGAAAGGCTATCGTTCCGTCAA -ACGGAAAGGCTATCGTTCGCTGAA -ACGGAAAGGCTATCGTTCAGTACG -ACGGAAAGGCTATCGTTCATCCGA -ACGGAAAGGCTATCGTTCATGGGA -ACGGAAAGGCTATCGTTCGTGCAA -ACGGAAAGGCTATCGTTCGAGGAA -ACGGAAAGGCTATCGTTCCAGGTA -ACGGAAAGGCTATCGTTCGACTCT -ACGGAAAGGCTATCGTTCAGTCCT -ACGGAAAGGCTATCGTTCTAAGCC -ACGGAAAGGCTATCGTTCATAGCC -ACGGAAAGGCTATCGTTCTAACCG -ACGGAAAGGCTATCGTTCATGCCA -ACGGAAAGGCTAACGTAGGGAAAC -ACGGAAAGGCTAACGTAGAACACC -ACGGAAAGGCTAACGTAGATCGAG -ACGGAAAGGCTAACGTAGCTCCTT -ACGGAAAGGCTAACGTAGCCTGTT -ACGGAAAGGCTAACGTAGCGGTTT -ACGGAAAGGCTAACGTAGGTGGTT -ACGGAAAGGCTAACGTAGGCCTTT -ACGGAAAGGCTAACGTAGGGTCTT -ACGGAAAGGCTAACGTAGACGCTT -ACGGAAAGGCTAACGTAGAGCGTT -ACGGAAAGGCTAACGTAGTTCGTC -ACGGAAAGGCTAACGTAGTCTCTC -ACGGAAAGGCTAACGTAGTGGATC -ACGGAAAGGCTAACGTAGCACTTC -ACGGAAAGGCTAACGTAGGTACTC -ACGGAAAGGCTAACGTAGGATGTC -ACGGAAAGGCTAACGTAGACAGTC -ACGGAAAGGCTAACGTAGTTGCTG -ACGGAAAGGCTAACGTAGTCCATG -ACGGAAAGGCTAACGTAGTGTGTG -ACGGAAAGGCTAACGTAGCTAGTG -ACGGAAAGGCTAACGTAGCATCTG -ACGGAAAGGCTAACGTAGGAGTTG -ACGGAAAGGCTAACGTAGAGACTG -ACGGAAAGGCTAACGTAGTCGGTA -ACGGAAAGGCTAACGTAGTGCCTA -ACGGAAAGGCTAACGTAGCCACTA -ACGGAAAGGCTAACGTAGGGAGTA -ACGGAAAGGCTAACGTAGTCGTCT -ACGGAAAGGCTAACGTAGTGCACT -ACGGAAAGGCTAACGTAGCTGACT -ACGGAAAGGCTAACGTAGCAACCT -ACGGAAAGGCTAACGTAGGCTACT -ACGGAAAGGCTAACGTAGGGATCT -ACGGAAAGGCTAACGTAGAAGGCT -ACGGAAAGGCTAACGTAGTCAACC -ACGGAAAGGCTAACGTAGTGTTCC -ACGGAAAGGCTAACGTAGATTCCC -ACGGAAAGGCTAACGTAGTTCTCG -ACGGAAAGGCTAACGTAGTAGACG -ACGGAAAGGCTAACGTAGGTAACG -ACGGAAAGGCTAACGTAGACTTCG -ACGGAAAGGCTAACGTAGTACGCA -ACGGAAAGGCTAACGTAGCTTGCA -ACGGAAAGGCTAACGTAGCGAACA -ACGGAAAGGCTAACGTAGCAGTCA -ACGGAAAGGCTAACGTAGGATCCA -ACGGAAAGGCTAACGTAGACGACA -ACGGAAAGGCTAACGTAGAGCTCA -ACGGAAAGGCTAACGTAGTCACGT -ACGGAAAGGCTAACGTAGCGTAGT -ACGGAAAGGCTAACGTAGGTCAGT -ACGGAAAGGCTAACGTAGGAAGGT -ACGGAAAGGCTAACGTAGAACCGT -ACGGAAAGGCTAACGTAGTTGTGC -ACGGAAAGGCTAACGTAGCTAAGC -ACGGAAAGGCTAACGTAGACTAGC -ACGGAAAGGCTAACGTAGAGATGC -ACGGAAAGGCTAACGTAGTGAAGG -ACGGAAAGGCTAACGTAGCAATGG -ACGGAAAGGCTAACGTAGATGAGG -ACGGAAAGGCTAACGTAGAATGGG -ACGGAAAGGCTAACGTAGTCCTGA -ACGGAAAGGCTAACGTAGTAGCGA -ACGGAAAGGCTAACGTAGCACAGA -ACGGAAAGGCTAACGTAGGCAAGA -ACGGAAAGGCTAACGTAGGGTTGA -ACGGAAAGGCTAACGTAGTCCGAT -ACGGAAAGGCTAACGTAGTGGCAT -ACGGAAAGGCTAACGTAGCGAGAT -ACGGAAAGGCTAACGTAGTACCAC -ACGGAAAGGCTAACGTAGCAGAAC -ACGGAAAGGCTAACGTAGGTCTAC -ACGGAAAGGCTAACGTAGACGTAC -ACGGAAAGGCTAACGTAGAGTGAC -ACGGAAAGGCTAACGTAGCTGTAG -ACGGAAAGGCTAACGTAGCCTAAG -ACGGAAAGGCTAACGTAGGTTCAG -ACGGAAAGGCTAACGTAGGCATAG -ACGGAAAGGCTAACGTAGGACAAG -ACGGAAAGGCTAACGTAGAAGCAG -ACGGAAAGGCTAACGTAGCGTCAA -ACGGAAAGGCTAACGTAGGCTGAA -ACGGAAAGGCTAACGTAGAGTACG -ACGGAAAGGCTAACGTAGATCCGA -ACGGAAAGGCTAACGTAGATGGGA -ACGGAAAGGCTAACGTAGGTGCAA -ACGGAAAGGCTAACGTAGGAGGAA -ACGGAAAGGCTAACGTAGCAGGTA -ACGGAAAGGCTAACGTAGGACTCT -ACGGAAAGGCTAACGTAGAGTCCT -ACGGAAAGGCTAACGTAGTAAGCC -ACGGAAAGGCTAACGTAGATAGCC -ACGGAAAGGCTAACGTAGTAACCG -ACGGAAAGGCTAACGTAGATGCCA -ACGGAAAGGCTAACGGTAGGAAAC -ACGGAAAGGCTAACGGTAAACACC -ACGGAAAGGCTAACGGTAATCGAG -ACGGAAAGGCTAACGGTACTCCTT -ACGGAAAGGCTAACGGTACCTGTT -ACGGAAAGGCTAACGGTACGGTTT -ACGGAAAGGCTAACGGTAGTGGTT -ACGGAAAGGCTAACGGTAGCCTTT -ACGGAAAGGCTAACGGTAGGTCTT -ACGGAAAGGCTAACGGTAACGCTT -ACGGAAAGGCTAACGGTAAGCGTT -ACGGAAAGGCTAACGGTATTCGTC -ACGGAAAGGCTAACGGTATCTCTC -ACGGAAAGGCTAACGGTATGGATC -ACGGAAAGGCTAACGGTACACTTC -ACGGAAAGGCTAACGGTAGTACTC -ACGGAAAGGCTAACGGTAGATGTC -ACGGAAAGGCTAACGGTAACAGTC -ACGGAAAGGCTAACGGTATTGCTG -ACGGAAAGGCTAACGGTATCCATG -ACGGAAAGGCTAACGGTATGTGTG -ACGGAAAGGCTAACGGTACTAGTG -ACGGAAAGGCTAACGGTACATCTG -ACGGAAAGGCTAACGGTAGAGTTG -ACGGAAAGGCTAACGGTAAGACTG -ACGGAAAGGCTAACGGTATCGGTA -ACGGAAAGGCTAACGGTATGCCTA -ACGGAAAGGCTAACGGTACCACTA -ACGGAAAGGCTAACGGTAGGAGTA -ACGGAAAGGCTAACGGTATCGTCT -ACGGAAAGGCTAACGGTATGCACT -ACGGAAAGGCTAACGGTACTGACT -ACGGAAAGGCTAACGGTACAACCT -ACGGAAAGGCTAACGGTAGCTACT -ACGGAAAGGCTAACGGTAGGATCT -ACGGAAAGGCTAACGGTAAAGGCT -ACGGAAAGGCTAACGGTATCAACC -ACGGAAAGGCTAACGGTATGTTCC -ACGGAAAGGCTAACGGTAATTCCC -ACGGAAAGGCTAACGGTATTCTCG -ACGGAAAGGCTAACGGTATAGACG -ACGGAAAGGCTAACGGTAGTAACG -ACGGAAAGGCTAACGGTAACTTCG -ACGGAAAGGCTAACGGTATACGCA -ACGGAAAGGCTAACGGTACTTGCA -ACGGAAAGGCTAACGGTACGAACA -ACGGAAAGGCTAACGGTACAGTCA -ACGGAAAGGCTAACGGTAGATCCA -ACGGAAAGGCTAACGGTAACGACA -ACGGAAAGGCTAACGGTAAGCTCA -ACGGAAAGGCTAACGGTATCACGT -ACGGAAAGGCTAACGGTACGTAGT -ACGGAAAGGCTAACGGTAGTCAGT -ACGGAAAGGCTAACGGTAGAAGGT -ACGGAAAGGCTAACGGTAAACCGT -ACGGAAAGGCTAACGGTATTGTGC -ACGGAAAGGCTAACGGTACTAAGC -ACGGAAAGGCTAACGGTAACTAGC -ACGGAAAGGCTAACGGTAAGATGC -ACGGAAAGGCTAACGGTATGAAGG -ACGGAAAGGCTAACGGTACAATGG -ACGGAAAGGCTAACGGTAATGAGG -ACGGAAAGGCTAACGGTAAATGGG -ACGGAAAGGCTAACGGTATCCTGA -ACGGAAAGGCTAACGGTATAGCGA -ACGGAAAGGCTAACGGTACACAGA -ACGGAAAGGCTAACGGTAGCAAGA -ACGGAAAGGCTAACGGTAGGTTGA -ACGGAAAGGCTAACGGTATCCGAT -ACGGAAAGGCTAACGGTATGGCAT -ACGGAAAGGCTAACGGTACGAGAT -ACGGAAAGGCTAACGGTATACCAC -ACGGAAAGGCTAACGGTACAGAAC -ACGGAAAGGCTAACGGTAGTCTAC -ACGGAAAGGCTAACGGTAACGTAC -ACGGAAAGGCTAACGGTAAGTGAC -ACGGAAAGGCTAACGGTACTGTAG -ACGGAAAGGCTAACGGTACCTAAG -ACGGAAAGGCTAACGGTAGTTCAG -ACGGAAAGGCTAACGGTAGCATAG -ACGGAAAGGCTAACGGTAGACAAG -ACGGAAAGGCTAACGGTAAAGCAG -ACGGAAAGGCTAACGGTACGTCAA -ACGGAAAGGCTAACGGTAGCTGAA -ACGGAAAGGCTAACGGTAAGTACG -ACGGAAAGGCTAACGGTAATCCGA -ACGGAAAGGCTAACGGTAATGGGA -ACGGAAAGGCTAACGGTAGTGCAA -ACGGAAAGGCTAACGGTAGAGGAA -ACGGAAAGGCTAACGGTACAGGTA -ACGGAAAGGCTAACGGTAGACTCT -ACGGAAAGGCTAACGGTAAGTCCT -ACGGAAAGGCTAACGGTATAAGCC -ACGGAAAGGCTAACGGTAATAGCC -ACGGAAAGGCTAACGGTATAACCG -ACGGAAAGGCTAACGGTAATGCCA -ACGGAAAGGCTATCGACTGGAAAC -ACGGAAAGGCTATCGACTAACACC -ACGGAAAGGCTATCGACTATCGAG -ACGGAAAGGCTATCGACTCTCCTT -ACGGAAAGGCTATCGACTCCTGTT -ACGGAAAGGCTATCGACTCGGTTT -ACGGAAAGGCTATCGACTGTGGTT -ACGGAAAGGCTATCGACTGCCTTT -ACGGAAAGGCTATCGACTGGTCTT -ACGGAAAGGCTATCGACTACGCTT -ACGGAAAGGCTATCGACTAGCGTT -ACGGAAAGGCTATCGACTTTCGTC -ACGGAAAGGCTATCGACTTCTCTC -ACGGAAAGGCTATCGACTTGGATC -ACGGAAAGGCTATCGACTCACTTC -ACGGAAAGGCTATCGACTGTACTC -ACGGAAAGGCTATCGACTGATGTC -ACGGAAAGGCTATCGACTACAGTC -ACGGAAAGGCTATCGACTTTGCTG -ACGGAAAGGCTATCGACTTCCATG -ACGGAAAGGCTATCGACTTGTGTG -ACGGAAAGGCTATCGACTCTAGTG -ACGGAAAGGCTATCGACTCATCTG -ACGGAAAGGCTATCGACTGAGTTG -ACGGAAAGGCTATCGACTAGACTG -ACGGAAAGGCTATCGACTTCGGTA -ACGGAAAGGCTATCGACTTGCCTA -ACGGAAAGGCTATCGACTCCACTA -ACGGAAAGGCTATCGACTGGAGTA -ACGGAAAGGCTATCGACTTCGTCT -ACGGAAAGGCTATCGACTTGCACT -ACGGAAAGGCTATCGACTCTGACT -ACGGAAAGGCTATCGACTCAACCT -ACGGAAAGGCTATCGACTGCTACT -ACGGAAAGGCTATCGACTGGATCT -ACGGAAAGGCTATCGACTAAGGCT -ACGGAAAGGCTATCGACTTCAACC -ACGGAAAGGCTATCGACTTGTTCC -ACGGAAAGGCTATCGACTATTCCC -ACGGAAAGGCTATCGACTTTCTCG -ACGGAAAGGCTATCGACTTAGACG -ACGGAAAGGCTATCGACTGTAACG -ACGGAAAGGCTATCGACTACTTCG -ACGGAAAGGCTATCGACTTACGCA -ACGGAAAGGCTATCGACTCTTGCA -ACGGAAAGGCTATCGACTCGAACA -ACGGAAAGGCTATCGACTCAGTCA -ACGGAAAGGCTATCGACTGATCCA -ACGGAAAGGCTATCGACTACGACA -ACGGAAAGGCTATCGACTAGCTCA -ACGGAAAGGCTATCGACTTCACGT -ACGGAAAGGCTATCGACTCGTAGT -ACGGAAAGGCTATCGACTGTCAGT -ACGGAAAGGCTATCGACTGAAGGT -ACGGAAAGGCTATCGACTAACCGT -ACGGAAAGGCTATCGACTTTGTGC -ACGGAAAGGCTATCGACTCTAAGC -ACGGAAAGGCTATCGACTACTAGC -ACGGAAAGGCTATCGACTAGATGC -ACGGAAAGGCTATCGACTTGAAGG -ACGGAAAGGCTATCGACTCAATGG -ACGGAAAGGCTATCGACTATGAGG -ACGGAAAGGCTATCGACTAATGGG -ACGGAAAGGCTATCGACTTCCTGA -ACGGAAAGGCTATCGACTTAGCGA -ACGGAAAGGCTATCGACTCACAGA -ACGGAAAGGCTATCGACTGCAAGA -ACGGAAAGGCTATCGACTGGTTGA -ACGGAAAGGCTATCGACTTCCGAT -ACGGAAAGGCTATCGACTTGGCAT -ACGGAAAGGCTATCGACTCGAGAT -ACGGAAAGGCTATCGACTTACCAC -ACGGAAAGGCTATCGACTCAGAAC -ACGGAAAGGCTATCGACTGTCTAC -ACGGAAAGGCTATCGACTACGTAC -ACGGAAAGGCTATCGACTAGTGAC -ACGGAAAGGCTATCGACTCTGTAG -ACGGAAAGGCTATCGACTCCTAAG -ACGGAAAGGCTATCGACTGTTCAG -ACGGAAAGGCTATCGACTGCATAG -ACGGAAAGGCTATCGACTGACAAG -ACGGAAAGGCTATCGACTAAGCAG -ACGGAAAGGCTATCGACTCGTCAA -ACGGAAAGGCTATCGACTGCTGAA -ACGGAAAGGCTATCGACTAGTACG -ACGGAAAGGCTATCGACTATCCGA -ACGGAAAGGCTATCGACTATGGGA -ACGGAAAGGCTATCGACTGTGCAA -ACGGAAAGGCTATCGACTGAGGAA -ACGGAAAGGCTATCGACTCAGGTA -ACGGAAAGGCTATCGACTGACTCT -ACGGAAAGGCTATCGACTAGTCCT -ACGGAAAGGCTATCGACTTAAGCC -ACGGAAAGGCTATCGACTATAGCC -ACGGAAAGGCTATCGACTTAACCG -ACGGAAAGGCTATCGACTATGCCA -ACGGAAAGGCTAGCATACGGAAAC -ACGGAAAGGCTAGCATACAACACC -ACGGAAAGGCTAGCATACATCGAG -ACGGAAAGGCTAGCATACCTCCTT -ACGGAAAGGCTAGCATACCCTGTT -ACGGAAAGGCTAGCATACCGGTTT -ACGGAAAGGCTAGCATACGTGGTT -ACGGAAAGGCTAGCATACGCCTTT -ACGGAAAGGCTAGCATACGGTCTT -ACGGAAAGGCTAGCATACACGCTT -ACGGAAAGGCTAGCATACAGCGTT -ACGGAAAGGCTAGCATACTTCGTC -ACGGAAAGGCTAGCATACTCTCTC -ACGGAAAGGCTAGCATACTGGATC -ACGGAAAGGCTAGCATACCACTTC -ACGGAAAGGCTAGCATACGTACTC -ACGGAAAGGCTAGCATACGATGTC -ACGGAAAGGCTAGCATACACAGTC -ACGGAAAGGCTAGCATACTTGCTG -ACGGAAAGGCTAGCATACTCCATG -ACGGAAAGGCTAGCATACTGTGTG -ACGGAAAGGCTAGCATACCTAGTG -ACGGAAAGGCTAGCATACCATCTG -ACGGAAAGGCTAGCATACGAGTTG -ACGGAAAGGCTAGCATACAGACTG -ACGGAAAGGCTAGCATACTCGGTA -ACGGAAAGGCTAGCATACTGCCTA -ACGGAAAGGCTAGCATACCCACTA -ACGGAAAGGCTAGCATACGGAGTA -ACGGAAAGGCTAGCATACTCGTCT -ACGGAAAGGCTAGCATACTGCACT -ACGGAAAGGCTAGCATACCTGACT -ACGGAAAGGCTAGCATACCAACCT -ACGGAAAGGCTAGCATACGCTACT -ACGGAAAGGCTAGCATACGGATCT -ACGGAAAGGCTAGCATACAAGGCT -ACGGAAAGGCTAGCATACTCAACC -ACGGAAAGGCTAGCATACTGTTCC -ACGGAAAGGCTAGCATACATTCCC -ACGGAAAGGCTAGCATACTTCTCG -ACGGAAAGGCTAGCATACTAGACG -ACGGAAAGGCTAGCATACGTAACG -ACGGAAAGGCTAGCATACACTTCG -ACGGAAAGGCTAGCATACTACGCA -ACGGAAAGGCTAGCATACCTTGCA -ACGGAAAGGCTAGCATACCGAACA -ACGGAAAGGCTAGCATACCAGTCA -ACGGAAAGGCTAGCATACGATCCA -ACGGAAAGGCTAGCATACACGACA -ACGGAAAGGCTAGCATACAGCTCA -ACGGAAAGGCTAGCATACTCACGT -ACGGAAAGGCTAGCATACCGTAGT -ACGGAAAGGCTAGCATACGTCAGT -ACGGAAAGGCTAGCATACGAAGGT -ACGGAAAGGCTAGCATACAACCGT -ACGGAAAGGCTAGCATACTTGTGC -ACGGAAAGGCTAGCATACCTAAGC -ACGGAAAGGCTAGCATACACTAGC -ACGGAAAGGCTAGCATACAGATGC -ACGGAAAGGCTAGCATACTGAAGG -ACGGAAAGGCTAGCATACCAATGG -ACGGAAAGGCTAGCATACATGAGG -ACGGAAAGGCTAGCATACAATGGG -ACGGAAAGGCTAGCATACTCCTGA -ACGGAAAGGCTAGCATACTAGCGA -ACGGAAAGGCTAGCATACCACAGA -ACGGAAAGGCTAGCATACGCAAGA -ACGGAAAGGCTAGCATACGGTTGA -ACGGAAAGGCTAGCATACTCCGAT -ACGGAAAGGCTAGCATACTGGCAT -ACGGAAAGGCTAGCATACCGAGAT -ACGGAAAGGCTAGCATACTACCAC -ACGGAAAGGCTAGCATACCAGAAC -ACGGAAAGGCTAGCATACGTCTAC -ACGGAAAGGCTAGCATACACGTAC -ACGGAAAGGCTAGCATACAGTGAC -ACGGAAAGGCTAGCATACCTGTAG -ACGGAAAGGCTAGCATACCCTAAG -ACGGAAAGGCTAGCATACGTTCAG -ACGGAAAGGCTAGCATACGCATAG -ACGGAAAGGCTAGCATACGACAAG -ACGGAAAGGCTAGCATACAAGCAG -ACGGAAAGGCTAGCATACCGTCAA -ACGGAAAGGCTAGCATACGCTGAA -ACGGAAAGGCTAGCATACAGTACG -ACGGAAAGGCTAGCATACATCCGA -ACGGAAAGGCTAGCATACATGGGA -ACGGAAAGGCTAGCATACGTGCAA -ACGGAAAGGCTAGCATACGAGGAA -ACGGAAAGGCTAGCATACCAGGTA -ACGGAAAGGCTAGCATACGACTCT -ACGGAAAGGCTAGCATACAGTCCT -ACGGAAAGGCTAGCATACTAAGCC -ACGGAAAGGCTAGCATACATAGCC -ACGGAAAGGCTAGCATACTAACCG -ACGGAAAGGCTAGCATACATGCCA -ACGGAAAGGCTAGCACTTGGAAAC -ACGGAAAGGCTAGCACTTAACACC -ACGGAAAGGCTAGCACTTATCGAG -ACGGAAAGGCTAGCACTTCTCCTT -ACGGAAAGGCTAGCACTTCCTGTT -ACGGAAAGGCTAGCACTTCGGTTT -ACGGAAAGGCTAGCACTTGTGGTT -ACGGAAAGGCTAGCACTTGCCTTT -ACGGAAAGGCTAGCACTTGGTCTT -ACGGAAAGGCTAGCACTTACGCTT -ACGGAAAGGCTAGCACTTAGCGTT -ACGGAAAGGCTAGCACTTTTCGTC -ACGGAAAGGCTAGCACTTTCTCTC -ACGGAAAGGCTAGCACTTTGGATC -ACGGAAAGGCTAGCACTTCACTTC -ACGGAAAGGCTAGCACTTGTACTC -ACGGAAAGGCTAGCACTTGATGTC -ACGGAAAGGCTAGCACTTACAGTC -ACGGAAAGGCTAGCACTTTTGCTG -ACGGAAAGGCTAGCACTTTCCATG -ACGGAAAGGCTAGCACTTTGTGTG -ACGGAAAGGCTAGCACTTCTAGTG -ACGGAAAGGCTAGCACTTCATCTG -ACGGAAAGGCTAGCACTTGAGTTG -ACGGAAAGGCTAGCACTTAGACTG -ACGGAAAGGCTAGCACTTTCGGTA -ACGGAAAGGCTAGCACTTTGCCTA -ACGGAAAGGCTAGCACTTCCACTA -ACGGAAAGGCTAGCACTTGGAGTA -ACGGAAAGGCTAGCACTTTCGTCT -ACGGAAAGGCTAGCACTTTGCACT -ACGGAAAGGCTAGCACTTCTGACT -ACGGAAAGGCTAGCACTTCAACCT -ACGGAAAGGCTAGCACTTGCTACT -ACGGAAAGGCTAGCACTTGGATCT -ACGGAAAGGCTAGCACTTAAGGCT -ACGGAAAGGCTAGCACTTTCAACC -ACGGAAAGGCTAGCACTTTGTTCC -ACGGAAAGGCTAGCACTTATTCCC -ACGGAAAGGCTAGCACTTTTCTCG -ACGGAAAGGCTAGCACTTTAGACG -ACGGAAAGGCTAGCACTTGTAACG -ACGGAAAGGCTAGCACTTACTTCG -ACGGAAAGGCTAGCACTTTACGCA -ACGGAAAGGCTAGCACTTCTTGCA -ACGGAAAGGCTAGCACTTCGAACA -ACGGAAAGGCTAGCACTTCAGTCA -ACGGAAAGGCTAGCACTTGATCCA -ACGGAAAGGCTAGCACTTACGACA -ACGGAAAGGCTAGCACTTAGCTCA -ACGGAAAGGCTAGCACTTTCACGT -ACGGAAAGGCTAGCACTTCGTAGT -ACGGAAAGGCTAGCACTTGTCAGT -ACGGAAAGGCTAGCACTTGAAGGT -ACGGAAAGGCTAGCACTTAACCGT -ACGGAAAGGCTAGCACTTTTGTGC -ACGGAAAGGCTAGCACTTCTAAGC -ACGGAAAGGCTAGCACTTACTAGC -ACGGAAAGGCTAGCACTTAGATGC -ACGGAAAGGCTAGCACTTTGAAGG -ACGGAAAGGCTAGCACTTCAATGG -ACGGAAAGGCTAGCACTTATGAGG -ACGGAAAGGCTAGCACTTAATGGG -ACGGAAAGGCTAGCACTTTCCTGA -ACGGAAAGGCTAGCACTTTAGCGA -ACGGAAAGGCTAGCACTTCACAGA -ACGGAAAGGCTAGCACTTGCAAGA -ACGGAAAGGCTAGCACTTGGTTGA -ACGGAAAGGCTAGCACTTTCCGAT -ACGGAAAGGCTAGCACTTTGGCAT -ACGGAAAGGCTAGCACTTCGAGAT -ACGGAAAGGCTAGCACTTTACCAC -ACGGAAAGGCTAGCACTTCAGAAC -ACGGAAAGGCTAGCACTTGTCTAC -ACGGAAAGGCTAGCACTTACGTAC -ACGGAAAGGCTAGCACTTAGTGAC -ACGGAAAGGCTAGCACTTCTGTAG -ACGGAAAGGCTAGCACTTCCTAAG -ACGGAAAGGCTAGCACTTGTTCAG -ACGGAAAGGCTAGCACTTGCATAG -ACGGAAAGGCTAGCACTTGACAAG -ACGGAAAGGCTAGCACTTAAGCAG -ACGGAAAGGCTAGCACTTCGTCAA -ACGGAAAGGCTAGCACTTGCTGAA -ACGGAAAGGCTAGCACTTAGTACG -ACGGAAAGGCTAGCACTTATCCGA -ACGGAAAGGCTAGCACTTATGGGA -ACGGAAAGGCTAGCACTTGTGCAA -ACGGAAAGGCTAGCACTTGAGGAA -ACGGAAAGGCTAGCACTTCAGGTA -ACGGAAAGGCTAGCACTTGACTCT -ACGGAAAGGCTAGCACTTAGTCCT -ACGGAAAGGCTAGCACTTTAAGCC -ACGGAAAGGCTAGCACTTATAGCC -ACGGAAAGGCTAGCACTTTAACCG -ACGGAAAGGCTAGCACTTATGCCA -ACGGAAAGGCTAACACGAGGAAAC -ACGGAAAGGCTAACACGAAACACC -ACGGAAAGGCTAACACGAATCGAG -ACGGAAAGGCTAACACGACTCCTT -ACGGAAAGGCTAACACGACCTGTT -ACGGAAAGGCTAACACGACGGTTT -ACGGAAAGGCTAACACGAGTGGTT -ACGGAAAGGCTAACACGAGCCTTT -ACGGAAAGGCTAACACGAGGTCTT -ACGGAAAGGCTAACACGAACGCTT -ACGGAAAGGCTAACACGAAGCGTT -ACGGAAAGGCTAACACGATTCGTC -ACGGAAAGGCTAACACGATCTCTC -ACGGAAAGGCTAACACGATGGATC -ACGGAAAGGCTAACACGACACTTC -ACGGAAAGGCTAACACGAGTACTC -ACGGAAAGGCTAACACGAGATGTC -ACGGAAAGGCTAACACGAACAGTC -ACGGAAAGGCTAACACGATTGCTG -ACGGAAAGGCTAACACGATCCATG -ACGGAAAGGCTAACACGATGTGTG -ACGGAAAGGCTAACACGACTAGTG -ACGGAAAGGCTAACACGACATCTG -ACGGAAAGGCTAACACGAGAGTTG -ACGGAAAGGCTAACACGAAGACTG -ACGGAAAGGCTAACACGATCGGTA -ACGGAAAGGCTAACACGATGCCTA -ACGGAAAGGCTAACACGACCACTA -ACGGAAAGGCTAACACGAGGAGTA -ACGGAAAGGCTAACACGATCGTCT -ACGGAAAGGCTAACACGATGCACT -ACGGAAAGGCTAACACGACTGACT -ACGGAAAGGCTAACACGACAACCT -ACGGAAAGGCTAACACGAGCTACT -ACGGAAAGGCTAACACGAGGATCT -ACGGAAAGGCTAACACGAAAGGCT -ACGGAAAGGCTAACACGATCAACC -ACGGAAAGGCTAACACGATGTTCC -ACGGAAAGGCTAACACGAATTCCC -ACGGAAAGGCTAACACGATTCTCG -ACGGAAAGGCTAACACGATAGACG -ACGGAAAGGCTAACACGAGTAACG -ACGGAAAGGCTAACACGAACTTCG -ACGGAAAGGCTAACACGATACGCA -ACGGAAAGGCTAACACGACTTGCA -ACGGAAAGGCTAACACGACGAACA -ACGGAAAGGCTAACACGACAGTCA -ACGGAAAGGCTAACACGAGATCCA -ACGGAAAGGCTAACACGAACGACA -ACGGAAAGGCTAACACGAAGCTCA -ACGGAAAGGCTAACACGATCACGT -ACGGAAAGGCTAACACGACGTAGT -ACGGAAAGGCTAACACGAGTCAGT -ACGGAAAGGCTAACACGAGAAGGT -ACGGAAAGGCTAACACGAAACCGT -ACGGAAAGGCTAACACGATTGTGC -ACGGAAAGGCTAACACGACTAAGC -ACGGAAAGGCTAACACGAACTAGC -ACGGAAAGGCTAACACGAAGATGC -ACGGAAAGGCTAACACGATGAAGG -ACGGAAAGGCTAACACGACAATGG -ACGGAAAGGCTAACACGAATGAGG -ACGGAAAGGCTAACACGAAATGGG -ACGGAAAGGCTAACACGATCCTGA -ACGGAAAGGCTAACACGATAGCGA -ACGGAAAGGCTAACACGACACAGA -ACGGAAAGGCTAACACGAGCAAGA -ACGGAAAGGCTAACACGAGGTTGA -ACGGAAAGGCTAACACGATCCGAT -ACGGAAAGGCTAACACGATGGCAT -ACGGAAAGGCTAACACGACGAGAT -ACGGAAAGGCTAACACGATACCAC -ACGGAAAGGCTAACACGACAGAAC -ACGGAAAGGCTAACACGAGTCTAC -ACGGAAAGGCTAACACGAACGTAC -ACGGAAAGGCTAACACGAAGTGAC -ACGGAAAGGCTAACACGACTGTAG -ACGGAAAGGCTAACACGACCTAAG -ACGGAAAGGCTAACACGAGTTCAG -ACGGAAAGGCTAACACGAGCATAG -ACGGAAAGGCTAACACGAGACAAG -ACGGAAAGGCTAACACGAAAGCAG -ACGGAAAGGCTAACACGACGTCAA -ACGGAAAGGCTAACACGAGCTGAA -ACGGAAAGGCTAACACGAAGTACG -ACGGAAAGGCTAACACGAATCCGA -ACGGAAAGGCTAACACGAATGGGA -ACGGAAAGGCTAACACGAGTGCAA -ACGGAAAGGCTAACACGAGAGGAA -ACGGAAAGGCTAACACGACAGGTA -ACGGAAAGGCTAACACGAGACTCT -ACGGAAAGGCTAACACGAAGTCCT -ACGGAAAGGCTAACACGATAAGCC -ACGGAAAGGCTAACACGAATAGCC -ACGGAAAGGCTAACACGATAACCG -ACGGAAAGGCTAACACGAATGCCA -ACGGAAAGGCTATCACAGGGAAAC -ACGGAAAGGCTATCACAGAACACC -ACGGAAAGGCTATCACAGATCGAG -ACGGAAAGGCTATCACAGCTCCTT -ACGGAAAGGCTATCACAGCCTGTT -ACGGAAAGGCTATCACAGCGGTTT -ACGGAAAGGCTATCACAGGTGGTT -ACGGAAAGGCTATCACAGGCCTTT -ACGGAAAGGCTATCACAGGGTCTT -ACGGAAAGGCTATCACAGACGCTT -ACGGAAAGGCTATCACAGAGCGTT -ACGGAAAGGCTATCACAGTTCGTC -ACGGAAAGGCTATCACAGTCTCTC -ACGGAAAGGCTATCACAGTGGATC -ACGGAAAGGCTATCACAGCACTTC -ACGGAAAGGCTATCACAGGTACTC -ACGGAAAGGCTATCACAGGATGTC -ACGGAAAGGCTATCACAGACAGTC -ACGGAAAGGCTATCACAGTTGCTG -ACGGAAAGGCTATCACAGTCCATG -ACGGAAAGGCTATCACAGTGTGTG -ACGGAAAGGCTATCACAGCTAGTG -ACGGAAAGGCTATCACAGCATCTG -ACGGAAAGGCTATCACAGGAGTTG -ACGGAAAGGCTATCACAGAGACTG -ACGGAAAGGCTATCACAGTCGGTA -ACGGAAAGGCTATCACAGTGCCTA -ACGGAAAGGCTATCACAGCCACTA -ACGGAAAGGCTATCACAGGGAGTA -ACGGAAAGGCTATCACAGTCGTCT -ACGGAAAGGCTATCACAGTGCACT -ACGGAAAGGCTATCACAGCTGACT -ACGGAAAGGCTATCACAGCAACCT -ACGGAAAGGCTATCACAGGCTACT -ACGGAAAGGCTATCACAGGGATCT -ACGGAAAGGCTATCACAGAAGGCT -ACGGAAAGGCTATCACAGTCAACC -ACGGAAAGGCTATCACAGTGTTCC -ACGGAAAGGCTATCACAGATTCCC -ACGGAAAGGCTATCACAGTTCTCG -ACGGAAAGGCTATCACAGTAGACG -ACGGAAAGGCTATCACAGGTAACG -ACGGAAAGGCTATCACAGACTTCG -ACGGAAAGGCTATCACAGTACGCA -ACGGAAAGGCTATCACAGCTTGCA -ACGGAAAGGCTATCACAGCGAACA -ACGGAAAGGCTATCACAGCAGTCA -ACGGAAAGGCTATCACAGGATCCA -ACGGAAAGGCTATCACAGACGACA -ACGGAAAGGCTATCACAGAGCTCA -ACGGAAAGGCTATCACAGTCACGT -ACGGAAAGGCTATCACAGCGTAGT -ACGGAAAGGCTATCACAGGTCAGT -ACGGAAAGGCTATCACAGGAAGGT -ACGGAAAGGCTATCACAGAACCGT -ACGGAAAGGCTATCACAGTTGTGC -ACGGAAAGGCTATCACAGCTAAGC -ACGGAAAGGCTATCACAGACTAGC -ACGGAAAGGCTATCACAGAGATGC -ACGGAAAGGCTATCACAGTGAAGG -ACGGAAAGGCTATCACAGCAATGG -ACGGAAAGGCTATCACAGATGAGG -ACGGAAAGGCTATCACAGAATGGG -ACGGAAAGGCTATCACAGTCCTGA -ACGGAAAGGCTATCACAGTAGCGA -ACGGAAAGGCTATCACAGCACAGA -ACGGAAAGGCTATCACAGGCAAGA -ACGGAAAGGCTATCACAGGGTTGA -ACGGAAAGGCTATCACAGTCCGAT -ACGGAAAGGCTATCACAGTGGCAT -ACGGAAAGGCTATCACAGCGAGAT -ACGGAAAGGCTATCACAGTACCAC -ACGGAAAGGCTATCACAGCAGAAC -ACGGAAAGGCTATCACAGGTCTAC -ACGGAAAGGCTATCACAGACGTAC -ACGGAAAGGCTATCACAGAGTGAC -ACGGAAAGGCTATCACAGCTGTAG -ACGGAAAGGCTATCACAGCCTAAG -ACGGAAAGGCTATCACAGGTTCAG -ACGGAAAGGCTATCACAGGCATAG -ACGGAAAGGCTATCACAGGACAAG -ACGGAAAGGCTATCACAGAAGCAG -ACGGAAAGGCTATCACAGCGTCAA -ACGGAAAGGCTATCACAGGCTGAA -ACGGAAAGGCTATCACAGAGTACG -ACGGAAAGGCTATCACAGATCCGA -ACGGAAAGGCTATCACAGATGGGA -ACGGAAAGGCTATCACAGGTGCAA -ACGGAAAGGCTATCACAGGAGGAA -ACGGAAAGGCTATCACAGCAGGTA -ACGGAAAGGCTATCACAGGACTCT -ACGGAAAGGCTATCACAGAGTCCT -ACGGAAAGGCTATCACAGTAAGCC -ACGGAAAGGCTATCACAGATAGCC -ACGGAAAGGCTATCACAGTAACCG -ACGGAAAGGCTATCACAGATGCCA -ACGGAAAGGCTACCAGATGGAAAC -ACGGAAAGGCTACCAGATAACACC -ACGGAAAGGCTACCAGATATCGAG -ACGGAAAGGCTACCAGATCTCCTT -ACGGAAAGGCTACCAGATCCTGTT -ACGGAAAGGCTACCAGATCGGTTT -ACGGAAAGGCTACCAGATGTGGTT -ACGGAAAGGCTACCAGATGCCTTT -ACGGAAAGGCTACCAGATGGTCTT -ACGGAAAGGCTACCAGATACGCTT -ACGGAAAGGCTACCAGATAGCGTT -ACGGAAAGGCTACCAGATTTCGTC -ACGGAAAGGCTACCAGATTCTCTC -ACGGAAAGGCTACCAGATTGGATC -ACGGAAAGGCTACCAGATCACTTC -ACGGAAAGGCTACCAGATGTACTC -ACGGAAAGGCTACCAGATGATGTC -ACGGAAAGGCTACCAGATACAGTC -ACGGAAAGGCTACCAGATTTGCTG -ACGGAAAGGCTACCAGATTCCATG -ACGGAAAGGCTACCAGATTGTGTG -ACGGAAAGGCTACCAGATCTAGTG -ACGGAAAGGCTACCAGATCATCTG -ACGGAAAGGCTACCAGATGAGTTG -ACGGAAAGGCTACCAGATAGACTG -ACGGAAAGGCTACCAGATTCGGTA -ACGGAAAGGCTACCAGATTGCCTA -ACGGAAAGGCTACCAGATCCACTA -ACGGAAAGGCTACCAGATGGAGTA -ACGGAAAGGCTACCAGATTCGTCT -ACGGAAAGGCTACCAGATTGCACT -ACGGAAAGGCTACCAGATCTGACT -ACGGAAAGGCTACCAGATCAACCT -ACGGAAAGGCTACCAGATGCTACT -ACGGAAAGGCTACCAGATGGATCT -ACGGAAAGGCTACCAGATAAGGCT -ACGGAAAGGCTACCAGATTCAACC -ACGGAAAGGCTACCAGATTGTTCC -ACGGAAAGGCTACCAGATATTCCC -ACGGAAAGGCTACCAGATTTCTCG -ACGGAAAGGCTACCAGATTAGACG -ACGGAAAGGCTACCAGATGTAACG -ACGGAAAGGCTACCAGATACTTCG -ACGGAAAGGCTACCAGATTACGCA -ACGGAAAGGCTACCAGATCTTGCA -ACGGAAAGGCTACCAGATCGAACA -ACGGAAAGGCTACCAGATCAGTCA -ACGGAAAGGCTACCAGATGATCCA -ACGGAAAGGCTACCAGATACGACA -ACGGAAAGGCTACCAGATAGCTCA -ACGGAAAGGCTACCAGATTCACGT -ACGGAAAGGCTACCAGATCGTAGT -ACGGAAAGGCTACCAGATGTCAGT -ACGGAAAGGCTACCAGATGAAGGT -ACGGAAAGGCTACCAGATAACCGT -ACGGAAAGGCTACCAGATTTGTGC -ACGGAAAGGCTACCAGATCTAAGC -ACGGAAAGGCTACCAGATACTAGC -ACGGAAAGGCTACCAGATAGATGC -ACGGAAAGGCTACCAGATTGAAGG -ACGGAAAGGCTACCAGATCAATGG -ACGGAAAGGCTACCAGATATGAGG -ACGGAAAGGCTACCAGATAATGGG -ACGGAAAGGCTACCAGATTCCTGA -ACGGAAAGGCTACCAGATTAGCGA -ACGGAAAGGCTACCAGATCACAGA -ACGGAAAGGCTACCAGATGCAAGA -ACGGAAAGGCTACCAGATGGTTGA -ACGGAAAGGCTACCAGATTCCGAT -ACGGAAAGGCTACCAGATTGGCAT -ACGGAAAGGCTACCAGATCGAGAT -ACGGAAAGGCTACCAGATTACCAC -ACGGAAAGGCTACCAGATCAGAAC -ACGGAAAGGCTACCAGATGTCTAC -ACGGAAAGGCTACCAGATACGTAC -ACGGAAAGGCTACCAGATAGTGAC -ACGGAAAGGCTACCAGATCTGTAG -ACGGAAAGGCTACCAGATCCTAAG -ACGGAAAGGCTACCAGATGTTCAG -ACGGAAAGGCTACCAGATGCATAG -ACGGAAAGGCTACCAGATGACAAG -ACGGAAAGGCTACCAGATAAGCAG -ACGGAAAGGCTACCAGATCGTCAA -ACGGAAAGGCTACCAGATGCTGAA -ACGGAAAGGCTACCAGATAGTACG -ACGGAAAGGCTACCAGATATCCGA -ACGGAAAGGCTACCAGATATGGGA -ACGGAAAGGCTACCAGATGTGCAA -ACGGAAAGGCTACCAGATGAGGAA -ACGGAAAGGCTACCAGATCAGGTA -ACGGAAAGGCTACCAGATGACTCT -ACGGAAAGGCTACCAGATAGTCCT -ACGGAAAGGCTACCAGATTAAGCC -ACGGAAAGGCTACCAGATATAGCC -ACGGAAAGGCTACCAGATTAACCG -ACGGAAAGGCTACCAGATATGCCA -ACGGAAAGGCTAACAACGGGAAAC -ACGGAAAGGCTAACAACGAACACC -ACGGAAAGGCTAACAACGATCGAG -ACGGAAAGGCTAACAACGCTCCTT -ACGGAAAGGCTAACAACGCCTGTT -ACGGAAAGGCTAACAACGCGGTTT -ACGGAAAGGCTAACAACGGTGGTT -ACGGAAAGGCTAACAACGGCCTTT -ACGGAAAGGCTAACAACGGGTCTT -ACGGAAAGGCTAACAACGACGCTT -ACGGAAAGGCTAACAACGAGCGTT -ACGGAAAGGCTAACAACGTTCGTC -ACGGAAAGGCTAACAACGTCTCTC -ACGGAAAGGCTAACAACGTGGATC -ACGGAAAGGCTAACAACGCACTTC -ACGGAAAGGCTAACAACGGTACTC -ACGGAAAGGCTAACAACGGATGTC -ACGGAAAGGCTAACAACGACAGTC -ACGGAAAGGCTAACAACGTTGCTG -ACGGAAAGGCTAACAACGTCCATG -ACGGAAAGGCTAACAACGTGTGTG -ACGGAAAGGCTAACAACGCTAGTG -ACGGAAAGGCTAACAACGCATCTG -ACGGAAAGGCTAACAACGGAGTTG -ACGGAAAGGCTAACAACGAGACTG -ACGGAAAGGCTAACAACGTCGGTA -ACGGAAAGGCTAACAACGTGCCTA -ACGGAAAGGCTAACAACGCCACTA -ACGGAAAGGCTAACAACGGGAGTA -ACGGAAAGGCTAACAACGTCGTCT -ACGGAAAGGCTAACAACGTGCACT -ACGGAAAGGCTAACAACGCTGACT -ACGGAAAGGCTAACAACGCAACCT -ACGGAAAGGCTAACAACGGCTACT -ACGGAAAGGCTAACAACGGGATCT -ACGGAAAGGCTAACAACGAAGGCT -ACGGAAAGGCTAACAACGTCAACC -ACGGAAAGGCTAACAACGTGTTCC -ACGGAAAGGCTAACAACGATTCCC -ACGGAAAGGCTAACAACGTTCTCG -ACGGAAAGGCTAACAACGTAGACG -ACGGAAAGGCTAACAACGGTAACG -ACGGAAAGGCTAACAACGACTTCG -ACGGAAAGGCTAACAACGTACGCA -ACGGAAAGGCTAACAACGCTTGCA -ACGGAAAGGCTAACAACGCGAACA -ACGGAAAGGCTAACAACGCAGTCA -ACGGAAAGGCTAACAACGGATCCA -ACGGAAAGGCTAACAACGACGACA -ACGGAAAGGCTAACAACGAGCTCA -ACGGAAAGGCTAACAACGTCACGT -ACGGAAAGGCTAACAACGCGTAGT -ACGGAAAGGCTAACAACGGTCAGT -ACGGAAAGGCTAACAACGGAAGGT -ACGGAAAGGCTAACAACGAACCGT -ACGGAAAGGCTAACAACGTTGTGC -ACGGAAAGGCTAACAACGCTAAGC -ACGGAAAGGCTAACAACGACTAGC -ACGGAAAGGCTAACAACGAGATGC -ACGGAAAGGCTAACAACGTGAAGG -ACGGAAAGGCTAACAACGCAATGG -ACGGAAAGGCTAACAACGATGAGG -ACGGAAAGGCTAACAACGAATGGG -ACGGAAAGGCTAACAACGTCCTGA -ACGGAAAGGCTAACAACGTAGCGA -ACGGAAAGGCTAACAACGCACAGA -ACGGAAAGGCTAACAACGGCAAGA -ACGGAAAGGCTAACAACGGGTTGA -ACGGAAAGGCTAACAACGTCCGAT -ACGGAAAGGCTAACAACGTGGCAT -ACGGAAAGGCTAACAACGCGAGAT -ACGGAAAGGCTAACAACGTACCAC -ACGGAAAGGCTAACAACGCAGAAC -ACGGAAAGGCTAACAACGGTCTAC -ACGGAAAGGCTAACAACGACGTAC -ACGGAAAGGCTAACAACGAGTGAC -ACGGAAAGGCTAACAACGCTGTAG -ACGGAAAGGCTAACAACGCCTAAG -ACGGAAAGGCTAACAACGGTTCAG -ACGGAAAGGCTAACAACGGCATAG -ACGGAAAGGCTAACAACGGACAAG -ACGGAAAGGCTAACAACGAAGCAG -ACGGAAAGGCTAACAACGCGTCAA -ACGGAAAGGCTAACAACGGCTGAA -ACGGAAAGGCTAACAACGAGTACG -ACGGAAAGGCTAACAACGATCCGA -ACGGAAAGGCTAACAACGATGGGA -ACGGAAAGGCTAACAACGGTGCAA -ACGGAAAGGCTAACAACGGAGGAA -ACGGAAAGGCTAACAACGCAGGTA -ACGGAAAGGCTAACAACGGACTCT -ACGGAAAGGCTAACAACGAGTCCT -ACGGAAAGGCTAACAACGTAAGCC -ACGGAAAGGCTAACAACGATAGCC -ACGGAAAGGCTAACAACGTAACCG -ACGGAAAGGCTAACAACGATGCCA -ACGGAAAGGCTATCAAGCGGAAAC -ACGGAAAGGCTATCAAGCAACACC -ACGGAAAGGCTATCAAGCATCGAG -ACGGAAAGGCTATCAAGCCTCCTT -ACGGAAAGGCTATCAAGCCCTGTT -ACGGAAAGGCTATCAAGCCGGTTT -ACGGAAAGGCTATCAAGCGTGGTT -ACGGAAAGGCTATCAAGCGCCTTT -ACGGAAAGGCTATCAAGCGGTCTT -ACGGAAAGGCTATCAAGCACGCTT -ACGGAAAGGCTATCAAGCAGCGTT -ACGGAAAGGCTATCAAGCTTCGTC -ACGGAAAGGCTATCAAGCTCTCTC -ACGGAAAGGCTATCAAGCTGGATC -ACGGAAAGGCTATCAAGCCACTTC -ACGGAAAGGCTATCAAGCGTACTC -ACGGAAAGGCTATCAAGCGATGTC -ACGGAAAGGCTATCAAGCACAGTC -ACGGAAAGGCTATCAAGCTTGCTG -ACGGAAAGGCTATCAAGCTCCATG -ACGGAAAGGCTATCAAGCTGTGTG -ACGGAAAGGCTATCAAGCCTAGTG -ACGGAAAGGCTATCAAGCCATCTG -ACGGAAAGGCTATCAAGCGAGTTG -ACGGAAAGGCTATCAAGCAGACTG -ACGGAAAGGCTATCAAGCTCGGTA -ACGGAAAGGCTATCAAGCTGCCTA -ACGGAAAGGCTATCAAGCCCACTA -ACGGAAAGGCTATCAAGCGGAGTA -ACGGAAAGGCTATCAAGCTCGTCT -ACGGAAAGGCTATCAAGCTGCACT -ACGGAAAGGCTATCAAGCCTGACT -ACGGAAAGGCTATCAAGCCAACCT -ACGGAAAGGCTATCAAGCGCTACT -ACGGAAAGGCTATCAAGCGGATCT -ACGGAAAGGCTATCAAGCAAGGCT -ACGGAAAGGCTATCAAGCTCAACC -ACGGAAAGGCTATCAAGCTGTTCC -ACGGAAAGGCTATCAAGCATTCCC -ACGGAAAGGCTATCAAGCTTCTCG -ACGGAAAGGCTATCAAGCTAGACG -ACGGAAAGGCTATCAAGCGTAACG -ACGGAAAGGCTATCAAGCACTTCG -ACGGAAAGGCTATCAAGCTACGCA -ACGGAAAGGCTATCAAGCCTTGCA -ACGGAAAGGCTATCAAGCCGAACA -ACGGAAAGGCTATCAAGCCAGTCA -ACGGAAAGGCTATCAAGCGATCCA -ACGGAAAGGCTATCAAGCACGACA -ACGGAAAGGCTATCAAGCAGCTCA -ACGGAAAGGCTATCAAGCTCACGT -ACGGAAAGGCTATCAAGCCGTAGT -ACGGAAAGGCTATCAAGCGTCAGT -ACGGAAAGGCTATCAAGCGAAGGT -ACGGAAAGGCTATCAAGCAACCGT -ACGGAAAGGCTATCAAGCTTGTGC -ACGGAAAGGCTATCAAGCCTAAGC -ACGGAAAGGCTATCAAGCACTAGC -ACGGAAAGGCTATCAAGCAGATGC -ACGGAAAGGCTATCAAGCTGAAGG -ACGGAAAGGCTATCAAGCCAATGG -ACGGAAAGGCTATCAAGCATGAGG -ACGGAAAGGCTATCAAGCAATGGG -ACGGAAAGGCTATCAAGCTCCTGA -ACGGAAAGGCTATCAAGCTAGCGA -ACGGAAAGGCTATCAAGCCACAGA -ACGGAAAGGCTATCAAGCGCAAGA -ACGGAAAGGCTATCAAGCGGTTGA -ACGGAAAGGCTATCAAGCTCCGAT -ACGGAAAGGCTATCAAGCTGGCAT -ACGGAAAGGCTATCAAGCCGAGAT -ACGGAAAGGCTATCAAGCTACCAC -ACGGAAAGGCTATCAAGCCAGAAC -ACGGAAAGGCTATCAAGCGTCTAC -ACGGAAAGGCTATCAAGCACGTAC -ACGGAAAGGCTATCAAGCAGTGAC -ACGGAAAGGCTATCAAGCCTGTAG -ACGGAAAGGCTATCAAGCCCTAAG -ACGGAAAGGCTATCAAGCGTTCAG -ACGGAAAGGCTATCAAGCGCATAG -ACGGAAAGGCTATCAAGCGACAAG -ACGGAAAGGCTATCAAGCAAGCAG -ACGGAAAGGCTATCAAGCCGTCAA -ACGGAAAGGCTATCAAGCGCTGAA -ACGGAAAGGCTATCAAGCAGTACG -ACGGAAAGGCTATCAAGCATCCGA -ACGGAAAGGCTATCAAGCATGGGA -ACGGAAAGGCTATCAAGCGTGCAA -ACGGAAAGGCTATCAAGCGAGGAA -ACGGAAAGGCTATCAAGCCAGGTA -ACGGAAAGGCTATCAAGCGACTCT -ACGGAAAGGCTATCAAGCAGTCCT -ACGGAAAGGCTATCAAGCTAAGCC -ACGGAAAGGCTATCAAGCATAGCC -ACGGAAAGGCTATCAAGCTAACCG -ACGGAAAGGCTATCAAGCATGCCA -ACGGAAAGGCTACGTTCAGGAAAC -ACGGAAAGGCTACGTTCAAACACC -ACGGAAAGGCTACGTTCAATCGAG -ACGGAAAGGCTACGTTCACTCCTT -ACGGAAAGGCTACGTTCACCTGTT -ACGGAAAGGCTACGTTCACGGTTT -ACGGAAAGGCTACGTTCAGTGGTT -ACGGAAAGGCTACGTTCAGCCTTT -ACGGAAAGGCTACGTTCAGGTCTT -ACGGAAAGGCTACGTTCAACGCTT -ACGGAAAGGCTACGTTCAAGCGTT -ACGGAAAGGCTACGTTCATTCGTC -ACGGAAAGGCTACGTTCATCTCTC -ACGGAAAGGCTACGTTCATGGATC -ACGGAAAGGCTACGTTCACACTTC -ACGGAAAGGCTACGTTCAGTACTC -ACGGAAAGGCTACGTTCAGATGTC -ACGGAAAGGCTACGTTCAACAGTC -ACGGAAAGGCTACGTTCATTGCTG -ACGGAAAGGCTACGTTCATCCATG -ACGGAAAGGCTACGTTCATGTGTG -ACGGAAAGGCTACGTTCACTAGTG -ACGGAAAGGCTACGTTCACATCTG -ACGGAAAGGCTACGTTCAGAGTTG -ACGGAAAGGCTACGTTCAAGACTG -ACGGAAAGGCTACGTTCATCGGTA -ACGGAAAGGCTACGTTCATGCCTA -ACGGAAAGGCTACGTTCACCACTA -ACGGAAAGGCTACGTTCAGGAGTA -ACGGAAAGGCTACGTTCATCGTCT -ACGGAAAGGCTACGTTCATGCACT -ACGGAAAGGCTACGTTCACTGACT -ACGGAAAGGCTACGTTCACAACCT -ACGGAAAGGCTACGTTCAGCTACT -ACGGAAAGGCTACGTTCAGGATCT -ACGGAAAGGCTACGTTCAAAGGCT -ACGGAAAGGCTACGTTCATCAACC -ACGGAAAGGCTACGTTCATGTTCC -ACGGAAAGGCTACGTTCAATTCCC -ACGGAAAGGCTACGTTCATTCTCG -ACGGAAAGGCTACGTTCATAGACG -ACGGAAAGGCTACGTTCAGTAACG -ACGGAAAGGCTACGTTCAACTTCG -ACGGAAAGGCTACGTTCATACGCA -ACGGAAAGGCTACGTTCACTTGCA -ACGGAAAGGCTACGTTCACGAACA -ACGGAAAGGCTACGTTCACAGTCA -ACGGAAAGGCTACGTTCAGATCCA -ACGGAAAGGCTACGTTCAACGACA -ACGGAAAGGCTACGTTCAAGCTCA -ACGGAAAGGCTACGTTCATCACGT -ACGGAAAGGCTACGTTCACGTAGT -ACGGAAAGGCTACGTTCAGTCAGT -ACGGAAAGGCTACGTTCAGAAGGT -ACGGAAAGGCTACGTTCAAACCGT -ACGGAAAGGCTACGTTCATTGTGC -ACGGAAAGGCTACGTTCACTAAGC -ACGGAAAGGCTACGTTCAACTAGC -ACGGAAAGGCTACGTTCAAGATGC -ACGGAAAGGCTACGTTCATGAAGG -ACGGAAAGGCTACGTTCACAATGG -ACGGAAAGGCTACGTTCAATGAGG -ACGGAAAGGCTACGTTCAAATGGG -ACGGAAAGGCTACGTTCATCCTGA -ACGGAAAGGCTACGTTCATAGCGA -ACGGAAAGGCTACGTTCACACAGA -ACGGAAAGGCTACGTTCAGCAAGA -ACGGAAAGGCTACGTTCAGGTTGA -ACGGAAAGGCTACGTTCATCCGAT -ACGGAAAGGCTACGTTCATGGCAT -ACGGAAAGGCTACGTTCACGAGAT -ACGGAAAGGCTACGTTCATACCAC -ACGGAAAGGCTACGTTCACAGAAC -ACGGAAAGGCTACGTTCAGTCTAC -ACGGAAAGGCTACGTTCAACGTAC -ACGGAAAGGCTACGTTCAAGTGAC -ACGGAAAGGCTACGTTCACTGTAG -ACGGAAAGGCTACGTTCACCTAAG -ACGGAAAGGCTACGTTCAGTTCAG -ACGGAAAGGCTACGTTCAGCATAG -ACGGAAAGGCTACGTTCAGACAAG -ACGGAAAGGCTACGTTCAAAGCAG -ACGGAAAGGCTACGTTCACGTCAA -ACGGAAAGGCTACGTTCAGCTGAA -ACGGAAAGGCTACGTTCAAGTACG -ACGGAAAGGCTACGTTCAATCCGA -ACGGAAAGGCTACGTTCAATGGGA -ACGGAAAGGCTACGTTCAGTGCAA -ACGGAAAGGCTACGTTCAGAGGAA -ACGGAAAGGCTACGTTCACAGGTA -ACGGAAAGGCTACGTTCAGACTCT -ACGGAAAGGCTACGTTCAAGTCCT -ACGGAAAGGCTACGTTCATAAGCC -ACGGAAAGGCTACGTTCAATAGCC -ACGGAAAGGCTACGTTCATAACCG -ACGGAAAGGCTACGTTCAATGCCA -ACGGAAAGGCTAAGTCGTGGAAAC -ACGGAAAGGCTAAGTCGTAACACC -ACGGAAAGGCTAAGTCGTATCGAG -ACGGAAAGGCTAAGTCGTCTCCTT -ACGGAAAGGCTAAGTCGTCCTGTT -ACGGAAAGGCTAAGTCGTCGGTTT -ACGGAAAGGCTAAGTCGTGTGGTT -ACGGAAAGGCTAAGTCGTGCCTTT -ACGGAAAGGCTAAGTCGTGGTCTT -ACGGAAAGGCTAAGTCGTACGCTT -ACGGAAAGGCTAAGTCGTAGCGTT -ACGGAAAGGCTAAGTCGTTTCGTC -ACGGAAAGGCTAAGTCGTTCTCTC -ACGGAAAGGCTAAGTCGTTGGATC -ACGGAAAGGCTAAGTCGTCACTTC -ACGGAAAGGCTAAGTCGTGTACTC -ACGGAAAGGCTAAGTCGTGATGTC -ACGGAAAGGCTAAGTCGTACAGTC -ACGGAAAGGCTAAGTCGTTTGCTG -ACGGAAAGGCTAAGTCGTTCCATG -ACGGAAAGGCTAAGTCGTTGTGTG -ACGGAAAGGCTAAGTCGTCTAGTG -ACGGAAAGGCTAAGTCGTCATCTG -ACGGAAAGGCTAAGTCGTGAGTTG -ACGGAAAGGCTAAGTCGTAGACTG -ACGGAAAGGCTAAGTCGTTCGGTA -ACGGAAAGGCTAAGTCGTTGCCTA -ACGGAAAGGCTAAGTCGTCCACTA -ACGGAAAGGCTAAGTCGTGGAGTA -ACGGAAAGGCTAAGTCGTTCGTCT -ACGGAAAGGCTAAGTCGTTGCACT -ACGGAAAGGCTAAGTCGTCTGACT -ACGGAAAGGCTAAGTCGTCAACCT -ACGGAAAGGCTAAGTCGTGCTACT -ACGGAAAGGCTAAGTCGTGGATCT -ACGGAAAGGCTAAGTCGTAAGGCT -ACGGAAAGGCTAAGTCGTTCAACC -ACGGAAAGGCTAAGTCGTTGTTCC -ACGGAAAGGCTAAGTCGTATTCCC -ACGGAAAGGCTAAGTCGTTTCTCG -ACGGAAAGGCTAAGTCGTTAGACG -ACGGAAAGGCTAAGTCGTGTAACG -ACGGAAAGGCTAAGTCGTACTTCG -ACGGAAAGGCTAAGTCGTTACGCA -ACGGAAAGGCTAAGTCGTCTTGCA -ACGGAAAGGCTAAGTCGTCGAACA -ACGGAAAGGCTAAGTCGTCAGTCA -ACGGAAAGGCTAAGTCGTGATCCA -ACGGAAAGGCTAAGTCGTACGACA -ACGGAAAGGCTAAGTCGTAGCTCA -ACGGAAAGGCTAAGTCGTTCACGT -ACGGAAAGGCTAAGTCGTCGTAGT -ACGGAAAGGCTAAGTCGTGTCAGT -ACGGAAAGGCTAAGTCGTGAAGGT -ACGGAAAGGCTAAGTCGTAACCGT -ACGGAAAGGCTAAGTCGTTTGTGC -ACGGAAAGGCTAAGTCGTCTAAGC -ACGGAAAGGCTAAGTCGTACTAGC -ACGGAAAGGCTAAGTCGTAGATGC -ACGGAAAGGCTAAGTCGTTGAAGG -ACGGAAAGGCTAAGTCGTCAATGG -ACGGAAAGGCTAAGTCGTATGAGG -ACGGAAAGGCTAAGTCGTAATGGG -ACGGAAAGGCTAAGTCGTTCCTGA -ACGGAAAGGCTAAGTCGTTAGCGA -ACGGAAAGGCTAAGTCGTCACAGA -ACGGAAAGGCTAAGTCGTGCAAGA -ACGGAAAGGCTAAGTCGTGGTTGA -ACGGAAAGGCTAAGTCGTTCCGAT -ACGGAAAGGCTAAGTCGTTGGCAT -ACGGAAAGGCTAAGTCGTCGAGAT -ACGGAAAGGCTAAGTCGTTACCAC -ACGGAAAGGCTAAGTCGTCAGAAC -ACGGAAAGGCTAAGTCGTGTCTAC -ACGGAAAGGCTAAGTCGTACGTAC -ACGGAAAGGCTAAGTCGTAGTGAC -ACGGAAAGGCTAAGTCGTCTGTAG -ACGGAAAGGCTAAGTCGTCCTAAG -ACGGAAAGGCTAAGTCGTGTTCAG -ACGGAAAGGCTAAGTCGTGCATAG -ACGGAAAGGCTAAGTCGTGACAAG -ACGGAAAGGCTAAGTCGTAAGCAG -ACGGAAAGGCTAAGTCGTCGTCAA -ACGGAAAGGCTAAGTCGTGCTGAA -ACGGAAAGGCTAAGTCGTAGTACG -ACGGAAAGGCTAAGTCGTATCCGA -ACGGAAAGGCTAAGTCGTATGGGA -ACGGAAAGGCTAAGTCGTGTGCAA -ACGGAAAGGCTAAGTCGTGAGGAA -ACGGAAAGGCTAAGTCGTCAGGTA -ACGGAAAGGCTAAGTCGTGACTCT -ACGGAAAGGCTAAGTCGTAGTCCT -ACGGAAAGGCTAAGTCGTTAAGCC -ACGGAAAGGCTAAGTCGTATAGCC -ACGGAAAGGCTAAGTCGTTAACCG -ACGGAAAGGCTAAGTCGTATGCCA -ACGGAAAGGCTAAGTGTCGGAAAC -ACGGAAAGGCTAAGTGTCAACACC -ACGGAAAGGCTAAGTGTCATCGAG -ACGGAAAGGCTAAGTGTCCTCCTT -ACGGAAAGGCTAAGTGTCCCTGTT -ACGGAAAGGCTAAGTGTCCGGTTT -ACGGAAAGGCTAAGTGTCGTGGTT -ACGGAAAGGCTAAGTGTCGCCTTT -ACGGAAAGGCTAAGTGTCGGTCTT -ACGGAAAGGCTAAGTGTCACGCTT -ACGGAAAGGCTAAGTGTCAGCGTT -ACGGAAAGGCTAAGTGTCTTCGTC -ACGGAAAGGCTAAGTGTCTCTCTC -ACGGAAAGGCTAAGTGTCTGGATC -ACGGAAAGGCTAAGTGTCCACTTC -ACGGAAAGGCTAAGTGTCGTACTC -ACGGAAAGGCTAAGTGTCGATGTC -ACGGAAAGGCTAAGTGTCACAGTC -ACGGAAAGGCTAAGTGTCTTGCTG -ACGGAAAGGCTAAGTGTCTCCATG -ACGGAAAGGCTAAGTGTCTGTGTG -ACGGAAAGGCTAAGTGTCCTAGTG -ACGGAAAGGCTAAGTGTCCATCTG -ACGGAAAGGCTAAGTGTCGAGTTG -ACGGAAAGGCTAAGTGTCAGACTG -ACGGAAAGGCTAAGTGTCTCGGTA -ACGGAAAGGCTAAGTGTCTGCCTA -ACGGAAAGGCTAAGTGTCCCACTA -ACGGAAAGGCTAAGTGTCGGAGTA -ACGGAAAGGCTAAGTGTCTCGTCT -ACGGAAAGGCTAAGTGTCTGCACT -ACGGAAAGGCTAAGTGTCCTGACT -ACGGAAAGGCTAAGTGTCCAACCT -ACGGAAAGGCTAAGTGTCGCTACT -ACGGAAAGGCTAAGTGTCGGATCT -ACGGAAAGGCTAAGTGTCAAGGCT -ACGGAAAGGCTAAGTGTCTCAACC -ACGGAAAGGCTAAGTGTCTGTTCC -ACGGAAAGGCTAAGTGTCATTCCC -ACGGAAAGGCTAAGTGTCTTCTCG -ACGGAAAGGCTAAGTGTCTAGACG -ACGGAAAGGCTAAGTGTCGTAACG -ACGGAAAGGCTAAGTGTCACTTCG -ACGGAAAGGCTAAGTGTCTACGCA -ACGGAAAGGCTAAGTGTCCTTGCA -ACGGAAAGGCTAAGTGTCCGAACA -ACGGAAAGGCTAAGTGTCCAGTCA -ACGGAAAGGCTAAGTGTCGATCCA -ACGGAAAGGCTAAGTGTCACGACA -ACGGAAAGGCTAAGTGTCAGCTCA -ACGGAAAGGCTAAGTGTCTCACGT -ACGGAAAGGCTAAGTGTCCGTAGT -ACGGAAAGGCTAAGTGTCGTCAGT -ACGGAAAGGCTAAGTGTCGAAGGT -ACGGAAAGGCTAAGTGTCAACCGT -ACGGAAAGGCTAAGTGTCTTGTGC -ACGGAAAGGCTAAGTGTCCTAAGC -ACGGAAAGGCTAAGTGTCACTAGC -ACGGAAAGGCTAAGTGTCAGATGC -ACGGAAAGGCTAAGTGTCTGAAGG -ACGGAAAGGCTAAGTGTCCAATGG -ACGGAAAGGCTAAGTGTCATGAGG -ACGGAAAGGCTAAGTGTCAATGGG -ACGGAAAGGCTAAGTGTCTCCTGA -ACGGAAAGGCTAAGTGTCTAGCGA -ACGGAAAGGCTAAGTGTCCACAGA -ACGGAAAGGCTAAGTGTCGCAAGA -ACGGAAAGGCTAAGTGTCGGTTGA -ACGGAAAGGCTAAGTGTCTCCGAT -ACGGAAAGGCTAAGTGTCTGGCAT -ACGGAAAGGCTAAGTGTCCGAGAT -ACGGAAAGGCTAAGTGTCTACCAC -ACGGAAAGGCTAAGTGTCCAGAAC -ACGGAAAGGCTAAGTGTCGTCTAC -ACGGAAAGGCTAAGTGTCACGTAC -ACGGAAAGGCTAAGTGTCAGTGAC -ACGGAAAGGCTAAGTGTCCTGTAG -ACGGAAAGGCTAAGTGTCCCTAAG -ACGGAAAGGCTAAGTGTCGTTCAG -ACGGAAAGGCTAAGTGTCGCATAG -ACGGAAAGGCTAAGTGTCGACAAG -ACGGAAAGGCTAAGTGTCAAGCAG -ACGGAAAGGCTAAGTGTCCGTCAA -ACGGAAAGGCTAAGTGTCGCTGAA -ACGGAAAGGCTAAGTGTCAGTACG -ACGGAAAGGCTAAGTGTCATCCGA -ACGGAAAGGCTAAGTGTCATGGGA -ACGGAAAGGCTAAGTGTCGTGCAA -ACGGAAAGGCTAAGTGTCGAGGAA -ACGGAAAGGCTAAGTGTCCAGGTA -ACGGAAAGGCTAAGTGTCGACTCT -ACGGAAAGGCTAAGTGTCAGTCCT -ACGGAAAGGCTAAGTGTCTAAGCC -ACGGAAAGGCTAAGTGTCATAGCC -ACGGAAAGGCTAAGTGTCTAACCG -ACGGAAAGGCTAAGTGTCATGCCA -ACGGAAAGGCTAGGTGAAGGAAAC -ACGGAAAGGCTAGGTGAAAACACC -ACGGAAAGGCTAGGTGAAATCGAG -ACGGAAAGGCTAGGTGAACTCCTT -ACGGAAAGGCTAGGTGAACCTGTT -ACGGAAAGGCTAGGTGAACGGTTT -ACGGAAAGGCTAGGTGAAGTGGTT -ACGGAAAGGCTAGGTGAAGCCTTT -ACGGAAAGGCTAGGTGAAGGTCTT -ACGGAAAGGCTAGGTGAAACGCTT -ACGGAAAGGCTAGGTGAAAGCGTT -ACGGAAAGGCTAGGTGAATTCGTC -ACGGAAAGGCTAGGTGAATCTCTC -ACGGAAAGGCTAGGTGAATGGATC -ACGGAAAGGCTAGGTGAACACTTC -ACGGAAAGGCTAGGTGAAGTACTC -ACGGAAAGGCTAGGTGAAGATGTC -ACGGAAAGGCTAGGTGAAACAGTC -ACGGAAAGGCTAGGTGAATTGCTG -ACGGAAAGGCTAGGTGAATCCATG -ACGGAAAGGCTAGGTGAATGTGTG -ACGGAAAGGCTAGGTGAACTAGTG -ACGGAAAGGCTAGGTGAACATCTG -ACGGAAAGGCTAGGTGAAGAGTTG -ACGGAAAGGCTAGGTGAAAGACTG -ACGGAAAGGCTAGGTGAATCGGTA -ACGGAAAGGCTAGGTGAATGCCTA -ACGGAAAGGCTAGGTGAACCACTA -ACGGAAAGGCTAGGTGAAGGAGTA -ACGGAAAGGCTAGGTGAATCGTCT -ACGGAAAGGCTAGGTGAATGCACT -ACGGAAAGGCTAGGTGAACTGACT -ACGGAAAGGCTAGGTGAACAACCT -ACGGAAAGGCTAGGTGAAGCTACT -ACGGAAAGGCTAGGTGAAGGATCT -ACGGAAAGGCTAGGTGAAAAGGCT -ACGGAAAGGCTAGGTGAATCAACC -ACGGAAAGGCTAGGTGAATGTTCC -ACGGAAAGGCTAGGTGAAATTCCC -ACGGAAAGGCTAGGTGAATTCTCG -ACGGAAAGGCTAGGTGAATAGACG -ACGGAAAGGCTAGGTGAAGTAACG -ACGGAAAGGCTAGGTGAAACTTCG -ACGGAAAGGCTAGGTGAATACGCA -ACGGAAAGGCTAGGTGAACTTGCA -ACGGAAAGGCTAGGTGAACGAACA -ACGGAAAGGCTAGGTGAACAGTCA -ACGGAAAGGCTAGGTGAAGATCCA -ACGGAAAGGCTAGGTGAAACGACA -ACGGAAAGGCTAGGTGAAAGCTCA -ACGGAAAGGCTAGGTGAATCACGT -ACGGAAAGGCTAGGTGAACGTAGT -ACGGAAAGGCTAGGTGAAGTCAGT -ACGGAAAGGCTAGGTGAAGAAGGT -ACGGAAAGGCTAGGTGAAAACCGT -ACGGAAAGGCTAGGTGAATTGTGC -ACGGAAAGGCTAGGTGAACTAAGC -ACGGAAAGGCTAGGTGAAACTAGC -ACGGAAAGGCTAGGTGAAAGATGC -ACGGAAAGGCTAGGTGAATGAAGG -ACGGAAAGGCTAGGTGAACAATGG -ACGGAAAGGCTAGGTGAAATGAGG -ACGGAAAGGCTAGGTGAAAATGGG -ACGGAAAGGCTAGGTGAATCCTGA -ACGGAAAGGCTAGGTGAATAGCGA -ACGGAAAGGCTAGGTGAACACAGA -ACGGAAAGGCTAGGTGAAGCAAGA -ACGGAAAGGCTAGGTGAAGGTTGA -ACGGAAAGGCTAGGTGAATCCGAT -ACGGAAAGGCTAGGTGAATGGCAT -ACGGAAAGGCTAGGTGAACGAGAT -ACGGAAAGGCTAGGTGAATACCAC -ACGGAAAGGCTAGGTGAACAGAAC -ACGGAAAGGCTAGGTGAAGTCTAC -ACGGAAAGGCTAGGTGAAACGTAC -ACGGAAAGGCTAGGTGAAAGTGAC -ACGGAAAGGCTAGGTGAACTGTAG -ACGGAAAGGCTAGGTGAACCTAAG -ACGGAAAGGCTAGGTGAAGTTCAG -ACGGAAAGGCTAGGTGAAGCATAG -ACGGAAAGGCTAGGTGAAGACAAG -ACGGAAAGGCTAGGTGAAAAGCAG -ACGGAAAGGCTAGGTGAACGTCAA -ACGGAAAGGCTAGGTGAAGCTGAA -ACGGAAAGGCTAGGTGAAAGTACG -ACGGAAAGGCTAGGTGAAATCCGA -ACGGAAAGGCTAGGTGAAATGGGA -ACGGAAAGGCTAGGTGAAGTGCAA -ACGGAAAGGCTAGGTGAAGAGGAA -ACGGAAAGGCTAGGTGAACAGGTA -ACGGAAAGGCTAGGTGAAGACTCT -ACGGAAAGGCTAGGTGAAAGTCCT -ACGGAAAGGCTAGGTGAATAAGCC -ACGGAAAGGCTAGGTGAAATAGCC -ACGGAAAGGCTAGGTGAATAACCG -ACGGAAAGGCTAGGTGAAATGCCA -ACGGAAAGGCTACGTAACGGAAAC -ACGGAAAGGCTACGTAACAACACC -ACGGAAAGGCTACGTAACATCGAG -ACGGAAAGGCTACGTAACCTCCTT -ACGGAAAGGCTACGTAACCCTGTT -ACGGAAAGGCTACGTAACCGGTTT -ACGGAAAGGCTACGTAACGTGGTT -ACGGAAAGGCTACGTAACGCCTTT -ACGGAAAGGCTACGTAACGGTCTT -ACGGAAAGGCTACGTAACACGCTT -ACGGAAAGGCTACGTAACAGCGTT -ACGGAAAGGCTACGTAACTTCGTC -ACGGAAAGGCTACGTAACTCTCTC -ACGGAAAGGCTACGTAACTGGATC -ACGGAAAGGCTACGTAACCACTTC -ACGGAAAGGCTACGTAACGTACTC -ACGGAAAGGCTACGTAACGATGTC -ACGGAAAGGCTACGTAACACAGTC -ACGGAAAGGCTACGTAACTTGCTG -ACGGAAAGGCTACGTAACTCCATG -ACGGAAAGGCTACGTAACTGTGTG -ACGGAAAGGCTACGTAACCTAGTG -ACGGAAAGGCTACGTAACCATCTG -ACGGAAAGGCTACGTAACGAGTTG -ACGGAAAGGCTACGTAACAGACTG -ACGGAAAGGCTACGTAACTCGGTA -ACGGAAAGGCTACGTAACTGCCTA -ACGGAAAGGCTACGTAACCCACTA -ACGGAAAGGCTACGTAACGGAGTA -ACGGAAAGGCTACGTAACTCGTCT -ACGGAAAGGCTACGTAACTGCACT -ACGGAAAGGCTACGTAACCTGACT -ACGGAAAGGCTACGTAACCAACCT -ACGGAAAGGCTACGTAACGCTACT -ACGGAAAGGCTACGTAACGGATCT -ACGGAAAGGCTACGTAACAAGGCT -ACGGAAAGGCTACGTAACTCAACC -ACGGAAAGGCTACGTAACTGTTCC -ACGGAAAGGCTACGTAACATTCCC -ACGGAAAGGCTACGTAACTTCTCG -ACGGAAAGGCTACGTAACTAGACG -ACGGAAAGGCTACGTAACGTAACG -ACGGAAAGGCTACGTAACACTTCG -ACGGAAAGGCTACGTAACTACGCA -ACGGAAAGGCTACGTAACCTTGCA -ACGGAAAGGCTACGTAACCGAACA -ACGGAAAGGCTACGTAACCAGTCA -ACGGAAAGGCTACGTAACGATCCA -ACGGAAAGGCTACGTAACACGACA -ACGGAAAGGCTACGTAACAGCTCA -ACGGAAAGGCTACGTAACTCACGT -ACGGAAAGGCTACGTAACCGTAGT -ACGGAAAGGCTACGTAACGTCAGT -ACGGAAAGGCTACGTAACGAAGGT -ACGGAAAGGCTACGTAACAACCGT -ACGGAAAGGCTACGTAACTTGTGC -ACGGAAAGGCTACGTAACCTAAGC -ACGGAAAGGCTACGTAACACTAGC -ACGGAAAGGCTACGTAACAGATGC -ACGGAAAGGCTACGTAACTGAAGG -ACGGAAAGGCTACGTAACCAATGG -ACGGAAAGGCTACGTAACATGAGG -ACGGAAAGGCTACGTAACAATGGG -ACGGAAAGGCTACGTAACTCCTGA -ACGGAAAGGCTACGTAACTAGCGA -ACGGAAAGGCTACGTAACCACAGA -ACGGAAAGGCTACGTAACGCAAGA -ACGGAAAGGCTACGTAACGGTTGA -ACGGAAAGGCTACGTAACTCCGAT -ACGGAAAGGCTACGTAACTGGCAT -ACGGAAAGGCTACGTAACCGAGAT -ACGGAAAGGCTACGTAACTACCAC -ACGGAAAGGCTACGTAACCAGAAC -ACGGAAAGGCTACGTAACGTCTAC -ACGGAAAGGCTACGTAACACGTAC -ACGGAAAGGCTACGTAACAGTGAC -ACGGAAAGGCTACGTAACCTGTAG -ACGGAAAGGCTACGTAACCCTAAG -ACGGAAAGGCTACGTAACGTTCAG -ACGGAAAGGCTACGTAACGCATAG -ACGGAAAGGCTACGTAACGACAAG -ACGGAAAGGCTACGTAACAAGCAG -ACGGAAAGGCTACGTAACCGTCAA -ACGGAAAGGCTACGTAACGCTGAA -ACGGAAAGGCTACGTAACAGTACG -ACGGAAAGGCTACGTAACATCCGA -ACGGAAAGGCTACGTAACATGGGA -ACGGAAAGGCTACGTAACGTGCAA -ACGGAAAGGCTACGTAACGAGGAA -ACGGAAAGGCTACGTAACCAGGTA -ACGGAAAGGCTACGTAACGACTCT -ACGGAAAGGCTACGTAACAGTCCT -ACGGAAAGGCTACGTAACTAAGCC -ACGGAAAGGCTACGTAACATAGCC -ACGGAAAGGCTACGTAACTAACCG -ACGGAAAGGCTACGTAACATGCCA -ACGGAAAGGCTATGCTTGGGAAAC -ACGGAAAGGCTATGCTTGAACACC -ACGGAAAGGCTATGCTTGATCGAG -ACGGAAAGGCTATGCTTGCTCCTT -ACGGAAAGGCTATGCTTGCCTGTT -ACGGAAAGGCTATGCTTGCGGTTT -ACGGAAAGGCTATGCTTGGTGGTT -ACGGAAAGGCTATGCTTGGCCTTT -ACGGAAAGGCTATGCTTGGGTCTT -ACGGAAAGGCTATGCTTGACGCTT -ACGGAAAGGCTATGCTTGAGCGTT -ACGGAAAGGCTATGCTTGTTCGTC -ACGGAAAGGCTATGCTTGTCTCTC -ACGGAAAGGCTATGCTTGTGGATC -ACGGAAAGGCTATGCTTGCACTTC -ACGGAAAGGCTATGCTTGGTACTC -ACGGAAAGGCTATGCTTGGATGTC -ACGGAAAGGCTATGCTTGACAGTC -ACGGAAAGGCTATGCTTGTTGCTG -ACGGAAAGGCTATGCTTGTCCATG -ACGGAAAGGCTATGCTTGTGTGTG -ACGGAAAGGCTATGCTTGCTAGTG -ACGGAAAGGCTATGCTTGCATCTG -ACGGAAAGGCTATGCTTGGAGTTG -ACGGAAAGGCTATGCTTGAGACTG -ACGGAAAGGCTATGCTTGTCGGTA -ACGGAAAGGCTATGCTTGTGCCTA -ACGGAAAGGCTATGCTTGCCACTA -ACGGAAAGGCTATGCTTGGGAGTA -ACGGAAAGGCTATGCTTGTCGTCT -ACGGAAAGGCTATGCTTGTGCACT -ACGGAAAGGCTATGCTTGCTGACT -ACGGAAAGGCTATGCTTGCAACCT -ACGGAAAGGCTATGCTTGGCTACT -ACGGAAAGGCTATGCTTGGGATCT -ACGGAAAGGCTATGCTTGAAGGCT -ACGGAAAGGCTATGCTTGTCAACC -ACGGAAAGGCTATGCTTGTGTTCC -ACGGAAAGGCTATGCTTGATTCCC -ACGGAAAGGCTATGCTTGTTCTCG -ACGGAAAGGCTATGCTTGTAGACG -ACGGAAAGGCTATGCTTGGTAACG -ACGGAAAGGCTATGCTTGACTTCG -ACGGAAAGGCTATGCTTGTACGCA -ACGGAAAGGCTATGCTTGCTTGCA -ACGGAAAGGCTATGCTTGCGAACA -ACGGAAAGGCTATGCTTGCAGTCA -ACGGAAAGGCTATGCTTGGATCCA -ACGGAAAGGCTATGCTTGACGACA -ACGGAAAGGCTATGCTTGAGCTCA -ACGGAAAGGCTATGCTTGTCACGT -ACGGAAAGGCTATGCTTGCGTAGT -ACGGAAAGGCTATGCTTGGTCAGT -ACGGAAAGGCTATGCTTGGAAGGT -ACGGAAAGGCTATGCTTGAACCGT -ACGGAAAGGCTATGCTTGTTGTGC -ACGGAAAGGCTATGCTTGCTAAGC -ACGGAAAGGCTATGCTTGACTAGC -ACGGAAAGGCTATGCTTGAGATGC -ACGGAAAGGCTATGCTTGTGAAGG -ACGGAAAGGCTATGCTTGCAATGG -ACGGAAAGGCTATGCTTGATGAGG -ACGGAAAGGCTATGCTTGAATGGG -ACGGAAAGGCTATGCTTGTCCTGA -ACGGAAAGGCTATGCTTGTAGCGA -ACGGAAAGGCTATGCTTGCACAGA -ACGGAAAGGCTATGCTTGGCAAGA -ACGGAAAGGCTATGCTTGGGTTGA -ACGGAAAGGCTATGCTTGTCCGAT -ACGGAAAGGCTATGCTTGTGGCAT -ACGGAAAGGCTATGCTTGCGAGAT -ACGGAAAGGCTATGCTTGTACCAC -ACGGAAAGGCTATGCTTGCAGAAC -ACGGAAAGGCTATGCTTGGTCTAC -ACGGAAAGGCTATGCTTGACGTAC -ACGGAAAGGCTATGCTTGAGTGAC -ACGGAAAGGCTATGCTTGCTGTAG -ACGGAAAGGCTATGCTTGCCTAAG -ACGGAAAGGCTATGCTTGGTTCAG -ACGGAAAGGCTATGCTTGGCATAG -ACGGAAAGGCTATGCTTGGACAAG -ACGGAAAGGCTATGCTTGAAGCAG -ACGGAAAGGCTATGCTTGCGTCAA -ACGGAAAGGCTATGCTTGGCTGAA -ACGGAAAGGCTATGCTTGAGTACG -ACGGAAAGGCTATGCTTGATCCGA -ACGGAAAGGCTATGCTTGATGGGA -ACGGAAAGGCTATGCTTGGTGCAA -ACGGAAAGGCTATGCTTGGAGGAA -ACGGAAAGGCTATGCTTGCAGGTA -ACGGAAAGGCTATGCTTGGACTCT -ACGGAAAGGCTATGCTTGAGTCCT -ACGGAAAGGCTATGCTTGTAAGCC -ACGGAAAGGCTATGCTTGATAGCC -ACGGAAAGGCTATGCTTGTAACCG -ACGGAAAGGCTATGCTTGATGCCA -ACGGAAAGGCTAAGCCTAGGAAAC -ACGGAAAGGCTAAGCCTAAACACC -ACGGAAAGGCTAAGCCTAATCGAG -ACGGAAAGGCTAAGCCTACTCCTT -ACGGAAAGGCTAAGCCTACCTGTT -ACGGAAAGGCTAAGCCTACGGTTT -ACGGAAAGGCTAAGCCTAGTGGTT -ACGGAAAGGCTAAGCCTAGCCTTT -ACGGAAAGGCTAAGCCTAGGTCTT -ACGGAAAGGCTAAGCCTAACGCTT -ACGGAAAGGCTAAGCCTAAGCGTT -ACGGAAAGGCTAAGCCTATTCGTC -ACGGAAAGGCTAAGCCTATCTCTC -ACGGAAAGGCTAAGCCTATGGATC -ACGGAAAGGCTAAGCCTACACTTC -ACGGAAAGGCTAAGCCTAGTACTC -ACGGAAAGGCTAAGCCTAGATGTC -ACGGAAAGGCTAAGCCTAACAGTC -ACGGAAAGGCTAAGCCTATTGCTG -ACGGAAAGGCTAAGCCTATCCATG -ACGGAAAGGCTAAGCCTATGTGTG -ACGGAAAGGCTAAGCCTACTAGTG -ACGGAAAGGCTAAGCCTACATCTG -ACGGAAAGGCTAAGCCTAGAGTTG -ACGGAAAGGCTAAGCCTAAGACTG -ACGGAAAGGCTAAGCCTATCGGTA -ACGGAAAGGCTAAGCCTATGCCTA -ACGGAAAGGCTAAGCCTACCACTA -ACGGAAAGGCTAAGCCTAGGAGTA -ACGGAAAGGCTAAGCCTATCGTCT -ACGGAAAGGCTAAGCCTATGCACT -ACGGAAAGGCTAAGCCTACTGACT -ACGGAAAGGCTAAGCCTACAACCT -ACGGAAAGGCTAAGCCTAGCTACT -ACGGAAAGGCTAAGCCTAGGATCT -ACGGAAAGGCTAAGCCTAAAGGCT -ACGGAAAGGCTAAGCCTATCAACC -ACGGAAAGGCTAAGCCTATGTTCC -ACGGAAAGGCTAAGCCTAATTCCC -ACGGAAAGGCTAAGCCTATTCTCG -ACGGAAAGGCTAAGCCTATAGACG -ACGGAAAGGCTAAGCCTAGTAACG -ACGGAAAGGCTAAGCCTAACTTCG -ACGGAAAGGCTAAGCCTATACGCA -ACGGAAAGGCTAAGCCTACTTGCA -ACGGAAAGGCTAAGCCTACGAACA -ACGGAAAGGCTAAGCCTACAGTCA -ACGGAAAGGCTAAGCCTAGATCCA -ACGGAAAGGCTAAGCCTAACGACA -ACGGAAAGGCTAAGCCTAAGCTCA -ACGGAAAGGCTAAGCCTATCACGT -ACGGAAAGGCTAAGCCTACGTAGT -ACGGAAAGGCTAAGCCTAGTCAGT -ACGGAAAGGCTAAGCCTAGAAGGT -ACGGAAAGGCTAAGCCTAAACCGT -ACGGAAAGGCTAAGCCTATTGTGC -ACGGAAAGGCTAAGCCTACTAAGC -ACGGAAAGGCTAAGCCTAACTAGC -ACGGAAAGGCTAAGCCTAAGATGC -ACGGAAAGGCTAAGCCTATGAAGG -ACGGAAAGGCTAAGCCTACAATGG -ACGGAAAGGCTAAGCCTAATGAGG -ACGGAAAGGCTAAGCCTAAATGGG -ACGGAAAGGCTAAGCCTATCCTGA -ACGGAAAGGCTAAGCCTATAGCGA -ACGGAAAGGCTAAGCCTACACAGA -ACGGAAAGGCTAAGCCTAGCAAGA -ACGGAAAGGCTAAGCCTAGGTTGA -ACGGAAAGGCTAAGCCTATCCGAT -ACGGAAAGGCTAAGCCTATGGCAT -ACGGAAAGGCTAAGCCTACGAGAT -ACGGAAAGGCTAAGCCTATACCAC -ACGGAAAGGCTAAGCCTACAGAAC -ACGGAAAGGCTAAGCCTAGTCTAC -ACGGAAAGGCTAAGCCTAACGTAC -ACGGAAAGGCTAAGCCTAAGTGAC -ACGGAAAGGCTAAGCCTACTGTAG -ACGGAAAGGCTAAGCCTACCTAAG -ACGGAAAGGCTAAGCCTAGTTCAG -ACGGAAAGGCTAAGCCTAGCATAG -ACGGAAAGGCTAAGCCTAGACAAG -ACGGAAAGGCTAAGCCTAAAGCAG -ACGGAAAGGCTAAGCCTACGTCAA -ACGGAAAGGCTAAGCCTAGCTGAA -ACGGAAAGGCTAAGCCTAAGTACG -ACGGAAAGGCTAAGCCTAATCCGA -ACGGAAAGGCTAAGCCTAATGGGA -ACGGAAAGGCTAAGCCTAGTGCAA -ACGGAAAGGCTAAGCCTAGAGGAA -ACGGAAAGGCTAAGCCTACAGGTA -ACGGAAAGGCTAAGCCTAGACTCT -ACGGAAAGGCTAAGCCTAAGTCCT -ACGGAAAGGCTAAGCCTATAAGCC -ACGGAAAGGCTAAGCCTAATAGCC -ACGGAAAGGCTAAGCCTATAACCG -ACGGAAAGGCTAAGCCTAATGCCA -ACGGAAAGGCTAAGCACTGGAAAC -ACGGAAAGGCTAAGCACTAACACC -ACGGAAAGGCTAAGCACTATCGAG -ACGGAAAGGCTAAGCACTCTCCTT -ACGGAAAGGCTAAGCACTCCTGTT -ACGGAAAGGCTAAGCACTCGGTTT -ACGGAAAGGCTAAGCACTGTGGTT -ACGGAAAGGCTAAGCACTGCCTTT -ACGGAAAGGCTAAGCACTGGTCTT -ACGGAAAGGCTAAGCACTACGCTT -ACGGAAAGGCTAAGCACTAGCGTT -ACGGAAAGGCTAAGCACTTTCGTC -ACGGAAAGGCTAAGCACTTCTCTC -ACGGAAAGGCTAAGCACTTGGATC -ACGGAAAGGCTAAGCACTCACTTC -ACGGAAAGGCTAAGCACTGTACTC -ACGGAAAGGCTAAGCACTGATGTC -ACGGAAAGGCTAAGCACTACAGTC -ACGGAAAGGCTAAGCACTTTGCTG -ACGGAAAGGCTAAGCACTTCCATG -ACGGAAAGGCTAAGCACTTGTGTG -ACGGAAAGGCTAAGCACTCTAGTG -ACGGAAAGGCTAAGCACTCATCTG -ACGGAAAGGCTAAGCACTGAGTTG -ACGGAAAGGCTAAGCACTAGACTG -ACGGAAAGGCTAAGCACTTCGGTA -ACGGAAAGGCTAAGCACTTGCCTA -ACGGAAAGGCTAAGCACTCCACTA -ACGGAAAGGCTAAGCACTGGAGTA -ACGGAAAGGCTAAGCACTTCGTCT -ACGGAAAGGCTAAGCACTTGCACT -ACGGAAAGGCTAAGCACTCTGACT -ACGGAAAGGCTAAGCACTCAACCT -ACGGAAAGGCTAAGCACTGCTACT -ACGGAAAGGCTAAGCACTGGATCT -ACGGAAAGGCTAAGCACTAAGGCT -ACGGAAAGGCTAAGCACTTCAACC -ACGGAAAGGCTAAGCACTTGTTCC -ACGGAAAGGCTAAGCACTATTCCC -ACGGAAAGGCTAAGCACTTTCTCG -ACGGAAAGGCTAAGCACTTAGACG -ACGGAAAGGCTAAGCACTGTAACG -ACGGAAAGGCTAAGCACTACTTCG -ACGGAAAGGCTAAGCACTTACGCA -ACGGAAAGGCTAAGCACTCTTGCA -ACGGAAAGGCTAAGCACTCGAACA -ACGGAAAGGCTAAGCACTCAGTCA -ACGGAAAGGCTAAGCACTGATCCA -ACGGAAAGGCTAAGCACTACGACA -ACGGAAAGGCTAAGCACTAGCTCA -ACGGAAAGGCTAAGCACTTCACGT -ACGGAAAGGCTAAGCACTCGTAGT -ACGGAAAGGCTAAGCACTGTCAGT -ACGGAAAGGCTAAGCACTGAAGGT -ACGGAAAGGCTAAGCACTAACCGT -ACGGAAAGGCTAAGCACTTTGTGC -ACGGAAAGGCTAAGCACTCTAAGC -ACGGAAAGGCTAAGCACTACTAGC -ACGGAAAGGCTAAGCACTAGATGC -ACGGAAAGGCTAAGCACTTGAAGG -ACGGAAAGGCTAAGCACTCAATGG -ACGGAAAGGCTAAGCACTATGAGG -ACGGAAAGGCTAAGCACTAATGGG -ACGGAAAGGCTAAGCACTTCCTGA -ACGGAAAGGCTAAGCACTTAGCGA -ACGGAAAGGCTAAGCACTCACAGA -ACGGAAAGGCTAAGCACTGCAAGA -ACGGAAAGGCTAAGCACTGGTTGA -ACGGAAAGGCTAAGCACTTCCGAT -ACGGAAAGGCTAAGCACTTGGCAT -ACGGAAAGGCTAAGCACTCGAGAT -ACGGAAAGGCTAAGCACTTACCAC -ACGGAAAGGCTAAGCACTCAGAAC -ACGGAAAGGCTAAGCACTGTCTAC -ACGGAAAGGCTAAGCACTACGTAC -ACGGAAAGGCTAAGCACTAGTGAC -ACGGAAAGGCTAAGCACTCTGTAG -ACGGAAAGGCTAAGCACTCCTAAG -ACGGAAAGGCTAAGCACTGTTCAG -ACGGAAAGGCTAAGCACTGCATAG -ACGGAAAGGCTAAGCACTGACAAG -ACGGAAAGGCTAAGCACTAAGCAG -ACGGAAAGGCTAAGCACTCGTCAA -ACGGAAAGGCTAAGCACTGCTGAA -ACGGAAAGGCTAAGCACTAGTACG -ACGGAAAGGCTAAGCACTATCCGA -ACGGAAAGGCTAAGCACTATGGGA -ACGGAAAGGCTAAGCACTGTGCAA -ACGGAAAGGCTAAGCACTGAGGAA -ACGGAAAGGCTAAGCACTCAGGTA -ACGGAAAGGCTAAGCACTGACTCT -ACGGAAAGGCTAAGCACTAGTCCT -ACGGAAAGGCTAAGCACTTAAGCC -ACGGAAAGGCTAAGCACTATAGCC -ACGGAAAGGCTAAGCACTTAACCG -ACGGAAAGGCTAAGCACTATGCCA -ACGGAAAGGCTATGCAGAGGAAAC -ACGGAAAGGCTATGCAGAAACACC -ACGGAAAGGCTATGCAGAATCGAG -ACGGAAAGGCTATGCAGACTCCTT -ACGGAAAGGCTATGCAGACCTGTT -ACGGAAAGGCTATGCAGACGGTTT -ACGGAAAGGCTATGCAGAGTGGTT -ACGGAAAGGCTATGCAGAGCCTTT -ACGGAAAGGCTATGCAGAGGTCTT -ACGGAAAGGCTATGCAGAACGCTT -ACGGAAAGGCTATGCAGAAGCGTT -ACGGAAAGGCTATGCAGATTCGTC -ACGGAAAGGCTATGCAGATCTCTC -ACGGAAAGGCTATGCAGATGGATC -ACGGAAAGGCTATGCAGACACTTC -ACGGAAAGGCTATGCAGAGTACTC -ACGGAAAGGCTATGCAGAGATGTC -ACGGAAAGGCTATGCAGAACAGTC -ACGGAAAGGCTATGCAGATTGCTG -ACGGAAAGGCTATGCAGATCCATG -ACGGAAAGGCTATGCAGATGTGTG -ACGGAAAGGCTATGCAGACTAGTG -ACGGAAAGGCTATGCAGACATCTG -ACGGAAAGGCTATGCAGAGAGTTG -ACGGAAAGGCTATGCAGAAGACTG -ACGGAAAGGCTATGCAGATCGGTA -ACGGAAAGGCTATGCAGATGCCTA -ACGGAAAGGCTATGCAGACCACTA -ACGGAAAGGCTATGCAGAGGAGTA -ACGGAAAGGCTATGCAGATCGTCT -ACGGAAAGGCTATGCAGATGCACT -ACGGAAAGGCTATGCAGACTGACT -ACGGAAAGGCTATGCAGACAACCT -ACGGAAAGGCTATGCAGAGCTACT -ACGGAAAGGCTATGCAGAGGATCT -ACGGAAAGGCTATGCAGAAAGGCT -ACGGAAAGGCTATGCAGATCAACC -ACGGAAAGGCTATGCAGATGTTCC -ACGGAAAGGCTATGCAGAATTCCC -ACGGAAAGGCTATGCAGATTCTCG -ACGGAAAGGCTATGCAGATAGACG -ACGGAAAGGCTATGCAGAGTAACG -ACGGAAAGGCTATGCAGAACTTCG -ACGGAAAGGCTATGCAGATACGCA -ACGGAAAGGCTATGCAGACTTGCA -ACGGAAAGGCTATGCAGACGAACA -ACGGAAAGGCTATGCAGACAGTCA -ACGGAAAGGCTATGCAGAGATCCA -ACGGAAAGGCTATGCAGAACGACA -ACGGAAAGGCTATGCAGAAGCTCA -ACGGAAAGGCTATGCAGATCACGT -ACGGAAAGGCTATGCAGACGTAGT -ACGGAAAGGCTATGCAGAGTCAGT -ACGGAAAGGCTATGCAGAGAAGGT -ACGGAAAGGCTATGCAGAAACCGT -ACGGAAAGGCTATGCAGATTGTGC -ACGGAAAGGCTATGCAGACTAAGC -ACGGAAAGGCTATGCAGAACTAGC -ACGGAAAGGCTATGCAGAAGATGC -ACGGAAAGGCTATGCAGATGAAGG -ACGGAAAGGCTATGCAGACAATGG -ACGGAAAGGCTATGCAGAATGAGG -ACGGAAAGGCTATGCAGAAATGGG -ACGGAAAGGCTATGCAGATCCTGA -ACGGAAAGGCTATGCAGATAGCGA -ACGGAAAGGCTATGCAGACACAGA -ACGGAAAGGCTATGCAGAGCAAGA -ACGGAAAGGCTATGCAGAGGTTGA -ACGGAAAGGCTATGCAGATCCGAT -ACGGAAAGGCTATGCAGATGGCAT -ACGGAAAGGCTATGCAGACGAGAT -ACGGAAAGGCTATGCAGATACCAC -ACGGAAAGGCTATGCAGACAGAAC -ACGGAAAGGCTATGCAGAGTCTAC -ACGGAAAGGCTATGCAGAACGTAC -ACGGAAAGGCTATGCAGAAGTGAC -ACGGAAAGGCTATGCAGACTGTAG -ACGGAAAGGCTATGCAGACCTAAG -ACGGAAAGGCTATGCAGAGTTCAG -ACGGAAAGGCTATGCAGAGCATAG -ACGGAAAGGCTATGCAGAGACAAG -ACGGAAAGGCTATGCAGAAAGCAG -ACGGAAAGGCTATGCAGACGTCAA -ACGGAAAGGCTATGCAGAGCTGAA -ACGGAAAGGCTATGCAGAAGTACG -ACGGAAAGGCTATGCAGAATCCGA -ACGGAAAGGCTATGCAGAATGGGA -ACGGAAAGGCTATGCAGAGTGCAA -ACGGAAAGGCTATGCAGAGAGGAA -ACGGAAAGGCTATGCAGACAGGTA -ACGGAAAGGCTATGCAGAGACTCT -ACGGAAAGGCTATGCAGAAGTCCT -ACGGAAAGGCTATGCAGATAAGCC -ACGGAAAGGCTATGCAGAATAGCC -ACGGAAAGGCTATGCAGATAACCG -ACGGAAAGGCTATGCAGAATGCCA -ACGGAAAGGCTAAGGTGAGGAAAC -ACGGAAAGGCTAAGGTGAAACACC -ACGGAAAGGCTAAGGTGAATCGAG -ACGGAAAGGCTAAGGTGACTCCTT -ACGGAAAGGCTAAGGTGACCTGTT -ACGGAAAGGCTAAGGTGACGGTTT -ACGGAAAGGCTAAGGTGAGTGGTT -ACGGAAAGGCTAAGGTGAGCCTTT -ACGGAAAGGCTAAGGTGAGGTCTT -ACGGAAAGGCTAAGGTGAACGCTT -ACGGAAAGGCTAAGGTGAAGCGTT -ACGGAAAGGCTAAGGTGATTCGTC -ACGGAAAGGCTAAGGTGATCTCTC -ACGGAAAGGCTAAGGTGATGGATC -ACGGAAAGGCTAAGGTGACACTTC -ACGGAAAGGCTAAGGTGAGTACTC -ACGGAAAGGCTAAGGTGAGATGTC -ACGGAAAGGCTAAGGTGAACAGTC -ACGGAAAGGCTAAGGTGATTGCTG -ACGGAAAGGCTAAGGTGATCCATG -ACGGAAAGGCTAAGGTGATGTGTG -ACGGAAAGGCTAAGGTGACTAGTG -ACGGAAAGGCTAAGGTGACATCTG -ACGGAAAGGCTAAGGTGAGAGTTG -ACGGAAAGGCTAAGGTGAAGACTG -ACGGAAAGGCTAAGGTGATCGGTA -ACGGAAAGGCTAAGGTGATGCCTA -ACGGAAAGGCTAAGGTGACCACTA -ACGGAAAGGCTAAGGTGAGGAGTA -ACGGAAAGGCTAAGGTGATCGTCT -ACGGAAAGGCTAAGGTGATGCACT -ACGGAAAGGCTAAGGTGACTGACT -ACGGAAAGGCTAAGGTGACAACCT -ACGGAAAGGCTAAGGTGAGCTACT -ACGGAAAGGCTAAGGTGAGGATCT -ACGGAAAGGCTAAGGTGAAAGGCT -ACGGAAAGGCTAAGGTGATCAACC -ACGGAAAGGCTAAGGTGATGTTCC -ACGGAAAGGCTAAGGTGAATTCCC -ACGGAAAGGCTAAGGTGATTCTCG -ACGGAAAGGCTAAGGTGATAGACG -ACGGAAAGGCTAAGGTGAGTAACG -ACGGAAAGGCTAAGGTGAACTTCG -ACGGAAAGGCTAAGGTGATACGCA -ACGGAAAGGCTAAGGTGACTTGCA -ACGGAAAGGCTAAGGTGACGAACA -ACGGAAAGGCTAAGGTGACAGTCA -ACGGAAAGGCTAAGGTGAGATCCA -ACGGAAAGGCTAAGGTGAACGACA -ACGGAAAGGCTAAGGTGAAGCTCA -ACGGAAAGGCTAAGGTGATCACGT -ACGGAAAGGCTAAGGTGACGTAGT -ACGGAAAGGCTAAGGTGAGTCAGT -ACGGAAAGGCTAAGGTGAGAAGGT -ACGGAAAGGCTAAGGTGAAACCGT -ACGGAAAGGCTAAGGTGATTGTGC -ACGGAAAGGCTAAGGTGACTAAGC -ACGGAAAGGCTAAGGTGAACTAGC -ACGGAAAGGCTAAGGTGAAGATGC -ACGGAAAGGCTAAGGTGATGAAGG -ACGGAAAGGCTAAGGTGACAATGG -ACGGAAAGGCTAAGGTGAATGAGG -ACGGAAAGGCTAAGGTGAAATGGG -ACGGAAAGGCTAAGGTGATCCTGA -ACGGAAAGGCTAAGGTGATAGCGA -ACGGAAAGGCTAAGGTGACACAGA -ACGGAAAGGCTAAGGTGAGCAAGA -ACGGAAAGGCTAAGGTGAGGTTGA -ACGGAAAGGCTAAGGTGATCCGAT -ACGGAAAGGCTAAGGTGATGGCAT -ACGGAAAGGCTAAGGTGACGAGAT -ACGGAAAGGCTAAGGTGATACCAC -ACGGAAAGGCTAAGGTGACAGAAC -ACGGAAAGGCTAAGGTGAGTCTAC -ACGGAAAGGCTAAGGTGAACGTAC -ACGGAAAGGCTAAGGTGAAGTGAC -ACGGAAAGGCTAAGGTGACTGTAG -ACGGAAAGGCTAAGGTGACCTAAG -ACGGAAAGGCTAAGGTGAGTTCAG -ACGGAAAGGCTAAGGTGAGCATAG -ACGGAAAGGCTAAGGTGAGACAAG -ACGGAAAGGCTAAGGTGAAAGCAG -ACGGAAAGGCTAAGGTGACGTCAA -ACGGAAAGGCTAAGGTGAGCTGAA -ACGGAAAGGCTAAGGTGAAGTACG -ACGGAAAGGCTAAGGTGAATCCGA -ACGGAAAGGCTAAGGTGAATGGGA -ACGGAAAGGCTAAGGTGAGTGCAA -ACGGAAAGGCTAAGGTGAGAGGAA -ACGGAAAGGCTAAGGTGACAGGTA -ACGGAAAGGCTAAGGTGAGACTCT -ACGGAAAGGCTAAGGTGAAGTCCT -ACGGAAAGGCTAAGGTGATAAGCC -ACGGAAAGGCTAAGGTGAATAGCC -ACGGAAAGGCTAAGGTGATAACCG -ACGGAAAGGCTAAGGTGAATGCCA -ACGGAAAGGCTATGGCAAGGAAAC -ACGGAAAGGCTATGGCAAAACACC -ACGGAAAGGCTATGGCAAATCGAG -ACGGAAAGGCTATGGCAACTCCTT -ACGGAAAGGCTATGGCAACCTGTT -ACGGAAAGGCTATGGCAACGGTTT -ACGGAAAGGCTATGGCAAGTGGTT -ACGGAAAGGCTATGGCAAGCCTTT -ACGGAAAGGCTATGGCAAGGTCTT -ACGGAAAGGCTATGGCAAACGCTT -ACGGAAAGGCTATGGCAAAGCGTT -ACGGAAAGGCTATGGCAATTCGTC -ACGGAAAGGCTATGGCAATCTCTC -ACGGAAAGGCTATGGCAATGGATC -ACGGAAAGGCTATGGCAACACTTC -ACGGAAAGGCTATGGCAAGTACTC -ACGGAAAGGCTATGGCAAGATGTC -ACGGAAAGGCTATGGCAAACAGTC -ACGGAAAGGCTATGGCAATTGCTG -ACGGAAAGGCTATGGCAATCCATG -ACGGAAAGGCTATGGCAATGTGTG -ACGGAAAGGCTATGGCAACTAGTG -ACGGAAAGGCTATGGCAACATCTG -ACGGAAAGGCTATGGCAAGAGTTG -ACGGAAAGGCTATGGCAAAGACTG -ACGGAAAGGCTATGGCAATCGGTA -ACGGAAAGGCTATGGCAATGCCTA -ACGGAAAGGCTATGGCAACCACTA -ACGGAAAGGCTATGGCAAGGAGTA -ACGGAAAGGCTATGGCAATCGTCT -ACGGAAAGGCTATGGCAATGCACT -ACGGAAAGGCTATGGCAACTGACT -ACGGAAAGGCTATGGCAACAACCT -ACGGAAAGGCTATGGCAAGCTACT -ACGGAAAGGCTATGGCAAGGATCT -ACGGAAAGGCTATGGCAAAAGGCT -ACGGAAAGGCTATGGCAATCAACC -ACGGAAAGGCTATGGCAATGTTCC -ACGGAAAGGCTATGGCAAATTCCC -ACGGAAAGGCTATGGCAATTCTCG -ACGGAAAGGCTATGGCAATAGACG -ACGGAAAGGCTATGGCAAGTAACG -ACGGAAAGGCTATGGCAAACTTCG -ACGGAAAGGCTATGGCAATACGCA -ACGGAAAGGCTATGGCAACTTGCA -ACGGAAAGGCTATGGCAACGAACA -ACGGAAAGGCTATGGCAACAGTCA -ACGGAAAGGCTATGGCAAGATCCA -ACGGAAAGGCTATGGCAAACGACA -ACGGAAAGGCTATGGCAAAGCTCA -ACGGAAAGGCTATGGCAATCACGT -ACGGAAAGGCTATGGCAACGTAGT -ACGGAAAGGCTATGGCAAGTCAGT -ACGGAAAGGCTATGGCAAGAAGGT -ACGGAAAGGCTATGGCAAAACCGT -ACGGAAAGGCTATGGCAATTGTGC -ACGGAAAGGCTATGGCAACTAAGC -ACGGAAAGGCTATGGCAAACTAGC -ACGGAAAGGCTATGGCAAAGATGC -ACGGAAAGGCTATGGCAATGAAGG -ACGGAAAGGCTATGGCAACAATGG -ACGGAAAGGCTATGGCAAATGAGG -ACGGAAAGGCTATGGCAAAATGGG -ACGGAAAGGCTATGGCAATCCTGA -ACGGAAAGGCTATGGCAATAGCGA -ACGGAAAGGCTATGGCAACACAGA -ACGGAAAGGCTATGGCAAGCAAGA -ACGGAAAGGCTATGGCAAGGTTGA -ACGGAAAGGCTATGGCAATCCGAT -ACGGAAAGGCTATGGCAATGGCAT -ACGGAAAGGCTATGGCAACGAGAT -ACGGAAAGGCTATGGCAATACCAC -ACGGAAAGGCTATGGCAACAGAAC -ACGGAAAGGCTATGGCAAGTCTAC -ACGGAAAGGCTATGGCAAACGTAC -ACGGAAAGGCTATGGCAAAGTGAC -ACGGAAAGGCTATGGCAACTGTAG -ACGGAAAGGCTATGGCAACCTAAG -ACGGAAAGGCTATGGCAAGTTCAG -ACGGAAAGGCTATGGCAAGCATAG -ACGGAAAGGCTATGGCAAGACAAG -ACGGAAAGGCTATGGCAAAAGCAG -ACGGAAAGGCTATGGCAACGTCAA -ACGGAAAGGCTATGGCAAGCTGAA -ACGGAAAGGCTATGGCAAAGTACG -ACGGAAAGGCTATGGCAAATCCGA -ACGGAAAGGCTATGGCAAATGGGA -ACGGAAAGGCTATGGCAAGTGCAA -ACGGAAAGGCTATGGCAAGAGGAA -ACGGAAAGGCTATGGCAACAGGTA -ACGGAAAGGCTATGGCAAGACTCT -ACGGAAAGGCTATGGCAAAGTCCT -ACGGAAAGGCTATGGCAATAAGCC -ACGGAAAGGCTATGGCAAATAGCC -ACGGAAAGGCTATGGCAATAACCG -ACGGAAAGGCTATGGCAAATGCCA -ACGGAAAGGCTAAGGATGGGAAAC -ACGGAAAGGCTAAGGATGAACACC -ACGGAAAGGCTAAGGATGATCGAG -ACGGAAAGGCTAAGGATGCTCCTT -ACGGAAAGGCTAAGGATGCCTGTT -ACGGAAAGGCTAAGGATGCGGTTT -ACGGAAAGGCTAAGGATGGTGGTT -ACGGAAAGGCTAAGGATGGCCTTT -ACGGAAAGGCTAAGGATGGGTCTT -ACGGAAAGGCTAAGGATGACGCTT -ACGGAAAGGCTAAGGATGAGCGTT -ACGGAAAGGCTAAGGATGTTCGTC -ACGGAAAGGCTAAGGATGTCTCTC -ACGGAAAGGCTAAGGATGTGGATC -ACGGAAAGGCTAAGGATGCACTTC -ACGGAAAGGCTAAGGATGGTACTC -ACGGAAAGGCTAAGGATGGATGTC -ACGGAAAGGCTAAGGATGACAGTC -ACGGAAAGGCTAAGGATGTTGCTG -ACGGAAAGGCTAAGGATGTCCATG -ACGGAAAGGCTAAGGATGTGTGTG -ACGGAAAGGCTAAGGATGCTAGTG -ACGGAAAGGCTAAGGATGCATCTG -ACGGAAAGGCTAAGGATGGAGTTG -ACGGAAAGGCTAAGGATGAGACTG -ACGGAAAGGCTAAGGATGTCGGTA -ACGGAAAGGCTAAGGATGTGCCTA -ACGGAAAGGCTAAGGATGCCACTA -ACGGAAAGGCTAAGGATGGGAGTA -ACGGAAAGGCTAAGGATGTCGTCT -ACGGAAAGGCTAAGGATGTGCACT -ACGGAAAGGCTAAGGATGCTGACT -ACGGAAAGGCTAAGGATGCAACCT -ACGGAAAGGCTAAGGATGGCTACT -ACGGAAAGGCTAAGGATGGGATCT -ACGGAAAGGCTAAGGATGAAGGCT -ACGGAAAGGCTAAGGATGTCAACC -ACGGAAAGGCTAAGGATGTGTTCC -ACGGAAAGGCTAAGGATGATTCCC -ACGGAAAGGCTAAGGATGTTCTCG -ACGGAAAGGCTAAGGATGTAGACG -ACGGAAAGGCTAAGGATGGTAACG -ACGGAAAGGCTAAGGATGACTTCG -ACGGAAAGGCTAAGGATGTACGCA -ACGGAAAGGCTAAGGATGCTTGCA -ACGGAAAGGCTAAGGATGCGAACA -ACGGAAAGGCTAAGGATGCAGTCA -ACGGAAAGGCTAAGGATGGATCCA -ACGGAAAGGCTAAGGATGACGACA -ACGGAAAGGCTAAGGATGAGCTCA -ACGGAAAGGCTAAGGATGTCACGT -ACGGAAAGGCTAAGGATGCGTAGT -ACGGAAAGGCTAAGGATGGTCAGT -ACGGAAAGGCTAAGGATGGAAGGT -ACGGAAAGGCTAAGGATGAACCGT -ACGGAAAGGCTAAGGATGTTGTGC -ACGGAAAGGCTAAGGATGCTAAGC -ACGGAAAGGCTAAGGATGACTAGC -ACGGAAAGGCTAAGGATGAGATGC -ACGGAAAGGCTAAGGATGTGAAGG -ACGGAAAGGCTAAGGATGCAATGG -ACGGAAAGGCTAAGGATGATGAGG -ACGGAAAGGCTAAGGATGAATGGG -ACGGAAAGGCTAAGGATGTCCTGA -ACGGAAAGGCTAAGGATGTAGCGA -ACGGAAAGGCTAAGGATGCACAGA -ACGGAAAGGCTAAGGATGGCAAGA -ACGGAAAGGCTAAGGATGGGTTGA -ACGGAAAGGCTAAGGATGTCCGAT -ACGGAAAGGCTAAGGATGTGGCAT -ACGGAAAGGCTAAGGATGCGAGAT -ACGGAAAGGCTAAGGATGTACCAC -ACGGAAAGGCTAAGGATGCAGAAC -ACGGAAAGGCTAAGGATGGTCTAC -ACGGAAAGGCTAAGGATGACGTAC -ACGGAAAGGCTAAGGATGAGTGAC -ACGGAAAGGCTAAGGATGCTGTAG -ACGGAAAGGCTAAGGATGCCTAAG -ACGGAAAGGCTAAGGATGGTTCAG -ACGGAAAGGCTAAGGATGGCATAG -ACGGAAAGGCTAAGGATGGACAAG -ACGGAAAGGCTAAGGATGAAGCAG -ACGGAAAGGCTAAGGATGCGTCAA -ACGGAAAGGCTAAGGATGGCTGAA -ACGGAAAGGCTAAGGATGAGTACG -ACGGAAAGGCTAAGGATGATCCGA -ACGGAAAGGCTAAGGATGATGGGA -ACGGAAAGGCTAAGGATGGTGCAA -ACGGAAAGGCTAAGGATGGAGGAA -ACGGAAAGGCTAAGGATGCAGGTA -ACGGAAAGGCTAAGGATGGACTCT -ACGGAAAGGCTAAGGATGAGTCCT -ACGGAAAGGCTAAGGATGTAAGCC -ACGGAAAGGCTAAGGATGATAGCC -ACGGAAAGGCTAAGGATGTAACCG -ACGGAAAGGCTAAGGATGATGCCA -ACGGAAAGGCTAGGGAATGGAAAC -ACGGAAAGGCTAGGGAATAACACC -ACGGAAAGGCTAGGGAATATCGAG -ACGGAAAGGCTAGGGAATCTCCTT -ACGGAAAGGCTAGGGAATCCTGTT -ACGGAAAGGCTAGGGAATCGGTTT -ACGGAAAGGCTAGGGAATGTGGTT -ACGGAAAGGCTAGGGAATGCCTTT -ACGGAAAGGCTAGGGAATGGTCTT -ACGGAAAGGCTAGGGAATACGCTT -ACGGAAAGGCTAGGGAATAGCGTT -ACGGAAAGGCTAGGGAATTTCGTC -ACGGAAAGGCTAGGGAATTCTCTC -ACGGAAAGGCTAGGGAATTGGATC -ACGGAAAGGCTAGGGAATCACTTC -ACGGAAAGGCTAGGGAATGTACTC -ACGGAAAGGCTAGGGAATGATGTC -ACGGAAAGGCTAGGGAATACAGTC -ACGGAAAGGCTAGGGAATTTGCTG -ACGGAAAGGCTAGGGAATTCCATG -ACGGAAAGGCTAGGGAATTGTGTG -ACGGAAAGGCTAGGGAATCTAGTG -ACGGAAAGGCTAGGGAATCATCTG -ACGGAAAGGCTAGGGAATGAGTTG -ACGGAAAGGCTAGGGAATAGACTG -ACGGAAAGGCTAGGGAATTCGGTA -ACGGAAAGGCTAGGGAATTGCCTA -ACGGAAAGGCTAGGGAATCCACTA -ACGGAAAGGCTAGGGAATGGAGTA -ACGGAAAGGCTAGGGAATTCGTCT -ACGGAAAGGCTAGGGAATTGCACT -ACGGAAAGGCTAGGGAATCTGACT -ACGGAAAGGCTAGGGAATCAACCT -ACGGAAAGGCTAGGGAATGCTACT -ACGGAAAGGCTAGGGAATGGATCT -ACGGAAAGGCTAGGGAATAAGGCT -ACGGAAAGGCTAGGGAATTCAACC -ACGGAAAGGCTAGGGAATTGTTCC -ACGGAAAGGCTAGGGAATATTCCC -ACGGAAAGGCTAGGGAATTTCTCG -ACGGAAAGGCTAGGGAATTAGACG -ACGGAAAGGCTAGGGAATGTAACG -ACGGAAAGGCTAGGGAATACTTCG -ACGGAAAGGCTAGGGAATTACGCA -ACGGAAAGGCTAGGGAATCTTGCA -ACGGAAAGGCTAGGGAATCGAACA -ACGGAAAGGCTAGGGAATCAGTCA -ACGGAAAGGCTAGGGAATGATCCA -ACGGAAAGGCTAGGGAATACGACA -ACGGAAAGGCTAGGGAATAGCTCA -ACGGAAAGGCTAGGGAATTCACGT -ACGGAAAGGCTAGGGAATCGTAGT -ACGGAAAGGCTAGGGAATGTCAGT -ACGGAAAGGCTAGGGAATGAAGGT -ACGGAAAGGCTAGGGAATAACCGT -ACGGAAAGGCTAGGGAATTTGTGC -ACGGAAAGGCTAGGGAATCTAAGC -ACGGAAAGGCTAGGGAATACTAGC -ACGGAAAGGCTAGGGAATAGATGC -ACGGAAAGGCTAGGGAATTGAAGG -ACGGAAAGGCTAGGGAATCAATGG -ACGGAAAGGCTAGGGAATATGAGG -ACGGAAAGGCTAGGGAATAATGGG -ACGGAAAGGCTAGGGAATTCCTGA -ACGGAAAGGCTAGGGAATTAGCGA -ACGGAAAGGCTAGGGAATCACAGA -ACGGAAAGGCTAGGGAATGCAAGA -ACGGAAAGGCTAGGGAATGGTTGA -ACGGAAAGGCTAGGGAATTCCGAT -ACGGAAAGGCTAGGGAATTGGCAT -ACGGAAAGGCTAGGGAATCGAGAT -ACGGAAAGGCTAGGGAATTACCAC -ACGGAAAGGCTAGGGAATCAGAAC -ACGGAAAGGCTAGGGAATGTCTAC -ACGGAAAGGCTAGGGAATACGTAC -ACGGAAAGGCTAGGGAATAGTGAC -ACGGAAAGGCTAGGGAATCTGTAG -ACGGAAAGGCTAGGGAATCCTAAG -ACGGAAAGGCTAGGGAATGTTCAG -ACGGAAAGGCTAGGGAATGCATAG -ACGGAAAGGCTAGGGAATGACAAG -ACGGAAAGGCTAGGGAATAAGCAG -ACGGAAAGGCTAGGGAATCGTCAA -ACGGAAAGGCTAGGGAATGCTGAA -ACGGAAAGGCTAGGGAATAGTACG -ACGGAAAGGCTAGGGAATATCCGA -ACGGAAAGGCTAGGGAATATGGGA -ACGGAAAGGCTAGGGAATGTGCAA -ACGGAAAGGCTAGGGAATGAGGAA -ACGGAAAGGCTAGGGAATCAGGTA -ACGGAAAGGCTAGGGAATGACTCT -ACGGAAAGGCTAGGGAATAGTCCT -ACGGAAAGGCTAGGGAATTAAGCC -ACGGAAAGGCTAGGGAATATAGCC -ACGGAAAGGCTAGGGAATTAACCG -ACGGAAAGGCTAGGGAATATGCCA -ACGGAAAGGCTATGATCCGGAAAC -ACGGAAAGGCTATGATCCAACACC -ACGGAAAGGCTATGATCCATCGAG -ACGGAAAGGCTATGATCCCTCCTT -ACGGAAAGGCTATGATCCCCTGTT -ACGGAAAGGCTATGATCCCGGTTT -ACGGAAAGGCTATGATCCGTGGTT -ACGGAAAGGCTATGATCCGCCTTT -ACGGAAAGGCTATGATCCGGTCTT -ACGGAAAGGCTATGATCCACGCTT -ACGGAAAGGCTATGATCCAGCGTT -ACGGAAAGGCTATGATCCTTCGTC -ACGGAAAGGCTATGATCCTCTCTC -ACGGAAAGGCTATGATCCTGGATC -ACGGAAAGGCTATGATCCCACTTC -ACGGAAAGGCTATGATCCGTACTC -ACGGAAAGGCTATGATCCGATGTC -ACGGAAAGGCTATGATCCACAGTC -ACGGAAAGGCTATGATCCTTGCTG -ACGGAAAGGCTATGATCCTCCATG -ACGGAAAGGCTATGATCCTGTGTG -ACGGAAAGGCTATGATCCCTAGTG -ACGGAAAGGCTATGATCCCATCTG -ACGGAAAGGCTATGATCCGAGTTG -ACGGAAAGGCTATGATCCAGACTG -ACGGAAAGGCTATGATCCTCGGTA -ACGGAAAGGCTATGATCCTGCCTA -ACGGAAAGGCTATGATCCCCACTA -ACGGAAAGGCTATGATCCGGAGTA -ACGGAAAGGCTATGATCCTCGTCT -ACGGAAAGGCTATGATCCTGCACT -ACGGAAAGGCTATGATCCCTGACT -ACGGAAAGGCTATGATCCCAACCT -ACGGAAAGGCTATGATCCGCTACT -ACGGAAAGGCTATGATCCGGATCT -ACGGAAAGGCTATGATCCAAGGCT -ACGGAAAGGCTATGATCCTCAACC -ACGGAAAGGCTATGATCCTGTTCC -ACGGAAAGGCTATGATCCATTCCC -ACGGAAAGGCTATGATCCTTCTCG -ACGGAAAGGCTATGATCCTAGACG -ACGGAAAGGCTATGATCCGTAACG -ACGGAAAGGCTATGATCCACTTCG -ACGGAAAGGCTATGATCCTACGCA -ACGGAAAGGCTATGATCCCTTGCA -ACGGAAAGGCTATGATCCCGAACA -ACGGAAAGGCTATGATCCCAGTCA -ACGGAAAGGCTATGATCCGATCCA -ACGGAAAGGCTATGATCCACGACA -ACGGAAAGGCTATGATCCAGCTCA -ACGGAAAGGCTATGATCCTCACGT -ACGGAAAGGCTATGATCCCGTAGT -ACGGAAAGGCTATGATCCGTCAGT -ACGGAAAGGCTATGATCCGAAGGT -ACGGAAAGGCTATGATCCAACCGT -ACGGAAAGGCTATGATCCTTGTGC -ACGGAAAGGCTATGATCCCTAAGC -ACGGAAAGGCTATGATCCACTAGC -ACGGAAAGGCTATGATCCAGATGC -ACGGAAAGGCTATGATCCTGAAGG -ACGGAAAGGCTATGATCCCAATGG -ACGGAAAGGCTATGATCCATGAGG -ACGGAAAGGCTATGATCCAATGGG -ACGGAAAGGCTATGATCCTCCTGA -ACGGAAAGGCTATGATCCTAGCGA -ACGGAAAGGCTATGATCCCACAGA -ACGGAAAGGCTATGATCCGCAAGA -ACGGAAAGGCTATGATCCGGTTGA -ACGGAAAGGCTATGATCCTCCGAT -ACGGAAAGGCTATGATCCTGGCAT -ACGGAAAGGCTATGATCCCGAGAT -ACGGAAAGGCTATGATCCTACCAC -ACGGAAAGGCTATGATCCCAGAAC -ACGGAAAGGCTATGATCCGTCTAC -ACGGAAAGGCTATGATCCACGTAC -ACGGAAAGGCTATGATCCAGTGAC -ACGGAAAGGCTATGATCCCTGTAG -ACGGAAAGGCTATGATCCCCTAAG -ACGGAAAGGCTATGATCCGTTCAG -ACGGAAAGGCTATGATCCGCATAG -ACGGAAAGGCTATGATCCGACAAG -ACGGAAAGGCTATGATCCAAGCAG -ACGGAAAGGCTATGATCCCGTCAA -ACGGAAAGGCTATGATCCGCTGAA -ACGGAAAGGCTATGATCCAGTACG -ACGGAAAGGCTATGATCCATCCGA -ACGGAAAGGCTATGATCCATGGGA -ACGGAAAGGCTATGATCCGTGCAA -ACGGAAAGGCTATGATCCGAGGAA -ACGGAAAGGCTATGATCCCAGGTA -ACGGAAAGGCTATGATCCGACTCT -ACGGAAAGGCTATGATCCAGTCCT -ACGGAAAGGCTATGATCCTAAGCC -ACGGAAAGGCTATGATCCATAGCC -ACGGAAAGGCTATGATCCTAACCG -ACGGAAAGGCTATGATCCATGCCA -ACGGAAAGGCTACGATAGGGAAAC -ACGGAAAGGCTACGATAGAACACC -ACGGAAAGGCTACGATAGATCGAG -ACGGAAAGGCTACGATAGCTCCTT -ACGGAAAGGCTACGATAGCCTGTT -ACGGAAAGGCTACGATAGCGGTTT -ACGGAAAGGCTACGATAGGTGGTT -ACGGAAAGGCTACGATAGGCCTTT -ACGGAAAGGCTACGATAGGGTCTT -ACGGAAAGGCTACGATAGACGCTT -ACGGAAAGGCTACGATAGAGCGTT -ACGGAAAGGCTACGATAGTTCGTC -ACGGAAAGGCTACGATAGTCTCTC -ACGGAAAGGCTACGATAGTGGATC -ACGGAAAGGCTACGATAGCACTTC -ACGGAAAGGCTACGATAGGTACTC -ACGGAAAGGCTACGATAGGATGTC -ACGGAAAGGCTACGATAGACAGTC -ACGGAAAGGCTACGATAGTTGCTG -ACGGAAAGGCTACGATAGTCCATG -ACGGAAAGGCTACGATAGTGTGTG -ACGGAAAGGCTACGATAGCTAGTG -ACGGAAAGGCTACGATAGCATCTG -ACGGAAAGGCTACGATAGGAGTTG -ACGGAAAGGCTACGATAGAGACTG -ACGGAAAGGCTACGATAGTCGGTA -ACGGAAAGGCTACGATAGTGCCTA -ACGGAAAGGCTACGATAGCCACTA -ACGGAAAGGCTACGATAGGGAGTA -ACGGAAAGGCTACGATAGTCGTCT -ACGGAAAGGCTACGATAGTGCACT -ACGGAAAGGCTACGATAGCTGACT -ACGGAAAGGCTACGATAGCAACCT -ACGGAAAGGCTACGATAGGCTACT -ACGGAAAGGCTACGATAGGGATCT -ACGGAAAGGCTACGATAGAAGGCT -ACGGAAAGGCTACGATAGTCAACC -ACGGAAAGGCTACGATAGTGTTCC -ACGGAAAGGCTACGATAGATTCCC -ACGGAAAGGCTACGATAGTTCTCG -ACGGAAAGGCTACGATAGTAGACG -ACGGAAAGGCTACGATAGGTAACG -ACGGAAAGGCTACGATAGACTTCG -ACGGAAAGGCTACGATAGTACGCA -ACGGAAAGGCTACGATAGCTTGCA -ACGGAAAGGCTACGATAGCGAACA -ACGGAAAGGCTACGATAGCAGTCA -ACGGAAAGGCTACGATAGGATCCA -ACGGAAAGGCTACGATAGACGACA -ACGGAAAGGCTACGATAGAGCTCA -ACGGAAAGGCTACGATAGTCACGT -ACGGAAAGGCTACGATAGCGTAGT -ACGGAAAGGCTACGATAGGTCAGT -ACGGAAAGGCTACGATAGGAAGGT -ACGGAAAGGCTACGATAGAACCGT -ACGGAAAGGCTACGATAGTTGTGC -ACGGAAAGGCTACGATAGCTAAGC -ACGGAAAGGCTACGATAGACTAGC -ACGGAAAGGCTACGATAGAGATGC -ACGGAAAGGCTACGATAGTGAAGG -ACGGAAAGGCTACGATAGCAATGG -ACGGAAAGGCTACGATAGATGAGG -ACGGAAAGGCTACGATAGAATGGG -ACGGAAAGGCTACGATAGTCCTGA -ACGGAAAGGCTACGATAGTAGCGA -ACGGAAAGGCTACGATAGCACAGA -ACGGAAAGGCTACGATAGGCAAGA -ACGGAAAGGCTACGATAGGGTTGA -ACGGAAAGGCTACGATAGTCCGAT -ACGGAAAGGCTACGATAGTGGCAT -ACGGAAAGGCTACGATAGCGAGAT -ACGGAAAGGCTACGATAGTACCAC -ACGGAAAGGCTACGATAGCAGAAC -ACGGAAAGGCTACGATAGGTCTAC -ACGGAAAGGCTACGATAGACGTAC -ACGGAAAGGCTACGATAGAGTGAC -ACGGAAAGGCTACGATAGCTGTAG -ACGGAAAGGCTACGATAGCCTAAG -ACGGAAAGGCTACGATAGGTTCAG -ACGGAAAGGCTACGATAGGCATAG -ACGGAAAGGCTACGATAGGACAAG -ACGGAAAGGCTACGATAGAAGCAG -ACGGAAAGGCTACGATAGCGTCAA -ACGGAAAGGCTACGATAGGCTGAA -ACGGAAAGGCTACGATAGAGTACG -ACGGAAAGGCTACGATAGATCCGA -ACGGAAAGGCTACGATAGATGGGA -ACGGAAAGGCTACGATAGGTGCAA -ACGGAAAGGCTACGATAGGAGGAA -ACGGAAAGGCTACGATAGCAGGTA -ACGGAAAGGCTACGATAGGACTCT -ACGGAAAGGCTACGATAGAGTCCT -ACGGAAAGGCTACGATAGTAAGCC -ACGGAAAGGCTACGATAGATAGCC -ACGGAAAGGCTACGATAGTAACCG -ACGGAAAGGCTACGATAGATGCCA -ACGGAAAGGCTAAGACACGGAAAC -ACGGAAAGGCTAAGACACAACACC -ACGGAAAGGCTAAGACACATCGAG -ACGGAAAGGCTAAGACACCTCCTT -ACGGAAAGGCTAAGACACCCTGTT -ACGGAAAGGCTAAGACACCGGTTT -ACGGAAAGGCTAAGACACGTGGTT -ACGGAAAGGCTAAGACACGCCTTT -ACGGAAAGGCTAAGACACGGTCTT -ACGGAAAGGCTAAGACACACGCTT -ACGGAAAGGCTAAGACACAGCGTT -ACGGAAAGGCTAAGACACTTCGTC -ACGGAAAGGCTAAGACACTCTCTC -ACGGAAAGGCTAAGACACTGGATC -ACGGAAAGGCTAAGACACCACTTC -ACGGAAAGGCTAAGACACGTACTC -ACGGAAAGGCTAAGACACGATGTC -ACGGAAAGGCTAAGACACACAGTC -ACGGAAAGGCTAAGACACTTGCTG -ACGGAAAGGCTAAGACACTCCATG -ACGGAAAGGCTAAGACACTGTGTG -ACGGAAAGGCTAAGACACCTAGTG -ACGGAAAGGCTAAGACACCATCTG -ACGGAAAGGCTAAGACACGAGTTG -ACGGAAAGGCTAAGACACAGACTG -ACGGAAAGGCTAAGACACTCGGTA -ACGGAAAGGCTAAGACACTGCCTA -ACGGAAAGGCTAAGACACCCACTA -ACGGAAAGGCTAAGACACGGAGTA -ACGGAAAGGCTAAGACACTCGTCT -ACGGAAAGGCTAAGACACTGCACT -ACGGAAAGGCTAAGACACCTGACT -ACGGAAAGGCTAAGACACCAACCT -ACGGAAAGGCTAAGACACGCTACT -ACGGAAAGGCTAAGACACGGATCT -ACGGAAAGGCTAAGACACAAGGCT -ACGGAAAGGCTAAGACACTCAACC -ACGGAAAGGCTAAGACACTGTTCC -ACGGAAAGGCTAAGACACATTCCC -ACGGAAAGGCTAAGACACTTCTCG -ACGGAAAGGCTAAGACACTAGACG -ACGGAAAGGCTAAGACACGTAACG -ACGGAAAGGCTAAGACACACTTCG -ACGGAAAGGCTAAGACACTACGCA -ACGGAAAGGCTAAGACACCTTGCA -ACGGAAAGGCTAAGACACCGAACA -ACGGAAAGGCTAAGACACCAGTCA -ACGGAAAGGCTAAGACACGATCCA -ACGGAAAGGCTAAGACACACGACA -ACGGAAAGGCTAAGACACAGCTCA -ACGGAAAGGCTAAGACACTCACGT -ACGGAAAGGCTAAGACACCGTAGT -ACGGAAAGGCTAAGACACGTCAGT -ACGGAAAGGCTAAGACACGAAGGT -ACGGAAAGGCTAAGACACAACCGT -ACGGAAAGGCTAAGACACTTGTGC -ACGGAAAGGCTAAGACACCTAAGC -ACGGAAAGGCTAAGACACACTAGC -ACGGAAAGGCTAAGACACAGATGC -ACGGAAAGGCTAAGACACTGAAGG -ACGGAAAGGCTAAGACACCAATGG -ACGGAAAGGCTAAGACACATGAGG -ACGGAAAGGCTAAGACACAATGGG -ACGGAAAGGCTAAGACACTCCTGA -ACGGAAAGGCTAAGACACTAGCGA -ACGGAAAGGCTAAGACACCACAGA -ACGGAAAGGCTAAGACACGCAAGA -ACGGAAAGGCTAAGACACGGTTGA -ACGGAAAGGCTAAGACACTCCGAT -ACGGAAAGGCTAAGACACTGGCAT -ACGGAAAGGCTAAGACACCGAGAT -ACGGAAAGGCTAAGACACTACCAC -ACGGAAAGGCTAAGACACCAGAAC -ACGGAAAGGCTAAGACACGTCTAC -ACGGAAAGGCTAAGACACACGTAC -ACGGAAAGGCTAAGACACAGTGAC -ACGGAAAGGCTAAGACACCTGTAG -ACGGAAAGGCTAAGACACCCTAAG -ACGGAAAGGCTAAGACACGTTCAG -ACGGAAAGGCTAAGACACGCATAG -ACGGAAAGGCTAAGACACGACAAG -ACGGAAAGGCTAAGACACAAGCAG -ACGGAAAGGCTAAGACACCGTCAA -ACGGAAAGGCTAAGACACGCTGAA -ACGGAAAGGCTAAGACACAGTACG -ACGGAAAGGCTAAGACACATCCGA -ACGGAAAGGCTAAGACACATGGGA -ACGGAAAGGCTAAGACACGTGCAA -ACGGAAAGGCTAAGACACGAGGAA -ACGGAAAGGCTAAGACACCAGGTA -ACGGAAAGGCTAAGACACGACTCT -ACGGAAAGGCTAAGACACAGTCCT -ACGGAAAGGCTAAGACACTAAGCC -ACGGAAAGGCTAAGACACATAGCC -ACGGAAAGGCTAAGACACTAACCG -ACGGAAAGGCTAAGACACATGCCA -ACGGAAAGGCTAAGAGCAGGAAAC -ACGGAAAGGCTAAGAGCAAACACC -ACGGAAAGGCTAAGAGCAATCGAG -ACGGAAAGGCTAAGAGCACTCCTT -ACGGAAAGGCTAAGAGCACCTGTT -ACGGAAAGGCTAAGAGCACGGTTT -ACGGAAAGGCTAAGAGCAGTGGTT -ACGGAAAGGCTAAGAGCAGCCTTT -ACGGAAAGGCTAAGAGCAGGTCTT -ACGGAAAGGCTAAGAGCAACGCTT -ACGGAAAGGCTAAGAGCAAGCGTT -ACGGAAAGGCTAAGAGCATTCGTC -ACGGAAAGGCTAAGAGCATCTCTC -ACGGAAAGGCTAAGAGCATGGATC -ACGGAAAGGCTAAGAGCACACTTC -ACGGAAAGGCTAAGAGCAGTACTC -ACGGAAAGGCTAAGAGCAGATGTC -ACGGAAAGGCTAAGAGCAACAGTC -ACGGAAAGGCTAAGAGCATTGCTG -ACGGAAAGGCTAAGAGCATCCATG -ACGGAAAGGCTAAGAGCATGTGTG -ACGGAAAGGCTAAGAGCACTAGTG -ACGGAAAGGCTAAGAGCACATCTG -ACGGAAAGGCTAAGAGCAGAGTTG -ACGGAAAGGCTAAGAGCAAGACTG -ACGGAAAGGCTAAGAGCATCGGTA -ACGGAAAGGCTAAGAGCATGCCTA -ACGGAAAGGCTAAGAGCACCACTA -ACGGAAAGGCTAAGAGCAGGAGTA -ACGGAAAGGCTAAGAGCATCGTCT -ACGGAAAGGCTAAGAGCATGCACT -ACGGAAAGGCTAAGAGCACTGACT -ACGGAAAGGCTAAGAGCACAACCT -ACGGAAAGGCTAAGAGCAGCTACT -ACGGAAAGGCTAAGAGCAGGATCT -ACGGAAAGGCTAAGAGCAAAGGCT -ACGGAAAGGCTAAGAGCATCAACC -ACGGAAAGGCTAAGAGCATGTTCC -ACGGAAAGGCTAAGAGCAATTCCC -ACGGAAAGGCTAAGAGCATTCTCG -ACGGAAAGGCTAAGAGCATAGACG -ACGGAAAGGCTAAGAGCAGTAACG -ACGGAAAGGCTAAGAGCAACTTCG -ACGGAAAGGCTAAGAGCATACGCA -ACGGAAAGGCTAAGAGCACTTGCA -ACGGAAAGGCTAAGAGCACGAACA -ACGGAAAGGCTAAGAGCACAGTCA -ACGGAAAGGCTAAGAGCAGATCCA -ACGGAAAGGCTAAGAGCAACGACA -ACGGAAAGGCTAAGAGCAAGCTCA -ACGGAAAGGCTAAGAGCATCACGT -ACGGAAAGGCTAAGAGCACGTAGT -ACGGAAAGGCTAAGAGCAGTCAGT -ACGGAAAGGCTAAGAGCAGAAGGT -ACGGAAAGGCTAAGAGCAAACCGT -ACGGAAAGGCTAAGAGCATTGTGC -ACGGAAAGGCTAAGAGCACTAAGC -ACGGAAAGGCTAAGAGCAACTAGC -ACGGAAAGGCTAAGAGCAAGATGC -ACGGAAAGGCTAAGAGCATGAAGG -ACGGAAAGGCTAAGAGCACAATGG -ACGGAAAGGCTAAGAGCAATGAGG -ACGGAAAGGCTAAGAGCAAATGGG -ACGGAAAGGCTAAGAGCATCCTGA -ACGGAAAGGCTAAGAGCATAGCGA -ACGGAAAGGCTAAGAGCACACAGA -ACGGAAAGGCTAAGAGCAGCAAGA -ACGGAAAGGCTAAGAGCAGGTTGA -ACGGAAAGGCTAAGAGCATCCGAT -ACGGAAAGGCTAAGAGCATGGCAT -ACGGAAAGGCTAAGAGCACGAGAT -ACGGAAAGGCTAAGAGCATACCAC -ACGGAAAGGCTAAGAGCACAGAAC -ACGGAAAGGCTAAGAGCAGTCTAC -ACGGAAAGGCTAAGAGCAACGTAC -ACGGAAAGGCTAAGAGCAAGTGAC -ACGGAAAGGCTAAGAGCACTGTAG -ACGGAAAGGCTAAGAGCACCTAAG -ACGGAAAGGCTAAGAGCAGTTCAG -ACGGAAAGGCTAAGAGCAGCATAG -ACGGAAAGGCTAAGAGCAGACAAG -ACGGAAAGGCTAAGAGCAAAGCAG -ACGGAAAGGCTAAGAGCACGTCAA -ACGGAAAGGCTAAGAGCAGCTGAA -ACGGAAAGGCTAAGAGCAAGTACG -ACGGAAAGGCTAAGAGCAATCCGA -ACGGAAAGGCTAAGAGCAATGGGA -ACGGAAAGGCTAAGAGCAGTGCAA -ACGGAAAGGCTAAGAGCAGAGGAA -ACGGAAAGGCTAAGAGCACAGGTA -ACGGAAAGGCTAAGAGCAGACTCT -ACGGAAAGGCTAAGAGCAAGTCCT -ACGGAAAGGCTAAGAGCATAAGCC -ACGGAAAGGCTAAGAGCAATAGCC -ACGGAAAGGCTAAGAGCATAACCG -ACGGAAAGGCTAAGAGCAATGCCA -ACGGAAAGGCTATGAGGTGGAAAC -ACGGAAAGGCTATGAGGTAACACC -ACGGAAAGGCTATGAGGTATCGAG -ACGGAAAGGCTATGAGGTCTCCTT -ACGGAAAGGCTATGAGGTCCTGTT -ACGGAAAGGCTATGAGGTCGGTTT -ACGGAAAGGCTATGAGGTGTGGTT -ACGGAAAGGCTATGAGGTGCCTTT -ACGGAAAGGCTATGAGGTGGTCTT -ACGGAAAGGCTATGAGGTACGCTT -ACGGAAAGGCTATGAGGTAGCGTT -ACGGAAAGGCTATGAGGTTTCGTC -ACGGAAAGGCTATGAGGTTCTCTC -ACGGAAAGGCTATGAGGTTGGATC -ACGGAAAGGCTATGAGGTCACTTC -ACGGAAAGGCTATGAGGTGTACTC -ACGGAAAGGCTATGAGGTGATGTC -ACGGAAAGGCTATGAGGTACAGTC -ACGGAAAGGCTATGAGGTTTGCTG -ACGGAAAGGCTATGAGGTTCCATG -ACGGAAAGGCTATGAGGTTGTGTG -ACGGAAAGGCTATGAGGTCTAGTG -ACGGAAAGGCTATGAGGTCATCTG -ACGGAAAGGCTATGAGGTGAGTTG -ACGGAAAGGCTATGAGGTAGACTG -ACGGAAAGGCTATGAGGTTCGGTA -ACGGAAAGGCTATGAGGTTGCCTA -ACGGAAAGGCTATGAGGTCCACTA -ACGGAAAGGCTATGAGGTGGAGTA -ACGGAAAGGCTATGAGGTTCGTCT -ACGGAAAGGCTATGAGGTTGCACT -ACGGAAAGGCTATGAGGTCTGACT -ACGGAAAGGCTATGAGGTCAACCT -ACGGAAAGGCTATGAGGTGCTACT -ACGGAAAGGCTATGAGGTGGATCT -ACGGAAAGGCTATGAGGTAAGGCT -ACGGAAAGGCTATGAGGTTCAACC -ACGGAAAGGCTATGAGGTTGTTCC -ACGGAAAGGCTATGAGGTATTCCC -ACGGAAAGGCTATGAGGTTTCTCG -ACGGAAAGGCTATGAGGTTAGACG -ACGGAAAGGCTATGAGGTGTAACG -ACGGAAAGGCTATGAGGTACTTCG -ACGGAAAGGCTATGAGGTTACGCA -ACGGAAAGGCTATGAGGTCTTGCA -ACGGAAAGGCTATGAGGTCGAACA -ACGGAAAGGCTATGAGGTCAGTCA -ACGGAAAGGCTATGAGGTGATCCA -ACGGAAAGGCTATGAGGTACGACA -ACGGAAAGGCTATGAGGTAGCTCA -ACGGAAAGGCTATGAGGTTCACGT -ACGGAAAGGCTATGAGGTCGTAGT -ACGGAAAGGCTATGAGGTGTCAGT -ACGGAAAGGCTATGAGGTGAAGGT -ACGGAAAGGCTATGAGGTAACCGT -ACGGAAAGGCTATGAGGTTTGTGC -ACGGAAAGGCTATGAGGTCTAAGC -ACGGAAAGGCTATGAGGTACTAGC -ACGGAAAGGCTATGAGGTAGATGC -ACGGAAAGGCTATGAGGTTGAAGG -ACGGAAAGGCTATGAGGTCAATGG -ACGGAAAGGCTATGAGGTATGAGG -ACGGAAAGGCTATGAGGTAATGGG -ACGGAAAGGCTATGAGGTTCCTGA -ACGGAAAGGCTATGAGGTTAGCGA -ACGGAAAGGCTATGAGGTCACAGA -ACGGAAAGGCTATGAGGTGCAAGA -ACGGAAAGGCTATGAGGTGGTTGA -ACGGAAAGGCTATGAGGTTCCGAT -ACGGAAAGGCTATGAGGTTGGCAT -ACGGAAAGGCTATGAGGTCGAGAT -ACGGAAAGGCTATGAGGTTACCAC -ACGGAAAGGCTATGAGGTCAGAAC -ACGGAAAGGCTATGAGGTGTCTAC -ACGGAAAGGCTATGAGGTACGTAC -ACGGAAAGGCTATGAGGTAGTGAC -ACGGAAAGGCTATGAGGTCTGTAG -ACGGAAAGGCTATGAGGTCCTAAG -ACGGAAAGGCTATGAGGTGTTCAG -ACGGAAAGGCTATGAGGTGCATAG -ACGGAAAGGCTATGAGGTGACAAG -ACGGAAAGGCTATGAGGTAAGCAG -ACGGAAAGGCTATGAGGTCGTCAA -ACGGAAAGGCTATGAGGTGCTGAA -ACGGAAAGGCTATGAGGTAGTACG -ACGGAAAGGCTATGAGGTATCCGA -ACGGAAAGGCTATGAGGTATGGGA -ACGGAAAGGCTATGAGGTGTGCAA -ACGGAAAGGCTATGAGGTGAGGAA -ACGGAAAGGCTATGAGGTCAGGTA -ACGGAAAGGCTATGAGGTGACTCT -ACGGAAAGGCTATGAGGTAGTCCT -ACGGAAAGGCTATGAGGTTAAGCC -ACGGAAAGGCTATGAGGTATAGCC -ACGGAAAGGCTATGAGGTTAACCG -ACGGAAAGGCTATGAGGTATGCCA -ACGGAAAGGCTAGATTCCGGAAAC -ACGGAAAGGCTAGATTCCAACACC -ACGGAAAGGCTAGATTCCATCGAG -ACGGAAAGGCTAGATTCCCTCCTT -ACGGAAAGGCTAGATTCCCCTGTT -ACGGAAAGGCTAGATTCCCGGTTT -ACGGAAAGGCTAGATTCCGTGGTT -ACGGAAAGGCTAGATTCCGCCTTT -ACGGAAAGGCTAGATTCCGGTCTT -ACGGAAAGGCTAGATTCCACGCTT -ACGGAAAGGCTAGATTCCAGCGTT -ACGGAAAGGCTAGATTCCTTCGTC -ACGGAAAGGCTAGATTCCTCTCTC -ACGGAAAGGCTAGATTCCTGGATC -ACGGAAAGGCTAGATTCCCACTTC -ACGGAAAGGCTAGATTCCGTACTC -ACGGAAAGGCTAGATTCCGATGTC -ACGGAAAGGCTAGATTCCACAGTC -ACGGAAAGGCTAGATTCCTTGCTG -ACGGAAAGGCTAGATTCCTCCATG -ACGGAAAGGCTAGATTCCTGTGTG -ACGGAAAGGCTAGATTCCCTAGTG -ACGGAAAGGCTAGATTCCCATCTG -ACGGAAAGGCTAGATTCCGAGTTG -ACGGAAAGGCTAGATTCCAGACTG -ACGGAAAGGCTAGATTCCTCGGTA -ACGGAAAGGCTAGATTCCTGCCTA -ACGGAAAGGCTAGATTCCCCACTA -ACGGAAAGGCTAGATTCCGGAGTA -ACGGAAAGGCTAGATTCCTCGTCT -ACGGAAAGGCTAGATTCCTGCACT -ACGGAAAGGCTAGATTCCCTGACT -ACGGAAAGGCTAGATTCCCAACCT -ACGGAAAGGCTAGATTCCGCTACT -ACGGAAAGGCTAGATTCCGGATCT -ACGGAAAGGCTAGATTCCAAGGCT -ACGGAAAGGCTAGATTCCTCAACC -ACGGAAAGGCTAGATTCCTGTTCC -ACGGAAAGGCTAGATTCCATTCCC -ACGGAAAGGCTAGATTCCTTCTCG -ACGGAAAGGCTAGATTCCTAGACG -ACGGAAAGGCTAGATTCCGTAACG -ACGGAAAGGCTAGATTCCACTTCG -ACGGAAAGGCTAGATTCCTACGCA -ACGGAAAGGCTAGATTCCCTTGCA -ACGGAAAGGCTAGATTCCCGAACA -ACGGAAAGGCTAGATTCCCAGTCA -ACGGAAAGGCTAGATTCCGATCCA -ACGGAAAGGCTAGATTCCACGACA -ACGGAAAGGCTAGATTCCAGCTCA -ACGGAAAGGCTAGATTCCTCACGT -ACGGAAAGGCTAGATTCCCGTAGT -ACGGAAAGGCTAGATTCCGTCAGT -ACGGAAAGGCTAGATTCCGAAGGT -ACGGAAAGGCTAGATTCCAACCGT -ACGGAAAGGCTAGATTCCTTGTGC -ACGGAAAGGCTAGATTCCCTAAGC -ACGGAAAGGCTAGATTCCACTAGC -ACGGAAAGGCTAGATTCCAGATGC -ACGGAAAGGCTAGATTCCTGAAGG -ACGGAAAGGCTAGATTCCCAATGG -ACGGAAAGGCTAGATTCCATGAGG -ACGGAAAGGCTAGATTCCAATGGG -ACGGAAAGGCTAGATTCCTCCTGA -ACGGAAAGGCTAGATTCCTAGCGA -ACGGAAAGGCTAGATTCCCACAGA -ACGGAAAGGCTAGATTCCGCAAGA -ACGGAAAGGCTAGATTCCGGTTGA -ACGGAAAGGCTAGATTCCTCCGAT -ACGGAAAGGCTAGATTCCTGGCAT -ACGGAAAGGCTAGATTCCCGAGAT -ACGGAAAGGCTAGATTCCTACCAC -ACGGAAAGGCTAGATTCCCAGAAC -ACGGAAAGGCTAGATTCCGTCTAC -ACGGAAAGGCTAGATTCCACGTAC -ACGGAAAGGCTAGATTCCAGTGAC -ACGGAAAGGCTAGATTCCCTGTAG -ACGGAAAGGCTAGATTCCCCTAAG -ACGGAAAGGCTAGATTCCGTTCAG -ACGGAAAGGCTAGATTCCGCATAG -ACGGAAAGGCTAGATTCCGACAAG -ACGGAAAGGCTAGATTCCAAGCAG -ACGGAAAGGCTAGATTCCCGTCAA -ACGGAAAGGCTAGATTCCGCTGAA -ACGGAAAGGCTAGATTCCAGTACG -ACGGAAAGGCTAGATTCCATCCGA -ACGGAAAGGCTAGATTCCATGGGA -ACGGAAAGGCTAGATTCCGTGCAA -ACGGAAAGGCTAGATTCCGAGGAA -ACGGAAAGGCTAGATTCCCAGGTA -ACGGAAAGGCTAGATTCCGACTCT -ACGGAAAGGCTAGATTCCAGTCCT -ACGGAAAGGCTAGATTCCTAAGCC -ACGGAAAGGCTAGATTCCATAGCC -ACGGAAAGGCTAGATTCCTAACCG -ACGGAAAGGCTAGATTCCATGCCA -ACGGAAAGGCTACATTGGGGAAAC -ACGGAAAGGCTACATTGGAACACC -ACGGAAAGGCTACATTGGATCGAG -ACGGAAAGGCTACATTGGCTCCTT -ACGGAAAGGCTACATTGGCCTGTT -ACGGAAAGGCTACATTGGCGGTTT -ACGGAAAGGCTACATTGGGTGGTT -ACGGAAAGGCTACATTGGGCCTTT -ACGGAAAGGCTACATTGGGGTCTT -ACGGAAAGGCTACATTGGACGCTT -ACGGAAAGGCTACATTGGAGCGTT -ACGGAAAGGCTACATTGGTTCGTC -ACGGAAAGGCTACATTGGTCTCTC -ACGGAAAGGCTACATTGGTGGATC -ACGGAAAGGCTACATTGGCACTTC -ACGGAAAGGCTACATTGGGTACTC -ACGGAAAGGCTACATTGGGATGTC -ACGGAAAGGCTACATTGGACAGTC -ACGGAAAGGCTACATTGGTTGCTG -ACGGAAAGGCTACATTGGTCCATG -ACGGAAAGGCTACATTGGTGTGTG -ACGGAAAGGCTACATTGGCTAGTG -ACGGAAAGGCTACATTGGCATCTG -ACGGAAAGGCTACATTGGGAGTTG -ACGGAAAGGCTACATTGGAGACTG -ACGGAAAGGCTACATTGGTCGGTA -ACGGAAAGGCTACATTGGTGCCTA -ACGGAAAGGCTACATTGGCCACTA -ACGGAAAGGCTACATTGGGGAGTA -ACGGAAAGGCTACATTGGTCGTCT -ACGGAAAGGCTACATTGGTGCACT -ACGGAAAGGCTACATTGGCTGACT -ACGGAAAGGCTACATTGGCAACCT -ACGGAAAGGCTACATTGGGCTACT -ACGGAAAGGCTACATTGGGGATCT -ACGGAAAGGCTACATTGGAAGGCT -ACGGAAAGGCTACATTGGTCAACC -ACGGAAAGGCTACATTGGTGTTCC -ACGGAAAGGCTACATTGGATTCCC -ACGGAAAGGCTACATTGGTTCTCG -ACGGAAAGGCTACATTGGTAGACG -ACGGAAAGGCTACATTGGGTAACG -ACGGAAAGGCTACATTGGACTTCG -ACGGAAAGGCTACATTGGTACGCA -ACGGAAAGGCTACATTGGCTTGCA -ACGGAAAGGCTACATTGGCGAACA -ACGGAAAGGCTACATTGGCAGTCA -ACGGAAAGGCTACATTGGGATCCA -ACGGAAAGGCTACATTGGACGACA -ACGGAAAGGCTACATTGGAGCTCA -ACGGAAAGGCTACATTGGTCACGT -ACGGAAAGGCTACATTGGCGTAGT -ACGGAAAGGCTACATTGGGTCAGT -ACGGAAAGGCTACATTGGGAAGGT -ACGGAAAGGCTACATTGGAACCGT -ACGGAAAGGCTACATTGGTTGTGC -ACGGAAAGGCTACATTGGCTAAGC -ACGGAAAGGCTACATTGGACTAGC -ACGGAAAGGCTACATTGGAGATGC -ACGGAAAGGCTACATTGGTGAAGG -ACGGAAAGGCTACATTGGCAATGG -ACGGAAAGGCTACATTGGATGAGG -ACGGAAAGGCTACATTGGAATGGG -ACGGAAAGGCTACATTGGTCCTGA -ACGGAAAGGCTACATTGGTAGCGA -ACGGAAAGGCTACATTGGCACAGA -ACGGAAAGGCTACATTGGGCAAGA -ACGGAAAGGCTACATTGGGGTTGA -ACGGAAAGGCTACATTGGTCCGAT -ACGGAAAGGCTACATTGGTGGCAT -ACGGAAAGGCTACATTGGCGAGAT -ACGGAAAGGCTACATTGGTACCAC -ACGGAAAGGCTACATTGGCAGAAC -ACGGAAAGGCTACATTGGGTCTAC -ACGGAAAGGCTACATTGGACGTAC -ACGGAAAGGCTACATTGGAGTGAC -ACGGAAAGGCTACATTGGCTGTAG -ACGGAAAGGCTACATTGGCCTAAG -ACGGAAAGGCTACATTGGGTTCAG -ACGGAAAGGCTACATTGGGCATAG -ACGGAAAGGCTACATTGGGACAAG -ACGGAAAGGCTACATTGGAAGCAG -ACGGAAAGGCTACATTGGCGTCAA -ACGGAAAGGCTACATTGGGCTGAA -ACGGAAAGGCTACATTGGAGTACG -ACGGAAAGGCTACATTGGATCCGA -ACGGAAAGGCTACATTGGATGGGA -ACGGAAAGGCTACATTGGGTGCAA -ACGGAAAGGCTACATTGGGAGGAA -ACGGAAAGGCTACATTGGCAGGTA -ACGGAAAGGCTACATTGGGACTCT -ACGGAAAGGCTACATTGGAGTCCT -ACGGAAAGGCTACATTGGTAAGCC -ACGGAAAGGCTACATTGGATAGCC -ACGGAAAGGCTACATTGGTAACCG -ACGGAAAGGCTACATTGGATGCCA -ACGGAAAGGCTAGATCGAGGAAAC -ACGGAAAGGCTAGATCGAAACACC -ACGGAAAGGCTAGATCGAATCGAG -ACGGAAAGGCTAGATCGACTCCTT -ACGGAAAGGCTAGATCGACCTGTT -ACGGAAAGGCTAGATCGACGGTTT -ACGGAAAGGCTAGATCGAGTGGTT -ACGGAAAGGCTAGATCGAGCCTTT -ACGGAAAGGCTAGATCGAGGTCTT -ACGGAAAGGCTAGATCGAACGCTT -ACGGAAAGGCTAGATCGAAGCGTT -ACGGAAAGGCTAGATCGATTCGTC -ACGGAAAGGCTAGATCGATCTCTC -ACGGAAAGGCTAGATCGATGGATC -ACGGAAAGGCTAGATCGACACTTC -ACGGAAAGGCTAGATCGAGTACTC -ACGGAAAGGCTAGATCGAGATGTC -ACGGAAAGGCTAGATCGAACAGTC -ACGGAAAGGCTAGATCGATTGCTG -ACGGAAAGGCTAGATCGATCCATG -ACGGAAAGGCTAGATCGATGTGTG -ACGGAAAGGCTAGATCGACTAGTG -ACGGAAAGGCTAGATCGACATCTG -ACGGAAAGGCTAGATCGAGAGTTG -ACGGAAAGGCTAGATCGAAGACTG -ACGGAAAGGCTAGATCGATCGGTA -ACGGAAAGGCTAGATCGATGCCTA -ACGGAAAGGCTAGATCGACCACTA -ACGGAAAGGCTAGATCGAGGAGTA -ACGGAAAGGCTAGATCGATCGTCT -ACGGAAAGGCTAGATCGATGCACT -ACGGAAAGGCTAGATCGACTGACT -ACGGAAAGGCTAGATCGACAACCT -ACGGAAAGGCTAGATCGAGCTACT -ACGGAAAGGCTAGATCGAGGATCT -ACGGAAAGGCTAGATCGAAAGGCT -ACGGAAAGGCTAGATCGATCAACC -ACGGAAAGGCTAGATCGATGTTCC -ACGGAAAGGCTAGATCGAATTCCC -ACGGAAAGGCTAGATCGATTCTCG -ACGGAAAGGCTAGATCGATAGACG -ACGGAAAGGCTAGATCGAGTAACG -ACGGAAAGGCTAGATCGAACTTCG -ACGGAAAGGCTAGATCGATACGCA -ACGGAAAGGCTAGATCGACTTGCA -ACGGAAAGGCTAGATCGACGAACA -ACGGAAAGGCTAGATCGACAGTCA -ACGGAAAGGCTAGATCGAGATCCA -ACGGAAAGGCTAGATCGAACGACA -ACGGAAAGGCTAGATCGAAGCTCA -ACGGAAAGGCTAGATCGATCACGT -ACGGAAAGGCTAGATCGACGTAGT -ACGGAAAGGCTAGATCGAGTCAGT -ACGGAAAGGCTAGATCGAGAAGGT -ACGGAAAGGCTAGATCGAAACCGT -ACGGAAAGGCTAGATCGATTGTGC -ACGGAAAGGCTAGATCGACTAAGC -ACGGAAAGGCTAGATCGAACTAGC -ACGGAAAGGCTAGATCGAAGATGC -ACGGAAAGGCTAGATCGATGAAGG -ACGGAAAGGCTAGATCGACAATGG -ACGGAAAGGCTAGATCGAATGAGG -ACGGAAAGGCTAGATCGAAATGGG -ACGGAAAGGCTAGATCGATCCTGA -ACGGAAAGGCTAGATCGATAGCGA -ACGGAAAGGCTAGATCGACACAGA -ACGGAAAGGCTAGATCGAGCAAGA -ACGGAAAGGCTAGATCGAGGTTGA -ACGGAAAGGCTAGATCGATCCGAT -ACGGAAAGGCTAGATCGATGGCAT -ACGGAAAGGCTAGATCGACGAGAT -ACGGAAAGGCTAGATCGATACCAC -ACGGAAAGGCTAGATCGACAGAAC -ACGGAAAGGCTAGATCGAGTCTAC -ACGGAAAGGCTAGATCGAACGTAC -ACGGAAAGGCTAGATCGAAGTGAC -ACGGAAAGGCTAGATCGACTGTAG -ACGGAAAGGCTAGATCGACCTAAG -ACGGAAAGGCTAGATCGAGTTCAG -ACGGAAAGGCTAGATCGAGCATAG -ACGGAAAGGCTAGATCGAGACAAG -ACGGAAAGGCTAGATCGAAAGCAG -ACGGAAAGGCTAGATCGACGTCAA -ACGGAAAGGCTAGATCGAGCTGAA -ACGGAAAGGCTAGATCGAAGTACG -ACGGAAAGGCTAGATCGAATCCGA -ACGGAAAGGCTAGATCGAATGGGA -ACGGAAAGGCTAGATCGAGTGCAA -ACGGAAAGGCTAGATCGAGAGGAA -ACGGAAAGGCTAGATCGACAGGTA -ACGGAAAGGCTAGATCGAGACTCT -ACGGAAAGGCTAGATCGAAGTCCT -ACGGAAAGGCTAGATCGATAAGCC -ACGGAAAGGCTAGATCGAATAGCC -ACGGAAAGGCTAGATCGATAACCG -ACGGAAAGGCTAGATCGAATGCCA -ACGGAAAGGCTACACTACGGAAAC -ACGGAAAGGCTACACTACAACACC -ACGGAAAGGCTACACTACATCGAG -ACGGAAAGGCTACACTACCTCCTT -ACGGAAAGGCTACACTACCCTGTT -ACGGAAAGGCTACACTACCGGTTT -ACGGAAAGGCTACACTACGTGGTT -ACGGAAAGGCTACACTACGCCTTT -ACGGAAAGGCTACACTACGGTCTT -ACGGAAAGGCTACACTACACGCTT -ACGGAAAGGCTACACTACAGCGTT -ACGGAAAGGCTACACTACTTCGTC -ACGGAAAGGCTACACTACTCTCTC -ACGGAAAGGCTACACTACTGGATC -ACGGAAAGGCTACACTACCACTTC -ACGGAAAGGCTACACTACGTACTC -ACGGAAAGGCTACACTACGATGTC -ACGGAAAGGCTACACTACACAGTC -ACGGAAAGGCTACACTACTTGCTG -ACGGAAAGGCTACACTACTCCATG -ACGGAAAGGCTACACTACTGTGTG -ACGGAAAGGCTACACTACCTAGTG -ACGGAAAGGCTACACTACCATCTG -ACGGAAAGGCTACACTACGAGTTG -ACGGAAAGGCTACACTACAGACTG -ACGGAAAGGCTACACTACTCGGTA -ACGGAAAGGCTACACTACTGCCTA -ACGGAAAGGCTACACTACCCACTA -ACGGAAAGGCTACACTACGGAGTA -ACGGAAAGGCTACACTACTCGTCT -ACGGAAAGGCTACACTACTGCACT -ACGGAAAGGCTACACTACCTGACT -ACGGAAAGGCTACACTACCAACCT -ACGGAAAGGCTACACTACGCTACT -ACGGAAAGGCTACACTACGGATCT -ACGGAAAGGCTACACTACAAGGCT -ACGGAAAGGCTACACTACTCAACC -ACGGAAAGGCTACACTACTGTTCC -ACGGAAAGGCTACACTACATTCCC -ACGGAAAGGCTACACTACTTCTCG -ACGGAAAGGCTACACTACTAGACG -ACGGAAAGGCTACACTACGTAACG -ACGGAAAGGCTACACTACACTTCG -ACGGAAAGGCTACACTACTACGCA -ACGGAAAGGCTACACTACCTTGCA -ACGGAAAGGCTACACTACCGAACA -ACGGAAAGGCTACACTACCAGTCA -ACGGAAAGGCTACACTACGATCCA -ACGGAAAGGCTACACTACACGACA -ACGGAAAGGCTACACTACAGCTCA -ACGGAAAGGCTACACTACTCACGT -ACGGAAAGGCTACACTACCGTAGT -ACGGAAAGGCTACACTACGTCAGT -ACGGAAAGGCTACACTACGAAGGT -ACGGAAAGGCTACACTACAACCGT -ACGGAAAGGCTACACTACTTGTGC -ACGGAAAGGCTACACTACCTAAGC -ACGGAAAGGCTACACTACACTAGC -ACGGAAAGGCTACACTACAGATGC -ACGGAAAGGCTACACTACTGAAGG -ACGGAAAGGCTACACTACCAATGG -ACGGAAAGGCTACACTACATGAGG -ACGGAAAGGCTACACTACAATGGG -ACGGAAAGGCTACACTACTCCTGA -ACGGAAAGGCTACACTACTAGCGA -ACGGAAAGGCTACACTACCACAGA -ACGGAAAGGCTACACTACGCAAGA -ACGGAAAGGCTACACTACGGTTGA -ACGGAAAGGCTACACTACTCCGAT -ACGGAAAGGCTACACTACTGGCAT -ACGGAAAGGCTACACTACCGAGAT -ACGGAAAGGCTACACTACTACCAC -ACGGAAAGGCTACACTACCAGAAC -ACGGAAAGGCTACACTACGTCTAC -ACGGAAAGGCTACACTACACGTAC -ACGGAAAGGCTACACTACAGTGAC -ACGGAAAGGCTACACTACCTGTAG -ACGGAAAGGCTACACTACCCTAAG -ACGGAAAGGCTACACTACGTTCAG -ACGGAAAGGCTACACTACGCATAG -ACGGAAAGGCTACACTACGACAAG -ACGGAAAGGCTACACTACAAGCAG -ACGGAAAGGCTACACTACCGTCAA -ACGGAAAGGCTACACTACGCTGAA -ACGGAAAGGCTACACTACAGTACG -ACGGAAAGGCTACACTACATCCGA -ACGGAAAGGCTACACTACATGGGA -ACGGAAAGGCTACACTACGTGCAA -ACGGAAAGGCTACACTACGAGGAA -ACGGAAAGGCTACACTACCAGGTA -ACGGAAAGGCTACACTACGACTCT -ACGGAAAGGCTACACTACAGTCCT -ACGGAAAGGCTACACTACTAAGCC -ACGGAAAGGCTACACTACATAGCC -ACGGAAAGGCTACACTACTAACCG -ACGGAAAGGCTACACTACATGCCA -ACGGAAAGGCTAAACCAGGGAAAC -ACGGAAAGGCTAAACCAGAACACC -ACGGAAAGGCTAAACCAGATCGAG -ACGGAAAGGCTAAACCAGCTCCTT -ACGGAAAGGCTAAACCAGCCTGTT -ACGGAAAGGCTAAACCAGCGGTTT -ACGGAAAGGCTAAACCAGGTGGTT -ACGGAAAGGCTAAACCAGGCCTTT -ACGGAAAGGCTAAACCAGGGTCTT -ACGGAAAGGCTAAACCAGACGCTT -ACGGAAAGGCTAAACCAGAGCGTT -ACGGAAAGGCTAAACCAGTTCGTC -ACGGAAAGGCTAAACCAGTCTCTC -ACGGAAAGGCTAAACCAGTGGATC -ACGGAAAGGCTAAACCAGCACTTC -ACGGAAAGGCTAAACCAGGTACTC -ACGGAAAGGCTAAACCAGGATGTC -ACGGAAAGGCTAAACCAGACAGTC -ACGGAAAGGCTAAACCAGTTGCTG -ACGGAAAGGCTAAACCAGTCCATG -ACGGAAAGGCTAAACCAGTGTGTG -ACGGAAAGGCTAAACCAGCTAGTG -ACGGAAAGGCTAAACCAGCATCTG -ACGGAAAGGCTAAACCAGGAGTTG -ACGGAAAGGCTAAACCAGAGACTG -ACGGAAAGGCTAAACCAGTCGGTA -ACGGAAAGGCTAAACCAGTGCCTA -ACGGAAAGGCTAAACCAGCCACTA -ACGGAAAGGCTAAACCAGGGAGTA -ACGGAAAGGCTAAACCAGTCGTCT -ACGGAAAGGCTAAACCAGTGCACT -ACGGAAAGGCTAAACCAGCTGACT -ACGGAAAGGCTAAACCAGCAACCT -ACGGAAAGGCTAAACCAGGCTACT -ACGGAAAGGCTAAACCAGGGATCT -ACGGAAAGGCTAAACCAGAAGGCT -ACGGAAAGGCTAAACCAGTCAACC -ACGGAAAGGCTAAACCAGTGTTCC -ACGGAAAGGCTAAACCAGATTCCC -ACGGAAAGGCTAAACCAGTTCTCG -ACGGAAAGGCTAAACCAGTAGACG -ACGGAAAGGCTAAACCAGGTAACG -ACGGAAAGGCTAAACCAGACTTCG -ACGGAAAGGCTAAACCAGTACGCA -ACGGAAAGGCTAAACCAGCTTGCA -ACGGAAAGGCTAAACCAGCGAACA -ACGGAAAGGCTAAACCAGCAGTCA -ACGGAAAGGCTAAACCAGGATCCA -ACGGAAAGGCTAAACCAGACGACA -ACGGAAAGGCTAAACCAGAGCTCA -ACGGAAAGGCTAAACCAGTCACGT -ACGGAAAGGCTAAACCAGCGTAGT -ACGGAAAGGCTAAACCAGGTCAGT -ACGGAAAGGCTAAACCAGGAAGGT -ACGGAAAGGCTAAACCAGAACCGT -ACGGAAAGGCTAAACCAGTTGTGC -ACGGAAAGGCTAAACCAGCTAAGC -ACGGAAAGGCTAAACCAGACTAGC -ACGGAAAGGCTAAACCAGAGATGC -ACGGAAAGGCTAAACCAGTGAAGG -ACGGAAAGGCTAAACCAGCAATGG -ACGGAAAGGCTAAACCAGATGAGG -ACGGAAAGGCTAAACCAGAATGGG -ACGGAAAGGCTAAACCAGTCCTGA -ACGGAAAGGCTAAACCAGTAGCGA -ACGGAAAGGCTAAACCAGCACAGA -ACGGAAAGGCTAAACCAGGCAAGA -ACGGAAAGGCTAAACCAGGGTTGA -ACGGAAAGGCTAAACCAGTCCGAT -ACGGAAAGGCTAAACCAGTGGCAT -ACGGAAAGGCTAAACCAGCGAGAT -ACGGAAAGGCTAAACCAGTACCAC -ACGGAAAGGCTAAACCAGCAGAAC -ACGGAAAGGCTAAACCAGGTCTAC -ACGGAAAGGCTAAACCAGACGTAC -ACGGAAAGGCTAAACCAGAGTGAC -ACGGAAAGGCTAAACCAGCTGTAG -ACGGAAAGGCTAAACCAGCCTAAG -ACGGAAAGGCTAAACCAGGTTCAG -ACGGAAAGGCTAAACCAGGCATAG -ACGGAAAGGCTAAACCAGGACAAG -ACGGAAAGGCTAAACCAGAAGCAG -ACGGAAAGGCTAAACCAGCGTCAA -ACGGAAAGGCTAAACCAGGCTGAA -ACGGAAAGGCTAAACCAGAGTACG -ACGGAAAGGCTAAACCAGATCCGA -ACGGAAAGGCTAAACCAGATGGGA -ACGGAAAGGCTAAACCAGGTGCAA -ACGGAAAGGCTAAACCAGGAGGAA -ACGGAAAGGCTAAACCAGCAGGTA -ACGGAAAGGCTAAACCAGGACTCT -ACGGAAAGGCTAAACCAGAGTCCT -ACGGAAAGGCTAAACCAGTAAGCC -ACGGAAAGGCTAAACCAGATAGCC -ACGGAAAGGCTAAACCAGTAACCG -ACGGAAAGGCTAAACCAGATGCCA -ACGGAAAGGCTATACGTCGGAAAC -ACGGAAAGGCTATACGTCAACACC -ACGGAAAGGCTATACGTCATCGAG -ACGGAAAGGCTATACGTCCTCCTT -ACGGAAAGGCTATACGTCCCTGTT -ACGGAAAGGCTATACGTCCGGTTT -ACGGAAAGGCTATACGTCGTGGTT -ACGGAAAGGCTATACGTCGCCTTT -ACGGAAAGGCTATACGTCGGTCTT -ACGGAAAGGCTATACGTCACGCTT -ACGGAAAGGCTATACGTCAGCGTT -ACGGAAAGGCTATACGTCTTCGTC -ACGGAAAGGCTATACGTCTCTCTC -ACGGAAAGGCTATACGTCTGGATC -ACGGAAAGGCTATACGTCCACTTC -ACGGAAAGGCTATACGTCGTACTC -ACGGAAAGGCTATACGTCGATGTC -ACGGAAAGGCTATACGTCACAGTC -ACGGAAAGGCTATACGTCTTGCTG -ACGGAAAGGCTATACGTCTCCATG -ACGGAAAGGCTATACGTCTGTGTG -ACGGAAAGGCTATACGTCCTAGTG -ACGGAAAGGCTATACGTCCATCTG -ACGGAAAGGCTATACGTCGAGTTG -ACGGAAAGGCTATACGTCAGACTG -ACGGAAAGGCTATACGTCTCGGTA -ACGGAAAGGCTATACGTCTGCCTA -ACGGAAAGGCTATACGTCCCACTA -ACGGAAAGGCTATACGTCGGAGTA -ACGGAAAGGCTATACGTCTCGTCT -ACGGAAAGGCTATACGTCTGCACT -ACGGAAAGGCTATACGTCCTGACT -ACGGAAAGGCTATACGTCCAACCT -ACGGAAAGGCTATACGTCGCTACT -ACGGAAAGGCTATACGTCGGATCT -ACGGAAAGGCTATACGTCAAGGCT -ACGGAAAGGCTATACGTCTCAACC -ACGGAAAGGCTATACGTCTGTTCC -ACGGAAAGGCTATACGTCATTCCC -ACGGAAAGGCTATACGTCTTCTCG -ACGGAAAGGCTATACGTCTAGACG -ACGGAAAGGCTATACGTCGTAACG -ACGGAAAGGCTATACGTCACTTCG -ACGGAAAGGCTATACGTCTACGCA -ACGGAAAGGCTATACGTCCTTGCA -ACGGAAAGGCTATACGTCCGAACA -ACGGAAAGGCTATACGTCCAGTCA -ACGGAAAGGCTATACGTCGATCCA -ACGGAAAGGCTATACGTCACGACA -ACGGAAAGGCTATACGTCAGCTCA -ACGGAAAGGCTATACGTCTCACGT -ACGGAAAGGCTATACGTCCGTAGT -ACGGAAAGGCTATACGTCGTCAGT -ACGGAAAGGCTATACGTCGAAGGT -ACGGAAAGGCTATACGTCAACCGT -ACGGAAAGGCTATACGTCTTGTGC -ACGGAAAGGCTATACGTCCTAAGC -ACGGAAAGGCTATACGTCACTAGC -ACGGAAAGGCTATACGTCAGATGC -ACGGAAAGGCTATACGTCTGAAGG -ACGGAAAGGCTATACGTCCAATGG -ACGGAAAGGCTATACGTCATGAGG -ACGGAAAGGCTATACGTCAATGGG -ACGGAAAGGCTATACGTCTCCTGA -ACGGAAAGGCTATACGTCTAGCGA -ACGGAAAGGCTATACGTCCACAGA -ACGGAAAGGCTATACGTCGCAAGA -ACGGAAAGGCTATACGTCGGTTGA -ACGGAAAGGCTATACGTCTCCGAT -ACGGAAAGGCTATACGTCTGGCAT -ACGGAAAGGCTATACGTCCGAGAT -ACGGAAAGGCTATACGTCTACCAC -ACGGAAAGGCTATACGTCCAGAAC -ACGGAAAGGCTATACGTCGTCTAC -ACGGAAAGGCTATACGTCACGTAC -ACGGAAAGGCTATACGTCAGTGAC -ACGGAAAGGCTATACGTCCTGTAG -ACGGAAAGGCTATACGTCCCTAAG -ACGGAAAGGCTATACGTCGTTCAG -ACGGAAAGGCTATACGTCGCATAG -ACGGAAAGGCTATACGTCGACAAG -ACGGAAAGGCTATACGTCAAGCAG -ACGGAAAGGCTATACGTCCGTCAA -ACGGAAAGGCTATACGTCGCTGAA -ACGGAAAGGCTATACGTCAGTACG -ACGGAAAGGCTATACGTCATCCGA -ACGGAAAGGCTATACGTCATGGGA -ACGGAAAGGCTATACGTCGTGCAA -ACGGAAAGGCTATACGTCGAGGAA -ACGGAAAGGCTATACGTCCAGGTA -ACGGAAAGGCTATACGTCGACTCT -ACGGAAAGGCTATACGTCAGTCCT -ACGGAAAGGCTATACGTCTAAGCC -ACGGAAAGGCTATACGTCATAGCC -ACGGAAAGGCTATACGTCTAACCG -ACGGAAAGGCTATACGTCATGCCA -ACGGAAAGGCTATACACGGGAAAC -ACGGAAAGGCTATACACGAACACC -ACGGAAAGGCTATACACGATCGAG -ACGGAAAGGCTATACACGCTCCTT -ACGGAAAGGCTATACACGCCTGTT -ACGGAAAGGCTATACACGCGGTTT -ACGGAAAGGCTATACACGGTGGTT -ACGGAAAGGCTATACACGGCCTTT -ACGGAAAGGCTATACACGGGTCTT -ACGGAAAGGCTATACACGACGCTT -ACGGAAAGGCTATACACGAGCGTT -ACGGAAAGGCTATACACGTTCGTC -ACGGAAAGGCTATACACGTCTCTC -ACGGAAAGGCTATACACGTGGATC -ACGGAAAGGCTATACACGCACTTC -ACGGAAAGGCTATACACGGTACTC -ACGGAAAGGCTATACACGGATGTC -ACGGAAAGGCTATACACGACAGTC -ACGGAAAGGCTATACACGTTGCTG -ACGGAAAGGCTATACACGTCCATG -ACGGAAAGGCTATACACGTGTGTG -ACGGAAAGGCTATACACGCTAGTG -ACGGAAAGGCTATACACGCATCTG -ACGGAAAGGCTATACACGGAGTTG -ACGGAAAGGCTATACACGAGACTG -ACGGAAAGGCTATACACGTCGGTA -ACGGAAAGGCTATACACGTGCCTA -ACGGAAAGGCTATACACGCCACTA -ACGGAAAGGCTATACACGGGAGTA -ACGGAAAGGCTATACACGTCGTCT -ACGGAAAGGCTATACACGTGCACT -ACGGAAAGGCTATACACGCTGACT -ACGGAAAGGCTATACACGCAACCT -ACGGAAAGGCTATACACGGCTACT -ACGGAAAGGCTATACACGGGATCT -ACGGAAAGGCTATACACGAAGGCT -ACGGAAAGGCTATACACGTCAACC -ACGGAAAGGCTATACACGTGTTCC -ACGGAAAGGCTATACACGATTCCC -ACGGAAAGGCTATACACGTTCTCG -ACGGAAAGGCTATACACGTAGACG -ACGGAAAGGCTATACACGGTAACG -ACGGAAAGGCTATACACGACTTCG -ACGGAAAGGCTATACACGTACGCA -ACGGAAAGGCTATACACGCTTGCA -ACGGAAAGGCTATACACGCGAACA -ACGGAAAGGCTATACACGCAGTCA -ACGGAAAGGCTATACACGGATCCA -ACGGAAAGGCTATACACGACGACA -ACGGAAAGGCTATACACGAGCTCA -ACGGAAAGGCTATACACGTCACGT -ACGGAAAGGCTATACACGCGTAGT -ACGGAAAGGCTATACACGGTCAGT -ACGGAAAGGCTATACACGGAAGGT -ACGGAAAGGCTATACACGAACCGT -ACGGAAAGGCTATACACGTTGTGC -ACGGAAAGGCTATACACGCTAAGC -ACGGAAAGGCTATACACGACTAGC -ACGGAAAGGCTATACACGAGATGC -ACGGAAAGGCTATACACGTGAAGG -ACGGAAAGGCTATACACGCAATGG -ACGGAAAGGCTATACACGATGAGG -ACGGAAAGGCTATACACGAATGGG -ACGGAAAGGCTATACACGTCCTGA -ACGGAAAGGCTATACACGTAGCGA -ACGGAAAGGCTATACACGCACAGA -ACGGAAAGGCTATACACGGCAAGA -ACGGAAAGGCTATACACGGGTTGA -ACGGAAAGGCTATACACGTCCGAT -ACGGAAAGGCTATACACGTGGCAT -ACGGAAAGGCTATACACGCGAGAT -ACGGAAAGGCTATACACGTACCAC -ACGGAAAGGCTATACACGCAGAAC -ACGGAAAGGCTATACACGGTCTAC -ACGGAAAGGCTATACACGACGTAC -ACGGAAAGGCTATACACGAGTGAC -ACGGAAAGGCTATACACGCTGTAG -ACGGAAAGGCTATACACGCCTAAG -ACGGAAAGGCTATACACGGTTCAG -ACGGAAAGGCTATACACGGCATAG -ACGGAAAGGCTATACACGGACAAG -ACGGAAAGGCTATACACGAAGCAG -ACGGAAAGGCTATACACGCGTCAA -ACGGAAAGGCTATACACGGCTGAA -ACGGAAAGGCTATACACGAGTACG -ACGGAAAGGCTATACACGATCCGA -ACGGAAAGGCTATACACGATGGGA -ACGGAAAGGCTATACACGGTGCAA -ACGGAAAGGCTATACACGGAGGAA -ACGGAAAGGCTATACACGCAGGTA -ACGGAAAGGCTATACACGGACTCT -ACGGAAAGGCTATACACGAGTCCT -ACGGAAAGGCTATACACGTAAGCC -ACGGAAAGGCTATACACGATAGCC -ACGGAAAGGCTATACACGTAACCG -ACGGAAAGGCTATACACGATGCCA -ACGGAAAGGCTAGACAGTGGAAAC -ACGGAAAGGCTAGACAGTAACACC -ACGGAAAGGCTAGACAGTATCGAG -ACGGAAAGGCTAGACAGTCTCCTT -ACGGAAAGGCTAGACAGTCCTGTT -ACGGAAAGGCTAGACAGTCGGTTT -ACGGAAAGGCTAGACAGTGTGGTT -ACGGAAAGGCTAGACAGTGCCTTT -ACGGAAAGGCTAGACAGTGGTCTT -ACGGAAAGGCTAGACAGTACGCTT -ACGGAAAGGCTAGACAGTAGCGTT -ACGGAAAGGCTAGACAGTTTCGTC -ACGGAAAGGCTAGACAGTTCTCTC -ACGGAAAGGCTAGACAGTTGGATC -ACGGAAAGGCTAGACAGTCACTTC -ACGGAAAGGCTAGACAGTGTACTC -ACGGAAAGGCTAGACAGTGATGTC -ACGGAAAGGCTAGACAGTACAGTC -ACGGAAAGGCTAGACAGTTTGCTG -ACGGAAAGGCTAGACAGTTCCATG -ACGGAAAGGCTAGACAGTTGTGTG -ACGGAAAGGCTAGACAGTCTAGTG -ACGGAAAGGCTAGACAGTCATCTG -ACGGAAAGGCTAGACAGTGAGTTG -ACGGAAAGGCTAGACAGTAGACTG -ACGGAAAGGCTAGACAGTTCGGTA -ACGGAAAGGCTAGACAGTTGCCTA -ACGGAAAGGCTAGACAGTCCACTA -ACGGAAAGGCTAGACAGTGGAGTA -ACGGAAAGGCTAGACAGTTCGTCT -ACGGAAAGGCTAGACAGTTGCACT -ACGGAAAGGCTAGACAGTCTGACT -ACGGAAAGGCTAGACAGTCAACCT -ACGGAAAGGCTAGACAGTGCTACT -ACGGAAAGGCTAGACAGTGGATCT -ACGGAAAGGCTAGACAGTAAGGCT -ACGGAAAGGCTAGACAGTTCAACC -ACGGAAAGGCTAGACAGTTGTTCC -ACGGAAAGGCTAGACAGTATTCCC -ACGGAAAGGCTAGACAGTTTCTCG -ACGGAAAGGCTAGACAGTTAGACG -ACGGAAAGGCTAGACAGTGTAACG -ACGGAAAGGCTAGACAGTACTTCG -ACGGAAAGGCTAGACAGTTACGCA -ACGGAAAGGCTAGACAGTCTTGCA -ACGGAAAGGCTAGACAGTCGAACA -ACGGAAAGGCTAGACAGTCAGTCA -ACGGAAAGGCTAGACAGTGATCCA -ACGGAAAGGCTAGACAGTACGACA -ACGGAAAGGCTAGACAGTAGCTCA -ACGGAAAGGCTAGACAGTTCACGT -ACGGAAAGGCTAGACAGTCGTAGT -ACGGAAAGGCTAGACAGTGTCAGT -ACGGAAAGGCTAGACAGTGAAGGT -ACGGAAAGGCTAGACAGTAACCGT -ACGGAAAGGCTAGACAGTTTGTGC -ACGGAAAGGCTAGACAGTCTAAGC -ACGGAAAGGCTAGACAGTACTAGC -ACGGAAAGGCTAGACAGTAGATGC -ACGGAAAGGCTAGACAGTTGAAGG -ACGGAAAGGCTAGACAGTCAATGG -ACGGAAAGGCTAGACAGTATGAGG -ACGGAAAGGCTAGACAGTAATGGG -ACGGAAAGGCTAGACAGTTCCTGA -ACGGAAAGGCTAGACAGTTAGCGA -ACGGAAAGGCTAGACAGTCACAGA -ACGGAAAGGCTAGACAGTGCAAGA -ACGGAAAGGCTAGACAGTGGTTGA -ACGGAAAGGCTAGACAGTTCCGAT -ACGGAAAGGCTAGACAGTTGGCAT -ACGGAAAGGCTAGACAGTCGAGAT -ACGGAAAGGCTAGACAGTTACCAC -ACGGAAAGGCTAGACAGTCAGAAC -ACGGAAAGGCTAGACAGTGTCTAC -ACGGAAAGGCTAGACAGTACGTAC -ACGGAAAGGCTAGACAGTAGTGAC -ACGGAAAGGCTAGACAGTCTGTAG -ACGGAAAGGCTAGACAGTCCTAAG -ACGGAAAGGCTAGACAGTGTTCAG -ACGGAAAGGCTAGACAGTGCATAG -ACGGAAAGGCTAGACAGTGACAAG -ACGGAAAGGCTAGACAGTAAGCAG -ACGGAAAGGCTAGACAGTCGTCAA -ACGGAAAGGCTAGACAGTGCTGAA -ACGGAAAGGCTAGACAGTAGTACG -ACGGAAAGGCTAGACAGTATCCGA -ACGGAAAGGCTAGACAGTATGGGA -ACGGAAAGGCTAGACAGTGTGCAA -ACGGAAAGGCTAGACAGTGAGGAA -ACGGAAAGGCTAGACAGTCAGGTA -ACGGAAAGGCTAGACAGTGACTCT -ACGGAAAGGCTAGACAGTAGTCCT -ACGGAAAGGCTAGACAGTTAAGCC -ACGGAAAGGCTAGACAGTATAGCC -ACGGAAAGGCTAGACAGTTAACCG -ACGGAAAGGCTAGACAGTATGCCA -ACGGAAAGGCTATAGCTGGGAAAC -ACGGAAAGGCTATAGCTGAACACC -ACGGAAAGGCTATAGCTGATCGAG -ACGGAAAGGCTATAGCTGCTCCTT -ACGGAAAGGCTATAGCTGCCTGTT -ACGGAAAGGCTATAGCTGCGGTTT -ACGGAAAGGCTATAGCTGGTGGTT -ACGGAAAGGCTATAGCTGGCCTTT -ACGGAAAGGCTATAGCTGGGTCTT -ACGGAAAGGCTATAGCTGACGCTT -ACGGAAAGGCTATAGCTGAGCGTT -ACGGAAAGGCTATAGCTGTTCGTC -ACGGAAAGGCTATAGCTGTCTCTC -ACGGAAAGGCTATAGCTGTGGATC -ACGGAAAGGCTATAGCTGCACTTC -ACGGAAAGGCTATAGCTGGTACTC -ACGGAAAGGCTATAGCTGGATGTC -ACGGAAAGGCTATAGCTGACAGTC -ACGGAAAGGCTATAGCTGTTGCTG -ACGGAAAGGCTATAGCTGTCCATG -ACGGAAAGGCTATAGCTGTGTGTG -ACGGAAAGGCTATAGCTGCTAGTG -ACGGAAAGGCTATAGCTGCATCTG -ACGGAAAGGCTATAGCTGGAGTTG -ACGGAAAGGCTATAGCTGAGACTG -ACGGAAAGGCTATAGCTGTCGGTA -ACGGAAAGGCTATAGCTGTGCCTA -ACGGAAAGGCTATAGCTGCCACTA -ACGGAAAGGCTATAGCTGGGAGTA -ACGGAAAGGCTATAGCTGTCGTCT -ACGGAAAGGCTATAGCTGTGCACT -ACGGAAAGGCTATAGCTGCTGACT -ACGGAAAGGCTATAGCTGCAACCT -ACGGAAAGGCTATAGCTGGCTACT -ACGGAAAGGCTATAGCTGGGATCT -ACGGAAAGGCTATAGCTGAAGGCT -ACGGAAAGGCTATAGCTGTCAACC -ACGGAAAGGCTATAGCTGTGTTCC -ACGGAAAGGCTATAGCTGATTCCC -ACGGAAAGGCTATAGCTGTTCTCG -ACGGAAAGGCTATAGCTGTAGACG -ACGGAAAGGCTATAGCTGGTAACG -ACGGAAAGGCTATAGCTGACTTCG -ACGGAAAGGCTATAGCTGTACGCA -ACGGAAAGGCTATAGCTGCTTGCA -ACGGAAAGGCTATAGCTGCGAACA -ACGGAAAGGCTATAGCTGCAGTCA -ACGGAAAGGCTATAGCTGGATCCA -ACGGAAAGGCTATAGCTGACGACA -ACGGAAAGGCTATAGCTGAGCTCA -ACGGAAAGGCTATAGCTGTCACGT -ACGGAAAGGCTATAGCTGCGTAGT -ACGGAAAGGCTATAGCTGGTCAGT -ACGGAAAGGCTATAGCTGGAAGGT -ACGGAAAGGCTATAGCTGAACCGT -ACGGAAAGGCTATAGCTGTTGTGC -ACGGAAAGGCTATAGCTGCTAAGC -ACGGAAAGGCTATAGCTGACTAGC -ACGGAAAGGCTATAGCTGAGATGC -ACGGAAAGGCTATAGCTGTGAAGG -ACGGAAAGGCTATAGCTGCAATGG -ACGGAAAGGCTATAGCTGATGAGG -ACGGAAAGGCTATAGCTGAATGGG -ACGGAAAGGCTATAGCTGTCCTGA -ACGGAAAGGCTATAGCTGTAGCGA -ACGGAAAGGCTATAGCTGCACAGA -ACGGAAAGGCTATAGCTGGCAAGA -ACGGAAAGGCTATAGCTGGGTTGA -ACGGAAAGGCTATAGCTGTCCGAT -ACGGAAAGGCTATAGCTGTGGCAT -ACGGAAAGGCTATAGCTGCGAGAT -ACGGAAAGGCTATAGCTGTACCAC -ACGGAAAGGCTATAGCTGCAGAAC -ACGGAAAGGCTATAGCTGGTCTAC -ACGGAAAGGCTATAGCTGACGTAC -ACGGAAAGGCTATAGCTGAGTGAC -ACGGAAAGGCTATAGCTGCTGTAG -ACGGAAAGGCTATAGCTGCCTAAG -ACGGAAAGGCTATAGCTGGTTCAG -ACGGAAAGGCTATAGCTGGCATAG -ACGGAAAGGCTATAGCTGGACAAG -ACGGAAAGGCTATAGCTGAAGCAG -ACGGAAAGGCTATAGCTGCGTCAA -ACGGAAAGGCTATAGCTGGCTGAA -ACGGAAAGGCTATAGCTGAGTACG -ACGGAAAGGCTATAGCTGATCCGA -ACGGAAAGGCTATAGCTGATGGGA -ACGGAAAGGCTATAGCTGGTGCAA -ACGGAAAGGCTATAGCTGGAGGAA -ACGGAAAGGCTATAGCTGCAGGTA -ACGGAAAGGCTATAGCTGGACTCT -ACGGAAAGGCTATAGCTGAGTCCT -ACGGAAAGGCTATAGCTGTAAGCC -ACGGAAAGGCTATAGCTGATAGCC -ACGGAAAGGCTATAGCTGTAACCG -ACGGAAAGGCTATAGCTGATGCCA -ACGGAAAGGCTAAAGCCTGGAAAC -ACGGAAAGGCTAAAGCCTAACACC -ACGGAAAGGCTAAAGCCTATCGAG -ACGGAAAGGCTAAAGCCTCTCCTT -ACGGAAAGGCTAAAGCCTCCTGTT -ACGGAAAGGCTAAAGCCTCGGTTT -ACGGAAAGGCTAAAGCCTGTGGTT -ACGGAAAGGCTAAAGCCTGCCTTT -ACGGAAAGGCTAAAGCCTGGTCTT -ACGGAAAGGCTAAAGCCTACGCTT -ACGGAAAGGCTAAAGCCTAGCGTT -ACGGAAAGGCTAAAGCCTTTCGTC -ACGGAAAGGCTAAAGCCTTCTCTC -ACGGAAAGGCTAAAGCCTTGGATC -ACGGAAAGGCTAAAGCCTCACTTC -ACGGAAAGGCTAAAGCCTGTACTC -ACGGAAAGGCTAAAGCCTGATGTC -ACGGAAAGGCTAAAGCCTACAGTC -ACGGAAAGGCTAAAGCCTTTGCTG -ACGGAAAGGCTAAAGCCTTCCATG -ACGGAAAGGCTAAAGCCTTGTGTG -ACGGAAAGGCTAAAGCCTCTAGTG -ACGGAAAGGCTAAAGCCTCATCTG -ACGGAAAGGCTAAAGCCTGAGTTG -ACGGAAAGGCTAAAGCCTAGACTG -ACGGAAAGGCTAAAGCCTTCGGTA -ACGGAAAGGCTAAAGCCTTGCCTA -ACGGAAAGGCTAAAGCCTCCACTA -ACGGAAAGGCTAAAGCCTGGAGTA -ACGGAAAGGCTAAAGCCTTCGTCT -ACGGAAAGGCTAAAGCCTTGCACT -ACGGAAAGGCTAAAGCCTCTGACT -ACGGAAAGGCTAAAGCCTCAACCT -ACGGAAAGGCTAAAGCCTGCTACT -ACGGAAAGGCTAAAGCCTGGATCT -ACGGAAAGGCTAAAGCCTAAGGCT -ACGGAAAGGCTAAAGCCTTCAACC -ACGGAAAGGCTAAAGCCTTGTTCC -ACGGAAAGGCTAAAGCCTATTCCC -ACGGAAAGGCTAAAGCCTTTCTCG -ACGGAAAGGCTAAAGCCTTAGACG -ACGGAAAGGCTAAAGCCTGTAACG -ACGGAAAGGCTAAAGCCTACTTCG -ACGGAAAGGCTAAAGCCTTACGCA -ACGGAAAGGCTAAAGCCTCTTGCA -ACGGAAAGGCTAAAGCCTCGAACA -ACGGAAAGGCTAAAGCCTCAGTCA -ACGGAAAGGCTAAAGCCTGATCCA -ACGGAAAGGCTAAAGCCTACGACA -ACGGAAAGGCTAAAGCCTAGCTCA -ACGGAAAGGCTAAAGCCTTCACGT -ACGGAAAGGCTAAAGCCTCGTAGT -ACGGAAAGGCTAAAGCCTGTCAGT -ACGGAAAGGCTAAAGCCTGAAGGT -ACGGAAAGGCTAAAGCCTAACCGT -ACGGAAAGGCTAAAGCCTTTGTGC -ACGGAAAGGCTAAAGCCTCTAAGC -ACGGAAAGGCTAAAGCCTACTAGC -ACGGAAAGGCTAAAGCCTAGATGC -ACGGAAAGGCTAAAGCCTTGAAGG -ACGGAAAGGCTAAAGCCTCAATGG -ACGGAAAGGCTAAAGCCTATGAGG -ACGGAAAGGCTAAAGCCTAATGGG -ACGGAAAGGCTAAAGCCTTCCTGA -ACGGAAAGGCTAAAGCCTTAGCGA -ACGGAAAGGCTAAAGCCTCACAGA -ACGGAAAGGCTAAAGCCTGCAAGA -ACGGAAAGGCTAAAGCCTGGTTGA -ACGGAAAGGCTAAAGCCTTCCGAT -ACGGAAAGGCTAAAGCCTTGGCAT -ACGGAAAGGCTAAAGCCTCGAGAT -ACGGAAAGGCTAAAGCCTTACCAC -ACGGAAAGGCTAAAGCCTCAGAAC -ACGGAAAGGCTAAAGCCTGTCTAC -ACGGAAAGGCTAAAGCCTACGTAC -ACGGAAAGGCTAAAGCCTAGTGAC -ACGGAAAGGCTAAAGCCTCTGTAG -ACGGAAAGGCTAAAGCCTCCTAAG -ACGGAAAGGCTAAAGCCTGTTCAG -ACGGAAAGGCTAAAGCCTGCATAG -ACGGAAAGGCTAAAGCCTGACAAG -ACGGAAAGGCTAAAGCCTAAGCAG -ACGGAAAGGCTAAAGCCTCGTCAA -ACGGAAAGGCTAAAGCCTGCTGAA -ACGGAAAGGCTAAAGCCTAGTACG -ACGGAAAGGCTAAAGCCTATCCGA -ACGGAAAGGCTAAAGCCTATGGGA -ACGGAAAGGCTAAAGCCTGTGCAA -ACGGAAAGGCTAAAGCCTGAGGAA -ACGGAAAGGCTAAAGCCTCAGGTA -ACGGAAAGGCTAAAGCCTGACTCT -ACGGAAAGGCTAAAGCCTAGTCCT -ACGGAAAGGCTAAAGCCTTAAGCC -ACGGAAAGGCTAAAGCCTATAGCC -ACGGAAAGGCTAAAGCCTTAACCG -ACGGAAAGGCTAAAGCCTATGCCA -ACGGAAAGGCTACAGGTTGGAAAC -ACGGAAAGGCTACAGGTTAACACC -ACGGAAAGGCTACAGGTTATCGAG -ACGGAAAGGCTACAGGTTCTCCTT -ACGGAAAGGCTACAGGTTCCTGTT -ACGGAAAGGCTACAGGTTCGGTTT -ACGGAAAGGCTACAGGTTGTGGTT -ACGGAAAGGCTACAGGTTGCCTTT -ACGGAAAGGCTACAGGTTGGTCTT -ACGGAAAGGCTACAGGTTACGCTT -ACGGAAAGGCTACAGGTTAGCGTT -ACGGAAAGGCTACAGGTTTTCGTC -ACGGAAAGGCTACAGGTTTCTCTC -ACGGAAAGGCTACAGGTTTGGATC -ACGGAAAGGCTACAGGTTCACTTC -ACGGAAAGGCTACAGGTTGTACTC -ACGGAAAGGCTACAGGTTGATGTC -ACGGAAAGGCTACAGGTTACAGTC -ACGGAAAGGCTACAGGTTTTGCTG -ACGGAAAGGCTACAGGTTTCCATG -ACGGAAAGGCTACAGGTTTGTGTG -ACGGAAAGGCTACAGGTTCTAGTG -ACGGAAAGGCTACAGGTTCATCTG -ACGGAAAGGCTACAGGTTGAGTTG -ACGGAAAGGCTACAGGTTAGACTG -ACGGAAAGGCTACAGGTTTCGGTA -ACGGAAAGGCTACAGGTTTGCCTA -ACGGAAAGGCTACAGGTTCCACTA -ACGGAAAGGCTACAGGTTGGAGTA -ACGGAAAGGCTACAGGTTTCGTCT -ACGGAAAGGCTACAGGTTTGCACT -ACGGAAAGGCTACAGGTTCTGACT -ACGGAAAGGCTACAGGTTCAACCT -ACGGAAAGGCTACAGGTTGCTACT -ACGGAAAGGCTACAGGTTGGATCT -ACGGAAAGGCTACAGGTTAAGGCT -ACGGAAAGGCTACAGGTTTCAACC -ACGGAAAGGCTACAGGTTTGTTCC -ACGGAAAGGCTACAGGTTATTCCC -ACGGAAAGGCTACAGGTTTTCTCG -ACGGAAAGGCTACAGGTTTAGACG -ACGGAAAGGCTACAGGTTGTAACG -ACGGAAAGGCTACAGGTTACTTCG -ACGGAAAGGCTACAGGTTTACGCA -ACGGAAAGGCTACAGGTTCTTGCA -ACGGAAAGGCTACAGGTTCGAACA -ACGGAAAGGCTACAGGTTCAGTCA -ACGGAAAGGCTACAGGTTGATCCA -ACGGAAAGGCTACAGGTTACGACA -ACGGAAAGGCTACAGGTTAGCTCA -ACGGAAAGGCTACAGGTTTCACGT -ACGGAAAGGCTACAGGTTCGTAGT -ACGGAAAGGCTACAGGTTGTCAGT -ACGGAAAGGCTACAGGTTGAAGGT -ACGGAAAGGCTACAGGTTAACCGT -ACGGAAAGGCTACAGGTTTTGTGC -ACGGAAAGGCTACAGGTTCTAAGC -ACGGAAAGGCTACAGGTTACTAGC -ACGGAAAGGCTACAGGTTAGATGC -ACGGAAAGGCTACAGGTTTGAAGG -ACGGAAAGGCTACAGGTTCAATGG -ACGGAAAGGCTACAGGTTATGAGG -ACGGAAAGGCTACAGGTTAATGGG -ACGGAAAGGCTACAGGTTTCCTGA -ACGGAAAGGCTACAGGTTTAGCGA -ACGGAAAGGCTACAGGTTCACAGA -ACGGAAAGGCTACAGGTTGCAAGA -ACGGAAAGGCTACAGGTTGGTTGA -ACGGAAAGGCTACAGGTTTCCGAT -ACGGAAAGGCTACAGGTTTGGCAT -ACGGAAAGGCTACAGGTTCGAGAT -ACGGAAAGGCTACAGGTTTACCAC -ACGGAAAGGCTACAGGTTCAGAAC -ACGGAAAGGCTACAGGTTGTCTAC -ACGGAAAGGCTACAGGTTACGTAC -ACGGAAAGGCTACAGGTTAGTGAC -ACGGAAAGGCTACAGGTTCTGTAG -ACGGAAAGGCTACAGGTTCCTAAG -ACGGAAAGGCTACAGGTTGTTCAG -ACGGAAAGGCTACAGGTTGCATAG -ACGGAAAGGCTACAGGTTGACAAG -ACGGAAAGGCTACAGGTTAAGCAG -ACGGAAAGGCTACAGGTTCGTCAA -ACGGAAAGGCTACAGGTTGCTGAA -ACGGAAAGGCTACAGGTTAGTACG -ACGGAAAGGCTACAGGTTATCCGA -ACGGAAAGGCTACAGGTTATGGGA -ACGGAAAGGCTACAGGTTGTGCAA -ACGGAAAGGCTACAGGTTGAGGAA -ACGGAAAGGCTACAGGTTCAGGTA -ACGGAAAGGCTACAGGTTGACTCT -ACGGAAAGGCTACAGGTTAGTCCT -ACGGAAAGGCTACAGGTTTAAGCC -ACGGAAAGGCTACAGGTTATAGCC -ACGGAAAGGCTACAGGTTTAACCG -ACGGAAAGGCTACAGGTTATGCCA -ACGGAAAGGCTATAGGCAGGAAAC -ACGGAAAGGCTATAGGCAAACACC -ACGGAAAGGCTATAGGCAATCGAG -ACGGAAAGGCTATAGGCACTCCTT -ACGGAAAGGCTATAGGCACCTGTT -ACGGAAAGGCTATAGGCACGGTTT -ACGGAAAGGCTATAGGCAGTGGTT -ACGGAAAGGCTATAGGCAGCCTTT -ACGGAAAGGCTATAGGCAGGTCTT -ACGGAAAGGCTATAGGCAACGCTT -ACGGAAAGGCTATAGGCAAGCGTT -ACGGAAAGGCTATAGGCATTCGTC -ACGGAAAGGCTATAGGCATCTCTC -ACGGAAAGGCTATAGGCATGGATC -ACGGAAAGGCTATAGGCACACTTC -ACGGAAAGGCTATAGGCAGTACTC -ACGGAAAGGCTATAGGCAGATGTC -ACGGAAAGGCTATAGGCAACAGTC -ACGGAAAGGCTATAGGCATTGCTG -ACGGAAAGGCTATAGGCATCCATG -ACGGAAAGGCTATAGGCATGTGTG -ACGGAAAGGCTATAGGCACTAGTG -ACGGAAAGGCTATAGGCACATCTG -ACGGAAAGGCTATAGGCAGAGTTG -ACGGAAAGGCTATAGGCAAGACTG -ACGGAAAGGCTATAGGCATCGGTA -ACGGAAAGGCTATAGGCATGCCTA -ACGGAAAGGCTATAGGCACCACTA -ACGGAAAGGCTATAGGCAGGAGTA -ACGGAAAGGCTATAGGCATCGTCT -ACGGAAAGGCTATAGGCATGCACT -ACGGAAAGGCTATAGGCACTGACT -ACGGAAAGGCTATAGGCACAACCT -ACGGAAAGGCTATAGGCAGCTACT -ACGGAAAGGCTATAGGCAGGATCT -ACGGAAAGGCTATAGGCAAAGGCT -ACGGAAAGGCTATAGGCATCAACC -ACGGAAAGGCTATAGGCATGTTCC -ACGGAAAGGCTATAGGCAATTCCC -ACGGAAAGGCTATAGGCATTCTCG -ACGGAAAGGCTATAGGCATAGACG -ACGGAAAGGCTATAGGCAGTAACG -ACGGAAAGGCTATAGGCAACTTCG -ACGGAAAGGCTATAGGCATACGCA -ACGGAAAGGCTATAGGCACTTGCA -ACGGAAAGGCTATAGGCACGAACA -ACGGAAAGGCTATAGGCACAGTCA -ACGGAAAGGCTATAGGCAGATCCA -ACGGAAAGGCTATAGGCAACGACA -ACGGAAAGGCTATAGGCAAGCTCA -ACGGAAAGGCTATAGGCATCACGT -ACGGAAAGGCTATAGGCACGTAGT -ACGGAAAGGCTATAGGCAGTCAGT -ACGGAAAGGCTATAGGCAGAAGGT -ACGGAAAGGCTATAGGCAAACCGT -ACGGAAAGGCTATAGGCATTGTGC -ACGGAAAGGCTATAGGCACTAAGC -ACGGAAAGGCTATAGGCAACTAGC -ACGGAAAGGCTATAGGCAAGATGC -ACGGAAAGGCTATAGGCATGAAGG -ACGGAAAGGCTATAGGCACAATGG -ACGGAAAGGCTATAGGCAATGAGG -ACGGAAAGGCTATAGGCAAATGGG -ACGGAAAGGCTATAGGCATCCTGA -ACGGAAAGGCTATAGGCATAGCGA -ACGGAAAGGCTATAGGCACACAGA -ACGGAAAGGCTATAGGCAGCAAGA -ACGGAAAGGCTATAGGCAGGTTGA -ACGGAAAGGCTATAGGCATCCGAT -ACGGAAAGGCTATAGGCATGGCAT -ACGGAAAGGCTATAGGCACGAGAT -ACGGAAAGGCTATAGGCATACCAC -ACGGAAAGGCTATAGGCACAGAAC -ACGGAAAGGCTATAGGCAGTCTAC -ACGGAAAGGCTATAGGCAACGTAC -ACGGAAAGGCTATAGGCAAGTGAC -ACGGAAAGGCTATAGGCACTGTAG -ACGGAAAGGCTATAGGCACCTAAG -ACGGAAAGGCTATAGGCAGTTCAG -ACGGAAAGGCTATAGGCAGCATAG -ACGGAAAGGCTATAGGCAGACAAG -ACGGAAAGGCTATAGGCAAAGCAG -ACGGAAAGGCTATAGGCACGTCAA -ACGGAAAGGCTATAGGCAGCTGAA -ACGGAAAGGCTATAGGCAAGTACG -ACGGAAAGGCTATAGGCAATCCGA -ACGGAAAGGCTATAGGCAATGGGA -ACGGAAAGGCTATAGGCAGTGCAA -ACGGAAAGGCTATAGGCAGAGGAA -ACGGAAAGGCTATAGGCACAGGTA -ACGGAAAGGCTATAGGCAGACTCT -ACGGAAAGGCTATAGGCAAGTCCT -ACGGAAAGGCTATAGGCATAAGCC -ACGGAAAGGCTATAGGCAATAGCC -ACGGAAAGGCTATAGGCATAACCG -ACGGAAAGGCTATAGGCAATGCCA -ACGGAAAGGCTAAAGGACGGAAAC -ACGGAAAGGCTAAAGGACAACACC -ACGGAAAGGCTAAAGGACATCGAG -ACGGAAAGGCTAAAGGACCTCCTT -ACGGAAAGGCTAAAGGACCCTGTT -ACGGAAAGGCTAAAGGACCGGTTT -ACGGAAAGGCTAAAGGACGTGGTT -ACGGAAAGGCTAAAGGACGCCTTT -ACGGAAAGGCTAAAGGACGGTCTT -ACGGAAAGGCTAAAGGACACGCTT -ACGGAAAGGCTAAAGGACAGCGTT -ACGGAAAGGCTAAAGGACTTCGTC -ACGGAAAGGCTAAAGGACTCTCTC -ACGGAAAGGCTAAAGGACTGGATC -ACGGAAAGGCTAAAGGACCACTTC -ACGGAAAGGCTAAAGGACGTACTC -ACGGAAAGGCTAAAGGACGATGTC -ACGGAAAGGCTAAAGGACACAGTC -ACGGAAAGGCTAAAGGACTTGCTG -ACGGAAAGGCTAAAGGACTCCATG -ACGGAAAGGCTAAAGGACTGTGTG -ACGGAAAGGCTAAAGGACCTAGTG -ACGGAAAGGCTAAAGGACCATCTG -ACGGAAAGGCTAAAGGACGAGTTG -ACGGAAAGGCTAAAGGACAGACTG -ACGGAAAGGCTAAAGGACTCGGTA -ACGGAAAGGCTAAAGGACTGCCTA -ACGGAAAGGCTAAAGGACCCACTA -ACGGAAAGGCTAAAGGACGGAGTA -ACGGAAAGGCTAAAGGACTCGTCT -ACGGAAAGGCTAAAGGACTGCACT -ACGGAAAGGCTAAAGGACCTGACT -ACGGAAAGGCTAAAGGACCAACCT -ACGGAAAGGCTAAAGGACGCTACT -ACGGAAAGGCTAAAGGACGGATCT -ACGGAAAGGCTAAAGGACAAGGCT -ACGGAAAGGCTAAAGGACTCAACC -ACGGAAAGGCTAAAGGACTGTTCC -ACGGAAAGGCTAAAGGACATTCCC -ACGGAAAGGCTAAAGGACTTCTCG -ACGGAAAGGCTAAAGGACTAGACG -ACGGAAAGGCTAAAGGACGTAACG -ACGGAAAGGCTAAAGGACACTTCG -ACGGAAAGGCTAAAGGACTACGCA -ACGGAAAGGCTAAAGGACCTTGCA -ACGGAAAGGCTAAAGGACCGAACA -ACGGAAAGGCTAAAGGACCAGTCA -ACGGAAAGGCTAAAGGACGATCCA -ACGGAAAGGCTAAAGGACACGACA -ACGGAAAGGCTAAAGGACAGCTCA -ACGGAAAGGCTAAAGGACTCACGT -ACGGAAAGGCTAAAGGACCGTAGT -ACGGAAAGGCTAAAGGACGTCAGT -ACGGAAAGGCTAAAGGACGAAGGT -ACGGAAAGGCTAAAGGACAACCGT -ACGGAAAGGCTAAAGGACTTGTGC -ACGGAAAGGCTAAAGGACCTAAGC -ACGGAAAGGCTAAAGGACACTAGC -ACGGAAAGGCTAAAGGACAGATGC -ACGGAAAGGCTAAAGGACTGAAGG -ACGGAAAGGCTAAAGGACCAATGG -ACGGAAAGGCTAAAGGACATGAGG -ACGGAAAGGCTAAAGGACAATGGG -ACGGAAAGGCTAAAGGACTCCTGA -ACGGAAAGGCTAAAGGACTAGCGA -ACGGAAAGGCTAAAGGACCACAGA -ACGGAAAGGCTAAAGGACGCAAGA -ACGGAAAGGCTAAAGGACGGTTGA -ACGGAAAGGCTAAAGGACTCCGAT -ACGGAAAGGCTAAAGGACTGGCAT -ACGGAAAGGCTAAAGGACCGAGAT -ACGGAAAGGCTAAAGGACTACCAC -ACGGAAAGGCTAAAGGACCAGAAC -ACGGAAAGGCTAAAGGACGTCTAC -ACGGAAAGGCTAAAGGACACGTAC -ACGGAAAGGCTAAAGGACAGTGAC -ACGGAAAGGCTAAAGGACCTGTAG -ACGGAAAGGCTAAAGGACCCTAAG -ACGGAAAGGCTAAAGGACGTTCAG -ACGGAAAGGCTAAAGGACGCATAG -ACGGAAAGGCTAAAGGACGACAAG -ACGGAAAGGCTAAAGGACAAGCAG -ACGGAAAGGCTAAAGGACCGTCAA -ACGGAAAGGCTAAAGGACGCTGAA -ACGGAAAGGCTAAAGGACAGTACG -ACGGAAAGGCTAAAGGACATCCGA -ACGGAAAGGCTAAAGGACATGGGA -ACGGAAAGGCTAAAGGACGTGCAA -ACGGAAAGGCTAAAGGACGAGGAA -ACGGAAAGGCTAAAGGACCAGGTA -ACGGAAAGGCTAAAGGACGACTCT -ACGGAAAGGCTAAAGGACAGTCCT -ACGGAAAGGCTAAAGGACTAAGCC -ACGGAAAGGCTAAAGGACATAGCC -ACGGAAAGGCTAAAGGACTAACCG -ACGGAAAGGCTAAAGGACATGCCA -ACGGAAAGGCTACAGAAGGGAAAC -ACGGAAAGGCTACAGAAGAACACC -ACGGAAAGGCTACAGAAGATCGAG -ACGGAAAGGCTACAGAAGCTCCTT -ACGGAAAGGCTACAGAAGCCTGTT -ACGGAAAGGCTACAGAAGCGGTTT -ACGGAAAGGCTACAGAAGGTGGTT -ACGGAAAGGCTACAGAAGGCCTTT -ACGGAAAGGCTACAGAAGGGTCTT -ACGGAAAGGCTACAGAAGACGCTT -ACGGAAAGGCTACAGAAGAGCGTT -ACGGAAAGGCTACAGAAGTTCGTC -ACGGAAAGGCTACAGAAGTCTCTC -ACGGAAAGGCTACAGAAGTGGATC -ACGGAAAGGCTACAGAAGCACTTC -ACGGAAAGGCTACAGAAGGTACTC -ACGGAAAGGCTACAGAAGGATGTC -ACGGAAAGGCTACAGAAGACAGTC -ACGGAAAGGCTACAGAAGTTGCTG -ACGGAAAGGCTACAGAAGTCCATG -ACGGAAAGGCTACAGAAGTGTGTG -ACGGAAAGGCTACAGAAGCTAGTG -ACGGAAAGGCTACAGAAGCATCTG -ACGGAAAGGCTACAGAAGGAGTTG -ACGGAAAGGCTACAGAAGAGACTG -ACGGAAAGGCTACAGAAGTCGGTA -ACGGAAAGGCTACAGAAGTGCCTA -ACGGAAAGGCTACAGAAGCCACTA -ACGGAAAGGCTACAGAAGGGAGTA -ACGGAAAGGCTACAGAAGTCGTCT -ACGGAAAGGCTACAGAAGTGCACT -ACGGAAAGGCTACAGAAGCTGACT -ACGGAAAGGCTACAGAAGCAACCT -ACGGAAAGGCTACAGAAGGCTACT -ACGGAAAGGCTACAGAAGGGATCT -ACGGAAAGGCTACAGAAGAAGGCT -ACGGAAAGGCTACAGAAGTCAACC -ACGGAAAGGCTACAGAAGTGTTCC -ACGGAAAGGCTACAGAAGATTCCC -ACGGAAAGGCTACAGAAGTTCTCG -ACGGAAAGGCTACAGAAGTAGACG -ACGGAAAGGCTACAGAAGGTAACG -ACGGAAAGGCTACAGAAGACTTCG -ACGGAAAGGCTACAGAAGTACGCA -ACGGAAAGGCTACAGAAGCTTGCA -ACGGAAAGGCTACAGAAGCGAACA -ACGGAAAGGCTACAGAAGCAGTCA -ACGGAAAGGCTACAGAAGGATCCA -ACGGAAAGGCTACAGAAGACGACA -ACGGAAAGGCTACAGAAGAGCTCA -ACGGAAAGGCTACAGAAGTCACGT -ACGGAAAGGCTACAGAAGCGTAGT -ACGGAAAGGCTACAGAAGGTCAGT -ACGGAAAGGCTACAGAAGGAAGGT -ACGGAAAGGCTACAGAAGAACCGT -ACGGAAAGGCTACAGAAGTTGTGC -ACGGAAAGGCTACAGAAGCTAAGC -ACGGAAAGGCTACAGAAGACTAGC -ACGGAAAGGCTACAGAAGAGATGC -ACGGAAAGGCTACAGAAGTGAAGG -ACGGAAAGGCTACAGAAGCAATGG -ACGGAAAGGCTACAGAAGATGAGG -ACGGAAAGGCTACAGAAGAATGGG -ACGGAAAGGCTACAGAAGTCCTGA -ACGGAAAGGCTACAGAAGTAGCGA -ACGGAAAGGCTACAGAAGCACAGA -ACGGAAAGGCTACAGAAGGCAAGA -ACGGAAAGGCTACAGAAGGGTTGA -ACGGAAAGGCTACAGAAGTCCGAT -ACGGAAAGGCTACAGAAGTGGCAT -ACGGAAAGGCTACAGAAGCGAGAT -ACGGAAAGGCTACAGAAGTACCAC -ACGGAAAGGCTACAGAAGCAGAAC -ACGGAAAGGCTACAGAAGGTCTAC -ACGGAAAGGCTACAGAAGACGTAC -ACGGAAAGGCTACAGAAGAGTGAC -ACGGAAAGGCTACAGAAGCTGTAG -ACGGAAAGGCTACAGAAGCCTAAG -ACGGAAAGGCTACAGAAGGTTCAG -ACGGAAAGGCTACAGAAGGCATAG -ACGGAAAGGCTACAGAAGGACAAG -ACGGAAAGGCTACAGAAGAAGCAG -ACGGAAAGGCTACAGAAGCGTCAA -ACGGAAAGGCTACAGAAGGCTGAA -ACGGAAAGGCTACAGAAGAGTACG -ACGGAAAGGCTACAGAAGATCCGA -ACGGAAAGGCTACAGAAGATGGGA -ACGGAAAGGCTACAGAAGGTGCAA -ACGGAAAGGCTACAGAAGGAGGAA -ACGGAAAGGCTACAGAAGCAGGTA -ACGGAAAGGCTACAGAAGGACTCT -ACGGAAAGGCTACAGAAGAGTCCT -ACGGAAAGGCTACAGAAGTAAGCC -ACGGAAAGGCTACAGAAGATAGCC -ACGGAAAGGCTACAGAAGTAACCG -ACGGAAAGGCTACAGAAGATGCCA -ACGGAAAGGCTACAACGTGGAAAC -ACGGAAAGGCTACAACGTAACACC -ACGGAAAGGCTACAACGTATCGAG -ACGGAAAGGCTACAACGTCTCCTT -ACGGAAAGGCTACAACGTCCTGTT -ACGGAAAGGCTACAACGTCGGTTT -ACGGAAAGGCTACAACGTGTGGTT -ACGGAAAGGCTACAACGTGCCTTT -ACGGAAAGGCTACAACGTGGTCTT -ACGGAAAGGCTACAACGTACGCTT -ACGGAAAGGCTACAACGTAGCGTT -ACGGAAAGGCTACAACGTTTCGTC -ACGGAAAGGCTACAACGTTCTCTC -ACGGAAAGGCTACAACGTTGGATC -ACGGAAAGGCTACAACGTCACTTC -ACGGAAAGGCTACAACGTGTACTC -ACGGAAAGGCTACAACGTGATGTC -ACGGAAAGGCTACAACGTACAGTC -ACGGAAAGGCTACAACGTTTGCTG -ACGGAAAGGCTACAACGTTCCATG -ACGGAAAGGCTACAACGTTGTGTG -ACGGAAAGGCTACAACGTCTAGTG -ACGGAAAGGCTACAACGTCATCTG -ACGGAAAGGCTACAACGTGAGTTG -ACGGAAAGGCTACAACGTAGACTG -ACGGAAAGGCTACAACGTTCGGTA -ACGGAAAGGCTACAACGTTGCCTA -ACGGAAAGGCTACAACGTCCACTA -ACGGAAAGGCTACAACGTGGAGTA -ACGGAAAGGCTACAACGTTCGTCT -ACGGAAAGGCTACAACGTTGCACT -ACGGAAAGGCTACAACGTCTGACT -ACGGAAAGGCTACAACGTCAACCT -ACGGAAAGGCTACAACGTGCTACT -ACGGAAAGGCTACAACGTGGATCT -ACGGAAAGGCTACAACGTAAGGCT -ACGGAAAGGCTACAACGTTCAACC -ACGGAAAGGCTACAACGTTGTTCC -ACGGAAAGGCTACAACGTATTCCC -ACGGAAAGGCTACAACGTTTCTCG -ACGGAAAGGCTACAACGTTAGACG -ACGGAAAGGCTACAACGTGTAACG -ACGGAAAGGCTACAACGTACTTCG -ACGGAAAGGCTACAACGTTACGCA -ACGGAAAGGCTACAACGTCTTGCA -ACGGAAAGGCTACAACGTCGAACA -ACGGAAAGGCTACAACGTCAGTCA -ACGGAAAGGCTACAACGTGATCCA -ACGGAAAGGCTACAACGTACGACA -ACGGAAAGGCTACAACGTAGCTCA -ACGGAAAGGCTACAACGTTCACGT -ACGGAAAGGCTACAACGTCGTAGT -ACGGAAAGGCTACAACGTGTCAGT -ACGGAAAGGCTACAACGTGAAGGT -ACGGAAAGGCTACAACGTAACCGT -ACGGAAAGGCTACAACGTTTGTGC -ACGGAAAGGCTACAACGTCTAAGC -ACGGAAAGGCTACAACGTACTAGC -ACGGAAAGGCTACAACGTAGATGC -ACGGAAAGGCTACAACGTTGAAGG -ACGGAAAGGCTACAACGTCAATGG -ACGGAAAGGCTACAACGTATGAGG -ACGGAAAGGCTACAACGTAATGGG -ACGGAAAGGCTACAACGTTCCTGA -ACGGAAAGGCTACAACGTTAGCGA -ACGGAAAGGCTACAACGTCACAGA -ACGGAAAGGCTACAACGTGCAAGA -ACGGAAAGGCTACAACGTGGTTGA -ACGGAAAGGCTACAACGTTCCGAT -ACGGAAAGGCTACAACGTTGGCAT -ACGGAAAGGCTACAACGTCGAGAT -ACGGAAAGGCTACAACGTTACCAC -ACGGAAAGGCTACAACGTCAGAAC -ACGGAAAGGCTACAACGTGTCTAC -ACGGAAAGGCTACAACGTACGTAC -ACGGAAAGGCTACAACGTAGTGAC -ACGGAAAGGCTACAACGTCTGTAG -ACGGAAAGGCTACAACGTCCTAAG -ACGGAAAGGCTACAACGTGTTCAG -ACGGAAAGGCTACAACGTGCATAG -ACGGAAAGGCTACAACGTGACAAG -ACGGAAAGGCTACAACGTAAGCAG -ACGGAAAGGCTACAACGTCGTCAA -ACGGAAAGGCTACAACGTGCTGAA -ACGGAAAGGCTACAACGTAGTACG -ACGGAAAGGCTACAACGTATCCGA -ACGGAAAGGCTACAACGTATGGGA -ACGGAAAGGCTACAACGTGTGCAA -ACGGAAAGGCTACAACGTGAGGAA -ACGGAAAGGCTACAACGTCAGGTA -ACGGAAAGGCTACAACGTGACTCT -ACGGAAAGGCTACAACGTAGTCCT -ACGGAAAGGCTACAACGTTAAGCC -ACGGAAAGGCTACAACGTATAGCC -ACGGAAAGGCTACAACGTTAACCG -ACGGAAAGGCTACAACGTATGCCA -ACGGAAAGGCTAGAAGCTGGAAAC -ACGGAAAGGCTAGAAGCTAACACC -ACGGAAAGGCTAGAAGCTATCGAG -ACGGAAAGGCTAGAAGCTCTCCTT -ACGGAAAGGCTAGAAGCTCCTGTT -ACGGAAAGGCTAGAAGCTCGGTTT -ACGGAAAGGCTAGAAGCTGTGGTT -ACGGAAAGGCTAGAAGCTGCCTTT -ACGGAAAGGCTAGAAGCTGGTCTT -ACGGAAAGGCTAGAAGCTACGCTT -ACGGAAAGGCTAGAAGCTAGCGTT -ACGGAAAGGCTAGAAGCTTTCGTC -ACGGAAAGGCTAGAAGCTTCTCTC -ACGGAAAGGCTAGAAGCTTGGATC -ACGGAAAGGCTAGAAGCTCACTTC -ACGGAAAGGCTAGAAGCTGTACTC -ACGGAAAGGCTAGAAGCTGATGTC -ACGGAAAGGCTAGAAGCTACAGTC -ACGGAAAGGCTAGAAGCTTTGCTG -ACGGAAAGGCTAGAAGCTTCCATG -ACGGAAAGGCTAGAAGCTTGTGTG -ACGGAAAGGCTAGAAGCTCTAGTG -ACGGAAAGGCTAGAAGCTCATCTG -ACGGAAAGGCTAGAAGCTGAGTTG -ACGGAAAGGCTAGAAGCTAGACTG -ACGGAAAGGCTAGAAGCTTCGGTA -ACGGAAAGGCTAGAAGCTTGCCTA -ACGGAAAGGCTAGAAGCTCCACTA -ACGGAAAGGCTAGAAGCTGGAGTA -ACGGAAAGGCTAGAAGCTTCGTCT -ACGGAAAGGCTAGAAGCTTGCACT -ACGGAAAGGCTAGAAGCTCTGACT -ACGGAAAGGCTAGAAGCTCAACCT -ACGGAAAGGCTAGAAGCTGCTACT -ACGGAAAGGCTAGAAGCTGGATCT -ACGGAAAGGCTAGAAGCTAAGGCT -ACGGAAAGGCTAGAAGCTTCAACC -ACGGAAAGGCTAGAAGCTTGTTCC -ACGGAAAGGCTAGAAGCTATTCCC -ACGGAAAGGCTAGAAGCTTTCTCG -ACGGAAAGGCTAGAAGCTTAGACG -ACGGAAAGGCTAGAAGCTGTAACG -ACGGAAAGGCTAGAAGCTACTTCG -ACGGAAAGGCTAGAAGCTTACGCA -ACGGAAAGGCTAGAAGCTCTTGCA -ACGGAAAGGCTAGAAGCTCGAACA -ACGGAAAGGCTAGAAGCTCAGTCA -ACGGAAAGGCTAGAAGCTGATCCA -ACGGAAAGGCTAGAAGCTACGACA -ACGGAAAGGCTAGAAGCTAGCTCA -ACGGAAAGGCTAGAAGCTTCACGT -ACGGAAAGGCTAGAAGCTCGTAGT -ACGGAAAGGCTAGAAGCTGTCAGT -ACGGAAAGGCTAGAAGCTGAAGGT -ACGGAAAGGCTAGAAGCTAACCGT -ACGGAAAGGCTAGAAGCTTTGTGC -ACGGAAAGGCTAGAAGCTCTAAGC -ACGGAAAGGCTAGAAGCTACTAGC -ACGGAAAGGCTAGAAGCTAGATGC -ACGGAAAGGCTAGAAGCTTGAAGG -ACGGAAAGGCTAGAAGCTCAATGG -ACGGAAAGGCTAGAAGCTATGAGG -ACGGAAAGGCTAGAAGCTAATGGG -ACGGAAAGGCTAGAAGCTTCCTGA -ACGGAAAGGCTAGAAGCTTAGCGA -ACGGAAAGGCTAGAAGCTCACAGA -ACGGAAAGGCTAGAAGCTGCAAGA -ACGGAAAGGCTAGAAGCTGGTTGA -ACGGAAAGGCTAGAAGCTTCCGAT -ACGGAAAGGCTAGAAGCTTGGCAT -ACGGAAAGGCTAGAAGCTCGAGAT -ACGGAAAGGCTAGAAGCTTACCAC -ACGGAAAGGCTAGAAGCTCAGAAC -ACGGAAAGGCTAGAAGCTGTCTAC -ACGGAAAGGCTAGAAGCTACGTAC -ACGGAAAGGCTAGAAGCTAGTGAC -ACGGAAAGGCTAGAAGCTCTGTAG -ACGGAAAGGCTAGAAGCTCCTAAG -ACGGAAAGGCTAGAAGCTGTTCAG -ACGGAAAGGCTAGAAGCTGCATAG -ACGGAAAGGCTAGAAGCTGACAAG -ACGGAAAGGCTAGAAGCTAAGCAG -ACGGAAAGGCTAGAAGCTCGTCAA -ACGGAAAGGCTAGAAGCTGCTGAA -ACGGAAAGGCTAGAAGCTAGTACG -ACGGAAAGGCTAGAAGCTATCCGA -ACGGAAAGGCTAGAAGCTATGGGA -ACGGAAAGGCTAGAAGCTGTGCAA -ACGGAAAGGCTAGAAGCTGAGGAA -ACGGAAAGGCTAGAAGCTCAGGTA -ACGGAAAGGCTAGAAGCTGACTCT -ACGGAAAGGCTAGAAGCTAGTCCT -ACGGAAAGGCTAGAAGCTTAAGCC -ACGGAAAGGCTAGAAGCTATAGCC -ACGGAAAGGCTAGAAGCTTAACCG -ACGGAAAGGCTAGAAGCTATGCCA -ACGGAAAGGCTAACGAGTGGAAAC -ACGGAAAGGCTAACGAGTAACACC -ACGGAAAGGCTAACGAGTATCGAG -ACGGAAAGGCTAACGAGTCTCCTT -ACGGAAAGGCTAACGAGTCCTGTT -ACGGAAAGGCTAACGAGTCGGTTT -ACGGAAAGGCTAACGAGTGTGGTT -ACGGAAAGGCTAACGAGTGCCTTT -ACGGAAAGGCTAACGAGTGGTCTT -ACGGAAAGGCTAACGAGTACGCTT -ACGGAAAGGCTAACGAGTAGCGTT -ACGGAAAGGCTAACGAGTTTCGTC -ACGGAAAGGCTAACGAGTTCTCTC -ACGGAAAGGCTAACGAGTTGGATC -ACGGAAAGGCTAACGAGTCACTTC -ACGGAAAGGCTAACGAGTGTACTC -ACGGAAAGGCTAACGAGTGATGTC -ACGGAAAGGCTAACGAGTACAGTC -ACGGAAAGGCTAACGAGTTTGCTG -ACGGAAAGGCTAACGAGTTCCATG -ACGGAAAGGCTAACGAGTTGTGTG -ACGGAAAGGCTAACGAGTCTAGTG -ACGGAAAGGCTAACGAGTCATCTG -ACGGAAAGGCTAACGAGTGAGTTG -ACGGAAAGGCTAACGAGTAGACTG -ACGGAAAGGCTAACGAGTTCGGTA -ACGGAAAGGCTAACGAGTTGCCTA -ACGGAAAGGCTAACGAGTCCACTA -ACGGAAAGGCTAACGAGTGGAGTA -ACGGAAAGGCTAACGAGTTCGTCT -ACGGAAAGGCTAACGAGTTGCACT -ACGGAAAGGCTAACGAGTCTGACT -ACGGAAAGGCTAACGAGTCAACCT -ACGGAAAGGCTAACGAGTGCTACT -ACGGAAAGGCTAACGAGTGGATCT -ACGGAAAGGCTAACGAGTAAGGCT -ACGGAAAGGCTAACGAGTTCAACC -ACGGAAAGGCTAACGAGTTGTTCC -ACGGAAAGGCTAACGAGTATTCCC -ACGGAAAGGCTAACGAGTTTCTCG -ACGGAAAGGCTAACGAGTTAGACG -ACGGAAAGGCTAACGAGTGTAACG -ACGGAAAGGCTAACGAGTACTTCG -ACGGAAAGGCTAACGAGTTACGCA -ACGGAAAGGCTAACGAGTCTTGCA -ACGGAAAGGCTAACGAGTCGAACA -ACGGAAAGGCTAACGAGTCAGTCA -ACGGAAAGGCTAACGAGTGATCCA -ACGGAAAGGCTAACGAGTACGACA -ACGGAAAGGCTAACGAGTAGCTCA -ACGGAAAGGCTAACGAGTTCACGT -ACGGAAAGGCTAACGAGTCGTAGT -ACGGAAAGGCTAACGAGTGTCAGT -ACGGAAAGGCTAACGAGTGAAGGT -ACGGAAAGGCTAACGAGTAACCGT -ACGGAAAGGCTAACGAGTTTGTGC -ACGGAAAGGCTAACGAGTCTAAGC -ACGGAAAGGCTAACGAGTACTAGC -ACGGAAAGGCTAACGAGTAGATGC -ACGGAAAGGCTAACGAGTTGAAGG -ACGGAAAGGCTAACGAGTCAATGG -ACGGAAAGGCTAACGAGTATGAGG -ACGGAAAGGCTAACGAGTAATGGG -ACGGAAAGGCTAACGAGTTCCTGA -ACGGAAAGGCTAACGAGTTAGCGA -ACGGAAAGGCTAACGAGTCACAGA -ACGGAAAGGCTAACGAGTGCAAGA -ACGGAAAGGCTAACGAGTGGTTGA -ACGGAAAGGCTAACGAGTTCCGAT -ACGGAAAGGCTAACGAGTTGGCAT -ACGGAAAGGCTAACGAGTCGAGAT -ACGGAAAGGCTAACGAGTTACCAC -ACGGAAAGGCTAACGAGTCAGAAC -ACGGAAAGGCTAACGAGTGTCTAC -ACGGAAAGGCTAACGAGTACGTAC -ACGGAAAGGCTAACGAGTAGTGAC -ACGGAAAGGCTAACGAGTCTGTAG -ACGGAAAGGCTAACGAGTCCTAAG -ACGGAAAGGCTAACGAGTGTTCAG -ACGGAAAGGCTAACGAGTGCATAG -ACGGAAAGGCTAACGAGTGACAAG -ACGGAAAGGCTAACGAGTAAGCAG -ACGGAAAGGCTAACGAGTCGTCAA -ACGGAAAGGCTAACGAGTGCTGAA -ACGGAAAGGCTAACGAGTAGTACG -ACGGAAAGGCTAACGAGTATCCGA -ACGGAAAGGCTAACGAGTATGGGA -ACGGAAAGGCTAACGAGTGTGCAA -ACGGAAAGGCTAACGAGTGAGGAA -ACGGAAAGGCTAACGAGTCAGGTA -ACGGAAAGGCTAACGAGTGACTCT -ACGGAAAGGCTAACGAGTAGTCCT -ACGGAAAGGCTAACGAGTTAAGCC -ACGGAAAGGCTAACGAGTATAGCC -ACGGAAAGGCTAACGAGTTAACCG -ACGGAAAGGCTAACGAGTATGCCA -ACGGAAAGGCTACGAATCGGAAAC -ACGGAAAGGCTACGAATCAACACC -ACGGAAAGGCTACGAATCATCGAG -ACGGAAAGGCTACGAATCCTCCTT -ACGGAAAGGCTACGAATCCCTGTT -ACGGAAAGGCTACGAATCCGGTTT -ACGGAAAGGCTACGAATCGTGGTT -ACGGAAAGGCTACGAATCGCCTTT -ACGGAAAGGCTACGAATCGGTCTT -ACGGAAAGGCTACGAATCACGCTT -ACGGAAAGGCTACGAATCAGCGTT -ACGGAAAGGCTACGAATCTTCGTC -ACGGAAAGGCTACGAATCTCTCTC -ACGGAAAGGCTACGAATCTGGATC -ACGGAAAGGCTACGAATCCACTTC -ACGGAAAGGCTACGAATCGTACTC -ACGGAAAGGCTACGAATCGATGTC -ACGGAAAGGCTACGAATCACAGTC -ACGGAAAGGCTACGAATCTTGCTG -ACGGAAAGGCTACGAATCTCCATG -ACGGAAAGGCTACGAATCTGTGTG -ACGGAAAGGCTACGAATCCTAGTG -ACGGAAAGGCTACGAATCCATCTG -ACGGAAAGGCTACGAATCGAGTTG -ACGGAAAGGCTACGAATCAGACTG -ACGGAAAGGCTACGAATCTCGGTA -ACGGAAAGGCTACGAATCTGCCTA -ACGGAAAGGCTACGAATCCCACTA -ACGGAAAGGCTACGAATCGGAGTA -ACGGAAAGGCTACGAATCTCGTCT -ACGGAAAGGCTACGAATCTGCACT -ACGGAAAGGCTACGAATCCTGACT -ACGGAAAGGCTACGAATCCAACCT -ACGGAAAGGCTACGAATCGCTACT -ACGGAAAGGCTACGAATCGGATCT -ACGGAAAGGCTACGAATCAAGGCT -ACGGAAAGGCTACGAATCTCAACC -ACGGAAAGGCTACGAATCTGTTCC -ACGGAAAGGCTACGAATCATTCCC -ACGGAAAGGCTACGAATCTTCTCG -ACGGAAAGGCTACGAATCTAGACG -ACGGAAAGGCTACGAATCGTAACG -ACGGAAAGGCTACGAATCACTTCG -ACGGAAAGGCTACGAATCTACGCA -ACGGAAAGGCTACGAATCCTTGCA -ACGGAAAGGCTACGAATCCGAACA -ACGGAAAGGCTACGAATCCAGTCA -ACGGAAAGGCTACGAATCGATCCA -ACGGAAAGGCTACGAATCACGACA -ACGGAAAGGCTACGAATCAGCTCA -ACGGAAAGGCTACGAATCTCACGT -ACGGAAAGGCTACGAATCCGTAGT -ACGGAAAGGCTACGAATCGTCAGT -ACGGAAAGGCTACGAATCGAAGGT -ACGGAAAGGCTACGAATCAACCGT -ACGGAAAGGCTACGAATCTTGTGC -ACGGAAAGGCTACGAATCCTAAGC -ACGGAAAGGCTACGAATCACTAGC -ACGGAAAGGCTACGAATCAGATGC -ACGGAAAGGCTACGAATCTGAAGG -ACGGAAAGGCTACGAATCCAATGG -ACGGAAAGGCTACGAATCATGAGG -ACGGAAAGGCTACGAATCAATGGG -ACGGAAAGGCTACGAATCTCCTGA -ACGGAAAGGCTACGAATCTAGCGA -ACGGAAAGGCTACGAATCCACAGA -ACGGAAAGGCTACGAATCGCAAGA -ACGGAAAGGCTACGAATCGGTTGA -ACGGAAAGGCTACGAATCTCCGAT -ACGGAAAGGCTACGAATCTGGCAT -ACGGAAAGGCTACGAATCCGAGAT -ACGGAAAGGCTACGAATCTACCAC -ACGGAAAGGCTACGAATCCAGAAC -ACGGAAAGGCTACGAATCGTCTAC -ACGGAAAGGCTACGAATCACGTAC -ACGGAAAGGCTACGAATCAGTGAC -ACGGAAAGGCTACGAATCCTGTAG -ACGGAAAGGCTACGAATCCCTAAG -ACGGAAAGGCTACGAATCGTTCAG -ACGGAAAGGCTACGAATCGCATAG -ACGGAAAGGCTACGAATCGACAAG -ACGGAAAGGCTACGAATCAAGCAG -ACGGAAAGGCTACGAATCCGTCAA -ACGGAAAGGCTACGAATCGCTGAA -ACGGAAAGGCTACGAATCAGTACG -ACGGAAAGGCTACGAATCATCCGA -ACGGAAAGGCTACGAATCATGGGA -ACGGAAAGGCTACGAATCGTGCAA -ACGGAAAGGCTACGAATCGAGGAA -ACGGAAAGGCTACGAATCCAGGTA -ACGGAAAGGCTACGAATCGACTCT -ACGGAAAGGCTACGAATCAGTCCT -ACGGAAAGGCTACGAATCTAAGCC -ACGGAAAGGCTACGAATCATAGCC -ACGGAAAGGCTACGAATCTAACCG -ACGGAAAGGCTACGAATCATGCCA -ACGGAAAGGCTAGGAATGGGAAAC -ACGGAAAGGCTAGGAATGAACACC -ACGGAAAGGCTAGGAATGATCGAG -ACGGAAAGGCTAGGAATGCTCCTT -ACGGAAAGGCTAGGAATGCCTGTT -ACGGAAAGGCTAGGAATGCGGTTT -ACGGAAAGGCTAGGAATGGTGGTT -ACGGAAAGGCTAGGAATGGCCTTT -ACGGAAAGGCTAGGAATGGGTCTT -ACGGAAAGGCTAGGAATGACGCTT -ACGGAAAGGCTAGGAATGAGCGTT -ACGGAAAGGCTAGGAATGTTCGTC -ACGGAAAGGCTAGGAATGTCTCTC -ACGGAAAGGCTAGGAATGTGGATC -ACGGAAAGGCTAGGAATGCACTTC -ACGGAAAGGCTAGGAATGGTACTC -ACGGAAAGGCTAGGAATGGATGTC -ACGGAAAGGCTAGGAATGACAGTC -ACGGAAAGGCTAGGAATGTTGCTG -ACGGAAAGGCTAGGAATGTCCATG -ACGGAAAGGCTAGGAATGTGTGTG -ACGGAAAGGCTAGGAATGCTAGTG -ACGGAAAGGCTAGGAATGCATCTG -ACGGAAAGGCTAGGAATGGAGTTG -ACGGAAAGGCTAGGAATGAGACTG -ACGGAAAGGCTAGGAATGTCGGTA -ACGGAAAGGCTAGGAATGTGCCTA -ACGGAAAGGCTAGGAATGCCACTA -ACGGAAAGGCTAGGAATGGGAGTA -ACGGAAAGGCTAGGAATGTCGTCT -ACGGAAAGGCTAGGAATGTGCACT -ACGGAAAGGCTAGGAATGCTGACT -ACGGAAAGGCTAGGAATGCAACCT -ACGGAAAGGCTAGGAATGGCTACT -ACGGAAAGGCTAGGAATGGGATCT -ACGGAAAGGCTAGGAATGAAGGCT -ACGGAAAGGCTAGGAATGTCAACC -ACGGAAAGGCTAGGAATGTGTTCC -ACGGAAAGGCTAGGAATGATTCCC -ACGGAAAGGCTAGGAATGTTCTCG -ACGGAAAGGCTAGGAATGTAGACG -ACGGAAAGGCTAGGAATGGTAACG -ACGGAAAGGCTAGGAATGACTTCG -ACGGAAAGGCTAGGAATGTACGCA -ACGGAAAGGCTAGGAATGCTTGCA -ACGGAAAGGCTAGGAATGCGAACA -ACGGAAAGGCTAGGAATGCAGTCA -ACGGAAAGGCTAGGAATGGATCCA -ACGGAAAGGCTAGGAATGACGACA -ACGGAAAGGCTAGGAATGAGCTCA -ACGGAAAGGCTAGGAATGTCACGT -ACGGAAAGGCTAGGAATGCGTAGT -ACGGAAAGGCTAGGAATGGTCAGT -ACGGAAAGGCTAGGAATGGAAGGT -ACGGAAAGGCTAGGAATGAACCGT -ACGGAAAGGCTAGGAATGTTGTGC -ACGGAAAGGCTAGGAATGCTAAGC -ACGGAAAGGCTAGGAATGACTAGC -ACGGAAAGGCTAGGAATGAGATGC -ACGGAAAGGCTAGGAATGTGAAGG -ACGGAAAGGCTAGGAATGCAATGG -ACGGAAAGGCTAGGAATGATGAGG -ACGGAAAGGCTAGGAATGAATGGG -ACGGAAAGGCTAGGAATGTCCTGA -ACGGAAAGGCTAGGAATGTAGCGA -ACGGAAAGGCTAGGAATGCACAGA -ACGGAAAGGCTAGGAATGGCAAGA -ACGGAAAGGCTAGGAATGGGTTGA -ACGGAAAGGCTAGGAATGTCCGAT -ACGGAAAGGCTAGGAATGTGGCAT -ACGGAAAGGCTAGGAATGCGAGAT -ACGGAAAGGCTAGGAATGTACCAC -ACGGAAAGGCTAGGAATGCAGAAC -ACGGAAAGGCTAGGAATGGTCTAC -ACGGAAAGGCTAGGAATGACGTAC -ACGGAAAGGCTAGGAATGAGTGAC -ACGGAAAGGCTAGGAATGCTGTAG -ACGGAAAGGCTAGGAATGCCTAAG -ACGGAAAGGCTAGGAATGGTTCAG -ACGGAAAGGCTAGGAATGGCATAG -ACGGAAAGGCTAGGAATGGACAAG -ACGGAAAGGCTAGGAATGAAGCAG -ACGGAAAGGCTAGGAATGCGTCAA -ACGGAAAGGCTAGGAATGGCTGAA -ACGGAAAGGCTAGGAATGAGTACG -ACGGAAAGGCTAGGAATGATCCGA -ACGGAAAGGCTAGGAATGATGGGA -ACGGAAAGGCTAGGAATGGTGCAA -ACGGAAAGGCTAGGAATGGAGGAA -ACGGAAAGGCTAGGAATGCAGGTA -ACGGAAAGGCTAGGAATGGACTCT -ACGGAAAGGCTAGGAATGAGTCCT -ACGGAAAGGCTAGGAATGTAAGCC -ACGGAAAGGCTAGGAATGATAGCC -ACGGAAAGGCTAGGAATGTAACCG -ACGGAAAGGCTAGGAATGATGCCA -ACGGAAAGGCTACAAGTGGGAAAC -ACGGAAAGGCTACAAGTGAACACC -ACGGAAAGGCTACAAGTGATCGAG -ACGGAAAGGCTACAAGTGCTCCTT -ACGGAAAGGCTACAAGTGCCTGTT -ACGGAAAGGCTACAAGTGCGGTTT -ACGGAAAGGCTACAAGTGGTGGTT -ACGGAAAGGCTACAAGTGGCCTTT -ACGGAAAGGCTACAAGTGGGTCTT -ACGGAAAGGCTACAAGTGACGCTT -ACGGAAAGGCTACAAGTGAGCGTT -ACGGAAAGGCTACAAGTGTTCGTC -ACGGAAAGGCTACAAGTGTCTCTC -ACGGAAAGGCTACAAGTGTGGATC -ACGGAAAGGCTACAAGTGCACTTC -ACGGAAAGGCTACAAGTGGTACTC -ACGGAAAGGCTACAAGTGGATGTC -ACGGAAAGGCTACAAGTGACAGTC -ACGGAAAGGCTACAAGTGTTGCTG -ACGGAAAGGCTACAAGTGTCCATG -ACGGAAAGGCTACAAGTGTGTGTG -ACGGAAAGGCTACAAGTGCTAGTG -ACGGAAAGGCTACAAGTGCATCTG -ACGGAAAGGCTACAAGTGGAGTTG -ACGGAAAGGCTACAAGTGAGACTG -ACGGAAAGGCTACAAGTGTCGGTA -ACGGAAAGGCTACAAGTGTGCCTA -ACGGAAAGGCTACAAGTGCCACTA -ACGGAAAGGCTACAAGTGGGAGTA -ACGGAAAGGCTACAAGTGTCGTCT -ACGGAAAGGCTACAAGTGTGCACT -ACGGAAAGGCTACAAGTGCTGACT -ACGGAAAGGCTACAAGTGCAACCT -ACGGAAAGGCTACAAGTGGCTACT -ACGGAAAGGCTACAAGTGGGATCT -ACGGAAAGGCTACAAGTGAAGGCT -ACGGAAAGGCTACAAGTGTCAACC -ACGGAAAGGCTACAAGTGTGTTCC -ACGGAAAGGCTACAAGTGATTCCC -ACGGAAAGGCTACAAGTGTTCTCG -ACGGAAAGGCTACAAGTGTAGACG -ACGGAAAGGCTACAAGTGGTAACG -ACGGAAAGGCTACAAGTGACTTCG -ACGGAAAGGCTACAAGTGTACGCA -ACGGAAAGGCTACAAGTGCTTGCA -ACGGAAAGGCTACAAGTGCGAACA -ACGGAAAGGCTACAAGTGCAGTCA -ACGGAAAGGCTACAAGTGGATCCA -ACGGAAAGGCTACAAGTGACGACA -ACGGAAAGGCTACAAGTGAGCTCA -ACGGAAAGGCTACAAGTGTCACGT -ACGGAAAGGCTACAAGTGCGTAGT -ACGGAAAGGCTACAAGTGGTCAGT -ACGGAAAGGCTACAAGTGGAAGGT -ACGGAAAGGCTACAAGTGAACCGT -ACGGAAAGGCTACAAGTGTTGTGC -ACGGAAAGGCTACAAGTGCTAAGC -ACGGAAAGGCTACAAGTGACTAGC -ACGGAAAGGCTACAAGTGAGATGC -ACGGAAAGGCTACAAGTGTGAAGG -ACGGAAAGGCTACAAGTGCAATGG -ACGGAAAGGCTACAAGTGATGAGG -ACGGAAAGGCTACAAGTGAATGGG -ACGGAAAGGCTACAAGTGTCCTGA -ACGGAAAGGCTACAAGTGTAGCGA -ACGGAAAGGCTACAAGTGCACAGA -ACGGAAAGGCTACAAGTGGCAAGA -ACGGAAAGGCTACAAGTGGGTTGA -ACGGAAAGGCTACAAGTGTCCGAT -ACGGAAAGGCTACAAGTGTGGCAT -ACGGAAAGGCTACAAGTGCGAGAT -ACGGAAAGGCTACAAGTGTACCAC -ACGGAAAGGCTACAAGTGCAGAAC -ACGGAAAGGCTACAAGTGGTCTAC -ACGGAAAGGCTACAAGTGACGTAC -ACGGAAAGGCTACAAGTGAGTGAC -ACGGAAAGGCTACAAGTGCTGTAG -ACGGAAAGGCTACAAGTGCCTAAG -ACGGAAAGGCTACAAGTGGTTCAG -ACGGAAAGGCTACAAGTGGCATAG -ACGGAAAGGCTACAAGTGGACAAG -ACGGAAAGGCTACAAGTGAAGCAG -ACGGAAAGGCTACAAGTGCGTCAA -ACGGAAAGGCTACAAGTGGCTGAA -ACGGAAAGGCTACAAGTGAGTACG -ACGGAAAGGCTACAAGTGATCCGA -ACGGAAAGGCTACAAGTGATGGGA -ACGGAAAGGCTACAAGTGGTGCAA -ACGGAAAGGCTACAAGTGGAGGAA -ACGGAAAGGCTACAAGTGCAGGTA -ACGGAAAGGCTACAAGTGGACTCT -ACGGAAAGGCTACAAGTGAGTCCT -ACGGAAAGGCTACAAGTGTAAGCC -ACGGAAAGGCTACAAGTGATAGCC -ACGGAAAGGCTACAAGTGTAACCG -ACGGAAAGGCTACAAGTGATGCCA -ACGGAAAGGCTAGAAGAGGGAAAC -ACGGAAAGGCTAGAAGAGAACACC -ACGGAAAGGCTAGAAGAGATCGAG -ACGGAAAGGCTAGAAGAGCTCCTT -ACGGAAAGGCTAGAAGAGCCTGTT -ACGGAAAGGCTAGAAGAGCGGTTT -ACGGAAAGGCTAGAAGAGGTGGTT -ACGGAAAGGCTAGAAGAGGCCTTT -ACGGAAAGGCTAGAAGAGGGTCTT -ACGGAAAGGCTAGAAGAGACGCTT -ACGGAAAGGCTAGAAGAGAGCGTT -ACGGAAAGGCTAGAAGAGTTCGTC -ACGGAAAGGCTAGAAGAGTCTCTC -ACGGAAAGGCTAGAAGAGTGGATC -ACGGAAAGGCTAGAAGAGCACTTC -ACGGAAAGGCTAGAAGAGGTACTC -ACGGAAAGGCTAGAAGAGGATGTC -ACGGAAAGGCTAGAAGAGACAGTC -ACGGAAAGGCTAGAAGAGTTGCTG -ACGGAAAGGCTAGAAGAGTCCATG -ACGGAAAGGCTAGAAGAGTGTGTG -ACGGAAAGGCTAGAAGAGCTAGTG -ACGGAAAGGCTAGAAGAGCATCTG -ACGGAAAGGCTAGAAGAGGAGTTG -ACGGAAAGGCTAGAAGAGAGACTG -ACGGAAAGGCTAGAAGAGTCGGTA -ACGGAAAGGCTAGAAGAGTGCCTA -ACGGAAAGGCTAGAAGAGCCACTA -ACGGAAAGGCTAGAAGAGGGAGTA -ACGGAAAGGCTAGAAGAGTCGTCT -ACGGAAAGGCTAGAAGAGTGCACT -ACGGAAAGGCTAGAAGAGCTGACT -ACGGAAAGGCTAGAAGAGCAACCT -ACGGAAAGGCTAGAAGAGGCTACT -ACGGAAAGGCTAGAAGAGGGATCT -ACGGAAAGGCTAGAAGAGAAGGCT -ACGGAAAGGCTAGAAGAGTCAACC -ACGGAAAGGCTAGAAGAGTGTTCC -ACGGAAAGGCTAGAAGAGATTCCC -ACGGAAAGGCTAGAAGAGTTCTCG -ACGGAAAGGCTAGAAGAGTAGACG -ACGGAAAGGCTAGAAGAGGTAACG -ACGGAAAGGCTAGAAGAGACTTCG -ACGGAAAGGCTAGAAGAGTACGCA -ACGGAAAGGCTAGAAGAGCTTGCA -ACGGAAAGGCTAGAAGAGCGAACA -ACGGAAAGGCTAGAAGAGCAGTCA -ACGGAAAGGCTAGAAGAGGATCCA -ACGGAAAGGCTAGAAGAGACGACA -ACGGAAAGGCTAGAAGAGAGCTCA -ACGGAAAGGCTAGAAGAGTCACGT -ACGGAAAGGCTAGAAGAGCGTAGT -ACGGAAAGGCTAGAAGAGGTCAGT -ACGGAAAGGCTAGAAGAGGAAGGT -ACGGAAAGGCTAGAAGAGAACCGT -ACGGAAAGGCTAGAAGAGTTGTGC -ACGGAAAGGCTAGAAGAGCTAAGC -ACGGAAAGGCTAGAAGAGACTAGC -ACGGAAAGGCTAGAAGAGAGATGC -ACGGAAAGGCTAGAAGAGTGAAGG -ACGGAAAGGCTAGAAGAGCAATGG -ACGGAAAGGCTAGAAGAGATGAGG -ACGGAAAGGCTAGAAGAGAATGGG -ACGGAAAGGCTAGAAGAGTCCTGA -ACGGAAAGGCTAGAAGAGTAGCGA -ACGGAAAGGCTAGAAGAGCACAGA -ACGGAAAGGCTAGAAGAGGCAAGA -ACGGAAAGGCTAGAAGAGGGTTGA -ACGGAAAGGCTAGAAGAGTCCGAT -ACGGAAAGGCTAGAAGAGTGGCAT -ACGGAAAGGCTAGAAGAGCGAGAT -ACGGAAAGGCTAGAAGAGTACCAC -ACGGAAAGGCTAGAAGAGCAGAAC -ACGGAAAGGCTAGAAGAGGTCTAC -ACGGAAAGGCTAGAAGAGACGTAC -ACGGAAAGGCTAGAAGAGAGTGAC -ACGGAAAGGCTAGAAGAGCTGTAG -ACGGAAAGGCTAGAAGAGCCTAAG -ACGGAAAGGCTAGAAGAGGTTCAG -ACGGAAAGGCTAGAAGAGGCATAG -ACGGAAAGGCTAGAAGAGGACAAG -ACGGAAAGGCTAGAAGAGAAGCAG -ACGGAAAGGCTAGAAGAGCGTCAA -ACGGAAAGGCTAGAAGAGGCTGAA -ACGGAAAGGCTAGAAGAGAGTACG -ACGGAAAGGCTAGAAGAGATCCGA -ACGGAAAGGCTAGAAGAGATGGGA -ACGGAAAGGCTAGAAGAGGTGCAA -ACGGAAAGGCTAGAAGAGGAGGAA -ACGGAAAGGCTAGAAGAGCAGGTA -ACGGAAAGGCTAGAAGAGGACTCT -ACGGAAAGGCTAGAAGAGAGTCCT -ACGGAAAGGCTAGAAGAGTAAGCC -ACGGAAAGGCTAGAAGAGATAGCC -ACGGAAAGGCTAGAAGAGTAACCG -ACGGAAAGGCTAGAAGAGATGCCA -ACGGAAAGGCTAGTACAGGGAAAC -ACGGAAAGGCTAGTACAGAACACC -ACGGAAAGGCTAGTACAGATCGAG -ACGGAAAGGCTAGTACAGCTCCTT -ACGGAAAGGCTAGTACAGCCTGTT -ACGGAAAGGCTAGTACAGCGGTTT -ACGGAAAGGCTAGTACAGGTGGTT -ACGGAAAGGCTAGTACAGGCCTTT -ACGGAAAGGCTAGTACAGGGTCTT -ACGGAAAGGCTAGTACAGACGCTT -ACGGAAAGGCTAGTACAGAGCGTT -ACGGAAAGGCTAGTACAGTTCGTC -ACGGAAAGGCTAGTACAGTCTCTC -ACGGAAAGGCTAGTACAGTGGATC -ACGGAAAGGCTAGTACAGCACTTC -ACGGAAAGGCTAGTACAGGTACTC -ACGGAAAGGCTAGTACAGGATGTC -ACGGAAAGGCTAGTACAGACAGTC -ACGGAAAGGCTAGTACAGTTGCTG -ACGGAAAGGCTAGTACAGTCCATG -ACGGAAAGGCTAGTACAGTGTGTG -ACGGAAAGGCTAGTACAGCTAGTG -ACGGAAAGGCTAGTACAGCATCTG -ACGGAAAGGCTAGTACAGGAGTTG -ACGGAAAGGCTAGTACAGAGACTG -ACGGAAAGGCTAGTACAGTCGGTA -ACGGAAAGGCTAGTACAGTGCCTA -ACGGAAAGGCTAGTACAGCCACTA -ACGGAAAGGCTAGTACAGGGAGTA -ACGGAAAGGCTAGTACAGTCGTCT -ACGGAAAGGCTAGTACAGTGCACT -ACGGAAAGGCTAGTACAGCTGACT -ACGGAAAGGCTAGTACAGCAACCT -ACGGAAAGGCTAGTACAGGCTACT -ACGGAAAGGCTAGTACAGGGATCT -ACGGAAAGGCTAGTACAGAAGGCT -ACGGAAAGGCTAGTACAGTCAACC -ACGGAAAGGCTAGTACAGTGTTCC -ACGGAAAGGCTAGTACAGATTCCC -ACGGAAAGGCTAGTACAGTTCTCG -ACGGAAAGGCTAGTACAGTAGACG -ACGGAAAGGCTAGTACAGGTAACG -ACGGAAAGGCTAGTACAGACTTCG -ACGGAAAGGCTAGTACAGTACGCA -ACGGAAAGGCTAGTACAGCTTGCA -ACGGAAAGGCTAGTACAGCGAACA -ACGGAAAGGCTAGTACAGCAGTCA -ACGGAAAGGCTAGTACAGGATCCA -ACGGAAAGGCTAGTACAGACGACA -ACGGAAAGGCTAGTACAGAGCTCA -ACGGAAAGGCTAGTACAGTCACGT -ACGGAAAGGCTAGTACAGCGTAGT -ACGGAAAGGCTAGTACAGGTCAGT -ACGGAAAGGCTAGTACAGGAAGGT -ACGGAAAGGCTAGTACAGAACCGT -ACGGAAAGGCTAGTACAGTTGTGC -ACGGAAAGGCTAGTACAGCTAAGC -ACGGAAAGGCTAGTACAGACTAGC -ACGGAAAGGCTAGTACAGAGATGC -ACGGAAAGGCTAGTACAGTGAAGG -ACGGAAAGGCTAGTACAGCAATGG -ACGGAAAGGCTAGTACAGATGAGG -ACGGAAAGGCTAGTACAGAATGGG -ACGGAAAGGCTAGTACAGTCCTGA -ACGGAAAGGCTAGTACAGTAGCGA -ACGGAAAGGCTAGTACAGCACAGA -ACGGAAAGGCTAGTACAGGCAAGA -ACGGAAAGGCTAGTACAGGGTTGA -ACGGAAAGGCTAGTACAGTCCGAT -ACGGAAAGGCTAGTACAGTGGCAT -ACGGAAAGGCTAGTACAGCGAGAT -ACGGAAAGGCTAGTACAGTACCAC -ACGGAAAGGCTAGTACAGCAGAAC -ACGGAAAGGCTAGTACAGGTCTAC -ACGGAAAGGCTAGTACAGACGTAC -ACGGAAAGGCTAGTACAGAGTGAC -ACGGAAAGGCTAGTACAGCTGTAG -ACGGAAAGGCTAGTACAGCCTAAG -ACGGAAAGGCTAGTACAGGTTCAG -ACGGAAAGGCTAGTACAGGCATAG -ACGGAAAGGCTAGTACAGGACAAG -ACGGAAAGGCTAGTACAGAAGCAG -ACGGAAAGGCTAGTACAGCGTCAA -ACGGAAAGGCTAGTACAGGCTGAA -ACGGAAAGGCTAGTACAGAGTACG -ACGGAAAGGCTAGTACAGATCCGA -ACGGAAAGGCTAGTACAGATGGGA -ACGGAAAGGCTAGTACAGGTGCAA -ACGGAAAGGCTAGTACAGGAGGAA -ACGGAAAGGCTAGTACAGCAGGTA -ACGGAAAGGCTAGTACAGGACTCT -ACGGAAAGGCTAGTACAGAGTCCT -ACGGAAAGGCTAGTACAGTAAGCC -ACGGAAAGGCTAGTACAGATAGCC -ACGGAAAGGCTAGTACAGTAACCG -ACGGAAAGGCTAGTACAGATGCCA -ACGGAAAGGCTATCTGACGGAAAC -ACGGAAAGGCTATCTGACAACACC -ACGGAAAGGCTATCTGACATCGAG -ACGGAAAGGCTATCTGACCTCCTT -ACGGAAAGGCTATCTGACCCTGTT -ACGGAAAGGCTATCTGACCGGTTT -ACGGAAAGGCTATCTGACGTGGTT -ACGGAAAGGCTATCTGACGCCTTT -ACGGAAAGGCTATCTGACGGTCTT -ACGGAAAGGCTATCTGACACGCTT -ACGGAAAGGCTATCTGACAGCGTT -ACGGAAAGGCTATCTGACTTCGTC -ACGGAAAGGCTATCTGACTCTCTC -ACGGAAAGGCTATCTGACTGGATC -ACGGAAAGGCTATCTGACCACTTC -ACGGAAAGGCTATCTGACGTACTC -ACGGAAAGGCTATCTGACGATGTC -ACGGAAAGGCTATCTGACACAGTC -ACGGAAAGGCTATCTGACTTGCTG -ACGGAAAGGCTATCTGACTCCATG -ACGGAAAGGCTATCTGACTGTGTG -ACGGAAAGGCTATCTGACCTAGTG -ACGGAAAGGCTATCTGACCATCTG -ACGGAAAGGCTATCTGACGAGTTG -ACGGAAAGGCTATCTGACAGACTG -ACGGAAAGGCTATCTGACTCGGTA -ACGGAAAGGCTATCTGACTGCCTA -ACGGAAAGGCTATCTGACCCACTA -ACGGAAAGGCTATCTGACGGAGTA -ACGGAAAGGCTATCTGACTCGTCT -ACGGAAAGGCTATCTGACTGCACT -ACGGAAAGGCTATCTGACCTGACT -ACGGAAAGGCTATCTGACCAACCT -ACGGAAAGGCTATCTGACGCTACT -ACGGAAAGGCTATCTGACGGATCT -ACGGAAAGGCTATCTGACAAGGCT -ACGGAAAGGCTATCTGACTCAACC -ACGGAAAGGCTATCTGACTGTTCC -ACGGAAAGGCTATCTGACATTCCC -ACGGAAAGGCTATCTGACTTCTCG -ACGGAAAGGCTATCTGACTAGACG -ACGGAAAGGCTATCTGACGTAACG -ACGGAAAGGCTATCTGACACTTCG -ACGGAAAGGCTATCTGACTACGCA -ACGGAAAGGCTATCTGACCTTGCA -ACGGAAAGGCTATCTGACCGAACA -ACGGAAAGGCTATCTGACCAGTCA -ACGGAAAGGCTATCTGACGATCCA -ACGGAAAGGCTATCTGACACGACA -ACGGAAAGGCTATCTGACAGCTCA -ACGGAAAGGCTATCTGACTCACGT -ACGGAAAGGCTATCTGACCGTAGT -ACGGAAAGGCTATCTGACGTCAGT -ACGGAAAGGCTATCTGACGAAGGT -ACGGAAAGGCTATCTGACAACCGT -ACGGAAAGGCTATCTGACTTGTGC -ACGGAAAGGCTATCTGACCTAAGC -ACGGAAAGGCTATCTGACACTAGC -ACGGAAAGGCTATCTGACAGATGC -ACGGAAAGGCTATCTGACTGAAGG -ACGGAAAGGCTATCTGACCAATGG -ACGGAAAGGCTATCTGACATGAGG -ACGGAAAGGCTATCTGACAATGGG -ACGGAAAGGCTATCTGACTCCTGA -ACGGAAAGGCTATCTGACTAGCGA -ACGGAAAGGCTATCTGACCACAGA -ACGGAAAGGCTATCTGACGCAAGA -ACGGAAAGGCTATCTGACGGTTGA -ACGGAAAGGCTATCTGACTCCGAT -ACGGAAAGGCTATCTGACTGGCAT -ACGGAAAGGCTATCTGACCGAGAT -ACGGAAAGGCTATCTGACTACCAC -ACGGAAAGGCTATCTGACCAGAAC -ACGGAAAGGCTATCTGACGTCTAC -ACGGAAAGGCTATCTGACACGTAC -ACGGAAAGGCTATCTGACAGTGAC -ACGGAAAGGCTATCTGACCTGTAG -ACGGAAAGGCTATCTGACCCTAAG -ACGGAAAGGCTATCTGACGTTCAG -ACGGAAAGGCTATCTGACGCATAG -ACGGAAAGGCTATCTGACGACAAG -ACGGAAAGGCTATCTGACAAGCAG -ACGGAAAGGCTATCTGACCGTCAA -ACGGAAAGGCTATCTGACGCTGAA -ACGGAAAGGCTATCTGACAGTACG -ACGGAAAGGCTATCTGACATCCGA -ACGGAAAGGCTATCTGACATGGGA -ACGGAAAGGCTATCTGACGTGCAA -ACGGAAAGGCTATCTGACGAGGAA -ACGGAAAGGCTATCTGACCAGGTA -ACGGAAAGGCTATCTGACGACTCT -ACGGAAAGGCTATCTGACAGTCCT -ACGGAAAGGCTATCTGACTAAGCC -ACGGAAAGGCTATCTGACATAGCC -ACGGAAAGGCTATCTGACTAACCG -ACGGAAAGGCTATCTGACATGCCA -ACGGAAAGGCTACCTAGTGGAAAC -ACGGAAAGGCTACCTAGTAACACC -ACGGAAAGGCTACCTAGTATCGAG -ACGGAAAGGCTACCTAGTCTCCTT -ACGGAAAGGCTACCTAGTCCTGTT -ACGGAAAGGCTACCTAGTCGGTTT -ACGGAAAGGCTACCTAGTGTGGTT -ACGGAAAGGCTACCTAGTGCCTTT -ACGGAAAGGCTACCTAGTGGTCTT -ACGGAAAGGCTACCTAGTACGCTT -ACGGAAAGGCTACCTAGTAGCGTT -ACGGAAAGGCTACCTAGTTTCGTC -ACGGAAAGGCTACCTAGTTCTCTC -ACGGAAAGGCTACCTAGTTGGATC -ACGGAAAGGCTACCTAGTCACTTC -ACGGAAAGGCTACCTAGTGTACTC -ACGGAAAGGCTACCTAGTGATGTC -ACGGAAAGGCTACCTAGTACAGTC -ACGGAAAGGCTACCTAGTTTGCTG -ACGGAAAGGCTACCTAGTTCCATG -ACGGAAAGGCTACCTAGTTGTGTG -ACGGAAAGGCTACCTAGTCTAGTG -ACGGAAAGGCTACCTAGTCATCTG -ACGGAAAGGCTACCTAGTGAGTTG -ACGGAAAGGCTACCTAGTAGACTG -ACGGAAAGGCTACCTAGTTCGGTA -ACGGAAAGGCTACCTAGTTGCCTA -ACGGAAAGGCTACCTAGTCCACTA -ACGGAAAGGCTACCTAGTGGAGTA -ACGGAAAGGCTACCTAGTTCGTCT -ACGGAAAGGCTACCTAGTTGCACT -ACGGAAAGGCTACCTAGTCTGACT -ACGGAAAGGCTACCTAGTCAACCT -ACGGAAAGGCTACCTAGTGCTACT -ACGGAAAGGCTACCTAGTGGATCT -ACGGAAAGGCTACCTAGTAAGGCT -ACGGAAAGGCTACCTAGTTCAACC -ACGGAAAGGCTACCTAGTTGTTCC -ACGGAAAGGCTACCTAGTATTCCC -ACGGAAAGGCTACCTAGTTTCTCG -ACGGAAAGGCTACCTAGTTAGACG -ACGGAAAGGCTACCTAGTGTAACG -ACGGAAAGGCTACCTAGTACTTCG -ACGGAAAGGCTACCTAGTTACGCA -ACGGAAAGGCTACCTAGTCTTGCA -ACGGAAAGGCTACCTAGTCGAACA -ACGGAAAGGCTACCTAGTCAGTCA -ACGGAAAGGCTACCTAGTGATCCA -ACGGAAAGGCTACCTAGTACGACA -ACGGAAAGGCTACCTAGTAGCTCA -ACGGAAAGGCTACCTAGTTCACGT -ACGGAAAGGCTACCTAGTCGTAGT -ACGGAAAGGCTACCTAGTGTCAGT -ACGGAAAGGCTACCTAGTGAAGGT -ACGGAAAGGCTACCTAGTAACCGT -ACGGAAAGGCTACCTAGTTTGTGC -ACGGAAAGGCTACCTAGTCTAAGC -ACGGAAAGGCTACCTAGTACTAGC -ACGGAAAGGCTACCTAGTAGATGC -ACGGAAAGGCTACCTAGTTGAAGG -ACGGAAAGGCTACCTAGTCAATGG -ACGGAAAGGCTACCTAGTATGAGG -ACGGAAAGGCTACCTAGTAATGGG -ACGGAAAGGCTACCTAGTTCCTGA -ACGGAAAGGCTACCTAGTTAGCGA -ACGGAAAGGCTACCTAGTCACAGA -ACGGAAAGGCTACCTAGTGCAAGA -ACGGAAAGGCTACCTAGTGGTTGA -ACGGAAAGGCTACCTAGTTCCGAT -ACGGAAAGGCTACCTAGTTGGCAT -ACGGAAAGGCTACCTAGTCGAGAT -ACGGAAAGGCTACCTAGTTACCAC -ACGGAAAGGCTACCTAGTCAGAAC -ACGGAAAGGCTACCTAGTGTCTAC -ACGGAAAGGCTACCTAGTACGTAC -ACGGAAAGGCTACCTAGTAGTGAC -ACGGAAAGGCTACCTAGTCTGTAG -ACGGAAAGGCTACCTAGTCCTAAG -ACGGAAAGGCTACCTAGTGTTCAG -ACGGAAAGGCTACCTAGTGCATAG -ACGGAAAGGCTACCTAGTGACAAG -ACGGAAAGGCTACCTAGTAAGCAG -ACGGAAAGGCTACCTAGTCGTCAA -ACGGAAAGGCTACCTAGTGCTGAA -ACGGAAAGGCTACCTAGTAGTACG -ACGGAAAGGCTACCTAGTATCCGA -ACGGAAAGGCTACCTAGTATGGGA -ACGGAAAGGCTACCTAGTGTGCAA -ACGGAAAGGCTACCTAGTGAGGAA -ACGGAAAGGCTACCTAGTCAGGTA -ACGGAAAGGCTACCTAGTGACTCT -ACGGAAAGGCTACCTAGTAGTCCT -ACGGAAAGGCTACCTAGTTAAGCC -ACGGAAAGGCTACCTAGTATAGCC -ACGGAAAGGCTACCTAGTTAACCG -ACGGAAAGGCTACCTAGTATGCCA -ACGGAAAGGCTAGCCTAAGGAAAC -ACGGAAAGGCTAGCCTAAAACACC -ACGGAAAGGCTAGCCTAAATCGAG -ACGGAAAGGCTAGCCTAACTCCTT -ACGGAAAGGCTAGCCTAACCTGTT -ACGGAAAGGCTAGCCTAACGGTTT -ACGGAAAGGCTAGCCTAAGTGGTT -ACGGAAAGGCTAGCCTAAGCCTTT -ACGGAAAGGCTAGCCTAAGGTCTT -ACGGAAAGGCTAGCCTAAACGCTT -ACGGAAAGGCTAGCCTAAAGCGTT -ACGGAAAGGCTAGCCTAATTCGTC -ACGGAAAGGCTAGCCTAATCTCTC -ACGGAAAGGCTAGCCTAATGGATC -ACGGAAAGGCTAGCCTAACACTTC -ACGGAAAGGCTAGCCTAAGTACTC -ACGGAAAGGCTAGCCTAAGATGTC -ACGGAAAGGCTAGCCTAAACAGTC -ACGGAAAGGCTAGCCTAATTGCTG -ACGGAAAGGCTAGCCTAATCCATG -ACGGAAAGGCTAGCCTAATGTGTG -ACGGAAAGGCTAGCCTAACTAGTG -ACGGAAAGGCTAGCCTAACATCTG -ACGGAAAGGCTAGCCTAAGAGTTG -ACGGAAAGGCTAGCCTAAAGACTG -ACGGAAAGGCTAGCCTAATCGGTA -ACGGAAAGGCTAGCCTAATGCCTA -ACGGAAAGGCTAGCCTAACCACTA -ACGGAAAGGCTAGCCTAAGGAGTA -ACGGAAAGGCTAGCCTAATCGTCT -ACGGAAAGGCTAGCCTAATGCACT -ACGGAAAGGCTAGCCTAACTGACT -ACGGAAAGGCTAGCCTAACAACCT -ACGGAAAGGCTAGCCTAAGCTACT -ACGGAAAGGCTAGCCTAAGGATCT -ACGGAAAGGCTAGCCTAAAAGGCT -ACGGAAAGGCTAGCCTAATCAACC -ACGGAAAGGCTAGCCTAATGTTCC -ACGGAAAGGCTAGCCTAAATTCCC -ACGGAAAGGCTAGCCTAATTCTCG -ACGGAAAGGCTAGCCTAATAGACG -ACGGAAAGGCTAGCCTAAGTAACG -ACGGAAAGGCTAGCCTAAACTTCG -ACGGAAAGGCTAGCCTAATACGCA -ACGGAAAGGCTAGCCTAACTTGCA -ACGGAAAGGCTAGCCTAACGAACA -ACGGAAAGGCTAGCCTAACAGTCA -ACGGAAAGGCTAGCCTAAGATCCA -ACGGAAAGGCTAGCCTAAACGACA -ACGGAAAGGCTAGCCTAAAGCTCA -ACGGAAAGGCTAGCCTAATCACGT -ACGGAAAGGCTAGCCTAACGTAGT -ACGGAAAGGCTAGCCTAAGTCAGT -ACGGAAAGGCTAGCCTAAGAAGGT -ACGGAAAGGCTAGCCTAAAACCGT -ACGGAAAGGCTAGCCTAATTGTGC -ACGGAAAGGCTAGCCTAACTAAGC -ACGGAAAGGCTAGCCTAAACTAGC -ACGGAAAGGCTAGCCTAAAGATGC -ACGGAAAGGCTAGCCTAATGAAGG -ACGGAAAGGCTAGCCTAACAATGG -ACGGAAAGGCTAGCCTAAATGAGG -ACGGAAAGGCTAGCCTAAAATGGG -ACGGAAAGGCTAGCCTAATCCTGA -ACGGAAAGGCTAGCCTAATAGCGA -ACGGAAAGGCTAGCCTAACACAGA -ACGGAAAGGCTAGCCTAAGCAAGA -ACGGAAAGGCTAGCCTAAGGTTGA -ACGGAAAGGCTAGCCTAATCCGAT -ACGGAAAGGCTAGCCTAATGGCAT -ACGGAAAGGCTAGCCTAACGAGAT -ACGGAAAGGCTAGCCTAATACCAC -ACGGAAAGGCTAGCCTAACAGAAC -ACGGAAAGGCTAGCCTAAGTCTAC -ACGGAAAGGCTAGCCTAAACGTAC -ACGGAAAGGCTAGCCTAAAGTGAC -ACGGAAAGGCTAGCCTAACTGTAG -ACGGAAAGGCTAGCCTAACCTAAG -ACGGAAAGGCTAGCCTAAGTTCAG -ACGGAAAGGCTAGCCTAAGCATAG -ACGGAAAGGCTAGCCTAAGACAAG -ACGGAAAGGCTAGCCTAAAAGCAG -ACGGAAAGGCTAGCCTAACGTCAA -ACGGAAAGGCTAGCCTAAGCTGAA -ACGGAAAGGCTAGCCTAAAGTACG -ACGGAAAGGCTAGCCTAAATCCGA -ACGGAAAGGCTAGCCTAAATGGGA -ACGGAAAGGCTAGCCTAAGTGCAA -ACGGAAAGGCTAGCCTAAGAGGAA -ACGGAAAGGCTAGCCTAACAGGTA -ACGGAAAGGCTAGCCTAAGACTCT -ACGGAAAGGCTAGCCTAAAGTCCT -ACGGAAAGGCTAGCCTAATAAGCC -ACGGAAAGGCTAGCCTAAATAGCC -ACGGAAAGGCTAGCCTAATAACCG -ACGGAAAGGCTAGCCTAAATGCCA -ACGGAAAGGCTAGCCATAGGAAAC -ACGGAAAGGCTAGCCATAAACACC -ACGGAAAGGCTAGCCATAATCGAG -ACGGAAAGGCTAGCCATACTCCTT -ACGGAAAGGCTAGCCATACCTGTT -ACGGAAAGGCTAGCCATACGGTTT -ACGGAAAGGCTAGCCATAGTGGTT -ACGGAAAGGCTAGCCATAGCCTTT -ACGGAAAGGCTAGCCATAGGTCTT -ACGGAAAGGCTAGCCATAACGCTT -ACGGAAAGGCTAGCCATAAGCGTT -ACGGAAAGGCTAGCCATATTCGTC -ACGGAAAGGCTAGCCATATCTCTC -ACGGAAAGGCTAGCCATATGGATC -ACGGAAAGGCTAGCCATACACTTC -ACGGAAAGGCTAGCCATAGTACTC -ACGGAAAGGCTAGCCATAGATGTC -ACGGAAAGGCTAGCCATAACAGTC -ACGGAAAGGCTAGCCATATTGCTG -ACGGAAAGGCTAGCCATATCCATG -ACGGAAAGGCTAGCCATATGTGTG -ACGGAAAGGCTAGCCATACTAGTG -ACGGAAAGGCTAGCCATACATCTG -ACGGAAAGGCTAGCCATAGAGTTG -ACGGAAAGGCTAGCCATAAGACTG -ACGGAAAGGCTAGCCATATCGGTA -ACGGAAAGGCTAGCCATATGCCTA -ACGGAAAGGCTAGCCATACCACTA -ACGGAAAGGCTAGCCATAGGAGTA -ACGGAAAGGCTAGCCATATCGTCT -ACGGAAAGGCTAGCCATATGCACT -ACGGAAAGGCTAGCCATACTGACT -ACGGAAAGGCTAGCCATACAACCT -ACGGAAAGGCTAGCCATAGCTACT -ACGGAAAGGCTAGCCATAGGATCT -ACGGAAAGGCTAGCCATAAAGGCT -ACGGAAAGGCTAGCCATATCAACC -ACGGAAAGGCTAGCCATATGTTCC -ACGGAAAGGCTAGCCATAATTCCC -ACGGAAAGGCTAGCCATATTCTCG -ACGGAAAGGCTAGCCATATAGACG -ACGGAAAGGCTAGCCATAGTAACG -ACGGAAAGGCTAGCCATAACTTCG -ACGGAAAGGCTAGCCATATACGCA -ACGGAAAGGCTAGCCATACTTGCA -ACGGAAAGGCTAGCCATACGAACA -ACGGAAAGGCTAGCCATACAGTCA -ACGGAAAGGCTAGCCATAGATCCA -ACGGAAAGGCTAGCCATAACGACA -ACGGAAAGGCTAGCCATAAGCTCA -ACGGAAAGGCTAGCCATATCACGT -ACGGAAAGGCTAGCCATACGTAGT -ACGGAAAGGCTAGCCATAGTCAGT -ACGGAAAGGCTAGCCATAGAAGGT -ACGGAAAGGCTAGCCATAAACCGT -ACGGAAAGGCTAGCCATATTGTGC -ACGGAAAGGCTAGCCATACTAAGC -ACGGAAAGGCTAGCCATAACTAGC -ACGGAAAGGCTAGCCATAAGATGC -ACGGAAAGGCTAGCCATATGAAGG -ACGGAAAGGCTAGCCATACAATGG -ACGGAAAGGCTAGCCATAATGAGG -ACGGAAAGGCTAGCCATAAATGGG -ACGGAAAGGCTAGCCATATCCTGA -ACGGAAAGGCTAGCCATATAGCGA -ACGGAAAGGCTAGCCATACACAGA -ACGGAAAGGCTAGCCATAGCAAGA -ACGGAAAGGCTAGCCATAGGTTGA -ACGGAAAGGCTAGCCATATCCGAT -ACGGAAAGGCTAGCCATATGGCAT -ACGGAAAGGCTAGCCATACGAGAT -ACGGAAAGGCTAGCCATATACCAC -ACGGAAAGGCTAGCCATACAGAAC -ACGGAAAGGCTAGCCATAGTCTAC -ACGGAAAGGCTAGCCATAACGTAC -ACGGAAAGGCTAGCCATAAGTGAC -ACGGAAAGGCTAGCCATACTGTAG -ACGGAAAGGCTAGCCATACCTAAG -ACGGAAAGGCTAGCCATAGTTCAG -ACGGAAAGGCTAGCCATAGCATAG -ACGGAAAGGCTAGCCATAGACAAG -ACGGAAAGGCTAGCCATAAAGCAG -ACGGAAAGGCTAGCCATACGTCAA -ACGGAAAGGCTAGCCATAGCTGAA -ACGGAAAGGCTAGCCATAAGTACG -ACGGAAAGGCTAGCCATAATCCGA -ACGGAAAGGCTAGCCATAATGGGA -ACGGAAAGGCTAGCCATAGTGCAA -ACGGAAAGGCTAGCCATAGAGGAA -ACGGAAAGGCTAGCCATACAGGTA -ACGGAAAGGCTAGCCATAGACTCT -ACGGAAAGGCTAGCCATAAGTCCT -ACGGAAAGGCTAGCCATATAAGCC -ACGGAAAGGCTAGCCATAATAGCC -ACGGAAAGGCTAGCCATATAACCG -ACGGAAAGGCTAGCCATAATGCCA -ACGGAAAGGCTACCGTAAGGAAAC -ACGGAAAGGCTACCGTAAAACACC -ACGGAAAGGCTACCGTAAATCGAG -ACGGAAAGGCTACCGTAACTCCTT -ACGGAAAGGCTACCGTAACCTGTT -ACGGAAAGGCTACCGTAACGGTTT -ACGGAAAGGCTACCGTAAGTGGTT -ACGGAAAGGCTACCGTAAGCCTTT -ACGGAAAGGCTACCGTAAGGTCTT -ACGGAAAGGCTACCGTAAACGCTT -ACGGAAAGGCTACCGTAAAGCGTT -ACGGAAAGGCTACCGTAATTCGTC -ACGGAAAGGCTACCGTAATCTCTC -ACGGAAAGGCTACCGTAATGGATC -ACGGAAAGGCTACCGTAACACTTC -ACGGAAAGGCTACCGTAAGTACTC -ACGGAAAGGCTACCGTAAGATGTC -ACGGAAAGGCTACCGTAAACAGTC -ACGGAAAGGCTACCGTAATTGCTG -ACGGAAAGGCTACCGTAATCCATG -ACGGAAAGGCTACCGTAATGTGTG -ACGGAAAGGCTACCGTAACTAGTG -ACGGAAAGGCTACCGTAACATCTG -ACGGAAAGGCTACCGTAAGAGTTG -ACGGAAAGGCTACCGTAAAGACTG -ACGGAAAGGCTACCGTAATCGGTA -ACGGAAAGGCTACCGTAATGCCTA -ACGGAAAGGCTACCGTAACCACTA -ACGGAAAGGCTACCGTAAGGAGTA -ACGGAAAGGCTACCGTAATCGTCT -ACGGAAAGGCTACCGTAATGCACT -ACGGAAAGGCTACCGTAACTGACT -ACGGAAAGGCTACCGTAACAACCT -ACGGAAAGGCTACCGTAAGCTACT -ACGGAAAGGCTACCGTAAGGATCT -ACGGAAAGGCTACCGTAAAAGGCT -ACGGAAAGGCTACCGTAATCAACC -ACGGAAAGGCTACCGTAATGTTCC -ACGGAAAGGCTACCGTAAATTCCC -ACGGAAAGGCTACCGTAATTCTCG -ACGGAAAGGCTACCGTAATAGACG -ACGGAAAGGCTACCGTAAGTAACG -ACGGAAAGGCTACCGTAAACTTCG -ACGGAAAGGCTACCGTAATACGCA -ACGGAAAGGCTACCGTAACTTGCA -ACGGAAAGGCTACCGTAACGAACA -ACGGAAAGGCTACCGTAACAGTCA -ACGGAAAGGCTACCGTAAGATCCA -ACGGAAAGGCTACCGTAAACGACA -ACGGAAAGGCTACCGTAAAGCTCA -ACGGAAAGGCTACCGTAATCACGT -ACGGAAAGGCTACCGTAACGTAGT -ACGGAAAGGCTACCGTAAGTCAGT -ACGGAAAGGCTACCGTAAGAAGGT -ACGGAAAGGCTACCGTAAAACCGT -ACGGAAAGGCTACCGTAATTGTGC -ACGGAAAGGCTACCGTAACTAAGC -ACGGAAAGGCTACCGTAAACTAGC -ACGGAAAGGCTACCGTAAAGATGC -ACGGAAAGGCTACCGTAATGAAGG -ACGGAAAGGCTACCGTAACAATGG -ACGGAAAGGCTACCGTAAATGAGG -ACGGAAAGGCTACCGTAAAATGGG -ACGGAAAGGCTACCGTAATCCTGA -ACGGAAAGGCTACCGTAATAGCGA -ACGGAAAGGCTACCGTAACACAGA -ACGGAAAGGCTACCGTAAGCAAGA -ACGGAAAGGCTACCGTAAGGTTGA -ACGGAAAGGCTACCGTAATCCGAT -ACGGAAAGGCTACCGTAATGGCAT -ACGGAAAGGCTACCGTAACGAGAT -ACGGAAAGGCTACCGTAATACCAC -ACGGAAAGGCTACCGTAACAGAAC -ACGGAAAGGCTACCGTAAGTCTAC -ACGGAAAGGCTACCGTAAACGTAC -ACGGAAAGGCTACCGTAAAGTGAC -ACGGAAAGGCTACCGTAACTGTAG -ACGGAAAGGCTACCGTAACCTAAG -ACGGAAAGGCTACCGTAAGTTCAG -ACGGAAAGGCTACCGTAAGCATAG -ACGGAAAGGCTACCGTAAGACAAG -ACGGAAAGGCTACCGTAAAAGCAG -ACGGAAAGGCTACCGTAACGTCAA -ACGGAAAGGCTACCGTAAGCTGAA -ACGGAAAGGCTACCGTAAAGTACG -ACGGAAAGGCTACCGTAAATCCGA -ACGGAAAGGCTACCGTAAATGGGA -ACGGAAAGGCTACCGTAAGTGCAA -ACGGAAAGGCTACCGTAAGAGGAA -ACGGAAAGGCTACCGTAACAGGTA -ACGGAAAGGCTACCGTAAGACTCT -ACGGAAAGGCTACCGTAAAGTCCT -ACGGAAAGGCTACCGTAATAAGCC -ACGGAAAGGCTACCGTAAATAGCC -ACGGAAAGGCTACCGTAATAACCG -ACGGAAAGGCTACCGTAAATGCCA -ACGGAAAGGCTACCAATGGGAAAC -ACGGAAAGGCTACCAATGAACACC -ACGGAAAGGCTACCAATGATCGAG -ACGGAAAGGCTACCAATGCTCCTT -ACGGAAAGGCTACCAATGCCTGTT -ACGGAAAGGCTACCAATGCGGTTT -ACGGAAAGGCTACCAATGGTGGTT -ACGGAAAGGCTACCAATGGCCTTT -ACGGAAAGGCTACCAATGGGTCTT -ACGGAAAGGCTACCAATGACGCTT -ACGGAAAGGCTACCAATGAGCGTT -ACGGAAAGGCTACCAATGTTCGTC -ACGGAAAGGCTACCAATGTCTCTC -ACGGAAAGGCTACCAATGTGGATC -ACGGAAAGGCTACCAATGCACTTC -ACGGAAAGGCTACCAATGGTACTC -ACGGAAAGGCTACCAATGGATGTC -ACGGAAAGGCTACCAATGACAGTC -ACGGAAAGGCTACCAATGTTGCTG -ACGGAAAGGCTACCAATGTCCATG -ACGGAAAGGCTACCAATGTGTGTG -ACGGAAAGGCTACCAATGCTAGTG -ACGGAAAGGCTACCAATGCATCTG -ACGGAAAGGCTACCAATGGAGTTG -ACGGAAAGGCTACCAATGAGACTG -ACGGAAAGGCTACCAATGTCGGTA -ACGGAAAGGCTACCAATGTGCCTA -ACGGAAAGGCTACCAATGCCACTA -ACGGAAAGGCTACCAATGGGAGTA -ACGGAAAGGCTACCAATGTCGTCT -ACGGAAAGGCTACCAATGTGCACT -ACGGAAAGGCTACCAATGCTGACT -ACGGAAAGGCTACCAATGCAACCT -ACGGAAAGGCTACCAATGGCTACT -ACGGAAAGGCTACCAATGGGATCT -ACGGAAAGGCTACCAATGAAGGCT -ACGGAAAGGCTACCAATGTCAACC -ACGGAAAGGCTACCAATGTGTTCC -ACGGAAAGGCTACCAATGATTCCC -ACGGAAAGGCTACCAATGTTCTCG -ACGGAAAGGCTACCAATGTAGACG -ACGGAAAGGCTACCAATGGTAACG -ACGGAAAGGCTACCAATGACTTCG -ACGGAAAGGCTACCAATGTACGCA -ACGGAAAGGCTACCAATGCTTGCA -ACGGAAAGGCTACCAATGCGAACA -ACGGAAAGGCTACCAATGCAGTCA -ACGGAAAGGCTACCAATGGATCCA -ACGGAAAGGCTACCAATGACGACA -ACGGAAAGGCTACCAATGAGCTCA -ACGGAAAGGCTACCAATGTCACGT -ACGGAAAGGCTACCAATGCGTAGT -ACGGAAAGGCTACCAATGGTCAGT -ACGGAAAGGCTACCAATGGAAGGT -ACGGAAAGGCTACCAATGAACCGT -ACGGAAAGGCTACCAATGTTGTGC -ACGGAAAGGCTACCAATGCTAAGC -ACGGAAAGGCTACCAATGACTAGC -ACGGAAAGGCTACCAATGAGATGC -ACGGAAAGGCTACCAATGTGAAGG -ACGGAAAGGCTACCAATGCAATGG -ACGGAAAGGCTACCAATGATGAGG -ACGGAAAGGCTACCAATGAATGGG -ACGGAAAGGCTACCAATGTCCTGA -ACGGAAAGGCTACCAATGTAGCGA -ACGGAAAGGCTACCAATGCACAGA -ACGGAAAGGCTACCAATGGCAAGA -ACGGAAAGGCTACCAATGGGTTGA -ACGGAAAGGCTACCAATGTCCGAT -ACGGAAAGGCTACCAATGTGGCAT -ACGGAAAGGCTACCAATGCGAGAT -ACGGAAAGGCTACCAATGTACCAC -ACGGAAAGGCTACCAATGCAGAAC -ACGGAAAGGCTACCAATGGTCTAC -ACGGAAAGGCTACCAATGACGTAC -ACGGAAAGGCTACCAATGAGTGAC -ACGGAAAGGCTACCAATGCTGTAG -ACGGAAAGGCTACCAATGCCTAAG -ACGGAAAGGCTACCAATGGTTCAG -ACGGAAAGGCTACCAATGGCATAG -ACGGAAAGGCTACCAATGGACAAG -ACGGAAAGGCTACCAATGAAGCAG -ACGGAAAGGCTACCAATGCGTCAA -ACGGAAAGGCTACCAATGGCTGAA -ACGGAAAGGCTACCAATGAGTACG -ACGGAAAGGCTACCAATGATCCGA -ACGGAAAGGCTACCAATGATGGGA -ACGGAAAGGCTACCAATGGTGCAA -ACGGAAAGGCTACCAATGGAGGAA -ACGGAAAGGCTACCAATGCAGGTA -ACGGAAAGGCTACCAATGGACTCT -ACGGAAAGGCTACCAATGAGTCCT -ACGGAAAGGCTACCAATGTAAGCC -ACGGAAAGGCTACCAATGATAGCC -ACGGAAAGGCTACCAATGTAACCG -ACGGAAAGGCTACCAATGATGCCA -ACGGAACAACCTAACGGAGGAAAC -ACGGAACAACCTAACGGAAACACC -ACGGAACAACCTAACGGAATCGAG -ACGGAACAACCTAACGGACTCCTT -ACGGAACAACCTAACGGACCTGTT -ACGGAACAACCTAACGGACGGTTT -ACGGAACAACCTAACGGAGTGGTT -ACGGAACAACCTAACGGAGCCTTT -ACGGAACAACCTAACGGAGGTCTT -ACGGAACAACCTAACGGAACGCTT -ACGGAACAACCTAACGGAAGCGTT -ACGGAACAACCTAACGGATTCGTC -ACGGAACAACCTAACGGATCTCTC -ACGGAACAACCTAACGGATGGATC -ACGGAACAACCTAACGGACACTTC -ACGGAACAACCTAACGGAGTACTC -ACGGAACAACCTAACGGAGATGTC -ACGGAACAACCTAACGGAACAGTC -ACGGAACAACCTAACGGATTGCTG -ACGGAACAACCTAACGGATCCATG -ACGGAACAACCTAACGGATGTGTG -ACGGAACAACCTAACGGACTAGTG -ACGGAACAACCTAACGGACATCTG -ACGGAACAACCTAACGGAGAGTTG -ACGGAACAACCTAACGGAAGACTG -ACGGAACAACCTAACGGATCGGTA -ACGGAACAACCTAACGGATGCCTA -ACGGAACAACCTAACGGACCACTA -ACGGAACAACCTAACGGAGGAGTA -ACGGAACAACCTAACGGATCGTCT -ACGGAACAACCTAACGGATGCACT -ACGGAACAACCTAACGGACTGACT -ACGGAACAACCTAACGGACAACCT -ACGGAACAACCTAACGGAGCTACT -ACGGAACAACCTAACGGAGGATCT -ACGGAACAACCTAACGGAAAGGCT -ACGGAACAACCTAACGGATCAACC -ACGGAACAACCTAACGGATGTTCC -ACGGAACAACCTAACGGAATTCCC -ACGGAACAACCTAACGGATTCTCG -ACGGAACAACCTAACGGATAGACG -ACGGAACAACCTAACGGAGTAACG -ACGGAACAACCTAACGGAACTTCG -ACGGAACAACCTAACGGATACGCA -ACGGAACAACCTAACGGACTTGCA -ACGGAACAACCTAACGGACGAACA -ACGGAACAACCTAACGGACAGTCA -ACGGAACAACCTAACGGAGATCCA -ACGGAACAACCTAACGGAACGACA -ACGGAACAACCTAACGGAAGCTCA -ACGGAACAACCTAACGGATCACGT -ACGGAACAACCTAACGGACGTAGT -ACGGAACAACCTAACGGAGTCAGT -ACGGAACAACCTAACGGAGAAGGT -ACGGAACAACCTAACGGAAACCGT -ACGGAACAACCTAACGGATTGTGC -ACGGAACAACCTAACGGACTAAGC -ACGGAACAACCTAACGGAACTAGC -ACGGAACAACCTAACGGAAGATGC -ACGGAACAACCTAACGGATGAAGG -ACGGAACAACCTAACGGACAATGG -ACGGAACAACCTAACGGAATGAGG -ACGGAACAACCTAACGGAAATGGG -ACGGAACAACCTAACGGATCCTGA -ACGGAACAACCTAACGGATAGCGA -ACGGAACAACCTAACGGACACAGA -ACGGAACAACCTAACGGAGCAAGA -ACGGAACAACCTAACGGAGGTTGA -ACGGAACAACCTAACGGATCCGAT -ACGGAACAACCTAACGGATGGCAT -ACGGAACAACCTAACGGACGAGAT -ACGGAACAACCTAACGGATACCAC -ACGGAACAACCTAACGGACAGAAC -ACGGAACAACCTAACGGAGTCTAC -ACGGAACAACCTAACGGAACGTAC -ACGGAACAACCTAACGGAAGTGAC -ACGGAACAACCTAACGGACTGTAG -ACGGAACAACCTAACGGACCTAAG -ACGGAACAACCTAACGGAGTTCAG -ACGGAACAACCTAACGGAGCATAG -ACGGAACAACCTAACGGAGACAAG -ACGGAACAACCTAACGGAAAGCAG -ACGGAACAACCTAACGGACGTCAA -ACGGAACAACCTAACGGAGCTGAA -ACGGAACAACCTAACGGAAGTACG -ACGGAACAACCTAACGGAATCCGA -ACGGAACAACCTAACGGAATGGGA -ACGGAACAACCTAACGGAGTGCAA -ACGGAACAACCTAACGGAGAGGAA -ACGGAACAACCTAACGGACAGGTA -ACGGAACAACCTAACGGAGACTCT -ACGGAACAACCTAACGGAAGTCCT -ACGGAACAACCTAACGGATAAGCC -ACGGAACAACCTAACGGAATAGCC -ACGGAACAACCTAACGGATAACCG -ACGGAACAACCTAACGGAATGCCA -ACGGAACAACCTACCAACGGAAAC -ACGGAACAACCTACCAACAACACC -ACGGAACAACCTACCAACATCGAG -ACGGAACAACCTACCAACCTCCTT -ACGGAACAACCTACCAACCCTGTT -ACGGAACAACCTACCAACCGGTTT -ACGGAACAACCTACCAACGTGGTT -ACGGAACAACCTACCAACGCCTTT -ACGGAACAACCTACCAACGGTCTT -ACGGAACAACCTACCAACACGCTT -ACGGAACAACCTACCAACAGCGTT -ACGGAACAACCTACCAACTTCGTC -ACGGAACAACCTACCAACTCTCTC -ACGGAACAACCTACCAACTGGATC -ACGGAACAACCTACCAACCACTTC -ACGGAACAACCTACCAACGTACTC -ACGGAACAACCTACCAACGATGTC -ACGGAACAACCTACCAACACAGTC -ACGGAACAACCTACCAACTTGCTG -ACGGAACAACCTACCAACTCCATG -ACGGAACAACCTACCAACTGTGTG -ACGGAACAACCTACCAACCTAGTG -ACGGAACAACCTACCAACCATCTG -ACGGAACAACCTACCAACGAGTTG -ACGGAACAACCTACCAACAGACTG -ACGGAACAACCTACCAACTCGGTA -ACGGAACAACCTACCAACTGCCTA -ACGGAACAACCTACCAACCCACTA -ACGGAACAACCTACCAACGGAGTA -ACGGAACAACCTACCAACTCGTCT -ACGGAACAACCTACCAACTGCACT -ACGGAACAACCTACCAACCTGACT -ACGGAACAACCTACCAACCAACCT -ACGGAACAACCTACCAACGCTACT -ACGGAACAACCTACCAACGGATCT -ACGGAACAACCTACCAACAAGGCT -ACGGAACAACCTACCAACTCAACC -ACGGAACAACCTACCAACTGTTCC -ACGGAACAACCTACCAACATTCCC -ACGGAACAACCTACCAACTTCTCG -ACGGAACAACCTACCAACTAGACG -ACGGAACAACCTACCAACGTAACG -ACGGAACAACCTACCAACACTTCG -ACGGAACAACCTACCAACTACGCA -ACGGAACAACCTACCAACCTTGCA -ACGGAACAACCTACCAACCGAACA -ACGGAACAACCTACCAACCAGTCA -ACGGAACAACCTACCAACGATCCA -ACGGAACAACCTACCAACACGACA -ACGGAACAACCTACCAACAGCTCA -ACGGAACAACCTACCAACTCACGT -ACGGAACAACCTACCAACCGTAGT -ACGGAACAACCTACCAACGTCAGT -ACGGAACAACCTACCAACGAAGGT -ACGGAACAACCTACCAACAACCGT -ACGGAACAACCTACCAACTTGTGC -ACGGAACAACCTACCAACCTAAGC -ACGGAACAACCTACCAACACTAGC -ACGGAACAACCTACCAACAGATGC -ACGGAACAACCTACCAACTGAAGG -ACGGAACAACCTACCAACCAATGG -ACGGAACAACCTACCAACATGAGG -ACGGAACAACCTACCAACAATGGG -ACGGAACAACCTACCAACTCCTGA -ACGGAACAACCTACCAACTAGCGA -ACGGAACAACCTACCAACCACAGA -ACGGAACAACCTACCAACGCAAGA -ACGGAACAACCTACCAACGGTTGA -ACGGAACAACCTACCAACTCCGAT -ACGGAACAACCTACCAACTGGCAT -ACGGAACAACCTACCAACCGAGAT -ACGGAACAACCTACCAACTACCAC -ACGGAACAACCTACCAACCAGAAC -ACGGAACAACCTACCAACGTCTAC -ACGGAACAACCTACCAACACGTAC -ACGGAACAACCTACCAACAGTGAC -ACGGAACAACCTACCAACCTGTAG -ACGGAACAACCTACCAACCCTAAG -ACGGAACAACCTACCAACGTTCAG -ACGGAACAACCTACCAACGCATAG -ACGGAACAACCTACCAACGACAAG -ACGGAACAACCTACCAACAAGCAG -ACGGAACAACCTACCAACCGTCAA -ACGGAACAACCTACCAACGCTGAA -ACGGAACAACCTACCAACAGTACG -ACGGAACAACCTACCAACATCCGA -ACGGAACAACCTACCAACATGGGA -ACGGAACAACCTACCAACGTGCAA -ACGGAACAACCTACCAACGAGGAA -ACGGAACAACCTACCAACCAGGTA -ACGGAACAACCTACCAACGACTCT -ACGGAACAACCTACCAACAGTCCT -ACGGAACAACCTACCAACTAAGCC -ACGGAACAACCTACCAACATAGCC -ACGGAACAACCTACCAACTAACCG -ACGGAACAACCTACCAACATGCCA -ACGGAACAACCTGAGATCGGAAAC -ACGGAACAACCTGAGATCAACACC -ACGGAACAACCTGAGATCATCGAG -ACGGAACAACCTGAGATCCTCCTT -ACGGAACAACCTGAGATCCCTGTT -ACGGAACAACCTGAGATCCGGTTT -ACGGAACAACCTGAGATCGTGGTT -ACGGAACAACCTGAGATCGCCTTT -ACGGAACAACCTGAGATCGGTCTT -ACGGAACAACCTGAGATCACGCTT -ACGGAACAACCTGAGATCAGCGTT -ACGGAACAACCTGAGATCTTCGTC -ACGGAACAACCTGAGATCTCTCTC -ACGGAACAACCTGAGATCTGGATC -ACGGAACAACCTGAGATCCACTTC -ACGGAACAACCTGAGATCGTACTC -ACGGAACAACCTGAGATCGATGTC -ACGGAACAACCTGAGATCACAGTC -ACGGAACAACCTGAGATCTTGCTG -ACGGAACAACCTGAGATCTCCATG -ACGGAACAACCTGAGATCTGTGTG -ACGGAACAACCTGAGATCCTAGTG -ACGGAACAACCTGAGATCCATCTG -ACGGAACAACCTGAGATCGAGTTG -ACGGAACAACCTGAGATCAGACTG -ACGGAACAACCTGAGATCTCGGTA -ACGGAACAACCTGAGATCTGCCTA -ACGGAACAACCTGAGATCCCACTA -ACGGAACAACCTGAGATCGGAGTA -ACGGAACAACCTGAGATCTCGTCT -ACGGAACAACCTGAGATCTGCACT -ACGGAACAACCTGAGATCCTGACT -ACGGAACAACCTGAGATCCAACCT -ACGGAACAACCTGAGATCGCTACT -ACGGAACAACCTGAGATCGGATCT -ACGGAACAACCTGAGATCAAGGCT -ACGGAACAACCTGAGATCTCAACC -ACGGAACAACCTGAGATCTGTTCC -ACGGAACAACCTGAGATCATTCCC -ACGGAACAACCTGAGATCTTCTCG -ACGGAACAACCTGAGATCTAGACG -ACGGAACAACCTGAGATCGTAACG -ACGGAACAACCTGAGATCACTTCG -ACGGAACAACCTGAGATCTACGCA -ACGGAACAACCTGAGATCCTTGCA -ACGGAACAACCTGAGATCCGAACA -ACGGAACAACCTGAGATCCAGTCA -ACGGAACAACCTGAGATCGATCCA -ACGGAACAACCTGAGATCACGACA -ACGGAACAACCTGAGATCAGCTCA -ACGGAACAACCTGAGATCTCACGT -ACGGAACAACCTGAGATCCGTAGT -ACGGAACAACCTGAGATCGTCAGT -ACGGAACAACCTGAGATCGAAGGT -ACGGAACAACCTGAGATCAACCGT -ACGGAACAACCTGAGATCTTGTGC -ACGGAACAACCTGAGATCCTAAGC -ACGGAACAACCTGAGATCACTAGC -ACGGAACAACCTGAGATCAGATGC -ACGGAACAACCTGAGATCTGAAGG -ACGGAACAACCTGAGATCCAATGG -ACGGAACAACCTGAGATCATGAGG -ACGGAACAACCTGAGATCAATGGG -ACGGAACAACCTGAGATCTCCTGA -ACGGAACAACCTGAGATCTAGCGA -ACGGAACAACCTGAGATCCACAGA -ACGGAACAACCTGAGATCGCAAGA -ACGGAACAACCTGAGATCGGTTGA -ACGGAACAACCTGAGATCTCCGAT -ACGGAACAACCTGAGATCTGGCAT -ACGGAACAACCTGAGATCCGAGAT -ACGGAACAACCTGAGATCTACCAC -ACGGAACAACCTGAGATCCAGAAC -ACGGAACAACCTGAGATCGTCTAC -ACGGAACAACCTGAGATCACGTAC -ACGGAACAACCTGAGATCAGTGAC -ACGGAACAACCTGAGATCCTGTAG -ACGGAACAACCTGAGATCCCTAAG -ACGGAACAACCTGAGATCGTTCAG -ACGGAACAACCTGAGATCGCATAG -ACGGAACAACCTGAGATCGACAAG -ACGGAACAACCTGAGATCAAGCAG -ACGGAACAACCTGAGATCCGTCAA -ACGGAACAACCTGAGATCGCTGAA -ACGGAACAACCTGAGATCAGTACG -ACGGAACAACCTGAGATCATCCGA -ACGGAACAACCTGAGATCATGGGA -ACGGAACAACCTGAGATCGTGCAA -ACGGAACAACCTGAGATCGAGGAA -ACGGAACAACCTGAGATCCAGGTA -ACGGAACAACCTGAGATCGACTCT -ACGGAACAACCTGAGATCAGTCCT -ACGGAACAACCTGAGATCTAAGCC -ACGGAACAACCTGAGATCATAGCC -ACGGAACAACCTGAGATCTAACCG -ACGGAACAACCTGAGATCATGCCA -ACGGAACAACCTCTTCTCGGAAAC -ACGGAACAACCTCTTCTCAACACC -ACGGAACAACCTCTTCTCATCGAG -ACGGAACAACCTCTTCTCCTCCTT -ACGGAACAACCTCTTCTCCCTGTT -ACGGAACAACCTCTTCTCCGGTTT -ACGGAACAACCTCTTCTCGTGGTT -ACGGAACAACCTCTTCTCGCCTTT -ACGGAACAACCTCTTCTCGGTCTT -ACGGAACAACCTCTTCTCACGCTT -ACGGAACAACCTCTTCTCAGCGTT -ACGGAACAACCTCTTCTCTTCGTC -ACGGAACAACCTCTTCTCTCTCTC -ACGGAACAACCTCTTCTCTGGATC -ACGGAACAACCTCTTCTCCACTTC -ACGGAACAACCTCTTCTCGTACTC -ACGGAACAACCTCTTCTCGATGTC -ACGGAACAACCTCTTCTCACAGTC -ACGGAACAACCTCTTCTCTTGCTG -ACGGAACAACCTCTTCTCTCCATG -ACGGAACAACCTCTTCTCTGTGTG -ACGGAACAACCTCTTCTCCTAGTG -ACGGAACAACCTCTTCTCCATCTG -ACGGAACAACCTCTTCTCGAGTTG -ACGGAACAACCTCTTCTCAGACTG -ACGGAACAACCTCTTCTCTCGGTA -ACGGAACAACCTCTTCTCTGCCTA -ACGGAACAACCTCTTCTCCCACTA -ACGGAACAACCTCTTCTCGGAGTA -ACGGAACAACCTCTTCTCTCGTCT -ACGGAACAACCTCTTCTCTGCACT -ACGGAACAACCTCTTCTCCTGACT -ACGGAACAACCTCTTCTCCAACCT -ACGGAACAACCTCTTCTCGCTACT -ACGGAACAACCTCTTCTCGGATCT -ACGGAACAACCTCTTCTCAAGGCT -ACGGAACAACCTCTTCTCTCAACC -ACGGAACAACCTCTTCTCTGTTCC -ACGGAACAACCTCTTCTCATTCCC -ACGGAACAACCTCTTCTCTTCTCG -ACGGAACAACCTCTTCTCTAGACG -ACGGAACAACCTCTTCTCGTAACG -ACGGAACAACCTCTTCTCACTTCG -ACGGAACAACCTCTTCTCTACGCA -ACGGAACAACCTCTTCTCCTTGCA -ACGGAACAACCTCTTCTCCGAACA -ACGGAACAACCTCTTCTCCAGTCA -ACGGAACAACCTCTTCTCGATCCA -ACGGAACAACCTCTTCTCACGACA -ACGGAACAACCTCTTCTCAGCTCA -ACGGAACAACCTCTTCTCTCACGT -ACGGAACAACCTCTTCTCCGTAGT -ACGGAACAACCTCTTCTCGTCAGT -ACGGAACAACCTCTTCTCGAAGGT -ACGGAACAACCTCTTCTCAACCGT -ACGGAACAACCTCTTCTCTTGTGC -ACGGAACAACCTCTTCTCCTAAGC -ACGGAACAACCTCTTCTCACTAGC -ACGGAACAACCTCTTCTCAGATGC -ACGGAACAACCTCTTCTCTGAAGG -ACGGAACAACCTCTTCTCCAATGG -ACGGAACAACCTCTTCTCATGAGG -ACGGAACAACCTCTTCTCAATGGG -ACGGAACAACCTCTTCTCTCCTGA -ACGGAACAACCTCTTCTCTAGCGA -ACGGAACAACCTCTTCTCCACAGA -ACGGAACAACCTCTTCTCGCAAGA -ACGGAACAACCTCTTCTCGGTTGA -ACGGAACAACCTCTTCTCTCCGAT -ACGGAACAACCTCTTCTCTGGCAT -ACGGAACAACCTCTTCTCCGAGAT -ACGGAACAACCTCTTCTCTACCAC -ACGGAACAACCTCTTCTCCAGAAC -ACGGAACAACCTCTTCTCGTCTAC -ACGGAACAACCTCTTCTCACGTAC -ACGGAACAACCTCTTCTCAGTGAC -ACGGAACAACCTCTTCTCCTGTAG -ACGGAACAACCTCTTCTCCCTAAG -ACGGAACAACCTCTTCTCGTTCAG -ACGGAACAACCTCTTCTCGCATAG -ACGGAACAACCTCTTCTCGACAAG -ACGGAACAACCTCTTCTCAAGCAG -ACGGAACAACCTCTTCTCCGTCAA -ACGGAACAACCTCTTCTCGCTGAA -ACGGAACAACCTCTTCTCAGTACG -ACGGAACAACCTCTTCTCATCCGA -ACGGAACAACCTCTTCTCATGGGA -ACGGAACAACCTCTTCTCGTGCAA -ACGGAACAACCTCTTCTCGAGGAA -ACGGAACAACCTCTTCTCCAGGTA -ACGGAACAACCTCTTCTCGACTCT -ACGGAACAACCTCTTCTCAGTCCT -ACGGAACAACCTCTTCTCTAAGCC -ACGGAACAACCTCTTCTCATAGCC -ACGGAACAACCTCTTCTCTAACCG -ACGGAACAACCTCTTCTCATGCCA -ACGGAACAACCTGTTCCTGGAAAC -ACGGAACAACCTGTTCCTAACACC -ACGGAACAACCTGTTCCTATCGAG -ACGGAACAACCTGTTCCTCTCCTT -ACGGAACAACCTGTTCCTCCTGTT -ACGGAACAACCTGTTCCTCGGTTT -ACGGAACAACCTGTTCCTGTGGTT -ACGGAACAACCTGTTCCTGCCTTT -ACGGAACAACCTGTTCCTGGTCTT -ACGGAACAACCTGTTCCTACGCTT -ACGGAACAACCTGTTCCTAGCGTT -ACGGAACAACCTGTTCCTTTCGTC -ACGGAACAACCTGTTCCTTCTCTC -ACGGAACAACCTGTTCCTTGGATC -ACGGAACAACCTGTTCCTCACTTC -ACGGAACAACCTGTTCCTGTACTC -ACGGAACAACCTGTTCCTGATGTC -ACGGAACAACCTGTTCCTACAGTC -ACGGAACAACCTGTTCCTTTGCTG -ACGGAACAACCTGTTCCTTCCATG -ACGGAACAACCTGTTCCTTGTGTG -ACGGAACAACCTGTTCCTCTAGTG -ACGGAACAACCTGTTCCTCATCTG -ACGGAACAACCTGTTCCTGAGTTG -ACGGAACAACCTGTTCCTAGACTG -ACGGAACAACCTGTTCCTTCGGTA -ACGGAACAACCTGTTCCTTGCCTA -ACGGAACAACCTGTTCCTCCACTA -ACGGAACAACCTGTTCCTGGAGTA -ACGGAACAACCTGTTCCTTCGTCT -ACGGAACAACCTGTTCCTTGCACT -ACGGAACAACCTGTTCCTCTGACT -ACGGAACAACCTGTTCCTCAACCT -ACGGAACAACCTGTTCCTGCTACT -ACGGAACAACCTGTTCCTGGATCT -ACGGAACAACCTGTTCCTAAGGCT -ACGGAACAACCTGTTCCTTCAACC -ACGGAACAACCTGTTCCTTGTTCC -ACGGAACAACCTGTTCCTATTCCC -ACGGAACAACCTGTTCCTTTCTCG -ACGGAACAACCTGTTCCTTAGACG -ACGGAACAACCTGTTCCTGTAACG -ACGGAACAACCTGTTCCTACTTCG -ACGGAACAACCTGTTCCTTACGCA -ACGGAACAACCTGTTCCTCTTGCA -ACGGAACAACCTGTTCCTCGAACA -ACGGAACAACCTGTTCCTCAGTCA -ACGGAACAACCTGTTCCTGATCCA -ACGGAACAACCTGTTCCTACGACA -ACGGAACAACCTGTTCCTAGCTCA -ACGGAACAACCTGTTCCTTCACGT -ACGGAACAACCTGTTCCTCGTAGT -ACGGAACAACCTGTTCCTGTCAGT -ACGGAACAACCTGTTCCTGAAGGT -ACGGAACAACCTGTTCCTAACCGT -ACGGAACAACCTGTTCCTTTGTGC -ACGGAACAACCTGTTCCTCTAAGC -ACGGAACAACCTGTTCCTACTAGC -ACGGAACAACCTGTTCCTAGATGC -ACGGAACAACCTGTTCCTTGAAGG -ACGGAACAACCTGTTCCTCAATGG -ACGGAACAACCTGTTCCTATGAGG -ACGGAACAACCTGTTCCTAATGGG -ACGGAACAACCTGTTCCTTCCTGA -ACGGAACAACCTGTTCCTTAGCGA -ACGGAACAACCTGTTCCTCACAGA -ACGGAACAACCTGTTCCTGCAAGA -ACGGAACAACCTGTTCCTGGTTGA -ACGGAACAACCTGTTCCTTCCGAT -ACGGAACAACCTGTTCCTTGGCAT -ACGGAACAACCTGTTCCTCGAGAT -ACGGAACAACCTGTTCCTTACCAC -ACGGAACAACCTGTTCCTCAGAAC -ACGGAACAACCTGTTCCTGTCTAC -ACGGAACAACCTGTTCCTACGTAC -ACGGAACAACCTGTTCCTAGTGAC -ACGGAACAACCTGTTCCTCTGTAG -ACGGAACAACCTGTTCCTCCTAAG -ACGGAACAACCTGTTCCTGTTCAG -ACGGAACAACCTGTTCCTGCATAG -ACGGAACAACCTGTTCCTGACAAG -ACGGAACAACCTGTTCCTAAGCAG -ACGGAACAACCTGTTCCTCGTCAA -ACGGAACAACCTGTTCCTGCTGAA -ACGGAACAACCTGTTCCTAGTACG -ACGGAACAACCTGTTCCTATCCGA -ACGGAACAACCTGTTCCTATGGGA -ACGGAACAACCTGTTCCTGTGCAA -ACGGAACAACCTGTTCCTGAGGAA -ACGGAACAACCTGTTCCTCAGGTA -ACGGAACAACCTGTTCCTGACTCT -ACGGAACAACCTGTTCCTAGTCCT -ACGGAACAACCTGTTCCTTAAGCC -ACGGAACAACCTGTTCCTATAGCC -ACGGAACAACCTGTTCCTTAACCG -ACGGAACAACCTGTTCCTATGCCA -ACGGAACAACCTTTTCGGGGAAAC -ACGGAACAACCTTTTCGGAACACC -ACGGAACAACCTTTTCGGATCGAG -ACGGAACAACCTTTTCGGCTCCTT -ACGGAACAACCTTTTCGGCCTGTT -ACGGAACAACCTTTTCGGCGGTTT -ACGGAACAACCTTTTCGGGTGGTT -ACGGAACAACCTTTTCGGGCCTTT -ACGGAACAACCTTTTCGGGGTCTT -ACGGAACAACCTTTTCGGACGCTT -ACGGAACAACCTTTTCGGAGCGTT -ACGGAACAACCTTTTCGGTTCGTC -ACGGAACAACCTTTTCGGTCTCTC -ACGGAACAACCTTTTCGGTGGATC -ACGGAACAACCTTTTCGGCACTTC -ACGGAACAACCTTTTCGGGTACTC -ACGGAACAACCTTTTCGGGATGTC -ACGGAACAACCTTTTCGGACAGTC -ACGGAACAACCTTTTCGGTTGCTG -ACGGAACAACCTTTTCGGTCCATG -ACGGAACAACCTTTTCGGTGTGTG -ACGGAACAACCTTTTCGGCTAGTG -ACGGAACAACCTTTTCGGCATCTG -ACGGAACAACCTTTTCGGGAGTTG -ACGGAACAACCTTTTCGGAGACTG -ACGGAACAACCTTTTCGGTCGGTA -ACGGAACAACCTTTTCGGTGCCTA -ACGGAACAACCTTTTCGGCCACTA -ACGGAACAACCTTTTCGGGGAGTA -ACGGAACAACCTTTTCGGTCGTCT -ACGGAACAACCTTTTCGGTGCACT -ACGGAACAACCTTTTCGGCTGACT -ACGGAACAACCTTTTCGGCAACCT -ACGGAACAACCTTTTCGGGCTACT -ACGGAACAACCTTTTCGGGGATCT -ACGGAACAACCTTTTCGGAAGGCT -ACGGAACAACCTTTTCGGTCAACC -ACGGAACAACCTTTTCGGTGTTCC -ACGGAACAACCTTTTCGGATTCCC -ACGGAACAACCTTTTCGGTTCTCG -ACGGAACAACCTTTTCGGTAGACG -ACGGAACAACCTTTTCGGGTAACG -ACGGAACAACCTTTTCGGACTTCG -ACGGAACAACCTTTTCGGTACGCA -ACGGAACAACCTTTTCGGCTTGCA -ACGGAACAACCTTTTCGGCGAACA -ACGGAACAACCTTTTCGGCAGTCA -ACGGAACAACCTTTTCGGGATCCA -ACGGAACAACCTTTTCGGACGACA -ACGGAACAACCTTTTCGGAGCTCA -ACGGAACAACCTTTTCGGTCACGT -ACGGAACAACCTTTTCGGCGTAGT -ACGGAACAACCTTTTCGGGTCAGT -ACGGAACAACCTTTTCGGGAAGGT -ACGGAACAACCTTTTCGGAACCGT -ACGGAACAACCTTTTCGGTTGTGC -ACGGAACAACCTTTTCGGCTAAGC -ACGGAACAACCTTTTCGGACTAGC -ACGGAACAACCTTTTCGGAGATGC -ACGGAACAACCTTTTCGGTGAAGG -ACGGAACAACCTTTTCGGCAATGG -ACGGAACAACCTTTTCGGATGAGG -ACGGAACAACCTTTTCGGAATGGG -ACGGAACAACCTTTTCGGTCCTGA -ACGGAACAACCTTTTCGGTAGCGA -ACGGAACAACCTTTTCGGCACAGA -ACGGAACAACCTTTTCGGGCAAGA -ACGGAACAACCTTTTCGGGGTTGA -ACGGAACAACCTTTTCGGTCCGAT -ACGGAACAACCTTTTCGGTGGCAT -ACGGAACAACCTTTTCGGCGAGAT -ACGGAACAACCTTTTCGGTACCAC -ACGGAACAACCTTTTCGGCAGAAC -ACGGAACAACCTTTTCGGGTCTAC -ACGGAACAACCTTTTCGGACGTAC -ACGGAACAACCTTTTCGGAGTGAC -ACGGAACAACCTTTTCGGCTGTAG -ACGGAACAACCTTTTCGGCCTAAG -ACGGAACAACCTTTTCGGGTTCAG -ACGGAACAACCTTTTCGGGCATAG -ACGGAACAACCTTTTCGGGACAAG -ACGGAACAACCTTTTCGGAAGCAG -ACGGAACAACCTTTTCGGCGTCAA -ACGGAACAACCTTTTCGGGCTGAA -ACGGAACAACCTTTTCGGAGTACG -ACGGAACAACCTTTTCGGATCCGA -ACGGAACAACCTTTTCGGATGGGA -ACGGAACAACCTTTTCGGGTGCAA -ACGGAACAACCTTTTCGGGAGGAA -ACGGAACAACCTTTTCGGCAGGTA -ACGGAACAACCTTTTCGGGACTCT -ACGGAACAACCTTTTCGGAGTCCT -ACGGAACAACCTTTTCGGTAAGCC -ACGGAACAACCTTTTCGGATAGCC -ACGGAACAACCTTTTCGGTAACCG -ACGGAACAACCTTTTCGGATGCCA -ACGGAACAACCTGTTGTGGGAAAC -ACGGAACAACCTGTTGTGAACACC -ACGGAACAACCTGTTGTGATCGAG -ACGGAACAACCTGTTGTGCTCCTT -ACGGAACAACCTGTTGTGCCTGTT -ACGGAACAACCTGTTGTGCGGTTT -ACGGAACAACCTGTTGTGGTGGTT -ACGGAACAACCTGTTGTGGCCTTT -ACGGAACAACCTGTTGTGGGTCTT -ACGGAACAACCTGTTGTGACGCTT -ACGGAACAACCTGTTGTGAGCGTT -ACGGAACAACCTGTTGTGTTCGTC -ACGGAACAACCTGTTGTGTCTCTC -ACGGAACAACCTGTTGTGTGGATC -ACGGAACAACCTGTTGTGCACTTC -ACGGAACAACCTGTTGTGGTACTC -ACGGAACAACCTGTTGTGGATGTC -ACGGAACAACCTGTTGTGACAGTC -ACGGAACAACCTGTTGTGTTGCTG -ACGGAACAACCTGTTGTGTCCATG -ACGGAACAACCTGTTGTGTGTGTG -ACGGAACAACCTGTTGTGCTAGTG -ACGGAACAACCTGTTGTGCATCTG -ACGGAACAACCTGTTGTGGAGTTG -ACGGAACAACCTGTTGTGAGACTG -ACGGAACAACCTGTTGTGTCGGTA -ACGGAACAACCTGTTGTGTGCCTA -ACGGAACAACCTGTTGTGCCACTA -ACGGAACAACCTGTTGTGGGAGTA -ACGGAACAACCTGTTGTGTCGTCT -ACGGAACAACCTGTTGTGTGCACT -ACGGAACAACCTGTTGTGCTGACT -ACGGAACAACCTGTTGTGCAACCT -ACGGAACAACCTGTTGTGGCTACT -ACGGAACAACCTGTTGTGGGATCT -ACGGAACAACCTGTTGTGAAGGCT -ACGGAACAACCTGTTGTGTCAACC -ACGGAACAACCTGTTGTGTGTTCC -ACGGAACAACCTGTTGTGATTCCC -ACGGAACAACCTGTTGTGTTCTCG -ACGGAACAACCTGTTGTGTAGACG -ACGGAACAACCTGTTGTGGTAACG -ACGGAACAACCTGTTGTGACTTCG -ACGGAACAACCTGTTGTGTACGCA -ACGGAACAACCTGTTGTGCTTGCA -ACGGAACAACCTGTTGTGCGAACA -ACGGAACAACCTGTTGTGCAGTCA -ACGGAACAACCTGTTGTGGATCCA -ACGGAACAACCTGTTGTGACGACA -ACGGAACAACCTGTTGTGAGCTCA -ACGGAACAACCTGTTGTGTCACGT -ACGGAACAACCTGTTGTGCGTAGT -ACGGAACAACCTGTTGTGGTCAGT -ACGGAACAACCTGTTGTGGAAGGT -ACGGAACAACCTGTTGTGAACCGT -ACGGAACAACCTGTTGTGTTGTGC -ACGGAACAACCTGTTGTGCTAAGC -ACGGAACAACCTGTTGTGACTAGC -ACGGAACAACCTGTTGTGAGATGC -ACGGAACAACCTGTTGTGTGAAGG -ACGGAACAACCTGTTGTGCAATGG -ACGGAACAACCTGTTGTGATGAGG -ACGGAACAACCTGTTGTGAATGGG -ACGGAACAACCTGTTGTGTCCTGA -ACGGAACAACCTGTTGTGTAGCGA -ACGGAACAACCTGTTGTGCACAGA -ACGGAACAACCTGTTGTGGCAAGA -ACGGAACAACCTGTTGTGGGTTGA -ACGGAACAACCTGTTGTGTCCGAT -ACGGAACAACCTGTTGTGTGGCAT -ACGGAACAACCTGTTGTGCGAGAT -ACGGAACAACCTGTTGTGTACCAC -ACGGAACAACCTGTTGTGCAGAAC -ACGGAACAACCTGTTGTGGTCTAC -ACGGAACAACCTGTTGTGACGTAC -ACGGAACAACCTGTTGTGAGTGAC -ACGGAACAACCTGTTGTGCTGTAG -ACGGAACAACCTGTTGTGCCTAAG -ACGGAACAACCTGTTGTGGTTCAG -ACGGAACAACCTGTTGTGGCATAG -ACGGAACAACCTGTTGTGGACAAG -ACGGAACAACCTGTTGTGAAGCAG -ACGGAACAACCTGTTGTGCGTCAA -ACGGAACAACCTGTTGTGGCTGAA -ACGGAACAACCTGTTGTGAGTACG -ACGGAACAACCTGTTGTGATCCGA -ACGGAACAACCTGTTGTGATGGGA -ACGGAACAACCTGTTGTGGTGCAA -ACGGAACAACCTGTTGTGGAGGAA -ACGGAACAACCTGTTGTGCAGGTA -ACGGAACAACCTGTTGTGGACTCT -ACGGAACAACCTGTTGTGAGTCCT -ACGGAACAACCTGTTGTGTAAGCC -ACGGAACAACCTGTTGTGATAGCC -ACGGAACAACCTGTTGTGTAACCG -ACGGAACAACCTGTTGTGATGCCA -ACGGAACAACCTTTTGCCGGAAAC -ACGGAACAACCTTTTGCCAACACC -ACGGAACAACCTTTTGCCATCGAG -ACGGAACAACCTTTTGCCCTCCTT -ACGGAACAACCTTTTGCCCCTGTT -ACGGAACAACCTTTTGCCCGGTTT -ACGGAACAACCTTTTGCCGTGGTT -ACGGAACAACCTTTTGCCGCCTTT -ACGGAACAACCTTTTGCCGGTCTT -ACGGAACAACCTTTTGCCACGCTT -ACGGAACAACCTTTTGCCAGCGTT -ACGGAACAACCTTTTGCCTTCGTC -ACGGAACAACCTTTTGCCTCTCTC -ACGGAACAACCTTTTGCCTGGATC -ACGGAACAACCTTTTGCCCACTTC -ACGGAACAACCTTTTGCCGTACTC -ACGGAACAACCTTTTGCCGATGTC -ACGGAACAACCTTTTGCCACAGTC -ACGGAACAACCTTTTGCCTTGCTG -ACGGAACAACCTTTTGCCTCCATG -ACGGAACAACCTTTTGCCTGTGTG -ACGGAACAACCTTTTGCCCTAGTG -ACGGAACAACCTTTTGCCCATCTG -ACGGAACAACCTTTTGCCGAGTTG -ACGGAACAACCTTTTGCCAGACTG -ACGGAACAACCTTTTGCCTCGGTA -ACGGAACAACCTTTTGCCTGCCTA -ACGGAACAACCTTTTGCCCCACTA -ACGGAACAACCTTTTGCCGGAGTA -ACGGAACAACCTTTTGCCTCGTCT -ACGGAACAACCTTTTGCCTGCACT -ACGGAACAACCTTTTGCCCTGACT -ACGGAACAACCTTTTGCCCAACCT -ACGGAACAACCTTTTGCCGCTACT -ACGGAACAACCTTTTGCCGGATCT -ACGGAACAACCTTTTGCCAAGGCT -ACGGAACAACCTTTTGCCTCAACC -ACGGAACAACCTTTTGCCTGTTCC -ACGGAACAACCTTTTGCCATTCCC -ACGGAACAACCTTTTGCCTTCTCG -ACGGAACAACCTTTTGCCTAGACG -ACGGAACAACCTTTTGCCGTAACG -ACGGAACAACCTTTTGCCACTTCG -ACGGAACAACCTTTTGCCTACGCA -ACGGAACAACCTTTTGCCCTTGCA -ACGGAACAACCTTTTGCCCGAACA -ACGGAACAACCTTTTGCCCAGTCA -ACGGAACAACCTTTTGCCGATCCA -ACGGAACAACCTTTTGCCACGACA -ACGGAACAACCTTTTGCCAGCTCA -ACGGAACAACCTTTTGCCTCACGT -ACGGAACAACCTTTTGCCCGTAGT -ACGGAACAACCTTTTGCCGTCAGT -ACGGAACAACCTTTTGCCGAAGGT -ACGGAACAACCTTTTGCCAACCGT -ACGGAACAACCTTTTGCCTTGTGC -ACGGAACAACCTTTTGCCCTAAGC -ACGGAACAACCTTTTGCCACTAGC -ACGGAACAACCTTTTGCCAGATGC -ACGGAACAACCTTTTGCCTGAAGG -ACGGAACAACCTTTTGCCCAATGG -ACGGAACAACCTTTTGCCATGAGG -ACGGAACAACCTTTTGCCAATGGG -ACGGAACAACCTTTTGCCTCCTGA -ACGGAACAACCTTTTGCCTAGCGA -ACGGAACAACCTTTTGCCCACAGA -ACGGAACAACCTTTTGCCGCAAGA -ACGGAACAACCTTTTGCCGGTTGA -ACGGAACAACCTTTTGCCTCCGAT -ACGGAACAACCTTTTGCCTGGCAT -ACGGAACAACCTTTTGCCCGAGAT -ACGGAACAACCTTTTGCCTACCAC -ACGGAACAACCTTTTGCCCAGAAC -ACGGAACAACCTTTTGCCGTCTAC -ACGGAACAACCTTTTGCCACGTAC -ACGGAACAACCTTTTGCCAGTGAC -ACGGAACAACCTTTTGCCCTGTAG -ACGGAACAACCTTTTGCCCCTAAG -ACGGAACAACCTTTTGCCGTTCAG -ACGGAACAACCTTTTGCCGCATAG -ACGGAACAACCTTTTGCCGACAAG -ACGGAACAACCTTTTGCCAAGCAG -ACGGAACAACCTTTTGCCCGTCAA -ACGGAACAACCTTTTGCCGCTGAA -ACGGAACAACCTTTTGCCAGTACG -ACGGAACAACCTTTTGCCATCCGA -ACGGAACAACCTTTTGCCATGGGA -ACGGAACAACCTTTTGCCGTGCAA -ACGGAACAACCTTTTGCCGAGGAA -ACGGAACAACCTTTTGCCCAGGTA -ACGGAACAACCTTTTGCCGACTCT -ACGGAACAACCTTTTGCCAGTCCT -ACGGAACAACCTTTTGCCTAAGCC -ACGGAACAACCTTTTGCCATAGCC -ACGGAACAACCTTTTGCCTAACCG -ACGGAACAACCTTTTGCCATGCCA -ACGGAACAACCTCTTGGTGGAAAC -ACGGAACAACCTCTTGGTAACACC -ACGGAACAACCTCTTGGTATCGAG -ACGGAACAACCTCTTGGTCTCCTT -ACGGAACAACCTCTTGGTCCTGTT -ACGGAACAACCTCTTGGTCGGTTT -ACGGAACAACCTCTTGGTGTGGTT -ACGGAACAACCTCTTGGTGCCTTT -ACGGAACAACCTCTTGGTGGTCTT -ACGGAACAACCTCTTGGTACGCTT -ACGGAACAACCTCTTGGTAGCGTT -ACGGAACAACCTCTTGGTTTCGTC -ACGGAACAACCTCTTGGTTCTCTC -ACGGAACAACCTCTTGGTTGGATC -ACGGAACAACCTCTTGGTCACTTC -ACGGAACAACCTCTTGGTGTACTC -ACGGAACAACCTCTTGGTGATGTC -ACGGAACAACCTCTTGGTACAGTC -ACGGAACAACCTCTTGGTTTGCTG -ACGGAACAACCTCTTGGTTCCATG -ACGGAACAACCTCTTGGTTGTGTG -ACGGAACAACCTCTTGGTCTAGTG -ACGGAACAACCTCTTGGTCATCTG -ACGGAACAACCTCTTGGTGAGTTG -ACGGAACAACCTCTTGGTAGACTG -ACGGAACAACCTCTTGGTTCGGTA -ACGGAACAACCTCTTGGTTGCCTA -ACGGAACAACCTCTTGGTCCACTA -ACGGAACAACCTCTTGGTGGAGTA -ACGGAACAACCTCTTGGTTCGTCT -ACGGAACAACCTCTTGGTTGCACT -ACGGAACAACCTCTTGGTCTGACT -ACGGAACAACCTCTTGGTCAACCT -ACGGAACAACCTCTTGGTGCTACT -ACGGAACAACCTCTTGGTGGATCT -ACGGAACAACCTCTTGGTAAGGCT -ACGGAACAACCTCTTGGTTCAACC -ACGGAACAACCTCTTGGTTGTTCC -ACGGAACAACCTCTTGGTATTCCC -ACGGAACAACCTCTTGGTTTCTCG -ACGGAACAACCTCTTGGTTAGACG -ACGGAACAACCTCTTGGTGTAACG -ACGGAACAACCTCTTGGTACTTCG -ACGGAACAACCTCTTGGTTACGCA -ACGGAACAACCTCTTGGTCTTGCA -ACGGAACAACCTCTTGGTCGAACA -ACGGAACAACCTCTTGGTCAGTCA -ACGGAACAACCTCTTGGTGATCCA -ACGGAACAACCTCTTGGTACGACA -ACGGAACAACCTCTTGGTAGCTCA -ACGGAACAACCTCTTGGTTCACGT -ACGGAACAACCTCTTGGTCGTAGT -ACGGAACAACCTCTTGGTGTCAGT -ACGGAACAACCTCTTGGTGAAGGT -ACGGAACAACCTCTTGGTAACCGT -ACGGAACAACCTCTTGGTTTGTGC -ACGGAACAACCTCTTGGTCTAAGC -ACGGAACAACCTCTTGGTACTAGC -ACGGAACAACCTCTTGGTAGATGC -ACGGAACAACCTCTTGGTTGAAGG -ACGGAACAACCTCTTGGTCAATGG -ACGGAACAACCTCTTGGTATGAGG -ACGGAACAACCTCTTGGTAATGGG -ACGGAACAACCTCTTGGTTCCTGA -ACGGAACAACCTCTTGGTTAGCGA -ACGGAACAACCTCTTGGTCACAGA -ACGGAACAACCTCTTGGTGCAAGA -ACGGAACAACCTCTTGGTGGTTGA -ACGGAACAACCTCTTGGTTCCGAT -ACGGAACAACCTCTTGGTTGGCAT -ACGGAACAACCTCTTGGTCGAGAT -ACGGAACAACCTCTTGGTTACCAC -ACGGAACAACCTCTTGGTCAGAAC -ACGGAACAACCTCTTGGTGTCTAC -ACGGAACAACCTCTTGGTACGTAC -ACGGAACAACCTCTTGGTAGTGAC -ACGGAACAACCTCTTGGTCTGTAG -ACGGAACAACCTCTTGGTCCTAAG -ACGGAACAACCTCTTGGTGTTCAG -ACGGAACAACCTCTTGGTGCATAG -ACGGAACAACCTCTTGGTGACAAG -ACGGAACAACCTCTTGGTAAGCAG -ACGGAACAACCTCTTGGTCGTCAA -ACGGAACAACCTCTTGGTGCTGAA -ACGGAACAACCTCTTGGTAGTACG -ACGGAACAACCTCTTGGTATCCGA -ACGGAACAACCTCTTGGTATGGGA -ACGGAACAACCTCTTGGTGTGCAA -ACGGAACAACCTCTTGGTGAGGAA -ACGGAACAACCTCTTGGTCAGGTA -ACGGAACAACCTCTTGGTGACTCT -ACGGAACAACCTCTTGGTAGTCCT -ACGGAACAACCTCTTGGTTAAGCC -ACGGAACAACCTCTTGGTATAGCC -ACGGAACAACCTCTTGGTTAACCG -ACGGAACAACCTCTTGGTATGCCA -ACGGAACAACCTCTTACGGGAAAC -ACGGAACAACCTCTTACGAACACC -ACGGAACAACCTCTTACGATCGAG -ACGGAACAACCTCTTACGCTCCTT -ACGGAACAACCTCTTACGCCTGTT -ACGGAACAACCTCTTACGCGGTTT -ACGGAACAACCTCTTACGGTGGTT -ACGGAACAACCTCTTACGGCCTTT -ACGGAACAACCTCTTACGGGTCTT -ACGGAACAACCTCTTACGACGCTT -ACGGAACAACCTCTTACGAGCGTT -ACGGAACAACCTCTTACGTTCGTC -ACGGAACAACCTCTTACGTCTCTC -ACGGAACAACCTCTTACGTGGATC -ACGGAACAACCTCTTACGCACTTC -ACGGAACAACCTCTTACGGTACTC -ACGGAACAACCTCTTACGGATGTC -ACGGAACAACCTCTTACGACAGTC -ACGGAACAACCTCTTACGTTGCTG -ACGGAACAACCTCTTACGTCCATG -ACGGAACAACCTCTTACGTGTGTG -ACGGAACAACCTCTTACGCTAGTG -ACGGAACAACCTCTTACGCATCTG -ACGGAACAACCTCTTACGGAGTTG -ACGGAACAACCTCTTACGAGACTG -ACGGAACAACCTCTTACGTCGGTA -ACGGAACAACCTCTTACGTGCCTA -ACGGAACAACCTCTTACGCCACTA -ACGGAACAACCTCTTACGGGAGTA -ACGGAACAACCTCTTACGTCGTCT -ACGGAACAACCTCTTACGTGCACT -ACGGAACAACCTCTTACGCTGACT -ACGGAACAACCTCTTACGCAACCT -ACGGAACAACCTCTTACGGCTACT -ACGGAACAACCTCTTACGGGATCT -ACGGAACAACCTCTTACGAAGGCT -ACGGAACAACCTCTTACGTCAACC -ACGGAACAACCTCTTACGTGTTCC -ACGGAACAACCTCTTACGATTCCC -ACGGAACAACCTCTTACGTTCTCG -ACGGAACAACCTCTTACGTAGACG -ACGGAACAACCTCTTACGGTAACG -ACGGAACAACCTCTTACGACTTCG -ACGGAACAACCTCTTACGTACGCA -ACGGAACAACCTCTTACGCTTGCA -ACGGAACAACCTCTTACGCGAACA -ACGGAACAACCTCTTACGCAGTCA -ACGGAACAACCTCTTACGGATCCA -ACGGAACAACCTCTTACGACGACA -ACGGAACAACCTCTTACGAGCTCA -ACGGAACAACCTCTTACGTCACGT -ACGGAACAACCTCTTACGCGTAGT -ACGGAACAACCTCTTACGGTCAGT -ACGGAACAACCTCTTACGGAAGGT -ACGGAACAACCTCTTACGAACCGT -ACGGAACAACCTCTTACGTTGTGC -ACGGAACAACCTCTTACGCTAAGC -ACGGAACAACCTCTTACGACTAGC -ACGGAACAACCTCTTACGAGATGC -ACGGAACAACCTCTTACGTGAAGG -ACGGAACAACCTCTTACGCAATGG -ACGGAACAACCTCTTACGATGAGG -ACGGAACAACCTCTTACGAATGGG -ACGGAACAACCTCTTACGTCCTGA -ACGGAACAACCTCTTACGTAGCGA -ACGGAACAACCTCTTACGCACAGA -ACGGAACAACCTCTTACGGCAAGA -ACGGAACAACCTCTTACGGGTTGA -ACGGAACAACCTCTTACGTCCGAT -ACGGAACAACCTCTTACGTGGCAT -ACGGAACAACCTCTTACGCGAGAT -ACGGAACAACCTCTTACGTACCAC -ACGGAACAACCTCTTACGCAGAAC -ACGGAACAACCTCTTACGGTCTAC -ACGGAACAACCTCTTACGACGTAC -ACGGAACAACCTCTTACGAGTGAC -ACGGAACAACCTCTTACGCTGTAG -ACGGAACAACCTCTTACGCCTAAG -ACGGAACAACCTCTTACGGTTCAG -ACGGAACAACCTCTTACGGCATAG -ACGGAACAACCTCTTACGGACAAG -ACGGAACAACCTCTTACGAAGCAG -ACGGAACAACCTCTTACGCGTCAA -ACGGAACAACCTCTTACGGCTGAA -ACGGAACAACCTCTTACGAGTACG -ACGGAACAACCTCTTACGATCCGA -ACGGAACAACCTCTTACGATGGGA -ACGGAACAACCTCTTACGGTGCAA -ACGGAACAACCTCTTACGGAGGAA -ACGGAACAACCTCTTACGCAGGTA -ACGGAACAACCTCTTACGGACTCT -ACGGAACAACCTCTTACGAGTCCT -ACGGAACAACCTCTTACGTAAGCC -ACGGAACAACCTCTTACGATAGCC -ACGGAACAACCTCTTACGTAACCG -ACGGAACAACCTCTTACGATGCCA -ACGGAACAACCTGTTAGCGGAAAC -ACGGAACAACCTGTTAGCAACACC -ACGGAACAACCTGTTAGCATCGAG -ACGGAACAACCTGTTAGCCTCCTT -ACGGAACAACCTGTTAGCCCTGTT -ACGGAACAACCTGTTAGCCGGTTT -ACGGAACAACCTGTTAGCGTGGTT -ACGGAACAACCTGTTAGCGCCTTT -ACGGAACAACCTGTTAGCGGTCTT -ACGGAACAACCTGTTAGCACGCTT -ACGGAACAACCTGTTAGCAGCGTT -ACGGAACAACCTGTTAGCTTCGTC -ACGGAACAACCTGTTAGCTCTCTC -ACGGAACAACCTGTTAGCTGGATC -ACGGAACAACCTGTTAGCCACTTC -ACGGAACAACCTGTTAGCGTACTC -ACGGAACAACCTGTTAGCGATGTC -ACGGAACAACCTGTTAGCACAGTC -ACGGAACAACCTGTTAGCTTGCTG -ACGGAACAACCTGTTAGCTCCATG -ACGGAACAACCTGTTAGCTGTGTG -ACGGAACAACCTGTTAGCCTAGTG -ACGGAACAACCTGTTAGCCATCTG -ACGGAACAACCTGTTAGCGAGTTG -ACGGAACAACCTGTTAGCAGACTG -ACGGAACAACCTGTTAGCTCGGTA -ACGGAACAACCTGTTAGCTGCCTA -ACGGAACAACCTGTTAGCCCACTA -ACGGAACAACCTGTTAGCGGAGTA -ACGGAACAACCTGTTAGCTCGTCT -ACGGAACAACCTGTTAGCTGCACT -ACGGAACAACCTGTTAGCCTGACT -ACGGAACAACCTGTTAGCCAACCT -ACGGAACAACCTGTTAGCGCTACT -ACGGAACAACCTGTTAGCGGATCT -ACGGAACAACCTGTTAGCAAGGCT -ACGGAACAACCTGTTAGCTCAACC -ACGGAACAACCTGTTAGCTGTTCC -ACGGAACAACCTGTTAGCATTCCC -ACGGAACAACCTGTTAGCTTCTCG -ACGGAACAACCTGTTAGCTAGACG -ACGGAACAACCTGTTAGCGTAACG -ACGGAACAACCTGTTAGCACTTCG -ACGGAACAACCTGTTAGCTACGCA -ACGGAACAACCTGTTAGCCTTGCA -ACGGAACAACCTGTTAGCCGAACA -ACGGAACAACCTGTTAGCCAGTCA -ACGGAACAACCTGTTAGCGATCCA -ACGGAACAACCTGTTAGCACGACA -ACGGAACAACCTGTTAGCAGCTCA -ACGGAACAACCTGTTAGCTCACGT -ACGGAACAACCTGTTAGCCGTAGT -ACGGAACAACCTGTTAGCGTCAGT -ACGGAACAACCTGTTAGCGAAGGT -ACGGAACAACCTGTTAGCAACCGT -ACGGAACAACCTGTTAGCTTGTGC -ACGGAACAACCTGTTAGCCTAAGC -ACGGAACAACCTGTTAGCACTAGC -ACGGAACAACCTGTTAGCAGATGC -ACGGAACAACCTGTTAGCTGAAGG -ACGGAACAACCTGTTAGCCAATGG -ACGGAACAACCTGTTAGCATGAGG -ACGGAACAACCTGTTAGCAATGGG -ACGGAACAACCTGTTAGCTCCTGA -ACGGAACAACCTGTTAGCTAGCGA -ACGGAACAACCTGTTAGCCACAGA -ACGGAACAACCTGTTAGCGCAAGA -ACGGAACAACCTGTTAGCGGTTGA -ACGGAACAACCTGTTAGCTCCGAT -ACGGAACAACCTGTTAGCTGGCAT -ACGGAACAACCTGTTAGCCGAGAT -ACGGAACAACCTGTTAGCTACCAC -ACGGAACAACCTGTTAGCCAGAAC -ACGGAACAACCTGTTAGCGTCTAC -ACGGAACAACCTGTTAGCACGTAC -ACGGAACAACCTGTTAGCAGTGAC -ACGGAACAACCTGTTAGCCTGTAG -ACGGAACAACCTGTTAGCCCTAAG -ACGGAACAACCTGTTAGCGTTCAG -ACGGAACAACCTGTTAGCGCATAG -ACGGAACAACCTGTTAGCGACAAG -ACGGAACAACCTGTTAGCAAGCAG -ACGGAACAACCTGTTAGCCGTCAA -ACGGAACAACCTGTTAGCGCTGAA -ACGGAACAACCTGTTAGCAGTACG -ACGGAACAACCTGTTAGCATCCGA -ACGGAACAACCTGTTAGCATGGGA -ACGGAACAACCTGTTAGCGTGCAA -ACGGAACAACCTGTTAGCGAGGAA -ACGGAACAACCTGTTAGCCAGGTA -ACGGAACAACCTGTTAGCGACTCT -ACGGAACAACCTGTTAGCAGTCCT -ACGGAACAACCTGTTAGCTAAGCC -ACGGAACAACCTGTTAGCATAGCC -ACGGAACAACCTGTTAGCTAACCG -ACGGAACAACCTGTTAGCATGCCA -ACGGAACAACCTGTCTTCGGAAAC -ACGGAACAACCTGTCTTCAACACC -ACGGAACAACCTGTCTTCATCGAG -ACGGAACAACCTGTCTTCCTCCTT -ACGGAACAACCTGTCTTCCCTGTT -ACGGAACAACCTGTCTTCCGGTTT -ACGGAACAACCTGTCTTCGTGGTT -ACGGAACAACCTGTCTTCGCCTTT -ACGGAACAACCTGTCTTCGGTCTT -ACGGAACAACCTGTCTTCACGCTT -ACGGAACAACCTGTCTTCAGCGTT -ACGGAACAACCTGTCTTCTTCGTC -ACGGAACAACCTGTCTTCTCTCTC -ACGGAACAACCTGTCTTCTGGATC -ACGGAACAACCTGTCTTCCACTTC -ACGGAACAACCTGTCTTCGTACTC -ACGGAACAACCTGTCTTCGATGTC -ACGGAACAACCTGTCTTCACAGTC -ACGGAACAACCTGTCTTCTTGCTG -ACGGAACAACCTGTCTTCTCCATG -ACGGAACAACCTGTCTTCTGTGTG -ACGGAACAACCTGTCTTCCTAGTG -ACGGAACAACCTGTCTTCCATCTG -ACGGAACAACCTGTCTTCGAGTTG -ACGGAACAACCTGTCTTCAGACTG -ACGGAACAACCTGTCTTCTCGGTA -ACGGAACAACCTGTCTTCTGCCTA -ACGGAACAACCTGTCTTCCCACTA -ACGGAACAACCTGTCTTCGGAGTA -ACGGAACAACCTGTCTTCTCGTCT -ACGGAACAACCTGTCTTCTGCACT -ACGGAACAACCTGTCTTCCTGACT -ACGGAACAACCTGTCTTCCAACCT -ACGGAACAACCTGTCTTCGCTACT -ACGGAACAACCTGTCTTCGGATCT -ACGGAACAACCTGTCTTCAAGGCT -ACGGAACAACCTGTCTTCTCAACC -ACGGAACAACCTGTCTTCTGTTCC -ACGGAACAACCTGTCTTCATTCCC -ACGGAACAACCTGTCTTCTTCTCG -ACGGAACAACCTGTCTTCTAGACG -ACGGAACAACCTGTCTTCGTAACG -ACGGAACAACCTGTCTTCACTTCG -ACGGAACAACCTGTCTTCTACGCA -ACGGAACAACCTGTCTTCCTTGCA -ACGGAACAACCTGTCTTCCGAACA -ACGGAACAACCTGTCTTCCAGTCA -ACGGAACAACCTGTCTTCGATCCA -ACGGAACAACCTGTCTTCACGACA -ACGGAACAACCTGTCTTCAGCTCA -ACGGAACAACCTGTCTTCTCACGT -ACGGAACAACCTGTCTTCCGTAGT -ACGGAACAACCTGTCTTCGTCAGT -ACGGAACAACCTGTCTTCGAAGGT -ACGGAACAACCTGTCTTCAACCGT -ACGGAACAACCTGTCTTCTTGTGC -ACGGAACAACCTGTCTTCCTAAGC -ACGGAACAACCTGTCTTCACTAGC -ACGGAACAACCTGTCTTCAGATGC -ACGGAACAACCTGTCTTCTGAAGG -ACGGAACAACCTGTCTTCCAATGG -ACGGAACAACCTGTCTTCATGAGG -ACGGAACAACCTGTCTTCAATGGG -ACGGAACAACCTGTCTTCTCCTGA -ACGGAACAACCTGTCTTCTAGCGA -ACGGAACAACCTGTCTTCCACAGA -ACGGAACAACCTGTCTTCGCAAGA -ACGGAACAACCTGTCTTCGGTTGA -ACGGAACAACCTGTCTTCTCCGAT -ACGGAACAACCTGTCTTCTGGCAT -ACGGAACAACCTGTCTTCCGAGAT -ACGGAACAACCTGTCTTCTACCAC -ACGGAACAACCTGTCTTCCAGAAC -ACGGAACAACCTGTCTTCGTCTAC -ACGGAACAACCTGTCTTCACGTAC -ACGGAACAACCTGTCTTCAGTGAC -ACGGAACAACCTGTCTTCCTGTAG -ACGGAACAACCTGTCTTCCCTAAG -ACGGAACAACCTGTCTTCGTTCAG -ACGGAACAACCTGTCTTCGCATAG -ACGGAACAACCTGTCTTCGACAAG -ACGGAACAACCTGTCTTCAAGCAG -ACGGAACAACCTGTCTTCCGTCAA -ACGGAACAACCTGTCTTCGCTGAA -ACGGAACAACCTGTCTTCAGTACG -ACGGAACAACCTGTCTTCATCCGA -ACGGAACAACCTGTCTTCATGGGA -ACGGAACAACCTGTCTTCGTGCAA -ACGGAACAACCTGTCTTCGAGGAA -ACGGAACAACCTGTCTTCCAGGTA -ACGGAACAACCTGTCTTCGACTCT -ACGGAACAACCTGTCTTCAGTCCT -ACGGAACAACCTGTCTTCTAAGCC -ACGGAACAACCTGTCTTCATAGCC -ACGGAACAACCTGTCTTCTAACCG -ACGGAACAACCTGTCTTCATGCCA -ACGGAACAACCTCTCTCTGGAAAC -ACGGAACAACCTCTCTCTAACACC -ACGGAACAACCTCTCTCTATCGAG -ACGGAACAACCTCTCTCTCTCCTT -ACGGAACAACCTCTCTCTCCTGTT -ACGGAACAACCTCTCTCTCGGTTT -ACGGAACAACCTCTCTCTGTGGTT -ACGGAACAACCTCTCTCTGCCTTT -ACGGAACAACCTCTCTCTGGTCTT -ACGGAACAACCTCTCTCTACGCTT -ACGGAACAACCTCTCTCTAGCGTT -ACGGAACAACCTCTCTCTTTCGTC -ACGGAACAACCTCTCTCTTCTCTC -ACGGAACAACCTCTCTCTTGGATC -ACGGAACAACCTCTCTCTCACTTC -ACGGAACAACCTCTCTCTGTACTC -ACGGAACAACCTCTCTCTGATGTC -ACGGAACAACCTCTCTCTACAGTC -ACGGAACAACCTCTCTCTTTGCTG -ACGGAACAACCTCTCTCTTCCATG -ACGGAACAACCTCTCTCTTGTGTG -ACGGAACAACCTCTCTCTCTAGTG -ACGGAACAACCTCTCTCTCATCTG -ACGGAACAACCTCTCTCTGAGTTG -ACGGAACAACCTCTCTCTAGACTG -ACGGAACAACCTCTCTCTTCGGTA -ACGGAACAACCTCTCTCTTGCCTA -ACGGAACAACCTCTCTCTCCACTA -ACGGAACAACCTCTCTCTGGAGTA -ACGGAACAACCTCTCTCTTCGTCT -ACGGAACAACCTCTCTCTTGCACT -ACGGAACAACCTCTCTCTCTGACT -ACGGAACAACCTCTCTCTCAACCT -ACGGAACAACCTCTCTCTGCTACT -ACGGAACAACCTCTCTCTGGATCT -ACGGAACAACCTCTCTCTAAGGCT -ACGGAACAACCTCTCTCTTCAACC -ACGGAACAACCTCTCTCTTGTTCC -ACGGAACAACCTCTCTCTATTCCC -ACGGAACAACCTCTCTCTTTCTCG -ACGGAACAACCTCTCTCTTAGACG -ACGGAACAACCTCTCTCTGTAACG -ACGGAACAACCTCTCTCTACTTCG -ACGGAACAACCTCTCTCTTACGCA -ACGGAACAACCTCTCTCTCTTGCA -ACGGAACAACCTCTCTCTCGAACA -ACGGAACAACCTCTCTCTCAGTCA -ACGGAACAACCTCTCTCTGATCCA -ACGGAACAACCTCTCTCTACGACA -ACGGAACAACCTCTCTCTAGCTCA -ACGGAACAACCTCTCTCTTCACGT -ACGGAACAACCTCTCTCTCGTAGT -ACGGAACAACCTCTCTCTGTCAGT -ACGGAACAACCTCTCTCTGAAGGT -ACGGAACAACCTCTCTCTAACCGT -ACGGAACAACCTCTCTCTTTGTGC -ACGGAACAACCTCTCTCTCTAAGC -ACGGAACAACCTCTCTCTACTAGC -ACGGAACAACCTCTCTCTAGATGC -ACGGAACAACCTCTCTCTTGAAGG -ACGGAACAACCTCTCTCTCAATGG -ACGGAACAACCTCTCTCTATGAGG -ACGGAACAACCTCTCTCTAATGGG -ACGGAACAACCTCTCTCTTCCTGA -ACGGAACAACCTCTCTCTTAGCGA -ACGGAACAACCTCTCTCTCACAGA -ACGGAACAACCTCTCTCTGCAAGA -ACGGAACAACCTCTCTCTGGTTGA -ACGGAACAACCTCTCTCTTCCGAT -ACGGAACAACCTCTCTCTTGGCAT -ACGGAACAACCTCTCTCTCGAGAT -ACGGAACAACCTCTCTCTTACCAC -ACGGAACAACCTCTCTCTCAGAAC -ACGGAACAACCTCTCTCTGTCTAC -ACGGAACAACCTCTCTCTACGTAC -ACGGAACAACCTCTCTCTAGTGAC -ACGGAACAACCTCTCTCTCTGTAG -ACGGAACAACCTCTCTCTCCTAAG -ACGGAACAACCTCTCTCTGTTCAG -ACGGAACAACCTCTCTCTGCATAG -ACGGAACAACCTCTCTCTGACAAG -ACGGAACAACCTCTCTCTAAGCAG -ACGGAACAACCTCTCTCTCGTCAA -ACGGAACAACCTCTCTCTGCTGAA -ACGGAACAACCTCTCTCTAGTACG -ACGGAACAACCTCTCTCTATCCGA -ACGGAACAACCTCTCTCTATGGGA -ACGGAACAACCTCTCTCTGTGCAA -ACGGAACAACCTCTCTCTGAGGAA -ACGGAACAACCTCTCTCTCAGGTA -ACGGAACAACCTCTCTCTGACTCT -ACGGAACAACCTCTCTCTAGTCCT -ACGGAACAACCTCTCTCTTAAGCC -ACGGAACAACCTCTCTCTATAGCC -ACGGAACAACCTCTCTCTTAACCG -ACGGAACAACCTCTCTCTATGCCA -ACGGAACAACCTATCTGGGGAAAC -ACGGAACAACCTATCTGGAACACC -ACGGAACAACCTATCTGGATCGAG -ACGGAACAACCTATCTGGCTCCTT -ACGGAACAACCTATCTGGCCTGTT -ACGGAACAACCTATCTGGCGGTTT -ACGGAACAACCTATCTGGGTGGTT -ACGGAACAACCTATCTGGGCCTTT -ACGGAACAACCTATCTGGGGTCTT -ACGGAACAACCTATCTGGACGCTT -ACGGAACAACCTATCTGGAGCGTT -ACGGAACAACCTATCTGGTTCGTC -ACGGAACAACCTATCTGGTCTCTC -ACGGAACAACCTATCTGGTGGATC -ACGGAACAACCTATCTGGCACTTC -ACGGAACAACCTATCTGGGTACTC -ACGGAACAACCTATCTGGGATGTC -ACGGAACAACCTATCTGGACAGTC -ACGGAACAACCTATCTGGTTGCTG -ACGGAACAACCTATCTGGTCCATG -ACGGAACAACCTATCTGGTGTGTG -ACGGAACAACCTATCTGGCTAGTG -ACGGAACAACCTATCTGGCATCTG -ACGGAACAACCTATCTGGGAGTTG -ACGGAACAACCTATCTGGAGACTG -ACGGAACAACCTATCTGGTCGGTA -ACGGAACAACCTATCTGGTGCCTA -ACGGAACAACCTATCTGGCCACTA -ACGGAACAACCTATCTGGGGAGTA -ACGGAACAACCTATCTGGTCGTCT -ACGGAACAACCTATCTGGTGCACT -ACGGAACAACCTATCTGGCTGACT -ACGGAACAACCTATCTGGCAACCT -ACGGAACAACCTATCTGGGCTACT -ACGGAACAACCTATCTGGGGATCT -ACGGAACAACCTATCTGGAAGGCT -ACGGAACAACCTATCTGGTCAACC -ACGGAACAACCTATCTGGTGTTCC -ACGGAACAACCTATCTGGATTCCC -ACGGAACAACCTATCTGGTTCTCG -ACGGAACAACCTATCTGGTAGACG -ACGGAACAACCTATCTGGGTAACG -ACGGAACAACCTATCTGGACTTCG -ACGGAACAACCTATCTGGTACGCA -ACGGAACAACCTATCTGGCTTGCA -ACGGAACAACCTATCTGGCGAACA -ACGGAACAACCTATCTGGCAGTCA -ACGGAACAACCTATCTGGGATCCA -ACGGAACAACCTATCTGGACGACA -ACGGAACAACCTATCTGGAGCTCA -ACGGAACAACCTATCTGGTCACGT -ACGGAACAACCTATCTGGCGTAGT -ACGGAACAACCTATCTGGGTCAGT -ACGGAACAACCTATCTGGGAAGGT -ACGGAACAACCTATCTGGAACCGT -ACGGAACAACCTATCTGGTTGTGC -ACGGAACAACCTATCTGGCTAAGC -ACGGAACAACCTATCTGGACTAGC -ACGGAACAACCTATCTGGAGATGC -ACGGAACAACCTATCTGGTGAAGG -ACGGAACAACCTATCTGGCAATGG -ACGGAACAACCTATCTGGATGAGG -ACGGAACAACCTATCTGGAATGGG -ACGGAACAACCTATCTGGTCCTGA -ACGGAACAACCTATCTGGTAGCGA -ACGGAACAACCTATCTGGCACAGA -ACGGAACAACCTATCTGGGCAAGA -ACGGAACAACCTATCTGGGGTTGA -ACGGAACAACCTATCTGGTCCGAT -ACGGAACAACCTATCTGGTGGCAT -ACGGAACAACCTATCTGGCGAGAT -ACGGAACAACCTATCTGGTACCAC -ACGGAACAACCTATCTGGCAGAAC -ACGGAACAACCTATCTGGGTCTAC -ACGGAACAACCTATCTGGACGTAC -ACGGAACAACCTATCTGGAGTGAC -ACGGAACAACCTATCTGGCTGTAG -ACGGAACAACCTATCTGGCCTAAG -ACGGAACAACCTATCTGGGTTCAG -ACGGAACAACCTATCTGGGCATAG -ACGGAACAACCTATCTGGGACAAG -ACGGAACAACCTATCTGGAAGCAG -ACGGAACAACCTATCTGGCGTCAA -ACGGAACAACCTATCTGGGCTGAA -ACGGAACAACCTATCTGGAGTACG -ACGGAACAACCTATCTGGATCCGA -ACGGAACAACCTATCTGGATGGGA -ACGGAACAACCTATCTGGGTGCAA -ACGGAACAACCTATCTGGGAGGAA -ACGGAACAACCTATCTGGCAGGTA -ACGGAACAACCTATCTGGGACTCT -ACGGAACAACCTATCTGGAGTCCT -ACGGAACAACCTATCTGGTAAGCC -ACGGAACAACCTATCTGGATAGCC -ACGGAACAACCTATCTGGTAACCG -ACGGAACAACCTATCTGGATGCCA -ACGGAACAACCTTTCCACGGAAAC -ACGGAACAACCTTTCCACAACACC -ACGGAACAACCTTTCCACATCGAG -ACGGAACAACCTTTCCACCTCCTT -ACGGAACAACCTTTCCACCCTGTT -ACGGAACAACCTTTCCACCGGTTT -ACGGAACAACCTTTCCACGTGGTT -ACGGAACAACCTTTCCACGCCTTT -ACGGAACAACCTTTCCACGGTCTT -ACGGAACAACCTTTCCACACGCTT -ACGGAACAACCTTTCCACAGCGTT -ACGGAACAACCTTTCCACTTCGTC -ACGGAACAACCTTTCCACTCTCTC -ACGGAACAACCTTTCCACTGGATC -ACGGAACAACCTTTCCACCACTTC -ACGGAACAACCTTTCCACGTACTC -ACGGAACAACCTTTCCACGATGTC -ACGGAACAACCTTTCCACACAGTC -ACGGAACAACCTTTCCACTTGCTG -ACGGAACAACCTTTCCACTCCATG -ACGGAACAACCTTTCCACTGTGTG -ACGGAACAACCTTTCCACCTAGTG -ACGGAACAACCTTTCCACCATCTG -ACGGAACAACCTTTCCACGAGTTG -ACGGAACAACCTTTCCACAGACTG -ACGGAACAACCTTTCCACTCGGTA -ACGGAACAACCTTTCCACTGCCTA -ACGGAACAACCTTTCCACCCACTA -ACGGAACAACCTTTCCACGGAGTA -ACGGAACAACCTTTCCACTCGTCT -ACGGAACAACCTTTCCACTGCACT -ACGGAACAACCTTTCCACCTGACT -ACGGAACAACCTTTCCACCAACCT -ACGGAACAACCTTTCCACGCTACT -ACGGAACAACCTTTCCACGGATCT -ACGGAACAACCTTTCCACAAGGCT -ACGGAACAACCTTTCCACTCAACC -ACGGAACAACCTTTCCACTGTTCC -ACGGAACAACCTTTCCACATTCCC -ACGGAACAACCTTTCCACTTCTCG -ACGGAACAACCTTTCCACTAGACG -ACGGAACAACCTTTCCACGTAACG -ACGGAACAACCTTTCCACACTTCG -ACGGAACAACCTTTCCACTACGCA -ACGGAACAACCTTTCCACCTTGCA -ACGGAACAACCTTTCCACCGAACA -ACGGAACAACCTTTCCACCAGTCA -ACGGAACAACCTTTCCACGATCCA -ACGGAACAACCTTTCCACACGACA -ACGGAACAACCTTTCCACAGCTCA -ACGGAACAACCTTTCCACTCACGT -ACGGAACAACCTTTCCACCGTAGT -ACGGAACAACCTTTCCACGTCAGT -ACGGAACAACCTTTCCACGAAGGT -ACGGAACAACCTTTCCACAACCGT -ACGGAACAACCTTTCCACTTGTGC -ACGGAACAACCTTTCCACCTAAGC -ACGGAACAACCTTTCCACACTAGC -ACGGAACAACCTTTCCACAGATGC -ACGGAACAACCTTTCCACTGAAGG -ACGGAACAACCTTTCCACCAATGG -ACGGAACAACCTTTCCACATGAGG -ACGGAACAACCTTTCCACAATGGG -ACGGAACAACCTTTCCACTCCTGA -ACGGAACAACCTTTCCACTAGCGA -ACGGAACAACCTTTCCACCACAGA -ACGGAACAACCTTTCCACGCAAGA -ACGGAACAACCTTTCCACGGTTGA -ACGGAACAACCTTTCCACTCCGAT -ACGGAACAACCTTTCCACTGGCAT -ACGGAACAACCTTTCCACCGAGAT -ACGGAACAACCTTTCCACTACCAC -ACGGAACAACCTTTCCACCAGAAC -ACGGAACAACCTTTCCACGTCTAC -ACGGAACAACCTTTCCACACGTAC -ACGGAACAACCTTTCCACAGTGAC -ACGGAACAACCTTTCCACCTGTAG -ACGGAACAACCTTTCCACCCTAAG -ACGGAACAACCTTTCCACGTTCAG -ACGGAACAACCTTTCCACGCATAG -ACGGAACAACCTTTCCACGACAAG -ACGGAACAACCTTTCCACAAGCAG -ACGGAACAACCTTTCCACCGTCAA -ACGGAACAACCTTTCCACGCTGAA -ACGGAACAACCTTTCCACAGTACG -ACGGAACAACCTTTCCACATCCGA -ACGGAACAACCTTTCCACATGGGA -ACGGAACAACCTTTCCACGTGCAA -ACGGAACAACCTTTCCACGAGGAA -ACGGAACAACCTTTCCACCAGGTA -ACGGAACAACCTTTCCACGACTCT -ACGGAACAACCTTTCCACAGTCCT -ACGGAACAACCTTTCCACTAAGCC -ACGGAACAACCTTTCCACATAGCC -ACGGAACAACCTTTCCACTAACCG -ACGGAACAACCTTTCCACATGCCA -ACGGAACAACCTCTCGTAGGAAAC -ACGGAACAACCTCTCGTAAACACC -ACGGAACAACCTCTCGTAATCGAG -ACGGAACAACCTCTCGTACTCCTT -ACGGAACAACCTCTCGTACCTGTT -ACGGAACAACCTCTCGTACGGTTT -ACGGAACAACCTCTCGTAGTGGTT -ACGGAACAACCTCTCGTAGCCTTT -ACGGAACAACCTCTCGTAGGTCTT -ACGGAACAACCTCTCGTAACGCTT -ACGGAACAACCTCTCGTAAGCGTT -ACGGAACAACCTCTCGTATTCGTC -ACGGAACAACCTCTCGTATCTCTC -ACGGAACAACCTCTCGTATGGATC -ACGGAACAACCTCTCGTACACTTC -ACGGAACAACCTCTCGTAGTACTC -ACGGAACAACCTCTCGTAGATGTC -ACGGAACAACCTCTCGTAACAGTC -ACGGAACAACCTCTCGTATTGCTG -ACGGAACAACCTCTCGTATCCATG -ACGGAACAACCTCTCGTATGTGTG -ACGGAACAACCTCTCGTACTAGTG -ACGGAACAACCTCTCGTACATCTG -ACGGAACAACCTCTCGTAGAGTTG -ACGGAACAACCTCTCGTAAGACTG -ACGGAACAACCTCTCGTATCGGTA -ACGGAACAACCTCTCGTATGCCTA -ACGGAACAACCTCTCGTACCACTA -ACGGAACAACCTCTCGTAGGAGTA -ACGGAACAACCTCTCGTATCGTCT -ACGGAACAACCTCTCGTATGCACT -ACGGAACAACCTCTCGTACTGACT -ACGGAACAACCTCTCGTACAACCT -ACGGAACAACCTCTCGTAGCTACT -ACGGAACAACCTCTCGTAGGATCT -ACGGAACAACCTCTCGTAAAGGCT -ACGGAACAACCTCTCGTATCAACC -ACGGAACAACCTCTCGTATGTTCC -ACGGAACAACCTCTCGTAATTCCC -ACGGAACAACCTCTCGTATTCTCG -ACGGAACAACCTCTCGTATAGACG -ACGGAACAACCTCTCGTAGTAACG -ACGGAACAACCTCTCGTAACTTCG -ACGGAACAACCTCTCGTATACGCA -ACGGAACAACCTCTCGTACTTGCA -ACGGAACAACCTCTCGTACGAACA -ACGGAACAACCTCTCGTACAGTCA -ACGGAACAACCTCTCGTAGATCCA -ACGGAACAACCTCTCGTAACGACA -ACGGAACAACCTCTCGTAAGCTCA -ACGGAACAACCTCTCGTATCACGT -ACGGAACAACCTCTCGTACGTAGT -ACGGAACAACCTCTCGTAGTCAGT -ACGGAACAACCTCTCGTAGAAGGT -ACGGAACAACCTCTCGTAAACCGT -ACGGAACAACCTCTCGTATTGTGC -ACGGAACAACCTCTCGTACTAAGC -ACGGAACAACCTCTCGTAACTAGC -ACGGAACAACCTCTCGTAAGATGC -ACGGAACAACCTCTCGTATGAAGG -ACGGAACAACCTCTCGTACAATGG -ACGGAACAACCTCTCGTAATGAGG -ACGGAACAACCTCTCGTAAATGGG -ACGGAACAACCTCTCGTATCCTGA -ACGGAACAACCTCTCGTATAGCGA -ACGGAACAACCTCTCGTACACAGA -ACGGAACAACCTCTCGTAGCAAGA -ACGGAACAACCTCTCGTAGGTTGA -ACGGAACAACCTCTCGTATCCGAT -ACGGAACAACCTCTCGTATGGCAT -ACGGAACAACCTCTCGTACGAGAT -ACGGAACAACCTCTCGTATACCAC -ACGGAACAACCTCTCGTACAGAAC -ACGGAACAACCTCTCGTAGTCTAC -ACGGAACAACCTCTCGTAACGTAC -ACGGAACAACCTCTCGTAAGTGAC -ACGGAACAACCTCTCGTACTGTAG -ACGGAACAACCTCTCGTACCTAAG -ACGGAACAACCTCTCGTAGTTCAG -ACGGAACAACCTCTCGTAGCATAG -ACGGAACAACCTCTCGTAGACAAG -ACGGAACAACCTCTCGTAAAGCAG -ACGGAACAACCTCTCGTACGTCAA -ACGGAACAACCTCTCGTAGCTGAA -ACGGAACAACCTCTCGTAAGTACG -ACGGAACAACCTCTCGTAATCCGA -ACGGAACAACCTCTCGTAATGGGA -ACGGAACAACCTCTCGTAGTGCAA -ACGGAACAACCTCTCGTAGAGGAA -ACGGAACAACCTCTCGTACAGGTA -ACGGAACAACCTCTCGTAGACTCT -ACGGAACAACCTCTCGTAAGTCCT -ACGGAACAACCTCTCGTATAAGCC -ACGGAACAACCTCTCGTAATAGCC -ACGGAACAACCTCTCGTATAACCG -ACGGAACAACCTCTCGTAATGCCA -ACGGAACAACCTGTCGATGGAAAC -ACGGAACAACCTGTCGATAACACC -ACGGAACAACCTGTCGATATCGAG -ACGGAACAACCTGTCGATCTCCTT -ACGGAACAACCTGTCGATCCTGTT -ACGGAACAACCTGTCGATCGGTTT -ACGGAACAACCTGTCGATGTGGTT -ACGGAACAACCTGTCGATGCCTTT -ACGGAACAACCTGTCGATGGTCTT -ACGGAACAACCTGTCGATACGCTT -ACGGAACAACCTGTCGATAGCGTT -ACGGAACAACCTGTCGATTTCGTC -ACGGAACAACCTGTCGATTCTCTC -ACGGAACAACCTGTCGATTGGATC -ACGGAACAACCTGTCGATCACTTC -ACGGAACAACCTGTCGATGTACTC -ACGGAACAACCTGTCGATGATGTC -ACGGAACAACCTGTCGATACAGTC -ACGGAACAACCTGTCGATTTGCTG -ACGGAACAACCTGTCGATTCCATG -ACGGAACAACCTGTCGATTGTGTG -ACGGAACAACCTGTCGATCTAGTG -ACGGAACAACCTGTCGATCATCTG -ACGGAACAACCTGTCGATGAGTTG -ACGGAACAACCTGTCGATAGACTG -ACGGAACAACCTGTCGATTCGGTA -ACGGAACAACCTGTCGATTGCCTA -ACGGAACAACCTGTCGATCCACTA -ACGGAACAACCTGTCGATGGAGTA -ACGGAACAACCTGTCGATTCGTCT -ACGGAACAACCTGTCGATTGCACT -ACGGAACAACCTGTCGATCTGACT -ACGGAACAACCTGTCGATCAACCT -ACGGAACAACCTGTCGATGCTACT -ACGGAACAACCTGTCGATGGATCT -ACGGAACAACCTGTCGATAAGGCT -ACGGAACAACCTGTCGATTCAACC -ACGGAACAACCTGTCGATTGTTCC -ACGGAACAACCTGTCGATATTCCC -ACGGAACAACCTGTCGATTTCTCG -ACGGAACAACCTGTCGATTAGACG -ACGGAACAACCTGTCGATGTAACG -ACGGAACAACCTGTCGATACTTCG -ACGGAACAACCTGTCGATTACGCA -ACGGAACAACCTGTCGATCTTGCA -ACGGAACAACCTGTCGATCGAACA -ACGGAACAACCTGTCGATCAGTCA -ACGGAACAACCTGTCGATGATCCA -ACGGAACAACCTGTCGATACGACA -ACGGAACAACCTGTCGATAGCTCA -ACGGAACAACCTGTCGATTCACGT -ACGGAACAACCTGTCGATCGTAGT -ACGGAACAACCTGTCGATGTCAGT -ACGGAACAACCTGTCGATGAAGGT -ACGGAACAACCTGTCGATAACCGT -ACGGAACAACCTGTCGATTTGTGC -ACGGAACAACCTGTCGATCTAAGC -ACGGAACAACCTGTCGATACTAGC -ACGGAACAACCTGTCGATAGATGC -ACGGAACAACCTGTCGATTGAAGG -ACGGAACAACCTGTCGATCAATGG -ACGGAACAACCTGTCGATATGAGG -ACGGAACAACCTGTCGATAATGGG -ACGGAACAACCTGTCGATTCCTGA -ACGGAACAACCTGTCGATTAGCGA -ACGGAACAACCTGTCGATCACAGA -ACGGAACAACCTGTCGATGCAAGA -ACGGAACAACCTGTCGATGGTTGA -ACGGAACAACCTGTCGATTCCGAT -ACGGAACAACCTGTCGATTGGCAT -ACGGAACAACCTGTCGATCGAGAT -ACGGAACAACCTGTCGATTACCAC -ACGGAACAACCTGTCGATCAGAAC -ACGGAACAACCTGTCGATGTCTAC -ACGGAACAACCTGTCGATACGTAC -ACGGAACAACCTGTCGATAGTGAC -ACGGAACAACCTGTCGATCTGTAG -ACGGAACAACCTGTCGATCCTAAG -ACGGAACAACCTGTCGATGTTCAG -ACGGAACAACCTGTCGATGCATAG -ACGGAACAACCTGTCGATGACAAG -ACGGAACAACCTGTCGATAAGCAG -ACGGAACAACCTGTCGATCGTCAA -ACGGAACAACCTGTCGATGCTGAA -ACGGAACAACCTGTCGATAGTACG -ACGGAACAACCTGTCGATATCCGA -ACGGAACAACCTGTCGATATGGGA -ACGGAACAACCTGTCGATGTGCAA -ACGGAACAACCTGTCGATGAGGAA -ACGGAACAACCTGTCGATCAGGTA -ACGGAACAACCTGTCGATGACTCT -ACGGAACAACCTGTCGATAGTCCT -ACGGAACAACCTGTCGATTAAGCC -ACGGAACAACCTGTCGATATAGCC -ACGGAACAACCTGTCGATTAACCG -ACGGAACAACCTGTCGATATGCCA -ACGGAACAACCTGTCACAGGAAAC -ACGGAACAACCTGTCACAAACACC -ACGGAACAACCTGTCACAATCGAG -ACGGAACAACCTGTCACACTCCTT -ACGGAACAACCTGTCACACCTGTT -ACGGAACAACCTGTCACACGGTTT -ACGGAACAACCTGTCACAGTGGTT -ACGGAACAACCTGTCACAGCCTTT -ACGGAACAACCTGTCACAGGTCTT -ACGGAACAACCTGTCACAACGCTT -ACGGAACAACCTGTCACAAGCGTT -ACGGAACAACCTGTCACATTCGTC -ACGGAACAACCTGTCACATCTCTC -ACGGAACAACCTGTCACATGGATC -ACGGAACAACCTGTCACACACTTC -ACGGAACAACCTGTCACAGTACTC -ACGGAACAACCTGTCACAGATGTC -ACGGAACAACCTGTCACAACAGTC -ACGGAACAACCTGTCACATTGCTG -ACGGAACAACCTGTCACATCCATG -ACGGAACAACCTGTCACATGTGTG -ACGGAACAACCTGTCACACTAGTG -ACGGAACAACCTGTCACACATCTG -ACGGAACAACCTGTCACAGAGTTG -ACGGAACAACCTGTCACAAGACTG -ACGGAACAACCTGTCACATCGGTA -ACGGAACAACCTGTCACATGCCTA -ACGGAACAACCTGTCACACCACTA -ACGGAACAACCTGTCACAGGAGTA -ACGGAACAACCTGTCACATCGTCT -ACGGAACAACCTGTCACATGCACT -ACGGAACAACCTGTCACACTGACT -ACGGAACAACCTGTCACACAACCT -ACGGAACAACCTGTCACAGCTACT -ACGGAACAACCTGTCACAGGATCT -ACGGAACAACCTGTCACAAAGGCT -ACGGAACAACCTGTCACATCAACC -ACGGAACAACCTGTCACATGTTCC -ACGGAACAACCTGTCACAATTCCC -ACGGAACAACCTGTCACATTCTCG -ACGGAACAACCTGTCACATAGACG -ACGGAACAACCTGTCACAGTAACG -ACGGAACAACCTGTCACAACTTCG -ACGGAACAACCTGTCACATACGCA -ACGGAACAACCTGTCACACTTGCA -ACGGAACAACCTGTCACACGAACA -ACGGAACAACCTGTCACACAGTCA -ACGGAACAACCTGTCACAGATCCA -ACGGAACAACCTGTCACAACGACA -ACGGAACAACCTGTCACAAGCTCA -ACGGAACAACCTGTCACATCACGT -ACGGAACAACCTGTCACACGTAGT -ACGGAACAACCTGTCACAGTCAGT -ACGGAACAACCTGTCACAGAAGGT -ACGGAACAACCTGTCACAAACCGT -ACGGAACAACCTGTCACATTGTGC -ACGGAACAACCTGTCACACTAAGC -ACGGAACAACCTGTCACAACTAGC -ACGGAACAACCTGTCACAAGATGC -ACGGAACAACCTGTCACATGAAGG -ACGGAACAACCTGTCACACAATGG -ACGGAACAACCTGTCACAATGAGG -ACGGAACAACCTGTCACAAATGGG -ACGGAACAACCTGTCACATCCTGA -ACGGAACAACCTGTCACATAGCGA -ACGGAACAACCTGTCACACACAGA -ACGGAACAACCTGTCACAGCAAGA -ACGGAACAACCTGTCACAGGTTGA -ACGGAACAACCTGTCACATCCGAT -ACGGAACAACCTGTCACATGGCAT -ACGGAACAACCTGTCACACGAGAT -ACGGAACAACCTGTCACATACCAC -ACGGAACAACCTGTCACACAGAAC -ACGGAACAACCTGTCACAGTCTAC -ACGGAACAACCTGTCACAACGTAC -ACGGAACAACCTGTCACAAGTGAC -ACGGAACAACCTGTCACACTGTAG -ACGGAACAACCTGTCACACCTAAG -ACGGAACAACCTGTCACAGTTCAG -ACGGAACAACCTGTCACAGCATAG -ACGGAACAACCTGTCACAGACAAG -ACGGAACAACCTGTCACAAAGCAG -ACGGAACAACCTGTCACACGTCAA -ACGGAACAACCTGTCACAGCTGAA -ACGGAACAACCTGTCACAAGTACG -ACGGAACAACCTGTCACAATCCGA -ACGGAACAACCTGTCACAATGGGA -ACGGAACAACCTGTCACAGTGCAA -ACGGAACAACCTGTCACAGAGGAA -ACGGAACAACCTGTCACACAGGTA -ACGGAACAACCTGTCACAGACTCT -ACGGAACAACCTGTCACAAGTCCT -ACGGAACAACCTGTCACATAAGCC -ACGGAACAACCTGTCACAATAGCC -ACGGAACAACCTGTCACATAACCG -ACGGAACAACCTGTCACAATGCCA -ACGGAACAACCTCTGTTGGGAAAC -ACGGAACAACCTCTGTTGAACACC -ACGGAACAACCTCTGTTGATCGAG -ACGGAACAACCTCTGTTGCTCCTT -ACGGAACAACCTCTGTTGCCTGTT -ACGGAACAACCTCTGTTGCGGTTT -ACGGAACAACCTCTGTTGGTGGTT -ACGGAACAACCTCTGTTGGCCTTT -ACGGAACAACCTCTGTTGGGTCTT -ACGGAACAACCTCTGTTGACGCTT -ACGGAACAACCTCTGTTGAGCGTT -ACGGAACAACCTCTGTTGTTCGTC -ACGGAACAACCTCTGTTGTCTCTC -ACGGAACAACCTCTGTTGTGGATC -ACGGAACAACCTCTGTTGCACTTC -ACGGAACAACCTCTGTTGGTACTC -ACGGAACAACCTCTGTTGGATGTC -ACGGAACAACCTCTGTTGACAGTC -ACGGAACAACCTCTGTTGTTGCTG -ACGGAACAACCTCTGTTGTCCATG -ACGGAACAACCTCTGTTGTGTGTG -ACGGAACAACCTCTGTTGCTAGTG -ACGGAACAACCTCTGTTGCATCTG -ACGGAACAACCTCTGTTGGAGTTG -ACGGAACAACCTCTGTTGAGACTG -ACGGAACAACCTCTGTTGTCGGTA -ACGGAACAACCTCTGTTGTGCCTA -ACGGAACAACCTCTGTTGCCACTA -ACGGAACAACCTCTGTTGGGAGTA -ACGGAACAACCTCTGTTGTCGTCT -ACGGAACAACCTCTGTTGTGCACT -ACGGAACAACCTCTGTTGCTGACT -ACGGAACAACCTCTGTTGCAACCT -ACGGAACAACCTCTGTTGGCTACT -ACGGAACAACCTCTGTTGGGATCT -ACGGAACAACCTCTGTTGAAGGCT -ACGGAACAACCTCTGTTGTCAACC -ACGGAACAACCTCTGTTGTGTTCC -ACGGAACAACCTCTGTTGATTCCC -ACGGAACAACCTCTGTTGTTCTCG -ACGGAACAACCTCTGTTGTAGACG -ACGGAACAACCTCTGTTGGTAACG -ACGGAACAACCTCTGTTGACTTCG -ACGGAACAACCTCTGTTGTACGCA -ACGGAACAACCTCTGTTGCTTGCA -ACGGAACAACCTCTGTTGCGAACA -ACGGAACAACCTCTGTTGCAGTCA -ACGGAACAACCTCTGTTGGATCCA -ACGGAACAACCTCTGTTGACGACA -ACGGAACAACCTCTGTTGAGCTCA -ACGGAACAACCTCTGTTGTCACGT -ACGGAACAACCTCTGTTGCGTAGT -ACGGAACAACCTCTGTTGGTCAGT -ACGGAACAACCTCTGTTGGAAGGT -ACGGAACAACCTCTGTTGAACCGT -ACGGAACAACCTCTGTTGTTGTGC -ACGGAACAACCTCTGTTGCTAAGC -ACGGAACAACCTCTGTTGACTAGC -ACGGAACAACCTCTGTTGAGATGC -ACGGAACAACCTCTGTTGTGAAGG -ACGGAACAACCTCTGTTGCAATGG -ACGGAACAACCTCTGTTGATGAGG -ACGGAACAACCTCTGTTGAATGGG -ACGGAACAACCTCTGTTGTCCTGA -ACGGAACAACCTCTGTTGTAGCGA -ACGGAACAACCTCTGTTGCACAGA -ACGGAACAACCTCTGTTGGCAAGA -ACGGAACAACCTCTGTTGGGTTGA -ACGGAACAACCTCTGTTGTCCGAT -ACGGAACAACCTCTGTTGTGGCAT -ACGGAACAACCTCTGTTGCGAGAT -ACGGAACAACCTCTGTTGTACCAC -ACGGAACAACCTCTGTTGCAGAAC -ACGGAACAACCTCTGTTGGTCTAC -ACGGAACAACCTCTGTTGACGTAC -ACGGAACAACCTCTGTTGAGTGAC -ACGGAACAACCTCTGTTGCTGTAG -ACGGAACAACCTCTGTTGCCTAAG -ACGGAACAACCTCTGTTGGTTCAG -ACGGAACAACCTCTGTTGGCATAG -ACGGAACAACCTCTGTTGGACAAG -ACGGAACAACCTCTGTTGAAGCAG -ACGGAACAACCTCTGTTGCGTCAA -ACGGAACAACCTCTGTTGGCTGAA -ACGGAACAACCTCTGTTGAGTACG -ACGGAACAACCTCTGTTGATCCGA -ACGGAACAACCTCTGTTGATGGGA -ACGGAACAACCTCTGTTGGTGCAA -ACGGAACAACCTCTGTTGGAGGAA -ACGGAACAACCTCTGTTGCAGGTA -ACGGAACAACCTCTGTTGGACTCT -ACGGAACAACCTCTGTTGAGTCCT -ACGGAACAACCTCTGTTGTAAGCC -ACGGAACAACCTCTGTTGATAGCC -ACGGAACAACCTCTGTTGTAACCG -ACGGAACAACCTCTGTTGATGCCA -ACGGAACAACCTATGTCCGGAAAC -ACGGAACAACCTATGTCCAACACC -ACGGAACAACCTATGTCCATCGAG -ACGGAACAACCTATGTCCCTCCTT -ACGGAACAACCTATGTCCCCTGTT -ACGGAACAACCTATGTCCCGGTTT -ACGGAACAACCTATGTCCGTGGTT -ACGGAACAACCTATGTCCGCCTTT -ACGGAACAACCTATGTCCGGTCTT -ACGGAACAACCTATGTCCACGCTT -ACGGAACAACCTATGTCCAGCGTT -ACGGAACAACCTATGTCCTTCGTC -ACGGAACAACCTATGTCCTCTCTC -ACGGAACAACCTATGTCCTGGATC -ACGGAACAACCTATGTCCCACTTC -ACGGAACAACCTATGTCCGTACTC -ACGGAACAACCTATGTCCGATGTC -ACGGAACAACCTATGTCCACAGTC -ACGGAACAACCTATGTCCTTGCTG -ACGGAACAACCTATGTCCTCCATG -ACGGAACAACCTATGTCCTGTGTG -ACGGAACAACCTATGTCCCTAGTG -ACGGAACAACCTATGTCCCATCTG -ACGGAACAACCTATGTCCGAGTTG -ACGGAACAACCTATGTCCAGACTG -ACGGAACAACCTATGTCCTCGGTA -ACGGAACAACCTATGTCCTGCCTA -ACGGAACAACCTATGTCCCCACTA -ACGGAACAACCTATGTCCGGAGTA -ACGGAACAACCTATGTCCTCGTCT -ACGGAACAACCTATGTCCTGCACT -ACGGAACAACCTATGTCCCTGACT -ACGGAACAACCTATGTCCCAACCT -ACGGAACAACCTATGTCCGCTACT -ACGGAACAACCTATGTCCGGATCT -ACGGAACAACCTATGTCCAAGGCT -ACGGAACAACCTATGTCCTCAACC -ACGGAACAACCTATGTCCTGTTCC -ACGGAACAACCTATGTCCATTCCC -ACGGAACAACCTATGTCCTTCTCG -ACGGAACAACCTATGTCCTAGACG -ACGGAACAACCTATGTCCGTAACG -ACGGAACAACCTATGTCCACTTCG -ACGGAACAACCTATGTCCTACGCA -ACGGAACAACCTATGTCCCTTGCA -ACGGAACAACCTATGTCCCGAACA -ACGGAACAACCTATGTCCCAGTCA -ACGGAACAACCTATGTCCGATCCA -ACGGAACAACCTATGTCCACGACA -ACGGAACAACCTATGTCCAGCTCA -ACGGAACAACCTATGTCCTCACGT -ACGGAACAACCTATGTCCCGTAGT -ACGGAACAACCTATGTCCGTCAGT -ACGGAACAACCTATGTCCGAAGGT -ACGGAACAACCTATGTCCAACCGT -ACGGAACAACCTATGTCCTTGTGC -ACGGAACAACCTATGTCCCTAAGC -ACGGAACAACCTATGTCCACTAGC -ACGGAACAACCTATGTCCAGATGC -ACGGAACAACCTATGTCCTGAAGG -ACGGAACAACCTATGTCCCAATGG -ACGGAACAACCTATGTCCATGAGG -ACGGAACAACCTATGTCCAATGGG -ACGGAACAACCTATGTCCTCCTGA -ACGGAACAACCTATGTCCTAGCGA -ACGGAACAACCTATGTCCCACAGA -ACGGAACAACCTATGTCCGCAAGA -ACGGAACAACCTATGTCCGGTTGA -ACGGAACAACCTATGTCCTCCGAT -ACGGAACAACCTATGTCCTGGCAT -ACGGAACAACCTATGTCCCGAGAT -ACGGAACAACCTATGTCCTACCAC -ACGGAACAACCTATGTCCCAGAAC -ACGGAACAACCTATGTCCGTCTAC -ACGGAACAACCTATGTCCACGTAC -ACGGAACAACCTATGTCCAGTGAC -ACGGAACAACCTATGTCCCTGTAG -ACGGAACAACCTATGTCCCCTAAG -ACGGAACAACCTATGTCCGTTCAG -ACGGAACAACCTATGTCCGCATAG -ACGGAACAACCTATGTCCGACAAG -ACGGAACAACCTATGTCCAAGCAG -ACGGAACAACCTATGTCCCGTCAA -ACGGAACAACCTATGTCCGCTGAA -ACGGAACAACCTATGTCCAGTACG -ACGGAACAACCTATGTCCATCCGA -ACGGAACAACCTATGTCCATGGGA -ACGGAACAACCTATGTCCGTGCAA -ACGGAACAACCTATGTCCGAGGAA -ACGGAACAACCTATGTCCCAGGTA -ACGGAACAACCTATGTCCGACTCT -ACGGAACAACCTATGTCCAGTCCT -ACGGAACAACCTATGTCCTAAGCC -ACGGAACAACCTATGTCCATAGCC -ACGGAACAACCTATGTCCTAACCG -ACGGAACAACCTATGTCCATGCCA -ACGGAACAACCTGTGTGTGGAAAC -ACGGAACAACCTGTGTGTAACACC -ACGGAACAACCTGTGTGTATCGAG -ACGGAACAACCTGTGTGTCTCCTT -ACGGAACAACCTGTGTGTCCTGTT -ACGGAACAACCTGTGTGTCGGTTT -ACGGAACAACCTGTGTGTGTGGTT -ACGGAACAACCTGTGTGTGCCTTT -ACGGAACAACCTGTGTGTGGTCTT -ACGGAACAACCTGTGTGTACGCTT -ACGGAACAACCTGTGTGTAGCGTT -ACGGAACAACCTGTGTGTTTCGTC -ACGGAACAACCTGTGTGTTCTCTC -ACGGAACAACCTGTGTGTTGGATC -ACGGAACAACCTGTGTGTCACTTC -ACGGAACAACCTGTGTGTGTACTC -ACGGAACAACCTGTGTGTGATGTC -ACGGAACAACCTGTGTGTACAGTC -ACGGAACAACCTGTGTGTTTGCTG -ACGGAACAACCTGTGTGTTCCATG -ACGGAACAACCTGTGTGTTGTGTG -ACGGAACAACCTGTGTGTCTAGTG -ACGGAACAACCTGTGTGTCATCTG -ACGGAACAACCTGTGTGTGAGTTG -ACGGAACAACCTGTGTGTAGACTG -ACGGAACAACCTGTGTGTTCGGTA -ACGGAACAACCTGTGTGTTGCCTA -ACGGAACAACCTGTGTGTCCACTA -ACGGAACAACCTGTGTGTGGAGTA -ACGGAACAACCTGTGTGTTCGTCT -ACGGAACAACCTGTGTGTTGCACT -ACGGAACAACCTGTGTGTCTGACT -ACGGAACAACCTGTGTGTCAACCT -ACGGAACAACCTGTGTGTGCTACT -ACGGAACAACCTGTGTGTGGATCT -ACGGAACAACCTGTGTGTAAGGCT -ACGGAACAACCTGTGTGTTCAACC -ACGGAACAACCTGTGTGTTGTTCC -ACGGAACAACCTGTGTGTATTCCC -ACGGAACAACCTGTGTGTTTCTCG -ACGGAACAACCTGTGTGTTAGACG -ACGGAACAACCTGTGTGTGTAACG -ACGGAACAACCTGTGTGTACTTCG -ACGGAACAACCTGTGTGTTACGCA -ACGGAACAACCTGTGTGTCTTGCA -ACGGAACAACCTGTGTGTCGAACA -ACGGAACAACCTGTGTGTCAGTCA -ACGGAACAACCTGTGTGTGATCCA -ACGGAACAACCTGTGTGTACGACA -ACGGAACAACCTGTGTGTAGCTCA -ACGGAACAACCTGTGTGTTCACGT -ACGGAACAACCTGTGTGTCGTAGT -ACGGAACAACCTGTGTGTGTCAGT -ACGGAACAACCTGTGTGTGAAGGT -ACGGAACAACCTGTGTGTAACCGT -ACGGAACAACCTGTGTGTTTGTGC -ACGGAACAACCTGTGTGTCTAAGC -ACGGAACAACCTGTGTGTACTAGC -ACGGAACAACCTGTGTGTAGATGC -ACGGAACAACCTGTGTGTTGAAGG -ACGGAACAACCTGTGTGTCAATGG -ACGGAACAACCTGTGTGTATGAGG -ACGGAACAACCTGTGTGTAATGGG -ACGGAACAACCTGTGTGTTCCTGA -ACGGAACAACCTGTGTGTTAGCGA -ACGGAACAACCTGTGTGTCACAGA -ACGGAACAACCTGTGTGTGCAAGA -ACGGAACAACCTGTGTGTGGTTGA -ACGGAACAACCTGTGTGTTCCGAT -ACGGAACAACCTGTGTGTTGGCAT -ACGGAACAACCTGTGTGTCGAGAT -ACGGAACAACCTGTGTGTTACCAC -ACGGAACAACCTGTGTGTCAGAAC -ACGGAACAACCTGTGTGTGTCTAC -ACGGAACAACCTGTGTGTACGTAC -ACGGAACAACCTGTGTGTAGTGAC -ACGGAACAACCTGTGTGTCTGTAG -ACGGAACAACCTGTGTGTCCTAAG -ACGGAACAACCTGTGTGTGTTCAG -ACGGAACAACCTGTGTGTGCATAG -ACGGAACAACCTGTGTGTGACAAG -ACGGAACAACCTGTGTGTAAGCAG -ACGGAACAACCTGTGTGTCGTCAA -ACGGAACAACCTGTGTGTGCTGAA -ACGGAACAACCTGTGTGTAGTACG -ACGGAACAACCTGTGTGTATCCGA -ACGGAACAACCTGTGTGTATGGGA -ACGGAACAACCTGTGTGTGTGCAA -ACGGAACAACCTGTGTGTGAGGAA -ACGGAACAACCTGTGTGTCAGGTA -ACGGAACAACCTGTGTGTGACTCT -ACGGAACAACCTGTGTGTAGTCCT -ACGGAACAACCTGTGTGTTAAGCC -ACGGAACAACCTGTGTGTATAGCC -ACGGAACAACCTGTGTGTTAACCG -ACGGAACAACCTGTGTGTATGCCA -ACGGAACAACCTGTGCTAGGAAAC -ACGGAACAACCTGTGCTAAACACC -ACGGAACAACCTGTGCTAATCGAG -ACGGAACAACCTGTGCTACTCCTT -ACGGAACAACCTGTGCTACCTGTT -ACGGAACAACCTGTGCTACGGTTT -ACGGAACAACCTGTGCTAGTGGTT -ACGGAACAACCTGTGCTAGCCTTT -ACGGAACAACCTGTGCTAGGTCTT -ACGGAACAACCTGTGCTAACGCTT -ACGGAACAACCTGTGCTAAGCGTT -ACGGAACAACCTGTGCTATTCGTC -ACGGAACAACCTGTGCTATCTCTC -ACGGAACAACCTGTGCTATGGATC -ACGGAACAACCTGTGCTACACTTC -ACGGAACAACCTGTGCTAGTACTC -ACGGAACAACCTGTGCTAGATGTC -ACGGAACAACCTGTGCTAACAGTC -ACGGAACAACCTGTGCTATTGCTG -ACGGAACAACCTGTGCTATCCATG -ACGGAACAACCTGTGCTATGTGTG -ACGGAACAACCTGTGCTACTAGTG -ACGGAACAACCTGTGCTACATCTG -ACGGAACAACCTGTGCTAGAGTTG -ACGGAACAACCTGTGCTAAGACTG -ACGGAACAACCTGTGCTATCGGTA -ACGGAACAACCTGTGCTATGCCTA -ACGGAACAACCTGTGCTACCACTA -ACGGAACAACCTGTGCTAGGAGTA -ACGGAACAACCTGTGCTATCGTCT -ACGGAACAACCTGTGCTATGCACT -ACGGAACAACCTGTGCTACTGACT -ACGGAACAACCTGTGCTACAACCT -ACGGAACAACCTGTGCTAGCTACT -ACGGAACAACCTGTGCTAGGATCT -ACGGAACAACCTGTGCTAAAGGCT -ACGGAACAACCTGTGCTATCAACC -ACGGAACAACCTGTGCTATGTTCC -ACGGAACAACCTGTGCTAATTCCC -ACGGAACAACCTGTGCTATTCTCG -ACGGAACAACCTGTGCTATAGACG -ACGGAACAACCTGTGCTAGTAACG -ACGGAACAACCTGTGCTAACTTCG -ACGGAACAACCTGTGCTATACGCA -ACGGAACAACCTGTGCTACTTGCA -ACGGAACAACCTGTGCTACGAACA -ACGGAACAACCTGTGCTACAGTCA -ACGGAACAACCTGTGCTAGATCCA -ACGGAACAACCTGTGCTAACGACA -ACGGAACAACCTGTGCTAAGCTCA -ACGGAACAACCTGTGCTATCACGT -ACGGAACAACCTGTGCTACGTAGT -ACGGAACAACCTGTGCTAGTCAGT -ACGGAACAACCTGTGCTAGAAGGT -ACGGAACAACCTGTGCTAAACCGT -ACGGAACAACCTGTGCTATTGTGC -ACGGAACAACCTGTGCTACTAAGC -ACGGAACAACCTGTGCTAACTAGC -ACGGAACAACCTGTGCTAAGATGC -ACGGAACAACCTGTGCTATGAAGG -ACGGAACAACCTGTGCTACAATGG -ACGGAACAACCTGTGCTAATGAGG -ACGGAACAACCTGTGCTAAATGGG -ACGGAACAACCTGTGCTATCCTGA -ACGGAACAACCTGTGCTATAGCGA -ACGGAACAACCTGTGCTACACAGA -ACGGAACAACCTGTGCTAGCAAGA -ACGGAACAACCTGTGCTAGGTTGA -ACGGAACAACCTGTGCTATCCGAT -ACGGAACAACCTGTGCTATGGCAT -ACGGAACAACCTGTGCTACGAGAT -ACGGAACAACCTGTGCTATACCAC -ACGGAACAACCTGTGCTACAGAAC -ACGGAACAACCTGTGCTAGTCTAC -ACGGAACAACCTGTGCTAACGTAC -ACGGAACAACCTGTGCTAAGTGAC -ACGGAACAACCTGTGCTACTGTAG -ACGGAACAACCTGTGCTACCTAAG -ACGGAACAACCTGTGCTAGTTCAG -ACGGAACAACCTGTGCTAGCATAG -ACGGAACAACCTGTGCTAGACAAG -ACGGAACAACCTGTGCTAAAGCAG -ACGGAACAACCTGTGCTACGTCAA -ACGGAACAACCTGTGCTAGCTGAA -ACGGAACAACCTGTGCTAAGTACG -ACGGAACAACCTGTGCTAATCCGA -ACGGAACAACCTGTGCTAATGGGA -ACGGAACAACCTGTGCTAGTGCAA -ACGGAACAACCTGTGCTAGAGGAA -ACGGAACAACCTGTGCTACAGGTA -ACGGAACAACCTGTGCTAGACTCT -ACGGAACAACCTGTGCTAAGTCCT -ACGGAACAACCTGTGCTATAAGCC -ACGGAACAACCTGTGCTAATAGCC -ACGGAACAACCTGTGCTATAACCG -ACGGAACAACCTGTGCTAATGCCA -ACGGAACAACCTCTGCATGGAAAC -ACGGAACAACCTCTGCATAACACC -ACGGAACAACCTCTGCATATCGAG -ACGGAACAACCTCTGCATCTCCTT -ACGGAACAACCTCTGCATCCTGTT -ACGGAACAACCTCTGCATCGGTTT -ACGGAACAACCTCTGCATGTGGTT -ACGGAACAACCTCTGCATGCCTTT -ACGGAACAACCTCTGCATGGTCTT -ACGGAACAACCTCTGCATACGCTT -ACGGAACAACCTCTGCATAGCGTT -ACGGAACAACCTCTGCATTTCGTC -ACGGAACAACCTCTGCATTCTCTC -ACGGAACAACCTCTGCATTGGATC -ACGGAACAACCTCTGCATCACTTC -ACGGAACAACCTCTGCATGTACTC -ACGGAACAACCTCTGCATGATGTC -ACGGAACAACCTCTGCATACAGTC -ACGGAACAACCTCTGCATTTGCTG -ACGGAACAACCTCTGCATTCCATG -ACGGAACAACCTCTGCATTGTGTG -ACGGAACAACCTCTGCATCTAGTG -ACGGAACAACCTCTGCATCATCTG -ACGGAACAACCTCTGCATGAGTTG -ACGGAACAACCTCTGCATAGACTG -ACGGAACAACCTCTGCATTCGGTA -ACGGAACAACCTCTGCATTGCCTA -ACGGAACAACCTCTGCATCCACTA -ACGGAACAACCTCTGCATGGAGTA -ACGGAACAACCTCTGCATTCGTCT -ACGGAACAACCTCTGCATTGCACT -ACGGAACAACCTCTGCATCTGACT -ACGGAACAACCTCTGCATCAACCT -ACGGAACAACCTCTGCATGCTACT -ACGGAACAACCTCTGCATGGATCT -ACGGAACAACCTCTGCATAAGGCT -ACGGAACAACCTCTGCATTCAACC -ACGGAACAACCTCTGCATTGTTCC -ACGGAACAACCTCTGCATATTCCC -ACGGAACAACCTCTGCATTTCTCG -ACGGAACAACCTCTGCATTAGACG -ACGGAACAACCTCTGCATGTAACG -ACGGAACAACCTCTGCATACTTCG -ACGGAACAACCTCTGCATTACGCA -ACGGAACAACCTCTGCATCTTGCA -ACGGAACAACCTCTGCATCGAACA -ACGGAACAACCTCTGCATCAGTCA -ACGGAACAACCTCTGCATGATCCA -ACGGAACAACCTCTGCATACGACA -ACGGAACAACCTCTGCATAGCTCA -ACGGAACAACCTCTGCATTCACGT -ACGGAACAACCTCTGCATCGTAGT -ACGGAACAACCTCTGCATGTCAGT -ACGGAACAACCTCTGCATGAAGGT -ACGGAACAACCTCTGCATAACCGT -ACGGAACAACCTCTGCATTTGTGC -ACGGAACAACCTCTGCATCTAAGC -ACGGAACAACCTCTGCATACTAGC -ACGGAACAACCTCTGCATAGATGC -ACGGAACAACCTCTGCATTGAAGG -ACGGAACAACCTCTGCATCAATGG -ACGGAACAACCTCTGCATATGAGG -ACGGAACAACCTCTGCATAATGGG -ACGGAACAACCTCTGCATTCCTGA -ACGGAACAACCTCTGCATTAGCGA -ACGGAACAACCTCTGCATCACAGA -ACGGAACAACCTCTGCATGCAAGA -ACGGAACAACCTCTGCATGGTTGA -ACGGAACAACCTCTGCATTCCGAT -ACGGAACAACCTCTGCATTGGCAT -ACGGAACAACCTCTGCATCGAGAT -ACGGAACAACCTCTGCATTACCAC -ACGGAACAACCTCTGCATCAGAAC -ACGGAACAACCTCTGCATGTCTAC -ACGGAACAACCTCTGCATACGTAC -ACGGAACAACCTCTGCATAGTGAC -ACGGAACAACCTCTGCATCTGTAG -ACGGAACAACCTCTGCATCCTAAG -ACGGAACAACCTCTGCATGTTCAG -ACGGAACAACCTCTGCATGCATAG -ACGGAACAACCTCTGCATGACAAG -ACGGAACAACCTCTGCATAAGCAG -ACGGAACAACCTCTGCATCGTCAA -ACGGAACAACCTCTGCATGCTGAA -ACGGAACAACCTCTGCATAGTACG -ACGGAACAACCTCTGCATATCCGA -ACGGAACAACCTCTGCATATGGGA -ACGGAACAACCTCTGCATGTGCAA -ACGGAACAACCTCTGCATGAGGAA -ACGGAACAACCTCTGCATCAGGTA -ACGGAACAACCTCTGCATGACTCT -ACGGAACAACCTCTGCATAGTCCT -ACGGAACAACCTCTGCATTAAGCC -ACGGAACAACCTCTGCATATAGCC -ACGGAACAACCTCTGCATTAACCG -ACGGAACAACCTCTGCATATGCCA -ACGGAACAACCTTTGGAGGGAAAC -ACGGAACAACCTTTGGAGAACACC -ACGGAACAACCTTTGGAGATCGAG -ACGGAACAACCTTTGGAGCTCCTT -ACGGAACAACCTTTGGAGCCTGTT -ACGGAACAACCTTTGGAGCGGTTT -ACGGAACAACCTTTGGAGGTGGTT -ACGGAACAACCTTTGGAGGCCTTT -ACGGAACAACCTTTGGAGGGTCTT -ACGGAACAACCTTTGGAGACGCTT -ACGGAACAACCTTTGGAGAGCGTT -ACGGAACAACCTTTGGAGTTCGTC -ACGGAACAACCTTTGGAGTCTCTC -ACGGAACAACCTTTGGAGTGGATC -ACGGAACAACCTTTGGAGCACTTC -ACGGAACAACCTTTGGAGGTACTC -ACGGAACAACCTTTGGAGGATGTC -ACGGAACAACCTTTGGAGACAGTC -ACGGAACAACCTTTGGAGTTGCTG -ACGGAACAACCTTTGGAGTCCATG -ACGGAACAACCTTTGGAGTGTGTG -ACGGAACAACCTTTGGAGCTAGTG -ACGGAACAACCTTTGGAGCATCTG -ACGGAACAACCTTTGGAGGAGTTG -ACGGAACAACCTTTGGAGAGACTG -ACGGAACAACCTTTGGAGTCGGTA -ACGGAACAACCTTTGGAGTGCCTA -ACGGAACAACCTTTGGAGCCACTA -ACGGAACAACCTTTGGAGGGAGTA -ACGGAACAACCTTTGGAGTCGTCT -ACGGAACAACCTTTGGAGTGCACT -ACGGAACAACCTTTGGAGCTGACT -ACGGAACAACCTTTGGAGCAACCT -ACGGAACAACCTTTGGAGGCTACT -ACGGAACAACCTTTGGAGGGATCT -ACGGAACAACCTTTGGAGAAGGCT -ACGGAACAACCTTTGGAGTCAACC -ACGGAACAACCTTTGGAGTGTTCC -ACGGAACAACCTTTGGAGATTCCC -ACGGAACAACCTTTGGAGTTCTCG -ACGGAACAACCTTTGGAGTAGACG -ACGGAACAACCTTTGGAGGTAACG -ACGGAACAACCTTTGGAGACTTCG -ACGGAACAACCTTTGGAGTACGCA -ACGGAACAACCTTTGGAGCTTGCA -ACGGAACAACCTTTGGAGCGAACA -ACGGAACAACCTTTGGAGCAGTCA -ACGGAACAACCTTTGGAGGATCCA -ACGGAACAACCTTTGGAGACGACA -ACGGAACAACCTTTGGAGAGCTCA -ACGGAACAACCTTTGGAGTCACGT -ACGGAACAACCTTTGGAGCGTAGT -ACGGAACAACCTTTGGAGGTCAGT -ACGGAACAACCTTTGGAGGAAGGT -ACGGAACAACCTTTGGAGAACCGT -ACGGAACAACCTTTGGAGTTGTGC -ACGGAACAACCTTTGGAGCTAAGC -ACGGAACAACCTTTGGAGACTAGC -ACGGAACAACCTTTGGAGAGATGC -ACGGAACAACCTTTGGAGTGAAGG -ACGGAACAACCTTTGGAGCAATGG -ACGGAACAACCTTTGGAGATGAGG -ACGGAACAACCTTTGGAGAATGGG -ACGGAACAACCTTTGGAGTCCTGA -ACGGAACAACCTTTGGAGTAGCGA -ACGGAACAACCTTTGGAGCACAGA -ACGGAACAACCTTTGGAGGCAAGA -ACGGAACAACCTTTGGAGGGTTGA -ACGGAACAACCTTTGGAGTCCGAT -ACGGAACAACCTTTGGAGTGGCAT -ACGGAACAACCTTTGGAGCGAGAT -ACGGAACAACCTTTGGAGTACCAC -ACGGAACAACCTTTGGAGCAGAAC -ACGGAACAACCTTTGGAGGTCTAC -ACGGAACAACCTTTGGAGACGTAC -ACGGAACAACCTTTGGAGAGTGAC -ACGGAACAACCTTTGGAGCTGTAG -ACGGAACAACCTTTGGAGCCTAAG -ACGGAACAACCTTTGGAGGTTCAG -ACGGAACAACCTTTGGAGGCATAG -ACGGAACAACCTTTGGAGGACAAG -ACGGAACAACCTTTGGAGAAGCAG -ACGGAACAACCTTTGGAGCGTCAA -ACGGAACAACCTTTGGAGGCTGAA -ACGGAACAACCTTTGGAGAGTACG -ACGGAACAACCTTTGGAGATCCGA -ACGGAACAACCTTTGGAGATGGGA -ACGGAACAACCTTTGGAGGTGCAA -ACGGAACAACCTTTGGAGGAGGAA -ACGGAACAACCTTTGGAGCAGGTA -ACGGAACAACCTTTGGAGGACTCT -ACGGAACAACCTTTGGAGAGTCCT -ACGGAACAACCTTTGGAGTAAGCC -ACGGAACAACCTTTGGAGATAGCC -ACGGAACAACCTTTGGAGTAACCG -ACGGAACAACCTTTGGAGATGCCA -ACGGAACAACCTCTGAGAGGAAAC -ACGGAACAACCTCTGAGAAACACC -ACGGAACAACCTCTGAGAATCGAG -ACGGAACAACCTCTGAGACTCCTT -ACGGAACAACCTCTGAGACCTGTT -ACGGAACAACCTCTGAGACGGTTT -ACGGAACAACCTCTGAGAGTGGTT -ACGGAACAACCTCTGAGAGCCTTT -ACGGAACAACCTCTGAGAGGTCTT -ACGGAACAACCTCTGAGAACGCTT -ACGGAACAACCTCTGAGAAGCGTT -ACGGAACAACCTCTGAGATTCGTC -ACGGAACAACCTCTGAGATCTCTC -ACGGAACAACCTCTGAGATGGATC -ACGGAACAACCTCTGAGACACTTC -ACGGAACAACCTCTGAGAGTACTC -ACGGAACAACCTCTGAGAGATGTC -ACGGAACAACCTCTGAGAACAGTC -ACGGAACAACCTCTGAGATTGCTG -ACGGAACAACCTCTGAGATCCATG -ACGGAACAACCTCTGAGATGTGTG -ACGGAACAACCTCTGAGACTAGTG -ACGGAACAACCTCTGAGACATCTG -ACGGAACAACCTCTGAGAGAGTTG -ACGGAACAACCTCTGAGAAGACTG -ACGGAACAACCTCTGAGATCGGTA -ACGGAACAACCTCTGAGATGCCTA -ACGGAACAACCTCTGAGACCACTA -ACGGAACAACCTCTGAGAGGAGTA -ACGGAACAACCTCTGAGATCGTCT -ACGGAACAACCTCTGAGATGCACT -ACGGAACAACCTCTGAGACTGACT -ACGGAACAACCTCTGAGACAACCT -ACGGAACAACCTCTGAGAGCTACT -ACGGAACAACCTCTGAGAGGATCT -ACGGAACAACCTCTGAGAAAGGCT -ACGGAACAACCTCTGAGATCAACC -ACGGAACAACCTCTGAGATGTTCC -ACGGAACAACCTCTGAGAATTCCC -ACGGAACAACCTCTGAGATTCTCG -ACGGAACAACCTCTGAGATAGACG -ACGGAACAACCTCTGAGAGTAACG -ACGGAACAACCTCTGAGAACTTCG -ACGGAACAACCTCTGAGATACGCA -ACGGAACAACCTCTGAGACTTGCA -ACGGAACAACCTCTGAGACGAACA -ACGGAACAACCTCTGAGACAGTCA -ACGGAACAACCTCTGAGAGATCCA -ACGGAACAACCTCTGAGAACGACA -ACGGAACAACCTCTGAGAAGCTCA -ACGGAACAACCTCTGAGATCACGT -ACGGAACAACCTCTGAGACGTAGT -ACGGAACAACCTCTGAGAGTCAGT -ACGGAACAACCTCTGAGAGAAGGT -ACGGAACAACCTCTGAGAAACCGT -ACGGAACAACCTCTGAGATTGTGC -ACGGAACAACCTCTGAGACTAAGC -ACGGAACAACCTCTGAGAACTAGC -ACGGAACAACCTCTGAGAAGATGC -ACGGAACAACCTCTGAGATGAAGG -ACGGAACAACCTCTGAGACAATGG -ACGGAACAACCTCTGAGAATGAGG -ACGGAACAACCTCTGAGAAATGGG -ACGGAACAACCTCTGAGATCCTGA -ACGGAACAACCTCTGAGATAGCGA -ACGGAACAACCTCTGAGACACAGA -ACGGAACAACCTCTGAGAGCAAGA -ACGGAACAACCTCTGAGAGGTTGA -ACGGAACAACCTCTGAGATCCGAT -ACGGAACAACCTCTGAGATGGCAT -ACGGAACAACCTCTGAGACGAGAT -ACGGAACAACCTCTGAGATACCAC -ACGGAACAACCTCTGAGACAGAAC -ACGGAACAACCTCTGAGAGTCTAC -ACGGAACAACCTCTGAGAACGTAC -ACGGAACAACCTCTGAGAAGTGAC -ACGGAACAACCTCTGAGACTGTAG -ACGGAACAACCTCTGAGACCTAAG -ACGGAACAACCTCTGAGAGTTCAG -ACGGAACAACCTCTGAGAGCATAG -ACGGAACAACCTCTGAGAGACAAG -ACGGAACAACCTCTGAGAAAGCAG -ACGGAACAACCTCTGAGACGTCAA -ACGGAACAACCTCTGAGAGCTGAA -ACGGAACAACCTCTGAGAAGTACG -ACGGAACAACCTCTGAGAATCCGA -ACGGAACAACCTCTGAGAATGGGA -ACGGAACAACCTCTGAGAGTGCAA -ACGGAACAACCTCTGAGAGAGGAA -ACGGAACAACCTCTGAGACAGGTA -ACGGAACAACCTCTGAGAGACTCT -ACGGAACAACCTCTGAGAAGTCCT -ACGGAACAACCTCTGAGATAAGCC -ACGGAACAACCTCTGAGAATAGCC -ACGGAACAACCTCTGAGATAACCG -ACGGAACAACCTCTGAGAATGCCA -ACGGAACAACCTGTATCGGGAAAC -ACGGAACAACCTGTATCGAACACC -ACGGAACAACCTGTATCGATCGAG -ACGGAACAACCTGTATCGCTCCTT -ACGGAACAACCTGTATCGCCTGTT -ACGGAACAACCTGTATCGCGGTTT -ACGGAACAACCTGTATCGGTGGTT -ACGGAACAACCTGTATCGGCCTTT -ACGGAACAACCTGTATCGGGTCTT -ACGGAACAACCTGTATCGACGCTT -ACGGAACAACCTGTATCGAGCGTT -ACGGAACAACCTGTATCGTTCGTC -ACGGAACAACCTGTATCGTCTCTC -ACGGAACAACCTGTATCGTGGATC -ACGGAACAACCTGTATCGCACTTC -ACGGAACAACCTGTATCGGTACTC -ACGGAACAACCTGTATCGGATGTC -ACGGAACAACCTGTATCGACAGTC -ACGGAACAACCTGTATCGTTGCTG -ACGGAACAACCTGTATCGTCCATG -ACGGAACAACCTGTATCGTGTGTG -ACGGAACAACCTGTATCGCTAGTG -ACGGAACAACCTGTATCGCATCTG -ACGGAACAACCTGTATCGGAGTTG -ACGGAACAACCTGTATCGAGACTG -ACGGAACAACCTGTATCGTCGGTA -ACGGAACAACCTGTATCGTGCCTA -ACGGAACAACCTGTATCGCCACTA -ACGGAACAACCTGTATCGGGAGTA -ACGGAACAACCTGTATCGTCGTCT -ACGGAACAACCTGTATCGTGCACT -ACGGAACAACCTGTATCGCTGACT -ACGGAACAACCTGTATCGCAACCT -ACGGAACAACCTGTATCGGCTACT -ACGGAACAACCTGTATCGGGATCT -ACGGAACAACCTGTATCGAAGGCT -ACGGAACAACCTGTATCGTCAACC -ACGGAACAACCTGTATCGTGTTCC -ACGGAACAACCTGTATCGATTCCC -ACGGAACAACCTGTATCGTTCTCG -ACGGAACAACCTGTATCGTAGACG -ACGGAACAACCTGTATCGGTAACG -ACGGAACAACCTGTATCGACTTCG -ACGGAACAACCTGTATCGTACGCA -ACGGAACAACCTGTATCGCTTGCA -ACGGAACAACCTGTATCGCGAACA -ACGGAACAACCTGTATCGCAGTCA -ACGGAACAACCTGTATCGGATCCA -ACGGAACAACCTGTATCGACGACA -ACGGAACAACCTGTATCGAGCTCA -ACGGAACAACCTGTATCGTCACGT -ACGGAACAACCTGTATCGCGTAGT -ACGGAACAACCTGTATCGGTCAGT -ACGGAACAACCTGTATCGGAAGGT -ACGGAACAACCTGTATCGAACCGT -ACGGAACAACCTGTATCGTTGTGC -ACGGAACAACCTGTATCGCTAAGC -ACGGAACAACCTGTATCGACTAGC -ACGGAACAACCTGTATCGAGATGC -ACGGAACAACCTGTATCGTGAAGG -ACGGAACAACCTGTATCGCAATGG -ACGGAACAACCTGTATCGATGAGG -ACGGAACAACCTGTATCGAATGGG -ACGGAACAACCTGTATCGTCCTGA -ACGGAACAACCTGTATCGTAGCGA -ACGGAACAACCTGTATCGCACAGA -ACGGAACAACCTGTATCGGCAAGA -ACGGAACAACCTGTATCGGGTTGA -ACGGAACAACCTGTATCGTCCGAT -ACGGAACAACCTGTATCGTGGCAT -ACGGAACAACCTGTATCGCGAGAT -ACGGAACAACCTGTATCGTACCAC -ACGGAACAACCTGTATCGCAGAAC -ACGGAACAACCTGTATCGGTCTAC -ACGGAACAACCTGTATCGACGTAC -ACGGAACAACCTGTATCGAGTGAC -ACGGAACAACCTGTATCGCTGTAG -ACGGAACAACCTGTATCGCCTAAG -ACGGAACAACCTGTATCGGTTCAG -ACGGAACAACCTGTATCGGCATAG -ACGGAACAACCTGTATCGGACAAG -ACGGAACAACCTGTATCGAAGCAG -ACGGAACAACCTGTATCGCGTCAA -ACGGAACAACCTGTATCGGCTGAA -ACGGAACAACCTGTATCGAGTACG -ACGGAACAACCTGTATCGATCCGA -ACGGAACAACCTGTATCGATGGGA -ACGGAACAACCTGTATCGGTGCAA -ACGGAACAACCTGTATCGGAGGAA -ACGGAACAACCTGTATCGCAGGTA -ACGGAACAACCTGTATCGGACTCT -ACGGAACAACCTGTATCGAGTCCT -ACGGAACAACCTGTATCGTAAGCC -ACGGAACAACCTGTATCGATAGCC -ACGGAACAACCTGTATCGTAACCG -ACGGAACAACCTGTATCGATGCCA -ACGGAACAACCTCTATGCGGAAAC -ACGGAACAACCTCTATGCAACACC -ACGGAACAACCTCTATGCATCGAG -ACGGAACAACCTCTATGCCTCCTT -ACGGAACAACCTCTATGCCCTGTT -ACGGAACAACCTCTATGCCGGTTT -ACGGAACAACCTCTATGCGTGGTT -ACGGAACAACCTCTATGCGCCTTT -ACGGAACAACCTCTATGCGGTCTT -ACGGAACAACCTCTATGCACGCTT -ACGGAACAACCTCTATGCAGCGTT -ACGGAACAACCTCTATGCTTCGTC -ACGGAACAACCTCTATGCTCTCTC -ACGGAACAACCTCTATGCTGGATC -ACGGAACAACCTCTATGCCACTTC -ACGGAACAACCTCTATGCGTACTC -ACGGAACAACCTCTATGCGATGTC -ACGGAACAACCTCTATGCACAGTC -ACGGAACAACCTCTATGCTTGCTG -ACGGAACAACCTCTATGCTCCATG -ACGGAACAACCTCTATGCTGTGTG -ACGGAACAACCTCTATGCCTAGTG -ACGGAACAACCTCTATGCCATCTG -ACGGAACAACCTCTATGCGAGTTG -ACGGAACAACCTCTATGCAGACTG -ACGGAACAACCTCTATGCTCGGTA -ACGGAACAACCTCTATGCTGCCTA -ACGGAACAACCTCTATGCCCACTA -ACGGAACAACCTCTATGCGGAGTA -ACGGAACAACCTCTATGCTCGTCT -ACGGAACAACCTCTATGCTGCACT -ACGGAACAACCTCTATGCCTGACT -ACGGAACAACCTCTATGCCAACCT -ACGGAACAACCTCTATGCGCTACT -ACGGAACAACCTCTATGCGGATCT -ACGGAACAACCTCTATGCAAGGCT -ACGGAACAACCTCTATGCTCAACC -ACGGAACAACCTCTATGCTGTTCC -ACGGAACAACCTCTATGCATTCCC -ACGGAACAACCTCTATGCTTCTCG -ACGGAACAACCTCTATGCTAGACG -ACGGAACAACCTCTATGCGTAACG -ACGGAACAACCTCTATGCACTTCG -ACGGAACAACCTCTATGCTACGCA -ACGGAACAACCTCTATGCCTTGCA -ACGGAACAACCTCTATGCCGAACA -ACGGAACAACCTCTATGCCAGTCA -ACGGAACAACCTCTATGCGATCCA -ACGGAACAACCTCTATGCACGACA -ACGGAACAACCTCTATGCAGCTCA -ACGGAACAACCTCTATGCTCACGT -ACGGAACAACCTCTATGCCGTAGT -ACGGAACAACCTCTATGCGTCAGT -ACGGAACAACCTCTATGCGAAGGT -ACGGAACAACCTCTATGCAACCGT -ACGGAACAACCTCTATGCTTGTGC -ACGGAACAACCTCTATGCCTAAGC -ACGGAACAACCTCTATGCACTAGC -ACGGAACAACCTCTATGCAGATGC -ACGGAACAACCTCTATGCTGAAGG -ACGGAACAACCTCTATGCCAATGG -ACGGAACAACCTCTATGCATGAGG -ACGGAACAACCTCTATGCAATGGG -ACGGAACAACCTCTATGCTCCTGA -ACGGAACAACCTCTATGCTAGCGA -ACGGAACAACCTCTATGCCACAGA -ACGGAACAACCTCTATGCGCAAGA -ACGGAACAACCTCTATGCGGTTGA -ACGGAACAACCTCTATGCTCCGAT -ACGGAACAACCTCTATGCTGGCAT -ACGGAACAACCTCTATGCCGAGAT -ACGGAACAACCTCTATGCTACCAC -ACGGAACAACCTCTATGCCAGAAC -ACGGAACAACCTCTATGCGTCTAC -ACGGAACAACCTCTATGCACGTAC -ACGGAACAACCTCTATGCAGTGAC -ACGGAACAACCTCTATGCCTGTAG -ACGGAACAACCTCTATGCCCTAAG -ACGGAACAACCTCTATGCGTTCAG -ACGGAACAACCTCTATGCGCATAG -ACGGAACAACCTCTATGCGACAAG -ACGGAACAACCTCTATGCAAGCAG -ACGGAACAACCTCTATGCCGTCAA -ACGGAACAACCTCTATGCGCTGAA -ACGGAACAACCTCTATGCAGTACG -ACGGAACAACCTCTATGCATCCGA -ACGGAACAACCTCTATGCATGGGA -ACGGAACAACCTCTATGCGTGCAA -ACGGAACAACCTCTATGCGAGGAA -ACGGAACAACCTCTATGCCAGGTA -ACGGAACAACCTCTATGCGACTCT -ACGGAACAACCTCTATGCAGTCCT -ACGGAACAACCTCTATGCTAAGCC -ACGGAACAACCTCTATGCATAGCC -ACGGAACAACCTCTATGCTAACCG -ACGGAACAACCTCTATGCATGCCA -ACGGAACAACCTCTACCAGGAAAC -ACGGAACAACCTCTACCAAACACC -ACGGAACAACCTCTACCAATCGAG -ACGGAACAACCTCTACCACTCCTT -ACGGAACAACCTCTACCACCTGTT -ACGGAACAACCTCTACCACGGTTT -ACGGAACAACCTCTACCAGTGGTT -ACGGAACAACCTCTACCAGCCTTT -ACGGAACAACCTCTACCAGGTCTT -ACGGAACAACCTCTACCAACGCTT -ACGGAACAACCTCTACCAAGCGTT -ACGGAACAACCTCTACCATTCGTC -ACGGAACAACCTCTACCATCTCTC -ACGGAACAACCTCTACCATGGATC -ACGGAACAACCTCTACCACACTTC -ACGGAACAACCTCTACCAGTACTC -ACGGAACAACCTCTACCAGATGTC -ACGGAACAACCTCTACCAACAGTC -ACGGAACAACCTCTACCATTGCTG -ACGGAACAACCTCTACCATCCATG -ACGGAACAACCTCTACCATGTGTG -ACGGAACAACCTCTACCACTAGTG -ACGGAACAACCTCTACCACATCTG -ACGGAACAACCTCTACCAGAGTTG -ACGGAACAACCTCTACCAAGACTG -ACGGAACAACCTCTACCATCGGTA -ACGGAACAACCTCTACCATGCCTA -ACGGAACAACCTCTACCACCACTA -ACGGAACAACCTCTACCAGGAGTA -ACGGAACAACCTCTACCATCGTCT -ACGGAACAACCTCTACCATGCACT -ACGGAACAACCTCTACCACTGACT -ACGGAACAACCTCTACCACAACCT -ACGGAACAACCTCTACCAGCTACT -ACGGAACAACCTCTACCAGGATCT -ACGGAACAACCTCTACCAAAGGCT -ACGGAACAACCTCTACCATCAACC -ACGGAACAACCTCTACCATGTTCC -ACGGAACAACCTCTACCAATTCCC -ACGGAACAACCTCTACCATTCTCG -ACGGAACAACCTCTACCATAGACG -ACGGAACAACCTCTACCAGTAACG -ACGGAACAACCTCTACCAACTTCG -ACGGAACAACCTCTACCATACGCA -ACGGAACAACCTCTACCACTTGCA -ACGGAACAACCTCTACCACGAACA -ACGGAACAACCTCTACCACAGTCA -ACGGAACAACCTCTACCAGATCCA -ACGGAACAACCTCTACCAACGACA -ACGGAACAACCTCTACCAAGCTCA -ACGGAACAACCTCTACCATCACGT -ACGGAACAACCTCTACCACGTAGT -ACGGAACAACCTCTACCAGTCAGT -ACGGAACAACCTCTACCAGAAGGT -ACGGAACAACCTCTACCAAACCGT -ACGGAACAACCTCTACCATTGTGC -ACGGAACAACCTCTACCACTAAGC -ACGGAACAACCTCTACCAACTAGC -ACGGAACAACCTCTACCAAGATGC -ACGGAACAACCTCTACCATGAAGG -ACGGAACAACCTCTACCACAATGG -ACGGAACAACCTCTACCAATGAGG -ACGGAACAACCTCTACCAAATGGG -ACGGAACAACCTCTACCATCCTGA -ACGGAACAACCTCTACCATAGCGA -ACGGAACAACCTCTACCACACAGA -ACGGAACAACCTCTACCAGCAAGA -ACGGAACAACCTCTACCAGGTTGA -ACGGAACAACCTCTACCATCCGAT -ACGGAACAACCTCTACCATGGCAT -ACGGAACAACCTCTACCACGAGAT -ACGGAACAACCTCTACCATACCAC -ACGGAACAACCTCTACCACAGAAC -ACGGAACAACCTCTACCAGTCTAC -ACGGAACAACCTCTACCAACGTAC -ACGGAACAACCTCTACCAAGTGAC -ACGGAACAACCTCTACCACTGTAG -ACGGAACAACCTCTACCACCTAAG -ACGGAACAACCTCTACCAGTTCAG -ACGGAACAACCTCTACCAGCATAG -ACGGAACAACCTCTACCAGACAAG -ACGGAACAACCTCTACCAAAGCAG -ACGGAACAACCTCTACCACGTCAA -ACGGAACAACCTCTACCAGCTGAA -ACGGAACAACCTCTACCAAGTACG -ACGGAACAACCTCTACCAATCCGA -ACGGAACAACCTCTACCAATGGGA -ACGGAACAACCTCTACCAGTGCAA -ACGGAACAACCTCTACCAGAGGAA -ACGGAACAACCTCTACCACAGGTA -ACGGAACAACCTCTACCAGACTCT -ACGGAACAACCTCTACCAAGTCCT -ACGGAACAACCTCTACCATAAGCC -ACGGAACAACCTCTACCAATAGCC -ACGGAACAACCTCTACCATAACCG -ACGGAACAACCTCTACCAATGCCA -ACGGAACAACCTGTAGGAGGAAAC -ACGGAACAACCTGTAGGAAACACC -ACGGAACAACCTGTAGGAATCGAG -ACGGAACAACCTGTAGGACTCCTT -ACGGAACAACCTGTAGGACCTGTT -ACGGAACAACCTGTAGGACGGTTT -ACGGAACAACCTGTAGGAGTGGTT -ACGGAACAACCTGTAGGAGCCTTT -ACGGAACAACCTGTAGGAGGTCTT -ACGGAACAACCTGTAGGAACGCTT -ACGGAACAACCTGTAGGAAGCGTT -ACGGAACAACCTGTAGGATTCGTC -ACGGAACAACCTGTAGGATCTCTC -ACGGAACAACCTGTAGGATGGATC -ACGGAACAACCTGTAGGACACTTC -ACGGAACAACCTGTAGGAGTACTC -ACGGAACAACCTGTAGGAGATGTC -ACGGAACAACCTGTAGGAACAGTC -ACGGAACAACCTGTAGGATTGCTG -ACGGAACAACCTGTAGGATCCATG -ACGGAACAACCTGTAGGATGTGTG -ACGGAACAACCTGTAGGACTAGTG -ACGGAACAACCTGTAGGACATCTG -ACGGAACAACCTGTAGGAGAGTTG -ACGGAACAACCTGTAGGAAGACTG -ACGGAACAACCTGTAGGATCGGTA -ACGGAACAACCTGTAGGATGCCTA -ACGGAACAACCTGTAGGACCACTA -ACGGAACAACCTGTAGGAGGAGTA -ACGGAACAACCTGTAGGATCGTCT -ACGGAACAACCTGTAGGATGCACT -ACGGAACAACCTGTAGGACTGACT -ACGGAACAACCTGTAGGACAACCT -ACGGAACAACCTGTAGGAGCTACT -ACGGAACAACCTGTAGGAGGATCT -ACGGAACAACCTGTAGGAAAGGCT -ACGGAACAACCTGTAGGATCAACC -ACGGAACAACCTGTAGGATGTTCC -ACGGAACAACCTGTAGGAATTCCC -ACGGAACAACCTGTAGGATTCTCG -ACGGAACAACCTGTAGGATAGACG -ACGGAACAACCTGTAGGAGTAACG -ACGGAACAACCTGTAGGAACTTCG -ACGGAACAACCTGTAGGATACGCA -ACGGAACAACCTGTAGGACTTGCA -ACGGAACAACCTGTAGGACGAACA -ACGGAACAACCTGTAGGACAGTCA -ACGGAACAACCTGTAGGAGATCCA -ACGGAACAACCTGTAGGAACGACA -ACGGAACAACCTGTAGGAAGCTCA -ACGGAACAACCTGTAGGATCACGT -ACGGAACAACCTGTAGGACGTAGT -ACGGAACAACCTGTAGGAGTCAGT -ACGGAACAACCTGTAGGAGAAGGT -ACGGAACAACCTGTAGGAAACCGT -ACGGAACAACCTGTAGGATTGTGC -ACGGAACAACCTGTAGGACTAAGC -ACGGAACAACCTGTAGGAACTAGC -ACGGAACAACCTGTAGGAAGATGC -ACGGAACAACCTGTAGGATGAAGG -ACGGAACAACCTGTAGGACAATGG -ACGGAACAACCTGTAGGAATGAGG -ACGGAACAACCTGTAGGAAATGGG -ACGGAACAACCTGTAGGATCCTGA -ACGGAACAACCTGTAGGATAGCGA -ACGGAACAACCTGTAGGACACAGA -ACGGAACAACCTGTAGGAGCAAGA -ACGGAACAACCTGTAGGAGGTTGA -ACGGAACAACCTGTAGGATCCGAT -ACGGAACAACCTGTAGGATGGCAT -ACGGAACAACCTGTAGGACGAGAT -ACGGAACAACCTGTAGGATACCAC -ACGGAACAACCTGTAGGACAGAAC -ACGGAACAACCTGTAGGAGTCTAC -ACGGAACAACCTGTAGGAACGTAC -ACGGAACAACCTGTAGGAAGTGAC -ACGGAACAACCTGTAGGACTGTAG -ACGGAACAACCTGTAGGACCTAAG -ACGGAACAACCTGTAGGAGTTCAG -ACGGAACAACCTGTAGGAGCATAG -ACGGAACAACCTGTAGGAGACAAG -ACGGAACAACCTGTAGGAAAGCAG -ACGGAACAACCTGTAGGACGTCAA -ACGGAACAACCTGTAGGAGCTGAA -ACGGAACAACCTGTAGGAAGTACG -ACGGAACAACCTGTAGGAATCCGA -ACGGAACAACCTGTAGGAATGGGA -ACGGAACAACCTGTAGGAGTGCAA -ACGGAACAACCTGTAGGAGAGGAA -ACGGAACAACCTGTAGGACAGGTA -ACGGAACAACCTGTAGGAGACTCT -ACGGAACAACCTGTAGGAAGTCCT -ACGGAACAACCTGTAGGATAAGCC -ACGGAACAACCTGTAGGAATAGCC -ACGGAACAACCTGTAGGATAACCG -ACGGAACAACCTGTAGGAATGCCA -ACGGAACAACCTTCTTCGGGAAAC -ACGGAACAACCTTCTTCGAACACC -ACGGAACAACCTTCTTCGATCGAG -ACGGAACAACCTTCTTCGCTCCTT -ACGGAACAACCTTCTTCGCCTGTT -ACGGAACAACCTTCTTCGCGGTTT -ACGGAACAACCTTCTTCGGTGGTT -ACGGAACAACCTTCTTCGGCCTTT -ACGGAACAACCTTCTTCGGGTCTT -ACGGAACAACCTTCTTCGACGCTT -ACGGAACAACCTTCTTCGAGCGTT -ACGGAACAACCTTCTTCGTTCGTC -ACGGAACAACCTTCTTCGTCTCTC -ACGGAACAACCTTCTTCGTGGATC -ACGGAACAACCTTCTTCGCACTTC -ACGGAACAACCTTCTTCGGTACTC -ACGGAACAACCTTCTTCGGATGTC -ACGGAACAACCTTCTTCGACAGTC -ACGGAACAACCTTCTTCGTTGCTG -ACGGAACAACCTTCTTCGTCCATG -ACGGAACAACCTTCTTCGTGTGTG -ACGGAACAACCTTCTTCGCTAGTG -ACGGAACAACCTTCTTCGCATCTG -ACGGAACAACCTTCTTCGGAGTTG -ACGGAACAACCTTCTTCGAGACTG -ACGGAACAACCTTCTTCGTCGGTA -ACGGAACAACCTTCTTCGTGCCTA -ACGGAACAACCTTCTTCGCCACTA -ACGGAACAACCTTCTTCGGGAGTA -ACGGAACAACCTTCTTCGTCGTCT -ACGGAACAACCTTCTTCGTGCACT -ACGGAACAACCTTCTTCGCTGACT -ACGGAACAACCTTCTTCGCAACCT -ACGGAACAACCTTCTTCGGCTACT -ACGGAACAACCTTCTTCGGGATCT -ACGGAACAACCTTCTTCGAAGGCT -ACGGAACAACCTTCTTCGTCAACC -ACGGAACAACCTTCTTCGTGTTCC -ACGGAACAACCTTCTTCGATTCCC -ACGGAACAACCTTCTTCGTTCTCG -ACGGAACAACCTTCTTCGTAGACG -ACGGAACAACCTTCTTCGGTAACG -ACGGAACAACCTTCTTCGACTTCG -ACGGAACAACCTTCTTCGTACGCA -ACGGAACAACCTTCTTCGCTTGCA -ACGGAACAACCTTCTTCGCGAACA -ACGGAACAACCTTCTTCGCAGTCA -ACGGAACAACCTTCTTCGGATCCA -ACGGAACAACCTTCTTCGACGACA -ACGGAACAACCTTCTTCGAGCTCA -ACGGAACAACCTTCTTCGTCACGT -ACGGAACAACCTTCTTCGCGTAGT -ACGGAACAACCTTCTTCGGTCAGT -ACGGAACAACCTTCTTCGGAAGGT -ACGGAACAACCTTCTTCGAACCGT -ACGGAACAACCTTCTTCGTTGTGC -ACGGAACAACCTTCTTCGCTAAGC -ACGGAACAACCTTCTTCGACTAGC -ACGGAACAACCTTCTTCGAGATGC -ACGGAACAACCTTCTTCGTGAAGG -ACGGAACAACCTTCTTCGCAATGG -ACGGAACAACCTTCTTCGATGAGG -ACGGAACAACCTTCTTCGAATGGG -ACGGAACAACCTTCTTCGTCCTGA -ACGGAACAACCTTCTTCGTAGCGA -ACGGAACAACCTTCTTCGCACAGA -ACGGAACAACCTTCTTCGGCAAGA -ACGGAACAACCTTCTTCGGGTTGA -ACGGAACAACCTTCTTCGTCCGAT -ACGGAACAACCTTCTTCGTGGCAT -ACGGAACAACCTTCTTCGCGAGAT -ACGGAACAACCTTCTTCGTACCAC -ACGGAACAACCTTCTTCGCAGAAC -ACGGAACAACCTTCTTCGGTCTAC -ACGGAACAACCTTCTTCGACGTAC -ACGGAACAACCTTCTTCGAGTGAC -ACGGAACAACCTTCTTCGCTGTAG -ACGGAACAACCTTCTTCGCCTAAG -ACGGAACAACCTTCTTCGGTTCAG -ACGGAACAACCTTCTTCGGCATAG -ACGGAACAACCTTCTTCGGACAAG -ACGGAACAACCTTCTTCGAAGCAG -ACGGAACAACCTTCTTCGCGTCAA -ACGGAACAACCTTCTTCGGCTGAA -ACGGAACAACCTTCTTCGAGTACG -ACGGAACAACCTTCTTCGATCCGA -ACGGAACAACCTTCTTCGATGGGA -ACGGAACAACCTTCTTCGGTGCAA -ACGGAACAACCTTCTTCGGAGGAA -ACGGAACAACCTTCTTCGCAGGTA -ACGGAACAACCTTCTTCGGACTCT -ACGGAACAACCTTCTTCGAGTCCT -ACGGAACAACCTTCTTCGTAAGCC -ACGGAACAACCTTCTTCGATAGCC -ACGGAACAACCTTCTTCGTAACCG -ACGGAACAACCTTCTTCGATGCCA -ACGGAACAACCTACTTGCGGAAAC -ACGGAACAACCTACTTGCAACACC -ACGGAACAACCTACTTGCATCGAG -ACGGAACAACCTACTTGCCTCCTT -ACGGAACAACCTACTTGCCCTGTT -ACGGAACAACCTACTTGCCGGTTT -ACGGAACAACCTACTTGCGTGGTT -ACGGAACAACCTACTTGCGCCTTT -ACGGAACAACCTACTTGCGGTCTT -ACGGAACAACCTACTTGCACGCTT -ACGGAACAACCTACTTGCAGCGTT -ACGGAACAACCTACTTGCTTCGTC -ACGGAACAACCTACTTGCTCTCTC -ACGGAACAACCTACTTGCTGGATC -ACGGAACAACCTACTTGCCACTTC -ACGGAACAACCTACTTGCGTACTC -ACGGAACAACCTACTTGCGATGTC -ACGGAACAACCTACTTGCACAGTC -ACGGAACAACCTACTTGCTTGCTG -ACGGAACAACCTACTTGCTCCATG -ACGGAACAACCTACTTGCTGTGTG -ACGGAACAACCTACTTGCCTAGTG -ACGGAACAACCTACTTGCCATCTG -ACGGAACAACCTACTTGCGAGTTG -ACGGAACAACCTACTTGCAGACTG -ACGGAACAACCTACTTGCTCGGTA -ACGGAACAACCTACTTGCTGCCTA -ACGGAACAACCTACTTGCCCACTA -ACGGAACAACCTACTTGCGGAGTA -ACGGAACAACCTACTTGCTCGTCT -ACGGAACAACCTACTTGCTGCACT -ACGGAACAACCTACTTGCCTGACT -ACGGAACAACCTACTTGCCAACCT -ACGGAACAACCTACTTGCGCTACT -ACGGAACAACCTACTTGCGGATCT -ACGGAACAACCTACTTGCAAGGCT -ACGGAACAACCTACTTGCTCAACC -ACGGAACAACCTACTTGCTGTTCC -ACGGAACAACCTACTTGCATTCCC -ACGGAACAACCTACTTGCTTCTCG -ACGGAACAACCTACTTGCTAGACG -ACGGAACAACCTACTTGCGTAACG -ACGGAACAACCTACTTGCACTTCG -ACGGAACAACCTACTTGCTACGCA -ACGGAACAACCTACTTGCCTTGCA -ACGGAACAACCTACTTGCCGAACA -ACGGAACAACCTACTTGCCAGTCA -ACGGAACAACCTACTTGCGATCCA -ACGGAACAACCTACTTGCACGACA -ACGGAACAACCTACTTGCAGCTCA -ACGGAACAACCTACTTGCTCACGT -ACGGAACAACCTACTTGCCGTAGT -ACGGAACAACCTACTTGCGTCAGT -ACGGAACAACCTACTTGCGAAGGT -ACGGAACAACCTACTTGCAACCGT -ACGGAACAACCTACTTGCTTGTGC -ACGGAACAACCTACTTGCCTAAGC -ACGGAACAACCTACTTGCACTAGC -ACGGAACAACCTACTTGCAGATGC -ACGGAACAACCTACTTGCTGAAGG -ACGGAACAACCTACTTGCCAATGG -ACGGAACAACCTACTTGCATGAGG -ACGGAACAACCTACTTGCAATGGG -ACGGAACAACCTACTTGCTCCTGA -ACGGAACAACCTACTTGCTAGCGA -ACGGAACAACCTACTTGCCACAGA -ACGGAACAACCTACTTGCGCAAGA -ACGGAACAACCTACTTGCGGTTGA -ACGGAACAACCTACTTGCTCCGAT -ACGGAACAACCTACTTGCTGGCAT -ACGGAACAACCTACTTGCCGAGAT -ACGGAACAACCTACTTGCTACCAC -ACGGAACAACCTACTTGCCAGAAC -ACGGAACAACCTACTTGCGTCTAC -ACGGAACAACCTACTTGCACGTAC -ACGGAACAACCTACTTGCAGTGAC -ACGGAACAACCTACTTGCCTGTAG -ACGGAACAACCTACTTGCCCTAAG -ACGGAACAACCTACTTGCGTTCAG -ACGGAACAACCTACTTGCGCATAG -ACGGAACAACCTACTTGCGACAAG -ACGGAACAACCTACTTGCAAGCAG -ACGGAACAACCTACTTGCCGTCAA -ACGGAACAACCTACTTGCGCTGAA -ACGGAACAACCTACTTGCAGTACG -ACGGAACAACCTACTTGCATCCGA -ACGGAACAACCTACTTGCATGGGA -ACGGAACAACCTACTTGCGTGCAA -ACGGAACAACCTACTTGCGAGGAA -ACGGAACAACCTACTTGCCAGGTA -ACGGAACAACCTACTTGCGACTCT -ACGGAACAACCTACTTGCAGTCCT -ACGGAACAACCTACTTGCTAAGCC -ACGGAACAACCTACTTGCATAGCC -ACGGAACAACCTACTTGCTAACCG -ACGGAACAACCTACTTGCATGCCA -ACGGAACAACCTACTCTGGGAAAC -ACGGAACAACCTACTCTGAACACC -ACGGAACAACCTACTCTGATCGAG -ACGGAACAACCTACTCTGCTCCTT -ACGGAACAACCTACTCTGCCTGTT -ACGGAACAACCTACTCTGCGGTTT -ACGGAACAACCTACTCTGGTGGTT -ACGGAACAACCTACTCTGGCCTTT -ACGGAACAACCTACTCTGGGTCTT -ACGGAACAACCTACTCTGACGCTT -ACGGAACAACCTACTCTGAGCGTT -ACGGAACAACCTACTCTGTTCGTC -ACGGAACAACCTACTCTGTCTCTC -ACGGAACAACCTACTCTGTGGATC -ACGGAACAACCTACTCTGCACTTC -ACGGAACAACCTACTCTGGTACTC -ACGGAACAACCTACTCTGGATGTC -ACGGAACAACCTACTCTGACAGTC -ACGGAACAACCTACTCTGTTGCTG -ACGGAACAACCTACTCTGTCCATG -ACGGAACAACCTACTCTGTGTGTG -ACGGAACAACCTACTCTGCTAGTG -ACGGAACAACCTACTCTGCATCTG -ACGGAACAACCTACTCTGGAGTTG -ACGGAACAACCTACTCTGAGACTG -ACGGAACAACCTACTCTGTCGGTA -ACGGAACAACCTACTCTGTGCCTA -ACGGAACAACCTACTCTGCCACTA -ACGGAACAACCTACTCTGGGAGTA -ACGGAACAACCTACTCTGTCGTCT -ACGGAACAACCTACTCTGTGCACT -ACGGAACAACCTACTCTGCTGACT -ACGGAACAACCTACTCTGCAACCT -ACGGAACAACCTACTCTGGCTACT -ACGGAACAACCTACTCTGGGATCT -ACGGAACAACCTACTCTGAAGGCT -ACGGAACAACCTACTCTGTCAACC -ACGGAACAACCTACTCTGTGTTCC -ACGGAACAACCTACTCTGATTCCC -ACGGAACAACCTACTCTGTTCTCG -ACGGAACAACCTACTCTGTAGACG -ACGGAACAACCTACTCTGGTAACG -ACGGAACAACCTACTCTGACTTCG -ACGGAACAACCTACTCTGTACGCA -ACGGAACAACCTACTCTGCTTGCA -ACGGAACAACCTACTCTGCGAACA -ACGGAACAACCTACTCTGCAGTCA -ACGGAACAACCTACTCTGGATCCA -ACGGAACAACCTACTCTGACGACA -ACGGAACAACCTACTCTGAGCTCA -ACGGAACAACCTACTCTGTCACGT -ACGGAACAACCTACTCTGCGTAGT -ACGGAACAACCTACTCTGGTCAGT -ACGGAACAACCTACTCTGGAAGGT -ACGGAACAACCTACTCTGAACCGT -ACGGAACAACCTACTCTGTTGTGC -ACGGAACAACCTACTCTGCTAAGC -ACGGAACAACCTACTCTGACTAGC -ACGGAACAACCTACTCTGAGATGC -ACGGAACAACCTACTCTGTGAAGG -ACGGAACAACCTACTCTGCAATGG -ACGGAACAACCTACTCTGATGAGG -ACGGAACAACCTACTCTGAATGGG -ACGGAACAACCTACTCTGTCCTGA -ACGGAACAACCTACTCTGTAGCGA -ACGGAACAACCTACTCTGCACAGA -ACGGAACAACCTACTCTGGCAAGA -ACGGAACAACCTACTCTGGGTTGA -ACGGAACAACCTACTCTGTCCGAT -ACGGAACAACCTACTCTGTGGCAT -ACGGAACAACCTACTCTGCGAGAT -ACGGAACAACCTACTCTGTACCAC -ACGGAACAACCTACTCTGCAGAAC -ACGGAACAACCTACTCTGGTCTAC -ACGGAACAACCTACTCTGACGTAC -ACGGAACAACCTACTCTGAGTGAC -ACGGAACAACCTACTCTGCTGTAG -ACGGAACAACCTACTCTGCCTAAG -ACGGAACAACCTACTCTGGTTCAG -ACGGAACAACCTACTCTGGCATAG -ACGGAACAACCTACTCTGGACAAG -ACGGAACAACCTACTCTGAAGCAG -ACGGAACAACCTACTCTGCGTCAA -ACGGAACAACCTACTCTGGCTGAA -ACGGAACAACCTACTCTGAGTACG -ACGGAACAACCTACTCTGATCCGA -ACGGAACAACCTACTCTGATGGGA -ACGGAACAACCTACTCTGGTGCAA -ACGGAACAACCTACTCTGGAGGAA -ACGGAACAACCTACTCTGCAGGTA -ACGGAACAACCTACTCTGGACTCT -ACGGAACAACCTACTCTGAGTCCT -ACGGAACAACCTACTCTGTAAGCC -ACGGAACAACCTACTCTGATAGCC -ACGGAACAACCTACTCTGTAACCG -ACGGAACAACCTACTCTGATGCCA -ACGGAACAACCTCCTCAAGGAAAC -ACGGAACAACCTCCTCAAAACACC -ACGGAACAACCTCCTCAAATCGAG -ACGGAACAACCTCCTCAACTCCTT -ACGGAACAACCTCCTCAACCTGTT -ACGGAACAACCTCCTCAACGGTTT -ACGGAACAACCTCCTCAAGTGGTT -ACGGAACAACCTCCTCAAGCCTTT -ACGGAACAACCTCCTCAAGGTCTT -ACGGAACAACCTCCTCAAACGCTT -ACGGAACAACCTCCTCAAAGCGTT -ACGGAACAACCTCCTCAATTCGTC -ACGGAACAACCTCCTCAATCTCTC -ACGGAACAACCTCCTCAATGGATC -ACGGAACAACCTCCTCAACACTTC -ACGGAACAACCTCCTCAAGTACTC -ACGGAACAACCTCCTCAAGATGTC -ACGGAACAACCTCCTCAAACAGTC -ACGGAACAACCTCCTCAATTGCTG -ACGGAACAACCTCCTCAATCCATG -ACGGAACAACCTCCTCAATGTGTG -ACGGAACAACCTCCTCAACTAGTG -ACGGAACAACCTCCTCAACATCTG -ACGGAACAACCTCCTCAAGAGTTG -ACGGAACAACCTCCTCAAAGACTG -ACGGAACAACCTCCTCAATCGGTA -ACGGAACAACCTCCTCAATGCCTA -ACGGAACAACCTCCTCAACCACTA -ACGGAACAACCTCCTCAAGGAGTA -ACGGAACAACCTCCTCAATCGTCT -ACGGAACAACCTCCTCAATGCACT -ACGGAACAACCTCCTCAACTGACT -ACGGAACAACCTCCTCAACAACCT -ACGGAACAACCTCCTCAAGCTACT -ACGGAACAACCTCCTCAAGGATCT -ACGGAACAACCTCCTCAAAAGGCT -ACGGAACAACCTCCTCAATCAACC -ACGGAACAACCTCCTCAATGTTCC -ACGGAACAACCTCCTCAAATTCCC -ACGGAACAACCTCCTCAATTCTCG -ACGGAACAACCTCCTCAATAGACG -ACGGAACAACCTCCTCAAGTAACG -ACGGAACAACCTCCTCAAACTTCG -ACGGAACAACCTCCTCAATACGCA -ACGGAACAACCTCCTCAACTTGCA -ACGGAACAACCTCCTCAACGAACA -ACGGAACAACCTCCTCAACAGTCA -ACGGAACAACCTCCTCAAGATCCA -ACGGAACAACCTCCTCAAACGACA -ACGGAACAACCTCCTCAAAGCTCA -ACGGAACAACCTCCTCAATCACGT -ACGGAACAACCTCCTCAACGTAGT -ACGGAACAACCTCCTCAAGTCAGT -ACGGAACAACCTCCTCAAGAAGGT -ACGGAACAACCTCCTCAAAACCGT -ACGGAACAACCTCCTCAATTGTGC -ACGGAACAACCTCCTCAACTAAGC -ACGGAACAACCTCCTCAAACTAGC -ACGGAACAACCTCCTCAAAGATGC -ACGGAACAACCTCCTCAATGAAGG -ACGGAACAACCTCCTCAACAATGG -ACGGAACAACCTCCTCAAATGAGG -ACGGAACAACCTCCTCAAAATGGG -ACGGAACAACCTCCTCAATCCTGA -ACGGAACAACCTCCTCAATAGCGA -ACGGAACAACCTCCTCAACACAGA -ACGGAACAACCTCCTCAAGCAAGA -ACGGAACAACCTCCTCAAGGTTGA -ACGGAACAACCTCCTCAATCCGAT -ACGGAACAACCTCCTCAATGGCAT -ACGGAACAACCTCCTCAACGAGAT -ACGGAACAACCTCCTCAATACCAC -ACGGAACAACCTCCTCAACAGAAC -ACGGAACAACCTCCTCAAGTCTAC -ACGGAACAACCTCCTCAAACGTAC -ACGGAACAACCTCCTCAAAGTGAC -ACGGAACAACCTCCTCAACTGTAG -ACGGAACAACCTCCTCAACCTAAG -ACGGAACAACCTCCTCAAGTTCAG -ACGGAACAACCTCCTCAAGCATAG -ACGGAACAACCTCCTCAAGACAAG -ACGGAACAACCTCCTCAAAAGCAG -ACGGAACAACCTCCTCAACGTCAA -ACGGAACAACCTCCTCAAGCTGAA -ACGGAACAACCTCCTCAAAGTACG -ACGGAACAACCTCCTCAAATCCGA -ACGGAACAACCTCCTCAAATGGGA -ACGGAACAACCTCCTCAAGTGCAA -ACGGAACAACCTCCTCAAGAGGAA -ACGGAACAACCTCCTCAACAGGTA -ACGGAACAACCTCCTCAAGACTCT -ACGGAACAACCTCCTCAAAGTCCT -ACGGAACAACCTCCTCAATAAGCC -ACGGAACAACCTCCTCAAATAGCC -ACGGAACAACCTCCTCAATAACCG -ACGGAACAACCTCCTCAAATGCCA -ACGGAACAACCTACTGCTGGAAAC -ACGGAACAACCTACTGCTAACACC -ACGGAACAACCTACTGCTATCGAG -ACGGAACAACCTACTGCTCTCCTT -ACGGAACAACCTACTGCTCCTGTT -ACGGAACAACCTACTGCTCGGTTT -ACGGAACAACCTACTGCTGTGGTT -ACGGAACAACCTACTGCTGCCTTT -ACGGAACAACCTACTGCTGGTCTT -ACGGAACAACCTACTGCTACGCTT -ACGGAACAACCTACTGCTAGCGTT -ACGGAACAACCTACTGCTTTCGTC -ACGGAACAACCTACTGCTTCTCTC -ACGGAACAACCTACTGCTTGGATC -ACGGAACAACCTACTGCTCACTTC -ACGGAACAACCTACTGCTGTACTC -ACGGAACAACCTACTGCTGATGTC -ACGGAACAACCTACTGCTACAGTC -ACGGAACAACCTACTGCTTTGCTG -ACGGAACAACCTACTGCTTCCATG -ACGGAACAACCTACTGCTTGTGTG -ACGGAACAACCTACTGCTCTAGTG -ACGGAACAACCTACTGCTCATCTG -ACGGAACAACCTACTGCTGAGTTG -ACGGAACAACCTACTGCTAGACTG -ACGGAACAACCTACTGCTTCGGTA -ACGGAACAACCTACTGCTTGCCTA -ACGGAACAACCTACTGCTCCACTA -ACGGAACAACCTACTGCTGGAGTA -ACGGAACAACCTACTGCTTCGTCT -ACGGAACAACCTACTGCTTGCACT -ACGGAACAACCTACTGCTCTGACT -ACGGAACAACCTACTGCTCAACCT -ACGGAACAACCTACTGCTGCTACT -ACGGAACAACCTACTGCTGGATCT -ACGGAACAACCTACTGCTAAGGCT -ACGGAACAACCTACTGCTTCAACC -ACGGAACAACCTACTGCTTGTTCC -ACGGAACAACCTACTGCTATTCCC -ACGGAACAACCTACTGCTTTCTCG -ACGGAACAACCTACTGCTTAGACG -ACGGAACAACCTACTGCTGTAACG -ACGGAACAACCTACTGCTACTTCG -ACGGAACAACCTACTGCTTACGCA -ACGGAACAACCTACTGCTCTTGCA -ACGGAACAACCTACTGCTCGAACA -ACGGAACAACCTACTGCTCAGTCA -ACGGAACAACCTACTGCTGATCCA -ACGGAACAACCTACTGCTACGACA -ACGGAACAACCTACTGCTAGCTCA -ACGGAACAACCTACTGCTTCACGT -ACGGAACAACCTACTGCTCGTAGT -ACGGAACAACCTACTGCTGTCAGT -ACGGAACAACCTACTGCTGAAGGT -ACGGAACAACCTACTGCTAACCGT -ACGGAACAACCTACTGCTTTGTGC -ACGGAACAACCTACTGCTCTAAGC -ACGGAACAACCTACTGCTACTAGC -ACGGAACAACCTACTGCTAGATGC -ACGGAACAACCTACTGCTTGAAGG -ACGGAACAACCTACTGCTCAATGG -ACGGAACAACCTACTGCTATGAGG -ACGGAACAACCTACTGCTAATGGG -ACGGAACAACCTACTGCTTCCTGA -ACGGAACAACCTACTGCTTAGCGA -ACGGAACAACCTACTGCTCACAGA -ACGGAACAACCTACTGCTGCAAGA -ACGGAACAACCTACTGCTGGTTGA -ACGGAACAACCTACTGCTTCCGAT -ACGGAACAACCTACTGCTTGGCAT -ACGGAACAACCTACTGCTCGAGAT -ACGGAACAACCTACTGCTTACCAC -ACGGAACAACCTACTGCTCAGAAC -ACGGAACAACCTACTGCTGTCTAC -ACGGAACAACCTACTGCTACGTAC -ACGGAACAACCTACTGCTAGTGAC -ACGGAACAACCTACTGCTCTGTAG -ACGGAACAACCTACTGCTCCTAAG -ACGGAACAACCTACTGCTGTTCAG -ACGGAACAACCTACTGCTGCATAG -ACGGAACAACCTACTGCTGACAAG -ACGGAACAACCTACTGCTAAGCAG -ACGGAACAACCTACTGCTCGTCAA -ACGGAACAACCTACTGCTGCTGAA -ACGGAACAACCTACTGCTAGTACG -ACGGAACAACCTACTGCTATCCGA -ACGGAACAACCTACTGCTATGGGA -ACGGAACAACCTACTGCTGTGCAA -ACGGAACAACCTACTGCTGAGGAA -ACGGAACAACCTACTGCTCAGGTA -ACGGAACAACCTACTGCTGACTCT -ACGGAACAACCTACTGCTAGTCCT -ACGGAACAACCTACTGCTTAAGCC -ACGGAACAACCTACTGCTATAGCC -ACGGAACAACCTACTGCTTAACCG -ACGGAACAACCTACTGCTATGCCA -ACGGAACAACCTTCTGGAGGAAAC -ACGGAACAACCTTCTGGAAACACC -ACGGAACAACCTTCTGGAATCGAG -ACGGAACAACCTTCTGGACTCCTT -ACGGAACAACCTTCTGGACCTGTT -ACGGAACAACCTTCTGGACGGTTT -ACGGAACAACCTTCTGGAGTGGTT -ACGGAACAACCTTCTGGAGCCTTT -ACGGAACAACCTTCTGGAGGTCTT -ACGGAACAACCTTCTGGAACGCTT -ACGGAACAACCTTCTGGAAGCGTT -ACGGAACAACCTTCTGGATTCGTC -ACGGAACAACCTTCTGGATCTCTC -ACGGAACAACCTTCTGGATGGATC -ACGGAACAACCTTCTGGACACTTC -ACGGAACAACCTTCTGGAGTACTC -ACGGAACAACCTTCTGGAGATGTC -ACGGAACAACCTTCTGGAACAGTC -ACGGAACAACCTTCTGGATTGCTG -ACGGAACAACCTTCTGGATCCATG -ACGGAACAACCTTCTGGATGTGTG -ACGGAACAACCTTCTGGACTAGTG -ACGGAACAACCTTCTGGACATCTG -ACGGAACAACCTTCTGGAGAGTTG -ACGGAACAACCTTCTGGAAGACTG -ACGGAACAACCTTCTGGATCGGTA -ACGGAACAACCTTCTGGATGCCTA -ACGGAACAACCTTCTGGACCACTA -ACGGAACAACCTTCTGGAGGAGTA -ACGGAACAACCTTCTGGATCGTCT -ACGGAACAACCTTCTGGATGCACT -ACGGAACAACCTTCTGGACTGACT -ACGGAACAACCTTCTGGACAACCT -ACGGAACAACCTTCTGGAGCTACT -ACGGAACAACCTTCTGGAGGATCT -ACGGAACAACCTTCTGGAAAGGCT -ACGGAACAACCTTCTGGATCAACC -ACGGAACAACCTTCTGGATGTTCC -ACGGAACAACCTTCTGGAATTCCC -ACGGAACAACCTTCTGGATTCTCG -ACGGAACAACCTTCTGGATAGACG -ACGGAACAACCTTCTGGAGTAACG -ACGGAACAACCTTCTGGAACTTCG -ACGGAACAACCTTCTGGATACGCA -ACGGAACAACCTTCTGGACTTGCA -ACGGAACAACCTTCTGGACGAACA -ACGGAACAACCTTCTGGACAGTCA -ACGGAACAACCTTCTGGAGATCCA -ACGGAACAACCTTCTGGAACGACA -ACGGAACAACCTTCTGGAAGCTCA -ACGGAACAACCTTCTGGATCACGT -ACGGAACAACCTTCTGGACGTAGT -ACGGAACAACCTTCTGGAGTCAGT -ACGGAACAACCTTCTGGAGAAGGT -ACGGAACAACCTTCTGGAAACCGT -ACGGAACAACCTTCTGGATTGTGC -ACGGAACAACCTTCTGGACTAAGC -ACGGAACAACCTTCTGGAACTAGC -ACGGAACAACCTTCTGGAAGATGC -ACGGAACAACCTTCTGGATGAAGG -ACGGAACAACCTTCTGGACAATGG -ACGGAACAACCTTCTGGAATGAGG -ACGGAACAACCTTCTGGAAATGGG -ACGGAACAACCTTCTGGATCCTGA -ACGGAACAACCTTCTGGATAGCGA -ACGGAACAACCTTCTGGACACAGA -ACGGAACAACCTTCTGGAGCAAGA -ACGGAACAACCTTCTGGAGGTTGA -ACGGAACAACCTTCTGGATCCGAT -ACGGAACAACCTTCTGGATGGCAT -ACGGAACAACCTTCTGGACGAGAT -ACGGAACAACCTTCTGGATACCAC -ACGGAACAACCTTCTGGACAGAAC -ACGGAACAACCTTCTGGAGTCTAC -ACGGAACAACCTTCTGGAACGTAC -ACGGAACAACCTTCTGGAAGTGAC -ACGGAACAACCTTCTGGACTGTAG -ACGGAACAACCTTCTGGACCTAAG -ACGGAACAACCTTCTGGAGTTCAG -ACGGAACAACCTTCTGGAGCATAG -ACGGAACAACCTTCTGGAGACAAG -ACGGAACAACCTTCTGGAAAGCAG -ACGGAACAACCTTCTGGACGTCAA -ACGGAACAACCTTCTGGAGCTGAA -ACGGAACAACCTTCTGGAAGTACG -ACGGAACAACCTTCTGGAATCCGA -ACGGAACAACCTTCTGGAATGGGA -ACGGAACAACCTTCTGGAGTGCAA -ACGGAACAACCTTCTGGAGAGGAA -ACGGAACAACCTTCTGGACAGGTA -ACGGAACAACCTTCTGGAGACTCT -ACGGAACAACCTTCTGGAAGTCCT -ACGGAACAACCTTCTGGATAAGCC -ACGGAACAACCTTCTGGAATAGCC -ACGGAACAACCTTCTGGATAACCG -ACGGAACAACCTTCTGGAATGCCA -ACGGAACAACCTGCTAAGGGAAAC -ACGGAACAACCTGCTAAGAACACC -ACGGAACAACCTGCTAAGATCGAG -ACGGAACAACCTGCTAAGCTCCTT -ACGGAACAACCTGCTAAGCCTGTT -ACGGAACAACCTGCTAAGCGGTTT -ACGGAACAACCTGCTAAGGTGGTT -ACGGAACAACCTGCTAAGGCCTTT -ACGGAACAACCTGCTAAGGGTCTT -ACGGAACAACCTGCTAAGACGCTT -ACGGAACAACCTGCTAAGAGCGTT -ACGGAACAACCTGCTAAGTTCGTC -ACGGAACAACCTGCTAAGTCTCTC -ACGGAACAACCTGCTAAGTGGATC -ACGGAACAACCTGCTAAGCACTTC -ACGGAACAACCTGCTAAGGTACTC -ACGGAACAACCTGCTAAGGATGTC -ACGGAACAACCTGCTAAGACAGTC -ACGGAACAACCTGCTAAGTTGCTG -ACGGAACAACCTGCTAAGTCCATG -ACGGAACAACCTGCTAAGTGTGTG -ACGGAACAACCTGCTAAGCTAGTG -ACGGAACAACCTGCTAAGCATCTG -ACGGAACAACCTGCTAAGGAGTTG -ACGGAACAACCTGCTAAGAGACTG -ACGGAACAACCTGCTAAGTCGGTA -ACGGAACAACCTGCTAAGTGCCTA -ACGGAACAACCTGCTAAGCCACTA -ACGGAACAACCTGCTAAGGGAGTA -ACGGAACAACCTGCTAAGTCGTCT -ACGGAACAACCTGCTAAGTGCACT -ACGGAACAACCTGCTAAGCTGACT -ACGGAACAACCTGCTAAGCAACCT -ACGGAACAACCTGCTAAGGCTACT -ACGGAACAACCTGCTAAGGGATCT -ACGGAACAACCTGCTAAGAAGGCT -ACGGAACAACCTGCTAAGTCAACC -ACGGAACAACCTGCTAAGTGTTCC -ACGGAACAACCTGCTAAGATTCCC -ACGGAACAACCTGCTAAGTTCTCG -ACGGAACAACCTGCTAAGTAGACG -ACGGAACAACCTGCTAAGGTAACG -ACGGAACAACCTGCTAAGACTTCG -ACGGAACAACCTGCTAAGTACGCA -ACGGAACAACCTGCTAAGCTTGCA -ACGGAACAACCTGCTAAGCGAACA -ACGGAACAACCTGCTAAGCAGTCA -ACGGAACAACCTGCTAAGGATCCA -ACGGAACAACCTGCTAAGACGACA -ACGGAACAACCTGCTAAGAGCTCA -ACGGAACAACCTGCTAAGTCACGT -ACGGAACAACCTGCTAAGCGTAGT -ACGGAACAACCTGCTAAGGTCAGT -ACGGAACAACCTGCTAAGGAAGGT -ACGGAACAACCTGCTAAGAACCGT -ACGGAACAACCTGCTAAGTTGTGC -ACGGAACAACCTGCTAAGCTAAGC -ACGGAACAACCTGCTAAGACTAGC -ACGGAACAACCTGCTAAGAGATGC -ACGGAACAACCTGCTAAGTGAAGG -ACGGAACAACCTGCTAAGCAATGG -ACGGAACAACCTGCTAAGATGAGG -ACGGAACAACCTGCTAAGAATGGG -ACGGAACAACCTGCTAAGTCCTGA -ACGGAACAACCTGCTAAGTAGCGA -ACGGAACAACCTGCTAAGCACAGA -ACGGAACAACCTGCTAAGGCAAGA -ACGGAACAACCTGCTAAGGGTTGA -ACGGAACAACCTGCTAAGTCCGAT -ACGGAACAACCTGCTAAGTGGCAT -ACGGAACAACCTGCTAAGCGAGAT -ACGGAACAACCTGCTAAGTACCAC -ACGGAACAACCTGCTAAGCAGAAC -ACGGAACAACCTGCTAAGGTCTAC -ACGGAACAACCTGCTAAGACGTAC -ACGGAACAACCTGCTAAGAGTGAC -ACGGAACAACCTGCTAAGCTGTAG -ACGGAACAACCTGCTAAGCCTAAG -ACGGAACAACCTGCTAAGGTTCAG -ACGGAACAACCTGCTAAGGCATAG -ACGGAACAACCTGCTAAGGACAAG -ACGGAACAACCTGCTAAGAAGCAG -ACGGAACAACCTGCTAAGCGTCAA -ACGGAACAACCTGCTAAGGCTGAA -ACGGAACAACCTGCTAAGAGTACG -ACGGAACAACCTGCTAAGATCCGA -ACGGAACAACCTGCTAAGATGGGA -ACGGAACAACCTGCTAAGGTGCAA -ACGGAACAACCTGCTAAGGAGGAA -ACGGAACAACCTGCTAAGCAGGTA -ACGGAACAACCTGCTAAGGACTCT -ACGGAACAACCTGCTAAGAGTCCT -ACGGAACAACCTGCTAAGTAAGCC -ACGGAACAACCTGCTAAGATAGCC -ACGGAACAACCTGCTAAGTAACCG -ACGGAACAACCTGCTAAGATGCCA -ACGGAACAACCTACCTCAGGAAAC -ACGGAACAACCTACCTCAAACACC -ACGGAACAACCTACCTCAATCGAG -ACGGAACAACCTACCTCACTCCTT -ACGGAACAACCTACCTCACCTGTT -ACGGAACAACCTACCTCACGGTTT -ACGGAACAACCTACCTCAGTGGTT -ACGGAACAACCTACCTCAGCCTTT -ACGGAACAACCTACCTCAGGTCTT -ACGGAACAACCTACCTCAACGCTT -ACGGAACAACCTACCTCAAGCGTT -ACGGAACAACCTACCTCATTCGTC -ACGGAACAACCTACCTCATCTCTC -ACGGAACAACCTACCTCATGGATC -ACGGAACAACCTACCTCACACTTC -ACGGAACAACCTACCTCAGTACTC -ACGGAACAACCTACCTCAGATGTC -ACGGAACAACCTACCTCAACAGTC -ACGGAACAACCTACCTCATTGCTG -ACGGAACAACCTACCTCATCCATG -ACGGAACAACCTACCTCATGTGTG -ACGGAACAACCTACCTCACTAGTG -ACGGAACAACCTACCTCACATCTG -ACGGAACAACCTACCTCAGAGTTG -ACGGAACAACCTACCTCAAGACTG -ACGGAACAACCTACCTCATCGGTA -ACGGAACAACCTACCTCATGCCTA -ACGGAACAACCTACCTCACCACTA -ACGGAACAACCTACCTCAGGAGTA -ACGGAACAACCTACCTCATCGTCT -ACGGAACAACCTACCTCATGCACT -ACGGAACAACCTACCTCACTGACT -ACGGAACAACCTACCTCACAACCT -ACGGAACAACCTACCTCAGCTACT -ACGGAACAACCTACCTCAGGATCT -ACGGAACAACCTACCTCAAAGGCT -ACGGAACAACCTACCTCATCAACC -ACGGAACAACCTACCTCATGTTCC -ACGGAACAACCTACCTCAATTCCC -ACGGAACAACCTACCTCATTCTCG -ACGGAACAACCTACCTCATAGACG -ACGGAACAACCTACCTCAGTAACG -ACGGAACAACCTACCTCAACTTCG -ACGGAACAACCTACCTCATACGCA -ACGGAACAACCTACCTCACTTGCA -ACGGAACAACCTACCTCACGAACA -ACGGAACAACCTACCTCACAGTCA -ACGGAACAACCTACCTCAGATCCA -ACGGAACAACCTACCTCAACGACA -ACGGAACAACCTACCTCAAGCTCA -ACGGAACAACCTACCTCATCACGT -ACGGAACAACCTACCTCACGTAGT -ACGGAACAACCTACCTCAGTCAGT -ACGGAACAACCTACCTCAGAAGGT -ACGGAACAACCTACCTCAAACCGT -ACGGAACAACCTACCTCATTGTGC -ACGGAACAACCTACCTCACTAAGC -ACGGAACAACCTACCTCAACTAGC -ACGGAACAACCTACCTCAAGATGC -ACGGAACAACCTACCTCATGAAGG -ACGGAACAACCTACCTCACAATGG -ACGGAACAACCTACCTCAATGAGG -ACGGAACAACCTACCTCAAATGGG -ACGGAACAACCTACCTCATCCTGA -ACGGAACAACCTACCTCATAGCGA -ACGGAACAACCTACCTCACACAGA -ACGGAACAACCTACCTCAGCAAGA -ACGGAACAACCTACCTCAGGTTGA -ACGGAACAACCTACCTCATCCGAT -ACGGAACAACCTACCTCATGGCAT -ACGGAACAACCTACCTCACGAGAT -ACGGAACAACCTACCTCATACCAC -ACGGAACAACCTACCTCACAGAAC -ACGGAACAACCTACCTCAGTCTAC -ACGGAACAACCTACCTCAACGTAC -ACGGAACAACCTACCTCAAGTGAC -ACGGAACAACCTACCTCACTGTAG -ACGGAACAACCTACCTCACCTAAG -ACGGAACAACCTACCTCAGTTCAG -ACGGAACAACCTACCTCAGCATAG -ACGGAACAACCTACCTCAGACAAG -ACGGAACAACCTACCTCAAAGCAG -ACGGAACAACCTACCTCACGTCAA -ACGGAACAACCTACCTCAGCTGAA -ACGGAACAACCTACCTCAAGTACG -ACGGAACAACCTACCTCAATCCGA -ACGGAACAACCTACCTCAATGGGA -ACGGAACAACCTACCTCAGTGCAA -ACGGAACAACCTACCTCAGAGGAA -ACGGAACAACCTACCTCACAGGTA -ACGGAACAACCTACCTCAGACTCT -ACGGAACAACCTACCTCAAGTCCT -ACGGAACAACCTACCTCATAAGCC -ACGGAACAACCTACCTCAATAGCC -ACGGAACAACCTACCTCATAACCG -ACGGAACAACCTACCTCAATGCCA -ACGGAACAACCTTCCTGTGGAAAC -ACGGAACAACCTTCCTGTAACACC -ACGGAACAACCTTCCTGTATCGAG -ACGGAACAACCTTCCTGTCTCCTT -ACGGAACAACCTTCCTGTCCTGTT -ACGGAACAACCTTCCTGTCGGTTT -ACGGAACAACCTTCCTGTGTGGTT -ACGGAACAACCTTCCTGTGCCTTT -ACGGAACAACCTTCCTGTGGTCTT -ACGGAACAACCTTCCTGTACGCTT -ACGGAACAACCTTCCTGTAGCGTT -ACGGAACAACCTTCCTGTTTCGTC -ACGGAACAACCTTCCTGTTCTCTC -ACGGAACAACCTTCCTGTTGGATC -ACGGAACAACCTTCCTGTCACTTC -ACGGAACAACCTTCCTGTGTACTC -ACGGAACAACCTTCCTGTGATGTC -ACGGAACAACCTTCCTGTACAGTC -ACGGAACAACCTTCCTGTTTGCTG -ACGGAACAACCTTCCTGTTCCATG -ACGGAACAACCTTCCTGTTGTGTG -ACGGAACAACCTTCCTGTCTAGTG -ACGGAACAACCTTCCTGTCATCTG -ACGGAACAACCTTCCTGTGAGTTG -ACGGAACAACCTTCCTGTAGACTG -ACGGAACAACCTTCCTGTTCGGTA -ACGGAACAACCTTCCTGTTGCCTA -ACGGAACAACCTTCCTGTCCACTA -ACGGAACAACCTTCCTGTGGAGTA -ACGGAACAACCTTCCTGTTCGTCT -ACGGAACAACCTTCCTGTTGCACT -ACGGAACAACCTTCCTGTCTGACT -ACGGAACAACCTTCCTGTCAACCT -ACGGAACAACCTTCCTGTGCTACT -ACGGAACAACCTTCCTGTGGATCT -ACGGAACAACCTTCCTGTAAGGCT -ACGGAACAACCTTCCTGTTCAACC -ACGGAACAACCTTCCTGTTGTTCC -ACGGAACAACCTTCCTGTATTCCC -ACGGAACAACCTTCCTGTTTCTCG -ACGGAACAACCTTCCTGTTAGACG -ACGGAACAACCTTCCTGTGTAACG -ACGGAACAACCTTCCTGTACTTCG -ACGGAACAACCTTCCTGTTACGCA -ACGGAACAACCTTCCTGTCTTGCA -ACGGAACAACCTTCCTGTCGAACA -ACGGAACAACCTTCCTGTCAGTCA -ACGGAACAACCTTCCTGTGATCCA -ACGGAACAACCTTCCTGTACGACA -ACGGAACAACCTTCCTGTAGCTCA -ACGGAACAACCTTCCTGTTCACGT -ACGGAACAACCTTCCTGTCGTAGT -ACGGAACAACCTTCCTGTGTCAGT -ACGGAACAACCTTCCTGTGAAGGT -ACGGAACAACCTTCCTGTAACCGT -ACGGAACAACCTTCCTGTTTGTGC -ACGGAACAACCTTCCTGTCTAAGC -ACGGAACAACCTTCCTGTACTAGC -ACGGAACAACCTTCCTGTAGATGC -ACGGAACAACCTTCCTGTTGAAGG -ACGGAACAACCTTCCTGTCAATGG -ACGGAACAACCTTCCTGTATGAGG -ACGGAACAACCTTCCTGTAATGGG -ACGGAACAACCTTCCTGTTCCTGA -ACGGAACAACCTTCCTGTTAGCGA -ACGGAACAACCTTCCTGTCACAGA -ACGGAACAACCTTCCTGTGCAAGA -ACGGAACAACCTTCCTGTGGTTGA -ACGGAACAACCTTCCTGTTCCGAT -ACGGAACAACCTTCCTGTTGGCAT -ACGGAACAACCTTCCTGTCGAGAT -ACGGAACAACCTTCCTGTTACCAC -ACGGAACAACCTTCCTGTCAGAAC -ACGGAACAACCTTCCTGTGTCTAC -ACGGAACAACCTTCCTGTACGTAC -ACGGAACAACCTTCCTGTAGTGAC -ACGGAACAACCTTCCTGTCTGTAG -ACGGAACAACCTTCCTGTCCTAAG -ACGGAACAACCTTCCTGTGTTCAG -ACGGAACAACCTTCCTGTGCATAG -ACGGAACAACCTTCCTGTGACAAG -ACGGAACAACCTTCCTGTAAGCAG -ACGGAACAACCTTCCTGTCGTCAA -ACGGAACAACCTTCCTGTGCTGAA -ACGGAACAACCTTCCTGTAGTACG -ACGGAACAACCTTCCTGTATCCGA -ACGGAACAACCTTCCTGTATGGGA -ACGGAACAACCTTCCTGTGTGCAA -ACGGAACAACCTTCCTGTGAGGAA -ACGGAACAACCTTCCTGTCAGGTA -ACGGAACAACCTTCCTGTGACTCT -ACGGAACAACCTTCCTGTAGTCCT -ACGGAACAACCTTCCTGTTAAGCC -ACGGAACAACCTTCCTGTATAGCC -ACGGAACAACCTTCCTGTTAACCG -ACGGAACAACCTTCCTGTATGCCA -ACGGAACAACCTCCCATTGGAAAC -ACGGAACAACCTCCCATTAACACC -ACGGAACAACCTCCCATTATCGAG -ACGGAACAACCTCCCATTCTCCTT -ACGGAACAACCTCCCATTCCTGTT -ACGGAACAACCTCCCATTCGGTTT -ACGGAACAACCTCCCATTGTGGTT -ACGGAACAACCTCCCATTGCCTTT -ACGGAACAACCTCCCATTGGTCTT -ACGGAACAACCTCCCATTACGCTT -ACGGAACAACCTCCCATTAGCGTT -ACGGAACAACCTCCCATTTTCGTC -ACGGAACAACCTCCCATTTCTCTC -ACGGAACAACCTCCCATTTGGATC -ACGGAACAACCTCCCATTCACTTC -ACGGAACAACCTCCCATTGTACTC -ACGGAACAACCTCCCATTGATGTC -ACGGAACAACCTCCCATTACAGTC -ACGGAACAACCTCCCATTTTGCTG -ACGGAACAACCTCCCATTTCCATG -ACGGAACAACCTCCCATTTGTGTG -ACGGAACAACCTCCCATTCTAGTG -ACGGAACAACCTCCCATTCATCTG -ACGGAACAACCTCCCATTGAGTTG -ACGGAACAACCTCCCATTAGACTG -ACGGAACAACCTCCCATTTCGGTA -ACGGAACAACCTCCCATTTGCCTA -ACGGAACAACCTCCCATTCCACTA -ACGGAACAACCTCCCATTGGAGTA -ACGGAACAACCTCCCATTTCGTCT -ACGGAACAACCTCCCATTTGCACT -ACGGAACAACCTCCCATTCTGACT -ACGGAACAACCTCCCATTCAACCT -ACGGAACAACCTCCCATTGCTACT -ACGGAACAACCTCCCATTGGATCT -ACGGAACAACCTCCCATTAAGGCT -ACGGAACAACCTCCCATTTCAACC -ACGGAACAACCTCCCATTTGTTCC -ACGGAACAACCTCCCATTATTCCC -ACGGAACAACCTCCCATTTTCTCG -ACGGAACAACCTCCCATTTAGACG -ACGGAACAACCTCCCATTGTAACG -ACGGAACAACCTCCCATTACTTCG -ACGGAACAACCTCCCATTTACGCA -ACGGAACAACCTCCCATTCTTGCA -ACGGAACAACCTCCCATTCGAACA -ACGGAACAACCTCCCATTCAGTCA -ACGGAACAACCTCCCATTGATCCA -ACGGAACAACCTCCCATTACGACA -ACGGAACAACCTCCCATTAGCTCA -ACGGAACAACCTCCCATTTCACGT -ACGGAACAACCTCCCATTCGTAGT -ACGGAACAACCTCCCATTGTCAGT -ACGGAACAACCTCCCATTGAAGGT -ACGGAACAACCTCCCATTAACCGT -ACGGAACAACCTCCCATTTTGTGC -ACGGAACAACCTCCCATTCTAAGC -ACGGAACAACCTCCCATTACTAGC -ACGGAACAACCTCCCATTAGATGC -ACGGAACAACCTCCCATTTGAAGG -ACGGAACAACCTCCCATTCAATGG -ACGGAACAACCTCCCATTATGAGG -ACGGAACAACCTCCCATTAATGGG -ACGGAACAACCTCCCATTTCCTGA -ACGGAACAACCTCCCATTTAGCGA -ACGGAACAACCTCCCATTCACAGA -ACGGAACAACCTCCCATTGCAAGA -ACGGAACAACCTCCCATTGGTTGA -ACGGAACAACCTCCCATTTCCGAT -ACGGAACAACCTCCCATTTGGCAT -ACGGAACAACCTCCCATTCGAGAT -ACGGAACAACCTCCCATTTACCAC -ACGGAACAACCTCCCATTCAGAAC -ACGGAACAACCTCCCATTGTCTAC -ACGGAACAACCTCCCATTACGTAC -ACGGAACAACCTCCCATTAGTGAC -ACGGAACAACCTCCCATTCTGTAG -ACGGAACAACCTCCCATTCCTAAG -ACGGAACAACCTCCCATTGTTCAG -ACGGAACAACCTCCCATTGCATAG -ACGGAACAACCTCCCATTGACAAG -ACGGAACAACCTCCCATTAAGCAG -ACGGAACAACCTCCCATTCGTCAA -ACGGAACAACCTCCCATTGCTGAA -ACGGAACAACCTCCCATTAGTACG -ACGGAACAACCTCCCATTATCCGA -ACGGAACAACCTCCCATTATGGGA -ACGGAACAACCTCCCATTGTGCAA -ACGGAACAACCTCCCATTGAGGAA -ACGGAACAACCTCCCATTCAGGTA -ACGGAACAACCTCCCATTGACTCT -ACGGAACAACCTCCCATTAGTCCT -ACGGAACAACCTCCCATTTAAGCC -ACGGAACAACCTCCCATTATAGCC -ACGGAACAACCTCCCATTTAACCG -ACGGAACAACCTCCCATTATGCCA -ACGGAACAACCTTCGTTCGGAAAC -ACGGAACAACCTTCGTTCAACACC -ACGGAACAACCTTCGTTCATCGAG -ACGGAACAACCTTCGTTCCTCCTT -ACGGAACAACCTTCGTTCCCTGTT -ACGGAACAACCTTCGTTCCGGTTT -ACGGAACAACCTTCGTTCGTGGTT -ACGGAACAACCTTCGTTCGCCTTT -ACGGAACAACCTTCGTTCGGTCTT -ACGGAACAACCTTCGTTCACGCTT -ACGGAACAACCTTCGTTCAGCGTT -ACGGAACAACCTTCGTTCTTCGTC -ACGGAACAACCTTCGTTCTCTCTC -ACGGAACAACCTTCGTTCTGGATC -ACGGAACAACCTTCGTTCCACTTC -ACGGAACAACCTTCGTTCGTACTC -ACGGAACAACCTTCGTTCGATGTC -ACGGAACAACCTTCGTTCACAGTC -ACGGAACAACCTTCGTTCTTGCTG -ACGGAACAACCTTCGTTCTCCATG -ACGGAACAACCTTCGTTCTGTGTG -ACGGAACAACCTTCGTTCCTAGTG -ACGGAACAACCTTCGTTCCATCTG -ACGGAACAACCTTCGTTCGAGTTG -ACGGAACAACCTTCGTTCAGACTG -ACGGAACAACCTTCGTTCTCGGTA -ACGGAACAACCTTCGTTCTGCCTA -ACGGAACAACCTTCGTTCCCACTA -ACGGAACAACCTTCGTTCGGAGTA -ACGGAACAACCTTCGTTCTCGTCT -ACGGAACAACCTTCGTTCTGCACT -ACGGAACAACCTTCGTTCCTGACT -ACGGAACAACCTTCGTTCCAACCT -ACGGAACAACCTTCGTTCGCTACT -ACGGAACAACCTTCGTTCGGATCT -ACGGAACAACCTTCGTTCAAGGCT -ACGGAACAACCTTCGTTCTCAACC -ACGGAACAACCTTCGTTCTGTTCC -ACGGAACAACCTTCGTTCATTCCC -ACGGAACAACCTTCGTTCTTCTCG -ACGGAACAACCTTCGTTCTAGACG -ACGGAACAACCTTCGTTCGTAACG -ACGGAACAACCTTCGTTCACTTCG -ACGGAACAACCTTCGTTCTACGCA -ACGGAACAACCTTCGTTCCTTGCA -ACGGAACAACCTTCGTTCCGAACA -ACGGAACAACCTTCGTTCCAGTCA -ACGGAACAACCTTCGTTCGATCCA -ACGGAACAACCTTCGTTCACGACA -ACGGAACAACCTTCGTTCAGCTCA -ACGGAACAACCTTCGTTCTCACGT -ACGGAACAACCTTCGTTCCGTAGT -ACGGAACAACCTTCGTTCGTCAGT -ACGGAACAACCTTCGTTCGAAGGT -ACGGAACAACCTTCGTTCAACCGT -ACGGAACAACCTTCGTTCTTGTGC -ACGGAACAACCTTCGTTCCTAAGC -ACGGAACAACCTTCGTTCACTAGC -ACGGAACAACCTTCGTTCAGATGC -ACGGAACAACCTTCGTTCTGAAGG -ACGGAACAACCTTCGTTCCAATGG -ACGGAACAACCTTCGTTCATGAGG -ACGGAACAACCTTCGTTCAATGGG -ACGGAACAACCTTCGTTCTCCTGA -ACGGAACAACCTTCGTTCTAGCGA -ACGGAACAACCTTCGTTCCACAGA -ACGGAACAACCTTCGTTCGCAAGA -ACGGAACAACCTTCGTTCGGTTGA -ACGGAACAACCTTCGTTCTCCGAT -ACGGAACAACCTTCGTTCTGGCAT -ACGGAACAACCTTCGTTCCGAGAT -ACGGAACAACCTTCGTTCTACCAC -ACGGAACAACCTTCGTTCCAGAAC -ACGGAACAACCTTCGTTCGTCTAC -ACGGAACAACCTTCGTTCACGTAC -ACGGAACAACCTTCGTTCAGTGAC -ACGGAACAACCTTCGTTCCTGTAG -ACGGAACAACCTTCGTTCCCTAAG -ACGGAACAACCTTCGTTCGTTCAG -ACGGAACAACCTTCGTTCGCATAG -ACGGAACAACCTTCGTTCGACAAG -ACGGAACAACCTTCGTTCAAGCAG -ACGGAACAACCTTCGTTCCGTCAA -ACGGAACAACCTTCGTTCGCTGAA -ACGGAACAACCTTCGTTCAGTACG -ACGGAACAACCTTCGTTCATCCGA -ACGGAACAACCTTCGTTCATGGGA -ACGGAACAACCTTCGTTCGTGCAA -ACGGAACAACCTTCGTTCGAGGAA -ACGGAACAACCTTCGTTCCAGGTA -ACGGAACAACCTTCGTTCGACTCT -ACGGAACAACCTTCGTTCAGTCCT -ACGGAACAACCTTCGTTCTAAGCC -ACGGAACAACCTTCGTTCATAGCC -ACGGAACAACCTTCGTTCTAACCG -ACGGAACAACCTTCGTTCATGCCA -ACGGAACAACCTACGTAGGGAAAC -ACGGAACAACCTACGTAGAACACC -ACGGAACAACCTACGTAGATCGAG -ACGGAACAACCTACGTAGCTCCTT -ACGGAACAACCTACGTAGCCTGTT -ACGGAACAACCTACGTAGCGGTTT -ACGGAACAACCTACGTAGGTGGTT -ACGGAACAACCTACGTAGGCCTTT -ACGGAACAACCTACGTAGGGTCTT -ACGGAACAACCTACGTAGACGCTT -ACGGAACAACCTACGTAGAGCGTT -ACGGAACAACCTACGTAGTTCGTC -ACGGAACAACCTACGTAGTCTCTC -ACGGAACAACCTACGTAGTGGATC -ACGGAACAACCTACGTAGCACTTC -ACGGAACAACCTACGTAGGTACTC -ACGGAACAACCTACGTAGGATGTC -ACGGAACAACCTACGTAGACAGTC -ACGGAACAACCTACGTAGTTGCTG -ACGGAACAACCTACGTAGTCCATG -ACGGAACAACCTACGTAGTGTGTG -ACGGAACAACCTACGTAGCTAGTG -ACGGAACAACCTACGTAGCATCTG -ACGGAACAACCTACGTAGGAGTTG -ACGGAACAACCTACGTAGAGACTG -ACGGAACAACCTACGTAGTCGGTA -ACGGAACAACCTACGTAGTGCCTA -ACGGAACAACCTACGTAGCCACTA -ACGGAACAACCTACGTAGGGAGTA -ACGGAACAACCTACGTAGTCGTCT -ACGGAACAACCTACGTAGTGCACT -ACGGAACAACCTACGTAGCTGACT -ACGGAACAACCTACGTAGCAACCT -ACGGAACAACCTACGTAGGCTACT -ACGGAACAACCTACGTAGGGATCT -ACGGAACAACCTACGTAGAAGGCT -ACGGAACAACCTACGTAGTCAACC -ACGGAACAACCTACGTAGTGTTCC -ACGGAACAACCTACGTAGATTCCC -ACGGAACAACCTACGTAGTTCTCG -ACGGAACAACCTACGTAGTAGACG -ACGGAACAACCTACGTAGGTAACG -ACGGAACAACCTACGTAGACTTCG -ACGGAACAACCTACGTAGTACGCA -ACGGAACAACCTACGTAGCTTGCA -ACGGAACAACCTACGTAGCGAACA -ACGGAACAACCTACGTAGCAGTCA -ACGGAACAACCTACGTAGGATCCA -ACGGAACAACCTACGTAGACGACA -ACGGAACAACCTACGTAGAGCTCA -ACGGAACAACCTACGTAGTCACGT -ACGGAACAACCTACGTAGCGTAGT -ACGGAACAACCTACGTAGGTCAGT -ACGGAACAACCTACGTAGGAAGGT -ACGGAACAACCTACGTAGAACCGT -ACGGAACAACCTACGTAGTTGTGC -ACGGAACAACCTACGTAGCTAAGC -ACGGAACAACCTACGTAGACTAGC -ACGGAACAACCTACGTAGAGATGC -ACGGAACAACCTACGTAGTGAAGG -ACGGAACAACCTACGTAGCAATGG -ACGGAACAACCTACGTAGATGAGG -ACGGAACAACCTACGTAGAATGGG -ACGGAACAACCTACGTAGTCCTGA -ACGGAACAACCTACGTAGTAGCGA -ACGGAACAACCTACGTAGCACAGA -ACGGAACAACCTACGTAGGCAAGA -ACGGAACAACCTACGTAGGGTTGA -ACGGAACAACCTACGTAGTCCGAT -ACGGAACAACCTACGTAGTGGCAT -ACGGAACAACCTACGTAGCGAGAT -ACGGAACAACCTACGTAGTACCAC -ACGGAACAACCTACGTAGCAGAAC -ACGGAACAACCTACGTAGGTCTAC -ACGGAACAACCTACGTAGACGTAC -ACGGAACAACCTACGTAGAGTGAC -ACGGAACAACCTACGTAGCTGTAG -ACGGAACAACCTACGTAGCCTAAG -ACGGAACAACCTACGTAGGTTCAG -ACGGAACAACCTACGTAGGCATAG -ACGGAACAACCTACGTAGGACAAG -ACGGAACAACCTACGTAGAAGCAG -ACGGAACAACCTACGTAGCGTCAA -ACGGAACAACCTACGTAGGCTGAA -ACGGAACAACCTACGTAGAGTACG -ACGGAACAACCTACGTAGATCCGA -ACGGAACAACCTACGTAGATGGGA -ACGGAACAACCTACGTAGGTGCAA -ACGGAACAACCTACGTAGGAGGAA -ACGGAACAACCTACGTAGCAGGTA -ACGGAACAACCTACGTAGGACTCT -ACGGAACAACCTACGTAGAGTCCT -ACGGAACAACCTACGTAGTAAGCC -ACGGAACAACCTACGTAGATAGCC -ACGGAACAACCTACGTAGTAACCG -ACGGAACAACCTACGTAGATGCCA -ACGGAACAACCTACGGTAGGAAAC -ACGGAACAACCTACGGTAAACACC -ACGGAACAACCTACGGTAATCGAG -ACGGAACAACCTACGGTACTCCTT -ACGGAACAACCTACGGTACCTGTT -ACGGAACAACCTACGGTACGGTTT -ACGGAACAACCTACGGTAGTGGTT -ACGGAACAACCTACGGTAGCCTTT -ACGGAACAACCTACGGTAGGTCTT -ACGGAACAACCTACGGTAACGCTT -ACGGAACAACCTACGGTAAGCGTT -ACGGAACAACCTACGGTATTCGTC -ACGGAACAACCTACGGTATCTCTC -ACGGAACAACCTACGGTATGGATC -ACGGAACAACCTACGGTACACTTC -ACGGAACAACCTACGGTAGTACTC -ACGGAACAACCTACGGTAGATGTC -ACGGAACAACCTACGGTAACAGTC -ACGGAACAACCTACGGTATTGCTG -ACGGAACAACCTACGGTATCCATG -ACGGAACAACCTACGGTATGTGTG -ACGGAACAACCTACGGTACTAGTG -ACGGAACAACCTACGGTACATCTG -ACGGAACAACCTACGGTAGAGTTG -ACGGAACAACCTACGGTAAGACTG -ACGGAACAACCTACGGTATCGGTA -ACGGAACAACCTACGGTATGCCTA -ACGGAACAACCTACGGTACCACTA -ACGGAACAACCTACGGTAGGAGTA -ACGGAACAACCTACGGTATCGTCT -ACGGAACAACCTACGGTATGCACT -ACGGAACAACCTACGGTACTGACT -ACGGAACAACCTACGGTACAACCT -ACGGAACAACCTACGGTAGCTACT -ACGGAACAACCTACGGTAGGATCT -ACGGAACAACCTACGGTAAAGGCT -ACGGAACAACCTACGGTATCAACC -ACGGAACAACCTACGGTATGTTCC -ACGGAACAACCTACGGTAATTCCC -ACGGAACAACCTACGGTATTCTCG -ACGGAACAACCTACGGTATAGACG -ACGGAACAACCTACGGTAGTAACG -ACGGAACAACCTACGGTAACTTCG -ACGGAACAACCTACGGTATACGCA -ACGGAACAACCTACGGTACTTGCA -ACGGAACAACCTACGGTACGAACA -ACGGAACAACCTACGGTACAGTCA -ACGGAACAACCTACGGTAGATCCA -ACGGAACAACCTACGGTAACGACA -ACGGAACAACCTACGGTAAGCTCA -ACGGAACAACCTACGGTATCACGT -ACGGAACAACCTACGGTACGTAGT -ACGGAACAACCTACGGTAGTCAGT -ACGGAACAACCTACGGTAGAAGGT -ACGGAACAACCTACGGTAAACCGT -ACGGAACAACCTACGGTATTGTGC -ACGGAACAACCTACGGTACTAAGC -ACGGAACAACCTACGGTAACTAGC -ACGGAACAACCTACGGTAAGATGC -ACGGAACAACCTACGGTATGAAGG -ACGGAACAACCTACGGTACAATGG -ACGGAACAACCTACGGTAATGAGG -ACGGAACAACCTACGGTAAATGGG -ACGGAACAACCTACGGTATCCTGA -ACGGAACAACCTACGGTATAGCGA -ACGGAACAACCTACGGTACACAGA -ACGGAACAACCTACGGTAGCAAGA -ACGGAACAACCTACGGTAGGTTGA -ACGGAACAACCTACGGTATCCGAT -ACGGAACAACCTACGGTATGGCAT -ACGGAACAACCTACGGTACGAGAT -ACGGAACAACCTACGGTATACCAC -ACGGAACAACCTACGGTACAGAAC -ACGGAACAACCTACGGTAGTCTAC -ACGGAACAACCTACGGTAACGTAC -ACGGAACAACCTACGGTAAGTGAC -ACGGAACAACCTACGGTACTGTAG -ACGGAACAACCTACGGTACCTAAG -ACGGAACAACCTACGGTAGTTCAG -ACGGAACAACCTACGGTAGCATAG -ACGGAACAACCTACGGTAGACAAG -ACGGAACAACCTACGGTAAAGCAG -ACGGAACAACCTACGGTACGTCAA -ACGGAACAACCTACGGTAGCTGAA -ACGGAACAACCTACGGTAAGTACG -ACGGAACAACCTACGGTAATCCGA -ACGGAACAACCTACGGTAATGGGA -ACGGAACAACCTACGGTAGTGCAA -ACGGAACAACCTACGGTAGAGGAA -ACGGAACAACCTACGGTACAGGTA -ACGGAACAACCTACGGTAGACTCT -ACGGAACAACCTACGGTAAGTCCT -ACGGAACAACCTACGGTATAAGCC -ACGGAACAACCTACGGTAATAGCC -ACGGAACAACCTACGGTATAACCG -ACGGAACAACCTACGGTAATGCCA -ACGGAACAACCTTCGACTGGAAAC -ACGGAACAACCTTCGACTAACACC -ACGGAACAACCTTCGACTATCGAG -ACGGAACAACCTTCGACTCTCCTT -ACGGAACAACCTTCGACTCCTGTT -ACGGAACAACCTTCGACTCGGTTT -ACGGAACAACCTTCGACTGTGGTT -ACGGAACAACCTTCGACTGCCTTT -ACGGAACAACCTTCGACTGGTCTT -ACGGAACAACCTTCGACTACGCTT -ACGGAACAACCTTCGACTAGCGTT -ACGGAACAACCTTCGACTTTCGTC -ACGGAACAACCTTCGACTTCTCTC -ACGGAACAACCTTCGACTTGGATC -ACGGAACAACCTTCGACTCACTTC -ACGGAACAACCTTCGACTGTACTC -ACGGAACAACCTTCGACTGATGTC -ACGGAACAACCTTCGACTACAGTC -ACGGAACAACCTTCGACTTTGCTG -ACGGAACAACCTTCGACTTCCATG -ACGGAACAACCTTCGACTTGTGTG -ACGGAACAACCTTCGACTCTAGTG -ACGGAACAACCTTCGACTCATCTG -ACGGAACAACCTTCGACTGAGTTG -ACGGAACAACCTTCGACTAGACTG -ACGGAACAACCTTCGACTTCGGTA -ACGGAACAACCTTCGACTTGCCTA -ACGGAACAACCTTCGACTCCACTA -ACGGAACAACCTTCGACTGGAGTA -ACGGAACAACCTTCGACTTCGTCT -ACGGAACAACCTTCGACTTGCACT -ACGGAACAACCTTCGACTCTGACT -ACGGAACAACCTTCGACTCAACCT -ACGGAACAACCTTCGACTGCTACT -ACGGAACAACCTTCGACTGGATCT -ACGGAACAACCTTCGACTAAGGCT -ACGGAACAACCTTCGACTTCAACC -ACGGAACAACCTTCGACTTGTTCC -ACGGAACAACCTTCGACTATTCCC -ACGGAACAACCTTCGACTTTCTCG -ACGGAACAACCTTCGACTTAGACG -ACGGAACAACCTTCGACTGTAACG -ACGGAACAACCTTCGACTACTTCG -ACGGAACAACCTTCGACTTACGCA -ACGGAACAACCTTCGACTCTTGCA -ACGGAACAACCTTCGACTCGAACA -ACGGAACAACCTTCGACTCAGTCA -ACGGAACAACCTTCGACTGATCCA -ACGGAACAACCTTCGACTACGACA -ACGGAACAACCTTCGACTAGCTCA -ACGGAACAACCTTCGACTTCACGT -ACGGAACAACCTTCGACTCGTAGT -ACGGAACAACCTTCGACTGTCAGT -ACGGAACAACCTTCGACTGAAGGT -ACGGAACAACCTTCGACTAACCGT -ACGGAACAACCTTCGACTTTGTGC -ACGGAACAACCTTCGACTCTAAGC -ACGGAACAACCTTCGACTACTAGC -ACGGAACAACCTTCGACTAGATGC -ACGGAACAACCTTCGACTTGAAGG -ACGGAACAACCTTCGACTCAATGG -ACGGAACAACCTTCGACTATGAGG -ACGGAACAACCTTCGACTAATGGG -ACGGAACAACCTTCGACTTCCTGA -ACGGAACAACCTTCGACTTAGCGA -ACGGAACAACCTTCGACTCACAGA -ACGGAACAACCTTCGACTGCAAGA -ACGGAACAACCTTCGACTGGTTGA -ACGGAACAACCTTCGACTTCCGAT -ACGGAACAACCTTCGACTTGGCAT -ACGGAACAACCTTCGACTCGAGAT -ACGGAACAACCTTCGACTTACCAC -ACGGAACAACCTTCGACTCAGAAC -ACGGAACAACCTTCGACTGTCTAC -ACGGAACAACCTTCGACTACGTAC -ACGGAACAACCTTCGACTAGTGAC -ACGGAACAACCTTCGACTCTGTAG -ACGGAACAACCTTCGACTCCTAAG -ACGGAACAACCTTCGACTGTTCAG -ACGGAACAACCTTCGACTGCATAG -ACGGAACAACCTTCGACTGACAAG -ACGGAACAACCTTCGACTAAGCAG -ACGGAACAACCTTCGACTCGTCAA -ACGGAACAACCTTCGACTGCTGAA -ACGGAACAACCTTCGACTAGTACG -ACGGAACAACCTTCGACTATCCGA -ACGGAACAACCTTCGACTATGGGA -ACGGAACAACCTTCGACTGTGCAA -ACGGAACAACCTTCGACTGAGGAA -ACGGAACAACCTTCGACTCAGGTA -ACGGAACAACCTTCGACTGACTCT -ACGGAACAACCTTCGACTAGTCCT -ACGGAACAACCTTCGACTTAAGCC -ACGGAACAACCTTCGACTATAGCC -ACGGAACAACCTTCGACTTAACCG -ACGGAACAACCTTCGACTATGCCA -ACGGAACAACCTGCATACGGAAAC -ACGGAACAACCTGCATACAACACC -ACGGAACAACCTGCATACATCGAG -ACGGAACAACCTGCATACCTCCTT -ACGGAACAACCTGCATACCCTGTT -ACGGAACAACCTGCATACCGGTTT -ACGGAACAACCTGCATACGTGGTT -ACGGAACAACCTGCATACGCCTTT -ACGGAACAACCTGCATACGGTCTT -ACGGAACAACCTGCATACACGCTT -ACGGAACAACCTGCATACAGCGTT -ACGGAACAACCTGCATACTTCGTC -ACGGAACAACCTGCATACTCTCTC -ACGGAACAACCTGCATACTGGATC -ACGGAACAACCTGCATACCACTTC -ACGGAACAACCTGCATACGTACTC -ACGGAACAACCTGCATACGATGTC -ACGGAACAACCTGCATACACAGTC -ACGGAACAACCTGCATACTTGCTG -ACGGAACAACCTGCATACTCCATG -ACGGAACAACCTGCATACTGTGTG -ACGGAACAACCTGCATACCTAGTG -ACGGAACAACCTGCATACCATCTG -ACGGAACAACCTGCATACGAGTTG -ACGGAACAACCTGCATACAGACTG -ACGGAACAACCTGCATACTCGGTA -ACGGAACAACCTGCATACTGCCTA -ACGGAACAACCTGCATACCCACTA -ACGGAACAACCTGCATACGGAGTA -ACGGAACAACCTGCATACTCGTCT -ACGGAACAACCTGCATACTGCACT -ACGGAACAACCTGCATACCTGACT -ACGGAACAACCTGCATACCAACCT -ACGGAACAACCTGCATACGCTACT -ACGGAACAACCTGCATACGGATCT -ACGGAACAACCTGCATACAAGGCT -ACGGAACAACCTGCATACTCAACC -ACGGAACAACCTGCATACTGTTCC -ACGGAACAACCTGCATACATTCCC -ACGGAACAACCTGCATACTTCTCG -ACGGAACAACCTGCATACTAGACG -ACGGAACAACCTGCATACGTAACG -ACGGAACAACCTGCATACACTTCG -ACGGAACAACCTGCATACTACGCA -ACGGAACAACCTGCATACCTTGCA -ACGGAACAACCTGCATACCGAACA -ACGGAACAACCTGCATACCAGTCA -ACGGAACAACCTGCATACGATCCA -ACGGAACAACCTGCATACACGACA -ACGGAACAACCTGCATACAGCTCA -ACGGAACAACCTGCATACTCACGT -ACGGAACAACCTGCATACCGTAGT -ACGGAACAACCTGCATACGTCAGT -ACGGAACAACCTGCATACGAAGGT -ACGGAACAACCTGCATACAACCGT -ACGGAACAACCTGCATACTTGTGC -ACGGAACAACCTGCATACCTAAGC -ACGGAACAACCTGCATACACTAGC -ACGGAACAACCTGCATACAGATGC -ACGGAACAACCTGCATACTGAAGG -ACGGAACAACCTGCATACCAATGG -ACGGAACAACCTGCATACATGAGG -ACGGAACAACCTGCATACAATGGG -ACGGAACAACCTGCATACTCCTGA -ACGGAACAACCTGCATACTAGCGA -ACGGAACAACCTGCATACCACAGA -ACGGAACAACCTGCATACGCAAGA -ACGGAACAACCTGCATACGGTTGA -ACGGAACAACCTGCATACTCCGAT -ACGGAACAACCTGCATACTGGCAT -ACGGAACAACCTGCATACCGAGAT -ACGGAACAACCTGCATACTACCAC -ACGGAACAACCTGCATACCAGAAC -ACGGAACAACCTGCATACGTCTAC -ACGGAACAACCTGCATACACGTAC -ACGGAACAACCTGCATACAGTGAC -ACGGAACAACCTGCATACCTGTAG -ACGGAACAACCTGCATACCCTAAG -ACGGAACAACCTGCATACGTTCAG -ACGGAACAACCTGCATACGCATAG -ACGGAACAACCTGCATACGACAAG -ACGGAACAACCTGCATACAAGCAG -ACGGAACAACCTGCATACCGTCAA -ACGGAACAACCTGCATACGCTGAA -ACGGAACAACCTGCATACAGTACG -ACGGAACAACCTGCATACATCCGA -ACGGAACAACCTGCATACATGGGA -ACGGAACAACCTGCATACGTGCAA -ACGGAACAACCTGCATACGAGGAA -ACGGAACAACCTGCATACCAGGTA -ACGGAACAACCTGCATACGACTCT -ACGGAACAACCTGCATACAGTCCT -ACGGAACAACCTGCATACTAAGCC -ACGGAACAACCTGCATACATAGCC -ACGGAACAACCTGCATACTAACCG -ACGGAACAACCTGCATACATGCCA -ACGGAACAACCTGCACTTGGAAAC -ACGGAACAACCTGCACTTAACACC -ACGGAACAACCTGCACTTATCGAG -ACGGAACAACCTGCACTTCTCCTT -ACGGAACAACCTGCACTTCCTGTT -ACGGAACAACCTGCACTTCGGTTT -ACGGAACAACCTGCACTTGTGGTT -ACGGAACAACCTGCACTTGCCTTT -ACGGAACAACCTGCACTTGGTCTT -ACGGAACAACCTGCACTTACGCTT -ACGGAACAACCTGCACTTAGCGTT -ACGGAACAACCTGCACTTTTCGTC -ACGGAACAACCTGCACTTTCTCTC -ACGGAACAACCTGCACTTTGGATC -ACGGAACAACCTGCACTTCACTTC -ACGGAACAACCTGCACTTGTACTC -ACGGAACAACCTGCACTTGATGTC -ACGGAACAACCTGCACTTACAGTC -ACGGAACAACCTGCACTTTTGCTG -ACGGAACAACCTGCACTTTCCATG -ACGGAACAACCTGCACTTTGTGTG -ACGGAACAACCTGCACTTCTAGTG -ACGGAACAACCTGCACTTCATCTG -ACGGAACAACCTGCACTTGAGTTG -ACGGAACAACCTGCACTTAGACTG -ACGGAACAACCTGCACTTTCGGTA -ACGGAACAACCTGCACTTTGCCTA -ACGGAACAACCTGCACTTCCACTA -ACGGAACAACCTGCACTTGGAGTA -ACGGAACAACCTGCACTTTCGTCT -ACGGAACAACCTGCACTTTGCACT -ACGGAACAACCTGCACTTCTGACT -ACGGAACAACCTGCACTTCAACCT -ACGGAACAACCTGCACTTGCTACT -ACGGAACAACCTGCACTTGGATCT -ACGGAACAACCTGCACTTAAGGCT -ACGGAACAACCTGCACTTTCAACC -ACGGAACAACCTGCACTTTGTTCC -ACGGAACAACCTGCACTTATTCCC -ACGGAACAACCTGCACTTTTCTCG -ACGGAACAACCTGCACTTTAGACG -ACGGAACAACCTGCACTTGTAACG -ACGGAACAACCTGCACTTACTTCG -ACGGAACAACCTGCACTTTACGCA -ACGGAACAACCTGCACTTCTTGCA -ACGGAACAACCTGCACTTCGAACA -ACGGAACAACCTGCACTTCAGTCA -ACGGAACAACCTGCACTTGATCCA -ACGGAACAACCTGCACTTACGACA -ACGGAACAACCTGCACTTAGCTCA -ACGGAACAACCTGCACTTTCACGT -ACGGAACAACCTGCACTTCGTAGT -ACGGAACAACCTGCACTTGTCAGT -ACGGAACAACCTGCACTTGAAGGT -ACGGAACAACCTGCACTTAACCGT -ACGGAACAACCTGCACTTTTGTGC -ACGGAACAACCTGCACTTCTAAGC -ACGGAACAACCTGCACTTACTAGC -ACGGAACAACCTGCACTTAGATGC -ACGGAACAACCTGCACTTTGAAGG -ACGGAACAACCTGCACTTCAATGG -ACGGAACAACCTGCACTTATGAGG -ACGGAACAACCTGCACTTAATGGG -ACGGAACAACCTGCACTTTCCTGA -ACGGAACAACCTGCACTTTAGCGA -ACGGAACAACCTGCACTTCACAGA -ACGGAACAACCTGCACTTGCAAGA -ACGGAACAACCTGCACTTGGTTGA -ACGGAACAACCTGCACTTTCCGAT -ACGGAACAACCTGCACTTTGGCAT -ACGGAACAACCTGCACTTCGAGAT -ACGGAACAACCTGCACTTTACCAC -ACGGAACAACCTGCACTTCAGAAC -ACGGAACAACCTGCACTTGTCTAC -ACGGAACAACCTGCACTTACGTAC -ACGGAACAACCTGCACTTAGTGAC -ACGGAACAACCTGCACTTCTGTAG -ACGGAACAACCTGCACTTCCTAAG -ACGGAACAACCTGCACTTGTTCAG -ACGGAACAACCTGCACTTGCATAG -ACGGAACAACCTGCACTTGACAAG -ACGGAACAACCTGCACTTAAGCAG -ACGGAACAACCTGCACTTCGTCAA -ACGGAACAACCTGCACTTGCTGAA -ACGGAACAACCTGCACTTAGTACG -ACGGAACAACCTGCACTTATCCGA -ACGGAACAACCTGCACTTATGGGA -ACGGAACAACCTGCACTTGTGCAA -ACGGAACAACCTGCACTTGAGGAA -ACGGAACAACCTGCACTTCAGGTA -ACGGAACAACCTGCACTTGACTCT -ACGGAACAACCTGCACTTAGTCCT -ACGGAACAACCTGCACTTTAAGCC -ACGGAACAACCTGCACTTATAGCC -ACGGAACAACCTGCACTTTAACCG -ACGGAACAACCTGCACTTATGCCA -ACGGAACAACCTACACGAGGAAAC -ACGGAACAACCTACACGAAACACC -ACGGAACAACCTACACGAATCGAG -ACGGAACAACCTACACGACTCCTT -ACGGAACAACCTACACGACCTGTT -ACGGAACAACCTACACGACGGTTT -ACGGAACAACCTACACGAGTGGTT -ACGGAACAACCTACACGAGCCTTT -ACGGAACAACCTACACGAGGTCTT -ACGGAACAACCTACACGAACGCTT -ACGGAACAACCTACACGAAGCGTT -ACGGAACAACCTACACGATTCGTC -ACGGAACAACCTACACGATCTCTC -ACGGAACAACCTACACGATGGATC -ACGGAACAACCTACACGACACTTC -ACGGAACAACCTACACGAGTACTC -ACGGAACAACCTACACGAGATGTC -ACGGAACAACCTACACGAACAGTC -ACGGAACAACCTACACGATTGCTG -ACGGAACAACCTACACGATCCATG -ACGGAACAACCTACACGATGTGTG -ACGGAACAACCTACACGACTAGTG -ACGGAACAACCTACACGACATCTG -ACGGAACAACCTACACGAGAGTTG -ACGGAACAACCTACACGAAGACTG -ACGGAACAACCTACACGATCGGTA -ACGGAACAACCTACACGATGCCTA -ACGGAACAACCTACACGACCACTA -ACGGAACAACCTACACGAGGAGTA -ACGGAACAACCTACACGATCGTCT -ACGGAACAACCTACACGATGCACT -ACGGAACAACCTACACGACTGACT -ACGGAACAACCTACACGACAACCT -ACGGAACAACCTACACGAGCTACT -ACGGAACAACCTACACGAGGATCT -ACGGAACAACCTACACGAAAGGCT -ACGGAACAACCTACACGATCAACC -ACGGAACAACCTACACGATGTTCC -ACGGAACAACCTACACGAATTCCC -ACGGAACAACCTACACGATTCTCG -ACGGAACAACCTACACGATAGACG -ACGGAACAACCTACACGAGTAACG -ACGGAACAACCTACACGAACTTCG -ACGGAACAACCTACACGATACGCA -ACGGAACAACCTACACGACTTGCA -ACGGAACAACCTACACGACGAACA -ACGGAACAACCTACACGACAGTCA -ACGGAACAACCTACACGAGATCCA -ACGGAACAACCTACACGAACGACA -ACGGAACAACCTACACGAAGCTCA -ACGGAACAACCTACACGATCACGT -ACGGAACAACCTACACGACGTAGT -ACGGAACAACCTACACGAGTCAGT -ACGGAACAACCTACACGAGAAGGT -ACGGAACAACCTACACGAAACCGT -ACGGAACAACCTACACGATTGTGC -ACGGAACAACCTACACGACTAAGC -ACGGAACAACCTACACGAACTAGC -ACGGAACAACCTACACGAAGATGC -ACGGAACAACCTACACGATGAAGG -ACGGAACAACCTACACGACAATGG -ACGGAACAACCTACACGAATGAGG -ACGGAACAACCTACACGAAATGGG -ACGGAACAACCTACACGATCCTGA -ACGGAACAACCTACACGATAGCGA -ACGGAACAACCTACACGACACAGA -ACGGAACAACCTACACGAGCAAGA -ACGGAACAACCTACACGAGGTTGA -ACGGAACAACCTACACGATCCGAT -ACGGAACAACCTACACGATGGCAT -ACGGAACAACCTACACGACGAGAT -ACGGAACAACCTACACGATACCAC -ACGGAACAACCTACACGACAGAAC -ACGGAACAACCTACACGAGTCTAC -ACGGAACAACCTACACGAACGTAC -ACGGAACAACCTACACGAAGTGAC -ACGGAACAACCTACACGACTGTAG -ACGGAACAACCTACACGACCTAAG -ACGGAACAACCTACACGAGTTCAG -ACGGAACAACCTACACGAGCATAG -ACGGAACAACCTACACGAGACAAG -ACGGAACAACCTACACGAAAGCAG -ACGGAACAACCTACACGACGTCAA -ACGGAACAACCTACACGAGCTGAA -ACGGAACAACCTACACGAAGTACG -ACGGAACAACCTACACGAATCCGA -ACGGAACAACCTACACGAATGGGA -ACGGAACAACCTACACGAGTGCAA -ACGGAACAACCTACACGAGAGGAA -ACGGAACAACCTACACGACAGGTA -ACGGAACAACCTACACGAGACTCT -ACGGAACAACCTACACGAAGTCCT -ACGGAACAACCTACACGATAAGCC -ACGGAACAACCTACACGAATAGCC -ACGGAACAACCTACACGATAACCG -ACGGAACAACCTACACGAATGCCA -ACGGAACAACCTTCACAGGGAAAC -ACGGAACAACCTTCACAGAACACC -ACGGAACAACCTTCACAGATCGAG -ACGGAACAACCTTCACAGCTCCTT -ACGGAACAACCTTCACAGCCTGTT -ACGGAACAACCTTCACAGCGGTTT -ACGGAACAACCTTCACAGGTGGTT -ACGGAACAACCTTCACAGGCCTTT -ACGGAACAACCTTCACAGGGTCTT -ACGGAACAACCTTCACAGACGCTT -ACGGAACAACCTTCACAGAGCGTT -ACGGAACAACCTTCACAGTTCGTC -ACGGAACAACCTTCACAGTCTCTC -ACGGAACAACCTTCACAGTGGATC -ACGGAACAACCTTCACAGCACTTC -ACGGAACAACCTTCACAGGTACTC -ACGGAACAACCTTCACAGGATGTC -ACGGAACAACCTTCACAGACAGTC -ACGGAACAACCTTCACAGTTGCTG -ACGGAACAACCTTCACAGTCCATG -ACGGAACAACCTTCACAGTGTGTG -ACGGAACAACCTTCACAGCTAGTG -ACGGAACAACCTTCACAGCATCTG -ACGGAACAACCTTCACAGGAGTTG -ACGGAACAACCTTCACAGAGACTG -ACGGAACAACCTTCACAGTCGGTA -ACGGAACAACCTTCACAGTGCCTA -ACGGAACAACCTTCACAGCCACTA -ACGGAACAACCTTCACAGGGAGTA -ACGGAACAACCTTCACAGTCGTCT -ACGGAACAACCTTCACAGTGCACT -ACGGAACAACCTTCACAGCTGACT -ACGGAACAACCTTCACAGCAACCT -ACGGAACAACCTTCACAGGCTACT -ACGGAACAACCTTCACAGGGATCT -ACGGAACAACCTTCACAGAAGGCT -ACGGAACAACCTTCACAGTCAACC -ACGGAACAACCTTCACAGTGTTCC -ACGGAACAACCTTCACAGATTCCC -ACGGAACAACCTTCACAGTTCTCG -ACGGAACAACCTTCACAGTAGACG -ACGGAACAACCTTCACAGGTAACG -ACGGAACAACCTTCACAGACTTCG -ACGGAACAACCTTCACAGTACGCA -ACGGAACAACCTTCACAGCTTGCA -ACGGAACAACCTTCACAGCGAACA -ACGGAACAACCTTCACAGCAGTCA -ACGGAACAACCTTCACAGGATCCA -ACGGAACAACCTTCACAGACGACA -ACGGAACAACCTTCACAGAGCTCA -ACGGAACAACCTTCACAGTCACGT -ACGGAACAACCTTCACAGCGTAGT -ACGGAACAACCTTCACAGGTCAGT -ACGGAACAACCTTCACAGGAAGGT -ACGGAACAACCTTCACAGAACCGT -ACGGAACAACCTTCACAGTTGTGC -ACGGAACAACCTTCACAGCTAAGC -ACGGAACAACCTTCACAGACTAGC -ACGGAACAACCTTCACAGAGATGC -ACGGAACAACCTTCACAGTGAAGG -ACGGAACAACCTTCACAGCAATGG -ACGGAACAACCTTCACAGATGAGG -ACGGAACAACCTTCACAGAATGGG -ACGGAACAACCTTCACAGTCCTGA -ACGGAACAACCTTCACAGTAGCGA -ACGGAACAACCTTCACAGCACAGA -ACGGAACAACCTTCACAGGCAAGA -ACGGAACAACCTTCACAGGGTTGA -ACGGAACAACCTTCACAGTCCGAT -ACGGAACAACCTTCACAGTGGCAT -ACGGAACAACCTTCACAGCGAGAT -ACGGAACAACCTTCACAGTACCAC -ACGGAACAACCTTCACAGCAGAAC -ACGGAACAACCTTCACAGGTCTAC -ACGGAACAACCTTCACAGACGTAC -ACGGAACAACCTTCACAGAGTGAC -ACGGAACAACCTTCACAGCTGTAG -ACGGAACAACCTTCACAGCCTAAG -ACGGAACAACCTTCACAGGTTCAG -ACGGAACAACCTTCACAGGCATAG -ACGGAACAACCTTCACAGGACAAG -ACGGAACAACCTTCACAGAAGCAG -ACGGAACAACCTTCACAGCGTCAA -ACGGAACAACCTTCACAGGCTGAA -ACGGAACAACCTTCACAGAGTACG -ACGGAACAACCTTCACAGATCCGA -ACGGAACAACCTTCACAGATGGGA -ACGGAACAACCTTCACAGGTGCAA -ACGGAACAACCTTCACAGGAGGAA -ACGGAACAACCTTCACAGCAGGTA -ACGGAACAACCTTCACAGGACTCT -ACGGAACAACCTTCACAGAGTCCT -ACGGAACAACCTTCACAGTAAGCC -ACGGAACAACCTTCACAGATAGCC -ACGGAACAACCTTCACAGTAACCG -ACGGAACAACCTTCACAGATGCCA -ACGGAACAACCTCCAGATGGAAAC -ACGGAACAACCTCCAGATAACACC -ACGGAACAACCTCCAGATATCGAG -ACGGAACAACCTCCAGATCTCCTT -ACGGAACAACCTCCAGATCCTGTT -ACGGAACAACCTCCAGATCGGTTT -ACGGAACAACCTCCAGATGTGGTT -ACGGAACAACCTCCAGATGCCTTT -ACGGAACAACCTCCAGATGGTCTT -ACGGAACAACCTCCAGATACGCTT -ACGGAACAACCTCCAGATAGCGTT -ACGGAACAACCTCCAGATTTCGTC -ACGGAACAACCTCCAGATTCTCTC -ACGGAACAACCTCCAGATTGGATC -ACGGAACAACCTCCAGATCACTTC -ACGGAACAACCTCCAGATGTACTC -ACGGAACAACCTCCAGATGATGTC -ACGGAACAACCTCCAGATACAGTC -ACGGAACAACCTCCAGATTTGCTG -ACGGAACAACCTCCAGATTCCATG -ACGGAACAACCTCCAGATTGTGTG -ACGGAACAACCTCCAGATCTAGTG -ACGGAACAACCTCCAGATCATCTG -ACGGAACAACCTCCAGATGAGTTG -ACGGAACAACCTCCAGATAGACTG -ACGGAACAACCTCCAGATTCGGTA -ACGGAACAACCTCCAGATTGCCTA -ACGGAACAACCTCCAGATCCACTA -ACGGAACAACCTCCAGATGGAGTA -ACGGAACAACCTCCAGATTCGTCT -ACGGAACAACCTCCAGATTGCACT -ACGGAACAACCTCCAGATCTGACT -ACGGAACAACCTCCAGATCAACCT -ACGGAACAACCTCCAGATGCTACT -ACGGAACAACCTCCAGATGGATCT -ACGGAACAACCTCCAGATAAGGCT -ACGGAACAACCTCCAGATTCAACC -ACGGAACAACCTCCAGATTGTTCC -ACGGAACAACCTCCAGATATTCCC -ACGGAACAACCTCCAGATTTCTCG -ACGGAACAACCTCCAGATTAGACG -ACGGAACAACCTCCAGATGTAACG -ACGGAACAACCTCCAGATACTTCG -ACGGAACAACCTCCAGATTACGCA -ACGGAACAACCTCCAGATCTTGCA -ACGGAACAACCTCCAGATCGAACA -ACGGAACAACCTCCAGATCAGTCA -ACGGAACAACCTCCAGATGATCCA -ACGGAACAACCTCCAGATACGACA -ACGGAACAACCTCCAGATAGCTCA -ACGGAACAACCTCCAGATTCACGT -ACGGAACAACCTCCAGATCGTAGT -ACGGAACAACCTCCAGATGTCAGT -ACGGAACAACCTCCAGATGAAGGT -ACGGAACAACCTCCAGATAACCGT -ACGGAACAACCTCCAGATTTGTGC -ACGGAACAACCTCCAGATCTAAGC -ACGGAACAACCTCCAGATACTAGC -ACGGAACAACCTCCAGATAGATGC -ACGGAACAACCTCCAGATTGAAGG -ACGGAACAACCTCCAGATCAATGG -ACGGAACAACCTCCAGATATGAGG -ACGGAACAACCTCCAGATAATGGG -ACGGAACAACCTCCAGATTCCTGA -ACGGAACAACCTCCAGATTAGCGA -ACGGAACAACCTCCAGATCACAGA -ACGGAACAACCTCCAGATGCAAGA -ACGGAACAACCTCCAGATGGTTGA -ACGGAACAACCTCCAGATTCCGAT -ACGGAACAACCTCCAGATTGGCAT -ACGGAACAACCTCCAGATCGAGAT -ACGGAACAACCTCCAGATTACCAC -ACGGAACAACCTCCAGATCAGAAC -ACGGAACAACCTCCAGATGTCTAC -ACGGAACAACCTCCAGATACGTAC -ACGGAACAACCTCCAGATAGTGAC -ACGGAACAACCTCCAGATCTGTAG -ACGGAACAACCTCCAGATCCTAAG -ACGGAACAACCTCCAGATGTTCAG -ACGGAACAACCTCCAGATGCATAG -ACGGAACAACCTCCAGATGACAAG -ACGGAACAACCTCCAGATAAGCAG -ACGGAACAACCTCCAGATCGTCAA -ACGGAACAACCTCCAGATGCTGAA -ACGGAACAACCTCCAGATAGTACG -ACGGAACAACCTCCAGATATCCGA -ACGGAACAACCTCCAGATATGGGA -ACGGAACAACCTCCAGATGTGCAA -ACGGAACAACCTCCAGATGAGGAA -ACGGAACAACCTCCAGATCAGGTA -ACGGAACAACCTCCAGATGACTCT -ACGGAACAACCTCCAGATAGTCCT -ACGGAACAACCTCCAGATTAAGCC -ACGGAACAACCTCCAGATATAGCC -ACGGAACAACCTCCAGATTAACCG -ACGGAACAACCTCCAGATATGCCA -ACGGAACAACCTACAACGGGAAAC -ACGGAACAACCTACAACGAACACC -ACGGAACAACCTACAACGATCGAG -ACGGAACAACCTACAACGCTCCTT -ACGGAACAACCTACAACGCCTGTT -ACGGAACAACCTACAACGCGGTTT -ACGGAACAACCTACAACGGTGGTT -ACGGAACAACCTACAACGGCCTTT -ACGGAACAACCTACAACGGGTCTT -ACGGAACAACCTACAACGACGCTT -ACGGAACAACCTACAACGAGCGTT -ACGGAACAACCTACAACGTTCGTC -ACGGAACAACCTACAACGTCTCTC -ACGGAACAACCTACAACGTGGATC -ACGGAACAACCTACAACGCACTTC -ACGGAACAACCTACAACGGTACTC -ACGGAACAACCTACAACGGATGTC -ACGGAACAACCTACAACGACAGTC -ACGGAACAACCTACAACGTTGCTG -ACGGAACAACCTACAACGTCCATG -ACGGAACAACCTACAACGTGTGTG -ACGGAACAACCTACAACGCTAGTG -ACGGAACAACCTACAACGCATCTG -ACGGAACAACCTACAACGGAGTTG -ACGGAACAACCTACAACGAGACTG -ACGGAACAACCTACAACGTCGGTA -ACGGAACAACCTACAACGTGCCTA -ACGGAACAACCTACAACGCCACTA -ACGGAACAACCTACAACGGGAGTA -ACGGAACAACCTACAACGTCGTCT -ACGGAACAACCTACAACGTGCACT -ACGGAACAACCTACAACGCTGACT -ACGGAACAACCTACAACGCAACCT -ACGGAACAACCTACAACGGCTACT -ACGGAACAACCTACAACGGGATCT -ACGGAACAACCTACAACGAAGGCT -ACGGAACAACCTACAACGTCAACC -ACGGAACAACCTACAACGTGTTCC -ACGGAACAACCTACAACGATTCCC -ACGGAACAACCTACAACGTTCTCG -ACGGAACAACCTACAACGTAGACG -ACGGAACAACCTACAACGGTAACG -ACGGAACAACCTACAACGACTTCG -ACGGAACAACCTACAACGTACGCA -ACGGAACAACCTACAACGCTTGCA -ACGGAACAACCTACAACGCGAACA -ACGGAACAACCTACAACGCAGTCA -ACGGAACAACCTACAACGGATCCA -ACGGAACAACCTACAACGACGACA -ACGGAACAACCTACAACGAGCTCA -ACGGAACAACCTACAACGTCACGT -ACGGAACAACCTACAACGCGTAGT -ACGGAACAACCTACAACGGTCAGT -ACGGAACAACCTACAACGGAAGGT -ACGGAACAACCTACAACGAACCGT -ACGGAACAACCTACAACGTTGTGC -ACGGAACAACCTACAACGCTAAGC -ACGGAACAACCTACAACGACTAGC -ACGGAACAACCTACAACGAGATGC -ACGGAACAACCTACAACGTGAAGG -ACGGAACAACCTACAACGCAATGG -ACGGAACAACCTACAACGATGAGG -ACGGAACAACCTACAACGAATGGG -ACGGAACAACCTACAACGTCCTGA -ACGGAACAACCTACAACGTAGCGA -ACGGAACAACCTACAACGCACAGA -ACGGAACAACCTACAACGGCAAGA -ACGGAACAACCTACAACGGGTTGA -ACGGAACAACCTACAACGTCCGAT -ACGGAACAACCTACAACGTGGCAT -ACGGAACAACCTACAACGCGAGAT -ACGGAACAACCTACAACGTACCAC -ACGGAACAACCTACAACGCAGAAC -ACGGAACAACCTACAACGGTCTAC -ACGGAACAACCTACAACGACGTAC -ACGGAACAACCTACAACGAGTGAC -ACGGAACAACCTACAACGCTGTAG -ACGGAACAACCTACAACGCCTAAG -ACGGAACAACCTACAACGGTTCAG -ACGGAACAACCTACAACGGCATAG -ACGGAACAACCTACAACGGACAAG -ACGGAACAACCTACAACGAAGCAG -ACGGAACAACCTACAACGCGTCAA -ACGGAACAACCTACAACGGCTGAA -ACGGAACAACCTACAACGAGTACG -ACGGAACAACCTACAACGATCCGA -ACGGAACAACCTACAACGATGGGA -ACGGAACAACCTACAACGGTGCAA -ACGGAACAACCTACAACGGAGGAA -ACGGAACAACCTACAACGCAGGTA -ACGGAACAACCTACAACGGACTCT -ACGGAACAACCTACAACGAGTCCT -ACGGAACAACCTACAACGTAAGCC -ACGGAACAACCTACAACGATAGCC -ACGGAACAACCTACAACGTAACCG -ACGGAACAACCTACAACGATGCCA -ACGGAACAACCTTCAAGCGGAAAC -ACGGAACAACCTTCAAGCAACACC -ACGGAACAACCTTCAAGCATCGAG -ACGGAACAACCTTCAAGCCTCCTT -ACGGAACAACCTTCAAGCCCTGTT -ACGGAACAACCTTCAAGCCGGTTT -ACGGAACAACCTTCAAGCGTGGTT -ACGGAACAACCTTCAAGCGCCTTT -ACGGAACAACCTTCAAGCGGTCTT -ACGGAACAACCTTCAAGCACGCTT -ACGGAACAACCTTCAAGCAGCGTT -ACGGAACAACCTTCAAGCTTCGTC -ACGGAACAACCTTCAAGCTCTCTC -ACGGAACAACCTTCAAGCTGGATC -ACGGAACAACCTTCAAGCCACTTC -ACGGAACAACCTTCAAGCGTACTC -ACGGAACAACCTTCAAGCGATGTC -ACGGAACAACCTTCAAGCACAGTC -ACGGAACAACCTTCAAGCTTGCTG -ACGGAACAACCTTCAAGCTCCATG -ACGGAACAACCTTCAAGCTGTGTG -ACGGAACAACCTTCAAGCCTAGTG -ACGGAACAACCTTCAAGCCATCTG -ACGGAACAACCTTCAAGCGAGTTG -ACGGAACAACCTTCAAGCAGACTG -ACGGAACAACCTTCAAGCTCGGTA -ACGGAACAACCTTCAAGCTGCCTA -ACGGAACAACCTTCAAGCCCACTA -ACGGAACAACCTTCAAGCGGAGTA -ACGGAACAACCTTCAAGCTCGTCT -ACGGAACAACCTTCAAGCTGCACT -ACGGAACAACCTTCAAGCCTGACT -ACGGAACAACCTTCAAGCCAACCT -ACGGAACAACCTTCAAGCGCTACT -ACGGAACAACCTTCAAGCGGATCT -ACGGAACAACCTTCAAGCAAGGCT -ACGGAACAACCTTCAAGCTCAACC -ACGGAACAACCTTCAAGCTGTTCC -ACGGAACAACCTTCAAGCATTCCC -ACGGAACAACCTTCAAGCTTCTCG -ACGGAACAACCTTCAAGCTAGACG -ACGGAACAACCTTCAAGCGTAACG -ACGGAACAACCTTCAAGCACTTCG -ACGGAACAACCTTCAAGCTACGCA -ACGGAACAACCTTCAAGCCTTGCA -ACGGAACAACCTTCAAGCCGAACA -ACGGAACAACCTTCAAGCCAGTCA -ACGGAACAACCTTCAAGCGATCCA -ACGGAACAACCTTCAAGCACGACA -ACGGAACAACCTTCAAGCAGCTCA -ACGGAACAACCTTCAAGCTCACGT -ACGGAACAACCTTCAAGCCGTAGT -ACGGAACAACCTTCAAGCGTCAGT -ACGGAACAACCTTCAAGCGAAGGT -ACGGAACAACCTTCAAGCAACCGT -ACGGAACAACCTTCAAGCTTGTGC -ACGGAACAACCTTCAAGCCTAAGC -ACGGAACAACCTTCAAGCACTAGC -ACGGAACAACCTTCAAGCAGATGC -ACGGAACAACCTTCAAGCTGAAGG -ACGGAACAACCTTCAAGCCAATGG -ACGGAACAACCTTCAAGCATGAGG -ACGGAACAACCTTCAAGCAATGGG -ACGGAACAACCTTCAAGCTCCTGA -ACGGAACAACCTTCAAGCTAGCGA -ACGGAACAACCTTCAAGCCACAGA -ACGGAACAACCTTCAAGCGCAAGA -ACGGAACAACCTTCAAGCGGTTGA -ACGGAACAACCTTCAAGCTCCGAT -ACGGAACAACCTTCAAGCTGGCAT -ACGGAACAACCTTCAAGCCGAGAT -ACGGAACAACCTTCAAGCTACCAC -ACGGAACAACCTTCAAGCCAGAAC -ACGGAACAACCTTCAAGCGTCTAC -ACGGAACAACCTTCAAGCACGTAC -ACGGAACAACCTTCAAGCAGTGAC -ACGGAACAACCTTCAAGCCTGTAG -ACGGAACAACCTTCAAGCCCTAAG -ACGGAACAACCTTCAAGCGTTCAG -ACGGAACAACCTTCAAGCGCATAG -ACGGAACAACCTTCAAGCGACAAG -ACGGAACAACCTTCAAGCAAGCAG -ACGGAACAACCTTCAAGCCGTCAA -ACGGAACAACCTTCAAGCGCTGAA -ACGGAACAACCTTCAAGCAGTACG -ACGGAACAACCTTCAAGCATCCGA -ACGGAACAACCTTCAAGCATGGGA -ACGGAACAACCTTCAAGCGTGCAA -ACGGAACAACCTTCAAGCGAGGAA -ACGGAACAACCTTCAAGCCAGGTA -ACGGAACAACCTTCAAGCGACTCT -ACGGAACAACCTTCAAGCAGTCCT -ACGGAACAACCTTCAAGCTAAGCC -ACGGAACAACCTTCAAGCATAGCC -ACGGAACAACCTTCAAGCTAACCG -ACGGAACAACCTTCAAGCATGCCA -ACGGAACAACCTCGTTCAGGAAAC -ACGGAACAACCTCGTTCAAACACC -ACGGAACAACCTCGTTCAATCGAG -ACGGAACAACCTCGTTCACTCCTT -ACGGAACAACCTCGTTCACCTGTT -ACGGAACAACCTCGTTCACGGTTT -ACGGAACAACCTCGTTCAGTGGTT -ACGGAACAACCTCGTTCAGCCTTT -ACGGAACAACCTCGTTCAGGTCTT -ACGGAACAACCTCGTTCAACGCTT -ACGGAACAACCTCGTTCAAGCGTT -ACGGAACAACCTCGTTCATTCGTC -ACGGAACAACCTCGTTCATCTCTC -ACGGAACAACCTCGTTCATGGATC -ACGGAACAACCTCGTTCACACTTC -ACGGAACAACCTCGTTCAGTACTC -ACGGAACAACCTCGTTCAGATGTC -ACGGAACAACCTCGTTCAACAGTC -ACGGAACAACCTCGTTCATTGCTG -ACGGAACAACCTCGTTCATCCATG -ACGGAACAACCTCGTTCATGTGTG -ACGGAACAACCTCGTTCACTAGTG -ACGGAACAACCTCGTTCACATCTG -ACGGAACAACCTCGTTCAGAGTTG -ACGGAACAACCTCGTTCAAGACTG -ACGGAACAACCTCGTTCATCGGTA -ACGGAACAACCTCGTTCATGCCTA -ACGGAACAACCTCGTTCACCACTA -ACGGAACAACCTCGTTCAGGAGTA -ACGGAACAACCTCGTTCATCGTCT -ACGGAACAACCTCGTTCATGCACT -ACGGAACAACCTCGTTCACTGACT -ACGGAACAACCTCGTTCACAACCT -ACGGAACAACCTCGTTCAGCTACT -ACGGAACAACCTCGTTCAGGATCT -ACGGAACAACCTCGTTCAAAGGCT -ACGGAACAACCTCGTTCATCAACC -ACGGAACAACCTCGTTCATGTTCC -ACGGAACAACCTCGTTCAATTCCC -ACGGAACAACCTCGTTCATTCTCG -ACGGAACAACCTCGTTCATAGACG -ACGGAACAACCTCGTTCAGTAACG -ACGGAACAACCTCGTTCAACTTCG -ACGGAACAACCTCGTTCATACGCA -ACGGAACAACCTCGTTCACTTGCA -ACGGAACAACCTCGTTCACGAACA -ACGGAACAACCTCGTTCACAGTCA -ACGGAACAACCTCGTTCAGATCCA -ACGGAACAACCTCGTTCAACGACA -ACGGAACAACCTCGTTCAAGCTCA -ACGGAACAACCTCGTTCATCACGT -ACGGAACAACCTCGTTCACGTAGT -ACGGAACAACCTCGTTCAGTCAGT -ACGGAACAACCTCGTTCAGAAGGT -ACGGAACAACCTCGTTCAAACCGT -ACGGAACAACCTCGTTCATTGTGC -ACGGAACAACCTCGTTCACTAAGC -ACGGAACAACCTCGTTCAACTAGC -ACGGAACAACCTCGTTCAAGATGC -ACGGAACAACCTCGTTCATGAAGG -ACGGAACAACCTCGTTCACAATGG -ACGGAACAACCTCGTTCAATGAGG -ACGGAACAACCTCGTTCAAATGGG -ACGGAACAACCTCGTTCATCCTGA -ACGGAACAACCTCGTTCATAGCGA -ACGGAACAACCTCGTTCACACAGA -ACGGAACAACCTCGTTCAGCAAGA -ACGGAACAACCTCGTTCAGGTTGA -ACGGAACAACCTCGTTCATCCGAT -ACGGAACAACCTCGTTCATGGCAT -ACGGAACAACCTCGTTCACGAGAT -ACGGAACAACCTCGTTCATACCAC -ACGGAACAACCTCGTTCACAGAAC -ACGGAACAACCTCGTTCAGTCTAC -ACGGAACAACCTCGTTCAACGTAC -ACGGAACAACCTCGTTCAAGTGAC -ACGGAACAACCTCGTTCACTGTAG -ACGGAACAACCTCGTTCACCTAAG -ACGGAACAACCTCGTTCAGTTCAG -ACGGAACAACCTCGTTCAGCATAG -ACGGAACAACCTCGTTCAGACAAG -ACGGAACAACCTCGTTCAAAGCAG -ACGGAACAACCTCGTTCACGTCAA -ACGGAACAACCTCGTTCAGCTGAA -ACGGAACAACCTCGTTCAAGTACG -ACGGAACAACCTCGTTCAATCCGA -ACGGAACAACCTCGTTCAATGGGA -ACGGAACAACCTCGTTCAGTGCAA -ACGGAACAACCTCGTTCAGAGGAA -ACGGAACAACCTCGTTCACAGGTA -ACGGAACAACCTCGTTCAGACTCT -ACGGAACAACCTCGTTCAAGTCCT -ACGGAACAACCTCGTTCATAAGCC -ACGGAACAACCTCGTTCAATAGCC -ACGGAACAACCTCGTTCATAACCG -ACGGAACAACCTCGTTCAATGCCA -ACGGAACAACCTAGTCGTGGAAAC -ACGGAACAACCTAGTCGTAACACC -ACGGAACAACCTAGTCGTATCGAG -ACGGAACAACCTAGTCGTCTCCTT -ACGGAACAACCTAGTCGTCCTGTT -ACGGAACAACCTAGTCGTCGGTTT -ACGGAACAACCTAGTCGTGTGGTT -ACGGAACAACCTAGTCGTGCCTTT -ACGGAACAACCTAGTCGTGGTCTT -ACGGAACAACCTAGTCGTACGCTT -ACGGAACAACCTAGTCGTAGCGTT -ACGGAACAACCTAGTCGTTTCGTC -ACGGAACAACCTAGTCGTTCTCTC -ACGGAACAACCTAGTCGTTGGATC -ACGGAACAACCTAGTCGTCACTTC -ACGGAACAACCTAGTCGTGTACTC -ACGGAACAACCTAGTCGTGATGTC -ACGGAACAACCTAGTCGTACAGTC -ACGGAACAACCTAGTCGTTTGCTG -ACGGAACAACCTAGTCGTTCCATG -ACGGAACAACCTAGTCGTTGTGTG -ACGGAACAACCTAGTCGTCTAGTG -ACGGAACAACCTAGTCGTCATCTG -ACGGAACAACCTAGTCGTGAGTTG -ACGGAACAACCTAGTCGTAGACTG -ACGGAACAACCTAGTCGTTCGGTA -ACGGAACAACCTAGTCGTTGCCTA -ACGGAACAACCTAGTCGTCCACTA -ACGGAACAACCTAGTCGTGGAGTA -ACGGAACAACCTAGTCGTTCGTCT -ACGGAACAACCTAGTCGTTGCACT -ACGGAACAACCTAGTCGTCTGACT -ACGGAACAACCTAGTCGTCAACCT -ACGGAACAACCTAGTCGTGCTACT -ACGGAACAACCTAGTCGTGGATCT -ACGGAACAACCTAGTCGTAAGGCT -ACGGAACAACCTAGTCGTTCAACC -ACGGAACAACCTAGTCGTTGTTCC -ACGGAACAACCTAGTCGTATTCCC -ACGGAACAACCTAGTCGTTTCTCG -ACGGAACAACCTAGTCGTTAGACG -ACGGAACAACCTAGTCGTGTAACG -ACGGAACAACCTAGTCGTACTTCG -ACGGAACAACCTAGTCGTTACGCA -ACGGAACAACCTAGTCGTCTTGCA -ACGGAACAACCTAGTCGTCGAACA -ACGGAACAACCTAGTCGTCAGTCA -ACGGAACAACCTAGTCGTGATCCA -ACGGAACAACCTAGTCGTACGACA -ACGGAACAACCTAGTCGTAGCTCA -ACGGAACAACCTAGTCGTTCACGT -ACGGAACAACCTAGTCGTCGTAGT -ACGGAACAACCTAGTCGTGTCAGT -ACGGAACAACCTAGTCGTGAAGGT -ACGGAACAACCTAGTCGTAACCGT -ACGGAACAACCTAGTCGTTTGTGC -ACGGAACAACCTAGTCGTCTAAGC -ACGGAACAACCTAGTCGTACTAGC -ACGGAACAACCTAGTCGTAGATGC -ACGGAACAACCTAGTCGTTGAAGG -ACGGAACAACCTAGTCGTCAATGG -ACGGAACAACCTAGTCGTATGAGG -ACGGAACAACCTAGTCGTAATGGG -ACGGAACAACCTAGTCGTTCCTGA -ACGGAACAACCTAGTCGTTAGCGA -ACGGAACAACCTAGTCGTCACAGA -ACGGAACAACCTAGTCGTGCAAGA -ACGGAACAACCTAGTCGTGGTTGA -ACGGAACAACCTAGTCGTTCCGAT -ACGGAACAACCTAGTCGTTGGCAT -ACGGAACAACCTAGTCGTCGAGAT -ACGGAACAACCTAGTCGTTACCAC -ACGGAACAACCTAGTCGTCAGAAC -ACGGAACAACCTAGTCGTGTCTAC -ACGGAACAACCTAGTCGTACGTAC -ACGGAACAACCTAGTCGTAGTGAC -ACGGAACAACCTAGTCGTCTGTAG -ACGGAACAACCTAGTCGTCCTAAG -ACGGAACAACCTAGTCGTGTTCAG -ACGGAACAACCTAGTCGTGCATAG -ACGGAACAACCTAGTCGTGACAAG -ACGGAACAACCTAGTCGTAAGCAG -ACGGAACAACCTAGTCGTCGTCAA -ACGGAACAACCTAGTCGTGCTGAA -ACGGAACAACCTAGTCGTAGTACG -ACGGAACAACCTAGTCGTATCCGA -ACGGAACAACCTAGTCGTATGGGA -ACGGAACAACCTAGTCGTGTGCAA -ACGGAACAACCTAGTCGTGAGGAA -ACGGAACAACCTAGTCGTCAGGTA -ACGGAACAACCTAGTCGTGACTCT -ACGGAACAACCTAGTCGTAGTCCT -ACGGAACAACCTAGTCGTTAAGCC -ACGGAACAACCTAGTCGTATAGCC -ACGGAACAACCTAGTCGTTAACCG -ACGGAACAACCTAGTCGTATGCCA -ACGGAACAACCTAGTGTCGGAAAC -ACGGAACAACCTAGTGTCAACACC -ACGGAACAACCTAGTGTCATCGAG -ACGGAACAACCTAGTGTCCTCCTT -ACGGAACAACCTAGTGTCCCTGTT -ACGGAACAACCTAGTGTCCGGTTT -ACGGAACAACCTAGTGTCGTGGTT -ACGGAACAACCTAGTGTCGCCTTT -ACGGAACAACCTAGTGTCGGTCTT -ACGGAACAACCTAGTGTCACGCTT -ACGGAACAACCTAGTGTCAGCGTT -ACGGAACAACCTAGTGTCTTCGTC -ACGGAACAACCTAGTGTCTCTCTC -ACGGAACAACCTAGTGTCTGGATC -ACGGAACAACCTAGTGTCCACTTC -ACGGAACAACCTAGTGTCGTACTC -ACGGAACAACCTAGTGTCGATGTC -ACGGAACAACCTAGTGTCACAGTC -ACGGAACAACCTAGTGTCTTGCTG -ACGGAACAACCTAGTGTCTCCATG -ACGGAACAACCTAGTGTCTGTGTG -ACGGAACAACCTAGTGTCCTAGTG -ACGGAACAACCTAGTGTCCATCTG -ACGGAACAACCTAGTGTCGAGTTG -ACGGAACAACCTAGTGTCAGACTG -ACGGAACAACCTAGTGTCTCGGTA -ACGGAACAACCTAGTGTCTGCCTA -ACGGAACAACCTAGTGTCCCACTA -ACGGAACAACCTAGTGTCGGAGTA -ACGGAACAACCTAGTGTCTCGTCT -ACGGAACAACCTAGTGTCTGCACT -ACGGAACAACCTAGTGTCCTGACT -ACGGAACAACCTAGTGTCCAACCT -ACGGAACAACCTAGTGTCGCTACT -ACGGAACAACCTAGTGTCGGATCT -ACGGAACAACCTAGTGTCAAGGCT -ACGGAACAACCTAGTGTCTCAACC -ACGGAACAACCTAGTGTCTGTTCC -ACGGAACAACCTAGTGTCATTCCC -ACGGAACAACCTAGTGTCTTCTCG -ACGGAACAACCTAGTGTCTAGACG -ACGGAACAACCTAGTGTCGTAACG -ACGGAACAACCTAGTGTCACTTCG -ACGGAACAACCTAGTGTCTACGCA -ACGGAACAACCTAGTGTCCTTGCA -ACGGAACAACCTAGTGTCCGAACA -ACGGAACAACCTAGTGTCCAGTCA -ACGGAACAACCTAGTGTCGATCCA -ACGGAACAACCTAGTGTCACGACA -ACGGAACAACCTAGTGTCAGCTCA -ACGGAACAACCTAGTGTCTCACGT -ACGGAACAACCTAGTGTCCGTAGT -ACGGAACAACCTAGTGTCGTCAGT -ACGGAACAACCTAGTGTCGAAGGT -ACGGAACAACCTAGTGTCAACCGT -ACGGAACAACCTAGTGTCTTGTGC -ACGGAACAACCTAGTGTCCTAAGC -ACGGAACAACCTAGTGTCACTAGC -ACGGAACAACCTAGTGTCAGATGC -ACGGAACAACCTAGTGTCTGAAGG -ACGGAACAACCTAGTGTCCAATGG -ACGGAACAACCTAGTGTCATGAGG -ACGGAACAACCTAGTGTCAATGGG -ACGGAACAACCTAGTGTCTCCTGA -ACGGAACAACCTAGTGTCTAGCGA -ACGGAACAACCTAGTGTCCACAGA -ACGGAACAACCTAGTGTCGCAAGA -ACGGAACAACCTAGTGTCGGTTGA -ACGGAACAACCTAGTGTCTCCGAT -ACGGAACAACCTAGTGTCTGGCAT -ACGGAACAACCTAGTGTCCGAGAT -ACGGAACAACCTAGTGTCTACCAC -ACGGAACAACCTAGTGTCCAGAAC -ACGGAACAACCTAGTGTCGTCTAC -ACGGAACAACCTAGTGTCACGTAC -ACGGAACAACCTAGTGTCAGTGAC -ACGGAACAACCTAGTGTCCTGTAG -ACGGAACAACCTAGTGTCCCTAAG -ACGGAACAACCTAGTGTCGTTCAG -ACGGAACAACCTAGTGTCGCATAG -ACGGAACAACCTAGTGTCGACAAG -ACGGAACAACCTAGTGTCAAGCAG -ACGGAACAACCTAGTGTCCGTCAA -ACGGAACAACCTAGTGTCGCTGAA -ACGGAACAACCTAGTGTCAGTACG -ACGGAACAACCTAGTGTCATCCGA -ACGGAACAACCTAGTGTCATGGGA -ACGGAACAACCTAGTGTCGTGCAA -ACGGAACAACCTAGTGTCGAGGAA -ACGGAACAACCTAGTGTCCAGGTA -ACGGAACAACCTAGTGTCGACTCT -ACGGAACAACCTAGTGTCAGTCCT -ACGGAACAACCTAGTGTCTAAGCC -ACGGAACAACCTAGTGTCATAGCC -ACGGAACAACCTAGTGTCTAACCG -ACGGAACAACCTAGTGTCATGCCA -ACGGAACAACCTGGTGAAGGAAAC -ACGGAACAACCTGGTGAAAACACC -ACGGAACAACCTGGTGAAATCGAG -ACGGAACAACCTGGTGAACTCCTT -ACGGAACAACCTGGTGAACCTGTT -ACGGAACAACCTGGTGAACGGTTT -ACGGAACAACCTGGTGAAGTGGTT -ACGGAACAACCTGGTGAAGCCTTT -ACGGAACAACCTGGTGAAGGTCTT -ACGGAACAACCTGGTGAAACGCTT -ACGGAACAACCTGGTGAAAGCGTT -ACGGAACAACCTGGTGAATTCGTC -ACGGAACAACCTGGTGAATCTCTC -ACGGAACAACCTGGTGAATGGATC -ACGGAACAACCTGGTGAACACTTC -ACGGAACAACCTGGTGAAGTACTC -ACGGAACAACCTGGTGAAGATGTC -ACGGAACAACCTGGTGAAACAGTC -ACGGAACAACCTGGTGAATTGCTG -ACGGAACAACCTGGTGAATCCATG -ACGGAACAACCTGGTGAATGTGTG -ACGGAACAACCTGGTGAACTAGTG -ACGGAACAACCTGGTGAACATCTG -ACGGAACAACCTGGTGAAGAGTTG -ACGGAACAACCTGGTGAAAGACTG -ACGGAACAACCTGGTGAATCGGTA -ACGGAACAACCTGGTGAATGCCTA -ACGGAACAACCTGGTGAACCACTA -ACGGAACAACCTGGTGAAGGAGTA -ACGGAACAACCTGGTGAATCGTCT -ACGGAACAACCTGGTGAATGCACT -ACGGAACAACCTGGTGAACTGACT -ACGGAACAACCTGGTGAACAACCT -ACGGAACAACCTGGTGAAGCTACT -ACGGAACAACCTGGTGAAGGATCT -ACGGAACAACCTGGTGAAAAGGCT -ACGGAACAACCTGGTGAATCAACC -ACGGAACAACCTGGTGAATGTTCC -ACGGAACAACCTGGTGAAATTCCC -ACGGAACAACCTGGTGAATTCTCG -ACGGAACAACCTGGTGAATAGACG -ACGGAACAACCTGGTGAAGTAACG -ACGGAACAACCTGGTGAAACTTCG -ACGGAACAACCTGGTGAATACGCA -ACGGAACAACCTGGTGAACTTGCA -ACGGAACAACCTGGTGAACGAACA -ACGGAACAACCTGGTGAACAGTCA -ACGGAACAACCTGGTGAAGATCCA -ACGGAACAACCTGGTGAAACGACA -ACGGAACAACCTGGTGAAAGCTCA -ACGGAACAACCTGGTGAATCACGT -ACGGAACAACCTGGTGAACGTAGT -ACGGAACAACCTGGTGAAGTCAGT -ACGGAACAACCTGGTGAAGAAGGT -ACGGAACAACCTGGTGAAAACCGT -ACGGAACAACCTGGTGAATTGTGC -ACGGAACAACCTGGTGAACTAAGC -ACGGAACAACCTGGTGAAACTAGC -ACGGAACAACCTGGTGAAAGATGC -ACGGAACAACCTGGTGAATGAAGG -ACGGAACAACCTGGTGAACAATGG -ACGGAACAACCTGGTGAAATGAGG -ACGGAACAACCTGGTGAAAATGGG -ACGGAACAACCTGGTGAATCCTGA -ACGGAACAACCTGGTGAATAGCGA -ACGGAACAACCTGGTGAACACAGA -ACGGAACAACCTGGTGAAGCAAGA -ACGGAACAACCTGGTGAAGGTTGA -ACGGAACAACCTGGTGAATCCGAT -ACGGAACAACCTGGTGAATGGCAT -ACGGAACAACCTGGTGAACGAGAT -ACGGAACAACCTGGTGAATACCAC -ACGGAACAACCTGGTGAACAGAAC -ACGGAACAACCTGGTGAAGTCTAC -ACGGAACAACCTGGTGAAACGTAC -ACGGAACAACCTGGTGAAAGTGAC -ACGGAACAACCTGGTGAACTGTAG -ACGGAACAACCTGGTGAACCTAAG -ACGGAACAACCTGGTGAAGTTCAG -ACGGAACAACCTGGTGAAGCATAG -ACGGAACAACCTGGTGAAGACAAG -ACGGAACAACCTGGTGAAAAGCAG -ACGGAACAACCTGGTGAACGTCAA -ACGGAACAACCTGGTGAAGCTGAA -ACGGAACAACCTGGTGAAAGTACG -ACGGAACAACCTGGTGAAATCCGA -ACGGAACAACCTGGTGAAATGGGA -ACGGAACAACCTGGTGAAGTGCAA -ACGGAACAACCTGGTGAAGAGGAA -ACGGAACAACCTGGTGAACAGGTA -ACGGAACAACCTGGTGAAGACTCT -ACGGAACAACCTGGTGAAAGTCCT -ACGGAACAACCTGGTGAATAAGCC -ACGGAACAACCTGGTGAAATAGCC -ACGGAACAACCTGGTGAATAACCG -ACGGAACAACCTGGTGAAATGCCA -ACGGAACAACCTCGTAACGGAAAC -ACGGAACAACCTCGTAACAACACC -ACGGAACAACCTCGTAACATCGAG -ACGGAACAACCTCGTAACCTCCTT -ACGGAACAACCTCGTAACCCTGTT -ACGGAACAACCTCGTAACCGGTTT -ACGGAACAACCTCGTAACGTGGTT -ACGGAACAACCTCGTAACGCCTTT -ACGGAACAACCTCGTAACGGTCTT -ACGGAACAACCTCGTAACACGCTT -ACGGAACAACCTCGTAACAGCGTT -ACGGAACAACCTCGTAACTTCGTC -ACGGAACAACCTCGTAACTCTCTC -ACGGAACAACCTCGTAACTGGATC -ACGGAACAACCTCGTAACCACTTC -ACGGAACAACCTCGTAACGTACTC -ACGGAACAACCTCGTAACGATGTC -ACGGAACAACCTCGTAACACAGTC -ACGGAACAACCTCGTAACTTGCTG -ACGGAACAACCTCGTAACTCCATG -ACGGAACAACCTCGTAACTGTGTG -ACGGAACAACCTCGTAACCTAGTG -ACGGAACAACCTCGTAACCATCTG -ACGGAACAACCTCGTAACGAGTTG -ACGGAACAACCTCGTAACAGACTG -ACGGAACAACCTCGTAACTCGGTA -ACGGAACAACCTCGTAACTGCCTA -ACGGAACAACCTCGTAACCCACTA -ACGGAACAACCTCGTAACGGAGTA -ACGGAACAACCTCGTAACTCGTCT -ACGGAACAACCTCGTAACTGCACT -ACGGAACAACCTCGTAACCTGACT -ACGGAACAACCTCGTAACCAACCT -ACGGAACAACCTCGTAACGCTACT -ACGGAACAACCTCGTAACGGATCT -ACGGAACAACCTCGTAACAAGGCT -ACGGAACAACCTCGTAACTCAACC -ACGGAACAACCTCGTAACTGTTCC -ACGGAACAACCTCGTAACATTCCC -ACGGAACAACCTCGTAACTTCTCG -ACGGAACAACCTCGTAACTAGACG -ACGGAACAACCTCGTAACGTAACG -ACGGAACAACCTCGTAACACTTCG -ACGGAACAACCTCGTAACTACGCA -ACGGAACAACCTCGTAACCTTGCA -ACGGAACAACCTCGTAACCGAACA -ACGGAACAACCTCGTAACCAGTCA -ACGGAACAACCTCGTAACGATCCA -ACGGAACAACCTCGTAACACGACA -ACGGAACAACCTCGTAACAGCTCA -ACGGAACAACCTCGTAACTCACGT -ACGGAACAACCTCGTAACCGTAGT -ACGGAACAACCTCGTAACGTCAGT -ACGGAACAACCTCGTAACGAAGGT -ACGGAACAACCTCGTAACAACCGT -ACGGAACAACCTCGTAACTTGTGC -ACGGAACAACCTCGTAACCTAAGC -ACGGAACAACCTCGTAACACTAGC -ACGGAACAACCTCGTAACAGATGC -ACGGAACAACCTCGTAACTGAAGG -ACGGAACAACCTCGTAACCAATGG -ACGGAACAACCTCGTAACATGAGG -ACGGAACAACCTCGTAACAATGGG -ACGGAACAACCTCGTAACTCCTGA -ACGGAACAACCTCGTAACTAGCGA -ACGGAACAACCTCGTAACCACAGA -ACGGAACAACCTCGTAACGCAAGA -ACGGAACAACCTCGTAACGGTTGA -ACGGAACAACCTCGTAACTCCGAT -ACGGAACAACCTCGTAACTGGCAT -ACGGAACAACCTCGTAACCGAGAT -ACGGAACAACCTCGTAACTACCAC -ACGGAACAACCTCGTAACCAGAAC -ACGGAACAACCTCGTAACGTCTAC -ACGGAACAACCTCGTAACACGTAC -ACGGAACAACCTCGTAACAGTGAC -ACGGAACAACCTCGTAACCTGTAG -ACGGAACAACCTCGTAACCCTAAG -ACGGAACAACCTCGTAACGTTCAG -ACGGAACAACCTCGTAACGCATAG -ACGGAACAACCTCGTAACGACAAG -ACGGAACAACCTCGTAACAAGCAG -ACGGAACAACCTCGTAACCGTCAA -ACGGAACAACCTCGTAACGCTGAA -ACGGAACAACCTCGTAACAGTACG -ACGGAACAACCTCGTAACATCCGA -ACGGAACAACCTCGTAACATGGGA -ACGGAACAACCTCGTAACGTGCAA -ACGGAACAACCTCGTAACGAGGAA -ACGGAACAACCTCGTAACCAGGTA -ACGGAACAACCTCGTAACGACTCT -ACGGAACAACCTCGTAACAGTCCT -ACGGAACAACCTCGTAACTAAGCC -ACGGAACAACCTCGTAACATAGCC -ACGGAACAACCTCGTAACTAACCG -ACGGAACAACCTCGTAACATGCCA -ACGGAACAACCTTGCTTGGGAAAC -ACGGAACAACCTTGCTTGAACACC -ACGGAACAACCTTGCTTGATCGAG -ACGGAACAACCTTGCTTGCTCCTT -ACGGAACAACCTTGCTTGCCTGTT -ACGGAACAACCTTGCTTGCGGTTT -ACGGAACAACCTTGCTTGGTGGTT -ACGGAACAACCTTGCTTGGCCTTT -ACGGAACAACCTTGCTTGGGTCTT -ACGGAACAACCTTGCTTGACGCTT -ACGGAACAACCTTGCTTGAGCGTT -ACGGAACAACCTTGCTTGTTCGTC -ACGGAACAACCTTGCTTGTCTCTC -ACGGAACAACCTTGCTTGTGGATC -ACGGAACAACCTTGCTTGCACTTC -ACGGAACAACCTTGCTTGGTACTC -ACGGAACAACCTTGCTTGGATGTC -ACGGAACAACCTTGCTTGACAGTC -ACGGAACAACCTTGCTTGTTGCTG -ACGGAACAACCTTGCTTGTCCATG -ACGGAACAACCTTGCTTGTGTGTG -ACGGAACAACCTTGCTTGCTAGTG -ACGGAACAACCTTGCTTGCATCTG -ACGGAACAACCTTGCTTGGAGTTG -ACGGAACAACCTTGCTTGAGACTG -ACGGAACAACCTTGCTTGTCGGTA -ACGGAACAACCTTGCTTGTGCCTA -ACGGAACAACCTTGCTTGCCACTA -ACGGAACAACCTTGCTTGGGAGTA -ACGGAACAACCTTGCTTGTCGTCT -ACGGAACAACCTTGCTTGTGCACT -ACGGAACAACCTTGCTTGCTGACT -ACGGAACAACCTTGCTTGCAACCT -ACGGAACAACCTTGCTTGGCTACT -ACGGAACAACCTTGCTTGGGATCT -ACGGAACAACCTTGCTTGAAGGCT -ACGGAACAACCTTGCTTGTCAACC -ACGGAACAACCTTGCTTGTGTTCC -ACGGAACAACCTTGCTTGATTCCC -ACGGAACAACCTTGCTTGTTCTCG -ACGGAACAACCTTGCTTGTAGACG -ACGGAACAACCTTGCTTGGTAACG -ACGGAACAACCTTGCTTGACTTCG -ACGGAACAACCTTGCTTGTACGCA -ACGGAACAACCTTGCTTGCTTGCA -ACGGAACAACCTTGCTTGCGAACA -ACGGAACAACCTTGCTTGCAGTCA -ACGGAACAACCTTGCTTGGATCCA -ACGGAACAACCTTGCTTGACGACA -ACGGAACAACCTTGCTTGAGCTCA -ACGGAACAACCTTGCTTGTCACGT -ACGGAACAACCTTGCTTGCGTAGT -ACGGAACAACCTTGCTTGGTCAGT -ACGGAACAACCTTGCTTGGAAGGT -ACGGAACAACCTTGCTTGAACCGT -ACGGAACAACCTTGCTTGTTGTGC -ACGGAACAACCTTGCTTGCTAAGC -ACGGAACAACCTTGCTTGACTAGC -ACGGAACAACCTTGCTTGAGATGC -ACGGAACAACCTTGCTTGTGAAGG -ACGGAACAACCTTGCTTGCAATGG -ACGGAACAACCTTGCTTGATGAGG -ACGGAACAACCTTGCTTGAATGGG -ACGGAACAACCTTGCTTGTCCTGA -ACGGAACAACCTTGCTTGTAGCGA -ACGGAACAACCTTGCTTGCACAGA -ACGGAACAACCTTGCTTGGCAAGA -ACGGAACAACCTTGCTTGGGTTGA -ACGGAACAACCTTGCTTGTCCGAT -ACGGAACAACCTTGCTTGTGGCAT -ACGGAACAACCTTGCTTGCGAGAT -ACGGAACAACCTTGCTTGTACCAC -ACGGAACAACCTTGCTTGCAGAAC -ACGGAACAACCTTGCTTGGTCTAC -ACGGAACAACCTTGCTTGACGTAC -ACGGAACAACCTTGCTTGAGTGAC -ACGGAACAACCTTGCTTGCTGTAG -ACGGAACAACCTTGCTTGCCTAAG -ACGGAACAACCTTGCTTGGTTCAG -ACGGAACAACCTTGCTTGGCATAG -ACGGAACAACCTTGCTTGGACAAG -ACGGAACAACCTTGCTTGAAGCAG -ACGGAACAACCTTGCTTGCGTCAA -ACGGAACAACCTTGCTTGGCTGAA -ACGGAACAACCTTGCTTGAGTACG -ACGGAACAACCTTGCTTGATCCGA -ACGGAACAACCTTGCTTGATGGGA -ACGGAACAACCTTGCTTGGTGCAA -ACGGAACAACCTTGCTTGGAGGAA -ACGGAACAACCTTGCTTGCAGGTA -ACGGAACAACCTTGCTTGGACTCT -ACGGAACAACCTTGCTTGAGTCCT -ACGGAACAACCTTGCTTGTAAGCC -ACGGAACAACCTTGCTTGATAGCC -ACGGAACAACCTTGCTTGTAACCG -ACGGAACAACCTTGCTTGATGCCA -ACGGAACAACCTAGCCTAGGAAAC -ACGGAACAACCTAGCCTAAACACC -ACGGAACAACCTAGCCTAATCGAG -ACGGAACAACCTAGCCTACTCCTT -ACGGAACAACCTAGCCTACCTGTT -ACGGAACAACCTAGCCTACGGTTT -ACGGAACAACCTAGCCTAGTGGTT -ACGGAACAACCTAGCCTAGCCTTT -ACGGAACAACCTAGCCTAGGTCTT -ACGGAACAACCTAGCCTAACGCTT -ACGGAACAACCTAGCCTAAGCGTT -ACGGAACAACCTAGCCTATTCGTC -ACGGAACAACCTAGCCTATCTCTC -ACGGAACAACCTAGCCTATGGATC -ACGGAACAACCTAGCCTACACTTC -ACGGAACAACCTAGCCTAGTACTC -ACGGAACAACCTAGCCTAGATGTC -ACGGAACAACCTAGCCTAACAGTC -ACGGAACAACCTAGCCTATTGCTG -ACGGAACAACCTAGCCTATCCATG -ACGGAACAACCTAGCCTATGTGTG -ACGGAACAACCTAGCCTACTAGTG -ACGGAACAACCTAGCCTACATCTG -ACGGAACAACCTAGCCTAGAGTTG -ACGGAACAACCTAGCCTAAGACTG -ACGGAACAACCTAGCCTATCGGTA -ACGGAACAACCTAGCCTATGCCTA -ACGGAACAACCTAGCCTACCACTA -ACGGAACAACCTAGCCTAGGAGTA -ACGGAACAACCTAGCCTATCGTCT -ACGGAACAACCTAGCCTATGCACT -ACGGAACAACCTAGCCTACTGACT -ACGGAACAACCTAGCCTACAACCT -ACGGAACAACCTAGCCTAGCTACT -ACGGAACAACCTAGCCTAGGATCT -ACGGAACAACCTAGCCTAAAGGCT -ACGGAACAACCTAGCCTATCAACC -ACGGAACAACCTAGCCTATGTTCC -ACGGAACAACCTAGCCTAATTCCC -ACGGAACAACCTAGCCTATTCTCG -ACGGAACAACCTAGCCTATAGACG -ACGGAACAACCTAGCCTAGTAACG -ACGGAACAACCTAGCCTAACTTCG -ACGGAACAACCTAGCCTATACGCA -ACGGAACAACCTAGCCTACTTGCA -ACGGAACAACCTAGCCTACGAACA -ACGGAACAACCTAGCCTACAGTCA -ACGGAACAACCTAGCCTAGATCCA -ACGGAACAACCTAGCCTAACGACA -ACGGAACAACCTAGCCTAAGCTCA -ACGGAACAACCTAGCCTATCACGT -ACGGAACAACCTAGCCTACGTAGT -ACGGAACAACCTAGCCTAGTCAGT -ACGGAACAACCTAGCCTAGAAGGT -ACGGAACAACCTAGCCTAAACCGT -ACGGAACAACCTAGCCTATTGTGC -ACGGAACAACCTAGCCTACTAAGC -ACGGAACAACCTAGCCTAACTAGC -ACGGAACAACCTAGCCTAAGATGC -ACGGAACAACCTAGCCTATGAAGG -ACGGAACAACCTAGCCTACAATGG -ACGGAACAACCTAGCCTAATGAGG -ACGGAACAACCTAGCCTAAATGGG -ACGGAACAACCTAGCCTATCCTGA -ACGGAACAACCTAGCCTATAGCGA -ACGGAACAACCTAGCCTACACAGA -ACGGAACAACCTAGCCTAGCAAGA -ACGGAACAACCTAGCCTAGGTTGA -ACGGAACAACCTAGCCTATCCGAT -ACGGAACAACCTAGCCTATGGCAT -ACGGAACAACCTAGCCTACGAGAT -ACGGAACAACCTAGCCTATACCAC -ACGGAACAACCTAGCCTACAGAAC -ACGGAACAACCTAGCCTAGTCTAC -ACGGAACAACCTAGCCTAACGTAC -ACGGAACAACCTAGCCTAAGTGAC -ACGGAACAACCTAGCCTACTGTAG -ACGGAACAACCTAGCCTACCTAAG -ACGGAACAACCTAGCCTAGTTCAG -ACGGAACAACCTAGCCTAGCATAG -ACGGAACAACCTAGCCTAGACAAG -ACGGAACAACCTAGCCTAAAGCAG -ACGGAACAACCTAGCCTACGTCAA -ACGGAACAACCTAGCCTAGCTGAA -ACGGAACAACCTAGCCTAAGTACG -ACGGAACAACCTAGCCTAATCCGA -ACGGAACAACCTAGCCTAATGGGA -ACGGAACAACCTAGCCTAGTGCAA -ACGGAACAACCTAGCCTAGAGGAA -ACGGAACAACCTAGCCTACAGGTA -ACGGAACAACCTAGCCTAGACTCT -ACGGAACAACCTAGCCTAAGTCCT -ACGGAACAACCTAGCCTATAAGCC -ACGGAACAACCTAGCCTAATAGCC -ACGGAACAACCTAGCCTATAACCG -ACGGAACAACCTAGCCTAATGCCA -ACGGAACAACCTAGCACTGGAAAC -ACGGAACAACCTAGCACTAACACC -ACGGAACAACCTAGCACTATCGAG -ACGGAACAACCTAGCACTCTCCTT -ACGGAACAACCTAGCACTCCTGTT -ACGGAACAACCTAGCACTCGGTTT -ACGGAACAACCTAGCACTGTGGTT -ACGGAACAACCTAGCACTGCCTTT -ACGGAACAACCTAGCACTGGTCTT -ACGGAACAACCTAGCACTACGCTT -ACGGAACAACCTAGCACTAGCGTT -ACGGAACAACCTAGCACTTTCGTC -ACGGAACAACCTAGCACTTCTCTC -ACGGAACAACCTAGCACTTGGATC -ACGGAACAACCTAGCACTCACTTC -ACGGAACAACCTAGCACTGTACTC -ACGGAACAACCTAGCACTGATGTC -ACGGAACAACCTAGCACTACAGTC -ACGGAACAACCTAGCACTTTGCTG -ACGGAACAACCTAGCACTTCCATG -ACGGAACAACCTAGCACTTGTGTG -ACGGAACAACCTAGCACTCTAGTG -ACGGAACAACCTAGCACTCATCTG -ACGGAACAACCTAGCACTGAGTTG -ACGGAACAACCTAGCACTAGACTG -ACGGAACAACCTAGCACTTCGGTA -ACGGAACAACCTAGCACTTGCCTA -ACGGAACAACCTAGCACTCCACTA -ACGGAACAACCTAGCACTGGAGTA -ACGGAACAACCTAGCACTTCGTCT -ACGGAACAACCTAGCACTTGCACT -ACGGAACAACCTAGCACTCTGACT -ACGGAACAACCTAGCACTCAACCT -ACGGAACAACCTAGCACTGCTACT -ACGGAACAACCTAGCACTGGATCT -ACGGAACAACCTAGCACTAAGGCT -ACGGAACAACCTAGCACTTCAACC -ACGGAACAACCTAGCACTTGTTCC -ACGGAACAACCTAGCACTATTCCC -ACGGAACAACCTAGCACTTTCTCG -ACGGAACAACCTAGCACTTAGACG -ACGGAACAACCTAGCACTGTAACG -ACGGAACAACCTAGCACTACTTCG -ACGGAACAACCTAGCACTTACGCA -ACGGAACAACCTAGCACTCTTGCA -ACGGAACAACCTAGCACTCGAACA -ACGGAACAACCTAGCACTCAGTCA -ACGGAACAACCTAGCACTGATCCA -ACGGAACAACCTAGCACTACGACA -ACGGAACAACCTAGCACTAGCTCA -ACGGAACAACCTAGCACTTCACGT -ACGGAACAACCTAGCACTCGTAGT -ACGGAACAACCTAGCACTGTCAGT -ACGGAACAACCTAGCACTGAAGGT -ACGGAACAACCTAGCACTAACCGT -ACGGAACAACCTAGCACTTTGTGC -ACGGAACAACCTAGCACTCTAAGC -ACGGAACAACCTAGCACTACTAGC -ACGGAACAACCTAGCACTAGATGC -ACGGAACAACCTAGCACTTGAAGG -ACGGAACAACCTAGCACTCAATGG -ACGGAACAACCTAGCACTATGAGG -ACGGAACAACCTAGCACTAATGGG -ACGGAACAACCTAGCACTTCCTGA -ACGGAACAACCTAGCACTTAGCGA -ACGGAACAACCTAGCACTCACAGA -ACGGAACAACCTAGCACTGCAAGA -ACGGAACAACCTAGCACTGGTTGA -ACGGAACAACCTAGCACTTCCGAT -ACGGAACAACCTAGCACTTGGCAT -ACGGAACAACCTAGCACTCGAGAT -ACGGAACAACCTAGCACTTACCAC -ACGGAACAACCTAGCACTCAGAAC -ACGGAACAACCTAGCACTGTCTAC -ACGGAACAACCTAGCACTACGTAC -ACGGAACAACCTAGCACTAGTGAC -ACGGAACAACCTAGCACTCTGTAG -ACGGAACAACCTAGCACTCCTAAG -ACGGAACAACCTAGCACTGTTCAG -ACGGAACAACCTAGCACTGCATAG -ACGGAACAACCTAGCACTGACAAG -ACGGAACAACCTAGCACTAAGCAG -ACGGAACAACCTAGCACTCGTCAA -ACGGAACAACCTAGCACTGCTGAA -ACGGAACAACCTAGCACTAGTACG -ACGGAACAACCTAGCACTATCCGA -ACGGAACAACCTAGCACTATGGGA -ACGGAACAACCTAGCACTGTGCAA -ACGGAACAACCTAGCACTGAGGAA -ACGGAACAACCTAGCACTCAGGTA -ACGGAACAACCTAGCACTGACTCT -ACGGAACAACCTAGCACTAGTCCT -ACGGAACAACCTAGCACTTAAGCC -ACGGAACAACCTAGCACTATAGCC -ACGGAACAACCTAGCACTTAACCG -ACGGAACAACCTAGCACTATGCCA -ACGGAACAACCTTGCAGAGGAAAC -ACGGAACAACCTTGCAGAAACACC -ACGGAACAACCTTGCAGAATCGAG -ACGGAACAACCTTGCAGACTCCTT -ACGGAACAACCTTGCAGACCTGTT -ACGGAACAACCTTGCAGACGGTTT -ACGGAACAACCTTGCAGAGTGGTT -ACGGAACAACCTTGCAGAGCCTTT -ACGGAACAACCTTGCAGAGGTCTT -ACGGAACAACCTTGCAGAACGCTT -ACGGAACAACCTTGCAGAAGCGTT -ACGGAACAACCTTGCAGATTCGTC -ACGGAACAACCTTGCAGATCTCTC -ACGGAACAACCTTGCAGATGGATC -ACGGAACAACCTTGCAGACACTTC -ACGGAACAACCTTGCAGAGTACTC -ACGGAACAACCTTGCAGAGATGTC -ACGGAACAACCTTGCAGAACAGTC -ACGGAACAACCTTGCAGATTGCTG -ACGGAACAACCTTGCAGATCCATG -ACGGAACAACCTTGCAGATGTGTG -ACGGAACAACCTTGCAGACTAGTG -ACGGAACAACCTTGCAGACATCTG -ACGGAACAACCTTGCAGAGAGTTG -ACGGAACAACCTTGCAGAAGACTG -ACGGAACAACCTTGCAGATCGGTA -ACGGAACAACCTTGCAGATGCCTA -ACGGAACAACCTTGCAGACCACTA -ACGGAACAACCTTGCAGAGGAGTA -ACGGAACAACCTTGCAGATCGTCT -ACGGAACAACCTTGCAGATGCACT -ACGGAACAACCTTGCAGACTGACT -ACGGAACAACCTTGCAGACAACCT -ACGGAACAACCTTGCAGAGCTACT -ACGGAACAACCTTGCAGAGGATCT -ACGGAACAACCTTGCAGAAAGGCT -ACGGAACAACCTTGCAGATCAACC -ACGGAACAACCTTGCAGATGTTCC -ACGGAACAACCTTGCAGAATTCCC -ACGGAACAACCTTGCAGATTCTCG -ACGGAACAACCTTGCAGATAGACG -ACGGAACAACCTTGCAGAGTAACG -ACGGAACAACCTTGCAGAACTTCG -ACGGAACAACCTTGCAGATACGCA -ACGGAACAACCTTGCAGACTTGCA -ACGGAACAACCTTGCAGACGAACA -ACGGAACAACCTTGCAGACAGTCA -ACGGAACAACCTTGCAGAGATCCA -ACGGAACAACCTTGCAGAACGACA -ACGGAACAACCTTGCAGAAGCTCA -ACGGAACAACCTTGCAGATCACGT -ACGGAACAACCTTGCAGACGTAGT -ACGGAACAACCTTGCAGAGTCAGT -ACGGAACAACCTTGCAGAGAAGGT -ACGGAACAACCTTGCAGAAACCGT -ACGGAACAACCTTGCAGATTGTGC -ACGGAACAACCTTGCAGACTAAGC -ACGGAACAACCTTGCAGAACTAGC -ACGGAACAACCTTGCAGAAGATGC -ACGGAACAACCTTGCAGATGAAGG -ACGGAACAACCTTGCAGACAATGG -ACGGAACAACCTTGCAGAATGAGG -ACGGAACAACCTTGCAGAAATGGG -ACGGAACAACCTTGCAGATCCTGA -ACGGAACAACCTTGCAGATAGCGA -ACGGAACAACCTTGCAGACACAGA -ACGGAACAACCTTGCAGAGCAAGA -ACGGAACAACCTTGCAGAGGTTGA -ACGGAACAACCTTGCAGATCCGAT -ACGGAACAACCTTGCAGATGGCAT -ACGGAACAACCTTGCAGACGAGAT -ACGGAACAACCTTGCAGATACCAC -ACGGAACAACCTTGCAGACAGAAC -ACGGAACAACCTTGCAGAGTCTAC -ACGGAACAACCTTGCAGAACGTAC -ACGGAACAACCTTGCAGAAGTGAC -ACGGAACAACCTTGCAGACTGTAG -ACGGAACAACCTTGCAGACCTAAG -ACGGAACAACCTTGCAGAGTTCAG -ACGGAACAACCTTGCAGAGCATAG -ACGGAACAACCTTGCAGAGACAAG -ACGGAACAACCTTGCAGAAAGCAG -ACGGAACAACCTTGCAGACGTCAA -ACGGAACAACCTTGCAGAGCTGAA -ACGGAACAACCTTGCAGAAGTACG -ACGGAACAACCTTGCAGAATCCGA -ACGGAACAACCTTGCAGAATGGGA -ACGGAACAACCTTGCAGAGTGCAA -ACGGAACAACCTTGCAGAGAGGAA -ACGGAACAACCTTGCAGACAGGTA -ACGGAACAACCTTGCAGAGACTCT -ACGGAACAACCTTGCAGAAGTCCT -ACGGAACAACCTTGCAGATAAGCC -ACGGAACAACCTTGCAGAATAGCC -ACGGAACAACCTTGCAGATAACCG -ACGGAACAACCTTGCAGAATGCCA -ACGGAACAACCTAGGTGAGGAAAC -ACGGAACAACCTAGGTGAAACACC -ACGGAACAACCTAGGTGAATCGAG -ACGGAACAACCTAGGTGACTCCTT -ACGGAACAACCTAGGTGACCTGTT -ACGGAACAACCTAGGTGACGGTTT -ACGGAACAACCTAGGTGAGTGGTT -ACGGAACAACCTAGGTGAGCCTTT -ACGGAACAACCTAGGTGAGGTCTT -ACGGAACAACCTAGGTGAACGCTT -ACGGAACAACCTAGGTGAAGCGTT -ACGGAACAACCTAGGTGATTCGTC -ACGGAACAACCTAGGTGATCTCTC -ACGGAACAACCTAGGTGATGGATC -ACGGAACAACCTAGGTGACACTTC -ACGGAACAACCTAGGTGAGTACTC -ACGGAACAACCTAGGTGAGATGTC -ACGGAACAACCTAGGTGAACAGTC -ACGGAACAACCTAGGTGATTGCTG -ACGGAACAACCTAGGTGATCCATG -ACGGAACAACCTAGGTGATGTGTG -ACGGAACAACCTAGGTGACTAGTG -ACGGAACAACCTAGGTGACATCTG -ACGGAACAACCTAGGTGAGAGTTG -ACGGAACAACCTAGGTGAAGACTG -ACGGAACAACCTAGGTGATCGGTA -ACGGAACAACCTAGGTGATGCCTA -ACGGAACAACCTAGGTGACCACTA -ACGGAACAACCTAGGTGAGGAGTA -ACGGAACAACCTAGGTGATCGTCT -ACGGAACAACCTAGGTGATGCACT -ACGGAACAACCTAGGTGACTGACT -ACGGAACAACCTAGGTGACAACCT -ACGGAACAACCTAGGTGAGCTACT -ACGGAACAACCTAGGTGAGGATCT -ACGGAACAACCTAGGTGAAAGGCT -ACGGAACAACCTAGGTGATCAACC -ACGGAACAACCTAGGTGATGTTCC -ACGGAACAACCTAGGTGAATTCCC -ACGGAACAACCTAGGTGATTCTCG -ACGGAACAACCTAGGTGATAGACG -ACGGAACAACCTAGGTGAGTAACG -ACGGAACAACCTAGGTGAACTTCG -ACGGAACAACCTAGGTGATACGCA -ACGGAACAACCTAGGTGACTTGCA -ACGGAACAACCTAGGTGACGAACA -ACGGAACAACCTAGGTGACAGTCA -ACGGAACAACCTAGGTGAGATCCA -ACGGAACAACCTAGGTGAACGACA -ACGGAACAACCTAGGTGAAGCTCA -ACGGAACAACCTAGGTGATCACGT -ACGGAACAACCTAGGTGACGTAGT -ACGGAACAACCTAGGTGAGTCAGT -ACGGAACAACCTAGGTGAGAAGGT -ACGGAACAACCTAGGTGAAACCGT -ACGGAACAACCTAGGTGATTGTGC -ACGGAACAACCTAGGTGACTAAGC -ACGGAACAACCTAGGTGAACTAGC -ACGGAACAACCTAGGTGAAGATGC -ACGGAACAACCTAGGTGATGAAGG -ACGGAACAACCTAGGTGACAATGG -ACGGAACAACCTAGGTGAATGAGG -ACGGAACAACCTAGGTGAAATGGG -ACGGAACAACCTAGGTGATCCTGA -ACGGAACAACCTAGGTGATAGCGA -ACGGAACAACCTAGGTGACACAGA -ACGGAACAACCTAGGTGAGCAAGA -ACGGAACAACCTAGGTGAGGTTGA -ACGGAACAACCTAGGTGATCCGAT -ACGGAACAACCTAGGTGATGGCAT -ACGGAACAACCTAGGTGACGAGAT -ACGGAACAACCTAGGTGATACCAC -ACGGAACAACCTAGGTGACAGAAC -ACGGAACAACCTAGGTGAGTCTAC -ACGGAACAACCTAGGTGAACGTAC -ACGGAACAACCTAGGTGAAGTGAC -ACGGAACAACCTAGGTGACTGTAG -ACGGAACAACCTAGGTGACCTAAG -ACGGAACAACCTAGGTGAGTTCAG -ACGGAACAACCTAGGTGAGCATAG -ACGGAACAACCTAGGTGAGACAAG -ACGGAACAACCTAGGTGAAAGCAG -ACGGAACAACCTAGGTGACGTCAA -ACGGAACAACCTAGGTGAGCTGAA -ACGGAACAACCTAGGTGAAGTACG -ACGGAACAACCTAGGTGAATCCGA -ACGGAACAACCTAGGTGAATGGGA -ACGGAACAACCTAGGTGAGTGCAA -ACGGAACAACCTAGGTGAGAGGAA -ACGGAACAACCTAGGTGACAGGTA -ACGGAACAACCTAGGTGAGACTCT -ACGGAACAACCTAGGTGAAGTCCT -ACGGAACAACCTAGGTGATAAGCC -ACGGAACAACCTAGGTGAATAGCC -ACGGAACAACCTAGGTGATAACCG -ACGGAACAACCTAGGTGAATGCCA -ACGGAACAACCTTGGCAAGGAAAC -ACGGAACAACCTTGGCAAAACACC -ACGGAACAACCTTGGCAAATCGAG -ACGGAACAACCTTGGCAACTCCTT -ACGGAACAACCTTGGCAACCTGTT -ACGGAACAACCTTGGCAACGGTTT -ACGGAACAACCTTGGCAAGTGGTT -ACGGAACAACCTTGGCAAGCCTTT -ACGGAACAACCTTGGCAAGGTCTT -ACGGAACAACCTTGGCAAACGCTT -ACGGAACAACCTTGGCAAAGCGTT -ACGGAACAACCTTGGCAATTCGTC -ACGGAACAACCTTGGCAATCTCTC -ACGGAACAACCTTGGCAATGGATC -ACGGAACAACCTTGGCAACACTTC -ACGGAACAACCTTGGCAAGTACTC -ACGGAACAACCTTGGCAAGATGTC -ACGGAACAACCTTGGCAAACAGTC -ACGGAACAACCTTGGCAATTGCTG -ACGGAACAACCTTGGCAATCCATG -ACGGAACAACCTTGGCAATGTGTG -ACGGAACAACCTTGGCAACTAGTG -ACGGAACAACCTTGGCAACATCTG -ACGGAACAACCTTGGCAAGAGTTG -ACGGAACAACCTTGGCAAAGACTG -ACGGAACAACCTTGGCAATCGGTA -ACGGAACAACCTTGGCAATGCCTA -ACGGAACAACCTTGGCAACCACTA -ACGGAACAACCTTGGCAAGGAGTA -ACGGAACAACCTTGGCAATCGTCT -ACGGAACAACCTTGGCAATGCACT -ACGGAACAACCTTGGCAACTGACT -ACGGAACAACCTTGGCAACAACCT -ACGGAACAACCTTGGCAAGCTACT -ACGGAACAACCTTGGCAAGGATCT -ACGGAACAACCTTGGCAAAAGGCT -ACGGAACAACCTTGGCAATCAACC -ACGGAACAACCTTGGCAATGTTCC -ACGGAACAACCTTGGCAAATTCCC -ACGGAACAACCTTGGCAATTCTCG -ACGGAACAACCTTGGCAATAGACG -ACGGAACAACCTTGGCAAGTAACG -ACGGAACAACCTTGGCAAACTTCG -ACGGAACAACCTTGGCAATACGCA -ACGGAACAACCTTGGCAACTTGCA -ACGGAACAACCTTGGCAACGAACA -ACGGAACAACCTTGGCAACAGTCA -ACGGAACAACCTTGGCAAGATCCA -ACGGAACAACCTTGGCAAACGACA -ACGGAACAACCTTGGCAAAGCTCA -ACGGAACAACCTTGGCAATCACGT -ACGGAACAACCTTGGCAACGTAGT -ACGGAACAACCTTGGCAAGTCAGT -ACGGAACAACCTTGGCAAGAAGGT -ACGGAACAACCTTGGCAAAACCGT -ACGGAACAACCTTGGCAATTGTGC -ACGGAACAACCTTGGCAACTAAGC -ACGGAACAACCTTGGCAAACTAGC -ACGGAACAACCTTGGCAAAGATGC -ACGGAACAACCTTGGCAATGAAGG -ACGGAACAACCTTGGCAACAATGG -ACGGAACAACCTTGGCAAATGAGG -ACGGAACAACCTTGGCAAAATGGG -ACGGAACAACCTTGGCAATCCTGA -ACGGAACAACCTTGGCAATAGCGA -ACGGAACAACCTTGGCAACACAGA -ACGGAACAACCTTGGCAAGCAAGA -ACGGAACAACCTTGGCAAGGTTGA -ACGGAACAACCTTGGCAATCCGAT -ACGGAACAACCTTGGCAATGGCAT -ACGGAACAACCTTGGCAACGAGAT -ACGGAACAACCTTGGCAATACCAC -ACGGAACAACCTTGGCAACAGAAC -ACGGAACAACCTTGGCAAGTCTAC -ACGGAACAACCTTGGCAAACGTAC -ACGGAACAACCTTGGCAAAGTGAC -ACGGAACAACCTTGGCAACTGTAG -ACGGAACAACCTTGGCAACCTAAG -ACGGAACAACCTTGGCAAGTTCAG -ACGGAACAACCTTGGCAAGCATAG -ACGGAACAACCTTGGCAAGACAAG -ACGGAACAACCTTGGCAAAAGCAG -ACGGAACAACCTTGGCAACGTCAA -ACGGAACAACCTTGGCAAGCTGAA -ACGGAACAACCTTGGCAAAGTACG -ACGGAACAACCTTGGCAAATCCGA -ACGGAACAACCTTGGCAAATGGGA -ACGGAACAACCTTGGCAAGTGCAA -ACGGAACAACCTTGGCAAGAGGAA -ACGGAACAACCTTGGCAACAGGTA -ACGGAACAACCTTGGCAAGACTCT -ACGGAACAACCTTGGCAAAGTCCT -ACGGAACAACCTTGGCAATAAGCC -ACGGAACAACCTTGGCAAATAGCC -ACGGAACAACCTTGGCAATAACCG -ACGGAACAACCTTGGCAAATGCCA -ACGGAACAACCTAGGATGGGAAAC -ACGGAACAACCTAGGATGAACACC -ACGGAACAACCTAGGATGATCGAG -ACGGAACAACCTAGGATGCTCCTT -ACGGAACAACCTAGGATGCCTGTT -ACGGAACAACCTAGGATGCGGTTT -ACGGAACAACCTAGGATGGTGGTT -ACGGAACAACCTAGGATGGCCTTT -ACGGAACAACCTAGGATGGGTCTT -ACGGAACAACCTAGGATGACGCTT -ACGGAACAACCTAGGATGAGCGTT -ACGGAACAACCTAGGATGTTCGTC -ACGGAACAACCTAGGATGTCTCTC -ACGGAACAACCTAGGATGTGGATC -ACGGAACAACCTAGGATGCACTTC -ACGGAACAACCTAGGATGGTACTC -ACGGAACAACCTAGGATGGATGTC -ACGGAACAACCTAGGATGACAGTC -ACGGAACAACCTAGGATGTTGCTG -ACGGAACAACCTAGGATGTCCATG -ACGGAACAACCTAGGATGTGTGTG -ACGGAACAACCTAGGATGCTAGTG -ACGGAACAACCTAGGATGCATCTG -ACGGAACAACCTAGGATGGAGTTG -ACGGAACAACCTAGGATGAGACTG -ACGGAACAACCTAGGATGTCGGTA -ACGGAACAACCTAGGATGTGCCTA -ACGGAACAACCTAGGATGCCACTA -ACGGAACAACCTAGGATGGGAGTA -ACGGAACAACCTAGGATGTCGTCT -ACGGAACAACCTAGGATGTGCACT -ACGGAACAACCTAGGATGCTGACT -ACGGAACAACCTAGGATGCAACCT -ACGGAACAACCTAGGATGGCTACT -ACGGAACAACCTAGGATGGGATCT -ACGGAACAACCTAGGATGAAGGCT -ACGGAACAACCTAGGATGTCAACC -ACGGAACAACCTAGGATGTGTTCC -ACGGAACAACCTAGGATGATTCCC -ACGGAACAACCTAGGATGTTCTCG -ACGGAACAACCTAGGATGTAGACG -ACGGAACAACCTAGGATGGTAACG -ACGGAACAACCTAGGATGACTTCG -ACGGAACAACCTAGGATGTACGCA -ACGGAACAACCTAGGATGCTTGCA -ACGGAACAACCTAGGATGCGAACA -ACGGAACAACCTAGGATGCAGTCA -ACGGAACAACCTAGGATGGATCCA -ACGGAACAACCTAGGATGACGACA -ACGGAACAACCTAGGATGAGCTCA -ACGGAACAACCTAGGATGTCACGT -ACGGAACAACCTAGGATGCGTAGT -ACGGAACAACCTAGGATGGTCAGT -ACGGAACAACCTAGGATGGAAGGT -ACGGAACAACCTAGGATGAACCGT -ACGGAACAACCTAGGATGTTGTGC -ACGGAACAACCTAGGATGCTAAGC -ACGGAACAACCTAGGATGACTAGC -ACGGAACAACCTAGGATGAGATGC -ACGGAACAACCTAGGATGTGAAGG -ACGGAACAACCTAGGATGCAATGG -ACGGAACAACCTAGGATGATGAGG -ACGGAACAACCTAGGATGAATGGG -ACGGAACAACCTAGGATGTCCTGA -ACGGAACAACCTAGGATGTAGCGA -ACGGAACAACCTAGGATGCACAGA -ACGGAACAACCTAGGATGGCAAGA -ACGGAACAACCTAGGATGGGTTGA -ACGGAACAACCTAGGATGTCCGAT -ACGGAACAACCTAGGATGTGGCAT -ACGGAACAACCTAGGATGCGAGAT -ACGGAACAACCTAGGATGTACCAC -ACGGAACAACCTAGGATGCAGAAC -ACGGAACAACCTAGGATGGTCTAC -ACGGAACAACCTAGGATGACGTAC -ACGGAACAACCTAGGATGAGTGAC -ACGGAACAACCTAGGATGCTGTAG -ACGGAACAACCTAGGATGCCTAAG -ACGGAACAACCTAGGATGGTTCAG -ACGGAACAACCTAGGATGGCATAG -ACGGAACAACCTAGGATGGACAAG -ACGGAACAACCTAGGATGAAGCAG -ACGGAACAACCTAGGATGCGTCAA -ACGGAACAACCTAGGATGGCTGAA -ACGGAACAACCTAGGATGAGTACG -ACGGAACAACCTAGGATGATCCGA -ACGGAACAACCTAGGATGATGGGA -ACGGAACAACCTAGGATGGTGCAA -ACGGAACAACCTAGGATGGAGGAA -ACGGAACAACCTAGGATGCAGGTA -ACGGAACAACCTAGGATGGACTCT -ACGGAACAACCTAGGATGAGTCCT -ACGGAACAACCTAGGATGTAAGCC -ACGGAACAACCTAGGATGATAGCC -ACGGAACAACCTAGGATGTAACCG -ACGGAACAACCTAGGATGATGCCA -ACGGAACAACCTGGGAATGGAAAC -ACGGAACAACCTGGGAATAACACC -ACGGAACAACCTGGGAATATCGAG -ACGGAACAACCTGGGAATCTCCTT -ACGGAACAACCTGGGAATCCTGTT -ACGGAACAACCTGGGAATCGGTTT -ACGGAACAACCTGGGAATGTGGTT -ACGGAACAACCTGGGAATGCCTTT -ACGGAACAACCTGGGAATGGTCTT -ACGGAACAACCTGGGAATACGCTT -ACGGAACAACCTGGGAATAGCGTT -ACGGAACAACCTGGGAATTTCGTC -ACGGAACAACCTGGGAATTCTCTC -ACGGAACAACCTGGGAATTGGATC -ACGGAACAACCTGGGAATCACTTC -ACGGAACAACCTGGGAATGTACTC -ACGGAACAACCTGGGAATGATGTC -ACGGAACAACCTGGGAATACAGTC -ACGGAACAACCTGGGAATTTGCTG -ACGGAACAACCTGGGAATTCCATG -ACGGAACAACCTGGGAATTGTGTG -ACGGAACAACCTGGGAATCTAGTG -ACGGAACAACCTGGGAATCATCTG -ACGGAACAACCTGGGAATGAGTTG -ACGGAACAACCTGGGAATAGACTG -ACGGAACAACCTGGGAATTCGGTA -ACGGAACAACCTGGGAATTGCCTA -ACGGAACAACCTGGGAATCCACTA -ACGGAACAACCTGGGAATGGAGTA -ACGGAACAACCTGGGAATTCGTCT -ACGGAACAACCTGGGAATTGCACT -ACGGAACAACCTGGGAATCTGACT -ACGGAACAACCTGGGAATCAACCT -ACGGAACAACCTGGGAATGCTACT -ACGGAACAACCTGGGAATGGATCT -ACGGAACAACCTGGGAATAAGGCT -ACGGAACAACCTGGGAATTCAACC -ACGGAACAACCTGGGAATTGTTCC -ACGGAACAACCTGGGAATATTCCC -ACGGAACAACCTGGGAATTTCTCG -ACGGAACAACCTGGGAATTAGACG -ACGGAACAACCTGGGAATGTAACG -ACGGAACAACCTGGGAATACTTCG -ACGGAACAACCTGGGAATTACGCA -ACGGAACAACCTGGGAATCTTGCA -ACGGAACAACCTGGGAATCGAACA -ACGGAACAACCTGGGAATCAGTCA -ACGGAACAACCTGGGAATGATCCA -ACGGAACAACCTGGGAATACGACA -ACGGAACAACCTGGGAATAGCTCA -ACGGAACAACCTGGGAATTCACGT -ACGGAACAACCTGGGAATCGTAGT -ACGGAACAACCTGGGAATGTCAGT -ACGGAACAACCTGGGAATGAAGGT -ACGGAACAACCTGGGAATAACCGT -ACGGAACAACCTGGGAATTTGTGC -ACGGAACAACCTGGGAATCTAAGC -ACGGAACAACCTGGGAATACTAGC -ACGGAACAACCTGGGAATAGATGC -ACGGAACAACCTGGGAATTGAAGG -ACGGAACAACCTGGGAATCAATGG -ACGGAACAACCTGGGAATATGAGG -ACGGAACAACCTGGGAATAATGGG -ACGGAACAACCTGGGAATTCCTGA -ACGGAACAACCTGGGAATTAGCGA -ACGGAACAACCTGGGAATCACAGA -ACGGAACAACCTGGGAATGCAAGA -ACGGAACAACCTGGGAATGGTTGA -ACGGAACAACCTGGGAATTCCGAT -ACGGAACAACCTGGGAATTGGCAT -ACGGAACAACCTGGGAATCGAGAT -ACGGAACAACCTGGGAATTACCAC -ACGGAACAACCTGGGAATCAGAAC -ACGGAACAACCTGGGAATGTCTAC -ACGGAACAACCTGGGAATACGTAC -ACGGAACAACCTGGGAATAGTGAC -ACGGAACAACCTGGGAATCTGTAG -ACGGAACAACCTGGGAATCCTAAG -ACGGAACAACCTGGGAATGTTCAG -ACGGAACAACCTGGGAATGCATAG -ACGGAACAACCTGGGAATGACAAG -ACGGAACAACCTGGGAATAAGCAG -ACGGAACAACCTGGGAATCGTCAA -ACGGAACAACCTGGGAATGCTGAA -ACGGAACAACCTGGGAATAGTACG -ACGGAACAACCTGGGAATATCCGA -ACGGAACAACCTGGGAATATGGGA -ACGGAACAACCTGGGAATGTGCAA -ACGGAACAACCTGGGAATGAGGAA -ACGGAACAACCTGGGAATCAGGTA -ACGGAACAACCTGGGAATGACTCT -ACGGAACAACCTGGGAATAGTCCT -ACGGAACAACCTGGGAATTAAGCC -ACGGAACAACCTGGGAATATAGCC -ACGGAACAACCTGGGAATTAACCG -ACGGAACAACCTGGGAATATGCCA -ACGGAACAACCTTGATCCGGAAAC -ACGGAACAACCTTGATCCAACACC -ACGGAACAACCTTGATCCATCGAG -ACGGAACAACCTTGATCCCTCCTT -ACGGAACAACCTTGATCCCCTGTT -ACGGAACAACCTTGATCCCGGTTT -ACGGAACAACCTTGATCCGTGGTT -ACGGAACAACCTTGATCCGCCTTT -ACGGAACAACCTTGATCCGGTCTT -ACGGAACAACCTTGATCCACGCTT -ACGGAACAACCTTGATCCAGCGTT -ACGGAACAACCTTGATCCTTCGTC -ACGGAACAACCTTGATCCTCTCTC -ACGGAACAACCTTGATCCTGGATC -ACGGAACAACCTTGATCCCACTTC -ACGGAACAACCTTGATCCGTACTC -ACGGAACAACCTTGATCCGATGTC -ACGGAACAACCTTGATCCACAGTC -ACGGAACAACCTTGATCCTTGCTG -ACGGAACAACCTTGATCCTCCATG -ACGGAACAACCTTGATCCTGTGTG -ACGGAACAACCTTGATCCCTAGTG -ACGGAACAACCTTGATCCCATCTG -ACGGAACAACCTTGATCCGAGTTG -ACGGAACAACCTTGATCCAGACTG -ACGGAACAACCTTGATCCTCGGTA -ACGGAACAACCTTGATCCTGCCTA -ACGGAACAACCTTGATCCCCACTA -ACGGAACAACCTTGATCCGGAGTA -ACGGAACAACCTTGATCCTCGTCT -ACGGAACAACCTTGATCCTGCACT -ACGGAACAACCTTGATCCCTGACT -ACGGAACAACCTTGATCCCAACCT -ACGGAACAACCTTGATCCGCTACT -ACGGAACAACCTTGATCCGGATCT -ACGGAACAACCTTGATCCAAGGCT -ACGGAACAACCTTGATCCTCAACC -ACGGAACAACCTTGATCCTGTTCC -ACGGAACAACCTTGATCCATTCCC -ACGGAACAACCTTGATCCTTCTCG -ACGGAACAACCTTGATCCTAGACG -ACGGAACAACCTTGATCCGTAACG -ACGGAACAACCTTGATCCACTTCG -ACGGAACAACCTTGATCCTACGCA -ACGGAACAACCTTGATCCCTTGCA -ACGGAACAACCTTGATCCCGAACA -ACGGAACAACCTTGATCCCAGTCA -ACGGAACAACCTTGATCCGATCCA -ACGGAACAACCTTGATCCACGACA -ACGGAACAACCTTGATCCAGCTCA -ACGGAACAACCTTGATCCTCACGT -ACGGAACAACCTTGATCCCGTAGT -ACGGAACAACCTTGATCCGTCAGT -ACGGAACAACCTTGATCCGAAGGT -ACGGAACAACCTTGATCCAACCGT -ACGGAACAACCTTGATCCTTGTGC -ACGGAACAACCTTGATCCCTAAGC -ACGGAACAACCTTGATCCACTAGC -ACGGAACAACCTTGATCCAGATGC -ACGGAACAACCTTGATCCTGAAGG -ACGGAACAACCTTGATCCCAATGG -ACGGAACAACCTTGATCCATGAGG -ACGGAACAACCTTGATCCAATGGG -ACGGAACAACCTTGATCCTCCTGA -ACGGAACAACCTTGATCCTAGCGA -ACGGAACAACCTTGATCCCACAGA -ACGGAACAACCTTGATCCGCAAGA -ACGGAACAACCTTGATCCGGTTGA -ACGGAACAACCTTGATCCTCCGAT -ACGGAACAACCTTGATCCTGGCAT -ACGGAACAACCTTGATCCCGAGAT -ACGGAACAACCTTGATCCTACCAC -ACGGAACAACCTTGATCCCAGAAC -ACGGAACAACCTTGATCCGTCTAC -ACGGAACAACCTTGATCCACGTAC -ACGGAACAACCTTGATCCAGTGAC -ACGGAACAACCTTGATCCCTGTAG -ACGGAACAACCTTGATCCCCTAAG -ACGGAACAACCTTGATCCGTTCAG -ACGGAACAACCTTGATCCGCATAG -ACGGAACAACCTTGATCCGACAAG -ACGGAACAACCTTGATCCAAGCAG -ACGGAACAACCTTGATCCCGTCAA -ACGGAACAACCTTGATCCGCTGAA -ACGGAACAACCTTGATCCAGTACG -ACGGAACAACCTTGATCCATCCGA -ACGGAACAACCTTGATCCATGGGA -ACGGAACAACCTTGATCCGTGCAA -ACGGAACAACCTTGATCCGAGGAA -ACGGAACAACCTTGATCCCAGGTA -ACGGAACAACCTTGATCCGACTCT -ACGGAACAACCTTGATCCAGTCCT -ACGGAACAACCTTGATCCTAAGCC -ACGGAACAACCTTGATCCATAGCC -ACGGAACAACCTTGATCCTAACCG -ACGGAACAACCTTGATCCATGCCA -ACGGAACAACCTCGATAGGGAAAC -ACGGAACAACCTCGATAGAACACC -ACGGAACAACCTCGATAGATCGAG -ACGGAACAACCTCGATAGCTCCTT -ACGGAACAACCTCGATAGCCTGTT -ACGGAACAACCTCGATAGCGGTTT -ACGGAACAACCTCGATAGGTGGTT -ACGGAACAACCTCGATAGGCCTTT -ACGGAACAACCTCGATAGGGTCTT -ACGGAACAACCTCGATAGACGCTT -ACGGAACAACCTCGATAGAGCGTT -ACGGAACAACCTCGATAGTTCGTC -ACGGAACAACCTCGATAGTCTCTC -ACGGAACAACCTCGATAGTGGATC -ACGGAACAACCTCGATAGCACTTC -ACGGAACAACCTCGATAGGTACTC -ACGGAACAACCTCGATAGGATGTC -ACGGAACAACCTCGATAGACAGTC -ACGGAACAACCTCGATAGTTGCTG -ACGGAACAACCTCGATAGTCCATG -ACGGAACAACCTCGATAGTGTGTG -ACGGAACAACCTCGATAGCTAGTG -ACGGAACAACCTCGATAGCATCTG -ACGGAACAACCTCGATAGGAGTTG -ACGGAACAACCTCGATAGAGACTG -ACGGAACAACCTCGATAGTCGGTA -ACGGAACAACCTCGATAGTGCCTA -ACGGAACAACCTCGATAGCCACTA -ACGGAACAACCTCGATAGGGAGTA -ACGGAACAACCTCGATAGTCGTCT -ACGGAACAACCTCGATAGTGCACT -ACGGAACAACCTCGATAGCTGACT -ACGGAACAACCTCGATAGCAACCT -ACGGAACAACCTCGATAGGCTACT -ACGGAACAACCTCGATAGGGATCT -ACGGAACAACCTCGATAGAAGGCT -ACGGAACAACCTCGATAGTCAACC -ACGGAACAACCTCGATAGTGTTCC -ACGGAACAACCTCGATAGATTCCC -ACGGAACAACCTCGATAGTTCTCG -ACGGAACAACCTCGATAGTAGACG -ACGGAACAACCTCGATAGGTAACG -ACGGAACAACCTCGATAGACTTCG -ACGGAACAACCTCGATAGTACGCA -ACGGAACAACCTCGATAGCTTGCA -ACGGAACAACCTCGATAGCGAACA -ACGGAACAACCTCGATAGCAGTCA -ACGGAACAACCTCGATAGGATCCA -ACGGAACAACCTCGATAGACGACA -ACGGAACAACCTCGATAGAGCTCA -ACGGAACAACCTCGATAGTCACGT -ACGGAACAACCTCGATAGCGTAGT -ACGGAACAACCTCGATAGGTCAGT -ACGGAACAACCTCGATAGGAAGGT -ACGGAACAACCTCGATAGAACCGT -ACGGAACAACCTCGATAGTTGTGC -ACGGAACAACCTCGATAGCTAAGC -ACGGAACAACCTCGATAGACTAGC -ACGGAACAACCTCGATAGAGATGC -ACGGAACAACCTCGATAGTGAAGG -ACGGAACAACCTCGATAGCAATGG -ACGGAACAACCTCGATAGATGAGG -ACGGAACAACCTCGATAGAATGGG -ACGGAACAACCTCGATAGTCCTGA -ACGGAACAACCTCGATAGTAGCGA -ACGGAACAACCTCGATAGCACAGA -ACGGAACAACCTCGATAGGCAAGA -ACGGAACAACCTCGATAGGGTTGA -ACGGAACAACCTCGATAGTCCGAT -ACGGAACAACCTCGATAGTGGCAT -ACGGAACAACCTCGATAGCGAGAT -ACGGAACAACCTCGATAGTACCAC -ACGGAACAACCTCGATAGCAGAAC -ACGGAACAACCTCGATAGGTCTAC -ACGGAACAACCTCGATAGACGTAC -ACGGAACAACCTCGATAGAGTGAC -ACGGAACAACCTCGATAGCTGTAG -ACGGAACAACCTCGATAGCCTAAG -ACGGAACAACCTCGATAGGTTCAG -ACGGAACAACCTCGATAGGCATAG -ACGGAACAACCTCGATAGGACAAG -ACGGAACAACCTCGATAGAAGCAG -ACGGAACAACCTCGATAGCGTCAA -ACGGAACAACCTCGATAGGCTGAA -ACGGAACAACCTCGATAGAGTACG -ACGGAACAACCTCGATAGATCCGA -ACGGAACAACCTCGATAGATGGGA -ACGGAACAACCTCGATAGGTGCAA -ACGGAACAACCTCGATAGGAGGAA -ACGGAACAACCTCGATAGCAGGTA -ACGGAACAACCTCGATAGGACTCT -ACGGAACAACCTCGATAGAGTCCT -ACGGAACAACCTCGATAGTAAGCC -ACGGAACAACCTCGATAGATAGCC -ACGGAACAACCTCGATAGTAACCG -ACGGAACAACCTCGATAGATGCCA -ACGGAACAACCTAGACACGGAAAC -ACGGAACAACCTAGACACAACACC -ACGGAACAACCTAGACACATCGAG -ACGGAACAACCTAGACACCTCCTT -ACGGAACAACCTAGACACCCTGTT -ACGGAACAACCTAGACACCGGTTT -ACGGAACAACCTAGACACGTGGTT -ACGGAACAACCTAGACACGCCTTT -ACGGAACAACCTAGACACGGTCTT -ACGGAACAACCTAGACACACGCTT -ACGGAACAACCTAGACACAGCGTT -ACGGAACAACCTAGACACTTCGTC -ACGGAACAACCTAGACACTCTCTC -ACGGAACAACCTAGACACTGGATC -ACGGAACAACCTAGACACCACTTC -ACGGAACAACCTAGACACGTACTC -ACGGAACAACCTAGACACGATGTC -ACGGAACAACCTAGACACACAGTC -ACGGAACAACCTAGACACTTGCTG -ACGGAACAACCTAGACACTCCATG -ACGGAACAACCTAGACACTGTGTG -ACGGAACAACCTAGACACCTAGTG -ACGGAACAACCTAGACACCATCTG -ACGGAACAACCTAGACACGAGTTG -ACGGAACAACCTAGACACAGACTG -ACGGAACAACCTAGACACTCGGTA -ACGGAACAACCTAGACACTGCCTA -ACGGAACAACCTAGACACCCACTA -ACGGAACAACCTAGACACGGAGTA -ACGGAACAACCTAGACACTCGTCT -ACGGAACAACCTAGACACTGCACT -ACGGAACAACCTAGACACCTGACT -ACGGAACAACCTAGACACCAACCT -ACGGAACAACCTAGACACGCTACT -ACGGAACAACCTAGACACGGATCT -ACGGAACAACCTAGACACAAGGCT -ACGGAACAACCTAGACACTCAACC -ACGGAACAACCTAGACACTGTTCC -ACGGAACAACCTAGACACATTCCC -ACGGAACAACCTAGACACTTCTCG -ACGGAACAACCTAGACACTAGACG -ACGGAACAACCTAGACACGTAACG -ACGGAACAACCTAGACACACTTCG -ACGGAACAACCTAGACACTACGCA -ACGGAACAACCTAGACACCTTGCA -ACGGAACAACCTAGACACCGAACA -ACGGAACAACCTAGACACCAGTCA -ACGGAACAACCTAGACACGATCCA -ACGGAACAACCTAGACACACGACA -ACGGAACAACCTAGACACAGCTCA -ACGGAACAACCTAGACACTCACGT -ACGGAACAACCTAGACACCGTAGT -ACGGAACAACCTAGACACGTCAGT -ACGGAACAACCTAGACACGAAGGT -ACGGAACAACCTAGACACAACCGT -ACGGAACAACCTAGACACTTGTGC -ACGGAACAACCTAGACACCTAAGC -ACGGAACAACCTAGACACACTAGC -ACGGAACAACCTAGACACAGATGC -ACGGAACAACCTAGACACTGAAGG -ACGGAACAACCTAGACACCAATGG -ACGGAACAACCTAGACACATGAGG -ACGGAACAACCTAGACACAATGGG -ACGGAACAACCTAGACACTCCTGA -ACGGAACAACCTAGACACTAGCGA -ACGGAACAACCTAGACACCACAGA -ACGGAACAACCTAGACACGCAAGA -ACGGAACAACCTAGACACGGTTGA -ACGGAACAACCTAGACACTCCGAT -ACGGAACAACCTAGACACTGGCAT -ACGGAACAACCTAGACACCGAGAT -ACGGAACAACCTAGACACTACCAC -ACGGAACAACCTAGACACCAGAAC -ACGGAACAACCTAGACACGTCTAC -ACGGAACAACCTAGACACACGTAC -ACGGAACAACCTAGACACAGTGAC -ACGGAACAACCTAGACACCTGTAG -ACGGAACAACCTAGACACCCTAAG -ACGGAACAACCTAGACACGTTCAG -ACGGAACAACCTAGACACGCATAG -ACGGAACAACCTAGACACGACAAG -ACGGAACAACCTAGACACAAGCAG -ACGGAACAACCTAGACACCGTCAA -ACGGAACAACCTAGACACGCTGAA -ACGGAACAACCTAGACACAGTACG -ACGGAACAACCTAGACACATCCGA -ACGGAACAACCTAGACACATGGGA -ACGGAACAACCTAGACACGTGCAA -ACGGAACAACCTAGACACGAGGAA -ACGGAACAACCTAGACACCAGGTA -ACGGAACAACCTAGACACGACTCT -ACGGAACAACCTAGACACAGTCCT -ACGGAACAACCTAGACACTAAGCC -ACGGAACAACCTAGACACATAGCC -ACGGAACAACCTAGACACTAACCG -ACGGAACAACCTAGACACATGCCA -ACGGAACAACCTAGAGCAGGAAAC -ACGGAACAACCTAGAGCAAACACC -ACGGAACAACCTAGAGCAATCGAG -ACGGAACAACCTAGAGCACTCCTT -ACGGAACAACCTAGAGCACCTGTT -ACGGAACAACCTAGAGCACGGTTT -ACGGAACAACCTAGAGCAGTGGTT -ACGGAACAACCTAGAGCAGCCTTT -ACGGAACAACCTAGAGCAGGTCTT -ACGGAACAACCTAGAGCAACGCTT -ACGGAACAACCTAGAGCAAGCGTT -ACGGAACAACCTAGAGCATTCGTC -ACGGAACAACCTAGAGCATCTCTC -ACGGAACAACCTAGAGCATGGATC -ACGGAACAACCTAGAGCACACTTC -ACGGAACAACCTAGAGCAGTACTC -ACGGAACAACCTAGAGCAGATGTC -ACGGAACAACCTAGAGCAACAGTC -ACGGAACAACCTAGAGCATTGCTG -ACGGAACAACCTAGAGCATCCATG -ACGGAACAACCTAGAGCATGTGTG -ACGGAACAACCTAGAGCACTAGTG -ACGGAACAACCTAGAGCACATCTG -ACGGAACAACCTAGAGCAGAGTTG -ACGGAACAACCTAGAGCAAGACTG -ACGGAACAACCTAGAGCATCGGTA -ACGGAACAACCTAGAGCATGCCTA -ACGGAACAACCTAGAGCACCACTA -ACGGAACAACCTAGAGCAGGAGTA -ACGGAACAACCTAGAGCATCGTCT -ACGGAACAACCTAGAGCATGCACT -ACGGAACAACCTAGAGCACTGACT -ACGGAACAACCTAGAGCACAACCT -ACGGAACAACCTAGAGCAGCTACT -ACGGAACAACCTAGAGCAGGATCT -ACGGAACAACCTAGAGCAAAGGCT -ACGGAACAACCTAGAGCATCAACC -ACGGAACAACCTAGAGCATGTTCC -ACGGAACAACCTAGAGCAATTCCC -ACGGAACAACCTAGAGCATTCTCG -ACGGAACAACCTAGAGCATAGACG -ACGGAACAACCTAGAGCAGTAACG -ACGGAACAACCTAGAGCAACTTCG -ACGGAACAACCTAGAGCATACGCA -ACGGAACAACCTAGAGCACTTGCA -ACGGAACAACCTAGAGCACGAACA -ACGGAACAACCTAGAGCACAGTCA -ACGGAACAACCTAGAGCAGATCCA -ACGGAACAACCTAGAGCAACGACA -ACGGAACAACCTAGAGCAAGCTCA -ACGGAACAACCTAGAGCATCACGT -ACGGAACAACCTAGAGCACGTAGT -ACGGAACAACCTAGAGCAGTCAGT -ACGGAACAACCTAGAGCAGAAGGT -ACGGAACAACCTAGAGCAAACCGT -ACGGAACAACCTAGAGCATTGTGC -ACGGAACAACCTAGAGCACTAAGC -ACGGAACAACCTAGAGCAACTAGC -ACGGAACAACCTAGAGCAAGATGC -ACGGAACAACCTAGAGCATGAAGG -ACGGAACAACCTAGAGCACAATGG -ACGGAACAACCTAGAGCAATGAGG -ACGGAACAACCTAGAGCAAATGGG -ACGGAACAACCTAGAGCATCCTGA -ACGGAACAACCTAGAGCATAGCGA -ACGGAACAACCTAGAGCACACAGA -ACGGAACAACCTAGAGCAGCAAGA -ACGGAACAACCTAGAGCAGGTTGA -ACGGAACAACCTAGAGCATCCGAT -ACGGAACAACCTAGAGCATGGCAT -ACGGAACAACCTAGAGCACGAGAT -ACGGAACAACCTAGAGCATACCAC -ACGGAACAACCTAGAGCACAGAAC -ACGGAACAACCTAGAGCAGTCTAC -ACGGAACAACCTAGAGCAACGTAC -ACGGAACAACCTAGAGCAAGTGAC -ACGGAACAACCTAGAGCACTGTAG -ACGGAACAACCTAGAGCACCTAAG -ACGGAACAACCTAGAGCAGTTCAG -ACGGAACAACCTAGAGCAGCATAG -ACGGAACAACCTAGAGCAGACAAG -ACGGAACAACCTAGAGCAAAGCAG -ACGGAACAACCTAGAGCACGTCAA -ACGGAACAACCTAGAGCAGCTGAA -ACGGAACAACCTAGAGCAAGTACG -ACGGAACAACCTAGAGCAATCCGA -ACGGAACAACCTAGAGCAATGGGA -ACGGAACAACCTAGAGCAGTGCAA -ACGGAACAACCTAGAGCAGAGGAA -ACGGAACAACCTAGAGCACAGGTA -ACGGAACAACCTAGAGCAGACTCT -ACGGAACAACCTAGAGCAAGTCCT -ACGGAACAACCTAGAGCATAAGCC -ACGGAACAACCTAGAGCAATAGCC -ACGGAACAACCTAGAGCATAACCG -ACGGAACAACCTAGAGCAATGCCA -ACGGAACAACCTTGAGGTGGAAAC -ACGGAACAACCTTGAGGTAACACC -ACGGAACAACCTTGAGGTATCGAG -ACGGAACAACCTTGAGGTCTCCTT -ACGGAACAACCTTGAGGTCCTGTT -ACGGAACAACCTTGAGGTCGGTTT -ACGGAACAACCTTGAGGTGTGGTT -ACGGAACAACCTTGAGGTGCCTTT -ACGGAACAACCTTGAGGTGGTCTT -ACGGAACAACCTTGAGGTACGCTT -ACGGAACAACCTTGAGGTAGCGTT -ACGGAACAACCTTGAGGTTTCGTC -ACGGAACAACCTTGAGGTTCTCTC -ACGGAACAACCTTGAGGTTGGATC -ACGGAACAACCTTGAGGTCACTTC -ACGGAACAACCTTGAGGTGTACTC -ACGGAACAACCTTGAGGTGATGTC -ACGGAACAACCTTGAGGTACAGTC -ACGGAACAACCTTGAGGTTTGCTG -ACGGAACAACCTTGAGGTTCCATG -ACGGAACAACCTTGAGGTTGTGTG -ACGGAACAACCTTGAGGTCTAGTG -ACGGAACAACCTTGAGGTCATCTG -ACGGAACAACCTTGAGGTGAGTTG -ACGGAACAACCTTGAGGTAGACTG -ACGGAACAACCTTGAGGTTCGGTA -ACGGAACAACCTTGAGGTTGCCTA -ACGGAACAACCTTGAGGTCCACTA -ACGGAACAACCTTGAGGTGGAGTA -ACGGAACAACCTTGAGGTTCGTCT -ACGGAACAACCTTGAGGTTGCACT -ACGGAACAACCTTGAGGTCTGACT -ACGGAACAACCTTGAGGTCAACCT -ACGGAACAACCTTGAGGTGCTACT -ACGGAACAACCTTGAGGTGGATCT -ACGGAACAACCTTGAGGTAAGGCT -ACGGAACAACCTTGAGGTTCAACC -ACGGAACAACCTTGAGGTTGTTCC -ACGGAACAACCTTGAGGTATTCCC -ACGGAACAACCTTGAGGTTTCTCG -ACGGAACAACCTTGAGGTTAGACG -ACGGAACAACCTTGAGGTGTAACG -ACGGAACAACCTTGAGGTACTTCG -ACGGAACAACCTTGAGGTTACGCA -ACGGAACAACCTTGAGGTCTTGCA -ACGGAACAACCTTGAGGTCGAACA -ACGGAACAACCTTGAGGTCAGTCA -ACGGAACAACCTTGAGGTGATCCA -ACGGAACAACCTTGAGGTACGACA -ACGGAACAACCTTGAGGTAGCTCA -ACGGAACAACCTTGAGGTTCACGT -ACGGAACAACCTTGAGGTCGTAGT -ACGGAACAACCTTGAGGTGTCAGT -ACGGAACAACCTTGAGGTGAAGGT -ACGGAACAACCTTGAGGTAACCGT -ACGGAACAACCTTGAGGTTTGTGC -ACGGAACAACCTTGAGGTCTAAGC -ACGGAACAACCTTGAGGTACTAGC -ACGGAACAACCTTGAGGTAGATGC -ACGGAACAACCTTGAGGTTGAAGG -ACGGAACAACCTTGAGGTCAATGG -ACGGAACAACCTTGAGGTATGAGG -ACGGAACAACCTTGAGGTAATGGG -ACGGAACAACCTTGAGGTTCCTGA -ACGGAACAACCTTGAGGTTAGCGA -ACGGAACAACCTTGAGGTCACAGA -ACGGAACAACCTTGAGGTGCAAGA -ACGGAACAACCTTGAGGTGGTTGA -ACGGAACAACCTTGAGGTTCCGAT -ACGGAACAACCTTGAGGTTGGCAT -ACGGAACAACCTTGAGGTCGAGAT -ACGGAACAACCTTGAGGTTACCAC -ACGGAACAACCTTGAGGTCAGAAC -ACGGAACAACCTTGAGGTGTCTAC -ACGGAACAACCTTGAGGTACGTAC -ACGGAACAACCTTGAGGTAGTGAC -ACGGAACAACCTTGAGGTCTGTAG -ACGGAACAACCTTGAGGTCCTAAG -ACGGAACAACCTTGAGGTGTTCAG -ACGGAACAACCTTGAGGTGCATAG -ACGGAACAACCTTGAGGTGACAAG -ACGGAACAACCTTGAGGTAAGCAG -ACGGAACAACCTTGAGGTCGTCAA -ACGGAACAACCTTGAGGTGCTGAA -ACGGAACAACCTTGAGGTAGTACG -ACGGAACAACCTTGAGGTATCCGA -ACGGAACAACCTTGAGGTATGGGA -ACGGAACAACCTTGAGGTGTGCAA -ACGGAACAACCTTGAGGTGAGGAA -ACGGAACAACCTTGAGGTCAGGTA -ACGGAACAACCTTGAGGTGACTCT -ACGGAACAACCTTGAGGTAGTCCT -ACGGAACAACCTTGAGGTTAAGCC -ACGGAACAACCTTGAGGTATAGCC -ACGGAACAACCTTGAGGTTAACCG -ACGGAACAACCTTGAGGTATGCCA -ACGGAACAACCTGATTCCGGAAAC -ACGGAACAACCTGATTCCAACACC -ACGGAACAACCTGATTCCATCGAG -ACGGAACAACCTGATTCCCTCCTT -ACGGAACAACCTGATTCCCCTGTT -ACGGAACAACCTGATTCCCGGTTT -ACGGAACAACCTGATTCCGTGGTT -ACGGAACAACCTGATTCCGCCTTT -ACGGAACAACCTGATTCCGGTCTT -ACGGAACAACCTGATTCCACGCTT -ACGGAACAACCTGATTCCAGCGTT -ACGGAACAACCTGATTCCTTCGTC -ACGGAACAACCTGATTCCTCTCTC -ACGGAACAACCTGATTCCTGGATC -ACGGAACAACCTGATTCCCACTTC -ACGGAACAACCTGATTCCGTACTC -ACGGAACAACCTGATTCCGATGTC -ACGGAACAACCTGATTCCACAGTC -ACGGAACAACCTGATTCCTTGCTG -ACGGAACAACCTGATTCCTCCATG -ACGGAACAACCTGATTCCTGTGTG -ACGGAACAACCTGATTCCCTAGTG -ACGGAACAACCTGATTCCCATCTG -ACGGAACAACCTGATTCCGAGTTG -ACGGAACAACCTGATTCCAGACTG -ACGGAACAACCTGATTCCTCGGTA -ACGGAACAACCTGATTCCTGCCTA -ACGGAACAACCTGATTCCCCACTA -ACGGAACAACCTGATTCCGGAGTA -ACGGAACAACCTGATTCCTCGTCT -ACGGAACAACCTGATTCCTGCACT -ACGGAACAACCTGATTCCCTGACT -ACGGAACAACCTGATTCCCAACCT -ACGGAACAACCTGATTCCGCTACT -ACGGAACAACCTGATTCCGGATCT -ACGGAACAACCTGATTCCAAGGCT -ACGGAACAACCTGATTCCTCAACC -ACGGAACAACCTGATTCCTGTTCC -ACGGAACAACCTGATTCCATTCCC -ACGGAACAACCTGATTCCTTCTCG -ACGGAACAACCTGATTCCTAGACG -ACGGAACAACCTGATTCCGTAACG -ACGGAACAACCTGATTCCACTTCG -ACGGAACAACCTGATTCCTACGCA -ACGGAACAACCTGATTCCCTTGCA -ACGGAACAACCTGATTCCCGAACA -ACGGAACAACCTGATTCCCAGTCA -ACGGAACAACCTGATTCCGATCCA -ACGGAACAACCTGATTCCACGACA -ACGGAACAACCTGATTCCAGCTCA -ACGGAACAACCTGATTCCTCACGT -ACGGAACAACCTGATTCCCGTAGT -ACGGAACAACCTGATTCCGTCAGT -ACGGAACAACCTGATTCCGAAGGT -ACGGAACAACCTGATTCCAACCGT -ACGGAACAACCTGATTCCTTGTGC -ACGGAACAACCTGATTCCCTAAGC -ACGGAACAACCTGATTCCACTAGC -ACGGAACAACCTGATTCCAGATGC -ACGGAACAACCTGATTCCTGAAGG -ACGGAACAACCTGATTCCCAATGG -ACGGAACAACCTGATTCCATGAGG -ACGGAACAACCTGATTCCAATGGG -ACGGAACAACCTGATTCCTCCTGA -ACGGAACAACCTGATTCCTAGCGA -ACGGAACAACCTGATTCCCACAGA -ACGGAACAACCTGATTCCGCAAGA -ACGGAACAACCTGATTCCGGTTGA -ACGGAACAACCTGATTCCTCCGAT -ACGGAACAACCTGATTCCTGGCAT -ACGGAACAACCTGATTCCCGAGAT -ACGGAACAACCTGATTCCTACCAC -ACGGAACAACCTGATTCCCAGAAC -ACGGAACAACCTGATTCCGTCTAC -ACGGAACAACCTGATTCCACGTAC -ACGGAACAACCTGATTCCAGTGAC -ACGGAACAACCTGATTCCCTGTAG -ACGGAACAACCTGATTCCCCTAAG -ACGGAACAACCTGATTCCGTTCAG -ACGGAACAACCTGATTCCGCATAG -ACGGAACAACCTGATTCCGACAAG -ACGGAACAACCTGATTCCAAGCAG -ACGGAACAACCTGATTCCCGTCAA -ACGGAACAACCTGATTCCGCTGAA -ACGGAACAACCTGATTCCAGTACG -ACGGAACAACCTGATTCCATCCGA -ACGGAACAACCTGATTCCATGGGA -ACGGAACAACCTGATTCCGTGCAA -ACGGAACAACCTGATTCCGAGGAA -ACGGAACAACCTGATTCCCAGGTA -ACGGAACAACCTGATTCCGACTCT -ACGGAACAACCTGATTCCAGTCCT -ACGGAACAACCTGATTCCTAAGCC -ACGGAACAACCTGATTCCATAGCC -ACGGAACAACCTGATTCCTAACCG -ACGGAACAACCTGATTCCATGCCA -ACGGAACAACCTCATTGGGGAAAC -ACGGAACAACCTCATTGGAACACC -ACGGAACAACCTCATTGGATCGAG -ACGGAACAACCTCATTGGCTCCTT -ACGGAACAACCTCATTGGCCTGTT -ACGGAACAACCTCATTGGCGGTTT -ACGGAACAACCTCATTGGGTGGTT -ACGGAACAACCTCATTGGGCCTTT -ACGGAACAACCTCATTGGGGTCTT -ACGGAACAACCTCATTGGACGCTT -ACGGAACAACCTCATTGGAGCGTT -ACGGAACAACCTCATTGGTTCGTC -ACGGAACAACCTCATTGGTCTCTC -ACGGAACAACCTCATTGGTGGATC -ACGGAACAACCTCATTGGCACTTC -ACGGAACAACCTCATTGGGTACTC -ACGGAACAACCTCATTGGGATGTC -ACGGAACAACCTCATTGGACAGTC -ACGGAACAACCTCATTGGTTGCTG -ACGGAACAACCTCATTGGTCCATG -ACGGAACAACCTCATTGGTGTGTG -ACGGAACAACCTCATTGGCTAGTG -ACGGAACAACCTCATTGGCATCTG -ACGGAACAACCTCATTGGGAGTTG -ACGGAACAACCTCATTGGAGACTG -ACGGAACAACCTCATTGGTCGGTA -ACGGAACAACCTCATTGGTGCCTA -ACGGAACAACCTCATTGGCCACTA -ACGGAACAACCTCATTGGGGAGTA -ACGGAACAACCTCATTGGTCGTCT -ACGGAACAACCTCATTGGTGCACT -ACGGAACAACCTCATTGGCTGACT -ACGGAACAACCTCATTGGCAACCT -ACGGAACAACCTCATTGGGCTACT -ACGGAACAACCTCATTGGGGATCT -ACGGAACAACCTCATTGGAAGGCT -ACGGAACAACCTCATTGGTCAACC -ACGGAACAACCTCATTGGTGTTCC -ACGGAACAACCTCATTGGATTCCC -ACGGAACAACCTCATTGGTTCTCG -ACGGAACAACCTCATTGGTAGACG -ACGGAACAACCTCATTGGGTAACG -ACGGAACAACCTCATTGGACTTCG -ACGGAACAACCTCATTGGTACGCA -ACGGAACAACCTCATTGGCTTGCA -ACGGAACAACCTCATTGGCGAACA -ACGGAACAACCTCATTGGCAGTCA -ACGGAACAACCTCATTGGGATCCA -ACGGAACAACCTCATTGGACGACA -ACGGAACAACCTCATTGGAGCTCA -ACGGAACAACCTCATTGGTCACGT -ACGGAACAACCTCATTGGCGTAGT -ACGGAACAACCTCATTGGGTCAGT -ACGGAACAACCTCATTGGGAAGGT -ACGGAACAACCTCATTGGAACCGT -ACGGAACAACCTCATTGGTTGTGC -ACGGAACAACCTCATTGGCTAAGC -ACGGAACAACCTCATTGGACTAGC -ACGGAACAACCTCATTGGAGATGC -ACGGAACAACCTCATTGGTGAAGG -ACGGAACAACCTCATTGGCAATGG -ACGGAACAACCTCATTGGATGAGG -ACGGAACAACCTCATTGGAATGGG -ACGGAACAACCTCATTGGTCCTGA -ACGGAACAACCTCATTGGTAGCGA -ACGGAACAACCTCATTGGCACAGA -ACGGAACAACCTCATTGGGCAAGA -ACGGAACAACCTCATTGGGGTTGA -ACGGAACAACCTCATTGGTCCGAT -ACGGAACAACCTCATTGGTGGCAT -ACGGAACAACCTCATTGGCGAGAT -ACGGAACAACCTCATTGGTACCAC -ACGGAACAACCTCATTGGCAGAAC -ACGGAACAACCTCATTGGGTCTAC -ACGGAACAACCTCATTGGACGTAC -ACGGAACAACCTCATTGGAGTGAC -ACGGAACAACCTCATTGGCTGTAG -ACGGAACAACCTCATTGGCCTAAG -ACGGAACAACCTCATTGGGTTCAG -ACGGAACAACCTCATTGGGCATAG -ACGGAACAACCTCATTGGGACAAG -ACGGAACAACCTCATTGGAAGCAG -ACGGAACAACCTCATTGGCGTCAA -ACGGAACAACCTCATTGGGCTGAA -ACGGAACAACCTCATTGGAGTACG -ACGGAACAACCTCATTGGATCCGA -ACGGAACAACCTCATTGGATGGGA -ACGGAACAACCTCATTGGGTGCAA -ACGGAACAACCTCATTGGGAGGAA -ACGGAACAACCTCATTGGCAGGTA -ACGGAACAACCTCATTGGGACTCT -ACGGAACAACCTCATTGGAGTCCT -ACGGAACAACCTCATTGGTAAGCC -ACGGAACAACCTCATTGGATAGCC -ACGGAACAACCTCATTGGTAACCG -ACGGAACAACCTCATTGGATGCCA -ACGGAACAACCTGATCGAGGAAAC -ACGGAACAACCTGATCGAAACACC -ACGGAACAACCTGATCGAATCGAG -ACGGAACAACCTGATCGACTCCTT -ACGGAACAACCTGATCGACCTGTT -ACGGAACAACCTGATCGACGGTTT -ACGGAACAACCTGATCGAGTGGTT -ACGGAACAACCTGATCGAGCCTTT -ACGGAACAACCTGATCGAGGTCTT -ACGGAACAACCTGATCGAACGCTT -ACGGAACAACCTGATCGAAGCGTT -ACGGAACAACCTGATCGATTCGTC -ACGGAACAACCTGATCGATCTCTC -ACGGAACAACCTGATCGATGGATC -ACGGAACAACCTGATCGACACTTC -ACGGAACAACCTGATCGAGTACTC -ACGGAACAACCTGATCGAGATGTC -ACGGAACAACCTGATCGAACAGTC -ACGGAACAACCTGATCGATTGCTG -ACGGAACAACCTGATCGATCCATG -ACGGAACAACCTGATCGATGTGTG -ACGGAACAACCTGATCGACTAGTG -ACGGAACAACCTGATCGACATCTG -ACGGAACAACCTGATCGAGAGTTG -ACGGAACAACCTGATCGAAGACTG -ACGGAACAACCTGATCGATCGGTA -ACGGAACAACCTGATCGATGCCTA -ACGGAACAACCTGATCGACCACTA -ACGGAACAACCTGATCGAGGAGTA -ACGGAACAACCTGATCGATCGTCT -ACGGAACAACCTGATCGATGCACT -ACGGAACAACCTGATCGACTGACT -ACGGAACAACCTGATCGACAACCT -ACGGAACAACCTGATCGAGCTACT -ACGGAACAACCTGATCGAGGATCT -ACGGAACAACCTGATCGAAAGGCT -ACGGAACAACCTGATCGATCAACC -ACGGAACAACCTGATCGATGTTCC -ACGGAACAACCTGATCGAATTCCC -ACGGAACAACCTGATCGATTCTCG -ACGGAACAACCTGATCGATAGACG -ACGGAACAACCTGATCGAGTAACG -ACGGAACAACCTGATCGAACTTCG -ACGGAACAACCTGATCGATACGCA -ACGGAACAACCTGATCGACTTGCA -ACGGAACAACCTGATCGACGAACA -ACGGAACAACCTGATCGACAGTCA -ACGGAACAACCTGATCGAGATCCA -ACGGAACAACCTGATCGAACGACA -ACGGAACAACCTGATCGAAGCTCA -ACGGAACAACCTGATCGATCACGT -ACGGAACAACCTGATCGACGTAGT -ACGGAACAACCTGATCGAGTCAGT -ACGGAACAACCTGATCGAGAAGGT -ACGGAACAACCTGATCGAAACCGT -ACGGAACAACCTGATCGATTGTGC -ACGGAACAACCTGATCGACTAAGC -ACGGAACAACCTGATCGAACTAGC -ACGGAACAACCTGATCGAAGATGC -ACGGAACAACCTGATCGATGAAGG -ACGGAACAACCTGATCGACAATGG -ACGGAACAACCTGATCGAATGAGG -ACGGAACAACCTGATCGAAATGGG -ACGGAACAACCTGATCGATCCTGA -ACGGAACAACCTGATCGATAGCGA -ACGGAACAACCTGATCGACACAGA -ACGGAACAACCTGATCGAGCAAGA -ACGGAACAACCTGATCGAGGTTGA -ACGGAACAACCTGATCGATCCGAT -ACGGAACAACCTGATCGATGGCAT -ACGGAACAACCTGATCGACGAGAT -ACGGAACAACCTGATCGATACCAC -ACGGAACAACCTGATCGACAGAAC -ACGGAACAACCTGATCGAGTCTAC -ACGGAACAACCTGATCGAACGTAC -ACGGAACAACCTGATCGAAGTGAC -ACGGAACAACCTGATCGACTGTAG -ACGGAACAACCTGATCGACCTAAG -ACGGAACAACCTGATCGAGTTCAG -ACGGAACAACCTGATCGAGCATAG -ACGGAACAACCTGATCGAGACAAG -ACGGAACAACCTGATCGAAAGCAG -ACGGAACAACCTGATCGACGTCAA -ACGGAACAACCTGATCGAGCTGAA -ACGGAACAACCTGATCGAAGTACG -ACGGAACAACCTGATCGAATCCGA -ACGGAACAACCTGATCGAATGGGA -ACGGAACAACCTGATCGAGTGCAA -ACGGAACAACCTGATCGAGAGGAA -ACGGAACAACCTGATCGACAGGTA -ACGGAACAACCTGATCGAGACTCT -ACGGAACAACCTGATCGAAGTCCT -ACGGAACAACCTGATCGATAAGCC -ACGGAACAACCTGATCGAATAGCC -ACGGAACAACCTGATCGATAACCG -ACGGAACAACCTGATCGAATGCCA -ACGGAACAACCTCACTACGGAAAC -ACGGAACAACCTCACTACAACACC -ACGGAACAACCTCACTACATCGAG -ACGGAACAACCTCACTACCTCCTT -ACGGAACAACCTCACTACCCTGTT -ACGGAACAACCTCACTACCGGTTT -ACGGAACAACCTCACTACGTGGTT -ACGGAACAACCTCACTACGCCTTT -ACGGAACAACCTCACTACGGTCTT -ACGGAACAACCTCACTACACGCTT -ACGGAACAACCTCACTACAGCGTT -ACGGAACAACCTCACTACTTCGTC -ACGGAACAACCTCACTACTCTCTC -ACGGAACAACCTCACTACTGGATC -ACGGAACAACCTCACTACCACTTC -ACGGAACAACCTCACTACGTACTC -ACGGAACAACCTCACTACGATGTC -ACGGAACAACCTCACTACACAGTC -ACGGAACAACCTCACTACTTGCTG -ACGGAACAACCTCACTACTCCATG -ACGGAACAACCTCACTACTGTGTG -ACGGAACAACCTCACTACCTAGTG -ACGGAACAACCTCACTACCATCTG -ACGGAACAACCTCACTACGAGTTG -ACGGAACAACCTCACTACAGACTG -ACGGAACAACCTCACTACTCGGTA -ACGGAACAACCTCACTACTGCCTA -ACGGAACAACCTCACTACCCACTA -ACGGAACAACCTCACTACGGAGTA -ACGGAACAACCTCACTACTCGTCT -ACGGAACAACCTCACTACTGCACT -ACGGAACAACCTCACTACCTGACT -ACGGAACAACCTCACTACCAACCT -ACGGAACAACCTCACTACGCTACT -ACGGAACAACCTCACTACGGATCT -ACGGAACAACCTCACTACAAGGCT -ACGGAACAACCTCACTACTCAACC -ACGGAACAACCTCACTACTGTTCC -ACGGAACAACCTCACTACATTCCC -ACGGAACAACCTCACTACTTCTCG -ACGGAACAACCTCACTACTAGACG -ACGGAACAACCTCACTACGTAACG -ACGGAACAACCTCACTACACTTCG -ACGGAACAACCTCACTACTACGCA -ACGGAACAACCTCACTACCTTGCA -ACGGAACAACCTCACTACCGAACA -ACGGAACAACCTCACTACCAGTCA -ACGGAACAACCTCACTACGATCCA -ACGGAACAACCTCACTACACGACA -ACGGAACAACCTCACTACAGCTCA -ACGGAACAACCTCACTACTCACGT -ACGGAACAACCTCACTACCGTAGT -ACGGAACAACCTCACTACGTCAGT -ACGGAACAACCTCACTACGAAGGT -ACGGAACAACCTCACTACAACCGT -ACGGAACAACCTCACTACTTGTGC -ACGGAACAACCTCACTACCTAAGC -ACGGAACAACCTCACTACACTAGC -ACGGAACAACCTCACTACAGATGC -ACGGAACAACCTCACTACTGAAGG -ACGGAACAACCTCACTACCAATGG -ACGGAACAACCTCACTACATGAGG -ACGGAACAACCTCACTACAATGGG -ACGGAACAACCTCACTACTCCTGA -ACGGAACAACCTCACTACTAGCGA -ACGGAACAACCTCACTACCACAGA -ACGGAACAACCTCACTACGCAAGA -ACGGAACAACCTCACTACGGTTGA -ACGGAACAACCTCACTACTCCGAT -ACGGAACAACCTCACTACTGGCAT -ACGGAACAACCTCACTACCGAGAT -ACGGAACAACCTCACTACTACCAC -ACGGAACAACCTCACTACCAGAAC -ACGGAACAACCTCACTACGTCTAC -ACGGAACAACCTCACTACACGTAC -ACGGAACAACCTCACTACAGTGAC -ACGGAACAACCTCACTACCTGTAG -ACGGAACAACCTCACTACCCTAAG -ACGGAACAACCTCACTACGTTCAG -ACGGAACAACCTCACTACGCATAG -ACGGAACAACCTCACTACGACAAG -ACGGAACAACCTCACTACAAGCAG -ACGGAACAACCTCACTACCGTCAA -ACGGAACAACCTCACTACGCTGAA -ACGGAACAACCTCACTACAGTACG -ACGGAACAACCTCACTACATCCGA -ACGGAACAACCTCACTACATGGGA -ACGGAACAACCTCACTACGTGCAA -ACGGAACAACCTCACTACGAGGAA -ACGGAACAACCTCACTACCAGGTA -ACGGAACAACCTCACTACGACTCT -ACGGAACAACCTCACTACAGTCCT -ACGGAACAACCTCACTACTAAGCC -ACGGAACAACCTCACTACATAGCC -ACGGAACAACCTCACTACTAACCG -ACGGAACAACCTCACTACATGCCA -ACGGAACAACCTAACCAGGGAAAC -ACGGAACAACCTAACCAGAACACC -ACGGAACAACCTAACCAGATCGAG -ACGGAACAACCTAACCAGCTCCTT -ACGGAACAACCTAACCAGCCTGTT -ACGGAACAACCTAACCAGCGGTTT -ACGGAACAACCTAACCAGGTGGTT -ACGGAACAACCTAACCAGGCCTTT -ACGGAACAACCTAACCAGGGTCTT -ACGGAACAACCTAACCAGACGCTT -ACGGAACAACCTAACCAGAGCGTT -ACGGAACAACCTAACCAGTTCGTC -ACGGAACAACCTAACCAGTCTCTC -ACGGAACAACCTAACCAGTGGATC -ACGGAACAACCTAACCAGCACTTC -ACGGAACAACCTAACCAGGTACTC -ACGGAACAACCTAACCAGGATGTC -ACGGAACAACCTAACCAGACAGTC -ACGGAACAACCTAACCAGTTGCTG -ACGGAACAACCTAACCAGTCCATG -ACGGAACAACCTAACCAGTGTGTG -ACGGAACAACCTAACCAGCTAGTG -ACGGAACAACCTAACCAGCATCTG -ACGGAACAACCTAACCAGGAGTTG -ACGGAACAACCTAACCAGAGACTG -ACGGAACAACCTAACCAGTCGGTA -ACGGAACAACCTAACCAGTGCCTA -ACGGAACAACCTAACCAGCCACTA -ACGGAACAACCTAACCAGGGAGTA -ACGGAACAACCTAACCAGTCGTCT -ACGGAACAACCTAACCAGTGCACT -ACGGAACAACCTAACCAGCTGACT -ACGGAACAACCTAACCAGCAACCT -ACGGAACAACCTAACCAGGCTACT -ACGGAACAACCTAACCAGGGATCT -ACGGAACAACCTAACCAGAAGGCT -ACGGAACAACCTAACCAGTCAACC -ACGGAACAACCTAACCAGTGTTCC -ACGGAACAACCTAACCAGATTCCC -ACGGAACAACCTAACCAGTTCTCG -ACGGAACAACCTAACCAGTAGACG -ACGGAACAACCTAACCAGGTAACG -ACGGAACAACCTAACCAGACTTCG -ACGGAACAACCTAACCAGTACGCA -ACGGAACAACCTAACCAGCTTGCA -ACGGAACAACCTAACCAGCGAACA -ACGGAACAACCTAACCAGCAGTCA -ACGGAACAACCTAACCAGGATCCA -ACGGAACAACCTAACCAGACGACA -ACGGAACAACCTAACCAGAGCTCA -ACGGAACAACCTAACCAGTCACGT -ACGGAACAACCTAACCAGCGTAGT -ACGGAACAACCTAACCAGGTCAGT -ACGGAACAACCTAACCAGGAAGGT -ACGGAACAACCTAACCAGAACCGT -ACGGAACAACCTAACCAGTTGTGC -ACGGAACAACCTAACCAGCTAAGC -ACGGAACAACCTAACCAGACTAGC -ACGGAACAACCTAACCAGAGATGC -ACGGAACAACCTAACCAGTGAAGG -ACGGAACAACCTAACCAGCAATGG -ACGGAACAACCTAACCAGATGAGG -ACGGAACAACCTAACCAGAATGGG -ACGGAACAACCTAACCAGTCCTGA -ACGGAACAACCTAACCAGTAGCGA -ACGGAACAACCTAACCAGCACAGA -ACGGAACAACCTAACCAGGCAAGA -ACGGAACAACCTAACCAGGGTTGA -ACGGAACAACCTAACCAGTCCGAT -ACGGAACAACCTAACCAGTGGCAT -ACGGAACAACCTAACCAGCGAGAT -ACGGAACAACCTAACCAGTACCAC -ACGGAACAACCTAACCAGCAGAAC -ACGGAACAACCTAACCAGGTCTAC -ACGGAACAACCTAACCAGACGTAC -ACGGAACAACCTAACCAGAGTGAC -ACGGAACAACCTAACCAGCTGTAG -ACGGAACAACCTAACCAGCCTAAG -ACGGAACAACCTAACCAGGTTCAG -ACGGAACAACCTAACCAGGCATAG -ACGGAACAACCTAACCAGGACAAG -ACGGAACAACCTAACCAGAAGCAG -ACGGAACAACCTAACCAGCGTCAA -ACGGAACAACCTAACCAGGCTGAA -ACGGAACAACCTAACCAGAGTACG -ACGGAACAACCTAACCAGATCCGA -ACGGAACAACCTAACCAGATGGGA -ACGGAACAACCTAACCAGGTGCAA -ACGGAACAACCTAACCAGGAGGAA -ACGGAACAACCTAACCAGCAGGTA -ACGGAACAACCTAACCAGGACTCT -ACGGAACAACCTAACCAGAGTCCT -ACGGAACAACCTAACCAGTAAGCC -ACGGAACAACCTAACCAGATAGCC -ACGGAACAACCTAACCAGTAACCG -ACGGAACAACCTAACCAGATGCCA -ACGGAACAACCTTACGTCGGAAAC -ACGGAACAACCTTACGTCAACACC -ACGGAACAACCTTACGTCATCGAG -ACGGAACAACCTTACGTCCTCCTT -ACGGAACAACCTTACGTCCCTGTT -ACGGAACAACCTTACGTCCGGTTT -ACGGAACAACCTTACGTCGTGGTT -ACGGAACAACCTTACGTCGCCTTT -ACGGAACAACCTTACGTCGGTCTT -ACGGAACAACCTTACGTCACGCTT -ACGGAACAACCTTACGTCAGCGTT -ACGGAACAACCTTACGTCTTCGTC -ACGGAACAACCTTACGTCTCTCTC -ACGGAACAACCTTACGTCTGGATC -ACGGAACAACCTTACGTCCACTTC -ACGGAACAACCTTACGTCGTACTC -ACGGAACAACCTTACGTCGATGTC -ACGGAACAACCTTACGTCACAGTC -ACGGAACAACCTTACGTCTTGCTG -ACGGAACAACCTTACGTCTCCATG -ACGGAACAACCTTACGTCTGTGTG -ACGGAACAACCTTACGTCCTAGTG -ACGGAACAACCTTACGTCCATCTG -ACGGAACAACCTTACGTCGAGTTG -ACGGAACAACCTTACGTCAGACTG -ACGGAACAACCTTACGTCTCGGTA -ACGGAACAACCTTACGTCTGCCTA -ACGGAACAACCTTACGTCCCACTA -ACGGAACAACCTTACGTCGGAGTA -ACGGAACAACCTTACGTCTCGTCT -ACGGAACAACCTTACGTCTGCACT -ACGGAACAACCTTACGTCCTGACT -ACGGAACAACCTTACGTCCAACCT -ACGGAACAACCTTACGTCGCTACT -ACGGAACAACCTTACGTCGGATCT -ACGGAACAACCTTACGTCAAGGCT -ACGGAACAACCTTACGTCTCAACC -ACGGAACAACCTTACGTCTGTTCC -ACGGAACAACCTTACGTCATTCCC -ACGGAACAACCTTACGTCTTCTCG -ACGGAACAACCTTACGTCTAGACG -ACGGAACAACCTTACGTCGTAACG -ACGGAACAACCTTACGTCACTTCG -ACGGAACAACCTTACGTCTACGCA -ACGGAACAACCTTACGTCCTTGCA -ACGGAACAACCTTACGTCCGAACA -ACGGAACAACCTTACGTCCAGTCA -ACGGAACAACCTTACGTCGATCCA -ACGGAACAACCTTACGTCACGACA -ACGGAACAACCTTACGTCAGCTCA -ACGGAACAACCTTACGTCTCACGT -ACGGAACAACCTTACGTCCGTAGT -ACGGAACAACCTTACGTCGTCAGT -ACGGAACAACCTTACGTCGAAGGT -ACGGAACAACCTTACGTCAACCGT -ACGGAACAACCTTACGTCTTGTGC -ACGGAACAACCTTACGTCCTAAGC -ACGGAACAACCTTACGTCACTAGC -ACGGAACAACCTTACGTCAGATGC -ACGGAACAACCTTACGTCTGAAGG -ACGGAACAACCTTACGTCCAATGG -ACGGAACAACCTTACGTCATGAGG -ACGGAACAACCTTACGTCAATGGG -ACGGAACAACCTTACGTCTCCTGA -ACGGAACAACCTTACGTCTAGCGA -ACGGAACAACCTTACGTCCACAGA -ACGGAACAACCTTACGTCGCAAGA -ACGGAACAACCTTACGTCGGTTGA -ACGGAACAACCTTACGTCTCCGAT -ACGGAACAACCTTACGTCTGGCAT -ACGGAACAACCTTACGTCCGAGAT -ACGGAACAACCTTACGTCTACCAC -ACGGAACAACCTTACGTCCAGAAC -ACGGAACAACCTTACGTCGTCTAC -ACGGAACAACCTTACGTCACGTAC -ACGGAACAACCTTACGTCAGTGAC -ACGGAACAACCTTACGTCCTGTAG -ACGGAACAACCTTACGTCCCTAAG -ACGGAACAACCTTACGTCGTTCAG -ACGGAACAACCTTACGTCGCATAG -ACGGAACAACCTTACGTCGACAAG -ACGGAACAACCTTACGTCAAGCAG -ACGGAACAACCTTACGTCCGTCAA -ACGGAACAACCTTACGTCGCTGAA -ACGGAACAACCTTACGTCAGTACG -ACGGAACAACCTTACGTCATCCGA -ACGGAACAACCTTACGTCATGGGA -ACGGAACAACCTTACGTCGTGCAA -ACGGAACAACCTTACGTCGAGGAA -ACGGAACAACCTTACGTCCAGGTA -ACGGAACAACCTTACGTCGACTCT -ACGGAACAACCTTACGTCAGTCCT -ACGGAACAACCTTACGTCTAAGCC -ACGGAACAACCTTACGTCATAGCC -ACGGAACAACCTTACGTCTAACCG -ACGGAACAACCTTACGTCATGCCA -ACGGAACAACCTTACACGGGAAAC -ACGGAACAACCTTACACGAACACC -ACGGAACAACCTTACACGATCGAG -ACGGAACAACCTTACACGCTCCTT -ACGGAACAACCTTACACGCCTGTT -ACGGAACAACCTTACACGCGGTTT -ACGGAACAACCTTACACGGTGGTT -ACGGAACAACCTTACACGGCCTTT -ACGGAACAACCTTACACGGGTCTT -ACGGAACAACCTTACACGACGCTT -ACGGAACAACCTTACACGAGCGTT -ACGGAACAACCTTACACGTTCGTC -ACGGAACAACCTTACACGTCTCTC -ACGGAACAACCTTACACGTGGATC -ACGGAACAACCTTACACGCACTTC -ACGGAACAACCTTACACGGTACTC -ACGGAACAACCTTACACGGATGTC -ACGGAACAACCTTACACGACAGTC -ACGGAACAACCTTACACGTTGCTG -ACGGAACAACCTTACACGTCCATG -ACGGAACAACCTTACACGTGTGTG -ACGGAACAACCTTACACGCTAGTG -ACGGAACAACCTTACACGCATCTG -ACGGAACAACCTTACACGGAGTTG -ACGGAACAACCTTACACGAGACTG -ACGGAACAACCTTACACGTCGGTA -ACGGAACAACCTTACACGTGCCTA -ACGGAACAACCTTACACGCCACTA -ACGGAACAACCTTACACGGGAGTA -ACGGAACAACCTTACACGTCGTCT -ACGGAACAACCTTACACGTGCACT -ACGGAACAACCTTACACGCTGACT -ACGGAACAACCTTACACGCAACCT -ACGGAACAACCTTACACGGCTACT -ACGGAACAACCTTACACGGGATCT -ACGGAACAACCTTACACGAAGGCT -ACGGAACAACCTTACACGTCAACC -ACGGAACAACCTTACACGTGTTCC -ACGGAACAACCTTACACGATTCCC -ACGGAACAACCTTACACGTTCTCG -ACGGAACAACCTTACACGTAGACG -ACGGAACAACCTTACACGGTAACG -ACGGAACAACCTTACACGACTTCG -ACGGAACAACCTTACACGTACGCA -ACGGAACAACCTTACACGCTTGCA -ACGGAACAACCTTACACGCGAACA -ACGGAACAACCTTACACGCAGTCA -ACGGAACAACCTTACACGGATCCA -ACGGAACAACCTTACACGACGACA -ACGGAACAACCTTACACGAGCTCA -ACGGAACAACCTTACACGTCACGT -ACGGAACAACCTTACACGCGTAGT -ACGGAACAACCTTACACGGTCAGT -ACGGAACAACCTTACACGGAAGGT -ACGGAACAACCTTACACGAACCGT -ACGGAACAACCTTACACGTTGTGC -ACGGAACAACCTTACACGCTAAGC -ACGGAACAACCTTACACGACTAGC -ACGGAACAACCTTACACGAGATGC -ACGGAACAACCTTACACGTGAAGG -ACGGAACAACCTTACACGCAATGG -ACGGAACAACCTTACACGATGAGG -ACGGAACAACCTTACACGAATGGG -ACGGAACAACCTTACACGTCCTGA -ACGGAACAACCTTACACGTAGCGA -ACGGAACAACCTTACACGCACAGA -ACGGAACAACCTTACACGGCAAGA -ACGGAACAACCTTACACGGGTTGA -ACGGAACAACCTTACACGTCCGAT -ACGGAACAACCTTACACGTGGCAT -ACGGAACAACCTTACACGCGAGAT -ACGGAACAACCTTACACGTACCAC -ACGGAACAACCTTACACGCAGAAC -ACGGAACAACCTTACACGGTCTAC -ACGGAACAACCTTACACGACGTAC -ACGGAACAACCTTACACGAGTGAC -ACGGAACAACCTTACACGCTGTAG -ACGGAACAACCTTACACGCCTAAG -ACGGAACAACCTTACACGGTTCAG -ACGGAACAACCTTACACGGCATAG -ACGGAACAACCTTACACGGACAAG -ACGGAACAACCTTACACGAAGCAG -ACGGAACAACCTTACACGCGTCAA -ACGGAACAACCTTACACGGCTGAA -ACGGAACAACCTTACACGAGTACG -ACGGAACAACCTTACACGATCCGA -ACGGAACAACCTTACACGATGGGA -ACGGAACAACCTTACACGGTGCAA -ACGGAACAACCTTACACGGAGGAA -ACGGAACAACCTTACACGCAGGTA -ACGGAACAACCTTACACGGACTCT -ACGGAACAACCTTACACGAGTCCT -ACGGAACAACCTTACACGTAAGCC -ACGGAACAACCTTACACGATAGCC -ACGGAACAACCTTACACGTAACCG -ACGGAACAACCTTACACGATGCCA -ACGGAACAACCTGACAGTGGAAAC -ACGGAACAACCTGACAGTAACACC -ACGGAACAACCTGACAGTATCGAG -ACGGAACAACCTGACAGTCTCCTT -ACGGAACAACCTGACAGTCCTGTT -ACGGAACAACCTGACAGTCGGTTT -ACGGAACAACCTGACAGTGTGGTT -ACGGAACAACCTGACAGTGCCTTT -ACGGAACAACCTGACAGTGGTCTT -ACGGAACAACCTGACAGTACGCTT -ACGGAACAACCTGACAGTAGCGTT -ACGGAACAACCTGACAGTTTCGTC -ACGGAACAACCTGACAGTTCTCTC -ACGGAACAACCTGACAGTTGGATC -ACGGAACAACCTGACAGTCACTTC -ACGGAACAACCTGACAGTGTACTC -ACGGAACAACCTGACAGTGATGTC -ACGGAACAACCTGACAGTACAGTC -ACGGAACAACCTGACAGTTTGCTG -ACGGAACAACCTGACAGTTCCATG -ACGGAACAACCTGACAGTTGTGTG -ACGGAACAACCTGACAGTCTAGTG -ACGGAACAACCTGACAGTCATCTG -ACGGAACAACCTGACAGTGAGTTG -ACGGAACAACCTGACAGTAGACTG -ACGGAACAACCTGACAGTTCGGTA -ACGGAACAACCTGACAGTTGCCTA -ACGGAACAACCTGACAGTCCACTA -ACGGAACAACCTGACAGTGGAGTA -ACGGAACAACCTGACAGTTCGTCT -ACGGAACAACCTGACAGTTGCACT -ACGGAACAACCTGACAGTCTGACT -ACGGAACAACCTGACAGTCAACCT -ACGGAACAACCTGACAGTGCTACT -ACGGAACAACCTGACAGTGGATCT -ACGGAACAACCTGACAGTAAGGCT -ACGGAACAACCTGACAGTTCAACC -ACGGAACAACCTGACAGTTGTTCC -ACGGAACAACCTGACAGTATTCCC -ACGGAACAACCTGACAGTTTCTCG -ACGGAACAACCTGACAGTTAGACG -ACGGAACAACCTGACAGTGTAACG -ACGGAACAACCTGACAGTACTTCG -ACGGAACAACCTGACAGTTACGCA -ACGGAACAACCTGACAGTCTTGCA -ACGGAACAACCTGACAGTCGAACA -ACGGAACAACCTGACAGTCAGTCA -ACGGAACAACCTGACAGTGATCCA -ACGGAACAACCTGACAGTACGACA -ACGGAACAACCTGACAGTAGCTCA -ACGGAACAACCTGACAGTTCACGT -ACGGAACAACCTGACAGTCGTAGT -ACGGAACAACCTGACAGTGTCAGT -ACGGAACAACCTGACAGTGAAGGT -ACGGAACAACCTGACAGTAACCGT -ACGGAACAACCTGACAGTTTGTGC -ACGGAACAACCTGACAGTCTAAGC -ACGGAACAACCTGACAGTACTAGC -ACGGAACAACCTGACAGTAGATGC -ACGGAACAACCTGACAGTTGAAGG -ACGGAACAACCTGACAGTCAATGG -ACGGAACAACCTGACAGTATGAGG -ACGGAACAACCTGACAGTAATGGG -ACGGAACAACCTGACAGTTCCTGA -ACGGAACAACCTGACAGTTAGCGA -ACGGAACAACCTGACAGTCACAGA -ACGGAACAACCTGACAGTGCAAGA -ACGGAACAACCTGACAGTGGTTGA -ACGGAACAACCTGACAGTTCCGAT -ACGGAACAACCTGACAGTTGGCAT -ACGGAACAACCTGACAGTCGAGAT -ACGGAACAACCTGACAGTTACCAC -ACGGAACAACCTGACAGTCAGAAC -ACGGAACAACCTGACAGTGTCTAC -ACGGAACAACCTGACAGTACGTAC -ACGGAACAACCTGACAGTAGTGAC -ACGGAACAACCTGACAGTCTGTAG -ACGGAACAACCTGACAGTCCTAAG -ACGGAACAACCTGACAGTGTTCAG -ACGGAACAACCTGACAGTGCATAG -ACGGAACAACCTGACAGTGACAAG -ACGGAACAACCTGACAGTAAGCAG -ACGGAACAACCTGACAGTCGTCAA -ACGGAACAACCTGACAGTGCTGAA -ACGGAACAACCTGACAGTAGTACG -ACGGAACAACCTGACAGTATCCGA -ACGGAACAACCTGACAGTATGGGA -ACGGAACAACCTGACAGTGTGCAA -ACGGAACAACCTGACAGTGAGGAA -ACGGAACAACCTGACAGTCAGGTA -ACGGAACAACCTGACAGTGACTCT -ACGGAACAACCTGACAGTAGTCCT -ACGGAACAACCTGACAGTTAAGCC -ACGGAACAACCTGACAGTATAGCC -ACGGAACAACCTGACAGTTAACCG -ACGGAACAACCTGACAGTATGCCA -ACGGAACAACCTTAGCTGGGAAAC -ACGGAACAACCTTAGCTGAACACC -ACGGAACAACCTTAGCTGATCGAG -ACGGAACAACCTTAGCTGCTCCTT -ACGGAACAACCTTAGCTGCCTGTT -ACGGAACAACCTTAGCTGCGGTTT -ACGGAACAACCTTAGCTGGTGGTT -ACGGAACAACCTTAGCTGGCCTTT -ACGGAACAACCTTAGCTGGGTCTT -ACGGAACAACCTTAGCTGACGCTT -ACGGAACAACCTTAGCTGAGCGTT -ACGGAACAACCTTAGCTGTTCGTC -ACGGAACAACCTTAGCTGTCTCTC -ACGGAACAACCTTAGCTGTGGATC -ACGGAACAACCTTAGCTGCACTTC -ACGGAACAACCTTAGCTGGTACTC -ACGGAACAACCTTAGCTGGATGTC -ACGGAACAACCTTAGCTGACAGTC -ACGGAACAACCTTAGCTGTTGCTG -ACGGAACAACCTTAGCTGTCCATG -ACGGAACAACCTTAGCTGTGTGTG -ACGGAACAACCTTAGCTGCTAGTG -ACGGAACAACCTTAGCTGCATCTG -ACGGAACAACCTTAGCTGGAGTTG -ACGGAACAACCTTAGCTGAGACTG -ACGGAACAACCTTAGCTGTCGGTA -ACGGAACAACCTTAGCTGTGCCTA -ACGGAACAACCTTAGCTGCCACTA -ACGGAACAACCTTAGCTGGGAGTA -ACGGAACAACCTTAGCTGTCGTCT -ACGGAACAACCTTAGCTGTGCACT -ACGGAACAACCTTAGCTGCTGACT -ACGGAACAACCTTAGCTGCAACCT -ACGGAACAACCTTAGCTGGCTACT -ACGGAACAACCTTAGCTGGGATCT -ACGGAACAACCTTAGCTGAAGGCT -ACGGAACAACCTTAGCTGTCAACC -ACGGAACAACCTTAGCTGTGTTCC -ACGGAACAACCTTAGCTGATTCCC -ACGGAACAACCTTAGCTGTTCTCG -ACGGAACAACCTTAGCTGTAGACG -ACGGAACAACCTTAGCTGGTAACG -ACGGAACAACCTTAGCTGACTTCG -ACGGAACAACCTTAGCTGTACGCA -ACGGAACAACCTTAGCTGCTTGCA -ACGGAACAACCTTAGCTGCGAACA -ACGGAACAACCTTAGCTGCAGTCA -ACGGAACAACCTTAGCTGGATCCA -ACGGAACAACCTTAGCTGACGACA -ACGGAACAACCTTAGCTGAGCTCA -ACGGAACAACCTTAGCTGTCACGT -ACGGAACAACCTTAGCTGCGTAGT -ACGGAACAACCTTAGCTGGTCAGT -ACGGAACAACCTTAGCTGGAAGGT -ACGGAACAACCTTAGCTGAACCGT -ACGGAACAACCTTAGCTGTTGTGC -ACGGAACAACCTTAGCTGCTAAGC -ACGGAACAACCTTAGCTGACTAGC -ACGGAACAACCTTAGCTGAGATGC -ACGGAACAACCTTAGCTGTGAAGG -ACGGAACAACCTTAGCTGCAATGG -ACGGAACAACCTTAGCTGATGAGG -ACGGAACAACCTTAGCTGAATGGG -ACGGAACAACCTTAGCTGTCCTGA -ACGGAACAACCTTAGCTGTAGCGA -ACGGAACAACCTTAGCTGCACAGA -ACGGAACAACCTTAGCTGGCAAGA -ACGGAACAACCTTAGCTGGGTTGA -ACGGAACAACCTTAGCTGTCCGAT -ACGGAACAACCTTAGCTGTGGCAT -ACGGAACAACCTTAGCTGCGAGAT -ACGGAACAACCTTAGCTGTACCAC -ACGGAACAACCTTAGCTGCAGAAC -ACGGAACAACCTTAGCTGGTCTAC -ACGGAACAACCTTAGCTGACGTAC -ACGGAACAACCTTAGCTGAGTGAC -ACGGAACAACCTTAGCTGCTGTAG -ACGGAACAACCTTAGCTGCCTAAG -ACGGAACAACCTTAGCTGGTTCAG -ACGGAACAACCTTAGCTGGCATAG -ACGGAACAACCTTAGCTGGACAAG -ACGGAACAACCTTAGCTGAAGCAG -ACGGAACAACCTTAGCTGCGTCAA -ACGGAACAACCTTAGCTGGCTGAA -ACGGAACAACCTTAGCTGAGTACG -ACGGAACAACCTTAGCTGATCCGA -ACGGAACAACCTTAGCTGATGGGA -ACGGAACAACCTTAGCTGGTGCAA -ACGGAACAACCTTAGCTGGAGGAA -ACGGAACAACCTTAGCTGCAGGTA -ACGGAACAACCTTAGCTGGACTCT -ACGGAACAACCTTAGCTGAGTCCT -ACGGAACAACCTTAGCTGTAAGCC -ACGGAACAACCTTAGCTGATAGCC -ACGGAACAACCTTAGCTGTAACCG -ACGGAACAACCTTAGCTGATGCCA -ACGGAACAACCTAAGCCTGGAAAC -ACGGAACAACCTAAGCCTAACACC -ACGGAACAACCTAAGCCTATCGAG -ACGGAACAACCTAAGCCTCTCCTT -ACGGAACAACCTAAGCCTCCTGTT -ACGGAACAACCTAAGCCTCGGTTT -ACGGAACAACCTAAGCCTGTGGTT -ACGGAACAACCTAAGCCTGCCTTT -ACGGAACAACCTAAGCCTGGTCTT -ACGGAACAACCTAAGCCTACGCTT -ACGGAACAACCTAAGCCTAGCGTT -ACGGAACAACCTAAGCCTTTCGTC -ACGGAACAACCTAAGCCTTCTCTC -ACGGAACAACCTAAGCCTTGGATC -ACGGAACAACCTAAGCCTCACTTC -ACGGAACAACCTAAGCCTGTACTC -ACGGAACAACCTAAGCCTGATGTC -ACGGAACAACCTAAGCCTACAGTC -ACGGAACAACCTAAGCCTTTGCTG -ACGGAACAACCTAAGCCTTCCATG -ACGGAACAACCTAAGCCTTGTGTG -ACGGAACAACCTAAGCCTCTAGTG -ACGGAACAACCTAAGCCTCATCTG -ACGGAACAACCTAAGCCTGAGTTG -ACGGAACAACCTAAGCCTAGACTG -ACGGAACAACCTAAGCCTTCGGTA -ACGGAACAACCTAAGCCTTGCCTA -ACGGAACAACCTAAGCCTCCACTA -ACGGAACAACCTAAGCCTGGAGTA -ACGGAACAACCTAAGCCTTCGTCT -ACGGAACAACCTAAGCCTTGCACT -ACGGAACAACCTAAGCCTCTGACT -ACGGAACAACCTAAGCCTCAACCT -ACGGAACAACCTAAGCCTGCTACT -ACGGAACAACCTAAGCCTGGATCT -ACGGAACAACCTAAGCCTAAGGCT -ACGGAACAACCTAAGCCTTCAACC -ACGGAACAACCTAAGCCTTGTTCC -ACGGAACAACCTAAGCCTATTCCC -ACGGAACAACCTAAGCCTTTCTCG -ACGGAACAACCTAAGCCTTAGACG -ACGGAACAACCTAAGCCTGTAACG -ACGGAACAACCTAAGCCTACTTCG -ACGGAACAACCTAAGCCTTACGCA -ACGGAACAACCTAAGCCTCTTGCA -ACGGAACAACCTAAGCCTCGAACA -ACGGAACAACCTAAGCCTCAGTCA -ACGGAACAACCTAAGCCTGATCCA -ACGGAACAACCTAAGCCTACGACA -ACGGAACAACCTAAGCCTAGCTCA -ACGGAACAACCTAAGCCTTCACGT -ACGGAACAACCTAAGCCTCGTAGT -ACGGAACAACCTAAGCCTGTCAGT -ACGGAACAACCTAAGCCTGAAGGT -ACGGAACAACCTAAGCCTAACCGT -ACGGAACAACCTAAGCCTTTGTGC -ACGGAACAACCTAAGCCTCTAAGC -ACGGAACAACCTAAGCCTACTAGC -ACGGAACAACCTAAGCCTAGATGC -ACGGAACAACCTAAGCCTTGAAGG -ACGGAACAACCTAAGCCTCAATGG -ACGGAACAACCTAAGCCTATGAGG -ACGGAACAACCTAAGCCTAATGGG -ACGGAACAACCTAAGCCTTCCTGA -ACGGAACAACCTAAGCCTTAGCGA -ACGGAACAACCTAAGCCTCACAGA -ACGGAACAACCTAAGCCTGCAAGA -ACGGAACAACCTAAGCCTGGTTGA -ACGGAACAACCTAAGCCTTCCGAT -ACGGAACAACCTAAGCCTTGGCAT -ACGGAACAACCTAAGCCTCGAGAT -ACGGAACAACCTAAGCCTTACCAC -ACGGAACAACCTAAGCCTCAGAAC -ACGGAACAACCTAAGCCTGTCTAC -ACGGAACAACCTAAGCCTACGTAC -ACGGAACAACCTAAGCCTAGTGAC -ACGGAACAACCTAAGCCTCTGTAG -ACGGAACAACCTAAGCCTCCTAAG -ACGGAACAACCTAAGCCTGTTCAG -ACGGAACAACCTAAGCCTGCATAG -ACGGAACAACCTAAGCCTGACAAG -ACGGAACAACCTAAGCCTAAGCAG -ACGGAACAACCTAAGCCTCGTCAA -ACGGAACAACCTAAGCCTGCTGAA -ACGGAACAACCTAAGCCTAGTACG -ACGGAACAACCTAAGCCTATCCGA -ACGGAACAACCTAAGCCTATGGGA -ACGGAACAACCTAAGCCTGTGCAA -ACGGAACAACCTAAGCCTGAGGAA -ACGGAACAACCTAAGCCTCAGGTA -ACGGAACAACCTAAGCCTGACTCT -ACGGAACAACCTAAGCCTAGTCCT -ACGGAACAACCTAAGCCTTAAGCC -ACGGAACAACCTAAGCCTATAGCC -ACGGAACAACCTAAGCCTTAACCG -ACGGAACAACCTAAGCCTATGCCA -ACGGAACAACCTCAGGTTGGAAAC -ACGGAACAACCTCAGGTTAACACC -ACGGAACAACCTCAGGTTATCGAG -ACGGAACAACCTCAGGTTCTCCTT -ACGGAACAACCTCAGGTTCCTGTT -ACGGAACAACCTCAGGTTCGGTTT -ACGGAACAACCTCAGGTTGTGGTT -ACGGAACAACCTCAGGTTGCCTTT -ACGGAACAACCTCAGGTTGGTCTT -ACGGAACAACCTCAGGTTACGCTT -ACGGAACAACCTCAGGTTAGCGTT -ACGGAACAACCTCAGGTTTTCGTC -ACGGAACAACCTCAGGTTTCTCTC -ACGGAACAACCTCAGGTTTGGATC -ACGGAACAACCTCAGGTTCACTTC -ACGGAACAACCTCAGGTTGTACTC -ACGGAACAACCTCAGGTTGATGTC -ACGGAACAACCTCAGGTTACAGTC -ACGGAACAACCTCAGGTTTTGCTG -ACGGAACAACCTCAGGTTTCCATG -ACGGAACAACCTCAGGTTTGTGTG -ACGGAACAACCTCAGGTTCTAGTG -ACGGAACAACCTCAGGTTCATCTG -ACGGAACAACCTCAGGTTGAGTTG -ACGGAACAACCTCAGGTTAGACTG -ACGGAACAACCTCAGGTTTCGGTA -ACGGAACAACCTCAGGTTTGCCTA -ACGGAACAACCTCAGGTTCCACTA -ACGGAACAACCTCAGGTTGGAGTA -ACGGAACAACCTCAGGTTTCGTCT -ACGGAACAACCTCAGGTTTGCACT -ACGGAACAACCTCAGGTTCTGACT -ACGGAACAACCTCAGGTTCAACCT -ACGGAACAACCTCAGGTTGCTACT -ACGGAACAACCTCAGGTTGGATCT -ACGGAACAACCTCAGGTTAAGGCT -ACGGAACAACCTCAGGTTTCAACC -ACGGAACAACCTCAGGTTTGTTCC -ACGGAACAACCTCAGGTTATTCCC -ACGGAACAACCTCAGGTTTTCTCG -ACGGAACAACCTCAGGTTTAGACG -ACGGAACAACCTCAGGTTGTAACG -ACGGAACAACCTCAGGTTACTTCG -ACGGAACAACCTCAGGTTTACGCA -ACGGAACAACCTCAGGTTCTTGCA -ACGGAACAACCTCAGGTTCGAACA -ACGGAACAACCTCAGGTTCAGTCA -ACGGAACAACCTCAGGTTGATCCA -ACGGAACAACCTCAGGTTACGACA -ACGGAACAACCTCAGGTTAGCTCA -ACGGAACAACCTCAGGTTTCACGT -ACGGAACAACCTCAGGTTCGTAGT -ACGGAACAACCTCAGGTTGTCAGT -ACGGAACAACCTCAGGTTGAAGGT -ACGGAACAACCTCAGGTTAACCGT -ACGGAACAACCTCAGGTTTTGTGC -ACGGAACAACCTCAGGTTCTAAGC -ACGGAACAACCTCAGGTTACTAGC -ACGGAACAACCTCAGGTTAGATGC -ACGGAACAACCTCAGGTTTGAAGG -ACGGAACAACCTCAGGTTCAATGG -ACGGAACAACCTCAGGTTATGAGG -ACGGAACAACCTCAGGTTAATGGG -ACGGAACAACCTCAGGTTTCCTGA -ACGGAACAACCTCAGGTTTAGCGA -ACGGAACAACCTCAGGTTCACAGA -ACGGAACAACCTCAGGTTGCAAGA -ACGGAACAACCTCAGGTTGGTTGA -ACGGAACAACCTCAGGTTTCCGAT -ACGGAACAACCTCAGGTTTGGCAT -ACGGAACAACCTCAGGTTCGAGAT -ACGGAACAACCTCAGGTTTACCAC -ACGGAACAACCTCAGGTTCAGAAC -ACGGAACAACCTCAGGTTGTCTAC -ACGGAACAACCTCAGGTTACGTAC -ACGGAACAACCTCAGGTTAGTGAC -ACGGAACAACCTCAGGTTCTGTAG -ACGGAACAACCTCAGGTTCCTAAG -ACGGAACAACCTCAGGTTGTTCAG -ACGGAACAACCTCAGGTTGCATAG -ACGGAACAACCTCAGGTTGACAAG -ACGGAACAACCTCAGGTTAAGCAG -ACGGAACAACCTCAGGTTCGTCAA -ACGGAACAACCTCAGGTTGCTGAA -ACGGAACAACCTCAGGTTAGTACG -ACGGAACAACCTCAGGTTATCCGA -ACGGAACAACCTCAGGTTATGGGA -ACGGAACAACCTCAGGTTGTGCAA -ACGGAACAACCTCAGGTTGAGGAA -ACGGAACAACCTCAGGTTCAGGTA -ACGGAACAACCTCAGGTTGACTCT -ACGGAACAACCTCAGGTTAGTCCT -ACGGAACAACCTCAGGTTTAAGCC -ACGGAACAACCTCAGGTTATAGCC -ACGGAACAACCTCAGGTTTAACCG -ACGGAACAACCTCAGGTTATGCCA -ACGGAACAACCTTAGGCAGGAAAC -ACGGAACAACCTTAGGCAAACACC -ACGGAACAACCTTAGGCAATCGAG -ACGGAACAACCTTAGGCACTCCTT -ACGGAACAACCTTAGGCACCTGTT -ACGGAACAACCTTAGGCACGGTTT -ACGGAACAACCTTAGGCAGTGGTT -ACGGAACAACCTTAGGCAGCCTTT -ACGGAACAACCTTAGGCAGGTCTT -ACGGAACAACCTTAGGCAACGCTT -ACGGAACAACCTTAGGCAAGCGTT -ACGGAACAACCTTAGGCATTCGTC -ACGGAACAACCTTAGGCATCTCTC -ACGGAACAACCTTAGGCATGGATC -ACGGAACAACCTTAGGCACACTTC -ACGGAACAACCTTAGGCAGTACTC -ACGGAACAACCTTAGGCAGATGTC -ACGGAACAACCTTAGGCAACAGTC -ACGGAACAACCTTAGGCATTGCTG -ACGGAACAACCTTAGGCATCCATG -ACGGAACAACCTTAGGCATGTGTG -ACGGAACAACCTTAGGCACTAGTG -ACGGAACAACCTTAGGCACATCTG -ACGGAACAACCTTAGGCAGAGTTG -ACGGAACAACCTTAGGCAAGACTG -ACGGAACAACCTTAGGCATCGGTA -ACGGAACAACCTTAGGCATGCCTA -ACGGAACAACCTTAGGCACCACTA -ACGGAACAACCTTAGGCAGGAGTA -ACGGAACAACCTTAGGCATCGTCT -ACGGAACAACCTTAGGCATGCACT -ACGGAACAACCTTAGGCACTGACT -ACGGAACAACCTTAGGCACAACCT -ACGGAACAACCTTAGGCAGCTACT -ACGGAACAACCTTAGGCAGGATCT -ACGGAACAACCTTAGGCAAAGGCT -ACGGAACAACCTTAGGCATCAACC -ACGGAACAACCTTAGGCATGTTCC -ACGGAACAACCTTAGGCAATTCCC -ACGGAACAACCTTAGGCATTCTCG -ACGGAACAACCTTAGGCATAGACG -ACGGAACAACCTTAGGCAGTAACG -ACGGAACAACCTTAGGCAACTTCG -ACGGAACAACCTTAGGCATACGCA -ACGGAACAACCTTAGGCACTTGCA -ACGGAACAACCTTAGGCACGAACA -ACGGAACAACCTTAGGCACAGTCA -ACGGAACAACCTTAGGCAGATCCA -ACGGAACAACCTTAGGCAACGACA -ACGGAACAACCTTAGGCAAGCTCA -ACGGAACAACCTTAGGCATCACGT -ACGGAACAACCTTAGGCACGTAGT -ACGGAACAACCTTAGGCAGTCAGT -ACGGAACAACCTTAGGCAGAAGGT -ACGGAACAACCTTAGGCAAACCGT -ACGGAACAACCTTAGGCATTGTGC -ACGGAACAACCTTAGGCACTAAGC -ACGGAACAACCTTAGGCAACTAGC -ACGGAACAACCTTAGGCAAGATGC -ACGGAACAACCTTAGGCATGAAGG -ACGGAACAACCTTAGGCACAATGG -ACGGAACAACCTTAGGCAATGAGG -ACGGAACAACCTTAGGCAAATGGG -ACGGAACAACCTTAGGCATCCTGA -ACGGAACAACCTTAGGCATAGCGA -ACGGAACAACCTTAGGCACACAGA -ACGGAACAACCTTAGGCAGCAAGA -ACGGAACAACCTTAGGCAGGTTGA -ACGGAACAACCTTAGGCATCCGAT -ACGGAACAACCTTAGGCATGGCAT -ACGGAACAACCTTAGGCACGAGAT -ACGGAACAACCTTAGGCATACCAC -ACGGAACAACCTTAGGCACAGAAC -ACGGAACAACCTTAGGCAGTCTAC -ACGGAACAACCTTAGGCAACGTAC -ACGGAACAACCTTAGGCAAGTGAC -ACGGAACAACCTTAGGCACTGTAG -ACGGAACAACCTTAGGCACCTAAG -ACGGAACAACCTTAGGCAGTTCAG -ACGGAACAACCTTAGGCAGCATAG -ACGGAACAACCTTAGGCAGACAAG -ACGGAACAACCTTAGGCAAAGCAG -ACGGAACAACCTTAGGCACGTCAA -ACGGAACAACCTTAGGCAGCTGAA -ACGGAACAACCTTAGGCAAGTACG -ACGGAACAACCTTAGGCAATCCGA -ACGGAACAACCTTAGGCAATGGGA -ACGGAACAACCTTAGGCAGTGCAA -ACGGAACAACCTTAGGCAGAGGAA -ACGGAACAACCTTAGGCACAGGTA -ACGGAACAACCTTAGGCAGACTCT -ACGGAACAACCTTAGGCAAGTCCT -ACGGAACAACCTTAGGCATAAGCC -ACGGAACAACCTTAGGCAATAGCC -ACGGAACAACCTTAGGCATAACCG -ACGGAACAACCTTAGGCAATGCCA -ACGGAACAACCTAAGGACGGAAAC -ACGGAACAACCTAAGGACAACACC -ACGGAACAACCTAAGGACATCGAG -ACGGAACAACCTAAGGACCTCCTT -ACGGAACAACCTAAGGACCCTGTT -ACGGAACAACCTAAGGACCGGTTT -ACGGAACAACCTAAGGACGTGGTT -ACGGAACAACCTAAGGACGCCTTT -ACGGAACAACCTAAGGACGGTCTT -ACGGAACAACCTAAGGACACGCTT -ACGGAACAACCTAAGGACAGCGTT -ACGGAACAACCTAAGGACTTCGTC -ACGGAACAACCTAAGGACTCTCTC -ACGGAACAACCTAAGGACTGGATC -ACGGAACAACCTAAGGACCACTTC -ACGGAACAACCTAAGGACGTACTC -ACGGAACAACCTAAGGACGATGTC -ACGGAACAACCTAAGGACACAGTC -ACGGAACAACCTAAGGACTTGCTG -ACGGAACAACCTAAGGACTCCATG -ACGGAACAACCTAAGGACTGTGTG -ACGGAACAACCTAAGGACCTAGTG -ACGGAACAACCTAAGGACCATCTG -ACGGAACAACCTAAGGACGAGTTG -ACGGAACAACCTAAGGACAGACTG -ACGGAACAACCTAAGGACTCGGTA -ACGGAACAACCTAAGGACTGCCTA -ACGGAACAACCTAAGGACCCACTA -ACGGAACAACCTAAGGACGGAGTA -ACGGAACAACCTAAGGACTCGTCT -ACGGAACAACCTAAGGACTGCACT -ACGGAACAACCTAAGGACCTGACT -ACGGAACAACCTAAGGACCAACCT -ACGGAACAACCTAAGGACGCTACT -ACGGAACAACCTAAGGACGGATCT -ACGGAACAACCTAAGGACAAGGCT -ACGGAACAACCTAAGGACTCAACC -ACGGAACAACCTAAGGACTGTTCC -ACGGAACAACCTAAGGACATTCCC -ACGGAACAACCTAAGGACTTCTCG -ACGGAACAACCTAAGGACTAGACG -ACGGAACAACCTAAGGACGTAACG -ACGGAACAACCTAAGGACACTTCG -ACGGAACAACCTAAGGACTACGCA -ACGGAACAACCTAAGGACCTTGCA -ACGGAACAACCTAAGGACCGAACA -ACGGAACAACCTAAGGACCAGTCA -ACGGAACAACCTAAGGACGATCCA -ACGGAACAACCTAAGGACACGACA -ACGGAACAACCTAAGGACAGCTCA -ACGGAACAACCTAAGGACTCACGT -ACGGAACAACCTAAGGACCGTAGT -ACGGAACAACCTAAGGACGTCAGT -ACGGAACAACCTAAGGACGAAGGT -ACGGAACAACCTAAGGACAACCGT -ACGGAACAACCTAAGGACTTGTGC -ACGGAACAACCTAAGGACCTAAGC -ACGGAACAACCTAAGGACACTAGC -ACGGAACAACCTAAGGACAGATGC -ACGGAACAACCTAAGGACTGAAGG -ACGGAACAACCTAAGGACCAATGG -ACGGAACAACCTAAGGACATGAGG -ACGGAACAACCTAAGGACAATGGG -ACGGAACAACCTAAGGACTCCTGA -ACGGAACAACCTAAGGACTAGCGA -ACGGAACAACCTAAGGACCACAGA -ACGGAACAACCTAAGGACGCAAGA -ACGGAACAACCTAAGGACGGTTGA -ACGGAACAACCTAAGGACTCCGAT -ACGGAACAACCTAAGGACTGGCAT -ACGGAACAACCTAAGGACCGAGAT -ACGGAACAACCTAAGGACTACCAC -ACGGAACAACCTAAGGACCAGAAC -ACGGAACAACCTAAGGACGTCTAC -ACGGAACAACCTAAGGACACGTAC -ACGGAACAACCTAAGGACAGTGAC -ACGGAACAACCTAAGGACCTGTAG -ACGGAACAACCTAAGGACCCTAAG -ACGGAACAACCTAAGGACGTTCAG -ACGGAACAACCTAAGGACGCATAG -ACGGAACAACCTAAGGACGACAAG -ACGGAACAACCTAAGGACAAGCAG -ACGGAACAACCTAAGGACCGTCAA -ACGGAACAACCTAAGGACGCTGAA -ACGGAACAACCTAAGGACAGTACG -ACGGAACAACCTAAGGACATCCGA -ACGGAACAACCTAAGGACATGGGA -ACGGAACAACCTAAGGACGTGCAA -ACGGAACAACCTAAGGACGAGGAA -ACGGAACAACCTAAGGACCAGGTA -ACGGAACAACCTAAGGACGACTCT -ACGGAACAACCTAAGGACAGTCCT -ACGGAACAACCTAAGGACTAAGCC -ACGGAACAACCTAAGGACATAGCC -ACGGAACAACCTAAGGACTAACCG -ACGGAACAACCTAAGGACATGCCA -ACGGAACAACCTCAGAAGGGAAAC -ACGGAACAACCTCAGAAGAACACC -ACGGAACAACCTCAGAAGATCGAG -ACGGAACAACCTCAGAAGCTCCTT -ACGGAACAACCTCAGAAGCCTGTT -ACGGAACAACCTCAGAAGCGGTTT -ACGGAACAACCTCAGAAGGTGGTT -ACGGAACAACCTCAGAAGGCCTTT -ACGGAACAACCTCAGAAGGGTCTT -ACGGAACAACCTCAGAAGACGCTT -ACGGAACAACCTCAGAAGAGCGTT -ACGGAACAACCTCAGAAGTTCGTC -ACGGAACAACCTCAGAAGTCTCTC -ACGGAACAACCTCAGAAGTGGATC -ACGGAACAACCTCAGAAGCACTTC -ACGGAACAACCTCAGAAGGTACTC -ACGGAACAACCTCAGAAGGATGTC -ACGGAACAACCTCAGAAGACAGTC -ACGGAACAACCTCAGAAGTTGCTG -ACGGAACAACCTCAGAAGTCCATG -ACGGAACAACCTCAGAAGTGTGTG -ACGGAACAACCTCAGAAGCTAGTG -ACGGAACAACCTCAGAAGCATCTG -ACGGAACAACCTCAGAAGGAGTTG -ACGGAACAACCTCAGAAGAGACTG -ACGGAACAACCTCAGAAGTCGGTA -ACGGAACAACCTCAGAAGTGCCTA -ACGGAACAACCTCAGAAGCCACTA -ACGGAACAACCTCAGAAGGGAGTA -ACGGAACAACCTCAGAAGTCGTCT -ACGGAACAACCTCAGAAGTGCACT -ACGGAACAACCTCAGAAGCTGACT -ACGGAACAACCTCAGAAGCAACCT -ACGGAACAACCTCAGAAGGCTACT -ACGGAACAACCTCAGAAGGGATCT -ACGGAACAACCTCAGAAGAAGGCT -ACGGAACAACCTCAGAAGTCAACC -ACGGAACAACCTCAGAAGTGTTCC -ACGGAACAACCTCAGAAGATTCCC -ACGGAACAACCTCAGAAGTTCTCG -ACGGAACAACCTCAGAAGTAGACG -ACGGAACAACCTCAGAAGGTAACG -ACGGAACAACCTCAGAAGACTTCG -ACGGAACAACCTCAGAAGTACGCA -ACGGAACAACCTCAGAAGCTTGCA -ACGGAACAACCTCAGAAGCGAACA -ACGGAACAACCTCAGAAGCAGTCA -ACGGAACAACCTCAGAAGGATCCA -ACGGAACAACCTCAGAAGACGACA -ACGGAACAACCTCAGAAGAGCTCA -ACGGAACAACCTCAGAAGTCACGT -ACGGAACAACCTCAGAAGCGTAGT -ACGGAACAACCTCAGAAGGTCAGT -ACGGAACAACCTCAGAAGGAAGGT -ACGGAACAACCTCAGAAGAACCGT -ACGGAACAACCTCAGAAGTTGTGC -ACGGAACAACCTCAGAAGCTAAGC -ACGGAACAACCTCAGAAGACTAGC -ACGGAACAACCTCAGAAGAGATGC -ACGGAACAACCTCAGAAGTGAAGG -ACGGAACAACCTCAGAAGCAATGG -ACGGAACAACCTCAGAAGATGAGG -ACGGAACAACCTCAGAAGAATGGG -ACGGAACAACCTCAGAAGTCCTGA -ACGGAACAACCTCAGAAGTAGCGA -ACGGAACAACCTCAGAAGCACAGA -ACGGAACAACCTCAGAAGGCAAGA -ACGGAACAACCTCAGAAGGGTTGA -ACGGAACAACCTCAGAAGTCCGAT -ACGGAACAACCTCAGAAGTGGCAT -ACGGAACAACCTCAGAAGCGAGAT -ACGGAACAACCTCAGAAGTACCAC -ACGGAACAACCTCAGAAGCAGAAC -ACGGAACAACCTCAGAAGGTCTAC -ACGGAACAACCTCAGAAGACGTAC -ACGGAACAACCTCAGAAGAGTGAC -ACGGAACAACCTCAGAAGCTGTAG -ACGGAACAACCTCAGAAGCCTAAG -ACGGAACAACCTCAGAAGGTTCAG -ACGGAACAACCTCAGAAGGCATAG -ACGGAACAACCTCAGAAGGACAAG -ACGGAACAACCTCAGAAGAAGCAG -ACGGAACAACCTCAGAAGCGTCAA -ACGGAACAACCTCAGAAGGCTGAA -ACGGAACAACCTCAGAAGAGTACG -ACGGAACAACCTCAGAAGATCCGA -ACGGAACAACCTCAGAAGATGGGA -ACGGAACAACCTCAGAAGGTGCAA -ACGGAACAACCTCAGAAGGAGGAA -ACGGAACAACCTCAGAAGCAGGTA -ACGGAACAACCTCAGAAGGACTCT -ACGGAACAACCTCAGAAGAGTCCT -ACGGAACAACCTCAGAAGTAAGCC -ACGGAACAACCTCAGAAGATAGCC -ACGGAACAACCTCAGAAGTAACCG -ACGGAACAACCTCAGAAGATGCCA -ACGGAACAACCTCAACGTGGAAAC -ACGGAACAACCTCAACGTAACACC -ACGGAACAACCTCAACGTATCGAG -ACGGAACAACCTCAACGTCTCCTT -ACGGAACAACCTCAACGTCCTGTT -ACGGAACAACCTCAACGTCGGTTT -ACGGAACAACCTCAACGTGTGGTT -ACGGAACAACCTCAACGTGCCTTT -ACGGAACAACCTCAACGTGGTCTT -ACGGAACAACCTCAACGTACGCTT -ACGGAACAACCTCAACGTAGCGTT -ACGGAACAACCTCAACGTTTCGTC -ACGGAACAACCTCAACGTTCTCTC -ACGGAACAACCTCAACGTTGGATC -ACGGAACAACCTCAACGTCACTTC -ACGGAACAACCTCAACGTGTACTC -ACGGAACAACCTCAACGTGATGTC -ACGGAACAACCTCAACGTACAGTC -ACGGAACAACCTCAACGTTTGCTG -ACGGAACAACCTCAACGTTCCATG -ACGGAACAACCTCAACGTTGTGTG -ACGGAACAACCTCAACGTCTAGTG -ACGGAACAACCTCAACGTCATCTG -ACGGAACAACCTCAACGTGAGTTG -ACGGAACAACCTCAACGTAGACTG -ACGGAACAACCTCAACGTTCGGTA -ACGGAACAACCTCAACGTTGCCTA -ACGGAACAACCTCAACGTCCACTA -ACGGAACAACCTCAACGTGGAGTA -ACGGAACAACCTCAACGTTCGTCT -ACGGAACAACCTCAACGTTGCACT -ACGGAACAACCTCAACGTCTGACT -ACGGAACAACCTCAACGTCAACCT -ACGGAACAACCTCAACGTGCTACT -ACGGAACAACCTCAACGTGGATCT -ACGGAACAACCTCAACGTAAGGCT -ACGGAACAACCTCAACGTTCAACC -ACGGAACAACCTCAACGTTGTTCC -ACGGAACAACCTCAACGTATTCCC -ACGGAACAACCTCAACGTTTCTCG -ACGGAACAACCTCAACGTTAGACG -ACGGAACAACCTCAACGTGTAACG -ACGGAACAACCTCAACGTACTTCG -ACGGAACAACCTCAACGTTACGCA -ACGGAACAACCTCAACGTCTTGCA -ACGGAACAACCTCAACGTCGAACA -ACGGAACAACCTCAACGTCAGTCA -ACGGAACAACCTCAACGTGATCCA -ACGGAACAACCTCAACGTACGACA -ACGGAACAACCTCAACGTAGCTCA -ACGGAACAACCTCAACGTTCACGT -ACGGAACAACCTCAACGTCGTAGT -ACGGAACAACCTCAACGTGTCAGT -ACGGAACAACCTCAACGTGAAGGT -ACGGAACAACCTCAACGTAACCGT -ACGGAACAACCTCAACGTTTGTGC -ACGGAACAACCTCAACGTCTAAGC -ACGGAACAACCTCAACGTACTAGC -ACGGAACAACCTCAACGTAGATGC -ACGGAACAACCTCAACGTTGAAGG -ACGGAACAACCTCAACGTCAATGG -ACGGAACAACCTCAACGTATGAGG -ACGGAACAACCTCAACGTAATGGG -ACGGAACAACCTCAACGTTCCTGA -ACGGAACAACCTCAACGTTAGCGA -ACGGAACAACCTCAACGTCACAGA -ACGGAACAACCTCAACGTGCAAGA -ACGGAACAACCTCAACGTGGTTGA -ACGGAACAACCTCAACGTTCCGAT -ACGGAACAACCTCAACGTTGGCAT -ACGGAACAACCTCAACGTCGAGAT -ACGGAACAACCTCAACGTTACCAC -ACGGAACAACCTCAACGTCAGAAC -ACGGAACAACCTCAACGTGTCTAC -ACGGAACAACCTCAACGTACGTAC -ACGGAACAACCTCAACGTAGTGAC -ACGGAACAACCTCAACGTCTGTAG -ACGGAACAACCTCAACGTCCTAAG -ACGGAACAACCTCAACGTGTTCAG -ACGGAACAACCTCAACGTGCATAG -ACGGAACAACCTCAACGTGACAAG -ACGGAACAACCTCAACGTAAGCAG -ACGGAACAACCTCAACGTCGTCAA -ACGGAACAACCTCAACGTGCTGAA -ACGGAACAACCTCAACGTAGTACG -ACGGAACAACCTCAACGTATCCGA -ACGGAACAACCTCAACGTATGGGA -ACGGAACAACCTCAACGTGTGCAA -ACGGAACAACCTCAACGTGAGGAA -ACGGAACAACCTCAACGTCAGGTA -ACGGAACAACCTCAACGTGACTCT -ACGGAACAACCTCAACGTAGTCCT -ACGGAACAACCTCAACGTTAAGCC -ACGGAACAACCTCAACGTATAGCC -ACGGAACAACCTCAACGTTAACCG -ACGGAACAACCTCAACGTATGCCA -ACGGAACAACCTGAAGCTGGAAAC -ACGGAACAACCTGAAGCTAACACC -ACGGAACAACCTGAAGCTATCGAG -ACGGAACAACCTGAAGCTCTCCTT -ACGGAACAACCTGAAGCTCCTGTT -ACGGAACAACCTGAAGCTCGGTTT -ACGGAACAACCTGAAGCTGTGGTT -ACGGAACAACCTGAAGCTGCCTTT -ACGGAACAACCTGAAGCTGGTCTT -ACGGAACAACCTGAAGCTACGCTT -ACGGAACAACCTGAAGCTAGCGTT -ACGGAACAACCTGAAGCTTTCGTC -ACGGAACAACCTGAAGCTTCTCTC -ACGGAACAACCTGAAGCTTGGATC -ACGGAACAACCTGAAGCTCACTTC -ACGGAACAACCTGAAGCTGTACTC -ACGGAACAACCTGAAGCTGATGTC -ACGGAACAACCTGAAGCTACAGTC -ACGGAACAACCTGAAGCTTTGCTG -ACGGAACAACCTGAAGCTTCCATG -ACGGAACAACCTGAAGCTTGTGTG -ACGGAACAACCTGAAGCTCTAGTG -ACGGAACAACCTGAAGCTCATCTG -ACGGAACAACCTGAAGCTGAGTTG -ACGGAACAACCTGAAGCTAGACTG -ACGGAACAACCTGAAGCTTCGGTA -ACGGAACAACCTGAAGCTTGCCTA -ACGGAACAACCTGAAGCTCCACTA -ACGGAACAACCTGAAGCTGGAGTA -ACGGAACAACCTGAAGCTTCGTCT -ACGGAACAACCTGAAGCTTGCACT -ACGGAACAACCTGAAGCTCTGACT -ACGGAACAACCTGAAGCTCAACCT -ACGGAACAACCTGAAGCTGCTACT -ACGGAACAACCTGAAGCTGGATCT -ACGGAACAACCTGAAGCTAAGGCT -ACGGAACAACCTGAAGCTTCAACC -ACGGAACAACCTGAAGCTTGTTCC -ACGGAACAACCTGAAGCTATTCCC -ACGGAACAACCTGAAGCTTTCTCG -ACGGAACAACCTGAAGCTTAGACG -ACGGAACAACCTGAAGCTGTAACG -ACGGAACAACCTGAAGCTACTTCG -ACGGAACAACCTGAAGCTTACGCA -ACGGAACAACCTGAAGCTCTTGCA -ACGGAACAACCTGAAGCTCGAACA -ACGGAACAACCTGAAGCTCAGTCA -ACGGAACAACCTGAAGCTGATCCA -ACGGAACAACCTGAAGCTACGACA -ACGGAACAACCTGAAGCTAGCTCA -ACGGAACAACCTGAAGCTTCACGT -ACGGAACAACCTGAAGCTCGTAGT -ACGGAACAACCTGAAGCTGTCAGT -ACGGAACAACCTGAAGCTGAAGGT -ACGGAACAACCTGAAGCTAACCGT -ACGGAACAACCTGAAGCTTTGTGC -ACGGAACAACCTGAAGCTCTAAGC -ACGGAACAACCTGAAGCTACTAGC -ACGGAACAACCTGAAGCTAGATGC -ACGGAACAACCTGAAGCTTGAAGG -ACGGAACAACCTGAAGCTCAATGG -ACGGAACAACCTGAAGCTATGAGG -ACGGAACAACCTGAAGCTAATGGG -ACGGAACAACCTGAAGCTTCCTGA -ACGGAACAACCTGAAGCTTAGCGA -ACGGAACAACCTGAAGCTCACAGA -ACGGAACAACCTGAAGCTGCAAGA -ACGGAACAACCTGAAGCTGGTTGA -ACGGAACAACCTGAAGCTTCCGAT -ACGGAACAACCTGAAGCTTGGCAT -ACGGAACAACCTGAAGCTCGAGAT -ACGGAACAACCTGAAGCTTACCAC -ACGGAACAACCTGAAGCTCAGAAC -ACGGAACAACCTGAAGCTGTCTAC -ACGGAACAACCTGAAGCTACGTAC -ACGGAACAACCTGAAGCTAGTGAC -ACGGAACAACCTGAAGCTCTGTAG -ACGGAACAACCTGAAGCTCCTAAG -ACGGAACAACCTGAAGCTGTTCAG -ACGGAACAACCTGAAGCTGCATAG -ACGGAACAACCTGAAGCTGACAAG -ACGGAACAACCTGAAGCTAAGCAG -ACGGAACAACCTGAAGCTCGTCAA -ACGGAACAACCTGAAGCTGCTGAA -ACGGAACAACCTGAAGCTAGTACG -ACGGAACAACCTGAAGCTATCCGA -ACGGAACAACCTGAAGCTATGGGA -ACGGAACAACCTGAAGCTGTGCAA -ACGGAACAACCTGAAGCTGAGGAA -ACGGAACAACCTGAAGCTCAGGTA -ACGGAACAACCTGAAGCTGACTCT -ACGGAACAACCTGAAGCTAGTCCT -ACGGAACAACCTGAAGCTTAAGCC -ACGGAACAACCTGAAGCTATAGCC -ACGGAACAACCTGAAGCTTAACCG -ACGGAACAACCTGAAGCTATGCCA -ACGGAACAACCTACGAGTGGAAAC -ACGGAACAACCTACGAGTAACACC -ACGGAACAACCTACGAGTATCGAG -ACGGAACAACCTACGAGTCTCCTT -ACGGAACAACCTACGAGTCCTGTT -ACGGAACAACCTACGAGTCGGTTT -ACGGAACAACCTACGAGTGTGGTT -ACGGAACAACCTACGAGTGCCTTT -ACGGAACAACCTACGAGTGGTCTT -ACGGAACAACCTACGAGTACGCTT -ACGGAACAACCTACGAGTAGCGTT -ACGGAACAACCTACGAGTTTCGTC -ACGGAACAACCTACGAGTTCTCTC -ACGGAACAACCTACGAGTTGGATC -ACGGAACAACCTACGAGTCACTTC -ACGGAACAACCTACGAGTGTACTC -ACGGAACAACCTACGAGTGATGTC -ACGGAACAACCTACGAGTACAGTC -ACGGAACAACCTACGAGTTTGCTG -ACGGAACAACCTACGAGTTCCATG -ACGGAACAACCTACGAGTTGTGTG -ACGGAACAACCTACGAGTCTAGTG -ACGGAACAACCTACGAGTCATCTG -ACGGAACAACCTACGAGTGAGTTG -ACGGAACAACCTACGAGTAGACTG -ACGGAACAACCTACGAGTTCGGTA -ACGGAACAACCTACGAGTTGCCTA -ACGGAACAACCTACGAGTCCACTA -ACGGAACAACCTACGAGTGGAGTA -ACGGAACAACCTACGAGTTCGTCT -ACGGAACAACCTACGAGTTGCACT -ACGGAACAACCTACGAGTCTGACT -ACGGAACAACCTACGAGTCAACCT -ACGGAACAACCTACGAGTGCTACT -ACGGAACAACCTACGAGTGGATCT -ACGGAACAACCTACGAGTAAGGCT -ACGGAACAACCTACGAGTTCAACC -ACGGAACAACCTACGAGTTGTTCC -ACGGAACAACCTACGAGTATTCCC -ACGGAACAACCTACGAGTTTCTCG -ACGGAACAACCTACGAGTTAGACG -ACGGAACAACCTACGAGTGTAACG -ACGGAACAACCTACGAGTACTTCG -ACGGAACAACCTACGAGTTACGCA -ACGGAACAACCTACGAGTCTTGCA -ACGGAACAACCTACGAGTCGAACA -ACGGAACAACCTACGAGTCAGTCA -ACGGAACAACCTACGAGTGATCCA -ACGGAACAACCTACGAGTACGACA -ACGGAACAACCTACGAGTAGCTCA -ACGGAACAACCTACGAGTTCACGT -ACGGAACAACCTACGAGTCGTAGT -ACGGAACAACCTACGAGTGTCAGT -ACGGAACAACCTACGAGTGAAGGT -ACGGAACAACCTACGAGTAACCGT -ACGGAACAACCTACGAGTTTGTGC -ACGGAACAACCTACGAGTCTAAGC -ACGGAACAACCTACGAGTACTAGC -ACGGAACAACCTACGAGTAGATGC -ACGGAACAACCTACGAGTTGAAGG -ACGGAACAACCTACGAGTCAATGG -ACGGAACAACCTACGAGTATGAGG -ACGGAACAACCTACGAGTAATGGG -ACGGAACAACCTACGAGTTCCTGA -ACGGAACAACCTACGAGTTAGCGA -ACGGAACAACCTACGAGTCACAGA -ACGGAACAACCTACGAGTGCAAGA -ACGGAACAACCTACGAGTGGTTGA -ACGGAACAACCTACGAGTTCCGAT -ACGGAACAACCTACGAGTTGGCAT -ACGGAACAACCTACGAGTCGAGAT -ACGGAACAACCTACGAGTTACCAC -ACGGAACAACCTACGAGTCAGAAC -ACGGAACAACCTACGAGTGTCTAC -ACGGAACAACCTACGAGTACGTAC -ACGGAACAACCTACGAGTAGTGAC -ACGGAACAACCTACGAGTCTGTAG -ACGGAACAACCTACGAGTCCTAAG -ACGGAACAACCTACGAGTGTTCAG -ACGGAACAACCTACGAGTGCATAG -ACGGAACAACCTACGAGTGACAAG -ACGGAACAACCTACGAGTAAGCAG -ACGGAACAACCTACGAGTCGTCAA -ACGGAACAACCTACGAGTGCTGAA -ACGGAACAACCTACGAGTAGTACG -ACGGAACAACCTACGAGTATCCGA -ACGGAACAACCTACGAGTATGGGA -ACGGAACAACCTACGAGTGTGCAA -ACGGAACAACCTACGAGTGAGGAA -ACGGAACAACCTACGAGTCAGGTA -ACGGAACAACCTACGAGTGACTCT -ACGGAACAACCTACGAGTAGTCCT -ACGGAACAACCTACGAGTTAAGCC -ACGGAACAACCTACGAGTATAGCC -ACGGAACAACCTACGAGTTAACCG -ACGGAACAACCTACGAGTATGCCA -ACGGAACAACCTCGAATCGGAAAC -ACGGAACAACCTCGAATCAACACC -ACGGAACAACCTCGAATCATCGAG -ACGGAACAACCTCGAATCCTCCTT -ACGGAACAACCTCGAATCCCTGTT -ACGGAACAACCTCGAATCCGGTTT -ACGGAACAACCTCGAATCGTGGTT -ACGGAACAACCTCGAATCGCCTTT -ACGGAACAACCTCGAATCGGTCTT -ACGGAACAACCTCGAATCACGCTT -ACGGAACAACCTCGAATCAGCGTT -ACGGAACAACCTCGAATCTTCGTC -ACGGAACAACCTCGAATCTCTCTC -ACGGAACAACCTCGAATCTGGATC -ACGGAACAACCTCGAATCCACTTC -ACGGAACAACCTCGAATCGTACTC -ACGGAACAACCTCGAATCGATGTC -ACGGAACAACCTCGAATCACAGTC -ACGGAACAACCTCGAATCTTGCTG -ACGGAACAACCTCGAATCTCCATG -ACGGAACAACCTCGAATCTGTGTG -ACGGAACAACCTCGAATCCTAGTG -ACGGAACAACCTCGAATCCATCTG -ACGGAACAACCTCGAATCGAGTTG -ACGGAACAACCTCGAATCAGACTG -ACGGAACAACCTCGAATCTCGGTA -ACGGAACAACCTCGAATCTGCCTA -ACGGAACAACCTCGAATCCCACTA -ACGGAACAACCTCGAATCGGAGTA -ACGGAACAACCTCGAATCTCGTCT -ACGGAACAACCTCGAATCTGCACT -ACGGAACAACCTCGAATCCTGACT -ACGGAACAACCTCGAATCCAACCT -ACGGAACAACCTCGAATCGCTACT -ACGGAACAACCTCGAATCGGATCT -ACGGAACAACCTCGAATCAAGGCT -ACGGAACAACCTCGAATCTCAACC -ACGGAACAACCTCGAATCTGTTCC -ACGGAACAACCTCGAATCATTCCC -ACGGAACAACCTCGAATCTTCTCG -ACGGAACAACCTCGAATCTAGACG -ACGGAACAACCTCGAATCGTAACG -ACGGAACAACCTCGAATCACTTCG -ACGGAACAACCTCGAATCTACGCA -ACGGAACAACCTCGAATCCTTGCA -ACGGAACAACCTCGAATCCGAACA -ACGGAACAACCTCGAATCCAGTCA -ACGGAACAACCTCGAATCGATCCA -ACGGAACAACCTCGAATCACGACA -ACGGAACAACCTCGAATCAGCTCA -ACGGAACAACCTCGAATCTCACGT -ACGGAACAACCTCGAATCCGTAGT -ACGGAACAACCTCGAATCGTCAGT -ACGGAACAACCTCGAATCGAAGGT -ACGGAACAACCTCGAATCAACCGT -ACGGAACAACCTCGAATCTTGTGC -ACGGAACAACCTCGAATCCTAAGC -ACGGAACAACCTCGAATCACTAGC -ACGGAACAACCTCGAATCAGATGC -ACGGAACAACCTCGAATCTGAAGG -ACGGAACAACCTCGAATCCAATGG -ACGGAACAACCTCGAATCATGAGG -ACGGAACAACCTCGAATCAATGGG -ACGGAACAACCTCGAATCTCCTGA -ACGGAACAACCTCGAATCTAGCGA -ACGGAACAACCTCGAATCCACAGA -ACGGAACAACCTCGAATCGCAAGA -ACGGAACAACCTCGAATCGGTTGA -ACGGAACAACCTCGAATCTCCGAT -ACGGAACAACCTCGAATCTGGCAT -ACGGAACAACCTCGAATCCGAGAT -ACGGAACAACCTCGAATCTACCAC -ACGGAACAACCTCGAATCCAGAAC -ACGGAACAACCTCGAATCGTCTAC -ACGGAACAACCTCGAATCACGTAC -ACGGAACAACCTCGAATCAGTGAC -ACGGAACAACCTCGAATCCTGTAG -ACGGAACAACCTCGAATCCCTAAG -ACGGAACAACCTCGAATCGTTCAG -ACGGAACAACCTCGAATCGCATAG -ACGGAACAACCTCGAATCGACAAG -ACGGAACAACCTCGAATCAAGCAG -ACGGAACAACCTCGAATCCGTCAA -ACGGAACAACCTCGAATCGCTGAA -ACGGAACAACCTCGAATCAGTACG -ACGGAACAACCTCGAATCATCCGA -ACGGAACAACCTCGAATCATGGGA -ACGGAACAACCTCGAATCGTGCAA -ACGGAACAACCTCGAATCGAGGAA -ACGGAACAACCTCGAATCCAGGTA -ACGGAACAACCTCGAATCGACTCT -ACGGAACAACCTCGAATCAGTCCT -ACGGAACAACCTCGAATCTAAGCC -ACGGAACAACCTCGAATCATAGCC -ACGGAACAACCTCGAATCTAACCG -ACGGAACAACCTCGAATCATGCCA -ACGGAACAACCTGGAATGGGAAAC -ACGGAACAACCTGGAATGAACACC -ACGGAACAACCTGGAATGATCGAG -ACGGAACAACCTGGAATGCTCCTT -ACGGAACAACCTGGAATGCCTGTT -ACGGAACAACCTGGAATGCGGTTT -ACGGAACAACCTGGAATGGTGGTT -ACGGAACAACCTGGAATGGCCTTT -ACGGAACAACCTGGAATGGGTCTT -ACGGAACAACCTGGAATGACGCTT -ACGGAACAACCTGGAATGAGCGTT -ACGGAACAACCTGGAATGTTCGTC -ACGGAACAACCTGGAATGTCTCTC -ACGGAACAACCTGGAATGTGGATC -ACGGAACAACCTGGAATGCACTTC -ACGGAACAACCTGGAATGGTACTC -ACGGAACAACCTGGAATGGATGTC -ACGGAACAACCTGGAATGACAGTC -ACGGAACAACCTGGAATGTTGCTG -ACGGAACAACCTGGAATGTCCATG -ACGGAACAACCTGGAATGTGTGTG -ACGGAACAACCTGGAATGCTAGTG -ACGGAACAACCTGGAATGCATCTG -ACGGAACAACCTGGAATGGAGTTG -ACGGAACAACCTGGAATGAGACTG -ACGGAACAACCTGGAATGTCGGTA -ACGGAACAACCTGGAATGTGCCTA -ACGGAACAACCTGGAATGCCACTA -ACGGAACAACCTGGAATGGGAGTA -ACGGAACAACCTGGAATGTCGTCT -ACGGAACAACCTGGAATGTGCACT -ACGGAACAACCTGGAATGCTGACT -ACGGAACAACCTGGAATGCAACCT -ACGGAACAACCTGGAATGGCTACT -ACGGAACAACCTGGAATGGGATCT -ACGGAACAACCTGGAATGAAGGCT -ACGGAACAACCTGGAATGTCAACC -ACGGAACAACCTGGAATGTGTTCC -ACGGAACAACCTGGAATGATTCCC -ACGGAACAACCTGGAATGTTCTCG -ACGGAACAACCTGGAATGTAGACG -ACGGAACAACCTGGAATGGTAACG -ACGGAACAACCTGGAATGACTTCG -ACGGAACAACCTGGAATGTACGCA -ACGGAACAACCTGGAATGCTTGCA -ACGGAACAACCTGGAATGCGAACA -ACGGAACAACCTGGAATGCAGTCA -ACGGAACAACCTGGAATGGATCCA -ACGGAACAACCTGGAATGACGACA -ACGGAACAACCTGGAATGAGCTCA -ACGGAACAACCTGGAATGTCACGT -ACGGAACAACCTGGAATGCGTAGT -ACGGAACAACCTGGAATGGTCAGT -ACGGAACAACCTGGAATGGAAGGT -ACGGAACAACCTGGAATGAACCGT -ACGGAACAACCTGGAATGTTGTGC -ACGGAACAACCTGGAATGCTAAGC -ACGGAACAACCTGGAATGACTAGC -ACGGAACAACCTGGAATGAGATGC -ACGGAACAACCTGGAATGTGAAGG -ACGGAACAACCTGGAATGCAATGG -ACGGAACAACCTGGAATGATGAGG -ACGGAACAACCTGGAATGAATGGG -ACGGAACAACCTGGAATGTCCTGA -ACGGAACAACCTGGAATGTAGCGA -ACGGAACAACCTGGAATGCACAGA -ACGGAACAACCTGGAATGGCAAGA -ACGGAACAACCTGGAATGGGTTGA -ACGGAACAACCTGGAATGTCCGAT -ACGGAACAACCTGGAATGTGGCAT -ACGGAACAACCTGGAATGCGAGAT -ACGGAACAACCTGGAATGTACCAC -ACGGAACAACCTGGAATGCAGAAC -ACGGAACAACCTGGAATGGTCTAC -ACGGAACAACCTGGAATGACGTAC -ACGGAACAACCTGGAATGAGTGAC -ACGGAACAACCTGGAATGCTGTAG -ACGGAACAACCTGGAATGCCTAAG -ACGGAACAACCTGGAATGGTTCAG -ACGGAACAACCTGGAATGGCATAG -ACGGAACAACCTGGAATGGACAAG -ACGGAACAACCTGGAATGAAGCAG -ACGGAACAACCTGGAATGCGTCAA -ACGGAACAACCTGGAATGGCTGAA -ACGGAACAACCTGGAATGAGTACG -ACGGAACAACCTGGAATGATCCGA -ACGGAACAACCTGGAATGATGGGA -ACGGAACAACCTGGAATGGTGCAA -ACGGAACAACCTGGAATGGAGGAA -ACGGAACAACCTGGAATGCAGGTA -ACGGAACAACCTGGAATGGACTCT -ACGGAACAACCTGGAATGAGTCCT -ACGGAACAACCTGGAATGTAAGCC -ACGGAACAACCTGGAATGATAGCC -ACGGAACAACCTGGAATGTAACCG -ACGGAACAACCTGGAATGATGCCA -ACGGAACAACCTCAAGTGGGAAAC -ACGGAACAACCTCAAGTGAACACC -ACGGAACAACCTCAAGTGATCGAG -ACGGAACAACCTCAAGTGCTCCTT -ACGGAACAACCTCAAGTGCCTGTT -ACGGAACAACCTCAAGTGCGGTTT -ACGGAACAACCTCAAGTGGTGGTT -ACGGAACAACCTCAAGTGGCCTTT -ACGGAACAACCTCAAGTGGGTCTT -ACGGAACAACCTCAAGTGACGCTT -ACGGAACAACCTCAAGTGAGCGTT -ACGGAACAACCTCAAGTGTTCGTC -ACGGAACAACCTCAAGTGTCTCTC -ACGGAACAACCTCAAGTGTGGATC -ACGGAACAACCTCAAGTGCACTTC -ACGGAACAACCTCAAGTGGTACTC -ACGGAACAACCTCAAGTGGATGTC -ACGGAACAACCTCAAGTGACAGTC -ACGGAACAACCTCAAGTGTTGCTG -ACGGAACAACCTCAAGTGTCCATG -ACGGAACAACCTCAAGTGTGTGTG -ACGGAACAACCTCAAGTGCTAGTG -ACGGAACAACCTCAAGTGCATCTG -ACGGAACAACCTCAAGTGGAGTTG -ACGGAACAACCTCAAGTGAGACTG -ACGGAACAACCTCAAGTGTCGGTA -ACGGAACAACCTCAAGTGTGCCTA -ACGGAACAACCTCAAGTGCCACTA -ACGGAACAACCTCAAGTGGGAGTA -ACGGAACAACCTCAAGTGTCGTCT -ACGGAACAACCTCAAGTGTGCACT -ACGGAACAACCTCAAGTGCTGACT -ACGGAACAACCTCAAGTGCAACCT -ACGGAACAACCTCAAGTGGCTACT -ACGGAACAACCTCAAGTGGGATCT -ACGGAACAACCTCAAGTGAAGGCT -ACGGAACAACCTCAAGTGTCAACC -ACGGAACAACCTCAAGTGTGTTCC -ACGGAACAACCTCAAGTGATTCCC -ACGGAACAACCTCAAGTGTTCTCG -ACGGAACAACCTCAAGTGTAGACG -ACGGAACAACCTCAAGTGGTAACG -ACGGAACAACCTCAAGTGACTTCG -ACGGAACAACCTCAAGTGTACGCA -ACGGAACAACCTCAAGTGCTTGCA -ACGGAACAACCTCAAGTGCGAACA -ACGGAACAACCTCAAGTGCAGTCA -ACGGAACAACCTCAAGTGGATCCA -ACGGAACAACCTCAAGTGACGACA -ACGGAACAACCTCAAGTGAGCTCA -ACGGAACAACCTCAAGTGTCACGT -ACGGAACAACCTCAAGTGCGTAGT -ACGGAACAACCTCAAGTGGTCAGT -ACGGAACAACCTCAAGTGGAAGGT -ACGGAACAACCTCAAGTGAACCGT -ACGGAACAACCTCAAGTGTTGTGC -ACGGAACAACCTCAAGTGCTAAGC -ACGGAACAACCTCAAGTGACTAGC -ACGGAACAACCTCAAGTGAGATGC -ACGGAACAACCTCAAGTGTGAAGG -ACGGAACAACCTCAAGTGCAATGG -ACGGAACAACCTCAAGTGATGAGG -ACGGAACAACCTCAAGTGAATGGG -ACGGAACAACCTCAAGTGTCCTGA -ACGGAACAACCTCAAGTGTAGCGA -ACGGAACAACCTCAAGTGCACAGA -ACGGAACAACCTCAAGTGGCAAGA -ACGGAACAACCTCAAGTGGGTTGA -ACGGAACAACCTCAAGTGTCCGAT -ACGGAACAACCTCAAGTGTGGCAT -ACGGAACAACCTCAAGTGCGAGAT -ACGGAACAACCTCAAGTGTACCAC -ACGGAACAACCTCAAGTGCAGAAC -ACGGAACAACCTCAAGTGGTCTAC -ACGGAACAACCTCAAGTGACGTAC -ACGGAACAACCTCAAGTGAGTGAC -ACGGAACAACCTCAAGTGCTGTAG -ACGGAACAACCTCAAGTGCCTAAG -ACGGAACAACCTCAAGTGGTTCAG -ACGGAACAACCTCAAGTGGCATAG -ACGGAACAACCTCAAGTGGACAAG -ACGGAACAACCTCAAGTGAAGCAG -ACGGAACAACCTCAAGTGCGTCAA -ACGGAACAACCTCAAGTGGCTGAA -ACGGAACAACCTCAAGTGAGTACG -ACGGAACAACCTCAAGTGATCCGA -ACGGAACAACCTCAAGTGATGGGA -ACGGAACAACCTCAAGTGGTGCAA -ACGGAACAACCTCAAGTGGAGGAA -ACGGAACAACCTCAAGTGCAGGTA -ACGGAACAACCTCAAGTGGACTCT -ACGGAACAACCTCAAGTGAGTCCT -ACGGAACAACCTCAAGTGTAAGCC -ACGGAACAACCTCAAGTGATAGCC -ACGGAACAACCTCAAGTGTAACCG -ACGGAACAACCTCAAGTGATGCCA -ACGGAACAACCTGAAGAGGGAAAC -ACGGAACAACCTGAAGAGAACACC -ACGGAACAACCTGAAGAGATCGAG -ACGGAACAACCTGAAGAGCTCCTT -ACGGAACAACCTGAAGAGCCTGTT -ACGGAACAACCTGAAGAGCGGTTT -ACGGAACAACCTGAAGAGGTGGTT -ACGGAACAACCTGAAGAGGCCTTT -ACGGAACAACCTGAAGAGGGTCTT -ACGGAACAACCTGAAGAGACGCTT -ACGGAACAACCTGAAGAGAGCGTT -ACGGAACAACCTGAAGAGTTCGTC -ACGGAACAACCTGAAGAGTCTCTC -ACGGAACAACCTGAAGAGTGGATC -ACGGAACAACCTGAAGAGCACTTC -ACGGAACAACCTGAAGAGGTACTC -ACGGAACAACCTGAAGAGGATGTC -ACGGAACAACCTGAAGAGACAGTC -ACGGAACAACCTGAAGAGTTGCTG -ACGGAACAACCTGAAGAGTCCATG -ACGGAACAACCTGAAGAGTGTGTG -ACGGAACAACCTGAAGAGCTAGTG -ACGGAACAACCTGAAGAGCATCTG -ACGGAACAACCTGAAGAGGAGTTG -ACGGAACAACCTGAAGAGAGACTG -ACGGAACAACCTGAAGAGTCGGTA -ACGGAACAACCTGAAGAGTGCCTA -ACGGAACAACCTGAAGAGCCACTA -ACGGAACAACCTGAAGAGGGAGTA -ACGGAACAACCTGAAGAGTCGTCT -ACGGAACAACCTGAAGAGTGCACT -ACGGAACAACCTGAAGAGCTGACT -ACGGAACAACCTGAAGAGCAACCT -ACGGAACAACCTGAAGAGGCTACT -ACGGAACAACCTGAAGAGGGATCT -ACGGAACAACCTGAAGAGAAGGCT -ACGGAACAACCTGAAGAGTCAACC -ACGGAACAACCTGAAGAGTGTTCC -ACGGAACAACCTGAAGAGATTCCC -ACGGAACAACCTGAAGAGTTCTCG -ACGGAACAACCTGAAGAGTAGACG -ACGGAACAACCTGAAGAGGTAACG -ACGGAACAACCTGAAGAGACTTCG -ACGGAACAACCTGAAGAGTACGCA -ACGGAACAACCTGAAGAGCTTGCA -ACGGAACAACCTGAAGAGCGAACA -ACGGAACAACCTGAAGAGCAGTCA -ACGGAACAACCTGAAGAGGATCCA -ACGGAACAACCTGAAGAGACGACA -ACGGAACAACCTGAAGAGAGCTCA -ACGGAACAACCTGAAGAGTCACGT -ACGGAACAACCTGAAGAGCGTAGT -ACGGAACAACCTGAAGAGGTCAGT -ACGGAACAACCTGAAGAGGAAGGT -ACGGAACAACCTGAAGAGAACCGT -ACGGAACAACCTGAAGAGTTGTGC -ACGGAACAACCTGAAGAGCTAAGC -ACGGAACAACCTGAAGAGACTAGC -ACGGAACAACCTGAAGAGAGATGC -ACGGAACAACCTGAAGAGTGAAGG -ACGGAACAACCTGAAGAGCAATGG -ACGGAACAACCTGAAGAGATGAGG -ACGGAACAACCTGAAGAGAATGGG -ACGGAACAACCTGAAGAGTCCTGA -ACGGAACAACCTGAAGAGTAGCGA -ACGGAACAACCTGAAGAGCACAGA -ACGGAACAACCTGAAGAGGCAAGA -ACGGAACAACCTGAAGAGGGTTGA -ACGGAACAACCTGAAGAGTCCGAT -ACGGAACAACCTGAAGAGTGGCAT -ACGGAACAACCTGAAGAGCGAGAT -ACGGAACAACCTGAAGAGTACCAC -ACGGAACAACCTGAAGAGCAGAAC -ACGGAACAACCTGAAGAGGTCTAC -ACGGAACAACCTGAAGAGACGTAC -ACGGAACAACCTGAAGAGAGTGAC -ACGGAACAACCTGAAGAGCTGTAG -ACGGAACAACCTGAAGAGCCTAAG -ACGGAACAACCTGAAGAGGTTCAG -ACGGAACAACCTGAAGAGGCATAG -ACGGAACAACCTGAAGAGGACAAG -ACGGAACAACCTGAAGAGAAGCAG -ACGGAACAACCTGAAGAGCGTCAA -ACGGAACAACCTGAAGAGGCTGAA -ACGGAACAACCTGAAGAGAGTACG -ACGGAACAACCTGAAGAGATCCGA -ACGGAACAACCTGAAGAGATGGGA -ACGGAACAACCTGAAGAGGTGCAA -ACGGAACAACCTGAAGAGGAGGAA -ACGGAACAACCTGAAGAGCAGGTA -ACGGAACAACCTGAAGAGGACTCT -ACGGAACAACCTGAAGAGAGTCCT -ACGGAACAACCTGAAGAGTAAGCC -ACGGAACAACCTGAAGAGATAGCC -ACGGAACAACCTGAAGAGTAACCG -ACGGAACAACCTGAAGAGATGCCA -ACGGAACAACCTGTACAGGGAAAC -ACGGAACAACCTGTACAGAACACC -ACGGAACAACCTGTACAGATCGAG -ACGGAACAACCTGTACAGCTCCTT -ACGGAACAACCTGTACAGCCTGTT -ACGGAACAACCTGTACAGCGGTTT -ACGGAACAACCTGTACAGGTGGTT -ACGGAACAACCTGTACAGGCCTTT -ACGGAACAACCTGTACAGGGTCTT -ACGGAACAACCTGTACAGACGCTT -ACGGAACAACCTGTACAGAGCGTT -ACGGAACAACCTGTACAGTTCGTC -ACGGAACAACCTGTACAGTCTCTC -ACGGAACAACCTGTACAGTGGATC -ACGGAACAACCTGTACAGCACTTC -ACGGAACAACCTGTACAGGTACTC -ACGGAACAACCTGTACAGGATGTC -ACGGAACAACCTGTACAGACAGTC -ACGGAACAACCTGTACAGTTGCTG -ACGGAACAACCTGTACAGTCCATG -ACGGAACAACCTGTACAGTGTGTG -ACGGAACAACCTGTACAGCTAGTG -ACGGAACAACCTGTACAGCATCTG -ACGGAACAACCTGTACAGGAGTTG -ACGGAACAACCTGTACAGAGACTG -ACGGAACAACCTGTACAGTCGGTA -ACGGAACAACCTGTACAGTGCCTA -ACGGAACAACCTGTACAGCCACTA -ACGGAACAACCTGTACAGGGAGTA -ACGGAACAACCTGTACAGTCGTCT -ACGGAACAACCTGTACAGTGCACT -ACGGAACAACCTGTACAGCTGACT -ACGGAACAACCTGTACAGCAACCT -ACGGAACAACCTGTACAGGCTACT -ACGGAACAACCTGTACAGGGATCT -ACGGAACAACCTGTACAGAAGGCT -ACGGAACAACCTGTACAGTCAACC -ACGGAACAACCTGTACAGTGTTCC -ACGGAACAACCTGTACAGATTCCC -ACGGAACAACCTGTACAGTTCTCG -ACGGAACAACCTGTACAGTAGACG -ACGGAACAACCTGTACAGGTAACG -ACGGAACAACCTGTACAGACTTCG -ACGGAACAACCTGTACAGTACGCA -ACGGAACAACCTGTACAGCTTGCA -ACGGAACAACCTGTACAGCGAACA -ACGGAACAACCTGTACAGCAGTCA -ACGGAACAACCTGTACAGGATCCA -ACGGAACAACCTGTACAGACGACA -ACGGAACAACCTGTACAGAGCTCA -ACGGAACAACCTGTACAGTCACGT -ACGGAACAACCTGTACAGCGTAGT -ACGGAACAACCTGTACAGGTCAGT -ACGGAACAACCTGTACAGGAAGGT -ACGGAACAACCTGTACAGAACCGT -ACGGAACAACCTGTACAGTTGTGC -ACGGAACAACCTGTACAGCTAAGC -ACGGAACAACCTGTACAGACTAGC -ACGGAACAACCTGTACAGAGATGC -ACGGAACAACCTGTACAGTGAAGG -ACGGAACAACCTGTACAGCAATGG -ACGGAACAACCTGTACAGATGAGG -ACGGAACAACCTGTACAGAATGGG -ACGGAACAACCTGTACAGTCCTGA -ACGGAACAACCTGTACAGTAGCGA -ACGGAACAACCTGTACAGCACAGA -ACGGAACAACCTGTACAGGCAAGA -ACGGAACAACCTGTACAGGGTTGA -ACGGAACAACCTGTACAGTCCGAT -ACGGAACAACCTGTACAGTGGCAT -ACGGAACAACCTGTACAGCGAGAT -ACGGAACAACCTGTACAGTACCAC -ACGGAACAACCTGTACAGCAGAAC -ACGGAACAACCTGTACAGGTCTAC -ACGGAACAACCTGTACAGACGTAC -ACGGAACAACCTGTACAGAGTGAC -ACGGAACAACCTGTACAGCTGTAG -ACGGAACAACCTGTACAGCCTAAG -ACGGAACAACCTGTACAGGTTCAG -ACGGAACAACCTGTACAGGCATAG -ACGGAACAACCTGTACAGGACAAG -ACGGAACAACCTGTACAGAAGCAG -ACGGAACAACCTGTACAGCGTCAA -ACGGAACAACCTGTACAGGCTGAA -ACGGAACAACCTGTACAGAGTACG -ACGGAACAACCTGTACAGATCCGA -ACGGAACAACCTGTACAGATGGGA -ACGGAACAACCTGTACAGGTGCAA -ACGGAACAACCTGTACAGGAGGAA -ACGGAACAACCTGTACAGCAGGTA -ACGGAACAACCTGTACAGGACTCT -ACGGAACAACCTGTACAGAGTCCT -ACGGAACAACCTGTACAGTAAGCC -ACGGAACAACCTGTACAGATAGCC -ACGGAACAACCTGTACAGTAACCG -ACGGAACAACCTGTACAGATGCCA -ACGGAACAACCTTCTGACGGAAAC -ACGGAACAACCTTCTGACAACACC -ACGGAACAACCTTCTGACATCGAG -ACGGAACAACCTTCTGACCTCCTT -ACGGAACAACCTTCTGACCCTGTT -ACGGAACAACCTTCTGACCGGTTT -ACGGAACAACCTTCTGACGTGGTT -ACGGAACAACCTTCTGACGCCTTT -ACGGAACAACCTTCTGACGGTCTT -ACGGAACAACCTTCTGACACGCTT -ACGGAACAACCTTCTGACAGCGTT -ACGGAACAACCTTCTGACTTCGTC -ACGGAACAACCTTCTGACTCTCTC -ACGGAACAACCTTCTGACTGGATC -ACGGAACAACCTTCTGACCACTTC -ACGGAACAACCTTCTGACGTACTC -ACGGAACAACCTTCTGACGATGTC -ACGGAACAACCTTCTGACACAGTC -ACGGAACAACCTTCTGACTTGCTG -ACGGAACAACCTTCTGACTCCATG -ACGGAACAACCTTCTGACTGTGTG -ACGGAACAACCTTCTGACCTAGTG -ACGGAACAACCTTCTGACCATCTG -ACGGAACAACCTTCTGACGAGTTG -ACGGAACAACCTTCTGACAGACTG -ACGGAACAACCTTCTGACTCGGTA -ACGGAACAACCTTCTGACTGCCTA -ACGGAACAACCTTCTGACCCACTA -ACGGAACAACCTTCTGACGGAGTA -ACGGAACAACCTTCTGACTCGTCT -ACGGAACAACCTTCTGACTGCACT -ACGGAACAACCTTCTGACCTGACT -ACGGAACAACCTTCTGACCAACCT -ACGGAACAACCTTCTGACGCTACT -ACGGAACAACCTTCTGACGGATCT -ACGGAACAACCTTCTGACAAGGCT -ACGGAACAACCTTCTGACTCAACC -ACGGAACAACCTTCTGACTGTTCC -ACGGAACAACCTTCTGACATTCCC -ACGGAACAACCTTCTGACTTCTCG -ACGGAACAACCTTCTGACTAGACG -ACGGAACAACCTTCTGACGTAACG -ACGGAACAACCTTCTGACACTTCG -ACGGAACAACCTTCTGACTACGCA -ACGGAACAACCTTCTGACCTTGCA -ACGGAACAACCTTCTGACCGAACA -ACGGAACAACCTTCTGACCAGTCA -ACGGAACAACCTTCTGACGATCCA -ACGGAACAACCTTCTGACACGACA -ACGGAACAACCTTCTGACAGCTCA -ACGGAACAACCTTCTGACTCACGT -ACGGAACAACCTTCTGACCGTAGT -ACGGAACAACCTTCTGACGTCAGT -ACGGAACAACCTTCTGACGAAGGT -ACGGAACAACCTTCTGACAACCGT -ACGGAACAACCTTCTGACTTGTGC -ACGGAACAACCTTCTGACCTAAGC -ACGGAACAACCTTCTGACACTAGC -ACGGAACAACCTTCTGACAGATGC -ACGGAACAACCTTCTGACTGAAGG -ACGGAACAACCTTCTGACCAATGG -ACGGAACAACCTTCTGACATGAGG -ACGGAACAACCTTCTGACAATGGG -ACGGAACAACCTTCTGACTCCTGA -ACGGAACAACCTTCTGACTAGCGA -ACGGAACAACCTTCTGACCACAGA -ACGGAACAACCTTCTGACGCAAGA -ACGGAACAACCTTCTGACGGTTGA -ACGGAACAACCTTCTGACTCCGAT -ACGGAACAACCTTCTGACTGGCAT -ACGGAACAACCTTCTGACCGAGAT -ACGGAACAACCTTCTGACTACCAC -ACGGAACAACCTTCTGACCAGAAC -ACGGAACAACCTTCTGACGTCTAC -ACGGAACAACCTTCTGACACGTAC -ACGGAACAACCTTCTGACAGTGAC -ACGGAACAACCTTCTGACCTGTAG -ACGGAACAACCTTCTGACCCTAAG -ACGGAACAACCTTCTGACGTTCAG -ACGGAACAACCTTCTGACGCATAG -ACGGAACAACCTTCTGACGACAAG -ACGGAACAACCTTCTGACAAGCAG -ACGGAACAACCTTCTGACCGTCAA -ACGGAACAACCTTCTGACGCTGAA -ACGGAACAACCTTCTGACAGTACG -ACGGAACAACCTTCTGACATCCGA -ACGGAACAACCTTCTGACATGGGA -ACGGAACAACCTTCTGACGTGCAA -ACGGAACAACCTTCTGACGAGGAA -ACGGAACAACCTTCTGACCAGGTA -ACGGAACAACCTTCTGACGACTCT -ACGGAACAACCTTCTGACAGTCCT -ACGGAACAACCTTCTGACTAAGCC -ACGGAACAACCTTCTGACATAGCC -ACGGAACAACCTTCTGACTAACCG -ACGGAACAACCTTCTGACATGCCA -ACGGAACAACCTCCTAGTGGAAAC -ACGGAACAACCTCCTAGTAACACC -ACGGAACAACCTCCTAGTATCGAG -ACGGAACAACCTCCTAGTCTCCTT -ACGGAACAACCTCCTAGTCCTGTT -ACGGAACAACCTCCTAGTCGGTTT -ACGGAACAACCTCCTAGTGTGGTT -ACGGAACAACCTCCTAGTGCCTTT -ACGGAACAACCTCCTAGTGGTCTT -ACGGAACAACCTCCTAGTACGCTT -ACGGAACAACCTCCTAGTAGCGTT -ACGGAACAACCTCCTAGTTTCGTC -ACGGAACAACCTCCTAGTTCTCTC -ACGGAACAACCTCCTAGTTGGATC -ACGGAACAACCTCCTAGTCACTTC -ACGGAACAACCTCCTAGTGTACTC -ACGGAACAACCTCCTAGTGATGTC -ACGGAACAACCTCCTAGTACAGTC -ACGGAACAACCTCCTAGTTTGCTG -ACGGAACAACCTCCTAGTTCCATG -ACGGAACAACCTCCTAGTTGTGTG -ACGGAACAACCTCCTAGTCTAGTG -ACGGAACAACCTCCTAGTCATCTG -ACGGAACAACCTCCTAGTGAGTTG -ACGGAACAACCTCCTAGTAGACTG -ACGGAACAACCTCCTAGTTCGGTA -ACGGAACAACCTCCTAGTTGCCTA -ACGGAACAACCTCCTAGTCCACTA -ACGGAACAACCTCCTAGTGGAGTA -ACGGAACAACCTCCTAGTTCGTCT -ACGGAACAACCTCCTAGTTGCACT -ACGGAACAACCTCCTAGTCTGACT -ACGGAACAACCTCCTAGTCAACCT -ACGGAACAACCTCCTAGTGCTACT -ACGGAACAACCTCCTAGTGGATCT -ACGGAACAACCTCCTAGTAAGGCT -ACGGAACAACCTCCTAGTTCAACC -ACGGAACAACCTCCTAGTTGTTCC -ACGGAACAACCTCCTAGTATTCCC -ACGGAACAACCTCCTAGTTTCTCG -ACGGAACAACCTCCTAGTTAGACG -ACGGAACAACCTCCTAGTGTAACG -ACGGAACAACCTCCTAGTACTTCG -ACGGAACAACCTCCTAGTTACGCA -ACGGAACAACCTCCTAGTCTTGCA -ACGGAACAACCTCCTAGTCGAACA -ACGGAACAACCTCCTAGTCAGTCA -ACGGAACAACCTCCTAGTGATCCA -ACGGAACAACCTCCTAGTACGACA -ACGGAACAACCTCCTAGTAGCTCA -ACGGAACAACCTCCTAGTTCACGT -ACGGAACAACCTCCTAGTCGTAGT -ACGGAACAACCTCCTAGTGTCAGT -ACGGAACAACCTCCTAGTGAAGGT -ACGGAACAACCTCCTAGTAACCGT -ACGGAACAACCTCCTAGTTTGTGC -ACGGAACAACCTCCTAGTCTAAGC -ACGGAACAACCTCCTAGTACTAGC -ACGGAACAACCTCCTAGTAGATGC -ACGGAACAACCTCCTAGTTGAAGG -ACGGAACAACCTCCTAGTCAATGG -ACGGAACAACCTCCTAGTATGAGG -ACGGAACAACCTCCTAGTAATGGG -ACGGAACAACCTCCTAGTTCCTGA -ACGGAACAACCTCCTAGTTAGCGA -ACGGAACAACCTCCTAGTCACAGA -ACGGAACAACCTCCTAGTGCAAGA -ACGGAACAACCTCCTAGTGGTTGA -ACGGAACAACCTCCTAGTTCCGAT -ACGGAACAACCTCCTAGTTGGCAT -ACGGAACAACCTCCTAGTCGAGAT -ACGGAACAACCTCCTAGTTACCAC -ACGGAACAACCTCCTAGTCAGAAC -ACGGAACAACCTCCTAGTGTCTAC -ACGGAACAACCTCCTAGTACGTAC -ACGGAACAACCTCCTAGTAGTGAC -ACGGAACAACCTCCTAGTCTGTAG -ACGGAACAACCTCCTAGTCCTAAG -ACGGAACAACCTCCTAGTGTTCAG -ACGGAACAACCTCCTAGTGCATAG -ACGGAACAACCTCCTAGTGACAAG -ACGGAACAACCTCCTAGTAAGCAG -ACGGAACAACCTCCTAGTCGTCAA -ACGGAACAACCTCCTAGTGCTGAA -ACGGAACAACCTCCTAGTAGTACG -ACGGAACAACCTCCTAGTATCCGA -ACGGAACAACCTCCTAGTATGGGA -ACGGAACAACCTCCTAGTGTGCAA -ACGGAACAACCTCCTAGTGAGGAA -ACGGAACAACCTCCTAGTCAGGTA -ACGGAACAACCTCCTAGTGACTCT -ACGGAACAACCTCCTAGTAGTCCT -ACGGAACAACCTCCTAGTTAAGCC -ACGGAACAACCTCCTAGTATAGCC -ACGGAACAACCTCCTAGTTAACCG -ACGGAACAACCTCCTAGTATGCCA -ACGGAACAACCTGCCTAAGGAAAC -ACGGAACAACCTGCCTAAAACACC -ACGGAACAACCTGCCTAAATCGAG -ACGGAACAACCTGCCTAACTCCTT -ACGGAACAACCTGCCTAACCTGTT -ACGGAACAACCTGCCTAACGGTTT -ACGGAACAACCTGCCTAAGTGGTT -ACGGAACAACCTGCCTAAGCCTTT -ACGGAACAACCTGCCTAAGGTCTT -ACGGAACAACCTGCCTAAACGCTT -ACGGAACAACCTGCCTAAAGCGTT -ACGGAACAACCTGCCTAATTCGTC -ACGGAACAACCTGCCTAATCTCTC -ACGGAACAACCTGCCTAATGGATC -ACGGAACAACCTGCCTAACACTTC -ACGGAACAACCTGCCTAAGTACTC -ACGGAACAACCTGCCTAAGATGTC -ACGGAACAACCTGCCTAAACAGTC -ACGGAACAACCTGCCTAATTGCTG -ACGGAACAACCTGCCTAATCCATG -ACGGAACAACCTGCCTAATGTGTG -ACGGAACAACCTGCCTAACTAGTG -ACGGAACAACCTGCCTAACATCTG -ACGGAACAACCTGCCTAAGAGTTG -ACGGAACAACCTGCCTAAAGACTG -ACGGAACAACCTGCCTAATCGGTA -ACGGAACAACCTGCCTAATGCCTA -ACGGAACAACCTGCCTAACCACTA -ACGGAACAACCTGCCTAAGGAGTA -ACGGAACAACCTGCCTAATCGTCT -ACGGAACAACCTGCCTAATGCACT -ACGGAACAACCTGCCTAACTGACT -ACGGAACAACCTGCCTAACAACCT -ACGGAACAACCTGCCTAAGCTACT -ACGGAACAACCTGCCTAAGGATCT -ACGGAACAACCTGCCTAAAAGGCT -ACGGAACAACCTGCCTAATCAACC -ACGGAACAACCTGCCTAATGTTCC -ACGGAACAACCTGCCTAAATTCCC -ACGGAACAACCTGCCTAATTCTCG -ACGGAACAACCTGCCTAATAGACG -ACGGAACAACCTGCCTAAGTAACG -ACGGAACAACCTGCCTAAACTTCG -ACGGAACAACCTGCCTAATACGCA -ACGGAACAACCTGCCTAACTTGCA -ACGGAACAACCTGCCTAACGAACA -ACGGAACAACCTGCCTAACAGTCA -ACGGAACAACCTGCCTAAGATCCA -ACGGAACAACCTGCCTAAACGACA -ACGGAACAACCTGCCTAAAGCTCA -ACGGAACAACCTGCCTAATCACGT -ACGGAACAACCTGCCTAACGTAGT -ACGGAACAACCTGCCTAAGTCAGT -ACGGAACAACCTGCCTAAGAAGGT -ACGGAACAACCTGCCTAAAACCGT -ACGGAACAACCTGCCTAATTGTGC -ACGGAACAACCTGCCTAACTAAGC -ACGGAACAACCTGCCTAAACTAGC -ACGGAACAACCTGCCTAAAGATGC -ACGGAACAACCTGCCTAATGAAGG -ACGGAACAACCTGCCTAACAATGG -ACGGAACAACCTGCCTAAATGAGG -ACGGAACAACCTGCCTAAAATGGG -ACGGAACAACCTGCCTAATCCTGA -ACGGAACAACCTGCCTAATAGCGA -ACGGAACAACCTGCCTAACACAGA -ACGGAACAACCTGCCTAAGCAAGA -ACGGAACAACCTGCCTAAGGTTGA -ACGGAACAACCTGCCTAATCCGAT -ACGGAACAACCTGCCTAATGGCAT -ACGGAACAACCTGCCTAACGAGAT -ACGGAACAACCTGCCTAATACCAC -ACGGAACAACCTGCCTAACAGAAC -ACGGAACAACCTGCCTAAGTCTAC -ACGGAACAACCTGCCTAAACGTAC -ACGGAACAACCTGCCTAAAGTGAC -ACGGAACAACCTGCCTAACTGTAG -ACGGAACAACCTGCCTAACCTAAG -ACGGAACAACCTGCCTAAGTTCAG -ACGGAACAACCTGCCTAAGCATAG -ACGGAACAACCTGCCTAAGACAAG -ACGGAACAACCTGCCTAAAAGCAG -ACGGAACAACCTGCCTAACGTCAA -ACGGAACAACCTGCCTAAGCTGAA -ACGGAACAACCTGCCTAAAGTACG -ACGGAACAACCTGCCTAAATCCGA -ACGGAACAACCTGCCTAAATGGGA -ACGGAACAACCTGCCTAAGTGCAA -ACGGAACAACCTGCCTAAGAGGAA -ACGGAACAACCTGCCTAACAGGTA -ACGGAACAACCTGCCTAAGACTCT -ACGGAACAACCTGCCTAAAGTCCT -ACGGAACAACCTGCCTAATAAGCC -ACGGAACAACCTGCCTAAATAGCC -ACGGAACAACCTGCCTAATAACCG -ACGGAACAACCTGCCTAAATGCCA -ACGGAACAACCTGCCATAGGAAAC -ACGGAACAACCTGCCATAAACACC -ACGGAACAACCTGCCATAATCGAG -ACGGAACAACCTGCCATACTCCTT -ACGGAACAACCTGCCATACCTGTT -ACGGAACAACCTGCCATACGGTTT -ACGGAACAACCTGCCATAGTGGTT -ACGGAACAACCTGCCATAGCCTTT -ACGGAACAACCTGCCATAGGTCTT -ACGGAACAACCTGCCATAACGCTT -ACGGAACAACCTGCCATAAGCGTT -ACGGAACAACCTGCCATATTCGTC -ACGGAACAACCTGCCATATCTCTC -ACGGAACAACCTGCCATATGGATC -ACGGAACAACCTGCCATACACTTC -ACGGAACAACCTGCCATAGTACTC -ACGGAACAACCTGCCATAGATGTC -ACGGAACAACCTGCCATAACAGTC -ACGGAACAACCTGCCATATTGCTG -ACGGAACAACCTGCCATATCCATG -ACGGAACAACCTGCCATATGTGTG -ACGGAACAACCTGCCATACTAGTG -ACGGAACAACCTGCCATACATCTG -ACGGAACAACCTGCCATAGAGTTG -ACGGAACAACCTGCCATAAGACTG -ACGGAACAACCTGCCATATCGGTA -ACGGAACAACCTGCCATATGCCTA -ACGGAACAACCTGCCATACCACTA -ACGGAACAACCTGCCATAGGAGTA -ACGGAACAACCTGCCATATCGTCT -ACGGAACAACCTGCCATATGCACT -ACGGAACAACCTGCCATACTGACT -ACGGAACAACCTGCCATACAACCT -ACGGAACAACCTGCCATAGCTACT -ACGGAACAACCTGCCATAGGATCT -ACGGAACAACCTGCCATAAAGGCT -ACGGAACAACCTGCCATATCAACC -ACGGAACAACCTGCCATATGTTCC -ACGGAACAACCTGCCATAATTCCC -ACGGAACAACCTGCCATATTCTCG -ACGGAACAACCTGCCATATAGACG -ACGGAACAACCTGCCATAGTAACG -ACGGAACAACCTGCCATAACTTCG -ACGGAACAACCTGCCATATACGCA -ACGGAACAACCTGCCATACTTGCA -ACGGAACAACCTGCCATACGAACA -ACGGAACAACCTGCCATACAGTCA -ACGGAACAACCTGCCATAGATCCA -ACGGAACAACCTGCCATAACGACA -ACGGAACAACCTGCCATAAGCTCA -ACGGAACAACCTGCCATATCACGT -ACGGAACAACCTGCCATACGTAGT -ACGGAACAACCTGCCATAGTCAGT -ACGGAACAACCTGCCATAGAAGGT -ACGGAACAACCTGCCATAAACCGT -ACGGAACAACCTGCCATATTGTGC -ACGGAACAACCTGCCATACTAAGC -ACGGAACAACCTGCCATAACTAGC -ACGGAACAACCTGCCATAAGATGC -ACGGAACAACCTGCCATATGAAGG -ACGGAACAACCTGCCATACAATGG -ACGGAACAACCTGCCATAATGAGG -ACGGAACAACCTGCCATAAATGGG -ACGGAACAACCTGCCATATCCTGA -ACGGAACAACCTGCCATATAGCGA -ACGGAACAACCTGCCATACACAGA -ACGGAACAACCTGCCATAGCAAGA -ACGGAACAACCTGCCATAGGTTGA -ACGGAACAACCTGCCATATCCGAT -ACGGAACAACCTGCCATATGGCAT -ACGGAACAACCTGCCATACGAGAT -ACGGAACAACCTGCCATATACCAC -ACGGAACAACCTGCCATACAGAAC -ACGGAACAACCTGCCATAGTCTAC -ACGGAACAACCTGCCATAACGTAC -ACGGAACAACCTGCCATAAGTGAC -ACGGAACAACCTGCCATACTGTAG -ACGGAACAACCTGCCATACCTAAG -ACGGAACAACCTGCCATAGTTCAG -ACGGAACAACCTGCCATAGCATAG -ACGGAACAACCTGCCATAGACAAG -ACGGAACAACCTGCCATAAAGCAG -ACGGAACAACCTGCCATACGTCAA -ACGGAACAACCTGCCATAGCTGAA -ACGGAACAACCTGCCATAAGTACG -ACGGAACAACCTGCCATAATCCGA -ACGGAACAACCTGCCATAATGGGA -ACGGAACAACCTGCCATAGTGCAA -ACGGAACAACCTGCCATAGAGGAA -ACGGAACAACCTGCCATACAGGTA -ACGGAACAACCTGCCATAGACTCT -ACGGAACAACCTGCCATAAGTCCT -ACGGAACAACCTGCCATATAAGCC -ACGGAACAACCTGCCATAATAGCC -ACGGAACAACCTGCCATATAACCG -ACGGAACAACCTGCCATAATGCCA -ACGGAACAACCTCCGTAAGGAAAC -ACGGAACAACCTCCGTAAAACACC -ACGGAACAACCTCCGTAAATCGAG -ACGGAACAACCTCCGTAACTCCTT -ACGGAACAACCTCCGTAACCTGTT -ACGGAACAACCTCCGTAACGGTTT -ACGGAACAACCTCCGTAAGTGGTT -ACGGAACAACCTCCGTAAGCCTTT -ACGGAACAACCTCCGTAAGGTCTT -ACGGAACAACCTCCGTAAACGCTT -ACGGAACAACCTCCGTAAAGCGTT -ACGGAACAACCTCCGTAATTCGTC -ACGGAACAACCTCCGTAATCTCTC -ACGGAACAACCTCCGTAATGGATC -ACGGAACAACCTCCGTAACACTTC -ACGGAACAACCTCCGTAAGTACTC -ACGGAACAACCTCCGTAAGATGTC -ACGGAACAACCTCCGTAAACAGTC -ACGGAACAACCTCCGTAATTGCTG -ACGGAACAACCTCCGTAATCCATG -ACGGAACAACCTCCGTAATGTGTG -ACGGAACAACCTCCGTAACTAGTG -ACGGAACAACCTCCGTAACATCTG -ACGGAACAACCTCCGTAAGAGTTG -ACGGAACAACCTCCGTAAAGACTG -ACGGAACAACCTCCGTAATCGGTA -ACGGAACAACCTCCGTAATGCCTA -ACGGAACAACCTCCGTAACCACTA -ACGGAACAACCTCCGTAAGGAGTA -ACGGAACAACCTCCGTAATCGTCT -ACGGAACAACCTCCGTAATGCACT -ACGGAACAACCTCCGTAACTGACT -ACGGAACAACCTCCGTAACAACCT -ACGGAACAACCTCCGTAAGCTACT -ACGGAACAACCTCCGTAAGGATCT -ACGGAACAACCTCCGTAAAAGGCT -ACGGAACAACCTCCGTAATCAACC -ACGGAACAACCTCCGTAATGTTCC -ACGGAACAACCTCCGTAAATTCCC -ACGGAACAACCTCCGTAATTCTCG -ACGGAACAACCTCCGTAATAGACG -ACGGAACAACCTCCGTAAGTAACG -ACGGAACAACCTCCGTAAACTTCG -ACGGAACAACCTCCGTAATACGCA -ACGGAACAACCTCCGTAACTTGCA -ACGGAACAACCTCCGTAACGAACA -ACGGAACAACCTCCGTAACAGTCA -ACGGAACAACCTCCGTAAGATCCA -ACGGAACAACCTCCGTAAACGACA -ACGGAACAACCTCCGTAAAGCTCA -ACGGAACAACCTCCGTAATCACGT -ACGGAACAACCTCCGTAACGTAGT -ACGGAACAACCTCCGTAAGTCAGT -ACGGAACAACCTCCGTAAGAAGGT -ACGGAACAACCTCCGTAAAACCGT -ACGGAACAACCTCCGTAATTGTGC -ACGGAACAACCTCCGTAACTAAGC -ACGGAACAACCTCCGTAAACTAGC -ACGGAACAACCTCCGTAAAGATGC -ACGGAACAACCTCCGTAATGAAGG -ACGGAACAACCTCCGTAACAATGG -ACGGAACAACCTCCGTAAATGAGG -ACGGAACAACCTCCGTAAAATGGG -ACGGAACAACCTCCGTAATCCTGA -ACGGAACAACCTCCGTAATAGCGA -ACGGAACAACCTCCGTAACACAGA -ACGGAACAACCTCCGTAAGCAAGA -ACGGAACAACCTCCGTAAGGTTGA -ACGGAACAACCTCCGTAATCCGAT -ACGGAACAACCTCCGTAATGGCAT -ACGGAACAACCTCCGTAACGAGAT -ACGGAACAACCTCCGTAATACCAC -ACGGAACAACCTCCGTAACAGAAC -ACGGAACAACCTCCGTAAGTCTAC -ACGGAACAACCTCCGTAAACGTAC -ACGGAACAACCTCCGTAAAGTGAC -ACGGAACAACCTCCGTAACTGTAG -ACGGAACAACCTCCGTAACCTAAG -ACGGAACAACCTCCGTAAGTTCAG -ACGGAACAACCTCCGTAAGCATAG -ACGGAACAACCTCCGTAAGACAAG -ACGGAACAACCTCCGTAAAAGCAG -ACGGAACAACCTCCGTAACGTCAA -ACGGAACAACCTCCGTAAGCTGAA -ACGGAACAACCTCCGTAAAGTACG -ACGGAACAACCTCCGTAAATCCGA -ACGGAACAACCTCCGTAAATGGGA -ACGGAACAACCTCCGTAAGTGCAA -ACGGAACAACCTCCGTAAGAGGAA -ACGGAACAACCTCCGTAACAGGTA -ACGGAACAACCTCCGTAAGACTCT -ACGGAACAACCTCCGTAAAGTCCT -ACGGAACAACCTCCGTAATAAGCC -ACGGAACAACCTCCGTAAATAGCC -ACGGAACAACCTCCGTAATAACCG -ACGGAACAACCTCCGTAAATGCCA -ACGGAACAACCTCCAATGGGAAAC -ACGGAACAACCTCCAATGAACACC -ACGGAACAACCTCCAATGATCGAG -ACGGAACAACCTCCAATGCTCCTT -ACGGAACAACCTCCAATGCCTGTT -ACGGAACAACCTCCAATGCGGTTT -ACGGAACAACCTCCAATGGTGGTT -ACGGAACAACCTCCAATGGCCTTT -ACGGAACAACCTCCAATGGGTCTT -ACGGAACAACCTCCAATGACGCTT -ACGGAACAACCTCCAATGAGCGTT -ACGGAACAACCTCCAATGTTCGTC -ACGGAACAACCTCCAATGTCTCTC -ACGGAACAACCTCCAATGTGGATC -ACGGAACAACCTCCAATGCACTTC -ACGGAACAACCTCCAATGGTACTC -ACGGAACAACCTCCAATGGATGTC -ACGGAACAACCTCCAATGACAGTC -ACGGAACAACCTCCAATGTTGCTG -ACGGAACAACCTCCAATGTCCATG -ACGGAACAACCTCCAATGTGTGTG -ACGGAACAACCTCCAATGCTAGTG -ACGGAACAACCTCCAATGCATCTG -ACGGAACAACCTCCAATGGAGTTG -ACGGAACAACCTCCAATGAGACTG -ACGGAACAACCTCCAATGTCGGTA -ACGGAACAACCTCCAATGTGCCTA -ACGGAACAACCTCCAATGCCACTA -ACGGAACAACCTCCAATGGGAGTA -ACGGAACAACCTCCAATGTCGTCT -ACGGAACAACCTCCAATGTGCACT -ACGGAACAACCTCCAATGCTGACT -ACGGAACAACCTCCAATGCAACCT -ACGGAACAACCTCCAATGGCTACT -ACGGAACAACCTCCAATGGGATCT -ACGGAACAACCTCCAATGAAGGCT -ACGGAACAACCTCCAATGTCAACC -ACGGAACAACCTCCAATGTGTTCC -ACGGAACAACCTCCAATGATTCCC -ACGGAACAACCTCCAATGTTCTCG -ACGGAACAACCTCCAATGTAGACG -ACGGAACAACCTCCAATGGTAACG -ACGGAACAACCTCCAATGACTTCG -ACGGAACAACCTCCAATGTACGCA -ACGGAACAACCTCCAATGCTTGCA -ACGGAACAACCTCCAATGCGAACA -ACGGAACAACCTCCAATGCAGTCA -ACGGAACAACCTCCAATGGATCCA -ACGGAACAACCTCCAATGACGACA -ACGGAACAACCTCCAATGAGCTCA -ACGGAACAACCTCCAATGTCACGT -ACGGAACAACCTCCAATGCGTAGT -ACGGAACAACCTCCAATGGTCAGT -ACGGAACAACCTCCAATGGAAGGT -ACGGAACAACCTCCAATGAACCGT -ACGGAACAACCTCCAATGTTGTGC -ACGGAACAACCTCCAATGCTAAGC -ACGGAACAACCTCCAATGACTAGC -ACGGAACAACCTCCAATGAGATGC -ACGGAACAACCTCCAATGTGAAGG -ACGGAACAACCTCCAATGCAATGG -ACGGAACAACCTCCAATGATGAGG -ACGGAACAACCTCCAATGAATGGG -ACGGAACAACCTCCAATGTCCTGA -ACGGAACAACCTCCAATGTAGCGA -ACGGAACAACCTCCAATGCACAGA -ACGGAACAACCTCCAATGGCAAGA -ACGGAACAACCTCCAATGGGTTGA -ACGGAACAACCTCCAATGTCCGAT -ACGGAACAACCTCCAATGTGGCAT -ACGGAACAACCTCCAATGCGAGAT -ACGGAACAACCTCCAATGTACCAC -ACGGAACAACCTCCAATGCAGAAC -ACGGAACAACCTCCAATGGTCTAC -ACGGAACAACCTCCAATGACGTAC -ACGGAACAACCTCCAATGAGTGAC -ACGGAACAACCTCCAATGCTGTAG -ACGGAACAACCTCCAATGCCTAAG -ACGGAACAACCTCCAATGGTTCAG -ACGGAACAACCTCCAATGGCATAG -ACGGAACAACCTCCAATGGACAAG -ACGGAACAACCTCCAATGAAGCAG -ACGGAACAACCTCCAATGCGTCAA -ACGGAACAACCTCCAATGGCTGAA -ACGGAACAACCTCCAATGAGTACG -ACGGAACAACCTCCAATGATCCGA -ACGGAACAACCTCCAATGATGGGA -ACGGAACAACCTCCAATGGTGCAA -ACGGAACAACCTCCAATGGAGGAA -ACGGAACAACCTCCAATGCAGGTA -ACGGAACAACCTCCAATGGACTCT -ACGGAACAACCTCCAATGAGTCCT -ACGGAACAACCTCCAATGTAAGCC -ACGGAACAACCTCCAATGATAGCC -ACGGAACAACCTCCAATGTAACCG -ACGGAACAACCTCCAATGATGCCA -ACGGAAGTTCCTAACGGAGGAAAC -ACGGAAGTTCCTAACGGAAACACC -ACGGAAGTTCCTAACGGAATCGAG -ACGGAAGTTCCTAACGGACTCCTT -ACGGAAGTTCCTAACGGACCTGTT -ACGGAAGTTCCTAACGGACGGTTT -ACGGAAGTTCCTAACGGAGTGGTT -ACGGAAGTTCCTAACGGAGCCTTT -ACGGAAGTTCCTAACGGAGGTCTT -ACGGAAGTTCCTAACGGAACGCTT -ACGGAAGTTCCTAACGGAAGCGTT -ACGGAAGTTCCTAACGGATTCGTC -ACGGAAGTTCCTAACGGATCTCTC -ACGGAAGTTCCTAACGGATGGATC -ACGGAAGTTCCTAACGGACACTTC -ACGGAAGTTCCTAACGGAGTACTC -ACGGAAGTTCCTAACGGAGATGTC -ACGGAAGTTCCTAACGGAACAGTC -ACGGAAGTTCCTAACGGATTGCTG -ACGGAAGTTCCTAACGGATCCATG -ACGGAAGTTCCTAACGGATGTGTG -ACGGAAGTTCCTAACGGACTAGTG -ACGGAAGTTCCTAACGGACATCTG -ACGGAAGTTCCTAACGGAGAGTTG -ACGGAAGTTCCTAACGGAAGACTG -ACGGAAGTTCCTAACGGATCGGTA -ACGGAAGTTCCTAACGGATGCCTA -ACGGAAGTTCCTAACGGACCACTA -ACGGAAGTTCCTAACGGAGGAGTA -ACGGAAGTTCCTAACGGATCGTCT -ACGGAAGTTCCTAACGGATGCACT -ACGGAAGTTCCTAACGGACTGACT -ACGGAAGTTCCTAACGGACAACCT -ACGGAAGTTCCTAACGGAGCTACT -ACGGAAGTTCCTAACGGAGGATCT -ACGGAAGTTCCTAACGGAAAGGCT -ACGGAAGTTCCTAACGGATCAACC -ACGGAAGTTCCTAACGGATGTTCC -ACGGAAGTTCCTAACGGAATTCCC -ACGGAAGTTCCTAACGGATTCTCG -ACGGAAGTTCCTAACGGATAGACG -ACGGAAGTTCCTAACGGAGTAACG -ACGGAAGTTCCTAACGGAACTTCG -ACGGAAGTTCCTAACGGATACGCA -ACGGAAGTTCCTAACGGACTTGCA -ACGGAAGTTCCTAACGGACGAACA -ACGGAAGTTCCTAACGGACAGTCA -ACGGAAGTTCCTAACGGAGATCCA -ACGGAAGTTCCTAACGGAACGACA -ACGGAAGTTCCTAACGGAAGCTCA -ACGGAAGTTCCTAACGGATCACGT -ACGGAAGTTCCTAACGGACGTAGT -ACGGAAGTTCCTAACGGAGTCAGT -ACGGAAGTTCCTAACGGAGAAGGT -ACGGAAGTTCCTAACGGAAACCGT -ACGGAAGTTCCTAACGGATTGTGC -ACGGAAGTTCCTAACGGACTAAGC -ACGGAAGTTCCTAACGGAACTAGC -ACGGAAGTTCCTAACGGAAGATGC -ACGGAAGTTCCTAACGGATGAAGG -ACGGAAGTTCCTAACGGACAATGG -ACGGAAGTTCCTAACGGAATGAGG -ACGGAAGTTCCTAACGGAAATGGG -ACGGAAGTTCCTAACGGATCCTGA -ACGGAAGTTCCTAACGGATAGCGA -ACGGAAGTTCCTAACGGACACAGA -ACGGAAGTTCCTAACGGAGCAAGA -ACGGAAGTTCCTAACGGAGGTTGA -ACGGAAGTTCCTAACGGATCCGAT -ACGGAAGTTCCTAACGGATGGCAT -ACGGAAGTTCCTAACGGACGAGAT -ACGGAAGTTCCTAACGGATACCAC -ACGGAAGTTCCTAACGGACAGAAC -ACGGAAGTTCCTAACGGAGTCTAC -ACGGAAGTTCCTAACGGAACGTAC -ACGGAAGTTCCTAACGGAAGTGAC -ACGGAAGTTCCTAACGGACTGTAG -ACGGAAGTTCCTAACGGACCTAAG -ACGGAAGTTCCTAACGGAGTTCAG -ACGGAAGTTCCTAACGGAGCATAG -ACGGAAGTTCCTAACGGAGACAAG -ACGGAAGTTCCTAACGGAAAGCAG -ACGGAAGTTCCTAACGGACGTCAA -ACGGAAGTTCCTAACGGAGCTGAA -ACGGAAGTTCCTAACGGAAGTACG -ACGGAAGTTCCTAACGGAATCCGA -ACGGAAGTTCCTAACGGAATGGGA -ACGGAAGTTCCTAACGGAGTGCAA -ACGGAAGTTCCTAACGGAGAGGAA -ACGGAAGTTCCTAACGGACAGGTA -ACGGAAGTTCCTAACGGAGACTCT -ACGGAAGTTCCTAACGGAAGTCCT -ACGGAAGTTCCTAACGGATAAGCC -ACGGAAGTTCCTAACGGAATAGCC -ACGGAAGTTCCTAACGGATAACCG -ACGGAAGTTCCTAACGGAATGCCA -ACGGAAGTTCCTACCAACGGAAAC -ACGGAAGTTCCTACCAACAACACC -ACGGAAGTTCCTACCAACATCGAG -ACGGAAGTTCCTACCAACCTCCTT -ACGGAAGTTCCTACCAACCCTGTT -ACGGAAGTTCCTACCAACCGGTTT -ACGGAAGTTCCTACCAACGTGGTT -ACGGAAGTTCCTACCAACGCCTTT -ACGGAAGTTCCTACCAACGGTCTT -ACGGAAGTTCCTACCAACACGCTT -ACGGAAGTTCCTACCAACAGCGTT -ACGGAAGTTCCTACCAACTTCGTC -ACGGAAGTTCCTACCAACTCTCTC -ACGGAAGTTCCTACCAACTGGATC -ACGGAAGTTCCTACCAACCACTTC -ACGGAAGTTCCTACCAACGTACTC -ACGGAAGTTCCTACCAACGATGTC -ACGGAAGTTCCTACCAACACAGTC -ACGGAAGTTCCTACCAACTTGCTG -ACGGAAGTTCCTACCAACTCCATG -ACGGAAGTTCCTACCAACTGTGTG -ACGGAAGTTCCTACCAACCTAGTG -ACGGAAGTTCCTACCAACCATCTG -ACGGAAGTTCCTACCAACGAGTTG -ACGGAAGTTCCTACCAACAGACTG -ACGGAAGTTCCTACCAACTCGGTA -ACGGAAGTTCCTACCAACTGCCTA -ACGGAAGTTCCTACCAACCCACTA -ACGGAAGTTCCTACCAACGGAGTA -ACGGAAGTTCCTACCAACTCGTCT -ACGGAAGTTCCTACCAACTGCACT -ACGGAAGTTCCTACCAACCTGACT -ACGGAAGTTCCTACCAACCAACCT -ACGGAAGTTCCTACCAACGCTACT -ACGGAAGTTCCTACCAACGGATCT -ACGGAAGTTCCTACCAACAAGGCT -ACGGAAGTTCCTACCAACTCAACC -ACGGAAGTTCCTACCAACTGTTCC -ACGGAAGTTCCTACCAACATTCCC -ACGGAAGTTCCTACCAACTTCTCG -ACGGAAGTTCCTACCAACTAGACG -ACGGAAGTTCCTACCAACGTAACG -ACGGAAGTTCCTACCAACACTTCG -ACGGAAGTTCCTACCAACTACGCA -ACGGAAGTTCCTACCAACCTTGCA -ACGGAAGTTCCTACCAACCGAACA -ACGGAAGTTCCTACCAACCAGTCA -ACGGAAGTTCCTACCAACGATCCA -ACGGAAGTTCCTACCAACACGACA -ACGGAAGTTCCTACCAACAGCTCA -ACGGAAGTTCCTACCAACTCACGT -ACGGAAGTTCCTACCAACCGTAGT -ACGGAAGTTCCTACCAACGTCAGT -ACGGAAGTTCCTACCAACGAAGGT -ACGGAAGTTCCTACCAACAACCGT -ACGGAAGTTCCTACCAACTTGTGC -ACGGAAGTTCCTACCAACCTAAGC -ACGGAAGTTCCTACCAACACTAGC -ACGGAAGTTCCTACCAACAGATGC -ACGGAAGTTCCTACCAACTGAAGG -ACGGAAGTTCCTACCAACCAATGG -ACGGAAGTTCCTACCAACATGAGG -ACGGAAGTTCCTACCAACAATGGG -ACGGAAGTTCCTACCAACTCCTGA -ACGGAAGTTCCTACCAACTAGCGA -ACGGAAGTTCCTACCAACCACAGA -ACGGAAGTTCCTACCAACGCAAGA -ACGGAAGTTCCTACCAACGGTTGA -ACGGAAGTTCCTACCAACTCCGAT -ACGGAAGTTCCTACCAACTGGCAT -ACGGAAGTTCCTACCAACCGAGAT -ACGGAAGTTCCTACCAACTACCAC -ACGGAAGTTCCTACCAACCAGAAC -ACGGAAGTTCCTACCAACGTCTAC -ACGGAAGTTCCTACCAACACGTAC -ACGGAAGTTCCTACCAACAGTGAC -ACGGAAGTTCCTACCAACCTGTAG -ACGGAAGTTCCTACCAACCCTAAG -ACGGAAGTTCCTACCAACGTTCAG -ACGGAAGTTCCTACCAACGCATAG -ACGGAAGTTCCTACCAACGACAAG -ACGGAAGTTCCTACCAACAAGCAG -ACGGAAGTTCCTACCAACCGTCAA -ACGGAAGTTCCTACCAACGCTGAA -ACGGAAGTTCCTACCAACAGTACG -ACGGAAGTTCCTACCAACATCCGA -ACGGAAGTTCCTACCAACATGGGA -ACGGAAGTTCCTACCAACGTGCAA -ACGGAAGTTCCTACCAACGAGGAA -ACGGAAGTTCCTACCAACCAGGTA -ACGGAAGTTCCTACCAACGACTCT -ACGGAAGTTCCTACCAACAGTCCT -ACGGAAGTTCCTACCAACTAAGCC -ACGGAAGTTCCTACCAACATAGCC -ACGGAAGTTCCTACCAACTAACCG -ACGGAAGTTCCTACCAACATGCCA -ACGGAAGTTCCTGAGATCGGAAAC -ACGGAAGTTCCTGAGATCAACACC -ACGGAAGTTCCTGAGATCATCGAG -ACGGAAGTTCCTGAGATCCTCCTT -ACGGAAGTTCCTGAGATCCCTGTT -ACGGAAGTTCCTGAGATCCGGTTT -ACGGAAGTTCCTGAGATCGTGGTT -ACGGAAGTTCCTGAGATCGCCTTT -ACGGAAGTTCCTGAGATCGGTCTT -ACGGAAGTTCCTGAGATCACGCTT -ACGGAAGTTCCTGAGATCAGCGTT -ACGGAAGTTCCTGAGATCTTCGTC -ACGGAAGTTCCTGAGATCTCTCTC -ACGGAAGTTCCTGAGATCTGGATC -ACGGAAGTTCCTGAGATCCACTTC -ACGGAAGTTCCTGAGATCGTACTC -ACGGAAGTTCCTGAGATCGATGTC -ACGGAAGTTCCTGAGATCACAGTC -ACGGAAGTTCCTGAGATCTTGCTG -ACGGAAGTTCCTGAGATCTCCATG -ACGGAAGTTCCTGAGATCTGTGTG -ACGGAAGTTCCTGAGATCCTAGTG -ACGGAAGTTCCTGAGATCCATCTG -ACGGAAGTTCCTGAGATCGAGTTG -ACGGAAGTTCCTGAGATCAGACTG -ACGGAAGTTCCTGAGATCTCGGTA -ACGGAAGTTCCTGAGATCTGCCTA -ACGGAAGTTCCTGAGATCCCACTA -ACGGAAGTTCCTGAGATCGGAGTA -ACGGAAGTTCCTGAGATCTCGTCT -ACGGAAGTTCCTGAGATCTGCACT -ACGGAAGTTCCTGAGATCCTGACT -ACGGAAGTTCCTGAGATCCAACCT -ACGGAAGTTCCTGAGATCGCTACT -ACGGAAGTTCCTGAGATCGGATCT -ACGGAAGTTCCTGAGATCAAGGCT -ACGGAAGTTCCTGAGATCTCAACC -ACGGAAGTTCCTGAGATCTGTTCC -ACGGAAGTTCCTGAGATCATTCCC -ACGGAAGTTCCTGAGATCTTCTCG -ACGGAAGTTCCTGAGATCTAGACG -ACGGAAGTTCCTGAGATCGTAACG -ACGGAAGTTCCTGAGATCACTTCG -ACGGAAGTTCCTGAGATCTACGCA -ACGGAAGTTCCTGAGATCCTTGCA -ACGGAAGTTCCTGAGATCCGAACA -ACGGAAGTTCCTGAGATCCAGTCA -ACGGAAGTTCCTGAGATCGATCCA -ACGGAAGTTCCTGAGATCACGACA -ACGGAAGTTCCTGAGATCAGCTCA -ACGGAAGTTCCTGAGATCTCACGT -ACGGAAGTTCCTGAGATCCGTAGT -ACGGAAGTTCCTGAGATCGTCAGT -ACGGAAGTTCCTGAGATCGAAGGT -ACGGAAGTTCCTGAGATCAACCGT -ACGGAAGTTCCTGAGATCTTGTGC -ACGGAAGTTCCTGAGATCCTAAGC -ACGGAAGTTCCTGAGATCACTAGC -ACGGAAGTTCCTGAGATCAGATGC -ACGGAAGTTCCTGAGATCTGAAGG -ACGGAAGTTCCTGAGATCCAATGG -ACGGAAGTTCCTGAGATCATGAGG -ACGGAAGTTCCTGAGATCAATGGG -ACGGAAGTTCCTGAGATCTCCTGA -ACGGAAGTTCCTGAGATCTAGCGA -ACGGAAGTTCCTGAGATCCACAGA -ACGGAAGTTCCTGAGATCGCAAGA -ACGGAAGTTCCTGAGATCGGTTGA -ACGGAAGTTCCTGAGATCTCCGAT -ACGGAAGTTCCTGAGATCTGGCAT -ACGGAAGTTCCTGAGATCCGAGAT -ACGGAAGTTCCTGAGATCTACCAC -ACGGAAGTTCCTGAGATCCAGAAC -ACGGAAGTTCCTGAGATCGTCTAC -ACGGAAGTTCCTGAGATCACGTAC -ACGGAAGTTCCTGAGATCAGTGAC -ACGGAAGTTCCTGAGATCCTGTAG -ACGGAAGTTCCTGAGATCCCTAAG -ACGGAAGTTCCTGAGATCGTTCAG -ACGGAAGTTCCTGAGATCGCATAG -ACGGAAGTTCCTGAGATCGACAAG -ACGGAAGTTCCTGAGATCAAGCAG -ACGGAAGTTCCTGAGATCCGTCAA -ACGGAAGTTCCTGAGATCGCTGAA -ACGGAAGTTCCTGAGATCAGTACG -ACGGAAGTTCCTGAGATCATCCGA -ACGGAAGTTCCTGAGATCATGGGA -ACGGAAGTTCCTGAGATCGTGCAA -ACGGAAGTTCCTGAGATCGAGGAA -ACGGAAGTTCCTGAGATCCAGGTA -ACGGAAGTTCCTGAGATCGACTCT -ACGGAAGTTCCTGAGATCAGTCCT -ACGGAAGTTCCTGAGATCTAAGCC -ACGGAAGTTCCTGAGATCATAGCC -ACGGAAGTTCCTGAGATCTAACCG -ACGGAAGTTCCTGAGATCATGCCA -ACGGAAGTTCCTCTTCTCGGAAAC -ACGGAAGTTCCTCTTCTCAACACC -ACGGAAGTTCCTCTTCTCATCGAG -ACGGAAGTTCCTCTTCTCCTCCTT -ACGGAAGTTCCTCTTCTCCCTGTT -ACGGAAGTTCCTCTTCTCCGGTTT -ACGGAAGTTCCTCTTCTCGTGGTT -ACGGAAGTTCCTCTTCTCGCCTTT -ACGGAAGTTCCTCTTCTCGGTCTT -ACGGAAGTTCCTCTTCTCACGCTT -ACGGAAGTTCCTCTTCTCAGCGTT -ACGGAAGTTCCTCTTCTCTTCGTC -ACGGAAGTTCCTCTTCTCTCTCTC -ACGGAAGTTCCTCTTCTCTGGATC -ACGGAAGTTCCTCTTCTCCACTTC -ACGGAAGTTCCTCTTCTCGTACTC -ACGGAAGTTCCTCTTCTCGATGTC -ACGGAAGTTCCTCTTCTCACAGTC -ACGGAAGTTCCTCTTCTCTTGCTG -ACGGAAGTTCCTCTTCTCTCCATG -ACGGAAGTTCCTCTTCTCTGTGTG -ACGGAAGTTCCTCTTCTCCTAGTG -ACGGAAGTTCCTCTTCTCCATCTG -ACGGAAGTTCCTCTTCTCGAGTTG -ACGGAAGTTCCTCTTCTCAGACTG -ACGGAAGTTCCTCTTCTCTCGGTA -ACGGAAGTTCCTCTTCTCTGCCTA -ACGGAAGTTCCTCTTCTCCCACTA -ACGGAAGTTCCTCTTCTCGGAGTA -ACGGAAGTTCCTCTTCTCTCGTCT -ACGGAAGTTCCTCTTCTCTGCACT -ACGGAAGTTCCTCTTCTCCTGACT -ACGGAAGTTCCTCTTCTCCAACCT -ACGGAAGTTCCTCTTCTCGCTACT -ACGGAAGTTCCTCTTCTCGGATCT -ACGGAAGTTCCTCTTCTCAAGGCT -ACGGAAGTTCCTCTTCTCTCAACC -ACGGAAGTTCCTCTTCTCTGTTCC -ACGGAAGTTCCTCTTCTCATTCCC -ACGGAAGTTCCTCTTCTCTTCTCG -ACGGAAGTTCCTCTTCTCTAGACG -ACGGAAGTTCCTCTTCTCGTAACG -ACGGAAGTTCCTCTTCTCACTTCG -ACGGAAGTTCCTCTTCTCTACGCA -ACGGAAGTTCCTCTTCTCCTTGCA -ACGGAAGTTCCTCTTCTCCGAACA -ACGGAAGTTCCTCTTCTCCAGTCA -ACGGAAGTTCCTCTTCTCGATCCA -ACGGAAGTTCCTCTTCTCACGACA -ACGGAAGTTCCTCTTCTCAGCTCA -ACGGAAGTTCCTCTTCTCTCACGT -ACGGAAGTTCCTCTTCTCCGTAGT -ACGGAAGTTCCTCTTCTCGTCAGT -ACGGAAGTTCCTCTTCTCGAAGGT -ACGGAAGTTCCTCTTCTCAACCGT -ACGGAAGTTCCTCTTCTCTTGTGC -ACGGAAGTTCCTCTTCTCCTAAGC -ACGGAAGTTCCTCTTCTCACTAGC -ACGGAAGTTCCTCTTCTCAGATGC -ACGGAAGTTCCTCTTCTCTGAAGG -ACGGAAGTTCCTCTTCTCCAATGG -ACGGAAGTTCCTCTTCTCATGAGG -ACGGAAGTTCCTCTTCTCAATGGG -ACGGAAGTTCCTCTTCTCTCCTGA -ACGGAAGTTCCTCTTCTCTAGCGA -ACGGAAGTTCCTCTTCTCCACAGA -ACGGAAGTTCCTCTTCTCGCAAGA -ACGGAAGTTCCTCTTCTCGGTTGA -ACGGAAGTTCCTCTTCTCTCCGAT -ACGGAAGTTCCTCTTCTCTGGCAT -ACGGAAGTTCCTCTTCTCCGAGAT -ACGGAAGTTCCTCTTCTCTACCAC -ACGGAAGTTCCTCTTCTCCAGAAC -ACGGAAGTTCCTCTTCTCGTCTAC -ACGGAAGTTCCTCTTCTCACGTAC -ACGGAAGTTCCTCTTCTCAGTGAC -ACGGAAGTTCCTCTTCTCCTGTAG -ACGGAAGTTCCTCTTCTCCCTAAG -ACGGAAGTTCCTCTTCTCGTTCAG -ACGGAAGTTCCTCTTCTCGCATAG -ACGGAAGTTCCTCTTCTCGACAAG -ACGGAAGTTCCTCTTCTCAAGCAG -ACGGAAGTTCCTCTTCTCCGTCAA -ACGGAAGTTCCTCTTCTCGCTGAA -ACGGAAGTTCCTCTTCTCAGTACG -ACGGAAGTTCCTCTTCTCATCCGA -ACGGAAGTTCCTCTTCTCATGGGA -ACGGAAGTTCCTCTTCTCGTGCAA -ACGGAAGTTCCTCTTCTCGAGGAA -ACGGAAGTTCCTCTTCTCCAGGTA -ACGGAAGTTCCTCTTCTCGACTCT -ACGGAAGTTCCTCTTCTCAGTCCT -ACGGAAGTTCCTCTTCTCTAAGCC -ACGGAAGTTCCTCTTCTCATAGCC -ACGGAAGTTCCTCTTCTCTAACCG -ACGGAAGTTCCTCTTCTCATGCCA -ACGGAAGTTCCTGTTCCTGGAAAC -ACGGAAGTTCCTGTTCCTAACACC -ACGGAAGTTCCTGTTCCTATCGAG -ACGGAAGTTCCTGTTCCTCTCCTT -ACGGAAGTTCCTGTTCCTCCTGTT -ACGGAAGTTCCTGTTCCTCGGTTT -ACGGAAGTTCCTGTTCCTGTGGTT -ACGGAAGTTCCTGTTCCTGCCTTT -ACGGAAGTTCCTGTTCCTGGTCTT -ACGGAAGTTCCTGTTCCTACGCTT -ACGGAAGTTCCTGTTCCTAGCGTT -ACGGAAGTTCCTGTTCCTTTCGTC -ACGGAAGTTCCTGTTCCTTCTCTC -ACGGAAGTTCCTGTTCCTTGGATC -ACGGAAGTTCCTGTTCCTCACTTC -ACGGAAGTTCCTGTTCCTGTACTC -ACGGAAGTTCCTGTTCCTGATGTC -ACGGAAGTTCCTGTTCCTACAGTC -ACGGAAGTTCCTGTTCCTTTGCTG -ACGGAAGTTCCTGTTCCTTCCATG -ACGGAAGTTCCTGTTCCTTGTGTG -ACGGAAGTTCCTGTTCCTCTAGTG -ACGGAAGTTCCTGTTCCTCATCTG -ACGGAAGTTCCTGTTCCTGAGTTG -ACGGAAGTTCCTGTTCCTAGACTG -ACGGAAGTTCCTGTTCCTTCGGTA -ACGGAAGTTCCTGTTCCTTGCCTA -ACGGAAGTTCCTGTTCCTCCACTA -ACGGAAGTTCCTGTTCCTGGAGTA -ACGGAAGTTCCTGTTCCTTCGTCT -ACGGAAGTTCCTGTTCCTTGCACT -ACGGAAGTTCCTGTTCCTCTGACT -ACGGAAGTTCCTGTTCCTCAACCT -ACGGAAGTTCCTGTTCCTGCTACT -ACGGAAGTTCCTGTTCCTGGATCT -ACGGAAGTTCCTGTTCCTAAGGCT -ACGGAAGTTCCTGTTCCTTCAACC -ACGGAAGTTCCTGTTCCTTGTTCC -ACGGAAGTTCCTGTTCCTATTCCC -ACGGAAGTTCCTGTTCCTTTCTCG -ACGGAAGTTCCTGTTCCTTAGACG -ACGGAAGTTCCTGTTCCTGTAACG -ACGGAAGTTCCTGTTCCTACTTCG -ACGGAAGTTCCTGTTCCTTACGCA -ACGGAAGTTCCTGTTCCTCTTGCA -ACGGAAGTTCCTGTTCCTCGAACA -ACGGAAGTTCCTGTTCCTCAGTCA -ACGGAAGTTCCTGTTCCTGATCCA -ACGGAAGTTCCTGTTCCTACGACA -ACGGAAGTTCCTGTTCCTAGCTCA -ACGGAAGTTCCTGTTCCTTCACGT -ACGGAAGTTCCTGTTCCTCGTAGT -ACGGAAGTTCCTGTTCCTGTCAGT -ACGGAAGTTCCTGTTCCTGAAGGT -ACGGAAGTTCCTGTTCCTAACCGT -ACGGAAGTTCCTGTTCCTTTGTGC -ACGGAAGTTCCTGTTCCTCTAAGC -ACGGAAGTTCCTGTTCCTACTAGC -ACGGAAGTTCCTGTTCCTAGATGC -ACGGAAGTTCCTGTTCCTTGAAGG -ACGGAAGTTCCTGTTCCTCAATGG -ACGGAAGTTCCTGTTCCTATGAGG -ACGGAAGTTCCTGTTCCTAATGGG -ACGGAAGTTCCTGTTCCTTCCTGA -ACGGAAGTTCCTGTTCCTTAGCGA -ACGGAAGTTCCTGTTCCTCACAGA -ACGGAAGTTCCTGTTCCTGCAAGA -ACGGAAGTTCCTGTTCCTGGTTGA -ACGGAAGTTCCTGTTCCTTCCGAT -ACGGAAGTTCCTGTTCCTTGGCAT -ACGGAAGTTCCTGTTCCTCGAGAT -ACGGAAGTTCCTGTTCCTTACCAC -ACGGAAGTTCCTGTTCCTCAGAAC -ACGGAAGTTCCTGTTCCTGTCTAC -ACGGAAGTTCCTGTTCCTACGTAC -ACGGAAGTTCCTGTTCCTAGTGAC -ACGGAAGTTCCTGTTCCTCTGTAG -ACGGAAGTTCCTGTTCCTCCTAAG -ACGGAAGTTCCTGTTCCTGTTCAG -ACGGAAGTTCCTGTTCCTGCATAG -ACGGAAGTTCCTGTTCCTGACAAG -ACGGAAGTTCCTGTTCCTAAGCAG -ACGGAAGTTCCTGTTCCTCGTCAA -ACGGAAGTTCCTGTTCCTGCTGAA -ACGGAAGTTCCTGTTCCTAGTACG -ACGGAAGTTCCTGTTCCTATCCGA -ACGGAAGTTCCTGTTCCTATGGGA -ACGGAAGTTCCTGTTCCTGTGCAA -ACGGAAGTTCCTGTTCCTGAGGAA -ACGGAAGTTCCTGTTCCTCAGGTA -ACGGAAGTTCCTGTTCCTGACTCT -ACGGAAGTTCCTGTTCCTAGTCCT -ACGGAAGTTCCTGTTCCTTAAGCC -ACGGAAGTTCCTGTTCCTATAGCC -ACGGAAGTTCCTGTTCCTTAACCG -ACGGAAGTTCCTGTTCCTATGCCA -ACGGAAGTTCCTTTTCGGGGAAAC -ACGGAAGTTCCTTTTCGGAACACC -ACGGAAGTTCCTTTTCGGATCGAG -ACGGAAGTTCCTTTTCGGCTCCTT -ACGGAAGTTCCTTTTCGGCCTGTT -ACGGAAGTTCCTTTTCGGCGGTTT -ACGGAAGTTCCTTTTCGGGTGGTT -ACGGAAGTTCCTTTTCGGGCCTTT -ACGGAAGTTCCTTTTCGGGGTCTT -ACGGAAGTTCCTTTTCGGACGCTT -ACGGAAGTTCCTTTTCGGAGCGTT -ACGGAAGTTCCTTTTCGGTTCGTC -ACGGAAGTTCCTTTTCGGTCTCTC -ACGGAAGTTCCTTTTCGGTGGATC -ACGGAAGTTCCTTTTCGGCACTTC -ACGGAAGTTCCTTTTCGGGTACTC -ACGGAAGTTCCTTTTCGGGATGTC -ACGGAAGTTCCTTTTCGGACAGTC -ACGGAAGTTCCTTTTCGGTTGCTG -ACGGAAGTTCCTTTTCGGTCCATG -ACGGAAGTTCCTTTTCGGTGTGTG -ACGGAAGTTCCTTTTCGGCTAGTG -ACGGAAGTTCCTTTTCGGCATCTG -ACGGAAGTTCCTTTTCGGGAGTTG -ACGGAAGTTCCTTTTCGGAGACTG -ACGGAAGTTCCTTTTCGGTCGGTA -ACGGAAGTTCCTTTTCGGTGCCTA -ACGGAAGTTCCTTTTCGGCCACTA -ACGGAAGTTCCTTTTCGGGGAGTA -ACGGAAGTTCCTTTTCGGTCGTCT -ACGGAAGTTCCTTTTCGGTGCACT -ACGGAAGTTCCTTTTCGGCTGACT -ACGGAAGTTCCTTTTCGGCAACCT -ACGGAAGTTCCTTTTCGGGCTACT -ACGGAAGTTCCTTTTCGGGGATCT -ACGGAAGTTCCTTTTCGGAAGGCT -ACGGAAGTTCCTTTTCGGTCAACC -ACGGAAGTTCCTTTTCGGTGTTCC -ACGGAAGTTCCTTTTCGGATTCCC -ACGGAAGTTCCTTTTCGGTTCTCG -ACGGAAGTTCCTTTTCGGTAGACG -ACGGAAGTTCCTTTTCGGGTAACG -ACGGAAGTTCCTTTTCGGACTTCG -ACGGAAGTTCCTTTTCGGTACGCA -ACGGAAGTTCCTTTTCGGCTTGCA -ACGGAAGTTCCTTTTCGGCGAACA -ACGGAAGTTCCTTTTCGGCAGTCA -ACGGAAGTTCCTTTTCGGGATCCA -ACGGAAGTTCCTTTTCGGACGACA -ACGGAAGTTCCTTTTCGGAGCTCA -ACGGAAGTTCCTTTTCGGTCACGT -ACGGAAGTTCCTTTTCGGCGTAGT -ACGGAAGTTCCTTTTCGGGTCAGT -ACGGAAGTTCCTTTTCGGGAAGGT -ACGGAAGTTCCTTTTCGGAACCGT -ACGGAAGTTCCTTTTCGGTTGTGC -ACGGAAGTTCCTTTTCGGCTAAGC -ACGGAAGTTCCTTTTCGGACTAGC -ACGGAAGTTCCTTTTCGGAGATGC -ACGGAAGTTCCTTTTCGGTGAAGG -ACGGAAGTTCCTTTTCGGCAATGG -ACGGAAGTTCCTTTTCGGATGAGG -ACGGAAGTTCCTTTTCGGAATGGG -ACGGAAGTTCCTTTTCGGTCCTGA -ACGGAAGTTCCTTTTCGGTAGCGA -ACGGAAGTTCCTTTTCGGCACAGA -ACGGAAGTTCCTTTTCGGGCAAGA -ACGGAAGTTCCTTTTCGGGGTTGA -ACGGAAGTTCCTTTTCGGTCCGAT -ACGGAAGTTCCTTTTCGGTGGCAT -ACGGAAGTTCCTTTTCGGCGAGAT -ACGGAAGTTCCTTTTCGGTACCAC -ACGGAAGTTCCTTTTCGGCAGAAC -ACGGAAGTTCCTTTTCGGGTCTAC -ACGGAAGTTCCTTTTCGGACGTAC -ACGGAAGTTCCTTTTCGGAGTGAC -ACGGAAGTTCCTTTTCGGCTGTAG -ACGGAAGTTCCTTTTCGGCCTAAG -ACGGAAGTTCCTTTTCGGGTTCAG -ACGGAAGTTCCTTTTCGGGCATAG -ACGGAAGTTCCTTTTCGGGACAAG -ACGGAAGTTCCTTTTCGGAAGCAG -ACGGAAGTTCCTTTTCGGCGTCAA -ACGGAAGTTCCTTTTCGGGCTGAA -ACGGAAGTTCCTTTTCGGAGTACG -ACGGAAGTTCCTTTTCGGATCCGA -ACGGAAGTTCCTTTTCGGATGGGA -ACGGAAGTTCCTTTTCGGGTGCAA -ACGGAAGTTCCTTTTCGGGAGGAA -ACGGAAGTTCCTTTTCGGCAGGTA -ACGGAAGTTCCTTTTCGGGACTCT -ACGGAAGTTCCTTTTCGGAGTCCT -ACGGAAGTTCCTTTTCGGTAAGCC -ACGGAAGTTCCTTTTCGGATAGCC -ACGGAAGTTCCTTTTCGGTAACCG -ACGGAAGTTCCTTTTCGGATGCCA -ACGGAAGTTCCTGTTGTGGGAAAC -ACGGAAGTTCCTGTTGTGAACACC -ACGGAAGTTCCTGTTGTGATCGAG -ACGGAAGTTCCTGTTGTGCTCCTT -ACGGAAGTTCCTGTTGTGCCTGTT -ACGGAAGTTCCTGTTGTGCGGTTT -ACGGAAGTTCCTGTTGTGGTGGTT -ACGGAAGTTCCTGTTGTGGCCTTT -ACGGAAGTTCCTGTTGTGGGTCTT -ACGGAAGTTCCTGTTGTGACGCTT -ACGGAAGTTCCTGTTGTGAGCGTT -ACGGAAGTTCCTGTTGTGTTCGTC -ACGGAAGTTCCTGTTGTGTCTCTC -ACGGAAGTTCCTGTTGTGTGGATC -ACGGAAGTTCCTGTTGTGCACTTC -ACGGAAGTTCCTGTTGTGGTACTC -ACGGAAGTTCCTGTTGTGGATGTC -ACGGAAGTTCCTGTTGTGACAGTC -ACGGAAGTTCCTGTTGTGTTGCTG -ACGGAAGTTCCTGTTGTGTCCATG -ACGGAAGTTCCTGTTGTGTGTGTG -ACGGAAGTTCCTGTTGTGCTAGTG -ACGGAAGTTCCTGTTGTGCATCTG -ACGGAAGTTCCTGTTGTGGAGTTG -ACGGAAGTTCCTGTTGTGAGACTG -ACGGAAGTTCCTGTTGTGTCGGTA -ACGGAAGTTCCTGTTGTGTGCCTA -ACGGAAGTTCCTGTTGTGCCACTA -ACGGAAGTTCCTGTTGTGGGAGTA -ACGGAAGTTCCTGTTGTGTCGTCT -ACGGAAGTTCCTGTTGTGTGCACT -ACGGAAGTTCCTGTTGTGCTGACT -ACGGAAGTTCCTGTTGTGCAACCT -ACGGAAGTTCCTGTTGTGGCTACT -ACGGAAGTTCCTGTTGTGGGATCT -ACGGAAGTTCCTGTTGTGAAGGCT -ACGGAAGTTCCTGTTGTGTCAACC -ACGGAAGTTCCTGTTGTGTGTTCC -ACGGAAGTTCCTGTTGTGATTCCC -ACGGAAGTTCCTGTTGTGTTCTCG -ACGGAAGTTCCTGTTGTGTAGACG -ACGGAAGTTCCTGTTGTGGTAACG -ACGGAAGTTCCTGTTGTGACTTCG -ACGGAAGTTCCTGTTGTGTACGCA -ACGGAAGTTCCTGTTGTGCTTGCA -ACGGAAGTTCCTGTTGTGCGAACA -ACGGAAGTTCCTGTTGTGCAGTCA -ACGGAAGTTCCTGTTGTGGATCCA -ACGGAAGTTCCTGTTGTGACGACA -ACGGAAGTTCCTGTTGTGAGCTCA -ACGGAAGTTCCTGTTGTGTCACGT -ACGGAAGTTCCTGTTGTGCGTAGT -ACGGAAGTTCCTGTTGTGGTCAGT -ACGGAAGTTCCTGTTGTGGAAGGT -ACGGAAGTTCCTGTTGTGAACCGT -ACGGAAGTTCCTGTTGTGTTGTGC -ACGGAAGTTCCTGTTGTGCTAAGC -ACGGAAGTTCCTGTTGTGACTAGC -ACGGAAGTTCCTGTTGTGAGATGC -ACGGAAGTTCCTGTTGTGTGAAGG -ACGGAAGTTCCTGTTGTGCAATGG -ACGGAAGTTCCTGTTGTGATGAGG -ACGGAAGTTCCTGTTGTGAATGGG -ACGGAAGTTCCTGTTGTGTCCTGA -ACGGAAGTTCCTGTTGTGTAGCGA -ACGGAAGTTCCTGTTGTGCACAGA -ACGGAAGTTCCTGTTGTGGCAAGA -ACGGAAGTTCCTGTTGTGGGTTGA -ACGGAAGTTCCTGTTGTGTCCGAT -ACGGAAGTTCCTGTTGTGTGGCAT -ACGGAAGTTCCTGTTGTGCGAGAT -ACGGAAGTTCCTGTTGTGTACCAC -ACGGAAGTTCCTGTTGTGCAGAAC -ACGGAAGTTCCTGTTGTGGTCTAC -ACGGAAGTTCCTGTTGTGACGTAC -ACGGAAGTTCCTGTTGTGAGTGAC -ACGGAAGTTCCTGTTGTGCTGTAG -ACGGAAGTTCCTGTTGTGCCTAAG -ACGGAAGTTCCTGTTGTGGTTCAG -ACGGAAGTTCCTGTTGTGGCATAG -ACGGAAGTTCCTGTTGTGGACAAG -ACGGAAGTTCCTGTTGTGAAGCAG -ACGGAAGTTCCTGTTGTGCGTCAA -ACGGAAGTTCCTGTTGTGGCTGAA -ACGGAAGTTCCTGTTGTGAGTACG -ACGGAAGTTCCTGTTGTGATCCGA -ACGGAAGTTCCTGTTGTGATGGGA -ACGGAAGTTCCTGTTGTGGTGCAA -ACGGAAGTTCCTGTTGTGGAGGAA -ACGGAAGTTCCTGTTGTGCAGGTA -ACGGAAGTTCCTGTTGTGGACTCT -ACGGAAGTTCCTGTTGTGAGTCCT -ACGGAAGTTCCTGTTGTGTAAGCC -ACGGAAGTTCCTGTTGTGATAGCC -ACGGAAGTTCCTGTTGTGTAACCG -ACGGAAGTTCCTGTTGTGATGCCA -ACGGAAGTTCCTTTTGCCGGAAAC -ACGGAAGTTCCTTTTGCCAACACC -ACGGAAGTTCCTTTTGCCATCGAG -ACGGAAGTTCCTTTTGCCCTCCTT -ACGGAAGTTCCTTTTGCCCCTGTT -ACGGAAGTTCCTTTTGCCCGGTTT -ACGGAAGTTCCTTTTGCCGTGGTT -ACGGAAGTTCCTTTTGCCGCCTTT -ACGGAAGTTCCTTTTGCCGGTCTT -ACGGAAGTTCCTTTTGCCACGCTT -ACGGAAGTTCCTTTTGCCAGCGTT -ACGGAAGTTCCTTTTGCCTTCGTC -ACGGAAGTTCCTTTTGCCTCTCTC -ACGGAAGTTCCTTTTGCCTGGATC -ACGGAAGTTCCTTTTGCCCACTTC -ACGGAAGTTCCTTTTGCCGTACTC -ACGGAAGTTCCTTTTGCCGATGTC -ACGGAAGTTCCTTTTGCCACAGTC -ACGGAAGTTCCTTTTGCCTTGCTG -ACGGAAGTTCCTTTTGCCTCCATG -ACGGAAGTTCCTTTTGCCTGTGTG -ACGGAAGTTCCTTTTGCCCTAGTG -ACGGAAGTTCCTTTTGCCCATCTG -ACGGAAGTTCCTTTTGCCGAGTTG -ACGGAAGTTCCTTTTGCCAGACTG -ACGGAAGTTCCTTTTGCCTCGGTA -ACGGAAGTTCCTTTTGCCTGCCTA -ACGGAAGTTCCTTTTGCCCCACTA -ACGGAAGTTCCTTTTGCCGGAGTA -ACGGAAGTTCCTTTTGCCTCGTCT -ACGGAAGTTCCTTTTGCCTGCACT -ACGGAAGTTCCTTTTGCCCTGACT -ACGGAAGTTCCTTTTGCCCAACCT -ACGGAAGTTCCTTTTGCCGCTACT -ACGGAAGTTCCTTTTGCCGGATCT -ACGGAAGTTCCTTTTGCCAAGGCT -ACGGAAGTTCCTTTTGCCTCAACC -ACGGAAGTTCCTTTTGCCTGTTCC -ACGGAAGTTCCTTTTGCCATTCCC -ACGGAAGTTCCTTTTGCCTTCTCG -ACGGAAGTTCCTTTTGCCTAGACG -ACGGAAGTTCCTTTTGCCGTAACG -ACGGAAGTTCCTTTTGCCACTTCG -ACGGAAGTTCCTTTTGCCTACGCA -ACGGAAGTTCCTTTTGCCCTTGCA -ACGGAAGTTCCTTTTGCCCGAACA -ACGGAAGTTCCTTTTGCCCAGTCA -ACGGAAGTTCCTTTTGCCGATCCA -ACGGAAGTTCCTTTTGCCACGACA -ACGGAAGTTCCTTTTGCCAGCTCA -ACGGAAGTTCCTTTTGCCTCACGT -ACGGAAGTTCCTTTTGCCCGTAGT -ACGGAAGTTCCTTTTGCCGTCAGT -ACGGAAGTTCCTTTTGCCGAAGGT -ACGGAAGTTCCTTTTGCCAACCGT -ACGGAAGTTCCTTTTGCCTTGTGC -ACGGAAGTTCCTTTTGCCCTAAGC -ACGGAAGTTCCTTTTGCCACTAGC -ACGGAAGTTCCTTTTGCCAGATGC -ACGGAAGTTCCTTTTGCCTGAAGG -ACGGAAGTTCCTTTTGCCCAATGG -ACGGAAGTTCCTTTTGCCATGAGG -ACGGAAGTTCCTTTTGCCAATGGG -ACGGAAGTTCCTTTTGCCTCCTGA -ACGGAAGTTCCTTTTGCCTAGCGA -ACGGAAGTTCCTTTTGCCCACAGA -ACGGAAGTTCCTTTTGCCGCAAGA -ACGGAAGTTCCTTTTGCCGGTTGA -ACGGAAGTTCCTTTTGCCTCCGAT -ACGGAAGTTCCTTTTGCCTGGCAT -ACGGAAGTTCCTTTTGCCCGAGAT -ACGGAAGTTCCTTTTGCCTACCAC -ACGGAAGTTCCTTTTGCCCAGAAC -ACGGAAGTTCCTTTTGCCGTCTAC -ACGGAAGTTCCTTTTGCCACGTAC -ACGGAAGTTCCTTTTGCCAGTGAC -ACGGAAGTTCCTTTTGCCCTGTAG -ACGGAAGTTCCTTTTGCCCCTAAG -ACGGAAGTTCCTTTTGCCGTTCAG -ACGGAAGTTCCTTTTGCCGCATAG -ACGGAAGTTCCTTTTGCCGACAAG -ACGGAAGTTCCTTTTGCCAAGCAG -ACGGAAGTTCCTTTTGCCCGTCAA -ACGGAAGTTCCTTTTGCCGCTGAA -ACGGAAGTTCCTTTTGCCAGTACG -ACGGAAGTTCCTTTTGCCATCCGA -ACGGAAGTTCCTTTTGCCATGGGA -ACGGAAGTTCCTTTTGCCGTGCAA -ACGGAAGTTCCTTTTGCCGAGGAA -ACGGAAGTTCCTTTTGCCCAGGTA -ACGGAAGTTCCTTTTGCCGACTCT -ACGGAAGTTCCTTTTGCCAGTCCT -ACGGAAGTTCCTTTTGCCTAAGCC -ACGGAAGTTCCTTTTGCCATAGCC -ACGGAAGTTCCTTTTGCCTAACCG -ACGGAAGTTCCTTTTGCCATGCCA -ACGGAAGTTCCTCTTGGTGGAAAC -ACGGAAGTTCCTCTTGGTAACACC -ACGGAAGTTCCTCTTGGTATCGAG -ACGGAAGTTCCTCTTGGTCTCCTT -ACGGAAGTTCCTCTTGGTCCTGTT -ACGGAAGTTCCTCTTGGTCGGTTT -ACGGAAGTTCCTCTTGGTGTGGTT -ACGGAAGTTCCTCTTGGTGCCTTT -ACGGAAGTTCCTCTTGGTGGTCTT -ACGGAAGTTCCTCTTGGTACGCTT -ACGGAAGTTCCTCTTGGTAGCGTT -ACGGAAGTTCCTCTTGGTTTCGTC -ACGGAAGTTCCTCTTGGTTCTCTC -ACGGAAGTTCCTCTTGGTTGGATC -ACGGAAGTTCCTCTTGGTCACTTC -ACGGAAGTTCCTCTTGGTGTACTC -ACGGAAGTTCCTCTTGGTGATGTC -ACGGAAGTTCCTCTTGGTACAGTC -ACGGAAGTTCCTCTTGGTTTGCTG -ACGGAAGTTCCTCTTGGTTCCATG -ACGGAAGTTCCTCTTGGTTGTGTG -ACGGAAGTTCCTCTTGGTCTAGTG -ACGGAAGTTCCTCTTGGTCATCTG -ACGGAAGTTCCTCTTGGTGAGTTG -ACGGAAGTTCCTCTTGGTAGACTG -ACGGAAGTTCCTCTTGGTTCGGTA -ACGGAAGTTCCTCTTGGTTGCCTA -ACGGAAGTTCCTCTTGGTCCACTA -ACGGAAGTTCCTCTTGGTGGAGTA -ACGGAAGTTCCTCTTGGTTCGTCT -ACGGAAGTTCCTCTTGGTTGCACT -ACGGAAGTTCCTCTTGGTCTGACT -ACGGAAGTTCCTCTTGGTCAACCT -ACGGAAGTTCCTCTTGGTGCTACT -ACGGAAGTTCCTCTTGGTGGATCT -ACGGAAGTTCCTCTTGGTAAGGCT -ACGGAAGTTCCTCTTGGTTCAACC -ACGGAAGTTCCTCTTGGTTGTTCC -ACGGAAGTTCCTCTTGGTATTCCC -ACGGAAGTTCCTCTTGGTTTCTCG -ACGGAAGTTCCTCTTGGTTAGACG -ACGGAAGTTCCTCTTGGTGTAACG -ACGGAAGTTCCTCTTGGTACTTCG -ACGGAAGTTCCTCTTGGTTACGCA -ACGGAAGTTCCTCTTGGTCTTGCA -ACGGAAGTTCCTCTTGGTCGAACA -ACGGAAGTTCCTCTTGGTCAGTCA -ACGGAAGTTCCTCTTGGTGATCCA -ACGGAAGTTCCTCTTGGTACGACA -ACGGAAGTTCCTCTTGGTAGCTCA -ACGGAAGTTCCTCTTGGTTCACGT -ACGGAAGTTCCTCTTGGTCGTAGT -ACGGAAGTTCCTCTTGGTGTCAGT -ACGGAAGTTCCTCTTGGTGAAGGT -ACGGAAGTTCCTCTTGGTAACCGT -ACGGAAGTTCCTCTTGGTTTGTGC -ACGGAAGTTCCTCTTGGTCTAAGC -ACGGAAGTTCCTCTTGGTACTAGC -ACGGAAGTTCCTCTTGGTAGATGC -ACGGAAGTTCCTCTTGGTTGAAGG -ACGGAAGTTCCTCTTGGTCAATGG -ACGGAAGTTCCTCTTGGTATGAGG -ACGGAAGTTCCTCTTGGTAATGGG -ACGGAAGTTCCTCTTGGTTCCTGA -ACGGAAGTTCCTCTTGGTTAGCGA -ACGGAAGTTCCTCTTGGTCACAGA -ACGGAAGTTCCTCTTGGTGCAAGA -ACGGAAGTTCCTCTTGGTGGTTGA -ACGGAAGTTCCTCTTGGTTCCGAT -ACGGAAGTTCCTCTTGGTTGGCAT -ACGGAAGTTCCTCTTGGTCGAGAT -ACGGAAGTTCCTCTTGGTTACCAC -ACGGAAGTTCCTCTTGGTCAGAAC -ACGGAAGTTCCTCTTGGTGTCTAC -ACGGAAGTTCCTCTTGGTACGTAC -ACGGAAGTTCCTCTTGGTAGTGAC -ACGGAAGTTCCTCTTGGTCTGTAG -ACGGAAGTTCCTCTTGGTCCTAAG -ACGGAAGTTCCTCTTGGTGTTCAG -ACGGAAGTTCCTCTTGGTGCATAG -ACGGAAGTTCCTCTTGGTGACAAG -ACGGAAGTTCCTCTTGGTAAGCAG -ACGGAAGTTCCTCTTGGTCGTCAA -ACGGAAGTTCCTCTTGGTGCTGAA -ACGGAAGTTCCTCTTGGTAGTACG -ACGGAAGTTCCTCTTGGTATCCGA -ACGGAAGTTCCTCTTGGTATGGGA -ACGGAAGTTCCTCTTGGTGTGCAA -ACGGAAGTTCCTCTTGGTGAGGAA -ACGGAAGTTCCTCTTGGTCAGGTA -ACGGAAGTTCCTCTTGGTGACTCT -ACGGAAGTTCCTCTTGGTAGTCCT -ACGGAAGTTCCTCTTGGTTAAGCC -ACGGAAGTTCCTCTTGGTATAGCC -ACGGAAGTTCCTCTTGGTTAACCG -ACGGAAGTTCCTCTTGGTATGCCA -ACGGAAGTTCCTCTTACGGGAAAC -ACGGAAGTTCCTCTTACGAACACC -ACGGAAGTTCCTCTTACGATCGAG -ACGGAAGTTCCTCTTACGCTCCTT -ACGGAAGTTCCTCTTACGCCTGTT -ACGGAAGTTCCTCTTACGCGGTTT -ACGGAAGTTCCTCTTACGGTGGTT -ACGGAAGTTCCTCTTACGGCCTTT -ACGGAAGTTCCTCTTACGGGTCTT -ACGGAAGTTCCTCTTACGACGCTT -ACGGAAGTTCCTCTTACGAGCGTT -ACGGAAGTTCCTCTTACGTTCGTC -ACGGAAGTTCCTCTTACGTCTCTC -ACGGAAGTTCCTCTTACGTGGATC -ACGGAAGTTCCTCTTACGCACTTC -ACGGAAGTTCCTCTTACGGTACTC -ACGGAAGTTCCTCTTACGGATGTC -ACGGAAGTTCCTCTTACGACAGTC -ACGGAAGTTCCTCTTACGTTGCTG -ACGGAAGTTCCTCTTACGTCCATG -ACGGAAGTTCCTCTTACGTGTGTG -ACGGAAGTTCCTCTTACGCTAGTG -ACGGAAGTTCCTCTTACGCATCTG -ACGGAAGTTCCTCTTACGGAGTTG -ACGGAAGTTCCTCTTACGAGACTG -ACGGAAGTTCCTCTTACGTCGGTA -ACGGAAGTTCCTCTTACGTGCCTA -ACGGAAGTTCCTCTTACGCCACTA -ACGGAAGTTCCTCTTACGGGAGTA -ACGGAAGTTCCTCTTACGTCGTCT -ACGGAAGTTCCTCTTACGTGCACT -ACGGAAGTTCCTCTTACGCTGACT -ACGGAAGTTCCTCTTACGCAACCT -ACGGAAGTTCCTCTTACGGCTACT -ACGGAAGTTCCTCTTACGGGATCT -ACGGAAGTTCCTCTTACGAAGGCT -ACGGAAGTTCCTCTTACGTCAACC -ACGGAAGTTCCTCTTACGTGTTCC -ACGGAAGTTCCTCTTACGATTCCC -ACGGAAGTTCCTCTTACGTTCTCG -ACGGAAGTTCCTCTTACGTAGACG -ACGGAAGTTCCTCTTACGGTAACG -ACGGAAGTTCCTCTTACGACTTCG -ACGGAAGTTCCTCTTACGTACGCA -ACGGAAGTTCCTCTTACGCTTGCA -ACGGAAGTTCCTCTTACGCGAACA -ACGGAAGTTCCTCTTACGCAGTCA -ACGGAAGTTCCTCTTACGGATCCA -ACGGAAGTTCCTCTTACGACGACA -ACGGAAGTTCCTCTTACGAGCTCA -ACGGAAGTTCCTCTTACGTCACGT -ACGGAAGTTCCTCTTACGCGTAGT -ACGGAAGTTCCTCTTACGGTCAGT -ACGGAAGTTCCTCTTACGGAAGGT -ACGGAAGTTCCTCTTACGAACCGT -ACGGAAGTTCCTCTTACGTTGTGC -ACGGAAGTTCCTCTTACGCTAAGC -ACGGAAGTTCCTCTTACGACTAGC -ACGGAAGTTCCTCTTACGAGATGC -ACGGAAGTTCCTCTTACGTGAAGG -ACGGAAGTTCCTCTTACGCAATGG -ACGGAAGTTCCTCTTACGATGAGG -ACGGAAGTTCCTCTTACGAATGGG -ACGGAAGTTCCTCTTACGTCCTGA -ACGGAAGTTCCTCTTACGTAGCGA -ACGGAAGTTCCTCTTACGCACAGA -ACGGAAGTTCCTCTTACGGCAAGA -ACGGAAGTTCCTCTTACGGGTTGA -ACGGAAGTTCCTCTTACGTCCGAT -ACGGAAGTTCCTCTTACGTGGCAT -ACGGAAGTTCCTCTTACGCGAGAT -ACGGAAGTTCCTCTTACGTACCAC -ACGGAAGTTCCTCTTACGCAGAAC -ACGGAAGTTCCTCTTACGGTCTAC -ACGGAAGTTCCTCTTACGACGTAC -ACGGAAGTTCCTCTTACGAGTGAC -ACGGAAGTTCCTCTTACGCTGTAG -ACGGAAGTTCCTCTTACGCCTAAG -ACGGAAGTTCCTCTTACGGTTCAG -ACGGAAGTTCCTCTTACGGCATAG -ACGGAAGTTCCTCTTACGGACAAG -ACGGAAGTTCCTCTTACGAAGCAG -ACGGAAGTTCCTCTTACGCGTCAA -ACGGAAGTTCCTCTTACGGCTGAA -ACGGAAGTTCCTCTTACGAGTACG -ACGGAAGTTCCTCTTACGATCCGA -ACGGAAGTTCCTCTTACGATGGGA -ACGGAAGTTCCTCTTACGGTGCAA -ACGGAAGTTCCTCTTACGGAGGAA -ACGGAAGTTCCTCTTACGCAGGTA -ACGGAAGTTCCTCTTACGGACTCT -ACGGAAGTTCCTCTTACGAGTCCT -ACGGAAGTTCCTCTTACGTAAGCC -ACGGAAGTTCCTCTTACGATAGCC -ACGGAAGTTCCTCTTACGTAACCG -ACGGAAGTTCCTCTTACGATGCCA -ACGGAAGTTCCTGTTAGCGGAAAC -ACGGAAGTTCCTGTTAGCAACACC -ACGGAAGTTCCTGTTAGCATCGAG -ACGGAAGTTCCTGTTAGCCTCCTT -ACGGAAGTTCCTGTTAGCCCTGTT -ACGGAAGTTCCTGTTAGCCGGTTT -ACGGAAGTTCCTGTTAGCGTGGTT -ACGGAAGTTCCTGTTAGCGCCTTT -ACGGAAGTTCCTGTTAGCGGTCTT -ACGGAAGTTCCTGTTAGCACGCTT -ACGGAAGTTCCTGTTAGCAGCGTT -ACGGAAGTTCCTGTTAGCTTCGTC -ACGGAAGTTCCTGTTAGCTCTCTC -ACGGAAGTTCCTGTTAGCTGGATC -ACGGAAGTTCCTGTTAGCCACTTC -ACGGAAGTTCCTGTTAGCGTACTC -ACGGAAGTTCCTGTTAGCGATGTC -ACGGAAGTTCCTGTTAGCACAGTC -ACGGAAGTTCCTGTTAGCTTGCTG -ACGGAAGTTCCTGTTAGCTCCATG -ACGGAAGTTCCTGTTAGCTGTGTG -ACGGAAGTTCCTGTTAGCCTAGTG -ACGGAAGTTCCTGTTAGCCATCTG -ACGGAAGTTCCTGTTAGCGAGTTG -ACGGAAGTTCCTGTTAGCAGACTG -ACGGAAGTTCCTGTTAGCTCGGTA -ACGGAAGTTCCTGTTAGCTGCCTA -ACGGAAGTTCCTGTTAGCCCACTA -ACGGAAGTTCCTGTTAGCGGAGTA -ACGGAAGTTCCTGTTAGCTCGTCT -ACGGAAGTTCCTGTTAGCTGCACT -ACGGAAGTTCCTGTTAGCCTGACT -ACGGAAGTTCCTGTTAGCCAACCT -ACGGAAGTTCCTGTTAGCGCTACT -ACGGAAGTTCCTGTTAGCGGATCT -ACGGAAGTTCCTGTTAGCAAGGCT -ACGGAAGTTCCTGTTAGCTCAACC -ACGGAAGTTCCTGTTAGCTGTTCC -ACGGAAGTTCCTGTTAGCATTCCC -ACGGAAGTTCCTGTTAGCTTCTCG -ACGGAAGTTCCTGTTAGCTAGACG -ACGGAAGTTCCTGTTAGCGTAACG -ACGGAAGTTCCTGTTAGCACTTCG -ACGGAAGTTCCTGTTAGCTACGCA -ACGGAAGTTCCTGTTAGCCTTGCA -ACGGAAGTTCCTGTTAGCCGAACA -ACGGAAGTTCCTGTTAGCCAGTCA -ACGGAAGTTCCTGTTAGCGATCCA -ACGGAAGTTCCTGTTAGCACGACA -ACGGAAGTTCCTGTTAGCAGCTCA -ACGGAAGTTCCTGTTAGCTCACGT -ACGGAAGTTCCTGTTAGCCGTAGT -ACGGAAGTTCCTGTTAGCGTCAGT -ACGGAAGTTCCTGTTAGCGAAGGT -ACGGAAGTTCCTGTTAGCAACCGT -ACGGAAGTTCCTGTTAGCTTGTGC -ACGGAAGTTCCTGTTAGCCTAAGC -ACGGAAGTTCCTGTTAGCACTAGC -ACGGAAGTTCCTGTTAGCAGATGC -ACGGAAGTTCCTGTTAGCTGAAGG -ACGGAAGTTCCTGTTAGCCAATGG -ACGGAAGTTCCTGTTAGCATGAGG -ACGGAAGTTCCTGTTAGCAATGGG -ACGGAAGTTCCTGTTAGCTCCTGA -ACGGAAGTTCCTGTTAGCTAGCGA -ACGGAAGTTCCTGTTAGCCACAGA -ACGGAAGTTCCTGTTAGCGCAAGA -ACGGAAGTTCCTGTTAGCGGTTGA -ACGGAAGTTCCTGTTAGCTCCGAT -ACGGAAGTTCCTGTTAGCTGGCAT -ACGGAAGTTCCTGTTAGCCGAGAT -ACGGAAGTTCCTGTTAGCTACCAC -ACGGAAGTTCCTGTTAGCCAGAAC -ACGGAAGTTCCTGTTAGCGTCTAC -ACGGAAGTTCCTGTTAGCACGTAC -ACGGAAGTTCCTGTTAGCAGTGAC -ACGGAAGTTCCTGTTAGCCTGTAG -ACGGAAGTTCCTGTTAGCCCTAAG -ACGGAAGTTCCTGTTAGCGTTCAG -ACGGAAGTTCCTGTTAGCGCATAG -ACGGAAGTTCCTGTTAGCGACAAG -ACGGAAGTTCCTGTTAGCAAGCAG -ACGGAAGTTCCTGTTAGCCGTCAA -ACGGAAGTTCCTGTTAGCGCTGAA -ACGGAAGTTCCTGTTAGCAGTACG -ACGGAAGTTCCTGTTAGCATCCGA -ACGGAAGTTCCTGTTAGCATGGGA -ACGGAAGTTCCTGTTAGCGTGCAA -ACGGAAGTTCCTGTTAGCGAGGAA -ACGGAAGTTCCTGTTAGCCAGGTA -ACGGAAGTTCCTGTTAGCGACTCT -ACGGAAGTTCCTGTTAGCAGTCCT -ACGGAAGTTCCTGTTAGCTAAGCC -ACGGAAGTTCCTGTTAGCATAGCC -ACGGAAGTTCCTGTTAGCTAACCG -ACGGAAGTTCCTGTTAGCATGCCA -ACGGAAGTTCCTGTCTTCGGAAAC -ACGGAAGTTCCTGTCTTCAACACC -ACGGAAGTTCCTGTCTTCATCGAG -ACGGAAGTTCCTGTCTTCCTCCTT -ACGGAAGTTCCTGTCTTCCCTGTT -ACGGAAGTTCCTGTCTTCCGGTTT -ACGGAAGTTCCTGTCTTCGTGGTT -ACGGAAGTTCCTGTCTTCGCCTTT -ACGGAAGTTCCTGTCTTCGGTCTT -ACGGAAGTTCCTGTCTTCACGCTT -ACGGAAGTTCCTGTCTTCAGCGTT -ACGGAAGTTCCTGTCTTCTTCGTC -ACGGAAGTTCCTGTCTTCTCTCTC -ACGGAAGTTCCTGTCTTCTGGATC -ACGGAAGTTCCTGTCTTCCACTTC -ACGGAAGTTCCTGTCTTCGTACTC -ACGGAAGTTCCTGTCTTCGATGTC -ACGGAAGTTCCTGTCTTCACAGTC -ACGGAAGTTCCTGTCTTCTTGCTG -ACGGAAGTTCCTGTCTTCTCCATG -ACGGAAGTTCCTGTCTTCTGTGTG -ACGGAAGTTCCTGTCTTCCTAGTG -ACGGAAGTTCCTGTCTTCCATCTG -ACGGAAGTTCCTGTCTTCGAGTTG -ACGGAAGTTCCTGTCTTCAGACTG -ACGGAAGTTCCTGTCTTCTCGGTA -ACGGAAGTTCCTGTCTTCTGCCTA -ACGGAAGTTCCTGTCTTCCCACTA -ACGGAAGTTCCTGTCTTCGGAGTA -ACGGAAGTTCCTGTCTTCTCGTCT -ACGGAAGTTCCTGTCTTCTGCACT -ACGGAAGTTCCTGTCTTCCTGACT -ACGGAAGTTCCTGTCTTCCAACCT -ACGGAAGTTCCTGTCTTCGCTACT -ACGGAAGTTCCTGTCTTCGGATCT -ACGGAAGTTCCTGTCTTCAAGGCT -ACGGAAGTTCCTGTCTTCTCAACC -ACGGAAGTTCCTGTCTTCTGTTCC -ACGGAAGTTCCTGTCTTCATTCCC -ACGGAAGTTCCTGTCTTCTTCTCG -ACGGAAGTTCCTGTCTTCTAGACG -ACGGAAGTTCCTGTCTTCGTAACG -ACGGAAGTTCCTGTCTTCACTTCG -ACGGAAGTTCCTGTCTTCTACGCA -ACGGAAGTTCCTGTCTTCCTTGCA -ACGGAAGTTCCTGTCTTCCGAACA -ACGGAAGTTCCTGTCTTCCAGTCA -ACGGAAGTTCCTGTCTTCGATCCA -ACGGAAGTTCCTGTCTTCACGACA -ACGGAAGTTCCTGTCTTCAGCTCA -ACGGAAGTTCCTGTCTTCTCACGT -ACGGAAGTTCCTGTCTTCCGTAGT -ACGGAAGTTCCTGTCTTCGTCAGT -ACGGAAGTTCCTGTCTTCGAAGGT -ACGGAAGTTCCTGTCTTCAACCGT -ACGGAAGTTCCTGTCTTCTTGTGC -ACGGAAGTTCCTGTCTTCCTAAGC -ACGGAAGTTCCTGTCTTCACTAGC -ACGGAAGTTCCTGTCTTCAGATGC -ACGGAAGTTCCTGTCTTCTGAAGG -ACGGAAGTTCCTGTCTTCCAATGG -ACGGAAGTTCCTGTCTTCATGAGG -ACGGAAGTTCCTGTCTTCAATGGG -ACGGAAGTTCCTGTCTTCTCCTGA -ACGGAAGTTCCTGTCTTCTAGCGA -ACGGAAGTTCCTGTCTTCCACAGA -ACGGAAGTTCCTGTCTTCGCAAGA -ACGGAAGTTCCTGTCTTCGGTTGA -ACGGAAGTTCCTGTCTTCTCCGAT -ACGGAAGTTCCTGTCTTCTGGCAT -ACGGAAGTTCCTGTCTTCCGAGAT -ACGGAAGTTCCTGTCTTCTACCAC -ACGGAAGTTCCTGTCTTCCAGAAC -ACGGAAGTTCCTGTCTTCGTCTAC -ACGGAAGTTCCTGTCTTCACGTAC -ACGGAAGTTCCTGTCTTCAGTGAC -ACGGAAGTTCCTGTCTTCCTGTAG -ACGGAAGTTCCTGTCTTCCCTAAG -ACGGAAGTTCCTGTCTTCGTTCAG -ACGGAAGTTCCTGTCTTCGCATAG -ACGGAAGTTCCTGTCTTCGACAAG -ACGGAAGTTCCTGTCTTCAAGCAG -ACGGAAGTTCCTGTCTTCCGTCAA -ACGGAAGTTCCTGTCTTCGCTGAA -ACGGAAGTTCCTGTCTTCAGTACG -ACGGAAGTTCCTGTCTTCATCCGA -ACGGAAGTTCCTGTCTTCATGGGA -ACGGAAGTTCCTGTCTTCGTGCAA -ACGGAAGTTCCTGTCTTCGAGGAA -ACGGAAGTTCCTGTCTTCCAGGTA -ACGGAAGTTCCTGTCTTCGACTCT -ACGGAAGTTCCTGTCTTCAGTCCT -ACGGAAGTTCCTGTCTTCTAAGCC -ACGGAAGTTCCTGTCTTCATAGCC -ACGGAAGTTCCTGTCTTCTAACCG -ACGGAAGTTCCTGTCTTCATGCCA -ACGGAAGTTCCTCTCTCTGGAAAC -ACGGAAGTTCCTCTCTCTAACACC -ACGGAAGTTCCTCTCTCTATCGAG -ACGGAAGTTCCTCTCTCTCTCCTT -ACGGAAGTTCCTCTCTCTCCTGTT -ACGGAAGTTCCTCTCTCTCGGTTT -ACGGAAGTTCCTCTCTCTGTGGTT -ACGGAAGTTCCTCTCTCTGCCTTT -ACGGAAGTTCCTCTCTCTGGTCTT -ACGGAAGTTCCTCTCTCTACGCTT -ACGGAAGTTCCTCTCTCTAGCGTT -ACGGAAGTTCCTCTCTCTTTCGTC -ACGGAAGTTCCTCTCTCTTCTCTC -ACGGAAGTTCCTCTCTCTTGGATC -ACGGAAGTTCCTCTCTCTCACTTC -ACGGAAGTTCCTCTCTCTGTACTC -ACGGAAGTTCCTCTCTCTGATGTC -ACGGAAGTTCCTCTCTCTACAGTC -ACGGAAGTTCCTCTCTCTTTGCTG -ACGGAAGTTCCTCTCTCTTCCATG -ACGGAAGTTCCTCTCTCTTGTGTG -ACGGAAGTTCCTCTCTCTCTAGTG -ACGGAAGTTCCTCTCTCTCATCTG -ACGGAAGTTCCTCTCTCTGAGTTG -ACGGAAGTTCCTCTCTCTAGACTG -ACGGAAGTTCCTCTCTCTTCGGTA -ACGGAAGTTCCTCTCTCTTGCCTA -ACGGAAGTTCCTCTCTCTCCACTA -ACGGAAGTTCCTCTCTCTGGAGTA -ACGGAAGTTCCTCTCTCTTCGTCT -ACGGAAGTTCCTCTCTCTTGCACT -ACGGAAGTTCCTCTCTCTCTGACT -ACGGAAGTTCCTCTCTCTCAACCT -ACGGAAGTTCCTCTCTCTGCTACT -ACGGAAGTTCCTCTCTCTGGATCT -ACGGAAGTTCCTCTCTCTAAGGCT -ACGGAAGTTCCTCTCTCTTCAACC -ACGGAAGTTCCTCTCTCTTGTTCC -ACGGAAGTTCCTCTCTCTATTCCC -ACGGAAGTTCCTCTCTCTTTCTCG -ACGGAAGTTCCTCTCTCTTAGACG -ACGGAAGTTCCTCTCTCTGTAACG -ACGGAAGTTCCTCTCTCTACTTCG -ACGGAAGTTCCTCTCTCTTACGCA -ACGGAAGTTCCTCTCTCTCTTGCA -ACGGAAGTTCCTCTCTCTCGAACA -ACGGAAGTTCCTCTCTCTCAGTCA -ACGGAAGTTCCTCTCTCTGATCCA -ACGGAAGTTCCTCTCTCTACGACA -ACGGAAGTTCCTCTCTCTAGCTCA -ACGGAAGTTCCTCTCTCTTCACGT -ACGGAAGTTCCTCTCTCTCGTAGT -ACGGAAGTTCCTCTCTCTGTCAGT -ACGGAAGTTCCTCTCTCTGAAGGT -ACGGAAGTTCCTCTCTCTAACCGT -ACGGAAGTTCCTCTCTCTTTGTGC -ACGGAAGTTCCTCTCTCTCTAAGC -ACGGAAGTTCCTCTCTCTACTAGC -ACGGAAGTTCCTCTCTCTAGATGC -ACGGAAGTTCCTCTCTCTTGAAGG -ACGGAAGTTCCTCTCTCTCAATGG -ACGGAAGTTCCTCTCTCTATGAGG -ACGGAAGTTCCTCTCTCTAATGGG -ACGGAAGTTCCTCTCTCTTCCTGA -ACGGAAGTTCCTCTCTCTTAGCGA -ACGGAAGTTCCTCTCTCTCACAGA -ACGGAAGTTCCTCTCTCTGCAAGA -ACGGAAGTTCCTCTCTCTGGTTGA -ACGGAAGTTCCTCTCTCTTCCGAT -ACGGAAGTTCCTCTCTCTTGGCAT -ACGGAAGTTCCTCTCTCTCGAGAT -ACGGAAGTTCCTCTCTCTTACCAC -ACGGAAGTTCCTCTCTCTCAGAAC -ACGGAAGTTCCTCTCTCTGTCTAC -ACGGAAGTTCCTCTCTCTACGTAC -ACGGAAGTTCCTCTCTCTAGTGAC -ACGGAAGTTCCTCTCTCTCTGTAG -ACGGAAGTTCCTCTCTCTCCTAAG -ACGGAAGTTCCTCTCTCTGTTCAG -ACGGAAGTTCCTCTCTCTGCATAG -ACGGAAGTTCCTCTCTCTGACAAG -ACGGAAGTTCCTCTCTCTAAGCAG -ACGGAAGTTCCTCTCTCTCGTCAA -ACGGAAGTTCCTCTCTCTGCTGAA -ACGGAAGTTCCTCTCTCTAGTACG -ACGGAAGTTCCTCTCTCTATCCGA -ACGGAAGTTCCTCTCTCTATGGGA -ACGGAAGTTCCTCTCTCTGTGCAA -ACGGAAGTTCCTCTCTCTGAGGAA -ACGGAAGTTCCTCTCTCTCAGGTA -ACGGAAGTTCCTCTCTCTGACTCT -ACGGAAGTTCCTCTCTCTAGTCCT -ACGGAAGTTCCTCTCTCTTAAGCC -ACGGAAGTTCCTCTCTCTATAGCC -ACGGAAGTTCCTCTCTCTTAACCG -ACGGAAGTTCCTCTCTCTATGCCA -ACGGAAGTTCCTATCTGGGGAAAC -ACGGAAGTTCCTATCTGGAACACC -ACGGAAGTTCCTATCTGGATCGAG -ACGGAAGTTCCTATCTGGCTCCTT -ACGGAAGTTCCTATCTGGCCTGTT -ACGGAAGTTCCTATCTGGCGGTTT -ACGGAAGTTCCTATCTGGGTGGTT -ACGGAAGTTCCTATCTGGGCCTTT -ACGGAAGTTCCTATCTGGGGTCTT -ACGGAAGTTCCTATCTGGACGCTT -ACGGAAGTTCCTATCTGGAGCGTT -ACGGAAGTTCCTATCTGGTTCGTC -ACGGAAGTTCCTATCTGGTCTCTC -ACGGAAGTTCCTATCTGGTGGATC -ACGGAAGTTCCTATCTGGCACTTC -ACGGAAGTTCCTATCTGGGTACTC -ACGGAAGTTCCTATCTGGGATGTC -ACGGAAGTTCCTATCTGGACAGTC -ACGGAAGTTCCTATCTGGTTGCTG -ACGGAAGTTCCTATCTGGTCCATG -ACGGAAGTTCCTATCTGGTGTGTG -ACGGAAGTTCCTATCTGGCTAGTG -ACGGAAGTTCCTATCTGGCATCTG -ACGGAAGTTCCTATCTGGGAGTTG -ACGGAAGTTCCTATCTGGAGACTG -ACGGAAGTTCCTATCTGGTCGGTA -ACGGAAGTTCCTATCTGGTGCCTA -ACGGAAGTTCCTATCTGGCCACTA -ACGGAAGTTCCTATCTGGGGAGTA -ACGGAAGTTCCTATCTGGTCGTCT -ACGGAAGTTCCTATCTGGTGCACT -ACGGAAGTTCCTATCTGGCTGACT -ACGGAAGTTCCTATCTGGCAACCT -ACGGAAGTTCCTATCTGGGCTACT -ACGGAAGTTCCTATCTGGGGATCT -ACGGAAGTTCCTATCTGGAAGGCT -ACGGAAGTTCCTATCTGGTCAACC -ACGGAAGTTCCTATCTGGTGTTCC -ACGGAAGTTCCTATCTGGATTCCC -ACGGAAGTTCCTATCTGGTTCTCG -ACGGAAGTTCCTATCTGGTAGACG -ACGGAAGTTCCTATCTGGGTAACG -ACGGAAGTTCCTATCTGGACTTCG -ACGGAAGTTCCTATCTGGTACGCA -ACGGAAGTTCCTATCTGGCTTGCA -ACGGAAGTTCCTATCTGGCGAACA -ACGGAAGTTCCTATCTGGCAGTCA -ACGGAAGTTCCTATCTGGGATCCA -ACGGAAGTTCCTATCTGGACGACA -ACGGAAGTTCCTATCTGGAGCTCA -ACGGAAGTTCCTATCTGGTCACGT -ACGGAAGTTCCTATCTGGCGTAGT -ACGGAAGTTCCTATCTGGGTCAGT -ACGGAAGTTCCTATCTGGGAAGGT -ACGGAAGTTCCTATCTGGAACCGT -ACGGAAGTTCCTATCTGGTTGTGC -ACGGAAGTTCCTATCTGGCTAAGC -ACGGAAGTTCCTATCTGGACTAGC -ACGGAAGTTCCTATCTGGAGATGC -ACGGAAGTTCCTATCTGGTGAAGG -ACGGAAGTTCCTATCTGGCAATGG -ACGGAAGTTCCTATCTGGATGAGG -ACGGAAGTTCCTATCTGGAATGGG -ACGGAAGTTCCTATCTGGTCCTGA -ACGGAAGTTCCTATCTGGTAGCGA -ACGGAAGTTCCTATCTGGCACAGA -ACGGAAGTTCCTATCTGGGCAAGA -ACGGAAGTTCCTATCTGGGGTTGA -ACGGAAGTTCCTATCTGGTCCGAT -ACGGAAGTTCCTATCTGGTGGCAT -ACGGAAGTTCCTATCTGGCGAGAT -ACGGAAGTTCCTATCTGGTACCAC -ACGGAAGTTCCTATCTGGCAGAAC -ACGGAAGTTCCTATCTGGGTCTAC -ACGGAAGTTCCTATCTGGACGTAC -ACGGAAGTTCCTATCTGGAGTGAC -ACGGAAGTTCCTATCTGGCTGTAG -ACGGAAGTTCCTATCTGGCCTAAG -ACGGAAGTTCCTATCTGGGTTCAG -ACGGAAGTTCCTATCTGGGCATAG -ACGGAAGTTCCTATCTGGGACAAG -ACGGAAGTTCCTATCTGGAAGCAG -ACGGAAGTTCCTATCTGGCGTCAA -ACGGAAGTTCCTATCTGGGCTGAA -ACGGAAGTTCCTATCTGGAGTACG -ACGGAAGTTCCTATCTGGATCCGA -ACGGAAGTTCCTATCTGGATGGGA -ACGGAAGTTCCTATCTGGGTGCAA -ACGGAAGTTCCTATCTGGGAGGAA -ACGGAAGTTCCTATCTGGCAGGTA -ACGGAAGTTCCTATCTGGGACTCT -ACGGAAGTTCCTATCTGGAGTCCT -ACGGAAGTTCCTATCTGGTAAGCC -ACGGAAGTTCCTATCTGGATAGCC -ACGGAAGTTCCTATCTGGTAACCG -ACGGAAGTTCCTATCTGGATGCCA -ACGGAAGTTCCTTTCCACGGAAAC -ACGGAAGTTCCTTTCCACAACACC -ACGGAAGTTCCTTTCCACATCGAG -ACGGAAGTTCCTTTCCACCTCCTT -ACGGAAGTTCCTTTCCACCCTGTT -ACGGAAGTTCCTTTCCACCGGTTT -ACGGAAGTTCCTTTCCACGTGGTT -ACGGAAGTTCCTTTCCACGCCTTT -ACGGAAGTTCCTTTCCACGGTCTT -ACGGAAGTTCCTTTCCACACGCTT -ACGGAAGTTCCTTTCCACAGCGTT -ACGGAAGTTCCTTTCCACTTCGTC -ACGGAAGTTCCTTTCCACTCTCTC -ACGGAAGTTCCTTTCCACTGGATC -ACGGAAGTTCCTTTCCACCACTTC -ACGGAAGTTCCTTTCCACGTACTC -ACGGAAGTTCCTTTCCACGATGTC -ACGGAAGTTCCTTTCCACACAGTC -ACGGAAGTTCCTTTCCACTTGCTG -ACGGAAGTTCCTTTCCACTCCATG -ACGGAAGTTCCTTTCCACTGTGTG -ACGGAAGTTCCTTTCCACCTAGTG -ACGGAAGTTCCTTTCCACCATCTG -ACGGAAGTTCCTTTCCACGAGTTG -ACGGAAGTTCCTTTCCACAGACTG -ACGGAAGTTCCTTTCCACTCGGTA -ACGGAAGTTCCTTTCCACTGCCTA -ACGGAAGTTCCTTTCCACCCACTA -ACGGAAGTTCCTTTCCACGGAGTA -ACGGAAGTTCCTTTCCACTCGTCT -ACGGAAGTTCCTTTCCACTGCACT -ACGGAAGTTCCTTTCCACCTGACT -ACGGAAGTTCCTTTCCACCAACCT -ACGGAAGTTCCTTTCCACGCTACT -ACGGAAGTTCCTTTCCACGGATCT -ACGGAAGTTCCTTTCCACAAGGCT -ACGGAAGTTCCTTTCCACTCAACC -ACGGAAGTTCCTTTCCACTGTTCC -ACGGAAGTTCCTTTCCACATTCCC -ACGGAAGTTCCTTTCCACTTCTCG -ACGGAAGTTCCTTTCCACTAGACG -ACGGAAGTTCCTTTCCACGTAACG -ACGGAAGTTCCTTTCCACACTTCG -ACGGAAGTTCCTTTCCACTACGCA -ACGGAAGTTCCTTTCCACCTTGCA -ACGGAAGTTCCTTTCCACCGAACA -ACGGAAGTTCCTTTCCACCAGTCA -ACGGAAGTTCCTTTCCACGATCCA -ACGGAAGTTCCTTTCCACACGACA -ACGGAAGTTCCTTTCCACAGCTCA -ACGGAAGTTCCTTTCCACTCACGT -ACGGAAGTTCCTTTCCACCGTAGT -ACGGAAGTTCCTTTCCACGTCAGT -ACGGAAGTTCCTTTCCACGAAGGT -ACGGAAGTTCCTTTCCACAACCGT -ACGGAAGTTCCTTTCCACTTGTGC -ACGGAAGTTCCTTTCCACCTAAGC -ACGGAAGTTCCTTTCCACACTAGC -ACGGAAGTTCCTTTCCACAGATGC -ACGGAAGTTCCTTTCCACTGAAGG -ACGGAAGTTCCTTTCCACCAATGG -ACGGAAGTTCCTTTCCACATGAGG -ACGGAAGTTCCTTTCCACAATGGG -ACGGAAGTTCCTTTCCACTCCTGA -ACGGAAGTTCCTTTCCACTAGCGA -ACGGAAGTTCCTTTCCACCACAGA -ACGGAAGTTCCTTTCCACGCAAGA -ACGGAAGTTCCTTTCCACGGTTGA -ACGGAAGTTCCTTTCCACTCCGAT -ACGGAAGTTCCTTTCCACTGGCAT -ACGGAAGTTCCTTTCCACCGAGAT -ACGGAAGTTCCTTTCCACTACCAC -ACGGAAGTTCCTTTCCACCAGAAC -ACGGAAGTTCCTTTCCACGTCTAC -ACGGAAGTTCCTTTCCACACGTAC -ACGGAAGTTCCTTTCCACAGTGAC -ACGGAAGTTCCTTTCCACCTGTAG -ACGGAAGTTCCTTTCCACCCTAAG -ACGGAAGTTCCTTTCCACGTTCAG -ACGGAAGTTCCTTTCCACGCATAG -ACGGAAGTTCCTTTCCACGACAAG -ACGGAAGTTCCTTTCCACAAGCAG -ACGGAAGTTCCTTTCCACCGTCAA -ACGGAAGTTCCTTTCCACGCTGAA -ACGGAAGTTCCTTTCCACAGTACG -ACGGAAGTTCCTTTCCACATCCGA -ACGGAAGTTCCTTTCCACATGGGA -ACGGAAGTTCCTTTCCACGTGCAA -ACGGAAGTTCCTTTCCACGAGGAA -ACGGAAGTTCCTTTCCACCAGGTA -ACGGAAGTTCCTTTCCACGACTCT -ACGGAAGTTCCTTTCCACAGTCCT -ACGGAAGTTCCTTTCCACTAAGCC -ACGGAAGTTCCTTTCCACATAGCC -ACGGAAGTTCCTTTCCACTAACCG -ACGGAAGTTCCTTTCCACATGCCA -ACGGAAGTTCCTCTCGTAGGAAAC -ACGGAAGTTCCTCTCGTAAACACC -ACGGAAGTTCCTCTCGTAATCGAG -ACGGAAGTTCCTCTCGTACTCCTT -ACGGAAGTTCCTCTCGTACCTGTT -ACGGAAGTTCCTCTCGTACGGTTT -ACGGAAGTTCCTCTCGTAGTGGTT -ACGGAAGTTCCTCTCGTAGCCTTT -ACGGAAGTTCCTCTCGTAGGTCTT -ACGGAAGTTCCTCTCGTAACGCTT -ACGGAAGTTCCTCTCGTAAGCGTT -ACGGAAGTTCCTCTCGTATTCGTC -ACGGAAGTTCCTCTCGTATCTCTC -ACGGAAGTTCCTCTCGTATGGATC -ACGGAAGTTCCTCTCGTACACTTC -ACGGAAGTTCCTCTCGTAGTACTC -ACGGAAGTTCCTCTCGTAGATGTC -ACGGAAGTTCCTCTCGTAACAGTC -ACGGAAGTTCCTCTCGTATTGCTG -ACGGAAGTTCCTCTCGTATCCATG -ACGGAAGTTCCTCTCGTATGTGTG -ACGGAAGTTCCTCTCGTACTAGTG -ACGGAAGTTCCTCTCGTACATCTG -ACGGAAGTTCCTCTCGTAGAGTTG -ACGGAAGTTCCTCTCGTAAGACTG -ACGGAAGTTCCTCTCGTATCGGTA -ACGGAAGTTCCTCTCGTATGCCTA -ACGGAAGTTCCTCTCGTACCACTA -ACGGAAGTTCCTCTCGTAGGAGTA -ACGGAAGTTCCTCTCGTATCGTCT -ACGGAAGTTCCTCTCGTATGCACT -ACGGAAGTTCCTCTCGTACTGACT -ACGGAAGTTCCTCTCGTACAACCT -ACGGAAGTTCCTCTCGTAGCTACT -ACGGAAGTTCCTCTCGTAGGATCT -ACGGAAGTTCCTCTCGTAAAGGCT -ACGGAAGTTCCTCTCGTATCAACC -ACGGAAGTTCCTCTCGTATGTTCC -ACGGAAGTTCCTCTCGTAATTCCC -ACGGAAGTTCCTCTCGTATTCTCG -ACGGAAGTTCCTCTCGTATAGACG -ACGGAAGTTCCTCTCGTAGTAACG -ACGGAAGTTCCTCTCGTAACTTCG -ACGGAAGTTCCTCTCGTATACGCA -ACGGAAGTTCCTCTCGTACTTGCA -ACGGAAGTTCCTCTCGTACGAACA -ACGGAAGTTCCTCTCGTACAGTCA -ACGGAAGTTCCTCTCGTAGATCCA -ACGGAAGTTCCTCTCGTAACGACA -ACGGAAGTTCCTCTCGTAAGCTCA -ACGGAAGTTCCTCTCGTATCACGT -ACGGAAGTTCCTCTCGTACGTAGT -ACGGAAGTTCCTCTCGTAGTCAGT -ACGGAAGTTCCTCTCGTAGAAGGT -ACGGAAGTTCCTCTCGTAAACCGT -ACGGAAGTTCCTCTCGTATTGTGC -ACGGAAGTTCCTCTCGTACTAAGC -ACGGAAGTTCCTCTCGTAACTAGC -ACGGAAGTTCCTCTCGTAAGATGC -ACGGAAGTTCCTCTCGTATGAAGG -ACGGAAGTTCCTCTCGTACAATGG -ACGGAAGTTCCTCTCGTAATGAGG -ACGGAAGTTCCTCTCGTAAATGGG -ACGGAAGTTCCTCTCGTATCCTGA -ACGGAAGTTCCTCTCGTATAGCGA -ACGGAAGTTCCTCTCGTACACAGA -ACGGAAGTTCCTCTCGTAGCAAGA -ACGGAAGTTCCTCTCGTAGGTTGA -ACGGAAGTTCCTCTCGTATCCGAT -ACGGAAGTTCCTCTCGTATGGCAT -ACGGAAGTTCCTCTCGTACGAGAT -ACGGAAGTTCCTCTCGTATACCAC -ACGGAAGTTCCTCTCGTACAGAAC -ACGGAAGTTCCTCTCGTAGTCTAC -ACGGAAGTTCCTCTCGTAACGTAC -ACGGAAGTTCCTCTCGTAAGTGAC -ACGGAAGTTCCTCTCGTACTGTAG -ACGGAAGTTCCTCTCGTACCTAAG -ACGGAAGTTCCTCTCGTAGTTCAG -ACGGAAGTTCCTCTCGTAGCATAG -ACGGAAGTTCCTCTCGTAGACAAG -ACGGAAGTTCCTCTCGTAAAGCAG -ACGGAAGTTCCTCTCGTACGTCAA -ACGGAAGTTCCTCTCGTAGCTGAA -ACGGAAGTTCCTCTCGTAAGTACG -ACGGAAGTTCCTCTCGTAATCCGA -ACGGAAGTTCCTCTCGTAATGGGA -ACGGAAGTTCCTCTCGTAGTGCAA -ACGGAAGTTCCTCTCGTAGAGGAA -ACGGAAGTTCCTCTCGTACAGGTA -ACGGAAGTTCCTCTCGTAGACTCT -ACGGAAGTTCCTCTCGTAAGTCCT -ACGGAAGTTCCTCTCGTATAAGCC -ACGGAAGTTCCTCTCGTAATAGCC -ACGGAAGTTCCTCTCGTATAACCG -ACGGAAGTTCCTCTCGTAATGCCA -ACGGAAGTTCCTGTCGATGGAAAC -ACGGAAGTTCCTGTCGATAACACC -ACGGAAGTTCCTGTCGATATCGAG -ACGGAAGTTCCTGTCGATCTCCTT -ACGGAAGTTCCTGTCGATCCTGTT -ACGGAAGTTCCTGTCGATCGGTTT -ACGGAAGTTCCTGTCGATGTGGTT -ACGGAAGTTCCTGTCGATGCCTTT -ACGGAAGTTCCTGTCGATGGTCTT -ACGGAAGTTCCTGTCGATACGCTT -ACGGAAGTTCCTGTCGATAGCGTT -ACGGAAGTTCCTGTCGATTTCGTC -ACGGAAGTTCCTGTCGATTCTCTC -ACGGAAGTTCCTGTCGATTGGATC -ACGGAAGTTCCTGTCGATCACTTC -ACGGAAGTTCCTGTCGATGTACTC -ACGGAAGTTCCTGTCGATGATGTC -ACGGAAGTTCCTGTCGATACAGTC -ACGGAAGTTCCTGTCGATTTGCTG -ACGGAAGTTCCTGTCGATTCCATG -ACGGAAGTTCCTGTCGATTGTGTG -ACGGAAGTTCCTGTCGATCTAGTG -ACGGAAGTTCCTGTCGATCATCTG -ACGGAAGTTCCTGTCGATGAGTTG -ACGGAAGTTCCTGTCGATAGACTG -ACGGAAGTTCCTGTCGATTCGGTA -ACGGAAGTTCCTGTCGATTGCCTA -ACGGAAGTTCCTGTCGATCCACTA -ACGGAAGTTCCTGTCGATGGAGTA -ACGGAAGTTCCTGTCGATTCGTCT -ACGGAAGTTCCTGTCGATTGCACT -ACGGAAGTTCCTGTCGATCTGACT -ACGGAAGTTCCTGTCGATCAACCT -ACGGAAGTTCCTGTCGATGCTACT -ACGGAAGTTCCTGTCGATGGATCT -ACGGAAGTTCCTGTCGATAAGGCT -ACGGAAGTTCCTGTCGATTCAACC -ACGGAAGTTCCTGTCGATTGTTCC -ACGGAAGTTCCTGTCGATATTCCC -ACGGAAGTTCCTGTCGATTTCTCG -ACGGAAGTTCCTGTCGATTAGACG -ACGGAAGTTCCTGTCGATGTAACG -ACGGAAGTTCCTGTCGATACTTCG -ACGGAAGTTCCTGTCGATTACGCA -ACGGAAGTTCCTGTCGATCTTGCA -ACGGAAGTTCCTGTCGATCGAACA -ACGGAAGTTCCTGTCGATCAGTCA -ACGGAAGTTCCTGTCGATGATCCA -ACGGAAGTTCCTGTCGATACGACA -ACGGAAGTTCCTGTCGATAGCTCA -ACGGAAGTTCCTGTCGATTCACGT -ACGGAAGTTCCTGTCGATCGTAGT -ACGGAAGTTCCTGTCGATGTCAGT -ACGGAAGTTCCTGTCGATGAAGGT -ACGGAAGTTCCTGTCGATAACCGT -ACGGAAGTTCCTGTCGATTTGTGC -ACGGAAGTTCCTGTCGATCTAAGC -ACGGAAGTTCCTGTCGATACTAGC -ACGGAAGTTCCTGTCGATAGATGC -ACGGAAGTTCCTGTCGATTGAAGG -ACGGAAGTTCCTGTCGATCAATGG -ACGGAAGTTCCTGTCGATATGAGG -ACGGAAGTTCCTGTCGATAATGGG -ACGGAAGTTCCTGTCGATTCCTGA -ACGGAAGTTCCTGTCGATTAGCGA -ACGGAAGTTCCTGTCGATCACAGA -ACGGAAGTTCCTGTCGATGCAAGA -ACGGAAGTTCCTGTCGATGGTTGA -ACGGAAGTTCCTGTCGATTCCGAT -ACGGAAGTTCCTGTCGATTGGCAT -ACGGAAGTTCCTGTCGATCGAGAT -ACGGAAGTTCCTGTCGATTACCAC -ACGGAAGTTCCTGTCGATCAGAAC -ACGGAAGTTCCTGTCGATGTCTAC -ACGGAAGTTCCTGTCGATACGTAC -ACGGAAGTTCCTGTCGATAGTGAC -ACGGAAGTTCCTGTCGATCTGTAG -ACGGAAGTTCCTGTCGATCCTAAG -ACGGAAGTTCCTGTCGATGTTCAG -ACGGAAGTTCCTGTCGATGCATAG -ACGGAAGTTCCTGTCGATGACAAG -ACGGAAGTTCCTGTCGATAAGCAG -ACGGAAGTTCCTGTCGATCGTCAA -ACGGAAGTTCCTGTCGATGCTGAA -ACGGAAGTTCCTGTCGATAGTACG -ACGGAAGTTCCTGTCGATATCCGA -ACGGAAGTTCCTGTCGATATGGGA -ACGGAAGTTCCTGTCGATGTGCAA -ACGGAAGTTCCTGTCGATGAGGAA -ACGGAAGTTCCTGTCGATCAGGTA -ACGGAAGTTCCTGTCGATGACTCT -ACGGAAGTTCCTGTCGATAGTCCT -ACGGAAGTTCCTGTCGATTAAGCC -ACGGAAGTTCCTGTCGATATAGCC -ACGGAAGTTCCTGTCGATTAACCG -ACGGAAGTTCCTGTCGATATGCCA -ACGGAAGTTCCTGTCACAGGAAAC -ACGGAAGTTCCTGTCACAAACACC -ACGGAAGTTCCTGTCACAATCGAG -ACGGAAGTTCCTGTCACACTCCTT -ACGGAAGTTCCTGTCACACCTGTT -ACGGAAGTTCCTGTCACACGGTTT -ACGGAAGTTCCTGTCACAGTGGTT -ACGGAAGTTCCTGTCACAGCCTTT -ACGGAAGTTCCTGTCACAGGTCTT -ACGGAAGTTCCTGTCACAACGCTT -ACGGAAGTTCCTGTCACAAGCGTT -ACGGAAGTTCCTGTCACATTCGTC -ACGGAAGTTCCTGTCACATCTCTC -ACGGAAGTTCCTGTCACATGGATC -ACGGAAGTTCCTGTCACACACTTC -ACGGAAGTTCCTGTCACAGTACTC -ACGGAAGTTCCTGTCACAGATGTC -ACGGAAGTTCCTGTCACAACAGTC -ACGGAAGTTCCTGTCACATTGCTG -ACGGAAGTTCCTGTCACATCCATG -ACGGAAGTTCCTGTCACATGTGTG -ACGGAAGTTCCTGTCACACTAGTG -ACGGAAGTTCCTGTCACACATCTG -ACGGAAGTTCCTGTCACAGAGTTG -ACGGAAGTTCCTGTCACAAGACTG -ACGGAAGTTCCTGTCACATCGGTA -ACGGAAGTTCCTGTCACATGCCTA -ACGGAAGTTCCTGTCACACCACTA -ACGGAAGTTCCTGTCACAGGAGTA -ACGGAAGTTCCTGTCACATCGTCT -ACGGAAGTTCCTGTCACATGCACT -ACGGAAGTTCCTGTCACACTGACT -ACGGAAGTTCCTGTCACACAACCT -ACGGAAGTTCCTGTCACAGCTACT -ACGGAAGTTCCTGTCACAGGATCT -ACGGAAGTTCCTGTCACAAAGGCT -ACGGAAGTTCCTGTCACATCAACC -ACGGAAGTTCCTGTCACATGTTCC -ACGGAAGTTCCTGTCACAATTCCC -ACGGAAGTTCCTGTCACATTCTCG -ACGGAAGTTCCTGTCACATAGACG -ACGGAAGTTCCTGTCACAGTAACG -ACGGAAGTTCCTGTCACAACTTCG -ACGGAAGTTCCTGTCACATACGCA -ACGGAAGTTCCTGTCACACTTGCA -ACGGAAGTTCCTGTCACACGAACA -ACGGAAGTTCCTGTCACACAGTCA -ACGGAAGTTCCTGTCACAGATCCA -ACGGAAGTTCCTGTCACAACGACA -ACGGAAGTTCCTGTCACAAGCTCA -ACGGAAGTTCCTGTCACATCACGT -ACGGAAGTTCCTGTCACACGTAGT -ACGGAAGTTCCTGTCACAGTCAGT -ACGGAAGTTCCTGTCACAGAAGGT -ACGGAAGTTCCTGTCACAAACCGT -ACGGAAGTTCCTGTCACATTGTGC -ACGGAAGTTCCTGTCACACTAAGC -ACGGAAGTTCCTGTCACAACTAGC -ACGGAAGTTCCTGTCACAAGATGC -ACGGAAGTTCCTGTCACATGAAGG -ACGGAAGTTCCTGTCACACAATGG -ACGGAAGTTCCTGTCACAATGAGG -ACGGAAGTTCCTGTCACAAATGGG -ACGGAAGTTCCTGTCACATCCTGA -ACGGAAGTTCCTGTCACATAGCGA -ACGGAAGTTCCTGTCACACACAGA -ACGGAAGTTCCTGTCACAGCAAGA -ACGGAAGTTCCTGTCACAGGTTGA -ACGGAAGTTCCTGTCACATCCGAT -ACGGAAGTTCCTGTCACATGGCAT -ACGGAAGTTCCTGTCACACGAGAT -ACGGAAGTTCCTGTCACATACCAC -ACGGAAGTTCCTGTCACACAGAAC -ACGGAAGTTCCTGTCACAGTCTAC -ACGGAAGTTCCTGTCACAACGTAC -ACGGAAGTTCCTGTCACAAGTGAC -ACGGAAGTTCCTGTCACACTGTAG -ACGGAAGTTCCTGTCACACCTAAG -ACGGAAGTTCCTGTCACAGTTCAG -ACGGAAGTTCCTGTCACAGCATAG -ACGGAAGTTCCTGTCACAGACAAG -ACGGAAGTTCCTGTCACAAAGCAG -ACGGAAGTTCCTGTCACACGTCAA -ACGGAAGTTCCTGTCACAGCTGAA -ACGGAAGTTCCTGTCACAAGTACG -ACGGAAGTTCCTGTCACAATCCGA -ACGGAAGTTCCTGTCACAATGGGA -ACGGAAGTTCCTGTCACAGTGCAA -ACGGAAGTTCCTGTCACAGAGGAA -ACGGAAGTTCCTGTCACACAGGTA -ACGGAAGTTCCTGTCACAGACTCT -ACGGAAGTTCCTGTCACAAGTCCT -ACGGAAGTTCCTGTCACATAAGCC -ACGGAAGTTCCTGTCACAATAGCC -ACGGAAGTTCCTGTCACATAACCG -ACGGAAGTTCCTGTCACAATGCCA -ACGGAAGTTCCTCTGTTGGGAAAC -ACGGAAGTTCCTCTGTTGAACACC -ACGGAAGTTCCTCTGTTGATCGAG -ACGGAAGTTCCTCTGTTGCTCCTT -ACGGAAGTTCCTCTGTTGCCTGTT -ACGGAAGTTCCTCTGTTGCGGTTT -ACGGAAGTTCCTCTGTTGGTGGTT -ACGGAAGTTCCTCTGTTGGCCTTT -ACGGAAGTTCCTCTGTTGGGTCTT -ACGGAAGTTCCTCTGTTGACGCTT -ACGGAAGTTCCTCTGTTGAGCGTT -ACGGAAGTTCCTCTGTTGTTCGTC -ACGGAAGTTCCTCTGTTGTCTCTC -ACGGAAGTTCCTCTGTTGTGGATC -ACGGAAGTTCCTCTGTTGCACTTC -ACGGAAGTTCCTCTGTTGGTACTC -ACGGAAGTTCCTCTGTTGGATGTC -ACGGAAGTTCCTCTGTTGACAGTC -ACGGAAGTTCCTCTGTTGTTGCTG -ACGGAAGTTCCTCTGTTGTCCATG -ACGGAAGTTCCTCTGTTGTGTGTG -ACGGAAGTTCCTCTGTTGCTAGTG -ACGGAAGTTCCTCTGTTGCATCTG -ACGGAAGTTCCTCTGTTGGAGTTG -ACGGAAGTTCCTCTGTTGAGACTG -ACGGAAGTTCCTCTGTTGTCGGTA -ACGGAAGTTCCTCTGTTGTGCCTA -ACGGAAGTTCCTCTGTTGCCACTA -ACGGAAGTTCCTCTGTTGGGAGTA -ACGGAAGTTCCTCTGTTGTCGTCT -ACGGAAGTTCCTCTGTTGTGCACT -ACGGAAGTTCCTCTGTTGCTGACT -ACGGAAGTTCCTCTGTTGCAACCT -ACGGAAGTTCCTCTGTTGGCTACT -ACGGAAGTTCCTCTGTTGGGATCT -ACGGAAGTTCCTCTGTTGAAGGCT -ACGGAAGTTCCTCTGTTGTCAACC -ACGGAAGTTCCTCTGTTGTGTTCC -ACGGAAGTTCCTCTGTTGATTCCC -ACGGAAGTTCCTCTGTTGTTCTCG -ACGGAAGTTCCTCTGTTGTAGACG -ACGGAAGTTCCTCTGTTGGTAACG -ACGGAAGTTCCTCTGTTGACTTCG -ACGGAAGTTCCTCTGTTGTACGCA -ACGGAAGTTCCTCTGTTGCTTGCA -ACGGAAGTTCCTCTGTTGCGAACA -ACGGAAGTTCCTCTGTTGCAGTCA -ACGGAAGTTCCTCTGTTGGATCCA -ACGGAAGTTCCTCTGTTGACGACA -ACGGAAGTTCCTCTGTTGAGCTCA -ACGGAAGTTCCTCTGTTGTCACGT -ACGGAAGTTCCTCTGTTGCGTAGT -ACGGAAGTTCCTCTGTTGGTCAGT -ACGGAAGTTCCTCTGTTGGAAGGT -ACGGAAGTTCCTCTGTTGAACCGT -ACGGAAGTTCCTCTGTTGTTGTGC -ACGGAAGTTCCTCTGTTGCTAAGC -ACGGAAGTTCCTCTGTTGACTAGC -ACGGAAGTTCCTCTGTTGAGATGC -ACGGAAGTTCCTCTGTTGTGAAGG -ACGGAAGTTCCTCTGTTGCAATGG -ACGGAAGTTCCTCTGTTGATGAGG -ACGGAAGTTCCTCTGTTGAATGGG -ACGGAAGTTCCTCTGTTGTCCTGA -ACGGAAGTTCCTCTGTTGTAGCGA -ACGGAAGTTCCTCTGTTGCACAGA -ACGGAAGTTCCTCTGTTGGCAAGA -ACGGAAGTTCCTCTGTTGGGTTGA -ACGGAAGTTCCTCTGTTGTCCGAT -ACGGAAGTTCCTCTGTTGTGGCAT -ACGGAAGTTCCTCTGTTGCGAGAT -ACGGAAGTTCCTCTGTTGTACCAC -ACGGAAGTTCCTCTGTTGCAGAAC -ACGGAAGTTCCTCTGTTGGTCTAC -ACGGAAGTTCCTCTGTTGACGTAC -ACGGAAGTTCCTCTGTTGAGTGAC -ACGGAAGTTCCTCTGTTGCTGTAG -ACGGAAGTTCCTCTGTTGCCTAAG -ACGGAAGTTCCTCTGTTGGTTCAG -ACGGAAGTTCCTCTGTTGGCATAG -ACGGAAGTTCCTCTGTTGGACAAG -ACGGAAGTTCCTCTGTTGAAGCAG -ACGGAAGTTCCTCTGTTGCGTCAA -ACGGAAGTTCCTCTGTTGGCTGAA -ACGGAAGTTCCTCTGTTGAGTACG -ACGGAAGTTCCTCTGTTGATCCGA -ACGGAAGTTCCTCTGTTGATGGGA -ACGGAAGTTCCTCTGTTGGTGCAA -ACGGAAGTTCCTCTGTTGGAGGAA -ACGGAAGTTCCTCTGTTGCAGGTA -ACGGAAGTTCCTCTGTTGGACTCT -ACGGAAGTTCCTCTGTTGAGTCCT -ACGGAAGTTCCTCTGTTGTAAGCC -ACGGAAGTTCCTCTGTTGATAGCC -ACGGAAGTTCCTCTGTTGTAACCG -ACGGAAGTTCCTCTGTTGATGCCA -ACGGAAGTTCCTATGTCCGGAAAC -ACGGAAGTTCCTATGTCCAACACC -ACGGAAGTTCCTATGTCCATCGAG -ACGGAAGTTCCTATGTCCCTCCTT -ACGGAAGTTCCTATGTCCCCTGTT -ACGGAAGTTCCTATGTCCCGGTTT -ACGGAAGTTCCTATGTCCGTGGTT -ACGGAAGTTCCTATGTCCGCCTTT -ACGGAAGTTCCTATGTCCGGTCTT -ACGGAAGTTCCTATGTCCACGCTT -ACGGAAGTTCCTATGTCCAGCGTT -ACGGAAGTTCCTATGTCCTTCGTC -ACGGAAGTTCCTATGTCCTCTCTC -ACGGAAGTTCCTATGTCCTGGATC -ACGGAAGTTCCTATGTCCCACTTC -ACGGAAGTTCCTATGTCCGTACTC -ACGGAAGTTCCTATGTCCGATGTC -ACGGAAGTTCCTATGTCCACAGTC -ACGGAAGTTCCTATGTCCTTGCTG -ACGGAAGTTCCTATGTCCTCCATG -ACGGAAGTTCCTATGTCCTGTGTG -ACGGAAGTTCCTATGTCCCTAGTG -ACGGAAGTTCCTATGTCCCATCTG -ACGGAAGTTCCTATGTCCGAGTTG -ACGGAAGTTCCTATGTCCAGACTG -ACGGAAGTTCCTATGTCCTCGGTA -ACGGAAGTTCCTATGTCCTGCCTA -ACGGAAGTTCCTATGTCCCCACTA -ACGGAAGTTCCTATGTCCGGAGTA -ACGGAAGTTCCTATGTCCTCGTCT -ACGGAAGTTCCTATGTCCTGCACT -ACGGAAGTTCCTATGTCCCTGACT -ACGGAAGTTCCTATGTCCCAACCT -ACGGAAGTTCCTATGTCCGCTACT -ACGGAAGTTCCTATGTCCGGATCT -ACGGAAGTTCCTATGTCCAAGGCT -ACGGAAGTTCCTATGTCCTCAACC -ACGGAAGTTCCTATGTCCTGTTCC -ACGGAAGTTCCTATGTCCATTCCC -ACGGAAGTTCCTATGTCCTTCTCG -ACGGAAGTTCCTATGTCCTAGACG -ACGGAAGTTCCTATGTCCGTAACG -ACGGAAGTTCCTATGTCCACTTCG -ACGGAAGTTCCTATGTCCTACGCA -ACGGAAGTTCCTATGTCCCTTGCA -ACGGAAGTTCCTATGTCCCGAACA -ACGGAAGTTCCTATGTCCCAGTCA -ACGGAAGTTCCTATGTCCGATCCA -ACGGAAGTTCCTATGTCCACGACA -ACGGAAGTTCCTATGTCCAGCTCA -ACGGAAGTTCCTATGTCCTCACGT -ACGGAAGTTCCTATGTCCCGTAGT -ACGGAAGTTCCTATGTCCGTCAGT -ACGGAAGTTCCTATGTCCGAAGGT -ACGGAAGTTCCTATGTCCAACCGT -ACGGAAGTTCCTATGTCCTTGTGC -ACGGAAGTTCCTATGTCCCTAAGC -ACGGAAGTTCCTATGTCCACTAGC -ACGGAAGTTCCTATGTCCAGATGC -ACGGAAGTTCCTATGTCCTGAAGG -ACGGAAGTTCCTATGTCCCAATGG -ACGGAAGTTCCTATGTCCATGAGG -ACGGAAGTTCCTATGTCCAATGGG -ACGGAAGTTCCTATGTCCTCCTGA -ACGGAAGTTCCTATGTCCTAGCGA -ACGGAAGTTCCTATGTCCCACAGA -ACGGAAGTTCCTATGTCCGCAAGA -ACGGAAGTTCCTATGTCCGGTTGA -ACGGAAGTTCCTATGTCCTCCGAT -ACGGAAGTTCCTATGTCCTGGCAT -ACGGAAGTTCCTATGTCCCGAGAT -ACGGAAGTTCCTATGTCCTACCAC -ACGGAAGTTCCTATGTCCCAGAAC -ACGGAAGTTCCTATGTCCGTCTAC -ACGGAAGTTCCTATGTCCACGTAC -ACGGAAGTTCCTATGTCCAGTGAC -ACGGAAGTTCCTATGTCCCTGTAG -ACGGAAGTTCCTATGTCCCCTAAG -ACGGAAGTTCCTATGTCCGTTCAG -ACGGAAGTTCCTATGTCCGCATAG -ACGGAAGTTCCTATGTCCGACAAG -ACGGAAGTTCCTATGTCCAAGCAG -ACGGAAGTTCCTATGTCCCGTCAA -ACGGAAGTTCCTATGTCCGCTGAA -ACGGAAGTTCCTATGTCCAGTACG -ACGGAAGTTCCTATGTCCATCCGA -ACGGAAGTTCCTATGTCCATGGGA -ACGGAAGTTCCTATGTCCGTGCAA -ACGGAAGTTCCTATGTCCGAGGAA -ACGGAAGTTCCTATGTCCCAGGTA -ACGGAAGTTCCTATGTCCGACTCT -ACGGAAGTTCCTATGTCCAGTCCT -ACGGAAGTTCCTATGTCCTAAGCC -ACGGAAGTTCCTATGTCCATAGCC -ACGGAAGTTCCTATGTCCTAACCG -ACGGAAGTTCCTATGTCCATGCCA -ACGGAAGTTCCTGTGTGTGGAAAC -ACGGAAGTTCCTGTGTGTAACACC -ACGGAAGTTCCTGTGTGTATCGAG -ACGGAAGTTCCTGTGTGTCTCCTT -ACGGAAGTTCCTGTGTGTCCTGTT -ACGGAAGTTCCTGTGTGTCGGTTT -ACGGAAGTTCCTGTGTGTGTGGTT -ACGGAAGTTCCTGTGTGTGCCTTT -ACGGAAGTTCCTGTGTGTGGTCTT -ACGGAAGTTCCTGTGTGTACGCTT -ACGGAAGTTCCTGTGTGTAGCGTT -ACGGAAGTTCCTGTGTGTTTCGTC -ACGGAAGTTCCTGTGTGTTCTCTC -ACGGAAGTTCCTGTGTGTTGGATC -ACGGAAGTTCCTGTGTGTCACTTC -ACGGAAGTTCCTGTGTGTGTACTC -ACGGAAGTTCCTGTGTGTGATGTC -ACGGAAGTTCCTGTGTGTACAGTC -ACGGAAGTTCCTGTGTGTTTGCTG -ACGGAAGTTCCTGTGTGTTCCATG -ACGGAAGTTCCTGTGTGTTGTGTG -ACGGAAGTTCCTGTGTGTCTAGTG -ACGGAAGTTCCTGTGTGTCATCTG -ACGGAAGTTCCTGTGTGTGAGTTG -ACGGAAGTTCCTGTGTGTAGACTG -ACGGAAGTTCCTGTGTGTTCGGTA -ACGGAAGTTCCTGTGTGTTGCCTA -ACGGAAGTTCCTGTGTGTCCACTA -ACGGAAGTTCCTGTGTGTGGAGTA -ACGGAAGTTCCTGTGTGTTCGTCT -ACGGAAGTTCCTGTGTGTTGCACT -ACGGAAGTTCCTGTGTGTCTGACT -ACGGAAGTTCCTGTGTGTCAACCT -ACGGAAGTTCCTGTGTGTGCTACT -ACGGAAGTTCCTGTGTGTGGATCT -ACGGAAGTTCCTGTGTGTAAGGCT -ACGGAAGTTCCTGTGTGTTCAACC -ACGGAAGTTCCTGTGTGTTGTTCC -ACGGAAGTTCCTGTGTGTATTCCC -ACGGAAGTTCCTGTGTGTTTCTCG -ACGGAAGTTCCTGTGTGTTAGACG -ACGGAAGTTCCTGTGTGTGTAACG -ACGGAAGTTCCTGTGTGTACTTCG -ACGGAAGTTCCTGTGTGTTACGCA -ACGGAAGTTCCTGTGTGTCTTGCA -ACGGAAGTTCCTGTGTGTCGAACA -ACGGAAGTTCCTGTGTGTCAGTCA -ACGGAAGTTCCTGTGTGTGATCCA -ACGGAAGTTCCTGTGTGTACGACA -ACGGAAGTTCCTGTGTGTAGCTCA -ACGGAAGTTCCTGTGTGTTCACGT -ACGGAAGTTCCTGTGTGTCGTAGT -ACGGAAGTTCCTGTGTGTGTCAGT -ACGGAAGTTCCTGTGTGTGAAGGT -ACGGAAGTTCCTGTGTGTAACCGT -ACGGAAGTTCCTGTGTGTTTGTGC -ACGGAAGTTCCTGTGTGTCTAAGC -ACGGAAGTTCCTGTGTGTACTAGC -ACGGAAGTTCCTGTGTGTAGATGC -ACGGAAGTTCCTGTGTGTTGAAGG -ACGGAAGTTCCTGTGTGTCAATGG -ACGGAAGTTCCTGTGTGTATGAGG -ACGGAAGTTCCTGTGTGTAATGGG -ACGGAAGTTCCTGTGTGTTCCTGA -ACGGAAGTTCCTGTGTGTTAGCGA -ACGGAAGTTCCTGTGTGTCACAGA -ACGGAAGTTCCTGTGTGTGCAAGA -ACGGAAGTTCCTGTGTGTGGTTGA -ACGGAAGTTCCTGTGTGTTCCGAT -ACGGAAGTTCCTGTGTGTTGGCAT -ACGGAAGTTCCTGTGTGTCGAGAT -ACGGAAGTTCCTGTGTGTTACCAC -ACGGAAGTTCCTGTGTGTCAGAAC -ACGGAAGTTCCTGTGTGTGTCTAC -ACGGAAGTTCCTGTGTGTACGTAC -ACGGAAGTTCCTGTGTGTAGTGAC -ACGGAAGTTCCTGTGTGTCTGTAG -ACGGAAGTTCCTGTGTGTCCTAAG -ACGGAAGTTCCTGTGTGTGTTCAG -ACGGAAGTTCCTGTGTGTGCATAG -ACGGAAGTTCCTGTGTGTGACAAG -ACGGAAGTTCCTGTGTGTAAGCAG -ACGGAAGTTCCTGTGTGTCGTCAA -ACGGAAGTTCCTGTGTGTGCTGAA -ACGGAAGTTCCTGTGTGTAGTACG -ACGGAAGTTCCTGTGTGTATCCGA -ACGGAAGTTCCTGTGTGTATGGGA -ACGGAAGTTCCTGTGTGTGTGCAA -ACGGAAGTTCCTGTGTGTGAGGAA -ACGGAAGTTCCTGTGTGTCAGGTA -ACGGAAGTTCCTGTGTGTGACTCT -ACGGAAGTTCCTGTGTGTAGTCCT -ACGGAAGTTCCTGTGTGTTAAGCC -ACGGAAGTTCCTGTGTGTATAGCC -ACGGAAGTTCCTGTGTGTTAACCG -ACGGAAGTTCCTGTGTGTATGCCA -ACGGAAGTTCCTGTGCTAGGAAAC -ACGGAAGTTCCTGTGCTAAACACC -ACGGAAGTTCCTGTGCTAATCGAG -ACGGAAGTTCCTGTGCTACTCCTT -ACGGAAGTTCCTGTGCTACCTGTT -ACGGAAGTTCCTGTGCTACGGTTT -ACGGAAGTTCCTGTGCTAGTGGTT -ACGGAAGTTCCTGTGCTAGCCTTT -ACGGAAGTTCCTGTGCTAGGTCTT -ACGGAAGTTCCTGTGCTAACGCTT -ACGGAAGTTCCTGTGCTAAGCGTT -ACGGAAGTTCCTGTGCTATTCGTC -ACGGAAGTTCCTGTGCTATCTCTC -ACGGAAGTTCCTGTGCTATGGATC -ACGGAAGTTCCTGTGCTACACTTC -ACGGAAGTTCCTGTGCTAGTACTC -ACGGAAGTTCCTGTGCTAGATGTC -ACGGAAGTTCCTGTGCTAACAGTC -ACGGAAGTTCCTGTGCTATTGCTG -ACGGAAGTTCCTGTGCTATCCATG -ACGGAAGTTCCTGTGCTATGTGTG -ACGGAAGTTCCTGTGCTACTAGTG -ACGGAAGTTCCTGTGCTACATCTG -ACGGAAGTTCCTGTGCTAGAGTTG -ACGGAAGTTCCTGTGCTAAGACTG -ACGGAAGTTCCTGTGCTATCGGTA -ACGGAAGTTCCTGTGCTATGCCTA -ACGGAAGTTCCTGTGCTACCACTA -ACGGAAGTTCCTGTGCTAGGAGTA -ACGGAAGTTCCTGTGCTATCGTCT -ACGGAAGTTCCTGTGCTATGCACT -ACGGAAGTTCCTGTGCTACTGACT -ACGGAAGTTCCTGTGCTACAACCT -ACGGAAGTTCCTGTGCTAGCTACT -ACGGAAGTTCCTGTGCTAGGATCT -ACGGAAGTTCCTGTGCTAAAGGCT -ACGGAAGTTCCTGTGCTATCAACC -ACGGAAGTTCCTGTGCTATGTTCC -ACGGAAGTTCCTGTGCTAATTCCC -ACGGAAGTTCCTGTGCTATTCTCG -ACGGAAGTTCCTGTGCTATAGACG -ACGGAAGTTCCTGTGCTAGTAACG -ACGGAAGTTCCTGTGCTAACTTCG -ACGGAAGTTCCTGTGCTATACGCA -ACGGAAGTTCCTGTGCTACTTGCA -ACGGAAGTTCCTGTGCTACGAACA -ACGGAAGTTCCTGTGCTACAGTCA -ACGGAAGTTCCTGTGCTAGATCCA -ACGGAAGTTCCTGTGCTAACGACA -ACGGAAGTTCCTGTGCTAAGCTCA -ACGGAAGTTCCTGTGCTATCACGT -ACGGAAGTTCCTGTGCTACGTAGT -ACGGAAGTTCCTGTGCTAGTCAGT -ACGGAAGTTCCTGTGCTAGAAGGT -ACGGAAGTTCCTGTGCTAAACCGT -ACGGAAGTTCCTGTGCTATTGTGC -ACGGAAGTTCCTGTGCTACTAAGC -ACGGAAGTTCCTGTGCTAACTAGC -ACGGAAGTTCCTGTGCTAAGATGC -ACGGAAGTTCCTGTGCTATGAAGG -ACGGAAGTTCCTGTGCTACAATGG -ACGGAAGTTCCTGTGCTAATGAGG -ACGGAAGTTCCTGTGCTAAATGGG -ACGGAAGTTCCTGTGCTATCCTGA -ACGGAAGTTCCTGTGCTATAGCGA -ACGGAAGTTCCTGTGCTACACAGA -ACGGAAGTTCCTGTGCTAGCAAGA -ACGGAAGTTCCTGTGCTAGGTTGA -ACGGAAGTTCCTGTGCTATCCGAT -ACGGAAGTTCCTGTGCTATGGCAT -ACGGAAGTTCCTGTGCTACGAGAT -ACGGAAGTTCCTGTGCTATACCAC -ACGGAAGTTCCTGTGCTACAGAAC -ACGGAAGTTCCTGTGCTAGTCTAC -ACGGAAGTTCCTGTGCTAACGTAC -ACGGAAGTTCCTGTGCTAAGTGAC -ACGGAAGTTCCTGTGCTACTGTAG -ACGGAAGTTCCTGTGCTACCTAAG -ACGGAAGTTCCTGTGCTAGTTCAG -ACGGAAGTTCCTGTGCTAGCATAG -ACGGAAGTTCCTGTGCTAGACAAG -ACGGAAGTTCCTGTGCTAAAGCAG -ACGGAAGTTCCTGTGCTACGTCAA -ACGGAAGTTCCTGTGCTAGCTGAA -ACGGAAGTTCCTGTGCTAAGTACG -ACGGAAGTTCCTGTGCTAATCCGA -ACGGAAGTTCCTGTGCTAATGGGA -ACGGAAGTTCCTGTGCTAGTGCAA -ACGGAAGTTCCTGTGCTAGAGGAA -ACGGAAGTTCCTGTGCTACAGGTA -ACGGAAGTTCCTGTGCTAGACTCT -ACGGAAGTTCCTGTGCTAAGTCCT -ACGGAAGTTCCTGTGCTATAAGCC -ACGGAAGTTCCTGTGCTAATAGCC -ACGGAAGTTCCTGTGCTATAACCG -ACGGAAGTTCCTGTGCTAATGCCA -ACGGAAGTTCCTCTGCATGGAAAC -ACGGAAGTTCCTCTGCATAACACC -ACGGAAGTTCCTCTGCATATCGAG -ACGGAAGTTCCTCTGCATCTCCTT -ACGGAAGTTCCTCTGCATCCTGTT -ACGGAAGTTCCTCTGCATCGGTTT -ACGGAAGTTCCTCTGCATGTGGTT -ACGGAAGTTCCTCTGCATGCCTTT -ACGGAAGTTCCTCTGCATGGTCTT -ACGGAAGTTCCTCTGCATACGCTT -ACGGAAGTTCCTCTGCATAGCGTT -ACGGAAGTTCCTCTGCATTTCGTC -ACGGAAGTTCCTCTGCATTCTCTC -ACGGAAGTTCCTCTGCATTGGATC -ACGGAAGTTCCTCTGCATCACTTC -ACGGAAGTTCCTCTGCATGTACTC -ACGGAAGTTCCTCTGCATGATGTC -ACGGAAGTTCCTCTGCATACAGTC -ACGGAAGTTCCTCTGCATTTGCTG -ACGGAAGTTCCTCTGCATTCCATG -ACGGAAGTTCCTCTGCATTGTGTG -ACGGAAGTTCCTCTGCATCTAGTG -ACGGAAGTTCCTCTGCATCATCTG -ACGGAAGTTCCTCTGCATGAGTTG -ACGGAAGTTCCTCTGCATAGACTG -ACGGAAGTTCCTCTGCATTCGGTA -ACGGAAGTTCCTCTGCATTGCCTA -ACGGAAGTTCCTCTGCATCCACTA -ACGGAAGTTCCTCTGCATGGAGTA -ACGGAAGTTCCTCTGCATTCGTCT -ACGGAAGTTCCTCTGCATTGCACT -ACGGAAGTTCCTCTGCATCTGACT -ACGGAAGTTCCTCTGCATCAACCT -ACGGAAGTTCCTCTGCATGCTACT -ACGGAAGTTCCTCTGCATGGATCT -ACGGAAGTTCCTCTGCATAAGGCT -ACGGAAGTTCCTCTGCATTCAACC -ACGGAAGTTCCTCTGCATTGTTCC -ACGGAAGTTCCTCTGCATATTCCC -ACGGAAGTTCCTCTGCATTTCTCG -ACGGAAGTTCCTCTGCATTAGACG -ACGGAAGTTCCTCTGCATGTAACG -ACGGAAGTTCCTCTGCATACTTCG -ACGGAAGTTCCTCTGCATTACGCA -ACGGAAGTTCCTCTGCATCTTGCA -ACGGAAGTTCCTCTGCATCGAACA -ACGGAAGTTCCTCTGCATCAGTCA -ACGGAAGTTCCTCTGCATGATCCA -ACGGAAGTTCCTCTGCATACGACA -ACGGAAGTTCCTCTGCATAGCTCA -ACGGAAGTTCCTCTGCATTCACGT -ACGGAAGTTCCTCTGCATCGTAGT -ACGGAAGTTCCTCTGCATGTCAGT -ACGGAAGTTCCTCTGCATGAAGGT -ACGGAAGTTCCTCTGCATAACCGT -ACGGAAGTTCCTCTGCATTTGTGC -ACGGAAGTTCCTCTGCATCTAAGC -ACGGAAGTTCCTCTGCATACTAGC -ACGGAAGTTCCTCTGCATAGATGC -ACGGAAGTTCCTCTGCATTGAAGG -ACGGAAGTTCCTCTGCATCAATGG -ACGGAAGTTCCTCTGCATATGAGG -ACGGAAGTTCCTCTGCATAATGGG -ACGGAAGTTCCTCTGCATTCCTGA -ACGGAAGTTCCTCTGCATTAGCGA -ACGGAAGTTCCTCTGCATCACAGA -ACGGAAGTTCCTCTGCATGCAAGA -ACGGAAGTTCCTCTGCATGGTTGA -ACGGAAGTTCCTCTGCATTCCGAT -ACGGAAGTTCCTCTGCATTGGCAT -ACGGAAGTTCCTCTGCATCGAGAT -ACGGAAGTTCCTCTGCATTACCAC -ACGGAAGTTCCTCTGCATCAGAAC -ACGGAAGTTCCTCTGCATGTCTAC -ACGGAAGTTCCTCTGCATACGTAC -ACGGAAGTTCCTCTGCATAGTGAC -ACGGAAGTTCCTCTGCATCTGTAG -ACGGAAGTTCCTCTGCATCCTAAG -ACGGAAGTTCCTCTGCATGTTCAG -ACGGAAGTTCCTCTGCATGCATAG -ACGGAAGTTCCTCTGCATGACAAG -ACGGAAGTTCCTCTGCATAAGCAG -ACGGAAGTTCCTCTGCATCGTCAA -ACGGAAGTTCCTCTGCATGCTGAA -ACGGAAGTTCCTCTGCATAGTACG -ACGGAAGTTCCTCTGCATATCCGA -ACGGAAGTTCCTCTGCATATGGGA -ACGGAAGTTCCTCTGCATGTGCAA -ACGGAAGTTCCTCTGCATGAGGAA -ACGGAAGTTCCTCTGCATCAGGTA -ACGGAAGTTCCTCTGCATGACTCT -ACGGAAGTTCCTCTGCATAGTCCT -ACGGAAGTTCCTCTGCATTAAGCC -ACGGAAGTTCCTCTGCATATAGCC -ACGGAAGTTCCTCTGCATTAACCG -ACGGAAGTTCCTCTGCATATGCCA -ACGGAAGTTCCTTTGGAGGGAAAC -ACGGAAGTTCCTTTGGAGAACACC -ACGGAAGTTCCTTTGGAGATCGAG -ACGGAAGTTCCTTTGGAGCTCCTT -ACGGAAGTTCCTTTGGAGCCTGTT -ACGGAAGTTCCTTTGGAGCGGTTT -ACGGAAGTTCCTTTGGAGGTGGTT -ACGGAAGTTCCTTTGGAGGCCTTT -ACGGAAGTTCCTTTGGAGGGTCTT -ACGGAAGTTCCTTTGGAGACGCTT -ACGGAAGTTCCTTTGGAGAGCGTT -ACGGAAGTTCCTTTGGAGTTCGTC -ACGGAAGTTCCTTTGGAGTCTCTC -ACGGAAGTTCCTTTGGAGTGGATC -ACGGAAGTTCCTTTGGAGCACTTC -ACGGAAGTTCCTTTGGAGGTACTC -ACGGAAGTTCCTTTGGAGGATGTC -ACGGAAGTTCCTTTGGAGACAGTC -ACGGAAGTTCCTTTGGAGTTGCTG -ACGGAAGTTCCTTTGGAGTCCATG -ACGGAAGTTCCTTTGGAGTGTGTG -ACGGAAGTTCCTTTGGAGCTAGTG -ACGGAAGTTCCTTTGGAGCATCTG -ACGGAAGTTCCTTTGGAGGAGTTG -ACGGAAGTTCCTTTGGAGAGACTG -ACGGAAGTTCCTTTGGAGTCGGTA -ACGGAAGTTCCTTTGGAGTGCCTA -ACGGAAGTTCCTTTGGAGCCACTA -ACGGAAGTTCCTTTGGAGGGAGTA -ACGGAAGTTCCTTTGGAGTCGTCT -ACGGAAGTTCCTTTGGAGTGCACT -ACGGAAGTTCCTTTGGAGCTGACT -ACGGAAGTTCCTTTGGAGCAACCT -ACGGAAGTTCCTTTGGAGGCTACT -ACGGAAGTTCCTTTGGAGGGATCT -ACGGAAGTTCCTTTGGAGAAGGCT -ACGGAAGTTCCTTTGGAGTCAACC -ACGGAAGTTCCTTTGGAGTGTTCC -ACGGAAGTTCCTTTGGAGATTCCC -ACGGAAGTTCCTTTGGAGTTCTCG -ACGGAAGTTCCTTTGGAGTAGACG -ACGGAAGTTCCTTTGGAGGTAACG -ACGGAAGTTCCTTTGGAGACTTCG -ACGGAAGTTCCTTTGGAGTACGCA -ACGGAAGTTCCTTTGGAGCTTGCA -ACGGAAGTTCCTTTGGAGCGAACA -ACGGAAGTTCCTTTGGAGCAGTCA -ACGGAAGTTCCTTTGGAGGATCCA -ACGGAAGTTCCTTTGGAGACGACA -ACGGAAGTTCCTTTGGAGAGCTCA -ACGGAAGTTCCTTTGGAGTCACGT -ACGGAAGTTCCTTTGGAGCGTAGT -ACGGAAGTTCCTTTGGAGGTCAGT -ACGGAAGTTCCTTTGGAGGAAGGT -ACGGAAGTTCCTTTGGAGAACCGT -ACGGAAGTTCCTTTGGAGTTGTGC -ACGGAAGTTCCTTTGGAGCTAAGC -ACGGAAGTTCCTTTGGAGACTAGC -ACGGAAGTTCCTTTGGAGAGATGC -ACGGAAGTTCCTTTGGAGTGAAGG -ACGGAAGTTCCTTTGGAGCAATGG -ACGGAAGTTCCTTTGGAGATGAGG -ACGGAAGTTCCTTTGGAGAATGGG -ACGGAAGTTCCTTTGGAGTCCTGA -ACGGAAGTTCCTTTGGAGTAGCGA -ACGGAAGTTCCTTTGGAGCACAGA -ACGGAAGTTCCTTTGGAGGCAAGA -ACGGAAGTTCCTTTGGAGGGTTGA -ACGGAAGTTCCTTTGGAGTCCGAT -ACGGAAGTTCCTTTGGAGTGGCAT -ACGGAAGTTCCTTTGGAGCGAGAT -ACGGAAGTTCCTTTGGAGTACCAC -ACGGAAGTTCCTTTGGAGCAGAAC -ACGGAAGTTCCTTTGGAGGTCTAC -ACGGAAGTTCCTTTGGAGACGTAC -ACGGAAGTTCCTTTGGAGAGTGAC -ACGGAAGTTCCTTTGGAGCTGTAG -ACGGAAGTTCCTTTGGAGCCTAAG -ACGGAAGTTCCTTTGGAGGTTCAG -ACGGAAGTTCCTTTGGAGGCATAG -ACGGAAGTTCCTTTGGAGGACAAG -ACGGAAGTTCCTTTGGAGAAGCAG -ACGGAAGTTCCTTTGGAGCGTCAA -ACGGAAGTTCCTTTGGAGGCTGAA -ACGGAAGTTCCTTTGGAGAGTACG -ACGGAAGTTCCTTTGGAGATCCGA -ACGGAAGTTCCTTTGGAGATGGGA -ACGGAAGTTCCTTTGGAGGTGCAA -ACGGAAGTTCCTTTGGAGGAGGAA -ACGGAAGTTCCTTTGGAGCAGGTA -ACGGAAGTTCCTTTGGAGGACTCT -ACGGAAGTTCCTTTGGAGAGTCCT -ACGGAAGTTCCTTTGGAGTAAGCC -ACGGAAGTTCCTTTGGAGATAGCC -ACGGAAGTTCCTTTGGAGTAACCG -ACGGAAGTTCCTTTGGAGATGCCA -ACGGAAGTTCCTCTGAGAGGAAAC -ACGGAAGTTCCTCTGAGAAACACC -ACGGAAGTTCCTCTGAGAATCGAG -ACGGAAGTTCCTCTGAGACTCCTT -ACGGAAGTTCCTCTGAGACCTGTT -ACGGAAGTTCCTCTGAGACGGTTT -ACGGAAGTTCCTCTGAGAGTGGTT -ACGGAAGTTCCTCTGAGAGCCTTT -ACGGAAGTTCCTCTGAGAGGTCTT -ACGGAAGTTCCTCTGAGAACGCTT -ACGGAAGTTCCTCTGAGAAGCGTT -ACGGAAGTTCCTCTGAGATTCGTC -ACGGAAGTTCCTCTGAGATCTCTC -ACGGAAGTTCCTCTGAGATGGATC -ACGGAAGTTCCTCTGAGACACTTC -ACGGAAGTTCCTCTGAGAGTACTC -ACGGAAGTTCCTCTGAGAGATGTC -ACGGAAGTTCCTCTGAGAACAGTC -ACGGAAGTTCCTCTGAGATTGCTG -ACGGAAGTTCCTCTGAGATCCATG -ACGGAAGTTCCTCTGAGATGTGTG -ACGGAAGTTCCTCTGAGACTAGTG -ACGGAAGTTCCTCTGAGACATCTG -ACGGAAGTTCCTCTGAGAGAGTTG -ACGGAAGTTCCTCTGAGAAGACTG -ACGGAAGTTCCTCTGAGATCGGTA -ACGGAAGTTCCTCTGAGATGCCTA -ACGGAAGTTCCTCTGAGACCACTA -ACGGAAGTTCCTCTGAGAGGAGTA -ACGGAAGTTCCTCTGAGATCGTCT -ACGGAAGTTCCTCTGAGATGCACT -ACGGAAGTTCCTCTGAGACTGACT -ACGGAAGTTCCTCTGAGACAACCT -ACGGAAGTTCCTCTGAGAGCTACT -ACGGAAGTTCCTCTGAGAGGATCT -ACGGAAGTTCCTCTGAGAAAGGCT -ACGGAAGTTCCTCTGAGATCAACC -ACGGAAGTTCCTCTGAGATGTTCC -ACGGAAGTTCCTCTGAGAATTCCC -ACGGAAGTTCCTCTGAGATTCTCG -ACGGAAGTTCCTCTGAGATAGACG -ACGGAAGTTCCTCTGAGAGTAACG -ACGGAAGTTCCTCTGAGAACTTCG -ACGGAAGTTCCTCTGAGATACGCA -ACGGAAGTTCCTCTGAGACTTGCA -ACGGAAGTTCCTCTGAGACGAACA -ACGGAAGTTCCTCTGAGACAGTCA -ACGGAAGTTCCTCTGAGAGATCCA -ACGGAAGTTCCTCTGAGAACGACA -ACGGAAGTTCCTCTGAGAAGCTCA -ACGGAAGTTCCTCTGAGATCACGT -ACGGAAGTTCCTCTGAGACGTAGT -ACGGAAGTTCCTCTGAGAGTCAGT -ACGGAAGTTCCTCTGAGAGAAGGT -ACGGAAGTTCCTCTGAGAAACCGT -ACGGAAGTTCCTCTGAGATTGTGC -ACGGAAGTTCCTCTGAGACTAAGC -ACGGAAGTTCCTCTGAGAACTAGC -ACGGAAGTTCCTCTGAGAAGATGC -ACGGAAGTTCCTCTGAGATGAAGG -ACGGAAGTTCCTCTGAGACAATGG -ACGGAAGTTCCTCTGAGAATGAGG -ACGGAAGTTCCTCTGAGAAATGGG -ACGGAAGTTCCTCTGAGATCCTGA -ACGGAAGTTCCTCTGAGATAGCGA -ACGGAAGTTCCTCTGAGACACAGA -ACGGAAGTTCCTCTGAGAGCAAGA -ACGGAAGTTCCTCTGAGAGGTTGA -ACGGAAGTTCCTCTGAGATCCGAT -ACGGAAGTTCCTCTGAGATGGCAT -ACGGAAGTTCCTCTGAGACGAGAT -ACGGAAGTTCCTCTGAGATACCAC -ACGGAAGTTCCTCTGAGACAGAAC -ACGGAAGTTCCTCTGAGAGTCTAC -ACGGAAGTTCCTCTGAGAACGTAC -ACGGAAGTTCCTCTGAGAAGTGAC -ACGGAAGTTCCTCTGAGACTGTAG -ACGGAAGTTCCTCTGAGACCTAAG -ACGGAAGTTCCTCTGAGAGTTCAG -ACGGAAGTTCCTCTGAGAGCATAG -ACGGAAGTTCCTCTGAGAGACAAG -ACGGAAGTTCCTCTGAGAAAGCAG -ACGGAAGTTCCTCTGAGACGTCAA -ACGGAAGTTCCTCTGAGAGCTGAA -ACGGAAGTTCCTCTGAGAAGTACG -ACGGAAGTTCCTCTGAGAATCCGA -ACGGAAGTTCCTCTGAGAATGGGA -ACGGAAGTTCCTCTGAGAGTGCAA -ACGGAAGTTCCTCTGAGAGAGGAA -ACGGAAGTTCCTCTGAGACAGGTA -ACGGAAGTTCCTCTGAGAGACTCT -ACGGAAGTTCCTCTGAGAAGTCCT -ACGGAAGTTCCTCTGAGATAAGCC -ACGGAAGTTCCTCTGAGAATAGCC -ACGGAAGTTCCTCTGAGATAACCG -ACGGAAGTTCCTCTGAGAATGCCA -ACGGAAGTTCCTGTATCGGGAAAC -ACGGAAGTTCCTGTATCGAACACC -ACGGAAGTTCCTGTATCGATCGAG -ACGGAAGTTCCTGTATCGCTCCTT -ACGGAAGTTCCTGTATCGCCTGTT -ACGGAAGTTCCTGTATCGCGGTTT -ACGGAAGTTCCTGTATCGGTGGTT -ACGGAAGTTCCTGTATCGGCCTTT -ACGGAAGTTCCTGTATCGGGTCTT -ACGGAAGTTCCTGTATCGACGCTT -ACGGAAGTTCCTGTATCGAGCGTT -ACGGAAGTTCCTGTATCGTTCGTC -ACGGAAGTTCCTGTATCGTCTCTC -ACGGAAGTTCCTGTATCGTGGATC -ACGGAAGTTCCTGTATCGCACTTC -ACGGAAGTTCCTGTATCGGTACTC -ACGGAAGTTCCTGTATCGGATGTC -ACGGAAGTTCCTGTATCGACAGTC -ACGGAAGTTCCTGTATCGTTGCTG -ACGGAAGTTCCTGTATCGTCCATG -ACGGAAGTTCCTGTATCGTGTGTG -ACGGAAGTTCCTGTATCGCTAGTG -ACGGAAGTTCCTGTATCGCATCTG -ACGGAAGTTCCTGTATCGGAGTTG -ACGGAAGTTCCTGTATCGAGACTG -ACGGAAGTTCCTGTATCGTCGGTA -ACGGAAGTTCCTGTATCGTGCCTA -ACGGAAGTTCCTGTATCGCCACTA -ACGGAAGTTCCTGTATCGGGAGTA -ACGGAAGTTCCTGTATCGTCGTCT -ACGGAAGTTCCTGTATCGTGCACT -ACGGAAGTTCCTGTATCGCTGACT -ACGGAAGTTCCTGTATCGCAACCT -ACGGAAGTTCCTGTATCGGCTACT -ACGGAAGTTCCTGTATCGGGATCT -ACGGAAGTTCCTGTATCGAAGGCT -ACGGAAGTTCCTGTATCGTCAACC -ACGGAAGTTCCTGTATCGTGTTCC -ACGGAAGTTCCTGTATCGATTCCC -ACGGAAGTTCCTGTATCGTTCTCG -ACGGAAGTTCCTGTATCGTAGACG -ACGGAAGTTCCTGTATCGGTAACG -ACGGAAGTTCCTGTATCGACTTCG -ACGGAAGTTCCTGTATCGTACGCA -ACGGAAGTTCCTGTATCGCTTGCA -ACGGAAGTTCCTGTATCGCGAACA -ACGGAAGTTCCTGTATCGCAGTCA -ACGGAAGTTCCTGTATCGGATCCA -ACGGAAGTTCCTGTATCGACGACA -ACGGAAGTTCCTGTATCGAGCTCA -ACGGAAGTTCCTGTATCGTCACGT -ACGGAAGTTCCTGTATCGCGTAGT -ACGGAAGTTCCTGTATCGGTCAGT -ACGGAAGTTCCTGTATCGGAAGGT -ACGGAAGTTCCTGTATCGAACCGT -ACGGAAGTTCCTGTATCGTTGTGC -ACGGAAGTTCCTGTATCGCTAAGC -ACGGAAGTTCCTGTATCGACTAGC -ACGGAAGTTCCTGTATCGAGATGC -ACGGAAGTTCCTGTATCGTGAAGG -ACGGAAGTTCCTGTATCGCAATGG -ACGGAAGTTCCTGTATCGATGAGG -ACGGAAGTTCCTGTATCGAATGGG -ACGGAAGTTCCTGTATCGTCCTGA -ACGGAAGTTCCTGTATCGTAGCGA -ACGGAAGTTCCTGTATCGCACAGA -ACGGAAGTTCCTGTATCGGCAAGA -ACGGAAGTTCCTGTATCGGGTTGA -ACGGAAGTTCCTGTATCGTCCGAT -ACGGAAGTTCCTGTATCGTGGCAT -ACGGAAGTTCCTGTATCGCGAGAT -ACGGAAGTTCCTGTATCGTACCAC -ACGGAAGTTCCTGTATCGCAGAAC -ACGGAAGTTCCTGTATCGGTCTAC -ACGGAAGTTCCTGTATCGACGTAC -ACGGAAGTTCCTGTATCGAGTGAC -ACGGAAGTTCCTGTATCGCTGTAG -ACGGAAGTTCCTGTATCGCCTAAG -ACGGAAGTTCCTGTATCGGTTCAG -ACGGAAGTTCCTGTATCGGCATAG -ACGGAAGTTCCTGTATCGGACAAG -ACGGAAGTTCCTGTATCGAAGCAG -ACGGAAGTTCCTGTATCGCGTCAA -ACGGAAGTTCCTGTATCGGCTGAA -ACGGAAGTTCCTGTATCGAGTACG -ACGGAAGTTCCTGTATCGATCCGA -ACGGAAGTTCCTGTATCGATGGGA -ACGGAAGTTCCTGTATCGGTGCAA -ACGGAAGTTCCTGTATCGGAGGAA -ACGGAAGTTCCTGTATCGCAGGTA -ACGGAAGTTCCTGTATCGGACTCT -ACGGAAGTTCCTGTATCGAGTCCT -ACGGAAGTTCCTGTATCGTAAGCC -ACGGAAGTTCCTGTATCGATAGCC -ACGGAAGTTCCTGTATCGTAACCG -ACGGAAGTTCCTGTATCGATGCCA -ACGGAAGTTCCTCTATGCGGAAAC -ACGGAAGTTCCTCTATGCAACACC -ACGGAAGTTCCTCTATGCATCGAG -ACGGAAGTTCCTCTATGCCTCCTT -ACGGAAGTTCCTCTATGCCCTGTT -ACGGAAGTTCCTCTATGCCGGTTT -ACGGAAGTTCCTCTATGCGTGGTT -ACGGAAGTTCCTCTATGCGCCTTT -ACGGAAGTTCCTCTATGCGGTCTT -ACGGAAGTTCCTCTATGCACGCTT -ACGGAAGTTCCTCTATGCAGCGTT -ACGGAAGTTCCTCTATGCTTCGTC -ACGGAAGTTCCTCTATGCTCTCTC -ACGGAAGTTCCTCTATGCTGGATC -ACGGAAGTTCCTCTATGCCACTTC -ACGGAAGTTCCTCTATGCGTACTC -ACGGAAGTTCCTCTATGCGATGTC -ACGGAAGTTCCTCTATGCACAGTC -ACGGAAGTTCCTCTATGCTTGCTG -ACGGAAGTTCCTCTATGCTCCATG -ACGGAAGTTCCTCTATGCTGTGTG -ACGGAAGTTCCTCTATGCCTAGTG -ACGGAAGTTCCTCTATGCCATCTG -ACGGAAGTTCCTCTATGCGAGTTG -ACGGAAGTTCCTCTATGCAGACTG -ACGGAAGTTCCTCTATGCTCGGTA -ACGGAAGTTCCTCTATGCTGCCTA -ACGGAAGTTCCTCTATGCCCACTA -ACGGAAGTTCCTCTATGCGGAGTA -ACGGAAGTTCCTCTATGCTCGTCT -ACGGAAGTTCCTCTATGCTGCACT -ACGGAAGTTCCTCTATGCCTGACT -ACGGAAGTTCCTCTATGCCAACCT -ACGGAAGTTCCTCTATGCGCTACT -ACGGAAGTTCCTCTATGCGGATCT -ACGGAAGTTCCTCTATGCAAGGCT -ACGGAAGTTCCTCTATGCTCAACC -ACGGAAGTTCCTCTATGCTGTTCC -ACGGAAGTTCCTCTATGCATTCCC -ACGGAAGTTCCTCTATGCTTCTCG -ACGGAAGTTCCTCTATGCTAGACG -ACGGAAGTTCCTCTATGCGTAACG -ACGGAAGTTCCTCTATGCACTTCG -ACGGAAGTTCCTCTATGCTACGCA -ACGGAAGTTCCTCTATGCCTTGCA -ACGGAAGTTCCTCTATGCCGAACA -ACGGAAGTTCCTCTATGCCAGTCA -ACGGAAGTTCCTCTATGCGATCCA -ACGGAAGTTCCTCTATGCACGACA -ACGGAAGTTCCTCTATGCAGCTCA -ACGGAAGTTCCTCTATGCTCACGT -ACGGAAGTTCCTCTATGCCGTAGT -ACGGAAGTTCCTCTATGCGTCAGT -ACGGAAGTTCCTCTATGCGAAGGT -ACGGAAGTTCCTCTATGCAACCGT -ACGGAAGTTCCTCTATGCTTGTGC -ACGGAAGTTCCTCTATGCCTAAGC -ACGGAAGTTCCTCTATGCACTAGC -ACGGAAGTTCCTCTATGCAGATGC -ACGGAAGTTCCTCTATGCTGAAGG -ACGGAAGTTCCTCTATGCCAATGG -ACGGAAGTTCCTCTATGCATGAGG -ACGGAAGTTCCTCTATGCAATGGG -ACGGAAGTTCCTCTATGCTCCTGA -ACGGAAGTTCCTCTATGCTAGCGA -ACGGAAGTTCCTCTATGCCACAGA -ACGGAAGTTCCTCTATGCGCAAGA -ACGGAAGTTCCTCTATGCGGTTGA -ACGGAAGTTCCTCTATGCTCCGAT -ACGGAAGTTCCTCTATGCTGGCAT -ACGGAAGTTCCTCTATGCCGAGAT -ACGGAAGTTCCTCTATGCTACCAC -ACGGAAGTTCCTCTATGCCAGAAC -ACGGAAGTTCCTCTATGCGTCTAC -ACGGAAGTTCCTCTATGCACGTAC -ACGGAAGTTCCTCTATGCAGTGAC -ACGGAAGTTCCTCTATGCCTGTAG -ACGGAAGTTCCTCTATGCCCTAAG -ACGGAAGTTCCTCTATGCGTTCAG -ACGGAAGTTCCTCTATGCGCATAG -ACGGAAGTTCCTCTATGCGACAAG -ACGGAAGTTCCTCTATGCAAGCAG -ACGGAAGTTCCTCTATGCCGTCAA -ACGGAAGTTCCTCTATGCGCTGAA -ACGGAAGTTCCTCTATGCAGTACG -ACGGAAGTTCCTCTATGCATCCGA -ACGGAAGTTCCTCTATGCATGGGA -ACGGAAGTTCCTCTATGCGTGCAA -ACGGAAGTTCCTCTATGCGAGGAA -ACGGAAGTTCCTCTATGCCAGGTA -ACGGAAGTTCCTCTATGCGACTCT -ACGGAAGTTCCTCTATGCAGTCCT -ACGGAAGTTCCTCTATGCTAAGCC -ACGGAAGTTCCTCTATGCATAGCC -ACGGAAGTTCCTCTATGCTAACCG -ACGGAAGTTCCTCTATGCATGCCA -ACGGAAGTTCCTCTACCAGGAAAC -ACGGAAGTTCCTCTACCAAACACC -ACGGAAGTTCCTCTACCAATCGAG -ACGGAAGTTCCTCTACCACTCCTT -ACGGAAGTTCCTCTACCACCTGTT -ACGGAAGTTCCTCTACCACGGTTT -ACGGAAGTTCCTCTACCAGTGGTT -ACGGAAGTTCCTCTACCAGCCTTT -ACGGAAGTTCCTCTACCAGGTCTT -ACGGAAGTTCCTCTACCAACGCTT -ACGGAAGTTCCTCTACCAAGCGTT -ACGGAAGTTCCTCTACCATTCGTC -ACGGAAGTTCCTCTACCATCTCTC -ACGGAAGTTCCTCTACCATGGATC -ACGGAAGTTCCTCTACCACACTTC -ACGGAAGTTCCTCTACCAGTACTC -ACGGAAGTTCCTCTACCAGATGTC -ACGGAAGTTCCTCTACCAACAGTC -ACGGAAGTTCCTCTACCATTGCTG -ACGGAAGTTCCTCTACCATCCATG -ACGGAAGTTCCTCTACCATGTGTG -ACGGAAGTTCCTCTACCACTAGTG -ACGGAAGTTCCTCTACCACATCTG -ACGGAAGTTCCTCTACCAGAGTTG -ACGGAAGTTCCTCTACCAAGACTG -ACGGAAGTTCCTCTACCATCGGTA -ACGGAAGTTCCTCTACCATGCCTA -ACGGAAGTTCCTCTACCACCACTA -ACGGAAGTTCCTCTACCAGGAGTA -ACGGAAGTTCCTCTACCATCGTCT -ACGGAAGTTCCTCTACCATGCACT -ACGGAAGTTCCTCTACCACTGACT -ACGGAAGTTCCTCTACCACAACCT -ACGGAAGTTCCTCTACCAGCTACT -ACGGAAGTTCCTCTACCAGGATCT -ACGGAAGTTCCTCTACCAAAGGCT -ACGGAAGTTCCTCTACCATCAACC -ACGGAAGTTCCTCTACCATGTTCC -ACGGAAGTTCCTCTACCAATTCCC -ACGGAAGTTCCTCTACCATTCTCG -ACGGAAGTTCCTCTACCATAGACG -ACGGAAGTTCCTCTACCAGTAACG -ACGGAAGTTCCTCTACCAACTTCG -ACGGAAGTTCCTCTACCATACGCA -ACGGAAGTTCCTCTACCACTTGCA -ACGGAAGTTCCTCTACCACGAACA -ACGGAAGTTCCTCTACCACAGTCA -ACGGAAGTTCCTCTACCAGATCCA -ACGGAAGTTCCTCTACCAACGACA -ACGGAAGTTCCTCTACCAAGCTCA -ACGGAAGTTCCTCTACCATCACGT -ACGGAAGTTCCTCTACCACGTAGT -ACGGAAGTTCCTCTACCAGTCAGT -ACGGAAGTTCCTCTACCAGAAGGT -ACGGAAGTTCCTCTACCAAACCGT -ACGGAAGTTCCTCTACCATTGTGC -ACGGAAGTTCCTCTACCACTAAGC -ACGGAAGTTCCTCTACCAACTAGC -ACGGAAGTTCCTCTACCAAGATGC -ACGGAAGTTCCTCTACCATGAAGG -ACGGAAGTTCCTCTACCACAATGG -ACGGAAGTTCCTCTACCAATGAGG -ACGGAAGTTCCTCTACCAAATGGG -ACGGAAGTTCCTCTACCATCCTGA -ACGGAAGTTCCTCTACCATAGCGA -ACGGAAGTTCCTCTACCACACAGA -ACGGAAGTTCCTCTACCAGCAAGA -ACGGAAGTTCCTCTACCAGGTTGA -ACGGAAGTTCCTCTACCATCCGAT -ACGGAAGTTCCTCTACCATGGCAT -ACGGAAGTTCCTCTACCACGAGAT -ACGGAAGTTCCTCTACCATACCAC -ACGGAAGTTCCTCTACCACAGAAC -ACGGAAGTTCCTCTACCAGTCTAC -ACGGAAGTTCCTCTACCAACGTAC -ACGGAAGTTCCTCTACCAAGTGAC -ACGGAAGTTCCTCTACCACTGTAG -ACGGAAGTTCCTCTACCACCTAAG -ACGGAAGTTCCTCTACCAGTTCAG -ACGGAAGTTCCTCTACCAGCATAG -ACGGAAGTTCCTCTACCAGACAAG -ACGGAAGTTCCTCTACCAAAGCAG -ACGGAAGTTCCTCTACCACGTCAA -ACGGAAGTTCCTCTACCAGCTGAA -ACGGAAGTTCCTCTACCAAGTACG -ACGGAAGTTCCTCTACCAATCCGA -ACGGAAGTTCCTCTACCAATGGGA -ACGGAAGTTCCTCTACCAGTGCAA -ACGGAAGTTCCTCTACCAGAGGAA -ACGGAAGTTCCTCTACCACAGGTA -ACGGAAGTTCCTCTACCAGACTCT -ACGGAAGTTCCTCTACCAAGTCCT -ACGGAAGTTCCTCTACCATAAGCC -ACGGAAGTTCCTCTACCAATAGCC -ACGGAAGTTCCTCTACCATAACCG -ACGGAAGTTCCTCTACCAATGCCA -ACGGAAGTTCCTGTAGGAGGAAAC -ACGGAAGTTCCTGTAGGAAACACC -ACGGAAGTTCCTGTAGGAATCGAG -ACGGAAGTTCCTGTAGGACTCCTT -ACGGAAGTTCCTGTAGGACCTGTT -ACGGAAGTTCCTGTAGGACGGTTT -ACGGAAGTTCCTGTAGGAGTGGTT -ACGGAAGTTCCTGTAGGAGCCTTT -ACGGAAGTTCCTGTAGGAGGTCTT -ACGGAAGTTCCTGTAGGAACGCTT -ACGGAAGTTCCTGTAGGAAGCGTT -ACGGAAGTTCCTGTAGGATTCGTC -ACGGAAGTTCCTGTAGGATCTCTC -ACGGAAGTTCCTGTAGGATGGATC -ACGGAAGTTCCTGTAGGACACTTC -ACGGAAGTTCCTGTAGGAGTACTC -ACGGAAGTTCCTGTAGGAGATGTC -ACGGAAGTTCCTGTAGGAACAGTC -ACGGAAGTTCCTGTAGGATTGCTG -ACGGAAGTTCCTGTAGGATCCATG -ACGGAAGTTCCTGTAGGATGTGTG -ACGGAAGTTCCTGTAGGACTAGTG -ACGGAAGTTCCTGTAGGACATCTG -ACGGAAGTTCCTGTAGGAGAGTTG -ACGGAAGTTCCTGTAGGAAGACTG -ACGGAAGTTCCTGTAGGATCGGTA -ACGGAAGTTCCTGTAGGATGCCTA -ACGGAAGTTCCTGTAGGACCACTA -ACGGAAGTTCCTGTAGGAGGAGTA -ACGGAAGTTCCTGTAGGATCGTCT -ACGGAAGTTCCTGTAGGATGCACT -ACGGAAGTTCCTGTAGGACTGACT -ACGGAAGTTCCTGTAGGACAACCT -ACGGAAGTTCCTGTAGGAGCTACT -ACGGAAGTTCCTGTAGGAGGATCT -ACGGAAGTTCCTGTAGGAAAGGCT -ACGGAAGTTCCTGTAGGATCAACC -ACGGAAGTTCCTGTAGGATGTTCC -ACGGAAGTTCCTGTAGGAATTCCC -ACGGAAGTTCCTGTAGGATTCTCG -ACGGAAGTTCCTGTAGGATAGACG -ACGGAAGTTCCTGTAGGAGTAACG -ACGGAAGTTCCTGTAGGAACTTCG -ACGGAAGTTCCTGTAGGATACGCA -ACGGAAGTTCCTGTAGGACTTGCA -ACGGAAGTTCCTGTAGGACGAACA -ACGGAAGTTCCTGTAGGACAGTCA -ACGGAAGTTCCTGTAGGAGATCCA -ACGGAAGTTCCTGTAGGAACGACA -ACGGAAGTTCCTGTAGGAAGCTCA -ACGGAAGTTCCTGTAGGATCACGT -ACGGAAGTTCCTGTAGGACGTAGT -ACGGAAGTTCCTGTAGGAGTCAGT -ACGGAAGTTCCTGTAGGAGAAGGT -ACGGAAGTTCCTGTAGGAAACCGT -ACGGAAGTTCCTGTAGGATTGTGC -ACGGAAGTTCCTGTAGGACTAAGC -ACGGAAGTTCCTGTAGGAACTAGC -ACGGAAGTTCCTGTAGGAAGATGC -ACGGAAGTTCCTGTAGGATGAAGG -ACGGAAGTTCCTGTAGGACAATGG -ACGGAAGTTCCTGTAGGAATGAGG -ACGGAAGTTCCTGTAGGAAATGGG -ACGGAAGTTCCTGTAGGATCCTGA -ACGGAAGTTCCTGTAGGATAGCGA -ACGGAAGTTCCTGTAGGACACAGA -ACGGAAGTTCCTGTAGGAGCAAGA -ACGGAAGTTCCTGTAGGAGGTTGA -ACGGAAGTTCCTGTAGGATCCGAT -ACGGAAGTTCCTGTAGGATGGCAT -ACGGAAGTTCCTGTAGGACGAGAT -ACGGAAGTTCCTGTAGGATACCAC -ACGGAAGTTCCTGTAGGACAGAAC -ACGGAAGTTCCTGTAGGAGTCTAC -ACGGAAGTTCCTGTAGGAACGTAC -ACGGAAGTTCCTGTAGGAAGTGAC -ACGGAAGTTCCTGTAGGACTGTAG -ACGGAAGTTCCTGTAGGACCTAAG -ACGGAAGTTCCTGTAGGAGTTCAG -ACGGAAGTTCCTGTAGGAGCATAG -ACGGAAGTTCCTGTAGGAGACAAG -ACGGAAGTTCCTGTAGGAAAGCAG -ACGGAAGTTCCTGTAGGACGTCAA -ACGGAAGTTCCTGTAGGAGCTGAA -ACGGAAGTTCCTGTAGGAAGTACG -ACGGAAGTTCCTGTAGGAATCCGA -ACGGAAGTTCCTGTAGGAATGGGA -ACGGAAGTTCCTGTAGGAGTGCAA -ACGGAAGTTCCTGTAGGAGAGGAA -ACGGAAGTTCCTGTAGGACAGGTA -ACGGAAGTTCCTGTAGGAGACTCT -ACGGAAGTTCCTGTAGGAAGTCCT -ACGGAAGTTCCTGTAGGATAAGCC -ACGGAAGTTCCTGTAGGAATAGCC -ACGGAAGTTCCTGTAGGATAACCG -ACGGAAGTTCCTGTAGGAATGCCA -ACGGAAGTTCCTTCTTCGGGAAAC -ACGGAAGTTCCTTCTTCGAACACC -ACGGAAGTTCCTTCTTCGATCGAG -ACGGAAGTTCCTTCTTCGCTCCTT -ACGGAAGTTCCTTCTTCGCCTGTT -ACGGAAGTTCCTTCTTCGCGGTTT -ACGGAAGTTCCTTCTTCGGTGGTT -ACGGAAGTTCCTTCTTCGGCCTTT -ACGGAAGTTCCTTCTTCGGGTCTT -ACGGAAGTTCCTTCTTCGACGCTT -ACGGAAGTTCCTTCTTCGAGCGTT -ACGGAAGTTCCTTCTTCGTTCGTC -ACGGAAGTTCCTTCTTCGTCTCTC -ACGGAAGTTCCTTCTTCGTGGATC -ACGGAAGTTCCTTCTTCGCACTTC -ACGGAAGTTCCTTCTTCGGTACTC -ACGGAAGTTCCTTCTTCGGATGTC -ACGGAAGTTCCTTCTTCGACAGTC -ACGGAAGTTCCTTCTTCGTTGCTG -ACGGAAGTTCCTTCTTCGTCCATG -ACGGAAGTTCCTTCTTCGTGTGTG -ACGGAAGTTCCTTCTTCGCTAGTG -ACGGAAGTTCCTTCTTCGCATCTG -ACGGAAGTTCCTTCTTCGGAGTTG -ACGGAAGTTCCTTCTTCGAGACTG -ACGGAAGTTCCTTCTTCGTCGGTA -ACGGAAGTTCCTTCTTCGTGCCTA -ACGGAAGTTCCTTCTTCGCCACTA -ACGGAAGTTCCTTCTTCGGGAGTA -ACGGAAGTTCCTTCTTCGTCGTCT -ACGGAAGTTCCTTCTTCGTGCACT -ACGGAAGTTCCTTCTTCGCTGACT -ACGGAAGTTCCTTCTTCGCAACCT -ACGGAAGTTCCTTCTTCGGCTACT -ACGGAAGTTCCTTCTTCGGGATCT -ACGGAAGTTCCTTCTTCGAAGGCT -ACGGAAGTTCCTTCTTCGTCAACC -ACGGAAGTTCCTTCTTCGTGTTCC -ACGGAAGTTCCTTCTTCGATTCCC -ACGGAAGTTCCTTCTTCGTTCTCG -ACGGAAGTTCCTTCTTCGTAGACG -ACGGAAGTTCCTTCTTCGGTAACG -ACGGAAGTTCCTTCTTCGACTTCG -ACGGAAGTTCCTTCTTCGTACGCA -ACGGAAGTTCCTTCTTCGCTTGCA -ACGGAAGTTCCTTCTTCGCGAACA -ACGGAAGTTCCTTCTTCGCAGTCA -ACGGAAGTTCCTTCTTCGGATCCA -ACGGAAGTTCCTTCTTCGACGACA -ACGGAAGTTCCTTCTTCGAGCTCA -ACGGAAGTTCCTTCTTCGTCACGT -ACGGAAGTTCCTTCTTCGCGTAGT -ACGGAAGTTCCTTCTTCGGTCAGT -ACGGAAGTTCCTTCTTCGGAAGGT -ACGGAAGTTCCTTCTTCGAACCGT -ACGGAAGTTCCTTCTTCGTTGTGC -ACGGAAGTTCCTTCTTCGCTAAGC -ACGGAAGTTCCTTCTTCGACTAGC -ACGGAAGTTCCTTCTTCGAGATGC -ACGGAAGTTCCTTCTTCGTGAAGG -ACGGAAGTTCCTTCTTCGCAATGG -ACGGAAGTTCCTTCTTCGATGAGG -ACGGAAGTTCCTTCTTCGAATGGG -ACGGAAGTTCCTTCTTCGTCCTGA -ACGGAAGTTCCTTCTTCGTAGCGA -ACGGAAGTTCCTTCTTCGCACAGA -ACGGAAGTTCCTTCTTCGGCAAGA -ACGGAAGTTCCTTCTTCGGGTTGA -ACGGAAGTTCCTTCTTCGTCCGAT -ACGGAAGTTCCTTCTTCGTGGCAT -ACGGAAGTTCCTTCTTCGCGAGAT -ACGGAAGTTCCTTCTTCGTACCAC -ACGGAAGTTCCTTCTTCGCAGAAC -ACGGAAGTTCCTTCTTCGGTCTAC -ACGGAAGTTCCTTCTTCGACGTAC -ACGGAAGTTCCTTCTTCGAGTGAC -ACGGAAGTTCCTTCTTCGCTGTAG -ACGGAAGTTCCTTCTTCGCCTAAG -ACGGAAGTTCCTTCTTCGGTTCAG -ACGGAAGTTCCTTCTTCGGCATAG -ACGGAAGTTCCTTCTTCGGACAAG -ACGGAAGTTCCTTCTTCGAAGCAG -ACGGAAGTTCCTTCTTCGCGTCAA -ACGGAAGTTCCTTCTTCGGCTGAA -ACGGAAGTTCCTTCTTCGAGTACG -ACGGAAGTTCCTTCTTCGATCCGA -ACGGAAGTTCCTTCTTCGATGGGA -ACGGAAGTTCCTTCTTCGGTGCAA -ACGGAAGTTCCTTCTTCGGAGGAA -ACGGAAGTTCCTTCTTCGCAGGTA -ACGGAAGTTCCTTCTTCGGACTCT -ACGGAAGTTCCTTCTTCGAGTCCT -ACGGAAGTTCCTTCTTCGTAAGCC -ACGGAAGTTCCTTCTTCGATAGCC -ACGGAAGTTCCTTCTTCGTAACCG -ACGGAAGTTCCTTCTTCGATGCCA -ACGGAAGTTCCTACTTGCGGAAAC -ACGGAAGTTCCTACTTGCAACACC -ACGGAAGTTCCTACTTGCATCGAG -ACGGAAGTTCCTACTTGCCTCCTT -ACGGAAGTTCCTACTTGCCCTGTT -ACGGAAGTTCCTACTTGCCGGTTT -ACGGAAGTTCCTACTTGCGTGGTT -ACGGAAGTTCCTACTTGCGCCTTT -ACGGAAGTTCCTACTTGCGGTCTT -ACGGAAGTTCCTACTTGCACGCTT -ACGGAAGTTCCTACTTGCAGCGTT -ACGGAAGTTCCTACTTGCTTCGTC -ACGGAAGTTCCTACTTGCTCTCTC -ACGGAAGTTCCTACTTGCTGGATC -ACGGAAGTTCCTACTTGCCACTTC -ACGGAAGTTCCTACTTGCGTACTC -ACGGAAGTTCCTACTTGCGATGTC -ACGGAAGTTCCTACTTGCACAGTC -ACGGAAGTTCCTACTTGCTTGCTG -ACGGAAGTTCCTACTTGCTCCATG -ACGGAAGTTCCTACTTGCTGTGTG -ACGGAAGTTCCTACTTGCCTAGTG -ACGGAAGTTCCTACTTGCCATCTG -ACGGAAGTTCCTACTTGCGAGTTG -ACGGAAGTTCCTACTTGCAGACTG -ACGGAAGTTCCTACTTGCTCGGTA -ACGGAAGTTCCTACTTGCTGCCTA -ACGGAAGTTCCTACTTGCCCACTA -ACGGAAGTTCCTACTTGCGGAGTA -ACGGAAGTTCCTACTTGCTCGTCT -ACGGAAGTTCCTACTTGCTGCACT -ACGGAAGTTCCTACTTGCCTGACT -ACGGAAGTTCCTACTTGCCAACCT -ACGGAAGTTCCTACTTGCGCTACT -ACGGAAGTTCCTACTTGCGGATCT -ACGGAAGTTCCTACTTGCAAGGCT -ACGGAAGTTCCTACTTGCTCAACC -ACGGAAGTTCCTACTTGCTGTTCC -ACGGAAGTTCCTACTTGCATTCCC -ACGGAAGTTCCTACTTGCTTCTCG -ACGGAAGTTCCTACTTGCTAGACG -ACGGAAGTTCCTACTTGCGTAACG -ACGGAAGTTCCTACTTGCACTTCG -ACGGAAGTTCCTACTTGCTACGCA -ACGGAAGTTCCTACTTGCCTTGCA -ACGGAAGTTCCTACTTGCCGAACA -ACGGAAGTTCCTACTTGCCAGTCA -ACGGAAGTTCCTACTTGCGATCCA -ACGGAAGTTCCTACTTGCACGACA -ACGGAAGTTCCTACTTGCAGCTCA -ACGGAAGTTCCTACTTGCTCACGT -ACGGAAGTTCCTACTTGCCGTAGT -ACGGAAGTTCCTACTTGCGTCAGT -ACGGAAGTTCCTACTTGCGAAGGT -ACGGAAGTTCCTACTTGCAACCGT -ACGGAAGTTCCTACTTGCTTGTGC -ACGGAAGTTCCTACTTGCCTAAGC -ACGGAAGTTCCTACTTGCACTAGC -ACGGAAGTTCCTACTTGCAGATGC -ACGGAAGTTCCTACTTGCTGAAGG -ACGGAAGTTCCTACTTGCCAATGG -ACGGAAGTTCCTACTTGCATGAGG -ACGGAAGTTCCTACTTGCAATGGG -ACGGAAGTTCCTACTTGCTCCTGA -ACGGAAGTTCCTACTTGCTAGCGA -ACGGAAGTTCCTACTTGCCACAGA -ACGGAAGTTCCTACTTGCGCAAGA -ACGGAAGTTCCTACTTGCGGTTGA -ACGGAAGTTCCTACTTGCTCCGAT -ACGGAAGTTCCTACTTGCTGGCAT -ACGGAAGTTCCTACTTGCCGAGAT -ACGGAAGTTCCTACTTGCTACCAC -ACGGAAGTTCCTACTTGCCAGAAC -ACGGAAGTTCCTACTTGCGTCTAC -ACGGAAGTTCCTACTTGCACGTAC -ACGGAAGTTCCTACTTGCAGTGAC -ACGGAAGTTCCTACTTGCCTGTAG -ACGGAAGTTCCTACTTGCCCTAAG -ACGGAAGTTCCTACTTGCGTTCAG -ACGGAAGTTCCTACTTGCGCATAG -ACGGAAGTTCCTACTTGCGACAAG -ACGGAAGTTCCTACTTGCAAGCAG -ACGGAAGTTCCTACTTGCCGTCAA -ACGGAAGTTCCTACTTGCGCTGAA -ACGGAAGTTCCTACTTGCAGTACG -ACGGAAGTTCCTACTTGCATCCGA -ACGGAAGTTCCTACTTGCATGGGA -ACGGAAGTTCCTACTTGCGTGCAA -ACGGAAGTTCCTACTTGCGAGGAA -ACGGAAGTTCCTACTTGCCAGGTA -ACGGAAGTTCCTACTTGCGACTCT -ACGGAAGTTCCTACTTGCAGTCCT -ACGGAAGTTCCTACTTGCTAAGCC -ACGGAAGTTCCTACTTGCATAGCC -ACGGAAGTTCCTACTTGCTAACCG -ACGGAAGTTCCTACTTGCATGCCA -ACGGAAGTTCCTACTCTGGGAAAC -ACGGAAGTTCCTACTCTGAACACC -ACGGAAGTTCCTACTCTGATCGAG -ACGGAAGTTCCTACTCTGCTCCTT -ACGGAAGTTCCTACTCTGCCTGTT -ACGGAAGTTCCTACTCTGCGGTTT -ACGGAAGTTCCTACTCTGGTGGTT -ACGGAAGTTCCTACTCTGGCCTTT -ACGGAAGTTCCTACTCTGGGTCTT -ACGGAAGTTCCTACTCTGACGCTT -ACGGAAGTTCCTACTCTGAGCGTT -ACGGAAGTTCCTACTCTGTTCGTC -ACGGAAGTTCCTACTCTGTCTCTC -ACGGAAGTTCCTACTCTGTGGATC -ACGGAAGTTCCTACTCTGCACTTC -ACGGAAGTTCCTACTCTGGTACTC -ACGGAAGTTCCTACTCTGGATGTC -ACGGAAGTTCCTACTCTGACAGTC -ACGGAAGTTCCTACTCTGTTGCTG -ACGGAAGTTCCTACTCTGTCCATG -ACGGAAGTTCCTACTCTGTGTGTG -ACGGAAGTTCCTACTCTGCTAGTG -ACGGAAGTTCCTACTCTGCATCTG -ACGGAAGTTCCTACTCTGGAGTTG -ACGGAAGTTCCTACTCTGAGACTG -ACGGAAGTTCCTACTCTGTCGGTA -ACGGAAGTTCCTACTCTGTGCCTA -ACGGAAGTTCCTACTCTGCCACTA -ACGGAAGTTCCTACTCTGGGAGTA -ACGGAAGTTCCTACTCTGTCGTCT -ACGGAAGTTCCTACTCTGTGCACT -ACGGAAGTTCCTACTCTGCTGACT -ACGGAAGTTCCTACTCTGCAACCT -ACGGAAGTTCCTACTCTGGCTACT -ACGGAAGTTCCTACTCTGGGATCT -ACGGAAGTTCCTACTCTGAAGGCT -ACGGAAGTTCCTACTCTGTCAACC -ACGGAAGTTCCTACTCTGTGTTCC -ACGGAAGTTCCTACTCTGATTCCC -ACGGAAGTTCCTACTCTGTTCTCG -ACGGAAGTTCCTACTCTGTAGACG -ACGGAAGTTCCTACTCTGGTAACG -ACGGAAGTTCCTACTCTGACTTCG -ACGGAAGTTCCTACTCTGTACGCA -ACGGAAGTTCCTACTCTGCTTGCA -ACGGAAGTTCCTACTCTGCGAACA -ACGGAAGTTCCTACTCTGCAGTCA -ACGGAAGTTCCTACTCTGGATCCA -ACGGAAGTTCCTACTCTGACGACA -ACGGAAGTTCCTACTCTGAGCTCA -ACGGAAGTTCCTACTCTGTCACGT -ACGGAAGTTCCTACTCTGCGTAGT -ACGGAAGTTCCTACTCTGGTCAGT -ACGGAAGTTCCTACTCTGGAAGGT -ACGGAAGTTCCTACTCTGAACCGT -ACGGAAGTTCCTACTCTGTTGTGC -ACGGAAGTTCCTACTCTGCTAAGC -ACGGAAGTTCCTACTCTGACTAGC -ACGGAAGTTCCTACTCTGAGATGC -ACGGAAGTTCCTACTCTGTGAAGG -ACGGAAGTTCCTACTCTGCAATGG -ACGGAAGTTCCTACTCTGATGAGG -ACGGAAGTTCCTACTCTGAATGGG -ACGGAAGTTCCTACTCTGTCCTGA -ACGGAAGTTCCTACTCTGTAGCGA -ACGGAAGTTCCTACTCTGCACAGA -ACGGAAGTTCCTACTCTGGCAAGA -ACGGAAGTTCCTACTCTGGGTTGA -ACGGAAGTTCCTACTCTGTCCGAT -ACGGAAGTTCCTACTCTGTGGCAT -ACGGAAGTTCCTACTCTGCGAGAT -ACGGAAGTTCCTACTCTGTACCAC -ACGGAAGTTCCTACTCTGCAGAAC -ACGGAAGTTCCTACTCTGGTCTAC -ACGGAAGTTCCTACTCTGACGTAC -ACGGAAGTTCCTACTCTGAGTGAC -ACGGAAGTTCCTACTCTGCTGTAG -ACGGAAGTTCCTACTCTGCCTAAG -ACGGAAGTTCCTACTCTGGTTCAG -ACGGAAGTTCCTACTCTGGCATAG -ACGGAAGTTCCTACTCTGGACAAG -ACGGAAGTTCCTACTCTGAAGCAG -ACGGAAGTTCCTACTCTGCGTCAA -ACGGAAGTTCCTACTCTGGCTGAA -ACGGAAGTTCCTACTCTGAGTACG -ACGGAAGTTCCTACTCTGATCCGA -ACGGAAGTTCCTACTCTGATGGGA -ACGGAAGTTCCTACTCTGGTGCAA -ACGGAAGTTCCTACTCTGGAGGAA -ACGGAAGTTCCTACTCTGCAGGTA -ACGGAAGTTCCTACTCTGGACTCT -ACGGAAGTTCCTACTCTGAGTCCT -ACGGAAGTTCCTACTCTGTAAGCC -ACGGAAGTTCCTACTCTGATAGCC -ACGGAAGTTCCTACTCTGTAACCG -ACGGAAGTTCCTACTCTGATGCCA -ACGGAAGTTCCTCCTCAAGGAAAC -ACGGAAGTTCCTCCTCAAAACACC -ACGGAAGTTCCTCCTCAAATCGAG -ACGGAAGTTCCTCCTCAACTCCTT -ACGGAAGTTCCTCCTCAACCTGTT -ACGGAAGTTCCTCCTCAACGGTTT -ACGGAAGTTCCTCCTCAAGTGGTT -ACGGAAGTTCCTCCTCAAGCCTTT -ACGGAAGTTCCTCCTCAAGGTCTT -ACGGAAGTTCCTCCTCAAACGCTT -ACGGAAGTTCCTCCTCAAAGCGTT -ACGGAAGTTCCTCCTCAATTCGTC -ACGGAAGTTCCTCCTCAATCTCTC -ACGGAAGTTCCTCCTCAATGGATC -ACGGAAGTTCCTCCTCAACACTTC -ACGGAAGTTCCTCCTCAAGTACTC -ACGGAAGTTCCTCCTCAAGATGTC -ACGGAAGTTCCTCCTCAAACAGTC -ACGGAAGTTCCTCCTCAATTGCTG -ACGGAAGTTCCTCCTCAATCCATG -ACGGAAGTTCCTCCTCAATGTGTG -ACGGAAGTTCCTCCTCAACTAGTG -ACGGAAGTTCCTCCTCAACATCTG -ACGGAAGTTCCTCCTCAAGAGTTG -ACGGAAGTTCCTCCTCAAAGACTG -ACGGAAGTTCCTCCTCAATCGGTA -ACGGAAGTTCCTCCTCAATGCCTA -ACGGAAGTTCCTCCTCAACCACTA -ACGGAAGTTCCTCCTCAAGGAGTA -ACGGAAGTTCCTCCTCAATCGTCT -ACGGAAGTTCCTCCTCAATGCACT -ACGGAAGTTCCTCCTCAACTGACT -ACGGAAGTTCCTCCTCAACAACCT -ACGGAAGTTCCTCCTCAAGCTACT -ACGGAAGTTCCTCCTCAAGGATCT -ACGGAAGTTCCTCCTCAAAAGGCT -ACGGAAGTTCCTCCTCAATCAACC -ACGGAAGTTCCTCCTCAATGTTCC -ACGGAAGTTCCTCCTCAAATTCCC -ACGGAAGTTCCTCCTCAATTCTCG -ACGGAAGTTCCTCCTCAATAGACG -ACGGAAGTTCCTCCTCAAGTAACG -ACGGAAGTTCCTCCTCAAACTTCG -ACGGAAGTTCCTCCTCAATACGCA -ACGGAAGTTCCTCCTCAACTTGCA -ACGGAAGTTCCTCCTCAACGAACA -ACGGAAGTTCCTCCTCAACAGTCA -ACGGAAGTTCCTCCTCAAGATCCA -ACGGAAGTTCCTCCTCAAACGACA -ACGGAAGTTCCTCCTCAAAGCTCA -ACGGAAGTTCCTCCTCAATCACGT -ACGGAAGTTCCTCCTCAACGTAGT -ACGGAAGTTCCTCCTCAAGTCAGT -ACGGAAGTTCCTCCTCAAGAAGGT -ACGGAAGTTCCTCCTCAAAACCGT -ACGGAAGTTCCTCCTCAATTGTGC -ACGGAAGTTCCTCCTCAACTAAGC -ACGGAAGTTCCTCCTCAAACTAGC -ACGGAAGTTCCTCCTCAAAGATGC -ACGGAAGTTCCTCCTCAATGAAGG -ACGGAAGTTCCTCCTCAACAATGG -ACGGAAGTTCCTCCTCAAATGAGG -ACGGAAGTTCCTCCTCAAAATGGG -ACGGAAGTTCCTCCTCAATCCTGA -ACGGAAGTTCCTCCTCAATAGCGA -ACGGAAGTTCCTCCTCAACACAGA -ACGGAAGTTCCTCCTCAAGCAAGA -ACGGAAGTTCCTCCTCAAGGTTGA -ACGGAAGTTCCTCCTCAATCCGAT -ACGGAAGTTCCTCCTCAATGGCAT -ACGGAAGTTCCTCCTCAACGAGAT -ACGGAAGTTCCTCCTCAATACCAC -ACGGAAGTTCCTCCTCAACAGAAC -ACGGAAGTTCCTCCTCAAGTCTAC -ACGGAAGTTCCTCCTCAAACGTAC -ACGGAAGTTCCTCCTCAAAGTGAC -ACGGAAGTTCCTCCTCAACTGTAG -ACGGAAGTTCCTCCTCAACCTAAG -ACGGAAGTTCCTCCTCAAGTTCAG -ACGGAAGTTCCTCCTCAAGCATAG -ACGGAAGTTCCTCCTCAAGACAAG -ACGGAAGTTCCTCCTCAAAAGCAG -ACGGAAGTTCCTCCTCAACGTCAA -ACGGAAGTTCCTCCTCAAGCTGAA -ACGGAAGTTCCTCCTCAAAGTACG -ACGGAAGTTCCTCCTCAAATCCGA -ACGGAAGTTCCTCCTCAAATGGGA -ACGGAAGTTCCTCCTCAAGTGCAA -ACGGAAGTTCCTCCTCAAGAGGAA -ACGGAAGTTCCTCCTCAACAGGTA -ACGGAAGTTCCTCCTCAAGACTCT -ACGGAAGTTCCTCCTCAAAGTCCT -ACGGAAGTTCCTCCTCAATAAGCC -ACGGAAGTTCCTCCTCAAATAGCC -ACGGAAGTTCCTCCTCAATAACCG -ACGGAAGTTCCTCCTCAAATGCCA -ACGGAAGTTCCTACTGCTGGAAAC -ACGGAAGTTCCTACTGCTAACACC -ACGGAAGTTCCTACTGCTATCGAG -ACGGAAGTTCCTACTGCTCTCCTT -ACGGAAGTTCCTACTGCTCCTGTT -ACGGAAGTTCCTACTGCTCGGTTT -ACGGAAGTTCCTACTGCTGTGGTT -ACGGAAGTTCCTACTGCTGCCTTT -ACGGAAGTTCCTACTGCTGGTCTT -ACGGAAGTTCCTACTGCTACGCTT -ACGGAAGTTCCTACTGCTAGCGTT -ACGGAAGTTCCTACTGCTTTCGTC -ACGGAAGTTCCTACTGCTTCTCTC -ACGGAAGTTCCTACTGCTTGGATC -ACGGAAGTTCCTACTGCTCACTTC -ACGGAAGTTCCTACTGCTGTACTC -ACGGAAGTTCCTACTGCTGATGTC -ACGGAAGTTCCTACTGCTACAGTC -ACGGAAGTTCCTACTGCTTTGCTG -ACGGAAGTTCCTACTGCTTCCATG -ACGGAAGTTCCTACTGCTTGTGTG -ACGGAAGTTCCTACTGCTCTAGTG -ACGGAAGTTCCTACTGCTCATCTG -ACGGAAGTTCCTACTGCTGAGTTG -ACGGAAGTTCCTACTGCTAGACTG -ACGGAAGTTCCTACTGCTTCGGTA -ACGGAAGTTCCTACTGCTTGCCTA -ACGGAAGTTCCTACTGCTCCACTA -ACGGAAGTTCCTACTGCTGGAGTA -ACGGAAGTTCCTACTGCTTCGTCT -ACGGAAGTTCCTACTGCTTGCACT -ACGGAAGTTCCTACTGCTCTGACT -ACGGAAGTTCCTACTGCTCAACCT -ACGGAAGTTCCTACTGCTGCTACT -ACGGAAGTTCCTACTGCTGGATCT -ACGGAAGTTCCTACTGCTAAGGCT -ACGGAAGTTCCTACTGCTTCAACC -ACGGAAGTTCCTACTGCTTGTTCC -ACGGAAGTTCCTACTGCTATTCCC -ACGGAAGTTCCTACTGCTTTCTCG -ACGGAAGTTCCTACTGCTTAGACG -ACGGAAGTTCCTACTGCTGTAACG -ACGGAAGTTCCTACTGCTACTTCG -ACGGAAGTTCCTACTGCTTACGCA -ACGGAAGTTCCTACTGCTCTTGCA -ACGGAAGTTCCTACTGCTCGAACA -ACGGAAGTTCCTACTGCTCAGTCA -ACGGAAGTTCCTACTGCTGATCCA -ACGGAAGTTCCTACTGCTACGACA -ACGGAAGTTCCTACTGCTAGCTCA -ACGGAAGTTCCTACTGCTTCACGT -ACGGAAGTTCCTACTGCTCGTAGT -ACGGAAGTTCCTACTGCTGTCAGT -ACGGAAGTTCCTACTGCTGAAGGT -ACGGAAGTTCCTACTGCTAACCGT -ACGGAAGTTCCTACTGCTTTGTGC -ACGGAAGTTCCTACTGCTCTAAGC -ACGGAAGTTCCTACTGCTACTAGC -ACGGAAGTTCCTACTGCTAGATGC -ACGGAAGTTCCTACTGCTTGAAGG -ACGGAAGTTCCTACTGCTCAATGG -ACGGAAGTTCCTACTGCTATGAGG -ACGGAAGTTCCTACTGCTAATGGG -ACGGAAGTTCCTACTGCTTCCTGA -ACGGAAGTTCCTACTGCTTAGCGA -ACGGAAGTTCCTACTGCTCACAGA -ACGGAAGTTCCTACTGCTGCAAGA -ACGGAAGTTCCTACTGCTGGTTGA -ACGGAAGTTCCTACTGCTTCCGAT -ACGGAAGTTCCTACTGCTTGGCAT -ACGGAAGTTCCTACTGCTCGAGAT -ACGGAAGTTCCTACTGCTTACCAC -ACGGAAGTTCCTACTGCTCAGAAC -ACGGAAGTTCCTACTGCTGTCTAC -ACGGAAGTTCCTACTGCTACGTAC -ACGGAAGTTCCTACTGCTAGTGAC -ACGGAAGTTCCTACTGCTCTGTAG -ACGGAAGTTCCTACTGCTCCTAAG -ACGGAAGTTCCTACTGCTGTTCAG -ACGGAAGTTCCTACTGCTGCATAG -ACGGAAGTTCCTACTGCTGACAAG -ACGGAAGTTCCTACTGCTAAGCAG -ACGGAAGTTCCTACTGCTCGTCAA -ACGGAAGTTCCTACTGCTGCTGAA -ACGGAAGTTCCTACTGCTAGTACG -ACGGAAGTTCCTACTGCTATCCGA -ACGGAAGTTCCTACTGCTATGGGA -ACGGAAGTTCCTACTGCTGTGCAA -ACGGAAGTTCCTACTGCTGAGGAA -ACGGAAGTTCCTACTGCTCAGGTA -ACGGAAGTTCCTACTGCTGACTCT -ACGGAAGTTCCTACTGCTAGTCCT -ACGGAAGTTCCTACTGCTTAAGCC -ACGGAAGTTCCTACTGCTATAGCC -ACGGAAGTTCCTACTGCTTAACCG -ACGGAAGTTCCTACTGCTATGCCA -ACGGAAGTTCCTTCTGGAGGAAAC -ACGGAAGTTCCTTCTGGAAACACC -ACGGAAGTTCCTTCTGGAATCGAG -ACGGAAGTTCCTTCTGGACTCCTT -ACGGAAGTTCCTTCTGGACCTGTT -ACGGAAGTTCCTTCTGGACGGTTT -ACGGAAGTTCCTTCTGGAGTGGTT -ACGGAAGTTCCTTCTGGAGCCTTT -ACGGAAGTTCCTTCTGGAGGTCTT -ACGGAAGTTCCTTCTGGAACGCTT -ACGGAAGTTCCTTCTGGAAGCGTT -ACGGAAGTTCCTTCTGGATTCGTC -ACGGAAGTTCCTTCTGGATCTCTC -ACGGAAGTTCCTTCTGGATGGATC -ACGGAAGTTCCTTCTGGACACTTC -ACGGAAGTTCCTTCTGGAGTACTC -ACGGAAGTTCCTTCTGGAGATGTC -ACGGAAGTTCCTTCTGGAACAGTC -ACGGAAGTTCCTTCTGGATTGCTG -ACGGAAGTTCCTTCTGGATCCATG -ACGGAAGTTCCTTCTGGATGTGTG -ACGGAAGTTCCTTCTGGACTAGTG -ACGGAAGTTCCTTCTGGACATCTG -ACGGAAGTTCCTTCTGGAGAGTTG -ACGGAAGTTCCTTCTGGAAGACTG -ACGGAAGTTCCTTCTGGATCGGTA -ACGGAAGTTCCTTCTGGATGCCTA -ACGGAAGTTCCTTCTGGACCACTA -ACGGAAGTTCCTTCTGGAGGAGTA -ACGGAAGTTCCTTCTGGATCGTCT -ACGGAAGTTCCTTCTGGATGCACT -ACGGAAGTTCCTTCTGGACTGACT -ACGGAAGTTCCTTCTGGACAACCT -ACGGAAGTTCCTTCTGGAGCTACT -ACGGAAGTTCCTTCTGGAGGATCT -ACGGAAGTTCCTTCTGGAAAGGCT -ACGGAAGTTCCTTCTGGATCAACC -ACGGAAGTTCCTTCTGGATGTTCC -ACGGAAGTTCCTTCTGGAATTCCC -ACGGAAGTTCCTTCTGGATTCTCG -ACGGAAGTTCCTTCTGGATAGACG -ACGGAAGTTCCTTCTGGAGTAACG -ACGGAAGTTCCTTCTGGAACTTCG -ACGGAAGTTCCTTCTGGATACGCA -ACGGAAGTTCCTTCTGGACTTGCA -ACGGAAGTTCCTTCTGGACGAACA -ACGGAAGTTCCTTCTGGACAGTCA -ACGGAAGTTCCTTCTGGAGATCCA -ACGGAAGTTCCTTCTGGAACGACA -ACGGAAGTTCCTTCTGGAAGCTCA -ACGGAAGTTCCTTCTGGATCACGT -ACGGAAGTTCCTTCTGGACGTAGT -ACGGAAGTTCCTTCTGGAGTCAGT -ACGGAAGTTCCTTCTGGAGAAGGT -ACGGAAGTTCCTTCTGGAAACCGT -ACGGAAGTTCCTTCTGGATTGTGC -ACGGAAGTTCCTTCTGGACTAAGC -ACGGAAGTTCCTTCTGGAACTAGC -ACGGAAGTTCCTTCTGGAAGATGC -ACGGAAGTTCCTTCTGGATGAAGG -ACGGAAGTTCCTTCTGGACAATGG -ACGGAAGTTCCTTCTGGAATGAGG -ACGGAAGTTCCTTCTGGAAATGGG -ACGGAAGTTCCTTCTGGATCCTGA -ACGGAAGTTCCTTCTGGATAGCGA -ACGGAAGTTCCTTCTGGACACAGA -ACGGAAGTTCCTTCTGGAGCAAGA -ACGGAAGTTCCTTCTGGAGGTTGA -ACGGAAGTTCCTTCTGGATCCGAT -ACGGAAGTTCCTTCTGGATGGCAT -ACGGAAGTTCCTTCTGGACGAGAT -ACGGAAGTTCCTTCTGGATACCAC -ACGGAAGTTCCTTCTGGACAGAAC -ACGGAAGTTCCTTCTGGAGTCTAC -ACGGAAGTTCCTTCTGGAACGTAC -ACGGAAGTTCCTTCTGGAAGTGAC -ACGGAAGTTCCTTCTGGACTGTAG -ACGGAAGTTCCTTCTGGACCTAAG -ACGGAAGTTCCTTCTGGAGTTCAG -ACGGAAGTTCCTTCTGGAGCATAG -ACGGAAGTTCCTTCTGGAGACAAG -ACGGAAGTTCCTTCTGGAAAGCAG -ACGGAAGTTCCTTCTGGACGTCAA -ACGGAAGTTCCTTCTGGAGCTGAA -ACGGAAGTTCCTTCTGGAAGTACG -ACGGAAGTTCCTTCTGGAATCCGA -ACGGAAGTTCCTTCTGGAATGGGA -ACGGAAGTTCCTTCTGGAGTGCAA -ACGGAAGTTCCTTCTGGAGAGGAA -ACGGAAGTTCCTTCTGGACAGGTA -ACGGAAGTTCCTTCTGGAGACTCT -ACGGAAGTTCCTTCTGGAAGTCCT -ACGGAAGTTCCTTCTGGATAAGCC -ACGGAAGTTCCTTCTGGAATAGCC -ACGGAAGTTCCTTCTGGATAACCG -ACGGAAGTTCCTTCTGGAATGCCA -ACGGAAGTTCCTGCTAAGGGAAAC -ACGGAAGTTCCTGCTAAGAACACC -ACGGAAGTTCCTGCTAAGATCGAG -ACGGAAGTTCCTGCTAAGCTCCTT -ACGGAAGTTCCTGCTAAGCCTGTT -ACGGAAGTTCCTGCTAAGCGGTTT -ACGGAAGTTCCTGCTAAGGTGGTT -ACGGAAGTTCCTGCTAAGGCCTTT -ACGGAAGTTCCTGCTAAGGGTCTT -ACGGAAGTTCCTGCTAAGACGCTT -ACGGAAGTTCCTGCTAAGAGCGTT -ACGGAAGTTCCTGCTAAGTTCGTC -ACGGAAGTTCCTGCTAAGTCTCTC -ACGGAAGTTCCTGCTAAGTGGATC -ACGGAAGTTCCTGCTAAGCACTTC -ACGGAAGTTCCTGCTAAGGTACTC -ACGGAAGTTCCTGCTAAGGATGTC -ACGGAAGTTCCTGCTAAGACAGTC -ACGGAAGTTCCTGCTAAGTTGCTG -ACGGAAGTTCCTGCTAAGTCCATG -ACGGAAGTTCCTGCTAAGTGTGTG -ACGGAAGTTCCTGCTAAGCTAGTG -ACGGAAGTTCCTGCTAAGCATCTG -ACGGAAGTTCCTGCTAAGGAGTTG -ACGGAAGTTCCTGCTAAGAGACTG -ACGGAAGTTCCTGCTAAGTCGGTA -ACGGAAGTTCCTGCTAAGTGCCTA -ACGGAAGTTCCTGCTAAGCCACTA -ACGGAAGTTCCTGCTAAGGGAGTA -ACGGAAGTTCCTGCTAAGTCGTCT -ACGGAAGTTCCTGCTAAGTGCACT -ACGGAAGTTCCTGCTAAGCTGACT -ACGGAAGTTCCTGCTAAGCAACCT -ACGGAAGTTCCTGCTAAGGCTACT -ACGGAAGTTCCTGCTAAGGGATCT -ACGGAAGTTCCTGCTAAGAAGGCT -ACGGAAGTTCCTGCTAAGTCAACC -ACGGAAGTTCCTGCTAAGTGTTCC -ACGGAAGTTCCTGCTAAGATTCCC -ACGGAAGTTCCTGCTAAGTTCTCG -ACGGAAGTTCCTGCTAAGTAGACG -ACGGAAGTTCCTGCTAAGGTAACG -ACGGAAGTTCCTGCTAAGACTTCG -ACGGAAGTTCCTGCTAAGTACGCA -ACGGAAGTTCCTGCTAAGCTTGCA -ACGGAAGTTCCTGCTAAGCGAACA -ACGGAAGTTCCTGCTAAGCAGTCA -ACGGAAGTTCCTGCTAAGGATCCA -ACGGAAGTTCCTGCTAAGACGACA -ACGGAAGTTCCTGCTAAGAGCTCA -ACGGAAGTTCCTGCTAAGTCACGT -ACGGAAGTTCCTGCTAAGCGTAGT -ACGGAAGTTCCTGCTAAGGTCAGT -ACGGAAGTTCCTGCTAAGGAAGGT -ACGGAAGTTCCTGCTAAGAACCGT -ACGGAAGTTCCTGCTAAGTTGTGC -ACGGAAGTTCCTGCTAAGCTAAGC -ACGGAAGTTCCTGCTAAGACTAGC -ACGGAAGTTCCTGCTAAGAGATGC -ACGGAAGTTCCTGCTAAGTGAAGG -ACGGAAGTTCCTGCTAAGCAATGG -ACGGAAGTTCCTGCTAAGATGAGG -ACGGAAGTTCCTGCTAAGAATGGG -ACGGAAGTTCCTGCTAAGTCCTGA -ACGGAAGTTCCTGCTAAGTAGCGA -ACGGAAGTTCCTGCTAAGCACAGA -ACGGAAGTTCCTGCTAAGGCAAGA -ACGGAAGTTCCTGCTAAGGGTTGA -ACGGAAGTTCCTGCTAAGTCCGAT -ACGGAAGTTCCTGCTAAGTGGCAT -ACGGAAGTTCCTGCTAAGCGAGAT -ACGGAAGTTCCTGCTAAGTACCAC -ACGGAAGTTCCTGCTAAGCAGAAC -ACGGAAGTTCCTGCTAAGGTCTAC -ACGGAAGTTCCTGCTAAGACGTAC -ACGGAAGTTCCTGCTAAGAGTGAC -ACGGAAGTTCCTGCTAAGCTGTAG -ACGGAAGTTCCTGCTAAGCCTAAG -ACGGAAGTTCCTGCTAAGGTTCAG -ACGGAAGTTCCTGCTAAGGCATAG -ACGGAAGTTCCTGCTAAGGACAAG -ACGGAAGTTCCTGCTAAGAAGCAG -ACGGAAGTTCCTGCTAAGCGTCAA -ACGGAAGTTCCTGCTAAGGCTGAA -ACGGAAGTTCCTGCTAAGAGTACG -ACGGAAGTTCCTGCTAAGATCCGA -ACGGAAGTTCCTGCTAAGATGGGA -ACGGAAGTTCCTGCTAAGGTGCAA -ACGGAAGTTCCTGCTAAGGAGGAA -ACGGAAGTTCCTGCTAAGCAGGTA -ACGGAAGTTCCTGCTAAGGACTCT -ACGGAAGTTCCTGCTAAGAGTCCT -ACGGAAGTTCCTGCTAAGTAAGCC -ACGGAAGTTCCTGCTAAGATAGCC -ACGGAAGTTCCTGCTAAGTAACCG -ACGGAAGTTCCTGCTAAGATGCCA -ACGGAAGTTCCTACCTCAGGAAAC -ACGGAAGTTCCTACCTCAAACACC -ACGGAAGTTCCTACCTCAATCGAG -ACGGAAGTTCCTACCTCACTCCTT -ACGGAAGTTCCTACCTCACCTGTT -ACGGAAGTTCCTACCTCACGGTTT -ACGGAAGTTCCTACCTCAGTGGTT -ACGGAAGTTCCTACCTCAGCCTTT -ACGGAAGTTCCTACCTCAGGTCTT -ACGGAAGTTCCTACCTCAACGCTT -ACGGAAGTTCCTACCTCAAGCGTT -ACGGAAGTTCCTACCTCATTCGTC -ACGGAAGTTCCTACCTCATCTCTC -ACGGAAGTTCCTACCTCATGGATC -ACGGAAGTTCCTACCTCACACTTC -ACGGAAGTTCCTACCTCAGTACTC -ACGGAAGTTCCTACCTCAGATGTC -ACGGAAGTTCCTACCTCAACAGTC -ACGGAAGTTCCTACCTCATTGCTG -ACGGAAGTTCCTACCTCATCCATG -ACGGAAGTTCCTACCTCATGTGTG -ACGGAAGTTCCTACCTCACTAGTG -ACGGAAGTTCCTACCTCACATCTG -ACGGAAGTTCCTACCTCAGAGTTG -ACGGAAGTTCCTACCTCAAGACTG -ACGGAAGTTCCTACCTCATCGGTA -ACGGAAGTTCCTACCTCATGCCTA -ACGGAAGTTCCTACCTCACCACTA -ACGGAAGTTCCTACCTCAGGAGTA -ACGGAAGTTCCTACCTCATCGTCT -ACGGAAGTTCCTACCTCATGCACT -ACGGAAGTTCCTACCTCACTGACT -ACGGAAGTTCCTACCTCACAACCT -ACGGAAGTTCCTACCTCAGCTACT -ACGGAAGTTCCTACCTCAGGATCT -ACGGAAGTTCCTACCTCAAAGGCT -ACGGAAGTTCCTACCTCATCAACC -ACGGAAGTTCCTACCTCATGTTCC -ACGGAAGTTCCTACCTCAATTCCC -ACGGAAGTTCCTACCTCATTCTCG -ACGGAAGTTCCTACCTCATAGACG -ACGGAAGTTCCTACCTCAGTAACG -ACGGAAGTTCCTACCTCAACTTCG -ACGGAAGTTCCTACCTCATACGCA -ACGGAAGTTCCTACCTCACTTGCA -ACGGAAGTTCCTACCTCACGAACA -ACGGAAGTTCCTACCTCACAGTCA -ACGGAAGTTCCTACCTCAGATCCA -ACGGAAGTTCCTACCTCAACGACA -ACGGAAGTTCCTACCTCAAGCTCA -ACGGAAGTTCCTACCTCATCACGT -ACGGAAGTTCCTACCTCACGTAGT -ACGGAAGTTCCTACCTCAGTCAGT -ACGGAAGTTCCTACCTCAGAAGGT -ACGGAAGTTCCTACCTCAAACCGT -ACGGAAGTTCCTACCTCATTGTGC -ACGGAAGTTCCTACCTCACTAAGC -ACGGAAGTTCCTACCTCAACTAGC -ACGGAAGTTCCTACCTCAAGATGC -ACGGAAGTTCCTACCTCATGAAGG -ACGGAAGTTCCTACCTCACAATGG -ACGGAAGTTCCTACCTCAATGAGG -ACGGAAGTTCCTACCTCAAATGGG -ACGGAAGTTCCTACCTCATCCTGA -ACGGAAGTTCCTACCTCATAGCGA -ACGGAAGTTCCTACCTCACACAGA -ACGGAAGTTCCTACCTCAGCAAGA -ACGGAAGTTCCTACCTCAGGTTGA -ACGGAAGTTCCTACCTCATCCGAT -ACGGAAGTTCCTACCTCATGGCAT -ACGGAAGTTCCTACCTCACGAGAT -ACGGAAGTTCCTACCTCATACCAC -ACGGAAGTTCCTACCTCACAGAAC -ACGGAAGTTCCTACCTCAGTCTAC -ACGGAAGTTCCTACCTCAACGTAC -ACGGAAGTTCCTACCTCAAGTGAC -ACGGAAGTTCCTACCTCACTGTAG -ACGGAAGTTCCTACCTCACCTAAG -ACGGAAGTTCCTACCTCAGTTCAG -ACGGAAGTTCCTACCTCAGCATAG -ACGGAAGTTCCTACCTCAGACAAG -ACGGAAGTTCCTACCTCAAAGCAG -ACGGAAGTTCCTACCTCACGTCAA -ACGGAAGTTCCTACCTCAGCTGAA -ACGGAAGTTCCTACCTCAAGTACG -ACGGAAGTTCCTACCTCAATCCGA -ACGGAAGTTCCTACCTCAATGGGA -ACGGAAGTTCCTACCTCAGTGCAA -ACGGAAGTTCCTACCTCAGAGGAA -ACGGAAGTTCCTACCTCACAGGTA -ACGGAAGTTCCTACCTCAGACTCT -ACGGAAGTTCCTACCTCAAGTCCT -ACGGAAGTTCCTACCTCATAAGCC -ACGGAAGTTCCTACCTCAATAGCC -ACGGAAGTTCCTACCTCATAACCG -ACGGAAGTTCCTACCTCAATGCCA -ACGGAAGTTCCTTCCTGTGGAAAC -ACGGAAGTTCCTTCCTGTAACACC -ACGGAAGTTCCTTCCTGTATCGAG -ACGGAAGTTCCTTCCTGTCTCCTT -ACGGAAGTTCCTTCCTGTCCTGTT -ACGGAAGTTCCTTCCTGTCGGTTT -ACGGAAGTTCCTTCCTGTGTGGTT -ACGGAAGTTCCTTCCTGTGCCTTT -ACGGAAGTTCCTTCCTGTGGTCTT -ACGGAAGTTCCTTCCTGTACGCTT -ACGGAAGTTCCTTCCTGTAGCGTT -ACGGAAGTTCCTTCCTGTTTCGTC -ACGGAAGTTCCTTCCTGTTCTCTC -ACGGAAGTTCCTTCCTGTTGGATC -ACGGAAGTTCCTTCCTGTCACTTC -ACGGAAGTTCCTTCCTGTGTACTC -ACGGAAGTTCCTTCCTGTGATGTC -ACGGAAGTTCCTTCCTGTACAGTC -ACGGAAGTTCCTTCCTGTTTGCTG -ACGGAAGTTCCTTCCTGTTCCATG -ACGGAAGTTCCTTCCTGTTGTGTG -ACGGAAGTTCCTTCCTGTCTAGTG -ACGGAAGTTCCTTCCTGTCATCTG -ACGGAAGTTCCTTCCTGTGAGTTG -ACGGAAGTTCCTTCCTGTAGACTG -ACGGAAGTTCCTTCCTGTTCGGTA -ACGGAAGTTCCTTCCTGTTGCCTA -ACGGAAGTTCCTTCCTGTCCACTA -ACGGAAGTTCCTTCCTGTGGAGTA -ACGGAAGTTCCTTCCTGTTCGTCT -ACGGAAGTTCCTTCCTGTTGCACT -ACGGAAGTTCCTTCCTGTCTGACT -ACGGAAGTTCCTTCCTGTCAACCT -ACGGAAGTTCCTTCCTGTGCTACT -ACGGAAGTTCCTTCCTGTGGATCT -ACGGAAGTTCCTTCCTGTAAGGCT -ACGGAAGTTCCTTCCTGTTCAACC -ACGGAAGTTCCTTCCTGTTGTTCC -ACGGAAGTTCCTTCCTGTATTCCC -ACGGAAGTTCCTTCCTGTTTCTCG -ACGGAAGTTCCTTCCTGTTAGACG -ACGGAAGTTCCTTCCTGTGTAACG -ACGGAAGTTCCTTCCTGTACTTCG -ACGGAAGTTCCTTCCTGTTACGCA -ACGGAAGTTCCTTCCTGTCTTGCA -ACGGAAGTTCCTTCCTGTCGAACA -ACGGAAGTTCCTTCCTGTCAGTCA -ACGGAAGTTCCTTCCTGTGATCCA -ACGGAAGTTCCTTCCTGTACGACA -ACGGAAGTTCCTTCCTGTAGCTCA -ACGGAAGTTCCTTCCTGTTCACGT -ACGGAAGTTCCTTCCTGTCGTAGT -ACGGAAGTTCCTTCCTGTGTCAGT -ACGGAAGTTCCTTCCTGTGAAGGT -ACGGAAGTTCCTTCCTGTAACCGT -ACGGAAGTTCCTTCCTGTTTGTGC -ACGGAAGTTCCTTCCTGTCTAAGC -ACGGAAGTTCCTTCCTGTACTAGC -ACGGAAGTTCCTTCCTGTAGATGC -ACGGAAGTTCCTTCCTGTTGAAGG -ACGGAAGTTCCTTCCTGTCAATGG -ACGGAAGTTCCTTCCTGTATGAGG -ACGGAAGTTCCTTCCTGTAATGGG -ACGGAAGTTCCTTCCTGTTCCTGA -ACGGAAGTTCCTTCCTGTTAGCGA -ACGGAAGTTCCTTCCTGTCACAGA -ACGGAAGTTCCTTCCTGTGCAAGA -ACGGAAGTTCCTTCCTGTGGTTGA -ACGGAAGTTCCTTCCTGTTCCGAT -ACGGAAGTTCCTTCCTGTTGGCAT -ACGGAAGTTCCTTCCTGTCGAGAT -ACGGAAGTTCCTTCCTGTTACCAC -ACGGAAGTTCCTTCCTGTCAGAAC -ACGGAAGTTCCTTCCTGTGTCTAC -ACGGAAGTTCCTTCCTGTACGTAC -ACGGAAGTTCCTTCCTGTAGTGAC -ACGGAAGTTCCTTCCTGTCTGTAG -ACGGAAGTTCCTTCCTGTCCTAAG -ACGGAAGTTCCTTCCTGTGTTCAG -ACGGAAGTTCCTTCCTGTGCATAG -ACGGAAGTTCCTTCCTGTGACAAG -ACGGAAGTTCCTTCCTGTAAGCAG -ACGGAAGTTCCTTCCTGTCGTCAA -ACGGAAGTTCCTTCCTGTGCTGAA -ACGGAAGTTCCTTCCTGTAGTACG -ACGGAAGTTCCTTCCTGTATCCGA -ACGGAAGTTCCTTCCTGTATGGGA -ACGGAAGTTCCTTCCTGTGTGCAA -ACGGAAGTTCCTTCCTGTGAGGAA -ACGGAAGTTCCTTCCTGTCAGGTA -ACGGAAGTTCCTTCCTGTGACTCT -ACGGAAGTTCCTTCCTGTAGTCCT -ACGGAAGTTCCTTCCTGTTAAGCC -ACGGAAGTTCCTTCCTGTATAGCC -ACGGAAGTTCCTTCCTGTTAACCG -ACGGAAGTTCCTTCCTGTATGCCA -ACGGAAGTTCCTCCCATTGGAAAC -ACGGAAGTTCCTCCCATTAACACC -ACGGAAGTTCCTCCCATTATCGAG -ACGGAAGTTCCTCCCATTCTCCTT -ACGGAAGTTCCTCCCATTCCTGTT -ACGGAAGTTCCTCCCATTCGGTTT -ACGGAAGTTCCTCCCATTGTGGTT -ACGGAAGTTCCTCCCATTGCCTTT -ACGGAAGTTCCTCCCATTGGTCTT -ACGGAAGTTCCTCCCATTACGCTT -ACGGAAGTTCCTCCCATTAGCGTT -ACGGAAGTTCCTCCCATTTTCGTC -ACGGAAGTTCCTCCCATTTCTCTC -ACGGAAGTTCCTCCCATTTGGATC -ACGGAAGTTCCTCCCATTCACTTC -ACGGAAGTTCCTCCCATTGTACTC -ACGGAAGTTCCTCCCATTGATGTC -ACGGAAGTTCCTCCCATTACAGTC -ACGGAAGTTCCTCCCATTTTGCTG -ACGGAAGTTCCTCCCATTTCCATG -ACGGAAGTTCCTCCCATTTGTGTG -ACGGAAGTTCCTCCCATTCTAGTG -ACGGAAGTTCCTCCCATTCATCTG -ACGGAAGTTCCTCCCATTGAGTTG -ACGGAAGTTCCTCCCATTAGACTG -ACGGAAGTTCCTCCCATTTCGGTA -ACGGAAGTTCCTCCCATTTGCCTA -ACGGAAGTTCCTCCCATTCCACTA -ACGGAAGTTCCTCCCATTGGAGTA -ACGGAAGTTCCTCCCATTTCGTCT -ACGGAAGTTCCTCCCATTTGCACT -ACGGAAGTTCCTCCCATTCTGACT -ACGGAAGTTCCTCCCATTCAACCT -ACGGAAGTTCCTCCCATTGCTACT -ACGGAAGTTCCTCCCATTGGATCT -ACGGAAGTTCCTCCCATTAAGGCT -ACGGAAGTTCCTCCCATTTCAACC -ACGGAAGTTCCTCCCATTTGTTCC -ACGGAAGTTCCTCCCATTATTCCC -ACGGAAGTTCCTCCCATTTTCTCG -ACGGAAGTTCCTCCCATTTAGACG -ACGGAAGTTCCTCCCATTGTAACG -ACGGAAGTTCCTCCCATTACTTCG -ACGGAAGTTCCTCCCATTTACGCA -ACGGAAGTTCCTCCCATTCTTGCA -ACGGAAGTTCCTCCCATTCGAACA -ACGGAAGTTCCTCCCATTCAGTCA -ACGGAAGTTCCTCCCATTGATCCA -ACGGAAGTTCCTCCCATTACGACA -ACGGAAGTTCCTCCCATTAGCTCA -ACGGAAGTTCCTCCCATTTCACGT -ACGGAAGTTCCTCCCATTCGTAGT -ACGGAAGTTCCTCCCATTGTCAGT -ACGGAAGTTCCTCCCATTGAAGGT -ACGGAAGTTCCTCCCATTAACCGT -ACGGAAGTTCCTCCCATTTTGTGC -ACGGAAGTTCCTCCCATTCTAAGC -ACGGAAGTTCCTCCCATTACTAGC -ACGGAAGTTCCTCCCATTAGATGC -ACGGAAGTTCCTCCCATTTGAAGG -ACGGAAGTTCCTCCCATTCAATGG -ACGGAAGTTCCTCCCATTATGAGG -ACGGAAGTTCCTCCCATTAATGGG -ACGGAAGTTCCTCCCATTTCCTGA -ACGGAAGTTCCTCCCATTTAGCGA -ACGGAAGTTCCTCCCATTCACAGA -ACGGAAGTTCCTCCCATTGCAAGA -ACGGAAGTTCCTCCCATTGGTTGA -ACGGAAGTTCCTCCCATTTCCGAT -ACGGAAGTTCCTCCCATTTGGCAT -ACGGAAGTTCCTCCCATTCGAGAT -ACGGAAGTTCCTCCCATTTACCAC -ACGGAAGTTCCTCCCATTCAGAAC -ACGGAAGTTCCTCCCATTGTCTAC -ACGGAAGTTCCTCCCATTACGTAC -ACGGAAGTTCCTCCCATTAGTGAC -ACGGAAGTTCCTCCCATTCTGTAG -ACGGAAGTTCCTCCCATTCCTAAG -ACGGAAGTTCCTCCCATTGTTCAG -ACGGAAGTTCCTCCCATTGCATAG -ACGGAAGTTCCTCCCATTGACAAG -ACGGAAGTTCCTCCCATTAAGCAG -ACGGAAGTTCCTCCCATTCGTCAA -ACGGAAGTTCCTCCCATTGCTGAA -ACGGAAGTTCCTCCCATTAGTACG -ACGGAAGTTCCTCCCATTATCCGA -ACGGAAGTTCCTCCCATTATGGGA -ACGGAAGTTCCTCCCATTGTGCAA -ACGGAAGTTCCTCCCATTGAGGAA -ACGGAAGTTCCTCCCATTCAGGTA -ACGGAAGTTCCTCCCATTGACTCT -ACGGAAGTTCCTCCCATTAGTCCT -ACGGAAGTTCCTCCCATTTAAGCC -ACGGAAGTTCCTCCCATTATAGCC -ACGGAAGTTCCTCCCATTTAACCG -ACGGAAGTTCCTCCCATTATGCCA -ACGGAAGTTCCTTCGTTCGGAAAC -ACGGAAGTTCCTTCGTTCAACACC -ACGGAAGTTCCTTCGTTCATCGAG -ACGGAAGTTCCTTCGTTCCTCCTT -ACGGAAGTTCCTTCGTTCCCTGTT -ACGGAAGTTCCTTCGTTCCGGTTT -ACGGAAGTTCCTTCGTTCGTGGTT -ACGGAAGTTCCTTCGTTCGCCTTT -ACGGAAGTTCCTTCGTTCGGTCTT -ACGGAAGTTCCTTCGTTCACGCTT -ACGGAAGTTCCTTCGTTCAGCGTT -ACGGAAGTTCCTTCGTTCTTCGTC -ACGGAAGTTCCTTCGTTCTCTCTC -ACGGAAGTTCCTTCGTTCTGGATC -ACGGAAGTTCCTTCGTTCCACTTC -ACGGAAGTTCCTTCGTTCGTACTC -ACGGAAGTTCCTTCGTTCGATGTC -ACGGAAGTTCCTTCGTTCACAGTC -ACGGAAGTTCCTTCGTTCTTGCTG -ACGGAAGTTCCTTCGTTCTCCATG -ACGGAAGTTCCTTCGTTCTGTGTG -ACGGAAGTTCCTTCGTTCCTAGTG -ACGGAAGTTCCTTCGTTCCATCTG -ACGGAAGTTCCTTCGTTCGAGTTG -ACGGAAGTTCCTTCGTTCAGACTG -ACGGAAGTTCCTTCGTTCTCGGTA -ACGGAAGTTCCTTCGTTCTGCCTA -ACGGAAGTTCCTTCGTTCCCACTA -ACGGAAGTTCCTTCGTTCGGAGTA -ACGGAAGTTCCTTCGTTCTCGTCT -ACGGAAGTTCCTTCGTTCTGCACT -ACGGAAGTTCCTTCGTTCCTGACT -ACGGAAGTTCCTTCGTTCCAACCT -ACGGAAGTTCCTTCGTTCGCTACT -ACGGAAGTTCCTTCGTTCGGATCT -ACGGAAGTTCCTTCGTTCAAGGCT -ACGGAAGTTCCTTCGTTCTCAACC -ACGGAAGTTCCTTCGTTCTGTTCC -ACGGAAGTTCCTTCGTTCATTCCC -ACGGAAGTTCCTTCGTTCTTCTCG -ACGGAAGTTCCTTCGTTCTAGACG -ACGGAAGTTCCTTCGTTCGTAACG -ACGGAAGTTCCTTCGTTCACTTCG -ACGGAAGTTCCTTCGTTCTACGCA -ACGGAAGTTCCTTCGTTCCTTGCA -ACGGAAGTTCCTTCGTTCCGAACA -ACGGAAGTTCCTTCGTTCCAGTCA -ACGGAAGTTCCTTCGTTCGATCCA -ACGGAAGTTCCTTCGTTCACGACA -ACGGAAGTTCCTTCGTTCAGCTCA -ACGGAAGTTCCTTCGTTCTCACGT -ACGGAAGTTCCTTCGTTCCGTAGT -ACGGAAGTTCCTTCGTTCGTCAGT -ACGGAAGTTCCTTCGTTCGAAGGT -ACGGAAGTTCCTTCGTTCAACCGT -ACGGAAGTTCCTTCGTTCTTGTGC -ACGGAAGTTCCTTCGTTCCTAAGC -ACGGAAGTTCCTTCGTTCACTAGC -ACGGAAGTTCCTTCGTTCAGATGC -ACGGAAGTTCCTTCGTTCTGAAGG -ACGGAAGTTCCTTCGTTCCAATGG -ACGGAAGTTCCTTCGTTCATGAGG -ACGGAAGTTCCTTCGTTCAATGGG -ACGGAAGTTCCTTCGTTCTCCTGA -ACGGAAGTTCCTTCGTTCTAGCGA -ACGGAAGTTCCTTCGTTCCACAGA -ACGGAAGTTCCTTCGTTCGCAAGA -ACGGAAGTTCCTTCGTTCGGTTGA -ACGGAAGTTCCTTCGTTCTCCGAT -ACGGAAGTTCCTTCGTTCTGGCAT -ACGGAAGTTCCTTCGTTCCGAGAT -ACGGAAGTTCCTTCGTTCTACCAC -ACGGAAGTTCCTTCGTTCCAGAAC -ACGGAAGTTCCTTCGTTCGTCTAC -ACGGAAGTTCCTTCGTTCACGTAC -ACGGAAGTTCCTTCGTTCAGTGAC -ACGGAAGTTCCTTCGTTCCTGTAG -ACGGAAGTTCCTTCGTTCCCTAAG -ACGGAAGTTCCTTCGTTCGTTCAG -ACGGAAGTTCCTTCGTTCGCATAG -ACGGAAGTTCCTTCGTTCGACAAG -ACGGAAGTTCCTTCGTTCAAGCAG -ACGGAAGTTCCTTCGTTCCGTCAA -ACGGAAGTTCCTTCGTTCGCTGAA -ACGGAAGTTCCTTCGTTCAGTACG -ACGGAAGTTCCTTCGTTCATCCGA -ACGGAAGTTCCTTCGTTCATGGGA -ACGGAAGTTCCTTCGTTCGTGCAA -ACGGAAGTTCCTTCGTTCGAGGAA -ACGGAAGTTCCTTCGTTCCAGGTA -ACGGAAGTTCCTTCGTTCGACTCT -ACGGAAGTTCCTTCGTTCAGTCCT -ACGGAAGTTCCTTCGTTCTAAGCC -ACGGAAGTTCCTTCGTTCATAGCC -ACGGAAGTTCCTTCGTTCTAACCG -ACGGAAGTTCCTTCGTTCATGCCA -ACGGAAGTTCCTACGTAGGGAAAC -ACGGAAGTTCCTACGTAGAACACC -ACGGAAGTTCCTACGTAGATCGAG -ACGGAAGTTCCTACGTAGCTCCTT -ACGGAAGTTCCTACGTAGCCTGTT -ACGGAAGTTCCTACGTAGCGGTTT -ACGGAAGTTCCTACGTAGGTGGTT -ACGGAAGTTCCTACGTAGGCCTTT -ACGGAAGTTCCTACGTAGGGTCTT -ACGGAAGTTCCTACGTAGACGCTT -ACGGAAGTTCCTACGTAGAGCGTT -ACGGAAGTTCCTACGTAGTTCGTC -ACGGAAGTTCCTACGTAGTCTCTC -ACGGAAGTTCCTACGTAGTGGATC -ACGGAAGTTCCTACGTAGCACTTC -ACGGAAGTTCCTACGTAGGTACTC -ACGGAAGTTCCTACGTAGGATGTC -ACGGAAGTTCCTACGTAGACAGTC -ACGGAAGTTCCTACGTAGTTGCTG -ACGGAAGTTCCTACGTAGTCCATG -ACGGAAGTTCCTACGTAGTGTGTG -ACGGAAGTTCCTACGTAGCTAGTG -ACGGAAGTTCCTACGTAGCATCTG -ACGGAAGTTCCTACGTAGGAGTTG -ACGGAAGTTCCTACGTAGAGACTG -ACGGAAGTTCCTACGTAGTCGGTA -ACGGAAGTTCCTACGTAGTGCCTA -ACGGAAGTTCCTACGTAGCCACTA -ACGGAAGTTCCTACGTAGGGAGTA -ACGGAAGTTCCTACGTAGTCGTCT -ACGGAAGTTCCTACGTAGTGCACT -ACGGAAGTTCCTACGTAGCTGACT -ACGGAAGTTCCTACGTAGCAACCT -ACGGAAGTTCCTACGTAGGCTACT -ACGGAAGTTCCTACGTAGGGATCT -ACGGAAGTTCCTACGTAGAAGGCT -ACGGAAGTTCCTACGTAGTCAACC -ACGGAAGTTCCTACGTAGTGTTCC -ACGGAAGTTCCTACGTAGATTCCC -ACGGAAGTTCCTACGTAGTTCTCG -ACGGAAGTTCCTACGTAGTAGACG -ACGGAAGTTCCTACGTAGGTAACG -ACGGAAGTTCCTACGTAGACTTCG -ACGGAAGTTCCTACGTAGTACGCA -ACGGAAGTTCCTACGTAGCTTGCA -ACGGAAGTTCCTACGTAGCGAACA -ACGGAAGTTCCTACGTAGCAGTCA -ACGGAAGTTCCTACGTAGGATCCA -ACGGAAGTTCCTACGTAGACGACA -ACGGAAGTTCCTACGTAGAGCTCA -ACGGAAGTTCCTACGTAGTCACGT -ACGGAAGTTCCTACGTAGCGTAGT -ACGGAAGTTCCTACGTAGGTCAGT -ACGGAAGTTCCTACGTAGGAAGGT -ACGGAAGTTCCTACGTAGAACCGT -ACGGAAGTTCCTACGTAGTTGTGC -ACGGAAGTTCCTACGTAGCTAAGC -ACGGAAGTTCCTACGTAGACTAGC -ACGGAAGTTCCTACGTAGAGATGC -ACGGAAGTTCCTACGTAGTGAAGG -ACGGAAGTTCCTACGTAGCAATGG -ACGGAAGTTCCTACGTAGATGAGG -ACGGAAGTTCCTACGTAGAATGGG -ACGGAAGTTCCTACGTAGTCCTGA -ACGGAAGTTCCTACGTAGTAGCGA -ACGGAAGTTCCTACGTAGCACAGA -ACGGAAGTTCCTACGTAGGCAAGA -ACGGAAGTTCCTACGTAGGGTTGA -ACGGAAGTTCCTACGTAGTCCGAT -ACGGAAGTTCCTACGTAGTGGCAT -ACGGAAGTTCCTACGTAGCGAGAT -ACGGAAGTTCCTACGTAGTACCAC -ACGGAAGTTCCTACGTAGCAGAAC -ACGGAAGTTCCTACGTAGGTCTAC -ACGGAAGTTCCTACGTAGACGTAC -ACGGAAGTTCCTACGTAGAGTGAC -ACGGAAGTTCCTACGTAGCTGTAG -ACGGAAGTTCCTACGTAGCCTAAG -ACGGAAGTTCCTACGTAGGTTCAG -ACGGAAGTTCCTACGTAGGCATAG -ACGGAAGTTCCTACGTAGGACAAG -ACGGAAGTTCCTACGTAGAAGCAG -ACGGAAGTTCCTACGTAGCGTCAA -ACGGAAGTTCCTACGTAGGCTGAA -ACGGAAGTTCCTACGTAGAGTACG -ACGGAAGTTCCTACGTAGATCCGA -ACGGAAGTTCCTACGTAGATGGGA -ACGGAAGTTCCTACGTAGGTGCAA -ACGGAAGTTCCTACGTAGGAGGAA -ACGGAAGTTCCTACGTAGCAGGTA -ACGGAAGTTCCTACGTAGGACTCT -ACGGAAGTTCCTACGTAGAGTCCT -ACGGAAGTTCCTACGTAGTAAGCC -ACGGAAGTTCCTACGTAGATAGCC -ACGGAAGTTCCTACGTAGTAACCG -ACGGAAGTTCCTACGTAGATGCCA -ACGGAAGTTCCTACGGTAGGAAAC -ACGGAAGTTCCTACGGTAAACACC -ACGGAAGTTCCTACGGTAATCGAG -ACGGAAGTTCCTACGGTACTCCTT -ACGGAAGTTCCTACGGTACCTGTT -ACGGAAGTTCCTACGGTACGGTTT -ACGGAAGTTCCTACGGTAGTGGTT -ACGGAAGTTCCTACGGTAGCCTTT -ACGGAAGTTCCTACGGTAGGTCTT -ACGGAAGTTCCTACGGTAACGCTT -ACGGAAGTTCCTACGGTAAGCGTT -ACGGAAGTTCCTACGGTATTCGTC -ACGGAAGTTCCTACGGTATCTCTC -ACGGAAGTTCCTACGGTATGGATC -ACGGAAGTTCCTACGGTACACTTC -ACGGAAGTTCCTACGGTAGTACTC -ACGGAAGTTCCTACGGTAGATGTC -ACGGAAGTTCCTACGGTAACAGTC -ACGGAAGTTCCTACGGTATTGCTG -ACGGAAGTTCCTACGGTATCCATG -ACGGAAGTTCCTACGGTATGTGTG -ACGGAAGTTCCTACGGTACTAGTG -ACGGAAGTTCCTACGGTACATCTG -ACGGAAGTTCCTACGGTAGAGTTG -ACGGAAGTTCCTACGGTAAGACTG -ACGGAAGTTCCTACGGTATCGGTA -ACGGAAGTTCCTACGGTATGCCTA -ACGGAAGTTCCTACGGTACCACTA -ACGGAAGTTCCTACGGTAGGAGTA -ACGGAAGTTCCTACGGTATCGTCT -ACGGAAGTTCCTACGGTATGCACT -ACGGAAGTTCCTACGGTACTGACT -ACGGAAGTTCCTACGGTACAACCT -ACGGAAGTTCCTACGGTAGCTACT -ACGGAAGTTCCTACGGTAGGATCT -ACGGAAGTTCCTACGGTAAAGGCT -ACGGAAGTTCCTACGGTATCAACC -ACGGAAGTTCCTACGGTATGTTCC -ACGGAAGTTCCTACGGTAATTCCC -ACGGAAGTTCCTACGGTATTCTCG -ACGGAAGTTCCTACGGTATAGACG -ACGGAAGTTCCTACGGTAGTAACG -ACGGAAGTTCCTACGGTAACTTCG -ACGGAAGTTCCTACGGTATACGCA -ACGGAAGTTCCTACGGTACTTGCA -ACGGAAGTTCCTACGGTACGAACA -ACGGAAGTTCCTACGGTACAGTCA -ACGGAAGTTCCTACGGTAGATCCA -ACGGAAGTTCCTACGGTAACGACA -ACGGAAGTTCCTACGGTAAGCTCA -ACGGAAGTTCCTACGGTATCACGT -ACGGAAGTTCCTACGGTACGTAGT -ACGGAAGTTCCTACGGTAGTCAGT -ACGGAAGTTCCTACGGTAGAAGGT -ACGGAAGTTCCTACGGTAAACCGT -ACGGAAGTTCCTACGGTATTGTGC -ACGGAAGTTCCTACGGTACTAAGC -ACGGAAGTTCCTACGGTAACTAGC -ACGGAAGTTCCTACGGTAAGATGC -ACGGAAGTTCCTACGGTATGAAGG -ACGGAAGTTCCTACGGTACAATGG -ACGGAAGTTCCTACGGTAATGAGG -ACGGAAGTTCCTACGGTAAATGGG -ACGGAAGTTCCTACGGTATCCTGA -ACGGAAGTTCCTACGGTATAGCGA -ACGGAAGTTCCTACGGTACACAGA -ACGGAAGTTCCTACGGTAGCAAGA -ACGGAAGTTCCTACGGTAGGTTGA -ACGGAAGTTCCTACGGTATCCGAT -ACGGAAGTTCCTACGGTATGGCAT -ACGGAAGTTCCTACGGTACGAGAT -ACGGAAGTTCCTACGGTATACCAC -ACGGAAGTTCCTACGGTACAGAAC -ACGGAAGTTCCTACGGTAGTCTAC -ACGGAAGTTCCTACGGTAACGTAC -ACGGAAGTTCCTACGGTAAGTGAC -ACGGAAGTTCCTACGGTACTGTAG -ACGGAAGTTCCTACGGTACCTAAG -ACGGAAGTTCCTACGGTAGTTCAG -ACGGAAGTTCCTACGGTAGCATAG -ACGGAAGTTCCTACGGTAGACAAG -ACGGAAGTTCCTACGGTAAAGCAG -ACGGAAGTTCCTACGGTACGTCAA -ACGGAAGTTCCTACGGTAGCTGAA -ACGGAAGTTCCTACGGTAAGTACG -ACGGAAGTTCCTACGGTAATCCGA -ACGGAAGTTCCTACGGTAATGGGA -ACGGAAGTTCCTACGGTAGTGCAA -ACGGAAGTTCCTACGGTAGAGGAA -ACGGAAGTTCCTACGGTACAGGTA -ACGGAAGTTCCTACGGTAGACTCT -ACGGAAGTTCCTACGGTAAGTCCT -ACGGAAGTTCCTACGGTATAAGCC -ACGGAAGTTCCTACGGTAATAGCC -ACGGAAGTTCCTACGGTATAACCG -ACGGAAGTTCCTACGGTAATGCCA -ACGGAAGTTCCTTCGACTGGAAAC -ACGGAAGTTCCTTCGACTAACACC -ACGGAAGTTCCTTCGACTATCGAG -ACGGAAGTTCCTTCGACTCTCCTT -ACGGAAGTTCCTTCGACTCCTGTT -ACGGAAGTTCCTTCGACTCGGTTT -ACGGAAGTTCCTTCGACTGTGGTT -ACGGAAGTTCCTTCGACTGCCTTT -ACGGAAGTTCCTTCGACTGGTCTT -ACGGAAGTTCCTTCGACTACGCTT -ACGGAAGTTCCTTCGACTAGCGTT -ACGGAAGTTCCTTCGACTTTCGTC -ACGGAAGTTCCTTCGACTTCTCTC -ACGGAAGTTCCTTCGACTTGGATC -ACGGAAGTTCCTTCGACTCACTTC -ACGGAAGTTCCTTCGACTGTACTC -ACGGAAGTTCCTTCGACTGATGTC -ACGGAAGTTCCTTCGACTACAGTC -ACGGAAGTTCCTTCGACTTTGCTG -ACGGAAGTTCCTTCGACTTCCATG -ACGGAAGTTCCTTCGACTTGTGTG -ACGGAAGTTCCTTCGACTCTAGTG -ACGGAAGTTCCTTCGACTCATCTG -ACGGAAGTTCCTTCGACTGAGTTG -ACGGAAGTTCCTTCGACTAGACTG -ACGGAAGTTCCTTCGACTTCGGTA -ACGGAAGTTCCTTCGACTTGCCTA -ACGGAAGTTCCTTCGACTCCACTA -ACGGAAGTTCCTTCGACTGGAGTA -ACGGAAGTTCCTTCGACTTCGTCT -ACGGAAGTTCCTTCGACTTGCACT -ACGGAAGTTCCTTCGACTCTGACT -ACGGAAGTTCCTTCGACTCAACCT -ACGGAAGTTCCTTCGACTGCTACT -ACGGAAGTTCCTTCGACTGGATCT -ACGGAAGTTCCTTCGACTAAGGCT -ACGGAAGTTCCTTCGACTTCAACC -ACGGAAGTTCCTTCGACTTGTTCC -ACGGAAGTTCCTTCGACTATTCCC -ACGGAAGTTCCTTCGACTTTCTCG -ACGGAAGTTCCTTCGACTTAGACG -ACGGAAGTTCCTTCGACTGTAACG -ACGGAAGTTCCTTCGACTACTTCG -ACGGAAGTTCCTTCGACTTACGCA -ACGGAAGTTCCTTCGACTCTTGCA -ACGGAAGTTCCTTCGACTCGAACA -ACGGAAGTTCCTTCGACTCAGTCA -ACGGAAGTTCCTTCGACTGATCCA -ACGGAAGTTCCTTCGACTACGACA -ACGGAAGTTCCTTCGACTAGCTCA -ACGGAAGTTCCTTCGACTTCACGT -ACGGAAGTTCCTTCGACTCGTAGT -ACGGAAGTTCCTTCGACTGTCAGT -ACGGAAGTTCCTTCGACTGAAGGT -ACGGAAGTTCCTTCGACTAACCGT -ACGGAAGTTCCTTCGACTTTGTGC -ACGGAAGTTCCTTCGACTCTAAGC -ACGGAAGTTCCTTCGACTACTAGC -ACGGAAGTTCCTTCGACTAGATGC -ACGGAAGTTCCTTCGACTTGAAGG -ACGGAAGTTCCTTCGACTCAATGG -ACGGAAGTTCCTTCGACTATGAGG -ACGGAAGTTCCTTCGACTAATGGG -ACGGAAGTTCCTTCGACTTCCTGA -ACGGAAGTTCCTTCGACTTAGCGA -ACGGAAGTTCCTTCGACTCACAGA -ACGGAAGTTCCTTCGACTGCAAGA -ACGGAAGTTCCTTCGACTGGTTGA -ACGGAAGTTCCTTCGACTTCCGAT -ACGGAAGTTCCTTCGACTTGGCAT -ACGGAAGTTCCTTCGACTCGAGAT -ACGGAAGTTCCTTCGACTTACCAC -ACGGAAGTTCCTTCGACTCAGAAC -ACGGAAGTTCCTTCGACTGTCTAC -ACGGAAGTTCCTTCGACTACGTAC -ACGGAAGTTCCTTCGACTAGTGAC -ACGGAAGTTCCTTCGACTCTGTAG -ACGGAAGTTCCTTCGACTCCTAAG -ACGGAAGTTCCTTCGACTGTTCAG -ACGGAAGTTCCTTCGACTGCATAG -ACGGAAGTTCCTTCGACTGACAAG -ACGGAAGTTCCTTCGACTAAGCAG -ACGGAAGTTCCTTCGACTCGTCAA -ACGGAAGTTCCTTCGACTGCTGAA -ACGGAAGTTCCTTCGACTAGTACG -ACGGAAGTTCCTTCGACTATCCGA -ACGGAAGTTCCTTCGACTATGGGA -ACGGAAGTTCCTTCGACTGTGCAA -ACGGAAGTTCCTTCGACTGAGGAA -ACGGAAGTTCCTTCGACTCAGGTA -ACGGAAGTTCCTTCGACTGACTCT -ACGGAAGTTCCTTCGACTAGTCCT -ACGGAAGTTCCTTCGACTTAAGCC -ACGGAAGTTCCTTCGACTATAGCC -ACGGAAGTTCCTTCGACTTAACCG -ACGGAAGTTCCTTCGACTATGCCA -ACGGAAGTTCCTGCATACGGAAAC -ACGGAAGTTCCTGCATACAACACC -ACGGAAGTTCCTGCATACATCGAG -ACGGAAGTTCCTGCATACCTCCTT -ACGGAAGTTCCTGCATACCCTGTT -ACGGAAGTTCCTGCATACCGGTTT -ACGGAAGTTCCTGCATACGTGGTT -ACGGAAGTTCCTGCATACGCCTTT -ACGGAAGTTCCTGCATACGGTCTT -ACGGAAGTTCCTGCATACACGCTT -ACGGAAGTTCCTGCATACAGCGTT -ACGGAAGTTCCTGCATACTTCGTC -ACGGAAGTTCCTGCATACTCTCTC -ACGGAAGTTCCTGCATACTGGATC -ACGGAAGTTCCTGCATACCACTTC -ACGGAAGTTCCTGCATACGTACTC -ACGGAAGTTCCTGCATACGATGTC -ACGGAAGTTCCTGCATACACAGTC -ACGGAAGTTCCTGCATACTTGCTG -ACGGAAGTTCCTGCATACTCCATG -ACGGAAGTTCCTGCATACTGTGTG -ACGGAAGTTCCTGCATACCTAGTG -ACGGAAGTTCCTGCATACCATCTG -ACGGAAGTTCCTGCATACGAGTTG -ACGGAAGTTCCTGCATACAGACTG -ACGGAAGTTCCTGCATACTCGGTA -ACGGAAGTTCCTGCATACTGCCTA -ACGGAAGTTCCTGCATACCCACTA -ACGGAAGTTCCTGCATACGGAGTA -ACGGAAGTTCCTGCATACTCGTCT -ACGGAAGTTCCTGCATACTGCACT -ACGGAAGTTCCTGCATACCTGACT -ACGGAAGTTCCTGCATACCAACCT -ACGGAAGTTCCTGCATACGCTACT -ACGGAAGTTCCTGCATACGGATCT -ACGGAAGTTCCTGCATACAAGGCT -ACGGAAGTTCCTGCATACTCAACC -ACGGAAGTTCCTGCATACTGTTCC -ACGGAAGTTCCTGCATACATTCCC -ACGGAAGTTCCTGCATACTTCTCG -ACGGAAGTTCCTGCATACTAGACG -ACGGAAGTTCCTGCATACGTAACG -ACGGAAGTTCCTGCATACACTTCG -ACGGAAGTTCCTGCATACTACGCA -ACGGAAGTTCCTGCATACCTTGCA -ACGGAAGTTCCTGCATACCGAACA -ACGGAAGTTCCTGCATACCAGTCA -ACGGAAGTTCCTGCATACGATCCA -ACGGAAGTTCCTGCATACACGACA -ACGGAAGTTCCTGCATACAGCTCA -ACGGAAGTTCCTGCATACTCACGT -ACGGAAGTTCCTGCATACCGTAGT -ACGGAAGTTCCTGCATACGTCAGT -ACGGAAGTTCCTGCATACGAAGGT -ACGGAAGTTCCTGCATACAACCGT -ACGGAAGTTCCTGCATACTTGTGC -ACGGAAGTTCCTGCATACCTAAGC -ACGGAAGTTCCTGCATACACTAGC -ACGGAAGTTCCTGCATACAGATGC -ACGGAAGTTCCTGCATACTGAAGG -ACGGAAGTTCCTGCATACCAATGG -ACGGAAGTTCCTGCATACATGAGG -ACGGAAGTTCCTGCATACAATGGG -ACGGAAGTTCCTGCATACTCCTGA -ACGGAAGTTCCTGCATACTAGCGA -ACGGAAGTTCCTGCATACCACAGA -ACGGAAGTTCCTGCATACGCAAGA -ACGGAAGTTCCTGCATACGGTTGA -ACGGAAGTTCCTGCATACTCCGAT -ACGGAAGTTCCTGCATACTGGCAT -ACGGAAGTTCCTGCATACCGAGAT -ACGGAAGTTCCTGCATACTACCAC -ACGGAAGTTCCTGCATACCAGAAC -ACGGAAGTTCCTGCATACGTCTAC -ACGGAAGTTCCTGCATACACGTAC -ACGGAAGTTCCTGCATACAGTGAC -ACGGAAGTTCCTGCATACCTGTAG -ACGGAAGTTCCTGCATACCCTAAG -ACGGAAGTTCCTGCATACGTTCAG -ACGGAAGTTCCTGCATACGCATAG -ACGGAAGTTCCTGCATACGACAAG -ACGGAAGTTCCTGCATACAAGCAG -ACGGAAGTTCCTGCATACCGTCAA -ACGGAAGTTCCTGCATACGCTGAA -ACGGAAGTTCCTGCATACAGTACG -ACGGAAGTTCCTGCATACATCCGA -ACGGAAGTTCCTGCATACATGGGA -ACGGAAGTTCCTGCATACGTGCAA -ACGGAAGTTCCTGCATACGAGGAA -ACGGAAGTTCCTGCATACCAGGTA -ACGGAAGTTCCTGCATACGACTCT -ACGGAAGTTCCTGCATACAGTCCT -ACGGAAGTTCCTGCATACTAAGCC -ACGGAAGTTCCTGCATACATAGCC -ACGGAAGTTCCTGCATACTAACCG -ACGGAAGTTCCTGCATACATGCCA -ACGGAAGTTCCTGCACTTGGAAAC -ACGGAAGTTCCTGCACTTAACACC -ACGGAAGTTCCTGCACTTATCGAG -ACGGAAGTTCCTGCACTTCTCCTT -ACGGAAGTTCCTGCACTTCCTGTT -ACGGAAGTTCCTGCACTTCGGTTT -ACGGAAGTTCCTGCACTTGTGGTT -ACGGAAGTTCCTGCACTTGCCTTT -ACGGAAGTTCCTGCACTTGGTCTT -ACGGAAGTTCCTGCACTTACGCTT -ACGGAAGTTCCTGCACTTAGCGTT -ACGGAAGTTCCTGCACTTTTCGTC -ACGGAAGTTCCTGCACTTTCTCTC -ACGGAAGTTCCTGCACTTTGGATC -ACGGAAGTTCCTGCACTTCACTTC -ACGGAAGTTCCTGCACTTGTACTC -ACGGAAGTTCCTGCACTTGATGTC -ACGGAAGTTCCTGCACTTACAGTC -ACGGAAGTTCCTGCACTTTTGCTG -ACGGAAGTTCCTGCACTTTCCATG -ACGGAAGTTCCTGCACTTTGTGTG -ACGGAAGTTCCTGCACTTCTAGTG -ACGGAAGTTCCTGCACTTCATCTG -ACGGAAGTTCCTGCACTTGAGTTG -ACGGAAGTTCCTGCACTTAGACTG -ACGGAAGTTCCTGCACTTTCGGTA -ACGGAAGTTCCTGCACTTTGCCTA -ACGGAAGTTCCTGCACTTCCACTA -ACGGAAGTTCCTGCACTTGGAGTA -ACGGAAGTTCCTGCACTTTCGTCT -ACGGAAGTTCCTGCACTTTGCACT -ACGGAAGTTCCTGCACTTCTGACT -ACGGAAGTTCCTGCACTTCAACCT -ACGGAAGTTCCTGCACTTGCTACT -ACGGAAGTTCCTGCACTTGGATCT -ACGGAAGTTCCTGCACTTAAGGCT -ACGGAAGTTCCTGCACTTTCAACC -ACGGAAGTTCCTGCACTTTGTTCC -ACGGAAGTTCCTGCACTTATTCCC -ACGGAAGTTCCTGCACTTTTCTCG -ACGGAAGTTCCTGCACTTTAGACG -ACGGAAGTTCCTGCACTTGTAACG -ACGGAAGTTCCTGCACTTACTTCG -ACGGAAGTTCCTGCACTTTACGCA -ACGGAAGTTCCTGCACTTCTTGCA -ACGGAAGTTCCTGCACTTCGAACA -ACGGAAGTTCCTGCACTTCAGTCA -ACGGAAGTTCCTGCACTTGATCCA -ACGGAAGTTCCTGCACTTACGACA -ACGGAAGTTCCTGCACTTAGCTCA -ACGGAAGTTCCTGCACTTTCACGT -ACGGAAGTTCCTGCACTTCGTAGT -ACGGAAGTTCCTGCACTTGTCAGT -ACGGAAGTTCCTGCACTTGAAGGT -ACGGAAGTTCCTGCACTTAACCGT -ACGGAAGTTCCTGCACTTTTGTGC -ACGGAAGTTCCTGCACTTCTAAGC -ACGGAAGTTCCTGCACTTACTAGC -ACGGAAGTTCCTGCACTTAGATGC -ACGGAAGTTCCTGCACTTTGAAGG -ACGGAAGTTCCTGCACTTCAATGG -ACGGAAGTTCCTGCACTTATGAGG -ACGGAAGTTCCTGCACTTAATGGG -ACGGAAGTTCCTGCACTTTCCTGA -ACGGAAGTTCCTGCACTTTAGCGA -ACGGAAGTTCCTGCACTTCACAGA -ACGGAAGTTCCTGCACTTGCAAGA -ACGGAAGTTCCTGCACTTGGTTGA -ACGGAAGTTCCTGCACTTTCCGAT -ACGGAAGTTCCTGCACTTTGGCAT -ACGGAAGTTCCTGCACTTCGAGAT -ACGGAAGTTCCTGCACTTTACCAC -ACGGAAGTTCCTGCACTTCAGAAC -ACGGAAGTTCCTGCACTTGTCTAC -ACGGAAGTTCCTGCACTTACGTAC -ACGGAAGTTCCTGCACTTAGTGAC -ACGGAAGTTCCTGCACTTCTGTAG -ACGGAAGTTCCTGCACTTCCTAAG -ACGGAAGTTCCTGCACTTGTTCAG -ACGGAAGTTCCTGCACTTGCATAG -ACGGAAGTTCCTGCACTTGACAAG -ACGGAAGTTCCTGCACTTAAGCAG -ACGGAAGTTCCTGCACTTCGTCAA -ACGGAAGTTCCTGCACTTGCTGAA -ACGGAAGTTCCTGCACTTAGTACG -ACGGAAGTTCCTGCACTTATCCGA -ACGGAAGTTCCTGCACTTATGGGA -ACGGAAGTTCCTGCACTTGTGCAA -ACGGAAGTTCCTGCACTTGAGGAA -ACGGAAGTTCCTGCACTTCAGGTA -ACGGAAGTTCCTGCACTTGACTCT -ACGGAAGTTCCTGCACTTAGTCCT -ACGGAAGTTCCTGCACTTTAAGCC -ACGGAAGTTCCTGCACTTATAGCC -ACGGAAGTTCCTGCACTTTAACCG -ACGGAAGTTCCTGCACTTATGCCA -ACGGAAGTTCCTACACGAGGAAAC -ACGGAAGTTCCTACACGAAACACC -ACGGAAGTTCCTACACGAATCGAG -ACGGAAGTTCCTACACGACTCCTT -ACGGAAGTTCCTACACGACCTGTT -ACGGAAGTTCCTACACGACGGTTT -ACGGAAGTTCCTACACGAGTGGTT -ACGGAAGTTCCTACACGAGCCTTT -ACGGAAGTTCCTACACGAGGTCTT -ACGGAAGTTCCTACACGAACGCTT -ACGGAAGTTCCTACACGAAGCGTT -ACGGAAGTTCCTACACGATTCGTC -ACGGAAGTTCCTACACGATCTCTC -ACGGAAGTTCCTACACGATGGATC -ACGGAAGTTCCTACACGACACTTC -ACGGAAGTTCCTACACGAGTACTC -ACGGAAGTTCCTACACGAGATGTC -ACGGAAGTTCCTACACGAACAGTC -ACGGAAGTTCCTACACGATTGCTG -ACGGAAGTTCCTACACGATCCATG -ACGGAAGTTCCTACACGATGTGTG -ACGGAAGTTCCTACACGACTAGTG -ACGGAAGTTCCTACACGACATCTG -ACGGAAGTTCCTACACGAGAGTTG -ACGGAAGTTCCTACACGAAGACTG -ACGGAAGTTCCTACACGATCGGTA -ACGGAAGTTCCTACACGATGCCTA -ACGGAAGTTCCTACACGACCACTA -ACGGAAGTTCCTACACGAGGAGTA -ACGGAAGTTCCTACACGATCGTCT -ACGGAAGTTCCTACACGATGCACT -ACGGAAGTTCCTACACGACTGACT -ACGGAAGTTCCTACACGACAACCT -ACGGAAGTTCCTACACGAGCTACT -ACGGAAGTTCCTACACGAGGATCT -ACGGAAGTTCCTACACGAAAGGCT -ACGGAAGTTCCTACACGATCAACC -ACGGAAGTTCCTACACGATGTTCC -ACGGAAGTTCCTACACGAATTCCC -ACGGAAGTTCCTACACGATTCTCG -ACGGAAGTTCCTACACGATAGACG -ACGGAAGTTCCTACACGAGTAACG -ACGGAAGTTCCTACACGAACTTCG -ACGGAAGTTCCTACACGATACGCA -ACGGAAGTTCCTACACGACTTGCA -ACGGAAGTTCCTACACGACGAACA -ACGGAAGTTCCTACACGACAGTCA -ACGGAAGTTCCTACACGAGATCCA -ACGGAAGTTCCTACACGAACGACA -ACGGAAGTTCCTACACGAAGCTCA -ACGGAAGTTCCTACACGATCACGT -ACGGAAGTTCCTACACGACGTAGT -ACGGAAGTTCCTACACGAGTCAGT -ACGGAAGTTCCTACACGAGAAGGT -ACGGAAGTTCCTACACGAAACCGT -ACGGAAGTTCCTACACGATTGTGC -ACGGAAGTTCCTACACGACTAAGC -ACGGAAGTTCCTACACGAACTAGC -ACGGAAGTTCCTACACGAAGATGC -ACGGAAGTTCCTACACGATGAAGG -ACGGAAGTTCCTACACGACAATGG -ACGGAAGTTCCTACACGAATGAGG -ACGGAAGTTCCTACACGAAATGGG -ACGGAAGTTCCTACACGATCCTGA -ACGGAAGTTCCTACACGATAGCGA -ACGGAAGTTCCTACACGACACAGA -ACGGAAGTTCCTACACGAGCAAGA -ACGGAAGTTCCTACACGAGGTTGA -ACGGAAGTTCCTACACGATCCGAT -ACGGAAGTTCCTACACGATGGCAT -ACGGAAGTTCCTACACGACGAGAT -ACGGAAGTTCCTACACGATACCAC -ACGGAAGTTCCTACACGACAGAAC -ACGGAAGTTCCTACACGAGTCTAC -ACGGAAGTTCCTACACGAACGTAC -ACGGAAGTTCCTACACGAAGTGAC -ACGGAAGTTCCTACACGACTGTAG -ACGGAAGTTCCTACACGACCTAAG -ACGGAAGTTCCTACACGAGTTCAG -ACGGAAGTTCCTACACGAGCATAG -ACGGAAGTTCCTACACGAGACAAG -ACGGAAGTTCCTACACGAAAGCAG -ACGGAAGTTCCTACACGACGTCAA -ACGGAAGTTCCTACACGAGCTGAA -ACGGAAGTTCCTACACGAAGTACG -ACGGAAGTTCCTACACGAATCCGA -ACGGAAGTTCCTACACGAATGGGA -ACGGAAGTTCCTACACGAGTGCAA -ACGGAAGTTCCTACACGAGAGGAA -ACGGAAGTTCCTACACGACAGGTA -ACGGAAGTTCCTACACGAGACTCT -ACGGAAGTTCCTACACGAAGTCCT -ACGGAAGTTCCTACACGATAAGCC -ACGGAAGTTCCTACACGAATAGCC -ACGGAAGTTCCTACACGATAACCG -ACGGAAGTTCCTACACGAATGCCA -ACGGAAGTTCCTTCACAGGGAAAC -ACGGAAGTTCCTTCACAGAACACC -ACGGAAGTTCCTTCACAGATCGAG -ACGGAAGTTCCTTCACAGCTCCTT -ACGGAAGTTCCTTCACAGCCTGTT -ACGGAAGTTCCTTCACAGCGGTTT -ACGGAAGTTCCTTCACAGGTGGTT -ACGGAAGTTCCTTCACAGGCCTTT -ACGGAAGTTCCTTCACAGGGTCTT -ACGGAAGTTCCTTCACAGACGCTT -ACGGAAGTTCCTTCACAGAGCGTT -ACGGAAGTTCCTTCACAGTTCGTC -ACGGAAGTTCCTTCACAGTCTCTC -ACGGAAGTTCCTTCACAGTGGATC -ACGGAAGTTCCTTCACAGCACTTC -ACGGAAGTTCCTTCACAGGTACTC -ACGGAAGTTCCTTCACAGGATGTC -ACGGAAGTTCCTTCACAGACAGTC -ACGGAAGTTCCTTCACAGTTGCTG -ACGGAAGTTCCTTCACAGTCCATG -ACGGAAGTTCCTTCACAGTGTGTG -ACGGAAGTTCCTTCACAGCTAGTG -ACGGAAGTTCCTTCACAGCATCTG -ACGGAAGTTCCTTCACAGGAGTTG -ACGGAAGTTCCTTCACAGAGACTG -ACGGAAGTTCCTTCACAGTCGGTA -ACGGAAGTTCCTTCACAGTGCCTA -ACGGAAGTTCCTTCACAGCCACTA -ACGGAAGTTCCTTCACAGGGAGTA -ACGGAAGTTCCTTCACAGTCGTCT -ACGGAAGTTCCTTCACAGTGCACT -ACGGAAGTTCCTTCACAGCTGACT -ACGGAAGTTCCTTCACAGCAACCT -ACGGAAGTTCCTTCACAGGCTACT -ACGGAAGTTCCTTCACAGGGATCT -ACGGAAGTTCCTTCACAGAAGGCT -ACGGAAGTTCCTTCACAGTCAACC -ACGGAAGTTCCTTCACAGTGTTCC -ACGGAAGTTCCTTCACAGATTCCC -ACGGAAGTTCCTTCACAGTTCTCG -ACGGAAGTTCCTTCACAGTAGACG -ACGGAAGTTCCTTCACAGGTAACG -ACGGAAGTTCCTTCACAGACTTCG -ACGGAAGTTCCTTCACAGTACGCA -ACGGAAGTTCCTTCACAGCTTGCA -ACGGAAGTTCCTTCACAGCGAACA -ACGGAAGTTCCTTCACAGCAGTCA -ACGGAAGTTCCTTCACAGGATCCA -ACGGAAGTTCCTTCACAGACGACA -ACGGAAGTTCCTTCACAGAGCTCA -ACGGAAGTTCCTTCACAGTCACGT -ACGGAAGTTCCTTCACAGCGTAGT -ACGGAAGTTCCTTCACAGGTCAGT -ACGGAAGTTCCTTCACAGGAAGGT -ACGGAAGTTCCTTCACAGAACCGT -ACGGAAGTTCCTTCACAGTTGTGC -ACGGAAGTTCCTTCACAGCTAAGC -ACGGAAGTTCCTTCACAGACTAGC -ACGGAAGTTCCTTCACAGAGATGC -ACGGAAGTTCCTTCACAGTGAAGG -ACGGAAGTTCCTTCACAGCAATGG -ACGGAAGTTCCTTCACAGATGAGG -ACGGAAGTTCCTTCACAGAATGGG -ACGGAAGTTCCTTCACAGTCCTGA -ACGGAAGTTCCTTCACAGTAGCGA -ACGGAAGTTCCTTCACAGCACAGA -ACGGAAGTTCCTTCACAGGCAAGA -ACGGAAGTTCCTTCACAGGGTTGA -ACGGAAGTTCCTTCACAGTCCGAT -ACGGAAGTTCCTTCACAGTGGCAT -ACGGAAGTTCCTTCACAGCGAGAT -ACGGAAGTTCCTTCACAGTACCAC -ACGGAAGTTCCTTCACAGCAGAAC -ACGGAAGTTCCTTCACAGGTCTAC -ACGGAAGTTCCTTCACAGACGTAC -ACGGAAGTTCCTTCACAGAGTGAC -ACGGAAGTTCCTTCACAGCTGTAG -ACGGAAGTTCCTTCACAGCCTAAG -ACGGAAGTTCCTTCACAGGTTCAG -ACGGAAGTTCCTTCACAGGCATAG -ACGGAAGTTCCTTCACAGGACAAG -ACGGAAGTTCCTTCACAGAAGCAG -ACGGAAGTTCCTTCACAGCGTCAA -ACGGAAGTTCCTTCACAGGCTGAA -ACGGAAGTTCCTTCACAGAGTACG -ACGGAAGTTCCTTCACAGATCCGA -ACGGAAGTTCCTTCACAGATGGGA -ACGGAAGTTCCTTCACAGGTGCAA -ACGGAAGTTCCTTCACAGGAGGAA -ACGGAAGTTCCTTCACAGCAGGTA -ACGGAAGTTCCTTCACAGGACTCT -ACGGAAGTTCCTTCACAGAGTCCT -ACGGAAGTTCCTTCACAGTAAGCC -ACGGAAGTTCCTTCACAGATAGCC -ACGGAAGTTCCTTCACAGTAACCG -ACGGAAGTTCCTTCACAGATGCCA -ACGGAAGTTCCTCCAGATGGAAAC -ACGGAAGTTCCTCCAGATAACACC -ACGGAAGTTCCTCCAGATATCGAG -ACGGAAGTTCCTCCAGATCTCCTT -ACGGAAGTTCCTCCAGATCCTGTT -ACGGAAGTTCCTCCAGATCGGTTT -ACGGAAGTTCCTCCAGATGTGGTT -ACGGAAGTTCCTCCAGATGCCTTT -ACGGAAGTTCCTCCAGATGGTCTT -ACGGAAGTTCCTCCAGATACGCTT -ACGGAAGTTCCTCCAGATAGCGTT -ACGGAAGTTCCTCCAGATTTCGTC -ACGGAAGTTCCTCCAGATTCTCTC -ACGGAAGTTCCTCCAGATTGGATC -ACGGAAGTTCCTCCAGATCACTTC -ACGGAAGTTCCTCCAGATGTACTC -ACGGAAGTTCCTCCAGATGATGTC -ACGGAAGTTCCTCCAGATACAGTC -ACGGAAGTTCCTCCAGATTTGCTG -ACGGAAGTTCCTCCAGATTCCATG -ACGGAAGTTCCTCCAGATTGTGTG -ACGGAAGTTCCTCCAGATCTAGTG -ACGGAAGTTCCTCCAGATCATCTG -ACGGAAGTTCCTCCAGATGAGTTG -ACGGAAGTTCCTCCAGATAGACTG -ACGGAAGTTCCTCCAGATTCGGTA -ACGGAAGTTCCTCCAGATTGCCTA -ACGGAAGTTCCTCCAGATCCACTA -ACGGAAGTTCCTCCAGATGGAGTA -ACGGAAGTTCCTCCAGATTCGTCT -ACGGAAGTTCCTCCAGATTGCACT -ACGGAAGTTCCTCCAGATCTGACT -ACGGAAGTTCCTCCAGATCAACCT -ACGGAAGTTCCTCCAGATGCTACT -ACGGAAGTTCCTCCAGATGGATCT -ACGGAAGTTCCTCCAGATAAGGCT -ACGGAAGTTCCTCCAGATTCAACC -ACGGAAGTTCCTCCAGATTGTTCC -ACGGAAGTTCCTCCAGATATTCCC -ACGGAAGTTCCTCCAGATTTCTCG -ACGGAAGTTCCTCCAGATTAGACG -ACGGAAGTTCCTCCAGATGTAACG -ACGGAAGTTCCTCCAGATACTTCG -ACGGAAGTTCCTCCAGATTACGCA -ACGGAAGTTCCTCCAGATCTTGCA -ACGGAAGTTCCTCCAGATCGAACA -ACGGAAGTTCCTCCAGATCAGTCA -ACGGAAGTTCCTCCAGATGATCCA -ACGGAAGTTCCTCCAGATACGACA -ACGGAAGTTCCTCCAGATAGCTCA -ACGGAAGTTCCTCCAGATTCACGT -ACGGAAGTTCCTCCAGATCGTAGT -ACGGAAGTTCCTCCAGATGTCAGT -ACGGAAGTTCCTCCAGATGAAGGT -ACGGAAGTTCCTCCAGATAACCGT -ACGGAAGTTCCTCCAGATTTGTGC -ACGGAAGTTCCTCCAGATCTAAGC -ACGGAAGTTCCTCCAGATACTAGC -ACGGAAGTTCCTCCAGATAGATGC -ACGGAAGTTCCTCCAGATTGAAGG -ACGGAAGTTCCTCCAGATCAATGG -ACGGAAGTTCCTCCAGATATGAGG -ACGGAAGTTCCTCCAGATAATGGG -ACGGAAGTTCCTCCAGATTCCTGA -ACGGAAGTTCCTCCAGATTAGCGA -ACGGAAGTTCCTCCAGATCACAGA -ACGGAAGTTCCTCCAGATGCAAGA -ACGGAAGTTCCTCCAGATGGTTGA -ACGGAAGTTCCTCCAGATTCCGAT -ACGGAAGTTCCTCCAGATTGGCAT -ACGGAAGTTCCTCCAGATCGAGAT -ACGGAAGTTCCTCCAGATTACCAC -ACGGAAGTTCCTCCAGATCAGAAC -ACGGAAGTTCCTCCAGATGTCTAC -ACGGAAGTTCCTCCAGATACGTAC -ACGGAAGTTCCTCCAGATAGTGAC -ACGGAAGTTCCTCCAGATCTGTAG -ACGGAAGTTCCTCCAGATCCTAAG -ACGGAAGTTCCTCCAGATGTTCAG -ACGGAAGTTCCTCCAGATGCATAG -ACGGAAGTTCCTCCAGATGACAAG -ACGGAAGTTCCTCCAGATAAGCAG -ACGGAAGTTCCTCCAGATCGTCAA -ACGGAAGTTCCTCCAGATGCTGAA -ACGGAAGTTCCTCCAGATAGTACG -ACGGAAGTTCCTCCAGATATCCGA -ACGGAAGTTCCTCCAGATATGGGA -ACGGAAGTTCCTCCAGATGTGCAA -ACGGAAGTTCCTCCAGATGAGGAA -ACGGAAGTTCCTCCAGATCAGGTA -ACGGAAGTTCCTCCAGATGACTCT -ACGGAAGTTCCTCCAGATAGTCCT -ACGGAAGTTCCTCCAGATTAAGCC -ACGGAAGTTCCTCCAGATATAGCC -ACGGAAGTTCCTCCAGATTAACCG -ACGGAAGTTCCTCCAGATATGCCA -ACGGAAGTTCCTACAACGGGAAAC -ACGGAAGTTCCTACAACGAACACC -ACGGAAGTTCCTACAACGATCGAG -ACGGAAGTTCCTACAACGCTCCTT -ACGGAAGTTCCTACAACGCCTGTT -ACGGAAGTTCCTACAACGCGGTTT -ACGGAAGTTCCTACAACGGTGGTT -ACGGAAGTTCCTACAACGGCCTTT -ACGGAAGTTCCTACAACGGGTCTT -ACGGAAGTTCCTACAACGACGCTT -ACGGAAGTTCCTACAACGAGCGTT -ACGGAAGTTCCTACAACGTTCGTC -ACGGAAGTTCCTACAACGTCTCTC -ACGGAAGTTCCTACAACGTGGATC -ACGGAAGTTCCTACAACGCACTTC -ACGGAAGTTCCTACAACGGTACTC -ACGGAAGTTCCTACAACGGATGTC -ACGGAAGTTCCTACAACGACAGTC -ACGGAAGTTCCTACAACGTTGCTG -ACGGAAGTTCCTACAACGTCCATG -ACGGAAGTTCCTACAACGTGTGTG -ACGGAAGTTCCTACAACGCTAGTG -ACGGAAGTTCCTACAACGCATCTG -ACGGAAGTTCCTACAACGGAGTTG -ACGGAAGTTCCTACAACGAGACTG -ACGGAAGTTCCTACAACGTCGGTA -ACGGAAGTTCCTACAACGTGCCTA -ACGGAAGTTCCTACAACGCCACTA -ACGGAAGTTCCTACAACGGGAGTA -ACGGAAGTTCCTACAACGTCGTCT -ACGGAAGTTCCTACAACGTGCACT -ACGGAAGTTCCTACAACGCTGACT -ACGGAAGTTCCTACAACGCAACCT -ACGGAAGTTCCTACAACGGCTACT -ACGGAAGTTCCTACAACGGGATCT -ACGGAAGTTCCTACAACGAAGGCT -ACGGAAGTTCCTACAACGTCAACC -ACGGAAGTTCCTACAACGTGTTCC -ACGGAAGTTCCTACAACGATTCCC -ACGGAAGTTCCTACAACGTTCTCG -ACGGAAGTTCCTACAACGTAGACG -ACGGAAGTTCCTACAACGGTAACG -ACGGAAGTTCCTACAACGACTTCG -ACGGAAGTTCCTACAACGTACGCA -ACGGAAGTTCCTACAACGCTTGCA -ACGGAAGTTCCTACAACGCGAACA -ACGGAAGTTCCTACAACGCAGTCA -ACGGAAGTTCCTACAACGGATCCA -ACGGAAGTTCCTACAACGACGACA -ACGGAAGTTCCTACAACGAGCTCA -ACGGAAGTTCCTACAACGTCACGT -ACGGAAGTTCCTACAACGCGTAGT -ACGGAAGTTCCTACAACGGTCAGT -ACGGAAGTTCCTACAACGGAAGGT -ACGGAAGTTCCTACAACGAACCGT -ACGGAAGTTCCTACAACGTTGTGC -ACGGAAGTTCCTACAACGCTAAGC -ACGGAAGTTCCTACAACGACTAGC -ACGGAAGTTCCTACAACGAGATGC -ACGGAAGTTCCTACAACGTGAAGG -ACGGAAGTTCCTACAACGCAATGG -ACGGAAGTTCCTACAACGATGAGG -ACGGAAGTTCCTACAACGAATGGG -ACGGAAGTTCCTACAACGTCCTGA -ACGGAAGTTCCTACAACGTAGCGA -ACGGAAGTTCCTACAACGCACAGA -ACGGAAGTTCCTACAACGGCAAGA -ACGGAAGTTCCTACAACGGGTTGA -ACGGAAGTTCCTACAACGTCCGAT -ACGGAAGTTCCTACAACGTGGCAT -ACGGAAGTTCCTACAACGCGAGAT -ACGGAAGTTCCTACAACGTACCAC -ACGGAAGTTCCTACAACGCAGAAC -ACGGAAGTTCCTACAACGGTCTAC -ACGGAAGTTCCTACAACGACGTAC -ACGGAAGTTCCTACAACGAGTGAC -ACGGAAGTTCCTACAACGCTGTAG -ACGGAAGTTCCTACAACGCCTAAG -ACGGAAGTTCCTACAACGGTTCAG -ACGGAAGTTCCTACAACGGCATAG -ACGGAAGTTCCTACAACGGACAAG -ACGGAAGTTCCTACAACGAAGCAG -ACGGAAGTTCCTACAACGCGTCAA -ACGGAAGTTCCTACAACGGCTGAA -ACGGAAGTTCCTACAACGAGTACG -ACGGAAGTTCCTACAACGATCCGA -ACGGAAGTTCCTACAACGATGGGA -ACGGAAGTTCCTACAACGGTGCAA -ACGGAAGTTCCTACAACGGAGGAA -ACGGAAGTTCCTACAACGCAGGTA -ACGGAAGTTCCTACAACGGACTCT -ACGGAAGTTCCTACAACGAGTCCT -ACGGAAGTTCCTACAACGTAAGCC -ACGGAAGTTCCTACAACGATAGCC -ACGGAAGTTCCTACAACGTAACCG -ACGGAAGTTCCTACAACGATGCCA -ACGGAAGTTCCTTCAAGCGGAAAC -ACGGAAGTTCCTTCAAGCAACACC -ACGGAAGTTCCTTCAAGCATCGAG -ACGGAAGTTCCTTCAAGCCTCCTT -ACGGAAGTTCCTTCAAGCCCTGTT -ACGGAAGTTCCTTCAAGCCGGTTT -ACGGAAGTTCCTTCAAGCGTGGTT -ACGGAAGTTCCTTCAAGCGCCTTT -ACGGAAGTTCCTTCAAGCGGTCTT -ACGGAAGTTCCTTCAAGCACGCTT -ACGGAAGTTCCTTCAAGCAGCGTT -ACGGAAGTTCCTTCAAGCTTCGTC -ACGGAAGTTCCTTCAAGCTCTCTC -ACGGAAGTTCCTTCAAGCTGGATC -ACGGAAGTTCCTTCAAGCCACTTC -ACGGAAGTTCCTTCAAGCGTACTC -ACGGAAGTTCCTTCAAGCGATGTC -ACGGAAGTTCCTTCAAGCACAGTC -ACGGAAGTTCCTTCAAGCTTGCTG -ACGGAAGTTCCTTCAAGCTCCATG -ACGGAAGTTCCTTCAAGCTGTGTG -ACGGAAGTTCCTTCAAGCCTAGTG -ACGGAAGTTCCTTCAAGCCATCTG -ACGGAAGTTCCTTCAAGCGAGTTG -ACGGAAGTTCCTTCAAGCAGACTG -ACGGAAGTTCCTTCAAGCTCGGTA -ACGGAAGTTCCTTCAAGCTGCCTA -ACGGAAGTTCCTTCAAGCCCACTA -ACGGAAGTTCCTTCAAGCGGAGTA -ACGGAAGTTCCTTCAAGCTCGTCT -ACGGAAGTTCCTTCAAGCTGCACT -ACGGAAGTTCCTTCAAGCCTGACT -ACGGAAGTTCCTTCAAGCCAACCT -ACGGAAGTTCCTTCAAGCGCTACT -ACGGAAGTTCCTTCAAGCGGATCT -ACGGAAGTTCCTTCAAGCAAGGCT -ACGGAAGTTCCTTCAAGCTCAACC -ACGGAAGTTCCTTCAAGCTGTTCC -ACGGAAGTTCCTTCAAGCATTCCC -ACGGAAGTTCCTTCAAGCTTCTCG -ACGGAAGTTCCTTCAAGCTAGACG -ACGGAAGTTCCTTCAAGCGTAACG -ACGGAAGTTCCTTCAAGCACTTCG -ACGGAAGTTCCTTCAAGCTACGCA -ACGGAAGTTCCTTCAAGCCTTGCA -ACGGAAGTTCCTTCAAGCCGAACA -ACGGAAGTTCCTTCAAGCCAGTCA -ACGGAAGTTCCTTCAAGCGATCCA -ACGGAAGTTCCTTCAAGCACGACA -ACGGAAGTTCCTTCAAGCAGCTCA -ACGGAAGTTCCTTCAAGCTCACGT -ACGGAAGTTCCTTCAAGCCGTAGT -ACGGAAGTTCCTTCAAGCGTCAGT -ACGGAAGTTCCTTCAAGCGAAGGT -ACGGAAGTTCCTTCAAGCAACCGT -ACGGAAGTTCCTTCAAGCTTGTGC -ACGGAAGTTCCTTCAAGCCTAAGC -ACGGAAGTTCCTTCAAGCACTAGC -ACGGAAGTTCCTTCAAGCAGATGC -ACGGAAGTTCCTTCAAGCTGAAGG -ACGGAAGTTCCTTCAAGCCAATGG -ACGGAAGTTCCTTCAAGCATGAGG -ACGGAAGTTCCTTCAAGCAATGGG -ACGGAAGTTCCTTCAAGCTCCTGA -ACGGAAGTTCCTTCAAGCTAGCGA -ACGGAAGTTCCTTCAAGCCACAGA -ACGGAAGTTCCTTCAAGCGCAAGA -ACGGAAGTTCCTTCAAGCGGTTGA -ACGGAAGTTCCTTCAAGCTCCGAT -ACGGAAGTTCCTTCAAGCTGGCAT -ACGGAAGTTCCTTCAAGCCGAGAT -ACGGAAGTTCCTTCAAGCTACCAC -ACGGAAGTTCCTTCAAGCCAGAAC -ACGGAAGTTCCTTCAAGCGTCTAC -ACGGAAGTTCCTTCAAGCACGTAC -ACGGAAGTTCCTTCAAGCAGTGAC -ACGGAAGTTCCTTCAAGCCTGTAG -ACGGAAGTTCCTTCAAGCCCTAAG -ACGGAAGTTCCTTCAAGCGTTCAG -ACGGAAGTTCCTTCAAGCGCATAG -ACGGAAGTTCCTTCAAGCGACAAG -ACGGAAGTTCCTTCAAGCAAGCAG -ACGGAAGTTCCTTCAAGCCGTCAA -ACGGAAGTTCCTTCAAGCGCTGAA -ACGGAAGTTCCTTCAAGCAGTACG -ACGGAAGTTCCTTCAAGCATCCGA -ACGGAAGTTCCTTCAAGCATGGGA -ACGGAAGTTCCTTCAAGCGTGCAA -ACGGAAGTTCCTTCAAGCGAGGAA -ACGGAAGTTCCTTCAAGCCAGGTA -ACGGAAGTTCCTTCAAGCGACTCT -ACGGAAGTTCCTTCAAGCAGTCCT -ACGGAAGTTCCTTCAAGCTAAGCC -ACGGAAGTTCCTTCAAGCATAGCC -ACGGAAGTTCCTTCAAGCTAACCG -ACGGAAGTTCCTTCAAGCATGCCA -ACGGAAGTTCCTCGTTCAGGAAAC -ACGGAAGTTCCTCGTTCAAACACC -ACGGAAGTTCCTCGTTCAATCGAG -ACGGAAGTTCCTCGTTCACTCCTT -ACGGAAGTTCCTCGTTCACCTGTT -ACGGAAGTTCCTCGTTCACGGTTT -ACGGAAGTTCCTCGTTCAGTGGTT -ACGGAAGTTCCTCGTTCAGCCTTT -ACGGAAGTTCCTCGTTCAGGTCTT -ACGGAAGTTCCTCGTTCAACGCTT -ACGGAAGTTCCTCGTTCAAGCGTT -ACGGAAGTTCCTCGTTCATTCGTC -ACGGAAGTTCCTCGTTCATCTCTC -ACGGAAGTTCCTCGTTCATGGATC -ACGGAAGTTCCTCGTTCACACTTC -ACGGAAGTTCCTCGTTCAGTACTC -ACGGAAGTTCCTCGTTCAGATGTC -ACGGAAGTTCCTCGTTCAACAGTC -ACGGAAGTTCCTCGTTCATTGCTG -ACGGAAGTTCCTCGTTCATCCATG -ACGGAAGTTCCTCGTTCATGTGTG -ACGGAAGTTCCTCGTTCACTAGTG -ACGGAAGTTCCTCGTTCACATCTG -ACGGAAGTTCCTCGTTCAGAGTTG -ACGGAAGTTCCTCGTTCAAGACTG -ACGGAAGTTCCTCGTTCATCGGTA -ACGGAAGTTCCTCGTTCATGCCTA -ACGGAAGTTCCTCGTTCACCACTA -ACGGAAGTTCCTCGTTCAGGAGTA -ACGGAAGTTCCTCGTTCATCGTCT -ACGGAAGTTCCTCGTTCATGCACT -ACGGAAGTTCCTCGTTCACTGACT -ACGGAAGTTCCTCGTTCACAACCT -ACGGAAGTTCCTCGTTCAGCTACT -ACGGAAGTTCCTCGTTCAGGATCT -ACGGAAGTTCCTCGTTCAAAGGCT -ACGGAAGTTCCTCGTTCATCAACC -ACGGAAGTTCCTCGTTCATGTTCC -ACGGAAGTTCCTCGTTCAATTCCC -ACGGAAGTTCCTCGTTCATTCTCG -ACGGAAGTTCCTCGTTCATAGACG -ACGGAAGTTCCTCGTTCAGTAACG -ACGGAAGTTCCTCGTTCAACTTCG -ACGGAAGTTCCTCGTTCATACGCA -ACGGAAGTTCCTCGTTCACTTGCA -ACGGAAGTTCCTCGTTCACGAACA -ACGGAAGTTCCTCGTTCACAGTCA -ACGGAAGTTCCTCGTTCAGATCCA -ACGGAAGTTCCTCGTTCAACGACA -ACGGAAGTTCCTCGTTCAAGCTCA -ACGGAAGTTCCTCGTTCATCACGT -ACGGAAGTTCCTCGTTCACGTAGT -ACGGAAGTTCCTCGTTCAGTCAGT -ACGGAAGTTCCTCGTTCAGAAGGT -ACGGAAGTTCCTCGTTCAAACCGT -ACGGAAGTTCCTCGTTCATTGTGC -ACGGAAGTTCCTCGTTCACTAAGC -ACGGAAGTTCCTCGTTCAACTAGC -ACGGAAGTTCCTCGTTCAAGATGC -ACGGAAGTTCCTCGTTCATGAAGG -ACGGAAGTTCCTCGTTCACAATGG -ACGGAAGTTCCTCGTTCAATGAGG -ACGGAAGTTCCTCGTTCAAATGGG -ACGGAAGTTCCTCGTTCATCCTGA -ACGGAAGTTCCTCGTTCATAGCGA -ACGGAAGTTCCTCGTTCACACAGA -ACGGAAGTTCCTCGTTCAGCAAGA -ACGGAAGTTCCTCGTTCAGGTTGA -ACGGAAGTTCCTCGTTCATCCGAT -ACGGAAGTTCCTCGTTCATGGCAT -ACGGAAGTTCCTCGTTCACGAGAT -ACGGAAGTTCCTCGTTCATACCAC -ACGGAAGTTCCTCGTTCACAGAAC -ACGGAAGTTCCTCGTTCAGTCTAC -ACGGAAGTTCCTCGTTCAACGTAC -ACGGAAGTTCCTCGTTCAAGTGAC -ACGGAAGTTCCTCGTTCACTGTAG -ACGGAAGTTCCTCGTTCACCTAAG -ACGGAAGTTCCTCGTTCAGTTCAG -ACGGAAGTTCCTCGTTCAGCATAG -ACGGAAGTTCCTCGTTCAGACAAG -ACGGAAGTTCCTCGTTCAAAGCAG -ACGGAAGTTCCTCGTTCACGTCAA -ACGGAAGTTCCTCGTTCAGCTGAA -ACGGAAGTTCCTCGTTCAAGTACG -ACGGAAGTTCCTCGTTCAATCCGA -ACGGAAGTTCCTCGTTCAATGGGA -ACGGAAGTTCCTCGTTCAGTGCAA -ACGGAAGTTCCTCGTTCAGAGGAA -ACGGAAGTTCCTCGTTCACAGGTA -ACGGAAGTTCCTCGTTCAGACTCT -ACGGAAGTTCCTCGTTCAAGTCCT -ACGGAAGTTCCTCGTTCATAAGCC -ACGGAAGTTCCTCGTTCAATAGCC -ACGGAAGTTCCTCGTTCATAACCG -ACGGAAGTTCCTCGTTCAATGCCA -ACGGAAGTTCCTAGTCGTGGAAAC -ACGGAAGTTCCTAGTCGTAACACC -ACGGAAGTTCCTAGTCGTATCGAG -ACGGAAGTTCCTAGTCGTCTCCTT -ACGGAAGTTCCTAGTCGTCCTGTT -ACGGAAGTTCCTAGTCGTCGGTTT -ACGGAAGTTCCTAGTCGTGTGGTT -ACGGAAGTTCCTAGTCGTGCCTTT -ACGGAAGTTCCTAGTCGTGGTCTT -ACGGAAGTTCCTAGTCGTACGCTT -ACGGAAGTTCCTAGTCGTAGCGTT -ACGGAAGTTCCTAGTCGTTTCGTC -ACGGAAGTTCCTAGTCGTTCTCTC -ACGGAAGTTCCTAGTCGTTGGATC -ACGGAAGTTCCTAGTCGTCACTTC -ACGGAAGTTCCTAGTCGTGTACTC -ACGGAAGTTCCTAGTCGTGATGTC -ACGGAAGTTCCTAGTCGTACAGTC -ACGGAAGTTCCTAGTCGTTTGCTG -ACGGAAGTTCCTAGTCGTTCCATG -ACGGAAGTTCCTAGTCGTTGTGTG -ACGGAAGTTCCTAGTCGTCTAGTG -ACGGAAGTTCCTAGTCGTCATCTG -ACGGAAGTTCCTAGTCGTGAGTTG -ACGGAAGTTCCTAGTCGTAGACTG -ACGGAAGTTCCTAGTCGTTCGGTA -ACGGAAGTTCCTAGTCGTTGCCTA -ACGGAAGTTCCTAGTCGTCCACTA -ACGGAAGTTCCTAGTCGTGGAGTA -ACGGAAGTTCCTAGTCGTTCGTCT -ACGGAAGTTCCTAGTCGTTGCACT -ACGGAAGTTCCTAGTCGTCTGACT -ACGGAAGTTCCTAGTCGTCAACCT -ACGGAAGTTCCTAGTCGTGCTACT -ACGGAAGTTCCTAGTCGTGGATCT -ACGGAAGTTCCTAGTCGTAAGGCT -ACGGAAGTTCCTAGTCGTTCAACC -ACGGAAGTTCCTAGTCGTTGTTCC -ACGGAAGTTCCTAGTCGTATTCCC -ACGGAAGTTCCTAGTCGTTTCTCG -ACGGAAGTTCCTAGTCGTTAGACG -ACGGAAGTTCCTAGTCGTGTAACG -ACGGAAGTTCCTAGTCGTACTTCG -ACGGAAGTTCCTAGTCGTTACGCA -ACGGAAGTTCCTAGTCGTCTTGCA -ACGGAAGTTCCTAGTCGTCGAACA -ACGGAAGTTCCTAGTCGTCAGTCA -ACGGAAGTTCCTAGTCGTGATCCA -ACGGAAGTTCCTAGTCGTACGACA -ACGGAAGTTCCTAGTCGTAGCTCA -ACGGAAGTTCCTAGTCGTTCACGT -ACGGAAGTTCCTAGTCGTCGTAGT -ACGGAAGTTCCTAGTCGTGTCAGT -ACGGAAGTTCCTAGTCGTGAAGGT -ACGGAAGTTCCTAGTCGTAACCGT -ACGGAAGTTCCTAGTCGTTTGTGC -ACGGAAGTTCCTAGTCGTCTAAGC -ACGGAAGTTCCTAGTCGTACTAGC -ACGGAAGTTCCTAGTCGTAGATGC -ACGGAAGTTCCTAGTCGTTGAAGG -ACGGAAGTTCCTAGTCGTCAATGG -ACGGAAGTTCCTAGTCGTATGAGG -ACGGAAGTTCCTAGTCGTAATGGG -ACGGAAGTTCCTAGTCGTTCCTGA -ACGGAAGTTCCTAGTCGTTAGCGA -ACGGAAGTTCCTAGTCGTCACAGA -ACGGAAGTTCCTAGTCGTGCAAGA -ACGGAAGTTCCTAGTCGTGGTTGA -ACGGAAGTTCCTAGTCGTTCCGAT -ACGGAAGTTCCTAGTCGTTGGCAT -ACGGAAGTTCCTAGTCGTCGAGAT -ACGGAAGTTCCTAGTCGTTACCAC -ACGGAAGTTCCTAGTCGTCAGAAC -ACGGAAGTTCCTAGTCGTGTCTAC -ACGGAAGTTCCTAGTCGTACGTAC -ACGGAAGTTCCTAGTCGTAGTGAC -ACGGAAGTTCCTAGTCGTCTGTAG -ACGGAAGTTCCTAGTCGTCCTAAG -ACGGAAGTTCCTAGTCGTGTTCAG -ACGGAAGTTCCTAGTCGTGCATAG -ACGGAAGTTCCTAGTCGTGACAAG -ACGGAAGTTCCTAGTCGTAAGCAG -ACGGAAGTTCCTAGTCGTCGTCAA -ACGGAAGTTCCTAGTCGTGCTGAA -ACGGAAGTTCCTAGTCGTAGTACG -ACGGAAGTTCCTAGTCGTATCCGA -ACGGAAGTTCCTAGTCGTATGGGA -ACGGAAGTTCCTAGTCGTGTGCAA -ACGGAAGTTCCTAGTCGTGAGGAA -ACGGAAGTTCCTAGTCGTCAGGTA -ACGGAAGTTCCTAGTCGTGACTCT -ACGGAAGTTCCTAGTCGTAGTCCT -ACGGAAGTTCCTAGTCGTTAAGCC -ACGGAAGTTCCTAGTCGTATAGCC -ACGGAAGTTCCTAGTCGTTAACCG -ACGGAAGTTCCTAGTCGTATGCCA -ACGGAAGTTCCTAGTGTCGGAAAC -ACGGAAGTTCCTAGTGTCAACACC -ACGGAAGTTCCTAGTGTCATCGAG -ACGGAAGTTCCTAGTGTCCTCCTT -ACGGAAGTTCCTAGTGTCCCTGTT -ACGGAAGTTCCTAGTGTCCGGTTT -ACGGAAGTTCCTAGTGTCGTGGTT -ACGGAAGTTCCTAGTGTCGCCTTT -ACGGAAGTTCCTAGTGTCGGTCTT -ACGGAAGTTCCTAGTGTCACGCTT -ACGGAAGTTCCTAGTGTCAGCGTT -ACGGAAGTTCCTAGTGTCTTCGTC -ACGGAAGTTCCTAGTGTCTCTCTC -ACGGAAGTTCCTAGTGTCTGGATC -ACGGAAGTTCCTAGTGTCCACTTC -ACGGAAGTTCCTAGTGTCGTACTC -ACGGAAGTTCCTAGTGTCGATGTC -ACGGAAGTTCCTAGTGTCACAGTC -ACGGAAGTTCCTAGTGTCTTGCTG -ACGGAAGTTCCTAGTGTCTCCATG -ACGGAAGTTCCTAGTGTCTGTGTG -ACGGAAGTTCCTAGTGTCCTAGTG -ACGGAAGTTCCTAGTGTCCATCTG -ACGGAAGTTCCTAGTGTCGAGTTG -ACGGAAGTTCCTAGTGTCAGACTG -ACGGAAGTTCCTAGTGTCTCGGTA -ACGGAAGTTCCTAGTGTCTGCCTA -ACGGAAGTTCCTAGTGTCCCACTA -ACGGAAGTTCCTAGTGTCGGAGTA -ACGGAAGTTCCTAGTGTCTCGTCT -ACGGAAGTTCCTAGTGTCTGCACT -ACGGAAGTTCCTAGTGTCCTGACT -ACGGAAGTTCCTAGTGTCCAACCT -ACGGAAGTTCCTAGTGTCGCTACT -ACGGAAGTTCCTAGTGTCGGATCT -ACGGAAGTTCCTAGTGTCAAGGCT -ACGGAAGTTCCTAGTGTCTCAACC -ACGGAAGTTCCTAGTGTCTGTTCC -ACGGAAGTTCCTAGTGTCATTCCC -ACGGAAGTTCCTAGTGTCTTCTCG -ACGGAAGTTCCTAGTGTCTAGACG -ACGGAAGTTCCTAGTGTCGTAACG -ACGGAAGTTCCTAGTGTCACTTCG -ACGGAAGTTCCTAGTGTCTACGCA -ACGGAAGTTCCTAGTGTCCTTGCA -ACGGAAGTTCCTAGTGTCCGAACA -ACGGAAGTTCCTAGTGTCCAGTCA -ACGGAAGTTCCTAGTGTCGATCCA -ACGGAAGTTCCTAGTGTCACGACA -ACGGAAGTTCCTAGTGTCAGCTCA -ACGGAAGTTCCTAGTGTCTCACGT -ACGGAAGTTCCTAGTGTCCGTAGT -ACGGAAGTTCCTAGTGTCGTCAGT -ACGGAAGTTCCTAGTGTCGAAGGT -ACGGAAGTTCCTAGTGTCAACCGT -ACGGAAGTTCCTAGTGTCTTGTGC -ACGGAAGTTCCTAGTGTCCTAAGC -ACGGAAGTTCCTAGTGTCACTAGC -ACGGAAGTTCCTAGTGTCAGATGC -ACGGAAGTTCCTAGTGTCTGAAGG -ACGGAAGTTCCTAGTGTCCAATGG -ACGGAAGTTCCTAGTGTCATGAGG -ACGGAAGTTCCTAGTGTCAATGGG -ACGGAAGTTCCTAGTGTCTCCTGA -ACGGAAGTTCCTAGTGTCTAGCGA -ACGGAAGTTCCTAGTGTCCACAGA -ACGGAAGTTCCTAGTGTCGCAAGA -ACGGAAGTTCCTAGTGTCGGTTGA -ACGGAAGTTCCTAGTGTCTCCGAT -ACGGAAGTTCCTAGTGTCTGGCAT -ACGGAAGTTCCTAGTGTCCGAGAT -ACGGAAGTTCCTAGTGTCTACCAC -ACGGAAGTTCCTAGTGTCCAGAAC -ACGGAAGTTCCTAGTGTCGTCTAC -ACGGAAGTTCCTAGTGTCACGTAC -ACGGAAGTTCCTAGTGTCAGTGAC -ACGGAAGTTCCTAGTGTCCTGTAG -ACGGAAGTTCCTAGTGTCCCTAAG -ACGGAAGTTCCTAGTGTCGTTCAG -ACGGAAGTTCCTAGTGTCGCATAG -ACGGAAGTTCCTAGTGTCGACAAG -ACGGAAGTTCCTAGTGTCAAGCAG -ACGGAAGTTCCTAGTGTCCGTCAA -ACGGAAGTTCCTAGTGTCGCTGAA -ACGGAAGTTCCTAGTGTCAGTACG -ACGGAAGTTCCTAGTGTCATCCGA -ACGGAAGTTCCTAGTGTCATGGGA -ACGGAAGTTCCTAGTGTCGTGCAA -ACGGAAGTTCCTAGTGTCGAGGAA -ACGGAAGTTCCTAGTGTCCAGGTA -ACGGAAGTTCCTAGTGTCGACTCT -ACGGAAGTTCCTAGTGTCAGTCCT -ACGGAAGTTCCTAGTGTCTAAGCC -ACGGAAGTTCCTAGTGTCATAGCC -ACGGAAGTTCCTAGTGTCTAACCG -ACGGAAGTTCCTAGTGTCATGCCA -ACGGAAGTTCCTGGTGAAGGAAAC -ACGGAAGTTCCTGGTGAAAACACC -ACGGAAGTTCCTGGTGAAATCGAG -ACGGAAGTTCCTGGTGAACTCCTT -ACGGAAGTTCCTGGTGAACCTGTT -ACGGAAGTTCCTGGTGAACGGTTT -ACGGAAGTTCCTGGTGAAGTGGTT -ACGGAAGTTCCTGGTGAAGCCTTT -ACGGAAGTTCCTGGTGAAGGTCTT -ACGGAAGTTCCTGGTGAAACGCTT -ACGGAAGTTCCTGGTGAAAGCGTT -ACGGAAGTTCCTGGTGAATTCGTC -ACGGAAGTTCCTGGTGAATCTCTC -ACGGAAGTTCCTGGTGAATGGATC -ACGGAAGTTCCTGGTGAACACTTC -ACGGAAGTTCCTGGTGAAGTACTC -ACGGAAGTTCCTGGTGAAGATGTC -ACGGAAGTTCCTGGTGAAACAGTC -ACGGAAGTTCCTGGTGAATTGCTG -ACGGAAGTTCCTGGTGAATCCATG -ACGGAAGTTCCTGGTGAATGTGTG -ACGGAAGTTCCTGGTGAACTAGTG -ACGGAAGTTCCTGGTGAACATCTG -ACGGAAGTTCCTGGTGAAGAGTTG -ACGGAAGTTCCTGGTGAAAGACTG -ACGGAAGTTCCTGGTGAATCGGTA -ACGGAAGTTCCTGGTGAATGCCTA -ACGGAAGTTCCTGGTGAACCACTA -ACGGAAGTTCCTGGTGAAGGAGTA -ACGGAAGTTCCTGGTGAATCGTCT -ACGGAAGTTCCTGGTGAATGCACT -ACGGAAGTTCCTGGTGAACTGACT -ACGGAAGTTCCTGGTGAACAACCT -ACGGAAGTTCCTGGTGAAGCTACT -ACGGAAGTTCCTGGTGAAGGATCT -ACGGAAGTTCCTGGTGAAAAGGCT -ACGGAAGTTCCTGGTGAATCAACC -ACGGAAGTTCCTGGTGAATGTTCC -ACGGAAGTTCCTGGTGAAATTCCC -ACGGAAGTTCCTGGTGAATTCTCG -ACGGAAGTTCCTGGTGAATAGACG -ACGGAAGTTCCTGGTGAAGTAACG -ACGGAAGTTCCTGGTGAAACTTCG -ACGGAAGTTCCTGGTGAATACGCA -ACGGAAGTTCCTGGTGAACTTGCA -ACGGAAGTTCCTGGTGAACGAACA -ACGGAAGTTCCTGGTGAACAGTCA -ACGGAAGTTCCTGGTGAAGATCCA -ACGGAAGTTCCTGGTGAAACGACA -ACGGAAGTTCCTGGTGAAAGCTCA -ACGGAAGTTCCTGGTGAATCACGT -ACGGAAGTTCCTGGTGAACGTAGT -ACGGAAGTTCCTGGTGAAGTCAGT -ACGGAAGTTCCTGGTGAAGAAGGT -ACGGAAGTTCCTGGTGAAAACCGT -ACGGAAGTTCCTGGTGAATTGTGC -ACGGAAGTTCCTGGTGAACTAAGC -ACGGAAGTTCCTGGTGAAACTAGC -ACGGAAGTTCCTGGTGAAAGATGC -ACGGAAGTTCCTGGTGAATGAAGG -ACGGAAGTTCCTGGTGAACAATGG -ACGGAAGTTCCTGGTGAAATGAGG -ACGGAAGTTCCTGGTGAAAATGGG -ACGGAAGTTCCTGGTGAATCCTGA -ACGGAAGTTCCTGGTGAATAGCGA -ACGGAAGTTCCTGGTGAACACAGA -ACGGAAGTTCCTGGTGAAGCAAGA -ACGGAAGTTCCTGGTGAAGGTTGA -ACGGAAGTTCCTGGTGAATCCGAT -ACGGAAGTTCCTGGTGAATGGCAT -ACGGAAGTTCCTGGTGAACGAGAT -ACGGAAGTTCCTGGTGAATACCAC -ACGGAAGTTCCTGGTGAACAGAAC -ACGGAAGTTCCTGGTGAAGTCTAC -ACGGAAGTTCCTGGTGAAACGTAC -ACGGAAGTTCCTGGTGAAAGTGAC -ACGGAAGTTCCTGGTGAACTGTAG -ACGGAAGTTCCTGGTGAACCTAAG -ACGGAAGTTCCTGGTGAAGTTCAG -ACGGAAGTTCCTGGTGAAGCATAG -ACGGAAGTTCCTGGTGAAGACAAG -ACGGAAGTTCCTGGTGAAAAGCAG -ACGGAAGTTCCTGGTGAACGTCAA -ACGGAAGTTCCTGGTGAAGCTGAA -ACGGAAGTTCCTGGTGAAAGTACG -ACGGAAGTTCCTGGTGAAATCCGA -ACGGAAGTTCCTGGTGAAATGGGA -ACGGAAGTTCCTGGTGAAGTGCAA -ACGGAAGTTCCTGGTGAAGAGGAA -ACGGAAGTTCCTGGTGAACAGGTA -ACGGAAGTTCCTGGTGAAGACTCT -ACGGAAGTTCCTGGTGAAAGTCCT -ACGGAAGTTCCTGGTGAATAAGCC -ACGGAAGTTCCTGGTGAAATAGCC -ACGGAAGTTCCTGGTGAATAACCG -ACGGAAGTTCCTGGTGAAATGCCA -ACGGAAGTTCCTCGTAACGGAAAC -ACGGAAGTTCCTCGTAACAACACC -ACGGAAGTTCCTCGTAACATCGAG -ACGGAAGTTCCTCGTAACCTCCTT -ACGGAAGTTCCTCGTAACCCTGTT -ACGGAAGTTCCTCGTAACCGGTTT -ACGGAAGTTCCTCGTAACGTGGTT -ACGGAAGTTCCTCGTAACGCCTTT -ACGGAAGTTCCTCGTAACGGTCTT -ACGGAAGTTCCTCGTAACACGCTT -ACGGAAGTTCCTCGTAACAGCGTT -ACGGAAGTTCCTCGTAACTTCGTC -ACGGAAGTTCCTCGTAACTCTCTC -ACGGAAGTTCCTCGTAACTGGATC -ACGGAAGTTCCTCGTAACCACTTC -ACGGAAGTTCCTCGTAACGTACTC -ACGGAAGTTCCTCGTAACGATGTC -ACGGAAGTTCCTCGTAACACAGTC -ACGGAAGTTCCTCGTAACTTGCTG -ACGGAAGTTCCTCGTAACTCCATG -ACGGAAGTTCCTCGTAACTGTGTG -ACGGAAGTTCCTCGTAACCTAGTG -ACGGAAGTTCCTCGTAACCATCTG -ACGGAAGTTCCTCGTAACGAGTTG -ACGGAAGTTCCTCGTAACAGACTG -ACGGAAGTTCCTCGTAACTCGGTA -ACGGAAGTTCCTCGTAACTGCCTA -ACGGAAGTTCCTCGTAACCCACTA -ACGGAAGTTCCTCGTAACGGAGTA -ACGGAAGTTCCTCGTAACTCGTCT -ACGGAAGTTCCTCGTAACTGCACT -ACGGAAGTTCCTCGTAACCTGACT -ACGGAAGTTCCTCGTAACCAACCT -ACGGAAGTTCCTCGTAACGCTACT -ACGGAAGTTCCTCGTAACGGATCT -ACGGAAGTTCCTCGTAACAAGGCT -ACGGAAGTTCCTCGTAACTCAACC -ACGGAAGTTCCTCGTAACTGTTCC -ACGGAAGTTCCTCGTAACATTCCC -ACGGAAGTTCCTCGTAACTTCTCG -ACGGAAGTTCCTCGTAACTAGACG -ACGGAAGTTCCTCGTAACGTAACG -ACGGAAGTTCCTCGTAACACTTCG -ACGGAAGTTCCTCGTAACTACGCA -ACGGAAGTTCCTCGTAACCTTGCA -ACGGAAGTTCCTCGTAACCGAACA -ACGGAAGTTCCTCGTAACCAGTCA -ACGGAAGTTCCTCGTAACGATCCA -ACGGAAGTTCCTCGTAACACGACA -ACGGAAGTTCCTCGTAACAGCTCA -ACGGAAGTTCCTCGTAACTCACGT -ACGGAAGTTCCTCGTAACCGTAGT -ACGGAAGTTCCTCGTAACGTCAGT -ACGGAAGTTCCTCGTAACGAAGGT -ACGGAAGTTCCTCGTAACAACCGT -ACGGAAGTTCCTCGTAACTTGTGC -ACGGAAGTTCCTCGTAACCTAAGC -ACGGAAGTTCCTCGTAACACTAGC -ACGGAAGTTCCTCGTAACAGATGC -ACGGAAGTTCCTCGTAACTGAAGG -ACGGAAGTTCCTCGTAACCAATGG -ACGGAAGTTCCTCGTAACATGAGG -ACGGAAGTTCCTCGTAACAATGGG -ACGGAAGTTCCTCGTAACTCCTGA -ACGGAAGTTCCTCGTAACTAGCGA -ACGGAAGTTCCTCGTAACCACAGA -ACGGAAGTTCCTCGTAACGCAAGA -ACGGAAGTTCCTCGTAACGGTTGA -ACGGAAGTTCCTCGTAACTCCGAT -ACGGAAGTTCCTCGTAACTGGCAT -ACGGAAGTTCCTCGTAACCGAGAT -ACGGAAGTTCCTCGTAACTACCAC -ACGGAAGTTCCTCGTAACCAGAAC -ACGGAAGTTCCTCGTAACGTCTAC -ACGGAAGTTCCTCGTAACACGTAC -ACGGAAGTTCCTCGTAACAGTGAC -ACGGAAGTTCCTCGTAACCTGTAG -ACGGAAGTTCCTCGTAACCCTAAG -ACGGAAGTTCCTCGTAACGTTCAG -ACGGAAGTTCCTCGTAACGCATAG -ACGGAAGTTCCTCGTAACGACAAG -ACGGAAGTTCCTCGTAACAAGCAG -ACGGAAGTTCCTCGTAACCGTCAA -ACGGAAGTTCCTCGTAACGCTGAA -ACGGAAGTTCCTCGTAACAGTACG -ACGGAAGTTCCTCGTAACATCCGA -ACGGAAGTTCCTCGTAACATGGGA -ACGGAAGTTCCTCGTAACGTGCAA -ACGGAAGTTCCTCGTAACGAGGAA -ACGGAAGTTCCTCGTAACCAGGTA -ACGGAAGTTCCTCGTAACGACTCT -ACGGAAGTTCCTCGTAACAGTCCT -ACGGAAGTTCCTCGTAACTAAGCC -ACGGAAGTTCCTCGTAACATAGCC -ACGGAAGTTCCTCGTAACTAACCG -ACGGAAGTTCCTCGTAACATGCCA -ACGGAAGTTCCTTGCTTGGGAAAC -ACGGAAGTTCCTTGCTTGAACACC -ACGGAAGTTCCTTGCTTGATCGAG -ACGGAAGTTCCTTGCTTGCTCCTT -ACGGAAGTTCCTTGCTTGCCTGTT -ACGGAAGTTCCTTGCTTGCGGTTT -ACGGAAGTTCCTTGCTTGGTGGTT -ACGGAAGTTCCTTGCTTGGCCTTT -ACGGAAGTTCCTTGCTTGGGTCTT -ACGGAAGTTCCTTGCTTGACGCTT -ACGGAAGTTCCTTGCTTGAGCGTT -ACGGAAGTTCCTTGCTTGTTCGTC -ACGGAAGTTCCTTGCTTGTCTCTC -ACGGAAGTTCCTTGCTTGTGGATC -ACGGAAGTTCCTTGCTTGCACTTC -ACGGAAGTTCCTTGCTTGGTACTC -ACGGAAGTTCCTTGCTTGGATGTC -ACGGAAGTTCCTTGCTTGACAGTC -ACGGAAGTTCCTTGCTTGTTGCTG -ACGGAAGTTCCTTGCTTGTCCATG -ACGGAAGTTCCTTGCTTGTGTGTG -ACGGAAGTTCCTTGCTTGCTAGTG -ACGGAAGTTCCTTGCTTGCATCTG -ACGGAAGTTCCTTGCTTGGAGTTG -ACGGAAGTTCCTTGCTTGAGACTG -ACGGAAGTTCCTTGCTTGTCGGTA -ACGGAAGTTCCTTGCTTGTGCCTA -ACGGAAGTTCCTTGCTTGCCACTA -ACGGAAGTTCCTTGCTTGGGAGTA -ACGGAAGTTCCTTGCTTGTCGTCT -ACGGAAGTTCCTTGCTTGTGCACT -ACGGAAGTTCCTTGCTTGCTGACT -ACGGAAGTTCCTTGCTTGCAACCT -ACGGAAGTTCCTTGCTTGGCTACT -ACGGAAGTTCCTTGCTTGGGATCT -ACGGAAGTTCCTTGCTTGAAGGCT -ACGGAAGTTCCTTGCTTGTCAACC -ACGGAAGTTCCTTGCTTGTGTTCC -ACGGAAGTTCCTTGCTTGATTCCC -ACGGAAGTTCCTTGCTTGTTCTCG -ACGGAAGTTCCTTGCTTGTAGACG -ACGGAAGTTCCTTGCTTGGTAACG -ACGGAAGTTCCTTGCTTGACTTCG -ACGGAAGTTCCTTGCTTGTACGCA -ACGGAAGTTCCTTGCTTGCTTGCA -ACGGAAGTTCCTTGCTTGCGAACA -ACGGAAGTTCCTTGCTTGCAGTCA -ACGGAAGTTCCTTGCTTGGATCCA -ACGGAAGTTCCTTGCTTGACGACA -ACGGAAGTTCCTTGCTTGAGCTCA -ACGGAAGTTCCTTGCTTGTCACGT -ACGGAAGTTCCTTGCTTGCGTAGT -ACGGAAGTTCCTTGCTTGGTCAGT -ACGGAAGTTCCTTGCTTGGAAGGT -ACGGAAGTTCCTTGCTTGAACCGT -ACGGAAGTTCCTTGCTTGTTGTGC -ACGGAAGTTCCTTGCTTGCTAAGC -ACGGAAGTTCCTTGCTTGACTAGC -ACGGAAGTTCCTTGCTTGAGATGC -ACGGAAGTTCCTTGCTTGTGAAGG -ACGGAAGTTCCTTGCTTGCAATGG -ACGGAAGTTCCTTGCTTGATGAGG -ACGGAAGTTCCTTGCTTGAATGGG -ACGGAAGTTCCTTGCTTGTCCTGA -ACGGAAGTTCCTTGCTTGTAGCGA -ACGGAAGTTCCTTGCTTGCACAGA -ACGGAAGTTCCTTGCTTGGCAAGA -ACGGAAGTTCCTTGCTTGGGTTGA -ACGGAAGTTCCTTGCTTGTCCGAT -ACGGAAGTTCCTTGCTTGTGGCAT -ACGGAAGTTCCTTGCTTGCGAGAT -ACGGAAGTTCCTTGCTTGTACCAC -ACGGAAGTTCCTTGCTTGCAGAAC -ACGGAAGTTCCTTGCTTGGTCTAC -ACGGAAGTTCCTTGCTTGACGTAC -ACGGAAGTTCCTTGCTTGAGTGAC -ACGGAAGTTCCTTGCTTGCTGTAG -ACGGAAGTTCCTTGCTTGCCTAAG -ACGGAAGTTCCTTGCTTGGTTCAG -ACGGAAGTTCCTTGCTTGGCATAG -ACGGAAGTTCCTTGCTTGGACAAG -ACGGAAGTTCCTTGCTTGAAGCAG -ACGGAAGTTCCTTGCTTGCGTCAA -ACGGAAGTTCCTTGCTTGGCTGAA -ACGGAAGTTCCTTGCTTGAGTACG -ACGGAAGTTCCTTGCTTGATCCGA -ACGGAAGTTCCTTGCTTGATGGGA -ACGGAAGTTCCTTGCTTGGTGCAA -ACGGAAGTTCCTTGCTTGGAGGAA -ACGGAAGTTCCTTGCTTGCAGGTA -ACGGAAGTTCCTTGCTTGGACTCT -ACGGAAGTTCCTTGCTTGAGTCCT -ACGGAAGTTCCTTGCTTGTAAGCC -ACGGAAGTTCCTTGCTTGATAGCC -ACGGAAGTTCCTTGCTTGTAACCG -ACGGAAGTTCCTTGCTTGATGCCA -ACGGAAGTTCCTAGCCTAGGAAAC -ACGGAAGTTCCTAGCCTAAACACC -ACGGAAGTTCCTAGCCTAATCGAG -ACGGAAGTTCCTAGCCTACTCCTT -ACGGAAGTTCCTAGCCTACCTGTT -ACGGAAGTTCCTAGCCTACGGTTT -ACGGAAGTTCCTAGCCTAGTGGTT -ACGGAAGTTCCTAGCCTAGCCTTT -ACGGAAGTTCCTAGCCTAGGTCTT -ACGGAAGTTCCTAGCCTAACGCTT -ACGGAAGTTCCTAGCCTAAGCGTT -ACGGAAGTTCCTAGCCTATTCGTC -ACGGAAGTTCCTAGCCTATCTCTC -ACGGAAGTTCCTAGCCTATGGATC -ACGGAAGTTCCTAGCCTACACTTC -ACGGAAGTTCCTAGCCTAGTACTC -ACGGAAGTTCCTAGCCTAGATGTC -ACGGAAGTTCCTAGCCTAACAGTC -ACGGAAGTTCCTAGCCTATTGCTG -ACGGAAGTTCCTAGCCTATCCATG -ACGGAAGTTCCTAGCCTATGTGTG -ACGGAAGTTCCTAGCCTACTAGTG -ACGGAAGTTCCTAGCCTACATCTG -ACGGAAGTTCCTAGCCTAGAGTTG -ACGGAAGTTCCTAGCCTAAGACTG -ACGGAAGTTCCTAGCCTATCGGTA -ACGGAAGTTCCTAGCCTATGCCTA -ACGGAAGTTCCTAGCCTACCACTA -ACGGAAGTTCCTAGCCTAGGAGTA -ACGGAAGTTCCTAGCCTATCGTCT -ACGGAAGTTCCTAGCCTATGCACT -ACGGAAGTTCCTAGCCTACTGACT -ACGGAAGTTCCTAGCCTACAACCT -ACGGAAGTTCCTAGCCTAGCTACT -ACGGAAGTTCCTAGCCTAGGATCT -ACGGAAGTTCCTAGCCTAAAGGCT -ACGGAAGTTCCTAGCCTATCAACC -ACGGAAGTTCCTAGCCTATGTTCC -ACGGAAGTTCCTAGCCTAATTCCC -ACGGAAGTTCCTAGCCTATTCTCG -ACGGAAGTTCCTAGCCTATAGACG -ACGGAAGTTCCTAGCCTAGTAACG -ACGGAAGTTCCTAGCCTAACTTCG -ACGGAAGTTCCTAGCCTATACGCA -ACGGAAGTTCCTAGCCTACTTGCA -ACGGAAGTTCCTAGCCTACGAACA -ACGGAAGTTCCTAGCCTACAGTCA -ACGGAAGTTCCTAGCCTAGATCCA -ACGGAAGTTCCTAGCCTAACGACA -ACGGAAGTTCCTAGCCTAAGCTCA -ACGGAAGTTCCTAGCCTATCACGT -ACGGAAGTTCCTAGCCTACGTAGT -ACGGAAGTTCCTAGCCTAGTCAGT -ACGGAAGTTCCTAGCCTAGAAGGT -ACGGAAGTTCCTAGCCTAAACCGT -ACGGAAGTTCCTAGCCTATTGTGC -ACGGAAGTTCCTAGCCTACTAAGC -ACGGAAGTTCCTAGCCTAACTAGC -ACGGAAGTTCCTAGCCTAAGATGC -ACGGAAGTTCCTAGCCTATGAAGG -ACGGAAGTTCCTAGCCTACAATGG -ACGGAAGTTCCTAGCCTAATGAGG -ACGGAAGTTCCTAGCCTAAATGGG -ACGGAAGTTCCTAGCCTATCCTGA -ACGGAAGTTCCTAGCCTATAGCGA -ACGGAAGTTCCTAGCCTACACAGA -ACGGAAGTTCCTAGCCTAGCAAGA -ACGGAAGTTCCTAGCCTAGGTTGA -ACGGAAGTTCCTAGCCTATCCGAT -ACGGAAGTTCCTAGCCTATGGCAT -ACGGAAGTTCCTAGCCTACGAGAT -ACGGAAGTTCCTAGCCTATACCAC -ACGGAAGTTCCTAGCCTACAGAAC -ACGGAAGTTCCTAGCCTAGTCTAC -ACGGAAGTTCCTAGCCTAACGTAC -ACGGAAGTTCCTAGCCTAAGTGAC -ACGGAAGTTCCTAGCCTACTGTAG -ACGGAAGTTCCTAGCCTACCTAAG -ACGGAAGTTCCTAGCCTAGTTCAG -ACGGAAGTTCCTAGCCTAGCATAG -ACGGAAGTTCCTAGCCTAGACAAG -ACGGAAGTTCCTAGCCTAAAGCAG -ACGGAAGTTCCTAGCCTACGTCAA -ACGGAAGTTCCTAGCCTAGCTGAA -ACGGAAGTTCCTAGCCTAAGTACG -ACGGAAGTTCCTAGCCTAATCCGA -ACGGAAGTTCCTAGCCTAATGGGA -ACGGAAGTTCCTAGCCTAGTGCAA -ACGGAAGTTCCTAGCCTAGAGGAA -ACGGAAGTTCCTAGCCTACAGGTA -ACGGAAGTTCCTAGCCTAGACTCT -ACGGAAGTTCCTAGCCTAAGTCCT -ACGGAAGTTCCTAGCCTATAAGCC -ACGGAAGTTCCTAGCCTAATAGCC -ACGGAAGTTCCTAGCCTATAACCG -ACGGAAGTTCCTAGCCTAATGCCA -ACGGAAGTTCCTAGCACTGGAAAC -ACGGAAGTTCCTAGCACTAACACC -ACGGAAGTTCCTAGCACTATCGAG -ACGGAAGTTCCTAGCACTCTCCTT -ACGGAAGTTCCTAGCACTCCTGTT -ACGGAAGTTCCTAGCACTCGGTTT -ACGGAAGTTCCTAGCACTGTGGTT -ACGGAAGTTCCTAGCACTGCCTTT -ACGGAAGTTCCTAGCACTGGTCTT -ACGGAAGTTCCTAGCACTACGCTT -ACGGAAGTTCCTAGCACTAGCGTT -ACGGAAGTTCCTAGCACTTTCGTC -ACGGAAGTTCCTAGCACTTCTCTC -ACGGAAGTTCCTAGCACTTGGATC -ACGGAAGTTCCTAGCACTCACTTC -ACGGAAGTTCCTAGCACTGTACTC -ACGGAAGTTCCTAGCACTGATGTC -ACGGAAGTTCCTAGCACTACAGTC -ACGGAAGTTCCTAGCACTTTGCTG -ACGGAAGTTCCTAGCACTTCCATG -ACGGAAGTTCCTAGCACTTGTGTG -ACGGAAGTTCCTAGCACTCTAGTG -ACGGAAGTTCCTAGCACTCATCTG -ACGGAAGTTCCTAGCACTGAGTTG -ACGGAAGTTCCTAGCACTAGACTG -ACGGAAGTTCCTAGCACTTCGGTA -ACGGAAGTTCCTAGCACTTGCCTA -ACGGAAGTTCCTAGCACTCCACTA -ACGGAAGTTCCTAGCACTGGAGTA -ACGGAAGTTCCTAGCACTTCGTCT -ACGGAAGTTCCTAGCACTTGCACT -ACGGAAGTTCCTAGCACTCTGACT -ACGGAAGTTCCTAGCACTCAACCT -ACGGAAGTTCCTAGCACTGCTACT -ACGGAAGTTCCTAGCACTGGATCT -ACGGAAGTTCCTAGCACTAAGGCT -ACGGAAGTTCCTAGCACTTCAACC -ACGGAAGTTCCTAGCACTTGTTCC -ACGGAAGTTCCTAGCACTATTCCC -ACGGAAGTTCCTAGCACTTTCTCG -ACGGAAGTTCCTAGCACTTAGACG -ACGGAAGTTCCTAGCACTGTAACG -ACGGAAGTTCCTAGCACTACTTCG -ACGGAAGTTCCTAGCACTTACGCA -ACGGAAGTTCCTAGCACTCTTGCA -ACGGAAGTTCCTAGCACTCGAACA -ACGGAAGTTCCTAGCACTCAGTCA -ACGGAAGTTCCTAGCACTGATCCA -ACGGAAGTTCCTAGCACTACGACA -ACGGAAGTTCCTAGCACTAGCTCA -ACGGAAGTTCCTAGCACTTCACGT -ACGGAAGTTCCTAGCACTCGTAGT -ACGGAAGTTCCTAGCACTGTCAGT -ACGGAAGTTCCTAGCACTGAAGGT -ACGGAAGTTCCTAGCACTAACCGT -ACGGAAGTTCCTAGCACTTTGTGC -ACGGAAGTTCCTAGCACTCTAAGC -ACGGAAGTTCCTAGCACTACTAGC -ACGGAAGTTCCTAGCACTAGATGC -ACGGAAGTTCCTAGCACTTGAAGG -ACGGAAGTTCCTAGCACTCAATGG -ACGGAAGTTCCTAGCACTATGAGG -ACGGAAGTTCCTAGCACTAATGGG -ACGGAAGTTCCTAGCACTTCCTGA -ACGGAAGTTCCTAGCACTTAGCGA -ACGGAAGTTCCTAGCACTCACAGA -ACGGAAGTTCCTAGCACTGCAAGA -ACGGAAGTTCCTAGCACTGGTTGA -ACGGAAGTTCCTAGCACTTCCGAT -ACGGAAGTTCCTAGCACTTGGCAT -ACGGAAGTTCCTAGCACTCGAGAT -ACGGAAGTTCCTAGCACTTACCAC -ACGGAAGTTCCTAGCACTCAGAAC -ACGGAAGTTCCTAGCACTGTCTAC -ACGGAAGTTCCTAGCACTACGTAC -ACGGAAGTTCCTAGCACTAGTGAC -ACGGAAGTTCCTAGCACTCTGTAG -ACGGAAGTTCCTAGCACTCCTAAG -ACGGAAGTTCCTAGCACTGTTCAG -ACGGAAGTTCCTAGCACTGCATAG -ACGGAAGTTCCTAGCACTGACAAG -ACGGAAGTTCCTAGCACTAAGCAG -ACGGAAGTTCCTAGCACTCGTCAA -ACGGAAGTTCCTAGCACTGCTGAA -ACGGAAGTTCCTAGCACTAGTACG -ACGGAAGTTCCTAGCACTATCCGA -ACGGAAGTTCCTAGCACTATGGGA -ACGGAAGTTCCTAGCACTGTGCAA -ACGGAAGTTCCTAGCACTGAGGAA -ACGGAAGTTCCTAGCACTCAGGTA -ACGGAAGTTCCTAGCACTGACTCT -ACGGAAGTTCCTAGCACTAGTCCT -ACGGAAGTTCCTAGCACTTAAGCC -ACGGAAGTTCCTAGCACTATAGCC -ACGGAAGTTCCTAGCACTTAACCG -ACGGAAGTTCCTAGCACTATGCCA -ACGGAAGTTCCTTGCAGAGGAAAC -ACGGAAGTTCCTTGCAGAAACACC -ACGGAAGTTCCTTGCAGAATCGAG -ACGGAAGTTCCTTGCAGACTCCTT -ACGGAAGTTCCTTGCAGACCTGTT -ACGGAAGTTCCTTGCAGACGGTTT -ACGGAAGTTCCTTGCAGAGTGGTT -ACGGAAGTTCCTTGCAGAGCCTTT -ACGGAAGTTCCTTGCAGAGGTCTT -ACGGAAGTTCCTTGCAGAACGCTT -ACGGAAGTTCCTTGCAGAAGCGTT -ACGGAAGTTCCTTGCAGATTCGTC -ACGGAAGTTCCTTGCAGATCTCTC -ACGGAAGTTCCTTGCAGATGGATC -ACGGAAGTTCCTTGCAGACACTTC -ACGGAAGTTCCTTGCAGAGTACTC -ACGGAAGTTCCTTGCAGAGATGTC -ACGGAAGTTCCTTGCAGAACAGTC -ACGGAAGTTCCTTGCAGATTGCTG -ACGGAAGTTCCTTGCAGATCCATG -ACGGAAGTTCCTTGCAGATGTGTG -ACGGAAGTTCCTTGCAGACTAGTG -ACGGAAGTTCCTTGCAGACATCTG -ACGGAAGTTCCTTGCAGAGAGTTG -ACGGAAGTTCCTTGCAGAAGACTG -ACGGAAGTTCCTTGCAGATCGGTA -ACGGAAGTTCCTTGCAGATGCCTA -ACGGAAGTTCCTTGCAGACCACTA -ACGGAAGTTCCTTGCAGAGGAGTA -ACGGAAGTTCCTTGCAGATCGTCT -ACGGAAGTTCCTTGCAGATGCACT -ACGGAAGTTCCTTGCAGACTGACT -ACGGAAGTTCCTTGCAGACAACCT -ACGGAAGTTCCTTGCAGAGCTACT -ACGGAAGTTCCTTGCAGAGGATCT -ACGGAAGTTCCTTGCAGAAAGGCT -ACGGAAGTTCCTTGCAGATCAACC -ACGGAAGTTCCTTGCAGATGTTCC -ACGGAAGTTCCTTGCAGAATTCCC -ACGGAAGTTCCTTGCAGATTCTCG -ACGGAAGTTCCTTGCAGATAGACG -ACGGAAGTTCCTTGCAGAGTAACG -ACGGAAGTTCCTTGCAGAACTTCG -ACGGAAGTTCCTTGCAGATACGCA -ACGGAAGTTCCTTGCAGACTTGCA -ACGGAAGTTCCTTGCAGACGAACA -ACGGAAGTTCCTTGCAGACAGTCA -ACGGAAGTTCCTTGCAGAGATCCA -ACGGAAGTTCCTTGCAGAACGACA -ACGGAAGTTCCTTGCAGAAGCTCA -ACGGAAGTTCCTTGCAGATCACGT -ACGGAAGTTCCTTGCAGACGTAGT -ACGGAAGTTCCTTGCAGAGTCAGT -ACGGAAGTTCCTTGCAGAGAAGGT -ACGGAAGTTCCTTGCAGAAACCGT -ACGGAAGTTCCTTGCAGATTGTGC -ACGGAAGTTCCTTGCAGACTAAGC -ACGGAAGTTCCTTGCAGAACTAGC -ACGGAAGTTCCTTGCAGAAGATGC -ACGGAAGTTCCTTGCAGATGAAGG -ACGGAAGTTCCTTGCAGACAATGG -ACGGAAGTTCCTTGCAGAATGAGG -ACGGAAGTTCCTTGCAGAAATGGG -ACGGAAGTTCCTTGCAGATCCTGA -ACGGAAGTTCCTTGCAGATAGCGA -ACGGAAGTTCCTTGCAGACACAGA -ACGGAAGTTCCTTGCAGAGCAAGA -ACGGAAGTTCCTTGCAGAGGTTGA -ACGGAAGTTCCTTGCAGATCCGAT -ACGGAAGTTCCTTGCAGATGGCAT -ACGGAAGTTCCTTGCAGACGAGAT -ACGGAAGTTCCTTGCAGATACCAC -ACGGAAGTTCCTTGCAGACAGAAC -ACGGAAGTTCCTTGCAGAGTCTAC -ACGGAAGTTCCTTGCAGAACGTAC -ACGGAAGTTCCTTGCAGAAGTGAC -ACGGAAGTTCCTTGCAGACTGTAG -ACGGAAGTTCCTTGCAGACCTAAG -ACGGAAGTTCCTTGCAGAGTTCAG -ACGGAAGTTCCTTGCAGAGCATAG -ACGGAAGTTCCTTGCAGAGACAAG -ACGGAAGTTCCTTGCAGAAAGCAG -ACGGAAGTTCCTTGCAGACGTCAA -ACGGAAGTTCCTTGCAGAGCTGAA -ACGGAAGTTCCTTGCAGAAGTACG -ACGGAAGTTCCTTGCAGAATCCGA -ACGGAAGTTCCTTGCAGAATGGGA -ACGGAAGTTCCTTGCAGAGTGCAA -ACGGAAGTTCCTTGCAGAGAGGAA -ACGGAAGTTCCTTGCAGACAGGTA -ACGGAAGTTCCTTGCAGAGACTCT -ACGGAAGTTCCTTGCAGAAGTCCT -ACGGAAGTTCCTTGCAGATAAGCC -ACGGAAGTTCCTTGCAGAATAGCC -ACGGAAGTTCCTTGCAGATAACCG -ACGGAAGTTCCTTGCAGAATGCCA -ACGGAAGTTCCTAGGTGAGGAAAC -ACGGAAGTTCCTAGGTGAAACACC -ACGGAAGTTCCTAGGTGAATCGAG -ACGGAAGTTCCTAGGTGACTCCTT -ACGGAAGTTCCTAGGTGACCTGTT -ACGGAAGTTCCTAGGTGACGGTTT -ACGGAAGTTCCTAGGTGAGTGGTT -ACGGAAGTTCCTAGGTGAGCCTTT -ACGGAAGTTCCTAGGTGAGGTCTT -ACGGAAGTTCCTAGGTGAACGCTT -ACGGAAGTTCCTAGGTGAAGCGTT -ACGGAAGTTCCTAGGTGATTCGTC -ACGGAAGTTCCTAGGTGATCTCTC -ACGGAAGTTCCTAGGTGATGGATC -ACGGAAGTTCCTAGGTGACACTTC -ACGGAAGTTCCTAGGTGAGTACTC -ACGGAAGTTCCTAGGTGAGATGTC -ACGGAAGTTCCTAGGTGAACAGTC -ACGGAAGTTCCTAGGTGATTGCTG -ACGGAAGTTCCTAGGTGATCCATG -ACGGAAGTTCCTAGGTGATGTGTG -ACGGAAGTTCCTAGGTGACTAGTG -ACGGAAGTTCCTAGGTGACATCTG -ACGGAAGTTCCTAGGTGAGAGTTG -ACGGAAGTTCCTAGGTGAAGACTG -ACGGAAGTTCCTAGGTGATCGGTA -ACGGAAGTTCCTAGGTGATGCCTA -ACGGAAGTTCCTAGGTGACCACTA -ACGGAAGTTCCTAGGTGAGGAGTA -ACGGAAGTTCCTAGGTGATCGTCT -ACGGAAGTTCCTAGGTGATGCACT -ACGGAAGTTCCTAGGTGACTGACT -ACGGAAGTTCCTAGGTGACAACCT -ACGGAAGTTCCTAGGTGAGCTACT -ACGGAAGTTCCTAGGTGAGGATCT -ACGGAAGTTCCTAGGTGAAAGGCT -ACGGAAGTTCCTAGGTGATCAACC -ACGGAAGTTCCTAGGTGATGTTCC -ACGGAAGTTCCTAGGTGAATTCCC -ACGGAAGTTCCTAGGTGATTCTCG -ACGGAAGTTCCTAGGTGATAGACG -ACGGAAGTTCCTAGGTGAGTAACG -ACGGAAGTTCCTAGGTGAACTTCG -ACGGAAGTTCCTAGGTGATACGCA -ACGGAAGTTCCTAGGTGACTTGCA -ACGGAAGTTCCTAGGTGACGAACA -ACGGAAGTTCCTAGGTGACAGTCA -ACGGAAGTTCCTAGGTGAGATCCA -ACGGAAGTTCCTAGGTGAACGACA -ACGGAAGTTCCTAGGTGAAGCTCA -ACGGAAGTTCCTAGGTGATCACGT -ACGGAAGTTCCTAGGTGACGTAGT -ACGGAAGTTCCTAGGTGAGTCAGT -ACGGAAGTTCCTAGGTGAGAAGGT -ACGGAAGTTCCTAGGTGAAACCGT -ACGGAAGTTCCTAGGTGATTGTGC -ACGGAAGTTCCTAGGTGACTAAGC -ACGGAAGTTCCTAGGTGAACTAGC -ACGGAAGTTCCTAGGTGAAGATGC -ACGGAAGTTCCTAGGTGATGAAGG -ACGGAAGTTCCTAGGTGACAATGG -ACGGAAGTTCCTAGGTGAATGAGG -ACGGAAGTTCCTAGGTGAAATGGG -ACGGAAGTTCCTAGGTGATCCTGA -ACGGAAGTTCCTAGGTGATAGCGA -ACGGAAGTTCCTAGGTGACACAGA -ACGGAAGTTCCTAGGTGAGCAAGA -ACGGAAGTTCCTAGGTGAGGTTGA -ACGGAAGTTCCTAGGTGATCCGAT -ACGGAAGTTCCTAGGTGATGGCAT -ACGGAAGTTCCTAGGTGACGAGAT -ACGGAAGTTCCTAGGTGATACCAC -ACGGAAGTTCCTAGGTGACAGAAC -ACGGAAGTTCCTAGGTGAGTCTAC -ACGGAAGTTCCTAGGTGAACGTAC -ACGGAAGTTCCTAGGTGAAGTGAC -ACGGAAGTTCCTAGGTGACTGTAG -ACGGAAGTTCCTAGGTGACCTAAG -ACGGAAGTTCCTAGGTGAGTTCAG -ACGGAAGTTCCTAGGTGAGCATAG -ACGGAAGTTCCTAGGTGAGACAAG -ACGGAAGTTCCTAGGTGAAAGCAG -ACGGAAGTTCCTAGGTGACGTCAA -ACGGAAGTTCCTAGGTGAGCTGAA -ACGGAAGTTCCTAGGTGAAGTACG -ACGGAAGTTCCTAGGTGAATCCGA -ACGGAAGTTCCTAGGTGAATGGGA -ACGGAAGTTCCTAGGTGAGTGCAA -ACGGAAGTTCCTAGGTGAGAGGAA -ACGGAAGTTCCTAGGTGACAGGTA -ACGGAAGTTCCTAGGTGAGACTCT -ACGGAAGTTCCTAGGTGAAGTCCT -ACGGAAGTTCCTAGGTGATAAGCC -ACGGAAGTTCCTAGGTGAATAGCC -ACGGAAGTTCCTAGGTGATAACCG -ACGGAAGTTCCTAGGTGAATGCCA -ACGGAAGTTCCTTGGCAAGGAAAC -ACGGAAGTTCCTTGGCAAAACACC -ACGGAAGTTCCTTGGCAAATCGAG -ACGGAAGTTCCTTGGCAACTCCTT -ACGGAAGTTCCTTGGCAACCTGTT -ACGGAAGTTCCTTGGCAACGGTTT -ACGGAAGTTCCTTGGCAAGTGGTT -ACGGAAGTTCCTTGGCAAGCCTTT -ACGGAAGTTCCTTGGCAAGGTCTT -ACGGAAGTTCCTTGGCAAACGCTT -ACGGAAGTTCCTTGGCAAAGCGTT -ACGGAAGTTCCTTGGCAATTCGTC -ACGGAAGTTCCTTGGCAATCTCTC -ACGGAAGTTCCTTGGCAATGGATC -ACGGAAGTTCCTTGGCAACACTTC -ACGGAAGTTCCTTGGCAAGTACTC -ACGGAAGTTCCTTGGCAAGATGTC -ACGGAAGTTCCTTGGCAAACAGTC -ACGGAAGTTCCTTGGCAATTGCTG -ACGGAAGTTCCTTGGCAATCCATG -ACGGAAGTTCCTTGGCAATGTGTG -ACGGAAGTTCCTTGGCAACTAGTG -ACGGAAGTTCCTTGGCAACATCTG -ACGGAAGTTCCTTGGCAAGAGTTG -ACGGAAGTTCCTTGGCAAAGACTG -ACGGAAGTTCCTTGGCAATCGGTA -ACGGAAGTTCCTTGGCAATGCCTA -ACGGAAGTTCCTTGGCAACCACTA -ACGGAAGTTCCTTGGCAAGGAGTA -ACGGAAGTTCCTTGGCAATCGTCT -ACGGAAGTTCCTTGGCAATGCACT -ACGGAAGTTCCTTGGCAACTGACT -ACGGAAGTTCCTTGGCAACAACCT -ACGGAAGTTCCTTGGCAAGCTACT -ACGGAAGTTCCTTGGCAAGGATCT -ACGGAAGTTCCTTGGCAAAAGGCT -ACGGAAGTTCCTTGGCAATCAACC -ACGGAAGTTCCTTGGCAATGTTCC -ACGGAAGTTCCTTGGCAAATTCCC -ACGGAAGTTCCTTGGCAATTCTCG -ACGGAAGTTCCTTGGCAATAGACG -ACGGAAGTTCCTTGGCAAGTAACG -ACGGAAGTTCCTTGGCAAACTTCG -ACGGAAGTTCCTTGGCAATACGCA -ACGGAAGTTCCTTGGCAACTTGCA -ACGGAAGTTCCTTGGCAACGAACA -ACGGAAGTTCCTTGGCAACAGTCA -ACGGAAGTTCCTTGGCAAGATCCA -ACGGAAGTTCCTTGGCAAACGACA -ACGGAAGTTCCTTGGCAAAGCTCA -ACGGAAGTTCCTTGGCAATCACGT -ACGGAAGTTCCTTGGCAACGTAGT -ACGGAAGTTCCTTGGCAAGTCAGT -ACGGAAGTTCCTTGGCAAGAAGGT -ACGGAAGTTCCTTGGCAAAACCGT -ACGGAAGTTCCTTGGCAATTGTGC -ACGGAAGTTCCTTGGCAACTAAGC -ACGGAAGTTCCTTGGCAAACTAGC -ACGGAAGTTCCTTGGCAAAGATGC -ACGGAAGTTCCTTGGCAATGAAGG -ACGGAAGTTCCTTGGCAACAATGG -ACGGAAGTTCCTTGGCAAATGAGG -ACGGAAGTTCCTTGGCAAAATGGG -ACGGAAGTTCCTTGGCAATCCTGA -ACGGAAGTTCCTTGGCAATAGCGA -ACGGAAGTTCCTTGGCAACACAGA -ACGGAAGTTCCTTGGCAAGCAAGA -ACGGAAGTTCCTTGGCAAGGTTGA -ACGGAAGTTCCTTGGCAATCCGAT -ACGGAAGTTCCTTGGCAATGGCAT -ACGGAAGTTCCTTGGCAACGAGAT -ACGGAAGTTCCTTGGCAATACCAC -ACGGAAGTTCCTTGGCAACAGAAC -ACGGAAGTTCCTTGGCAAGTCTAC -ACGGAAGTTCCTTGGCAAACGTAC -ACGGAAGTTCCTTGGCAAAGTGAC -ACGGAAGTTCCTTGGCAACTGTAG -ACGGAAGTTCCTTGGCAACCTAAG -ACGGAAGTTCCTTGGCAAGTTCAG -ACGGAAGTTCCTTGGCAAGCATAG -ACGGAAGTTCCTTGGCAAGACAAG -ACGGAAGTTCCTTGGCAAAAGCAG -ACGGAAGTTCCTTGGCAACGTCAA -ACGGAAGTTCCTTGGCAAGCTGAA -ACGGAAGTTCCTTGGCAAAGTACG -ACGGAAGTTCCTTGGCAAATCCGA -ACGGAAGTTCCTTGGCAAATGGGA -ACGGAAGTTCCTTGGCAAGTGCAA -ACGGAAGTTCCTTGGCAAGAGGAA -ACGGAAGTTCCTTGGCAACAGGTA -ACGGAAGTTCCTTGGCAAGACTCT -ACGGAAGTTCCTTGGCAAAGTCCT -ACGGAAGTTCCTTGGCAATAAGCC -ACGGAAGTTCCTTGGCAAATAGCC -ACGGAAGTTCCTTGGCAATAACCG -ACGGAAGTTCCTTGGCAAATGCCA -ACGGAAGTTCCTAGGATGGGAAAC -ACGGAAGTTCCTAGGATGAACACC -ACGGAAGTTCCTAGGATGATCGAG -ACGGAAGTTCCTAGGATGCTCCTT -ACGGAAGTTCCTAGGATGCCTGTT -ACGGAAGTTCCTAGGATGCGGTTT -ACGGAAGTTCCTAGGATGGTGGTT -ACGGAAGTTCCTAGGATGGCCTTT -ACGGAAGTTCCTAGGATGGGTCTT -ACGGAAGTTCCTAGGATGACGCTT -ACGGAAGTTCCTAGGATGAGCGTT -ACGGAAGTTCCTAGGATGTTCGTC -ACGGAAGTTCCTAGGATGTCTCTC -ACGGAAGTTCCTAGGATGTGGATC -ACGGAAGTTCCTAGGATGCACTTC -ACGGAAGTTCCTAGGATGGTACTC -ACGGAAGTTCCTAGGATGGATGTC -ACGGAAGTTCCTAGGATGACAGTC -ACGGAAGTTCCTAGGATGTTGCTG -ACGGAAGTTCCTAGGATGTCCATG -ACGGAAGTTCCTAGGATGTGTGTG -ACGGAAGTTCCTAGGATGCTAGTG -ACGGAAGTTCCTAGGATGCATCTG -ACGGAAGTTCCTAGGATGGAGTTG -ACGGAAGTTCCTAGGATGAGACTG -ACGGAAGTTCCTAGGATGTCGGTA -ACGGAAGTTCCTAGGATGTGCCTA -ACGGAAGTTCCTAGGATGCCACTA -ACGGAAGTTCCTAGGATGGGAGTA -ACGGAAGTTCCTAGGATGTCGTCT -ACGGAAGTTCCTAGGATGTGCACT -ACGGAAGTTCCTAGGATGCTGACT -ACGGAAGTTCCTAGGATGCAACCT -ACGGAAGTTCCTAGGATGGCTACT -ACGGAAGTTCCTAGGATGGGATCT -ACGGAAGTTCCTAGGATGAAGGCT -ACGGAAGTTCCTAGGATGTCAACC -ACGGAAGTTCCTAGGATGTGTTCC -ACGGAAGTTCCTAGGATGATTCCC -ACGGAAGTTCCTAGGATGTTCTCG -ACGGAAGTTCCTAGGATGTAGACG -ACGGAAGTTCCTAGGATGGTAACG -ACGGAAGTTCCTAGGATGACTTCG -ACGGAAGTTCCTAGGATGTACGCA -ACGGAAGTTCCTAGGATGCTTGCA -ACGGAAGTTCCTAGGATGCGAACA -ACGGAAGTTCCTAGGATGCAGTCA -ACGGAAGTTCCTAGGATGGATCCA -ACGGAAGTTCCTAGGATGACGACA -ACGGAAGTTCCTAGGATGAGCTCA -ACGGAAGTTCCTAGGATGTCACGT -ACGGAAGTTCCTAGGATGCGTAGT -ACGGAAGTTCCTAGGATGGTCAGT -ACGGAAGTTCCTAGGATGGAAGGT -ACGGAAGTTCCTAGGATGAACCGT -ACGGAAGTTCCTAGGATGTTGTGC -ACGGAAGTTCCTAGGATGCTAAGC -ACGGAAGTTCCTAGGATGACTAGC -ACGGAAGTTCCTAGGATGAGATGC -ACGGAAGTTCCTAGGATGTGAAGG -ACGGAAGTTCCTAGGATGCAATGG -ACGGAAGTTCCTAGGATGATGAGG -ACGGAAGTTCCTAGGATGAATGGG -ACGGAAGTTCCTAGGATGTCCTGA -ACGGAAGTTCCTAGGATGTAGCGA -ACGGAAGTTCCTAGGATGCACAGA -ACGGAAGTTCCTAGGATGGCAAGA -ACGGAAGTTCCTAGGATGGGTTGA -ACGGAAGTTCCTAGGATGTCCGAT -ACGGAAGTTCCTAGGATGTGGCAT -ACGGAAGTTCCTAGGATGCGAGAT -ACGGAAGTTCCTAGGATGTACCAC -ACGGAAGTTCCTAGGATGCAGAAC -ACGGAAGTTCCTAGGATGGTCTAC -ACGGAAGTTCCTAGGATGACGTAC -ACGGAAGTTCCTAGGATGAGTGAC -ACGGAAGTTCCTAGGATGCTGTAG -ACGGAAGTTCCTAGGATGCCTAAG -ACGGAAGTTCCTAGGATGGTTCAG -ACGGAAGTTCCTAGGATGGCATAG -ACGGAAGTTCCTAGGATGGACAAG -ACGGAAGTTCCTAGGATGAAGCAG -ACGGAAGTTCCTAGGATGCGTCAA -ACGGAAGTTCCTAGGATGGCTGAA -ACGGAAGTTCCTAGGATGAGTACG -ACGGAAGTTCCTAGGATGATCCGA -ACGGAAGTTCCTAGGATGATGGGA -ACGGAAGTTCCTAGGATGGTGCAA -ACGGAAGTTCCTAGGATGGAGGAA -ACGGAAGTTCCTAGGATGCAGGTA -ACGGAAGTTCCTAGGATGGACTCT -ACGGAAGTTCCTAGGATGAGTCCT -ACGGAAGTTCCTAGGATGTAAGCC -ACGGAAGTTCCTAGGATGATAGCC -ACGGAAGTTCCTAGGATGTAACCG -ACGGAAGTTCCTAGGATGATGCCA -ACGGAAGTTCCTGGGAATGGAAAC -ACGGAAGTTCCTGGGAATAACACC -ACGGAAGTTCCTGGGAATATCGAG -ACGGAAGTTCCTGGGAATCTCCTT -ACGGAAGTTCCTGGGAATCCTGTT -ACGGAAGTTCCTGGGAATCGGTTT -ACGGAAGTTCCTGGGAATGTGGTT -ACGGAAGTTCCTGGGAATGCCTTT -ACGGAAGTTCCTGGGAATGGTCTT -ACGGAAGTTCCTGGGAATACGCTT -ACGGAAGTTCCTGGGAATAGCGTT -ACGGAAGTTCCTGGGAATTTCGTC -ACGGAAGTTCCTGGGAATTCTCTC -ACGGAAGTTCCTGGGAATTGGATC -ACGGAAGTTCCTGGGAATCACTTC -ACGGAAGTTCCTGGGAATGTACTC -ACGGAAGTTCCTGGGAATGATGTC -ACGGAAGTTCCTGGGAATACAGTC -ACGGAAGTTCCTGGGAATTTGCTG -ACGGAAGTTCCTGGGAATTCCATG -ACGGAAGTTCCTGGGAATTGTGTG -ACGGAAGTTCCTGGGAATCTAGTG -ACGGAAGTTCCTGGGAATCATCTG -ACGGAAGTTCCTGGGAATGAGTTG -ACGGAAGTTCCTGGGAATAGACTG -ACGGAAGTTCCTGGGAATTCGGTA -ACGGAAGTTCCTGGGAATTGCCTA -ACGGAAGTTCCTGGGAATCCACTA -ACGGAAGTTCCTGGGAATGGAGTA -ACGGAAGTTCCTGGGAATTCGTCT -ACGGAAGTTCCTGGGAATTGCACT -ACGGAAGTTCCTGGGAATCTGACT -ACGGAAGTTCCTGGGAATCAACCT -ACGGAAGTTCCTGGGAATGCTACT -ACGGAAGTTCCTGGGAATGGATCT -ACGGAAGTTCCTGGGAATAAGGCT -ACGGAAGTTCCTGGGAATTCAACC -ACGGAAGTTCCTGGGAATTGTTCC -ACGGAAGTTCCTGGGAATATTCCC -ACGGAAGTTCCTGGGAATTTCTCG -ACGGAAGTTCCTGGGAATTAGACG -ACGGAAGTTCCTGGGAATGTAACG -ACGGAAGTTCCTGGGAATACTTCG -ACGGAAGTTCCTGGGAATTACGCA -ACGGAAGTTCCTGGGAATCTTGCA -ACGGAAGTTCCTGGGAATCGAACA -ACGGAAGTTCCTGGGAATCAGTCA -ACGGAAGTTCCTGGGAATGATCCA -ACGGAAGTTCCTGGGAATACGACA -ACGGAAGTTCCTGGGAATAGCTCA -ACGGAAGTTCCTGGGAATTCACGT -ACGGAAGTTCCTGGGAATCGTAGT -ACGGAAGTTCCTGGGAATGTCAGT -ACGGAAGTTCCTGGGAATGAAGGT -ACGGAAGTTCCTGGGAATAACCGT -ACGGAAGTTCCTGGGAATTTGTGC -ACGGAAGTTCCTGGGAATCTAAGC -ACGGAAGTTCCTGGGAATACTAGC -ACGGAAGTTCCTGGGAATAGATGC -ACGGAAGTTCCTGGGAATTGAAGG -ACGGAAGTTCCTGGGAATCAATGG -ACGGAAGTTCCTGGGAATATGAGG -ACGGAAGTTCCTGGGAATAATGGG -ACGGAAGTTCCTGGGAATTCCTGA -ACGGAAGTTCCTGGGAATTAGCGA -ACGGAAGTTCCTGGGAATCACAGA -ACGGAAGTTCCTGGGAATGCAAGA -ACGGAAGTTCCTGGGAATGGTTGA -ACGGAAGTTCCTGGGAATTCCGAT -ACGGAAGTTCCTGGGAATTGGCAT -ACGGAAGTTCCTGGGAATCGAGAT -ACGGAAGTTCCTGGGAATTACCAC -ACGGAAGTTCCTGGGAATCAGAAC -ACGGAAGTTCCTGGGAATGTCTAC -ACGGAAGTTCCTGGGAATACGTAC -ACGGAAGTTCCTGGGAATAGTGAC -ACGGAAGTTCCTGGGAATCTGTAG -ACGGAAGTTCCTGGGAATCCTAAG -ACGGAAGTTCCTGGGAATGTTCAG -ACGGAAGTTCCTGGGAATGCATAG -ACGGAAGTTCCTGGGAATGACAAG -ACGGAAGTTCCTGGGAATAAGCAG -ACGGAAGTTCCTGGGAATCGTCAA -ACGGAAGTTCCTGGGAATGCTGAA -ACGGAAGTTCCTGGGAATAGTACG -ACGGAAGTTCCTGGGAATATCCGA -ACGGAAGTTCCTGGGAATATGGGA -ACGGAAGTTCCTGGGAATGTGCAA -ACGGAAGTTCCTGGGAATGAGGAA -ACGGAAGTTCCTGGGAATCAGGTA -ACGGAAGTTCCTGGGAATGACTCT -ACGGAAGTTCCTGGGAATAGTCCT -ACGGAAGTTCCTGGGAATTAAGCC -ACGGAAGTTCCTGGGAATATAGCC -ACGGAAGTTCCTGGGAATTAACCG -ACGGAAGTTCCTGGGAATATGCCA -ACGGAAGTTCCTTGATCCGGAAAC -ACGGAAGTTCCTTGATCCAACACC -ACGGAAGTTCCTTGATCCATCGAG -ACGGAAGTTCCTTGATCCCTCCTT -ACGGAAGTTCCTTGATCCCCTGTT -ACGGAAGTTCCTTGATCCCGGTTT -ACGGAAGTTCCTTGATCCGTGGTT -ACGGAAGTTCCTTGATCCGCCTTT -ACGGAAGTTCCTTGATCCGGTCTT -ACGGAAGTTCCTTGATCCACGCTT -ACGGAAGTTCCTTGATCCAGCGTT -ACGGAAGTTCCTTGATCCTTCGTC -ACGGAAGTTCCTTGATCCTCTCTC -ACGGAAGTTCCTTGATCCTGGATC -ACGGAAGTTCCTTGATCCCACTTC -ACGGAAGTTCCTTGATCCGTACTC -ACGGAAGTTCCTTGATCCGATGTC -ACGGAAGTTCCTTGATCCACAGTC -ACGGAAGTTCCTTGATCCTTGCTG -ACGGAAGTTCCTTGATCCTCCATG -ACGGAAGTTCCTTGATCCTGTGTG -ACGGAAGTTCCTTGATCCCTAGTG -ACGGAAGTTCCTTGATCCCATCTG -ACGGAAGTTCCTTGATCCGAGTTG -ACGGAAGTTCCTTGATCCAGACTG -ACGGAAGTTCCTTGATCCTCGGTA -ACGGAAGTTCCTTGATCCTGCCTA -ACGGAAGTTCCTTGATCCCCACTA -ACGGAAGTTCCTTGATCCGGAGTA -ACGGAAGTTCCTTGATCCTCGTCT -ACGGAAGTTCCTTGATCCTGCACT -ACGGAAGTTCCTTGATCCCTGACT -ACGGAAGTTCCTTGATCCCAACCT -ACGGAAGTTCCTTGATCCGCTACT -ACGGAAGTTCCTTGATCCGGATCT -ACGGAAGTTCCTTGATCCAAGGCT -ACGGAAGTTCCTTGATCCTCAACC -ACGGAAGTTCCTTGATCCTGTTCC -ACGGAAGTTCCTTGATCCATTCCC -ACGGAAGTTCCTTGATCCTTCTCG -ACGGAAGTTCCTTGATCCTAGACG -ACGGAAGTTCCTTGATCCGTAACG -ACGGAAGTTCCTTGATCCACTTCG -ACGGAAGTTCCTTGATCCTACGCA -ACGGAAGTTCCTTGATCCCTTGCA -ACGGAAGTTCCTTGATCCCGAACA -ACGGAAGTTCCTTGATCCCAGTCA -ACGGAAGTTCCTTGATCCGATCCA -ACGGAAGTTCCTTGATCCACGACA -ACGGAAGTTCCTTGATCCAGCTCA -ACGGAAGTTCCTTGATCCTCACGT -ACGGAAGTTCCTTGATCCCGTAGT -ACGGAAGTTCCTTGATCCGTCAGT -ACGGAAGTTCCTTGATCCGAAGGT -ACGGAAGTTCCTTGATCCAACCGT -ACGGAAGTTCCTTGATCCTTGTGC -ACGGAAGTTCCTTGATCCCTAAGC -ACGGAAGTTCCTTGATCCACTAGC -ACGGAAGTTCCTTGATCCAGATGC -ACGGAAGTTCCTTGATCCTGAAGG -ACGGAAGTTCCTTGATCCCAATGG -ACGGAAGTTCCTTGATCCATGAGG -ACGGAAGTTCCTTGATCCAATGGG -ACGGAAGTTCCTTGATCCTCCTGA -ACGGAAGTTCCTTGATCCTAGCGA -ACGGAAGTTCCTTGATCCCACAGA -ACGGAAGTTCCTTGATCCGCAAGA -ACGGAAGTTCCTTGATCCGGTTGA -ACGGAAGTTCCTTGATCCTCCGAT -ACGGAAGTTCCTTGATCCTGGCAT -ACGGAAGTTCCTTGATCCCGAGAT -ACGGAAGTTCCTTGATCCTACCAC -ACGGAAGTTCCTTGATCCCAGAAC -ACGGAAGTTCCTTGATCCGTCTAC -ACGGAAGTTCCTTGATCCACGTAC -ACGGAAGTTCCTTGATCCAGTGAC -ACGGAAGTTCCTTGATCCCTGTAG -ACGGAAGTTCCTTGATCCCCTAAG -ACGGAAGTTCCTTGATCCGTTCAG -ACGGAAGTTCCTTGATCCGCATAG -ACGGAAGTTCCTTGATCCGACAAG -ACGGAAGTTCCTTGATCCAAGCAG -ACGGAAGTTCCTTGATCCCGTCAA -ACGGAAGTTCCTTGATCCGCTGAA -ACGGAAGTTCCTTGATCCAGTACG -ACGGAAGTTCCTTGATCCATCCGA -ACGGAAGTTCCTTGATCCATGGGA -ACGGAAGTTCCTTGATCCGTGCAA -ACGGAAGTTCCTTGATCCGAGGAA -ACGGAAGTTCCTTGATCCCAGGTA -ACGGAAGTTCCTTGATCCGACTCT -ACGGAAGTTCCTTGATCCAGTCCT -ACGGAAGTTCCTTGATCCTAAGCC -ACGGAAGTTCCTTGATCCATAGCC -ACGGAAGTTCCTTGATCCTAACCG -ACGGAAGTTCCTTGATCCATGCCA -ACGGAAGTTCCTCGATAGGGAAAC -ACGGAAGTTCCTCGATAGAACACC -ACGGAAGTTCCTCGATAGATCGAG -ACGGAAGTTCCTCGATAGCTCCTT -ACGGAAGTTCCTCGATAGCCTGTT -ACGGAAGTTCCTCGATAGCGGTTT -ACGGAAGTTCCTCGATAGGTGGTT -ACGGAAGTTCCTCGATAGGCCTTT -ACGGAAGTTCCTCGATAGGGTCTT -ACGGAAGTTCCTCGATAGACGCTT -ACGGAAGTTCCTCGATAGAGCGTT -ACGGAAGTTCCTCGATAGTTCGTC -ACGGAAGTTCCTCGATAGTCTCTC -ACGGAAGTTCCTCGATAGTGGATC -ACGGAAGTTCCTCGATAGCACTTC -ACGGAAGTTCCTCGATAGGTACTC -ACGGAAGTTCCTCGATAGGATGTC -ACGGAAGTTCCTCGATAGACAGTC -ACGGAAGTTCCTCGATAGTTGCTG -ACGGAAGTTCCTCGATAGTCCATG -ACGGAAGTTCCTCGATAGTGTGTG -ACGGAAGTTCCTCGATAGCTAGTG -ACGGAAGTTCCTCGATAGCATCTG -ACGGAAGTTCCTCGATAGGAGTTG -ACGGAAGTTCCTCGATAGAGACTG -ACGGAAGTTCCTCGATAGTCGGTA -ACGGAAGTTCCTCGATAGTGCCTA -ACGGAAGTTCCTCGATAGCCACTA -ACGGAAGTTCCTCGATAGGGAGTA -ACGGAAGTTCCTCGATAGTCGTCT -ACGGAAGTTCCTCGATAGTGCACT -ACGGAAGTTCCTCGATAGCTGACT -ACGGAAGTTCCTCGATAGCAACCT -ACGGAAGTTCCTCGATAGGCTACT -ACGGAAGTTCCTCGATAGGGATCT -ACGGAAGTTCCTCGATAGAAGGCT -ACGGAAGTTCCTCGATAGTCAACC -ACGGAAGTTCCTCGATAGTGTTCC -ACGGAAGTTCCTCGATAGATTCCC -ACGGAAGTTCCTCGATAGTTCTCG -ACGGAAGTTCCTCGATAGTAGACG -ACGGAAGTTCCTCGATAGGTAACG -ACGGAAGTTCCTCGATAGACTTCG -ACGGAAGTTCCTCGATAGTACGCA -ACGGAAGTTCCTCGATAGCTTGCA -ACGGAAGTTCCTCGATAGCGAACA -ACGGAAGTTCCTCGATAGCAGTCA -ACGGAAGTTCCTCGATAGGATCCA -ACGGAAGTTCCTCGATAGACGACA -ACGGAAGTTCCTCGATAGAGCTCA -ACGGAAGTTCCTCGATAGTCACGT -ACGGAAGTTCCTCGATAGCGTAGT -ACGGAAGTTCCTCGATAGGTCAGT -ACGGAAGTTCCTCGATAGGAAGGT -ACGGAAGTTCCTCGATAGAACCGT -ACGGAAGTTCCTCGATAGTTGTGC -ACGGAAGTTCCTCGATAGCTAAGC -ACGGAAGTTCCTCGATAGACTAGC -ACGGAAGTTCCTCGATAGAGATGC -ACGGAAGTTCCTCGATAGTGAAGG -ACGGAAGTTCCTCGATAGCAATGG -ACGGAAGTTCCTCGATAGATGAGG -ACGGAAGTTCCTCGATAGAATGGG -ACGGAAGTTCCTCGATAGTCCTGA -ACGGAAGTTCCTCGATAGTAGCGA -ACGGAAGTTCCTCGATAGCACAGA -ACGGAAGTTCCTCGATAGGCAAGA -ACGGAAGTTCCTCGATAGGGTTGA -ACGGAAGTTCCTCGATAGTCCGAT -ACGGAAGTTCCTCGATAGTGGCAT -ACGGAAGTTCCTCGATAGCGAGAT -ACGGAAGTTCCTCGATAGTACCAC -ACGGAAGTTCCTCGATAGCAGAAC -ACGGAAGTTCCTCGATAGGTCTAC -ACGGAAGTTCCTCGATAGACGTAC -ACGGAAGTTCCTCGATAGAGTGAC -ACGGAAGTTCCTCGATAGCTGTAG -ACGGAAGTTCCTCGATAGCCTAAG -ACGGAAGTTCCTCGATAGGTTCAG -ACGGAAGTTCCTCGATAGGCATAG -ACGGAAGTTCCTCGATAGGACAAG -ACGGAAGTTCCTCGATAGAAGCAG -ACGGAAGTTCCTCGATAGCGTCAA -ACGGAAGTTCCTCGATAGGCTGAA -ACGGAAGTTCCTCGATAGAGTACG -ACGGAAGTTCCTCGATAGATCCGA -ACGGAAGTTCCTCGATAGATGGGA -ACGGAAGTTCCTCGATAGGTGCAA -ACGGAAGTTCCTCGATAGGAGGAA -ACGGAAGTTCCTCGATAGCAGGTA -ACGGAAGTTCCTCGATAGGACTCT -ACGGAAGTTCCTCGATAGAGTCCT -ACGGAAGTTCCTCGATAGTAAGCC -ACGGAAGTTCCTCGATAGATAGCC -ACGGAAGTTCCTCGATAGTAACCG -ACGGAAGTTCCTCGATAGATGCCA -ACGGAAGTTCCTAGACACGGAAAC -ACGGAAGTTCCTAGACACAACACC -ACGGAAGTTCCTAGACACATCGAG -ACGGAAGTTCCTAGACACCTCCTT -ACGGAAGTTCCTAGACACCCTGTT -ACGGAAGTTCCTAGACACCGGTTT -ACGGAAGTTCCTAGACACGTGGTT -ACGGAAGTTCCTAGACACGCCTTT -ACGGAAGTTCCTAGACACGGTCTT -ACGGAAGTTCCTAGACACACGCTT -ACGGAAGTTCCTAGACACAGCGTT -ACGGAAGTTCCTAGACACTTCGTC -ACGGAAGTTCCTAGACACTCTCTC -ACGGAAGTTCCTAGACACTGGATC -ACGGAAGTTCCTAGACACCACTTC -ACGGAAGTTCCTAGACACGTACTC -ACGGAAGTTCCTAGACACGATGTC -ACGGAAGTTCCTAGACACACAGTC -ACGGAAGTTCCTAGACACTTGCTG -ACGGAAGTTCCTAGACACTCCATG -ACGGAAGTTCCTAGACACTGTGTG -ACGGAAGTTCCTAGACACCTAGTG -ACGGAAGTTCCTAGACACCATCTG -ACGGAAGTTCCTAGACACGAGTTG -ACGGAAGTTCCTAGACACAGACTG -ACGGAAGTTCCTAGACACTCGGTA -ACGGAAGTTCCTAGACACTGCCTA -ACGGAAGTTCCTAGACACCCACTA -ACGGAAGTTCCTAGACACGGAGTA -ACGGAAGTTCCTAGACACTCGTCT -ACGGAAGTTCCTAGACACTGCACT -ACGGAAGTTCCTAGACACCTGACT -ACGGAAGTTCCTAGACACCAACCT -ACGGAAGTTCCTAGACACGCTACT -ACGGAAGTTCCTAGACACGGATCT -ACGGAAGTTCCTAGACACAAGGCT -ACGGAAGTTCCTAGACACTCAACC -ACGGAAGTTCCTAGACACTGTTCC -ACGGAAGTTCCTAGACACATTCCC -ACGGAAGTTCCTAGACACTTCTCG -ACGGAAGTTCCTAGACACTAGACG -ACGGAAGTTCCTAGACACGTAACG -ACGGAAGTTCCTAGACACACTTCG -ACGGAAGTTCCTAGACACTACGCA -ACGGAAGTTCCTAGACACCTTGCA -ACGGAAGTTCCTAGACACCGAACA -ACGGAAGTTCCTAGACACCAGTCA -ACGGAAGTTCCTAGACACGATCCA -ACGGAAGTTCCTAGACACACGACA -ACGGAAGTTCCTAGACACAGCTCA -ACGGAAGTTCCTAGACACTCACGT -ACGGAAGTTCCTAGACACCGTAGT -ACGGAAGTTCCTAGACACGTCAGT -ACGGAAGTTCCTAGACACGAAGGT -ACGGAAGTTCCTAGACACAACCGT -ACGGAAGTTCCTAGACACTTGTGC -ACGGAAGTTCCTAGACACCTAAGC -ACGGAAGTTCCTAGACACACTAGC -ACGGAAGTTCCTAGACACAGATGC -ACGGAAGTTCCTAGACACTGAAGG -ACGGAAGTTCCTAGACACCAATGG -ACGGAAGTTCCTAGACACATGAGG -ACGGAAGTTCCTAGACACAATGGG -ACGGAAGTTCCTAGACACTCCTGA -ACGGAAGTTCCTAGACACTAGCGA -ACGGAAGTTCCTAGACACCACAGA -ACGGAAGTTCCTAGACACGCAAGA -ACGGAAGTTCCTAGACACGGTTGA -ACGGAAGTTCCTAGACACTCCGAT -ACGGAAGTTCCTAGACACTGGCAT -ACGGAAGTTCCTAGACACCGAGAT -ACGGAAGTTCCTAGACACTACCAC -ACGGAAGTTCCTAGACACCAGAAC -ACGGAAGTTCCTAGACACGTCTAC -ACGGAAGTTCCTAGACACACGTAC -ACGGAAGTTCCTAGACACAGTGAC -ACGGAAGTTCCTAGACACCTGTAG -ACGGAAGTTCCTAGACACCCTAAG -ACGGAAGTTCCTAGACACGTTCAG -ACGGAAGTTCCTAGACACGCATAG -ACGGAAGTTCCTAGACACGACAAG -ACGGAAGTTCCTAGACACAAGCAG -ACGGAAGTTCCTAGACACCGTCAA -ACGGAAGTTCCTAGACACGCTGAA -ACGGAAGTTCCTAGACACAGTACG -ACGGAAGTTCCTAGACACATCCGA -ACGGAAGTTCCTAGACACATGGGA -ACGGAAGTTCCTAGACACGTGCAA -ACGGAAGTTCCTAGACACGAGGAA -ACGGAAGTTCCTAGACACCAGGTA -ACGGAAGTTCCTAGACACGACTCT -ACGGAAGTTCCTAGACACAGTCCT -ACGGAAGTTCCTAGACACTAAGCC -ACGGAAGTTCCTAGACACATAGCC -ACGGAAGTTCCTAGACACTAACCG -ACGGAAGTTCCTAGACACATGCCA -ACGGAAGTTCCTAGAGCAGGAAAC -ACGGAAGTTCCTAGAGCAAACACC -ACGGAAGTTCCTAGAGCAATCGAG -ACGGAAGTTCCTAGAGCACTCCTT -ACGGAAGTTCCTAGAGCACCTGTT -ACGGAAGTTCCTAGAGCACGGTTT -ACGGAAGTTCCTAGAGCAGTGGTT -ACGGAAGTTCCTAGAGCAGCCTTT -ACGGAAGTTCCTAGAGCAGGTCTT -ACGGAAGTTCCTAGAGCAACGCTT -ACGGAAGTTCCTAGAGCAAGCGTT -ACGGAAGTTCCTAGAGCATTCGTC -ACGGAAGTTCCTAGAGCATCTCTC -ACGGAAGTTCCTAGAGCATGGATC -ACGGAAGTTCCTAGAGCACACTTC -ACGGAAGTTCCTAGAGCAGTACTC -ACGGAAGTTCCTAGAGCAGATGTC -ACGGAAGTTCCTAGAGCAACAGTC -ACGGAAGTTCCTAGAGCATTGCTG -ACGGAAGTTCCTAGAGCATCCATG -ACGGAAGTTCCTAGAGCATGTGTG -ACGGAAGTTCCTAGAGCACTAGTG -ACGGAAGTTCCTAGAGCACATCTG -ACGGAAGTTCCTAGAGCAGAGTTG -ACGGAAGTTCCTAGAGCAAGACTG -ACGGAAGTTCCTAGAGCATCGGTA -ACGGAAGTTCCTAGAGCATGCCTA -ACGGAAGTTCCTAGAGCACCACTA -ACGGAAGTTCCTAGAGCAGGAGTA -ACGGAAGTTCCTAGAGCATCGTCT -ACGGAAGTTCCTAGAGCATGCACT -ACGGAAGTTCCTAGAGCACTGACT -ACGGAAGTTCCTAGAGCACAACCT -ACGGAAGTTCCTAGAGCAGCTACT -ACGGAAGTTCCTAGAGCAGGATCT -ACGGAAGTTCCTAGAGCAAAGGCT -ACGGAAGTTCCTAGAGCATCAACC -ACGGAAGTTCCTAGAGCATGTTCC -ACGGAAGTTCCTAGAGCAATTCCC -ACGGAAGTTCCTAGAGCATTCTCG -ACGGAAGTTCCTAGAGCATAGACG -ACGGAAGTTCCTAGAGCAGTAACG -ACGGAAGTTCCTAGAGCAACTTCG -ACGGAAGTTCCTAGAGCATACGCA -ACGGAAGTTCCTAGAGCACTTGCA -ACGGAAGTTCCTAGAGCACGAACA -ACGGAAGTTCCTAGAGCACAGTCA -ACGGAAGTTCCTAGAGCAGATCCA -ACGGAAGTTCCTAGAGCAACGACA -ACGGAAGTTCCTAGAGCAAGCTCA -ACGGAAGTTCCTAGAGCATCACGT -ACGGAAGTTCCTAGAGCACGTAGT -ACGGAAGTTCCTAGAGCAGTCAGT -ACGGAAGTTCCTAGAGCAGAAGGT -ACGGAAGTTCCTAGAGCAAACCGT -ACGGAAGTTCCTAGAGCATTGTGC -ACGGAAGTTCCTAGAGCACTAAGC -ACGGAAGTTCCTAGAGCAACTAGC -ACGGAAGTTCCTAGAGCAAGATGC -ACGGAAGTTCCTAGAGCATGAAGG -ACGGAAGTTCCTAGAGCACAATGG -ACGGAAGTTCCTAGAGCAATGAGG -ACGGAAGTTCCTAGAGCAAATGGG -ACGGAAGTTCCTAGAGCATCCTGA -ACGGAAGTTCCTAGAGCATAGCGA -ACGGAAGTTCCTAGAGCACACAGA -ACGGAAGTTCCTAGAGCAGCAAGA -ACGGAAGTTCCTAGAGCAGGTTGA -ACGGAAGTTCCTAGAGCATCCGAT -ACGGAAGTTCCTAGAGCATGGCAT -ACGGAAGTTCCTAGAGCACGAGAT -ACGGAAGTTCCTAGAGCATACCAC -ACGGAAGTTCCTAGAGCACAGAAC -ACGGAAGTTCCTAGAGCAGTCTAC -ACGGAAGTTCCTAGAGCAACGTAC -ACGGAAGTTCCTAGAGCAAGTGAC -ACGGAAGTTCCTAGAGCACTGTAG -ACGGAAGTTCCTAGAGCACCTAAG -ACGGAAGTTCCTAGAGCAGTTCAG -ACGGAAGTTCCTAGAGCAGCATAG -ACGGAAGTTCCTAGAGCAGACAAG -ACGGAAGTTCCTAGAGCAAAGCAG -ACGGAAGTTCCTAGAGCACGTCAA -ACGGAAGTTCCTAGAGCAGCTGAA -ACGGAAGTTCCTAGAGCAAGTACG -ACGGAAGTTCCTAGAGCAATCCGA -ACGGAAGTTCCTAGAGCAATGGGA -ACGGAAGTTCCTAGAGCAGTGCAA -ACGGAAGTTCCTAGAGCAGAGGAA -ACGGAAGTTCCTAGAGCACAGGTA -ACGGAAGTTCCTAGAGCAGACTCT -ACGGAAGTTCCTAGAGCAAGTCCT -ACGGAAGTTCCTAGAGCATAAGCC -ACGGAAGTTCCTAGAGCAATAGCC -ACGGAAGTTCCTAGAGCATAACCG -ACGGAAGTTCCTAGAGCAATGCCA -ACGGAAGTTCCTTGAGGTGGAAAC -ACGGAAGTTCCTTGAGGTAACACC -ACGGAAGTTCCTTGAGGTATCGAG -ACGGAAGTTCCTTGAGGTCTCCTT -ACGGAAGTTCCTTGAGGTCCTGTT -ACGGAAGTTCCTTGAGGTCGGTTT -ACGGAAGTTCCTTGAGGTGTGGTT -ACGGAAGTTCCTTGAGGTGCCTTT -ACGGAAGTTCCTTGAGGTGGTCTT -ACGGAAGTTCCTTGAGGTACGCTT -ACGGAAGTTCCTTGAGGTAGCGTT -ACGGAAGTTCCTTGAGGTTTCGTC -ACGGAAGTTCCTTGAGGTTCTCTC -ACGGAAGTTCCTTGAGGTTGGATC -ACGGAAGTTCCTTGAGGTCACTTC -ACGGAAGTTCCTTGAGGTGTACTC -ACGGAAGTTCCTTGAGGTGATGTC -ACGGAAGTTCCTTGAGGTACAGTC -ACGGAAGTTCCTTGAGGTTTGCTG -ACGGAAGTTCCTTGAGGTTCCATG -ACGGAAGTTCCTTGAGGTTGTGTG -ACGGAAGTTCCTTGAGGTCTAGTG -ACGGAAGTTCCTTGAGGTCATCTG -ACGGAAGTTCCTTGAGGTGAGTTG -ACGGAAGTTCCTTGAGGTAGACTG -ACGGAAGTTCCTTGAGGTTCGGTA -ACGGAAGTTCCTTGAGGTTGCCTA -ACGGAAGTTCCTTGAGGTCCACTA -ACGGAAGTTCCTTGAGGTGGAGTA -ACGGAAGTTCCTTGAGGTTCGTCT -ACGGAAGTTCCTTGAGGTTGCACT -ACGGAAGTTCCTTGAGGTCTGACT -ACGGAAGTTCCTTGAGGTCAACCT -ACGGAAGTTCCTTGAGGTGCTACT -ACGGAAGTTCCTTGAGGTGGATCT -ACGGAAGTTCCTTGAGGTAAGGCT -ACGGAAGTTCCTTGAGGTTCAACC -ACGGAAGTTCCTTGAGGTTGTTCC -ACGGAAGTTCCTTGAGGTATTCCC -ACGGAAGTTCCTTGAGGTTTCTCG -ACGGAAGTTCCTTGAGGTTAGACG -ACGGAAGTTCCTTGAGGTGTAACG -ACGGAAGTTCCTTGAGGTACTTCG -ACGGAAGTTCCTTGAGGTTACGCA -ACGGAAGTTCCTTGAGGTCTTGCA -ACGGAAGTTCCTTGAGGTCGAACA -ACGGAAGTTCCTTGAGGTCAGTCA -ACGGAAGTTCCTTGAGGTGATCCA -ACGGAAGTTCCTTGAGGTACGACA -ACGGAAGTTCCTTGAGGTAGCTCA -ACGGAAGTTCCTTGAGGTTCACGT -ACGGAAGTTCCTTGAGGTCGTAGT -ACGGAAGTTCCTTGAGGTGTCAGT -ACGGAAGTTCCTTGAGGTGAAGGT -ACGGAAGTTCCTTGAGGTAACCGT -ACGGAAGTTCCTTGAGGTTTGTGC -ACGGAAGTTCCTTGAGGTCTAAGC -ACGGAAGTTCCTTGAGGTACTAGC -ACGGAAGTTCCTTGAGGTAGATGC -ACGGAAGTTCCTTGAGGTTGAAGG -ACGGAAGTTCCTTGAGGTCAATGG -ACGGAAGTTCCTTGAGGTATGAGG -ACGGAAGTTCCTTGAGGTAATGGG -ACGGAAGTTCCTTGAGGTTCCTGA -ACGGAAGTTCCTTGAGGTTAGCGA -ACGGAAGTTCCTTGAGGTCACAGA -ACGGAAGTTCCTTGAGGTGCAAGA -ACGGAAGTTCCTTGAGGTGGTTGA -ACGGAAGTTCCTTGAGGTTCCGAT -ACGGAAGTTCCTTGAGGTTGGCAT -ACGGAAGTTCCTTGAGGTCGAGAT -ACGGAAGTTCCTTGAGGTTACCAC -ACGGAAGTTCCTTGAGGTCAGAAC -ACGGAAGTTCCTTGAGGTGTCTAC -ACGGAAGTTCCTTGAGGTACGTAC -ACGGAAGTTCCTTGAGGTAGTGAC -ACGGAAGTTCCTTGAGGTCTGTAG -ACGGAAGTTCCTTGAGGTCCTAAG -ACGGAAGTTCCTTGAGGTGTTCAG -ACGGAAGTTCCTTGAGGTGCATAG -ACGGAAGTTCCTTGAGGTGACAAG -ACGGAAGTTCCTTGAGGTAAGCAG -ACGGAAGTTCCTTGAGGTCGTCAA -ACGGAAGTTCCTTGAGGTGCTGAA -ACGGAAGTTCCTTGAGGTAGTACG -ACGGAAGTTCCTTGAGGTATCCGA -ACGGAAGTTCCTTGAGGTATGGGA -ACGGAAGTTCCTTGAGGTGTGCAA -ACGGAAGTTCCTTGAGGTGAGGAA -ACGGAAGTTCCTTGAGGTCAGGTA -ACGGAAGTTCCTTGAGGTGACTCT -ACGGAAGTTCCTTGAGGTAGTCCT -ACGGAAGTTCCTTGAGGTTAAGCC -ACGGAAGTTCCTTGAGGTATAGCC -ACGGAAGTTCCTTGAGGTTAACCG -ACGGAAGTTCCTTGAGGTATGCCA -ACGGAAGTTCCTGATTCCGGAAAC -ACGGAAGTTCCTGATTCCAACACC -ACGGAAGTTCCTGATTCCATCGAG -ACGGAAGTTCCTGATTCCCTCCTT -ACGGAAGTTCCTGATTCCCCTGTT -ACGGAAGTTCCTGATTCCCGGTTT -ACGGAAGTTCCTGATTCCGTGGTT -ACGGAAGTTCCTGATTCCGCCTTT -ACGGAAGTTCCTGATTCCGGTCTT -ACGGAAGTTCCTGATTCCACGCTT -ACGGAAGTTCCTGATTCCAGCGTT -ACGGAAGTTCCTGATTCCTTCGTC -ACGGAAGTTCCTGATTCCTCTCTC -ACGGAAGTTCCTGATTCCTGGATC -ACGGAAGTTCCTGATTCCCACTTC -ACGGAAGTTCCTGATTCCGTACTC -ACGGAAGTTCCTGATTCCGATGTC -ACGGAAGTTCCTGATTCCACAGTC -ACGGAAGTTCCTGATTCCTTGCTG -ACGGAAGTTCCTGATTCCTCCATG -ACGGAAGTTCCTGATTCCTGTGTG -ACGGAAGTTCCTGATTCCCTAGTG -ACGGAAGTTCCTGATTCCCATCTG -ACGGAAGTTCCTGATTCCGAGTTG -ACGGAAGTTCCTGATTCCAGACTG -ACGGAAGTTCCTGATTCCTCGGTA -ACGGAAGTTCCTGATTCCTGCCTA -ACGGAAGTTCCTGATTCCCCACTA -ACGGAAGTTCCTGATTCCGGAGTA -ACGGAAGTTCCTGATTCCTCGTCT -ACGGAAGTTCCTGATTCCTGCACT -ACGGAAGTTCCTGATTCCCTGACT -ACGGAAGTTCCTGATTCCCAACCT -ACGGAAGTTCCTGATTCCGCTACT -ACGGAAGTTCCTGATTCCGGATCT -ACGGAAGTTCCTGATTCCAAGGCT -ACGGAAGTTCCTGATTCCTCAACC -ACGGAAGTTCCTGATTCCTGTTCC -ACGGAAGTTCCTGATTCCATTCCC -ACGGAAGTTCCTGATTCCTTCTCG -ACGGAAGTTCCTGATTCCTAGACG -ACGGAAGTTCCTGATTCCGTAACG -ACGGAAGTTCCTGATTCCACTTCG -ACGGAAGTTCCTGATTCCTACGCA -ACGGAAGTTCCTGATTCCCTTGCA -ACGGAAGTTCCTGATTCCCGAACA -ACGGAAGTTCCTGATTCCCAGTCA -ACGGAAGTTCCTGATTCCGATCCA -ACGGAAGTTCCTGATTCCACGACA -ACGGAAGTTCCTGATTCCAGCTCA -ACGGAAGTTCCTGATTCCTCACGT -ACGGAAGTTCCTGATTCCCGTAGT -ACGGAAGTTCCTGATTCCGTCAGT -ACGGAAGTTCCTGATTCCGAAGGT -ACGGAAGTTCCTGATTCCAACCGT -ACGGAAGTTCCTGATTCCTTGTGC -ACGGAAGTTCCTGATTCCCTAAGC -ACGGAAGTTCCTGATTCCACTAGC -ACGGAAGTTCCTGATTCCAGATGC -ACGGAAGTTCCTGATTCCTGAAGG -ACGGAAGTTCCTGATTCCCAATGG -ACGGAAGTTCCTGATTCCATGAGG -ACGGAAGTTCCTGATTCCAATGGG -ACGGAAGTTCCTGATTCCTCCTGA -ACGGAAGTTCCTGATTCCTAGCGA -ACGGAAGTTCCTGATTCCCACAGA -ACGGAAGTTCCTGATTCCGCAAGA -ACGGAAGTTCCTGATTCCGGTTGA -ACGGAAGTTCCTGATTCCTCCGAT -ACGGAAGTTCCTGATTCCTGGCAT -ACGGAAGTTCCTGATTCCCGAGAT -ACGGAAGTTCCTGATTCCTACCAC -ACGGAAGTTCCTGATTCCCAGAAC -ACGGAAGTTCCTGATTCCGTCTAC -ACGGAAGTTCCTGATTCCACGTAC -ACGGAAGTTCCTGATTCCAGTGAC -ACGGAAGTTCCTGATTCCCTGTAG -ACGGAAGTTCCTGATTCCCCTAAG -ACGGAAGTTCCTGATTCCGTTCAG -ACGGAAGTTCCTGATTCCGCATAG -ACGGAAGTTCCTGATTCCGACAAG -ACGGAAGTTCCTGATTCCAAGCAG -ACGGAAGTTCCTGATTCCCGTCAA -ACGGAAGTTCCTGATTCCGCTGAA -ACGGAAGTTCCTGATTCCAGTACG -ACGGAAGTTCCTGATTCCATCCGA -ACGGAAGTTCCTGATTCCATGGGA -ACGGAAGTTCCTGATTCCGTGCAA -ACGGAAGTTCCTGATTCCGAGGAA -ACGGAAGTTCCTGATTCCCAGGTA -ACGGAAGTTCCTGATTCCGACTCT -ACGGAAGTTCCTGATTCCAGTCCT -ACGGAAGTTCCTGATTCCTAAGCC -ACGGAAGTTCCTGATTCCATAGCC -ACGGAAGTTCCTGATTCCTAACCG -ACGGAAGTTCCTGATTCCATGCCA -ACGGAAGTTCCTCATTGGGGAAAC -ACGGAAGTTCCTCATTGGAACACC -ACGGAAGTTCCTCATTGGATCGAG -ACGGAAGTTCCTCATTGGCTCCTT -ACGGAAGTTCCTCATTGGCCTGTT -ACGGAAGTTCCTCATTGGCGGTTT -ACGGAAGTTCCTCATTGGGTGGTT -ACGGAAGTTCCTCATTGGGCCTTT -ACGGAAGTTCCTCATTGGGGTCTT -ACGGAAGTTCCTCATTGGACGCTT -ACGGAAGTTCCTCATTGGAGCGTT -ACGGAAGTTCCTCATTGGTTCGTC -ACGGAAGTTCCTCATTGGTCTCTC -ACGGAAGTTCCTCATTGGTGGATC -ACGGAAGTTCCTCATTGGCACTTC -ACGGAAGTTCCTCATTGGGTACTC -ACGGAAGTTCCTCATTGGGATGTC -ACGGAAGTTCCTCATTGGACAGTC -ACGGAAGTTCCTCATTGGTTGCTG -ACGGAAGTTCCTCATTGGTCCATG -ACGGAAGTTCCTCATTGGTGTGTG -ACGGAAGTTCCTCATTGGCTAGTG -ACGGAAGTTCCTCATTGGCATCTG -ACGGAAGTTCCTCATTGGGAGTTG -ACGGAAGTTCCTCATTGGAGACTG -ACGGAAGTTCCTCATTGGTCGGTA -ACGGAAGTTCCTCATTGGTGCCTA -ACGGAAGTTCCTCATTGGCCACTA -ACGGAAGTTCCTCATTGGGGAGTA -ACGGAAGTTCCTCATTGGTCGTCT -ACGGAAGTTCCTCATTGGTGCACT -ACGGAAGTTCCTCATTGGCTGACT -ACGGAAGTTCCTCATTGGCAACCT -ACGGAAGTTCCTCATTGGGCTACT -ACGGAAGTTCCTCATTGGGGATCT -ACGGAAGTTCCTCATTGGAAGGCT -ACGGAAGTTCCTCATTGGTCAACC -ACGGAAGTTCCTCATTGGTGTTCC -ACGGAAGTTCCTCATTGGATTCCC -ACGGAAGTTCCTCATTGGTTCTCG -ACGGAAGTTCCTCATTGGTAGACG -ACGGAAGTTCCTCATTGGGTAACG -ACGGAAGTTCCTCATTGGACTTCG -ACGGAAGTTCCTCATTGGTACGCA -ACGGAAGTTCCTCATTGGCTTGCA -ACGGAAGTTCCTCATTGGCGAACA -ACGGAAGTTCCTCATTGGCAGTCA -ACGGAAGTTCCTCATTGGGATCCA -ACGGAAGTTCCTCATTGGACGACA -ACGGAAGTTCCTCATTGGAGCTCA -ACGGAAGTTCCTCATTGGTCACGT -ACGGAAGTTCCTCATTGGCGTAGT -ACGGAAGTTCCTCATTGGGTCAGT -ACGGAAGTTCCTCATTGGGAAGGT -ACGGAAGTTCCTCATTGGAACCGT -ACGGAAGTTCCTCATTGGTTGTGC -ACGGAAGTTCCTCATTGGCTAAGC -ACGGAAGTTCCTCATTGGACTAGC -ACGGAAGTTCCTCATTGGAGATGC -ACGGAAGTTCCTCATTGGTGAAGG -ACGGAAGTTCCTCATTGGCAATGG -ACGGAAGTTCCTCATTGGATGAGG -ACGGAAGTTCCTCATTGGAATGGG -ACGGAAGTTCCTCATTGGTCCTGA -ACGGAAGTTCCTCATTGGTAGCGA -ACGGAAGTTCCTCATTGGCACAGA -ACGGAAGTTCCTCATTGGGCAAGA -ACGGAAGTTCCTCATTGGGGTTGA -ACGGAAGTTCCTCATTGGTCCGAT -ACGGAAGTTCCTCATTGGTGGCAT -ACGGAAGTTCCTCATTGGCGAGAT -ACGGAAGTTCCTCATTGGTACCAC -ACGGAAGTTCCTCATTGGCAGAAC -ACGGAAGTTCCTCATTGGGTCTAC -ACGGAAGTTCCTCATTGGACGTAC -ACGGAAGTTCCTCATTGGAGTGAC -ACGGAAGTTCCTCATTGGCTGTAG -ACGGAAGTTCCTCATTGGCCTAAG -ACGGAAGTTCCTCATTGGGTTCAG -ACGGAAGTTCCTCATTGGGCATAG -ACGGAAGTTCCTCATTGGGACAAG -ACGGAAGTTCCTCATTGGAAGCAG -ACGGAAGTTCCTCATTGGCGTCAA -ACGGAAGTTCCTCATTGGGCTGAA -ACGGAAGTTCCTCATTGGAGTACG -ACGGAAGTTCCTCATTGGATCCGA -ACGGAAGTTCCTCATTGGATGGGA -ACGGAAGTTCCTCATTGGGTGCAA -ACGGAAGTTCCTCATTGGGAGGAA -ACGGAAGTTCCTCATTGGCAGGTA -ACGGAAGTTCCTCATTGGGACTCT -ACGGAAGTTCCTCATTGGAGTCCT -ACGGAAGTTCCTCATTGGTAAGCC -ACGGAAGTTCCTCATTGGATAGCC -ACGGAAGTTCCTCATTGGTAACCG -ACGGAAGTTCCTCATTGGATGCCA -ACGGAAGTTCCTGATCGAGGAAAC -ACGGAAGTTCCTGATCGAAACACC -ACGGAAGTTCCTGATCGAATCGAG -ACGGAAGTTCCTGATCGACTCCTT -ACGGAAGTTCCTGATCGACCTGTT -ACGGAAGTTCCTGATCGACGGTTT -ACGGAAGTTCCTGATCGAGTGGTT -ACGGAAGTTCCTGATCGAGCCTTT -ACGGAAGTTCCTGATCGAGGTCTT -ACGGAAGTTCCTGATCGAACGCTT -ACGGAAGTTCCTGATCGAAGCGTT -ACGGAAGTTCCTGATCGATTCGTC -ACGGAAGTTCCTGATCGATCTCTC -ACGGAAGTTCCTGATCGATGGATC -ACGGAAGTTCCTGATCGACACTTC -ACGGAAGTTCCTGATCGAGTACTC -ACGGAAGTTCCTGATCGAGATGTC -ACGGAAGTTCCTGATCGAACAGTC -ACGGAAGTTCCTGATCGATTGCTG -ACGGAAGTTCCTGATCGATCCATG -ACGGAAGTTCCTGATCGATGTGTG -ACGGAAGTTCCTGATCGACTAGTG -ACGGAAGTTCCTGATCGACATCTG -ACGGAAGTTCCTGATCGAGAGTTG -ACGGAAGTTCCTGATCGAAGACTG -ACGGAAGTTCCTGATCGATCGGTA -ACGGAAGTTCCTGATCGATGCCTA -ACGGAAGTTCCTGATCGACCACTA -ACGGAAGTTCCTGATCGAGGAGTA -ACGGAAGTTCCTGATCGATCGTCT -ACGGAAGTTCCTGATCGATGCACT -ACGGAAGTTCCTGATCGACTGACT -ACGGAAGTTCCTGATCGACAACCT -ACGGAAGTTCCTGATCGAGCTACT -ACGGAAGTTCCTGATCGAGGATCT -ACGGAAGTTCCTGATCGAAAGGCT -ACGGAAGTTCCTGATCGATCAACC -ACGGAAGTTCCTGATCGATGTTCC -ACGGAAGTTCCTGATCGAATTCCC -ACGGAAGTTCCTGATCGATTCTCG -ACGGAAGTTCCTGATCGATAGACG -ACGGAAGTTCCTGATCGAGTAACG -ACGGAAGTTCCTGATCGAACTTCG -ACGGAAGTTCCTGATCGATACGCA -ACGGAAGTTCCTGATCGACTTGCA -ACGGAAGTTCCTGATCGACGAACA -ACGGAAGTTCCTGATCGACAGTCA -ACGGAAGTTCCTGATCGAGATCCA -ACGGAAGTTCCTGATCGAACGACA -ACGGAAGTTCCTGATCGAAGCTCA -ACGGAAGTTCCTGATCGATCACGT -ACGGAAGTTCCTGATCGACGTAGT -ACGGAAGTTCCTGATCGAGTCAGT -ACGGAAGTTCCTGATCGAGAAGGT -ACGGAAGTTCCTGATCGAAACCGT -ACGGAAGTTCCTGATCGATTGTGC -ACGGAAGTTCCTGATCGACTAAGC -ACGGAAGTTCCTGATCGAACTAGC -ACGGAAGTTCCTGATCGAAGATGC -ACGGAAGTTCCTGATCGATGAAGG -ACGGAAGTTCCTGATCGACAATGG -ACGGAAGTTCCTGATCGAATGAGG -ACGGAAGTTCCTGATCGAAATGGG -ACGGAAGTTCCTGATCGATCCTGA -ACGGAAGTTCCTGATCGATAGCGA -ACGGAAGTTCCTGATCGACACAGA -ACGGAAGTTCCTGATCGAGCAAGA -ACGGAAGTTCCTGATCGAGGTTGA -ACGGAAGTTCCTGATCGATCCGAT -ACGGAAGTTCCTGATCGATGGCAT -ACGGAAGTTCCTGATCGACGAGAT -ACGGAAGTTCCTGATCGATACCAC -ACGGAAGTTCCTGATCGACAGAAC -ACGGAAGTTCCTGATCGAGTCTAC -ACGGAAGTTCCTGATCGAACGTAC -ACGGAAGTTCCTGATCGAAGTGAC -ACGGAAGTTCCTGATCGACTGTAG -ACGGAAGTTCCTGATCGACCTAAG -ACGGAAGTTCCTGATCGAGTTCAG -ACGGAAGTTCCTGATCGAGCATAG -ACGGAAGTTCCTGATCGAGACAAG -ACGGAAGTTCCTGATCGAAAGCAG -ACGGAAGTTCCTGATCGACGTCAA -ACGGAAGTTCCTGATCGAGCTGAA -ACGGAAGTTCCTGATCGAAGTACG -ACGGAAGTTCCTGATCGAATCCGA -ACGGAAGTTCCTGATCGAATGGGA -ACGGAAGTTCCTGATCGAGTGCAA -ACGGAAGTTCCTGATCGAGAGGAA -ACGGAAGTTCCTGATCGACAGGTA -ACGGAAGTTCCTGATCGAGACTCT -ACGGAAGTTCCTGATCGAAGTCCT -ACGGAAGTTCCTGATCGATAAGCC -ACGGAAGTTCCTGATCGAATAGCC -ACGGAAGTTCCTGATCGATAACCG -ACGGAAGTTCCTGATCGAATGCCA -ACGGAAGTTCCTCACTACGGAAAC -ACGGAAGTTCCTCACTACAACACC -ACGGAAGTTCCTCACTACATCGAG -ACGGAAGTTCCTCACTACCTCCTT -ACGGAAGTTCCTCACTACCCTGTT -ACGGAAGTTCCTCACTACCGGTTT -ACGGAAGTTCCTCACTACGTGGTT -ACGGAAGTTCCTCACTACGCCTTT -ACGGAAGTTCCTCACTACGGTCTT -ACGGAAGTTCCTCACTACACGCTT -ACGGAAGTTCCTCACTACAGCGTT -ACGGAAGTTCCTCACTACTTCGTC -ACGGAAGTTCCTCACTACTCTCTC -ACGGAAGTTCCTCACTACTGGATC -ACGGAAGTTCCTCACTACCACTTC -ACGGAAGTTCCTCACTACGTACTC -ACGGAAGTTCCTCACTACGATGTC -ACGGAAGTTCCTCACTACACAGTC -ACGGAAGTTCCTCACTACTTGCTG -ACGGAAGTTCCTCACTACTCCATG -ACGGAAGTTCCTCACTACTGTGTG -ACGGAAGTTCCTCACTACCTAGTG -ACGGAAGTTCCTCACTACCATCTG -ACGGAAGTTCCTCACTACGAGTTG -ACGGAAGTTCCTCACTACAGACTG -ACGGAAGTTCCTCACTACTCGGTA -ACGGAAGTTCCTCACTACTGCCTA -ACGGAAGTTCCTCACTACCCACTA -ACGGAAGTTCCTCACTACGGAGTA -ACGGAAGTTCCTCACTACTCGTCT -ACGGAAGTTCCTCACTACTGCACT -ACGGAAGTTCCTCACTACCTGACT -ACGGAAGTTCCTCACTACCAACCT -ACGGAAGTTCCTCACTACGCTACT -ACGGAAGTTCCTCACTACGGATCT -ACGGAAGTTCCTCACTACAAGGCT -ACGGAAGTTCCTCACTACTCAACC -ACGGAAGTTCCTCACTACTGTTCC -ACGGAAGTTCCTCACTACATTCCC -ACGGAAGTTCCTCACTACTTCTCG -ACGGAAGTTCCTCACTACTAGACG -ACGGAAGTTCCTCACTACGTAACG -ACGGAAGTTCCTCACTACACTTCG -ACGGAAGTTCCTCACTACTACGCA -ACGGAAGTTCCTCACTACCTTGCA -ACGGAAGTTCCTCACTACCGAACA -ACGGAAGTTCCTCACTACCAGTCA -ACGGAAGTTCCTCACTACGATCCA -ACGGAAGTTCCTCACTACACGACA -ACGGAAGTTCCTCACTACAGCTCA -ACGGAAGTTCCTCACTACTCACGT -ACGGAAGTTCCTCACTACCGTAGT -ACGGAAGTTCCTCACTACGTCAGT -ACGGAAGTTCCTCACTACGAAGGT -ACGGAAGTTCCTCACTACAACCGT -ACGGAAGTTCCTCACTACTTGTGC -ACGGAAGTTCCTCACTACCTAAGC -ACGGAAGTTCCTCACTACACTAGC -ACGGAAGTTCCTCACTACAGATGC -ACGGAAGTTCCTCACTACTGAAGG -ACGGAAGTTCCTCACTACCAATGG -ACGGAAGTTCCTCACTACATGAGG -ACGGAAGTTCCTCACTACAATGGG -ACGGAAGTTCCTCACTACTCCTGA -ACGGAAGTTCCTCACTACTAGCGA -ACGGAAGTTCCTCACTACCACAGA -ACGGAAGTTCCTCACTACGCAAGA -ACGGAAGTTCCTCACTACGGTTGA -ACGGAAGTTCCTCACTACTCCGAT -ACGGAAGTTCCTCACTACTGGCAT -ACGGAAGTTCCTCACTACCGAGAT -ACGGAAGTTCCTCACTACTACCAC -ACGGAAGTTCCTCACTACCAGAAC -ACGGAAGTTCCTCACTACGTCTAC -ACGGAAGTTCCTCACTACACGTAC -ACGGAAGTTCCTCACTACAGTGAC -ACGGAAGTTCCTCACTACCTGTAG -ACGGAAGTTCCTCACTACCCTAAG -ACGGAAGTTCCTCACTACGTTCAG -ACGGAAGTTCCTCACTACGCATAG -ACGGAAGTTCCTCACTACGACAAG -ACGGAAGTTCCTCACTACAAGCAG -ACGGAAGTTCCTCACTACCGTCAA -ACGGAAGTTCCTCACTACGCTGAA -ACGGAAGTTCCTCACTACAGTACG -ACGGAAGTTCCTCACTACATCCGA -ACGGAAGTTCCTCACTACATGGGA -ACGGAAGTTCCTCACTACGTGCAA -ACGGAAGTTCCTCACTACGAGGAA -ACGGAAGTTCCTCACTACCAGGTA -ACGGAAGTTCCTCACTACGACTCT -ACGGAAGTTCCTCACTACAGTCCT -ACGGAAGTTCCTCACTACTAAGCC -ACGGAAGTTCCTCACTACATAGCC -ACGGAAGTTCCTCACTACTAACCG -ACGGAAGTTCCTCACTACATGCCA -ACGGAAGTTCCTAACCAGGGAAAC -ACGGAAGTTCCTAACCAGAACACC -ACGGAAGTTCCTAACCAGATCGAG -ACGGAAGTTCCTAACCAGCTCCTT -ACGGAAGTTCCTAACCAGCCTGTT -ACGGAAGTTCCTAACCAGCGGTTT -ACGGAAGTTCCTAACCAGGTGGTT -ACGGAAGTTCCTAACCAGGCCTTT -ACGGAAGTTCCTAACCAGGGTCTT -ACGGAAGTTCCTAACCAGACGCTT -ACGGAAGTTCCTAACCAGAGCGTT -ACGGAAGTTCCTAACCAGTTCGTC -ACGGAAGTTCCTAACCAGTCTCTC -ACGGAAGTTCCTAACCAGTGGATC -ACGGAAGTTCCTAACCAGCACTTC -ACGGAAGTTCCTAACCAGGTACTC -ACGGAAGTTCCTAACCAGGATGTC -ACGGAAGTTCCTAACCAGACAGTC -ACGGAAGTTCCTAACCAGTTGCTG -ACGGAAGTTCCTAACCAGTCCATG -ACGGAAGTTCCTAACCAGTGTGTG -ACGGAAGTTCCTAACCAGCTAGTG -ACGGAAGTTCCTAACCAGCATCTG -ACGGAAGTTCCTAACCAGGAGTTG -ACGGAAGTTCCTAACCAGAGACTG -ACGGAAGTTCCTAACCAGTCGGTA -ACGGAAGTTCCTAACCAGTGCCTA -ACGGAAGTTCCTAACCAGCCACTA -ACGGAAGTTCCTAACCAGGGAGTA -ACGGAAGTTCCTAACCAGTCGTCT -ACGGAAGTTCCTAACCAGTGCACT -ACGGAAGTTCCTAACCAGCTGACT -ACGGAAGTTCCTAACCAGCAACCT -ACGGAAGTTCCTAACCAGGCTACT -ACGGAAGTTCCTAACCAGGGATCT -ACGGAAGTTCCTAACCAGAAGGCT -ACGGAAGTTCCTAACCAGTCAACC -ACGGAAGTTCCTAACCAGTGTTCC -ACGGAAGTTCCTAACCAGATTCCC -ACGGAAGTTCCTAACCAGTTCTCG -ACGGAAGTTCCTAACCAGTAGACG -ACGGAAGTTCCTAACCAGGTAACG -ACGGAAGTTCCTAACCAGACTTCG -ACGGAAGTTCCTAACCAGTACGCA -ACGGAAGTTCCTAACCAGCTTGCA -ACGGAAGTTCCTAACCAGCGAACA -ACGGAAGTTCCTAACCAGCAGTCA -ACGGAAGTTCCTAACCAGGATCCA -ACGGAAGTTCCTAACCAGACGACA -ACGGAAGTTCCTAACCAGAGCTCA -ACGGAAGTTCCTAACCAGTCACGT -ACGGAAGTTCCTAACCAGCGTAGT -ACGGAAGTTCCTAACCAGGTCAGT -ACGGAAGTTCCTAACCAGGAAGGT -ACGGAAGTTCCTAACCAGAACCGT -ACGGAAGTTCCTAACCAGTTGTGC -ACGGAAGTTCCTAACCAGCTAAGC -ACGGAAGTTCCTAACCAGACTAGC -ACGGAAGTTCCTAACCAGAGATGC -ACGGAAGTTCCTAACCAGTGAAGG -ACGGAAGTTCCTAACCAGCAATGG -ACGGAAGTTCCTAACCAGATGAGG -ACGGAAGTTCCTAACCAGAATGGG -ACGGAAGTTCCTAACCAGTCCTGA -ACGGAAGTTCCTAACCAGTAGCGA -ACGGAAGTTCCTAACCAGCACAGA -ACGGAAGTTCCTAACCAGGCAAGA -ACGGAAGTTCCTAACCAGGGTTGA -ACGGAAGTTCCTAACCAGTCCGAT -ACGGAAGTTCCTAACCAGTGGCAT -ACGGAAGTTCCTAACCAGCGAGAT -ACGGAAGTTCCTAACCAGTACCAC -ACGGAAGTTCCTAACCAGCAGAAC -ACGGAAGTTCCTAACCAGGTCTAC -ACGGAAGTTCCTAACCAGACGTAC -ACGGAAGTTCCTAACCAGAGTGAC -ACGGAAGTTCCTAACCAGCTGTAG -ACGGAAGTTCCTAACCAGCCTAAG -ACGGAAGTTCCTAACCAGGTTCAG -ACGGAAGTTCCTAACCAGGCATAG -ACGGAAGTTCCTAACCAGGACAAG -ACGGAAGTTCCTAACCAGAAGCAG -ACGGAAGTTCCTAACCAGCGTCAA -ACGGAAGTTCCTAACCAGGCTGAA -ACGGAAGTTCCTAACCAGAGTACG -ACGGAAGTTCCTAACCAGATCCGA -ACGGAAGTTCCTAACCAGATGGGA -ACGGAAGTTCCTAACCAGGTGCAA -ACGGAAGTTCCTAACCAGGAGGAA -ACGGAAGTTCCTAACCAGCAGGTA -ACGGAAGTTCCTAACCAGGACTCT -ACGGAAGTTCCTAACCAGAGTCCT -ACGGAAGTTCCTAACCAGTAAGCC -ACGGAAGTTCCTAACCAGATAGCC -ACGGAAGTTCCTAACCAGTAACCG -ACGGAAGTTCCTAACCAGATGCCA -ACGGAAGTTCCTTACGTCGGAAAC -ACGGAAGTTCCTTACGTCAACACC -ACGGAAGTTCCTTACGTCATCGAG -ACGGAAGTTCCTTACGTCCTCCTT -ACGGAAGTTCCTTACGTCCCTGTT -ACGGAAGTTCCTTACGTCCGGTTT -ACGGAAGTTCCTTACGTCGTGGTT -ACGGAAGTTCCTTACGTCGCCTTT -ACGGAAGTTCCTTACGTCGGTCTT -ACGGAAGTTCCTTACGTCACGCTT -ACGGAAGTTCCTTACGTCAGCGTT -ACGGAAGTTCCTTACGTCTTCGTC -ACGGAAGTTCCTTACGTCTCTCTC -ACGGAAGTTCCTTACGTCTGGATC -ACGGAAGTTCCTTACGTCCACTTC -ACGGAAGTTCCTTACGTCGTACTC -ACGGAAGTTCCTTACGTCGATGTC -ACGGAAGTTCCTTACGTCACAGTC -ACGGAAGTTCCTTACGTCTTGCTG -ACGGAAGTTCCTTACGTCTCCATG -ACGGAAGTTCCTTACGTCTGTGTG -ACGGAAGTTCCTTACGTCCTAGTG -ACGGAAGTTCCTTACGTCCATCTG -ACGGAAGTTCCTTACGTCGAGTTG -ACGGAAGTTCCTTACGTCAGACTG -ACGGAAGTTCCTTACGTCTCGGTA -ACGGAAGTTCCTTACGTCTGCCTA -ACGGAAGTTCCTTACGTCCCACTA -ACGGAAGTTCCTTACGTCGGAGTA -ACGGAAGTTCCTTACGTCTCGTCT -ACGGAAGTTCCTTACGTCTGCACT -ACGGAAGTTCCTTACGTCCTGACT -ACGGAAGTTCCTTACGTCCAACCT -ACGGAAGTTCCTTACGTCGCTACT -ACGGAAGTTCCTTACGTCGGATCT -ACGGAAGTTCCTTACGTCAAGGCT -ACGGAAGTTCCTTACGTCTCAACC -ACGGAAGTTCCTTACGTCTGTTCC -ACGGAAGTTCCTTACGTCATTCCC -ACGGAAGTTCCTTACGTCTTCTCG -ACGGAAGTTCCTTACGTCTAGACG -ACGGAAGTTCCTTACGTCGTAACG -ACGGAAGTTCCTTACGTCACTTCG -ACGGAAGTTCCTTACGTCTACGCA -ACGGAAGTTCCTTACGTCCTTGCA -ACGGAAGTTCCTTACGTCCGAACA -ACGGAAGTTCCTTACGTCCAGTCA -ACGGAAGTTCCTTACGTCGATCCA -ACGGAAGTTCCTTACGTCACGACA -ACGGAAGTTCCTTACGTCAGCTCA -ACGGAAGTTCCTTACGTCTCACGT -ACGGAAGTTCCTTACGTCCGTAGT -ACGGAAGTTCCTTACGTCGTCAGT -ACGGAAGTTCCTTACGTCGAAGGT -ACGGAAGTTCCTTACGTCAACCGT -ACGGAAGTTCCTTACGTCTTGTGC -ACGGAAGTTCCTTACGTCCTAAGC -ACGGAAGTTCCTTACGTCACTAGC -ACGGAAGTTCCTTACGTCAGATGC -ACGGAAGTTCCTTACGTCTGAAGG -ACGGAAGTTCCTTACGTCCAATGG -ACGGAAGTTCCTTACGTCATGAGG -ACGGAAGTTCCTTACGTCAATGGG -ACGGAAGTTCCTTACGTCTCCTGA -ACGGAAGTTCCTTACGTCTAGCGA -ACGGAAGTTCCTTACGTCCACAGA -ACGGAAGTTCCTTACGTCGCAAGA -ACGGAAGTTCCTTACGTCGGTTGA -ACGGAAGTTCCTTACGTCTCCGAT -ACGGAAGTTCCTTACGTCTGGCAT -ACGGAAGTTCCTTACGTCCGAGAT -ACGGAAGTTCCTTACGTCTACCAC -ACGGAAGTTCCTTACGTCCAGAAC -ACGGAAGTTCCTTACGTCGTCTAC -ACGGAAGTTCCTTACGTCACGTAC -ACGGAAGTTCCTTACGTCAGTGAC -ACGGAAGTTCCTTACGTCCTGTAG -ACGGAAGTTCCTTACGTCCCTAAG -ACGGAAGTTCCTTACGTCGTTCAG -ACGGAAGTTCCTTACGTCGCATAG -ACGGAAGTTCCTTACGTCGACAAG -ACGGAAGTTCCTTACGTCAAGCAG -ACGGAAGTTCCTTACGTCCGTCAA -ACGGAAGTTCCTTACGTCGCTGAA -ACGGAAGTTCCTTACGTCAGTACG -ACGGAAGTTCCTTACGTCATCCGA -ACGGAAGTTCCTTACGTCATGGGA -ACGGAAGTTCCTTACGTCGTGCAA -ACGGAAGTTCCTTACGTCGAGGAA -ACGGAAGTTCCTTACGTCCAGGTA -ACGGAAGTTCCTTACGTCGACTCT -ACGGAAGTTCCTTACGTCAGTCCT -ACGGAAGTTCCTTACGTCTAAGCC -ACGGAAGTTCCTTACGTCATAGCC -ACGGAAGTTCCTTACGTCTAACCG -ACGGAAGTTCCTTACGTCATGCCA -ACGGAAGTTCCTTACACGGGAAAC -ACGGAAGTTCCTTACACGAACACC -ACGGAAGTTCCTTACACGATCGAG -ACGGAAGTTCCTTACACGCTCCTT -ACGGAAGTTCCTTACACGCCTGTT -ACGGAAGTTCCTTACACGCGGTTT -ACGGAAGTTCCTTACACGGTGGTT -ACGGAAGTTCCTTACACGGCCTTT -ACGGAAGTTCCTTACACGGGTCTT -ACGGAAGTTCCTTACACGACGCTT -ACGGAAGTTCCTTACACGAGCGTT -ACGGAAGTTCCTTACACGTTCGTC -ACGGAAGTTCCTTACACGTCTCTC -ACGGAAGTTCCTTACACGTGGATC -ACGGAAGTTCCTTACACGCACTTC -ACGGAAGTTCCTTACACGGTACTC -ACGGAAGTTCCTTACACGGATGTC -ACGGAAGTTCCTTACACGACAGTC -ACGGAAGTTCCTTACACGTTGCTG -ACGGAAGTTCCTTACACGTCCATG -ACGGAAGTTCCTTACACGTGTGTG -ACGGAAGTTCCTTACACGCTAGTG -ACGGAAGTTCCTTACACGCATCTG -ACGGAAGTTCCTTACACGGAGTTG -ACGGAAGTTCCTTACACGAGACTG -ACGGAAGTTCCTTACACGTCGGTA -ACGGAAGTTCCTTACACGTGCCTA -ACGGAAGTTCCTTACACGCCACTA -ACGGAAGTTCCTTACACGGGAGTA -ACGGAAGTTCCTTACACGTCGTCT -ACGGAAGTTCCTTACACGTGCACT -ACGGAAGTTCCTTACACGCTGACT -ACGGAAGTTCCTTACACGCAACCT -ACGGAAGTTCCTTACACGGCTACT -ACGGAAGTTCCTTACACGGGATCT -ACGGAAGTTCCTTACACGAAGGCT -ACGGAAGTTCCTTACACGTCAACC -ACGGAAGTTCCTTACACGTGTTCC -ACGGAAGTTCCTTACACGATTCCC -ACGGAAGTTCCTTACACGTTCTCG -ACGGAAGTTCCTTACACGTAGACG -ACGGAAGTTCCTTACACGGTAACG -ACGGAAGTTCCTTACACGACTTCG -ACGGAAGTTCCTTACACGTACGCA -ACGGAAGTTCCTTACACGCTTGCA -ACGGAAGTTCCTTACACGCGAACA -ACGGAAGTTCCTTACACGCAGTCA -ACGGAAGTTCCTTACACGGATCCA -ACGGAAGTTCCTTACACGACGACA -ACGGAAGTTCCTTACACGAGCTCA -ACGGAAGTTCCTTACACGTCACGT -ACGGAAGTTCCTTACACGCGTAGT -ACGGAAGTTCCTTACACGGTCAGT -ACGGAAGTTCCTTACACGGAAGGT -ACGGAAGTTCCTTACACGAACCGT -ACGGAAGTTCCTTACACGTTGTGC -ACGGAAGTTCCTTACACGCTAAGC -ACGGAAGTTCCTTACACGACTAGC -ACGGAAGTTCCTTACACGAGATGC -ACGGAAGTTCCTTACACGTGAAGG -ACGGAAGTTCCTTACACGCAATGG -ACGGAAGTTCCTTACACGATGAGG -ACGGAAGTTCCTTACACGAATGGG -ACGGAAGTTCCTTACACGTCCTGA -ACGGAAGTTCCTTACACGTAGCGA -ACGGAAGTTCCTTACACGCACAGA -ACGGAAGTTCCTTACACGGCAAGA -ACGGAAGTTCCTTACACGGGTTGA -ACGGAAGTTCCTTACACGTCCGAT -ACGGAAGTTCCTTACACGTGGCAT -ACGGAAGTTCCTTACACGCGAGAT -ACGGAAGTTCCTTACACGTACCAC -ACGGAAGTTCCTTACACGCAGAAC -ACGGAAGTTCCTTACACGGTCTAC -ACGGAAGTTCCTTACACGACGTAC -ACGGAAGTTCCTTACACGAGTGAC -ACGGAAGTTCCTTACACGCTGTAG -ACGGAAGTTCCTTACACGCCTAAG -ACGGAAGTTCCTTACACGGTTCAG -ACGGAAGTTCCTTACACGGCATAG -ACGGAAGTTCCTTACACGGACAAG -ACGGAAGTTCCTTACACGAAGCAG -ACGGAAGTTCCTTACACGCGTCAA -ACGGAAGTTCCTTACACGGCTGAA -ACGGAAGTTCCTTACACGAGTACG -ACGGAAGTTCCTTACACGATCCGA -ACGGAAGTTCCTTACACGATGGGA -ACGGAAGTTCCTTACACGGTGCAA -ACGGAAGTTCCTTACACGGAGGAA -ACGGAAGTTCCTTACACGCAGGTA -ACGGAAGTTCCTTACACGGACTCT -ACGGAAGTTCCTTACACGAGTCCT -ACGGAAGTTCCTTACACGTAAGCC -ACGGAAGTTCCTTACACGATAGCC -ACGGAAGTTCCTTACACGTAACCG -ACGGAAGTTCCTTACACGATGCCA -ACGGAAGTTCCTGACAGTGGAAAC -ACGGAAGTTCCTGACAGTAACACC -ACGGAAGTTCCTGACAGTATCGAG -ACGGAAGTTCCTGACAGTCTCCTT -ACGGAAGTTCCTGACAGTCCTGTT -ACGGAAGTTCCTGACAGTCGGTTT -ACGGAAGTTCCTGACAGTGTGGTT -ACGGAAGTTCCTGACAGTGCCTTT -ACGGAAGTTCCTGACAGTGGTCTT -ACGGAAGTTCCTGACAGTACGCTT -ACGGAAGTTCCTGACAGTAGCGTT -ACGGAAGTTCCTGACAGTTTCGTC -ACGGAAGTTCCTGACAGTTCTCTC -ACGGAAGTTCCTGACAGTTGGATC -ACGGAAGTTCCTGACAGTCACTTC -ACGGAAGTTCCTGACAGTGTACTC -ACGGAAGTTCCTGACAGTGATGTC -ACGGAAGTTCCTGACAGTACAGTC -ACGGAAGTTCCTGACAGTTTGCTG -ACGGAAGTTCCTGACAGTTCCATG -ACGGAAGTTCCTGACAGTTGTGTG -ACGGAAGTTCCTGACAGTCTAGTG -ACGGAAGTTCCTGACAGTCATCTG -ACGGAAGTTCCTGACAGTGAGTTG -ACGGAAGTTCCTGACAGTAGACTG -ACGGAAGTTCCTGACAGTTCGGTA -ACGGAAGTTCCTGACAGTTGCCTA -ACGGAAGTTCCTGACAGTCCACTA -ACGGAAGTTCCTGACAGTGGAGTA -ACGGAAGTTCCTGACAGTTCGTCT -ACGGAAGTTCCTGACAGTTGCACT -ACGGAAGTTCCTGACAGTCTGACT -ACGGAAGTTCCTGACAGTCAACCT -ACGGAAGTTCCTGACAGTGCTACT -ACGGAAGTTCCTGACAGTGGATCT -ACGGAAGTTCCTGACAGTAAGGCT -ACGGAAGTTCCTGACAGTTCAACC -ACGGAAGTTCCTGACAGTTGTTCC -ACGGAAGTTCCTGACAGTATTCCC -ACGGAAGTTCCTGACAGTTTCTCG -ACGGAAGTTCCTGACAGTTAGACG -ACGGAAGTTCCTGACAGTGTAACG -ACGGAAGTTCCTGACAGTACTTCG -ACGGAAGTTCCTGACAGTTACGCA -ACGGAAGTTCCTGACAGTCTTGCA -ACGGAAGTTCCTGACAGTCGAACA -ACGGAAGTTCCTGACAGTCAGTCA -ACGGAAGTTCCTGACAGTGATCCA -ACGGAAGTTCCTGACAGTACGACA -ACGGAAGTTCCTGACAGTAGCTCA -ACGGAAGTTCCTGACAGTTCACGT -ACGGAAGTTCCTGACAGTCGTAGT -ACGGAAGTTCCTGACAGTGTCAGT -ACGGAAGTTCCTGACAGTGAAGGT -ACGGAAGTTCCTGACAGTAACCGT -ACGGAAGTTCCTGACAGTTTGTGC -ACGGAAGTTCCTGACAGTCTAAGC -ACGGAAGTTCCTGACAGTACTAGC -ACGGAAGTTCCTGACAGTAGATGC -ACGGAAGTTCCTGACAGTTGAAGG -ACGGAAGTTCCTGACAGTCAATGG -ACGGAAGTTCCTGACAGTATGAGG -ACGGAAGTTCCTGACAGTAATGGG -ACGGAAGTTCCTGACAGTTCCTGA -ACGGAAGTTCCTGACAGTTAGCGA -ACGGAAGTTCCTGACAGTCACAGA -ACGGAAGTTCCTGACAGTGCAAGA -ACGGAAGTTCCTGACAGTGGTTGA -ACGGAAGTTCCTGACAGTTCCGAT -ACGGAAGTTCCTGACAGTTGGCAT -ACGGAAGTTCCTGACAGTCGAGAT -ACGGAAGTTCCTGACAGTTACCAC -ACGGAAGTTCCTGACAGTCAGAAC -ACGGAAGTTCCTGACAGTGTCTAC -ACGGAAGTTCCTGACAGTACGTAC -ACGGAAGTTCCTGACAGTAGTGAC -ACGGAAGTTCCTGACAGTCTGTAG -ACGGAAGTTCCTGACAGTCCTAAG -ACGGAAGTTCCTGACAGTGTTCAG -ACGGAAGTTCCTGACAGTGCATAG -ACGGAAGTTCCTGACAGTGACAAG -ACGGAAGTTCCTGACAGTAAGCAG -ACGGAAGTTCCTGACAGTCGTCAA -ACGGAAGTTCCTGACAGTGCTGAA -ACGGAAGTTCCTGACAGTAGTACG -ACGGAAGTTCCTGACAGTATCCGA -ACGGAAGTTCCTGACAGTATGGGA -ACGGAAGTTCCTGACAGTGTGCAA -ACGGAAGTTCCTGACAGTGAGGAA -ACGGAAGTTCCTGACAGTCAGGTA -ACGGAAGTTCCTGACAGTGACTCT -ACGGAAGTTCCTGACAGTAGTCCT -ACGGAAGTTCCTGACAGTTAAGCC -ACGGAAGTTCCTGACAGTATAGCC -ACGGAAGTTCCTGACAGTTAACCG -ACGGAAGTTCCTGACAGTATGCCA -ACGGAAGTTCCTTAGCTGGGAAAC -ACGGAAGTTCCTTAGCTGAACACC -ACGGAAGTTCCTTAGCTGATCGAG -ACGGAAGTTCCTTAGCTGCTCCTT -ACGGAAGTTCCTTAGCTGCCTGTT -ACGGAAGTTCCTTAGCTGCGGTTT -ACGGAAGTTCCTTAGCTGGTGGTT -ACGGAAGTTCCTTAGCTGGCCTTT -ACGGAAGTTCCTTAGCTGGGTCTT -ACGGAAGTTCCTTAGCTGACGCTT -ACGGAAGTTCCTTAGCTGAGCGTT -ACGGAAGTTCCTTAGCTGTTCGTC -ACGGAAGTTCCTTAGCTGTCTCTC -ACGGAAGTTCCTTAGCTGTGGATC -ACGGAAGTTCCTTAGCTGCACTTC -ACGGAAGTTCCTTAGCTGGTACTC -ACGGAAGTTCCTTAGCTGGATGTC -ACGGAAGTTCCTTAGCTGACAGTC -ACGGAAGTTCCTTAGCTGTTGCTG -ACGGAAGTTCCTTAGCTGTCCATG -ACGGAAGTTCCTTAGCTGTGTGTG -ACGGAAGTTCCTTAGCTGCTAGTG -ACGGAAGTTCCTTAGCTGCATCTG -ACGGAAGTTCCTTAGCTGGAGTTG -ACGGAAGTTCCTTAGCTGAGACTG -ACGGAAGTTCCTTAGCTGTCGGTA -ACGGAAGTTCCTTAGCTGTGCCTA -ACGGAAGTTCCTTAGCTGCCACTA -ACGGAAGTTCCTTAGCTGGGAGTA -ACGGAAGTTCCTTAGCTGTCGTCT -ACGGAAGTTCCTTAGCTGTGCACT -ACGGAAGTTCCTTAGCTGCTGACT -ACGGAAGTTCCTTAGCTGCAACCT -ACGGAAGTTCCTTAGCTGGCTACT -ACGGAAGTTCCTTAGCTGGGATCT -ACGGAAGTTCCTTAGCTGAAGGCT -ACGGAAGTTCCTTAGCTGTCAACC -ACGGAAGTTCCTTAGCTGTGTTCC -ACGGAAGTTCCTTAGCTGATTCCC -ACGGAAGTTCCTTAGCTGTTCTCG -ACGGAAGTTCCTTAGCTGTAGACG -ACGGAAGTTCCTTAGCTGGTAACG -ACGGAAGTTCCTTAGCTGACTTCG -ACGGAAGTTCCTTAGCTGTACGCA -ACGGAAGTTCCTTAGCTGCTTGCA -ACGGAAGTTCCTTAGCTGCGAACA -ACGGAAGTTCCTTAGCTGCAGTCA -ACGGAAGTTCCTTAGCTGGATCCA -ACGGAAGTTCCTTAGCTGACGACA -ACGGAAGTTCCTTAGCTGAGCTCA -ACGGAAGTTCCTTAGCTGTCACGT -ACGGAAGTTCCTTAGCTGCGTAGT -ACGGAAGTTCCTTAGCTGGTCAGT -ACGGAAGTTCCTTAGCTGGAAGGT -ACGGAAGTTCCTTAGCTGAACCGT -ACGGAAGTTCCTTAGCTGTTGTGC -ACGGAAGTTCCTTAGCTGCTAAGC -ACGGAAGTTCCTTAGCTGACTAGC -ACGGAAGTTCCTTAGCTGAGATGC -ACGGAAGTTCCTTAGCTGTGAAGG -ACGGAAGTTCCTTAGCTGCAATGG -ACGGAAGTTCCTTAGCTGATGAGG -ACGGAAGTTCCTTAGCTGAATGGG -ACGGAAGTTCCTTAGCTGTCCTGA -ACGGAAGTTCCTTAGCTGTAGCGA -ACGGAAGTTCCTTAGCTGCACAGA -ACGGAAGTTCCTTAGCTGGCAAGA -ACGGAAGTTCCTTAGCTGGGTTGA -ACGGAAGTTCCTTAGCTGTCCGAT -ACGGAAGTTCCTTAGCTGTGGCAT -ACGGAAGTTCCTTAGCTGCGAGAT -ACGGAAGTTCCTTAGCTGTACCAC -ACGGAAGTTCCTTAGCTGCAGAAC -ACGGAAGTTCCTTAGCTGGTCTAC -ACGGAAGTTCCTTAGCTGACGTAC -ACGGAAGTTCCTTAGCTGAGTGAC -ACGGAAGTTCCTTAGCTGCTGTAG -ACGGAAGTTCCTTAGCTGCCTAAG -ACGGAAGTTCCTTAGCTGGTTCAG -ACGGAAGTTCCTTAGCTGGCATAG -ACGGAAGTTCCTTAGCTGGACAAG -ACGGAAGTTCCTTAGCTGAAGCAG -ACGGAAGTTCCTTAGCTGCGTCAA -ACGGAAGTTCCTTAGCTGGCTGAA -ACGGAAGTTCCTTAGCTGAGTACG -ACGGAAGTTCCTTAGCTGATCCGA -ACGGAAGTTCCTTAGCTGATGGGA -ACGGAAGTTCCTTAGCTGGTGCAA -ACGGAAGTTCCTTAGCTGGAGGAA -ACGGAAGTTCCTTAGCTGCAGGTA -ACGGAAGTTCCTTAGCTGGACTCT -ACGGAAGTTCCTTAGCTGAGTCCT -ACGGAAGTTCCTTAGCTGTAAGCC -ACGGAAGTTCCTTAGCTGATAGCC -ACGGAAGTTCCTTAGCTGTAACCG -ACGGAAGTTCCTTAGCTGATGCCA -ACGGAAGTTCCTAAGCCTGGAAAC -ACGGAAGTTCCTAAGCCTAACACC -ACGGAAGTTCCTAAGCCTATCGAG -ACGGAAGTTCCTAAGCCTCTCCTT -ACGGAAGTTCCTAAGCCTCCTGTT -ACGGAAGTTCCTAAGCCTCGGTTT -ACGGAAGTTCCTAAGCCTGTGGTT -ACGGAAGTTCCTAAGCCTGCCTTT -ACGGAAGTTCCTAAGCCTGGTCTT -ACGGAAGTTCCTAAGCCTACGCTT -ACGGAAGTTCCTAAGCCTAGCGTT -ACGGAAGTTCCTAAGCCTTTCGTC -ACGGAAGTTCCTAAGCCTTCTCTC -ACGGAAGTTCCTAAGCCTTGGATC -ACGGAAGTTCCTAAGCCTCACTTC -ACGGAAGTTCCTAAGCCTGTACTC -ACGGAAGTTCCTAAGCCTGATGTC -ACGGAAGTTCCTAAGCCTACAGTC -ACGGAAGTTCCTAAGCCTTTGCTG -ACGGAAGTTCCTAAGCCTTCCATG -ACGGAAGTTCCTAAGCCTTGTGTG -ACGGAAGTTCCTAAGCCTCTAGTG -ACGGAAGTTCCTAAGCCTCATCTG -ACGGAAGTTCCTAAGCCTGAGTTG -ACGGAAGTTCCTAAGCCTAGACTG -ACGGAAGTTCCTAAGCCTTCGGTA -ACGGAAGTTCCTAAGCCTTGCCTA -ACGGAAGTTCCTAAGCCTCCACTA -ACGGAAGTTCCTAAGCCTGGAGTA -ACGGAAGTTCCTAAGCCTTCGTCT -ACGGAAGTTCCTAAGCCTTGCACT -ACGGAAGTTCCTAAGCCTCTGACT -ACGGAAGTTCCTAAGCCTCAACCT -ACGGAAGTTCCTAAGCCTGCTACT -ACGGAAGTTCCTAAGCCTGGATCT -ACGGAAGTTCCTAAGCCTAAGGCT -ACGGAAGTTCCTAAGCCTTCAACC -ACGGAAGTTCCTAAGCCTTGTTCC -ACGGAAGTTCCTAAGCCTATTCCC -ACGGAAGTTCCTAAGCCTTTCTCG -ACGGAAGTTCCTAAGCCTTAGACG -ACGGAAGTTCCTAAGCCTGTAACG -ACGGAAGTTCCTAAGCCTACTTCG -ACGGAAGTTCCTAAGCCTTACGCA -ACGGAAGTTCCTAAGCCTCTTGCA -ACGGAAGTTCCTAAGCCTCGAACA -ACGGAAGTTCCTAAGCCTCAGTCA -ACGGAAGTTCCTAAGCCTGATCCA -ACGGAAGTTCCTAAGCCTACGACA -ACGGAAGTTCCTAAGCCTAGCTCA -ACGGAAGTTCCTAAGCCTTCACGT -ACGGAAGTTCCTAAGCCTCGTAGT -ACGGAAGTTCCTAAGCCTGTCAGT -ACGGAAGTTCCTAAGCCTGAAGGT -ACGGAAGTTCCTAAGCCTAACCGT -ACGGAAGTTCCTAAGCCTTTGTGC -ACGGAAGTTCCTAAGCCTCTAAGC -ACGGAAGTTCCTAAGCCTACTAGC -ACGGAAGTTCCTAAGCCTAGATGC -ACGGAAGTTCCTAAGCCTTGAAGG -ACGGAAGTTCCTAAGCCTCAATGG -ACGGAAGTTCCTAAGCCTATGAGG -ACGGAAGTTCCTAAGCCTAATGGG -ACGGAAGTTCCTAAGCCTTCCTGA -ACGGAAGTTCCTAAGCCTTAGCGA -ACGGAAGTTCCTAAGCCTCACAGA -ACGGAAGTTCCTAAGCCTGCAAGA -ACGGAAGTTCCTAAGCCTGGTTGA -ACGGAAGTTCCTAAGCCTTCCGAT -ACGGAAGTTCCTAAGCCTTGGCAT -ACGGAAGTTCCTAAGCCTCGAGAT -ACGGAAGTTCCTAAGCCTTACCAC -ACGGAAGTTCCTAAGCCTCAGAAC -ACGGAAGTTCCTAAGCCTGTCTAC -ACGGAAGTTCCTAAGCCTACGTAC -ACGGAAGTTCCTAAGCCTAGTGAC -ACGGAAGTTCCTAAGCCTCTGTAG -ACGGAAGTTCCTAAGCCTCCTAAG -ACGGAAGTTCCTAAGCCTGTTCAG -ACGGAAGTTCCTAAGCCTGCATAG -ACGGAAGTTCCTAAGCCTGACAAG -ACGGAAGTTCCTAAGCCTAAGCAG -ACGGAAGTTCCTAAGCCTCGTCAA -ACGGAAGTTCCTAAGCCTGCTGAA -ACGGAAGTTCCTAAGCCTAGTACG -ACGGAAGTTCCTAAGCCTATCCGA -ACGGAAGTTCCTAAGCCTATGGGA -ACGGAAGTTCCTAAGCCTGTGCAA -ACGGAAGTTCCTAAGCCTGAGGAA -ACGGAAGTTCCTAAGCCTCAGGTA -ACGGAAGTTCCTAAGCCTGACTCT -ACGGAAGTTCCTAAGCCTAGTCCT -ACGGAAGTTCCTAAGCCTTAAGCC -ACGGAAGTTCCTAAGCCTATAGCC -ACGGAAGTTCCTAAGCCTTAACCG -ACGGAAGTTCCTAAGCCTATGCCA -ACGGAAGTTCCTCAGGTTGGAAAC -ACGGAAGTTCCTCAGGTTAACACC -ACGGAAGTTCCTCAGGTTATCGAG -ACGGAAGTTCCTCAGGTTCTCCTT -ACGGAAGTTCCTCAGGTTCCTGTT -ACGGAAGTTCCTCAGGTTCGGTTT -ACGGAAGTTCCTCAGGTTGTGGTT -ACGGAAGTTCCTCAGGTTGCCTTT -ACGGAAGTTCCTCAGGTTGGTCTT -ACGGAAGTTCCTCAGGTTACGCTT -ACGGAAGTTCCTCAGGTTAGCGTT -ACGGAAGTTCCTCAGGTTTTCGTC -ACGGAAGTTCCTCAGGTTTCTCTC -ACGGAAGTTCCTCAGGTTTGGATC -ACGGAAGTTCCTCAGGTTCACTTC -ACGGAAGTTCCTCAGGTTGTACTC -ACGGAAGTTCCTCAGGTTGATGTC -ACGGAAGTTCCTCAGGTTACAGTC -ACGGAAGTTCCTCAGGTTTTGCTG -ACGGAAGTTCCTCAGGTTTCCATG -ACGGAAGTTCCTCAGGTTTGTGTG -ACGGAAGTTCCTCAGGTTCTAGTG -ACGGAAGTTCCTCAGGTTCATCTG -ACGGAAGTTCCTCAGGTTGAGTTG -ACGGAAGTTCCTCAGGTTAGACTG -ACGGAAGTTCCTCAGGTTTCGGTA -ACGGAAGTTCCTCAGGTTTGCCTA -ACGGAAGTTCCTCAGGTTCCACTA -ACGGAAGTTCCTCAGGTTGGAGTA -ACGGAAGTTCCTCAGGTTTCGTCT -ACGGAAGTTCCTCAGGTTTGCACT -ACGGAAGTTCCTCAGGTTCTGACT -ACGGAAGTTCCTCAGGTTCAACCT -ACGGAAGTTCCTCAGGTTGCTACT -ACGGAAGTTCCTCAGGTTGGATCT -ACGGAAGTTCCTCAGGTTAAGGCT -ACGGAAGTTCCTCAGGTTTCAACC -ACGGAAGTTCCTCAGGTTTGTTCC -ACGGAAGTTCCTCAGGTTATTCCC -ACGGAAGTTCCTCAGGTTTTCTCG -ACGGAAGTTCCTCAGGTTTAGACG -ACGGAAGTTCCTCAGGTTGTAACG -ACGGAAGTTCCTCAGGTTACTTCG -ACGGAAGTTCCTCAGGTTTACGCA -ACGGAAGTTCCTCAGGTTCTTGCA -ACGGAAGTTCCTCAGGTTCGAACA -ACGGAAGTTCCTCAGGTTCAGTCA -ACGGAAGTTCCTCAGGTTGATCCA -ACGGAAGTTCCTCAGGTTACGACA -ACGGAAGTTCCTCAGGTTAGCTCA -ACGGAAGTTCCTCAGGTTTCACGT -ACGGAAGTTCCTCAGGTTCGTAGT -ACGGAAGTTCCTCAGGTTGTCAGT -ACGGAAGTTCCTCAGGTTGAAGGT -ACGGAAGTTCCTCAGGTTAACCGT -ACGGAAGTTCCTCAGGTTTTGTGC -ACGGAAGTTCCTCAGGTTCTAAGC -ACGGAAGTTCCTCAGGTTACTAGC -ACGGAAGTTCCTCAGGTTAGATGC -ACGGAAGTTCCTCAGGTTTGAAGG -ACGGAAGTTCCTCAGGTTCAATGG -ACGGAAGTTCCTCAGGTTATGAGG -ACGGAAGTTCCTCAGGTTAATGGG -ACGGAAGTTCCTCAGGTTTCCTGA -ACGGAAGTTCCTCAGGTTTAGCGA -ACGGAAGTTCCTCAGGTTCACAGA -ACGGAAGTTCCTCAGGTTGCAAGA -ACGGAAGTTCCTCAGGTTGGTTGA -ACGGAAGTTCCTCAGGTTTCCGAT -ACGGAAGTTCCTCAGGTTTGGCAT -ACGGAAGTTCCTCAGGTTCGAGAT -ACGGAAGTTCCTCAGGTTTACCAC -ACGGAAGTTCCTCAGGTTCAGAAC -ACGGAAGTTCCTCAGGTTGTCTAC -ACGGAAGTTCCTCAGGTTACGTAC -ACGGAAGTTCCTCAGGTTAGTGAC -ACGGAAGTTCCTCAGGTTCTGTAG -ACGGAAGTTCCTCAGGTTCCTAAG -ACGGAAGTTCCTCAGGTTGTTCAG -ACGGAAGTTCCTCAGGTTGCATAG -ACGGAAGTTCCTCAGGTTGACAAG -ACGGAAGTTCCTCAGGTTAAGCAG -ACGGAAGTTCCTCAGGTTCGTCAA -ACGGAAGTTCCTCAGGTTGCTGAA -ACGGAAGTTCCTCAGGTTAGTACG -ACGGAAGTTCCTCAGGTTATCCGA -ACGGAAGTTCCTCAGGTTATGGGA -ACGGAAGTTCCTCAGGTTGTGCAA -ACGGAAGTTCCTCAGGTTGAGGAA -ACGGAAGTTCCTCAGGTTCAGGTA -ACGGAAGTTCCTCAGGTTGACTCT -ACGGAAGTTCCTCAGGTTAGTCCT -ACGGAAGTTCCTCAGGTTTAAGCC -ACGGAAGTTCCTCAGGTTATAGCC -ACGGAAGTTCCTCAGGTTTAACCG -ACGGAAGTTCCTCAGGTTATGCCA -ACGGAAGTTCCTTAGGCAGGAAAC -ACGGAAGTTCCTTAGGCAAACACC -ACGGAAGTTCCTTAGGCAATCGAG -ACGGAAGTTCCTTAGGCACTCCTT -ACGGAAGTTCCTTAGGCACCTGTT -ACGGAAGTTCCTTAGGCACGGTTT -ACGGAAGTTCCTTAGGCAGTGGTT -ACGGAAGTTCCTTAGGCAGCCTTT -ACGGAAGTTCCTTAGGCAGGTCTT -ACGGAAGTTCCTTAGGCAACGCTT -ACGGAAGTTCCTTAGGCAAGCGTT -ACGGAAGTTCCTTAGGCATTCGTC -ACGGAAGTTCCTTAGGCATCTCTC -ACGGAAGTTCCTTAGGCATGGATC -ACGGAAGTTCCTTAGGCACACTTC -ACGGAAGTTCCTTAGGCAGTACTC -ACGGAAGTTCCTTAGGCAGATGTC -ACGGAAGTTCCTTAGGCAACAGTC -ACGGAAGTTCCTTAGGCATTGCTG -ACGGAAGTTCCTTAGGCATCCATG -ACGGAAGTTCCTTAGGCATGTGTG -ACGGAAGTTCCTTAGGCACTAGTG -ACGGAAGTTCCTTAGGCACATCTG -ACGGAAGTTCCTTAGGCAGAGTTG -ACGGAAGTTCCTTAGGCAAGACTG -ACGGAAGTTCCTTAGGCATCGGTA -ACGGAAGTTCCTTAGGCATGCCTA -ACGGAAGTTCCTTAGGCACCACTA -ACGGAAGTTCCTTAGGCAGGAGTA -ACGGAAGTTCCTTAGGCATCGTCT -ACGGAAGTTCCTTAGGCATGCACT -ACGGAAGTTCCTTAGGCACTGACT -ACGGAAGTTCCTTAGGCACAACCT -ACGGAAGTTCCTTAGGCAGCTACT -ACGGAAGTTCCTTAGGCAGGATCT -ACGGAAGTTCCTTAGGCAAAGGCT -ACGGAAGTTCCTTAGGCATCAACC -ACGGAAGTTCCTTAGGCATGTTCC -ACGGAAGTTCCTTAGGCAATTCCC -ACGGAAGTTCCTTAGGCATTCTCG -ACGGAAGTTCCTTAGGCATAGACG -ACGGAAGTTCCTTAGGCAGTAACG -ACGGAAGTTCCTTAGGCAACTTCG -ACGGAAGTTCCTTAGGCATACGCA -ACGGAAGTTCCTTAGGCACTTGCA -ACGGAAGTTCCTTAGGCACGAACA -ACGGAAGTTCCTTAGGCACAGTCA -ACGGAAGTTCCTTAGGCAGATCCA -ACGGAAGTTCCTTAGGCAACGACA -ACGGAAGTTCCTTAGGCAAGCTCA -ACGGAAGTTCCTTAGGCATCACGT -ACGGAAGTTCCTTAGGCACGTAGT -ACGGAAGTTCCTTAGGCAGTCAGT -ACGGAAGTTCCTTAGGCAGAAGGT -ACGGAAGTTCCTTAGGCAAACCGT -ACGGAAGTTCCTTAGGCATTGTGC -ACGGAAGTTCCTTAGGCACTAAGC -ACGGAAGTTCCTTAGGCAACTAGC -ACGGAAGTTCCTTAGGCAAGATGC -ACGGAAGTTCCTTAGGCATGAAGG -ACGGAAGTTCCTTAGGCACAATGG -ACGGAAGTTCCTTAGGCAATGAGG -ACGGAAGTTCCTTAGGCAAATGGG -ACGGAAGTTCCTTAGGCATCCTGA -ACGGAAGTTCCTTAGGCATAGCGA -ACGGAAGTTCCTTAGGCACACAGA -ACGGAAGTTCCTTAGGCAGCAAGA -ACGGAAGTTCCTTAGGCAGGTTGA -ACGGAAGTTCCTTAGGCATCCGAT -ACGGAAGTTCCTTAGGCATGGCAT -ACGGAAGTTCCTTAGGCACGAGAT -ACGGAAGTTCCTTAGGCATACCAC -ACGGAAGTTCCTTAGGCACAGAAC -ACGGAAGTTCCTTAGGCAGTCTAC -ACGGAAGTTCCTTAGGCAACGTAC -ACGGAAGTTCCTTAGGCAAGTGAC -ACGGAAGTTCCTTAGGCACTGTAG -ACGGAAGTTCCTTAGGCACCTAAG -ACGGAAGTTCCTTAGGCAGTTCAG -ACGGAAGTTCCTTAGGCAGCATAG -ACGGAAGTTCCTTAGGCAGACAAG -ACGGAAGTTCCTTAGGCAAAGCAG -ACGGAAGTTCCTTAGGCACGTCAA -ACGGAAGTTCCTTAGGCAGCTGAA -ACGGAAGTTCCTTAGGCAAGTACG -ACGGAAGTTCCTTAGGCAATCCGA -ACGGAAGTTCCTTAGGCAATGGGA -ACGGAAGTTCCTTAGGCAGTGCAA -ACGGAAGTTCCTTAGGCAGAGGAA -ACGGAAGTTCCTTAGGCACAGGTA -ACGGAAGTTCCTTAGGCAGACTCT -ACGGAAGTTCCTTAGGCAAGTCCT -ACGGAAGTTCCTTAGGCATAAGCC -ACGGAAGTTCCTTAGGCAATAGCC -ACGGAAGTTCCTTAGGCATAACCG -ACGGAAGTTCCTTAGGCAATGCCA -ACGGAAGTTCCTAAGGACGGAAAC -ACGGAAGTTCCTAAGGACAACACC -ACGGAAGTTCCTAAGGACATCGAG -ACGGAAGTTCCTAAGGACCTCCTT -ACGGAAGTTCCTAAGGACCCTGTT -ACGGAAGTTCCTAAGGACCGGTTT -ACGGAAGTTCCTAAGGACGTGGTT -ACGGAAGTTCCTAAGGACGCCTTT -ACGGAAGTTCCTAAGGACGGTCTT -ACGGAAGTTCCTAAGGACACGCTT -ACGGAAGTTCCTAAGGACAGCGTT -ACGGAAGTTCCTAAGGACTTCGTC -ACGGAAGTTCCTAAGGACTCTCTC -ACGGAAGTTCCTAAGGACTGGATC -ACGGAAGTTCCTAAGGACCACTTC -ACGGAAGTTCCTAAGGACGTACTC -ACGGAAGTTCCTAAGGACGATGTC -ACGGAAGTTCCTAAGGACACAGTC -ACGGAAGTTCCTAAGGACTTGCTG -ACGGAAGTTCCTAAGGACTCCATG -ACGGAAGTTCCTAAGGACTGTGTG -ACGGAAGTTCCTAAGGACCTAGTG -ACGGAAGTTCCTAAGGACCATCTG -ACGGAAGTTCCTAAGGACGAGTTG -ACGGAAGTTCCTAAGGACAGACTG -ACGGAAGTTCCTAAGGACTCGGTA -ACGGAAGTTCCTAAGGACTGCCTA -ACGGAAGTTCCTAAGGACCCACTA -ACGGAAGTTCCTAAGGACGGAGTA -ACGGAAGTTCCTAAGGACTCGTCT -ACGGAAGTTCCTAAGGACTGCACT -ACGGAAGTTCCTAAGGACCTGACT -ACGGAAGTTCCTAAGGACCAACCT -ACGGAAGTTCCTAAGGACGCTACT -ACGGAAGTTCCTAAGGACGGATCT -ACGGAAGTTCCTAAGGACAAGGCT -ACGGAAGTTCCTAAGGACTCAACC -ACGGAAGTTCCTAAGGACTGTTCC -ACGGAAGTTCCTAAGGACATTCCC -ACGGAAGTTCCTAAGGACTTCTCG -ACGGAAGTTCCTAAGGACTAGACG -ACGGAAGTTCCTAAGGACGTAACG -ACGGAAGTTCCTAAGGACACTTCG -ACGGAAGTTCCTAAGGACTACGCA -ACGGAAGTTCCTAAGGACCTTGCA -ACGGAAGTTCCTAAGGACCGAACA -ACGGAAGTTCCTAAGGACCAGTCA -ACGGAAGTTCCTAAGGACGATCCA -ACGGAAGTTCCTAAGGACACGACA -ACGGAAGTTCCTAAGGACAGCTCA -ACGGAAGTTCCTAAGGACTCACGT -ACGGAAGTTCCTAAGGACCGTAGT -ACGGAAGTTCCTAAGGACGTCAGT -ACGGAAGTTCCTAAGGACGAAGGT -ACGGAAGTTCCTAAGGACAACCGT -ACGGAAGTTCCTAAGGACTTGTGC -ACGGAAGTTCCTAAGGACCTAAGC -ACGGAAGTTCCTAAGGACACTAGC -ACGGAAGTTCCTAAGGACAGATGC -ACGGAAGTTCCTAAGGACTGAAGG -ACGGAAGTTCCTAAGGACCAATGG -ACGGAAGTTCCTAAGGACATGAGG -ACGGAAGTTCCTAAGGACAATGGG -ACGGAAGTTCCTAAGGACTCCTGA -ACGGAAGTTCCTAAGGACTAGCGA -ACGGAAGTTCCTAAGGACCACAGA -ACGGAAGTTCCTAAGGACGCAAGA -ACGGAAGTTCCTAAGGACGGTTGA -ACGGAAGTTCCTAAGGACTCCGAT -ACGGAAGTTCCTAAGGACTGGCAT -ACGGAAGTTCCTAAGGACCGAGAT -ACGGAAGTTCCTAAGGACTACCAC -ACGGAAGTTCCTAAGGACCAGAAC -ACGGAAGTTCCTAAGGACGTCTAC -ACGGAAGTTCCTAAGGACACGTAC -ACGGAAGTTCCTAAGGACAGTGAC -ACGGAAGTTCCTAAGGACCTGTAG -ACGGAAGTTCCTAAGGACCCTAAG -ACGGAAGTTCCTAAGGACGTTCAG -ACGGAAGTTCCTAAGGACGCATAG -ACGGAAGTTCCTAAGGACGACAAG -ACGGAAGTTCCTAAGGACAAGCAG -ACGGAAGTTCCTAAGGACCGTCAA -ACGGAAGTTCCTAAGGACGCTGAA -ACGGAAGTTCCTAAGGACAGTACG -ACGGAAGTTCCTAAGGACATCCGA -ACGGAAGTTCCTAAGGACATGGGA -ACGGAAGTTCCTAAGGACGTGCAA -ACGGAAGTTCCTAAGGACGAGGAA -ACGGAAGTTCCTAAGGACCAGGTA -ACGGAAGTTCCTAAGGACGACTCT -ACGGAAGTTCCTAAGGACAGTCCT -ACGGAAGTTCCTAAGGACTAAGCC -ACGGAAGTTCCTAAGGACATAGCC -ACGGAAGTTCCTAAGGACTAACCG -ACGGAAGTTCCTAAGGACATGCCA -ACGGAAGTTCCTCAGAAGGGAAAC -ACGGAAGTTCCTCAGAAGAACACC -ACGGAAGTTCCTCAGAAGATCGAG -ACGGAAGTTCCTCAGAAGCTCCTT -ACGGAAGTTCCTCAGAAGCCTGTT -ACGGAAGTTCCTCAGAAGCGGTTT -ACGGAAGTTCCTCAGAAGGTGGTT -ACGGAAGTTCCTCAGAAGGCCTTT -ACGGAAGTTCCTCAGAAGGGTCTT -ACGGAAGTTCCTCAGAAGACGCTT -ACGGAAGTTCCTCAGAAGAGCGTT -ACGGAAGTTCCTCAGAAGTTCGTC -ACGGAAGTTCCTCAGAAGTCTCTC -ACGGAAGTTCCTCAGAAGTGGATC -ACGGAAGTTCCTCAGAAGCACTTC -ACGGAAGTTCCTCAGAAGGTACTC -ACGGAAGTTCCTCAGAAGGATGTC -ACGGAAGTTCCTCAGAAGACAGTC -ACGGAAGTTCCTCAGAAGTTGCTG -ACGGAAGTTCCTCAGAAGTCCATG -ACGGAAGTTCCTCAGAAGTGTGTG -ACGGAAGTTCCTCAGAAGCTAGTG -ACGGAAGTTCCTCAGAAGCATCTG -ACGGAAGTTCCTCAGAAGGAGTTG -ACGGAAGTTCCTCAGAAGAGACTG -ACGGAAGTTCCTCAGAAGTCGGTA -ACGGAAGTTCCTCAGAAGTGCCTA -ACGGAAGTTCCTCAGAAGCCACTA -ACGGAAGTTCCTCAGAAGGGAGTA -ACGGAAGTTCCTCAGAAGTCGTCT -ACGGAAGTTCCTCAGAAGTGCACT -ACGGAAGTTCCTCAGAAGCTGACT -ACGGAAGTTCCTCAGAAGCAACCT -ACGGAAGTTCCTCAGAAGGCTACT -ACGGAAGTTCCTCAGAAGGGATCT -ACGGAAGTTCCTCAGAAGAAGGCT -ACGGAAGTTCCTCAGAAGTCAACC -ACGGAAGTTCCTCAGAAGTGTTCC -ACGGAAGTTCCTCAGAAGATTCCC -ACGGAAGTTCCTCAGAAGTTCTCG -ACGGAAGTTCCTCAGAAGTAGACG -ACGGAAGTTCCTCAGAAGGTAACG -ACGGAAGTTCCTCAGAAGACTTCG -ACGGAAGTTCCTCAGAAGTACGCA -ACGGAAGTTCCTCAGAAGCTTGCA -ACGGAAGTTCCTCAGAAGCGAACA -ACGGAAGTTCCTCAGAAGCAGTCA -ACGGAAGTTCCTCAGAAGGATCCA -ACGGAAGTTCCTCAGAAGACGACA -ACGGAAGTTCCTCAGAAGAGCTCA -ACGGAAGTTCCTCAGAAGTCACGT -ACGGAAGTTCCTCAGAAGCGTAGT -ACGGAAGTTCCTCAGAAGGTCAGT -ACGGAAGTTCCTCAGAAGGAAGGT -ACGGAAGTTCCTCAGAAGAACCGT -ACGGAAGTTCCTCAGAAGTTGTGC -ACGGAAGTTCCTCAGAAGCTAAGC -ACGGAAGTTCCTCAGAAGACTAGC -ACGGAAGTTCCTCAGAAGAGATGC -ACGGAAGTTCCTCAGAAGTGAAGG -ACGGAAGTTCCTCAGAAGCAATGG -ACGGAAGTTCCTCAGAAGATGAGG -ACGGAAGTTCCTCAGAAGAATGGG -ACGGAAGTTCCTCAGAAGTCCTGA -ACGGAAGTTCCTCAGAAGTAGCGA -ACGGAAGTTCCTCAGAAGCACAGA -ACGGAAGTTCCTCAGAAGGCAAGA -ACGGAAGTTCCTCAGAAGGGTTGA -ACGGAAGTTCCTCAGAAGTCCGAT -ACGGAAGTTCCTCAGAAGTGGCAT -ACGGAAGTTCCTCAGAAGCGAGAT -ACGGAAGTTCCTCAGAAGTACCAC -ACGGAAGTTCCTCAGAAGCAGAAC -ACGGAAGTTCCTCAGAAGGTCTAC -ACGGAAGTTCCTCAGAAGACGTAC -ACGGAAGTTCCTCAGAAGAGTGAC -ACGGAAGTTCCTCAGAAGCTGTAG -ACGGAAGTTCCTCAGAAGCCTAAG -ACGGAAGTTCCTCAGAAGGTTCAG -ACGGAAGTTCCTCAGAAGGCATAG -ACGGAAGTTCCTCAGAAGGACAAG -ACGGAAGTTCCTCAGAAGAAGCAG -ACGGAAGTTCCTCAGAAGCGTCAA -ACGGAAGTTCCTCAGAAGGCTGAA -ACGGAAGTTCCTCAGAAGAGTACG -ACGGAAGTTCCTCAGAAGATCCGA -ACGGAAGTTCCTCAGAAGATGGGA -ACGGAAGTTCCTCAGAAGGTGCAA -ACGGAAGTTCCTCAGAAGGAGGAA -ACGGAAGTTCCTCAGAAGCAGGTA -ACGGAAGTTCCTCAGAAGGACTCT -ACGGAAGTTCCTCAGAAGAGTCCT -ACGGAAGTTCCTCAGAAGTAAGCC -ACGGAAGTTCCTCAGAAGATAGCC -ACGGAAGTTCCTCAGAAGTAACCG -ACGGAAGTTCCTCAGAAGATGCCA -ACGGAAGTTCCTCAACGTGGAAAC -ACGGAAGTTCCTCAACGTAACACC -ACGGAAGTTCCTCAACGTATCGAG -ACGGAAGTTCCTCAACGTCTCCTT -ACGGAAGTTCCTCAACGTCCTGTT -ACGGAAGTTCCTCAACGTCGGTTT -ACGGAAGTTCCTCAACGTGTGGTT -ACGGAAGTTCCTCAACGTGCCTTT -ACGGAAGTTCCTCAACGTGGTCTT -ACGGAAGTTCCTCAACGTACGCTT -ACGGAAGTTCCTCAACGTAGCGTT -ACGGAAGTTCCTCAACGTTTCGTC -ACGGAAGTTCCTCAACGTTCTCTC -ACGGAAGTTCCTCAACGTTGGATC -ACGGAAGTTCCTCAACGTCACTTC -ACGGAAGTTCCTCAACGTGTACTC -ACGGAAGTTCCTCAACGTGATGTC -ACGGAAGTTCCTCAACGTACAGTC -ACGGAAGTTCCTCAACGTTTGCTG -ACGGAAGTTCCTCAACGTTCCATG -ACGGAAGTTCCTCAACGTTGTGTG -ACGGAAGTTCCTCAACGTCTAGTG -ACGGAAGTTCCTCAACGTCATCTG -ACGGAAGTTCCTCAACGTGAGTTG -ACGGAAGTTCCTCAACGTAGACTG -ACGGAAGTTCCTCAACGTTCGGTA -ACGGAAGTTCCTCAACGTTGCCTA -ACGGAAGTTCCTCAACGTCCACTA -ACGGAAGTTCCTCAACGTGGAGTA -ACGGAAGTTCCTCAACGTTCGTCT -ACGGAAGTTCCTCAACGTTGCACT -ACGGAAGTTCCTCAACGTCTGACT -ACGGAAGTTCCTCAACGTCAACCT -ACGGAAGTTCCTCAACGTGCTACT -ACGGAAGTTCCTCAACGTGGATCT -ACGGAAGTTCCTCAACGTAAGGCT -ACGGAAGTTCCTCAACGTTCAACC -ACGGAAGTTCCTCAACGTTGTTCC -ACGGAAGTTCCTCAACGTATTCCC -ACGGAAGTTCCTCAACGTTTCTCG -ACGGAAGTTCCTCAACGTTAGACG -ACGGAAGTTCCTCAACGTGTAACG -ACGGAAGTTCCTCAACGTACTTCG -ACGGAAGTTCCTCAACGTTACGCA -ACGGAAGTTCCTCAACGTCTTGCA -ACGGAAGTTCCTCAACGTCGAACA -ACGGAAGTTCCTCAACGTCAGTCA -ACGGAAGTTCCTCAACGTGATCCA -ACGGAAGTTCCTCAACGTACGACA -ACGGAAGTTCCTCAACGTAGCTCA -ACGGAAGTTCCTCAACGTTCACGT -ACGGAAGTTCCTCAACGTCGTAGT -ACGGAAGTTCCTCAACGTGTCAGT -ACGGAAGTTCCTCAACGTGAAGGT -ACGGAAGTTCCTCAACGTAACCGT -ACGGAAGTTCCTCAACGTTTGTGC -ACGGAAGTTCCTCAACGTCTAAGC -ACGGAAGTTCCTCAACGTACTAGC -ACGGAAGTTCCTCAACGTAGATGC -ACGGAAGTTCCTCAACGTTGAAGG -ACGGAAGTTCCTCAACGTCAATGG -ACGGAAGTTCCTCAACGTATGAGG -ACGGAAGTTCCTCAACGTAATGGG -ACGGAAGTTCCTCAACGTTCCTGA -ACGGAAGTTCCTCAACGTTAGCGA -ACGGAAGTTCCTCAACGTCACAGA -ACGGAAGTTCCTCAACGTGCAAGA -ACGGAAGTTCCTCAACGTGGTTGA -ACGGAAGTTCCTCAACGTTCCGAT -ACGGAAGTTCCTCAACGTTGGCAT -ACGGAAGTTCCTCAACGTCGAGAT -ACGGAAGTTCCTCAACGTTACCAC -ACGGAAGTTCCTCAACGTCAGAAC -ACGGAAGTTCCTCAACGTGTCTAC -ACGGAAGTTCCTCAACGTACGTAC -ACGGAAGTTCCTCAACGTAGTGAC -ACGGAAGTTCCTCAACGTCTGTAG -ACGGAAGTTCCTCAACGTCCTAAG -ACGGAAGTTCCTCAACGTGTTCAG -ACGGAAGTTCCTCAACGTGCATAG -ACGGAAGTTCCTCAACGTGACAAG -ACGGAAGTTCCTCAACGTAAGCAG -ACGGAAGTTCCTCAACGTCGTCAA -ACGGAAGTTCCTCAACGTGCTGAA -ACGGAAGTTCCTCAACGTAGTACG -ACGGAAGTTCCTCAACGTATCCGA -ACGGAAGTTCCTCAACGTATGGGA -ACGGAAGTTCCTCAACGTGTGCAA -ACGGAAGTTCCTCAACGTGAGGAA -ACGGAAGTTCCTCAACGTCAGGTA -ACGGAAGTTCCTCAACGTGACTCT -ACGGAAGTTCCTCAACGTAGTCCT -ACGGAAGTTCCTCAACGTTAAGCC -ACGGAAGTTCCTCAACGTATAGCC -ACGGAAGTTCCTCAACGTTAACCG -ACGGAAGTTCCTCAACGTATGCCA -ACGGAAGTTCCTGAAGCTGGAAAC -ACGGAAGTTCCTGAAGCTAACACC -ACGGAAGTTCCTGAAGCTATCGAG -ACGGAAGTTCCTGAAGCTCTCCTT -ACGGAAGTTCCTGAAGCTCCTGTT -ACGGAAGTTCCTGAAGCTCGGTTT -ACGGAAGTTCCTGAAGCTGTGGTT -ACGGAAGTTCCTGAAGCTGCCTTT -ACGGAAGTTCCTGAAGCTGGTCTT -ACGGAAGTTCCTGAAGCTACGCTT -ACGGAAGTTCCTGAAGCTAGCGTT -ACGGAAGTTCCTGAAGCTTTCGTC -ACGGAAGTTCCTGAAGCTTCTCTC -ACGGAAGTTCCTGAAGCTTGGATC -ACGGAAGTTCCTGAAGCTCACTTC -ACGGAAGTTCCTGAAGCTGTACTC -ACGGAAGTTCCTGAAGCTGATGTC -ACGGAAGTTCCTGAAGCTACAGTC -ACGGAAGTTCCTGAAGCTTTGCTG -ACGGAAGTTCCTGAAGCTTCCATG -ACGGAAGTTCCTGAAGCTTGTGTG -ACGGAAGTTCCTGAAGCTCTAGTG -ACGGAAGTTCCTGAAGCTCATCTG -ACGGAAGTTCCTGAAGCTGAGTTG -ACGGAAGTTCCTGAAGCTAGACTG -ACGGAAGTTCCTGAAGCTTCGGTA -ACGGAAGTTCCTGAAGCTTGCCTA -ACGGAAGTTCCTGAAGCTCCACTA -ACGGAAGTTCCTGAAGCTGGAGTA -ACGGAAGTTCCTGAAGCTTCGTCT -ACGGAAGTTCCTGAAGCTTGCACT -ACGGAAGTTCCTGAAGCTCTGACT -ACGGAAGTTCCTGAAGCTCAACCT -ACGGAAGTTCCTGAAGCTGCTACT -ACGGAAGTTCCTGAAGCTGGATCT -ACGGAAGTTCCTGAAGCTAAGGCT -ACGGAAGTTCCTGAAGCTTCAACC -ACGGAAGTTCCTGAAGCTTGTTCC -ACGGAAGTTCCTGAAGCTATTCCC -ACGGAAGTTCCTGAAGCTTTCTCG -ACGGAAGTTCCTGAAGCTTAGACG -ACGGAAGTTCCTGAAGCTGTAACG -ACGGAAGTTCCTGAAGCTACTTCG -ACGGAAGTTCCTGAAGCTTACGCA -ACGGAAGTTCCTGAAGCTCTTGCA -ACGGAAGTTCCTGAAGCTCGAACA -ACGGAAGTTCCTGAAGCTCAGTCA -ACGGAAGTTCCTGAAGCTGATCCA -ACGGAAGTTCCTGAAGCTACGACA -ACGGAAGTTCCTGAAGCTAGCTCA -ACGGAAGTTCCTGAAGCTTCACGT -ACGGAAGTTCCTGAAGCTCGTAGT -ACGGAAGTTCCTGAAGCTGTCAGT -ACGGAAGTTCCTGAAGCTGAAGGT -ACGGAAGTTCCTGAAGCTAACCGT -ACGGAAGTTCCTGAAGCTTTGTGC -ACGGAAGTTCCTGAAGCTCTAAGC -ACGGAAGTTCCTGAAGCTACTAGC -ACGGAAGTTCCTGAAGCTAGATGC -ACGGAAGTTCCTGAAGCTTGAAGG -ACGGAAGTTCCTGAAGCTCAATGG -ACGGAAGTTCCTGAAGCTATGAGG -ACGGAAGTTCCTGAAGCTAATGGG -ACGGAAGTTCCTGAAGCTTCCTGA -ACGGAAGTTCCTGAAGCTTAGCGA -ACGGAAGTTCCTGAAGCTCACAGA -ACGGAAGTTCCTGAAGCTGCAAGA -ACGGAAGTTCCTGAAGCTGGTTGA -ACGGAAGTTCCTGAAGCTTCCGAT -ACGGAAGTTCCTGAAGCTTGGCAT -ACGGAAGTTCCTGAAGCTCGAGAT -ACGGAAGTTCCTGAAGCTTACCAC -ACGGAAGTTCCTGAAGCTCAGAAC -ACGGAAGTTCCTGAAGCTGTCTAC -ACGGAAGTTCCTGAAGCTACGTAC -ACGGAAGTTCCTGAAGCTAGTGAC -ACGGAAGTTCCTGAAGCTCTGTAG -ACGGAAGTTCCTGAAGCTCCTAAG -ACGGAAGTTCCTGAAGCTGTTCAG -ACGGAAGTTCCTGAAGCTGCATAG -ACGGAAGTTCCTGAAGCTGACAAG -ACGGAAGTTCCTGAAGCTAAGCAG -ACGGAAGTTCCTGAAGCTCGTCAA -ACGGAAGTTCCTGAAGCTGCTGAA -ACGGAAGTTCCTGAAGCTAGTACG -ACGGAAGTTCCTGAAGCTATCCGA -ACGGAAGTTCCTGAAGCTATGGGA -ACGGAAGTTCCTGAAGCTGTGCAA -ACGGAAGTTCCTGAAGCTGAGGAA -ACGGAAGTTCCTGAAGCTCAGGTA -ACGGAAGTTCCTGAAGCTGACTCT -ACGGAAGTTCCTGAAGCTAGTCCT -ACGGAAGTTCCTGAAGCTTAAGCC -ACGGAAGTTCCTGAAGCTATAGCC -ACGGAAGTTCCTGAAGCTTAACCG -ACGGAAGTTCCTGAAGCTATGCCA -ACGGAAGTTCCTACGAGTGGAAAC -ACGGAAGTTCCTACGAGTAACACC -ACGGAAGTTCCTACGAGTATCGAG -ACGGAAGTTCCTACGAGTCTCCTT -ACGGAAGTTCCTACGAGTCCTGTT -ACGGAAGTTCCTACGAGTCGGTTT -ACGGAAGTTCCTACGAGTGTGGTT -ACGGAAGTTCCTACGAGTGCCTTT -ACGGAAGTTCCTACGAGTGGTCTT -ACGGAAGTTCCTACGAGTACGCTT -ACGGAAGTTCCTACGAGTAGCGTT -ACGGAAGTTCCTACGAGTTTCGTC -ACGGAAGTTCCTACGAGTTCTCTC -ACGGAAGTTCCTACGAGTTGGATC -ACGGAAGTTCCTACGAGTCACTTC -ACGGAAGTTCCTACGAGTGTACTC -ACGGAAGTTCCTACGAGTGATGTC -ACGGAAGTTCCTACGAGTACAGTC -ACGGAAGTTCCTACGAGTTTGCTG -ACGGAAGTTCCTACGAGTTCCATG -ACGGAAGTTCCTACGAGTTGTGTG -ACGGAAGTTCCTACGAGTCTAGTG -ACGGAAGTTCCTACGAGTCATCTG -ACGGAAGTTCCTACGAGTGAGTTG -ACGGAAGTTCCTACGAGTAGACTG -ACGGAAGTTCCTACGAGTTCGGTA -ACGGAAGTTCCTACGAGTTGCCTA -ACGGAAGTTCCTACGAGTCCACTA -ACGGAAGTTCCTACGAGTGGAGTA -ACGGAAGTTCCTACGAGTTCGTCT -ACGGAAGTTCCTACGAGTTGCACT -ACGGAAGTTCCTACGAGTCTGACT -ACGGAAGTTCCTACGAGTCAACCT -ACGGAAGTTCCTACGAGTGCTACT -ACGGAAGTTCCTACGAGTGGATCT -ACGGAAGTTCCTACGAGTAAGGCT -ACGGAAGTTCCTACGAGTTCAACC -ACGGAAGTTCCTACGAGTTGTTCC -ACGGAAGTTCCTACGAGTATTCCC -ACGGAAGTTCCTACGAGTTTCTCG -ACGGAAGTTCCTACGAGTTAGACG -ACGGAAGTTCCTACGAGTGTAACG -ACGGAAGTTCCTACGAGTACTTCG -ACGGAAGTTCCTACGAGTTACGCA -ACGGAAGTTCCTACGAGTCTTGCA -ACGGAAGTTCCTACGAGTCGAACA -ACGGAAGTTCCTACGAGTCAGTCA -ACGGAAGTTCCTACGAGTGATCCA -ACGGAAGTTCCTACGAGTACGACA -ACGGAAGTTCCTACGAGTAGCTCA -ACGGAAGTTCCTACGAGTTCACGT -ACGGAAGTTCCTACGAGTCGTAGT -ACGGAAGTTCCTACGAGTGTCAGT -ACGGAAGTTCCTACGAGTGAAGGT -ACGGAAGTTCCTACGAGTAACCGT -ACGGAAGTTCCTACGAGTTTGTGC -ACGGAAGTTCCTACGAGTCTAAGC -ACGGAAGTTCCTACGAGTACTAGC -ACGGAAGTTCCTACGAGTAGATGC -ACGGAAGTTCCTACGAGTTGAAGG -ACGGAAGTTCCTACGAGTCAATGG -ACGGAAGTTCCTACGAGTATGAGG -ACGGAAGTTCCTACGAGTAATGGG -ACGGAAGTTCCTACGAGTTCCTGA -ACGGAAGTTCCTACGAGTTAGCGA -ACGGAAGTTCCTACGAGTCACAGA -ACGGAAGTTCCTACGAGTGCAAGA -ACGGAAGTTCCTACGAGTGGTTGA -ACGGAAGTTCCTACGAGTTCCGAT -ACGGAAGTTCCTACGAGTTGGCAT -ACGGAAGTTCCTACGAGTCGAGAT -ACGGAAGTTCCTACGAGTTACCAC -ACGGAAGTTCCTACGAGTCAGAAC -ACGGAAGTTCCTACGAGTGTCTAC -ACGGAAGTTCCTACGAGTACGTAC -ACGGAAGTTCCTACGAGTAGTGAC -ACGGAAGTTCCTACGAGTCTGTAG -ACGGAAGTTCCTACGAGTCCTAAG -ACGGAAGTTCCTACGAGTGTTCAG -ACGGAAGTTCCTACGAGTGCATAG -ACGGAAGTTCCTACGAGTGACAAG -ACGGAAGTTCCTACGAGTAAGCAG -ACGGAAGTTCCTACGAGTCGTCAA -ACGGAAGTTCCTACGAGTGCTGAA -ACGGAAGTTCCTACGAGTAGTACG -ACGGAAGTTCCTACGAGTATCCGA -ACGGAAGTTCCTACGAGTATGGGA -ACGGAAGTTCCTACGAGTGTGCAA -ACGGAAGTTCCTACGAGTGAGGAA -ACGGAAGTTCCTACGAGTCAGGTA -ACGGAAGTTCCTACGAGTGACTCT -ACGGAAGTTCCTACGAGTAGTCCT -ACGGAAGTTCCTACGAGTTAAGCC -ACGGAAGTTCCTACGAGTATAGCC -ACGGAAGTTCCTACGAGTTAACCG -ACGGAAGTTCCTACGAGTATGCCA -ACGGAAGTTCCTCGAATCGGAAAC -ACGGAAGTTCCTCGAATCAACACC -ACGGAAGTTCCTCGAATCATCGAG -ACGGAAGTTCCTCGAATCCTCCTT -ACGGAAGTTCCTCGAATCCCTGTT -ACGGAAGTTCCTCGAATCCGGTTT -ACGGAAGTTCCTCGAATCGTGGTT -ACGGAAGTTCCTCGAATCGCCTTT -ACGGAAGTTCCTCGAATCGGTCTT -ACGGAAGTTCCTCGAATCACGCTT -ACGGAAGTTCCTCGAATCAGCGTT -ACGGAAGTTCCTCGAATCTTCGTC -ACGGAAGTTCCTCGAATCTCTCTC -ACGGAAGTTCCTCGAATCTGGATC -ACGGAAGTTCCTCGAATCCACTTC -ACGGAAGTTCCTCGAATCGTACTC -ACGGAAGTTCCTCGAATCGATGTC -ACGGAAGTTCCTCGAATCACAGTC -ACGGAAGTTCCTCGAATCTTGCTG -ACGGAAGTTCCTCGAATCTCCATG -ACGGAAGTTCCTCGAATCTGTGTG -ACGGAAGTTCCTCGAATCCTAGTG -ACGGAAGTTCCTCGAATCCATCTG -ACGGAAGTTCCTCGAATCGAGTTG -ACGGAAGTTCCTCGAATCAGACTG -ACGGAAGTTCCTCGAATCTCGGTA -ACGGAAGTTCCTCGAATCTGCCTA -ACGGAAGTTCCTCGAATCCCACTA -ACGGAAGTTCCTCGAATCGGAGTA -ACGGAAGTTCCTCGAATCTCGTCT -ACGGAAGTTCCTCGAATCTGCACT -ACGGAAGTTCCTCGAATCCTGACT -ACGGAAGTTCCTCGAATCCAACCT -ACGGAAGTTCCTCGAATCGCTACT -ACGGAAGTTCCTCGAATCGGATCT -ACGGAAGTTCCTCGAATCAAGGCT -ACGGAAGTTCCTCGAATCTCAACC -ACGGAAGTTCCTCGAATCTGTTCC -ACGGAAGTTCCTCGAATCATTCCC -ACGGAAGTTCCTCGAATCTTCTCG -ACGGAAGTTCCTCGAATCTAGACG -ACGGAAGTTCCTCGAATCGTAACG -ACGGAAGTTCCTCGAATCACTTCG -ACGGAAGTTCCTCGAATCTACGCA -ACGGAAGTTCCTCGAATCCTTGCA -ACGGAAGTTCCTCGAATCCGAACA -ACGGAAGTTCCTCGAATCCAGTCA -ACGGAAGTTCCTCGAATCGATCCA -ACGGAAGTTCCTCGAATCACGACA -ACGGAAGTTCCTCGAATCAGCTCA -ACGGAAGTTCCTCGAATCTCACGT -ACGGAAGTTCCTCGAATCCGTAGT -ACGGAAGTTCCTCGAATCGTCAGT -ACGGAAGTTCCTCGAATCGAAGGT -ACGGAAGTTCCTCGAATCAACCGT -ACGGAAGTTCCTCGAATCTTGTGC -ACGGAAGTTCCTCGAATCCTAAGC -ACGGAAGTTCCTCGAATCACTAGC -ACGGAAGTTCCTCGAATCAGATGC -ACGGAAGTTCCTCGAATCTGAAGG -ACGGAAGTTCCTCGAATCCAATGG -ACGGAAGTTCCTCGAATCATGAGG -ACGGAAGTTCCTCGAATCAATGGG -ACGGAAGTTCCTCGAATCTCCTGA -ACGGAAGTTCCTCGAATCTAGCGA -ACGGAAGTTCCTCGAATCCACAGA -ACGGAAGTTCCTCGAATCGCAAGA -ACGGAAGTTCCTCGAATCGGTTGA -ACGGAAGTTCCTCGAATCTCCGAT -ACGGAAGTTCCTCGAATCTGGCAT -ACGGAAGTTCCTCGAATCCGAGAT -ACGGAAGTTCCTCGAATCTACCAC -ACGGAAGTTCCTCGAATCCAGAAC -ACGGAAGTTCCTCGAATCGTCTAC -ACGGAAGTTCCTCGAATCACGTAC -ACGGAAGTTCCTCGAATCAGTGAC -ACGGAAGTTCCTCGAATCCTGTAG -ACGGAAGTTCCTCGAATCCCTAAG -ACGGAAGTTCCTCGAATCGTTCAG -ACGGAAGTTCCTCGAATCGCATAG -ACGGAAGTTCCTCGAATCGACAAG -ACGGAAGTTCCTCGAATCAAGCAG -ACGGAAGTTCCTCGAATCCGTCAA -ACGGAAGTTCCTCGAATCGCTGAA -ACGGAAGTTCCTCGAATCAGTACG -ACGGAAGTTCCTCGAATCATCCGA -ACGGAAGTTCCTCGAATCATGGGA -ACGGAAGTTCCTCGAATCGTGCAA -ACGGAAGTTCCTCGAATCGAGGAA -ACGGAAGTTCCTCGAATCCAGGTA -ACGGAAGTTCCTCGAATCGACTCT -ACGGAAGTTCCTCGAATCAGTCCT -ACGGAAGTTCCTCGAATCTAAGCC -ACGGAAGTTCCTCGAATCATAGCC -ACGGAAGTTCCTCGAATCTAACCG -ACGGAAGTTCCTCGAATCATGCCA -ACGGAAGTTCCTGGAATGGGAAAC -ACGGAAGTTCCTGGAATGAACACC -ACGGAAGTTCCTGGAATGATCGAG -ACGGAAGTTCCTGGAATGCTCCTT -ACGGAAGTTCCTGGAATGCCTGTT -ACGGAAGTTCCTGGAATGCGGTTT -ACGGAAGTTCCTGGAATGGTGGTT -ACGGAAGTTCCTGGAATGGCCTTT -ACGGAAGTTCCTGGAATGGGTCTT -ACGGAAGTTCCTGGAATGACGCTT -ACGGAAGTTCCTGGAATGAGCGTT -ACGGAAGTTCCTGGAATGTTCGTC -ACGGAAGTTCCTGGAATGTCTCTC -ACGGAAGTTCCTGGAATGTGGATC -ACGGAAGTTCCTGGAATGCACTTC -ACGGAAGTTCCTGGAATGGTACTC -ACGGAAGTTCCTGGAATGGATGTC -ACGGAAGTTCCTGGAATGACAGTC -ACGGAAGTTCCTGGAATGTTGCTG -ACGGAAGTTCCTGGAATGTCCATG -ACGGAAGTTCCTGGAATGTGTGTG -ACGGAAGTTCCTGGAATGCTAGTG -ACGGAAGTTCCTGGAATGCATCTG -ACGGAAGTTCCTGGAATGGAGTTG -ACGGAAGTTCCTGGAATGAGACTG -ACGGAAGTTCCTGGAATGTCGGTA -ACGGAAGTTCCTGGAATGTGCCTA -ACGGAAGTTCCTGGAATGCCACTA -ACGGAAGTTCCTGGAATGGGAGTA -ACGGAAGTTCCTGGAATGTCGTCT -ACGGAAGTTCCTGGAATGTGCACT -ACGGAAGTTCCTGGAATGCTGACT -ACGGAAGTTCCTGGAATGCAACCT -ACGGAAGTTCCTGGAATGGCTACT -ACGGAAGTTCCTGGAATGGGATCT -ACGGAAGTTCCTGGAATGAAGGCT -ACGGAAGTTCCTGGAATGTCAACC -ACGGAAGTTCCTGGAATGTGTTCC -ACGGAAGTTCCTGGAATGATTCCC -ACGGAAGTTCCTGGAATGTTCTCG -ACGGAAGTTCCTGGAATGTAGACG -ACGGAAGTTCCTGGAATGGTAACG -ACGGAAGTTCCTGGAATGACTTCG -ACGGAAGTTCCTGGAATGTACGCA -ACGGAAGTTCCTGGAATGCTTGCA -ACGGAAGTTCCTGGAATGCGAACA -ACGGAAGTTCCTGGAATGCAGTCA -ACGGAAGTTCCTGGAATGGATCCA -ACGGAAGTTCCTGGAATGACGACA -ACGGAAGTTCCTGGAATGAGCTCA -ACGGAAGTTCCTGGAATGTCACGT -ACGGAAGTTCCTGGAATGCGTAGT -ACGGAAGTTCCTGGAATGGTCAGT -ACGGAAGTTCCTGGAATGGAAGGT -ACGGAAGTTCCTGGAATGAACCGT -ACGGAAGTTCCTGGAATGTTGTGC -ACGGAAGTTCCTGGAATGCTAAGC -ACGGAAGTTCCTGGAATGACTAGC -ACGGAAGTTCCTGGAATGAGATGC -ACGGAAGTTCCTGGAATGTGAAGG -ACGGAAGTTCCTGGAATGCAATGG -ACGGAAGTTCCTGGAATGATGAGG -ACGGAAGTTCCTGGAATGAATGGG -ACGGAAGTTCCTGGAATGTCCTGA -ACGGAAGTTCCTGGAATGTAGCGA -ACGGAAGTTCCTGGAATGCACAGA -ACGGAAGTTCCTGGAATGGCAAGA -ACGGAAGTTCCTGGAATGGGTTGA -ACGGAAGTTCCTGGAATGTCCGAT -ACGGAAGTTCCTGGAATGTGGCAT -ACGGAAGTTCCTGGAATGCGAGAT -ACGGAAGTTCCTGGAATGTACCAC -ACGGAAGTTCCTGGAATGCAGAAC -ACGGAAGTTCCTGGAATGGTCTAC -ACGGAAGTTCCTGGAATGACGTAC -ACGGAAGTTCCTGGAATGAGTGAC -ACGGAAGTTCCTGGAATGCTGTAG -ACGGAAGTTCCTGGAATGCCTAAG -ACGGAAGTTCCTGGAATGGTTCAG -ACGGAAGTTCCTGGAATGGCATAG -ACGGAAGTTCCTGGAATGGACAAG -ACGGAAGTTCCTGGAATGAAGCAG -ACGGAAGTTCCTGGAATGCGTCAA -ACGGAAGTTCCTGGAATGGCTGAA -ACGGAAGTTCCTGGAATGAGTACG -ACGGAAGTTCCTGGAATGATCCGA -ACGGAAGTTCCTGGAATGATGGGA -ACGGAAGTTCCTGGAATGGTGCAA -ACGGAAGTTCCTGGAATGGAGGAA -ACGGAAGTTCCTGGAATGCAGGTA -ACGGAAGTTCCTGGAATGGACTCT -ACGGAAGTTCCTGGAATGAGTCCT -ACGGAAGTTCCTGGAATGTAAGCC -ACGGAAGTTCCTGGAATGATAGCC -ACGGAAGTTCCTGGAATGTAACCG -ACGGAAGTTCCTGGAATGATGCCA -ACGGAAGTTCCTCAAGTGGGAAAC -ACGGAAGTTCCTCAAGTGAACACC -ACGGAAGTTCCTCAAGTGATCGAG -ACGGAAGTTCCTCAAGTGCTCCTT -ACGGAAGTTCCTCAAGTGCCTGTT -ACGGAAGTTCCTCAAGTGCGGTTT -ACGGAAGTTCCTCAAGTGGTGGTT -ACGGAAGTTCCTCAAGTGGCCTTT -ACGGAAGTTCCTCAAGTGGGTCTT -ACGGAAGTTCCTCAAGTGACGCTT -ACGGAAGTTCCTCAAGTGAGCGTT -ACGGAAGTTCCTCAAGTGTTCGTC -ACGGAAGTTCCTCAAGTGTCTCTC -ACGGAAGTTCCTCAAGTGTGGATC -ACGGAAGTTCCTCAAGTGCACTTC -ACGGAAGTTCCTCAAGTGGTACTC -ACGGAAGTTCCTCAAGTGGATGTC -ACGGAAGTTCCTCAAGTGACAGTC -ACGGAAGTTCCTCAAGTGTTGCTG -ACGGAAGTTCCTCAAGTGTCCATG -ACGGAAGTTCCTCAAGTGTGTGTG -ACGGAAGTTCCTCAAGTGCTAGTG -ACGGAAGTTCCTCAAGTGCATCTG -ACGGAAGTTCCTCAAGTGGAGTTG -ACGGAAGTTCCTCAAGTGAGACTG -ACGGAAGTTCCTCAAGTGTCGGTA -ACGGAAGTTCCTCAAGTGTGCCTA -ACGGAAGTTCCTCAAGTGCCACTA -ACGGAAGTTCCTCAAGTGGGAGTA -ACGGAAGTTCCTCAAGTGTCGTCT -ACGGAAGTTCCTCAAGTGTGCACT -ACGGAAGTTCCTCAAGTGCTGACT -ACGGAAGTTCCTCAAGTGCAACCT -ACGGAAGTTCCTCAAGTGGCTACT -ACGGAAGTTCCTCAAGTGGGATCT -ACGGAAGTTCCTCAAGTGAAGGCT -ACGGAAGTTCCTCAAGTGTCAACC -ACGGAAGTTCCTCAAGTGTGTTCC -ACGGAAGTTCCTCAAGTGATTCCC -ACGGAAGTTCCTCAAGTGTTCTCG -ACGGAAGTTCCTCAAGTGTAGACG -ACGGAAGTTCCTCAAGTGGTAACG -ACGGAAGTTCCTCAAGTGACTTCG -ACGGAAGTTCCTCAAGTGTACGCA -ACGGAAGTTCCTCAAGTGCTTGCA -ACGGAAGTTCCTCAAGTGCGAACA -ACGGAAGTTCCTCAAGTGCAGTCA -ACGGAAGTTCCTCAAGTGGATCCA -ACGGAAGTTCCTCAAGTGACGACA -ACGGAAGTTCCTCAAGTGAGCTCA -ACGGAAGTTCCTCAAGTGTCACGT -ACGGAAGTTCCTCAAGTGCGTAGT -ACGGAAGTTCCTCAAGTGGTCAGT -ACGGAAGTTCCTCAAGTGGAAGGT -ACGGAAGTTCCTCAAGTGAACCGT -ACGGAAGTTCCTCAAGTGTTGTGC -ACGGAAGTTCCTCAAGTGCTAAGC -ACGGAAGTTCCTCAAGTGACTAGC -ACGGAAGTTCCTCAAGTGAGATGC -ACGGAAGTTCCTCAAGTGTGAAGG -ACGGAAGTTCCTCAAGTGCAATGG -ACGGAAGTTCCTCAAGTGATGAGG -ACGGAAGTTCCTCAAGTGAATGGG -ACGGAAGTTCCTCAAGTGTCCTGA -ACGGAAGTTCCTCAAGTGTAGCGA -ACGGAAGTTCCTCAAGTGCACAGA -ACGGAAGTTCCTCAAGTGGCAAGA -ACGGAAGTTCCTCAAGTGGGTTGA -ACGGAAGTTCCTCAAGTGTCCGAT -ACGGAAGTTCCTCAAGTGTGGCAT -ACGGAAGTTCCTCAAGTGCGAGAT -ACGGAAGTTCCTCAAGTGTACCAC -ACGGAAGTTCCTCAAGTGCAGAAC -ACGGAAGTTCCTCAAGTGGTCTAC -ACGGAAGTTCCTCAAGTGACGTAC -ACGGAAGTTCCTCAAGTGAGTGAC -ACGGAAGTTCCTCAAGTGCTGTAG -ACGGAAGTTCCTCAAGTGCCTAAG -ACGGAAGTTCCTCAAGTGGTTCAG -ACGGAAGTTCCTCAAGTGGCATAG -ACGGAAGTTCCTCAAGTGGACAAG -ACGGAAGTTCCTCAAGTGAAGCAG -ACGGAAGTTCCTCAAGTGCGTCAA -ACGGAAGTTCCTCAAGTGGCTGAA -ACGGAAGTTCCTCAAGTGAGTACG -ACGGAAGTTCCTCAAGTGATCCGA -ACGGAAGTTCCTCAAGTGATGGGA -ACGGAAGTTCCTCAAGTGGTGCAA -ACGGAAGTTCCTCAAGTGGAGGAA -ACGGAAGTTCCTCAAGTGCAGGTA -ACGGAAGTTCCTCAAGTGGACTCT -ACGGAAGTTCCTCAAGTGAGTCCT -ACGGAAGTTCCTCAAGTGTAAGCC -ACGGAAGTTCCTCAAGTGATAGCC -ACGGAAGTTCCTCAAGTGTAACCG -ACGGAAGTTCCTCAAGTGATGCCA -ACGGAAGTTCCTGAAGAGGGAAAC -ACGGAAGTTCCTGAAGAGAACACC -ACGGAAGTTCCTGAAGAGATCGAG -ACGGAAGTTCCTGAAGAGCTCCTT -ACGGAAGTTCCTGAAGAGCCTGTT -ACGGAAGTTCCTGAAGAGCGGTTT -ACGGAAGTTCCTGAAGAGGTGGTT -ACGGAAGTTCCTGAAGAGGCCTTT -ACGGAAGTTCCTGAAGAGGGTCTT -ACGGAAGTTCCTGAAGAGACGCTT -ACGGAAGTTCCTGAAGAGAGCGTT -ACGGAAGTTCCTGAAGAGTTCGTC -ACGGAAGTTCCTGAAGAGTCTCTC -ACGGAAGTTCCTGAAGAGTGGATC -ACGGAAGTTCCTGAAGAGCACTTC -ACGGAAGTTCCTGAAGAGGTACTC -ACGGAAGTTCCTGAAGAGGATGTC -ACGGAAGTTCCTGAAGAGACAGTC -ACGGAAGTTCCTGAAGAGTTGCTG -ACGGAAGTTCCTGAAGAGTCCATG -ACGGAAGTTCCTGAAGAGTGTGTG -ACGGAAGTTCCTGAAGAGCTAGTG -ACGGAAGTTCCTGAAGAGCATCTG -ACGGAAGTTCCTGAAGAGGAGTTG -ACGGAAGTTCCTGAAGAGAGACTG -ACGGAAGTTCCTGAAGAGTCGGTA -ACGGAAGTTCCTGAAGAGTGCCTA -ACGGAAGTTCCTGAAGAGCCACTA -ACGGAAGTTCCTGAAGAGGGAGTA -ACGGAAGTTCCTGAAGAGTCGTCT -ACGGAAGTTCCTGAAGAGTGCACT -ACGGAAGTTCCTGAAGAGCTGACT -ACGGAAGTTCCTGAAGAGCAACCT -ACGGAAGTTCCTGAAGAGGCTACT -ACGGAAGTTCCTGAAGAGGGATCT -ACGGAAGTTCCTGAAGAGAAGGCT -ACGGAAGTTCCTGAAGAGTCAACC -ACGGAAGTTCCTGAAGAGTGTTCC -ACGGAAGTTCCTGAAGAGATTCCC -ACGGAAGTTCCTGAAGAGTTCTCG -ACGGAAGTTCCTGAAGAGTAGACG -ACGGAAGTTCCTGAAGAGGTAACG -ACGGAAGTTCCTGAAGAGACTTCG -ACGGAAGTTCCTGAAGAGTACGCA -ACGGAAGTTCCTGAAGAGCTTGCA -ACGGAAGTTCCTGAAGAGCGAACA -ACGGAAGTTCCTGAAGAGCAGTCA -ACGGAAGTTCCTGAAGAGGATCCA -ACGGAAGTTCCTGAAGAGACGACA -ACGGAAGTTCCTGAAGAGAGCTCA -ACGGAAGTTCCTGAAGAGTCACGT -ACGGAAGTTCCTGAAGAGCGTAGT -ACGGAAGTTCCTGAAGAGGTCAGT -ACGGAAGTTCCTGAAGAGGAAGGT -ACGGAAGTTCCTGAAGAGAACCGT -ACGGAAGTTCCTGAAGAGTTGTGC -ACGGAAGTTCCTGAAGAGCTAAGC -ACGGAAGTTCCTGAAGAGACTAGC -ACGGAAGTTCCTGAAGAGAGATGC -ACGGAAGTTCCTGAAGAGTGAAGG -ACGGAAGTTCCTGAAGAGCAATGG -ACGGAAGTTCCTGAAGAGATGAGG -ACGGAAGTTCCTGAAGAGAATGGG -ACGGAAGTTCCTGAAGAGTCCTGA -ACGGAAGTTCCTGAAGAGTAGCGA -ACGGAAGTTCCTGAAGAGCACAGA -ACGGAAGTTCCTGAAGAGGCAAGA -ACGGAAGTTCCTGAAGAGGGTTGA -ACGGAAGTTCCTGAAGAGTCCGAT -ACGGAAGTTCCTGAAGAGTGGCAT -ACGGAAGTTCCTGAAGAGCGAGAT -ACGGAAGTTCCTGAAGAGTACCAC -ACGGAAGTTCCTGAAGAGCAGAAC -ACGGAAGTTCCTGAAGAGGTCTAC -ACGGAAGTTCCTGAAGAGACGTAC -ACGGAAGTTCCTGAAGAGAGTGAC -ACGGAAGTTCCTGAAGAGCTGTAG -ACGGAAGTTCCTGAAGAGCCTAAG -ACGGAAGTTCCTGAAGAGGTTCAG -ACGGAAGTTCCTGAAGAGGCATAG -ACGGAAGTTCCTGAAGAGGACAAG -ACGGAAGTTCCTGAAGAGAAGCAG -ACGGAAGTTCCTGAAGAGCGTCAA -ACGGAAGTTCCTGAAGAGGCTGAA -ACGGAAGTTCCTGAAGAGAGTACG -ACGGAAGTTCCTGAAGAGATCCGA -ACGGAAGTTCCTGAAGAGATGGGA -ACGGAAGTTCCTGAAGAGGTGCAA -ACGGAAGTTCCTGAAGAGGAGGAA -ACGGAAGTTCCTGAAGAGCAGGTA -ACGGAAGTTCCTGAAGAGGACTCT -ACGGAAGTTCCTGAAGAGAGTCCT -ACGGAAGTTCCTGAAGAGTAAGCC -ACGGAAGTTCCTGAAGAGATAGCC -ACGGAAGTTCCTGAAGAGTAACCG -ACGGAAGTTCCTGAAGAGATGCCA -ACGGAAGTTCCTGTACAGGGAAAC -ACGGAAGTTCCTGTACAGAACACC -ACGGAAGTTCCTGTACAGATCGAG -ACGGAAGTTCCTGTACAGCTCCTT -ACGGAAGTTCCTGTACAGCCTGTT -ACGGAAGTTCCTGTACAGCGGTTT -ACGGAAGTTCCTGTACAGGTGGTT -ACGGAAGTTCCTGTACAGGCCTTT -ACGGAAGTTCCTGTACAGGGTCTT -ACGGAAGTTCCTGTACAGACGCTT -ACGGAAGTTCCTGTACAGAGCGTT -ACGGAAGTTCCTGTACAGTTCGTC -ACGGAAGTTCCTGTACAGTCTCTC -ACGGAAGTTCCTGTACAGTGGATC -ACGGAAGTTCCTGTACAGCACTTC -ACGGAAGTTCCTGTACAGGTACTC -ACGGAAGTTCCTGTACAGGATGTC -ACGGAAGTTCCTGTACAGACAGTC -ACGGAAGTTCCTGTACAGTTGCTG -ACGGAAGTTCCTGTACAGTCCATG -ACGGAAGTTCCTGTACAGTGTGTG -ACGGAAGTTCCTGTACAGCTAGTG -ACGGAAGTTCCTGTACAGCATCTG -ACGGAAGTTCCTGTACAGGAGTTG -ACGGAAGTTCCTGTACAGAGACTG -ACGGAAGTTCCTGTACAGTCGGTA -ACGGAAGTTCCTGTACAGTGCCTA -ACGGAAGTTCCTGTACAGCCACTA -ACGGAAGTTCCTGTACAGGGAGTA -ACGGAAGTTCCTGTACAGTCGTCT -ACGGAAGTTCCTGTACAGTGCACT -ACGGAAGTTCCTGTACAGCTGACT -ACGGAAGTTCCTGTACAGCAACCT -ACGGAAGTTCCTGTACAGGCTACT -ACGGAAGTTCCTGTACAGGGATCT -ACGGAAGTTCCTGTACAGAAGGCT -ACGGAAGTTCCTGTACAGTCAACC -ACGGAAGTTCCTGTACAGTGTTCC -ACGGAAGTTCCTGTACAGATTCCC -ACGGAAGTTCCTGTACAGTTCTCG -ACGGAAGTTCCTGTACAGTAGACG -ACGGAAGTTCCTGTACAGGTAACG -ACGGAAGTTCCTGTACAGACTTCG -ACGGAAGTTCCTGTACAGTACGCA -ACGGAAGTTCCTGTACAGCTTGCA -ACGGAAGTTCCTGTACAGCGAACA -ACGGAAGTTCCTGTACAGCAGTCA -ACGGAAGTTCCTGTACAGGATCCA -ACGGAAGTTCCTGTACAGACGACA -ACGGAAGTTCCTGTACAGAGCTCA -ACGGAAGTTCCTGTACAGTCACGT -ACGGAAGTTCCTGTACAGCGTAGT -ACGGAAGTTCCTGTACAGGTCAGT -ACGGAAGTTCCTGTACAGGAAGGT -ACGGAAGTTCCTGTACAGAACCGT -ACGGAAGTTCCTGTACAGTTGTGC -ACGGAAGTTCCTGTACAGCTAAGC -ACGGAAGTTCCTGTACAGACTAGC -ACGGAAGTTCCTGTACAGAGATGC -ACGGAAGTTCCTGTACAGTGAAGG -ACGGAAGTTCCTGTACAGCAATGG -ACGGAAGTTCCTGTACAGATGAGG -ACGGAAGTTCCTGTACAGAATGGG -ACGGAAGTTCCTGTACAGTCCTGA -ACGGAAGTTCCTGTACAGTAGCGA -ACGGAAGTTCCTGTACAGCACAGA -ACGGAAGTTCCTGTACAGGCAAGA -ACGGAAGTTCCTGTACAGGGTTGA -ACGGAAGTTCCTGTACAGTCCGAT -ACGGAAGTTCCTGTACAGTGGCAT -ACGGAAGTTCCTGTACAGCGAGAT -ACGGAAGTTCCTGTACAGTACCAC -ACGGAAGTTCCTGTACAGCAGAAC -ACGGAAGTTCCTGTACAGGTCTAC -ACGGAAGTTCCTGTACAGACGTAC -ACGGAAGTTCCTGTACAGAGTGAC -ACGGAAGTTCCTGTACAGCTGTAG -ACGGAAGTTCCTGTACAGCCTAAG -ACGGAAGTTCCTGTACAGGTTCAG -ACGGAAGTTCCTGTACAGGCATAG -ACGGAAGTTCCTGTACAGGACAAG -ACGGAAGTTCCTGTACAGAAGCAG -ACGGAAGTTCCTGTACAGCGTCAA -ACGGAAGTTCCTGTACAGGCTGAA -ACGGAAGTTCCTGTACAGAGTACG -ACGGAAGTTCCTGTACAGATCCGA -ACGGAAGTTCCTGTACAGATGGGA -ACGGAAGTTCCTGTACAGGTGCAA -ACGGAAGTTCCTGTACAGGAGGAA -ACGGAAGTTCCTGTACAGCAGGTA -ACGGAAGTTCCTGTACAGGACTCT -ACGGAAGTTCCTGTACAGAGTCCT -ACGGAAGTTCCTGTACAGTAAGCC -ACGGAAGTTCCTGTACAGATAGCC -ACGGAAGTTCCTGTACAGTAACCG -ACGGAAGTTCCTGTACAGATGCCA -ACGGAAGTTCCTTCTGACGGAAAC -ACGGAAGTTCCTTCTGACAACACC -ACGGAAGTTCCTTCTGACATCGAG -ACGGAAGTTCCTTCTGACCTCCTT -ACGGAAGTTCCTTCTGACCCTGTT -ACGGAAGTTCCTTCTGACCGGTTT -ACGGAAGTTCCTTCTGACGTGGTT -ACGGAAGTTCCTTCTGACGCCTTT -ACGGAAGTTCCTTCTGACGGTCTT -ACGGAAGTTCCTTCTGACACGCTT -ACGGAAGTTCCTTCTGACAGCGTT -ACGGAAGTTCCTTCTGACTTCGTC -ACGGAAGTTCCTTCTGACTCTCTC -ACGGAAGTTCCTTCTGACTGGATC -ACGGAAGTTCCTTCTGACCACTTC -ACGGAAGTTCCTTCTGACGTACTC -ACGGAAGTTCCTTCTGACGATGTC -ACGGAAGTTCCTTCTGACACAGTC -ACGGAAGTTCCTTCTGACTTGCTG -ACGGAAGTTCCTTCTGACTCCATG -ACGGAAGTTCCTTCTGACTGTGTG -ACGGAAGTTCCTTCTGACCTAGTG -ACGGAAGTTCCTTCTGACCATCTG -ACGGAAGTTCCTTCTGACGAGTTG -ACGGAAGTTCCTTCTGACAGACTG -ACGGAAGTTCCTTCTGACTCGGTA -ACGGAAGTTCCTTCTGACTGCCTA -ACGGAAGTTCCTTCTGACCCACTA -ACGGAAGTTCCTTCTGACGGAGTA -ACGGAAGTTCCTTCTGACTCGTCT -ACGGAAGTTCCTTCTGACTGCACT -ACGGAAGTTCCTTCTGACCTGACT -ACGGAAGTTCCTTCTGACCAACCT -ACGGAAGTTCCTTCTGACGCTACT -ACGGAAGTTCCTTCTGACGGATCT -ACGGAAGTTCCTTCTGACAAGGCT -ACGGAAGTTCCTTCTGACTCAACC -ACGGAAGTTCCTTCTGACTGTTCC -ACGGAAGTTCCTTCTGACATTCCC -ACGGAAGTTCCTTCTGACTTCTCG -ACGGAAGTTCCTTCTGACTAGACG -ACGGAAGTTCCTTCTGACGTAACG -ACGGAAGTTCCTTCTGACACTTCG -ACGGAAGTTCCTTCTGACTACGCA -ACGGAAGTTCCTTCTGACCTTGCA -ACGGAAGTTCCTTCTGACCGAACA -ACGGAAGTTCCTTCTGACCAGTCA -ACGGAAGTTCCTTCTGACGATCCA -ACGGAAGTTCCTTCTGACACGACA -ACGGAAGTTCCTTCTGACAGCTCA -ACGGAAGTTCCTTCTGACTCACGT -ACGGAAGTTCCTTCTGACCGTAGT -ACGGAAGTTCCTTCTGACGTCAGT -ACGGAAGTTCCTTCTGACGAAGGT -ACGGAAGTTCCTTCTGACAACCGT -ACGGAAGTTCCTTCTGACTTGTGC -ACGGAAGTTCCTTCTGACCTAAGC -ACGGAAGTTCCTTCTGACACTAGC -ACGGAAGTTCCTTCTGACAGATGC -ACGGAAGTTCCTTCTGACTGAAGG -ACGGAAGTTCCTTCTGACCAATGG -ACGGAAGTTCCTTCTGACATGAGG -ACGGAAGTTCCTTCTGACAATGGG -ACGGAAGTTCCTTCTGACTCCTGA -ACGGAAGTTCCTTCTGACTAGCGA -ACGGAAGTTCCTTCTGACCACAGA -ACGGAAGTTCCTTCTGACGCAAGA -ACGGAAGTTCCTTCTGACGGTTGA -ACGGAAGTTCCTTCTGACTCCGAT -ACGGAAGTTCCTTCTGACTGGCAT -ACGGAAGTTCCTTCTGACCGAGAT -ACGGAAGTTCCTTCTGACTACCAC -ACGGAAGTTCCTTCTGACCAGAAC -ACGGAAGTTCCTTCTGACGTCTAC -ACGGAAGTTCCTTCTGACACGTAC -ACGGAAGTTCCTTCTGACAGTGAC -ACGGAAGTTCCTTCTGACCTGTAG -ACGGAAGTTCCTTCTGACCCTAAG -ACGGAAGTTCCTTCTGACGTTCAG -ACGGAAGTTCCTTCTGACGCATAG -ACGGAAGTTCCTTCTGACGACAAG -ACGGAAGTTCCTTCTGACAAGCAG -ACGGAAGTTCCTTCTGACCGTCAA -ACGGAAGTTCCTTCTGACGCTGAA -ACGGAAGTTCCTTCTGACAGTACG -ACGGAAGTTCCTTCTGACATCCGA -ACGGAAGTTCCTTCTGACATGGGA -ACGGAAGTTCCTTCTGACGTGCAA -ACGGAAGTTCCTTCTGACGAGGAA -ACGGAAGTTCCTTCTGACCAGGTA -ACGGAAGTTCCTTCTGACGACTCT -ACGGAAGTTCCTTCTGACAGTCCT -ACGGAAGTTCCTTCTGACTAAGCC -ACGGAAGTTCCTTCTGACATAGCC -ACGGAAGTTCCTTCTGACTAACCG -ACGGAAGTTCCTTCTGACATGCCA -ACGGAAGTTCCTCCTAGTGGAAAC -ACGGAAGTTCCTCCTAGTAACACC -ACGGAAGTTCCTCCTAGTATCGAG -ACGGAAGTTCCTCCTAGTCTCCTT -ACGGAAGTTCCTCCTAGTCCTGTT -ACGGAAGTTCCTCCTAGTCGGTTT -ACGGAAGTTCCTCCTAGTGTGGTT -ACGGAAGTTCCTCCTAGTGCCTTT -ACGGAAGTTCCTCCTAGTGGTCTT -ACGGAAGTTCCTCCTAGTACGCTT -ACGGAAGTTCCTCCTAGTAGCGTT -ACGGAAGTTCCTCCTAGTTTCGTC -ACGGAAGTTCCTCCTAGTTCTCTC -ACGGAAGTTCCTCCTAGTTGGATC -ACGGAAGTTCCTCCTAGTCACTTC -ACGGAAGTTCCTCCTAGTGTACTC -ACGGAAGTTCCTCCTAGTGATGTC -ACGGAAGTTCCTCCTAGTACAGTC -ACGGAAGTTCCTCCTAGTTTGCTG -ACGGAAGTTCCTCCTAGTTCCATG -ACGGAAGTTCCTCCTAGTTGTGTG -ACGGAAGTTCCTCCTAGTCTAGTG -ACGGAAGTTCCTCCTAGTCATCTG -ACGGAAGTTCCTCCTAGTGAGTTG -ACGGAAGTTCCTCCTAGTAGACTG -ACGGAAGTTCCTCCTAGTTCGGTA -ACGGAAGTTCCTCCTAGTTGCCTA -ACGGAAGTTCCTCCTAGTCCACTA -ACGGAAGTTCCTCCTAGTGGAGTA -ACGGAAGTTCCTCCTAGTTCGTCT -ACGGAAGTTCCTCCTAGTTGCACT -ACGGAAGTTCCTCCTAGTCTGACT -ACGGAAGTTCCTCCTAGTCAACCT -ACGGAAGTTCCTCCTAGTGCTACT -ACGGAAGTTCCTCCTAGTGGATCT -ACGGAAGTTCCTCCTAGTAAGGCT -ACGGAAGTTCCTCCTAGTTCAACC -ACGGAAGTTCCTCCTAGTTGTTCC -ACGGAAGTTCCTCCTAGTATTCCC -ACGGAAGTTCCTCCTAGTTTCTCG -ACGGAAGTTCCTCCTAGTTAGACG -ACGGAAGTTCCTCCTAGTGTAACG -ACGGAAGTTCCTCCTAGTACTTCG -ACGGAAGTTCCTCCTAGTTACGCA -ACGGAAGTTCCTCCTAGTCTTGCA -ACGGAAGTTCCTCCTAGTCGAACA -ACGGAAGTTCCTCCTAGTCAGTCA -ACGGAAGTTCCTCCTAGTGATCCA -ACGGAAGTTCCTCCTAGTACGACA -ACGGAAGTTCCTCCTAGTAGCTCA -ACGGAAGTTCCTCCTAGTTCACGT -ACGGAAGTTCCTCCTAGTCGTAGT -ACGGAAGTTCCTCCTAGTGTCAGT -ACGGAAGTTCCTCCTAGTGAAGGT -ACGGAAGTTCCTCCTAGTAACCGT -ACGGAAGTTCCTCCTAGTTTGTGC -ACGGAAGTTCCTCCTAGTCTAAGC -ACGGAAGTTCCTCCTAGTACTAGC -ACGGAAGTTCCTCCTAGTAGATGC -ACGGAAGTTCCTCCTAGTTGAAGG -ACGGAAGTTCCTCCTAGTCAATGG -ACGGAAGTTCCTCCTAGTATGAGG -ACGGAAGTTCCTCCTAGTAATGGG -ACGGAAGTTCCTCCTAGTTCCTGA -ACGGAAGTTCCTCCTAGTTAGCGA -ACGGAAGTTCCTCCTAGTCACAGA -ACGGAAGTTCCTCCTAGTGCAAGA -ACGGAAGTTCCTCCTAGTGGTTGA -ACGGAAGTTCCTCCTAGTTCCGAT -ACGGAAGTTCCTCCTAGTTGGCAT -ACGGAAGTTCCTCCTAGTCGAGAT -ACGGAAGTTCCTCCTAGTTACCAC -ACGGAAGTTCCTCCTAGTCAGAAC -ACGGAAGTTCCTCCTAGTGTCTAC -ACGGAAGTTCCTCCTAGTACGTAC -ACGGAAGTTCCTCCTAGTAGTGAC -ACGGAAGTTCCTCCTAGTCTGTAG -ACGGAAGTTCCTCCTAGTCCTAAG -ACGGAAGTTCCTCCTAGTGTTCAG -ACGGAAGTTCCTCCTAGTGCATAG -ACGGAAGTTCCTCCTAGTGACAAG -ACGGAAGTTCCTCCTAGTAAGCAG -ACGGAAGTTCCTCCTAGTCGTCAA -ACGGAAGTTCCTCCTAGTGCTGAA -ACGGAAGTTCCTCCTAGTAGTACG -ACGGAAGTTCCTCCTAGTATCCGA -ACGGAAGTTCCTCCTAGTATGGGA -ACGGAAGTTCCTCCTAGTGTGCAA -ACGGAAGTTCCTCCTAGTGAGGAA -ACGGAAGTTCCTCCTAGTCAGGTA -ACGGAAGTTCCTCCTAGTGACTCT -ACGGAAGTTCCTCCTAGTAGTCCT -ACGGAAGTTCCTCCTAGTTAAGCC -ACGGAAGTTCCTCCTAGTATAGCC -ACGGAAGTTCCTCCTAGTTAACCG -ACGGAAGTTCCTCCTAGTATGCCA -ACGGAAGTTCCTGCCTAAGGAAAC -ACGGAAGTTCCTGCCTAAAACACC -ACGGAAGTTCCTGCCTAAATCGAG -ACGGAAGTTCCTGCCTAACTCCTT -ACGGAAGTTCCTGCCTAACCTGTT -ACGGAAGTTCCTGCCTAACGGTTT -ACGGAAGTTCCTGCCTAAGTGGTT -ACGGAAGTTCCTGCCTAAGCCTTT -ACGGAAGTTCCTGCCTAAGGTCTT -ACGGAAGTTCCTGCCTAAACGCTT -ACGGAAGTTCCTGCCTAAAGCGTT -ACGGAAGTTCCTGCCTAATTCGTC -ACGGAAGTTCCTGCCTAATCTCTC -ACGGAAGTTCCTGCCTAATGGATC -ACGGAAGTTCCTGCCTAACACTTC -ACGGAAGTTCCTGCCTAAGTACTC -ACGGAAGTTCCTGCCTAAGATGTC -ACGGAAGTTCCTGCCTAAACAGTC -ACGGAAGTTCCTGCCTAATTGCTG -ACGGAAGTTCCTGCCTAATCCATG -ACGGAAGTTCCTGCCTAATGTGTG -ACGGAAGTTCCTGCCTAACTAGTG -ACGGAAGTTCCTGCCTAACATCTG -ACGGAAGTTCCTGCCTAAGAGTTG -ACGGAAGTTCCTGCCTAAAGACTG -ACGGAAGTTCCTGCCTAATCGGTA -ACGGAAGTTCCTGCCTAATGCCTA -ACGGAAGTTCCTGCCTAACCACTA -ACGGAAGTTCCTGCCTAAGGAGTA -ACGGAAGTTCCTGCCTAATCGTCT -ACGGAAGTTCCTGCCTAATGCACT -ACGGAAGTTCCTGCCTAACTGACT -ACGGAAGTTCCTGCCTAACAACCT -ACGGAAGTTCCTGCCTAAGCTACT -ACGGAAGTTCCTGCCTAAGGATCT -ACGGAAGTTCCTGCCTAAAAGGCT -ACGGAAGTTCCTGCCTAATCAACC -ACGGAAGTTCCTGCCTAATGTTCC -ACGGAAGTTCCTGCCTAAATTCCC -ACGGAAGTTCCTGCCTAATTCTCG -ACGGAAGTTCCTGCCTAATAGACG -ACGGAAGTTCCTGCCTAAGTAACG -ACGGAAGTTCCTGCCTAAACTTCG -ACGGAAGTTCCTGCCTAATACGCA -ACGGAAGTTCCTGCCTAACTTGCA -ACGGAAGTTCCTGCCTAACGAACA -ACGGAAGTTCCTGCCTAACAGTCA -ACGGAAGTTCCTGCCTAAGATCCA -ACGGAAGTTCCTGCCTAAACGACA -ACGGAAGTTCCTGCCTAAAGCTCA -ACGGAAGTTCCTGCCTAATCACGT -ACGGAAGTTCCTGCCTAACGTAGT -ACGGAAGTTCCTGCCTAAGTCAGT -ACGGAAGTTCCTGCCTAAGAAGGT -ACGGAAGTTCCTGCCTAAAACCGT -ACGGAAGTTCCTGCCTAATTGTGC -ACGGAAGTTCCTGCCTAACTAAGC -ACGGAAGTTCCTGCCTAAACTAGC -ACGGAAGTTCCTGCCTAAAGATGC -ACGGAAGTTCCTGCCTAATGAAGG -ACGGAAGTTCCTGCCTAACAATGG -ACGGAAGTTCCTGCCTAAATGAGG -ACGGAAGTTCCTGCCTAAAATGGG -ACGGAAGTTCCTGCCTAATCCTGA -ACGGAAGTTCCTGCCTAATAGCGA -ACGGAAGTTCCTGCCTAACACAGA -ACGGAAGTTCCTGCCTAAGCAAGA -ACGGAAGTTCCTGCCTAAGGTTGA -ACGGAAGTTCCTGCCTAATCCGAT -ACGGAAGTTCCTGCCTAATGGCAT -ACGGAAGTTCCTGCCTAACGAGAT -ACGGAAGTTCCTGCCTAATACCAC -ACGGAAGTTCCTGCCTAACAGAAC -ACGGAAGTTCCTGCCTAAGTCTAC -ACGGAAGTTCCTGCCTAAACGTAC -ACGGAAGTTCCTGCCTAAAGTGAC -ACGGAAGTTCCTGCCTAACTGTAG -ACGGAAGTTCCTGCCTAACCTAAG -ACGGAAGTTCCTGCCTAAGTTCAG -ACGGAAGTTCCTGCCTAAGCATAG -ACGGAAGTTCCTGCCTAAGACAAG -ACGGAAGTTCCTGCCTAAAAGCAG -ACGGAAGTTCCTGCCTAACGTCAA -ACGGAAGTTCCTGCCTAAGCTGAA -ACGGAAGTTCCTGCCTAAAGTACG -ACGGAAGTTCCTGCCTAAATCCGA -ACGGAAGTTCCTGCCTAAATGGGA -ACGGAAGTTCCTGCCTAAGTGCAA -ACGGAAGTTCCTGCCTAAGAGGAA -ACGGAAGTTCCTGCCTAACAGGTA -ACGGAAGTTCCTGCCTAAGACTCT -ACGGAAGTTCCTGCCTAAAGTCCT -ACGGAAGTTCCTGCCTAATAAGCC -ACGGAAGTTCCTGCCTAAATAGCC -ACGGAAGTTCCTGCCTAATAACCG -ACGGAAGTTCCTGCCTAAATGCCA -ACGGAAGTTCCTGCCATAGGAAAC -ACGGAAGTTCCTGCCATAAACACC -ACGGAAGTTCCTGCCATAATCGAG -ACGGAAGTTCCTGCCATACTCCTT -ACGGAAGTTCCTGCCATACCTGTT -ACGGAAGTTCCTGCCATACGGTTT -ACGGAAGTTCCTGCCATAGTGGTT -ACGGAAGTTCCTGCCATAGCCTTT -ACGGAAGTTCCTGCCATAGGTCTT -ACGGAAGTTCCTGCCATAACGCTT -ACGGAAGTTCCTGCCATAAGCGTT -ACGGAAGTTCCTGCCATATTCGTC -ACGGAAGTTCCTGCCATATCTCTC -ACGGAAGTTCCTGCCATATGGATC -ACGGAAGTTCCTGCCATACACTTC -ACGGAAGTTCCTGCCATAGTACTC -ACGGAAGTTCCTGCCATAGATGTC -ACGGAAGTTCCTGCCATAACAGTC -ACGGAAGTTCCTGCCATATTGCTG -ACGGAAGTTCCTGCCATATCCATG -ACGGAAGTTCCTGCCATATGTGTG -ACGGAAGTTCCTGCCATACTAGTG -ACGGAAGTTCCTGCCATACATCTG -ACGGAAGTTCCTGCCATAGAGTTG -ACGGAAGTTCCTGCCATAAGACTG -ACGGAAGTTCCTGCCATATCGGTA -ACGGAAGTTCCTGCCATATGCCTA -ACGGAAGTTCCTGCCATACCACTA -ACGGAAGTTCCTGCCATAGGAGTA -ACGGAAGTTCCTGCCATATCGTCT -ACGGAAGTTCCTGCCATATGCACT -ACGGAAGTTCCTGCCATACTGACT -ACGGAAGTTCCTGCCATACAACCT -ACGGAAGTTCCTGCCATAGCTACT -ACGGAAGTTCCTGCCATAGGATCT -ACGGAAGTTCCTGCCATAAAGGCT -ACGGAAGTTCCTGCCATATCAACC -ACGGAAGTTCCTGCCATATGTTCC -ACGGAAGTTCCTGCCATAATTCCC -ACGGAAGTTCCTGCCATATTCTCG -ACGGAAGTTCCTGCCATATAGACG -ACGGAAGTTCCTGCCATAGTAACG -ACGGAAGTTCCTGCCATAACTTCG -ACGGAAGTTCCTGCCATATACGCA -ACGGAAGTTCCTGCCATACTTGCA -ACGGAAGTTCCTGCCATACGAACA -ACGGAAGTTCCTGCCATACAGTCA -ACGGAAGTTCCTGCCATAGATCCA -ACGGAAGTTCCTGCCATAACGACA -ACGGAAGTTCCTGCCATAAGCTCA -ACGGAAGTTCCTGCCATATCACGT -ACGGAAGTTCCTGCCATACGTAGT -ACGGAAGTTCCTGCCATAGTCAGT -ACGGAAGTTCCTGCCATAGAAGGT -ACGGAAGTTCCTGCCATAAACCGT -ACGGAAGTTCCTGCCATATTGTGC -ACGGAAGTTCCTGCCATACTAAGC -ACGGAAGTTCCTGCCATAACTAGC -ACGGAAGTTCCTGCCATAAGATGC -ACGGAAGTTCCTGCCATATGAAGG -ACGGAAGTTCCTGCCATACAATGG -ACGGAAGTTCCTGCCATAATGAGG -ACGGAAGTTCCTGCCATAAATGGG -ACGGAAGTTCCTGCCATATCCTGA -ACGGAAGTTCCTGCCATATAGCGA -ACGGAAGTTCCTGCCATACACAGA -ACGGAAGTTCCTGCCATAGCAAGA -ACGGAAGTTCCTGCCATAGGTTGA -ACGGAAGTTCCTGCCATATCCGAT -ACGGAAGTTCCTGCCATATGGCAT -ACGGAAGTTCCTGCCATACGAGAT -ACGGAAGTTCCTGCCATATACCAC -ACGGAAGTTCCTGCCATACAGAAC -ACGGAAGTTCCTGCCATAGTCTAC -ACGGAAGTTCCTGCCATAACGTAC -ACGGAAGTTCCTGCCATAAGTGAC -ACGGAAGTTCCTGCCATACTGTAG -ACGGAAGTTCCTGCCATACCTAAG -ACGGAAGTTCCTGCCATAGTTCAG -ACGGAAGTTCCTGCCATAGCATAG -ACGGAAGTTCCTGCCATAGACAAG -ACGGAAGTTCCTGCCATAAAGCAG -ACGGAAGTTCCTGCCATACGTCAA -ACGGAAGTTCCTGCCATAGCTGAA -ACGGAAGTTCCTGCCATAAGTACG -ACGGAAGTTCCTGCCATAATCCGA -ACGGAAGTTCCTGCCATAATGGGA -ACGGAAGTTCCTGCCATAGTGCAA -ACGGAAGTTCCTGCCATAGAGGAA -ACGGAAGTTCCTGCCATACAGGTA -ACGGAAGTTCCTGCCATAGACTCT -ACGGAAGTTCCTGCCATAAGTCCT -ACGGAAGTTCCTGCCATATAAGCC -ACGGAAGTTCCTGCCATAATAGCC -ACGGAAGTTCCTGCCATATAACCG -ACGGAAGTTCCTGCCATAATGCCA -ACGGAAGTTCCTCCGTAAGGAAAC -ACGGAAGTTCCTCCGTAAAACACC -ACGGAAGTTCCTCCGTAAATCGAG -ACGGAAGTTCCTCCGTAACTCCTT -ACGGAAGTTCCTCCGTAACCTGTT -ACGGAAGTTCCTCCGTAACGGTTT -ACGGAAGTTCCTCCGTAAGTGGTT -ACGGAAGTTCCTCCGTAAGCCTTT -ACGGAAGTTCCTCCGTAAGGTCTT -ACGGAAGTTCCTCCGTAAACGCTT -ACGGAAGTTCCTCCGTAAAGCGTT -ACGGAAGTTCCTCCGTAATTCGTC -ACGGAAGTTCCTCCGTAATCTCTC -ACGGAAGTTCCTCCGTAATGGATC -ACGGAAGTTCCTCCGTAACACTTC -ACGGAAGTTCCTCCGTAAGTACTC -ACGGAAGTTCCTCCGTAAGATGTC -ACGGAAGTTCCTCCGTAAACAGTC -ACGGAAGTTCCTCCGTAATTGCTG -ACGGAAGTTCCTCCGTAATCCATG -ACGGAAGTTCCTCCGTAATGTGTG -ACGGAAGTTCCTCCGTAACTAGTG -ACGGAAGTTCCTCCGTAACATCTG -ACGGAAGTTCCTCCGTAAGAGTTG -ACGGAAGTTCCTCCGTAAAGACTG -ACGGAAGTTCCTCCGTAATCGGTA -ACGGAAGTTCCTCCGTAATGCCTA -ACGGAAGTTCCTCCGTAACCACTA -ACGGAAGTTCCTCCGTAAGGAGTA -ACGGAAGTTCCTCCGTAATCGTCT -ACGGAAGTTCCTCCGTAATGCACT -ACGGAAGTTCCTCCGTAACTGACT -ACGGAAGTTCCTCCGTAACAACCT -ACGGAAGTTCCTCCGTAAGCTACT -ACGGAAGTTCCTCCGTAAGGATCT -ACGGAAGTTCCTCCGTAAAAGGCT -ACGGAAGTTCCTCCGTAATCAACC -ACGGAAGTTCCTCCGTAATGTTCC -ACGGAAGTTCCTCCGTAAATTCCC -ACGGAAGTTCCTCCGTAATTCTCG -ACGGAAGTTCCTCCGTAATAGACG -ACGGAAGTTCCTCCGTAAGTAACG -ACGGAAGTTCCTCCGTAAACTTCG -ACGGAAGTTCCTCCGTAATACGCA -ACGGAAGTTCCTCCGTAACTTGCA -ACGGAAGTTCCTCCGTAACGAACA -ACGGAAGTTCCTCCGTAACAGTCA -ACGGAAGTTCCTCCGTAAGATCCA -ACGGAAGTTCCTCCGTAAACGACA -ACGGAAGTTCCTCCGTAAAGCTCA -ACGGAAGTTCCTCCGTAATCACGT -ACGGAAGTTCCTCCGTAACGTAGT -ACGGAAGTTCCTCCGTAAGTCAGT -ACGGAAGTTCCTCCGTAAGAAGGT -ACGGAAGTTCCTCCGTAAAACCGT -ACGGAAGTTCCTCCGTAATTGTGC -ACGGAAGTTCCTCCGTAACTAAGC -ACGGAAGTTCCTCCGTAAACTAGC -ACGGAAGTTCCTCCGTAAAGATGC -ACGGAAGTTCCTCCGTAATGAAGG -ACGGAAGTTCCTCCGTAACAATGG -ACGGAAGTTCCTCCGTAAATGAGG -ACGGAAGTTCCTCCGTAAAATGGG -ACGGAAGTTCCTCCGTAATCCTGA -ACGGAAGTTCCTCCGTAATAGCGA -ACGGAAGTTCCTCCGTAACACAGA -ACGGAAGTTCCTCCGTAAGCAAGA -ACGGAAGTTCCTCCGTAAGGTTGA -ACGGAAGTTCCTCCGTAATCCGAT -ACGGAAGTTCCTCCGTAATGGCAT -ACGGAAGTTCCTCCGTAACGAGAT -ACGGAAGTTCCTCCGTAATACCAC -ACGGAAGTTCCTCCGTAACAGAAC -ACGGAAGTTCCTCCGTAAGTCTAC -ACGGAAGTTCCTCCGTAAACGTAC -ACGGAAGTTCCTCCGTAAAGTGAC -ACGGAAGTTCCTCCGTAACTGTAG -ACGGAAGTTCCTCCGTAACCTAAG -ACGGAAGTTCCTCCGTAAGTTCAG -ACGGAAGTTCCTCCGTAAGCATAG -ACGGAAGTTCCTCCGTAAGACAAG -ACGGAAGTTCCTCCGTAAAAGCAG -ACGGAAGTTCCTCCGTAACGTCAA -ACGGAAGTTCCTCCGTAAGCTGAA -ACGGAAGTTCCTCCGTAAAGTACG -ACGGAAGTTCCTCCGTAAATCCGA -ACGGAAGTTCCTCCGTAAATGGGA -ACGGAAGTTCCTCCGTAAGTGCAA -ACGGAAGTTCCTCCGTAAGAGGAA -ACGGAAGTTCCTCCGTAACAGGTA -ACGGAAGTTCCTCCGTAAGACTCT -ACGGAAGTTCCTCCGTAAAGTCCT -ACGGAAGTTCCTCCGTAATAAGCC -ACGGAAGTTCCTCCGTAAATAGCC -ACGGAAGTTCCTCCGTAATAACCG -ACGGAAGTTCCTCCGTAAATGCCA -ACGGAAGTTCCTCCAATGGGAAAC -ACGGAAGTTCCTCCAATGAACACC -ACGGAAGTTCCTCCAATGATCGAG -ACGGAAGTTCCTCCAATGCTCCTT -ACGGAAGTTCCTCCAATGCCTGTT -ACGGAAGTTCCTCCAATGCGGTTT -ACGGAAGTTCCTCCAATGGTGGTT -ACGGAAGTTCCTCCAATGGCCTTT -ACGGAAGTTCCTCCAATGGGTCTT -ACGGAAGTTCCTCCAATGACGCTT -ACGGAAGTTCCTCCAATGAGCGTT -ACGGAAGTTCCTCCAATGTTCGTC -ACGGAAGTTCCTCCAATGTCTCTC -ACGGAAGTTCCTCCAATGTGGATC -ACGGAAGTTCCTCCAATGCACTTC -ACGGAAGTTCCTCCAATGGTACTC -ACGGAAGTTCCTCCAATGGATGTC -ACGGAAGTTCCTCCAATGACAGTC -ACGGAAGTTCCTCCAATGTTGCTG -ACGGAAGTTCCTCCAATGTCCATG -ACGGAAGTTCCTCCAATGTGTGTG -ACGGAAGTTCCTCCAATGCTAGTG -ACGGAAGTTCCTCCAATGCATCTG -ACGGAAGTTCCTCCAATGGAGTTG -ACGGAAGTTCCTCCAATGAGACTG -ACGGAAGTTCCTCCAATGTCGGTA -ACGGAAGTTCCTCCAATGTGCCTA -ACGGAAGTTCCTCCAATGCCACTA -ACGGAAGTTCCTCCAATGGGAGTA -ACGGAAGTTCCTCCAATGTCGTCT -ACGGAAGTTCCTCCAATGTGCACT -ACGGAAGTTCCTCCAATGCTGACT -ACGGAAGTTCCTCCAATGCAACCT -ACGGAAGTTCCTCCAATGGCTACT -ACGGAAGTTCCTCCAATGGGATCT -ACGGAAGTTCCTCCAATGAAGGCT -ACGGAAGTTCCTCCAATGTCAACC -ACGGAAGTTCCTCCAATGTGTTCC -ACGGAAGTTCCTCCAATGATTCCC -ACGGAAGTTCCTCCAATGTTCTCG -ACGGAAGTTCCTCCAATGTAGACG -ACGGAAGTTCCTCCAATGGTAACG -ACGGAAGTTCCTCCAATGACTTCG -ACGGAAGTTCCTCCAATGTACGCA -ACGGAAGTTCCTCCAATGCTTGCA -ACGGAAGTTCCTCCAATGCGAACA -ACGGAAGTTCCTCCAATGCAGTCA -ACGGAAGTTCCTCCAATGGATCCA -ACGGAAGTTCCTCCAATGACGACA -ACGGAAGTTCCTCCAATGAGCTCA -ACGGAAGTTCCTCCAATGTCACGT -ACGGAAGTTCCTCCAATGCGTAGT -ACGGAAGTTCCTCCAATGGTCAGT -ACGGAAGTTCCTCCAATGGAAGGT -ACGGAAGTTCCTCCAATGAACCGT -ACGGAAGTTCCTCCAATGTTGTGC -ACGGAAGTTCCTCCAATGCTAAGC -ACGGAAGTTCCTCCAATGACTAGC -ACGGAAGTTCCTCCAATGAGATGC -ACGGAAGTTCCTCCAATGTGAAGG -ACGGAAGTTCCTCCAATGCAATGG -ACGGAAGTTCCTCCAATGATGAGG -ACGGAAGTTCCTCCAATGAATGGG -ACGGAAGTTCCTCCAATGTCCTGA -ACGGAAGTTCCTCCAATGTAGCGA -ACGGAAGTTCCTCCAATGCACAGA -ACGGAAGTTCCTCCAATGGCAAGA -ACGGAAGTTCCTCCAATGGGTTGA -ACGGAAGTTCCTCCAATGTCCGAT -ACGGAAGTTCCTCCAATGTGGCAT -ACGGAAGTTCCTCCAATGCGAGAT -ACGGAAGTTCCTCCAATGTACCAC -ACGGAAGTTCCTCCAATGCAGAAC -ACGGAAGTTCCTCCAATGGTCTAC -ACGGAAGTTCCTCCAATGACGTAC -ACGGAAGTTCCTCCAATGAGTGAC -ACGGAAGTTCCTCCAATGCTGTAG -ACGGAAGTTCCTCCAATGCCTAAG -ACGGAAGTTCCTCCAATGGTTCAG -ACGGAAGTTCCTCCAATGGCATAG -ACGGAAGTTCCTCCAATGGACAAG -ACGGAAGTTCCTCCAATGAAGCAG -ACGGAAGTTCCTCCAATGCGTCAA -ACGGAAGTTCCTCCAATGGCTGAA -ACGGAAGTTCCTCCAATGAGTACG -ACGGAAGTTCCTCCAATGATCCGA -ACGGAAGTTCCTCCAATGATGGGA -ACGGAAGTTCCTCCAATGGTGCAA -ACGGAAGTTCCTCCAATGGAGGAA -ACGGAAGTTCCTCCAATGCAGGTA -ACGGAAGTTCCTCCAATGGACTCT -ACGGAAGTTCCTCCAATGAGTCCT -ACGGAAGTTCCTCCAATGTAAGCC -ACGGAAGTTCCTCCAATGATAGCC -ACGGAAGTTCCTCCAATGTAACCG -ACGGAAGTTCCTCCAATGATGCCA -ACGGAATTCCCAAACGGAGGAAAC -ACGGAATTCCCAAACGGAAACACC -ACGGAATTCCCAAACGGAATCGAG -ACGGAATTCCCAAACGGACTCCTT -ACGGAATTCCCAAACGGACCTGTT -ACGGAATTCCCAAACGGACGGTTT -ACGGAATTCCCAAACGGAGTGGTT -ACGGAATTCCCAAACGGAGCCTTT -ACGGAATTCCCAAACGGAGGTCTT -ACGGAATTCCCAAACGGAACGCTT -ACGGAATTCCCAAACGGAAGCGTT -ACGGAATTCCCAAACGGATTCGTC -ACGGAATTCCCAAACGGATCTCTC -ACGGAATTCCCAAACGGATGGATC -ACGGAATTCCCAAACGGACACTTC -ACGGAATTCCCAAACGGAGTACTC -ACGGAATTCCCAAACGGAGATGTC -ACGGAATTCCCAAACGGAACAGTC -ACGGAATTCCCAAACGGATTGCTG -ACGGAATTCCCAAACGGATCCATG -ACGGAATTCCCAAACGGATGTGTG -ACGGAATTCCCAAACGGACTAGTG -ACGGAATTCCCAAACGGACATCTG -ACGGAATTCCCAAACGGAGAGTTG -ACGGAATTCCCAAACGGAAGACTG -ACGGAATTCCCAAACGGATCGGTA -ACGGAATTCCCAAACGGATGCCTA -ACGGAATTCCCAAACGGACCACTA -ACGGAATTCCCAAACGGAGGAGTA -ACGGAATTCCCAAACGGATCGTCT -ACGGAATTCCCAAACGGATGCACT -ACGGAATTCCCAAACGGACTGACT -ACGGAATTCCCAAACGGACAACCT -ACGGAATTCCCAAACGGAGCTACT -ACGGAATTCCCAAACGGAGGATCT -ACGGAATTCCCAAACGGAAAGGCT -ACGGAATTCCCAAACGGATCAACC -ACGGAATTCCCAAACGGATGTTCC -ACGGAATTCCCAAACGGAATTCCC -ACGGAATTCCCAAACGGATTCTCG -ACGGAATTCCCAAACGGATAGACG -ACGGAATTCCCAAACGGAGTAACG -ACGGAATTCCCAAACGGAACTTCG -ACGGAATTCCCAAACGGATACGCA -ACGGAATTCCCAAACGGACTTGCA -ACGGAATTCCCAAACGGACGAACA -ACGGAATTCCCAAACGGACAGTCA -ACGGAATTCCCAAACGGAGATCCA -ACGGAATTCCCAAACGGAACGACA -ACGGAATTCCCAAACGGAAGCTCA -ACGGAATTCCCAAACGGATCACGT -ACGGAATTCCCAAACGGACGTAGT -ACGGAATTCCCAAACGGAGTCAGT -ACGGAATTCCCAAACGGAGAAGGT -ACGGAATTCCCAAACGGAAACCGT -ACGGAATTCCCAAACGGATTGTGC -ACGGAATTCCCAAACGGACTAAGC -ACGGAATTCCCAAACGGAACTAGC -ACGGAATTCCCAAACGGAAGATGC -ACGGAATTCCCAAACGGATGAAGG -ACGGAATTCCCAAACGGACAATGG -ACGGAATTCCCAAACGGAATGAGG -ACGGAATTCCCAAACGGAAATGGG -ACGGAATTCCCAAACGGATCCTGA -ACGGAATTCCCAAACGGATAGCGA -ACGGAATTCCCAAACGGACACAGA -ACGGAATTCCCAAACGGAGCAAGA -ACGGAATTCCCAAACGGAGGTTGA -ACGGAATTCCCAAACGGATCCGAT -ACGGAATTCCCAAACGGATGGCAT -ACGGAATTCCCAAACGGACGAGAT -ACGGAATTCCCAAACGGATACCAC -ACGGAATTCCCAAACGGACAGAAC -ACGGAATTCCCAAACGGAGTCTAC -ACGGAATTCCCAAACGGAACGTAC -ACGGAATTCCCAAACGGAAGTGAC -ACGGAATTCCCAAACGGACTGTAG -ACGGAATTCCCAAACGGACCTAAG -ACGGAATTCCCAAACGGAGTTCAG -ACGGAATTCCCAAACGGAGCATAG -ACGGAATTCCCAAACGGAGACAAG -ACGGAATTCCCAAACGGAAAGCAG -ACGGAATTCCCAAACGGACGTCAA -ACGGAATTCCCAAACGGAGCTGAA -ACGGAATTCCCAAACGGAAGTACG -ACGGAATTCCCAAACGGAATCCGA -ACGGAATTCCCAAACGGAATGGGA -ACGGAATTCCCAAACGGAGTGCAA -ACGGAATTCCCAAACGGAGAGGAA -ACGGAATTCCCAAACGGACAGGTA -ACGGAATTCCCAAACGGAGACTCT -ACGGAATTCCCAAACGGAAGTCCT -ACGGAATTCCCAAACGGATAAGCC -ACGGAATTCCCAAACGGAATAGCC -ACGGAATTCCCAAACGGATAACCG -ACGGAATTCCCAAACGGAATGCCA -ACGGAATTCCCAACCAACGGAAAC -ACGGAATTCCCAACCAACAACACC -ACGGAATTCCCAACCAACATCGAG -ACGGAATTCCCAACCAACCTCCTT -ACGGAATTCCCAACCAACCCTGTT -ACGGAATTCCCAACCAACCGGTTT -ACGGAATTCCCAACCAACGTGGTT -ACGGAATTCCCAACCAACGCCTTT -ACGGAATTCCCAACCAACGGTCTT -ACGGAATTCCCAACCAACACGCTT -ACGGAATTCCCAACCAACAGCGTT -ACGGAATTCCCAACCAACTTCGTC -ACGGAATTCCCAACCAACTCTCTC -ACGGAATTCCCAACCAACTGGATC -ACGGAATTCCCAACCAACCACTTC -ACGGAATTCCCAACCAACGTACTC -ACGGAATTCCCAACCAACGATGTC -ACGGAATTCCCAACCAACACAGTC -ACGGAATTCCCAACCAACTTGCTG -ACGGAATTCCCAACCAACTCCATG -ACGGAATTCCCAACCAACTGTGTG -ACGGAATTCCCAACCAACCTAGTG -ACGGAATTCCCAACCAACCATCTG -ACGGAATTCCCAACCAACGAGTTG -ACGGAATTCCCAACCAACAGACTG -ACGGAATTCCCAACCAACTCGGTA -ACGGAATTCCCAACCAACTGCCTA -ACGGAATTCCCAACCAACCCACTA -ACGGAATTCCCAACCAACGGAGTA -ACGGAATTCCCAACCAACTCGTCT -ACGGAATTCCCAACCAACTGCACT -ACGGAATTCCCAACCAACCTGACT -ACGGAATTCCCAACCAACCAACCT -ACGGAATTCCCAACCAACGCTACT -ACGGAATTCCCAACCAACGGATCT -ACGGAATTCCCAACCAACAAGGCT -ACGGAATTCCCAACCAACTCAACC -ACGGAATTCCCAACCAACTGTTCC -ACGGAATTCCCAACCAACATTCCC -ACGGAATTCCCAACCAACTTCTCG -ACGGAATTCCCAACCAACTAGACG -ACGGAATTCCCAACCAACGTAACG -ACGGAATTCCCAACCAACACTTCG -ACGGAATTCCCAACCAACTACGCA -ACGGAATTCCCAACCAACCTTGCA -ACGGAATTCCCAACCAACCGAACA -ACGGAATTCCCAACCAACCAGTCA -ACGGAATTCCCAACCAACGATCCA -ACGGAATTCCCAACCAACACGACA -ACGGAATTCCCAACCAACAGCTCA -ACGGAATTCCCAACCAACTCACGT -ACGGAATTCCCAACCAACCGTAGT -ACGGAATTCCCAACCAACGTCAGT -ACGGAATTCCCAACCAACGAAGGT -ACGGAATTCCCAACCAACAACCGT -ACGGAATTCCCAACCAACTTGTGC -ACGGAATTCCCAACCAACCTAAGC -ACGGAATTCCCAACCAACACTAGC -ACGGAATTCCCAACCAACAGATGC -ACGGAATTCCCAACCAACTGAAGG -ACGGAATTCCCAACCAACCAATGG -ACGGAATTCCCAACCAACATGAGG -ACGGAATTCCCAACCAACAATGGG -ACGGAATTCCCAACCAACTCCTGA -ACGGAATTCCCAACCAACTAGCGA -ACGGAATTCCCAACCAACCACAGA -ACGGAATTCCCAACCAACGCAAGA -ACGGAATTCCCAACCAACGGTTGA -ACGGAATTCCCAACCAACTCCGAT -ACGGAATTCCCAACCAACTGGCAT -ACGGAATTCCCAACCAACCGAGAT -ACGGAATTCCCAACCAACTACCAC -ACGGAATTCCCAACCAACCAGAAC -ACGGAATTCCCAACCAACGTCTAC -ACGGAATTCCCAACCAACACGTAC -ACGGAATTCCCAACCAACAGTGAC -ACGGAATTCCCAACCAACCTGTAG -ACGGAATTCCCAACCAACCCTAAG -ACGGAATTCCCAACCAACGTTCAG -ACGGAATTCCCAACCAACGCATAG -ACGGAATTCCCAACCAACGACAAG -ACGGAATTCCCAACCAACAAGCAG -ACGGAATTCCCAACCAACCGTCAA -ACGGAATTCCCAACCAACGCTGAA -ACGGAATTCCCAACCAACAGTACG -ACGGAATTCCCAACCAACATCCGA -ACGGAATTCCCAACCAACATGGGA -ACGGAATTCCCAACCAACGTGCAA -ACGGAATTCCCAACCAACGAGGAA -ACGGAATTCCCAACCAACCAGGTA -ACGGAATTCCCAACCAACGACTCT -ACGGAATTCCCAACCAACAGTCCT -ACGGAATTCCCAACCAACTAAGCC -ACGGAATTCCCAACCAACATAGCC -ACGGAATTCCCAACCAACTAACCG -ACGGAATTCCCAACCAACATGCCA -ACGGAATTCCCAGAGATCGGAAAC -ACGGAATTCCCAGAGATCAACACC -ACGGAATTCCCAGAGATCATCGAG -ACGGAATTCCCAGAGATCCTCCTT -ACGGAATTCCCAGAGATCCCTGTT -ACGGAATTCCCAGAGATCCGGTTT -ACGGAATTCCCAGAGATCGTGGTT -ACGGAATTCCCAGAGATCGCCTTT -ACGGAATTCCCAGAGATCGGTCTT -ACGGAATTCCCAGAGATCACGCTT -ACGGAATTCCCAGAGATCAGCGTT -ACGGAATTCCCAGAGATCTTCGTC -ACGGAATTCCCAGAGATCTCTCTC -ACGGAATTCCCAGAGATCTGGATC -ACGGAATTCCCAGAGATCCACTTC -ACGGAATTCCCAGAGATCGTACTC -ACGGAATTCCCAGAGATCGATGTC -ACGGAATTCCCAGAGATCACAGTC -ACGGAATTCCCAGAGATCTTGCTG -ACGGAATTCCCAGAGATCTCCATG -ACGGAATTCCCAGAGATCTGTGTG -ACGGAATTCCCAGAGATCCTAGTG -ACGGAATTCCCAGAGATCCATCTG -ACGGAATTCCCAGAGATCGAGTTG -ACGGAATTCCCAGAGATCAGACTG -ACGGAATTCCCAGAGATCTCGGTA -ACGGAATTCCCAGAGATCTGCCTA -ACGGAATTCCCAGAGATCCCACTA -ACGGAATTCCCAGAGATCGGAGTA -ACGGAATTCCCAGAGATCTCGTCT -ACGGAATTCCCAGAGATCTGCACT -ACGGAATTCCCAGAGATCCTGACT -ACGGAATTCCCAGAGATCCAACCT -ACGGAATTCCCAGAGATCGCTACT -ACGGAATTCCCAGAGATCGGATCT -ACGGAATTCCCAGAGATCAAGGCT -ACGGAATTCCCAGAGATCTCAACC -ACGGAATTCCCAGAGATCTGTTCC -ACGGAATTCCCAGAGATCATTCCC -ACGGAATTCCCAGAGATCTTCTCG -ACGGAATTCCCAGAGATCTAGACG -ACGGAATTCCCAGAGATCGTAACG -ACGGAATTCCCAGAGATCACTTCG -ACGGAATTCCCAGAGATCTACGCA -ACGGAATTCCCAGAGATCCTTGCA -ACGGAATTCCCAGAGATCCGAACA -ACGGAATTCCCAGAGATCCAGTCA -ACGGAATTCCCAGAGATCGATCCA -ACGGAATTCCCAGAGATCACGACA -ACGGAATTCCCAGAGATCAGCTCA -ACGGAATTCCCAGAGATCTCACGT -ACGGAATTCCCAGAGATCCGTAGT -ACGGAATTCCCAGAGATCGTCAGT -ACGGAATTCCCAGAGATCGAAGGT -ACGGAATTCCCAGAGATCAACCGT -ACGGAATTCCCAGAGATCTTGTGC -ACGGAATTCCCAGAGATCCTAAGC -ACGGAATTCCCAGAGATCACTAGC -ACGGAATTCCCAGAGATCAGATGC -ACGGAATTCCCAGAGATCTGAAGG -ACGGAATTCCCAGAGATCCAATGG -ACGGAATTCCCAGAGATCATGAGG -ACGGAATTCCCAGAGATCAATGGG -ACGGAATTCCCAGAGATCTCCTGA -ACGGAATTCCCAGAGATCTAGCGA -ACGGAATTCCCAGAGATCCACAGA -ACGGAATTCCCAGAGATCGCAAGA -ACGGAATTCCCAGAGATCGGTTGA -ACGGAATTCCCAGAGATCTCCGAT -ACGGAATTCCCAGAGATCTGGCAT -ACGGAATTCCCAGAGATCCGAGAT -ACGGAATTCCCAGAGATCTACCAC -ACGGAATTCCCAGAGATCCAGAAC -ACGGAATTCCCAGAGATCGTCTAC -ACGGAATTCCCAGAGATCACGTAC -ACGGAATTCCCAGAGATCAGTGAC -ACGGAATTCCCAGAGATCCTGTAG -ACGGAATTCCCAGAGATCCCTAAG -ACGGAATTCCCAGAGATCGTTCAG -ACGGAATTCCCAGAGATCGCATAG -ACGGAATTCCCAGAGATCGACAAG -ACGGAATTCCCAGAGATCAAGCAG -ACGGAATTCCCAGAGATCCGTCAA -ACGGAATTCCCAGAGATCGCTGAA -ACGGAATTCCCAGAGATCAGTACG -ACGGAATTCCCAGAGATCATCCGA -ACGGAATTCCCAGAGATCATGGGA -ACGGAATTCCCAGAGATCGTGCAA -ACGGAATTCCCAGAGATCGAGGAA -ACGGAATTCCCAGAGATCCAGGTA -ACGGAATTCCCAGAGATCGACTCT -ACGGAATTCCCAGAGATCAGTCCT -ACGGAATTCCCAGAGATCTAAGCC -ACGGAATTCCCAGAGATCATAGCC -ACGGAATTCCCAGAGATCTAACCG -ACGGAATTCCCAGAGATCATGCCA -ACGGAATTCCCACTTCTCGGAAAC -ACGGAATTCCCACTTCTCAACACC -ACGGAATTCCCACTTCTCATCGAG -ACGGAATTCCCACTTCTCCTCCTT -ACGGAATTCCCACTTCTCCCTGTT -ACGGAATTCCCACTTCTCCGGTTT -ACGGAATTCCCACTTCTCGTGGTT -ACGGAATTCCCACTTCTCGCCTTT -ACGGAATTCCCACTTCTCGGTCTT -ACGGAATTCCCACTTCTCACGCTT -ACGGAATTCCCACTTCTCAGCGTT -ACGGAATTCCCACTTCTCTTCGTC -ACGGAATTCCCACTTCTCTCTCTC -ACGGAATTCCCACTTCTCTGGATC -ACGGAATTCCCACTTCTCCACTTC -ACGGAATTCCCACTTCTCGTACTC -ACGGAATTCCCACTTCTCGATGTC -ACGGAATTCCCACTTCTCACAGTC -ACGGAATTCCCACTTCTCTTGCTG -ACGGAATTCCCACTTCTCTCCATG -ACGGAATTCCCACTTCTCTGTGTG -ACGGAATTCCCACTTCTCCTAGTG -ACGGAATTCCCACTTCTCCATCTG -ACGGAATTCCCACTTCTCGAGTTG -ACGGAATTCCCACTTCTCAGACTG -ACGGAATTCCCACTTCTCTCGGTA -ACGGAATTCCCACTTCTCTGCCTA -ACGGAATTCCCACTTCTCCCACTA -ACGGAATTCCCACTTCTCGGAGTA -ACGGAATTCCCACTTCTCTCGTCT -ACGGAATTCCCACTTCTCTGCACT -ACGGAATTCCCACTTCTCCTGACT -ACGGAATTCCCACTTCTCCAACCT -ACGGAATTCCCACTTCTCGCTACT -ACGGAATTCCCACTTCTCGGATCT -ACGGAATTCCCACTTCTCAAGGCT -ACGGAATTCCCACTTCTCTCAACC -ACGGAATTCCCACTTCTCTGTTCC -ACGGAATTCCCACTTCTCATTCCC -ACGGAATTCCCACTTCTCTTCTCG -ACGGAATTCCCACTTCTCTAGACG -ACGGAATTCCCACTTCTCGTAACG -ACGGAATTCCCACTTCTCACTTCG -ACGGAATTCCCACTTCTCTACGCA -ACGGAATTCCCACTTCTCCTTGCA -ACGGAATTCCCACTTCTCCGAACA -ACGGAATTCCCACTTCTCCAGTCA -ACGGAATTCCCACTTCTCGATCCA -ACGGAATTCCCACTTCTCACGACA -ACGGAATTCCCACTTCTCAGCTCA -ACGGAATTCCCACTTCTCTCACGT -ACGGAATTCCCACTTCTCCGTAGT -ACGGAATTCCCACTTCTCGTCAGT -ACGGAATTCCCACTTCTCGAAGGT -ACGGAATTCCCACTTCTCAACCGT -ACGGAATTCCCACTTCTCTTGTGC -ACGGAATTCCCACTTCTCCTAAGC -ACGGAATTCCCACTTCTCACTAGC -ACGGAATTCCCACTTCTCAGATGC -ACGGAATTCCCACTTCTCTGAAGG -ACGGAATTCCCACTTCTCCAATGG -ACGGAATTCCCACTTCTCATGAGG -ACGGAATTCCCACTTCTCAATGGG -ACGGAATTCCCACTTCTCTCCTGA -ACGGAATTCCCACTTCTCTAGCGA -ACGGAATTCCCACTTCTCCACAGA -ACGGAATTCCCACTTCTCGCAAGA -ACGGAATTCCCACTTCTCGGTTGA -ACGGAATTCCCACTTCTCTCCGAT -ACGGAATTCCCACTTCTCTGGCAT -ACGGAATTCCCACTTCTCCGAGAT -ACGGAATTCCCACTTCTCTACCAC -ACGGAATTCCCACTTCTCCAGAAC -ACGGAATTCCCACTTCTCGTCTAC -ACGGAATTCCCACTTCTCACGTAC -ACGGAATTCCCACTTCTCAGTGAC -ACGGAATTCCCACTTCTCCTGTAG -ACGGAATTCCCACTTCTCCCTAAG -ACGGAATTCCCACTTCTCGTTCAG -ACGGAATTCCCACTTCTCGCATAG -ACGGAATTCCCACTTCTCGACAAG -ACGGAATTCCCACTTCTCAAGCAG -ACGGAATTCCCACTTCTCCGTCAA -ACGGAATTCCCACTTCTCGCTGAA -ACGGAATTCCCACTTCTCAGTACG -ACGGAATTCCCACTTCTCATCCGA -ACGGAATTCCCACTTCTCATGGGA -ACGGAATTCCCACTTCTCGTGCAA -ACGGAATTCCCACTTCTCGAGGAA -ACGGAATTCCCACTTCTCCAGGTA -ACGGAATTCCCACTTCTCGACTCT -ACGGAATTCCCACTTCTCAGTCCT -ACGGAATTCCCACTTCTCTAAGCC -ACGGAATTCCCACTTCTCATAGCC -ACGGAATTCCCACTTCTCTAACCG -ACGGAATTCCCACTTCTCATGCCA -ACGGAATTCCCAGTTCCTGGAAAC -ACGGAATTCCCAGTTCCTAACACC -ACGGAATTCCCAGTTCCTATCGAG -ACGGAATTCCCAGTTCCTCTCCTT -ACGGAATTCCCAGTTCCTCCTGTT -ACGGAATTCCCAGTTCCTCGGTTT -ACGGAATTCCCAGTTCCTGTGGTT -ACGGAATTCCCAGTTCCTGCCTTT -ACGGAATTCCCAGTTCCTGGTCTT -ACGGAATTCCCAGTTCCTACGCTT -ACGGAATTCCCAGTTCCTAGCGTT -ACGGAATTCCCAGTTCCTTTCGTC -ACGGAATTCCCAGTTCCTTCTCTC -ACGGAATTCCCAGTTCCTTGGATC -ACGGAATTCCCAGTTCCTCACTTC -ACGGAATTCCCAGTTCCTGTACTC -ACGGAATTCCCAGTTCCTGATGTC -ACGGAATTCCCAGTTCCTACAGTC -ACGGAATTCCCAGTTCCTTTGCTG -ACGGAATTCCCAGTTCCTTCCATG -ACGGAATTCCCAGTTCCTTGTGTG -ACGGAATTCCCAGTTCCTCTAGTG -ACGGAATTCCCAGTTCCTCATCTG -ACGGAATTCCCAGTTCCTGAGTTG -ACGGAATTCCCAGTTCCTAGACTG -ACGGAATTCCCAGTTCCTTCGGTA -ACGGAATTCCCAGTTCCTTGCCTA -ACGGAATTCCCAGTTCCTCCACTA -ACGGAATTCCCAGTTCCTGGAGTA -ACGGAATTCCCAGTTCCTTCGTCT -ACGGAATTCCCAGTTCCTTGCACT -ACGGAATTCCCAGTTCCTCTGACT -ACGGAATTCCCAGTTCCTCAACCT -ACGGAATTCCCAGTTCCTGCTACT -ACGGAATTCCCAGTTCCTGGATCT -ACGGAATTCCCAGTTCCTAAGGCT -ACGGAATTCCCAGTTCCTTCAACC -ACGGAATTCCCAGTTCCTTGTTCC -ACGGAATTCCCAGTTCCTATTCCC -ACGGAATTCCCAGTTCCTTTCTCG -ACGGAATTCCCAGTTCCTTAGACG -ACGGAATTCCCAGTTCCTGTAACG -ACGGAATTCCCAGTTCCTACTTCG -ACGGAATTCCCAGTTCCTTACGCA -ACGGAATTCCCAGTTCCTCTTGCA -ACGGAATTCCCAGTTCCTCGAACA -ACGGAATTCCCAGTTCCTCAGTCA -ACGGAATTCCCAGTTCCTGATCCA -ACGGAATTCCCAGTTCCTACGACA -ACGGAATTCCCAGTTCCTAGCTCA -ACGGAATTCCCAGTTCCTTCACGT -ACGGAATTCCCAGTTCCTCGTAGT -ACGGAATTCCCAGTTCCTGTCAGT -ACGGAATTCCCAGTTCCTGAAGGT -ACGGAATTCCCAGTTCCTAACCGT -ACGGAATTCCCAGTTCCTTTGTGC -ACGGAATTCCCAGTTCCTCTAAGC -ACGGAATTCCCAGTTCCTACTAGC -ACGGAATTCCCAGTTCCTAGATGC -ACGGAATTCCCAGTTCCTTGAAGG -ACGGAATTCCCAGTTCCTCAATGG -ACGGAATTCCCAGTTCCTATGAGG -ACGGAATTCCCAGTTCCTAATGGG -ACGGAATTCCCAGTTCCTTCCTGA -ACGGAATTCCCAGTTCCTTAGCGA -ACGGAATTCCCAGTTCCTCACAGA -ACGGAATTCCCAGTTCCTGCAAGA -ACGGAATTCCCAGTTCCTGGTTGA -ACGGAATTCCCAGTTCCTTCCGAT -ACGGAATTCCCAGTTCCTTGGCAT -ACGGAATTCCCAGTTCCTCGAGAT -ACGGAATTCCCAGTTCCTTACCAC -ACGGAATTCCCAGTTCCTCAGAAC -ACGGAATTCCCAGTTCCTGTCTAC -ACGGAATTCCCAGTTCCTACGTAC -ACGGAATTCCCAGTTCCTAGTGAC -ACGGAATTCCCAGTTCCTCTGTAG -ACGGAATTCCCAGTTCCTCCTAAG -ACGGAATTCCCAGTTCCTGTTCAG -ACGGAATTCCCAGTTCCTGCATAG -ACGGAATTCCCAGTTCCTGACAAG -ACGGAATTCCCAGTTCCTAAGCAG -ACGGAATTCCCAGTTCCTCGTCAA -ACGGAATTCCCAGTTCCTGCTGAA -ACGGAATTCCCAGTTCCTAGTACG -ACGGAATTCCCAGTTCCTATCCGA -ACGGAATTCCCAGTTCCTATGGGA -ACGGAATTCCCAGTTCCTGTGCAA -ACGGAATTCCCAGTTCCTGAGGAA -ACGGAATTCCCAGTTCCTCAGGTA -ACGGAATTCCCAGTTCCTGACTCT -ACGGAATTCCCAGTTCCTAGTCCT -ACGGAATTCCCAGTTCCTTAAGCC -ACGGAATTCCCAGTTCCTATAGCC -ACGGAATTCCCAGTTCCTTAACCG -ACGGAATTCCCAGTTCCTATGCCA -ACGGAATTCCCATTTCGGGGAAAC -ACGGAATTCCCATTTCGGAACACC -ACGGAATTCCCATTTCGGATCGAG -ACGGAATTCCCATTTCGGCTCCTT -ACGGAATTCCCATTTCGGCCTGTT -ACGGAATTCCCATTTCGGCGGTTT -ACGGAATTCCCATTTCGGGTGGTT -ACGGAATTCCCATTTCGGGCCTTT -ACGGAATTCCCATTTCGGGGTCTT -ACGGAATTCCCATTTCGGACGCTT -ACGGAATTCCCATTTCGGAGCGTT -ACGGAATTCCCATTTCGGTTCGTC -ACGGAATTCCCATTTCGGTCTCTC -ACGGAATTCCCATTTCGGTGGATC -ACGGAATTCCCATTTCGGCACTTC -ACGGAATTCCCATTTCGGGTACTC -ACGGAATTCCCATTTCGGGATGTC -ACGGAATTCCCATTTCGGACAGTC -ACGGAATTCCCATTTCGGTTGCTG -ACGGAATTCCCATTTCGGTCCATG -ACGGAATTCCCATTTCGGTGTGTG -ACGGAATTCCCATTTCGGCTAGTG -ACGGAATTCCCATTTCGGCATCTG -ACGGAATTCCCATTTCGGGAGTTG -ACGGAATTCCCATTTCGGAGACTG -ACGGAATTCCCATTTCGGTCGGTA -ACGGAATTCCCATTTCGGTGCCTA -ACGGAATTCCCATTTCGGCCACTA -ACGGAATTCCCATTTCGGGGAGTA -ACGGAATTCCCATTTCGGTCGTCT -ACGGAATTCCCATTTCGGTGCACT -ACGGAATTCCCATTTCGGCTGACT -ACGGAATTCCCATTTCGGCAACCT -ACGGAATTCCCATTTCGGGCTACT -ACGGAATTCCCATTTCGGGGATCT -ACGGAATTCCCATTTCGGAAGGCT -ACGGAATTCCCATTTCGGTCAACC -ACGGAATTCCCATTTCGGTGTTCC -ACGGAATTCCCATTTCGGATTCCC -ACGGAATTCCCATTTCGGTTCTCG -ACGGAATTCCCATTTCGGTAGACG -ACGGAATTCCCATTTCGGGTAACG -ACGGAATTCCCATTTCGGACTTCG -ACGGAATTCCCATTTCGGTACGCA -ACGGAATTCCCATTTCGGCTTGCA -ACGGAATTCCCATTTCGGCGAACA -ACGGAATTCCCATTTCGGCAGTCA -ACGGAATTCCCATTTCGGGATCCA -ACGGAATTCCCATTTCGGACGACA -ACGGAATTCCCATTTCGGAGCTCA -ACGGAATTCCCATTTCGGTCACGT -ACGGAATTCCCATTTCGGCGTAGT -ACGGAATTCCCATTTCGGGTCAGT -ACGGAATTCCCATTTCGGGAAGGT -ACGGAATTCCCATTTCGGAACCGT -ACGGAATTCCCATTTCGGTTGTGC -ACGGAATTCCCATTTCGGCTAAGC -ACGGAATTCCCATTTCGGACTAGC -ACGGAATTCCCATTTCGGAGATGC -ACGGAATTCCCATTTCGGTGAAGG -ACGGAATTCCCATTTCGGCAATGG -ACGGAATTCCCATTTCGGATGAGG -ACGGAATTCCCATTTCGGAATGGG -ACGGAATTCCCATTTCGGTCCTGA -ACGGAATTCCCATTTCGGTAGCGA -ACGGAATTCCCATTTCGGCACAGA -ACGGAATTCCCATTTCGGGCAAGA -ACGGAATTCCCATTTCGGGGTTGA -ACGGAATTCCCATTTCGGTCCGAT -ACGGAATTCCCATTTCGGTGGCAT -ACGGAATTCCCATTTCGGCGAGAT -ACGGAATTCCCATTTCGGTACCAC -ACGGAATTCCCATTTCGGCAGAAC -ACGGAATTCCCATTTCGGGTCTAC -ACGGAATTCCCATTTCGGACGTAC -ACGGAATTCCCATTTCGGAGTGAC -ACGGAATTCCCATTTCGGCTGTAG -ACGGAATTCCCATTTCGGCCTAAG -ACGGAATTCCCATTTCGGGTTCAG -ACGGAATTCCCATTTCGGGCATAG -ACGGAATTCCCATTTCGGGACAAG -ACGGAATTCCCATTTCGGAAGCAG -ACGGAATTCCCATTTCGGCGTCAA -ACGGAATTCCCATTTCGGGCTGAA -ACGGAATTCCCATTTCGGAGTACG -ACGGAATTCCCATTTCGGATCCGA -ACGGAATTCCCATTTCGGATGGGA -ACGGAATTCCCATTTCGGGTGCAA -ACGGAATTCCCATTTCGGGAGGAA -ACGGAATTCCCATTTCGGCAGGTA -ACGGAATTCCCATTTCGGGACTCT -ACGGAATTCCCATTTCGGAGTCCT -ACGGAATTCCCATTTCGGTAAGCC -ACGGAATTCCCATTTCGGATAGCC -ACGGAATTCCCATTTCGGTAACCG -ACGGAATTCCCATTTCGGATGCCA -ACGGAATTCCCAGTTGTGGGAAAC -ACGGAATTCCCAGTTGTGAACACC -ACGGAATTCCCAGTTGTGATCGAG -ACGGAATTCCCAGTTGTGCTCCTT -ACGGAATTCCCAGTTGTGCCTGTT -ACGGAATTCCCAGTTGTGCGGTTT -ACGGAATTCCCAGTTGTGGTGGTT -ACGGAATTCCCAGTTGTGGCCTTT -ACGGAATTCCCAGTTGTGGGTCTT -ACGGAATTCCCAGTTGTGACGCTT -ACGGAATTCCCAGTTGTGAGCGTT -ACGGAATTCCCAGTTGTGTTCGTC -ACGGAATTCCCAGTTGTGTCTCTC -ACGGAATTCCCAGTTGTGTGGATC -ACGGAATTCCCAGTTGTGCACTTC -ACGGAATTCCCAGTTGTGGTACTC -ACGGAATTCCCAGTTGTGGATGTC -ACGGAATTCCCAGTTGTGACAGTC -ACGGAATTCCCAGTTGTGTTGCTG -ACGGAATTCCCAGTTGTGTCCATG -ACGGAATTCCCAGTTGTGTGTGTG -ACGGAATTCCCAGTTGTGCTAGTG -ACGGAATTCCCAGTTGTGCATCTG -ACGGAATTCCCAGTTGTGGAGTTG -ACGGAATTCCCAGTTGTGAGACTG -ACGGAATTCCCAGTTGTGTCGGTA -ACGGAATTCCCAGTTGTGTGCCTA -ACGGAATTCCCAGTTGTGCCACTA -ACGGAATTCCCAGTTGTGGGAGTA -ACGGAATTCCCAGTTGTGTCGTCT -ACGGAATTCCCAGTTGTGTGCACT -ACGGAATTCCCAGTTGTGCTGACT -ACGGAATTCCCAGTTGTGCAACCT -ACGGAATTCCCAGTTGTGGCTACT -ACGGAATTCCCAGTTGTGGGATCT -ACGGAATTCCCAGTTGTGAAGGCT -ACGGAATTCCCAGTTGTGTCAACC -ACGGAATTCCCAGTTGTGTGTTCC -ACGGAATTCCCAGTTGTGATTCCC -ACGGAATTCCCAGTTGTGTTCTCG -ACGGAATTCCCAGTTGTGTAGACG -ACGGAATTCCCAGTTGTGGTAACG -ACGGAATTCCCAGTTGTGACTTCG -ACGGAATTCCCAGTTGTGTACGCA -ACGGAATTCCCAGTTGTGCTTGCA -ACGGAATTCCCAGTTGTGCGAACA -ACGGAATTCCCAGTTGTGCAGTCA -ACGGAATTCCCAGTTGTGGATCCA -ACGGAATTCCCAGTTGTGACGACA -ACGGAATTCCCAGTTGTGAGCTCA -ACGGAATTCCCAGTTGTGTCACGT -ACGGAATTCCCAGTTGTGCGTAGT -ACGGAATTCCCAGTTGTGGTCAGT -ACGGAATTCCCAGTTGTGGAAGGT -ACGGAATTCCCAGTTGTGAACCGT -ACGGAATTCCCAGTTGTGTTGTGC -ACGGAATTCCCAGTTGTGCTAAGC -ACGGAATTCCCAGTTGTGACTAGC -ACGGAATTCCCAGTTGTGAGATGC -ACGGAATTCCCAGTTGTGTGAAGG -ACGGAATTCCCAGTTGTGCAATGG -ACGGAATTCCCAGTTGTGATGAGG -ACGGAATTCCCAGTTGTGAATGGG -ACGGAATTCCCAGTTGTGTCCTGA -ACGGAATTCCCAGTTGTGTAGCGA -ACGGAATTCCCAGTTGTGCACAGA -ACGGAATTCCCAGTTGTGGCAAGA -ACGGAATTCCCAGTTGTGGGTTGA -ACGGAATTCCCAGTTGTGTCCGAT -ACGGAATTCCCAGTTGTGTGGCAT -ACGGAATTCCCAGTTGTGCGAGAT -ACGGAATTCCCAGTTGTGTACCAC -ACGGAATTCCCAGTTGTGCAGAAC -ACGGAATTCCCAGTTGTGGTCTAC -ACGGAATTCCCAGTTGTGACGTAC -ACGGAATTCCCAGTTGTGAGTGAC -ACGGAATTCCCAGTTGTGCTGTAG -ACGGAATTCCCAGTTGTGCCTAAG -ACGGAATTCCCAGTTGTGGTTCAG -ACGGAATTCCCAGTTGTGGCATAG -ACGGAATTCCCAGTTGTGGACAAG -ACGGAATTCCCAGTTGTGAAGCAG -ACGGAATTCCCAGTTGTGCGTCAA -ACGGAATTCCCAGTTGTGGCTGAA -ACGGAATTCCCAGTTGTGAGTACG -ACGGAATTCCCAGTTGTGATCCGA -ACGGAATTCCCAGTTGTGATGGGA -ACGGAATTCCCAGTTGTGGTGCAA -ACGGAATTCCCAGTTGTGGAGGAA -ACGGAATTCCCAGTTGTGCAGGTA -ACGGAATTCCCAGTTGTGGACTCT -ACGGAATTCCCAGTTGTGAGTCCT -ACGGAATTCCCAGTTGTGTAAGCC -ACGGAATTCCCAGTTGTGATAGCC -ACGGAATTCCCAGTTGTGTAACCG -ACGGAATTCCCAGTTGTGATGCCA -ACGGAATTCCCATTTGCCGGAAAC -ACGGAATTCCCATTTGCCAACACC -ACGGAATTCCCATTTGCCATCGAG -ACGGAATTCCCATTTGCCCTCCTT -ACGGAATTCCCATTTGCCCCTGTT -ACGGAATTCCCATTTGCCCGGTTT -ACGGAATTCCCATTTGCCGTGGTT -ACGGAATTCCCATTTGCCGCCTTT -ACGGAATTCCCATTTGCCGGTCTT -ACGGAATTCCCATTTGCCACGCTT -ACGGAATTCCCATTTGCCAGCGTT -ACGGAATTCCCATTTGCCTTCGTC -ACGGAATTCCCATTTGCCTCTCTC -ACGGAATTCCCATTTGCCTGGATC -ACGGAATTCCCATTTGCCCACTTC -ACGGAATTCCCATTTGCCGTACTC -ACGGAATTCCCATTTGCCGATGTC -ACGGAATTCCCATTTGCCACAGTC -ACGGAATTCCCATTTGCCTTGCTG -ACGGAATTCCCATTTGCCTCCATG -ACGGAATTCCCATTTGCCTGTGTG -ACGGAATTCCCATTTGCCCTAGTG -ACGGAATTCCCATTTGCCCATCTG -ACGGAATTCCCATTTGCCGAGTTG -ACGGAATTCCCATTTGCCAGACTG -ACGGAATTCCCATTTGCCTCGGTA -ACGGAATTCCCATTTGCCTGCCTA -ACGGAATTCCCATTTGCCCCACTA -ACGGAATTCCCATTTGCCGGAGTA -ACGGAATTCCCATTTGCCTCGTCT -ACGGAATTCCCATTTGCCTGCACT -ACGGAATTCCCATTTGCCCTGACT -ACGGAATTCCCATTTGCCCAACCT -ACGGAATTCCCATTTGCCGCTACT -ACGGAATTCCCATTTGCCGGATCT -ACGGAATTCCCATTTGCCAAGGCT -ACGGAATTCCCATTTGCCTCAACC -ACGGAATTCCCATTTGCCTGTTCC -ACGGAATTCCCATTTGCCATTCCC -ACGGAATTCCCATTTGCCTTCTCG -ACGGAATTCCCATTTGCCTAGACG -ACGGAATTCCCATTTGCCGTAACG -ACGGAATTCCCATTTGCCACTTCG -ACGGAATTCCCATTTGCCTACGCA -ACGGAATTCCCATTTGCCCTTGCA -ACGGAATTCCCATTTGCCCGAACA -ACGGAATTCCCATTTGCCCAGTCA -ACGGAATTCCCATTTGCCGATCCA -ACGGAATTCCCATTTGCCACGACA -ACGGAATTCCCATTTGCCAGCTCA -ACGGAATTCCCATTTGCCTCACGT -ACGGAATTCCCATTTGCCCGTAGT -ACGGAATTCCCATTTGCCGTCAGT -ACGGAATTCCCATTTGCCGAAGGT -ACGGAATTCCCATTTGCCAACCGT -ACGGAATTCCCATTTGCCTTGTGC -ACGGAATTCCCATTTGCCCTAAGC -ACGGAATTCCCATTTGCCACTAGC -ACGGAATTCCCATTTGCCAGATGC -ACGGAATTCCCATTTGCCTGAAGG -ACGGAATTCCCATTTGCCCAATGG -ACGGAATTCCCATTTGCCATGAGG -ACGGAATTCCCATTTGCCAATGGG -ACGGAATTCCCATTTGCCTCCTGA -ACGGAATTCCCATTTGCCTAGCGA -ACGGAATTCCCATTTGCCCACAGA -ACGGAATTCCCATTTGCCGCAAGA -ACGGAATTCCCATTTGCCGGTTGA -ACGGAATTCCCATTTGCCTCCGAT -ACGGAATTCCCATTTGCCTGGCAT -ACGGAATTCCCATTTGCCCGAGAT -ACGGAATTCCCATTTGCCTACCAC -ACGGAATTCCCATTTGCCCAGAAC -ACGGAATTCCCATTTGCCGTCTAC -ACGGAATTCCCATTTGCCACGTAC -ACGGAATTCCCATTTGCCAGTGAC -ACGGAATTCCCATTTGCCCTGTAG -ACGGAATTCCCATTTGCCCCTAAG -ACGGAATTCCCATTTGCCGTTCAG -ACGGAATTCCCATTTGCCGCATAG -ACGGAATTCCCATTTGCCGACAAG -ACGGAATTCCCATTTGCCAAGCAG -ACGGAATTCCCATTTGCCCGTCAA -ACGGAATTCCCATTTGCCGCTGAA -ACGGAATTCCCATTTGCCAGTACG -ACGGAATTCCCATTTGCCATCCGA -ACGGAATTCCCATTTGCCATGGGA -ACGGAATTCCCATTTGCCGTGCAA -ACGGAATTCCCATTTGCCGAGGAA -ACGGAATTCCCATTTGCCCAGGTA -ACGGAATTCCCATTTGCCGACTCT -ACGGAATTCCCATTTGCCAGTCCT -ACGGAATTCCCATTTGCCTAAGCC -ACGGAATTCCCATTTGCCATAGCC -ACGGAATTCCCATTTGCCTAACCG -ACGGAATTCCCATTTGCCATGCCA -ACGGAATTCCCACTTGGTGGAAAC -ACGGAATTCCCACTTGGTAACACC -ACGGAATTCCCACTTGGTATCGAG -ACGGAATTCCCACTTGGTCTCCTT -ACGGAATTCCCACTTGGTCCTGTT -ACGGAATTCCCACTTGGTCGGTTT -ACGGAATTCCCACTTGGTGTGGTT -ACGGAATTCCCACTTGGTGCCTTT -ACGGAATTCCCACTTGGTGGTCTT -ACGGAATTCCCACTTGGTACGCTT -ACGGAATTCCCACTTGGTAGCGTT -ACGGAATTCCCACTTGGTTTCGTC -ACGGAATTCCCACTTGGTTCTCTC -ACGGAATTCCCACTTGGTTGGATC -ACGGAATTCCCACTTGGTCACTTC -ACGGAATTCCCACTTGGTGTACTC -ACGGAATTCCCACTTGGTGATGTC -ACGGAATTCCCACTTGGTACAGTC -ACGGAATTCCCACTTGGTTTGCTG -ACGGAATTCCCACTTGGTTCCATG -ACGGAATTCCCACTTGGTTGTGTG -ACGGAATTCCCACTTGGTCTAGTG -ACGGAATTCCCACTTGGTCATCTG -ACGGAATTCCCACTTGGTGAGTTG -ACGGAATTCCCACTTGGTAGACTG -ACGGAATTCCCACTTGGTTCGGTA -ACGGAATTCCCACTTGGTTGCCTA -ACGGAATTCCCACTTGGTCCACTA -ACGGAATTCCCACTTGGTGGAGTA -ACGGAATTCCCACTTGGTTCGTCT -ACGGAATTCCCACTTGGTTGCACT -ACGGAATTCCCACTTGGTCTGACT -ACGGAATTCCCACTTGGTCAACCT -ACGGAATTCCCACTTGGTGCTACT -ACGGAATTCCCACTTGGTGGATCT -ACGGAATTCCCACTTGGTAAGGCT -ACGGAATTCCCACTTGGTTCAACC -ACGGAATTCCCACTTGGTTGTTCC -ACGGAATTCCCACTTGGTATTCCC -ACGGAATTCCCACTTGGTTTCTCG -ACGGAATTCCCACTTGGTTAGACG -ACGGAATTCCCACTTGGTGTAACG -ACGGAATTCCCACTTGGTACTTCG -ACGGAATTCCCACTTGGTTACGCA -ACGGAATTCCCACTTGGTCTTGCA -ACGGAATTCCCACTTGGTCGAACA -ACGGAATTCCCACTTGGTCAGTCA -ACGGAATTCCCACTTGGTGATCCA -ACGGAATTCCCACTTGGTACGACA -ACGGAATTCCCACTTGGTAGCTCA -ACGGAATTCCCACTTGGTTCACGT -ACGGAATTCCCACTTGGTCGTAGT -ACGGAATTCCCACTTGGTGTCAGT -ACGGAATTCCCACTTGGTGAAGGT -ACGGAATTCCCACTTGGTAACCGT -ACGGAATTCCCACTTGGTTTGTGC -ACGGAATTCCCACTTGGTCTAAGC -ACGGAATTCCCACTTGGTACTAGC -ACGGAATTCCCACTTGGTAGATGC -ACGGAATTCCCACTTGGTTGAAGG -ACGGAATTCCCACTTGGTCAATGG -ACGGAATTCCCACTTGGTATGAGG -ACGGAATTCCCACTTGGTAATGGG -ACGGAATTCCCACTTGGTTCCTGA -ACGGAATTCCCACTTGGTTAGCGA -ACGGAATTCCCACTTGGTCACAGA -ACGGAATTCCCACTTGGTGCAAGA -ACGGAATTCCCACTTGGTGGTTGA -ACGGAATTCCCACTTGGTTCCGAT -ACGGAATTCCCACTTGGTTGGCAT -ACGGAATTCCCACTTGGTCGAGAT -ACGGAATTCCCACTTGGTTACCAC -ACGGAATTCCCACTTGGTCAGAAC -ACGGAATTCCCACTTGGTGTCTAC -ACGGAATTCCCACTTGGTACGTAC -ACGGAATTCCCACTTGGTAGTGAC -ACGGAATTCCCACTTGGTCTGTAG -ACGGAATTCCCACTTGGTCCTAAG -ACGGAATTCCCACTTGGTGTTCAG -ACGGAATTCCCACTTGGTGCATAG -ACGGAATTCCCACTTGGTGACAAG -ACGGAATTCCCACTTGGTAAGCAG -ACGGAATTCCCACTTGGTCGTCAA -ACGGAATTCCCACTTGGTGCTGAA -ACGGAATTCCCACTTGGTAGTACG -ACGGAATTCCCACTTGGTATCCGA -ACGGAATTCCCACTTGGTATGGGA -ACGGAATTCCCACTTGGTGTGCAA -ACGGAATTCCCACTTGGTGAGGAA -ACGGAATTCCCACTTGGTCAGGTA -ACGGAATTCCCACTTGGTGACTCT -ACGGAATTCCCACTTGGTAGTCCT -ACGGAATTCCCACTTGGTTAAGCC -ACGGAATTCCCACTTGGTATAGCC -ACGGAATTCCCACTTGGTTAACCG -ACGGAATTCCCACTTGGTATGCCA -ACGGAATTCCCACTTACGGGAAAC -ACGGAATTCCCACTTACGAACACC -ACGGAATTCCCACTTACGATCGAG -ACGGAATTCCCACTTACGCTCCTT -ACGGAATTCCCACTTACGCCTGTT -ACGGAATTCCCACTTACGCGGTTT -ACGGAATTCCCACTTACGGTGGTT -ACGGAATTCCCACTTACGGCCTTT -ACGGAATTCCCACTTACGGGTCTT -ACGGAATTCCCACTTACGACGCTT -ACGGAATTCCCACTTACGAGCGTT -ACGGAATTCCCACTTACGTTCGTC -ACGGAATTCCCACTTACGTCTCTC -ACGGAATTCCCACTTACGTGGATC -ACGGAATTCCCACTTACGCACTTC -ACGGAATTCCCACTTACGGTACTC -ACGGAATTCCCACTTACGGATGTC -ACGGAATTCCCACTTACGACAGTC -ACGGAATTCCCACTTACGTTGCTG -ACGGAATTCCCACTTACGTCCATG -ACGGAATTCCCACTTACGTGTGTG -ACGGAATTCCCACTTACGCTAGTG -ACGGAATTCCCACTTACGCATCTG -ACGGAATTCCCACTTACGGAGTTG -ACGGAATTCCCACTTACGAGACTG -ACGGAATTCCCACTTACGTCGGTA -ACGGAATTCCCACTTACGTGCCTA -ACGGAATTCCCACTTACGCCACTA -ACGGAATTCCCACTTACGGGAGTA -ACGGAATTCCCACTTACGTCGTCT -ACGGAATTCCCACTTACGTGCACT -ACGGAATTCCCACTTACGCTGACT -ACGGAATTCCCACTTACGCAACCT -ACGGAATTCCCACTTACGGCTACT -ACGGAATTCCCACTTACGGGATCT -ACGGAATTCCCACTTACGAAGGCT -ACGGAATTCCCACTTACGTCAACC -ACGGAATTCCCACTTACGTGTTCC -ACGGAATTCCCACTTACGATTCCC -ACGGAATTCCCACTTACGTTCTCG -ACGGAATTCCCACTTACGTAGACG -ACGGAATTCCCACTTACGGTAACG -ACGGAATTCCCACTTACGACTTCG -ACGGAATTCCCACTTACGTACGCA -ACGGAATTCCCACTTACGCTTGCA -ACGGAATTCCCACTTACGCGAACA -ACGGAATTCCCACTTACGCAGTCA -ACGGAATTCCCACTTACGGATCCA -ACGGAATTCCCACTTACGACGACA -ACGGAATTCCCACTTACGAGCTCA -ACGGAATTCCCACTTACGTCACGT -ACGGAATTCCCACTTACGCGTAGT -ACGGAATTCCCACTTACGGTCAGT -ACGGAATTCCCACTTACGGAAGGT -ACGGAATTCCCACTTACGAACCGT -ACGGAATTCCCACTTACGTTGTGC -ACGGAATTCCCACTTACGCTAAGC -ACGGAATTCCCACTTACGACTAGC -ACGGAATTCCCACTTACGAGATGC -ACGGAATTCCCACTTACGTGAAGG -ACGGAATTCCCACTTACGCAATGG -ACGGAATTCCCACTTACGATGAGG -ACGGAATTCCCACTTACGAATGGG -ACGGAATTCCCACTTACGTCCTGA -ACGGAATTCCCACTTACGTAGCGA -ACGGAATTCCCACTTACGCACAGA -ACGGAATTCCCACTTACGGCAAGA -ACGGAATTCCCACTTACGGGTTGA -ACGGAATTCCCACTTACGTCCGAT -ACGGAATTCCCACTTACGTGGCAT -ACGGAATTCCCACTTACGCGAGAT -ACGGAATTCCCACTTACGTACCAC -ACGGAATTCCCACTTACGCAGAAC -ACGGAATTCCCACTTACGGTCTAC -ACGGAATTCCCACTTACGACGTAC -ACGGAATTCCCACTTACGAGTGAC -ACGGAATTCCCACTTACGCTGTAG -ACGGAATTCCCACTTACGCCTAAG -ACGGAATTCCCACTTACGGTTCAG -ACGGAATTCCCACTTACGGCATAG -ACGGAATTCCCACTTACGGACAAG -ACGGAATTCCCACTTACGAAGCAG -ACGGAATTCCCACTTACGCGTCAA -ACGGAATTCCCACTTACGGCTGAA -ACGGAATTCCCACTTACGAGTACG -ACGGAATTCCCACTTACGATCCGA -ACGGAATTCCCACTTACGATGGGA -ACGGAATTCCCACTTACGGTGCAA -ACGGAATTCCCACTTACGGAGGAA -ACGGAATTCCCACTTACGCAGGTA -ACGGAATTCCCACTTACGGACTCT -ACGGAATTCCCACTTACGAGTCCT -ACGGAATTCCCACTTACGTAAGCC -ACGGAATTCCCACTTACGATAGCC -ACGGAATTCCCACTTACGTAACCG -ACGGAATTCCCACTTACGATGCCA -ACGGAATTCCCAGTTAGCGGAAAC -ACGGAATTCCCAGTTAGCAACACC -ACGGAATTCCCAGTTAGCATCGAG -ACGGAATTCCCAGTTAGCCTCCTT -ACGGAATTCCCAGTTAGCCCTGTT -ACGGAATTCCCAGTTAGCCGGTTT -ACGGAATTCCCAGTTAGCGTGGTT -ACGGAATTCCCAGTTAGCGCCTTT -ACGGAATTCCCAGTTAGCGGTCTT -ACGGAATTCCCAGTTAGCACGCTT -ACGGAATTCCCAGTTAGCAGCGTT -ACGGAATTCCCAGTTAGCTTCGTC -ACGGAATTCCCAGTTAGCTCTCTC -ACGGAATTCCCAGTTAGCTGGATC -ACGGAATTCCCAGTTAGCCACTTC -ACGGAATTCCCAGTTAGCGTACTC -ACGGAATTCCCAGTTAGCGATGTC -ACGGAATTCCCAGTTAGCACAGTC -ACGGAATTCCCAGTTAGCTTGCTG -ACGGAATTCCCAGTTAGCTCCATG -ACGGAATTCCCAGTTAGCTGTGTG -ACGGAATTCCCAGTTAGCCTAGTG -ACGGAATTCCCAGTTAGCCATCTG -ACGGAATTCCCAGTTAGCGAGTTG -ACGGAATTCCCAGTTAGCAGACTG -ACGGAATTCCCAGTTAGCTCGGTA -ACGGAATTCCCAGTTAGCTGCCTA -ACGGAATTCCCAGTTAGCCCACTA -ACGGAATTCCCAGTTAGCGGAGTA -ACGGAATTCCCAGTTAGCTCGTCT -ACGGAATTCCCAGTTAGCTGCACT -ACGGAATTCCCAGTTAGCCTGACT -ACGGAATTCCCAGTTAGCCAACCT -ACGGAATTCCCAGTTAGCGCTACT -ACGGAATTCCCAGTTAGCGGATCT -ACGGAATTCCCAGTTAGCAAGGCT -ACGGAATTCCCAGTTAGCTCAACC -ACGGAATTCCCAGTTAGCTGTTCC -ACGGAATTCCCAGTTAGCATTCCC -ACGGAATTCCCAGTTAGCTTCTCG -ACGGAATTCCCAGTTAGCTAGACG -ACGGAATTCCCAGTTAGCGTAACG -ACGGAATTCCCAGTTAGCACTTCG -ACGGAATTCCCAGTTAGCTACGCA -ACGGAATTCCCAGTTAGCCTTGCA -ACGGAATTCCCAGTTAGCCGAACA -ACGGAATTCCCAGTTAGCCAGTCA -ACGGAATTCCCAGTTAGCGATCCA -ACGGAATTCCCAGTTAGCACGACA -ACGGAATTCCCAGTTAGCAGCTCA -ACGGAATTCCCAGTTAGCTCACGT -ACGGAATTCCCAGTTAGCCGTAGT -ACGGAATTCCCAGTTAGCGTCAGT -ACGGAATTCCCAGTTAGCGAAGGT -ACGGAATTCCCAGTTAGCAACCGT -ACGGAATTCCCAGTTAGCTTGTGC -ACGGAATTCCCAGTTAGCCTAAGC -ACGGAATTCCCAGTTAGCACTAGC -ACGGAATTCCCAGTTAGCAGATGC -ACGGAATTCCCAGTTAGCTGAAGG -ACGGAATTCCCAGTTAGCCAATGG -ACGGAATTCCCAGTTAGCATGAGG -ACGGAATTCCCAGTTAGCAATGGG -ACGGAATTCCCAGTTAGCTCCTGA -ACGGAATTCCCAGTTAGCTAGCGA -ACGGAATTCCCAGTTAGCCACAGA -ACGGAATTCCCAGTTAGCGCAAGA -ACGGAATTCCCAGTTAGCGGTTGA -ACGGAATTCCCAGTTAGCTCCGAT -ACGGAATTCCCAGTTAGCTGGCAT -ACGGAATTCCCAGTTAGCCGAGAT -ACGGAATTCCCAGTTAGCTACCAC -ACGGAATTCCCAGTTAGCCAGAAC -ACGGAATTCCCAGTTAGCGTCTAC -ACGGAATTCCCAGTTAGCACGTAC -ACGGAATTCCCAGTTAGCAGTGAC -ACGGAATTCCCAGTTAGCCTGTAG -ACGGAATTCCCAGTTAGCCCTAAG -ACGGAATTCCCAGTTAGCGTTCAG -ACGGAATTCCCAGTTAGCGCATAG -ACGGAATTCCCAGTTAGCGACAAG -ACGGAATTCCCAGTTAGCAAGCAG -ACGGAATTCCCAGTTAGCCGTCAA -ACGGAATTCCCAGTTAGCGCTGAA -ACGGAATTCCCAGTTAGCAGTACG -ACGGAATTCCCAGTTAGCATCCGA -ACGGAATTCCCAGTTAGCATGGGA -ACGGAATTCCCAGTTAGCGTGCAA -ACGGAATTCCCAGTTAGCGAGGAA -ACGGAATTCCCAGTTAGCCAGGTA -ACGGAATTCCCAGTTAGCGACTCT -ACGGAATTCCCAGTTAGCAGTCCT -ACGGAATTCCCAGTTAGCTAAGCC -ACGGAATTCCCAGTTAGCATAGCC -ACGGAATTCCCAGTTAGCTAACCG -ACGGAATTCCCAGTTAGCATGCCA -ACGGAATTCCCAGTCTTCGGAAAC -ACGGAATTCCCAGTCTTCAACACC -ACGGAATTCCCAGTCTTCATCGAG -ACGGAATTCCCAGTCTTCCTCCTT -ACGGAATTCCCAGTCTTCCCTGTT -ACGGAATTCCCAGTCTTCCGGTTT -ACGGAATTCCCAGTCTTCGTGGTT -ACGGAATTCCCAGTCTTCGCCTTT -ACGGAATTCCCAGTCTTCGGTCTT -ACGGAATTCCCAGTCTTCACGCTT -ACGGAATTCCCAGTCTTCAGCGTT -ACGGAATTCCCAGTCTTCTTCGTC -ACGGAATTCCCAGTCTTCTCTCTC -ACGGAATTCCCAGTCTTCTGGATC -ACGGAATTCCCAGTCTTCCACTTC -ACGGAATTCCCAGTCTTCGTACTC -ACGGAATTCCCAGTCTTCGATGTC -ACGGAATTCCCAGTCTTCACAGTC -ACGGAATTCCCAGTCTTCTTGCTG -ACGGAATTCCCAGTCTTCTCCATG -ACGGAATTCCCAGTCTTCTGTGTG -ACGGAATTCCCAGTCTTCCTAGTG -ACGGAATTCCCAGTCTTCCATCTG -ACGGAATTCCCAGTCTTCGAGTTG -ACGGAATTCCCAGTCTTCAGACTG -ACGGAATTCCCAGTCTTCTCGGTA -ACGGAATTCCCAGTCTTCTGCCTA -ACGGAATTCCCAGTCTTCCCACTA -ACGGAATTCCCAGTCTTCGGAGTA -ACGGAATTCCCAGTCTTCTCGTCT -ACGGAATTCCCAGTCTTCTGCACT -ACGGAATTCCCAGTCTTCCTGACT -ACGGAATTCCCAGTCTTCCAACCT -ACGGAATTCCCAGTCTTCGCTACT -ACGGAATTCCCAGTCTTCGGATCT -ACGGAATTCCCAGTCTTCAAGGCT -ACGGAATTCCCAGTCTTCTCAACC -ACGGAATTCCCAGTCTTCTGTTCC -ACGGAATTCCCAGTCTTCATTCCC -ACGGAATTCCCAGTCTTCTTCTCG -ACGGAATTCCCAGTCTTCTAGACG -ACGGAATTCCCAGTCTTCGTAACG -ACGGAATTCCCAGTCTTCACTTCG -ACGGAATTCCCAGTCTTCTACGCA -ACGGAATTCCCAGTCTTCCTTGCA -ACGGAATTCCCAGTCTTCCGAACA -ACGGAATTCCCAGTCTTCCAGTCA -ACGGAATTCCCAGTCTTCGATCCA -ACGGAATTCCCAGTCTTCACGACA -ACGGAATTCCCAGTCTTCAGCTCA -ACGGAATTCCCAGTCTTCTCACGT -ACGGAATTCCCAGTCTTCCGTAGT -ACGGAATTCCCAGTCTTCGTCAGT -ACGGAATTCCCAGTCTTCGAAGGT -ACGGAATTCCCAGTCTTCAACCGT -ACGGAATTCCCAGTCTTCTTGTGC -ACGGAATTCCCAGTCTTCCTAAGC -ACGGAATTCCCAGTCTTCACTAGC -ACGGAATTCCCAGTCTTCAGATGC -ACGGAATTCCCAGTCTTCTGAAGG -ACGGAATTCCCAGTCTTCCAATGG -ACGGAATTCCCAGTCTTCATGAGG -ACGGAATTCCCAGTCTTCAATGGG -ACGGAATTCCCAGTCTTCTCCTGA -ACGGAATTCCCAGTCTTCTAGCGA -ACGGAATTCCCAGTCTTCCACAGA -ACGGAATTCCCAGTCTTCGCAAGA -ACGGAATTCCCAGTCTTCGGTTGA -ACGGAATTCCCAGTCTTCTCCGAT -ACGGAATTCCCAGTCTTCTGGCAT -ACGGAATTCCCAGTCTTCCGAGAT -ACGGAATTCCCAGTCTTCTACCAC -ACGGAATTCCCAGTCTTCCAGAAC -ACGGAATTCCCAGTCTTCGTCTAC -ACGGAATTCCCAGTCTTCACGTAC -ACGGAATTCCCAGTCTTCAGTGAC -ACGGAATTCCCAGTCTTCCTGTAG -ACGGAATTCCCAGTCTTCCCTAAG -ACGGAATTCCCAGTCTTCGTTCAG -ACGGAATTCCCAGTCTTCGCATAG -ACGGAATTCCCAGTCTTCGACAAG -ACGGAATTCCCAGTCTTCAAGCAG -ACGGAATTCCCAGTCTTCCGTCAA -ACGGAATTCCCAGTCTTCGCTGAA -ACGGAATTCCCAGTCTTCAGTACG -ACGGAATTCCCAGTCTTCATCCGA -ACGGAATTCCCAGTCTTCATGGGA -ACGGAATTCCCAGTCTTCGTGCAA -ACGGAATTCCCAGTCTTCGAGGAA -ACGGAATTCCCAGTCTTCCAGGTA -ACGGAATTCCCAGTCTTCGACTCT -ACGGAATTCCCAGTCTTCAGTCCT -ACGGAATTCCCAGTCTTCTAAGCC -ACGGAATTCCCAGTCTTCATAGCC -ACGGAATTCCCAGTCTTCTAACCG -ACGGAATTCCCAGTCTTCATGCCA -ACGGAATTCCCACTCTCTGGAAAC -ACGGAATTCCCACTCTCTAACACC -ACGGAATTCCCACTCTCTATCGAG -ACGGAATTCCCACTCTCTCTCCTT -ACGGAATTCCCACTCTCTCCTGTT -ACGGAATTCCCACTCTCTCGGTTT -ACGGAATTCCCACTCTCTGTGGTT -ACGGAATTCCCACTCTCTGCCTTT -ACGGAATTCCCACTCTCTGGTCTT -ACGGAATTCCCACTCTCTACGCTT -ACGGAATTCCCACTCTCTAGCGTT -ACGGAATTCCCACTCTCTTTCGTC -ACGGAATTCCCACTCTCTTCTCTC -ACGGAATTCCCACTCTCTTGGATC -ACGGAATTCCCACTCTCTCACTTC -ACGGAATTCCCACTCTCTGTACTC -ACGGAATTCCCACTCTCTGATGTC -ACGGAATTCCCACTCTCTACAGTC -ACGGAATTCCCACTCTCTTTGCTG -ACGGAATTCCCACTCTCTTCCATG -ACGGAATTCCCACTCTCTTGTGTG -ACGGAATTCCCACTCTCTCTAGTG -ACGGAATTCCCACTCTCTCATCTG -ACGGAATTCCCACTCTCTGAGTTG -ACGGAATTCCCACTCTCTAGACTG -ACGGAATTCCCACTCTCTTCGGTA -ACGGAATTCCCACTCTCTTGCCTA -ACGGAATTCCCACTCTCTCCACTA -ACGGAATTCCCACTCTCTGGAGTA -ACGGAATTCCCACTCTCTTCGTCT -ACGGAATTCCCACTCTCTTGCACT -ACGGAATTCCCACTCTCTCTGACT -ACGGAATTCCCACTCTCTCAACCT -ACGGAATTCCCACTCTCTGCTACT -ACGGAATTCCCACTCTCTGGATCT -ACGGAATTCCCACTCTCTAAGGCT -ACGGAATTCCCACTCTCTTCAACC -ACGGAATTCCCACTCTCTTGTTCC -ACGGAATTCCCACTCTCTATTCCC -ACGGAATTCCCACTCTCTTTCTCG -ACGGAATTCCCACTCTCTTAGACG -ACGGAATTCCCACTCTCTGTAACG -ACGGAATTCCCACTCTCTACTTCG -ACGGAATTCCCACTCTCTTACGCA -ACGGAATTCCCACTCTCTCTTGCA -ACGGAATTCCCACTCTCTCGAACA -ACGGAATTCCCACTCTCTCAGTCA -ACGGAATTCCCACTCTCTGATCCA -ACGGAATTCCCACTCTCTACGACA -ACGGAATTCCCACTCTCTAGCTCA -ACGGAATTCCCACTCTCTTCACGT -ACGGAATTCCCACTCTCTCGTAGT -ACGGAATTCCCACTCTCTGTCAGT -ACGGAATTCCCACTCTCTGAAGGT -ACGGAATTCCCACTCTCTAACCGT -ACGGAATTCCCACTCTCTTTGTGC -ACGGAATTCCCACTCTCTCTAAGC -ACGGAATTCCCACTCTCTACTAGC -ACGGAATTCCCACTCTCTAGATGC -ACGGAATTCCCACTCTCTTGAAGG -ACGGAATTCCCACTCTCTCAATGG -ACGGAATTCCCACTCTCTATGAGG -ACGGAATTCCCACTCTCTAATGGG -ACGGAATTCCCACTCTCTTCCTGA -ACGGAATTCCCACTCTCTTAGCGA -ACGGAATTCCCACTCTCTCACAGA -ACGGAATTCCCACTCTCTGCAAGA -ACGGAATTCCCACTCTCTGGTTGA -ACGGAATTCCCACTCTCTTCCGAT -ACGGAATTCCCACTCTCTTGGCAT -ACGGAATTCCCACTCTCTCGAGAT -ACGGAATTCCCACTCTCTTACCAC -ACGGAATTCCCACTCTCTCAGAAC -ACGGAATTCCCACTCTCTGTCTAC -ACGGAATTCCCACTCTCTACGTAC -ACGGAATTCCCACTCTCTAGTGAC -ACGGAATTCCCACTCTCTCTGTAG -ACGGAATTCCCACTCTCTCCTAAG -ACGGAATTCCCACTCTCTGTTCAG -ACGGAATTCCCACTCTCTGCATAG -ACGGAATTCCCACTCTCTGACAAG -ACGGAATTCCCACTCTCTAAGCAG -ACGGAATTCCCACTCTCTCGTCAA -ACGGAATTCCCACTCTCTGCTGAA -ACGGAATTCCCACTCTCTAGTACG -ACGGAATTCCCACTCTCTATCCGA -ACGGAATTCCCACTCTCTATGGGA -ACGGAATTCCCACTCTCTGTGCAA -ACGGAATTCCCACTCTCTGAGGAA -ACGGAATTCCCACTCTCTCAGGTA -ACGGAATTCCCACTCTCTGACTCT -ACGGAATTCCCACTCTCTAGTCCT -ACGGAATTCCCACTCTCTTAAGCC -ACGGAATTCCCACTCTCTATAGCC -ACGGAATTCCCACTCTCTTAACCG -ACGGAATTCCCACTCTCTATGCCA -ACGGAATTCCCAATCTGGGGAAAC -ACGGAATTCCCAATCTGGAACACC -ACGGAATTCCCAATCTGGATCGAG -ACGGAATTCCCAATCTGGCTCCTT -ACGGAATTCCCAATCTGGCCTGTT -ACGGAATTCCCAATCTGGCGGTTT -ACGGAATTCCCAATCTGGGTGGTT -ACGGAATTCCCAATCTGGGCCTTT -ACGGAATTCCCAATCTGGGGTCTT -ACGGAATTCCCAATCTGGACGCTT -ACGGAATTCCCAATCTGGAGCGTT -ACGGAATTCCCAATCTGGTTCGTC -ACGGAATTCCCAATCTGGTCTCTC -ACGGAATTCCCAATCTGGTGGATC -ACGGAATTCCCAATCTGGCACTTC -ACGGAATTCCCAATCTGGGTACTC -ACGGAATTCCCAATCTGGGATGTC -ACGGAATTCCCAATCTGGACAGTC -ACGGAATTCCCAATCTGGTTGCTG -ACGGAATTCCCAATCTGGTCCATG -ACGGAATTCCCAATCTGGTGTGTG -ACGGAATTCCCAATCTGGCTAGTG -ACGGAATTCCCAATCTGGCATCTG -ACGGAATTCCCAATCTGGGAGTTG -ACGGAATTCCCAATCTGGAGACTG -ACGGAATTCCCAATCTGGTCGGTA -ACGGAATTCCCAATCTGGTGCCTA -ACGGAATTCCCAATCTGGCCACTA -ACGGAATTCCCAATCTGGGGAGTA -ACGGAATTCCCAATCTGGTCGTCT -ACGGAATTCCCAATCTGGTGCACT -ACGGAATTCCCAATCTGGCTGACT -ACGGAATTCCCAATCTGGCAACCT -ACGGAATTCCCAATCTGGGCTACT -ACGGAATTCCCAATCTGGGGATCT -ACGGAATTCCCAATCTGGAAGGCT -ACGGAATTCCCAATCTGGTCAACC -ACGGAATTCCCAATCTGGTGTTCC -ACGGAATTCCCAATCTGGATTCCC -ACGGAATTCCCAATCTGGTTCTCG -ACGGAATTCCCAATCTGGTAGACG -ACGGAATTCCCAATCTGGGTAACG -ACGGAATTCCCAATCTGGACTTCG -ACGGAATTCCCAATCTGGTACGCA -ACGGAATTCCCAATCTGGCTTGCA -ACGGAATTCCCAATCTGGCGAACA -ACGGAATTCCCAATCTGGCAGTCA -ACGGAATTCCCAATCTGGGATCCA -ACGGAATTCCCAATCTGGACGACA -ACGGAATTCCCAATCTGGAGCTCA -ACGGAATTCCCAATCTGGTCACGT -ACGGAATTCCCAATCTGGCGTAGT -ACGGAATTCCCAATCTGGGTCAGT -ACGGAATTCCCAATCTGGGAAGGT -ACGGAATTCCCAATCTGGAACCGT -ACGGAATTCCCAATCTGGTTGTGC -ACGGAATTCCCAATCTGGCTAAGC -ACGGAATTCCCAATCTGGACTAGC -ACGGAATTCCCAATCTGGAGATGC -ACGGAATTCCCAATCTGGTGAAGG -ACGGAATTCCCAATCTGGCAATGG -ACGGAATTCCCAATCTGGATGAGG -ACGGAATTCCCAATCTGGAATGGG -ACGGAATTCCCAATCTGGTCCTGA -ACGGAATTCCCAATCTGGTAGCGA -ACGGAATTCCCAATCTGGCACAGA -ACGGAATTCCCAATCTGGGCAAGA -ACGGAATTCCCAATCTGGGGTTGA -ACGGAATTCCCAATCTGGTCCGAT -ACGGAATTCCCAATCTGGTGGCAT -ACGGAATTCCCAATCTGGCGAGAT -ACGGAATTCCCAATCTGGTACCAC -ACGGAATTCCCAATCTGGCAGAAC -ACGGAATTCCCAATCTGGGTCTAC -ACGGAATTCCCAATCTGGACGTAC -ACGGAATTCCCAATCTGGAGTGAC -ACGGAATTCCCAATCTGGCTGTAG -ACGGAATTCCCAATCTGGCCTAAG -ACGGAATTCCCAATCTGGGTTCAG -ACGGAATTCCCAATCTGGGCATAG -ACGGAATTCCCAATCTGGGACAAG -ACGGAATTCCCAATCTGGAAGCAG -ACGGAATTCCCAATCTGGCGTCAA -ACGGAATTCCCAATCTGGGCTGAA -ACGGAATTCCCAATCTGGAGTACG -ACGGAATTCCCAATCTGGATCCGA -ACGGAATTCCCAATCTGGATGGGA -ACGGAATTCCCAATCTGGGTGCAA -ACGGAATTCCCAATCTGGGAGGAA -ACGGAATTCCCAATCTGGCAGGTA -ACGGAATTCCCAATCTGGGACTCT -ACGGAATTCCCAATCTGGAGTCCT -ACGGAATTCCCAATCTGGTAAGCC -ACGGAATTCCCAATCTGGATAGCC -ACGGAATTCCCAATCTGGTAACCG -ACGGAATTCCCAATCTGGATGCCA -ACGGAATTCCCATTCCACGGAAAC -ACGGAATTCCCATTCCACAACACC -ACGGAATTCCCATTCCACATCGAG -ACGGAATTCCCATTCCACCTCCTT -ACGGAATTCCCATTCCACCCTGTT -ACGGAATTCCCATTCCACCGGTTT -ACGGAATTCCCATTCCACGTGGTT -ACGGAATTCCCATTCCACGCCTTT -ACGGAATTCCCATTCCACGGTCTT -ACGGAATTCCCATTCCACACGCTT -ACGGAATTCCCATTCCACAGCGTT -ACGGAATTCCCATTCCACTTCGTC -ACGGAATTCCCATTCCACTCTCTC -ACGGAATTCCCATTCCACTGGATC -ACGGAATTCCCATTCCACCACTTC -ACGGAATTCCCATTCCACGTACTC -ACGGAATTCCCATTCCACGATGTC -ACGGAATTCCCATTCCACACAGTC -ACGGAATTCCCATTCCACTTGCTG -ACGGAATTCCCATTCCACTCCATG -ACGGAATTCCCATTCCACTGTGTG -ACGGAATTCCCATTCCACCTAGTG -ACGGAATTCCCATTCCACCATCTG -ACGGAATTCCCATTCCACGAGTTG -ACGGAATTCCCATTCCACAGACTG -ACGGAATTCCCATTCCACTCGGTA -ACGGAATTCCCATTCCACTGCCTA -ACGGAATTCCCATTCCACCCACTA -ACGGAATTCCCATTCCACGGAGTA -ACGGAATTCCCATTCCACTCGTCT -ACGGAATTCCCATTCCACTGCACT -ACGGAATTCCCATTCCACCTGACT -ACGGAATTCCCATTCCACCAACCT -ACGGAATTCCCATTCCACGCTACT -ACGGAATTCCCATTCCACGGATCT -ACGGAATTCCCATTCCACAAGGCT -ACGGAATTCCCATTCCACTCAACC -ACGGAATTCCCATTCCACTGTTCC -ACGGAATTCCCATTCCACATTCCC -ACGGAATTCCCATTCCACTTCTCG -ACGGAATTCCCATTCCACTAGACG -ACGGAATTCCCATTCCACGTAACG -ACGGAATTCCCATTCCACACTTCG -ACGGAATTCCCATTCCACTACGCA -ACGGAATTCCCATTCCACCTTGCA -ACGGAATTCCCATTCCACCGAACA -ACGGAATTCCCATTCCACCAGTCA -ACGGAATTCCCATTCCACGATCCA -ACGGAATTCCCATTCCACACGACA -ACGGAATTCCCATTCCACAGCTCA -ACGGAATTCCCATTCCACTCACGT -ACGGAATTCCCATTCCACCGTAGT -ACGGAATTCCCATTCCACGTCAGT -ACGGAATTCCCATTCCACGAAGGT -ACGGAATTCCCATTCCACAACCGT -ACGGAATTCCCATTCCACTTGTGC -ACGGAATTCCCATTCCACCTAAGC -ACGGAATTCCCATTCCACACTAGC -ACGGAATTCCCATTCCACAGATGC -ACGGAATTCCCATTCCACTGAAGG -ACGGAATTCCCATTCCACCAATGG -ACGGAATTCCCATTCCACATGAGG -ACGGAATTCCCATTCCACAATGGG -ACGGAATTCCCATTCCACTCCTGA -ACGGAATTCCCATTCCACTAGCGA -ACGGAATTCCCATTCCACCACAGA -ACGGAATTCCCATTCCACGCAAGA -ACGGAATTCCCATTCCACGGTTGA -ACGGAATTCCCATTCCACTCCGAT -ACGGAATTCCCATTCCACTGGCAT -ACGGAATTCCCATTCCACCGAGAT -ACGGAATTCCCATTCCACTACCAC -ACGGAATTCCCATTCCACCAGAAC -ACGGAATTCCCATTCCACGTCTAC -ACGGAATTCCCATTCCACACGTAC -ACGGAATTCCCATTCCACAGTGAC -ACGGAATTCCCATTCCACCTGTAG -ACGGAATTCCCATTCCACCCTAAG -ACGGAATTCCCATTCCACGTTCAG -ACGGAATTCCCATTCCACGCATAG -ACGGAATTCCCATTCCACGACAAG -ACGGAATTCCCATTCCACAAGCAG -ACGGAATTCCCATTCCACCGTCAA -ACGGAATTCCCATTCCACGCTGAA -ACGGAATTCCCATTCCACAGTACG -ACGGAATTCCCATTCCACATCCGA -ACGGAATTCCCATTCCACATGGGA -ACGGAATTCCCATTCCACGTGCAA -ACGGAATTCCCATTCCACGAGGAA -ACGGAATTCCCATTCCACCAGGTA -ACGGAATTCCCATTCCACGACTCT -ACGGAATTCCCATTCCACAGTCCT -ACGGAATTCCCATTCCACTAAGCC -ACGGAATTCCCATTCCACATAGCC -ACGGAATTCCCATTCCACTAACCG -ACGGAATTCCCATTCCACATGCCA -ACGGAATTCCCACTCGTAGGAAAC -ACGGAATTCCCACTCGTAAACACC -ACGGAATTCCCACTCGTAATCGAG -ACGGAATTCCCACTCGTACTCCTT -ACGGAATTCCCACTCGTACCTGTT -ACGGAATTCCCACTCGTACGGTTT -ACGGAATTCCCACTCGTAGTGGTT -ACGGAATTCCCACTCGTAGCCTTT -ACGGAATTCCCACTCGTAGGTCTT -ACGGAATTCCCACTCGTAACGCTT -ACGGAATTCCCACTCGTAAGCGTT -ACGGAATTCCCACTCGTATTCGTC -ACGGAATTCCCACTCGTATCTCTC -ACGGAATTCCCACTCGTATGGATC -ACGGAATTCCCACTCGTACACTTC -ACGGAATTCCCACTCGTAGTACTC -ACGGAATTCCCACTCGTAGATGTC -ACGGAATTCCCACTCGTAACAGTC -ACGGAATTCCCACTCGTATTGCTG -ACGGAATTCCCACTCGTATCCATG -ACGGAATTCCCACTCGTATGTGTG -ACGGAATTCCCACTCGTACTAGTG -ACGGAATTCCCACTCGTACATCTG -ACGGAATTCCCACTCGTAGAGTTG -ACGGAATTCCCACTCGTAAGACTG -ACGGAATTCCCACTCGTATCGGTA -ACGGAATTCCCACTCGTATGCCTA -ACGGAATTCCCACTCGTACCACTA -ACGGAATTCCCACTCGTAGGAGTA -ACGGAATTCCCACTCGTATCGTCT -ACGGAATTCCCACTCGTATGCACT -ACGGAATTCCCACTCGTACTGACT -ACGGAATTCCCACTCGTACAACCT -ACGGAATTCCCACTCGTAGCTACT -ACGGAATTCCCACTCGTAGGATCT -ACGGAATTCCCACTCGTAAAGGCT -ACGGAATTCCCACTCGTATCAACC -ACGGAATTCCCACTCGTATGTTCC -ACGGAATTCCCACTCGTAATTCCC -ACGGAATTCCCACTCGTATTCTCG -ACGGAATTCCCACTCGTATAGACG -ACGGAATTCCCACTCGTAGTAACG -ACGGAATTCCCACTCGTAACTTCG -ACGGAATTCCCACTCGTATACGCA -ACGGAATTCCCACTCGTACTTGCA -ACGGAATTCCCACTCGTACGAACA -ACGGAATTCCCACTCGTACAGTCA -ACGGAATTCCCACTCGTAGATCCA -ACGGAATTCCCACTCGTAACGACA -ACGGAATTCCCACTCGTAAGCTCA -ACGGAATTCCCACTCGTATCACGT -ACGGAATTCCCACTCGTACGTAGT -ACGGAATTCCCACTCGTAGTCAGT -ACGGAATTCCCACTCGTAGAAGGT -ACGGAATTCCCACTCGTAAACCGT -ACGGAATTCCCACTCGTATTGTGC -ACGGAATTCCCACTCGTACTAAGC -ACGGAATTCCCACTCGTAACTAGC -ACGGAATTCCCACTCGTAAGATGC -ACGGAATTCCCACTCGTATGAAGG -ACGGAATTCCCACTCGTACAATGG -ACGGAATTCCCACTCGTAATGAGG -ACGGAATTCCCACTCGTAAATGGG -ACGGAATTCCCACTCGTATCCTGA -ACGGAATTCCCACTCGTATAGCGA -ACGGAATTCCCACTCGTACACAGA -ACGGAATTCCCACTCGTAGCAAGA -ACGGAATTCCCACTCGTAGGTTGA -ACGGAATTCCCACTCGTATCCGAT -ACGGAATTCCCACTCGTATGGCAT -ACGGAATTCCCACTCGTACGAGAT -ACGGAATTCCCACTCGTATACCAC -ACGGAATTCCCACTCGTACAGAAC -ACGGAATTCCCACTCGTAGTCTAC -ACGGAATTCCCACTCGTAACGTAC -ACGGAATTCCCACTCGTAAGTGAC -ACGGAATTCCCACTCGTACTGTAG -ACGGAATTCCCACTCGTACCTAAG -ACGGAATTCCCACTCGTAGTTCAG -ACGGAATTCCCACTCGTAGCATAG -ACGGAATTCCCACTCGTAGACAAG -ACGGAATTCCCACTCGTAAAGCAG -ACGGAATTCCCACTCGTACGTCAA -ACGGAATTCCCACTCGTAGCTGAA -ACGGAATTCCCACTCGTAAGTACG -ACGGAATTCCCACTCGTAATCCGA -ACGGAATTCCCACTCGTAATGGGA -ACGGAATTCCCACTCGTAGTGCAA -ACGGAATTCCCACTCGTAGAGGAA -ACGGAATTCCCACTCGTACAGGTA -ACGGAATTCCCACTCGTAGACTCT -ACGGAATTCCCACTCGTAAGTCCT -ACGGAATTCCCACTCGTATAAGCC -ACGGAATTCCCACTCGTAATAGCC -ACGGAATTCCCACTCGTATAACCG -ACGGAATTCCCACTCGTAATGCCA -ACGGAATTCCCAGTCGATGGAAAC -ACGGAATTCCCAGTCGATAACACC -ACGGAATTCCCAGTCGATATCGAG -ACGGAATTCCCAGTCGATCTCCTT -ACGGAATTCCCAGTCGATCCTGTT -ACGGAATTCCCAGTCGATCGGTTT -ACGGAATTCCCAGTCGATGTGGTT -ACGGAATTCCCAGTCGATGCCTTT -ACGGAATTCCCAGTCGATGGTCTT -ACGGAATTCCCAGTCGATACGCTT -ACGGAATTCCCAGTCGATAGCGTT -ACGGAATTCCCAGTCGATTTCGTC -ACGGAATTCCCAGTCGATTCTCTC -ACGGAATTCCCAGTCGATTGGATC -ACGGAATTCCCAGTCGATCACTTC -ACGGAATTCCCAGTCGATGTACTC -ACGGAATTCCCAGTCGATGATGTC -ACGGAATTCCCAGTCGATACAGTC -ACGGAATTCCCAGTCGATTTGCTG -ACGGAATTCCCAGTCGATTCCATG -ACGGAATTCCCAGTCGATTGTGTG -ACGGAATTCCCAGTCGATCTAGTG -ACGGAATTCCCAGTCGATCATCTG -ACGGAATTCCCAGTCGATGAGTTG -ACGGAATTCCCAGTCGATAGACTG -ACGGAATTCCCAGTCGATTCGGTA -ACGGAATTCCCAGTCGATTGCCTA -ACGGAATTCCCAGTCGATCCACTA -ACGGAATTCCCAGTCGATGGAGTA -ACGGAATTCCCAGTCGATTCGTCT -ACGGAATTCCCAGTCGATTGCACT -ACGGAATTCCCAGTCGATCTGACT -ACGGAATTCCCAGTCGATCAACCT -ACGGAATTCCCAGTCGATGCTACT -ACGGAATTCCCAGTCGATGGATCT -ACGGAATTCCCAGTCGATAAGGCT -ACGGAATTCCCAGTCGATTCAACC -ACGGAATTCCCAGTCGATTGTTCC -ACGGAATTCCCAGTCGATATTCCC -ACGGAATTCCCAGTCGATTTCTCG -ACGGAATTCCCAGTCGATTAGACG -ACGGAATTCCCAGTCGATGTAACG -ACGGAATTCCCAGTCGATACTTCG -ACGGAATTCCCAGTCGATTACGCA -ACGGAATTCCCAGTCGATCTTGCA -ACGGAATTCCCAGTCGATCGAACA -ACGGAATTCCCAGTCGATCAGTCA -ACGGAATTCCCAGTCGATGATCCA -ACGGAATTCCCAGTCGATACGACA -ACGGAATTCCCAGTCGATAGCTCA -ACGGAATTCCCAGTCGATTCACGT -ACGGAATTCCCAGTCGATCGTAGT -ACGGAATTCCCAGTCGATGTCAGT -ACGGAATTCCCAGTCGATGAAGGT -ACGGAATTCCCAGTCGATAACCGT -ACGGAATTCCCAGTCGATTTGTGC -ACGGAATTCCCAGTCGATCTAAGC -ACGGAATTCCCAGTCGATACTAGC -ACGGAATTCCCAGTCGATAGATGC -ACGGAATTCCCAGTCGATTGAAGG -ACGGAATTCCCAGTCGATCAATGG -ACGGAATTCCCAGTCGATATGAGG -ACGGAATTCCCAGTCGATAATGGG -ACGGAATTCCCAGTCGATTCCTGA -ACGGAATTCCCAGTCGATTAGCGA -ACGGAATTCCCAGTCGATCACAGA -ACGGAATTCCCAGTCGATGCAAGA -ACGGAATTCCCAGTCGATGGTTGA -ACGGAATTCCCAGTCGATTCCGAT -ACGGAATTCCCAGTCGATTGGCAT -ACGGAATTCCCAGTCGATCGAGAT -ACGGAATTCCCAGTCGATTACCAC -ACGGAATTCCCAGTCGATCAGAAC -ACGGAATTCCCAGTCGATGTCTAC -ACGGAATTCCCAGTCGATACGTAC -ACGGAATTCCCAGTCGATAGTGAC -ACGGAATTCCCAGTCGATCTGTAG -ACGGAATTCCCAGTCGATCCTAAG -ACGGAATTCCCAGTCGATGTTCAG -ACGGAATTCCCAGTCGATGCATAG -ACGGAATTCCCAGTCGATGACAAG -ACGGAATTCCCAGTCGATAAGCAG -ACGGAATTCCCAGTCGATCGTCAA -ACGGAATTCCCAGTCGATGCTGAA -ACGGAATTCCCAGTCGATAGTACG -ACGGAATTCCCAGTCGATATCCGA -ACGGAATTCCCAGTCGATATGGGA -ACGGAATTCCCAGTCGATGTGCAA -ACGGAATTCCCAGTCGATGAGGAA -ACGGAATTCCCAGTCGATCAGGTA -ACGGAATTCCCAGTCGATGACTCT -ACGGAATTCCCAGTCGATAGTCCT -ACGGAATTCCCAGTCGATTAAGCC -ACGGAATTCCCAGTCGATATAGCC -ACGGAATTCCCAGTCGATTAACCG -ACGGAATTCCCAGTCGATATGCCA -ACGGAATTCCCAGTCACAGGAAAC -ACGGAATTCCCAGTCACAAACACC -ACGGAATTCCCAGTCACAATCGAG -ACGGAATTCCCAGTCACACTCCTT -ACGGAATTCCCAGTCACACCTGTT -ACGGAATTCCCAGTCACACGGTTT -ACGGAATTCCCAGTCACAGTGGTT -ACGGAATTCCCAGTCACAGCCTTT -ACGGAATTCCCAGTCACAGGTCTT -ACGGAATTCCCAGTCACAACGCTT -ACGGAATTCCCAGTCACAAGCGTT -ACGGAATTCCCAGTCACATTCGTC -ACGGAATTCCCAGTCACATCTCTC -ACGGAATTCCCAGTCACATGGATC -ACGGAATTCCCAGTCACACACTTC -ACGGAATTCCCAGTCACAGTACTC -ACGGAATTCCCAGTCACAGATGTC -ACGGAATTCCCAGTCACAACAGTC -ACGGAATTCCCAGTCACATTGCTG -ACGGAATTCCCAGTCACATCCATG -ACGGAATTCCCAGTCACATGTGTG -ACGGAATTCCCAGTCACACTAGTG -ACGGAATTCCCAGTCACACATCTG -ACGGAATTCCCAGTCACAGAGTTG -ACGGAATTCCCAGTCACAAGACTG -ACGGAATTCCCAGTCACATCGGTA -ACGGAATTCCCAGTCACATGCCTA -ACGGAATTCCCAGTCACACCACTA -ACGGAATTCCCAGTCACAGGAGTA -ACGGAATTCCCAGTCACATCGTCT -ACGGAATTCCCAGTCACATGCACT -ACGGAATTCCCAGTCACACTGACT -ACGGAATTCCCAGTCACACAACCT -ACGGAATTCCCAGTCACAGCTACT -ACGGAATTCCCAGTCACAGGATCT -ACGGAATTCCCAGTCACAAAGGCT -ACGGAATTCCCAGTCACATCAACC -ACGGAATTCCCAGTCACATGTTCC -ACGGAATTCCCAGTCACAATTCCC -ACGGAATTCCCAGTCACATTCTCG -ACGGAATTCCCAGTCACATAGACG -ACGGAATTCCCAGTCACAGTAACG -ACGGAATTCCCAGTCACAACTTCG -ACGGAATTCCCAGTCACATACGCA -ACGGAATTCCCAGTCACACTTGCA -ACGGAATTCCCAGTCACACGAACA -ACGGAATTCCCAGTCACACAGTCA -ACGGAATTCCCAGTCACAGATCCA -ACGGAATTCCCAGTCACAACGACA -ACGGAATTCCCAGTCACAAGCTCA -ACGGAATTCCCAGTCACATCACGT -ACGGAATTCCCAGTCACACGTAGT -ACGGAATTCCCAGTCACAGTCAGT -ACGGAATTCCCAGTCACAGAAGGT -ACGGAATTCCCAGTCACAAACCGT -ACGGAATTCCCAGTCACATTGTGC -ACGGAATTCCCAGTCACACTAAGC -ACGGAATTCCCAGTCACAACTAGC -ACGGAATTCCCAGTCACAAGATGC -ACGGAATTCCCAGTCACATGAAGG -ACGGAATTCCCAGTCACACAATGG -ACGGAATTCCCAGTCACAATGAGG -ACGGAATTCCCAGTCACAAATGGG -ACGGAATTCCCAGTCACATCCTGA -ACGGAATTCCCAGTCACATAGCGA -ACGGAATTCCCAGTCACACACAGA -ACGGAATTCCCAGTCACAGCAAGA -ACGGAATTCCCAGTCACAGGTTGA -ACGGAATTCCCAGTCACATCCGAT -ACGGAATTCCCAGTCACATGGCAT -ACGGAATTCCCAGTCACACGAGAT -ACGGAATTCCCAGTCACATACCAC -ACGGAATTCCCAGTCACACAGAAC -ACGGAATTCCCAGTCACAGTCTAC -ACGGAATTCCCAGTCACAACGTAC -ACGGAATTCCCAGTCACAAGTGAC -ACGGAATTCCCAGTCACACTGTAG -ACGGAATTCCCAGTCACACCTAAG -ACGGAATTCCCAGTCACAGTTCAG -ACGGAATTCCCAGTCACAGCATAG -ACGGAATTCCCAGTCACAGACAAG -ACGGAATTCCCAGTCACAAAGCAG -ACGGAATTCCCAGTCACACGTCAA -ACGGAATTCCCAGTCACAGCTGAA -ACGGAATTCCCAGTCACAAGTACG -ACGGAATTCCCAGTCACAATCCGA -ACGGAATTCCCAGTCACAATGGGA -ACGGAATTCCCAGTCACAGTGCAA -ACGGAATTCCCAGTCACAGAGGAA -ACGGAATTCCCAGTCACACAGGTA -ACGGAATTCCCAGTCACAGACTCT -ACGGAATTCCCAGTCACAAGTCCT -ACGGAATTCCCAGTCACATAAGCC -ACGGAATTCCCAGTCACAATAGCC -ACGGAATTCCCAGTCACATAACCG -ACGGAATTCCCAGTCACAATGCCA -ACGGAATTCCCACTGTTGGGAAAC -ACGGAATTCCCACTGTTGAACACC -ACGGAATTCCCACTGTTGATCGAG -ACGGAATTCCCACTGTTGCTCCTT -ACGGAATTCCCACTGTTGCCTGTT -ACGGAATTCCCACTGTTGCGGTTT -ACGGAATTCCCACTGTTGGTGGTT -ACGGAATTCCCACTGTTGGCCTTT -ACGGAATTCCCACTGTTGGGTCTT -ACGGAATTCCCACTGTTGACGCTT -ACGGAATTCCCACTGTTGAGCGTT -ACGGAATTCCCACTGTTGTTCGTC -ACGGAATTCCCACTGTTGTCTCTC -ACGGAATTCCCACTGTTGTGGATC -ACGGAATTCCCACTGTTGCACTTC -ACGGAATTCCCACTGTTGGTACTC -ACGGAATTCCCACTGTTGGATGTC -ACGGAATTCCCACTGTTGACAGTC -ACGGAATTCCCACTGTTGTTGCTG -ACGGAATTCCCACTGTTGTCCATG -ACGGAATTCCCACTGTTGTGTGTG -ACGGAATTCCCACTGTTGCTAGTG -ACGGAATTCCCACTGTTGCATCTG -ACGGAATTCCCACTGTTGGAGTTG -ACGGAATTCCCACTGTTGAGACTG -ACGGAATTCCCACTGTTGTCGGTA -ACGGAATTCCCACTGTTGTGCCTA -ACGGAATTCCCACTGTTGCCACTA -ACGGAATTCCCACTGTTGGGAGTA -ACGGAATTCCCACTGTTGTCGTCT -ACGGAATTCCCACTGTTGTGCACT -ACGGAATTCCCACTGTTGCTGACT -ACGGAATTCCCACTGTTGCAACCT -ACGGAATTCCCACTGTTGGCTACT -ACGGAATTCCCACTGTTGGGATCT -ACGGAATTCCCACTGTTGAAGGCT -ACGGAATTCCCACTGTTGTCAACC -ACGGAATTCCCACTGTTGTGTTCC -ACGGAATTCCCACTGTTGATTCCC -ACGGAATTCCCACTGTTGTTCTCG -ACGGAATTCCCACTGTTGTAGACG -ACGGAATTCCCACTGTTGGTAACG -ACGGAATTCCCACTGTTGACTTCG -ACGGAATTCCCACTGTTGTACGCA -ACGGAATTCCCACTGTTGCTTGCA -ACGGAATTCCCACTGTTGCGAACA -ACGGAATTCCCACTGTTGCAGTCA -ACGGAATTCCCACTGTTGGATCCA -ACGGAATTCCCACTGTTGACGACA -ACGGAATTCCCACTGTTGAGCTCA -ACGGAATTCCCACTGTTGTCACGT -ACGGAATTCCCACTGTTGCGTAGT -ACGGAATTCCCACTGTTGGTCAGT -ACGGAATTCCCACTGTTGGAAGGT -ACGGAATTCCCACTGTTGAACCGT -ACGGAATTCCCACTGTTGTTGTGC -ACGGAATTCCCACTGTTGCTAAGC -ACGGAATTCCCACTGTTGACTAGC -ACGGAATTCCCACTGTTGAGATGC -ACGGAATTCCCACTGTTGTGAAGG -ACGGAATTCCCACTGTTGCAATGG -ACGGAATTCCCACTGTTGATGAGG -ACGGAATTCCCACTGTTGAATGGG -ACGGAATTCCCACTGTTGTCCTGA -ACGGAATTCCCACTGTTGTAGCGA -ACGGAATTCCCACTGTTGCACAGA -ACGGAATTCCCACTGTTGGCAAGA -ACGGAATTCCCACTGTTGGGTTGA -ACGGAATTCCCACTGTTGTCCGAT -ACGGAATTCCCACTGTTGTGGCAT -ACGGAATTCCCACTGTTGCGAGAT -ACGGAATTCCCACTGTTGTACCAC -ACGGAATTCCCACTGTTGCAGAAC -ACGGAATTCCCACTGTTGGTCTAC -ACGGAATTCCCACTGTTGACGTAC -ACGGAATTCCCACTGTTGAGTGAC -ACGGAATTCCCACTGTTGCTGTAG -ACGGAATTCCCACTGTTGCCTAAG -ACGGAATTCCCACTGTTGGTTCAG -ACGGAATTCCCACTGTTGGCATAG -ACGGAATTCCCACTGTTGGACAAG -ACGGAATTCCCACTGTTGAAGCAG -ACGGAATTCCCACTGTTGCGTCAA -ACGGAATTCCCACTGTTGGCTGAA -ACGGAATTCCCACTGTTGAGTACG -ACGGAATTCCCACTGTTGATCCGA -ACGGAATTCCCACTGTTGATGGGA -ACGGAATTCCCACTGTTGGTGCAA -ACGGAATTCCCACTGTTGGAGGAA -ACGGAATTCCCACTGTTGCAGGTA -ACGGAATTCCCACTGTTGGACTCT -ACGGAATTCCCACTGTTGAGTCCT -ACGGAATTCCCACTGTTGTAAGCC -ACGGAATTCCCACTGTTGATAGCC -ACGGAATTCCCACTGTTGTAACCG -ACGGAATTCCCACTGTTGATGCCA -ACGGAATTCCCAATGTCCGGAAAC -ACGGAATTCCCAATGTCCAACACC -ACGGAATTCCCAATGTCCATCGAG -ACGGAATTCCCAATGTCCCTCCTT -ACGGAATTCCCAATGTCCCCTGTT -ACGGAATTCCCAATGTCCCGGTTT -ACGGAATTCCCAATGTCCGTGGTT -ACGGAATTCCCAATGTCCGCCTTT -ACGGAATTCCCAATGTCCGGTCTT -ACGGAATTCCCAATGTCCACGCTT -ACGGAATTCCCAATGTCCAGCGTT -ACGGAATTCCCAATGTCCTTCGTC -ACGGAATTCCCAATGTCCTCTCTC -ACGGAATTCCCAATGTCCTGGATC -ACGGAATTCCCAATGTCCCACTTC -ACGGAATTCCCAATGTCCGTACTC -ACGGAATTCCCAATGTCCGATGTC -ACGGAATTCCCAATGTCCACAGTC -ACGGAATTCCCAATGTCCTTGCTG -ACGGAATTCCCAATGTCCTCCATG -ACGGAATTCCCAATGTCCTGTGTG -ACGGAATTCCCAATGTCCCTAGTG -ACGGAATTCCCAATGTCCCATCTG -ACGGAATTCCCAATGTCCGAGTTG -ACGGAATTCCCAATGTCCAGACTG -ACGGAATTCCCAATGTCCTCGGTA -ACGGAATTCCCAATGTCCTGCCTA -ACGGAATTCCCAATGTCCCCACTA -ACGGAATTCCCAATGTCCGGAGTA -ACGGAATTCCCAATGTCCTCGTCT -ACGGAATTCCCAATGTCCTGCACT -ACGGAATTCCCAATGTCCCTGACT -ACGGAATTCCCAATGTCCCAACCT -ACGGAATTCCCAATGTCCGCTACT -ACGGAATTCCCAATGTCCGGATCT -ACGGAATTCCCAATGTCCAAGGCT -ACGGAATTCCCAATGTCCTCAACC -ACGGAATTCCCAATGTCCTGTTCC -ACGGAATTCCCAATGTCCATTCCC -ACGGAATTCCCAATGTCCTTCTCG -ACGGAATTCCCAATGTCCTAGACG -ACGGAATTCCCAATGTCCGTAACG -ACGGAATTCCCAATGTCCACTTCG -ACGGAATTCCCAATGTCCTACGCA -ACGGAATTCCCAATGTCCCTTGCA -ACGGAATTCCCAATGTCCCGAACA -ACGGAATTCCCAATGTCCCAGTCA -ACGGAATTCCCAATGTCCGATCCA -ACGGAATTCCCAATGTCCACGACA -ACGGAATTCCCAATGTCCAGCTCA -ACGGAATTCCCAATGTCCTCACGT -ACGGAATTCCCAATGTCCCGTAGT -ACGGAATTCCCAATGTCCGTCAGT -ACGGAATTCCCAATGTCCGAAGGT -ACGGAATTCCCAATGTCCAACCGT -ACGGAATTCCCAATGTCCTTGTGC -ACGGAATTCCCAATGTCCCTAAGC -ACGGAATTCCCAATGTCCACTAGC -ACGGAATTCCCAATGTCCAGATGC -ACGGAATTCCCAATGTCCTGAAGG -ACGGAATTCCCAATGTCCCAATGG -ACGGAATTCCCAATGTCCATGAGG -ACGGAATTCCCAATGTCCAATGGG -ACGGAATTCCCAATGTCCTCCTGA -ACGGAATTCCCAATGTCCTAGCGA -ACGGAATTCCCAATGTCCCACAGA -ACGGAATTCCCAATGTCCGCAAGA -ACGGAATTCCCAATGTCCGGTTGA -ACGGAATTCCCAATGTCCTCCGAT -ACGGAATTCCCAATGTCCTGGCAT -ACGGAATTCCCAATGTCCCGAGAT -ACGGAATTCCCAATGTCCTACCAC -ACGGAATTCCCAATGTCCCAGAAC -ACGGAATTCCCAATGTCCGTCTAC -ACGGAATTCCCAATGTCCACGTAC -ACGGAATTCCCAATGTCCAGTGAC -ACGGAATTCCCAATGTCCCTGTAG -ACGGAATTCCCAATGTCCCCTAAG -ACGGAATTCCCAATGTCCGTTCAG -ACGGAATTCCCAATGTCCGCATAG -ACGGAATTCCCAATGTCCGACAAG -ACGGAATTCCCAATGTCCAAGCAG -ACGGAATTCCCAATGTCCCGTCAA -ACGGAATTCCCAATGTCCGCTGAA -ACGGAATTCCCAATGTCCAGTACG -ACGGAATTCCCAATGTCCATCCGA -ACGGAATTCCCAATGTCCATGGGA -ACGGAATTCCCAATGTCCGTGCAA -ACGGAATTCCCAATGTCCGAGGAA -ACGGAATTCCCAATGTCCCAGGTA -ACGGAATTCCCAATGTCCGACTCT -ACGGAATTCCCAATGTCCAGTCCT -ACGGAATTCCCAATGTCCTAAGCC -ACGGAATTCCCAATGTCCATAGCC -ACGGAATTCCCAATGTCCTAACCG -ACGGAATTCCCAATGTCCATGCCA -ACGGAATTCCCAGTGTGTGGAAAC -ACGGAATTCCCAGTGTGTAACACC -ACGGAATTCCCAGTGTGTATCGAG -ACGGAATTCCCAGTGTGTCTCCTT -ACGGAATTCCCAGTGTGTCCTGTT -ACGGAATTCCCAGTGTGTCGGTTT -ACGGAATTCCCAGTGTGTGTGGTT -ACGGAATTCCCAGTGTGTGCCTTT -ACGGAATTCCCAGTGTGTGGTCTT -ACGGAATTCCCAGTGTGTACGCTT -ACGGAATTCCCAGTGTGTAGCGTT -ACGGAATTCCCAGTGTGTTTCGTC -ACGGAATTCCCAGTGTGTTCTCTC -ACGGAATTCCCAGTGTGTTGGATC -ACGGAATTCCCAGTGTGTCACTTC -ACGGAATTCCCAGTGTGTGTACTC -ACGGAATTCCCAGTGTGTGATGTC -ACGGAATTCCCAGTGTGTACAGTC -ACGGAATTCCCAGTGTGTTTGCTG -ACGGAATTCCCAGTGTGTTCCATG -ACGGAATTCCCAGTGTGTTGTGTG -ACGGAATTCCCAGTGTGTCTAGTG -ACGGAATTCCCAGTGTGTCATCTG -ACGGAATTCCCAGTGTGTGAGTTG -ACGGAATTCCCAGTGTGTAGACTG -ACGGAATTCCCAGTGTGTTCGGTA -ACGGAATTCCCAGTGTGTTGCCTA -ACGGAATTCCCAGTGTGTCCACTA -ACGGAATTCCCAGTGTGTGGAGTA -ACGGAATTCCCAGTGTGTTCGTCT -ACGGAATTCCCAGTGTGTTGCACT -ACGGAATTCCCAGTGTGTCTGACT -ACGGAATTCCCAGTGTGTCAACCT -ACGGAATTCCCAGTGTGTGCTACT -ACGGAATTCCCAGTGTGTGGATCT -ACGGAATTCCCAGTGTGTAAGGCT -ACGGAATTCCCAGTGTGTTCAACC -ACGGAATTCCCAGTGTGTTGTTCC -ACGGAATTCCCAGTGTGTATTCCC -ACGGAATTCCCAGTGTGTTTCTCG -ACGGAATTCCCAGTGTGTTAGACG -ACGGAATTCCCAGTGTGTGTAACG -ACGGAATTCCCAGTGTGTACTTCG -ACGGAATTCCCAGTGTGTTACGCA -ACGGAATTCCCAGTGTGTCTTGCA -ACGGAATTCCCAGTGTGTCGAACA -ACGGAATTCCCAGTGTGTCAGTCA -ACGGAATTCCCAGTGTGTGATCCA -ACGGAATTCCCAGTGTGTACGACA -ACGGAATTCCCAGTGTGTAGCTCA -ACGGAATTCCCAGTGTGTTCACGT -ACGGAATTCCCAGTGTGTCGTAGT -ACGGAATTCCCAGTGTGTGTCAGT -ACGGAATTCCCAGTGTGTGAAGGT -ACGGAATTCCCAGTGTGTAACCGT -ACGGAATTCCCAGTGTGTTTGTGC -ACGGAATTCCCAGTGTGTCTAAGC -ACGGAATTCCCAGTGTGTACTAGC -ACGGAATTCCCAGTGTGTAGATGC -ACGGAATTCCCAGTGTGTTGAAGG -ACGGAATTCCCAGTGTGTCAATGG -ACGGAATTCCCAGTGTGTATGAGG -ACGGAATTCCCAGTGTGTAATGGG -ACGGAATTCCCAGTGTGTTCCTGA -ACGGAATTCCCAGTGTGTTAGCGA -ACGGAATTCCCAGTGTGTCACAGA -ACGGAATTCCCAGTGTGTGCAAGA -ACGGAATTCCCAGTGTGTGGTTGA -ACGGAATTCCCAGTGTGTTCCGAT -ACGGAATTCCCAGTGTGTTGGCAT -ACGGAATTCCCAGTGTGTCGAGAT -ACGGAATTCCCAGTGTGTTACCAC -ACGGAATTCCCAGTGTGTCAGAAC -ACGGAATTCCCAGTGTGTGTCTAC -ACGGAATTCCCAGTGTGTACGTAC -ACGGAATTCCCAGTGTGTAGTGAC -ACGGAATTCCCAGTGTGTCTGTAG -ACGGAATTCCCAGTGTGTCCTAAG -ACGGAATTCCCAGTGTGTGTTCAG -ACGGAATTCCCAGTGTGTGCATAG -ACGGAATTCCCAGTGTGTGACAAG -ACGGAATTCCCAGTGTGTAAGCAG -ACGGAATTCCCAGTGTGTCGTCAA -ACGGAATTCCCAGTGTGTGCTGAA -ACGGAATTCCCAGTGTGTAGTACG -ACGGAATTCCCAGTGTGTATCCGA -ACGGAATTCCCAGTGTGTATGGGA -ACGGAATTCCCAGTGTGTGTGCAA -ACGGAATTCCCAGTGTGTGAGGAA -ACGGAATTCCCAGTGTGTCAGGTA -ACGGAATTCCCAGTGTGTGACTCT -ACGGAATTCCCAGTGTGTAGTCCT -ACGGAATTCCCAGTGTGTTAAGCC -ACGGAATTCCCAGTGTGTATAGCC -ACGGAATTCCCAGTGTGTTAACCG -ACGGAATTCCCAGTGTGTATGCCA -ACGGAATTCCCAGTGCTAGGAAAC -ACGGAATTCCCAGTGCTAAACACC -ACGGAATTCCCAGTGCTAATCGAG -ACGGAATTCCCAGTGCTACTCCTT -ACGGAATTCCCAGTGCTACCTGTT -ACGGAATTCCCAGTGCTACGGTTT -ACGGAATTCCCAGTGCTAGTGGTT -ACGGAATTCCCAGTGCTAGCCTTT -ACGGAATTCCCAGTGCTAGGTCTT -ACGGAATTCCCAGTGCTAACGCTT -ACGGAATTCCCAGTGCTAAGCGTT -ACGGAATTCCCAGTGCTATTCGTC -ACGGAATTCCCAGTGCTATCTCTC -ACGGAATTCCCAGTGCTATGGATC -ACGGAATTCCCAGTGCTACACTTC -ACGGAATTCCCAGTGCTAGTACTC -ACGGAATTCCCAGTGCTAGATGTC -ACGGAATTCCCAGTGCTAACAGTC -ACGGAATTCCCAGTGCTATTGCTG -ACGGAATTCCCAGTGCTATCCATG -ACGGAATTCCCAGTGCTATGTGTG -ACGGAATTCCCAGTGCTACTAGTG -ACGGAATTCCCAGTGCTACATCTG -ACGGAATTCCCAGTGCTAGAGTTG -ACGGAATTCCCAGTGCTAAGACTG -ACGGAATTCCCAGTGCTATCGGTA -ACGGAATTCCCAGTGCTATGCCTA -ACGGAATTCCCAGTGCTACCACTA -ACGGAATTCCCAGTGCTAGGAGTA -ACGGAATTCCCAGTGCTATCGTCT -ACGGAATTCCCAGTGCTATGCACT -ACGGAATTCCCAGTGCTACTGACT -ACGGAATTCCCAGTGCTACAACCT -ACGGAATTCCCAGTGCTAGCTACT -ACGGAATTCCCAGTGCTAGGATCT -ACGGAATTCCCAGTGCTAAAGGCT -ACGGAATTCCCAGTGCTATCAACC -ACGGAATTCCCAGTGCTATGTTCC -ACGGAATTCCCAGTGCTAATTCCC -ACGGAATTCCCAGTGCTATTCTCG -ACGGAATTCCCAGTGCTATAGACG -ACGGAATTCCCAGTGCTAGTAACG -ACGGAATTCCCAGTGCTAACTTCG -ACGGAATTCCCAGTGCTATACGCA -ACGGAATTCCCAGTGCTACTTGCA -ACGGAATTCCCAGTGCTACGAACA -ACGGAATTCCCAGTGCTACAGTCA -ACGGAATTCCCAGTGCTAGATCCA -ACGGAATTCCCAGTGCTAACGACA -ACGGAATTCCCAGTGCTAAGCTCA -ACGGAATTCCCAGTGCTATCACGT -ACGGAATTCCCAGTGCTACGTAGT -ACGGAATTCCCAGTGCTAGTCAGT -ACGGAATTCCCAGTGCTAGAAGGT -ACGGAATTCCCAGTGCTAAACCGT -ACGGAATTCCCAGTGCTATTGTGC -ACGGAATTCCCAGTGCTACTAAGC -ACGGAATTCCCAGTGCTAACTAGC -ACGGAATTCCCAGTGCTAAGATGC -ACGGAATTCCCAGTGCTATGAAGG -ACGGAATTCCCAGTGCTACAATGG -ACGGAATTCCCAGTGCTAATGAGG -ACGGAATTCCCAGTGCTAAATGGG -ACGGAATTCCCAGTGCTATCCTGA -ACGGAATTCCCAGTGCTATAGCGA -ACGGAATTCCCAGTGCTACACAGA -ACGGAATTCCCAGTGCTAGCAAGA -ACGGAATTCCCAGTGCTAGGTTGA -ACGGAATTCCCAGTGCTATCCGAT -ACGGAATTCCCAGTGCTATGGCAT -ACGGAATTCCCAGTGCTACGAGAT -ACGGAATTCCCAGTGCTATACCAC -ACGGAATTCCCAGTGCTACAGAAC -ACGGAATTCCCAGTGCTAGTCTAC -ACGGAATTCCCAGTGCTAACGTAC -ACGGAATTCCCAGTGCTAAGTGAC -ACGGAATTCCCAGTGCTACTGTAG -ACGGAATTCCCAGTGCTACCTAAG -ACGGAATTCCCAGTGCTAGTTCAG -ACGGAATTCCCAGTGCTAGCATAG -ACGGAATTCCCAGTGCTAGACAAG -ACGGAATTCCCAGTGCTAAAGCAG -ACGGAATTCCCAGTGCTACGTCAA -ACGGAATTCCCAGTGCTAGCTGAA -ACGGAATTCCCAGTGCTAAGTACG -ACGGAATTCCCAGTGCTAATCCGA -ACGGAATTCCCAGTGCTAATGGGA -ACGGAATTCCCAGTGCTAGTGCAA -ACGGAATTCCCAGTGCTAGAGGAA -ACGGAATTCCCAGTGCTACAGGTA -ACGGAATTCCCAGTGCTAGACTCT -ACGGAATTCCCAGTGCTAAGTCCT -ACGGAATTCCCAGTGCTATAAGCC -ACGGAATTCCCAGTGCTAATAGCC -ACGGAATTCCCAGTGCTATAACCG -ACGGAATTCCCAGTGCTAATGCCA -ACGGAATTCCCACTGCATGGAAAC -ACGGAATTCCCACTGCATAACACC -ACGGAATTCCCACTGCATATCGAG -ACGGAATTCCCACTGCATCTCCTT -ACGGAATTCCCACTGCATCCTGTT -ACGGAATTCCCACTGCATCGGTTT -ACGGAATTCCCACTGCATGTGGTT -ACGGAATTCCCACTGCATGCCTTT -ACGGAATTCCCACTGCATGGTCTT -ACGGAATTCCCACTGCATACGCTT -ACGGAATTCCCACTGCATAGCGTT -ACGGAATTCCCACTGCATTTCGTC -ACGGAATTCCCACTGCATTCTCTC -ACGGAATTCCCACTGCATTGGATC -ACGGAATTCCCACTGCATCACTTC -ACGGAATTCCCACTGCATGTACTC -ACGGAATTCCCACTGCATGATGTC -ACGGAATTCCCACTGCATACAGTC -ACGGAATTCCCACTGCATTTGCTG -ACGGAATTCCCACTGCATTCCATG -ACGGAATTCCCACTGCATTGTGTG -ACGGAATTCCCACTGCATCTAGTG -ACGGAATTCCCACTGCATCATCTG -ACGGAATTCCCACTGCATGAGTTG -ACGGAATTCCCACTGCATAGACTG -ACGGAATTCCCACTGCATTCGGTA -ACGGAATTCCCACTGCATTGCCTA -ACGGAATTCCCACTGCATCCACTA -ACGGAATTCCCACTGCATGGAGTA -ACGGAATTCCCACTGCATTCGTCT -ACGGAATTCCCACTGCATTGCACT -ACGGAATTCCCACTGCATCTGACT -ACGGAATTCCCACTGCATCAACCT -ACGGAATTCCCACTGCATGCTACT -ACGGAATTCCCACTGCATGGATCT -ACGGAATTCCCACTGCATAAGGCT -ACGGAATTCCCACTGCATTCAACC -ACGGAATTCCCACTGCATTGTTCC -ACGGAATTCCCACTGCATATTCCC -ACGGAATTCCCACTGCATTTCTCG -ACGGAATTCCCACTGCATTAGACG -ACGGAATTCCCACTGCATGTAACG -ACGGAATTCCCACTGCATACTTCG -ACGGAATTCCCACTGCATTACGCA -ACGGAATTCCCACTGCATCTTGCA -ACGGAATTCCCACTGCATCGAACA -ACGGAATTCCCACTGCATCAGTCA -ACGGAATTCCCACTGCATGATCCA -ACGGAATTCCCACTGCATACGACA -ACGGAATTCCCACTGCATAGCTCA -ACGGAATTCCCACTGCATTCACGT -ACGGAATTCCCACTGCATCGTAGT -ACGGAATTCCCACTGCATGTCAGT -ACGGAATTCCCACTGCATGAAGGT -ACGGAATTCCCACTGCATAACCGT -ACGGAATTCCCACTGCATTTGTGC -ACGGAATTCCCACTGCATCTAAGC -ACGGAATTCCCACTGCATACTAGC -ACGGAATTCCCACTGCATAGATGC -ACGGAATTCCCACTGCATTGAAGG -ACGGAATTCCCACTGCATCAATGG -ACGGAATTCCCACTGCATATGAGG -ACGGAATTCCCACTGCATAATGGG -ACGGAATTCCCACTGCATTCCTGA -ACGGAATTCCCACTGCATTAGCGA -ACGGAATTCCCACTGCATCACAGA -ACGGAATTCCCACTGCATGCAAGA -ACGGAATTCCCACTGCATGGTTGA -ACGGAATTCCCACTGCATTCCGAT -ACGGAATTCCCACTGCATTGGCAT -ACGGAATTCCCACTGCATCGAGAT -ACGGAATTCCCACTGCATTACCAC -ACGGAATTCCCACTGCATCAGAAC -ACGGAATTCCCACTGCATGTCTAC -ACGGAATTCCCACTGCATACGTAC -ACGGAATTCCCACTGCATAGTGAC -ACGGAATTCCCACTGCATCTGTAG -ACGGAATTCCCACTGCATCCTAAG -ACGGAATTCCCACTGCATGTTCAG -ACGGAATTCCCACTGCATGCATAG -ACGGAATTCCCACTGCATGACAAG -ACGGAATTCCCACTGCATAAGCAG -ACGGAATTCCCACTGCATCGTCAA -ACGGAATTCCCACTGCATGCTGAA -ACGGAATTCCCACTGCATAGTACG -ACGGAATTCCCACTGCATATCCGA -ACGGAATTCCCACTGCATATGGGA -ACGGAATTCCCACTGCATGTGCAA -ACGGAATTCCCACTGCATGAGGAA -ACGGAATTCCCACTGCATCAGGTA -ACGGAATTCCCACTGCATGACTCT -ACGGAATTCCCACTGCATAGTCCT -ACGGAATTCCCACTGCATTAAGCC -ACGGAATTCCCACTGCATATAGCC -ACGGAATTCCCACTGCATTAACCG -ACGGAATTCCCACTGCATATGCCA -ACGGAATTCCCATTGGAGGGAAAC -ACGGAATTCCCATTGGAGAACACC -ACGGAATTCCCATTGGAGATCGAG -ACGGAATTCCCATTGGAGCTCCTT -ACGGAATTCCCATTGGAGCCTGTT -ACGGAATTCCCATTGGAGCGGTTT -ACGGAATTCCCATTGGAGGTGGTT -ACGGAATTCCCATTGGAGGCCTTT -ACGGAATTCCCATTGGAGGGTCTT -ACGGAATTCCCATTGGAGACGCTT -ACGGAATTCCCATTGGAGAGCGTT -ACGGAATTCCCATTGGAGTTCGTC -ACGGAATTCCCATTGGAGTCTCTC -ACGGAATTCCCATTGGAGTGGATC -ACGGAATTCCCATTGGAGCACTTC -ACGGAATTCCCATTGGAGGTACTC -ACGGAATTCCCATTGGAGGATGTC -ACGGAATTCCCATTGGAGACAGTC -ACGGAATTCCCATTGGAGTTGCTG -ACGGAATTCCCATTGGAGTCCATG -ACGGAATTCCCATTGGAGTGTGTG -ACGGAATTCCCATTGGAGCTAGTG -ACGGAATTCCCATTGGAGCATCTG -ACGGAATTCCCATTGGAGGAGTTG -ACGGAATTCCCATTGGAGAGACTG -ACGGAATTCCCATTGGAGTCGGTA -ACGGAATTCCCATTGGAGTGCCTA -ACGGAATTCCCATTGGAGCCACTA -ACGGAATTCCCATTGGAGGGAGTA -ACGGAATTCCCATTGGAGTCGTCT -ACGGAATTCCCATTGGAGTGCACT -ACGGAATTCCCATTGGAGCTGACT -ACGGAATTCCCATTGGAGCAACCT -ACGGAATTCCCATTGGAGGCTACT -ACGGAATTCCCATTGGAGGGATCT -ACGGAATTCCCATTGGAGAAGGCT -ACGGAATTCCCATTGGAGTCAACC -ACGGAATTCCCATTGGAGTGTTCC -ACGGAATTCCCATTGGAGATTCCC -ACGGAATTCCCATTGGAGTTCTCG -ACGGAATTCCCATTGGAGTAGACG -ACGGAATTCCCATTGGAGGTAACG -ACGGAATTCCCATTGGAGACTTCG -ACGGAATTCCCATTGGAGTACGCA -ACGGAATTCCCATTGGAGCTTGCA -ACGGAATTCCCATTGGAGCGAACA -ACGGAATTCCCATTGGAGCAGTCA -ACGGAATTCCCATTGGAGGATCCA -ACGGAATTCCCATTGGAGACGACA -ACGGAATTCCCATTGGAGAGCTCA -ACGGAATTCCCATTGGAGTCACGT -ACGGAATTCCCATTGGAGCGTAGT -ACGGAATTCCCATTGGAGGTCAGT -ACGGAATTCCCATTGGAGGAAGGT -ACGGAATTCCCATTGGAGAACCGT -ACGGAATTCCCATTGGAGTTGTGC -ACGGAATTCCCATTGGAGCTAAGC -ACGGAATTCCCATTGGAGACTAGC -ACGGAATTCCCATTGGAGAGATGC -ACGGAATTCCCATTGGAGTGAAGG -ACGGAATTCCCATTGGAGCAATGG -ACGGAATTCCCATTGGAGATGAGG -ACGGAATTCCCATTGGAGAATGGG -ACGGAATTCCCATTGGAGTCCTGA -ACGGAATTCCCATTGGAGTAGCGA -ACGGAATTCCCATTGGAGCACAGA -ACGGAATTCCCATTGGAGGCAAGA -ACGGAATTCCCATTGGAGGGTTGA -ACGGAATTCCCATTGGAGTCCGAT -ACGGAATTCCCATTGGAGTGGCAT -ACGGAATTCCCATTGGAGCGAGAT -ACGGAATTCCCATTGGAGTACCAC -ACGGAATTCCCATTGGAGCAGAAC -ACGGAATTCCCATTGGAGGTCTAC -ACGGAATTCCCATTGGAGACGTAC -ACGGAATTCCCATTGGAGAGTGAC -ACGGAATTCCCATTGGAGCTGTAG -ACGGAATTCCCATTGGAGCCTAAG -ACGGAATTCCCATTGGAGGTTCAG -ACGGAATTCCCATTGGAGGCATAG -ACGGAATTCCCATTGGAGGACAAG -ACGGAATTCCCATTGGAGAAGCAG -ACGGAATTCCCATTGGAGCGTCAA -ACGGAATTCCCATTGGAGGCTGAA -ACGGAATTCCCATTGGAGAGTACG -ACGGAATTCCCATTGGAGATCCGA -ACGGAATTCCCATTGGAGATGGGA -ACGGAATTCCCATTGGAGGTGCAA -ACGGAATTCCCATTGGAGGAGGAA -ACGGAATTCCCATTGGAGCAGGTA -ACGGAATTCCCATTGGAGGACTCT -ACGGAATTCCCATTGGAGAGTCCT -ACGGAATTCCCATTGGAGTAAGCC -ACGGAATTCCCATTGGAGATAGCC -ACGGAATTCCCATTGGAGTAACCG -ACGGAATTCCCATTGGAGATGCCA -ACGGAATTCCCACTGAGAGGAAAC -ACGGAATTCCCACTGAGAAACACC -ACGGAATTCCCACTGAGAATCGAG -ACGGAATTCCCACTGAGACTCCTT -ACGGAATTCCCACTGAGACCTGTT -ACGGAATTCCCACTGAGACGGTTT -ACGGAATTCCCACTGAGAGTGGTT -ACGGAATTCCCACTGAGAGCCTTT -ACGGAATTCCCACTGAGAGGTCTT -ACGGAATTCCCACTGAGAACGCTT -ACGGAATTCCCACTGAGAAGCGTT -ACGGAATTCCCACTGAGATTCGTC -ACGGAATTCCCACTGAGATCTCTC -ACGGAATTCCCACTGAGATGGATC -ACGGAATTCCCACTGAGACACTTC -ACGGAATTCCCACTGAGAGTACTC -ACGGAATTCCCACTGAGAGATGTC -ACGGAATTCCCACTGAGAACAGTC -ACGGAATTCCCACTGAGATTGCTG -ACGGAATTCCCACTGAGATCCATG -ACGGAATTCCCACTGAGATGTGTG -ACGGAATTCCCACTGAGACTAGTG -ACGGAATTCCCACTGAGACATCTG -ACGGAATTCCCACTGAGAGAGTTG -ACGGAATTCCCACTGAGAAGACTG -ACGGAATTCCCACTGAGATCGGTA -ACGGAATTCCCACTGAGATGCCTA -ACGGAATTCCCACTGAGACCACTA -ACGGAATTCCCACTGAGAGGAGTA -ACGGAATTCCCACTGAGATCGTCT -ACGGAATTCCCACTGAGATGCACT -ACGGAATTCCCACTGAGACTGACT -ACGGAATTCCCACTGAGACAACCT -ACGGAATTCCCACTGAGAGCTACT -ACGGAATTCCCACTGAGAGGATCT -ACGGAATTCCCACTGAGAAAGGCT -ACGGAATTCCCACTGAGATCAACC -ACGGAATTCCCACTGAGATGTTCC -ACGGAATTCCCACTGAGAATTCCC -ACGGAATTCCCACTGAGATTCTCG -ACGGAATTCCCACTGAGATAGACG -ACGGAATTCCCACTGAGAGTAACG -ACGGAATTCCCACTGAGAACTTCG -ACGGAATTCCCACTGAGATACGCA -ACGGAATTCCCACTGAGACTTGCA -ACGGAATTCCCACTGAGACGAACA -ACGGAATTCCCACTGAGACAGTCA -ACGGAATTCCCACTGAGAGATCCA -ACGGAATTCCCACTGAGAACGACA -ACGGAATTCCCACTGAGAAGCTCA -ACGGAATTCCCACTGAGATCACGT -ACGGAATTCCCACTGAGACGTAGT -ACGGAATTCCCACTGAGAGTCAGT -ACGGAATTCCCACTGAGAGAAGGT -ACGGAATTCCCACTGAGAAACCGT -ACGGAATTCCCACTGAGATTGTGC -ACGGAATTCCCACTGAGACTAAGC -ACGGAATTCCCACTGAGAACTAGC -ACGGAATTCCCACTGAGAAGATGC -ACGGAATTCCCACTGAGATGAAGG -ACGGAATTCCCACTGAGACAATGG -ACGGAATTCCCACTGAGAATGAGG -ACGGAATTCCCACTGAGAAATGGG -ACGGAATTCCCACTGAGATCCTGA -ACGGAATTCCCACTGAGATAGCGA -ACGGAATTCCCACTGAGACACAGA -ACGGAATTCCCACTGAGAGCAAGA -ACGGAATTCCCACTGAGAGGTTGA -ACGGAATTCCCACTGAGATCCGAT -ACGGAATTCCCACTGAGATGGCAT -ACGGAATTCCCACTGAGACGAGAT -ACGGAATTCCCACTGAGATACCAC -ACGGAATTCCCACTGAGACAGAAC -ACGGAATTCCCACTGAGAGTCTAC -ACGGAATTCCCACTGAGAACGTAC -ACGGAATTCCCACTGAGAAGTGAC -ACGGAATTCCCACTGAGACTGTAG -ACGGAATTCCCACTGAGACCTAAG -ACGGAATTCCCACTGAGAGTTCAG -ACGGAATTCCCACTGAGAGCATAG -ACGGAATTCCCACTGAGAGACAAG -ACGGAATTCCCACTGAGAAAGCAG -ACGGAATTCCCACTGAGACGTCAA -ACGGAATTCCCACTGAGAGCTGAA -ACGGAATTCCCACTGAGAAGTACG -ACGGAATTCCCACTGAGAATCCGA -ACGGAATTCCCACTGAGAATGGGA -ACGGAATTCCCACTGAGAGTGCAA -ACGGAATTCCCACTGAGAGAGGAA -ACGGAATTCCCACTGAGACAGGTA -ACGGAATTCCCACTGAGAGACTCT -ACGGAATTCCCACTGAGAAGTCCT -ACGGAATTCCCACTGAGATAAGCC -ACGGAATTCCCACTGAGAATAGCC -ACGGAATTCCCACTGAGATAACCG -ACGGAATTCCCACTGAGAATGCCA -ACGGAATTCCCAGTATCGGGAAAC -ACGGAATTCCCAGTATCGAACACC -ACGGAATTCCCAGTATCGATCGAG -ACGGAATTCCCAGTATCGCTCCTT -ACGGAATTCCCAGTATCGCCTGTT -ACGGAATTCCCAGTATCGCGGTTT -ACGGAATTCCCAGTATCGGTGGTT -ACGGAATTCCCAGTATCGGCCTTT -ACGGAATTCCCAGTATCGGGTCTT -ACGGAATTCCCAGTATCGACGCTT -ACGGAATTCCCAGTATCGAGCGTT -ACGGAATTCCCAGTATCGTTCGTC -ACGGAATTCCCAGTATCGTCTCTC -ACGGAATTCCCAGTATCGTGGATC -ACGGAATTCCCAGTATCGCACTTC -ACGGAATTCCCAGTATCGGTACTC -ACGGAATTCCCAGTATCGGATGTC -ACGGAATTCCCAGTATCGACAGTC -ACGGAATTCCCAGTATCGTTGCTG -ACGGAATTCCCAGTATCGTCCATG -ACGGAATTCCCAGTATCGTGTGTG -ACGGAATTCCCAGTATCGCTAGTG -ACGGAATTCCCAGTATCGCATCTG -ACGGAATTCCCAGTATCGGAGTTG -ACGGAATTCCCAGTATCGAGACTG -ACGGAATTCCCAGTATCGTCGGTA -ACGGAATTCCCAGTATCGTGCCTA -ACGGAATTCCCAGTATCGCCACTA -ACGGAATTCCCAGTATCGGGAGTA -ACGGAATTCCCAGTATCGTCGTCT -ACGGAATTCCCAGTATCGTGCACT -ACGGAATTCCCAGTATCGCTGACT -ACGGAATTCCCAGTATCGCAACCT -ACGGAATTCCCAGTATCGGCTACT -ACGGAATTCCCAGTATCGGGATCT -ACGGAATTCCCAGTATCGAAGGCT -ACGGAATTCCCAGTATCGTCAACC -ACGGAATTCCCAGTATCGTGTTCC -ACGGAATTCCCAGTATCGATTCCC -ACGGAATTCCCAGTATCGTTCTCG -ACGGAATTCCCAGTATCGTAGACG -ACGGAATTCCCAGTATCGGTAACG -ACGGAATTCCCAGTATCGACTTCG -ACGGAATTCCCAGTATCGTACGCA -ACGGAATTCCCAGTATCGCTTGCA -ACGGAATTCCCAGTATCGCGAACA -ACGGAATTCCCAGTATCGCAGTCA -ACGGAATTCCCAGTATCGGATCCA -ACGGAATTCCCAGTATCGACGACA -ACGGAATTCCCAGTATCGAGCTCA -ACGGAATTCCCAGTATCGTCACGT -ACGGAATTCCCAGTATCGCGTAGT -ACGGAATTCCCAGTATCGGTCAGT -ACGGAATTCCCAGTATCGGAAGGT -ACGGAATTCCCAGTATCGAACCGT -ACGGAATTCCCAGTATCGTTGTGC -ACGGAATTCCCAGTATCGCTAAGC -ACGGAATTCCCAGTATCGACTAGC -ACGGAATTCCCAGTATCGAGATGC -ACGGAATTCCCAGTATCGTGAAGG -ACGGAATTCCCAGTATCGCAATGG -ACGGAATTCCCAGTATCGATGAGG -ACGGAATTCCCAGTATCGAATGGG -ACGGAATTCCCAGTATCGTCCTGA -ACGGAATTCCCAGTATCGTAGCGA -ACGGAATTCCCAGTATCGCACAGA -ACGGAATTCCCAGTATCGGCAAGA -ACGGAATTCCCAGTATCGGGTTGA -ACGGAATTCCCAGTATCGTCCGAT -ACGGAATTCCCAGTATCGTGGCAT -ACGGAATTCCCAGTATCGCGAGAT -ACGGAATTCCCAGTATCGTACCAC -ACGGAATTCCCAGTATCGCAGAAC -ACGGAATTCCCAGTATCGGTCTAC -ACGGAATTCCCAGTATCGACGTAC -ACGGAATTCCCAGTATCGAGTGAC -ACGGAATTCCCAGTATCGCTGTAG -ACGGAATTCCCAGTATCGCCTAAG -ACGGAATTCCCAGTATCGGTTCAG -ACGGAATTCCCAGTATCGGCATAG -ACGGAATTCCCAGTATCGGACAAG -ACGGAATTCCCAGTATCGAAGCAG -ACGGAATTCCCAGTATCGCGTCAA -ACGGAATTCCCAGTATCGGCTGAA -ACGGAATTCCCAGTATCGAGTACG -ACGGAATTCCCAGTATCGATCCGA -ACGGAATTCCCAGTATCGATGGGA -ACGGAATTCCCAGTATCGGTGCAA -ACGGAATTCCCAGTATCGGAGGAA -ACGGAATTCCCAGTATCGCAGGTA -ACGGAATTCCCAGTATCGGACTCT -ACGGAATTCCCAGTATCGAGTCCT -ACGGAATTCCCAGTATCGTAAGCC -ACGGAATTCCCAGTATCGATAGCC -ACGGAATTCCCAGTATCGTAACCG -ACGGAATTCCCAGTATCGATGCCA -ACGGAATTCCCACTATGCGGAAAC -ACGGAATTCCCACTATGCAACACC -ACGGAATTCCCACTATGCATCGAG -ACGGAATTCCCACTATGCCTCCTT -ACGGAATTCCCACTATGCCCTGTT -ACGGAATTCCCACTATGCCGGTTT -ACGGAATTCCCACTATGCGTGGTT -ACGGAATTCCCACTATGCGCCTTT -ACGGAATTCCCACTATGCGGTCTT -ACGGAATTCCCACTATGCACGCTT -ACGGAATTCCCACTATGCAGCGTT -ACGGAATTCCCACTATGCTTCGTC -ACGGAATTCCCACTATGCTCTCTC -ACGGAATTCCCACTATGCTGGATC -ACGGAATTCCCACTATGCCACTTC -ACGGAATTCCCACTATGCGTACTC -ACGGAATTCCCACTATGCGATGTC -ACGGAATTCCCACTATGCACAGTC -ACGGAATTCCCACTATGCTTGCTG -ACGGAATTCCCACTATGCTCCATG -ACGGAATTCCCACTATGCTGTGTG -ACGGAATTCCCACTATGCCTAGTG -ACGGAATTCCCACTATGCCATCTG -ACGGAATTCCCACTATGCGAGTTG -ACGGAATTCCCACTATGCAGACTG -ACGGAATTCCCACTATGCTCGGTA -ACGGAATTCCCACTATGCTGCCTA -ACGGAATTCCCACTATGCCCACTA -ACGGAATTCCCACTATGCGGAGTA -ACGGAATTCCCACTATGCTCGTCT -ACGGAATTCCCACTATGCTGCACT -ACGGAATTCCCACTATGCCTGACT -ACGGAATTCCCACTATGCCAACCT -ACGGAATTCCCACTATGCGCTACT -ACGGAATTCCCACTATGCGGATCT -ACGGAATTCCCACTATGCAAGGCT -ACGGAATTCCCACTATGCTCAACC -ACGGAATTCCCACTATGCTGTTCC -ACGGAATTCCCACTATGCATTCCC -ACGGAATTCCCACTATGCTTCTCG -ACGGAATTCCCACTATGCTAGACG -ACGGAATTCCCACTATGCGTAACG -ACGGAATTCCCACTATGCACTTCG -ACGGAATTCCCACTATGCTACGCA -ACGGAATTCCCACTATGCCTTGCA -ACGGAATTCCCACTATGCCGAACA -ACGGAATTCCCACTATGCCAGTCA -ACGGAATTCCCACTATGCGATCCA -ACGGAATTCCCACTATGCACGACA -ACGGAATTCCCACTATGCAGCTCA -ACGGAATTCCCACTATGCTCACGT -ACGGAATTCCCACTATGCCGTAGT -ACGGAATTCCCACTATGCGTCAGT -ACGGAATTCCCACTATGCGAAGGT -ACGGAATTCCCACTATGCAACCGT -ACGGAATTCCCACTATGCTTGTGC -ACGGAATTCCCACTATGCCTAAGC -ACGGAATTCCCACTATGCACTAGC -ACGGAATTCCCACTATGCAGATGC -ACGGAATTCCCACTATGCTGAAGG -ACGGAATTCCCACTATGCCAATGG -ACGGAATTCCCACTATGCATGAGG -ACGGAATTCCCACTATGCAATGGG -ACGGAATTCCCACTATGCTCCTGA -ACGGAATTCCCACTATGCTAGCGA -ACGGAATTCCCACTATGCCACAGA -ACGGAATTCCCACTATGCGCAAGA -ACGGAATTCCCACTATGCGGTTGA -ACGGAATTCCCACTATGCTCCGAT -ACGGAATTCCCACTATGCTGGCAT -ACGGAATTCCCACTATGCCGAGAT -ACGGAATTCCCACTATGCTACCAC -ACGGAATTCCCACTATGCCAGAAC -ACGGAATTCCCACTATGCGTCTAC -ACGGAATTCCCACTATGCACGTAC -ACGGAATTCCCACTATGCAGTGAC -ACGGAATTCCCACTATGCCTGTAG -ACGGAATTCCCACTATGCCCTAAG -ACGGAATTCCCACTATGCGTTCAG -ACGGAATTCCCACTATGCGCATAG -ACGGAATTCCCACTATGCGACAAG -ACGGAATTCCCACTATGCAAGCAG -ACGGAATTCCCACTATGCCGTCAA -ACGGAATTCCCACTATGCGCTGAA -ACGGAATTCCCACTATGCAGTACG -ACGGAATTCCCACTATGCATCCGA -ACGGAATTCCCACTATGCATGGGA -ACGGAATTCCCACTATGCGTGCAA -ACGGAATTCCCACTATGCGAGGAA -ACGGAATTCCCACTATGCCAGGTA -ACGGAATTCCCACTATGCGACTCT -ACGGAATTCCCACTATGCAGTCCT -ACGGAATTCCCACTATGCTAAGCC -ACGGAATTCCCACTATGCATAGCC -ACGGAATTCCCACTATGCTAACCG -ACGGAATTCCCACTATGCATGCCA -ACGGAATTCCCACTACCAGGAAAC -ACGGAATTCCCACTACCAAACACC -ACGGAATTCCCACTACCAATCGAG -ACGGAATTCCCACTACCACTCCTT -ACGGAATTCCCACTACCACCTGTT -ACGGAATTCCCACTACCACGGTTT -ACGGAATTCCCACTACCAGTGGTT -ACGGAATTCCCACTACCAGCCTTT -ACGGAATTCCCACTACCAGGTCTT -ACGGAATTCCCACTACCAACGCTT -ACGGAATTCCCACTACCAAGCGTT -ACGGAATTCCCACTACCATTCGTC -ACGGAATTCCCACTACCATCTCTC -ACGGAATTCCCACTACCATGGATC -ACGGAATTCCCACTACCACACTTC -ACGGAATTCCCACTACCAGTACTC -ACGGAATTCCCACTACCAGATGTC -ACGGAATTCCCACTACCAACAGTC -ACGGAATTCCCACTACCATTGCTG -ACGGAATTCCCACTACCATCCATG -ACGGAATTCCCACTACCATGTGTG -ACGGAATTCCCACTACCACTAGTG -ACGGAATTCCCACTACCACATCTG -ACGGAATTCCCACTACCAGAGTTG -ACGGAATTCCCACTACCAAGACTG -ACGGAATTCCCACTACCATCGGTA -ACGGAATTCCCACTACCATGCCTA -ACGGAATTCCCACTACCACCACTA -ACGGAATTCCCACTACCAGGAGTA -ACGGAATTCCCACTACCATCGTCT -ACGGAATTCCCACTACCATGCACT -ACGGAATTCCCACTACCACTGACT -ACGGAATTCCCACTACCACAACCT -ACGGAATTCCCACTACCAGCTACT -ACGGAATTCCCACTACCAGGATCT -ACGGAATTCCCACTACCAAAGGCT -ACGGAATTCCCACTACCATCAACC -ACGGAATTCCCACTACCATGTTCC -ACGGAATTCCCACTACCAATTCCC -ACGGAATTCCCACTACCATTCTCG -ACGGAATTCCCACTACCATAGACG -ACGGAATTCCCACTACCAGTAACG -ACGGAATTCCCACTACCAACTTCG -ACGGAATTCCCACTACCATACGCA -ACGGAATTCCCACTACCACTTGCA -ACGGAATTCCCACTACCACGAACA -ACGGAATTCCCACTACCACAGTCA -ACGGAATTCCCACTACCAGATCCA -ACGGAATTCCCACTACCAACGACA -ACGGAATTCCCACTACCAAGCTCA -ACGGAATTCCCACTACCATCACGT -ACGGAATTCCCACTACCACGTAGT -ACGGAATTCCCACTACCAGTCAGT -ACGGAATTCCCACTACCAGAAGGT -ACGGAATTCCCACTACCAAACCGT -ACGGAATTCCCACTACCATTGTGC -ACGGAATTCCCACTACCACTAAGC -ACGGAATTCCCACTACCAACTAGC -ACGGAATTCCCACTACCAAGATGC -ACGGAATTCCCACTACCATGAAGG -ACGGAATTCCCACTACCACAATGG -ACGGAATTCCCACTACCAATGAGG -ACGGAATTCCCACTACCAAATGGG -ACGGAATTCCCACTACCATCCTGA -ACGGAATTCCCACTACCATAGCGA -ACGGAATTCCCACTACCACACAGA -ACGGAATTCCCACTACCAGCAAGA -ACGGAATTCCCACTACCAGGTTGA -ACGGAATTCCCACTACCATCCGAT -ACGGAATTCCCACTACCATGGCAT -ACGGAATTCCCACTACCACGAGAT -ACGGAATTCCCACTACCATACCAC -ACGGAATTCCCACTACCACAGAAC -ACGGAATTCCCACTACCAGTCTAC -ACGGAATTCCCACTACCAACGTAC -ACGGAATTCCCACTACCAAGTGAC -ACGGAATTCCCACTACCACTGTAG -ACGGAATTCCCACTACCACCTAAG -ACGGAATTCCCACTACCAGTTCAG -ACGGAATTCCCACTACCAGCATAG -ACGGAATTCCCACTACCAGACAAG -ACGGAATTCCCACTACCAAAGCAG -ACGGAATTCCCACTACCACGTCAA -ACGGAATTCCCACTACCAGCTGAA -ACGGAATTCCCACTACCAAGTACG -ACGGAATTCCCACTACCAATCCGA -ACGGAATTCCCACTACCAATGGGA -ACGGAATTCCCACTACCAGTGCAA -ACGGAATTCCCACTACCAGAGGAA -ACGGAATTCCCACTACCACAGGTA -ACGGAATTCCCACTACCAGACTCT -ACGGAATTCCCACTACCAAGTCCT -ACGGAATTCCCACTACCATAAGCC -ACGGAATTCCCACTACCAATAGCC -ACGGAATTCCCACTACCATAACCG -ACGGAATTCCCACTACCAATGCCA -ACGGAATTCCCAGTAGGAGGAAAC -ACGGAATTCCCAGTAGGAAACACC -ACGGAATTCCCAGTAGGAATCGAG -ACGGAATTCCCAGTAGGACTCCTT -ACGGAATTCCCAGTAGGACCTGTT -ACGGAATTCCCAGTAGGACGGTTT -ACGGAATTCCCAGTAGGAGTGGTT -ACGGAATTCCCAGTAGGAGCCTTT -ACGGAATTCCCAGTAGGAGGTCTT -ACGGAATTCCCAGTAGGAACGCTT -ACGGAATTCCCAGTAGGAAGCGTT -ACGGAATTCCCAGTAGGATTCGTC -ACGGAATTCCCAGTAGGATCTCTC -ACGGAATTCCCAGTAGGATGGATC -ACGGAATTCCCAGTAGGACACTTC -ACGGAATTCCCAGTAGGAGTACTC -ACGGAATTCCCAGTAGGAGATGTC -ACGGAATTCCCAGTAGGAACAGTC -ACGGAATTCCCAGTAGGATTGCTG -ACGGAATTCCCAGTAGGATCCATG -ACGGAATTCCCAGTAGGATGTGTG -ACGGAATTCCCAGTAGGACTAGTG -ACGGAATTCCCAGTAGGACATCTG -ACGGAATTCCCAGTAGGAGAGTTG -ACGGAATTCCCAGTAGGAAGACTG -ACGGAATTCCCAGTAGGATCGGTA -ACGGAATTCCCAGTAGGATGCCTA -ACGGAATTCCCAGTAGGACCACTA -ACGGAATTCCCAGTAGGAGGAGTA -ACGGAATTCCCAGTAGGATCGTCT -ACGGAATTCCCAGTAGGATGCACT -ACGGAATTCCCAGTAGGACTGACT -ACGGAATTCCCAGTAGGACAACCT -ACGGAATTCCCAGTAGGAGCTACT -ACGGAATTCCCAGTAGGAGGATCT -ACGGAATTCCCAGTAGGAAAGGCT -ACGGAATTCCCAGTAGGATCAACC -ACGGAATTCCCAGTAGGATGTTCC -ACGGAATTCCCAGTAGGAATTCCC -ACGGAATTCCCAGTAGGATTCTCG -ACGGAATTCCCAGTAGGATAGACG -ACGGAATTCCCAGTAGGAGTAACG -ACGGAATTCCCAGTAGGAACTTCG -ACGGAATTCCCAGTAGGATACGCA -ACGGAATTCCCAGTAGGACTTGCA -ACGGAATTCCCAGTAGGACGAACA -ACGGAATTCCCAGTAGGACAGTCA -ACGGAATTCCCAGTAGGAGATCCA -ACGGAATTCCCAGTAGGAACGACA -ACGGAATTCCCAGTAGGAAGCTCA -ACGGAATTCCCAGTAGGATCACGT -ACGGAATTCCCAGTAGGACGTAGT -ACGGAATTCCCAGTAGGAGTCAGT -ACGGAATTCCCAGTAGGAGAAGGT -ACGGAATTCCCAGTAGGAAACCGT -ACGGAATTCCCAGTAGGATTGTGC -ACGGAATTCCCAGTAGGACTAAGC -ACGGAATTCCCAGTAGGAACTAGC -ACGGAATTCCCAGTAGGAAGATGC -ACGGAATTCCCAGTAGGATGAAGG -ACGGAATTCCCAGTAGGACAATGG -ACGGAATTCCCAGTAGGAATGAGG -ACGGAATTCCCAGTAGGAAATGGG -ACGGAATTCCCAGTAGGATCCTGA -ACGGAATTCCCAGTAGGATAGCGA -ACGGAATTCCCAGTAGGACACAGA -ACGGAATTCCCAGTAGGAGCAAGA -ACGGAATTCCCAGTAGGAGGTTGA -ACGGAATTCCCAGTAGGATCCGAT -ACGGAATTCCCAGTAGGATGGCAT -ACGGAATTCCCAGTAGGACGAGAT -ACGGAATTCCCAGTAGGATACCAC -ACGGAATTCCCAGTAGGACAGAAC -ACGGAATTCCCAGTAGGAGTCTAC -ACGGAATTCCCAGTAGGAACGTAC -ACGGAATTCCCAGTAGGAAGTGAC -ACGGAATTCCCAGTAGGACTGTAG -ACGGAATTCCCAGTAGGACCTAAG -ACGGAATTCCCAGTAGGAGTTCAG -ACGGAATTCCCAGTAGGAGCATAG -ACGGAATTCCCAGTAGGAGACAAG -ACGGAATTCCCAGTAGGAAAGCAG -ACGGAATTCCCAGTAGGACGTCAA -ACGGAATTCCCAGTAGGAGCTGAA -ACGGAATTCCCAGTAGGAAGTACG -ACGGAATTCCCAGTAGGAATCCGA -ACGGAATTCCCAGTAGGAATGGGA -ACGGAATTCCCAGTAGGAGTGCAA -ACGGAATTCCCAGTAGGAGAGGAA -ACGGAATTCCCAGTAGGACAGGTA -ACGGAATTCCCAGTAGGAGACTCT -ACGGAATTCCCAGTAGGAAGTCCT -ACGGAATTCCCAGTAGGATAAGCC -ACGGAATTCCCAGTAGGAATAGCC -ACGGAATTCCCAGTAGGATAACCG -ACGGAATTCCCAGTAGGAATGCCA -ACGGAATTCCCATCTTCGGGAAAC -ACGGAATTCCCATCTTCGAACACC -ACGGAATTCCCATCTTCGATCGAG -ACGGAATTCCCATCTTCGCTCCTT -ACGGAATTCCCATCTTCGCCTGTT -ACGGAATTCCCATCTTCGCGGTTT -ACGGAATTCCCATCTTCGGTGGTT -ACGGAATTCCCATCTTCGGCCTTT -ACGGAATTCCCATCTTCGGGTCTT -ACGGAATTCCCATCTTCGACGCTT -ACGGAATTCCCATCTTCGAGCGTT -ACGGAATTCCCATCTTCGTTCGTC -ACGGAATTCCCATCTTCGTCTCTC -ACGGAATTCCCATCTTCGTGGATC -ACGGAATTCCCATCTTCGCACTTC -ACGGAATTCCCATCTTCGGTACTC -ACGGAATTCCCATCTTCGGATGTC -ACGGAATTCCCATCTTCGACAGTC -ACGGAATTCCCATCTTCGTTGCTG -ACGGAATTCCCATCTTCGTCCATG -ACGGAATTCCCATCTTCGTGTGTG -ACGGAATTCCCATCTTCGCTAGTG -ACGGAATTCCCATCTTCGCATCTG -ACGGAATTCCCATCTTCGGAGTTG -ACGGAATTCCCATCTTCGAGACTG -ACGGAATTCCCATCTTCGTCGGTA -ACGGAATTCCCATCTTCGTGCCTA -ACGGAATTCCCATCTTCGCCACTA -ACGGAATTCCCATCTTCGGGAGTA -ACGGAATTCCCATCTTCGTCGTCT -ACGGAATTCCCATCTTCGTGCACT -ACGGAATTCCCATCTTCGCTGACT -ACGGAATTCCCATCTTCGCAACCT -ACGGAATTCCCATCTTCGGCTACT -ACGGAATTCCCATCTTCGGGATCT -ACGGAATTCCCATCTTCGAAGGCT -ACGGAATTCCCATCTTCGTCAACC -ACGGAATTCCCATCTTCGTGTTCC -ACGGAATTCCCATCTTCGATTCCC -ACGGAATTCCCATCTTCGTTCTCG -ACGGAATTCCCATCTTCGTAGACG -ACGGAATTCCCATCTTCGGTAACG -ACGGAATTCCCATCTTCGACTTCG -ACGGAATTCCCATCTTCGTACGCA -ACGGAATTCCCATCTTCGCTTGCA -ACGGAATTCCCATCTTCGCGAACA -ACGGAATTCCCATCTTCGCAGTCA -ACGGAATTCCCATCTTCGGATCCA -ACGGAATTCCCATCTTCGACGACA -ACGGAATTCCCATCTTCGAGCTCA -ACGGAATTCCCATCTTCGTCACGT -ACGGAATTCCCATCTTCGCGTAGT -ACGGAATTCCCATCTTCGGTCAGT -ACGGAATTCCCATCTTCGGAAGGT -ACGGAATTCCCATCTTCGAACCGT -ACGGAATTCCCATCTTCGTTGTGC -ACGGAATTCCCATCTTCGCTAAGC -ACGGAATTCCCATCTTCGACTAGC -ACGGAATTCCCATCTTCGAGATGC -ACGGAATTCCCATCTTCGTGAAGG -ACGGAATTCCCATCTTCGCAATGG -ACGGAATTCCCATCTTCGATGAGG -ACGGAATTCCCATCTTCGAATGGG -ACGGAATTCCCATCTTCGTCCTGA -ACGGAATTCCCATCTTCGTAGCGA -ACGGAATTCCCATCTTCGCACAGA -ACGGAATTCCCATCTTCGGCAAGA -ACGGAATTCCCATCTTCGGGTTGA -ACGGAATTCCCATCTTCGTCCGAT -ACGGAATTCCCATCTTCGTGGCAT -ACGGAATTCCCATCTTCGCGAGAT -ACGGAATTCCCATCTTCGTACCAC -ACGGAATTCCCATCTTCGCAGAAC -ACGGAATTCCCATCTTCGGTCTAC -ACGGAATTCCCATCTTCGACGTAC -ACGGAATTCCCATCTTCGAGTGAC -ACGGAATTCCCATCTTCGCTGTAG -ACGGAATTCCCATCTTCGCCTAAG -ACGGAATTCCCATCTTCGGTTCAG -ACGGAATTCCCATCTTCGGCATAG -ACGGAATTCCCATCTTCGGACAAG -ACGGAATTCCCATCTTCGAAGCAG -ACGGAATTCCCATCTTCGCGTCAA -ACGGAATTCCCATCTTCGGCTGAA -ACGGAATTCCCATCTTCGAGTACG -ACGGAATTCCCATCTTCGATCCGA -ACGGAATTCCCATCTTCGATGGGA -ACGGAATTCCCATCTTCGGTGCAA -ACGGAATTCCCATCTTCGGAGGAA -ACGGAATTCCCATCTTCGCAGGTA -ACGGAATTCCCATCTTCGGACTCT -ACGGAATTCCCATCTTCGAGTCCT -ACGGAATTCCCATCTTCGTAAGCC -ACGGAATTCCCATCTTCGATAGCC -ACGGAATTCCCATCTTCGTAACCG -ACGGAATTCCCATCTTCGATGCCA -ACGGAATTCCCAACTTGCGGAAAC -ACGGAATTCCCAACTTGCAACACC -ACGGAATTCCCAACTTGCATCGAG -ACGGAATTCCCAACTTGCCTCCTT -ACGGAATTCCCAACTTGCCCTGTT -ACGGAATTCCCAACTTGCCGGTTT -ACGGAATTCCCAACTTGCGTGGTT -ACGGAATTCCCAACTTGCGCCTTT -ACGGAATTCCCAACTTGCGGTCTT -ACGGAATTCCCAACTTGCACGCTT -ACGGAATTCCCAACTTGCAGCGTT -ACGGAATTCCCAACTTGCTTCGTC -ACGGAATTCCCAACTTGCTCTCTC -ACGGAATTCCCAACTTGCTGGATC -ACGGAATTCCCAACTTGCCACTTC -ACGGAATTCCCAACTTGCGTACTC -ACGGAATTCCCAACTTGCGATGTC -ACGGAATTCCCAACTTGCACAGTC -ACGGAATTCCCAACTTGCTTGCTG -ACGGAATTCCCAACTTGCTCCATG -ACGGAATTCCCAACTTGCTGTGTG -ACGGAATTCCCAACTTGCCTAGTG -ACGGAATTCCCAACTTGCCATCTG -ACGGAATTCCCAACTTGCGAGTTG -ACGGAATTCCCAACTTGCAGACTG -ACGGAATTCCCAACTTGCTCGGTA -ACGGAATTCCCAACTTGCTGCCTA -ACGGAATTCCCAACTTGCCCACTA -ACGGAATTCCCAACTTGCGGAGTA -ACGGAATTCCCAACTTGCTCGTCT -ACGGAATTCCCAACTTGCTGCACT -ACGGAATTCCCAACTTGCCTGACT -ACGGAATTCCCAACTTGCCAACCT -ACGGAATTCCCAACTTGCGCTACT -ACGGAATTCCCAACTTGCGGATCT -ACGGAATTCCCAACTTGCAAGGCT -ACGGAATTCCCAACTTGCTCAACC -ACGGAATTCCCAACTTGCTGTTCC -ACGGAATTCCCAACTTGCATTCCC -ACGGAATTCCCAACTTGCTTCTCG -ACGGAATTCCCAACTTGCTAGACG -ACGGAATTCCCAACTTGCGTAACG -ACGGAATTCCCAACTTGCACTTCG -ACGGAATTCCCAACTTGCTACGCA -ACGGAATTCCCAACTTGCCTTGCA -ACGGAATTCCCAACTTGCCGAACA -ACGGAATTCCCAACTTGCCAGTCA -ACGGAATTCCCAACTTGCGATCCA -ACGGAATTCCCAACTTGCACGACA -ACGGAATTCCCAACTTGCAGCTCA -ACGGAATTCCCAACTTGCTCACGT -ACGGAATTCCCAACTTGCCGTAGT -ACGGAATTCCCAACTTGCGTCAGT -ACGGAATTCCCAACTTGCGAAGGT -ACGGAATTCCCAACTTGCAACCGT -ACGGAATTCCCAACTTGCTTGTGC -ACGGAATTCCCAACTTGCCTAAGC -ACGGAATTCCCAACTTGCACTAGC -ACGGAATTCCCAACTTGCAGATGC -ACGGAATTCCCAACTTGCTGAAGG -ACGGAATTCCCAACTTGCCAATGG -ACGGAATTCCCAACTTGCATGAGG -ACGGAATTCCCAACTTGCAATGGG -ACGGAATTCCCAACTTGCTCCTGA -ACGGAATTCCCAACTTGCTAGCGA -ACGGAATTCCCAACTTGCCACAGA -ACGGAATTCCCAACTTGCGCAAGA -ACGGAATTCCCAACTTGCGGTTGA -ACGGAATTCCCAACTTGCTCCGAT -ACGGAATTCCCAACTTGCTGGCAT -ACGGAATTCCCAACTTGCCGAGAT -ACGGAATTCCCAACTTGCTACCAC -ACGGAATTCCCAACTTGCCAGAAC -ACGGAATTCCCAACTTGCGTCTAC -ACGGAATTCCCAACTTGCACGTAC -ACGGAATTCCCAACTTGCAGTGAC -ACGGAATTCCCAACTTGCCTGTAG -ACGGAATTCCCAACTTGCCCTAAG -ACGGAATTCCCAACTTGCGTTCAG -ACGGAATTCCCAACTTGCGCATAG -ACGGAATTCCCAACTTGCGACAAG -ACGGAATTCCCAACTTGCAAGCAG -ACGGAATTCCCAACTTGCCGTCAA -ACGGAATTCCCAACTTGCGCTGAA -ACGGAATTCCCAACTTGCAGTACG -ACGGAATTCCCAACTTGCATCCGA -ACGGAATTCCCAACTTGCATGGGA -ACGGAATTCCCAACTTGCGTGCAA -ACGGAATTCCCAACTTGCGAGGAA -ACGGAATTCCCAACTTGCCAGGTA -ACGGAATTCCCAACTTGCGACTCT -ACGGAATTCCCAACTTGCAGTCCT -ACGGAATTCCCAACTTGCTAAGCC -ACGGAATTCCCAACTTGCATAGCC -ACGGAATTCCCAACTTGCTAACCG -ACGGAATTCCCAACTTGCATGCCA -ACGGAATTCCCAACTCTGGGAAAC -ACGGAATTCCCAACTCTGAACACC -ACGGAATTCCCAACTCTGATCGAG -ACGGAATTCCCAACTCTGCTCCTT -ACGGAATTCCCAACTCTGCCTGTT -ACGGAATTCCCAACTCTGCGGTTT -ACGGAATTCCCAACTCTGGTGGTT -ACGGAATTCCCAACTCTGGCCTTT -ACGGAATTCCCAACTCTGGGTCTT -ACGGAATTCCCAACTCTGACGCTT -ACGGAATTCCCAACTCTGAGCGTT -ACGGAATTCCCAACTCTGTTCGTC -ACGGAATTCCCAACTCTGTCTCTC -ACGGAATTCCCAACTCTGTGGATC -ACGGAATTCCCAACTCTGCACTTC -ACGGAATTCCCAACTCTGGTACTC -ACGGAATTCCCAACTCTGGATGTC -ACGGAATTCCCAACTCTGACAGTC -ACGGAATTCCCAACTCTGTTGCTG -ACGGAATTCCCAACTCTGTCCATG -ACGGAATTCCCAACTCTGTGTGTG -ACGGAATTCCCAACTCTGCTAGTG -ACGGAATTCCCAACTCTGCATCTG -ACGGAATTCCCAACTCTGGAGTTG -ACGGAATTCCCAACTCTGAGACTG -ACGGAATTCCCAACTCTGTCGGTA -ACGGAATTCCCAACTCTGTGCCTA -ACGGAATTCCCAACTCTGCCACTA -ACGGAATTCCCAACTCTGGGAGTA -ACGGAATTCCCAACTCTGTCGTCT -ACGGAATTCCCAACTCTGTGCACT -ACGGAATTCCCAACTCTGCTGACT -ACGGAATTCCCAACTCTGCAACCT -ACGGAATTCCCAACTCTGGCTACT -ACGGAATTCCCAACTCTGGGATCT -ACGGAATTCCCAACTCTGAAGGCT -ACGGAATTCCCAACTCTGTCAACC -ACGGAATTCCCAACTCTGTGTTCC -ACGGAATTCCCAACTCTGATTCCC -ACGGAATTCCCAACTCTGTTCTCG -ACGGAATTCCCAACTCTGTAGACG -ACGGAATTCCCAACTCTGGTAACG -ACGGAATTCCCAACTCTGACTTCG -ACGGAATTCCCAACTCTGTACGCA -ACGGAATTCCCAACTCTGCTTGCA -ACGGAATTCCCAACTCTGCGAACA -ACGGAATTCCCAACTCTGCAGTCA -ACGGAATTCCCAACTCTGGATCCA -ACGGAATTCCCAACTCTGACGACA -ACGGAATTCCCAACTCTGAGCTCA -ACGGAATTCCCAACTCTGTCACGT -ACGGAATTCCCAACTCTGCGTAGT -ACGGAATTCCCAACTCTGGTCAGT -ACGGAATTCCCAACTCTGGAAGGT -ACGGAATTCCCAACTCTGAACCGT -ACGGAATTCCCAACTCTGTTGTGC -ACGGAATTCCCAACTCTGCTAAGC -ACGGAATTCCCAACTCTGACTAGC -ACGGAATTCCCAACTCTGAGATGC -ACGGAATTCCCAACTCTGTGAAGG -ACGGAATTCCCAACTCTGCAATGG -ACGGAATTCCCAACTCTGATGAGG -ACGGAATTCCCAACTCTGAATGGG -ACGGAATTCCCAACTCTGTCCTGA -ACGGAATTCCCAACTCTGTAGCGA -ACGGAATTCCCAACTCTGCACAGA -ACGGAATTCCCAACTCTGGCAAGA -ACGGAATTCCCAACTCTGGGTTGA -ACGGAATTCCCAACTCTGTCCGAT -ACGGAATTCCCAACTCTGTGGCAT -ACGGAATTCCCAACTCTGCGAGAT -ACGGAATTCCCAACTCTGTACCAC -ACGGAATTCCCAACTCTGCAGAAC -ACGGAATTCCCAACTCTGGTCTAC -ACGGAATTCCCAACTCTGACGTAC -ACGGAATTCCCAACTCTGAGTGAC -ACGGAATTCCCAACTCTGCTGTAG -ACGGAATTCCCAACTCTGCCTAAG -ACGGAATTCCCAACTCTGGTTCAG -ACGGAATTCCCAACTCTGGCATAG -ACGGAATTCCCAACTCTGGACAAG -ACGGAATTCCCAACTCTGAAGCAG -ACGGAATTCCCAACTCTGCGTCAA -ACGGAATTCCCAACTCTGGCTGAA -ACGGAATTCCCAACTCTGAGTACG -ACGGAATTCCCAACTCTGATCCGA -ACGGAATTCCCAACTCTGATGGGA -ACGGAATTCCCAACTCTGGTGCAA -ACGGAATTCCCAACTCTGGAGGAA -ACGGAATTCCCAACTCTGCAGGTA -ACGGAATTCCCAACTCTGGACTCT -ACGGAATTCCCAACTCTGAGTCCT -ACGGAATTCCCAACTCTGTAAGCC -ACGGAATTCCCAACTCTGATAGCC -ACGGAATTCCCAACTCTGTAACCG -ACGGAATTCCCAACTCTGATGCCA -ACGGAATTCCCACCTCAAGGAAAC -ACGGAATTCCCACCTCAAAACACC -ACGGAATTCCCACCTCAAATCGAG -ACGGAATTCCCACCTCAACTCCTT -ACGGAATTCCCACCTCAACCTGTT -ACGGAATTCCCACCTCAACGGTTT -ACGGAATTCCCACCTCAAGTGGTT -ACGGAATTCCCACCTCAAGCCTTT -ACGGAATTCCCACCTCAAGGTCTT -ACGGAATTCCCACCTCAAACGCTT -ACGGAATTCCCACCTCAAAGCGTT -ACGGAATTCCCACCTCAATTCGTC -ACGGAATTCCCACCTCAATCTCTC -ACGGAATTCCCACCTCAATGGATC -ACGGAATTCCCACCTCAACACTTC -ACGGAATTCCCACCTCAAGTACTC -ACGGAATTCCCACCTCAAGATGTC -ACGGAATTCCCACCTCAAACAGTC -ACGGAATTCCCACCTCAATTGCTG -ACGGAATTCCCACCTCAATCCATG -ACGGAATTCCCACCTCAATGTGTG -ACGGAATTCCCACCTCAACTAGTG -ACGGAATTCCCACCTCAACATCTG -ACGGAATTCCCACCTCAAGAGTTG -ACGGAATTCCCACCTCAAAGACTG -ACGGAATTCCCACCTCAATCGGTA -ACGGAATTCCCACCTCAATGCCTA -ACGGAATTCCCACCTCAACCACTA -ACGGAATTCCCACCTCAAGGAGTA -ACGGAATTCCCACCTCAATCGTCT -ACGGAATTCCCACCTCAATGCACT -ACGGAATTCCCACCTCAACTGACT -ACGGAATTCCCACCTCAACAACCT -ACGGAATTCCCACCTCAAGCTACT -ACGGAATTCCCACCTCAAGGATCT -ACGGAATTCCCACCTCAAAAGGCT -ACGGAATTCCCACCTCAATCAACC -ACGGAATTCCCACCTCAATGTTCC -ACGGAATTCCCACCTCAAATTCCC -ACGGAATTCCCACCTCAATTCTCG -ACGGAATTCCCACCTCAATAGACG -ACGGAATTCCCACCTCAAGTAACG -ACGGAATTCCCACCTCAAACTTCG -ACGGAATTCCCACCTCAATACGCA -ACGGAATTCCCACCTCAACTTGCA -ACGGAATTCCCACCTCAACGAACA -ACGGAATTCCCACCTCAACAGTCA -ACGGAATTCCCACCTCAAGATCCA -ACGGAATTCCCACCTCAAACGACA -ACGGAATTCCCACCTCAAAGCTCA -ACGGAATTCCCACCTCAATCACGT -ACGGAATTCCCACCTCAACGTAGT -ACGGAATTCCCACCTCAAGTCAGT -ACGGAATTCCCACCTCAAGAAGGT -ACGGAATTCCCACCTCAAAACCGT -ACGGAATTCCCACCTCAATTGTGC -ACGGAATTCCCACCTCAACTAAGC -ACGGAATTCCCACCTCAAACTAGC -ACGGAATTCCCACCTCAAAGATGC -ACGGAATTCCCACCTCAATGAAGG -ACGGAATTCCCACCTCAACAATGG -ACGGAATTCCCACCTCAAATGAGG -ACGGAATTCCCACCTCAAAATGGG -ACGGAATTCCCACCTCAATCCTGA -ACGGAATTCCCACCTCAATAGCGA -ACGGAATTCCCACCTCAACACAGA -ACGGAATTCCCACCTCAAGCAAGA -ACGGAATTCCCACCTCAAGGTTGA -ACGGAATTCCCACCTCAATCCGAT -ACGGAATTCCCACCTCAATGGCAT -ACGGAATTCCCACCTCAACGAGAT -ACGGAATTCCCACCTCAATACCAC -ACGGAATTCCCACCTCAACAGAAC -ACGGAATTCCCACCTCAAGTCTAC -ACGGAATTCCCACCTCAAACGTAC -ACGGAATTCCCACCTCAAAGTGAC -ACGGAATTCCCACCTCAACTGTAG -ACGGAATTCCCACCTCAACCTAAG -ACGGAATTCCCACCTCAAGTTCAG -ACGGAATTCCCACCTCAAGCATAG -ACGGAATTCCCACCTCAAGACAAG -ACGGAATTCCCACCTCAAAAGCAG -ACGGAATTCCCACCTCAACGTCAA -ACGGAATTCCCACCTCAAGCTGAA -ACGGAATTCCCACCTCAAAGTACG -ACGGAATTCCCACCTCAAATCCGA -ACGGAATTCCCACCTCAAATGGGA -ACGGAATTCCCACCTCAAGTGCAA -ACGGAATTCCCACCTCAAGAGGAA -ACGGAATTCCCACCTCAACAGGTA -ACGGAATTCCCACCTCAAGACTCT -ACGGAATTCCCACCTCAAAGTCCT -ACGGAATTCCCACCTCAATAAGCC -ACGGAATTCCCACCTCAAATAGCC -ACGGAATTCCCACCTCAATAACCG -ACGGAATTCCCACCTCAAATGCCA -ACGGAATTCCCAACTGCTGGAAAC -ACGGAATTCCCAACTGCTAACACC -ACGGAATTCCCAACTGCTATCGAG -ACGGAATTCCCAACTGCTCTCCTT -ACGGAATTCCCAACTGCTCCTGTT -ACGGAATTCCCAACTGCTCGGTTT -ACGGAATTCCCAACTGCTGTGGTT -ACGGAATTCCCAACTGCTGCCTTT -ACGGAATTCCCAACTGCTGGTCTT -ACGGAATTCCCAACTGCTACGCTT -ACGGAATTCCCAACTGCTAGCGTT -ACGGAATTCCCAACTGCTTTCGTC -ACGGAATTCCCAACTGCTTCTCTC -ACGGAATTCCCAACTGCTTGGATC -ACGGAATTCCCAACTGCTCACTTC -ACGGAATTCCCAACTGCTGTACTC -ACGGAATTCCCAACTGCTGATGTC -ACGGAATTCCCAACTGCTACAGTC -ACGGAATTCCCAACTGCTTTGCTG -ACGGAATTCCCAACTGCTTCCATG -ACGGAATTCCCAACTGCTTGTGTG -ACGGAATTCCCAACTGCTCTAGTG -ACGGAATTCCCAACTGCTCATCTG -ACGGAATTCCCAACTGCTGAGTTG -ACGGAATTCCCAACTGCTAGACTG -ACGGAATTCCCAACTGCTTCGGTA -ACGGAATTCCCAACTGCTTGCCTA -ACGGAATTCCCAACTGCTCCACTA -ACGGAATTCCCAACTGCTGGAGTA -ACGGAATTCCCAACTGCTTCGTCT -ACGGAATTCCCAACTGCTTGCACT -ACGGAATTCCCAACTGCTCTGACT -ACGGAATTCCCAACTGCTCAACCT -ACGGAATTCCCAACTGCTGCTACT -ACGGAATTCCCAACTGCTGGATCT -ACGGAATTCCCAACTGCTAAGGCT -ACGGAATTCCCAACTGCTTCAACC -ACGGAATTCCCAACTGCTTGTTCC -ACGGAATTCCCAACTGCTATTCCC -ACGGAATTCCCAACTGCTTTCTCG -ACGGAATTCCCAACTGCTTAGACG -ACGGAATTCCCAACTGCTGTAACG -ACGGAATTCCCAACTGCTACTTCG -ACGGAATTCCCAACTGCTTACGCA -ACGGAATTCCCAACTGCTCTTGCA -ACGGAATTCCCAACTGCTCGAACA -ACGGAATTCCCAACTGCTCAGTCA -ACGGAATTCCCAACTGCTGATCCA -ACGGAATTCCCAACTGCTACGACA -ACGGAATTCCCAACTGCTAGCTCA -ACGGAATTCCCAACTGCTTCACGT -ACGGAATTCCCAACTGCTCGTAGT -ACGGAATTCCCAACTGCTGTCAGT -ACGGAATTCCCAACTGCTGAAGGT -ACGGAATTCCCAACTGCTAACCGT -ACGGAATTCCCAACTGCTTTGTGC -ACGGAATTCCCAACTGCTCTAAGC -ACGGAATTCCCAACTGCTACTAGC -ACGGAATTCCCAACTGCTAGATGC -ACGGAATTCCCAACTGCTTGAAGG -ACGGAATTCCCAACTGCTCAATGG -ACGGAATTCCCAACTGCTATGAGG -ACGGAATTCCCAACTGCTAATGGG -ACGGAATTCCCAACTGCTTCCTGA -ACGGAATTCCCAACTGCTTAGCGA -ACGGAATTCCCAACTGCTCACAGA -ACGGAATTCCCAACTGCTGCAAGA -ACGGAATTCCCAACTGCTGGTTGA -ACGGAATTCCCAACTGCTTCCGAT -ACGGAATTCCCAACTGCTTGGCAT -ACGGAATTCCCAACTGCTCGAGAT -ACGGAATTCCCAACTGCTTACCAC -ACGGAATTCCCAACTGCTCAGAAC -ACGGAATTCCCAACTGCTGTCTAC -ACGGAATTCCCAACTGCTACGTAC -ACGGAATTCCCAACTGCTAGTGAC -ACGGAATTCCCAACTGCTCTGTAG -ACGGAATTCCCAACTGCTCCTAAG -ACGGAATTCCCAACTGCTGTTCAG -ACGGAATTCCCAACTGCTGCATAG -ACGGAATTCCCAACTGCTGACAAG -ACGGAATTCCCAACTGCTAAGCAG -ACGGAATTCCCAACTGCTCGTCAA -ACGGAATTCCCAACTGCTGCTGAA -ACGGAATTCCCAACTGCTAGTACG -ACGGAATTCCCAACTGCTATCCGA -ACGGAATTCCCAACTGCTATGGGA -ACGGAATTCCCAACTGCTGTGCAA -ACGGAATTCCCAACTGCTGAGGAA -ACGGAATTCCCAACTGCTCAGGTA -ACGGAATTCCCAACTGCTGACTCT -ACGGAATTCCCAACTGCTAGTCCT -ACGGAATTCCCAACTGCTTAAGCC -ACGGAATTCCCAACTGCTATAGCC -ACGGAATTCCCAACTGCTTAACCG -ACGGAATTCCCAACTGCTATGCCA -ACGGAATTCCCATCTGGAGGAAAC -ACGGAATTCCCATCTGGAAACACC -ACGGAATTCCCATCTGGAATCGAG -ACGGAATTCCCATCTGGACTCCTT -ACGGAATTCCCATCTGGACCTGTT -ACGGAATTCCCATCTGGACGGTTT -ACGGAATTCCCATCTGGAGTGGTT -ACGGAATTCCCATCTGGAGCCTTT -ACGGAATTCCCATCTGGAGGTCTT -ACGGAATTCCCATCTGGAACGCTT -ACGGAATTCCCATCTGGAAGCGTT -ACGGAATTCCCATCTGGATTCGTC -ACGGAATTCCCATCTGGATCTCTC -ACGGAATTCCCATCTGGATGGATC -ACGGAATTCCCATCTGGACACTTC -ACGGAATTCCCATCTGGAGTACTC -ACGGAATTCCCATCTGGAGATGTC -ACGGAATTCCCATCTGGAACAGTC -ACGGAATTCCCATCTGGATTGCTG -ACGGAATTCCCATCTGGATCCATG -ACGGAATTCCCATCTGGATGTGTG -ACGGAATTCCCATCTGGACTAGTG -ACGGAATTCCCATCTGGACATCTG -ACGGAATTCCCATCTGGAGAGTTG -ACGGAATTCCCATCTGGAAGACTG -ACGGAATTCCCATCTGGATCGGTA -ACGGAATTCCCATCTGGATGCCTA -ACGGAATTCCCATCTGGACCACTA -ACGGAATTCCCATCTGGAGGAGTA -ACGGAATTCCCATCTGGATCGTCT -ACGGAATTCCCATCTGGATGCACT -ACGGAATTCCCATCTGGACTGACT -ACGGAATTCCCATCTGGACAACCT -ACGGAATTCCCATCTGGAGCTACT -ACGGAATTCCCATCTGGAGGATCT -ACGGAATTCCCATCTGGAAAGGCT -ACGGAATTCCCATCTGGATCAACC -ACGGAATTCCCATCTGGATGTTCC -ACGGAATTCCCATCTGGAATTCCC -ACGGAATTCCCATCTGGATTCTCG -ACGGAATTCCCATCTGGATAGACG -ACGGAATTCCCATCTGGAGTAACG -ACGGAATTCCCATCTGGAACTTCG -ACGGAATTCCCATCTGGATACGCA -ACGGAATTCCCATCTGGACTTGCA -ACGGAATTCCCATCTGGACGAACA -ACGGAATTCCCATCTGGACAGTCA -ACGGAATTCCCATCTGGAGATCCA -ACGGAATTCCCATCTGGAACGACA -ACGGAATTCCCATCTGGAAGCTCA -ACGGAATTCCCATCTGGATCACGT -ACGGAATTCCCATCTGGACGTAGT -ACGGAATTCCCATCTGGAGTCAGT -ACGGAATTCCCATCTGGAGAAGGT -ACGGAATTCCCATCTGGAAACCGT -ACGGAATTCCCATCTGGATTGTGC -ACGGAATTCCCATCTGGACTAAGC -ACGGAATTCCCATCTGGAACTAGC -ACGGAATTCCCATCTGGAAGATGC -ACGGAATTCCCATCTGGATGAAGG -ACGGAATTCCCATCTGGACAATGG -ACGGAATTCCCATCTGGAATGAGG -ACGGAATTCCCATCTGGAAATGGG -ACGGAATTCCCATCTGGATCCTGA -ACGGAATTCCCATCTGGATAGCGA -ACGGAATTCCCATCTGGACACAGA -ACGGAATTCCCATCTGGAGCAAGA -ACGGAATTCCCATCTGGAGGTTGA -ACGGAATTCCCATCTGGATCCGAT -ACGGAATTCCCATCTGGATGGCAT -ACGGAATTCCCATCTGGACGAGAT -ACGGAATTCCCATCTGGATACCAC -ACGGAATTCCCATCTGGACAGAAC -ACGGAATTCCCATCTGGAGTCTAC -ACGGAATTCCCATCTGGAACGTAC -ACGGAATTCCCATCTGGAAGTGAC -ACGGAATTCCCATCTGGACTGTAG -ACGGAATTCCCATCTGGACCTAAG -ACGGAATTCCCATCTGGAGTTCAG -ACGGAATTCCCATCTGGAGCATAG -ACGGAATTCCCATCTGGAGACAAG -ACGGAATTCCCATCTGGAAAGCAG -ACGGAATTCCCATCTGGACGTCAA -ACGGAATTCCCATCTGGAGCTGAA -ACGGAATTCCCATCTGGAAGTACG -ACGGAATTCCCATCTGGAATCCGA -ACGGAATTCCCATCTGGAATGGGA -ACGGAATTCCCATCTGGAGTGCAA -ACGGAATTCCCATCTGGAGAGGAA -ACGGAATTCCCATCTGGACAGGTA -ACGGAATTCCCATCTGGAGACTCT -ACGGAATTCCCATCTGGAAGTCCT -ACGGAATTCCCATCTGGATAAGCC -ACGGAATTCCCATCTGGAATAGCC -ACGGAATTCCCATCTGGATAACCG -ACGGAATTCCCATCTGGAATGCCA -ACGGAATTCCCAGCTAAGGGAAAC -ACGGAATTCCCAGCTAAGAACACC -ACGGAATTCCCAGCTAAGATCGAG -ACGGAATTCCCAGCTAAGCTCCTT -ACGGAATTCCCAGCTAAGCCTGTT -ACGGAATTCCCAGCTAAGCGGTTT -ACGGAATTCCCAGCTAAGGTGGTT -ACGGAATTCCCAGCTAAGGCCTTT -ACGGAATTCCCAGCTAAGGGTCTT -ACGGAATTCCCAGCTAAGACGCTT -ACGGAATTCCCAGCTAAGAGCGTT -ACGGAATTCCCAGCTAAGTTCGTC -ACGGAATTCCCAGCTAAGTCTCTC -ACGGAATTCCCAGCTAAGTGGATC -ACGGAATTCCCAGCTAAGCACTTC -ACGGAATTCCCAGCTAAGGTACTC -ACGGAATTCCCAGCTAAGGATGTC -ACGGAATTCCCAGCTAAGACAGTC -ACGGAATTCCCAGCTAAGTTGCTG -ACGGAATTCCCAGCTAAGTCCATG -ACGGAATTCCCAGCTAAGTGTGTG -ACGGAATTCCCAGCTAAGCTAGTG -ACGGAATTCCCAGCTAAGCATCTG -ACGGAATTCCCAGCTAAGGAGTTG -ACGGAATTCCCAGCTAAGAGACTG -ACGGAATTCCCAGCTAAGTCGGTA -ACGGAATTCCCAGCTAAGTGCCTA -ACGGAATTCCCAGCTAAGCCACTA -ACGGAATTCCCAGCTAAGGGAGTA -ACGGAATTCCCAGCTAAGTCGTCT -ACGGAATTCCCAGCTAAGTGCACT -ACGGAATTCCCAGCTAAGCTGACT -ACGGAATTCCCAGCTAAGCAACCT -ACGGAATTCCCAGCTAAGGCTACT -ACGGAATTCCCAGCTAAGGGATCT -ACGGAATTCCCAGCTAAGAAGGCT -ACGGAATTCCCAGCTAAGTCAACC -ACGGAATTCCCAGCTAAGTGTTCC -ACGGAATTCCCAGCTAAGATTCCC -ACGGAATTCCCAGCTAAGTTCTCG -ACGGAATTCCCAGCTAAGTAGACG -ACGGAATTCCCAGCTAAGGTAACG -ACGGAATTCCCAGCTAAGACTTCG -ACGGAATTCCCAGCTAAGTACGCA -ACGGAATTCCCAGCTAAGCTTGCA -ACGGAATTCCCAGCTAAGCGAACA -ACGGAATTCCCAGCTAAGCAGTCA -ACGGAATTCCCAGCTAAGGATCCA -ACGGAATTCCCAGCTAAGACGACA -ACGGAATTCCCAGCTAAGAGCTCA -ACGGAATTCCCAGCTAAGTCACGT -ACGGAATTCCCAGCTAAGCGTAGT -ACGGAATTCCCAGCTAAGGTCAGT -ACGGAATTCCCAGCTAAGGAAGGT -ACGGAATTCCCAGCTAAGAACCGT -ACGGAATTCCCAGCTAAGTTGTGC -ACGGAATTCCCAGCTAAGCTAAGC -ACGGAATTCCCAGCTAAGACTAGC -ACGGAATTCCCAGCTAAGAGATGC -ACGGAATTCCCAGCTAAGTGAAGG -ACGGAATTCCCAGCTAAGCAATGG -ACGGAATTCCCAGCTAAGATGAGG -ACGGAATTCCCAGCTAAGAATGGG -ACGGAATTCCCAGCTAAGTCCTGA -ACGGAATTCCCAGCTAAGTAGCGA -ACGGAATTCCCAGCTAAGCACAGA -ACGGAATTCCCAGCTAAGGCAAGA -ACGGAATTCCCAGCTAAGGGTTGA -ACGGAATTCCCAGCTAAGTCCGAT -ACGGAATTCCCAGCTAAGTGGCAT -ACGGAATTCCCAGCTAAGCGAGAT -ACGGAATTCCCAGCTAAGTACCAC -ACGGAATTCCCAGCTAAGCAGAAC -ACGGAATTCCCAGCTAAGGTCTAC -ACGGAATTCCCAGCTAAGACGTAC -ACGGAATTCCCAGCTAAGAGTGAC -ACGGAATTCCCAGCTAAGCTGTAG -ACGGAATTCCCAGCTAAGCCTAAG -ACGGAATTCCCAGCTAAGGTTCAG -ACGGAATTCCCAGCTAAGGCATAG -ACGGAATTCCCAGCTAAGGACAAG -ACGGAATTCCCAGCTAAGAAGCAG -ACGGAATTCCCAGCTAAGCGTCAA -ACGGAATTCCCAGCTAAGGCTGAA -ACGGAATTCCCAGCTAAGAGTACG -ACGGAATTCCCAGCTAAGATCCGA -ACGGAATTCCCAGCTAAGATGGGA -ACGGAATTCCCAGCTAAGGTGCAA -ACGGAATTCCCAGCTAAGGAGGAA -ACGGAATTCCCAGCTAAGCAGGTA -ACGGAATTCCCAGCTAAGGACTCT -ACGGAATTCCCAGCTAAGAGTCCT -ACGGAATTCCCAGCTAAGTAAGCC -ACGGAATTCCCAGCTAAGATAGCC -ACGGAATTCCCAGCTAAGTAACCG -ACGGAATTCCCAGCTAAGATGCCA -ACGGAATTCCCAACCTCAGGAAAC -ACGGAATTCCCAACCTCAAACACC -ACGGAATTCCCAACCTCAATCGAG -ACGGAATTCCCAACCTCACTCCTT -ACGGAATTCCCAACCTCACCTGTT -ACGGAATTCCCAACCTCACGGTTT -ACGGAATTCCCAACCTCAGTGGTT -ACGGAATTCCCAACCTCAGCCTTT -ACGGAATTCCCAACCTCAGGTCTT -ACGGAATTCCCAACCTCAACGCTT -ACGGAATTCCCAACCTCAAGCGTT -ACGGAATTCCCAACCTCATTCGTC -ACGGAATTCCCAACCTCATCTCTC -ACGGAATTCCCAACCTCATGGATC -ACGGAATTCCCAACCTCACACTTC -ACGGAATTCCCAACCTCAGTACTC -ACGGAATTCCCAACCTCAGATGTC -ACGGAATTCCCAACCTCAACAGTC -ACGGAATTCCCAACCTCATTGCTG -ACGGAATTCCCAACCTCATCCATG -ACGGAATTCCCAACCTCATGTGTG -ACGGAATTCCCAACCTCACTAGTG -ACGGAATTCCCAACCTCACATCTG -ACGGAATTCCCAACCTCAGAGTTG -ACGGAATTCCCAACCTCAAGACTG -ACGGAATTCCCAACCTCATCGGTA -ACGGAATTCCCAACCTCATGCCTA -ACGGAATTCCCAACCTCACCACTA -ACGGAATTCCCAACCTCAGGAGTA -ACGGAATTCCCAACCTCATCGTCT -ACGGAATTCCCAACCTCATGCACT -ACGGAATTCCCAACCTCACTGACT -ACGGAATTCCCAACCTCACAACCT -ACGGAATTCCCAACCTCAGCTACT -ACGGAATTCCCAACCTCAGGATCT -ACGGAATTCCCAACCTCAAAGGCT -ACGGAATTCCCAACCTCATCAACC -ACGGAATTCCCAACCTCATGTTCC -ACGGAATTCCCAACCTCAATTCCC -ACGGAATTCCCAACCTCATTCTCG -ACGGAATTCCCAACCTCATAGACG -ACGGAATTCCCAACCTCAGTAACG -ACGGAATTCCCAACCTCAACTTCG -ACGGAATTCCCAACCTCATACGCA -ACGGAATTCCCAACCTCACTTGCA -ACGGAATTCCCAACCTCACGAACA -ACGGAATTCCCAACCTCACAGTCA -ACGGAATTCCCAACCTCAGATCCA -ACGGAATTCCCAACCTCAACGACA -ACGGAATTCCCAACCTCAAGCTCA -ACGGAATTCCCAACCTCATCACGT -ACGGAATTCCCAACCTCACGTAGT -ACGGAATTCCCAACCTCAGTCAGT -ACGGAATTCCCAACCTCAGAAGGT -ACGGAATTCCCAACCTCAAACCGT -ACGGAATTCCCAACCTCATTGTGC -ACGGAATTCCCAACCTCACTAAGC -ACGGAATTCCCAACCTCAACTAGC -ACGGAATTCCCAACCTCAAGATGC -ACGGAATTCCCAACCTCATGAAGG -ACGGAATTCCCAACCTCACAATGG -ACGGAATTCCCAACCTCAATGAGG -ACGGAATTCCCAACCTCAAATGGG -ACGGAATTCCCAACCTCATCCTGA -ACGGAATTCCCAACCTCATAGCGA -ACGGAATTCCCAACCTCACACAGA -ACGGAATTCCCAACCTCAGCAAGA -ACGGAATTCCCAACCTCAGGTTGA -ACGGAATTCCCAACCTCATCCGAT -ACGGAATTCCCAACCTCATGGCAT -ACGGAATTCCCAACCTCACGAGAT -ACGGAATTCCCAACCTCATACCAC -ACGGAATTCCCAACCTCACAGAAC -ACGGAATTCCCAACCTCAGTCTAC -ACGGAATTCCCAACCTCAACGTAC -ACGGAATTCCCAACCTCAAGTGAC -ACGGAATTCCCAACCTCACTGTAG -ACGGAATTCCCAACCTCACCTAAG -ACGGAATTCCCAACCTCAGTTCAG -ACGGAATTCCCAACCTCAGCATAG -ACGGAATTCCCAACCTCAGACAAG -ACGGAATTCCCAACCTCAAAGCAG -ACGGAATTCCCAACCTCACGTCAA -ACGGAATTCCCAACCTCAGCTGAA -ACGGAATTCCCAACCTCAAGTACG -ACGGAATTCCCAACCTCAATCCGA -ACGGAATTCCCAACCTCAATGGGA -ACGGAATTCCCAACCTCAGTGCAA -ACGGAATTCCCAACCTCAGAGGAA -ACGGAATTCCCAACCTCACAGGTA -ACGGAATTCCCAACCTCAGACTCT -ACGGAATTCCCAACCTCAAGTCCT -ACGGAATTCCCAACCTCATAAGCC -ACGGAATTCCCAACCTCAATAGCC -ACGGAATTCCCAACCTCATAACCG -ACGGAATTCCCAACCTCAATGCCA -ACGGAATTCCCATCCTGTGGAAAC -ACGGAATTCCCATCCTGTAACACC -ACGGAATTCCCATCCTGTATCGAG -ACGGAATTCCCATCCTGTCTCCTT -ACGGAATTCCCATCCTGTCCTGTT -ACGGAATTCCCATCCTGTCGGTTT -ACGGAATTCCCATCCTGTGTGGTT -ACGGAATTCCCATCCTGTGCCTTT -ACGGAATTCCCATCCTGTGGTCTT -ACGGAATTCCCATCCTGTACGCTT -ACGGAATTCCCATCCTGTAGCGTT -ACGGAATTCCCATCCTGTTTCGTC -ACGGAATTCCCATCCTGTTCTCTC -ACGGAATTCCCATCCTGTTGGATC -ACGGAATTCCCATCCTGTCACTTC -ACGGAATTCCCATCCTGTGTACTC -ACGGAATTCCCATCCTGTGATGTC -ACGGAATTCCCATCCTGTACAGTC -ACGGAATTCCCATCCTGTTTGCTG -ACGGAATTCCCATCCTGTTCCATG -ACGGAATTCCCATCCTGTTGTGTG -ACGGAATTCCCATCCTGTCTAGTG -ACGGAATTCCCATCCTGTCATCTG -ACGGAATTCCCATCCTGTGAGTTG -ACGGAATTCCCATCCTGTAGACTG -ACGGAATTCCCATCCTGTTCGGTA -ACGGAATTCCCATCCTGTTGCCTA -ACGGAATTCCCATCCTGTCCACTA -ACGGAATTCCCATCCTGTGGAGTA -ACGGAATTCCCATCCTGTTCGTCT -ACGGAATTCCCATCCTGTTGCACT -ACGGAATTCCCATCCTGTCTGACT -ACGGAATTCCCATCCTGTCAACCT -ACGGAATTCCCATCCTGTGCTACT -ACGGAATTCCCATCCTGTGGATCT -ACGGAATTCCCATCCTGTAAGGCT -ACGGAATTCCCATCCTGTTCAACC -ACGGAATTCCCATCCTGTTGTTCC -ACGGAATTCCCATCCTGTATTCCC -ACGGAATTCCCATCCTGTTTCTCG -ACGGAATTCCCATCCTGTTAGACG -ACGGAATTCCCATCCTGTGTAACG -ACGGAATTCCCATCCTGTACTTCG -ACGGAATTCCCATCCTGTTACGCA -ACGGAATTCCCATCCTGTCTTGCA -ACGGAATTCCCATCCTGTCGAACA -ACGGAATTCCCATCCTGTCAGTCA -ACGGAATTCCCATCCTGTGATCCA -ACGGAATTCCCATCCTGTACGACA -ACGGAATTCCCATCCTGTAGCTCA -ACGGAATTCCCATCCTGTTCACGT -ACGGAATTCCCATCCTGTCGTAGT -ACGGAATTCCCATCCTGTGTCAGT -ACGGAATTCCCATCCTGTGAAGGT -ACGGAATTCCCATCCTGTAACCGT -ACGGAATTCCCATCCTGTTTGTGC -ACGGAATTCCCATCCTGTCTAAGC -ACGGAATTCCCATCCTGTACTAGC -ACGGAATTCCCATCCTGTAGATGC -ACGGAATTCCCATCCTGTTGAAGG -ACGGAATTCCCATCCTGTCAATGG -ACGGAATTCCCATCCTGTATGAGG -ACGGAATTCCCATCCTGTAATGGG -ACGGAATTCCCATCCTGTTCCTGA -ACGGAATTCCCATCCTGTTAGCGA -ACGGAATTCCCATCCTGTCACAGA -ACGGAATTCCCATCCTGTGCAAGA -ACGGAATTCCCATCCTGTGGTTGA -ACGGAATTCCCATCCTGTTCCGAT -ACGGAATTCCCATCCTGTTGGCAT -ACGGAATTCCCATCCTGTCGAGAT -ACGGAATTCCCATCCTGTTACCAC -ACGGAATTCCCATCCTGTCAGAAC -ACGGAATTCCCATCCTGTGTCTAC -ACGGAATTCCCATCCTGTACGTAC -ACGGAATTCCCATCCTGTAGTGAC -ACGGAATTCCCATCCTGTCTGTAG -ACGGAATTCCCATCCTGTCCTAAG -ACGGAATTCCCATCCTGTGTTCAG -ACGGAATTCCCATCCTGTGCATAG -ACGGAATTCCCATCCTGTGACAAG -ACGGAATTCCCATCCTGTAAGCAG -ACGGAATTCCCATCCTGTCGTCAA -ACGGAATTCCCATCCTGTGCTGAA -ACGGAATTCCCATCCTGTAGTACG -ACGGAATTCCCATCCTGTATCCGA -ACGGAATTCCCATCCTGTATGGGA -ACGGAATTCCCATCCTGTGTGCAA -ACGGAATTCCCATCCTGTGAGGAA -ACGGAATTCCCATCCTGTCAGGTA -ACGGAATTCCCATCCTGTGACTCT -ACGGAATTCCCATCCTGTAGTCCT -ACGGAATTCCCATCCTGTTAAGCC -ACGGAATTCCCATCCTGTATAGCC -ACGGAATTCCCATCCTGTTAACCG -ACGGAATTCCCATCCTGTATGCCA -ACGGAATTCCCACCCATTGGAAAC -ACGGAATTCCCACCCATTAACACC -ACGGAATTCCCACCCATTATCGAG -ACGGAATTCCCACCCATTCTCCTT -ACGGAATTCCCACCCATTCCTGTT -ACGGAATTCCCACCCATTCGGTTT -ACGGAATTCCCACCCATTGTGGTT -ACGGAATTCCCACCCATTGCCTTT -ACGGAATTCCCACCCATTGGTCTT -ACGGAATTCCCACCCATTACGCTT -ACGGAATTCCCACCCATTAGCGTT -ACGGAATTCCCACCCATTTTCGTC -ACGGAATTCCCACCCATTTCTCTC -ACGGAATTCCCACCCATTTGGATC -ACGGAATTCCCACCCATTCACTTC -ACGGAATTCCCACCCATTGTACTC -ACGGAATTCCCACCCATTGATGTC -ACGGAATTCCCACCCATTACAGTC -ACGGAATTCCCACCCATTTTGCTG -ACGGAATTCCCACCCATTTCCATG -ACGGAATTCCCACCCATTTGTGTG -ACGGAATTCCCACCCATTCTAGTG -ACGGAATTCCCACCCATTCATCTG -ACGGAATTCCCACCCATTGAGTTG -ACGGAATTCCCACCCATTAGACTG -ACGGAATTCCCACCCATTTCGGTA -ACGGAATTCCCACCCATTTGCCTA -ACGGAATTCCCACCCATTCCACTA -ACGGAATTCCCACCCATTGGAGTA -ACGGAATTCCCACCCATTTCGTCT -ACGGAATTCCCACCCATTTGCACT -ACGGAATTCCCACCCATTCTGACT -ACGGAATTCCCACCCATTCAACCT -ACGGAATTCCCACCCATTGCTACT -ACGGAATTCCCACCCATTGGATCT -ACGGAATTCCCACCCATTAAGGCT -ACGGAATTCCCACCCATTTCAACC -ACGGAATTCCCACCCATTTGTTCC -ACGGAATTCCCACCCATTATTCCC -ACGGAATTCCCACCCATTTTCTCG -ACGGAATTCCCACCCATTTAGACG -ACGGAATTCCCACCCATTGTAACG -ACGGAATTCCCACCCATTACTTCG -ACGGAATTCCCACCCATTTACGCA -ACGGAATTCCCACCCATTCTTGCA -ACGGAATTCCCACCCATTCGAACA -ACGGAATTCCCACCCATTCAGTCA -ACGGAATTCCCACCCATTGATCCA -ACGGAATTCCCACCCATTACGACA -ACGGAATTCCCACCCATTAGCTCA -ACGGAATTCCCACCCATTTCACGT -ACGGAATTCCCACCCATTCGTAGT -ACGGAATTCCCACCCATTGTCAGT -ACGGAATTCCCACCCATTGAAGGT -ACGGAATTCCCACCCATTAACCGT -ACGGAATTCCCACCCATTTTGTGC -ACGGAATTCCCACCCATTCTAAGC -ACGGAATTCCCACCCATTACTAGC -ACGGAATTCCCACCCATTAGATGC -ACGGAATTCCCACCCATTTGAAGG -ACGGAATTCCCACCCATTCAATGG -ACGGAATTCCCACCCATTATGAGG -ACGGAATTCCCACCCATTAATGGG -ACGGAATTCCCACCCATTTCCTGA -ACGGAATTCCCACCCATTTAGCGA -ACGGAATTCCCACCCATTCACAGA -ACGGAATTCCCACCCATTGCAAGA -ACGGAATTCCCACCCATTGGTTGA -ACGGAATTCCCACCCATTTCCGAT -ACGGAATTCCCACCCATTTGGCAT -ACGGAATTCCCACCCATTCGAGAT -ACGGAATTCCCACCCATTTACCAC -ACGGAATTCCCACCCATTCAGAAC -ACGGAATTCCCACCCATTGTCTAC -ACGGAATTCCCACCCATTACGTAC -ACGGAATTCCCACCCATTAGTGAC -ACGGAATTCCCACCCATTCTGTAG -ACGGAATTCCCACCCATTCCTAAG -ACGGAATTCCCACCCATTGTTCAG -ACGGAATTCCCACCCATTGCATAG -ACGGAATTCCCACCCATTGACAAG -ACGGAATTCCCACCCATTAAGCAG -ACGGAATTCCCACCCATTCGTCAA -ACGGAATTCCCACCCATTGCTGAA -ACGGAATTCCCACCCATTAGTACG -ACGGAATTCCCACCCATTATCCGA -ACGGAATTCCCACCCATTATGGGA -ACGGAATTCCCACCCATTGTGCAA -ACGGAATTCCCACCCATTGAGGAA -ACGGAATTCCCACCCATTCAGGTA -ACGGAATTCCCACCCATTGACTCT -ACGGAATTCCCACCCATTAGTCCT -ACGGAATTCCCACCCATTTAAGCC -ACGGAATTCCCACCCATTATAGCC -ACGGAATTCCCACCCATTTAACCG -ACGGAATTCCCACCCATTATGCCA -ACGGAATTCCCATCGTTCGGAAAC -ACGGAATTCCCATCGTTCAACACC -ACGGAATTCCCATCGTTCATCGAG -ACGGAATTCCCATCGTTCCTCCTT -ACGGAATTCCCATCGTTCCCTGTT -ACGGAATTCCCATCGTTCCGGTTT -ACGGAATTCCCATCGTTCGTGGTT -ACGGAATTCCCATCGTTCGCCTTT -ACGGAATTCCCATCGTTCGGTCTT -ACGGAATTCCCATCGTTCACGCTT -ACGGAATTCCCATCGTTCAGCGTT -ACGGAATTCCCATCGTTCTTCGTC -ACGGAATTCCCATCGTTCTCTCTC -ACGGAATTCCCATCGTTCTGGATC -ACGGAATTCCCATCGTTCCACTTC -ACGGAATTCCCATCGTTCGTACTC -ACGGAATTCCCATCGTTCGATGTC -ACGGAATTCCCATCGTTCACAGTC -ACGGAATTCCCATCGTTCTTGCTG -ACGGAATTCCCATCGTTCTCCATG -ACGGAATTCCCATCGTTCTGTGTG -ACGGAATTCCCATCGTTCCTAGTG -ACGGAATTCCCATCGTTCCATCTG -ACGGAATTCCCATCGTTCGAGTTG -ACGGAATTCCCATCGTTCAGACTG -ACGGAATTCCCATCGTTCTCGGTA -ACGGAATTCCCATCGTTCTGCCTA -ACGGAATTCCCATCGTTCCCACTA -ACGGAATTCCCATCGTTCGGAGTA -ACGGAATTCCCATCGTTCTCGTCT -ACGGAATTCCCATCGTTCTGCACT -ACGGAATTCCCATCGTTCCTGACT -ACGGAATTCCCATCGTTCCAACCT -ACGGAATTCCCATCGTTCGCTACT -ACGGAATTCCCATCGTTCGGATCT -ACGGAATTCCCATCGTTCAAGGCT -ACGGAATTCCCATCGTTCTCAACC -ACGGAATTCCCATCGTTCTGTTCC -ACGGAATTCCCATCGTTCATTCCC -ACGGAATTCCCATCGTTCTTCTCG -ACGGAATTCCCATCGTTCTAGACG -ACGGAATTCCCATCGTTCGTAACG -ACGGAATTCCCATCGTTCACTTCG -ACGGAATTCCCATCGTTCTACGCA -ACGGAATTCCCATCGTTCCTTGCA -ACGGAATTCCCATCGTTCCGAACA -ACGGAATTCCCATCGTTCCAGTCA -ACGGAATTCCCATCGTTCGATCCA -ACGGAATTCCCATCGTTCACGACA -ACGGAATTCCCATCGTTCAGCTCA -ACGGAATTCCCATCGTTCTCACGT -ACGGAATTCCCATCGTTCCGTAGT -ACGGAATTCCCATCGTTCGTCAGT -ACGGAATTCCCATCGTTCGAAGGT -ACGGAATTCCCATCGTTCAACCGT -ACGGAATTCCCATCGTTCTTGTGC -ACGGAATTCCCATCGTTCCTAAGC -ACGGAATTCCCATCGTTCACTAGC -ACGGAATTCCCATCGTTCAGATGC -ACGGAATTCCCATCGTTCTGAAGG -ACGGAATTCCCATCGTTCCAATGG -ACGGAATTCCCATCGTTCATGAGG -ACGGAATTCCCATCGTTCAATGGG -ACGGAATTCCCATCGTTCTCCTGA -ACGGAATTCCCATCGTTCTAGCGA -ACGGAATTCCCATCGTTCCACAGA -ACGGAATTCCCATCGTTCGCAAGA -ACGGAATTCCCATCGTTCGGTTGA -ACGGAATTCCCATCGTTCTCCGAT -ACGGAATTCCCATCGTTCTGGCAT -ACGGAATTCCCATCGTTCCGAGAT -ACGGAATTCCCATCGTTCTACCAC -ACGGAATTCCCATCGTTCCAGAAC -ACGGAATTCCCATCGTTCGTCTAC -ACGGAATTCCCATCGTTCACGTAC -ACGGAATTCCCATCGTTCAGTGAC -ACGGAATTCCCATCGTTCCTGTAG -ACGGAATTCCCATCGTTCCCTAAG -ACGGAATTCCCATCGTTCGTTCAG -ACGGAATTCCCATCGTTCGCATAG -ACGGAATTCCCATCGTTCGACAAG -ACGGAATTCCCATCGTTCAAGCAG -ACGGAATTCCCATCGTTCCGTCAA -ACGGAATTCCCATCGTTCGCTGAA -ACGGAATTCCCATCGTTCAGTACG -ACGGAATTCCCATCGTTCATCCGA -ACGGAATTCCCATCGTTCATGGGA -ACGGAATTCCCATCGTTCGTGCAA -ACGGAATTCCCATCGTTCGAGGAA -ACGGAATTCCCATCGTTCCAGGTA -ACGGAATTCCCATCGTTCGACTCT -ACGGAATTCCCATCGTTCAGTCCT -ACGGAATTCCCATCGTTCTAAGCC -ACGGAATTCCCATCGTTCATAGCC -ACGGAATTCCCATCGTTCTAACCG -ACGGAATTCCCATCGTTCATGCCA -ACGGAATTCCCAACGTAGGGAAAC -ACGGAATTCCCAACGTAGAACACC -ACGGAATTCCCAACGTAGATCGAG -ACGGAATTCCCAACGTAGCTCCTT -ACGGAATTCCCAACGTAGCCTGTT -ACGGAATTCCCAACGTAGCGGTTT -ACGGAATTCCCAACGTAGGTGGTT -ACGGAATTCCCAACGTAGGCCTTT -ACGGAATTCCCAACGTAGGGTCTT -ACGGAATTCCCAACGTAGACGCTT -ACGGAATTCCCAACGTAGAGCGTT -ACGGAATTCCCAACGTAGTTCGTC -ACGGAATTCCCAACGTAGTCTCTC -ACGGAATTCCCAACGTAGTGGATC -ACGGAATTCCCAACGTAGCACTTC -ACGGAATTCCCAACGTAGGTACTC -ACGGAATTCCCAACGTAGGATGTC -ACGGAATTCCCAACGTAGACAGTC -ACGGAATTCCCAACGTAGTTGCTG -ACGGAATTCCCAACGTAGTCCATG -ACGGAATTCCCAACGTAGTGTGTG -ACGGAATTCCCAACGTAGCTAGTG -ACGGAATTCCCAACGTAGCATCTG -ACGGAATTCCCAACGTAGGAGTTG -ACGGAATTCCCAACGTAGAGACTG -ACGGAATTCCCAACGTAGTCGGTA -ACGGAATTCCCAACGTAGTGCCTA -ACGGAATTCCCAACGTAGCCACTA -ACGGAATTCCCAACGTAGGGAGTA -ACGGAATTCCCAACGTAGTCGTCT -ACGGAATTCCCAACGTAGTGCACT -ACGGAATTCCCAACGTAGCTGACT -ACGGAATTCCCAACGTAGCAACCT -ACGGAATTCCCAACGTAGGCTACT -ACGGAATTCCCAACGTAGGGATCT -ACGGAATTCCCAACGTAGAAGGCT -ACGGAATTCCCAACGTAGTCAACC -ACGGAATTCCCAACGTAGTGTTCC -ACGGAATTCCCAACGTAGATTCCC -ACGGAATTCCCAACGTAGTTCTCG -ACGGAATTCCCAACGTAGTAGACG -ACGGAATTCCCAACGTAGGTAACG -ACGGAATTCCCAACGTAGACTTCG -ACGGAATTCCCAACGTAGTACGCA -ACGGAATTCCCAACGTAGCTTGCA -ACGGAATTCCCAACGTAGCGAACA -ACGGAATTCCCAACGTAGCAGTCA -ACGGAATTCCCAACGTAGGATCCA -ACGGAATTCCCAACGTAGACGACA -ACGGAATTCCCAACGTAGAGCTCA -ACGGAATTCCCAACGTAGTCACGT -ACGGAATTCCCAACGTAGCGTAGT -ACGGAATTCCCAACGTAGGTCAGT -ACGGAATTCCCAACGTAGGAAGGT -ACGGAATTCCCAACGTAGAACCGT -ACGGAATTCCCAACGTAGTTGTGC -ACGGAATTCCCAACGTAGCTAAGC -ACGGAATTCCCAACGTAGACTAGC -ACGGAATTCCCAACGTAGAGATGC -ACGGAATTCCCAACGTAGTGAAGG -ACGGAATTCCCAACGTAGCAATGG -ACGGAATTCCCAACGTAGATGAGG -ACGGAATTCCCAACGTAGAATGGG -ACGGAATTCCCAACGTAGTCCTGA -ACGGAATTCCCAACGTAGTAGCGA -ACGGAATTCCCAACGTAGCACAGA -ACGGAATTCCCAACGTAGGCAAGA -ACGGAATTCCCAACGTAGGGTTGA -ACGGAATTCCCAACGTAGTCCGAT -ACGGAATTCCCAACGTAGTGGCAT -ACGGAATTCCCAACGTAGCGAGAT -ACGGAATTCCCAACGTAGTACCAC -ACGGAATTCCCAACGTAGCAGAAC -ACGGAATTCCCAACGTAGGTCTAC -ACGGAATTCCCAACGTAGACGTAC -ACGGAATTCCCAACGTAGAGTGAC -ACGGAATTCCCAACGTAGCTGTAG -ACGGAATTCCCAACGTAGCCTAAG -ACGGAATTCCCAACGTAGGTTCAG -ACGGAATTCCCAACGTAGGCATAG -ACGGAATTCCCAACGTAGGACAAG -ACGGAATTCCCAACGTAGAAGCAG -ACGGAATTCCCAACGTAGCGTCAA -ACGGAATTCCCAACGTAGGCTGAA -ACGGAATTCCCAACGTAGAGTACG -ACGGAATTCCCAACGTAGATCCGA -ACGGAATTCCCAACGTAGATGGGA -ACGGAATTCCCAACGTAGGTGCAA -ACGGAATTCCCAACGTAGGAGGAA -ACGGAATTCCCAACGTAGCAGGTA -ACGGAATTCCCAACGTAGGACTCT -ACGGAATTCCCAACGTAGAGTCCT -ACGGAATTCCCAACGTAGTAAGCC -ACGGAATTCCCAACGTAGATAGCC -ACGGAATTCCCAACGTAGTAACCG -ACGGAATTCCCAACGTAGATGCCA -ACGGAATTCCCAACGGTAGGAAAC -ACGGAATTCCCAACGGTAAACACC -ACGGAATTCCCAACGGTAATCGAG -ACGGAATTCCCAACGGTACTCCTT -ACGGAATTCCCAACGGTACCTGTT -ACGGAATTCCCAACGGTACGGTTT -ACGGAATTCCCAACGGTAGTGGTT -ACGGAATTCCCAACGGTAGCCTTT -ACGGAATTCCCAACGGTAGGTCTT -ACGGAATTCCCAACGGTAACGCTT -ACGGAATTCCCAACGGTAAGCGTT -ACGGAATTCCCAACGGTATTCGTC -ACGGAATTCCCAACGGTATCTCTC -ACGGAATTCCCAACGGTATGGATC -ACGGAATTCCCAACGGTACACTTC -ACGGAATTCCCAACGGTAGTACTC -ACGGAATTCCCAACGGTAGATGTC -ACGGAATTCCCAACGGTAACAGTC -ACGGAATTCCCAACGGTATTGCTG -ACGGAATTCCCAACGGTATCCATG -ACGGAATTCCCAACGGTATGTGTG -ACGGAATTCCCAACGGTACTAGTG -ACGGAATTCCCAACGGTACATCTG -ACGGAATTCCCAACGGTAGAGTTG -ACGGAATTCCCAACGGTAAGACTG -ACGGAATTCCCAACGGTATCGGTA -ACGGAATTCCCAACGGTATGCCTA -ACGGAATTCCCAACGGTACCACTA -ACGGAATTCCCAACGGTAGGAGTA -ACGGAATTCCCAACGGTATCGTCT -ACGGAATTCCCAACGGTATGCACT -ACGGAATTCCCAACGGTACTGACT -ACGGAATTCCCAACGGTACAACCT -ACGGAATTCCCAACGGTAGCTACT -ACGGAATTCCCAACGGTAGGATCT -ACGGAATTCCCAACGGTAAAGGCT -ACGGAATTCCCAACGGTATCAACC -ACGGAATTCCCAACGGTATGTTCC -ACGGAATTCCCAACGGTAATTCCC -ACGGAATTCCCAACGGTATTCTCG -ACGGAATTCCCAACGGTATAGACG -ACGGAATTCCCAACGGTAGTAACG -ACGGAATTCCCAACGGTAACTTCG -ACGGAATTCCCAACGGTATACGCA -ACGGAATTCCCAACGGTACTTGCA -ACGGAATTCCCAACGGTACGAACA -ACGGAATTCCCAACGGTACAGTCA -ACGGAATTCCCAACGGTAGATCCA -ACGGAATTCCCAACGGTAACGACA -ACGGAATTCCCAACGGTAAGCTCA -ACGGAATTCCCAACGGTATCACGT -ACGGAATTCCCAACGGTACGTAGT -ACGGAATTCCCAACGGTAGTCAGT -ACGGAATTCCCAACGGTAGAAGGT -ACGGAATTCCCAACGGTAAACCGT -ACGGAATTCCCAACGGTATTGTGC -ACGGAATTCCCAACGGTACTAAGC -ACGGAATTCCCAACGGTAACTAGC -ACGGAATTCCCAACGGTAAGATGC -ACGGAATTCCCAACGGTATGAAGG -ACGGAATTCCCAACGGTACAATGG -ACGGAATTCCCAACGGTAATGAGG -ACGGAATTCCCAACGGTAAATGGG -ACGGAATTCCCAACGGTATCCTGA -ACGGAATTCCCAACGGTATAGCGA -ACGGAATTCCCAACGGTACACAGA -ACGGAATTCCCAACGGTAGCAAGA -ACGGAATTCCCAACGGTAGGTTGA -ACGGAATTCCCAACGGTATCCGAT -ACGGAATTCCCAACGGTATGGCAT -ACGGAATTCCCAACGGTACGAGAT -ACGGAATTCCCAACGGTATACCAC -ACGGAATTCCCAACGGTACAGAAC -ACGGAATTCCCAACGGTAGTCTAC -ACGGAATTCCCAACGGTAACGTAC -ACGGAATTCCCAACGGTAAGTGAC -ACGGAATTCCCAACGGTACTGTAG -ACGGAATTCCCAACGGTACCTAAG -ACGGAATTCCCAACGGTAGTTCAG -ACGGAATTCCCAACGGTAGCATAG -ACGGAATTCCCAACGGTAGACAAG -ACGGAATTCCCAACGGTAAAGCAG -ACGGAATTCCCAACGGTACGTCAA -ACGGAATTCCCAACGGTAGCTGAA -ACGGAATTCCCAACGGTAAGTACG -ACGGAATTCCCAACGGTAATCCGA -ACGGAATTCCCAACGGTAATGGGA -ACGGAATTCCCAACGGTAGTGCAA -ACGGAATTCCCAACGGTAGAGGAA -ACGGAATTCCCAACGGTACAGGTA -ACGGAATTCCCAACGGTAGACTCT -ACGGAATTCCCAACGGTAAGTCCT -ACGGAATTCCCAACGGTATAAGCC -ACGGAATTCCCAACGGTAATAGCC -ACGGAATTCCCAACGGTATAACCG -ACGGAATTCCCAACGGTAATGCCA -ACGGAATTCCCATCGACTGGAAAC -ACGGAATTCCCATCGACTAACACC -ACGGAATTCCCATCGACTATCGAG -ACGGAATTCCCATCGACTCTCCTT -ACGGAATTCCCATCGACTCCTGTT -ACGGAATTCCCATCGACTCGGTTT -ACGGAATTCCCATCGACTGTGGTT -ACGGAATTCCCATCGACTGCCTTT -ACGGAATTCCCATCGACTGGTCTT -ACGGAATTCCCATCGACTACGCTT -ACGGAATTCCCATCGACTAGCGTT -ACGGAATTCCCATCGACTTTCGTC -ACGGAATTCCCATCGACTTCTCTC -ACGGAATTCCCATCGACTTGGATC -ACGGAATTCCCATCGACTCACTTC -ACGGAATTCCCATCGACTGTACTC -ACGGAATTCCCATCGACTGATGTC -ACGGAATTCCCATCGACTACAGTC -ACGGAATTCCCATCGACTTTGCTG -ACGGAATTCCCATCGACTTCCATG -ACGGAATTCCCATCGACTTGTGTG -ACGGAATTCCCATCGACTCTAGTG -ACGGAATTCCCATCGACTCATCTG -ACGGAATTCCCATCGACTGAGTTG -ACGGAATTCCCATCGACTAGACTG -ACGGAATTCCCATCGACTTCGGTA -ACGGAATTCCCATCGACTTGCCTA -ACGGAATTCCCATCGACTCCACTA -ACGGAATTCCCATCGACTGGAGTA -ACGGAATTCCCATCGACTTCGTCT -ACGGAATTCCCATCGACTTGCACT -ACGGAATTCCCATCGACTCTGACT -ACGGAATTCCCATCGACTCAACCT -ACGGAATTCCCATCGACTGCTACT -ACGGAATTCCCATCGACTGGATCT -ACGGAATTCCCATCGACTAAGGCT -ACGGAATTCCCATCGACTTCAACC -ACGGAATTCCCATCGACTTGTTCC -ACGGAATTCCCATCGACTATTCCC -ACGGAATTCCCATCGACTTTCTCG -ACGGAATTCCCATCGACTTAGACG -ACGGAATTCCCATCGACTGTAACG -ACGGAATTCCCATCGACTACTTCG -ACGGAATTCCCATCGACTTACGCA -ACGGAATTCCCATCGACTCTTGCA -ACGGAATTCCCATCGACTCGAACA -ACGGAATTCCCATCGACTCAGTCA -ACGGAATTCCCATCGACTGATCCA -ACGGAATTCCCATCGACTACGACA -ACGGAATTCCCATCGACTAGCTCA -ACGGAATTCCCATCGACTTCACGT -ACGGAATTCCCATCGACTCGTAGT -ACGGAATTCCCATCGACTGTCAGT -ACGGAATTCCCATCGACTGAAGGT -ACGGAATTCCCATCGACTAACCGT -ACGGAATTCCCATCGACTTTGTGC -ACGGAATTCCCATCGACTCTAAGC -ACGGAATTCCCATCGACTACTAGC -ACGGAATTCCCATCGACTAGATGC -ACGGAATTCCCATCGACTTGAAGG -ACGGAATTCCCATCGACTCAATGG -ACGGAATTCCCATCGACTATGAGG -ACGGAATTCCCATCGACTAATGGG -ACGGAATTCCCATCGACTTCCTGA -ACGGAATTCCCATCGACTTAGCGA -ACGGAATTCCCATCGACTCACAGA -ACGGAATTCCCATCGACTGCAAGA -ACGGAATTCCCATCGACTGGTTGA -ACGGAATTCCCATCGACTTCCGAT -ACGGAATTCCCATCGACTTGGCAT -ACGGAATTCCCATCGACTCGAGAT -ACGGAATTCCCATCGACTTACCAC -ACGGAATTCCCATCGACTCAGAAC -ACGGAATTCCCATCGACTGTCTAC -ACGGAATTCCCATCGACTACGTAC -ACGGAATTCCCATCGACTAGTGAC -ACGGAATTCCCATCGACTCTGTAG -ACGGAATTCCCATCGACTCCTAAG -ACGGAATTCCCATCGACTGTTCAG -ACGGAATTCCCATCGACTGCATAG -ACGGAATTCCCATCGACTGACAAG -ACGGAATTCCCATCGACTAAGCAG -ACGGAATTCCCATCGACTCGTCAA -ACGGAATTCCCATCGACTGCTGAA -ACGGAATTCCCATCGACTAGTACG -ACGGAATTCCCATCGACTATCCGA -ACGGAATTCCCATCGACTATGGGA -ACGGAATTCCCATCGACTGTGCAA -ACGGAATTCCCATCGACTGAGGAA -ACGGAATTCCCATCGACTCAGGTA -ACGGAATTCCCATCGACTGACTCT -ACGGAATTCCCATCGACTAGTCCT -ACGGAATTCCCATCGACTTAAGCC -ACGGAATTCCCATCGACTATAGCC -ACGGAATTCCCATCGACTTAACCG -ACGGAATTCCCATCGACTATGCCA -ACGGAATTCCCAGCATACGGAAAC -ACGGAATTCCCAGCATACAACACC -ACGGAATTCCCAGCATACATCGAG -ACGGAATTCCCAGCATACCTCCTT -ACGGAATTCCCAGCATACCCTGTT -ACGGAATTCCCAGCATACCGGTTT -ACGGAATTCCCAGCATACGTGGTT -ACGGAATTCCCAGCATACGCCTTT -ACGGAATTCCCAGCATACGGTCTT -ACGGAATTCCCAGCATACACGCTT -ACGGAATTCCCAGCATACAGCGTT -ACGGAATTCCCAGCATACTTCGTC -ACGGAATTCCCAGCATACTCTCTC -ACGGAATTCCCAGCATACTGGATC -ACGGAATTCCCAGCATACCACTTC -ACGGAATTCCCAGCATACGTACTC -ACGGAATTCCCAGCATACGATGTC -ACGGAATTCCCAGCATACACAGTC -ACGGAATTCCCAGCATACTTGCTG -ACGGAATTCCCAGCATACTCCATG -ACGGAATTCCCAGCATACTGTGTG -ACGGAATTCCCAGCATACCTAGTG -ACGGAATTCCCAGCATACCATCTG -ACGGAATTCCCAGCATACGAGTTG -ACGGAATTCCCAGCATACAGACTG -ACGGAATTCCCAGCATACTCGGTA -ACGGAATTCCCAGCATACTGCCTA -ACGGAATTCCCAGCATACCCACTA -ACGGAATTCCCAGCATACGGAGTA -ACGGAATTCCCAGCATACTCGTCT -ACGGAATTCCCAGCATACTGCACT -ACGGAATTCCCAGCATACCTGACT -ACGGAATTCCCAGCATACCAACCT -ACGGAATTCCCAGCATACGCTACT -ACGGAATTCCCAGCATACGGATCT -ACGGAATTCCCAGCATACAAGGCT -ACGGAATTCCCAGCATACTCAACC -ACGGAATTCCCAGCATACTGTTCC -ACGGAATTCCCAGCATACATTCCC -ACGGAATTCCCAGCATACTTCTCG -ACGGAATTCCCAGCATACTAGACG -ACGGAATTCCCAGCATACGTAACG -ACGGAATTCCCAGCATACACTTCG -ACGGAATTCCCAGCATACTACGCA -ACGGAATTCCCAGCATACCTTGCA -ACGGAATTCCCAGCATACCGAACA -ACGGAATTCCCAGCATACCAGTCA -ACGGAATTCCCAGCATACGATCCA -ACGGAATTCCCAGCATACACGACA -ACGGAATTCCCAGCATACAGCTCA -ACGGAATTCCCAGCATACTCACGT -ACGGAATTCCCAGCATACCGTAGT -ACGGAATTCCCAGCATACGTCAGT -ACGGAATTCCCAGCATACGAAGGT -ACGGAATTCCCAGCATACAACCGT -ACGGAATTCCCAGCATACTTGTGC -ACGGAATTCCCAGCATACCTAAGC -ACGGAATTCCCAGCATACACTAGC -ACGGAATTCCCAGCATACAGATGC -ACGGAATTCCCAGCATACTGAAGG -ACGGAATTCCCAGCATACCAATGG -ACGGAATTCCCAGCATACATGAGG -ACGGAATTCCCAGCATACAATGGG -ACGGAATTCCCAGCATACTCCTGA -ACGGAATTCCCAGCATACTAGCGA -ACGGAATTCCCAGCATACCACAGA -ACGGAATTCCCAGCATACGCAAGA -ACGGAATTCCCAGCATACGGTTGA -ACGGAATTCCCAGCATACTCCGAT -ACGGAATTCCCAGCATACTGGCAT -ACGGAATTCCCAGCATACCGAGAT -ACGGAATTCCCAGCATACTACCAC -ACGGAATTCCCAGCATACCAGAAC -ACGGAATTCCCAGCATACGTCTAC -ACGGAATTCCCAGCATACACGTAC -ACGGAATTCCCAGCATACAGTGAC -ACGGAATTCCCAGCATACCTGTAG -ACGGAATTCCCAGCATACCCTAAG -ACGGAATTCCCAGCATACGTTCAG -ACGGAATTCCCAGCATACGCATAG -ACGGAATTCCCAGCATACGACAAG -ACGGAATTCCCAGCATACAAGCAG -ACGGAATTCCCAGCATACCGTCAA -ACGGAATTCCCAGCATACGCTGAA -ACGGAATTCCCAGCATACAGTACG -ACGGAATTCCCAGCATACATCCGA -ACGGAATTCCCAGCATACATGGGA -ACGGAATTCCCAGCATACGTGCAA -ACGGAATTCCCAGCATACGAGGAA -ACGGAATTCCCAGCATACCAGGTA -ACGGAATTCCCAGCATACGACTCT -ACGGAATTCCCAGCATACAGTCCT -ACGGAATTCCCAGCATACTAAGCC -ACGGAATTCCCAGCATACATAGCC -ACGGAATTCCCAGCATACTAACCG -ACGGAATTCCCAGCATACATGCCA -ACGGAATTCCCAGCACTTGGAAAC -ACGGAATTCCCAGCACTTAACACC -ACGGAATTCCCAGCACTTATCGAG -ACGGAATTCCCAGCACTTCTCCTT -ACGGAATTCCCAGCACTTCCTGTT -ACGGAATTCCCAGCACTTCGGTTT -ACGGAATTCCCAGCACTTGTGGTT -ACGGAATTCCCAGCACTTGCCTTT -ACGGAATTCCCAGCACTTGGTCTT -ACGGAATTCCCAGCACTTACGCTT -ACGGAATTCCCAGCACTTAGCGTT -ACGGAATTCCCAGCACTTTTCGTC -ACGGAATTCCCAGCACTTTCTCTC -ACGGAATTCCCAGCACTTTGGATC -ACGGAATTCCCAGCACTTCACTTC -ACGGAATTCCCAGCACTTGTACTC -ACGGAATTCCCAGCACTTGATGTC -ACGGAATTCCCAGCACTTACAGTC -ACGGAATTCCCAGCACTTTTGCTG -ACGGAATTCCCAGCACTTTCCATG -ACGGAATTCCCAGCACTTTGTGTG -ACGGAATTCCCAGCACTTCTAGTG -ACGGAATTCCCAGCACTTCATCTG -ACGGAATTCCCAGCACTTGAGTTG -ACGGAATTCCCAGCACTTAGACTG -ACGGAATTCCCAGCACTTTCGGTA -ACGGAATTCCCAGCACTTTGCCTA -ACGGAATTCCCAGCACTTCCACTA -ACGGAATTCCCAGCACTTGGAGTA -ACGGAATTCCCAGCACTTTCGTCT -ACGGAATTCCCAGCACTTTGCACT -ACGGAATTCCCAGCACTTCTGACT -ACGGAATTCCCAGCACTTCAACCT -ACGGAATTCCCAGCACTTGCTACT -ACGGAATTCCCAGCACTTGGATCT -ACGGAATTCCCAGCACTTAAGGCT -ACGGAATTCCCAGCACTTTCAACC -ACGGAATTCCCAGCACTTTGTTCC -ACGGAATTCCCAGCACTTATTCCC -ACGGAATTCCCAGCACTTTTCTCG -ACGGAATTCCCAGCACTTTAGACG -ACGGAATTCCCAGCACTTGTAACG -ACGGAATTCCCAGCACTTACTTCG -ACGGAATTCCCAGCACTTTACGCA -ACGGAATTCCCAGCACTTCTTGCA -ACGGAATTCCCAGCACTTCGAACA -ACGGAATTCCCAGCACTTCAGTCA -ACGGAATTCCCAGCACTTGATCCA -ACGGAATTCCCAGCACTTACGACA -ACGGAATTCCCAGCACTTAGCTCA -ACGGAATTCCCAGCACTTTCACGT -ACGGAATTCCCAGCACTTCGTAGT -ACGGAATTCCCAGCACTTGTCAGT -ACGGAATTCCCAGCACTTGAAGGT -ACGGAATTCCCAGCACTTAACCGT -ACGGAATTCCCAGCACTTTTGTGC -ACGGAATTCCCAGCACTTCTAAGC -ACGGAATTCCCAGCACTTACTAGC -ACGGAATTCCCAGCACTTAGATGC -ACGGAATTCCCAGCACTTTGAAGG -ACGGAATTCCCAGCACTTCAATGG -ACGGAATTCCCAGCACTTATGAGG -ACGGAATTCCCAGCACTTAATGGG -ACGGAATTCCCAGCACTTTCCTGA -ACGGAATTCCCAGCACTTTAGCGA -ACGGAATTCCCAGCACTTCACAGA -ACGGAATTCCCAGCACTTGCAAGA -ACGGAATTCCCAGCACTTGGTTGA -ACGGAATTCCCAGCACTTTCCGAT -ACGGAATTCCCAGCACTTTGGCAT -ACGGAATTCCCAGCACTTCGAGAT -ACGGAATTCCCAGCACTTTACCAC -ACGGAATTCCCAGCACTTCAGAAC -ACGGAATTCCCAGCACTTGTCTAC -ACGGAATTCCCAGCACTTACGTAC -ACGGAATTCCCAGCACTTAGTGAC -ACGGAATTCCCAGCACTTCTGTAG -ACGGAATTCCCAGCACTTCCTAAG -ACGGAATTCCCAGCACTTGTTCAG -ACGGAATTCCCAGCACTTGCATAG -ACGGAATTCCCAGCACTTGACAAG -ACGGAATTCCCAGCACTTAAGCAG -ACGGAATTCCCAGCACTTCGTCAA -ACGGAATTCCCAGCACTTGCTGAA -ACGGAATTCCCAGCACTTAGTACG -ACGGAATTCCCAGCACTTATCCGA -ACGGAATTCCCAGCACTTATGGGA -ACGGAATTCCCAGCACTTGTGCAA -ACGGAATTCCCAGCACTTGAGGAA -ACGGAATTCCCAGCACTTCAGGTA -ACGGAATTCCCAGCACTTGACTCT -ACGGAATTCCCAGCACTTAGTCCT -ACGGAATTCCCAGCACTTTAAGCC -ACGGAATTCCCAGCACTTATAGCC -ACGGAATTCCCAGCACTTTAACCG -ACGGAATTCCCAGCACTTATGCCA -ACGGAATTCCCAACACGAGGAAAC -ACGGAATTCCCAACACGAAACACC -ACGGAATTCCCAACACGAATCGAG -ACGGAATTCCCAACACGACTCCTT -ACGGAATTCCCAACACGACCTGTT -ACGGAATTCCCAACACGACGGTTT -ACGGAATTCCCAACACGAGTGGTT -ACGGAATTCCCAACACGAGCCTTT -ACGGAATTCCCAACACGAGGTCTT -ACGGAATTCCCAACACGAACGCTT -ACGGAATTCCCAACACGAAGCGTT -ACGGAATTCCCAACACGATTCGTC -ACGGAATTCCCAACACGATCTCTC -ACGGAATTCCCAACACGATGGATC -ACGGAATTCCCAACACGACACTTC -ACGGAATTCCCAACACGAGTACTC -ACGGAATTCCCAACACGAGATGTC -ACGGAATTCCCAACACGAACAGTC -ACGGAATTCCCAACACGATTGCTG -ACGGAATTCCCAACACGATCCATG -ACGGAATTCCCAACACGATGTGTG -ACGGAATTCCCAACACGACTAGTG -ACGGAATTCCCAACACGACATCTG -ACGGAATTCCCAACACGAGAGTTG -ACGGAATTCCCAACACGAAGACTG -ACGGAATTCCCAACACGATCGGTA -ACGGAATTCCCAACACGATGCCTA -ACGGAATTCCCAACACGACCACTA -ACGGAATTCCCAACACGAGGAGTA -ACGGAATTCCCAACACGATCGTCT -ACGGAATTCCCAACACGATGCACT -ACGGAATTCCCAACACGACTGACT -ACGGAATTCCCAACACGACAACCT -ACGGAATTCCCAACACGAGCTACT -ACGGAATTCCCAACACGAGGATCT -ACGGAATTCCCAACACGAAAGGCT -ACGGAATTCCCAACACGATCAACC -ACGGAATTCCCAACACGATGTTCC -ACGGAATTCCCAACACGAATTCCC -ACGGAATTCCCAACACGATTCTCG -ACGGAATTCCCAACACGATAGACG -ACGGAATTCCCAACACGAGTAACG -ACGGAATTCCCAACACGAACTTCG -ACGGAATTCCCAACACGATACGCA -ACGGAATTCCCAACACGACTTGCA -ACGGAATTCCCAACACGACGAACA -ACGGAATTCCCAACACGACAGTCA -ACGGAATTCCCAACACGAGATCCA -ACGGAATTCCCAACACGAACGACA -ACGGAATTCCCAACACGAAGCTCA -ACGGAATTCCCAACACGATCACGT -ACGGAATTCCCAACACGACGTAGT -ACGGAATTCCCAACACGAGTCAGT -ACGGAATTCCCAACACGAGAAGGT -ACGGAATTCCCAACACGAAACCGT -ACGGAATTCCCAACACGATTGTGC -ACGGAATTCCCAACACGACTAAGC -ACGGAATTCCCAACACGAACTAGC -ACGGAATTCCCAACACGAAGATGC -ACGGAATTCCCAACACGATGAAGG -ACGGAATTCCCAACACGACAATGG -ACGGAATTCCCAACACGAATGAGG -ACGGAATTCCCAACACGAAATGGG -ACGGAATTCCCAACACGATCCTGA -ACGGAATTCCCAACACGATAGCGA -ACGGAATTCCCAACACGACACAGA -ACGGAATTCCCAACACGAGCAAGA -ACGGAATTCCCAACACGAGGTTGA -ACGGAATTCCCAACACGATCCGAT -ACGGAATTCCCAACACGATGGCAT -ACGGAATTCCCAACACGACGAGAT -ACGGAATTCCCAACACGATACCAC -ACGGAATTCCCAACACGACAGAAC -ACGGAATTCCCAACACGAGTCTAC -ACGGAATTCCCAACACGAACGTAC -ACGGAATTCCCAACACGAAGTGAC -ACGGAATTCCCAACACGACTGTAG -ACGGAATTCCCAACACGACCTAAG -ACGGAATTCCCAACACGAGTTCAG -ACGGAATTCCCAACACGAGCATAG -ACGGAATTCCCAACACGAGACAAG -ACGGAATTCCCAACACGAAAGCAG -ACGGAATTCCCAACACGACGTCAA -ACGGAATTCCCAACACGAGCTGAA -ACGGAATTCCCAACACGAAGTACG -ACGGAATTCCCAACACGAATCCGA -ACGGAATTCCCAACACGAATGGGA -ACGGAATTCCCAACACGAGTGCAA -ACGGAATTCCCAACACGAGAGGAA -ACGGAATTCCCAACACGACAGGTA -ACGGAATTCCCAACACGAGACTCT -ACGGAATTCCCAACACGAAGTCCT -ACGGAATTCCCAACACGATAAGCC -ACGGAATTCCCAACACGAATAGCC -ACGGAATTCCCAACACGATAACCG -ACGGAATTCCCAACACGAATGCCA -ACGGAATTCCCATCACAGGGAAAC -ACGGAATTCCCATCACAGAACACC -ACGGAATTCCCATCACAGATCGAG -ACGGAATTCCCATCACAGCTCCTT -ACGGAATTCCCATCACAGCCTGTT -ACGGAATTCCCATCACAGCGGTTT -ACGGAATTCCCATCACAGGTGGTT -ACGGAATTCCCATCACAGGCCTTT -ACGGAATTCCCATCACAGGGTCTT -ACGGAATTCCCATCACAGACGCTT -ACGGAATTCCCATCACAGAGCGTT -ACGGAATTCCCATCACAGTTCGTC -ACGGAATTCCCATCACAGTCTCTC -ACGGAATTCCCATCACAGTGGATC -ACGGAATTCCCATCACAGCACTTC -ACGGAATTCCCATCACAGGTACTC -ACGGAATTCCCATCACAGGATGTC -ACGGAATTCCCATCACAGACAGTC -ACGGAATTCCCATCACAGTTGCTG -ACGGAATTCCCATCACAGTCCATG -ACGGAATTCCCATCACAGTGTGTG -ACGGAATTCCCATCACAGCTAGTG -ACGGAATTCCCATCACAGCATCTG -ACGGAATTCCCATCACAGGAGTTG -ACGGAATTCCCATCACAGAGACTG -ACGGAATTCCCATCACAGTCGGTA -ACGGAATTCCCATCACAGTGCCTA -ACGGAATTCCCATCACAGCCACTA -ACGGAATTCCCATCACAGGGAGTA -ACGGAATTCCCATCACAGTCGTCT -ACGGAATTCCCATCACAGTGCACT -ACGGAATTCCCATCACAGCTGACT -ACGGAATTCCCATCACAGCAACCT -ACGGAATTCCCATCACAGGCTACT -ACGGAATTCCCATCACAGGGATCT -ACGGAATTCCCATCACAGAAGGCT -ACGGAATTCCCATCACAGTCAACC -ACGGAATTCCCATCACAGTGTTCC -ACGGAATTCCCATCACAGATTCCC -ACGGAATTCCCATCACAGTTCTCG -ACGGAATTCCCATCACAGTAGACG -ACGGAATTCCCATCACAGGTAACG -ACGGAATTCCCATCACAGACTTCG -ACGGAATTCCCATCACAGTACGCA -ACGGAATTCCCATCACAGCTTGCA -ACGGAATTCCCATCACAGCGAACA -ACGGAATTCCCATCACAGCAGTCA -ACGGAATTCCCATCACAGGATCCA -ACGGAATTCCCATCACAGACGACA -ACGGAATTCCCATCACAGAGCTCA -ACGGAATTCCCATCACAGTCACGT -ACGGAATTCCCATCACAGCGTAGT -ACGGAATTCCCATCACAGGTCAGT -ACGGAATTCCCATCACAGGAAGGT -ACGGAATTCCCATCACAGAACCGT -ACGGAATTCCCATCACAGTTGTGC -ACGGAATTCCCATCACAGCTAAGC -ACGGAATTCCCATCACAGACTAGC -ACGGAATTCCCATCACAGAGATGC -ACGGAATTCCCATCACAGTGAAGG -ACGGAATTCCCATCACAGCAATGG -ACGGAATTCCCATCACAGATGAGG -ACGGAATTCCCATCACAGAATGGG -ACGGAATTCCCATCACAGTCCTGA -ACGGAATTCCCATCACAGTAGCGA -ACGGAATTCCCATCACAGCACAGA -ACGGAATTCCCATCACAGGCAAGA -ACGGAATTCCCATCACAGGGTTGA -ACGGAATTCCCATCACAGTCCGAT -ACGGAATTCCCATCACAGTGGCAT -ACGGAATTCCCATCACAGCGAGAT -ACGGAATTCCCATCACAGTACCAC -ACGGAATTCCCATCACAGCAGAAC -ACGGAATTCCCATCACAGGTCTAC -ACGGAATTCCCATCACAGACGTAC -ACGGAATTCCCATCACAGAGTGAC -ACGGAATTCCCATCACAGCTGTAG -ACGGAATTCCCATCACAGCCTAAG -ACGGAATTCCCATCACAGGTTCAG -ACGGAATTCCCATCACAGGCATAG -ACGGAATTCCCATCACAGGACAAG -ACGGAATTCCCATCACAGAAGCAG -ACGGAATTCCCATCACAGCGTCAA -ACGGAATTCCCATCACAGGCTGAA -ACGGAATTCCCATCACAGAGTACG -ACGGAATTCCCATCACAGATCCGA -ACGGAATTCCCATCACAGATGGGA -ACGGAATTCCCATCACAGGTGCAA -ACGGAATTCCCATCACAGGAGGAA -ACGGAATTCCCATCACAGCAGGTA -ACGGAATTCCCATCACAGGACTCT -ACGGAATTCCCATCACAGAGTCCT -ACGGAATTCCCATCACAGTAAGCC -ACGGAATTCCCATCACAGATAGCC -ACGGAATTCCCATCACAGTAACCG -ACGGAATTCCCATCACAGATGCCA -ACGGAATTCCCACCAGATGGAAAC -ACGGAATTCCCACCAGATAACACC -ACGGAATTCCCACCAGATATCGAG -ACGGAATTCCCACCAGATCTCCTT -ACGGAATTCCCACCAGATCCTGTT -ACGGAATTCCCACCAGATCGGTTT -ACGGAATTCCCACCAGATGTGGTT -ACGGAATTCCCACCAGATGCCTTT -ACGGAATTCCCACCAGATGGTCTT -ACGGAATTCCCACCAGATACGCTT -ACGGAATTCCCACCAGATAGCGTT -ACGGAATTCCCACCAGATTTCGTC -ACGGAATTCCCACCAGATTCTCTC -ACGGAATTCCCACCAGATTGGATC -ACGGAATTCCCACCAGATCACTTC -ACGGAATTCCCACCAGATGTACTC -ACGGAATTCCCACCAGATGATGTC -ACGGAATTCCCACCAGATACAGTC -ACGGAATTCCCACCAGATTTGCTG -ACGGAATTCCCACCAGATTCCATG -ACGGAATTCCCACCAGATTGTGTG -ACGGAATTCCCACCAGATCTAGTG -ACGGAATTCCCACCAGATCATCTG -ACGGAATTCCCACCAGATGAGTTG -ACGGAATTCCCACCAGATAGACTG -ACGGAATTCCCACCAGATTCGGTA -ACGGAATTCCCACCAGATTGCCTA -ACGGAATTCCCACCAGATCCACTA -ACGGAATTCCCACCAGATGGAGTA -ACGGAATTCCCACCAGATTCGTCT -ACGGAATTCCCACCAGATTGCACT -ACGGAATTCCCACCAGATCTGACT -ACGGAATTCCCACCAGATCAACCT -ACGGAATTCCCACCAGATGCTACT -ACGGAATTCCCACCAGATGGATCT -ACGGAATTCCCACCAGATAAGGCT -ACGGAATTCCCACCAGATTCAACC -ACGGAATTCCCACCAGATTGTTCC -ACGGAATTCCCACCAGATATTCCC -ACGGAATTCCCACCAGATTTCTCG -ACGGAATTCCCACCAGATTAGACG -ACGGAATTCCCACCAGATGTAACG -ACGGAATTCCCACCAGATACTTCG -ACGGAATTCCCACCAGATTACGCA -ACGGAATTCCCACCAGATCTTGCA -ACGGAATTCCCACCAGATCGAACA -ACGGAATTCCCACCAGATCAGTCA -ACGGAATTCCCACCAGATGATCCA -ACGGAATTCCCACCAGATACGACA -ACGGAATTCCCACCAGATAGCTCA -ACGGAATTCCCACCAGATTCACGT -ACGGAATTCCCACCAGATCGTAGT -ACGGAATTCCCACCAGATGTCAGT -ACGGAATTCCCACCAGATGAAGGT -ACGGAATTCCCACCAGATAACCGT -ACGGAATTCCCACCAGATTTGTGC -ACGGAATTCCCACCAGATCTAAGC -ACGGAATTCCCACCAGATACTAGC -ACGGAATTCCCACCAGATAGATGC -ACGGAATTCCCACCAGATTGAAGG -ACGGAATTCCCACCAGATCAATGG -ACGGAATTCCCACCAGATATGAGG -ACGGAATTCCCACCAGATAATGGG -ACGGAATTCCCACCAGATTCCTGA -ACGGAATTCCCACCAGATTAGCGA -ACGGAATTCCCACCAGATCACAGA -ACGGAATTCCCACCAGATGCAAGA -ACGGAATTCCCACCAGATGGTTGA -ACGGAATTCCCACCAGATTCCGAT -ACGGAATTCCCACCAGATTGGCAT -ACGGAATTCCCACCAGATCGAGAT -ACGGAATTCCCACCAGATTACCAC -ACGGAATTCCCACCAGATCAGAAC -ACGGAATTCCCACCAGATGTCTAC -ACGGAATTCCCACCAGATACGTAC -ACGGAATTCCCACCAGATAGTGAC -ACGGAATTCCCACCAGATCTGTAG -ACGGAATTCCCACCAGATCCTAAG -ACGGAATTCCCACCAGATGTTCAG -ACGGAATTCCCACCAGATGCATAG -ACGGAATTCCCACCAGATGACAAG -ACGGAATTCCCACCAGATAAGCAG -ACGGAATTCCCACCAGATCGTCAA -ACGGAATTCCCACCAGATGCTGAA -ACGGAATTCCCACCAGATAGTACG -ACGGAATTCCCACCAGATATCCGA -ACGGAATTCCCACCAGATATGGGA -ACGGAATTCCCACCAGATGTGCAA -ACGGAATTCCCACCAGATGAGGAA -ACGGAATTCCCACCAGATCAGGTA -ACGGAATTCCCACCAGATGACTCT -ACGGAATTCCCACCAGATAGTCCT -ACGGAATTCCCACCAGATTAAGCC -ACGGAATTCCCACCAGATATAGCC -ACGGAATTCCCACCAGATTAACCG -ACGGAATTCCCACCAGATATGCCA -ACGGAATTCCCAACAACGGGAAAC -ACGGAATTCCCAACAACGAACACC -ACGGAATTCCCAACAACGATCGAG -ACGGAATTCCCAACAACGCTCCTT -ACGGAATTCCCAACAACGCCTGTT -ACGGAATTCCCAACAACGCGGTTT -ACGGAATTCCCAACAACGGTGGTT -ACGGAATTCCCAACAACGGCCTTT -ACGGAATTCCCAACAACGGGTCTT -ACGGAATTCCCAACAACGACGCTT -ACGGAATTCCCAACAACGAGCGTT -ACGGAATTCCCAACAACGTTCGTC -ACGGAATTCCCAACAACGTCTCTC -ACGGAATTCCCAACAACGTGGATC -ACGGAATTCCCAACAACGCACTTC -ACGGAATTCCCAACAACGGTACTC -ACGGAATTCCCAACAACGGATGTC -ACGGAATTCCCAACAACGACAGTC -ACGGAATTCCCAACAACGTTGCTG -ACGGAATTCCCAACAACGTCCATG -ACGGAATTCCCAACAACGTGTGTG -ACGGAATTCCCAACAACGCTAGTG -ACGGAATTCCCAACAACGCATCTG -ACGGAATTCCCAACAACGGAGTTG -ACGGAATTCCCAACAACGAGACTG -ACGGAATTCCCAACAACGTCGGTA -ACGGAATTCCCAACAACGTGCCTA -ACGGAATTCCCAACAACGCCACTA -ACGGAATTCCCAACAACGGGAGTA -ACGGAATTCCCAACAACGTCGTCT -ACGGAATTCCCAACAACGTGCACT -ACGGAATTCCCAACAACGCTGACT -ACGGAATTCCCAACAACGCAACCT -ACGGAATTCCCAACAACGGCTACT -ACGGAATTCCCAACAACGGGATCT -ACGGAATTCCCAACAACGAAGGCT -ACGGAATTCCCAACAACGTCAACC -ACGGAATTCCCAACAACGTGTTCC -ACGGAATTCCCAACAACGATTCCC -ACGGAATTCCCAACAACGTTCTCG -ACGGAATTCCCAACAACGTAGACG -ACGGAATTCCCAACAACGGTAACG -ACGGAATTCCCAACAACGACTTCG -ACGGAATTCCCAACAACGTACGCA -ACGGAATTCCCAACAACGCTTGCA -ACGGAATTCCCAACAACGCGAACA -ACGGAATTCCCAACAACGCAGTCA -ACGGAATTCCCAACAACGGATCCA -ACGGAATTCCCAACAACGACGACA -ACGGAATTCCCAACAACGAGCTCA -ACGGAATTCCCAACAACGTCACGT -ACGGAATTCCCAACAACGCGTAGT -ACGGAATTCCCAACAACGGTCAGT -ACGGAATTCCCAACAACGGAAGGT -ACGGAATTCCCAACAACGAACCGT -ACGGAATTCCCAACAACGTTGTGC -ACGGAATTCCCAACAACGCTAAGC -ACGGAATTCCCAACAACGACTAGC -ACGGAATTCCCAACAACGAGATGC -ACGGAATTCCCAACAACGTGAAGG -ACGGAATTCCCAACAACGCAATGG -ACGGAATTCCCAACAACGATGAGG -ACGGAATTCCCAACAACGAATGGG -ACGGAATTCCCAACAACGTCCTGA -ACGGAATTCCCAACAACGTAGCGA -ACGGAATTCCCAACAACGCACAGA -ACGGAATTCCCAACAACGGCAAGA -ACGGAATTCCCAACAACGGGTTGA -ACGGAATTCCCAACAACGTCCGAT -ACGGAATTCCCAACAACGTGGCAT -ACGGAATTCCCAACAACGCGAGAT -ACGGAATTCCCAACAACGTACCAC -ACGGAATTCCCAACAACGCAGAAC -ACGGAATTCCCAACAACGGTCTAC -ACGGAATTCCCAACAACGACGTAC -ACGGAATTCCCAACAACGAGTGAC -ACGGAATTCCCAACAACGCTGTAG -ACGGAATTCCCAACAACGCCTAAG -ACGGAATTCCCAACAACGGTTCAG -ACGGAATTCCCAACAACGGCATAG -ACGGAATTCCCAACAACGGACAAG -ACGGAATTCCCAACAACGAAGCAG -ACGGAATTCCCAACAACGCGTCAA -ACGGAATTCCCAACAACGGCTGAA -ACGGAATTCCCAACAACGAGTACG -ACGGAATTCCCAACAACGATCCGA -ACGGAATTCCCAACAACGATGGGA -ACGGAATTCCCAACAACGGTGCAA -ACGGAATTCCCAACAACGGAGGAA -ACGGAATTCCCAACAACGCAGGTA -ACGGAATTCCCAACAACGGACTCT -ACGGAATTCCCAACAACGAGTCCT -ACGGAATTCCCAACAACGTAAGCC -ACGGAATTCCCAACAACGATAGCC -ACGGAATTCCCAACAACGTAACCG -ACGGAATTCCCAACAACGATGCCA -ACGGAATTCCCATCAAGCGGAAAC -ACGGAATTCCCATCAAGCAACACC -ACGGAATTCCCATCAAGCATCGAG -ACGGAATTCCCATCAAGCCTCCTT -ACGGAATTCCCATCAAGCCCTGTT -ACGGAATTCCCATCAAGCCGGTTT -ACGGAATTCCCATCAAGCGTGGTT -ACGGAATTCCCATCAAGCGCCTTT -ACGGAATTCCCATCAAGCGGTCTT -ACGGAATTCCCATCAAGCACGCTT -ACGGAATTCCCATCAAGCAGCGTT -ACGGAATTCCCATCAAGCTTCGTC -ACGGAATTCCCATCAAGCTCTCTC -ACGGAATTCCCATCAAGCTGGATC -ACGGAATTCCCATCAAGCCACTTC -ACGGAATTCCCATCAAGCGTACTC -ACGGAATTCCCATCAAGCGATGTC -ACGGAATTCCCATCAAGCACAGTC -ACGGAATTCCCATCAAGCTTGCTG -ACGGAATTCCCATCAAGCTCCATG -ACGGAATTCCCATCAAGCTGTGTG -ACGGAATTCCCATCAAGCCTAGTG -ACGGAATTCCCATCAAGCCATCTG -ACGGAATTCCCATCAAGCGAGTTG -ACGGAATTCCCATCAAGCAGACTG -ACGGAATTCCCATCAAGCTCGGTA -ACGGAATTCCCATCAAGCTGCCTA -ACGGAATTCCCATCAAGCCCACTA -ACGGAATTCCCATCAAGCGGAGTA -ACGGAATTCCCATCAAGCTCGTCT -ACGGAATTCCCATCAAGCTGCACT -ACGGAATTCCCATCAAGCCTGACT -ACGGAATTCCCATCAAGCCAACCT -ACGGAATTCCCATCAAGCGCTACT -ACGGAATTCCCATCAAGCGGATCT -ACGGAATTCCCATCAAGCAAGGCT -ACGGAATTCCCATCAAGCTCAACC -ACGGAATTCCCATCAAGCTGTTCC -ACGGAATTCCCATCAAGCATTCCC -ACGGAATTCCCATCAAGCTTCTCG -ACGGAATTCCCATCAAGCTAGACG -ACGGAATTCCCATCAAGCGTAACG -ACGGAATTCCCATCAAGCACTTCG -ACGGAATTCCCATCAAGCTACGCA -ACGGAATTCCCATCAAGCCTTGCA -ACGGAATTCCCATCAAGCCGAACA -ACGGAATTCCCATCAAGCCAGTCA -ACGGAATTCCCATCAAGCGATCCA -ACGGAATTCCCATCAAGCACGACA -ACGGAATTCCCATCAAGCAGCTCA -ACGGAATTCCCATCAAGCTCACGT -ACGGAATTCCCATCAAGCCGTAGT -ACGGAATTCCCATCAAGCGTCAGT -ACGGAATTCCCATCAAGCGAAGGT -ACGGAATTCCCATCAAGCAACCGT -ACGGAATTCCCATCAAGCTTGTGC -ACGGAATTCCCATCAAGCCTAAGC -ACGGAATTCCCATCAAGCACTAGC -ACGGAATTCCCATCAAGCAGATGC -ACGGAATTCCCATCAAGCTGAAGG -ACGGAATTCCCATCAAGCCAATGG -ACGGAATTCCCATCAAGCATGAGG -ACGGAATTCCCATCAAGCAATGGG -ACGGAATTCCCATCAAGCTCCTGA -ACGGAATTCCCATCAAGCTAGCGA -ACGGAATTCCCATCAAGCCACAGA -ACGGAATTCCCATCAAGCGCAAGA -ACGGAATTCCCATCAAGCGGTTGA -ACGGAATTCCCATCAAGCTCCGAT -ACGGAATTCCCATCAAGCTGGCAT -ACGGAATTCCCATCAAGCCGAGAT -ACGGAATTCCCATCAAGCTACCAC -ACGGAATTCCCATCAAGCCAGAAC -ACGGAATTCCCATCAAGCGTCTAC -ACGGAATTCCCATCAAGCACGTAC -ACGGAATTCCCATCAAGCAGTGAC -ACGGAATTCCCATCAAGCCTGTAG -ACGGAATTCCCATCAAGCCCTAAG -ACGGAATTCCCATCAAGCGTTCAG -ACGGAATTCCCATCAAGCGCATAG -ACGGAATTCCCATCAAGCGACAAG -ACGGAATTCCCATCAAGCAAGCAG -ACGGAATTCCCATCAAGCCGTCAA -ACGGAATTCCCATCAAGCGCTGAA -ACGGAATTCCCATCAAGCAGTACG -ACGGAATTCCCATCAAGCATCCGA -ACGGAATTCCCATCAAGCATGGGA -ACGGAATTCCCATCAAGCGTGCAA -ACGGAATTCCCATCAAGCGAGGAA -ACGGAATTCCCATCAAGCCAGGTA -ACGGAATTCCCATCAAGCGACTCT -ACGGAATTCCCATCAAGCAGTCCT -ACGGAATTCCCATCAAGCTAAGCC -ACGGAATTCCCATCAAGCATAGCC -ACGGAATTCCCATCAAGCTAACCG -ACGGAATTCCCATCAAGCATGCCA -ACGGAATTCCCACGTTCAGGAAAC -ACGGAATTCCCACGTTCAAACACC -ACGGAATTCCCACGTTCAATCGAG -ACGGAATTCCCACGTTCACTCCTT -ACGGAATTCCCACGTTCACCTGTT -ACGGAATTCCCACGTTCACGGTTT -ACGGAATTCCCACGTTCAGTGGTT -ACGGAATTCCCACGTTCAGCCTTT -ACGGAATTCCCACGTTCAGGTCTT -ACGGAATTCCCACGTTCAACGCTT -ACGGAATTCCCACGTTCAAGCGTT -ACGGAATTCCCACGTTCATTCGTC -ACGGAATTCCCACGTTCATCTCTC -ACGGAATTCCCACGTTCATGGATC -ACGGAATTCCCACGTTCACACTTC -ACGGAATTCCCACGTTCAGTACTC -ACGGAATTCCCACGTTCAGATGTC -ACGGAATTCCCACGTTCAACAGTC -ACGGAATTCCCACGTTCATTGCTG -ACGGAATTCCCACGTTCATCCATG -ACGGAATTCCCACGTTCATGTGTG -ACGGAATTCCCACGTTCACTAGTG -ACGGAATTCCCACGTTCACATCTG -ACGGAATTCCCACGTTCAGAGTTG -ACGGAATTCCCACGTTCAAGACTG -ACGGAATTCCCACGTTCATCGGTA -ACGGAATTCCCACGTTCATGCCTA -ACGGAATTCCCACGTTCACCACTA -ACGGAATTCCCACGTTCAGGAGTA -ACGGAATTCCCACGTTCATCGTCT -ACGGAATTCCCACGTTCATGCACT -ACGGAATTCCCACGTTCACTGACT -ACGGAATTCCCACGTTCACAACCT -ACGGAATTCCCACGTTCAGCTACT -ACGGAATTCCCACGTTCAGGATCT -ACGGAATTCCCACGTTCAAAGGCT -ACGGAATTCCCACGTTCATCAACC -ACGGAATTCCCACGTTCATGTTCC -ACGGAATTCCCACGTTCAATTCCC -ACGGAATTCCCACGTTCATTCTCG -ACGGAATTCCCACGTTCATAGACG -ACGGAATTCCCACGTTCAGTAACG -ACGGAATTCCCACGTTCAACTTCG -ACGGAATTCCCACGTTCATACGCA -ACGGAATTCCCACGTTCACTTGCA -ACGGAATTCCCACGTTCACGAACA -ACGGAATTCCCACGTTCACAGTCA -ACGGAATTCCCACGTTCAGATCCA -ACGGAATTCCCACGTTCAACGACA -ACGGAATTCCCACGTTCAAGCTCA -ACGGAATTCCCACGTTCATCACGT -ACGGAATTCCCACGTTCACGTAGT -ACGGAATTCCCACGTTCAGTCAGT -ACGGAATTCCCACGTTCAGAAGGT -ACGGAATTCCCACGTTCAAACCGT -ACGGAATTCCCACGTTCATTGTGC -ACGGAATTCCCACGTTCACTAAGC -ACGGAATTCCCACGTTCAACTAGC -ACGGAATTCCCACGTTCAAGATGC -ACGGAATTCCCACGTTCATGAAGG -ACGGAATTCCCACGTTCACAATGG -ACGGAATTCCCACGTTCAATGAGG -ACGGAATTCCCACGTTCAAATGGG -ACGGAATTCCCACGTTCATCCTGA -ACGGAATTCCCACGTTCATAGCGA -ACGGAATTCCCACGTTCACACAGA -ACGGAATTCCCACGTTCAGCAAGA -ACGGAATTCCCACGTTCAGGTTGA -ACGGAATTCCCACGTTCATCCGAT -ACGGAATTCCCACGTTCATGGCAT -ACGGAATTCCCACGTTCACGAGAT -ACGGAATTCCCACGTTCATACCAC -ACGGAATTCCCACGTTCACAGAAC -ACGGAATTCCCACGTTCAGTCTAC -ACGGAATTCCCACGTTCAACGTAC -ACGGAATTCCCACGTTCAAGTGAC -ACGGAATTCCCACGTTCACTGTAG -ACGGAATTCCCACGTTCACCTAAG -ACGGAATTCCCACGTTCAGTTCAG -ACGGAATTCCCACGTTCAGCATAG -ACGGAATTCCCACGTTCAGACAAG -ACGGAATTCCCACGTTCAAAGCAG -ACGGAATTCCCACGTTCACGTCAA -ACGGAATTCCCACGTTCAGCTGAA -ACGGAATTCCCACGTTCAAGTACG -ACGGAATTCCCACGTTCAATCCGA -ACGGAATTCCCACGTTCAATGGGA -ACGGAATTCCCACGTTCAGTGCAA -ACGGAATTCCCACGTTCAGAGGAA -ACGGAATTCCCACGTTCACAGGTA -ACGGAATTCCCACGTTCAGACTCT -ACGGAATTCCCACGTTCAAGTCCT -ACGGAATTCCCACGTTCATAAGCC -ACGGAATTCCCACGTTCAATAGCC -ACGGAATTCCCACGTTCATAACCG -ACGGAATTCCCACGTTCAATGCCA -ACGGAATTCCCAAGTCGTGGAAAC -ACGGAATTCCCAAGTCGTAACACC -ACGGAATTCCCAAGTCGTATCGAG -ACGGAATTCCCAAGTCGTCTCCTT -ACGGAATTCCCAAGTCGTCCTGTT -ACGGAATTCCCAAGTCGTCGGTTT -ACGGAATTCCCAAGTCGTGTGGTT -ACGGAATTCCCAAGTCGTGCCTTT -ACGGAATTCCCAAGTCGTGGTCTT -ACGGAATTCCCAAGTCGTACGCTT -ACGGAATTCCCAAGTCGTAGCGTT -ACGGAATTCCCAAGTCGTTTCGTC -ACGGAATTCCCAAGTCGTTCTCTC -ACGGAATTCCCAAGTCGTTGGATC -ACGGAATTCCCAAGTCGTCACTTC -ACGGAATTCCCAAGTCGTGTACTC -ACGGAATTCCCAAGTCGTGATGTC -ACGGAATTCCCAAGTCGTACAGTC -ACGGAATTCCCAAGTCGTTTGCTG -ACGGAATTCCCAAGTCGTTCCATG -ACGGAATTCCCAAGTCGTTGTGTG -ACGGAATTCCCAAGTCGTCTAGTG -ACGGAATTCCCAAGTCGTCATCTG -ACGGAATTCCCAAGTCGTGAGTTG -ACGGAATTCCCAAGTCGTAGACTG -ACGGAATTCCCAAGTCGTTCGGTA -ACGGAATTCCCAAGTCGTTGCCTA -ACGGAATTCCCAAGTCGTCCACTA -ACGGAATTCCCAAGTCGTGGAGTA -ACGGAATTCCCAAGTCGTTCGTCT -ACGGAATTCCCAAGTCGTTGCACT -ACGGAATTCCCAAGTCGTCTGACT -ACGGAATTCCCAAGTCGTCAACCT -ACGGAATTCCCAAGTCGTGCTACT -ACGGAATTCCCAAGTCGTGGATCT -ACGGAATTCCCAAGTCGTAAGGCT -ACGGAATTCCCAAGTCGTTCAACC -ACGGAATTCCCAAGTCGTTGTTCC -ACGGAATTCCCAAGTCGTATTCCC -ACGGAATTCCCAAGTCGTTTCTCG -ACGGAATTCCCAAGTCGTTAGACG -ACGGAATTCCCAAGTCGTGTAACG -ACGGAATTCCCAAGTCGTACTTCG -ACGGAATTCCCAAGTCGTTACGCA -ACGGAATTCCCAAGTCGTCTTGCA -ACGGAATTCCCAAGTCGTCGAACA -ACGGAATTCCCAAGTCGTCAGTCA -ACGGAATTCCCAAGTCGTGATCCA -ACGGAATTCCCAAGTCGTACGACA -ACGGAATTCCCAAGTCGTAGCTCA -ACGGAATTCCCAAGTCGTTCACGT -ACGGAATTCCCAAGTCGTCGTAGT -ACGGAATTCCCAAGTCGTGTCAGT -ACGGAATTCCCAAGTCGTGAAGGT -ACGGAATTCCCAAGTCGTAACCGT -ACGGAATTCCCAAGTCGTTTGTGC -ACGGAATTCCCAAGTCGTCTAAGC -ACGGAATTCCCAAGTCGTACTAGC -ACGGAATTCCCAAGTCGTAGATGC -ACGGAATTCCCAAGTCGTTGAAGG -ACGGAATTCCCAAGTCGTCAATGG -ACGGAATTCCCAAGTCGTATGAGG -ACGGAATTCCCAAGTCGTAATGGG -ACGGAATTCCCAAGTCGTTCCTGA -ACGGAATTCCCAAGTCGTTAGCGA -ACGGAATTCCCAAGTCGTCACAGA -ACGGAATTCCCAAGTCGTGCAAGA -ACGGAATTCCCAAGTCGTGGTTGA -ACGGAATTCCCAAGTCGTTCCGAT -ACGGAATTCCCAAGTCGTTGGCAT -ACGGAATTCCCAAGTCGTCGAGAT -ACGGAATTCCCAAGTCGTTACCAC -ACGGAATTCCCAAGTCGTCAGAAC -ACGGAATTCCCAAGTCGTGTCTAC -ACGGAATTCCCAAGTCGTACGTAC -ACGGAATTCCCAAGTCGTAGTGAC -ACGGAATTCCCAAGTCGTCTGTAG -ACGGAATTCCCAAGTCGTCCTAAG -ACGGAATTCCCAAGTCGTGTTCAG -ACGGAATTCCCAAGTCGTGCATAG -ACGGAATTCCCAAGTCGTGACAAG -ACGGAATTCCCAAGTCGTAAGCAG -ACGGAATTCCCAAGTCGTCGTCAA -ACGGAATTCCCAAGTCGTGCTGAA -ACGGAATTCCCAAGTCGTAGTACG -ACGGAATTCCCAAGTCGTATCCGA -ACGGAATTCCCAAGTCGTATGGGA -ACGGAATTCCCAAGTCGTGTGCAA -ACGGAATTCCCAAGTCGTGAGGAA -ACGGAATTCCCAAGTCGTCAGGTA -ACGGAATTCCCAAGTCGTGACTCT -ACGGAATTCCCAAGTCGTAGTCCT -ACGGAATTCCCAAGTCGTTAAGCC -ACGGAATTCCCAAGTCGTATAGCC -ACGGAATTCCCAAGTCGTTAACCG -ACGGAATTCCCAAGTCGTATGCCA -ACGGAATTCCCAAGTGTCGGAAAC -ACGGAATTCCCAAGTGTCAACACC -ACGGAATTCCCAAGTGTCATCGAG -ACGGAATTCCCAAGTGTCCTCCTT -ACGGAATTCCCAAGTGTCCCTGTT -ACGGAATTCCCAAGTGTCCGGTTT -ACGGAATTCCCAAGTGTCGTGGTT -ACGGAATTCCCAAGTGTCGCCTTT -ACGGAATTCCCAAGTGTCGGTCTT -ACGGAATTCCCAAGTGTCACGCTT -ACGGAATTCCCAAGTGTCAGCGTT -ACGGAATTCCCAAGTGTCTTCGTC -ACGGAATTCCCAAGTGTCTCTCTC -ACGGAATTCCCAAGTGTCTGGATC -ACGGAATTCCCAAGTGTCCACTTC -ACGGAATTCCCAAGTGTCGTACTC -ACGGAATTCCCAAGTGTCGATGTC -ACGGAATTCCCAAGTGTCACAGTC -ACGGAATTCCCAAGTGTCTTGCTG -ACGGAATTCCCAAGTGTCTCCATG -ACGGAATTCCCAAGTGTCTGTGTG -ACGGAATTCCCAAGTGTCCTAGTG -ACGGAATTCCCAAGTGTCCATCTG -ACGGAATTCCCAAGTGTCGAGTTG -ACGGAATTCCCAAGTGTCAGACTG -ACGGAATTCCCAAGTGTCTCGGTA -ACGGAATTCCCAAGTGTCTGCCTA -ACGGAATTCCCAAGTGTCCCACTA -ACGGAATTCCCAAGTGTCGGAGTA -ACGGAATTCCCAAGTGTCTCGTCT -ACGGAATTCCCAAGTGTCTGCACT -ACGGAATTCCCAAGTGTCCTGACT -ACGGAATTCCCAAGTGTCCAACCT -ACGGAATTCCCAAGTGTCGCTACT -ACGGAATTCCCAAGTGTCGGATCT -ACGGAATTCCCAAGTGTCAAGGCT -ACGGAATTCCCAAGTGTCTCAACC -ACGGAATTCCCAAGTGTCTGTTCC -ACGGAATTCCCAAGTGTCATTCCC -ACGGAATTCCCAAGTGTCTTCTCG -ACGGAATTCCCAAGTGTCTAGACG -ACGGAATTCCCAAGTGTCGTAACG -ACGGAATTCCCAAGTGTCACTTCG -ACGGAATTCCCAAGTGTCTACGCA -ACGGAATTCCCAAGTGTCCTTGCA -ACGGAATTCCCAAGTGTCCGAACA -ACGGAATTCCCAAGTGTCCAGTCA -ACGGAATTCCCAAGTGTCGATCCA -ACGGAATTCCCAAGTGTCACGACA -ACGGAATTCCCAAGTGTCAGCTCA -ACGGAATTCCCAAGTGTCTCACGT -ACGGAATTCCCAAGTGTCCGTAGT -ACGGAATTCCCAAGTGTCGTCAGT -ACGGAATTCCCAAGTGTCGAAGGT -ACGGAATTCCCAAGTGTCAACCGT -ACGGAATTCCCAAGTGTCTTGTGC -ACGGAATTCCCAAGTGTCCTAAGC -ACGGAATTCCCAAGTGTCACTAGC -ACGGAATTCCCAAGTGTCAGATGC -ACGGAATTCCCAAGTGTCTGAAGG -ACGGAATTCCCAAGTGTCCAATGG -ACGGAATTCCCAAGTGTCATGAGG -ACGGAATTCCCAAGTGTCAATGGG -ACGGAATTCCCAAGTGTCTCCTGA -ACGGAATTCCCAAGTGTCTAGCGA -ACGGAATTCCCAAGTGTCCACAGA -ACGGAATTCCCAAGTGTCGCAAGA -ACGGAATTCCCAAGTGTCGGTTGA -ACGGAATTCCCAAGTGTCTCCGAT -ACGGAATTCCCAAGTGTCTGGCAT -ACGGAATTCCCAAGTGTCCGAGAT -ACGGAATTCCCAAGTGTCTACCAC -ACGGAATTCCCAAGTGTCCAGAAC -ACGGAATTCCCAAGTGTCGTCTAC -ACGGAATTCCCAAGTGTCACGTAC -ACGGAATTCCCAAGTGTCAGTGAC -ACGGAATTCCCAAGTGTCCTGTAG -ACGGAATTCCCAAGTGTCCCTAAG -ACGGAATTCCCAAGTGTCGTTCAG -ACGGAATTCCCAAGTGTCGCATAG -ACGGAATTCCCAAGTGTCGACAAG -ACGGAATTCCCAAGTGTCAAGCAG -ACGGAATTCCCAAGTGTCCGTCAA -ACGGAATTCCCAAGTGTCGCTGAA -ACGGAATTCCCAAGTGTCAGTACG -ACGGAATTCCCAAGTGTCATCCGA -ACGGAATTCCCAAGTGTCATGGGA -ACGGAATTCCCAAGTGTCGTGCAA -ACGGAATTCCCAAGTGTCGAGGAA -ACGGAATTCCCAAGTGTCCAGGTA -ACGGAATTCCCAAGTGTCGACTCT -ACGGAATTCCCAAGTGTCAGTCCT -ACGGAATTCCCAAGTGTCTAAGCC -ACGGAATTCCCAAGTGTCATAGCC -ACGGAATTCCCAAGTGTCTAACCG -ACGGAATTCCCAAGTGTCATGCCA -ACGGAATTCCCAGGTGAAGGAAAC -ACGGAATTCCCAGGTGAAAACACC -ACGGAATTCCCAGGTGAAATCGAG -ACGGAATTCCCAGGTGAACTCCTT -ACGGAATTCCCAGGTGAACCTGTT -ACGGAATTCCCAGGTGAACGGTTT -ACGGAATTCCCAGGTGAAGTGGTT -ACGGAATTCCCAGGTGAAGCCTTT -ACGGAATTCCCAGGTGAAGGTCTT -ACGGAATTCCCAGGTGAAACGCTT -ACGGAATTCCCAGGTGAAAGCGTT -ACGGAATTCCCAGGTGAATTCGTC -ACGGAATTCCCAGGTGAATCTCTC -ACGGAATTCCCAGGTGAATGGATC -ACGGAATTCCCAGGTGAACACTTC -ACGGAATTCCCAGGTGAAGTACTC -ACGGAATTCCCAGGTGAAGATGTC -ACGGAATTCCCAGGTGAAACAGTC -ACGGAATTCCCAGGTGAATTGCTG -ACGGAATTCCCAGGTGAATCCATG -ACGGAATTCCCAGGTGAATGTGTG -ACGGAATTCCCAGGTGAACTAGTG -ACGGAATTCCCAGGTGAACATCTG -ACGGAATTCCCAGGTGAAGAGTTG -ACGGAATTCCCAGGTGAAAGACTG -ACGGAATTCCCAGGTGAATCGGTA -ACGGAATTCCCAGGTGAATGCCTA -ACGGAATTCCCAGGTGAACCACTA -ACGGAATTCCCAGGTGAAGGAGTA -ACGGAATTCCCAGGTGAATCGTCT -ACGGAATTCCCAGGTGAATGCACT -ACGGAATTCCCAGGTGAACTGACT -ACGGAATTCCCAGGTGAACAACCT -ACGGAATTCCCAGGTGAAGCTACT -ACGGAATTCCCAGGTGAAGGATCT -ACGGAATTCCCAGGTGAAAAGGCT -ACGGAATTCCCAGGTGAATCAACC -ACGGAATTCCCAGGTGAATGTTCC -ACGGAATTCCCAGGTGAAATTCCC -ACGGAATTCCCAGGTGAATTCTCG -ACGGAATTCCCAGGTGAATAGACG -ACGGAATTCCCAGGTGAAGTAACG -ACGGAATTCCCAGGTGAAACTTCG -ACGGAATTCCCAGGTGAATACGCA -ACGGAATTCCCAGGTGAACTTGCA -ACGGAATTCCCAGGTGAACGAACA -ACGGAATTCCCAGGTGAACAGTCA -ACGGAATTCCCAGGTGAAGATCCA -ACGGAATTCCCAGGTGAAACGACA -ACGGAATTCCCAGGTGAAAGCTCA -ACGGAATTCCCAGGTGAATCACGT -ACGGAATTCCCAGGTGAACGTAGT -ACGGAATTCCCAGGTGAAGTCAGT -ACGGAATTCCCAGGTGAAGAAGGT -ACGGAATTCCCAGGTGAAAACCGT -ACGGAATTCCCAGGTGAATTGTGC -ACGGAATTCCCAGGTGAACTAAGC -ACGGAATTCCCAGGTGAAACTAGC -ACGGAATTCCCAGGTGAAAGATGC -ACGGAATTCCCAGGTGAATGAAGG -ACGGAATTCCCAGGTGAACAATGG -ACGGAATTCCCAGGTGAAATGAGG -ACGGAATTCCCAGGTGAAAATGGG -ACGGAATTCCCAGGTGAATCCTGA -ACGGAATTCCCAGGTGAATAGCGA -ACGGAATTCCCAGGTGAACACAGA -ACGGAATTCCCAGGTGAAGCAAGA -ACGGAATTCCCAGGTGAAGGTTGA -ACGGAATTCCCAGGTGAATCCGAT -ACGGAATTCCCAGGTGAATGGCAT -ACGGAATTCCCAGGTGAACGAGAT -ACGGAATTCCCAGGTGAATACCAC -ACGGAATTCCCAGGTGAACAGAAC -ACGGAATTCCCAGGTGAAGTCTAC -ACGGAATTCCCAGGTGAAACGTAC -ACGGAATTCCCAGGTGAAAGTGAC -ACGGAATTCCCAGGTGAACTGTAG -ACGGAATTCCCAGGTGAACCTAAG -ACGGAATTCCCAGGTGAAGTTCAG -ACGGAATTCCCAGGTGAAGCATAG -ACGGAATTCCCAGGTGAAGACAAG -ACGGAATTCCCAGGTGAAAAGCAG -ACGGAATTCCCAGGTGAACGTCAA -ACGGAATTCCCAGGTGAAGCTGAA -ACGGAATTCCCAGGTGAAAGTACG -ACGGAATTCCCAGGTGAAATCCGA -ACGGAATTCCCAGGTGAAATGGGA -ACGGAATTCCCAGGTGAAGTGCAA -ACGGAATTCCCAGGTGAAGAGGAA -ACGGAATTCCCAGGTGAACAGGTA -ACGGAATTCCCAGGTGAAGACTCT -ACGGAATTCCCAGGTGAAAGTCCT -ACGGAATTCCCAGGTGAATAAGCC -ACGGAATTCCCAGGTGAAATAGCC -ACGGAATTCCCAGGTGAATAACCG -ACGGAATTCCCAGGTGAAATGCCA -ACGGAATTCCCACGTAACGGAAAC -ACGGAATTCCCACGTAACAACACC -ACGGAATTCCCACGTAACATCGAG -ACGGAATTCCCACGTAACCTCCTT -ACGGAATTCCCACGTAACCCTGTT -ACGGAATTCCCACGTAACCGGTTT -ACGGAATTCCCACGTAACGTGGTT -ACGGAATTCCCACGTAACGCCTTT -ACGGAATTCCCACGTAACGGTCTT -ACGGAATTCCCACGTAACACGCTT -ACGGAATTCCCACGTAACAGCGTT -ACGGAATTCCCACGTAACTTCGTC -ACGGAATTCCCACGTAACTCTCTC -ACGGAATTCCCACGTAACTGGATC -ACGGAATTCCCACGTAACCACTTC -ACGGAATTCCCACGTAACGTACTC -ACGGAATTCCCACGTAACGATGTC -ACGGAATTCCCACGTAACACAGTC -ACGGAATTCCCACGTAACTTGCTG -ACGGAATTCCCACGTAACTCCATG -ACGGAATTCCCACGTAACTGTGTG -ACGGAATTCCCACGTAACCTAGTG -ACGGAATTCCCACGTAACCATCTG -ACGGAATTCCCACGTAACGAGTTG -ACGGAATTCCCACGTAACAGACTG -ACGGAATTCCCACGTAACTCGGTA -ACGGAATTCCCACGTAACTGCCTA -ACGGAATTCCCACGTAACCCACTA -ACGGAATTCCCACGTAACGGAGTA -ACGGAATTCCCACGTAACTCGTCT -ACGGAATTCCCACGTAACTGCACT -ACGGAATTCCCACGTAACCTGACT -ACGGAATTCCCACGTAACCAACCT -ACGGAATTCCCACGTAACGCTACT -ACGGAATTCCCACGTAACGGATCT -ACGGAATTCCCACGTAACAAGGCT -ACGGAATTCCCACGTAACTCAACC -ACGGAATTCCCACGTAACTGTTCC -ACGGAATTCCCACGTAACATTCCC -ACGGAATTCCCACGTAACTTCTCG -ACGGAATTCCCACGTAACTAGACG -ACGGAATTCCCACGTAACGTAACG -ACGGAATTCCCACGTAACACTTCG -ACGGAATTCCCACGTAACTACGCA -ACGGAATTCCCACGTAACCTTGCA -ACGGAATTCCCACGTAACCGAACA -ACGGAATTCCCACGTAACCAGTCA -ACGGAATTCCCACGTAACGATCCA -ACGGAATTCCCACGTAACACGACA -ACGGAATTCCCACGTAACAGCTCA -ACGGAATTCCCACGTAACTCACGT -ACGGAATTCCCACGTAACCGTAGT -ACGGAATTCCCACGTAACGTCAGT -ACGGAATTCCCACGTAACGAAGGT -ACGGAATTCCCACGTAACAACCGT -ACGGAATTCCCACGTAACTTGTGC -ACGGAATTCCCACGTAACCTAAGC -ACGGAATTCCCACGTAACACTAGC -ACGGAATTCCCACGTAACAGATGC -ACGGAATTCCCACGTAACTGAAGG -ACGGAATTCCCACGTAACCAATGG -ACGGAATTCCCACGTAACATGAGG -ACGGAATTCCCACGTAACAATGGG -ACGGAATTCCCACGTAACTCCTGA -ACGGAATTCCCACGTAACTAGCGA -ACGGAATTCCCACGTAACCACAGA -ACGGAATTCCCACGTAACGCAAGA -ACGGAATTCCCACGTAACGGTTGA -ACGGAATTCCCACGTAACTCCGAT -ACGGAATTCCCACGTAACTGGCAT -ACGGAATTCCCACGTAACCGAGAT -ACGGAATTCCCACGTAACTACCAC -ACGGAATTCCCACGTAACCAGAAC -ACGGAATTCCCACGTAACGTCTAC -ACGGAATTCCCACGTAACACGTAC -ACGGAATTCCCACGTAACAGTGAC -ACGGAATTCCCACGTAACCTGTAG -ACGGAATTCCCACGTAACCCTAAG -ACGGAATTCCCACGTAACGTTCAG -ACGGAATTCCCACGTAACGCATAG -ACGGAATTCCCACGTAACGACAAG -ACGGAATTCCCACGTAACAAGCAG -ACGGAATTCCCACGTAACCGTCAA -ACGGAATTCCCACGTAACGCTGAA -ACGGAATTCCCACGTAACAGTACG -ACGGAATTCCCACGTAACATCCGA -ACGGAATTCCCACGTAACATGGGA -ACGGAATTCCCACGTAACGTGCAA -ACGGAATTCCCACGTAACGAGGAA -ACGGAATTCCCACGTAACCAGGTA -ACGGAATTCCCACGTAACGACTCT -ACGGAATTCCCACGTAACAGTCCT -ACGGAATTCCCACGTAACTAAGCC -ACGGAATTCCCACGTAACATAGCC -ACGGAATTCCCACGTAACTAACCG -ACGGAATTCCCACGTAACATGCCA -ACGGAATTCCCATGCTTGGGAAAC -ACGGAATTCCCATGCTTGAACACC -ACGGAATTCCCATGCTTGATCGAG -ACGGAATTCCCATGCTTGCTCCTT -ACGGAATTCCCATGCTTGCCTGTT -ACGGAATTCCCATGCTTGCGGTTT -ACGGAATTCCCATGCTTGGTGGTT -ACGGAATTCCCATGCTTGGCCTTT -ACGGAATTCCCATGCTTGGGTCTT -ACGGAATTCCCATGCTTGACGCTT -ACGGAATTCCCATGCTTGAGCGTT -ACGGAATTCCCATGCTTGTTCGTC -ACGGAATTCCCATGCTTGTCTCTC -ACGGAATTCCCATGCTTGTGGATC -ACGGAATTCCCATGCTTGCACTTC -ACGGAATTCCCATGCTTGGTACTC -ACGGAATTCCCATGCTTGGATGTC -ACGGAATTCCCATGCTTGACAGTC -ACGGAATTCCCATGCTTGTTGCTG -ACGGAATTCCCATGCTTGTCCATG -ACGGAATTCCCATGCTTGTGTGTG -ACGGAATTCCCATGCTTGCTAGTG -ACGGAATTCCCATGCTTGCATCTG -ACGGAATTCCCATGCTTGGAGTTG -ACGGAATTCCCATGCTTGAGACTG -ACGGAATTCCCATGCTTGTCGGTA -ACGGAATTCCCATGCTTGTGCCTA -ACGGAATTCCCATGCTTGCCACTA -ACGGAATTCCCATGCTTGGGAGTA -ACGGAATTCCCATGCTTGTCGTCT -ACGGAATTCCCATGCTTGTGCACT -ACGGAATTCCCATGCTTGCTGACT -ACGGAATTCCCATGCTTGCAACCT -ACGGAATTCCCATGCTTGGCTACT -ACGGAATTCCCATGCTTGGGATCT -ACGGAATTCCCATGCTTGAAGGCT -ACGGAATTCCCATGCTTGTCAACC -ACGGAATTCCCATGCTTGTGTTCC -ACGGAATTCCCATGCTTGATTCCC -ACGGAATTCCCATGCTTGTTCTCG -ACGGAATTCCCATGCTTGTAGACG -ACGGAATTCCCATGCTTGGTAACG -ACGGAATTCCCATGCTTGACTTCG -ACGGAATTCCCATGCTTGTACGCA -ACGGAATTCCCATGCTTGCTTGCA -ACGGAATTCCCATGCTTGCGAACA -ACGGAATTCCCATGCTTGCAGTCA -ACGGAATTCCCATGCTTGGATCCA -ACGGAATTCCCATGCTTGACGACA -ACGGAATTCCCATGCTTGAGCTCA -ACGGAATTCCCATGCTTGTCACGT -ACGGAATTCCCATGCTTGCGTAGT -ACGGAATTCCCATGCTTGGTCAGT -ACGGAATTCCCATGCTTGGAAGGT -ACGGAATTCCCATGCTTGAACCGT -ACGGAATTCCCATGCTTGTTGTGC -ACGGAATTCCCATGCTTGCTAAGC -ACGGAATTCCCATGCTTGACTAGC -ACGGAATTCCCATGCTTGAGATGC -ACGGAATTCCCATGCTTGTGAAGG -ACGGAATTCCCATGCTTGCAATGG -ACGGAATTCCCATGCTTGATGAGG -ACGGAATTCCCATGCTTGAATGGG -ACGGAATTCCCATGCTTGTCCTGA -ACGGAATTCCCATGCTTGTAGCGA -ACGGAATTCCCATGCTTGCACAGA -ACGGAATTCCCATGCTTGGCAAGA -ACGGAATTCCCATGCTTGGGTTGA -ACGGAATTCCCATGCTTGTCCGAT -ACGGAATTCCCATGCTTGTGGCAT -ACGGAATTCCCATGCTTGCGAGAT -ACGGAATTCCCATGCTTGTACCAC -ACGGAATTCCCATGCTTGCAGAAC -ACGGAATTCCCATGCTTGGTCTAC -ACGGAATTCCCATGCTTGACGTAC -ACGGAATTCCCATGCTTGAGTGAC -ACGGAATTCCCATGCTTGCTGTAG -ACGGAATTCCCATGCTTGCCTAAG -ACGGAATTCCCATGCTTGGTTCAG -ACGGAATTCCCATGCTTGGCATAG -ACGGAATTCCCATGCTTGGACAAG -ACGGAATTCCCATGCTTGAAGCAG -ACGGAATTCCCATGCTTGCGTCAA -ACGGAATTCCCATGCTTGGCTGAA -ACGGAATTCCCATGCTTGAGTACG -ACGGAATTCCCATGCTTGATCCGA -ACGGAATTCCCATGCTTGATGGGA -ACGGAATTCCCATGCTTGGTGCAA -ACGGAATTCCCATGCTTGGAGGAA -ACGGAATTCCCATGCTTGCAGGTA -ACGGAATTCCCATGCTTGGACTCT -ACGGAATTCCCATGCTTGAGTCCT -ACGGAATTCCCATGCTTGTAAGCC -ACGGAATTCCCATGCTTGATAGCC -ACGGAATTCCCATGCTTGTAACCG -ACGGAATTCCCATGCTTGATGCCA -ACGGAATTCCCAAGCCTAGGAAAC -ACGGAATTCCCAAGCCTAAACACC -ACGGAATTCCCAAGCCTAATCGAG -ACGGAATTCCCAAGCCTACTCCTT -ACGGAATTCCCAAGCCTACCTGTT -ACGGAATTCCCAAGCCTACGGTTT -ACGGAATTCCCAAGCCTAGTGGTT -ACGGAATTCCCAAGCCTAGCCTTT -ACGGAATTCCCAAGCCTAGGTCTT -ACGGAATTCCCAAGCCTAACGCTT -ACGGAATTCCCAAGCCTAAGCGTT -ACGGAATTCCCAAGCCTATTCGTC -ACGGAATTCCCAAGCCTATCTCTC -ACGGAATTCCCAAGCCTATGGATC -ACGGAATTCCCAAGCCTACACTTC -ACGGAATTCCCAAGCCTAGTACTC -ACGGAATTCCCAAGCCTAGATGTC -ACGGAATTCCCAAGCCTAACAGTC -ACGGAATTCCCAAGCCTATTGCTG -ACGGAATTCCCAAGCCTATCCATG -ACGGAATTCCCAAGCCTATGTGTG -ACGGAATTCCCAAGCCTACTAGTG -ACGGAATTCCCAAGCCTACATCTG -ACGGAATTCCCAAGCCTAGAGTTG -ACGGAATTCCCAAGCCTAAGACTG -ACGGAATTCCCAAGCCTATCGGTA -ACGGAATTCCCAAGCCTATGCCTA -ACGGAATTCCCAAGCCTACCACTA -ACGGAATTCCCAAGCCTAGGAGTA -ACGGAATTCCCAAGCCTATCGTCT -ACGGAATTCCCAAGCCTATGCACT -ACGGAATTCCCAAGCCTACTGACT -ACGGAATTCCCAAGCCTACAACCT -ACGGAATTCCCAAGCCTAGCTACT -ACGGAATTCCCAAGCCTAGGATCT -ACGGAATTCCCAAGCCTAAAGGCT -ACGGAATTCCCAAGCCTATCAACC -ACGGAATTCCCAAGCCTATGTTCC -ACGGAATTCCCAAGCCTAATTCCC -ACGGAATTCCCAAGCCTATTCTCG -ACGGAATTCCCAAGCCTATAGACG -ACGGAATTCCCAAGCCTAGTAACG -ACGGAATTCCCAAGCCTAACTTCG -ACGGAATTCCCAAGCCTATACGCA -ACGGAATTCCCAAGCCTACTTGCA -ACGGAATTCCCAAGCCTACGAACA -ACGGAATTCCCAAGCCTACAGTCA -ACGGAATTCCCAAGCCTAGATCCA -ACGGAATTCCCAAGCCTAACGACA -ACGGAATTCCCAAGCCTAAGCTCA -ACGGAATTCCCAAGCCTATCACGT -ACGGAATTCCCAAGCCTACGTAGT -ACGGAATTCCCAAGCCTAGTCAGT -ACGGAATTCCCAAGCCTAGAAGGT -ACGGAATTCCCAAGCCTAAACCGT -ACGGAATTCCCAAGCCTATTGTGC -ACGGAATTCCCAAGCCTACTAAGC -ACGGAATTCCCAAGCCTAACTAGC -ACGGAATTCCCAAGCCTAAGATGC -ACGGAATTCCCAAGCCTATGAAGG -ACGGAATTCCCAAGCCTACAATGG -ACGGAATTCCCAAGCCTAATGAGG -ACGGAATTCCCAAGCCTAAATGGG -ACGGAATTCCCAAGCCTATCCTGA -ACGGAATTCCCAAGCCTATAGCGA -ACGGAATTCCCAAGCCTACACAGA -ACGGAATTCCCAAGCCTAGCAAGA -ACGGAATTCCCAAGCCTAGGTTGA -ACGGAATTCCCAAGCCTATCCGAT -ACGGAATTCCCAAGCCTATGGCAT -ACGGAATTCCCAAGCCTACGAGAT -ACGGAATTCCCAAGCCTATACCAC -ACGGAATTCCCAAGCCTACAGAAC -ACGGAATTCCCAAGCCTAGTCTAC -ACGGAATTCCCAAGCCTAACGTAC -ACGGAATTCCCAAGCCTAAGTGAC -ACGGAATTCCCAAGCCTACTGTAG -ACGGAATTCCCAAGCCTACCTAAG -ACGGAATTCCCAAGCCTAGTTCAG -ACGGAATTCCCAAGCCTAGCATAG -ACGGAATTCCCAAGCCTAGACAAG -ACGGAATTCCCAAGCCTAAAGCAG -ACGGAATTCCCAAGCCTACGTCAA -ACGGAATTCCCAAGCCTAGCTGAA -ACGGAATTCCCAAGCCTAAGTACG -ACGGAATTCCCAAGCCTAATCCGA -ACGGAATTCCCAAGCCTAATGGGA -ACGGAATTCCCAAGCCTAGTGCAA -ACGGAATTCCCAAGCCTAGAGGAA -ACGGAATTCCCAAGCCTACAGGTA -ACGGAATTCCCAAGCCTAGACTCT -ACGGAATTCCCAAGCCTAAGTCCT -ACGGAATTCCCAAGCCTATAAGCC -ACGGAATTCCCAAGCCTAATAGCC -ACGGAATTCCCAAGCCTATAACCG -ACGGAATTCCCAAGCCTAATGCCA -ACGGAATTCCCAAGCACTGGAAAC -ACGGAATTCCCAAGCACTAACACC -ACGGAATTCCCAAGCACTATCGAG -ACGGAATTCCCAAGCACTCTCCTT -ACGGAATTCCCAAGCACTCCTGTT -ACGGAATTCCCAAGCACTCGGTTT -ACGGAATTCCCAAGCACTGTGGTT -ACGGAATTCCCAAGCACTGCCTTT -ACGGAATTCCCAAGCACTGGTCTT -ACGGAATTCCCAAGCACTACGCTT -ACGGAATTCCCAAGCACTAGCGTT -ACGGAATTCCCAAGCACTTTCGTC -ACGGAATTCCCAAGCACTTCTCTC -ACGGAATTCCCAAGCACTTGGATC -ACGGAATTCCCAAGCACTCACTTC -ACGGAATTCCCAAGCACTGTACTC -ACGGAATTCCCAAGCACTGATGTC -ACGGAATTCCCAAGCACTACAGTC -ACGGAATTCCCAAGCACTTTGCTG -ACGGAATTCCCAAGCACTTCCATG -ACGGAATTCCCAAGCACTTGTGTG -ACGGAATTCCCAAGCACTCTAGTG -ACGGAATTCCCAAGCACTCATCTG -ACGGAATTCCCAAGCACTGAGTTG -ACGGAATTCCCAAGCACTAGACTG -ACGGAATTCCCAAGCACTTCGGTA -ACGGAATTCCCAAGCACTTGCCTA -ACGGAATTCCCAAGCACTCCACTA -ACGGAATTCCCAAGCACTGGAGTA -ACGGAATTCCCAAGCACTTCGTCT -ACGGAATTCCCAAGCACTTGCACT -ACGGAATTCCCAAGCACTCTGACT -ACGGAATTCCCAAGCACTCAACCT -ACGGAATTCCCAAGCACTGCTACT -ACGGAATTCCCAAGCACTGGATCT -ACGGAATTCCCAAGCACTAAGGCT -ACGGAATTCCCAAGCACTTCAACC -ACGGAATTCCCAAGCACTTGTTCC -ACGGAATTCCCAAGCACTATTCCC -ACGGAATTCCCAAGCACTTTCTCG -ACGGAATTCCCAAGCACTTAGACG -ACGGAATTCCCAAGCACTGTAACG -ACGGAATTCCCAAGCACTACTTCG -ACGGAATTCCCAAGCACTTACGCA -ACGGAATTCCCAAGCACTCTTGCA -ACGGAATTCCCAAGCACTCGAACA -ACGGAATTCCCAAGCACTCAGTCA -ACGGAATTCCCAAGCACTGATCCA -ACGGAATTCCCAAGCACTACGACA -ACGGAATTCCCAAGCACTAGCTCA -ACGGAATTCCCAAGCACTTCACGT -ACGGAATTCCCAAGCACTCGTAGT -ACGGAATTCCCAAGCACTGTCAGT -ACGGAATTCCCAAGCACTGAAGGT -ACGGAATTCCCAAGCACTAACCGT -ACGGAATTCCCAAGCACTTTGTGC -ACGGAATTCCCAAGCACTCTAAGC -ACGGAATTCCCAAGCACTACTAGC -ACGGAATTCCCAAGCACTAGATGC -ACGGAATTCCCAAGCACTTGAAGG -ACGGAATTCCCAAGCACTCAATGG -ACGGAATTCCCAAGCACTATGAGG -ACGGAATTCCCAAGCACTAATGGG -ACGGAATTCCCAAGCACTTCCTGA -ACGGAATTCCCAAGCACTTAGCGA -ACGGAATTCCCAAGCACTCACAGA -ACGGAATTCCCAAGCACTGCAAGA -ACGGAATTCCCAAGCACTGGTTGA -ACGGAATTCCCAAGCACTTCCGAT -ACGGAATTCCCAAGCACTTGGCAT -ACGGAATTCCCAAGCACTCGAGAT -ACGGAATTCCCAAGCACTTACCAC -ACGGAATTCCCAAGCACTCAGAAC -ACGGAATTCCCAAGCACTGTCTAC -ACGGAATTCCCAAGCACTACGTAC -ACGGAATTCCCAAGCACTAGTGAC -ACGGAATTCCCAAGCACTCTGTAG -ACGGAATTCCCAAGCACTCCTAAG -ACGGAATTCCCAAGCACTGTTCAG -ACGGAATTCCCAAGCACTGCATAG -ACGGAATTCCCAAGCACTGACAAG -ACGGAATTCCCAAGCACTAAGCAG -ACGGAATTCCCAAGCACTCGTCAA -ACGGAATTCCCAAGCACTGCTGAA -ACGGAATTCCCAAGCACTAGTACG -ACGGAATTCCCAAGCACTATCCGA -ACGGAATTCCCAAGCACTATGGGA -ACGGAATTCCCAAGCACTGTGCAA -ACGGAATTCCCAAGCACTGAGGAA -ACGGAATTCCCAAGCACTCAGGTA -ACGGAATTCCCAAGCACTGACTCT -ACGGAATTCCCAAGCACTAGTCCT -ACGGAATTCCCAAGCACTTAAGCC -ACGGAATTCCCAAGCACTATAGCC -ACGGAATTCCCAAGCACTTAACCG -ACGGAATTCCCAAGCACTATGCCA -ACGGAATTCCCATGCAGAGGAAAC -ACGGAATTCCCATGCAGAAACACC -ACGGAATTCCCATGCAGAATCGAG -ACGGAATTCCCATGCAGACTCCTT -ACGGAATTCCCATGCAGACCTGTT -ACGGAATTCCCATGCAGACGGTTT -ACGGAATTCCCATGCAGAGTGGTT -ACGGAATTCCCATGCAGAGCCTTT -ACGGAATTCCCATGCAGAGGTCTT -ACGGAATTCCCATGCAGAACGCTT -ACGGAATTCCCATGCAGAAGCGTT -ACGGAATTCCCATGCAGATTCGTC -ACGGAATTCCCATGCAGATCTCTC -ACGGAATTCCCATGCAGATGGATC -ACGGAATTCCCATGCAGACACTTC -ACGGAATTCCCATGCAGAGTACTC -ACGGAATTCCCATGCAGAGATGTC -ACGGAATTCCCATGCAGAACAGTC -ACGGAATTCCCATGCAGATTGCTG -ACGGAATTCCCATGCAGATCCATG -ACGGAATTCCCATGCAGATGTGTG -ACGGAATTCCCATGCAGACTAGTG -ACGGAATTCCCATGCAGACATCTG -ACGGAATTCCCATGCAGAGAGTTG -ACGGAATTCCCATGCAGAAGACTG -ACGGAATTCCCATGCAGATCGGTA -ACGGAATTCCCATGCAGATGCCTA -ACGGAATTCCCATGCAGACCACTA -ACGGAATTCCCATGCAGAGGAGTA -ACGGAATTCCCATGCAGATCGTCT -ACGGAATTCCCATGCAGATGCACT -ACGGAATTCCCATGCAGACTGACT -ACGGAATTCCCATGCAGACAACCT -ACGGAATTCCCATGCAGAGCTACT -ACGGAATTCCCATGCAGAGGATCT -ACGGAATTCCCATGCAGAAAGGCT -ACGGAATTCCCATGCAGATCAACC -ACGGAATTCCCATGCAGATGTTCC -ACGGAATTCCCATGCAGAATTCCC -ACGGAATTCCCATGCAGATTCTCG -ACGGAATTCCCATGCAGATAGACG -ACGGAATTCCCATGCAGAGTAACG -ACGGAATTCCCATGCAGAACTTCG -ACGGAATTCCCATGCAGATACGCA -ACGGAATTCCCATGCAGACTTGCA -ACGGAATTCCCATGCAGACGAACA -ACGGAATTCCCATGCAGACAGTCA -ACGGAATTCCCATGCAGAGATCCA -ACGGAATTCCCATGCAGAACGACA -ACGGAATTCCCATGCAGAAGCTCA -ACGGAATTCCCATGCAGATCACGT -ACGGAATTCCCATGCAGACGTAGT -ACGGAATTCCCATGCAGAGTCAGT -ACGGAATTCCCATGCAGAGAAGGT -ACGGAATTCCCATGCAGAAACCGT -ACGGAATTCCCATGCAGATTGTGC -ACGGAATTCCCATGCAGACTAAGC -ACGGAATTCCCATGCAGAACTAGC -ACGGAATTCCCATGCAGAAGATGC -ACGGAATTCCCATGCAGATGAAGG -ACGGAATTCCCATGCAGACAATGG -ACGGAATTCCCATGCAGAATGAGG -ACGGAATTCCCATGCAGAAATGGG -ACGGAATTCCCATGCAGATCCTGA -ACGGAATTCCCATGCAGATAGCGA -ACGGAATTCCCATGCAGACACAGA -ACGGAATTCCCATGCAGAGCAAGA -ACGGAATTCCCATGCAGAGGTTGA -ACGGAATTCCCATGCAGATCCGAT -ACGGAATTCCCATGCAGATGGCAT -ACGGAATTCCCATGCAGACGAGAT -ACGGAATTCCCATGCAGATACCAC -ACGGAATTCCCATGCAGACAGAAC -ACGGAATTCCCATGCAGAGTCTAC -ACGGAATTCCCATGCAGAACGTAC -ACGGAATTCCCATGCAGAAGTGAC -ACGGAATTCCCATGCAGACTGTAG -ACGGAATTCCCATGCAGACCTAAG -ACGGAATTCCCATGCAGAGTTCAG -ACGGAATTCCCATGCAGAGCATAG -ACGGAATTCCCATGCAGAGACAAG -ACGGAATTCCCATGCAGAAAGCAG -ACGGAATTCCCATGCAGACGTCAA -ACGGAATTCCCATGCAGAGCTGAA -ACGGAATTCCCATGCAGAAGTACG -ACGGAATTCCCATGCAGAATCCGA -ACGGAATTCCCATGCAGAATGGGA -ACGGAATTCCCATGCAGAGTGCAA -ACGGAATTCCCATGCAGAGAGGAA -ACGGAATTCCCATGCAGACAGGTA -ACGGAATTCCCATGCAGAGACTCT -ACGGAATTCCCATGCAGAAGTCCT -ACGGAATTCCCATGCAGATAAGCC -ACGGAATTCCCATGCAGAATAGCC -ACGGAATTCCCATGCAGATAACCG -ACGGAATTCCCATGCAGAATGCCA -ACGGAATTCCCAAGGTGAGGAAAC -ACGGAATTCCCAAGGTGAAACACC -ACGGAATTCCCAAGGTGAATCGAG -ACGGAATTCCCAAGGTGACTCCTT -ACGGAATTCCCAAGGTGACCTGTT -ACGGAATTCCCAAGGTGACGGTTT -ACGGAATTCCCAAGGTGAGTGGTT -ACGGAATTCCCAAGGTGAGCCTTT -ACGGAATTCCCAAGGTGAGGTCTT -ACGGAATTCCCAAGGTGAACGCTT -ACGGAATTCCCAAGGTGAAGCGTT -ACGGAATTCCCAAGGTGATTCGTC -ACGGAATTCCCAAGGTGATCTCTC -ACGGAATTCCCAAGGTGATGGATC -ACGGAATTCCCAAGGTGACACTTC -ACGGAATTCCCAAGGTGAGTACTC -ACGGAATTCCCAAGGTGAGATGTC -ACGGAATTCCCAAGGTGAACAGTC -ACGGAATTCCCAAGGTGATTGCTG -ACGGAATTCCCAAGGTGATCCATG -ACGGAATTCCCAAGGTGATGTGTG -ACGGAATTCCCAAGGTGACTAGTG -ACGGAATTCCCAAGGTGACATCTG -ACGGAATTCCCAAGGTGAGAGTTG -ACGGAATTCCCAAGGTGAAGACTG -ACGGAATTCCCAAGGTGATCGGTA -ACGGAATTCCCAAGGTGATGCCTA -ACGGAATTCCCAAGGTGACCACTA -ACGGAATTCCCAAGGTGAGGAGTA -ACGGAATTCCCAAGGTGATCGTCT -ACGGAATTCCCAAGGTGATGCACT -ACGGAATTCCCAAGGTGACTGACT -ACGGAATTCCCAAGGTGACAACCT -ACGGAATTCCCAAGGTGAGCTACT -ACGGAATTCCCAAGGTGAGGATCT -ACGGAATTCCCAAGGTGAAAGGCT -ACGGAATTCCCAAGGTGATCAACC -ACGGAATTCCCAAGGTGATGTTCC -ACGGAATTCCCAAGGTGAATTCCC -ACGGAATTCCCAAGGTGATTCTCG -ACGGAATTCCCAAGGTGATAGACG -ACGGAATTCCCAAGGTGAGTAACG -ACGGAATTCCCAAGGTGAACTTCG -ACGGAATTCCCAAGGTGATACGCA -ACGGAATTCCCAAGGTGACTTGCA -ACGGAATTCCCAAGGTGACGAACA -ACGGAATTCCCAAGGTGACAGTCA -ACGGAATTCCCAAGGTGAGATCCA -ACGGAATTCCCAAGGTGAACGACA -ACGGAATTCCCAAGGTGAAGCTCA -ACGGAATTCCCAAGGTGATCACGT -ACGGAATTCCCAAGGTGACGTAGT -ACGGAATTCCCAAGGTGAGTCAGT -ACGGAATTCCCAAGGTGAGAAGGT -ACGGAATTCCCAAGGTGAAACCGT -ACGGAATTCCCAAGGTGATTGTGC -ACGGAATTCCCAAGGTGACTAAGC -ACGGAATTCCCAAGGTGAACTAGC -ACGGAATTCCCAAGGTGAAGATGC -ACGGAATTCCCAAGGTGATGAAGG -ACGGAATTCCCAAGGTGACAATGG -ACGGAATTCCCAAGGTGAATGAGG -ACGGAATTCCCAAGGTGAAATGGG -ACGGAATTCCCAAGGTGATCCTGA -ACGGAATTCCCAAGGTGATAGCGA -ACGGAATTCCCAAGGTGACACAGA -ACGGAATTCCCAAGGTGAGCAAGA -ACGGAATTCCCAAGGTGAGGTTGA -ACGGAATTCCCAAGGTGATCCGAT -ACGGAATTCCCAAGGTGATGGCAT -ACGGAATTCCCAAGGTGACGAGAT -ACGGAATTCCCAAGGTGATACCAC -ACGGAATTCCCAAGGTGACAGAAC -ACGGAATTCCCAAGGTGAGTCTAC -ACGGAATTCCCAAGGTGAACGTAC -ACGGAATTCCCAAGGTGAAGTGAC -ACGGAATTCCCAAGGTGACTGTAG -ACGGAATTCCCAAGGTGACCTAAG -ACGGAATTCCCAAGGTGAGTTCAG -ACGGAATTCCCAAGGTGAGCATAG -ACGGAATTCCCAAGGTGAGACAAG -ACGGAATTCCCAAGGTGAAAGCAG -ACGGAATTCCCAAGGTGACGTCAA -ACGGAATTCCCAAGGTGAGCTGAA -ACGGAATTCCCAAGGTGAAGTACG -ACGGAATTCCCAAGGTGAATCCGA -ACGGAATTCCCAAGGTGAATGGGA -ACGGAATTCCCAAGGTGAGTGCAA -ACGGAATTCCCAAGGTGAGAGGAA -ACGGAATTCCCAAGGTGACAGGTA -ACGGAATTCCCAAGGTGAGACTCT -ACGGAATTCCCAAGGTGAAGTCCT -ACGGAATTCCCAAGGTGATAAGCC -ACGGAATTCCCAAGGTGAATAGCC -ACGGAATTCCCAAGGTGATAACCG -ACGGAATTCCCAAGGTGAATGCCA -ACGGAATTCCCATGGCAAGGAAAC -ACGGAATTCCCATGGCAAAACACC -ACGGAATTCCCATGGCAAATCGAG -ACGGAATTCCCATGGCAACTCCTT -ACGGAATTCCCATGGCAACCTGTT -ACGGAATTCCCATGGCAACGGTTT -ACGGAATTCCCATGGCAAGTGGTT -ACGGAATTCCCATGGCAAGCCTTT -ACGGAATTCCCATGGCAAGGTCTT -ACGGAATTCCCATGGCAAACGCTT -ACGGAATTCCCATGGCAAAGCGTT -ACGGAATTCCCATGGCAATTCGTC -ACGGAATTCCCATGGCAATCTCTC -ACGGAATTCCCATGGCAATGGATC -ACGGAATTCCCATGGCAACACTTC -ACGGAATTCCCATGGCAAGTACTC -ACGGAATTCCCATGGCAAGATGTC -ACGGAATTCCCATGGCAAACAGTC -ACGGAATTCCCATGGCAATTGCTG -ACGGAATTCCCATGGCAATCCATG -ACGGAATTCCCATGGCAATGTGTG -ACGGAATTCCCATGGCAACTAGTG -ACGGAATTCCCATGGCAACATCTG -ACGGAATTCCCATGGCAAGAGTTG -ACGGAATTCCCATGGCAAAGACTG -ACGGAATTCCCATGGCAATCGGTA -ACGGAATTCCCATGGCAATGCCTA -ACGGAATTCCCATGGCAACCACTA -ACGGAATTCCCATGGCAAGGAGTA -ACGGAATTCCCATGGCAATCGTCT -ACGGAATTCCCATGGCAATGCACT -ACGGAATTCCCATGGCAACTGACT -ACGGAATTCCCATGGCAACAACCT -ACGGAATTCCCATGGCAAGCTACT -ACGGAATTCCCATGGCAAGGATCT -ACGGAATTCCCATGGCAAAAGGCT -ACGGAATTCCCATGGCAATCAACC -ACGGAATTCCCATGGCAATGTTCC -ACGGAATTCCCATGGCAAATTCCC -ACGGAATTCCCATGGCAATTCTCG -ACGGAATTCCCATGGCAATAGACG -ACGGAATTCCCATGGCAAGTAACG -ACGGAATTCCCATGGCAAACTTCG -ACGGAATTCCCATGGCAATACGCA -ACGGAATTCCCATGGCAACTTGCA -ACGGAATTCCCATGGCAACGAACA -ACGGAATTCCCATGGCAACAGTCA -ACGGAATTCCCATGGCAAGATCCA -ACGGAATTCCCATGGCAAACGACA -ACGGAATTCCCATGGCAAAGCTCA -ACGGAATTCCCATGGCAATCACGT -ACGGAATTCCCATGGCAACGTAGT -ACGGAATTCCCATGGCAAGTCAGT -ACGGAATTCCCATGGCAAGAAGGT -ACGGAATTCCCATGGCAAAACCGT -ACGGAATTCCCATGGCAATTGTGC -ACGGAATTCCCATGGCAACTAAGC -ACGGAATTCCCATGGCAAACTAGC -ACGGAATTCCCATGGCAAAGATGC -ACGGAATTCCCATGGCAATGAAGG -ACGGAATTCCCATGGCAACAATGG -ACGGAATTCCCATGGCAAATGAGG -ACGGAATTCCCATGGCAAAATGGG -ACGGAATTCCCATGGCAATCCTGA -ACGGAATTCCCATGGCAATAGCGA -ACGGAATTCCCATGGCAACACAGA -ACGGAATTCCCATGGCAAGCAAGA -ACGGAATTCCCATGGCAAGGTTGA -ACGGAATTCCCATGGCAATCCGAT -ACGGAATTCCCATGGCAATGGCAT -ACGGAATTCCCATGGCAACGAGAT -ACGGAATTCCCATGGCAATACCAC -ACGGAATTCCCATGGCAACAGAAC -ACGGAATTCCCATGGCAAGTCTAC -ACGGAATTCCCATGGCAAACGTAC -ACGGAATTCCCATGGCAAAGTGAC -ACGGAATTCCCATGGCAACTGTAG -ACGGAATTCCCATGGCAACCTAAG -ACGGAATTCCCATGGCAAGTTCAG -ACGGAATTCCCATGGCAAGCATAG -ACGGAATTCCCATGGCAAGACAAG -ACGGAATTCCCATGGCAAAAGCAG -ACGGAATTCCCATGGCAACGTCAA -ACGGAATTCCCATGGCAAGCTGAA -ACGGAATTCCCATGGCAAAGTACG -ACGGAATTCCCATGGCAAATCCGA -ACGGAATTCCCATGGCAAATGGGA -ACGGAATTCCCATGGCAAGTGCAA -ACGGAATTCCCATGGCAAGAGGAA -ACGGAATTCCCATGGCAACAGGTA -ACGGAATTCCCATGGCAAGACTCT -ACGGAATTCCCATGGCAAAGTCCT -ACGGAATTCCCATGGCAATAAGCC -ACGGAATTCCCATGGCAAATAGCC -ACGGAATTCCCATGGCAATAACCG -ACGGAATTCCCATGGCAAATGCCA -ACGGAATTCCCAAGGATGGGAAAC -ACGGAATTCCCAAGGATGAACACC -ACGGAATTCCCAAGGATGATCGAG -ACGGAATTCCCAAGGATGCTCCTT -ACGGAATTCCCAAGGATGCCTGTT -ACGGAATTCCCAAGGATGCGGTTT -ACGGAATTCCCAAGGATGGTGGTT -ACGGAATTCCCAAGGATGGCCTTT -ACGGAATTCCCAAGGATGGGTCTT -ACGGAATTCCCAAGGATGACGCTT -ACGGAATTCCCAAGGATGAGCGTT -ACGGAATTCCCAAGGATGTTCGTC -ACGGAATTCCCAAGGATGTCTCTC -ACGGAATTCCCAAGGATGTGGATC -ACGGAATTCCCAAGGATGCACTTC -ACGGAATTCCCAAGGATGGTACTC -ACGGAATTCCCAAGGATGGATGTC -ACGGAATTCCCAAGGATGACAGTC -ACGGAATTCCCAAGGATGTTGCTG -ACGGAATTCCCAAGGATGTCCATG -ACGGAATTCCCAAGGATGTGTGTG -ACGGAATTCCCAAGGATGCTAGTG -ACGGAATTCCCAAGGATGCATCTG -ACGGAATTCCCAAGGATGGAGTTG -ACGGAATTCCCAAGGATGAGACTG -ACGGAATTCCCAAGGATGTCGGTA -ACGGAATTCCCAAGGATGTGCCTA -ACGGAATTCCCAAGGATGCCACTA -ACGGAATTCCCAAGGATGGGAGTA -ACGGAATTCCCAAGGATGTCGTCT -ACGGAATTCCCAAGGATGTGCACT -ACGGAATTCCCAAGGATGCTGACT -ACGGAATTCCCAAGGATGCAACCT -ACGGAATTCCCAAGGATGGCTACT -ACGGAATTCCCAAGGATGGGATCT -ACGGAATTCCCAAGGATGAAGGCT -ACGGAATTCCCAAGGATGTCAACC -ACGGAATTCCCAAGGATGTGTTCC -ACGGAATTCCCAAGGATGATTCCC -ACGGAATTCCCAAGGATGTTCTCG -ACGGAATTCCCAAGGATGTAGACG -ACGGAATTCCCAAGGATGGTAACG -ACGGAATTCCCAAGGATGACTTCG -ACGGAATTCCCAAGGATGTACGCA -ACGGAATTCCCAAGGATGCTTGCA -ACGGAATTCCCAAGGATGCGAACA -ACGGAATTCCCAAGGATGCAGTCA -ACGGAATTCCCAAGGATGGATCCA -ACGGAATTCCCAAGGATGACGACA -ACGGAATTCCCAAGGATGAGCTCA -ACGGAATTCCCAAGGATGTCACGT -ACGGAATTCCCAAGGATGCGTAGT -ACGGAATTCCCAAGGATGGTCAGT -ACGGAATTCCCAAGGATGGAAGGT -ACGGAATTCCCAAGGATGAACCGT -ACGGAATTCCCAAGGATGTTGTGC -ACGGAATTCCCAAGGATGCTAAGC -ACGGAATTCCCAAGGATGACTAGC -ACGGAATTCCCAAGGATGAGATGC -ACGGAATTCCCAAGGATGTGAAGG -ACGGAATTCCCAAGGATGCAATGG -ACGGAATTCCCAAGGATGATGAGG -ACGGAATTCCCAAGGATGAATGGG -ACGGAATTCCCAAGGATGTCCTGA -ACGGAATTCCCAAGGATGTAGCGA -ACGGAATTCCCAAGGATGCACAGA -ACGGAATTCCCAAGGATGGCAAGA -ACGGAATTCCCAAGGATGGGTTGA -ACGGAATTCCCAAGGATGTCCGAT -ACGGAATTCCCAAGGATGTGGCAT -ACGGAATTCCCAAGGATGCGAGAT -ACGGAATTCCCAAGGATGTACCAC -ACGGAATTCCCAAGGATGCAGAAC -ACGGAATTCCCAAGGATGGTCTAC -ACGGAATTCCCAAGGATGACGTAC -ACGGAATTCCCAAGGATGAGTGAC -ACGGAATTCCCAAGGATGCTGTAG -ACGGAATTCCCAAGGATGCCTAAG -ACGGAATTCCCAAGGATGGTTCAG -ACGGAATTCCCAAGGATGGCATAG -ACGGAATTCCCAAGGATGGACAAG -ACGGAATTCCCAAGGATGAAGCAG -ACGGAATTCCCAAGGATGCGTCAA -ACGGAATTCCCAAGGATGGCTGAA -ACGGAATTCCCAAGGATGAGTACG -ACGGAATTCCCAAGGATGATCCGA -ACGGAATTCCCAAGGATGATGGGA -ACGGAATTCCCAAGGATGGTGCAA -ACGGAATTCCCAAGGATGGAGGAA -ACGGAATTCCCAAGGATGCAGGTA -ACGGAATTCCCAAGGATGGACTCT -ACGGAATTCCCAAGGATGAGTCCT -ACGGAATTCCCAAGGATGTAAGCC -ACGGAATTCCCAAGGATGATAGCC -ACGGAATTCCCAAGGATGTAACCG -ACGGAATTCCCAAGGATGATGCCA -ACGGAATTCCCAGGGAATGGAAAC -ACGGAATTCCCAGGGAATAACACC -ACGGAATTCCCAGGGAATATCGAG -ACGGAATTCCCAGGGAATCTCCTT -ACGGAATTCCCAGGGAATCCTGTT -ACGGAATTCCCAGGGAATCGGTTT -ACGGAATTCCCAGGGAATGTGGTT -ACGGAATTCCCAGGGAATGCCTTT -ACGGAATTCCCAGGGAATGGTCTT -ACGGAATTCCCAGGGAATACGCTT -ACGGAATTCCCAGGGAATAGCGTT -ACGGAATTCCCAGGGAATTTCGTC -ACGGAATTCCCAGGGAATTCTCTC -ACGGAATTCCCAGGGAATTGGATC -ACGGAATTCCCAGGGAATCACTTC -ACGGAATTCCCAGGGAATGTACTC -ACGGAATTCCCAGGGAATGATGTC -ACGGAATTCCCAGGGAATACAGTC -ACGGAATTCCCAGGGAATTTGCTG -ACGGAATTCCCAGGGAATTCCATG -ACGGAATTCCCAGGGAATTGTGTG -ACGGAATTCCCAGGGAATCTAGTG -ACGGAATTCCCAGGGAATCATCTG -ACGGAATTCCCAGGGAATGAGTTG -ACGGAATTCCCAGGGAATAGACTG -ACGGAATTCCCAGGGAATTCGGTA -ACGGAATTCCCAGGGAATTGCCTA -ACGGAATTCCCAGGGAATCCACTA -ACGGAATTCCCAGGGAATGGAGTA -ACGGAATTCCCAGGGAATTCGTCT -ACGGAATTCCCAGGGAATTGCACT -ACGGAATTCCCAGGGAATCTGACT -ACGGAATTCCCAGGGAATCAACCT -ACGGAATTCCCAGGGAATGCTACT -ACGGAATTCCCAGGGAATGGATCT -ACGGAATTCCCAGGGAATAAGGCT -ACGGAATTCCCAGGGAATTCAACC -ACGGAATTCCCAGGGAATTGTTCC -ACGGAATTCCCAGGGAATATTCCC -ACGGAATTCCCAGGGAATTTCTCG -ACGGAATTCCCAGGGAATTAGACG -ACGGAATTCCCAGGGAATGTAACG -ACGGAATTCCCAGGGAATACTTCG -ACGGAATTCCCAGGGAATTACGCA -ACGGAATTCCCAGGGAATCTTGCA -ACGGAATTCCCAGGGAATCGAACA -ACGGAATTCCCAGGGAATCAGTCA -ACGGAATTCCCAGGGAATGATCCA -ACGGAATTCCCAGGGAATACGACA -ACGGAATTCCCAGGGAATAGCTCA -ACGGAATTCCCAGGGAATTCACGT -ACGGAATTCCCAGGGAATCGTAGT -ACGGAATTCCCAGGGAATGTCAGT -ACGGAATTCCCAGGGAATGAAGGT -ACGGAATTCCCAGGGAATAACCGT -ACGGAATTCCCAGGGAATTTGTGC -ACGGAATTCCCAGGGAATCTAAGC -ACGGAATTCCCAGGGAATACTAGC -ACGGAATTCCCAGGGAATAGATGC -ACGGAATTCCCAGGGAATTGAAGG -ACGGAATTCCCAGGGAATCAATGG -ACGGAATTCCCAGGGAATATGAGG -ACGGAATTCCCAGGGAATAATGGG -ACGGAATTCCCAGGGAATTCCTGA -ACGGAATTCCCAGGGAATTAGCGA -ACGGAATTCCCAGGGAATCACAGA -ACGGAATTCCCAGGGAATGCAAGA -ACGGAATTCCCAGGGAATGGTTGA -ACGGAATTCCCAGGGAATTCCGAT -ACGGAATTCCCAGGGAATTGGCAT -ACGGAATTCCCAGGGAATCGAGAT -ACGGAATTCCCAGGGAATTACCAC -ACGGAATTCCCAGGGAATCAGAAC -ACGGAATTCCCAGGGAATGTCTAC -ACGGAATTCCCAGGGAATACGTAC -ACGGAATTCCCAGGGAATAGTGAC -ACGGAATTCCCAGGGAATCTGTAG -ACGGAATTCCCAGGGAATCCTAAG -ACGGAATTCCCAGGGAATGTTCAG -ACGGAATTCCCAGGGAATGCATAG -ACGGAATTCCCAGGGAATGACAAG -ACGGAATTCCCAGGGAATAAGCAG -ACGGAATTCCCAGGGAATCGTCAA -ACGGAATTCCCAGGGAATGCTGAA -ACGGAATTCCCAGGGAATAGTACG -ACGGAATTCCCAGGGAATATCCGA -ACGGAATTCCCAGGGAATATGGGA -ACGGAATTCCCAGGGAATGTGCAA -ACGGAATTCCCAGGGAATGAGGAA -ACGGAATTCCCAGGGAATCAGGTA -ACGGAATTCCCAGGGAATGACTCT -ACGGAATTCCCAGGGAATAGTCCT -ACGGAATTCCCAGGGAATTAAGCC -ACGGAATTCCCAGGGAATATAGCC -ACGGAATTCCCAGGGAATTAACCG -ACGGAATTCCCAGGGAATATGCCA -ACGGAATTCCCATGATCCGGAAAC -ACGGAATTCCCATGATCCAACACC -ACGGAATTCCCATGATCCATCGAG -ACGGAATTCCCATGATCCCTCCTT -ACGGAATTCCCATGATCCCCTGTT -ACGGAATTCCCATGATCCCGGTTT -ACGGAATTCCCATGATCCGTGGTT -ACGGAATTCCCATGATCCGCCTTT -ACGGAATTCCCATGATCCGGTCTT -ACGGAATTCCCATGATCCACGCTT -ACGGAATTCCCATGATCCAGCGTT -ACGGAATTCCCATGATCCTTCGTC -ACGGAATTCCCATGATCCTCTCTC -ACGGAATTCCCATGATCCTGGATC -ACGGAATTCCCATGATCCCACTTC -ACGGAATTCCCATGATCCGTACTC -ACGGAATTCCCATGATCCGATGTC -ACGGAATTCCCATGATCCACAGTC -ACGGAATTCCCATGATCCTTGCTG -ACGGAATTCCCATGATCCTCCATG -ACGGAATTCCCATGATCCTGTGTG -ACGGAATTCCCATGATCCCTAGTG -ACGGAATTCCCATGATCCCATCTG -ACGGAATTCCCATGATCCGAGTTG -ACGGAATTCCCATGATCCAGACTG -ACGGAATTCCCATGATCCTCGGTA -ACGGAATTCCCATGATCCTGCCTA -ACGGAATTCCCATGATCCCCACTA -ACGGAATTCCCATGATCCGGAGTA -ACGGAATTCCCATGATCCTCGTCT -ACGGAATTCCCATGATCCTGCACT -ACGGAATTCCCATGATCCCTGACT -ACGGAATTCCCATGATCCCAACCT -ACGGAATTCCCATGATCCGCTACT -ACGGAATTCCCATGATCCGGATCT -ACGGAATTCCCATGATCCAAGGCT -ACGGAATTCCCATGATCCTCAACC -ACGGAATTCCCATGATCCTGTTCC -ACGGAATTCCCATGATCCATTCCC -ACGGAATTCCCATGATCCTTCTCG -ACGGAATTCCCATGATCCTAGACG -ACGGAATTCCCATGATCCGTAACG -ACGGAATTCCCATGATCCACTTCG -ACGGAATTCCCATGATCCTACGCA -ACGGAATTCCCATGATCCCTTGCA -ACGGAATTCCCATGATCCCGAACA -ACGGAATTCCCATGATCCCAGTCA -ACGGAATTCCCATGATCCGATCCA -ACGGAATTCCCATGATCCACGACA -ACGGAATTCCCATGATCCAGCTCA -ACGGAATTCCCATGATCCTCACGT -ACGGAATTCCCATGATCCCGTAGT -ACGGAATTCCCATGATCCGTCAGT -ACGGAATTCCCATGATCCGAAGGT -ACGGAATTCCCATGATCCAACCGT -ACGGAATTCCCATGATCCTTGTGC -ACGGAATTCCCATGATCCCTAAGC -ACGGAATTCCCATGATCCACTAGC -ACGGAATTCCCATGATCCAGATGC -ACGGAATTCCCATGATCCTGAAGG -ACGGAATTCCCATGATCCCAATGG -ACGGAATTCCCATGATCCATGAGG -ACGGAATTCCCATGATCCAATGGG -ACGGAATTCCCATGATCCTCCTGA -ACGGAATTCCCATGATCCTAGCGA -ACGGAATTCCCATGATCCCACAGA -ACGGAATTCCCATGATCCGCAAGA -ACGGAATTCCCATGATCCGGTTGA -ACGGAATTCCCATGATCCTCCGAT -ACGGAATTCCCATGATCCTGGCAT -ACGGAATTCCCATGATCCCGAGAT -ACGGAATTCCCATGATCCTACCAC -ACGGAATTCCCATGATCCCAGAAC -ACGGAATTCCCATGATCCGTCTAC -ACGGAATTCCCATGATCCACGTAC -ACGGAATTCCCATGATCCAGTGAC -ACGGAATTCCCATGATCCCTGTAG -ACGGAATTCCCATGATCCCCTAAG -ACGGAATTCCCATGATCCGTTCAG -ACGGAATTCCCATGATCCGCATAG -ACGGAATTCCCATGATCCGACAAG -ACGGAATTCCCATGATCCAAGCAG -ACGGAATTCCCATGATCCCGTCAA -ACGGAATTCCCATGATCCGCTGAA -ACGGAATTCCCATGATCCAGTACG -ACGGAATTCCCATGATCCATCCGA -ACGGAATTCCCATGATCCATGGGA -ACGGAATTCCCATGATCCGTGCAA -ACGGAATTCCCATGATCCGAGGAA -ACGGAATTCCCATGATCCCAGGTA -ACGGAATTCCCATGATCCGACTCT -ACGGAATTCCCATGATCCAGTCCT -ACGGAATTCCCATGATCCTAAGCC -ACGGAATTCCCATGATCCATAGCC -ACGGAATTCCCATGATCCTAACCG -ACGGAATTCCCATGATCCATGCCA -ACGGAATTCCCACGATAGGGAAAC -ACGGAATTCCCACGATAGAACACC -ACGGAATTCCCACGATAGATCGAG -ACGGAATTCCCACGATAGCTCCTT -ACGGAATTCCCACGATAGCCTGTT -ACGGAATTCCCACGATAGCGGTTT -ACGGAATTCCCACGATAGGTGGTT -ACGGAATTCCCACGATAGGCCTTT -ACGGAATTCCCACGATAGGGTCTT -ACGGAATTCCCACGATAGACGCTT -ACGGAATTCCCACGATAGAGCGTT -ACGGAATTCCCACGATAGTTCGTC -ACGGAATTCCCACGATAGTCTCTC -ACGGAATTCCCACGATAGTGGATC -ACGGAATTCCCACGATAGCACTTC -ACGGAATTCCCACGATAGGTACTC -ACGGAATTCCCACGATAGGATGTC -ACGGAATTCCCACGATAGACAGTC -ACGGAATTCCCACGATAGTTGCTG -ACGGAATTCCCACGATAGTCCATG -ACGGAATTCCCACGATAGTGTGTG -ACGGAATTCCCACGATAGCTAGTG -ACGGAATTCCCACGATAGCATCTG -ACGGAATTCCCACGATAGGAGTTG -ACGGAATTCCCACGATAGAGACTG -ACGGAATTCCCACGATAGTCGGTA -ACGGAATTCCCACGATAGTGCCTA -ACGGAATTCCCACGATAGCCACTA -ACGGAATTCCCACGATAGGGAGTA -ACGGAATTCCCACGATAGTCGTCT -ACGGAATTCCCACGATAGTGCACT -ACGGAATTCCCACGATAGCTGACT -ACGGAATTCCCACGATAGCAACCT -ACGGAATTCCCACGATAGGCTACT -ACGGAATTCCCACGATAGGGATCT -ACGGAATTCCCACGATAGAAGGCT -ACGGAATTCCCACGATAGTCAACC -ACGGAATTCCCACGATAGTGTTCC -ACGGAATTCCCACGATAGATTCCC -ACGGAATTCCCACGATAGTTCTCG -ACGGAATTCCCACGATAGTAGACG -ACGGAATTCCCACGATAGGTAACG -ACGGAATTCCCACGATAGACTTCG -ACGGAATTCCCACGATAGTACGCA -ACGGAATTCCCACGATAGCTTGCA -ACGGAATTCCCACGATAGCGAACA -ACGGAATTCCCACGATAGCAGTCA -ACGGAATTCCCACGATAGGATCCA -ACGGAATTCCCACGATAGACGACA -ACGGAATTCCCACGATAGAGCTCA -ACGGAATTCCCACGATAGTCACGT -ACGGAATTCCCACGATAGCGTAGT -ACGGAATTCCCACGATAGGTCAGT -ACGGAATTCCCACGATAGGAAGGT -ACGGAATTCCCACGATAGAACCGT -ACGGAATTCCCACGATAGTTGTGC -ACGGAATTCCCACGATAGCTAAGC -ACGGAATTCCCACGATAGACTAGC -ACGGAATTCCCACGATAGAGATGC -ACGGAATTCCCACGATAGTGAAGG -ACGGAATTCCCACGATAGCAATGG -ACGGAATTCCCACGATAGATGAGG -ACGGAATTCCCACGATAGAATGGG -ACGGAATTCCCACGATAGTCCTGA -ACGGAATTCCCACGATAGTAGCGA -ACGGAATTCCCACGATAGCACAGA -ACGGAATTCCCACGATAGGCAAGA -ACGGAATTCCCACGATAGGGTTGA -ACGGAATTCCCACGATAGTCCGAT -ACGGAATTCCCACGATAGTGGCAT -ACGGAATTCCCACGATAGCGAGAT -ACGGAATTCCCACGATAGTACCAC -ACGGAATTCCCACGATAGCAGAAC -ACGGAATTCCCACGATAGGTCTAC -ACGGAATTCCCACGATAGACGTAC -ACGGAATTCCCACGATAGAGTGAC -ACGGAATTCCCACGATAGCTGTAG -ACGGAATTCCCACGATAGCCTAAG -ACGGAATTCCCACGATAGGTTCAG -ACGGAATTCCCACGATAGGCATAG -ACGGAATTCCCACGATAGGACAAG -ACGGAATTCCCACGATAGAAGCAG -ACGGAATTCCCACGATAGCGTCAA -ACGGAATTCCCACGATAGGCTGAA -ACGGAATTCCCACGATAGAGTACG -ACGGAATTCCCACGATAGATCCGA -ACGGAATTCCCACGATAGATGGGA -ACGGAATTCCCACGATAGGTGCAA -ACGGAATTCCCACGATAGGAGGAA -ACGGAATTCCCACGATAGCAGGTA -ACGGAATTCCCACGATAGGACTCT -ACGGAATTCCCACGATAGAGTCCT -ACGGAATTCCCACGATAGTAAGCC -ACGGAATTCCCACGATAGATAGCC -ACGGAATTCCCACGATAGTAACCG -ACGGAATTCCCACGATAGATGCCA -ACGGAATTCCCAAGACACGGAAAC -ACGGAATTCCCAAGACACAACACC -ACGGAATTCCCAAGACACATCGAG -ACGGAATTCCCAAGACACCTCCTT -ACGGAATTCCCAAGACACCCTGTT -ACGGAATTCCCAAGACACCGGTTT -ACGGAATTCCCAAGACACGTGGTT -ACGGAATTCCCAAGACACGCCTTT -ACGGAATTCCCAAGACACGGTCTT -ACGGAATTCCCAAGACACACGCTT -ACGGAATTCCCAAGACACAGCGTT -ACGGAATTCCCAAGACACTTCGTC -ACGGAATTCCCAAGACACTCTCTC -ACGGAATTCCCAAGACACTGGATC -ACGGAATTCCCAAGACACCACTTC -ACGGAATTCCCAAGACACGTACTC -ACGGAATTCCCAAGACACGATGTC -ACGGAATTCCCAAGACACACAGTC -ACGGAATTCCCAAGACACTTGCTG -ACGGAATTCCCAAGACACTCCATG -ACGGAATTCCCAAGACACTGTGTG -ACGGAATTCCCAAGACACCTAGTG -ACGGAATTCCCAAGACACCATCTG -ACGGAATTCCCAAGACACGAGTTG -ACGGAATTCCCAAGACACAGACTG -ACGGAATTCCCAAGACACTCGGTA -ACGGAATTCCCAAGACACTGCCTA -ACGGAATTCCCAAGACACCCACTA -ACGGAATTCCCAAGACACGGAGTA -ACGGAATTCCCAAGACACTCGTCT -ACGGAATTCCCAAGACACTGCACT -ACGGAATTCCCAAGACACCTGACT -ACGGAATTCCCAAGACACCAACCT -ACGGAATTCCCAAGACACGCTACT -ACGGAATTCCCAAGACACGGATCT -ACGGAATTCCCAAGACACAAGGCT -ACGGAATTCCCAAGACACTCAACC -ACGGAATTCCCAAGACACTGTTCC -ACGGAATTCCCAAGACACATTCCC -ACGGAATTCCCAAGACACTTCTCG -ACGGAATTCCCAAGACACTAGACG -ACGGAATTCCCAAGACACGTAACG -ACGGAATTCCCAAGACACACTTCG -ACGGAATTCCCAAGACACTACGCA -ACGGAATTCCCAAGACACCTTGCA -ACGGAATTCCCAAGACACCGAACA -ACGGAATTCCCAAGACACCAGTCA -ACGGAATTCCCAAGACACGATCCA -ACGGAATTCCCAAGACACACGACA -ACGGAATTCCCAAGACACAGCTCA -ACGGAATTCCCAAGACACTCACGT -ACGGAATTCCCAAGACACCGTAGT -ACGGAATTCCCAAGACACGTCAGT -ACGGAATTCCCAAGACACGAAGGT -ACGGAATTCCCAAGACACAACCGT -ACGGAATTCCCAAGACACTTGTGC -ACGGAATTCCCAAGACACCTAAGC -ACGGAATTCCCAAGACACACTAGC -ACGGAATTCCCAAGACACAGATGC -ACGGAATTCCCAAGACACTGAAGG -ACGGAATTCCCAAGACACCAATGG -ACGGAATTCCCAAGACACATGAGG -ACGGAATTCCCAAGACACAATGGG -ACGGAATTCCCAAGACACTCCTGA -ACGGAATTCCCAAGACACTAGCGA -ACGGAATTCCCAAGACACCACAGA -ACGGAATTCCCAAGACACGCAAGA -ACGGAATTCCCAAGACACGGTTGA -ACGGAATTCCCAAGACACTCCGAT -ACGGAATTCCCAAGACACTGGCAT -ACGGAATTCCCAAGACACCGAGAT -ACGGAATTCCCAAGACACTACCAC -ACGGAATTCCCAAGACACCAGAAC -ACGGAATTCCCAAGACACGTCTAC -ACGGAATTCCCAAGACACACGTAC -ACGGAATTCCCAAGACACAGTGAC -ACGGAATTCCCAAGACACCTGTAG -ACGGAATTCCCAAGACACCCTAAG -ACGGAATTCCCAAGACACGTTCAG -ACGGAATTCCCAAGACACGCATAG -ACGGAATTCCCAAGACACGACAAG -ACGGAATTCCCAAGACACAAGCAG -ACGGAATTCCCAAGACACCGTCAA -ACGGAATTCCCAAGACACGCTGAA -ACGGAATTCCCAAGACACAGTACG -ACGGAATTCCCAAGACACATCCGA -ACGGAATTCCCAAGACACATGGGA -ACGGAATTCCCAAGACACGTGCAA -ACGGAATTCCCAAGACACGAGGAA -ACGGAATTCCCAAGACACCAGGTA -ACGGAATTCCCAAGACACGACTCT -ACGGAATTCCCAAGACACAGTCCT -ACGGAATTCCCAAGACACTAAGCC -ACGGAATTCCCAAGACACATAGCC -ACGGAATTCCCAAGACACTAACCG -ACGGAATTCCCAAGACACATGCCA -ACGGAATTCCCAAGAGCAGGAAAC -ACGGAATTCCCAAGAGCAAACACC -ACGGAATTCCCAAGAGCAATCGAG -ACGGAATTCCCAAGAGCACTCCTT -ACGGAATTCCCAAGAGCACCTGTT -ACGGAATTCCCAAGAGCACGGTTT -ACGGAATTCCCAAGAGCAGTGGTT -ACGGAATTCCCAAGAGCAGCCTTT -ACGGAATTCCCAAGAGCAGGTCTT -ACGGAATTCCCAAGAGCAACGCTT -ACGGAATTCCCAAGAGCAAGCGTT -ACGGAATTCCCAAGAGCATTCGTC -ACGGAATTCCCAAGAGCATCTCTC -ACGGAATTCCCAAGAGCATGGATC -ACGGAATTCCCAAGAGCACACTTC -ACGGAATTCCCAAGAGCAGTACTC -ACGGAATTCCCAAGAGCAGATGTC -ACGGAATTCCCAAGAGCAACAGTC -ACGGAATTCCCAAGAGCATTGCTG -ACGGAATTCCCAAGAGCATCCATG -ACGGAATTCCCAAGAGCATGTGTG -ACGGAATTCCCAAGAGCACTAGTG -ACGGAATTCCCAAGAGCACATCTG -ACGGAATTCCCAAGAGCAGAGTTG -ACGGAATTCCCAAGAGCAAGACTG -ACGGAATTCCCAAGAGCATCGGTA -ACGGAATTCCCAAGAGCATGCCTA -ACGGAATTCCCAAGAGCACCACTA -ACGGAATTCCCAAGAGCAGGAGTA -ACGGAATTCCCAAGAGCATCGTCT -ACGGAATTCCCAAGAGCATGCACT -ACGGAATTCCCAAGAGCACTGACT -ACGGAATTCCCAAGAGCACAACCT -ACGGAATTCCCAAGAGCAGCTACT -ACGGAATTCCCAAGAGCAGGATCT -ACGGAATTCCCAAGAGCAAAGGCT -ACGGAATTCCCAAGAGCATCAACC -ACGGAATTCCCAAGAGCATGTTCC -ACGGAATTCCCAAGAGCAATTCCC -ACGGAATTCCCAAGAGCATTCTCG -ACGGAATTCCCAAGAGCATAGACG -ACGGAATTCCCAAGAGCAGTAACG -ACGGAATTCCCAAGAGCAACTTCG -ACGGAATTCCCAAGAGCATACGCA -ACGGAATTCCCAAGAGCACTTGCA -ACGGAATTCCCAAGAGCACGAACA -ACGGAATTCCCAAGAGCACAGTCA -ACGGAATTCCCAAGAGCAGATCCA -ACGGAATTCCCAAGAGCAACGACA -ACGGAATTCCCAAGAGCAAGCTCA -ACGGAATTCCCAAGAGCATCACGT -ACGGAATTCCCAAGAGCACGTAGT -ACGGAATTCCCAAGAGCAGTCAGT -ACGGAATTCCCAAGAGCAGAAGGT -ACGGAATTCCCAAGAGCAAACCGT -ACGGAATTCCCAAGAGCATTGTGC -ACGGAATTCCCAAGAGCACTAAGC -ACGGAATTCCCAAGAGCAACTAGC -ACGGAATTCCCAAGAGCAAGATGC -ACGGAATTCCCAAGAGCATGAAGG -ACGGAATTCCCAAGAGCACAATGG -ACGGAATTCCCAAGAGCAATGAGG -ACGGAATTCCCAAGAGCAAATGGG -ACGGAATTCCCAAGAGCATCCTGA -ACGGAATTCCCAAGAGCATAGCGA -ACGGAATTCCCAAGAGCACACAGA -ACGGAATTCCCAAGAGCAGCAAGA -ACGGAATTCCCAAGAGCAGGTTGA -ACGGAATTCCCAAGAGCATCCGAT -ACGGAATTCCCAAGAGCATGGCAT -ACGGAATTCCCAAGAGCACGAGAT -ACGGAATTCCCAAGAGCATACCAC -ACGGAATTCCCAAGAGCACAGAAC -ACGGAATTCCCAAGAGCAGTCTAC -ACGGAATTCCCAAGAGCAACGTAC -ACGGAATTCCCAAGAGCAAGTGAC -ACGGAATTCCCAAGAGCACTGTAG -ACGGAATTCCCAAGAGCACCTAAG -ACGGAATTCCCAAGAGCAGTTCAG -ACGGAATTCCCAAGAGCAGCATAG -ACGGAATTCCCAAGAGCAGACAAG -ACGGAATTCCCAAGAGCAAAGCAG -ACGGAATTCCCAAGAGCACGTCAA -ACGGAATTCCCAAGAGCAGCTGAA -ACGGAATTCCCAAGAGCAAGTACG -ACGGAATTCCCAAGAGCAATCCGA -ACGGAATTCCCAAGAGCAATGGGA -ACGGAATTCCCAAGAGCAGTGCAA -ACGGAATTCCCAAGAGCAGAGGAA -ACGGAATTCCCAAGAGCACAGGTA -ACGGAATTCCCAAGAGCAGACTCT -ACGGAATTCCCAAGAGCAAGTCCT -ACGGAATTCCCAAGAGCATAAGCC -ACGGAATTCCCAAGAGCAATAGCC -ACGGAATTCCCAAGAGCATAACCG -ACGGAATTCCCAAGAGCAATGCCA -ACGGAATTCCCATGAGGTGGAAAC -ACGGAATTCCCATGAGGTAACACC -ACGGAATTCCCATGAGGTATCGAG -ACGGAATTCCCATGAGGTCTCCTT -ACGGAATTCCCATGAGGTCCTGTT -ACGGAATTCCCATGAGGTCGGTTT -ACGGAATTCCCATGAGGTGTGGTT -ACGGAATTCCCATGAGGTGCCTTT -ACGGAATTCCCATGAGGTGGTCTT -ACGGAATTCCCATGAGGTACGCTT -ACGGAATTCCCATGAGGTAGCGTT -ACGGAATTCCCATGAGGTTTCGTC -ACGGAATTCCCATGAGGTTCTCTC -ACGGAATTCCCATGAGGTTGGATC -ACGGAATTCCCATGAGGTCACTTC -ACGGAATTCCCATGAGGTGTACTC -ACGGAATTCCCATGAGGTGATGTC -ACGGAATTCCCATGAGGTACAGTC -ACGGAATTCCCATGAGGTTTGCTG -ACGGAATTCCCATGAGGTTCCATG -ACGGAATTCCCATGAGGTTGTGTG -ACGGAATTCCCATGAGGTCTAGTG -ACGGAATTCCCATGAGGTCATCTG -ACGGAATTCCCATGAGGTGAGTTG -ACGGAATTCCCATGAGGTAGACTG -ACGGAATTCCCATGAGGTTCGGTA -ACGGAATTCCCATGAGGTTGCCTA -ACGGAATTCCCATGAGGTCCACTA -ACGGAATTCCCATGAGGTGGAGTA -ACGGAATTCCCATGAGGTTCGTCT -ACGGAATTCCCATGAGGTTGCACT -ACGGAATTCCCATGAGGTCTGACT -ACGGAATTCCCATGAGGTCAACCT -ACGGAATTCCCATGAGGTGCTACT -ACGGAATTCCCATGAGGTGGATCT -ACGGAATTCCCATGAGGTAAGGCT -ACGGAATTCCCATGAGGTTCAACC -ACGGAATTCCCATGAGGTTGTTCC -ACGGAATTCCCATGAGGTATTCCC -ACGGAATTCCCATGAGGTTTCTCG -ACGGAATTCCCATGAGGTTAGACG -ACGGAATTCCCATGAGGTGTAACG -ACGGAATTCCCATGAGGTACTTCG -ACGGAATTCCCATGAGGTTACGCA -ACGGAATTCCCATGAGGTCTTGCA -ACGGAATTCCCATGAGGTCGAACA -ACGGAATTCCCATGAGGTCAGTCA -ACGGAATTCCCATGAGGTGATCCA -ACGGAATTCCCATGAGGTACGACA -ACGGAATTCCCATGAGGTAGCTCA -ACGGAATTCCCATGAGGTTCACGT -ACGGAATTCCCATGAGGTCGTAGT -ACGGAATTCCCATGAGGTGTCAGT -ACGGAATTCCCATGAGGTGAAGGT -ACGGAATTCCCATGAGGTAACCGT -ACGGAATTCCCATGAGGTTTGTGC -ACGGAATTCCCATGAGGTCTAAGC -ACGGAATTCCCATGAGGTACTAGC -ACGGAATTCCCATGAGGTAGATGC -ACGGAATTCCCATGAGGTTGAAGG -ACGGAATTCCCATGAGGTCAATGG -ACGGAATTCCCATGAGGTATGAGG -ACGGAATTCCCATGAGGTAATGGG -ACGGAATTCCCATGAGGTTCCTGA -ACGGAATTCCCATGAGGTTAGCGA -ACGGAATTCCCATGAGGTCACAGA -ACGGAATTCCCATGAGGTGCAAGA -ACGGAATTCCCATGAGGTGGTTGA -ACGGAATTCCCATGAGGTTCCGAT -ACGGAATTCCCATGAGGTTGGCAT -ACGGAATTCCCATGAGGTCGAGAT -ACGGAATTCCCATGAGGTTACCAC -ACGGAATTCCCATGAGGTCAGAAC -ACGGAATTCCCATGAGGTGTCTAC -ACGGAATTCCCATGAGGTACGTAC -ACGGAATTCCCATGAGGTAGTGAC -ACGGAATTCCCATGAGGTCTGTAG -ACGGAATTCCCATGAGGTCCTAAG -ACGGAATTCCCATGAGGTGTTCAG -ACGGAATTCCCATGAGGTGCATAG -ACGGAATTCCCATGAGGTGACAAG -ACGGAATTCCCATGAGGTAAGCAG -ACGGAATTCCCATGAGGTCGTCAA -ACGGAATTCCCATGAGGTGCTGAA -ACGGAATTCCCATGAGGTAGTACG -ACGGAATTCCCATGAGGTATCCGA -ACGGAATTCCCATGAGGTATGGGA -ACGGAATTCCCATGAGGTGTGCAA -ACGGAATTCCCATGAGGTGAGGAA -ACGGAATTCCCATGAGGTCAGGTA -ACGGAATTCCCATGAGGTGACTCT -ACGGAATTCCCATGAGGTAGTCCT -ACGGAATTCCCATGAGGTTAAGCC -ACGGAATTCCCATGAGGTATAGCC -ACGGAATTCCCATGAGGTTAACCG -ACGGAATTCCCATGAGGTATGCCA -ACGGAATTCCCAGATTCCGGAAAC -ACGGAATTCCCAGATTCCAACACC -ACGGAATTCCCAGATTCCATCGAG -ACGGAATTCCCAGATTCCCTCCTT -ACGGAATTCCCAGATTCCCCTGTT -ACGGAATTCCCAGATTCCCGGTTT -ACGGAATTCCCAGATTCCGTGGTT -ACGGAATTCCCAGATTCCGCCTTT -ACGGAATTCCCAGATTCCGGTCTT -ACGGAATTCCCAGATTCCACGCTT -ACGGAATTCCCAGATTCCAGCGTT -ACGGAATTCCCAGATTCCTTCGTC -ACGGAATTCCCAGATTCCTCTCTC -ACGGAATTCCCAGATTCCTGGATC -ACGGAATTCCCAGATTCCCACTTC -ACGGAATTCCCAGATTCCGTACTC -ACGGAATTCCCAGATTCCGATGTC -ACGGAATTCCCAGATTCCACAGTC -ACGGAATTCCCAGATTCCTTGCTG -ACGGAATTCCCAGATTCCTCCATG -ACGGAATTCCCAGATTCCTGTGTG -ACGGAATTCCCAGATTCCCTAGTG -ACGGAATTCCCAGATTCCCATCTG -ACGGAATTCCCAGATTCCGAGTTG -ACGGAATTCCCAGATTCCAGACTG -ACGGAATTCCCAGATTCCTCGGTA -ACGGAATTCCCAGATTCCTGCCTA -ACGGAATTCCCAGATTCCCCACTA -ACGGAATTCCCAGATTCCGGAGTA -ACGGAATTCCCAGATTCCTCGTCT -ACGGAATTCCCAGATTCCTGCACT -ACGGAATTCCCAGATTCCCTGACT -ACGGAATTCCCAGATTCCCAACCT -ACGGAATTCCCAGATTCCGCTACT -ACGGAATTCCCAGATTCCGGATCT -ACGGAATTCCCAGATTCCAAGGCT -ACGGAATTCCCAGATTCCTCAACC -ACGGAATTCCCAGATTCCTGTTCC -ACGGAATTCCCAGATTCCATTCCC -ACGGAATTCCCAGATTCCTTCTCG -ACGGAATTCCCAGATTCCTAGACG -ACGGAATTCCCAGATTCCGTAACG -ACGGAATTCCCAGATTCCACTTCG -ACGGAATTCCCAGATTCCTACGCA -ACGGAATTCCCAGATTCCCTTGCA -ACGGAATTCCCAGATTCCCGAACA -ACGGAATTCCCAGATTCCCAGTCA -ACGGAATTCCCAGATTCCGATCCA -ACGGAATTCCCAGATTCCACGACA -ACGGAATTCCCAGATTCCAGCTCA -ACGGAATTCCCAGATTCCTCACGT -ACGGAATTCCCAGATTCCCGTAGT -ACGGAATTCCCAGATTCCGTCAGT -ACGGAATTCCCAGATTCCGAAGGT -ACGGAATTCCCAGATTCCAACCGT -ACGGAATTCCCAGATTCCTTGTGC -ACGGAATTCCCAGATTCCCTAAGC -ACGGAATTCCCAGATTCCACTAGC -ACGGAATTCCCAGATTCCAGATGC -ACGGAATTCCCAGATTCCTGAAGG -ACGGAATTCCCAGATTCCCAATGG -ACGGAATTCCCAGATTCCATGAGG -ACGGAATTCCCAGATTCCAATGGG -ACGGAATTCCCAGATTCCTCCTGA -ACGGAATTCCCAGATTCCTAGCGA -ACGGAATTCCCAGATTCCCACAGA -ACGGAATTCCCAGATTCCGCAAGA -ACGGAATTCCCAGATTCCGGTTGA -ACGGAATTCCCAGATTCCTCCGAT -ACGGAATTCCCAGATTCCTGGCAT -ACGGAATTCCCAGATTCCCGAGAT -ACGGAATTCCCAGATTCCTACCAC -ACGGAATTCCCAGATTCCCAGAAC -ACGGAATTCCCAGATTCCGTCTAC -ACGGAATTCCCAGATTCCACGTAC -ACGGAATTCCCAGATTCCAGTGAC -ACGGAATTCCCAGATTCCCTGTAG -ACGGAATTCCCAGATTCCCCTAAG -ACGGAATTCCCAGATTCCGTTCAG -ACGGAATTCCCAGATTCCGCATAG -ACGGAATTCCCAGATTCCGACAAG -ACGGAATTCCCAGATTCCAAGCAG -ACGGAATTCCCAGATTCCCGTCAA -ACGGAATTCCCAGATTCCGCTGAA -ACGGAATTCCCAGATTCCAGTACG -ACGGAATTCCCAGATTCCATCCGA -ACGGAATTCCCAGATTCCATGGGA -ACGGAATTCCCAGATTCCGTGCAA -ACGGAATTCCCAGATTCCGAGGAA -ACGGAATTCCCAGATTCCCAGGTA -ACGGAATTCCCAGATTCCGACTCT -ACGGAATTCCCAGATTCCAGTCCT -ACGGAATTCCCAGATTCCTAAGCC -ACGGAATTCCCAGATTCCATAGCC -ACGGAATTCCCAGATTCCTAACCG -ACGGAATTCCCAGATTCCATGCCA -ACGGAATTCCCACATTGGGGAAAC -ACGGAATTCCCACATTGGAACACC -ACGGAATTCCCACATTGGATCGAG -ACGGAATTCCCACATTGGCTCCTT -ACGGAATTCCCACATTGGCCTGTT -ACGGAATTCCCACATTGGCGGTTT -ACGGAATTCCCACATTGGGTGGTT -ACGGAATTCCCACATTGGGCCTTT -ACGGAATTCCCACATTGGGGTCTT -ACGGAATTCCCACATTGGACGCTT -ACGGAATTCCCACATTGGAGCGTT -ACGGAATTCCCACATTGGTTCGTC -ACGGAATTCCCACATTGGTCTCTC -ACGGAATTCCCACATTGGTGGATC -ACGGAATTCCCACATTGGCACTTC -ACGGAATTCCCACATTGGGTACTC -ACGGAATTCCCACATTGGGATGTC -ACGGAATTCCCACATTGGACAGTC -ACGGAATTCCCACATTGGTTGCTG -ACGGAATTCCCACATTGGTCCATG -ACGGAATTCCCACATTGGTGTGTG -ACGGAATTCCCACATTGGCTAGTG -ACGGAATTCCCACATTGGCATCTG -ACGGAATTCCCACATTGGGAGTTG -ACGGAATTCCCACATTGGAGACTG -ACGGAATTCCCACATTGGTCGGTA -ACGGAATTCCCACATTGGTGCCTA -ACGGAATTCCCACATTGGCCACTA -ACGGAATTCCCACATTGGGGAGTA -ACGGAATTCCCACATTGGTCGTCT -ACGGAATTCCCACATTGGTGCACT -ACGGAATTCCCACATTGGCTGACT -ACGGAATTCCCACATTGGCAACCT -ACGGAATTCCCACATTGGGCTACT -ACGGAATTCCCACATTGGGGATCT -ACGGAATTCCCACATTGGAAGGCT -ACGGAATTCCCACATTGGTCAACC -ACGGAATTCCCACATTGGTGTTCC -ACGGAATTCCCACATTGGATTCCC -ACGGAATTCCCACATTGGTTCTCG -ACGGAATTCCCACATTGGTAGACG -ACGGAATTCCCACATTGGGTAACG -ACGGAATTCCCACATTGGACTTCG -ACGGAATTCCCACATTGGTACGCA -ACGGAATTCCCACATTGGCTTGCA -ACGGAATTCCCACATTGGCGAACA -ACGGAATTCCCACATTGGCAGTCA -ACGGAATTCCCACATTGGGATCCA -ACGGAATTCCCACATTGGACGACA -ACGGAATTCCCACATTGGAGCTCA -ACGGAATTCCCACATTGGTCACGT -ACGGAATTCCCACATTGGCGTAGT -ACGGAATTCCCACATTGGGTCAGT -ACGGAATTCCCACATTGGGAAGGT -ACGGAATTCCCACATTGGAACCGT -ACGGAATTCCCACATTGGTTGTGC -ACGGAATTCCCACATTGGCTAAGC -ACGGAATTCCCACATTGGACTAGC -ACGGAATTCCCACATTGGAGATGC -ACGGAATTCCCACATTGGTGAAGG -ACGGAATTCCCACATTGGCAATGG -ACGGAATTCCCACATTGGATGAGG -ACGGAATTCCCACATTGGAATGGG -ACGGAATTCCCACATTGGTCCTGA -ACGGAATTCCCACATTGGTAGCGA -ACGGAATTCCCACATTGGCACAGA -ACGGAATTCCCACATTGGGCAAGA -ACGGAATTCCCACATTGGGGTTGA -ACGGAATTCCCACATTGGTCCGAT -ACGGAATTCCCACATTGGTGGCAT -ACGGAATTCCCACATTGGCGAGAT -ACGGAATTCCCACATTGGTACCAC -ACGGAATTCCCACATTGGCAGAAC -ACGGAATTCCCACATTGGGTCTAC -ACGGAATTCCCACATTGGACGTAC -ACGGAATTCCCACATTGGAGTGAC -ACGGAATTCCCACATTGGCTGTAG -ACGGAATTCCCACATTGGCCTAAG -ACGGAATTCCCACATTGGGTTCAG -ACGGAATTCCCACATTGGGCATAG -ACGGAATTCCCACATTGGGACAAG -ACGGAATTCCCACATTGGAAGCAG -ACGGAATTCCCACATTGGCGTCAA -ACGGAATTCCCACATTGGGCTGAA -ACGGAATTCCCACATTGGAGTACG -ACGGAATTCCCACATTGGATCCGA -ACGGAATTCCCACATTGGATGGGA -ACGGAATTCCCACATTGGGTGCAA -ACGGAATTCCCACATTGGGAGGAA -ACGGAATTCCCACATTGGCAGGTA -ACGGAATTCCCACATTGGGACTCT -ACGGAATTCCCACATTGGAGTCCT -ACGGAATTCCCACATTGGTAAGCC -ACGGAATTCCCACATTGGATAGCC -ACGGAATTCCCACATTGGTAACCG -ACGGAATTCCCACATTGGATGCCA -ACGGAATTCCCAGATCGAGGAAAC -ACGGAATTCCCAGATCGAAACACC -ACGGAATTCCCAGATCGAATCGAG -ACGGAATTCCCAGATCGACTCCTT -ACGGAATTCCCAGATCGACCTGTT -ACGGAATTCCCAGATCGACGGTTT -ACGGAATTCCCAGATCGAGTGGTT -ACGGAATTCCCAGATCGAGCCTTT -ACGGAATTCCCAGATCGAGGTCTT -ACGGAATTCCCAGATCGAACGCTT -ACGGAATTCCCAGATCGAAGCGTT -ACGGAATTCCCAGATCGATTCGTC -ACGGAATTCCCAGATCGATCTCTC -ACGGAATTCCCAGATCGATGGATC -ACGGAATTCCCAGATCGACACTTC -ACGGAATTCCCAGATCGAGTACTC -ACGGAATTCCCAGATCGAGATGTC -ACGGAATTCCCAGATCGAACAGTC -ACGGAATTCCCAGATCGATTGCTG -ACGGAATTCCCAGATCGATCCATG -ACGGAATTCCCAGATCGATGTGTG -ACGGAATTCCCAGATCGACTAGTG -ACGGAATTCCCAGATCGACATCTG -ACGGAATTCCCAGATCGAGAGTTG -ACGGAATTCCCAGATCGAAGACTG -ACGGAATTCCCAGATCGATCGGTA -ACGGAATTCCCAGATCGATGCCTA -ACGGAATTCCCAGATCGACCACTA -ACGGAATTCCCAGATCGAGGAGTA -ACGGAATTCCCAGATCGATCGTCT -ACGGAATTCCCAGATCGATGCACT -ACGGAATTCCCAGATCGACTGACT -ACGGAATTCCCAGATCGACAACCT -ACGGAATTCCCAGATCGAGCTACT -ACGGAATTCCCAGATCGAGGATCT -ACGGAATTCCCAGATCGAAAGGCT -ACGGAATTCCCAGATCGATCAACC -ACGGAATTCCCAGATCGATGTTCC -ACGGAATTCCCAGATCGAATTCCC -ACGGAATTCCCAGATCGATTCTCG -ACGGAATTCCCAGATCGATAGACG -ACGGAATTCCCAGATCGAGTAACG -ACGGAATTCCCAGATCGAACTTCG -ACGGAATTCCCAGATCGATACGCA -ACGGAATTCCCAGATCGACTTGCA -ACGGAATTCCCAGATCGACGAACA -ACGGAATTCCCAGATCGACAGTCA -ACGGAATTCCCAGATCGAGATCCA -ACGGAATTCCCAGATCGAACGACA -ACGGAATTCCCAGATCGAAGCTCA -ACGGAATTCCCAGATCGATCACGT -ACGGAATTCCCAGATCGACGTAGT -ACGGAATTCCCAGATCGAGTCAGT -ACGGAATTCCCAGATCGAGAAGGT -ACGGAATTCCCAGATCGAAACCGT -ACGGAATTCCCAGATCGATTGTGC -ACGGAATTCCCAGATCGACTAAGC -ACGGAATTCCCAGATCGAACTAGC -ACGGAATTCCCAGATCGAAGATGC -ACGGAATTCCCAGATCGATGAAGG -ACGGAATTCCCAGATCGACAATGG -ACGGAATTCCCAGATCGAATGAGG -ACGGAATTCCCAGATCGAAATGGG -ACGGAATTCCCAGATCGATCCTGA -ACGGAATTCCCAGATCGATAGCGA -ACGGAATTCCCAGATCGACACAGA -ACGGAATTCCCAGATCGAGCAAGA -ACGGAATTCCCAGATCGAGGTTGA -ACGGAATTCCCAGATCGATCCGAT -ACGGAATTCCCAGATCGATGGCAT -ACGGAATTCCCAGATCGACGAGAT -ACGGAATTCCCAGATCGATACCAC -ACGGAATTCCCAGATCGACAGAAC -ACGGAATTCCCAGATCGAGTCTAC -ACGGAATTCCCAGATCGAACGTAC -ACGGAATTCCCAGATCGAAGTGAC -ACGGAATTCCCAGATCGACTGTAG -ACGGAATTCCCAGATCGACCTAAG -ACGGAATTCCCAGATCGAGTTCAG -ACGGAATTCCCAGATCGAGCATAG -ACGGAATTCCCAGATCGAGACAAG -ACGGAATTCCCAGATCGAAAGCAG -ACGGAATTCCCAGATCGACGTCAA -ACGGAATTCCCAGATCGAGCTGAA -ACGGAATTCCCAGATCGAAGTACG -ACGGAATTCCCAGATCGAATCCGA -ACGGAATTCCCAGATCGAATGGGA -ACGGAATTCCCAGATCGAGTGCAA -ACGGAATTCCCAGATCGAGAGGAA -ACGGAATTCCCAGATCGACAGGTA -ACGGAATTCCCAGATCGAGACTCT -ACGGAATTCCCAGATCGAAGTCCT -ACGGAATTCCCAGATCGATAAGCC -ACGGAATTCCCAGATCGAATAGCC -ACGGAATTCCCAGATCGATAACCG -ACGGAATTCCCAGATCGAATGCCA -ACGGAATTCCCACACTACGGAAAC -ACGGAATTCCCACACTACAACACC -ACGGAATTCCCACACTACATCGAG -ACGGAATTCCCACACTACCTCCTT -ACGGAATTCCCACACTACCCTGTT -ACGGAATTCCCACACTACCGGTTT -ACGGAATTCCCACACTACGTGGTT -ACGGAATTCCCACACTACGCCTTT -ACGGAATTCCCACACTACGGTCTT -ACGGAATTCCCACACTACACGCTT -ACGGAATTCCCACACTACAGCGTT -ACGGAATTCCCACACTACTTCGTC -ACGGAATTCCCACACTACTCTCTC -ACGGAATTCCCACACTACTGGATC -ACGGAATTCCCACACTACCACTTC -ACGGAATTCCCACACTACGTACTC -ACGGAATTCCCACACTACGATGTC -ACGGAATTCCCACACTACACAGTC -ACGGAATTCCCACACTACTTGCTG -ACGGAATTCCCACACTACTCCATG -ACGGAATTCCCACACTACTGTGTG -ACGGAATTCCCACACTACCTAGTG -ACGGAATTCCCACACTACCATCTG -ACGGAATTCCCACACTACGAGTTG -ACGGAATTCCCACACTACAGACTG -ACGGAATTCCCACACTACTCGGTA -ACGGAATTCCCACACTACTGCCTA -ACGGAATTCCCACACTACCCACTA -ACGGAATTCCCACACTACGGAGTA -ACGGAATTCCCACACTACTCGTCT -ACGGAATTCCCACACTACTGCACT -ACGGAATTCCCACACTACCTGACT -ACGGAATTCCCACACTACCAACCT -ACGGAATTCCCACACTACGCTACT -ACGGAATTCCCACACTACGGATCT -ACGGAATTCCCACACTACAAGGCT -ACGGAATTCCCACACTACTCAACC -ACGGAATTCCCACACTACTGTTCC -ACGGAATTCCCACACTACATTCCC -ACGGAATTCCCACACTACTTCTCG -ACGGAATTCCCACACTACTAGACG -ACGGAATTCCCACACTACGTAACG -ACGGAATTCCCACACTACACTTCG -ACGGAATTCCCACACTACTACGCA -ACGGAATTCCCACACTACCTTGCA -ACGGAATTCCCACACTACCGAACA -ACGGAATTCCCACACTACCAGTCA -ACGGAATTCCCACACTACGATCCA -ACGGAATTCCCACACTACACGACA -ACGGAATTCCCACACTACAGCTCA -ACGGAATTCCCACACTACTCACGT -ACGGAATTCCCACACTACCGTAGT -ACGGAATTCCCACACTACGTCAGT -ACGGAATTCCCACACTACGAAGGT -ACGGAATTCCCACACTACAACCGT -ACGGAATTCCCACACTACTTGTGC -ACGGAATTCCCACACTACCTAAGC -ACGGAATTCCCACACTACACTAGC -ACGGAATTCCCACACTACAGATGC -ACGGAATTCCCACACTACTGAAGG -ACGGAATTCCCACACTACCAATGG -ACGGAATTCCCACACTACATGAGG -ACGGAATTCCCACACTACAATGGG -ACGGAATTCCCACACTACTCCTGA -ACGGAATTCCCACACTACTAGCGA -ACGGAATTCCCACACTACCACAGA -ACGGAATTCCCACACTACGCAAGA -ACGGAATTCCCACACTACGGTTGA -ACGGAATTCCCACACTACTCCGAT -ACGGAATTCCCACACTACTGGCAT -ACGGAATTCCCACACTACCGAGAT -ACGGAATTCCCACACTACTACCAC -ACGGAATTCCCACACTACCAGAAC -ACGGAATTCCCACACTACGTCTAC -ACGGAATTCCCACACTACACGTAC -ACGGAATTCCCACACTACAGTGAC -ACGGAATTCCCACACTACCTGTAG -ACGGAATTCCCACACTACCCTAAG -ACGGAATTCCCACACTACGTTCAG -ACGGAATTCCCACACTACGCATAG -ACGGAATTCCCACACTACGACAAG -ACGGAATTCCCACACTACAAGCAG -ACGGAATTCCCACACTACCGTCAA -ACGGAATTCCCACACTACGCTGAA -ACGGAATTCCCACACTACAGTACG -ACGGAATTCCCACACTACATCCGA -ACGGAATTCCCACACTACATGGGA -ACGGAATTCCCACACTACGTGCAA -ACGGAATTCCCACACTACGAGGAA -ACGGAATTCCCACACTACCAGGTA -ACGGAATTCCCACACTACGACTCT -ACGGAATTCCCACACTACAGTCCT -ACGGAATTCCCACACTACTAAGCC -ACGGAATTCCCACACTACATAGCC -ACGGAATTCCCACACTACTAACCG -ACGGAATTCCCACACTACATGCCA -ACGGAATTCCCAAACCAGGGAAAC -ACGGAATTCCCAAACCAGAACACC -ACGGAATTCCCAAACCAGATCGAG -ACGGAATTCCCAAACCAGCTCCTT -ACGGAATTCCCAAACCAGCCTGTT -ACGGAATTCCCAAACCAGCGGTTT -ACGGAATTCCCAAACCAGGTGGTT -ACGGAATTCCCAAACCAGGCCTTT -ACGGAATTCCCAAACCAGGGTCTT -ACGGAATTCCCAAACCAGACGCTT -ACGGAATTCCCAAACCAGAGCGTT -ACGGAATTCCCAAACCAGTTCGTC -ACGGAATTCCCAAACCAGTCTCTC -ACGGAATTCCCAAACCAGTGGATC -ACGGAATTCCCAAACCAGCACTTC -ACGGAATTCCCAAACCAGGTACTC -ACGGAATTCCCAAACCAGGATGTC -ACGGAATTCCCAAACCAGACAGTC -ACGGAATTCCCAAACCAGTTGCTG -ACGGAATTCCCAAACCAGTCCATG -ACGGAATTCCCAAACCAGTGTGTG -ACGGAATTCCCAAACCAGCTAGTG -ACGGAATTCCCAAACCAGCATCTG -ACGGAATTCCCAAACCAGGAGTTG -ACGGAATTCCCAAACCAGAGACTG -ACGGAATTCCCAAACCAGTCGGTA -ACGGAATTCCCAAACCAGTGCCTA -ACGGAATTCCCAAACCAGCCACTA -ACGGAATTCCCAAACCAGGGAGTA -ACGGAATTCCCAAACCAGTCGTCT -ACGGAATTCCCAAACCAGTGCACT -ACGGAATTCCCAAACCAGCTGACT -ACGGAATTCCCAAACCAGCAACCT -ACGGAATTCCCAAACCAGGCTACT -ACGGAATTCCCAAACCAGGGATCT -ACGGAATTCCCAAACCAGAAGGCT -ACGGAATTCCCAAACCAGTCAACC -ACGGAATTCCCAAACCAGTGTTCC -ACGGAATTCCCAAACCAGATTCCC -ACGGAATTCCCAAACCAGTTCTCG -ACGGAATTCCCAAACCAGTAGACG -ACGGAATTCCCAAACCAGGTAACG -ACGGAATTCCCAAACCAGACTTCG -ACGGAATTCCCAAACCAGTACGCA -ACGGAATTCCCAAACCAGCTTGCA -ACGGAATTCCCAAACCAGCGAACA -ACGGAATTCCCAAACCAGCAGTCA -ACGGAATTCCCAAACCAGGATCCA -ACGGAATTCCCAAACCAGACGACA -ACGGAATTCCCAAACCAGAGCTCA -ACGGAATTCCCAAACCAGTCACGT -ACGGAATTCCCAAACCAGCGTAGT -ACGGAATTCCCAAACCAGGTCAGT -ACGGAATTCCCAAACCAGGAAGGT -ACGGAATTCCCAAACCAGAACCGT -ACGGAATTCCCAAACCAGTTGTGC -ACGGAATTCCCAAACCAGCTAAGC -ACGGAATTCCCAAACCAGACTAGC -ACGGAATTCCCAAACCAGAGATGC -ACGGAATTCCCAAACCAGTGAAGG -ACGGAATTCCCAAACCAGCAATGG -ACGGAATTCCCAAACCAGATGAGG -ACGGAATTCCCAAACCAGAATGGG -ACGGAATTCCCAAACCAGTCCTGA -ACGGAATTCCCAAACCAGTAGCGA -ACGGAATTCCCAAACCAGCACAGA -ACGGAATTCCCAAACCAGGCAAGA -ACGGAATTCCCAAACCAGGGTTGA -ACGGAATTCCCAAACCAGTCCGAT -ACGGAATTCCCAAACCAGTGGCAT -ACGGAATTCCCAAACCAGCGAGAT -ACGGAATTCCCAAACCAGTACCAC -ACGGAATTCCCAAACCAGCAGAAC -ACGGAATTCCCAAACCAGGTCTAC -ACGGAATTCCCAAACCAGACGTAC -ACGGAATTCCCAAACCAGAGTGAC -ACGGAATTCCCAAACCAGCTGTAG -ACGGAATTCCCAAACCAGCCTAAG -ACGGAATTCCCAAACCAGGTTCAG -ACGGAATTCCCAAACCAGGCATAG -ACGGAATTCCCAAACCAGGACAAG -ACGGAATTCCCAAACCAGAAGCAG -ACGGAATTCCCAAACCAGCGTCAA -ACGGAATTCCCAAACCAGGCTGAA -ACGGAATTCCCAAACCAGAGTACG -ACGGAATTCCCAAACCAGATCCGA -ACGGAATTCCCAAACCAGATGGGA -ACGGAATTCCCAAACCAGGTGCAA -ACGGAATTCCCAAACCAGGAGGAA -ACGGAATTCCCAAACCAGCAGGTA -ACGGAATTCCCAAACCAGGACTCT -ACGGAATTCCCAAACCAGAGTCCT -ACGGAATTCCCAAACCAGTAAGCC -ACGGAATTCCCAAACCAGATAGCC -ACGGAATTCCCAAACCAGTAACCG -ACGGAATTCCCAAACCAGATGCCA -ACGGAATTCCCATACGTCGGAAAC -ACGGAATTCCCATACGTCAACACC -ACGGAATTCCCATACGTCATCGAG -ACGGAATTCCCATACGTCCTCCTT -ACGGAATTCCCATACGTCCCTGTT -ACGGAATTCCCATACGTCCGGTTT -ACGGAATTCCCATACGTCGTGGTT -ACGGAATTCCCATACGTCGCCTTT -ACGGAATTCCCATACGTCGGTCTT -ACGGAATTCCCATACGTCACGCTT -ACGGAATTCCCATACGTCAGCGTT -ACGGAATTCCCATACGTCTTCGTC -ACGGAATTCCCATACGTCTCTCTC -ACGGAATTCCCATACGTCTGGATC -ACGGAATTCCCATACGTCCACTTC -ACGGAATTCCCATACGTCGTACTC -ACGGAATTCCCATACGTCGATGTC -ACGGAATTCCCATACGTCACAGTC -ACGGAATTCCCATACGTCTTGCTG -ACGGAATTCCCATACGTCTCCATG -ACGGAATTCCCATACGTCTGTGTG -ACGGAATTCCCATACGTCCTAGTG -ACGGAATTCCCATACGTCCATCTG -ACGGAATTCCCATACGTCGAGTTG -ACGGAATTCCCATACGTCAGACTG -ACGGAATTCCCATACGTCTCGGTA -ACGGAATTCCCATACGTCTGCCTA -ACGGAATTCCCATACGTCCCACTA -ACGGAATTCCCATACGTCGGAGTA -ACGGAATTCCCATACGTCTCGTCT -ACGGAATTCCCATACGTCTGCACT -ACGGAATTCCCATACGTCCTGACT -ACGGAATTCCCATACGTCCAACCT -ACGGAATTCCCATACGTCGCTACT -ACGGAATTCCCATACGTCGGATCT -ACGGAATTCCCATACGTCAAGGCT -ACGGAATTCCCATACGTCTCAACC -ACGGAATTCCCATACGTCTGTTCC -ACGGAATTCCCATACGTCATTCCC -ACGGAATTCCCATACGTCTTCTCG -ACGGAATTCCCATACGTCTAGACG -ACGGAATTCCCATACGTCGTAACG -ACGGAATTCCCATACGTCACTTCG -ACGGAATTCCCATACGTCTACGCA -ACGGAATTCCCATACGTCCTTGCA -ACGGAATTCCCATACGTCCGAACA -ACGGAATTCCCATACGTCCAGTCA -ACGGAATTCCCATACGTCGATCCA -ACGGAATTCCCATACGTCACGACA -ACGGAATTCCCATACGTCAGCTCA -ACGGAATTCCCATACGTCTCACGT -ACGGAATTCCCATACGTCCGTAGT -ACGGAATTCCCATACGTCGTCAGT -ACGGAATTCCCATACGTCGAAGGT -ACGGAATTCCCATACGTCAACCGT -ACGGAATTCCCATACGTCTTGTGC -ACGGAATTCCCATACGTCCTAAGC -ACGGAATTCCCATACGTCACTAGC -ACGGAATTCCCATACGTCAGATGC -ACGGAATTCCCATACGTCTGAAGG -ACGGAATTCCCATACGTCCAATGG -ACGGAATTCCCATACGTCATGAGG -ACGGAATTCCCATACGTCAATGGG -ACGGAATTCCCATACGTCTCCTGA -ACGGAATTCCCATACGTCTAGCGA -ACGGAATTCCCATACGTCCACAGA -ACGGAATTCCCATACGTCGCAAGA -ACGGAATTCCCATACGTCGGTTGA -ACGGAATTCCCATACGTCTCCGAT -ACGGAATTCCCATACGTCTGGCAT -ACGGAATTCCCATACGTCCGAGAT -ACGGAATTCCCATACGTCTACCAC -ACGGAATTCCCATACGTCCAGAAC -ACGGAATTCCCATACGTCGTCTAC -ACGGAATTCCCATACGTCACGTAC -ACGGAATTCCCATACGTCAGTGAC -ACGGAATTCCCATACGTCCTGTAG -ACGGAATTCCCATACGTCCCTAAG -ACGGAATTCCCATACGTCGTTCAG -ACGGAATTCCCATACGTCGCATAG -ACGGAATTCCCATACGTCGACAAG -ACGGAATTCCCATACGTCAAGCAG -ACGGAATTCCCATACGTCCGTCAA -ACGGAATTCCCATACGTCGCTGAA -ACGGAATTCCCATACGTCAGTACG -ACGGAATTCCCATACGTCATCCGA -ACGGAATTCCCATACGTCATGGGA -ACGGAATTCCCATACGTCGTGCAA -ACGGAATTCCCATACGTCGAGGAA -ACGGAATTCCCATACGTCCAGGTA -ACGGAATTCCCATACGTCGACTCT -ACGGAATTCCCATACGTCAGTCCT -ACGGAATTCCCATACGTCTAAGCC -ACGGAATTCCCATACGTCATAGCC -ACGGAATTCCCATACGTCTAACCG -ACGGAATTCCCATACGTCATGCCA -ACGGAATTCCCATACACGGGAAAC -ACGGAATTCCCATACACGAACACC -ACGGAATTCCCATACACGATCGAG -ACGGAATTCCCATACACGCTCCTT -ACGGAATTCCCATACACGCCTGTT -ACGGAATTCCCATACACGCGGTTT -ACGGAATTCCCATACACGGTGGTT -ACGGAATTCCCATACACGGCCTTT -ACGGAATTCCCATACACGGGTCTT -ACGGAATTCCCATACACGACGCTT -ACGGAATTCCCATACACGAGCGTT -ACGGAATTCCCATACACGTTCGTC -ACGGAATTCCCATACACGTCTCTC -ACGGAATTCCCATACACGTGGATC -ACGGAATTCCCATACACGCACTTC -ACGGAATTCCCATACACGGTACTC -ACGGAATTCCCATACACGGATGTC -ACGGAATTCCCATACACGACAGTC -ACGGAATTCCCATACACGTTGCTG -ACGGAATTCCCATACACGTCCATG -ACGGAATTCCCATACACGTGTGTG -ACGGAATTCCCATACACGCTAGTG -ACGGAATTCCCATACACGCATCTG -ACGGAATTCCCATACACGGAGTTG -ACGGAATTCCCATACACGAGACTG -ACGGAATTCCCATACACGTCGGTA -ACGGAATTCCCATACACGTGCCTA -ACGGAATTCCCATACACGCCACTA -ACGGAATTCCCATACACGGGAGTA -ACGGAATTCCCATACACGTCGTCT -ACGGAATTCCCATACACGTGCACT -ACGGAATTCCCATACACGCTGACT -ACGGAATTCCCATACACGCAACCT -ACGGAATTCCCATACACGGCTACT -ACGGAATTCCCATACACGGGATCT -ACGGAATTCCCATACACGAAGGCT -ACGGAATTCCCATACACGTCAACC -ACGGAATTCCCATACACGTGTTCC -ACGGAATTCCCATACACGATTCCC -ACGGAATTCCCATACACGTTCTCG -ACGGAATTCCCATACACGTAGACG -ACGGAATTCCCATACACGGTAACG -ACGGAATTCCCATACACGACTTCG -ACGGAATTCCCATACACGTACGCA -ACGGAATTCCCATACACGCTTGCA -ACGGAATTCCCATACACGCGAACA -ACGGAATTCCCATACACGCAGTCA -ACGGAATTCCCATACACGGATCCA -ACGGAATTCCCATACACGACGACA -ACGGAATTCCCATACACGAGCTCA -ACGGAATTCCCATACACGTCACGT -ACGGAATTCCCATACACGCGTAGT -ACGGAATTCCCATACACGGTCAGT -ACGGAATTCCCATACACGGAAGGT -ACGGAATTCCCATACACGAACCGT -ACGGAATTCCCATACACGTTGTGC -ACGGAATTCCCATACACGCTAAGC -ACGGAATTCCCATACACGACTAGC -ACGGAATTCCCATACACGAGATGC -ACGGAATTCCCATACACGTGAAGG -ACGGAATTCCCATACACGCAATGG -ACGGAATTCCCATACACGATGAGG -ACGGAATTCCCATACACGAATGGG -ACGGAATTCCCATACACGTCCTGA -ACGGAATTCCCATACACGTAGCGA -ACGGAATTCCCATACACGCACAGA -ACGGAATTCCCATACACGGCAAGA -ACGGAATTCCCATACACGGGTTGA -ACGGAATTCCCATACACGTCCGAT -ACGGAATTCCCATACACGTGGCAT -ACGGAATTCCCATACACGCGAGAT -ACGGAATTCCCATACACGTACCAC -ACGGAATTCCCATACACGCAGAAC -ACGGAATTCCCATACACGGTCTAC -ACGGAATTCCCATACACGACGTAC -ACGGAATTCCCATACACGAGTGAC -ACGGAATTCCCATACACGCTGTAG -ACGGAATTCCCATACACGCCTAAG -ACGGAATTCCCATACACGGTTCAG -ACGGAATTCCCATACACGGCATAG -ACGGAATTCCCATACACGGACAAG -ACGGAATTCCCATACACGAAGCAG -ACGGAATTCCCATACACGCGTCAA -ACGGAATTCCCATACACGGCTGAA -ACGGAATTCCCATACACGAGTACG -ACGGAATTCCCATACACGATCCGA -ACGGAATTCCCATACACGATGGGA -ACGGAATTCCCATACACGGTGCAA -ACGGAATTCCCATACACGGAGGAA -ACGGAATTCCCATACACGCAGGTA -ACGGAATTCCCATACACGGACTCT -ACGGAATTCCCATACACGAGTCCT -ACGGAATTCCCATACACGTAAGCC -ACGGAATTCCCATACACGATAGCC -ACGGAATTCCCATACACGTAACCG -ACGGAATTCCCATACACGATGCCA -ACGGAATTCCCAGACAGTGGAAAC -ACGGAATTCCCAGACAGTAACACC -ACGGAATTCCCAGACAGTATCGAG -ACGGAATTCCCAGACAGTCTCCTT -ACGGAATTCCCAGACAGTCCTGTT -ACGGAATTCCCAGACAGTCGGTTT -ACGGAATTCCCAGACAGTGTGGTT -ACGGAATTCCCAGACAGTGCCTTT -ACGGAATTCCCAGACAGTGGTCTT -ACGGAATTCCCAGACAGTACGCTT -ACGGAATTCCCAGACAGTAGCGTT -ACGGAATTCCCAGACAGTTTCGTC -ACGGAATTCCCAGACAGTTCTCTC -ACGGAATTCCCAGACAGTTGGATC -ACGGAATTCCCAGACAGTCACTTC -ACGGAATTCCCAGACAGTGTACTC -ACGGAATTCCCAGACAGTGATGTC -ACGGAATTCCCAGACAGTACAGTC -ACGGAATTCCCAGACAGTTTGCTG -ACGGAATTCCCAGACAGTTCCATG -ACGGAATTCCCAGACAGTTGTGTG -ACGGAATTCCCAGACAGTCTAGTG -ACGGAATTCCCAGACAGTCATCTG -ACGGAATTCCCAGACAGTGAGTTG -ACGGAATTCCCAGACAGTAGACTG -ACGGAATTCCCAGACAGTTCGGTA -ACGGAATTCCCAGACAGTTGCCTA -ACGGAATTCCCAGACAGTCCACTA -ACGGAATTCCCAGACAGTGGAGTA -ACGGAATTCCCAGACAGTTCGTCT -ACGGAATTCCCAGACAGTTGCACT -ACGGAATTCCCAGACAGTCTGACT -ACGGAATTCCCAGACAGTCAACCT -ACGGAATTCCCAGACAGTGCTACT -ACGGAATTCCCAGACAGTGGATCT -ACGGAATTCCCAGACAGTAAGGCT -ACGGAATTCCCAGACAGTTCAACC -ACGGAATTCCCAGACAGTTGTTCC -ACGGAATTCCCAGACAGTATTCCC -ACGGAATTCCCAGACAGTTTCTCG -ACGGAATTCCCAGACAGTTAGACG -ACGGAATTCCCAGACAGTGTAACG -ACGGAATTCCCAGACAGTACTTCG -ACGGAATTCCCAGACAGTTACGCA -ACGGAATTCCCAGACAGTCTTGCA -ACGGAATTCCCAGACAGTCGAACA -ACGGAATTCCCAGACAGTCAGTCA -ACGGAATTCCCAGACAGTGATCCA -ACGGAATTCCCAGACAGTACGACA -ACGGAATTCCCAGACAGTAGCTCA -ACGGAATTCCCAGACAGTTCACGT -ACGGAATTCCCAGACAGTCGTAGT -ACGGAATTCCCAGACAGTGTCAGT -ACGGAATTCCCAGACAGTGAAGGT -ACGGAATTCCCAGACAGTAACCGT -ACGGAATTCCCAGACAGTTTGTGC -ACGGAATTCCCAGACAGTCTAAGC -ACGGAATTCCCAGACAGTACTAGC -ACGGAATTCCCAGACAGTAGATGC -ACGGAATTCCCAGACAGTTGAAGG -ACGGAATTCCCAGACAGTCAATGG -ACGGAATTCCCAGACAGTATGAGG -ACGGAATTCCCAGACAGTAATGGG -ACGGAATTCCCAGACAGTTCCTGA -ACGGAATTCCCAGACAGTTAGCGA -ACGGAATTCCCAGACAGTCACAGA -ACGGAATTCCCAGACAGTGCAAGA -ACGGAATTCCCAGACAGTGGTTGA -ACGGAATTCCCAGACAGTTCCGAT -ACGGAATTCCCAGACAGTTGGCAT -ACGGAATTCCCAGACAGTCGAGAT -ACGGAATTCCCAGACAGTTACCAC -ACGGAATTCCCAGACAGTCAGAAC -ACGGAATTCCCAGACAGTGTCTAC -ACGGAATTCCCAGACAGTACGTAC -ACGGAATTCCCAGACAGTAGTGAC -ACGGAATTCCCAGACAGTCTGTAG -ACGGAATTCCCAGACAGTCCTAAG -ACGGAATTCCCAGACAGTGTTCAG -ACGGAATTCCCAGACAGTGCATAG -ACGGAATTCCCAGACAGTGACAAG -ACGGAATTCCCAGACAGTAAGCAG -ACGGAATTCCCAGACAGTCGTCAA -ACGGAATTCCCAGACAGTGCTGAA -ACGGAATTCCCAGACAGTAGTACG -ACGGAATTCCCAGACAGTATCCGA -ACGGAATTCCCAGACAGTATGGGA -ACGGAATTCCCAGACAGTGTGCAA -ACGGAATTCCCAGACAGTGAGGAA -ACGGAATTCCCAGACAGTCAGGTA -ACGGAATTCCCAGACAGTGACTCT -ACGGAATTCCCAGACAGTAGTCCT -ACGGAATTCCCAGACAGTTAAGCC -ACGGAATTCCCAGACAGTATAGCC -ACGGAATTCCCAGACAGTTAACCG -ACGGAATTCCCAGACAGTATGCCA -ACGGAATTCCCATAGCTGGGAAAC -ACGGAATTCCCATAGCTGAACACC -ACGGAATTCCCATAGCTGATCGAG -ACGGAATTCCCATAGCTGCTCCTT -ACGGAATTCCCATAGCTGCCTGTT -ACGGAATTCCCATAGCTGCGGTTT -ACGGAATTCCCATAGCTGGTGGTT -ACGGAATTCCCATAGCTGGCCTTT -ACGGAATTCCCATAGCTGGGTCTT -ACGGAATTCCCATAGCTGACGCTT -ACGGAATTCCCATAGCTGAGCGTT -ACGGAATTCCCATAGCTGTTCGTC -ACGGAATTCCCATAGCTGTCTCTC -ACGGAATTCCCATAGCTGTGGATC -ACGGAATTCCCATAGCTGCACTTC -ACGGAATTCCCATAGCTGGTACTC -ACGGAATTCCCATAGCTGGATGTC -ACGGAATTCCCATAGCTGACAGTC -ACGGAATTCCCATAGCTGTTGCTG -ACGGAATTCCCATAGCTGTCCATG -ACGGAATTCCCATAGCTGTGTGTG -ACGGAATTCCCATAGCTGCTAGTG -ACGGAATTCCCATAGCTGCATCTG -ACGGAATTCCCATAGCTGGAGTTG -ACGGAATTCCCATAGCTGAGACTG -ACGGAATTCCCATAGCTGTCGGTA -ACGGAATTCCCATAGCTGTGCCTA -ACGGAATTCCCATAGCTGCCACTA -ACGGAATTCCCATAGCTGGGAGTA -ACGGAATTCCCATAGCTGTCGTCT -ACGGAATTCCCATAGCTGTGCACT -ACGGAATTCCCATAGCTGCTGACT -ACGGAATTCCCATAGCTGCAACCT -ACGGAATTCCCATAGCTGGCTACT -ACGGAATTCCCATAGCTGGGATCT -ACGGAATTCCCATAGCTGAAGGCT -ACGGAATTCCCATAGCTGTCAACC -ACGGAATTCCCATAGCTGTGTTCC -ACGGAATTCCCATAGCTGATTCCC -ACGGAATTCCCATAGCTGTTCTCG -ACGGAATTCCCATAGCTGTAGACG -ACGGAATTCCCATAGCTGGTAACG -ACGGAATTCCCATAGCTGACTTCG -ACGGAATTCCCATAGCTGTACGCA -ACGGAATTCCCATAGCTGCTTGCA -ACGGAATTCCCATAGCTGCGAACA -ACGGAATTCCCATAGCTGCAGTCA -ACGGAATTCCCATAGCTGGATCCA -ACGGAATTCCCATAGCTGACGACA -ACGGAATTCCCATAGCTGAGCTCA -ACGGAATTCCCATAGCTGTCACGT -ACGGAATTCCCATAGCTGCGTAGT -ACGGAATTCCCATAGCTGGTCAGT -ACGGAATTCCCATAGCTGGAAGGT -ACGGAATTCCCATAGCTGAACCGT -ACGGAATTCCCATAGCTGTTGTGC -ACGGAATTCCCATAGCTGCTAAGC -ACGGAATTCCCATAGCTGACTAGC -ACGGAATTCCCATAGCTGAGATGC -ACGGAATTCCCATAGCTGTGAAGG -ACGGAATTCCCATAGCTGCAATGG -ACGGAATTCCCATAGCTGATGAGG -ACGGAATTCCCATAGCTGAATGGG -ACGGAATTCCCATAGCTGTCCTGA -ACGGAATTCCCATAGCTGTAGCGA -ACGGAATTCCCATAGCTGCACAGA -ACGGAATTCCCATAGCTGGCAAGA -ACGGAATTCCCATAGCTGGGTTGA -ACGGAATTCCCATAGCTGTCCGAT -ACGGAATTCCCATAGCTGTGGCAT -ACGGAATTCCCATAGCTGCGAGAT -ACGGAATTCCCATAGCTGTACCAC -ACGGAATTCCCATAGCTGCAGAAC -ACGGAATTCCCATAGCTGGTCTAC -ACGGAATTCCCATAGCTGACGTAC -ACGGAATTCCCATAGCTGAGTGAC -ACGGAATTCCCATAGCTGCTGTAG -ACGGAATTCCCATAGCTGCCTAAG -ACGGAATTCCCATAGCTGGTTCAG -ACGGAATTCCCATAGCTGGCATAG -ACGGAATTCCCATAGCTGGACAAG -ACGGAATTCCCATAGCTGAAGCAG -ACGGAATTCCCATAGCTGCGTCAA -ACGGAATTCCCATAGCTGGCTGAA -ACGGAATTCCCATAGCTGAGTACG -ACGGAATTCCCATAGCTGATCCGA -ACGGAATTCCCATAGCTGATGGGA -ACGGAATTCCCATAGCTGGTGCAA -ACGGAATTCCCATAGCTGGAGGAA -ACGGAATTCCCATAGCTGCAGGTA -ACGGAATTCCCATAGCTGGACTCT -ACGGAATTCCCATAGCTGAGTCCT -ACGGAATTCCCATAGCTGTAAGCC -ACGGAATTCCCATAGCTGATAGCC -ACGGAATTCCCATAGCTGTAACCG -ACGGAATTCCCATAGCTGATGCCA -ACGGAATTCCCAAAGCCTGGAAAC -ACGGAATTCCCAAAGCCTAACACC -ACGGAATTCCCAAAGCCTATCGAG -ACGGAATTCCCAAAGCCTCTCCTT -ACGGAATTCCCAAAGCCTCCTGTT -ACGGAATTCCCAAAGCCTCGGTTT -ACGGAATTCCCAAAGCCTGTGGTT -ACGGAATTCCCAAAGCCTGCCTTT -ACGGAATTCCCAAAGCCTGGTCTT -ACGGAATTCCCAAAGCCTACGCTT -ACGGAATTCCCAAAGCCTAGCGTT -ACGGAATTCCCAAAGCCTTTCGTC -ACGGAATTCCCAAAGCCTTCTCTC -ACGGAATTCCCAAAGCCTTGGATC -ACGGAATTCCCAAAGCCTCACTTC -ACGGAATTCCCAAAGCCTGTACTC -ACGGAATTCCCAAAGCCTGATGTC -ACGGAATTCCCAAAGCCTACAGTC -ACGGAATTCCCAAAGCCTTTGCTG -ACGGAATTCCCAAAGCCTTCCATG -ACGGAATTCCCAAAGCCTTGTGTG -ACGGAATTCCCAAAGCCTCTAGTG -ACGGAATTCCCAAAGCCTCATCTG -ACGGAATTCCCAAAGCCTGAGTTG -ACGGAATTCCCAAAGCCTAGACTG -ACGGAATTCCCAAAGCCTTCGGTA -ACGGAATTCCCAAAGCCTTGCCTA -ACGGAATTCCCAAAGCCTCCACTA -ACGGAATTCCCAAAGCCTGGAGTA -ACGGAATTCCCAAAGCCTTCGTCT -ACGGAATTCCCAAAGCCTTGCACT -ACGGAATTCCCAAAGCCTCTGACT -ACGGAATTCCCAAAGCCTCAACCT -ACGGAATTCCCAAAGCCTGCTACT -ACGGAATTCCCAAAGCCTGGATCT -ACGGAATTCCCAAAGCCTAAGGCT -ACGGAATTCCCAAAGCCTTCAACC -ACGGAATTCCCAAAGCCTTGTTCC -ACGGAATTCCCAAAGCCTATTCCC -ACGGAATTCCCAAAGCCTTTCTCG -ACGGAATTCCCAAAGCCTTAGACG -ACGGAATTCCCAAAGCCTGTAACG -ACGGAATTCCCAAAGCCTACTTCG -ACGGAATTCCCAAAGCCTTACGCA -ACGGAATTCCCAAAGCCTCTTGCA -ACGGAATTCCCAAAGCCTCGAACA -ACGGAATTCCCAAAGCCTCAGTCA -ACGGAATTCCCAAAGCCTGATCCA -ACGGAATTCCCAAAGCCTACGACA -ACGGAATTCCCAAAGCCTAGCTCA -ACGGAATTCCCAAAGCCTTCACGT -ACGGAATTCCCAAAGCCTCGTAGT -ACGGAATTCCCAAAGCCTGTCAGT -ACGGAATTCCCAAAGCCTGAAGGT -ACGGAATTCCCAAAGCCTAACCGT -ACGGAATTCCCAAAGCCTTTGTGC -ACGGAATTCCCAAAGCCTCTAAGC -ACGGAATTCCCAAAGCCTACTAGC -ACGGAATTCCCAAAGCCTAGATGC -ACGGAATTCCCAAAGCCTTGAAGG -ACGGAATTCCCAAAGCCTCAATGG -ACGGAATTCCCAAAGCCTATGAGG -ACGGAATTCCCAAAGCCTAATGGG -ACGGAATTCCCAAAGCCTTCCTGA -ACGGAATTCCCAAAGCCTTAGCGA -ACGGAATTCCCAAAGCCTCACAGA -ACGGAATTCCCAAAGCCTGCAAGA -ACGGAATTCCCAAAGCCTGGTTGA -ACGGAATTCCCAAAGCCTTCCGAT -ACGGAATTCCCAAAGCCTTGGCAT -ACGGAATTCCCAAAGCCTCGAGAT -ACGGAATTCCCAAAGCCTTACCAC -ACGGAATTCCCAAAGCCTCAGAAC -ACGGAATTCCCAAAGCCTGTCTAC -ACGGAATTCCCAAAGCCTACGTAC -ACGGAATTCCCAAAGCCTAGTGAC -ACGGAATTCCCAAAGCCTCTGTAG -ACGGAATTCCCAAAGCCTCCTAAG -ACGGAATTCCCAAAGCCTGTTCAG -ACGGAATTCCCAAAGCCTGCATAG -ACGGAATTCCCAAAGCCTGACAAG -ACGGAATTCCCAAAGCCTAAGCAG -ACGGAATTCCCAAAGCCTCGTCAA -ACGGAATTCCCAAAGCCTGCTGAA -ACGGAATTCCCAAAGCCTAGTACG -ACGGAATTCCCAAAGCCTATCCGA -ACGGAATTCCCAAAGCCTATGGGA -ACGGAATTCCCAAAGCCTGTGCAA -ACGGAATTCCCAAAGCCTGAGGAA -ACGGAATTCCCAAAGCCTCAGGTA -ACGGAATTCCCAAAGCCTGACTCT -ACGGAATTCCCAAAGCCTAGTCCT -ACGGAATTCCCAAAGCCTTAAGCC -ACGGAATTCCCAAAGCCTATAGCC -ACGGAATTCCCAAAGCCTTAACCG -ACGGAATTCCCAAAGCCTATGCCA -ACGGAATTCCCACAGGTTGGAAAC -ACGGAATTCCCACAGGTTAACACC -ACGGAATTCCCACAGGTTATCGAG -ACGGAATTCCCACAGGTTCTCCTT -ACGGAATTCCCACAGGTTCCTGTT -ACGGAATTCCCACAGGTTCGGTTT -ACGGAATTCCCACAGGTTGTGGTT -ACGGAATTCCCACAGGTTGCCTTT -ACGGAATTCCCACAGGTTGGTCTT -ACGGAATTCCCACAGGTTACGCTT -ACGGAATTCCCACAGGTTAGCGTT -ACGGAATTCCCACAGGTTTTCGTC -ACGGAATTCCCACAGGTTTCTCTC -ACGGAATTCCCACAGGTTTGGATC -ACGGAATTCCCACAGGTTCACTTC -ACGGAATTCCCACAGGTTGTACTC -ACGGAATTCCCACAGGTTGATGTC -ACGGAATTCCCACAGGTTACAGTC -ACGGAATTCCCACAGGTTTTGCTG -ACGGAATTCCCACAGGTTTCCATG -ACGGAATTCCCACAGGTTTGTGTG -ACGGAATTCCCACAGGTTCTAGTG -ACGGAATTCCCACAGGTTCATCTG -ACGGAATTCCCACAGGTTGAGTTG -ACGGAATTCCCACAGGTTAGACTG -ACGGAATTCCCACAGGTTTCGGTA -ACGGAATTCCCACAGGTTTGCCTA -ACGGAATTCCCACAGGTTCCACTA -ACGGAATTCCCACAGGTTGGAGTA -ACGGAATTCCCACAGGTTTCGTCT -ACGGAATTCCCACAGGTTTGCACT -ACGGAATTCCCACAGGTTCTGACT -ACGGAATTCCCACAGGTTCAACCT -ACGGAATTCCCACAGGTTGCTACT -ACGGAATTCCCACAGGTTGGATCT -ACGGAATTCCCACAGGTTAAGGCT -ACGGAATTCCCACAGGTTTCAACC -ACGGAATTCCCACAGGTTTGTTCC -ACGGAATTCCCACAGGTTATTCCC -ACGGAATTCCCACAGGTTTTCTCG -ACGGAATTCCCACAGGTTTAGACG -ACGGAATTCCCACAGGTTGTAACG -ACGGAATTCCCACAGGTTACTTCG -ACGGAATTCCCACAGGTTTACGCA -ACGGAATTCCCACAGGTTCTTGCA -ACGGAATTCCCACAGGTTCGAACA -ACGGAATTCCCACAGGTTCAGTCA -ACGGAATTCCCACAGGTTGATCCA -ACGGAATTCCCACAGGTTACGACA -ACGGAATTCCCACAGGTTAGCTCA -ACGGAATTCCCACAGGTTTCACGT -ACGGAATTCCCACAGGTTCGTAGT -ACGGAATTCCCACAGGTTGTCAGT -ACGGAATTCCCACAGGTTGAAGGT -ACGGAATTCCCACAGGTTAACCGT -ACGGAATTCCCACAGGTTTTGTGC -ACGGAATTCCCACAGGTTCTAAGC -ACGGAATTCCCACAGGTTACTAGC -ACGGAATTCCCACAGGTTAGATGC -ACGGAATTCCCACAGGTTTGAAGG -ACGGAATTCCCACAGGTTCAATGG -ACGGAATTCCCACAGGTTATGAGG -ACGGAATTCCCACAGGTTAATGGG -ACGGAATTCCCACAGGTTTCCTGA -ACGGAATTCCCACAGGTTTAGCGA -ACGGAATTCCCACAGGTTCACAGA -ACGGAATTCCCACAGGTTGCAAGA -ACGGAATTCCCACAGGTTGGTTGA -ACGGAATTCCCACAGGTTTCCGAT -ACGGAATTCCCACAGGTTTGGCAT -ACGGAATTCCCACAGGTTCGAGAT -ACGGAATTCCCACAGGTTTACCAC -ACGGAATTCCCACAGGTTCAGAAC -ACGGAATTCCCACAGGTTGTCTAC -ACGGAATTCCCACAGGTTACGTAC -ACGGAATTCCCACAGGTTAGTGAC -ACGGAATTCCCACAGGTTCTGTAG -ACGGAATTCCCACAGGTTCCTAAG -ACGGAATTCCCACAGGTTGTTCAG -ACGGAATTCCCACAGGTTGCATAG -ACGGAATTCCCACAGGTTGACAAG -ACGGAATTCCCACAGGTTAAGCAG -ACGGAATTCCCACAGGTTCGTCAA -ACGGAATTCCCACAGGTTGCTGAA -ACGGAATTCCCACAGGTTAGTACG -ACGGAATTCCCACAGGTTATCCGA -ACGGAATTCCCACAGGTTATGGGA -ACGGAATTCCCACAGGTTGTGCAA -ACGGAATTCCCACAGGTTGAGGAA -ACGGAATTCCCACAGGTTCAGGTA -ACGGAATTCCCACAGGTTGACTCT -ACGGAATTCCCACAGGTTAGTCCT -ACGGAATTCCCACAGGTTTAAGCC -ACGGAATTCCCACAGGTTATAGCC -ACGGAATTCCCACAGGTTTAACCG -ACGGAATTCCCACAGGTTATGCCA -ACGGAATTCCCATAGGCAGGAAAC -ACGGAATTCCCATAGGCAAACACC -ACGGAATTCCCATAGGCAATCGAG -ACGGAATTCCCATAGGCACTCCTT -ACGGAATTCCCATAGGCACCTGTT -ACGGAATTCCCATAGGCACGGTTT -ACGGAATTCCCATAGGCAGTGGTT -ACGGAATTCCCATAGGCAGCCTTT -ACGGAATTCCCATAGGCAGGTCTT -ACGGAATTCCCATAGGCAACGCTT -ACGGAATTCCCATAGGCAAGCGTT -ACGGAATTCCCATAGGCATTCGTC -ACGGAATTCCCATAGGCATCTCTC -ACGGAATTCCCATAGGCATGGATC -ACGGAATTCCCATAGGCACACTTC -ACGGAATTCCCATAGGCAGTACTC -ACGGAATTCCCATAGGCAGATGTC -ACGGAATTCCCATAGGCAACAGTC -ACGGAATTCCCATAGGCATTGCTG -ACGGAATTCCCATAGGCATCCATG -ACGGAATTCCCATAGGCATGTGTG -ACGGAATTCCCATAGGCACTAGTG -ACGGAATTCCCATAGGCACATCTG -ACGGAATTCCCATAGGCAGAGTTG -ACGGAATTCCCATAGGCAAGACTG -ACGGAATTCCCATAGGCATCGGTA -ACGGAATTCCCATAGGCATGCCTA -ACGGAATTCCCATAGGCACCACTA -ACGGAATTCCCATAGGCAGGAGTA -ACGGAATTCCCATAGGCATCGTCT -ACGGAATTCCCATAGGCATGCACT -ACGGAATTCCCATAGGCACTGACT -ACGGAATTCCCATAGGCACAACCT -ACGGAATTCCCATAGGCAGCTACT -ACGGAATTCCCATAGGCAGGATCT -ACGGAATTCCCATAGGCAAAGGCT -ACGGAATTCCCATAGGCATCAACC -ACGGAATTCCCATAGGCATGTTCC -ACGGAATTCCCATAGGCAATTCCC -ACGGAATTCCCATAGGCATTCTCG -ACGGAATTCCCATAGGCATAGACG -ACGGAATTCCCATAGGCAGTAACG -ACGGAATTCCCATAGGCAACTTCG -ACGGAATTCCCATAGGCATACGCA -ACGGAATTCCCATAGGCACTTGCA -ACGGAATTCCCATAGGCACGAACA -ACGGAATTCCCATAGGCACAGTCA -ACGGAATTCCCATAGGCAGATCCA -ACGGAATTCCCATAGGCAACGACA -ACGGAATTCCCATAGGCAAGCTCA -ACGGAATTCCCATAGGCATCACGT -ACGGAATTCCCATAGGCACGTAGT -ACGGAATTCCCATAGGCAGTCAGT -ACGGAATTCCCATAGGCAGAAGGT -ACGGAATTCCCATAGGCAAACCGT -ACGGAATTCCCATAGGCATTGTGC -ACGGAATTCCCATAGGCACTAAGC -ACGGAATTCCCATAGGCAACTAGC -ACGGAATTCCCATAGGCAAGATGC -ACGGAATTCCCATAGGCATGAAGG -ACGGAATTCCCATAGGCACAATGG -ACGGAATTCCCATAGGCAATGAGG -ACGGAATTCCCATAGGCAAATGGG -ACGGAATTCCCATAGGCATCCTGA -ACGGAATTCCCATAGGCATAGCGA -ACGGAATTCCCATAGGCACACAGA -ACGGAATTCCCATAGGCAGCAAGA -ACGGAATTCCCATAGGCAGGTTGA -ACGGAATTCCCATAGGCATCCGAT -ACGGAATTCCCATAGGCATGGCAT -ACGGAATTCCCATAGGCACGAGAT -ACGGAATTCCCATAGGCATACCAC -ACGGAATTCCCATAGGCACAGAAC -ACGGAATTCCCATAGGCAGTCTAC -ACGGAATTCCCATAGGCAACGTAC -ACGGAATTCCCATAGGCAAGTGAC -ACGGAATTCCCATAGGCACTGTAG -ACGGAATTCCCATAGGCACCTAAG -ACGGAATTCCCATAGGCAGTTCAG -ACGGAATTCCCATAGGCAGCATAG -ACGGAATTCCCATAGGCAGACAAG -ACGGAATTCCCATAGGCAAAGCAG -ACGGAATTCCCATAGGCACGTCAA -ACGGAATTCCCATAGGCAGCTGAA -ACGGAATTCCCATAGGCAAGTACG -ACGGAATTCCCATAGGCAATCCGA -ACGGAATTCCCATAGGCAATGGGA -ACGGAATTCCCATAGGCAGTGCAA -ACGGAATTCCCATAGGCAGAGGAA -ACGGAATTCCCATAGGCACAGGTA -ACGGAATTCCCATAGGCAGACTCT -ACGGAATTCCCATAGGCAAGTCCT -ACGGAATTCCCATAGGCATAAGCC -ACGGAATTCCCATAGGCAATAGCC -ACGGAATTCCCATAGGCATAACCG -ACGGAATTCCCATAGGCAATGCCA -ACGGAATTCCCAAAGGACGGAAAC -ACGGAATTCCCAAAGGACAACACC -ACGGAATTCCCAAAGGACATCGAG -ACGGAATTCCCAAAGGACCTCCTT -ACGGAATTCCCAAAGGACCCTGTT -ACGGAATTCCCAAAGGACCGGTTT -ACGGAATTCCCAAAGGACGTGGTT -ACGGAATTCCCAAAGGACGCCTTT -ACGGAATTCCCAAAGGACGGTCTT -ACGGAATTCCCAAAGGACACGCTT -ACGGAATTCCCAAAGGACAGCGTT -ACGGAATTCCCAAAGGACTTCGTC -ACGGAATTCCCAAAGGACTCTCTC -ACGGAATTCCCAAAGGACTGGATC -ACGGAATTCCCAAAGGACCACTTC -ACGGAATTCCCAAAGGACGTACTC -ACGGAATTCCCAAAGGACGATGTC -ACGGAATTCCCAAAGGACACAGTC -ACGGAATTCCCAAAGGACTTGCTG -ACGGAATTCCCAAAGGACTCCATG -ACGGAATTCCCAAAGGACTGTGTG -ACGGAATTCCCAAAGGACCTAGTG -ACGGAATTCCCAAAGGACCATCTG -ACGGAATTCCCAAAGGACGAGTTG -ACGGAATTCCCAAAGGACAGACTG -ACGGAATTCCCAAAGGACTCGGTA -ACGGAATTCCCAAAGGACTGCCTA -ACGGAATTCCCAAAGGACCCACTA -ACGGAATTCCCAAAGGACGGAGTA -ACGGAATTCCCAAAGGACTCGTCT -ACGGAATTCCCAAAGGACTGCACT -ACGGAATTCCCAAAGGACCTGACT -ACGGAATTCCCAAAGGACCAACCT -ACGGAATTCCCAAAGGACGCTACT -ACGGAATTCCCAAAGGACGGATCT -ACGGAATTCCCAAAGGACAAGGCT -ACGGAATTCCCAAAGGACTCAACC -ACGGAATTCCCAAAGGACTGTTCC -ACGGAATTCCCAAAGGACATTCCC -ACGGAATTCCCAAAGGACTTCTCG -ACGGAATTCCCAAAGGACTAGACG -ACGGAATTCCCAAAGGACGTAACG -ACGGAATTCCCAAAGGACACTTCG -ACGGAATTCCCAAAGGACTACGCA -ACGGAATTCCCAAAGGACCTTGCA -ACGGAATTCCCAAAGGACCGAACA -ACGGAATTCCCAAAGGACCAGTCA -ACGGAATTCCCAAAGGACGATCCA -ACGGAATTCCCAAAGGACACGACA -ACGGAATTCCCAAAGGACAGCTCA -ACGGAATTCCCAAAGGACTCACGT -ACGGAATTCCCAAAGGACCGTAGT -ACGGAATTCCCAAAGGACGTCAGT -ACGGAATTCCCAAAGGACGAAGGT -ACGGAATTCCCAAAGGACAACCGT -ACGGAATTCCCAAAGGACTTGTGC -ACGGAATTCCCAAAGGACCTAAGC -ACGGAATTCCCAAAGGACACTAGC -ACGGAATTCCCAAAGGACAGATGC -ACGGAATTCCCAAAGGACTGAAGG -ACGGAATTCCCAAAGGACCAATGG -ACGGAATTCCCAAAGGACATGAGG -ACGGAATTCCCAAAGGACAATGGG -ACGGAATTCCCAAAGGACTCCTGA -ACGGAATTCCCAAAGGACTAGCGA -ACGGAATTCCCAAAGGACCACAGA -ACGGAATTCCCAAAGGACGCAAGA -ACGGAATTCCCAAAGGACGGTTGA -ACGGAATTCCCAAAGGACTCCGAT -ACGGAATTCCCAAAGGACTGGCAT -ACGGAATTCCCAAAGGACCGAGAT -ACGGAATTCCCAAAGGACTACCAC -ACGGAATTCCCAAAGGACCAGAAC -ACGGAATTCCCAAAGGACGTCTAC -ACGGAATTCCCAAAGGACACGTAC -ACGGAATTCCCAAAGGACAGTGAC -ACGGAATTCCCAAAGGACCTGTAG -ACGGAATTCCCAAAGGACCCTAAG -ACGGAATTCCCAAAGGACGTTCAG -ACGGAATTCCCAAAGGACGCATAG -ACGGAATTCCCAAAGGACGACAAG -ACGGAATTCCCAAAGGACAAGCAG -ACGGAATTCCCAAAGGACCGTCAA -ACGGAATTCCCAAAGGACGCTGAA -ACGGAATTCCCAAAGGACAGTACG -ACGGAATTCCCAAAGGACATCCGA -ACGGAATTCCCAAAGGACATGGGA -ACGGAATTCCCAAAGGACGTGCAA -ACGGAATTCCCAAAGGACGAGGAA -ACGGAATTCCCAAAGGACCAGGTA -ACGGAATTCCCAAAGGACGACTCT -ACGGAATTCCCAAAGGACAGTCCT -ACGGAATTCCCAAAGGACTAAGCC -ACGGAATTCCCAAAGGACATAGCC -ACGGAATTCCCAAAGGACTAACCG -ACGGAATTCCCAAAGGACATGCCA -ACGGAATTCCCACAGAAGGGAAAC -ACGGAATTCCCACAGAAGAACACC -ACGGAATTCCCACAGAAGATCGAG -ACGGAATTCCCACAGAAGCTCCTT -ACGGAATTCCCACAGAAGCCTGTT -ACGGAATTCCCACAGAAGCGGTTT -ACGGAATTCCCACAGAAGGTGGTT -ACGGAATTCCCACAGAAGGCCTTT -ACGGAATTCCCACAGAAGGGTCTT -ACGGAATTCCCACAGAAGACGCTT -ACGGAATTCCCACAGAAGAGCGTT -ACGGAATTCCCACAGAAGTTCGTC -ACGGAATTCCCACAGAAGTCTCTC -ACGGAATTCCCACAGAAGTGGATC -ACGGAATTCCCACAGAAGCACTTC -ACGGAATTCCCACAGAAGGTACTC -ACGGAATTCCCACAGAAGGATGTC -ACGGAATTCCCACAGAAGACAGTC -ACGGAATTCCCACAGAAGTTGCTG -ACGGAATTCCCACAGAAGTCCATG -ACGGAATTCCCACAGAAGTGTGTG -ACGGAATTCCCACAGAAGCTAGTG -ACGGAATTCCCACAGAAGCATCTG -ACGGAATTCCCACAGAAGGAGTTG -ACGGAATTCCCACAGAAGAGACTG -ACGGAATTCCCACAGAAGTCGGTA -ACGGAATTCCCACAGAAGTGCCTA -ACGGAATTCCCACAGAAGCCACTA -ACGGAATTCCCACAGAAGGGAGTA -ACGGAATTCCCACAGAAGTCGTCT -ACGGAATTCCCACAGAAGTGCACT -ACGGAATTCCCACAGAAGCTGACT -ACGGAATTCCCACAGAAGCAACCT -ACGGAATTCCCACAGAAGGCTACT -ACGGAATTCCCACAGAAGGGATCT -ACGGAATTCCCACAGAAGAAGGCT -ACGGAATTCCCACAGAAGTCAACC -ACGGAATTCCCACAGAAGTGTTCC -ACGGAATTCCCACAGAAGATTCCC -ACGGAATTCCCACAGAAGTTCTCG -ACGGAATTCCCACAGAAGTAGACG -ACGGAATTCCCACAGAAGGTAACG -ACGGAATTCCCACAGAAGACTTCG -ACGGAATTCCCACAGAAGTACGCA -ACGGAATTCCCACAGAAGCTTGCA -ACGGAATTCCCACAGAAGCGAACA -ACGGAATTCCCACAGAAGCAGTCA -ACGGAATTCCCACAGAAGGATCCA -ACGGAATTCCCACAGAAGACGACA -ACGGAATTCCCACAGAAGAGCTCA -ACGGAATTCCCACAGAAGTCACGT -ACGGAATTCCCACAGAAGCGTAGT -ACGGAATTCCCACAGAAGGTCAGT -ACGGAATTCCCACAGAAGGAAGGT -ACGGAATTCCCACAGAAGAACCGT -ACGGAATTCCCACAGAAGTTGTGC -ACGGAATTCCCACAGAAGCTAAGC -ACGGAATTCCCACAGAAGACTAGC -ACGGAATTCCCACAGAAGAGATGC -ACGGAATTCCCACAGAAGTGAAGG -ACGGAATTCCCACAGAAGCAATGG -ACGGAATTCCCACAGAAGATGAGG -ACGGAATTCCCACAGAAGAATGGG -ACGGAATTCCCACAGAAGTCCTGA -ACGGAATTCCCACAGAAGTAGCGA -ACGGAATTCCCACAGAAGCACAGA -ACGGAATTCCCACAGAAGGCAAGA -ACGGAATTCCCACAGAAGGGTTGA -ACGGAATTCCCACAGAAGTCCGAT -ACGGAATTCCCACAGAAGTGGCAT -ACGGAATTCCCACAGAAGCGAGAT -ACGGAATTCCCACAGAAGTACCAC -ACGGAATTCCCACAGAAGCAGAAC -ACGGAATTCCCACAGAAGGTCTAC -ACGGAATTCCCACAGAAGACGTAC -ACGGAATTCCCACAGAAGAGTGAC -ACGGAATTCCCACAGAAGCTGTAG -ACGGAATTCCCACAGAAGCCTAAG -ACGGAATTCCCACAGAAGGTTCAG -ACGGAATTCCCACAGAAGGCATAG -ACGGAATTCCCACAGAAGGACAAG -ACGGAATTCCCACAGAAGAAGCAG -ACGGAATTCCCACAGAAGCGTCAA -ACGGAATTCCCACAGAAGGCTGAA -ACGGAATTCCCACAGAAGAGTACG -ACGGAATTCCCACAGAAGATCCGA -ACGGAATTCCCACAGAAGATGGGA -ACGGAATTCCCACAGAAGGTGCAA -ACGGAATTCCCACAGAAGGAGGAA -ACGGAATTCCCACAGAAGCAGGTA -ACGGAATTCCCACAGAAGGACTCT -ACGGAATTCCCACAGAAGAGTCCT -ACGGAATTCCCACAGAAGTAAGCC -ACGGAATTCCCACAGAAGATAGCC -ACGGAATTCCCACAGAAGTAACCG -ACGGAATTCCCACAGAAGATGCCA -ACGGAATTCCCACAACGTGGAAAC -ACGGAATTCCCACAACGTAACACC -ACGGAATTCCCACAACGTATCGAG -ACGGAATTCCCACAACGTCTCCTT -ACGGAATTCCCACAACGTCCTGTT -ACGGAATTCCCACAACGTCGGTTT -ACGGAATTCCCACAACGTGTGGTT -ACGGAATTCCCACAACGTGCCTTT -ACGGAATTCCCACAACGTGGTCTT -ACGGAATTCCCACAACGTACGCTT -ACGGAATTCCCACAACGTAGCGTT -ACGGAATTCCCACAACGTTTCGTC -ACGGAATTCCCACAACGTTCTCTC -ACGGAATTCCCACAACGTTGGATC -ACGGAATTCCCACAACGTCACTTC -ACGGAATTCCCACAACGTGTACTC -ACGGAATTCCCACAACGTGATGTC -ACGGAATTCCCACAACGTACAGTC -ACGGAATTCCCACAACGTTTGCTG -ACGGAATTCCCACAACGTTCCATG -ACGGAATTCCCACAACGTTGTGTG -ACGGAATTCCCACAACGTCTAGTG -ACGGAATTCCCACAACGTCATCTG -ACGGAATTCCCACAACGTGAGTTG -ACGGAATTCCCACAACGTAGACTG -ACGGAATTCCCACAACGTTCGGTA -ACGGAATTCCCACAACGTTGCCTA -ACGGAATTCCCACAACGTCCACTA -ACGGAATTCCCACAACGTGGAGTA -ACGGAATTCCCACAACGTTCGTCT -ACGGAATTCCCACAACGTTGCACT -ACGGAATTCCCACAACGTCTGACT -ACGGAATTCCCACAACGTCAACCT -ACGGAATTCCCACAACGTGCTACT -ACGGAATTCCCACAACGTGGATCT -ACGGAATTCCCACAACGTAAGGCT -ACGGAATTCCCACAACGTTCAACC -ACGGAATTCCCACAACGTTGTTCC -ACGGAATTCCCACAACGTATTCCC -ACGGAATTCCCACAACGTTTCTCG -ACGGAATTCCCACAACGTTAGACG -ACGGAATTCCCACAACGTGTAACG -ACGGAATTCCCACAACGTACTTCG -ACGGAATTCCCACAACGTTACGCA -ACGGAATTCCCACAACGTCTTGCA -ACGGAATTCCCACAACGTCGAACA -ACGGAATTCCCACAACGTCAGTCA -ACGGAATTCCCACAACGTGATCCA -ACGGAATTCCCACAACGTACGACA -ACGGAATTCCCACAACGTAGCTCA -ACGGAATTCCCACAACGTTCACGT -ACGGAATTCCCACAACGTCGTAGT -ACGGAATTCCCACAACGTGTCAGT -ACGGAATTCCCACAACGTGAAGGT -ACGGAATTCCCACAACGTAACCGT -ACGGAATTCCCACAACGTTTGTGC -ACGGAATTCCCACAACGTCTAAGC -ACGGAATTCCCACAACGTACTAGC -ACGGAATTCCCACAACGTAGATGC -ACGGAATTCCCACAACGTTGAAGG -ACGGAATTCCCACAACGTCAATGG -ACGGAATTCCCACAACGTATGAGG -ACGGAATTCCCACAACGTAATGGG -ACGGAATTCCCACAACGTTCCTGA -ACGGAATTCCCACAACGTTAGCGA -ACGGAATTCCCACAACGTCACAGA -ACGGAATTCCCACAACGTGCAAGA -ACGGAATTCCCACAACGTGGTTGA -ACGGAATTCCCACAACGTTCCGAT -ACGGAATTCCCACAACGTTGGCAT -ACGGAATTCCCACAACGTCGAGAT -ACGGAATTCCCACAACGTTACCAC -ACGGAATTCCCACAACGTCAGAAC -ACGGAATTCCCACAACGTGTCTAC -ACGGAATTCCCACAACGTACGTAC -ACGGAATTCCCACAACGTAGTGAC -ACGGAATTCCCACAACGTCTGTAG -ACGGAATTCCCACAACGTCCTAAG -ACGGAATTCCCACAACGTGTTCAG -ACGGAATTCCCACAACGTGCATAG -ACGGAATTCCCACAACGTGACAAG -ACGGAATTCCCACAACGTAAGCAG -ACGGAATTCCCACAACGTCGTCAA -ACGGAATTCCCACAACGTGCTGAA -ACGGAATTCCCACAACGTAGTACG -ACGGAATTCCCACAACGTATCCGA -ACGGAATTCCCACAACGTATGGGA -ACGGAATTCCCACAACGTGTGCAA -ACGGAATTCCCACAACGTGAGGAA -ACGGAATTCCCACAACGTCAGGTA -ACGGAATTCCCACAACGTGACTCT -ACGGAATTCCCACAACGTAGTCCT -ACGGAATTCCCACAACGTTAAGCC -ACGGAATTCCCACAACGTATAGCC -ACGGAATTCCCACAACGTTAACCG -ACGGAATTCCCACAACGTATGCCA -ACGGAATTCCCAGAAGCTGGAAAC -ACGGAATTCCCAGAAGCTAACACC -ACGGAATTCCCAGAAGCTATCGAG -ACGGAATTCCCAGAAGCTCTCCTT -ACGGAATTCCCAGAAGCTCCTGTT -ACGGAATTCCCAGAAGCTCGGTTT -ACGGAATTCCCAGAAGCTGTGGTT -ACGGAATTCCCAGAAGCTGCCTTT -ACGGAATTCCCAGAAGCTGGTCTT -ACGGAATTCCCAGAAGCTACGCTT -ACGGAATTCCCAGAAGCTAGCGTT -ACGGAATTCCCAGAAGCTTTCGTC -ACGGAATTCCCAGAAGCTTCTCTC -ACGGAATTCCCAGAAGCTTGGATC -ACGGAATTCCCAGAAGCTCACTTC -ACGGAATTCCCAGAAGCTGTACTC -ACGGAATTCCCAGAAGCTGATGTC -ACGGAATTCCCAGAAGCTACAGTC -ACGGAATTCCCAGAAGCTTTGCTG -ACGGAATTCCCAGAAGCTTCCATG -ACGGAATTCCCAGAAGCTTGTGTG -ACGGAATTCCCAGAAGCTCTAGTG -ACGGAATTCCCAGAAGCTCATCTG -ACGGAATTCCCAGAAGCTGAGTTG -ACGGAATTCCCAGAAGCTAGACTG -ACGGAATTCCCAGAAGCTTCGGTA -ACGGAATTCCCAGAAGCTTGCCTA -ACGGAATTCCCAGAAGCTCCACTA -ACGGAATTCCCAGAAGCTGGAGTA -ACGGAATTCCCAGAAGCTTCGTCT -ACGGAATTCCCAGAAGCTTGCACT -ACGGAATTCCCAGAAGCTCTGACT -ACGGAATTCCCAGAAGCTCAACCT -ACGGAATTCCCAGAAGCTGCTACT -ACGGAATTCCCAGAAGCTGGATCT -ACGGAATTCCCAGAAGCTAAGGCT -ACGGAATTCCCAGAAGCTTCAACC -ACGGAATTCCCAGAAGCTTGTTCC -ACGGAATTCCCAGAAGCTATTCCC -ACGGAATTCCCAGAAGCTTTCTCG -ACGGAATTCCCAGAAGCTTAGACG -ACGGAATTCCCAGAAGCTGTAACG -ACGGAATTCCCAGAAGCTACTTCG -ACGGAATTCCCAGAAGCTTACGCA -ACGGAATTCCCAGAAGCTCTTGCA -ACGGAATTCCCAGAAGCTCGAACA -ACGGAATTCCCAGAAGCTCAGTCA -ACGGAATTCCCAGAAGCTGATCCA -ACGGAATTCCCAGAAGCTACGACA -ACGGAATTCCCAGAAGCTAGCTCA -ACGGAATTCCCAGAAGCTTCACGT -ACGGAATTCCCAGAAGCTCGTAGT -ACGGAATTCCCAGAAGCTGTCAGT -ACGGAATTCCCAGAAGCTGAAGGT -ACGGAATTCCCAGAAGCTAACCGT -ACGGAATTCCCAGAAGCTTTGTGC -ACGGAATTCCCAGAAGCTCTAAGC -ACGGAATTCCCAGAAGCTACTAGC -ACGGAATTCCCAGAAGCTAGATGC -ACGGAATTCCCAGAAGCTTGAAGG -ACGGAATTCCCAGAAGCTCAATGG -ACGGAATTCCCAGAAGCTATGAGG -ACGGAATTCCCAGAAGCTAATGGG -ACGGAATTCCCAGAAGCTTCCTGA -ACGGAATTCCCAGAAGCTTAGCGA -ACGGAATTCCCAGAAGCTCACAGA -ACGGAATTCCCAGAAGCTGCAAGA -ACGGAATTCCCAGAAGCTGGTTGA -ACGGAATTCCCAGAAGCTTCCGAT -ACGGAATTCCCAGAAGCTTGGCAT -ACGGAATTCCCAGAAGCTCGAGAT -ACGGAATTCCCAGAAGCTTACCAC -ACGGAATTCCCAGAAGCTCAGAAC -ACGGAATTCCCAGAAGCTGTCTAC -ACGGAATTCCCAGAAGCTACGTAC -ACGGAATTCCCAGAAGCTAGTGAC -ACGGAATTCCCAGAAGCTCTGTAG -ACGGAATTCCCAGAAGCTCCTAAG -ACGGAATTCCCAGAAGCTGTTCAG -ACGGAATTCCCAGAAGCTGCATAG -ACGGAATTCCCAGAAGCTGACAAG -ACGGAATTCCCAGAAGCTAAGCAG -ACGGAATTCCCAGAAGCTCGTCAA -ACGGAATTCCCAGAAGCTGCTGAA -ACGGAATTCCCAGAAGCTAGTACG -ACGGAATTCCCAGAAGCTATCCGA -ACGGAATTCCCAGAAGCTATGGGA -ACGGAATTCCCAGAAGCTGTGCAA -ACGGAATTCCCAGAAGCTGAGGAA -ACGGAATTCCCAGAAGCTCAGGTA -ACGGAATTCCCAGAAGCTGACTCT -ACGGAATTCCCAGAAGCTAGTCCT -ACGGAATTCCCAGAAGCTTAAGCC -ACGGAATTCCCAGAAGCTATAGCC -ACGGAATTCCCAGAAGCTTAACCG -ACGGAATTCCCAGAAGCTATGCCA -ACGGAATTCCCAACGAGTGGAAAC -ACGGAATTCCCAACGAGTAACACC -ACGGAATTCCCAACGAGTATCGAG -ACGGAATTCCCAACGAGTCTCCTT -ACGGAATTCCCAACGAGTCCTGTT -ACGGAATTCCCAACGAGTCGGTTT -ACGGAATTCCCAACGAGTGTGGTT -ACGGAATTCCCAACGAGTGCCTTT -ACGGAATTCCCAACGAGTGGTCTT -ACGGAATTCCCAACGAGTACGCTT -ACGGAATTCCCAACGAGTAGCGTT -ACGGAATTCCCAACGAGTTTCGTC -ACGGAATTCCCAACGAGTTCTCTC -ACGGAATTCCCAACGAGTTGGATC -ACGGAATTCCCAACGAGTCACTTC -ACGGAATTCCCAACGAGTGTACTC -ACGGAATTCCCAACGAGTGATGTC -ACGGAATTCCCAACGAGTACAGTC -ACGGAATTCCCAACGAGTTTGCTG -ACGGAATTCCCAACGAGTTCCATG -ACGGAATTCCCAACGAGTTGTGTG -ACGGAATTCCCAACGAGTCTAGTG -ACGGAATTCCCAACGAGTCATCTG -ACGGAATTCCCAACGAGTGAGTTG -ACGGAATTCCCAACGAGTAGACTG -ACGGAATTCCCAACGAGTTCGGTA -ACGGAATTCCCAACGAGTTGCCTA -ACGGAATTCCCAACGAGTCCACTA -ACGGAATTCCCAACGAGTGGAGTA -ACGGAATTCCCAACGAGTTCGTCT -ACGGAATTCCCAACGAGTTGCACT -ACGGAATTCCCAACGAGTCTGACT -ACGGAATTCCCAACGAGTCAACCT -ACGGAATTCCCAACGAGTGCTACT -ACGGAATTCCCAACGAGTGGATCT -ACGGAATTCCCAACGAGTAAGGCT -ACGGAATTCCCAACGAGTTCAACC -ACGGAATTCCCAACGAGTTGTTCC -ACGGAATTCCCAACGAGTATTCCC -ACGGAATTCCCAACGAGTTTCTCG -ACGGAATTCCCAACGAGTTAGACG -ACGGAATTCCCAACGAGTGTAACG -ACGGAATTCCCAACGAGTACTTCG -ACGGAATTCCCAACGAGTTACGCA -ACGGAATTCCCAACGAGTCTTGCA -ACGGAATTCCCAACGAGTCGAACA -ACGGAATTCCCAACGAGTCAGTCA -ACGGAATTCCCAACGAGTGATCCA -ACGGAATTCCCAACGAGTACGACA -ACGGAATTCCCAACGAGTAGCTCA -ACGGAATTCCCAACGAGTTCACGT -ACGGAATTCCCAACGAGTCGTAGT -ACGGAATTCCCAACGAGTGTCAGT -ACGGAATTCCCAACGAGTGAAGGT -ACGGAATTCCCAACGAGTAACCGT -ACGGAATTCCCAACGAGTTTGTGC -ACGGAATTCCCAACGAGTCTAAGC -ACGGAATTCCCAACGAGTACTAGC -ACGGAATTCCCAACGAGTAGATGC -ACGGAATTCCCAACGAGTTGAAGG -ACGGAATTCCCAACGAGTCAATGG -ACGGAATTCCCAACGAGTATGAGG -ACGGAATTCCCAACGAGTAATGGG -ACGGAATTCCCAACGAGTTCCTGA -ACGGAATTCCCAACGAGTTAGCGA -ACGGAATTCCCAACGAGTCACAGA -ACGGAATTCCCAACGAGTGCAAGA -ACGGAATTCCCAACGAGTGGTTGA -ACGGAATTCCCAACGAGTTCCGAT -ACGGAATTCCCAACGAGTTGGCAT -ACGGAATTCCCAACGAGTCGAGAT -ACGGAATTCCCAACGAGTTACCAC -ACGGAATTCCCAACGAGTCAGAAC -ACGGAATTCCCAACGAGTGTCTAC -ACGGAATTCCCAACGAGTACGTAC -ACGGAATTCCCAACGAGTAGTGAC -ACGGAATTCCCAACGAGTCTGTAG -ACGGAATTCCCAACGAGTCCTAAG -ACGGAATTCCCAACGAGTGTTCAG -ACGGAATTCCCAACGAGTGCATAG -ACGGAATTCCCAACGAGTGACAAG -ACGGAATTCCCAACGAGTAAGCAG -ACGGAATTCCCAACGAGTCGTCAA -ACGGAATTCCCAACGAGTGCTGAA -ACGGAATTCCCAACGAGTAGTACG -ACGGAATTCCCAACGAGTATCCGA -ACGGAATTCCCAACGAGTATGGGA -ACGGAATTCCCAACGAGTGTGCAA -ACGGAATTCCCAACGAGTGAGGAA -ACGGAATTCCCAACGAGTCAGGTA -ACGGAATTCCCAACGAGTGACTCT -ACGGAATTCCCAACGAGTAGTCCT -ACGGAATTCCCAACGAGTTAAGCC -ACGGAATTCCCAACGAGTATAGCC -ACGGAATTCCCAACGAGTTAACCG -ACGGAATTCCCAACGAGTATGCCA -ACGGAATTCCCACGAATCGGAAAC -ACGGAATTCCCACGAATCAACACC -ACGGAATTCCCACGAATCATCGAG -ACGGAATTCCCACGAATCCTCCTT -ACGGAATTCCCACGAATCCCTGTT -ACGGAATTCCCACGAATCCGGTTT -ACGGAATTCCCACGAATCGTGGTT -ACGGAATTCCCACGAATCGCCTTT -ACGGAATTCCCACGAATCGGTCTT -ACGGAATTCCCACGAATCACGCTT -ACGGAATTCCCACGAATCAGCGTT -ACGGAATTCCCACGAATCTTCGTC -ACGGAATTCCCACGAATCTCTCTC -ACGGAATTCCCACGAATCTGGATC -ACGGAATTCCCACGAATCCACTTC -ACGGAATTCCCACGAATCGTACTC -ACGGAATTCCCACGAATCGATGTC -ACGGAATTCCCACGAATCACAGTC -ACGGAATTCCCACGAATCTTGCTG -ACGGAATTCCCACGAATCTCCATG -ACGGAATTCCCACGAATCTGTGTG -ACGGAATTCCCACGAATCCTAGTG -ACGGAATTCCCACGAATCCATCTG -ACGGAATTCCCACGAATCGAGTTG -ACGGAATTCCCACGAATCAGACTG -ACGGAATTCCCACGAATCTCGGTA -ACGGAATTCCCACGAATCTGCCTA -ACGGAATTCCCACGAATCCCACTA -ACGGAATTCCCACGAATCGGAGTA -ACGGAATTCCCACGAATCTCGTCT -ACGGAATTCCCACGAATCTGCACT -ACGGAATTCCCACGAATCCTGACT -ACGGAATTCCCACGAATCCAACCT -ACGGAATTCCCACGAATCGCTACT -ACGGAATTCCCACGAATCGGATCT -ACGGAATTCCCACGAATCAAGGCT -ACGGAATTCCCACGAATCTCAACC -ACGGAATTCCCACGAATCTGTTCC -ACGGAATTCCCACGAATCATTCCC -ACGGAATTCCCACGAATCTTCTCG -ACGGAATTCCCACGAATCTAGACG -ACGGAATTCCCACGAATCGTAACG -ACGGAATTCCCACGAATCACTTCG -ACGGAATTCCCACGAATCTACGCA -ACGGAATTCCCACGAATCCTTGCA -ACGGAATTCCCACGAATCCGAACA -ACGGAATTCCCACGAATCCAGTCA -ACGGAATTCCCACGAATCGATCCA -ACGGAATTCCCACGAATCACGACA -ACGGAATTCCCACGAATCAGCTCA -ACGGAATTCCCACGAATCTCACGT -ACGGAATTCCCACGAATCCGTAGT -ACGGAATTCCCACGAATCGTCAGT -ACGGAATTCCCACGAATCGAAGGT -ACGGAATTCCCACGAATCAACCGT -ACGGAATTCCCACGAATCTTGTGC -ACGGAATTCCCACGAATCCTAAGC -ACGGAATTCCCACGAATCACTAGC -ACGGAATTCCCACGAATCAGATGC -ACGGAATTCCCACGAATCTGAAGG -ACGGAATTCCCACGAATCCAATGG -ACGGAATTCCCACGAATCATGAGG -ACGGAATTCCCACGAATCAATGGG -ACGGAATTCCCACGAATCTCCTGA -ACGGAATTCCCACGAATCTAGCGA -ACGGAATTCCCACGAATCCACAGA -ACGGAATTCCCACGAATCGCAAGA -ACGGAATTCCCACGAATCGGTTGA -ACGGAATTCCCACGAATCTCCGAT -ACGGAATTCCCACGAATCTGGCAT -ACGGAATTCCCACGAATCCGAGAT -ACGGAATTCCCACGAATCTACCAC -ACGGAATTCCCACGAATCCAGAAC -ACGGAATTCCCACGAATCGTCTAC -ACGGAATTCCCACGAATCACGTAC -ACGGAATTCCCACGAATCAGTGAC -ACGGAATTCCCACGAATCCTGTAG -ACGGAATTCCCACGAATCCCTAAG -ACGGAATTCCCACGAATCGTTCAG -ACGGAATTCCCACGAATCGCATAG -ACGGAATTCCCACGAATCGACAAG -ACGGAATTCCCACGAATCAAGCAG -ACGGAATTCCCACGAATCCGTCAA -ACGGAATTCCCACGAATCGCTGAA -ACGGAATTCCCACGAATCAGTACG -ACGGAATTCCCACGAATCATCCGA -ACGGAATTCCCACGAATCATGGGA -ACGGAATTCCCACGAATCGTGCAA -ACGGAATTCCCACGAATCGAGGAA -ACGGAATTCCCACGAATCCAGGTA -ACGGAATTCCCACGAATCGACTCT -ACGGAATTCCCACGAATCAGTCCT -ACGGAATTCCCACGAATCTAAGCC -ACGGAATTCCCACGAATCATAGCC -ACGGAATTCCCACGAATCTAACCG -ACGGAATTCCCACGAATCATGCCA -ACGGAATTCCCAGGAATGGGAAAC -ACGGAATTCCCAGGAATGAACACC -ACGGAATTCCCAGGAATGATCGAG -ACGGAATTCCCAGGAATGCTCCTT -ACGGAATTCCCAGGAATGCCTGTT -ACGGAATTCCCAGGAATGCGGTTT -ACGGAATTCCCAGGAATGGTGGTT -ACGGAATTCCCAGGAATGGCCTTT -ACGGAATTCCCAGGAATGGGTCTT -ACGGAATTCCCAGGAATGACGCTT -ACGGAATTCCCAGGAATGAGCGTT -ACGGAATTCCCAGGAATGTTCGTC -ACGGAATTCCCAGGAATGTCTCTC -ACGGAATTCCCAGGAATGTGGATC -ACGGAATTCCCAGGAATGCACTTC -ACGGAATTCCCAGGAATGGTACTC -ACGGAATTCCCAGGAATGGATGTC -ACGGAATTCCCAGGAATGACAGTC -ACGGAATTCCCAGGAATGTTGCTG -ACGGAATTCCCAGGAATGTCCATG -ACGGAATTCCCAGGAATGTGTGTG -ACGGAATTCCCAGGAATGCTAGTG -ACGGAATTCCCAGGAATGCATCTG -ACGGAATTCCCAGGAATGGAGTTG -ACGGAATTCCCAGGAATGAGACTG -ACGGAATTCCCAGGAATGTCGGTA -ACGGAATTCCCAGGAATGTGCCTA -ACGGAATTCCCAGGAATGCCACTA -ACGGAATTCCCAGGAATGGGAGTA -ACGGAATTCCCAGGAATGTCGTCT -ACGGAATTCCCAGGAATGTGCACT -ACGGAATTCCCAGGAATGCTGACT -ACGGAATTCCCAGGAATGCAACCT -ACGGAATTCCCAGGAATGGCTACT -ACGGAATTCCCAGGAATGGGATCT -ACGGAATTCCCAGGAATGAAGGCT -ACGGAATTCCCAGGAATGTCAACC -ACGGAATTCCCAGGAATGTGTTCC -ACGGAATTCCCAGGAATGATTCCC -ACGGAATTCCCAGGAATGTTCTCG -ACGGAATTCCCAGGAATGTAGACG -ACGGAATTCCCAGGAATGGTAACG -ACGGAATTCCCAGGAATGACTTCG -ACGGAATTCCCAGGAATGTACGCA -ACGGAATTCCCAGGAATGCTTGCA -ACGGAATTCCCAGGAATGCGAACA -ACGGAATTCCCAGGAATGCAGTCA -ACGGAATTCCCAGGAATGGATCCA -ACGGAATTCCCAGGAATGACGACA -ACGGAATTCCCAGGAATGAGCTCA -ACGGAATTCCCAGGAATGTCACGT -ACGGAATTCCCAGGAATGCGTAGT -ACGGAATTCCCAGGAATGGTCAGT -ACGGAATTCCCAGGAATGGAAGGT -ACGGAATTCCCAGGAATGAACCGT -ACGGAATTCCCAGGAATGTTGTGC -ACGGAATTCCCAGGAATGCTAAGC -ACGGAATTCCCAGGAATGACTAGC -ACGGAATTCCCAGGAATGAGATGC -ACGGAATTCCCAGGAATGTGAAGG -ACGGAATTCCCAGGAATGCAATGG -ACGGAATTCCCAGGAATGATGAGG -ACGGAATTCCCAGGAATGAATGGG -ACGGAATTCCCAGGAATGTCCTGA -ACGGAATTCCCAGGAATGTAGCGA -ACGGAATTCCCAGGAATGCACAGA -ACGGAATTCCCAGGAATGGCAAGA -ACGGAATTCCCAGGAATGGGTTGA -ACGGAATTCCCAGGAATGTCCGAT -ACGGAATTCCCAGGAATGTGGCAT -ACGGAATTCCCAGGAATGCGAGAT -ACGGAATTCCCAGGAATGTACCAC -ACGGAATTCCCAGGAATGCAGAAC -ACGGAATTCCCAGGAATGGTCTAC -ACGGAATTCCCAGGAATGACGTAC -ACGGAATTCCCAGGAATGAGTGAC -ACGGAATTCCCAGGAATGCTGTAG -ACGGAATTCCCAGGAATGCCTAAG -ACGGAATTCCCAGGAATGGTTCAG -ACGGAATTCCCAGGAATGGCATAG -ACGGAATTCCCAGGAATGGACAAG -ACGGAATTCCCAGGAATGAAGCAG -ACGGAATTCCCAGGAATGCGTCAA -ACGGAATTCCCAGGAATGGCTGAA -ACGGAATTCCCAGGAATGAGTACG -ACGGAATTCCCAGGAATGATCCGA -ACGGAATTCCCAGGAATGATGGGA -ACGGAATTCCCAGGAATGGTGCAA -ACGGAATTCCCAGGAATGGAGGAA -ACGGAATTCCCAGGAATGCAGGTA -ACGGAATTCCCAGGAATGGACTCT -ACGGAATTCCCAGGAATGAGTCCT -ACGGAATTCCCAGGAATGTAAGCC -ACGGAATTCCCAGGAATGATAGCC -ACGGAATTCCCAGGAATGTAACCG -ACGGAATTCCCAGGAATGATGCCA -ACGGAATTCCCACAAGTGGGAAAC -ACGGAATTCCCACAAGTGAACACC -ACGGAATTCCCACAAGTGATCGAG -ACGGAATTCCCACAAGTGCTCCTT -ACGGAATTCCCACAAGTGCCTGTT -ACGGAATTCCCACAAGTGCGGTTT -ACGGAATTCCCACAAGTGGTGGTT -ACGGAATTCCCACAAGTGGCCTTT -ACGGAATTCCCACAAGTGGGTCTT -ACGGAATTCCCACAAGTGACGCTT -ACGGAATTCCCACAAGTGAGCGTT -ACGGAATTCCCACAAGTGTTCGTC -ACGGAATTCCCACAAGTGTCTCTC -ACGGAATTCCCACAAGTGTGGATC -ACGGAATTCCCACAAGTGCACTTC -ACGGAATTCCCACAAGTGGTACTC -ACGGAATTCCCACAAGTGGATGTC -ACGGAATTCCCACAAGTGACAGTC -ACGGAATTCCCACAAGTGTTGCTG -ACGGAATTCCCACAAGTGTCCATG -ACGGAATTCCCACAAGTGTGTGTG -ACGGAATTCCCACAAGTGCTAGTG -ACGGAATTCCCACAAGTGCATCTG -ACGGAATTCCCACAAGTGGAGTTG -ACGGAATTCCCACAAGTGAGACTG -ACGGAATTCCCACAAGTGTCGGTA -ACGGAATTCCCACAAGTGTGCCTA -ACGGAATTCCCACAAGTGCCACTA -ACGGAATTCCCACAAGTGGGAGTA -ACGGAATTCCCACAAGTGTCGTCT -ACGGAATTCCCACAAGTGTGCACT -ACGGAATTCCCACAAGTGCTGACT -ACGGAATTCCCACAAGTGCAACCT -ACGGAATTCCCACAAGTGGCTACT -ACGGAATTCCCACAAGTGGGATCT -ACGGAATTCCCACAAGTGAAGGCT -ACGGAATTCCCACAAGTGTCAACC -ACGGAATTCCCACAAGTGTGTTCC -ACGGAATTCCCACAAGTGATTCCC -ACGGAATTCCCACAAGTGTTCTCG -ACGGAATTCCCACAAGTGTAGACG -ACGGAATTCCCACAAGTGGTAACG -ACGGAATTCCCACAAGTGACTTCG -ACGGAATTCCCACAAGTGTACGCA -ACGGAATTCCCACAAGTGCTTGCA -ACGGAATTCCCACAAGTGCGAACA -ACGGAATTCCCACAAGTGCAGTCA -ACGGAATTCCCACAAGTGGATCCA -ACGGAATTCCCACAAGTGACGACA -ACGGAATTCCCACAAGTGAGCTCA -ACGGAATTCCCACAAGTGTCACGT -ACGGAATTCCCACAAGTGCGTAGT -ACGGAATTCCCACAAGTGGTCAGT -ACGGAATTCCCACAAGTGGAAGGT -ACGGAATTCCCACAAGTGAACCGT -ACGGAATTCCCACAAGTGTTGTGC -ACGGAATTCCCACAAGTGCTAAGC -ACGGAATTCCCACAAGTGACTAGC -ACGGAATTCCCACAAGTGAGATGC -ACGGAATTCCCACAAGTGTGAAGG -ACGGAATTCCCACAAGTGCAATGG -ACGGAATTCCCACAAGTGATGAGG -ACGGAATTCCCACAAGTGAATGGG -ACGGAATTCCCACAAGTGTCCTGA -ACGGAATTCCCACAAGTGTAGCGA -ACGGAATTCCCACAAGTGCACAGA -ACGGAATTCCCACAAGTGGCAAGA -ACGGAATTCCCACAAGTGGGTTGA -ACGGAATTCCCACAAGTGTCCGAT -ACGGAATTCCCACAAGTGTGGCAT -ACGGAATTCCCACAAGTGCGAGAT -ACGGAATTCCCACAAGTGTACCAC -ACGGAATTCCCACAAGTGCAGAAC -ACGGAATTCCCACAAGTGGTCTAC -ACGGAATTCCCACAAGTGACGTAC -ACGGAATTCCCACAAGTGAGTGAC -ACGGAATTCCCACAAGTGCTGTAG -ACGGAATTCCCACAAGTGCCTAAG -ACGGAATTCCCACAAGTGGTTCAG -ACGGAATTCCCACAAGTGGCATAG -ACGGAATTCCCACAAGTGGACAAG -ACGGAATTCCCACAAGTGAAGCAG -ACGGAATTCCCACAAGTGCGTCAA -ACGGAATTCCCACAAGTGGCTGAA -ACGGAATTCCCACAAGTGAGTACG -ACGGAATTCCCACAAGTGATCCGA -ACGGAATTCCCACAAGTGATGGGA -ACGGAATTCCCACAAGTGGTGCAA -ACGGAATTCCCACAAGTGGAGGAA -ACGGAATTCCCACAAGTGCAGGTA -ACGGAATTCCCACAAGTGGACTCT -ACGGAATTCCCACAAGTGAGTCCT -ACGGAATTCCCACAAGTGTAAGCC -ACGGAATTCCCACAAGTGATAGCC -ACGGAATTCCCACAAGTGTAACCG -ACGGAATTCCCACAAGTGATGCCA -ACGGAATTCCCAGAAGAGGGAAAC -ACGGAATTCCCAGAAGAGAACACC -ACGGAATTCCCAGAAGAGATCGAG -ACGGAATTCCCAGAAGAGCTCCTT -ACGGAATTCCCAGAAGAGCCTGTT -ACGGAATTCCCAGAAGAGCGGTTT -ACGGAATTCCCAGAAGAGGTGGTT -ACGGAATTCCCAGAAGAGGCCTTT -ACGGAATTCCCAGAAGAGGGTCTT -ACGGAATTCCCAGAAGAGACGCTT -ACGGAATTCCCAGAAGAGAGCGTT -ACGGAATTCCCAGAAGAGTTCGTC -ACGGAATTCCCAGAAGAGTCTCTC -ACGGAATTCCCAGAAGAGTGGATC -ACGGAATTCCCAGAAGAGCACTTC -ACGGAATTCCCAGAAGAGGTACTC -ACGGAATTCCCAGAAGAGGATGTC -ACGGAATTCCCAGAAGAGACAGTC -ACGGAATTCCCAGAAGAGTTGCTG -ACGGAATTCCCAGAAGAGTCCATG -ACGGAATTCCCAGAAGAGTGTGTG -ACGGAATTCCCAGAAGAGCTAGTG -ACGGAATTCCCAGAAGAGCATCTG -ACGGAATTCCCAGAAGAGGAGTTG -ACGGAATTCCCAGAAGAGAGACTG -ACGGAATTCCCAGAAGAGTCGGTA -ACGGAATTCCCAGAAGAGTGCCTA -ACGGAATTCCCAGAAGAGCCACTA -ACGGAATTCCCAGAAGAGGGAGTA -ACGGAATTCCCAGAAGAGTCGTCT -ACGGAATTCCCAGAAGAGTGCACT -ACGGAATTCCCAGAAGAGCTGACT -ACGGAATTCCCAGAAGAGCAACCT -ACGGAATTCCCAGAAGAGGCTACT -ACGGAATTCCCAGAAGAGGGATCT -ACGGAATTCCCAGAAGAGAAGGCT -ACGGAATTCCCAGAAGAGTCAACC -ACGGAATTCCCAGAAGAGTGTTCC -ACGGAATTCCCAGAAGAGATTCCC -ACGGAATTCCCAGAAGAGTTCTCG -ACGGAATTCCCAGAAGAGTAGACG -ACGGAATTCCCAGAAGAGGTAACG -ACGGAATTCCCAGAAGAGACTTCG -ACGGAATTCCCAGAAGAGTACGCA -ACGGAATTCCCAGAAGAGCTTGCA -ACGGAATTCCCAGAAGAGCGAACA -ACGGAATTCCCAGAAGAGCAGTCA -ACGGAATTCCCAGAAGAGGATCCA -ACGGAATTCCCAGAAGAGACGACA -ACGGAATTCCCAGAAGAGAGCTCA -ACGGAATTCCCAGAAGAGTCACGT -ACGGAATTCCCAGAAGAGCGTAGT -ACGGAATTCCCAGAAGAGGTCAGT -ACGGAATTCCCAGAAGAGGAAGGT -ACGGAATTCCCAGAAGAGAACCGT -ACGGAATTCCCAGAAGAGTTGTGC -ACGGAATTCCCAGAAGAGCTAAGC -ACGGAATTCCCAGAAGAGACTAGC -ACGGAATTCCCAGAAGAGAGATGC -ACGGAATTCCCAGAAGAGTGAAGG -ACGGAATTCCCAGAAGAGCAATGG -ACGGAATTCCCAGAAGAGATGAGG -ACGGAATTCCCAGAAGAGAATGGG -ACGGAATTCCCAGAAGAGTCCTGA -ACGGAATTCCCAGAAGAGTAGCGA -ACGGAATTCCCAGAAGAGCACAGA -ACGGAATTCCCAGAAGAGGCAAGA -ACGGAATTCCCAGAAGAGGGTTGA -ACGGAATTCCCAGAAGAGTCCGAT -ACGGAATTCCCAGAAGAGTGGCAT -ACGGAATTCCCAGAAGAGCGAGAT -ACGGAATTCCCAGAAGAGTACCAC -ACGGAATTCCCAGAAGAGCAGAAC -ACGGAATTCCCAGAAGAGGTCTAC -ACGGAATTCCCAGAAGAGACGTAC -ACGGAATTCCCAGAAGAGAGTGAC -ACGGAATTCCCAGAAGAGCTGTAG -ACGGAATTCCCAGAAGAGCCTAAG -ACGGAATTCCCAGAAGAGGTTCAG -ACGGAATTCCCAGAAGAGGCATAG -ACGGAATTCCCAGAAGAGGACAAG -ACGGAATTCCCAGAAGAGAAGCAG -ACGGAATTCCCAGAAGAGCGTCAA -ACGGAATTCCCAGAAGAGGCTGAA -ACGGAATTCCCAGAAGAGAGTACG -ACGGAATTCCCAGAAGAGATCCGA -ACGGAATTCCCAGAAGAGATGGGA -ACGGAATTCCCAGAAGAGGTGCAA -ACGGAATTCCCAGAAGAGGAGGAA -ACGGAATTCCCAGAAGAGCAGGTA -ACGGAATTCCCAGAAGAGGACTCT -ACGGAATTCCCAGAAGAGAGTCCT -ACGGAATTCCCAGAAGAGTAAGCC -ACGGAATTCCCAGAAGAGATAGCC -ACGGAATTCCCAGAAGAGTAACCG -ACGGAATTCCCAGAAGAGATGCCA -ACGGAATTCCCAGTACAGGGAAAC -ACGGAATTCCCAGTACAGAACACC -ACGGAATTCCCAGTACAGATCGAG -ACGGAATTCCCAGTACAGCTCCTT -ACGGAATTCCCAGTACAGCCTGTT -ACGGAATTCCCAGTACAGCGGTTT -ACGGAATTCCCAGTACAGGTGGTT -ACGGAATTCCCAGTACAGGCCTTT -ACGGAATTCCCAGTACAGGGTCTT -ACGGAATTCCCAGTACAGACGCTT -ACGGAATTCCCAGTACAGAGCGTT -ACGGAATTCCCAGTACAGTTCGTC -ACGGAATTCCCAGTACAGTCTCTC -ACGGAATTCCCAGTACAGTGGATC -ACGGAATTCCCAGTACAGCACTTC -ACGGAATTCCCAGTACAGGTACTC -ACGGAATTCCCAGTACAGGATGTC -ACGGAATTCCCAGTACAGACAGTC -ACGGAATTCCCAGTACAGTTGCTG -ACGGAATTCCCAGTACAGTCCATG -ACGGAATTCCCAGTACAGTGTGTG -ACGGAATTCCCAGTACAGCTAGTG -ACGGAATTCCCAGTACAGCATCTG -ACGGAATTCCCAGTACAGGAGTTG -ACGGAATTCCCAGTACAGAGACTG -ACGGAATTCCCAGTACAGTCGGTA -ACGGAATTCCCAGTACAGTGCCTA -ACGGAATTCCCAGTACAGCCACTA -ACGGAATTCCCAGTACAGGGAGTA -ACGGAATTCCCAGTACAGTCGTCT -ACGGAATTCCCAGTACAGTGCACT -ACGGAATTCCCAGTACAGCTGACT -ACGGAATTCCCAGTACAGCAACCT -ACGGAATTCCCAGTACAGGCTACT -ACGGAATTCCCAGTACAGGGATCT -ACGGAATTCCCAGTACAGAAGGCT -ACGGAATTCCCAGTACAGTCAACC -ACGGAATTCCCAGTACAGTGTTCC -ACGGAATTCCCAGTACAGATTCCC -ACGGAATTCCCAGTACAGTTCTCG -ACGGAATTCCCAGTACAGTAGACG -ACGGAATTCCCAGTACAGGTAACG -ACGGAATTCCCAGTACAGACTTCG -ACGGAATTCCCAGTACAGTACGCA -ACGGAATTCCCAGTACAGCTTGCA -ACGGAATTCCCAGTACAGCGAACA -ACGGAATTCCCAGTACAGCAGTCA -ACGGAATTCCCAGTACAGGATCCA -ACGGAATTCCCAGTACAGACGACA -ACGGAATTCCCAGTACAGAGCTCA -ACGGAATTCCCAGTACAGTCACGT -ACGGAATTCCCAGTACAGCGTAGT -ACGGAATTCCCAGTACAGGTCAGT -ACGGAATTCCCAGTACAGGAAGGT -ACGGAATTCCCAGTACAGAACCGT -ACGGAATTCCCAGTACAGTTGTGC -ACGGAATTCCCAGTACAGCTAAGC -ACGGAATTCCCAGTACAGACTAGC -ACGGAATTCCCAGTACAGAGATGC -ACGGAATTCCCAGTACAGTGAAGG -ACGGAATTCCCAGTACAGCAATGG -ACGGAATTCCCAGTACAGATGAGG -ACGGAATTCCCAGTACAGAATGGG -ACGGAATTCCCAGTACAGTCCTGA -ACGGAATTCCCAGTACAGTAGCGA -ACGGAATTCCCAGTACAGCACAGA -ACGGAATTCCCAGTACAGGCAAGA -ACGGAATTCCCAGTACAGGGTTGA -ACGGAATTCCCAGTACAGTCCGAT -ACGGAATTCCCAGTACAGTGGCAT -ACGGAATTCCCAGTACAGCGAGAT -ACGGAATTCCCAGTACAGTACCAC -ACGGAATTCCCAGTACAGCAGAAC -ACGGAATTCCCAGTACAGGTCTAC -ACGGAATTCCCAGTACAGACGTAC -ACGGAATTCCCAGTACAGAGTGAC -ACGGAATTCCCAGTACAGCTGTAG -ACGGAATTCCCAGTACAGCCTAAG -ACGGAATTCCCAGTACAGGTTCAG -ACGGAATTCCCAGTACAGGCATAG -ACGGAATTCCCAGTACAGGACAAG -ACGGAATTCCCAGTACAGAAGCAG -ACGGAATTCCCAGTACAGCGTCAA -ACGGAATTCCCAGTACAGGCTGAA -ACGGAATTCCCAGTACAGAGTACG -ACGGAATTCCCAGTACAGATCCGA -ACGGAATTCCCAGTACAGATGGGA -ACGGAATTCCCAGTACAGGTGCAA -ACGGAATTCCCAGTACAGGAGGAA -ACGGAATTCCCAGTACAGCAGGTA -ACGGAATTCCCAGTACAGGACTCT -ACGGAATTCCCAGTACAGAGTCCT -ACGGAATTCCCAGTACAGTAAGCC -ACGGAATTCCCAGTACAGATAGCC -ACGGAATTCCCAGTACAGTAACCG -ACGGAATTCCCAGTACAGATGCCA -ACGGAATTCCCATCTGACGGAAAC -ACGGAATTCCCATCTGACAACACC -ACGGAATTCCCATCTGACATCGAG -ACGGAATTCCCATCTGACCTCCTT -ACGGAATTCCCATCTGACCCTGTT -ACGGAATTCCCATCTGACCGGTTT -ACGGAATTCCCATCTGACGTGGTT -ACGGAATTCCCATCTGACGCCTTT -ACGGAATTCCCATCTGACGGTCTT -ACGGAATTCCCATCTGACACGCTT -ACGGAATTCCCATCTGACAGCGTT -ACGGAATTCCCATCTGACTTCGTC -ACGGAATTCCCATCTGACTCTCTC -ACGGAATTCCCATCTGACTGGATC -ACGGAATTCCCATCTGACCACTTC -ACGGAATTCCCATCTGACGTACTC -ACGGAATTCCCATCTGACGATGTC -ACGGAATTCCCATCTGACACAGTC -ACGGAATTCCCATCTGACTTGCTG -ACGGAATTCCCATCTGACTCCATG -ACGGAATTCCCATCTGACTGTGTG -ACGGAATTCCCATCTGACCTAGTG -ACGGAATTCCCATCTGACCATCTG -ACGGAATTCCCATCTGACGAGTTG -ACGGAATTCCCATCTGACAGACTG -ACGGAATTCCCATCTGACTCGGTA -ACGGAATTCCCATCTGACTGCCTA -ACGGAATTCCCATCTGACCCACTA -ACGGAATTCCCATCTGACGGAGTA -ACGGAATTCCCATCTGACTCGTCT -ACGGAATTCCCATCTGACTGCACT -ACGGAATTCCCATCTGACCTGACT -ACGGAATTCCCATCTGACCAACCT -ACGGAATTCCCATCTGACGCTACT -ACGGAATTCCCATCTGACGGATCT -ACGGAATTCCCATCTGACAAGGCT -ACGGAATTCCCATCTGACTCAACC -ACGGAATTCCCATCTGACTGTTCC -ACGGAATTCCCATCTGACATTCCC -ACGGAATTCCCATCTGACTTCTCG -ACGGAATTCCCATCTGACTAGACG -ACGGAATTCCCATCTGACGTAACG -ACGGAATTCCCATCTGACACTTCG -ACGGAATTCCCATCTGACTACGCA -ACGGAATTCCCATCTGACCTTGCA -ACGGAATTCCCATCTGACCGAACA -ACGGAATTCCCATCTGACCAGTCA -ACGGAATTCCCATCTGACGATCCA -ACGGAATTCCCATCTGACACGACA -ACGGAATTCCCATCTGACAGCTCA -ACGGAATTCCCATCTGACTCACGT -ACGGAATTCCCATCTGACCGTAGT -ACGGAATTCCCATCTGACGTCAGT -ACGGAATTCCCATCTGACGAAGGT -ACGGAATTCCCATCTGACAACCGT -ACGGAATTCCCATCTGACTTGTGC -ACGGAATTCCCATCTGACCTAAGC -ACGGAATTCCCATCTGACACTAGC -ACGGAATTCCCATCTGACAGATGC -ACGGAATTCCCATCTGACTGAAGG -ACGGAATTCCCATCTGACCAATGG -ACGGAATTCCCATCTGACATGAGG -ACGGAATTCCCATCTGACAATGGG -ACGGAATTCCCATCTGACTCCTGA -ACGGAATTCCCATCTGACTAGCGA -ACGGAATTCCCATCTGACCACAGA -ACGGAATTCCCATCTGACGCAAGA -ACGGAATTCCCATCTGACGGTTGA -ACGGAATTCCCATCTGACTCCGAT -ACGGAATTCCCATCTGACTGGCAT -ACGGAATTCCCATCTGACCGAGAT -ACGGAATTCCCATCTGACTACCAC -ACGGAATTCCCATCTGACCAGAAC -ACGGAATTCCCATCTGACGTCTAC -ACGGAATTCCCATCTGACACGTAC -ACGGAATTCCCATCTGACAGTGAC -ACGGAATTCCCATCTGACCTGTAG -ACGGAATTCCCATCTGACCCTAAG -ACGGAATTCCCATCTGACGTTCAG -ACGGAATTCCCATCTGACGCATAG -ACGGAATTCCCATCTGACGACAAG -ACGGAATTCCCATCTGACAAGCAG -ACGGAATTCCCATCTGACCGTCAA -ACGGAATTCCCATCTGACGCTGAA -ACGGAATTCCCATCTGACAGTACG -ACGGAATTCCCATCTGACATCCGA -ACGGAATTCCCATCTGACATGGGA -ACGGAATTCCCATCTGACGTGCAA -ACGGAATTCCCATCTGACGAGGAA -ACGGAATTCCCATCTGACCAGGTA -ACGGAATTCCCATCTGACGACTCT -ACGGAATTCCCATCTGACAGTCCT -ACGGAATTCCCATCTGACTAAGCC -ACGGAATTCCCATCTGACATAGCC -ACGGAATTCCCATCTGACTAACCG -ACGGAATTCCCATCTGACATGCCA -ACGGAATTCCCACCTAGTGGAAAC -ACGGAATTCCCACCTAGTAACACC -ACGGAATTCCCACCTAGTATCGAG -ACGGAATTCCCACCTAGTCTCCTT -ACGGAATTCCCACCTAGTCCTGTT -ACGGAATTCCCACCTAGTCGGTTT -ACGGAATTCCCACCTAGTGTGGTT -ACGGAATTCCCACCTAGTGCCTTT -ACGGAATTCCCACCTAGTGGTCTT -ACGGAATTCCCACCTAGTACGCTT -ACGGAATTCCCACCTAGTAGCGTT -ACGGAATTCCCACCTAGTTTCGTC -ACGGAATTCCCACCTAGTTCTCTC -ACGGAATTCCCACCTAGTTGGATC -ACGGAATTCCCACCTAGTCACTTC -ACGGAATTCCCACCTAGTGTACTC -ACGGAATTCCCACCTAGTGATGTC -ACGGAATTCCCACCTAGTACAGTC -ACGGAATTCCCACCTAGTTTGCTG -ACGGAATTCCCACCTAGTTCCATG -ACGGAATTCCCACCTAGTTGTGTG -ACGGAATTCCCACCTAGTCTAGTG -ACGGAATTCCCACCTAGTCATCTG -ACGGAATTCCCACCTAGTGAGTTG -ACGGAATTCCCACCTAGTAGACTG -ACGGAATTCCCACCTAGTTCGGTA -ACGGAATTCCCACCTAGTTGCCTA -ACGGAATTCCCACCTAGTCCACTA -ACGGAATTCCCACCTAGTGGAGTA -ACGGAATTCCCACCTAGTTCGTCT -ACGGAATTCCCACCTAGTTGCACT -ACGGAATTCCCACCTAGTCTGACT -ACGGAATTCCCACCTAGTCAACCT -ACGGAATTCCCACCTAGTGCTACT -ACGGAATTCCCACCTAGTGGATCT -ACGGAATTCCCACCTAGTAAGGCT -ACGGAATTCCCACCTAGTTCAACC -ACGGAATTCCCACCTAGTTGTTCC -ACGGAATTCCCACCTAGTATTCCC -ACGGAATTCCCACCTAGTTTCTCG -ACGGAATTCCCACCTAGTTAGACG -ACGGAATTCCCACCTAGTGTAACG -ACGGAATTCCCACCTAGTACTTCG -ACGGAATTCCCACCTAGTTACGCA -ACGGAATTCCCACCTAGTCTTGCA -ACGGAATTCCCACCTAGTCGAACA -ACGGAATTCCCACCTAGTCAGTCA -ACGGAATTCCCACCTAGTGATCCA -ACGGAATTCCCACCTAGTACGACA -ACGGAATTCCCACCTAGTAGCTCA -ACGGAATTCCCACCTAGTTCACGT -ACGGAATTCCCACCTAGTCGTAGT -ACGGAATTCCCACCTAGTGTCAGT -ACGGAATTCCCACCTAGTGAAGGT -ACGGAATTCCCACCTAGTAACCGT -ACGGAATTCCCACCTAGTTTGTGC -ACGGAATTCCCACCTAGTCTAAGC -ACGGAATTCCCACCTAGTACTAGC -ACGGAATTCCCACCTAGTAGATGC -ACGGAATTCCCACCTAGTTGAAGG -ACGGAATTCCCACCTAGTCAATGG -ACGGAATTCCCACCTAGTATGAGG -ACGGAATTCCCACCTAGTAATGGG -ACGGAATTCCCACCTAGTTCCTGA -ACGGAATTCCCACCTAGTTAGCGA -ACGGAATTCCCACCTAGTCACAGA -ACGGAATTCCCACCTAGTGCAAGA -ACGGAATTCCCACCTAGTGGTTGA -ACGGAATTCCCACCTAGTTCCGAT -ACGGAATTCCCACCTAGTTGGCAT -ACGGAATTCCCACCTAGTCGAGAT -ACGGAATTCCCACCTAGTTACCAC -ACGGAATTCCCACCTAGTCAGAAC -ACGGAATTCCCACCTAGTGTCTAC -ACGGAATTCCCACCTAGTACGTAC -ACGGAATTCCCACCTAGTAGTGAC -ACGGAATTCCCACCTAGTCTGTAG -ACGGAATTCCCACCTAGTCCTAAG -ACGGAATTCCCACCTAGTGTTCAG -ACGGAATTCCCACCTAGTGCATAG -ACGGAATTCCCACCTAGTGACAAG -ACGGAATTCCCACCTAGTAAGCAG -ACGGAATTCCCACCTAGTCGTCAA -ACGGAATTCCCACCTAGTGCTGAA -ACGGAATTCCCACCTAGTAGTACG -ACGGAATTCCCACCTAGTATCCGA -ACGGAATTCCCACCTAGTATGGGA -ACGGAATTCCCACCTAGTGTGCAA -ACGGAATTCCCACCTAGTGAGGAA -ACGGAATTCCCACCTAGTCAGGTA -ACGGAATTCCCACCTAGTGACTCT -ACGGAATTCCCACCTAGTAGTCCT -ACGGAATTCCCACCTAGTTAAGCC -ACGGAATTCCCACCTAGTATAGCC -ACGGAATTCCCACCTAGTTAACCG -ACGGAATTCCCACCTAGTATGCCA -ACGGAATTCCCAGCCTAAGGAAAC -ACGGAATTCCCAGCCTAAAACACC -ACGGAATTCCCAGCCTAAATCGAG -ACGGAATTCCCAGCCTAACTCCTT -ACGGAATTCCCAGCCTAACCTGTT -ACGGAATTCCCAGCCTAACGGTTT -ACGGAATTCCCAGCCTAAGTGGTT -ACGGAATTCCCAGCCTAAGCCTTT -ACGGAATTCCCAGCCTAAGGTCTT -ACGGAATTCCCAGCCTAAACGCTT -ACGGAATTCCCAGCCTAAAGCGTT -ACGGAATTCCCAGCCTAATTCGTC -ACGGAATTCCCAGCCTAATCTCTC -ACGGAATTCCCAGCCTAATGGATC -ACGGAATTCCCAGCCTAACACTTC -ACGGAATTCCCAGCCTAAGTACTC -ACGGAATTCCCAGCCTAAGATGTC -ACGGAATTCCCAGCCTAAACAGTC -ACGGAATTCCCAGCCTAATTGCTG -ACGGAATTCCCAGCCTAATCCATG -ACGGAATTCCCAGCCTAATGTGTG -ACGGAATTCCCAGCCTAACTAGTG -ACGGAATTCCCAGCCTAACATCTG -ACGGAATTCCCAGCCTAAGAGTTG -ACGGAATTCCCAGCCTAAAGACTG -ACGGAATTCCCAGCCTAATCGGTA -ACGGAATTCCCAGCCTAATGCCTA -ACGGAATTCCCAGCCTAACCACTA -ACGGAATTCCCAGCCTAAGGAGTA -ACGGAATTCCCAGCCTAATCGTCT -ACGGAATTCCCAGCCTAATGCACT -ACGGAATTCCCAGCCTAACTGACT -ACGGAATTCCCAGCCTAACAACCT -ACGGAATTCCCAGCCTAAGCTACT -ACGGAATTCCCAGCCTAAGGATCT -ACGGAATTCCCAGCCTAAAAGGCT -ACGGAATTCCCAGCCTAATCAACC -ACGGAATTCCCAGCCTAATGTTCC -ACGGAATTCCCAGCCTAAATTCCC -ACGGAATTCCCAGCCTAATTCTCG -ACGGAATTCCCAGCCTAATAGACG -ACGGAATTCCCAGCCTAAGTAACG -ACGGAATTCCCAGCCTAAACTTCG -ACGGAATTCCCAGCCTAATACGCA -ACGGAATTCCCAGCCTAACTTGCA -ACGGAATTCCCAGCCTAACGAACA -ACGGAATTCCCAGCCTAACAGTCA -ACGGAATTCCCAGCCTAAGATCCA -ACGGAATTCCCAGCCTAAACGACA -ACGGAATTCCCAGCCTAAAGCTCA -ACGGAATTCCCAGCCTAATCACGT -ACGGAATTCCCAGCCTAACGTAGT -ACGGAATTCCCAGCCTAAGTCAGT -ACGGAATTCCCAGCCTAAGAAGGT -ACGGAATTCCCAGCCTAAAACCGT -ACGGAATTCCCAGCCTAATTGTGC -ACGGAATTCCCAGCCTAACTAAGC -ACGGAATTCCCAGCCTAAACTAGC -ACGGAATTCCCAGCCTAAAGATGC -ACGGAATTCCCAGCCTAATGAAGG -ACGGAATTCCCAGCCTAACAATGG -ACGGAATTCCCAGCCTAAATGAGG -ACGGAATTCCCAGCCTAAAATGGG -ACGGAATTCCCAGCCTAATCCTGA -ACGGAATTCCCAGCCTAATAGCGA -ACGGAATTCCCAGCCTAACACAGA -ACGGAATTCCCAGCCTAAGCAAGA -ACGGAATTCCCAGCCTAAGGTTGA -ACGGAATTCCCAGCCTAATCCGAT -ACGGAATTCCCAGCCTAATGGCAT -ACGGAATTCCCAGCCTAACGAGAT -ACGGAATTCCCAGCCTAATACCAC -ACGGAATTCCCAGCCTAACAGAAC -ACGGAATTCCCAGCCTAAGTCTAC -ACGGAATTCCCAGCCTAAACGTAC -ACGGAATTCCCAGCCTAAAGTGAC -ACGGAATTCCCAGCCTAACTGTAG -ACGGAATTCCCAGCCTAACCTAAG -ACGGAATTCCCAGCCTAAGTTCAG -ACGGAATTCCCAGCCTAAGCATAG -ACGGAATTCCCAGCCTAAGACAAG -ACGGAATTCCCAGCCTAAAAGCAG -ACGGAATTCCCAGCCTAACGTCAA -ACGGAATTCCCAGCCTAAGCTGAA -ACGGAATTCCCAGCCTAAAGTACG -ACGGAATTCCCAGCCTAAATCCGA -ACGGAATTCCCAGCCTAAATGGGA -ACGGAATTCCCAGCCTAAGTGCAA -ACGGAATTCCCAGCCTAAGAGGAA -ACGGAATTCCCAGCCTAACAGGTA -ACGGAATTCCCAGCCTAAGACTCT -ACGGAATTCCCAGCCTAAAGTCCT -ACGGAATTCCCAGCCTAATAAGCC -ACGGAATTCCCAGCCTAAATAGCC -ACGGAATTCCCAGCCTAATAACCG -ACGGAATTCCCAGCCTAAATGCCA -ACGGAATTCCCAGCCATAGGAAAC -ACGGAATTCCCAGCCATAAACACC -ACGGAATTCCCAGCCATAATCGAG -ACGGAATTCCCAGCCATACTCCTT -ACGGAATTCCCAGCCATACCTGTT -ACGGAATTCCCAGCCATACGGTTT -ACGGAATTCCCAGCCATAGTGGTT -ACGGAATTCCCAGCCATAGCCTTT -ACGGAATTCCCAGCCATAGGTCTT -ACGGAATTCCCAGCCATAACGCTT -ACGGAATTCCCAGCCATAAGCGTT -ACGGAATTCCCAGCCATATTCGTC -ACGGAATTCCCAGCCATATCTCTC -ACGGAATTCCCAGCCATATGGATC -ACGGAATTCCCAGCCATACACTTC -ACGGAATTCCCAGCCATAGTACTC -ACGGAATTCCCAGCCATAGATGTC -ACGGAATTCCCAGCCATAACAGTC -ACGGAATTCCCAGCCATATTGCTG -ACGGAATTCCCAGCCATATCCATG -ACGGAATTCCCAGCCATATGTGTG -ACGGAATTCCCAGCCATACTAGTG -ACGGAATTCCCAGCCATACATCTG -ACGGAATTCCCAGCCATAGAGTTG -ACGGAATTCCCAGCCATAAGACTG -ACGGAATTCCCAGCCATATCGGTA -ACGGAATTCCCAGCCATATGCCTA -ACGGAATTCCCAGCCATACCACTA -ACGGAATTCCCAGCCATAGGAGTA -ACGGAATTCCCAGCCATATCGTCT -ACGGAATTCCCAGCCATATGCACT -ACGGAATTCCCAGCCATACTGACT -ACGGAATTCCCAGCCATACAACCT -ACGGAATTCCCAGCCATAGCTACT -ACGGAATTCCCAGCCATAGGATCT -ACGGAATTCCCAGCCATAAAGGCT -ACGGAATTCCCAGCCATATCAACC -ACGGAATTCCCAGCCATATGTTCC -ACGGAATTCCCAGCCATAATTCCC -ACGGAATTCCCAGCCATATTCTCG -ACGGAATTCCCAGCCATATAGACG -ACGGAATTCCCAGCCATAGTAACG -ACGGAATTCCCAGCCATAACTTCG -ACGGAATTCCCAGCCATATACGCA -ACGGAATTCCCAGCCATACTTGCA -ACGGAATTCCCAGCCATACGAACA -ACGGAATTCCCAGCCATACAGTCA -ACGGAATTCCCAGCCATAGATCCA -ACGGAATTCCCAGCCATAACGACA -ACGGAATTCCCAGCCATAAGCTCA -ACGGAATTCCCAGCCATATCACGT -ACGGAATTCCCAGCCATACGTAGT -ACGGAATTCCCAGCCATAGTCAGT -ACGGAATTCCCAGCCATAGAAGGT -ACGGAATTCCCAGCCATAAACCGT -ACGGAATTCCCAGCCATATTGTGC -ACGGAATTCCCAGCCATACTAAGC -ACGGAATTCCCAGCCATAACTAGC -ACGGAATTCCCAGCCATAAGATGC -ACGGAATTCCCAGCCATATGAAGG -ACGGAATTCCCAGCCATACAATGG -ACGGAATTCCCAGCCATAATGAGG -ACGGAATTCCCAGCCATAAATGGG -ACGGAATTCCCAGCCATATCCTGA -ACGGAATTCCCAGCCATATAGCGA -ACGGAATTCCCAGCCATACACAGA -ACGGAATTCCCAGCCATAGCAAGA -ACGGAATTCCCAGCCATAGGTTGA -ACGGAATTCCCAGCCATATCCGAT -ACGGAATTCCCAGCCATATGGCAT -ACGGAATTCCCAGCCATACGAGAT -ACGGAATTCCCAGCCATATACCAC -ACGGAATTCCCAGCCATACAGAAC -ACGGAATTCCCAGCCATAGTCTAC -ACGGAATTCCCAGCCATAACGTAC -ACGGAATTCCCAGCCATAAGTGAC -ACGGAATTCCCAGCCATACTGTAG -ACGGAATTCCCAGCCATACCTAAG -ACGGAATTCCCAGCCATAGTTCAG -ACGGAATTCCCAGCCATAGCATAG -ACGGAATTCCCAGCCATAGACAAG -ACGGAATTCCCAGCCATAAAGCAG -ACGGAATTCCCAGCCATACGTCAA -ACGGAATTCCCAGCCATAGCTGAA -ACGGAATTCCCAGCCATAAGTACG -ACGGAATTCCCAGCCATAATCCGA -ACGGAATTCCCAGCCATAATGGGA -ACGGAATTCCCAGCCATAGTGCAA -ACGGAATTCCCAGCCATAGAGGAA -ACGGAATTCCCAGCCATACAGGTA -ACGGAATTCCCAGCCATAGACTCT -ACGGAATTCCCAGCCATAAGTCCT -ACGGAATTCCCAGCCATATAAGCC -ACGGAATTCCCAGCCATAATAGCC -ACGGAATTCCCAGCCATATAACCG -ACGGAATTCCCAGCCATAATGCCA -ACGGAATTCCCACCGTAAGGAAAC -ACGGAATTCCCACCGTAAAACACC -ACGGAATTCCCACCGTAAATCGAG -ACGGAATTCCCACCGTAACTCCTT -ACGGAATTCCCACCGTAACCTGTT -ACGGAATTCCCACCGTAACGGTTT -ACGGAATTCCCACCGTAAGTGGTT -ACGGAATTCCCACCGTAAGCCTTT -ACGGAATTCCCACCGTAAGGTCTT -ACGGAATTCCCACCGTAAACGCTT -ACGGAATTCCCACCGTAAAGCGTT -ACGGAATTCCCACCGTAATTCGTC -ACGGAATTCCCACCGTAATCTCTC -ACGGAATTCCCACCGTAATGGATC -ACGGAATTCCCACCGTAACACTTC -ACGGAATTCCCACCGTAAGTACTC -ACGGAATTCCCACCGTAAGATGTC -ACGGAATTCCCACCGTAAACAGTC -ACGGAATTCCCACCGTAATTGCTG -ACGGAATTCCCACCGTAATCCATG -ACGGAATTCCCACCGTAATGTGTG -ACGGAATTCCCACCGTAACTAGTG -ACGGAATTCCCACCGTAACATCTG -ACGGAATTCCCACCGTAAGAGTTG -ACGGAATTCCCACCGTAAAGACTG -ACGGAATTCCCACCGTAATCGGTA -ACGGAATTCCCACCGTAATGCCTA -ACGGAATTCCCACCGTAACCACTA -ACGGAATTCCCACCGTAAGGAGTA -ACGGAATTCCCACCGTAATCGTCT -ACGGAATTCCCACCGTAATGCACT -ACGGAATTCCCACCGTAACTGACT -ACGGAATTCCCACCGTAACAACCT -ACGGAATTCCCACCGTAAGCTACT -ACGGAATTCCCACCGTAAGGATCT -ACGGAATTCCCACCGTAAAAGGCT -ACGGAATTCCCACCGTAATCAACC -ACGGAATTCCCACCGTAATGTTCC -ACGGAATTCCCACCGTAAATTCCC -ACGGAATTCCCACCGTAATTCTCG -ACGGAATTCCCACCGTAATAGACG -ACGGAATTCCCACCGTAAGTAACG -ACGGAATTCCCACCGTAAACTTCG -ACGGAATTCCCACCGTAATACGCA -ACGGAATTCCCACCGTAACTTGCA -ACGGAATTCCCACCGTAACGAACA -ACGGAATTCCCACCGTAACAGTCA -ACGGAATTCCCACCGTAAGATCCA -ACGGAATTCCCACCGTAAACGACA -ACGGAATTCCCACCGTAAAGCTCA -ACGGAATTCCCACCGTAATCACGT -ACGGAATTCCCACCGTAACGTAGT -ACGGAATTCCCACCGTAAGTCAGT -ACGGAATTCCCACCGTAAGAAGGT -ACGGAATTCCCACCGTAAAACCGT -ACGGAATTCCCACCGTAATTGTGC -ACGGAATTCCCACCGTAACTAAGC -ACGGAATTCCCACCGTAAACTAGC -ACGGAATTCCCACCGTAAAGATGC -ACGGAATTCCCACCGTAATGAAGG -ACGGAATTCCCACCGTAACAATGG -ACGGAATTCCCACCGTAAATGAGG -ACGGAATTCCCACCGTAAAATGGG -ACGGAATTCCCACCGTAATCCTGA -ACGGAATTCCCACCGTAATAGCGA -ACGGAATTCCCACCGTAACACAGA -ACGGAATTCCCACCGTAAGCAAGA -ACGGAATTCCCACCGTAAGGTTGA -ACGGAATTCCCACCGTAATCCGAT -ACGGAATTCCCACCGTAATGGCAT -ACGGAATTCCCACCGTAACGAGAT -ACGGAATTCCCACCGTAATACCAC -ACGGAATTCCCACCGTAACAGAAC -ACGGAATTCCCACCGTAAGTCTAC -ACGGAATTCCCACCGTAAACGTAC -ACGGAATTCCCACCGTAAAGTGAC -ACGGAATTCCCACCGTAACTGTAG -ACGGAATTCCCACCGTAACCTAAG -ACGGAATTCCCACCGTAAGTTCAG -ACGGAATTCCCACCGTAAGCATAG -ACGGAATTCCCACCGTAAGACAAG -ACGGAATTCCCACCGTAAAAGCAG -ACGGAATTCCCACCGTAACGTCAA -ACGGAATTCCCACCGTAAGCTGAA -ACGGAATTCCCACCGTAAAGTACG -ACGGAATTCCCACCGTAAATCCGA -ACGGAATTCCCACCGTAAATGGGA -ACGGAATTCCCACCGTAAGTGCAA -ACGGAATTCCCACCGTAAGAGGAA -ACGGAATTCCCACCGTAACAGGTA -ACGGAATTCCCACCGTAAGACTCT -ACGGAATTCCCACCGTAAAGTCCT -ACGGAATTCCCACCGTAATAAGCC -ACGGAATTCCCACCGTAAATAGCC -ACGGAATTCCCACCGTAATAACCG -ACGGAATTCCCACCGTAAATGCCA -ACGGAATTCCCACCAATGGGAAAC -ACGGAATTCCCACCAATGAACACC -ACGGAATTCCCACCAATGATCGAG -ACGGAATTCCCACCAATGCTCCTT -ACGGAATTCCCACCAATGCCTGTT -ACGGAATTCCCACCAATGCGGTTT -ACGGAATTCCCACCAATGGTGGTT -ACGGAATTCCCACCAATGGCCTTT -ACGGAATTCCCACCAATGGGTCTT -ACGGAATTCCCACCAATGACGCTT -ACGGAATTCCCACCAATGAGCGTT -ACGGAATTCCCACCAATGTTCGTC -ACGGAATTCCCACCAATGTCTCTC -ACGGAATTCCCACCAATGTGGATC -ACGGAATTCCCACCAATGCACTTC -ACGGAATTCCCACCAATGGTACTC -ACGGAATTCCCACCAATGGATGTC -ACGGAATTCCCACCAATGACAGTC -ACGGAATTCCCACCAATGTTGCTG -ACGGAATTCCCACCAATGTCCATG -ACGGAATTCCCACCAATGTGTGTG -ACGGAATTCCCACCAATGCTAGTG -ACGGAATTCCCACCAATGCATCTG -ACGGAATTCCCACCAATGGAGTTG -ACGGAATTCCCACCAATGAGACTG -ACGGAATTCCCACCAATGTCGGTA -ACGGAATTCCCACCAATGTGCCTA -ACGGAATTCCCACCAATGCCACTA -ACGGAATTCCCACCAATGGGAGTA -ACGGAATTCCCACCAATGTCGTCT -ACGGAATTCCCACCAATGTGCACT -ACGGAATTCCCACCAATGCTGACT -ACGGAATTCCCACCAATGCAACCT -ACGGAATTCCCACCAATGGCTACT -ACGGAATTCCCACCAATGGGATCT -ACGGAATTCCCACCAATGAAGGCT -ACGGAATTCCCACCAATGTCAACC -ACGGAATTCCCACCAATGTGTTCC -ACGGAATTCCCACCAATGATTCCC -ACGGAATTCCCACCAATGTTCTCG -ACGGAATTCCCACCAATGTAGACG -ACGGAATTCCCACCAATGGTAACG -ACGGAATTCCCACCAATGACTTCG -ACGGAATTCCCACCAATGTACGCA -ACGGAATTCCCACCAATGCTTGCA -ACGGAATTCCCACCAATGCGAACA -ACGGAATTCCCACCAATGCAGTCA -ACGGAATTCCCACCAATGGATCCA -ACGGAATTCCCACCAATGACGACA -ACGGAATTCCCACCAATGAGCTCA -ACGGAATTCCCACCAATGTCACGT -ACGGAATTCCCACCAATGCGTAGT -ACGGAATTCCCACCAATGGTCAGT -ACGGAATTCCCACCAATGGAAGGT -ACGGAATTCCCACCAATGAACCGT -ACGGAATTCCCACCAATGTTGTGC -ACGGAATTCCCACCAATGCTAAGC -ACGGAATTCCCACCAATGACTAGC -ACGGAATTCCCACCAATGAGATGC -ACGGAATTCCCACCAATGTGAAGG -ACGGAATTCCCACCAATGCAATGG -ACGGAATTCCCACCAATGATGAGG -ACGGAATTCCCACCAATGAATGGG -ACGGAATTCCCACCAATGTCCTGA -ACGGAATTCCCACCAATGTAGCGA -ACGGAATTCCCACCAATGCACAGA -ACGGAATTCCCACCAATGGCAAGA -ACGGAATTCCCACCAATGGGTTGA -ACGGAATTCCCACCAATGTCCGAT -ACGGAATTCCCACCAATGTGGCAT -ACGGAATTCCCACCAATGCGAGAT -ACGGAATTCCCACCAATGTACCAC -ACGGAATTCCCACCAATGCAGAAC -ACGGAATTCCCACCAATGGTCTAC -ACGGAATTCCCACCAATGACGTAC -ACGGAATTCCCACCAATGAGTGAC -ACGGAATTCCCACCAATGCTGTAG -ACGGAATTCCCACCAATGCCTAAG -ACGGAATTCCCACCAATGGTTCAG -ACGGAATTCCCACCAATGGCATAG -ACGGAATTCCCACCAATGGACAAG -ACGGAATTCCCACCAATGAAGCAG -ACGGAATTCCCACCAATGCGTCAA -ACGGAATTCCCACCAATGGCTGAA -ACGGAATTCCCACCAATGAGTACG -ACGGAATTCCCACCAATGATCCGA -ACGGAATTCCCACCAATGATGGGA -ACGGAATTCCCACCAATGGTGCAA -ACGGAATTCCCACCAATGGAGGAA -ACGGAATTCCCACCAATGCAGGTA -ACGGAATTCCCACCAATGGACTCT -ACGGAATTCCCACCAATGAGTCCT -ACGGAATTCCCACCAATGTAAGCC -ACGGAATTCCCACCAATGATAGCC -ACGGAATTCCCACCAATGTAACCG -ACGGAATTCCCACCAATGATGCCA -ACGGAATCTCGTAACGGAGGAAAC -ACGGAATCTCGTAACGGAAACACC -ACGGAATCTCGTAACGGAATCGAG -ACGGAATCTCGTAACGGACTCCTT -ACGGAATCTCGTAACGGACCTGTT -ACGGAATCTCGTAACGGACGGTTT -ACGGAATCTCGTAACGGAGTGGTT -ACGGAATCTCGTAACGGAGCCTTT -ACGGAATCTCGTAACGGAGGTCTT -ACGGAATCTCGTAACGGAACGCTT -ACGGAATCTCGTAACGGAAGCGTT -ACGGAATCTCGTAACGGATTCGTC -ACGGAATCTCGTAACGGATCTCTC -ACGGAATCTCGTAACGGATGGATC -ACGGAATCTCGTAACGGACACTTC -ACGGAATCTCGTAACGGAGTACTC -ACGGAATCTCGTAACGGAGATGTC -ACGGAATCTCGTAACGGAACAGTC -ACGGAATCTCGTAACGGATTGCTG -ACGGAATCTCGTAACGGATCCATG -ACGGAATCTCGTAACGGATGTGTG -ACGGAATCTCGTAACGGACTAGTG -ACGGAATCTCGTAACGGACATCTG -ACGGAATCTCGTAACGGAGAGTTG -ACGGAATCTCGTAACGGAAGACTG -ACGGAATCTCGTAACGGATCGGTA -ACGGAATCTCGTAACGGATGCCTA -ACGGAATCTCGTAACGGACCACTA -ACGGAATCTCGTAACGGAGGAGTA -ACGGAATCTCGTAACGGATCGTCT -ACGGAATCTCGTAACGGATGCACT -ACGGAATCTCGTAACGGACTGACT -ACGGAATCTCGTAACGGACAACCT -ACGGAATCTCGTAACGGAGCTACT -ACGGAATCTCGTAACGGAGGATCT -ACGGAATCTCGTAACGGAAAGGCT -ACGGAATCTCGTAACGGATCAACC -ACGGAATCTCGTAACGGATGTTCC -ACGGAATCTCGTAACGGAATTCCC -ACGGAATCTCGTAACGGATTCTCG -ACGGAATCTCGTAACGGATAGACG -ACGGAATCTCGTAACGGAGTAACG -ACGGAATCTCGTAACGGAACTTCG -ACGGAATCTCGTAACGGATACGCA -ACGGAATCTCGTAACGGACTTGCA -ACGGAATCTCGTAACGGACGAACA -ACGGAATCTCGTAACGGACAGTCA -ACGGAATCTCGTAACGGAGATCCA -ACGGAATCTCGTAACGGAACGACA -ACGGAATCTCGTAACGGAAGCTCA -ACGGAATCTCGTAACGGATCACGT -ACGGAATCTCGTAACGGACGTAGT -ACGGAATCTCGTAACGGAGTCAGT -ACGGAATCTCGTAACGGAGAAGGT -ACGGAATCTCGTAACGGAAACCGT -ACGGAATCTCGTAACGGATTGTGC -ACGGAATCTCGTAACGGACTAAGC -ACGGAATCTCGTAACGGAACTAGC -ACGGAATCTCGTAACGGAAGATGC -ACGGAATCTCGTAACGGATGAAGG -ACGGAATCTCGTAACGGACAATGG -ACGGAATCTCGTAACGGAATGAGG -ACGGAATCTCGTAACGGAAATGGG -ACGGAATCTCGTAACGGATCCTGA -ACGGAATCTCGTAACGGATAGCGA -ACGGAATCTCGTAACGGACACAGA -ACGGAATCTCGTAACGGAGCAAGA -ACGGAATCTCGTAACGGAGGTTGA -ACGGAATCTCGTAACGGATCCGAT -ACGGAATCTCGTAACGGATGGCAT -ACGGAATCTCGTAACGGACGAGAT -ACGGAATCTCGTAACGGATACCAC -ACGGAATCTCGTAACGGACAGAAC -ACGGAATCTCGTAACGGAGTCTAC -ACGGAATCTCGTAACGGAACGTAC -ACGGAATCTCGTAACGGAAGTGAC -ACGGAATCTCGTAACGGACTGTAG -ACGGAATCTCGTAACGGACCTAAG -ACGGAATCTCGTAACGGAGTTCAG -ACGGAATCTCGTAACGGAGCATAG -ACGGAATCTCGTAACGGAGACAAG -ACGGAATCTCGTAACGGAAAGCAG -ACGGAATCTCGTAACGGACGTCAA -ACGGAATCTCGTAACGGAGCTGAA -ACGGAATCTCGTAACGGAAGTACG -ACGGAATCTCGTAACGGAATCCGA -ACGGAATCTCGTAACGGAATGGGA -ACGGAATCTCGTAACGGAGTGCAA -ACGGAATCTCGTAACGGAGAGGAA -ACGGAATCTCGTAACGGACAGGTA -ACGGAATCTCGTAACGGAGACTCT -ACGGAATCTCGTAACGGAAGTCCT -ACGGAATCTCGTAACGGATAAGCC -ACGGAATCTCGTAACGGAATAGCC -ACGGAATCTCGTAACGGATAACCG -ACGGAATCTCGTAACGGAATGCCA -ACGGAATCTCGTACCAACGGAAAC -ACGGAATCTCGTACCAACAACACC -ACGGAATCTCGTACCAACATCGAG -ACGGAATCTCGTACCAACCTCCTT -ACGGAATCTCGTACCAACCCTGTT -ACGGAATCTCGTACCAACCGGTTT -ACGGAATCTCGTACCAACGTGGTT -ACGGAATCTCGTACCAACGCCTTT -ACGGAATCTCGTACCAACGGTCTT -ACGGAATCTCGTACCAACACGCTT -ACGGAATCTCGTACCAACAGCGTT -ACGGAATCTCGTACCAACTTCGTC -ACGGAATCTCGTACCAACTCTCTC -ACGGAATCTCGTACCAACTGGATC -ACGGAATCTCGTACCAACCACTTC -ACGGAATCTCGTACCAACGTACTC -ACGGAATCTCGTACCAACGATGTC -ACGGAATCTCGTACCAACACAGTC -ACGGAATCTCGTACCAACTTGCTG -ACGGAATCTCGTACCAACTCCATG -ACGGAATCTCGTACCAACTGTGTG -ACGGAATCTCGTACCAACCTAGTG -ACGGAATCTCGTACCAACCATCTG -ACGGAATCTCGTACCAACGAGTTG -ACGGAATCTCGTACCAACAGACTG -ACGGAATCTCGTACCAACTCGGTA -ACGGAATCTCGTACCAACTGCCTA -ACGGAATCTCGTACCAACCCACTA -ACGGAATCTCGTACCAACGGAGTA -ACGGAATCTCGTACCAACTCGTCT -ACGGAATCTCGTACCAACTGCACT -ACGGAATCTCGTACCAACCTGACT -ACGGAATCTCGTACCAACCAACCT -ACGGAATCTCGTACCAACGCTACT -ACGGAATCTCGTACCAACGGATCT -ACGGAATCTCGTACCAACAAGGCT -ACGGAATCTCGTACCAACTCAACC -ACGGAATCTCGTACCAACTGTTCC -ACGGAATCTCGTACCAACATTCCC -ACGGAATCTCGTACCAACTTCTCG -ACGGAATCTCGTACCAACTAGACG -ACGGAATCTCGTACCAACGTAACG -ACGGAATCTCGTACCAACACTTCG -ACGGAATCTCGTACCAACTACGCA -ACGGAATCTCGTACCAACCTTGCA -ACGGAATCTCGTACCAACCGAACA -ACGGAATCTCGTACCAACCAGTCA -ACGGAATCTCGTACCAACGATCCA -ACGGAATCTCGTACCAACACGACA -ACGGAATCTCGTACCAACAGCTCA -ACGGAATCTCGTACCAACTCACGT -ACGGAATCTCGTACCAACCGTAGT -ACGGAATCTCGTACCAACGTCAGT -ACGGAATCTCGTACCAACGAAGGT -ACGGAATCTCGTACCAACAACCGT -ACGGAATCTCGTACCAACTTGTGC -ACGGAATCTCGTACCAACCTAAGC -ACGGAATCTCGTACCAACACTAGC -ACGGAATCTCGTACCAACAGATGC -ACGGAATCTCGTACCAACTGAAGG -ACGGAATCTCGTACCAACCAATGG -ACGGAATCTCGTACCAACATGAGG -ACGGAATCTCGTACCAACAATGGG -ACGGAATCTCGTACCAACTCCTGA -ACGGAATCTCGTACCAACTAGCGA -ACGGAATCTCGTACCAACCACAGA -ACGGAATCTCGTACCAACGCAAGA -ACGGAATCTCGTACCAACGGTTGA -ACGGAATCTCGTACCAACTCCGAT -ACGGAATCTCGTACCAACTGGCAT -ACGGAATCTCGTACCAACCGAGAT -ACGGAATCTCGTACCAACTACCAC -ACGGAATCTCGTACCAACCAGAAC -ACGGAATCTCGTACCAACGTCTAC -ACGGAATCTCGTACCAACACGTAC -ACGGAATCTCGTACCAACAGTGAC -ACGGAATCTCGTACCAACCTGTAG -ACGGAATCTCGTACCAACCCTAAG -ACGGAATCTCGTACCAACGTTCAG -ACGGAATCTCGTACCAACGCATAG -ACGGAATCTCGTACCAACGACAAG -ACGGAATCTCGTACCAACAAGCAG -ACGGAATCTCGTACCAACCGTCAA -ACGGAATCTCGTACCAACGCTGAA -ACGGAATCTCGTACCAACAGTACG -ACGGAATCTCGTACCAACATCCGA -ACGGAATCTCGTACCAACATGGGA -ACGGAATCTCGTACCAACGTGCAA -ACGGAATCTCGTACCAACGAGGAA -ACGGAATCTCGTACCAACCAGGTA -ACGGAATCTCGTACCAACGACTCT -ACGGAATCTCGTACCAACAGTCCT -ACGGAATCTCGTACCAACTAAGCC -ACGGAATCTCGTACCAACATAGCC -ACGGAATCTCGTACCAACTAACCG -ACGGAATCTCGTACCAACATGCCA -ACGGAATCTCGTGAGATCGGAAAC -ACGGAATCTCGTGAGATCAACACC -ACGGAATCTCGTGAGATCATCGAG -ACGGAATCTCGTGAGATCCTCCTT -ACGGAATCTCGTGAGATCCCTGTT -ACGGAATCTCGTGAGATCCGGTTT -ACGGAATCTCGTGAGATCGTGGTT -ACGGAATCTCGTGAGATCGCCTTT -ACGGAATCTCGTGAGATCGGTCTT -ACGGAATCTCGTGAGATCACGCTT -ACGGAATCTCGTGAGATCAGCGTT -ACGGAATCTCGTGAGATCTTCGTC -ACGGAATCTCGTGAGATCTCTCTC -ACGGAATCTCGTGAGATCTGGATC -ACGGAATCTCGTGAGATCCACTTC -ACGGAATCTCGTGAGATCGTACTC -ACGGAATCTCGTGAGATCGATGTC -ACGGAATCTCGTGAGATCACAGTC -ACGGAATCTCGTGAGATCTTGCTG -ACGGAATCTCGTGAGATCTCCATG -ACGGAATCTCGTGAGATCTGTGTG -ACGGAATCTCGTGAGATCCTAGTG -ACGGAATCTCGTGAGATCCATCTG -ACGGAATCTCGTGAGATCGAGTTG -ACGGAATCTCGTGAGATCAGACTG -ACGGAATCTCGTGAGATCTCGGTA -ACGGAATCTCGTGAGATCTGCCTA -ACGGAATCTCGTGAGATCCCACTA -ACGGAATCTCGTGAGATCGGAGTA -ACGGAATCTCGTGAGATCTCGTCT -ACGGAATCTCGTGAGATCTGCACT -ACGGAATCTCGTGAGATCCTGACT -ACGGAATCTCGTGAGATCCAACCT -ACGGAATCTCGTGAGATCGCTACT -ACGGAATCTCGTGAGATCGGATCT -ACGGAATCTCGTGAGATCAAGGCT -ACGGAATCTCGTGAGATCTCAACC -ACGGAATCTCGTGAGATCTGTTCC -ACGGAATCTCGTGAGATCATTCCC -ACGGAATCTCGTGAGATCTTCTCG -ACGGAATCTCGTGAGATCTAGACG -ACGGAATCTCGTGAGATCGTAACG -ACGGAATCTCGTGAGATCACTTCG -ACGGAATCTCGTGAGATCTACGCA -ACGGAATCTCGTGAGATCCTTGCA -ACGGAATCTCGTGAGATCCGAACA -ACGGAATCTCGTGAGATCCAGTCA -ACGGAATCTCGTGAGATCGATCCA -ACGGAATCTCGTGAGATCACGACA -ACGGAATCTCGTGAGATCAGCTCA -ACGGAATCTCGTGAGATCTCACGT -ACGGAATCTCGTGAGATCCGTAGT -ACGGAATCTCGTGAGATCGTCAGT -ACGGAATCTCGTGAGATCGAAGGT -ACGGAATCTCGTGAGATCAACCGT -ACGGAATCTCGTGAGATCTTGTGC -ACGGAATCTCGTGAGATCCTAAGC -ACGGAATCTCGTGAGATCACTAGC -ACGGAATCTCGTGAGATCAGATGC -ACGGAATCTCGTGAGATCTGAAGG -ACGGAATCTCGTGAGATCCAATGG -ACGGAATCTCGTGAGATCATGAGG -ACGGAATCTCGTGAGATCAATGGG -ACGGAATCTCGTGAGATCTCCTGA -ACGGAATCTCGTGAGATCTAGCGA -ACGGAATCTCGTGAGATCCACAGA -ACGGAATCTCGTGAGATCGCAAGA -ACGGAATCTCGTGAGATCGGTTGA -ACGGAATCTCGTGAGATCTCCGAT -ACGGAATCTCGTGAGATCTGGCAT -ACGGAATCTCGTGAGATCCGAGAT -ACGGAATCTCGTGAGATCTACCAC -ACGGAATCTCGTGAGATCCAGAAC -ACGGAATCTCGTGAGATCGTCTAC -ACGGAATCTCGTGAGATCACGTAC -ACGGAATCTCGTGAGATCAGTGAC -ACGGAATCTCGTGAGATCCTGTAG -ACGGAATCTCGTGAGATCCCTAAG -ACGGAATCTCGTGAGATCGTTCAG -ACGGAATCTCGTGAGATCGCATAG -ACGGAATCTCGTGAGATCGACAAG -ACGGAATCTCGTGAGATCAAGCAG -ACGGAATCTCGTGAGATCCGTCAA -ACGGAATCTCGTGAGATCGCTGAA -ACGGAATCTCGTGAGATCAGTACG -ACGGAATCTCGTGAGATCATCCGA -ACGGAATCTCGTGAGATCATGGGA -ACGGAATCTCGTGAGATCGTGCAA -ACGGAATCTCGTGAGATCGAGGAA -ACGGAATCTCGTGAGATCCAGGTA -ACGGAATCTCGTGAGATCGACTCT -ACGGAATCTCGTGAGATCAGTCCT -ACGGAATCTCGTGAGATCTAAGCC -ACGGAATCTCGTGAGATCATAGCC -ACGGAATCTCGTGAGATCTAACCG -ACGGAATCTCGTGAGATCATGCCA -ACGGAATCTCGTCTTCTCGGAAAC -ACGGAATCTCGTCTTCTCAACACC -ACGGAATCTCGTCTTCTCATCGAG -ACGGAATCTCGTCTTCTCCTCCTT -ACGGAATCTCGTCTTCTCCCTGTT -ACGGAATCTCGTCTTCTCCGGTTT -ACGGAATCTCGTCTTCTCGTGGTT -ACGGAATCTCGTCTTCTCGCCTTT -ACGGAATCTCGTCTTCTCGGTCTT -ACGGAATCTCGTCTTCTCACGCTT -ACGGAATCTCGTCTTCTCAGCGTT -ACGGAATCTCGTCTTCTCTTCGTC -ACGGAATCTCGTCTTCTCTCTCTC -ACGGAATCTCGTCTTCTCTGGATC -ACGGAATCTCGTCTTCTCCACTTC -ACGGAATCTCGTCTTCTCGTACTC -ACGGAATCTCGTCTTCTCGATGTC -ACGGAATCTCGTCTTCTCACAGTC -ACGGAATCTCGTCTTCTCTTGCTG -ACGGAATCTCGTCTTCTCTCCATG -ACGGAATCTCGTCTTCTCTGTGTG -ACGGAATCTCGTCTTCTCCTAGTG -ACGGAATCTCGTCTTCTCCATCTG -ACGGAATCTCGTCTTCTCGAGTTG -ACGGAATCTCGTCTTCTCAGACTG -ACGGAATCTCGTCTTCTCTCGGTA -ACGGAATCTCGTCTTCTCTGCCTA -ACGGAATCTCGTCTTCTCCCACTA -ACGGAATCTCGTCTTCTCGGAGTA -ACGGAATCTCGTCTTCTCTCGTCT -ACGGAATCTCGTCTTCTCTGCACT -ACGGAATCTCGTCTTCTCCTGACT -ACGGAATCTCGTCTTCTCCAACCT -ACGGAATCTCGTCTTCTCGCTACT -ACGGAATCTCGTCTTCTCGGATCT -ACGGAATCTCGTCTTCTCAAGGCT -ACGGAATCTCGTCTTCTCTCAACC -ACGGAATCTCGTCTTCTCTGTTCC -ACGGAATCTCGTCTTCTCATTCCC -ACGGAATCTCGTCTTCTCTTCTCG -ACGGAATCTCGTCTTCTCTAGACG -ACGGAATCTCGTCTTCTCGTAACG -ACGGAATCTCGTCTTCTCACTTCG -ACGGAATCTCGTCTTCTCTACGCA -ACGGAATCTCGTCTTCTCCTTGCA -ACGGAATCTCGTCTTCTCCGAACA -ACGGAATCTCGTCTTCTCCAGTCA -ACGGAATCTCGTCTTCTCGATCCA -ACGGAATCTCGTCTTCTCACGACA -ACGGAATCTCGTCTTCTCAGCTCA -ACGGAATCTCGTCTTCTCTCACGT -ACGGAATCTCGTCTTCTCCGTAGT -ACGGAATCTCGTCTTCTCGTCAGT -ACGGAATCTCGTCTTCTCGAAGGT -ACGGAATCTCGTCTTCTCAACCGT -ACGGAATCTCGTCTTCTCTTGTGC -ACGGAATCTCGTCTTCTCCTAAGC -ACGGAATCTCGTCTTCTCACTAGC -ACGGAATCTCGTCTTCTCAGATGC -ACGGAATCTCGTCTTCTCTGAAGG -ACGGAATCTCGTCTTCTCCAATGG -ACGGAATCTCGTCTTCTCATGAGG -ACGGAATCTCGTCTTCTCAATGGG -ACGGAATCTCGTCTTCTCTCCTGA -ACGGAATCTCGTCTTCTCTAGCGA -ACGGAATCTCGTCTTCTCCACAGA -ACGGAATCTCGTCTTCTCGCAAGA -ACGGAATCTCGTCTTCTCGGTTGA -ACGGAATCTCGTCTTCTCTCCGAT -ACGGAATCTCGTCTTCTCTGGCAT -ACGGAATCTCGTCTTCTCCGAGAT -ACGGAATCTCGTCTTCTCTACCAC -ACGGAATCTCGTCTTCTCCAGAAC -ACGGAATCTCGTCTTCTCGTCTAC -ACGGAATCTCGTCTTCTCACGTAC -ACGGAATCTCGTCTTCTCAGTGAC -ACGGAATCTCGTCTTCTCCTGTAG -ACGGAATCTCGTCTTCTCCCTAAG -ACGGAATCTCGTCTTCTCGTTCAG -ACGGAATCTCGTCTTCTCGCATAG -ACGGAATCTCGTCTTCTCGACAAG -ACGGAATCTCGTCTTCTCAAGCAG -ACGGAATCTCGTCTTCTCCGTCAA -ACGGAATCTCGTCTTCTCGCTGAA -ACGGAATCTCGTCTTCTCAGTACG -ACGGAATCTCGTCTTCTCATCCGA -ACGGAATCTCGTCTTCTCATGGGA -ACGGAATCTCGTCTTCTCGTGCAA -ACGGAATCTCGTCTTCTCGAGGAA -ACGGAATCTCGTCTTCTCCAGGTA -ACGGAATCTCGTCTTCTCGACTCT -ACGGAATCTCGTCTTCTCAGTCCT -ACGGAATCTCGTCTTCTCTAAGCC -ACGGAATCTCGTCTTCTCATAGCC -ACGGAATCTCGTCTTCTCTAACCG -ACGGAATCTCGTCTTCTCATGCCA -ACGGAATCTCGTGTTCCTGGAAAC -ACGGAATCTCGTGTTCCTAACACC -ACGGAATCTCGTGTTCCTATCGAG -ACGGAATCTCGTGTTCCTCTCCTT -ACGGAATCTCGTGTTCCTCCTGTT -ACGGAATCTCGTGTTCCTCGGTTT -ACGGAATCTCGTGTTCCTGTGGTT -ACGGAATCTCGTGTTCCTGCCTTT -ACGGAATCTCGTGTTCCTGGTCTT -ACGGAATCTCGTGTTCCTACGCTT -ACGGAATCTCGTGTTCCTAGCGTT -ACGGAATCTCGTGTTCCTTTCGTC -ACGGAATCTCGTGTTCCTTCTCTC -ACGGAATCTCGTGTTCCTTGGATC -ACGGAATCTCGTGTTCCTCACTTC -ACGGAATCTCGTGTTCCTGTACTC -ACGGAATCTCGTGTTCCTGATGTC -ACGGAATCTCGTGTTCCTACAGTC -ACGGAATCTCGTGTTCCTTTGCTG -ACGGAATCTCGTGTTCCTTCCATG -ACGGAATCTCGTGTTCCTTGTGTG -ACGGAATCTCGTGTTCCTCTAGTG -ACGGAATCTCGTGTTCCTCATCTG -ACGGAATCTCGTGTTCCTGAGTTG -ACGGAATCTCGTGTTCCTAGACTG -ACGGAATCTCGTGTTCCTTCGGTA -ACGGAATCTCGTGTTCCTTGCCTA -ACGGAATCTCGTGTTCCTCCACTA -ACGGAATCTCGTGTTCCTGGAGTA -ACGGAATCTCGTGTTCCTTCGTCT -ACGGAATCTCGTGTTCCTTGCACT -ACGGAATCTCGTGTTCCTCTGACT -ACGGAATCTCGTGTTCCTCAACCT -ACGGAATCTCGTGTTCCTGCTACT -ACGGAATCTCGTGTTCCTGGATCT -ACGGAATCTCGTGTTCCTAAGGCT -ACGGAATCTCGTGTTCCTTCAACC -ACGGAATCTCGTGTTCCTTGTTCC -ACGGAATCTCGTGTTCCTATTCCC -ACGGAATCTCGTGTTCCTTTCTCG -ACGGAATCTCGTGTTCCTTAGACG -ACGGAATCTCGTGTTCCTGTAACG -ACGGAATCTCGTGTTCCTACTTCG -ACGGAATCTCGTGTTCCTTACGCA -ACGGAATCTCGTGTTCCTCTTGCA -ACGGAATCTCGTGTTCCTCGAACA -ACGGAATCTCGTGTTCCTCAGTCA -ACGGAATCTCGTGTTCCTGATCCA -ACGGAATCTCGTGTTCCTACGACA -ACGGAATCTCGTGTTCCTAGCTCA -ACGGAATCTCGTGTTCCTTCACGT -ACGGAATCTCGTGTTCCTCGTAGT -ACGGAATCTCGTGTTCCTGTCAGT -ACGGAATCTCGTGTTCCTGAAGGT -ACGGAATCTCGTGTTCCTAACCGT -ACGGAATCTCGTGTTCCTTTGTGC -ACGGAATCTCGTGTTCCTCTAAGC -ACGGAATCTCGTGTTCCTACTAGC -ACGGAATCTCGTGTTCCTAGATGC -ACGGAATCTCGTGTTCCTTGAAGG -ACGGAATCTCGTGTTCCTCAATGG -ACGGAATCTCGTGTTCCTATGAGG -ACGGAATCTCGTGTTCCTAATGGG -ACGGAATCTCGTGTTCCTTCCTGA -ACGGAATCTCGTGTTCCTTAGCGA -ACGGAATCTCGTGTTCCTCACAGA -ACGGAATCTCGTGTTCCTGCAAGA -ACGGAATCTCGTGTTCCTGGTTGA -ACGGAATCTCGTGTTCCTTCCGAT -ACGGAATCTCGTGTTCCTTGGCAT -ACGGAATCTCGTGTTCCTCGAGAT -ACGGAATCTCGTGTTCCTTACCAC -ACGGAATCTCGTGTTCCTCAGAAC -ACGGAATCTCGTGTTCCTGTCTAC -ACGGAATCTCGTGTTCCTACGTAC -ACGGAATCTCGTGTTCCTAGTGAC -ACGGAATCTCGTGTTCCTCTGTAG -ACGGAATCTCGTGTTCCTCCTAAG -ACGGAATCTCGTGTTCCTGTTCAG -ACGGAATCTCGTGTTCCTGCATAG -ACGGAATCTCGTGTTCCTGACAAG -ACGGAATCTCGTGTTCCTAAGCAG -ACGGAATCTCGTGTTCCTCGTCAA -ACGGAATCTCGTGTTCCTGCTGAA -ACGGAATCTCGTGTTCCTAGTACG -ACGGAATCTCGTGTTCCTATCCGA -ACGGAATCTCGTGTTCCTATGGGA -ACGGAATCTCGTGTTCCTGTGCAA -ACGGAATCTCGTGTTCCTGAGGAA -ACGGAATCTCGTGTTCCTCAGGTA -ACGGAATCTCGTGTTCCTGACTCT -ACGGAATCTCGTGTTCCTAGTCCT -ACGGAATCTCGTGTTCCTTAAGCC -ACGGAATCTCGTGTTCCTATAGCC -ACGGAATCTCGTGTTCCTTAACCG -ACGGAATCTCGTGTTCCTATGCCA -ACGGAATCTCGTTTTCGGGGAAAC -ACGGAATCTCGTTTTCGGAACACC -ACGGAATCTCGTTTTCGGATCGAG -ACGGAATCTCGTTTTCGGCTCCTT -ACGGAATCTCGTTTTCGGCCTGTT -ACGGAATCTCGTTTTCGGCGGTTT -ACGGAATCTCGTTTTCGGGTGGTT -ACGGAATCTCGTTTTCGGGCCTTT -ACGGAATCTCGTTTTCGGGGTCTT -ACGGAATCTCGTTTTCGGACGCTT -ACGGAATCTCGTTTTCGGAGCGTT -ACGGAATCTCGTTTTCGGTTCGTC -ACGGAATCTCGTTTTCGGTCTCTC -ACGGAATCTCGTTTTCGGTGGATC -ACGGAATCTCGTTTTCGGCACTTC -ACGGAATCTCGTTTTCGGGTACTC -ACGGAATCTCGTTTTCGGGATGTC -ACGGAATCTCGTTTTCGGACAGTC -ACGGAATCTCGTTTTCGGTTGCTG -ACGGAATCTCGTTTTCGGTCCATG -ACGGAATCTCGTTTTCGGTGTGTG -ACGGAATCTCGTTTTCGGCTAGTG -ACGGAATCTCGTTTTCGGCATCTG -ACGGAATCTCGTTTTCGGGAGTTG -ACGGAATCTCGTTTTCGGAGACTG -ACGGAATCTCGTTTTCGGTCGGTA -ACGGAATCTCGTTTTCGGTGCCTA -ACGGAATCTCGTTTTCGGCCACTA -ACGGAATCTCGTTTTCGGGGAGTA -ACGGAATCTCGTTTTCGGTCGTCT -ACGGAATCTCGTTTTCGGTGCACT -ACGGAATCTCGTTTTCGGCTGACT -ACGGAATCTCGTTTTCGGCAACCT -ACGGAATCTCGTTTTCGGGCTACT -ACGGAATCTCGTTTTCGGGGATCT -ACGGAATCTCGTTTTCGGAAGGCT -ACGGAATCTCGTTTTCGGTCAACC -ACGGAATCTCGTTTTCGGTGTTCC -ACGGAATCTCGTTTTCGGATTCCC -ACGGAATCTCGTTTTCGGTTCTCG -ACGGAATCTCGTTTTCGGTAGACG -ACGGAATCTCGTTTTCGGGTAACG -ACGGAATCTCGTTTTCGGACTTCG -ACGGAATCTCGTTTTCGGTACGCA -ACGGAATCTCGTTTTCGGCTTGCA -ACGGAATCTCGTTTTCGGCGAACA -ACGGAATCTCGTTTTCGGCAGTCA -ACGGAATCTCGTTTTCGGGATCCA -ACGGAATCTCGTTTTCGGACGACA -ACGGAATCTCGTTTTCGGAGCTCA -ACGGAATCTCGTTTTCGGTCACGT -ACGGAATCTCGTTTTCGGCGTAGT -ACGGAATCTCGTTTTCGGGTCAGT -ACGGAATCTCGTTTTCGGGAAGGT -ACGGAATCTCGTTTTCGGAACCGT -ACGGAATCTCGTTTTCGGTTGTGC -ACGGAATCTCGTTTTCGGCTAAGC -ACGGAATCTCGTTTTCGGACTAGC -ACGGAATCTCGTTTTCGGAGATGC -ACGGAATCTCGTTTTCGGTGAAGG -ACGGAATCTCGTTTTCGGCAATGG -ACGGAATCTCGTTTTCGGATGAGG -ACGGAATCTCGTTTTCGGAATGGG -ACGGAATCTCGTTTTCGGTCCTGA -ACGGAATCTCGTTTTCGGTAGCGA -ACGGAATCTCGTTTTCGGCACAGA -ACGGAATCTCGTTTTCGGGCAAGA -ACGGAATCTCGTTTTCGGGGTTGA -ACGGAATCTCGTTTTCGGTCCGAT -ACGGAATCTCGTTTTCGGTGGCAT -ACGGAATCTCGTTTTCGGCGAGAT -ACGGAATCTCGTTTTCGGTACCAC -ACGGAATCTCGTTTTCGGCAGAAC -ACGGAATCTCGTTTTCGGGTCTAC -ACGGAATCTCGTTTTCGGACGTAC -ACGGAATCTCGTTTTCGGAGTGAC -ACGGAATCTCGTTTTCGGCTGTAG -ACGGAATCTCGTTTTCGGCCTAAG -ACGGAATCTCGTTTTCGGGTTCAG -ACGGAATCTCGTTTTCGGGCATAG -ACGGAATCTCGTTTTCGGGACAAG -ACGGAATCTCGTTTTCGGAAGCAG -ACGGAATCTCGTTTTCGGCGTCAA -ACGGAATCTCGTTTTCGGGCTGAA -ACGGAATCTCGTTTTCGGAGTACG -ACGGAATCTCGTTTTCGGATCCGA -ACGGAATCTCGTTTTCGGATGGGA -ACGGAATCTCGTTTTCGGGTGCAA -ACGGAATCTCGTTTTCGGGAGGAA -ACGGAATCTCGTTTTCGGCAGGTA -ACGGAATCTCGTTTTCGGGACTCT -ACGGAATCTCGTTTTCGGAGTCCT -ACGGAATCTCGTTTTCGGTAAGCC -ACGGAATCTCGTTTTCGGATAGCC -ACGGAATCTCGTTTTCGGTAACCG -ACGGAATCTCGTTTTCGGATGCCA -ACGGAATCTCGTGTTGTGGGAAAC -ACGGAATCTCGTGTTGTGAACACC -ACGGAATCTCGTGTTGTGATCGAG -ACGGAATCTCGTGTTGTGCTCCTT -ACGGAATCTCGTGTTGTGCCTGTT -ACGGAATCTCGTGTTGTGCGGTTT -ACGGAATCTCGTGTTGTGGTGGTT -ACGGAATCTCGTGTTGTGGCCTTT -ACGGAATCTCGTGTTGTGGGTCTT -ACGGAATCTCGTGTTGTGACGCTT -ACGGAATCTCGTGTTGTGAGCGTT -ACGGAATCTCGTGTTGTGTTCGTC -ACGGAATCTCGTGTTGTGTCTCTC -ACGGAATCTCGTGTTGTGTGGATC -ACGGAATCTCGTGTTGTGCACTTC -ACGGAATCTCGTGTTGTGGTACTC -ACGGAATCTCGTGTTGTGGATGTC -ACGGAATCTCGTGTTGTGACAGTC -ACGGAATCTCGTGTTGTGTTGCTG -ACGGAATCTCGTGTTGTGTCCATG -ACGGAATCTCGTGTTGTGTGTGTG -ACGGAATCTCGTGTTGTGCTAGTG -ACGGAATCTCGTGTTGTGCATCTG -ACGGAATCTCGTGTTGTGGAGTTG -ACGGAATCTCGTGTTGTGAGACTG -ACGGAATCTCGTGTTGTGTCGGTA -ACGGAATCTCGTGTTGTGTGCCTA -ACGGAATCTCGTGTTGTGCCACTA -ACGGAATCTCGTGTTGTGGGAGTA -ACGGAATCTCGTGTTGTGTCGTCT -ACGGAATCTCGTGTTGTGTGCACT -ACGGAATCTCGTGTTGTGCTGACT -ACGGAATCTCGTGTTGTGCAACCT -ACGGAATCTCGTGTTGTGGCTACT -ACGGAATCTCGTGTTGTGGGATCT -ACGGAATCTCGTGTTGTGAAGGCT -ACGGAATCTCGTGTTGTGTCAACC -ACGGAATCTCGTGTTGTGTGTTCC -ACGGAATCTCGTGTTGTGATTCCC -ACGGAATCTCGTGTTGTGTTCTCG -ACGGAATCTCGTGTTGTGTAGACG -ACGGAATCTCGTGTTGTGGTAACG -ACGGAATCTCGTGTTGTGACTTCG -ACGGAATCTCGTGTTGTGTACGCA -ACGGAATCTCGTGTTGTGCTTGCA -ACGGAATCTCGTGTTGTGCGAACA -ACGGAATCTCGTGTTGTGCAGTCA -ACGGAATCTCGTGTTGTGGATCCA -ACGGAATCTCGTGTTGTGACGACA -ACGGAATCTCGTGTTGTGAGCTCA -ACGGAATCTCGTGTTGTGTCACGT -ACGGAATCTCGTGTTGTGCGTAGT -ACGGAATCTCGTGTTGTGGTCAGT -ACGGAATCTCGTGTTGTGGAAGGT -ACGGAATCTCGTGTTGTGAACCGT -ACGGAATCTCGTGTTGTGTTGTGC -ACGGAATCTCGTGTTGTGCTAAGC -ACGGAATCTCGTGTTGTGACTAGC -ACGGAATCTCGTGTTGTGAGATGC -ACGGAATCTCGTGTTGTGTGAAGG -ACGGAATCTCGTGTTGTGCAATGG -ACGGAATCTCGTGTTGTGATGAGG -ACGGAATCTCGTGTTGTGAATGGG -ACGGAATCTCGTGTTGTGTCCTGA -ACGGAATCTCGTGTTGTGTAGCGA -ACGGAATCTCGTGTTGTGCACAGA -ACGGAATCTCGTGTTGTGGCAAGA -ACGGAATCTCGTGTTGTGGGTTGA -ACGGAATCTCGTGTTGTGTCCGAT -ACGGAATCTCGTGTTGTGTGGCAT -ACGGAATCTCGTGTTGTGCGAGAT -ACGGAATCTCGTGTTGTGTACCAC -ACGGAATCTCGTGTTGTGCAGAAC -ACGGAATCTCGTGTTGTGGTCTAC -ACGGAATCTCGTGTTGTGACGTAC -ACGGAATCTCGTGTTGTGAGTGAC -ACGGAATCTCGTGTTGTGCTGTAG -ACGGAATCTCGTGTTGTGCCTAAG -ACGGAATCTCGTGTTGTGGTTCAG -ACGGAATCTCGTGTTGTGGCATAG -ACGGAATCTCGTGTTGTGGACAAG -ACGGAATCTCGTGTTGTGAAGCAG -ACGGAATCTCGTGTTGTGCGTCAA -ACGGAATCTCGTGTTGTGGCTGAA -ACGGAATCTCGTGTTGTGAGTACG -ACGGAATCTCGTGTTGTGATCCGA -ACGGAATCTCGTGTTGTGATGGGA -ACGGAATCTCGTGTTGTGGTGCAA -ACGGAATCTCGTGTTGTGGAGGAA -ACGGAATCTCGTGTTGTGCAGGTA -ACGGAATCTCGTGTTGTGGACTCT -ACGGAATCTCGTGTTGTGAGTCCT -ACGGAATCTCGTGTTGTGTAAGCC -ACGGAATCTCGTGTTGTGATAGCC -ACGGAATCTCGTGTTGTGTAACCG -ACGGAATCTCGTGTTGTGATGCCA -ACGGAATCTCGTTTTGCCGGAAAC -ACGGAATCTCGTTTTGCCAACACC -ACGGAATCTCGTTTTGCCATCGAG -ACGGAATCTCGTTTTGCCCTCCTT -ACGGAATCTCGTTTTGCCCCTGTT -ACGGAATCTCGTTTTGCCCGGTTT -ACGGAATCTCGTTTTGCCGTGGTT -ACGGAATCTCGTTTTGCCGCCTTT -ACGGAATCTCGTTTTGCCGGTCTT -ACGGAATCTCGTTTTGCCACGCTT -ACGGAATCTCGTTTTGCCAGCGTT -ACGGAATCTCGTTTTGCCTTCGTC -ACGGAATCTCGTTTTGCCTCTCTC -ACGGAATCTCGTTTTGCCTGGATC -ACGGAATCTCGTTTTGCCCACTTC -ACGGAATCTCGTTTTGCCGTACTC -ACGGAATCTCGTTTTGCCGATGTC -ACGGAATCTCGTTTTGCCACAGTC -ACGGAATCTCGTTTTGCCTTGCTG -ACGGAATCTCGTTTTGCCTCCATG -ACGGAATCTCGTTTTGCCTGTGTG -ACGGAATCTCGTTTTGCCCTAGTG -ACGGAATCTCGTTTTGCCCATCTG -ACGGAATCTCGTTTTGCCGAGTTG -ACGGAATCTCGTTTTGCCAGACTG -ACGGAATCTCGTTTTGCCTCGGTA -ACGGAATCTCGTTTTGCCTGCCTA -ACGGAATCTCGTTTTGCCCCACTA -ACGGAATCTCGTTTTGCCGGAGTA -ACGGAATCTCGTTTTGCCTCGTCT -ACGGAATCTCGTTTTGCCTGCACT -ACGGAATCTCGTTTTGCCCTGACT -ACGGAATCTCGTTTTGCCCAACCT -ACGGAATCTCGTTTTGCCGCTACT -ACGGAATCTCGTTTTGCCGGATCT -ACGGAATCTCGTTTTGCCAAGGCT -ACGGAATCTCGTTTTGCCTCAACC -ACGGAATCTCGTTTTGCCTGTTCC -ACGGAATCTCGTTTTGCCATTCCC -ACGGAATCTCGTTTTGCCTTCTCG -ACGGAATCTCGTTTTGCCTAGACG -ACGGAATCTCGTTTTGCCGTAACG -ACGGAATCTCGTTTTGCCACTTCG -ACGGAATCTCGTTTTGCCTACGCA -ACGGAATCTCGTTTTGCCCTTGCA -ACGGAATCTCGTTTTGCCCGAACA -ACGGAATCTCGTTTTGCCCAGTCA -ACGGAATCTCGTTTTGCCGATCCA -ACGGAATCTCGTTTTGCCACGACA -ACGGAATCTCGTTTTGCCAGCTCA -ACGGAATCTCGTTTTGCCTCACGT -ACGGAATCTCGTTTTGCCCGTAGT -ACGGAATCTCGTTTTGCCGTCAGT -ACGGAATCTCGTTTTGCCGAAGGT -ACGGAATCTCGTTTTGCCAACCGT -ACGGAATCTCGTTTTGCCTTGTGC -ACGGAATCTCGTTTTGCCCTAAGC -ACGGAATCTCGTTTTGCCACTAGC -ACGGAATCTCGTTTTGCCAGATGC -ACGGAATCTCGTTTTGCCTGAAGG -ACGGAATCTCGTTTTGCCCAATGG -ACGGAATCTCGTTTTGCCATGAGG -ACGGAATCTCGTTTTGCCAATGGG -ACGGAATCTCGTTTTGCCTCCTGA -ACGGAATCTCGTTTTGCCTAGCGA -ACGGAATCTCGTTTTGCCCACAGA -ACGGAATCTCGTTTTGCCGCAAGA -ACGGAATCTCGTTTTGCCGGTTGA -ACGGAATCTCGTTTTGCCTCCGAT -ACGGAATCTCGTTTTGCCTGGCAT -ACGGAATCTCGTTTTGCCCGAGAT -ACGGAATCTCGTTTTGCCTACCAC -ACGGAATCTCGTTTTGCCCAGAAC -ACGGAATCTCGTTTTGCCGTCTAC -ACGGAATCTCGTTTTGCCACGTAC -ACGGAATCTCGTTTTGCCAGTGAC -ACGGAATCTCGTTTTGCCCTGTAG -ACGGAATCTCGTTTTGCCCCTAAG -ACGGAATCTCGTTTTGCCGTTCAG -ACGGAATCTCGTTTTGCCGCATAG -ACGGAATCTCGTTTTGCCGACAAG -ACGGAATCTCGTTTTGCCAAGCAG -ACGGAATCTCGTTTTGCCCGTCAA -ACGGAATCTCGTTTTGCCGCTGAA -ACGGAATCTCGTTTTGCCAGTACG -ACGGAATCTCGTTTTGCCATCCGA -ACGGAATCTCGTTTTGCCATGGGA -ACGGAATCTCGTTTTGCCGTGCAA -ACGGAATCTCGTTTTGCCGAGGAA -ACGGAATCTCGTTTTGCCCAGGTA -ACGGAATCTCGTTTTGCCGACTCT -ACGGAATCTCGTTTTGCCAGTCCT -ACGGAATCTCGTTTTGCCTAAGCC -ACGGAATCTCGTTTTGCCATAGCC -ACGGAATCTCGTTTTGCCTAACCG -ACGGAATCTCGTTTTGCCATGCCA -ACGGAATCTCGTCTTGGTGGAAAC -ACGGAATCTCGTCTTGGTAACACC -ACGGAATCTCGTCTTGGTATCGAG -ACGGAATCTCGTCTTGGTCTCCTT -ACGGAATCTCGTCTTGGTCCTGTT -ACGGAATCTCGTCTTGGTCGGTTT -ACGGAATCTCGTCTTGGTGTGGTT -ACGGAATCTCGTCTTGGTGCCTTT -ACGGAATCTCGTCTTGGTGGTCTT -ACGGAATCTCGTCTTGGTACGCTT -ACGGAATCTCGTCTTGGTAGCGTT -ACGGAATCTCGTCTTGGTTTCGTC -ACGGAATCTCGTCTTGGTTCTCTC -ACGGAATCTCGTCTTGGTTGGATC -ACGGAATCTCGTCTTGGTCACTTC -ACGGAATCTCGTCTTGGTGTACTC -ACGGAATCTCGTCTTGGTGATGTC -ACGGAATCTCGTCTTGGTACAGTC -ACGGAATCTCGTCTTGGTTTGCTG -ACGGAATCTCGTCTTGGTTCCATG -ACGGAATCTCGTCTTGGTTGTGTG -ACGGAATCTCGTCTTGGTCTAGTG -ACGGAATCTCGTCTTGGTCATCTG -ACGGAATCTCGTCTTGGTGAGTTG -ACGGAATCTCGTCTTGGTAGACTG -ACGGAATCTCGTCTTGGTTCGGTA -ACGGAATCTCGTCTTGGTTGCCTA -ACGGAATCTCGTCTTGGTCCACTA -ACGGAATCTCGTCTTGGTGGAGTA -ACGGAATCTCGTCTTGGTTCGTCT -ACGGAATCTCGTCTTGGTTGCACT -ACGGAATCTCGTCTTGGTCTGACT -ACGGAATCTCGTCTTGGTCAACCT -ACGGAATCTCGTCTTGGTGCTACT -ACGGAATCTCGTCTTGGTGGATCT -ACGGAATCTCGTCTTGGTAAGGCT -ACGGAATCTCGTCTTGGTTCAACC -ACGGAATCTCGTCTTGGTTGTTCC -ACGGAATCTCGTCTTGGTATTCCC -ACGGAATCTCGTCTTGGTTTCTCG -ACGGAATCTCGTCTTGGTTAGACG -ACGGAATCTCGTCTTGGTGTAACG -ACGGAATCTCGTCTTGGTACTTCG -ACGGAATCTCGTCTTGGTTACGCA -ACGGAATCTCGTCTTGGTCTTGCA -ACGGAATCTCGTCTTGGTCGAACA -ACGGAATCTCGTCTTGGTCAGTCA -ACGGAATCTCGTCTTGGTGATCCA -ACGGAATCTCGTCTTGGTACGACA -ACGGAATCTCGTCTTGGTAGCTCA -ACGGAATCTCGTCTTGGTTCACGT -ACGGAATCTCGTCTTGGTCGTAGT -ACGGAATCTCGTCTTGGTGTCAGT -ACGGAATCTCGTCTTGGTGAAGGT -ACGGAATCTCGTCTTGGTAACCGT -ACGGAATCTCGTCTTGGTTTGTGC -ACGGAATCTCGTCTTGGTCTAAGC -ACGGAATCTCGTCTTGGTACTAGC -ACGGAATCTCGTCTTGGTAGATGC -ACGGAATCTCGTCTTGGTTGAAGG -ACGGAATCTCGTCTTGGTCAATGG -ACGGAATCTCGTCTTGGTATGAGG -ACGGAATCTCGTCTTGGTAATGGG -ACGGAATCTCGTCTTGGTTCCTGA -ACGGAATCTCGTCTTGGTTAGCGA -ACGGAATCTCGTCTTGGTCACAGA -ACGGAATCTCGTCTTGGTGCAAGA -ACGGAATCTCGTCTTGGTGGTTGA -ACGGAATCTCGTCTTGGTTCCGAT -ACGGAATCTCGTCTTGGTTGGCAT -ACGGAATCTCGTCTTGGTCGAGAT -ACGGAATCTCGTCTTGGTTACCAC -ACGGAATCTCGTCTTGGTCAGAAC -ACGGAATCTCGTCTTGGTGTCTAC -ACGGAATCTCGTCTTGGTACGTAC -ACGGAATCTCGTCTTGGTAGTGAC -ACGGAATCTCGTCTTGGTCTGTAG -ACGGAATCTCGTCTTGGTCCTAAG -ACGGAATCTCGTCTTGGTGTTCAG -ACGGAATCTCGTCTTGGTGCATAG -ACGGAATCTCGTCTTGGTGACAAG -ACGGAATCTCGTCTTGGTAAGCAG -ACGGAATCTCGTCTTGGTCGTCAA -ACGGAATCTCGTCTTGGTGCTGAA -ACGGAATCTCGTCTTGGTAGTACG -ACGGAATCTCGTCTTGGTATCCGA -ACGGAATCTCGTCTTGGTATGGGA -ACGGAATCTCGTCTTGGTGTGCAA -ACGGAATCTCGTCTTGGTGAGGAA -ACGGAATCTCGTCTTGGTCAGGTA -ACGGAATCTCGTCTTGGTGACTCT -ACGGAATCTCGTCTTGGTAGTCCT -ACGGAATCTCGTCTTGGTTAAGCC -ACGGAATCTCGTCTTGGTATAGCC -ACGGAATCTCGTCTTGGTTAACCG -ACGGAATCTCGTCTTGGTATGCCA -ACGGAATCTCGTCTTACGGGAAAC -ACGGAATCTCGTCTTACGAACACC -ACGGAATCTCGTCTTACGATCGAG -ACGGAATCTCGTCTTACGCTCCTT -ACGGAATCTCGTCTTACGCCTGTT -ACGGAATCTCGTCTTACGCGGTTT -ACGGAATCTCGTCTTACGGTGGTT -ACGGAATCTCGTCTTACGGCCTTT -ACGGAATCTCGTCTTACGGGTCTT -ACGGAATCTCGTCTTACGACGCTT -ACGGAATCTCGTCTTACGAGCGTT -ACGGAATCTCGTCTTACGTTCGTC -ACGGAATCTCGTCTTACGTCTCTC -ACGGAATCTCGTCTTACGTGGATC -ACGGAATCTCGTCTTACGCACTTC -ACGGAATCTCGTCTTACGGTACTC -ACGGAATCTCGTCTTACGGATGTC -ACGGAATCTCGTCTTACGACAGTC -ACGGAATCTCGTCTTACGTTGCTG -ACGGAATCTCGTCTTACGTCCATG -ACGGAATCTCGTCTTACGTGTGTG -ACGGAATCTCGTCTTACGCTAGTG -ACGGAATCTCGTCTTACGCATCTG -ACGGAATCTCGTCTTACGGAGTTG -ACGGAATCTCGTCTTACGAGACTG -ACGGAATCTCGTCTTACGTCGGTA -ACGGAATCTCGTCTTACGTGCCTA -ACGGAATCTCGTCTTACGCCACTA -ACGGAATCTCGTCTTACGGGAGTA -ACGGAATCTCGTCTTACGTCGTCT -ACGGAATCTCGTCTTACGTGCACT -ACGGAATCTCGTCTTACGCTGACT -ACGGAATCTCGTCTTACGCAACCT -ACGGAATCTCGTCTTACGGCTACT -ACGGAATCTCGTCTTACGGGATCT -ACGGAATCTCGTCTTACGAAGGCT -ACGGAATCTCGTCTTACGTCAACC -ACGGAATCTCGTCTTACGTGTTCC -ACGGAATCTCGTCTTACGATTCCC -ACGGAATCTCGTCTTACGTTCTCG -ACGGAATCTCGTCTTACGTAGACG -ACGGAATCTCGTCTTACGGTAACG -ACGGAATCTCGTCTTACGACTTCG -ACGGAATCTCGTCTTACGTACGCA -ACGGAATCTCGTCTTACGCTTGCA -ACGGAATCTCGTCTTACGCGAACA -ACGGAATCTCGTCTTACGCAGTCA -ACGGAATCTCGTCTTACGGATCCA -ACGGAATCTCGTCTTACGACGACA -ACGGAATCTCGTCTTACGAGCTCA -ACGGAATCTCGTCTTACGTCACGT -ACGGAATCTCGTCTTACGCGTAGT -ACGGAATCTCGTCTTACGGTCAGT -ACGGAATCTCGTCTTACGGAAGGT -ACGGAATCTCGTCTTACGAACCGT -ACGGAATCTCGTCTTACGTTGTGC -ACGGAATCTCGTCTTACGCTAAGC -ACGGAATCTCGTCTTACGACTAGC -ACGGAATCTCGTCTTACGAGATGC -ACGGAATCTCGTCTTACGTGAAGG -ACGGAATCTCGTCTTACGCAATGG -ACGGAATCTCGTCTTACGATGAGG -ACGGAATCTCGTCTTACGAATGGG -ACGGAATCTCGTCTTACGTCCTGA -ACGGAATCTCGTCTTACGTAGCGA -ACGGAATCTCGTCTTACGCACAGA -ACGGAATCTCGTCTTACGGCAAGA -ACGGAATCTCGTCTTACGGGTTGA -ACGGAATCTCGTCTTACGTCCGAT -ACGGAATCTCGTCTTACGTGGCAT -ACGGAATCTCGTCTTACGCGAGAT -ACGGAATCTCGTCTTACGTACCAC -ACGGAATCTCGTCTTACGCAGAAC -ACGGAATCTCGTCTTACGGTCTAC -ACGGAATCTCGTCTTACGACGTAC -ACGGAATCTCGTCTTACGAGTGAC -ACGGAATCTCGTCTTACGCTGTAG -ACGGAATCTCGTCTTACGCCTAAG -ACGGAATCTCGTCTTACGGTTCAG -ACGGAATCTCGTCTTACGGCATAG -ACGGAATCTCGTCTTACGGACAAG -ACGGAATCTCGTCTTACGAAGCAG -ACGGAATCTCGTCTTACGCGTCAA -ACGGAATCTCGTCTTACGGCTGAA -ACGGAATCTCGTCTTACGAGTACG -ACGGAATCTCGTCTTACGATCCGA -ACGGAATCTCGTCTTACGATGGGA -ACGGAATCTCGTCTTACGGTGCAA -ACGGAATCTCGTCTTACGGAGGAA -ACGGAATCTCGTCTTACGCAGGTA -ACGGAATCTCGTCTTACGGACTCT -ACGGAATCTCGTCTTACGAGTCCT -ACGGAATCTCGTCTTACGTAAGCC -ACGGAATCTCGTCTTACGATAGCC -ACGGAATCTCGTCTTACGTAACCG -ACGGAATCTCGTCTTACGATGCCA -ACGGAATCTCGTGTTAGCGGAAAC -ACGGAATCTCGTGTTAGCAACACC -ACGGAATCTCGTGTTAGCATCGAG -ACGGAATCTCGTGTTAGCCTCCTT -ACGGAATCTCGTGTTAGCCCTGTT -ACGGAATCTCGTGTTAGCCGGTTT -ACGGAATCTCGTGTTAGCGTGGTT -ACGGAATCTCGTGTTAGCGCCTTT -ACGGAATCTCGTGTTAGCGGTCTT -ACGGAATCTCGTGTTAGCACGCTT -ACGGAATCTCGTGTTAGCAGCGTT -ACGGAATCTCGTGTTAGCTTCGTC -ACGGAATCTCGTGTTAGCTCTCTC -ACGGAATCTCGTGTTAGCTGGATC -ACGGAATCTCGTGTTAGCCACTTC -ACGGAATCTCGTGTTAGCGTACTC -ACGGAATCTCGTGTTAGCGATGTC -ACGGAATCTCGTGTTAGCACAGTC -ACGGAATCTCGTGTTAGCTTGCTG -ACGGAATCTCGTGTTAGCTCCATG -ACGGAATCTCGTGTTAGCTGTGTG -ACGGAATCTCGTGTTAGCCTAGTG -ACGGAATCTCGTGTTAGCCATCTG -ACGGAATCTCGTGTTAGCGAGTTG -ACGGAATCTCGTGTTAGCAGACTG -ACGGAATCTCGTGTTAGCTCGGTA -ACGGAATCTCGTGTTAGCTGCCTA -ACGGAATCTCGTGTTAGCCCACTA -ACGGAATCTCGTGTTAGCGGAGTA -ACGGAATCTCGTGTTAGCTCGTCT -ACGGAATCTCGTGTTAGCTGCACT -ACGGAATCTCGTGTTAGCCTGACT -ACGGAATCTCGTGTTAGCCAACCT -ACGGAATCTCGTGTTAGCGCTACT -ACGGAATCTCGTGTTAGCGGATCT -ACGGAATCTCGTGTTAGCAAGGCT -ACGGAATCTCGTGTTAGCTCAACC -ACGGAATCTCGTGTTAGCTGTTCC -ACGGAATCTCGTGTTAGCATTCCC -ACGGAATCTCGTGTTAGCTTCTCG -ACGGAATCTCGTGTTAGCTAGACG -ACGGAATCTCGTGTTAGCGTAACG -ACGGAATCTCGTGTTAGCACTTCG -ACGGAATCTCGTGTTAGCTACGCA -ACGGAATCTCGTGTTAGCCTTGCA -ACGGAATCTCGTGTTAGCCGAACA -ACGGAATCTCGTGTTAGCCAGTCA -ACGGAATCTCGTGTTAGCGATCCA -ACGGAATCTCGTGTTAGCACGACA -ACGGAATCTCGTGTTAGCAGCTCA -ACGGAATCTCGTGTTAGCTCACGT -ACGGAATCTCGTGTTAGCCGTAGT -ACGGAATCTCGTGTTAGCGTCAGT -ACGGAATCTCGTGTTAGCGAAGGT -ACGGAATCTCGTGTTAGCAACCGT -ACGGAATCTCGTGTTAGCTTGTGC -ACGGAATCTCGTGTTAGCCTAAGC -ACGGAATCTCGTGTTAGCACTAGC -ACGGAATCTCGTGTTAGCAGATGC -ACGGAATCTCGTGTTAGCTGAAGG -ACGGAATCTCGTGTTAGCCAATGG -ACGGAATCTCGTGTTAGCATGAGG -ACGGAATCTCGTGTTAGCAATGGG -ACGGAATCTCGTGTTAGCTCCTGA -ACGGAATCTCGTGTTAGCTAGCGA -ACGGAATCTCGTGTTAGCCACAGA -ACGGAATCTCGTGTTAGCGCAAGA -ACGGAATCTCGTGTTAGCGGTTGA -ACGGAATCTCGTGTTAGCTCCGAT -ACGGAATCTCGTGTTAGCTGGCAT -ACGGAATCTCGTGTTAGCCGAGAT -ACGGAATCTCGTGTTAGCTACCAC -ACGGAATCTCGTGTTAGCCAGAAC -ACGGAATCTCGTGTTAGCGTCTAC -ACGGAATCTCGTGTTAGCACGTAC -ACGGAATCTCGTGTTAGCAGTGAC -ACGGAATCTCGTGTTAGCCTGTAG -ACGGAATCTCGTGTTAGCCCTAAG -ACGGAATCTCGTGTTAGCGTTCAG -ACGGAATCTCGTGTTAGCGCATAG -ACGGAATCTCGTGTTAGCGACAAG -ACGGAATCTCGTGTTAGCAAGCAG -ACGGAATCTCGTGTTAGCCGTCAA -ACGGAATCTCGTGTTAGCGCTGAA -ACGGAATCTCGTGTTAGCAGTACG -ACGGAATCTCGTGTTAGCATCCGA -ACGGAATCTCGTGTTAGCATGGGA -ACGGAATCTCGTGTTAGCGTGCAA -ACGGAATCTCGTGTTAGCGAGGAA -ACGGAATCTCGTGTTAGCCAGGTA -ACGGAATCTCGTGTTAGCGACTCT -ACGGAATCTCGTGTTAGCAGTCCT -ACGGAATCTCGTGTTAGCTAAGCC -ACGGAATCTCGTGTTAGCATAGCC -ACGGAATCTCGTGTTAGCTAACCG -ACGGAATCTCGTGTTAGCATGCCA -ACGGAATCTCGTGTCTTCGGAAAC -ACGGAATCTCGTGTCTTCAACACC -ACGGAATCTCGTGTCTTCATCGAG -ACGGAATCTCGTGTCTTCCTCCTT -ACGGAATCTCGTGTCTTCCCTGTT -ACGGAATCTCGTGTCTTCCGGTTT -ACGGAATCTCGTGTCTTCGTGGTT -ACGGAATCTCGTGTCTTCGCCTTT -ACGGAATCTCGTGTCTTCGGTCTT -ACGGAATCTCGTGTCTTCACGCTT -ACGGAATCTCGTGTCTTCAGCGTT -ACGGAATCTCGTGTCTTCTTCGTC -ACGGAATCTCGTGTCTTCTCTCTC -ACGGAATCTCGTGTCTTCTGGATC -ACGGAATCTCGTGTCTTCCACTTC -ACGGAATCTCGTGTCTTCGTACTC -ACGGAATCTCGTGTCTTCGATGTC -ACGGAATCTCGTGTCTTCACAGTC -ACGGAATCTCGTGTCTTCTTGCTG -ACGGAATCTCGTGTCTTCTCCATG -ACGGAATCTCGTGTCTTCTGTGTG -ACGGAATCTCGTGTCTTCCTAGTG -ACGGAATCTCGTGTCTTCCATCTG -ACGGAATCTCGTGTCTTCGAGTTG -ACGGAATCTCGTGTCTTCAGACTG -ACGGAATCTCGTGTCTTCTCGGTA -ACGGAATCTCGTGTCTTCTGCCTA -ACGGAATCTCGTGTCTTCCCACTA -ACGGAATCTCGTGTCTTCGGAGTA -ACGGAATCTCGTGTCTTCTCGTCT -ACGGAATCTCGTGTCTTCTGCACT -ACGGAATCTCGTGTCTTCCTGACT -ACGGAATCTCGTGTCTTCCAACCT -ACGGAATCTCGTGTCTTCGCTACT -ACGGAATCTCGTGTCTTCGGATCT -ACGGAATCTCGTGTCTTCAAGGCT -ACGGAATCTCGTGTCTTCTCAACC -ACGGAATCTCGTGTCTTCTGTTCC -ACGGAATCTCGTGTCTTCATTCCC -ACGGAATCTCGTGTCTTCTTCTCG -ACGGAATCTCGTGTCTTCTAGACG -ACGGAATCTCGTGTCTTCGTAACG -ACGGAATCTCGTGTCTTCACTTCG -ACGGAATCTCGTGTCTTCTACGCA -ACGGAATCTCGTGTCTTCCTTGCA -ACGGAATCTCGTGTCTTCCGAACA -ACGGAATCTCGTGTCTTCCAGTCA -ACGGAATCTCGTGTCTTCGATCCA -ACGGAATCTCGTGTCTTCACGACA -ACGGAATCTCGTGTCTTCAGCTCA -ACGGAATCTCGTGTCTTCTCACGT -ACGGAATCTCGTGTCTTCCGTAGT -ACGGAATCTCGTGTCTTCGTCAGT -ACGGAATCTCGTGTCTTCGAAGGT -ACGGAATCTCGTGTCTTCAACCGT -ACGGAATCTCGTGTCTTCTTGTGC -ACGGAATCTCGTGTCTTCCTAAGC -ACGGAATCTCGTGTCTTCACTAGC -ACGGAATCTCGTGTCTTCAGATGC -ACGGAATCTCGTGTCTTCTGAAGG -ACGGAATCTCGTGTCTTCCAATGG -ACGGAATCTCGTGTCTTCATGAGG -ACGGAATCTCGTGTCTTCAATGGG -ACGGAATCTCGTGTCTTCTCCTGA -ACGGAATCTCGTGTCTTCTAGCGA -ACGGAATCTCGTGTCTTCCACAGA -ACGGAATCTCGTGTCTTCGCAAGA -ACGGAATCTCGTGTCTTCGGTTGA -ACGGAATCTCGTGTCTTCTCCGAT -ACGGAATCTCGTGTCTTCTGGCAT -ACGGAATCTCGTGTCTTCCGAGAT -ACGGAATCTCGTGTCTTCTACCAC -ACGGAATCTCGTGTCTTCCAGAAC -ACGGAATCTCGTGTCTTCGTCTAC -ACGGAATCTCGTGTCTTCACGTAC -ACGGAATCTCGTGTCTTCAGTGAC -ACGGAATCTCGTGTCTTCCTGTAG -ACGGAATCTCGTGTCTTCCCTAAG -ACGGAATCTCGTGTCTTCGTTCAG -ACGGAATCTCGTGTCTTCGCATAG -ACGGAATCTCGTGTCTTCGACAAG -ACGGAATCTCGTGTCTTCAAGCAG -ACGGAATCTCGTGTCTTCCGTCAA -ACGGAATCTCGTGTCTTCGCTGAA -ACGGAATCTCGTGTCTTCAGTACG -ACGGAATCTCGTGTCTTCATCCGA -ACGGAATCTCGTGTCTTCATGGGA -ACGGAATCTCGTGTCTTCGTGCAA -ACGGAATCTCGTGTCTTCGAGGAA -ACGGAATCTCGTGTCTTCCAGGTA -ACGGAATCTCGTGTCTTCGACTCT -ACGGAATCTCGTGTCTTCAGTCCT -ACGGAATCTCGTGTCTTCTAAGCC -ACGGAATCTCGTGTCTTCATAGCC -ACGGAATCTCGTGTCTTCTAACCG -ACGGAATCTCGTGTCTTCATGCCA -ACGGAATCTCGTCTCTCTGGAAAC -ACGGAATCTCGTCTCTCTAACACC -ACGGAATCTCGTCTCTCTATCGAG -ACGGAATCTCGTCTCTCTCTCCTT -ACGGAATCTCGTCTCTCTCCTGTT -ACGGAATCTCGTCTCTCTCGGTTT -ACGGAATCTCGTCTCTCTGTGGTT -ACGGAATCTCGTCTCTCTGCCTTT -ACGGAATCTCGTCTCTCTGGTCTT -ACGGAATCTCGTCTCTCTACGCTT -ACGGAATCTCGTCTCTCTAGCGTT -ACGGAATCTCGTCTCTCTTTCGTC -ACGGAATCTCGTCTCTCTTCTCTC -ACGGAATCTCGTCTCTCTTGGATC -ACGGAATCTCGTCTCTCTCACTTC -ACGGAATCTCGTCTCTCTGTACTC -ACGGAATCTCGTCTCTCTGATGTC -ACGGAATCTCGTCTCTCTACAGTC -ACGGAATCTCGTCTCTCTTTGCTG -ACGGAATCTCGTCTCTCTTCCATG -ACGGAATCTCGTCTCTCTTGTGTG -ACGGAATCTCGTCTCTCTCTAGTG -ACGGAATCTCGTCTCTCTCATCTG -ACGGAATCTCGTCTCTCTGAGTTG -ACGGAATCTCGTCTCTCTAGACTG -ACGGAATCTCGTCTCTCTTCGGTA -ACGGAATCTCGTCTCTCTTGCCTA -ACGGAATCTCGTCTCTCTCCACTA -ACGGAATCTCGTCTCTCTGGAGTA -ACGGAATCTCGTCTCTCTTCGTCT -ACGGAATCTCGTCTCTCTTGCACT -ACGGAATCTCGTCTCTCTCTGACT -ACGGAATCTCGTCTCTCTCAACCT -ACGGAATCTCGTCTCTCTGCTACT -ACGGAATCTCGTCTCTCTGGATCT -ACGGAATCTCGTCTCTCTAAGGCT -ACGGAATCTCGTCTCTCTTCAACC -ACGGAATCTCGTCTCTCTTGTTCC -ACGGAATCTCGTCTCTCTATTCCC -ACGGAATCTCGTCTCTCTTTCTCG -ACGGAATCTCGTCTCTCTTAGACG -ACGGAATCTCGTCTCTCTGTAACG -ACGGAATCTCGTCTCTCTACTTCG -ACGGAATCTCGTCTCTCTTACGCA -ACGGAATCTCGTCTCTCTCTTGCA -ACGGAATCTCGTCTCTCTCGAACA -ACGGAATCTCGTCTCTCTCAGTCA -ACGGAATCTCGTCTCTCTGATCCA -ACGGAATCTCGTCTCTCTACGACA -ACGGAATCTCGTCTCTCTAGCTCA -ACGGAATCTCGTCTCTCTTCACGT -ACGGAATCTCGTCTCTCTCGTAGT -ACGGAATCTCGTCTCTCTGTCAGT -ACGGAATCTCGTCTCTCTGAAGGT -ACGGAATCTCGTCTCTCTAACCGT -ACGGAATCTCGTCTCTCTTTGTGC -ACGGAATCTCGTCTCTCTCTAAGC -ACGGAATCTCGTCTCTCTACTAGC -ACGGAATCTCGTCTCTCTAGATGC -ACGGAATCTCGTCTCTCTTGAAGG -ACGGAATCTCGTCTCTCTCAATGG -ACGGAATCTCGTCTCTCTATGAGG -ACGGAATCTCGTCTCTCTAATGGG -ACGGAATCTCGTCTCTCTTCCTGA -ACGGAATCTCGTCTCTCTTAGCGA -ACGGAATCTCGTCTCTCTCACAGA -ACGGAATCTCGTCTCTCTGCAAGA -ACGGAATCTCGTCTCTCTGGTTGA -ACGGAATCTCGTCTCTCTTCCGAT -ACGGAATCTCGTCTCTCTTGGCAT -ACGGAATCTCGTCTCTCTCGAGAT -ACGGAATCTCGTCTCTCTTACCAC -ACGGAATCTCGTCTCTCTCAGAAC -ACGGAATCTCGTCTCTCTGTCTAC -ACGGAATCTCGTCTCTCTACGTAC -ACGGAATCTCGTCTCTCTAGTGAC -ACGGAATCTCGTCTCTCTCTGTAG -ACGGAATCTCGTCTCTCTCCTAAG -ACGGAATCTCGTCTCTCTGTTCAG -ACGGAATCTCGTCTCTCTGCATAG -ACGGAATCTCGTCTCTCTGACAAG -ACGGAATCTCGTCTCTCTAAGCAG -ACGGAATCTCGTCTCTCTCGTCAA -ACGGAATCTCGTCTCTCTGCTGAA -ACGGAATCTCGTCTCTCTAGTACG -ACGGAATCTCGTCTCTCTATCCGA -ACGGAATCTCGTCTCTCTATGGGA -ACGGAATCTCGTCTCTCTGTGCAA -ACGGAATCTCGTCTCTCTGAGGAA -ACGGAATCTCGTCTCTCTCAGGTA -ACGGAATCTCGTCTCTCTGACTCT -ACGGAATCTCGTCTCTCTAGTCCT -ACGGAATCTCGTCTCTCTTAAGCC -ACGGAATCTCGTCTCTCTATAGCC -ACGGAATCTCGTCTCTCTTAACCG -ACGGAATCTCGTCTCTCTATGCCA -ACGGAATCTCGTATCTGGGGAAAC -ACGGAATCTCGTATCTGGAACACC -ACGGAATCTCGTATCTGGATCGAG -ACGGAATCTCGTATCTGGCTCCTT -ACGGAATCTCGTATCTGGCCTGTT -ACGGAATCTCGTATCTGGCGGTTT -ACGGAATCTCGTATCTGGGTGGTT -ACGGAATCTCGTATCTGGGCCTTT -ACGGAATCTCGTATCTGGGGTCTT -ACGGAATCTCGTATCTGGACGCTT -ACGGAATCTCGTATCTGGAGCGTT -ACGGAATCTCGTATCTGGTTCGTC -ACGGAATCTCGTATCTGGTCTCTC -ACGGAATCTCGTATCTGGTGGATC -ACGGAATCTCGTATCTGGCACTTC -ACGGAATCTCGTATCTGGGTACTC -ACGGAATCTCGTATCTGGGATGTC -ACGGAATCTCGTATCTGGACAGTC -ACGGAATCTCGTATCTGGTTGCTG -ACGGAATCTCGTATCTGGTCCATG -ACGGAATCTCGTATCTGGTGTGTG -ACGGAATCTCGTATCTGGCTAGTG -ACGGAATCTCGTATCTGGCATCTG -ACGGAATCTCGTATCTGGGAGTTG -ACGGAATCTCGTATCTGGAGACTG -ACGGAATCTCGTATCTGGTCGGTA -ACGGAATCTCGTATCTGGTGCCTA -ACGGAATCTCGTATCTGGCCACTA -ACGGAATCTCGTATCTGGGGAGTA -ACGGAATCTCGTATCTGGTCGTCT -ACGGAATCTCGTATCTGGTGCACT -ACGGAATCTCGTATCTGGCTGACT -ACGGAATCTCGTATCTGGCAACCT -ACGGAATCTCGTATCTGGGCTACT -ACGGAATCTCGTATCTGGGGATCT -ACGGAATCTCGTATCTGGAAGGCT -ACGGAATCTCGTATCTGGTCAACC -ACGGAATCTCGTATCTGGTGTTCC -ACGGAATCTCGTATCTGGATTCCC -ACGGAATCTCGTATCTGGTTCTCG -ACGGAATCTCGTATCTGGTAGACG -ACGGAATCTCGTATCTGGGTAACG -ACGGAATCTCGTATCTGGACTTCG -ACGGAATCTCGTATCTGGTACGCA -ACGGAATCTCGTATCTGGCTTGCA -ACGGAATCTCGTATCTGGCGAACA -ACGGAATCTCGTATCTGGCAGTCA -ACGGAATCTCGTATCTGGGATCCA -ACGGAATCTCGTATCTGGACGACA -ACGGAATCTCGTATCTGGAGCTCA -ACGGAATCTCGTATCTGGTCACGT -ACGGAATCTCGTATCTGGCGTAGT -ACGGAATCTCGTATCTGGGTCAGT -ACGGAATCTCGTATCTGGGAAGGT -ACGGAATCTCGTATCTGGAACCGT -ACGGAATCTCGTATCTGGTTGTGC -ACGGAATCTCGTATCTGGCTAAGC -ACGGAATCTCGTATCTGGACTAGC -ACGGAATCTCGTATCTGGAGATGC -ACGGAATCTCGTATCTGGTGAAGG -ACGGAATCTCGTATCTGGCAATGG -ACGGAATCTCGTATCTGGATGAGG -ACGGAATCTCGTATCTGGAATGGG -ACGGAATCTCGTATCTGGTCCTGA -ACGGAATCTCGTATCTGGTAGCGA -ACGGAATCTCGTATCTGGCACAGA -ACGGAATCTCGTATCTGGGCAAGA -ACGGAATCTCGTATCTGGGGTTGA -ACGGAATCTCGTATCTGGTCCGAT -ACGGAATCTCGTATCTGGTGGCAT -ACGGAATCTCGTATCTGGCGAGAT -ACGGAATCTCGTATCTGGTACCAC -ACGGAATCTCGTATCTGGCAGAAC -ACGGAATCTCGTATCTGGGTCTAC -ACGGAATCTCGTATCTGGACGTAC -ACGGAATCTCGTATCTGGAGTGAC -ACGGAATCTCGTATCTGGCTGTAG -ACGGAATCTCGTATCTGGCCTAAG -ACGGAATCTCGTATCTGGGTTCAG -ACGGAATCTCGTATCTGGGCATAG -ACGGAATCTCGTATCTGGGACAAG -ACGGAATCTCGTATCTGGAAGCAG -ACGGAATCTCGTATCTGGCGTCAA -ACGGAATCTCGTATCTGGGCTGAA -ACGGAATCTCGTATCTGGAGTACG -ACGGAATCTCGTATCTGGATCCGA -ACGGAATCTCGTATCTGGATGGGA -ACGGAATCTCGTATCTGGGTGCAA -ACGGAATCTCGTATCTGGGAGGAA -ACGGAATCTCGTATCTGGCAGGTA -ACGGAATCTCGTATCTGGGACTCT -ACGGAATCTCGTATCTGGAGTCCT -ACGGAATCTCGTATCTGGTAAGCC -ACGGAATCTCGTATCTGGATAGCC -ACGGAATCTCGTATCTGGTAACCG -ACGGAATCTCGTATCTGGATGCCA -ACGGAATCTCGTTTCCACGGAAAC -ACGGAATCTCGTTTCCACAACACC -ACGGAATCTCGTTTCCACATCGAG -ACGGAATCTCGTTTCCACCTCCTT -ACGGAATCTCGTTTCCACCCTGTT -ACGGAATCTCGTTTCCACCGGTTT -ACGGAATCTCGTTTCCACGTGGTT -ACGGAATCTCGTTTCCACGCCTTT -ACGGAATCTCGTTTCCACGGTCTT -ACGGAATCTCGTTTCCACACGCTT -ACGGAATCTCGTTTCCACAGCGTT -ACGGAATCTCGTTTCCACTTCGTC -ACGGAATCTCGTTTCCACTCTCTC -ACGGAATCTCGTTTCCACTGGATC -ACGGAATCTCGTTTCCACCACTTC -ACGGAATCTCGTTTCCACGTACTC -ACGGAATCTCGTTTCCACGATGTC -ACGGAATCTCGTTTCCACACAGTC -ACGGAATCTCGTTTCCACTTGCTG -ACGGAATCTCGTTTCCACTCCATG -ACGGAATCTCGTTTCCACTGTGTG -ACGGAATCTCGTTTCCACCTAGTG -ACGGAATCTCGTTTCCACCATCTG -ACGGAATCTCGTTTCCACGAGTTG -ACGGAATCTCGTTTCCACAGACTG -ACGGAATCTCGTTTCCACTCGGTA -ACGGAATCTCGTTTCCACTGCCTA -ACGGAATCTCGTTTCCACCCACTA -ACGGAATCTCGTTTCCACGGAGTA -ACGGAATCTCGTTTCCACTCGTCT -ACGGAATCTCGTTTCCACTGCACT -ACGGAATCTCGTTTCCACCTGACT -ACGGAATCTCGTTTCCACCAACCT -ACGGAATCTCGTTTCCACGCTACT -ACGGAATCTCGTTTCCACGGATCT -ACGGAATCTCGTTTCCACAAGGCT -ACGGAATCTCGTTTCCACTCAACC -ACGGAATCTCGTTTCCACTGTTCC -ACGGAATCTCGTTTCCACATTCCC -ACGGAATCTCGTTTCCACTTCTCG -ACGGAATCTCGTTTCCACTAGACG -ACGGAATCTCGTTTCCACGTAACG -ACGGAATCTCGTTTCCACACTTCG -ACGGAATCTCGTTTCCACTACGCA -ACGGAATCTCGTTTCCACCTTGCA -ACGGAATCTCGTTTCCACCGAACA -ACGGAATCTCGTTTCCACCAGTCA -ACGGAATCTCGTTTCCACGATCCA -ACGGAATCTCGTTTCCACACGACA -ACGGAATCTCGTTTCCACAGCTCA -ACGGAATCTCGTTTCCACTCACGT -ACGGAATCTCGTTTCCACCGTAGT -ACGGAATCTCGTTTCCACGTCAGT -ACGGAATCTCGTTTCCACGAAGGT -ACGGAATCTCGTTTCCACAACCGT -ACGGAATCTCGTTTCCACTTGTGC -ACGGAATCTCGTTTCCACCTAAGC -ACGGAATCTCGTTTCCACACTAGC -ACGGAATCTCGTTTCCACAGATGC -ACGGAATCTCGTTTCCACTGAAGG -ACGGAATCTCGTTTCCACCAATGG -ACGGAATCTCGTTTCCACATGAGG -ACGGAATCTCGTTTCCACAATGGG -ACGGAATCTCGTTTCCACTCCTGA -ACGGAATCTCGTTTCCACTAGCGA -ACGGAATCTCGTTTCCACCACAGA -ACGGAATCTCGTTTCCACGCAAGA -ACGGAATCTCGTTTCCACGGTTGA -ACGGAATCTCGTTTCCACTCCGAT -ACGGAATCTCGTTTCCACTGGCAT -ACGGAATCTCGTTTCCACCGAGAT -ACGGAATCTCGTTTCCACTACCAC -ACGGAATCTCGTTTCCACCAGAAC -ACGGAATCTCGTTTCCACGTCTAC -ACGGAATCTCGTTTCCACACGTAC -ACGGAATCTCGTTTCCACAGTGAC -ACGGAATCTCGTTTCCACCTGTAG -ACGGAATCTCGTTTCCACCCTAAG -ACGGAATCTCGTTTCCACGTTCAG -ACGGAATCTCGTTTCCACGCATAG -ACGGAATCTCGTTTCCACGACAAG -ACGGAATCTCGTTTCCACAAGCAG -ACGGAATCTCGTTTCCACCGTCAA -ACGGAATCTCGTTTCCACGCTGAA -ACGGAATCTCGTTTCCACAGTACG -ACGGAATCTCGTTTCCACATCCGA -ACGGAATCTCGTTTCCACATGGGA -ACGGAATCTCGTTTCCACGTGCAA -ACGGAATCTCGTTTCCACGAGGAA -ACGGAATCTCGTTTCCACCAGGTA -ACGGAATCTCGTTTCCACGACTCT -ACGGAATCTCGTTTCCACAGTCCT -ACGGAATCTCGTTTCCACTAAGCC -ACGGAATCTCGTTTCCACATAGCC -ACGGAATCTCGTTTCCACTAACCG -ACGGAATCTCGTTTCCACATGCCA -ACGGAATCTCGTCTCGTAGGAAAC -ACGGAATCTCGTCTCGTAAACACC -ACGGAATCTCGTCTCGTAATCGAG -ACGGAATCTCGTCTCGTACTCCTT -ACGGAATCTCGTCTCGTACCTGTT -ACGGAATCTCGTCTCGTACGGTTT -ACGGAATCTCGTCTCGTAGTGGTT -ACGGAATCTCGTCTCGTAGCCTTT -ACGGAATCTCGTCTCGTAGGTCTT -ACGGAATCTCGTCTCGTAACGCTT -ACGGAATCTCGTCTCGTAAGCGTT -ACGGAATCTCGTCTCGTATTCGTC -ACGGAATCTCGTCTCGTATCTCTC -ACGGAATCTCGTCTCGTATGGATC -ACGGAATCTCGTCTCGTACACTTC -ACGGAATCTCGTCTCGTAGTACTC -ACGGAATCTCGTCTCGTAGATGTC -ACGGAATCTCGTCTCGTAACAGTC -ACGGAATCTCGTCTCGTATTGCTG -ACGGAATCTCGTCTCGTATCCATG -ACGGAATCTCGTCTCGTATGTGTG -ACGGAATCTCGTCTCGTACTAGTG -ACGGAATCTCGTCTCGTACATCTG -ACGGAATCTCGTCTCGTAGAGTTG -ACGGAATCTCGTCTCGTAAGACTG -ACGGAATCTCGTCTCGTATCGGTA -ACGGAATCTCGTCTCGTATGCCTA -ACGGAATCTCGTCTCGTACCACTA -ACGGAATCTCGTCTCGTAGGAGTA -ACGGAATCTCGTCTCGTATCGTCT -ACGGAATCTCGTCTCGTATGCACT -ACGGAATCTCGTCTCGTACTGACT -ACGGAATCTCGTCTCGTACAACCT -ACGGAATCTCGTCTCGTAGCTACT -ACGGAATCTCGTCTCGTAGGATCT -ACGGAATCTCGTCTCGTAAAGGCT -ACGGAATCTCGTCTCGTATCAACC -ACGGAATCTCGTCTCGTATGTTCC -ACGGAATCTCGTCTCGTAATTCCC -ACGGAATCTCGTCTCGTATTCTCG -ACGGAATCTCGTCTCGTATAGACG -ACGGAATCTCGTCTCGTAGTAACG -ACGGAATCTCGTCTCGTAACTTCG -ACGGAATCTCGTCTCGTATACGCA -ACGGAATCTCGTCTCGTACTTGCA -ACGGAATCTCGTCTCGTACGAACA -ACGGAATCTCGTCTCGTACAGTCA -ACGGAATCTCGTCTCGTAGATCCA -ACGGAATCTCGTCTCGTAACGACA -ACGGAATCTCGTCTCGTAAGCTCA -ACGGAATCTCGTCTCGTATCACGT -ACGGAATCTCGTCTCGTACGTAGT -ACGGAATCTCGTCTCGTAGTCAGT -ACGGAATCTCGTCTCGTAGAAGGT -ACGGAATCTCGTCTCGTAAACCGT -ACGGAATCTCGTCTCGTATTGTGC -ACGGAATCTCGTCTCGTACTAAGC -ACGGAATCTCGTCTCGTAACTAGC -ACGGAATCTCGTCTCGTAAGATGC -ACGGAATCTCGTCTCGTATGAAGG -ACGGAATCTCGTCTCGTACAATGG -ACGGAATCTCGTCTCGTAATGAGG -ACGGAATCTCGTCTCGTAAATGGG -ACGGAATCTCGTCTCGTATCCTGA -ACGGAATCTCGTCTCGTATAGCGA -ACGGAATCTCGTCTCGTACACAGA -ACGGAATCTCGTCTCGTAGCAAGA -ACGGAATCTCGTCTCGTAGGTTGA -ACGGAATCTCGTCTCGTATCCGAT -ACGGAATCTCGTCTCGTATGGCAT -ACGGAATCTCGTCTCGTACGAGAT -ACGGAATCTCGTCTCGTATACCAC -ACGGAATCTCGTCTCGTACAGAAC -ACGGAATCTCGTCTCGTAGTCTAC -ACGGAATCTCGTCTCGTAACGTAC -ACGGAATCTCGTCTCGTAAGTGAC -ACGGAATCTCGTCTCGTACTGTAG -ACGGAATCTCGTCTCGTACCTAAG -ACGGAATCTCGTCTCGTAGTTCAG -ACGGAATCTCGTCTCGTAGCATAG -ACGGAATCTCGTCTCGTAGACAAG -ACGGAATCTCGTCTCGTAAAGCAG -ACGGAATCTCGTCTCGTACGTCAA -ACGGAATCTCGTCTCGTAGCTGAA -ACGGAATCTCGTCTCGTAAGTACG -ACGGAATCTCGTCTCGTAATCCGA -ACGGAATCTCGTCTCGTAATGGGA -ACGGAATCTCGTCTCGTAGTGCAA -ACGGAATCTCGTCTCGTAGAGGAA -ACGGAATCTCGTCTCGTACAGGTA -ACGGAATCTCGTCTCGTAGACTCT -ACGGAATCTCGTCTCGTAAGTCCT -ACGGAATCTCGTCTCGTATAAGCC -ACGGAATCTCGTCTCGTAATAGCC -ACGGAATCTCGTCTCGTATAACCG -ACGGAATCTCGTCTCGTAATGCCA -ACGGAATCTCGTGTCGATGGAAAC -ACGGAATCTCGTGTCGATAACACC -ACGGAATCTCGTGTCGATATCGAG -ACGGAATCTCGTGTCGATCTCCTT -ACGGAATCTCGTGTCGATCCTGTT -ACGGAATCTCGTGTCGATCGGTTT -ACGGAATCTCGTGTCGATGTGGTT -ACGGAATCTCGTGTCGATGCCTTT -ACGGAATCTCGTGTCGATGGTCTT -ACGGAATCTCGTGTCGATACGCTT -ACGGAATCTCGTGTCGATAGCGTT -ACGGAATCTCGTGTCGATTTCGTC -ACGGAATCTCGTGTCGATTCTCTC -ACGGAATCTCGTGTCGATTGGATC -ACGGAATCTCGTGTCGATCACTTC -ACGGAATCTCGTGTCGATGTACTC -ACGGAATCTCGTGTCGATGATGTC -ACGGAATCTCGTGTCGATACAGTC -ACGGAATCTCGTGTCGATTTGCTG -ACGGAATCTCGTGTCGATTCCATG -ACGGAATCTCGTGTCGATTGTGTG -ACGGAATCTCGTGTCGATCTAGTG -ACGGAATCTCGTGTCGATCATCTG -ACGGAATCTCGTGTCGATGAGTTG -ACGGAATCTCGTGTCGATAGACTG -ACGGAATCTCGTGTCGATTCGGTA -ACGGAATCTCGTGTCGATTGCCTA -ACGGAATCTCGTGTCGATCCACTA -ACGGAATCTCGTGTCGATGGAGTA -ACGGAATCTCGTGTCGATTCGTCT -ACGGAATCTCGTGTCGATTGCACT -ACGGAATCTCGTGTCGATCTGACT -ACGGAATCTCGTGTCGATCAACCT -ACGGAATCTCGTGTCGATGCTACT -ACGGAATCTCGTGTCGATGGATCT -ACGGAATCTCGTGTCGATAAGGCT -ACGGAATCTCGTGTCGATTCAACC -ACGGAATCTCGTGTCGATTGTTCC -ACGGAATCTCGTGTCGATATTCCC -ACGGAATCTCGTGTCGATTTCTCG -ACGGAATCTCGTGTCGATTAGACG -ACGGAATCTCGTGTCGATGTAACG -ACGGAATCTCGTGTCGATACTTCG -ACGGAATCTCGTGTCGATTACGCA -ACGGAATCTCGTGTCGATCTTGCA -ACGGAATCTCGTGTCGATCGAACA -ACGGAATCTCGTGTCGATCAGTCA -ACGGAATCTCGTGTCGATGATCCA -ACGGAATCTCGTGTCGATACGACA -ACGGAATCTCGTGTCGATAGCTCA -ACGGAATCTCGTGTCGATTCACGT -ACGGAATCTCGTGTCGATCGTAGT -ACGGAATCTCGTGTCGATGTCAGT -ACGGAATCTCGTGTCGATGAAGGT -ACGGAATCTCGTGTCGATAACCGT -ACGGAATCTCGTGTCGATTTGTGC -ACGGAATCTCGTGTCGATCTAAGC -ACGGAATCTCGTGTCGATACTAGC -ACGGAATCTCGTGTCGATAGATGC -ACGGAATCTCGTGTCGATTGAAGG -ACGGAATCTCGTGTCGATCAATGG -ACGGAATCTCGTGTCGATATGAGG -ACGGAATCTCGTGTCGATAATGGG -ACGGAATCTCGTGTCGATTCCTGA -ACGGAATCTCGTGTCGATTAGCGA -ACGGAATCTCGTGTCGATCACAGA -ACGGAATCTCGTGTCGATGCAAGA -ACGGAATCTCGTGTCGATGGTTGA -ACGGAATCTCGTGTCGATTCCGAT -ACGGAATCTCGTGTCGATTGGCAT -ACGGAATCTCGTGTCGATCGAGAT -ACGGAATCTCGTGTCGATTACCAC -ACGGAATCTCGTGTCGATCAGAAC -ACGGAATCTCGTGTCGATGTCTAC -ACGGAATCTCGTGTCGATACGTAC -ACGGAATCTCGTGTCGATAGTGAC -ACGGAATCTCGTGTCGATCTGTAG -ACGGAATCTCGTGTCGATCCTAAG -ACGGAATCTCGTGTCGATGTTCAG -ACGGAATCTCGTGTCGATGCATAG -ACGGAATCTCGTGTCGATGACAAG -ACGGAATCTCGTGTCGATAAGCAG -ACGGAATCTCGTGTCGATCGTCAA -ACGGAATCTCGTGTCGATGCTGAA -ACGGAATCTCGTGTCGATAGTACG -ACGGAATCTCGTGTCGATATCCGA -ACGGAATCTCGTGTCGATATGGGA -ACGGAATCTCGTGTCGATGTGCAA -ACGGAATCTCGTGTCGATGAGGAA -ACGGAATCTCGTGTCGATCAGGTA -ACGGAATCTCGTGTCGATGACTCT -ACGGAATCTCGTGTCGATAGTCCT -ACGGAATCTCGTGTCGATTAAGCC -ACGGAATCTCGTGTCGATATAGCC -ACGGAATCTCGTGTCGATTAACCG -ACGGAATCTCGTGTCGATATGCCA -ACGGAATCTCGTGTCACAGGAAAC -ACGGAATCTCGTGTCACAAACACC -ACGGAATCTCGTGTCACAATCGAG -ACGGAATCTCGTGTCACACTCCTT -ACGGAATCTCGTGTCACACCTGTT -ACGGAATCTCGTGTCACACGGTTT -ACGGAATCTCGTGTCACAGTGGTT -ACGGAATCTCGTGTCACAGCCTTT -ACGGAATCTCGTGTCACAGGTCTT -ACGGAATCTCGTGTCACAACGCTT -ACGGAATCTCGTGTCACAAGCGTT -ACGGAATCTCGTGTCACATTCGTC -ACGGAATCTCGTGTCACATCTCTC -ACGGAATCTCGTGTCACATGGATC -ACGGAATCTCGTGTCACACACTTC -ACGGAATCTCGTGTCACAGTACTC -ACGGAATCTCGTGTCACAGATGTC -ACGGAATCTCGTGTCACAACAGTC -ACGGAATCTCGTGTCACATTGCTG -ACGGAATCTCGTGTCACATCCATG -ACGGAATCTCGTGTCACATGTGTG -ACGGAATCTCGTGTCACACTAGTG -ACGGAATCTCGTGTCACACATCTG -ACGGAATCTCGTGTCACAGAGTTG -ACGGAATCTCGTGTCACAAGACTG -ACGGAATCTCGTGTCACATCGGTA -ACGGAATCTCGTGTCACATGCCTA -ACGGAATCTCGTGTCACACCACTA -ACGGAATCTCGTGTCACAGGAGTA -ACGGAATCTCGTGTCACATCGTCT -ACGGAATCTCGTGTCACATGCACT -ACGGAATCTCGTGTCACACTGACT -ACGGAATCTCGTGTCACACAACCT -ACGGAATCTCGTGTCACAGCTACT -ACGGAATCTCGTGTCACAGGATCT -ACGGAATCTCGTGTCACAAAGGCT -ACGGAATCTCGTGTCACATCAACC -ACGGAATCTCGTGTCACATGTTCC -ACGGAATCTCGTGTCACAATTCCC -ACGGAATCTCGTGTCACATTCTCG -ACGGAATCTCGTGTCACATAGACG -ACGGAATCTCGTGTCACAGTAACG -ACGGAATCTCGTGTCACAACTTCG -ACGGAATCTCGTGTCACATACGCA -ACGGAATCTCGTGTCACACTTGCA -ACGGAATCTCGTGTCACACGAACA -ACGGAATCTCGTGTCACACAGTCA -ACGGAATCTCGTGTCACAGATCCA -ACGGAATCTCGTGTCACAACGACA -ACGGAATCTCGTGTCACAAGCTCA -ACGGAATCTCGTGTCACATCACGT -ACGGAATCTCGTGTCACACGTAGT -ACGGAATCTCGTGTCACAGTCAGT -ACGGAATCTCGTGTCACAGAAGGT -ACGGAATCTCGTGTCACAAACCGT -ACGGAATCTCGTGTCACATTGTGC -ACGGAATCTCGTGTCACACTAAGC -ACGGAATCTCGTGTCACAACTAGC -ACGGAATCTCGTGTCACAAGATGC -ACGGAATCTCGTGTCACATGAAGG -ACGGAATCTCGTGTCACACAATGG -ACGGAATCTCGTGTCACAATGAGG -ACGGAATCTCGTGTCACAAATGGG -ACGGAATCTCGTGTCACATCCTGA -ACGGAATCTCGTGTCACATAGCGA -ACGGAATCTCGTGTCACACACAGA -ACGGAATCTCGTGTCACAGCAAGA -ACGGAATCTCGTGTCACAGGTTGA -ACGGAATCTCGTGTCACATCCGAT -ACGGAATCTCGTGTCACATGGCAT -ACGGAATCTCGTGTCACACGAGAT -ACGGAATCTCGTGTCACATACCAC -ACGGAATCTCGTGTCACACAGAAC -ACGGAATCTCGTGTCACAGTCTAC -ACGGAATCTCGTGTCACAACGTAC -ACGGAATCTCGTGTCACAAGTGAC -ACGGAATCTCGTGTCACACTGTAG -ACGGAATCTCGTGTCACACCTAAG -ACGGAATCTCGTGTCACAGTTCAG -ACGGAATCTCGTGTCACAGCATAG -ACGGAATCTCGTGTCACAGACAAG -ACGGAATCTCGTGTCACAAAGCAG -ACGGAATCTCGTGTCACACGTCAA -ACGGAATCTCGTGTCACAGCTGAA -ACGGAATCTCGTGTCACAAGTACG -ACGGAATCTCGTGTCACAATCCGA -ACGGAATCTCGTGTCACAATGGGA -ACGGAATCTCGTGTCACAGTGCAA -ACGGAATCTCGTGTCACAGAGGAA -ACGGAATCTCGTGTCACACAGGTA -ACGGAATCTCGTGTCACAGACTCT -ACGGAATCTCGTGTCACAAGTCCT -ACGGAATCTCGTGTCACATAAGCC -ACGGAATCTCGTGTCACAATAGCC -ACGGAATCTCGTGTCACATAACCG -ACGGAATCTCGTGTCACAATGCCA -ACGGAATCTCGTCTGTTGGGAAAC -ACGGAATCTCGTCTGTTGAACACC -ACGGAATCTCGTCTGTTGATCGAG -ACGGAATCTCGTCTGTTGCTCCTT -ACGGAATCTCGTCTGTTGCCTGTT -ACGGAATCTCGTCTGTTGCGGTTT -ACGGAATCTCGTCTGTTGGTGGTT -ACGGAATCTCGTCTGTTGGCCTTT -ACGGAATCTCGTCTGTTGGGTCTT -ACGGAATCTCGTCTGTTGACGCTT -ACGGAATCTCGTCTGTTGAGCGTT -ACGGAATCTCGTCTGTTGTTCGTC -ACGGAATCTCGTCTGTTGTCTCTC -ACGGAATCTCGTCTGTTGTGGATC -ACGGAATCTCGTCTGTTGCACTTC -ACGGAATCTCGTCTGTTGGTACTC -ACGGAATCTCGTCTGTTGGATGTC -ACGGAATCTCGTCTGTTGACAGTC -ACGGAATCTCGTCTGTTGTTGCTG -ACGGAATCTCGTCTGTTGTCCATG -ACGGAATCTCGTCTGTTGTGTGTG -ACGGAATCTCGTCTGTTGCTAGTG -ACGGAATCTCGTCTGTTGCATCTG -ACGGAATCTCGTCTGTTGGAGTTG -ACGGAATCTCGTCTGTTGAGACTG -ACGGAATCTCGTCTGTTGTCGGTA -ACGGAATCTCGTCTGTTGTGCCTA -ACGGAATCTCGTCTGTTGCCACTA -ACGGAATCTCGTCTGTTGGGAGTA -ACGGAATCTCGTCTGTTGTCGTCT -ACGGAATCTCGTCTGTTGTGCACT -ACGGAATCTCGTCTGTTGCTGACT -ACGGAATCTCGTCTGTTGCAACCT -ACGGAATCTCGTCTGTTGGCTACT -ACGGAATCTCGTCTGTTGGGATCT -ACGGAATCTCGTCTGTTGAAGGCT -ACGGAATCTCGTCTGTTGTCAACC -ACGGAATCTCGTCTGTTGTGTTCC -ACGGAATCTCGTCTGTTGATTCCC -ACGGAATCTCGTCTGTTGTTCTCG -ACGGAATCTCGTCTGTTGTAGACG -ACGGAATCTCGTCTGTTGGTAACG -ACGGAATCTCGTCTGTTGACTTCG -ACGGAATCTCGTCTGTTGTACGCA -ACGGAATCTCGTCTGTTGCTTGCA -ACGGAATCTCGTCTGTTGCGAACA -ACGGAATCTCGTCTGTTGCAGTCA -ACGGAATCTCGTCTGTTGGATCCA -ACGGAATCTCGTCTGTTGACGACA -ACGGAATCTCGTCTGTTGAGCTCA -ACGGAATCTCGTCTGTTGTCACGT -ACGGAATCTCGTCTGTTGCGTAGT -ACGGAATCTCGTCTGTTGGTCAGT -ACGGAATCTCGTCTGTTGGAAGGT -ACGGAATCTCGTCTGTTGAACCGT -ACGGAATCTCGTCTGTTGTTGTGC -ACGGAATCTCGTCTGTTGCTAAGC -ACGGAATCTCGTCTGTTGACTAGC -ACGGAATCTCGTCTGTTGAGATGC -ACGGAATCTCGTCTGTTGTGAAGG -ACGGAATCTCGTCTGTTGCAATGG -ACGGAATCTCGTCTGTTGATGAGG -ACGGAATCTCGTCTGTTGAATGGG -ACGGAATCTCGTCTGTTGTCCTGA -ACGGAATCTCGTCTGTTGTAGCGA -ACGGAATCTCGTCTGTTGCACAGA -ACGGAATCTCGTCTGTTGGCAAGA -ACGGAATCTCGTCTGTTGGGTTGA -ACGGAATCTCGTCTGTTGTCCGAT -ACGGAATCTCGTCTGTTGTGGCAT -ACGGAATCTCGTCTGTTGCGAGAT -ACGGAATCTCGTCTGTTGTACCAC -ACGGAATCTCGTCTGTTGCAGAAC -ACGGAATCTCGTCTGTTGGTCTAC -ACGGAATCTCGTCTGTTGACGTAC -ACGGAATCTCGTCTGTTGAGTGAC -ACGGAATCTCGTCTGTTGCTGTAG -ACGGAATCTCGTCTGTTGCCTAAG -ACGGAATCTCGTCTGTTGGTTCAG -ACGGAATCTCGTCTGTTGGCATAG -ACGGAATCTCGTCTGTTGGACAAG -ACGGAATCTCGTCTGTTGAAGCAG -ACGGAATCTCGTCTGTTGCGTCAA -ACGGAATCTCGTCTGTTGGCTGAA -ACGGAATCTCGTCTGTTGAGTACG -ACGGAATCTCGTCTGTTGATCCGA -ACGGAATCTCGTCTGTTGATGGGA -ACGGAATCTCGTCTGTTGGTGCAA -ACGGAATCTCGTCTGTTGGAGGAA -ACGGAATCTCGTCTGTTGCAGGTA -ACGGAATCTCGTCTGTTGGACTCT -ACGGAATCTCGTCTGTTGAGTCCT -ACGGAATCTCGTCTGTTGTAAGCC -ACGGAATCTCGTCTGTTGATAGCC -ACGGAATCTCGTCTGTTGTAACCG -ACGGAATCTCGTCTGTTGATGCCA -ACGGAATCTCGTATGTCCGGAAAC -ACGGAATCTCGTATGTCCAACACC -ACGGAATCTCGTATGTCCATCGAG -ACGGAATCTCGTATGTCCCTCCTT -ACGGAATCTCGTATGTCCCCTGTT -ACGGAATCTCGTATGTCCCGGTTT -ACGGAATCTCGTATGTCCGTGGTT -ACGGAATCTCGTATGTCCGCCTTT -ACGGAATCTCGTATGTCCGGTCTT -ACGGAATCTCGTATGTCCACGCTT -ACGGAATCTCGTATGTCCAGCGTT -ACGGAATCTCGTATGTCCTTCGTC -ACGGAATCTCGTATGTCCTCTCTC -ACGGAATCTCGTATGTCCTGGATC -ACGGAATCTCGTATGTCCCACTTC -ACGGAATCTCGTATGTCCGTACTC -ACGGAATCTCGTATGTCCGATGTC -ACGGAATCTCGTATGTCCACAGTC -ACGGAATCTCGTATGTCCTTGCTG -ACGGAATCTCGTATGTCCTCCATG -ACGGAATCTCGTATGTCCTGTGTG -ACGGAATCTCGTATGTCCCTAGTG -ACGGAATCTCGTATGTCCCATCTG -ACGGAATCTCGTATGTCCGAGTTG -ACGGAATCTCGTATGTCCAGACTG -ACGGAATCTCGTATGTCCTCGGTA -ACGGAATCTCGTATGTCCTGCCTA -ACGGAATCTCGTATGTCCCCACTA -ACGGAATCTCGTATGTCCGGAGTA -ACGGAATCTCGTATGTCCTCGTCT -ACGGAATCTCGTATGTCCTGCACT -ACGGAATCTCGTATGTCCCTGACT -ACGGAATCTCGTATGTCCCAACCT -ACGGAATCTCGTATGTCCGCTACT -ACGGAATCTCGTATGTCCGGATCT -ACGGAATCTCGTATGTCCAAGGCT -ACGGAATCTCGTATGTCCTCAACC -ACGGAATCTCGTATGTCCTGTTCC -ACGGAATCTCGTATGTCCATTCCC -ACGGAATCTCGTATGTCCTTCTCG -ACGGAATCTCGTATGTCCTAGACG -ACGGAATCTCGTATGTCCGTAACG -ACGGAATCTCGTATGTCCACTTCG -ACGGAATCTCGTATGTCCTACGCA -ACGGAATCTCGTATGTCCCTTGCA -ACGGAATCTCGTATGTCCCGAACA -ACGGAATCTCGTATGTCCCAGTCA -ACGGAATCTCGTATGTCCGATCCA -ACGGAATCTCGTATGTCCACGACA -ACGGAATCTCGTATGTCCAGCTCA -ACGGAATCTCGTATGTCCTCACGT -ACGGAATCTCGTATGTCCCGTAGT -ACGGAATCTCGTATGTCCGTCAGT -ACGGAATCTCGTATGTCCGAAGGT -ACGGAATCTCGTATGTCCAACCGT -ACGGAATCTCGTATGTCCTTGTGC -ACGGAATCTCGTATGTCCCTAAGC -ACGGAATCTCGTATGTCCACTAGC -ACGGAATCTCGTATGTCCAGATGC -ACGGAATCTCGTATGTCCTGAAGG -ACGGAATCTCGTATGTCCCAATGG -ACGGAATCTCGTATGTCCATGAGG -ACGGAATCTCGTATGTCCAATGGG -ACGGAATCTCGTATGTCCTCCTGA -ACGGAATCTCGTATGTCCTAGCGA -ACGGAATCTCGTATGTCCCACAGA -ACGGAATCTCGTATGTCCGCAAGA -ACGGAATCTCGTATGTCCGGTTGA -ACGGAATCTCGTATGTCCTCCGAT -ACGGAATCTCGTATGTCCTGGCAT -ACGGAATCTCGTATGTCCCGAGAT -ACGGAATCTCGTATGTCCTACCAC -ACGGAATCTCGTATGTCCCAGAAC -ACGGAATCTCGTATGTCCGTCTAC -ACGGAATCTCGTATGTCCACGTAC -ACGGAATCTCGTATGTCCAGTGAC -ACGGAATCTCGTATGTCCCTGTAG -ACGGAATCTCGTATGTCCCCTAAG -ACGGAATCTCGTATGTCCGTTCAG -ACGGAATCTCGTATGTCCGCATAG -ACGGAATCTCGTATGTCCGACAAG -ACGGAATCTCGTATGTCCAAGCAG -ACGGAATCTCGTATGTCCCGTCAA -ACGGAATCTCGTATGTCCGCTGAA -ACGGAATCTCGTATGTCCAGTACG -ACGGAATCTCGTATGTCCATCCGA -ACGGAATCTCGTATGTCCATGGGA -ACGGAATCTCGTATGTCCGTGCAA -ACGGAATCTCGTATGTCCGAGGAA -ACGGAATCTCGTATGTCCCAGGTA -ACGGAATCTCGTATGTCCGACTCT -ACGGAATCTCGTATGTCCAGTCCT -ACGGAATCTCGTATGTCCTAAGCC -ACGGAATCTCGTATGTCCATAGCC -ACGGAATCTCGTATGTCCTAACCG -ACGGAATCTCGTATGTCCATGCCA -ACGGAATCTCGTGTGTGTGGAAAC -ACGGAATCTCGTGTGTGTAACACC -ACGGAATCTCGTGTGTGTATCGAG -ACGGAATCTCGTGTGTGTCTCCTT -ACGGAATCTCGTGTGTGTCCTGTT -ACGGAATCTCGTGTGTGTCGGTTT -ACGGAATCTCGTGTGTGTGTGGTT -ACGGAATCTCGTGTGTGTGCCTTT -ACGGAATCTCGTGTGTGTGGTCTT -ACGGAATCTCGTGTGTGTACGCTT -ACGGAATCTCGTGTGTGTAGCGTT -ACGGAATCTCGTGTGTGTTTCGTC -ACGGAATCTCGTGTGTGTTCTCTC -ACGGAATCTCGTGTGTGTTGGATC -ACGGAATCTCGTGTGTGTCACTTC -ACGGAATCTCGTGTGTGTGTACTC -ACGGAATCTCGTGTGTGTGATGTC -ACGGAATCTCGTGTGTGTACAGTC -ACGGAATCTCGTGTGTGTTTGCTG -ACGGAATCTCGTGTGTGTTCCATG -ACGGAATCTCGTGTGTGTTGTGTG -ACGGAATCTCGTGTGTGTCTAGTG -ACGGAATCTCGTGTGTGTCATCTG -ACGGAATCTCGTGTGTGTGAGTTG -ACGGAATCTCGTGTGTGTAGACTG -ACGGAATCTCGTGTGTGTTCGGTA -ACGGAATCTCGTGTGTGTTGCCTA -ACGGAATCTCGTGTGTGTCCACTA -ACGGAATCTCGTGTGTGTGGAGTA -ACGGAATCTCGTGTGTGTTCGTCT -ACGGAATCTCGTGTGTGTTGCACT -ACGGAATCTCGTGTGTGTCTGACT -ACGGAATCTCGTGTGTGTCAACCT -ACGGAATCTCGTGTGTGTGCTACT -ACGGAATCTCGTGTGTGTGGATCT -ACGGAATCTCGTGTGTGTAAGGCT -ACGGAATCTCGTGTGTGTTCAACC -ACGGAATCTCGTGTGTGTTGTTCC -ACGGAATCTCGTGTGTGTATTCCC -ACGGAATCTCGTGTGTGTTTCTCG -ACGGAATCTCGTGTGTGTTAGACG -ACGGAATCTCGTGTGTGTGTAACG -ACGGAATCTCGTGTGTGTACTTCG -ACGGAATCTCGTGTGTGTTACGCA -ACGGAATCTCGTGTGTGTCTTGCA -ACGGAATCTCGTGTGTGTCGAACA -ACGGAATCTCGTGTGTGTCAGTCA -ACGGAATCTCGTGTGTGTGATCCA -ACGGAATCTCGTGTGTGTACGACA -ACGGAATCTCGTGTGTGTAGCTCA -ACGGAATCTCGTGTGTGTTCACGT -ACGGAATCTCGTGTGTGTCGTAGT -ACGGAATCTCGTGTGTGTGTCAGT -ACGGAATCTCGTGTGTGTGAAGGT -ACGGAATCTCGTGTGTGTAACCGT -ACGGAATCTCGTGTGTGTTTGTGC -ACGGAATCTCGTGTGTGTCTAAGC -ACGGAATCTCGTGTGTGTACTAGC -ACGGAATCTCGTGTGTGTAGATGC -ACGGAATCTCGTGTGTGTTGAAGG -ACGGAATCTCGTGTGTGTCAATGG -ACGGAATCTCGTGTGTGTATGAGG -ACGGAATCTCGTGTGTGTAATGGG -ACGGAATCTCGTGTGTGTTCCTGA -ACGGAATCTCGTGTGTGTTAGCGA -ACGGAATCTCGTGTGTGTCACAGA -ACGGAATCTCGTGTGTGTGCAAGA -ACGGAATCTCGTGTGTGTGGTTGA -ACGGAATCTCGTGTGTGTTCCGAT -ACGGAATCTCGTGTGTGTTGGCAT -ACGGAATCTCGTGTGTGTCGAGAT -ACGGAATCTCGTGTGTGTTACCAC -ACGGAATCTCGTGTGTGTCAGAAC -ACGGAATCTCGTGTGTGTGTCTAC -ACGGAATCTCGTGTGTGTACGTAC -ACGGAATCTCGTGTGTGTAGTGAC -ACGGAATCTCGTGTGTGTCTGTAG -ACGGAATCTCGTGTGTGTCCTAAG -ACGGAATCTCGTGTGTGTGTTCAG -ACGGAATCTCGTGTGTGTGCATAG -ACGGAATCTCGTGTGTGTGACAAG -ACGGAATCTCGTGTGTGTAAGCAG -ACGGAATCTCGTGTGTGTCGTCAA -ACGGAATCTCGTGTGTGTGCTGAA -ACGGAATCTCGTGTGTGTAGTACG -ACGGAATCTCGTGTGTGTATCCGA -ACGGAATCTCGTGTGTGTATGGGA -ACGGAATCTCGTGTGTGTGTGCAA -ACGGAATCTCGTGTGTGTGAGGAA -ACGGAATCTCGTGTGTGTCAGGTA -ACGGAATCTCGTGTGTGTGACTCT -ACGGAATCTCGTGTGTGTAGTCCT -ACGGAATCTCGTGTGTGTTAAGCC -ACGGAATCTCGTGTGTGTATAGCC -ACGGAATCTCGTGTGTGTTAACCG -ACGGAATCTCGTGTGTGTATGCCA -ACGGAATCTCGTGTGCTAGGAAAC -ACGGAATCTCGTGTGCTAAACACC -ACGGAATCTCGTGTGCTAATCGAG -ACGGAATCTCGTGTGCTACTCCTT -ACGGAATCTCGTGTGCTACCTGTT -ACGGAATCTCGTGTGCTACGGTTT -ACGGAATCTCGTGTGCTAGTGGTT -ACGGAATCTCGTGTGCTAGCCTTT -ACGGAATCTCGTGTGCTAGGTCTT -ACGGAATCTCGTGTGCTAACGCTT -ACGGAATCTCGTGTGCTAAGCGTT -ACGGAATCTCGTGTGCTATTCGTC -ACGGAATCTCGTGTGCTATCTCTC -ACGGAATCTCGTGTGCTATGGATC -ACGGAATCTCGTGTGCTACACTTC -ACGGAATCTCGTGTGCTAGTACTC -ACGGAATCTCGTGTGCTAGATGTC -ACGGAATCTCGTGTGCTAACAGTC -ACGGAATCTCGTGTGCTATTGCTG -ACGGAATCTCGTGTGCTATCCATG -ACGGAATCTCGTGTGCTATGTGTG -ACGGAATCTCGTGTGCTACTAGTG -ACGGAATCTCGTGTGCTACATCTG -ACGGAATCTCGTGTGCTAGAGTTG -ACGGAATCTCGTGTGCTAAGACTG -ACGGAATCTCGTGTGCTATCGGTA -ACGGAATCTCGTGTGCTATGCCTA -ACGGAATCTCGTGTGCTACCACTA -ACGGAATCTCGTGTGCTAGGAGTA -ACGGAATCTCGTGTGCTATCGTCT -ACGGAATCTCGTGTGCTATGCACT -ACGGAATCTCGTGTGCTACTGACT -ACGGAATCTCGTGTGCTACAACCT -ACGGAATCTCGTGTGCTAGCTACT -ACGGAATCTCGTGTGCTAGGATCT -ACGGAATCTCGTGTGCTAAAGGCT -ACGGAATCTCGTGTGCTATCAACC -ACGGAATCTCGTGTGCTATGTTCC -ACGGAATCTCGTGTGCTAATTCCC -ACGGAATCTCGTGTGCTATTCTCG -ACGGAATCTCGTGTGCTATAGACG -ACGGAATCTCGTGTGCTAGTAACG -ACGGAATCTCGTGTGCTAACTTCG -ACGGAATCTCGTGTGCTATACGCA -ACGGAATCTCGTGTGCTACTTGCA -ACGGAATCTCGTGTGCTACGAACA -ACGGAATCTCGTGTGCTACAGTCA -ACGGAATCTCGTGTGCTAGATCCA -ACGGAATCTCGTGTGCTAACGACA -ACGGAATCTCGTGTGCTAAGCTCA -ACGGAATCTCGTGTGCTATCACGT -ACGGAATCTCGTGTGCTACGTAGT -ACGGAATCTCGTGTGCTAGTCAGT -ACGGAATCTCGTGTGCTAGAAGGT -ACGGAATCTCGTGTGCTAAACCGT -ACGGAATCTCGTGTGCTATTGTGC -ACGGAATCTCGTGTGCTACTAAGC -ACGGAATCTCGTGTGCTAACTAGC -ACGGAATCTCGTGTGCTAAGATGC -ACGGAATCTCGTGTGCTATGAAGG -ACGGAATCTCGTGTGCTACAATGG -ACGGAATCTCGTGTGCTAATGAGG -ACGGAATCTCGTGTGCTAAATGGG -ACGGAATCTCGTGTGCTATCCTGA -ACGGAATCTCGTGTGCTATAGCGA -ACGGAATCTCGTGTGCTACACAGA -ACGGAATCTCGTGTGCTAGCAAGA -ACGGAATCTCGTGTGCTAGGTTGA -ACGGAATCTCGTGTGCTATCCGAT -ACGGAATCTCGTGTGCTATGGCAT -ACGGAATCTCGTGTGCTACGAGAT -ACGGAATCTCGTGTGCTATACCAC -ACGGAATCTCGTGTGCTACAGAAC -ACGGAATCTCGTGTGCTAGTCTAC -ACGGAATCTCGTGTGCTAACGTAC -ACGGAATCTCGTGTGCTAAGTGAC -ACGGAATCTCGTGTGCTACTGTAG -ACGGAATCTCGTGTGCTACCTAAG -ACGGAATCTCGTGTGCTAGTTCAG -ACGGAATCTCGTGTGCTAGCATAG -ACGGAATCTCGTGTGCTAGACAAG -ACGGAATCTCGTGTGCTAAAGCAG -ACGGAATCTCGTGTGCTACGTCAA -ACGGAATCTCGTGTGCTAGCTGAA -ACGGAATCTCGTGTGCTAAGTACG -ACGGAATCTCGTGTGCTAATCCGA -ACGGAATCTCGTGTGCTAATGGGA -ACGGAATCTCGTGTGCTAGTGCAA -ACGGAATCTCGTGTGCTAGAGGAA -ACGGAATCTCGTGTGCTACAGGTA -ACGGAATCTCGTGTGCTAGACTCT -ACGGAATCTCGTGTGCTAAGTCCT -ACGGAATCTCGTGTGCTATAAGCC -ACGGAATCTCGTGTGCTAATAGCC -ACGGAATCTCGTGTGCTATAACCG -ACGGAATCTCGTGTGCTAATGCCA -ACGGAATCTCGTCTGCATGGAAAC -ACGGAATCTCGTCTGCATAACACC -ACGGAATCTCGTCTGCATATCGAG -ACGGAATCTCGTCTGCATCTCCTT -ACGGAATCTCGTCTGCATCCTGTT -ACGGAATCTCGTCTGCATCGGTTT -ACGGAATCTCGTCTGCATGTGGTT -ACGGAATCTCGTCTGCATGCCTTT -ACGGAATCTCGTCTGCATGGTCTT -ACGGAATCTCGTCTGCATACGCTT -ACGGAATCTCGTCTGCATAGCGTT -ACGGAATCTCGTCTGCATTTCGTC -ACGGAATCTCGTCTGCATTCTCTC -ACGGAATCTCGTCTGCATTGGATC -ACGGAATCTCGTCTGCATCACTTC -ACGGAATCTCGTCTGCATGTACTC -ACGGAATCTCGTCTGCATGATGTC -ACGGAATCTCGTCTGCATACAGTC -ACGGAATCTCGTCTGCATTTGCTG -ACGGAATCTCGTCTGCATTCCATG -ACGGAATCTCGTCTGCATTGTGTG -ACGGAATCTCGTCTGCATCTAGTG -ACGGAATCTCGTCTGCATCATCTG -ACGGAATCTCGTCTGCATGAGTTG -ACGGAATCTCGTCTGCATAGACTG -ACGGAATCTCGTCTGCATTCGGTA -ACGGAATCTCGTCTGCATTGCCTA -ACGGAATCTCGTCTGCATCCACTA -ACGGAATCTCGTCTGCATGGAGTA -ACGGAATCTCGTCTGCATTCGTCT -ACGGAATCTCGTCTGCATTGCACT -ACGGAATCTCGTCTGCATCTGACT -ACGGAATCTCGTCTGCATCAACCT -ACGGAATCTCGTCTGCATGCTACT -ACGGAATCTCGTCTGCATGGATCT -ACGGAATCTCGTCTGCATAAGGCT -ACGGAATCTCGTCTGCATTCAACC -ACGGAATCTCGTCTGCATTGTTCC -ACGGAATCTCGTCTGCATATTCCC -ACGGAATCTCGTCTGCATTTCTCG -ACGGAATCTCGTCTGCATTAGACG -ACGGAATCTCGTCTGCATGTAACG -ACGGAATCTCGTCTGCATACTTCG -ACGGAATCTCGTCTGCATTACGCA -ACGGAATCTCGTCTGCATCTTGCA -ACGGAATCTCGTCTGCATCGAACA -ACGGAATCTCGTCTGCATCAGTCA -ACGGAATCTCGTCTGCATGATCCA -ACGGAATCTCGTCTGCATACGACA -ACGGAATCTCGTCTGCATAGCTCA -ACGGAATCTCGTCTGCATTCACGT -ACGGAATCTCGTCTGCATCGTAGT -ACGGAATCTCGTCTGCATGTCAGT -ACGGAATCTCGTCTGCATGAAGGT -ACGGAATCTCGTCTGCATAACCGT -ACGGAATCTCGTCTGCATTTGTGC -ACGGAATCTCGTCTGCATCTAAGC -ACGGAATCTCGTCTGCATACTAGC -ACGGAATCTCGTCTGCATAGATGC -ACGGAATCTCGTCTGCATTGAAGG -ACGGAATCTCGTCTGCATCAATGG -ACGGAATCTCGTCTGCATATGAGG -ACGGAATCTCGTCTGCATAATGGG -ACGGAATCTCGTCTGCATTCCTGA -ACGGAATCTCGTCTGCATTAGCGA -ACGGAATCTCGTCTGCATCACAGA -ACGGAATCTCGTCTGCATGCAAGA -ACGGAATCTCGTCTGCATGGTTGA -ACGGAATCTCGTCTGCATTCCGAT -ACGGAATCTCGTCTGCATTGGCAT -ACGGAATCTCGTCTGCATCGAGAT -ACGGAATCTCGTCTGCATTACCAC -ACGGAATCTCGTCTGCATCAGAAC -ACGGAATCTCGTCTGCATGTCTAC -ACGGAATCTCGTCTGCATACGTAC -ACGGAATCTCGTCTGCATAGTGAC -ACGGAATCTCGTCTGCATCTGTAG -ACGGAATCTCGTCTGCATCCTAAG -ACGGAATCTCGTCTGCATGTTCAG -ACGGAATCTCGTCTGCATGCATAG -ACGGAATCTCGTCTGCATGACAAG -ACGGAATCTCGTCTGCATAAGCAG -ACGGAATCTCGTCTGCATCGTCAA -ACGGAATCTCGTCTGCATGCTGAA -ACGGAATCTCGTCTGCATAGTACG -ACGGAATCTCGTCTGCATATCCGA -ACGGAATCTCGTCTGCATATGGGA -ACGGAATCTCGTCTGCATGTGCAA -ACGGAATCTCGTCTGCATGAGGAA -ACGGAATCTCGTCTGCATCAGGTA -ACGGAATCTCGTCTGCATGACTCT -ACGGAATCTCGTCTGCATAGTCCT -ACGGAATCTCGTCTGCATTAAGCC -ACGGAATCTCGTCTGCATATAGCC -ACGGAATCTCGTCTGCATTAACCG -ACGGAATCTCGTCTGCATATGCCA -ACGGAATCTCGTTTGGAGGGAAAC -ACGGAATCTCGTTTGGAGAACACC -ACGGAATCTCGTTTGGAGATCGAG -ACGGAATCTCGTTTGGAGCTCCTT -ACGGAATCTCGTTTGGAGCCTGTT -ACGGAATCTCGTTTGGAGCGGTTT -ACGGAATCTCGTTTGGAGGTGGTT -ACGGAATCTCGTTTGGAGGCCTTT -ACGGAATCTCGTTTGGAGGGTCTT -ACGGAATCTCGTTTGGAGACGCTT -ACGGAATCTCGTTTGGAGAGCGTT -ACGGAATCTCGTTTGGAGTTCGTC -ACGGAATCTCGTTTGGAGTCTCTC -ACGGAATCTCGTTTGGAGTGGATC -ACGGAATCTCGTTTGGAGCACTTC -ACGGAATCTCGTTTGGAGGTACTC -ACGGAATCTCGTTTGGAGGATGTC -ACGGAATCTCGTTTGGAGACAGTC -ACGGAATCTCGTTTGGAGTTGCTG -ACGGAATCTCGTTTGGAGTCCATG -ACGGAATCTCGTTTGGAGTGTGTG -ACGGAATCTCGTTTGGAGCTAGTG -ACGGAATCTCGTTTGGAGCATCTG -ACGGAATCTCGTTTGGAGGAGTTG -ACGGAATCTCGTTTGGAGAGACTG -ACGGAATCTCGTTTGGAGTCGGTA -ACGGAATCTCGTTTGGAGTGCCTA -ACGGAATCTCGTTTGGAGCCACTA -ACGGAATCTCGTTTGGAGGGAGTA -ACGGAATCTCGTTTGGAGTCGTCT -ACGGAATCTCGTTTGGAGTGCACT -ACGGAATCTCGTTTGGAGCTGACT -ACGGAATCTCGTTTGGAGCAACCT -ACGGAATCTCGTTTGGAGGCTACT -ACGGAATCTCGTTTGGAGGGATCT -ACGGAATCTCGTTTGGAGAAGGCT -ACGGAATCTCGTTTGGAGTCAACC -ACGGAATCTCGTTTGGAGTGTTCC -ACGGAATCTCGTTTGGAGATTCCC -ACGGAATCTCGTTTGGAGTTCTCG -ACGGAATCTCGTTTGGAGTAGACG -ACGGAATCTCGTTTGGAGGTAACG -ACGGAATCTCGTTTGGAGACTTCG -ACGGAATCTCGTTTGGAGTACGCA -ACGGAATCTCGTTTGGAGCTTGCA -ACGGAATCTCGTTTGGAGCGAACA -ACGGAATCTCGTTTGGAGCAGTCA -ACGGAATCTCGTTTGGAGGATCCA -ACGGAATCTCGTTTGGAGACGACA -ACGGAATCTCGTTTGGAGAGCTCA -ACGGAATCTCGTTTGGAGTCACGT -ACGGAATCTCGTTTGGAGCGTAGT -ACGGAATCTCGTTTGGAGGTCAGT -ACGGAATCTCGTTTGGAGGAAGGT -ACGGAATCTCGTTTGGAGAACCGT -ACGGAATCTCGTTTGGAGTTGTGC -ACGGAATCTCGTTTGGAGCTAAGC -ACGGAATCTCGTTTGGAGACTAGC -ACGGAATCTCGTTTGGAGAGATGC -ACGGAATCTCGTTTGGAGTGAAGG -ACGGAATCTCGTTTGGAGCAATGG -ACGGAATCTCGTTTGGAGATGAGG -ACGGAATCTCGTTTGGAGAATGGG -ACGGAATCTCGTTTGGAGTCCTGA -ACGGAATCTCGTTTGGAGTAGCGA -ACGGAATCTCGTTTGGAGCACAGA -ACGGAATCTCGTTTGGAGGCAAGA -ACGGAATCTCGTTTGGAGGGTTGA -ACGGAATCTCGTTTGGAGTCCGAT -ACGGAATCTCGTTTGGAGTGGCAT -ACGGAATCTCGTTTGGAGCGAGAT -ACGGAATCTCGTTTGGAGTACCAC -ACGGAATCTCGTTTGGAGCAGAAC -ACGGAATCTCGTTTGGAGGTCTAC -ACGGAATCTCGTTTGGAGACGTAC -ACGGAATCTCGTTTGGAGAGTGAC -ACGGAATCTCGTTTGGAGCTGTAG -ACGGAATCTCGTTTGGAGCCTAAG -ACGGAATCTCGTTTGGAGGTTCAG -ACGGAATCTCGTTTGGAGGCATAG -ACGGAATCTCGTTTGGAGGACAAG -ACGGAATCTCGTTTGGAGAAGCAG -ACGGAATCTCGTTTGGAGCGTCAA -ACGGAATCTCGTTTGGAGGCTGAA -ACGGAATCTCGTTTGGAGAGTACG -ACGGAATCTCGTTTGGAGATCCGA -ACGGAATCTCGTTTGGAGATGGGA -ACGGAATCTCGTTTGGAGGTGCAA -ACGGAATCTCGTTTGGAGGAGGAA -ACGGAATCTCGTTTGGAGCAGGTA -ACGGAATCTCGTTTGGAGGACTCT -ACGGAATCTCGTTTGGAGAGTCCT -ACGGAATCTCGTTTGGAGTAAGCC -ACGGAATCTCGTTTGGAGATAGCC -ACGGAATCTCGTTTGGAGTAACCG -ACGGAATCTCGTTTGGAGATGCCA -ACGGAATCTCGTCTGAGAGGAAAC -ACGGAATCTCGTCTGAGAAACACC -ACGGAATCTCGTCTGAGAATCGAG -ACGGAATCTCGTCTGAGACTCCTT -ACGGAATCTCGTCTGAGACCTGTT -ACGGAATCTCGTCTGAGACGGTTT -ACGGAATCTCGTCTGAGAGTGGTT -ACGGAATCTCGTCTGAGAGCCTTT -ACGGAATCTCGTCTGAGAGGTCTT -ACGGAATCTCGTCTGAGAACGCTT -ACGGAATCTCGTCTGAGAAGCGTT -ACGGAATCTCGTCTGAGATTCGTC -ACGGAATCTCGTCTGAGATCTCTC -ACGGAATCTCGTCTGAGATGGATC -ACGGAATCTCGTCTGAGACACTTC -ACGGAATCTCGTCTGAGAGTACTC -ACGGAATCTCGTCTGAGAGATGTC -ACGGAATCTCGTCTGAGAACAGTC -ACGGAATCTCGTCTGAGATTGCTG -ACGGAATCTCGTCTGAGATCCATG -ACGGAATCTCGTCTGAGATGTGTG -ACGGAATCTCGTCTGAGACTAGTG -ACGGAATCTCGTCTGAGACATCTG -ACGGAATCTCGTCTGAGAGAGTTG -ACGGAATCTCGTCTGAGAAGACTG -ACGGAATCTCGTCTGAGATCGGTA -ACGGAATCTCGTCTGAGATGCCTA -ACGGAATCTCGTCTGAGACCACTA -ACGGAATCTCGTCTGAGAGGAGTA -ACGGAATCTCGTCTGAGATCGTCT -ACGGAATCTCGTCTGAGATGCACT -ACGGAATCTCGTCTGAGACTGACT -ACGGAATCTCGTCTGAGACAACCT -ACGGAATCTCGTCTGAGAGCTACT -ACGGAATCTCGTCTGAGAGGATCT -ACGGAATCTCGTCTGAGAAAGGCT -ACGGAATCTCGTCTGAGATCAACC -ACGGAATCTCGTCTGAGATGTTCC -ACGGAATCTCGTCTGAGAATTCCC -ACGGAATCTCGTCTGAGATTCTCG -ACGGAATCTCGTCTGAGATAGACG -ACGGAATCTCGTCTGAGAGTAACG -ACGGAATCTCGTCTGAGAACTTCG -ACGGAATCTCGTCTGAGATACGCA -ACGGAATCTCGTCTGAGACTTGCA -ACGGAATCTCGTCTGAGACGAACA -ACGGAATCTCGTCTGAGACAGTCA -ACGGAATCTCGTCTGAGAGATCCA -ACGGAATCTCGTCTGAGAACGACA -ACGGAATCTCGTCTGAGAAGCTCA -ACGGAATCTCGTCTGAGATCACGT -ACGGAATCTCGTCTGAGACGTAGT -ACGGAATCTCGTCTGAGAGTCAGT -ACGGAATCTCGTCTGAGAGAAGGT -ACGGAATCTCGTCTGAGAAACCGT -ACGGAATCTCGTCTGAGATTGTGC -ACGGAATCTCGTCTGAGACTAAGC -ACGGAATCTCGTCTGAGAACTAGC -ACGGAATCTCGTCTGAGAAGATGC -ACGGAATCTCGTCTGAGATGAAGG -ACGGAATCTCGTCTGAGACAATGG -ACGGAATCTCGTCTGAGAATGAGG -ACGGAATCTCGTCTGAGAAATGGG -ACGGAATCTCGTCTGAGATCCTGA -ACGGAATCTCGTCTGAGATAGCGA -ACGGAATCTCGTCTGAGACACAGA -ACGGAATCTCGTCTGAGAGCAAGA -ACGGAATCTCGTCTGAGAGGTTGA -ACGGAATCTCGTCTGAGATCCGAT -ACGGAATCTCGTCTGAGATGGCAT -ACGGAATCTCGTCTGAGACGAGAT -ACGGAATCTCGTCTGAGATACCAC -ACGGAATCTCGTCTGAGACAGAAC -ACGGAATCTCGTCTGAGAGTCTAC -ACGGAATCTCGTCTGAGAACGTAC -ACGGAATCTCGTCTGAGAAGTGAC -ACGGAATCTCGTCTGAGACTGTAG -ACGGAATCTCGTCTGAGACCTAAG -ACGGAATCTCGTCTGAGAGTTCAG -ACGGAATCTCGTCTGAGAGCATAG -ACGGAATCTCGTCTGAGAGACAAG -ACGGAATCTCGTCTGAGAAAGCAG -ACGGAATCTCGTCTGAGACGTCAA -ACGGAATCTCGTCTGAGAGCTGAA -ACGGAATCTCGTCTGAGAAGTACG -ACGGAATCTCGTCTGAGAATCCGA -ACGGAATCTCGTCTGAGAATGGGA -ACGGAATCTCGTCTGAGAGTGCAA -ACGGAATCTCGTCTGAGAGAGGAA -ACGGAATCTCGTCTGAGACAGGTA -ACGGAATCTCGTCTGAGAGACTCT -ACGGAATCTCGTCTGAGAAGTCCT -ACGGAATCTCGTCTGAGATAAGCC -ACGGAATCTCGTCTGAGAATAGCC -ACGGAATCTCGTCTGAGATAACCG -ACGGAATCTCGTCTGAGAATGCCA -ACGGAATCTCGTGTATCGGGAAAC -ACGGAATCTCGTGTATCGAACACC -ACGGAATCTCGTGTATCGATCGAG -ACGGAATCTCGTGTATCGCTCCTT -ACGGAATCTCGTGTATCGCCTGTT -ACGGAATCTCGTGTATCGCGGTTT -ACGGAATCTCGTGTATCGGTGGTT -ACGGAATCTCGTGTATCGGCCTTT -ACGGAATCTCGTGTATCGGGTCTT -ACGGAATCTCGTGTATCGACGCTT -ACGGAATCTCGTGTATCGAGCGTT -ACGGAATCTCGTGTATCGTTCGTC -ACGGAATCTCGTGTATCGTCTCTC -ACGGAATCTCGTGTATCGTGGATC -ACGGAATCTCGTGTATCGCACTTC -ACGGAATCTCGTGTATCGGTACTC -ACGGAATCTCGTGTATCGGATGTC -ACGGAATCTCGTGTATCGACAGTC -ACGGAATCTCGTGTATCGTTGCTG -ACGGAATCTCGTGTATCGTCCATG -ACGGAATCTCGTGTATCGTGTGTG -ACGGAATCTCGTGTATCGCTAGTG -ACGGAATCTCGTGTATCGCATCTG -ACGGAATCTCGTGTATCGGAGTTG -ACGGAATCTCGTGTATCGAGACTG -ACGGAATCTCGTGTATCGTCGGTA -ACGGAATCTCGTGTATCGTGCCTA -ACGGAATCTCGTGTATCGCCACTA -ACGGAATCTCGTGTATCGGGAGTA -ACGGAATCTCGTGTATCGTCGTCT -ACGGAATCTCGTGTATCGTGCACT -ACGGAATCTCGTGTATCGCTGACT -ACGGAATCTCGTGTATCGCAACCT -ACGGAATCTCGTGTATCGGCTACT -ACGGAATCTCGTGTATCGGGATCT -ACGGAATCTCGTGTATCGAAGGCT -ACGGAATCTCGTGTATCGTCAACC -ACGGAATCTCGTGTATCGTGTTCC -ACGGAATCTCGTGTATCGATTCCC -ACGGAATCTCGTGTATCGTTCTCG -ACGGAATCTCGTGTATCGTAGACG -ACGGAATCTCGTGTATCGGTAACG -ACGGAATCTCGTGTATCGACTTCG -ACGGAATCTCGTGTATCGTACGCA -ACGGAATCTCGTGTATCGCTTGCA -ACGGAATCTCGTGTATCGCGAACA -ACGGAATCTCGTGTATCGCAGTCA -ACGGAATCTCGTGTATCGGATCCA -ACGGAATCTCGTGTATCGACGACA -ACGGAATCTCGTGTATCGAGCTCA -ACGGAATCTCGTGTATCGTCACGT -ACGGAATCTCGTGTATCGCGTAGT -ACGGAATCTCGTGTATCGGTCAGT -ACGGAATCTCGTGTATCGGAAGGT -ACGGAATCTCGTGTATCGAACCGT -ACGGAATCTCGTGTATCGTTGTGC -ACGGAATCTCGTGTATCGCTAAGC -ACGGAATCTCGTGTATCGACTAGC -ACGGAATCTCGTGTATCGAGATGC -ACGGAATCTCGTGTATCGTGAAGG -ACGGAATCTCGTGTATCGCAATGG -ACGGAATCTCGTGTATCGATGAGG -ACGGAATCTCGTGTATCGAATGGG -ACGGAATCTCGTGTATCGTCCTGA -ACGGAATCTCGTGTATCGTAGCGA -ACGGAATCTCGTGTATCGCACAGA -ACGGAATCTCGTGTATCGGCAAGA -ACGGAATCTCGTGTATCGGGTTGA -ACGGAATCTCGTGTATCGTCCGAT -ACGGAATCTCGTGTATCGTGGCAT -ACGGAATCTCGTGTATCGCGAGAT -ACGGAATCTCGTGTATCGTACCAC -ACGGAATCTCGTGTATCGCAGAAC -ACGGAATCTCGTGTATCGGTCTAC -ACGGAATCTCGTGTATCGACGTAC -ACGGAATCTCGTGTATCGAGTGAC -ACGGAATCTCGTGTATCGCTGTAG -ACGGAATCTCGTGTATCGCCTAAG -ACGGAATCTCGTGTATCGGTTCAG -ACGGAATCTCGTGTATCGGCATAG -ACGGAATCTCGTGTATCGGACAAG -ACGGAATCTCGTGTATCGAAGCAG -ACGGAATCTCGTGTATCGCGTCAA -ACGGAATCTCGTGTATCGGCTGAA -ACGGAATCTCGTGTATCGAGTACG -ACGGAATCTCGTGTATCGATCCGA -ACGGAATCTCGTGTATCGATGGGA -ACGGAATCTCGTGTATCGGTGCAA -ACGGAATCTCGTGTATCGGAGGAA -ACGGAATCTCGTGTATCGCAGGTA -ACGGAATCTCGTGTATCGGACTCT -ACGGAATCTCGTGTATCGAGTCCT -ACGGAATCTCGTGTATCGTAAGCC -ACGGAATCTCGTGTATCGATAGCC -ACGGAATCTCGTGTATCGTAACCG -ACGGAATCTCGTGTATCGATGCCA -ACGGAATCTCGTCTATGCGGAAAC -ACGGAATCTCGTCTATGCAACACC -ACGGAATCTCGTCTATGCATCGAG -ACGGAATCTCGTCTATGCCTCCTT -ACGGAATCTCGTCTATGCCCTGTT -ACGGAATCTCGTCTATGCCGGTTT -ACGGAATCTCGTCTATGCGTGGTT -ACGGAATCTCGTCTATGCGCCTTT -ACGGAATCTCGTCTATGCGGTCTT -ACGGAATCTCGTCTATGCACGCTT -ACGGAATCTCGTCTATGCAGCGTT -ACGGAATCTCGTCTATGCTTCGTC -ACGGAATCTCGTCTATGCTCTCTC -ACGGAATCTCGTCTATGCTGGATC -ACGGAATCTCGTCTATGCCACTTC -ACGGAATCTCGTCTATGCGTACTC -ACGGAATCTCGTCTATGCGATGTC -ACGGAATCTCGTCTATGCACAGTC -ACGGAATCTCGTCTATGCTTGCTG -ACGGAATCTCGTCTATGCTCCATG -ACGGAATCTCGTCTATGCTGTGTG -ACGGAATCTCGTCTATGCCTAGTG -ACGGAATCTCGTCTATGCCATCTG -ACGGAATCTCGTCTATGCGAGTTG -ACGGAATCTCGTCTATGCAGACTG -ACGGAATCTCGTCTATGCTCGGTA -ACGGAATCTCGTCTATGCTGCCTA -ACGGAATCTCGTCTATGCCCACTA -ACGGAATCTCGTCTATGCGGAGTA -ACGGAATCTCGTCTATGCTCGTCT -ACGGAATCTCGTCTATGCTGCACT -ACGGAATCTCGTCTATGCCTGACT -ACGGAATCTCGTCTATGCCAACCT -ACGGAATCTCGTCTATGCGCTACT -ACGGAATCTCGTCTATGCGGATCT -ACGGAATCTCGTCTATGCAAGGCT -ACGGAATCTCGTCTATGCTCAACC -ACGGAATCTCGTCTATGCTGTTCC -ACGGAATCTCGTCTATGCATTCCC -ACGGAATCTCGTCTATGCTTCTCG -ACGGAATCTCGTCTATGCTAGACG -ACGGAATCTCGTCTATGCGTAACG -ACGGAATCTCGTCTATGCACTTCG -ACGGAATCTCGTCTATGCTACGCA -ACGGAATCTCGTCTATGCCTTGCA -ACGGAATCTCGTCTATGCCGAACA -ACGGAATCTCGTCTATGCCAGTCA -ACGGAATCTCGTCTATGCGATCCA -ACGGAATCTCGTCTATGCACGACA -ACGGAATCTCGTCTATGCAGCTCA -ACGGAATCTCGTCTATGCTCACGT -ACGGAATCTCGTCTATGCCGTAGT -ACGGAATCTCGTCTATGCGTCAGT -ACGGAATCTCGTCTATGCGAAGGT -ACGGAATCTCGTCTATGCAACCGT -ACGGAATCTCGTCTATGCTTGTGC -ACGGAATCTCGTCTATGCCTAAGC -ACGGAATCTCGTCTATGCACTAGC -ACGGAATCTCGTCTATGCAGATGC -ACGGAATCTCGTCTATGCTGAAGG -ACGGAATCTCGTCTATGCCAATGG -ACGGAATCTCGTCTATGCATGAGG -ACGGAATCTCGTCTATGCAATGGG -ACGGAATCTCGTCTATGCTCCTGA -ACGGAATCTCGTCTATGCTAGCGA -ACGGAATCTCGTCTATGCCACAGA -ACGGAATCTCGTCTATGCGCAAGA -ACGGAATCTCGTCTATGCGGTTGA -ACGGAATCTCGTCTATGCTCCGAT -ACGGAATCTCGTCTATGCTGGCAT -ACGGAATCTCGTCTATGCCGAGAT -ACGGAATCTCGTCTATGCTACCAC -ACGGAATCTCGTCTATGCCAGAAC -ACGGAATCTCGTCTATGCGTCTAC -ACGGAATCTCGTCTATGCACGTAC -ACGGAATCTCGTCTATGCAGTGAC -ACGGAATCTCGTCTATGCCTGTAG -ACGGAATCTCGTCTATGCCCTAAG -ACGGAATCTCGTCTATGCGTTCAG -ACGGAATCTCGTCTATGCGCATAG -ACGGAATCTCGTCTATGCGACAAG -ACGGAATCTCGTCTATGCAAGCAG -ACGGAATCTCGTCTATGCCGTCAA -ACGGAATCTCGTCTATGCGCTGAA -ACGGAATCTCGTCTATGCAGTACG -ACGGAATCTCGTCTATGCATCCGA -ACGGAATCTCGTCTATGCATGGGA -ACGGAATCTCGTCTATGCGTGCAA -ACGGAATCTCGTCTATGCGAGGAA -ACGGAATCTCGTCTATGCCAGGTA -ACGGAATCTCGTCTATGCGACTCT -ACGGAATCTCGTCTATGCAGTCCT -ACGGAATCTCGTCTATGCTAAGCC -ACGGAATCTCGTCTATGCATAGCC -ACGGAATCTCGTCTATGCTAACCG -ACGGAATCTCGTCTATGCATGCCA -ACGGAATCTCGTCTACCAGGAAAC -ACGGAATCTCGTCTACCAAACACC -ACGGAATCTCGTCTACCAATCGAG -ACGGAATCTCGTCTACCACTCCTT -ACGGAATCTCGTCTACCACCTGTT -ACGGAATCTCGTCTACCACGGTTT -ACGGAATCTCGTCTACCAGTGGTT -ACGGAATCTCGTCTACCAGCCTTT -ACGGAATCTCGTCTACCAGGTCTT -ACGGAATCTCGTCTACCAACGCTT -ACGGAATCTCGTCTACCAAGCGTT -ACGGAATCTCGTCTACCATTCGTC -ACGGAATCTCGTCTACCATCTCTC -ACGGAATCTCGTCTACCATGGATC -ACGGAATCTCGTCTACCACACTTC -ACGGAATCTCGTCTACCAGTACTC -ACGGAATCTCGTCTACCAGATGTC -ACGGAATCTCGTCTACCAACAGTC -ACGGAATCTCGTCTACCATTGCTG -ACGGAATCTCGTCTACCATCCATG -ACGGAATCTCGTCTACCATGTGTG -ACGGAATCTCGTCTACCACTAGTG -ACGGAATCTCGTCTACCACATCTG -ACGGAATCTCGTCTACCAGAGTTG -ACGGAATCTCGTCTACCAAGACTG -ACGGAATCTCGTCTACCATCGGTA -ACGGAATCTCGTCTACCATGCCTA -ACGGAATCTCGTCTACCACCACTA -ACGGAATCTCGTCTACCAGGAGTA -ACGGAATCTCGTCTACCATCGTCT -ACGGAATCTCGTCTACCATGCACT -ACGGAATCTCGTCTACCACTGACT -ACGGAATCTCGTCTACCACAACCT -ACGGAATCTCGTCTACCAGCTACT -ACGGAATCTCGTCTACCAGGATCT -ACGGAATCTCGTCTACCAAAGGCT -ACGGAATCTCGTCTACCATCAACC -ACGGAATCTCGTCTACCATGTTCC -ACGGAATCTCGTCTACCAATTCCC -ACGGAATCTCGTCTACCATTCTCG -ACGGAATCTCGTCTACCATAGACG -ACGGAATCTCGTCTACCAGTAACG -ACGGAATCTCGTCTACCAACTTCG -ACGGAATCTCGTCTACCATACGCA -ACGGAATCTCGTCTACCACTTGCA -ACGGAATCTCGTCTACCACGAACA -ACGGAATCTCGTCTACCACAGTCA -ACGGAATCTCGTCTACCAGATCCA -ACGGAATCTCGTCTACCAACGACA -ACGGAATCTCGTCTACCAAGCTCA -ACGGAATCTCGTCTACCATCACGT -ACGGAATCTCGTCTACCACGTAGT -ACGGAATCTCGTCTACCAGTCAGT -ACGGAATCTCGTCTACCAGAAGGT -ACGGAATCTCGTCTACCAAACCGT -ACGGAATCTCGTCTACCATTGTGC -ACGGAATCTCGTCTACCACTAAGC -ACGGAATCTCGTCTACCAACTAGC -ACGGAATCTCGTCTACCAAGATGC -ACGGAATCTCGTCTACCATGAAGG -ACGGAATCTCGTCTACCACAATGG -ACGGAATCTCGTCTACCAATGAGG -ACGGAATCTCGTCTACCAAATGGG -ACGGAATCTCGTCTACCATCCTGA -ACGGAATCTCGTCTACCATAGCGA -ACGGAATCTCGTCTACCACACAGA -ACGGAATCTCGTCTACCAGCAAGA -ACGGAATCTCGTCTACCAGGTTGA -ACGGAATCTCGTCTACCATCCGAT -ACGGAATCTCGTCTACCATGGCAT -ACGGAATCTCGTCTACCACGAGAT -ACGGAATCTCGTCTACCATACCAC -ACGGAATCTCGTCTACCACAGAAC -ACGGAATCTCGTCTACCAGTCTAC -ACGGAATCTCGTCTACCAACGTAC -ACGGAATCTCGTCTACCAAGTGAC -ACGGAATCTCGTCTACCACTGTAG -ACGGAATCTCGTCTACCACCTAAG -ACGGAATCTCGTCTACCAGTTCAG -ACGGAATCTCGTCTACCAGCATAG -ACGGAATCTCGTCTACCAGACAAG -ACGGAATCTCGTCTACCAAAGCAG -ACGGAATCTCGTCTACCACGTCAA -ACGGAATCTCGTCTACCAGCTGAA -ACGGAATCTCGTCTACCAAGTACG -ACGGAATCTCGTCTACCAATCCGA -ACGGAATCTCGTCTACCAATGGGA -ACGGAATCTCGTCTACCAGTGCAA -ACGGAATCTCGTCTACCAGAGGAA -ACGGAATCTCGTCTACCACAGGTA -ACGGAATCTCGTCTACCAGACTCT -ACGGAATCTCGTCTACCAAGTCCT -ACGGAATCTCGTCTACCATAAGCC -ACGGAATCTCGTCTACCAATAGCC -ACGGAATCTCGTCTACCATAACCG -ACGGAATCTCGTCTACCAATGCCA -ACGGAATCTCGTGTAGGAGGAAAC -ACGGAATCTCGTGTAGGAAACACC -ACGGAATCTCGTGTAGGAATCGAG -ACGGAATCTCGTGTAGGACTCCTT -ACGGAATCTCGTGTAGGACCTGTT -ACGGAATCTCGTGTAGGACGGTTT -ACGGAATCTCGTGTAGGAGTGGTT -ACGGAATCTCGTGTAGGAGCCTTT -ACGGAATCTCGTGTAGGAGGTCTT -ACGGAATCTCGTGTAGGAACGCTT -ACGGAATCTCGTGTAGGAAGCGTT -ACGGAATCTCGTGTAGGATTCGTC -ACGGAATCTCGTGTAGGATCTCTC -ACGGAATCTCGTGTAGGATGGATC -ACGGAATCTCGTGTAGGACACTTC -ACGGAATCTCGTGTAGGAGTACTC -ACGGAATCTCGTGTAGGAGATGTC -ACGGAATCTCGTGTAGGAACAGTC -ACGGAATCTCGTGTAGGATTGCTG -ACGGAATCTCGTGTAGGATCCATG -ACGGAATCTCGTGTAGGATGTGTG -ACGGAATCTCGTGTAGGACTAGTG -ACGGAATCTCGTGTAGGACATCTG -ACGGAATCTCGTGTAGGAGAGTTG -ACGGAATCTCGTGTAGGAAGACTG -ACGGAATCTCGTGTAGGATCGGTA -ACGGAATCTCGTGTAGGATGCCTA -ACGGAATCTCGTGTAGGACCACTA -ACGGAATCTCGTGTAGGAGGAGTA -ACGGAATCTCGTGTAGGATCGTCT -ACGGAATCTCGTGTAGGATGCACT -ACGGAATCTCGTGTAGGACTGACT -ACGGAATCTCGTGTAGGACAACCT -ACGGAATCTCGTGTAGGAGCTACT -ACGGAATCTCGTGTAGGAGGATCT -ACGGAATCTCGTGTAGGAAAGGCT -ACGGAATCTCGTGTAGGATCAACC -ACGGAATCTCGTGTAGGATGTTCC -ACGGAATCTCGTGTAGGAATTCCC -ACGGAATCTCGTGTAGGATTCTCG -ACGGAATCTCGTGTAGGATAGACG -ACGGAATCTCGTGTAGGAGTAACG -ACGGAATCTCGTGTAGGAACTTCG -ACGGAATCTCGTGTAGGATACGCA -ACGGAATCTCGTGTAGGACTTGCA -ACGGAATCTCGTGTAGGACGAACA -ACGGAATCTCGTGTAGGACAGTCA -ACGGAATCTCGTGTAGGAGATCCA -ACGGAATCTCGTGTAGGAACGACA -ACGGAATCTCGTGTAGGAAGCTCA -ACGGAATCTCGTGTAGGATCACGT -ACGGAATCTCGTGTAGGACGTAGT -ACGGAATCTCGTGTAGGAGTCAGT -ACGGAATCTCGTGTAGGAGAAGGT -ACGGAATCTCGTGTAGGAAACCGT -ACGGAATCTCGTGTAGGATTGTGC -ACGGAATCTCGTGTAGGACTAAGC -ACGGAATCTCGTGTAGGAACTAGC -ACGGAATCTCGTGTAGGAAGATGC -ACGGAATCTCGTGTAGGATGAAGG -ACGGAATCTCGTGTAGGACAATGG -ACGGAATCTCGTGTAGGAATGAGG -ACGGAATCTCGTGTAGGAAATGGG -ACGGAATCTCGTGTAGGATCCTGA -ACGGAATCTCGTGTAGGATAGCGA -ACGGAATCTCGTGTAGGACACAGA -ACGGAATCTCGTGTAGGAGCAAGA -ACGGAATCTCGTGTAGGAGGTTGA -ACGGAATCTCGTGTAGGATCCGAT -ACGGAATCTCGTGTAGGATGGCAT -ACGGAATCTCGTGTAGGACGAGAT -ACGGAATCTCGTGTAGGATACCAC -ACGGAATCTCGTGTAGGACAGAAC -ACGGAATCTCGTGTAGGAGTCTAC -ACGGAATCTCGTGTAGGAACGTAC -ACGGAATCTCGTGTAGGAAGTGAC -ACGGAATCTCGTGTAGGACTGTAG -ACGGAATCTCGTGTAGGACCTAAG -ACGGAATCTCGTGTAGGAGTTCAG -ACGGAATCTCGTGTAGGAGCATAG -ACGGAATCTCGTGTAGGAGACAAG -ACGGAATCTCGTGTAGGAAAGCAG -ACGGAATCTCGTGTAGGACGTCAA -ACGGAATCTCGTGTAGGAGCTGAA -ACGGAATCTCGTGTAGGAAGTACG -ACGGAATCTCGTGTAGGAATCCGA -ACGGAATCTCGTGTAGGAATGGGA -ACGGAATCTCGTGTAGGAGTGCAA -ACGGAATCTCGTGTAGGAGAGGAA -ACGGAATCTCGTGTAGGACAGGTA -ACGGAATCTCGTGTAGGAGACTCT -ACGGAATCTCGTGTAGGAAGTCCT -ACGGAATCTCGTGTAGGATAAGCC -ACGGAATCTCGTGTAGGAATAGCC -ACGGAATCTCGTGTAGGATAACCG -ACGGAATCTCGTGTAGGAATGCCA -ACGGAATCTCGTTCTTCGGGAAAC -ACGGAATCTCGTTCTTCGAACACC -ACGGAATCTCGTTCTTCGATCGAG -ACGGAATCTCGTTCTTCGCTCCTT -ACGGAATCTCGTTCTTCGCCTGTT -ACGGAATCTCGTTCTTCGCGGTTT -ACGGAATCTCGTTCTTCGGTGGTT -ACGGAATCTCGTTCTTCGGCCTTT -ACGGAATCTCGTTCTTCGGGTCTT -ACGGAATCTCGTTCTTCGACGCTT -ACGGAATCTCGTTCTTCGAGCGTT -ACGGAATCTCGTTCTTCGTTCGTC -ACGGAATCTCGTTCTTCGTCTCTC -ACGGAATCTCGTTCTTCGTGGATC -ACGGAATCTCGTTCTTCGCACTTC -ACGGAATCTCGTTCTTCGGTACTC -ACGGAATCTCGTTCTTCGGATGTC -ACGGAATCTCGTTCTTCGACAGTC -ACGGAATCTCGTTCTTCGTTGCTG -ACGGAATCTCGTTCTTCGTCCATG -ACGGAATCTCGTTCTTCGTGTGTG -ACGGAATCTCGTTCTTCGCTAGTG -ACGGAATCTCGTTCTTCGCATCTG -ACGGAATCTCGTTCTTCGGAGTTG -ACGGAATCTCGTTCTTCGAGACTG -ACGGAATCTCGTTCTTCGTCGGTA -ACGGAATCTCGTTCTTCGTGCCTA -ACGGAATCTCGTTCTTCGCCACTA -ACGGAATCTCGTTCTTCGGGAGTA -ACGGAATCTCGTTCTTCGTCGTCT -ACGGAATCTCGTTCTTCGTGCACT -ACGGAATCTCGTTCTTCGCTGACT -ACGGAATCTCGTTCTTCGCAACCT -ACGGAATCTCGTTCTTCGGCTACT -ACGGAATCTCGTTCTTCGGGATCT -ACGGAATCTCGTTCTTCGAAGGCT -ACGGAATCTCGTTCTTCGTCAACC -ACGGAATCTCGTTCTTCGTGTTCC -ACGGAATCTCGTTCTTCGATTCCC -ACGGAATCTCGTTCTTCGTTCTCG -ACGGAATCTCGTTCTTCGTAGACG -ACGGAATCTCGTTCTTCGGTAACG -ACGGAATCTCGTTCTTCGACTTCG -ACGGAATCTCGTTCTTCGTACGCA -ACGGAATCTCGTTCTTCGCTTGCA -ACGGAATCTCGTTCTTCGCGAACA -ACGGAATCTCGTTCTTCGCAGTCA -ACGGAATCTCGTTCTTCGGATCCA -ACGGAATCTCGTTCTTCGACGACA -ACGGAATCTCGTTCTTCGAGCTCA -ACGGAATCTCGTTCTTCGTCACGT -ACGGAATCTCGTTCTTCGCGTAGT -ACGGAATCTCGTTCTTCGGTCAGT -ACGGAATCTCGTTCTTCGGAAGGT -ACGGAATCTCGTTCTTCGAACCGT -ACGGAATCTCGTTCTTCGTTGTGC -ACGGAATCTCGTTCTTCGCTAAGC -ACGGAATCTCGTTCTTCGACTAGC -ACGGAATCTCGTTCTTCGAGATGC -ACGGAATCTCGTTCTTCGTGAAGG -ACGGAATCTCGTTCTTCGCAATGG -ACGGAATCTCGTTCTTCGATGAGG -ACGGAATCTCGTTCTTCGAATGGG -ACGGAATCTCGTTCTTCGTCCTGA -ACGGAATCTCGTTCTTCGTAGCGA -ACGGAATCTCGTTCTTCGCACAGA -ACGGAATCTCGTTCTTCGGCAAGA -ACGGAATCTCGTTCTTCGGGTTGA -ACGGAATCTCGTTCTTCGTCCGAT -ACGGAATCTCGTTCTTCGTGGCAT -ACGGAATCTCGTTCTTCGCGAGAT -ACGGAATCTCGTTCTTCGTACCAC -ACGGAATCTCGTTCTTCGCAGAAC -ACGGAATCTCGTTCTTCGGTCTAC -ACGGAATCTCGTTCTTCGACGTAC -ACGGAATCTCGTTCTTCGAGTGAC -ACGGAATCTCGTTCTTCGCTGTAG -ACGGAATCTCGTTCTTCGCCTAAG -ACGGAATCTCGTTCTTCGGTTCAG -ACGGAATCTCGTTCTTCGGCATAG -ACGGAATCTCGTTCTTCGGACAAG -ACGGAATCTCGTTCTTCGAAGCAG -ACGGAATCTCGTTCTTCGCGTCAA -ACGGAATCTCGTTCTTCGGCTGAA -ACGGAATCTCGTTCTTCGAGTACG -ACGGAATCTCGTTCTTCGATCCGA -ACGGAATCTCGTTCTTCGATGGGA -ACGGAATCTCGTTCTTCGGTGCAA -ACGGAATCTCGTTCTTCGGAGGAA -ACGGAATCTCGTTCTTCGCAGGTA -ACGGAATCTCGTTCTTCGGACTCT -ACGGAATCTCGTTCTTCGAGTCCT -ACGGAATCTCGTTCTTCGTAAGCC -ACGGAATCTCGTTCTTCGATAGCC -ACGGAATCTCGTTCTTCGTAACCG -ACGGAATCTCGTTCTTCGATGCCA -ACGGAATCTCGTACTTGCGGAAAC -ACGGAATCTCGTACTTGCAACACC -ACGGAATCTCGTACTTGCATCGAG -ACGGAATCTCGTACTTGCCTCCTT -ACGGAATCTCGTACTTGCCCTGTT -ACGGAATCTCGTACTTGCCGGTTT -ACGGAATCTCGTACTTGCGTGGTT -ACGGAATCTCGTACTTGCGCCTTT -ACGGAATCTCGTACTTGCGGTCTT -ACGGAATCTCGTACTTGCACGCTT -ACGGAATCTCGTACTTGCAGCGTT -ACGGAATCTCGTACTTGCTTCGTC -ACGGAATCTCGTACTTGCTCTCTC -ACGGAATCTCGTACTTGCTGGATC -ACGGAATCTCGTACTTGCCACTTC -ACGGAATCTCGTACTTGCGTACTC -ACGGAATCTCGTACTTGCGATGTC -ACGGAATCTCGTACTTGCACAGTC -ACGGAATCTCGTACTTGCTTGCTG -ACGGAATCTCGTACTTGCTCCATG -ACGGAATCTCGTACTTGCTGTGTG -ACGGAATCTCGTACTTGCCTAGTG -ACGGAATCTCGTACTTGCCATCTG -ACGGAATCTCGTACTTGCGAGTTG -ACGGAATCTCGTACTTGCAGACTG -ACGGAATCTCGTACTTGCTCGGTA -ACGGAATCTCGTACTTGCTGCCTA -ACGGAATCTCGTACTTGCCCACTA -ACGGAATCTCGTACTTGCGGAGTA -ACGGAATCTCGTACTTGCTCGTCT -ACGGAATCTCGTACTTGCTGCACT -ACGGAATCTCGTACTTGCCTGACT -ACGGAATCTCGTACTTGCCAACCT -ACGGAATCTCGTACTTGCGCTACT -ACGGAATCTCGTACTTGCGGATCT -ACGGAATCTCGTACTTGCAAGGCT -ACGGAATCTCGTACTTGCTCAACC -ACGGAATCTCGTACTTGCTGTTCC -ACGGAATCTCGTACTTGCATTCCC -ACGGAATCTCGTACTTGCTTCTCG -ACGGAATCTCGTACTTGCTAGACG -ACGGAATCTCGTACTTGCGTAACG -ACGGAATCTCGTACTTGCACTTCG -ACGGAATCTCGTACTTGCTACGCA -ACGGAATCTCGTACTTGCCTTGCA -ACGGAATCTCGTACTTGCCGAACA -ACGGAATCTCGTACTTGCCAGTCA -ACGGAATCTCGTACTTGCGATCCA -ACGGAATCTCGTACTTGCACGACA -ACGGAATCTCGTACTTGCAGCTCA -ACGGAATCTCGTACTTGCTCACGT -ACGGAATCTCGTACTTGCCGTAGT -ACGGAATCTCGTACTTGCGTCAGT -ACGGAATCTCGTACTTGCGAAGGT -ACGGAATCTCGTACTTGCAACCGT -ACGGAATCTCGTACTTGCTTGTGC -ACGGAATCTCGTACTTGCCTAAGC -ACGGAATCTCGTACTTGCACTAGC -ACGGAATCTCGTACTTGCAGATGC -ACGGAATCTCGTACTTGCTGAAGG -ACGGAATCTCGTACTTGCCAATGG -ACGGAATCTCGTACTTGCATGAGG -ACGGAATCTCGTACTTGCAATGGG -ACGGAATCTCGTACTTGCTCCTGA -ACGGAATCTCGTACTTGCTAGCGA -ACGGAATCTCGTACTTGCCACAGA -ACGGAATCTCGTACTTGCGCAAGA -ACGGAATCTCGTACTTGCGGTTGA -ACGGAATCTCGTACTTGCTCCGAT -ACGGAATCTCGTACTTGCTGGCAT -ACGGAATCTCGTACTTGCCGAGAT -ACGGAATCTCGTACTTGCTACCAC -ACGGAATCTCGTACTTGCCAGAAC -ACGGAATCTCGTACTTGCGTCTAC -ACGGAATCTCGTACTTGCACGTAC -ACGGAATCTCGTACTTGCAGTGAC -ACGGAATCTCGTACTTGCCTGTAG -ACGGAATCTCGTACTTGCCCTAAG -ACGGAATCTCGTACTTGCGTTCAG -ACGGAATCTCGTACTTGCGCATAG -ACGGAATCTCGTACTTGCGACAAG -ACGGAATCTCGTACTTGCAAGCAG -ACGGAATCTCGTACTTGCCGTCAA -ACGGAATCTCGTACTTGCGCTGAA -ACGGAATCTCGTACTTGCAGTACG -ACGGAATCTCGTACTTGCATCCGA -ACGGAATCTCGTACTTGCATGGGA -ACGGAATCTCGTACTTGCGTGCAA -ACGGAATCTCGTACTTGCGAGGAA -ACGGAATCTCGTACTTGCCAGGTA -ACGGAATCTCGTACTTGCGACTCT -ACGGAATCTCGTACTTGCAGTCCT -ACGGAATCTCGTACTTGCTAAGCC -ACGGAATCTCGTACTTGCATAGCC -ACGGAATCTCGTACTTGCTAACCG -ACGGAATCTCGTACTTGCATGCCA -ACGGAATCTCGTACTCTGGGAAAC -ACGGAATCTCGTACTCTGAACACC -ACGGAATCTCGTACTCTGATCGAG -ACGGAATCTCGTACTCTGCTCCTT -ACGGAATCTCGTACTCTGCCTGTT -ACGGAATCTCGTACTCTGCGGTTT -ACGGAATCTCGTACTCTGGTGGTT -ACGGAATCTCGTACTCTGGCCTTT -ACGGAATCTCGTACTCTGGGTCTT -ACGGAATCTCGTACTCTGACGCTT -ACGGAATCTCGTACTCTGAGCGTT -ACGGAATCTCGTACTCTGTTCGTC -ACGGAATCTCGTACTCTGTCTCTC -ACGGAATCTCGTACTCTGTGGATC -ACGGAATCTCGTACTCTGCACTTC -ACGGAATCTCGTACTCTGGTACTC -ACGGAATCTCGTACTCTGGATGTC -ACGGAATCTCGTACTCTGACAGTC -ACGGAATCTCGTACTCTGTTGCTG -ACGGAATCTCGTACTCTGTCCATG -ACGGAATCTCGTACTCTGTGTGTG -ACGGAATCTCGTACTCTGCTAGTG -ACGGAATCTCGTACTCTGCATCTG -ACGGAATCTCGTACTCTGGAGTTG -ACGGAATCTCGTACTCTGAGACTG -ACGGAATCTCGTACTCTGTCGGTA -ACGGAATCTCGTACTCTGTGCCTA -ACGGAATCTCGTACTCTGCCACTA -ACGGAATCTCGTACTCTGGGAGTA -ACGGAATCTCGTACTCTGTCGTCT -ACGGAATCTCGTACTCTGTGCACT -ACGGAATCTCGTACTCTGCTGACT -ACGGAATCTCGTACTCTGCAACCT -ACGGAATCTCGTACTCTGGCTACT -ACGGAATCTCGTACTCTGGGATCT -ACGGAATCTCGTACTCTGAAGGCT -ACGGAATCTCGTACTCTGTCAACC -ACGGAATCTCGTACTCTGTGTTCC -ACGGAATCTCGTACTCTGATTCCC -ACGGAATCTCGTACTCTGTTCTCG -ACGGAATCTCGTACTCTGTAGACG -ACGGAATCTCGTACTCTGGTAACG -ACGGAATCTCGTACTCTGACTTCG -ACGGAATCTCGTACTCTGTACGCA -ACGGAATCTCGTACTCTGCTTGCA -ACGGAATCTCGTACTCTGCGAACA -ACGGAATCTCGTACTCTGCAGTCA -ACGGAATCTCGTACTCTGGATCCA -ACGGAATCTCGTACTCTGACGACA -ACGGAATCTCGTACTCTGAGCTCA -ACGGAATCTCGTACTCTGTCACGT -ACGGAATCTCGTACTCTGCGTAGT -ACGGAATCTCGTACTCTGGTCAGT -ACGGAATCTCGTACTCTGGAAGGT -ACGGAATCTCGTACTCTGAACCGT -ACGGAATCTCGTACTCTGTTGTGC -ACGGAATCTCGTACTCTGCTAAGC -ACGGAATCTCGTACTCTGACTAGC -ACGGAATCTCGTACTCTGAGATGC -ACGGAATCTCGTACTCTGTGAAGG -ACGGAATCTCGTACTCTGCAATGG -ACGGAATCTCGTACTCTGATGAGG -ACGGAATCTCGTACTCTGAATGGG -ACGGAATCTCGTACTCTGTCCTGA -ACGGAATCTCGTACTCTGTAGCGA -ACGGAATCTCGTACTCTGCACAGA -ACGGAATCTCGTACTCTGGCAAGA -ACGGAATCTCGTACTCTGGGTTGA -ACGGAATCTCGTACTCTGTCCGAT -ACGGAATCTCGTACTCTGTGGCAT -ACGGAATCTCGTACTCTGCGAGAT -ACGGAATCTCGTACTCTGTACCAC -ACGGAATCTCGTACTCTGCAGAAC -ACGGAATCTCGTACTCTGGTCTAC -ACGGAATCTCGTACTCTGACGTAC -ACGGAATCTCGTACTCTGAGTGAC -ACGGAATCTCGTACTCTGCTGTAG -ACGGAATCTCGTACTCTGCCTAAG -ACGGAATCTCGTACTCTGGTTCAG -ACGGAATCTCGTACTCTGGCATAG -ACGGAATCTCGTACTCTGGACAAG -ACGGAATCTCGTACTCTGAAGCAG -ACGGAATCTCGTACTCTGCGTCAA -ACGGAATCTCGTACTCTGGCTGAA -ACGGAATCTCGTACTCTGAGTACG -ACGGAATCTCGTACTCTGATCCGA -ACGGAATCTCGTACTCTGATGGGA -ACGGAATCTCGTACTCTGGTGCAA -ACGGAATCTCGTACTCTGGAGGAA -ACGGAATCTCGTACTCTGCAGGTA -ACGGAATCTCGTACTCTGGACTCT -ACGGAATCTCGTACTCTGAGTCCT -ACGGAATCTCGTACTCTGTAAGCC -ACGGAATCTCGTACTCTGATAGCC -ACGGAATCTCGTACTCTGTAACCG -ACGGAATCTCGTACTCTGATGCCA -ACGGAATCTCGTCCTCAAGGAAAC -ACGGAATCTCGTCCTCAAAACACC -ACGGAATCTCGTCCTCAAATCGAG -ACGGAATCTCGTCCTCAACTCCTT -ACGGAATCTCGTCCTCAACCTGTT -ACGGAATCTCGTCCTCAACGGTTT -ACGGAATCTCGTCCTCAAGTGGTT -ACGGAATCTCGTCCTCAAGCCTTT -ACGGAATCTCGTCCTCAAGGTCTT -ACGGAATCTCGTCCTCAAACGCTT -ACGGAATCTCGTCCTCAAAGCGTT -ACGGAATCTCGTCCTCAATTCGTC -ACGGAATCTCGTCCTCAATCTCTC -ACGGAATCTCGTCCTCAATGGATC -ACGGAATCTCGTCCTCAACACTTC -ACGGAATCTCGTCCTCAAGTACTC -ACGGAATCTCGTCCTCAAGATGTC -ACGGAATCTCGTCCTCAAACAGTC -ACGGAATCTCGTCCTCAATTGCTG -ACGGAATCTCGTCCTCAATCCATG -ACGGAATCTCGTCCTCAATGTGTG -ACGGAATCTCGTCCTCAACTAGTG -ACGGAATCTCGTCCTCAACATCTG -ACGGAATCTCGTCCTCAAGAGTTG -ACGGAATCTCGTCCTCAAAGACTG -ACGGAATCTCGTCCTCAATCGGTA -ACGGAATCTCGTCCTCAATGCCTA -ACGGAATCTCGTCCTCAACCACTA -ACGGAATCTCGTCCTCAAGGAGTA -ACGGAATCTCGTCCTCAATCGTCT -ACGGAATCTCGTCCTCAATGCACT -ACGGAATCTCGTCCTCAACTGACT -ACGGAATCTCGTCCTCAACAACCT -ACGGAATCTCGTCCTCAAGCTACT -ACGGAATCTCGTCCTCAAGGATCT -ACGGAATCTCGTCCTCAAAAGGCT -ACGGAATCTCGTCCTCAATCAACC -ACGGAATCTCGTCCTCAATGTTCC -ACGGAATCTCGTCCTCAAATTCCC -ACGGAATCTCGTCCTCAATTCTCG -ACGGAATCTCGTCCTCAATAGACG -ACGGAATCTCGTCCTCAAGTAACG -ACGGAATCTCGTCCTCAAACTTCG -ACGGAATCTCGTCCTCAATACGCA -ACGGAATCTCGTCCTCAACTTGCA -ACGGAATCTCGTCCTCAACGAACA -ACGGAATCTCGTCCTCAACAGTCA -ACGGAATCTCGTCCTCAAGATCCA -ACGGAATCTCGTCCTCAAACGACA -ACGGAATCTCGTCCTCAAAGCTCA -ACGGAATCTCGTCCTCAATCACGT -ACGGAATCTCGTCCTCAACGTAGT -ACGGAATCTCGTCCTCAAGTCAGT -ACGGAATCTCGTCCTCAAGAAGGT -ACGGAATCTCGTCCTCAAAACCGT -ACGGAATCTCGTCCTCAATTGTGC -ACGGAATCTCGTCCTCAACTAAGC -ACGGAATCTCGTCCTCAAACTAGC -ACGGAATCTCGTCCTCAAAGATGC -ACGGAATCTCGTCCTCAATGAAGG -ACGGAATCTCGTCCTCAACAATGG -ACGGAATCTCGTCCTCAAATGAGG -ACGGAATCTCGTCCTCAAAATGGG -ACGGAATCTCGTCCTCAATCCTGA -ACGGAATCTCGTCCTCAATAGCGA -ACGGAATCTCGTCCTCAACACAGA -ACGGAATCTCGTCCTCAAGCAAGA -ACGGAATCTCGTCCTCAAGGTTGA -ACGGAATCTCGTCCTCAATCCGAT -ACGGAATCTCGTCCTCAATGGCAT -ACGGAATCTCGTCCTCAACGAGAT -ACGGAATCTCGTCCTCAATACCAC -ACGGAATCTCGTCCTCAACAGAAC -ACGGAATCTCGTCCTCAAGTCTAC -ACGGAATCTCGTCCTCAAACGTAC -ACGGAATCTCGTCCTCAAAGTGAC -ACGGAATCTCGTCCTCAACTGTAG -ACGGAATCTCGTCCTCAACCTAAG -ACGGAATCTCGTCCTCAAGTTCAG -ACGGAATCTCGTCCTCAAGCATAG -ACGGAATCTCGTCCTCAAGACAAG -ACGGAATCTCGTCCTCAAAAGCAG -ACGGAATCTCGTCCTCAACGTCAA -ACGGAATCTCGTCCTCAAGCTGAA -ACGGAATCTCGTCCTCAAAGTACG -ACGGAATCTCGTCCTCAAATCCGA -ACGGAATCTCGTCCTCAAATGGGA -ACGGAATCTCGTCCTCAAGTGCAA -ACGGAATCTCGTCCTCAAGAGGAA -ACGGAATCTCGTCCTCAACAGGTA -ACGGAATCTCGTCCTCAAGACTCT -ACGGAATCTCGTCCTCAAAGTCCT -ACGGAATCTCGTCCTCAATAAGCC -ACGGAATCTCGTCCTCAAATAGCC -ACGGAATCTCGTCCTCAATAACCG -ACGGAATCTCGTCCTCAAATGCCA -ACGGAATCTCGTACTGCTGGAAAC -ACGGAATCTCGTACTGCTAACACC -ACGGAATCTCGTACTGCTATCGAG -ACGGAATCTCGTACTGCTCTCCTT -ACGGAATCTCGTACTGCTCCTGTT -ACGGAATCTCGTACTGCTCGGTTT -ACGGAATCTCGTACTGCTGTGGTT -ACGGAATCTCGTACTGCTGCCTTT -ACGGAATCTCGTACTGCTGGTCTT -ACGGAATCTCGTACTGCTACGCTT -ACGGAATCTCGTACTGCTAGCGTT -ACGGAATCTCGTACTGCTTTCGTC -ACGGAATCTCGTACTGCTTCTCTC -ACGGAATCTCGTACTGCTTGGATC -ACGGAATCTCGTACTGCTCACTTC -ACGGAATCTCGTACTGCTGTACTC -ACGGAATCTCGTACTGCTGATGTC -ACGGAATCTCGTACTGCTACAGTC -ACGGAATCTCGTACTGCTTTGCTG -ACGGAATCTCGTACTGCTTCCATG -ACGGAATCTCGTACTGCTTGTGTG -ACGGAATCTCGTACTGCTCTAGTG -ACGGAATCTCGTACTGCTCATCTG -ACGGAATCTCGTACTGCTGAGTTG -ACGGAATCTCGTACTGCTAGACTG -ACGGAATCTCGTACTGCTTCGGTA -ACGGAATCTCGTACTGCTTGCCTA -ACGGAATCTCGTACTGCTCCACTA -ACGGAATCTCGTACTGCTGGAGTA -ACGGAATCTCGTACTGCTTCGTCT -ACGGAATCTCGTACTGCTTGCACT -ACGGAATCTCGTACTGCTCTGACT -ACGGAATCTCGTACTGCTCAACCT -ACGGAATCTCGTACTGCTGCTACT -ACGGAATCTCGTACTGCTGGATCT -ACGGAATCTCGTACTGCTAAGGCT -ACGGAATCTCGTACTGCTTCAACC -ACGGAATCTCGTACTGCTTGTTCC -ACGGAATCTCGTACTGCTATTCCC -ACGGAATCTCGTACTGCTTTCTCG -ACGGAATCTCGTACTGCTTAGACG -ACGGAATCTCGTACTGCTGTAACG -ACGGAATCTCGTACTGCTACTTCG -ACGGAATCTCGTACTGCTTACGCA -ACGGAATCTCGTACTGCTCTTGCA -ACGGAATCTCGTACTGCTCGAACA -ACGGAATCTCGTACTGCTCAGTCA -ACGGAATCTCGTACTGCTGATCCA -ACGGAATCTCGTACTGCTACGACA -ACGGAATCTCGTACTGCTAGCTCA -ACGGAATCTCGTACTGCTTCACGT -ACGGAATCTCGTACTGCTCGTAGT -ACGGAATCTCGTACTGCTGTCAGT -ACGGAATCTCGTACTGCTGAAGGT -ACGGAATCTCGTACTGCTAACCGT -ACGGAATCTCGTACTGCTTTGTGC -ACGGAATCTCGTACTGCTCTAAGC -ACGGAATCTCGTACTGCTACTAGC -ACGGAATCTCGTACTGCTAGATGC -ACGGAATCTCGTACTGCTTGAAGG -ACGGAATCTCGTACTGCTCAATGG -ACGGAATCTCGTACTGCTATGAGG -ACGGAATCTCGTACTGCTAATGGG -ACGGAATCTCGTACTGCTTCCTGA -ACGGAATCTCGTACTGCTTAGCGA -ACGGAATCTCGTACTGCTCACAGA -ACGGAATCTCGTACTGCTGCAAGA -ACGGAATCTCGTACTGCTGGTTGA -ACGGAATCTCGTACTGCTTCCGAT -ACGGAATCTCGTACTGCTTGGCAT -ACGGAATCTCGTACTGCTCGAGAT -ACGGAATCTCGTACTGCTTACCAC -ACGGAATCTCGTACTGCTCAGAAC -ACGGAATCTCGTACTGCTGTCTAC -ACGGAATCTCGTACTGCTACGTAC -ACGGAATCTCGTACTGCTAGTGAC -ACGGAATCTCGTACTGCTCTGTAG -ACGGAATCTCGTACTGCTCCTAAG -ACGGAATCTCGTACTGCTGTTCAG -ACGGAATCTCGTACTGCTGCATAG -ACGGAATCTCGTACTGCTGACAAG -ACGGAATCTCGTACTGCTAAGCAG -ACGGAATCTCGTACTGCTCGTCAA -ACGGAATCTCGTACTGCTGCTGAA -ACGGAATCTCGTACTGCTAGTACG -ACGGAATCTCGTACTGCTATCCGA -ACGGAATCTCGTACTGCTATGGGA -ACGGAATCTCGTACTGCTGTGCAA -ACGGAATCTCGTACTGCTGAGGAA -ACGGAATCTCGTACTGCTCAGGTA -ACGGAATCTCGTACTGCTGACTCT -ACGGAATCTCGTACTGCTAGTCCT -ACGGAATCTCGTACTGCTTAAGCC -ACGGAATCTCGTACTGCTATAGCC -ACGGAATCTCGTACTGCTTAACCG -ACGGAATCTCGTACTGCTATGCCA -ACGGAATCTCGTTCTGGAGGAAAC -ACGGAATCTCGTTCTGGAAACACC -ACGGAATCTCGTTCTGGAATCGAG -ACGGAATCTCGTTCTGGACTCCTT -ACGGAATCTCGTTCTGGACCTGTT -ACGGAATCTCGTTCTGGACGGTTT -ACGGAATCTCGTTCTGGAGTGGTT -ACGGAATCTCGTTCTGGAGCCTTT -ACGGAATCTCGTTCTGGAGGTCTT -ACGGAATCTCGTTCTGGAACGCTT -ACGGAATCTCGTTCTGGAAGCGTT -ACGGAATCTCGTTCTGGATTCGTC -ACGGAATCTCGTTCTGGATCTCTC -ACGGAATCTCGTTCTGGATGGATC -ACGGAATCTCGTTCTGGACACTTC -ACGGAATCTCGTTCTGGAGTACTC -ACGGAATCTCGTTCTGGAGATGTC -ACGGAATCTCGTTCTGGAACAGTC -ACGGAATCTCGTTCTGGATTGCTG -ACGGAATCTCGTTCTGGATCCATG -ACGGAATCTCGTTCTGGATGTGTG -ACGGAATCTCGTTCTGGACTAGTG -ACGGAATCTCGTTCTGGACATCTG -ACGGAATCTCGTTCTGGAGAGTTG -ACGGAATCTCGTTCTGGAAGACTG -ACGGAATCTCGTTCTGGATCGGTA -ACGGAATCTCGTTCTGGATGCCTA -ACGGAATCTCGTTCTGGACCACTA -ACGGAATCTCGTTCTGGAGGAGTA -ACGGAATCTCGTTCTGGATCGTCT -ACGGAATCTCGTTCTGGATGCACT -ACGGAATCTCGTTCTGGACTGACT -ACGGAATCTCGTTCTGGACAACCT -ACGGAATCTCGTTCTGGAGCTACT -ACGGAATCTCGTTCTGGAGGATCT -ACGGAATCTCGTTCTGGAAAGGCT -ACGGAATCTCGTTCTGGATCAACC -ACGGAATCTCGTTCTGGATGTTCC -ACGGAATCTCGTTCTGGAATTCCC -ACGGAATCTCGTTCTGGATTCTCG -ACGGAATCTCGTTCTGGATAGACG -ACGGAATCTCGTTCTGGAGTAACG -ACGGAATCTCGTTCTGGAACTTCG -ACGGAATCTCGTTCTGGATACGCA -ACGGAATCTCGTTCTGGACTTGCA -ACGGAATCTCGTTCTGGACGAACA -ACGGAATCTCGTTCTGGACAGTCA -ACGGAATCTCGTTCTGGAGATCCA -ACGGAATCTCGTTCTGGAACGACA -ACGGAATCTCGTTCTGGAAGCTCA -ACGGAATCTCGTTCTGGATCACGT -ACGGAATCTCGTTCTGGACGTAGT -ACGGAATCTCGTTCTGGAGTCAGT -ACGGAATCTCGTTCTGGAGAAGGT -ACGGAATCTCGTTCTGGAAACCGT -ACGGAATCTCGTTCTGGATTGTGC -ACGGAATCTCGTTCTGGACTAAGC -ACGGAATCTCGTTCTGGAACTAGC -ACGGAATCTCGTTCTGGAAGATGC -ACGGAATCTCGTTCTGGATGAAGG -ACGGAATCTCGTTCTGGACAATGG -ACGGAATCTCGTTCTGGAATGAGG -ACGGAATCTCGTTCTGGAAATGGG -ACGGAATCTCGTTCTGGATCCTGA -ACGGAATCTCGTTCTGGATAGCGA -ACGGAATCTCGTTCTGGACACAGA -ACGGAATCTCGTTCTGGAGCAAGA -ACGGAATCTCGTTCTGGAGGTTGA -ACGGAATCTCGTTCTGGATCCGAT -ACGGAATCTCGTTCTGGATGGCAT -ACGGAATCTCGTTCTGGACGAGAT -ACGGAATCTCGTTCTGGATACCAC -ACGGAATCTCGTTCTGGACAGAAC -ACGGAATCTCGTTCTGGAGTCTAC -ACGGAATCTCGTTCTGGAACGTAC -ACGGAATCTCGTTCTGGAAGTGAC -ACGGAATCTCGTTCTGGACTGTAG -ACGGAATCTCGTTCTGGACCTAAG -ACGGAATCTCGTTCTGGAGTTCAG -ACGGAATCTCGTTCTGGAGCATAG -ACGGAATCTCGTTCTGGAGACAAG -ACGGAATCTCGTTCTGGAAAGCAG -ACGGAATCTCGTTCTGGACGTCAA -ACGGAATCTCGTTCTGGAGCTGAA -ACGGAATCTCGTTCTGGAAGTACG -ACGGAATCTCGTTCTGGAATCCGA -ACGGAATCTCGTTCTGGAATGGGA -ACGGAATCTCGTTCTGGAGTGCAA -ACGGAATCTCGTTCTGGAGAGGAA -ACGGAATCTCGTTCTGGACAGGTA -ACGGAATCTCGTTCTGGAGACTCT -ACGGAATCTCGTTCTGGAAGTCCT -ACGGAATCTCGTTCTGGATAAGCC -ACGGAATCTCGTTCTGGAATAGCC -ACGGAATCTCGTTCTGGATAACCG -ACGGAATCTCGTTCTGGAATGCCA -ACGGAATCTCGTGCTAAGGGAAAC -ACGGAATCTCGTGCTAAGAACACC -ACGGAATCTCGTGCTAAGATCGAG -ACGGAATCTCGTGCTAAGCTCCTT -ACGGAATCTCGTGCTAAGCCTGTT -ACGGAATCTCGTGCTAAGCGGTTT -ACGGAATCTCGTGCTAAGGTGGTT -ACGGAATCTCGTGCTAAGGCCTTT -ACGGAATCTCGTGCTAAGGGTCTT -ACGGAATCTCGTGCTAAGACGCTT -ACGGAATCTCGTGCTAAGAGCGTT -ACGGAATCTCGTGCTAAGTTCGTC -ACGGAATCTCGTGCTAAGTCTCTC -ACGGAATCTCGTGCTAAGTGGATC -ACGGAATCTCGTGCTAAGCACTTC -ACGGAATCTCGTGCTAAGGTACTC -ACGGAATCTCGTGCTAAGGATGTC -ACGGAATCTCGTGCTAAGACAGTC -ACGGAATCTCGTGCTAAGTTGCTG -ACGGAATCTCGTGCTAAGTCCATG -ACGGAATCTCGTGCTAAGTGTGTG -ACGGAATCTCGTGCTAAGCTAGTG -ACGGAATCTCGTGCTAAGCATCTG -ACGGAATCTCGTGCTAAGGAGTTG -ACGGAATCTCGTGCTAAGAGACTG -ACGGAATCTCGTGCTAAGTCGGTA -ACGGAATCTCGTGCTAAGTGCCTA -ACGGAATCTCGTGCTAAGCCACTA -ACGGAATCTCGTGCTAAGGGAGTA -ACGGAATCTCGTGCTAAGTCGTCT -ACGGAATCTCGTGCTAAGTGCACT -ACGGAATCTCGTGCTAAGCTGACT -ACGGAATCTCGTGCTAAGCAACCT -ACGGAATCTCGTGCTAAGGCTACT -ACGGAATCTCGTGCTAAGGGATCT -ACGGAATCTCGTGCTAAGAAGGCT -ACGGAATCTCGTGCTAAGTCAACC -ACGGAATCTCGTGCTAAGTGTTCC -ACGGAATCTCGTGCTAAGATTCCC -ACGGAATCTCGTGCTAAGTTCTCG -ACGGAATCTCGTGCTAAGTAGACG -ACGGAATCTCGTGCTAAGGTAACG -ACGGAATCTCGTGCTAAGACTTCG -ACGGAATCTCGTGCTAAGTACGCA -ACGGAATCTCGTGCTAAGCTTGCA -ACGGAATCTCGTGCTAAGCGAACA -ACGGAATCTCGTGCTAAGCAGTCA -ACGGAATCTCGTGCTAAGGATCCA -ACGGAATCTCGTGCTAAGACGACA -ACGGAATCTCGTGCTAAGAGCTCA -ACGGAATCTCGTGCTAAGTCACGT -ACGGAATCTCGTGCTAAGCGTAGT -ACGGAATCTCGTGCTAAGGTCAGT -ACGGAATCTCGTGCTAAGGAAGGT -ACGGAATCTCGTGCTAAGAACCGT -ACGGAATCTCGTGCTAAGTTGTGC -ACGGAATCTCGTGCTAAGCTAAGC -ACGGAATCTCGTGCTAAGACTAGC -ACGGAATCTCGTGCTAAGAGATGC -ACGGAATCTCGTGCTAAGTGAAGG -ACGGAATCTCGTGCTAAGCAATGG -ACGGAATCTCGTGCTAAGATGAGG -ACGGAATCTCGTGCTAAGAATGGG -ACGGAATCTCGTGCTAAGTCCTGA -ACGGAATCTCGTGCTAAGTAGCGA -ACGGAATCTCGTGCTAAGCACAGA -ACGGAATCTCGTGCTAAGGCAAGA -ACGGAATCTCGTGCTAAGGGTTGA -ACGGAATCTCGTGCTAAGTCCGAT -ACGGAATCTCGTGCTAAGTGGCAT -ACGGAATCTCGTGCTAAGCGAGAT -ACGGAATCTCGTGCTAAGTACCAC -ACGGAATCTCGTGCTAAGCAGAAC -ACGGAATCTCGTGCTAAGGTCTAC -ACGGAATCTCGTGCTAAGACGTAC -ACGGAATCTCGTGCTAAGAGTGAC -ACGGAATCTCGTGCTAAGCTGTAG -ACGGAATCTCGTGCTAAGCCTAAG -ACGGAATCTCGTGCTAAGGTTCAG -ACGGAATCTCGTGCTAAGGCATAG -ACGGAATCTCGTGCTAAGGACAAG -ACGGAATCTCGTGCTAAGAAGCAG -ACGGAATCTCGTGCTAAGCGTCAA -ACGGAATCTCGTGCTAAGGCTGAA -ACGGAATCTCGTGCTAAGAGTACG -ACGGAATCTCGTGCTAAGATCCGA -ACGGAATCTCGTGCTAAGATGGGA -ACGGAATCTCGTGCTAAGGTGCAA -ACGGAATCTCGTGCTAAGGAGGAA -ACGGAATCTCGTGCTAAGCAGGTA -ACGGAATCTCGTGCTAAGGACTCT -ACGGAATCTCGTGCTAAGAGTCCT -ACGGAATCTCGTGCTAAGTAAGCC -ACGGAATCTCGTGCTAAGATAGCC -ACGGAATCTCGTGCTAAGTAACCG -ACGGAATCTCGTGCTAAGATGCCA -ACGGAATCTCGTACCTCAGGAAAC -ACGGAATCTCGTACCTCAAACACC -ACGGAATCTCGTACCTCAATCGAG -ACGGAATCTCGTACCTCACTCCTT -ACGGAATCTCGTACCTCACCTGTT -ACGGAATCTCGTACCTCACGGTTT -ACGGAATCTCGTACCTCAGTGGTT -ACGGAATCTCGTACCTCAGCCTTT -ACGGAATCTCGTACCTCAGGTCTT -ACGGAATCTCGTACCTCAACGCTT -ACGGAATCTCGTACCTCAAGCGTT -ACGGAATCTCGTACCTCATTCGTC -ACGGAATCTCGTACCTCATCTCTC -ACGGAATCTCGTACCTCATGGATC -ACGGAATCTCGTACCTCACACTTC -ACGGAATCTCGTACCTCAGTACTC -ACGGAATCTCGTACCTCAGATGTC -ACGGAATCTCGTACCTCAACAGTC -ACGGAATCTCGTACCTCATTGCTG -ACGGAATCTCGTACCTCATCCATG -ACGGAATCTCGTACCTCATGTGTG -ACGGAATCTCGTACCTCACTAGTG -ACGGAATCTCGTACCTCACATCTG -ACGGAATCTCGTACCTCAGAGTTG -ACGGAATCTCGTACCTCAAGACTG -ACGGAATCTCGTACCTCATCGGTA -ACGGAATCTCGTACCTCATGCCTA -ACGGAATCTCGTACCTCACCACTA -ACGGAATCTCGTACCTCAGGAGTA -ACGGAATCTCGTACCTCATCGTCT -ACGGAATCTCGTACCTCATGCACT -ACGGAATCTCGTACCTCACTGACT -ACGGAATCTCGTACCTCACAACCT -ACGGAATCTCGTACCTCAGCTACT -ACGGAATCTCGTACCTCAGGATCT -ACGGAATCTCGTACCTCAAAGGCT -ACGGAATCTCGTACCTCATCAACC -ACGGAATCTCGTACCTCATGTTCC -ACGGAATCTCGTACCTCAATTCCC -ACGGAATCTCGTACCTCATTCTCG -ACGGAATCTCGTACCTCATAGACG -ACGGAATCTCGTACCTCAGTAACG -ACGGAATCTCGTACCTCAACTTCG -ACGGAATCTCGTACCTCATACGCA -ACGGAATCTCGTACCTCACTTGCA -ACGGAATCTCGTACCTCACGAACA -ACGGAATCTCGTACCTCACAGTCA -ACGGAATCTCGTACCTCAGATCCA -ACGGAATCTCGTACCTCAACGACA -ACGGAATCTCGTACCTCAAGCTCA -ACGGAATCTCGTACCTCATCACGT -ACGGAATCTCGTACCTCACGTAGT -ACGGAATCTCGTACCTCAGTCAGT -ACGGAATCTCGTACCTCAGAAGGT -ACGGAATCTCGTACCTCAAACCGT -ACGGAATCTCGTACCTCATTGTGC -ACGGAATCTCGTACCTCACTAAGC -ACGGAATCTCGTACCTCAACTAGC -ACGGAATCTCGTACCTCAAGATGC -ACGGAATCTCGTACCTCATGAAGG -ACGGAATCTCGTACCTCACAATGG -ACGGAATCTCGTACCTCAATGAGG -ACGGAATCTCGTACCTCAAATGGG -ACGGAATCTCGTACCTCATCCTGA -ACGGAATCTCGTACCTCATAGCGA -ACGGAATCTCGTACCTCACACAGA -ACGGAATCTCGTACCTCAGCAAGA -ACGGAATCTCGTACCTCAGGTTGA -ACGGAATCTCGTACCTCATCCGAT -ACGGAATCTCGTACCTCATGGCAT -ACGGAATCTCGTACCTCACGAGAT -ACGGAATCTCGTACCTCATACCAC -ACGGAATCTCGTACCTCACAGAAC -ACGGAATCTCGTACCTCAGTCTAC -ACGGAATCTCGTACCTCAACGTAC -ACGGAATCTCGTACCTCAAGTGAC -ACGGAATCTCGTACCTCACTGTAG -ACGGAATCTCGTACCTCACCTAAG -ACGGAATCTCGTACCTCAGTTCAG -ACGGAATCTCGTACCTCAGCATAG -ACGGAATCTCGTACCTCAGACAAG -ACGGAATCTCGTACCTCAAAGCAG -ACGGAATCTCGTACCTCACGTCAA -ACGGAATCTCGTACCTCAGCTGAA -ACGGAATCTCGTACCTCAAGTACG -ACGGAATCTCGTACCTCAATCCGA -ACGGAATCTCGTACCTCAATGGGA -ACGGAATCTCGTACCTCAGTGCAA -ACGGAATCTCGTACCTCAGAGGAA -ACGGAATCTCGTACCTCACAGGTA -ACGGAATCTCGTACCTCAGACTCT -ACGGAATCTCGTACCTCAAGTCCT -ACGGAATCTCGTACCTCATAAGCC -ACGGAATCTCGTACCTCAATAGCC -ACGGAATCTCGTACCTCATAACCG -ACGGAATCTCGTACCTCAATGCCA -ACGGAATCTCGTTCCTGTGGAAAC -ACGGAATCTCGTTCCTGTAACACC -ACGGAATCTCGTTCCTGTATCGAG -ACGGAATCTCGTTCCTGTCTCCTT -ACGGAATCTCGTTCCTGTCCTGTT -ACGGAATCTCGTTCCTGTCGGTTT -ACGGAATCTCGTTCCTGTGTGGTT -ACGGAATCTCGTTCCTGTGCCTTT -ACGGAATCTCGTTCCTGTGGTCTT -ACGGAATCTCGTTCCTGTACGCTT -ACGGAATCTCGTTCCTGTAGCGTT -ACGGAATCTCGTTCCTGTTTCGTC -ACGGAATCTCGTTCCTGTTCTCTC -ACGGAATCTCGTTCCTGTTGGATC -ACGGAATCTCGTTCCTGTCACTTC -ACGGAATCTCGTTCCTGTGTACTC -ACGGAATCTCGTTCCTGTGATGTC -ACGGAATCTCGTTCCTGTACAGTC -ACGGAATCTCGTTCCTGTTTGCTG -ACGGAATCTCGTTCCTGTTCCATG -ACGGAATCTCGTTCCTGTTGTGTG -ACGGAATCTCGTTCCTGTCTAGTG -ACGGAATCTCGTTCCTGTCATCTG -ACGGAATCTCGTTCCTGTGAGTTG -ACGGAATCTCGTTCCTGTAGACTG -ACGGAATCTCGTTCCTGTTCGGTA -ACGGAATCTCGTTCCTGTTGCCTA -ACGGAATCTCGTTCCTGTCCACTA -ACGGAATCTCGTTCCTGTGGAGTA -ACGGAATCTCGTTCCTGTTCGTCT -ACGGAATCTCGTTCCTGTTGCACT -ACGGAATCTCGTTCCTGTCTGACT -ACGGAATCTCGTTCCTGTCAACCT -ACGGAATCTCGTTCCTGTGCTACT -ACGGAATCTCGTTCCTGTGGATCT -ACGGAATCTCGTTCCTGTAAGGCT -ACGGAATCTCGTTCCTGTTCAACC -ACGGAATCTCGTTCCTGTTGTTCC -ACGGAATCTCGTTCCTGTATTCCC -ACGGAATCTCGTTCCTGTTTCTCG -ACGGAATCTCGTTCCTGTTAGACG -ACGGAATCTCGTTCCTGTGTAACG -ACGGAATCTCGTTCCTGTACTTCG -ACGGAATCTCGTTCCTGTTACGCA -ACGGAATCTCGTTCCTGTCTTGCA -ACGGAATCTCGTTCCTGTCGAACA -ACGGAATCTCGTTCCTGTCAGTCA -ACGGAATCTCGTTCCTGTGATCCA -ACGGAATCTCGTTCCTGTACGACA -ACGGAATCTCGTTCCTGTAGCTCA -ACGGAATCTCGTTCCTGTTCACGT -ACGGAATCTCGTTCCTGTCGTAGT -ACGGAATCTCGTTCCTGTGTCAGT -ACGGAATCTCGTTCCTGTGAAGGT -ACGGAATCTCGTTCCTGTAACCGT -ACGGAATCTCGTTCCTGTTTGTGC -ACGGAATCTCGTTCCTGTCTAAGC -ACGGAATCTCGTTCCTGTACTAGC -ACGGAATCTCGTTCCTGTAGATGC -ACGGAATCTCGTTCCTGTTGAAGG -ACGGAATCTCGTTCCTGTCAATGG -ACGGAATCTCGTTCCTGTATGAGG -ACGGAATCTCGTTCCTGTAATGGG -ACGGAATCTCGTTCCTGTTCCTGA -ACGGAATCTCGTTCCTGTTAGCGA -ACGGAATCTCGTTCCTGTCACAGA -ACGGAATCTCGTTCCTGTGCAAGA -ACGGAATCTCGTTCCTGTGGTTGA -ACGGAATCTCGTTCCTGTTCCGAT -ACGGAATCTCGTTCCTGTTGGCAT -ACGGAATCTCGTTCCTGTCGAGAT -ACGGAATCTCGTTCCTGTTACCAC -ACGGAATCTCGTTCCTGTCAGAAC -ACGGAATCTCGTTCCTGTGTCTAC -ACGGAATCTCGTTCCTGTACGTAC -ACGGAATCTCGTTCCTGTAGTGAC -ACGGAATCTCGTTCCTGTCTGTAG -ACGGAATCTCGTTCCTGTCCTAAG -ACGGAATCTCGTTCCTGTGTTCAG -ACGGAATCTCGTTCCTGTGCATAG -ACGGAATCTCGTTCCTGTGACAAG -ACGGAATCTCGTTCCTGTAAGCAG -ACGGAATCTCGTTCCTGTCGTCAA -ACGGAATCTCGTTCCTGTGCTGAA -ACGGAATCTCGTTCCTGTAGTACG -ACGGAATCTCGTTCCTGTATCCGA -ACGGAATCTCGTTCCTGTATGGGA -ACGGAATCTCGTTCCTGTGTGCAA -ACGGAATCTCGTTCCTGTGAGGAA -ACGGAATCTCGTTCCTGTCAGGTA -ACGGAATCTCGTTCCTGTGACTCT -ACGGAATCTCGTTCCTGTAGTCCT -ACGGAATCTCGTTCCTGTTAAGCC -ACGGAATCTCGTTCCTGTATAGCC -ACGGAATCTCGTTCCTGTTAACCG -ACGGAATCTCGTTCCTGTATGCCA -ACGGAATCTCGTCCCATTGGAAAC -ACGGAATCTCGTCCCATTAACACC -ACGGAATCTCGTCCCATTATCGAG -ACGGAATCTCGTCCCATTCTCCTT -ACGGAATCTCGTCCCATTCCTGTT -ACGGAATCTCGTCCCATTCGGTTT -ACGGAATCTCGTCCCATTGTGGTT -ACGGAATCTCGTCCCATTGCCTTT -ACGGAATCTCGTCCCATTGGTCTT -ACGGAATCTCGTCCCATTACGCTT -ACGGAATCTCGTCCCATTAGCGTT -ACGGAATCTCGTCCCATTTTCGTC -ACGGAATCTCGTCCCATTTCTCTC -ACGGAATCTCGTCCCATTTGGATC -ACGGAATCTCGTCCCATTCACTTC -ACGGAATCTCGTCCCATTGTACTC -ACGGAATCTCGTCCCATTGATGTC -ACGGAATCTCGTCCCATTACAGTC -ACGGAATCTCGTCCCATTTTGCTG -ACGGAATCTCGTCCCATTTCCATG -ACGGAATCTCGTCCCATTTGTGTG -ACGGAATCTCGTCCCATTCTAGTG -ACGGAATCTCGTCCCATTCATCTG -ACGGAATCTCGTCCCATTGAGTTG -ACGGAATCTCGTCCCATTAGACTG -ACGGAATCTCGTCCCATTTCGGTA -ACGGAATCTCGTCCCATTTGCCTA -ACGGAATCTCGTCCCATTCCACTA -ACGGAATCTCGTCCCATTGGAGTA -ACGGAATCTCGTCCCATTTCGTCT -ACGGAATCTCGTCCCATTTGCACT -ACGGAATCTCGTCCCATTCTGACT -ACGGAATCTCGTCCCATTCAACCT -ACGGAATCTCGTCCCATTGCTACT -ACGGAATCTCGTCCCATTGGATCT -ACGGAATCTCGTCCCATTAAGGCT -ACGGAATCTCGTCCCATTTCAACC -ACGGAATCTCGTCCCATTTGTTCC -ACGGAATCTCGTCCCATTATTCCC -ACGGAATCTCGTCCCATTTTCTCG -ACGGAATCTCGTCCCATTTAGACG -ACGGAATCTCGTCCCATTGTAACG -ACGGAATCTCGTCCCATTACTTCG -ACGGAATCTCGTCCCATTTACGCA -ACGGAATCTCGTCCCATTCTTGCA -ACGGAATCTCGTCCCATTCGAACA -ACGGAATCTCGTCCCATTCAGTCA -ACGGAATCTCGTCCCATTGATCCA -ACGGAATCTCGTCCCATTACGACA -ACGGAATCTCGTCCCATTAGCTCA -ACGGAATCTCGTCCCATTTCACGT -ACGGAATCTCGTCCCATTCGTAGT -ACGGAATCTCGTCCCATTGTCAGT -ACGGAATCTCGTCCCATTGAAGGT -ACGGAATCTCGTCCCATTAACCGT -ACGGAATCTCGTCCCATTTTGTGC -ACGGAATCTCGTCCCATTCTAAGC -ACGGAATCTCGTCCCATTACTAGC -ACGGAATCTCGTCCCATTAGATGC -ACGGAATCTCGTCCCATTTGAAGG -ACGGAATCTCGTCCCATTCAATGG -ACGGAATCTCGTCCCATTATGAGG -ACGGAATCTCGTCCCATTAATGGG -ACGGAATCTCGTCCCATTTCCTGA -ACGGAATCTCGTCCCATTTAGCGA -ACGGAATCTCGTCCCATTCACAGA -ACGGAATCTCGTCCCATTGCAAGA -ACGGAATCTCGTCCCATTGGTTGA -ACGGAATCTCGTCCCATTTCCGAT -ACGGAATCTCGTCCCATTTGGCAT -ACGGAATCTCGTCCCATTCGAGAT -ACGGAATCTCGTCCCATTTACCAC -ACGGAATCTCGTCCCATTCAGAAC -ACGGAATCTCGTCCCATTGTCTAC -ACGGAATCTCGTCCCATTACGTAC -ACGGAATCTCGTCCCATTAGTGAC -ACGGAATCTCGTCCCATTCTGTAG -ACGGAATCTCGTCCCATTCCTAAG -ACGGAATCTCGTCCCATTGTTCAG -ACGGAATCTCGTCCCATTGCATAG -ACGGAATCTCGTCCCATTGACAAG -ACGGAATCTCGTCCCATTAAGCAG -ACGGAATCTCGTCCCATTCGTCAA -ACGGAATCTCGTCCCATTGCTGAA -ACGGAATCTCGTCCCATTAGTACG -ACGGAATCTCGTCCCATTATCCGA -ACGGAATCTCGTCCCATTATGGGA -ACGGAATCTCGTCCCATTGTGCAA -ACGGAATCTCGTCCCATTGAGGAA -ACGGAATCTCGTCCCATTCAGGTA -ACGGAATCTCGTCCCATTGACTCT -ACGGAATCTCGTCCCATTAGTCCT -ACGGAATCTCGTCCCATTTAAGCC -ACGGAATCTCGTCCCATTATAGCC -ACGGAATCTCGTCCCATTTAACCG -ACGGAATCTCGTCCCATTATGCCA -ACGGAATCTCGTTCGTTCGGAAAC -ACGGAATCTCGTTCGTTCAACACC -ACGGAATCTCGTTCGTTCATCGAG -ACGGAATCTCGTTCGTTCCTCCTT -ACGGAATCTCGTTCGTTCCCTGTT -ACGGAATCTCGTTCGTTCCGGTTT -ACGGAATCTCGTTCGTTCGTGGTT -ACGGAATCTCGTTCGTTCGCCTTT -ACGGAATCTCGTTCGTTCGGTCTT -ACGGAATCTCGTTCGTTCACGCTT -ACGGAATCTCGTTCGTTCAGCGTT -ACGGAATCTCGTTCGTTCTTCGTC -ACGGAATCTCGTTCGTTCTCTCTC -ACGGAATCTCGTTCGTTCTGGATC -ACGGAATCTCGTTCGTTCCACTTC -ACGGAATCTCGTTCGTTCGTACTC -ACGGAATCTCGTTCGTTCGATGTC -ACGGAATCTCGTTCGTTCACAGTC -ACGGAATCTCGTTCGTTCTTGCTG -ACGGAATCTCGTTCGTTCTCCATG -ACGGAATCTCGTTCGTTCTGTGTG -ACGGAATCTCGTTCGTTCCTAGTG -ACGGAATCTCGTTCGTTCCATCTG -ACGGAATCTCGTTCGTTCGAGTTG -ACGGAATCTCGTTCGTTCAGACTG -ACGGAATCTCGTTCGTTCTCGGTA -ACGGAATCTCGTTCGTTCTGCCTA -ACGGAATCTCGTTCGTTCCCACTA -ACGGAATCTCGTTCGTTCGGAGTA -ACGGAATCTCGTTCGTTCTCGTCT -ACGGAATCTCGTTCGTTCTGCACT -ACGGAATCTCGTTCGTTCCTGACT -ACGGAATCTCGTTCGTTCCAACCT -ACGGAATCTCGTTCGTTCGCTACT -ACGGAATCTCGTTCGTTCGGATCT -ACGGAATCTCGTTCGTTCAAGGCT -ACGGAATCTCGTTCGTTCTCAACC -ACGGAATCTCGTTCGTTCTGTTCC -ACGGAATCTCGTTCGTTCATTCCC -ACGGAATCTCGTTCGTTCTTCTCG -ACGGAATCTCGTTCGTTCTAGACG -ACGGAATCTCGTTCGTTCGTAACG -ACGGAATCTCGTTCGTTCACTTCG -ACGGAATCTCGTTCGTTCTACGCA -ACGGAATCTCGTTCGTTCCTTGCA -ACGGAATCTCGTTCGTTCCGAACA -ACGGAATCTCGTTCGTTCCAGTCA -ACGGAATCTCGTTCGTTCGATCCA -ACGGAATCTCGTTCGTTCACGACA -ACGGAATCTCGTTCGTTCAGCTCA -ACGGAATCTCGTTCGTTCTCACGT -ACGGAATCTCGTTCGTTCCGTAGT -ACGGAATCTCGTTCGTTCGTCAGT -ACGGAATCTCGTTCGTTCGAAGGT -ACGGAATCTCGTTCGTTCAACCGT -ACGGAATCTCGTTCGTTCTTGTGC -ACGGAATCTCGTTCGTTCCTAAGC -ACGGAATCTCGTTCGTTCACTAGC -ACGGAATCTCGTTCGTTCAGATGC -ACGGAATCTCGTTCGTTCTGAAGG -ACGGAATCTCGTTCGTTCCAATGG -ACGGAATCTCGTTCGTTCATGAGG -ACGGAATCTCGTTCGTTCAATGGG -ACGGAATCTCGTTCGTTCTCCTGA -ACGGAATCTCGTTCGTTCTAGCGA -ACGGAATCTCGTTCGTTCCACAGA -ACGGAATCTCGTTCGTTCGCAAGA -ACGGAATCTCGTTCGTTCGGTTGA -ACGGAATCTCGTTCGTTCTCCGAT -ACGGAATCTCGTTCGTTCTGGCAT -ACGGAATCTCGTTCGTTCCGAGAT -ACGGAATCTCGTTCGTTCTACCAC -ACGGAATCTCGTTCGTTCCAGAAC -ACGGAATCTCGTTCGTTCGTCTAC -ACGGAATCTCGTTCGTTCACGTAC -ACGGAATCTCGTTCGTTCAGTGAC -ACGGAATCTCGTTCGTTCCTGTAG -ACGGAATCTCGTTCGTTCCCTAAG -ACGGAATCTCGTTCGTTCGTTCAG -ACGGAATCTCGTTCGTTCGCATAG -ACGGAATCTCGTTCGTTCGACAAG -ACGGAATCTCGTTCGTTCAAGCAG -ACGGAATCTCGTTCGTTCCGTCAA -ACGGAATCTCGTTCGTTCGCTGAA -ACGGAATCTCGTTCGTTCAGTACG -ACGGAATCTCGTTCGTTCATCCGA -ACGGAATCTCGTTCGTTCATGGGA -ACGGAATCTCGTTCGTTCGTGCAA -ACGGAATCTCGTTCGTTCGAGGAA -ACGGAATCTCGTTCGTTCCAGGTA -ACGGAATCTCGTTCGTTCGACTCT -ACGGAATCTCGTTCGTTCAGTCCT -ACGGAATCTCGTTCGTTCTAAGCC -ACGGAATCTCGTTCGTTCATAGCC -ACGGAATCTCGTTCGTTCTAACCG -ACGGAATCTCGTTCGTTCATGCCA -ACGGAATCTCGTACGTAGGGAAAC -ACGGAATCTCGTACGTAGAACACC -ACGGAATCTCGTACGTAGATCGAG -ACGGAATCTCGTACGTAGCTCCTT -ACGGAATCTCGTACGTAGCCTGTT -ACGGAATCTCGTACGTAGCGGTTT -ACGGAATCTCGTACGTAGGTGGTT -ACGGAATCTCGTACGTAGGCCTTT -ACGGAATCTCGTACGTAGGGTCTT -ACGGAATCTCGTACGTAGACGCTT -ACGGAATCTCGTACGTAGAGCGTT -ACGGAATCTCGTACGTAGTTCGTC -ACGGAATCTCGTACGTAGTCTCTC -ACGGAATCTCGTACGTAGTGGATC -ACGGAATCTCGTACGTAGCACTTC -ACGGAATCTCGTACGTAGGTACTC -ACGGAATCTCGTACGTAGGATGTC -ACGGAATCTCGTACGTAGACAGTC -ACGGAATCTCGTACGTAGTTGCTG -ACGGAATCTCGTACGTAGTCCATG -ACGGAATCTCGTACGTAGTGTGTG -ACGGAATCTCGTACGTAGCTAGTG -ACGGAATCTCGTACGTAGCATCTG -ACGGAATCTCGTACGTAGGAGTTG -ACGGAATCTCGTACGTAGAGACTG -ACGGAATCTCGTACGTAGTCGGTA -ACGGAATCTCGTACGTAGTGCCTA -ACGGAATCTCGTACGTAGCCACTA -ACGGAATCTCGTACGTAGGGAGTA -ACGGAATCTCGTACGTAGTCGTCT -ACGGAATCTCGTACGTAGTGCACT -ACGGAATCTCGTACGTAGCTGACT -ACGGAATCTCGTACGTAGCAACCT -ACGGAATCTCGTACGTAGGCTACT -ACGGAATCTCGTACGTAGGGATCT -ACGGAATCTCGTACGTAGAAGGCT -ACGGAATCTCGTACGTAGTCAACC -ACGGAATCTCGTACGTAGTGTTCC -ACGGAATCTCGTACGTAGATTCCC -ACGGAATCTCGTACGTAGTTCTCG -ACGGAATCTCGTACGTAGTAGACG -ACGGAATCTCGTACGTAGGTAACG -ACGGAATCTCGTACGTAGACTTCG -ACGGAATCTCGTACGTAGTACGCA -ACGGAATCTCGTACGTAGCTTGCA -ACGGAATCTCGTACGTAGCGAACA -ACGGAATCTCGTACGTAGCAGTCA -ACGGAATCTCGTACGTAGGATCCA -ACGGAATCTCGTACGTAGACGACA -ACGGAATCTCGTACGTAGAGCTCA -ACGGAATCTCGTACGTAGTCACGT -ACGGAATCTCGTACGTAGCGTAGT -ACGGAATCTCGTACGTAGGTCAGT -ACGGAATCTCGTACGTAGGAAGGT -ACGGAATCTCGTACGTAGAACCGT -ACGGAATCTCGTACGTAGTTGTGC -ACGGAATCTCGTACGTAGCTAAGC -ACGGAATCTCGTACGTAGACTAGC -ACGGAATCTCGTACGTAGAGATGC -ACGGAATCTCGTACGTAGTGAAGG -ACGGAATCTCGTACGTAGCAATGG -ACGGAATCTCGTACGTAGATGAGG -ACGGAATCTCGTACGTAGAATGGG -ACGGAATCTCGTACGTAGTCCTGA -ACGGAATCTCGTACGTAGTAGCGA -ACGGAATCTCGTACGTAGCACAGA -ACGGAATCTCGTACGTAGGCAAGA -ACGGAATCTCGTACGTAGGGTTGA -ACGGAATCTCGTACGTAGTCCGAT -ACGGAATCTCGTACGTAGTGGCAT -ACGGAATCTCGTACGTAGCGAGAT -ACGGAATCTCGTACGTAGTACCAC -ACGGAATCTCGTACGTAGCAGAAC -ACGGAATCTCGTACGTAGGTCTAC -ACGGAATCTCGTACGTAGACGTAC -ACGGAATCTCGTACGTAGAGTGAC -ACGGAATCTCGTACGTAGCTGTAG -ACGGAATCTCGTACGTAGCCTAAG -ACGGAATCTCGTACGTAGGTTCAG -ACGGAATCTCGTACGTAGGCATAG -ACGGAATCTCGTACGTAGGACAAG -ACGGAATCTCGTACGTAGAAGCAG -ACGGAATCTCGTACGTAGCGTCAA -ACGGAATCTCGTACGTAGGCTGAA -ACGGAATCTCGTACGTAGAGTACG -ACGGAATCTCGTACGTAGATCCGA -ACGGAATCTCGTACGTAGATGGGA -ACGGAATCTCGTACGTAGGTGCAA -ACGGAATCTCGTACGTAGGAGGAA -ACGGAATCTCGTACGTAGCAGGTA -ACGGAATCTCGTACGTAGGACTCT -ACGGAATCTCGTACGTAGAGTCCT -ACGGAATCTCGTACGTAGTAAGCC -ACGGAATCTCGTACGTAGATAGCC -ACGGAATCTCGTACGTAGTAACCG -ACGGAATCTCGTACGTAGATGCCA -ACGGAATCTCGTACGGTAGGAAAC -ACGGAATCTCGTACGGTAAACACC -ACGGAATCTCGTACGGTAATCGAG -ACGGAATCTCGTACGGTACTCCTT -ACGGAATCTCGTACGGTACCTGTT -ACGGAATCTCGTACGGTACGGTTT -ACGGAATCTCGTACGGTAGTGGTT -ACGGAATCTCGTACGGTAGCCTTT -ACGGAATCTCGTACGGTAGGTCTT -ACGGAATCTCGTACGGTAACGCTT -ACGGAATCTCGTACGGTAAGCGTT -ACGGAATCTCGTACGGTATTCGTC -ACGGAATCTCGTACGGTATCTCTC -ACGGAATCTCGTACGGTATGGATC -ACGGAATCTCGTACGGTACACTTC -ACGGAATCTCGTACGGTAGTACTC -ACGGAATCTCGTACGGTAGATGTC -ACGGAATCTCGTACGGTAACAGTC -ACGGAATCTCGTACGGTATTGCTG -ACGGAATCTCGTACGGTATCCATG -ACGGAATCTCGTACGGTATGTGTG -ACGGAATCTCGTACGGTACTAGTG -ACGGAATCTCGTACGGTACATCTG -ACGGAATCTCGTACGGTAGAGTTG -ACGGAATCTCGTACGGTAAGACTG -ACGGAATCTCGTACGGTATCGGTA -ACGGAATCTCGTACGGTATGCCTA -ACGGAATCTCGTACGGTACCACTA -ACGGAATCTCGTACGGTAGGAGTA -ACGGAATCTCGTACGGTATCGTCT -ACGGAATCTCGTACGGTATGCACT -ACGGAATCTCGTACGGTACTGACT -ACGGAATCTCGTACGGTACAACCT -ACGGAATCTCGTACGGTAGCTACT -ACGGAATCTCGTACGGTAGGATCT -ACGGAATCTCGTACGGTAAAGGCT -ACGGAATCTCGTACGGTATCAACC -ACGGAATCTCGTACGGTATGTTCC -ACGGAATCTCGTACGGTAATTCCC -ACGGAATCTCGTACGGTATTCTCG -ACGGAATCTCGTACGGTATAGACG -ACGGAATCTCGTACGGTAGTAACG -ACGGAATCTCGTACGGTAACTTCG -ACGGAATCTCGTACGGTATACGCA -ACGGAATCTCGTACGGTACTTGCA -ACGGAATCTCGTACGGTACGAACA -ACGGAATCTCGTACGGTACAGTCA -ACGGAATCTCGTACGGTAGATCCA -ACGGAATCTCGTACGGTAACGACA -ACGGAATCTCGTACGGTAAGCTCA -ACGGAATCTCGTACGGTATCACGT -ACGGAATCTCGTACGGTACGTAGT -ACGGAATCTCGTACGGTAGTCAGT -ACGGAATCTCGTACGGTAGAAGGT -ACGGAATCTCGTACGGTAAACCGT -ACGGAATCTCGTACGGTATTGTGC -ACGGAATCTCGTACGGTACTAAGC -ACGGAATCTCGTACGGTAACTAGC -ACGGAATCTCGTACGGTAAGATGC -ACGGAATCTCGTACGGTATGAAGG -ACGGAATCTCGTACGGTACAATGG -ACGGAATCTCGTACGGTAATGAGG -ACGGAATCTCGTACGGTAAATGGG -ACGGAATCTCGTACGGTATCCTGA -ACGGAATCTCGTACGGTATAGCGA -ACGGAATCTCGTACGGTACACAGA -ACGGAATCTCGTACGGTAGCAAGA -ACGGAATCTCGTACGGTAGGTTGA -ACGGAATCTCGTACGGTATCCGAT -ACGGAATCTCGTACGGTATGGCAT -ACGGAATCTCGTACGGTACGAGAT -ACGGAATCTCGTACGGTATACCAC -ACGGAATCTCGTACGGTACAGAAC -ACGGAATCTCGTACGGTAGTCTAC -ACGGAATCTCGTACGGTAACGTAC -ACGGAATCTCGTACGGTAAGTGAC -ACGGAATCTCGTACGGTACTGTAG -ACGGAATCTCGTACGGTACCTAAG -ACGGAATCTCGTACGGTAGTTCAG -ACGGAATCTCGTACGGTAGCATAG -ACGGAATCTCGTACGGTAGACAAG -ACGGAATCTCGTACGGTAAAGCAG -ACGGAATCTCGTACGGTACGTCAA -ACGGAATCTCGTACGGTAGCTGAA -ACGGAATCTCGTACGGTAAGTACG -ACGGAATCTCGTACGGTAATCCGA -ACGGAATCTCGTACGGTAATGGGA -ACGGAATCTCGTACGGTAGTGCAA -ACGGAATCTCGTACGGTAGAGGAA -ACGGAATCTCGTACGGTACAGGTA -ACGGAATCTCGTACGGTAGACTCT -ACGGAATCTCGTACGGTAAGTCCT -ACGGAATCTCGTACGGTATAAGCC -ACGGAATCTCGTACGGTAATAGCC -ACGGAATCTCGTACGGTATAACCG -ACGGAATCTCGTACGGTAATGCCA -ACGGAATCTCGTTCGACTGGAAAC -ACGGAATCTCGTTCGACTAACACC -ACGGAATCTCGTTCGACTATCGAG -ACGGAATCTCGTTCGACTCTCCTT -ACGGAATCTCGTTCGACTCCTGTT -ACGGAATCTCGTTCGACTCGGTTT -ACGGAATCTCGTTCGACTGTGGTT -ACGGAATCTCGTTCGACTGCCTTT -ACGGAATCTCGTTCGACTGGTCTT -ACGGAATCTCGTTCGACTACGCTT -ACGGAATCTCGTTCGACTAGCGTT -ACGGAATCTCGTTCGACTTTCGTC -ACGGAATCTCGTTCGACTTCTCTC -ACGGAATCTCGTTCGACTTGGATC -ACGGAATCTCGTTCGACTCACTTC -ACGGAATCTCGTTCGACTGTACTC -ACGGAATCTCGTTCGACTGATGTC -ACGGAATCTCGTTCGACTACAGTC -ACGGAATCTCGTTCGACTTTGCTG -ACGGAATCTCGTTCGACTTCCATG -ACGGAATCTCGTTCGACTTGTGTG -ACGGAATCTCGTTCGACTCTAGTG -ACGGAATCTCGTTCGACTCATCTG -ACGGAATCTCGTTCGACTGAGTTG -ACGGAATCTCGTTCGACTAGACTG -ACGGAATCTCGTTCGACTTCGGTA -ACGGAATCTCGTTCGACTTGCCTA -ACGGAATCTCGTTCGACTCCACTA -ACGGAATCTCGTTCGACTGGAGTA -ACGGAATCTCGTTCGACTTCGTCT -ACGGAATCTCGTTCGACTTGCACT -ACGGAATCTCGTTCGACTCTGACT -ACGGAATCTCGTTCGACTCAACCT -ACGGAATCTCGTTCGACTGCTACT -ACGGAATCTCGTTCGACTGGATCT -ACGGAATCTCGTTCGACTAAGGCT -ACGGAATCTCGTTCGACTTCAACC -ACGGAATCTCGTTCGACTTGTTCC -ACGGAATCTCGTTCGACTATTCCC -ACGGAATCTCGTTCGACTTTCTCG -ACGGAATCTCGTTCGACTTAGACG -ACGGAATCTCGTTCGACTGTAACG -ACGGAATCTCGTTCGACTACTTCG -ACGGAATCTCGTTCGACTTACGCA -ACGGAATCTCGTTCGACTCTTGCA -ACGGAATCTCGTTCGACTCGAACA -ACGGAATCTCGTTCGACTCAGTCA -ACGGAATCTCGTTCGACTGATCCA -ACGGAATCTCGTTCGACTACGACA -ACGGAATCTCGTTCGACTAGCTCA -ACGGAATCTCGTTCGACTTCACGT -ACGGAATCTCGTTCGACTCGTAGT -ACGGAATCTCGTTCGACTGTCAGT -ACGGAATCTCGTTCGACTGAAGGT -ACGGAATCTCGTTCGACTAACCGT -ACGGAATCTCGTTCGACTTTGTGC -ACGGAATCTCGTTCGACTCTAAGC -ACGGAATCTCGTTCGACTACTAGC -ACGGAATCTCGTTCGACTAGATGC -ACGGAATCTCGTTCGACTTGAAGG -ACGGAATCTCGTTCGACTCAATGG -ACGGAATCTCGTTCGACTATGAGG -ACGGAATCTCGTTCGACTAATGGG -ACGGAATCTCGTTCGACTTCCTGA -ACGGAATCTCGTTCGACTTAGCGA -ACGGAATCTCGTTCGACTCACAGA -ACGGAATCTCGTTCGACTGCAAGA -ACGGAATCTCGTTCGACTGGTTGA -ACGGAATCTCGTTCGACTTCCGAT -ACGGAATCTCGTTCGACTTGGCAT -ACGGAATCTCGTTCGACTCGAGAT -ACGGAATCTCGTTCGACTTACCAC -ACGGAATCTCGTTCGACTCAGAAC -ACGGAATCTCGTTCGACTGTCTAC -ACGGAATCTCGTTCGACTACGTAC -ACGGAATCTCGTTCGACTAGTGAC -ACGGAATCTCGTTCGACTCTGTAG -ACGGAATCTCGTTCGACTCCTAAG -ACGGAATCTCGTTCGACTGTTCAG -ACGGAATCTCGTTCGACTGCATAG -ACGGAATCTCGTTCGACTGACAAG -ACGGAATCTCGTTCGACTAAGCAG -ACGGAATCTCGTTCGACTCGTCAA -ACGGAATCTCGTTCGACTGCTGAA -ACGGAATCTCGTTCGACTAGTACG -ACGGAATCTCGTTCGACTATCCGA -ACGGAATCTCGTTCGACTATGGGA -ACGGAATCTCGTTCGACTGTGCAA -ACGGAATCTCGTTCGACTGAGGAA -ACGGAATCTCGTTCGACTCAGGTA -ACGGAATCTCGTTCGACTGACTCT -ACGGAATCTCGTTCGACTAGTCCT -ACGGAATCTCGTTCGACTTAAGCC -ACGGAATCTCGTTCGACTATAGCC -ACGGAATCTCGTTCGACTTAACCG -ACGGAATCTCGTTCGACTATGCCA -ACGGAATCTCGTGCATACGGAAAC -ACGGAATCTCGTGCATACAACACC -ACGGAATCTCGTGCATACATCGAG -ACGGAATCTCGTGCATACCTCCTT -ACGGAATCTCGTGCATACCCTGTT -ACGGAATCTCGTGCATACCGGTTT -ACGGAATCTCGTGCATACGTGGTT -ACGGAATCTCGTGCATACGCCTTT -ACGGAATCTCGTGCATACGGTCTT -ACGGAATCTCGTGCATACACGCTT -ACGGAATCTCGTGCATACAGCGTT -ACGGAATCTCGTGCATACTTCGTC -ACGGAATCTCGTGCATACTCTCTC -ACGGAATCTCGTGCATACTGGATC -ACGGAATCTCGTGCATACCACTTC -ACGGAATCTCGTGCATACGTACTC -ACGGAATCTCGTGCATACGATGTC -ACGGAATCTCGTGCATACACAGTC -ACGGAATCTCGTGCATACTTGCTG -ACGGAATCTCGTGCATACTCCATG -ACGGAATCTCGTGCATACTGTGTG -ACGGAATCTCGTGCATACCTAGTG -ACGGAATCTCGTGCATACCATCTG -ACGGAATCTCGTGCATACGAGTTG -ACGGAATCTCGTGCATACAGACTG -ACGGAATCTCGTGCATACTCGGTA -ACGGAATCTCGTGCATACTGCCTA -ACGGAATCTCGTGCATACCCACTA -ACGGAATCTCGTGCATACGGAGTA -ACGGAATCTCGTGCATACTCGTCT -ACGGAATCTCGTGCATACTGCACT -ACGGAATCTCGTGCATACCTGACT -ACGGAATCTCGTGCATACCAACCT -ACGGAATCTCGTGCATACGCTACT -ACGGAATCTCGTGCATACGGATCT -ACGGAATCTCGTGCATACAAGGCT -ACGGAATCTCGTGCATACTCAACC -ACGGAATCTCGTGCATACTGTTCC -ACGGAATCTCGTGCATACATTCCC -ACGGAATCTCGTGCATACTTCTCG -ACGGAATCTCGTGCATACTAGACG -ACGGAATCTCGTGCATACGTAACG -ACGGAATCTCGTGCATACACTTCG -ACGGAATCTCGTGCATACTACGCA -ACGGAATCTCGTGCATACCTTGCA -ACGGAATCTCGTGCATACCGAACA -ACGGAATCTCGTGCATACCAGTCA -ACGGAATCTCGTGCATACGATCCA -ACGGAATCTCGTGCATACACGACA -ACGGAATCTCGTGCATACAGCTCA -ACGGAATCTCGTGCATACTCACGT -ACGGAATCTCGTGCATACCGTAGT -ACGGAATCTCGTGCATACGTCAGT -ACGGAATCTCGTGCATACGAAGGT -ACGGAATCTCGTGCATACAACCGT -ACGGAATCTCGTGCATACTTGTGC -ACGGAATCTCGTGCATACCTAAGC -ACGGAATCTCGTGCATACACTAGC -ACGGAATCTCGTGCATACAGATGC -ACGGAATCTCGTGCATACTGAAGG -ACGGAATCTCGTGCATACCAATGG -ACGGAATCTCGTGCATACATGAGG -ACGGAATCTCGTGCATACAATGGG -ACGGAATCTCGTGCATACTCCTGA -ACGGAATCTCGTGCATACTAGCGA -ACGGAATCTCGTGCATACCACAGA -ACGGAATCTCGTGCATACGCAAGA -ACGGAATCTCGTGCATACGGTTGA -ACGGAATCTCGTGCATACTCCGAT -ACGGAATCTCGTGCATACTGGCAT -ACGGAATCTCGTGCATACCGAGAT -ACGGAATCTCGTGCATACTACCAC -ACGGAATCTCGTGCATACCAGAAC -ACGGAATCTCGTGCATACGTCTAC -ACGGAATCTCGTGCATACACGTAC -ACGGAATCTCGTGCATACAGTGAC -ACGGAATCTCGTGCATACCTGTAG -ACGGAATCTCGTGCATACCCTAAG -ACGGAATCTCGTGCATACGTTCAG -ACGGAATCTCGTGCATACGCATAG -ACGGAATCTCGTGCATACGACAAG -ACGGAATCTCGTGCATACAAGCAG -ACGGAATCTCGTGCATACCGTCAA -ACGGAATCTCGTGCATACGCTGAA -ACGGAATCTCGTGCATACAGTACG -ACGGAATCTCGTGCATACATCCGA -ACGGAATCTCGTGCATACATGGGA -ACGGAATCTCGTGCATACGTGCAA -ACGGAATCTCGTGCATACGAGGAA -ACGGAATCTCGTGCATACCAGGTA -ACGGAATCTCGTGCATACGACTCT -ACGGAATCTCGTGCATACAGTCCT -ACGGAATCTCGTGCATACTAAGCC -ACGGAATCTCGTGCATACATAGCC -ACGGAATCTCGTGCATACTAACCG -ACGGAATCTCGTGCATACATGCCA -ACGGAATCTCGTGCACTTGGAAAC -ACGGAATCTCGTGCACTTAACACC -ACGGAATCTCGTGCACTTATCGAG -ACGGAATCTCGTGCACTTCTCCTT -ACGGAATCTCGTGCACTTCCTGTT -ACGGAATCTCGTGCACTTCGGTTT -ACGGAATCTCGTGCACTTGTGGTT -ACGGAATCTCGTGCACTTGCCTTT -ACGGAATCTCGTGCACTTGGTCTT -ACGGAATCTCGTGCACTTACGCTT -ACGGAATCTCGTGCACTTAGCGTT -ACGGAATCTCGTGCACTTTTCGTC -ACGGAATCTCGTGCACTTTCTCTC -ACGGAATCTCGTGCACTTTGGATC -ACGGAATCTCGTGCACTTCACTTC -ACGGAATCTCGTGCACTTGTACTC -ACGGAATCTCGTGCACTTGATGTC -ACGGAATCTCGTGCACTTACAGTC -ACGGAATCTCGTGCACTTTTGCTG -ACGGAATCTCGTGCACTTTCCATG -ACGGAATCTCGTGCACTTTGTGTG -ACGGAATCTCGTGCACTTCTAGTG -ACGGAATCTCGTGCACTTCATCTG -ACGGAATCTCGTGCACTTGAGTTG -ACGGAATCTCGTGCACTTAGACTG -ACGGAATCTCGTGCACTTTCGGTA -ACGGAATCTCGTGCACTTTGCCTA -ACGGAATCTCGTGCACTTCCACTA -ACGGAATCTCGTGCACTTGGAGTA -ACGGAATCTCGTGCACTTTCGTCT -ACGGAATCTCGTGCACTTTGCACT -ACGGAATCTCGTGCACTTCTGACT -ACGGAATCTCGTGCACTTCAACCT -ACGGAATCTCGTGCACTTGCTACT -ACGGAATCTCGTGCACTTGGATCT -ACGGAATCTCGTGCACTTAAGGCT -ACGGAATCTCGTGCACTTTCAACC -ACGGAATCTCGTGCACTTTGTTCC -ACGGAATCTCGTGCACTTATTCCC -ACGGAATCTCGTGCACTTTTCTCG -ACGGAATCTCGTGCACTTTAGACG -ACGGAATCTCGTGCACTTGTAACG -ACGGAATCTCGTGCACTTACTTCG -ACGGAATCTCGTGCACTTTACGCA -ACGGAATCTCGTGCACTTCTTGCA -ACGGAATCTCGTGCACTTCGAACA -ACGGAATCTCGTGCACTTCAGTCA -ACGGAATCTCGTGCACTTGATCCA -ACGGAATCTCGTGCACTTACGACA -ACGGAATCTCGTGCACTTAGCTCA -ACGGAATCTCGTGCACTTTCACGT -ACGGAATCTCGTGCACTTCGTAGT -ACGGAATCTCGTGCACTTGTCAGT -ACGGAATCTCGTGCACTTGAAGGT -ACGGAATCTCGTGCACTTAACCGT -ACGGAATCTCGTGCACTTTTGTGC -ACGGAATCTCGTGCACTTCTAAGC -ACGGAATCTCGTGCACTTACTAGC -ACGGAATCTCGTGCACTTAGATGC -ACGGAATCTCGTGCACTTTGAAGG -ACGGAATCTCGTGCACTTCAATGG -ACGGAATCTCGTGCACTTATGAGG -ACGGAATCTCGTGCACTTAATGGG -ACGGAATCTCGTGCACTTTCCTGA -ACGGAATCTCGTGCACTTTAGCGA -ACGGAATCTCGTGCACTTCACAGA -ACGGAATCTCGTGCACTTGCAAGA -ACGGAATCTCGTGCACTTGGTTGA -ACGGAATCTCGTGCACTTTCCGAT -ACGGAATCTCGTGCACTTTGGCAT -ACGGAATCTCGTGCACTTCGAGAT -ACGGAATCTCGTGCACTTTACCAC -ACGGAATCTCGTGCACTTCAGAAC -ACGGAATCTCGTGCACTTGTCTAC -ACGGAATCTCGTGCACTTACGTAC -ACGGAATCTCGTGCACTTAGTGAC -ACGGAATCTCGTGCACTTCTGTAG -ACGGAATCTCGTGCACTTCCTAAG -ACGGAATCTCGTGCACTTGTTCAG -ACGGAATCTCGTGCACTTGCATAG -ACGGAATCTCGTGCACTTGACAAG -ACGGAATCTCGTGCACTTAAGCAG -ACGGAATCTCGTGCACTTCGTCAA -ACGGAATCTCGTGCACTTGCTGAA -ACGGAATCTCGTGCACTTAGTACG -ACGGAATCTCGTGCACTTATCCGA -ACGGAATCTCGTGCACTTATGGGA -ACGGAATCTCGTGCACTTGTGCAA -ACGGAATCTCGTGCACTTGAGGAA -ACGGAATCTCGTGCACTTCAGGTA -ACGGAATCTCGTGCACTTGACTCT -ACGGAATCTCGTGCACTTAGTCCT -ACGGAATCTCGTGCACTTTAAGCC -ACGGAATCTCGTGCACTTATAGCC -ACGGAATCTCGTGCACTTTAACCG -ACGGAATCTCGTGCACTTATGCCA -ACGGAATCTCGTACACGAGGAAAC -ACGGAATCTCGTACACGAAACACC -ACGGAATCTCGTACACGAATCGAG -ACGGAATCTCGTACACGACTCCTT -ACGGAATCTCGTACACGACCTGTT -ACGGAATCTCGTACACGACGGTTT -ACGGAATCTCGTACACGAGTGGTT -ACGGAATCTCGTACACGAGCCTTT -ACGGAATCTCGTACACGAGGTCTT -ACGGAATCTCGTACACGAACGCTT -ACGGAATCTCGTACACGAAGCGTT -ACGGAATCTCGTACACGATTCGTC -ACGGAATCTCGTACACGATCTCTC -ACGGAATCTCGTACACGATGGATC -ACGGAATCTCGTACACGACACTTC -ACGGAATCTCGTACACGAGTACTC -ACGGAATCTCGTACACGAGATGTC -ACGGAATCTCGTACACGAACAGTC -ACGGAATCTCGTACACGATTGCTG -ACGGAATCTCGTACACGATCCATG -ACGGAATCTCGTACACGATGTGTG -ACGGAATCTCGTACACGACTAGTG -ACGGAATCTCGTACACGACATCTG -ACGGAATCTCGTACACGAGAGTTG -ACGGAATCTCGTACACGAAGACTG -ACGGAATCTCGTACACGATCGGTA -ACGGAATCTCGTACACGATGCCTA -ACGGAATCTCGTACACGACCACTA -ACGGAATCTCGTACACGAGGAGTA -ACGGAATCTCGTACACGATCGTCT -ACGGAATCTCGTACACGATGCACT -ACGGAATCTCGTACACGACTGACT -ACGGAATCTCGTACACGACAACCT -ACGGAATCTCGTACACGAGCTACT -ACGGAATCTCGTACACGAGGATCT -ACGGAATCTCGTACACGAAAGGCT -ACGGAATCTCGTACACGATCAACC -ACGGAATCTCGTACACGATGTTCC -ACGGAATCTCGTACACGAATTCCC -ACGGAATCTCGTACACGATTCTCG -ACGGAATCTCGTACACGATAGACG -ACGGAATCTCGTACACGAGTAACG -ACGGAATCTCGTACACGAACTTCG -ACGGAATCTCGTACACGATACGCA -ACGGAATCTCGTACACGACTTGCA -ACGGAATCTCGTACACGACGAACA -ACGGAATCTCGTACACGACAGTCA -ACGGAATCTCGTACACGAGATCCA -ACGGAATCTCGTACACGAACGACA -ACGGAATCTCGTACACGAAGCTCA -ACGGAATCTCGTACACGATCACGT -ACGGAATCTCGTACACGACGTAGT -ACGGAATCTCGTACACGAGTCAGT -ACGGAATCTCGTACACGAGAAGGT -ACGGAATCTCGTACACGAAACCGT -ACGGAATCTCGTACACGATTGTGC -ACGGAATCTCGTACACGACTAAGC -ACGGAATCTCGTACACGAACTAGC -ACGGAATCTCGTACACGAAGATGC -ACGGAATCTCGTACACGATGAAGG -ACGGAATCTCGTACACGACAATGG -ACGGAATCTCGTACACGAATGAGG -ACGGAATCTCGTACACGAAATGGG -ACGGAATCTCGTACACGATCCTGA -ACGGAATCTCGTACACGATAGCGA -ACGGAATCTCGTACACGACACAGA -ACGGAATCTCGTACACGAGCAAGA -ACGGAATCTCGTACACGAGGTTGA -ACGGAATCTCGTACACGATCCGAT -ACGGAATCTCGTACACGATGGCAT -ACGGAATCTCGTACACGACGAGAT -ACGGAATCTCGTACACGATACCAC -ACGGAATCTCGTACACGACAGAAC -ACGGAATCTCGTACACGAGTCTAC -ACGGAATCTCGTACACGAACGTAC -ACGGAATCTCGTACACGAAGTGAC -ACGGAATCTCGTACACGACTGTAG -ACGGAATCTCGTACACGACCTAAG -ACGGAATCTCGTACACGAGTTCAG -ACGGAATCTCGTACACGAGCATAG -ACGGAATCTCGTACACGAGACAAG -ACGGAATCTCGTACACGAAAGCAG -ACGGAATCTCGTACACGACGTCAA -ACGGAATCTCGTACACGAGCTGAA -ACGGAATCTCGTACACGAAGTACG -ACGGAATCTCGTACACGAATCCGA -ACGGAATCTCGTACACGAATGGGA -ACGGAATCTCGTACACGAGTGCAA -ACGGAATCTCGTACACGAGAGGAA -ACGGAATCTCGTACACGACAGGTA -ACGGAATCTCGTACACGAGACTCT -ACGGAATCTCGTACACGAAGTCCT -ACGGAATCTCGTACACGATAAGCC -ACGGAATCTCGTACACGAATAGCC -ACGGAATCTCGTACACGATAACCG -ACGGAATCTCGTACACGAATGCCA -ACGGAATCTCGTTCACAGGGAAAC -ACGGAATCTCGTTCACAGAACACC -ACGGAATCTCGTTCACAGATCGAG -ACGGAATCTCGTTCACAGCTCCTT -ACGGAATCTCGTTCACAGCCTGTT -ACGGAATCTCGTTCACAGCGGTTT -ACGGAATCTCGTTCACAGGTGGTT -ACGGAATCTCGTTCACAGGCCTTT -ACGGAATCTCGTTCACAGGGTCTT -ACGGAATCTCGTTCACAGACGCTT -ACGGAATCTCGTTCACAGAGCGTT -ACGGAATCTCGTTCACAGTTCGTC -ACGGAATCTCGTTCACAGTCTCTC -ACGGAATCTCGTTCACAGTGGATC -ACGGAATCTCGTTCACAGCACTTC -ACGGAATCTCGTTCACAGGTACTC -ACGGAATCTCGTTCACAGGATGTC -ACGGAATCTCGTTCACAGACAGTC -ACGGAATCTCGTTCACAGTTGCTG -ACGGAATCTCGTTCACAGTCCATG -ACGGAATCTCGTTCACAGTGTGTG -ACGGAATCTCGTTCACAGCTAGTG -ACGGAATCTCGTTCACAGCATCTG -ACGGAATCTCGTTCACAGGAGTTG -ACGGAATCTCGTTCACAGAGACTG -ACGGAATCTCGTTCACAGTCGGTA -ACGGAATCTCGTTCACAGTGCCTA -ACGGAATCTCGTTCACAGCCACTA -ACGGAATCTCGTTCACAGGGAGTA -ACGGAATCTCGTTCACAGTCGTCT -ACGGAATCTCGTTCACAGTGCACT -ACGGAATCTCGTTCACAGCTGACT -ACGGAATCTCGTTCACAGCAACCT -ACGGAATCTCGTTCACAGGCTACT -ACGGAATCTCGTTCACAGGGATCT -ACGGAATCTCGTTCACAGAAGGCT -ACGGAATCTCGTTCACAGTCAACC -ACGGAATCTCGTTCACAGTGTTCC -ACGGAATCTCGTTCACAGATTCCC -ACGGAATCTCGTTCACAGTTCTCG -ACGGAATCTCGTTCACAGTAGACG -ACGGAATCTCGTTCACAGGTAACG -ACGGAATCTCGTTCACAGACTTCG -ACGGAATCTCGTTCACAGTACGCA -ACGGAATCTCGTTCACAGCTTGCA -ACGGAATCTCGTTCACAGCGAACA -ACGGAATCTCGTTCACAGCAGTCA -ACGGAATCTCGTTCACAGGATCCA -ACGGAATCTCGTTCACAGACGACA -ACGGAATCTCGTTCACAGAGCTCA -ACGGAATCTCGTTCACAGTCACGT -ACGGAATCTCGTTCACAGCGTAGT -ACGGAATCTCGTTCACAGGTCAGT -ACGGAATCTCGTTCACAGGAAGGT -ACGGAATCTCGTTCACAGAACCGT -ACGGAATCTCGTTCACAGTTGTGC -ACGGAATCTCGTTCACAGCTAAGC -ACGGAATCTCGTTCACAGACTAGC -ACGGAATCTCGTTCACAGAGATGC -ACGGAATCTCGTTCACAGTGAAGG -ACGGAATCTCGTTCACAGCAATGG -ACGGAATCTCGTTCACAGATGAGG -ACGGAATCTCGTTCACAGAATGGG -ACGGAATCTCGTTCACAGTCCTGA -ACGGAATCTCGTTCACAGTAGCGA -ACGGAATCTCGTTCACAGCACAGA -ACGGAATCTCGTTCACAGGCAAGA -ACGGAATCTCGTTCACAGGGTTGA -ACGGAATCTCGTTCACAGTCCGAT -ACGGAATCTCGTTCACAGTGGCAT -ACGGAATCTCGTTCACAGCGAGAT -ACGGAATCTCGTTCACAGTACCAC -ACGGAATCTCGTTCACAGCAGAAC -ACGGAATCTCGTTCACAGGTCTAC -ACGGAATCTCGTTCACAGACGTAC -ACGGAATCTCGTTCACAGAGTGAC -ACGGAATCTCGTTCACAGCTGTAG -ACGGAATCTCGTTCACAGCCTAAG -ACGGAATCTCGTTCACAGGTTCAG -ACGGAATCTCGTTCACAGGCATAG -ACGGAATCTCGTTCACAGGACAAG -ACGGAATCTCGTTCACAGAAGCAG -ACGGAATCTCGTTCACAGCGTCAA -ACGGAATCTCGTTCACAGGCTGAA -ACGGAATCTCGTTCACAGAGTACG -ACGGAATCTCGTTCACAGATCCGA -ACGGAATCTCGTTCACAGATGGGA -ACGGAATCTCGTTCACAGGTGCAA -ACGGAATCTCGTTCACAGGAGGAA -ACGGAATCTCGTTCACAGCAGGTA -ACGGAATCTCGTTCACAGGACTCT -ACGGAATCTCGTTCACAGAGTCCT -ACGGAATCTCGTTCACAGTAAGCC -ACGGAATCTCGTTCACAGATAGCC -ACGGAATCTCGTTCACAGTAACCG -ACGGAATCTCGTTCACAGATGCCA -ACGGAATCTCGTCCAGATGGAAAC -ACGGAATCTCGTCCAGATAACACC -ACGGAATCTCGTCCAGATATCGAG -ACGGAATCTCGTCCAGATCTCCTT -ACGGAATCTCGTCCAGATCCTGTT -ACGGAATCTCGTCCAGATCGGTTT -ACGGAATCTCGTCCAGATGTGGTT -ACGGAATCTCGTCCAGATGCCTTT -ACGGAATCTCGTCCAGATGGTCTT -ACGGAATCTCGTCCAGATACGCTT -ACGGAATCTCGTCCAGATAGCGTT -ACGGAATCTCGTCCAGATTTCGTC -ACGGAATCTCGTCCAGATTCTCTC -ACGGAATCTCGTCCAGATTGGATC -ACGGAATCTCGTCCAGATCACTTC -ACGGAATCTCGTCCAGATGTACTC -ACGGAATCTCGTCCAGATGATGTC -ACGGAATCTCGTCCAGATACAGTC -ACGGAATCTCGTCCAGATTTGCTG -ACGGAATCTCGTCCAGATTCCATG -ACGGAATCTCGTCCAGATTGTGTG -ACGGAATCTCGTCCAGATCTAGTG -ACGGAATCTCGTCCAGATCATCTG -ACGGAATCTCGTCCAGATGAGTTG -ACGGAATCTCGTCCAGATAGACTG -ACGGAATCTCGTCCAGATTCGGTA -ACGGAATCTCGTCCAGATTGCCTA -ACGGAATCTCGTCCAGATCCACTA -ACGGAATCTCGTCCAGATGGAGTA -ACGGAATCTCGTCCAGATTCGTCT -ACGGAATCTCGTCCAGATTGCACT -ACGGAATCTCGTCCAGATCTGACT -ACGGAATCTCGTCCAGATCAACCT -ACGGAATCTCGTCCAGATGCTACT -ACGGAATCTCGTCCAGATGGATCT -ACGGAATCTCGTCCAGATAAGGCT -ACGGAATCTCGTCCAGATTCAACC -ACGGAATCTCGTCCAGATTGTTCC -ACGGAATCTCGTCCAGATATTCCC -ACGGAATCTCGTCCAGATTTCTCG -ACGGAATCTCGTCCAGATTAGACG -ACGGAATCTCGTCCAGATGTAACG -ACGGAATCTCGTCCAGATACTTCG -ACGGAATCTCGTCCAGATTACGCA -ACGGAATCTCGTCCAGATCTTGCA -ACGGAATCTCGTCCAGATCGAACA -ACGGAATCTCGTCCAGATCAGTCA -ACGGAATCTCGTCCAGATGATCCA -ACGGAATCTCGTCCAGATACGACA -ACGGAATCTCGTCCAGATAGCTCA -ACGGAATCTCGTCCAGATTCACGT -ACGGAATCTCGTCCAGATCGTAGT -ACGGAATCTCGTCCAGATGTCAGT -ACGGAATCTCGTCCAGATGAAGGT -ACGGAATCTCGTCCAGATAACCGT -ACGGAATCTCGTCCAGATTTGTGC -ACGGAATCTCGTCCAGATCTAAGC -ACGGAATCTCGTCCAGATACTAGC -ACGGAATCTCGTCCAGATAGATGC -ACGGAATCTCGTCCAGATTGAAGG -ACGGAATCTCGTCCAGATCAATGG -ACGGAATCTCGTCCAGATATGAGG -ACGGAATCTCGTCCAGATAATGGG -ACGGAATCTCGTCCAGATTCCTGA -ACGGAATCTCGTCCAGATTAGCGA -ACGGAATCTCGTCCAGATCACAGA -ACGGAATCTCGTCCAGATGCAAGA -ACGGAATCTCGTCCAGATGGTTGA -ACGGAATCTCGTCCAGATTCCGAT -ACGGAATCTCGTCCAGATTGGCAT -ACGGAATCTCGTCCAGATCGAGAT -ACGGAATCTCGTCCAGATTACCAC -ACGGAATCTCGTCCAGATCAGAAC -ACGGAATCTCGTCCAGATGTCTAC -ACGGAATCTCGTCCAGATACGTAC -ACGGAATCTCGTCCAGATAGTGAC -ACGGAATCTCGTCCAGATCTGTAG -ACGGAATCTCGTCCAGATCCTAAG -ACGGAATCTCGTCCAGATGTTCAG -ACGGAATCTCGTCCAGATGCATAG -ACGGAATCTCGTCCAGATGACAAG -ACGGAATCTCGTCCAGATAAGCAG -ACGGAATCTCGTCCAGATCGTCAA -ACGGAATCTCGTCCAGATGCTGAA -ACGGAATCTCGTCCAGATAGTACG -ACGGAATCTCGTCCAGATATCCGA -ACGGAATCTCGTCCAGATATGGGA -ACGGAATCTCGTCCAGATGTGCAA -ACGGAATCTCGTCCAGATGAGGAA -ACGGAATCTCGTCCAGATCAGGTA -ACGGAATCTCGTCCAGATGACTCT -ACGGAATCTCGTCCAGATAGTCCT -ACGGAATCTCGTCCAGATTAAGCC -ACGGAATCTCGTCCAGATATAGCC -ACGGAATCTCGTCCAGATTAACCG -ACGGAATCTCGTCCAGATATGCCA -ACGGAATCTCGTACAACGGGAAAC -ACGGAATCTCGTACAACGAACACC -ACGGAATCTCGTACAACGATCGAG -ACGGAATCTCGTACAACGCTCCTT -ACGGAATCTCGTACAACGCCTGTT -ACGGAATCTCGTACAACGCGGTTT -ACGGAATCTCGTACAACGGTGGTT -ACGGAATCTCGTACAACGGCCTTT -ACGGAATCTCGTACAACGGGTCTT -ACGGAATCTCGTACAACGACGCTT -ACGGAATCTCGTACAACGAGCGTT -ACGGAATCTCGTACAACGTTCGTC -ACGGAATCTCGTACAACGTCTCTC -ACGGAATCTCGTACAACGTGGATC -ACGGAATCTCGTACAACGCACTTC -ACGGAATCTCGTACAACGGTACTC -ACGGAATCTCGTACAACGGATGTC -ACGGAATCTCGTACAACGACAGTC -ACGGAATCTCGTACAACGTTGCTG -ACGGAATCTCGTACAACGTCCATG -ACGGAATCTCGTACAACGTGTGTG -ACGGAATCTCGTACAACGCTAGTG -ACGGAATCTCGTACAACGCATCTG -ACGGAATCTCGTACAACGGAGTTG -ACGGAATCTCGTACAACGAGACTG -ACGGAATCTCGTACAACGTCGGTA -ACGGAATCTCGTACAACGTGCCTA -ACGGAATCTCGTACAACGCCACTA -ACGGAATCTCGTACAACGGGAGTA -ACGGAATCTCGTACAACGTCGTCT -ACGGAATCTCGTACAACGTGCACT -ACGGAATCTCGTACAACGCTGACT -ACGGAATCTCGTACAACGCAACCT -ACGGAATCTCGTACAACGGCTACT -ACGGAATCTCGTACAACGGGATCT -ACGGAATCTCGTACAACGAAGGCT -ACGGAATCTCGTACAACGTCAACC -ACGGAATCTCGTACAACGTGTTCC -ACGGAATCTCGTACAACGATTCCC -ACGGAATCTCGTACAACGTTCTCG -ACGGAATCTCGTACAACGTAGACG -ACGGAATCTCGTACAACGGTAACG -ACGGAATCTCGTACAACGACTTCG -ACGGAATCTCGTACAACGTACGCA -ACGGAATCTCGTACAACGCTTGCA -ACGGAATCTCGTACAACGCGAACA -ACGGAATCTCGTACAACGCAGTCA -ACGGAATCTCGTACAACGGATCCA -ACGGAATCTCGTACAACGACGACA -ACGGAATCTCGTACAACGAGCTCA -ACGGAATCTCGTACAACGTCACGT -ACGGAATCTCGTACAACGCGTAGT -ACGGAATCTCGTACAACGGTCAGT -ACGGAATCTCGTACAACGGAAGGT -ACGGAATCTCGTACAACGAACCGT -ACGGAATCTCGTACAACGTTGTGC -ACGGAATCTCGTACAACGCTAAGC -ACGGAATCTCGTACAACGACTAGC -ACGGAATCTCGTACAACGAGATGC -ACGGAATCTCGTACAACGTGAAGG -ACGGAATCTCGTACAACGCAATGG -ACGGAATCTCGTACAACGATGAGG -ACGGAATCTCGTACAACGAATGGG -ACGGAATCTCGTACAACGTCCTGA -ACGGAATCTCGTACAACGTAGCGA -ACGGAATCTCGTACAACGCACAGA -ACGGAATCTCGTACAACGGCAAGA -ACGGAATCTCGTACAACGGGTTGA -ACGGAATCTCGTACAACGTCCGAT -ACGGAATCTCGTACAACGTGGCAT -ACGGAATCTCGTACAACGCGAGAT -ACGGAATCTCGTACAACGTACCAC -ACGGAATCTCGTACAACGCAGAAC -ACGGAATCTCGTACAACGGTCTAC -ACGGAATCTCGTACAACGACGTAC -ACGGAATCTCGTACAACGAGTGAC -ACGGAATCTCGTACAACGCTGTAG -ACGGAATCTCGTACAACGCCTAAG -ACGGAATCTCGTACAACGGTTCAG -ACGGAATCTCGTACAACGGCATAG -ACGGAATCTCGTACAACGGACAAG -ACGGAATCTCGTACAACGAAGCAG -ACGGAATCTCGTACAACGCGTCAA -ACGGAATCTCGTACAACGGCTGAA -ACGGAATCTCGTACAACGAGTACG -ACGGAATCTCGTACAACGATCCGA -ACGGAATCTCGTACAACGATGGGA -ACGGAATCTCGTACAACGGTGCAA -ACGGAATCTCGTACAACGGAGGAA -ACGGAATCTCGTACAACGCAGGTA -ACGGAATCTCGTACAACGGACTCT -ACGGAATCTCGTACAACGAGTCCT -ACGGAATCTCGTACAACGTAAGCC -ACGGAATCTCGTACAACGATAGCC -ACGGAATCTCGTACAACGTAACCG -ACGGAATCTCGTACAACGATGCCA -ACGGAATCTCGTTCAAGCGGAAAC -ACGGAATCTCGTTCAAGCAACACC -ACGGAATCTCGTTCAAGCATCGAG -ACGGAATCTCGTTCAAGCCTCCTT -ACGGAATCTCGTTCAAGCCCTGTT -ACGGAATCTCGTTCAAGCCGGTTT -ACGGAATCTCGTTCAAGCGTGGTT -ACGGAATCTCGTTCAAGCGCCTTT -ACGGAATCTCGTTCAAGCGGTCTT -ACGGAATCTCGTTCAAGCACGCTT -ACGGAATCTCGTTCAAGCAGCGTT -ACGGAATCTCGTTCAAGCTTCGTC -ACGGAATCTCGTTCAAGCTCTCTC -ACGGAATCTCGTTCAAGCTGGATC -ACGGAATCTCGTTCAAGCCACTTC -ACGGAATCTCGTTCAAGCGTACTC -ACGGAATCTCGTTCAAGCGATGTC -ACGGAATCTCGTTCAAGCACAGTC -ACGGAATCTCGTTCAAGCTTGCTG -ACGGAATCTCGTTCAAGCTCCATG -ACGGAATCTCGTTCAAGCTGTGTG -ACGGAATCTCGTTCAAGCCTAGTG -ACGGAATCTCGTTCAAGCCATCTG -ACGGAATCTCGTTCAAGCGAGTTG -ACGGAATCTCGTTCAAGCAGACTG -ACGGAATCTCGTTCAAGCTCGGTA -ACGGAATCTCGTTCAAGCTGCCTA -ACGGAATCTCGTTCAAGCCCACTA -ACGGAATCTCGTTCAAGCGGAGTA -ACGGAATCTCGTTCAAGCTCGTCT -ACGGAATCTCGTTCAAGCTGCACT -ACGGAATCTCGTTCAAGCCTGACT -ACGGAATCTCGTTCAAGCCAACCT -ACGGAATCTCGTTCAAGCGCTACT -ACGGAATCTCGTTCAAGCGGATCT -ACGGAATCTCGTTCAAGCAAGGCT -ACGGAATCTCGTTCAAGCTCAACC -ACGGAATCTCGTTCAAGCTGTTCC -ACGGAATCTCGTTCAAGCATTCCC -ACGGAATCTCGTTCAAGCTTCTCG -ACGGAATCTCGTTCAAGCTAGACG -ACGGAATCTCGTTCAAGCGTAACG -ACGGAATCTCGTTCAAGCACTTCG -ACGGAATCTCGTTCAAGCTACGCA -ACGGAATCTCGTTCAAGCCTTGCA -ACGGAATCTCGTTCAAGCCGAACA -ACGGAATCTCGTTCAAGCCAGTCA -ACGGAATCTCGTTCAAGCGATCCA -ACGGAATCTCGTTCAAGCACGACA -ACGGAATCTCGTTCAAGCAGCTCA -ACGGAATCTCGTTCAAGCTCACGT -ACGGAATCTCGTTCAAGCCGTAGT -ACGGAATCTCGTTCAAGCGTCAGT -ACGGAATCTCGTTCAAGCGAAGGT -ACGGAATCTCGTTCAAGCAACCGT -ACGGAATCTCGTTCAAGCTTGTGC -ACGGAATCTCGTTCAAGCCTAAGC -ACGGAATCTCGTTCAAGCACTAGC -ACGGAATCTCGTTCAAGCAGATGC -ACGGAATCTCGTTCAAGCTGAAGG -ACGGAATCTCGTTCAAGCCAATGG -ACGGAATCTCGTTCAAGCATGAGG -ACGGAATCTCGTTCAAGCAATGGG -ACGGAATCTCGTTCAAGCTCCTGA -ACGGAATCTCGTTCAAGCTAGCGA -ACGGAATCTCGTTCAAGCCACAGA -ACGGAATCTCGTTCAAGCGCAAGA -ACGGAATCTCGTTCAAGCGGTTGA -ACGGAATCTCGTTCAAGCTCCGAT -ACGGAATCTCGTTCAAGCTGGCAT -ACGGAATCTCGTTCAAGCCGAGAT -ACGGAATCTCGTTCAAGCTACCAC -ACGGAATCTCGTTCAAGCCAGAAC -ACGGAATCTCGTTCAAGCGTCTAC -ACGGAATCTCGTTCAAGCACGTAC -ACGGAATCTCGTTCAAGCAGTGAC -ACGGAATCTCGTTCAAGCCTGTAG -ACGGAATCTCGTTCAAGCCCTAAG -ACGGAATCTCGTTCAAGCGTTCAG -ACGGAATCTCGTTCAAGCGCATAG -ACGGAATCTCGTTCAAGCGACAAG -ACGGAATCTCGTTCAAGCAAGCAG -ACGGAATCTCGTTCAAGCCGTCAA -ACGGAATCTCGTTCAAGCGCTGAA -ACGGAATCTCGTTCAAGCAGTACG -ACGGAATCTCGTTCAAGCATCCGA -ACGGAATCTCGTTCAAGCATGGGA -ACGGAATCTCGTTCAAGCGTGCAA -ACGGAATCTCGTTCAAGCGAGGAA -ACGGAATCTCGTTCAAGCCAGGTA -ACGGAATCTCGTTCAAGCGACTCT -ACGGAATCTCGTTCAAGCAGTCCT -ACGGAATCTCGTTCAAGCTAAGCC -ACGGAATCTCGTTCAAGCATAGCC -ACGGAATCTCGTTCAAGCTAACCG -ACGGAATCTCGTTCAAGCATGCCA -ACGGAATCTCGTCGTTCAGGAAAC -ACGGAATCTCGTCGTTCAAACACC -ACGGAATCTCGTCGTTCAATCGAG -ACGGAATCTCGTCGTTCACTCCTT -ACGGAATCTCGTCGTTCACCTGTT -ACGGAATCTCGTCGTTCACGGTTT -ACGGAATCTCGTCGTTCAGTGGTT -ACGGAATCTCGTCGTTCAGCCTTT -ACGGAATCTCGTCGTTCAGGTCTT -ACGGAATCTCGTCGTTCAACGCTT -ACGGAATCTCGTCGTTCAAGCGTT -ACGGAATCTCGTCGTTCATTCGTC -ACGGAATCTCGTCGTTCATCTCTC -ACGGAATCTCGTCGTTCATGGATC -ACGGAATCTCGTCGTTCACACTTC -ACGGAATCTCGTCGTTCAGTACTC -ACGGAATCTCGTCGTTCAGATGTC -ACGGAATCTCGTCGTTCAACAGTC -ACGGAATCTCGTCGTTCATTGCTG -ACGGAATCTCGTCGTTCATCCATG -ACGGAATCTCGTCGTTCATGTGTG -ACGGAATCTCGTCGTTCACTAGTG -ACGGAATCTCGTCGTTCACATCTG -ACGGAATCTCGTCGTTCAGAGTTG -ACGGAATCTCGTCGTTCAAGACTG -ACGGAATCTCGTCGTTCATCGGTA -ACGGAATCTCGTCGTTCATGCCTA -ACGGAATCTCGTCGTTCACCACTA -ACGGAATCTCGTCGTTCAGGAGTA -ACGGAATCTCGTCGTTCATCGTCT -ACGGAATCTCGTCGTTCATGCACT -ACGGAATCTCGTCGTTCACTGACT -ACGGAATCTCGTCGTTCACAACCT -ACGGAATCTCGTCGTTCAGCTACT -ACGGAATCTCGTCGTTCAGGATCT -ACGGAATCTCGTCGTTCAAAGGCT -ACGGAATCTCGTCGTTCATCAACC -ACGGAATCTCGTCGTTCATGTTCC -ACGGAATCTCGTCGTTCAATTCCC -ACGGAATCTCGTCGTTCATTCTCG -ACGGAATCTCGTCGTTCATAGACG -ACGGAATCTCGTCGTTCAGTAACG -ACGGAATCTCGTCGTTCAACTTCG -ACGGAATCTCGTCGTTCATACGCA -ACGGAATCTCGTCGTTCACTTGCA -ACGGAATCTCGTCGTTCACGAACA -ACGGAATCTCGTCGTTCACAGTCA -ACGGAATCTCGTCGTTCAGATCCA -ACGGAATCTCGTCGTTCAACGACA -ACGGAATCTCGTCGTTCAAGCTCA -ACGGAATCTCGTCGTTCATCACGT -ACGGAATCTCGTCGTTCACGTAGT -ACGGAATCTCGTCGTTCAGTCAGT -ACGGAATCTCGTCGTTCAGAAGGT -ACGGAATCTCGTCGTTCAAACCGT -ACGGAATCTCGTCGTTCATTGTGC -ACGGAATCTCGTCGTTCACTAAGC -ACGGAATCTCGTCGTTCAACTAGC -ACGGAATCTCGTCGTTCAAGATGC -ACGGAATCTCGTCGTTCATGAAGG -ACGGAATCTCGTCGTTCACAATGG -ACGGAATCTCGTCGTTCAATGAGG -ACGGAATCTCGTCGTTCAAATGGG -ACGGAATCTCGTCGTTCATCCTGA -ACGGAATCTCGTCGTTCATAGCGA -ACGGAATCTCGTCGTTCACACAGA -ACGGAATCTCGTCGTTCAGCAAGA -ACGGAATCTCGTCGTTCAGGTTGA -ACGGAATCTCGTCGTTCATCCGAT -ACGGAATCTCGTCGTTCATGGCAT -ACGGAATCTCGTCGTTCACGAGAT -ACGGAATCTCGTCGTTCATACCAC -ACGGAATCTCGTCGTTCACAGAAC -ACGGAATCTCGTCGTTCAGTCTAC -ACGGAATCTCGTCGTTCAACGTAC -ACGGAATCTCGTCGTTCAAGTGAC -ACGGAATCTCGTCGTTCACTGTAG -ACGGAATCTCGTCGTTCACCTAAG -ACGGAATCTCGTCGTTCAGTTCAG -ACGGAATCTCGTCGTTCAGCATAG -ACGGAATCTCGTCGTTCAGACAAG -ACGGAATCTCGTCGTTCAAAGCAG -ACGGAATCTCGTCGTTCACGTCAA -ACGGAATCTCGTCGTTCAGCTGAA -ACGGAATCTCGTCGTTCAAGTACG -ACGGAATCTCGTCGTTCAATCCGA -ACGGAATCTCGTCGTTCAATGGGA -ACGGAATCTCGTCGTTCAGTGCAA -ACGGAATCTCGTCGTTCAGAGGAA -ACGGAATCTCGTCGTTCACAGGTA -ACGGAATCTCGTCGTTCAGACTCT -ACGGAATCTCGTCGTTCAAGTCCT -ACGGAATCTCGTCGTTCATAAGCC -ACGGAATCTCGTCGTTCAATAGCC -ACGGAATCTCGTCGTTCATAACCG -ACGGAATCTCGTCGTTCAATGCCA -ACGGAATCTCGTAGTCGTGGAAAC -ACGGAATCTCGTAGTCGTAACACC -ACGGAATCTCGTAGTCGTATCGAG -ACGGAATCTCGTAGTCGTCTCCTT -ACGGAATCTCGTAGTCGTCCTGTT -ACGGAATCTCGTAGTCGTCGGTTT -ACGGAATCTCGTAGTCGTGTGGTT -ACGGAATCTCGTAGTCGTGCCTTT -ACGGAATCTCGTAGTCGTGGTCTT -ACGGAATCTCGTAGTCGTACGCTT -ACGGAATCTCGTAGTCGTAGCGTT -ACGGAATCTCGTAGTCGTTTCGTC -ACGGAATCTCGTAGTCGTTCTCTC -ACGGAATCTCGTAGTCGTTGGATC -ACGGAATCTCGTAGTCGTCACTTC -ACGGAATCTCGTAGTCGTGTACTC -ACGGAATCTCGTAGTCGTGATGTC -ACGGAATCTCGTAGTCGTACAGTC -ACGGAATCTCGTAGTCGTTTGCTG -ACGGAATCTCGTAGTCGTTCCATG -ACGGAATCTCGTAGTCGTTGTGTG -ACGGAATCTCGTAGTCGTCTAGTG -ACGGAATCTCGTAGTCGTCATCTG -ACGGAATCTCGTAGTCGTGAGTTG -ACGGAATCTCGTAGTCGTAGACTG -ACGGAATCTCGTAGTCGTTCGGTA -ACGGAATCTCGTAGTCGTTGCCTA -ACGGAATCTCGTAGTCGTCCACTA -ACGGAATCTCGTAGTCGTGGAGTA -ACGGAATCTCGTAGTCGTTCGTCT -ACGGAATCTCGTAGTCGTTGCACT -ACGGAATCTCGTAGTCGTCTGACT -ACGGAATCTCGTAGTCGTCAACCT -ACGGAATCTCGTAGTCGTGCTACT -ACGGAATCTCGTAGTCGTGGATCT -ACGGAATCTCGTAGTCGTAAGGCT -ACGGAATCTCGTAGTCGTTCAACC -ACGGAATCTCGTAGTCGTTGTTCC -ACGGAATCTCGTAGTCGTATTCCC -ACGGAATCTCGTAGTCGTTTCTCG -ACGGAATCTCGTAGTCGTTAGACG -ACGGAATCTCGTAGTCGTGTAACG -ACGGAATCTCGTAGTCGTACTTCG -ACGGAATCTCGTAGTCGTTACGCA -ACGGAATCTCGTAGTCGTCTTGCA -ACGGAATCTCGTAGTCGTCGAACA -ACGGAATCTCGTAGTCGTCAGTCA -ACGGAATCTCGTAGTCGTGATCCA -ACGGAATCTCGTAGTCGTACGACA -ACGGAATCTCGTAGTCGTAGCTCA -ACGGAATCTCGTAGTCGTTCACGT -ACGGAATCTCGTAGTCGTCGTAGT -ACGGAATCTCGTAGTCGTGTCAGT -ACGGAATCTCGTAGTCGTGAAGGT -ACGGAATCTCGTAGTCGTAACCGT -ACGGAATCTCGTAGTCGTTTGTGC -ACGGAATCTCGTAGTCGTCTAAGC -ACGGAATCTCGTAGTCGTACTAGC -ACGGAATCTCGTAGTCGTAGATGC -ACGGAATCTCGTAGTCGTTGAAGG -ACGGAATCTCGTAGTCGTCAATGG -ACGGAATCTCGTAGTCGTATGAGG -ACGGAATCTCGTAGTCGTAATGGG -ACGGAATCTCGTAGTCGTTCCTGA -ACGGAATCTCGTAGTCGTTAGCGA -ACGGAATCTCGTAGTCGTCACAGA -ACGGAATCTCGTAGTCGTGCAAGA -ACGGAATCTCGTAGTCGTGGTTGA -ACGGAATCTCGTAGTCGTTCCGAT -ACGGAATCTCGTAGTCGTTGGCAT -ACGGAATCTCGTAGTCGTCGAGAT -ACGGAATCTCGTAGTCGTTACCAC -ACGGAATCTCGTAGTCGTCAGAAC -ACGGAATCTCGTAGTCGTGTCTAC -ACGGAATCTCGTAGTCGTACGTAC -ACGGAATCTCGTAGTCGTAGTGAC -ACGGAATCTCGTAGTCGTCTGTAG -ACGGAATCTCGTAGTCGTCCTAAG -ACGGAATCTCGTAGTCGTGTTCAG -ACGGAATCTCGTAGTCGTGCATAG -ACGGAATCTCGTAGTCGTGACAAG -ACGGAATCTCGTAGTCGTAAGCAG -ACGGAATCTCGTAGTCGTCGTCAA -ACGGAATCTCGTAGTCGTGCTGAA -ACGGAATCTCGTAGTCGTAGTACG -ACGGAATCTCGTAGTCGTATCCGA -ACGGAATCTCGTAGTCGTATGGGA -ACGGAATCTCGTAGTCGTGTGCAA -ACGGAATCTCGTAGTCGTGAGGAA -ACGGAATCTCGTAGTCGTCAGGTA -ACGGAATCTCGTAGTCGTGACTCT -ACGGAATCTCGTAGTCGTAGTCCT -ACGGAATCTCGTAGTCGTTAAGCC -ACGGAATCTCGTAGTCGTATAGCC -ACGGAATCTCGTAGTCGTTAACCG -ACGGAATCTCGTAGTCGTATGCCA -ACGGAATCTCGTAGTGTCGGAAAC -ACGGAATCTCGTAGTGTCAACACC -ACGGAATCTCGTAGTGTCATCGAG -ACGGAATCTCGTAGTGTCCTCCTT -ACGGAATCTCGTAGTGTCCCTGTT -ACGGAATCTCGTAGTGTCCGGTTT -ACGGAATCTCGTAGTGTCGTGGTT -ACGGAATCTCGTAGTGTCGCCTTT -ACGGAATCTCGTAGTGTCGGTCTT -ACGGAATCTCGTAGTGTCACGCTT -ACGGAATCTCGTAGTGTCAGCGTT -ACGGAATCTCGTAGTGTCTTCGTC -ACGGAATCTCGTAGTGTCTCTCTC -ACGGAATCTCGTAGTGTCTGGATC -ACGGAATCTCGTAGTGTCCACTTC -ACGGAATCTCGTAGTGTCGTACTC -ACGGAATCTCGTAGTGTCGATGTC -ACGGAATCTCGTAGTGTCACAGTC -ACGGAATCTCGTAGTGTCTTGCTG -ACGGAATCTCGTAGTGTCTCCATG -ACGGAATCTCGTAGTGTCTGTGTG -ACGGAATCTCGTAGTGTCCTAGTG -ACGGAATCTCGTAGTGTCCATCTG -ACGGAATCTCGTAGTGTCGAGTTG -ACGGAATCTCGTAGTGTCAGACTG -ACGGAATCTCGTAGTGTCTCGGTA -ACGGAATCTCGTAGTGTCTGCCTA -ACGGAATCTCGTAGTGTCCCACTA -ACGGAATCTCGTAGTGTCGGAGTA -ACGGAATCTCGTAGTGTCTCGTCT -ACGGAATCTCGTAGTGTCTGCACT -ACGGAATCTCGTAGTGTCCTGACT -ACGGAATCTCGTAGTGTCCAACCT -ACGGAATCTCGTAGTGTCGCTACT -ACGGAATCTCGTAGTGTCGGATCT -ACGGAATCTCGTAGTGTCAAGGCT -ACGGAATCTCGTAGTGTCTCAACC -ACGGAATCTCGTAGTGTCTGTTCC -ACGGAATCTCGTAGTGTCATTCCC -ACGGAATCTCGTAGTGTCTTCTCG -ACGGAATCTCGTAGTGTCTAGACG -ACGGAATCTCGTAGTGTCGTAACG -ACGGAATCTCGTAGTGTCACTTCG -ACGGAATCTCGTAGTGTCTACGCA -ACGGAATCTCGTAGTGTCCTTGCA -ACGGAATCTCGTAGTGTCCGAACA -ACGGAATCTCGTAGTGTCCAGTCA -ACGGAATCTCGTAGTGTCGATCCA -ACGGAATCTCGTAGTGTCACGACA -ACGGAATCTCGTAGTGTCAGCTCA -ACGGAATCTCGTAGTGTCTCACGT -ACGGAATCTCGTAGTGTCCGTAGT -ACGGAATCTCGTAGTGTCGTCAGT -ACGGAATCTCGTAGTGTCGAAGGT -ACGGAATCTCGTAGTGTCAACCGT -ACGGAATCTCGTAGTGTCTTGTGC -ACGGAATCTCGTAGTGTCCTAAGC -ACGGAATCTCGTAGTGTCACTAGC -ACGGAATCTCGTAGTGTCAGATGC -ACGGAATCTCGTAGTGTCTGAAGG -ACGGAATCTCGTAGTGTCCAATGG -ACGGAATCTCGTAGTGTCATGAGG -ACGGAATCTCGTAGTGTCAATGGG -ACGGAATCTCGTAGTGTCTCCTGA -ACGGAATCTCGTAGTGTCTAGCGA -ACGGAATCTCGTAGTGTCCACAGA -ACGGAATCTCGTAGTGTCGCAAGA -ACGGAATCTCGTAGTGTCGGTTGA -ACGGAATCTCGTAGTGTCTCCGAT -ACGGAATCTCGTAGTGTCTGGCAT -ACGGAATCTCGTAGTGTCCGAGAT -ACGGAATCTCGTAGTGTCTACCAC -ACGGAATCTCGTAGTGTCCAGAAC -ACGGAATCTCGTAGTGTCGTCTAC -ACGGAATCTCGTAGTGTCACGTAC -ACGGAATCTCGTAGTGTCAGTGAC -ACGGAATCTCGTAGTGTCCTGTAG -ACGGAATCTCGTAGTGTCCCTAAG -ACGGAATCTCGTAGTGTCGTTCAG -ACGGAATCTCGTAGTGTCGCATAG -ACGGAATCTCGTAGTGTCGACAAG -ACGGAATCTCGTAGTGTCAAGCAG -ACGGAATCTCGTAGTGTCCGTCAA -ACGGAATCTCGTAGTGTCGCTGAA -ACGGAATCTCGTAGTGTCAGTACG -ACGGAATCTCGTAGTGTCATCCGA -ACGGAATCTCGTAGTGTCATGGGA -ACGGAATCTCGTAGTGTCGTGCAA -ACGGAATCTCGTAGTGTCGAGGAA -ACGGAATCTCGTAGTGTCCAGGTA -ACGGAATCTCGTAGTGTCGACTCT -ACGGAATCTCGTAGTGTCAGTCCT -ACGGAATCTCGTAGTGTCTAAGCC -ACGGAATCTCGTAGTGTCATAGCC -ACGGAATCTCGTAGTGTCTAACCG -ACGGAATCTCGTAGTGTCATGCCA -ACGGAATCTCGTGGTGAAGGAAAC -ACGGAATCTCGTGGTGAAAACACC -ACGGAATCTCGTGGTGAAATCGAG -ACGGAATCTCGTGGTGAACTCCTT -ACGGAATCTCGTGGTGAACCTGTT -ACGGAATCTCGTGGTGAACGGTTT -ACGGAATCTCGTGGTGAAGTGGTT -ACGGAATCTCGTGGTGAAGCCTTT -ACGGAATCTCGTGGTGAAGGTCTT -ACGGAATCTCGTGGTGAAACGCTT -ACGGAATCTCGTGGTGAAAGCGTT -ACGGAATCTCGTGGTGAATTCGTC -ACGGAATCTCGTGGTGAATCTCTC -ACGGAATCTCGTGGTGAATGGATC -ACGGAATCTCGTGGTGAACACTTC -ACGGAATCTCGTGGTGAAGTACTC -ACGGAATCTCGTGGTGAAGATGTC -ACGGAATCTCGTGGTGAAACAGTC -ACGGAATCTCGTGGTGAATTGCTG -ACGGAATCTCGTGGTGAATCCATG -ACGGAATCTCGTGGTGAATGTGTG -ACGGAATCTCGTGGTGAACTAGTG -ACGGAATCTCGTGGTGAACATCTG -ACGGAATCTCGTGGTGAAGAGTTG -ACGGAATCTCGTGGTGAAAGACTG -ACGGAATCTCGTGGTGAATCGGTA -ACGGAATCTCGTGGTGAATGCCTA -ACGGAATCTCGTGGTGAACCACTA -ACGGAATCTCGTGGTGAAGGAGTA -ACGGAATCTCGTGGTGAATCGTCT -ACGGAATCTCGTGGTGAATGCACT -ACGGAATCTCGTGGTGAACTGACT -ACGGAATCTCGTGGTGAACAACCT -ACGGAATCTCGTGGTGAAGCTACT -ACGGAATCTCGTGGTGAAGGATCT -ACGGAATCTCGTGGTGAAAAGGCT -ACGGAATCTCGTGGTGAATCAACC -ACGGAATCTCGTGGTGAATGTTCC -ACGGAATCTCGTGGTGAAATTCCC -ACGGAATCTCGTGGTGAATTCTCG -ACGGAATCTCGTGGTGAATAGACG -ACGGAATCTCGTGGTGAAGTAACG -ACGGAATCTCGTGGTGAAACTTCG -ACGGAATCTCGTGGTGAATACGCA -ACGGAATCTCGTGGTGAACTTGCA -ACGGAATCTCGTGGTGAACGAACA -ACGGAATCTCGTGGTGAACAGTCA -ACGGAATCTCGTGGTGAAGATCCA -ACGGAATCTCGTGGTGAAACGACA -ACGGAATCTCGTGGTGAAAGCTCA -ACGGAATCTCGTGGTGAATCACGT -ACGGAATCTCGTGGTGAACGTAGT -ACGGAATCTCGTGGTGAAGTCAGT -ACGGAATCTCGTGGTGAAGAAGGT -ACGGAATCTCGTGGTGAAAACCGT -ACGGAATCTCGTGGTGAATTGTGC -ACGGAATCTCGTGGTGAACTAAGC -ACGGAATCTCGTGGTGAAACTAGC -ACGGAATCTCGTGGTGAAAGATGC -ACGGAATCTCGTGGTGAATGAAGG -ACGGAATCTCGTGGTGAACAATGG -ACGGAATCTCGTGGTGAAATGAGG -ACGGAATCTCGTGGTGAAAATGGG -ACGGAATCTCGTGGTGAATCCTGA -ACGGAATCTCGTGGTGAATAGCGA -ACGGAATCTCGTGGTGAACACAGA -ACGGAATCTCGTGGTGAAGCAAGA -ACGGAATCTCGTGGTGAAGGTTGA -ACGGAATCTCGTGGTGAATCCGAT -ACGGAATCTCGTGGTGAATGGCAT -ACGGAATCTCGTGGTGAACGAGAT -ACGGAATCTCGTGGTGAATACCAC -ACGGAATCTCGTGGTGAACAGAAC -ACGGAATCTCGTGGTGAAGTCTAC -ACGGAATCTCGTGGTGAAACGTAC -ACGGAATCTCGTGGTGAAAGTGAC -ACGGAATCTCGTGGTGAACTGTAG -ACGGAATCTCGTGGTGAACCTAAG -ACGGAATCTCGTGGTGAAGTTCAG -ACGGAATCTCGTGGTGAAGCATAG -ACGGAATCTCGTGGTGAAGACAAG -ACGGAATCTCGTGGTGAAAAGCAG -ACGGAATCTCGTGGTGAACGTCAA -ACGGAATCTCGTGGTGAAGCTGAA -ACGGAATCTCGTGGTGAAAGTACG -ACGGAATCTCGTGGTGAAATCCGA -ACGGAATCTCGTGGTGAAATGGGA -ACGGAATCTCGTGGTGAAGTGCAA -ACGGAATCTCGTGGTGAAGAGGAA -ACGGAATCTCGTGGTGAACAGGTA -ACGGAATCTCGTGGTGAAGACTCT -ACGGAATCTCGTGGTGAAAGTCCT -ACGGAATCTCGTGGTGAATAAGCC -ACGGAATCTCGTGGTGAAATAGCC -ACGGAATCTCGTGGTGAATAACCG -ACGGAATCTCGTGGTGAAATGCCA -ACGGAATCTCGTCGTAACGGAAAC -ACGGAATCTCGTCGTAACAACACC -ACGGAATCTCGTCGTAACATCGAG -ACGGAATCTCGTCGTAACCTCCTT -ACGGAATCTCGTCGTAACCCTGTT -ACGGAATCTCGTCGTAACCGGTTT -ACGGAATCTCGTCGTAACGTGGTT -ACGGAATCTCGTCGTAACGCCTTT -ACGGAATCTCGTCGTAACGGTCTT -ACGGAATCTCGTCGTAACACGCTT -ACGGAATCTCGTCGTAACAGCGTT -ACGGAATCTCGTCGTAACTTCGTC -ACGGAATCTCGTCGTAACTCTCTC -ACGGAATCTCGTCGTAACTGGATC -ACGGAATCTCGTCGTAACCACTTC -ACGGAATCTCGTCGTAACGTACTC -ACGGAATCTCGTCGTAACGATGTC -ACGGAATCTCGTCGTAACACAGTC -ACGGAATCTCGTCGTAACTTGCTG -ACGGAATCTCGTCGTAACTCCATG -ACGGAATCTCGTCGTAACTGTGTG -ACGGAATCTCGTCGTAACCTAGTG -ACGGAATCTCGTCGTAACCATCTG -ACGGAATCTCGTCGTAACGAGTTG -ACGGAATCTCGTCGTAACAGACTG -ACGGAATCTCGTCGTAACTCGGTA -ACGGAATCTCGTCGTAACTGCCTA -ACGGAATCTCGTCGTAACCCACTA -ACGGAATCTCGTCGTAACGGAGTA -ACGGAATCTCGTCGTAACTCGTCT -ACGGAATCTCGTCGTAACTGCACT -ACGGAATCTCGTCGTAACCTGACT -ACGGAATCTCGTCGTAACCAACCT -ACGGAATCTCGTCGTAACGCTACT -ACGGAATCTCGTCGTAACGGATCT -ACGGAATCTCGTCGTAACAAGGCT -ACGGAATCTCGTCGTAACTCAACC -ACGGAATCTCGTCGTAACTGTTCC -ACGGAATCTCGTCGTAACATTCCC -ACGGAATCTCGTCGTAACTTCTCG -ACGGAATCTCGTCGTAACTAGACG -ACGGAATCTCGTCGTAACGTAACG -ACGGAATCTCGTCGTAACACTTCG -ACGGAATCTCGTCGTAACTACGCA -ACGGAATCTCGTCGTAACCTTGCA -ACGGAATCTCGTCGTAACCGAACA -ACGGAATCTCGTCGTAACCAGTCA -ACGGAATCTCGTCGTAACGATCCA -ACGGAATCTCGTCGTAACACGACA -ACGGAATCTCGTCGTAACAGCTCA -ACGGAATCTCGTCGTAACTCACGT -ACGGAATCTCGTCGTAACCGTAGT -ACGGAATCTCGTCGTAACGTCAGT -ACGGAATCTCGTCGTAACGAAGGT -ACGGAATCTCGTCGTAACAACCGT -ACGGAATCTCGTCGTAACTTGTGC -ACGGAATCTCGTCGTAACCTAAGC -ACGGAATCTCGTCGTAACACTAGC -ACGGAATCTCGTCGTAACAGATGC -ACGGAATCTCGTCGTAACTGAAGG -ACGGAATCTCGTCGTAACCAATGG -ACGGAATCTCGTCGTAACATGAGG -ACGGAATCTCGTCGTAACAATGGG -ACGGAATCTCGTCGTAACTCCTGA -ACGGAATCTCGTCGTAACTAGCGA -ACGGAATCTCGTCGTAACCACAGA -ACGGAATCTCGTCGTAACGCAAGA -ACGGAATCTCGTCGTAACGGTTGA -ACGGAATCTCGTCGTAACTCCGAT -ACGGAATCTCGTCGTAACTGGCAT -ACGGAATCTCGTCGTAACCGAGAT -ACGGAATCTCGTCGTAACTACCAC -ACGGAATCTCGTCGTAACCAGAAC -ACGGAATCTCGTCGTAACGTCTAC -ACGGAATCTCGTCGTAACACGTAC -ACGGAATCTCGTCGTAACAGTGAC -ACGGAATCTCGTCGTAACCTGTAG -ACGGAATCTCGTCGTAACCCTAAG -ACGGAATCTCGTCGTAACGTTCAG -ACGGAATCTCGTCGTAACGCATAG -ACGGAATCTCGTCGTAACGACAAG -ACGGAATCTCGTCGTAACAAGCAG -ACGGAATCTCGTCGTAACCGTCAA -ACGGAATCTCGTCGTAACGCTGAA -ACGGAATCTCGTCGTAACAGTACG -ACGGAATCTCGTCGTAACATCCGA -ACGGAATCTCGTCGTAACATGGGA -ACGGAATCTCGTCGTAACGTGCAA -ACGGAATCTCGTCGTAACGAGGAA -ACGGAATCTCGTCGTAACCAGGTA -ACGGAATCTCGTCGTAACGACTCT -ACGGAATCTCGTCGTAACAGTCCT -ACGGAATCTCGTCGTAACTAAGCC -ACGGAATCTCGTCGTAACATAGCC -ACGGAATCTCGTCGTAACTAACCG -ACGGAATCTCGTCGTAACATGCCA -ACGGAATCTCGTTGCTTGGGAAAC -ACGGAATCTCGTTGCTTGAACACC -ACGGAATCTCGTTGCTTGATCGAG -ACGGAATCTCGTTGCTTGCTCCTT -ACGGAATCTCGTTGCTTGCCTGTT -ACGGAATCTCGTTGCTTGCGGTTT -ACGGAATCTCGTTGCTTGGTGGTT -ACGGAATCTCGTTGCTTGGCCTTT -ACGGAATCTCGTTGCTTGGGTCTT -ACGGAATCTCGTTGCTTGACGCTT -ACGGAATCTCGTTGCTTGAGCGTT -ACGGAATCTCGTTGCTTGTTCGTC -ACGGAATCTCGTTGCTTGTCTCTC -ACGGAATCTCGTTGCTTGTGGATC -ACGGAATCTCGTTGCTTGCACTTC -ACGGAATCTCGTTGCTTGGTACTC -ACGGAATCTCGTTGCTTGGATGTC -ACGGAATCTCGTTGCTTGACAGTC -ACGGAATCTCGTTGCTTGTTGCTG -ACGGAATCTCGTTGCTTGTCCATG -ACGGAATCTCGTTGCTTGTGTGTG -ACGGAATCTCGTTGCTTGCTAGTG -ACGGAATCTCGTTGCTTGCATCTG -ACGGAATCTCGTTGCTTGGAGTTG -ACGGAATCTCGTTGCTTGAGACTG -ACGGAATCTCGTTGCTTGTCGGTA -ACGGAATCTCGTTGCTTGTGCCTA -ACGGAATCTCGTTGCTTGCCACTA -ACGGAATCTCGTTGCTTGGGAGTA -ACGGAATCTCGTTGCTTGTCGTCT -ACGGAATCTCGTTGCTTGTGCACT -ACGGAATCTCGTTGCTTGCTGACT -ACGGAATCTCGTTGCTTGCAACCT -ACGGAATCTCGTTGCTTGGCTACT -ACGGAATCTCGTTGCTTGGGATCT -ACGGAATCTCGTTGCTTGAAGGCT -ACGGAATCTCGTTGCTTGTCAACC -ACGGAATCTCGTTGCTTGTGTTCC -ACGGAATCTCGTTGCTTGATTCCC -ACGGAATCTCGTTGCTTGTTCTCG -ACGGAATCTCGTTGCTTGTAGACG -ACGGAATCTCGTTGCTTGGTAACG -ACGGAATCTCGTTGCTTGACTTCG -ACGGAATCTCGTTGCTTGTACGCA -ACGGAATCTCGTTGCTTGCTTGCA -ACGGAATCTCGTTGCTTGCGAACA -ACGGAATCTCGTTGCTTGCAGTCA -ACGGAATCTCGTTGCTTGGATCCA -ACGGAATCTCGTTGCTTGACGACA -ACGGAATCTCGTTGCTTGAGCTCA -ACGGAATCTCGTTGCTTGTCACGT -ACGGAATCTCGTTGCTTGCGTAGT -ACGGAATCTCGTTGCTTGGTCAGT -ACGGAATCTCGTTGCTTGGAAGGT -ACGGAATCTCGTTGCTTGAACCGT -ACGGAATCTCGTTGCTTGTTGTGC -ACGGAATCTCGTTGCTTGCTAAGC -ACGGAATCTCGTTGCTTGACTAGC -ACGGAATCTCGTTGCTTGAGATGC -ACGGAATCTCGTTGCTTGTGAAGG -ACGGAATCTCGTTGCTTGCAATGG -ACGGAATCTCGTTGCTTGATGAGG -ACGGAATCTCGTTGCTTGAATGGG -ACGGAATCTCGTTGCTTGTCCTGA -ACGGAATCTCGTTGCTTGTAGCGA -ACGGAATCTCGTTGCTTGCACAGA -ACGGAATCTCGTTGCTTGGCAAGA -ACGGAATCTCGTTGCTTGGGTTGA -ACGGAATCTCGTTGCTTGTCCGAT -ACGGAATCTCGTTGCTTGTGGCAT -ACGGAATCTCGTTGCTTGCGAGAT -ACGGAATCTCGTTGCTTGTACCAC -ACGGAATCTCGTTGCTTGCAGAAC -ACGGAATCTCGTTGCTTGGTCTAC -ACGGAATCTCGTTGCTTGACGTAC -ACGGAATCTCGTTGCTTGAGTGAC -ACGGAATCTCGTTGCTTGCTGTAG -ACGGAATCTCGTTGCTTGCCTAAG -ACGGAATCTCGTTGCTTGGTTCAG -ACGGAATCTCGTTGCTTGGCATAG -ACGGAATCTCGTTGCTTGGACAAG -ACGGAATCTCGTTGCTTGAAGCAG -ACGGAATCTCGTTGCTTGCGTCAA -ACGGAATCTCGTTGCTTGGCTGAA -ACGGAATCTCGTTGCTTGAGTACG -ACGGAATCTCGTTGCTTGATCCGA -ACGGAATCTCGTTGCTTGATGGGA -ACGGAATCTCGTTGCTTGGTGCAA -ACGGAATCTCGTTGCTTGGAGGAA -ACGGAATCTCGTTGCTTGCAGGTA -ACGGAATCTCGTTGCTTGGACTCT -ACGGAATCTCGTTGCTTGAGTCCT -ACGGAATCTCGTTGCTTGTAAGCC -ACGGAATCTCGTTGCTTGATAGCC -ACGGAATCTCGTTGCTTGTAACCG -ACGGAATCTCGTTGCTTGATGCCA -ACGGAATCTCGTAGCCTAGGAAAC -ACGGAATCTCGTAGCCTAAACACC -ACGGAATCTCGTAGCCTAATCGAG -ACGGAATCTCGTAGCCTACTCCTT -ACGGAATCTCGTAGCCTACCTGTT -ACGGAATCTCGTAGCCTACGGTTT -ACGGAATCTCGTAGCCTAGTGGTT -ACGGAATCTCGTAGCCTAGCCTTT -ACGGAATCTCGTAGCCTAGGTCTT -ACGGAATCTCGTAGCCTAACGCTT -ACGGAATCTCGTAGCCTAAGCGTT -ACGGAATCTCGTAGCCTATTCGTC -ACGGAATCTCGTAGCCTATCTCTC -ACGGAATCTCGTAGCCTATGGATC -ACGGAATCTCGTAGCCTACACTTC -ACGGAATCTCGTAGCCTAGTACTC -ACGGAATCTCGTAGCCTAGATGTC -ACGGAATCTCGTAGCCTAACAGTC -ACGGAATCTCGTAGCCTATTGCTG -ACGGAATCTCGTAGCCTATCCATG -ACGGAATCTCGTAGCCTATGTGTG -ACGGAATCTCGTAGCCTACTAGTG -ACGGAATCTCGTAGCCTACATCTG -ACGGAATCTCGTAGCCTAGAGTTG -ACGGAATCTCGTAGCCTAAGACTG -ACGGAATCTCGTAGCCTATCGGTA -ACGGAATCTCGTAGCCTATGCCTA -ACGGAATCTCGTAGCCTACCACTA -ACGGAATCTCGTAGCCTAGGAGTA -ACGGAATCTCGTAGCCTATCGTCT -ACGGAATCTCGTAGCCTATGCACT -ACGGAATCTCGTAGCCTACTGACT -ACGGAATCTCGTAGCCTACAACCT -ACGGAATCTCGTAGCCTAGCTACT -ACGGAATCTCGTAGCCTAGGATCT -ACGGAATCTCGTAGCCTAAAGGCT -ACGGAATCTCGTAGCCTATCAACC -ACGGAATCTCGTAGCCTATGTTCC -ACGGAATCTCGTAGCCTAATTCCC -ACGGAATCTCGTAGCCTATTCTCG -ACGGAATCTCGTAGCCTATAGACG -ACGGAATCTCGTAGCCTAGTAACG -ACGGAATCTCGTAGCCTAACTTCG -ACGGAATCTCGTAGCCTATACGCA -ACGGAATCTCGTAGCCTACTTGCA -ACGGAATCTCGTAGCCTACGAACA -ACGGAATCTCGTAGCCTACAGTCA -ACGGAATCTCGTAGCCTAGATCCA -ACGGAATCTCGTAGCCTAACGACA -ACGGAATCTCGTAGCCTAAGCTCA -ACGGAATCTCGTAGCCTATCACGT -ACGGAATCTCGTAGCCTACGTAGT -ACGGAATCTCGTAGCCTAGTCAGT -ACGGAATCTCGTAGCCTAGAAGGT -ACGGAATCTCGTAGCCTAAACCGT -ACGGAATCTCGTAGCCTATTGTGC -ACGGAATCTCGTAGCCTACTAAGC -ACGGAATCTCGTAGCCTAACTAGC -ACGGAATCTCGTAGCCTAAGATGC -ACGGAATCTCGTAGCCTATGAAGG -ACGGAATCTCGTAGCCTACAATGG -ACGGAATCTCGTAGCCTAATGAGG -ACGGAATCTCGTAGCCTAAATGGG -ACGGAATCTCGTAGCCTATCCTGA -ACGGAATCTCGTAGCCTATAGCGA -ACGGAATCTCGTAGCCTACACAGA -ACGGAATCTCGTAGCCTAGCAAGA -ACGGAATCTCGTAGCCTAGGTTGA -ACGGAATCTCGTAGCCTATCCGAT -ACGGAATCTCGTAGCCTATGGCAT -ACGGAATCTCGTAGCCTACGAGAT -ACGGAATCTCGTAGCCTATACCAC -ACGGAATCTCGTAGCCTACAGAAC -ACGGAATCTCGTAGCCTAGTCTAC -ACGGAATCTCGTAGCCTAACGTAC -ACGGAATCTCGTAGCCTAAGTGAC -ACGGAATCTCGTAGCCTACTGTAG -ACGGAATCTCGTAGCCTACCTAAG -ACGGAATCTCGTAGCCTAGTTCAG -ACGGAATCTCGTAGCCTAGCATAG -ACGGAATCTCGTAGCCTAGACAAG -ACGGAATCTCGTAGCCTAAAGCAG -ACGGAATCTCGTAGCCTACGTCAA -ACGGAATCTCGTAGCCTAGCTGAA -ACGGAATCTCGTAGCCTAAGTACG -ACGGAATCTCGTAGCCTAATCCGA -ACGGAATCTCGTAGCCTAATGGGA -ACGGAATCTCGTAGCCTAGTGCAA -ACGGAATCTCGTAGCCTAGAGGAA -ACGGAATCTCGTAGCCTACAGGTA -ACGGAATCTCGTAGCCTAGACTCT -ACGGAATCTCGTAGCCTAAGTCCT -ACGGAATCTCGTAGCCTATAAGCC -ACGGAATCTCGTAGCCTAATAGCC -ACGGAATCTCGTAGCCTATAACCG -ACGGAATCTCGTAGCCTAATGCCA -ACGGAATCTCGTAGCACTGGAAAC -ACGGAATCTCGTAGCACTAACACC -ACGGAATCTCGTAGCACTATCGAG -ACGGAATCTCGTAGCACTCTCCTT -ACGGAATCTCGTAGCACTCCTGTT -ACGGAATCTCGTAGCACTCGGTTT -ACGGAATCTCGTAGCACTGTGGTT -ACGGAATCTCGTAGCACTGCCTTT -ACGGAATCTCGTAGCACTGGTCTT -ACGGAATCTCGTAGCACTACGCTT -ACGGAATCTCGTAGCACTAGCGTT -ACGGAATCTCGTAGCACTTTCGTC -ACGGAATCTCGTAGCACTTCTCTC -ACGGAATCTCGTAGCACTTGGATC -ACGGAATCTCGTAGCACTCACTTC -ACGGAATCTCGTAGCACTGTACTC -ACGGAATCTCGTAGCACTGATGTC -ACGGAATCTCGTAGCACTACAGTC -ACGGAATCTCGTAGCACTTTGCTG -ACGGAATCTCGTAGCACTTCCATG -ACGGAATCTCGTAGCACTTGTGTG -ACGGAATCTCGTAGCACTCTAGTG -ACGGAATCTCGTAGCACTCATCTG -ACGGAATCTCGTAGCACTGAGTTG -ACGGAATCTCGTAGCACTAGACTG -ACGGAATCTCGTAGCACTTCGGTA -ACGGAATCTCGTAGCACTTGCCTA -ACGGAATCTCGTAGCACTCCACTA -ACGGAATCTCGTAGCACTGGAGTA -ACGGAATCTCGTAGCACTTCGTCT -ACGGAATCTCGTAGCACTTGCACT -ACGGAATCTCGTAGCACTCTGACT -ACGGAATCTCGTAGCACTCAACCT -ACGGAATCTCGTAGCACTGCTACT -ACGGAATCTCGTAGCACTGGATCT -ACGGAATCTCGTAGCACTAAGGCT -ACGGAATCTCGTAGCACTTCAACC -ACGGAATCTCGTAGCACTTGTTCC -ACGGAATCTCGTAGCACTATTCCC -ACGGAATCTCGTAGCACTTTCTCG -ACGGAATCTCGTAGCACTTAGACG -ACGGAATCTCGTAGCACTGTAACG -ACGGAATCTCGTAGCACTACTTCG -ACGGAATCTCGTAGCACTTACGCA -ACGGAATCTCGTAGCACTCTTGCA -ACGGAATCTCGTAGCACTCGAACA -ACGGAATCTCGTAGCACTCAGTCA -ACGGAATCTCGTAGCACTGATCCA -ACGGAATCTCGTAGCACTACGACA -ACGGAATCTCGTAGCACTAGCTCA -ACGGAATCTCGTAGCACTTCACGT -ACGGAATCTCGTAGCACTCGTAGT -ACGGAATCTCGTAGCACTGTCAGT -ACGGAATCTCGTAGCACTGAAGGT -ACGGAATCTCGTAGCACTAACCGT -ACGGAATCTCGTAGCACTTTGTGC -ACGGAATCTCGTAGCACTCTAAGC -ACGGAATCTCGTAGCACTACTAGC -ACGGAATCTCGTAGCACTAGATGC -ACGGAATCTCGTAGCACTTGAAGG -ACGGAATCTCGTAGCACTCAATGG -ACGGAATCTCGTAGCACTATGAGG -ACGGAATCTCGTAGCACTAATGGG -ACGGAATCTCGTAGCACTTCCTGA -ACGGAATCTCGTAGCACTTAGCGA -ACGGAATCTCGTAGCACTCACAGA -ACGGAATCTCGTAGCACTGCAAGA -ACGGAATCTCGTAGCACTGGTTGA -ACGGAATCTCGTAGCACTTCCGAT -ACGGAATCTCGTAGCACTTGGCAT -ACGGAATCTCGTAGCACTCGAGAT -ACGGAATCTCGTAGCACTTACCAC -ACGGAATCTCGTAGCACTCAGAAC -ACGGAATCTCGTAGCACTGTCTAC -ACGGAATCTCGTAGCACTACGTAC -ACGGAATCTCGTAGCACTAGTGAC -ACGGAATCTCGTAGCACTCTGTAG -ACGGAATCTCGTAGCACTCCTAAG -ACGGAATCTCGTAGCACTGTTCAG -ACGGAATCTCGTAGCACTGCATAG -ACGGAATCTCGTAGCACTGACAAG -ACGGAATCTCGTAGCACTAAGCAG -ACGGAATCTCGTAGCACTCGTCAA -ACGGAATCTCGTAGCACTGCTGAA -ACGGAATCTCGTAGCACTAGTACG -ACGGAATCTCGTAGCACTATCCGA -ACGGAATCTCGTAGCACTATGGGA -ACGGAATCTCGTAGCACTGTGCAA -ACGGAATCTCGTAGCACTGAGGAA -ACGGAATCTCGTAGCACTCAGGTA -ACGGAATCTCGTAGCACTGACTCT -ACGGAATCTCGTAGCACTAGTCCT -ACGGAATCTCGTAGCACTTAAGCC -ACGGAATCTCGTAGCACTATAGCC -ACGGAATCTCGTAGCACTTAACCG -ACGGAATCTCGTAGCACTATGCCA -ACGGAATCTCGTTGCAGAGGAAAC -ACGGAATCTCGTTGCAGAAACACC -ACGGAATCTCGTTGCAGAATCGAG -ACGGAATCTCGTTGCAGACTCCTT -ACGGAATCTCGTTGCAGACCTGTT -ACGGAATCTCGTTGCAGACGGTTT -ACGGAATCTCGTTGCAGAGTGGTT -ACGGAATCTCGTTGCAGAGCCTTT -ACGGAATCTCGTTGCAGAGGTCTT -ACGGAATCTCGTTGCAGAACGCTT -ACGGAATCTCGTTGCAGAAGCGTT -ACGGAATCTCGTTGCAGATTCGTC -ACGGAATCTCGTTGCAGATCTCTC -ACGGAATCTCGTTGCAGATGGATC -ACGGAATCTCGTTGCAGACACTTC -ACGGAATCTCGTTGCAGAGTACTC -ACGGAATCTCGTTGCAGAGATGTC -ACGGAATCTCGTTGCAGAACAGTC -ACGGAATCTCGTTGCAGATTGCTG -ACGGAATCTCGTTGCAGATCCATG -ACGGAATCTCGTTGCAGATGTGTG -ACGGAATCTCGTTGCAGACTAGTG -ACGGAATCTCGTTGCAGACATCTG -ACGGAATCTCGTTGCAGAGAGTTG -ACGGAATCTCGTTGCAGAAGACTG -ACGGAATCTCGTTGCAGATCGGTA -ACGGAATCTCGTTGCAGATGCCTA -ACGGAATCTCGTTGCAGACCACTA -ACGGAATCTCGTTGCAGAGGAGTA -ACGGAATCTCGTTGCAGATCGTCT -ACGGAATCTCGTTGCAGATGCACT -ACGGAATCTCGTTGCAGACTGACT -ACGGAATCTCGTTGCAGACAACCT -ACGGAATCTCGTTGCAGAGCTACT -ACGGAATCTCGTTGCAGAGGATCT -ACGGAATCTCGTTGCAGAAAGGCT -ACGGAATCTCGTTGCAGATCAACC -ACGGAATCTCGTTGCAGATGTTCC -ACGGAATCTCGTTGCAGAATTCCC -ACGGAATCTCGTTGCAGATTCTCG -ACGGAATCTCGTTGCAGATAGACG -ACGGAATCTCGTTGCAGAGTAACG -ACGGAATCTCGTTGCAGAACTTCG -ACGGAATCTCGTTGCAGATACGCA -ACGGAATCTCGTTGCAGACTTGCA -ACGGAATCTCGTTGCAGACGAACA -ACGGAATCTCGTTGCAGACAGTCA -ACGGAATCTCGTTGCAGAGATCCA -ACGGAATCTCGTTGCAGAACGACA -ACGGAATCTCGTTGCAGAAGCTCA -ACGGAATCTCGTTGCAGATCACGT -ACGGAATCTCGTTGCAGACGTAGT -ACGGAATCTCGTTGCAGAGTCAGT -ACGGAATCTCGTTGCAGAGAAGGT -ACGGAATCTCGTTGCAGAAACCGT -ACGGAATCTCGTTGCAGATTGTGC -ACGGAATCTCGTTGCAGACTAAGC -ACGGAATCTCGTTGCAGAACTAGC -ACGGAATCTCGTTGCAGAAGATGC -ACGGAATCTCGTTGCAGATGAAGG -ACGGAATCTCGTTGCAGACAATGG -ACGGAATCTCGTTGCAGAATGAGG -ACGGAATCTCGTTGCAGAAATGGG -ACGGAATCTCGTTGCAGATCCTGA -ACGGAATCTCGTTGCAGATAGCGA -ACGGAATCTCGTTGCAGACACAGA -ACGGAATCTCGTTGCAGAGCAAGA -ACGGAATCTCGTTGCAGAGGTTGA -ACGGAATCTCGTTGCAGATCCGAT -ACGGAATCTCGTTGCAGATGGCAT -ACGGAATCTCGTTGCAGACGAGAT -ACGGAATCTCGTTGCAGATACCAC -ACGGAATCTCGTTGCAGACAGAAC -ACGGAATCTCGTTGCAGAGTCTAC -ACGGAATCTCGTTGCAGAACGTAC -ACGGAATCTCGTTGCAGAAGTGAC -ACGGAATCTCGTTGCAGACTGTAG -ACGGAATCTCGTTGCAGACCTAAG -ACGGAATCTCGTTGCAGAGTTCAG -ACGGAATCTCGTTGCAGAGCATAG -ACGGAATCTCGTTGCAGAGACAAG -ACGGAATCTCGTTGCAGAAAGCAG -ACGGAATCTCGTTGCAGACGTCAA -ACGGAATCTCGTTGCAGAGCTGAA -ACGGAATCTCGTTGCAGAAGTACG -ACGGAATCTCGTTGCAGAATCCGA -ACGGAATCTCGTTGCAGAATGGGA -ACGGAATCTCGTTGCAGAGTGCAA -ACGGAATCTCGTTGCAGAGAGGAA -ACGGAATCTCGTTGCAGACAGGTA -ACGGAATCTCGTTGCAGAGACTCT -ACGGAATCTCGTTGCAGAAGTCCT -ACGGAATCTCGTTGCAGATAAGCC -ACGGAATCTCGTTGCAGAATAGCC -ACGGAATCTCGTTGCAGATAACCG -ACGGAATCTCGTTGCAGAATGCCA -ACGGAATCTCGTAGGTGAGGAAAC -ACGGAATCTCGTAGGTGAAACACC -ACGGAATCTCGTAGGTGAATCGAG -ACGGAATCTCGTAGGTGACTCCTT -ACGGAATCTCGTAGGTGACCTGTT -ACGGAATCTCGTAGGTGACGGTTT -ACGGAATCTCGTAGGTGAGTGGTT -ACGGAATCTCGTAGGTGAGCCTTT -ACGGAATCTCGTAGGTGAGGTCTT -ACGGAATCTCGTAGGTGAACGCTT -ACGGAATCTCGTAGGTGAAGCGTT -ACGGAATCTCGTAGGTGATTCGTC -ACGGAATCTCGTAGGTGATCTCTC -ACGGAATCTCGTAGGTGATGGATC -ACGGAATCTCGTAGGTGACACTTC -ACGGAATCTCGTAGGTGAGTACTC -ACGGAATCTCGTAGGTGAGATGTC -ACGGAATCTCGTAGGTGAACAGTC -ACGGAATCTCGTAGGTGATTGCTG -ACGGAATCTCGTAGGTGATCCATG -ACGGAATCTCGTAGGTGATGTGTG -ACGGAATCTCGTAGGTGACTAGTG -ACGGAATCTCGTAGGTGACATCTG -ACGGAATCTCGTAGGTGAGAGTTG -ACGGAATCTCGTAGGTGAAGACTG -ACGGAATCTCGTAGGTGATCGGTA -ACGGAATCTCGTAGGTGATGCCTA -ACGGAATCTCGTAGGTGACCACTA -ACGGAATCTCGTAGGTGAGGAGTA -ACGGAATCTCGTAGGTGATCGTCT -ACGGAATCTCGTAGGTGATGCACT -ACGGAATCTCGTAGGTGACTGACT -ACGGAATCTCGTAGGTGACAACCT -ACGGAATCTCGTAGGTGAGCTACT -ACGGAATCTCGTAGGTGAGGATCT -ACGGAATCTCGTAGGTGAAAGGCT -ACGGAATCTCGTAGGTGATCAACC -ACGGAATCTCGTAGGTGATGTTCC -ACGGAATCTCGTAGGTGAATTCCC -ACGGAATCTCGTAGGTGATTCTCG -ACGGAATCTCGTAGGTGATAGACG -ACGGAATCTCGTAGGTGAGTAACG -ACGGAATCTCGTAGGTGAACTTCG -ACGGAATCTCGTAGGTGATACGCA -ACGGAATCTCGTAGGTGACTTGCA -ACGGAATCTCGTAGGTGACGAACA -ACGGAATCTCGTAGGTGACAGTCA -ACGGAATCTCGTAGGTGAGATCCA -ACGGAATCTCGTAGGTGAACGACA -ACGGAATCTCGTAGGTGAAGCTCA -ACGGAATCTCGTAGGTGATCACGT -ACGGAATCTCGTAGGTGACGTAGT -ACGGAATCTCGTAGGTGAGTCAGT -ACGGAATCTCGTAGGTGAGAAGGT -ACGGAATCTCGTAGGTGAAACCGT -ACGGAATCTCGTAGGTGATTGTGC -ACGGAATCTCGTAGGTGACTAAGC -ACGGAATCTCGTAGGTGAACTAGC -ACGGAATCTCGTAGGTGAAGATGC -ACGGAATCTCGTAGGTGATGAAGG -ACGGAATCTCGTAGGTGACAATGG -ACGGAATCTCGTAGGTGAATGAGG -ACGGAATCTCGTAGGTGAAATGGG -ACGGAATCTCGTAGGTGATCCTGA -ACGGAATCTCGTAGGTGATAGCGA -ACGGAATCTCGTAGGTGACACAGA -ACGGAATCTCGTAGGTGAGCAAGA -ACGGAATCTCGTAGGTGAGGTTGA -ACGGAATCTCGTAGGTGATCCGAT -ACGGAATCTCGTAGGTGATGGCAT -ACGGAATCTCGTAGGTGACGAGAT -ACGGAATCTCGTAGGTGATACCAC -ACGGAATCTCGTAGGTGACAGAAC -ACGGAATCTCGTAGGTGAGTCTAC -ACGGAATCTCGTAGGTGAACGTAC -ACGGAATCTCGTAGGTGAAGTGAC -ACGGAATCTCGTAGGTGACTGTAG -ACGGAATCTCGTAGGTGACCTAAG -ACGGAATCTCGTAGGTGAGTTCAG -ACGGAATCTCGTAGGTGAGCATAG -ACGGAATCTCGTAGGTGAGACAAG -ACGGAATCTCGTAGGTGAAAGCAG -ACGGAATCTCGTAGGTGACGTCAA -ACGGAATCTCGTAGGTGAGCTGAA -ACGGAATCTCGTAGGTGAAGTACG -ACGGAATCTCGTAGGTGAATCCGA -ACGGAATCTCGTAGGTGAATGGGA -ACGGAATCTCGTAGGTGAGTGCAA -ACGGAATCTCGTAGGTGAGAGGAA -ACGGAATCTCGTAGGTGACAGGTA -ACGGAATCTCGTAGGTGAGACTCT -ACGGAATCTCGTAGGTGAAGTCCT -ACGGAATCTCGTAGGTGATAAGCC -ACGGAATCTCGTAGGTGAATAGCC -ACGGAATCTCGTAGGTGATAACCG -ACGGAATCTCGTAGGTGAATGCCA -ACGGAATCTCGTTGGCAAGGAAAC -ACGGAATCTCGTTGGCAAAACACC -ACGGAATCTCGTTGGCAAATCGAG -ACGGAATCTCGTTGGCAACTCCTT -ACGGAATCTCGTTGGCAACCTGTT -ACGGAATCTCGTTGGCAACGGTTT -ACGGAATCTCGTTGGCAAGTGGTT -ACGGAATCTCGTTGGCAAGCCTTT -ACGGAATCTCGTTGGCAAGGTCTT -ACGGAATCTCGTTGGCAAACGCTT -ACGGAATCTCGTTGGCAAAGCGTT -ACGGAATCTCGTTGGCAATTCGTC -ACGGAATCTCGTTGGCAATCTCTC -ACGGAATCTCGTTGGCAATGGATC -ACGGAATCTCGTTGGCAACACTTC -ACGGAATCTCGTTGGCAAGTACTC -ACGGAATCTCGTTGGCAAGATGTC -ACGGAATCTCGTTGGCAAACAGTC -ACGGAATCTCGTTGGCAATTGCTG -ACGGAATCTCGTTGGCAATCCATG -ACGGAATCTCGTTGGCAATGTGTG -ACGGAATCTCGTTGGCAACTAGTG -ACGGAATCTCGTTGGCAACATCTG -ACGGAATCTCGTTGGCAAGAGTTG -ACGGAATCTCGTTGGCAAAGACTG -ACGGAATCTCGTTGGCAATCGGTA -ACGGAATCTCGTTGGCAATGCCTA -ACGGAATCTCGTTGGCAACCACTA -ACGGAATCTCGTTGGCAAGGAGTA -ACGGAATCTCGTTGGCAATCGTCT -ACGGAATCTCGTTGGCAATGCACT -ACGGAATCTCGTTGGCAACTGACT -ACGGAATCTCGTTGGCAACAACCT -ACGGAATCTCGTTGGCAAGCTACT -ACGGAATCTCGTTGGCAAGGATCT -ACGGAATCTCGTTGGCAAAAGGCT -ACGGAATCTCGTTGGCAATCAACC -ACGGAATCTCGTTGGCAATGTTCC -ACGGAATCTCGTTGGCAAATTCCC -ACGGAATCTCGTTGGCAATTCTCG -ACGGAATCTCGTTGGCAATAGACG -ACGGAATCTCGTTGGCAAGTAACG -ACGGAATCTCGTTGGCAAACTTCG -ACGGAATCTCGTTGGCAATACGCA -ACGGAATCTCGTTGGCAACTTGCA -ACGGAATCTCGTTGGCAACGAACA -ACGGAATCTCGTTGGCAACAGTCA -ACGGAATCTCGTTGGCAAGATCCA -ACGGAATCTCGTTGGCAAACGACA -ACGGAATCTCGTTGGCAAAGCTCA -ACGGAATCTCGTTGGCAATCACGT -ACGGAATCTCGTTGGCAACGTAGT -ACGGAATCTCGTTGGCAAGTCAGT -ACGGAATCTCGTTGGCAAGAAGGT -ACGGAATCTCGTTGGCAAAACCGT -ACGGAATCTCGTTGGCAATTGTGC -ACGGAATCTCGTTGGCAACTAAGC -ACGGAATCTCGTTGGCAAACTAGC -ACGGAATCTCGTTGGCAAAGATGC -ACGGAATCTCGTTGGCAATGAAGG -ACGGAATCTCGTTGGCAACAATGG -ACGGAATCTCGTTGGCAAATGAGG -ACGGAATCTCGTTGGCAAAATGGG -ACGGAATCTCGTTGGCAATCCTGA -ACGGAATCTCGTTGGCAATAGCGA -ACGGAATCTCGTTGGCAACACAGA -ACGGAATCTCGTTGGCAAGCAAGA -ACGGAATCTCGTTGGCAAGGTTGA -ACGGAATCTCGTTGGCAATCCGAT -ACGGAATCTCGTTGGCAATGGCAT -ACGGAATCTCGTTGGCAACGAGAT -ACGGAATCTCGTTGGCAATACCAC -ACGGAATCTCGTTGGCAACAGAAC -ACGGAATCTCGTTGGCAAGTCTAC -ACGGAATCTCGTTGGCAAACGTAC -ACGGAATCTCGTTGGCAAAGTGAC -ACGGAATCTCGTTGGCAACTGTAG -ACGGAATCTCGTTGGCAACCTAAG -ACGGAATCTCGTTGGCAAGTTCAG -ACGGAATCTCGTTGGCAAGCATAG -ACGGAATCTCGTTGGCAAGACAAG -ACGGAATCTCGTTGGCAAAAGCAG -ACGGAATCTCGTTGGCAACGTCAA -ACGGAATCTCGTTGGCAAGCTGAA -ACGGAATCTCGTTGGCAAAGTACG -ACGGAATCTCGTTGGCAAATCCGA -ACGGAATCTCGTTGGCAAATGGGA -ACGGAATCTCGTTGGCAAGTGCAA -ACGGAATCTCGTTGGCAAGAGGAA -ACGGAATCTCGTTGGCAACAGGTA -ACGGAATCTCGTTGGCAAGACTCT -ACGGAATCTCGTTGGCAAAGTCCT -ACGGAATCTCGTTGGCAATAAGCC -ACGGAATCTCGTTGGCAAATAGCC -ACGGAATCTCGTTGGCAATAACCG -ACGGAATCTCGTTGGCAAATGCCA -ACGGAATCTCGTAGGATGGGAAAC -ACGGAATCTCGTAGGATGAACACC -ACGGAATCTCGTAGGATGATCGAG -ACGGAATCTCGTAGGATGCTCCTT -ACGGAATCTCGTAGGATGCCTGTT -ACGGAATCTCGTAGGATGCGGTTT -ACGGAATCTCGTAGGATGGTGGTT -ACGGAATCTCGTAGGATGGCCTTT -ACGGAATCTCGTAGGATGGGTCTT -ACGGAATCTCGTAGGATGACGCTT -ACGGAATCTCGTAGGATGAGCGTT -ACGGAATCTCGTAGGATGTTCGTC -ACGGAATCTCGTAGGATGTCTCTC -ACGGAATCTCGTAGGATGTGGATC -ACGGAATCTCGTAGGATGCACTTC -ACGGAATCTCGTAGGATGGTACTC -ACGGAATCTCGTAGGATGGATGTC -ACGGAATCTCGTAGGATGACAGTC -ACGGAATCTCGTAGGATGTTGCTG -ACGGAATCTCGTAGGATGTCCATG -ACGGAATCTCGTAGGATGTGTGTG -ACGGAATCTCGTAGGATGCTAGTG -ACGGAATCTCGTAGGATGCATCTG -ACGGAATCTCGTAGGATGGAGTTG -ACGGAATCTCGTAGGATGAGACTG -ACGGAATCTCGTAGGATGTCGGTA -ACGGAATCTCGTAGGATGTGCCTA -ACGGAATCTCGTAGGATGCCACTA -ACGGAATCTCGTAGGATGGGAGTA -ACGGAATCTCGTAGGATGTCGTCT -ACGGAATCTCGTAGGATGTGCACT -ACGGAATCTCGTAGGATGCTGACT -ACGGAATCTCGTAGGATGCAACCT -ACGGAATCTCGTAGGATGGCTACT -ACGGAATCTCGTAGGATGGGATCT -ACGGAATCTCGTAGGATGAAGGCT -ACGGAATCTCGTAGGATGTCAACC -ACGGAATCTCGTAGGATGTGTTCC -ACGGAATCTCGTAGGATGATTCCC -ACGGAATCTCGTAGGATGTTCTCG -ACGGAATCTCGTAGGATGTAGACG -ACGGAATCTCGTAGGATGGTAACG -ACGGAATCTCGTAGGATGACTTCG -ACGGAATCTCGTAGGATGTACGCA -ACGGAATCTCGTAGGATGCTTGCA -ACGGAATCTCGTAGGATGCGAACA -ACGGAATCTCGTAGGATGCAGTCA -ACGGAATCTCGTAGGATGGATCCA -ACGGAATCTCGTAGGATGACGACA -ACGGAATCTCGTAGGATGAGCTCA -ACGGAATCTCGTAGGATGTCACGT -ACGGAATCTCGTAGGATGCGTAGT -ACGGAATCTCGTAGGATGGTCAGT -ACGGAATCTCGTAGGATGGAAGGT -ACGGAATCTCGTAGGATGAACCGT -ACGGAATCTCGTAGGATGTTGTGC -ACGGAATCTCGTAGGATGCTAAGC -ACGGAATCTCGTAGGATGACTAGC -ACGGAATCTCGTAGGATGAGATGC -ACGGAATCTCGTAGGATGTGAAGG -ACGGAATCTCGTAGGATGCAATGG -ACGGAATCTCGTAGGATGATGAGG -ACGGAATCTCGTAGGATGAATGGG -ACGGAATCTCGTAGGATGTCCTGA -ACGGAATCTCGTAGGATGTAGCGA -ACGGAATCTCGTAGGATGCACAGA -ACGGAATCTCGTAGGATGGCAAGA -ACGGAATCTCGTAGGATGGGTTGA -ACGGAATCTCGTAGGATGTCCGAT -ACGGAATCTCGTAGGATGTGGCAT -ACGGAATCTCGTAGGATGCGAGAT -ACGGAATCTCGTAGGATGTACCAC -ACGGAATCTCGTAGGATGCAGAAC -ACGGAATCTCGTAGGATGGTCTAC -ACGGAATCTCGTAGGATGACGTAC -ACGGAATCTCGTAGGATGAGTGAC -ACGGAATCTCGTAGGATGCTGTAG -ACGGAATCTCGTAGGATGCCTAAG -ACGGAATCTCGTAGGATGGTTCAG -ACGGAATCTCGTAGGATGGCATAG -ACGGAATCTCGTAGGATGGACAAG -ACGGAATCTCGTAGGATGAAGCAG -ACGGAATCTCGTAGGATGCGTCAA -ACGGAATCTCGTAGGATGGCTGAA -ACGGAATCTCGTAGGATGAGTACG -ACGGAATCTCGTAGGATGATCCGA -ACGGAATCTCGTAGGATGATGGGA -ACGGAATCTCGTAGGATGGTGCAA -ACGGAATCTCGTAGGATGGAGGAA -ACGGAATCTCGTAGGATGCAGGTA -ACGGAATCTCGTAGGATGGACTCT -ACGGAATCTCGTAGGATGAGTCCT -ACGGAATCTCGTAGGATGTAAGCC -ACGGAATCTCGTAGGATGATAGCC -ACGGAATCTCGTAGGATGTAACCG -ACGGAATCTCGTAGGATGATGCCA -ACGGAATCTCGTGGGAATGGAAAC -ACGGAATCTCGTGGGAATAACACC -ACGGAATCTCGTGGGAATATCGAG -ACGGAATCTCGTGGGAATCTCCTT -ACGGAATCTCGTGGGAATCCTGTT -ACGGAATCTCGTGGGAATCGGTTT -ACGGAATCTCGTGGGAATGTGGTT -ACGGAATCTCGTGGGAATGCCTTT -ACGGAATCTCGTGGGAATGGTCTT -ACGGAATCTCGTGGGAATACGCTT -ACGGAATCTCGTGGGAATAGCGTT -ACGGAATCTCGTGGGAATTTCGTC -ACGGAATCTCGTGGGAATTCTCTC -ACGGAATCTCGTGGGAATTGGATC -ACGGAATCTCGTGGGAATCACTTC -ACGGAATCTCGTGGGAATGTACTC -ACGGAATCTCGTGGGAATGATGTC -ACGGAATCTCGTGGGAATACAGTC -ACGGAATCTCGTGGGAATTTGCTG -ACGGAATCTCGTGGGAATTCCATG -ACGGAATCTCGTGGGAATTGTGTG -ACGGAATCTCGTGGGAATCTAGTG -ACGGAATCTCGTGGGAATCATCTG -ACGGAATCTCGTGGGAATGAGTTG -ACGGAATCTCGTGGGAATAGACTG -ACGGAATCTCGTGGGAATTCGGTA -ACGGAATCTCGTGGGAATTGCCTA -ACGGAATCTCGTGGGAATCCACTA -ACGGAATCTCGTGGGAATGGAGTA -ACGGAATCTCGTGGGAATTCGTCT -ACGGAATCTCGTGGGAATTGCACT -ACGGAATCTCGTGGGAATCTGACT -ACGGAATCTCGTGGGAATCAACCT -ACGGAATCTCGTGGGAATGCTACT -ACGGAATCTCGTGGGAATGGATCT -ACGGAATCTCGTGGGAATAAGGCT -ACGGAATCTCGTGGGAATTCAACC -ACGGAATCTCGTGGGAATTGTTCC -ACGGAATCTCGTGGGAATATTCCC -ACGGAATCTCGTGGGAATTTCTCG -ACGGAATCTCGTGGGAATTAGACG -ACGGAATCTCGTGGGAATGTAACG -ACGGAATCTCGTGGGAATACTTCG -ACGGAATCTCGTGGGAATTACGCA -ACGGAATCTCGTGGGAATCTTGCA -ACGGAATCTCGTGGGAATCGAACA -ACGGAATCTCGTGGGAATCAGTCA -ACGGAATCTCGTGGGAATGATCCA -ACGGAATCTCGTGGGAATACGACA -ACGGAATCTCGTGGGAATAGCTCA -ACGGAATCTCGTGGGAATTCACGT -ACGGAATCTCGTGGGAATCGTAGT -ACGGAATCTCGTGGGAATGTCAGT -ACGGAATCTCGTGGGAATGAAGGT -ACGGAATCTCGTGGGAATAACCGT -ACGGAATCTCGTGGGAATTTGTGC -ACGGAATCTCGTGGGAATCTAAGC -ACGGAATCTCGTGGGAATACTAGC -ACGGAATCTCGTGGGAATAGATGC -ACGGAATCTCGTGGGAATTGAAGG -ACGGAATCTCGTGGGAATCAATGG -ACGGAATCTCGTGGGAATATGAGG -ACGGAATCTCGTGGGAATAATGGG -ACGGAATCTCGTGGGAATTCCTGA -ACGGAATCTCGTGGGAATTAGCGA -ACGGAATCTCGTGGGAATCACAGA -ACGGAATCTCGTGGGAATGCAAGA -ACGGAATCTCGTGGGAATGGTTGA -ACGGAATCTCGTGGGAATTCCGAT -ACGGAATCTCGTGGGAATTGGCAT -ACGGAATCTCGTGGGAATCGAGAT -ACGGAATCTCGTGGGAATTACCAC -ACGGAATCTCGTGGGAATCAGAAC -ACGGAATCTCGTGGGAATGTCTAC -ACGGAATCTCGTGGGAATACGTAC -ACGGAATCTCGTGGGAATAGTGAC -ACGGAATCTCGTGGGAATCTGTAG -ACGGAATCTCGTGGGAATCCTAAG -ACGGAATCTCGTGGGAATGTTCAG -ACGGAATCTCGTGGGAATGCATAG -ACGGAATCTCGTGGGAATGACAAG -ACGGAATCTCGTGGGAATAAGCAG -ACGGAATCTCGTGGGAATCGTCAA -ACGGAATCTCGTGGGAATGCTGAA -ACGGAATCTCGTGGGAATAGTACG -ACGGAATCTCGTGGGAATATCCGA -ACGGAATCTCGTGGGAATATGGGA -ACGGAATCTCGTGGGAATGTGCAA -ACGGAATCTCGTGGGAATGAGGAA -ACGGAATCTCGTGGGAATCAGGTA -ACGGAATCTCGTGGGAATGACTCT -ACGGAATCTCGTGGGAATAGTCCT -ACGGAATCTCGTGGGAATTAAGCC -ACGGAATCTCGTGGGAATATAGCC -ACGGAATCTCGTGGGAATTAACCG -ACGGAATCTCGTGGGAATATGCCA -ACGGAATCTCGTTGATCCGGAAAC -ACGGAATCTCGTTGATCCAACACC -ACGGAATCTCGTTGATCCATCGAG -ACGGAATCTCGTTGATCCCTCCTT -ACGGAATCTCGTTGATCCCCTGTT -ACGGAATCTCGTTGATCCCGGTTT -ACGGAATCTCGTTGATCCGTGGTT -ACGGAATCTCGTTGATCCGCCTTT -ACGGAATCTCGTTGATCCGGTCTT -ACGGAATCTCGTTGATCCACGCTT -ACGGAATCTCGTTGATCCAGCGTT -ACGGAATCTCGTTGATCCTTCGTC -ACGGAATCTCGTTGATCCTCTCTC -ACGGAATCTCGTTGATCCTGGATC -ACGGAATCTCGTTGATCCCACTTC -ACGGAATCTCGTTGATCCGTACTC -ACGGAATCTCGTTGATCCGATGTC -ACGGAATCTCGTTGATCCACAGTC -ACGGAATCTCGTTGATCCTTGCTG -ACGGAATCTCGTTGATCCTCCATG -ACGGAATCTCGTTGATCCTGTGTG -ACGGAATCTCGTTGATCCCTAGTG -ACGGAATCTCGTTGATCCCATCTG -ACGGAATCTCGTTGATCCGAGTTG -ACGGAATCTCGTTGATCCAGACTG -ACGGAATCTCGTTGATCCTCGGTA -ACGGAATCTCGTTGATCCTGCCTA -ACGGAATCTCGTTGATCCCCACTA -ACGGAATCTCGTTGATCCGGAGTA -ACGGAATCTCGTTGATCCTCGTCT -ACGGAATCTCGTTGATCCTGCACT -ACGGAATCTCGTTGATCCCTGACT -ACGGAATCTCGTTGATCCCAACCT -ACGGAATCTCGTTGATCCGCTACT -ACGGAATCTCGTTGATCCGGATCT -ACGGAATCTCGTTGATCCAAGGCT -ACGGAATCTCGTTGATCCTCAACC -ACGGAATCTCGTTGATCCTGTTCC -ACGGAATCTCGTTGATCCATTCCC -ACGGAATCTCGTTGATCCTTCTCG -ACGGAATCTCGTTGATCCTAGACG -ACGGAATCTCGTTGATCCGTAACG -ACGGAATCTCGTTGATCCACTTCG -ACGGAATCTCGTTGATCCTACGCA -ACGGAATCTCGTTGATCCCTTGCA -ACGGAATCTCGTTGATCCCGAACA -ACGGAATCTCGTTGATCCCAGTCA -ACGGAATCTCGTTGATCCGATCCA -ACGGAATCTCGTTGATCCACGACA -ACGGAATCTCGTTGATCCAGCTCA -ACGGAATCTCGTTGATCCTCACGT -ACGGAATCTCGTTGATCCCGTAGT -ACGGAATCTCGTTGATCCGTCAGT -ACGGAATCTCGTTGATCCGAAGGT -ACGGAATCTCGTTGATCCAACCGT -ACGGAATCTCGTTGATCCTTGTGC -ACGGAATCTCGTTGATCCCTAAGC -ACGGAATCTCGTTGATCCACTAGC -ACGGAATCTCGTTGATCCAGATGC -ACGGAATCTCGTTGATCCTGAAGG -ACGGAATCTCGTTGATCCCAATGG -ACGGAATCTCGTTGATCCATGAGG -ACGGAATCTCGTTGATCCAATGGG -ACGGAATCTCGTTGATCCTCCTGA -ACGGAATCTCGTTGATCCTAGCGA -ACGGAATCTCGTTGATCCCACAGA -ACGGAATCTCGTTGATCCGCAAGA -ACGGAATCTCGTTGATCCGGTTGA -ACGGAATCTCGTTGATCCTCCGAT -ACGGAATCTCGTTGATCCTGGCAT -ACGGAATCTCGTTGATCCCGAGAT -ACGGAATCTCGTTGATCCTACCAC -ACGGAATCTCGTTGATCCCAGAAC -ACGGAATCTCGTTGATCCGTCTAC -ACGGAATCTCGTTGATCCACGTAC -ACGGAATCTCGTTGATCCAGTGAC -ACGGAATCTCGTTGATCCCTGTAG -ACGGAATCTCGTTGATCCCCTAAG -ACGGAATCTCGTTGATCCGTTCAG -ACGGAATCTCGTTGATCCGCATAG -ACGGAATCTCGTTGATCCGACAAG -ACGGAATCTCGTTGATCCAAGCAG -ACGGAATCTCGTTGATCCCGTCAA -ACGGAATCTCGTTGATCCGCTGAA -ACGGAATCTCGTTGATCCAGTACG -ACGGAATCTCGTTGATCCATCCGA -ACGGAATCTCGTTGATCCATGGGA -ACGGAATCTCGTTGATCCGTGCAA -ACGGAATCTCGTTGATCCGAGGAA -ACGGAATCTCGTTGATCCCAGGTA -ACGGAATCTCGTTGATCCGACTCT -ACGGAATCTCGTTGATCCAGTCCT -ACGGAATCTCGTTGATCCTAAGCC -ACGGAATCTCGTTGATCCATAGCC -ACGGAATCTCGTTGATCCTAACCG -ACGGAATCTCGTTGATCCATGCCA -ACGGAATCTCGTCGATAGGGAAAC -ACGGAATCTCGTCGATAGAACACC -ACGGAATCTCGTCGATAGATCGAG -ACGGAATCTCGTCGATAGCTCCTT -ACGGAATCTCGTCGATAGCCTGTT -ACGGAATCTCGTCGATAGCGGTTT -ACGGAATCTCGTCGATAGGTGGTT -ACGGAATCTCGTCGATAGGCCTTT -ACGGAATCTCGTCGATAGGGTCTT -ACGGAATCTCGTCGATAGACGCTT -ACGGAATCTCGTCGATAGAGCGTT -ACGGAATCTCGTCGATAGTTCGTC -ACGGAATCTCGTCGATAGTCTCTC -ACGGAATCTCGTCGATAGTGGATC -ACGGAATCTCGTCGATAGCACTTC -ACGGAATCTCGTCGATAGGTACTC -ACGGAATCTCGTCGATAGGATGTC -ACGGAATCTCGTCGATAGACAGTC -ACGGAATCTCGTCGATAGTTGCTG -ACGGAATCTCGTCGATAGTCCATG -ACGGAATCTCGTCGATAGTGTGTG -ACGGAATCTCGTCGATAGCTAGTG -ACGGAATCTCGTCGATAGCATCTG -ACGGAATCTCGTCGATAGGAGTTG -ACGGAATCTCGTCGATAGAGACTG -ACGGAATCTCGTCGATAGTCGGTA -ACGGAATCTCGTCGATAGTGCCTA -ACGGAATCTCGTCGATAGCCACTA -ACGGAATCTCGTCGATAGGGAGTA -ACGGAATCTCGTCGATAGTCGTCT -ACGGAATCTCGTCGATAGTGCACT -ACGGAATCTCGTCGATAGCTGACT -ACGGAATCTCGTCGATAGCAACCT -ACGGAATCTCGTCGATAGGCTACT -ACGGAATCTCGTCGATAGGGATCT -ACGGAATCTCGTCGATAGAAGGCT -ACGGAATCTCGTCGATAGTCAACC -ACGGAATCTCGTCGATAGTGTTCC -ACGGAATCTCGTCGATAGATTCCC -ACGGAATCTCGTCGATAGTTCTCG -ACGGAATCTCGTCGATAGTAGACG -ACGGAATCTCGTCGATAGGTAACG -ACGGAATCTCGTCGATAGACTTCG -ACGGAATCTCGTCGATAGTACGCA -ACGGAATCTCGTCGATAGCTTGCA -ACGGAATCTCGTCGATAGCGAACA -ACGGAATCTCGTCGATAGCAGTCA -ACGGAATCTCGTCGATAGGATCCA -ACGGAATCTCGTCGATAGACGACA -ACGGAATCTCGTCGATAGAGCTCA -ACGGAATCTCGTCGATAGTCACGT -ACGGAATCTCGTCGATAGCGTAGT -ACGGAATCTCGTCGATAGGTCAGT -ACGGAATCTCGTCGATAGGAAGGT -ACGGAATCTCGTCGATAGAACCGT -ACGGAATCTCGTCGATAGTTGTGC -ACGGAATCTCGTCGATAGCTAAGC -ACGGAATCTCGTCGATAGACTAGC -ACGGAATCTCGTCGATAGAGATGC -ACGGAATCTCGTCGATAGTGAAGG -ACGGAATCTCGTCGATAGCAATGG -ACGGAATCTCGTCGATAGATGAGG -ACGGAATCTCGTCGATAGAATGGG -ACGGAATCTCGTCGATAGTCCTGA -ACGGAATCTCGTCGATAGTAGCGA -ACGGAATCTCGTCGATAGCACAGA -ACGGAATCTCGTCGATAGGCAAGA -ACGGAATCTCGTCGATAGGGTTGA -ACGGAATCTCGTCGATAGTCCGAT -ACGGAATCTCGTCGATAGTGGCAT -ACGGAATCTCGTCGATAGCGAGAT -ACGGAATCTCGTCGATAGTACCAC -ACGGAATCTCGTCGATAGCAGAAC -ACGGAATCTCGTCGATAGGTCTAC -ACGGAATCTCGTCGATAGACGTAC -ACGGAATCTCGTCGATAGAGTGAC -ACGGAATCTCGTCGATAGCTGTAG -ACGGAATCTCGTCGATAGCCTAAG -ACGGAATCTCGTCGATAGGTTCAG -ACGGAATCTCGTCGATAGGCATAG -ACGGAATCTCGTCGATAGGACAAG -ACGGAATCTCGTCGATAGAAGCAG -ACGGAATCTCGTCGATAGCGTCAA -ACGGAATCTCGTCGATAGGCTGAA -ACGGAATCTCGTCGATAGAGTACG -ACGGAATCTCGTCGATAGATCCGA -ACGGAATCTCGTCGATAGATGGGA -ACGGAATCTCGTCGATAGGTGCAA -ACGGAATCTCGTCGATAGGAGGAA -ACGGAATCTCGTCGATAGCAGGTA -ACGGAATCTCGTCGATAGGACTCT -ACGGAATCTCGTCGATAGAGTCCT -ACGGAATCTCGTCGATAGTAAGCC -ACGGAATCTCGTCGATAGATAGCC -ACGGAATCTCGTCGATAGTAACCG -ACGGAATCTCGTCGATAGATGCCA -ACGGAATCTCGTAGACACGGAAAC -ACGGAATCTCGTAGACACAACACC -ACGGAATCTCGTAGACACATCGAG -ACGGAATCTCGTAGACACCTCCTT -ACGGAATCTCGTAGACACCCTGTT -ACGGAATCTCGTAGACACCGGTTT -ACGGAATCTCGTAGACACGTGGTT -ACGGAATCTCGTAGACACGCCTTT -ACGGAATCTCGTAGACACGGTCTT -ACGGAATCTCGTAGACACACGCTT -ACGGAATCTCGTAGACACAGCGTT -ACGGAATCTCGTAGACACTTCGTC -ACGGAATCTCGTAGACACTCTCTC -ACGGAATCTCGTAGACACTGGATC -ACGGAATCTCGTAGACACCACTTC -ACGGAATCTCGTAGACACGTACTC -ACGGAATCTCGTAGACACGATGTC -ACGGAATCTCGTAGACACACAGTC -ACGGAATCTCGTAGACACTTGCTG -ACGGAATCTCGTAGACACTCCATG -ACGGAATCTCGTAGACACTGTGTG -ACGGAATCTCGTAGACACCTAGTG -ACGGAATCTCGTAGACACCATCTG -ACGGAATCTCGTAGACACGAGTTG -ACGGAATCTCGTAGACACAGACTG -ACGGAATCTCGTAGACACTCGGTA -ACGGAATCTCGTAGACACTGCCTA -ACGGAATCTCGTAGACACCCACTA -ACGGAATCTCGTAGACACGGAGTA -ACGGAATCTCGTAGACACTCGTCT -ACGGAATCTCGTAGACACTGCACT -ACGGAATCTCGTAGACACCTGACT -ACGGAATCTCGTAGACACCAACCT -ACGGAATCTCGTAGACACGCTACT -ACGGAATCTCGTAGACACGGATCT -ACGGAATCTCGTAGACACAAGGCT -ACGGAATCTCGTAGACACTCAACC -ACGGAATCTCGTAGACACTGTTCC -ACGGAATCTCGTAGACACATTCCC -ACGGAATCTCGTAGACACTTCTCG -ACGGAATCTCGTAGACACTAGACG -ACGGAATCTCGTAGACACGTAACG -ACGGAATCTCGTAGACACACTTCG -ACGGAATCTCGTAGACACTACGCA -ACGGAATCTCGTAGACACCTTGCA -ACGGAATCTCGTAGACACCGAACA -ACGGAATCTCGTAGACACCAGTCA -ACGGAATCTCGTAGACACGATCCA -ACGGAATCTCGTAGACACACGACA -ACGGAATCTCGTAGACACAGCTCA -ACGGAATCTCGTAGACACTCACGT -ACGGAATCTCGTAGACACCGTAGT -ACGGAATCTCGTAGACACGTCAGT -ACGGAATCTCGTAGACACGAAGGT -ACGGAATCTCGTAGACACAACCGT -ACGGAATCTCGTAGACACTTGTGC -ACGGAATCTCGTAGACACCTAAGC -ACGGAATCTCGTAGACACACTAGC -ACGGAATCTCGTAGACACAGATGC -ACGGAATCTCGTAGACACTGAAGG -ACGGAATCTCGTAGACACCAATGG -ACGGAATCTCGTAGACACATGAGG -ACGGAATCTCGTAGACACAATGGG -ACGGAATCTCGTAGACACTCCTGA -ACGGAATCTCGTAGACACTAGCGA -ACGGAATCTCGTAGACACCACAGA -ACGGAATCTCGTAGACACGCAAGA -ACGGAATCTCGTAGACACGGTTGA -ACGGAATCTCGTAGACACTCCGAT -ACGGAATCTCGTAGACACTGGCAT -ACGGAATCTCGTAGACACCGAGAT -ACGGAATCTCGTAGACACTACCAC -ACGGAATCTCGTAGACACCAGAAC -ACGGAATCTCGTAGACACGTCTAC -ACGGAATCTCGTAGACACACGTAC -ACGGAATCTCGTAGACACAGTGAC -ACGGAATCTCGTAGACACCTGTAG -ACGGAATCTCGTAGACACCCTAAG -ACGGAATCTCGTAGACACGTTCAG -ACGGAATCTCGTAGACACGCATAG -ACGGAATCTCGTAGACACGACAAG -ACGGAATCTCGTAGACACAAGCAG -ACGGAATCTCGTAGACACCGTCAA -ACGGAATCTCGTAGACACGCTGAA -ACGGAATCTCGTAGACACAGTACG -ACGGAATCTCGTAGACACATCCGA -ACGGAATCTCGTAGACACATGGGA -ACGGAATCTCGTAGACACGTGCAA -ACGGAATCTCGTAGACACGAGGAA -ACGGAATCTCGTAGACACCAGGTA -ACGGAATCTCGTAGACACGACTCT -ACGGAATCTCGTAGACACAGTCCT -ACGGAATCTCGTAGACACTAAGCC -ACGGAATCTCGTAGACACATAGCC -ACGGAATCTCGTAGACACTAACCG -ACGGAATCTCGTAGACACATGCCA -ACGGAATCTCGTAGAGCAGGAAAC -ACGGAATCTCGTAGAGCAAACACC -ACGGAATCTCGTAGAGCAATCGAG -ACGGAATCTCGTAGAGCACTCCTT -ACGGAATCTCGTAGAGCACCTGTT -ACGGAATCTCGTAGAGCACGGTTT -ACGGAATCTCGTAGAGCAGTGGTT -ACGGAATCTCGTAGAGCAGCCTTT -ACGGAATCTCGTAGAGCAGGTCTT -ACGGAATCTCGTAGAGCAACGCTT -ACGGAATCTCGTAGAGCAAGCGTT -ACGGAATCTCGTAGAGCATTCGTC -ACGGAATCTCGTAGAGCATCTCTC -ACGGAATCTCGTAGAGCATGGATC -ACGGAATCTCGTAGAGCACACTTC -ACGGAATCTCGTAGAGCAGTACTC -ACGGAATCTCGTAGAGCAGATGTC -ACGGAATCTCGTAGAGCAACAGTC -ACGGAATCTCGTAGAGCATTGCTG -ACGGAATCTCGTAGAGCATCCATG -ACGGAATCTCGTAGAGCATGTGTG -ACGGAATCTCGTAGAGCACTAGTG -ACGGAATCTCGTAGAGCACATCTG -ACGGAATCTCGTAGAGCAGAGTTG -ACGGAATCTCGTAGAGCAAGACTG -ACGGAATCTCGTAGAGCATCGGTA -ACGGAATCTCGTAGAGCATGCCTA -ACGGAATCTCGTAGAGCACCACTA -ACGGAATCTCGTAGAGCAGGAGTA -ACGGAATCTCGTAGAGCATCGTCT -ACGGAATCTCGTAGAGCATGCACT -ACGGAATCTCGTAGAGCACTGACT -ACGGAATCTCGTAGAGCACAACCT -ACGGAATCTCGTAGAGCAGCTACT -ACGGAATCTCGTAGAGCAGGATCT -ACGGAATCTCGTAGAGCAAAGGCT -ACGGAATCTCGTAGAGCATCAACC -ACGGAATCTCGTAGAGCATGTTCC -ACGGAATCTCGTAGAGCAATTCCC -ACGGAATCTCGTAGAGCATTCTCG -ACGGAATCTCGTAGAGCATAGACG -ACGGAATCTCGTAGAGCAGTAACG -ACGGAATCTCGTAGAGCAACTTCG -ACGGAATCTCGTAGAGCATACGCA -ACGGAATCTCGTAGAGCACTTGCA -ACGGAATCTCGTAGAGCACGAACA -ACGGAATCTCGTAGAGCACAGTCA -ACGGAATCTCGTAGAGCAGATCCA -ACGGAATCTCGTAGAGCAACGACA -ACGGAATCTCGTAGAGCAAGCTCA -ACGGAATCTCGTAGAGCATCACGT -ACGGAATCTCGTAGAGCACGTAGT -ACGGAATCTCGTAGAGCAGTCAGT -ACGGAATCTCGTAGAGCAGAAGGT -ACGGAATCTCGTAGAGCAAACCGT -ACGGAATCTCGTAGAGCATTGTGC -ACGGAATCTCGTAGAGCACTAAGC -ACGGAATCTCGTAGAGCAACTAGC -ACGGAATCTCGTAGAGCAAGATGC -ACGGAATCTCGTAGAGCATGAAGG -ACGGAATCTCGTAGAGCACAATGG -ACGGAATCTCGTAGAGCAATGAGG -ACGGAATCTCGTAGAGCAAATGGG -ACGGAATCTCGTAGAGCATCCTGA -ACGGAATCTCGTAGAGCATAGCGA -ACGGAATCTCGTAGAGCACACAGA -ACGGAATCTCGTAGAGCAGCAAGA -ACGGAATCTCGTAGAGCAGGTTGA -ACGGAATCTCGTAGAGCATCCGAT -ACGGAATCTCGTAGAGCATGGCAT -ACGGAATCTCGTAGAGCACGAGAT -ACGGAATCTCGTAGAGCATACCAC -ACGGAATCTCGTAGAGCACAGAAC -ACGGAATCTCGTAGAGCAGTCTAC -ACGGAATCTCGTAGAGCAACGTAC -ACGGAATCTCGTAGAGCAAGTGAC -ACGGAATCTCGTAGAGCACTGTAG -ACGGAATCTCGTAGAGCACCTAAG -ACGGAATCTCGTAGAGCAGTTCAG -ACGGAATCTCGTAGAGCAGCATAG -ACGGAATCTCGTAGAGCAGACAAG -ACGGAATCTCGTAGAGCAAAGCAG -ACGGAATCTCGTAGAGCACGTCAA -ACGGAATCTCGTAGAGCAGCTGAA -ACGGAATCTCGTAGAGCAAGTACG -ACGGAATCTCGTAGAGCAATCCGA -ACGGAATCTCGTAGAGCAATGGGA -ACGGAATCTCGTAGAGCAGTGCAA -ACGGAATCTCGTAGAGCAGAGGAA -ACGGAATCTCGTAGAGCACAGGTA -ACGGAATCTCGTAGAGCAGACTCT -ACGGAATCTCGTAGAGCAAGTCCT -ACGGAATCTCGTAGAGCATAAGCC -ACGGAATCTCGTAGAGCAATAGCC -ACGGAATCTCGTAGAGCATAACCG -ACGGAATCTCGTAGAGCAATGCCA -ACGGAATCTCGTTGAGGTGGAAAC -ACGGAATCTCGTTGAGGTAACACC -ACGGAATCTCGTTGAGGTATCGAG -ACGGAATCTCGTTGAGGTCTCCTT -ACGGAATCTCGTTGAGGTCCTGTT -ACGGAATCTCGTTGAGGTCGGTTT -ACGGAATCTCGTTGAGGTGTGGTT -ACGGAATCTCGTTGAGGTGCCTTT -ACGGAATCTCGTTGAGGTGGTCTT -ACGGAATCTCGTTGAGGTACGCTT -ACGGAATCTCGTTGAGGTAGCGTT -ACGGAATCTCGTTGAGGTTTCGTC -ACGGAATCTCGTTGAGGTTCTCTC -ACGGAATCTCGTTGAGGTTGGATC -ACGGAATCTCGTTGAGGTCACTTC -ACGGAATCTCGTTGAGGTGTACTC -ACGGAATCTCGTTGAGGTGATGTC -ACGGAATCTCGTTGAGGTACAGTC -ACGGAATCTCGTTGAGGTTTGCTG -ACGGAATCTCGTTGAGGTTCCATG -ACGGAATCTCGTTGAGGTTGTGTG -ACGGAATCTCGTTGAGGTCTAGTG -ACGGAATCTCGTTGAGGTCATCTG -ACGGAATCTCGTTGAGGTGAGTTG -ACGGAATCTCGTTGAGGTAGACTG -ACGGAATCTCGTTGAGGTTCGGTA -ACGGAATCTCGTTGAGGTTGCCTA -ACGGAATCTCGTTGAGGTCCACTA -ACGGAATCTCGTTGAGGTGGAGTA -ACGGAATCTCGTTGAGGTTCGTCT -ACGGAATCTCGTTGAGGTTGCACT -ACGGAATCTCGTTGAGGTCTGACT -ACGGAATCTCGTTGAGGTCAACCT -ACGGAATCTCGTTGAGGTGCTACT -ACGGAATCTCGTTGAGGTGGATCT -ACGGAATCTCGTTGAGGTAAGGCT -ACGGAATCTCGTTGAGGTTCAACC -ACGGAATCTCGTTGAGGTTGTTCC -ACGGAATCTCGTTGAGGTATTCCC -ACGGAATCTCGTTGAGGTTTCTCG -ACGGAATCTCGTTGAGGTTAGACG -ACGGAATCTCGTTGAGGTGTAACG -ACGGAATCTCGTTGAGGTACTTCG -ACGGAATCTCGTTGAGGTTACGCA -ACGGAATCTCGTTGAGGTCTTGCA -ACGGAATCTCGTTGAGGTCGAACA -ACGGAATCTCGTTGAGGTCAGTCA -ACGGAATCTCGTTGAGGTGATCCA -ACGGAATCTCGTTGAGGTACGACA -ACGGAATCTCGTTGAGGTAGCTCA -ACGGAATCTCGTTGAGGTTCACGT -ACGGAATCTCGTTGAGGTCGTAGT -ACGGAATCTCGTTGAGGTGTCAGT -ACGGAATCTCGTTGAGGTGAAGGT -ACGGAATCTCGTTGAGGTAACCGT -ACGGAATCTCGTTGAGGTTTGTGC -ACGGAATCTCGTTGAGGTCTAAGC -ACGGAATCTCGTTGAGGTACTAGC -ACGGAATCTCGTTGAGGTAGATGC -ACGGAATCTCGTTGAGGTTGAAGG -ACGGAATCTCGTTGAGGTCAATGG -ACGGAATCTCGTTGAGGTATGAGG -ACGGAATCTCGTTGAGGTAATGGG -ACGGAATCTCGTTGAGGTTCCTGA -ACGGAATCTCGTTGAGGTTAGCGA -ACGGAATCTCGTTGAGGTCACAGA -ACGGAATCTCGTTGAGGTGCAAGA -ACGGAATCTCGTTGAGGTGGTTGA -ACGGAATCTCGTTGAGGTTCCGAT -ACGGAATCTCGTTGAGGTTGGCAT -ACGGAATCTCGTTGAGGTCGAGAT -ACGGAATCTCGTTGAGGTTACCAC -ACGGAATCTCGTTGAGGTCAGAAC -ACGGAATCTCGTTGAGGTGTCTAC -ACGGAATCTCGTTGAGGTACGTAC -ACGGAATCTCGTTGAGGTAGTGAC -ACGGAATCTCGTTGAGGTCTGTAG -ACGGAATCTCGTTGAGGTCCTAAG -ACGGAATCTCGTTGAGGTGTTCAG -ACGGAATCTCGTTGAGGTGCATAG -ACGGAATCTCGTTGAGGTGACAAG -ACGGAATCTCGTTGAGGTAAGCAG -ACGGAATCTCGTTGAGGTCGTCAA -ACGGAATCTCGTTGAGGTGCTGAA -ACGGAATCTCGTTGAGGTAGTACG -ACGGAATCTCGTTGAGGTATCCGA -ACGGAATCTCGTTGAGGTATGGGA -ACGGAATCTCGTTGAGGTGTGCAA -ACGGAATCTCGTTGAGGTGAGGAA -ACGGAATCTCGTTGAGGTCAGGTA -ACGGAATCTCGTTGAGGTGACTCT -ACGGAATCTCGTTGAGGTAGTCCT -ACGGAATCTCGTTGAGGTTAAGCC -ACGGAATCTCGTTGAGGTATAGCC -ACGGAATCTCGTTGAGGTTAACCG -ACGGAATCTCGTTGAGGTATGCCA -ACGGAATCTCGTGATTCCGGAAAC -ACGGAATCTCGTGATTCCAACACC -ACGGAATCTCGTGATTCCATCGAG -ACGGAATCTCGTGATTCCCTCCTT -ACGGAATCTCGTGATTCCCCTGTT -ACGGAATCTCGTGATTCCCGGTTT -ACGGAATCTCGTGATTCCGTGGTT -ACGGAATCTCGTGATTCCGCCTTT -ACGGAATCTCGTGATTCCGGTCTT -ACGGAATCTCGTGATTCCACGCTT -ACGGAATCTCGTGATTCCAGCGTT -ACGGAATCTCGTGATTCCTTCGTC -ACGGAATCTCGTGATTCCTCTCTC -ACGGAATCTCGTGATTCCTGGATC -ACGGAATCTCGTGATTCCCACTTC -ACGGAATCTCGTGATTCCGTACTC -ACGGAATCTCGTGATTCCGATGTC -ACGGAATCTCGTGATTCCACAGTC -ACGGAATCTCGTGATTCCTTGCTG -ACGGAATCTCGTGATTCCTCCATG -ACGGAATCTCGTGATTCCTGTGTG -ACGGAATCTCGTGATTCCCTAGTG -ACGGAATCTCGTGATTCCCATCTG -ACGGAATCTCGTGATTCCGAGTTG -ACGGAATCTCGTGATTCCAGACTG -ACGGAATCTCGTGATTCCTCGGTA -ACGGAATCTCGTGATTCCTGCCTA -ACGGAATCTCGTGATTCCCCACTA -ACGGAATCTCGTGATTCCGGAGTA -ACGGAATCTCGTGATTCCTCGTCT -ACGGAATCTCGTGATTCCTGCACT -ACGGAATCTCGTGATTCCCTGACT -ACGGAATCTCGTGATTCCCAACCT -ACGGAATCTCGTGATTCCGCTACT -ACGGAATCTCGTGATTCCGGATCT -ACGGAATCTCGTGATTCCAAGGCT -ACGGAATCTCGTGATTCCTCAACC -ACGGAATCTCGTGATTCCTGTTCC -ACGGAATCTCGTGATTCCATTCCC -ACGGAATCTCGTGATTCCTTCTCG -ACGGAATCTCGTGATTCCTAGACG -ACGGAATCTCGTGATTCCGTAACG -ACGGAATCTCGTGATTCCACTTCG -ACGGAATCTCGTGATTCCTACGCA -ACGGAATCTCGTGATTCCCTTGCA -ACGGAATCTCGTGATTCCCGAACA -ACGGAATCTCGTGATTCCCAGTCA -ACGGAATCTCGTGATTCCGATCCA -ACGGAATCTCGTGATTCCACGACA -ACGGAATCTCGTGATTCCAGCTCA -ACGGAATCTCGTGATTCCTCACGT -ACGGAATCTCGTGATTCCCGTAGT -ACGGAATCTCGTGATTCCGTCAGT -ACGGAATCTCGTGATTCCGAAGGT -ACGGAATCTCGTGATTCCAACCGT -ACGGAATCTCGTGATTCCTTGTGC -ACGGAATCTCGTGATTCCCTAAGC -ACGGAATCTCGTGATTCCACTAGC -ACGGAATCTCGTGATTCCAGATGC -ACGGAATCTCGTGATTCCTGAAGG -ACGGAATCTCGTGATTCCCAATGG -ACGGAATCTCGTGATTCCATGAGG -ACGGAATCTCGTGATTCCAATGGG -ACGGAATCTCGTGATTCCTCCTGA -ACGGAATCTCGTGATTCCTAGCGA -ACGGAATCTCGTGATTCCCACAGA -ACGGAATCTCGTGATTCCGCAAGA -ACGGAATCTCGTGATTCCGGTTGA -ACGGAATCTCGTGATTCCTCCGAT -ACGGAATCTCGTGATTCCTGGCAT -ACGGAATCTCGTGATTCCCGAGAT -ACGGAATCTCGTGATTCCTACCAC -ACGGAATCTCGTGATTCCCAGAAC -ACGGAATCTCGTGATTCCGTCTAC -ACGGAATCTCGTGATTCCACGTAC -ACGGAATCTCGTGATTCCAGTGAC -ACGGAATCTCGTGATTCCCTGTAG -ACGGAATCTCGTGATTCCCCTAAG -ACGGAATCTCGTGATTCCGTTCAG -ACGGAATCTCGTGATTCCGCATAG -ACGGAATCTCGTGATTCCGACAAG -ACGGAATCTCGTGATTCCAAGCAG -ACGGAATCTCGTGATTCCCGTCAA -ACGGAATCTCGTGATTCCGCTGAA -ACGGAATCTCGTGATTCCAGTACG -ACGGAATCTCGTGATTCCATCCGA -ACGGAATCTCGTGATTCCATGGGA -ACGGAATCTCGTGATTCCGTGCAA -ACGGAATCTCGTGATTCCGAGGAA -ACGGAATCTCGTGATTCCCAGGTA -ACGGAATCTCGTGATTCCGACTCT -ACGGAATCTCGTGATTCCAGTCCT -ACGGAATCTCGTGATTCCTAAGCC -ACGGAATCTCGTGATTCCATAGCC -ACGGAATCTCGTGATTCCTAACCG -ACGGAATCTCGTGATTCCATGCCA -ACGGAATCTCGTCATTGGGGAAAC -ACGGAATCTCGTCATTGGAACACC -ACGGAATCTCGTCATTGGATCGAG -ACGGAATCTCGTCATTGGCTCCTT -ACGGAATCTCGTCATTGGCCTGTT -ACGGAATCTCGTCATTGGCGGTTT -ACGGAATCTCGTCATTGGGTGGTT -ACGGAATCTCGTCATTGGGCCTTT -ACGGAATCTCGTCATTGGGGTCTT -ACGGAATCTCGTCATTGGACGCTT -ACGGAATCTCGTCATTGGAGCGTT -ACGGAATCTCGTCATTGGTTCGTC -ACGGAATCTCGTCATTGGTCTCTC -ACGGAATCTCGTCATTGGTGGATC -ACGGAATCTCGTCATTGGCACTTC -ACGGAATCTCGTCATTGGGTACTC -ACGGAATCTCGTCATTGGGATGTC -ACGGAATCTCGTCATTGGACAGTC -ACGGAATCTCGTCATTGGTTGCTG -ACGGAATCTCGTCATTGGTCCATG -ACGGAATCTCGTCATTGGTGTGTG -ACGGAATCTCGTCATTGGCTAGTG -ACGGAATCTCGTCATTGGCATCTG -ACGGAATCTCGTCATTGGGAGTTG -ACGGAATCTCGTCATTGGAGACTG -ACGGAATCTCGTCATTGGTCGGTA -ACGGAATCTCGTCATTGGTGCCTA -ACGGAATCTCGTCATTGGCCACTA -ACGGAATCTCGTCATTGGGGAGTA -ACGGAATCTCGTCATTGGTCGTCT -ACGGAATCTCGTCATTGGTGCACT -ACGGAATCTCGTCATTGGCTGACT -ACGGAATCTCGTCATTGGCAACCT -ACGGAATCTCGTCATTGGGCTACT -ACGGAATCTCGTCATTGGGGATCT -ACGGAATCTCGTCATTGGAAGGCT -ACGGAATCTCGTCATTGGTCAACC -ACGGAATCTCGTCATTGGTGTTCC -ACGGAATCTCGTCATTGGATTCCC -ACGGAATCTCGTCATTGGTTCTCG -ACGGAATCTCGTCATTGGTAGACG -ACGGAATCTCGTCATTGGGTAACG -ACGGAATCTCGTCATTGGACTTCG -ACGGAATCTCGTCATTGGTACGCA -ACGGAATCTCGTCATTGGCTTGCA -ACGGAATCTCGTCATTGGCGAACA -ACGGAATCTCGTCATTGGCAGTCA -ACGGAATCTCGTCATTGGGATCCA -ACGGAATCTCGTCATTGGACGACA -ACGGAATCTCGTCATTGGAGCTCA -ACGGAATCTCGTCATTGGTCACGT -ACGGAATCTCGTCATTGGCGTAGT -ACGGAATCTCGTCATTGGGTCAGT -ACGGAATCTCGTCATTGGGAAGGT -ACGGAATCTCGTCATTGGAACCGT -ACGGAATCTCGTCATTGGTTGTGC -ACGGAATCTCGTCATTGGCTAAGC -ACGGAATCTCGTCATTGGACTAGC -ACGGAATCTCGTCATTGGAGATGC -ACGGAATCTCGTCATTGGTGAAGG -ACGGAATCTCGTCATTGGCAATGG -ACGGAATCTCGTCATTGGATGAGG -ACGGAATCTCGTCATTGGAATGGG -ACGGAATCTCGTCATTGGTCCTGA -ACGGAATCTCGTCATTGGTAGCGA -ACGGAATCTCGTCATTGGCACAGA -ACGGAATCTCGTCATTGGGCAAGA -ACGGAATCTCGTCATTGGGGTTGA -ACGGAATCTCGTCATTGGTCCGAT -ACGGAATCTCGTCATTGGTGGCAT -ACGGAATCTCGTCATTGGCGAGAT -ACGGAATCTCGTCATTGGTACCAC -ACGGAATCTCGTCATTGGCAGAAC -ACGGAATCTCGTCATTGGGTCTAC -ACGGAATCTCGTCATTGGACGTAC -ACGGAATCTCGTCATTGGAGTGAC -ACGGAATCTCGTCATTGGCTGTAG -ACGGAATCTCGTCATTGGCCTAAG -ACGGAATCTCGTCATTGGGTTCAG -ACGGAATCTCGTCATTGGGCATAG -ACGGAATCTCGTCATTGGGACAAG -ACGGAATCTCGTCATTGGAAGCAG -ACGGAATCTCGTCATTGGCGTCAA -ACGGAATCTCGTCATTGGGCTGAA -ACGGAATCTCGTCATTGGAGTACG -ACGGAATCTCGTCATTGGATCCGA -ACGGAATCTCGTCATTGGATGGGA -ACGGAATCTCGTCATTGGGTGCAA -ACGGAATCTCGTCATTGGGAGGAA -ACGGAATCTCGTCATTGGCAGGTA -ACGGAATCTCGTCATTGGGACTCT -ACGGAATCTCGTCATTGGAGTCCT -ACGGAATCTCGTCATTGGTAAGCC -ACGGAATCTCGTCATTGGATAGCC -ACGGAATCTCGTCATTGGTAACCG -ACGGAATCTCGTCATTGGATGCCA -ACGGAATCTCGTGATCGAGGAAAC -ACGGAATCTCGTGATCGAAACACC -ACGGAATCTCGTGATCGAATCGAG -ACGGAATCTCGTGATCGACTCCTT -ACGGAATCTCGTGATCGACCTGTT -ACGGAATCTCGTGATCGACGGTTT -ACGGAATCTCGTGATCGAGTGGTT -ACGGAATCTCGTGATCGAGCCTTT -ACGGAATCTCGTGATCGAGGTCTT -ACGGAATCTCGTGATCGAACGCTT -ACGGAATCTCGTGATCGAAGCGTT -ACGGAATCTCGTGATCGATTCGTC -ACGGAATCTCGTGATCGATCTCTC -ACGGAATCTCGTGATCGATGGATC -ACGGAATCTCGTGATCGACACTTC -ACGGAATCTCGTGATCGAGTACTC -ACGGAATCTCGTGATCGAGATGTC -ACGGAATCTCGTGATCGAACAGTC -ACGGAATCTCGTGATCGATTGCTG -ACGGAATCTCGTGATCGATCCATG -ACGGAATCTCGTGATCGATGTGTG -ACGGAATCTCGTGATCGACTAGTG -ACGGAATCTCGTGATCGACATCTG -ACGGAATCTCGTGATCGAGAGTTG -ACGGAATCTCGTGATCGAAGACTG -ACGGAATCTCGTGATCGATCGGTA -ACGGAATCTCGTGATCGATGCCTA -ACGGAATCTCGTGATCGACCACTA -ACGGAATCTCGTGATCGAGGAGTA -ACGGAATCTCGTGATCGATCGTCT -ACGGAATCTCGTGATCGATGCACT -ACGGAATCTCGTGATCGACTGACT -ACGGAATCTCGTGATCGACAACCT -ACGGAATCTCGTGATCGAGCTACT -ACGGAATCTCGTGATCGAGGATCT -ACGGAATCTCGTGATCGAAAGGCT -ACGGAATCTCGTGATCGATCAACC -ACGGAATCTCGTGATCGATGTTCC -ACGGAATCTCGTGATCGAATTCCC -ACGGAATCTCGTGATCGATTCTCG -ACGGAATCTCGTGATCGATAGACG -ACGGAATCTCGTGATCGAGTAACG -ACGGAATCTCGTGATCGAACTTCG -ACGGAATCTCGTGATCGATACGCA -ACGGAATCTCGTGATCGACTTGCA -ACGGAATCTCGTGATCGACGAACA -ACGGAATCTCGTGATCGACAGTCA -ACGGAATCTCGTGATCGAGATCCA -ACGGAATCTCGTGATCGAACGACA -ACGGAATCTCGTGATCGAAGCTCA -ACGGAATCTCGTGATCGATCACGT -ACGGAATCTCGTGATCGACGTAGT -ACGGAATCTCGTGATCGAGTCAGT -ACGGAATCTCGTGATCGAGAAGGT -ACGGAATCTCGTGATCGAAACCGT -ACGGAATCTCGTGATCGATTGTGC -ACGGAATCTCGTGATCGACTAAGC -ACGGAATCTCGTGATCGAACTAGC -ACGGAATCTCGTGATCGAAGATGC -ACGGAATCTCGTGATCGATGAAGG -ACGGAATCTCGTGATCGACAATGG -ACGGAATCTCGTGATCGAATGAGG -ACGGAATCTCGTGATCGAAATGGG -ACGGAATCTCGTGATCGATCCTGA -ACGGAATCTCGTGATCGATAGCGA -ACGGAATCTCGTGATCGACACAGA -ACGGAATCTCGTGATCGAGCAAGA -ACGGAATCTCGTGATCGAGGTTGA -ACGGAATCTCGTGATCGATCCGAT -ACGGAATCTCGTGATCGATGGCAT -ACGGAATCTCGTGATCGACGAGAT -ACGGAATCTCGTGATCGATACCAC -ACGGAATCTCGTGATCGACAGAAC -ACGGAATCTCGTGATCGAGTCTAC -ACGGAATCTCGTGATCGAACGTAC -ACGGAATCTCGTGATCGAAGTGAC -ACGGAATCTCGTGATCGACTGTAG -ACGGAATCTCGTGATCGACCTAAG -ACGGAATCTCGTGATCGAGTTCAG -ACGGAATCTCGTGATCGAGCATAG -ACGGAATCTCGTGATCGAGACAAG -ACGGAATCTCGTGATCGAAAGCAG -ACGGAATCTCGTGATCGACGTCAA -ACGGAATCTCGTGATCGAGCTGAA -ACGGAATCTCGTGATCGAAGTACG -ACGGAATCTCGTGATCGAATCCGA -ACGGAATCTCGTGATCGAATGGGA -ACGGAATCTCGTGATCGAGTGCAA -ACGGAATCTCGTGATCGAGAGGAA -ACGGAATCTCGTGATCGACAGGTA -ACGGAATCTCGTGATCGAGACTCT -ACGGAATCTCGTGATCGAAGTCCT -ACGGAATCTCGTGATCGATAAGCC -ACGGAATCTCGTGATCGAATAGCC -ACGGAATCTCGTGATCGATAACCG -ACGGAATCTCGTGATCGAATGCCA -ACGGAATCTCGTCACTACGGAAAC -ACGGAATCTCGTCACTACAACACC -ACGGAATCTCGTCACTACATCGAG -ACGGAATCTCGTCACTACCTCCTT -ACGGAATCTCGTCACTACCCTGTT -ACGGAATCTCGTCACTACCGGTTT -ACGGAATCTCGTCACTACGTGGTT -ACGGAATCTCGTCACTACGCCTTT -ACGGAATCTCGTCACTACGGTCTT -ACGGAATCTCGTCACTACACGCTT -ACGGAATCTCGTCACTACAGCGTT -ACGGAATCTCGTCACTACTTCGTC -ACGGAATCTCGTCACTACTCTCTC -ACGGAATCTCGTCACTACTGGATC -ACGGAATCTCGTCACTACCACTTC -ACGGAATCTCGTCACTACGTACTC -ACGGAATCTCGTCACTACGATGTC -ACGGAATCTCGTCACTACACAGTC -ACGGAATCTCGTCACTACTTGCTG -ACGGAATCTCGTCACTACTCCATG -ACGGAATCTCGTCACTACTGTGTG -ACGGAATCTCGTCACTACCTAGTG -ACGGAATCTCGTCACTACCATCTG -ACGGAATCTCGTCACTACGAGTTG -ACGGAATCTCGTCACTACAGACTG -ACGGAATCTCGTCACTACTCGGTA -ACGGAATCTCGTCACTACTGCCTA -ACGGAATCTCGTCACTACCCACTA -ACGGAATCTCGTCACTACGGAGTA -ACGGAATCTCGTCACTACTCGTCT -ACGGAATCTCGTCACTACTGCACT -ACGGAATCTCGTCACTACCTGACT -ACGGAATCTCGTCACTACCAACCT -ACGGAATCTCGTCACTACGCTACT -ACGGAATCTCGTCACTACGGATCT -ACGGAATCTCGTCACTACAAGGCT -ACGGAATCTCGTCACTACTCAACC -ACGGAATCTCGTCACTACTGTTCC -ACGGAATCTCGTCACTACATTCCC -ACGGAATCTCGTCACTACTTCTCG -ACGGAATCTCGTCACTACTAGACG -ACGGAATCTCGTCACTACGTAACG -ACGGAATCTCGTCACTACACTTCG -ACGGAATCTCGTCACTACTACGCA -ACGGAATCTCGTCACTACCTTGCA -ACGGAATCTCGTCACTACCGAACA -ACGGAATCTCGTCACTACCAGTCA -ACGGAATCTCGTCACTACGATCCA -ACGGAATCTCGTCACTACACGACA -ACGGAATCTCGTCACTACAGCTCA -ACGGAATCTCGTCACTACTCACGT -ACGGAATCTCGTCACTACCGTAGT -ACGGAATCTCGTCACTACGTCAGT -ACGGAATCTCGTCACTACGAAGGT -ACGGAATCTCGTCACTACAACCGT -ACGGAATCTCGTCACTACTTGTGC -ACGGAATCTCGTCACTACCTAAGC -ACGGAATCTCGTCACTACACTAGC -ACGGAATCTCGTCACTACAGATGC -ACGGAATCTCGTCACTACTGAAGG -ACGGAATCTCGTCACTACCAATGG -ACGGAATCTCGTCACTACATGAGG -ACGGAATCTCGTCACTACAATGGG -ACGGAATCTCGTCACTACTCCTGA -ACGGAATCTCGTCACTACTAGCGA -ACGGAATCTCGTCACTACCACAGA -ACGGAATCTCGTCACTACGCAAGA -ACGGAATCTCGTCACTACGGTTGA -ACGGAATCTCGTCACTACTCCGAT -ACGGAATCTCGTCACTACTGGCAT -ACGGAATCTCGTCACTACCGAGAT -ACGGAATCTCGTCACTACTACCAC -ACGGAATCTCGTCACTACCAGAAC -ACGGAATCTCGTCACTACGTCTAC -ACGGAATCTCGTCACTACACGTAC -ACGGAATCTCGTCACTACAGTGAC -ACGGAATCTCGTCACTACCTGTAG -ACGGAATCTCGTCACTACCCTAAG -ACGGAATCTCGTCACTACGTTCAG -ACGGAATCTCGTCACTACGCATAG -ACGGAATCTCGTCACTACGACAAG -ACGGAATCTCGTCACTACAAGCAG -ACGGAATCTCGTCACTACCGTCAA -ACGGAATCTCGTCACTACGCTGAA -ACGGAATCTCGTCACTACAGTACG -ACGGAATCTCGTCACTACATCCGA -ACGGAATCTCGTCACTACATGGGA -ACGGAATCTCGTCACTACGTGCAA -ACGGAATCTCGTCACTACGAGGAA -ACGGAATCTCGTCACTACCAGGTA -ACGGAATCTCGTCACTACGACTCT -ACGGAATCTCGTCACTACAGTCCT -ACGGAATCTCGTCACTACTAAGCC -ACGGAATCTCGTCACTACATAGCC -ACGGAATCTCGTCACTACTAACCG -ACGGAATCTCGTCACTACATGCCA -ACGGAATCTCGTAACCAGGGAAAC -ACGGAATCTCGTAACCAGAACACC -ACGGAATCTCGTAACCAGATCGAG -ACGGAATCTCGTAACCAGCTCCTT -ACGGAATCTCGTAACCAGCCTGTT -ACGGAATCTCGTAACCAGCGGTTT -ACGGAATCTCGTAACCAGGTGGTT -ACGGAATCTCGTAACCAGGCCTTT -ACGGAATCTCGTAACCAGGGTCTT -ACGGAATCTCGTAACCAGACGCTT -ACGGAATCTCGTAACCAGAGCGTT -ACGGAATCTCGTAACCAGTTCGTC -ACGGAATCTCGTAACCAGTCTCTC -ACGGAATCTCGTAACCAGTGGATC -ACGGAATCTCGTAACCAGCACTTC -ACGGAATCTCGTAACCAGGTACTC -ACGGAATCTCGTAACCAGGATGTC -ACGGAATCTCGTAACCAGACAGTC -ACGGAATCTCGTAACCAGTTGCTG -ACGGAATCTCGTAACCAGTCCATG -ACGGAATCTCGTAACCAGTGTGTG -ACGGAATCTCGTAACCAGCTAGTG -ACGGAATCTCGTAACCAGCATCTG -ACGGAATCTCGTAACCAGGAGTTG -ACGGAATCTCGTAACCAGAGACTG -ACGGAATCTCGTAACCAGTCGGTA -ACGGAATCTCGTAACCAGTGCCTA -ACGGAATCTCGTAACCAGCCACTA -ACGGAATCTCGTAACCAGGGAGTA -ACGGAATCTCGTAACCAGTCGTCT -ACGGAATCTCGTAACCAGTGCACT -ACGGAATCTCGTAACCAGCTGACT -ACGGAATCTCGTAACCAGCAACCT -ACGGAATCTCGTAACCAGGCTACT -ACGGAATCTCGTAACCAGGGATCT -ACGGAATCTCGTAACCAGAAGGCT -ACGGAATCTCGTAACCAGTCAACC -ACGGAATCTCGTAACCAGTGTTCC -ACGGAATCTCGTAACCAGATTCCC -ACGGAATCTCGTAACCAGTTCTCG -ACGGAATCTCGTAACCAGTAGACG -ACGGAATCTCGTAACCAGGTAACG -ACGGAATCTCGTAACCAGACTTCG -ACGGAATCTCGTAACCAGTACGCA -ACGGAATCTCGTAACCAGCTTGCA -ACGGAATCTCGTAACCAGCGAACA -ACGGAATCTCGTAACCAGCAGTCA -ACGGAATCTCGTAACCAGGATCCA -ACGGAATCTCGTAACCAGACGACA -ACGGAATCTCGTAACCAGAGCTCA -ACGGAATCTCGTAACCAGTCACGT -ACGGAATCTCGTAACCAGCGTAGT -ACGGAATCTCGTAACCAGGTCAGT -ACGGAATCTCGTAACCAGGAAGGT -ACGGAATCTCGTAACCAGAACCGT -ACGGAATCTCGTAACCAGTTGTGC -ACGGAATCTCGTAACCAGCTAAGC -ACGGAATCTCGTAACCAGACTAGC -ACGGAATCTCGTAACCAGAGATGC -ACGGAATCTCGTAACCAGTGAAGG -ACGGAATCTCGTAACCAGCAATGG -ACGGAATCTCGTAACCAGATGAGG -ACGGAATCTCGTAACCAGAATGGG -ACGGAATCTCGTAACCAGTCCTGA -ACGGAATCTCGTAACCAGTAGCGA -ACGGAATCTCGTAACCAGCACAGA -ACGGAATCTCGTAACCAGGCAAGA -ACGGAATCTCGTAACCAGGGTTGA -ACGGAATCTCGTAACCAGTCCGAT -ACGGAATCTCGTAACCAGTGGCAT -ACGGAATCTCGTAACCAGCGAGAT -ACGGAATCTCGTAACCAGTACCAC -ACGGAATCTCGTAACCAGCAGAAC -ACGGAATCTCGTAACCAGGTCTAC -ACGGAATCTCGTAACCAGACGTAC -ACGGAATCTCGTAACCAGAGTGAC -ACGGAATCTCGTAACCAGCTGTAG -ACGGAATCTCGTAACCAGCCTAAG -ACGGAATCTCGTAACCAGGTTCAG -ACGGAATCTCGTAACCAGGCATAG -ACGGAATCTCGTAACCAGGACAAG -ACGGAATCTCGTAACCAGAAGCAG -ACGGAATCTCGTAACCAGCGTCAA -ACGGAATCTCGTAACCAGGCTGAA -ACGGAATCTCGTAACCAGAGTACG -ACGGAATCTCGTAACCAGATCCGA -ACGGAATCTCGTAACCAGATGGGA -ACGGAATCTCGTAACCAGGTGCAA -ACGGAATCTCGTAACCAGGAGGAA -ACGGAATCTCGTAACCAGCAGGTA -ACGGAATCTCGTAACCAGGACTCT -ACGGAATCTCGTAACCAGAGTCCT -ACGGAATCTCGTAACCAGTAAGCC -ACGGAATCTCGTAACCAGATAGCC -ACGGAATCTCGTAACCAGTAACCG -ACGGAATCTCGTAACCAGATGCCA -ACGGAATCTCGTTACGTCGGAAAC -ACGGAATCTCGTTACGTCAACACC -ACGGAATCTCGTTACGTCATCGAG -ACGGAATCTCGTTACGTCCTCCTT -ACGGAATCTCGTTACGTCCCTGTT -ACGGAATCTCGTTACGTCCGGTTT -ACGGAATCTCGTTACGTCGTGGTT -ACGGAATCTCGTTACGTCGCCTTT -ACGGAATCTCGTTACGTCGGTCTT -ACGGAATCTCGTTACGTCACGCTT -ACGGAATCTCGTTACGTCAGCGTT -ACGGAATCTCGTTACGTCTTCGTC -ACGGAATCTCGTTACGTCTCTCTC -ACGGAATCTCGTTACGTCTGGATC -ACGGAATCTCGTTACGTCCACTTC -ACGGAATCTCGTTACGTCGTACTC -ACGGAATCTCGTTACGTCGATGTC -ACGGAATCTCGTTACGTCACAGTC -ACGGAATCTCGTTACGTCTTGCTG -ACGGAATCTCGTTACGTCTCCATG -ACGGAATCTCGTTACGTCTGTGTG -ACGGAATCTCGTTACGTCCTAGTG -ACGGAATCTCGTTACGTCCATCTG -ACGGAATCTCGTTACGTCGAGTTG -ACGGAATCTCGTTACGTCAGACTG -ACGGAATCTCGTTACGTCTCGGTA -ACGGAATCTCGTTACGTCTGCCTA -ACGGAATCTCGTTACGTCCCACTA -ACGGAATCTCGTTACGTCGGAGTA -ACGGAATCTCGTTACGTCTCGTCT -ACGGAATCTCGTTACGTCTGCACT -ACGGAATCTCGTTACGTCCTGACT -ACGGAATCTCGTTACGTCCAACCT -ACGGAATCTCGTTACGTCGCTACT -ACGGAATCTCGTTACGTCGGATCT -ACGGAATCTCGTTACGTCAAGGCT -ACGGAATCTCGTTACGTCTCAACC -ACGGAATCTCGTTACGTCTGTTCC -ACGGAATCTCGTTACGTCATTCCC -ACGGAATCTCGTTACGTCTTCTCG -ACGGAATCTCGTTACGTCTAGACG -ACGGAATCTCGTTACGTCGTAACG -ACGGAATCTCGTTACGTCACTTCG -ACGGAATCTCGTTACGTCTACGCA -ACGGAATCTCGTTACGTCCTTGCA -ACGGAATCTCGTTACGTCCGAACA -ACGGAATCTCGTTACGTCCAGTCA -ACGGAATCTCGTTACGTCGATCCA -ACGGAATCTCGTTACGTCACGACA -ACGGAATCTCGTTACGTCAGCTCA -ACGGAATCTCGTTACGTCTCACGT -ACGGAATCTCGTTACGTCCGTAGT -ACGGAATCTCGTTACGTCGTCAGT -ACGGAATCTCGTTACGTCGAAGGT -ACGGAATCTCGTTACGTCAACCGT -ACGGAATCTCGTTACGTCTTGTGC -ACGGAATCTCGTTACGTCCTAAGC -ACGGAATCTCGTTACGTCACTAGC -ACGGAATCTCGTTACGTCAGATGC -ACGGAATCTCGTTACGTCTGAAGG -ACGGAATCTCGTTACGTCCAATGG -ACGGAATCTCGTTACGTCATGAGG -ACGGAATCTCGTTACGTCAATGGG -ACGGAATCTCGTTACGTCTCCTGA -ACGGAATCTCGTTACGTCTAGCGA -ACGGAATCTCGTTACGTCCACAGA -ACGGAATCTCGTTACGTCGCAAGA -ACGGAATCTCGTTACGTCGGTTGA -ACGGAATCTCGTTACGTCTCCGAT -ACGGAATCTCGTTACGTCTGGCAT -ACGGAATCTCGTTACGTCCGAGAT -ACGGAATCTCGTTACGTCTACCAC -ACGGAATCTCGTTACGTCCAGAAC -ACGGAATCTCGTTACGTCGTCTAC -ACGGAATCTCGTTACGTCACGTAC -ACGGAATCTCGTTACGTCAGTGAC -ACGGAATCTCGTTACGTCCTGTAG -ACGGAATCTCGTTACGTCCCTAAG -ACGGAATCTCGTTACGTCGTTCAG -ACGGAATCTCGTTACGTCGCATAG -ACGGAATCTCGTTACGTCGACAAG -ACGGAATCTCGTTACGTCAAGCAG -ACGGAATCTCGTTACGTCCGTCAA -ACGGAATCTCGTTACGTCGCTGAA -ACGGAATCTCGTTACGTCAGTACG -ACGGAATCTCGTTACGTCATCCGA -ACGGAATCTCGTTACGTCATGGGA -ACGGAATCTCGTTACGTCGTGCAA -ACGGAATCTCGTTACGTCGAGGAA -ACGGAATCTCGTTACGTCCAGGTA -ACGGAATCTCGTTACGTCGACTCT -ACGGAATCTCGTTACGTCAGTCCT -ACGGAATCTCGTTACGTCTAAGCC -ACGGAATCTCGTTACGTCATAGCC -ACGGAATCTCGTTACGTCTAACCG -ACGGAATCTCGTTACGTCATGCCA -ACGGAATCTCGTTACACGGGAAAC -ACGGAATCTCGTTACACGAACACC -ACGGAATCTCGTTACACGATCGAG -ACGGAATCTCGTTACACGCTCCTT -ACGGAATCTCGTTACACGCCTGTT -ACGGAATCTCGTTACACGCGGTTT -ACGGAATCTCGTTACACGGTGGTT -ACGGAATCTCGTTACACGGCCTTT -ACGGAATCTCGTTACACGGGTCTT -ACGGAATCTCGTTACACGACGCTT -ACGGAATCTCGTTACACGAGCGTT -ACGGAATCTCGTTACACGTTCGTC -ACGGAATCTCGTTACACGTCTCTC -ACGGAATCTCGTTACACGTGGATC -ACGGAATCTCGTTACACGCACTTC -ACGGAATCTCGTTACACGGTACTC -ACGGAATCTCGTTACACGGATGTC -ACGGAATCTCGTTACACGACAGTC -ACGGAATCTCGTTACACGTTGCTG -ACGGAATCTCGTTACACGTCCATG -ACGGAATCTCGTTACACGTGTGTG -ACGGAATCTCGTTACACGCTAGTG -ACGGAATCTCGTTACACGCATCTG -ACGGAATCTCGTTACACGGAGTTG -ACGGAATCTCGTTACACGAGACTG -ACGGAATCTCGTTACACGTCGGTA -ACGGAATCTCGTTACACGTGCCTA -ACGGAATCTCGTTACACGCCACTA -ACGGAATCTCGTTACACGGGAGTA -ACGGAATCTCGTTACACGTCGTCT -ACGGAATCTCGTTACACGTGCACT -ACGGAATCTCGTTACACGCTGACT -ACGGAATCTCGTTACACGCAACCT -ACGGAATCTCGTTACACGGCTACT -ACGGAATCTCGTTACACGGGATCT -ACGGAATCTCGTTACACGAAGGCT -ACGGAATCTCGTTACACGTCAACC -ACGGAATCTCGTTACACGTGTTCC -ACGGAATCTCGTTACACGATTCCC -ACGGAATCTCGTTACACGTTCTCG -ACGGAATCTCGTTACACGTAGACG -ACGGAATCTCGTTACACGGTAACG -ACGGAATCTCGTTACACGACTTCG -ACGGAATCTCGTTACACGTACGCA -ACGGAATCTCGTTACACGCTTGCA -ACGGAATCTCGTTACACGCGAACA -ACGGAATCTCGTTACACGCAGTCA -ACGGAATCTCGTTACACGGATCCA -ACGGAATCTCGTTACACGACGACA -ACGGAATCTCGTTACACGAGCTCA -ACGGAATCTCGTTACACGTCACGT -ACGGAATCTCGTTACACGCGTAGT -ACGGAATCTCGTTACACGGTCAGT -ACGGAATCTCGTTACACGGAAGGT -ACGGAATCTCGTTACACGAACCGT -ACGGAATCTCGTTACACGTTGTGC -ACGGAATCTCGTTACACGCTAAGC -ACGGAATCTCGTTACACGACTAGC -ACGGAATCTCGTTACACGAGATGC -ACGGAATCTCGTTACACGTGAAGG -ACGGAATCTCGTTACACGCAATGG -ACGGAATCTCGTTACACGATGAGG -ACGGAATCTCGTTACACGAATGGG -ACGGAATCTCGTTACACGTCCTGA -ACGGAATCTCGTTACACGTAGCGA -ACGGAATCTCGTTACACGCACAGA -ACGGAATCTCGTTACACGGCAAGA -ACGGAATCTCGTTACACGGGTTGA -ACGGAATCTCGTTACACGTCCGAT -ACGGAATCTCGTTACACGTGGCAT -ACGGAATCTCGTTACACGCGAGAT -ACGGAATCTCGTTACACGTACCAC -ACGGAATCTCGTTACACGCAGAAC -ACGGAATCTCGTTACACGGTCTAC -ACGGAATCTCGTTACACGACGTAC -ACGGAATCTCGTTACACGAGTGAC -ACGGAATCTCGTTACACGCTGTAG -ACGGAATCTCGTTACACGCCTAAG -ACGGAATCTCGTTACACGGTTCAG -ACGGAATCTCGTTACACGGCATAG -ACGGAATCTCGTTACACGGACAAG -ACGGAATCTCGTTACACGAAGCAG -ACGGAATCTCGTTACACGCGTCAA -ACGGAATCTCGTTACACGGCTGAA -ACGGAATCTCGTTACACGAGTACG -ACGGAATCTCGTTACACGATCCGA -ACGGAATCTCGTTACACGATGGGA -ACGGAATCTCGTTACACGGTGCAA -ACGGAATCTCGTTACACGGAGGAA -ACGGAATCTCGTTACACGCAGGTA -ACGGAATCTCGTTACACGGACTCT -ACGGAATCTCGTTACACGAGTCCT -ACGGAATCTCGTTACACGTAAGCC -ACGGAATCTCGTTACACGATAGCC -ACGGAATCTCGTTACACGTAACCG -ACGGAATCTCGTTACACGATGCCA -ACGGAATCTCGTGACAGTGGAAAC -ACGGAATCTCGTGACAGTAACACC -ACGGAATCTCGTGACAGTATCGAG -ACGGAATCTCGTGACAGTCTCCTT -ACGGAATCTCGTGACAGTCCTGTT -ACGGAATCTCGTGACAGTCGGTTT -ACGGAATCTCGTGACAGTGTGGTT -ACGGAATCTCGTGACAGTGCCTTT -ACGGAATCTCGTGACAGTGGTCTT -ACGGAATCTCGTGACAGTACGCTT -ACGGAATCTCGTGACAGTAGCGTT -ACGGAATCTCGTGACAGTTTCGTC -ACGGAATCTCGTGACAGTTCTCTC -ACGGAATCTCGTGACAGTTGGATC -ACGGAATCTCGTGACAGTCACTTC -ACGGAATCTCGTGACAGTGTACTC -ACGGAATCTCGTGACAGTGATGTC -ACGGAATCTCGTGACAGTACAGTC -ACGGAATCTCGTGACAGTTTGCTG -ACGGAATCTCGTGACAGTTCCATG -ACGGAATCTCGTGACAGTTGTGTG -ACGGAATCTCGTGACAGTCTAGTG -ACGGAATCTCGTGACAGTCATCTG -ACGGAATCTCGTGACAGTGAGTTG -ACGGAATCTCGTGACAGTAGACTG -ACGGAATCTCGTGACAGTTCGGTA -ACGGAATCTCGTGACAGTTGCCTA -ACGGAATCTCGTGACAGTCCACTA -ACGGAATCTCGTGACAGTGGAGTA -ACGGAATCTCGTGACAGTTCGTCT -ACGGAATCTCGTGACAGTTGCACT -ACGGAATCTCGTGACAGTCTGACT -ACGGAATCTCGTGACAGTCAACCT -ACGGAATCTCGTGACAGTGCTACT -ACGGAATCTCGTGACAGTGGATCT -ACGGAATCTCGTGACAGTAAGGCT -ACGGAATCTCGTGACAGTTCAACC -ACGGAATCTCGTGACAGTTGTTCC -ACGGAATCTCGTGACAGTATTCCC -ACGGAATCTCGTGACAGTTTCTCG -ACGGAATCTCGTGACAGTTAGACG -ACGGAATCTCGTGACAGTGTAACG -ACGGAATCTCGTGACAGTACTTCG -ACGGAATCTCGTGACAGTTACGCA -ACGGAATCTCGTGACAGTCTTGCA -ACGGAATCTCGTGACAGTCGAACA -ACGGAATCTCGTGACAGTCAGTCA -ACGGAATCTCGTGACAGTGATCCA -ACGGAATCTCGTGACAGTACGACA -ACGGAATCTCGTGACAGTAGCTCA -ACGGAATCTCGTGACAGTTCACGT -ACGGAATCTCGTGACAGTCGTAGT -ACGGAATCTCGTGACAGTGTCAGT -ACGGAATCTCGTGACAGTGAAGGT -ACGGAATCTCGTGACAGTAACCGT -ACGGAATCTCGTGACAGTTTGTGC -ACGGAATCTCGTGACAGTCTAAGC -ACGGAATCTCGTGACAGTACTAGC -ACGGAATCTCGTGACAGTAGATGC -ACGGAATCTCGTGACAGTTGAAGG -ACGGAATCTCGTGACAGTCAATGG -ACGGAATCTCGTGACAGTATGAGG -ACGGAATCTCGTGACAGTAATGGG -ACGGAATCTCGTGACAGTTCCTGA -ACGGAATCTCGTGACAGTTAGCGA -ACGGAATCTCGTGACAGTCACAGA -ACGGAATCTCGTGACAGTGCAAGA -ACGGAATCTCGTGACAGTGGTTGA -ACGGAATCTCGTGACAGTTCCGAT -ACGGAATCTCGTGACAGTTGGCAT -ACGGAATCTCGTGACAGTCGAGAT -ACGGAATCTCGTGACAGTTACCAC -ACGGAATCTCGTGACAGTCAGAAC -ACGGAATCTCGTGACAGTGTCTAC -ACGGAATCTCGTGACAGTACGTAC -ACGGAATCTCGTGACAGTAGTGAC -ACGGAATCTCGTGACAGTCTGTAG -ACGGAATCTCGTGACAGTCCTAAG -ACGGAATCTCGTGACAGTGTTCAG -ACGGAATCTCGTGACAGTGCATAG -ACGGAATCTCGTGACAGTGACAAG -ACGGAATCTCGTGACAGTAAGCAG -ACGGAATCTCGTGACAGTCGTCAA -ACGGAATCTCGTGACAGTGCTGAA -ACGGAATCTCGTGACAGTAGTACG -ACGGAATCTCGTGACAGTATCCGA -ACGGAATCTCGTGACAGTATGGGA -ACGGAATCTCGTGACAGTGTGCAA -ACGGAATCTCGTGACAGTGAGGAA -ACGGAATCTCGTGACAGTCAGGTA -ACGGAATCTCGTGACAGTGACTCT -ACGGAATCTCGTGACAGTAGTCCT -ACGGAATCTCGTGACAGTTAAGCC -ACGGAATCTCGTGACAGTATAGCC -ACGGAATCTCGTGACAGTTAACCG -ACGGAATCTCGTGACAGTATGCCA -ACGGAATCTCGTTAGCTGGGAAAC -ACGGAATCTCGTTAGCTGAACACC -ACGGAATCTCGTTAGCTGATCGAG -ACGGAATCTCGTTAGCTGCTCCTT -ACGGAATCTCGTTAGCTGCCTGTT -ACGGAATCTCGTTAGCTGCGGTTT -ACGGAATCTCGTTAGCTGGTGGTT -ACGGAATCTCGTTAGCTGGCCTTT -ACGGAATCTCGTTAGCTGGGTCTT -ACGGAATCTCGTTAGCTGACGCTT -ACGGAATCTCGTTAGCTGAGCGTT -ACGGAATCTCGTTAGCTGTTCGTC -ACGGAATCTCGTTAGCTGTCTCTC -ACGGAATCTCGTTAGCTGTGGATC -ACGGAATCTCGTTAGCTGCACTTC -ACGGAATCTCGTTAGCTGGTACTC -ACGGAATCTCGTTAGCTGGATGTC -ACGGAATCTCGTTAGCTGACAGTC -ACGGAATCTCGTTAGCTGTTGCTG -ACGGAATCTCGTTAGCTGTCCATG -ACGGAATCTCGTTAGCTGTGTGTG -ACGGAATCTCGTTAGCTGCTAGTG -ACGGAATCTCGTTAGCTGCATCTG -ACGGAATCTCGTTAGCTGGAGTTG -ACGGAATCTCGTTAGCTGAGACTG -ACGGAATCTCGTTAGCTGTCGGTA -ACGGAATCTCGTTAGCTGTGCCTA -ACGGAATCTCGTTAGCTGCCACTA -ACGGAATCTCGTTAGCTGGGAGTA -ACGGAATCTCGTTAGCTGTCGTCT -ACGGAATCTCGTTAGCTGTGCACT -ACGGAATCTCGTTAGCTGCTGACT -ACGGAATCTCGTTAGCTGCAACCT -ACGGAATCTCGTTAGCTGGCTACT -ACGGAATCTCGTTAGCTGGGATCT -ACGGAATCTCGTTAGCTGAAGGCT -ACGGAATCTCGTTAGCTGTCAACC -ACGGAATCTCGTTAGCTGTGTTCC -ACGGAATCTCGTTAGCTGATTCCC -ACGGAATCTCGTTAGCTGTTCTCG -ACGGAATCTCGTTAGCTGTAGACG -ACGGAATCTCGTTAGCTGGTAACG -ACGGAATCTCGTTAGCTGACTTCG -ACGGAATCTCGTTAGCTGTACGCA -ACGGAATCTCGTTAGCTGCTTGCA -ACGGAATCTCGTTAGCTGCGAACA -ACGGAATCTCGTTAGCTGCAGTCA -ACGGAATCTCGTTAGCTGGATCCA -ACGGAATCTCGTTAGCTGACGACA -ACGGAATCTCGTTAGCTGAGCTCA -ACGGAATCTCGTTAGCTGTCACGT -ACGGAATCTCGTTAGCTGCGTAGT -ACGGAATCTCGTTAGCTGGTCAGT -ACGGAATCTCGTTAGCTGGAAGGT -ACGGAATCTCGTTAGCTGAACCGT -ACGGAATCTCGTTAGCTGTTGTGC -ACGGAATCTCGTTAGCTGCTAAGC -ACGGAATCTCGTTAGCTGACTAGC -ACGGAATCTCGTTAGCTGAGATGC -ACGGAATCTCGTTAGCTGTGAAGG -ACGGAATCTCGTTAGCTGCAATGG -ACGGAATCTCGTTAGCTGATGAGG -ACGGAATCTCGTTAGCTGAATGGG -ACGGAATCTCGTTAGCTGTCCTGA -ACGGAATCTCGTTAGCTGTAGCGA -ACGGAATCTCGTTAGCTGCACAGA -ACGGAATCTCGTTAGCTGGCAAGA -ACGGAATCTCGTTAGCTGGGTTGA -ACGGAATCTCGTTAGCTGTCCGAT -ACGGAATCTCGTTAGCTGTGGCAT -ACGGAATCTCGTTAGCTGCGAGAT -ACGGAATCTCGTTAGCTGTACCAC -ACGGAATCTCGTTAGCTGCAGAAC -ACGGAATCTCGTTAGCTGGTCTAC -ACGGAATCTCGTTAGCTGACGTAC -ACGGAATCTCGTTAGCTGAGTGAC -ACGGAATCTCGTTAGCTGCTGTAG -ACGGAATCTCGTTAGCTGCCTAAG -ACGGAATCTCGTTAGCTGGTTCAG -ACGGAATCTCGTTAGCTGGCATAG -ACGGAATCTCGTTAGCTGGACAAG -ACGGAATCTCGTTAGCTGAAGCAG -ACGGAATCTCGTTAGCTGCGTCAA -ACGGAATCTCGTTAGCTGGCTGAA -ACGGAATCTCGTTAGCTGAGTACG -ACGGAATCTCGTTAGCTGATCCGA -ACGGAATCTCGTTAGCTGATGGGA -ACGGAATCTCGTTAGCTGGTGCAA -ACGGAATCTCGTTAGCTGGAGGAA -ACGGAATCTCGTTAGCTGCAGGTA -ACGGAATCTCGTTAGCTGGACTCT -ACGGAATCTCGTTAGCTGAGTCCT -ACGGAATCTCGTTAGCTGTAAGCC -ACGGAATCTCGTTAGCTGATAGCC -ACGGAATCTCGTTAGCTGTAACCG -ACGGAATCTCGTTAGCTGATGCCA -ACGGAATCTCGTAAGCCTGGAAAC -ACGGAATCTCGTAAGCCTAACACC -ACGGAATCTCGTAAGCCTATCGAG -ACGGAATCTCGTAAGCCTCTCCTT -ACGGAATCTCGTAAGCCTCCTGTT -ACGGAATCTCGTAAGCCTCGGTTT -ACGGAATCTCGTAAGCCTGTGGTT -ACGGAATCTCGTAAGCCTGCCTTT -ACGGAATCTCGTAAGCCTGGTCTT -ACGGAATCTCGTAAGCCTACGCTT -ACGGAATCTCGTAAGCCTAGCGTT -ACGGAATCTCGTAAGCCTTTCGTC -ACGGAATCTCGTAAGCCTTCTCTC -ACGGAATCTCGTAAGCCTTGGATC -ACGGAATCTCGTAAGCCTCACTTC -ACGGAATCTCGTAAGCCTGTACTC -ACGGAATCTCGTAAGCCTGATGTC -ACGGAATCTCGTAAGCCTACAGTC -ACGGAATCTCGTAAGCCTTTGCTG -ACGGAATCTCGTAAGCCTTCCATG -ACGGAATCTCGTAAGCCTTGTGTG -ACGGAATCTCGTAAGCCTCTAGTG -ACGGAATCTCGTAAGCCTCATCTG -ACGGAATCTCGTAAGCCTGAGTTG -ACGGAATCTCGTAAGCCTAGACTG -ACGGAATCTCGTAAGCCTTCGGTA -ACGGAATCTCGTAAGCCTTGCCTA -ACGGAATCTCGTAAGCCTCCACTA -ACGGAATCTCGTAAGCCTGGAGTA -ACGGAATCTCGTAAGCCTTCGTCT -ACGGAATCTCGTAAGCCTTGCACT -ACGGAATCTCGTAAGCCTCTGACT -ACGGAATCTCGTAAGCCTCAACCT -ACGGAATCTCGTAAGCCTGCTACT -ACGGAATCTCGTAAGCCTGGATCT -ACGGAATCTCGTAAGCCTAAGGCT -ACGGAATCTCGTAAGCCTTCAACC -ACGGAATCTCGTAAGCCTTGTTCC -ACGGAATCTCGTAAGCCTATTCCC -ACGGAATCTCGTAAGCCTTTCTCG -ACGGAATCTCGTAAGCCTTAGACG -ACGGAATCTCGTAAGCCTGTAACG -ACGGAATCTCGTAAGCCTACTTCG -ACGGAATCTCGTAAGCCTTACGCA -ACGGAATCTCGTAAGCCTCTTGCA -ACGGAATCTCGTAAGCCTCGAACA -ACGGAATCTCGTAAGCCTCAGTCA -ACGGAATCTCGTAAGCCTGATCCA -ACGGAATCTCGTAAGCCTACGACA -ACGGAATCTCGTAAGCCTAGCTCA -ACGGAATCTCGTAAGCCTTCACGT -ACGGAATCTCGTAAGCCTCGTAGT -ACGGAATCTCGTAAGCCTGTCAGT -ACGGAATCTCGTAAGCCTGAAGGT -ACGGAATCTCGTAAGCCTAACCGT -ACGGAATCTCGTAAGCCTTTGTGC -ACGGAATCTCGTAAGCCTCTAAGC -ACGGAATCTCGTAAGCCTACTAGC -ACGGAATCTCGTAAGCCTAGATGC -ACGGAATCTCGTAAGCCTTGAAGG -ACGGAATCTCGTAAGCCTCAATGG -ACGGAATCTCGTAAGCCTATGAGG -ACGGAATCTCGTAAGCCTAATGGG -ACGGAATCTCGTAAGCCTTCCTGA -ACGGAATCTCGTAAGCCTTAGCGA -ACGGAATCTCGTAAGCCTCACAGA -ACGGAATCTCGTAAGCCTGCAAGA -ACGGAATCTCGTAAGCCTGGTTGA -ACGGAATCTCGTAAGCCTTCCGAT -ACGGAATCTCGTAAGCCTTGGCAT -ACGGAATCTCGTAAGCCTCGAGAT -ACGGAATCTCGTAAGCCTTACCAC -ACGGAATCTCGTAAGCCTCAGAAC -ACGGAATCTCGTAAGCCTGTCTAC -ACGGAATCTCGTAAGCCTACGTAC -ACGGAATCTCGTAAGCCTAGTGAC -ACGGAATCTCGTAAGCCTCTGTAG -ACGGAATCTCGTAAGCCTCCTAAG -ACGGAATCTCGTAAGCCTGTTCAG -ACGGAATCTCGTAAGCCTGCATAG -ACGGAATCTCGTAAGCCTGACAAG -ACGGAATCTCGTAAGCCTAAGCAG -ACGGAATCTCGTAAGCCTCGTCAA -ACGGAATCTCGTAAGCCTGCTGAA -ACGGAATCTCGTAAGCCTAGTACG -ACGGAATCTCGTAAGCCTATCCGA -ACGGAATCTCGTAAGCCTATGGGA -ACGGAATCTCGTAAGCCTGTGCAA -ACGGAATCTCGTAAGCCTGAGGAA -ACGGAATCTCGTAAGCCTCAGGTA -ACGGAATCTCGTAAGCCTGACTCT -ACGGAATCTCGTAAGCCTAGTCCT -ACGGAATCTCGTAAGCCTTAAGCC -ACGGAATCTCGTAAGCCTATAGCC -ACGGAATCTCGTAAGCCTTAACCG -ACGGAATCTCGTAAGCCTATGCCA -ACGGAATCTCGTCAGGTTGGAAAC -ACGGAATCTCGTCAGGTTAACACC -ACGGAATCTCGTCAGGTTATCGAG -ACGGAATCTCGTCAGGTTCTCCTT -ACGGAATCTCGTCAGGTTCCTGTT -ACGGAATCTCGTCAGGTTCGGTTT -ACGGAATCTCGTCAGGTTGTGGTT -ACGGAATCTCGTCAGGTTGCCTTT -ACGGAATCTCGTCAGGTTGGTCTT -ACGGAATCTCGTCAGGTTACGCTT -ACGGAATCTCGTCAGGTTAGCGTT -ACGGAATCTCGTCAGGTTTTCGTC -ACGGAATCTCGTCAGGTTTCTCTC -ACGGAATCTCGTCAGGTTTGGATC -ACGGAATCTCGTCAGGTTCACTTC -ACGGAATCTCGTCAGGTTGTACTC -ACGGAATCTCGTCAGGTTGATGTC -ACGGAATCTCGTCAGGTTACAGTC -ACGGAATCTCGTCAGGTTTTGCTG -ACGGAATCTCGTCAGGTTTCCATG -ACGGAATCTCGTCAGGTTTGTGTG -ACGGAATCTCGTCAGGTTCTAGTG -ACGGAATCTCGTCAGGTTCATCTG -ACGGAATCTCGTCAGGTTGAGTTG -ACGGAATCTCGTCAGGTTAGACTG -ACGGAATCTCGTCAGGTTTCGGTA -ACGGAATCTCGTCAGGTTTGCCTA -ACGGAATCTCGTCAGGTTCCACTA -ACGGAATCTCGTCAGGTTGGAGTA -ACGGAATCTCGTCAGGTTTCGTCT -ACGGAATCTCGTCAGGTTTGCACT -ACGGAATCTCGTCAGGTTCTGACT -ACGGAATCTCGTCAGGTTCAACCT -ACGGAATCTCGTCAGGTTGCTACT -ACGGAATCTCGTCAGGTTGGATCT -ACGGAATCTCGTCAGGTTAAGGCT -ACGGAATCTCGTCAGGTTTCAACC -ACGGAATCTCGTCAGGTTTGTTCC -ACGGAATCTCGTCAGGTTATTCCC -ACGGAATCTCGTCAGGTTTTCTCG -ACGGAATCTCGTCAGGTTTAGACG -ACGGAATCTCGTCAGGTTGTAACG -ACGGAATCTCGTCAGGTTACTTCG -ACGGAATCTCGTCAGGTTTACGCA -ACGGAATCTCGTCAGGTTCTTGCA -ACGGAATCTCGTCAGGTTCGAACA -ACGGAATCTCGTCAGGTTCAGTCA -ACGGAATCTCGTCAGGTTGATCCA -ACGGAATCTCGTCAGGTTACGACA -ACGGAATCTCGTCAGGTTAGCTCA -ACGGAATCTCGTCAGGTTTCACGT -ACGGAATCTCGTCAGGTTCGTAGT -ACGGAATCTCGTCAGGTTGTCAGT -ACGGAATCTCGTCAGGTTGAAGGT -ACGGAATCTCGTCAGGTTAACCGT -ACGGAATCTCGTCAGGTTTTGTGC -ACGGAATCTCGTCAGGTTCTAAGC -ACGGAATCTCGTCAGGTTACTAGC -ACGGAATCTCGTCAGGTTAGATGC -ACGGAATCTCGTCAGGTTTGAAGG -ACGGAATCTCGTCAGGTTCAATGG -ACGGAATCTCGTCAGGTTATGAGG -ACGGAATCTCGTCAGGTTAATGGG -ACGGAATCTCGTCAGGTTTCCTGA -ACGGAATCTCGTCAGGTTTAGCGA -ACGGAATCTCGTCAGGTTCACAGA -ACGGAATCTCGTCAGGTTGCAAGA -ACGGAATCTCGTCAGGTTGGTTGA -ACGGAATCTCGTCAGGTTTCCGAT -ACGGAATCTCGTCAGGTTTGGCAT -ACGGAATCTCGTCAGGTTCGAGAT -ACGGAATCTCGTCAGGTTTACCAC -ACGGAATCTCGTCAGGTTCAGAAC -ACGGAATCTCGTCAGGTTGTCTAC -ACGGAATCTCGTCAGGTTACGTAC -ACGGAATCTCGTCAGGTTAGTGAC -ACGGAATCTCGTCAGGTTCTGTAG -ACGGAATCTCGTCAGGTTCCTAAG -ACGGAATCTCGTCAGGTTGTTCAG -ACGGAATCTCGTCAGGTTGCATAG -ACGGAATCTCGTCAGGTTGACAAG -ACGGAATCTCGTCAGGTTAAGCAG -ACGGAATCTCGTCAGGTTCGTCAA -ACGGAATCTCGTCAGGTTGCTGAA -ACGGAATCTCGTCAGGTTAGTACG -ACGGAATCTCGTCAGGTTATCCGA -ACGGAATCTCGTCAGGTTATGGGA -ACGGAATCTCGTCAGGTTGTGCAA -ACGGAATCTCGTCAGGTTGAGGAA -ACGGAATCTCGTCAGGTTCAGGTA -ACGGAATCTCGTCAGGTTGACTCT -ACGGAATCTCGTCAGGTTAGTCCT -ACGGAATCTCGTCAGGTTTAAGCC -ACGGAATCTCGTCAGGTTATAGCC -ACGGAATCTCGTCAGGTTTAACCG -ACGGAATCTCGTCAGGTTATGCCA -ACGGAATCTCGTTAGGCAGGAAAC -ACGGAATCTCGTTAGGCAAACACC -ACGGAATCTCGTTAGGCAATCGAG -ACGGAATCTCGTTAGGCACTCCTT -ACGGAATCTCGTTAGGCACCTGTT -ACGGAATCTCGTTAGGCACGGTTT -ACGGAATCTCGTTAGGCAGTGGTT -ACGGAATCTCGTTAGGCAGCCTTT -ACGGAATCTCGTTAGGCAGGTCTT -ACGGAATCTCGTTAGGCAACGCTT -ACGGAATCTCGTTAGGCAAGCGTT -ACGGAATCTCGTTAGGCATTCGTC -ACGGAATCTCGTTAGGCATCTCTC -ACGGAATCTCGTTAGGCATGGATC -ACGGAATCTCGTTAGGCACACTTC -ACGGAATCTCGTTAGGCAGTACTC -ACGGAATCTCGTTAGGCAGATGTC -ACGGAATCTCGTTAGGCAACAGTC -ACGGAATCTCGTTAGGCATTGCTG -ACGGAATCTCGTTAGGCATCCATG -ACGGAATCTCGTTAGGCATGTGTG -ACGGAATCTCGTTAGGCACTAGTG -ACGGAATCTCGTTAGGCACATCTG -ACGGAATCTCGTTAGGCAGAGTTG -ACGGAATCTCGTTAGGCAAGACTG -ACGGAATCTCGTTAGGCATCGGTA -ACGGAATCTCGTTAGGCATGCCTA -ACGGAATCTCGTTAGGCACCACTA -ACGGAATCTCGTTAGGCAGGAGTA -ACGGAATCTCGTTAGGCATCGTCT -ACGGAATCTCGTTAGGCATGCACT -ACGGAATCTCGTTAGGCACTGACT -ACGGAATCTCGTTAGGCACAACCT -ACGGAATCTCGTTAGGCAGCTACT -ACGGAATCTCGTTAGGCAGGATCT -ACGGAATCTCGTTAGGCAAAGGCT -ACGGAATCTCGTTAGGCATCAACC -ACGGAATCTCGTTAGGCATGTTCC -ACGGAATCTCGTTAGGCAATTCCC -ACGGAATCTCGTTAGGCATTCTCG -ACGGAATCTCGTTAGGCATAGACG -ACGGAATCTCGTTAGGCAGTAACG -ACGGAATCTCGTTAGGCAACTTCG -ACGGAATCTCGTTAGGCATACGCA -ACGGAATCTCGTTAGGCACTTGCA -ACGGAATCTCGTTAGGCACGAACA -ACGGAATCTCGTTAGGCACAGTCA -ACGGAATCTCGTTAGGCAGATCCA -ACGGAATCTCGTTAGGCAACGACA -ACGGAATCTCGTTAGGCAAGCTCA -ACGGAATCTCGTTAGGCATCACGT -ACGGAATCTCGTTAGGCACGTAGT -ACGGAATCTCGTTAGGCAGTCAGT -ACGGAATCTCGTTAGGCAGAAGGT -ACGGAATCTCGTTAGGCAAACCGT -ACGGAATCTCGTTAGGCATTGTGC -ACGGAATCTCGTTAGGCACTAAGC -ACGGAATCTCGTTAGGCAACTAGC -ACGGAATCTCGTTAGGCAAGATGC -ACGGAATCTCGTTAGGCATGAAGG -ACGGAATCTCGTTAGGCACAATGG -ACGGAATCTCGTTAGGCAATGAGG -ACGGAATCTCGTTAGGCAAATGGG -ACGGAATCTCGTTAGGCATCCTGA -ACGGAATCTCGTTAGGCATAGCGA -ACGGAATCTCGTTAGGCACACAGA -ACGGAATCTCGTTAGGCAGCAAGA -ACGGAATCTCGTTAGGCAGGTTGA -ACGGAATCTCGTTAGGCATCCGAT -ACGGAATCTCGTTAGGCATGGCAT -ACGGAATCTCGTTAGGCACGAGAT -ACGGAATCTCGTTAGGCATACCAC -ACGGAATCTCGTTAGGCACAGAAC -ACGGAATCTCGTTAGGCAGTCTAC -ACGGAATCTCGTTAGGCAACGTAC -ACGGAATCTCGTTAGGCAAGTGAC -ACGGAATCTCGTTAGGCACTGTAG -ACGGAATCTCGTTAGGCACCTAAG -ACGGAATCTCGTTAGGCAGTTCAG -ACGGAATCTCGTTAGGCAGCATAG -ACGGAATCTCGTTAGGCAGACAAG -ACGGAATCTCGTTAGGCAAAGCAG -ACGGAATCTCGTTAGGCACGTCAA -ACGGAATCTCGTTAGGCAGCTGAA -ACGGAATCTCGTTAGGCAAGTACG -ACGGAATCTCGTTAGGCAATCCGA -ACGGAATCTCGTTAGGCAATGGGA -ACGGAATCTCGTTAGGCAGTGCAA -ACGGAATCTCGTTAGGCAGAGGAA -ACGGAATCTCGTTAGGCACAGGTA -ACGGAATCTCGTTAGGCAGACTCT -ACGGAATCTCGTTAGGCAAGTCCT -ACGGAATCTCGTTAGGCATAAGCC -ACGGAATCTCGTTAGGCAATAGCC -ACGGAATCTCGTTAGGCATAACCG -ACGGAATCTCGTTAGGCAATGCCA -ACGGAATCTCGTAAGGACGGAAAC -ACGGAATCTCGTAAGGACAACACC -ACGGAATCTCGTAAGGACATCGAG -ACGGAATCTCGTAAGGACCTCCTT -ACGGAATCTCGTAAGGACCCTGTT -ACGGAATCTCGTAAGGACCGGTTT -ACGGAATCTCGTAAGGACGTGGTT -ACGGAATCTCGTAAGGACGCCTTT -ACGGAATCTCGTAAGGACGGTCTT -ACGGAATCTCGTAAGGACACGCTT -ACGGAATCTCGTAAGGACAGCGTT -ACGGAATCTCGTAAGGACTTCGTC -ACGGAATCTCGTAAGGACTCTCTC -ACGGAATCTCGTAAGGACTGGATC -ACGGAATCTCGTAAGGACCACTTC -ACGGAATCTCGTAAGGACGTACTC -ACGGAATCTCGTAAGGACGATGTC -ACGGAATCTCGTAAGGACACAGTC -ACGGAATCTCGTAAGGACTTGCTG -ACGGAATCTCGTAAGGACTCCATG -ACGGAATCTCGTAAGGACTGTGTG -ACGGAATCTCGTAAGGACCTAGTG -ACGGAATCTCGTAAGGACCATCTG -ACGGAATCTCGTAAGGACGAGTTG -ACGGAATCTCGTAAGGACAGACTG -ACGGAATCTCGTAAGGACTCGGTA -ACGGAATCTCGTAAGGACTGCCTA -ACGGAATCTCGTAAGGACCCACTA -ACGGAATCTCGTAAGGACGGAGTA -ACGGAATCTCGTAAGGACTCGTCT -ACGGAATCTCGTAAGGACTGCACT -ACGGAATCTCGTAAGGACCTGACT -ACGGAATCTCGTAAGGACCAACCT -ACGGAATCTCGTAAGGACGCTACT -ACGGAATCTCGTAAGGACGGATCT -ACGGAATCTCGTAAGGACAAGGCT -ACGGAATCTCGTAAGGACTCAACC -ACGGAATCTCGTAAGGACTGTTCC -ACGGAATCTCGTAAGGACATTCCC -ACGGAATCTCGTAAGGACTTCTCG -ACGGAATCTCGTAAGGACTAGACG -ACGGAATCTCGTAAGGACGTAACG -ACGGAATCTCGTAAGGACACTTCG -ACGGAATCTCGTAAGGACTACGCA -ACGGAATCTCGTAAGGACCTTGCA -ACGGAATCTCGTAAGGACCGAACA -ACGGAATCTCGTAAGGACCAGTCA -ACGGAATCTCGTAAGGACGATCCA -ACGGAATCTCGTAAGGACACGACA -ACGGAATCTCGTAAGGACAGCTCA -ACGGAATCTCGTAAGGACTCACGT -ACGGAATCTCGTAAGGACCGTAGT -ACGGAATCTCGTAAGGACGTCAGT -ACGGAATCTCGTAAGGACGAAGGT -ACGGAATCTCGTAAGGACAACCGT -ACGGAATCTCGTAAGGACTTGTGC -ACGGAATCTCGTAAGGACCTAAGC -ACGGAATCTCGTAAGGACACTAGC -ACGGAATCTCGTAAGGACAGATGC -ACGGAATCTCGTAAGGACTGAAGG -ACGGAATCTCGTAAGGACCAATGG -ACGGAATCTCGTAAGGACATGAGG -ACGGAATCTCGTAAGGACAATGGG -ACGGAATCTCGTAAGGACTCCTGA -ACGGAATCTCGTAAGGACTAGCGA -ACGGAATCTCGTAAGGACCACAGA -ACGGAATCTCGTAAGGACGCAAGA -ACGGAATCTCGTAAGGACGGTTGA -ACGGAATCTCGTAAGGACTCCGAT -ACGGAATCTCGTAAGGACTGGCAT -ACGGAATCTCGTAAGGACCGAGAT -ACGGAATCTCGTAAGGACTACCAC -ACGGAATCTCGTAAGGACCAGAAC -ACGGAATCTCGTAAGGACGTCTAC -ACGGAATCTCGTAAGGACACGTAC -ACGGAATCTCGTAAGGACAGTGAC -ACGGAATCTCGTAAGGACCTGTAG -ACGGAATCTCGTAAGGACCCTAAG -ACGGAATCTCGTAAGGACGTTCAG -ACGGAATCTCGTAAGGACGCATAG -ACGGAATCTCGTAAGGACGACAAG -ACGGAATCTCGTAAGGACAAGCAG -ACGGAATCTCGTAAGGACCGTCAA -ACGGAATCTCGTAAGGACGCTGAA -ACGGAATCTCGTAAGGACAGTACG -ACGGAATCTCGTAAGGACATCCGA -ACGGAATCTCGTAAGGACATGGGA -ACGGAATCTCGTAAGGACGTGCAA -ACGGAATCTCGTAAGGACGAGGAA -ACGGAATCTCGTAAGGACCAGGTA -ACGGAATCTCGTAAGGACGACTCT -ACGGAATCTCGTAAGGACAGTCCT -ACGGAATCTCGTAAGGACTAAGCC -ACGGAATCTCGTAAGGACATAGCC -ACGGAATCTCGTAAGGACTAACCG -ACGGAATCTCGTAAGGACATGCCA -ACGGAATCTCGTCAGAAGGGAAAC -ACGGAATCTCGTCAGAAGAACACC -ACGGAATCTCGTCAGAAGATCGAG -ACGGAATCTCGTCAGAAGCTCCTT -ACGGAATCTCGTCAGAAGCCTGTT -ACGGAATCTCGTCAGAAGCGGTTT -ACGGAATCTCGTCAGAAGGTGGTT -ACGGAATCTCGTCAGAAGGCCTTT -ACGGAATCTCGTCAGAAGGGTCTT -ACGGAATCTCGTCAGAAGACGCTT -ACGGAATCTCGTCAGAAGAGCGTT -ACGGAATCTCGTCAGAAGTTCGTC -ACGGAATCTCGTCAGAAGTCTCTC -ACGGAATCTCGTCAGAAGTGGATC -ACGGAATCTCGTCAGAAGCACTTC -ACGGAATCTCGTCAGAAGGTACTC -ACGGAATCTCGTCAGAAGGATGTC -ACGGAATCTCGTCAGAAGACAGTC -ACGGAATCTCGTCAGAAGTTGCTG -ACGGAATCTCGTCAGAAGTCCATG -ACGGAATCTCGTCAGAAGTGTGTG -ACGGAATCTCGTCAGAAGCTAGTG -ACGGAATCTCGTCAGAAGCATCTG -ACGGAATCTCGTCAGAAGGAGTTG -ACGGAATCTCGTCAGAAGAGACTG -ACGGAATCTCGTCAGAAGTCGGTA -ACGGAATCTCGTCAGAAGTGCCTA -ACGGAATCTCGTCAGAAGCCACTA -ACGGAATCTCGTCAGAAGGGAGTA -ACGGAATCTCGTCAGAAGTCGTCT -ACGGAATCTCGTCAGAAGTGCACT -ACGGAATCTCGTCAGAAGCTGACT -ACGGAATCTCGTCAGAAGCAACCT -ACGGAATCTCGTCAGAAGGCTACT -ACGGAATCTCGTCAGAAGGGATCT -ACGGAATCTCGTCAGAAGAAGGCT -ACGGAATCTCGTCAGAAGTCAACC -ACGGAATCTCGTCAGAAGTGTTCC -ACGGAATCTCGTCAGAAGATTCCC -ACGGAATCTCGTCAGAAGTTCTCG -ACGGAATCTCGTCAGAAGTAGACG -ACGGAATCTCGTCAGAAGGTAACG -ACGGAATCTCGTCAGAAGACTTCG -ACGGAATCTCGTCAGAAGTACGCA -ACGGAATCTCGTCAGAAGCTTGCA -ACGGAATCTCGTCAGAAGCGAACA -ACGGAATCTCGTCAGAAGCAGTCA -ACGGAATCTCGTCAGAAGGATCCA -ACGGAATCTCGTCAGAAGACGACA -ACGGAATCTCGTCAGAAGAGCTCA -ACGGAATCTCGTCAGAAGTCACGT -ACGGAATCTCGTCAGAAGCGTAGT -ACGGAATCTCGTCAGAAGGTCAGT -ACGGAATCTCGTCAGAAGGAAGGT -ACGGAATCTCGTCAGAAGAACCGT -ACGGAATCTCGTCAGAAGTTGTGC -ACGGAATCTCGTCAGAAGCTAAGC -ACGGAATCTCGTCAGAAGACTAGC -ACGGAATCTCGTCAGAAGAGATGC -ACGGAATCTCGTCAGAAGTGAAGG -ACGGAATCTCGTCAGAAGCAATGG -ACGGAATCTCGTCAGAAGATGAGG -ACGGAATCTCGTCAGAAGAATGGG -ACGGAATCTCGTCAGAAGTCCTGA -ACGGAATCTCGTCAGAAGTAGCGA -ACGGAATCTCGTCAGAAGCACAGA -ACGGAATCTCGTCAGAAGGCAAGA -ACGGAATCTCGTCAGAAGGGTTGA -ACGGAATCTCGTCAGAAGTCCGAT -ACGGAATCTCGTCAGAAGTGGCAT -ACGGAATCTCGTCAGAAGCGAGAT -ACGGAATCTCGTCAGAAGTACCAC -ACGGAATCTCGTCAGAAGCAGAAC -ACGGAATCTCGTCAGAAGGTCTAC -ACGGAATCTCGTCAGAAGACGTAC -ACGGAATCTCGTCAGAAGAGTGAC -ACGGAATCTCGTCAGAAGCTGTAG -ACGGAATCTCGTCAGAAGCCTAAG -ACGGAATCTCGTCAGAAGGTTCAG -ACGGAATCTCGTCAGAAGGCATAG -ACGGAATCTCGTCAGAAGGACAAG -ACGGAATCTCGTCAGAAGAAGCAG -ACGGAATCTCGTCAGAAGCGTCAA -ACGGAATCTCGTCAGAAGGCTGAA -ACGGAATCTCGTCAGAAGAGTACG -ACGGAATCTCGTCAGAAGATCCGA -ACGGAATCTCGTCAGAAGATGGGA -ACGGAATCTCGTCAGAAGGTGCAA -ACGGAATCTCGTCAGAAGGAGGAA -ACGGAATCTCGTCAGAAGCAGGTA -ACGGAATCTCGTCAGAAGGACTCT -ACGGAATCTCGTCAGAAGAGTCCT -ACGGAATCTCGTCAGAAGTAAGCC -ACGGAATCTCGTCAGAAGATAGCC -ACGGAATCTCGTCAGAAGTAACCG -ACGGAATCTCGTCAGAAGATGCCA -ACGGAATCTCGTCAACGTGGAAAC -ACGGAATCTCGTCAACGTAACACC -ACGGAATCTCGTCAACGTATCGAG -ACGGAATCTCGTCAACGTCTCCTT -ACGGAATCTCGTCAACGTCCTGTT -ACGGAATCTCGTCAACGTCGGTTT -ACGGAATCTCGTCAACGTGTGGTT -ACGGAATCTCGTCAACGTGCCTTT -ACGGAATCTCGTCAACGTGGTCTT -ACGGAATCTCGTCAACGTACGCTT -ACGGAATCTCGTCAACGTAGCGTT -ACGGAATCTCGTCAACGTTTCGTC -ACGGAATCTCGTCAACGTTCTCTC -ACGGAATCTCGTCAACGTTGGATC -ACGGAATCTCGTCAACGTCACTTC -ACGGAATCTCGTCAACGTGTACTC -ACGGAATCTCGTCAACGTGATGTC -ACGGAATCTCGTCAACGTACAGTC -ACGGAATCTCGTCAACGTTTGCTG -ACGGAATCTCGTCAACGTTCCATG -ACGGAATCTCGTCAACGTTGTGTG -ACGGAATCTCGTCAACGTCTAGTG -ACGGAATCTCGTCAACGTCATCTG -ACGGAATCTCGTCAACGTGAGTTG -ACGGAATCTCGTCAACGTAGACTG -ACGGAATCTCGTCAACGTTCGGTA -ACGGAATCTCGTCAACGTTGCCTA -ACGGAATCTCGTCAACGTCCACTA -ACGGAATCTCGTCAACGTGGAGTA -ACGGAATCTCGTCAACGTTCGTCT -ACGGAATCTCGTCAACGTTGCACT -ACGGAATCTCGTCAACGTCTGACT -ACGGAATCTCGTCAACGTCAACCT -ACGGAATCTCGTCAACGTGCTACT -ACGGAATCTCGTCAACGTGGATCT -ACGGAATCTCGTCAACGTAAGGCT -ACGGAATCTCGTCAACGTTCAACC -ACGGAATCTCGTCAACGTTGTTCC -ACGGAATCTCGTCAACGTATTCCC -ACGGAATCTCGTCAACGTTTCTCG -ACGGAATCTCGTCAACGTTAGACG -ACGGAATCTCGTCAACGTGTAACG -ACGGAATCTCGTCAACGTACTTCG -ACGGAATCTCGTCAACGTTACGCA -ACGGAATCTCGTCAACGTCTTGCA -ACGGAATCTCGTCAACGTCGAACA -ACGGAATCTCGTCAACGTCAGTCA -ACGGAATCTCGTCAACGTGATCCA -ACGGAATCTCGTCAACGTACGACA -ACGGAATCTCGTCAACGTAGCTCA -ACGGAATCTCGTCAACGTTCACGT -ACGGAATCTCGTCAACGTCGTAGT -ACGGAATCTCGTCAACGTGTCAGT -ACGGAATCTCGTCAACGTGAAGGT -ACGGAATCTCGTCAACGTAACCGT -ACGGAATCTCGTCAACGTTTGTGC -ACGGAATCTCGTCAACGTCTAAGC -ACGGAATCTCGTCAACGTACTAGC -ACGGAATCTCGTCAACGTAGATGC -ACGGAATCTCGTCAACGTTGAAGG -ACGGAATCTCGTCAACGTCAATGG -ACGGAATCTCGTCAACGTATGAGG -ACGGAATCTCGTCAACGTAATGGG -ACGGAATCTCGTCAACGTTCCTGA -ACGGAATCTCGTCAACGTTAGCGA -ACGGAATCTCGTCAACGTCACAGA -ACGGAATCTCGTCAACGTGCAAGA -ACGGAATCTCGTCAACGTGGTTGA -ACGGAATCTCGTCAACGTTCCGAT -ACGGAATCTCGTCAACGTTGGCAT -ACGGAATCTCGTCAACGTCGAGAT -ACGGAATCTCGTCAACGTTACCAC -ACGGAATCTCGTCAACGTCAGAAC -ACGGAATCTCGTCAACGTGTCTAC -ACGGAATCTCGTCAACGTACGTAC -ACGGAATCTCGTCAACGTAGTGAC -ACGGAATCTCGTCAACGTCTGTAG -ACGGAATCTCGTCAACGTCCTAAG -ACGGAATCTCGTCAACGTGTTCAG -ACGGAATCTCGTCAACGTGCATAG -ACGGAATCTCGTCAACGTGACAAG -ACGGAATCTCGTCAACGTAAGCAG -ACGGAATCTCGTCAACGTCGTCAA -ACGGAATCTCGTCAACGTGCTGAA -ACGGAATCTCGTCAACGTAGTACG -ACGGAATCTCGTCAACGTATCCGA -ACGGAATCTCGTCAACGTATGGGA -ACGGAATCTCGTCAACGTGTGCAA -ACGGAATCTCGTCAACGTGAGGAA -ACGGAATCTCGTCAACGTCAGGTA -ACGGAATCTCGTCAACGTGACTCT -ACGGAATCTCGTCAACGTAGTCCT -ACGGAATCTCGTCAACGTTAAGCC -ACGGAATCTCGTCAACGTATAGCC -ACGGAATCTCGTCAACGTTAACCG -ACGGAATCTCGTCAACGTATGCCA -ACGGAATCTCGTGAAGCTGGAAAC -ACGGAATCTCGTGAAGCTAACACC -ACGGAATCTCGTGAAGCTATCGAG -ACGGAATCTCGTGAAGCTCTCCTT -ACGGAATCTCGTGAAGCTCCTGTT -ACGGAATCTCGTGAAGCTCGGTTT -ACGGAATCTCGTGAAGCTGTGGTT -ACGGAATCTCGTGAAGCTGCCTTT -ACGGAATCTCGTGAAGCTGGTCTT -ACGGAATCTCGTGAAGCTACGCTT -ACGGAATCTCGTGAAGCTAGCGTT -ACGGAATCTCGTGAAGCTTTCGTC -ACGGAATCTCGTGAAGCTTCTCTC -ACGGAATCTCGTGAAGCTTGGATC -ACGGAATCTCGTGAAGCTCACTTC -ACGGAATCTCGTGAAGCTGTACTC -ACGGAATCTCGTGAAGCTGATGTC -ACGGAATCTCGTGAAGCTACAGTC -ACGGAATCTCGTGAAGCTTTGCTG -ACGGAATCTCGTGAAGCTTCCATG -ACGGAATCTCGTGAAGCTTGTGTG -ACGGAATCTCGTGAAGCTCTAGTG -ACGGAATCTCGTGAAGCTCATCTG -ACGGAATCTCGTGAAGCTGAGTTG -ACGGAATCTCGTGAAGCTAGACTG -ACGGAATCTCGTGAAGCTTCGGTA -ACGGAATCTCGTGAAGCTTGCCTA -ACGGAATCTCGTGAAGCTCCACTA -ACGGAATCTCGTGAAGCTGGAGTA -ACGGAATCTCGTGAAGCTTCGTCT -ACGGAATCTCGTGAAGCTTGCACT -ACGGAATCTCGTGAAGCTCTGACT -ACGGAATCTCGTGAAGCTCAACCT -ACGGAATCTCGTGAAGCTGCTACT -ACGGAATCTCGTGAAGCTGGATCT -ACGGAATCTCGTGAAGCTAAGGCT -ACGGAATCTCGTGAAGCTTCAACC -ACGGAATCTCGTGAAGCTTGTTCC -ACGGAATCTCGTGAAGCTATTCCC -ACGGAATCTCGTGAAGCTTTCTCG -ACGGAATCTCGTGAAGCTTAGACG -ACGGAATCTCGTGAAGCTGTAACG -ACGGAATCTCGTGAAGCTACTTCG -ACGGAATCTCGTGAAGCTTACGCA -ACGGAATCTCGTGAAGCTCTTGCA -ACGGAATCTCGTGAAGCTCGAACA -ACGGAATCTCGTGAAGCTCAGTCA -ACGGAATCTCGTGAAGCTGATCCA -ACGGAATCTCGTGAAGCTACGACA -ACGGAATCTCGTGAAGCTAGCTCA -ACGGAATCTCGTGAAGCTTCACGT -ACGGAATCTCGTGAAGCTCGTAGT -ACGGAATCTCGTGAAGCTGTCAGT -ACGGAATCTCGTGAAGCTGAAGGT -ACGGAATCTCGTGAAGCTAACCGT -ACGGAATCTCGTGAAGCTTTGTGC -ACGGAATCTCGTGAAGCTCTAAGC -ACGGAATCTCGTGAAGCTACTAGC -ACGGAATCTCGTGAAGCTAGATGC -ACGGAATCTCGTGAAGCTTGAAGG -ACGGAATCTCGTGAAGCTCAATGG -ACGGAATCTCGTGAAGCTATGAGG -ACGGAATCTCGTGAAGCTAATGGG -ACGGAATCTCGTGAAGCTTCCTGA -ACGGAATCTCGTGAAGCTTAGCGA -ACGGAATCTCGTGAAGCTCACAGA -ACGGAATCTCGTGAAGCTGCAAGA -ACGGAATCTCGTGAAGCTGGTTGA -ACGGAATCTCGTGAAGCTTCCGAT -ACGGAATCTCGTGAAGCTTGGCAT -ACGGAATCTCGTGAAGCTCGAGAT -ACGGAATCTCGTGAAGCTTACCAC -ACGGAATCTCGTGAAGCTCAGAAC -ACGGAATCTCGTGAAGCTGTCTAC -ACGGAATCTCGTGAAGCTACGTAC -ACGGAATCTCGTGAAGCTAGTGAC -ACGGAATCTCGTGAAGCTCTGTAG -ACGGAATCTCGTGAAGCTCCTAAG -ACGGAATCTCGTGAAGCTGTTCAG -ACGGAATCTCGTGAAGCTGCATAG -ACGGAATCTCGTGAAGCTGACAAG -ACGGAATCTCGTGAAGCTAAGCAG -ACGGAATCTCGTGAAGCTCGTCAA -ACGGAATCTCGTGAAGCTGCTGAA -ACGGAATCTCGTGAAGCTAGTACG -ACGGAATCTCGTGAAGCTATCCGA -ACGGAATCTCGTGAAGCTATGGGA -ACGGAATCTCGTGAAGCTGTGCAA -ACGGAATCTCGTGAAGCTGAGGAA -ACGGAATCTCGTGAAGCTCAGGTA -ACGGAATCTCGTGAAGCTGACTCT -ACGGAATCTCGTGAAGCTAGTCCT -ACGGAATCTCGTGAAGCTTAAGCC -ACGGAATCTCGTGAAGCTATAGCC -ACGGAATCTCGTGAAGCTTAACCG -ACGGAATCTCGTGAAGCTATGCCA -ACGGAATCTCGTACGAGTGGAAAC -ACGGAATCTCGTACGAGTAACACC -ACGGAATCTCGTACGAGTATCGAG -ACGGAATCTCGTACGAGTCTCCTT -ACGGAATCTCGTACGAGTCCTGTT -ACGGAATCTCGTACGAGTCGGTTT -ACGGAATCTCGTACGAGTGTGGTT -ACGGAATCTCGTACGAGTGCCTTT -ACGGAATCTCGTACGAGTGGTCTT -ACGGAATCTCGTACGAGTACGCTT -ACGGAATCTCGTACGAGTAGCGTT -ACGGAATCTCGTACGAGTTTCGTC -ACGGAATCTCGTACGAGTTCTCTC -ACGGAATCTCGTACGAGTTGGATC -ACGGAATCTCGTACGAGTCACTTC -ACGGAATCTCGTACGAGTGTACTC -ACGGAATCTCGTACGAGTGATGTC -ACGGAATCTCGTACGAGTACAGTC -ACGGAATCTCGTACGAGTTTGCTG -ACGGAATCTCGTACGAGTTCCATG -ACGGAATCTCGTACGAGTTGTGTG -ACGGAATCTCGTACGAGTCTAGTG -ACGGAATCTCGTACGAGTCATCTG -ACGGAATCTCGTACGAGTGAGTTG -ACGGAATCTCGTACGAGTAGACTG -ACGGAATCTCGTACGAGTTCGGTA -ACGGAATCTCGTACGAGTTGCCTA -ACGGAATCTCGTACGAGTCCACTA -ACGGAATCTCGTACGAGTGGAGTA -ACGGAATCTCGTACGAGTTCGTCT -ACGGAATCTCGTACGAGTTGCACT -ACGGAATCTCGTACGAGTCTGACT -ACGGAATCTCGTACGAGTCAACCT -ACGGAATCTCGTACGAGTGCTACT -ACGGAATCTCGTACGAGTGGATCT -ACGGAATCTCGTACGAGTAAGGCT -ACGGAATCTCGTACGAGTTCAACC -ACGGAATCTCGTACGAGTTGTTCC -ACGGAATCTCGTACGAGTATTCCC -ACGGAATCTCGTACGAGTTTCTCG -ACGGAATCTCGTACGAGTTAGACG -ACGGAATCTCGTACGAGTGTAACG -ACGGAATCTCGTACGAGTACTTCG -ACGGAATCTCGTACGAGTTACGCA -ACGGAATCTCGTACGAGTCTTGCA -ACGGAATCTCGTACGAGTCGAACA -ACGGAATCTCGTACGAGTCAGTCA -ACGGAATCTCGTACGAGTGATCCA -ACGGAATCTCGTACGAGTACGACA -ACGGAATCTCGTACGAGTAGCTCA -ACGGAATCTCGTACGAGTTCACGT -ACGGAATCTCGTACGAGTCGTAGT -ACGGAATCTCGTACGAGTGTCAGT -ACGGAATCTCGTACGAGTGAAGGT -ACGGAATCTCGTACGAGTAACCGT -ACGGAATCTCGTACGAGTTTGTGC -ACGGAATCTCGTACGAGTCTAAGC -ACGGAATCTCGTACGAGTACTAGC -ACGGAATCTCGTACGAGTAGATGC -ACGGAATCTCGTACGAGTTGAAGG -ACGGAATCTCGTACGAGTCAATGG -ACGGAATCTCGTACGAGTATGAGG -ACGGAATCTCGTACGAGTAATGGG -ACGGAATCTCGTACGAGTTCCTGA -ACGGAATCTCGTACGAGTTAGCGA -ACGGAATCTCGTACGAGTCACAGA -ACGGAATCTCGTACGAGTGCAAGA -ACGGAATCTCGTACGAGTGGTTGA -ACGGAATCTCGTACGAGTTCCGAT -ACGGAATCTCGTACGAGTTGGCAT -ACGGAATCTCGTACGAGTCGAGAT -ACGGAATCTCGTACGAGTTACCAC -ACGGAATCTCGTACGAGTCAGAAC -ACGGAATCTCGTACGAGTGTCTAC -ACGGAATCTCGTACGAGTACGTAC -ACGGAATCTCGTACGAGTAGTGAC -ACGGAATCTCGTACGAGTCTGTAG -ACGGAATCTCGTACGAGTCCTAAG -ACGGAATCTCGTACGAGTGTTCAG -ACGGAATCTCGTACGAGTGCATAG -ACGGAATCTCGTACGAGTGACAAG -ACGGAATCTCGTACGAGTAAGCAG -ACGGAATCTCGTACGAGTCGTCAA -ACGGAATCTCGTACGAGTGCTGAA -ACGGAATCTCGTACGAGTAGTACG -ACGGAATCTCGTACGAGTATCCGA -ACGGAATCTCGTACGAGTATGGGA -ACGGAATCTCGTACGAGTGTGCAA -ACGGAATCTCGTACGAGTGAGGAA -ACGGAATCTCGTACGAGTCAGGTA -ACGGAATCTCGTACGAGTGACTCT -ACGGAATCTCGTACGAGTAGTCCT -ACGGAATCTCGTACGAGTTAAGCC -ACGGAATCTCGTACGAGTATAGCC -ACGGAATCTCGTACGAGTTAACCG -ACGGAATCTCGTACGAGTATGCCA -ACGGAATCTCGTCGAATCGGAAAC -ACGGAATCTCGTCGAATCAACACC -ACGGAATCTCGTCGAATCATCGAG -ACGGAATCTCGTCGAATCCTCCTT -ACGGAATCTCGTCGAATCCCTGTT -ACGGAATCTCGTCGAATCCGGTTT -ACGGAATCTCGTCGAATCGTGGTT -ACGGAATCTCGTCGAATCGCCTTT -ACGGAATCTCGTCGAATCGGTCTT -ACGGAATCTCGTCGAATCACGCTT -ACGGAATCTCGTCGAATCAGCGTT -ACGGAATCTCGTCGAATCTTCGTC -ACGGAATCTCGTCGAATCTCTCTC -ACGGAATCTCGTCGAATCTGGATC -ACGGAATCTCGTCGAATCCACTTC -ACGGAATCTCGTCGAATCGTACTC -ACGGAATCTCGTCGAATCGATGTC -ACGGAATCTCGTCGAATCACAGTC -ACGGAATCTCGTCGAATCTTGCTG -ACGGAATCTCGTCGAATCTCCATG -ACGGAATCTCGTCGAATCTGTGTG -ACGGAATCTCGTCGAATCCTAGTG -ACGGAATCTCGTCGAATCCATCTG -ACGGAATCTCGTCGAATCGAGTTG -ACGGAATCTCGTCGAATCAGACTG -ACGGAATCTCGTCGAATCTCGGTA -ACGGAATCTCGTCGAATCTGCCTA -ACGGAATCTCGTCGAATCCCACTA -ACGGAATCTCGTCGAATCGGAGTA -ACGGAATCTCGTCGAATCTCGTCT -ACGGAATCTCGTCGAATCTGCACT -ACGGAATCTCGTCGAATCCTGACT -ACGGAATCTCGTCGAATCCAACCT -ACGGAATCTCGTCGAATCGCTACT -ACGGAATCTCGTCGAATCGGATCT -ACGGAATCTCGTCGAATCAAGGCT -ACGGAATCTCGTCGAATCTCAACC -ACGGAATCTCGTCGAATCTGTTCC -ACGGAATCTCGTCGAATCATTCCC -ACGGAATCTCGTCGAATCTTCTCG -ACGGAATCTCGTCGAATCTAGACG -ACGGAATCTCGTCGAATCGTAACG -ACGGAATCTCGTCGAATCACTTCG -ACGGAATCTCGTCGAATCTACGCA -ACGGAATCTCGTCGAATCCTTGCA -ACGGAATCTCGTCGAATCCGAACA -ACGGAATCTCGTCGAATCCAGTCA -ACGGAATCTCGTCGAATCGATCCA -ACGGAATCTCGTCGAATCACGACA -ACGGAATCTCGTCGAATCAGCTCA -ACGGAATCTCGTCGAATCTCACGT -ACGGAATCTCGTCGAATCCGTAGT -ACGGAATCTCGTCGAATCGTCAGT -ACGGAATCTCGTCGAATCGAAGGT -ACGGAATCTCGTCGAATCAACCGT -ACGGAATCTCGTCGAATCTTGTGC -ACGGAATCTCGTCGAATCCTAAGC -ACGGAATCTCGTCGAATCACTAGC -ACGGAATCTCGTCGAATCAGATGC -ACGGAATCTCGTCGAATCTGAAGG -ACGGAATCTCGTCGAATCCAATGG -ACGGAATCTCGTCGAATCATGAGG -ACGGAATCTCGTCGAATCAATGGG -ACGGAATCTCGTCGAATCTCCTGA -ACGGAATCTCGTCGAATCTAGCGA -ACGGAATCTCGTCGAATCCACAGA -ACGGAATCTCGTCGAATCGCAAGA -ACGGAATCTCGTCGAATCGGTTGA -ACGGAATCTCGTCGAATCTCCGAT -ACGGAATCTCGTCGAATCTGGCAT -ACGGAATCTCGTCGAATCCGAGAT -ACGGAATCTCGTCGAATCTACCAC -ACGGAATCTCGTCGAATCCAGAAC -ACGGAATCTCGTCGAATCGTCTAC -ACGGAATCTCGTCGAATCACGTAC -ACGGAATCTCGTCGAATCAGTGAC -ACGGAATCTCGTCGAATCCTGTAG -ACGGAATCTCGTCGAATCCCTAAG -ACGGAATCTCGTCGAATCGTTCAG -ACGGAATCTCGTCGAATCGCATAG -ACGGAATCTCGTCGAATCGACAAG -ACGGAATCTCGTCGAATCAAGCAG -ACGGAATCTCGTCGAATCCGTCAA -ACGGAATCTCGTCGAATCGCTGAA -ACGGAATCTCGTCGAATCAGTACG -ACGGAATCTCGTCGAATCATCCGA -ACGGAATCTCGTCGAATCATGGGA -ACGGAATCTCGTCGAATCGTGCAA -ACGGAATCTCGTCGAATCGAGGAA -ACGGAATCTCGTCGAATCCAGGTA -ACGGAATCTCGTCGAATCGACTCT -ACGGAATCTCGTCGAATCAGTCCT -ACGGAATCTCGTCGAATCTAAGCC -ACGGAATCTCGTCGAATCATAGCC -ACGGAATCTCGTCGAATCTAACCG -ACGGAATCTCGTCGAATCATGCCA -ACGGAATCTCGTGGAATGGGAAAC -ACGGAATCTCGTGGAATGAACACC -ACGGAATCTCGTGGAATGATCGAG -ACGGAATCTCGTGGAATGCTCCTT -ACGGAATCTCGTGGAATGCCTGTT -ACGGAATCTCGTGGAATGCGGTTT -ACGGAATCTCGTGGAATGGTGGTT -ACGGAATCTCGTGGAATGGCCTTT -ACGGAATCTCGTGGAATGGGTCTT -ACGGAATCTCGTGGAATGACGCTT -ACGGAATCTCGTGGAATGAGCGTT -ACGGAATCTCGTGGAATGTTCGTC -ACGGAATCTCGTGGAATGTCTCTC -ACGGAATCTCGTGGAATGTGGATC -ACGGAATCTCGTGGAATGCACTTC -ACGGAATCTCGTGGAATGGTACTC -ACGGAATCTCGTGGAATGGATGTC -ACGGAATCTCGTGGAATGACAGTC -ACGGAATCTCGTGGAATGTTGCTG -ACGGAATCTCGTGGAATGTCCATG -ACGGAATCTCGTGGAATGTGTGTG -ACGGAATCTCGTGGAATGCTAGTG -ACGGAATCTCGTGGAATGCATCTG -ACGGAATCTCGTGGAATGGAGTTG -ACGGAATCTCGTGGAATGAGACTG -ACGGAATCTCGTGGAATGTCGGTA -ACGGAATCTCGTGGAATGTGCCTA -ACGGAATCTCGTGGAATGCCACTA -ACGGAATCTCGTGGAATGGGAGTA -ACGGAATCTCGTGGAATGTCGTCT -ACGGAATCTCGTGGAATGTGCACT -ACGGAATCTCGTGGAATGCTGACT -ACGGAATCTCGTGGAATGCAACCT -ACGGAATCTCGTGGAATGGCTACT -ACGGAATCTCGTGGAATGGGATCT -ACGGAATCTCGTGGAATGAAGGCT -ACGGAATCTCGTGGAATGTCAACC -ACGGAATCTCGTGGAATGTGTTCC -ACGGAATCTCGTGGAATGATTCCC -ACGGAATCTCGTGGAATGTTCTCG -ACGGAATCTCGTGGAATGTAGACG -ACGGAATCTCGTGGAATGGTAACG -ACGGAATCTCGTGGAATGACTTCG -ACGGAATCTCGTGGAATGTACGCA -ACGGAATCTCGTGGAATGCTTGCA -ACGGAATCTCGTGGAATGCGAACA -ACGGAATCTCGTGGAATGCAGTCA -ACGGAATCTCGTGGAATGGATCCA -ACGGAATCTCGTGGAATGACGACA -ACGGAATCTCGTGGAATGAGCTCA -ACGGAATCTCGTGGAATGTCACGT -ACGGAATCTCGTGGAATGCGTAGT -ACGGAATCTCGTGGAATGGTCAGT -ACGGAATCTCGTGGAATGGAAGGT -ACGGAATCTCGTGGAATGAACCGT -ACGGAATCTCGTGGAATGTTGTGC -ACGGAATCTCGTGGAATGCTAAGC -ACGGAATCTCGTGGAATGACTAGC -ACGGAATCTCGTGGAATGAGATGC -ACGGAATCTCGTGGAATGTGAAGG -ACGGAATCTCGTGGAATGCAATGG -ACGGAATCTCGTGGAATGATGAGG -ACGGAATCTCGTGGAATGAATGGG -ACGGAATCTCGTGGAATGTCCTGA -ACGGAATCTCGTGGAATGTAGCGA -ACGGAATCTCGTGGAATGCACAGA -ACGGAATCTCGTGGAATGGCAAGA -ACGGAATCTCGTGGAATGGGTTGA -ACGGAATCTCGTGGAATGTCCGAT -ACGGAATCTCGTGGAATGTGGCAT -ACGGAATCTCGTGGAATGCGAGAT -ACGGAATCTCGTGGAATGTACCAC -ACGGAATCTCGTGGAATGCAGAAC -ACGGAATCTCGTGGAATGGTCTAC -ACGGAATCTCGTGGAATGACGTAC -ACGGAATCTCGTGGAATGAGTGAC -ACGGAATCTCGTGGAATGCTGTAG -ACGGAATCTCGTGGAATGCCTAAG -ACGGAATCTCGTGGAATGGTTCAG -ACGGAATCTCGTGGAATGGCATAG -ACGGAATCTCGTGGAATGGACAAG -ACGGAATCTCGTGGAATGAAGCAG -ACGGAATCTCGTGGAATGCGTCAA -ACGGAATCTCGTGGAATGGCTGAA -ACGGAATCTCGTGGAATGAGTACG -ACGGAATCTCGTGGAATGATCCGA -ACGGAATCTCGTGGAATGATGGGA -ACGGAATCTCGTGGAATGGTGCAA -ACGGAATCTCGTGGAATGGAGGAA -ACGGAATCTCGTGGAATGCAGGTA -ACGGAATCTCGTGGAATGGACTCT -ACGGAATCTCGTGGAATGAGTCCT -ACGGAATCTCGTGGAATGTAAGCC -ACGGAATCTCGTGGAATGATAGCC -ACGGAATCTCGTGGAATGTAACCG -ACGGAATCTCGTGGAATGATGCCA -ACGGAATCTCGTCAAGTGGGAAAC -ACGGAATCTCGTCAAGTGAACACC -ACGGAATCTCGTCAAGTGATCGAG -ACGGAATCTCGTCAAGTGCTCCTT -ACGGAATCTCGTCAAGTGCCTGTT -ACGGAATCTCGTCAAGTGCGGTTT -ACGGAATCTCGTCAAGTGGTGGTT -ACGGAATCTCGTCAAGTGGCCTTT -ACGGAATCTCGTCAAGTGGGTCTT -ACGGAATCTCGTCAAGTGACGCTT -ACGGAATCTCGTCAAGTGAGCGTT -ACGGAATCTCGTCAAGTGTTCGTC -ACGGAATCTCGTCAAGTGTCTCTC -ACGGAATCTCGTCAAGTGTGGATC -ACGGAATCTCGTCAAGTGCACTTC -ACGGAATCTCGTCAAGTGGTACTC -ACGGAATCTCGTCAAGTGGATGTC -ACGGAATCTCGTCAAGTGACAGTC -ACGGAATCTCGTCAAGTGTTGCTG -ACGGAATCTCGTCAAGTGTCCATG -ACGGAATCTCGTCAAGTGTGTGTG -ACGGAATCTCGTCAAGTGCTAGTG -ACGGAATCTCGTCAAGTGCATCTG -ACGGAATCTCGTCAAGTGGAGTTG -ACGGAATCTCGTCAAGTGAGACTG -ACGGAATCTCGTCAAGTGTCGGTA -ACGGAATCTCGTCAAGTGTGCCTA -ACGGAATCTCGTCAAGTGCCACTA -ACGGAATCTCGTCAAGTGGGAGTA -ACGGAATCTCGTCAAGTGTCGTCT -ACGGAATCTCGTCAAGTGTGCACT -ACGGAATCTCGTCAAGTGCTGACT -ACGGAATCTCGTCAAGTGCAACCT -ACGGAATCTCGTCAAGTGGCTACT -ACGGAATCTCGTCAAGTGGGATCT -ACGGAATCTCGTCAAGTGAAGGCT -ACGGAATCTCGTCAAGTGTCAACC -ACGGAATCTCGTCAAGTGTGTTCC -ACGGAATCTCGTCAAGTGATTCCC -ACGGAATCTCGTCAAGTGTTCTCG -ACGGAATCTCGTCAAGTGTAGACG -ACGGAATCTCGTCAAGTGGTAACG -ACGGAATCTCGTCAAGTGACTTCG -ACGGAATCTCGTCAAGTGTACGCA -ACGGAATCTCGTCAAGTGCTTGCA -ACGGAATCTCGTCAAGTGCGAACA -ACGGAATCTCGTCAAGTGCAGTCA -ACGGAATCTCGTCAAGTGGATCCA -ACGGAATCTCGTCAAGTGACGACA -ACGGAATCTCGTCAAGTGAGCTCA -ACGGAATCTCGTCAAGTGTCACGT -ACGGAATCTCGTCAAGTGCGTAGT -ACGGAATCTCGTCAAGTGGTCAGT -ACGGAATCTCGTCAAGTGGAAGGT -ACGGAATCTCGTCAAGTGAACCGT -ACGGAATCTCGTCAAGTGTTGTGC -ACGGAATCTCGTCAAGTGCTAAGC -ACGGAATCTCGTCAAGTGACTAGC -ACGGAATCTCGTCAAGTGAGATGC -ACGGAATCTCGTCAAGTGTGAAGG -ACGGAATCTCGTCAAGTGCAATGG -ACGGAATCTCGTCAAGTGATGAGG -ACGGAATCTCGTCAAGTGAATGGG -ACGGAATCTCGTCAAGTGTCCTGA -ACGGAATCTCGTCAAGTGTAGCGA -ACGGAATCTCGTCAAGTGCACAGA -ACGGAATCTCGTCAAGTGGCAAGA -ACGGAATCTCGTCAAGTGGGTTGA -ACGGAATCTCGTCAAGTGTCCGAT -ACGGAATCTCGTCAAGTGTGGCAT -ACGGAATCTCGTCAAGTGCGAGAT -ACGGAATCTCGTCAAGTGTACCAC -ACGGAATCTCGTCAAGTGCAGAAC -ACGGAATCTCGTCAAGTGGTCTAC -ACGGAATCTCGTCAAGTGACGTAC -ACGGAATCTCGTCAAGTGAGTGAC -ACGGAATCTCGTCAAGTGCTGTAG -ACGGAATCTCGTCAAGTGCCTAAG -ACGGAATCTCGTCAAGTGGTTCAG -ACGGAATCTCGTCAAGTGGCATAG -ACGGAATCTCGTCAAGTGGACAAG -ACGGAATCTCGTCAAGTGAAGCAG -ACGGAATCTCGTCAAGTGCGTCAA -ACGGAATCTCGTCAAGTGGCTGAA -ACGGAATCTCGTCAAGTGAGTACG -ACGGAATCTCGTCAAGTGATCCGA -ACGGAATCTCGTCAAGTGATGGGA -ACGGAATCTCGTCAAGTGGTGCAA -ACGGAATCTCGTCAAGTGGAGGAA -ACGGAATCTCGTCAAGTGCAGGTA -ACGGAATCTCGTCAAGTGGACTCT -ACGGAATCTCGTCAAGTGAGTCCT -ACGGAATCTCGTCAAGTGTAAGCC -ACGGAATCTCGTCAAGTGATAGCC -ACGGAATCTCGTCAAGTGTAACCG -ACGGAATCTCGTCAAGTGATGCCA -ACGGAATCTCGTGAAGAGGGAAAC -ACGGAATCTCGTGAAGAGAACACC -ACGGAATCTCGTGAAGAGATCGAG -ACGGAATCTCGTGAAGAGCTCCTT -ACGGAATCTCGTGAAGAGCCTGTT -ACGGAATCTCGTGAAGAGCGGTTT -ACGGAATCTCGTGAAGAGGTGGTT -ACGGAATCTCGTGAAGAGGCCTTT -ACGGAATCTCGTGAAGAGGGTCTT -ACGGAATCTCGTGAAGAGACGCTT -ACGGAATCTCGTGAAGAGAGCGTT -ACGGAATCTCGTGAAGAGTTCGTC -ACGGAATCTCGTGAAGAGTCTCTC -ACGGAATCTCGTGAAGAGTGGATC -ACGGAATCTCGTGAAGAGCACTTC -ACGGAATCTCGTGAAGAGGTACTC -ACGGAATCTCGTGAAGAGGATGTC -ACGGAATCTCGTGAAGAGACAGTC -ACGGAATCTCGTGAAGAGTTGCTG -ACGGAATCTCGTGAAGAGTCCATG -ACGGAATCTCGTGAAGAGTGTGTG -ACGGAATCTCGTGAAGAGCTAGTG -ACGGAATCTCGTGAAGAGCATCTG -ACGGAATCTCGTGAAGAGGAGTTG -ACGGAATCTCGTGAAGAGAGACTG -ACGGAATCTCGTGAAGAGTCGGTA -ACGGAATCTCGTGAAGAGTGCCTA -ACGGAATCTCGTGAAGAGCCACTA -ACGGAATCTCGTGAAGAGGGAGTA -ACGGAATCTCGTGAAGAGTCGTCT -ACGGAATCTCGTGAAGAGTGCACT -ACGGAATCTCGTGAAGAGCTGACT -ACGGAATCTCGTGAAGAGCAACCT -ACGGAATCTCGTGAAGAGGCTACT -ACGGAATCTCGTGAAGAGGGATCT -ACGGAATCTCGTGAAGAGAAGGCT -ACGGAATCTCGTGAAGAGTCAACC -ACGGAATCTCGTGAAGAGTGTTCC -ACGGAATCTCGTGAAGAGATTCCC -ACGGAATCTCGTGAAGAGTTCTCG -ACGGAATCTCGTGAAGAGTAGACG -ACGGAATCTCGTGAAGAGGTAACG -ACGGAATCTCGTGAAGAGACTTCG -ACGGAATCTCGTGAAGAGTACGCA -ACGGAATCTCGTGAAGAGCTTGCA -ACGGAATCTCGTGAAGAGCGAACA -ACGGAATCTCGTGAAGAGCAGTCA -ACGGAATCTCGTGAAGAGGATCCA -ACGGAATCTCGTGAAGAGACGACA -ACGGAATCTCGTGAAGAGAGCTCA -ACGGAATCTCGTGAAGAGTCACGT -ACGGAATCTCGTGAAGAGCGTAGT -ACGGAATCTCGTGAAGAGGTCAGT -ACGGAATCTCGTGAAGAGGAAGGT -ACGGAATCTCGTGAAGAGAACCGT -ACGGAATCTCGTGAAGAGTTGTGC -ACGGAATCTCGTGAAGAGCTAAGC -ACGGAATCTCGTGAAGAGACTAGC -ACGGAATCTCGTGAAGAGAGATGC -ACGGAATCTCGTGAAGAGTGAAGG -ACGGAATCTCGTGAAGAGCAATGG -ACGGAATCTCGTGAAGAGATGAGG -ACGGAATCTCGTGAAGAGAATGGG -ACGGAATCTCGTGAAGAGTCCTGA -ACGGAATCTCGTGAAGAGTAGCGA -ACGGAATCTCGTGAAGAGCACAGA -ACGGAATCTCGTGAAGAGGCAAGA -ACGGAATCTCGTGAAGAGGGTTGA -ACGGAATCTCGTGAAGAGTCCGAT -ACGGAATCTCGTGAAGAGTGGCAT -ACGGAATCTCGTGAAGAGCGAGAT -ACGGAATCTCGTGAAGAGTACCAC -ACGGAATCTCGTGAAGAGCAGAAC -ACGGAATCTCGTGAAGAGGTCTAC -ACGGAATCTCGTGAAGAGACGTAC -ACGGAATCTCGTGAAGAGAGTGAC -ACGGAATCTCGTGAAGAGCTGTAG -ACGGAATCTCGTGAAGAGCCTAAG -ACGGAATCTCGTGAAGAGGTTCAG -ACGGAATCTCGTGAAGAGGCATAG -ACGGAATCTCGTGAAGAGGACAAG -ACGGAATCTCGTGAAGAGAAGCAG -ACGGAATCTCGTGAAGAGCGTCAA -ACGGAATCTCGTGAAGAGGCTGAA -ACGGAATCTCGTGAAGAGAGTACG -ACGGAATCTCGTGAAGAGATCCGA -ACGGAATCTCGTGAAGAGATGGGA -ACGGAATCTCGTGAAGAGGTGCAA -ACGGAATCTCGTGAAGAGGAGGAA -ACGGAATCTCGTGAAGAGCAGGTA -ACGGAATCTCGTGAAGAGGACTCT -ACGGAATCTCGTGAAGAGAGTCCT -ACGGAATCTCGTGAAGAGTAAGCC -ACGGAATCTCGTGAAGAGATAGCC -ACGGAATCTCGTGAAGAGTAACCG -ACGGAATCTCGTGAAGAGATGCCA -ACGGAATCTCGTGTACAGGGAAAC -ACGGAATCTCGTGTACAGAACACC -ACGGAATCTCGTGTACAGATCGAG -ACGGAATCTCGTGTACAGCTCCTT -ACGGAATCTCGTGTACAGCCTGTT -ACGGAATCTCGTGTACAGCGGTTT -ACGGAATCTCGTGTACAGGTGGTT -ACGGAATCTCGTGTACAGGCCTTT -ACGGAATCTCGTGTACAGGGTCTT -ACGGAATCTCGTGTACAGACGCTT -ACGGAATCTCGTGTACAGAGCGTT -ACGGAATCTCGTGTACAGTTCGTC -ACGGAATCTCGTGTACAGTCTCTC -ACGGAATCTCGTGTACAGTGGATC -ACGGAATCTCGTGTACAGCACTTC -ACGGAATCTCGTGTACAGGTACTC -ACGGAATCTCGTGTACAGGATGTC -ACGGAATCTCGTGTACAGACAGTC -ACGGAATCTCGTGTACAGTTGCTG -ACGGAATCTCGTGTACAGTCCATG -ACGGAATCTCGTGTACAGTGTGTG -ACGGAATCTCGTGTACAGCTAGTG -ACGGAATCTCGTGTACAGCATCTG -ACGGAATCTCGTGTACAGGAGTTG -ACGGAATCTCGTGTACAGAGACTG -ACGGAATCTCGTGTACAGTCGGTA -ACGGAATCTCGTGTACAGTGCCTA -ACGGAATCTCGTGTACAGCCACTA -ACGGAATCTCGTGTACAGGGAGTA -ACGGAATCTCGTGTACAGTCGTCT -ACGGAATCTCGTGTACAGTGCACT -ACGGAATCTCGTGTACAGCTGACT -ACGGAATCTCGTGTACAGCAACCT -ACGGAATCTCGTGTACAGGCTACT -ACGGAATCTCGTGTACAGGGATCT -ACGGAATCTCGTGTACAGAAGGCT -ACGGAATCTCGTGTACAGTCAACC -ACGGAATCTCGTGTACAGTGTTCC -ACGGAATCTCGTGTACAGATTCCC -ACGGAATCTCGTGTACAGTTCTCG -ACGGAATCTCGTGTACAGTAGACG -ACGGAATCTCGTGTACAGGTAACG -ACGGAATCTCGTGTACAGACTTCG -ACGGAATCTCGTGTACAGTACGCA -ACGGAATCTCGTGTACAGCTTGCA -ACGGAATCTCGTGTACAGCGAACA -ACGGAATCTCGTGTACAGCAGTCA -ACGGAATCTCGTGTACAGGATCCA -ACGGAATCTCGTGTACAGACGACA -ACGGAATCTCGTGTACAGAGCTCA -ACGGAATCTCGTGTACAGTCACGT -ACGGAATCTCGTGTACAGCGTAGT -ACGGAATCTCGTGTACAGGTCAGT -ACGGAATCTCGTGTACAGGAAGGT -ACGGAATCTCGTGTACAGAACCGT -ACGGAATCTCGTGTACAGTTGTGC -ACGGAATCTCGTGTACAGCTAAGC -ACGGAATCTCGTGTACAGACTAGC -ACGGAATCTCGTGTACAGAGATGC -ACGGAATCTCGTGTACAGTGAAGG -ACGGAATCTCGTGTACAGCAATGG -ACGGAATCTCGTGTACAGATGAGG -ACGGAATCTCGTGTACAGAATGGG -ACGGAATCTCGTGTACAGTCCTGA -ACGGAATCTCGTGTACAGTAGCGA -ACGGAATCTCGTGTACAGCACAGA -ACGGAATCTCGTGTACAGGCAAGA -ACGGAATCTCGTGTACAGGGTTGA -ACGGAATCTCGTGTACAGTCCGAT -ACGGAATCTCGTGTACAGTGGCAT -ACGGAATCTCGTGTACAGCGAGAT -ACGGAATCTCGTGTACAGTACCAC -ACGGAATCTCGTGTACAGCAGAAC -ACGGAATCTCGTGTACAGGTCTAC -ACGGAATCTCGTGTACAGACGTAC -ACGGAATCTCGTGTACAGAGTGAC -ACGGAATCTCGTGTACAGCTGTAG -ACGGAATCTCGTGTACAGCCTAAG -ACGGAATCTCGTGTACAGGTTCAG -ACGGAATCTCGTGTACAGGCATAG -ACGGAATCTCGTGTACAGGACAAG -ACGGAATCTCGTGTACAGAAGCAG -ACGGAATCTCGTGTACAGCGTCAA -ACGGAATCTCGTGTACAGGCTGAA -ACGGAATCTCGTGTACAGAGTACG -ACGGAATCTCGTGTACAGATCCGA -ACGGAATCTCGTGTACAGATGGGA -ACGGAATCTCGTGTACAGGTGCAA -ACGGAATCTCGTGTACAGGAGGAA -ACGGAATCTCGTGTACAGCAGGTA -ACGGAATCTCGTGTACAGGACTCT -ACGGAATCTCGTGTACAGAGTCCT -ACGGAATCTCGTGTACAGTAAGCC -ACGGAATCTCGTGTACAGATAGCC -ACGGAATCTCGTGTACAGTAACCG -ACGGAATCTCGTGTACAGATGCCA -ACGGAATCTCGTTCTGACGGAAAC -ACGGAATCTCGTTCTGACAACACC -ACGGAATCTCGTTCTGACATCGAG -ACGGAATCTCGTTCTGACCTCCTT -ACGGAATCTCGTTCTGACCCTGTT -ACGGAATCTCGTTCTGACCGGTTT -ACGGAATCTCGTTCTGACGTGGTT -ACGGAATCTCGTTCTGACGCCTTT -ACGGAATCTCGTTCTGACGGTCTT -ACGGAATCTCGTTCTGACACGCTT -ACGGAATCTCGTTCTGACAGCGTT -ACGGAATCTCGTTCTGACTTCGTC -ACGGAATCTCGTTCTGACTCTCTC -ACGGAATCTCGTTCTGACTGGATC -ACGGAATCTCGTTCTGACCACTTC -ACGGAATCTCGTTCTGACGTACTC -ACGGAATCTCGTTCTGACGATGTC -ACGGAATCTCGTTCTGACACAGTC -ACGGAATCTCGTTCTGACTTGCTG -ACGGAATCTCGTTCTGACTCCATG -ACGGAATCTCGTTCTGACTGTGTG -ACGGAATCTCGTTCTGACCTAGTG -ACGGAATCTCGTTCTGACCATCTG -ACGGAATCTCGTTCTGACGAGTTG -ACGGAATCTCGTTCTGACAGACTG -ACGGAATCTCGTTCTGACTCGGTA -ACGGAATCTCGTTCTGACTGCCTA -ACGGAATCTCGTTCTGACCCACTA -ACGGAATCTCGTTCTGACGGAGTA -ACGGAATCTCGTTCTGACTCGTCT -ACGGAATCTCGTTCTGACTGCACT -ACGGAATCTCGTTCTGACCTGACT -ACGGAATCTCGTTCTGACCAACCT -ACGGAATCTCGTTCTGACGCTACT -ACGGAATCTCGTTCTGACGGATCT -ACGGAATCTCGTTCTGACAAGGCT -ACGGAATCTCGTTCTGACTCAACC -ACGGAATCTCGTTCTGACTGTTCC -ACGGAATCTCGTTCTGACATTCCC -ACGGAATCTCGTTCTGACTTCTCG -ACGGAATCTCGTTCTGACTAGACG -ACGGAATCTCGTTCTGACGTAACG -ACGGAATCTCGTTCTGACACTTCG -ACGGAATCTCGTTCTGACTACGCA -ACGGAATCTCGTTCTGACCTTGCA -ACGGAATCTCGTTCTGACCGAACA -ACGGAATCTCGTTCTGACCAGTCA -ACGGAATCTCGTTCTGACGATCCA -ACGGAATCTCGTTCTGACACGACA -ACGGAATCTCGTTCTGACAGCTCA -ACGGAATCTCGTTCTGACTCACGT -ACGGAATCTCGTTCTGACCGTAGT -ACGGAATCTCGTTCTGACGTCAGT -ACGGAATCTCGTTCTGACGAAGGT -ACGGAATCTCGTTCTGACAACCGT -ACGGAATCTCGTTCTGACTTGTGC -ACGGAATCTCGTTCTGACCTAAGC -ACGGAATCTCGTTCTGACACTAGC -ACGGAATCTCGTTCTGACAGATGC -ACGGAATCTCGTTCTGACTGAAGG -ACGGAATCTCGTTCTGACCAATGG -ACGGAATCTCGTTCTGACATGAGG -ACGGAATCTCGTTCTGACAATGGG -ACGGAATCTCGTTCTGACTCCTGA -ACGGAATCTCGTTCTGACTAGCGA -ACGGAATCTCGTTCTGACCACAGA -ACGGAATCTCGTTCTGACGCAAGA -ACGGAATCTCGTTCTGACGGTTGA -ACGGAATCTCGTTCTGACTCCGAT -ACGGAATCTCGTTCTGACTGGCAT -ACGGAATCTCGTTCTGACCGAGAT -ACGGAATCTCGTTCTGACTACCAC -ACGGAATCTCGTTCTGACCAGAAC -ACGGAATCTCGTTCTGACGTCTAC -ACGGAATCTCGTTCTGACACGTAC -ACGGAATCTCGTTCTGACAGTGAC -ACGGAATCTCGTTCTGACCTGTAG -ACGGAATCTCGTTCTGACCCTAAG -ACGGAATCTCGTTCTGACGTTCAG -ACGGAATCTCGTTCTGACGCATAG -ACGGAATCTCGTTCTGACGACAAG -ACGGAATCTCGTTCTGACAAGCAG -ACGGAATCTCGTTCTGACCGTCAA -ACGGAATCTCGTTCTGACGCTGAA -ACGGAATCTCGTTCTGACAGTACG -ACGGAATCTCGTTCTGACATCCGA -ACGGAATCTCGTTCTGACATGGGA -ACGGAATCTCGTTCTGACGTGCAA -ACGGAATCTCGTTCTGACGAGGAA -ACGGAATCTCGTTCTGACCAGGTA -ACGGAATCTCGTTCTGACGACTCT -ACGGAATCTCGTTCTGACAGTCCT -ACGGAATCTCGTTCTGACTAAGCC -ACGGAATCTCGTTCTGACATAGCC -ACGGAATCTCGTTCTGACTAACCG -ACGGAATCTCGTTCTGACATGCCA -ACGGAATCTCGTCCTAGTGGAAAC -ACGGAATCTCGTCCTAGTAACACC -ACGGAATCTCGTCCTAGTATCGAG -ACGGAATCTCGTCCTAGTCTCCTT -ACGGAATCTCGTCCTAGTCCTGTT -ACGGAATCTCGTCCTAGTCGGTTT -ACGGAATCTCGTCCTAGTGTGGTT -ACGGAATCTCGTCCTAGTGCCTTT -ACGGAATCTCGTCCTAGTGGTCTT -ACGGAATCTCGTCCTAGTACGCTT -ACGGAATCTCGTCCTAGTAGCGTT -ACGGAATCTCGTCCTAGTTTCGTC -ACGGAATCTCGTCCTAGTTCTCTC -ACGGAATCTCGTCCTAGTTGGATC -ACGGAATCTCGTCCTAGTCACTTC -ACGGAATCTCGTCCTAGTGTACTC -ACGGAATCTCGTCCTAGTGATGTC -ACGGAATCTCGTCCTAGTACAGTC -ACGGAATCTCGTCCTAGTTTGCTG -ACGGAATCTCGTCCTAGTTCCATG -ACGGAATCTCGTCCTAGTTGTGTG -ACGGAATCTCGTCCTAGTCTAGTG -ACGGAATCTCGTCCTAGTCATCTG -ACGGAATCTCGTCCTAGTGAGTTG -ACGGAATCTCGTCCTAGTAGACTG -ACGGAATCTCGTCCTAGTTCGGTA -ACGGAATCTCGTCCTAGTTGCCTA -ACGGAATCTCGTCCTAGTCCACTA -ACGGAATCTCGTCCTAGTGGAGTA -ACGGAATCTCGTCCTAGTTCGTCT -ACGGAATCTCGTCCTAGTTGCACT -ACGGAATCTCGTCCTAGTCTGACT -ACGGAATCTCGTCCTAGTCAACCT -ACGGAATCTCGTCCTAGTGCTACT -ACGGAATCTCGTCCTAGTGGATCT -ACGGAATCTCGTCCTAGTAAGGCT -ACGGAATCTCGTCCTAGTTCAACC -ACGGAATCTCGTCCTAGTTGTTCC -ACGGAATCTCGTCCTAGTATTCCC -ACGGAATCTCGTCCTAGTTTCTCG -ACGGAATCTCGTCCTAGTTAGACG -ACGGAATCTCGTCCTAGTGTAACG -ACGGAATCTCGTCCTAGTACTTCG -ACGGAATCTCGTCCTAGTTACGCA -ACGGAATCTCGTCCTAGTCTTGCA -ACGGAATCTCGTCCTAGTCGAACA -ACGGAATCTCGTCCTAGTCAGTCA -ACGGAATCTCGTCCTAGTGATCCA -ACGGAATCTCGTCCTAGTACGACA -ACGGAATCTCGTCCTAGTAGCTCA -ACGGAATCTCGTCCTAGTTCACGT -ACGGAATCTCGTCCTAGTCGTAGT -ACGGAATCTCGTCCTAGTGTCAGT -ACGGAATCTCGTCCTAGTGAAGGT -ACGGAATCTCGTCCTAGTAACCGT -ACGGAATCTCGTCCTAGTTTGTGC -ACGGAATCTCGTCCTAGTCTAAGC -ACGGAATCTCGTCCTAGTACTAGC -ACGGAATCTCGTCCTAGTAGATGC -ACGGAATCTCGTCCTAGTTGAAGG -ACGGAATCTCGTCCTAGTCAATGG -ACGGAATCTCGTCCTAGTATGAGG -ACGGAATCTCGTCCTAGTAATGGG -ACGGAATCTCGTCCTAGTTCCTGA -ACGGAATCTCGTCCTAGTTAGCGA -ACGGAATCTCGTCCTAGTCACAGA -ACGGAATCTCGTCCTAGTGCAAGA -ACGGAATCTCGTCCTAGTGGTTGA -ACGGAATCTCGTCCTAGTTCCGAT -ACGGAATCTCGTCCTAGTTGGCAT -ACGGAATCTCGTCCTAGTCGAGAT -ACGGAATCTCGTCCTAGTTACCAC -ACGGAATCTCGTCCTAGTCAGAAC -ACGGAATCTCGTCCTAGTGTCTAC -ACGGAATCTCGTCCTAGTACGTAC -ACGGAATCTCGTCCTAGTAGTGAC -ACGGAATCTCGTCCTAGTCTGTAG -ACGGAATCTCGTCCTAGTCCTAAG -ACGGAATCTCGTCCTAGTGTTCAG -ACGGAATCTCGTCCTAGTGCATAG -ACGGAATCTCGTCCTAGTGACAAG -ACGGAATCTCGTCCTAGTAAGCAG -ACGGAATCTCGTCCTAGTCGTCAA -ACGGAATCTCGTCCTAGTGCTGAA -ACGGAATCTCGTCCTAGTAGTACG -ACGGAATCTCGTCCTAGTATCCGA -ACGGAATCTCGTCCTAGTATGGGA -ACGGAATCTCGTCCTAGTGTGCAA -ACGGAATCTCGTCCTAGTGAGGAA -ACGGAATCTCGTCCTAGTCAGGTA -ACGGAATCTCGTCCTAGTGACTCT -ACGGAATCTCGTCCTAGTAGTCCT -ACGGAATCTCGTCCTAGTTAAGCC -ACGGAATCTCGTCCTAGTATAGCC -ACGGAATCTCGTCCTAGTTAACCG -ACGGAATCTCGTCCTAGTATGCCA -ACGGAATCTCGTGCCTAAGGAAAC -ACGGAATCTCGTGCCTAAAACACC -ACGGAATCTCGTGCCTAAATCGAG -ACGGAATCTCGTGCCTAACTCCTT -ACGGAATCTCGTGCCTAACCTGTT -ACGGAATCTCGTGCCTAACGGTTT -ACGGAATCTCGTGCCTAAGTGGTT -ACGGAATCTCGTGCCTAAGCCTTT -ACGGAATCTCGTGCCTAAGGTCTT -ACGGAATCTCGTGCCTAAACGCTT -ACGGAATCTCGTGCCTAAAGCGTT -ACGGAATCTCGTGCCTAATTCGTC -ACGGAATCTCGTGCCTAATCTCTC -ACGGAATCTCGTGCCTAATGGATC -ACGGAATCTCGTGCCTAACACTTC -ACGGAATCTCGTGCCTAAGTACTC -ACGGAATCTCGTGCCTAAGATGTC -ACGGAATCTCGTGCCTAAACAGTC -ACGGAATCTCGTGCCTAATTGCTG -ACGGAATCTCGTGCCTAATCCATG -ACGGAATCTCGTGCCTAATGTGTG -ACGGAATCTCGTGCCTAACTAGTG -ACGGAATCTCGTGCCTAACATCTG -ACGGAATCTCGTGCCTAAGAGTTG -ACGGAATCTCGTGCCTAAAGACTG -ACGGAATCTCGTGCCTAATCGGTA -ACGGAATCTCGTGCCTAATGCCTA -ACGGAATCTCGTGCCTAACCACTA -ACGGAATCTCGTGCCTAAGGAGTA -ACGGAATCTCGTGCCTAATCGTCT -ACGGAATCTCGTGCCTAATGCACT -ACGGAATCTCGTGCCTAACTGACT -ACGGAATCTCGTGCCTAACAACCT -ACGGAATCTCGTGCCTAAGCTACT -ACGGAATCTCGTGCCTAAGGATCT -ACGGAATCTCGTGCCTAAAAGGCT -ACGGAATCTCGTGCCTAATCAACC -ACGGAATCTCGTGCCTAATGTTCC -ACGGAATCTCGTGCCTAAATTCCC -ACGGAATCTCGTGCCTAATTCTCG -ACGGAATCTCGTGCCTAATAGACG -ACGGAATCTCGTGCCTAAGTAACG -ACGGAATCTCGTGCCTAAACTTCG -ACGGAATCTCGTGCCTAATACGCA -ACGGAATCTCGTGCCTAACTTGCA -ACGGAATCTCGTGCCTAACGAACA -ACGGAATCTCGTGCCTAACAGTCA -ACGGAATCTCGTGCCTAAGATCCA -ACGGAATCTCGTGCCTAAACGACA -ACGGAATCTCGTGCCTAAAGCTCA -ACGGAATCTCGTGCCTAATCACGT -ACGGAATCTCGTGCCTAACGTAGT -ACGGAATCTCGTGCCTAAGTCAGT -ACGGAATCTCGTGCCTAAGAAGGT -ACGGAATCTCGTGCCTAAAACCGT -ACGGAATCTCGTGCCTAATTGTGC -ACGGAATCTCGTGCCTAACTAAGC -ACGGAATCTCGTGCCTAAACTAGC -ACGGAATCTCGTGCCTAAAGATGC -ACGGAATCTCGTGCCTAATGAAGG -ACGGAATCTCGTGCCTAACAATGG -ACGGAATCTCGTGCCTAAATGAGG -ACGGAATCTCGTGCCTAAAATGGG -ACGGAATCTCGTGCCTAATCCTGA -ACGGAATCTCGTGCCTAATAGCGA -ACGGAATCTCGTGCCTAACACAGA -ACGGAATCTCGTGCCTAAGCAAGA -ACGGAATCTCGTGCCTAAGGTTGA -ACGGAATCTCGTGCCTAATCCGAT -ACGGAATCTCGTGCCTAATGGCAT -ACGGAATCTCGTGCCTAACGAGAT -ACGGAATCTCGTGCCTAATACCAC -ACGGAATCTCGTGCCTAACAGAAC -ACGGAATCTCGTGCCTAAGTCTAC -ACGGAATCTCGTGCCTAAACGTAC -ACGGAATCTCGTGCCTAAAGTGAC -ACGGAATCTCGTGCCTAACTGTAG -ACGGAATCTCGTGCCTAACCTAAG -ACGGAATCTCGTGCCTAAGTTCAG -ACGGAATCTCGTGCCTAAGCATAG -ACGGAATCTCGTGCCTAAGACAAG -ACGGAATCTCGTGCCTAAAAGCAG -ACGGAATCTCGTGCCTAACGTCAA -ACGGAATCTCGTGCCTAAGCTGAA -ACGGAATCTCGTGCCTAAAGTACG -ACGGAATCTCGTGCCTAAATCCGA -ACGGAATCTCGTGCCTAAATGGGA -ACGGAATCTCGTGCCTAAGTGCAA -ACGGAATCTCGTGCCTAAGAGGAA -ACGGAATCTCGTGCCTAACAGGTA -ACGGAATCTCGTGCCTAAGACTCT -ACGGAATCTCGTGCCTAAAGTCCT -ACGGAATCTCGTGCCTAATAAGCC -ACGGAATCTCGTGCCTAAATAGCC -ACGGAATCTCGTGCCTAATAACCG -ACGGAATCTCGTGCCTAAATGCCA -ACGGAATCTCGTGCCATAGGAAAC -ACGGAATCTCGTGCCATAAACACC -ACGGAATCTCGTGCCATAATCGAG -ACGGAATCTCGTGCCATACTCCTT -ACGGAATCTCGTGCCATACCTGTT -ACGGAATCTCGTGCCATACGGTTT -ACGGAATCTCGTGCCATAGTGGTT -ACGGAATCTCGTGCCATAGCCTTT -ACGGAATCTCGTGCCATAGGTCTT -ACGGAATCTCGTGCCATAACGCTT -ACGGAATCTCGTGCCATAAGCGTT -ACGGAATCTCGTGCCATATTCGTC -ACGGAATCTCGTGCCATATCTCTC -ACGGAATCTCGTGCCATATGGATC -ACGGAATCTCGTGCCATACACTTC -ACGGAATCTCGTGCCATAGTACTC -ACGGAATCTCGTGCCATAGATGTC -ACGGAATCTCGTGCCATAACAGTC -ACGGAATCTCGTGCCATATTGCTG -ACGGAATCTCGTGCCATATCCATG -ACGGAATCTCGTGCCATATGTGTG -ACGGAATCTCGTGCCATACTAGTG -ACGGAATCTCGTGCCATACATCTG -ACGGAATCTCGTGCCATAGAGTTG -ACGGAATCTCGTGCCATAAGACTG -ACGGAATCTCGTGCCATATCGGTA -ACGGAATCTCGTGCCATATGCCTA -ACGGAATCTCGTGCCATACCACTA -ACGGAATCTCGTGCCATAGGAGTA -ACGGAATCTCGTGCCATATCGTCT -ACGGAATCTCGTGCCATATGCACT -ACGGAATCTCGTGCCATACTGACT -ACGGAATCTCGTGCCATACAACCT -ACGGAATCTCGTGCCATAGCTACT -ACGGAATCTCGTGCCATAGGATCT -ACGGAATCTCGTGCCATAAAGGCT -ACGGAATCTCGTGCCATATCAACC -ACGGAATCTCGTGCCATATGTTCC -ACGGAATCTCGTGCCATAATTCCC -ACGGAATCTCGTGCCATATTCTCG -ACGGAATCTCGTGCCATATAGACG -ACGGAATCTCGTGCCATAGTAACG -ACGGAATCTCGTGCCATAACTTCG -ACGGAATCTCGTGCCATATACGCA -ACGGAATCTCGTGCCATACTTGCA -ACGGAATCTCGTGCCATACGAACA -ACGGAATCTCGTGCCATACAGTCA -ACGGAATCTCGTGCCATAGATCCA -ACGGAATCTCGTGCCATAACGACA -ACGGAATCTCGTGCCATAAGCTCA -ACGGAATCTCGTGCCATATCACGT -ACGGAATCTCGTGCCATACGTAGT -ACGGAATCTCGTGCCATAGTCAGT -ACGGAATCTCGTGCCATAGAAGGT -ACGGAATCTCGTGCCATAAACCGT -ACGGAATCTCGTGCCATATTGTGC -ACGGAATCTCGTGCCATACTAAGC -ACGGAATCTCGTGCCATAACTAGC -ACGGAATCTCGTGCCATAAGATGC -ACGGAATCTCGTGCCATATGAAGG -ACGGAATCTCGTGCCATACAATGG -ACGGAATCTCGTGCCATAATGAGG -ACGGAATCTCGTGCCATAAATGGG -ACGGAATCTCGTGCCATATCCTGA -ACGGAATCTCGTGCCATATAGCGA -ACGGAATCTCGTGCCATACACAGA -ACGGAATCTCGTGCCATAGCAAGA -ACGGAATCTCGTGCCATAGGTTGA -ACGGAATCTCGTGCCATATCCGAT -ACGGAATCTCGTGCCATATGGCAT -ACGGAATCTCGTGCCATACGAGAT -ACGGAATCTCGTGCCATATACCAC -ACGGAATCTCGTGCCATACAGAAC -ACGGAATCTCGTGCCATAGTCTAC -ACGGAATCTCGTGCCATAACGTAC -ACGGAATCTCGTGCCATAAGTGAC -ACGGAATCTCGTGCCATACTGTAG -ACGGAATCTCGTGCCATACCTAAG -ACGGAATCTCGTGCCATAGTTCAG -ACGGAATCTCGTGCCATAGCATAG -ACGGAATCTCGTGCCATAGACAAG -ACGGAATCTCGTGCCATAAAGCAG -ACGGAATCTCGTGCCATACGTCAA -ACGGAATCTCGTGCCATAGCTGAA -ACGGAATCTCGTGCCATAAGTACG -ACGGAATCTCGTGCCATAATCCGA -ACGGAATCTCGTGCCATAATGGGA -ACGGAATCTCGTGCCATAGTGCAA -ACGGAATCTCGTGCCATAGAGGAA -ACGGAATCTCGTGCCATACAGGTA -ACGGAATCTCGTGCCATAGACTCT -ACGGAATCTCGTGCCATAAGTCCT -ACGGAATCTCGTGCCATATAAGCC -ACGGAATCTCGTGCCATAATAGCC -ACGGAATCTCGTGCCATATAACCG -ACGGAATCTCGTGCCATAATGCCA -ACGGAATCTCGTCCGTAAGGAAAC -ACGGAATCTCGTCCGTAAAACACC -ACGGAATCTCGTCCGTAAATCGAG -ACGGAATCTCGTCCGTAACTCCTT -ACGGAATCTCGTCCGTAACCTGTT -ACGGAATCTCGTCCGTAACGGTTT -ACGGAATCTCGTCCGTAAGTGGTT -ACGGAATCTCGTCCGTAAGCCTTT -ACGGAATCTCGTCCGTAAGGTCTT -ACGGAATCTCGTCCGTAAACGCTT -ACGGAATCTCGTCCGTAAAGCGTT -ACGGAATCTCGTCCGTAATTCGTC -ACGGAATCTCGTCCGTAATCTCTC -ACGGAATCTCGTCCGTAATGGATC -ACGGAATCTCGTCCGTAACACTTC -ACGGAATCTCGTCCGTAAGTACTC -ACGGAATCTCGTCCGTAAGATGTC -ACGGAATCTCGTCCGTAAACAGTC -ACGGAATCTCGTCCGTAATTGCTG -ACGGAATCTCGTCCGTAATCCATG -ACGGAATCTCGTCCGTAATGTGTG -ACGGAATCTCGTCCGTAACTAGTG -ACGGAATCTCGTCCGTAACATCTG -ACGGAATCTCGTCCGTAAGAGTTG -ACGGAATCTCGTCCGTAAAGACTG -ACGGAATCTCGTCCGTAATCGGTA -ACGGAATCTCGTCCGTAATGCCTA -ACGGAATCTCGTCCGTAACCACTA -ACGGAATCTCGTCCGTAAGGAGTA -ACGGAATCTCGTCCGTAATCGTCT -ACGGAATCTCGTCCGTAATGCACT -ACGGAATCTCGTCCGTAACTGACT -ACGGAATCTCGTCCGTAACAACCT -ACGGAATCTCGTCCGTAAGCTACT -ACGGAATCTCGTCCGTAAGGATCT -ACGGAATCTCGTCCGTAAAAGGCT -ACGGAATCTCGTCCGTAATCAACC -ACGGAATCTCGTCCGTAATGTTCC -ACGGAATCTCGTCCGTAAATTCCC -ACGGAATCTCGTCCGTAATTCTCG -ACGGAATCTCGTCCGTAATAGACG -ACGGAATCTCGTCCGTAAGTAACG -ACGGAATCTCGTCCGTAAACTTCG -ACGGAATCTCGTCCGTAATACGCA -ACGGAATCTCGTCCGTAACTTGCA -ACGGAATCTCGTCCGTAACGAACA -ACGGAATCTCGTCCGTAACAGTCA -ACGGAATCTCGTCCGTAAGATCCA -ACGGAATCTCGTCCGTAAACGACA -ACGGAATCTCGTCCGTAAAGCTCA -ACGGAATCTCGTCCGTAATCACGT -ACGGAATCTCGTCCGTAACGTAGT -ACGGAATCTCGTCCGTAAGTCAGT -ACGGAATCTCGTCCGTAAGAAGGT -ACGGAATCTCGTCCGTAAAACCGT -ACGGAATCTCGTCCGTAATTGTGC -ACGGAATCTCGTCCGTAACTAAGC -ACGGAATCTCGTCCGTAAACTAGC -ACGGAATCTCGTCCGTAAAGATGC -ACGGAATCTCGTCCGTAATGAAGG -ACGGAATCTCGTCCGTAACAATGG -ACGGAATCTCGTCCGTAAATGAGG -ACGGAATCTCGTCCGTAAAATGGG -ACGGAATCTCGTCCGTAATCCTGA -ACGGAATCTCGTCCGTAATAGCGA -ACGGAATCTCGTCCGTAACACAGA -ACGGAATCTCGTCCGTAAGCAAGA -ACGGAATCTCGTCCGTAAGGTTGA -ACGGAATCTCGTCCGTAATCCGAT -ACGGAATCTCGTCCGTAATGGCAT -ACGGAATCTCGTCCGTAACGAGAT -ACGGAATCTCGTCCGTAATACCAC -ACGGAATCTCGTCCGTAACAGAAC -ACGGAATCTCGTCCGTAAGTCTAC -ACGGAATCTCGTCCGTAAACGTAC -ACGGAATCTCGTCCGTAAAGTGAC -ACGGAATCTCGTCCGTAACTGTAG -ACGGAATCTCGTCCGTAACCTAAG -ACGGAATCTCGTCCGTAAGTTCAG -ACGGAATCTCGTCCGTAAGCATAG -ACGGAATCTCGTCCGTAAGACAAG -ACGGAATCTCGTCCGTAAAAGCAG -ACGGAATCTCGTCCGTAACGTCAA -ACGGAATCTCGTCCGTAAGCTGAA -ACGGAATCTCGTCCGTAAAGTACG -ACGGAATCTCGTCCGTAAATCCGA -ACGGAATCTCGTCCGTAAATGGGA -ACGGAATCTCGTCCGTAAGTGCAA -ACGGAATCTCGTCCGTAAGAGGAA -ACGGAATCTCGTCCGTAACAGGTA -ACGGAATCTCGTCCGTAAGACTCT -ACGGAATCTCGTCCGTAAAGTCCT -ACGGAATCTCGTCCGTAATAAGCC -ACGGAATCTCGTCCGTAAATAGCC -ACGGAATCTCGTCCGTAATAACCG -ACGGAATCTCGTCCGTAAATGCCA -ACGGAATCTCGTCCAATGGGAAAC -ACGGAATCTCGTCCAATGAACACC -ACGGAATCTCGTCCAATGATCGAG -ACGGAATCTCGTCCAATGCTCCTT -ACGGAATCTCGTCCAATGCCTGTT -ACGGAATCTCGTCCAATGCGGTTT -ACGGAATCTCGTCCAATGGTGGTT -ACGGAATCTCGTCCAATGGCCTTT -ACGGAATCTCGTCCAATGGGTCTT -ACGGAATCTCGTCCAATGACGCTT -ACGGAATCTCGTCCAATGAGCGTT -ACGGAATCTCGTCCAATGTTCGTC -ACGGAATCTCGTCCAATGTCTCTC -ACGGAATCTCGTCCAATGTGGATC -ACGGAATCTCGTCCAATGCACTTC -ACGGAATCTCGTCCAATGGTACTC -ACGGAATCTCGTCCAATGGATGTC -ACGGAATCTCGTCCAATGACAGTC -ACGGAATCTCGTCCAATGTTGCTG -ACGGAATCTCGTCCAATGTCCATG -ACGGAATCTCGTCCAATGTGTGTG -ACGGAATCTCGTCCAATGCTAGTG -ACGGAATCTCGTCCAATGCATCTG -ACGGAATCTCGTCCAATGGAGTTG -ACGGAATCTCGTCCAATGAGACTG -ACGGAATCTCGTCCAATGTCGGTA -ACGGAATCTCGTCCAATGTGCCTA -ACGGAATCTCGTCCAATGCCACTA -ACGGAATCTCGTCCAATGGGAGTA -ACGGAATCTCGTCCAATGTCGTCT -ACGGAATCTCGTCCAATGTGCACT -ACGGAATCTCGTCCAATGCTGACT -ACGGAATCTCGTCCAATGCAACCT -ACGGAATCTCGTCCAATGGCTACT -ACGGAATCTCGTCCAATGGGATCT -ACGGAATCTCGTCCAATGAAGGCT -ACGGAATCTCGTCCAATGTCAACC -ACGGAATCTCGTCCAATGTGTTCC -ACGGAATCTCGTCCAATGATTCCC -ACGGAATCTCGTCCAATGTTCTCG -ACGGAATCTCGTCCAATGTAGACG -ACGGAATCTCGTCCAATGGTAACG -ACGGAATCTCGTCCAATGACTTCG -ACGGAATCTCGTCCAATGTACGCA -ACGGAATCTCGTCCAATGCTTGCA -ACGGAATCTCGTCCAATGCGAACA -ACGGAATCTCGTCCAATGCAGTCA -ACGGAATCTCGTCCAATGGATCCA -ACGGAATCTCGTCCAATGACGACA -ACGGAATCTCGTCCAATGAGCTCA -ACGGAATCTCGTCCAATGTCACGT -ACGGAATCTCGTCCAATGCGTAGT -ACGGAATCTCGTCCAATGGTCAGT -ACGGAATCTCGTCCAATGGAAGGT -ACGGAATCTCGTCCAATGAACCGT -ACGGAATCTCGTCCAATGTTGTGC -ACGGAATCTCGTCCAATGCTAAGC -ACGGAATCTCGTCCAATGACTAGC -ACGGAATCTCGTCCAATGAGATGC -ACGGAATCTCGTCCAATGTGAAGG -ACGGAATCTCGTCCAATGCAATGG -ACGGAATCTCGTCCAATGATGAGG -ACGGAATCTCGTCCAATGAATGGG -ACGGAATCTCGTCCAATGTCCTGA -ACGGAATCTCGTCCAATGTAGCGA -ACGGAATCTCGTCCAATGCACAGA -ACGGAATCTCGTCCAATGGCAAGA -ACGGAATCTCGTCCAATGGGTTGA -ACGGAATCTCGTCCAATGTCCGAT -ACGGAATCTCGTCCAATGTGGCAT -ACGGAATCTCGTCCAATGCGAGAT -ACGGAATCTCGTCCAATGTACCAC -ACGGAATCTCGTCCAATGCAGAAC -ACGGAATCTCGTCCAATGGTCTAC -ACGGAATCTCGTCCAATGACGTAC -ACGGAATCTCGTCCAATGAGTGAC -ACGGAATCTCGTCCAATGCTGTAG -ACGGAATCTCGTCCAATGCCTAAG -ACGGAATCTCGTCCAATGGTTCAG -ACGGAATCTCGTCCAATGGCATAG -ACGGAATCTCGTCCAATGGACAAG -ACGGAATCTCGTCCAATGAAGCAG -ACGGAATCTCGTCCAATGCGTCAA -ACGGAATCTCGTCCAATGGCTGAA -ACGGAATCTCGTCCAATGAGTACG -ACGGAATCTCGTCCAATGATCCGA -ACGGAATCTCGTCCAATGATGGGA -ACGGAATCTCGTCCAATGGTGCAA -ACGGAATCTCGTCCAATGGAGGAA -ACGGAATCTCGTCCAATGCAGGTA -ACGGAATCTCGTCCAATGGACTCT -ACGGAATCTCGTCCAATGAGTCCT -ACGGAATCTCGTCCAATGTAAGCC -ACGGAATCTCGTCCAATGATAGCC -ACGGAATCTCGTCCAATGTAACCG -ACGGAATCTCGTCCAATGATGCCA -ACGGAAAGACGTAACGGAGGAAAC -ACGGAAAGACGTAACGGAAACACC -ACGGAAAGACGTAACGGAATCGAG -ACGGAAAGACGTAACGGACTCCTT -ACGGAAAGACGTAACGGACCTGTT -ACGGAAAGACGTAACGGACGGTTT -ACGGAAAGACGTAACGGAGTGGTT -ACGGAAAGACGTAACGGAGCCTTT -ACGGAAAGACGTAACGGAGGTCTT -ACGGAAAGACGTAACGGAACGCTT -ACGGAAAGACGTAACGGAAGCGTT -ACGGAAAGACGTAACGGATTCGTC -ACGGAAAGACGTAACGGATCTCTC -ACGGAAAGACGTAACGGATGGATC -ACGGAAAGACGTAACGGACACTTC -ACGGAAAGACGTAACGGAGTACTC -ACGGAAAGACGTAACGGAGATGTC -ACGGAAAGACGTAACGGAACAGTC -ACGGAAAGACGTAACGGATTGCTG -ACGGAAAGACGTAACGGATCCATG -ACGGAAAGACGTAACGGATGTGTG -ACGGAAAGACGTAACGGACTAGTG -ACGGAAAGACGTAACGGACATCTG -ACGGAAAGACGTAACGGAGAGTTG -ACGGAAAGACGTAACGGAAGACTG -ACGGAAAGACGTAACGGATCGGTA -ACGGAAAGACGTAACGGATGCCTA -ACGGAAAGACGTAACGGACCACTA -ACGGAAAGACGTAACGGAGGAGTA -ACGGAAAGACGTAACGGATCGTCT -ACGGAAAGACGTAACGGATGCACT -ACGGAAAGACGTAACGGACTGACT -ACGGAAAGACGTAACGGACAACCT -ACGGAAAGACGTAACGGAGCTACT -ACGGAAAGACGTAACGGAGGATCT -ACGGAAAGACGTAACGGAAAGGCT -ACGGAAAGACGTAACGGATCAACC -ACGGAAAGACGTAACGGATGTTCC -ACGGAAAGACGTAACGGAATTCCC -ACGGAAAGACGTAACGGATTCTCG -ACGGAAAGACGTAACGGATAGACG -ACGGAAAGACGTAACGGAGTAACG -ACGGAAAGACGTAACGGAACTTCG -ACGGAAAGACGTAACGGATACGCA -ACGGAAAGACGTAACGGACTTGCA -ACGGAAAGACGTAACGGACGAACA -ACGGAAAGACGTAACGGACAGTCA -ACGGAAAGACGTAACGGAGATCCA -ACGGAAAGACGTAACGGAACGACA -ACGGAAAGACGTAACGGAAGCTCA -ACGGAAAGACGTAACGGATCACGT -ACGGAAAGACGTAACGGACGTAGT -ACGGAAAGACGTAACGGAGTCAGT -ACGGAAAGACGTAACGGAGAAGGT -ACGGAAAGACGTAACGGAAACCGT -ACGGAAAGACGTAACGGATTGTGC -ACGGAAAGACGTAACGGACTAAGC -ACGGAAAGACGTAACGGAACTAGC -ACGGAAAGACGTAACGGAAGATGC -ACGGAAAGACGTAACGGATGAAGG -ACGGAAAGACGTAACGGACAATGG -ACGGAAAGACGTAACGGAATGAGG -ACGGAAAGACGTAACGGAAATGGG -ACGGAAAGACGTAACGGATCCTGA -ACGGAAAGACGTAACGGATAGCGA -ACGGAAAGACGTAACGGACACAGA -ACGGAAAGACGTAACGGAGCAAGA -ACGGAAAGACGTAACGGAGGTTGA -ACGGAAAGACGTAACGGATCCGAT -ACGGAAAGACGTAACGGATGGCAT -ACGGAAAGACGTAACGGACGAGAT -ACGGAAAGACGTAACGGATACCAC -ACGGAAAGACGTAACGGACAGAAC -ACGGAAAGACGTAACGGAGTCTAC -ACGGAAAGACGTAACGGAACGTAC -ACGGAAAGACGTAACGGAAGTGAC -ACGGAAAGACGTAACGGACTGTAG -ACGGAAAGACGTAACGGACCTAAG -ACGGAAAGACGTAACGGAGTTCAG -ACGGAAAGACGTAACGGAGCATAG -ACGGAAAGACGTAACGGAGACAAG -ACGGAAAGACGTAACGGAAAGCAG -ACGGAAAGACGTAACGGACGTCAA -ACGGAAAGACGTAACGGAGCTGAA -ACGGAAAGACGTAACGGAAGTACG -ACGGAAAGACGTAACGGAATCCGA -ACGGAAAGACGTAACGGAATGGGA -ACGGAAAGACGTAACGGAGTGCAA -ACGGAAAGACGTAACGGAGAGGAA -ACGGAAAGACGTAACGGACAGGTA -ACGGAAAGACGTAACGGAGACTCT -ACGGAAAGACGTAACGGAAGTCCT -ACGGAAAGACGTAACGGATAAGCC -ACGGAAAGACGTAACGGAATAGCC -ACGGAAAGACGTAACGGATAACCG -ACGGAAAGACGTAACGGAATGCCA -ACGGAAAGACGTACCAACGGAAAC -ACGGAAAGACGTACCAACAACACC -ACGGAAAGACGTACCAACATCGAG -ACGGAAAGACGTACCAACCTCCTT -ACGGAAAGACGTACCAACCCTGTT -ACGGAAAGACGTACCAACCGGTTT -ACGGAAAGACGTACCAACGTGGTT -ACGGAAAGACGTACCAACGCCTTT -ACGGAAAGACGTACCAACGGTCTT -ACGGAAAGACGTACCAACACGCTT -ACGGAAAGACGTACCAACAGCGTT -ACGGAAAGACGTACCAACTTCGTC -ACGGAAAGACGTACCAACTCTCTC -ACGGAAAGACGTACCAACTGGATC -ACGGAAAGACGTACCAACCACTTC -ACGGAAAGACGTACCAACGTACTC -ACGGAAAGACGTACCAACGATGTC -ACGGAAAGACGTACCAACACAGTC -ACGGAAAGACGTACCAACTTGCTG -ACGGAAAGACGTACCAACTCCATG -ACGGAAAGACGTACCAACTGTGTG -ACGGAAAGACGTACCAACCTAGTG -ACGGAAAGACGTACCAACCATCTG -ACGGAAAGACGTACCAACGAGTTG -ACGGAAAGACGTACCAACAGACTG -ACGGAAAGACGTACCAACTCGGTA -ACGGAAAGACGTACCAACTGCCTA -ACGGAAAGACGTACCAACCCACTA -ACGGAAAGACGTACCAACGGAGTA -ACGGAAAGACGTACCAACTCGTCT -ACGGAAAGACGTACCAACTGCACT -ACGGAAAGACGTACCAACCTGACT -ACGGAAAGACGTACCAACCAACCT -ACGGAAAGACGTACCAACGCTACT -ACGGAAAGACGTACCAACGGATCT -ACGGAAAGACGTACCAACAAGGCT -ACGGAAAGACGTACCAACTCAACC -ACGGAAAGACGTACCAACTGTTCC -ACGGAAAGACGTACCAACATTCCC -ACGGAAAGACGTACCAACTTCTCG -ACGGAAAGACGTACCAACTAGACG -ACGGAAAGACGTACCAACGTAACG -ACGGAAAGACGTACCAACACTTCG -ACGGAAAGACGTACCAACTACGCA -ACGGAAAGACGTACCAACCTTGCA -ACGGAAAGACGTACCAACCGAACA -ACGGAAAGACGTACCAACCAGTCA -ACGGAAAGACGTACCAACGATCCA -ACGGAAAGACGTACCAACACGACA -ACGGAAAGACGTACCAACAGCTCA -ACGGAAAGACGTACCAACTCACGT -ACGGAAAGACGTACCAACCGTAGT -ACGGAAAGACGTACCAACGTCAGT -ACGGAAAGACGTACCAACGAAGGT -ACGGAAAGACGTACCAACAACCGT -ACGGAAAGACGTACCAACTTGTGC -ACGGAAAGACGTACCAACCTAAGC -ACGGAAAGACGTACCAACACTAGC -ACGGAAAGACGTACCAACAGATGC -ACGGAAAGACGTACCAACTGAAGG -ACGGAAAGACGTACCAACCAATGG -ACGGAAAGACGTACCAACATGAGG -ACGGAAAGACGTACCAACAATGGG -ACGGAAAGACGTACCAACTCCTGA -ACGGAAAGACGTACCAACTAGCGA -ACGGAAAGACGTACCAACCACAGA -ACGGAAAGACGTACCAACGCAAGA -ACGGAAAGACGTACCAACGGTTGA -ACGGAAAGACGTACCAACTCCGAT -ACGGAAAGACGTACCAACTGGCAT -ACGGAAAGACGTACCAACCGAGAT -ACGGAAAGACGTACCAACTACCAC -ACGGAAAGACGTACCAACCAGAAC -ACGGAAAGACGTACCAACGTCTAC -ACGGAAAGACGTACCAACACGTAC -ACGGAAAGACGTACCAACAGTGAC -ACGGAAAGACGTACCAACCTGTAG -ACGGAAAGACGTACCAACCCTAAG -ACGGAAAGACGTACCAACGTTCAG -ACGGAAAGACGTACCAACGCATAG -ACGGAAAGACGTACCAACGACAAG -ACGGAAAGACGTACCAACAAGCAG -ACGGAAAGACGTACCAACCGTCAA -ACGGAAAGACGTACCAACGCTGAA -ACGGAAAGACGTACCAACAGTACG -ACGGAAAGACGTACCAACATCCGA -ACGGAAAGACGTACCAACATGGGA -ACGGAAAGACGTACCAACGTGCAA -ACGGAAAGACGTACCAACGAGGAA -ACGGAAAGACGTACCAACCAGGTA -ACGGAAAGACGTACCAACGACTCT -ACGGAAAGACGTACCAACAGTCCT -ACGGAAAGACGTACCAACTAAGCC -ACGGAAAGACGTACCAACATAGCC -ACGGAAAGACGTACCAACTAACCG -ACGGAAAGACGTACCAACATGCCA -ACGGAAAGACGTGAGATCGGAAAC -ACGGAAAGACGTGAGATCAACACC -ACGGAAAGACGTGAGATCATCGAG -ACGGAAAGACGTGAGATCCTCCTT -ACGGAAAGACGTGAGATCCCTGTT -ACGGAAAGACGTGAGATCCGGTTT -ACGGAAAGACGTGAGATCGTGGTT -ACGGAAAGACGTGAGATCGCCTTT -ACGGAAAGACGTGAGATCGGTCTT -ACGGAAAGACGTGAGATCACGCTT -ACGGAAAGACGTGAGATCAGCGTT -ACGGAAAGACGTGAGATCTTCGTC -ACGGAAAGACGTGAGATCTCTCTC -ACGGAAAGACGTGAGATCTGGATC -ACGGAAAGACGTGAGATCCACTTC -ACGGAAAGACGTGAGATCGTACTC -ACGGAAAGACGTGAGATCGATGTC -ACGGAAAGACGTGAGATCACAGTC -ACGGAAAGACGTGAGATCTTGCTG -ACGGAAAGACGTGAGATCTCCATG -ACGGAAAGACGTGAGATCTGTGTG -ACGGAAAGACGTGAGATCCTAGTG -ACGGAAAGACGTGAGATCCATCTG -ACGGAAAGACGTGAGATCGAGTTG -ACGGAAAGACGTGAGATCAGACTG -ACGGAAAGACGTGAGATCTCGGTA -ACGGAAAGACGTGAGATCTGCCTA -ACGGAAAGACGTGAGATCCCACTA -ACGGAAAGACGTGAGATCGGAGTA -ACGGAAAGACGTGAGATCTCGTCT -ACGGAAAGACGTGAGATCTGCACT -ACGGAAAGACGTGAGATCCTGACT -ACGGAAAGACGTGAGATCCAACCT -ACGGAAAGACGTGAGATCGCTACT -ACGGAAAGACGTGAGATCGGATCT -ACGGAAAGACGTGAGATCAAGGCT -ACGGAAAGACGTGAGATCTCAACC -ACGGAAAGACGTGAGATCTGTTCC -ACGGAAAGACGTGAGATCATTCCC -ACGGAAAGACGTGAGATCTTCTCG -ACGGAAAGACGTGAGATCTAGACG -ACGGAAAGACGTGAGATCGTAACG -ACGGAAAGACGTGAGATCACTTCG -ACGGAAAGACGTGAGATCTACGCA -ACGGAAAGACGTGAGATCCTTGCA -ACGGAAAGACGTGAGATCCGAACA -ACGGAAAGACGTGAGATCCAGTCA -ACGGAAAGACGTGAGATCGATCCA -ACGGAAAGACGTGAGATCACGACA -ACGGAAAGACGTGAGATCAGCTCA -ACGGAAAGACGTGAGATCTCACGT -ACGGAAAGACGTGAGATCCGTAGT -ACGGAAAGACGTGAGATCGTCAGT -ACGGAAAGACGTGAGATCGAAGGT -ACGGAAAGACGTGAGATCAACCGT -ACGGAAAGACGTGAGATCTTGTGC -ACGGAAAGACGTGAGATCCTAAGC -ACGGAAAGACGTGAGATCACTAGC -ACGGAAAGACGTGAGATCAGATGC -ACGGAAAGACGTGAGATCTGAAGG -ACGGAAAGACGTGAGATCCAATGG -ACGGAAAGACGTGAGATCATGAGG -ACGGAAAGACGTGAGATCAATGGG -ACGGAAAGACGTGAGATCTCCTGA -ACGGAAAGACGTGAGATCTAGCGA -ACGGAAAGACGTGAGATCCACAGA -ACGGAAAGACGTGAGATCGCAAGA -ACGGAAAGACGTGAGATCGGTTGA -ACGGAAAGACGTGAGATCTCCGAT -ACGGAAAGACGTGAGATCTGGCAT -ACGGAAAGACGTGAGATCCGAGAT -ACGGAAAGACGTGAGATCTACCAC -ACGGAAAGACGTGAGATCCAGAAC -ACGGAAAGACGTGAGATCGTCTAC -ACGGAAAGACGTGAGATCACGTAC -ACGGAAAGACGTGAGATCAGTGAC -ACGGAAAGACGTGAGATCCTGTAG -ACGGAAAGACGTGAGATCCCTAAG -ACGGAAAGACGTGAGATCGTTCAG -ACGGAAAGACGTGAGATCGCATAG -ACGGAAAGACGTGAGATCGACAAG -ACGGAAAGACGTGAGATCAAGCAG -ACGGAAAGACGTGAGATCCGTCAA -ACGGAAAGACGTGAGATCGCTGAA -ACGGAAAGACGTGAGATCAGTACG -ACGGAAAGACGTGAGATCATCCGA -ACGGAAAGACGTGAGATCATGGGA -ACGGAAAGACGTGAGATCGTGCAA -ACGGAAAGACGTGAGATCGAGGAA -ACGGAAAGACGTGAGATCCAGGTA -ACGGAAAGACGTGAGATCGACTCT -ACGGAAAGACGTGAGATCAGTCCT -ACGGAAAGACGTGAGATCTAAGCC -ACGGAAAGACGTGAGATCATAGCC -ACGGAAAGACGTGAGATCTAACCG -ACGGAAAGACGTGAGATCATGCCA -ACGGAAAGACGTCTTCTCGGAAAC -ACGGAAAGACGTCTTCTCAACACC -ACGGAAAGACGTCTTCTCATCGAG -ACGGAAAGACGTCTTCTCCTCCTT -ACGGAAAGACGTCTTCTCCCTGTT -ACGGAAAGACGTCTTCTCCGGTTT -ACGGAAAGACGTCTTCTCGTGGTT -ACGGAAAGACGTCTTCTCGCCTTT -ACGGAAAGACGTCTTCTCGGTCTT -ACGGAAAGACGTCTTCTCACGCTT -ACGGAAAGACGTCTTCTCAGCGTT -ACGGAAAGACGTCTTCTCTTCGTC -ACGGAAAGACGTCTTCTCTCTCTC -ACGGAAAGACGTCTTCTCTGGATC -ACGGAAAGACGTCTTCTCCACTTC -ACGGAAAGACGTCTTCTCGTACTC -ACGGAAAGACGTCTTCTCGATGTC -ACGGAAAGACGTCTTCTCACAGTC -ACGGAAAGACGTCTTCTCTTGCTG -ACGGAAAGACGTCTTCTCTCCATG -ACGGAAAGACGTCTTCTCTGTGTG -ACGGAAAGACGTCTTCTCCTAGTG -ACGGAAAGACGTCTTCTCCATCTG -ACGGAAAGACGTCTTCTCGAGTTG -ACGGAAAGACGTCTTCTCAGACTG -ACGGAAAGACGTCTTCTCTCGGTA -ACGGAAAGACGTCTTCTCTGCCTA -ACGGAAAGACGTCTTCTCCCACTA -ACGGAAAGACGTCTTCTCGGAGTA -ACGGAAAGACGTCTTCTCTCGTCT -ACGGAAAGACGTCTTCTCTGCACT -ACGGAAAGACGTCTTCTCCTGACT -ACGGAAAGACGTCTTCTCCAACCT -ACGGAAAGACGTCTTCTCGCTACT -ACGGAAAGACGTCTTCTCGGATCT -ACGGAAAGACGTCTTCTCAAGGCT -ACGGAAAGACGTCTTCTCTCAACC -ACGGAAAGACGTCTTCTCTGTTCC -ACGGAAAGACGTCTTCTCATTCCC -ACGGAAAGACGTCTTCTCTTCTCG -ACGGAAAGACGTCTTCTCTAGACG -ACGGAAAGACGTCTTCTCGTAACG -ACGGAAAGACGTCTTCTCACTTCG -ACGGAAAGACGTCTTCTCTACGCA -ACGGAAAGACGTCTTCTCCTTGCA -ACGGAAAGACGTCTTCTCCGAACA -ACGGAAAGACGTCTTCTCCAGTCA -ACGGAAAGACGTCTTCTCGATCCA -ACGGAAAGACGTCTTCTCACGACA -ACGGAAAGACGTCTTCTCAGCTCA -ACGGAAAGACGTCTTCTCTCACGT -ACGGAAAGACGTCTTCTCCGTAGT -ACGGAAAGACGTCTTCTCGTCAGT -ACGGAAAGACGTCTTCTCGAAGGT -ACGGAAAGACGTCTTCTCAACCGT -ACGGAAAGACGTCTTCTCTTGTGC -ACGGAAAGACGTCTTCTCCTAAGC -ACGGAAAGACGTCTTCTCACTAGC -ACGGAAAGACGTCTTCTCAGATGC -ACGGAAAGACGTCTTCTCTGAAGG -ACGGAAAGACGTCTTCTCCAATGG -ACGGAAAGACGTCTTCTCATGAGG -ACGGAAAGACGTCTTCTCAATGGG -ACGGAAAGACGTCTTCTCTCCTGA -ACGGAAAGACGTCTTCTCTAGCGA -ACGGAAAGACGTCTTCTCCACAGA -ACGGAAAGACGTCTTCTCGCAAGA -ACGGAAAGACGTCTTCTCGGTTGA -ACGGAAAGACGTCTTCTCTCCGAT -ACGGAAAGACGTCTTCTCTGGCAT -ACGGAAAGACGTCTTCTCCGAGAT -ACGGAAAGACGTCTTCTCTACCAC -ACGGAAAGACGTCTTCTCCAGAAC -ACGGAAAGACGTCTTCTCGTCTAC -ACGGAAAGACGTCTTCTCACGTAC -ACGGAAAGACGTCTTCTCAGTGAC -ACGGAAAGACGTCTTCTCCTGTAG -ACGGAAAGACGTCTTCTCCCTAAG -ACGGAAAGACGTCTTCTCGTTCAG -ACGGAAAGACGTCTTCTCGCATAG -ACGGAAAGACGTCTTCTCGACAAG -ACGGAAAGACGTCTTCTCAAGCAG -ACGGAAAGACGTCTTCTCCGTCAA -ACGGAAAGACGTCTTCTCGCTGAA -ACGGAAAGACGTCTTCTCAGTACG -ACGGAAAGACGTCTTCTCATCCGA -ACGGAAAGACGTCTTCTCATGGGA -ACGGAAAGACGTCTTCTCGTGCAA -ACGGAAAGACGTCTTCTCGAGGAA -ACGGAAAGACGTCTTCTCCAGGTA -ACGGAAAGACGTCTTCTCGACTCT -ACGGAAAGACGTCTTCTCAGTCCT -ACGGAAAGACGTCTTCTCTAAGCC -ACGGAAAGACGTCTTCTCATAGCC -ACGGAAAGACGTCTTCTCTAACCG -ACGGAAAGACGTCTTCTCATGCCA -ACGGAAAGACGTGTTCCTGGAAAC -ACGGAAAGACGTGTTCCTAACACC -ACGGAAAGACGTGTTCCTATCGAG -ACGGAAAGACGTGTTCCTCTCCTT -ACGGAAAGACGTGTTCCTCCTGTT -ACGGAAAGACGTGTTCCTCGGTTT -ACGGAAAGACGTGTTCCTGTGGTT -ACGGAAAGACGTGTTCCTGCCTTT -ACGGAAAGACGTGTTCCTGGTCTT -ACGGAAAGACGTGTTCCTACGCTT -ACGGAAAGACGTGTTCCTAGCGTT -ACGGAAAGACGTGTTCCTTTCGTC -ACGGAAAGACGTGTTCCTTCTCTC -ACGGAAAGACGTGTTCCTTGGATC -ACGGAAAGACGTGTTCCTCACTTC -ACGGAAAGACGTGTTCCTGTACTC -ACGGAAAGACGTGTTCCTGATGTC -ACGGAAAGACGTGTTCCTACAGTC -ACGGAAAGACGTGTTCCTTTGCTG -ACGGAAAGACGTGTTCCTTCCATG -ACGGAAAGACGTGTTCCTTGTGTG -ACGGAAAGACGTGTTCCTCTAGTG -ACGGAAAGACGTGTTCCTCATCTG -ACGGAAAGACGTGTTCCTGAGTTG -ACGGAAAGACGTGTTCCTAGACTG -ACGGAAAGACGTGTTCCTTCGGTA -ACGGAAAGACGTGTTCCTTGCCTA -ACGGAAAGACGTGTTCCTCCACTA -ACGGAAAGACGTGTTCCTGGAGTA -ACGGAAAGACGTGTTCCTTCGTCT -ACGGAAAGACGTGTTCCTTGCACT -ACGGAAAGACGTGTTCCTCTGACT -ACGGAAAGACGTGTTCCTCAACCT -ACGGAAAGACGTGTTCCTGCTACT -ACGGAAAGACGTGTTCCTGGATCT -ACGGAAAGACGTGTTCCTAAGGCT -ACGGAAAGACGTGTTCCTTCAACC -ACGGAAAGACGTGTTCCTTGTTCC -ACGGAAAGACGTGTTCCTATTCCC -ACGGAAAGACGTGTTCCTTTCTCG -ACGGAAAGACGTGTTCCTTAGACG -ACGGAAAGACGTGTTCCTGTAACG -ACGGAAAGACGTGTTCCTACTTCG -ACGGAAAGACGTGTTCCTTACGCA -ACGGAAAGACGTGTTCCTCTTGCA -ACGGAAAGACGTGTTCCTCGAACA -ACGGAAAGACGTGTTCCTCAGTCA -ACGGAAAGACGTGTTCCTGATCCA -ACGGAAAGACGTGTTCCTACGACA -ACGGAAAGACGTGTTCCTAGCTCA -ACGGAAAGACGTGTTCCTTCACGT -ACGGAAAGACGTGTTCCTCGTAGT -ACGGAAAGACGTGTTCCTGTCAGT -ACGGAAAGACGTGTTCCTGAAGGT -ACGGAAAGACGTGTTCCTAACCGT -ACGGAAAGACGTGTTCCTTTGTGC -ACGGAAAGACGTGTTCCTCTAAGC -ACGGAAAGACGTGTTCCTACTAGC -ACGGAAAGACGTGTTCCTAGATGC -ACGGAAAGACGTGTTCCTTGAAGG -ACGGAAAGACGTGTTCCTCAATGG -ACGGAAAGACGTGTTCCTATGAGG -ACGGAAAGACGTGTTCCTAATGGG -ACGGAAAGACGTGTTCCTTCCTGA -ACGGAAAGACGTGTTCCTTAGCGA -ACGGAAAGACGTGTTCCTCACAGA -ACGGAAAGACGTGTTCCTGCAAGA -ACGGAAAGACGTGTTCCTGGTTGA -ACGGAAAGACGTGTTCCTTCCGAT -ACGGAAAGACGTGTTCCTTGGCAT -ACGGAAAGACGTGTTCCTCGAGAT -ACGGAAAGACGTGTTCCTTACCAC -ACGGAAAGACGTGTTCCTCAGAAC -ACGGAAAGACGTGTTCCTGTCTAC -ACGGAAAGACGTGTTCCTACGTAC -ACGGAAAGACGTGTTCCTAGTGAC -ACGGAAAGACGTGTTCCTCTGTAG -ACGGAAAGACGTGTTCCTCCTAAG -ACGGAAAGACGTGTTCCTGTTCAG -ACGGAAAGACGTGTTCCTGCATAG -ACGGAAAGACGTGTTCCTGACAAG -ACGGAAAGACGTGTTCCTAAGCAG -ACGGAAAGACGTGTTCCTCGTCAA -ACGGAAAGACGTGTTCCTGCTGAA -ACGGAAAGACGTGTTCCTAGTACG -ACGGAAAGACGTGTTCCTATCCGA -ACGGAAAGACGTGTTCCTATGGGA -ACGGAAAGACGTGTTCCTGTGCAA -ACGGAAAGACGTGTTCCTGAGGAA -ACGGAAAGACGTGTTCCTCAGGTA -ACGGAAAGACGTGTTCCTGACTCT -ACGGAAAGACGTGTTCCTAGTCCT -ACGGAAAGACGTGTTCCTTAAGCC -ACGGAAAGACGTGTTCCTATAGCC -ACGGAAAGACGTGTTCCTTAACCG -ACGGAAAGACGTGTTCCTATGCCA -ACGGAAAGACGTTTTCGGGGAAAC -ACGGAAAGACGTTTTCGGAACACC -ACGGAAAGACGTTTTCGGATCGAG -ACGGAAAGACGTTTTCGGCTCCTT -ACGGAAAGACGTTTTCGGCCTGTT -ACGGAAAGACGTTTTCGGCGGTTT -ACGGAAAGACGTTTTCGGGTGGTT -ACGGAAAGACGTTTTCGGGCCTTT -ACGGAAAGACGTTTTCGGGGTCTT -ACGGAAAGACGTTTTCGGACGCTT -ACGGAAAGACGTTTTCGGAGCGTT -ACGGAAAGACGTTTTCGGTTCGTC -ACGGAAAGACGTTTTCGGTCTCTC -ACGGAAAGACGTTTTCGGTGGATC -ACGGAAAGACGTTTTCGGCACTTC -ACGGAAAGACGTTTTCGGGTACTC -ACGGAAAGACGTTTTCGGGATGTC -ACGGAAAGACGTTTTCGGACAGTC -ACGGAAAGACGTTTTCGGTTGCTG -ACGGAAAGACGTTTTCGGTCCATG -ACGGAAAGACGTTTTCGGTGTGTG -ACGGAAAGACGTTTTCGGCTAGTG -ACGGAAAGACGTTTTCGGCATCTG -ACGGAAAGACGTTTTCGGGAGTTG -ACGGAAAGACGTTTTCGGAGACTG -ACGGAAAGACGTTTTCGGTCGGTA -ACGGAAAGACGTTTTCGGTGCCTA -ACGGAAAGACGTTTTCGGCCACTA -ACGGAAAGACGTTTTCGGGGAGTA -ACGGAAAGACGTTTTCGGTCGTCT -ACGGAAAGACGTTTTCGGTGCACT -ACGGAAAGACGTTTTCGGCTGACT -ACGGAAAGACGTTTTCGGCAACCT -ACGGAAAGACGTTTTCGGGCTACT -ACGGAAAGACGTTTTCGGGGATCT -ACGGAAAGACGTTTTCGGAAGGCT -ACGGAAAGACGTTTTCGGTCAACC -ACGGAAAGACGTTTTCGGTGTTCC -ACGGAAAGACGTTTTCGGATTCCC -ACGGAAAGACGTTTTCGGTTCTCG -ACGGAAAGACGTTTTCGGTAGACG -ACGGAAAGACGTTTTCGGGTAACG -ACGGAAAGACGTTTTCGGACTTCG -ACGGAAAGACGTTTTCGGTACGCA -ACGGAAAGACGTTTTCGGCTTGCA -ACGGAAAGACGTTTTCGGCGAACA -ACGGAAAGACGTTTTCGGCAGTCA -ACGGAAAGACGTTTTCGGGATCCA -ACGGAAAGACGTTTTCGGACGACA -ACGGAAAGACGTTTTCGGAGCTCA -ACGGAAAGACGTTTTCGGTCACGT -ACGGAAAGACGTTTTCGGCGTAGT -ACGGAAAGACGTTTTCGGGTCAGT -ACGGAAAGACGTTTTCGGGAAGGT -ACGGAAAGACGTTTTCGGAACCGT -ACGGAAAGACGTTTTCGGTTGTGC -ACGGAAAGACGTTTTCGGCTAAGC -ACGGAAAGACGTTTTCGGACTAGC -ACGGAAAGACGTTTTCGGAGATGC -ACGGAAAGACGTTTTCGGTGAAGG -ACGGAAAGACGTTTTCGGCAATGG -ACGGAAAGACGTTTTCGGATGAGG -ACGGAAAGACGTTTTCGGAATGGG -ACGGAAAGACGTTTTCGGTCCTGA -ACGGAAAGACGTTTTCGGTAGCGA -ACGGAAAGACGTTTTCGGCACAGA -ACGGAAAGACGTTTTCGGGCAAGA -ACGGAAAGACGTTTTCGGGGTTGA -ACGGAAAGACGTTTTCGGTCCGAT -ACGGAAAGACGTTTTCGGTGGCAT -ACGGAAAGACGTTTTCGGCGAGAT -ACGGAAAGACGTTTTCGGTACCAC -ACGGAAAGACGTTTTCGGCAGAAC -ACGGAAAGACGTTTTCGGGTCTAC -ACGGAAAGACGTTTTCGGACGTAC -ACGGAAAGACGTTTTCGGAGTGAC -ACGGAAAGACGTTTTCGGCTGTAG -ACGGAAAGACGTTTTCGGCCTAAG -ACGGAAAGACGTTTTCGGGTTCAG -ACGGAAAGACGTTTTCGGGCATAG -ACGGAAAGACGTTTTCGGGACAAG -ACGGAAAGACGTTTTCGGAAGCAG -ACGGAAAGACGTTTTCGGCGTCAA -ACGGAAAGACGTTTTCGGGCTGAA -ACGGAAAGACGTTTTCGGAGTACG -ACGGAAAGACGTTTTCGGATCCGA -ACGGAAAGACGTTTTCGGATGGGA -ACGGAAAGACGTTTTCGGGTGCAA -ACGGAAAGACGTTTTCGGGAGGAA -ACGGAAAGACGTTTTCGGCAGGTA -ACGGAAAGACGTTTTCGGGACTCT -ACGGAAAGACGTTTTCGGAGTCCT -ACGGAAAGACGTTTTCGGTAAGCC -ACGGAAAGACGTTTTCGGATAGCC -ACGGAAAGACGTTTTCGGTAACCG -ACGGAAAGACGTTTTCGGATGCCA -ACGGAAAGACGTGTTGTGGGAAAC -ACGGAAAGACGTGTTGTGAACACC -ACGGAAAGACGTGTTGTGATCGAG -ACGGAAAGACGTGTTGTGCTCCTT -ACGGAAAGACGTGTTGTGCCTGTT -ACGGAAAGACGTGTTGTGCGGTTT -ACGGAAAGACGTGTTGTGGTGGTT -ACGGAAAGACGTGTTGTGGCCTTT -ACGGAAAGACGTGTTGTGGGTCTT -ACGGAAAGACGTGTTGTGACGCTT -ACGGAAAGACGTGTTGTGAGCGTT -ACGGAAAGACGTGTTGTGTTCGTC -ACGGAAAGACGTGTTGTGTCTCTC -ACGGAAAGACGTGTTGTGTGGATC -ACGGAAAGACGTGTTGTGCACTTC -ACGGAAAGACGTGTTGTGGTACTC -ACGGAAAGACGTGTTGTGGATGTC -ACGGAAAGACGTGTTGTGACAGTC -ACGGAAAGACGTGTTGTGTTGCTG -ACGGAAAGACGTGTTGTGTCCATG -ACGGAAAGACGTGTTGTGTGTGTG -ACGGAAAGACGTGTTGTGCTAGTG -ACGGAAAGACGTGTTGTGCATCTG -ACGGAAAGACGTGTTGTGGAGTTG -ACGGAAAGACGTGTTGTGAGACTG -ACGGAAAGACGTGTTGTGTCGGTA -ACGGAAAGACGTGTTGTGTGCCTA -ACGGAAAGACGTGTTGTGCCACTA -ACGGAAAGACGTGTTGTGGGAGTA -ACGGAAAGACGTGTTGTGTCGTCT -ACGGAAAGACGTGTTGTGTGCACT -ACGGAAAGACGTGTTGTGCTGACT -ACGGAAAGACGTGTTGTGCAACCT -ACGGAAAGACGTGTTGTGGCTACT -ACGGAAAGACGTGTTGTGGGATCT -ACGGAAAGACGTGTTGTGAAGGCT -ACGGAAAGACGTGTTGTGTCAACC -ACGGAAAGACGTGTTGTGTGTTCC -ACGGAAAGACGTGTTGTGATTCCC -ACGGAAAGACGTGTTGTGTTCTCG -ACGGAAAGACGTGTTGTGTAGACG -ACGGAAAGACGTGTTGTGGTAACG -ACGGAAAGACGTGTTGTGACTTCG -ACGGAAAGACGTGTTGTGTACGCA -ACGGAAAGACGTGTTGTGCTTGCA -ACGGAAAGACGTGTTGTGCGAACA -ACGGAAAGACGTGTTGTGCAGTCA -ACGGAAAGACGTGTTGTGGATCCA -ACGGAAAGACGTGTTGTGACGACA -ACGGAAAGACGTGTTGTGAGCTCA -ACGGAAAGACGTGTTGTGTCACGT -ACGGAAAGACGTGTTGTGCGTAGT -ACGGAAAGACGTGTTGTGGTCAGT -ACGGAAAGACGTGTTGTGGAAGGT -ACGGAAAGACGTGTTGTGAACCGT -ACGGAAAGACGTGTTGTGTTGTGC -ACGGAAAGACGTGTTGTGCTAAGC -ACGGAAAGACGTGTTGTGACTAGC -ACGGAAAGACGTGTTGTGAGATGC -ACGGAAAGACGTGTTGTGTGAAGG -ACGGAAAGACGTGTTGTGCAATGG -ACGGAAAGACGTGTTGTGATGAGG -ACGGAAAGACGTGTTGTGAATGGG -ACGGAAAGACGTGTTGTGTCCTGA -ACGGAAAGACGTGTTGTGTAGCGA -ACGGAAAGACGTGTTGTGCACAGA -ACGGAAAGACGTGTTGTGGCAAGA -ACGGAAAGACGTGTTGTGGGTTGA -ACGGAAAGACGTGTTGTGTCCGAT -ACGGAAAGACGTGTTGTGTGGCAT -ACGGAAAGACGTGTTGTGCGAGAT -ACGGAAAGACGTGTTGTGTACCAC -ACGGAAAGACGTGTTGTGCAGAAC -ACGGAAAGACGTGTTGTGGTCTAC -ACGGAAAGACGTGTTGTGACGTAC -ACGGAAAGACGTGTTGTGAGTGAC -ACGGAAAGACGTGTTGTGCTGTAG -ACGGAAAGACGTGTTGTGCCTAAG -ACGGAAAGACGTGTTGTGGTTCAG -ACGGAAAGACGTGTTGTGGCATAG -ACGGAAAGACGTGTTGTGGACAAG -ACGGAAAGACGTGTTGTGAAGCAG -ACGGAAAGACGTGTTGTGCGTCAA -ACGGAAAGACGTGTTGTGGCTGAA -ACGGAAAGACGTGTTGTGAGTACG -ACGGAAAGACGTGTTGTGATCCGA -ACGGAAAGACGTGTTGTGATGGGA -ACGGAAAGACGTGTTGTGGTGCAA -ACGGAAAGACGTGTTGTGGAGGAA -ACGGAAAGACGTGTTGTGCAGGTA -ACGGAAAGACGTGTTGTGGACTCT -ACGGAAAGACGTGTTGTGAGTCCT -ACGGAAAGACGTGTTGTGTAAGCC -ACGGAAAGACGTGTTGTGATAGCC -ACGGAAAGACGTGTTGTGTAACCG -ACGGAAAGACGTGTTGTGATGCCA -ACGGAAAGACGTTTTGCCGGAAAC -ACGGAAAGACGTTTTGCCAACACC -ACGGAAAGACGTTTTGCCATCGAG -ACGGAAAGACGTTTTGCCCTCCTT -ACGGAAAGACGTTTTGCCCCTGTT -ACGGAAAGACGTTTTGCCCGGTTT -ACGGAAAGACGTTTTGCCGTGGTT -ACGGAAAGACGTTTTGCCGCCTTT -ACGGAAAGACGTTTTGCCGGTCTT -ACGGAAAGACGTTTTGCCACGCTT -ACGGAAAGACGTTTTGCCAGCGTT -ACGGAAAGACGTTTTGCCTTCGTC -ACGGAAAGACGTTTTGCCTCTCTC -ACGGAAAGACGTTTTGCCTGGATC -ACGGAAAGACGTTTTGCCCACTTC -ACGGAAAGACGTTTTGCCGTACTC -ACGGAAAGACGTTTTGCCGATGTC -ACGGAAAGACGTTTTGCCACAGTC -ACGGAAAGACGTTTTGCCTTGCTG -ACGGAAAGACGTTTTGCCTCCATG -ACGGAAAGACGTTTTGCCTGTGTG -ACGGAAAGACGTTTTGCCCTAGTG -ACGGAAAGACGTTTTGCCCATCTG -ACGGAAAGACGTTTTGCCGAGTTG -ACGGAAAGACGTTTTGCCAGACTG -ACGGAAAGACGTTTTGCCTCGGTA -ACGGAAAGACGTTTTGCCTGCCTA -ACGGAAAGACGTTTTGCCCCACTA -ACGGAAAGACGTTTTGCCGGAGTA -ACGGAAAGACGTTTTGCCTCGTCT -ACGGAAAGACGTTTTGCCTGCACT -ACGGAAAGACGTTTTGCCCTGACT -ACGGAAAGACGTTTTGCCCAACCT -ACGGAAAGACGTTTTGCCGCTACT -ACGGAAAGACGTTTTGCCGGATCT -ACGGAAAGACGTTTTGCCAAGGCT -ACGGAAAGACGTTTTGCCTCAACC -ACGGAAAGACGTTTTGCCTGTTCC -ACGGAAAGACGTTTTGCCATTCCC -ACGGAAAGACGTTTTGCCTTCTCG -ACGGAAAGACGTTTTGCCTAGACG -ACGGAAAGACGTTTTGCCGTAACG -ACGGAAAGACGTTTTGCCACTTCG -ACGGAAAGACGTTTTGCCTACGCA -ACGGAAAGACGTTTTGCCCTTGCA -ACGGAAAGACGTTTTGCCCGAACA -ACGGAAAGACGTTTTGCCCAGTCA -ACGGAAAGACGTTTTGCCGATCCA -ACGGAAAGACGTTTTGCCACGACA -ACGGAAAGACGTTTTGCCAGCTCA -ACGGAAAGACGTTTTGCCTCACGT -ACGGAAAGACGTTTTGCCCGTAGT -ACGGAAAGACGTTTTGCCGTCAGT -ACGGAAAGACGTTTTGCCGAAGGT -ACGGAAAGACGTTTTGCCAACCGT -ACGGAAAGACGTTTTGCCTTGTGC -ACGGAAAGACGTTTTGCCCTAAGC -ACGGAAAGACGTTTTGCCACTAGC -ACGGAAAGACGTTTTGCCAGATGC -ACGGAAAGACGTTTTGCCTGAAGG -ACGGAAAGACGTTTTGCCCAATGG -ACGGAAAGACGTTTTGCCATGAGG -ACGGAAAGACGTTTTGCCAATGGG -ACGGAAAGACGTTTTGCCTCCTGA -ACGGAAAGACGTTTTGCCTAGCGA -ACGGAAAGACGTTTTGCCCACAGA -ACGGAAAGACGTTTTGCCGCAAGA -ACGGAAAGACGTTTTGCCGGTTGA -ACGGAAAGACGTTTTGCCTCCGAT -ACGGAAAGACGTTTTGCCTGGCAT -ACGGAAAGACGTTTTGCCCGAGAT -ACGGAAAGACGTTTTGCCTACCAC -ACGGAAAGACGTTTTGCCCAGAAC -ACGGAAAGACGTTTTGCCGTCTAC -ACGGAAAGACGTTTTGCCACGTAC -ACGGAAAGACGTTTTGCCAGTGAC -ACGGAAAGACGTTTTGCCCTGTAG -ACGGAAAGACGTTTTGCCCCTAAG -ACGGAAAGACGTTTTGCCGTTCAG -ACGGAAAGACGTTTTGCCGCATAG -ACGGAAAGACGTTTTGCCGACAAG -ACGGAAAGACGTTTTGCCAAGCAG -ACGGAAAGACGTTTTGCCCGTCAA -ACGGAAAGACGTTTTGCCGCTGAA -ACGGAAAGACGTTTTGCCAGTACG -ACGGAAAGACGTTTTGCCATCCGA -ACGGAAAGACGTTTTGCCATGGGA -ACGGAAAGACGTTTTGCCGTGCAA -ACGGAAAGACGTTTTGCCGAGGAA -ACGGAAAGACGTTTTGCCCAGGTA -ACGGAAAGACGTTTTGCCGACTCT -ACGGAAAGACGTTTTGCCAGTCCT -ACGGAAAGACGTTTTGCCTAAGCC -ACGGAAAGACGTTTTGCCATAGCC -ACGGAAAGACGTTTTGCCTAACCG -ACGGAAAGACGTTTTGCCATGCCA -ACGGAAAGACGTCTTGGTGGAAAC -ACGGAAAGACGTCTTGGTAACACC -ACGGAAAGACGTCTTGGTATCGAG -ACGGAAAGACGTCTTGGTCTCCTT -ACGGAAAGACGTCTTGGTCCTGTT -ACGGAAAGACGTCTTGGTCGGTTT -ACGGAAAGACGTCTTGGTGTGGTT -ACGGAAAGACGTCTTGGTGCCTTT -ACGGAAAGACGTCTTGGTGGTCTT -ACGGAAAGACGTCTTGGTACGCTT -ACGGAAAGACGTCTTGGTAGCGTT -ACGGAAAGACGTCTTGGTTTCGTC -ACGGAAAGACGTCTTGGTTCTCTC -ACGGAAAGACGTCTTGGTTGGATC -ACGGAAAGACGTCTTGGTCACTTC -ACGGAAAGACGTCTTGGTGTACTC -ACGGAAAGACGTCTTGGTGATGTC -ACGGAAAGACGTCTTGGTACAGTC -ACGGAAAGACGTCTTGGTTTGCTG -ACGGAAAGACGTCTTGGTTCCATG -ACGGAAAGACGTCTTGGTTGTGTG -ACGGAAAGACGTCTTGGTCTAGTG -ACGGAAAGACGTCTTGGTCATCTG -ACGGAAAGACGTCTTGGTGAGTTG -ACGGAAAGACGTCTTGGTAGACTG -ACGGAAAGACGTCTTGGTTCGGTA -ACGGAAAGACGTCTTGGTTGCCTA -ACGGAAAGACGTCTTGGTCCACTA -ACGGAAAGACGTCTTGGTGGAGTA -ACGGAAAGACGTCTTGGTTCGTCT -ACGGAAAGACGTCTTGGTTGCACT -ACGGAAAGACGTCTTGGTCTGACT -ACGGAAAGACGTCTTGGTCAACCT -ACGGAAAGACGTCTTGGTGCTACT -ACGGAAAGACGTCTTGGTGGATCT -ACGGAAAGACGTCTTGGTAAGGCT -ACGGAAAGACGTCTTGGTTCAACC -ACGGAAAGACGTCTTGGTTGTTCC -ACGGAAAGACGTCTTGGTATTCCC -ACGGAAAGACGTCTTGGTTTCTCG -ACGGAAAGACGTCTTGGTTAGACG -ACGGAAAGACGTCTTGGTGTAACG -ACGGAAAGACGTCTTGGTACTTCG -ACGGAAAGACGTCTTGGTTACGCA -ACGGAAAGACGTCTTGGTCTTGCA -ACGGAAAGACGTCTTGGTCGAACA -ACGGAAAGACGTCTTGGTCAGTCA -ACGGAAAGACGTCTTGGTGATCCA -ACGGAAAGACGTCTTGGTACGACA -ACGGAAAGACGTCTTGGTAGCTCA -ACGGAAAGACGTCTTGGTTCACGT -ACGGAAAGACGTCTTGGTCGTAGT -ACGGAAAGACGTCTTGGTGTCAGT -ACGGAAAGACGTCTTGGTGAAGGT -ACGGAAAGACGTCTTGGTAACCGT -ACGGAAAGACGTCTTGGTTTGTGC -ACGGAAAGACGTCTTGGTCTAAGC -ACGGAAAGACGTCTTGGTACTAGC -ACGGAAAGACGTCTTGGTAGATGC -ACGGAAAGACGTCTTGGTTGAAGG -ACGGAAAGACGTCTTGGTCAATGG -ACGGAAAGACGTCTTGGTATGAGG -ACGGAAAGACGTCTTGGTAATGGG -ACGGAAAGACGTCTTGGTTCCTGA -ACGGAAAGACGTCTTGGTTAGCGA -ACGGAAAGACGTCTTGGTCACAGA -ACGGAAAGACGTCTTGGTGCAAGA -ACGGAAAGACGTCTTGGTGGTTGA -ACGGAAAGACGTCTTGGTTCCGAT -ACGGAAAGACGTCTTGGTTGGCAT -ACGGAAAGACGTCTTGGTCGAGAT -ACGGAAAGACGTCTTGGTTACCAC -ACGGAAAGACGTCTTGGTCAGAAC -ACGGAAAGACGTCTTGGTGTCTAC -ACGGAAAGACGTCTTGGTACGTAC -ACGGAAAGACGTCTTGGTAGTGAC -ACGGAAAGACGTCTTGGTCTGTAG -ACGGAAAGACGTCTTGGTCCTAAG -ACGGAAAGACGTCTTGGTGTTCAG -ACGGAAAGACGTCTTGGTGCATAG -ACGGAAAGACGTCTTGGTGACAAG -ACGGAAAGACGTCTTGGTAAGCAG -ACGGAAAGACGTCTTGGTCGTCAA -ACGGAAAGACGTCTTGGTGCTGAA -ACGGAAAGACGTCTTGGTAGTACG -ACGGAAAGACGTCTTGGTATCCGA -ACGGAAAGACGTCTTGGTATGGGA -ACGGAAAGACGTCTTGGTGTGCAA -ACGGAAAGACGTCTTGGTGAGGAA -ACGGAAAGACGTCTTGGTCAGGTA -ACGGAAAGACGTCTTGGTGACTCT -ACGGAAAGACGTCTTGGTAGTCCT -ACGGAAAGACGTCTTGGTTAAGCC -ACGGAAAGACGTCTTGGTATAGCC -ACGGAAAGACGTCTTGGTTAACCG -ACGGAAAGACGTCTTGGTATGCCA -ACGGAAAGACGTCTTACGGGAAAC -ACGGAAAGACGTCTTACGAACACC -ACGGAAAGACGTCTTACGATCGAG -ACGGAAAGACGTCTTACGCTCCTT -ACGGAAAGACGTCTTACGCCTGTT -ACGGAAAGACGTCTTACGCGGTTT -ACGGAAAGACGTCTTACGGTGGTT -ACGGAAAGACGTCTTACGGCCTTT -ACGGAAAGACGTCTTACGGGTCTT -ACGGAAAGACGTCTTACGACGCTT -ACGGAAAGACGTCTTACGAGCGTT -ACGGAAAGACGTCTTACGTTCGTC -ACGGAAAGACGTCTTACGTCTCTC -ACGGAAAGACGTCTTACGTGGATC -ACGGAAAGACGTCTTACGCACTTC -ACGGAAAGACGTCTTACGGTACTC -ACGGAAAGACGTCTTACGGATGTC -ACGGAAAGACGTCTTACGACAGTC -ACGGAAAGACGTCTTACGTTGCTG -ACGGAAAGACGTCTTACGTCCATG -ACGGAAAGACGTCTTACGTGTGTG -ACGGAAAGACGTCTTACGCTAGTG -ACGGAAAGACGTCTTACGCATCTG -ACGGAAAGACGTCTTACGGAGTTG -ACGGAAAGACGTCTTACGAGACTG -ACGGAAAGACGTCTTACGTCGGTA -ACGGAAAGACGTCTTACGTGCCTA -ACGGAAAGACGTCTTACGCCACTA -ACGGAAAGACGTCTTACGGGAGTA -ACGGAAAGACGTCTTACGTCGTCT -ACGGAAAGACGTCTTACGTGCACT -ACGGAAAGACGTCTTACGCTGACT -ACGGAAAGACGTCTTACGCAACCT -ACGGAAAGACGTCTTACGGCTACT -ACGGAAAGACGTCTTACGGGATCT -ACGGAAAGACGTCTTACGAAGGCT -ACGGAAAGACGTCTTACGTCAACC -ACGGAAAGACGTCTTACGTGTTCC -ACGGAAAGACGTCTTACGATTCCC -ACGGAAAGACGTCTTACGTTCTCG -ACGGAAAGACGTCTTACGTAGACG -ACGGAAAGACGTCTTACGGTAACG -ACGGAAAGACGTCTTACGACTTCG -ACGGAAAGACGTCTTACGTACGCA -ACGGAAAGACGTCTTACGCTTGCA -ACGGAAAGACGTCTTACGCGAACA -ACGGAAAGACGTCTTACGCAGTCA -ACGGAAAGACGTCTTACGGATCCA -ACGGAAAGACGTCTTACGACGACA -ACGGAAAGACGTCTTACGAGCTCA -ACGGAAAGACGTCTTACGTCACGT -ACGGAAAGACGTCTTACGCGTAGT -ACGGAAAGACGTCTTACGGTCAGT -ACGGAAAGACGTCTTACGGAAGGT -ACGGAAAGACGTCTTACGAACCGT -ACGGAAAGACGTCTTACGTTGTGC -ACGGAAAGACGTCTTACGCTAAGC -ACGGAAAGACGTCTTACGACTAGC -ACGGAAAGACGTCTTACGAGATGC -ACGGAAAGACGTCTTACGTGAAGG -ACGGAAAGACGTCTTACGCAATGG -ACGGAAAGACGTCTTACGATGAGG -ACGGAAAGACGTCTTACGAATGGG -ACGGAAAGACGTCTTACGTCCTGA -ACGGAAAGACGTCTTACGTAGCGA -ACGGAAAGACGTCTTACGCACAGA -ACGGAAAGACGTCTTACGGCAAGA -ACGGAAAGACGTCTTACGGGTTGA -ACGGAAAGACGTCTTACGTCCGAT -ACGGAAAGACGTCTTACGTGGCAT -ACGGAAAGACGTCTTACGCGAGAT -ACGGAAAGACGTCTTACGTACCAC -ACGGAAAGACGTCTTACGCAGAAC -ACGGAAAGACGTCTTACGGTCTAC -ACGGAAAGACGTCTTACGACGTAC -ACGGAAAGACGTCTTACGAGTGAC -ACGGAAAGACGTCTTACGCTGTAG -ACGGAAAGACGTCTTACGCCTAAG -ACGGAAAGACGTCTTACGGTTCAG -ACGGAAAGACGTCTTACGGCATAG -ACGGAAAGACGTCTTACGGACAAG -ACGGAAAGACGTCTTACGAAGCAG -ACGGAAAGACGTCTTACGCGTCAA -ACGGAAAGACGTCTTACGGCTGAA -ACGGAAAGACGTCTTACGAGTACG -ACGGAAAGACGTCTTACGATCCGA -ACGGAAAGACGTCTTACGATGGGA -ACGGAAAGACGTCTTACGGTGCAA -ACGGAAAGACGTCTTACGGAGGAA -ACGGAAAGACGTCTTACGCAGGTA -ACGGAAAGACGTCTTACGGACTCT -ACGGAAAGACGTCTTACGAGTCCT -ACGGAAAGACGTCTTACGTAAGCC -ACGGAAAGACGTCTTACGATAGCC -ACGGAAAGACGTCTTACGTAACCG -ACGGAAAGACGTCTTACGATGCCA -ACGGAAAGACGTGTTAGCGGAAAC -ACGGAAAGACGTGTTAGCAACACC -ACGGAAAGACGTGTTAGCATCGAG -ACGGAAAGACGTGTTAGCCTCCTT -ACGGAAAGACGTGTTAGCCCTGTT -ACGGAAAGACGTGTTAGCCGGTTT -ACGGAAAGACGTGTTAGCGTGGTT -ACGGAAAGACGTGTTAGCGCCTTT -ACGGAAAGACGTGTTAGCGGTCTT -ACGGAAAGACGTGTTAGCACGCTT -ACGGAAAGACGTGTTAGCAGCGTT -ACGGAAAGACGTGTTAGCTTCGTC -ACGGAAAGACGTGTTAGCTCTCTC -ACGGAAAGACGTGTTAGCTGGATC -ACGGAAAGACGTGTTAGCCACTTC -ACGGAAAGACGTGTTAGCGTACTC -ACGGAAAGACGTGTTAGCGATGTC -ACGGAAAGACGTGTTAGCACAGTC -ACGGAAAGACGTGTTAGCTTGCTG -ACGGAAAGACGTGTTAGCTCCATG -ACGGAAAGACGTGTTAGCTGTGTG -ACGGAAAGACGTGTTAGCCTAGTG -ACGGAAAGACGTGTTAGCCATCTG -ACGGAAAGACGTGTTAGCGAGTTG -ACGGAAAGACGTGTTAGCAGACTG -ACGGAAAGACGTGTTAGCTCGGTA -ACGGAAAGACGTGTTAGCTGCCTA -ACGGAAAGACGTGTTAGCCCACTA -ACGGAAAGACGTGTTAGCGGAGTA -ACGGAAAGACGTGTTAGCTCGTCT -ACGGAAAGACGTGTTAGCTGCACT -ACGGAAAGACGTGTTAGCCTGACT -ACGGAAAGACGTGTTAGCCAACCT -ACGGAAAGACGTGTTAGCGCTACT -ACGGAAAGACGTGTTAGCGGATCT -ACGGAAAGACGTGTTAGCAAGGCT -ACGGAAAGACGTGTTAGCTCAACC -ACGGAAAGACGTGTTAGCTGTTCC -ACGGAAAGACGTGTTAGCATTCCC -ACGGAAAGACGTGTTAGCTTCTCG -ACGGAAAGACGTGTTAGCTAGACG -ACGGAAAGACGTGTTAGCGTAACG -ACGGAAAGACGTGTTAGCACTTCG -ACGGAAAGACGTGTTAGCTACGCA -ACGGAAAGACGTGTTAGCCTTGCA -ACGGAAAGACGTGTTAGCCGAACA -ACGGAAAGACGTGTTAGCCAGTCA -ACGGAAAGACGTGTTAGCGATCCA -ACGGAAAGACGTGTTAGCACGACA -ACGGAAAGACGTGTTAGCAGCTCA -ACGGAAAGACGTGTTAGCTCACGT -ACGGAAAGACGTGTTAGCCGTAGT -ACGGAAAGACGTGTTAGCGTCAGT -ACGGAAAGACGTGTTAGCGAAGGT -ACGGAAAGACGTGTTAGCAACCGT -ACGGAAAGACGTGTTAGCTTGTGC -ACGGAAAGACGTGTTAGCCTAAGC -ACGGAAAGACGTGTTAGCACTAGC -ACGGAAAGACGTGTTAGCAGATGC -ACGGAAAGACGTGTTAGCTGAAGG -ACGGAAAGACGTGTTAGCCAATGG -ACGGAAAGACGTGTTAGCATGAGG -ACGGAAAGACGTGTTAGCAATGGG -ACGGAAAGACGTGTTAGCTCCTGA -ACGGAAAGACGTGTTAGCTAGCGA -ACGGAAAGACGTGTTAGCCACAGA -ACGGAAAGACGTGTTAGCGCAAGA -ACGGAAAGACGTGTTAGCGGTTGA -ACGGAAAGACGTGTTAGCTCCGAT -ACGGAAAGACGTGTTAGCTGGCAT -ACGGAAAGACGTGTTAGCCGAGAT -ACGGAAAGACGTGTTAGCTACCAC -ACGGAAAGACGTGTTAGCCAGAAC -ACGGAAAGACGTGTTAGCGTCTAC -ACGGAAAGACGTGTTAGCACGTAC -ACGGAAAGACGTGTTAGCAGTGAC -ACGGAAAGACGTGTTAGCCTGTAG -ACGGAAAGACGTGTTAGCCCTAAG -ACGGAAAGACGTGTTAGCGTTCAG -ACGGAAAGACGTGTTAGCGCATAG -ACGGAAAGACGTGTTAGCGACAAG -ACGGAAAGACGTGTTAGCAAGCAG -ACGGAAAGACGTGTTAGCCGTCAA -ACGGAAAGACGTGTTAGCGCTGAA -ACGGAAAGACGTGTTAGCAGTACG -ACGGAAAGACGTGTTAGCATCCGA -ACGGAAAGACGTGTTAGCATGGGA -ACGGAAAGACGTGTTAGCGTGCAA -ACGGAAAGACGTGTTAGCGAGGAA -ACGGAAAGACGTGTTAGCCAGGTA -ACGGAAAGACGTGTTAGCGACTCT -ACGGAAAGACGTGTTAGCAGTCCT -ACGGAAAGACGTGTTAGCTAAGCC -ACGGAAAGACGTGTTAGCATAGCC -ACGGAAAGACGTGTTAGCTAACCG -ACGGAAAGACGTGTTAGCATGCCA -ACGGAAAGACGTGTCTTCGGAAAC -ACGGAAAGACGTGTCTTCAACACC -ACGGAAAGACGTGTCTTCATCGAG -ACGGAAAGACGTGTCTTCCTCCTT -ACGGAAAGACGTGTCTTCCCTGTT -ACGGAAAGACGTGTCTTCCGGTTT -ACGGAAAGACGTGTCTTCGTGGTT -ACGGAAAGACGTGTCTTCGCCTTT -ACGGAAAGACGTGTCTTCGGTCTT -ACGGAAAGACGTGTCTTCACGCTT -ACGGAAAGACGTGTCTTCAGCGTT -ACGGAAAGACGTGTCTTCTTCGTC -ACGGAAAGACGTGTCTTCTCTCTC -ACGGAAAGACGTGTCTTCTGGATC -ACGGAAAGACGTGTCTTCCACTTC -ACGGAAAGACGTGTCTTCGTACTC -ACGGAAAGACGTGTCTTCGATGTC -ACGGAAAGACGTGTCTTCACAGTC -ACGGAAAGACGTGTCTTCTTGCTG -ACGGAAAGACGTGTCTTCTCCATG -ACGGAAAGACGTGTCTTCTGTGTG -ACGGAAAGACGTGTCTTCCTAGTG -ACGGAAAGACGTGTCTTCCATCTG -ACGGAAAGACGTGTCTTCGAGTTG -ACGGAAAGACGTGTCTTCAGACTG -ACGGAAAGACGTGTCTTCTCGGTA -ACGGAAAGACGTGTCTTCTGCCTA -ACGGAAAGACGTGTCTTCCCACTA -ACGGAAAGACGTGTCTTCGGAGTA -ACGGAAAGACGTGTCTTCTCGTCT -ACGGAAAGACGTGTCTTCTGCACT -ACGGAAAGACGTGTCTTCCTGACT -ACGGAAAGACGTGTCTTCCAACCT -ACGGAAAGACGTGTCTTCGCTACT -ACGGAAAGACGTGTCTTCGGATCT -ACGGAAAGACGTGTCTTCAAGGCT -ACGGAAAGACGTGTCTTCTCAACC -ACGGAAAGACGTGTCTTCTGTTCC -ACGGAAAGACGTGTCTTCATTCCC -ACGGAAAGACGTGTCTTCTTCTCG -ACGGAAAGACGTGTCTTCTAGACG -ACGGAAAGACGTGTCTTCGTAACG -ACGGAAAGACGTGTCTTCACTTCG -ACGGAAAGACGTGTCTTCTACGCA -ACGGAAAGACGTGTCTTCCTTGCA -ACGGAAAGACGTGTCTTCCGAACA -ACGGAAAGACGTGTCTTCCAGTCA -ACGGAAAGACGTGTCTTCGATCCA -ACGGAAAGACGTGTCTTCACGACA -ACGGAAAGACGTGTCTTCAGCTCA -ACGGAAAGACGTGTCTTCTCACGT -ACGGAAAGACGTGTCTTCCGTAGT -ACGGAAAGACGTGTCTTCGTCAGT -ACGGAAAGACGTGTCTTCGAAGGT -ACGGAAAGACGTGTCTTCAACCGT -ACGGAAAGACGTGTCTTCTTGTGC -ACGGAAAGACGTGTCTTCCTAAGC -ACGGAAAGACGTGTCTTCACTAGC -ACGGAAAGACGTGTCTTCAGATGC -ACGGAAAGACGTGTCTTCTGAAGG -ACGGAAAGACGTGTCTTCCAATGG -ACGGAAAGACGTGTCTTCATGAGG -ACGGAAAGACGTGTCTTCAATGGG -ACGGAAAGACGTGTCTTCTCCTGA -ACGGAAAGACGTGTCTTCTAGCGA -ACGGAAAGACGTGTCTTCCACAGA -ACGGAAAGACGTGTCTTCGCAAGA -ACGGAAAGACGTGTCTTCGGTTGA -ACGGAAAGACGTGTCTTCTCCGAT -ACGGAAAGACGTGTCTTCTGGCAT -ACGGAAAGACGTGTCTTCCGAGAT -ACGGAAAGACGTGTCTTCTACCAC -ACGGAAAGACGTGTCTTCCAGAAC -ACGGAAAGACGTGTCTTCGTCTAC -ACGGAAAGACGTGTCTTCACGTAC -ACGGAAAGACGTGTCTTCAGTGAC -ACGGAAAGACGTGTCTTCCTGTAG -ACGGAAAGACGTGTCTTCCCTAAG -ACGGAAAGACGTGTCTTCGTTCAG -ACGGAAAGACGTGTCTTCGCATAG -ACGGAAAGACGTGTCTTCGACAAG -ACGGAAAGACGTGTCTTCAAGCAG -ACGGAAAGACGTGTCTTCCGTCAA -ACGGAAAGACGTGTCTTCGCTGAA -ACGGAAAGACGTGTCTTCAGTACG -ACGGAAAGACGTGTCTTCATCCGA -ACGGAAAGACGTGTCTTCATGGGA -ACGGAAAGACGTGTCTTCGTGCAA -ACGGAAAGACGTGTCTTCGAGGAA -ACGGAAAGACGTGTCTTCCAGGTA -ACGGAAAGACGTGTCTTCGACTCT -ACGGAAAGACGTGTCTTCAGTCCT -ACGGAAAGACGTGTCTTCTAAGCC -ACGGAAAGACGTGTCTTCATAGCC -ACGGAAAGACGTGTCTTCTAACCG -ACGGAAAGACGTGTCTTCATGCCA -ACGGAAAGACGTCTCTCTGGAAAC -ACGGAAAGACGTCTCTCTAACACC -ACGGAAAGACGTCTCTCTATCGAG -ACGGAAAGACGTCTCTCTCTCCTT -ACGGAAAGACGTCTCTCTCCTGTT -ACGGAAAGACGTCTCTCTCGGTTT -ACGGAAAGACGTCTCTCTGTGGTT -ACGGAAAGACGTCTCTCTGCCTTT -ACGGAAAGACGTCTCTCTGGTCTT -ACGGAAAGACGTCTCTCTACGCTT -ACGGAAAGACGTCTCTCTAGCGTT -ACGGAAAGACGTCTCTCTTTCGTC -ACGGAAAGACGTCTCTCTTCTCTC -ACGGAAAGACGTCTCTCTTGGATC -ACGGAAAGACGTCTCTCTCACTTC -ACGGAAAGACGTCTCTCTGTACTC -ACGGAAAGACGTCTCTCTGATGTC -ACGGAAAGACGTCTCTCTACAGTC -ACGGAAAGACGTCTCTCTTTGCTG -ACGGAAAGACGTCTCTCTTCCATG -ACGGAAAGACGTCTCTCTTGTGTG -ACGGAAAGACGTCTCTCTCTAGTG -ACGGAAAGACGTCTCTCTCATCTG -ACGGAAAGACGTCTCTCTGAGTTG -ACGGAAAGACGTCTCTCTAGACTG -ACGGAAAGACGTCTCTCTTCGGTA -ACGGAAAGACGTCTCTCTTGCCTA -ACGGAAAGACGTCTCTCTCCACTA -ACGGAAAGACGTCTCTCTGGAGTA -ACGGAAAGACGTCTCTCTTCGTCT -ACGGAAAGACGTCTCTCTTGCACT -ACGGAAAGACGTCTCTCTCTGACT -ACGGAAAGACGTCTCTCTCAACCT -ACGGAAAGACGTCTCTCTGCTACT -ACGGAAAGACGTCTCTCTGGATCT -ACGGAAAGACGTCTCTCTAAGGCT -ACGGAAAGACGTCTCTCTTCAACC -ACGGAAAGACGTCTCTCTTGTTCC -ACGGAAAGACGTCTCTCTATTCCC -ACGGAAAGACGTCTCTCTTTCTCG -ACGGAAAGACGTCTCTCTTAGACG -ACGGAAAGACGTCTCTCTGTAACG -ACGGAAAGACGTCTCTCTACTTCG -ACGGAAAGACGTCTCTCTTACGCA -ACGGAAAGACGTCTCTCTCTTGCA -ACGGAAAGACGTCTCTCTCGAACA -ACGGAAAGACGTCTCTCTCAGTCA -ACGGAAAGACGTCTCTCTGATCCA -ACGGAAAGACGTCTCTCTACGACA -ACGGAAAGACGTCTCTCTAGCTCA -ACGGAAAGACGTCTCTCTTCACGT -ACGGAAAGACGTCTCTCTCGTAGT -ACGGAAAGACGTCTCTCTGTCAGT -ACGGAAAGACGTCTCTCTGAAGGT -ACGGAAAGACGTCTCTCTAACCGT -ACGGAAAGACGTCTCTCTTTGTGC -ACGGAAAGACGTCTCTCTCTAAGC -ACGGAAAGACGTCTCTCTACTAGC -ACGGAAAGACGTCTCTCTAGATGC -ACGGAAAGACGTCTCTCTTGAAGG -ACGGAAAGACGTCTCTCTCAATGG -ACGGAAAGACGTCTCTCTATGAGG -ACGGAAAGACGTCTCTCTAATGGG -ACGGAAAGACGTCTCTCTTCCTGA -ACGGAAAGACGTCTCTCTTAGCGA -ACGGAAAGACGTCTCTCTCACAGA -ACGGAAAGACGTCTCTCTGCAAGA -ACGGAAAGACGTCTCTCTGGTTGA -ACGGAAAGACGTCTCTCTTCCGAT -ACGGAAAGACGTCTCTCTTGGCAT -ACGGAAAGACGTCTCTCTCGAGAT -ACGGAAAGACGTCTCTCTTACCAC -ACGGAAAGACGTCTCTCTCAGAAC -ACGGAAAGACGTCTCTCTGTCTAC -ACGGAAAGACGTCTCTCTACGTAC -ACGGAAAGACGTCTCTCTAGTGAC -ACGGAAAGACGTCTCTCTCTGTAG -ACGGAAAGACGTCTCTCTCCTAAG -ACGGAAAGACGTCTCTCTGTTCAG -ACGGAAAGACGTCTCTCTGCATAG -ACGGAAAGACGTCTCTCTGACAAG -ACGGAAAGACGTCTCTCTAAGCAG -ACGGAAAGACGTCTCTCTCGTCAA -ACGGAAAGACGTCTCTCTGCTGAA -ACGGAAAGACGTCTCTCTAGTACG -ACGGAAAGACGTCTCTCTATCCGA -ACGGAAAGACGTCTCTCTATGGGA -ACGGAAAGACGTCTCTCTGTGCAA -ACGGAAAGACGTCTCTCTGAGGAA -ACGGAAAGACGTCTCTCTCAGGTA -ACGGAAAGACGTCTCTCTGACTCT -ACGGAAAGACGTCTCTCTAGTCCT -ACGGAAAGACGTCTCTCTTAAGCC -ACGGAAAGACGTCTCTCTATAGCC -ACGGAAAGACGTCTCTCTTAACCG -ACGGAAAGACGTCTCTCTATGCCA -ACGGAAAGACGTATCTGGGGAAAC -ACGGAAAGACGTATCTGGAACACC -ACGGAAAGACGTATCTGGATCGAG -ACGGAAAGACGTATCTGGCTCCTT -ACGGAAAGACGTATCTGGCCTGTT -ACGGAAAGACGTATCTGGCGGTTT -ACGGAAAGACGTATCTGGGTGGTT -ACGGAAAGACGTATCTGGGCCTTT -ACGGAAAGACGTATCTGGGGTCTT -ACGGAAAGACGTATCTGGACGCTT -ACGGAAAGACGTATCTGGAGCGTT -ACGGAAAGACGTATCTGGTTCGTC -ACGGAAAGACGTATCTGGTCTCTC -ACGGAAAGACGTATCTGGTGGATC -ACGGAAAGACGTATCTGGCACTTC -ACGGAAAGACGTATCTGGGTACTC -ACGGAAAGACGTATCTGGGATGTC -ACGGAAAGACGTATCTGGACAGTC -ACGGAAAGACGTATCTGGTTGCTG -ACGGAAAGACGTATCTGGTCCATG -ACGGAAAGACGTATCTGGTGTGTG -ACGGAAAGACGTATCTGGCTAGTG -ACGGAAAGACGTATCTGGCATCTG -ACGGAAAGACGTATCTGGGAGTTG -ACGGAAAGACGTATCTGGAGACTG -ACGGAAAGACGTATCTGGTCGGTA -ACGGAAAGACGTATCTGGTGCCTA -ACGGAAAGACGTATCTGGCCACTA -ACGGAAAGACGTATCTGGGGAGTA -ACGGAAAGACGTATCTGGTCGTCT -ACGGAAAGACGTATCTGGTGCACT -ACGGAAAGACGTATCTGGCTGACT -ACGGAAAGACGTATCTGGCAACCT -ACGGAAAGACGTATCTGGGCTACT -ACGGAAAGACGTATCTGGGGATCT -ACGGAAAGACGTATCTGGAAGGCT -ACGGAAAGACGTATCTGGTCAACC -ACGGAAAGACGTATCTGGTGTTCC -ACGGAAAGACGTATCTGGATTCCC -ACGGAAAGACGTATCTGGTTCTCG -ACGGAAAGACGTATCTGGTAGACG -ACGGAAAGACGTATCTGGGTAACG -ACGGAAAGACGTATCTGGACTTCG -ACGGAAAGACGTATCTGGTACGCA -ACGGAAAGACGTATCTGGCTTGCA -ACGGAAAGACGTATCTGGCGAACA -ACGGAAAGACGTATCTGGCAGTCA -ACGGAAAGACGTATCTGGGATCCA -ACGGAAAGACGTATCTGGACGACA -ACGGAAAGACGTATCTGGAGCTCA -ACGGAAAGACGTATCTGGTCACGT -ACGGAAAGACGTATCTGGCGTAGT -ACGGAAAGACGTATCTGGGTCAGT -ACGGAAAGACGTATCTGGGAAGGT -ACGGAAAGACGTATCTGGAACCGT -ACGGAAAGACGTATCTGGTTGTGC -ACGGAAAGACGTATCTGGCTAAGC -ACGGAAAGACGTATCTGGACTAGC -ACGGAAAGACGTATCTGGAGATGC -ACGGAAAGACGTATCTGGTGAAGG -ACGGAAAGACGTATCTGGCAATGG -ACGGAAAGACGTATCTGGATGAGG -ACGGAAAGACGTATCTGGAATGGG -ACGGAAAGACGTATCTGGTCCTGA -ACGGAAAGACGTATCTGGTAGCGA -ACGGAAAGACGTATCTGGCACAGA -ACGGAAAGACGTATCTGGGCAAGA -ACGGAAAGACGTATCTGGGGTTGA -ACGGAAAGACGTATCTGGTCCGAT -ACGGAAAGACGTATCTGGTGGCAT -ACGGAAAGACGTATCTGGCGAGAT -ACGGAAAGACGTATCTGGTACCAC -ACGGAAAGACGTATCTGGCAGAAC -ACGGAAAGACGTATCTGGGTCTAC -ACGGAAAGACGTATCTGGACGTAC -ACGGAAAGACGTATCTGGAGTGAC -ACGGAAAGACGTATCTGGCTGTAG -ACGGAAAGACGTATCTGGCCTAAG -ACGGAAAGACGTATCTGGGTTCAG -ACGGAAAGACGTATCTGGGCATAG -ACGGAAAGACGTATCTGGGACAAG -ACGGAAAGACGTATCTGGAAGCAG -ACGGAAAGACGTATCTGGCGTCAA -ACGGAAAGACGTATCTGGGCTGAA -ACGGAAAGACGTATCTGGAGTACG -ACGGAAAGACGTATCTGGATCCGA -ACGGAAAGACGTATCTGGATGGGA -ACGGAAAGACGTATCTGGGTGCAA -ACGGAAAGACGTATCTGGGAGGAA -ACGGAAAGACGTATCTGGCAGGTA -ACGGAAAGACGTATCTGGGACTCT -ACGGAAAGACGTATCTGGAGTCCT -ACGGAAAGACGTATCTGGTAAGCC -ACGGAAAGACGTATCTGGATAGCC -ACGGAAAGACGTATCTGGTAACCG -ACGGAAAGACGTATCTGGATGCCA -ACGGAAAGACGTTTCCACGGAAAC -ACGGAAAGACGTTTCCACAACACC -ACGGAAAGACGTTTCCACATCGAG -ACGGAAAGACGTTTCCACCTCCTT -ACGGAAAGACGTTTCCACCCTGTT -ACGGAAAGACGTTTCCACCGGTTT -ACGGAAAGACGTTTCCACGTGGTT -ACGGAAAGACGTTTCCACGCCTTT -ACGGAAAGACGTTTCCACGGTCTT -ACGGAAAGACGTTTCCACACGCTT -ACGGAAAGACGTTTCCACAGCGTT -ACGGAAAGACGTTTCCACTTCGTC -ACGGAAAGACGTTTCCACTCTCTC -ACGGAAAGACGTTTCCACTGGATC -ACGGAAAGACGTTTCCACCACTTC -ACGGAAAGACGTTTCCACGTACTC -ACGGAAAGACGTTTCCACGATGTC -ACGGAAAGACGTTTCCACACAGTC -ACGGAAAGACGTTTCCACTTGCTG -ACGGAAAGACGTTTCCACTCCATG -ACGGAAAGACGTTTCCACTGTGTG -ACGGAAAGACGTTTCCACCTAGTG -ACGGAAAGACGTTTCCACCATCTG -ACGGAAAGACGTTTCCACGAGTTG -ACGGAAAGACGTTTCCACAGACTG -ACGGAAAGACGTTTCCACTCGGTA -ACGGAAAGACGTTTCCACTGCCTA -ACGGAAAGACGTTTCCACCCACTA -ACGGAAAGACGTTTCCACGGAGTA -ACGGAAAGACGTTTCCACTCGTCT -ACGGAAAGACGTTTCCACTGCACT -ACGGAAAGACGTTTCCACCTGACT -ACGGAAAGACGTTTCCACCAACCT -ACGGAAAGACGTTTCCACGCTACT -ACGGAAAGACGTTTCCACGGATCT -ACGGAAAGACGTTTCCACAAGGCT -ACGGAAAGACGTTTCCACTCAACC -ACGGAAAGACGTTTCCACTGTTCC -ACGGAAAGACGTTTCCACATTCCC -ACGGAAAGACGTTTCCACTTCTCG -ACGGAAAGACGTTTCCACTAGACG -ACGGAAAGACGTTTCCACGTAACG -ACGGAAAGACGTTTCCACACTTCG -ACGGAAAGACGTTTCCACTACGCA -ACGGAAAGACGTTTCCACCTTGCA -ACGGAAAGACGTTTCCACCGAACA -ACGGAAAGACGTTTCCACCAGTCA -ACGGAAAGACGTTTCCACGATCCA -ACGGAAAGACGTTTCCACACGACA -ACGGAAAGACGTTTCCACAGCTCA -ACGGAAAGACGTTTCCACTCACGT -ACGGAAAGACGTTTCCACCGTAGT -ACGGAAAGACGTTTCCACGTCAGT -ACGGAAAGACGTTTCCACGAAGGT -ACGGAAAGACGTTTCCACAACCGT -ACGGAAAGACGTTTCCACTTGTGC -ACGGAAAGACGTTTCCACCTAAGC -ACGGAAAGACGTTTCCACACTAGC -ACGGAAAGACGTTTCCACAGATGC -ACGGAAAGACGTTTCCACTGAAGG -ACGGAAAGACGTTTCCACCAATGG -ACGGAAAGACGTTTCCACATGAGG -ACGGAAAGACGTTTCCACAATGGG -ACGGAAAGACGTTTCCACTCCTGA -ACGGAAAGACGTTTCCACTAGCGA -ACGGAAAGACGTTTCCACCACAGA -ACGGAAAGACGTTTCCACGCAAGA -ACGGAAAGACGTTTCCACGGTTGA -ACGGAAAGACGTTTCCACTCCGAT -ACGGAAAGACGTTTCCACTGGCAT -ACGGAAAGACGTTTCCACCGAGAT -ACGGAAAGACGTTTCCACTACCAC -ACGGAAAGACGTTTCCACCAGAAC -ACGGAAAGACGTTTCCACGTCTAC -ACGGAAAGACGTTTCCACACGTAC -ACGGAAAGACGTTTCCACAGTGAC -ACGGAAAGACGTTTCCACCTGTAG -ACGGAAAGACGTTTCCACCCTAAG -ACGGAAAGACGTTTCCACGTTCAG -ACGGAAAGACGTTTCCACGCATAG -ACGGAAAGACGTTTCCACGACAAG -ACGGAAAGACGTTTCCACAAGCAG -ACGGAAAGACGTTTCCACCGTCAA -ACGGAAAGACGTTTCCACGCTGAA -ACGGAAAGACGTTTCCACAGTACG -ACGGAAAGACGTTTCCACATCCGA -ACGGAAAGACGTTTCCACATGGGA -ACGGAAAGACGTTTCCACGTGCAA -ACGGAAAGACGTTTCCACGAGGAA -ACGGAAAGACGTTTCCACCAGGTA -ACGGAAAGACGTTTCCACGACTCT -ACGGAAAGACGTTTCCACAGTCCT -ACGGAAAGACGTTTCCACTAAGCC -ACGGAAAGACGTTTCCACATAGCC -ACGGAAAGACGTTTCCACTAACCG -ACGGAAAGACGTTTCCACATGCCA -ACGGAAAGACGTCTCGTAGGAAAC -ACGGAAAGACGTCTCGTAAACACC -ACGGAAAGACGTCTCGTAATCGAG -ACGGAAAGACGTCTCGTACTCCTT -ACGGAAAGACGTCTCGTACCTGTT -ACGGAAAGACGTCTCGTACGGTTT -ACGGAAAGACGTCTCGTAGTGGTT -ACGGAAAGACGTCTCGTAGCCTTT -ACGGAAAGACGTCTCGTAGGTCTT -ACGGAAAGACGTCTCGTAACGCTT -ACGGAAAGACGTCTCGTAAGCGTT -ACGGAAAGACGTCTCGTATTCGTC -ACGGAAAGACGTCTCGTATCTCTC -ACGGAAAGACGTCTCGTATGGATC -ACGGAAAGACGTCTCGTACACTTC -ACGGAAAGACGTCTCGTAGTACTC -ACGGAAAGACGTCTCGTAGATGTC -ACGGAAAGACGTCTCGTAACAGTC -ACGGAAAGACGTCTCGTATTGCTG -ACGGAAAGACGTCTCGTATCCATG -ACGGAAAGACGTCTCGTATGTGTG -ACGGAAAGACGTCTCGTACTAGTG -ACGGAAAGACGTCTCGTACATCTG -ACGGAAAGACGTCTCGTAGAGTTG -ACGGAAAGACGTCTCGTAAGACTG -ACGGAAAGACGTCTCGTATCGGTA -ACGGAAAGACGTCTCGTATGCCTA -ACGGAAAGACGTCTCGTACCACTA -ACGGAAAGACGTCTCGTAGGAGTA -ACGGAAAGACGTCTCGTATCGTCT -ACGGAAAGACGTCTCGTATGCACT -ACGGAAAGACGTCTCGTACTGACT -ACGGAAAGACGTCTCGTACAACCT -ACGGAAAGACGTCTCGTAGCTACT -ACGGAAAGACGTCTCGTAGGATCT -ACGGAAAGACGTCTCGTAAAGGCT -ACGGAAAGACGTCTCGTATCAACC -ACGGAAAGACGTCTCGTATGTTCC -ACGGAAAGACGTCTCGTAATTCCC -ACGGAAAGACGTCTCGTATTCTCG -ACGGAAAGACGTCTCGTATAGACG -ACGGAAAGACGTCTCGTAGTAACG -ACGGAAAGACGTCTCGTAACTTCG -ACGGAAAGACGTCTCGTATACGCA -ACGGAAAGACGTCTCGTACTTGCA -ACGGAAAGACGTCTCGTACGAACA -ACGGAAAGACGTCTCGTACAGTCA -ACGGAAAGACGTCTCGTAGATCCA -ACGGAAAGACGTCTCGTAACGACA -ACGGAAAGACGTCTCGTAAGCTCA -ACGGAAAGACGTCTCGTATCACGT -ACGGAAAGACGTCTCGTACGTAGT -ACGGAAAGACGTCTCGTAGTCAGT -ACGGAAAGACGTCTCGTAGAAGGT -ACGGAAAGACGTCTCGTAAACCGT -ACGGAAAGACGTCTCGTATTGTGC -ACGGAAAGACGTCTCGTACTAAGC -ACGGAAAGACGTCTCGTAACTAGC -ACGGAAAGACGTCTCGTAAGATGC -ACGGAAAGACGTCTCGTATGAAGG -ACGGAAAGACGTCTCGTACAATGG -ACGGAAAGACGTCTCGTAATGAGG -ACGGAAAGACGTCTCGTAAATGGG -ACGGAAAGACGTCTCGTATCCTGA -ACGGAAAGACGTCTCGTATAGCGA -ACGGAAAGACGTCTCGTACACAGA -ACGGAAAGACGTCTCGTAGCAAGA -ACGGAAAGACGTCTCGTAGGTTGA -ACGGAAAGACGTCTCGTATCCGAT -ACGGAAAGACGTCTCGTATGGCAT -ACGGAAAGACGTCTCGTACGAGAT -ACGGAAAGACGTCTCGTATACCAC -ACGGAAAGACGTCTCGTACAGAAC -ACGGAAAGACGTCTCGTAGTCTAC -ACGGAAAGACGTCTCGTAACGTAC -ACGGAAAGACGTCTCGTAAGTGAC -ACGGAAAGACGTCTCGTACTGTAG -ACGGAAAGACGTCTCGTACCTAAG -ACGGAAAGACGTCTCGTAGTTCAG -ACGGAAAGACGTCTCGTAGCATAG -ACGGAAAGACGTCTCGTAGACAAG -ACGGAAAGACGTCTCGTAAAGCAG -ACGGAAAGACGTCTCGTACGTCAA -ACGGAAAGACGTCTCGTAGCTGAA -ACGGAAAGACGTCTCGTAAGTACG -ACGGAAAGACGTCTCGTAATCCGA -ACGGAAAGACGTCTCGTAATGGGA -ACGGAAAGACGTCTCGTAGTGCAA -ACGGAAAGACGTCTCGTAGAGGAA -ACGGAAAGACGTCTCGTACAGGTA -ACGGAAAGACGTCTCGTAGACTCT -ACGGAAAGACGTCTCGTAAGTCCT -ACGGAAAGACGTCTCGTATAAGCC -ACGGAAAGACGTCTCGTAATAGCC -ACGGAAAGACGTCTCGTATAACCG -ACGGAAAGACGTCTCGTAATGCCA -ACGGAAAGACGTGTCGATGGAAAC -ACGGAAAGACGTGTCGATAACACC -ACGGAAAGACGTGTCGATATCGAG -ACGGAAAGACGTGTCGATCTCCTT -ACGGAAAGACGTGTCGATCCTGTT -ACGGAAAGACGTGTCGATCGGTTT -ACGGAAAGACGTGTCGATGTGGTT -ACGGAAAGACGTGTCGATGCCTTT -ACGGAAAGACGTGTCGATGGTCTT -ACGGAAAGACGTGTCGATACGCTT -ACGGAAAGACGTGTCGATAGCGTT -ACGGAAAGACGTGTCGATTTCGTC -ACGGAAAGACGTGTCGATTCTCTC -ACGGAAAGACGTGTCGATTGGATC -ACGGAAAGACGTGTCGATCACTTC -ACGGAAAGACGTGTCGATGTACTC -ACGGAAAGACGTGTCGATGATGTC -ACGGAAAGACGTGTCGATACAGTC -ACGGAAAGACGTGTCGATTTGCTG -ACGGAAAGACGTGTCGATTCCATG -ACGGAAAGACGTGTCGATTGTGTG -ACGGAAAGACGTGTCGATCTAGTG -ACGGAAAGACGTGTCGATCATCTG -ACGGAAAGACGTGTCGATGAGTTG -ACGGAAAGACGTGTCGATAGACTG -ACGGAAAGACGTGTCGATTCGGTA -ACGGAAAGACGTGTCGATTGCCTA -ACGGAAAGACGTGTCGATCCACTA -ACGGAAAGACGTGTCGATGGAGTA -ACGGAAAGACGTGTCGATTCGTCT -ACGGAAAGACGTGTCGATTGCACT -ACGGAAAGACGTGTCGATCTGACT -ACGGAAAGACGTGTCGATCAACCT -ACGGAAAGACGTGTCGATGCTACT -ACGGAAAGACGTGTCGATGGATCT -ACGGAAAGACGTGTCGATAAGGCT -ACGGAAAGACGTGTCGATTCAACC -ACGGAAAGACGTGTCGATTGTTCC -ACGGAAAGACGTGTCGATATTCCC -ACGGAAAGACGTGTCGATTTCTCG -ACGGAAAGACGTGTCGATTAGACG -ACGGAAAGACGTGTCGATGTAACG -ACGGAAAGACGTGTCGATACTTCG -ACGGAAAGACGTGTCGATTACGCA -ACGGAAAGACGTGTCGATCTTGCA -ACGGAAAGACGTGTCGATCGAACA -ACGGAAAGACGTGTCGATCAGTCA -ACGGAAAGACGTGTCGATGATCCA -ACGGAAAGACGTGTCGATACGACA -ACGGAAAGACGTGTCGATAGCTCA -ACGGAAAGACGTGTCGATTCACGT -ACGGAAAGACGTGTCGATCGTAGT -ACGGAAAGACGTGTCGATGTCAGT -ACGGAAAGACGTGTCGATGAAGGT -ACGGAAAGACGTGTCGATAACCGT -ACGGAAAGACGTGTCGATTTGTGC -ACGGAAAGACGTGTCGATCTAAGC -ACGGAAAGACGTGTCGATACTAGC -ACGGAAAGACGTGTCGATAGATGC -ACGGAAAGACGTGTCGATTGAAGG -ACGGAAAGACGTGTCGATCAATGG -ACGGAAAGACGTGTCGATATGAGG -ACGGAAAGACGTGTCGATAATGGG -ACGGAAAGACGTGTCGATTCCTGA -ACGGAAAGACGTGTCGATTAGCGA -ACGGAAAGACGTGTCGATCACAGA -ACGGAAAGACGTGTCGATGCAAGA -ACGGAAAGACGTGTCGATGGTTGA -ACGGAAAGACGTGTCGATTCCGAT -ACGGAAAGACGTGTCGATTGGCAT -ACGGAAAGACGTGTCGATCGAGAT -ACGGAAAGACGTGTCGATTACCAC -ACGGAAAGACGTGTCGATCAGAAC -ACGGAAAGACGTGTCGATGTCTAC -ACGGAAAGACGTGTCGATACGTAC -ACGGAAAGACGTGTCGATAGTGAC -ACGGAAAGACGTGTCGATCTGTAG -ACGGAAAGACGTGTCGATCCTAAG -ACGGAAAGACGTGTCGATGTTCAG -ACGGAAAGACGTGTCGATGCATAG -ACGGAAAGACGTGTCGATGACAAG -ACGGAAAGACGTGTCGATAAGCAG -ACGGAAAGACGTGTCGATCGTCAA -ACGGAAAGACGTGTCGATGCTGAA -ACGGAAAGACGTGTCGATAGTACG -ACGGAAAGACGTGTCGATATCCGA -ACGGAAAGACGTGTCGATATGGGA -ACGGAAAGACGTGTCGATGTGCAA -ACGGAAAGACGTGTCGATGAGGAA -ACGGAAAGACGTGTCGATCAGGTA -ACGGAAAGACGTGTCGATGACTCT -ACGGAAAGACGTGTCGATAGTCCT -ACGGAAAGACGTGTCGATTAAGCC -ACGGAAAGACGTGTCGATATAGCC -ACGGAAAGACGTGTCGATTAACCG -ACGGAAAGACGTGTCGATATGCCA -ACGGAAAGACGTGTCACAGGAAAC -ACGGAAAGACGTGTCACAAACACC -ACGGAAAGACGTGTCACAATCGAG -ACGGAAAGACGTGTCACACTCCTT -ACGGAAAGACGTGTCACACCTGTT -ACGGAAAGACGTGTCACACGGTTT -ACGGAAAGACGTGTCACAGTGGTT -ACGGAAAGACGTGTCACAGCCTTT -ACGGAAAGACGTGTCACAGGTCTT -ACGGAAAGACGTGTCACAACGCTT -ACGGAAAGACGTGTCACAAGCGTT -ACGGAAAGACGTGTCACATTCGTC -ACGGAAAGACGTGTCACATCTCTC -ACGGAAAGACGTGTCACATGGATC -ACGGAAAGACGTGTCACACACTTC -ACGGAAAGACGTGTCACAGTACTC -ACGGAAAGACGTGTCACAGATGTC -ACGGAAAGACGTGTCACAACAGTC -ACGGAAAGACGTGTCACATTGCTG -ACGGAAAGACGTGTCACATCCATG -ACGGAAAGACGTGTCACATGTGTG -ACGGAAAGACGTGTCACACTAGTG -ACGGAAAGACGTGTCACACATCTG -ACGGAAAGACGTGTCACAGAGTTG -ACGGAAAGACGTGTCACAAGACTG -ACGGAAAGACGTGTCACATCGGTA -ACGGAAAGACGTGTCACATGCCTA -ACGGAAAGACGTGTCACACCACTA -ACGGAAAGACGTGTCACAGGAGTA -ACGGAAAGACGTGTCACATCGTCT -ACGGAAAGACGTGTCACATGCACT -ACGGAAAGACGTGTCACACTGACT -ACGGAAAGACGTGTCACACAACCT -ACGGAAAGACGTGTCACAGCTACT -ACGGAAAGACGTGTCACAGGATCT -ACGGAAAGACGTGTCACAAAGGCT -ACGGAAAGACGTGTCACATCAACC -ACGGAAAGACGTGTCACATGTTCC -ACGGAAAGACGTGTCACAATTCCC -ACGGAAAGACGTGTCACATTCTCG -ACGGAAAGACGTGTCACATAGACG -ACGGAAAGACGTGTCACAGTAACG -ACGGAAAGACGTGTCACAACTTCG -ACGGAAAGACGTGTCACATACGCA -ACGGAAAGACGTGTCACACTTGCA -ACGGAAAGACGTGTCACACGAACA -ACGGAAAGACGTGTCACACAGTCA -ACGGAAAGACGTGTCACAGATCCA -ACGGAAAGACGTGTCACAACGACA -ACGGAAAGACGTGTCACAAGCTCA -ACGGAAAGACGTGTCACATCACGT -ACGGAAAGACGTGTCACACGTAGT -ACGGAAAGACGTGTCACAGTCAGT -ACGGAAAGACGTGTCACAGAAGGT -ACGGAAAGACGTGTCACAAACCGT -ACGGAAAGACGTGTCACATTGTGC -ACGGAAAGACGTGTCACACTAAGC -ACGGAAAGACGTGTCACAACTAGC -ACGGAAAGACGTGTCACAAGATGC -ACGGAAAGACGTGTCACATGAAGG -ACGGAAAGACGTGTCACACAATGG -ACGGAAAGACGTGTCACAATGAGG -ACGGAAAGACGTGTCACAAATGGG -ACGGAAAGACGTGTCACATCCTGA -ACGGAAAGACGTGTCACATAGCGA -ACGGAAAGACGTGTCACACACAGA -ACGGAAAGACGTGTCACAGCAAGA -ACGGAAAGACGTGTCACAGGTTGA -ACGGAAAGACGTGTCACATCCGAT -ACGGAAAGACGTGTCACATGGCAT -ACGGAAAGACGTGTCACACGAGAT -ACGGAAAGACGTGTCACATACCAC -ACGGAAAGACGTGTCACACAGAAC -ACGGAAAGACGTGTCACAGTCTAC -ACGGAAAGACGTGTCACAACGTAC -ACGGAAAGACGTGTCACAAGTGAC -ACGGAAAGACGTGTCACACTGTAG -ACGGAAAGACGTGTCACACCTAAG -ACGGAAAGACGTGTCACAGTTCAG -ACGGAAAGACGTGTCACAGCATAG -ACGGAAAGACGTGTCACAGACAAG -ACGGAAAGACGTGTCACAAAGCAG -ACGGAAAGACGTGTCACACGTCAA -ACGGAAAGACGTGTCACAGCTGAA -ACGGAAAGACGTGTCACAAGTACG -ACGGAAAGACGTGTCACAATCCGA -ACGGAAAGACGTGTCACAATGGGA -ACGGAAAGACGTGTCACAGTGCAA -ACGGAAAGACGTGTCACAGAGGAA -ACGGAAAGACGTGTCACACAGGTA -ACGGAAAGACGTGTCACAGACTCT -ACGGAAAGACGTGTCACAAGTCCT -ACGGAAAGACGTGTCACATAAGCC -ACGGAAAGACGTGTCACAATAGCC -ACGGAAAGACGTGTCACATAACCG -ACGGAAAGACGTGTCACAATGCCA -ACGGAAAGACGTCTGTTGGGAAAC -ACGGAAAGACGTCTGTTGAACACC -ACGGAAAGACGTCTGTTGATCGAG -ACGGAAAGACGTCTGTTGCTCCTT -ACGGAAAGACGTCTGTTGCCTGTT -ACGGAAAGACGTCTGTTGCGGTTT -ACGGAAAGACGTCTGTTGGTGGTT -ACGGAAAGACGTCTGTTGGCCTTT -ACGGAAAGACGTCTGTTGGGTCTT -ACGGAAAGACGTCTGTTGACGCTT -ACGGAAAGACGTCTGTTGAGCGTT -ACGGAAAGACGTCTGTTGTTCGTC -ACGGAAAGACGTCTGTTGTCTCTC -ACGGAAAGACGTCTGTTGTGGATC -ACGGAAAGACGTCTGTTGCACTTC -ACGGAAAGACGTCTGTTGGTACTC -ACGGAAAGACGTCTGTTGGATGTC -ACGGAAAGACGTCTGTTGACAGTC -ACGGAAAGACGTCTGTTGTTGCTG -ACGGAAAGACGTCTGTTGTCCATG -ACGGAAAGACGTCTGTTGTGTGTG -ACGGAAAGACGTCTGTTGCTAGTG -ACGGAAAGACGTCTGTTGCATCTG -ACGGAAAGACGTCTGTTGGAGTTG -ACGGAAAGACGTCTGTTGAGACTG -ACGGAAAGACGTCTGTTGTCGGTA -ACGGAAAGACGTCTGTTGTGCCTA -ACGGAAAGACGTCTGTTGCCACTA -ACGGAAAGACGTCTGTTGGGAGTA -ACGGAAAGACGTCTGTTGTCGTCT -ACGGAAAGACGTCTGTTGTGCACT -ACGGAAAGACGTCTGTTGCTGACT -ACGGAAAGACGTCTGTTGCAACCT -ACGGAAAGACGTCTGTTGGCTACT -ACGGAAAGACGTCTGTTGGGATCT -ACGGAAAGACGTCTGTTGAAGGCT -ACGGAAAGACGTCTGTTGTCAACC -ACGGAAAGACGTCTGTTGTGTTCC -ACGGAAAGACGTCTGTTGATTCCC -ACGGAAAGACGTCTGTTGTTCTCG -ACGGAAAGACGTCTGTTGTAGACG -ACGGAAAGACGTCTGTTGGTAACG -ACGGAAAGACGTCTGTTGACTTCG -ACGGAAAGACGTCTGTTGTACGCA -ACGGAAAGACGTCTGTTGCTTGCA -ACGGAAAGACGTCTGTTGCGAACA -ACGGAAAGACGTCTGTTGCAGTCA -ACGGAAAGACGTCTGTTGGATCCA -ACGGAAAGACGTCTGTTGACGACA -ACGGAAAGACGTCTGTTGAGCTCA -ACGGAAAGACGTCTGTTGTCACGT -ACGGAAAGACGTCTGTTGCGTAGT -ACGGAAAGACGTCTGTTGGTCAGT -ACGGAAAGACGTCTGTTGGAAGGT -ACGGAAAGACGTCTGTTGAACCGT -ACGGAAAGACGTCTGTTGTTGTGC -ACGGAAAGACGTCTGTTGCTAAGC -ACGGAAAGACGTCTGTTGACTAGC -ACGGAAAGACGTCTGTTGAGATGC -ACGGAAAGACGTCTGTTGTGAAGG -ACGGAAAGACGTCTGTTGCAATGG -ACGGAAAGACGTCTGTTGATGAGG -ACGGAAAGACGTCTGTTGAATGGG -ACGGAAAGACGTCTGTTGTCCTGA -ACGGAAAGACGTCTGTTGTAGCGA -ACGGAAAGACGTCTGTTGCACAGA -ACGGAAAGACGTCTGTTGGCAAGA -ACGGAAAGACGTCTGTTGGGTTGA -ACGGAAAGACGTCTGTTGTCCGAT -ACGGAAAGACGTCTGTTGTGGCAT -ACGGAAAGACGTCTGTTGCGAGAT -ACGGAAAGACGTCTGTTGTACCAC -ACGGAAAGACGTCTGTTGCAGAAC -ACGGAAAGACGTCTGTTGGTCTAC -ACGGAAAGACGTCTGTTGACGTAC -ACGGAAAGACGTCTGTTGAGTGAC -ACGGAAAGACGTCTGTTGCTGTAG -ACGGAAAGACGTCTGTTGCCTAAG -ACGGAAAGACGTCTGTTGGTTCAG -ACGGAAAGACGTCTGTTGGCATAG -ACGGAAAGACGTCTGTTGGACAAG -ACGGAAAGACGTCTGTTGAAGCAG -ACGGAAAGACGTCTGTTGCGTCAA -ACGGAAAGACGTCTGTTGGCTGAA -ACGGAAAGACGTCTGTTGAGTACG -ACGGAAAGACGTCTGTTGATCCGA -ACGGAAAGACGTCTGTTGATGGGA -ACGGAAAGACGTCTGTTGGTGCAA -ACGGAAAGACGTCTGTTGGAGGAA -ACGGAAAGACGTCTGTTGCAGGTA -ACGGAAAGACGTCTGTTGGACTCT -ACGGAAAGACGTCTGTTGAGTCCT -ACGGAAAGACGTCTGTTGTAAGCC -ACGGAAAGACGTCTGTTGATAGCC -ACGGAAAGACGTCTGTTGTAACCG -ACGGAAAGACGTCTGTTGATGCCA -ACGGAAAGACGTATGTCCGGAAAC -ACGGAAAGACGTATGTCCAACACC -ACGGAAAGACGTATGTCCATCGAG -ACGGAAAGACGTATGTCCCTCCTT -ACGGAAAGACGTATGTCCCCTGTT -ACGGAAAGACGTATGTCCCGGTTT -ACGGAAAGACGTATGTCCGTGGTT -ACGGAAAGACGTATGTCCGCCTTT -ACGGAAAGACGTATGTCCGGTCTT -ACGGAAAGACGTATGTCCACGCTT -ACGGAAAGACGTATGTCCAGCGTT -ACGGAAAGACGTATGTCCTTCGTC -ACGGAAAGACGTATGTCCTCTCTC -ACGGAAAGACGTATGTCCTGGATC -ACGGAAAGACGTATGTCCCACTTC -ACGGAAAGACGTATGTCCGTACTC -ACGGAAAGACGTATGTCCGATGTC -ACGGAAAGACGTATGTCCACAGTC -ACGGAAAGACGTATGTCCTTGCTG -ACGGAAAGACGTATGTCCTCCATG -ACGGAAAGACGTATGTCCTGTGTG -ACGGAAAGACGTATGTCCCTAGTG -ACGGAAAGACGTATGTCCCATCTG -ACGGAAAGACGTATGTCCGAGTTG -ACGGAAAGACGTATGTCCAGACTG -ACGGAAAGACGTATGTCCTCGGTA -ACGGAAAGACGTATGTCCTGCCTA -ACGGAAAGACGTATGTCCCCACTA -ACGGAAAGACGTATGTCCGGAGTA -ACGGAAAGACGTATGTCCTCGTCT -ACGGAAAGACGTATGTCCTGCACT -ACGGAAAGACGTATGTCCCTGACT -ACGGAAAGACGTATGTCCCAACCT -ACGGAAAGACGTATGTCCGCTACT -ACGGAAAGACGTATGTCCGGATCT -ACGGAAAGACGTATGTCCAAGGCT -ACGGAAAGACGTATGTCCTCAACC -ACGGAAAGACGTATGTCCTGTTCC -ACGGAAAGACGTATGTCCATTCCC -ACGGAAAGACGTATGTCCTTCTCG -ACGGAAAGACGTATGTCCTAGACG -ACGGAAAGACGTATGTCCGTAACG -ACGGAAAGACGTATGTCCACTTCG -ACGGAAAGACGTATGTCCTACGCA -ACGGAAAGACGTATGTCCCTTGCA -ACGGAAAGACGTATGTCCCGAACA -ACGGAAAGACGTATGTCCCAGTCA -ACGGAAAGACGTATGTCCGATCCA -ACGGAAAGACGTATGTCCACGACA -ACGGAAAGACGTATGTCCAGCTCA -ACGGAAAGACGTATGTCCTCACGT -ACGGAAAGACGTATGTCCCGTAGT -ACGGAAAGACGTATGTCCGTCAGT -ACGGAAAGACGTATGTCCGAAGGT -ACGGAAAGACGTATGTCCAACCGT -ACGGAAAGACGTATGTCCTTGTGC -ACGGAAAGACGTATGTCCCTAAGC -ACGGAAAGACGTATGTCCACTAGC -ACGGAAAGACGTATGTCCAGATGC -ACGGAAAGACGTATGTCCTGAAGG -ACGGAAAGACGTATGTCCCAATGG -ACGGAAAGACGTATGTCCATGAGG -ACGGAAAGACGTATGTCCAATGGG -ACGGAAAGACGTATGTCCTCCTGA -ACGGAAAGACGTATGTCCTAGCGA -ACGGAAAGACGTATGTCCCACAGA -ACGGAAAGACGTATGTCCGCAAGA -ACGGAAAGACGTATGTCCGGTTGA -ACGGAAAGACGTATGTCCTCCGAT -ACGGAAAGACGTATGTCCTGGCAT -ACGGAAAGACGTATGTCCCGAGAT -ACGGAAAGACGTATGTCCTACCAC -ACGGAAAGACGTATGTCCCAGAAC -ACGGAAAGACGTATGTCCGTCTAC -ACGGAAAGACGTATGTCCACGTAC -ACGGAAAGACGTATGTCCAGTGAC -ACGGAAAGACGTATGTCCCTGTAG -ACGGAAAGACGTATGTCCCCTAAG -ACGGAAAGACGTATGTCCGTTCAG -ACGGAAAGACGTATGTCCGCATAG -ACGGAAAGACGTATGTCCGACAAG -ACGGAAAGACGTATGTCCAAGCAG -ACGGAAAGACGTATGTCCCGTCAA -ACGGAAAGACGTATGTCCGCTGAA -ACGGAAAGACGTATGTCCAGTACG -ACGGAAAGACGTATGTCCATCCGA -ACGGAAAGACGTATGTCCATGGGA -ACGGAAAGACGTATGTCCGTGCAA -ACGGAAAGACGTATGTCCGAGGAA -ACGGAAAGACGTATGTCCCAGGTA -ACGGAAAGACGTATGTCCGACTCT -ACGGAAAGACGTATGTCCAGTCCT -ACGGAAAGACGTATGTCCTAAGCC -ACGGAAAGACGTATGTCCATAGCC -ACGGAAAGACGTATGTCCTAACCG -ACGGAAAGACGTATGTCCATGCCA -ACGGAAAGACGTGTGTGTGGAAAC -ACGGAAAGACGTGTGTGTAACACC -ACGGAAAGACGTGTGTGTATCGAG -ACGGAAAGACGTGTGTGTCTCCTT -ACGGAAAGACGTGTGTGTCCTGTT -ACGGAAAGACGTGTGTGTCGGTTT -ACGGAAAGACGTGTGTGTGTGGTT -ACGGAAAGACGTGTGTGTGCCTTT -ACGGAAAGACGTGTGTGTGGTCTT -ACGGAAAGACGTGTGTGTACGCTT -ACGGAAAGACGTGTGTGTAGCGTT -ACGGAAAGACGTGTGTGTTTCGTC -ACGGAAAGACGTGTGTGTTCTCTC -ACGGAAAGACGTGTGTGTTGGATC -ACGGAAAGACGTGTGTGTCACTTC -ACGGAAAGACGTGTGTGTGTACTC -ACGGAAAGACGTGTGTGTGATGTC -ACGGAAAGACGTGTGTGTACAGTC -ACGGAAAGACGTGTGTGTTTGCTG -ACGGAAAGACGTGTGTGTTCCATG -ACGGAAAGACGTGTGTGTTGTGTG -ACGGAAAGACGTGTGTGTCTAGTG -ACGGAAAGACGTGTGTGTCATCTG -ACGGAAAGACGTGTGTGTGAGTTG -ACGGAAAGACGTGTGTGTAGACTG -ACGGAAAGACGTGTGTGTTCGGTA -ACGGAAAGACGTGTGTGTTGCCTA -ACGGAAAGACGTGTGTGTCCACTA -ACGGAAAGACGTGTGTGTGGAGTA -ACGGAAAGACGTGTGTGTTCGTCT -ACGGAAAGACGTGTGTGTTGCACT -ACGGAAAGACGTGTGTGTCTGACT -ACGGAAAGACGTGTGTGTCAACCT -ACGGAAAGACGTGTGTGTGCTACT -ACGGAAAGACGTGTGTGTGGATCT -ACGGAAAGACGTGTGTGTAAGGCT -ACGGAAAGACGTGTGTGTTCAACC -ACGGAAAGACGTGTGTGTTGTTCC -ACGGAAAGACGTGTGTGTATTCCC -ACGGAAAGACGTGTGTGTTTCTCG -ACGGAAAGACGTGTGTGTTAGACG -ACGGAAAGACGTGTGTGTGTAACG -ACGGAAAGACGTGTGTGTACTTCG -ACGGAAAGACGTGTGTGTTACGCA -ACGGAAAGACGTGTGTGTCTTGCA -ACGGAAAGACGTGTGTGTCGAACA -ACGGAAAGACGTGTGTGTCAGTCA -ACGGAAAGACGTGTGTGTGATCCA -ACGGAAAGACGTGTGTGTACGACA -ACGGAAAGACGTGTGTGTAGCTCA -ACGGAAAGACGTGTGTGTTCACGT -ACGGAAAGACGTGTGTGTCGTAGT -ACGGAAAGACGTGTGTGTGTCAGT -ACGGAAAGACGTGTGTGTGAAGGT -ACGGAAAGACGTGTGTGTAACCGT -ACGGAAAGACGTGTGTGTTTGTGC -ACGGAAAGACGTGTGTGTCTAAGC -ACGGAAAGACGTGTGTGTACTAGC -ACGGAAAGACGTGTGTGTAGATGC -ACGGAAAGACGTGTGTGTTGAAGG -ACGGAAAGACGTGTGTGTCAATGG -ACGGAAAGACGTGTGTGTATGAGG -ACGGAAAGACGTGTGTGTAATGGG -ACGGAAAGACGTGTGTGTTCCTGA -ACGGAAAGACGTGTGTGTTAGCGA -ACGGAAAGACGTGTGTGTCACAGA -ACGGAAAGACGTGTGTGTGCAAGA -ACGGAAAGACGTGTGTGTGGTTGA -ACGGAAAGACGTGTGTGTTCCGAT -ACGGAAAGACGTGTGTGTTGGCAT -ACGGAAAGACGTGTGTGTCGAGAT -ACGGAAAGACGTGTGTGTTACCAC -ACGGAAAGACGTGTGTGTCAGAAC -ACGGAAAGACGTGTGTGTGTCTAC -ACGGAAAGACGTGTGTGTACGTAC -ACGGAAAGACGTGTGTGTAGTGAC -ACGGAAAGACGTGTGTGTCTGTAG -ACGGAAAGACGTGTGTGTCCTAAG -ACGGAAAGACGTGTGTGTGTTCAG -ACGGAAAGACGTGTGTGTGCATAG -ACGGAAAGACGTGTGTGTGACAAG -ACGGAAAGACGTGTGTGTAAGCAG -ACGGAAAGACGTGTGTGTCGTCAA -ACGGAAAGACGTGTGTGTGCTGAA -ACGGAAAGACGTGTGTGTAGTACG -ACGGAAAGACGTGTGTGTATCCGA -ACGGAAAGACGTGTGTGTATGGGA -ACGGAAAGACGTGTGTGTGTGCAA -ACGGAAAGACGTGTGTGTGAGGAA -ACGGAAAGACGTGTGTGTCAGGTA -ACGGAAAGACGTGTGTGTGACTCT -ACGGAAAGACGTGTGTGTAGTCCT -ACGGAAAGACGTGTGTGTTAAGCC -ACGGAAAGACGTGTGTGTATAGCC -ACGGAAAGACGTGTGTGTTAACCG -ACGGAAAGACGTGTGTGTATGCCA -ACGGAAAGACGTGTGCTAGGAAAC -ACGGAAAGACGTGTGCTAAACACC -ACGGAAAGACGTGTGCTAATCGAG -ACGGAAAGACGTGTGCTACTCCTT -ACGGAAAGACGTGTGCTACCTGTT -ACGGAAAGACGTGTGCTACGGTTT -ACGGAAAGACGTGTGCTAGTGGTT -ACGGAAAGACGTGTGCTAGCCTTT -ACGGAAAGACGTGTGCTAGGTCTT -ACGGAAAGACGTGTGCTAACGCTT -ACGGAAAGACGTGTGCTAAGCGTT -ACGGAAAGACGTGTGCTATTCGTC -ACGGAAAGACGTGTGCTATCTCTC -ACGGAAAGACGTGTGCTATGGATC -ACGGAAAGACGTGTGCTACACTTC -ACGGAAAGACGTGTGCTAGTACTC -ACGGAAAGACGTGTGCTAGATGTC -ACGGAAAGACGTGTGCTAACAGTC -ACGGAAAGACGTGTGCTATTGCTG -ACGGAAAGACGTGTGCTATCCATG -ACGGAAAGACGTGTGCTATGTGTG -ACGGAAAGACGTGTGCTACTAGTG -ACGGAAAGACGTGTGCTACATCTG -ACGGAAAGACGTGTGCTAGAGTTG -ACGGAAAGACGTGTGCTAAGACTG -ACGGAAAGACGTGTGCTATCGGTA -ACGGAAAGACGTGTGCTATGCCTA -ACGGAAAGACGTGTGCTACCACTA -ACGGAAAGACGTGTGCTAGGAGTA -ACGGAAAGACGTGTGCTATCGTCT -ACGGAAAGACGTGTGCTATGCACT -ACGGAAAGACGTGTGCTACTGACT -ACGGAAAGACGTGTGCTACAACCT -ACGGAAAGACGTGTGCTAGCTACT -ACGGAAAGACGTGTGCTAGGATCT -ACGGAAAGACGTGTGCTAAAGGCT -ACGGAAAGACGTGTGCTATCAACC -ACGGAAAGACGTGTGCTATGTTCC -ACGGAAAGACGTGTGCTAATTCCC -ACGGAAAGACGTGTGCTATTCTCG -ACGGAAAGACGTGTGCTATAGACG -ACGGAAAGACGTGTGCTAGTAACG -ACGGAAAGACGTGTGCTAACTTCG -ACGGAAAGACGTGTGCTATACGCA -ACGGAAAGACGTGTGCTACTTGCA -ACGGAAAGACGTGTGCTACGAACA -ACGGAAAGACGTGTGCTACAGTCA -ACGGAAAGACGTGTGCTAGATCCA -ACGGAAAGACGTGTGCTAACGACA -ACGGAAAGACGTGTGCTAAGCTCA -ACGGAAAGACGTGTGCTATCACGT -ACGGAAAGACGTGTGCTACGTAGT -ACGGAAAGACGTGTGCTAGTCAGT -ACGGAAAGACGTGTGCTAGAAGGT -ACGGAAAGACGTGTGCTAAACCGT -ACGGAAAGACGTGTGCTATTGTGC -ACGGAAAGACGTGTGCTACTAAGC -ACGGAAAGACGTGTGCTAACTAGC -ACGGAAAGACGTGTGCTAAGATGC -ACGGAAAGACGTGTGCTATGAAGG -ACGGAAAGACGTGTGCTACAATGG -ACGGAAAGACGTGTGCTAATGAGG -ACGGAAAGACGTGTGCTAAATGGG -ACGGAAAGACGTGTGCTATCCTGA -ACGGAAAGACGTGTGCTATAGCGA -ACGGAAAGACGTGTGCTACACAGA -ACGGAAAGACGTGTGCTAGCAAGA -ACGGAAAGACGTGTGCTAGGTTGA -ACGGAAAGACGTGTGCTATCCGAT -ACGGAAAGACGTGTGCTATGGCAT -ACGGAAAGACGTGTGCTACGAGAT -ACGGAAAGACGTGTGCTATACCAC -ACGGAAAGACGTGTGCTACAGAAC -ACGGAAAGACGTGTGCTAGTCTAC -ACGGAAAGACGTGTGCTAACGTAC -ACGGAAAGACGTGTGCTAAGTGAC -ACGGAAAGACGTGTGCTACTGTAG -ACGGAAAGACGTGTGCTACCTAAG -ACGGAAAGACGTGTGCTAGTTCAG -ACGGAAAGACGTGTGCTAGCATAG -ACGGAAAGACGTGTGCTAGACAAG -ACGGAAAGACGTGTGCTAAAGCAG -ACGGAAAGACGTGTGCTACGTCAA -ACGGAAAGACGTGTGCTAGCTGAA -ACGGAAAGACGTGTGCTAAGTACG -ACGGAAAGACGTGTGCTAATCCGA -ACGGAAAGACGTGTGCTAATGGGA -ACGGAAAGACGTGTGCTAGTGCAA -ACGGAAAGACGTGTGCTAGAGGAA -ACGGAAAGACGTGTGCTACAGGTA -ACGGAAAGACGTGTGCTAGACTCT -ACGGAAAGACGTGTGCTAAGTCCT -ACGGAAAGACGTGTGCTATAAGCC -ACGGAAAGACGTGTGCTAATAGCC -ACGGAAAGACGTGTGCTATAACCG -ACGGAAAGACGTGTGCTAATGCCA -ACGGAAAGACGTCTGCATGGAAAC -ACGGAAAGACGTCTGCATAACACC -ACGGAAAGACGTCTGCATATCGAG -ACGGAAAGACGTCTGCATCTCCTT -ACGGAAAGACGTCTGCATCCTGTT -ACGGAAAGACGTCTGCATCGGTTT -ACGGAAAGACGTCTGCATGTGGTT -ACGGAAAGACGTCTGCATGCCTTT -ACGGAAAGACGTCTGCATGGTCTT -ACGGAAAGACGTCTGCATACGCTT -ACGGAAAGACGTCTGCATAGCGTT -ACGGAAAGACGTCTGCATTTCGTC -ACGGAAAGACGTCTGCATTCTCTC -ACGGAAAGACGTCTGCATTGGATC -ACGGAAAGACGTCTGCATCACTTC -ACGGAAAGACGTCTGCATGTACTC -ACGGAAAGACGTCTGCATGATGTC -ACGGAAAGACGTCTGCATACAGTC -ACGGAAAGACGTCTGCATTTGCTG -ACGGAAAGACGTCTGCATTCCATG -ACGGAAAGACGTCTGCATTGTGTG -ACGGAAAGACGTCTGCATCTAGTG -ACGGAAAGACGTCTGCATCATCTG -ACGGAAAGACGTCTGCATGAGTTG -ACGGAAAGACGTCTGCATAGACTG -ACGGAAAGACGTCTGCATTCGGTA -ACGGAAAGACGTCTGCATTGCCTA -ACGGAAAGACGTCTGCATCCACTA -ACGGAAAGACGTCTGCATGGAGTA -ACGGAAAGACGTCTGCATTCGTCT -ACGGAAAGACGTCTGCATTGCACT -ACGGAAAGACGTCTGCATCTGACT -ACGGAAAGACGTCTGCATCAACCT -ACGGAAAGACGTCTGCATGCTACT -ACGGAAAGACGTCTGCATGGATCT -ACGGAAAGACGTCTGCATAAGGCT -ACGGAAAGACGTCTGCATTCAACC -ACGGAAAGACGTCTGCATTGTTCC -ACGGAAAGACGTCTGCATATTCCC -ACGGAAAGACGTCTGCATTTCTCG -ACGGAAAGACGTCTGCATTAGACG -ACGGAAAGACGTCTGCATGTAACG -ACGGAAAGACGTCTGCATACTTCG -ACGGAAAGACGTCTGCATTACGCA -ACGGAAAGACGTCTGCATCTTGCA -ACGGAAAGACGTCTGCATCGAACA -ACGGAAAGACGTCTGCATCAGTCA -ACGGAAAGACGTCTGCATGATCCA -ACGGAAAGACGTCTGCATACGACA -ACGGAAAGACGTCTGCATAGCTCA -ACGGAAAGACGTCTGCATTCACGT -ACGGAAAGACGTCTGCATCGTAGT -ACGGAAAGACGTCTGCATGTCAGT -ACGGAAAGACGTCTGCATGAAGGT -ACGGAAAGACGTCTGCATAACCGT -ACGGAAAGACGTCTGCATTTGTGC -ACGGAAAGACGTCTGCATCTAAGC -ACGGAAAGACGTCTGCATACTAGC -ACGGAAAGACGTCTGCATAGATGC -ACGGAAAGACGTCTGCATTGAAGG -ACGGAAAGACGTCTGCATCAATGG -ACGGAAAGACGTCTGCATATGAGG -ACGGAAAGACGTCTGCATAATGGG -ACGGAAAGACGTCTGCATTCCTGA -ACGGAAAGACGTCTGCATTAGCGA -ACGGAAAGACGTCTGCATCACAGA -ACGGAAAGACGTCTGCATGCAAGA -ACGGAAAGACGTCTGCATGGTTGA -ACGGAAAGACGTCTGCATTCCGAT -ACGGAAAGACGTCTGCATTGGCAT -ACGGAAAGACGTCTGCATCGAGAT -ACGGAAAGACGTCTGCATTACCAC -ACGGAAAGACGTCTGCATCAGAAC -ACGGAAAGACGTCTGCATGTCTAC -ACGGAAAGACGTCTGCATACGTAC -ACGGAAAGACGTCTGCATAGTGAC -ACGGAAAGACGTCTGCATCTGTAG -ACGGAAAGACGTCTGCATCCTAAG -ACGGAAAGACGTCTGCATGTTCAG -ACGGAAAGACGTCTGCATGCATAG -ACGGAAAGACGTCTGCATGACAAG -ACGGAAAGACGTCTGCATAAGCAG -ACGGAAAGACGTCTGCATCGTCAA -ACGGAAAGACGTCTGCATGCTGAA -ACGGAAAGACGTCTGCATAGTACG -ACGGAAAGACGTCTGCATATCCGA -ACGGAAAGACGTCTGCATATGGGA -ACGGAAAGACGTCTGCATGTGCAA -ACGGAAAGACGTCTGCATGAGGAA -ACGGAAAGACGTCTGCATCAGGTA -ACGGAAAGACGTCTGCATGACTCT -ACGGAAAGACGTCTGCATAGTCCT -ACGGAAAGACGTCTGCATTAAGCC -ACGGAAAGACGTCTGCATATAGCC -ACGGAAAGACGTCTGCATTAACCG -ACGGAAAGACGTCTGCATATGCCA -ACGGAAAGACGTTTGGAGGGAAAC -ACGGAAAGACGTTTGGAGAACACC -ACGGAAAGACGTTTGGAGATCGAG -ACGGAAAGACGTTTGGAGCTCCTT -ACGGAAAGACGTTTGGAGCCTGTT -ACGGAAAGACGTTTGGAGCGGTTT -ACGGAAAGACGTTTGGAGGTGGTT -ACGGAAAGACGTTTGGAGGCCTTT -ACGGAAAGACGTTTGGAGGGTCTT -ACGGAAAGACGTTTGGAGACGCTT -ACGGAAAGACGTTTGGAGAGCGTT -ACGGAAAGACGTTTGGAGTTCGTC -ACGGAAAGACGTTTGGAGTCTCTC -ACGGAAAGACGTTTGGAGTGGATC -ACGGAAAGACGTTTGGAGCACTTC -ACGGAAAGACGTTTGGAGGTACTC -ACGGAAAGACGTTTGGAGGATGTC -ACGGAAAGACGTTTGGAGACAGTC -ACGGAAAGACGTTTGGAGTTGCTG -ACGGAAAGACGTTTGGAGTCCATG -ACGGAAAGACGTTTGGAGTGTGTG -ACGGAAAGACGTTTGGAGCTAGTG -ACGGAAAGACGTTTGGAGCATCTG -ACGGAAAGACGTTTGGAGGAGTTG -ACGGAAAGACGTTTGGAGAGACTG -ACGGAAAGACGTTTGGAGTCGGTA -ACGGAAAGACGTTTGGAGTGCCTA -ACGGAAAGACGTTTGGAGCCACTA -ACGGAAAGACGTTTGGAGGGAGTA -ACGGAAAGACGTTTGGAGTCGTCT -ACGGAAAGACGTTTGGAGTGCACT -ACGGAAAGACGTTTGGAGCTGACT -ACGGAAAGACGTTTGGAGCAACCT -ACGGAAAGACGTTTGGAGGCTACT -ACGGAAAGACGTTTGGAGGGATCT -ACGGAAAGACGTTTGGAGAAGGCT -ACGGAAAGACGTTTGGAGTCAACC -ACGGAAAGACGTTTGGAGTGTTCC -ACGGAAAGACGTTTGGAGATTCCC -ACGGAAAGACGTTTGGAGTTCTCG -ACGGAAAGACGTTTGGAGTAGACG -ACGGAAAGACGTTTGGAGGTAACG -ACGGAAAGACGTTTGGAGACTTCG -ACGGAAAGACGTTTGGAGTACGCA -ACGGAAAGACGTTTGGAGCTTGCA -ACGGAAAGACGTTTGGAGCGAACA -ACGGAAAGACGTTTGGAGCAGTCA -ACGGAAAGACGTTTGGAGGATCCA -ACGGAAAGACGTTTGGAGACGACA -ACGGAAAGACGTTTGGAGAGCTCA -ACGGAAAGACGTTTGGAGTCACGT -ACGGAAAGACGTTTGGAGCGTAGT -ACGGAAAGACGTTTGGAGGTCAGT -ACGGAAAGACGTTTGGAGGAAGGT -ACGGAAAGACGTTTGGAGAACCGT -ACGGAAAGACGTTTGGAGTTGTGC -ACGGAAAGACGTTTGGAGCTAAGC -ACGGAAAGACGTTTGGAGACTAGC -ACGGAAAGACGTTTGGAGAGATGC -ACGGAAAGACGTTTGGAGTGAAGG -ACGGAAAGACGTTTGGAGCAATGG -ACGGAAAGACGTTTGGAGATGAGG -ACGGAAAGACGTTTGGAGAATGGG -ACGGAAAGACGTTTGGAGTCCTGA -ACGGAAAGACGTTTGGAGTAGCGA -ACGGAAAGACGTTTGGAGCACAGA -ACGGAAAGACGTTTGGAGGCAAGA -ACGGAAAGACGTTTGGAGGGTTGA -ACGGAAAGACGTTTGGAGTCCGAT -ACGGAAAGACGTTTGGAGTGGCAT -ACGGAAAGACGTTTGGAGCGAGAT -ACGGAAAGACGTTTGGAGTACCAC -ACGGAAAGACGTTTGGAGCAGAAC -ACGGAAAGACGTTTGGAGGTCTAC -ACGGAAAGACGTTTGGAGACGTAC -ACGGAAAGACGTTTGGAGAGTGAC -ACGGAAAGACGTTTGGAGCTGTAG -ACGGAAAGACGTTTGGAGCCTAAG -ACGGAAAGACGTTTGGAGGTTCAG -ACGGAAAGACGTTTGGAGGCATAG -ACGGAAAGACGTTTGGAGGACAAG -ACGGAAAGACGTTTGGAGAAGCAG -ACGGAAAGACGTTTGGAGCGTCAA -ACGGAAAGACGTTTGGAGGCTGAA -ACGGAAAGACGTTTGGAGAGTACG -ACGGAAAGACGTTTGGAGATCCGA -ACGGAAAGACGTTTGGAGATGGGA -ACGGAAAGACGTTTGGAGGTGCAA -ACGGAAAGACGTTTGGAGGAGGAA -ACGGAAAGACGTTTGGAGCAGGTA -ACGGAAAGACGTTTGGAGGACTCT -ACGGAAAGACGTTTGGAGAGTCCT -ACGGAAAGACGTTTGGAGTAAGCC -ACGGAAAGACGTTTGGAGATAGCC -ACGGAAAGACGTTTGGAGTAACCG -ACGGAAAGACGTTTGGAGATGCCA -ACGGAAAGACGTCTGAGAGGAAAC -ACGGAAAGACGTCTGAGAAACACC -ACGGAAAGACGTCTGAGAATCGAG -ACGGAAAGACGTCTGAGACTCCTT -ACGGAAAGACGTCTGAGACCTGTT -ACGGAAAGACGTCTGAGACGGTTT -ACGGAAAGACGTCTGAGAGTGGTT -ACGGAAAGACGTCTGAGAGCCTTT -ACGGAAAGACGTCTGAGAGGTCTT -ACGGAAAGACGTCTGAGAACGCTT -ACGGAAAGACGTCTGAGAAGCGTT -ACGGAAAGACGTCTGAGATTCGTC -ACGGAAAGACGTCTGAGATCTCTC -ACGGAAAGACGTCTGAGATGGATC -ACGGAAAGACGTCTGAGACACTTC -ACGGAAAGACGTCTGAGAGTACTC -ACGGAAAGACGTCTGAGAGATGTC -ACGGAAAGACGTCTGAGAACAGTC -ACGGAAAGACGTCTGAGATTGCTG -ACGGAAAGACGTCTGAGATCCATG -ACGGAAAGACGTCTGAGATGTGTG -ACGGAAAGACGTCTGAGACTAGTG -ACGGAAAGACGTCTGAGACATCTG -ACGGAAAGACGTCTGAGAGAGTTG -ACGGAAAGACGTCTGAGAAGACTG -ACGGAAAGACGTCTGAGATCGGTA -ACGGAAAGACGTCTGAGATGCCTA -ACGGAAAGACGTCTGAGACCACTA -ACGGAAAGACGTCTGAGAGGAGTA -ACGGAAAGACGTCTGAGATCGTCT -ACGGAAAGACGTCTGAGATGCACT -ACGGAAAGACGTCTGAGACTGACT -ACGGAAAGACGTCTGAGACAACCT -ACGGAAAGACGTCTGAGAGCTACT -ACGGAAAGACGTCTGAGAGGATCT -ACGGAAAGACGTCTGAGAAAGGCT -ACGGAAAGACGTCTGAGATCAACC -ACGGAAAGACGTCTGAGATGTTCC -ACGGAAAGACGTCTGAGAATTCCC -ACGGAAAGACGTCTGAGATTCTCG -ACGGAAAGACGTCTGAGATAGACG -ACGGAAAGACGTCTGAGAGTAACG -ACGGAAAGACGTCTGAGAACTTCG -ACGGAAAGACGTCTGAGATACGCA -ACGGAAAGACGTCTGAGACTTGCA -ACGGAAAGACGTCTGAGACGAACA -ACGGAAAGACGTCTGAGACAGTCA -ACGGAAAGACGTCTGAGAGATCCA -ACGGAAAGACGTCTGAGAACGACA -ACGGAAAGACGTCTGAGAAGCTCA -ACGGAAAGACGTCTGAGATCACGT -ACGGAAAGACGTCTGAGACGTAGT -ACGGAAAGACGTCTGAGAGTCAGT -ACGGAAAGACGTCTGAGAGAAGGT -ACGGAAAGACGTCTGAGAAACCGT -ACGGAAAGACGTCTGAGATTGTGC -ACGGAAAGACGTCTGAGACTAAGC -ACGGAAAGACGTCTGAGAACTAGC -ACGGAAAGACGTCTGAGAAGATGC -ACGGAAAGACGTCTGAGATGAAGG -ACGGAAAGACGTCTGAGACAATGG -ACGGAAAGACGTCTGAGAATGAGG -ACGGAAAGACGTCTGAGAAATGGG -ACGGAAAGACGTCTGAGATCCTGA -ACGGAAAGACGTCTGAGATAGCGA -ACGGAAAGACGTCTGAGACACAGA -ACGGAAAGACGTCTGAGAGCAAGA -ACGGAAAGACGTCTGAGAGGTTGA -ACGGAAAGACGTCTGAGATCCGAT -ACGGAAAGACGTCTGAGATGGCAT -ACGGAAAGACGTCTGAGACGAGAT -ACGGAAAGACGTCTGAGATACCAC -ACGGAAAGACGTCTGAGACAGAAC -ACGGAAAGACGTCTGAGAGTCTAC -ACGGAAAGACGTCTGAGAACGTAC -ACGGAAAGACGTCTGAGAAGTGAC -ACGGAAAGACGTCTGAGACTGTAG -ACGGAAAGACGTCTGAGACCTAAG -ACGGAAAGACGTCTGAGAGTTCAG -ACGGAAAGACGTCTGAGAGCATAG -ACGGAAAGACGTCTGAGAGACAAG -ACGGAAAGACGTCTGAGAAAGCAG -ACGGAAAGACGTCTGAGACGTCAA -ACGGAAAGACGTCTGAGAGCTGAA -ACGGAAAGACGTCTGAGAAGTACG -ACGGAAAGACGTCTGAGAATCCGA -ACGGAAAGACGTCTGAGAATGGGA -ACGGAAAGACGTCTGAGAGTGCAA -ACGGAAAGACGTCTGAGAGAGGAA -ACGGAAAGACGTCTGAGACAGGTA -ACGGAAAGACGTCTGAGAGACTCT -ACGGAAAGACGTCTGAGAAGTCCT -ACGGAAAGACGTCTGAGATAAGCC -ACGGAAAGACGTCTGAGAATAGCC -ACGGAAAGACGTCTGAGATAACCG -ACGGAAAGACGTCTGAGAATGCCA -ACGGAAAGACGTGTATCGGGAAAC -ACGGAAAGACGTGTATCGAACACC -ACGGAAAGACGTGTATCGATCGAG -ACGGAAAGACGTGTATCGCTCCTT -ACGGAAAGACGTGTATCGCCTGTT -ACGGAAAGACGTGTATCGCGGTTT -ACGGAAAGACGTGTATCGGTGGTT -ACGGAAAGACGTGTATCGGCCTTT -ACGGAAAGACGTGTATCGGGTCTT -ACGGAAAGACGTGTATCGACGCTT -ACGGAAAGACGTGTATCGAGCGTT -ACGGAAAGACGTGTATCGTTCGTC -ACGGAAAGACGTGTATCGTCTCTC -ACGGAAAGACGTGTATCGTGGATC -ACGGAAAGACGTGTATCGCACTTC -ACGGAAAGACGTGTATCGGTACTC -ACGGAAAGACGTGTATCGGATGTC -ACGGAAAGACGTGTATCGACAGTC -ACGGAAAGACGTGTATCGTTGCTG -ACGGAAAGACGTGTATCGTCCATG -ACGGAAAGACGTGTATCGTGTGTG -ACGGAAAGACGTGTATCGCTAGTG -ACGGAAAGACGTGTATCGCATCTG -ACGGAAAGACGTGTATCGGAGTTG -ACGGAAAGACGTGTATCGAGACTG -ACGGAAAGACGTGTATCGTCGGTA -ACGGAAAGACGTGTATCGTGCCTA -ACGGAAAGACGTGTATCGCCACTA -ACGGAAAGACGTGTATCGGGAGTA -ACGGAAAGACGTGTATCGTCGTCT -ACGGAAAGACGTGTATCGTGCACT -ACGGAAAGACGTGTATCGCTGACT -ACGGAAAGACGTGTATCGCAACCT -ACGGAAAGACGTGTATCGGCTACT -ACGGAAAGACGTGTATCGGGATCT -ACGGAAAGACGTGTATCGAAGGCT -ACGGAAAGACGTGTATCGTCAACC -ACGGAAAGACGTGTATCGTGTTCC -ACGGAAAGACGTGTATCGATTCCC -ACGGAAAGACGTGTATCGTTCTCG -ACGGAAAGACGTGTATCGTAGACG -ACGGAAAGACGTGTATCGGTAACG -ACGGAAAGACGTGTATCGACTTCG -ACGGAAAGACGTGTATCGTACGCA -ACGGAAAGACGTGTATCGCTTGCA -ACGGAAAGACGTGTATCGCGAACA -ACGGAAAGACGTGTATCGCAGTCA -ACGGAAAGACGTGTATCGGATCCA -ACGGAAAGACGTGTATCGACGACA -ACGGAAAGACGTGTATCGAGCTCA -ACGGAAAGACGTGTATCGTCACGT -ACGGAAAGACGTGTATCGCGTAGT -ACGGAAAGACGTGTATCGGTCAGT -ACGGAAAGACGTGTATCGGAAGGT -ACGGAAAGACGTGTATCGAACCGT -ACGGAAAGACGTGTATCGTTGTGC -ACGGAAAGACGTGTATCGCTAAGC -ACGGAAAGACGTGTATCGACTAGC -ACGGAAAGACGTGTATCGAGATGC -ACGGAAAGACGTGTATCGTGAAGG -ACGGAAAGACGTGTATCGCAATGG -ACGGAAAGACGTGTATCGATGAGG -ACGGAAAGACGTGTATCGAATGGG -ACGGAAAGACGTGTATCGTCCTGA -ACGGAAAGACGTGTATCGTAGCGA -ACGGAAAGACGTGTATCGCACAGA -ACGGAAAGACGTGTATCGGCAAGA -ACGGAAAGACGTGTATCGGGTTGA -ACGGAAAGACGTGTATCGTCCGAT -ACGGAAAGACGTGTATCGTGGCAT -ACGGAAAGACGTGTATCGCGAGAT -ACGGAAAGACGTGTATCGTACCAC -ACGGAAAGACGTGTATCGCAGAAC -ACGGAAAGACGTGTATCGGTCTAC -ACGGAAAGACGTGTATCGACGTAC -ACGGAAAGACGTGTATCGAGTGAC -ACGGAAAGACGTGTATCGCTGTAG -ACGGAAAGACGTGTATCGCCTAAG -ACGGAAAGACGTGTATCGGTTCAG -ACGGAAAGACGTGTATCGGCATAG -ACGGAAAGACGTGTATCGGACAAG -ACGGAAAGACGTGTATCGAAGCAG -ACGGAAAGACGTGTATCGCGTCAA -ACGGAAAGACGTGTATCGGCTGAA -ACGGAAAGACGTGTATCGAGTACG -ACGGAAAGACGTGTATCGATCCGA -ACGGAAAGACGTGTATCGATGGGA -ACGGAAAGACGTGTATCGGTGCAA -ACGGAAAGACGTGTATCGGAGGAA -ACGGAAAGACGTGTATCGCAGGTA -ACGGAAAGACGTGTATCGGACTCT -ACGGAAAGACGTGTATCGAGTCCT -ACGGAAAGACGTGTATCGTAAGCC -ACGGAAAGACGTGTATCGATAGCC -ACGGAAAGACGTGTATCGTAACCG -ACGGAAAGACGTGTATCGATGCCA -ACGGAAAGACGTCTATGCGGAAAC -ACGGAAAGACGTCTATGCAACACC -ACGGAAAGACGTCTATGCATCGAG -ACGGAAAGACGTCTATGCCTCCTT -ACGGAAAGACGTCTATGCCCTGTT -ACGGAAAGACGTCTATGCCGGTTT -ACGGAAAGACGTCTATGCGTGGTT -ACGGAAAGACGTCTATGCGCCTTT -ACGGAAAGACGTCTATGCGGTCTT -ACGGAAAGACGTCTATGCACGCTT -ACGGAAAGACGTCTATGCAGCGTT -ACGGAAAGACGTCTATGCTTCGTC -ACGGAAAGACGTCTATGCTCTCTC -ACGGAAAGACGTCTATGCTGGATC -ACGGAAAGACGTCTATGCCACTTC -ACGGAAAGACGTCTATGCGTACTC -ACGGAAAGACGTCTATGCGATGTC -ACGGAAAGACGTCTATGCACAGTC -ACGGAAAGACGTCTATGCTTGCTG -ACGGAAAGACGTCTATGCTCCATG -ACGGAAAGACGTCTATGCTGTGTG -ACGGAAAGACGTCTATGCCTAGTG -ACGGAAAGACGTCTATGCCATCTG -ACGGAAAGACGTCTATGCGAGTTG -ACGGAAAGACGTCTATGCAGACTG -ACGGAAAGACGTCTATGCTCGGTA -ACGGAAAGACGTCTATGCTGCCTA -ACGGAAAGACGTCTATGCCCACTA -ACGGAAAGACGTCTATGCGGAGTA -ACGGAAAGACGTCTATGCTCGTCT -ACGGAAAGACGTCTATGCTGCACT -ACGGAAAGACGTCTATGCCTGACT -ACGGAAAGACGTCTATGCCAACCT -ACGGAAAGACGTCTATGCGCTACT -ACGGAAAGACGTCTATGCGGATCT -ACGGAAAGACGTCTATGCAAGGCT -ACGGAAAGACGTCTATGCTCAACC -ACGGAAAGACGTCTATGCTGTTCC -ACGGAAAGACGTCTATGCATTCCC -ACGGAAAGACGTCTATGCTTCTCG -ACGGAAAGACGTCTATGCTAGACG -ACGGAAAGACGTCTATGCGTAACG -ACGGAAAGACGTCTATGCACTTCG -ACGGAAAGACGTCTATGCTACGCA -ACGGAAAGACGTCTATGCCTTGCA -ACGGAAAGACGTCTATGCCGAACA -ACGGAAAGACGTCTATGCCAGTCA -ACGGAAAGACGTCTATGCGATCCA -ACGGAAAGACGTCTATGCACGACA -ACGGAAAGACGTCTATGCAGCTCA -ACGGAAAGACGTCTATGCTCACGT -ACGGAAAGACGTCTATGCCGTAGT -ACGGAAAGACGTCTATGCGTCAGT -ACGGAAAGACGTCTATGCGAAGGT -ACGGAAAGACGTCTATGCAACCGT -ACGGAAAGACGTCTATGCTTGTGC -ACGGAAAGACGTCTATGCCTAAGC -ACGGAAAGACGTCTATGCACTAGC -ACGGAAAGACGTCTATGCAGATGC -ACGGAAAGACGTCTATGCTGAAGG -ACGGAAAGACGTCTATGCCAATGG -ACGGAAAGACGTCTATGCATGAGG -ACGGAAAGACGTCTATGCAATGGG -ACGGAAAGACGTCTATGCTCCTGA -ACGGAAAGACGTCTATGCTAGCGA -ACGGAAAGACGTCTATGCCACAGA -ACGGAAAGACGTCTATGCGCAAGA -ACGGAAAGACGTCTATGCGGTTGA -ACGGAAAGACGTCTATGCTCCGAT -ACGGAAAGACGTCTATGCTGGCAT -ACGGAAAGACGTCTATGCCGAGAT -ACGGAAAGACGTCTATGCTACCAC -ACGGAAAGACGTCTATGCCAGAAC -ACGGAAAGACGTCTATGCGTCTAC -ACGGAAAGACGTCTATGCACGTAC -ACGGAAAGACGTCTATGCAGTGAC -ACGGAAAGACGTCTATGCCTGTAG -ACGGAAAGACGTCTATGCCCTAAG -ACGGAAAGACGTCTATGCGTTCAG -ACGGAAAGACGTCTATGCGCATAG -ACGGAAAGACGTCTATGCGACAAG -ACGGAAAGACGTCTATGCAAGCAG -ACGGAAAGACGTCTATGCCGTCAA -ACGGAAAGACGTCTATGCGCTGAA -ACGGAAAGACGTCTATGCAGTACG -ACGGAAAGACGTCTATGCATCCGA -ACGGAAAGACGTCTATGCATGGGA -ACGGAAAGACGTCTATGCGTGCAA -ACGGAAAGACGTCTATGCGAGGAA -ACGGAAAGACGTCTATGCCAGGTA -ACGGAAAGACGTCTATGCGACTCT -ACGGAAAGACGTCTATGCAGTCCT -ACGGAAAGACGTCTATGCTAAGCC -ACGGAAAGACGTCTATGCATAGCC -ACGGAAAGACGTCTATGCTAACCG -ACGGAAAGACGTCTATGCATGCCA -ACGGAAAGACGTCTACCAGGAAAC -ACGGAAAGACGTCTACCAAACACC -ACGGAAAGACGTCTACCAATCGAG -ACGGAAAGACGTCTACCACTCCTT -ACGGAAAGACGTCTACCACCTGTT -ACGGAAAGACGTCTACCACGGTTT -ACGGAAAGACGTCTACCAGTGGTT -ACGGAAAGACGTCTACCAGCCTTT -ACGGAAAGACGTCTACCAGGTCTT -ACGGAAAGACGTCTACCAACGCTT -ACGGAAAGACGTCTACCAAGCGTT -ACGGAAAGACGTCTACCATTCGTC -ACGGAAAGACGTCTACCATCTCTC -ACGGAAAGACGTCTACCATGGATC -ACGGAAAGACGTCTACCACACTTC -ACGGAAAGACGTCTACCAGTACTC -ACGGAAAGACGTCTACCAGATGTC -ACGGAAAGACGTCTACCAACAGTC -ACGGAAAGACGTCTACCATTGCTG -ACGGAAAGACGTCTACCATCCATG -ACGGAAAGACGTCTACCATGTGTG -ACGGAAAGACGTCTACCACTAGTG -ACGGAAAGACGTCTACCACATCTG -ACGGAAAGACGTCTACCAGAGTTG -ACGGAAAGACGTCTACCAAGACTG -ACGGAAAGACGTCTACCATCGGTA -ACGGAAAGACGTCTACCATGCCTA -ACGGAAAGACGTCTACCACCACTA -ACGGAAAGACGTCTACCAGGAGTA -ACGGAAAGACGTCTACCATCGTCT -ACGGAAAGACGTCTACCATGCACT -ACGGAAAGACGTCTACCACTGACT -ACGGAAAGACGTCTACCACAACCT -ACGGAAAGACGTCTACCAGCTACT -ACGGAAAGACGTCTACCAGGATCT -ACGGAAAGACGTCTACCAAAGGCT -ACGGAAAGACGTCTACCATCAACC -ACGGAAAGACGTCTACCATGTTCC -ACGGAAAGACGTCTACCAATTCCC -ACGGAAAGACGTCTACCATTCTCG -ACGGAAAGACGTCTACCATAGACG -ACGGAAAGACGTCTACCAGTAACG -ACGGAAAGACGTCTACCAACTTCG -ACGGAAAGACGTCTACCATACGCA -ACGGAAAGACGTCTACCACTTGCA -ACGGAAAGACGTCTACCACGAACA -ACGGAAAGACGTCTACCACAGTCA -ACGGAAAGACGTCTACCAGATCCA -ACGGAAAGACGTCTACCAACGACA -ACGGAAAGACGTCTACCAAGCTCA -ACGGAAAGACGTCTACCATCACGT -ACGGAAAGACGTCTACCACGTAGT -ACGGAAAGACGTCTACCAGTCAGT -ACGGAAAGACGTCTACCAGAAGGT -ACGGAAAGACGTCTACCAAACCGT -ACGGAAAGACGTCTACCATTGTGC -ACGGAAAGACGTCTACCACTAAGC -ACGGAAAGACGTCTACCAACTAGC -ACGGAAAGACGTCTACCAAGATGC -ACGGAAAGACGTCTACCATGAAGG -ACGGAAAGACGTCTACCACAATGG -ACGGAAAGACGTCTACCAATGAGG -ACGGAAAGACGTCTACCAAATGGG -ACGGAAAGACGTCTACCATCCTGA -ACGGAAAGACGTCTACCATAGCGA -ACGGAAAGACGTCTACCACACAGA -ACGGAAAGACGTCTACCAGCAAGA -ACGGAAAGACGTCTACCAGGTTGA -ACGGAAAGACGTCTACCATCCGAT -ACGGAAAGACGTCTACCATGGCAT -ACGGAAAGACGTCTACCACGAGAT -ACGGAAAGACGTCTACCATACCAC -ACGGAAAGACGTCTACCACAGAAC -ACGGAAAGACGTCTACCAGTCTAC -ACGGAAAGACGTCTACCAACGTAC -ACGGAAAGACGTCTACCAAGTGAC -ACGGAAAGACGTCTACCACTGTAG -ACGGAAAGACGTCTACCACCTAAG -ACGGAAAGACGTCTACCAGTTCAG -ACGGAAAGACGTCTACCAGCATAG -ACGGAAAGACGTCTACCAGACAAG -ACGGAAAGACGTCTACCAAAGCAG -ACGGAAAGACGTCTACCACGTCAA -ACGGAAAGACGTCTACCAGCTGAA -ACGGAAAGACGTCTACCAAGTACG -ACGGAAAGACGTCTACCAATCCGA -ACGGAAAGACGTCTACCAATGGGA -ACGGAAAGACGTCTACCAGTGCAA -ACGGAAAGACGTCTACCAGAGGAA -ACGGAAAGACGTCTACCACAGGTA -ACGGAAAGACGTCTACCAGACTCT -ACGGAAAGACGTCTACCAAGTCCT -ACGGAAAGACGTCTACCATAAGCC -ACGGAAAGACGTCTACCAATAGCC -ACGGAAAGACGTCTACCATAACCG -ACGGAAAGACGTCTACCAATGCCA -ACGGAAAGACGTGTAGGAGGAAAC -ACGGAAAGACGTGTAGGAAACACC -ACGGAAAGACGTGTAGGAATCGAG -ACGGAAAGACGTGTAGGACTCCTT -ACGGAAAGACGTGTAGGACCTGTT -ACGGAAAGACGTGTAGGACGGTTT -ACGGAAAGACGTGTAGGAGTGGTT -ACGGAAAGACGTGTAGGAGCCTTT -ACGGAAAGACGTGTAGGAGGTCTT -ACGGAAAGACGTGTAGGAACGCTT -ACGGAAAGACGTGTAGGAAGCGTT -ACGGAAAGACGTGTAGGATTCGTC -ACGGAAAGACGTGTAGGATCTCTC -ACGGAAAGACGTGTAGGATGGATC -ACGGAAAGACGTGTAGGACACTTC -ACGGAAAGACGTGTAGGAGTACTC -ACGGAAAGACGTGTAGGAGATGTC -ACGGAAAGACGTGTAGGAACAGTC -ACGGAAAGACGTGTAGGATTGCTG -ACGGAAAGACGTGTAGGATCCATG -ACGGAAAGACGTGTAGGATGTGTG -ACGGAAAGACGTGTAGGACTAGTG -ACGGAAAGACGTGTAGGACATCTG -ACGGAAAGACGTGTAGGAGAGTTG -ACGGAAAGACGTGTAGGAAGACTG -ACGGAAAGACGTGTAGGATCGGTA -ACGGAAAGACGTGTAGGATGCCTA -ACGGAAAGACGTGTAGGACCACTA -ACGGAAAGACGTGTAGGAGGAGTA -ACGGAAAGACGTGTAGGATCGTCT -ACGGAAAGACGTGTAGGATGCACT -ACGGAAAGACGTGTAGGACTGACT -ACGGAAAGACGTGTAGGACAACCT -ACGGAAAGACGTGTAGGAGCTACT -ACGGAAAGACGTGTAGGAGGATCT -ACGGAAAGACGTGTAGGAAAGGCT -ACGGAAAGACGTGTAGGATCAACC -ACGGAAAGACGTGTAGGATGTTCC -ACGGAAAGACGTGTAGGAATTCCC -ACGGAAAGACGTGTAGGATTCTCG -ACGGAAAGACGTGTAGGATAGACG -ACGGAAAGACGTGTAGGAGTAACG -ACGGAAAGACGTGTAGGAACTTCG -ACGGAAAGACGTGTAGGATACGCA -ACGGAAAGACGTGTAGGACTTGCA -ACGGAAAGACGTGTAGGACGAACA -ACGGAAAGACGTGTAGGACAGTCA -ACGGAAAGACGTGTAGGAGATCCA -ACGGAAAGACGTGTAGGAACGACA -ACGGAAAGACGTGTAGGAAGCTCA -ACGGAAAGACGTGTAGGATCACGT -ACGGAAAGACGTGTAGGACGTAGT -ACGGAAAGACGTGTAGGAGTCAGT -ACGGAAAGACGTGTAGGAGAAGGT -ACGGAAAGACGTGTAGGAAACCGT -ACGGAAAGACGTGTAGGATTGTGC -ACGGAAAGACGTGTAGGACTAAGC -ACGGAAAGACGTGTAGGAACTAGC -ACGGAAAGACGTGTAGGAAGATGC -ACGGAAAGACGTGTAGGATGAAGG -ACGGAAAGACGTGTAGGACAATGG -ACGGAAAGACGTGTAGGAATGAGG -ACGGAAAGACGTGTAGGAAATGGG -ACGGAAAGACGTGTAGGATCCTGA -ACGGAAAGACGTGTAGGATAGCGA -ACGGAAAGACGTGTAGGACACAGA -ACGGAAAGACGTGTAGGAGCAAGA -ACGGAAAGACGTGTAGGAGGTTGA -ACGGAAAGACGTGTAGGATCCGAT -ACGGAAAGACGTGTAGGATGGCAT -ACGGAAAGACGTGTAGGACGAGAT -ACGGAAAGACGTGTAGGATACCAC -ACGGAAAGACGTGTAGGACAGAAC -ACGGAAAGACGTGTAGGAGTCTAC -ACGGAAAGACGTGTAGGAACGTAC -ACGGAAAGACGTGTAGGAAGTGAC -ACGGAAAGACGTGTAGGACTGTAG -ACGGAAAGACGTGTAGGACCTAAG -ACGGAAAGACGTGTAGGAGTTCAG -ACGGAAAGACGTGTAGGAGCATAG -ACGGAAAGACGTGTAGGAGACAAG -ACGGAAAGACGTGTAGGAAAGCAG -ACGGAAAGACGTGTAGGACGTCAA -ACGGAAAGACGTGTAGGAGCTGAA -ACGGAAAGACGTGTAGGAAGTACG -ACGGAAAGACGTGTAGGAATCCGA -ACGGAAAGACGTGTAGGAATGGGA -ACGGAAAGACGTGTAGGAGTGCAA -ACGGAAAGACGTGTAGGAGAGGAA -ACGGAAAGACGTGTAGGACAGGTA -ACGGAAAGACGTGTAGGAGACTCT -ACGGAAAGACGTGTAGGAAGTCCT -ACGGAAAGACGTGTAGGATAAGCC -ACGGAAAGACGTGTAGGAATAGCC -ACGGAAAGACGTGTAGGATAACCG -ACGGAAAGACGTGTAGGAATGCCA -ACGGAAAGACGTTCTTCGGGAAAC -ACGGAAAGACGTTCTTCGAACACC -ACGGAAAGACGTTCTTCGATCGAG -ACGGAAAGACGTTCTTCGCTCCTT -ACGGAAAGACGTTCTTCGCCTGTT -ACGGAAAGACGTTCTTCGCGGTTT -ACGGAAAGACGTTCTTCGGTGGTT -ACGGAAAGACGTTCTTCGGCCTTT -ACGGAAAGACGTTCTTCGGGTCTT -ACGGAAAGACGTTCTTCGACGCTT -ACGGAAAGACGTTCTTCGAGCGTT -ACGGAAAGACGTTCTTCGTTCGTC -ACGGAAAGACGTTCTTCGTCTCTC -ACGGAAAGACGTTCTTCGTGGATC -ACGGAAAGACGTTCTTCGCACTTC -ACGGAAAGACGTTCTTCGGTACTC -ACGGAAAGACGTTCTTCGGATGTC -ACGGAAAGACGTTCTTCGACAGTC -ACGGAAAGACGTTCTTCGTTGCTG -ACGGAAAGACGTTCTTCGTCCATG -ACGGAAAGACGTTCTTCGTGTGTG -ACGGAAAGACGTTCTTCGCTAGTG -ACGGAAAGACGTTCTTCGCATCTG -ACGGAAAGACGTTCTTCGGAGTTG -ACGGAAAGACGTTCTTCGAGACTG -ACGGAAAGACGTTCTTCGTCGGTA -ACGGAAAGACGTTCTTCGTGCCTA -ACGGAAAGACGTTCTTCGCCACTA -ACGGAAAGACGTTCTTCGGGAGTA -ACGGAAAGACGTTCTTCGTCGTCT -ACGGAAAGACGTTCTTCGTGCACT -ACGGAAAGACGTTCTTCGCTGACT -ACGGAAAGACGTTCTTCGCAACCT -ACGGAAAGACGTTCTTCGGCTACT -ACGGAAAGACGTTCTTCGGGATCT -ACGGAAAGACGTTCTTCGAAGGCT -ACGGAAAGACGTTCTTCGTCAACC -ACGGAAAGACGTTCTTCGTGTTCC -ACGGAAAGACGTTCTTCGATTCCC -ACGGAAAGACGTTCTTCGTTCTCG -ACGGAAAGACGTTCTTCGTAGACG -ACGGAAAGACGTTCTTCGGTAACG -ACGGAAAGACGTTCTTCGACTTCG -ACGGAAAGACGTTCTTCGTACGCA -ACGGAAAGACGTTCTTCGCTTGCA -ACGGAAAGACGTTCTTCGCGAACA -ACGGAAAGACGTTCTTCGCAGTCA -ACGGAAAGACGTTCTTCGGATCCA -ACGGAAAGACGTTCTTCGACGACA -ACGGAAAGACGTTCTTCGAGCTCA -ACGGAAAGACGTTCTTCGTCACGT -ACGGAAAGACGTTCTTCGCGTAGT -ACGGAAAGACGTTCTTCGGTCAGT -ACGGAAAGACGTTCTTCGGAAGGT -ACGGAAAGACGTTCTTCGAACCGT -ACGGAAAGACGTTCTTCGTTGTGC -ACGGAAAGACGTTCTTCGCTAAGC -ACGGAAAGACGTTCTTCGACTAGC -ACGGAAAGACGTTCTTCGAGATGC -ACGGAAAGACGTTCTTCGTGAAGG -ACGGAAAGACGTTCTTCGCAATGG -ACGGAAAGACGTTCTTCGATGAGG -ACGGAAAGACGTTCTTCGAATGGG -ACGGAAAGACGTTCTTCGTCCTGA -ACGGAAAGACGTTCTTCGTAGCGA -ACGGAAAGACGTTCTTCGCACAGA -ACGGAAAGACGTTCTTCGGCAAGA -ACGGAAAGACGTTCTTCGGGTTGA -ACGGAAAGACGTTCTTCGTCCGAT -ACGGAAAGACGTTCTTCGTGGCAT -ACGGAAAGACGTTCTTCGCGAGAT -ACGGAAAGACGTTCTTCGTACCAC -ACGGAAAGACGTTCTTCGCAGAAC -ACGGAAAGACGTTCTTCGGTCTAC -ACGGAAAGACGTTCTTCGACGTAC -ACGGAAAGACGTTCTTCGAGTGAC -ACGGAAAGACGTTCTTCGCTGTAG -ACGGAAAGACGTTCTTCGCCTAAG -ACGGAAAGACGTTCTTCGGTTCAG -ACGGAAAGACGTTCTTCGGCATAG -ACGGAAAGACGTTCTTCGGACAAG -ACGGAAAGACGTTCTTCGAAGCAG -ACGGAAAGACGTTCTTCGCGTCAA -ACGGAAAGACGTTCTTCGGCTGAA -ACGGAAAGACGTTCTTCGAGTACG -ACGGAAAGACGTTCTTCGATCCGA -ACGGAAAGACGTTCTTCGATGGGA -ACGGAAAGACGTTCTTCGGTGCAA -ACGGAAAGACGTTCTTCGGAGGAA -ACGGAAAGACGTTCTTCGCAGGTA -ACGGAAAGACGTTCTTCGGACTCT -ACGGAAAGACGTTCTTCGAGTCCT -ACGGAAAGACGTTCTTCGTAAGCC -ACGGAAAGACGTTCTTCGATAGCC -ACGGAAAGACGTTCTTCGTAACCG -ACGGAAAGACGTTCTTCGATGCCA -ACGGAAAGACGTACTTGCGGAAAC -ACGGAAAGACGTACTTGCAACACC -ACGGAAAGACGTACTTGCATCGAG -ACGGAAAGACGTACTTGCCTCCTT -ACGGAAAGACGTACTTGCCCTGTT -ACGGAAAGACGTACTTGCCGGTTT -ACGGAAAGACGTACTTGCGTGGTT -ACGGAAAGACGTACTTGCGCCTTT -ACGGAAAGACGTACTTGCGGTCTT -ACGGAAAGACGTACTTGCACGCTT -ACGGAAAGACGTACTTGCAGCGTT -ACGGAAAGACGTACTTGCTTCGTC -ACGGAAAGACGTACTTGCTCTCTC -ACGGAAAGACGTACTTGCTGGATC -ACGGAAAGACGTACTTGCCACTTC -ACGGAAAGACGTACTTGCGTACTC -ACGGAAAGACGTACTTGCGATGTC -ACGGAAAGACGTACTTGCACAGTC -ACGGAAAGACGTACTTGCTTGCTG -ACGGAAAGACGTACTTGCTCCATG -ACGGAAAGACGTACTTGCTGTGTG -ACGGAAAGACGTACTTGCCTAGTG -ACGGAAAGACGTACTTGCCATCTG -ACGGAAAGACGTACTTGCGAGTTG -ACGGAAAGACGTACTTGCAGACTG -ACGGAAAGACGTACTTGCTCGGTA -ACGGAAAGACGTACTTGCTGCCTA -ACGGAAAGACGTACTTGCCCACTA -ACGGAAAGACGTACTTGCGGAGTA -ACGGAAAGACGTACTTGCTCGTCT -ACGGAAAGACGTACTTGCTGCACT -ACGGAAAGACGTACTTGCCTGACT -ACGGAAAGACGTACTTGCCAACCT -ACGGAAAGACGTACTTGCGCTACT -ACGGAAAGACGTACTTGCGGATCT -ACGGAAAGACGTACTTGCAAGGCT -ACGGAAAGACGTACTTGCTCAACC -ACGGAAAGACGTACTTGCTGTTCC -ACGGAAAGACGTACTTGCATTCCC -ACGGAAAGACGTACTTGCTTCTCG -ACGGAAAGACGTACTTGCTAGACG -ACGGAAAGACGTACTTGCGTAACG -ACGGAAAGACGTACTTGCACTTCG -ACGGAAAGACGTACTTGCTACGCA -ACGGAAAGACGTACTTGCCTTGCA -ACGGAAAGACGTACTTGCCGAACA -ACGGAAAGACGTACTTGCCAGTCA -ACGGAAAGACGTACTTGCGATCCA -ACGGAAAGACGTACTTGCACGACA -ACGGAAAGACGTACTTGCAGCTCA -ACGGAAAGACGTACTTGCTCACGT -ACGGAAAGACGTACTTGCCGTAGT -ACGGAAAGACGTACTTGCGTCAGT -ACGGAAAGACGTACTTGCGAAGGT -ACGGAAAGACGTACTTGCAACCGT -ACGGAAAGACGTACTTGCTTGTGC -ACGGAAAGACGTACTTGCCTAAGC -ACGGAAAGACGTACTTGCACTAGC -ACGGAAAGACGTACTTGCAGATGC -ACGGAAAGACGTACTTGCTGAAGG -ACGGAAAGACGTACTTGCCAATGG -ACGGAAAGACGTACTTGCATGAGG -ACGGAAAGACGTACTTGCAATGGG -ACGGAAAGACGTACTTGCTCCTGA -ACGGAAAGACGTACTTGCTAGCGA -ACGGAAAGACGTACTTGCCACAGA -ACGGAAAGACGTACTTGCGCAAGA -ACGGAAAGACGTACTTGCGGTTGA -ACGGAAAGACGTACTTGCTCCGAT -ACGGAAAGACGTACTTGCTGGCAT -ACGGAAAGACGTACTTGCCGAGAT -ACGGAAAGACGTACTTGCTACCAC -ACGGAAAGACGTACTTGCCAGAAC -ACGGAAAGACGTACTTGCGTCTAC -ACGGAAAGACGTACTTGCACGTAC -ACGGAAAGACGTACTTGCAGTGAC -ACGGAAAGACGTACTTGCCTGTAG -ACGGAAAGACGTACTTGCCCTAAG -ACGGAAAGACGTACTTGCGTTCAG -ACGGAAAGACGTACTTGCGCATAG -ACGGAAAGACGTACTTGCGACAAG -ACGGAAAGACGTACTTGCAAGCAG -ACGGAAAGACGTACTTGCCGTCAA -ACGGAAAGACGTACTTGCGCTGAA -ACGGAAAGACGTACTTGCAGTACG -ACGGAAAGACGTACTTGCATCCGA -ACGGAAAGACGTACTTGCATGGGA -ACGGAAAGACGTACTTGCGTGCAA -ACGGAAAGACGTACTTGCGAGGAA -ACGGAAAGACGTACTTGCCAGGTA -ACGGAAAGACGTACTTGCGACTCT -ACGGAAAGACGTACTTGCAGTCCT -ACGGAAAGACGTACTTGCTAAGCC -ACGGAAAGACGTACTTGCATAGCC -ACGGAAAGACGTACTTGCTAACCG -ACGGAAAGACGTACTTGCATGCCA -ACGGAAAGACGTACTCTGGGAAAC -ACGGAAAGACGTACTCTGAACACC -ACGGAAAGACGTACTCTGATCGAG -ACGGAAAGACGTACTCTGCTCCTT -ACGGAAAGACGTACTCTGCCTGTT -ACGGAAAGACGTACTCTGCGGTTT -ACGGAAAGACGTACTCTGGTGGTT -ACGGAAAGACGTACTCTGGCCTTT -ACGGAAAGACGTACTCTGGGTCTT -ACGGAAAGACGTACTCTGACGCTT -ACGGAAAGACGTACTCTGAGCGTT -ACGGAAAGACGTACTCTGTTCGTC -ACGGAAAGACGTACTCTGTCTCTC -ACGGAAAGACGTACTCTGTGGATC -ACGGAAAGACGTACTCTGCACTTC -ACGGAAAGACGTACTCTGGTACTC -ACGGAAAGACGTACTCTGGATGTC -ACGGAAAGACGTACTCTGACAGTC -ACGGAAAGACGTACTCTGTTGCTG -ACGGAAAGACGTACTCTGTCCATG -ACGGAAAGACGTACTCTGTGTGTG -ACGGAAAGACGTACTCTGCTAGTG -ACGGAAAGACGTACTCTGCATCTG -ACGGAAAGACGTACTCTGGAGTTG -ACGGAAAGACGTACTCTGAGACTG -ACGGAAAGACGTACTCTGTCGGTA -ACGGAAAGACGTACTCTGTGCCTA -ACGGAAAGACGTACTCTGCCACTA -ACGGAAAGACGTACTCTGGGAGTA -ACGGAAAGACGTACTCTGTCGTCT -ACGGAAAGACGTACTCTGTGCACT -ACGGAAAGACGTACTCTGCTGACT -ACGGAAAGACGTACTCTGCAACCT -ACGGAAAGACGTACTCTGGCTACT -ACGGAAAGACGTACTCTGGGATCT -ACGGAAAGACGTACTCTGAAGGCT -ACGGAAAGACGTACTCTGTCAACC -ACGGAAAGACGTACTCTGTGTTCC -ACGGAAAGACGTACTCTGATTCCC -ACGGAAAGACGTACTCTGTTCTCG -ACGGAAAGACGTACTCTGTAGACG -ACGGAAAGACGTACTCTGGTAACG -ACGGAAAGACGTACTCTGACTTCG -ACGGAAAGACGTACTCTGTACGCA -ACGGAAAGACGTACTCTGCTTGCA -ACGGAAAGACGTACTCTGCGAACA -ACGGAAAGACGTACTCTGCAGTCA -ACGGAAAGACGTACTCTGGATCCA -ACGGAAAGACGTACTCTGACGACA -ACGGAAAGACGTACTCTGAGCTCA -ACGGAAAGACGTACTCTGTCACGT -ACGGAAAGACGTACTCTGCGTAGT -ACGGAAAGACGTACTCTGGTCAGT -ACGGAAAGACGTACTCTGGAAGGT -ACGGAAAGACGTACTCTGAACCGT -ACGGAAAGACGTACTCTGTTGTGC -ACGGAAAGACGTACTCTGCTAAGC -ACGGAAAGACGTACTCTGACTAGC -ACGGAAAGACGTACTCTGAGATGC -ACGGAAAGACGTACTCTGTGAAGG -ACGGAAAGACGTACTCTGCAATGG -ACGGAAAGACGTACTCTGATGAGG -ACGGAAAGACGTACTCTGAATGGG -ACGGAAAGACGTACTCTGTCCTGA -ACGGAAAGACGTACTCTGTAGCGA -ACGGAAAGACGTACTCTGCACAGA -ACGGAAAGACGTACTCTGGCAAGA -ACGGAAAGACGTACTCTGGGTTGA -ACGGAAAGACGTACTCTGTCCGAT -ACGGAAAGACGTACTCTGTGGCAT -ACGGAAAGACGTACTCTGCGAGAT -ACGGAAAGACGTACTCTGTACCAC -ACGGAAAGACGTACTCTGCAGAAC -ACGGAAAGACGTACTCTGGTCTAC -ACGGAAAGACGTACTCTGACGTAC -ACGGAAAGACGTACTCTGAGTGAC -ACGGAAAGACGTACTCTGCTGTAG -ACGGAAAGACGTACTCTGCCTAAG -ACGGAAAGACGTACTCTGGTTCAG -ACGGAAAGACGTACTCTGGCATAG -ACGGAAAGACGTACTCTGGACAAG -ACGGAAAGACGTACTCTGAAGCAG -ACGGAAAGACGTACTCTGCGTCAA -ACGGAAAGACGTACTCTGGCTGAA -ACGGAAAGACGTACTCTGAGTACG -ACGGAAAGACGTACTCTGATCCGA -ACGGAAAGACGTACTCTGATGGGA -ACGGAAAGACGTACTCTGGTGCAA -ACGGAAAGACGTACTCTGGAGGAA -ACGGAAAGACGTACTCTGCAGGTA -ACGGAAAGACGTACTCTGGACTCT -ACGGAAAGACGTACTCTGAGTCCT -ACGGAAAGACGTACTCTGTAAGCC -ACGGAAAGACGTACTCTGATAGCC -ACGGAAAGACGTACTCTGTAACCG -ACGGAAAGACGTACTCTGATGCCA -ACGGAAAGACGTCCTCAAGGAAAC -ACGGAAAGACGTCCTCAAAACACC -ACGGAAAGACGTCCTCAAATCGAG -ACGGAAAGACGTCCTCAACTCCTT -ACGGAAAGACGTCCTCAACCTGTT -ACGGAAAGACGTCCTCAACGGTTT -ACGGAAAGACGTCCTCAAGTGGTT -ACGGAAAGACGTCCTCAAGCCTTT -ACGGAAAGACGTCCTCAAGGTCTT -ACGGAAAGACGTCCTCAAACGCTT -ACGGAAAGACGTCCTCAAAGCGTT -ACGGAAAGACGTCCTCAATTCGTC -ACGGAAAGACGTCCTCAATCTCTC -ACGGAAAGACGTCCTCAATGGATC -ACGGAAAGACGTCCTCAACACTTC -ACGGAAAGACGTCCTCAAGTACTC -ACGGAAAGACGTCCTCAAGATGTC -ACGGAAAGACGTCCTCAAACAGTC -ACGGAAAGACGTCCTCAATTGCTG -ACGGAAAGACGTCCTCAATCCATG -ACGGAAAGACGTCCTCAATGTGTG -ACGGAAAGACGTCCTCAACTAGTG -ACGGAAAGACGTCCTCAACATCTG -ACGGAAAGACGTCCTCAAGAGTTG -ACGGAAAGACGTCCTCAAAGACTG -ACGGAAAGACGTCCTCAATCGGTA -ACGGAAAGACGTCCTCAATGCCTA -ACGGAAAGACGTCCTCAACCACTA -ACGGAAAGACGTCCTCAAGGAGTA -ACGGAAAGACGTCCTCAATCGTCT -ACGGAAAGACGTCCTCAATGCACT -ACGGAAAGACGTCCTCAACTGACT -ACGGAAAGACGTCCTCAACAACCT -ACGGAAAGACGTCCTCAAGCTACT -ACGGAAAGACGTCCTCAAGGATCT -ACGGAAAGACGTCCTCAAAAGGCT -ACGGAAAGACGTCCTCAATCAACC -ACGGAAAGACGTCCTCAATGTTCC -ACGGAAAGACGTCCTCAAATTCCC -ACGGAAAGACGTCCTCAATTCTCG -ACGGAAAGACGTCCTCAATAGACG -ACGGAAAGACGTCCTCAAGTAACG -ACGGAAAGACGTCCTCAAACTTCG -ACGGAAAGACGTCCTCAATACGCA -ACGGAAAGACGTCCTCAACTTGCA -ACGGAAAGACGTCCTCAACGAACA -ACGGAAAGACGTCCTCAACAGTCA -ACGGAAAGACGTCCTCAAGATCCA -ACGGAAAGACGTCCTCAAACGACA -ACGGAAAGACGTCCTCAAAGCTCA -ACGGAAAGACGTCCTCAATCACGT -ACGGAAAGACGTCCTCAACGTAGT -ACGGAAAGACGTCCTCAAGTCAGT -ACGGAAAGACGTCCTCAAGAAGGT -ACGGAAAGACGTCCTCAAAACCGT -ACGGAAAGACGTCCTCAATTGTGC -ACGGAAAGACGTCCTCAACTAAGC -ACGGAAAGACGTCCTCAAACTAGC -ACGGAAAGACGTCCTCAAAGATGC -ACGGAAAGACGTCCTCAATGAAGG -ACGGAAAGACGTCCTCAACAATGG -ACGGAAAGACGTCCTCAAATGAGG -ACGGAAAGACGTCCTCAAAATGGG -ACGGAAAGACGTCCTCAATCCTGA -ACGGAAAGACGTCCTCAATAGCGA -ACGGAAAGACGTCCTCAACACAGA -ACGGAAAGACGTCCTCAAGCAAGA -ACGGAAAGACGTCCTCAAGGTTGA -ACGGAAAGACGTCCTCAATCCGAT -ACGGAAAGACGTCCTCAATGGCAT -ACGGAAAGACGTCCTCAACGAGAT -ACGGAAAGACGTCCTCAATACCAC -ACGGAAAGACGTCCTCAACAGAAC -ACGGAAAGACGTCCTCAAGTCTAC -ACGGAAAGACGTCCTCAAACGTAC -ACGGAAAGACGTCCTCAAAGTGAC -ACGGAAAGACGTCCTCAACTGTAG -ACGGAAAGACGTCCTCAACCTAAG -ACGGAAAGACGTCCTCAAGTTCAG -ACGGAAAGACGTCCTCAAGCATAG -ACGGAAAGACGTCCTCAAGACAAG -ACGGAAAGACGTCCTCAAAAGCAG -ACGGAAAGACGTCCTCAACGTCAA -ACGGAAAGACGTCCTCAAGCTGAA -ACGGAAAGACGTCCTCAAAGTACG -ACGGAAAGACGTCCTCAAATCCGA -ACGGAAAGACGTCCTCAAATGGGA -ACGGAAAGACGTCCTCAAGTGCAA -ACGGAAAGACGTCCTCAAGAGGAA -ACGGAAAGACGTCCTCAACAGGTA -ACGGAAAGACGTCCTCAAGACTCT -ACGGAAAGACGTCCTCAAAGTCCT -ACGGAAAGACGTCCTCAATAAGCC -ACGGAAAGACGTCCTCAAATAGCC -ACGGAAAGACGTCCTCAATAACCG -ACGGAAAGACGTCCTCAAATGCCA -ACGGAAAGACGTACTGCTGGAAAC -ACGGAAAGACGTACTGCTAACACC -ACGGAAAGACGTACTGCTATCGAG -ACGGAAAGACGTACTGCTCTCCTT -ACGGAAAGACGTACTGCTCCTGTT -ACGGAAAGACGTACTGCTCGGTTT -ACGGAAAGACGTACTGCTGTGGTT -ACGGAAAGACGTACTGCTGCCTTT -ACGGAAAGACGTACTGCTGGTCTT -ACGGAAAGACGTACTGCTACGCTT -ACGGAAAGACGTACTGCTAGCGTT -ACGGAAAGACGTACTGCTTTCGTC -ACGGAAAGACGTACTGCTTCTCTC -ACGGAAAGACGTACTGCTTGGATC -ACGGAAAGACGTACTGCTCACTTC -ACGGAAAGACGTACTGCTGTACTC -ACGGAAAGACGTACTGCTGATGTC -ACGGAAAGACGTACTGCTACAGTC -ACGGAAAGACGTACTGCTTTGCTG -ACGGAAAGACGTACTGCTTCCATG -ACGGAAAGACGTACTGCTTGTGTG -ACGGAAAGACGTACTGCTCTAGTG -ACGGAAAGACGTACTGCTCATCTG -ACGGAAAGACGTACTGCTGAGTTG -ACGGAAAGACGTACTGCTAGACTG -ACGGAAAGACGTACTGCTTCGGTA -ACGGAAAGACGTACTGCTTGCCTA -ACGGAAAGACGTACTGCTCCACTA -ACGGAAAGACGTACTGCTGGAGTA -ACGGAAAGACGTACTGCTTCGTCT -ACGGAAAGACGTACTGCTTGCACT -ACGGAAAGACGTACTGCTCTGACT -ACGGAAAGACGTACTGCTCAACCT -ACGGAAAGACGTACTGCTGCTACT -ACGGAAAGACGTACTGCTGGATCT -ACGGAAAGACGTACTGCTAAGGCT -ACGGAAAGACGTACTGCTTCAACC -ACGGAAAGACGTACTGCTTGTTCC -ACGGAAAGACGTACTGCTATTCCC -ACGGAAAGACGTACTGCTTTCTCG -ACGGAAAGACGTACTGCTTAGACG -ACGGAAAGACGTACTGCTGTAACG -ACGGAAAGACGTACTGCTACTTCG -ACGGAAAGACGTACTGCTTACGCA -ACGGAAAGACGTACTGCTCTTGCA -ACGGAAAGACGTACTGCTCGAACA -ACGGAAAGACGTACTGCTCAGTCA -ACGGAAAGACGTACTGCTGATCCA -ACGGAAAGACGTACTGCTACGACA -ACGGAAAGACGTACTGCTAGCTCA -ACGGAAAGACGTACTGCTTCACGT -ACGGAAAGACGTACTGCTCGTAGT -ACGGAAAGACGTACTGCTGTCAGT -ACGGAAAGACGTACTGCTGAAGGT -ACGGAAAGACGTACTGCTAACCGT -ACGGAAAGACGTACTGCTTTGTGC -ACGGAAAGACGTACTGCTCTAAGC -ACGGAAAGACGTACTGCTACTAGC -ACGGAAAGACGTACTGCTAGATGC -ACGGAAAGACGTACTGCTTGAAGG -ACGGAAAGACGTACTGCTCAATGG -ACGGAAAGACGTACTGCTATGAGG -ACGGAAAGACGTACTGCTAATGGG -ACGGAAAGACGTACTGCTTCCTGA -ACGGAAAGACGTACTGCTTAGCGA -ACGGAAAGACGTACTGCTCACAGA -ACGGAAAGACGTACTGCTGCAAGA -ACGGAAAGACGTACTGCTGGTTGA -ACGGAAAGACGTACTGCTTCCGAT -ACGGAAAGACGTACTGCTTGGCAT -ACGGAAAGACGTACTGCTCGAGAT -ACGGAAAGACGTACTGCTTACCAC -ACGGAAAGACGTACTGCTCAGAAC -ACGGAAAGACGTACTGCTGTCTAC -ACGGAAAGACGTACTGCTACGTAC -ACGGAAAGACGTACTGCTAGTGAC -ACGGAAAGACGTACTGCTCTGTAG -ACGGAAAGACGTACTGCTCCTAAG -ACGGAAAGACGTACTGCTGTTCAG -ACGGAAAGACGTACTGCTGCATAG -ACGGAAAGACGTACTGCTGACAAG -ACGGAAAGACGTACTGCTAAGCAG -ACGGAAAGACGTACTGCTCGTCAA -ACGGAAAGACGTACTGCTGCTGAA -ACGGAAAGACGTACTGCTAGTACG -ACGGAAAGACGTACTGCTATCCGA -ACGGAAAGACGTACTGCTATGGGA -ACGGAAAGACGTACTGCTGTGCAA -ACGGAAAGACGTACTGCTGAGGAA -ACGGAAAGACGTACTGCTCAGGTA -ACGGAAAGACGTACTGCTGACTCT -ACGGAAAGACGTACTGCTAGTCCT -ACGGAAAGACGTACTGCTTAAGCC -ACGGAAAGACGTACTGCTATAGCC -ACGGAAAGACGTACTGCTTAACCG -ACGGAAAGACGTACTGCTATGCCA -ACGGAAAGACGTTCTGGAGGAAAC -ACGGAAAGACGTTCTGGAAACACC -ACGGAAAGACGTTCTGGAATCGAG -ACGGAAAGACGTTCTGGACTCCTT -ACGGAAAGACGTTCTGGACCTGTT -ACGGAAAGACGTTCTGGACGGTTT -ACGGAAAGACGTTCTGGAGTGGTT -ACGGAAAGACGTTCTGGAGCCTTT -ACGGAAAGACGTTCTGGAGGTCTT -ACGGAAAGACGTTCTGGAACGCTT -ACGGAAAGACGTTCTGGAAGCGTT -ACGGAAAGACGTTCTGGATTCGTC -ACGGAAAGACGTTCTGGATCTCTC -ACGGAAAGACGTTCTGGATGGATC -ACGGAAAGACGTTCTGGACACTTC -ACGGAAAGACGTTCTGGAGTACTC -ACGGAAAGACGTTCTGGAGATGTC -ACGGAAAGACGTTCTGGAACAGTC -ACGGAAAGACGTTCTGGATTGCTG -ACGGAAAGACGTTCTGGATCCATG -ACGGAAAGACGTTCTGGATGTGTG -ACGGAAAGACGTTCTGGACTAGTG -ACGGAAAGACGTTCTGGACATCTG -ACGGAAAGACGTTCTGGAGAGTTG -ACGGAAAGACGTTCTGGAAGACTG -ACGGAAAGACGTTCTGGATCGGTA -ACGGAAAGACGTTCTGGATGCCTA -ACGGAAAGACGTTCTGGACCACTA -ACGGAAAGACGTTCTGGAGGAGTA -ACGGAAAGACGTTCTGGATCGTCT -ACGGAAAGACGTTCTGGATGCACT -ACGGAAAGACGTTCTGGACTGACT -ACGGAAAGACGTTCTGGACAACCT -ACGGAAAGACGTTCTGGAGCTACT -ACGGAAAGACGTTCTGGAGGATCT -ACGGAAAGACGTTCTGGAAAGGCT -ACGGAAAGACGTTCTGGATCAACC -ACGGAAAGACGTTCTGGATGTTCC -ACGGAAAGACGTTCTGGAATTCCC -ACGGAAAGACGTTCTGGATTCTCG -ACGGAAAGACGTTCTGGATAGACG -ACGGAAAGACGTTCTGGAGTAACG -ACGGAAAGACGTTCTGGAACTTCG -ACGGAAAGACGTTCTGGATACGCA -ACGGAAAGACGTTCTGGACTTGCA -ACGGAAAGACGTTCTGGACGAACA -ACGGAAAGACGTTCTGGACAGTCA -ACGGAAAGACGTTCTGGAGATCCA -ACGGAAAGACGTTCTGGAACGACA -ACGGAAAGACGTTCTGGAAGCTCA -ACGGAAAGACGTTCTGGATCACGT -ACGGAAAGACGTTCTGGACGTAGT -ACGGAAAGACGTTCTGGAGTCAGT -ACGGAAAGACGTTCTGGAGAAGGT -ACGGAAAGACGTTCTGGAAACCGT -ACGGAAAGACGTTCTGGATTGTGC -ACGGAAAGACGTTCTGGACTAAGC -ACGGAAAGACGTTCTGGAACTAGC -ACGGAAAGACGTTCTGGAAGATGC -ACGGAAAGACGTTCTGGATGAAGG -ACGGAAAGACGTTCTGGACAATGG -ACGGAAAGACGTTCTGGAATGAGG -ACGGAAAGACGTTCTGGAAATGGG -ACGGAAAGACGTTCTGGATCCTGA -ACGGAAAGACGTTCTGGATAGCGA -ACGGAAAGACGTTCTGGACACAGA -ACGGAAAGACGTTCTGGAGCAAGA -ACGGAAAGACGTTCTGGAGGTTGA -ACGGAAAGACGTTCTGGATCCGAT -ACGGAAAGACGTTCTGGATGGCAT -ACGGAAAGACGTTCTGGACGAGAT -ACGGAAAGACGTTCTGGATACCAC -ACGGAAAGACGTTCTGGACAGAAC -ACGGAAAGACGTTCTGGAGTCTAC -ACGGAAAGACGTTCTGGAACGTAC -ACGGAAAGACGTTCTGGAAGTGAC -ACGGAAAGACGTTCTGGACTGTAG -ACGGAAAGACGTTCTGGACCTAAG -ACGGAAAGACGTTCTGGAGTTCAG -ACGGAAAGACGTTCTGGAGCATAG -ACGGAAAGACGTTCTGGAGACAAG -ACGGAAAGACGTTCTGGAAAGCAG -ACGGAAAGACGTTCTGGACGTCAA -ACGGAAAGACGTTCTGGAGCTGAA -ACGGAAAGACGTTCTGGAAGTACG -ACGGAAAGACGTTCTGGAATCCGA -ACGGAAAGACGTTCTGGAATGGGA -ACGGAAAGACGTTCTGGAGTGCAA -ACGGAAAGACGTTCTGGAGAGGAA -ACGGAAAGACGTTCTGGACAGGTA -ACGGAAAGACGTTCTGGAGACTCT -ACGGAAAGACGTTCTGGAAGTCCT -ACGGAAAGACGTTCTGGATAAGCC -ACGGAAAGACGTTCTGGAATAGCC -ACGGAAAGACGTTCTGGATAACCG -ACGGAAAGACGTTCTGGAATGCCA -ACGGAAAGACGTGCTAAGGGAAAC -ACGGAAAGACGTGCTAAGAACACC -ACGGAAAGACGTGCTAAGATCGAG -ACGGAAAGACGTGCTAAGCTCCTT -ACGGAAAGACGTGCTAAGCCTGTT -ACGGAAAGACGTGCTAAGCGGTTT -ACGGAAAGACGTGCTAAGGTGGTT -ACGGAAAGACGTGCTAAGGCCTTT -ACGGAAAGACGTGCTAAGGGTCTT -ACGGAAAGACGTGCTAAGACGCTT -ACGGAAAGACGTGCTAAGAGCGTT -ACGGAAAGACGTGCTAAGTTCGTC -ACGGAAAGACGTGCTAAGTCTCTC -ACGGAAAGACGTGCTAAGTGGATC -ACGGAAAGACGTGCTAAGCACTTC -ACGGAAAGACGTGCTAAGGTACTC -ACGGAAAGACGTGCTAAGGATGTC -ACGGAAAGACGTGCTAAGACAGTC -ACGGAAAGACGTGCTAAGTTGCTG -ACGGAAAGACGTGCTAAGTCCATG -ACGGAAAGACGTGCTAAGTGTGTG -ACGGAAAGACGTGCTAAGCTAGTG -ACGGAAAGACGTGCTAAGCATCTG -ACGGAAAGACGTGCTAAGGAGTTG -ACGGAAAGACGTGCTAAGAGACTG -ACGGAAAGACGTGCTAAGTCGGTA -ACGGAAAGACGTGCTAAGTGCCTA -ACGGAAAGACGTGCTAAGCCACTA -ACGGAAAGACGTGCTAAGGGAGTA -ACGGAAAGACGTGCTAAGTCGTCT -ACGGAAAGACGTGCTAAGTGCACT -ACGGAAAGACGTGCTAAGCTGACT -ACGGAAAGACGTGCTAAGCAACCT -ACGGAAAGACGTGCTAAGGCTACT -ACGGAAAGACGTGCTAAGGGATCT -ACGGAAAGACGTGCTAAGAAGGCT -ACGGAAAGACGTGCTAAGTCAACC -ACGGAAAGACGTGCTAAGTGTTCC -ACGGAAAGACGTGCTAAGATTCCC -ACGGAAAGACGTGCTAAGTTCTCG -ACGGAAAGACGTGCTAAGTAGACG -ACGGAAAGACGTGCTAAGGTAACG -ACGGAAAGACGTGCTAAGACTTCG -ACGGAAAGACGTGCTAAGTACGCA -ACGGAAAGACGTGCTAAGCTTGCA -ACGGAAAGACGTGCTAAGCGAACA -ACGGAAAGACGTGCTAAGCAGTCA -ACGGAAAGACGTGCTAAGGATCCA -ACGGAAAGACGTGCTAAGACGACA -ACGGAAAGACGTGCTAAGAGCTCA -ACGGAAAGACGTGCTAAGTCACGT -ACGGAAAGACGTGCTAAGCGTAGT -ACGGAAAGACGTGCTAAGGTCAGT -ACGGAAAGACGTGCTAAGGAAGGT -ACGGAAAGACGTGCTAAGAACCGT -ACGGAAAGACGTGCTAAGTTGTGC -ACGGAAAGACGTGCTAAGCTAAGC -ACGGAAAGACGTGCTAAGACTAGC -ACGGAAAGACGTGCTAAGAGATGC -ACGGAAAGACGTGCTAAGTGAAGG -ACGGAAAGACGTGCTAAGCAATGG -ACGGAAAGACGTGCTAAGATGAGG -ACGGAAAGACGTGCTAAGAATGGG -ACGGAAAGACGTGCTAAGTCCTGA -ACGGAAAGACGTGCTAAGTAGCGA -ACGGAAAGACGTGCTAAGCACAGA -ACGGAAAGACGTGCTAAGGCAAGA -ACGGAAAGACGTGCTAAGGGTTGA -ACGGAAAGACGTGCTAAGTCCGAT -ACGGAAAGACGTGCTAAGTGGCAT -ACGGAAAGACGTGCTAAGCGAGAT -ACGGAAAGACGTGCTAAGTACCAC -ACGGAAAGACGTGCTAAGCAGAAC -ACGGAAAGACGTGCTAAGGTCTAC -ACGGAAAGACGTGCTAAGACGTAC -ACGGAAAGACGTGCTAAGAGTGAC -ACGGAAAGACGTGCTAAGCTGTAG -ACGGAAAGACGTGCTAAGCCTAAG -ACGGAAAGACGTGCTAAGGTTCAG -ACGGAAAGACGTGCTAAGGCATAG -ACGGAAAGACGTGCTAAGGACAAG -ACGGAAAGACGTGCTAAGAAGCAG -ACGGAAAGACGTGCTAAGCGTCAA -ACGGAAAGACGTGCTAAGGCTGAA -ACGGAAAGACGTGCTAAGAGTACG -ACGGAAAGACGTGCTAAGATCCGA -ACGGAAAGACGTGCTAAGATGGGA -ACGGAAAGACGTGCTAAGGTGCAA -ACGGAAAGACGTGCTAAGGAGGAA -ACGGAAAGACGTGCTAAGCAGGTA -ACGGAAAGACGTGCTAAGGACTCT -ACGGAAAGACGTGCTAAGAGTCCT -ACGGAAAGACGTGCTAAGTAAGCC -ACGGAAAGACGTGCTAAGATAGCC -ACGGAAAGACGTGCTAAGTAACCG -ACGGAAAGACGTGCTAAGATGCCA -ACGGAAAGACGTACCTCAGGAAAC -ACGGAAAGACGTACCTCAAACACC -ACGGAAAGACGTACCTCAATCGAG -ACGGAAAGACGTACCTCACTCCTT -ACGGAAAGACGTACCTCACCTGTT -ACGGAAAGACGTACCTCACGGTTT -ACGGAAAGACGTACCTCAGTGGTT -ACGGAAAGACGTACCTCAGCCTTT -ACGGAAAGACGTACCTCAGGTCTT -ACGGAAAGACGTACCTCAACGCTT -ACGGAAAGACGTACCTCAAGCGTT -ACGGAAAGACGTACCTCATTCGTC -ACGGAAAGACGTACCTCATCTCTC -ACGGAAAGACGTACCTCATGGATC -ACGGAAAGACGTACCTCACACTTC -ACGGAAAGACGTACCTCAGTACTC -ACGGAAAGACGTACCTCAGATGTC -ACGGAAAGACGTACCTCAACAGTC -ACGGAAAGACGTACCTCATTGCTG -ACGGAAAGACGTACCTCATCCATG -ACGGAAAGACGTACCTCATGTGTG -ACGGAAAGACGTACCTCACTAGTG -ACGGAAAGACGTACCTCACATCTG -ACGGAAAGACGTACCTCAGAGTTG -ACGGAAAGACGTACCTCAAGACTG -ACGGAAAGACGTACCTCATCGGTA -ACGGAAAGACGTACCTCATGCCTA -ACGGAAAGACGTACCTCACCACTA -ACGGAAAGACGTACCTCAGGAGTA -ACGGAAAGACGTACCTCATCGTCT -ACGGAAAGACGTACCTCATGCACT -ACGGAAAGACGTACCTCACTGACT -ACGGAAAGACGTACCTCACAACCT -ACGGAAAGACGTACCTCAGCTACT -ACGGAAAGACGTACCTCAGGATCT -ACGGAAAGACGTACCTCAAAGGCT -ACGGAAAGACGTACCTCATCAACC -ACGGAAAGACGTACCTCATGTTCC -ACGGAAAGACGTACCTCAATTCCC -ACGGAAAGACGTACCTCATTCTCG -ACGGAAAGACGTACCTCATAGACG -ACGGAAAGACGTACCTCAGTAACG -ACGGAAAGACGTACCTCAACTTCG -ACGGAAAGACGTACCTCATACGCA -ACGGAAAGACGTACCTCACTTGCA -ACGGAAAGACGTACCTCACGAACA -ACGGAAAGACGTACCTCACAGTCA -ACGGAAAGACGTACCTCAGATCCA -ACGGAAAGACGTACCTCAACGACA -ACGGAAAGACGTACCTCAAGCTCA -ACGGAAAGACGTACCTCATCACGT -ACGGAAAGACGTACCTCACGTAGT -ACGGAAAGACGTACCTCAGTCAGT -ACGGAAAGACGTACCTCAGAAGGT -ACGGAAAGACGTACCTCAAACCGT -ACGGAAAGACGTACCTCATTGTGC -ACGGAAAGACGTACCTCACTAAGC -ACGGAAAGACGTACCTCAACTAGC -ACGGAAAGACGTACCTCAAGATGC -ACGGAAAGACGTACCTCATGAAGG -ACGGAAAGACGTACCTCACAATGG -ACGGAAAGACGTACCTCAATGAGG -ACGGAAAGACGTACCTCAAATGGG -ACGGAAAGACGTACCTCATCCTGA -ACGGAAAGACGTACCTCATAGCGA -ACGGAAAGACGTACCTCACACAGA -ACGGAAAGACGTACCTCAGCAAGA -ACGGAAAGACGTACCTCAGGTTGA -ACGGAAAGACGTACCTCATCCGAT -ACGGAAAGACGTACCTCATGGCAT -ACGGAAAGACGTACCTCACGAGAT -ACGGAAAGACGTACCTCATACCAC -ACGGAAAGACGTACCTCACAGAAC -ACGGAAAGACGTACCTCAGTCTAC -ACGGAAAGACGTACCTCAACGTAC -ACGGAAAGACGTACCTCAAGTGAC -ACGGAAAGACGTACCTCACTGTAG -ACGGAAAGACGTACCTCACCTAAG -ACGGAAAGACGTACCTCAGTTCAG -ACGGAAAGACGTACCTCAGCATAG -ACGGAAAGACGTACCTCAGACAAG -ACGGAAAGACGTACCTCAAAGCAG -ACGGAAAGACGTACCTCACGTCAA -ACGGAAAGACGTACCTCAGCTGAA -ACGGAAAGACGTACCTCAAGTACG -ACGGAAAGACGTACCTCAATCCGA -ACGGAAAGACGTACCTCAATGGGA -ACGGAAAGACGTACCTCAGTGCAA -ACGGAAAGACGTACCTCAGAGGAA -ACGGAAAGACGTACCTCACAGGTA -ACGGAAAGACGTACCTCAGACTCT -ACGGAAAGACGTACCTCAAGTCCT -ACGGAAAGACGTACCTCATAAGCC -ACGGAAAGACGTACCTCAATAGCC -ACGGAAAGACGTACCTCATAACCG -ACGGAAAGACGTACCTCAATGCCA -ACGGAAAGACGTTCCTGTGGAAAC -ACGGAAAGACGTTCCTGTAACACC -ACGGAAAGACGTTCCTGTATCGAG -ACGGAAAGACGTTCCTGTCTCCTT -ACGGAAAGACGTTCCTGTCCTGTT -ACGGAAAGACGTTCCTGTCGGTTT -ACGGAAAGACGTTCCTGTGTGGTT -ACGGAAAGACGTTCCTGTGCCTTT -ACGGAAAGACGTTCCTGTGGTCTT -ACGGAAAGACGTTCCTGTACGCTT -ACGGAAAGACGTTCCTGTAGCGTT -ACGGAAAGACGTTCCTGTTTCGTC -ACGGAAAGACGTTCCTGTTCTCTC -ACGGAAAGACGTTCCTGTTGGATC -ACGGAAAGACGTTCCTGTCACTTC -ACGGAAAGACGTTCCTGTGTACTC -ACGGAAAGACGTTCCTGTGATGTC -ACGGAAAGACGTTCCTGTACAGTC -ACGGAAAGACGTTCCTGTTTGCTG -ACGGAAAGACGTTCCTGTTCCATG -ACGGAAAGACGTTCCTGTTGTGTG -ACGGAAAGACGTTCCTGTCTAGTG -ACGGAAAGACGTTCCTGTCATCTG -ACGGAAAGACGTTCCTGTGAGTTG -ACGGAAAGACGTTCCTGTAGACTG -ACGGAAAGACGTTCCTGTTCGGTA -ACGGAAAGACGTTCCTGTTGCCTA -ACGGAAAGACGTTCCTGTCCACTA -ACGGAAAGACGTTCCTGTGGAGTA -ACGGAAAGACGTTCCTGTTCGTCT -ACGGAAAGACGTTCCTGTTGCACT -ACGGAAAGACGTTCCTGTCTGACT -ACGGAAAGACGTTCCTGTCAACCT -ACGGAAAGACGTTCCTGTGCTACT -ACGGAAAGACGTTCCTGTGGATCT -ACGGAAAGACGTTCCTGTAAGGCT -ACGGAAAGACGTTCCTGTTCAACC -ACGGAAAGACGTTCCTGTTGTTCC -ACGGAAAGACGTTCCTGTATTCCC -ACGGAAAGACGTTCCTGTTTCTCG -ACGGAAAGACGTTCCTGTTAGACG -ACGGAAAGACGTTCCTGTGTAACG -ACGGAAAGACGTTCCTGTACTTCG -ACGGAAAGACGTTCCTGTTACGCA -ACGGAAAGACGTTCCTGTCTTGCA -ACGGAAAGACGTTCCTGTCGAACA -ACGGAAAGACGTTCCTGTCAGTCA -ACGGAAAGACGTTCCTGTGATCCA -ACGGAAAGACGTTCCTGTACGACA -ACGGAAAGACGTTCCTGTAGCTCA -ACGGAAAGACGTTCCTGTTCACGT -ACGGAAAGACGTTCCTGTCGTAGT -ACGGAAAGACGTTCCTGTGTCAGT -ACGGAAAGACGTTCCTGTGAAGGT -ACGGAAAGACGTTCCTGTAACCGT -ACGGAAAGACGTTCCTGTTTGTGC -ACGGAAAGACGTTCCTGTCTAAGC -ACGGAAAGACGTTCCTGTACTAGC -ACGGAAAGACGTTCCTGTAGATGC -ACGGAAAGACGTTCCTGTTGAAGG -ACGGAAAGACGTTCCTGTCAATGG -ACGGAAAGACGTTCCTGTATGAGG -ACGGAAAGACGTTCCTGTAATGGG -ACGGAAAGACGTTCCTGTTCCTGA -ACGGAAAGACGTTCCTGTTAGCGA -ACGGAAAGACGTTCCTGTCACAGA -ACGGAAAGACGTTCCTGTGCAAGA -ACGGAAAGACGTTCCTGTGGTTGA -ACGGAAAGACGTTCCTGTTCCGAT -ACGGAAAGACGTTCCTGTTGGCAT -ACGGAAAGACGTTCCTGTCGAGAT -ACGGAAAGACGTTCCTGTTACCAC -ACGGAAAGACGTTCCTGTCAGAAC -ACGGAAAGACGTTCCTGTGTCTAC -ACGGAAAGACGTTCCTGTACGTAC -ACGGAAAGACGTTCCTGTAGTGAC -ACGGAAAGACGTTCCTGTCTGTAG -ACGGAAAGACGTTCCTGTCCTAAG -ACGGAAAGACGTTCCTGTGTTCAG -ACGGAAAGACGTTCCTGTGCATAG -ACGGAAAGACGTTCCTGTGACAAG -ACGGAAAGACGTTCCTGTAAGCAG -ACGGAAAGACGTTCCTGTCGTCAA -ACGGAAAGACGTTCCTGTGCTGAA -ACGGAAAGACGTTCCTGTAGTACG -ACGGAAAGACGTTCCTGTATCCGA -ACGGAAAGACGTTCCTGTATGGGA -ACGGAAAGACGTTCCTGTGTGCAA -ACGGAAAGACGTTCCTGTGAGGAA -ACGGAAAGACGTTCCTGTCAGGTA -ACGGAAAGACGTTCCTGTGACTCT -ACGGAAAGACGTTCCTGTAGTCCT -ACGGAAAGACGTTCCTGTTAAGCC -ACGGAAAGACGTTCCTGTATAGCC -ACGGAAAGACGTTCCTGTTAACCG -ACGGAAAGACGTTCCTGTATGCCA -ACGGAAAGACGTCCCATTGGAAAC -ACGGAAAGACGTCCCATTAACACC -ACGGAAAGACGTCCCATTATCGAG -ACGGAAAGACGTCCCATTCTCCTT -ACGGAAAGACGTCCCATTCCTGTT -ACGGAAAGACGTCCCATTCGGTTT -ACGGAAAGACGTCCCATTGTGGTT -ACGGAAAGACGTCCCATTGCCTTT -ACGGAAAGACGTCCCATTGGTCTT -ACGGAAAGACGTCCCATTACGCTT -ACGGAAAGACGTCCCATTAGCGTT -ACGGAAAGACGTCCCATTTTCGTC -ACGGAAAGACGTCCCATTTCTCTC -ACGGAAAGACGTCCCATTTGGATC -ACGGAAAGACGTCCCATTCACTTC -ACGGAAAGACGTCCCATTGTACTC -ACGGAAAGACGTCCCATTGATGTC -ACGGAAAGACGTCCCATTACAGTC -ACGGAAAGACGTCCCATTTTGCTG -ACGGAAAGACGTCCCATTTCCATG -ACGGAAAGACGTCCCATTTGTGTG -ACGGAAAGACGTCCCATTCTAGTG -ACGGAAAGACGTCCCATTCATCTG -ACGGAAAGACGTCCCATTGAGTTG -ACGGAAAGACGTCCCATTAGACTG -ACGGAAAGACGTCCCATTTCGGTA -ACGGAAAGACGTCCCATTTGCCTA -ACGGAAAGACGTCCCATTCCACTA -ACGGAAAGACGTCCCATTGGAGTA -ACGGAAAGACGTCCCATTTCGTCT -ACGGAAAGACGTCCCATTTGCACT -ACGGAAAGACGTCCCATTCTGACT -ACGGAAAGACGTCCCATTCAACCT -ACGGAAAGACGTCCCATTGCTACT -ACGGAAAGACGTCCCATTGGATCT -ACGGAAAGACGTCCCATTAAGGCT -ACGGAAAGACGTCCCATTTCAACC -ACGGAAAGACGTCCCATTTGTTCC -ACGGAAAGACGTCCCATTATTCCC -ACGGAAAGACGTCCCATTTTCTCG -ACGGAAAGACGTCCCATTTAGACG -ACGGAAAGACGTCCCATTGTAACG -ACGGAAAGACGTCCCATTACTTCG -ACGGAAAGACGTCCCATTTACGCA -ACGGAAAGACGTCCCATTCTTGCA -ACGGAAAGACGTCCCATTCGAACA -ACGGAAAGACGTCCCATTCAGTCA -ACGGAAAGACGTCCCATTGATCCA -ACGGAAAGACGTCCCATTACGACA -ACGGAAAGACGTCCCATTAGCTCA -ACGGAAAGACGTCCCATTTCACGT -ACGGAAAGACGTCCCATTCGTAGT -ACGGAAAGACGTCCCATTGTCAGT -ACGGAAAGACGTCCCATTGAAGGT -ACGGAAAGACGTCCCATTAACCGT -ACGGAAAGACGTCCCATTTTGTGC -ACGGAAAGACGTCCCATTCTAAGC -ACGGAAAGACGTCCCATTACTAGC -ACGGAAAGACGTCCCATTAGATGC -ACGGAAAGACGTCCCATTTGAAGG -ACGGAAAGACGTCCCATTCAATGG -ACGGAAAGACGTCCCATTATGAGG -ACGGAAAGACGTCCCATTAATGGG -ACGGAAAGACGTCCCATTTCCTGA -ACGGAAAGACGTCCCATTTAGCGA -ACGGAAAGACGTCCCATTCACAGA -ACGGAAAGACGTCCCATTGCAAGA -ACGGAAAGACGTCCCATTGGTTGA -ACGGAAAGACGTCCCATTTCCGAT -ACGGAAAGACGTCCCATTTGGCAT -ACGGAAAGACGTCCCATTCGAGAT -ACGGAAAGACGTCCCATTTACCAC -ACGGAAAGACGTCCCATTCAGAAC -ACGGAAAGACGTCCCATTGTCTAC -ACGGAAAGACGTCCCATTACGTAC -ACGGAAAGACGTCCCATTAGTGAC -ACGGAAAGACGTCCCATTCTGTAG -ACGGAAAGACGTCCCATTCCTAAG -ACGGAAAGACGTCCCATTGTTCAG -ACGGAAAGACGTCCCATTGCATAG -ACGGAAAGACGTCCCATTGACAAG -ACGGAAAGACGTCCCATTAAGCAG -ACGGAAAGACGTCCCATTCGTCAA -ACGGAAAGACGTCCCATTGCTGAA -ACGGAAAGACGTCCCATTAGTACG -ACGGAAAGACGTCCCATTATCCGA -ACGGAAAGACGTCCCATTATGGGA -ACGGAAAGACGTCCCATTGTGCAA -ACGGAAAGACGTCCCATTGAGGAA -ACGGAAAGACGTCCCATTCAGGTA -ACGGAAAGACGTCCCATTGACTCT -ACGGAAAGACGTCCCATTAGTCCT -ACGGAAAGACGTCCCATTTAAGCC -ACGGAAAGACGTCCCATTATAGCC -ACGGAAAGACGTCCCATTTAACCG -ACGGAAAGACGTCCCATTATGCCA -ACGGAAAGACGTTCGTTCGGAAAC -ACGGAAAGACGTTCGTTCAACACC -ACGGAAAGACGTTCGTTCATCGAG -ACGGAAAGACGTTCGTTCCTCCTT -ACGGAAAGACGTTCGTTCCCTGTT -ACGGAAAGACGTTCGTTCCGGTTT -ACGGAAAGACGTTCGTTCGTGGTT -ACGGAAAGACGTTCGTTCGCCTTT -ACGGAAAGACGTTCGTTCGGTCTT -ACGGAAAGACGTTCGTTCACGCTT -ACGGAAAGACGTTCGTTCAGCGTT -ACGGAAAGACGTTCGTTCTTCGTC -ACGGAAAGACGTTCGTTCTCTCTC -ACGGAAAGACGTTCGTTCTGGATC -ACGGAAAGACGTTCGTTCCACTTC -ACGGAAAGACGTTCGTTCGTACTC -ACGGAAAGACGTTCGTTCGATGTC -ACGGAAAGACGTTCGTTCACAGTC -ACGGAAAGACGTTCGTTCTTGCTG -ACGGAAAGACGTTCGTTCTCCATG -ACGGAAAGACGTTCGTTCTGTGTG -ACGGAAAGACGTTCGTTCCTAGTG -ACGGAAAGACGTTCGTTCCATCTG -ACGGAAAGACGTTCGTTCGAGTTG -ACGGAAAGACGTTCGTTCAGACTG -ACGGAAAGACGTTCGTTCTCGGTA -ACGGAAAGACGTTCGTTCTGCCTA -ACGGAAAGACGTTCGTTCCCACTA -ACGGAAAGACGTTCGTTCGGAGTA -ACGGAAAGACGTTCGTTCTCGTCT -ACGGAAAGACGTTCGTTCTGCACT -ACGGAAAGACGTTCGTTCCTGACT -ACGGAAAGACGTTCGTTCCAACCT -ACGGAAAGACGTTCGTTCGCTACT -ACGGAAAGACGTTCGTTCGGATCT -ACGGAAAGACGTTCGTTCAAGGCT -ACGGAAAGACGTTCGTTCTCAACC -ACGGAAAGACGTTCGTTCTGTTCC -ACGGAAAGACGTTCGTTCATTCCC -ACGGAAAGACGTTCGTTCTTCTCG -ACGGAAAGACGTTCGTTCTAGACG -ACGGAAAGACGTTCGTTCGTAACG -ACGGAAAGACGTTCGTTCACTTCG -ACGGAAAGACGTTCGTTCTACGCA -ACGGAAAGACGTTCGTTCCTTGCA -ACGGAAAGACGTTCGTTCCGAACA -ACGGAAAGACGTTCGTTCCAGTCA -ACGGAAAGACGTTCGTTCGATCCA -ACGGAAAGACGTTCGTTCACGACA -ACGGAAAGACGTTCGTTCAGCTCA -ACGGAAAGACGTTCGTTCTCACGT -ACGGAAAGACGTTCGTTCCGTAGT -ACGGAAAGACGTTCGTTCGTCAGT -ACGGAAAGACGTTCGTTCGAAGGT -ACGGAAAGACGTTCGTTCAACCGT -ACGGAAAGACGTTCGTTCTTGTGC -ACGGAAAGACGTTCGTTCCTAAGC -ACGGAAAGACGTTCGTTCACTAGC -ACGGAAAGACGTTCGTTCAGATGC -ACGGAAAGACGTTCGTTCTGAAGG -ACGGAAAGACGTTCGTTCCAATGG -ACGGAAAGACGTTCGTTCATGAGG -ACGGAAAGACGTTCGTTCAATGGG -ACGGAAAGACGTTCGTTCTCCTGA -ACGGAAAGACGTTCGTTCTAGCGA -ACGGAAAGACGTTCGTTCCACAGA -ACGGAAAGACGTTCGTTCGCAAGA -ACGGAAAGACGTTCGTTCGGTTGA -ACGGAAAGACGTTCGTTCTCCGAT -ACGGAAAGACGTTCGTTCTGGCAT -ACGGAAAGACGTTCGTTCCGAGAT -ACGGAAAGACGTTCGTTCTACCAC -ACGGAAAGACGTTCGTTCCAGAAC -ACGGAAAGACGTTCGTTCGTCTAC -ACGGAAAGACGTTCGTTCACGTAC -ACGGAAAGACGTTCGTTCAGTGAC -ACGGAAAGACGTTCGTTCCTGTAG -ACGGAAAGACGTTCGTTCCCTAAG -ACGGAAAGACGTTCGTTCGTTCAG -ACGGAAAGACGTTCGTTCGCATAG -ACGGAAAGACGTTCGTTCGACAAG -ACGGAAAGACGTTCGTTCAAGCAG -ACGGAAAGACGTTCGTTCCGTCAA -ACGGAAAGACGTTCGTTCGCTGAA -ACGGAAAGACGTTCGTTCAGTACG -ACGGAAAGACGTTCGTTCATCCGA -ACGGAAAGACGTTCGTTCATGGGA -ACGGAAAGACGTTCGTTCGTGCAA -ACGGAAAGACGTTCGTTCGAGGAA -ACGGAAAGACGTTCGTTCCAGGTA -ACGGAAAGACGTTCGTTCGACTCT -ACGGAAAGACGTTCGTTCAGTCCT -ACGGAAAGACGTTCGTTCTAAGCC -ACGGAAAGACGTTCGTTCATAGCC -ACGGAAAGACGTTCGTTCTAACCG -ACGGAAAGACGTTCGTTCATGCCA -ACGGAAAGACGTACGTAGGGAAAC -ACGGAAAGACGTACGTAGAACACC -ACGGAAAGACGTACGTAGATCGAG -ACGGAAAGACGTACGTAGCTCCTT -ACGGAAAGACGTACGTAGCCTGTT -ACGGAAAGACGTACGTAGCGGTTT -ACGGAAAGACGTACGTAGGTGGTT -ACGGAAAGACGTACGTAGGCCTTT -ACGGAAAGACGTACGTAGGGTCTT -ACGGAAAGACGTACGTAGACGCTT -ACGGAAAGACGTACGTAGAGCGTT -ACGGAAAGACGTACGTAGTTCGTC -ACGGAAAGACGTACGTAGTCTCTC -ACGGAAAGACGTACGTAGTGGATC -ACGGAAAGACGTACGTAGCACTTC -ACGGAAAGACGTACGTAGGTACTC -ACGGAAAGACGTACGTAGGATGTC -ACGGAAAGACGTACGTAGACAGTC -ACGGAAAGACGTACGTAGTTGCTG -ACGGAAAGACGTACGTAGTCCATG -ACGGAAAGACGTACGTAGTGTGTG -ACGGAAAGACGTACGTAGCTAGTG -ACGGAAAGACGTACGTAGCATCTG -ACGGAAAGACGTACGTAGGAGTTG -ACGGAAAGACGTACGTAGAGACTG -ACGGAAAGACGTACGTAGTCGGTA -ACGGAAAGACGTACGTAGTGCCTA -ACGGAAAGACGTACGTAGCCACTA -ACGGAAAGACGTACGTAGGGAGTA -ACGGAAAGACGTACGTAGTCGTCT -ACGGAAAGACGTACGTAGTGCACT -ACGGAAAGACGTACGTAGCTGACT -ACGGAAAGACGTACGTAGCAACCT -ACGGAAAGACGTACGTAGGCTACT -ACGGAAAGACGTACGTAGGGATCT -ACGGAAAGACGTACGTAGAAGGCT -ACGGAAAGACGTACGTAGTCAACC -ACGGAAAGACGTACGTAGTGTTCC -ACGGAAAGACGTACGTAGATTCCC -ACGGAAAGACGTACGTAGTTCTCG -ACGGAAAGACGTACGTAGTAGACG -ACGGAAAGACGTACGTAGGTAACG -ACGGAAAGACGTACGTAGACTTCG -ACGGAAAGACGTACGTAGTACGCA -ACGGAAAGACGTACGTAGCTTGCA -ACGGAAAGACGTACGTAGCGAACA -ACGGAAAGACGTACGTAGCAGTCA -ACGGAAAGACGTACGTAGGATCCA -ACGGAAAGACGTACGTAGACGACA -ACGGAAAGACGTACGTAGAGCTCA -ACGGAAAGACGTACGTAGTCACGT -ACGGAAAGACGTACGTAGCGTAGT -ACGGAAAGACGTACGTAGGTCAGT -ACGGAAAGACGTACGTAGGAAGGT -ACGGAAAGACGTACGTAGAACCGT -ACGGAAAGACGTACGTAGTTGTGC -ACGGAAAGACGTACGTAGCTAAGC -ACGGAAAGACGTACGTAGACTAGC -ACGGAAAGACGTACGTAGAGATGC -ACGGAAAGACGTACGTAGTGAAGG -ACGGAAAGACGTACGTAGCAATGG -ACGGAAAGACGTACGTAGATGAGG -ACGGAAAGACGTACGTAGAATGGG -ACGGAAAGACGTACGTAGTCCTGA -ACGGAAAGACGTACGTAGTAGCGA -ACGGAAAGACGTACGTAGCACAGA -ACGGAAAGACGTACGTAGGCAAGA -ACGGAAAGACGTACGTAGGGTTGA -ACGGAAAGACGTACGTAGTCCGAT -ACGGAAAGACGTACGTAGTGGCAT -ACGGAAAGACGTACGTAGCGAGAT -ACGGAAAGACGTACGTAGTACCAC -ACGGAAAGACGTACGTAGCAGAAC -ACGGAAAGACGTACGTAGGTCTAC -ACGGAAAGACGTACGTAGACGTAC -ACGGAAAGACGTACGTAGAGTGAC -ACGGAAAGACGTACGTAGCTGTAG -ACGGAAAGACGTACGTAGCCTAAG -ACGGAAAGACGTACGTAGGTTCAG -ACGGAAAGACGTACGTAGGCATAG -ACGGAAAGACGTACGTAGGACAAG -ACGGAAAGACGTACGTAGAAGCAG -ACGGAAAGACGTACGTAGCGTCAA -ACGGAAAGACGTACGTAGGCTGAA -ACGGAAAGACGTACGTAGAGTACG -ACGGAAAGACGTACGTAGATCCGA -ACGGAAAGACGTACGTAGATGGGA -ACGGAAAGACGTACGTAGGTGCAA -ACGGAAAGACGTACGTAGGAGGAA -ACGGAAAGACGTACGTAGCAGGTA -ACGGAAAGACGTACGTAGGACTCT -ACGGAAAGACGTACGTAGAGTCCT -ACGGAAAGACGTACGTAGTAAGCC -ACGGAAAGACGTACGTAGATAGCC -ACGGAAAGACGTACGTAGTAACCG -ACGGAAAGACGTACGTAGATGCCA -ACGGAAAGACGTACGGTAGGAAAC -ACGGAAAGACGTACGGTAAACACC -ACGGAAAGACGTACGGTAATCGAG -ACGGAAAGACGTACGGTACTCCTT -ACGGAAAGACGTACGGTACCTGTT -ACGGAAAGACGTACGGTACGGTTT -ACGGAAAGACGTACGGTAGTGGTT -ACGGAAAGACGTACGGTAGCCTTT -ACGGAAAGACGTACGGTAGGTCTT -ACGGAAAGACGTACGGTAACGCTT -ACGGAAAGACGTACGGTAAGCGTT -ACGGAAAGACGTACGGTATTCGTC -ACGGAAAGACGTACGGTATCTCTC -ACGGAAAGACGTACGGTATGGATC -ACGGAAAGACGTACGGTACACTTC -ACGGAAAGACGTACGGTAGTACTC -ACGGAAAGACGTACGGTAGATGTC -ACGGAAAGACGTACGGTAACAGTC -ACGGAAAGACGTACGGTATTGCTG -ACGGAAAGACGTACGGTATCCATG -ACGGAAAGACGTACGGTATGTGTG -ACGGAAAGACGTACGGTACTAGTG -ACGGAAAGACGTACGGTACATCTG -ACGGAAAGACGTACGGTAGAGTTG -ACGGAAAGACGTACGGTAAGACTG -ACGGAAAGACGTACGGTATCGGTA -ACGGAAAGACGTACGGTATGCCTA -ACGGAAAGACGTACGGTACCACTA -ACGGAAAGACGTACGGTAGGAGTA -ACGGAAAGACGTACGGTATCGTCT -ACGGAAAGACGTACGGTATGCACT -ACGGAAAGACGTACGGTACTGACT -ACGGAAAGACGTACGGTACAACCT -ACGGAAAGACGTACGGTAGCTACT -ACGGAAAGACGTACGGTAGGATCT -ACGGAAAGACGTACGGTAAAGGCT -ACGGAAAGACGTACGGTATCAACC -ACGGAAAGACGTACGGTATGTTCC -ACGGAAAGACGTACGGTAATTCCC -ACGGAAAGACGTACGGTATTCTCG -ACGGAAAGACGTACGGTATAGACG -ACGGAAAGACGTACGGTAGTAACG -ACGGAAAGACGTACGGTAACTTCG -ACGGAAAGACGTACGGTATACGCA -ACGGAAAGACGTACGGTACTTGCA -ACGGAAAGACGTACGGTACGAACA -ACGGAAAGACGTACGGTACAGTCA -ACGGAAAGACGTACGGTAGATCCA -ACGGAAAGACGTACGGTAACGACA -ACGGAAAGACGTACGGTAAGCTCA -ACGGAAAGACGTACGGTATCACGT -ACGGAAAGACGTACGGTACGTAGT -ACGGAAAGACGTACGGTAGTCAGT -ACGGAAAGACGTACGGTAGAAGGT -ACGGAAAGACGTACGGTAAACCGT -ACGGAAAGACGTACGGTATTGTGC -ACGGAAAGACGTACGGTACTAAGC -ACGGAAAGACGTACGGTAACTAGC -ACGGAAAGACGTACGGTAAGATGC -ACGGAAAGACGTACGGTATGAAGG -ACGGAAAGACGTACGGTACAATGG -ACGGAAAGACGTACGGTAATGAGG -ACGGAAAGACGTACGGTAAATGGG -ACGGAAAGACGTACGGTATCCTGA -ACGGAAAGACGTACGGTATAGCGA -ACGGAAAGACGTACGGTACACAGA -ACGGAAAGACGTACGGTAGCAAGA -ACGGAAAGACGTACGGTAGGTTGA -ACGGAAAGACGTACGGTATCCGAT -ACGGAAAGACGTACGGTATGGCAT -ACGGAAAGACGTACGGTACGAGAT -ACGGAAAGACGTACGGTATACCAC -ACGGAAAGACGTACGGTACAGAAC -ACGGAAAGACGTACGGTAGTCTAC -ACGGAAAGACGTACGGTAACGTAC -ACGGAAAGACGTACGGTAAGTGAC -ACGGAAAGACGTACGGTACTGTAG -ACGGAAAGACGTACGGTACCTAAG -ACGGAAAGACGTACGGTAGTTCAG -ACGGAAAGACGTACGGTAGCATAG -ACGGAAAGACGTACGGTAGACAAG -ACGGAAAGACGTACGGTAAAGCAG -ACGGAAAGACGTACGGTACGTCAA -ACGGAAAGACGTACGGTAGCTGAA -ACGGAAAGACGTACGGTAAGTACG -ACGGAAAGACGTACGGTAATCCGA -ACGGAAAGACGTACGGTAATGGGA -ACGGAAAGACGTACGGTAGTGCAA -ACGGAAAGACGTACGGTAGAGGAA -ACGGAAAGACGTACGGTACAGGTA -ACGGAAAGACGTACGGTAGACTCT -ACGGAAAGACGTACGGTAAGTCCT -ACGGAAAGACGTACGGTATAAGCC -ACGGAAAGACGTACGGTAATAGCC -ACGGAAAGACGTACGGTATAACCG -ACGGAAAGACGTACGGTAATGCCA -ACGGAAAGACGTTCGACTGGAAAC -ACGGAAAGACGTTCGACTAACACC -ACGGAAAGACGTTCGACTATCGAG -ACGGAAAGACGTTCGACTCTCCTT -ACGGAAAGACGTTCGACTCCTGTT -ACGGAAAGACGTTCGACTCGGTTT -ACGGAAAGACGTTCGACTGTGGTT -ACGGAAAGACGTTCGACTGCCTTT -ACGGAAAGACGTTCGACTGGTCTT -ACGGAAAGACGTTCGACTACGCTT -ACGGAAAGACGTTCGACTAGCGTT -ACGGAAAGACGTTCGACTTTCGTC -ACGGAAAGACGTTCGACTTCTCTC -ACGGAAAGACGTTCGACTTGGATC -ACGGAAAGACGTTCGACTCACTTC -ACGGAAAGACGTTCGACTGTACTC -ACGGAAAGACGTTCGACTGATGTC -ACGGAAAGACGTTCGACTACAGTC -ACGGAAAGACGTTCGACTTTGCTG -ACGGAAAGACGTTCGACTTCCATG -ACGGAAAGACGTTCGACTTGTGTG -ACGGAAAGACGTTCGACTCTAGTG -ACGGAAAGACGTTCGACTCATCTG -ACGGAAAGACGTTCGACTGAGTTG -ACGGAAAGACGTTCGACTAGACTG -ACGGAAAGACGTTCGACTTCGGTA -ACGGAAAGACGTTCGACTTGCCTA -ACGGAAAGACGTTCGACTCCACTA -ACGGAAAGACGTTCGACTGGAGTA -ACGGAAAGACGTTCGACTTCGTCT -ACGGAAAGACGTTCGACTTGCACT -ACGGAAAGACGTTCGACTCTGACT -ACGGAAAGACGTTCGACTCAACCT -ACGGAAAGACGTTCGACTGCTACT -ACGGAAAGACGTTCGACTGGATCT -ACGGAAAGACGTTCGACTAAGGCT -ACGGAAAGACGTTCGACTTCAACC -ACGGAAAGACGTTCGACTTGTTCC -ACGGAAAGACGTTCGACTATTCCC -ACGGAAAGACGTTCGACTTTCTCG -ACGGAAAGACGTTCGACTTAGACG -ACGGAAAGACGTTCGACTGTAACG -ACGGAAAGACGTTCGACTACTTCG -ACGGAAAGACGTTCGACTTACGCA -ACGGAAAGACGTTCGACTCTTGCA -ACGGAAAGACGTTCGACTCGAACA -ACGGAAAGACGTTCGACTCAGTCA -ACGGAAAGACGTTCGACTGATCCA -ACGGAAAGACGTTCGACTACGACA -ACGGAAAGACGTTCGACTAGCTCA -ACGGAAAGACGTTCGACTTCACGT -ACGGAAAGACGTTCGACTCGTAGT -ACGGAAAGACGTTCGACTGTCAGT -ACGGAAAGACGTTCGACTGAAGGT -ACGGAAAGACGTTCGACTAACCGT -ACGGAAAGACGTTCGACTTTGTGC -ACGGAAAGACGTTCGACTCTAAGC -ACGGAAAGACGTTCGACTACTAGC -ACGGAAAGACGTTCGACTAGATGC -ACGGAAAGACGTTCGACTTGAAGG -ACGGAAAGACGTTCGACTCAATGG -ACGGAAAGACGTTCGACTATGAGG -ACGGAAAGACGTTCGACTAATGGG -ACGGAAAGACGTTCGACTTCCTGA -ACGGAAAGACGTTCGACTTAGCGA -ACGGAAAGACGTTCGACTCACAGA -ACGGAAAGACGTTCGACTGCAAGA -ACGGAAAGACGTTCGACTGGTTGA -ACGGAAAGACGTTCGACTTCCGAT -ACGGAAAGACGTTCGACTTGGCAT -ACGGAAAGACGTTCGACTCGAGAT -ACGGAAAGACGTTCGACTTACCAC -ACGGAAAGACGTTCGACTCAGAAC -ACGGAAAGACGTTCGACTGTCTAC -ACGGAAAGACGTTCGACTACGTAC -ACGGAAAGACGTTCGACTAGTGAC -ACGGAAAGACGTTCGACTCTGTAG -ACGGAAAGACGTTCGACTCCTAAG -ACGGAAAGACGTTCGACTGTTCAG -ACGGAAAGACGTTCGACTGCATAG -ACGGAAAGACGTTCGACTGACAAG -ACGGAAAGACGTTCGACTAAGCAG -ACGGAAAGACGTTCGACTCGTCAA -ACGGAAAGACGTTCGACTGCTGAA -ACGGAAAGACGTTCGACTAGTACG -ACGGAAAGACGTTCGACTATCCGA -ACGGAAAGACGTTCGACTATGGGA -ACGGAAAGACGTTCGACTGTGCAA -ACGGAAAGACGTTCGACTGAGGAA -ACGGAAAGACGTTCGACTCAGGTA -ACGGAAAGACGTTCGACTGACTCT -ACGGAAAGACGTTCGACTAGTCCT -ACGGAAAGACGTTCGACTTAAGCC -ACGGAAAGACGTTCGACTATAGCC -ACGGAAAGACGTTCGACTTAACCG -ACGGAAAGACGTTCGACTATGCCA -ACGGAAAGACGTGCATACGGAAAC -ACGGAAAGACGTGCATACAACACC -ACGGAAAGACGTGCATACATCGAG -ACGGAAAGACGTGCATACCTCCTT -ACGGAAAGACGTGCATACCCTGTT -ACGGAAAGACGTGCATACCGGTTT -ACGGAAAGACGTGCATACGTGGTT -ACGGAAAGACGTGCATACGCCTTT -ACGGAAAGACGTGCATACGGTCTT -ACGGAAAGACGTGCATACACGCTT -ACGGAAAGACGTGCATACAGCGTT -ACGGAAAGACGTGCATACTTCGTC -ACGGAAAGACGTGCATACTCTCTC -ACGGAAAGACGTGCATACTGGATC -ACGGAAAGACGTGCATACCACTTC -ACGGAAAGACGTGCATACGTACTC -ACGGAAAGACGTGCATACGATGTC -ACGGAAAGACGTGCATACACAGTC -ACGGAAAGACGTGCATACTTGCTG -ACGGAAAGACGTGCATACTCCATG -ACGGAAAGACGTGCATACTGTGTG -ACGGAAAGACGTGCATACCTAGTG -ACGGAAAGACGTGCATACCATCTG -ACGGAAAGACGTGCATACGAGTTG -ACGGAAAGACGTGCATACAGACTG -ACGGAAAGACGTGCATACTCGGTA -ACGGAAAGACGTGCATACTGCCTA -ACGGAAAGACGTGCATACCCACTA -ACGGAAAGACGTGCATACGGAGTA -ACGGAAAGACGTGCATACTCGTCT -ACGGAAAGACGTGCATACTGCACT -ACGGAAAGACGTGCATACCTGACT -ACGGAAAGACGTGCATACCAACCT -ACGGAAAGACGTGCATACGCTACT -ACGGAAAGACGTGCATACGGATCT -ACGGAAAGACGTGCATACAAGGCT -ACGGAAAGACGTGCATACTCAACC -ACGGAAAGACGTGCATACTGTTCC -ACGGAAAGACGTGCATACATTCCC -ACGGAAAGACGTGCATACTTCTCG -ACGGAAAGACGTGCATACTAGACG -ACGGAAAGACGTGCATACGTAACG -ACGGAAAGACGTGCATACACTTCG -ACGGAAAGACGTGCATACTACGCA -ACGGAAAGACGTGCATACCTTGCA -ACGGAAAGACGTGCATACCGAACA -ACGGAAAGACGTGCATACCAGTCA -ACGGAAAGACGTGCATACGATCCA -ACGGAAAGACGTGCATACACGACA -ACGGAAAGACGTGCATACAGCTCA -ACGGAAAGACGTGCATACTCACGT -ACGGAAAGACGTGCATACCGTAGT -ACGGAAAGACGTGCATACGTCAGT -ACGGAAAGACGTGCATACGAAGGT -ACGGAAAGACGTGCATACAACCGT -ACGGAAAGACGTGCATACTTGTGC -ACGGAAAGACGTGCATACCTAAGC -ACGGAAAGACGTGCATACACTAGC -ACGGAAAGACGTGCATACAGATGC -ACGGAAAGACGTGCATACTGAAGG -ACGGAAAGACGTGCATACCAATGG -ACGGAAAGACGTGCATACATGAGG -ACGGAAAGACGTGCATACAATGGG -ACGGAAAGACGTGCATACTCCTGA -ACGGAAAGACGTGCATACTAGCGA -ACGGAAAGACGTGCATACCACAGA -ACGGAAAGACGTGCATACGCAAGA -ACGGAAAGACGTGCATACGGTTGA -ACGGAAAGACGTGCATACTCCGAT -ACGGAAAGACGTGCATACTGGCAT -ACGGAAAGACGTGCATACCGAGAT -ACGGAAAGACGTGCATACTACCAC -ACGGAAAGACGTGCATACCAGAAC -ACGGAAAGACGTGCATACGTCTAC -ACGGAAAGACGTGCATACACGTAC -ACGGAAAGACGTGCATACAGTGAC -ACGGAAAGACGTGCATACCTGTAG -ACGGAAAGACGTGCATACCCTAAG -ACGGAAAGACGTGCATACGTTCAG -ACGGAAAGACGTGCATACGCATAG -ACGGAAAGACGTGCATACGACAAG -ACGGAAAGACGTGCATACAAGCAG -ACGGAAAGACGTGCATACCGTCAA -ACGGAAAGACGTGCATACGCTGAA -ACGGAAAGACGTGCATACAGTACG -ACGGAAAGACGTGCATACATCCGA -ACGGAAAGACGTGCATACATGGGA -ACGGAAAGACGTGCATACGTGCAA -ACGGAAAGACGTGCATACGAGGAA -ACGGAAAGACGTGCATACCAGGTA -ACGGAAAGACGTGCATACGACTCT -ACGGAAAGACGTGCATACAGTCCT -ACGGAAAGACGTGCATACTAAGCC -ACGGAAAGACGTGCATACATAGCC -ACGGAAAGACGTGCATACTAACCG -ACGGAAAGACGTGCATACATGCCA -ACGGAAAGACGTGCACTTGGAAAC -ACGGAAAGACGTGCACTTAACACC -ACGGAAAGACGTGCACTTATCGAG -ACGGAAAGACGTGCACTTCTCCTT -ACGGAAAGACGTGCACTTCCTGTT -ACGGAAAGACGTGCACTTCGGTTT -ACGGAAAGACGTGCACTTGTGGTT -ACGGAAAGACGTGCACTTGCCTTT -ACGGAAAGACGTGCACTTGGTCTT -ACGGAAAGACGTGCACTTACGCTT -ACGGAAAGACGTGCACTTAGCGTT -ACGGAAAGACGTGCACTTTTCGTC -ACGGAAAGACGTGCACTTTCTCTC -ACGGAAAGACGTGCACTTTGGATC -ACGGAAAGACGTGCACTTCACTTC -ACGGAAAGACGTGCACTTGTACTC -ACGGAAAGACGTGCACTTGATGTC -ACGGAAAGACGTGCACTTACAGTC -ACGGAAAGACGTGCACTTTTGCTG -ACGGAAAGACGTGCACTTTCCATG -ACGGAAAGACGTGCACTTTGTGTG -ACGGAAAGACGTGCACTTCTAGTG -ACGGAAAGACGTGCACTTCATCTG -ACGGAAAGACGTGCACTTGAGTTG -ACGGAAAGACGTGCACTTAGACTG -ACGGAAAGACGTGCACTTTCGGTA -ACGGAAAGACGTGCACTTTGCCTA -ACGGAAAGACGTGCACTTCCACTA -ACGGAAAGACGTGCACTTGGAGTA -ACGGAAAGACGTGCACTTTCGTCT -ACGGAAAGACGTGCACTTTGCACT -ACGGAAAGACGTGCACTTCTGACT -ACGGAAAGACGTGCACTTCAACCT -ACGGAAAGACGTGCACTTGCTACT -ACGGAAAGACGTGCACTTGGATCT -ACGGAAAGACGTGCACTTAAGGCT -ACGGAAAGACGTGCACTTTCAACC -ACGGAAAGACGTGCACTTTGTTCC -ACGGAAAGACGTGCACTTATTCCC -ACGGAAAGACGTGCACTTTTCTCG -ACGGAAAGACGTGCACTTTAGACG -ACGGAAAGACGTGCACTTGTAACG -ACGGAAAGACGTGCACTTACTTCG -ACGGAAAGACGTGCACTTTACGCA -ACGGAAAGACGTGCACTTCTTGCA -ACGGAAAGACGTGCACTTCGAACA -ACGGAAAGACGTGCACTTCAGTCA -ACGGAAAGACGTGCACTTGATCCA -ACGGAAAGACGTGCACTTACGACA -ACGGAAAGACGTGCACTTAGCTCA -ACGGAAAGACGTGCACTTTCACGT -ACGGAAAGACGTGCACTTCGTAGT -ACGGAAAGACGTGCACTTGTCAGT -ACGGAAAGACGTGCACTTGAAGGT -ACGGAAAGACGTGCACTTAACCGT -ACGGAAAGACGTGCACTTTTGTGC -ACGGAAAGACGTGCACTTCTAAGC -ACGGAAAGACGTGCACTTACTAGC -ACGGAAAGACGTGCACTTAGATGC -ACGGAAAGACGTGCACTTTGAAGG -ACGGAAAGACGTGCACTTCAATGG -ACGGAAAGACGTGCACTTATGAGG -ACGGAAAGACGTGCACTTAATGGG -ACGGAAAGACGTGCACTTTCCTGA -ACGGAAAGACGTGCACTTTAGCGA -ACGGAAAGACGTGCACTTCACAGA -ACGGAAAGACGTGCACTTGCAAGA -ACGGAAAGACGTGCACTTGGTTGA -ACGGAAAGACGTGCACTTTCCGAT -ACGGAAAGACGTGCACTTTGGCAT -ACGGAAAGACGTGCACTTCGAGAT -ACGGAAAGACGTGCACTTTACCAC -ACGGAAAGACGTGCACTTCAGAAC -ACGGAAAGACGTGCACTTGTCTAC -ACGGAAAGACGTGCACTTACGTAC -ACGGAAAGACGTGCACTTAGTGAC -ACGGAAAGACGTGCACTTCTGTAG -ACGGAAAGACGTGCACTTCCTAAG -ACGGAAAGACGTGCACTTGTTCAG -ACGGAAAGACGTGCACTTGCATAG -ACGGAAAGACGTGCACTTGACAAG -ACGGAAAGACGTGCACTTAAGCAG -ACGGAAAGACGTGCACTTCGTCAA -ACGGAAAGACGTGCACTTGCTGAA -ACGGAAAGACGTGCACTTAGTACG -ACGGAAAGACGTGCACTTATCCGA -ACGGAAAGACGTGCACTTATGGGA -ACGGAAAGACGTGCACTTGTGCAA -ACGGAAAGACGTGCACTTGAGGAA -ACGGAAAGACGTGCACTTCAGGTA -ACGGAAAGACGTGCACTTGACTCT -ACGGAAAGACGTGCACTTAGTCCT -ACGGAAAGACGTGCACTTTAAGCC -ACGGAAAGACGTGCACTTATAGCC -ACGGAAAGACGTGCACTTTAACCG -ACGGAAAGACGTGCACTTATGCCA -ACGGAAAGACGTACACGAGGAAAC -ACGGAAAGACGTACACGAAACACC -ACGGAAAGACGTACACGAATCGAG -ACGGAAAGACGTACACGACTCCTT -ACGGAAAGACGTACACGACCTGTT -ACGGAAAGACGTACACGACGGTTT -ACGGAAAGACGTACACGAGTGGTT -ACGGAAAGACGTACACGAGCCTTT -ACGGAAAGACGTACACGAGGTCTT -ACGGAAAGACGTACACGAACGCTT -ACGGAAAGACGTACACGAAGCGTT -ACGGAAAGACGTACACGATTCGTC -ACGGAAAGACGTACACGATCTCTC -ACGGAAAGACGTACACGATGGATC -ACGGAAAGACGTACACGACACTTC -ACGGAAAGACGTACACGAGTACTC -ACGGAAAGACGTACACGAGATGTC -ACGGAAAGACGTACACGAACAGTC -ACGGAAAGACGTACACGATTGCTG -ACGGAAAGACGTACACGATCCATG -ACGGAAAGACGTACACGATGTGTG -ACGGAAAGACGTACACGACTAGTG -ACGGAAAGACGTACACGACATCTG -ACGGAAAGACGTACACGAGAGTTG -ACGGAAAGACGTACACGAAGACTG -ACGGAAAGACGTACACGATCGGTA -ACGGAAAGACGTACACGATGCCTA -ACGGAAAGACGTACACGACCACTA -ACGGAAAGACGTACACGAGGAGTA -ACGGAAAGACGTACACGATCGTCT -ACGGAAAGACGTACACGATGCACT -ACGGAAAGACGTACACGACTGACT -ACGGAAAGACGTACACGACAACCT -ACGGAAAGACGTACACGAGCTACT -ACGGAAAGACGTACACGAGGATCT -ACGGAAAGACGTACACGAAAGGCT -ACGGAAAGACGTACACGATCAACC -ACGGAAAGACGTACACGATGTTCC -ACGGAAAGACGTACACGAATTCCC -ACGGAAAGACGTACACGATTCTCG -ACGGAAAGACGTACACGATAGACG -ACGGAAAGACGTACACGAGTAACG -ACGGAAAGACGTACACGAACTTCG -ACGGAAAGACGTACACGATACGCA -ACGGAAAGACGTACACGACTTGCA -ACGGAAAGACGTACACGACGAACA -ACGGAAAGACGTACACGACAGTCA -ACGGAAAGACGTACACGAGATCCA -ACGGAAAGACGTACACGAACGACA -ACGGAAAGACGTACACGAAGCTCA -ACGGAAAGACGTACACGATCACGT -ACGGAAAGACGTACACGACGTAGT -ACGGAAAGACGTACACGAGTCAGT -ACGGAAAGACGTACACGAGAAGGT -ACGGAAAGACGTACACGAAACCGT -ACGGAAAGACGTACACGATTGTGC -ACGGAAAGACGTACACGACTAAGC -ACGGAAAGACGTACACGAACTAGC -ACGGAAAGACGTACACGAAGATGC -ACGGAAAGACGTACACGATGAAGG -ACGGAAAGACGTACACGACAATGG -ACGGAAAGACGTACACGAATGAGG -ACGGAAAGACGTACACGAAATGGG -ACGGAAAGACGTACACGATCCTGA -ACGGAAAGACGTACACGATAGCGA -ACGGAAAGACGTACACGACACAGA -ACGGAAAGACGTACACGAGCAAGA -ACGGAAAGACGTACACGAGGTTGA -ACGGAAAGACGTACACGATCCGAT -ACGGAAAGACGTACACGATGGCAT -ACGGAAAGACGTACACGACGAGAT -ACGGAAAGACGTACACGATACCAC -ACGGAAAGACGTACACGACAGAAC -ACGGAAAGACGTACACGAGTCTAC -ACGGAAAGACGTACACGAACGTAC -ACGGAAAGACGTACACGAAGTGAC -ACGGAAAGACGTACACGACTGTAG -ACGGAAAGACGTACACGACCTAAG -ACGGAAAGACGTACACGAGTTCAG -ACGGAAAGACGTACACGAGCATAG -ACGGAAAGACGTACACGAGACAAG -ACGGAAAGACGTACACGAAAGCAG -ACGGAAAGACGTACACGACGTCAA -ACGGAAAGACGTACACGAGCTGAA -ACGGAAAGACGTACACGAAGTACG -ACGGAAAGACGTACACGAATCCGA -ACGGAAAGACGTACACGAATGGGA -ACGGAAAGACGTACACGAGTGCAA -ACGGAAAGACGTACACGAGAGGAA -ACGGAAAGACGTACACGACAGGTA -ACGGAAAGACGTACACGAGACTCT -ACGGAAAGACGTACACGAAGTCCT -ACGGAAAGACGTACACGATAAGCC -ACGGAAAGACGTACACGAATAGCC -ACGGAAAGACGTACACGATAACCG -ACGGAAAGACGTACACGAATGCCA -ACGGAAAGACGTTCACAGGGAAAC -ACGGAAAGACGTTCACAGAACACC -ACGGAAAGACGTTCACAGATCGAG -ACGGAAAGACGTTCACAGCTCCTT -ACGGAAAGACGTTCACAGCCTGTT -ACGGAAAGACGTTCACAGCGGTTT -ACGGAAAGACGTTCACAGGTGGTT -ACGGAAAGACGTTCACAGGCCTTT -ACGGAAAGACGTTCACAGGGTCTT -ACGGAAAGACGTTCACAGACGCTT -ACGGAAAGACGTTCACAGAGCGTT -ACGGAAAGACGTTCACAGTTCGTC -ACGGAAAGACGTTCACAGTCTCTC -ACGGAAAGACGTTCACAGTGGATC -ACGGAAAGACGTTCACAGCACTTC -ACGGAAAGACGTTCACAGGTACTC -ACGGAAAGACGTTCACAGGATGTC -ACGGAAAGACGTTCACAGACAGTC -ACGGAAAGACGTTCACAGTTGCTG -ACGGAAAGACGTTCACAGTCCATG -ACGGAAAGACGTTCACAGTGTGTG -ACGGAAAGACGTTCACAGCTAGTG -ACGGAAAGACGTTCACAGCATCTG -ACGGAAAGACGTTCACAGGAGTTG -ACGGAAAGACGTTCACAGAGACTG -ACGGAAAGACGTTCACAGTCGGTA -ACGGAAAGACGTTCACAGTGCCTA -ACGGAAAGACGTTCACAGCCACTA -ACGGAAAGACGTTCACAGGGAGTA -ACGGAAAGACGTTCACAGTCGTCT -ACGGAAAGACGTTCACAGTGCACT -ACGGAAAGACGTTCACAGCTGACT -ACGGAAAGACGTTCACAGCAACCT -ACGGAAAGACGTTCACAGGCTACT -ACGGAAAGACGTTCACAGGGATCT -ACGGAAAGACGTTCACAGAAGGCT -ACGGAAAGACGTTCACAGTCAACC -ACGGAAAGACGTTCACAGTGTTCC -ACGGAAAGACGTTCACAGATTCCC -ACGGAAAGACGTTCACAGTTCTCG -ACGGAAAGACGTTCACAGTAGACG -ACGGAAAGACGTTCACAGGTAACG -ACGGAAAGACGTTCACAGACTTCG -ACGGAAAGACGTTCACAGTACGCA -ACGGAAAGACGTTCACAGCTTGCA -ACGGAAAGACGTTCACAGCGAACA -ACGGAAAGACGTTCACAGCAGTCA -ACGGAAAGACGTTCACAGGATCCA -ACGGAAAGACGTTCACAGACGACA -ACGGAAAGACGTTCACAGAGCTCA -ACGGAAAGACGTTCACAGTCACGT -ACGGAAAGACGTTCACAGCGTAGT -ACGGAAAGACGTTCACAGGTCAGT -ACGGAAAGACGTTCACAGGAAGGT -ACGGAAAGACGTTCACAGAACCGT -ACGGAAAGACGTTCACAGTTGTGC -ACGGAAAGACGTTCACAGCTAAGC -ACGGAAAGACGTTCACAGACTAGC -ACGGAAAGACGTTCACAGAGATGC -ACGGAAAGACGTTCACAGTGAAGG -ACGGAAAGACGTTCACAGCAATGG -ACGGAAAGACGTTCACAGATGAGG -ACGGAAAGACGTTCACAGAATGGG -ACGGAAAGACGTTCACAGTCCTGA -ACGGAAAGACGTTCACAGTAGCGA -ACGGAAAGACGTTCACAGCACAGA -ACGGAAAGACGTTCACAGGCAAGA -ACGGAAAGACGTTCACAGGGTTGA -ACGGAAAGACGTTCACAGTCCGAT -ACGGAAAGACGTTCACAGTGGCAT -ACGGAAAGACGTTCACAGCGAGAT -ACGGAAAGACGTTCACAGTACCAC -ACGGAAAGACGTTCACAGCAGAAC -ACGGAAAGACGTTCACAGGTCTAC -ACGGAAAGACGTTCACAGACGTAC -ACGGAAAGACGTTCACAGAGTGAC -ACGGAAAGACGTTCACAGCTGTAG -ACGGAAAGACGTTCACAGCCTAAG -ACGGAAAGACGTTCACAGGTTCAG -ACGGAAAGACGTTCACAGGCATAG -ACGGAAAGACGTTCACAGGACAAG -ACGGAAAGACGTTCACAGAAGCAG -ACGGAAAGACGTTCACAGCGTCAA -ACGGAAAGACGTTCACAGGCTGAA -ACGGAAAGACGTTCACAGAGTACG -ACGGAAAGACGTTCACAGATCCGA -ACGGAAAGACGTTCACAGATGGGA -ACGGAAAGACGTTCACAGGTGCAA -ACGGAAAGACGTTCACAGGAGGAA -ACGGAAAGACGTTCACAGCAGGTA -ACGGAAAGACGTTCACAGGACTCT -ACGGAAAGACGTTCACAGAGTCCT -ACGGAAAGACGTTCACAGTAAGCC -ACGGAAAGACGTTCACAGATAGCC -ACGGAAAGACGTTCACAGTAACCG -ACGGAAAGACGTTCACAGATGCCA -ACGGAAAGACGTCCAGATGGAAAC -ACGGAAAGACGTCCAGATAACACC -ACGGAAAGACGTCCAGATATCGAG -ACGGAAAGACGTCCAGATCTCCTT -ACGGAAAGACGTCCAGATCCTGTT -ACGGAAAGACGTCCAGATCGGTTT -ACGGAAAGACGTCCAGATGTGGTT -ACGGAAAGACGTCCAGATGCCTTT -ACGGAAAGACGTCCAGATGGTCTT -ACGGAAAGACGTCCAGATACGCTT -ACGGAAAGACGTCCAGATAGCGTT -ACGGAAAGACGTCCAGATTTCGTC -ACGGAAAGACGTCCAGATTCTCTC -ACGGAAAGACGTCCAGATTGGATC -ACGGAAAGACGTCCAGATCACTTC -ACGGAAAGACGTCCAGATGTACTC -ACGGAAAGACGTCCAGATGATGTC -ACGGAAAGACGTCCAGATACAGTC -ACGGAAAGACGTCCAGATTTGCTG -ACGGAAAGACGTCCAGATTCCATG -ACGGAAAGACGTCCAGATTGTGTG -ACGGAAAGACGTCCAGATCTAGTG -ACGGAAAGACGTCCAGATCATCTG -ACGGAAAGACGTCCAGATGAGTTG -ACGGAAAGACGTCCAGATAGACTG -ACGGAAAGACGTCCAGATTCGGTA -ACGGAAAGACGTCCAGATTGCCTA -ACGGAAAGACGTCCAGATCCACTA -ACGGAAAGACGTCCAGATGGAGTA -ACGGAAAGACGTCCAGATTCGTCT -ACGGAAAGACGTCCAGATTGCACT -ACGGAAAGACGTCCAGATCTGACT -ACGGAAAGACGTCCAGATCAACCT -ACGGAAAGACGTCCAGATGCTACT -ACGGAAAGACGTCCAGATGGATCT -ACGGAAAGACGTCCAGATAAGGCT -ACGGAAAGACGTCCAGATTCAACC -ACGGAAAGACGTCCAGATTGTTCC -ACGGAAAGACGTCCAGATATTCCC -ACGGAAAGACGTCCAGATTTCTCG -ACGGAAAGACGTCCAGATTAGACG -ACGGAAAGACGTCCAGATGTAACG -ACGGAAAGACGTCCAGATACTTCG -ACGGAAAGACGTCCAGATTACGCA -ACGGAAAGACGTCCAGATCTTGCA -ACGGAAAGACGTCCAGATCGAACA -ACGGAAAGACGTCCAGATCAGTCA -ACGGAAAGACGTCCAGATGATCCA -ACGGAAAGACGTCCAGATACGACA -ACGGAAAGACGTCCAGATAGCTCA -ACGGAAAGACGTCCAGATTCACGT -ACGGAAAGACGTCCAGATCGTAGT -ACGGAAAGACGTCCAGATGTCAGT -ACGGAAAGACGTCCAGATGAAGGT -ACGGAAAGACGTCCAGATAACCGT -ACGGAAAGACGTCCAGATTTGTGC -ACGGAAAGACGTCCAGATCTAAGC -ACGGAAAGACGTCCAGATACTAGC -ACGGAAAGACGTCCAGATAGATGC -ACGGAAAGACGTCCAGATTGAAGG -ACGGAAAGACGTCCAGATCAATGG -ACGGAAAGACGTCCAGATATGAGG -ACGGAAAGACGTCCAGATAATGGG -ACGGAAAGACGTCCAGATTCCTGA -ACGGAAAGACGTCCAGATTAGCGA -ACGGAAAGACGTCCAGATCACAGA -ACGGAAAGACGTCCAGATGCAAGA -ACGGAAAGACGTCCAGATGGTTGA -ACGGAAAGACGTCCAGATTCCGAT -ACGGAAAGACGTCCAGATTGGCAT -ACGGAAAGACGTCCAGATCGAGAT -ACGGAAAGACGTCCAGATTACCAC -ACGGAAAGACGTCCAGATCAGAAC -ACGGAAAGACGTCCAGATGTCTAC -ACGGAAAGACGTCCAGATACGTAC -ACGGAAAGACGTCCAGATAGTGAC -ACGGAAAGACGTCCAGATCTGTAG -ACGGAAAGACGTCCAGATCCTAAG -ACGGAAAGACGTCCAGATGTTCAG -ACGGAAAGACGTCCAGATGCATAG -ACGGAAAGACGTCCAGATGACAAG -ACGGAAAGACGTCCAGATAAGCAG -ACGGAAAGACGTCCAGATCGTCAA -ACGGAAAGACGTCCAGATGCTGAA -ACGGAAAGACGTCCAGATAGTACG -ACGGAAAGACGTCCAGATATCCGA -ACGGAAAGACGTCCAGATATGGGA -ACGGAAAGACGTCCAGATGTGCAA -ACGGAAAGACGTCCAGATGAGGAA -ACGGAAAGACGTCCAGATCAGGTA -ACGGAAAGACGTCCAGATGACTCT -ACGGAAAGACGTCCAGATAGTCCT -ACGGAAAGACGTCCAGATTAAGCC -ACGGAAAGACGTCCAGATATAGCC -ACGGAAAGACGTCCAGATTAACCG -ACGGAAAGACGTCCAGATATGCCA -ACGGAAAGACGTACAACGGGAAAC -ACGGAAAGACGTACAACGAACACC -ACGGAAAGACGTACAACGATCGAG -ACGGAAAGACGTACAACGCTCCTT -ACGGAAAGACGTACAACGCCTGTT -ACGGAAAGACGTACAACGCGGTTT -ACGGAAAGACGTACAACGGTGGTT -ACGGAAAGACGTACAACGGCCTTT -ACGGAAAGACGTACAACGGGTCTT -ACGGAAAGACGTACAACGACGCTT -ACGGAAAGACGTACAACGAGCGTT -ACGGAAAGACGTACAACGTTCGTC -ACGGAAAGACGTACAACGTCTCTC -ACGGAAAGACGTACAACGTGGATC -ACGGAAAGACGTACAACGCACTTC -ACGGAAAGACGTACAACGGTACTC -ACGGAAAGACGTACAACGGATGTC -ACGGAAAGACGTACAACGACAGTC -ACGGAAAGACGTACAACGTTGCTG -ACGGAAAGACGTACAACGTCCATG -ACGGAAAGACGTACAACGTGTGTG -ACGGAAAGACGTACAACGCTAGTG -ACGGAAAGACGTACAACGCATCTG -ACGGAAAGACGTACAACGGAGTTG -ACGGAAAGACGTACAACGAGACTG -ACGGAAAGACGTACAACGTCGGTA -ACGGAAAGACGTACAACGTGCCTA -ACGGAAAGACGTACAACGCCACTA -ACGGAAAGACGTACAACGGGAGTA -ACGGAAAGACGTACAACGTCGTCT -ACGGAAAGACGTACAACGTGCACT -ACGGAAAGACGTACAACGCTGACT -ACGGAAAGACGTACAACGCAACCT -ACGGAAAGACGTACAACGGCTACT -ACGGAAAGACGTACAACGGGATCT -ACGGAAAGACGTACAACGAAGGCT -ACGGAAAGACGTACAACGTCAACC -ACGGAAAGACGTACAACGTGTTCC -ACGGAAAGACGTACAACGATTCCC -ACGGAAAGACGTACAACGTTCTCG -ACGGAAAGACGTACAACGTAGACG -ACGGAAAGACGTACAACGGTAACG -ACGGAAAGACGTACAACGACTTCG -ACGGAAAGACGTACAACGTACGCA -ACGGAAAGACGTACAACGCTTGCA -ACGGAAAGACGTACAACGCGAACA -ACGGAAAGACGTACAACGCAGTCA -ACGGAAAGACGTACAACGGATCCA -ACGGAAAGACGTACAACGACGACA -ACGGAAAGACGTACAACGAGCTCA -ACGGAAAGACGTACAACGTCACGT -ACGGAAAGACGTACAACGCGTAGT -ACGGAAAGACGTACAACGGTCAGT -ACGGAAAGACGTACAACGGAAGGT -ACGGAAAGACGTACAACGAACCGT -ACGGAAAGACGTACAACGTTGTGC -ACGGAAAGACGTACAACGCTAAGC -ACGGAAAGACGTACAACGACTAGC -ACGGAAAGACGTACAACGAGATGC -ACGGAAAGACGTACAACGTGAAGG -ACGGAAAGACGTACAACGCAATGG -ACGGAAAGACGTACAACGATGAGG -ACGGAAAGACGTACAACGAATGGG -ACGGAAAGACGTACAACGTCCTGA -ACGGAAAGACGTACAACGTAGCGA -ACGGAAAGACGTACAACGCACAGA -ACGGAAAGACGTACAACGGCAAGA -ACGGAAAGACGTACAACGGGTTGA -ACGGAAAGACGTACAACGTCCGAT -ACGGAAAGACGTACAACGTGGCAT -ACGGAAAGACGTACAACGCGAGAT -ACGGAAAGACGTACAACGTACCAC -ACGGAAAGACGTACAACGCAGAAC -ACGGAAAGACGTACAACGGTCTAC -ACGGAAAGACGTACAACGACGTAC -ACGGAAAGACGTACAACGAGTGAC -ACGGAAAGACGTACAACGCTGTAG -ACGGAAAGACGTACAACGCCTAAG -ACGGAAAGACGTACAACGGTTCAG -ACGGAAAGACGTACAACGGCATAG -ACGGAAAGACGTACAACGGACAAG -ACGGAAAGACGTACAACGAAGCAG -ACGGAAAGACGTACAACGCGTCAA -ACGGAAAGACGTACAACGGCTGAA -ACGGAAAGACGTACAACGAGTACG -ACGGAAAGACGTACAACGATCCGA -ACGGAAAGACGTACAACGATGGGA -ACGGAAAGACGTACAACGGTGCAA -ACGGAAAGACGTACAACGGAGGAA -ACGGAAAGACGTACAACGCAGGTA -ACGGAAAGACGTACAACGGACTCT -ACGGAAAGACGTACAACGAGTCCT -ACGGAAAGACGTACAACGTAAGCC -ACGGAAAGACGTACAACGATAGCC -ACGGAAAGACGTACAACGTAACCG -ACGGAAAGACGTACAACGATGCCA -ACGGAAAGACGTTCAAGCGGAAAC -ACGGAAAGACGTTCAAGCAACACC -ACGGAAAGACGTTCAAGCATCGAG -ACGGAAAGACGTTCAAGCCTCCTT -ACGGAAAGACGTTCAAGCCCTGTT -ACGGAAAGACGTTCAAGCCGGTTT -ACGGAAAGACGTTCAAGCGTGGTT -ACGGAAAGACGTTCAAGCGCCTTT -ACGGAAAGACGTTCAAGCGGTCTT -ACGGAAAGACGTTCAAGCACGCTT -ACGGAAAGACGTTCAAGCAGCGTT -ACGGAAAGACGTTCAAGCTTCGTC -ACGGAAAGACGTTCAAGCTCTCTC -ACGGAAAGACGTTCAAGCTGGATC -ACGGAAAGACGTTCAAGCCACTTC -ACGGAAAGACGTTCAAGCGTACTC -ACGGAAAGACGTTCAAGCGATGTC -ACGGAAAGACGTTCAAGCACAGTC -ACGGAAAGACGTTCAAGCTTGCTG -ACGGAAAGACGTTCAAGCTCCATG -ACGGAAAGACGTTCAAGCTGTGTG -ACGGAAAGACGTTCAAGCCTAGTG -ACGGAAAGACGTTCAAGCCATCTG -ACGGAAAGACGTTCAAGCGAGTTG -ACGGAAAGACGTTCAAGCAGACTG -ACGGAAAGACGTTCAAGCTCGGTA -ACGGAAAGACGTTCAAGCTGCCTA -ACGGAAAGACGTTCAAGCCCACTA -ACGGAAAGACGTTCAAGCGGAGTA -ACGGAAAGACGTTCAAGCTCGTCT -ACGGAAAGACGTTCAAGCTGCACT -ACGGAAAGACGTTCAAGCCTGACT -ACGGAAAGACGTTCAAGCCAACCT -ACGGAAAGACGTTCAAGCGCTACT -ACGGAAAGACGTTCAAGCGGATCT -ACGGAAAGACGTTCAAGCAAGGCT -ACGGAAAGACGTTCAAGCTCAACC -ACGGAAAGACGTTCAAGCTGTTCC -ACGGAAAGACGTTCAAGCATTCCC -ACGGAAAGACGTTCAAGCTTCTCG -ACGGAAAGACGTTCAAGCTAGACG -ACGGAAAGACGTTCAAGCGTAACG -ACGGAAAGACGTTCAAGCACTTCG -ACGGAAAGACGTTCAAGCTACGCA -ACGGAAAGACGTTCAAGCCTTGCA -ACGGAAAGACGTTCAAGCCGAACA -ACGGAAAGACGTTCAAGCCAGTCA -ACGGAAAGACGTTCAAGCGATCCA -ACGGAAAGACGTTCAAGCACGACA -ACGGAAAGACGTTCAAGCAGCTCA -ACGGAAAGACGTTCAAGCTCACGT -ACGGAAAGACGTTCAAGCCGTAGT -ACGGAAAGACGTTCAAGCGTCAGT -ACGGAAAGACGTTCAAGCGAAGGT -ACGGAAAGACGTTCAAGCAACCGT -ACGGAAAGACGTTCAAGCTTGTGC -ACGGAAAGACGTTCAAGCCTAAGC -ACGGAAAGACGTTCAAGCACTAGC -ACGGAAAGACGTTCAAGCAGATGC -ACGGAAAGACGTTCAAGCTGAAGG -ACGGAAAGACGTTCAAGCCAATGG -ACGGAAAGACGTTCAAGCATGAGG -ACGGAAAGACGTTCAAGCAATGGG -ACGGAAAGACGTTCAAGCTCCTGA -ACGGAAAGACGTTCAAGCTAGCGA -ACGGAAAGACGTTCAAGCCACAGA -ACGGAAAGACGTTCAAGCGCAAGA -ACGGAAAGACGTTCAAGCGGTTGA -ACGGAAAGACGTTCAAGCTCCGAT -ACGGAAAGACGTTCAAGCTGGCAT -ACGGAAAGACGTTCAAGCCGAGAT -ACGGAAAGACGTTCAAGCTACCAC -ACGGAAAGACGTTCAAGCCAGAAC -ACGGAAAGACGTTCAAGCGTCTAC -ACGGAAAGACGTTCAAGCACGTAC -ACGGAAAGACGTTCAAGCAGTGAC -ACGGAAAGACGTTCAAGCCTGTAG -ACGGAAAGACGTTCAAGCCCTAAG -ACGGAAAGACGTTCAAGCGTTCAG -ACGGAAAGACGTTCAAGCGCATAG -ACGGAAAGACGTTCAAGCGACAAG -ACGGAAAGACGTTCAAGCAAGCAG -ACGGAAAGACGTTCAAGCCGTCAA -ACGGAAAGACGTTCAAGCGCTGAA -ACGGAAAGACGTTCAAGCAGTACG -ACGGAAAGACGTTCAAGCATCCGA -ACGGAAAGACGTTCAAGCATGGGA -ACGGAAAGACGTTCAAGCGTGCAA -ACGGAAAGACGTTCAAGCGAGGAA -ACGGAAAGACGTTCAAGCCAGGTA -ACGGAAAGACGTTCAAGCGACTCT -ACGGAAAGACGTTCAAGCAGTCCT -ACGGAAAGACGTTCAAGCTAAGCC -ACGGAAAGACGTTCAAGCATAGCC -ACGGAAAGACGTTCAAGCTAACCG -ACGGAAAGACGTTCAAGCATGCCA -ACGGAAAGACGTCGTTCAGGAAAC -ACGGAAAGACGTCGTTCAAACACC -ACGGAAAGACGTCGTTCAATCGAG -ACGGAAAGACGTCGTTCACTCCTT -ACGGAAAGACGTCGTTCACCTGTT -ACGGAAAGACGTCGTTCACGGTTT -ACGGAAAGACGTCGTTCAGTGGTT -ACGGAAAGACGTCGTTCAGCCTTT -ACGGAAAGACGTCGTTCAGGTCTT -ACGGAAAGACGTCGTTCAACGCTT -ACGGAAAGACGTCGTTCAAGCGTT -ACGGAAAGACGTCGTTCATTCGTC -ACGGAAAGACGTCGTTCATCTCTC -ACGGAAAGACGTCGTTCATGGATC -ACGGAAAGACGTCGTTCACACTTC -ACGGAAAGACGTCGTTCAGTACTC -ACGGAAAGACGTCGTTCAGATGTC -ACGGAAAGACGTCGTTCAACAGTC -ACGGAAAGACGTCGTTCATTGCTG -ACGGAAAGACGTCGTTCATCCATG -ACGGAAAGACGTCGTTCATGTGTG -ACGGAAAGACGTCGTTCACTAGTG -ACGGAAAGACGTCGTTCACATCTG -ACGGAAAGACGTCGTTCAGAGTTG -ACGGAAAGACGTCGTTCAAGACTG -ACGGAAAGACGTCGTTCATCGGTA -ACGGAAAGACGTCGTTCATGCCTA -ACGGAAAGACGTCGTTCACCACTA -ACGGAAAGACGTCGTTCAGGAGTA -ACGGAAAGACGTCGTTCATCGTCT -ACGGAAAGACGTCGTTCATGCACT -ACGGAAAGACGTCGTTCACTGACT -ACGGAAAGACGTCGTTCACAACCT -ACGGAAAGACGTCGTTCAGCTACT -ACGGAAAGACGTCGTTCAGGATCT -ACGGAAAGACGTCGTTCAAAGGCT -ACGGAAAGACGTCGTTCATCAACC -ACGGAAAGACGTCGTTCATGTTCC -ACGGAAAGACGTCGTTCAATTCCC -ACGGAAAGACGTCGTTCATTCTCG -ACGGAAAGACGTCGTTCATAGACG -ACGGAAAGACGTCGTTCAGTAACG -ACGGAAAGACGTCGTTCAACTTCG -ACGGAAAGACGTCGTTCATACGCA -ACGGAAAGACGTCGTTCACTTGCA -ACGGAAAGACGTCGTTCACGAACA -ACGGAAAGACGTCGTTCACAGTCA -ACGGAAAGACGTCGTTCAGATCCA -ACGGAAAGACGTCGTTCAACGACA -ACGGAAAGACGTCGTTCAAGCTCA -ACGGAAAGACGTCGTTCATCACGT -ACGGAAAGACGTCGTTCACGTAGT -ACGGAAAGACGTCGTTCAGTCAGT -ACGGAAAGACGTCGTTCAGAAGGT -ACGGAAAGACGTCGTTCAAACCGT -ACGGAAAGACGTCGTTCATTGTGC -ACGGAAAGACGTCGTTCACTAAGC -ACGGAAAGACGTCGTTCAACTAGC -ACGGAAAGACGTCGTTCAAGATGC -ACGGAAAGACGTCGTTCATGAAGG -ACGGAAAGACGTCGTTCACAATGG -ACGGAAAGACGTCGTTCAATGAGG -ACGGAAAGACGTCGTTCAAATGGG -ACGGAAAGACGTCGTTCATCCTGA -ACGGAAAGACGTCGTTCATAGCGA -ACGGAAAGACGTCGTTCACACAGA -ACGGAAAGACGTCGTTCAGCAAGA -ACGGAAAGACGTCGTTCAGGTTGA -ACGGAAAGACGTCGTTCATCCGAT -ACGGAAAGACGTCGTTCATGGCAT -ACGGAAAGACGTCGTTCACGAGAT -ACGGAAAGACGTCGTTCATACCAC -ACGGAAAGACGTCGTTCACAGAAC -ACGGAAAGACGTCGTTCAGTCTAC -ACGGAAAGACGTCGTTCAACGTAC -ACGGAAAGACGTCGTTCAAGTGAC -ACGGAAAGACGTCGTTCACTGTAG -ACGGAAAGACGTCGTTCACCTAAG -ACGGAAAGACGTCGTTCAGTTCAG -ACGGAAAGACGTCGTTCAGCATAG -ACGGAAAGACGTCGTTCAGACAAG -ACGGAAAGACGTCGTTCAAAGCAG -ACGGAAAGACGTCGTTCACGTCAA -ACGGAAAGACGTCGTTCAGCTGAA -ACGGAAAGACGTCGTTCAAGTACG -ACGGAAAGACGTCGTTCAATCCGA -ACGGAAAGACGTCGTTCAATGGGA -ACGGAAAGACGTCGTTCAGTGCAA -ACGGAAAGACGTCGTTCAGAGGAA -ACGGAAAGACGTCGTTCACAGGTA -ACGGAAAGACGTCGTTCAGACTCT -ACGGAAAGACGTCGTTCAAGTCCT -ACGGAAAGACGTCGTTCATAAGCC -ACGGAAAGACGTCGTTCAATAGCC -ACGGAAAGACGTCGTTCATAACCG -ACGGAAAGACGTCGTTCAATGCCA -ACGGAAAGACGTAGTCGTGGAAAC -ACGGAAAGACGTAGTCGTAACACC -ACGGAAAGACGTAGTCGTATCGAG -ACGGAAAGACGTAGTCGTCTCCTT -ACGGAAAGACGTAGTCGTCCTGTT -ACGGAAAGACGTAGTCGTCGGTTT -ACGGAAAGACGTAGTCGTGTGGTT -ACGGAAAGACGTAGTCGTGCCTTT -ACGGAAAGACGTAGTCGTGGTCTT -ACGGAAAGACGTAGTCGTACGCTT -ACGGAAAGACGTAGTCGTAGCGTT -ACGGAAAGACGTAGTCGTTTCGTC -ACGGAAAGACGTAGTCGTTCTCTC -ACGGAAAGACGTAGTCGTTGGATC -ACGGAAAGACGTAGTCGTCACTTC -ACGGAAAGACGTAGTCGTGTACTC -ACGGAAAGACGTAGTCGTGATGTC -ACGGAAAGACGTAGTCGTACAGTC -ACGGAAAGACGTAGTCGTTTGCTG -ACGGAAAGACGTAGTCGTTCCATG -ACGGAAAGACGTAGTCGTTGTGTG -ACGGAAAGACGTAGTCGTCTAGTG -ACGGAAAGACGTAGTCGTCATCTG -ACGGAAAGACGTAGTCGTGAGTTG -ACGGAAAGACGTAGTCGTAGACTG -ACGGAAAGACGTAGTCGTTCGGTA -ACGGAAAGACGTAGTCGTTGCCTA -ACGGAAAGACGTAGTCGTCCACTA -ACGGAAAGACGTAGTCGTGGAGTA -ACGGAAAGACGTAGTCGTTCGTCT -ACGGAAAGACGTAGTCGTTGCACT -ACGGAAAGACGTAGTCGTCTGACT -ACGGAAAGACGTAGTCGTCAACCT -ACGGAAAGACGTAGTCGTGCTACT -ACGGAAAGACGTAGTCGTGGATCT -ACGGAAAGACGTAGTCGTAAGGCT -ACGGAAAGACGTAGTCGTTCAACC -ACGGAAAGACGTAGTCGTTGTTCC -ACGGAAAGACGTAGTCGTATTCCC -ACGGAAAGACGTAGTCGTTTCTCG -ACGGAAAGACGTAGTCGTTAGACG -ACGGAAAGACGTAGTCGTGTAACG -ACGGAAAGACGTAGTCGTACTTCG -ACGGAAAGACGTAGTCGTTACGCA -ACGGAAAGACGTAGTCGTCTTGCA -ACGGAAAGACGTAGTCGTCGAACA -ACGGAAAGACGTAGTCGTCAGTCA -ACGGAAAGACGTAGTCGTGATCCA -ACGGAAAGACGTAGTCGTACGACA -ACGGAAAGACGTAGTCGTAGCTCA -ACGGAAAGACGTAGTCGTTCACGT -ACGGAAAGACGTAGTCGTCGTAGT -ACGGAAAGACGTAGTCGTGTCAGT -ACGGAAAGACGTAGTCGTGAAGGT -ACGGAAAGACGTAGTCGTAACCGT -ACGGAAAGACGTAGTCGTTTGTGC -ACGGAAAGACGTAGTCGTCTAAGC -ACGGAAAGACGTAGTCGTACTAGC -ACGGAAAGACGTAGTCGTAGATGC -ACGGAAAGACGTAGTCGTTGAAGG -ACGGAAAGACGTAGTCGTCAATGG -ACGGAAAGACGTAGTCGTATGAGG -ACGGAAAGACGTAGTCGTAATGGG -ACGGAAAGACGTAGTCGTTCCTGA -ACGGAAAGACGTAGTCGTTAGCGA -ACGGAAAGACGTAGTCGTCACAGA -ACGGAAAGACGTAGTCGTGCAAGA -ACGGAAAGACGTAGTCGTGGTTGA -ACGGAAAGACGTAGTCGTTCCGAT -ACGGAAAGACGTAGTCGTTGGCAT -ACGGAAAGACGTAGTCGTCGAGAT -ACGGAAAGACGTAGTCGTTACCAC -ACGGAAAGACGTAGTCGTCAGAAC -ACGGAAAGACGTAGTCGTGTCTAC -ACGGAAAGACGTAGTCGTACGTAC -ACGGAAAGACGTAGTCGTAGTGAC -ACGGAAAGACGTAGTCGTCTGTAG -ACGGAAAGACGTAGTCGTCCTAAG -ACGGAAAGACGTAGTCGTGTTCAG -ACGGAAAGACGTAGTCGTGCATAG -ACGGAAAGACGTAGTCGTGACAAG -ACGGAAAGACGTAGTCGTAAGCAG -ACGGAAAGACGTAGTCGTCGTCAA -ACGGAAAGACGTAGTCGTGCTGAA -ACGGAAAGACGTAGTCGTAGTACG -ACGGAAAGACGTAGTCGTATCCGA -ACGGAAAGACGTAGTCGTATGGGA -ACGGAAAGACGTAGTCGTGTGCAA -ACGGAAAGACGTAGTCGTGAGGAA -ACGGAAAGACGTAGTCGTCAGGTA -ACGGAAAGACGTAGTCGTGACTCT -ACGGAAAGACGTAGTCGTAGTCCT -ACGGAAAGACGTAGTCGTTAAGCC -ACGGAAAGACGTAGTCGTATAGCC -ACGGAAAGACGTAGTCGTTAACCG -ACGGAAAGACGTAGTCGTATGCCA -ACGGAAAGACGTAGTGTCGGAAAC -ACGGAAAGACGTAGTGTCAACACC -ACGGAAAGACGTAGTGTCATCGAG -ACGGAAAGACGTAGTGTCCTCCTT -ACGGAAAGACGTAGTGTCCCTGTT -ACGGAAAGACGTAGTGTCCGGTTT -ACGGAAAGACGTAGTGTCGTGGTT -ACGGAAAGACGTAGTGTCGCCTTT -ACGGAAAGACGTAGTGTCGGTCTT -ACGGAAAGACGTAGTGTCACGCTT -ACGGAAAGACGTAGTGTCAGCGTT -ACGGAAAGACGTAGTGTCTTCGTC -ACGGAAAGACGTAGTGTCTCTCTC -ACGGAAAGACGTAGTGTCTGGATC -ACGGAAAGACGTAGTGTCCACTTC -ACGGAAAGACGTAGTGTCGTACTC -ACGGAAAGACGTAGTGTCGATGTC -ACGGAAAGACGTAGTGTCACAGTC -ACGGAAAGACGTAGTGTCTTGCTG -ACGGAAAGACGTAGTGTCTCCATG -ACGGAAAGACGTAGTGTCTGTGTG -ACGGAAAGACGTAGTGTCCTAGTG -ACGGAAAGACGTAGTGTCCATCTG -ACGGAAAGACGTAGTGTCGAGTTG -ACGGAAAGACGTAGTGTCAGACTG -ACGGAAAGACGTAGTGTCTCGGTA -ACGGAAAGACGTAGTGTCTGCCTA -ACGGAAAGACGTAGTGTCCCACTA -ACGGAAAGACGTAGTGTCGGAGTA -ACGGAAAGACGTAGTGTCTCGTCT -ACGGAAAGACGTAGTGTCTGCACT -ACGGAAAGACGTAGTGTCCTGACT -ACGGAAAGACGTAGTGTCCAACCT -ACGGAAAGACGTAGTGTCGCTACT -ACGGAAAGACGTAGTGTCGGATCT -ACGGAAAGACGTAGTGTCAAGGCT -ACGGAAAGACGTAGTGTCTCAACC -ACGGAAAGACGTAGTGTCTGTTCC -ACGGAAAGACGTAGTGTCATTCCC -ACGGAAAGACGTAGTGTCTTCTCG -ACGGAAAGACGTAGTGTCTAGACG -ACGGAAAGACGTAGTGTCGTAACG -ACGGAAAGACGTAGTGTCACTTCG -ACGGAAAGACGTAGTGTCTACGCA -ACGGAAAGACGTAGTGTCCTTGCA -ACGGAAAGACGTAGTGTCCGAACA -ACGGAAAGACGTAGTGTCCAGTCA -ACGGAAAGACGTAGTGTCGATCCA -ACGGAAAGACGTAGTGTCACGACA -ACGGAAAGACGTAGTGTCAGCTCA -ACGGAAAGACGTAGTGTCTCACGT -ACGGAAAGACGTAGTGTCCGTAGT -ACGGAAAGACGTAGTGTCGTCAGT -ACGGAAAGACGTAGTGTCGAAGGT -ACGGAAAGACGTAGTGTCAACCGT -ACGGAAAGACGTAGTGTCTTGTGC -ACGGAAAGACGTAGTGTCCTAAGC -ACGGAAAGACGTAGTGTCACTAGC -ACGGAAAGACGTAGTGTCAGATGC -ACGGAAAGACGTAGTGTCTGAAGG -ACGGAAAGACGTAGTGTCCAATGG -ACGGAAAGACGTAGTGTCATGAGG -ACGGAAAGACGTAGTGTCAATGGG -ACGGAAAGACGTAGTGTCTCCTGA -ACGGAAAGACGTAGTGTCTAGCGA -ACGGAAAGACGTAGTGTCCACAGA -ACGGAAAGACGTAGTGTCGCAAGA -ACGGAAAGACGTAGTGTCGGTTGA -ACGGAAAGACGTAGTGTCTCCGAT -ACGGAAAGACGTAGTGTCTGGCAT -ACGGAAAGACGTAGTGTCCGAGAT -ACGGAAAGACGTAGTGTCTACCAC -ACGGAAAGACGTAGTGTCCAGAAC -ACGGAAAGACGTAGTGTCGTCTAC -ACGGAAAGACGTAGTGTCACGTAC -ACGGAAAGACGTAGTGTCAGTGAC -ACGGAAAGACGTAGTGTCCTGTAG -ACGGAAAGACGTAGTGTCCCTAAG -ACGGAAAGACGTAGTGTCGTTCAG -ACGGAAAGACGTAGTGTCGCATAG -ACGGAAAGACGTAGTGTCGACAAG -ACGGAAAGACGTAGTGTCAAGCAG -ACGGAAAGACGTAGTGTCCGTCAA -ACGGAAAGACGTAGTGTCGCTGAA -ACGGAAAGACGTAGTGTCAGTACG -ACGGAAAGACGTAGTGTCATCCGA -ACGGAAAGACGTAGTGTCATGGGA -ACGGAAAGACGTAGTGTCGTGCAA -ACGGAAAGACGTAGTGTCGAGGAA -ACGGAAAGACGTAGTGTCCAGGTA -ACGGAAAGACGTAGTGTCGACTCT -ACGGAAAGACGTAGTGTCAGTCCT -ACGGAAAGACGTAGTGTCTAAGCC -ACGGAAAGACGTAGTGTCATAGCC -ACGGAAAGACGTAGTGTCTAACCG -ACGGAAAGACGTAGTGTCATGCCA -ACGGAAAGACGTGGTGAAGGAAAC -ACGGAAAGACGTGGTGAAAACACC -ACGGAAAGACGTGGTGAAATCGAG -ACGGAAAGACGTGGTGAACTCCTT -ACGGAAAGACGTGGTGAACCTGTT -ACGGAAAGACGTGGTGAACGGTTT -ACGGAAAGACGTGGTGAAGTGGTT -ACGGAAAGACGTGGTGAAGCCTTT -ACGGAAAGACGTGGTGAAGGTCTT -ACGGAAAGACGTGGTGAAACGCTT -ACGGAAAGACGTGGTGAAAGCGTT -ACGGAAAGACGTGGTGAATTCGTC -ACGGAAAGACGTGGTGAATCTCTC -ACGGAAAGACGTGGTGAATGGATC -ACGGAAAGACGTGGTGAACACTTC -ACGGAAAGACGTGGTGAAGTACTC -ACGGAAAGACGTGGTGAAGATGTC -ACGGAAAGACGTGGTGAAACAGTC -ACGGAAAGACGTGGTGAATTGCTG -ACGGAAAGACGTGGTGAATCCATG -ACGGAAAGACGTGGTGAATGTGTG -ACGGAAAGACGTGGTGAACTAGTG -ACGGAAAGACGTGGTGAACATCTG -ACGGAAAGACGTGGTGAAGAGTTG -ACGGAAAGACGTGGTGAAAGACTG -ACGGAAAGACGTGGTGAATCGGTA -ACGGAAAGACGTGGTGAATGCCTA -ACGGAAAGACGTGGTGAACCACTA -ACGGAAAGACGTGGTGAAGGAGTA -ACGGAAAGACGTGGTGAATCGTCT -ACGGAAAGACGTGGTGAATGCACT -ACGGAAAGACGTGGTGAACTGACT -ACGGAAAGACGTGGTGAACAACCT -ACGGAAAGACGTGGTGAAGCTACT -ACGGAAAGACGTGGTGAAGGATCT -ACGGAAAGACGTGGTGAAAAGGCT -ACGGAAAGACGTGGTGAATCAACC -ACGGAAAGACGTGGTGAATGTTCC -ACGGAAAGACGTGGTGAAATTCCC -ACGGAAAGACGTGGTGAATTCTCG -ACGGAAAGACGTGGTGAATAGACG -ACGGAAAGACGTGGTGAAGTAACG -ACGGAAAGACGTGGTGAAACTTCG -ACGGAAAGACGTGGTGAATACGCA -ACGGAAAGACGTGGTGAACTTGCA -ACGGAAAGACGTGGTGAACGAACA -ACGGAAAGACGTGGTGAACAGTCA -ACGGAAAGACGTGGTGAAGATCCA -ACGGAAAGACGTGGTGAAACGACA -ACGGAAAGACGTGGTGAAAGCTCA -ACGGAAAGACGTGGTGAATCACGT -ACGGAAAGACGTGGTGAACGTAGT -ACGGAAAGACGTGGTGAAGTCAGT -ACGGAAAGACGTGGTGAAGAAGGT -ACGGAAAGACGTGGTGAAAACCGT -ACGGAAAGACGTGGTGAATTGTGC -ACGGAAAGACGTGGTGAACTAAGC -ACGGAAAGACGTGGTGAAACTAGC -ACGGAAAGACGTGGTGAAAGATGC -ACGGAAAGACGTGGTGAATGAAGG -ACGGAAAGACGTGGTGAACAATGG -ACGGAAAGACGTGGTGAAATGAGG -ACGGAAAGACGTGGTGAAAATGGG -ACGGAAAGACGTGGTGAATCCTGA -ACGGAAAGACGTGGTGAATAGCGA -ACGGAAAGACGTGGTGAACACAGA -ACGGAAAGACGTGGTGAAGCAAGA -ACGGAAAGACGTGGTGAAGGTTGA -ACGGAAAGACGTGGTGAATCCGAT -ACGGAAAGACGTGGTGAATGGCAT -ACGGAAAGACGTGGTGAACGAGAT -ACGGAAAGACGTGGTGAATACCAC -ACGGAAAGACGTGGTGAACAGAAC -ACGGAAAGACGTGGTGAAGTCTAC -ACGGAAAGACGTGGTGAAACGTAC -ACGGAAAGACGTGGTGAAAGTGAC -ACGGAAAGACGTGGTGAACTGTAG -ACGGAAAGACGTGGTGAACCTAAG -ACGGAAAGACGTGGTGAAGTTCAG -ACGGAAAGACGTGGTGAAGCATAG -ACGGAAAGACGTGGTGAAGACAAG -ACGGAAAGACGTGGTGAAAAGCAG -ACGGAAAGACGTGGTGAACGTCAA -ACGGAAAGACGTGGTGAAGCTGAA -ACGGAAAGACGTGGTGAAAGTACG -ACGGAAAGACGTGGTGAAATCCGA -ACGGAAAGACGTGGTGAAATGGGA -ACGGAAAGACGTGGTGAAGTGCAA -ACGGAAAGACGTGGTGAAGAGGAA -ACGGAAAGACGTGGTGAACAGGTA -ACGGAAAGACGTGGTGAAGACTCT -ACGGAAAGACGTGGTGAAAGTCCT -ACGGAAAGACGTGGTGAATAAGCC -ACGGAAAGACGTGGTGAAATAGCC -ACGGAAAGACGTGGTGAATAACCG -ACGGAAAGACGTGGTGAAATGCCA -ACGGAAAGACGTCGTAACGGAAAC -ACGGAAAGACGTCGTAACAACACC -ACGGAAAGACGTCGTAACATCGAG -ACGGAAAGACGTCGTAACCTCCTT -ACGGAAAGACGTCGTAACCCTGTT -ACGGAAAGACGTCGTAACCGGTTT -ACGGAAAGACGTCGTAACGTGGTT -ACGGAAAGACGTCGTAACGCCTTT -ACGGAAAGACGTCGTAACGGTCTT -ACGGAAAGACGTCGTAACACGCTT -ACGGAAAGACGTCGTAACAGCGTT -ACGGAAAGACGTCGTAACTTCGTC -ACGGAAAGACGTCGTAACTCTCTC -ACGGAAAGACGTCGTAACTGGATC -ACGGAAAGACGTCGTAACCACTTC -ACGGAAAGACGTCGTAACGTACTC -ACGGAAAGACGTCGTAACGATGTC -ACGGAAAGACGTCGTAACACAGTC -ACGGAAAGACGTCGTAACTTGCTG -ACGGAAAGACGTCGTAACTCCATG -ACGGAAAGACGTCGTAACTGTGTG -ACGGAAAGACGTCGTAACCTAGTG -ACGGAAAGACGTCGTAACCATCTG -ACGGAAAGACGTCGTAACGAGTTG -ACGGAAAGACGTCGTAACAGACTG -ACGGAAAGACGTCGTAACTCGGTA -ACGGAAAGACGTCGTAACTGCCTA -ACGGAAAGACGTCGTAACCCACTA -ACGGAAAGACGTCGTAACGGAGTA -ACGGAAAGACGTCGTAACTCGTCT -ACGGAAAGACGTCGTAACTGCACT -ACGGAAAGACGTCGTAACCTGACT -ACGGAAAGACGTCGTAACCAACCT -ACGGAAAGACGTCGTAACGCTACT -ACGGAAAGACGTCGTAACGGATCT -ACGGAAAGACGTCGTAACAAGGCT -ACGGAAAGACGTCGTAACTCAACC -ACGGAAAGACGTCGTAACTGTTCC -ACGGAAAGACGTCGTAACATTCCC -ACGGAAAGACGTCGTAACTTCTCG -ACGGAAAGACGTCGTAACTAGACG -ACGGAAAGACGTCGTAACGTAACG -ACGGAAAGACGTCGTAACACTTCG -ACGGAAAGACGTCGTAACTACGCA -ACGGAAAGACGTCGTAACCTTGCA -ACGGAAAGACGTCGTAACCGAACA -ACGGAAAGACGTCGTAACCAGTCA -ACGGAAAGACGTCGTAACGATCCA -ACGGAAAGACGTCGTAACACGACA -ACGGAAAGACGTCGTAACAGCTCA -ACGGAAAGACGTCGTAACTCACGT -ACGGAAAGACGTCGTAACCGTAGT -ACGGAAAGACGTCGTAACGTCAGT -ACGGAAAGACGTCGTAACGAAGGT -ACGGAAAGACGTCGTAACAACCGT -ACGGAAAGACGTCGTAACTTGTGC -ACGGAAAGACGTCGTAACCTAAGC -ACGGAAAGACGTCGTAACACTAGC -ACGGAAAGACGTCGTAACAGATGC -ACGGAAAGACGTCGTAACTGAAGG -ACGGAAAGACGTCGTAACCAATGG -ACGGAAAGACGTCGTAACATGAGG -ACGGAAAGACGTCGTAACAATGGG -ACGGAAAGACGTCGTAACTCCTGA -ACGGAAAGACGTCGTAACTAGCGA -ACGGAAAGACGTCGTAACCACAGA -ACGGAAAGACGTCGTAACGCAAGA -ACGGAAAGACGTCGTAACGGTTGA -ACGGAAAGACGTCGTAACTCCGAT -ACGGAAAGACGTCGTAACTGGCAT -ACGGAAAGACGTCGTAACCGAGAT -ACGGAAAGACGTCGTAACTACCAC -ACGGAAAGACGTCGTAACCAGAAC -ACGGAAAGACGTCGTAACGTCTAC -ACGGAAAGACGTCGTAACACGTAC -ACGGAAAGACGTCGTAACAGTGAC -ACGGAAAGACGTCGTAACCTGTAG -ACGGAAAGACGTCGTAACCCTAAG -ACGGAAAGACGTCGTAACGTTCAG -ACGGAAAGACGTCGTAACGCATAG -ACGGAAAGACGTCGTAACGACAAG -ACGGAAAGACGTCGTAACAAGCAG -ACGGAAAGACGTCGTAACCGTCAA -ACGGAAAGACGTCGTAACGCTGAA -ACGGAAAGACGTCGTAACAGTACG -ACGGAAAGACGTCGTAACATCCGA -ACGGAAAGACGTCGTAACATGGGA -ACGGAAAGACGTCGTAACGTGCAA -ACGGAAAGACGTCGTAACGAGGAA -ACGGAAAGACGTCGTAACCAGGTA -ACGGAAAGACGTCGTAACGACTCT -ACGGAAAGACGTCGTAACAGTCCT -ACGGAAAGACGTCGTAACTAAGCC -ACGGAAAGACGTCGTAACATAGCC -ACGGAAAGACGTCGTAACTAACCG -ACGGAAAGACGTCGTAACATGCCA -ACGGAAAGACGTTGCTTGGGAAAC -ACGGAAAGACGTTGCTTGAACACC -ACGGAAAGACGTTGCTTGATCGAG -ACGGAAAGACGTTGCTTGCTCCTT -ACGGAAAGACGTTGCTTGCCTGTT -ACGGAAAGACGTTGCTTGCGGTTT -ACGGAAAGACGTTGCTTGGTGGTT -ACGGAAAGACGTTGCTTGGCCTTT -ACGGAAAGACGTTGCTTGGGTCTT -ACGGAAAGACGTTGCTTGACGCTT -ACGGAAAGACGTTGCTTGAGCGTT -ACGGAAAGACGTTGCTTGTTCGTC -ACGGAAAGACGTTGCTTGTCTCTC -ACGGAAAGACGTTGCTTGTGGATC -ACGGAAAGACGTTGCTTGCACTTC -ACGGAAAGACGTTGCTTGGTACTC -ACGGAAAGACGTTGCTTGGATGTC -ACGGAAAGACGTTGCTTGACAGTC -ACGGAAAGACGTTGCTTGTTGCTG -ACGGAAAGACGTTGCTTGTCCATG -ACGGAAAGACGTTGCTTGTGTGTG -ACGGAAAGACGTTGCTTGCTAGTG -ACGGAAAGACGTTGCTTGCATCTG -ACGGAAAGACGTTGCTTGGAGTTG -ACGGAAAGACGTTGCTTGAGACTG -ACGGAAAGACGTTGCTTGTCGGTA -ACGGAAAGACGTTGCTTGTGCCTA -ACGGAAAGACGTTGCTTGCCACTA -ACGGAAAGACGTTGCTTGGGAGTA -ACGGAAAGACGTTGCTTGTCGTCT -ACGGAAAGACGTTGCTTGTGCACT -ACGGAAAGACGTTGCTTGCTGACT -ACGGAAAGACGTTGCTTGCAACCT -ACGGAAAGACGTTGCTTGGCTACT -ACGGAAAGACGTTGCTTGGGATCT -ACGGAAAGACGTTGCTTGAAGGCT -ACGGAAAGACGTTGCTTGTCAACC -ACGGAAAGACGTTGCTTGTGTTCC -ACGGAAAGACGTTGCTTGATTCCC -ACGGAAAGACGTTGCTTGTTCTCG -ACGGAAAGACGTTGCTTGTAGACG -ACGGAAAGACGTTGCTTGGTAACG -ACGGAAAGACGTTGCTTGACTTCG -ACGGAAAGACGTTGCTTGTACGCA -ACGGAAAGACGTTGCTTGCTTGCA -ACGGAAAGACGTTGCTTGCGAACA -ACGGAAAGACGTTGCTTGCAGTCA -ACGGAAAGACGTTGCTTGGATCCA -ACGGAAAGACGTTGCTTGACGACA -ACGGAAAGACGTTGCTTGAGCTCA -ACGGAAAGACGTTGCTTGTCACGT -ACGGAAAGACGTTGCTTGCGTAGT -ACGGAAAGACGTTGCTTGGTCAGT -ACGGAAAGACGTTGCTTGGAAGGT -ACGGAAAGACGTTGCTTGAACCGT -ACGGAAAGACGTTGCTTGTTGTGC -ACGGAAAGACGTTGCTTGCTAAGC -ACGGAAAGACGTTGCTTGACTAGC -ACGGAAAGACGTTGCTTGAGATGC -ACGGAAAGACGTTGCTTGTGAAGG -ACGGAAAGACGTTGCTTGCAATGG -ACGGAAAGACGTTGCTTGATGAGG -ACGGAAAGACGTTGCTTGAATGGG -ACGGAAAGACGTTGCTTGTCCTGA -ACGGAAAGACGTTGCTTGTAGCGA -ACGGAAAGACGTTGCTTGCACAGA -ACGGAAAGACGTTGCTTGGCAAGA -ACGGAAAGACGTTGCTTGGGTTGA -ACGGAAAGACGTTGCTTGTCCGAT -ACGGAAAGACGTTGCTTGTGGCAT -ACGGAAAGACGTTGCTTGCGAGAT -ACGGAAAGACGTTGCTTGTACCAC -ACGGAAAGACGTTGCTTGCAGAAC -ACGGAAAGACGTTGCTTGGTCTAC -ACGGAAAGACGTTGCTTGACGTAC -ACGGAAAGACGTTGCTTGAGTGAC -ACGGAAAGACGTTGCTTGCTGTAG -ACGGAAAGACGTTGCTTGCCTAAG -ACGGAAAGACGTTGCTTGGTTCAG -ACGGAAAGACGTTGCTTGGCATAG -ACGGAAAGACGTTGCTTGGACAAG -ACGGAAAGACGTTGCTTGAAGCAG -ACGGAAAGACGTTGCTTGCGTCAA -ACGGAAAGACGTTGCTTGGCTGAA -ACGGAAAGACGTTGCTTGAGTACG -ACGGAAAGACGTTGCTTGATCCGA -ACGGAAAGACGTTGCTTGATGGGA -ACGGAAAGACGTTGCTTGGTGCAA -ACGGAAAGACGTTGCTTGGAGGAA -ACGGAAAGACGTTGCTTGCAGGTA -ACGGAAAGACGTTGCTTGGACTCT -ACGGAAAGACGTTGCTTGAGTCCT -ACGGAAAGACGTTGCTTGTAAGCC -ACGGAAAGACGTTGCTTGATAGCC -ACGGAAAGACGTTGCTTGTAACCG -ACGGAAAGACGTTGCTTGATGCCA -ACGGAAAGACGTAGCCTAGGAAAC -ACGGAAAGACGTAGCCTAAACACC -ACGGAAAGACGTAGCCTAATCGAG -ACGGAAAGACGTAGCCTACTCCTT -ACGGAAAGACGTAGCCTACCTGTT -ACGGAAAGACGTAGCCTACGGTTT -ACGGAAAGACGTAGCCTAGTGGTT -ACGGAAAGACGTAGCCTAGCCTTT -ACGGAAAGACGTAGCCTAGGTCTT -ACGGAAAGACGTAGCCTAACGCTT -ACGGAAAGACGTAGCCTAAGCGTT -ACGGAAAGACGTAGCCTATTCGTC -ACGGAAAGACGTAGCCTATCTCTC -ACGGAAAGACGTAGCCTATGGATC -ACGGAAAGACGTAGCCTACACTTC -ACGGAAAGACGTAGCCTAGTACTC -ACGGAAAGACGTAGCCTAGATGTC -ACGGAAAGACGTAGCCTAACAGTC -ACGGAAAGACGTAGCCTATTGCTG -ACGGAAAGACGTAGCCTATCCATG -ACGGAAAGACGTAGCCTATGTGTG -ACGGAAAGACGTAGCCTACTAGTG -ACGGAAAGACGTAGCCTACATCTG -ACGGAAAGACGTAGCCTAGAGTTG -ACGGAAAGACGTAGCCTAAGACTG -ACGGAAAGACGTAGCCTATCGGTA -ACGGAAAGACGTAGCCTATGCCTA -ACGGAAAGACGTAGCCTACCACTA -ACGGAAAGACGTAGCCTAGGAGTA -ACGGAAAGACGTAGCCTATCGTCT -ACGGAAAGACGTAGCCTATGCACT -ACGGAAAGACGTAGCCTACTGACT -ACGGAAAGACGTAGCCTACAACCT -ACGGAAAGACGTAGCCTAGCTACT -ACGGAAAGACGTAGCCTAGGATCT -ACGGAAAGACGTAGCCTAAAGGCT -ACGGAAAGACGTAGCCTATCAACC -ACGGAAAGACGTAGCCTATGTTCC -ACGGAAAGACGTAGCCTAATTCCC -ACGGAAAGACGTAGCCTATTCTCG -ACGGAAAGACGTAGCCTATAGACG -ACGGAAAGACGTAGCCTAGTAACG -ACGGAAAGACGTAGCCTAACTTCG -ACGGAAAGACGTAGCCTATACGCA -ACGGAAAGACGTAGCCTACTTGCA -ACGGAAAGACGTAGCCTACGAACA -ACGGAAAGACGTAGCCTACAGTCA -ACGGAAAGACGTAGCCTAGATCCA -ACGGAAAGACGTAGCCTAACGACA -ACGGAAAGACGTAGCCTAAGCTCA -ACGGAAAGACGTAGCCTATCACGT -ACGGAAAGACGTAGCCTACGTAGT -ACGGAAAGACGTAGCCTAGTCAGT -ACGGAAAGACGTAGCCTAGAAGGT -ACGGAAAGACGTAGCCTAAACCGT -ACGGAAAGACGTAGCCTATTGTGC -ACGGAAAGACGTAGCCTACTAAGC -ACGGAAAGACGTAGCCTAACTAGC -ACGGAAAGACGTAGCCTAAGATGC -ACGGAAAGACGTAGCCTATGAAGG -ACGGAAAGACGTAGCCTACAATGG -ACGGAAAGACGTAGCCTAATGAGG -ACGGAAAGACGTAGCCTAAATGGG -ACGGAAAGACGTAGCCTATCCTGA -ACGGAAAGACGTAGCCTATAGCGA -ACGGAAAGACGTAGCCTACACAGA -ACGGAAAGACGTAGCCTAGCAAGA -ACGGAAAGACGTAGCCTAGGTTGA -ACGGAAAGACGTAGCCTATCCGAT -ACGGAAAGACGTAGCCTATGGCAT -ACGGAAAGACGTAGCCTACGAGAT -ACGGAAAGACGTAGCCTATACCAC -ACGGAAAGACGTAGCCTACAGAAC -ACGGAAAGACGTAGCCTAGTCTAC -ACGGAAAGACGTAGCCTAACGTAC -ACGGAAAGACGTAGCCTAAGTGAC -ACGGAAAGACGTAGCCTACTGTAG -ACGGAAAGACGTAGCCTACCTAAG -ACGGAAAGACGTAGCCTAGTTCAG -ACGGAAAGACGTAGCCTAGCATAG -ACGGAAAGACGTAGCCTAGACAAG -ACGGAAAGACGTAGCCTAAAGCAG -ACGGAAAGACGTAGCCTACGTCAA -ACGGAAAGACGTAGCCTAGCTGAA -ACGGAAAGACGTAGCCTAAGTACG -ACGGAAAGACGTAGCCTAATCCGA -ACGGAAAGACGTAGCCTAATGGGA -ACGGAAAGACGTAGCCTAGTGCAA -ACGGAAAGACGTAGCCTAGAGGAA -ACGGAAAGACGTAGCCTACAGGTA -ACGGAAAGACGTAGCCTAGACTCT -ACGGAAAGACGTAGCCTAAGTCCT -ACGGAAAGACGTAGCCTATAAGCC -ACGGAAAGACGTAGCCTAATAGCC -ACGGAAAGACGTAGCCTATAACCG -ACGGAAAGACGTAGCCTAATGCCA -ACGGAAAGACGTAGCACTGGAAAC -ACGGAAAGACGTAGCACTAACACC -ACGGAAAGACGTAGCACTATCGAG -ACGGAAAGACGTAGCACTCTCCTT -ACGGAAAGACGTAGCACTCCTGTT -ACGGAAAGACGTAGCACTCGGTTT -ACGGAAAGACGTAGCACTGTGGTT -ACGGAAAGACGTAGCACTGCCTTT -ACGGAAAGACGTAGCACTGGTCTT -ACGGAAAGACGTAGCACTACGCTT -ACGGAAAGACGTAGCACTAGCGTT -ACGGAAAGACGTAGCACTTTCGTC -ACGGAAAGACGTAGCACTTCTCTC -ACGGAAAGACGTAGCACTTGGATC -ACGGAAAGACGTAGCACTCACTTC -ACGGAAAGACGTAGCACTGTACTC -ACGGAAAGACGTAGCACTGATGTC -ACGGAAAGACGTAGCACTACAGTC -ACGGAAAGACGTAGCACTTTGCTG -ACGGAAAGACGTAGCACTTCCATG -ACGGAAAGACGTAGCACTTGTGTG -ACGGAAAGACGTAGCACTCTAGTG -ACGGAAAGACGTAGCACTCATCTG -ACGGAAAGACGTAGCACTGAGTTG -ACGGAAAGACGTAGCACTAGACTG -ACGGAAAGACGTAGCACTTCGGTA -ACGGAAAGACGTAGCACTTGCCTA -ACGGAAAGACGTAGCACTCCACTA -ACGGAAAGACGTAGCACTGGAGTA -ACGGAAAGACGTAGCACTTCGTCT -ACGGAAAGACGTAGCACTTGCACT -ACGGAAAGACGTAGCACTCTGACT -ACGGAAAGACGTAGCACTCAACCT -ACGGAAAGACGTAGCACTGCTACT -ACGGAAAGACGTAGCACTGGATCT -ACGGAAAGACGTAGCACTAAGGCT -ACGGAAAGACGTAGCACTTCAACC -ACGGAAAGACGTAGCACTTGTTCC -ACGGAAAGACGTAGCACTATTCCC -ACGGAAAGACGTAGCACTTTCTCG -ACGGAAAGACGTAGCACTTAGACG -ACGGAAAGACGTAGCACTGTAACG -ACGGAAAGACGTAGCACTACTTCG -ACGGAAAGACGTAGCACTTACGCA -ACGGAAAGACGTAGCACTCTTGCA -ACGGAAAGACGTAGCACTCGAACA -ACGGAAAGACGTAGCACTCAGTCA -ACGGAAAGACGTAGCACTGATCCA -ACGGAAAGACGTAGCACTACGACA -ACGGAAAGACGTAGCACTAGCTCA -ACGGAAAGACGTAGCACTTCACGT -ACGGAAAGACGTAGCACTCGTAGT -ACGGAAAGACGTAGCACTGTCAGT -ACGGAAAGACGTAGCACTGAAGGT -ACGGAAAGACGTAGCACTAACCGT -ACGGAAAGACGTAGCACTTTGTGC -ACGGAAAGACGTAGCACTCTAAGC -ACGGAAAGACGTAGCACTACTAGC -ACGGAAAGACGTAGCACTAGATGC -ACGGAAAGACGTAGCACTTGAAGG -ACGGAAAGACGTAGCACTCAATGG -ACGGAAAGACGTAGCACTATGAGG -ACGGAAAGACGTAGCACTAATGGG -ACGGAAAGACGTAGCACTTCCTGA -ACGGAAAGACGTAGCACTTAGCGA -ACGGAAAGACGTAGCACTCACAGA -ACGGAAAGACGTAGCACTGCAAGA -ACGGAAAGACGTAGCACTGGTTGA -ACGGAAAGACGTAGCACTTCCGAT -ACGGAAAGACGTAGCACTTGGCAT -ACGGAAAGACGTAGCACTCGAGAT -ACGGAAAGACGTAGCACTTACCAC -ACGGAAAGACGTAGCACTCAGAAC -ACGGAAAGACGTAGCACTGTCTAC -ACGGAAAGACGTAGCACTACGTAC -ACGGAAAGACGTAGCACTAGTGAC -ACGGAAAGACGTAGCACTCTGTAG -ACGGAAAGACGTAGCACTCCTAAG -ACGGAAAGACGTAGCACTGTTCAG -ACGGAAAGACGTAGCACTGCATAG -ACGGAAAGACGTAGCACTGACAAG -ACGGAAAGACGTAGCACTAAGCAG -ACGGAAAGACGTAGCACTCGTCAA -ACGGAAAGACGTAGCACTGCTGAA -ACGGAAAGACGTAGCACTAGTACG -ACGGAAAGACGTAGCACTATCCGA -ACGGAAAGACGTAGCACTATGGGA -ACGGAAAGACGTAGCACTGTGCAA -ACGGAAAGACGTAGCACTGAGGAA -ACGGAAAGACGTAGCACTCAGGTA -ACGGAAAGACGTAGCACTGACTCT -ACGGAAAGACGTAGCACTAGTCCT -ACGGAAAGACGTAGCACTTAAGCC -ACGGAAAGACGTAGCACTATAGCC -ACGGAAAGACGTAGCACTTAACCG -ACGGAAAGACGTAGCACTATGCCA -ACGGAAAGACGTTGCAGAGGAAAC -ACGGAAAGACGTTGCAGAAACACC -ACGGAAAGACGTTGCAGAATCGAG -ACGGAAAGACGTTGCAGACTCCTT -ACGGAAAGACGTTGCAGACCTGTT -ACGGAAAGACGTTGCAGACGGTTT -ACGGAAAGACGTTGCAGAGTGGTT -ACGGAAAGACGTTGCAGAGCCTTT -ACGGAAAGACGTTGCAGAGGTCTT -ACGGAAAGACGTTGCAGAACGCTT -ACGGAAAGACGTTGCAGAAGCGTT -ACGGAAAGACGTTGCAGATTCGTC -ACGGAAAGACGTTGCAGATCTCTC -ACGGAAAGACGTTGCAGATGGATC -ACGGAAAGACGTTGCAGACACTTC -ACGGAAAGACGTTGCAGAGTACTC -ACGGAAAGACGTTGCAGAGATGTC -ACGGAAAGACGTTGCAGAACAGTC -ACGGAAAGACGTTGCAGATTGCTG -ACGGAAAGACGTTGCAGATCCATG -ACGGAAAGACGTTGCAGATGTGTG -ACGGAAAGACGTTGCAGACTAGTG -ACGGAAAGACGTTGCAGACATCTG -ACGGAAAGACGTTGCAGAGAGTTG -ACGGAAAGACGTTGCAGAAGACTG -ACGGAAAGACGTTGCAGATCGGTA -ACGGAAAGACGTTGCAGATGCCTA -ACGGAAAGACGTTGCAGACCACTA -ACGGAAAGACGTTGCAGAGGAGTA -ACGGAAAGACGTTGCAGATCGTCT -ACGGAAAGACGTTGCAGATGCACT -ACGGAAAGACGTTGCAGACTGACT -ACGGAAAGACGTTGCAGACAACCT -ACGGAAAGACGTTGCAGAGCTACT -ACGGAAAGACGTTGCAGAGGATCT -ACGGAAAGACGTTGCAGAAAGGCT -ACGGAAAGACGTTGCAGATCAACC -ACGGAAAGACGTTGCAGATGTTCC -ACGGAAAGACGTTGCAGAATTCCC -ACGGAAAGACGTTGCAGATTCTCG -ACGGAAAGACGTTGCAGATAGACG -ACGGAAAGACGTTGCAGAGTAACG -ACGGAAAGACGTTGCAGAACTTCG -ACGGAAAGACGTTGCAGATACGCA -ACGGAAAGACGTTGCAGACTTGCA -ACGGAAAGACGTTGCAGACGAACA -ACGGAAAGACGTTGCAGACAGTCA -ACGGAAAGACGTTGCAGAGATCCA -ACGGAAAGACGTTGCAGAACGACA -ACGGAAAGACGTTGCAGAAGCTCA -ACGGAAAGACGTTGCAGATCACGT -ACGGAAAGACGTTGCAGACGTAGT -ACGGAAAGACGTTGCAGAGTCAGT -ACGGAAAGACGTTGCAGAGAAGGT -ACGGAAAGACGTTGCAGAAACCGT -ACGGAAAGACGTTGCAGATTGTGC -ACGGAAAGACGTTGCAGACTAAGC -ACGGAAAGACGTTGCAGAACTAGC -ACGGAAAGACGTTGCAGAAGATGC -ACGGAAAGACGTTGCAGATGAAGG -ACGGAAAGACGTTGCAGACAATGG -ACGGAAAGACGTTGCAGAATGAGG -ACGGAAAGACGTTGCAGAAATGGG -ACGGAAAGACGTTGCAGATCCTGA -ACGGAAAGACGTTGCAGATAGCGA -ACGGAAAGACGTTGCAGACACAGA -ACGGAAAGACGTTGCAGAGCAAGA -ACGGAAAGACGTTGCAGAGGTTGA -ACGGAAAGACGTTGCAGATCCGAT -ACGGAAAGACGTTGCAGATGGCAT -ACGGAAAGACGTTGCAGACGAGAT -ACGGAAAGACGTTGCAGATACCAC -ACGGAAAGACGTTGCAGACAGAAC -ACGGAAAGACGTTGCAGAGTCTAC -ACGGAAAGACGTTGCAGAACGTAC -ACGGAAAGACGTTGCAGAAGTGAC -ACGGAAAGACGTTGCAGACTGTAG -ACGGAAAGACGTTGCAGACCTAAG -ACGGAAAGACGTTGCAGAGTTCAG -ACGGAAAGACGTTGCAGAGCATAG -ACGGAAAGACGTTGCAGAGACAAG -ACGGAAAGACGTTGCAGAAAGCAG -ACGGAAAGACGTTGCAGACGTCAA -ACGGAAAGACGTTGCAGAGCTGAA -ACGGAAAGACGTTGCAGAAGTACG -ACGGAAAGACGTTGCAGAATCCGA -ACGGAAAGACGTTGCAGAATGGGA -ACGGAAAGACGTTGCAGAGTGCAA -ACGGAAAGACGTTGCAGAGAGGAA -ACGGAAAGACGTTGCAGACAGGTA -ACGGAAAGACGTTGCAGAGACTCT -ACGGAAAGACGTTGCAGAAGTCCT -ACGGAAAGACGTTGCAGATAAGCC -ACGGAAAGACGTTGCAGAATAGCC -ACGGAAAGACGTTGCAGATAACCG -ACGGAAAGACGTTGCAGAATGCCA -ACGGAAAGACGTAGGTGAGGAAAC -ACGGAAAGACGTAGGTGAAACACC -ACGGAAAGACGTAGGTGAATCGAG -ACGGAAAGACGTAGGTGACTCCTT -ACGGAAAGACGTAGGTGACCTGTT -ACGGAAAGACGTAGGTGACGGTTT -ACGGAAAGACGTAGGTGAGTGGTT -ACGGAAAGACGTAGGTGAGCCTTT -ACGGAAAGACGTAGGTGAGGTCTT -ACGGAAAGACGTAGGTGAACGCTT -ACGGAAAGACGTAGGTGAAGCGTT -ACGGAAAGACGTAGGTGATTCGTC -ACGGAAAGACGTAGGTGATCTCTC -ACGGAAAGACGTAGGTGATGGATC -ACGGAAAGACGTAGGTGACACTTC -ACGGAAAGACGTAGGTGAGTACTC -ACGGAAAGACGTAGGTGAGATGTC -ACGGAAAGACGTAGGTGAACAGTC -ACGGAAAGACGTAGGTGATTGCTG -ACGGAAAGACGTAGGTGATCCATG -ACGGAAAGACGTAGGTGATGTGTG -ACGGAAAGACGTAGGTGACTAGTG -ACGGAAAGACGTAGGTGACATCTG -ACGGAAAGACGTAGGTGAGAGTTG -ACGGAAAGACGTAGGTGAAGACTG -ACGGAAAGACGTAGGTGATCGGTA -ACGGAAAGACGTAGGTGATGCCTA -ACGGAAAGACGTAGGTGACCACTA -ACGGAAAGACGTAGGTGAGGAGTA -ACGGAAAGACGTAGGTGATCGTCT -ACGGAAAGACGTAGGTGATGCACT -ACGGAAAGACGTAGGTGACTGACT -ACGGAAAGACGTAGGTGACAACCT -ACGGAAAGACGTAGGTGAGCTACT -ACGGAAAGACGTAGGTGAGGATCT -ACGGAAAGACGTAGGTGAAAGGCT -ACGGAAAGACGTAGGTGATCAACC -ACGGAAAGACGTAGGTGATGTTCC -ACGGAAAGACGTAGGTGAATTCCC -ACGGAAAGACGTAGGTGATTCTCG -ACGGAAAGACGTAGGTGATAGACG -ACGGAAAGACGTAGGTGAGTAACG -ACGGAAAGACGTAGGTGAACTTCG -ACGGAAAGACGTAGGTGATACGCA -ACGGAAAGACGTAGGTGACTTGCA -ACGGAAAGACGTAGGTGACGAACA -ACGGAAAGACGTAGGTGACAGTCA -ACGGAAAGACGTAGGTGAGATCCA -ACGGAAAGACGTAGGTGAACGACA -ACGGAAAGACGTAGGTGAAGCTCA -ACGGAAAGACGTAGGTGATCACGT -ACGGAAAGACGTAGGTGACGTAGT -ACGGAAAGACGTAGGTGAGTCAGT -ACGGAAAGACGTAGGTGAGAAGGT -ACGGAAAGACGTAGGTGAAACCGT -ACGGAAAGACGTAGGTGATTGTGC -ACGGAAAGACGTAGGTGACTAAGC -ACGGAAAGACGTAGGTGAACTAGC -ACGGAAAGACGTAGGTGAAGATGC -ACGGAAAGACGTAGGTGATGAAGG -ACGGAAAGACGTAGGTGACAATGG -ACGGAAAGACGTAGGTGAATGAGG -ACGGAAAGACGTAGGTGAAATGGG -ACGGAAAGACGTAGGTGATCCTGA -ACGGAAAGACGTAGGTGATAGCGA -ACGGAAAGACGTAGGTGACACAGA -ACGGAAAGACGTAGGTGAGCAAGA -ACGGAAAGACGTAGGTGAGGTTGA -ACGGAAAGACGTAGGTGATCCGAT -ACGGAAAGACGTAGGTGATGGCAT -ACGGAAAGACGTAGGTGACGAGAT -ACGGAAAGACGTAGGTGATACCAC -ACGGAAAGACGTAGGTGACAGAAC -ACGGAAAGACGTAGGTGAGTCTAC -ACGGAAAGACGTAGGTGAACGTAC -ACGGAAAGACGTAGGTGAAGTGAC -ACGGAAAGACGTAGGTGACTGTAG -ACGGAAAGACGTAGGTGACCTAAG -ACGGAAAGACGTAGGTGAGTTCAG -ACGGAAAGACGTAGGTGAGCATAG -ACGGAAAGACGTAGGTGAGACAAG -ACGGAAAGACGTAGGTGAAAGCAG -ACGGAAAGACGTAGGTGACGTCAA -ACGGAAAGACGTAGGTGAGCTGAA -ACGGAAAGACGTAGGTGAAGTACG -ACGGAAAGACGTAGGTGAATCCGA -ACGGAAAGACGTAGGTGAATGGGA -ACGGAAAGACGTAGGTGAGTGCAA -ACGGAAAGACGTAGGTGAGAGGAA -ACGGAAAGACGTAGGTGACAGGTA -ACGGAAAGACGTAGGTGAGACTCT -ACGGAAAGACGTAGGTGAAGTCCT -ACGGAAAGACGTAGGTGATAAGCC -ACGGAAAGACGTAGGTGAATAGCC -ACGGAAAGACGTAGGTGATAACCG -ACGGAAAGACGTAGGTGAATGCCA -ACGGAAAGACGTTGGCAAGGAAAC -ACGGAAAGACGTTGGCAAAACACC -ACGGAAAGACGTTGGCAAATCGAG -ACGGAAAGACGTTGGCAACTCCTT -ACGGAAAGACGTTGGCAACCTGTT -ACGGAAAGACGTTGGCAACGGTTT -ACGGAAAGACGTTGGCAAGTGGTT -ACGGAAAGACGTTGGCAAGCCTTT -ACGGAAAGACGTTGGCAAGGTCTT -ACGGAAAGACGTTGGCAAACGCTT -ACGGAAAGACGTTGGCAAAGCGTT -ACGGAAAGACGTTGGCAATTCGTC -ACGGAAAGACGTTGGCAATCTCTC -ACGGAAAGACGTTGGCAATGGATC -ACGGAAAGACGTTGGCAACACTTC -ACGGAAAGACGTTGGCAAGTACTC -ACGGAAAGACGTTGGCAAGATGTC -ACGGAAAGACGTTGGCAAACAGTC -ACGGAAAGACGTTGGCAATTGCTG -ACGGAAAGACGTTGGCAATCCATG -ACGGAAAGACGTTGGCAATGTGTG -ACGGAAAGACGTTGGCAACTAGTG -ACGGAAAGACGTTGGCAACATCTG -ACGGAAAGACGTTGGCAAGAGTTG -ACGGAAAGACGTTGGCAAAGACTG -ACGGAAAGACGTTGGCAATCGGTA -ACGGAAAGACGTTGGCAATGCCTA -ACGGAAAGACGTTGGCAACCACTA -ACGGAAAGACGTTGGCAAGGAGTA -ACGGAAAGACGTTGGCAATCGTCT -ACGGAAAGACGTTGGCAATGCACT -ACGGAAAGACGTTGGCAACTGACT -ACGGAAAGACGTTGGCAACAACCT -ACGGAAAGACGTTGGCAAGCTACT -ACGGAAAGACGTTGGCAAGGATCT -ACGGAAAGACGTTGGCAAAAGGCT -ACGGAAAGACGTTGGCAATCAACC -ACGGAAAGACGTTGGCAATGTTCC -ACGGAAAGACGTTGGCAAATTCCC -ACGGAAAGACGTTGGCAATTCTCG -ACGGAAAGACGTTGGCAATAGACG -ACGGAAAGACGTTGGCAAGTAACG -ACGGAAAGACGTTGGCAAACTTCG -ACGGAAAGACGTTGGCAATACGCA -ACGGAAAGACGTTGGCAACTTGCA -ACGGAAAGACGTTGGCAACGAACA -ACGGAAAGACGTTGGCAACAGTCA -ACGGAAAGACGTTGGCAAGATCCA -ACGGAAAGACGTTGGCAAACGACA -ACGGAAAGACGTTGGCAAAGCTCA -ACGGAAAGACGTTGGCAATCACGT -ACGGAAAGACGTTGGCAACGTAGT -ACGGAAAGACGTTGGCAAGTCAGT -ACGGAAAGACGTTGGCAAGAAGGT -ACGGAAAGACGTTGGCAAAACCGT -ACGGAAAGACGTTGGCAATTGTGC -ACGGAAAGACGTTGGCAACTAAGC -ACGGAAAGACGTTGGCAAACTAGC -ACGGAAAGACGTTGGCAAAGATGC -ACGGAAAGACGTTGGCAATGAAGG -ACGGAAAGACGTTGGCAACAATGG -ACGGAAAGACGTTGGCAAATGAGG -ACGGAAAGACGTTGGCAAAATGGG -ACGGAAAGACGTTGGCAATCCTGA -ACGGAAAGACGTTGGCAATAGCGA -ACGGAAAGACGTTGGCAACACAGA -ACGGAAAGACGTTGGCAAGCAAGA -ACGGAAAGACGTTGGCAAGGTTGA -ACGGAAAGACGTTGGCAATCCGAT -ACGGAAAGACGTTGGCAATGGCAT -ACGGAAAGACGTTGGCAACGAGAT -ACGGAAAGACGTTGGCAATACCAC -ACGGAAAGACGTTGGCAACAGAAC -ACGGAAAGACGTTGGCAAGTCTAC -ACGGAAAGACGTTGGCAAACGTAC -ACGGAAAGACGTTGGCAAAGTGAC -ACGGAAAGACGTTGGCAACTGTAG -ACGGAAAGACGTTGGCAACCTAAG -ACGGAAAGACGTTGGCAAGTTCAG -ACGGAAAGACGTTGGCAAGCATAG -ACGGAAAGACGTTGGCAAGACAAG -ACGGAAAGACGTTGGCAAAAGCAG -ACGGAAAGACGTTGGCAACGTCAA -ACGGAAAGACGTTGGCAAGCTGAA -ACGGAAAGACGTTGGCAAAGTACG -ACGGAAAGACGTTGGCAAATCCGA -ACGGAAAGACGTTGGCAAATGGGA -ACGGAAAGACGTTGGCAAGTGCAA -ACGGAAAGACGTTGGCAAGAGGAA -ACGGAAAGACGTTGGCAACAGGTA -ACGGAAAGACGTTGGCAAGACTCT -ACGGAAAGACGTTGGCAAAGTCCT -ACGGAAAGACGTTGGCAATAAGCC -ACGGAAAGACGTTGGCAAATAGCC -ACGGAAAGACGTTGGCAATAACCG -ACGGAAAGACGTTGGCAAATGCCA -ACGGAAAGACGTAGGATGGGAAAC -ACGGAAAGACGTAGGATGAACACC -ACGGAAAGACGTAGGATGATCGAG -ACGGAAAGACGTAGGATGCTCCTT -ACGGAAAGACGTAGGATGCCTGTT -ACGGAAAGACGTAGGATGCGGTTT -ACGGAAAGACGTAGGATGGTGGTT -ACGGAAAGACGTAGGATGGCCTTT -ACGGAAAGACGTAGGATGGGTCTT -ACGGAAAGACGTAGGATGACGCTT -ACGGAAAGACGTAGGATGAGCGTT -ACGGAAAGACGTAGGATGTTCGTC -ACGGAAAGACGTAGGATGTCTCTC -ACGGAAAGACGTAGGATGTGGATC -ACGGAAAGACGTAGGATGCACTTC -ACGGAAAGACGTAGGATGGTACTC -ACGGAAAGACGTAGGATGGATGTC -ACGGAAAGACGTAGGATGACAGTC -ACGGAAAGACGTAGGATGTTGCTG -ACGGAAAGACGTAGGATGTCCATG -ACGGAAAGACGTAGGATGTGTGTG -ACGGAAAGACGTAGGATGCTAGTG -ACGGAAAGACGTAGGATGCATCTG -ACGGAAAGACGTAGGATGGAGTTG -ACGGAAAGACGTAGGATGAGACTG -ACGGAAAGACGTAGGATGTCGGTA -ACGGAAAGACGTAGGATGTGCCTA -ACGGAAAGACGTAGGATGCCACTA -ACGGAAAGACGTAGGATGGGAGTA -ACGGAAAGACGTAGGATGTCGTCT -ACGGAAAGACGTAGGATGTGCACT -ACGGAAAGACGTAGGATGCTGACT -ACGGAAAGACGTAGGATGCAACCT -ACGGAAAGACGTAGGATGGCTACT -ACGGAAAGACGTAGGATGGGATCT -ACGGAAAGACGTAGGATGAAGGCT -ACGGAAAGACGTAGGATGTCAACC -ACGGAAAGACGTAGGATGTGTTCC -ACGGAAAGACGTAGGATGATTCCC -ACGGAAAGACGTAGGATGTTCTCG -ACGGAAAGACGTAGGATGTAGACG -ACGGAAAGACGTAGGATGGTAACG -ACGGAAAGACGTAGGATGACTTCG -ACGGAAAGACGTAGGATGTACGCA -ACGGAAAGACGTAGGATGCTTGCA -ACGGAAAGACGTAGGATGCGAACA -ACGGAAAGACGTAGGATGCAGTCA -ACGGAAAGACGTAGGATGGATCCA -ACGGAAAGACGTAGGATGACGACA -ACGGAAAGACGTAGGATGAGCTCA -ACGGAAAGACGTAGGATGTCACGT -ACGGAAAGACGTAGGATGCGTAGT -ACGGAAAGACGTAGGATGGTCAGT -ACGGAAAGACGTAGGATGGAAGGT -ACGGAAAGACGTAGGATGAACCGT -ACGGAAAGACGTAGGATGTTGTGC -ACGGAAAGACGTAGGATGCTAAGC -ACGGAAAGACGTAGGATGACTAGC -ACGGAAAGACGTAGGATGAGATGC -ACGGAAAGACGTAGGATGTGAAGG -ACGGAAAGACGTAGGATGCAATGG -ACGGAAAGACGTAGGATGATGAGG -ACGGAAAGACGTAGGATGAATGGG -ACGGAAAGACGTAGGATGTCCTGA -ACGGAAAGACGTAGGATGTAGCGA -ACGGAAAGACGTAGGATGCACAGA -ACGGAAAGACGTAGGATGGCAAGA -ACGGAAAGACGTAGGATGGGTTGA -ACGGAAAGACGTAGGATGTCCGAT -ACGGAAAGACGTAGGATGTGGCAT -ACGGAAAGACGTAGGATGCGAGAT -ACGGAAAGACGTAGGATGTACCAC -ACGGAAAGACGTAGGATGCAGAAC -ACGGAAAGACGTAGGATGGTCTAC -ACGGAAAGACGTAGGATGACGTAC -ACGGAAAGACGTAGGATGAGTGAC -ACGGAAAGACGTAGGATGCTGTAG -ACGGAAAGACGTAGGATGCCTAAG -ACGGAAAGACGTAGGATGGTTCAG -ACGGAAAGACGTAGGATGGCATAG -ACGGAAAGACGTAGGATGGACAAG -ACGGAAAGACGTAGGATGAAGCAG -ACGGAAAGACGTAGGATGCGTCAA -ACGGAAAGACGTAGGATGGCTGAA -ACGGAAAGACGTAGGATGAGTACG -ACGGAAAGACGTAGGATGATCCGA -ACGGAAAGACGTAGGATGATGGGA -ACGGAAAGACGTAGGATGGTGCAA -ACGGAAAGACGTAGGATGGAGGAA -ACGGAAAGACGTAGGATGCAGGTA -ACGGAAAGACGTAGGATGGACTCT -ACGGAAAGACGTAGGATGAGTCCT -ACGGAAAGACGTAGGATGTAAGCC -ACGGAAAGACGTAGGATGATAGCC -ACGGAAAGACGTAGGATGTAACCG -ACGGAAAGACGTAGGATGATGCCA -ACGGAAAGACGTGGGAATGGAAAC -ACGGAAAGACGTGGGAATAACACC -ACGGAAAGACGTGGGAATATCGAG -ACGGAAAGACGTGGGAATCTCCTT -ACGGAAAGACGTGGGAATCCTGTT -ACGGAAAGACGTGGGAATCGGTTT -ACGGAAAGACGTGGGAATGTGGTT -ACGGAAAGACGTGGGAATGCCTTT -ACGGAAAGACGTGGGAATGGTCTT -ACGGAAAGACGTGGGAATACGCTT -ACGGAAAGACGTGGGAATAGCGTT -ACGGAAAGACGTGGGAATTTCGTC -ACGGAAAGACGTGGGAATTCTCTC -ACGGAAAGACGTGGGAATTGGATC -ACGGAAAGACGTGGGAATCACTTC -ACGGAAAGACGTGGGAATGTACTC -ACGGAAAGACGTGGGAATGATGTC -ACGGAAAGACGTGGGAATACAGTC -ACGGAAAGACGTGGGAATTTGCTG -ACGGAAAGACGTGGGAATTCCATG -ACGGAAAGACGTGGGAATTGTGTG -ACGGAAAGACGTGGGAATCTAGTG -ACGGAAAGACGTGGGAATCATCTG -ACGGAAAGACGTGGGAATGAGTTG -ACGGAAAGACGTGGGAATAGACTG -ACGGAAAGACGTGGGAATTCGGTA -ACGGAAAGACGTGGGAATTGCCTA -ACGGAAAGACGTGGGAATCCACTA -ACGGAAAGACGTGGGAATGGAGTA -ACGGAAAGACGTGGGAATTCGTCT -ACGGAAAGACGTGGGAATTGCACT -ACGGAAAGACGTGGGAATCTGACT -ACGGAAAGACGTGGGAATCAACCT -ACGGAAAGACGTGGGAATGCTACT -ACGGAAAGACGTGGGAATGGATCT -ACGGAAAGACGTGGGAATAAGGCT -ACGGAAAGACGTGGGAATTCAACC -ACGGAAAGACGTGGGAATTGTTCC -ACGGAAAGACGTGGGAATATTCCC -ACGGAAAGACGTGGGAATTTCTCG -ACGGAAAGACGTGGGAATTAGACG -ACGGAAAGACGTGGGAATGTAACG -ACGGAAAGACGTGGGAATACTTCG -ACGGAAAGACGTGGGAATTACGCA -ACGGAAAGACGTGGGAATCTTGCA -ACGGAAAGACGTGGGAATCGAACA -ACGGAAAGACGTGGGAATCAGTCA -ACGGAAAGACGTGGGAATGATCCA -ACGGAAAGACGTGGGAATACGACA -ACGGAAAGACGTGGGAATAGCTCA -ACGGAAAGACGTGGGAATTCACGT -ACGGAAAGACGTGGGAATCGTAGT -ACGGAAAGACGTGGGAATGTCAGT -ACGGAAAGACGTGGGAATGAAGGT -ACGGAAAGACGTGGGAATAACCGT -ACGGAAAGACGTGGGAATTTGTGC -ACGGAAAGACGTGGGAATCTAAGC -ACGGAAAGACGTGGGAATACTAGC -ACGGAAAGACGTGGGAATAGATGC -ACGGAAAGACGTGGGAATTGAAGG -ACGGAAAGACGTGGGAATCAATGG -ACGGAAAGACGTGGGAATATGAGG -ACGGAAAGACGTGGGAATAATGGG -ACGGAAAGACGTGGGAATTCCTGA -ACGGAAAGACGTGGGAATTAGCGA -ACGGAAAGACGTGGGAATCACAGA -ACGGAAAGACGTGGGAATGCAAGA -ACGGAAAGACGTGGGAATGGTTGA -ACGGAAAGACGTGGGAATTCCGAT -ACGGAAAGACGTGGGAATTGGCAT -ACGGAAAGACGTGGGAATCGAGAT -ACGGAAAGACGTGGGAATTACCAC -ACGGAAAGACGTGGGAATCAGAAC -ACGGAAAGACGTGGGAATGTCTAC -ACGGAAAGACGTGGGAATACGTAC -ACGGAAAGACGTGGGAATAGTGAC -ACGGAAAGACGTGGGAATCTGTAG -ACGGAAAGACGTGGGAATCCTAAG -ACGGAAAGACGTGGGAATGTTCAG -ACGGAAAGACGTGGGAATGCATAG -ACGGAAAGACGTGGGAATGACAAG -ACGGAAAGACGTGGGAATAAGCAG -ACGGAAAGACGTGGGAATCGTCAA -ACGGAAAGACGTGGGAATGCTGAA -ACGGAAAGACGTGGGAATAGTACG -ACGGAAAGACGTGGGAATATCCGA -ACGGAAAGACGTGGGAATATGGGA -ACGGAAAGACGTGGGAATGTGCAA -ACGGAAAGACGTGGGAATGAGGAA -ACGGAAAGACGTGGGAATCAGGTA -ACGGAAAGACGTGGGAATGACTCT -ACGGAAAGACGTGGGAATAGTCCT -ACGGAAAGACGTGGGAATTAAGCC -ACGGAAAGACGTGGGAATATAGCC -ACGGAAAGACGTGGGAATTAACCG -ACGGAAAGACGTGGGAATATGCCA -ACGGAAAGACGTTGATCCGGAAAC -ACGGAAAGACGTTGATCCAACACC -ACGGAAAGACGTTGATCCATCGAG -ACGGAAAGACGTTGATCCCTCCTT -ACGGAAAGACGTTGATCCCCTGTT -ACGGAAAGACGTTGATCCCGGTTT -ACGGAAAGACGTTGATCCGTGGTT -ACGGAAAGACGTTGATCCGCCTTT -ACGGAAAGACGTTGATCCGGTCTT -ACGGAAAGACGTTGATCCACGCTT -ACGGAAAGACGTTGATCCAGCGTT -ACGGAAAGACGTTGATCCTTCGTC -ACGGAAAGACGTTGATCCTCTCTC -ACGGAAAGACGTTGATCCTGGATC -ACGGAAAGACGTTGATCCCACTTC -ACGGAAAGACGTTGATCCGTACTC -ACGGAAAGACGTTGATCCGATGTC -ACGGAAAGACGTTGATCCACAGTC -ACGGAAAGACGTTGATCCTTGCTG -ACGGAAAGACGTTGATCCTCCATG -ACGGAAAGACGTTGATCCTGTGTG -ACGGAAAGACGTTGATCCCTAGTG -ACGGAAAGACGTTGATCCCATCTG -ACGGAAAGACGTTGATCCGAGTTG -ACGGAAAGACGTTGATCCAGACTG -ACGGAAAGACGTTGATCCTCGGTA -ACGGAAAGACGTTGATCCTGCCTA -ACGGAAAGACGTTGATCCCCACTA -ACGGAAAGACGTTGATCCGGAGTA -ACGGAAAGACGTTGATCCTCGTCT -ACGGAAAGACGTTGATCCTGCACT -ACGGAAAGACGTTGATCCCTGACT -ACGGAAAGACGTTGATCCCAACCT -ACGGAAAGACGTTGATCCGCTACT -ACGGAAAGACGTTGATCCGGATCT -ACGGAAAGACGTTGATCCAAGGCT -ACGGAAAGACGTTGATCCTCAACC -ACGGAAAGACGTTGATCCTGTTCC -ACGGAAAGACGTTGATCCATTCCC -ACGGAAAGACGTTGATCCTTCTCG -ACGGAAAGACGTTGATCCTAGACG -ACGGAAAGACGTTGATCCGTAACG -ACGGAAAGACGTTGATCCACTTCG -ACGGAAAGACGTTGATCCTACGCA -ACGGAAAGACGTTGATCCCTTGCA -ACGGAAAGACGTTGATCCCGAACA -ACGGAAAGACGTTGATCCCAGTCA -ACGGAAAGACGTTGATCCGATCCA -ACGGAAAGACGTTGATCCACGACA -ACGGAAAGACGTTGATCCAGCTCA -ACGGAAAGACGTTGATCCTCACGT -ACGGAAAGACGTTGATCCCGTAGT -ACGGAAAGACGTTGATCCGTCAGT -ACGGAAAGACGTTGATCCGAAGGT -ACGGAAAGACGTTGATCCAACCGT -ACGGAAAGACGTTGATCCTTGTGC -ACGGAAAGACGTTGATCCCTAAGC -ACGGAAAGACGTTGATCCACTAGC -ACGGAAAGACGTTGATCCAGATGC -ACGGAAAGACGTTGATCCTGAAGG -ACGGAAAGACGTTGATCCCAATGG -ACGGAAAGACGTTGATCCATGAGG -ACGGAAAGACGTTGATCCAATGGG -ACGGAAAGACGTTGATCCTCCTGA -ACGGAAAGACGTTGATCCTAGCGA -ACGGAAAGACGTTGATCCCACAGA -ACGGAAAGACGTTGATCCGCAAGA -ACGGAAAGACGTTGATCCGGTTGA -ACGGAAAGACGTTGATCCTCCGAT -ACGGAAAGACGTTGATCCTGGCAT -ACGGAAAGACGTTGATCCCGAGAT -ACGGAAAGACGTTGATCCTACCAC -ACGGAAAGACGTTGATCCCAGAAC -ACGGAAAGACGTTGATCCGTCTAC -ACGGAAAGACGTTGATCCACGTAC -ACGGAAAGACGTTGATCCAGTGAC -ACGGAAAGACGTTGATCCCTGTAG -ACGGAAAGACGTTGATCCCCTAAG -ACGGAAAGACGTTGATCCGTTCAG -ACGGAAAGACGTTGATCCGCATAG -ACGGAAAGACGTTGATCCGACAAG -ACGGAAAGACGTTGATCCAAGCAG -ACGGAAAGACGTTGATCCCGTCAA -ACGGAAAGACGTTGATCCGCTGAA -ACGGAAAGACGTTGATCCAGTACG -ACGGAAAGACGTTGATCCATCCGA -ACGGAAAGACGTTGATCCATGGGA -ACGGAAAGACGTTGATCCGTGCAA -ACGGAAAGACGTTGATCCGAGGAA -ACGGAAAGACGTTGATCCCAGGTA -ACGGAAAGACGTTGATCCGACTCT -ACGGAAAGACGTTGATCCAGTCCT -ACGGAAAGACGTTGATCCTAAGCC -ACGGAAAGACGTTGATCCATAGCC -ACGGAAAGACGTTGATCCTAACCG -ACGGAAAGACGTTGATCCATGCCA -ACGGAAAGACGTCGATAGGGAAAC -ACGGAAAGACGTCGATAGAACACC -ACGGAAAGACGTCGATAGATCGAG -ACGGAAAGACGTCGATAGCTCCTT -ACGGAAAGACGTCGATAGCCTGTT -ACGGAAAGACGTCGATAGCGGTTT -ACGGAAAGACGTCGATAGGTGGTT -ACGGAAAGACGTCGATAGGCCTTT -ACGGAAAGACGTCGATAGGGTCTT -ACGGAAAGACGTCGATAGACGCTT -ACGGAAAGACGTCGATAGAGCGTT -ACGGAAAGACGTCGATAGTTCGTC -ACGGAAAGACGTCGATAGTCTCTC -ACGGAAAGACGTCGATAGTGGATC -ACGGAAAGACGTCGATAGCACTTC -ACGGAAAGACGTCGATAGGTACTC -ACGGAAAGACGTCGATAGGATGTC -ACGGAAAGACGTCGATAGACAGTC -ACGGAAAGACGTCGATAGTTGCTG -ACGGAAAGACGTCGATAGTCCATG -ACGGAAAGACGTCGATAGTGTGTG -ACGGAAAGACGTCGATAGCTAGTG -ACGGAAAGACGTCGATAGCATCTG -ACGGAAAGACGTCGATAGGAGTTG -ACGGAAAGACGTCGATAGAGACTG -ACGGAAAGACGTCGATAGTCGGTA -ACGGAAAGACGTCGATAGTGCCTA -ACGGAAAGACGTCGATAGCCACTA -ACGGAAAGACGTCGATAGGGAGTA -ACGGAAAGACGTCGATAGTCGTCT -ACGGAAAGACGTCGATAGTGCACT -ACGGAAAGACGTCGATAGCTGACT -ACGGAAAGACGTCGATAGCAACCT -ACGGAAAGACGTCGATAGGCTACT -ACGGAAAGACGTCGATAGGGATCT -ACGGAAAGACGTCGATAGAAGGCT -ACGGAAAGACGTCGATAGTCAACC -ACGGAAAGACGTCGATAGTGTTCC -ACGGAAAGACGTCGATAGATTCCC -ACGGAAAGACGTCGATAGTTCTCG -ACGGAAAGACGTCGATAGTAGACG -ACGGAAAGACGTCGATAGGTAACG -ACGGAAAGACGTCGATAGACTTCG -ACGGAAAGACGTCGATAGTACGCA -ACGGAAAGACGTCGATAGCTTGCA -ACGGAAAGACGTCGATAGCGAACA -ACGGAAAGACGTCGATAGCAGTCA -ACGGAAAGACGTCGATAGGATCCA -ACGGAAAGACGTCGATAGACGACA -ACGGAAAGACGTCGATAGAGCTCA -ACGGAAAGACGTCGATAGTCACGT -ACGGAAAGACGTCGATAGCGTAGT -ACGGAAAGACGTCGATAGGTCAGT -ACGGAAAGACGTCGATAGGAAGGT -ACGGAAAGACGTCGATAGAACCGT -ACGGAAAGACGTCGATAGTTGTGC -ACGGAAAGACGTCGATAGCTAAGC -ACGGAAAGACGTCGATAGACTAGC -ACGGAAAGACGTCGATAGAGATGC -ACGGAAAGACGTCGATAGTGAAGG -ACGGAAAGACGTCGATAGCAATGG -ACGGAAAGACGTCGATAGATGAGG -ACGGAAAGACGTCGATAGAATGGG -ACGGAAAGACGTCGATAGTCCTGA -ACGGAAAGACGTCGATAGTAGCGA -ACGGAAAGACGTCGATAGCACAGA -ACGGAAAGACGTCGATAGGCAAGA -ACGGAAAGACGTCGATAGGGTTGA -ACGGAAAGACGTCGATAGTCCGAT -ACGGAAAGACGTCGATAGTGGCAT -ACGGAAAGACGTCGATAGCGAGAT -ACGGAAAGACGTCGATAGTACCAC -ACGGAAAGACGTCGATAGCAGAAC -ACGGAAAGACGTCGATAGGTCTAC -ACGGAAAGACGTCGATAGACGTAC -ACGGAAAGACGTCGATAGAGTGAC -ACGGAAAGACGTCGATAGCTGTAG -ACGGAAAGACGTCGATAGCCTAAG -ACGGAAAGACGTCGATAGGTTCAG -ACGGAAAGACGTCGATAGGCATAG -ACGGAAAGACGTCGATAGGACAAG -ACGGAAAGACGTCGATAGAAGCAG -ACGGAAAGACGTCGATAGCGTCAA -ACGGAAAGACGTCGATAGGCTGAA -ACGGAAAGACGTCGATAGAGTACG -ACGGAAAGACGTCGATAGATCCGA -ACGGAAAGACGTCGATAGATGGGA -ACGGAAAGACGTCGATAGGTGCAA -ACGGAAAGACGTCGATAGGAGGAA -ACGGAAAGACGTCGATAGCAGGTA -ACGGAAAGACGTCGATAGGACTCT -ACGGAAAGACGTCGATAGAGTCCT -ACGGAAAGACGTCGATAGTAAGCC -ACGGAAAGACGTCGATAGATAGCC -ACGGAAAGACGTCGATAGTAACCG -ACGGAAAGACGTCGATAGATGCCA -ACGGAAAGACGTAGACACGGAAAC -ACGGAAAGACGTAGACACAACACC -ACGGAAAGACGTAGACACATCGAG -ACGGAAAGACGTAGACACCTCCTT -ACGGAAAGACGTAGACACCCTGTT -ACGGAAAGACGTAGACACCGGTTT -ACGGAAAGACGTAGACACGTGGTT -ACGGAAAGACGTAGACACGCCTTT -ACGGAAAGACGTAGACACGGTCTT -ACGGAAAGACGTAGACACACGCTT -ACGGAAAGACGTAGACACAGCGTT -ACGGAAAGACGTAGACACTTCGTC -ACGGAAAGACGTAGACACTCTCTC -ACGGAAAGACGTAGACACTGGATC -ACGGAAAGACGTAGACACCACTTC -ACGGAAAGACGTAGACACGTACTC -ACGGAAAGACGTAGACACGATGTC -ACGGAAAGACGTAGACACACAGTC -ACGGAAAGACGTAGACACTTGCTG -ACGGAAAGACGTAGACACTCCATG -ACGGAAAGACGTAGACACTGTGTG -ACGGAAAGACGTAGACACCTAGTG -ACGGAAAGACGTAGACACCATCTG -ACGGAAAGACGTAGACACGAGTTG -ACGGAAAGACGTAGACACAGACTG -ACGGAAAGACGTAGACACTCGGTA -ACGGAAAGACGTAGACACTGCCTA -ACGGAAAGACGTAGACACCCACTA -ACGGAAAGACGTAGACACGGAGTA -ACGGAAAGACGTAGACACTCGTCT -ACGGAAAGACGTAGACACTGCACT -ACGGAAAGACGTAGACACCTGACT -ACGGAAAGACGTAGACACCAACCT -ACGGAAAGACGTAGACACGCTACT -ACGGAAAGACGTAGACACGGATCT -ACGGAAAGACGTAGACACAAGGCT -ACGGAAAGACGTAGACACTCAACC -ACGGAAAGACGTAGACACTGTTCC -ACGGAAAGACGTAGACACATTCCC -ACGGAAAGACGTAGACACTTCTCG -ACGGAAAGACGTAGACACTAGACG -ACGGAAAGACGTAGACACGTAACG -ACGGAAAGACGTAGACACACTTCG -ACGGAAAGACGTAGACACTACGCA -ACGGAAAGACGTAGACACCTTGCA -ACGGAAAGACGTAGACACCGAACA -ACGGAAAGACGTAGACACCAGTCA -ACGGAAAGACGTAGACACGATCCA -ACGGAAAGACGTAGACACACGACA -ACGGAAAGACGTAGACACAGCTCA -ACGGAAAGACGTAGACACTCACGT -ACGGAAAGACGTAGACACCGTAGT -ACGGAAAGACGTAGACACGTCAGT -ACGGAAAGACGTAGACACGAAGGT -ACGGAAAGACGTAGACACAACCGT -ACGGAAAGACGTAGACACTTGTGC -ACGGAAAGACGTAGACACCTAAGC -ACGGAAAGACGTAGACACACTAGC -ACGGAAAGACGTAGACACAGATGC -ACGGAAAGACGTAGACACTGAAGG -ACGGAAAGACGTAGACACCAATGG -ACGGAAAGACGTAGACACATGAGG -ACGGAAAGACGTAGACACAATGGG -ACGGAAAGACGTAGACACTCCTGA -ACGGAAAGACGTAGACACTAGCGA -ACGGAAAGACGTAGACACCACAGA -ACGGAAAGACGTAGACACGCAAGA -ACGGAAAGACGTAGACACGGTTGA -ACGGAAAGACGTAGACACTCCGAT -ACGGAAAGACGTAGACACTGGCAT -ACGGAAAGACGTAGACACCGAGAT -ACGGAAAGACGTAGACACTACCAC -ACGGAAAGACGTAGACACCAGAAC -ACGGAAAGACGTAGACACGTCTAC -ACGGAAAGACGTAGACACACGTAC -ACGGAAAGACGTAGACACAGTGAC -ACGGAAAGACGTAGACACCTGTAG -ACGGAAAGACGTAGACACCCTAAG -ACGGAAAGACGTAGACACGTTCAG -ACGGAAAGACGTAGACACGCATAG -ACGGAAAGACGTAGACACGACAAG -ACGGAAAGACGTAGACACAAGCAG -ACGGAAAGACGTAGACACCGTCAA -ACGGAAAGACGTAGACACGCTGAA -ACGGAAAGACGTAGACACAGTACG -ACGGAAAGACGTAGACACATCCGA -ACGGAAAGACGTAGACACATGGGA -ACGGAAAGACGTAGACACGTGCAA -ACGGAAAGACGTAGACACGAGGAA -ACGGAAAGACGTAGACACCAGGTA -ACGGAAAGACGTAGACACGACTCT -ACGGAAAGACGTAGACACAGTCCT -ACGGAAAGACGTAGACACTAAGCC -ACGGAAAGACGTAGACACATAGCC -ACGGAAAGACGTAGACACTAACCG -ACGGAAAGACGTAGACACATGCCA -ACGGAAAGACGTAGAGCAGGAAAC -ACGGAAAGACGTAGAGCAAACACC -ACGGAAAGACGTAGAGCAATCGAG -ACGGAAAGACGTAGAGCACTCCTT -ACGGAAAGACGTAGAGCACCTGTT -ACGGAAAGACGTAGAGCACGGTTT -ACGGAAAGACGTAGAGCAGTGGTT -ACGGAAAGACGTAGAGCAGCCTTT -ACGGAAAGACGTAGAGCAGGTCTT -ACGGAAAGACGTAGAGCAACGCTT -ACGGAAAGACGTAGAGCAAGCGTT -ACGGAAAGACGTAGAGCATTCGTC -ACGGAAAGACGTAGAGCATCTCTC -ACGGAAAGACGTAGAGCATGGATC -ACGGAAAGACGTAGAGCACACTTC -ACGGAAAGACGTAGAGCAGTACTC -ACGGAAAGACGTAGAGCAGATGTC -ACGGAAAGACGTAGAGCAACAGTC -ACGGAAAGACGTAGAGCATTGCTG -ACGGAAAGACGTAGAGCATCCATG -ACGGAAAGACGTAGAGCATGTGTG -ACGGAAAGACGTAGAGCACTAGTG -ACGGAAAGACGTAGAGCACATCTG -ACGGAAAGACGTAGAGCAGAGTTG -ACGGAAAGACGTAGAGCAAGACTG -ACGGAAAGACGTAGAGCATCGGTA -ACGGAAAGACGTAGAGCATGCCTA -ACGGAAAGACGTAGAGCACCACTA -ACGGAAAGACGTAGAGCAGGAGTA -ACGGAAAGACGTAGAGCATCGTCT -ACGGAAAGACGTAGAGCATGCACT -ACGGAAAGACGTAGAGCACTGACT -ACGGAAAGACGTAGAGCACAACCT -ACGGAAAGACGTAGAGCAGCTACT -ACGGAAAGACGTAGAGCAGGATCT -ACGGAAAGACGTAGAGCAAAGGCT -ACGGAAAGACGTAGAGCATCAACC -ACGGAAAGACGTAGAGCATGTTCC -ACGGAAAGACGTAGAGCAATTCCC -ACGGAAAGACGTAGAGCATTCTCG -ACGGAAAGACGTAGAGCATAGACG -ACGGAAAGACGTAGAGCAGTAACG -ACGGAAAGACGTAGAGCAACTTCG -ACGGAAAGACGTAGAGCATACGCA -ACGGAAAGACGTAGAGCACTTGCA -ACGGAAAGACGTAGAGCACGAACA -ACGGAAAGACGTAGAGCACAGTCA -ACGGAAAGACGTAGAGCAGATCCA -ACGGAAAGACGTAGAGCAACGACA -ACGGAAAGACGTAGAGCAAGCTCA -ACGGAAAGACGTAGAGCATCACGT -ACGGAAAGACGTAGAGCACGTAGT -ACGGAAAGACGTAGAGCAGTCAGT -ACGGAAAGACGTAGAGCAGAAGGT -ACGGAAAGACGTAGAGCAAACCGT -ACGGAAAGACGTAGAGCATTGTGC -ACGGAAAGACGTAGAGCACTAAGC -ACGGAAAGACGTAGAGCAACTAGC -ACGGAAAGACGTAGAGCAAGATGC -ACGGAAAGACGTAGAGCATGAAGG -ACGGAAAGACGTAGAGCACAATGG -ACGGAAAGACGTAGAGCAATGAGG -ACGGAAAGACGTAGAGCAAATGGG -ACGGAAAGACGTAGAGCATCCTGA -ACGGAAAGACGTAGAGCATAGCGA -ACGGAAAGACGTAGAGCACACAGA -ACGGAAAGACGTAGAGCAGCAAGA -ACGGAAAGACGTAGAGCAGGTTGA -ACGGAAAGACGTAGAGCATCCGAT -ACGGAAAGACGTAGAGCATGGCAT -ACGGAAAGACGTAGAGCACGAGAT -ACGGAAAGACGTAGAGCATACCAC -ACGGAAAGACGTAGAGCACAGAAC -ACGGAAAGACGTAGAGCAGTCTAC -ACGGAAAGACGTAGAGCAACGTAC -ACGGAAAGACGTAGAGCAAGTGAC -ACGGAAAGACGTAGAGCACTGTAG -ACGGAAAGACGTAGAGCACCTAAG -ACGGAAAGACGTAGAGCAGTTCAG -ACGGAAAGACGTAGAGCAGCATAG -ACGGAAAGACGTAGAGCAGACAAG -ACGGAAAGACGTAGAGCAAAGCAG -ACGGAAAGACGTAGAGCACGTCAA -ACGGAAAGACGTAGAGCAGCTGAA -ACGGAAAGACGTAGAGCAAGTACG -ACGGAAAGACGTAGAGCAATCCGA -ACGGAAAGACGTAGAGCAATGGGA -ACGGAAAGACGTAGAGCAGTGCAA -ACGGAAAGACGTAGAGCAGAGGAA -ACGGAAAGACGTAGAGCACAGGTA -ACGGAAAGACGTAGAGCAGACTCT -ACGGAAAGACGTAGAGCAAGTCCT -ACGGAAAGACGTAGAGCATAAGCC -ACGGAAAGACGTAGAGCAATAGCC -ACGGAAAGACGTAGAGCATAACCG -ACGGAAAGACGTAGAGCAATGCCA -ACGGAAAGACGTTGAGGTGGAAAC -ACGGAAAGACGTTGAGGTAACACC -ACGGAAAGACGTTGAGGTATCGAG -ACGGAAAGACGTTGAGGTCTCCTT -ACGGAAAGACGTTGAGGTCCTGTT -ACGGAAAGACGTTGAGGTCGGTTT -ACGGAAAGACGTTGAGGTGTGGTT -ACGGAAAGACGTTGAGGTGCCTTT -ACGGAAAGACGTTGAGGTGGTCTT -ACGGAAAGACGTTGAGGTACGCTT -ACGGAAAGACGTTGAGGTAGCGTT -ACGGAAAGACGTTGAGGTTTCGTC -ACGGAAAGACGTTGAGGTTCTCTC -ACGGAAAGACGTTGAGGTTGGATC -ACGGAAAGACGTTGAGGTCACTTC -ACGGAAAGACGTTGAGGTGTACTC -ACGGAAAGACGTTGAGGTGATGTC -ACGGAAAGACGTTGAGGTACAGTC -ACGGAAAGACGTTGAGGTTTGCTG -ACGGAAAGACGTTGAGGTTCCATG -ACGGAAAGACGTTGAGGTTGTGTG -ACGGAAAGACGTTGAGGTCTAGTG -ACGGAAAGACGTTGAGGTCATCTG -ACGGAAAGACGTTGAGGTGAGTTG -ACGGAAAGACGTTGAGGTAGACTG -ACGGAAAGACGTTGAGGTTCGGTA -ACGGAAAGACGTTGAGGTTGCCTA -ACGGAAAGACGTTGAGGTCCACTA -ACGGAAAGACGTTGAGGTGGAGTA -ACGGAAAGACGTTGAGGTTCGTCT -ACGGAAAGACGTTGAGGTTGCACT -ACGGAAAGACGTTGAGGTCTGACT -ACGGAAAGACGTTGAGGTCAACCT -ACGGAAAGACGTTGAGGTGCTACT -ACGGAAAGACGTTGAGGTGGATCT -ACGGAAAGACGTTGAGGTAAGGCT -ACGGAAAGACGTTGAGGTTCAACC -ACGGAAAGACGTTGAGGTTGTTCC -ACGGAAAGACGTTGAGGTATTCCC -ACGGAAAGACGTTGAGGTTTCTCG -ACGGAAAGACGTTGAGGTTAGACG -ACGGAAAGACGTTGAGGTGTAACG -ACGGAAAGACGTTGAGGTACTTCG -ACGGAAAGACGTTGAGGTTACGCA -ACGGAAAGACGTTGAGGTCTTGCA -ACGGAAAGACGTTGAGGTCGAACA -ACGGAAAGACGTTGAGGTCAGTCA -ACGGAAAGACGTTGAGGTGATCCA -ACGGAAAGACGTTGAGGTACGACA -ACGGAAAGACGTTGAGGTAGCTCA -ACGGAAAGACGTTGAGGTTCACGT -ACGGAAAGACGTTGAGGTCGTAGT -ACGGAAAGACGTTGAGGTGTCAGT -ACGGAAAGACGTTGAGGTGAAGGT -ACGGAAAGACGTTGAGGTAACCGT -ACGGAAAGACGTTGAGGTTTGTGC -ACGGAAAGACGTTGAGGTCTAAGC -ACGGAAAGACGTTGAGGTACTAGC -ACGGAAAGACGTTGAGGTAGATGC -ACGGAAAGACGTTGAGGTTGAAGG -ACGGAAAGACGTTGAGGTCAATGG -ACGGAAAGACGTTGAGGTATGAGG -ACGGAAAGACGTTGAGGTAATGGG -ACGGAAAGACGTTGAGGTTCCTGA -ACGGAAAGACGTTGAGGTTAGCGA -ACGGAAAGACGTTGAGGTCACAGA -ACGGAAAGACGTTGAGGTGCAAGA -ACGGAAAGACGTTGAGGTGGTTGA -ACGGAAAGACGTTGAGGTTCCGAT -ACGGAAAGACGTTGAGGTTGGCAT -ACGGAAAGACGTTGAGGTCGAGAT -ACGGAAAGACGTTGAGGTTACCAC -ACGGAAAGACGTTGAGGTCAGAAC -ACGGAAAGACGTTGAGGTGTCTAC -ACGGAAAGACGTTGAGGTACGTAC -ACGGAAAGACGTTGAGGTAGTGAC -ACGGAAAGACGTTGAGGTCTGTAG -ACGGAAAGACGTTGAGGTCCTAAG -ACGGAAAGACGTTGAGGTGTTCAG -ACGGAAAGACGTTGAGGTGCATAG -ACGGAAAGACGTTGAGGTGACAAG -ACGGAAAGACGTTGAGGTAAGCAG -ACGGAAAGACGTTGAGGTCGTCAA -ACGGAAAGACGTTGAGGTGCTGAA -ACGGAAAGACGTTGAGGTAGTACG -ACGGAAAGACGTTGAGGTATCCGA -ACGGAAAGACGTTGAGGTATGGGA -ACGGAAAGACGTTGAGGTGTGCAA -ACGGAAAGACGTTGAGGTGAGGAA -ACGGAAAGACGTTGAGGTCAGGTA -ACGGAAAGACGTTGAGGTGACTCT -ACGGAAAGACGTTGAGGTAGTCCT -ACGGAAAGACGTTGAGGTTAAGCC -ACGGAAAGACGTTGAGGTATAGCC -ACGGAAAGACGTTGAGGTTAACCG -ACGGAAAGACGTTGAGGTATGCCA -ACGGAAAGACGTGATTCCGGAAAC -ACGGAAAGACGTGATTCCAACACC -ACGGAAAGACGTGATTCCATCGAG -ACGGAAAGACGTGATTCCCTCCTT -ACGGAAAGACGTGATTCCCCTGTT -ACGGAAAGACGTGATTCCCGGTTT -ACGGAAAGACGTGATTCCGTGGTT -ACGGAAAGACGTGATTCCGCCTTT -ACGGAAAGACGTGATTCCGGTCTT -ACGGAAAGACGTGATTCCACGCTT -ACGGAAAGACGTGATTCCAGCGTT -ACGGAAAGACGTGATTCCTTCGTC -ACGGAAAGACGTGATTCCTCTCTC -ACGGAAAGACGTGATTCCTGGATC -ACGGAAAGACGTGATTCCCACTTC -ACGGAAAGACGTGATTCCGTACTC -ACGGAAAGACGTGATTCCGATGTC -ACGGAAAGACGTGATTCCACAGTC -ACGGAAAGACGTGATTCCTTGCTG -ACGGAAAGACGTGATTCCTCCATG -ACGGAAAGACGTGATTCCTGTGTG -ACGGAAAGACGTGATTCCCTAGTG -ACGGAAAGACGTGATTCCCATCTG -ACGGAAAGACGTGATTCCGAGTTG -ACGGAAAGACGTGATTCCAGACTG -ACGGAAAGACGTGATTCCTCGGTA -ACGGAAAGACGTGATTCCTGCCTA -ACGGAAAGACGTGATTCCCCACTA -ACGGAAAGACGTGATTCCGGAGTA -ACGGAAAGACGTGATTCCTCGTCT -ACGGAAAGACGTGATTCCTGCACT -ACGGAAAGACGTGATTCCCTGACT -ACGGAAAGACGTGATTCCCAACCT -ACGGAAAGACGTGATTCCGCTACT -ACGGAAAGACGTGATTCCGGATCT -ACGGAAAGACGTGATTCCAAGGCT -ACGGAAAGACGTGATTCCTCAACC -ACGGAAAGACGTGATTCCTGTTCC -ACGGAAAGACGTGATTCCATTCCC -ACGGAAAGACGTGATTCCTTCTCG -ACGGAAAGACGTGATTCCTAGACG -ACGGAAAGACGTGATTCCGTAACG -ACGGAAAGACGTGATTCCACTTCG -ACGGAAAGACGTGATTCCTACGCA -ACGGAAAGACGTGATTCCCTTGCA -ACGGAAAGACGTGATTCCCGAACA -ACGGAAAGACGTGATTCCCAGTCA -ACGGAAAGACGTGATTCCGATCCA -ACGGAAAGACGTGATTCCACGACA -ACGGAAAGACGTGATTCCAGCTCA -ACGGAAAGACGTGATTCCTCACGT -ACGGAAAGACGTGATTCCCGTAGT -ACGGAAAGACGTGATTCCGTCAGT -ACGGAAAGACGTGATTCCGAAGGT -ACGGAAAGACGTGATTCCAACCGT -ACGGAAAGACGTGATTCCTTGTGC -ACGGAAAGACGTGATTCCCTAAGC -ACGGAAAGACGTGATTCCACTAGC -ACGGAAAGACGTGATTCCAGATGC -ACGGAAAGACGTGATTCCTGAAGG -ACGGAAAGACGTGATTCCCAATGG -ACGGAAAGACGTGATTCCATGAGG -ACGGAAAGACGTGATTCCAATGGG -ACGGAAAGACGTGATTCCTCCTGA -ACGGAAAGACGTGATTCCTAGCGA -ACGGAAAGACGTGATTCCCACAGA -ACGGAAAGACGTGATTCCGCAAGA -ACGGAAAGACGTGATTCCGGTTGA -ACGGAAAGACGTGATTCCTCCGAT -ACGGAAAGACGTGATTCCTGGCAT -ACGGAAAGACGTGATTCCCGAGAT -ACGGAAAGACGTGATTCCTACCAC -ACGGAAAGACGTGATTCCCAGAAC -ACGGAAAGACGTGATTCCGTCTAC -ACGGAAAGACGTGATTCCACGTAC -ACGGAAAGACGTGATTCCAGTGAC -ACGGAAAGACGTGATTCCCTGTAG -ACGGAAAGACGTGATTCCCCTAAG -ACGGAAAGACGTGATTCCGTTCAG -ACGGAAAGACGTGATTCCGCATAG -ACGGAAAGACGTGATTCCGACAAG -ACGGAAAGACGTGATTCCAAGCAG -ACGGAAAGACGTGATTCCCGTCAA -ACGGAAAGACGTGATTCCGCTGAA -ACGGAAAGACGTGATTCCAGTACG -ACGGAAAGACGTGATTCCATCCGA -ACGGAAAGACGTGATTCCATGGGA -ACGGAAAGACGTGATTCCGTGCAA -ACGGAAAGACGTGATTCCGAGGAA -ACGGAAAGACGTGATTCCCAGGTA -ACGGAAAGACGTGATTCCGACTCT -ACGGAAAGACGTGATTCCAGTCCT -ACGGAAAGACGTGATTCCTAAGCC -ACGGAAAGACGTGATTCCATAGCC -ACGGAAAGACGTGATTCCTAACCG -ACGGAAAGACGTGATTCCATGCCA -ACGGAAAGACGTCATTGGGGAAAC -ACGGAAAGACGTCATTGGAACACC -ACGGAAAGACGTCATTGGATCGAG -ACGGAAAGACGTCATTGGCTCCTT -ACGGAAAGACGTCATTGGCCTGTT -ACGGAAAGACGTCATTGGCGGTTT -ACGGAAAGACGTCATTGGGTGGTT -ACGGAAAGACGTCATTGGGCCTTT -ACGGAAAGACGTCATTGGGGTCTT -ACGGAAAGACGTCATTGGACGCTT -ACGGAAAGACGTCATTGGAGCGTT -ACGGAAAGACGTCATTGGTTCGTC -ACGGAAAGACGTCATTGGTCTCTC -ACGGAAAGACGTCATTGGTGGATC -ACGGAAAGACGTCATTGGCACTTC -ACGGAAAGACGTCATTGGGTACTC -ACGGAAAGACGTCATTGGGATGTC -ACGGAAAGACGTCATTGGACAGTC -ACGGAAAGACGTCATTGGTTGCTG -ACGGAAAGACGTCATTGGTCCATG -ACGGAAAGACGTCATTGGTGTGTG -ACGGAAAGACGTCATTGGCTAGTG -ACGGAAAGACGTCATTGGCATCTG -ACGGAAAGACGTCATTGGGAGTTG -ACGGAAAGACGTCATTGGAGACTG -ACGGAAAGACGTCATTGGTCGGTA -ACGGAAAGACGTCATTGGTGCCTA -ACGGAAAGACGTCATTGGCCACTA -ACGGAAAGACGTCATTGGGGAGTA -ACGGAAAGACGTCATTGGTCGTCT -ACGGAAAGACGTCATTGGTGCACT -ACGGAAAGACGTCATTGGCTGACT -ACGGAAAGACGTCATTGGCAACCT -ACGGAAAGACGTCATTGGGCTACT -ACGGAAAGACGTCATTGGGGATCT -ACGGAAAGACGTCATTGGAAGGCT -ACGGAAAGACGTCATTGGTCAACC -ACGGAAAGACGTCATTGGTGTTCC -ACGGAAAGACGTCATTGGATTCCC -ACGGAAAGACGTCATTGGTTCTCG -ACGGAAAGACGTCATTGGTAGACG -ACGGAAAGACGTCATTGGGTAACG -ACGGAAAGACGTCATTGGACTTCG -ACGGAAAGACGTCATTGGTACGCA -ACGGAAAGACGTCATTGGCTTGCA -ACGGAAAGACGTCATTGGCGAACA -ACGGAAAGACGTCATTGGCAGTCA -ACGGAAAGACGTCATTGGGATCCA -ACGGAAAGACGTCATTGGACGACA -ACGGAAAGACGTCATTGGAGCTCA -ACGGAAAGACGTCATTGGTCACGT -ACGGAAAGACGTCATTGGCGTAGT -ACGGAAAGACGTCATTGGGTCAGT -ACGGAAAGACGTCATTGGGAAGGT -ACGGAAAGACGTCATTGGAACCGT -ACGGAAAGACGTCATTGGTTGTGC -ACGGAAAGACGTCATTGGCTAAGC -ACGGAAAGACGTCATTGGACTAGC -ACGGAAAGACGTCATTGGAGATGC -ACGGAAAGACGTCATTGGTGAAGG -ACGGAAAGACGTCATTGGCAATGG -ACGGAAAGACGTCATTGGATGAGG -ACGGAAAGACGTCATTGGAATGGG -ACGGAAAGACGTCATTGGTCCTGA -ACGGAAAGACGTCATTGGTAGCGA -ACGGAAAGACGTCATTGGCACAGA -ACGGAAAGACGTCATTGGGCAAGA -ACGGAAAGACGTCATTGGGGTTGA -ACGGAAAGACGTCATTGGTCCGAT -ACGGAAAGACGTCATTGGTGGCAT -ACGGAAAGACGTCATTGGCGAGAT -ACGGAAAGACGTCATTGGTACCAC -ACGGAAAGACGTCATTGGCAGAAC -ACGGAAAGACGTCATTGGGTCTAC -ACGGAAAGACGTCATTGGACGTAC -ACGGAAAGACGTCATTGGAGTGAC -ACGGAAAGACGTCATTGGCTGTAG -ACGGAAAGACGTCATTGGCCTAAG -ACGGAAAGACGTCATTGGGTTCAG -ACGGAAAGACGTCATTGGGCATAG -ACGGAAAGACGTCATTGGGACAAG -ACGGAAAGACGTCATTGGAAGCAG -ACGGAAAGACGTCATTGGCGTCAA -ACGGAAAGACGTCATTGGGCTGAA -ACGGAAAGACGTCATTGGAGTACG -ACGGAAAGACGTCATTGGATCCGA -ACGGAAAGACGTCATTGGATGGGA -ACGGAAAGACGTCATTGGGTGCAA -ACGGAAAGACGTCATTGGGAGGAA -ACGGAAAGACGTCATTGGCAGGTA -ACGGAAAGACGTCATTGGGACTCT -ACGGAAAGACGTCATTGGAGTCCT -ACGGAAAGACGTCATTGGTAAGCC -ACGGAAAGACGTCATTGGATAGCC -ACGGAAAGACGTCATTGGTAACCG -ACGGAAAGACGTCATTGGATGCCA -ACGGAAAGACGTGATCGAGGAAAC -ACGGAAAGACGTGATCGAAACACC -ACGGAAAGACGTGATCGAATCGAG -ACGGAAAGACGTGATCGACTCCTT -ACGGAAAGACGTGATCGACCTGTT -ACGGAAAGACGTGATCGACGGTTT -ACGGAAAGACGTGATCGAGTGGTT -ACGGAAAGACGTGATCGAGCCTTT -ACGGAAAGACGTGATCGAGGTCTT -ACGGAAAGACGTGATCGAACGCTT -ACGGAAAGACGTGATCGAAGCGTT -ACGGAAAGACGTGATCGATTCGTC -ACGGAAAGACGTGATCGATCTCTC -ACGGAAAGACGTGATCGATGGATC -ACGGAAAGACGTGATCGACACTTC -ACGGAAAGACGTGATCGAGTACTC -ACGGAAAGACGTGATCGAGATGTC -ACGGAAAGACGTGATCGAACAGTC -ACGGAAAGACGTGATCGATTGCTG -ACGGAAAGACGTGATCGATCCATG -ACGGAAAGACGTGATCGATGTGTG -ACGGAAAGACGTGATCGACTAGTG -ACGGAAAGACGTGATCGACATCTG -ACGGAAAGACGTGATCGAGAGTTG -ACGGAAAGACGTGATCGAAGACTG -ACGGAAAGACGTGATCGATCGGTA -ACGGAAAGACGTGATCGATGCCTA -ACGGAAAGACGTGATCGACCACTA -ACGGAAAGACGTGATCGAGGAGTA -ACGGAAAGACGTGATCGATCGTCT -ACGGAAAGACGTGATCGATGCACT -ACGGAAAGACGTGATCGACTGACT -ACGGAAAGACGTGATCGACAACCT -ACGGAAAGACGTGATCGAGCTACT -ACGGAAAGACGTGATCGAGGATCT -ACGGAAAGACGTGATCGAAAGGCT -ACGGAAAGACGTGATCGATCAACC -ACGGAAAGACGTGATCGATGTTCC -ACGGAAAGACGTGATCGAATTCCC -ACGGAAAGACGTGATCGATTCTCG -ACGGAAAGACGTGATCGATAGACG -ACGGAAAGACGTGATCGAGTAACG -ACGGAAAGACGTGATCGAACTTCG -ACGGAAAGACGTGATCGATACGCA -ACGGAAAGACGTGATCGACTTGCA -ACGGAAAGACGTGATCGACGAACA -ACGGAAAGACGTGATCGACAGTCA -ACGGAAAGACGTGATCGAGATCCA -ACGGAAAGACGTGATCGAACGACA -ACGGAAAGACGTGATCGAAGCTCA -ACGGAAAGACGTGATCGATCACGT -ACGGAAAGACGTGATCGACGTAGT -ACGGAAAGACGTGATCGAGTCAGT -ACGGAAAGACGTGATCGAGAAGGT -ACGGAAAGACGTGATCGAAACCGT -ACGGAAAGACGTGATCGATTGTGC -ACGGAAAGACGTGATCGACTAAGC -ACGGAAAGACGTGATCGAACTAGC -ACGGAAAGACGTGATCGAAGATGC -ACGGAAAGACGTGATCGATGAAGG -ACGGAAAGACGTGATCGACAATGG -ACGGAAAGACGTGATCGAATGAGG -ACGGAAAGACGTGATCGAAATGGG -ACGGAAAGACGTGATCGATCCTGA -ACGGAAAGACGTGATCGATAGCGA -ACGGAAAGACGTGATCGACACAGA -ACGGAAAGACGTGATCGAGCAAGA -ACGGAAAGACGTGATCGAGGTTGA -ACGGAAAGACGTGATCGATCCGAT -ACGGAAAGACGTGATCGATGGCAT -ACGGAAAGACGTGATCGACGAGAT -ACGGAAAGACGTGATCGATACCAC -ACGGAAAGACGTGATCGACAGAAC -ACGGAAAGACGTGATCGAGTCTAC -ACGGAAAGACGTGATCGAACGTAC -ACGGAAAGACGTGATCGAAGTGAC -ACGGAAAGACGTGATCGACTGTAG -ACGGAAAGACGTGATCGACCTAAG -ACGGAAAGACGTGATCGAGTTCAG -ACGGAAAGACGTGATCGAGCATAG -ACGGAAAGACGTGATCGAGACAAG -ACGGAAAGACGTGATCGAAAGCAG -ACGGAAAGACGTGATCGACGTCAA -ACGGAAAGACGTGATCGAGCTGAA -ACGGAAAGACGTGATCGAAGTACG -ACGGAAAGACGTGATCGAATCCGA -ACGGAAAGACGTGATCGAATGGGA -ACGGAAAGACGTGATCGAGTGCAA -ACGGAAAGACGTGATCGAGAGGAA -ACGGAAAGACGTGATCGACAGGTA -ACGGAAAGACGTGATCGAGACTCT -ACGGAAAGACGTGATCGAAGTCCT -ACGGAAAGACGTGATCGATAAGCC -ACGGAAAGACGTGATCGAATAGCC -ACGGAAAGACGTGATCGATAACCG -ACGGAAAGACGTGATCGAATGCCA -ACGGAAAGACGTCACTACGGAAAC -ACGGAAAGACGTCACTACAACACC -ACGGAAAGACGTCACTACATCGAG -ACGGAAAGACGTCACTACCTCCTT -ACGGAAAGACGTCACTACCCTGTT -ACGGAAAGACGTCACTACCGGTTT -ACGGAAAGACGTCACTACGTGGTT -ACGGAAAGACGTCACTACGCCTTT -ACGGAAAGACGTCACTACGGTCTT -ACGGAAAGACGTCACTACACGCTT -ACGGAAAGACGTCACTACAGCGTT -ACGGAAAGACGTCACTACTTCGTC -ACGGAAAGACGTCACTACTCTCTC -ACGGAAAGACGTCACTACTGGATC -ACGGAAAGACGTCACTACCACTTC -ACGGAAAGACGTCACTACGTACTC -ACGGAAAGACGTCACTACGATGTC -ACGGAAAGACGTCACTACACAGTC -ACGGAAAGACGTCACTACTTGCTG -ACGGAAAGACGTCACTACTCCATG -ACGGAAAGACGTCACTACTGTGTG -ACGGAAAGACGTCACTACCTAGTG -ACGGAAAGACGTCACTACCATCTG -ACGGAAAGACGTCACTACGAGTTG -ACGGAAAGACGTCACTACAGACTG -ACGGAAAGACGTCACTACTCGGTA -ACGGAAAGACGTCACTACTGCCTA -ACGGAAAGACGTCACTACCCACTA -ACGGAAAGACGTCACTACGGAGTA -ACGGAAAGACGTCACTACTCGTCT -ACGGAAAGACGTCACTACTGCACT -ACGGAAAGACGTCACTACCTGACT -ACGGAAAGACGTCACTACCAACCT -ACGGAAAGACGTCACTACGCTACT -ACGGAAAGACGTCACTACGGATCT -ACGGAAAGACGTCACTACAAGGCT -ACGGAAAGACGTCACTACTCAACC -ACGGAAAGACGTCACTACTGTTCC -ACGGAAAGACGTCACTACATTCCC -ACGGAAAGACGTCACTACTTCTCG -ACGGAAAGACGTCACTACTAGACG -ACGGAAAGACGTCACTACGTAACG -ACGGAAAGACGTCACTACACTTCG -ACGGAAAGACGTCACTACTACGCA -ACGGAAAGACGTCACTACCTTGCA -ACGGAAAGACGTCACTACCGAACA -ACGGAAAGACGTCACTACCAGTCA -ACGGAAAGACGTCACTACGATCCA -ACGGAAAGACGTCACTACACGACA -ACGGAAAGACGTCACTACAGCTCA -ACGGAAAGACGTCACTACTCACGT -ACGGAAAGACGTCACTACCGTAGT -ACGGAAAGACGTCACTACGTCAGT -ACGGAAAGACGTCACTACGAAGGT -ACGGAAAGACGTCACTACAACCGT -ACGGAAAGACGTCACTACTTGTGC -ACGGAAAGACGTCACTACCTAAGC -ACGGAAAGACGTCACTACACTAGC -ACGGAAAGACGTCACTACAGATGC -ACGGAAAGACGTCACTACTGAAGG -ACGGAAAGACGTCACTACCAATGG -ACGGAAAGACGTCACTACATGAGG -ACGGAAAGACGTCACTACAATGGG -ACGGAAAGACGTCACTACTCCTGA -ACGGAAAGACGTCACTACTAGCGA -ACGGAAAGACGTCACTACCACAGA -ACGGAAAGACGTCACTACGCAAGA -ACGGAAAGACGTCACTACGGTTGA -ACGGAAAGACGTCACTACTCCGAT -ACGGAAAGACGTCACTACTGGCAT -ACGGAAAGACGTCACTACCGAGAT -ACGGAAAGACGTCACTACTACCAC -ACGGAAAGACGTCACTACCAGAAC -ACGGAAAGACGTCACTACGTCTAC -ACGGAAAGACGTCACTACACGTAC -ACGGAAAGACGTCACTACAGTGAC -ACGGAAAGACGTCACTACCTGTAG -ACGGAAAGACGTCACTACCCTAAG -ACGGAAAGACGTCACTACGTTCAG -ACGGAAAGACGTCACTACGCATAG -ACGGAAAGACGTCACTACGACAAG -ACGGAAAGACGTCACTACAAGCAG -ACGGAAAGACGTCACTACCGTCAA -ACGGAAAGACGTCACTACGCTGAA -ACGGAAAGACGTCACTACAGTACG -ACGGAAAGACGTCACTACATCCGA -ACGGAAAGACGTCACTACATGGGA -ACGGAAAGACGTCACTACGTGCAA -ACGGAAAGACGTCACTACGAGGAA -ACGGAAAGACGTCACTACCAGGTA -ACGGAAAGACGTCACTACGACTCT -ACGGAAAGACGTCACTACAGTCCT -ACGGAAAGACGTCACTACTAAGCC -ACGGAAAGACGTCACTACATAGCC -ACGGAAAGACGTCACTACTAACCG -ACGGAAAGACGTCACTACATGCCA -ACGGAAAGACGTAACCAGGGAAAC -ACGGAAAGACGTAACCAGAACACC -ACGGAAAGACGTAACCAGATCGAG -ACGGAAAGACGTAACCAGCTCCTT -ACGGAAAGACGTAACCAGCCTGTT -ACGGAAAGACGTAACCAGCGGTTT -ACGGAAAGACGTAACCAGGTGGTT -ACGGAAAGACGTAACCAGGCCTTT -ACGGAAAGACGTAACCAGGGTCTT -ACGGAAAGACGTAACCAGACGCTT -ACGGAAAGACGTAACCAGAGCGTT -ACGGAAAGACGTAACCAGTTCGTC -ACGGAAAGACGTAACCAGTCTCTC -ACGGAAAGACGTAACCAGTGGATC -ACGGAAAGACGTAACCAGCACTTC -ACGGAAAGACGTAACCAGGTACTC -ACGGAAAGACGTAACCAGGATGTC -ACGGAAAGACGTAACCAGACAGTC -ACGGAAAGACGTAACCAGTTGCTG -ACGGAAAGACGTAACCAGTCCATG -ACGGAAAGACGTAACCAGTGTGTG -ACGGAAAGACGTAACCAGCTAGTG -ACGGAAAGACGTAACCAGCATCTG -ACGGAAAGACGTAACCAGGAGTTG -ACGGAAAGACGTAACCAGAGACTG -ACGGAAAGACGTAACCAGTCGGTA -ACGGAAAGACGTAACCAGTGCCTA -ACGGAAAGACGTAACCAGCCACTA -ACGGAAAGACGTAACCAGGGAGTA -ACGGAAAGACGTAACCAGTCGTCT -ACGGAAAGACGTAACCAGTGCACT -ACGGAAAGACGTAACCAGCTGACT -ACGGAAAGACGTAACCAGCAACCT -ACGGAAAGACGTAACCAGGCTACT -ACGGAAAGACGTAACCAGGGATCT -ACGGAAAGACGTAACCAGAAGGCT -ACGGAAAGACGTAACCAGTCAACC -ACGGAAAGACGTAACCAGTGTTCC -ACGGAAAGACGTAACCAGATTCCC -ACGGAAAGACGTAACCAGTTCTCG -ACGGAAAGACGTAACCAGTAGACG -ACGGAAAGACGTAACCAGGTAACG -ACGGAAAGACGTAACCAGACTTCG -ACGGAAAGACGTAACCAGTACGCA -ACGGAAAGACGTAACCAGCTTGCA -ACGGAAAGACGTAACCAGCGAACA -ACGGAAAGACGTAACCAGCAGTCA -ACGGAAAGACGTAACCAGGATCCA -ACGGAAAGACGTAACCAGACGACA -ACGGAAAGACGTAACCAGAGCTCA -ACGGAAAGACGTAACCAGTCACGT -ACGGAAAGACGTAACCAGCGTAGT -ACGGAAAGACGTAACCAGGTCAGT -ACGGAAAGACGTAACCAGGAAGGT -ACGGAAAGACGTAACCAGAACCGT -ACGGAAAGACGTAACCAGTTGTGC -ACGGAAAGACGTAACCAGCTAAGC -ACGGAAAGACGTAACCAGACTAGC -ACGGAAAGACGTAACCAGAGATGC -ACGGAAAGACGTAACCAGTGAAGG -ACGGAAAGACGTAACCAGCAATGG -ACGGAAAGACGTAACCAGATGAGG -ACGGAAAGACGTAACCAGAATGGG -ACGGAAAGACGTAACCAGTCCTGA -ACGGAAAGACGTAACCAGTAGCGA -ACGGAAAGACGTAACCAGCACAGA -ACGGAAAGACGTAACCAGGCAAGA -ACGGAAAGACGTAACCAGGGTTGA -ACGGAAAGACGTAACCAGTCCGAT -ACGGAAAGACGTAACCAGTGGCAT -ACGGAAAGACGTAACCAGCGAGAT -ACGGAAAGACGTAACCAGTACCAC -ACGGAAAGACGTAACCAGCAGAAC -ACGGAAAGACGTAACCAGGTCTAC -ACGGAAAGACGTAACCAGACGTAC -ACGGAAAGACGTAACCAGAGTGAC -ACGGAAAGACGTAACCAGCTGTAG -ACGGAAAGACGTAACCAGCCTAAG -ACGGAAAGACGTAACCAGGTTCAG -ACGGAAAGACGTAACCAGGCATAG -ACGGAAAGACGTAACCAGGACAAG -ACGGAAAGACGTAACCAGAAGCAG -ACGGAAAGACGTAACCAGCGTCAA -ACGGAAAGACGTAACCAGGCTGAA -ACGGAAAGACGTAACCAGAGTACG -ACGGAAAGACGTAACCAGATCCGA -ACGGAAAGACGTAACCAGATGGGA -ACGGAAAGACGTAACCAGGTGCAA -ACGGAAAGACGTAACCAGGAGGAA -ACGGAAAGACGTAACCAGCAGGTA -ACGGAAAGACGTAACCAGGACTCT -ACGGAAAGACGTAACCAGAGTCCT -ACGGAAAGACGTAACCAGTAAGCC -ACGGAAAGACGTAACCAGATAGCC -ACGGAAAGACGTAACCAGTAACCG -ACGGAAAGACGTAACCAGATGCCA -ACGGAAAGACGTTACGTCGGAAAC -ACGGAAAGACGTTACGTCAACACC -ACGGAAAGACGTTACGTCATCGAG -ACGGAAAGACGTTACGTCCTCCTT -ACGGAAAGACGTTACGTCCCTGTT -ACGGAAAGACGTTACGTCCGGTTT -ACGGAAAGACGTTACGTCGTGGTT -ACGGAAAGACGTTACGTCGCCTTT -ACGGAAAGACGTTACGTCGGTCTT -ACGGAAAGACGTTACGTCACGCTT -ACGGAAAGACGTTACGTCAGCGTT -ACGGAAAGACGTTACGTCTTCGTC -ACGGAAAGACGTTACGTCTCTCTC -ACGGAAAGACGTTACGTCTGGATC -ACGGAAAGACGTTACGTCCACTTC -ACGGAAAGACGTTACGTCGTACTC -ACGGAAAGACGTTACGTCGATGTC -ACGGAAAGACGTTACGTCACAGTC -ACGGAAAGACGTTACGTCTTGCTG -ACGGAAAGACGTTACGTCTCCATG -ACGGAAAGACGTTACGTCTGTGTG -ACGGAAAGACGTTACGTCCTAGTG -ACGGAAAGACGTTACGTCCATCTG -ACGGAAAGACGTTACGTCGAGTTG -ACGGAAAGACGTTACGTCAGACTG -ACGGAAAGACGTTACGTCTCGGTA -ACGGAAAGACGTTACGTCTGCCTA -ACGGAAAGACGTTACGTCCCACTA -ACGGAAAGACGTTACGTCGGAGTA -ACGGAAAGACGTTACGTCTCGTCT -ACGGAAAGACGTTACGTCTGCACT -ACGGAAAGACGTTACGTCCTGACT -ACGGAAAGACGTTACGTCCAACCT -ACGGAAAGACGTTACGTCGCTACT -ACGGAAAGACGTTACGTCGGATCT -ACGGAAAGACGTTACGTCAAGGCT -ACGGAAAGACGTTACGTCTCAACC -ACGGAAAGACGTTACGTCTGTTCC -ACGGAAAGACGTTACGTCATTCCC -ACGGAAAGACGTTACGTCTTCTCG -ACGGAAAGACGTTACGTCTAGACG -ACGGAAAGACGTTACGTCGTAACG -ACGGAAAGACGTTACGTCACTTCG -ACGGAAAGACGTTACGTCTACGCA -ACGGAAAGACGTTACGTCCTTGCA -ACGGAAAGACGTTACGTCCGAACA -ACGGAAAGACGTTACGTCCAGTCA -ACGGAAAGACGTTACGTCGATCCA -ACGGAAAGACGTTACGTCACGACA -ACGGAAAGACGTTACGTCAGCTCA -ACGGAAAGACGTTACGTCTCACGT -ACGGAAAGACGTTACGTCCGTAGT -ACGGAAAGACGTTACGTCGTCAGT -ACGGAAAGACGTTACGTCGAAGGT -ACGGAAAGACGTTACGTCAACCGT -ACGGAAAGACGTTACGTCTTGTGC -ACGGAAAGACGTTACGTCCTAAGC -ACGGAAAGACGTTACGTCACTAGC -ACGGAAAGACGTTACGTCAGATGC -ACGGAAAGACGTTACGTCTGAAGG -ACGGAAAGACGTTACGTCCAATGG -ACGGAAAGACGTTACGTCATGAGG -ACGGAAAGACGTTACGTCAATGGG -ACGGAAAGACGTTACGTCTCCTGA -ACGGAAAGACGTTACGTCTAGCGA -ACGGAAAGACGTTACGTCCACAGA -ACGGAAAGACGTTACGTCGCAAGA -ACGGAAAGACGTTACGTCGGTTGA -ACGGAAAGACGTTACGTCTCCGAT -ACGGAAAGACGTTACGTCTGGCAT -ACGGAAAGACGTTACGTCCGAGAT -ACGGAAAGACGTTACGTCTACCAC -ACGGAAAGACGTTACGTCCAGAAC -ACGGAAAGACGTTACGTCGTCTAC -ACGGAAAGACGTTACGTCACGTAC -ACGGAAAGACGTTACGTCAGTGAC -ACGGAAAGACGTTACGTCCTGTAG -ACGGAAAGACGTTACGTCCCTAAG -ACGGAAAGACGTTACGTCGTTCAG -ACGGAAAGACGTTACGTCGCATAG -ACGGAAAGACGTTACGTCGACAAG -ACGGAAAGACGTTACGTCAAGCAG -ACGGAAAGACGTTACGTCCGTCAA -ACGGAAAGACGTTACGTCGCTGAA -ACGGAAAGACGTTACGTCAGTACG -ACGGAAAGACGTTACGTCATCCGA -ACGGAAAGACGTTACGTCATGGGA -ACGGAAAGACGTTACGTCGTGCAA -ACGGAAAGACGTTACGTCGAGGAA -ACGGAAAGACGTTACGTCCAGGTA -ACGGAAAGACGTTACGTCGACTCT -ACGGAAAGACGTTACGTCAGTCCT -ACGGAAAGACGTTACGTCTAAGCC -ACGGAAAGACGTTACGTCATAGCC -ACGGAAAGACGTTACGTCTAACCG -ACGGAAAGACGTTACGTCATGCCA -ACGGAAAGACGTTACACGGGAAAC -ACGGAAAGACGTTACACGAACACC -ACGGAAAGACGTTACACGATCGAG -ACGGAAAGACGTTACACGCTCCTT -ACGGAAAGACGTTACACGCCTGTT -ACGGAAAGACGTTACACGCGGTTT -ACGGAAAGACGTTACACGGTGGTT -ACGGAAAGACGTTACACGGCCTTT -ACGGAAAGACGTTACACGGGTCTT -ACGGAAAGACGTTACACGACGCTT -ACGGAAAGACGTTACACGAGCGTT -ACGGAAAGACGTTACACGTTCGTC -ACGGAAAGACGTTACACGTCTCTC -ACGGAAAGACGTTACACGTGGATC -ACGGAAAGACGTTACACGCACTTC -ACGGAAAGACGTTACACGGTACTC -ACGGAAAGACGTTACACGGATGTC -ACGGAAAGACGTTACACGACAGTC -ACGGAAAGACGTTACACGTTGCTG -ACGGAAAGACGTTACACGTCCATG -ACGGAAAGACGTTACACGTGTGTG -ACGGAAAGACGTTACACGCTAGTG -ACGGAAAGACGTTACACGCATCTG -ACGGAAAGACGTTACACGGAGTTG -ACGGAAAGACGTTACACGAGACTG -ACGGAAAGACGTTACACGTCGGTA -ACGGAAAGACGTTACACGTGCCTA -ACGGAAAGACGTTACACGCCACTA -ACGGAAAGACGTTACACGGGAGTA -ACGGAAAGACGTTACACGTCGTCT -ACGGAAAGACGTTACACGTGCACT -ACGGAAAGACGTTACACGCTGACT -ACGGAAAGACGTTACACGCAACCT -ACGGAAAGACGTTACACGGCTACT -ACGGAAAGACGTTACACGGGATCT -ACGGAAAGACGTTACACGAAGGCT -ACGGAAAGACGTTACACGTCAACC -ACGGAAAGACGTTACACGTGTTCC -ACGGAAAGACGTTACACGATTCCC -ACGGAAAGACGTTACACGTTCTCG -ACGGAAAGACGTTACACGTAGACG -ACGGAAAGACGTTACACGGTAACG -ACGGAAAGACGTTACACGACTTCG -ACGGAAAGACGTTACACGTACGCA -ACGGAAAGACGTTACACGCTTGCA -ACGGAAAGACGTTACACGCGAACA -ACGGAAAGACGTTACACGCAGTCA -ACGGAAAGACGTTACACGGATCCA -ACGGAAAGACGTTACACGACGACA -ACGGAAAGACGTTACACGAGCTCA -ACGGAAAGACGTTACACGTCACGT -ACGGAAAGACGTTACACGCGTAGT -ACGGAAAGACGTTACACGGTCAGT -ACGGAAAGACGTTACACGGAAGGT -ACGGAAAGACGTTACACGAACCGT -ACGGAAAGACGTTACACGTTGTGC -ACGGAAAGACGTTACACGCTAAGC -ACGGAAAGACGTTACACGACTAGC -ACGGAAAGACGTTACACGAGATGC -ACGGAAAGACGTTACACGTGAAGG -ACGGAAAGACGTTACACGCAATGG -ACGGAAAGACGTTACACGATGAGG -ACGGAAAGACGTTACACGAATGGG -ACGGAAAGACGTTACACGTCCTGA -ACGGAAAGACGTTACACGTAGCGA -ACGGAAAGACGTTACACGCACAGA -ACGGAAAGACGTTACACGGCAAGA -ACGGAAAGACGTTACACGGGTTGA -ACGGAAAGACGTTACACGTCCGAT -ACGGAAAGACGTTACACGTGGCAT -ACGGAAAGACGTTACACGCGAGAT -ACGGAAAGACGTTACACGTACCAC -ACGGAAAGACGTTACACGCAGAAC -ACGGAAAGACGTTACACGGTCTAC -ACGGAAAGACGTTACACGACGTAC -ACGGAAAGACGTTACACGAGTGAC -ACGGAAAGACGTTACACGCTGTAG -ACGGAAAGACGTTACACGCCTAAG -ACGGAAAGACGTTACACGGTTCAG -ACGGAAAGACGTTACACGGCATAG -ACGGAAAGACGTTACACGGACAAG -ACGGAAAGACGTTACACGAAGCAG -ACGGAAAGACGTTACACGCGTCAA -ACGGAAAGACGTTACACGGCTGAA -ACGGAAAGACGTTACACGAGTACG -ACGGAAAGACGTTACACGATCCGA -ACGGAAAGACGTTACACGATGGGA -ACGGAAAGACGTTACACGGTGCAA -ACGGAAAGACGTTACACGGAGGAA -ACGGAAAGACGTTACACGCAGGTA -ACGGAAAGACGTTACACGGACTCT -ACGGAAAGACGTTACACGAGTCCT -ACGGAAAGACGTTACACGTAAGCC -ACGGAAAGACGTTACACGATAGCC -ACGGAAAGACGTTACACGTAACCG -ACGGAAAGACGTTACACGATGCCA -ACGGAAAGACGTGACAGTGGAAAC -ACGGAAAGACGTGACAGTAACACC -ACGGAAAGACGTGACAGTATCGAG -ACGGAAAGACGTGACAGTCTCCTT -ACGGAAAGACGTGACAGTCCTGTT -ACGGAAAGACGTGACAGTCGGTTT -ACGGAAAGACGTGACAGTGTGGTT -ACGGAAAGACGTGACAGTGCCTTT -ACGGAAAGACGTGACAGTGGTCTT -ACGGAAAGACGTGACAGTACGCTT -ACGGAAAGACGTGACAGTAGCGTT -ACGGAAAGACGTGACAGTTTCGTC -ACGGAAAGACGTGACAGTTCTCTC -ACGGAAAGACGTGACAGTTGGATC -ACGGAAAGACGTGACAGTCACTTC -ACGGAAAGACGTGACAGTGTACTC -ACGGAAAGACGTGACAGTGATGTC -ACGGAAAGACGTGACAGTACAGTC -ACGGAAAGACGTGACAGTTTGCTG -ACGGAAAGACGTGACAGTTCCATG -ACGGAAAGACGTGACAGTTGTGTG -ACGGAAAGACGTGACAGTCTAGTG -ACGGAAAGACGTGACAGTCATCTG -ACGGAAAGACGTGACAGTGAGTTG -ACGGAAAGACGTGACAGTAGACTG -ACGGAAAGACGTGACAGTTCGGTA -ACGGAAAGACGTGACAGTTGCCTA -ACGGAAAGACGTGACAGTCCACTA -ACGGAAAGACGTGACAGTGGAGTA -ACGGAAAGACGTGACAGTTCGTCT -ACGGAAAGACGTGACAGTTGCACT -ACGGAAAGACGTGACAGTCTGACT -ACGGAAAGACGTGACAGTCAACCT -ACGGAAAGACGTGACAGTGCTACT -ACGGAAAGACGTGACAGTGGATCT -ACGGAAAGACGTGACAGTAAGGCT -ACGGAAAGACGTGACAGTTCAACC -ACGGAAAGACGTGACAGTTGTTCC -ACGGAAAGACGTGACAGTATTCCC -ACGGAAAGACGTGACAGTTTCTCG -ACGGAAAGACGTGACAGTTAGACG -ACGGAAAGACGTGACAGTGTAACG -ACGGAAAGACGTGACAGTACTTCG -ACGGAAAGACGTGACAGTTACGCA -ACGGAAAGACGTGACAGTCTTGCA -ACGGAAAGACGTGACAGTCGAACA -ACGGAAAGACGTGACAGTCAGTCA -ACGGAAAGACGTGACAGTGATCCA -ACGGAAAGACGTGACAGTACGACA -ACGGAAAGACGTGACAGTAGCTCA -ACGGAAAGACGTGACAGTTCACGT -ACGGAAAGACGTGACAGTCGTAGT -ACGGAAAGACGTGACAGTGTCAGT -ACGGAAAGACGTGACAGTGAAGGT -ACGGAAAGACGTGACAGTAACCGT -ACGGAAAGACGTGACAGTTTGTGC -ACGGAAAGACGTGACAGTCTAAGC -ACGGAAAGACGTGACAGTACTAGC -ACGGAAAGACGTGACAGTAGATGC -ACGGAAAGACGTGACAGTTGAAGG -ACGGAAAGACGTGACAGTCAATGG -ACGGAAAGACGTGACAGTATGAGG -ACGGAAAGACGTGACAGTAATGGG -ACGGAAAGACGTGACAGTTCCTGA -ACGGAAAGACGTGACAGTTAGCGA -ACGGAAAGACGTGACAGTCACAGA -ACGGAAAGACGTGACAGTGCAAGA -ACGGAAAGACGTGACAGTGGTTGA -ACGGAAAGACGTGACAGTTCCGAT -ACGGAAAGACGTGACAGTTGGCAT -ACGGAAAGACGTGACAGTCGAGAT -ACGGAAAGACGTGACAGTTACCAC -ACGGAAAGACGTGACAGTCAGAAC -ACGGAAAGACGTGACAGTGTCTAC -ACGGAAAGACGTGACAGTACGTAC -ACGGAAAGACGTGACAGTAGTGAC -ACGGAAAGACGTGACAGTCTGTAG -ACGGAAAGACGTGACAGTCCTAAG -ACGGAAAGACGTGACAGTGTTCAG -ACGGAAAGACGTGACAGTGCATAG -ACGGAAAGACGTGACAGTGACAAG -ACGGAAAGACGTGACAGTAAGCAG -ACGGAAAGACGTGACAGTCGTCAA -ACGGAAAGACGTGACAGTGCTGAA -ACGGAAAGACGTGACAGTAGTACG -ACGGAAAGACGTGACAGTATCCGA -ACGGAAAGACGTGACAGTATGGGA -ACGGAAAGACGTGACAGTGTGCAA -ACGGAAAGACGTGACAGTGAGGAA -ACGGAAAGACGTGACAGTCAGGTA -ACGGAAAGACGTGACAGTGACTCT -ACGGAAAGACGTGACAGTAGTCCT -ACGGAAAGACGTGACAGTTAAGCC -ACGGAAAGACGTGACAGTATAGCC -ACGGAAAGACGTGACAGTTAACCG -ACGGAAAGACGTGACAGTATGCCA -ACGGAAAGACGTTAGCTGGGAAAC -ACGGAAAGACGTTAGCTGAACACC -ACGGAAAGACGTTAGCTGATCGAG -ACGGAAAGACGTTAGCTGCTCCTT -ACGGAAAGACGTTAGCTGCCTGTT -ACGGAAAGACGTTAGCTGCGGTTT -ACGGAAAGACGTTAGCTGGTGGTT -ACGGAAAGACGTTAGCTGGCCTTT -ACGGAAAGACGTTAGCTGGGTCTT -ACGGAAAGACGTTAGCTGACGCTT -ACGGAAAGACGTTAGCTGAGCGTT -ACGGAAAGACGTTAGCTGTTCGTC -ACGGAAAGACGTTAGCTGTCTCTC -ACGGAAAGACGTTAGCTGTGGATC -ACGGAAAGACGTTAGCTGCACTTC -ACGGAAAGACGTTAGCTGGTACTC -ACGGAAAGACGTTAGCTGGATGTC -ACGGAAAGACGTTAGCTGACAGTC -ACGGAAAGACGTTAGCTGTTGCTG -ACGGAAAGACGTTAGCTGTCCATG -ACGGAAAGACGTTAGCTGTGTGTG -ACGGAAAGACGTTAGCTGCTAGTG -ACGGAAAGACGTTAGCTGCATCTG -ACGGAAAGACGTTAGCTGGAGTTG -ACGGAAAGACGTTAGCTGAGACTG -ACGGAAAGACGTTAGCTGTCGGTA -ACGGAAAGACGTTAGCTGTGCCTA -ACGGAAAGACGTTAGCTGCCACTA -ACGGAAAGACGTTAGCTGGGAGTA -ACGGAAAGACGTTAGCTGTCGTCT -ACGGAAAGACGTTAGCTGTGCACT -ACGGAAAGACGTTAGCTGCTGACT -ACGGAAAGACGTTAGCTGCAACCT -ACGGAAAGACGTTAGCTGGCTACT -ACGGAAAGACGTTAGCTGGGATCT -ACGGAAAGACGTTAGCTGAAGGCT -ACGGAAAGACGTTAGCTGTCAACC -ACGGAAAGACGTTAGCTGTGTTCC -ACGGAAAGACGTTAGCTGATTCCC -ACGGAAAGACGTTAGCTGTTCTCG -ACGGAAAGACGTTAGCTGTAGACG -ACGGAAAGACGTTAGCTGGTAACG -ACGGAAAGACGTTAGCTGACTTCG -ACGGAAAGACGTTAGCTGTACGCA -ACGGAAAGACGTTAGCTGCTTGCA -ACGGAAAGACGTTAGCTGCGAACA -ACGGAAAGACGTTAGCTGCAGTCA -ACGGAAAGACGTTAGCTGGATCCA -ACGGAAAGACGTTAGCTGACGACA -ACGGAAAGACGTTAGCTGAGCTCA -ACGGAAAGACGTTAGCTGTCACGT -ACGGAAAGACGTTAGCTGCGTAGT -ACGGAAAGACGTTAGCTGGTCAGT -ACGGAAAGACGTTAGCTGGAAGGT -ACGGAAAGACGTTAGCTGAACCGT -ACGGAAAGACGTTAGCTGTTGTGC -ACGGAAAGACGTTAGCTGCTAAGC -ACGGAAAGACGTTAGCTGACTAGC -ACGGAAAGACGTTAGCTGAGATGC -ACGGAAAGACGTTAGCTGTGAAGG -ACGGAAAGACGTTAGCTGCAATGG -ACGGAAAGACGTTAGCTGATGAGG -ACGGAAAGACGTTAGCTGAATGGG -ACGGAAAGACGTTAGCTGTCCTGA -ACGGAAAGACGTTAGCTGTAGCGA -ACGGAAAGACGTTAGCTGCACAGA -ACGGAAAGACGTTAGCTGGCAAGA -ACGGAAAGACGTTAGCTGGGTTGA -ACGGAAAGACGTTAGCTGTCCGAT -ACGGAAAGACGTTAGCTGTGGCAT -ACGGAAAGACGTTAGCTGCGAGAT -ACGGAAAGACGTTAGCTGTACCAC -ACGGAAAGACGTTAGCTGCAGAAC -ACGGAAAGACGTTAGCTGGTCTAC -ACGGAAAGACGTTAGCTGACGTAC -ACGGAAAGACGTTAGCTGAGTGAC -ACGGAAAGACGTTAGCTGCTGTAG -ACGGAAAGACGTTAGCTGCCTAAG -ACGGAAAGACGTTAGCTGGTTCAG -ACGGAAAGACGTTAGCTGGCATAG -ACGGAAAGACGTTAGCTGGACAAG -ACGGAAAGACGTTAGCTGAAGCAG -ACGGAAAGACGTTAGCTGCGTCAA -ACGGAAAGACGTTAGCTGGCTGAA -ACGGAAAGACGTTAGCTGAGTACG -ACGGAAAGACGTTAGCTGATCCGA -ACGGAAAGACGTTAGCTGATGGGA -ACGGAAAGACGTTAGCTGGTGCAA -ACGGAAAGACGTTAGCTGGAGGAA -ACGGAAAGACGTTAGCTGCAGGTA -ACGGAAAGACGTTAGCTGGACTCT -ACGGAAAGACGTTAGCTGAGTCCT -ACGGAAAGACGTTAGCTGTAAGCC -ACGGAAAGACGTTAGCTGATAGCC -ACGGAAAGACGTTAGCTGTAACCG -ACGGAAAGACGTTAGCTGATGCCA -ACGGAAAGACGTAAGCCTGGAAAC -ACGGAAAGACGTAAGCCTAACACC -ACGGAAAGACGTAAGCCTATCGAG -ACGGAAAGACGTAAGCCTCTCCTT -ACGGAAAGACGTAAGCCTCCTGTT -ACGGAAAGACGTAAGCCTCGGTTT -ACGGAAAGACGTAAGCCTGTGGTT -ACGGAAAGACGTAAGCCTGCCTTT -ACGGAAAGACGTAAGCCTGGTCTT -ACGGAAAGACGTAAGCCTACGCTT -ACGGAAAGACGTAAGCCTAGCGTT -ACGGAAAGACGTAAGCCTTTCGTC -ACGGAAAGACGTAAGCCTTCTCTC -ACGGAAAGACGTAAGCCTTGGATC -ACGGAAAGACGTAAGCCTCACTTC -ACGGAAAGACGTAAGCCTGTACTC -ACGGAAAGACGTAAGCCTGATGTC -ACGGAAAGACGTAAGCCTACAGTC -ACGGAAAGACGTAAGCCTTTGCTG -ACGGAAAGACGTAAGCCTTCCATG -ACGGAAAGACGTAAGCCTTGTGTG -ACGGAAAGACGTAAGCCTCTAGTG -ACGGAAAGACGTAAGCCTCATCTG -ACGGAAAGACGTAAGCCTGAGTTG -ACGGAAAGACGTAAGCCTAGACTG -ACGGAAAGACGTAAGCCTTCGGTA -ACGGAAAGACGTAAGCCTTGCCTA -ACGGAAAGACGTAAGCCTCCACTA -ACGGAAAGACGTAAGCCTGGAGTA -ACGGAAAGACGTAAGCCTTCGTCT -ACGGAAAGACGTAAGCCTTGCACT -ACGGAAAGACGTAAGCCTCTGACT -ACGGAAAGACGTAAGCCTCAACCT -ACGGAAAGACGTAAGCCTGCTACT -ACGGAAAGACGTAAGCCTGGATCT -ACGGAAAGACGTAAGCCTAAGGCT -ACGGAAAGACGTAAGCCTTCAACC -ACGGAAAGACGTAAGCCTTGTTCC -ACGGAAAGACGTAAGCCTATTCCC -ACGGAAAGACGTAAGCCTTTCTCG -ACGGAAAGACGTAAGCCTTAGACG -ACGGAAAGACGTAAGCCTGTAACG -ACGGAAAGACGTAAGCCTACTTCG -ACGGAAAGACGTAAGCCTTACGCA -ACGGAAAGACGTAAGCCTCTTGCA -ACGGAAAGACGTAAGCCTCGAACA -ACGGAAAGACGTAAGCCTCAGTCA -ACGGAAAGACGTAAGCCTGATCCA -ACGGAAAGACGTAAGCCTACGACA -ACGGAAAGACGTAAGCCTAGCTCA -ACGGAAAGACGTAAGCCTTCACGT -ACGGAAAGACGTAAGCCTCGTAGT -ACGGAAAGACGTAAGCCTGTCAGT -ACGGAAAGACGTAAGCCTGAAGGT -ACGGAAAGACGTAAGCCTAACCGT -ACGGAAAGACGTAAGCCTTTGTGC -ACGGAAAGACGTAAGCCTCTAAGC -ACGGAAAGACGTAAGCCTACTAGC -ACGGAAAGACGTAAGCCTAGATGC -ACGGAAAGACGTAAGCCTTGAAGG -ACGGAAAGACGTAAGCCTCAATGG -ACGGAAAGACGTAAGCCTATGAGG -ACGGAAAGACGTAAGCCTAATGGG -ACGGAAAGACGTAAGCCTTCCTGA -ACGGAAAGACGTAAGCCTTAGCGA -ACGGAAAGACGTAAGCCTCACAGA -ACGGAAAGACGTAAGCCTGCAAGA -ACGGAAAGACGTAAGCCTGGTTGA -ACGGAAAGACGTAAGCCTTCCGAT -ACGGAAAGACGTAAGCCTTGGCAT -ACGGAAAGACGTAAGCCTCGAGAT -ACGGAAAGACGTAAGCCTTACCAC -ACGGAAAGACGTAAGCCTCAGAAC -ACGGAAAGACGTAAGCCTGTCTAC -ACGGAAAGACGTAAGCCTACGTAC -ACGGAAAGACGTAAGCCTAGTGAC -ACGGAAAGACGTAAGCCTCTGTAG -ACGGAAAGACGTAAGCCTCCTAAG -ACGGAAAGACGTAAGCCTGTTCAG -ACGGAAAGACGTAAGCCTGCATAG -ACGGAAAGACGTAAGCCTGACAAG -ACGGAAAGACGTAAGCCTAAGCAG -ACGGAAAGACGTAAGCCTCGTCAA -ACGGAAAGACGTAAGCCTGCTGAA -ACGGAAAGACGTAAGCCTAGTACG -ACGGAAAGACGTAAGCCTATCCGA -ACGGAAAGACGTAAGCCTATGGGA -ACGGAAAGACGTAAGCCTGTGCAA -ACGGAAAGACGTAAGCCTGAGGAA -ACGGAAAGACGTAAGCCTCAGGTA -ACGGAAAGACGTAAGCCTGACTCT -ACGGAAAGACGTAAGCCTAGTCCT -ACGGAAAGACGTAAGCCTTAAGCC -ACGGAAAGACGTAAGCCTATAGCC -ACGGAAAGACGTAAGCCTTAACCG -ACGGAAAGACGTAAGCCTATGCCA -ACGGAAAGACGTCAGGTTGGAAAC -ACGGAAAGACGTCAGGTTAACACC -ACGGAAAGACGTCAGGTTATCGAG -ACGGAAAGACGTCAGGTTCTCCTT -ACGGAAAGACGTCAGGTTCCTGTT -ACGGAAAGACGTCAGGTTCGGTTT -ACGGAAAGACGTCAGGTTGTGGTT -ACGGAAAGACGTCAGGTTGCCTTT -ACGGAAAGACGTCAGGTTGGTCTT -ACGGAAAGACGTCAGGTTACGCTT -ACGGAAAGACGTCAGGTTAGCGTT -ACGGAAAGACGTCAGGTTTTCGTC -ACGGAAAGACGTCAGGTTTCTCTC -ACGGAAAGACGTCAGGTTTGGATC -ACGGAAAGACGTCAGGTTCACTTC -ACGGAAAGACGTCAGGTTGTACTC -ACGGAAAGACGTCAGGTTGATGTC -ACGGAAAGACGTCAGGTTACAGTC -ACGGAAAGACGTCAGGTTTTGCTG -ACGGAAAGACGTCAGGTTTCCATG -ACGGAAAGACGTCAGGTTTGTGTG -ACGGAAAGACGTCAGGTTCTAGTG -ACGGAAAGACGTCAGGTTCATCTG -ACGGAAAGACGTCAGGTTGAGTTG -ACGGAAAGACGTCAGGTTAGACTG -ACGGAAAGACGTCAGGTTTCGGTA -ACGGAAAGACGTCAGGTTTGCCTA -ACGGAAAGACGTCAGGTTCCACTA -ACGGAAAGACGTCAGGTTGGAGTA -ACGGAAAGACGTCAGGTTTCGTCT -ACGGAAAGACGTCAGGTTTGCACT -ACGGAAAGACGTCAGGTTCTGACT -ACGGAAAGACGTCAGGTTCAACCT -ACGGAAAGACGTCAGGTTGCTACT -ACGGAAAGACGTCAGGTTGGATCT -ACGGAAAGACGTCAGGTTAAGGCT -ACGGAAAGACGTCAGGTTTCAACC -ACGGAAAGACGTCAGGTTTGTTCC -ACGGAAAGACGTCAGGTTATTCCC -ACGGAAAGACGTCAGGTTTTCTCG -ACGGAAAGACGTCAGGTTTAGACG -ACGGAAAGACGTCAGGTTGTAACG -ACGGAAAGACGTCAGGTTACTTCG -ACGGAAAGACGTCAGGTTTACGCA -ACGGAAAGACGTCAGGTTCTTGCA -ACGGAAAGACGTCAGGTTCGAACA -ACGGAAAGACGTCAGGTTCAGTCA -ACGGAAAGACGTCAGGTTGATCCA -ACGGAAAGACGTCAGGTTACGACA -ACGGAAAGACGTCAGGTTAGCTCA -ACGGAAAGACGTCAGGTTTCACGT -ACGGAAAGACGTCAGGTTCGTAGT -ACGGAAAGACGTCAGGTTGTCAGT -ACGGAAAGACGTCAGGTTGAAGGT -ACGGAAAGACGTCAGGTTAACCGT -ACGGAAAGACGTCAGGTTTTGTGC -ACGGAAAGACGTCAGGTTCTAAGC -ACGGAAAGACGTCAGGTTACTAGC -ACGGAAAGACGTCAGGTTAGATGC -ACGGAAAGACGTCAGGTTTGAAGG -ACGGAAAGACGTCAGGTTCAATGG -ACGGAAAGACGTCAGGTTATGAGG -ACGGAAAGACGTCAGGTTAATGGG -ACGGAAAGACGTCAGGTTTCCTGA -ACGGAAAGACGTCAGGTTTAGCGA -ACGGAAAGACGTCAGGTTCACAGA -ACGGAAAGACGTCAGGTTGCAAGA -ACGGAAAGACGTCAGGTTGGTTGA -ACGGAAAGACGTCAGGTTTCCGAT -ACGGAAAGACGTCAGGTTTGGCAT -ACGGAAAGACGTCAGGTTCGAGAT -ACGGAAAGACGTCAGGTTTACCAC -ACGGAAAGACGTCAGGTTCAGAAC -ACGGAAAGACGTCAGGTTGTCTAC -ACGGAAAGACGTCAGGTTACGTAC -ACGGAAAGACGTCAGGTTAGTGAC -ACGGAAAGACGTCAGGTTCTGTAG -ACGGAAAGACGTCAGGTTCCTAAG -ACGGAAAGACGTCAGGTTGTTCAG -ACGGAAAGACGTCAGGTTGCATAG -ACGGAAAGACGTCAGGTTGACAAG -ACGGAAAGACGTCAGGTTAAGCAG -ACGGAAAGACGTCAGGTTCGTCAA -ACGGAAAGACGTCAGGTTGCTGAA -ACGGAAAGACGTCAGGTTAGTACG -ACGGAAAGACGTCAGGTTATCCGA -ACGGAAAGACGTCAGGTTATGGGA -ACGGAAAGACGTCAGGTTGTGCAA -ACGGAAAGACGTCAGGTTGAGGAA -ACGGAAAGACGTCAGGTTCAGGTA -ACGGAAAGACGTCAGGTTGACTCT -ACGGAAAGACGTCAGGTTAGTCCT -ACGGAAAGACGTCAGGTTTAAGCC -ACGGAAAGACGTCAGGTTATAGCC -ACGGAAAGACGTCAGGTTTAACCG -ACGGAAAGACGTCAGGTTATGCCA -ACGGAAAGACGTTAGGCAGGAAAC -ACGGAAAGACGTTAGGCAAACACC -ACGGAAAGACGTTAGGCAATCGAG -ACGGAAAGACGTTAGGCACTCCTT -ACGGAAAGACGTTAGGCACCTGTT -ACGGAAAGACGTTAGGCACGGTTT -ACGGAAAGACGTTAGGCAGTGGTT -ACGGAAAGACGTTAGGCAGCCTTT -ACGGAAAGACGTTAGGCAGGTCTT -ACGGAAAGACGTTAGGCAACGCTT -ACGGAAAGACGTTAGGCAAGCGTT -ACGGAAAGACGTTAGGCATTCGTC -ACGGAAAGACGTTAGGCATCTCTC -ACGGAAAGACGTTAGGCATGGATC -ACGGAAAGACGTTAGGCACACTTC -ACGGAAAGACGTTAGGCAGTACTC -ACGGAAAGACGTTAGGCAGATGTC -ACGGAAAGACGTTAGGCAACAGTC -ACGGAAAGACGTTAGGCATTGCTG -ACGGAAAGACGTTAGGCATCCATG -ACGGAAAGACGTTAGGCATGTGTG -ACGGAAAGACGTTAGGCACTAGTG -ACGGAAAGACGTTAGGCACATCTG -ACGGAAAGACGTTAGGCAGAGTTG -ACGGAAAGACGTTAGGCAAGACTG -ACGGAAAGACGTTAGGCATCGGTA -ACGGAAAGACGTTAGGCATGCCTA -ACGGAAAGACGTTAGGCACCACTA -ACGGAAAGACGTTAGGCAGGAGTA -ACGGAAAGACGTTAGGCATCGTCT -ACGGAAAGACGTTAGGCATGCACT -ACGGAAAGACGTTAGGCACTGACT -ACGGAAAGACGTTAGGCACAACCT -ACGGAAAGACGTTAGGCAGCTACT -ACGGAAAGACGTTAGGCAGGATCT -ACGGAAAGACGTTAGGCAAAGGCT -ACGGAAAGACGTTAGGCATCAACC -ACGGAAAGACGTTAGGCATGTTCC -ACGGAAAGACGTTAGGCAATTCCC -ACGGAAAGACGTTAGGCATTCTCG -ACGGAAAGACGTTAGGCATAGACG -ACGGAAAGACGTTAGGCAGTAACG -ACGGAAAGACGTTAGGCAACTTCG -ACGGAAAGACGTTAGGCATACGCA -ACGGAAAGACGTTAGGCACTTGCA -ACGGAAAGACGTTAGGCACGAACA -ACGGAAAGACGTTAGGCACAGTCA -ACGGAAAGACGTTAGGCAGATCCA -ACGGAAAGACGTTAGGCAACGACA -ACGGAAAGACGTTAGGCAAGCTCA -ACGGAAAGACGTTAGGCATCACGT -ACGGAAAGACGTTAGGCACGTAGT -ACGGAAAGACGTTAGGCAGTCAGT -ACGGAAAGACGTTAGGCAGAAGGT -ACGGAAAGACGTTAGGCAAACCGT -ACGGAAAGACGTTAGGCATTGTGC -ACGGAAAGACGTTAGGCACTAAGC -ACGGAAAGACGTTAGGCAACTAGC -ACGGAAAGACGTTAGGCAAGATGC -ACGGAAAGACGTTAGGCATGAAGG -ACGGAAAGACGTTAGGCACAATGG -ACGGAAAGACGTTAGGCAATGAGG -ACGGAAAGACGTTAGGCAAATGGG -ACGGAAAGACGTTAGGCATCCTGA -ACGGAAAGACGTTAGGCATAGCGA -ACGGAAAGACGTTAGGCACACAGA -ACGGAAAGACGTTAGGCAGCAAGA -ACGGAAAGACGTTAGGCAGGTTGA -ACGGAAAGACGTTAGGCATCCGAT -ACGGAAAGACGTTAGGCATGGCAT -ACGGAAAGACGTTAGGCACGAGAT -ACGGAAAGACGTTAGGCATACCAC -ACGGAAAGACGTTAGGCACAGAAC -ACGGAAAGACGTTAGGCAGTCTAC -ACGGAAAGACGTTAGGCAACGTAC -ACGGAAAGACGTTAGGCAAGTGAC -ACGGAAAGACGTTAGGCACTGTAG -ACGGAAAGACGTTAGGCACCTAAG -ACGGAAAGACGTTAGGCAGTTCAG -ACGGAAAGACGTTAGGCAGCATAG -ACGGAAAGACGTTAGGCAGACAAG -ACGGAAAGACGTTAGGCAAAGCAG -ACGGAAAGACGTTAGGCACGTCAA -ACGGAAAGACGTTAGGCAGCTGAA -ACGGAAAGACGTTAGGCAAGTACG -ACGGAAAGACGTTAGGCAATCCGA -ACGGAAAGACGTTAGGCAATGGGA -ACGGAAAGACGTTAGGCAGTGCAA -ACGGAAAGACGTTAGGCAGAGGAA -ACGGAAAGACGTTAGGCACAGGTA -ACGGAAAGACGTTAGGCAGACTCT -ACGGAAAGACGTTAGGCAAGTCCT -ACGGAAAGACGTTAGGCATAAGCC -ACGGAAAGACGTTAGGCAATAGCC -ACGGAAAGACGTTAGGCATAACCG -ACGGAAAGACGTTAGGCAATGCCA -ACGGAAAGACGTAAGGACGGAAAC -ACGGAAAGACGTAAGGACAACACC -ACGGAAAGACGTAAGGACATCGAG -ACGGAAAGACGTAAGGACCTCCTT -ACGGAAAGACGTAAGGACCCTGTT -ACGGAAAGACGTAAGGACCGGTTT -ACGGAAAGACGTAAGGACGTGGTT -ACGGAAAGACGTAAGGACGCCTTT -ACGGAAAGACGTAAGGACGGTCTT -ACGGAAAGACGTAAGGACACGCTT -ACGGAAAGACGTAAGGACAGCGTT -ACGGAAAGACGTAAGGACTTCGTC -ACGGAAAGACGTAAGGACTCTCTC -ACGGAAAGACGTAAGGACTGGATC -ACGGAAAGACGTAAGGACCACTTC -ACGGAAAGACGTAAGGACGTACTC -ACGGAAAGACGTAAGGACGATGTC -ACGGAAAGACGTAAGGACACAGTC -ACGGAAAGACGTAAGGACTTGCTG -ACGGAAAGACGTAAGGACTCCATG -ACGGAAAGACGTAAGGACTGTGTG -ACGGAAAGACGTAAGGACCTAGTG -ACGGAAAGACGTAAGGACCATCTG -ACGGAAAGACGTAAGGACGAGTTG -ACGGAAAGACGTAAGGACAGACTG -ACGGAAAGACGTAAGGACTCGGTA -ACGGAAAGACGTAAGGACTGCCTA -ACGGAAAGACGTAAGGACCCACTA -ACGGAAAGACGTAAGGACGGAGTA -ACGGAAAGACGTAAGGACTCGTCT -ACGGAAAGACGTAAGGACTGCACT -ACGGAAAGACGTAAGGACCTGACT -ACGGAAAGACGTAAGGACCAACCT -ACGGAAAGACGTAAGGACGCTACT -ACGGAAAGACGTAAGGACGGATCT -ACGGAAAGACGTAAGGACAAGGCT -ACGGAAAGACGTAAGGACTCAACC -ACGGAAAGACGTAAGGACTGTTCC -ACGGAAAGACGTAAGGACATTCCC -ACGGAAAGACGTAAGGACTTCTCG -ACGGAAAGACGTAAGGACTAGACG -ACGGAAAGACGTAAGGACGTAACG -ACGGAAAGACGTAAGGACACTTCG -ACGGAAAGACGTAAGGACTACGCA -ACGGAAAGACGTAAGGACCTTGCA -ACGGAAAGACGTAAGGACCGAACA -ACGGAAAGACGTAAGGACCAGTCA -ACGGAAAGACGTAAGGACGATCCA -ACGGAAAGACGTAAGGACACGACA -ACGGAAAGACGTAAGGACAGCTCA -ACGGAAAGACGTAAGGACTCACGT -ACGGAAAGACGTAAGGACCGTAGT -ACGGAAAGACGTAAGGACGTCAGT -ACGGAAAGACGTAAGGACGAAGGT -ACGGAAAGACGTAAGGACAACCGT -ACGGAAAGACGTAAGGACTTGTGC -ACGGAAAGACGTAAGGACCTAAGC -ACGGAAAGACGTAAGGACACTAGC -ACGGAAAGACGTAAGGACAGATGC -ACGGAAAGACGTAAGGACTGAAGG -ACGGAAAGACGTAAGGACCAATGG -ACGGAAAGACGTAAGGACATGAGG -ACGGAAAGACGTAAGGACAATGGG -ACGGAAAGACGTAAGGACTCCTGA -ACGGAAAGACGTAAGGACTAGCGA -ACGGAAAGACGTAAGGACCACAGA -ACGGAAAGACGTAAGGACGCAAGA -ACGGAAAGACGTAAGGACGGTTGA -ACGGAAAGACGTAAGGACTCCGAT -ACGGAAAGACGTAAGGACTGGCAT -ACGGAAAGACGTAAGGACCGAGAT -ACGGAAAGACGTAAGGACTACCAC -ACGGAAAGACGTAAGGACCAGAAC -ACGGAAAGACGTAAGGACGTCTAC -ACGGAAAGACGTAAGGACACGTAC -ACGGAAAGACGTAAGGACAGTGAC -ACGGAAAGACGTAAGGACCTGTAG -ACGGAAAGACGTAAGGACCCTAAG -ACGGAAAGACGTAAGGACGTTCAG -ACGGAAAGACGTAAGGACGCATAG -ACGGAAAGACGTAAGGACGACAAG -ACGGAAAGACGTAAGGACAAGCAG -ACGGAAAGACGTAAGGACCGTCAA -ACGGAAAGACGTAAGGACGCTGAA -ACGGAAAGACGTAAGGACAGTACG -ACGGAAAGACGTAAGGACATCCGA -ACGGAAAGACGTAAGGACATGGGA -ACGGAAAGACGTAAGGACGTGCAA -ACGGAAAGACGTAAGGACGAGGAA -ACGGAAAGACGTAAGGACCAGGTA -ACGGAAAGACGTAAGGACGACTCT -ACGGAAAGACGTAAGGACAGTCCT -ACGGAAAGACGTAAGGACTAAGCC -ACGGAAAGACGTAAGGACATAGCC -ACGGAAAGACGTAAGGACTAACCG -ACGGAAAGACGTAAGGACATGCCA -ACGGAAAGACGTCAGAAGGGAAAC -ACGGAAAGACGTCAGAAGAACACC -ACGGAAAGACGTCAGAAGATCGAG -ACGGAAAGACGTCAGAAGCTCCTT -ACGGAAAGACGTCAGAAGCCTGTT -ACGGAAAGACGTCAGAAGCGGTTT -ACGGAAAGACGTCAGAAGGTGGTT -ACGGAAAGACGTCAGAAGGCCTTT -ACGGAAAGACGTCAGAAGGGTCTT -ACGGAAAGACGTCAGAAGACGCTT -ACGGAAAGACGTCAGAAGAGCGTT -ACGGAAAGACGTCAGAAGTTCGTC -ACGGAAAGACGTCAGAAGTCTCTC -ACGGAAAGACGTCAGAAGTGGATC -ACGGAAAGACGTCAGAAGCACTTC -ACGGAAAGACGTCAGAAGGTACTC -ACGGAAAGACGTCAGAAGGATGTC -ACGGAAAGACGTCAGAAGACAGTC -ACGGAAAGACGTCAGAAGTTGCTG -ACGGAAAGACGTCAGAAGTCCATG -ACGGAAAGACGTCAGAAGTGTGTG -ACGGAAAGACGTCAGAAGCTAGTG -ACGGAAAGACGTCAGAAGCATCTG -ACGGAAAGACGTCAGAAGGAGTTG -ACGGAAAGACGTCAGAAGAGACTG -ACGGAAAGACGTCAGAAGTCGGTA -ACGGAAAGACGTCAGAAGTGCCTA -ACGGAAAGACGTCAGAAGCCACTA -ACGGAAAGACGTCAGAAGGGAGTA -ACGGAAAGACGTCAGAAGTCGTCT -ACGGAAAGACGTCAGAAGTGCACT -ACGGAAAGACGTCAGAAGCTGACT -ACGGAAAGACGTCAGAAGCAACCT -ACGGAAAGACGTCAGAAGGCTACT -ACGGAAAGACGTCAGAAGGGATCT -ACGGAAAGACGTCAGAAGAAGGCT -ACGGAAAGACGTCAGAAGTCAACC -ACGGAAAGACGTCAGAAGTGTTCC -ACGGAAAGACGTCAGAAGATTCCC -ACGGAAAGACGTCAGAAGTTCTCG -ACGGAAAGACGTCAGAAGTAGACG -ACGGAAAGACGTCAGAAGGTAACG -ACGGAAAGACGTCAGAAGACTTCG -ACGGAAAGACGTCAGAAGTACGCA -ACGGAAAGACGTCAGAAGCTTGCA -ACGGAAAGACGTCAGAAGCGAACA -ACGGAAAGACGTCAGAAGCAGTCA -ACGGAAAGACGTCAGAAGGATCCA -ACGGAAAGACGTCAGAAGACGACA -ACGGAAAGACGTCAGAAGAGCTCA -ACGGAAAGACGTCAGAAGTCACGT -ACGGAAAGACGTCAGAAGCGTAGT -ACGGAAAGACGTCAGAAGGTCAGT -ACGGAAAGACGTCAGAAGGAAGGT -ACGGAAAGACGTCAGAAGAACCGT -ACGGAAAGACGTCAGAAGTTGTGC -ACGGAAAGACGTCAGAAGCTAAGC -ACGGAAAGACGTCAGAAGACTAGC -ACGGAAAGACGTCAGAAGAGATGC -ACGGAAAGACGTCAGAAGTGAAGG -ACGGAAAGACGTCAGAAGCAATGG -ACGGAAAGACGTCAGAAGATGAGG -ACGGAAAGACGTCAGAAGAATGGG -ACGGAAAGACGTCAGAAGTCCTGA -ACGGAAAGACGTCAGAAGTAGCGA -ACGGAAAGACGTCAGAAGCACAGA -ACGGAAAGACGTCAGAAGGCAAGA -ACGGAAAGACGTCAGAAGGGTTGA -ACGGAAAGACGTCAGAAGTCCGAT -ACGGAAAGACGTCAGAAGTGGCAT -ACGGAAAGACGTCAGAAGCGAGAT -ACGGAAAGACGTCAGAAGTACCAC -ACGGAAAGACGTCAGAAGCAGAAC -ACGGAAAGACGTCAGAAGGTCTAC -ACGGAAAGACGTCAGAAGACGTAC -ACGGAAAGACGTCAGAAGAGTGAC -ACGGAAAGACGTCAGAAGCTGTAG -ACGGAAAGACGTCAGAAGCCTAAG -ACGGAAAGACGTCAGAAGGTTCAG -ACGGAAAGACGTCAGAAGGCATAG -ACGGAAAGACGTCAGAAGGACAAG -ACGGAAAGACGTCAGAAGAAGCAG -ACGGAAAGACGTCAGAAGCGTCAA -ACGGAAAGACGTCAGAAGGCTGAA -ACGGAAAGACGTCAGAAGAGTACG -ACGGAAAGACGTCAGAAGATCCGA -ACGGAAAGACGTCAGAAGATGGGA -ACGGAAAGACGTCAGAAGGTGCAA -ACGGAAAGACGTCAGAAGGAGGAA -ACGGAAAGACGTCAGAAGCAGGTA -ACGGAAAGACGTCAGAAGGACTCT -ACGGAAAGACGTCAGAAGAGTCCT -ACGGAAAGACGTCAGAAGTAAGCC -ACGGAAAGACGTCAGAAGATAGCC -ACGGAAAGACGTCAGAAGTAACCG -ACGGAAAGACGTCAGAAGATGCCA -ACGGAAAGACGTCAACGTGGAAAC -ACGGAAAGACGTCAACGTAACACC -ACGGAAAGACGTCAACGTATCGAG -ACGGAAAGACGTCAACGTCTCCTT -ACGGAAAGACGTCAACGTCCTGTT -ACGGAAAGACGTCAACGTCGGTTT -ACGGAAAGACGTCAACGTGTGGTT -ACGGAAAGACGTCAACGTGCCTTT -ACGGAAAGACGTCAACGTGGTCTT -ACGGAAAGACGTCAACGTACGCTT -ACGGAAAGACGTCAACGTAGCGTT -ACGGAAAGACGTCAACGTTTCGTC -ACGGAAAGACGTCAACGTTCTCTC -ACGGAAAGACGTCAACGTTGGATC -ACGGAAAGACGTCAACGTCACTTC -ACGGAAAGACGTCAACGTGTACTC -ACGGAAAGACGTCAACGTGATGTC -ACGGAAAGACGTCAACGTACAGTC -ACGGAAAGACGTCAACGTTTGCTG -ACGGAAAGACGTCAACGTTCCATG -ACGGAAAGACGTCAACGTTGTGTG -ACGGAAAGACGTCAACGTCTAGTG -ACGGAAAGACGTCAACGTCATCTG -ACGGAAAGACGTCAACGTGAGTTG -ACGGAAAGACGTCAACGTAGACTG -ACGGAAAGACGTCAACGTTCGGTA -ACGGAAAGACGTCAACGTTGCCTA -ACGGAAAGACGTCAACGTCCACTA -ACGGAAAGACGTCAACGTGGAGTA -ACGGAAAGACGTCAACGTTCGTCT -ACGGAAAGACGTCAACGTTGCACT -ACGGAAAGACGTCAACGTCTGACT -ACGGAAAGACGTCAACGTCAACCT -ACGGAAAGACGTCAACGTGCTACT -ACGGAAAGACGTCAACGTGGATCT -ACGGAAAGACGTCAACGTAAGGCT -ACGGAAAGACGTCAACGTTCAACC -ACGGAAAGACGTCAACGTTGTTCC -ACGGAAAGACGTCAACGTATTCCC -ACGGAAAGACGTCAACGTTTCTCG -ACGGAAAGACGTCAACGTTAGACG -ACGGAAAGACGTCAACGTGTAACG -ACGGAAAGACGTCAACGTACTTCG -ACGGAAAGACGTCAACGTTACGCA -ACGGAAAGACGTCAACGTCTTGCA -ACGGAAAGACGTCAACGTCGAACA -ACGGAAAGACGTCAACGTCAGTCA -ACGGAAAGACGTCAACGTGATCCA -ACGGAAAGACGTCAACGTACGACA -ACGGAAAGACGTCAACGTAGCTCA -ACGGAAAGACGTCAACGTTCACGT -ACGGAAAGACGTCAACGTCGTAGT -ACGGAAAGACGTCAACGTGTCAGT -ACGGAAAGACGTCAACGTGAAGGT -ACGGAAAGACGTCAACGTAACCGT -ACGGAAAGACGTCAACGTTTGTGC -ACGGAAAGACGTCAACGTCTAAGC -ACGGAAAGACGTCAACGTACTAGC -ACGGAAAGACGTCAACGTAGATGC -ACGGAAAGACGTCAACGTTGAAGG -ACGGAAAGACGTCAACGTCAATGG -ACGGAAAGACGTCAACGTATGAGG -ACGGAAAGACGTCAACGTAATGGG -ACGGAAAGACGTCAACGTTCCTGA -ACGGAAAGACGTCAACGTTAGCGA -ACGGAAAGACGTCAACGTCACAGA -ACGGAAAGACGTCAACGTGCAAGA -ACGGAAAGACGTCAACGTGGTTGA -ACGGAAAGACGTCAACGTTCCGAT -ACGGAAAGACGTCAACGTTGGCAT -ACGGAAAGACGTCAACGTCGAGAT -ACGGAAAGACGTCAACGTTACCAC -ACGGAAAGACGTCAACGTCAGAAC -ACGGAAAGACGTCAACGTGTCTAC -ACGGAAAGACGTCAACGTACGTAC -ACGGAAAGACGTCAACGTAGTGAC -ACGGAAAGACGTCAACGTCTGTAG -ACGGAAAGACGTCAACGTCCTAAG -ACGGAAAGACGTCAACGTGTTCAG -ACGGAAAGACGTCAACGTGCATAG -ACGGAAAGACGTCAACGTGACAAG -ACGGAAAGACGTCAACGTAAGCAG -ACGGAAAGACGTCAACGTCGTCAA -ACGGAAAGACGTCAACGTGCTGAA -ACGGAAAGACGTCAACGTAGTACG -ACGGAAAGACGTCAACGTATCCGA -ACGGAAAGACGTCAACGTATGGGA -ACGGAAAGACGTCAACGTGTGCAA -ACGGAAAGACGTCAACGTGAGGAA -ACGGAAAGACGTCAACGTCAGGTA -ACGGAAAGACGTCAACGTGACTCT -ACGGAAAGACGTCAACGTAGTCCT -ACGGAAAGACGTCAACGTTAAGCC -ACGGAAAGACGTCAACGTATAGCC -ACGGAAAGACGTCAACGTTAACCG -ACGGAAAGACGTCAACGTATGCCA -ACGGAAAGACGTGAAGCTGGAAAC -ACGGAAAGACGTGAAGCTAACACC -ACGGAAAGACGTGAAGCTATCGAG -ACGGAAAGACGTGAAGCTCTCCTT -ACGGAAAGACGTGAAGCTCCTGTT -ACGGAAAGACGTGAAGCTCGGTTT -ACGGAAAGACGTGAAGCTGTGGTT -ACGGAAAGACGTGAAGCTGCCTTT -ACGGAAAGACGTGAAGCTGGTCTT -ACGGAAAGACGTGAAGCTACGCTT -ACGGAAAGACGTGAAGCTAGCGTT -ACGGAAAGACGTGAAGCTTTCGTC -ACGGAAAGACGTGAAGCTTCTCTC -ACGGAAAGACGTGAAGCTTGGATC -ACGGAAAGACGTGAAGCTCACTTC -ACGGAAAGACGTGAAGCTGTACTC -ACGGAAAGACGTGAAGCTGATGTC -ACGGAAAGACGTGAAGCTACAGTC -ACGGAAAGACGTGAAGCTTTGCTG -ACGGAAAGACGTGAAGCTTCCATG -ACGGAAAGACGTGAAGCTTGTGTG -ACGGAAAGACGTGAAGCTCTAGTG -ACGGAAAGACGTGAAGCTCATCTG -ACGGAAAGACGTGAAGCTGAGTTG -ACGGAAAGACGTGAAGCTAGACTG -ACGGAAAGACGTGAAGCTTCGGTA -ACGGAAAGACGTGAAGCTTGCCTA -ACGGAAAGACGTGAAGCTCCACTA -ACGGAAAGACGTGAAGCTGGAGTA -ACGGAAAGACGTGAAGCTTCGTCT -ACGGAAAGACGTGAAGCTTGCACT -ACGGAAAGACGTGAAGCTCTGACT -ACGGAAAGACGTGAAGCTCAACCT -ACGGAAAGACGTGAAGCTGCTACT -ACGGAAAGACGTGAAGCTGGATCT -ACGGAAAGACGTGAAGCTAAGGCT -ACGGAAAGACGTGAAGCTTCAACC -ACGGAAAGACGTGAAGCTTGTTCC -ACGGAAAGACGTGAAGCTATTCCC -ACGGAAAGACGTGAAGCTTTCTCG -ACGGAAAGACGTGAAGCTTAGACG -ACGGAAAGACGTGAAGCTGTAACG -ACGGAAAGACGTGAAGCTACTTCG -ACGGAAAGACGTGAAGCTTACGCA -ACGGAAAGACGTGAAGCTCTTGCA -ACGGAAAGACGTGAAGCTCGAACA -ACGGAAAGACGTGAAGCTCAGTCA -ACGGAAAGACGTGAAGCTGATCCA -ACGGAAAGACGTGAAGCTACGACA -ACGGAAAGACGTGAAGCTAGCTCA -ACGGAAAGACGTGAAGCTTCACGT -ACGGAAAGACGTGAAGCTCGTAGT -ACGGAAAGACGTGAAGCTGTCAGT -ACGGAAAGACGTGAAGCTGAAGGT -ACGGAAAGACGTGAAGCTAACCGT -ACGGAAAGACGTGAAGCTTTGTGC -ACGGAAAGACGTGAAGCTCTAAGC -ACGGAAAGACGTGAAGCTACTAGC -ACGGAAAGACGTGAAGCTAGATGC -ACGGAAAGACGTGAAGCTTGAAGG -ACGGAAAGACGTGAAGCTCAATGG -ACGGAAAGACGTGAAGCTATGAGG -ACGGAAAGACGTGAAGCTAATGGG -ACGGAAAGACGTGAAGCTTCCTGA -ACGGAAAGACGTGAAGCTTAGCGA -ACGGAAAGACGTGAAGCTCACAGA -ACGGAAAGACGTGAAGCTGCAAGA -ACGGAAAGACGTGAAGCTGGTTGA -ACGGAAAGACGTGAAGCTTCCGAT -ACGGAAAGACGTGAAGCTTGGCAT -ACGGAAAGACGTGAAGCTCGAGAT -ACGGAAAGACGTGAAGCTTACCAC -ACGGAAAGACGTGAAGCTCAGAAC -ACGGAAAGACGTGAAGCTGTCTAC -ACGGAAAGACGTGAAGCTACGTAC -ACGGAAAGACGTGAAGCTAGTGAC -ACGGAAAGACGTGAAGCTCTGTAG -ACGGAAAGACGTGAAGCTCCTAAG -ACGGAAAGACGTGAAGCTGTTCAG -ACGGAAAGACGTGAAGCTGCATAG -ACGGAAAGACGTGAAGCTGACAAG -ACGGAAAGACGTGAAGCTAAGCAG -ACGGAAAGACGTGAAGCTCGTCAA -ACGGAAAGACGTGAAGCTGCTGAA -ACGGAAAGACGTGAAGCTAGTACG -ACGGAAAGACGTGAAGCTATCCGA -ACGGAAAGACGTGAAGCTATGGGA -ACGGAAAGACGTGAAGCTGTGCAA -ACGGAAAGACGTGAAGCTGAGGAA -ACGGAAAGACGTGAAGCTCAGGTA -ACGGAAAGACGTGAAGCTGACTCT -ACGGAAAGACGTGAAGCTAGTCCT -ACGGAAAGACGTGAAGCTTAAGCC -ACGGAAAGACGTGAAGCTATAGCC -ACGGAAAGACGTGAAGCTTAACCG -ACGGAAAGACGTGAAGCTATGCCA -ACGGAAAGACGTACGAGTGGAAAC -ACGGAAAGACGTACGAGTAACACC -ACGGAAAGACGTACGAGTATCGAG -ACGGAAAGACGTACGAGTCTCCTT -ACGGAAAGACGTACGAGTCCTGTT -ACGGAAAGACGTACGAGTCGGTTT -ACGGAAAGACGTACGAGTGTGGTT -ACGGAAAGACGTACGAGTGCCTTT -ACGGAAAGACGTACGAGTGGTCTT -ACGGAAAGACGTACGAGTACGCTT -ACGGAAAGACGTACGAGTAGCGTT -ACGGAAAGACGTACGAGTTTCGTC -ACGGAAAGACGTACGAGTTCTCTC -ACGGAAAGACGTACGAGTTGGATC -ACGGAAAGACGTACGAGTCACTTC -ACGGAAAGACGTACGAGTGTACTC -ACGGAAAGACGTACGAGTGATGTC -ACGGAAAGACGTACGAGTACAGTC -ACGGAAAGACGTACGAGTTTGCTG -ACGGAAAGACGTACGAGTTCCATG -ACGGAAAGACGTACGAGTTGTGTG -ACGGAAAGACGTACGAGTCTAGTG -ACGGAAAGACGTACGAGTCATCTG -ACGGAAAGACGTACGAGTGAGTTG -ACGGAAAGACGTACGAGTAGACTG -ACGGAAAGACGTACGAGTTCGGTA -ACGGAAAGACGTACGAGTTGCCTA -ACGGAAAGACGTACGAGTCCACTA -ACGGAAAGACGTACGAGTGGAGTA -ACGGAAAGACGTACGAGTTCGTCT -ACGGAAAGACGTACGAGTTGCACT -ACGGAAAGACGTACGAGTCTGACT -ACGGAAAGACGTACGAGTCAACCT -ACGGAAAGACGTACGAGTGCTACT -ACGGAAAGACGTACGAGTGGATCT -ACGGAAAGACGTACGAGTAAGGCT -ACGGAAAGACGTACGAGTTCAACC -ACGGAAAGACGTACGAGTTGTTCC -ACGGAAAGACGTACGAGTATTCCC -ACGGAAAGACGTACGAGTTTCTCG -ACGGAAAGACGTACGAGTTAGACG -ACGGAAAGACGTACGAGTGTAACG -ACGGAAAGACGTACGAGTACTTCG -ACGGAAAGACGTACGAGTTACGCA -ACGGAAAGACGTACGAGTCTTGCA -ACGGAAAGACGTACGAGTCGAACA -ACGGAAAGACGTACGAGTCAGTCA -ACGGAAAGACGTACGAGTGATCCA -ACGGAAAGACGTACGAGTACGACA -ACGGAAAGACGTACGAGTAGCTCA -ACGGAAAGACGTACGAGTTCACGT -ACGGAAAGACGTACGAGTCGTAGT -ACGGAAAGACGTACGAGTGTCAGT -ACGGAAAGACGTACGAGTGAAGGT -ACGGAAAGACGTACGAGTAACCGT -ACGGAAAGACGTACGAGTTTGTGC -ACGGAAAGACGTACGAGTCTAAGC -ACGGAAAGACGTACGAGTACTAGC -ACGGAAAGACGTACGAGTAGATGC -ACGGAAAGACGTACGAGTTGAAGG -ACGGAAAGACGTACGAGTCAATGG -ACGGAAAGACGTACGAGTATGAGG -ACGGAAAGACGTACGAGTAATGGG -ACGGAAAGACGTACGAGTTCCTGA -ACGGAAAGACGTACGAGTTAGCGA -ACGGAAAGACGTACGAGTCACAGA -ACGGAAAGACGTACGAGTGCAAGA -ACGGAAAGACGTACGAGTGGTTGA -ACGGAAAGACGTACGAGTTCCGAT -ACGGAAAGACGTACGAGTTGGCAT -ACGGAAAGACGTACGAGTCGAGAT -ACGGAAAGACGTACGAGTTACCAC -ACGGAAAGACGTACGAGTCAGAAC -ACGGAAAGACGTACGAGTGTCTAC -ACGGAAAGACGTACGAGTACGTAC -ACGGAAAGACGTACGAGTAGTGAC -ACGGAAAGACGTACGAGTCTGTAG -ACGGAAAGACGTACGAGTCCTAAG -ACGGAAAGACGTACGAGTGTTCAG -ACGGAAAGACGTACGAGTGCATAG -ACGGAAAGACGTACGAGTGACAAG -ACGGAAAGACGTACGAGTAAGCAG -ACGGAAAGACGTACGAGTCGTCAA -ACGGAAAGACGTACGAGTGCTGAA -ACGGAAAGACGTACGAGTAGTACG -ACGGAAAGACGTACGAGTATCCGA -ACGGAAAGACGTACGAGTATGGGA -ACGGAAAGACGTACGAGTGTGCAA -ACGGAAAGACGTACGAGTGAGGAA -ACGGAAAGACGTACGAGTCAGGTA -ACGGAAAGACGTACGAGTGACTCT -ACGGAAAGACGTACGAGTAGTCCT -ACGGAAAGACGTACGAGTTAAGCC -ACGGAAAGACGTACGAGTATAGCC -ACGGAAAGACGTACGAGTTAACCG -ACGGAAAGACGTACGAGTATGCCA -ACGGAAAGACGTCGAATCGGAAAC -ACGGAAAGACGTCGAATCAACACC -ACGGAAAGACGTCGAATCATCGAG -ACGGAAAGACGTCGAATCCTCCTT -ACGGAAAGACGTCGAATCCCTGTT -ACGGAAAGACGTCGAATCCGGTTT -ACGGAAAGACGTCGAATCGTGGTT -ACGGAAAGACGTCGAATCGCCTTT -ACGGAAAGACGTCGAATCGGTCTT -ACGGAAAGACGTCGAATCACGCTT -ACGGAAAGACGTCGAATCAGCGTT -ACGGAAAGACGTCGAATCTTCGTC -ACGGAAAGACGTCGAATCTCTCTC -ACGGAAAGACGTCGAATCTGGATC -ACGGAAAGACGTCGAATCCACTTC -ACGGAAAGACGTCGAATCGTACTC -ACGGAAAGACGTCGAATCGATGTC -ACGGAAAGACGTCGAATCACAGTC -ACGGAAAGACGTCGAATCTTGCTG -ACGGAAAGACGTCGAATCTCCATG -ACGGAAAGACGTCGAATCTGTGTG -ACGGAAAGACGTCGAATCCTAGTG -ACGGAAAGACGTCGAATCCATCTG -ACGGAAAGACGTCGAATCGAGTTG -ACGGAAAGACGTCGAATCAGACTG -ACGGAAAGACGTCGAATCTCGGTA -ACGGAAAGACGTCGAATCTGCCTA -ACGGAAAGACGTCGAATCCCACTA -ACGGAAAGACGTCGAATCGGAGTA -ACGGAAAGACGTCGAATCTCGTCT -ACGGAAAGACGTCGAATCTGCACT -ACGGAAAGACGTCGAATCCTGACT -ACGGAAAGACGTCGAATCCAACCT -ACGGAAAGACGTCGAATCGCTACT -ACGGAAAGACGTCGAATCGGATCT -ACGGAAAGACGTCGAATCAAGGCT -ACGGAAAGACGTCGAATCTCAACC -ACGGAAAGACGTCGAATCTGTTCC -ACGGAAAGACGTCGAATCATTCCC -ACGGAAAGACGTCGAATCTTCTCG -ACGGAAAGACGTCGAATCTAGACG -ACGGAAAGACGTCGAATCGTAACG -ACGGAAAGACGTCGAATCACTTCG -ACGGAAAGACGTCGAATCTACGCA -ACGGAAAGACGTCGAATCCTTGCA -ACGGAAAGACGTCGAATCCGAACA -ACGGAAAGACGTCGAATCCAGTCA -ACGGAAAGACGTCGAATCGATCCA -ACGGAAAGACGTCGAATCACGACA -ACGGAAAGACGTCGAATCAGCTCA -ACGGAAAGACGTCGAATCTCACGT -ACGGAAAGACGTCGAATCCGTAGT -ACGGAAAGACGTCGAATCGTCAGT -ACGGAAAGACGTCGAATCGAAGGT -ACGGAAAGACGTCGAATCAACCGT -ACGGAAAGACGTCGAATCTTGTGC -ACGGAAAGACGTCGAATCCTAAGC -ACGGAAAGACGTCGAATCACTAGC -ACGGAAAGACGTCGAATCAGATGC -ACGGAAAGACGTCGAATCTGAAGG -ACGGAAAGACGTCGAATCCAATGG -ACGGAAAGACGTCGAATCATGAGG -ACGGAAAGACGTCGAATCAATGGG -ACGGAAAGACGTCGAATCTCCTGA -ACGGAAAGACGTCGAATCTAGCGA -ACGGAAAGACGTCGAATCCACAGA -ACGGAAAGACGTCGAATCGCAAGA -ACGGAAAGACGTCGAATCGGTTGA -ACGGAAAGACGTCGAATCTCCGAT -ACGGAAAGACGTCGAATCTGGCAT -ACGGAAAGACGTCGAATCCGAGAT -ACGGAAAGACGTCGAATCTACCAC -ACGGAAAGACGTCGAATCCAGAAC -ACGGAAAGACGTCGAATCGTCTAC -ACGGAAAGACGTCGAATCACGTAC -ACGGAAAGACGTCGAATCAGTGAC -ACGGAAAGACGTCGAATCCTGTAG -ACGGAAAGACGTCGAATCCCTAAG -ACGGAAAGACGTCGAATCGTTCAG -ACGGAAAGACGTCGAATCGCATAG -ACGGAAAGACGTCGAATCGACAAG -ACGGAAAGACGTCGAATCAAGCAG -ACGGAAAGACGTCGAATCCGTCAA -ACGGAAAGACGTCGAATCGCTGAA -ACGGAAAGACGTCGAATCAGTACG -ACGGAAAGACGTCGAATCATCCGA -ACGGAAAGACGTCGAATCATGGGA -ACGGAAAGACGTCGAATCGTGCAA -ACGGAAAGACGTCGAATCGAGGAA -ACGGAAAGACGTCGAATCCAGGTA -ACGGAAAGACGTCGAATCGACTCT -ACGGAAAGACGTCGAATCAGTCCT -ACGGAAAGACGTCGAATCTAAGCC -ACGGAAAGACGTCGAATCATAGCC -ACGGAAAGACGTCGAATCTAACCG -ACGGAAAGACGTCGAATCATGCCA -ACGGAAAGACGTGGAATGGGAAAC -ACGGAAAGACGTGGAATGAACACC -ACGGAAAGACGTGGAATGATCGAG -ACGGAAAGACGTGGAATGCTCCTT -ACGGAAAGACGTGGAATGCCTGTT -ACGGAAAGACGTGGAATGCGGTTT -ACGGAAAGACGTGGAATGGTGGTT -ACGGAAAGACGTGGAATGGCCTTT -ACGGAAAGACGTGGAATGGGTCTT -ACGGAAAGACGTGGAATGACGCTT -ACGGAAAGACGTGGAATGAGCGTT -ACGGAAAGACGTGGAATGTTCGTC -ACGGAAAGACGTGGAATGTCTCTC -ACGGAAAGACGTGGAATGTGGATC -ACGGAAAGACGTGGAATGCACTTC -ACGGAAAGACGTGGAATGGTACTC -ACGGAAAGACGTGGAATGGATGTC -ACGGAAAGACGTGGAATGACAGTC -ACGGAAAGACGTGGAATGTTGCTG -ACGGAAAGACGTGGAATGTCCATG -ACGGAAAGACGTGGAATGTGTGTG -ACGGAAAGACGTGGAATGCTAGTG -ACGGAAAGACGTGGAATGCATCTG -ACGGAAAGACGTGGAATGGAGTTG -ACGGAAAGACGTGGAATGAGACTG -ACGGAAAGACGTGGAATGTCGGTA -ACGGAAAGACGTGGAATGTGCCTA -ACGGAAAGACGTGGAATGCCACTA -ACGGAAAGACGTGGAATGGGAGTA -ACGGAAAGACGTGGAATGTCGTCT -ACGGAAAGACGTGGAATGTGCACT -ACGGAAAGACGTGGAATGCTGACT -ACGGAAAGACGTGGAATGCAACCT -ACGGAAAGACGTGGAATGGCTACT -ACGGAAAGACGTGGAATGGGATCT -ACGGAAAGACGTGGAATGAAGGCT -ACGGAAAGACGTGGAATGTCAACC -ACGGAAAGACGTGGAATGTGTTCC -ACGGAAAGACGTGGAATGATTCCC -ACGGAAAGACGTGGAATGTTCTCG -ACGGAAAGACGTGGAATGTAGACG -ACGGAAAGACGTGGAATGGTAACG -ACGGAAAGACGTGGAATGACTTCG -ACGGAAAGACGTGGAATGTACGCA -ACGGAAAGACGTGGAATGCTTGCA -ACGGAAAGACGTGGAATGCGAACA -ACGGAAAGACGTGGAATGCAGTCA -ACGGAAAGACGTGGAATGGATCCA -ACGGAAAGACGTGGAATGACGACA -ACGGAAAGACGTGGAATGAGCTCA -ACGGAAAGACGTGGAATGTCACGT -ACGGAAAGACGTGGAATGCGTAGT -ACGGAAAGACGTGGAATGGTCAGT -ACGGAAAGACGTGGAATGGAAGGT -ACGGAAAGACGTGGAATGAACCGT -ACGGAAAGACGTGGAATGTTGTGC -ACGGAAAGACGTGGAATGCTAAGC -ACGGAAAGACGTGGAATGACTAGC -ACGGAAAGACGTGGAATGAGATGC -ACGGAAAGACGTGGAATGTGAAGG -ACGGAAAGACGTGGAATGCAATGG -ACGGAAAGACGTGGAATGATGAGG -ACGGAAAGACGTGGAATGAATGGG -ACGGAAAGACGTGGAATGTCCTGA -ACGGAAAGACGTGGAATGTAGCGA -ACGGAAAGACGTGGAATGCACAGA -ACGGAAAGACGTGGAATGGCAAGA -ACGGAAAGACGTGGAATGGGTTGA -ACGGAAAGACGTGGAATGTCCGAT -ACGGAAAGACGTGGAATGTGGCAT -ACGGAAAGACGTGGAATGCGAGAT -ACGGAAAGACGTGGAATGTACCAC -ACGGAAAGACGTGGAATGCAGAAC -ACGGAAAGACGTGGAATGGTCTAC -ACGGAAAGACGTGGAATGACGTAC -ACGGAAAGACGTGGAATGAGTGAC -ACGGAAAGACGTGGAATGCTGTAG -ACGGAAAGACGTGGAATGCCTAAG -ACGGAAAGACGTGGAATGGTTCAG -ACGGAAAGACGTGGAATGGCATAG -ACGGAAAGACGTGGAATGGACAAG -ACGGAAAGACGTGGAATGAAGCAG -ACGGAAAGACGTGGAATGCGTCAA -ACGGAAAGACGTGGAATGGCTGAA -ACGGAAAGACGTGGAATGAGTACG -ACGGAAAGACGTGGAATGATCCGA -ACGGAAAGACGTGGAATGATGGGA -ACGGAAAGACGTGGAATGGTGCAA -ACGGAAAGACGTGGAATGGAGGAA -ACGGAAAGACGTGGAATGCAGGTA -ACGGAAAGACGTGGAATGGACTCT -ACGGAAAGACGTGGAATGAGTCCT -ACGGAAAGACGTGGAATGTAAGCC -ACGGAAAGACGTGGAATGATAGCC -ACGGAAAGACGTGGAATGTAACCG -ACGGAAAGACGTGGAATGATGCCA -ACGGAAAGACGTCAAGTGGGAAAC -ACGGAAAGACGTCAAGTGAACACC -ACGGAAAGACGTCAAGTGATCGAG -ACGGAAAGACGTCAAGTGCTCCTT -ACGGAAAGACGTCAAGTGCCTGTT -ACGGAAAGACGTCAAGTGCGGTTT -ACGGAAAGACGTCAAGTGGTGGTT -ACGGAAAGACGTCAAGTGGCCTTT -ACGGAAAGACGTCAAGTGGGTCTT -ACGGAAAGACGTCAAGTGACGCTT -ACGGAAAGACGTCAAGTGAGCGTT -ACGGAAAGACGTCAAGTGTTCGTC -ACGGAAAGACGTCAAGTGTCTCTC -ACGGAAAGACGTCAAGTGTGGATC -ACGGAAAGACGTCAAGTGCACTTC -ACGGAAAGACGTCAAGTGGTACTC -ACGGAAAGACGTCAAGTGGATGTC -ACGGAAAGACGTCAAGTGACAGTC -ACGGAAAGACGTCAAGTGTTGCTG -ACGGAAAGACGTCAAGTGTCCATG -ACGGAAAGACGTCAAGTGTGTGTG -ACGGAAAGACGTCAAGTGCTAGTG -ACGGAAAGACGTCAAGTGCATCTG -ACGGAAAGACGTCAAGTGGAGTTG -ACGGAAAGACGTCAAGTGAGACTG -ACGGAAAGACGTCAAGTGTCGGTA -ACGGAAAGACGTCAAGTGTGCCTA -ACGGAAAGACGTCAAGTGCCACTA -ACGGAAAGACGTCAAGTGGGAGTA -ACGGAAAGACGTCAAGTGTCGTCT -ACGGAAAGACGTCAAGTGTGCACT -ACGGAAAGACGTCAAGTGCTGACT -ACGGAAAGACGTCAAGTGCAACCT -ACGGAAAGACGTCAAGTGGCTACT -ACGGAAAGACGTCAAGTGGGATCT -ACGGAAAGACGTCAAGTGAAGGCT -ACGGAAAGACGTCAAGTGTCAACC -ACGGAAAGACGTCAAGTGTGTTCC -ACGGAAAGACGTCAAGTGATTCCC -ACGGAAAGACGTCAAGTGTTCTCG -ACGGAAAGACGTCAAGTGTAGACG -ACGGAAAGACGTCAAGTGGTAACG -ACGGAAAGACGTCAAGTGACTTCG -ACGGAAAGACGTCAAGTGTACGCA -ACGGAAAGACGTCAAGTGCTTGCA -ACGGAAAGACGTCAAGTGCGAACA -ACGGAAAGACGTCAAGTGCAGTCA -ACGGAAAGACGTCAAGTGGATCCA -ACGGAAAGACGTCAAGTGACGACA -ACGGAAAGACGTCAAGTGAGCTCA -ACGGAAAGACGTCAAGTGTCACGT -ACGGAAAGACGTCAAGTGCGTAGT -ACGGAAAGACGTCAAGTGGTCAGT -ACGGAAAGACGTCAAGTGGAAGGT -ACGGAAAGACGTCAAGTGAACCGT -ACGGAAAGACGTCAAGTGTTGTGC -ACGGAAAGACGTCAAGTGCTAAGC -ACGGAAAGACGTCAAGTGACTAGC -ACGGAAAGACGTCAAGTGAGATGC -ACGGAAAGACGTCAAGTGTGAAGG -ACGGAAAGACGTCAAGTGCAATGG -ACGGAAAGACGTCAAGTGATGAGG -ACGGAAAGACGTCAAGTGAATGGG -ACGGAAAGACGTCAAGTGTCCTGA -ACGGAAAGACGTCAAGTGTAGCGA -ACGGAAAGACGTCAAGTGCACAGA -ACGGAAAGACGTCAAGTGGCAAGA -ACGGAAAGACGTCAAGTGGGTTGA -ACGGAAAGACGTCAAGTGTCCGAT -ACGGAAAGACGTCAAGTGTGGCAT -ACGGAAAGACGTCAAGTGCGAGAT -ACGGAAAGACGTCAAGTGTACCAC -ACGGAAAGACGTCAAGTGCAGAAC -ACGGAAAGACGTCAAGTGGTCTAC -ACGGAAAGACGTCAAGTGACGTAC -ACGGAAAGACGTCAAGTGAGTGAC -ACGGAAAGACGTCAAGTGCTGTAG -ACGGAAAGACGTCAAGTGCCTAAG -ACGGAAAGACGTCAAGTGGTTCAG -ACGGAAAGACGTCAAGTGGCATAG -ACGGAAAGACGTCAAGTGGACAAG -ACGGAAAGACGTCAAGTGAAGCAG -ACGGAAAGACGTCAAGTGCGTCAA -ACGGAAAGACGTCAAGTGGCTGAA -ACGGAAAGACGTCAAGTGAGTACG -ACGGAAAGACGTCAAGTGATCCGA -ACGGAAAGACGTCAAGTGATGGGA -ACGGAAAGACGTCAAGTGGTGCAA -ACGGAAAGACGTCAAGTGGAGGAA -ACGGAAAGACGTCAAGTGCAGGTA -ACGGAAAGACGTCAAGTGGACTCT -ACGGAAAGACGTCAAGTGAGTCCT -ACGGAAAGACGTCAAGTGTAAGCC -ACGGAAAGACGTCAAGTGATAGCC -ACGGAAAGACGTCAAGTGTAACCG -ACGGAAAGACGTCAAGTGATGCCA -ACGGAAAGACGTGAAGAGGGAAAC -ACGGAAAGACGTGAAGAGAACACC -ACGGAAAGACGTGAAGAGATCGAG -ACGGAAAGACGTGAAGAGCTCCTT -ACGGAAAGACGTGAAGAGCCTGTT -ACGGAAAGACGTGAAGAGCGGTTT -ACGGAAAGACGTGAAGAGGTGGTT -ACGGAAAGACGTGAAGAGGCCTTT -ACGGAAAGACGTGAAGAGGGTCTT -ACGGAAAGACGTGAAGAGACGCTT -ACGGAAAGACGTGAAGAGAGCGTT -ACGGAAAGACGTGAAGAGTTCGTC -ACGGAAAGACGTGAAGAGTCTCTC -ACGGAAAGACGTGAAGAGTGGATC -ACGGAAAGACGTGAAGAGCACTTC -ACGGAAAGACGTGAAGAGGTACTC -ACGGAAAGACGTGAAGAGGATGTC -ACGGAAAGACGTGAAGAGACAGTC -ACGGAAAGACGTGAAGAGTTGCTG -ACGGAAAGACGTGAAGAGTCCATG -ACGGAAAGACGTGAAGAGTGTGTG -ACGGAAAGACGTGAAGAGCTAGTG -ACGGAAAGACGTGAAGAGCATCTG -ACGGAAAGACGTGAAGAGGAGTTG -ACGGAAAGACGTGAAGAGAGACTG -ACGGAAAGACGTGAAGAGTCGGTA -ACGGAAAGACGTGAAGAGTGCCTA -ACGGAAAGACGTGAAGAGCCACTA -ACGGAAAGACGTGAAGAGGGAGTA -ACGGAAAGACGTGAAGAGTCGTCT -ACGGAAAGACGTGAAGAGTGCACT -ACGGAAAGACGTGAAGAGCTGACT -ACGGAAAGACGTGAAGAGCAACCT -ACGGAAAGACGTGAAGAGGCTACT -ACGGAAAGACGTGAAGAGGGATCT -ACGGAAAGACGTGAAGAGAAGGCT -ACGGAAAGACGTGAAGAGTCAACC -ACGGAAAGACGTGAAGAGTGTTCC -ACGGAAAGACGTGAAGAGATTCCC -ACGGAAAGACGTGAAGAGTTCTCG -ACGGAAAGACGTGAAGAGTAGACG -ACGGAAAGACGTGAAGAGGTAACG -ACGGAAAGACGTGAAGAGACTTCG -ACGGAAAGACGTGAAGAGTACGCA -ACGGAAAGACGTGAAGAGCTTGCA -ACGGAAAGACGTGAAGAGCGAACA -ACGGAAAGACGTGAAGAGCAGTCA -ACGGAAAGACGTGAAGAGGATCCA -ACGGAAAGACGTGAAGAGACGACA -ACGGAAAGACGTGAAGAGAGCTCA -ACGGAAAGACGTGAAGAGTCACGT -ACGGAAAGACGTGAAGAGCGTAGT -ACGGAAAGACGTGAAGAGGTCAGT -ACGGAAAGACGTGAAGAGGAAGGT -ACGGAAAGACGTGAAGAGAACCGT -ACGGAAAGACGTGAAGAGTTGTGC -ACGGAAAGACGTGAAGAGCTAAGC -ACGGAAAGACGTGAAGAGACTAGC -ACGGAAAGACGTGAAGAGAGATGC -ACGGAAAGACGTGAAGAGTGAAGG -ACGGAAAGACGTGAAGAGCAATGG -ACGGAAAGACGTGAAGAGATGAGG -ACGGAAAGACGTGAAGAGAATGGG -ACGGAAAGACGTGAAGAGTCCTGA -ACGGAAAGACGTGAAGAGTAGCGA -ACGGAAAGACGTGAAGAGCACAGA -ACGGAAAGACGTGAAGAGGCAAGA -ACGGAAAGACGTGAAGAGGGTTGA -ACGGAAAGACGTGAAGAGTCCGAT -ACGGAAAGACGTGAAGAGTGGCAT -ACGGAAAGACGTGAAGAGCGAGAT -ACGGAAAGACGTGAAGAGTACCAC -ACGGAAAGACGTGAAGAGCAGAAC -ACGGAAAGACGTGAAGAGGTCTAC -ACGGAAAGACGTGAAGAGACGTAC -ACGGAAAGACGTGAAGAGAGTGAC -ACGGAAAGACGTGAAGAGCTGTAG -ACGGAAAGACGTGAAGAGCCTAAG -ACGGAAAGACGTGAAGAGGTTCAG -ACGGAAAGACGTGAAGAGGCATAG -ACGGAAAGACGTGAAGAGGACAAG -ACGGAAAGACGTGAAGAGAAGCAG -ACGGAAAGACGTGAAGAGCGTCAA -ACGGAAAGACGTGAAGAGGCTGAA -ACGGAAAGACGTGAAGAGAGTACG -ACGGAAAGACGTGAAGAGATCCGA -ACGGAAAGACGTGAAGAGATGGGA -ACGGAAAGACGTGAAGAGGTGCAA -ACGGAAAGACGTGAAGAGGAGGAA -ACGGAAAGACGTGAAGAGCAGGTA -ACGGAAAGACGTGAAGAGGACTCT -ACGGAAAGACGTGAAGAGAGTCCT -ACGGAAAGACGTGAAGAGTAAGCC -ACGGAAAGACGTGAAGAGATAGCC -ACGGAAAGACGTGAAGAGTAACCG -ACGGAAAGACGTGAAGAGATGCCA -ACGGAAAGACGTGTACAGGGAAAC -ACGGAAAGACGTGTACAGAACACC -ACGGAAAGACGTGTACAGATCGAG -ACGGAAAGACGTGTACAGCTCCTT -ACGGAAAGACGTGTACAGCCTGTT -ACGGAAAGACGTGTACAGCGGTTT -ACGGAAAGACGTGTACAGGTGGTT -ACGGAAAGACGTGTACAGGCCTTT -ACGGAAAGACGTGTACAGGGTCTT -ACGGAAAGACGTGTACAGACGCTT -ACGGAAAGACGTGTACAGAGCGTT -ACGGAAAGACGTGTACAGTTCGTC -ACGGAAAGACGTGTACAGTCTCTC -ACGGAAAGACGTGTACAGTGGATC -ACGGAAAGACGTGTACAGCACTTC -ACGGAAAGACGTGTACAGGTACTC -ACGGAAAGACGTGTACAGGATGTC -ACGGAAAGACGTGTACAGACAGTC -ACGGAAAGACGTGTACAGTTGCTG -ACGGAAAGACGTGTACAGTCCATG -ACGGAAAGACGTGTACAGTGTGTG -ACGGAAAGACGTGTACAGCTAGTG -ACGGAAAGACGTGTACAGCATCTG -ACGGAAAGACGTGTACAGGAGTTG -ACGGAAAGACGTGTACAGAGACTG -ACGGAAAGACGTGTACAGTCGGTA -ACGGAAAGACGTGTACAGTGCCTA -ACGGAAAGACGTGTACAGCCACTA -ACGGAAAGACGTGTACAGGGAGTA -ACGGAAAGACGTGTACAGTCGTCT -ACGGAAAGACGTGTACAGTGCACT -ACGGAAAGACGTGTACAGCTGACT -ACGGAAAGACGTGTACAGCAACCT -ACGGAAAGACGTGTACAGGCTACT -ACGGAAAGACGTGTACAGGGATCT -ACGGAAAGACGTGTACAGAAGGCT -ACGGAAAGACGTGTACAGTCAACC -ACGGAAAGACGTGTACAGTGTTCC -ACGGAAAGACGTGTACAGATTCCC -ACGGAAAGACGTGTACAGTTCTCG -ACGGAAAGACGTGTACAGTAGACG -ACGGAAAGACGTGTACAGGTAACG -ACGGAAAGACGTGTACAGACTTCG -ACGGAAAGACGTGTACAGTACGCA -ACGGAAAGACGTGTACAGCTTGCA -ACGGAAAGACGTGTACAGCGAACA -ACGGAAAGACGTGTACAGCAGTCA -ACGGAAAGACGTGTACAGGATCCA -ACGGAAAGACGTGTACAGACGACA -ACGGAAAGACGTGTACAGAGCTCA -ACGGAAAGACGTGTACAGTCACGT -ACGGAAAGACGTGTACAGCGTAGT -ACGGAAAGACGTGTACAGGTCAGT -ACGGAAAGACGTGTACAGGAAGGT -ACGGAAAGACGTGTACAGAACCGT -ACGGAAAGACGTGTACAGTTGTGC -ACGGAAAGACGTGTACAGCTAAGC -ACGGAAAGACGTGTACAGACTAGC -ACGGAAAGACGTGTACAGAGATGC -ACGGAAAGACGTGTACAGTGAAGG -ACGGAAAGACGTGTACAGCAATGG -ACGGAAAGACGTGTACAGATGAGG -ACGGAAAGACGTGTACAGAATGGG -ACGGAAAGACGTGTACAGTCCTGA -ACGGAAAGACGTGTACAGTAGCGA -ACGGAAAGACGTGTACAGCACAGA -ACGGAAAGACGTGTACAGGCAAGA -ACGGAAAGACGTGTACAGGGTTGA -ACGGAAAGACGTGTACAGTCCGAT -ACGGAAAGACGTGTACAGTGGCAT -ACGGAAAGACGTGTACAGCGAGAT -ACGGAAAGACGTGTACAGTACCAC -ACGGAAAGACGTGTACAGCAGAAC -ACGGAAAGACGTGTACAGGTCTAC -ACGGAAAGACGTGTACAGACGTAC -ACGGAAAGACGTGTACAGAGTGAC -ACGGAAAGACGTGTACAGCTGTAG -ACGGAAAGACGTGTACAGCCTAAG -ACGGAAAGACGTGTACAGGTTCAG -ACGGAAAGACGTGTACAGGCATAG -ACGGAAAGACGTGTACAGGACAAG -ACGGAAAGACGTGTACAGAAGCAG -ACGGAAAGACGTGTACAGCGTCAA -ACGGAAAGACGTGTACAGGCTGAA -ACGGAAAGACGTGTACAGAGTACG -ACGGAAAGACGTGTACAGATCCGA -ACGGAAAGACGTGTACAGATGGGA -ACGGAAAGACGTGTACAGGTGCAA -ACGGAAAGACGTGTACAGGAGGAA -ACGGAAAGACGTGTACAGCAGGTA -ACGGAAAGACGTGTACAGGACTCT -ACGGAAAGACGTGTACAGAGTCCT -ACGGAAAGACGTGTACAGTAAGCC -ACGGAAAGACGTGTACAGATAGCC -ACGGAAAGACGTGTACAGTAACCG -ACGGAAAGACGTGTACAGATGCCA -ACGGAAAGACGTTCTGACGGAAAC -ACGGAAAGACGTTCTGACAACACC -ACGGAAAGACGTTCTGACATCGAG -ACGGAAAGACGTTCTGACCTCCTT -ACGGAAAGACGTTCTGACCCTGTT -ACGGAAAGACGTTCTGACCGGTTT -ACGGAAAGACGTTCTGACGTGGTT -ACGGAAAGACGTTCTGACGCCTTT -ACGGAAAGACGTTCTGACGGTCTT -ACGGAAAGACGTTCTGACACGCTT -ACGGAAAGACGTTCTGACAGCGTT -ACGGAAAGACGTTCTGACTTCGTC -ACGGAAAGACGTTCTGACTCTCTC -ACGGAAAGACGTTCTGACTGGATC -ACGGAAAGACGTTCTGACCACTTC -ACGGAAAGACGTTCTGACGTACTC -ACGGAAAGACGTTCTGACGATGTC -ACGGAAAGACGTTCTGACACAGTC -ACGGAAAGACGTTCTGACTTGCTG -ACGGAAAGACGTTCTGACTCCATG -ACGGAAAGACGTTCTGACTGTGTG -ACGGAAAGACGTTCTGACCTAGTG -ACGGAAAGACGTTCTGACCATCTG -ACGGAAAGACGTTCTGACGAGTTG -ACGGAAAGACGTTCTGACAGACTG -ACGGAAAGACGTTCTGACTCGGTA -ACGGAAAGACGTTCTGACTGCCTA -ACGGAAAGACGTTCTGACCCACTA -ACGGAAAGACGTTCTGACGGAGTA -ACGGAAAGACGTTCTGACTCGTCT -ACGGAAAGACGTTCTGACTGCACT -ACGGAAAGACGTTCTGACCTGACT -ACGGAAAGACGTTCTGACCAACCT -ACGGAAAGACGTTCTGACGCTACT -ACGGAAAGACGTTCTGACGGATCT -ACGGAAAGACGTTCTGACAAGGCT -ACGGAAAGACGTTCTGACTCAACC -ACGGAAAGACGTTCTGACTGTTCC -ACGGAAAGACGTTCTGACATTCCC -ACGGAAAGACGTTCTGACTTCTCG -ACGGAAAGACGTTCTGACTAGACG -ACGGAAAGACGTTCTGACGTAACG -ACGGAAAGACGTTCTGACACTTCG -ACGGAAAGACGTTCTGACTACGCA -ACGGAAAGACGTTCTGACCTTGCA -ACGGAAAGACGTTCTGACCGAACA -ACGGAAAGACGTTCTGACCAGTCA -ACGGAAAGACGTTCTGACGATCCA -ACGGAAAGACGTTCTGACACGACA -ACGGAAAGACGTTCTGACAGCTCA -ACGGAAAGACGTTCTGACTCACGT -ACGGAAAGACGTTCTGACCGTAGT -ACGGAAAGACGTTCTGACGTCAGT -ACGGAAAGACGTTCTGACGAAGGT -ACGGAAAGACGTTCTGACAACCGT -ACGGAAAGACGTTCTGACTTGTGC -ACGGAAAGACGTTCTGACCTAAGC -ACGGAAAGACGTTCTGACACTAGC -ACGGAAAGACGTTCTGACAGATGC -ACGGAAAGACGTTCTGACTGAAGG -ACGGAAAGACGTTCTGACCAATGG -ACGGAAAGACGTTCTGACATGAGG -ACGGAAAGACGTTCTGACAATGGG -ACGGAAAGACGTTCTGACTCCTGA -ACGGAAAGACGTTCTGACTAGCGA -ACGGAAAGACGTTCTGACCACAGA -ACGGAAAGACGTTCTGACGCAAGA -ACGGAAAGACGTTCTGACGGTTGA -ACGGAAAGACGTTCTGACTCCGAT -ACGGAAAGACGTTCTGACTGGCAT -ACGGAAAGACGTTCTGACCGAGAT -ACGGAAAGACGTTCTGACTACCAC -ACGGAAAGACGTTCTGACCAGAAC -ACGGAAAGACGTTCTGACGTCTAC -ACGGAAAGACGTTCTGACACGTAC -ACGGAAAGACGTTCTGACAGTGAC -ACGGAAAGACGTTCTGACCTGTAG -ACGGAAAGACGTTCTGACCCTAAG -ACGGAAAGACGTTCTGACGTTCAG -ACGGAAAGACGTTCTGACGCATAG -ACGGAAAGACGTTCTGACGACAAG -ACGGAAAGACGTTCTGACAAGCAG -ACGGAAAGACGTTCTGACCGTCAA -ACGGAAAGACGTTCTGACGCTGAA -ACGGAAAGACGTTCTGACAGTACG -ACGGAAAGACGTTCTGACATCCGA -ACGGAAAGACGTTCTGACATGGGA -ACGGAAAGACGTTCTGACGTGCAA -ACGGAAAGACGTTCTGACGAGGAA -ACGGAAAGACGTTCTGACCAGGTA -ACGGAAAGACGTTCTGACGACTCT -ACGGAAAGACGTTCTGACAGTCCT -ACGGAAAGACGTTCTGACTAAGCC -ACGGAAAGACGTTCTGACATAGCC -ACGGAAAGACGTTCTGACTAACCG -ACGGAAAGACGTTCTGACATGCCA -ACGGAAAGACGTCCTAGTGGAAAC -ACGGAAAGACGTCCTAGTAACACC -ACGGAAAGACGTCCTAGTATCGAG -ACGGAAAGACGTCCTAGTCTCCTT -ACGGAAAGACGTCCTAGTCCTGTT -ACGGAAAGACGTCCTAGTCGGTTT -ACGGAAAGACGTCCTAGTGTGGTT -ACGGAAAGACGTCCTAGTGCCTTT -ACGGAAAGACGTCCTAGTGGTCTT -ACGGAAAGACGTCCTAGTACGCTT -ACGGAAAGACGTCCTAGTAGCGTT -ACGGAAAGACGTCCTAGTTTCGTC -ACGGAAAGACGTCCTAGTTCTCTC -ACGGAAAGACGTCCTAGTTGGATC -ACGGAAAGACGTCCTAGTCACTTC -ACGGAAAGACGTCCTAGTGTACTC -ACGGAAAGACGTCCTAGTGATGTC -ACGGAAAGACGTCCTAGTACAGTC -ACGGAAAGACGTCCTAGTTTGCTG -ACGGAAAGACGTCCTAGTTCCATG -ACGGAAAGACGTCCTAGTTGTGTG -ACGGAAAGACGTCCTAGTCTAGTG -ACGGAAAGACGTCCTAGTCATCTG -ACGGAAAGACGTCCTAGTGAGTTG -ACGGAAAGACGTCCTAGTAGACTG -ACGGAAAGACGTCCTAGTTCGGTA -ACGGAAAGACGTCCTAGTTGCCTA -ACGGAAAGACGTCCTAGTCCACTA -ACGGAAAGACGTCCTAGTGGAGTA -ACGGAAAGACGTCCTAGTTCGTCT -ACGGAAAGACGTCCTAGTTGCACT -ACGGAAAGACGTCCTAGTCTGACT -ACGGAAAGACGTCCTAGTCAACCT -ACGGAAAGACGTCCTAGTGCTACT -ACGGAAAGACGTCCTAGTGGATCT -ACGGAAAGACGTCCTAGTAAGGCT -ACGGAAAGACGTCCTAGTTCAACC -ACGGAAAGACGTCCTAGTTGTTCC -ACGGAAAGACGTCCTAGTATTCCC -ACGGAAAGACGTCCTAGTTTCTCG -ACGGAAAGACGTCCTAGTTAGACG -ACGGAAAGACGTCCTAGTGTAACG -ACGGAAAGACGTCCTAGTACTTCG -ACGGAAAGACGTCCTAGTTACGCA -ACGGAAAGACGTCCTAGTCTTGCA -ACGGAAAGACGTCCTAGTCGAACA -ACGGAAAGACGTCCTAGTCAGTCA -ACGGAAAGACGTCCTAGTGATCCA -ACGGAAAGACGTCCTAGTACGACA -ACGGAAAGACGTCCTAGTAGCTCA -ACGGAAAGACGTCCTAGTTCACGT -ACGGAAAGACGTCCTAGTCGTAGT -ACGGAAAGACGTCCTAGTGTCAGT -ACGGAAAGACGTCCTAGTGAAGGT -ACGGAAAGACGTCCTAGTAACCGT -ACGGAAAGACGTCCTAGTTTGTGC -ACGGAAAGACGTCCTAGTCTAAGC -ACGGAAAGACGTCCTAGTACTAGC -ACGGAAAGACGTCCTAGTAGATGC -ACGGAAAGACGTCCTAGTTGAAGG -ACGGAAAGACGTCCTAGTCAATGG -ACGGAAAGACGTCCTAGTATGAGG -ACGGAAAGACGTCCTAGTAATGGG -ACGGAAAGACGTCCTAGTTCCTGA -ACGGAAAGACGTCCTAGTTAGCGA -ACGGAAAGACGTCCTAGTCACAGA -ACGGAAAGACGTCCTAGTGCAAGA -ACGGAAAGACGTCCTAGTGGTTGA -ACGGAAAGACGTCCTAGTTCCGAT -ACGGAAAGACGTCCTAGTTGGCAT -ACGGAAAGACGTCCTAGTCGAGAT -ACGGAAAGACGTCCTAGTTACCAC -ACGGAAAGACGTCCTAGTCAGAAC -ACGGAAAGACGTCCTAGTGTCTAC -ACGGAAAGACGTCCTAGTACGTAC -ACGGAAAGACGTCCTAGTAGTGAC -ACGGAAAGACGTCCTAGTCTGTAG -ACGGAAAGACGTCCTAGTCCTAAG -ACGGAAAGACGTCCTAGTGTTCAG -ACGGAAAGACGTCCTAGTGCATAG -ACGGAAAGACGTCCTAGTGACAAG -ACGGAAAGACGTCCTAGTAAGCAG -ACGGAAAGACGTCCTAGTCGTCAA -ACGGAAAGACGTCCTAGTGCTGAA -ACGGAAAGACGTCCTAGTAGTACG -ACGGAAAGACGTCCTAGTATCCGA -ACGGAAAGACGTCCTAGTATGGGA -ACGGAAAGACGTCCTAGTGTGCAA -ACGGAAAGACGTCCTAGTGAGGAA -ACGGAAAGACGTCCTAGTCAGGTA -ACGGAAAGACGTCCTAGTGACTCT -ACGGAAAGACGTCCTAGTAGTCCT -ACGGAAAGACGTCCTAGTTAAGCC -ACGGAAAGACGTCCTAGTATAGCC -ACGGAAAGACGTCCTAGTTAACCG -ACGGAAAGACGTCCTAGTATGCCA -ACGGAAAGACGTGCCTAAGGAAAC -ACGGAAAGACGTGCCTAAAACACC -ACGGAAAGACGTGCCTAAATCGAG -ACGGAAAGACGTGCCTAACTCCTT -ACGGAAAGACGTGCCTAACCTGTT -ACGGAAAGACGTGCCTAACGGTTT -ACGGAAAGACGTGCCTAAGTGGTT -ACGGAAAGACGTGCCTAAGCCTTT -ACGGAAAGACGTGCCTAAGGTCTT -ACGGAAAGACGTGCCTAAACGCTT -ACGGAAAGACGTGCCTAAAGCGTT -ACGGAAAGACGTGCCTAATTCGTC -ACGGAAAGACGTGCCTAATCTCTC -ACGGAAAGACGTGCCTAATGGATC -ACGGAAAGACGTGCCTAACACTTC -ACGGAAAGACGTGCCTAAGTACTC -ACGGAAAGACGTGCCTAAGATGTC -ACGGAAAGACGTGCCTAAACAGTC -ACGGAAAGACGTGCCTAATTGCTG -ACGGAAAGACGTGCCTAATCCATG -ACGGAAAGACGTGCCTAATGTGTG -ACGGAAAGACGTGCCTAACTAGTG -ACGGAAAGACGTGCCTAACATCTG -ACGGAAAGACGTGCCTAAGAGTTG -ACGGAAAGACGTGCCTAAAGACTG -ACGGAAAGACGTGCCTAATCGGTA -ACGGAAAGACGTGCCTAATGCCTA -ACGGAAAGACGTGCCTAACCACTA -ACGGAAAGACGTGCCTAAGGAGTA -ACGGAAAGACGTGCCTAATCGTCT -ACGGAAAGACGTGCCTAATGCACT -ACGGAAAGACGTGCCTAACTGACT -ACGGAAAGACGTGCCTAACAACCT -ACGGAAAGACGTGCCTAAGCTACT -ACGGAAAGACGTGCCTAAGGATCT -ACGGAAAGACGTGCCTAAAAGGCT -ACGGAAAGACGTGCCTAATCAACC -ACGGAAAGACGTGCCTAATGTTCC -ACGGAAAGACGTGCCTAAATTCCC -ACGGAAAGACGTGCCTAATTCTCG -ACGGAAAGACGTGCCTAATAGACG -ACGGAAAGACGTGCCTAAGTAACG -ACGGAAAGACGTGCCTAAACTTCG -ACGGAAAGACGTGCCTAATACGCA -ACGGAAAGACGTGCCTAACTTGCA -ACGGAAAGACGTGCCTAACGAACA -ACGGAAAGACGTGCCTAACAGTCA -ACGGAAAGACGTGCCTAAGATCCA -ACGGAAAGACGTGCCTAAACGACA -ACGGAAAGACGTGCCTAAAGCTCA -ACGGAAAGACGTGCCTAATCACGT -ACGGAAAGACGTGCCTAACGTAGT -ACGGAAAGACGTGCCTAAGTCAGT -ACGGAAAGACGTGCCTAAGAAGGT -ACGGAAAGACGTGCCTAAAACCGT -ACGGAAAGACGTGCCTAATTGTGC -ACGGAAAGACGTGCCTAACTAAGC -ACGGAAAGACGTGCCTAAACTAGC -ACGGAAAGACGTGCCTAAAGATGC -ACGGAAAGACGTGCCTAATGAAGG -ACGGAAAGACGTGCCTAACAATGG -ACGGAAAGACGTGCCTAAATGAGG -ACGGAAAGACGTGCCTAAAATGGG -ACGGAAAGACGTGCCTAATCCTGA -ACGGAAAGACGTGCCTAATAGCGA -ACGGAAAGACGTGCCTAACACAGA -ACGGAAAGACGTGCCTAAGCAAGA -ACGGAAAGACGTGCCTAAGGTTGA -ACGGAAAGACGTGCCTAATCCGAT -ACGGAAAGACGTGCCTAATGGCAT -ACGGAAAGACGTGCCTAACGAGAT -ACGGAAAGACGTGCCTAATACCAC -ACGGAAAGACGTGCCTAACAGAAC -ACGGAAAGACGTGCCTAAGTCTAC -ACGGAAAGACGTGCCTAAACGTAC -ACGGAAAGACGTGCCTAAAGTGAC -ACGGAAAGACGTGCCTAACTGTAG -ACGGAAAGACGTGCCTAACCTAAG -ACGGAAAGACGTGCCTAAGTTCAG -ACGGAAAGACGTGCCTAAGCATAG -ACGGAAAGACGTGCCTAAGACAAG -ACGGAAAGACGTGCCTAAAAGCAG -ACGGAAAGACGTGCCTAACGTCAA -ACGGAAAGACGTGCCTAAGCTGAA -ACGGAAAGACGTGCCTAAAGTACG -ACGGAAAGACGTGCCTAAATCCGA -ACGGAAAGACGTGCCTAAATGGGA -ACGGAAAGACGTGCCTAAGTGCAA -ACGGAAAGACGTGCCTAAGAGGAA -ACGGAAAGACGTGCCTAACAGGTA -ACGGAAAGACGTGCCTAAGACTCT -ACGGAAAGACGTGCCTAAAGTCCT -ACGGAAAGACGTGCCTAATAAGCC -ACGGAAAGACGTGCCTAAATAGCC -ACGGAAAGACGTGCCTAATAACCG -ACGGAAAGACGTGCCTAAATGCCA -ACGGAAAGACGTGCCATAGGAAAC -ACGGAAAGACGTGCCATAAACACC -ACGGAAAGACGTGCCATAATCGAG -ACGGAAAGACGTGCCATACTCCTT -ACGGAAAGACGTGCCATACCTGTT -ACGGAAAGACGTGCCATACGGTTT -ACGGAAAGACGTGCCATAGTGGTT -ACGGAAAGACGTGCCATAGCCTTT -ACGGAAAGACGTGCCATAGGTCTT -ACGGAAAGACGTGCCATAACGCTT -ACGGAAAGACGTGCCATAAGCGTT -ACGGAAAGACGTGCCATATTCGTC -ACGGAAAGACGTGCCATATCTCTC -ACGGAAAGACGTGCCATATGGATC -ACGGAAAGACGTGCCATACACTTC -ACGGAAAGACGTGCCATAGTACTC -ACGGAAAGACGTGCCATAGATGTC -ACGGAAAGACGTGCCATAACAGTC -ACGGAAAGACGTGCCATATTGCTG -ACGGAAAGACGTGCCATATCCATG -ACGGAAAGACGTGCCATATGTGTG -ACGGAAAGACGTGCCATACTAGTG -ACGGAAAGACGTGCCATACATCTG -ACGGAAAGACGTGCCATAGAGTTG -ACGGAAAGACGTGCCATAAGACTG -ACGGAAAGACGTGCCATATCGGTA -ACGGAAAGACGTGCCATATGCCTA -ACGGAAAGACGTGCCATACCACTA -ACGGAAAGACGTGCCATAGGAGTA -ACGGAAAGACGTGCCATATCGTCT -ACGGAAAGACGTGCCATATGCACT -ACGGAAAGACGTGCCATACTGACT -ACGGAAAGACGTGCCATACAACCT -ACGGAAAGACGTGCCATAGCTACT -ACGGAAAGACGTGCCATAGGATCT -ACGGAAAGACGTGCCATAAAGGCT -ACGGAAAGACGTGCCATATCAACC -ACGGAAAGACGTGCCATATGTTCC -ACGGAAAGACGTGCCATAATTCCC -ACGGAAAGACGTGCCATATTCTCG -ACGGAAAGACGTGCCATATAGACG -ACGGAAAGACGTGCCATAGTAACG -ACGGAAAGACGTGCCATAACTTCG -ACGGAAAGACGTGCCATATACGCA -ACGGAAAGACGTGCCATACTTGCA -ACGGAAAGACGTGCCATACGAACA -ACGGAAAGACGTGCCATACAGTCA -ACGGAAAGACGTGCCATAGATCCA -ACGGAAAGACGTGCCATAACGACA -ACGGAAAGACGTGCCATAAGCTCA -ACGGAAAGACGTGCCATATCACGT -ACGGAAAGACGTGCCATACGTAGT -ACGGAAAGACGTGCCATAGTCAGT -ACGGAAAGACGTGCCATAGAAGGT -ACGGAAAGACGTGCCATAAACCGT -ACGGAAAGACGTGCCATATTGTGC -ACGGAAAGACGTGCCATACTAAGC -ACGGAAAGACGTGCCATAACTAGC -ACGGAAAGACGTGCCATAAGATGC -ACGGAAAGACGTGCCATATGAAGG -ACGGAAAGACGTGCCATACAATGG -ACGGAAAGACGTGCCATAATGAGG -ACGGAAAGACGTGCCATAAATGGG -ACGGAAAGACGTGCCATATCCTGA -ACGGAAAGACGTGCCATATAGCGA -ACGGAAAGACGTGCCATACACAGA -ACGGAAAGACGTGCCATAGCAAGA -ACGGAAAGACGTGCCATAGGTTGA -ACGGAAAGACGTGCCATATCCGAT -ACGGAAAGACGTGCCATATGGCAT -ACGGAAAGACGTGCCATACGAGAT -ACGGAAAGACGTGCCATATACCAC -ACGGAAAGACGTGCCATACAGAAC -ACGGAAAGACGTGCCATAGTCTAC -ACGGAAAGACGTGCCATAACGTAC -ACGGAAAGACGTGCCATAAGTGAC -ACGGAAAGACGTGCCATACTGTAG -ACGGAAAGACGTGCCATACCTAAG -ACGGAAAGACGTGCCATAGTTCAG -ACGGAAAGACGTGCCATAGCATAG -ACGGAAAGACGTGCCATAGACAAG -ACGGAAAGACGTGCCATAAAGCAG -ACGGAAAGACGTGCCATACGTCAA -ACGGAAAGACGTGCCATAGCTGAA -ACGGAAAGACGTGCCATAAGTACG -ACGGAAAGACGTGCCATAATCCGA -ACGGAAAGACGTGCCATAATGGGA -ACGGAAAGACGTGCCATAGTGCAA -ACGGAAAGACGTGCCATAGAGGAA -ACGGAAAGACGTGCCATACAGGTA -ACGGAAAGACGTGCCATAGACTCT -ACGGAAAGACGTGCCATAAGTCCT -ACGGAAAGACGTGCCATATAAGCC -ACGGAAAGACGTGCCATAATAGCC -ACGGAAAGACGTGCCATATAACCG -ACGGAAAGACGTGCCATAATGCCA -ACGGAAAGACGTCCGTAAGGAAAC -ACGGAAAGACGTCCGTAAAACACC -ACGGAAAGACGTCCGTAAATCGAG -ACGGAAAGACGTCCGTAACTCCTT -ACGGAAAGACGTCCGTAACCTGTT -ACGGAAAGACGTCCGTAACGGTTT -ACGGAAAGACGTCCGTAAGTGGTT -ACGGAAAGACGTCCGTAAGCCTTT -ACGGAAAGACGTCCGTAAGGTCTT -ACGGAAAGACGTCCGTAAACGCTT -ACGGAAAGACGTCCGTAAAGCGTT -ACGGAAAGACGTCCGTAATTCGTC -ACGGAAAGACGTCCGTAATCTCTC -ACGGAAAGACGTCCGTAATGGATC -ACGGAAAGACGTCCGTAACACTTC -ACGGAAAGACGTCCGTAAGTACTC -ACGGAAAGACGTCCGTAAGATGTC -ACGGAAAGACGTCCGTAAACAGTC -ACGGAAAGACGTCCGTAATTGCTG -ACGGAAAGACGTCCGTAATCCATG -ACGGAAAGACGTCCGTAATGTGTG -ACGGAAAGACGTCCGTAACTAGTG -ACGGAAAGACGTCCGTAACATCTG -ACGGAAAGACGTCCGTAAGAGTTG -ACGGAAAGACGTCCGTAAAGACTG -ACGGAAAGACGTCCGTAATCGGTA -ACGGAAAGACGTCCGTAATGCCTA -ACGGAAAGACGTCCGTAACCACTA -ACGGAAAGACGTCCGTAAGGAGTA -ACGGAAAGACGTCCGTAATCGTCT -ACGGAAAGACGTCCGTAATGCACT -ACGGAAAGACGTCCGTAACTGACT -ACGGAAAGACGTCCGTAACAACCT -ACGGAAAGACGTCCGTAAGCTACT -ACGGAAAGACGTCCGTAAGGATCT -ACGGAAAGACGTCCGTAAAAGGCT -ACGGAAAGACGTCCGTAATCAACC -ACGGAAAGACGTCCGTAATGTTCC -ACGGAAAGACGTCCGTAAATTCCC -ACGGAAAGACGTCCGTAATTCTCG -ACGGAAAGACGTCCGTAATAGACG -ACGGAAAGACGTCCGTAAGTAACG -ACGGAAAGACGTCCGTAAACTTCG -ACGGAAAGACGTCCGTAATACGCA -ACGGAAAGACGTCCGTAACTTGCA -ACGGAAAGACGTCCGTAACGAACA -ACGGAAAGACGTCCGTAACAGTCA -ACGGAAAGACGTCCGTAAGATCCA -ACGGAAAGACGTCCGTAAACGACA -ACGGAAAGACGTCCGTAAAGCTCA -ACGGAAAGACGTCCGTAATCACGT -ACGGAAAGACGTCCGTAACGTAGT -ACGGAAAGACGTCCGTAAGTCAGT -ACGGAAAGACGTCCGTAAGAAGGT -ACGGAAAGACGTCCGTAAAACCGT -ACGGAAAGACGTCCGTAATTGTGC -ACGGAAAGACGTCCGTAACTAAGC -ACGGAAAGACGTCCGTAAACTAGC -ACGGAAAGACGTCCGTAAAGATGC -ACGGAAAGACGTCCGTAATGAAGG -ACGGAAAGACGTCCGTAACAATGG -ACGGAAAGACGTCCGTAAATGAGG -ACGGAAAGACGTCCGTAAAATGGG -ACGGAAAGACGTCCGTAATCCTGA -ACGGAAAGACGTCCGTAATAGCGA -ACGGAAAGACGTCCGTAACACAGA -ACGGAAAGACGTCCGTAAGCAAGA -ACGGAAAGACGTCCGTAAGGTTGA -ACGGAAAGACGTCCGTAATCCGAT -ACGGAAAGACGTCCGTAATGGCAT -ACGGAAAGACGTCCGTAACGAGAT -ACGGAAAGACGTCCGTAATACCAC -ACGGAAAGACGTCCGTAACAGAAC -ACGGAAAGACGTCCGTAAGTCTAC -ACGGAAAGACGTCCGTAAACGTAC -ACGGAAAGACGTCCGTAAAGTGAC -ACGGAAAGACGTCCGTAACTGTAG -ACGGAAAGACGTCCGTAACCTAAG -ACGGAAAGACGTCCGTAAGTTCAG -ACGGAAAGACGTCCGTAAGCATAG -ACGGAAAGACGTCCGTAAGACAAG -ACGGAAAGACGTCCGTAAAAGCAG -ACGGAAAGACGTCCGTAACGTCAA -ACGGAAAGACGTCCGTAAGCTGAA -ACGGAAAGACGTCCGTAAAGTACG -ACGGAAAGACGTCCGTAAATCCGA -ACGGAAAGACGTCCGTAAATGGGA -ACGGAAAGACGTCCGTAAGTGCAA -ACGGAAAGACGTCCGTAAGAGGAA -ACGGAAAGACGTCCGTAACAGGTA -ACGGAAAGACGTCCGTAAGACTCT -ACGGAAAGACGTCCGTAAAGTCCT -ACGGAAAGACGTCCGTAATAAGCC -ACGGAAAGACGTCCGTAAATAGCC -ACGGAAAGACGTCCGTAATAACCG -ACGGAAAGACGTCCGTAAATGCCA -ACGGAAAGACGTCCAATGGGAAAC -ACGGAAAGACGTCCAATGAACACC -ACGGAAAGACGTCCAATGATCGAG -ACGGAAAGACGTCCAATGCTCCTT -ACGGAAAGACGTCCAATGCCTGTT -ACGGAAAGACGTCCAATGCGGTTT -ACGGAAAGACGTCCAATGGTGGTT -ACGGAAAGACGTCCAATGGCCTTT -ACGGAAAGACGTCCAATGGGTCTT -ACGGAAAGACGTCCAATGACGCTT -ACGGAAAGACGTCCAATGAGCGTT -ACGGAAAGACGTCCAATGTTCGTC -ACGGAAAGACGTCCAATGTCTCTC -ACGGAAAGACGTCCAATGTGGATC -ACGGAAAGACGTCCAATGCACTTC -ACGGAAAGACGTCCAATGGTACTC -ACGGAAAGACGTCCAATGGATGTC -ACGGAAAGACGTCCAATGACAGTC -ACGGAAAGACGTCCAATGTTGCTG -ACGGAAAGACGTCCAATGTCCATG -ACGGAAAGACGTCCAATGTGTGTG -ACGGAAAGACGTCCAATGCTAGTG -ACGGAAAGACGTCCAATGCATCTG -ACGGAAAGACGTCCAATGGAGTTG -ACGGAAAGACGTCCAATGAGACTG -ACGGAAAGACGTCCAATGTCGGTA -ACGGAAAGACGTCCAATGTGCCTA -ACGGAAAGACGTCCAATGCCACTA -ACGGAAAGACGTCCAATGGGAGTA -ACGGAAAGACGTCCAATGTCGTCT -ACGGAAAGACGTCCAATGTGCACT -ACGGAAAGACGTCCAATGCTGACT -ACGGAAAGACGTCCAATGCAACCT -ACGGAAAGACGTCCAATGGCTACT -ACGGAAAGACGTCCAATGGGATCT -ACGGAAAGACGTCCAATGAAGGCT -ACGGAAAGACGTCCAATGTCAACC -ACGGAAAGACGTCCAATGTGTTCC -ACGGAAAGACGTCCAATGATTCCC -ACGGAAAGACGTCCAATGTTCTCG -ACGGAAAGACGTCCAATGTAGACG -ACGGAAAGACGTCCAATGGTAACG -ACGGAAAGACGTCCAATGACTTCG -ACGGAAAGACGTCCAATGTACGCA -ACGGAAAGACGTCCAATGCTTGCA -ACGGAAAGACGTCCAATGCGAACA -ACGGAAAGACGTCCAATGCAGTCA -ACGGAAAGACGTCCAATGGATCCA -ACGGAAAGACGTCCAATGACGACA -ACGGAAAGACGTCCAATGAGCTCA -ACGGAAAGACGTCCAATGTCACGT -ACGGAAAGACGTCCAATGCGTAGT -ACGGAAAGACGTCCAATGGTCAGT -ACGGAAAGACGTCCAATGGAAGGT -ACGGAAAGACGTCCAATGAACCGT -ACGGAAAGACGTCCAATGTTGTGC -ACGGAAAGACGTCCAATGCTAAGC -ACGGAAAGACGTCCAATGACTAGC -ACGGAAAGACGTCCAATGAGATGC -ACGGAAAGACGTCCAATGTGAAGG -ACGGAAAGACGTCCAATGCAATGG -ACGGAAAGACGTCCAATGATGAGG -ACGGAAAGACGTCCAATGAATGGG -ACGGAAAGACGTCCAATGTCCTGA -ACGGAAAGACGTCCAATGTAGCGA -ACGGAAAGACGTCCAATGCACAGA -ACGGAAAGACGTCCAATGGCAAGA -ACGGAAAGACGTCCAATGGGTTGA -ACGGAAAGACGTCCAATGTCCGAT -ACGGAAAGACGTCCAATGTGGCAT -ACGGAAAGACGTCCAATGCGAGAT -ACGGAAAGACGTCCAATGTACCAC -ACGGAAAGACGTCCAATGCAGAAC -ACGGAAAGACGTCCAATGGTCTAC -ACGGAAAGACGTCCAATGACGTAC -ACGGAAAGACGTCCAATGAGTGAC -ACGGAAAGACGTCCAATGCTGTAG -ACGGAAAGACGTCCAATGCCTAAG -ACGGAAAGACGTCCAATGGTTCAG -ACGGAAAGACGTCCAATGGCATAG -ACGGAAAGACGTCCAATGGACAAG -ACGGAAAGACGTCCAATGAAGCAG -ACGGAAAGACGTCCAATGCGTCAA -ACGGAAAGACGTCCAATGGCTGAA -ACGGAAAGACGTCCAATGAGTACG -ACGGAAAGACGTCCAATGATCCGA -ACGGAAAGACGTCCAATGATGGGA -ACGGAAAGACGTCCAATGGTGCAA -ACGGAAAGACGTCCAATGGAGGAA -ACGGAAAGACGTCCAATGCAGGTA -ACGGAAAGACGTCCAATGGACTCT -ACGGAAAGACGTCCAATGAGTCCT -ACGGAAAGACGTCCAATGTAAGCC -ACGGAAAGACGTCCAATGATAGCC -ACGGAAAGACGTCCAATGTAACCG -ACGGAAAGACGTCCAATGATGCCA -ACGGAATAACGGAACGGAGGAAAC -ACGGAATAACGGAACGGAAACACC -ACGGAATAACGGAACGGAATCGAG -ACGGAATAACGGAACGGACTCCTT -ACGGAATAACGGAACGGACCTGTT -ACGGAATAACGGAACGGACGGTTT -ACGGAATAACGGAACGGAGTGGTT -ACGGAATAACGGAACGGAGCCTTT -ACGGAATAACGGAACGGAGGTCTT -ACGGAATAACGGAACGGAACGCTT -ACGGAATAACGGAACGGAAGCGTT -ACGGAATAACGGAACGGATTCGTC -ACGGAATAACGGAACGGATCTCTC -ACGGAATAACGGAACGGATGGATC -ACGGAATAACGGAACGGACACTTC -ACGGAATAACGGAACGGAGTACTC -ACGGAATAACGGAACGGAGATGTC -ACGGAATAACGGAACGGAACAGTC -ACGGAATAACGGAACGGATTGCTG -ACGGAATAACGGAACGGATCCATG -ACGGAATAACGGAACGGATGTGTG -ACGGAATAACGGAACGGACTAGTG -ACGGAATAACGGAACGGACATCTG -ACGGAATAACGGAACGGAGAGTTG -ACGGAATAACGGAACGGAAGACTG -ACGGAATAACGGAACGGATCGGTA -ACGGAATAACGGAACGGATGCCTA -ACGGAATAACGGAACGGACCACTA -ACGGAATAACGGAACGGAGGAGTA -ACGGAATAACGGAACGGATCGTCT -ACGGAATAACGGAACGGATGCACT -ACGGAATAACGGAACGGACTGACT -ACGGAATAACGGAACGGACAACCT -ACGGAATAACGGAACGGAGCTACT -ACGGAATAACGGAACGGAGGATCT -ACGGAATAACGGAACGGAAAGGCT -ACGGAATAACGGAACGGATCAACC -ACGGAATAACGGAACGGATGTTCC -ACGGAATAACGGAACGGAATTCCC -ACGGAATAACGGAACGGATTCTCG -ACGGAATAACGGAACGGATAGACG -ACGGAATAACGGAACGGAGTAACG -ACGGAATAACGGAACGGAACTTCG -ACGGAATAACGGAACGGATACGCA -ACGGAATAACGGAACGGACTTGCA -ACGGAATAACGGAACGGACGAACA -ACGGAATAACGGAACGGACAGTCA -ACGGAATAACGGAACGGAGATCCA -ACGGAATAACGGAACGGAACGACA -ACGGAATAACGGAACGGAAGCTCA -ACGGAATAACGGAACGGATCACGT -ACGGAATAACGGAACGGACGTAGT -ACGGAATAACGGAACGGAGTCAGT -ACGGAATAACGGAACGGAGAAGGT -ACGGAATAACGGAACGGAAACCGT -ACGGAATAACGGAACGGATTGTGC -ACGGAATAACGGAACGGACTAAGC -ACGGAATAACGGAACGGAACTAGC -ACGGAATAACGGAACGGAAGATGC -ACGGAATAACGGAACGGATGAAGG -ACGGAATAACGGAACGGACAATGG -ACGGAATAACGGAACGGAATGAGG -ACGGAATAACGGAACGGAAATGGG -ACGGAATAACGGAACGGATCCTGA -ACGGAATAACGGAACGGATAGCGA -ACGGAATAACGGAACGGACACAGA -ACGGAATAACGGAACGGAGCAAGA -ACGGAATAACGGAACGGAGGTTGA -ACGGAATAACGGAACGGATCCGAT -ACGGAATAACGGAACGGATGGCAT -ACGGAATAACGGAACGGACGAGAT -ACGGAATAACGGAACGGATACCAC -ACGGAATAACGGAACGGACAGAAC -ACGGAATAACGGAACGGAGTCTAC -ACGGAATAACGGAACGGAACGTAC -ACGGAATAACGGAACGGAAGTGAC -ACGGAATAACGGAACGGACTGTAG -ACGGAATAACGGAACGGACCTAAG -ACGGAATAACGGAACGGAGTTCAG -ACGGAATAACGGAACGGAGCATAG -ACGGAATAACGGAACGGAGACAAG -ACGGAATAACGGAACGGAAAGCAG -ACGGAATAACGGAACGGACGTCAA -ACGGAATAACGGAACGGAGCTGAA -ACGGAATAACGGAACGGAAGTACG -ACGGAATAACGGAACGGAATCCGA -ACGGAATAACGGAACGGAATGGGA -ACGGAATAACGGAACGGAGTGCAA -ACGGAATAACGGAACGGAGAGGAA -ACGGAATAACGGAACGGACAGGTA -ACGGAATAACGGAACGGAGACTCT -ACGGAATAACGGAACGGAAGTCCT -ACGGAATAACGGAACGGATAAGCC -ACGGAATAACGGAACGGAATAGCC -ACGGAATAACGGAACGGATAACCG -ACGGAATAACGGAACGGAATGCCA -ACGGAATAACGGACCAACGGAAAC -ACGGAATAACGGACCAACAACACC -ACGGAATAACGGACCAACATCGAG -ACGGAATAACGGACCAACCTCCTT -ACGGAATAACGGACCAACCCTGTT -ACGGAATAACGGACCAACCGGTTT -ACGGAATAACGGACCAACGTGGTT -ACGGAATAACGGACCAACGCCTTT -ACGGAATAACGGACCAACGGTCTT -ACGGAATAACGGACCAACACGCTT -ACGGAATAACGGACCAACAGCGTT -ACGGAATAACGGACCAACTTCGTC -ACGGAATAACGGACCAACTCTCTC -ACGGAATAACGGACCAACTGGATC -ACGGAATAACGGACCAACCACTTC -ACGGAATAACGGACCAACGTACTC -ACGGAATAACGGACCAACGATGTC -ACGGAATAACGGACCAACACAGTC -ACGGAATAACGGACCAACTTGCTG -ACGGAATAACGGACCAACTCCATG -ACGGAATAACGGACCAACTGTGTG -ACGGAATAACGGACCAACCTAGTG -ACGGAATAACGGACCAACCATCTG -ACGGAATAACGGACCAACGAGTTG -ACGGAATAACGGACCAACAGACTG -ACGGAATAACGGACCAACTCGGTA -ACGGAATAACGGACCAACTGCCTA -ACGGAATAACGGACCAACCCACTA -ACGGAATAACGGACCAACGGAGTA -ACGGAATAACGGACCAACTCGTCT -ACGGAATAACGGACCAACTGCACT -ACGGAATAACGGACCAACCTGACT -ACGGAATAACGGACCAACCAACCT -ACGGAATAACGGACCAACGCTACT -ACGGAATAACGGACCAACGGATCT -ACGGAATAACGGACCAACAAGGCT -ACGGAATAACGGACCAACTCAACC -ACGGAATAACGGACCAACTGTTCC -ACGGAATAACGGACCAACATTCCC -ACGGAATAACGGACCAACTTCTCG -ACGGAATAACGGACCAACTAGACG -ACGGAATAACGGACCAACGTAACG -ACGGAATAACGGACCAACACTTCG -ACGGAATAACGGACCAACTACGCA -ACGGAATAACGGACCAACCTTGCA -ACGGAATAACGGACCAACCGAACA -ACGGAATAACGGACCAACCAGTCA -ACGGAATAACGGACCAACGATCCA -ACGGAATAACGGACCAACACGACA -ACGGAATAACGGACCAACAGCTCA -ACGGAATAACGGACCAACTCACGT -ACGGAATAACGGACCAACCGTAGT -ACGGAATAACGGACCAACGTCAGT -ACGGAATAACGGACCAACGAAGGT -ACGGAATAACGGACCAACAACCGT -ACGGAATAACGGACCAACTTGTGC -ACGGAATAACGGACCAACCTAAGC -ACGGAATAACGGACCAACACTAGC -ACGGAATAACGGACCAACAGATGC -ACGGAATAACGGACCAACTGAAGG -ACGGAATAACGGACCAACCAATGG -ACGGAATAACGGACCAACATGAGG -ACGGAATAACGGACCAACAATGGG -ACGGAATAACGGACCAACTCCTGA -ACGGAATAACGGACCAACTAGCGA -ACGGAATAACGGACCAACCACAGA -ACGGAATAACGGACCAACGCAAGA -ACGGAATAACGGACCAACGGTTGA -ACGGAATAACGGACCAACTCCGAT -ACGGAATAACGGACCAACTGGCAT -ACGGAATAACGGACCAACCGAGAT -ACGGAATAACGGACCAACTACCAC -ACGGAATAACGGACCAACCAGAAC -ACGGAATAACGGACCAACGTCTAC -ACGGAATAACGGACCAACACGTAC -ACGGAATAACGGACCAACAGTGAC -ACGGAATAACGGACCAACCTGTAG -ACGGAATAACGGACCAACCCTAAG -ACGGAATAACGGACCAACGTTCAG -ACGGAATAACGGACCAACGCATAG -ACGGAATAACGGACCAACGACAAG -ACGGAATAACGGACCAACAAGCAG -ACGGAATAACGGACCAACCGTCAA -ACGGAATAACGGACCAACGCTGAA -ACGGAATAACGGACCAACAGTACG -ACGGAATAACGGACCAACATCCGA -ACGGAATAACGGACCAACATGGGA -ACGGAATAACGGACCAACGTGCAA -ACGGAATAACGGACCAACGAGGAA -ACGGAATAACGGACCAACCAGGTA -ACGGAATAACGGACCAACGACTCT -ACGGAATAACGGACCAACAGTCCT -ACGGAATAACGGACCAACTAAGCC -ACGGAATAACGGACCAACATAGCC -ACGGAATAACGGACCAACTAACCG -ACGGAATAACGGACCAACATGCCA -ACGGAATAACGGGAGATCGGAAAC -ACGGAATAACGGGAGATCAACACC -ACGGAATAACGGGAGATCATCGAG -ACGGAATAACGGGAGATCCTCCTT -ACGGAATAACGGGAGATCCCTGTT -ACGGAATAACGGGAGATCCGGTTT -ACGGAATAACGGGAGATCGTGGTT -ACGGAATAACGGGAGATCGCCTTT -ACGGAATAACGGGAGATCGGTCTT -ACGGAATAACGGGAGATCACGCTT -ACGGAATAACGGGAGATCAGCGTT -ACGGAATAACGGGAGATCTTCGTC -ACGGAATAACGGGAGATCTCTCTC -ACGGAATAACGGGAGATCTGGATC -ACGGAATAACGGGAGATCCACTTC -ACGGAATAACGGGAGATCGTACTC -ACGGAATAACGGGAGATCGATGTC -ACGGAATAACGGGAGATCACAGTC -ACGGAATAACGGGAGATCTTGCTG -ACGGAATAACGGGAGATCTCCATG -ACGGAATAACGGGAGATCTGTGTG -ACGGAATAACGGGAGATCCTAGTG -ACGGAATAACGGGAGATCCATCTG -ACGGAATAACGGGAGATCGAGTTG -ACGGAATAACGGGAGATCAGACTG -ACGGAATAACGGGAGATCTCGGTA -ACGGAATAACGGGAGATCTGCCTA -ACGGAATAACGGGAGATCCCACTA -ACGGAATAACGGGAGATCGGAGTA -ACGGAATAACGGGAGATCTCGTCT -ACGGAATAACGGGAGATCTGCACT -ACGGAATAACGGGAGATCCTGACT -ACGGAATAACGGGAGATCCAACCT -ACGGAATAACGGGAGATCGCTACT -ACGGAATAACGGGAGATCGGATCT -ACGGAATAACGGGAGATCAAGGCT -ACGGAATAACGGGAGATCTCAACC -ACGGAATAACGGGAGATCTGTTCC -ACGGAATAACGGGAGATCATTCCC -ACGGAATAACGGGAGATCTTCTCG -ACGGAATAACGGGAGATCTAGACG -ACGGAATAACGGGAGATCGTAACG -ACGGAATAACGGGAGATCACTTCG -ACGGAATAACGGGAGATCTACGCA -ACGGAATAACGGGAGATCCTTGCA -ACGGAATAACGGGAGATCCGAACA -ACGGAATAACGGGAGATCCAGTCA -ACGGAATAACGGGAGATCGATCCA -ACGGAATAACGGGAGATCACGACA -ACGGAATAACGGGAGATCAGCTCA -ACGGAATAACGGGAGATCTCACGT -ACGGAATAACGGGAGATCCGTAGT -ACGGAATAACGGGAGATCGTCAGT -ACGGAATAACGGGAGATCGAAGGT -ACGGAATAACGGGAGATCAACCGT -ACGGAATAACGGGAGATCTTGTGC -ACGGAATAACGGGAGATCCTAAGC -ACGGAATAACGGGAGATCACTAGC -ACGGAATAACGGGAGATCAGATGC -ACGGAATAACGGGAGATCTGAAGG -ACGGAATAACGGGAGATCCAATGG -ACGGAATAACGGGAGATCATGAGG -ACGGAATAACGGGAGATCAATGGG -ACGGAATAACGGGAGATCTCCTGA -ACGGAATAACGGGAGATCTAGCGA -ACGGAATAACGGGAGATCCACAGA -ACGGAATAACGGGAGATCGCAAGA -ACGGAATAACGGGAGATCGGTTGA -ACGGAATAACGGGAGATCTCCGAT -ACGGAATAACGGGAGATCTGGCAT -ACGGAATAACGGGAGATCCGAGAT -ACGGAATAACGGGAGATCTACCAC -ACGGAATAACGGGAGATCCAGAAC -ACGGAATAACGGGAGATCGTCTAC -ACGGAATAACGGGAGATCACGTAC -ACGGAATAACGGGAGATCAGTGAC -ACGGAATAACGGGAGATCCTGTAG -ACGGAATAACGGGAGATCCCTAAG -ACGGAATAACGGGAGATCGTTCAG -ACGGAATAACGGGAGATCGCATAG -ACGGAATAACGGGAGATCGACAAG -ACGGAATAACGGGAGATCAAGCAG -ACGGAATAACGGGAGATCCGTCAA -ACGGAATAACGGGAGATCGCTGAA -ACGGAATAACGGGAGATCAGTACG -ACGGAATAACGGGAGATCATCCGA -ACGGAATAACGGGAGATCATGGGA -ACGGAATAACGGGAGATCGTGCAA -ACGGAATAACGGGAGATCGAGGAA -ACGGAATAACGGGAGATCCAGGTA -ACGGAATAACGGGAGATCGACTCT -ACGGAATAACGGGAGATCAGTCCT -ACGGAATAACGGGAGATCTAAGCC -ACGGAATAACGGGAGATCATAGCC -ACGGAATAACGGGAGATCTAACCG -ACGGAATAACGGGAGATCATGCCA -ACGGAATAACGGCTTCTCGGAAAC -ACGGAATAACGGCTTCTCAACACC -ACGGAATAACGGCTTCTCATCGAG -ACGGAATAACGGCTTCTCCTCCTT -ACGGAATAACGGCTTCTCCCTGTT -ACGGAATAACGGCTTCTCCGGTTT -ACGGAATAACGGCTTCTCGTGGTT -ACGGAATAACGGCTTCTCGCCTTT -ACGGAATAACGGCTTCTCGGTCTT -ACGGAATAACGGCTTCTCACGCTT -ACGGAATAACGGCTTCTCAGCGTT -ACGGAATAACGGCTTCTCTTCGTC -ACGGAATAACGGCTTCTCTCTCTC -ACGGAATAACGGCTTCTCTGGATC -ACGGAATAACGGCTTCTCCACTTC -ACGGAATAACGGCTTCTCGTACTC -ACGGAATAACGGCTTCTCGATGTC -ACGGAATAACGGCTTCTCACAGTC -ACGGAATAACGGCTTCTCTTGCTG -ACGGAATAACGGCTTCTCTCCATG -ACGGAATAACGGCTTCTCTGTGTG -ACGGAATAACGGCTTCTCCTAGTG -ACGGAATAACGGCTTCTCCATCTG -ACGGAATAACGGCTTCTCGAGTTG -ACGGAATAACGGCTTCTCAGACTG -ACGGAATAACGGCTTCTCTCGGTA -ACGGAATAACGGCTTCTCTGCCTA -ACGGAATAACGGCTTCTCCCACTA -ACGGAATAACGGCTTCTCGGAGTA -ACGGAATAACGGCTTCTCTCGTCT -ACGGAATAACGGCTTCTCTGCACT -ACGGAATAACGGCTTCTCCTGACT -ACGGAATAACGGCTTCTCCAACCT -ACGGAATAACGGCTTCTCGCTACT -ACGGAATAACGGCTTCTCGGATCT -ACGGAATAACGGCTTCTCAAGGCT -ACGGAATAACGGCTTCTCTCAACC -ACGGAATAACGGCTTCTCTGTTCC -ACGGAATAACGGCTTCTCATTCCC -ACGGAATAACGGCTTCTCTTCTCG -ACGGAATAACGGCTTCTCTAGACG -ACGGAATAACGGCTTCTCGTAACG -ACGGAATAACGGCTTCTCACTTCG -ACGGAATAACGGCTTCTCTACGCA -ACGGAATAACGGCTTCTCCTTGCA -ACGGAATAACGGCTTCTCCGAACA -ACGGAATAACGGCTTCTCCAGTCA -ACGGAATAACGGCTTCTCGATCCA -ACGGAATAACGGCTTCTCACGACA -ACGGAATAACGGCTTCTCAGCTCA -ACGGAATAACGGCTTCTCTCACGT -ACGGAATAACGGCTTCTCCGTAGT -ACGGAATAACGGCTTCTCGTCAGT -ACGGAATAACGGCTTCTCGAAGGT -ACGGAATAACGGCTTCTCAACCGT -ACGGAATAACGGCTTCTCTTGTGC -ACGGAATAACGGCTTCTCCTAAGC -ACGGAATAACGGCTTCTCACTAGC -ACGGAATAACGGCTTCTCAGATGC -ACGGAATAACGGCTTCTCTGAAGG -ACGGAATAACGGCTTCTCCAATGG -ACGGAATAACGGCTTCTCATGAGG -ACGGAATAACGGCTTCTCAATGGG -ACGGAATAACGGCTTCTCTCCTGA -ACGGAATAACGGCTTCTCTAGCGA -ACGGAATAACGGCTTCTCCACAGA -ACGGAATAACGGCTTCTCGCAAGA -ACGGAATAACGGCTTCTCGGTTGA -ACGGAATAACGGCTTCTCTCCGAT -ACGGAATAACGGCTTCTCTGGCAT -ACGGAATAACGGCTTCTCCGAGAT -ACGGAATAACGGCTTCTCTACCAC -ACGGAATAACGGCTTCTCCAGAAC -ACGGAATAACGGCTTCTCGTCTAC -ACGGAATAACGGCTTCTCACGTAC -ACGGAATAACGGCTTCTCAGTGAC -ACGGAATAACGGCTTCTCCTGTAG -ACGGAATAACGGCTTCTCCCTAAG -ACGGAATAACGGCTTCTCGTTCAG -ACGGAATAACGGCTTCTCGCATAG -ACGGAATAACGGCTTCTCGACAAG -ACGGAATAACGGCTTCTCAAGCAG -ACGGAATAACGGCTTCTCCGTCAA -ACGGAATAACGGCTTCTCGCTGAA -ACGGAATAACGGCTTCTCAGTACG -ACGGAATAACGGCTTCTCATCCGA -ACGGAATAACGGCTTCTCATGGGA -ACGGAATAACGGCTTCTCGTGCAA -ACGGAATAACGGCTTCTCGAGGAA -ACGGAATAACGGCTTCTCCAGGTA -ACGGAATAACGGCTTCTCGACTCT -ACGGAATAACGGCTTCTCAGTCCT -ACGGAATAACGGCTTCTCTAAGCC -ACGGAATAACGGCTTCTCATAGCC -ACGGAATAACGGCTTCTCTAACCG -ACGGAATAACGGCTTCTCATGCCA -ACGGAATAACGGGTTCCTGGAAAC -ACGGAATAACGGGTTCCTAACACC -ACGGAATAACGGGTTCCTATCGAG -ACGGAATAACGGGTTCCTCTCCTT -ACGGAATAACGGGTTCCTCCTGTT -ACGGAATAACGGGTTCCTCGGTTT -ACGGAATAACGGGTTCCTGTGGTT -ACGGAATAACGGGTTCCTGCCTTT -ACGGAATAACGGGTTCCTGGTCTT -ACGGAATAACGGGTTCCTACGCTT -ACGGAATAACGGGTTCCTAGCGTT -ACGGAATAACGGGTTCCTTTCGTC -ACGGAATAACGGGTTCCTTCTCTC -ACGGAATAACGGGTTCCTTGGATC -ACGGAATAACGGGTTCCTCACTTC -ACGGAATAACGGGTTCCTGTACTC -ACGGAATAACGGGTTCCTGATGTC -ACGGAATAACGGGTTCCTACAGTC -ACGGAATAACGGGTTCCTTTGCTG -ACGGAATAACGGGTTCCTTCCATG -ACGGAATAACGGGTTCCTTGTGTG -ACGGAATAACGGGTTCCTCTAGTG -ACGGAATAACGGGTTCCTCATCTG -ACGGAATAACGGGTTCCTGAGTTG -ACGGAATAACGGGTTCCTAGACTG -ACGGAATAACGGGTTCCTTCGGTA -ACGGAATAACGGGTTCCTTGCCTA -ACGGAATAACGGGTTCCTCCACTA -ACGGAATAACGGGTTCCTGGAGTA -ACGGAATAACGGGTTCCTTCGTCT -ACGGAATAACGGGTTCCTTGCACT -ACGGAATAACGGGTTCCTCTGACT -ACGGAATAACGGGTTCCTCAACCT -ACGGAATAACGGGTTCCTGCTACT -ACGGAATAACGGGTTCCTGGATCT -ACGGAATAACGGGTTCCTAAGGCT -ACGGAATAACGGGTTCCTTCAACC -ACGGAATAACGGGTTCCTTGTTCC -ACGGAATAACGGGTTCCTATTCCC -ACGGAATAACGGGTTCCTTTCTCG -ACGGAATAACGGGTTCCTTAGACG -ACGGAATAACGGGTTCCTGTAACG -ACGGAATAACGGGTTCCTACTTCG -ACGGAATAACGGGTTCCTTACGCA -ACGGAATAACGGGTTCCTCTTGCA -ACGGAATAACGGGTTCCTCGAACA -ACGGAATAACGGGTTCCTCAGTCA -ACGGAATAACGGGTTCCTGATCCA -ACGGAATAACGGGTTCCTACGACA -ACGGAATAACGGGTTCCTAGCTCA -ACGGAATAACGGGTTCCTTCACGT -ACGGAATAACGGGTTCCTCGTAGT -ACGGAATAACGGGTTCCTGTCAGT -ACGGAATAACGGGTTCCTGAAGGT -ACGGAATAACGGGTTCCTAACCGT -ACGGAATAACGGGTTCCTTTGTGC -ACGGAATAACGGGTTCCTCTAAGC -ACGGAATAACGGGTTCCTACTAGC -ACGGAATAACGGGTTCCTAGATGC -ACGGAATAACGGGTTCCTTGAAGG -ACGGAATAACGGGTTCCTCAATGG -ACGGAATAACGGGTTCCTATGAGG -ACGGAATAACGGGTTCCTAATGGG -ACGGAATAACGGGTTCCTTCCTGA -ACGGAATAACGGGTTCCTTAGCGA -ACGGAATAACGGGTTCCTCACAGA -ACGGAATAACGGGTTCCTGCAAGA -ACGGAATAACGGGTTCCTGGTTGA -ACGGAATAACGGGTTCCTTCCGAT -ACGGAATAACGGGTTCCTTGGCAT -ACGGAATAACGGGTTCCTCGAGAT -ACGGAATAACGGGTTCCTTACCAC -ACGGAATAACGGGTTCCTCAGAAC -ACGGAATAACGGGTTCCTGTCTAC -ACGGAATAACGGGTTCCTACGTAC -ACGGAATAACGGGTTCCTAGTGAC -ACGGAATAACGGGTTCCTCTGTAG -ACGGAATAACGGGTTCCTCCTAAG -ACGGAATAACGGGTTCCTGTTCAG -ACGGAATAACGGGTTCCTGCATAG -ACGGAATAACGGGTTCCTGACAAG -ACGGAATAACGGGTTCCTAAGCAG -ACGGAATAACGGGTTCCTCGTCAA -ACGGAATAACGGGTTCCTGCTGAA -ACGGAATAACGGGTTCCTAGTACG -ACGGAATAACGGGTTCCTATCCGA -ACGGAATAACGGGTTCCTATGGGA -ACGGAATAACGGGTTCCTGTGCAA -ACGGAATAACGGGTTCCTGAGGAA -ACGGAATAACGGGTTCCTCAGGTA -ACGGAATAACGGGTTCCTGACTCT -ACGGAATAACGGGTTCCTAGTCCT -ACGGAATAACGGGTTCCTTAAGCC -ACGGAATAACGGGTTCCTATAGCC -ACGGAATAACGGGTTCCTTAACCG -ACGGAATAACGGGTTCCTATGCCA -ACGGAATAACGGTTTCGGGGAAAC -ACGGAATAACGGTTTCGGAACACC -ACGGAATAACGGTTTCGGATCGAG -ACGGAATAACGGTTTCGGCTCCTT -ACGGAATAACGGTTTCGGCCTGTT -ACGGAATAACGGTTTCGGCGGTTT -ACGGAATAACGGTTTCGGGTGGTT -ACGGAATAACGGTTTCGGGCCTTT -ACGGAATAACGGTTTCGGGGTCTT -ACGGAATAACGGTTTCGGACGCTT -ACGGAATAACGGTTTCGGAGCGTT -ACGGAATAACGGTTTCGGTTCGTC -ACGGAATAACGGTTTCGGTCTCTC -ACGGAATAACGGTTTCGGTGGATC -ACGGAATAACGGTTTCGGCACTTC -ACGGAATAACGGTTTCGGGTACTC -ACGGAATAACGGTTTCGGGATGTC -ACGGAATAACGGTTTCGGACAGTC -ACGGAATAACGGTTTCGGTTGCTG -ACGGAATAACGGTTTCGGTCCATG -ACGGAATAACGGTTTCGGTGTGTG -ACGGAATAACGGTTTCGGCTAGTG -ACGGAATAACGGTTTCGGCATCTG -ACGGAATAACGGTTTCGGGAGTTG -ACGGAATAACGGTTTCGGAGACTG -ACGGAATAACGGTTTCGGTCGGTA -ACGGAATAACGGTTTCGGTGCCTA -ACGGAATAACGGTTTCGGCCACTA -ACGGAATAACGGTTTCGGGGAGTA -ACGGAATAACGGTTTCGGTCGTCT -ACGGAATAACGGTTTCGGTGCACT -ACGGAATAACGGTTTCGGCTGACT -ACGGAATAACGGTTTCGGCAACCT -ACGGAATAACGGTTTCGGGCTACT -ACGGAATAACGGTTTCGGGGATCT -ACGGAATAACGGTTTCGGAAGGCT -ACGGAATAACGGTTTCGGTCAACC -ACGGAATAACGGTTTCGGTGTTCC -ACGGAATAACGGTTTCGGATTCCC -ACGGAATAACGGTTTCGGTTCTCG -ACGGAATAACGGTTTCGGTAGACG -ACGGAATAACGGTTTCGGGTAACG -ACGGAATAACGGTTTCGGACTTCG -ACGGAATAACGGTTTCGGTACGCA -ACGGAATAACGGTTTCGGCTTGCA -ACGGAATAACGGTTTCGGCGAACA -ACGGAATAACGGTTTCGGCAGTCA -ACGGAATAACGGTTTCGGGATCCA -ACGGAATAACGGTTTCGGACGACA -ACGGAATAACGGTTTCGGAGCTCA -ACGGAATAACGGTTTCGGTCACGT -ACGGAATAACGGTTTCGGCGTAGT -ACGGAATAACGGTTTCGGGTCAGT -ACGGAATAACGGTTTCGGGAAGGT -ACGGAATAACGGTTTCGGAACCGT -ACGGAATAACGGTTTCGGTTGTGC -ACGGAATAACGGTTTCGGCTAAGC -ACGGAATAACGGTTTCGGACTAGC -ACGGAATAACGGTTTCGGAGATGC -ACGGAATAACGGTTTCGGTGAAGG -ACGGAATAACGGTTTCGGCAATGG -ACGGAATAACGGTTTCGGATGAGG -ACGGAATAACGGTTTCGGAATGGG -ACGGAATAACGGTTTCGGTCCTGA -ACGGAATAACGGTTTCGGTAGCGA -ACGGAATAACGGTTTCGGCACAGA -ACGGAATAACGGTTTCGGGCAAGA -ACGGAATAACGGTTTCGGGGTTGA -ACGGAATAACGGTTTCGGTCCGAT -ACGGAATAACGGTTTCGGTGGCAT -ACGGAATAACGGTTTCGGCGAGAT -ACGGAATAACGGTTTCGGTACCAC -ACGGAATAACGGTTTCGGCAGAAC -ACGGAATAACGGTTTCGGGTCTAC -ACGGAATAACGGTTTCGGACGTAC -ACGGAATAACGGTTTCGGAGTGAC -ACGGAATAACGGTTTCGGCTGTAG -ACGGAATAACGGTTTCGGCCTAAG -ACGGAATAACGGTTTCGGGTTCAG -ACGGAATAACGGTTTCGGGCATAG -ACGGAATAACGGTTTCGGGACAAG -ACGGAATAACGGTTTCGGAAGCAG -ACGGAATAACGGTTTCGGCGTCAA -ACGGAATAACGGTTTCGGGCTGAA -ACGGAATAACGGTTTCGGAGTACG -ACGGAATAACGGTTTCGGATCCGA -ACGGAATAACGGTTTCGGATGGGA -ACGGAATAACGGTTTCGGGTGCAA -ACGGAATAACGGTTTCGGGAGGAA -ACGGAATAACGGTTTCGGCAGGTA -ACGGAATAACGGTTTCGGGACTCT -ACGGAATAACGGTTTCGGAGTCCT -ACGGAATAACGGTTTCGGTAAGCC -ACGGAATAACGGTTTCGGATAGCC -ACGGAATAACGGTTTCGGTAACCG -ACGGAATAACGGTTTCGGATGCCA -ACGGAATAACGGGTTGTGGGAAAC -ACGGAATAACGGGTTGTGAACACC -ACGGAATAACGGGTTGTGATCGAG -ACGGAATAACGGGTTGTGCTCCTT -ACGGAATAACGGGTTGTGCCTGTT -ACGGAATAACGGGTTGTGCGGTTT -ACGGAATAACGGGTTGTGGTGGTT -ACGGAATAACGGGTTGTGGCCTTT -ACGGAATAACGGGTTGTGGGTCTT -ACGGAATAACGGGTTGTGACGCTT -ACGGAATAACGGGTTGTGAGCGTT -ACGGAATAACGGGTTGTGTTCGTC -ACGGAATAACGGGTTGTGTCTCTC -ACGGAATAACGGGTTGTGTGGATC -ACGGAATAACGGGTTGTGCACTTC -ACGGAATAACGGGTTGTGGTACTC -ACGGAATAACGGGTTGTGGATGTC -ACGGAATAACGGGTTGTGACAGTC -ACGGAATAACGGGTTGTGTTGCTG -ACGGAATAACGGGTTGTGTCCATG -ACGGAATAACGGGTTGTGTGTGTG -ACGGAATAACGGGTTGTGCTAGTG -ACGGAATAACGGGTTGTGCATCTG -ACGGAATAACGGGTTGTGGAGTTG -ACGGAATAACGGGTTGTGAGACTG -ACGGAATAACGGGTTGTGTCGGTA -ACGGAATAACGGGTTGTGTGCCTA -ACGGAATAACGGGTTGTGCCACTA -ACGGAATAACGGGTTGTGGGAGTA -ACGGAATAACGGGTTGTGTCGTCT -ACGGAATAACGGGTTGTGTGCACT -ACGGAATAACGGGTTGTGCTGACT -ACGGAATAACGGGTTGTGCAACCT -ACGGAATAACGGGTTGTGGCTACT -ACGGAATAACGGGTTGTGGGATCT -ACGGAATAACGGGTTGTGAAGGCT -ACGGAATAACGGGTTGTGTCAACC -ACGGAATAACGGGTTGTGTGTTCC -ACGGAATAACGGGTTGTGATTCCC -ACGGAATAACGGGTTGTGTTCTCG -ACGGAATAACGGGTTGTGTAGACG -ACGGAATAACGGGTTGTGGTAACG -ACGGAATAACGGGTTGTGACTTCG -ACGGAATAACGGGTTGTGTACGCA -ACGGAATAACGGGTTGTGCTTGCA -ACGGAATAACGGGTTGTGCGAACA -ACGGAATAACGGGTTGTGCAGTCA -ACGGAATAACGGGTTGTGGATCCA -ACGGAATAACGGGTTGTGACGACA -ACGGAATAACGGGTTGTGAGCTCA -ACGGAATAACGGGTTGTGTCACGT -ACGGAATAACGGGTTGTGCGTAGT -ACGGAATAACGGGTTGTGGTCAGT -ACGGAATAACGGGTTGTGGAAGGT -ACGGAATAACGGGTTGTGAACCGT -ACGGAATAACGGGTTGTGTTGTGC -ACGGAATAACGGGTTGTGCTAAGC -ACGGAATAACGGGTTGTGACTAGC -ACGGAATAACGGGTTGTGAGATGC -ACGGAATAACGGGTTGTGTGAAGG -ACGGAATAACGGGTTGTGCAATGG -ACGGAATAACGGGTTGTGATGAGG -ACGGAATAACGGGTTGTGAATGGG -ACGGAATAACGGGTTGTGTCCTGA -ACGGAATAACGGGTTGTGTAGCGA -ACGGAATAACGGGTTGTGCACAGA -ACGGAATAACGGGTTGTGGCAAGA -ACGGAATAACGGGTTGTGGGTTGA -ACGGAATAACGGGTTGTGTCCGAT -ACGGAATAACGGGTTGTGTGGCAT -ACGGAATAACGGGTTGTGCGAGAT -ACGGAATAACGGGTTGTGTACCAC -ACGGAATAACGGGTTGTGCAGAAC -ACGGAATAACGGGTTGTGGTCTAC -ACGGAATAACGGGTTGTGACGTAC -ACGGAATAACGGGTTGTGAGTGAC -ACGGAATAACGGGTTGTGCTGTAG -ACGGAATAACGGGTTGTGCCTAAG -ACGGAATAACGGGTTGTGGTTCAG -ACGGAATAACGGGTTGTGGCATAG -ACGGAATAACGGGTTGTGGACAAG -ACGGAATAACGGGTTGTGAAGCAG -ACGGAATAACGGGTTGTGCGTCAA -ACGGAATAACGGGTTGTGGCTGAA -ACGGAATAACGGGTTGTGAGTACG -ACGGAATAACGGGTTGTGATCCGA -ACGGAATAACGGGTTGTGATGGGA -ACGGAATAACGGGTTGTGGTGCAA -ACGGAATAACGGGTTGTGGAGGAA -ACGGAATAACGGGTTGTGCAGGTA -ACGGAATAACGGGTTGTGGACTCT -ACGGAATAACGGGTTGTGAGTCCT -ACGGAATAACGGGTTGTGTAAGCC -ACGGAATAACGGGTTGTGATAGCC -ACGGAATAACGGGTTGTGTAACCG -ACGGAATAACGGGTTGTGATGCCA -ACGGAATAACGGTTTGCCGGAAAC -ACGGAATAACGGTTTGCCAACACC -ACGGAATAACGGTTTGCCATCGAG -ACGGAATAACGGTTTGCCCTCCTT -ACGGAATAACGGTTTGCCCCTGTT -ACGGAATAACGGTTTGCCCGGTTT -ACGGAATAACGGTTTGCCGTGGTT -ACGGAATAACGGTTTGCCGCCTTT -ACGGAATAACGGTTTGCCGGTCTT -ACGGAATAACGGTTTGCCACGCTT -ACGGAATAACGGTTTGCCAGCGTT -ACGGAATAACGGTTTGCCTTCGTC -ACGGAATAACGGTTTGCCTCTCTC -ACGGAATAACGGTTTGCCTGGATC -ACGGAATAACGGTTTGCCCACTTC -ACGGAATAACGGTTTGCCGTACTC -ACGGAATAACGGTTTGCCGATGTC -ACGGAATAACGGTTTGCCACAGTC -ACGGAATAACGGTTTGCCTTGCTG -ACGGAATAACGGTTTGCCTCCATG -ACGGAATAACGGTTTGCCTGTGTG -ACGGAATAACGGTTTGCCCTAGTG -ACGGAATAACGGTTTGCCCATCTG -ACGGAATAACGGTTTGCCGAGTTG -ACGGAATAACGGTTTGCCAGACTG -ACGGAATAACGGTTTGCCTCGGTA -ACGGAATAACGGTTTGCCTGCCTA -ACGGAATAACGGTTTGCCCCACTA -ACGGAATAACGGTTTGCCGGAGTA -ACGGAATAACGGTTTGCCTCGTCT -ACGGAATAACGGTTTGCCTGCACT -ACGGAATAACGGTTTGCCCTGACT -ACGGAATAACGGTTTGCCCAACCT -ACGGAATAACGGTTTGCCGCTACT -ACGGAATAACGGTTTGCCGGATCT -ACGGAATAACGGTTTGCCAAGGCT -ACGGAATAACGGTTTGCCTCAACC -ACGGAATAACGGTTTGCCTGTTCC -ACGGAATAACGGTTTGCCATTCCC -ACGGAATAACGGTTTGCCTTCTCG -ACGGAATAACGGTTTGCCTAGACG -ACGGAATAACGGTTTGCCGTAACG -ACGGAATAACGGTTTGCCACTTCG -ACGGAATAACGGTTTGCCTACGCA -ACGGAATAACGGTTTGCCCTTGCA -ACGGAATAACGGTTTGCCCGAACA -ACGGAATAACGGTTTGCCCAGTCA -ACGGAATAACGGTTTGCCGATCCA -ACGGAATAACGGTTTGCCACGACA -ACGGAATAACGGTTTGCCAGCTCA -ACGGAATAACGGTTTGCCTCACGT -ACGGAATAACGGTTTGCCCGTAGT -ACGGAATAACGGTTTGCCGTCAGT -ACGGAATAACGGTTTGCCGAAGGT -ACGGAATAACGGTTTGCCAACCGT -ACGGAATAACGGTTTGCCTTGTGC -ACGGAATAACGGTTTGCCCTAAGC -ACGGAATAACGGTTTGCCACTAGC -ACGGAATAACGGTTTGCCAGATGC -ACGGAATAACGGTTTGCCTGAAGG -ACGGAATAACGGTTTGCCCAATGG -ACGGAATAACGGTTTGCCATGAGG -ACGGAATAACGGTTTGCCAATGGG -ACGGAATAACGGTTTGCCTCCTGA -ACGGAATAACGGTTTGCCTAGCGA -ACGGAATAACGGTTTGCCCACAGA -ACGGAATAACGGTTTGCCGCAAGA -ACGGAATAACGGTTTGCCGGTTGA -ACGGAATAACGGTTTGCCTCCGAT -ACGGAATAACGGTTTGCCTGGCAT -ACGGAATAACGGTTTGCCCGAGAT -ACGGAATAACGGTTTGCCTACCAC -ACGGAATAACGGTTTGCCCAGAAC -ACGGAATAACGGTTTGCCGTCTAC -ACGGAATAACGGTTTGCCACGTAC -ACGGAATAACGGTTTGCCAGTGAC -ACGGAATAACGGTTTGCCCTGTAG -ACGGAATAACGGTTTGCCCCTAAG -ACGGAATAACGGTTTGCCGTTCAG -ACGGAATAACGGTTTGCCGCATAG -ACGGAATAACGGTTTGCCGACAAG -ACGGAATAACGGTTTGCCAAGCAG -ACGGAATAACGGTTTGCCCGTCAA -ACGGAATAACGGTTTGCCGCTGAA -ACGGAATAACGGTTTGCCAGTACG -ACGGAATAACGGTTTGCCATCCGA -ACGGAATAACGGTTTGCCATGGGA -ACGGAATAACGGTTTGCCGTGCAA -ACGGAATAACGGTTTGCCGAGGAA -ACGGAATAACGGTTTGCCCAGGTA -ACGGAATAACGGTTTGCCGACTCT -ACGGAATAACGGTTTGCCAGTCCT -ACGGAATAACGGTTTGCCTAAGCC -ACGGAATAACGGTTTGCCATAGCC -ACGGAATAACGGTTTGCCTAACCG -ACGGAATAACGGTTTGCCATGCCA -ACGGAATAACGGCTTGGTGGAAAC -ACGGAATAACGGCTTGGTAACACC -ACGGAATAACGGCTTGGTATCGAG -ACGGAATAACGGCTTGGTCTCCTT -ACGGAATAACGGCTTGGTCCTGTT -ACGGAATAACGGCTTGGTCGGTTT -ACGGAATAACGGCTTGGTGTGGTT -ACGGAATAACGGCTTGGTGCCTTT -ACGGAATAACGGCTTGGTGGTCTT -ACGGAATAACGGCTTGGTACGCTT -ACGGAATAACGGCTTGGTAGCGTT -ACGGAATAACGGCTTGGTTTCGTC -ACGGAATAACGGCTTGGTTCTCTC -ACGGAATAACGGCTTGGTTGGATC -ACGGAATAACGGCTTGGTCACTTC -ACGGAATAACGGCTTGGTGTACTC -ACGGAATAACGGCTTGGTGATGTC -ACGGAATAACGGCTTGGTACAGTC -ACGGAATAACGGCTTGGTTTGCTG -ACGGAATAACGGCTTGGTTCCATG -ACGGAATAACGGCTTGGTTGTGTG -ACGGAATAACGGCTTGGTCTAGTG -ACGGAATAACGGCTTGGTCATCTG -ACGGAATAACGGCTTGGTGAGTTG -ACGGAATAACGGCTTGGTAGACTG -ACGGAATAACGGCTTGGTTCGGTA -ACGGAATAACGGCTTGGTTGCCTA -ACGGAATAACGGCTTGGTCCACTA -ACGGAATAACGGCTTGGTGGAGTA -ACGGAATAACGGCTTGGTTCGTCT -ACGGAATAACGGCTTGGTTGCACT -ACGGAATAACGGCTTGGTCTGACT -ACGGAATAACGGCTTGGTCAACCT -ACGGAATAACGGCTTGGTGCTACT -ACGGAATAACGGCTTGGTGGATCT -ACGGAATAACGGCTTGGTAAGGCT -ACGGAATAACGGCTTGGTTCAACC -ACGGAATAACGGCTTGGTTGTTCC -ACGGAATAACGGCTTGGTATTCCC -ACGGAATAACGGCTTGGTTTCTCG -ACGGAATAACGGCTTGGTTAGACG -ACGGAATAACGGCTTGGTGTAACG -ACGGAATAACGGCTTGGTACTTCG -ACGGAATAACGGCTTGGTTACGCA -ACGGAATAACGGCTTGGTCTTGCA -ACGGAATAACGGCTTGGTCGAACA -ACGGAATAACGGCTTGGTCAGTCA -ACGGAATAACGGCTTGGTGATCCA -ACGGAATAACGGCTTGGTACGACA -ACGGAATAACGGCTTGGTAGCTCA -ACGGAATAACGGCTTGGTTCACGT -ACGGAATAACGGCTTGGTCGTAGT -ACGGAATAACGGCTTGGTGTCAGT -ACGGAATAACGGCTTGGTGAAGGT -ACGGAATAACGGCTTGGTAACCGT -ACGGAATAACGGCTTGGTTTGTGC -ACGGAATAACGGCTTGGTCTAAGC -ACGGAATAACGGCTTGGTACTAGC -ACGGAATAACGGCTTGGTAGATGC -ACGGAATAACGGCTTGGTTGAAGG -ACGGAATAACGGCTTGGTCAATGG -ACGGAATAACGGCTTGGTATGAGG -ACGGAATAACGGCTTGGTAATGGG -ACGGAATAACGGCTTGGTTCCTGA -ACGGAATAACGGCTTGGTTAGCGA -ACGGAATAACGGCTTGGTCACAGA -ACGGAATAACGGCTTGGTGCAAGA -ACGGAATAACGGCTTGGTGGTTGA -ACGGAATAACGGCTTGGTTCCGAT -ACGGAATAACGGCTTGGTTGGCAT -ACGGAATAACGGCTTGGTCGAGAT -ACGGAATAACGGCTTGGTTACCAC -ACGGAATAACGGCTTGGTCAGAAC -ACGGAATAACGGCTTGGTGTCTAC -ACGGAATAACGGCTTGGTACGTAC -ACGGAATAACGGCTTGGTAGTGAC -ACGGAATAACGGCTTGGTCTGTAG -ACGGAATAACGGCTTGGTCCTAAG -ACGGAATAACGGCTTGGTGTTCAG -ACGGAATAACGGCTTGGTGCATAG -ACGGAATAACGGCTTGGTGACAAG -ACGGAATAACGGCTTGGTAAGCAG -ACGGAATAACGGCTTGGTCGTCAA -ACGGAATAACGGCTTGGTGCTGAA -ACGGAATAACGGCTTGGTAGTACG -ACGGAATAACGGCTTGGTATCCGA -ACGGAATAACGGCTTGGTATGGGA -ACGGAATAACGGCTTGGTGTGCAA -ACGGAATAACGGCTTGGTGAGGAA -ACGGAATAACGGCTTGGTCAGGTA -ACGGAATAACGGCTTGGTGACTCT -ACGGAATAACGGCTTGGTAGTCCT -ACGGAATAACGGCTTGGTTAAGCC -ACGGAATAACGGCTTGGTATAGCC -ACGGAATAACGGCTTGGTTAACCG -ACGGAATAACGGCTTGGTATGCCA -ACGGAATAACGGCTTACGGGAAAC -ACGGAATAACGGCTTACGAACACC -ACGGAATAACGGCTTACGATCGAG -ACGGAATAACGGCTTACGCTCCTT -ACGGAATAACGGCTTACGCCTGTT -ACGGAATAACGGCTTACGCGGTTT -ACGGAATAACGGCTTACGGTGGTT -ACGGAATAACGGCTTACGGCCTTT -ACGGAATAACGGCTTACGGGTCTT -ACGGAATAACGGCTTACGACGCTT -ACGGAATAACGGCTTACGAGCGTT -ACGGAATAACGGCTTACGTTCGTC -ACGGAATAACGGCTTACGTCTCTC -ACGGAATAACGGCTTACGTGGATC -ACGGAATAACGGCTTACGCACTTC -ACGGAATAACGGCTTACGGTACTC -ACGGAATAACGGCTTACGGATGTC -ACGGAATAACGGCTTACGACAGTC -ACGGAATAACGGCTTACGTTGCTG -ACGGAATAACGGCTTACGTCCATG -ACGGAATAACGGCTTACGTGTGTG -ACGGAATAACGGCTTACGCTAGTG -ACGGAATAACGGCTTACGCATCTG -ACGGAATAACGGCTTACGGAGTTG -ACGGAATAACGGCTTACGAGACTG -ACGGAATAACGGCTTACGTCGGTA -ACGGAATAACGGCTTACGTGCCTA -ACGGAATAACGGCTTACGCCACTA -ACGGAATAACGGCTTACGGGAGTA -ACGGAATAACGGCTTACGTCGTCT -ACGGAATAACGGCTTACGTGCACT -ACGGAATAACGGCTTACGCTGACT -ACGGAATAACGGCTTACGCAACCT -ACGGAATAACGGCTTACGGCTACT -ACGGAATAACGGCTTACGGGATCT -ACGGAATAACGGCTTACGAAGGCT -ACGGAATAACGGCTTACGTCAACC -ACGGAATAACGGCTTACGTGTTCC -ACGGAATAACGGCTTACGATTCCC -ACGGAATAACGGCTTACGTTCTCG -ACGGAATAACGGCTTACGTAGACG -ACGGAATAACGGCTTACGGTAACG -ACGGAATAACGGCTTACGACTTCG -ACGGAATAACGGCTTACGTACGCA -ACGGAATAACGGCTTACGCTTGCA -ACGGAATAACGGCTTACGCGAACA -ACGGAATAACGGCTTACGCAGTCA -ACGGAATAACGGCTTACGGATCCA -ACGGAATAACGGCTTACGACGACA -ACGGAATAACGGCTTACGAGCTCA -ACGGAATAACGGCTTACGTCACGT -ACGGAATAACGGCTTACGCGTAGT -ACGGAATAACGGCTTACGGTCAGT -ACGGAATAACGGCTTACGGAAGGT -ACGGAATAACGGCTTACGAACCGT -ACGGAATAACGGCTTACGTTGTGC -ACGGAATAACGGCTTACGCTAAGC -ACGGAATAACGGCTTACGACTAGC -ACGGAATAACGGCTTACGAGATGC -ACGGAATAACGGCTTACGTGAAGG -ACGGAATAACGGCTTACGCAATGG -ACGGAATAACGGCTTACGATGAGG -ACGGAATAACGGCTTACGAATGGG -ACGGAATAACGGCTTACGTCCTGA -ACGGAATAACGGCTTACGTAGCGA -ACGGAATAACGGCTTACGCACAGA -ACGGAATAACGGCTTACGGCAAGA -ACGGAATAACGGCTTACGGGTTGA -ACGGAATAACGGCTTACGTCCGAT -ACGGAATAACGGCTTACGTGGCAT -ACGGAATAACGGCTTACGCGAGAT -ACGGAATAACGGCTTACGTACCAC -ACGGAATAACGGCTTACGCAGAAC -ACGGAATAACGGCTTACGGTCTAC -ACGGAATAACGGCTTACGACGTAC -ACGGAATAACGGCTTACGAGTGAC -ACGGAATAACGGCTTACGCTGTAG -ACGGAATAACGGCTTACGCCTAAG -ACGGAATAACGGCTTACGGTTCAG -ACGGAATAACGGCTTACGGCATAG -ACGGAATAACGGCTTACGGACAAG -ACGGAATAACGGCTTACGAAGCAG -ACGGAATAACGGCTTACGCGTCAA -ACGGAATAACGGCTTACGGCTGAA -ACGGAATAACGGCTTACGAGTACG -ACGGAATAACGGCTTACGATCCGA -ACGGAATAACGGCTTACGATGGGA -ACGGAATAACGGCTTACGGTGCAA -ACGGAATAACGGCTTACGGAGGAA -ACGGAATAACGGCTTACGCAGGTA -ACGGAATAACGGCTTACGGACTCT -ACGGAATAACGGCTTACGAGTCCT -ACGGAATAACGGCTTACGTAAGCC -ACGGAATAACGGCTTACGATAGCC -ACGGAATAACGGCTTACGTAACCG -ACGGAATAACGGCTTACGATGCCA -ACGGAATAACGGGTTAGCGGAAAC -ACGGAATAACGGGTTAGCAACACC -ACGGAATAACGGGTTAGCATCGAG -ACGGAATAACGGGTTAGCCTCCTT -ACGGAATAACGGGTTAGCCCTGTT -ACGGAATAACGGGTTAGCCGGTTT -ACGGAATAACGGGTTAGCGTGGTT -ACGGAATAACGGGTTAGCGCCTTT -ACGGAATAACGGGTTAGCGGTCTT -ACGGAATAACGGGTTAGCACGCTT -ACGGAATAACGGGTTAGCAGCGTT -ACGGAATAACGGGTTAGCTTCGTC -ACGGAATAACGGGTTAGCTCTCTC -ACGGAATAACGGGTTAGCTGGATC -ACGGAATAACGGGTTAGCCACTTC -ACGGAATAACGGGTTAGCGTACTC -ACGGAATAACGGGTTAGCGATGTC -ACGGAATAACGGGTTAGCACAGTC -ACGGAATAACGGGTTAGCTTGCTG -ACGGAATAACGGGTTAGCTCCATG -ACGGAATAACGGGTTAGCTGTGTG -ACGGAATAACGGGTTAGCCTAGTG -ACGGAATAACGGGTTAGCCATCTG -ACGGAATAACGGGTTAGCGAGTTG -ACGGAATAACGGGTTAGCAGACTG -ACGGAATAACGGGTTAGCTCGGTA -ACGGAATAACGGGTTAGCTGCCTA -ACGGAATAACGGGTTAGCCCACTA -ACGGAATAACGGGTTAGCGGAGTA -ACGGAATAACGGGTTAGCTCGTCT -ACGGAATAACGGGTTAGCTGCACT -ACGGAATAACGGGTTAGCCTGACT -ACGGAATAACGGGTTAGCCAACCT -ACGGAATAACGGGTTAGCGCTACT -ACGGAATAACGGGTTAGCGGATCT -ACGGAATAACGGGTTAGCAAGGCT -ACGGAATAACGGGTTAGCTCAACC -ACGGAATAACGGGTTAGCTGTTCC -ACGGAATAACGGGTTAGCATTCCC -ACGGAATAACGGGTTAGCTTCTCG -ACGGAATAACGGGTTAGCTAGACG -ACGGAATAACGGGTTAGCGTAACG -ACGGAATAACGGGTTAGCACTTCG -ACGGAATAACGGGTTAGCTACGCA -ACGGAATAACGGGTTAGCCTTGCA -ACGGAATAACGGGTTAGCCGAACA -ACGGAATAACGGGTTAGCCAGTCA -ACGGAATAACGGGTTAGCGATCCA -ACGGAATAACGGGTTAGCACGACA -ACGGAATAACGGGTTAGCAGCTCA -ACGGAATAACGGGTTAGCTCACGT -ACGGAATAACGGGTTAGCCGTAGT -ACGGAATAACGGGTTAGCGTCAGT -ACGGAATAACGGGTTAGCGAAGGT -ACGGAATAACGGGTTAGCAACCGT -ACGGAATAACGGGTTAGCTTGTGC -ACGGAATAACGGGTTAGCCTAAGC -ACGGAATAACGGGTTAGCACTAGC -ACGGAATAACGGGTTAGCAGATGC -ACGGAATAACGGGTTAGCTGAAGG -ACGGAATAACGGGTTAGCCAATGG -ACGGAATAACGGGTTAGCATGAGG -ACGGAATAACGGGTTAGCAATGGG -ACGGAATAACGGGTTAGCTCCTGA -ACGGAATAACGGGTTAGCTAGCGA -ACGGAATAACGGGTTAGCCACAGA -ACGGAATAACGGGTTAGCGCAAGA -ACGGAATAACGGGTTAGCGGTTGA -ACGGAATAACGGGTTAGCTCCGAT -ACGGAATAACGGGTTAGCTGGCAT -ACGGAATAACGGGTTAGCCGAGAT -ACGGAATAACGGGTTAGCTACCAC -ACGGAATAACGGGTTAGCCAGAAC -ACGGAATAACGGGTTAGCGTCTAC -ACGGAATAACGGGTTAGCACGTAC -ACGGAATAACGGGTTAGCAGTGAC -ACGGAATAACGGGTTAGCCTGTAG -ACGGAATAACGGGTTAGCCCTAAG -ACGGAATAACGGGTTAGCGTTCAG -ACGGAATAACGGGTTAGCGCATAG -ACGGAATAACGGGTTAGCGACAAG -ACGGAATAACGGGTTAGCAAGCAG -ACGGAATAACGGGTTAGCCGTCAA -ACGGAATAACGGGTTAGCGCTGAA -ACGGAATAACGGGTTAGCAGTACG -ACGGAATAACGGGTTAGCATCCGA -ACGGAATAACGGGTTAGCATGGGA -ACGGAATAACGGGTTAGCGTGCAA -ACGGAATAACGGGTTAGCGAGGAA -ACGGAATAACGGGTTAGCCAGGTA -ACGGAATAACGGGTTAGCGACTCT -ACGGAATAACGGGTTAGCAGTCCT -ACGGAATAACGGGTTAGCTAAGCC -ACGGAATAACGGGTTAGCATAGCC -ACGGAATAACGGGTTAGCTAACCG -ACGGAATAACGGGTTAGCATGCCA -ACGGAATAACGGGTCTTCGGAAAC -ACGGAATAACGGGTCTTCAACACC -ACGGAATAACGGGTCTTCATCGAG -ACGGAATAACGGGTCTTCCTCCTT -ACGGAATAACGGGTCTTCCCTGTT -ACGGAATAACGGGTCTTCCGGTTT -ACGGAATAACGGGTCTTCGTGGTT -ACGGAATAACGGGTCTTCGCCTTT -ACGGAATAACGGGTCTTCGGTCTT -ACGGAATAACGGGTCTTCACGCTT -ACGGAATAACGGGTCTTCAGCGTT -ACGGAATAACGGGTCTTCTTCGTC -ACGGAATAACGGGTCTTCTCTCTC -ACGGAATAACGGGTCTTCTGGATC -ACGGAATAACGGGTCTTCCACTTC -ACGGAATAACGGGTCTTCGTACTC -ACGGAATAACGGGTCTTCGATGTC -ACGGAATAACGGGTCTTCACAGTC -ACGGAATAACGGGTCTTCTTGCTG -ACGGAATAACGGGTCTTCTCCATG -ACGGAATAACGGGTCTTCTGTGTG -ACGGAATAACGGGTCTTCCTAGTG -ACGGAATAACGGGTCTTCCATCTG -ACGGAATAACGGGTCTTCGAGTTG -ACGGAATAACGGGTCTTCAGACTG -ACGGAATAACGGGTCTTCTCGGTA -ACGGAATAACGGGTCTTCTGCCTA -ACGGAATAACGGGTCTTCCCACTA -ACGGAATAACGGGTCTTCGGAGTA -ACGGAATAACGGGTCTTCTCGTCT -ACGGAATAACGGGTCTTCTGCACT -ACGGAATAACGGGTCTTCCTGACT -ACGGAATAACGGGTCTTCCAACCT -ACGGAATAACGGGTCTTCGCTACT -ACGGAATAACGGGTCTTCGGATCT -ACGGAATAACGGGTCTTCAAGGCT -ACGGAATAACGGGTCTTCTCAACC -ACGGAATAACGGGTCTTCTGTTCC -ACGGAATAACGGGTCTTCATTCCC -ACGGAATAACGGGTCTTCTTCTCG -ACGGAATAACGGGTCTTCTAGACG -ACGGAATAACGGGTCTTCGTAACG -ACGGAATAACGGGTCTTCACTTCG -ACGGAATAACGGGTCTTCTACGCA -ACGGAATAACGGGTCTTCCTTGCA -ACGGAATAACGGGTCTTCCGAACA -ACGGAATAACGGGTCTTCCAGTCA -ACGGAATAACGGGTCTTCGATCCA -ACGGAATAACGGGTCTTCACGACA -ACGGAATAACGGGTCTTCAGCTCA -ACGGAATAACGGGTCTTCTCACGT -ACGGAATAACGGGTCTTCCGTAGT -ACGGAATAACGGGTCTTCGTCAGT -ACGGAATAACGGGTCTTCGAAGGT -ACGGAATAACGGGTCTTCAACCGT -ACGGAATAACGGGTCTTCTTGTGC -ACGGAATAACGGGTCTTCCTAAGC -ACGGAATAACGGGTCTTCACTAGC -ACGGAATAACGGGTCTTCAGATGC -ACGGAATAACGGGTCTTCTGAAGG -ACGGAATAACGGGTCTTCCAATGG -ACGGAATAACGGGTCTTCATGAGG -ACGGAATAACGGGTCTTCAATGGG -ACGGAATAACGGGTCTTCTCCTGA -ACGGAATAACGGGTCTTCTAGCGA -ACGGAATAACGGGTCTTCCACAGA -ACGGAATAACGGGTCTTCGCAAGA -ACGGAATAACGGGTCTTCGGTTGA -ACGGAATAACGGGTCTTCTCCGAT -ACGGAATAACGGGTCTTCTGGCAT -ACGGAATAACGGGTCTTCCGAGAT -ACGGAATAACGGGTCTTCTACCAC -ACGGAATAACGGGTCTTCCAGAAC -ACGGAATAACGGGTCTTCGTCTAC -ACGGAATAACGGGTCTTCACGTAC -ACGGAATAACGGGTCTTCAGTGAC -ACGGAATAACGGGTCTTCCTGTAG -ACGGAATAACGGGTCTTCCCTAAG -ACGGAATAACGGGTCTTCGTTCAG -ACGGAATAACGGGTCTTCGCATAG -ACGGAATAACGGGTCTTCGACAAG -ACGGAATAACGGGTCTTCAAGCAG -ACGGAATAACGGGTCTTCCGTCAA -ACGGAATAACGGGTCTTCGCTGAA -ACGGAATAACGGGTCTTCAGTACG -ACGGAATAACGGGTCTTCATCCGA -ACGGAATAACGGGTCTTCATGGGA -ACGGAATAACGGGTCTTCGTGCAA -ACGGAATAACGGGTCTTCGAGGAA -ACGGAATAACGGGTCTTCCAGGTA -ACGGAATAACGGGTCTTCGACTCT -ACGGAATAACGGGTCTTCAGTCCT -ACGGAATAACGGGTCTTCTAAGCC -ACGGAATAACGGGTCTTCATAGCC -ACGGAATAACGGGTCTTCTAACCG -ACGGAATAACGGGTCTTCATGCCA -ACGGAATAACGGCTCTCTGGAAAC -ACGGAATAACGGCTCTCTAACACC -ACGGAATAACGGCTCTCTATCGAG -ACGGAATAACGGCTCTCTCTCCTT -ACGGAATAACGGCTCTCTCCTGTT -ACGGAATAACGGCTCTCTCGGTTT -ACGGAATAACGGCTCTCTGTGGTT -ACGGAATAACGGCTCTCTGCCTTT -ACGGAATAACGGCTCTCTGGTCTT -ACGGAATAACGGCTCTCTACGCTT -ACGGAATAACGGCTCTCTAGCGTT -ACGGAATAACGGCTCTCTTTCGTC -ACGGAATAACGGCTCTCTTCTCTC -ACGGAATAACGGCTCTCTTGGATC -ACGGAATAACGGCTCTCTCACTTC -ACGGAATAACGGCTCTCTGTACTC -ACGGAATAACGGCTCTCTGATGTC -ACGGAATAACGGCTCTCTACAGTC -ACGGAATAACGGCTCTCTTTGCTG -ACGGAATAACGGCTCTCTTCCATG -ACGGAATAACGGCTCTCTTGTGTG -ACGGAATAACGGCTCTCTCTAGTG -ACGGAATAACGGCTCTCTCATCTG -ACGGAATAACGGCTCTCTGAGTTG -ACGGAATAACGGCTCTCTAGACTG -ACGGAATAACGGCTCTCTTCGGTA -ACGGAATAACGGCTCTCTTGCCTA -ACGGAATAACGGCTCTCTCCACTA -ACGGAATAACGGCTCTCTGGAGTA -ACGGAATAACGGCTCTCTTCGTCT -ACGGAATAACGGCTCTCTTGCACT -ACGGAATAACGGCTCTCTCTGACT -ACGGAATAACGGCTCTCTCAACCT -ACGGAATAACGGCTCTCTGCTACT -ACGGAATAACGGCTCTCTGGATCT -ACGGAATAACGGCTCTCTAAGGCT -ACGGAATAACGGCTCTCTTCAACC -ACGGAATAACGGCTCTCTTGTTCC -ACGGAATAACGGCTCTCTATTCCC -ACGGAATAACGGCTCTCTTTCTCG -ACGGAATAACGGCTCTCTTAGACG -ACGGAATAACGGCTCTCTGTAACG -ACGGAATAACGGCTCTCTACTTCG -ACGGAATAACGGCTCTCTTACGCA -ACGGAATAACGGCTCTCTCTTGCA -ACGGAATAACGGCTCTCTCGAACA -ACGGAATAACGGCTCTCTCAGTCA -ACGGAATAACGGCTCTCTGATCCA -ACGGAATAACGGCTCTCTACGACA -ACGGAATAACGGCTCTCTAGCTCA -ACGGAATAACGGCTCTCTTCACGT -ACGGAATAACGGCTCTCTCGTAGT -ACGGAATAACGGCTCTCTGTCAGT -ACGGAATAACGGCTCTCTGAAGGT -ACGGAATAACGGCTCTCTAACCGT -ACGGAATAACGGCTCTCTTTGTGC -ACGGAATAACGGCTCTCTCTAAGC -ACGGAATAACGGCTCTCTACTAGC -ACGGAATAACGGCTCTCTAGATGC -ACGGAATAACGGCTCTCTTGAAGG -ACGGAATAACGGCTCTCTCAATGG -ACGGAATAACGGCTCTCTATGAGG -ACGGAATAACGGCTCTCTAATGGG -ACGGAATAACGGCTCTCTTCCTGA -ACGGAATAACGGCTCTCTTAGCGA -ACGGAATAACGGCTCTCTCACAGA -ACGGAATAACGGCTCTCTGCAAGA -ACGGAATAACGGCTCTCTGGTTGA -ACGGAATAACGGCTCTCTTCCGAT -ACGGAATAACGGCTCTCTTGGCAT -ACGGAATAACGGCTCTCTCGAGAT -ACGGAATAACGGCTCTCTTACCAC -ACGGAATAACGGCTCTCTCAGAAC -ACGGAATAACGGCTCTCTGTCTAC -ACGGAATAACGGCTCTCTACGTAC -ACGGAATAACGGCTCTCTAGTGAC -ACGGAATAACGGCTCTCTCTGTAG -ACGGAATAACGGCTCTCTCCTAAG -ACGGAATAACGGCTCTCTGTTCAG -ACGGAATAACGGCTCTCTGCATAG -ACGGAATAACGGCTCTCTGACAAG -ACGGAATAACGGCTCTCTAAGCAG -ACGGAATAACGGCTCTCTCGTCAA -ACGGAATAACGGCTCTCTGCTGAA -ACGGAATAACGGCTCTCTAGTACG -ACGGAATAACGGCTCTCTATCCGA -ACGGAATAACGGCTCTCTATGGGA -ACGGAATAACGGCTCTCTGTGCAA -ACGGAATAACGGCTCTCTGAGGAA -ACGGAATAACGGCTCTCTCAGGTA -ACGGAATAACGGCTCTCTGACTCT -ACGGAATAACGGCTCTCTAGTCCT -ACGGAATAACGGCTCTCTTAAGCC -ACGGAATAACGGCTCTCTATAGCC -ACGGAATAACGGCTCTCTTAACCG -ACGGAATAACGGCTCTCTATGCCA -ACGGAATAACGGATCTGGGGAAAC -ACGGAATAACGGATCTGGAACACC -ACGGAATAACGGATCTGGATCGAG -ACGGAATAACGGATCTGGCTCCTT -ACGGAATAACGGATCTGGCCTGTT -ACGGAATAACGGATCTGGCGGTTT -ACGGAATAACGGATCTGGGTGGTT -ACGGAATAACGGATCTGGGCCTTT -ACGGAATAACGGATCTGGGGTCTT -ACGGAATAACGGATCTGGACGCTT -ACGGAATAACGGATCTGGAGCGTT -ACGGAATAACGGATCTGGTTCGTC -ACGGAATAACGGATCTGGTCTCTC -ACGGAATAACGGATCTGGTGGATC -ACGGAATAACGGATCTGGCACTTC -ACGGAATAACGGATCTGGGTACTC -ACGGAATAACGGATCTGGGATGTC -ACGGAATAACGGATCTGGACAGTC -ACGGAATAACGGATCTGGTTGCTG -ACGGAATAACGGATCTGGTCCATG -ACGGAATAACGGATCTGGTGTGTG -ACGGAATAACGGATCTGGCTAGTG -ACGGAATAACGGATCTGGCATCTG -ACGGAATAACGGATCTGGGAGTTG -ACGGAATAACGGATCTGGAGACTG -ACGGAATAACGGATCTGGTCGGTA -ACGGAATAACGGATCTGGTGCCTA -ACGGAATAACGGATCTGGCCACTA -ACGGAATAACGGATCTGGGGAGTA -ACGGAATAACGGATCTGGTCGTCT -ACGGAATAACGGATCTGGTGCACT -ACGGAATAACGGATCTGGCTGACT -ACGGAATAACGGATCTGGCAACCT -ACGGAATAACGGATCTGGGCTACT -ACGGAATAACGGATCTGGGGATCT -ACGGAATAACGGATCTGGAAGGCT -ACGGAATAACGGATCTGGTCAACC -ACGGAATAACGGATCTGGTGTTCC -ACGGAATAACGGATCTGGATTCCC -ACGGAATAACGGATCTGGTTCTCG -ACGGAATAACGGATCTGGTAGACG -ACGGAATAACGGATCTGGGTAACG -ACGGAATAACGGATCTGGACTTCG -ACGGAATAACGGATCTGGTACGCA -ACGGAATAACGGATCTGGCTTGCA -ACGGAATAACGGATCTGGCGAACA -ACGGAATAACGGATCTGGCAGTCA -ACGGAATAACGGATCTGGGATCCA -ACGGAATAACGGATCTGGACGACA -ACGGAATAACGGATCTGGAGCTCA -ACGGAATAACGGATCTGGTCACGT -ACGGAATAACGGATCTGGCGTAGT -ACGGAATAACGGATCTGGGTCAGT -ACGGAATAACGGATCTGGGAAGGT -ACGGAATAACGGATCTGGAACCGT -ACGGAATAACGGATCTGGTTGTGC -ACGGAATAACGGATCTGGCTAAGC -ACGGAATAACGGATCTGGACTAGC -ACGGAATAACGGATCTGGAGATGC -ACGGAATAACGGATCTGGTGAAGG -ACGGAATAACGGATCTGGCAATGG -ACGGAATAACGGATCTGGATGAGG -ACGGAATAACGGATCTGGAATGGG -ACGGAATAACGGATCTGGTCCTGA -ACGGAATAACGGATCTGGTAGCGA -ACGGAATAACGGATCTGGCACAGA -ACGGAATAACGGATCTGGGCAAGA -ACGGAATAACGGATCTGGGGTTGA -ACGGAATAACGGATCTGGTCCGAT -ACGGAATAACGGATCTGGTGGCAT -ACGGAATAACGGATCTGGCGAGAT -ACGGAATAACGGATCTGGTACCAC -ACGGAATAACGGATCTGGCAGAAC -ACGGAATAACGGATCTGGGTCTAC -ACGGAATAACGGATCTGGACGTAC -ACGGAATAACGGATCTGGAGTGAC -ACGGAATAACGGATCTGGCTGTAG -ACGGAATAACGGATCTGGCCTAAG -ACGGAATAACGGATCTGGGTTCAG -ACGGAATAACGGATCTGGGCATAG -ACGGAATAACGGATCTGGGACAAG -ACGGAATAACGGATCTGGAAGCAG -ACGGAATAACGGATCTGGCGTCAA -ACGGAATAACGGATCTGGGCTGAA -ACGGAATAACGGATCTGGAGTACG -ACGGAATAACGGATCTGGATCCGA -ACGGAATAACGGATCTGGATGGGA -ACGGAATAACGGATCTGGGTGCAA -ACGGAATAACGGATCTGGGAGGAA -ACGGAATAACGGATCTGGCAGGTA -ACGGAATAACGGATCTGGGACTCT -ACGGAATAACGGATCTGGAGTCCT -ACGGAATAACGGATCTGGTAAGCC -ACGGAATAACGGATCTGGATAGCC -ACGGAATAACGGATCTGGTAACCG -ACGGAATAACGGATCTGGATGCCA -ACGGAATAACGGTTCCACGGAAAC -ACGGAATAACGGTTCCACAACACC -ACGGAATAACGGTTCCACATCGAG -ACGGAATAACGGTTCCACCTCCTT -ACGGAATAACGGTTCCACCCTGTT -ACGGAATAACGGTTCCACCGGTTT -ACGGAATAACGGTTCCACGTGGTT -ACGGAATAACGGTTCCACGCCTTT -ACGGAATAACGGTTCCACGGTCTT -ACGGAATAACGGTTCCACACGCTT -ACGGAATAACGGTTCCACAGCGTT -ACGGAATAACGGTTCCACTTCGTC -ACGGAATAACGGTTCCACTCTCTC -ACGGAATAACGGTTCCACTGGATC -ACGGAATAACGGTTCCACCACTTC -ACGGAATAACGGTTCCACGTACTC -ACGGAATAACGGTTCCACGATGTC -ACGGAATAACGGTTCCACACAGTC -ACGGAATAACGGTTCCACTTGCTG -ACGGAATAACGGTTCCACTCCATG -ACGGAATAACGGTTCCACTGTGTG -ACGGAATAACGGTTCCACCTAGTG -ACGGAATAACGGTTCCACCATCTG -ACGGAATAACGGTTCCACGAGTTG -ACGGAATAACGGTTCCACAGACTG -ACGGAATAACGGTTCCACTCGGTA -ACGGAATAACGGTTCCACTGCCTA -ACGGAATAACGGTTCCACCCACTA -ACGGAATAACGGTTCCACGGAGTA -ACGGAATAACGGTTCCACTCGTCT -ACGGAATAACGGTTCCACTGCACT -ACGGAATAACGGTTCCACCTGACT -ACGGAATAACGGTTCCACCAACCT -ACGGAATAACGGTTCCACGCTACT -ACGGAATAACGGTTCCACGGATCT -ACGGAATAACGGTTCCACAAGGCT -ACGGAATAACGGTTCCACTCAACC -ACGGAATAACGGTTCCACTGTTCC -ACGGAATAACGGTTCCACATTCCC -ACGGAATAACGGTTCCACTTCTCG -ACGGAATAACGGTTCCACTAGACG -ACGGAATAACGGTTCCACGTAACG -ACGGAATAACGGTTCCACACTTCG -ACGGAATAACGGTTCCACTACGCA -ACGGAATAACGGTTCCACCTTGCA -ACGGAATAACGGTTCCACCGAACA -ACGGAATAACGGTTCCACCAGTCA -ACGGAATAACGGTTCCACGATCCA -ACGGAATAACGGTTCCACACGACA -ACGGAATAACGGTTCCACAGCTCA -ACGGAATAACGGTTCCACTCACGT -ACGGAATAACGGTTCCACCGTAGT -ACGGAATAACGGTTCCACGTCAGT -ACGGAATAACGGTTCCACGAAGGT -ACGGAATAACGGTTCCACAACCGT -ACGGAATAACGGTTCCACTTGTGC -ACGGAATAACGGTTCCACCTAAGC -ACGGAATAACGGTTCCACACTAGC -ACGGAATAACGGTTCCACAGATGC -ACGGAATAACGGTTCCACTGAAGG -ACGGAATAACGGTTCCACCAATGG -ACGGAATAACGGTTCCACATGAGG -ACGGAATAACGGTTCCACAATGGG -ACGGAATAACGGTTCCACTCCTGA -ACGGAATAACGGTTCCACTAGCGA -ACGGAATAACGGTTCCACCACAGA -ACGGAATAACGGTTCCACGCAAGA -ACGGAATAACGGTTCCACGGTTGA -ACGGAATAACGGTTCCACTCCGAT -ACGGAATAACGGTTCCACTGGCAT -ACGGAATAACGGTTCCACCGAGAT -ACGGAATAACGGTTCCACTACCAC -ACGGAATAACGGTTCCACCAGAAC -ACGGAATAACGGTTCCACGTCTAC -ACGGAATAACGGTTCCACACGTAC -ACGGAATAACGGTTCCACAGTGAC -ACGGAATAACGGTTCCACCTGTAG -ACGGAATAACGGTTCCACCCTAAG -ACGGAATAACGGTTCCACGTTCAG -ACGGAATAACGGTTCCACGCATAG -ACGGAATAACGGTTCCACGACAAG -ACGGAATAACGGTTCCACAAGCAG -ACGGAATAACGGTTCCACCGTCAA -ACGGAATAACGGTTCCACGCTGAA -ACGGAATAACGGTTCCACAGTACG -ACGGAATAACGGTTCCACATCCGA -ACGGAATAACGGTTCCACATGGGA -ACGGAATAACGGTTCCACGTGCAA -ACGGAATAACGGTTCCACGAGGAA -ACGGAATAACGGTTCCACCAGGTA -ACGGAATAACGGTTCCACGACTCT -ACGGAATAACGGTTCCACAGTCCT -ACGGAATAACGGTTCCACTAAGCC -ACGGAATAACGGTTCCACATAGCC -ACGGAATAACGGTTCCACTAACCG -ACGGAATAACGGTTCCACATGCCA -ACGGAATAACGGCTCGTAGGAAAC -ACGGAATAACGGCTCGTAAACACC -ACGGAATAACGGCTCGTAATCGAG -ACGGAATAACGGCTCGTACTCCTT -ACGGAATAACGGCTCGTACCTGTT -ACGGAATAACGGCTCGTACGGTTT -ACGGAATAACGGCTCGTAGTGGTT -ACGGAATAACGGCTCGTAGCCTTT -ACGGAATAACGGCTCGTAGGTCTT -ACGGAATAACGGCTCGTAACGCTT -ACGGAATAACGGCTCGTAAGCGTT -ACGGAATAACGGCTCGTATTCGTC -ACGGAATAACGGCTCGTATCTCTC -ACGGAATAACGGCTCGTATGGATC -ACGGAATAACGGCTCGTACACTTC -ACGGAATAACGGCTCGTAGTACTC -ACGGAATAACGGCTCGTAGATGTC -ACGGAATAACGGCTCGTAACAGTC -ACGGAATAACGGCTCGTATTGCTG -ACGGAATAACGGCTCGTATCCATG -ACGGAATAACGGCTCGTATGTGTG -ACGGAATAACGGCTCGTACTAGTG -ACGGAATAACGGCTCGTACATCTG -ACGGAATAACGGCTCGTAGAGTTG -ACGGAATAACGGCTCGTAAGACTG -ACGGAATAACGGCTCGTATCGGTA -ACGGAATAACGGCTCGTATGCCTA -ACGGAATAACGGCTCGTACCACTA -ACGGAATAACGGCTCGTAGGAGTA -ACGGAATAACGGCTCGTATCGTCT -ACGGAATAACGGCTCGTATGCACT -ACGGAATAACGGCTCGTACTGACT -ACGGAATAACGGCTCGTACAACCT -ACGGAATAACGGCTCGTAGCTACT -ACGGAATAACGGCTCGTAGGATCT -ACGGAATAACGGCTCGTAAAGGCT -ACGGAATAACGGCTCGTATCAACC -ACGGAATAACGGCTCGTATGTTCC -ACGGAATAACGGCTCGTAATTCCC -ACGGAATAACGGCTCGTATTCTCG -ACGGAATAACGGCTCGTATAGACG -ACGGAATAACGGCTCGTAGTAACG -ACGGAATAACGGCTCGTAACTTCG -ACGGAATAACGGCTCGTATACGCA -ACGGAATAACGGCTCGTACTTGCA -ACGGAATAACGGCTCGTACGAACA -ACGGAATAACGGCTCGTACAGTCA -ACGGAATAACGGCTCGTAGATCCA -ACGGAATAACGGCTCGTAACGACA -ACGGAATAACGGCTCGTAAGCTCA -ACGGAATAACGGCTCGTATCACGT -ACGGAATAACGGCTCGTACGTAGT -ACGGAATAACGGCTCGTAGTCAGT -ACGGAATAACGGCTCGTAGAAGGT -ACGGAATAACGGCTCGTAAACCGT -ACGGAATAACGGCTCGTATTGTGC -ACGGAATAACGGCTCGTACTAAGC -ACGGAATAACGGCTCGTAACTAGC -ACGGAATAACGGCTCGTAAGATGC -ACGGAATAACGGCTCGTATGAAGG -ACGGAATAACGGCTCGTACAATGG -ACGGAATAACGGCTCGTAATGAGG -ACGGAATAACGGCTCGTAAATGGG -ACGGAATAACGGCTCGTATCCTGA -ACGGAATAACGGCTCGTATAGCGA -ACGGAATAACGGCTCGTACACAGA -ACGGAATAACGGCTCGTAGCAAGA -ACGGAATAACGGCTCGTAGGTTGA -ACGGAATAACGGCTCGTATCCGAT -ACGGAATAACGGCTCGTATGGCAT -ACGGAATAACGGCTCGTACGAGAT -ACGGAATAACGGCTCGTATACCAC -ACGGAATAACGGCTCGTACAGAAC -ACGGAATAACGGCTCGTAGTCTAC -ACGGAATAACGGCTCGTAACGTAC -ACGGAATAACGGCTCGTAAGTGAC -ACGGAATAACGGCTCGTACTGTAG -ACGGAATAACGGCTCGTACCTAAG -ACGGAATAACGGCTCGTAGTTCAG -ACGGAATAACGGCTCGTAGCATAG -ACGGAATAACGGCTCGTAGACAAG -ACGGAATAACGGCTCGTAAAGCAG -ACGGAATAACGGCTCGTACGTCAA -ACGGAATAACGGCTCGTAGCTGAA -ACGGAATAACGGCTCGTAAGTACG -ACGGAATAACGGCTCGTAATCCGA -ACGGAATAACGGCTCGTAATGGGA -ACGGAATAACGGCTCGTAGTGCAA -ACGGAATAACGGCTCGTAGAGGAA -ACGGAATAACGGCTCGTACAGGTA -ACGGAATAACGGCTCGTAGACTCT -ACGGAATAACGGCTCGTAAGTCCT -ACGGAATAACGGCTCGTATAAGCC -ACGGAATAACGGCTCGTAATAGCC -ACGGAATAACGGCTCGTATAACCG -ACGGAATAACGGCTCGTAATGCCA -ACGGAATAACGGGTCGATGGAAAC -ACGGAATAACGGGTCGATAACACC -ACGGAATAACGGGTCGATATCGAG -ACGGAATAACGGGTCGATCTCCTT -ACGGAATAACGGGTCGATCCTGTT -ACGGAATAACGGGTCGATCGGTTT -ACGGAATAACGGGTCGATGTGGTT -ACGGAATAACGGGTCGATGCCTTT -ACGGAATAACGGGTCGATGGTCTT -ACGGAATAACGGGTCGATACGCTT -ACGGAATAACGGGTCGATAGCGTT -ACGGAATAACGGGTCGATTTCGTC -ACGGAATAACGGGTCGATTCTCTC -ACGGAATAACGGGTCGATTGGATC -ACGGAATAACGGGTCGATCACTTC -ACGGAATAACGGGTCGATGTACTC -ACGGAATAACGGGTCGATGATGTC -ACGGAATAACGGGTCGATACAGTC -ACGGAATAACGGGTCGATTTGCTG -ACGGAATAACGGGTCGATTCCATG -ACGGAATAACGGGTCGATTGTGTG -ACGGAATAACGGGTCGATCTAGTG -ACGGAATAACGGGTCGATCATCTG -ACGGAATAACGGGTCGATGAGTTG -ACGGAATAACGGGTCGATAGACTG -ACGGAATAACGGGTCGATTCGGTA -ACGGAATAACGGGTCGATTGCCTA -ACGGAATAACGGGTCGATCCACTA -ACGGAATAACGGGTCGATGGAGTA -ACGGAATAACGGGTCGATTCGTCT -ACGGAATAACGGGTCGATTGCACT -ACGGAATAACGGGTCGATCTGACT -ACGGAATAACGGGTCGATCAACCT -ACGGAATAACGGGTCGATGCTACT -ACGGAATAACGGGTCGATGGATCT -ACGGAATAACGGGTCGATAAGGCT -ACGGAATAACGGGTCGATTCAACC -ACGGAATAACGGGTCGATTGTTCC -ACGGAATAACGGGTCGATATTCCC -ACGGAATAACGGGTCGATTTCTCG -ACGGAATAACGGGTCGATTAGACG -ACGGAATAACGGGTCGATGTAACG -ACGGAATAACGGGTCGATACTTCG -ACGGAATAACGGGTCGATTACGCA -ACGGAATAACGGGTCGATCTTGCA -ACGGAATAACGGGTCGATCGAACA -ACGGAATAACGGGTCGATCAGTCA -ACGGAATAACGGGTCGATGATCCA -ACGGAATAACGGGTCGATACGACA -ACGGAATAACGGGTCGATAGCTCA -ACGGAATAACGGGTCGATTCACGT -ACGGAATAACGGGTCGATCGTAGT -ACGGAATAACGGGTCGATGTCAGT -ACGGAATAACGGGTCGATGAAGGT -ACGGAATAACGGGTCGATAACCGT -ACGGAATAACGGGTCGATTTGTGC -ACGGAATAACGGGTCGATCTAAGC -ACGGAATAACGGGTCGATACTAGC -ACGGAATAACGGGTCGATAGATGC -ACGGAATAACGGGTCGATTGAAGG -ACGGAATAACGGGTCGATCAATGG -ACGGAATAACGGGTCGATATGAGG -ACGGAATAACGGGTCGATAATGGG -ACGGAATAACGGGTCGATTCCTGA -ACGGAATAACGGGTCGATTAGCGA -ACGGAATAACGGGTCGATCACAGA -ACGGAATAACGGGTCGATGCAAGA -ACGGAATAACGGGTCGATGGTTGA -ACGGAATAACGGGTCGATTCCGAT -ACGGAATAACGGGTCGATTGGCAT -ACGGAATAACGGGTCGATCGAGAT -ACGGAATAACGGGTCGATTACCAC -ACGGAATAACGGGTCGATCAGAAC -ACGGAATAACGGGTCGATGTCTAC -ACGGAATAACGGGTCGATACGTAC -ACGGAATAACGGGTCGATAGTGAC -ACGGAATAACGGGTCGATCTGTAG -ACGGAATAACGGGTCGATCCTAAG -ACGGAATAACGGGTCGATGTTCAG -ACGGAATAACGGGTCGATGCATAG -ACGGAATAACGGGTCGATGACAAG -ACGGAATAACGGGTCGATAAGCAG -ACGGAATAACGGGTCGATCGTCAA -ACGGAATAACGGGTCGATGCTGAA -ACGGAATAACGGGTCGATAGTACG -ACGGAATAACGGGTCGATATCCGA -ACGGAATAACGGGTCGATATGGGA -ACGGAATAACGGGTCGATGTGCAA -ACGGAATAACGGGTCGATGAGGAA -ACGGAATAACGGGTCGATCAGGTA -ACGGAATAACGGGTCGATGACTCT -ACGGAATAACGGGTCGATAGTCCT -ACGGAATAACGGGTCGATTAAGCC -ACGGAATAACGGGTCGATATAGCC -ACGGAATAACGGGTCGATTAACCG -ACGGAATAACGGGTCGATATGCCA -ACGGAATAACGGGTCACAGGAAAC -ACGGAATAACGGGTCACAAACACC -ACGGAATAACGGGTCACAATCGAG -ACGGAATAACGGGTCACACTCCTT -ACGGAATAACGGGTCACACCTGTT -ACGGAATAACGGGTCACACGGTTT -ACGGAATAACGGGTCACAGTGGTT -ACGGAATAACGGGTCACAGCCTTT -ACGGAATAACGGGTCACAGGTCTT -ACGGAATAACGGGTCACAACGCTT -ACGGAATAACGGGTCACAAGCGTT -ACGGAATAACGGGTCACATTCGTC -ACGGAATAACGGGTCACATCTCTC -ACGGAATAACGGGTCACATGGATC -ACGGAATAACGGGTCACACACTTC -ACGGAATAACGGGTCACAGTACTC -ACGGAATAACGGGTCACAGATGTC -ACGGAATAACGGGTCACAACAGTC -ACGGAATAACGGGTCACATTGCTG -ACGGAATAACGGGTCACATCCATG -ACGGAATAACGGGTCACATGTGTG -ACGGAATAACGGGTCACACTAGTG -ACGGAATAACGGGTCACACATCTG -ACGGAATAACGGGTCACAGAGTTG -ACGGAATAACGGGTCACAAGACTG -ACGGAATAACGGGTCACATCGGTA -ACGGAATAACGGGTCACATGCCTA -ACGGAATAACGGGTCACACCACTA -ACGGAATAACGGGTCACAGGAGTA -ACGGAATAACGGGTCACATCGTCT -ACGGAATAACGGGTCACATGCACT -ACGGAATAACGGGTCACACTGACT -ACGGAATAACGGGTCACACAACCT -ACGGAATAACGGGTCACAGCTACT -ACGGAATAACGGGTCACAGGATCT -ACGGAATAACGGGTCACAAAGGCT -ACGGAATAACGGGTCACATCAACC -ACGGAATAACGGGTCACATGTTCC -ACGGAATAACGGGTCACAATTCCC -ACGGAATAACGGGTCACATTCTCG -ACGGAATAACGGGTCACATAGACG -ACGGAATAACGGGTCACAGTAACG -ACGGAATAACGGGTCACAACTTCG -ACGGAATAACGGGTCACATACGCA -ACGGAATAACGGGTCACACTTGCA -ACGGAATAACGGGTCACACGAACA -ACGGAATAACGGGTCACACAGTCA -ACGGAATAACGGGTCACAGATCCA -ACGGAATAACGGGTCACAACGACA -ACGGAATAACGGGTCACAAGCTCA -ACGGAATAACGGGTCACATCACGT -ACGGAATAACGGGTCACACGTAGT -ACGGAATAACGGGTCACAGTCAGT -ACGGAATAACGGGTCACAGAAGGT -ACGGAATAACGGGTCACAAACCGT -ACGGAATAACGGGTCACATTGTGC -ACGGAATAACGGGTCACACTAAGC -ACGGAATAACGGGTCACAACTAGC -ACGGAATAACGGGTCACAAGATGC -ACGGAATAACGGGTCACATGAAGG -ACGGAATAACGGGTCACACAATGG -ACGGAATAACGGGTCACAATGAGG -ACGGAATAACGGGTCACAAATGGG -ACGGAATAACGGGTCACATCCTGA -ACGGAATAACGGGTCACATAGCGA -ACGGAATAACGGGTCACACACAGA -ACGGAATAACGGGTCACAGCAAGA -ACGGAATAACGGGTCACAGGTTGA -ACGGAATAACGGGTCACATCCGAT -ACGGAATAACGGGTCACATGGCAT -ACGGAATAACGGGTCACACGAGAT -ACGGAATAACGGGTCACATACCAC -ACGGAATAACGGGTCACACAGAAC -ACGGAATAACGGGTCACAGTCTAC -ACGGAATAACGGGTCACAACGTAC -ACGGAATAACGGGTCACAAGTGAC -ACGGAATAACGGGTCACACTGTAG -ACGGAATAACGGGTCACACCTAAG -ACGGAATAACGGGTCACAGTTCAG -ACGGAATAACGGGTCACAGCATAG -ACGGAATAACGGGTCACAGACAAG -ACGGAATAACGGGTCACAAAGCAG -ACGGAATAACGGGTCACACGTCAA -ACGGAATAACGGGTCACAGCTGAA -ACGGAATAACGGGTCACAAGTACG -ACGGAATAACGGGTCACAATCCGA -ACGGAATAACGGGTCACAATGGGA -ACGGAATAACGGGTCACAGTGCAA -ACGGAATAACGGGTCACAGAGGAA -ACGGAATAACGGGTCACACAGGTA -ACGGAATAACGGGTCACAGACTCT -ACGGAATAACGGGTCACAAGTCCT -ACGGAATAACGGGTCACATAAGCC -ACGGAATAACGGGTCACAATAGCC -ACGGAATAACGGGTCACATAACCG -ACGGAATAACGGGTCACAATGCCA -ACGGAATAACGGCTGTTGGGAAAC -ACGGAATAACGGCTGTTGAACACC -ACGGAATAACGGCTGTTGATCGAG -ACGGAATAACGGCTGTTGCTCCTT -ACGGAATAACGGCTGTTGCCTGTT -ACGGAATAACGGCTGTTGCGGTTT -ACGGAATAACGGCTGTTGGTGGTT -ACGGAATAACGGCTGTTGGCCTTT -ACGGAATAACGGCTGTTGGGTCTT -ACGGAATAACGGCTGTTGACGCTT -ACGGAATAACGGCTGTTGAGCGTT -ACGGAATAACGGCTGTTGTTCGTC -ACGGAATAACGGCTGTTGTCTCTC -ACGGAATAACGGCTGTTGTGGATC -ACGGAATAACGGCTGTTGCACTTC -ACGGAATAACGGCTGTTGGTACTC -ACGGAATAACGGCTGTTGGATGTC -ACGGAATAACGGCTGTTGACAGTC -ACGGAATAACGGCTGTTGTTGCTG -ACGGAATAACGGCTGTTGTCCATG -ACGGAATAACGGCTGTTGTGTGTG -ACGGAATAACGGCTGTTGCTAGTG -ACGGAATAACGGCTGTTGCATCTG -ACGGAATAACGGCTGTTGGAGTTG -ACGGAATAACGGCTGTTGAGACTG -ACGGAATAACGGCTGTTGTCGGTA -ACGGAATAACGGCTGTTGTGCCTA -ACGGAATAACGGCTGTTGCCACTA -ACGGAATAACGGCTGTTGGGAGTA -ACGGAATAACGGCTGTTGTCGTCT -ACGGAATAACGGCTGTTGTGCACT -ACGGAATAACGGCTGTTGCTGACT -ACGGAATAACGGCTGTTGCAACCT -ACGGAATAACGGCTGTTGGCTACT -ACGGAATAACGGCTGTTGGGATCT -ACGGAATAACGGCTGTTGAAGGCT -ACGGAATAACGGCTGTTGTCAACC -ACGGAATAACGGCTGTTGTGTTCC -ACGGAATAACGGCTGTTGATTCCC -ACGGAATAACGGCTGTTGTTCTCG -ACGGAATAACGGCTGTTGTAGACG -ACGGAATAACGGCTGTTGGTAACG -ACGGAATAACGGCTGTTGACTTCG -ACGGAATAACGGCTGTTGTACGCA -ACGGAATAACGGCTGTTGCTTGCA -ACGGAATAACGGCTGTTGCGAACA -ACGGAATAACGGCTGTTGCAGTCA -ACGGAATAACGGCTGTTGGATCCA -ACGGAATAACGGCTGTTGACGACA -ACGGAATAACGGCTGTTGAGCTCA -ACGGAATAACGGCTGTTGTCACGT -ACGGAATAACGGCTGTTGCGTAGT -ACGGAATAACGGCTGTTGGTCAGT -ACGGAATAACGGCTGTTGGAAGGT -ACGGAATAACGGCTGTTGAACCGT -ACGGAATAACGGCTGTTGTTGTGC -ACGGAATAACGGCTGTTGCTAAGC -ACGGAATAACGGCTGTTGACTAGC -ACGGAATAACGGCTGTTGAGATGC -ACGGAATAACGGCTGTTGTGAAGG -ACGGAATAACGGCTGTTGCAATGG -ACGGAATAACGGCTGTTGATGAGG -ACGGAATAACGGCTGTTGAATGGG -ACGGAATAACGGCTGTTGTCCTGA -ACGGAATAACGGCTGTTGTAGCGA -ACGGAATAACGGCTGTTGCACAGA -ACGGAATAACGGCTGTTGGCAAGA -ACGGAATAACGGCTGTTGGGTTGA -ACGGAATAACGGCTGTTGTCCGAT -ACGGAATAACGGCTGTTGTGGCAT -ACGGAATAACGGCTGTTGCGAGAT -ACGGAATAACGGCTGTTGTACCAC -ACGGAATAACGGCTGTTGCAGAAC -ACGGAATAACGGCTGTTGGTCTAC -ACGGAATAACGGCTGTTGACGTAC -ACGGAATAACGGCTGTTGAGTGAC -ACGGAATAACGGCTGTTGCTGTAG -ACGGAATAACGGCTGTTGCCTAAG -ACGGAATAACGGCTGTTGGTTCAG -ACGGAATAACGGCTGTTGGCATAG -ACGGAATAACGGCTGTTGGACAAG -ACGGAATAACGGCTGTTGAAGCAG -ACGGAATAACGGCTGTTGCGTCAA -ACGGAATAACGGCTGTTGGCTGAA -ACGGAATAACGGCTGTTGAGTACG -ACGGAATAACGGCTGTTGATCCGA -ACGGAATAACGGCTGTTGATGGGA -ACGGAATAACGGCTGTTGGTGCAA -ACGGAATAACGGCTGTTGGAGGAA -ACGGAATAACGGCTGTTGCAGGTA -ACGGAATAACGGCTGTTGGACTCT -ACGGAATAACGGCTGTTGAGTCCT -ACGGAATAACGGCTGTTGTAAGCC -ACGGAATAACGGCTGTTGATAGCC -ACGGAATAACGGCTGTTGTAACCG -ACGGAATAACGGCTGTTGATGCCA -ACGGAATAACGGATGTCCGGAAAC -ACGGAATAACGGATGTCCAACACC -ACGGAATAACGGATGTCCATCGAG -ACGGAATAACGGATGTCCCTCCTT -ACGGAATAACGGATGTCCCCTGTT -ACGGAATAACGGATGTCCCGGTTT -ACGGAATAACGGATGTCCGTGGTT -ACGGAATAACGGATGTCCGCCTTT -ACGGAATAACGGATGTCCGGTCTT -ACGGAATAACGGATGTCCACGCTT -ACGGAATAACGGATGTCCAGCGTT -ACGGAATAACGGATGTCCTTCGTC -ACGGAATAACGGATGTCCTCTCTC -ACGGAATAACGGATGTCCTGGATC -ACGGAATAACGGATGTCCCACTTC -ACGGAATAACGGATGTCCGTACTC -ACGGAATAACGGATGTCCGATGTC -ACGGAATAACGGATGTCCACAGTC -ACGGAATAACGGATGTCCTTGCTG -ACGGAATAACGGATGTCCTCCATG -ACGGAATAACGGATGTCCTGTGTG -ACGGAATAACGGATGTCCCTAGTG -ACGGAATAACGGATGTCCCATCTG -ACGGAATAACGGATGTCCGAGTTG -ACGGAATAACGGATGTCCAGACTG -ACGGAATAACGGATGTCCTCGGTA -ACGGAATAACGGATGTCCTGCCTA -ACGGAATAACGGATGTCCCCACTA -ACGGAATAACGGATGTCCGGAGTA -ACGGAATAACGGATGTCCTCGTCT -ACGGAATAACGGATGTCCTGCACT -ACGGAATAACGGATGTCCCTGACT -ACGGAATAACGGATGTCCCAACCT -ACGGAATAACGGATGTCCGCTACT -ACGGAATAACGGATGTCCGGATCT -ACGGAATAACGGATGTCCAAGGCT -ACGGAATAACGGATGTCCTCAACC -ACGGAATAACGGATGTCCTGTTCC -ACGGAATAACGGATGTCCATTCCC -ACGGAATAACGGATGTCCTTCTCG -ACGGAATAACGGATGTCCTAGACG -ACGGAATAACGGATGTCCGTAACG -ACGGAATAACGGATGTCCACTTCG -ACGGAATAACGGATGTCCTACGCA -ACGGAATAACGGATGTCCCTTGCA -ACGGAATAACGGATGTCCCGAACA -ACGGAATAACGGATGTCCCAGTCA -ACGGAATAACGGATGTCCGATCCA -ACGGAATAACGGATGTCCACGACA -ACGGAATAACGGATGTCCAGCTCA -ACGGAATAACGGATGTCCTCACGT -ACGGAATAACGGATGTCCCGTAGT -ACGGAATAACGGATGTCCGTCAGT -ACGGAATAACGGATGTCCGAAGGT -ACGGAATAACGGATGTCCAACCGT -ACGGAATAACGGATGTCCTTGTGC -ACGGAATAACGGATGTCCCTAAGC -ACGGAATAACGGATGTCCACTAGC -ACGGAATAACGGATGTCCAGATGC -ACGGAATAACGGATGTCCTGAAGG -ACGGAATAACGGATGTCCCAATGG -ACGGAATAACGGATGTCCATGAGG -ACGGAATAACGGATGTCCAATGGG -ACGGAATAACGGATGTCCTCCTGA -ACGGAATAACGGATGTCCTAGCGA -ACGGAATAACGGATGTCCCACAGA -ACGGAATAACGGATGTCCGCAAGA -ACGGAATAACGGATGTCCGGTTGA -ACGGAATAACGGATGTCCTCCGAT -ACGGAATAACGGATGTCCTGGCAT -ACGGAATAACGGATGTCCCGAGAT -ACGGAATAACGGATGTCCTACCAC -ACGGAATAACGGATGTCCCAGAAC -ACGGAATAACGGATGTCCGTCTAC -ACGGAATAACGGATGTCCACGTAC -ACGGAATAACGGATGTCCAGTGAC -ACGGAATAACGGATGTCCCTGTAG -ACGGAATAACGGATGTCCCCTAAG -ACGGAATAACGGATGTCCGTTCAG -ACGGAATAACGGATGTCCGCATAG -ACGGAATAACGGATGTCCGACAAG -ACGGAATAACGGATGTCCAAGCAG -ACGGAATAACGGATGTCCCGTCAA -ACGGAATAACGGATGTCCGCTGAA -ACGGAATAACGGATGTCCAGTACG -ACGGAATAACGGATGTCCATCCGA -ACGGAATAACGGATGTCCATGGGA -ACGGAATAACGGATGTCCGTGCAA -ACGGAATAACGGATGTCCGAGGAA -ACGGAATAACGGATGTCCCAGGTA -ACGGAATAACGGATGTCCGACTCT -ACGGAATAACGGATGTCCAGTCCT -ACGGAATAACGGATGTCCTAAGCC -ACGGAATAACGGATGTCCATAGCC -ACGGAATAACGGATGTCCTAACCG -ACGGAATAACGGATGTCCATGCCA -ACGGAATAACGGGTGTGTGGAAAC -ACGGAATAACGGGTGTGTAACACC -ACGGAATAACGGGTGTGTATCGAG -ACGGAATAACGGGTGTGTCTCCTT -ACGGAATAACGGGTGTGTCCTGTT -ACGGAATAACGGGTGTGTCGGTTT -ACGGAATAACGGGTGTGTGTGGTT -ACGGAATAACGGGTGTGTGCCTTT -ACGGAATAACGGGTGTGTGGTCTT -ACGGAATAACGGGTGTGTACGCTT -ACGGAATAACGGGTGTGTAGCGTT -ACGGAATAACGGGTGTGTTTCGTC -ACGGAATAACGGGTGTGTTCTCTC -ACGGAATAACGGGTGTGTTGGATC -ACGGAATAACGGGTGTGTCACTTC -ACGGAATAACGGGTGTGTGTACTC -ACGGAATAACGGGTGTGTGATGTC -ACGGAATAACGGGTGTGTACAGTC -ACGGAATAACGGGTGTGTTTGCTG -ACGGAATAACGGGTGTGTTCCATG -ACGGAATAACGGGTGTGTTGTGTG -ACGGAATAACGGGTGTGTCTAGTG -ACGGAATAACGGGTGTGTCATCTG -ACGGAATAACGGGTGTGTGAGTTG -ACGGAATAACGGGTGTGTAGACTG -ACGGAATAACGGGTGTGTTCGGTA -ACGGAATAACGGGTGTGTTGCCTA -ACGGAATAACGGGTGTGTCCACTA -ACGGAATAACGGGTGTGTGGAGTA -ACGGAATAACGGGTGTGTTCGTCT -ACGGAATAACGGGTGTGTTGCACT -ACGGAATAACGGGTGTGTCTGACT -ACGGAATAACGGGTGTGTCAACCT -ACGGAATAACGGGTGTGTGCTACT -ACGGAATAACGGGTGTGTGGATCT -ACGGAATAACGGGTGTGTAAGGCT -ACGGAATAACGGGTGTGTTCAACC -ACGGAATAACGGGTGTGTTGTTCC -ACGGAATAACGGGTGTGTATTCCC -ACGGAATAACGGGTGTGTTTCTCG -ACGGAATAACGGGTGTGTTAGACG -ACGGAATAACGGGTGTGTGTAACG -ACGGAATAACGGGTGTGTACTTCG -ACGGAATAACGGGTGTGTTACGCA -ACGGAATAACGGGTGTGTCTTGCA -ACGGAATAACGGGTGTGTCGAACA -ACGGAATAACGGGTGTGTCAGTCA -ACGGAATAACGGGTGTGTGATCCA -ACGGAATAACGGGTGTGTACGACA -ACGGAATAACGGGTGTGTAGCTCA -ACGGAATAACGGGTGTGTTCACGT -ACGGAATAACGGGTGTGTCGTAGT -ACGGAATAACGGGTGTGTGTCAGT -ACGGAATAACGGGTGTGTGAAGGT -ACGGAATAACGGGTGTGTAACCGT -ACGGAATAACGGGTGTGTTTGTGC -ACGGAATAACGGGTGTGTCTAAGC -ACGGAATAACGGGTGTGTACTAGC -ACGGAATAACGGGTGTGTAGATGC -ACGGAATAACGGGTGTGTTGAAGG -ACGGAATAACGGGTGTGTCAATGG -ACGGAATAACGGGTGTGTATGAGG -ACGGAATAACGGGTGTGTAATGGG -ACGGAATAACGGGTGTGTTCCTGA -ACGGAATAACGGGTGTGTTAGCGA -ACGGAATAACGGGTGTGTCACAGA -ACGGAATAACGGGTGTGTGCAAGA -ACGGAATAACGGGTGTGTGGTTGA -ACGGAATAACGGGTGTGTTCCGAT -ACGGAATAACGGGTGTGTTGGCAT -ACGGAATAACGGGTGTGTCGAGAT -ACGGAATAACGGGTGTGTTACCAC -ACGGAATAACGGGTGTGTCAGAAC -ACGGAATAACGGGTGTGTGTCTAC -ACGGAATAACGGGTGTGTACGTAC -ACGGAATAACGGGTGTGTAGTGAC -ACGGAATAACGGGTGTGTCTGTAG -ACGGAATAACGGGTGTGTCCTAAG -ACGGAATAACGGGTGTGTGTTCAG -ACGGAATAACGGGTGTGTGCATAG -ACGGAATAACGGGTGTGTGACAAG -ACGGAATAACGGGTGTGTAAGCAG -ACGGAATAACGGGTGTGTCGTCAA -ACGGAATAACGGGTGTGTGCTGAA -ACGGAATAACGGGTGTGTAGTACG -ACGGAATAACGGGTGTGTATCCGA -ACGGAATAACGGGTGTGTATGGGA -ACGGAATAACGGGTGTGTGTGCAA -ACGGAATAACGGGTGTGTGAGGAA -ACGGAATAACGGGTGTGTCAGGTA -ACGGAATAACGGGTGTGTGACTCT -ACGGAATAACGGGTGTGTAGTCCT -ACGGAATAACGGGTGTGTTAAGCC -ACGGAATAACGGGTGTGTATAGCC -ACGGAATAACGGGTGTGTTAACCG -ACGGAATAACGGGTGTGTATGCCA -ACGGAATAACGGGTGCTAGGAAAC -ACGGAATAACGGGTGCTAAACACC -ACGGAATAACGGGTGCTAATCGAG -ACGGAATAACGGGTGCTACTCCTT -ACGGAATAACGGGTGCTACCTGTT -ACGGAATAACGGGTGCTACGGTTT -ACGGAATAACGGGTGCTAGTGGTT -ACGGAATAACGGGTGCTAGCCTTT -ACGGAATAACGGGTGCTAGGTCTT -ACGGAATAACGGGTGCTAACGCTT -ACGGAATAACGGGTGCTAAGCGTT -ACGGAATAACGGGTGCTATTCGTC -ACGGAATAACGGGTGCTATCTCTC -ACGGAATAACGGGTGCTATGGATC -ACGGAATAACGGGTGCTACACTTC -ACGGAATAACGGGTGCTAGTACTC -ACGGAATAACGGGTGCTAGATGTC -ACGGAATAACGGGTGCTAACAGTC -ACGGAATAACGGGTGCTATTGCTG -ACGGAATAACGGGTGCTATCCATG -ACGGAATAACGGGTGCTATGTGTG -ACGGAATAACGGGTGCTACTAGTG -ACGGAATAACGGGTGCTACATCTG -ACGGAATAACGGGTGCTAGAGTTG -ACGGAATAACGGGTGCTAAGACTG -ACGGAATAACGGGTGCTATCGGTA -ACGGAATAACGGGTGCTATGCCTA -ACGGAATAACGGGTGCTACCACTA -ACGGAATAACGGGTGCTAGGAGTA -ACGGAATAACGGGTGCTATCGTCT -ACGGAATAACGGGTGCTATGCACT -ACGGAATAACGGGTGCTACTGACT -ACGGAATAACGGGTGCTACAACCT -ACGGAATAACGGGTGCTAGCTACT -ACGGAATAACGGGTGCTAGGATCT -ACGGAATAACGGGTGCTAAAGGCT -ACGGAATAACGGGTGCTATCAACC -ACGGAATAACGGGTGCTATGTTCC -ACGGAATAACGGGTGCTAATTCCC -ACGGAATAACGGGTGCTATTCTCG -ACGGAATAACGGGTGCTATAGACG -ACGGAATAACGGGTGCTAGTAACG -ACGGAATAACGGGTGCTAACTTCG -ACGGAATAACGGGTGCTATACGCA -ACGGAATAACGGGTGCTACTTGCA -ACGGAATAACGGGTGCTACGAACA -ACGGAATAACGGGTGCTACAGTCA -ACGGAATAACGGGTGCTAGATCCA -ACGGAATAACGGGTGCTAACGACA -ACGGAATAACGGGTGCTAAGCTCA -ACGGAATAACGGGTGCTATCACGT -ACGGAATAACGGGTGCTACGTAGT -ACGGAATAACGGGTGCTAGTCAGT -ACGGAATAACGGGTGCTAGAAGGT -ACGGAATAACGGGTGCTAAACCGT -ACGGAATAACGGGTGCTATTGTGC -ACGGAATAACGGGTGCTACTAAGC -ACGGAATAACGGGTGCTAACTAGC -ACGGAATAACGGGTGCTAAGATGC -ACGGAATAACGGGTGCTATGAAGG -ACGGAATAACGGGTGCTACAATGG -ACGGAATAACGGGTGCTAATGAGG -ACGGAATAACGGGTGCTAAATGGG -ACGGAATAACGGGTGCTATCCTGA -ACGGAATAACGGGTGCTATAGCGA -ACGGAATAACGGGTGCTACACAGA -ACGGAATAACGGGTGCTAGCAAGA -ACGGAATAACGGGTGCTAGGTTGA -ACGGAATAACGGGTGCTATCCGAT -ACGGAATAACGGGTGCTATGGCAT -ACGGAATAACGGGTGCTACGAGAT -ACGGAATAACGGGTGCTATACCAC -ACGGAATAACGGGTGCTACAGAAC -ACGGAATAACGGGTGCTAGTCTAC -ACGGAATAACGGGTGCTAACGTAC -ACGGAATAACGGGTGCTAAGTGAC -ACGGAATAACGGGTGCTACTGTAG -ACGGAATAACGGGTGCTACCTAAG -ACGGAATAACGGGTGCTAGTTCAG -ACGGAATAACGGGTGCTAGCATAG -ACGGAATAACGGGTGCTAGACAAG -ACGGAATAACGGGTGCTAAAGCAG -ACGGAATAACGGGTGCTACGTCAA -ACGGAATAACGGGTGCTAGCTGAA -ACGGAATAACGGGTGCTAAGTACG -ACGGAATAACGGGTGCTAATCCGA -ACGGAATAACGGGTGCTAATGGGA -ACGGAATAACGGGTGCTAGTGCAA -ACGGAATAACGGGTGCTAGAGGAA -ACGGAATAACGGGTGCTACAGGTA -ACGGAATAACGGGTGCTAGACTCT -ACGGAATAACGGGTGCTAAGTCCT -ACGGAATAACGGGTGCTATAAGCC -ACGGAATAACGGGTGCTAATAGCC -ACGGAATAACGGGTGCTATAACCG -ACGGAATAACGGGTGCTAATGCCA -ACGGAATAACGGCTGCATGGAAAC -ACGGAATAACGGCTGCATAACACC -ACGGAATAACGGCTGCATATCGAG -ACGGAATAACGGCTGCATCTCCTT -ACGGAATAACGGCTGCATCCTGTT -ACGGAATAACGGCTGCATCGGTTT -ACGGAATAACGGCTGCATGTGGTT -ACGGAATAACGGCTGCATGCCTTT -ACGGAATAACGGCTGCATGGTCTT -ACGGAATAACGGCTGCATACGCTT -ACGGAATAACGGCTGCATAGCGTT -ACGGAATAACGGCTGCATTTCGTC -ACGGAATAACGGCTGCATTCTCTC -ACGGAATAACGGCTGCATTGGATC -ACGGAATAACGGCTGCATCACTTC -ACGGAATAACGGCTGCATGTACTC -ACGGAATAACGGCTGCATGATGTC -ACGGAATAACGGCTGCATACAGTC -ACGGAATAACGGCTGCATTTGCTG -ACGGAATAACGGCTGCATTCCATG -ACGGAATAACGGCTGCATTGTGTG -ACGGAATAACGGCTGCATCTAGTG -ACGGAATAACGGCTGCATCATCTG -ACGGAATAACGGCTGCATGAGTTG -ACGGAATAACGGCTGCATAGACTG -ACGGAATAACGGCTGCATTCGGTA -ACGGAATAACGGCTGCATTGCCTA -ACGGAATAACGGCTGCATCCACTA -ACGGAATAACGGCTGCATGGAGTA -ACGGAATAACGGCTGCATTCGTCT -ACGGAATAACGGCTGCATTGCACT -ACGGAATAACGGCTGCATCTGACT -ACGGAATAACGGCTGCATCAACCT -ACGGAATAACGGCTGCATGCTACT -ACGGAATAACGGCTGCATGGATCT -ACGGAATAACGGCTGCATAAGGCT -ACGGAATAACGGCTGCATTCAACC -ACGGAATAACGGCTGCATTGTTCC -ACGGAATAACGGCTGCATATTCCC -ACGGAATAACGGCTGCATTTCTCG -ACGGAATAACGGCTGCATTAGACG -ACGGAATAACGGCTGCATGTAACG -ACGGAATAACGGCTGCATACTTCG -ACGGAATAACGGCTGCATTACGCA -ACGGAATAACGGCTGCATCTTGCA -ACGGAATAACGGCTGCATCGAACA -ACGGAATAACGGCTGCATCAGTCA -ACGGAATAACGGCTGCATGATCCA -ACGGAATAACGGCTGCATACGACA -ACGGAATAACGGCTGCATAGCTCA -ACGGAATAACGGCTGCATTCACGT -ACGGAATAACGGCTGCATCGTAGT -ACGGAATAACGGCTGCATGTCAGT -ACGGAATAACGGCTGCATGAAGGT -ACGGAATAACGGCTGCATAACCGT -ACGGAATAACGGCTGCATTTGTGC -ACGGAATAACGGCTGCATCTAAGC -ACGGAATAACGGCTGCATACTAGC -ACGGAATAACGGCTGCATAGATGC -ACGGAATAACGGCTGCATTGAAGG -ACGGAATAACGGCTGCATCAATGG -ACGGAATAACGGCTGCATATGAGG -ACGGAATAACGGCTGCATAATGGG -ACGGAATAACGGCTGCATTCCTGA -ACGGAATAACGGCTGCATTAGCGA -ACGGAATAACGGCTGCATCACAGA -ACGGAATAACGGCTGCATGCAAGA -ACGGAATAACGGCTGCATGGTTGA -ACGGAATAACGGCTGCATTCCGAT -ACGGAATAACGGCTGCATTGGCAT -ACGGAATAACGGCTGCATCGAGAT -ACGGAATAACGGCTGCATTACCAC -ACGGAATAACGGCTGCATCAGAAC -ACGGAATAACGGCTGCATGTCTAC -ACGGAATAACGGCTGCATACGTAC -ACGGAATAACGGCTGCATAGTGAC -ACGGAATAACGGCTGCATCTGTAG -ACGGAATAACGGCTGCATCCTAAG -ACGGAATAACGGCTGCATGTTCAG -ACGGAATAACGGCTGCATGCATAG -ACGGAATAACGGCTGCATGACAAG -ACGGAATAACGGCTGCATAAGCAG -ACGGAATAACGGCTGCATCGTCAA -ACGGAATAACGGCTGCATGCTGAA -ACGGAATAACGGCTGCATAGTACG -ACGGAATAACGGCTGCATATCCGA -ACGGAATAACGGCTGCATATGGGA -ACGGAATAACGGCTGCATGTGCAA -ACGGAATAACGGCTGCATGAGGAA -ACGGAATAACGGCTGCATCAGGTA -ACGGAATAACGGCTGCATGACTCT -ACGGAATAACGGCTGCATAGTCCT -ACGGAATAACGGCTGCATTAAGCC -ACGGAATAACGGCTGCATATAGCC -ACGGAATAACGGCTGCATTAACCG -ACGGAATAACGGCTGCATATGCCA -ACGGAATAACGGTTGGAGGGAAAC -ACGGAATAACGGTTGGAGAACACC -ACGGAATAACGGTTGGAGATCGAG -ACGGAATAACGGTTGGAGCTCCTT -ACGGAATAACGGTTGGAGCCTGTT -ACGGAATAACGGTTGGAGCGGTTT -ACGGAATAACGGTTGGAGGTGGTT -ACGGAATAACGGTTGGAGGCCTTT -ACGGAATAACGGTTGGAGGGTCTT -ACGGAATAACGGTTGGAGACGCTT -ACGGAATAACGGTTGGAGAGCGTT -ACGGAATAACGGTTGGAGTTCGTC -ACGGAATAACGGTTGGAGTCTCTC -ACGGAATAACGGTTGGAGTGGATC -ACGGAATAACGGTTGGAGCACTTC -ACGGAATAACGGTTGGAGGTACTC -ACGGAATAACGGTTGGAGGATGTC -ACGGAATAACGGTTGGAGACAGTC -ACGGAATAACGGTTGGAGTTGCTG -ACGGAATAACGGTTGGAGTCCATG -ACGGAATAACGGTTGGAGTGTGTG -ACGGAATAACGGTTGGAGCTAGTG -ACGGAATAACGGTTGGAGCATCTG -ACGGAATAACGGTTGGAGGAGTTG -ACGGAATAACGGTTGGAGAGACTG -ACGGAATAACGGTTGGAGTCGGTA -ACGGAATAACGGTTGGAGTGCCTA -ACGGAATAACGGTTGGAGCCACTA -ACGGAATAACGGTTGGAGGGAGTA -ACGGAATAACGGTTGGAGTCGTCT -ACGGAATAACGGTTGGAGTGCACT -ACGGAATAACGGTTGGAGCTGACT -ACGGAATAACGGTTGGAGCAACCT -ACGGAATAACGGTTGGAGGCTACT -ACGGAATAACGGTTGGAGGGATCT -ACGGAATAACGGTTGGAGAAGGCT -ACGGAATAACGGTTGGAGTCAACC -ACGGAATAACGGTTGGAGTGTTCC -ACGGAATAACGGTTGGAGATTCCC -ACGGAATAACGGTTGGAGTTCTCG -ACGGAATAACGGTTGGAGTAGACG -ACGGAATAACGGTTGGAGGTAACG -ACGGAATAACGGTTGGAGACTTCG -ACGGAATAACGGTTGGAGTACGCA -ACGGAATAACGGTTGGAGCTTGCA -ACGGAATAACGGTTGGAGCGAACA -ACGGAATAACGGTTGGAGCAGTCA -ACGGAATAACGGTTGGAGGATCCA -ACGGAATAACGGTTGGAGACGACA -ACGGAATAACGGTTGGAGAGCTCA -ACGGAATAACGGTTGGAGTCACGT -ACGGAATAACGGTTGGAGCGTAGT -ACGGAATAACGGTTGGAGGTCAGT -ACGGAATAACGGTTGGAGGAAGGT -ACGGAATAACGGTTGGAGAACCGT -ACGGAATAACGGTTGGAGTTGTGC -ACGGAATAACGGTTGGAGCTAAGC -ACGGAATAACGGTTGGAGACTAGC -ACGGAATAACGGTTGGAGAGATGC -ACGGAATAACGGTTGGAGTGAAGG -ACGGAATAACGGTTGGAGCAATGG -ACGGAATAACGGTTGGAGATGAGG -ACGGAATAACGGTTGGAGAATGGG -ACGGAATAACGGTTGGAGTCCTGA -ACGGAATAACGGTTGGAGTAGCGA -ACGGAATAACGGTTGGAGCACAGA -ACGGAATAACGGTTGGAGGCAAGA -ACGGAATAACGGTTGGAGGGTTGA -ACGGAATAACGGTTGGAGTCCGAT -ACGGAATAACGGTTGGAGTGGCAT -ACGGAATAACGGTTGGAGCGAGAT -ACGGAATAACGGTTGGAGTACCAC -ACGGAATAACGGTTGGAGCAGAAC -ACGGAATAACGGTTGGAGGTCTAC -ACGGAATAACGGTTGGAGACGTAC -ACGGAATAACGGTTGGAGAGTGAC -ACGGAATAACGGTTGGAGCTGTAG -ACGGAATAACGGTTGGAGCCTAAG -ACGGAATAACGGTTGGAGGTTCAG -ACGGAATAACGGTTGGAGGCATAG -ACGGAATAACGGTTGGAGGACAAG -ACGGAATAACGGTTGGAGAAGCAG -ACGGAATAACGGTTGGAGCGTCAA -ACGGAATAACGGTTGGAGGCTGAA -ACGGAATAACGGTTGGAGAGTACG -ACGGAATAACGGTTGGAGATCCGA -ACGGAATAACGGTTGGAGATGGGA -ACGGAATAACGGTTGGAGGTGCAA -ACGGAATAACGGTTGGAGGAGGAA -ACGGAATAACGGTTGGAGCAGGTA -ACGGAATAACGGTTGGAGGACTCT -ACGGAATAACGGTTGGAGAGTCCT -ACGGAATAACGGTTGGAGTAAGCC -ACGGAATAACGGTTGGAGATAGCC -ACGGAATAACGGTTGGAGTAACCG -ACGGAATAACGGTTGGAGATGCCA -ACGGAATAACGGCTGAGAGGAAAC -ACGGAATAACGGCTGAGAAACACC -ACGGAATAACGGCTGAGAATCGAG -ACGGAATAACGGCTGAGACTCCTT -ACGGAATAACGGCTGAGACCTGTT -ACGGAATAACGGCTGAGACGGTTT -ACGGAATAACGGCTGAGAGTGGTT -ACGGAATAACGGCTGAGAGCCTTT -ACGGAATAACGGCTGAGAGGTCTT -ACGGAATAACGGCTGAGAACGCTT -ACGGAATAACGGCTGAGAAGCGTT -ACGGAATAACGGCTGAGATTCGTC -ACGGAATAACGGCTGAGATCTCTC -ACGGAATAACGGCTGAGATGGATC -ACGGAATAACGGCTGAGACACTTC -ACGGAATAACGGCTGAGAGTACTC -ACGGAATAACGGCTGAGAGATGTC -ACGGAATAACGGCTGAGAACAGTC -ACGGAATAACGGCTGAGATTGCTG -ACGGAATAACGGCTGAGATCCATG -ACGGAATAACGGCTGAGATGTGTG -ACGGAATAACGGCTGAGACTAGTG -ACGGAATAACGGCTGAGACATCTG -ACGGAATAACGGCTGAGAGAGTTG -ACGGAATAACGGCTGAGAAGACTG -ACGGAATAACGGCTGAGATCGGTA -ACGGAATAACGGCTGAGATGCCTA -ACGGAATAACGGCTGAGACCACTA -ACGGAATAACGGCTGAGAGGAGTA -ACGGAATAACGGCTGAGATCGTCT -ACGGAATAACGGCTGAGATGCACT -ACGGAATAACGGCTGAGACTGACT -ACGGAATAACGGCTGAGACAACCT -ACGGAATAACGGCTGAGAGCTACT -ACGGAATAACGGCTGAGAGGATCT -ACGGAATAACGGCTGAGAAAGGCT -ACGGAATAACGGCTGAGATCAACC -ACGGAATAACGGCTGAGATGTTCC -ACGGAATAACGGCTGAGAATTCCC -ACGGAATAACGGCTGAGATTCTCG -ACGGAATAACGGCTGAGATAGACG -ACGGAATAACGGCTGAGAGTAACG -ACGGAATAACGGCTGAGAACTTCG -ACGGAATAACGGCTGAGATACGCA -ACGGAATAACGGCTGAGACTTGCA -ACGGAATAACGGCTGAGACGAACA -ACGGAATAACGGCTGAGACAGTCA -ACGGAATAACGGCTGAGAGATCCA -ACGGAATAACGGCTGAGAACGACA -ACGGAATAACGGCTGAGAAGCTCA -ACGGAATAACGGCTGAGATCACGT -ACGGAATAACGGCTGAGACGTAGT -ACGGAATAACGGCTGAGAGTCAGT -ACGGAATAACGGCTGAGAGAAGGT -ACGGAATAACGGCTGAGAAACCGT -ACGGAATAACGGCTGAGATTGTGC -ACGGAATAACGGCTGAGACTAAGC -ACGGAATAACGGCTGAGAACTAGC -ACGGAATAACGGCTGAGAAGATGC -ACGGAATAACGGCTGAGATGAAGG -ACGGAATAACGGCTGAGACAATGG -ACGGAATAACGGCTGAGAATGAGG -ACGGAATAACGGCTGAGAAATGGG -ACGGAATAACGGCTGAGATCCTGA -ACGGAATAACGGCTGAGATAGCGA -ACGGAATAACGGCTGAGACACAGA -ACGGAATAACGGCTGAGAGCAAGA -ACGGAATAACGGCTGAGAGGTTGA -ACGGAATAACGGCTGAGATCCGAT -ACGGAATAACGGCTGAGATGGCAT -ACGGAATAACGGCTGAGACGAGAT -ACGGAATAACGGCTGAGATACCAC -ACGGAATAACGGCTGAGACAGAAC -ACGGAATAACGGCTGAGAGTCTAC -ACGGAATAACGGCTGAGAACGTAC -ACGGAATAACGGCTGAGAAGTGAC -ACGGAATAACGGCTGAGACTGTAG -ACGGAATAACGGCTGAGACCTAAG -ACGGAATAACGGCTGAGAGTTCAG -ACGGAATAACGGCTGAGAGCATAG -ACGGAATAACGGCTGAGAGACAAG -ACGGAATAACGGCTGAGAAAGCAG -ACGGAATAACGGCTGAGACGTCAA -ACGGAATAACGGCTGAGAGCTGAA -ACGGAATAACGGCTGAGAAGTACG -ACGGAATAACGGCTGAGAATCCGA -ACGGAATAACGGCTGAGAATGGGA -ACGGAATAACGGCTGAGAGTGCAA -ACGGAATAACGGCTGAGAGAGGAA -ACGGAATAACGGCTGAGACAGGTA -ACGGAATAACGGCTGAGAGACTCT -ACGGAATAACGGCTGAGAAGTCCT -ACGGAATAACGGCTGAGATAAGCC -ACGGAATAACGGCTGAGAATAGCC -ACGGAATAACGGCTGAGATAACCG -ACGGAATAACGGCTGAGAATGCCA -ACGGAATAACGGGTATCGGGAAAC -ACGGAATAACGGGTATCGAACACC -ACGGAATAACGGGTATCGATCGAG -ACGGAATAACGGGTATCGCTCCTT -ACGGAATAACGGGTATCGCCTGTT -ACGGAATAACGGGTATCGCGGTTT -ACGGAATAACGGGTATCGGTGGTT -ACGGAATAACGGGTATCGGCCTTT -ACGGAATAACGGGTATCGGGTCTT -ACGGAATAACGGGTATCGACGCTT -ACGGAATAACGGGTATCGAGCGTT -ACGGAATAACGGGTATCGTTCGTC -ACGGAATAACGGGTATCGTCTCTC -ACGGAATAACGGGTATCGTGGATC -ACGGAATAACGGGTATCGCACTTC -ACGGAATAACGGGTATCGGTACTC -ACGGAATAACGGGTATCGGATGTC -ACGGAATAACGGGTATCGACAGTC -ACGGAATAACGGGTATCGTTGCTG -ACGGAATAACGGGTATCGTCCATG -ACGGAATAACGGGTATCGTGTGTG -ACGGAATAACGGGTATCGCTAGTG -ACGGAATAACGGGTATCGCATCTG -ACGGAATAACGGGTATCGGAGTTG -ACGGAATAACGGGTATCGAGACTG -ACGGAATAACGGGTATCGTCGGTA -ACGGAATAACGGGTATCGTGCCTA -ACGGAATAACGGGTATCGCCACTA -ACGGAATAACGGGTATCGGGAGTA -ACGGAATAACGGGTATCGTCGTCT -ACGGAATAACGGGTATCGTGCACT -ACGGAATAACGGGTATCGCTGACT -ACGGAATAACGGGTATCGCAACCT -ACGGAATAACGGGTATCGGCTACT -ACGGAATAACGGGTATCGGGATCT -ACGGAATAACGGGTATCGAAGGCT -ACGGAATAACGGGTATCGTCAACC -ACGGAATAACGGGTATCGTGTTCC -ACGGAATAACGGGTATCGATTCCC -ACGGAATAACGGGTATCGTTCTCG -ACGGAATAACGGGTATCGTAGACG -ACGGAATAACGGGTATCGGTAACG -ACGGAATAACGGGTATCGACTTCG -ACGGAATAACGGGTATCGTACGCA -ACGGAATAACGGGTATCGCTTGCA -ACGGAATAACGGGTATCGCGAACA -ACGGAATAACGGGTATCGCAGTCA -ACGGAATAACGGGTATCGGATCCA -ACGGAATAACGGGTATCGACGACA -ACGGAATAACGGGTATCGAGCTCA -ACGGAATAACGGGTATCGTCACGT -ACGGAATAACGGGTATCGCGTAGT -ACGGAATAACGGGTATCGGTCAGT -ACGGAATAACGGGTATCGGAAGGT -ACGGAATAACGGGTATCGAACCGT -ACGGAATAACGGGTATCGTTGTGC -ACGGAATAACGGGTATCGCTAAGC -ACGGAATAACGGGTATCGACTAGC -ACGGAATAACGGGTATCGAGATGC -ACGGAATAACGGGTATCGTGAAGG -ACGGAATAACGGGTATCGCAATGG -ACGGAATAACGGGTATCGATGAGG -ACGGAATAACGGGTATCGAATGGG -ACGGAATAACGGGTATCGTCCTGA -ACGGAATAACGGGTATCGTAGCGA -ACGGAATAACGGGTATCGCACAGA -ACGGAATAACGGGTATCGGCAAGA -ACGGAATAACGGGTATCGGGTTGA -ACGGAATAACGGGTATCGTCCGAT -ACGGAATAACGGGTATCGTGGCAT -ACGGAATAACGGGTATCGCGAGAT -ACGGAATAACGGGTATCGTACCAC -ACGGAATAACGGGTATCGCAGAAC -ACGGAATAACGGGTATCGGTCTAC -ACGGAATAACGGGTATCGACGTAC -ACGGAATAACGGGTATCGAGTGAC -ACGGAATAACGGGTATCGCTGTAG -ACGGAATAACGGGTATCGCCTAAG -ACGGAATAACGGGTATCGGTTCAG -ACGGAATAACGGGTATCGGCATAG -ACGGAATAACGGGTATCGGACAAG -ACGGAATAACGGGTATCGAAGCAG -ACGGAATAACGGGTATCGCGTCAA -ACGGAATAACGGGTATCGGCTGAA -ACGGAATAACGGGTATCGAGTACG -ACGGAATAACGGGTATCGATCCGA -ACGGAATAACGGGTATCGATGGGA -ACGGAATAACGGGTATCGGTGCAA -ACGGAATAACGGGTATCGGAGGAA -ACGGAATAACGGGTATCGCAGGTA -ACGGAATAACGGGTATCGGACTCT -ACGGAATAACGGGTATCGAGTCCT -ACGGAATAACGGGTATCGTAAGCC -ACGGAATAACGGGTATCGATAGCC -ACGGAATAACGGGTATCGTAACCG -ACGGAATAACGGGTATCGATGCCA -ACGGAATAACGGCTATGCGGAAAC -ACGGAATAACGGCTATGCAACACC -ACGGAATAACGGCTATGCATCGAG -ACGGAATAACGGCTATGCCTCCTT -ACGGAATAACGGCTATGCCCTGTT -ACGGAATAACGGCTATGCCGGTTT -ACGGAATAACGGCTATGCGTGGTT -ACGGAATAACGGCTATGCGCCTTT -ACGGAATAACGGCTATGCGGTCTT -ACGGAATAACGGCTATGCACGCTT -ACGGAATAACGGCTATGCAGCGTT -ACGGAATAACGGCTATGCTTCGTC -ACGGAATAACGGCTATGCTCTCTC -ACGGAATAACGGCTATGCTGGATC -ACGGAATAACGGCTATGCCACTTC -ACGGAATAACGGCTATGCGTACTC -ACGGAATAACGGCTATGCGATGTC -ACGGAATAACGGCTATGCACAGTC -ACGGAATAACGGCTATGCTTGCTG -ACGGAATAACGGCTATGCTCCATG -ACGGAATAACGGCTATGCTGTGTG -ACGGAATAACGGCTATGCCTAGTG -ACGGAATAACGGCTATGCCATCTG -ACGGAATAACGGCTATGCGAGTTG -ACGGAATAACGGCTATGCAGACTG -ACGGAATAACGGCTATGCTCGGTA -ACGGAATAACGGCTATGCTGCCTA -ACGGAATAACGGCTATGCCCACTA -ACGGAATAACGGCTATGCGGAGTA -ACGGAATAACGGCTATGCTCGTCT -ACGGAATAACGGCTATGCTGCACT -ACGGAATAACGGCTATGCCTGACT -ACGGAATAACGGCTATGCCAACCT -ACGGAATAACGGCTATGCGCTACT -ACGGAATAACGGCTATGCGGATCT -ACGGAATAACGGCTATGCAAGGCT -ACGGAATAACGGCTATGCTCAACC -ACGGAATAACGGCTATGCTGTTCC -ACGGAATAACGGCTATGCATTCCC -ACGGAATAACGGCTATGCTTCTCG -ACGGAATAACGGCTATGCTAGACG -ACGGAATAACGGCTATGCGTAACG -ACGGAATAACGGCTATGCACTTCG -ACGGAATAACGGCTATGCTACGCA -ACGGAATAACGGCTATGCCTTGCA -ACGGAATAACGGCTATGCCGAACA -ACGGAATAACGGCTATGCCAGTCA -ACGGAATAACGGCTATGCGATCCA -ACGGAATAACGGCTATGCACGACA -ACGGAATAACGGCTATGCAGCTCA -ACGGAATAACGGCTATGCTCACGT -ACGGAATAACGGCTATGCCGTAGT -ACGGAATAACGGCTATGCGTCAGT -ACGGAATAACGGCTATGCGAAGGT -ACGGAATAACGGCTATGCAACCGT -ACGGAATAACGGCTATGCTTGTGC -ACGGAATAACGGCTATGCCTAAGC -ACGGAATAACGGCTATGCACTAGC -ACGGAATAACGGCTATGCAGATGC -ACGGAATAACGGCTATGCTGAAGG -ACGGAATAACGGCTATGCCAATGG -ACGGAATAACGGCTATGCATGAGG -ACGGAATAACGGCTATGCAATGGG -ACGGAATAACGGCTATGCTCCTGA -ACGGAATAACGGCTATGCTAGCGA -ACGGAATAACGGCTATGCCACAGA -ACGGAATAACGGCTATGCGCAAGA -ACGGAATAACGGCTATGCGGTTGA -ACGGAATAACGGCTATGCTCCGAT -ACGGAATAACGGCTATGCTGGCAT -ACGGAATAACGGCTATGCCGAGAT -ACGGAATAACGGCTATGCTACCAC -ACGGAATAACGGCTATGCCAGAAC -ACGGAATAACGGCTATGCGTCTAC -ACGGAATAACGGCTATGCACGTAC -ACGGAATAACGGCTATGCAGTGAC -ACGGAATAACGGCTATGCCTGTAG -ACGGAATAACGGCTATGCCCTAAG -ACGGAATAACGGCTATGCGTTCAG -ACGGAATAACGGCTATGCGCATAG -ACGGAATAACGGCTATGCGACAAG -ACGGAATAACGGCTATGCAAGCAG -ACGGAATAACGGCTATGCCGTCAA -ACGGAATAACGGCTATGCGCTGAA -ACGGAATAACGGCTATGCAGTACG -ACGGAATAACGGCTATGCATCCGA -ACGGAATAACGGCTATGCATGGGA -ACGGAATAACGGCTATGCGTGCAA -ACGGAATAACGGCTATGCGAGGAA -ACGGAATAACGGCTATGCCAGGTA -ACGGAATAACGGCTATGCGACTCT -ACGGAATAACGGCTATGCAGTCCT -ACGGAATAACGGCTATGCTAAGCC -ACGGAATAACGGCTATGCATAGCC -ACGGAATAACGGCTATGCTAACCG -ACGGAATAACGGCTATGCATGCCA -ACGGAATAACGGCTACCAGGAAAC -ACGGAATAACGGCTACCAAACACC -ACGGAATAACGGCTACCAATCGAG -ACGGAATAACGGCTACCACTCCTT -ACGGAATAACGGCTACCACCTGTT -ACGGAATAACGGCTACCACGGTTT -ACGGAATAACGGCTACCAGTGGTT -ACGGAATAACGGCTACCAGCCTTT -ACGGAATAACGGCTACCAGGTCTT -ACGGAATAACGGCTACCAACGCTT -ACGGAATAACGGCTACCAAGCGTT -ACGGAATAACGGCTACCATTCGTC -ACGGAATAACGGCTACCATCTCTC -ACGGAATAACGGCTACCATGGATC -ACGGAATAACGGCTACCACACTTC -ACGGAATAACGGCTACCAGTACTC -ACGGAATAACGGCTACCAGATGTC -ACGGAATAACGGCTACCAACAGTC -ACGGAATAACGGCTACCATTGCTG -ACGGAATAACGGCTACCATCCATG -ACGGAATAACGGCTACCATGTGTG -ACGGAATAACGGCTACCACTAGTG -ACGGAATAACGGCTACCACATCTG -ACGGAATAACGGCTACCAGAGTTG -ACGGAATAACGGCTACCAAGACTG -ACGGAATAACGGCTACCATCGGTA -ACGGAATAACGGCTACCATGCCTA -ACGGAATAACGGCTACCACCACTA -ACGGAATAACGGCTACCAGGAGTA -ACGGAATAACGGCTACCATCGTCT -ACGGAATAACGGCTACCATGCACT -ACGGAATAACGGCTACCACTGACT -ACGGAATAACGGCTACCACAACCT -ACGGAATAACGGCTACCAGCTACT -ACGGAATAACGGCTACCAGGATCT -ACGGAATAACGGCTACCAAAGGCT -ACGGAATAACGGCTACCATCAACC -ACGGAATAACGGCTACCATGTTCC -ACGGAATAACGGCTACCAATTCCC -ACGGAATAACGGCTACCATTCTCG -ACGGAATAACGGCTACCATAGACG -ACGGAATAACGGCTACCAGTAACG -ACGGAATAACGGCTACCAACTTCG -ACGGAATAACGGCTACCATACGCA -ACGGAATAACGGCTACCACTTGCA -ACGGAATAACGGCTACCACGAACA -ACGGAATAACGGCTACCACAGTCA -ACGGAATAACGGCTACCAGATCCA -ACGGAATAACGGCTACCAACGACA -ACGGAATAACGGCTACCAAGCTCA -ACGGAATAACGGCTACCATCACGT -ACGGAATAACGGCTACCACGTAGT -ACGGAATAACGGCTACCAGTCAGT -ACGGAATAACGGCTACCAGAAGGT -ACGGAATAACGGCTACCAAACCGT -ACGGAATAACGGCTACCATTGTGC -ACGGAATAACGGCTACCACTAAGC -ACGGAATAACGGCTACCAACTAGC -ACGGAATAACGGCTACCAAGATGC -ACGGAATAACGGCTACCATGAAGG -ACGGAATAACGGCTACCACAATGG -ACGGAATAACGGCTACCAATGAGG -ACGGAATAACGGCTACCAAATGGG -ACGGAATAACGGCTACCATCCTGA -ACGGAATAACGGCTACCATAGCGA -ACGGAATAACGGCTACCACACAGA -ACGGAATAACGGCTACCAGCAAGA -ACGGAATAACGGCTACCAGGTTGA -ACGGAATAACGGCTACCATCCGAT -ACGGAATAACGGCTACCATGGCAT -ACGGAATAACGGCTACCACGAGAT -ACGGAATAACGGCTACCATACCAC -ACGGAATAACGGCTACCACAGAAC -ACGGAATAACGGCTACCAGTCTAC -ACGGAATAACGGCTACCAACGTAC -ACGGAATAACGGCTACCAAGTGAC -ACGGAATAACGGCTACCACTGTAG -ACGGAATAACGGCTACCACCTAAG -ACGGAATAACGGCTACCAGTTCAG -ACGGAATAACGGCTACCAGCATAG -ACGGAATAACGGCTACCAGACAAG -ACGGAATAACGGCTACCAAAGCAG -ACGGAATAACGGCTACCACGTCAA -ACGGAATAACGGCTACCAGCTGAA -ACGGAATAACGGCTACCAAGTACG -ACGGAATAACGGCTACCAATCCGA -ACGGAATAACGGCTACCAATGGGA -ACGGAATAACGGCTACCAGTGCAA -ACGGAATAACGGCTACCAGAGGAA -ACGGAATAACGGCTACCACAGGTA -ACGGAATAACGGCTACCAGACTCT -ACGGAATAACGGCTACCAAGTCCT -ACGGAATAACGGCTACCATAAGCC -ACGGAATAACGGCTACCAATAGCC -ACGGAATAACGGCTACCATAACCG -ACGGAATAACGGCTACCAATGCCA -ACGGAATAACGGGTAGGAGGAAAC -ACGGAATAACGGGTAGGAAACACC -ACGGAATAACGGGTAGGAATCGAG -ACGGAATAACGGGTAGGACTCCTT -ACGGAATAACGGGTAGGACCTGTT -ACGGAATAACGGGTAGGACGGTTT -ACGGAATAACGGGTAGGAGTGGTT -ACGGAATAACGGGTAGGAGCCTTT -ACGGAATAACGGGTAGGAGGTCTT -ACGGAATAACGGGTAGGAACGCTT -ACGGAATAACGGGTAGGAAGCGTT -ACGGAATAACGGGTAGGATTCGTC -ACGGAATAACGGGTAGGATCTCTC -ACGGAATAACGGGTAGGATGGATC -ACGGAATAACGGGTAGGACACTTC -ACGGAATAACGGGTAGGAGTACTC -ACGGAATAACGGGTAGGAGATGTC -ACGGAATAACGGGTAGGAACAGTC -ACGGAATAACGGGTAGGATTGCTG -ACGGAATAACGGGTAGGATCCATG -ACGGAATAACGGGTAGGATGTGTG -ACGGAATAACGGGTAGGACTAGTG -ACGGAATAACGGGTAGGACATCTG -ACGGAATAACGGGTAGGAGAGTTG -ACGGAATAACGGGTAGGAAGACTG -ACGGAATAACGGGTAGGATCGGTA -ACGGAATAACGGGTAGGATGCCTA -ACGGAATAACGGGTAGGACCACTA -ACGGAATAACGGGTAGGAGGAGTA -ACGGAATAACGGGTAGGATCGTCT -ACGGAATAACGGGTAGGATGCACT -ACGGAATAACGGGTAGGACTGACT -ACGGAATAACGGGTAGGACAACCT -ACGGAATAACGGGTAGGAGCTACT -ACGGAATAACGGGTAGGAGGATCT -ACGGAATAACGGGTAGGAAAGGCT -ACGGAATAACGGGTAGGATCAACC -ACGGAATAACGGGTAGGATGTTCC -ACGGAATAACGGGTAGGAATTCCC -ACGGAATAACGGGTAGGATTCTCG -ACGGAATAACGGGTAGGATAGACG -ACGGAATAACGGGTAGGAGTAACG -ACGGAATAACGGGTAGGAACTTCG -ACGGAATAACGGGTAGGATACGCA -ACGGAATAACGGGTAGGACTTGCA -ACGGAATAACGGGTAGGACGAACA -ACGGAATAACGGGTAGGACAGTCA -ACGGAATAACGGGTAGGAGATCCA -ACGGAATAACGGGTAGGAACGACA -ACGGAATAACGGGTAGGAAGCTCA -ACGGAATAACGGGTAGGATCACGT -ACGGAATAACGGGTAGGACGTAGT -ACGGAATAACGGGTAGGAGTCAGT -ACGGAATAACGGGTAGGAGAAGGT -ACGGAATAACGGGTAGGAAACCGT -ACGGAATAACGGGTAGGATTGTGC -ACGGAATAACGGGTAGGACTAAGC -ACGGAATAACGGGTAGGAACTAGC -ACGGAATAACGGGTAGGAAGATGC -ACGGAATAACGGGTAGGATGAAGG -ACGGAATAACGGGTAGGACAATGG -ACGGAATAACGGGTAGGAATGAGG -ACGGAATAACGGGTAGGAAATGGG -ACGGAATAACGGGTAGGATCCTGA -ACGGAATAACGGGTAGGATAGCGA -ACGGAATAACGGGTAGGACACAGA -ACGGAATAACGGGTAGGAGCAAGA -ACGGAATAACGGGTAGGAGGTTGA -ACGGAATAACGGGTAGGATCCGAT -ACGGAATAACGGGTAGGATGGCAT -ACGGAATAACGGGTAGGACGAGAT -ACGGAATAACGGGTAGGATACCAC -ACGGAATAACGGGTAGGACAGAAC -ACGGAATAACGGGTAGGAGTCTAC -ACGGAATAACGGGTAGGAACGTAC -ACGGAATAACGGGTAGGAAGTGAC -ACGGAATAACGGGTAGGACTGTAG -ACGGAATAACGGGTAGGACCTAAG -ACGGAATAACGGGTAGGAGTTCAG -ACGGAATAACGGGTAGGAGCATAG -ACGGAATAACGGGTAGGAGACAAG -ACGGAATAACGGGTAGGAAAGCAG -ACGGAATAACGGGTAGGACGTCAA -ACGGAATAACGGGTAGGAGCTGAA -ACGGAATAACGGGTAGGAAGTACG -ACGGAATAACGGGTAGGAATCCGA -ACGGAATAACGGGTAGGAATGGGA -ACGGAATAACGGGTAGGAGTGCAA -ACGGAATAACGGGTAGGAGAGGAA -ACGGAATAACGGGTAGGACAGGTA -ACGGAATAACGGGTAGGAGACTCT -ACGGAATAACGGGTAGGAAGTCCT -ACGGAATAACGGGTAGGATAAGCC -ACGGAATAACGGGTAGGAATAGCC -ACGGAATAACGGGTAGGATAACCG -ACGGAATAACGGGTAGGAATGCCA -ACGGAATAACGGTCTTCGGGAAAC -ACGGAATAACGGTCTTCGAACACC -ACGGAATAACGGTCTTCGATCGAG -ACGGAATAACGGTCTTCGCTCCTT -ACGGAATAACGGTCTTCGCCTGTT -ACGGAATAACGGTCTTCGCGGTTT -ACGGAATAACGGTCTTCGGTGGTT -ACGGAATAACGGTCTTCGGCCTTT -ACGGAATAACGGTCTTCGGGTCTT -ACGGAATAACGGTCTTCGACGCTT -ACGGAATAACGGTCTTCGAGCGTT -ACGGAATAACGGTCTTCGTTCGTC -ACGGAATAACGGTCTTCGTCTCTC -ACGGAATAACGGTCTTCGTGGATC -ACGGAATAACGGTCTTCGCACTTC -ACGGAATAACGGTCTTCGGTACTC -ACGGAATAACGGTCTTCGGATGTC -ACGGAATAACGGTCTTCGACAGTC -ACGGAATAACGGTCTTCGTTGCTG -ACGGAATAACGGTCTTCGTCCATG -ACGGAATAACGGTCTTCGTGTGTG -ACGGAATAACGGTCTTCGCTAGTG -ACGGAATAACGGTCTTCGCATCTG -ACGGAATAACGGTCTTCGGAGTTG -ACGGAATAACGGTCTTCGAGACTG -ACGGAATAACGGTCTTCGTCGGTA -ACGGAATAACGGTCTTCGTGCCTA -ACGGAATAACGGTCTTCGCCACTA -ACGGAATAACGGTCTTCGGGAGTA -ACGGAATAACGGTCTTCGTCGTCT -ACGGAATAACGGTCTTCGTGCACT -ACGGAATAACGGTCTTCGCTGACT -ACGGAATAACGGTCTTCGCAACCT -ACGGAATAACGGTCTTCGGCTACT -ACGGAATAACGGTCTTCGGGATCT -ACGGAATAACGGTCTTCGAAGGCT -ACGGAATAACGGTCTTCGTCAACC -ACGGAATAACGGTCTTCGTGTTCC -ACGGAATAACGGTCTTCGATTCCC -ACGGAATAACGGTCTTCGTTCTCG -ACGGAATAACGGTCTTCGTAGACG -ACGGAATAACGGTCTTCGGTAACG -ACGGAATAACGGTCTTCGACTTCG -ACGGAATAACGGTCTTCGTACGCA -ACGGAATAACGGTCTTCGCTTGCA -ACGGAATAACGGTCTTCGCGAACA -ACGGAATAACGGTCTTCGCAGTCA -ACGGAATAACGGTCTTCGGATCCA -ACGGAATAACGGTCTTCGACGACA -ACGGAATAACGGTCTTCGAGCTCA -ACGGAATAACGGTCTTCGTCACGT -ACGGAATAACGGTCTTCGCGTAGT -ACGGAATAACGGTCTTCGGTCAGT -ACGGAATAACGGTCTTCGGAAGGT -ACGGAATAACGGTCTTCGAACCGT -ACGGAATAACGGTCTTCGTTGTGC -ACGGAATAACGGTCTTCGCTAAGC -ACGGAATAACGGTCTTCGACTAGC -ACGGAATAACGGTCTTCGAGATGC -ACGGAATAACGGTCTTCGTGAAGG -ACGGAATAACGGTCTTCGCAATGG -ACGGAATAACGGTCTTCGATGAGG -ACGGAATAACGGTCTTCGAATGGG -ACGGAATAACGGTCTTCGTCCTGA -ACGGAATAACGGTCTTCGTAGCGA -ACGGAATAACGGTCTTCGCACAGA -ACGGAATAACGGTCTTCGGCAAGA -ACGGAATAACGGTCTTCGGGTTGA -ACGGAATAACGGTCTTCGTCCGAT -ACGGAATAACGGTCTTCGTGGCAT -ACGGAATAACGGTCTTCGCGAGAT -ACGGAATAACGGTCTTCGTACCAC -ACGGAATAACGGTCTTCGCAGAAC -ACGGAATAACGGTCTTCGGTCTAC -ACGGAATAACGGTCTTCGACGTAC -ACGGAATAACGGTCTTCGAGTGAC -ACGGAATAACGGTCTTCGCTGTAG -ACGGAATAACGGTCTTCGCCTAAG -ACGGAATAACGGTCTTCGGTTCAG -ACGGAATAACGGTCTTCGGCATAG -ACGGAATAACGGTCTTCGGACAAG -ACGGAATAACGGTCTTCGAAGCAG -ACGGAATAACGGTCTTCGCGTCAA -ACGGAATAACGGTCTTCGGCTGAA -ACGGAATAACGGTCTTCGAGTACG -ACGGAATAACGGTCTTCGATCCGA -ACGGAATAACGGTCTTCGATGGGA -ACGGAATAACGGTCTTCGGTGCAA -ACGGAATAACGGTCTTCGGAGGAA -ACGGAATAACGGTCTTCGCAGGTA -ACGGAATAACGGTCTTCGGACTCT -ACGGAATAACGGTCTTCGAGTCCT -ACGGAATAACGGTCTTCGTAAGCC -ACGGAATAACGGTCTTCGATAGCC -ACGGAATAACGGTCTTCGTAACCG -ACGGAATAACGGTCTTCGATGCCA -ACGGAATAACGGACTTGCGGAAAC -ACGGAATAACGGACTTGCAACACC -ACGGAATAACGGACTTGCATCGAG -ACGGAATAACGGACTTGCCTCCTT -ACGGAATAACGGACTTGCCCTGTT -ACGGAATAACGGACTTGCCGGTTT -ACGGAATAACGGACTTGCGTGGTT -ACGGAATAACGGACTTGCGCCTTT -ACGGAATAACGGACTTGCGGTCTT -ACGGAATAACGGACTTGCACGCTT -ACGGAATAACGGACTTGCAGCGTT -ACGGAATAACGGACTTGCTTCGTC -ACGGAATAACGGACTTGCTCTCTC -ACGGAATAACGGACTTGCTGGATC -ACGGAATAACGGACTTGCCACTTC -ACGGAATAACGGACTTGCGTACTC -ACGGAATAACGGACTTGCGATGTC -ACGGAATAACGGACTTGCACAGTC -ACGGAATAACGGACTTGCTTGCTG -ACGGAATAACGGACTTGCTCCATG -ACGGAATAACGGACTTGCTGTGTG -ACGGAATAACGGACTTGCCTAGTG -ACGGAATAACGGACTTGCCATCTG -ACGGAATAACGGACTTGCGAGTTG -ACGGAATAACGGACTTGCAGACTG -ACGGAATAACGGACTTGCTCGGTA -ACGGAATAACGGACTTGCTGCCTA -ACGGAATAACGGACTTGCCCACTA -ACGGAATAACGGACTTGCGGAGTA -ACGGAATAACGGACTTGCTCGTCT -ACGGAATAACGGACTTGCTGCACT -ACGGAATAACGGACTTGCCTGACT -ACGGAATAACGGACTTGCCAACCT -ACGGAATAACGGACTTGCGCTACT -ACGGAATAACGGACTTGCGGATCT -ACGGAATAACGGACTTGCAAGGCT -ACGGAATAACGGACTTGCTCAACC -ACGGAATAACGGACTTGCTGTTCC -ACGGAATAACGGACTTGCATTCCC -ACGGAATAACGGACTTGCTTCTCG -ACGGAATAACGGACTTGCTAGACG -ACGGAATAACGGACTTGCGTAACG -ACGGAATAACGGACTTGCACTTCG -ACGGAATAACGGACTTGCTACGCA -ACGGAATAACGGACTTGCCTTGCA -ACGGAATAACGGACTTGCCGAACA -ACGGAATAACGGACTTGCCAGTCA -ACGGAATAACGGACTTGCGATCCA -ACGGAATAACGGACTTGCACGACA -ACGGAATAACGGACTTGCAGCTCA -ACGGAATAACGGACTTGCTCACGT -ACGGAATAACGGACTTGCCGTAGT -ACGGAATAACGGACTTGCGTCAGT -ACGGAATAACGGACTTGCGAAGGT -ACGGAATAACGGACTTGCAACCGT -ACGGAATAACGGACTTGCTTGTGC -ACGGAATAACGGACTTGCCTAAGC -ACGGAATAACGGACTTGCACTAGC -ACGGAATAACGGACTTGCAGATGC -ACGGAATAACGGACTTGCTGAAGG -ACGGAATAACGGACTTGCCAATGG -ACGGAATAACGGACTTGCATGAGG -ACGGAATAACGGACTTGCAATGGG -ACGGAATAACGGACTTGCTCCTGA -ACGGAATAACGGACTTGCTAGCGA -ACGGAATAACGGACTTGCCACAGA -ACGGAATAACGGACTTGCGCAAGA -ACGGAATAACGGACTTGCGGTTGA -ACGGAATAACGGACTTGCTCCGAT -ACGGAATAACGGACTTGCTGGCAT -ACGGAATAACGGACTTGCCGAGAT -ACGGAATAACGGACTTGCTACCAC -ACGGAATAACGGACTTGCCAGAAC -ACGGAATAACGGACTTGCGTCTAC -ACGGAATAACGGACTTGCACGTAC -ACGGAATAACGGACTTGCAGTGAC -ACGGAATAACGGACTTGCCTGTAG -ACGGAATAACGGACTTGCCCTAAG -ACGGAATAACGGACTTGCGTTCAG -ACGGAATAACGGACTTGCGCATAG -ACGGAATAACGGACTTGCGACAAG -ACGGAATAACGGACTTGCAAGCAG -ACGGAATAACGGACTTGCCGTCAA -ACGGAATAACGGACTTGCGCTGAA -ACGGAATAACGGACTTGCAGTACG -ACGGAATAACGGACTTGCATCCGA -ACGGAATAACGGACTTGCATGGGA -ACGGAATAACGGACTTGCGTGCAA -ACGGAATAACGGACTTGCGAGGAA -ACGGAATAACGGACTTGCCAGGTA -ACGGAATAACGGACTTGCGACTCT -ACGGAATAACGGACTTGCAGTCCT -ACGGAATAACGGACTTGCTAAGCC -ACGGAATAACGGACTTGCATAGCC -ACGGAATAACGGACTTGCTAACCG -ACGGAATAACGGACTTGCATGCCA -ACGGAATAACGGACTCTGGGAAAC -ACGGAATAACGGACTCTGAACACC -ACGGAATAACGGACTCTGATCGAG -ACGGAATAACGGACTCTGCTCCTT -ACGGAATAACGGACTCTGCCTGTT -ACGGAATAACGGACTCTGCGGTTT -ACGGAATAACGGACTCTGGTGGTT -ACGGAATAACGGACTCTGGCCTTT -ACGGAATAACGGACTCTGGGTCTT -ACGGAATAACGGACTCTGACGCTT -ACGGAATAACGGACTCTGAGCGTT -ACGGAATAACGGACTCTGTTCGTC -ACGGAATAACGGACTCTGTCTCTC -ACGGAATAACGGACTCTGTGGATC -ACGGAATAACGGACTCTGCACTTC -ACGGAATAACGGACTCTGGTACTC -ACGGAATAACGGACTCTGGATGTC -ACGGAATAACGGACTCTGACAGTC -ACGGAATAACGGACTCTGTTGCTG -ACGGAATAACGGACTCTGTCCATG -ACGGAATAACGGACTCTGTGTGTG -ACGGAATAACGGACTCTGCTAGTG -ACGGAATAACGGACTCTGCATCTG -ACGGAATAACGGACTCTGGAGTTG -ACGGAATAACGGACTCTGAGACTG -ACGGAATAACGGACTCTGTCGGTA -ACGGAATAACGGACTCTGTGCCTA -ACGGAATAACGGACTCTGCCACTA -ACGGAATAACGGACTCTGGGAGTA -ACGGAATAACGGACTCTGTCGTCT -ACGGAATAACGGACTCTGTGCACT -ACGGAATAACGGACTCTGCTGACT -ACGGAATAACGGACTCTGCAACCT -ACGGAATAACGGACTCTGGCTACT -ACGGAATAACGGACTCTGGGATCT -ACGGAATAACGGACTCTGAAGGCT -ACGGAATAACGGACTCTGTCAACC -ACGGAATAACGGACTCTGTGTTCC -ACGGAATAACGGACTCTGATTCCC -ACGGAATAACGGACTCTGTTCTCG -ACGGAATAACGGACTCTGTAGACG -ACGGAATAACGGACTCTGGTAACG -ACGGAATAACGGACTCTGACTTCG -ACGGAATAACGGACTCTGTACGCA -ACGGAATAACGGACTCTGCTTGCA -ACGGAATAACGGACTCTGCGAACA -ACGGAATAACGGACTCTGCAGTCA -ACGGAATAACGGACTCTGGATCCA -ACGGAATAACGGACTCTGACGACA -ACGGAATAACGGACTCTGAGCTCA -ACGGAATAACGGACTCTGTCACGT -ACGGAATAACGGACTCTGCGTAGT -ACGGAATAACGGACTCTGGTCAGT -ACGGAATAACGGACTCTGGAAGGT -ACGGAATAACGGACTCTGAACCGT -ACGGAATAACGGACTCTGTTGTGC -ACGGAATAACGGACTCTGCTAAGC -ACGGAATAACGGACTCTGACTAGC -ACGGAATAACGGACTCTGAGATGC -ACGGAATAACGGACTCTGTGAAGG -ACGGAATAACGGACTCTGCAATGG -ACGGAATAACGGACTCTGATGAGG -ACGGAATAACGGACTCTGAATGGG -ACGGAATAACGGACTCTGTCCTGA -ACGGAATAACGGACTCTGTAGCGA -ACGGAATAACGGACTCTGCACAGA -ACGGAATAACGGACTCTGGCAAGA -ACGGAATAACGGACTCTGGGTTGA -ACGGAATAACGGACTCTGTCCGAT -ACGGAATAACGGACTCTGTGGCAT -ACGGAATAACGGACTCTGCGAGAT -ACGGAATAACGGACTCTGTACCAC -ACGGAATAACGGACTCTGCAGAAC -ACGGAATAACGGACTCTGGTCTAC -ACGGAATAACGGACTCTGACGTAC -ACGGAATAACGGACTCTGAGTGAC -ACGGAATAACGGACTCTGCTGTAG -ACGGAATAACGGACTCTGCCTAAG -ACGGAATAACGGACTCTGGTTCAG -ACGGAATAACGGACTCTGGCATAG -ACGGAATAACGGACTCTGGACAAG -ACGGAATAACGGACTCTGAAGCAG -ACGGAATAACGGACTCTGCGTCAA -ACGGAATAACGGACTCTGGCTGAA -ACGGAATAACGGACTCTGAGTACG -ACGGAATAACGGACTCTGATCCGA -ACGGAATAACGGACTCTGATGGGA -ACGGAATAACGGACTCTGGTGCAA -ACGGAATAACGGACTCTGGAGGAA -ACGGAATAACGGACTCTGCAGGTA -ACGGAATAACGGACTCTGGACTCT -ACGGAATAACGGACTCTGAGTCCT -ACGGAATAACGGACTCTGTAAGCC -ACGGAATAACGGACTCTGATAGCC -ACGGAATAACGGACTCTGTAACCG -ACGGAATAACGGACTCTGATGCCA -ACGGAATAACGGCCTCAAGGAAAC -ACGGAATAACGGCCTCAAAACACC -ACGGAATAACGGCCTCAAATCGAG -ACGGAATAACGGCCTCAACTCCTT -ACGGAATAACGGCCTCAACCTGTT -ACGGAATAACGGCCTCAACGGTTT -ACGGAATAACGGCCTCAAGTGGTT -ACGGAATAACGGCCTCAAGCCTTT -ACGGAATAACGGCCTCAAGGTCTT -ACGGAATAACGGCCTCAAACGCTT -ACGGAATAACGGCCTCAAAGCGTT -ACGGAATAACGGCCTCAATTCGTC -ACGGAATAACGGCCTCAATCTCTC -ACGGAATAACGGCCTCAATGGATC -ACGGAATAACGGCCTCAACACTTC -ACGGAATAACGGCCTCAAGTACTC -ACGGAATAACGGCCTCAAGATGTC -ACGGAATAACGGCCTCAAACAGTC -ACGGAATAACGGCCTCAATTGCTG -ACGGAATAACGGCCTCAATCCATG -ACGGAATAACGGCCTCAATGTGTG -ACGGAATAACGGCCTCAACTAGTG -ACGGAATAACGGCCTCAACATCTG -ACGGAATAACGGCCTCAAGAGTTG -ACGGAATAACGGCCTCAAAGACTG -ACGGAATAACGGCCTCAATCGGTA -ACGGAATAACGGCCTCAATGCCTA -ACGGAATAACGGCCTCAACCACTA -ACGGAATAACGGCCTCAAGGAGTA -ACGGAATAACGGCCTCAATCGTCT -ACGGAATAACGGCCTCAATGCACT -ACGGAATAACGGCCTCAACTGACT -ACGGAATAACGGCCTCAACAACCT -ACGGAATAACGGCCTCAAGCTACT -ACGGAATAACGGCCTCAAGGATCT -ACGGAATAACGGCCTCAAAAGGCT -ACGGAATAACGGCCTCAATCAACC -ACGGAATAACGGCCTCAATGTTCC -ACGGAATAACGGCCTCAAATTCCC -ACGGAATAACGGCCTCAATTCTCG -ACGGAATAACGGCCTCAATAGACG -ACGGAATAACGGCCTCAAGTAACG -ACGGAATAACGGCCTCAAACTTCG -ACGGAATAACGGCCTCAATACGCA -ACGGAATAACGGCCTCAACTTGCA -ACGGAATAACGGCCTCAACGAACA -ACGGAATAACGGCCTCAACAGTCA -ACGGAATAACGGCCTCAAGATCCA -ACGGAATAACGGCCTCAAACGACA -ACGGAATAACGGCCTCAAAGCTCA -ACGGAATAACGGCCTCAATCACGT -ACGGAATAACGGCCTCAACGTAGT -ACGGAATAACGGCCTCAAGTCAGT -ACGGAATAACGGCCTCAAGAAGGT -ACGGAATAACGGCCTCAAAACCGT -ACGGAATAACGGCCTCAATTGTGC -ACGGAATAACGGCCTCAACTAAGC -ACGGAATAACGGCCTCAAACTAGC -ACGGAATAACGGCCTCAAAGATGC -ACGGAATAACGGCCTCAATGAAGG -ACGGAATAACGGCCTCAACAATGG -ACGGAATAACGGCCTCAAATGAGG -ACGGAATAACGGCCTCAAAATGGG -ACGGAATAACGGCCTCAATCCTGA -ACGGAATAACGGCCTCAATAGCGA -ACGGAATAACGGCCTCAACACAGA -ACGGAATAACGGCCTCAAGCAAGA -ACGGAATAACGGCCTCAAGGTTGA -ACGGAATAACGGCCTCAATCCGAT -ACGGAATAACGGCCTCAATGGCAT -ACGGAATAACGGCCTCAACGAGAT -ACGGAATAACGGCCTCAATACCAC -ACGGAATAACGGCCTCAACAGAAC -ACGGAATAACGGCCTCAAGTCTAC -ACGGAATAACGGCCTCAAACGTAC -ACGGAATAACGGCCTCAAAGTGAC -ACGGAATAACGGCCTCAACTGTAG -ACGGAATAACGGCCTCAACCTAAG -ACGGAATAACGGCCTCAAGTTCAG -ACGGAATAACGGCCTCAAGCATAG -ACGGAATAACGGCCTCAAGACAAG -ACGGAATAACGGCCTCAAAAGCAG -ACGGAATAACGGCCTCAACGTCAA -ACGGAATAACGGCCTCAAGCTGAA -ACGGAATAACGGCCTCAAAGTACG -ACGGAATAACGGCCTCAAATCCGA -ACGGAATAACGGCCTCAAATGGGA -ACGGAATAACGGCCTCAAGTGCAA -ACGGAATAACGGCCTCAAGAGGAA -ACGGAATAACGGCCTCAACAGGTA -ACGGAATAACGGCCTCAAGACTCT -ACGGAATAACGGCCTCAAAGTCCT -ACGGAATAACGGCCTCAATAAGCC -ACGGAATAACGGCCTCAAATAGCC -ACGGAATAACGGCCTCAATAACCG -ACGGAATAACGGCCTCAAATGCCA -ACGGAATAACGGACTGCTGGAAAC -ACGGAATAACGGACTGCTAACACC -ACGGAATAACGGACTGCTATCGAG -ACGGAATAACGGACTGCTCTCCTT -ACGGAATAACGGACTGCTCCTGTT -ACGGAATAACGGACTGCTCGGTTT -ACGGAATAACGGACTGCTGTGGTT -ACGGAATAACGGACTGCTGCCTTT -ACGGAATAACGGACTGCTGGTCTT -ACGGAATAACGGACTGCTACGCTT -ACGGAATAACGGACTGCTAGCGTT -ACGGAATAACGGACTGCTTTCGTC -ACGGAATAACGGACTGCTTCTCTC -ACGGAATAACGGACTGCTTGGATC -ACGGAATAACGGACTGCTCACTTC -ACGGAATAACGGACTGCTGTACTC -ACGGAATAACGGACTGCTGATGTC -ACGGAATAACGGACTGCTACAGTC -ACGGAATAACGGACTGCTTTGCTG -ACGGAATAACGGACTGCTTCCATG -ACGGAATAACGGACTGCTTGTGTG -ACGGAATAACGGACTGCTCTAGTG -ACGGAATAACGGACTGCTCATCTG -ACGGAATAACGGACTGCTGAGTTG -ACGGAATAACGGACTGCTAGACTG -ACGGAATAACGGACTGCTTCGGTA -ACGGAATAACGGACTGCTTGCCTA -ACGGAATAACGGACTGCTCCACTA -ACGGAATAACGGACTGCTGGAGTA -ACGGAATAACGGACTGCTTCGTCT -ACGGAATAACGGACTGCTTGCACT -ACGGAATAACGGACTGCTCTGACT -ACGGAATAACGGACTGCTCAACCT -ACGGAATAACGGACTGCTGCTACT -ACGGAATAACGGACTGCTGGATCT -ACGGAATAACGGACTGCTAAGGCT -ACGGAATAACGGACTGCTTCAACC -ACGGAATAACGGACTGCTTGTTCC -ACGGAATAACGGACTGCTATTCCC -ACGGAATAACGGACTGCTTTCTCG -ACGGAATAACGGACTGCTTAGACG -ACGGAATAACGGACTGCTGTAACG -ACGGAATAACGGACTGCTACTTCG -ACGGAATAACGGACTGCTTACGCA -ACGGAATAACGGACTGCTCTTGCA -ACGGAATAACGGACTGCTCGAACA -ACGGAATAACGGACTGCTCAGTCA -ACGGAATAACGGACTGCTGATCCA -ACGGAATAACGGACTGCTACGACA -ACGGAATAACGGACTGCTAGCTCA -ACGGAATAACGGACTGCTTCACGT -ACGGAATAACGGACTGCTCGTAGT -ACGGAATAACGGACTGCTGTCAGT -ACGGAATAACGGACTGCTGAAGGT -ACGGAATAACGGACTGCTAACCGT -ACGGAATAACGGACTGCTTTGTGC -ACGGAATAACGGACTGCTCTAAGC -ACGGAATAACGGACTGCTACTAGC -ACGGAATAACGGACTGCTAGATGC -ACGGAATAACGGACTGCTTGAAGG -ACGGAATAACGGACTGCTCAATGG -ACGGAATAACGGACTGCTATGAGG -ACGGAATAACGGACTGCTAATGGG -ACGGAATAACGGACTGCTTCCTGA -ACGGAATAACGGACTGCTTAGCGA -ACGGAATAACGGACTGCTCACAGA -ACGGAATAACGGACTGCTGCAAGA -ACGGAATAACGGACTGCTGGTTGA -ACGGAATAACGGACTGCTTCCGAT -ACGGAATAACGGACTGCTTGGCAT -ACGGAATAACGGACTGCTCGAGAT -ACGGAATAACGGACTGCTTACCAC -ACGGAATAACGGACTGCTCAGAAC -ACGGAATAACGGACTGCTGTCTAC -ACGGAATAACGGACTGCTACGTAC -ACGGAATAACGGACTGCTAGTGAC -ACGGAATAACGGACTGCTCTGTAG -ACGGAATAACGGACTGCTCCTAAG -ACGGAATAACGGACTGCTGTTCAG -ACGGAATAACGGACTGCTGCATAG -ACGGAATAACGGACTGCTGACAAG -ACGGAATAACGGACTGCTAAGCAG -ACGGAATAACGGACTGCTCGTCAA -ACGGAATAACGGACTGCTGCTGAA -ACGGAATAACGGACTGCTAGTACG -ACGGAATAACGGACTGCTATCCGA -ACGGAATAACGGACTGCTATGGGA -ACGGAATAACGGACTGCTGTGCAA -ACGGAATAACGGACTGCTGAGGAA -ACGGAATAACGGACTGCTCAGGTA -ACGGAATAACGGACTGCTGACTCT -ACGGAATAACGGACTGCTAGTCCT -ACGGAATAACGGACTGCTTAAGCC -ACGGAATAACGGACTGCTATAGCC -ACGGAATAACGGACTGCTTAACCG -ACGGAATAACGGACTGCTATGCCA -ACGGAATAACGGTCTGGAGGAAAC -ACGGAATAACGGTCTGGAAACACC -ACGGAATAACGGTCTGGAATCGAG -ACGGAATAACGGTCTGGACTCCTT -ACGGAATAACGGTCTGGACCTGTT -ACGGAATAACGGTCTGGACGGTTT -ACGGAATAACGGTCTGGAGTGGTT -ACGGAATAACGGTCTGGAGCCTTT -ACGGAATAACGGTCTGGAGGTCTT -ACGGAATAACGGTCTGGAACGCTT -ACGGAATAACGGTCTGGAAGCGTT -ACGGAATAACGGTCTGGATTCGTC -ACGGAATAACGGTCTGGATCTCTC -ACGGAATAACGGTCTGGATGGATC -ACGGAATAACGGTCTGGACACTTC -ACGGAATAACGGTCTGGAGTACTC -ACGGAATAACGGTCTGGAGATGTC -ACGGAATAACGGTCTGGAACAGTC -ACGGAATAACGGTCTGGATTGCTG -ACGGAATAACGGTCTGGATCCATG -ACGGAATAACGGTCTGGATGTGTG -ACGGAATAACGGTCTGGACTAGTG -ACGGAATAACGGTCTGGACATCTG -ACGGAATAACGGTCTGGAGAGTTG -ACGGAATAACGGTCTGGAAGACTG -ACGGAATAACGGTCTGGATCGGTA -ACGGAATAACGGTCTGGATGCCTA -ACGGAATAACGGTCTGGACCACTA -ACGGAATAACGGTCTGGAGGAGTA -ACGGAATAACGGTCTGGATCGTCT -ACGGAATAACGGTCTGGATGCACT -ACGGAATAACGGTCTGGACTGACT -ACGGAATAACGGTCTGGACAACCT -ACGGAATAACGGTCTGGAGCTACT -ACGGAATAACGGTCTGGAGGATCT -ACGGAATAACGGTCTGGAAAGGCT -ACGGAATAACGGTCTGGATCAACC -ACGGAATAACGGTCTGGATGTTCC -ACGGAATAACGGTCTGGAATTCCC -ACGGAATAACGGTCTGGATTCTCG -ACGGAATAACGGTCTGGATAGACG -ACGGAATAACGGTCTGGAGTAACG -ACGGAATAACGGTCTGGAACTTCG -ACGGAATAACGGTCTGGATACGCA -ACGGAATAACGGTCTGGACTTGCA -ACGGAATAACGGTCTGGACGAACA -ACGGAATAACGGTCTGGACAGTCA -ACGGAATAACGGTCTGGAGATCCA -ACGGAATAACGGTCTGGAACGACA -ACGGAATAACGGTCTGGAAGCTCA -ACGGAATAACGGTCTGGATCACGT -ACGGAATAACGGTCTGGACGTAGT -ACGGAATAACGGTCTGGAGTCAGT -ACGGAATAACGGTCTGGAGAAGGT -ACGGAATAACGGTCTGGAAACCGT -ACGGAATAACGGTCTGGATTGTGC -ACGGAATAACGGTCTGGACTAAGC -ACGGAATAACGGTCTGGAACTAGC -ACGGAATAACGGTCTGGAAGATGC -ACGGAATAACGGTCTGGATGAAGG -ACGGAATAACGGTCTGGACAATGG -ACGGAATAACGGTCTGGAATGAGG -ACGGAATAACGGTCTGGAAATGGG -ACGGAATAACGGTCTGGATCCTGA -ACGGAATAACGGTCTGGATAGCGA -ACGGAATAACGGTCTGGACACAGA -ACGGAATAACGGTCTGGAGCAAGA -ACGGAATAACGGTCTGGAGGTTGA -ACGGAATAACGGTCTGGATCCGAT -ACGGAATAACGGTCTGGATGGCAT -ACGGAATAACGGTCTGGACGAGAT -ACGGAATAACGGTCTGGATACCAC -ACGGAATAACGGTCTGGACAGAAC -ACGGAATAACGGTCTGGAGTCTAC -ACGGAATAACGGTCTGGAACGTAC -ACGGAATAACGGTCTGGAAGTGAC -ACGGAATAACGGTCTGGACTGTAG -ACGGAATAACGGTCTGGACCTAAG -ACGGAATAACGGTCTGGAGTTCAG -ACGGAATAACGGTCTGGAGCATAG -ACGGAATAACGGTCTGGAGACAAG -ACGGAATAACGGTCTGGAAAGCAG -ACGGAATAACGGTCTGGACGTCAA -ACGGAATAACGGTCTGGAGCTGAA -ACGGAATAACGGTCTGGAAGTACG -ACGGAATAACGGTCTGGAATCCGA -ACGGAATAACGGTCTGGAATGGGA -ACGGAATAACGGTCTGGAGTGCAA -ACGGAATAACGGTCTGGAGAGGAA -ACGGAATAACGGTCTGGACAGGTA -ACGGAATAACGGTCTGGAGACTCT -ACGGAATAACGGTCTGGAAGTCCT -ACGGAATAACGGTCTGGATAAGCC -ACGGAATAACGGTCTGGAATAGCC -ACGGAATAACGGTCTGGATAACCG -ACGGAATAACGGTCTGGAATGCCA -ACGGAATAACGGGCTAAGGGAAAC -ACGGAATAACGGGCTAAGAACACC -ACGGAATAACGGGCTAAGATCGAG -ACGGAATAACGGGCTAAGCTCCTT -ACGGAATAACGGGCTAAGCCTGTT -ACGGAATAACGGGCTAAGCGGTTT -ACGGAATAACGGGCTAAGGTGGTT -ACGGAATAACGGGCTAAGGCCTTT -ACGGAATAACGGGCTAAGGGTCTT -ACGGAATAACGGGCTAAGACGCTT -ACGGAATAACGGGCTAAGAGCGTT -ACGGAATAACGGGCTAAGTTCGTC -ACGGAATAACGGGCTAAGTCTCTC -ACGGAATAACGGGCTAAGTGGATC -ACGGAATAACGGGCTAAGCACTTC -ACGGAATAACGGGCTAAGGTACTC -ACGGAATAACGGGCTAAGGATGTC -ACGGAATAACGGGCTAAGACAGTC -ACGGAATAACGGGCTAAGTTGCTG -ACGGAATAACGGGCTAAGTCCATG -ACGGAATAACGGGCTAAGTGTGTG -ACGGAATAACGGGCTAAGCTAGTG -ACGGAATAACGGGCTAAGCATCTG -ACGGAATAACGGGCTAAGGAGTTG -ACGGAATAACGGGCTAAGAGACTG -ACGGAATAACGGGCTAAGTCGGTA -ACGGAATAACGGGCTAAGTGCCTA -ACGGAATAACGGGCTAAGCCACTA -ACGGAATAACGGGCTAAGGGAGTA -ACGGAATAACGGGCTAAGTCGTCT -ACGGAATAACGGGCTAAGTGCACT -ACGGAATAACGGGCTAAGCTGACT -ACGGAATAACGGGCTAAGCAACCT -ACGGAATAACGGGCTAAGGCTACT -ACGGAATAACGGGCTAAGGGATCT -ACGGAATAACGGGCTAAGAAGGCT -ACGGAATAACGGGCTAAGTCAACC -ACGGAATAACGGGCTAAGTGTTCC -ACGGAATAACGGGCTAAGATTCCC -ACGGAATAACGGGCTAAGTTCTCG -ACGGAATAACGGGCTAAGTAGACG -ACGGAATAACGGGCTAAGGTAACG -ACGGAATAACGGGCTAAGACTTCG -ACGGAATAACGGGCTAAGTACGCA -ACGGAATAACGGGCTAAGCTTGCA -ACGGAATAACGGGCTAAGCGAACA -ACGGAATAACGGGCTAAGCAGTCA -ACGGAATAACGGGCTAAGGATCCA -ACGGAATAACGGGCTAAGACGACA -ACGGAATAACGGGCTAAGAGCTCA -ACGGAATAACGGGCTAAGTCACGT -ACGGAATAACGGGCTAAGCGTAGT -ACGGAATAACGGGCTAAGGTCAGT -ACGGAATAACGGGCTAAGGAAGGT -ACGGAATAACGGGCTAAGAACCGT -ACGGAATAACGGGCTAAGTTGTGC -ACGGAATAACGGGCTAAGCTAAGC -ACGGAATAACGGGCTAAGACTAGC -ACGGAATAACGGGCTAAGAGATGC -ACGGAATAACGGGCTAAGTGAAGG -ACGGAATAACGGGCTAAGCAATGG -ACGGAATAACGGGCTAAGATGAGG -ACGGAATAACGGGCTAAGAATGGG -ACGGAATAACGGGCTAAGTCCTGA -ACGGAATAACGGGCTAAGTAGCGA -ACGGAATAACGGGCTAAGCACAGA -ACGGAATAACGGGCTAAGGCAAGA -ACGGAATAACGGGCTAAGGGTTGA -ACGGAATAACGGGCTAAGTCCGAT -ACGGAATAACGGGCTAAGTGGCAT -ACGGAATAACGGGCTAAGCGAGAT -ACGGAATAACGGGCTAAGTACCAC -ACGGAATAACGGGCTAAGCAGAAC -ACGGAATAACGGGCTAAGGTCTAC -ACGGAATAACGGGCTAAGACGTAC -ACGGAATAACGGGCTAAGAGTGAC -ACGGAATAACGGGCTAAGCTGTAG -ACGGAATAACGGGCTAAGCCTAAG -ACGGAATAACGGGCTAAGGTTCAG -ACGGAATAACGGGCTAAGGCATAG -ACGGAATAACGGGCTAAGGACAAG -ACGGAATAACGGGCTAAGAAGCAG -ACGGAATAACGGGCTAAGCGTCAA -ACGGAATAACGGGCTAAGGCTGAA -ACGGAATAACGGGCTAAGAGTACG -ACGGAATAACGGGCTAAGATCCGA -ACGGAATAACGGGCTAAGATGGGA -ACGGAATAACGGGCTAAGGTGCAA -ACGGAATAACGGGCTAAGGAGGAA -ACGGAATAACGGGCTAAGCAGGTA -ACGGAATAACGGGCTAAGGACTCT -ACGGAATAACGGGCTAAGAGTCCT -ACGGAATAACGGGCTAAGTAAGCC -ACGGAATAACGGGCTAAGATAGCC -ACGGAATAACGGGCTAAGTAACCG -ACGGAATAACGGGCTAAGATGCCA -ACGGAATAACGGACCTCAGGAAAC -ACGGAATAACGGACCTCAAACACC -ACGGAATAACGGACCTCAATCGAG -ACGGAATAACGGACCTCACTCCTT -ACGGAATAACGGACCTCACCTGTT -ACGGAATAACGGACCTCACGGTTT -ACGGAATAACGGACCTCAGTGGTT -ACGGAATAACGGACCTCAGCCTTT -ACGGAATAACGGACCTCAGGTCTT -ACGGAATAACGGACCTCAACGCTT -ACGGAATAACGGACCTCAAGCGTT -ACGGAATAACGGACCTCATTCGTC -ACGGAATAACGGACCTCATCTCTC -ACGGAATAACGGACCTCATGGATC -ACGGAATAACGGACCTCACACTTC -ACGGAATAACGGACCTCAGTACTC -ACGGAATAACGGACCTCAGATGTC -ACGGAATAACGGACCTCAACAGTC -ACGGAATAACGGACCTCATTGCTG -ACGGAATAACGGACCTCATCCATG -ACGGAATAACGGACCTCATGTGTG -ACGGAATAACGGACCTCACTAGTG -ACGGAATAACGGACCTCACATCTG -ACGGAATAACGGACCTCAGAGTTG -ACGGAATAACGGACCTCAAGACTG -ACGGAATAACGGACCTCATCGGTA -ACGGAATAACGGACCTCATGCCTA -ACGGAATAACGGACCTCACCACTA -ACGGAATAACGGACCTCAGGAGTA -ACGGAATAACGGACCTCATCGTCT -ACGGAATAACGGACCTCATGCACT -ACGGAATAACGGACCTCACTGACT -ACGGAATAACGGACCTCACAACCT -ACGGAATAACGGACCTCAGCTACT -ACGGAATAACGGACCTCAGGATCT -ACGGAATAACGGACCTCAAAGGCT -ACGGAATAACGGACCTCATCAACC -ACGGAATAACGGACCTCATGTTCC -ACGGAATAACGGACCTCAATTCCC -ACGGAATAACGGACCTCATTCTCG -ACGGAATAACGGACCTCATAGACG -ACGGAATAACGGACCTCAGTAACG -ACGGAATAACGGACCTCAACTTCG -ACGGAATAACGGACCTCATACGCA -ACGGAATAACGGACCTCACTTGCA -ACGGAATAACGGACCTCACGAACA -ACGGAATAACGGACCTCACAGTCA -ACGGAATAACGGACCTCAGATCCA -ACGGAATAACGGACCTCAACGACA -ACGGAATAACGGACCTCAAGCTCA -ACGGAATAACGGACCTCATCACGT -ACGGAATAACGGACCTCACGTAGT -ACGGAATAACGGACCTCAGTCAGT -ACGGAATAACGGACCTCAGAAGGT -ACGGAATAACGGACCTCAAACCGT -ACGGAATAACGGACCTCATTGTGC -ACGGAATAACGGACCTCACTAAGC -ACGGAATAACGGACCTCAACTAGC -ACGGAATAACGGACCTCAAGATGC -ACGGAATAACGGACCTCATGAAGG -ACGGAATAACGGACCTCACAATGG -ACGGAATAACGGACCTCAATGAGG -ACGGAATAACGGACCTCAAATGGG -ACGGAATAACGGACCTCATCCTGA -ACGGAATAACGGACCTCATAGCGA -ACGGAATAACGGACCTCACACAGA -ACGGAATAACGGACCTCAGCAAGA -ACGGAATAACGGACCTCAGGTTGA -ACGGAATAACGGACCTCATCCGAT -ACGGAATAACGGACCTCATGGCAT -ACGGAATAACGGACCTCACGAGAT -ACGGAATAACGGACCTCATACCAC -ACGGAATAACGGACCTCACAGAAC -ACGGAATAACGGACCTCAGTCTAC -ACGGAATAACGGACCTCAACGTAC -ACGGAATAACGGACCTCAAGTGAC -ACGGAATAACGGACCTCACTGTAG -ACGGAATAACGGACCTCACCTAAG -ACGGAATAACGGACCTCAGTTCAG -ACGGAATAACGGACCTCAGCATAG -ACGGAATAACGGACCTCAGACAAG -ACGGAATAACGGACCTCAAAGCAG -ACGGAATAACGGACCTCACGTCAA -ACGGAATAACGGACCTCAGCTGAA -ACGGAATAACGGACCTCAAGTACG -ACGGAATAACGGACCTCAATCCGA -ACGGAATAACGGACCTCAATGGGA -ACGGAATAACGGACCTCAGTGCAA -ACGGAATAACGGACCTCAGAGGAA -ACGGAATAACGGACCTCACAGGTA -ACGGAATAACGGACCTCAGACTCT -ACGGAATAACGGACCTCAAGTCCT -ACGGAATAACGGACCTCATAAGCC -ACGGAATAACGGACCTCAATAGCC -ACGGAATAACGGACCTCATAACCG -ACGGAATAACGGACCTCAATGCCA -ACGGAATAACGGTCCTGTGGAAAC -ACGGAATAACGGTCCTGTAACACC -ACGGAATAACGGTCCTGTATCGAG -ACGGAATAACGGTCCTGTCTCCTT -ACGGAATAACGGTCCTGTCCTGTT -ACGGAATAACGGTCCTGTCGGTTT -ACGGAATAACGGTCCTGTGTGGTT -ACGGAATAACGGTCCTGTGCCTTT -ACGGAATAACGGTCCTGTGGTCTT -ACGGAATAACGGTCCTGTACGCTT -ACGGAATAACGGTCCTGTAGCGTT -ACGGAATAACGGTCCTGTTTCGTC -ACGGAATAACGGTCCTGTTCTCTC -ACGGAATAACGGTCCTGTTGGATC -ACGGAATAACGGTCCTGTCACTTC -ACGGAATAACGGTCCTGTGTACTC -ACGGAATAACGGTCCTGTGATGTC -ACGGAATAACGGTCCTGTACAGTC -ACGGAATAACGGTCCTGTTTGCTG -ACGGAATAACGGTCCTGTTCCATG -ACGGAATAACGGTCCTGTTGTGTG -ACGGAATAACGGTCCTGTCTAGTG -ACGGAATAACGGTCCTGTCATCTG -ACGGAATAACGGTCCTGTGAGTTG -ACGGAATAACGGTCCTGTAGACTG -ACGGAATAACGGTCCTGTTCGGTA -ACGGAATAACGGTCCTGTTGCCTA -ACGGAATAACGGTCCTGTCCACTA -ACGGAATAACGGTCCTGTGGAGTA -ACGGAATAACGGTCCTGTTCGTCT -ACGGAATAACGGTCCTGTTGCACT -ACGGAATAACGGTCCTGTCTGACT -ACGGAATAACGGTCCTGTCAACCT -ACGGAATAACGGTCCTGTGCTACT -ACGGAATAACGGTCCTGTGGATCT -ACGGAATAACGGTCCTGTAAGGCT -ACGGAATAACGGTCCTGTTCAACC -ACGGAATAACGGTCCTGTTGTTCC -ACGGAATAACGGTCCTGTATTCCC -ACGGAATAACGGTCCTGTTTCTCG -ACGGAATAACGGTCCTGTTAGACG -ACGGAATAACGGTCCTGTGTAACG -ACGGAATAACGGTCCTGTACTTCG -ACGGAATAACGGTCCTGTTACGCA -ACGGAATAACGGTCCTGTCTTGCA -ACGGAATAACGGTCCTGTCGAACA -ACGGAATAACGGTCCTGTCAGTCA -ACGGAATAACGGTCCTGTGATCCA -ACGGAATAACGGTCCTGTACGACA -ACGGAATAACGGTCCTGTAGCTCA -ACGGAATAACGGTCCTGTTCACGT -ACGGAATAACGGTCCTGTCGTAGT -ACGGAATAACGGTCCTGTGTCAGT -ACGGAATAACGGTCCTGTGAAGGT -ACGGAATAACGGTCCTGTAACCGT -ACGGAATAACGGTCCTGTTTGTGC -ACGGAATAACGGTCCTGTCTAAGC -ACGGAATAACGGTCCTGTACTAGC -ACGGAATAACGGTCCTGTAGATGC -ACGGAATAACGGTCCTGTTGAAGG -ACGGAATAACGGTCCTGTCAATGG -ACGGAATAACGGTCCTGTATGAGG -ACGGAATAACGGTCCTGTAATGGG -ACGGAATAACGGTCCTGTTCCTGA -ACGGAATAACGGTCCTGTTAGCGA -ACGGAATAACGGTCCTGTCACAGA -ACGGAATAACGGTCCTGTGCAAGA -ACGGAATAACGGTCCTGTGGTTGA -ACGGAATAACGGTCCTGTTCCGAT -ACGGAATAACGGTCCTGTTGGCAT -ACGGAATAACGGTCCTGTCGAGAT -ACGGAATAACGGTCCTGTTACCAC -ACGGAATAACGGTCCTGTCAGAAC -ACGGAATAACGGTCCTGTGTCTAC -ACGGAATAACGGTCCTGTACGTAC -ACGGAATAACGGTCCTGTAGTGAC -ACGGAATAACGGTCCTGTCTGTAG -ACGGAATAACGGTCCTGTCCTAAG -ACGGAATAACGGTCCTGTGTTCAG -ACGGAATAACGGTCCTGTGCATAG -ACGGAATAACGGTCCTGTGACAAG -ACGGAATAACGGTCCTGTAAGCAG -ACGGAATAACGGTCCTGTCGTCAA -ACGGAATAACGGTCCTGTGCTGAA -ACGGAATAACGGTCCTGTAGTACG -ACGGAATAACGGTCCTGTATCCGA -ACGGAATAACGGTCCTGTATGGGA -ACGGAATAACGGTCCTGTGTGCAA -ACGGAATAACGGTCCTGTGAGGAA -ACGGAATAACGGTCCTGTCAGGTA -ACGGAATAACGGTCCTGTGACTCT -ACGGAATAACGGTCCTGTAGTCCT -ACGGAATAACGGTCCTGTTAAGCC -ACGGAATAACGGTCCTGTATAGCC -ACGGAATAACGGTCCTGTTAACCG -ACGGAATAACGGTCCTGTATGCCA -ACGGAATAACGGCCCATTGGAAAC -ACGGAATAACGGCCCATTAACACC -ACGGAATAACGGCCCATTATCGAG -ACGGAATAACGGCCCATTCTCCTT -ACGGAATAACGGCCCATTCCTGTT -ACGGAATAACGGCCCATTCGGTTT -ACGGAATAACGGCCCATTGTGGTT -ACGGAATAACGGCCCATTGCCTTT -ACGGAATAACGGCCCATTGGTCTT -ACGGAATAACGGCCCATTACGCTT -ACGGAATAACGGCCCATTAGCGTT -ACGGAATAACGGCCCATTTTCGTC -ACGGAATAACGGCCCATTTCTCTC -ACGGAATAACGGCCCATTTGGATC -ACGGAATAACGGCCCATTCACTTC -ACGGAATAACGGCCCATTGTACTC -ACGGAATAACGGCCCATTGATGTC -ACGGAATAACGGCCCATTACAGTC -ACGGAATAACGGCCCATTTTGCTG -ACGGAATAACGGCCCATTTCCATG -ACGGAATAACGGCCCATTTGTGTG -ACGGAATAACGGCCCATTCTAGTG -ACGGAATAACGGCCCATTCATCTG -ACGGAATAACGGCCCATTGAGTTG -ACGGAATAACGGCCCATTAGACTG -ACGGAATAACGGCCCATTTCGGTA -ACGGAATAACGGCCCATTTGCCTA -ACGGAATAACGGCCCATTCCACTA -ACGGAATAACGGCCCATTGGAGTA -ACGGAATAACGGCCCATTTCGTCT -ACGGAATAACGGCCCATTTGCACT -ACGGAATAACGGCCCATTCTGACT -ACGGAATAACGGCCCATTCAACCT -ACGGAATAACGGCCCATTGCTACT -ACGGAATAACGGCCCATTGGATCT -ACGGAATAACGGCCCATTAAGGCT -ACGGAATAACGGCCCATTTCAACC -ACGGAATAACGGCCCATTTGTTCC -ACGGAATAACGGCCCATTATTCCC -ACGGAATAACGGCCCATTTTCTCG -ACGGAATAACGGCCCATTTAGACG -ACGGAATAACGGCCCATTGTAACG -ACGGAATAACGGCCCATTACTTCG -ACGGAATAACGGCCCATTTACGCA -ACGGAATAACGGCCCATTCTTGCA -ACGGAATAACGGCCCATTCGAACA -ACGGAATAACGGCCCATTCAGTCA -ACGGAATAACGGCCCATTGATCCA -ACGGAATAACGGCCCATTACGACA -ACGGAATAACGGCCCATTAGCTCA -ACGGAATAACGGCCCATTTCACGT -ACGGAATAACGGCCCATTCGTAGT -ACGGAATAACGGCCCATTGTCAGT -ACGGAATAACGGCCCATTGAAGGT -ACGGAATAACGGCCCATTAACCGT -ACGGAATAACGGCCCATTTTGTGC -ACGGAATAACGGCCCATTCTAAGC -ACGGAATAACGGCCCATTACTAGC -ACGGAATAACGGCCCATTAGATGC -ACGGAATAACGGCCCATTTGAAGG -ACGGAATAACGGCCCATTCAATGG -ACGGAATAACGGCCCATTATGAGG -ACGGAATAACGGCCCATTAATGGG -ACGGAATAACGGCCCATTTCCTGA -ACGGAATAACGGCCCATTTAGCGA -ACGGAATAACGGCCCATTCACAGA -ACGGAATAACGGCCCATTGCAAGA -ACGGAATAACGGCCCATTGGTTGA -ACGGAATAACGGCCCATTTCCGAT -ACGGAATAACGGCCCATTTGGCAT -ACGGAATAACGGCCCATTCGAGAT -ACGGAATAACGGCCCATTTACCAC -ACGGAATAACGGCCCATTCAGAAC -ACGGAATAACGGCCCATTGTCTAC -ACGGAATAACGGCCCATTACGTAC -ACGGAATAACGGCCCATTAGTGAC -ACGGAATAACGGCCCATTCTGTAG -ACGGAATAACGGCCCATTCCTAAG -ACGGAATAACGGCCCATTGTTCAG -ACGGAATAACGGCCCATTGCATAG -ACGGAATAACGGCCCATTGACAAG -ACGGAATAACGGCCCATTAAGCAG -ACGGAATAACGGCCCATTCGTCAA -ACGGAATAACGGCCCATTGCTGAA -ACGGAATAACGGCCCATTAGTACG -ACGGAATAACGGCCCATTATCCGA -ACGGAATAACGGCCCATTATGGGA -ACGGAATAACGGCCCATTGTGCAA -ACGGAATAACGGCCCATTGAGGAA -ACGGAATAACGGCCCATTCAGGTA -ACGGAATAACGGCCCATTGACTCT -ACGGAATAACGGCCCATTAGTCCT -ACGGAATAACGGCCCATTTAAGCC -ACGGAATAACGGCCCATTATAGCC -ACGGAATAACGGCCCATTTAACCG -ACGGAATAACGGCCCATTATGCCA -ACGGAATAACGGTCGTTCGGAAAC -ACGGAATAACGGTCGTTCAACACC -ACGGAATAACGGTCGTTCATCGAG -ACGGAATAACGGTCGTTCCTCCTT -ACGGAATAACGGTCGTTCCCTGTT -ACGGAATAACGGTCGTTCCGGTTT -ACGGAATAACGGTCGTTCGTGGTT -ACGGAATAACGGTCGTTCGCCTTT -ACGGAATAACGGTCGTTCGGTCTT -ACGGAATAACGGTCGTTCACGCTT -ACGGAATAACGGTCGTTCAGCGTT -ACGGAATAACGGTCGTTCTTCGTC -ACGGAATAACGGTCGTTCTCTCTC -ACGGAATAACGGTCGTTCTGGATC -ACGGAATAACGGTCGTTCCACTTC -ACGGAATAACGGTCGTTCGTACTC -ACGGAATAACGGTCGTTCGATGTC -ACGGAATAACGGTCGTTCACAGTC -ACGGAATAACGGTCGTTCTTGCTG -ACGGAATAACGGTCGTTCTCCATG -ACGGAATAACGGTCGTTCTGTGTG -ACGGAATAACGGTCGTTCCTAGTG -ACGGAATAACGGTCGTTCCATCTG -ACGGAATAACGGTCGTTCGAGTTG -ACGGAATAACGGTCGTTCAGACTG -ACGGAATAACGGTCGTTCTCGGTA -ACGGAATAACGGTCGTTCTGCCTA -ACGGAATAACGGTCGTTCCCACTA -ACGGAATAACGGTCGTTCGGAGTA -ACGGAATAACGGTCGTTCTCGTCT -ACGGAATAACGGTCGTTCTGCACT -ACGGAATAACGGTCGTTCCTGACT -ACGGAATAACGGTCGTTCCAACCT -ACGGAATAACGGTCGTTCGCTACT -ACGGAATAACGGTCGTTCGGATCT -ACGGAATAACGGTCGTTCAAGGCT -ACGGAATAACGGTCGTTCTCAACC -ACGGAATAACGGTCGTTCTGTTCC -ACGGAATAACGGTCGTTCATTCCC -ACGGAATAACGGTCGTTCTTCTCG -ACGGAATAACGGTCGTTCTAGACG -ACGGAATAACGGTCGTTCGTAACG -ACGGAATAACGGTCGTTCACTTCG -ACGGAATAACGGTCGTTCTACGCA -ACGGAATAACGGTCGTTCCTTGCA -ACGGAATAACGGTCGTTCCGAACA -ACGGAATAACGGTCGTTCCAGTCA -ACGGAATAACGGTCGTTCGATCCA -ACGGAATAACGGTCGTTCACGACA -ACGGAATAACGGTCGTTCAGCTCA -ACGGAATAACGGTCGTTCTCACGT -ACGGAATAACGGTCGTTCCGTAGT -ACGGAATAACGGTCGTTCGTCAGT -ACGGAATAACGGTCGTTCGAAGGT -ACGGAATAACGGTCGTTCAACCGT -ACGGAATAACGGTCGTTCTTGTGC -ACGGAATAACGGTCGTTCCTAAGC -ACGGAATAACGGTCGTTCACTAGC -ACGGAATAACGGTCGTTCAGATGC -ACGGAATAACGGTCGTTCTGAAGG -ACGGAATAACGGTCGTTCCAATGG -ACGGAATAACGGTCGTTCATGAGG -ACGGAATAACGGTCGTTCAATGGG -ACGGAATAACGGTCGTTCTCCTGA -ACGGAATAACGGTCGTTCTAGCGA -ACGGAATAACGGTCGTTCCACAGA -ACGGAATAACGGTCGTTCGCAAGA -ACGGAATAACGGTCGTTCGGTTGA -ACGGAATAACGGTCGTTCTCCGAT -ACGGAATAACGGTCGTTCTGGCAT -ACGGAATAACGGTCGTTCCGAGAT -ACGGAATAACGGTCGTTCTACCAC -ACGGAATAACGGTCGTTCCAGAAC -ACGGAATAACGGTCGTTCGTCTAC -ACGGAATAACGGTCGTTCACGTAC -ACGGAATAACGGTCGTTCAGTGAC -ACGGAATAACGGTCGTTCCTGTAG -ACGGAATAACGGTCGTTCCCTAAG -ACGGAATAACGGTCGTTCGTTCAG -ACGGAATAACGGTCGTTCGCATAG -ACGGAATAACGGTCGTTCGACAAG -ACGGAATAACGGTCGTTCAAGCAG -ACGGAATAACGGTCGTTCCGTCAA -ACGGAATAACGGTCGTTCGCTGAA -ACGGAATAACGGTCGTTCAGTACG -ACGGAATAACGGTCGTTCATCCGA -ACGGAATAACGGTCGTTCATGGGA -ACGGAATAACGGTCGTTCGTGCAA -ACGGAATAACGGTCGTTCGAGGAA -ACGGAATAACGGTCGTTCCAGGTA -ACGGAATAACGGTCGTTCGACTCT -ACGGAATAACGGTCGTTCAGTCCT -ACGGAATAACGGTCGTTCTAAGCC -ACGGAATAACGGTCGTTCATAGCC -ACGGAATAACGGTCGTTCTAACCG -ACGGAATAACGGTCGTTCATGCCA -ACGGAATAACGGACGTAGGGAAAC -ACGGAATAACGGACGTAGAACACC -ACGGAATAACGGACGTAGATCGAG -ACGGAATAACGGACGTAGCTCCTT -ACGGAATAACGGACGTAGCCTGTT -ACGGAATAACGGACGTAGCGGTTT -ACGGAATAACGGACGTAGGTGGTT -ACGGAATAACGGACGTAGGCCTTT -ACGGAATAACGGACGTAGGGTCTT -ACGGAATAACGGACGTAGACGCTT -ACGGAATAACGGACGTAGAGCGTT -ACGGAATAACGGACGTAGTTCGTC -ACGGAATAACGGACGTAGTCTCTC -ACGGAATAACGGACGTAGTGGATC -ACGGAATAACGGACGTAGCACTTC -ACGGAATAACGGACGTAGGTACTC -ACGGAATAACGGACGTAGGATGTC -ACGGAATAACGGACGTAGACAGTC -ACGGAATAACGGACGTAGTTGCTG -ACGGAATAACGGACGTAGTCCATG -ACGGAATAACGGACGTAGTGTGTG -ACGGAATAACGGACGTAGCTAGTG -ACGGAATAACGGACGTAGCATCTG -ACGGAATAACGGACGTAGGAGTTG -ACGGAATAACGGACGTAGAGACTG -ACGGAATAACGGACGTAGTCGGTA -ACGGAATAACGGACGTAGTGCCTA -ACGGAATAACGGACGTAGCCACTA -ACGGAATAACGGACGTAGGGAGTA -ACGGAATAACGGACGTAGTCGTCT -ACGGAATAACGGACGTAGTGCACT -ACGGAATAACGGACGTAGCTGACT -ACGGAATAACGGACGTAGCAACCT -ACGGAATAACGGACGTAGGCTACT -ACGGAATAACGGACGTAGGGATCT -ACGGAATAACGGACGTAGAAGGCT -ACGGAATAACGGACGTAGTCAACC -ACGGAATAACGGACGTAGTGTTCC -ACGGAATAACGGACGTAGATTCCC -ACGGAATAACGGACGTAGTTCTCG -ACGGAATAACGGACGTAGTAGACG -ACGGAATAACGGACGTAGGTAACG -ACGGAATAACGGACGTAGACTTCG -ACGGAATAACGGACGTAGTACGCA -ACGGAATAACGGACGTAGCTTGCA -ACGGAATAACGGACGTAGCGAACA -ACGGAATAACGGACGTAGCAGTCA -ACGGAATAACGGACGTAGGATCCA -ACGGAATAACGGACGTAGACGACA -ACGGAATAACGGACGTAGAGCTCA -ACGGAATAACGGACGTAGTCACGT -ACGGAATAACGGACGTAGCGTAGT -ACGGAATAACGGACGTAGGTCAGT -ACGGAATAACGGACGTAGGAAGGT -ACGGAATAACGGACGTAGAACCGT -ACGGAATAACGGACGTAGTTGTGC -ACGGAATAACGGACGTAGCTAAGC -ACGGAATAACGGACGTAGACTAGC -ACGGAATAACGGACGTAGAGATGC -ACGGAATAACGGACGTAGTGAAGG -ACGGAATAACGGACGTAGCAATGG -ACGGAATAACGGACGTAGATGAGG -ACGGAATAACGGACGTAGAATGGG -ACGGAATAACGGACGTAGTCCTGA -ACGGAATAACGGACGTAGTAGCGA -ACGGAATAACGGACGTAGCACAGA -ACGGAATAACGGACGTAGGCAAGA -ACGGAATAACGGACGTAGGGTTGA -ACGGAATAACGGACGTAGTCCGAT -ACGGAATAACGGACGTAGTGGCAT -ACGGAATAACGGACGTAGCGAGAT -ACGGAATAACGGACGTAGTACCAC -ACGGAATAACGGACGTAGCAGAAC -ACGGAATAACGGACGTAGGTCTAC -ACGGAATAACGGACGTAGACGTAC -ACGGAATAACGGACGTAGAGTGAC -ACGGAATAACGGACGTAGCTGTAG -ACGGAATAACGGACGTAGCCTAAG -ACGGAATAACGGACGTAGGTTCAG -ACGGAATAACGGACGTAGGCATAG -ACGGAATAACGGACGTAGGACAAG -ACGGAATAACGGACGTAGAAGCAG -ACGGAATAACGGACGTAGCGTCAA -ACGGAATAACGGACGTAGGCTGAA -ACGGAATAACGGACGTAGAGTACG -ACGGAATAACGGACGTAGATCCGA -ACGGAATAACGGACGTAGATGGGA -ACGGAATAACGGACGTAGGTGCAA -ACGGAATAACGGACGTAGGAGGAA -ACGGAATAACGGACGTAGCAGGTA -ACGGAATAACGGACGTAGGACTCT -ACGGAATAACGGACGTAGAGTCCT -ACGGAATAACGGACGTAGTAAGCC -ACGGAATAACGGACGTAGATAGCC -ACGGAATAACGGACGTAGTAACCG -ACGGAATAACGGACGTAGATGCCA -ACGGAATAACGGACGGTAGGAAAC -ACGGAATAACGGACGGTAAACACC -ACGGAATAACGGACGGTAATCGAG -ACGGAATAACGGACGGTACTCCTT -ACGGAATAACGGACGGTACCTGTT -ACGGAATAACGGACGGTACGGTTT -ACGGAATAACGGACGGTAGTGGTT -ACGGAATAACGGACGGTAGCCTTT -ACGGAATAACGGACGGTAGGTCTT -ACGGAATAACGGACGGTAACGCTT -ACGGAATAACGGACGGTAAGCGTT -ACGGAATAACGGACGGTATTCGTC -ACGGAATAACGGACGGTATCTCTC -ACGGAATAACGGACGGTATGGATC -ACGGAATAACGGACGGTACACTTC -ACGGAATAACGGACGGTAGTACTC -ACGGAATAACGGACGGTAGATGTC -ACGGAATAACGGACGGTAACAGTC -ACGGAATAACGGACGGTATTGCTG -ACGGAATAACGGACGGTATCCATG -ACGGAATAACGGACGGTATGTGTG -ACGGAATAACGGACGGTACTAGTG -ACGGAATAACGGACGGTACATCTG -ACGGAATAACGGACGGTAGAGTTG -ACGGAATAACGGACGGTAAGACTG -ACGGAATAACGGACGGTATCGGTA -ACGGAATAACGGACGGTATGCCTA -ACGGAATAACGGACGGTACCACTA -ACGGAATAACGGACGGTAGGAGTA -ACGGAATAACGGACGGTATCGTCT -ACGGAATAACGGACGGTATGCACT -ACGGAATAACGGACGGTACTGACT -ACGGAATAACGGACGGTACAACCT -ACGGAATAACGGACGGTAGCTACT -ACGGAATAACGGACGGTAGGATCT -ACGGAATAACGGACGGTAAAGGCT -ACGGAATAACGGACGGTATCAACC -ACGGAATAACGGACGGTATGTTCC -ACGGAATAACGGACGGTAATTCCC -ACGGAATAACGGACGGTATTCTCG -ACGGAATAACGGACGGTATAGACG -ACGGAATAACGGACGGTAGTAACG -ACGGAATAACGGACGGTAACTTCG -ACGGAATAACGGACGGTATACGCA -ACGGAATAACGGACGGTACTTGCA -ACGGAATAACGGACGGTACGAACA -ACGGAATAACGGACGGTACAGTCA -ACGGAATAACGGACGGTAGATCCA -ACGGAATAACGGACGGTAACGACA -ACGGAATAACGGACGGTAAGCTCA -ACGGAATAACGGACGGTATCACGT -ACGGAATAACGGACGGTACGTAGT -ACGGAATAACGGACGGTAGTCAGT -ACGGAATAACGGACGGTAGAAGGT -ACGGAATAACGGACGGTAAACCGT -ACGGAATAACGGACGGTATTGTGC -ACGGAATAACGGACGGTACTAAGC -ACGGAATAACGGACGGTAACTAGC -ACGGAATAACGGACGGTAAGATGC -ACGGAATAACGGACGGTATGAAGG -ACGGAATAACGGACGGTACAATGG -ACGGAATAACGGACGGTAATGAGG -ACGGAATAACGGACGGTAAATGGG -ACGGAATAACGGACGGTATCCTGA -ACGGAATAACGGACGGTATAGCGA -ACGGAATAACGGACGGTACACAGA -ACGGAATAACGGACGGTAGCAAGA -ACGGAATAACGGACGGTAGGTTGA -ACGGAATAACGGACGGTATCCGAT -ACGGAATAACGGACGGTATGGCAT -ACGGAATAACGGACGGTACGAGAT -ACGGAATAACGGACGGTATACCAC -ACGGAATAACGGACGGTACAGAAC -ACGGAATAACGGACGGTAGTCTAC -ACGGAATAACGGACGGTAACGTAC -ACGGAATAACGGACGGTAAGTGAC -ACGGAATAACGGACGGTACTGTAG -ACGGAATAACGGACGGTACCTAAG -ACGGAATAACGGACGGTAGTTCAG -ACGGAATAACGGACGGTAGCATAG -ACGGAATAACGGACGGTAGACAAG -ACGGAATAACGGACGGTAAAGCAG -ACGGAATAACGGACGGTACGTCAA -ACGGAATAACGGACGGTAGCTGAA -ACGGAATAACGGACGGTAAGTACG -ACGGAATAACGGACGGTAATCCGA -ACGGAATAACGGACGGTAATGGGA -ACGGAATAACGGACGGTAGTGCAA -ACGGAATAACGGACGGTAGAGGAA -ACGGAATAACGGACGGTACAGGTA -ACGGAATAACGGACGGTAGACTCT -ACGGAATAACGGACGGTAAGTCCT -ACGGAATAACGGACGGTATAAGCC -ACGGAATAACGGACGGTAATAGCC -ACGGAATAACGGACGGTATAACCG -ACGGAATAACGGACGGTAATGCCA -ACGGAATAACGGTCGACTGGAAAC -ACGGAATAACGGTCGACTAACACC -ACGGAATAACGGTCGACTATCGAG -ACGGAATAACGGTCGACTCTCCTT -ACGGAATAACGGTCGACTCCTGTT -ACGGAATAACGGTCGACTCGGTTT -ACGGAATAACGGTCGACTGTGGTT -ACGGAATAACGGTCGACTGCCTTT -ACGGAATAACGGTCGACTGGTCTT -ACGGAATAACGGTCGACTACGCTT -ACGGAATAACGGTCGACTAGCGTT -ACGGAATAACGGTCGACTTTCGTC -ACGGAATAACGGTCGACTTCTCTC -ACGGAATAACGGTCGACTTGGATC -ACGGAATAACGGTCGACTCACTTC -ACGGAATAACGGTCGACTGTACTC -ACGGAATAACGGTCGACTGATGTC -ACGGAATAACGGTCGACTACAGTC -ACGGAATAACGGTCGACTTTGCTG -ACGGAATAACGGTCGACTTCCATG -ACGGAATAACGGTCGACTTGTGTG -ACGGAATAACGGTCGACTCTAGTG -ACGGAATAACGGTCGACTCATCTG -ACGGAATAACGGTCGACTGAGTTG -ACGGAATAACGGTCGACTAGACTG -ACGGAATAACGGTCGACTTCGGTA -ACGGAATAACGGTCGACTTGCCTA -ACGGAATAACGGTCGACTCCACTA -ACGGAATAACGGTCGACTGGAGTA -ACGGAATAACGGTCGACTTCGTCT -ACGGAATAACGGTCGACTTGCACT -ACGGAATAACGGTCGACTCTGACT -ACGGAATAACGGTCGACTCAACCT -ACGGAATAACGGTCGACTGCTACT -ACGGAATAACGGTCGACTGGATCT -ACGGAATAACGGTCGACTAAGGCT -ACGGAATAACGGTCGACTTCAACC -ACGGAATAACGGTCGACTTGTTCC -ACGGAATAACGGTCGACTATTCCC -ACGGAATAACGGTCGACTTTCTCG -ACGGAATAACGGTCGACTTAGACG -ACGGAATAACGGTCGACTGTAACG -ACGGAATAACGGTCGACTACTTCG -ACGGAATAACGGTCGACTTACGCA -ACGGAATAACGGTCGACTCTTGCA -ACGGAATAACGGTCGACTCGAACA -ACGGAATAACGGTCGACTCAGTCA -ACGGAATAACGGTCGACTGATCCA -ACGGAATAACGGTCGACTACGACA -ACGGAATAACGGTCGACTAGCTCA -ACGGAATAACGGTCGACTTCACGT -ACGGAATAACGGTCGACTCGTAGT -ACGGAATAACGGTCGACTGTCAGT -ACGGAATAACGGTCGACTGAAGGT -ACGGAATAACGGTCGACTAACCGT -ACGGAATAACGGTCGACTTTGTGC -ACGGAATAACGGTCGACTCTAAGC -ACGGAATAACGGTCGACTACTAGC -ACGGAATAACGGTCGACTAGATGC -ACGGAATAACGGTCGACTTGAAGG -ACGGAATAACGGTCGACTCAATGG -ACGGAATAACGGTCGACTATGAGG -ACGGAATAACGGTCGACTAATGGG -ACGGAATAACGGTCGACTTCCTGA -ACGGAATAACGGTCGACTTAGCGA -ACGGAATAACGGTCGACTCACAGA -ACGGAATAACGGTCGACTGCAAGA -ACGGAATAACGGTCGACTGGTTGA -ACGGAATAACGGTCGACTTCCGAT -ACGGAATAACGGTCGACTTGGCAT -ACGGAATAACGGTCGACTCGAGAT -ACGGAATAACGGTCGACTTACCAC -ACGGAATAACGGTCGACTCAGAAC -ACGGAATAACGGTCGACTGTCTAC -ACGGAATAACGGTCGACTACGTAC -ACGGAATAACGGTCGACTAGTGAC -ACGGAATAACGGTCGACTCTGTAG -ACGGAATAACGGTCGACTCCTAAG -ACGGAATAACGGTCGACTGTTCAG -ACGGAATAACGGTCGACTGCATAG -ACGGAATAACGGTCGACTGACAAG -ACGGAATAACGGTCGACTAAGCAG -ACGGAATAACGGTCGACTCGTCAA -ACGGAATAACGGTCGACTGCTGAA -ACGGAATAACGGTCGACTAGTACG -ACGGAATAACGGTCGACTATCCGA -ACGGAATAACGGTCGACTATGGGA -ACGGAATAACGGTCGACTGTGCAA -ACGGAATAACGGTCGACTGAGGAA -ACGGAATAACGGTCGACTCAGGTA -ACGGAATAACGGTCGACTGACTCT -ACGGAATAACGGTCGACTAGTCCT -ACGGAATAACGGTCGACTTAAGCC -ACGGAATAACGGTCGACTATAGCC -ACGGAATAACGGTCGACTTAACCG -ACGGAATAACGGTCGACTATGCCA -ACGGAATAACGGGCATACGGAAAC -ACGGAATAACGGGCATACAACACC -ACGGAATAACGGGCATACATCGAG -ACGGAATAACGGGCATACCTCCTT -ACGGAATAACGGGCATACCCTGTT -ACGGAATAACGGGCATACCGGTTT -ACGGAATAACGGGCATACGTGGTT -ACGGAATAACGGGCATACGCCTTT -ACGGAATAACGGGCATACGGTCTT -ACGGAATAACGGGCATACACGCTT -ACGGAATAACGGGCATACAGCGTT -ACGGAATAACGGGCATACTTCGTC -ACGGAATAACGGGCATACTCTCTC -ACGGAATAACGGGCATACTGGATC -ACGGAATAACGGGCATACCACTTC -ACGGAATAACGGGCATACGTACTC -ACGGAATAACGGGCATACGATGTC -ACGGAATAACGGGCATACACAGTC -ACGGAATAACGGGCATACTTGCTG -ACGGAATAACGGGCATACTCCATG -ACGGAATAACGGGCATACTGTGTG -ACGGAATAACGGGCATACCTAGTG -ACGGAATAACGGGCATACCATCTG -ACGGAATAACGGGCATACGAGTTG -ACGGAATAACGGGCATACAGACTG -ACGGAATAACGGGCATACTCGGTA -ACGGAATAACGGGCATACTGCCTA -ACGGAATAACGGGCATACCCACTA -ACGGAATAACGGGCATACGGAGTA -ACGGAATAACGGGCATACTCGTCT -ACGGAATAACGGGCATACTGCACT -ACGGAATAACGGGCATACCTGACT -ACGGAATAACGGGCATACCAACCT -ACGGAATAACGGGCATACGCTACT -ACGGAATAACGGGCATACGGATCT -ACGGAATAACGGGCATACAAGGCT -ACGGAATAACGGGCATACTCAACC -ACGGAATAACGGGCATACTGTTCC -ACGGAATAACGGGCATACATTCCC -ACGGAATAACGGGCATACTTCTCG -ACGGAATAACGGGCATACTAGACG -ACGGAATAACGGGCATACGTAACG -ACGGAATAACGGGCATACACTTCG -ACGGAATAACGGGCATACTACGCA -ACGGAATAACGGGCATACCTTGCA -ACGGAATAACGGGCATACCGAACA -ACGGAATAACGGGCATACCAGTCA -ACGGAATAACGGGCATACGATCCA -ACGGAATAACGGGCATACACGACA -ACGGAATAACGGGCATACAGCTCA -ACGGAATAACGGGCATACTCACGT -ACGGAATAACGGGCATACCGTAGT -ACGGAATAACGGGCATACGTCAGT -ACGGAATAACGGGCATACGAAGGT -ACGGAATAACGGGCATACAACCGT -ACGGAATAACGGGCATACTTGTGC -ACGGAATAACGGGCATACCTAAGC -ACGGAATAACGGGCATACACTAGC -ACGGAATAACGGGCATACAGATGC -ACGGAATAACGGGCATACTGAAGG -ACGGAATAACGGGCATACCAATGG -ACGGAATAACGGGCATACATGAGG -ACGGAATAACGGGCATACAATGGG -ACGGAATAACGGGCATACTCCTGA -ACGGAATAACGGGCATACTAGCGA -ACGGAATAACGGGCATACCACAGA -ACGGAATAACGGGCATACGCAAGA -ACGGAATAACGGGCATACGGTTGA -ACGGAATAACGGGCATACTCCGAT -ACGGAATAACGGGCATACTGGCAT -ACGGAATAACGGGCATACCGAGAT -ACGGAATAACGGGCATACTACCAC -ACGGAATAACGGGCATACCAGAAC -ACGGAATAACGGGCATACGTCTAC -ACGGAATAACGGGCATACACGTAC -ACGGAATAACGGGCATACAGTGAC -ACGGAATAACGGGCATACCTGTAG -ACGGAATAACGGGCATACCCTAAG -ACGGAATAACGGGCATACGTTCAG -ACGGAATAACGGGCATACGCATAG -ACGGAATAACGGGCATACGACAAG -ACGGAATAACGGGCATACAAGCAG -ACGGAATAACGGGCATACCGTCAA -ACGGAATAACGGGCATACGCTGAA -ACGGAATAACGGGCATACAGTACG -ACGGAATAACGGGCATACATCCGA -ACGGAATAACGGGCATACATGGGA -ACGGAATAACGGGCATACGTGCAA -ACGGAATAACGGGCATACGAGGAA -ACGGAATAACGGGCATACCAGGTA -ACGGAATAACGGGCATACGACTCT -ACGGAATAACGGGCATACAGTCCT -ACGGAATAACGGGCATACTAAGCC -ACGGAATAACGGGCATACATAGCC -ACGGAATAACGGGCATACTAACCG -ACGGAATAACGGGCATACATGCCA -ACGGAATAACGGGCACTTGGAAAC -ACGGAATAACGGGCACTTAACACC -ACGGAATAACGGGCACTTATCGAG -ACGGAATAACGGGCACTTCTCCTT -ACGGAATAACGGGCACTTCCTGTT -ACGGAATAACGGGCACTTCGGTTT -ACGGAATAACGGGCACTTGTGGTT -ACGGAATAACGGGCACTTGCCTTT -ACGGAATAACGGGCACTTGGTCTT -ACGGAATAACGGGCACTTACGCTT -ACGGAATAACGGGCACTTAGCGTT -ACGGAATAACGGGCACTTTTCGTC -ACGGAATAACGGGCACTTTCTCTC -ACGGAATAACGGGCACTTTGGATC -ACGGAATAACGGGCACTTCACTTC -ACGGAATAACGGGCACTTGTACTC -ACGGAATAACGGGCACTTGATGTC -ACGGAATAACGGGCACTTACAGTC -ACGGAATAACGGGCACTTTTGCTG -ACGGAATAACGGGCACTTTCCATG -ACGGAATAACGGGCACTTTGTGTG -ACGGAATAACGGGCACTTCTAGTG -ACGGAATAACGGGCACTTCATCTG -ACGGAATAACGGGCACTTGAGTTG -ACGGAATAACGGGCACTTAGACTG -ACGGAATAACGGGCACTTTCGGTA -ACGGAATAACGGGCACTTTGCCTA -ACGGAATAACGGGCACTTCCACTA -ACGGAATAACGGGCACTTGGAGTA -ACGGAATAACGGGCACTTTCGTCT -ACGGAATAACGGGCACTTTGCACT -ACGGAATAACGGGCACTTCTGACT -ACGGAATAACGGGCACTTCAACCT -ACGGAATAACGGGCACTTGCTACT -ACGGAATAACGGGCACTTGGATCT -ACGGAATAACGGGCACTTAAGGCT -ACGGAATAACGGGCACTTTCAACC -ACGGAATAACGGGCACTTTGTTCC -ACGGAATAACGGGCACTTATTCCC -ACGGAATAACGGGCACTTTTCTCG -ACGGAATAACGGGCACTTTAGACG -ACGGAATAACGGGCACTTGTAACG -ACGGAATAACGGGCACTTACTTCG -ACGGAATAACGGGCACTTTACGCA -ACGGAATAACGGGCACTTCTTGCA -ACGGAATAACGGGCACTTCGAACA -ACGGAATAACGGGCACTTCAGTCA -ACGGAATAACGGGCACTTGATCCA -ACGGAATAACGGGCACTTACGACA -ACGGAATAACGGGCACTTAGCTCA -ACGGAATAACGGGCACTTTCACGT -ACGGAATAACGGGCACTTCGTAGT -ACGGAATAACGGGCACTTGTCAGT -ACGGAATAACGGGCACTTGAAGGT -ACGGAATAACGGGCACTTAACCGT -ACGGAATAACGGGCACTTTTGTGC -ACGGAATAACGGGCACTTCTAAGC -ACGGAATAACGGGCACTTACTAGC -ACGGAATAACGGGCACTTAGATGC -ACGGAATAACGGGCACTTTGAAGG -ACGGAATAACGGGCACTTCAATGG -ACGGAATAACGGGCACTTATGAGG -ACGGAATAACGGGCACTTAATGGG -ACGGAATAACGGGCACTTTCCTGA -ACGGAATAACGGGCACTTTAGCGA -ACGGAATAACGGGCACTTCACAGA -ACGGAATAACGGGCACTTGCAAGA -ACGGAATAACGGGCACTTGGTTGA -ACGGAATAACGGGCACTTTCCGAT -ACGGAATAACGGGCACTTTGGCAT -ACGGAATAACGGGCACTTCGAGAT -ACGGAATAACGGGCACTTTACCAC -ACGGAATAACGGGCACTTCAGAAC -ACGGAATAACGGGCACTTGTCTAC -ACGGAATAACGGGCACTTACGTAC -ACGGAATAACGGGCACTTAGTGAC -ACGGAATAACGGGCACTTCTGTAG -ACGGAATAACGGGCACTTCCTAAG -ACGGAATAACGGGCACTTGTTCAG -ACGGAATAACGGGCACTTGCATAG -ACGGAATAACGGGCACTTGACAAG -ACGGAATAACGGGCACTTAAGCAG -ACGGAATAACGGGCACTTCGTCAA -ACGGAATAACGGGCACTTGCTGAA -ACGGAATAACGGGCACTTAGTACG -ACGGAATAACGGGCACTTATCCGA -ACGGAATAACGGGCACTTATGGGA -ACGGAATAACGGGCACTTGTGCAA -ACGGAATAACGGGCACTTGAGGAA -ACGGAATAACGGGCACTTCAGGTA -ACGGAATAACGGGCACTTGACTCT -ACGGAATAACGGGCACTTAGTCCT -ACGGAATAACGGGCACTTTAAGCC -ACGGAATAACGGGCACTTATAGCC -ACGGAATAACGGGCACTTTAACCG -ACGGAATAACGGGCACTTATGCCA -ACGGAATAACGGACACGAGGAAAC -ACGGAATAACGGACACGAAACACC -ACGGAATAACGGACACGAATCGAG -ACGGAATAACGGACACGACTCCTT -ACGGAATAACGGACACGACCTGTT -ACGGAATAACGGACACGACGGTTT -ACGGAATAACGGACACGAGTGGTT -ACGGAATAACGGACACGAGCCTTT -ACGGAATAACGGACACGAGGTCTT -ACGGAATAACGGACACGAACGCTT -ACGGAATAACGGACACGAAGCGTT -ACGGAATAACGGACACGATTCGTC -ACGGAATAACGGACACGATCTCTC -ACGGAATAACGGACACGATGGATC -ACGGAATAACGGACACGACACTTC -ACGGAATAACGGACACGAGTACTC -ACGGAATAACGGACACGAGATGTC -ACGGAATAACGGACACGAACAGTC -ACGGAATAACGGACACGATTGCTG -ACGGAATAACGGACACGATCCATG -ACGGAATAACGGACACGATGTGTG -ACGGAATAACGGACACGACTAGTG -ACGGAATAACGGACACGACATCTG -ACGGAATAACGGACACGAGAGTTG -ACGGAATAACGGACACGAAGACTG -ACGGAATAACGGACACGATCGGTA -ACGGAATAACGGACACGATGCCTA -ACGGAATAACGGACACGACCACTA -ACGGAATAACGGACACGAGGAGTA -ACGGAATAACGGACACGATCGTCT -ACGGAATAACGGACACGATGCACT -ACGGAATAACGGACACGACTGACT -ACGGAATAACGGACACGACAACCT -ACGGAATAACGGACACGAGCTACT -ACGGAATAACGGACACGAGGATCT -ACGGAATAACGGACACGAAAGGCT -ACGGAATAACGGACACGATCAACC -ACGGAATAACGGACACGATGTTCC -ACGGAATAACGGACACGAATTCCC -ACGGAATAACGGACACGATTCTCG -ACGGAATAACGGACACGATAGACG -ACGGAATAACGGACACGAGTAACG -ACGGAATAACGGACACGAACTTCG -ACGGAATAACGGACACGATACGCA -ACGGAATAACGGACACGACTTGCA -ACGGAATAACGGACACGACGAACA -ACGGAATAACGGACACGACAGTCA -ACGGAATAACGGACACGAGATCCA -ACGGAATAACGGACACGAACGACA -ACGGAATAACGGACACGAAGCTCA -ACGGAATAACGGACACGATCACGT -ACGGAATAACGGACACGACGTAGT -ACGGAATAACGGACACGAGTCAGT -ACGGAATAACGGACACGAGAAGGT -ACGGAATAACGGACACGAAACCGT -ACGGAATAACGGACACGATTGTGC -ACGGAATAACGGACACGACTAAGC -ACGGAATAACGGACACGAACTAGC -ACGGAATAACGGACACGAAGATGC -ACGGAATAACGGACACGATGAAGG -ACGGAATAACGGACACGACAATGG -ACGGAATAACGGACACGAATGAGG -ACGGAATAACGGACACGAAATGGG -ACGGAATAACGGACACGATCCTGA -ACGGAATAACGGACACGATAGCGA -ACGGAATAACGGACACGACACAGA -ACGGAATAACGGACACGAGCAAGA -ACGGAATAACGGACACGAGGTTGA -ACGGAATAACGGACACGATCCGAT -ACGGAATAACGGACACGATGGCAT -ACGGAATAACGGACACGACGAGAT -ACGGAATAACGGACACGATACCAC -ACGGAATAACGGACACGACAGAAC -ACGGAATAACGGACACGAGTCTAC -ACGGAATAACGGACACGAACGTAC -ACGGAATAACGGACACGAAGTGAC -ACGGAATAACGGACACGACTGTAG -ACGGAATAACGGACACGACCTAAG -ACGGAATAACGGACACGAGTTCAG -ACGGAATAACGGACACGAGCATAG -ACGGAATAACGGACACGAGACAAG -ACGGAATAACGGACACGAAAGCAG -ACGGAATAACGGACACGACGTCAA -ACGGAATAACGGACACGAGCTGAA -ACGGAATAACGGACACGAAGTACG -ACGGAATAACGGACACGAATCCGA -ACGGAATAACGGACACGAATGGGA -ACGGAATAACGGACACGAGTGCAA -ACGGAATAACGGACACGAGAGGAA -ACGGAATAACGGACACGACAGGTA -ACGGAATAACGGACACGAGACTCT -ACGGAATAACGGACACGAAGTCCT -ACGGAATAACGGACACGATAAGCC -ACGGAATAACGGACACGAATAGCC -ACGGAATAACGGACACGATAACCG -ACGGAATAACGGACACGAATGCCA -ACGGAATAACGGTCACAGGGAAAC -ACGGAATAACGGTCACAGAACACC -ACGGAATAACGGTCACAGATCGAG -ACGGAATAACGGTCACAGCTCCTT -ACGGAATAACGGTCACAGCCTGTT -ACGGAATAACGGTCACAGCGGTTT -ACGGAATAACGGTCACAGGTGGTT -ACGGAATAACGGTCACAGGCCTTT -ACGGAATAACGGTCACAGGGTCTT -ACGGAATAACGGTCACAGACGCTT -ACGGAATAACGGTCACAGAGCGTT -ACGGAATAACGGTCACAGTTCGTC -ACGGAATAACGGTCACAGTCTCTC -ACGGAATAACGGTCACAGTGGATC -ACGGAATAACGGTCACAGCACTTC -ACGGAATAACGGTCACAGGTACTC -ACGGAATAACGGTCACAGGATGTC -ACGGAATAACGGTCACAGACAGTC -ACGGAATAACGGTCACAGTTGCTG -ACGGAATAACGGTCACAGTCCATG -ACGGAATAACGGTCACAGTGTGTG -ACGGAATAACGGTCACAGCTAGTG -ACGGAATAACGGTCACAGCATCTG -ACGGAATAACGGTCACAGGAGTTG -ACGGAATAACGGTCACAGAGACTG -ACGGAATAACGGTCACAGTCGGTA -ACGGAATAACGGTCACAGTGCCTA -ACGGAATAACGGTCACAGCCACTA -ACGGAATAACGGTCACAGGGAGTA -ACGGAATAACGGTCACAGTCGTCT -ACGGAATAACGGTCACAGTGCACT -ACGGAATAACGGTCACAGCTGACT -ACGGAATAACGGTCACAGCAACCT -ACGGAATAACGGTCACAGGCTACT -ACGGAATAACGGTCACAGGGATCT -ACGGAATAACGGTCACAGAAGGCT -ACGGAATAACGGTCACAGTCAACC -ACGGAATAACGGTCACAGTGTTCC -ACGGAATAACGGTCACAGATTCCC -ACGGAATAACGGTCACAGTTCTCG -ACGGAATAACGGTCACAGTAGACG -ACGGAATAACGGTCACAGGTAACG -ACGGAATAACGGTCACAGACTTCG -ACGGAATAACGGTCACAGTACGCA -ACGGAATAACGGTCACAGCTTGCA -ACGGAATAACGGTCACAGCGAACA -ACGGAATAACGGTCACAGCAGTCA -ACGGAATAACGGTCACAGGATCCA -ACGGAATAACGGTCACAGACGACA -ACGGAATAACGGTCACAGAGCTCA -ACGGAATAACGGTCACAGTCACGT -ACGGAATAACGGTCACAGCGTAGT -ACGGAATAACGGTCACAGGTCAGT -ACGGAATAACGGTCACAGGAAGGT -ACGGAATAACGGTCACAGAACCGT -ACGGAATAACGGTCACAGTTGTGC -ACGGAATAACGGTCACAGCTAAGC -ACGGAATAACGGTCACAGACTAGC -ACGGAATAACGGTCACAGAGATGC -ACGGAATAACGGTCACAGTGAAGG -ACGGAATAACGGTCACAGCAATGG -ACGGAATAACGGTCACAGATGAGG -ACGGAATAACGGTCACAGAATGGG -ACGGAATAACGGTCACAGTCCTGA -ACGGAATAACGGTCACAGTAGCGA -ACGGAATAACGGTCACAGCACAGA -ACGGAATAACGGTCACAGGCAAGA -ACGGAATAACGGTCACAGGGTTGA -ACGGAATAACGGTCACAGTCCGAT -ACGGAATAACGGTCACAGTGGCAT -ACGGAATAACGGTCACAGCGAGAT -ACGGAATAACGGTCACAGTACCAC -ACGGAATAACGGTCACAGCAGAAC -ACGGAATAACGGTCACAGGTCTAC -ACGGAATAACGGTCACAGACGTAC -ACGGAATAACGGTCACAGAGTGAC -ACGGAATAACGGTCACAGCTGTAG -ACGGAATAACGGTCACAGCCTAAG -ACGGAATAACGGTCACAGGTTCAG -ACGGAATAACGGTCACAGGCATAG -ACGGAATAACGGTCACAGGACAAG -ACGGAATAACGGTCACAGAAGCAG -ACGGAATAACGGTCACAGCGTCAA -ACGGAATAACGGTCACAGGCTGAA -ACGGAATAACGGTCACAGAGTACG -ACGGAATAACGGTCACAGATCCGA -ACGGAATAACGGTCACAGATGGGA -ACGGAATAACGGTCACAGGTGCAA -ACGGAATAACGGTCACAGGAGGAA -ACGGAATAACGGTCACAGCAGGTA -ACGGAATAACGGTCACAGGACTCT -ACGGAATAACGGTCACAGAGTCCT -ACGGAATAACGGTCACAGTAAGCC -ACGGAATAACGGTCACAGATAGCC -ACGGAATAACGGTCACAGTAACCG -ACGGAATAACGGTCACAGATGCCA -ACGGAATAACGGCCAGATGGAAAC -ACGGAATAACGGCCAGATAACACC -ACGGAATAACGGCCAGATATCGAG -ACGGAATAACGGCCAGATCTCCTT -ACGGAATAACGGCCAGATCCTGTT -ACGGAATAACGGCCAGATCGGTTT -ACGGAATAACGGCCAGATGTGGTT -ACGGAATAACGGCCAGATGCCTTT -ACGGAATAACGGCCAGATGGTCTT -ACGGAATAACGGCCAGATACGCTT -ACGGAATAACGGCCAGATAGCGTT -ACGGAATAACGGCCAGATTTCGTC -ACGGAATAACGGCCAGATTCTCTC -ACGGAATAACGGCCAGATTGGATC -ACGGAATAACGGCCAGATCACTTC -ACGGAATAACGGCCAGATGTACTC -ACGGAATAACGGCCAGATGATGTC -ACGGAATAACGGCCAGATACAGTC -ACGGAATAACGGCCAGATTTGCTG -ACGGAATAACGGCCAGATTCCATG -ACGGAATAACGGCCAGATTGTGTG -ACGGAATAACGGCCAGATCTAGTG -ACGGAATAACGGCCAGATCATCTG -ACGGAATAACGGCCAGATGAGTTG -ACGGAATAACGGCCAGATAGACTG -ACGGAATAACGGCCAGATTCGGTA -ACGGAATAACGGCCAGATTGCCTA -ACGGAATAACGGCCAGATCCACTA -ACGGAATAACGGCCAGATGGAGTA -ACGGAATAACGGCCAGATTCGTCT -ACGGAATAACGGCCAGATTGCACT -ACGGAATAACGGCCAGATCTGACT -ACGGAATAACGGCCAGATCAACCT -ACGGAATAACGGCCAGATGCTACT -ACGGAATAACGGCCAGATGGATCT -ACGGAATAACGGCCAGATAAGGCT -ACGGAATAACGGCCAGATTCAACC -ACGGAATAACGGCCAGATTGTTCC -ACGGAATAACGGCCAGATATTCCC -ACGGAATAACGGCCAGATTTCTCG -ACGGAATAACGGCCAGATTAGACG -ACGGAATAACGGCCAGATGTAACG -ACGGAATAACGGCCAGATACTTCG -ACGGAATAACGGCCAGATTACGCA -ACGGAATAACGGCCAGATCTTGCA -ACGGAATAACGGCCAGATCGAACA -ACGGAATAACGGCCAGATCAGTCA -ACGGAATAACGGCCAGATGATCCA -ACGGAATAACGGCCAGATACGACA -ACGGAATAACGGCCAGATAGCTCA -ACGGAATAACGGCCAGATTCACGT -ACGGAATAACGGCCAGATCGTAGT -ACGGAATAACGGCCAGATGTCAGT -ACGGAATAACGGCCAGATGAAGGT -ACGGAATAACGGCCAGATAACCGT -ACGGAATAACGGCCAGATTTGTGC -ACGGAATAACGGCCAGATCTAAGC -ACGGAATAACGGCCAGATACTAGC -ACGGAATAACGGCCAGATAGATGC -ACGGAATAACGGCCAGATTGAAGG -ACGGAATAACGGCCAGATCAATGG -ACGGAATAACGGCCAGATATGAGG -ACGGAATAACGGCCAGATAATGGG -ACGGAATAACGGCCAGATTCCTGA -ACGGAATAACGGCCAGATTAGCGA -ACGGAATAACGGCCAGATCACAGA -ACGGAATAACGGCCAGATGCAAGA -ACGGAATAACGGCCAGATGGTTGA -ACGGAATAACGGCCAGATTCCGAT -ACGGAATAACGGCCAGATTGGCAT -ACGGAATAACGGCCAGATCGAGAT -ACGGAATAACGGCCAGATTACCAC -ACGGAATAACGGCCAGATCAGAAC -ACGGAATAACGGCCAGATGTCTAC -ACGGAATAACGGCCAGATACGTAC -ACGGAATAACGGCCAGATAGTGAC -ACGGAATAACGGCCAGATCTGTAG -ACGGAATAACGGCCAGATCCTAAG -ACGGAATAACGGCCAGATGTTCAG -ACGGAATAACGGCCAGATGCATAG -ACGGAATAACGGCCAGATGACAAG -ACGGAATAACGGCCAGATAAGCAG -ACGGAATAACGGCCAGATCGTCAA -ACGGAATAACGGCCAGATGCTGAA -ACGGAATAACGGCCAGATAGTACG -ACGGAATAACGGCCAGATATCCGA -ACGGAATAACGGCCAGATATGGGA -ACGGAATAACGGCCAGATGTGCAA -ACGGAATAACGGCCAGATGAGGAA -ACGGAATAACGGCCAGATCAGGTA -ACGGAATAACGGCCAGATGACTCT -ACGGAATAACGGCCAGATAGTCCT -ACGGAATAACGGCCAGATTAAGCC -ACGGAATAACGGCCAGATATAGCC -ACGGAATAACGGCCAGATTAACCG -ACGGAATAACGGCCAGATATGCCA -ACGGAATAACGGACAACGGGAAAC -ACGGAATAACGGACAACGAACACC -ACGGAATAACGGACAACGATCGAG -ACGGAATAACGGACAACGCTCCTT -ACGGAATAACGGACAACGCCTGTT -ACGGAATAACGGACAACGCGGTTT -ACGGAATAACGGACAACGGTGGTT -ACGGAATAACGGACAACGGCCTTT -ACGGAATAACGGACAACGGGTCTT -ACGGAATAACGGACAACGACGCTT -ACGGAATAACGGACAACGAGCGTT -ACGGAATAACGGACAACGTTCGTC -ACGGAATAACGGACAACGTCTCTC -ACGGAATAACGGACAACGTGGATC -ACGGAATAACGGACAACGCACTTC -ACGGAATAACGGACAACGGTACTC -ACGGAATAACGGACAACGGATGTC -ACGGAATAACGGACAACGACAGTC -ACGGAATAACGGACAACGTTGCTG -ACGGAATAACGGACAACGTCCATG -ACGGAATAACGGACAACGTGTGTG -ACGGAATAACGGACAACGCTAGTG -ACGGAATAACGGACAACGCATCTG -ACGGAATAACGGACAACGGAGTTG -ACGGAATAACGGACAACGAGACTG -ACGGAATAACGGACAACGTCGGTA -ACGGAATAACGGACAACGTGCCTA -ACGGAATAACGGACAACGCCACTA -ACGGAATAACGGACAACGGGAGTA -ACGGAATAACGGACAACGTCGTCT -ACGGAATAACGGACAACGTGCACT -ACGGAATAACGGACAACGCTGACT -ACGGAATAACGGACAACGCAACCT -ACGGAATAACGGACAACGGCTACT -ACGGAATAACGGACAACGGGATCT -ACGGAATAACGGACAACGAAGGCT -ACGGAATAACGGACAACGTCAACC -ACGGAATAACGGACAACGTGTTCC -ACGGAATAACGGACAACGATTCCC -ACGGAATAACGGACAACGTTCTCG -ACGGAATAACGGACAACGTAGACG -ACGGAATAACGGACAACGGTAACG -ACGGAATAACGGACAACGACTTCG -ACGGAATAACGGACAACGTACGCA -ACGGAATAACGGACAACGCTTGCA -ACGGAATAACGGACAACGCGAACA -ACGGAATAACGGACAACGCAGTCA -ACGGAATAACGGACAACGGATCCA -ACGGAATAACGGACAACGACGACA -ACGGAATAACGGACAACGAGCTCA -ACGGAATAACGGACAACGTCACGT -ACGGAATAACGGACAACGCGTAGT -ACGGAATAACGGACAACGGTCAGT -ACGGAATAACGGACAACGGAAGGT -ACGGAATAACGGACAACGAACCGT -ACGGAATAACGGACAACGTTGTGC -ACGGAATAACGGACAACGCTAAGC -ACGGAATAACGGACAACGACTAGC -ACGGAATAACGGACAACGAGATGC -ACGGAATAACGGACAACGTGAAGG -ACGGAATAACGGACAACGCAATGG -ACGGAATAACGGACAACGATGAGG -ACGGAATAACGGACAACGAATGGG -ACGGAATAACGGACAACGTCCTGA -ACGGAATAACGGACAACGTAGCGA -ACGGAATAACGGACAACGCACAGA -ACGGAATAACGGACAACGGCAAGA -ACGGAATAACGGACAACGGGTTGA -ACGGAATAACGGACAACGTCCGAT -ACGGAATAACGGACAACGTGGCAT -ACGGAATAACGGACAACGCGAGAT -ACGGAATAACGGACAACGTACCAC -ACGGAATAACGGACAACGCAGAAC -ACGGAATAACGGACAACGGTCTAC -ACGGAATAACGGACAACGACGTAC -ACGGAATAACGGACAACGAGTGAC -ACGGAATAACGGACAACGCTGTAG -ACGGAATAACGGACAACGCCTAAG -ACGGAATAACGGACAACGGTTCAG -ACGGAATAACGGACAACGGCATAG -ACGGAATAACGGACAACGGACAAG -ACGGAATAACGGACAACGAAGCAG -ACGGAATAACGGACAACGCGTCAA -ACGGAATAACGGACAACGGCTGAA -ACGGAATAACGGACAACGAGTACG -ACGGAATAACGGACAACGATCCGA -ACGGAATAACGGACAACGATGGGA -ACGGAATAACGGACAACGGTGCAA -ACGGAATAACGGACAACGGAGGAA -ACGGAATAACGGACAACGCAGGTA -ACGGAATAACGGACAACGGACTCT -ACGGAATAACGGACAACGAGTCCT -ACGGAATAACGGACAACGTAAGCC -ACGGAATAACGGACAACGATAGCC -ACGGAATAACGGACAACGTAACCG -ACGGAATAACGGACAACGATGCCA -ACGGAATAACGGTCAAGCGGAAAC -ACGGAATAACGGTCAAGCAACACC -ACGGAATAACGGTCAAGCATCGAG -ACGGAATAACGGTCAAGCCTCCTT -ACGGAATAACGGTCAAGCCCTGTT -ACGGAATAACGGTCAAGCCGGTTT -ACGGAATAACGGTCAAGCGTGGTT -ACGGAATAACGGTCAAGCGCCTTT -ACGGAATAACGGTCAAGCGGTCTT -ACGGAATAACGGTCAAGCACGCTT -ACGGAATAACGGTCAAGCAGCGTT -ACGGAATAACGGTCAAGCTTCGTC -ACGGAATAACGGTCAAGCTCTCTC -ACGGAATAACGGTCAAGCTGGATC -ACGGAATAACGGTCAAGCCACTTC -ACGGAATAACGGTCAAGCGTACTC -ACGGAATAACGGTCAAGCGATGTC -ACGGAATAACGGTCAAGCACAGTC -ACGGAATAACGGTCAAGCTTGCTG -ACGGAATAACGGTCAAGCTCCATG -ACGGAATAACGGTCAAGCTGTGTG -ACGGAATAACGGTCAAGCCTAGTG -ACGGAATAACGGTCAAGCCATCTG -ACGGAATAACGGTCAAGCGAGTTG -ACGGAATAACGGTCAAGCAGACTG -ACGGAATAACGGTCAAGCTCGGTA -ACGGAATAACGGTCAAGCTGCCTA -ACGGAATAACGGTCAAGCCCACTA -ACGGAATAACGGTCAAGCGGAGTA -ACGGAATAACGGTCAAGCTCGTCT -ACGGAATAACGGTCAAGCTGCACT -ACGGAATAACGGTCAAGCCTGACT -ACGGAATAACGGTCAAGCCAACCT -ACGGAATAACGGTCAAGCGCTACT -ACGGAATAACGGTCAAGCGGATCT -ACGGAATAACGGTCAAGCAAGGCT -ACGGAATAACGGTCAAGCTCAACC -ACGGAATAACGGTCAAGCTGTTCC -ACGGAATAACGGTCAAGCATTCCC -ACGGAATAACGGTCAAGCTTCTCG -ACGGAATAACGGTCAAGCTAGACG -ACGGAATAACGGTCAAGCGTAACG -ACGGAATAACGGTCAAGCACTTCG -ACGGAATAACGGTCAAGCTACGCA -ACGGAATAACGGTCAAGCCTTGCA -ACGGAATAACGGTCAAGCCGAACA -ACGGAATAACGGTCAAGCCAGTCA -ACGGAATAACGGTCAAGCGATCCA -ACGGAATAACGGTCAAGCACGACA -ACGGAATAACGGTCAAGCAGCTCA -ACGGAATAACGGTCAAGCTCACGT -ACGGAATAACGGTCAAGCCGTAGT -ACGGAATAACGGTCAAGCGTCAGT -ACGGAATAACGGTCAAGCGAAGGT -ACGGAATAACGGTCAAGCAACCGT -ACGGAATAACGGTCAAGCTTGTGC -ACGGAATAACGGTCAAGCCTAAGC -ACGGAATAACGGTCAAGCACTAGC -ACGGAATAACGGTCAAGCAGATGC -ACGGAATAACGGTCAAGCTGAAGG -ACGGAATAACGGTCAAGCCAATGG -ACGGAATAACGGTCAAGCATGAGG -ACGGAATAACGGTCAAGCAATGGG -ACGGAATAACGGTCAAGCTCCTGA -ACGGAATAACGGTCAAGCTAGCGA -ACGGAATAACGGTCAAGCCACAGA -ACGGAATAACGGTCAAGCGCAAGA -ACGGAATAACGGTCAAGCGGTTGA -ACGGAATAACGGTCAAGCTCCGAT -ACGGAATAACGGTCAAGCTGGCAT -ACGGAATAACGGTCAAGCCGAGAT -ACGGAATAACGGTCAAGCTACCAC -ACGGAATAACGGTCAAGCCAGAAC -ACGGAATAACGGTCAAGCGTCTAC -ACGGAATAACGGTCAAGCACGTAC -ACGGAATAACGGTCAAGCAGTGAC -ACGGAATAACGGTCAAGCCTGTAG -ACGGAATAACGGTCAAGCCCTAAG -ACGGAATAACGGTCAAGCGTTCAG -ACGGAATAACGGTCAAGCGCATAG -ACGGAATAACGGTCAAGCGACAAG -ACGGAATAACGGTCAAGCAAGCAG -ACGGAATAACGGTCAAGCCGTCAA -ACGGAATAACGGTCAAGCGCTGAA -ACGGAATAACGGTCAAGCAGTACG -ACGGAATAACGGTCAAGCATCCGA -ACGGAATAACGGTCAAGCATGGGA -ACGGAATAACGGTCAAGCGTGCAA -ACGGAATAACGGTCAAGCGAGGAA -ACGGAATAACGGTCAAGCCAGGTA -ACGGAATAACGGTCAAGCGACTCT -ACGGAATAACGGTCAAGCAGTCCT -ACGGAATAACGGTCAAGCTAAGCC -ACGGAATAACGGTCAAGCATAGCC -ACGGAATAACGGTCAAGCTAACCG -ACGGAATAACGGTCAAGCATGCCA -ACGGAATAACGGCGTTCAGGAAAC -ACGGAATAACGGCGTTCAAACACC -ACGGAATAACGGCGTTCAATCGAG -ACGGAATAACGGCGTTCACTCCTT -ACGGAATAACGGCGTTCACCTGTT -ACGGAATAACGGCGTTCACGGTTT -ACGGAATAACGGCGTTCAGTGGTT -ACGGAATAACGGCGTTCAGCCTTT -ACGGAATAACGGCGTTCAGGTCTT -ACGGAATAACGGCGTTCAACGCTT -ACGGAATAACGGCGTTCAAGCGTT -ACGGAATAACGGCGTTCATTCGTC -ACGGAATAACGGCGTTCATCTCTC -ACGGAATAACGGCGTTCATGGATC -ACGGAATAACGGCGTTCACACTTC -ACGGAATAACGGCGTTCAGTACTC -ACGGAATAACGGCGTTCAGATGTC -ACGGAATAACGGCGTTCAACAGTC -ACGGAATAACGGCGTTCATTGCTG -ACGGAATAACGGCGTTCATCCATG -ACGGAATAACGGCGTTCATGTGTG -ACGGAATAACGGCGTTCACTAGTG -ACGGAATAACGGCGTTCACATCTG -ACGGAATAACGGCGTTCAGAGTTG -ACGGAATAACGGCGTTCAAGACTG -ACGGAATAACGGCGTTCATCGGTA -ACGGAATAACGGCGTTCATGCCTA -ACGGAATAACGGCGTTCACCACTA -ACGGAATAACGGCGTTCAGGAGTA -ACGGAATAACGGCGTTCATCGTCT -ACGGAATAACGGCGTTCATGCACT -ACGGAATAACGGCGTTCACTGACT -ACGGAATAACGGCGTTCACAACCT -ACGGAATAACGGCGTTCAGCTACT -ACGGAATAACGGCGTTCAGGATCT -ACGGAATAACGGCGTTCAAAGGCT -ACGGAATAACGGCGTTCATCAACC -ACGGAATAACGGCGTTCATGTTCC -ACGGAATAACGGCGTTCAATTCCC -ACGGAATAACGGCGTTCATTCTCG -ACGGAATAACGGCGTTCATAGACG -ACGGAATAACGGCGTTCAGTAACG -ACGGAATAACGGCGTTCAACTTCG -ACGGAATAACGGCGTTCATACGCA -ACGGAATAACGGCGTTCACTTGCA -ACGGAATAACGGCGTTCACGAACA -ACGGAATAACGGCGTTCACAGTCA -ACGGAATAACGGCGTTCAGATCCA -ACGGAATAACGGCGTTCAACGACA -ACGGAATAACGGCGTTCAAGCTCA -ACGGAATAACGGCGTTCATCACGT -ACGGAATAACGGCGTTCACGTAGT -ACGGAATAACGGCGTTCAGTCAGT -ACGGAATAACGGCGTTCAGAAGGT -ACGGAATAACGGCGTTCAAACCGT -ACGGAATAACGGCGTTCATTGTGC -ACGGAATAACGGCGTTCACTAAGC -ACGGAATAACGGCGTTCAACTAGC -ACGGAATAACGGCGTTCAAGATGC -ACGGAATAACGGCGTTCATGAAGG -ACGGAATAACGGCGTTCACAATGG -ACGGAATAACGGCGTTCAATGAGG -ACGGAATAACGGCGTTCAAATGGG -ACGGAATAACGGCGTTCATCCTGA -ACGGAATAACGGCGTTCATAGCGA -ACGGAATAACGGCGTTCACACAGA -ACGGAATAACGGCGTTCAGCAAGA -ACGGAATAACGGCGTTCAGGTTGA -ACGGAATAACGGCGTTCATCCGAT -ACGGAATAACGGCGTTCATGGCAT -ACGGAATAACGGCGTTCACGAGAT -ACGGAATAACGGCGTTCATACCAC -ACGGAATAACGGCGTTCACAGAAC -ACGGAATAACGGCGTTCAGTCTAC -ACGGAATAACGGCGTTCAACGTAC -ACGGAATAACGGCGTTCAAGTGAC -ACGGAATAACGGCGTTCACTGTAG -ACGGAATAACGGCGTTCACCTAAG -ACGGAATAACGGCGTTCAGTTCAG -ACGGAATAACGGCGTTCAGCATAG -ACGGAATAACGGCGTTCAGACAAG -ACGGAATAACGGCGTTCAAAGCAG -ACGGAATAACGGCGTTCACGTCAA -ACGGAATAACGGCGTTCAGCTGAA -ACGGAATAACGGCGTTCAAGTACG -ACGGAATAACGGCGTTCAATCCGA -ACGGAATAACGGCGTTCAATGGGA -ACGGAATAACGGCGTTCAGTGCAA -ACGGAATAACGGCGTTCAGAGGAA -ACGGAATAACGGCGTTCACAGGTA -ACGGAATAACGGCGTTCAGACTCT -ACGGAATAACGGCGTTCAAGTCCT -ACGGAATAACGGCGTTCATAAGCC -ACGGAATAACGGCGTTCAATAGCC -ACGGAATAACGGCGTTCATAACCG -ACGGAATAACGGCGTTCAATGCCA -ACGGAATAACGGAGTCGTGGAAAC -ACGGAATAACGGAGTCGTAACACC -ACGGAATAACGGAGTCGTATCGAG -ACGGAATAACGGAGTCGTCTCCTT -ACGGAATAACGGAGTCGTCCTGTT -ACGGAATAACGGAGTCGTCGGTTT -ACGGAATAACGGAGTCGTGTGGTT -ACGGAATAACGGAGTCGTGCCTTT -ACGGAATAACGGAGTCGTGGTCTT -ACGGAATAACGGAGTCGTACGCTT -ACGGAATAACGGAGTCGTAGCGTT -ACGGAATAACGGAGTCGTTTCGTC -ACGGAATAACGGAGTCGTTCTCTC -ACGGAATAACGGAGTCGTTGGATC -ACGGAATAACGGAGTCGTCACTTC -ACGGAATAACGGAGTCGTGTACTC -ACGGAATAACGGAGTCGTGATGTC -ACGGAATAACGGAGTCGTACAGTC -ACGGAATAACGGAGTCGTTTGCTG -ACGGAATAACGGAGTCGTTCCATG -ACGGAATAACGGAGTCGTTGTGTG -ACGGAATAACGGAGTCGTCTAGTG -ACGGAATAACGGAGTCGTCATCTG -ACGGAATAACGGAGTCGTGAGTTG -ACGGAATAACGGAGTCGTAGACTG -ACGGAATAACGGAGTCGTTCGGTA -ACGGAATAACGGAGTCGTTGCCTA -ACGGAATAACGGAGTCGTCCACTA -ACGGAATAACGGAGTCGTGGAGTA -ACGGAATAACGGAGTCGTTCGTCT -ACGGAATAACGGAGTCGTTGCACT -ACGGAATAACGGAGTCGTCTGACT -ACGGAATAACGGAGTCGTCAACCT -ACGGAATAACGGAGTCGTGCTACT -ACGGAATAACGGAGTCGTGGATCT -ACGGAATAACGGAGTCGTAAGGCT -ACGGAATAACGGAGTCGTTCAACC -ACGGAATAACGGAGTCGTTGTTCC -ACGGAATAACGGAGTCGTATTCCC -ACGGAATAACGGAGTCGTTTCTCG -ACGGAATAACGGAGTCGTTAGACG -ACGGAATAACGGAGTCGTGTAACG -ACGGAATAACGGAGTCGTACTTCG -ACGGAATAACGGAGTCGTTACGCA -ACGGAATAACGGAGTCGTCTTGCA -ACGGAATAACGGAGTCGTCGAACA -ACGGAATAACGGAGTCGTCAGTCA -ACGGAATAACGGAGTCGTGATCCA -ACGGAATAACGGAGTCGTACGACA -ACGGAATAACGGAGTCGTAGCTCA -ACGGAATAACGGAGTCGTTCACGT -ACGGAATAACGGAGTCGTCGTAGT -ACGGAATAACGGAGTCGTGTCAGT -ACGGAATAACGGAGTCGTGAAGGT -ACGGAATAACGGAGTCGTAACCGT -ACGGAATAACGGAGTCGTTTGTGC -ACGGAATAACGGAGTCGTCTAAGC -ACGGAATAACGGAGTCGTACTAGC -ACGGAATAACGGAGTCGTAGATGC -ACGGAATAACGGAGTCGTTGAAGG -ACGGAATAACGGAGTCGTCAATGG -ACGGAATAACGGAGTCGTATGAGG -ACGGAATAACGGAGTCGTAATGGG -ACGGAATAACGGAGTCGTTCCTGA -ACGGAATAACGGAGTCGTTAGCGA -ACGGAATAACGGAGTCGTCACAGA -ACGGAATAACGGAGTCGTGCAAGA -ACGGAATAACGGAGTCGTGGTTGA -ACGGAATAACGGAGTCGTTCCGAT -ACGGAATAACGGAGTCGTTGGCAT -ACGGAATAACGGAGTCGTCGAGAT -ACGGAATAACGGAGTCGTTACCAC -ACGGAATAACGGAGTCGTCAGAAC -ACGGAATAACGGAGTCGTGTCTAC -ACGGAATAACGGAGTCGTACGTAC -ACGGAATAACGGAGTCGTAGTGAC -ACGGAATAACGGAGTCGTCTGTAG -ACGGAATAACGGAGTCGTCCTAAG -ACGGAATAACGGAGTCGTGTTCAG -ACGGAATAACGGAGTCGTGCATAG -ACGGAATAACGGAGTCGTGACAAG -ACGGAATAACGGAGTCGTAAGCAG -ACGGAATAACGGAGTCGTCGTCAA -ACGGAATAACGGAGTCGTGCTGAA -ACGGAATAACGGAGTCGTAGTACG -ACGGAATAACGGAGTCGTATCCGA -ACGGAATAACGGAGTCGTATGGGA -ACGGAATAACGGAGTCGTGTGCAA -ACGGAATAACGGAGTCGTGAGGAA -ACGGAATAACGGAGTCGTCAGGTA -ACGGAATAACGGAGTCGTGACTCT -ACGGAATAACGGAGTCGTAGTCCT -ACGGAATAACGGAGTCGTTAAGCC -ACGGAATAACGGAGTCGTATAGCC -ACGGAATAACGGAGTCGTTAACCG -ACGGAATAACGGAGTCGTATGCCA -ACGGAATAACGGAGTGTCGGAAAC -ACGGAATAACGGAGTGTCAACACC -ACGGAATAACGGAGTGTCATCGAG -ACGGAATAACGGAGTGTCCTCCTT -ACGGAATAACGGAGTGTCCCTGTT -ACGGAATAACGGAGTGTCCGGTTT -ACGGAATAACGGAGTGTCGTGGTT -ACGGAATAACGGAGTGTCGCCTTT -ACGGAATAACGGAGTGTCGGTCTT -ACGGAATAACGGAGTGTCACGCTT -ACGGAATAACGGAGTGTCAGCGTT -ACGGAATAACGGAGTGTCTTCGTC -ACGGAATAACGGAGTGTCTCTCTC -ACGGAATAACGGAGTGTCTGGATC -ACGGAATAACGGAGTGTCCACTTC -ACGGAATAACGGAGTGTCGTACTC -ACGGAATAACGGAGTGTCGATGTC -ACGGAATAACGGAGTGTCACAGTC -ACGGAATAACGGAGTGTCTTGCTG -ACGGAATAACGGAGTGTCTCCATG -ACGGAATAACGGAGTGTCTGTGTG -ACGGAATAACGGAGTGTCCTAGTG -ACGGAATAACGGAGTGTCCATCTG -ACGGAATAACGGAGTGTCGAGTTG -ACGGAATAACGGAGTGTCAGACTG -ACGGAATAACGGAGTGTCTCGGTA -ACGGAATAACGGAGTGTCTGCCTA -ACGGAATAACGGAGTGTCCCACTA -ACGGAATAACGGAGTGTCGGAGTA -ACGGAATAACGGAGTGTCTCGTCT -ACGGAATAACGGAGTGTCTGCACT -ACGGAATAACGGAGTGTCCTGACT -ACGGAATAACGGAGTGTCCAACCT -ACGGAATAACGGAGTGTCGCTACT -ACGGAATAACGGAGTGTCGGATCT -ACGGAATAACGGAGTGTCAAGGCT -ACGGAATAACGGAGTGTCTCAACC -ACGGAATAACGGAGTGTCTGTTCC -ACGGAATAACGGAGTGTCATTCCC -ACGGAATAACGGAGTGTCTTCTCG -ACGGAATAACGGAGTGTCTAGACG -ACGGAATAACGGAGTGTCGTAACG -ACGGAATAACGGAGTGTCACTTCG -ACGGAATAACGGAGTGTCTACGCA -ACGGAATAACGGAGTGTCCTTGCA -ACGGAATAACGGAGTGTCCGAACA -ACGGAATAACGGAGTGTCCAGTCA -ACGGAATAACGGAGTGTCGATCCA -ACGGAATAACGGAGTGTCACGACA -ACGGAATAACGGAGTGTCAGCTCA -ACGGAATAACGGAGTGTCTCACGT -ACGGAATAACGGAGTGTCCGTAGT -ACGGAATAACGGAGTGTCGTCAGT -ACGGAATAACGGAGTGTCGAAGGT -ACGGAATAACGGAGTGTCAACCGT -ACGGAATAACGGAGTGTCTTGTGC -ACGGAATAACGGAGTGTCCTAAGC -ACGGAATAACGGAGTGTCACTAGC -ACGGAATAACGGAGTGTCAGATGC -ACGGAATAACGGAGTGTCTGAAGG -ACGGAATAACGGAGTGTCCAATGG -ACGGAATAACGGAGTGTCATGAGG -ACGGAATAACGGAGTGTCAATGGG -ACGGAATAACGGAGTGTCTCCTGA -ACGGAATAACGGAGTGTCTAGCGA -ACGGAATAACGGAGTGTCCACAGA -ACGGAATAACGGAGTGTCGCAAGA -ACGGAATAACGGAGTGTCGGTTGA -ACGGAATAACGGAGTGTCTCCGAT -ACGGAATAACGGAGTGTCTGGCAT -ACGGAATAACGGAGTGTCCGAGAT -ACGGAATAACGGAGTGTCTACCAC -ACGGAATAACGGAGTGTCCAGAAC -ACGGAATAACGGAGTGTCGTCTAC -ACGGAATAACGGAGTGTCACGTAC -ACGGAATAACGGAGTGTCAGTGAC -ACGGAATAACGGAGTGTCCTGTAG -ACGGAATAACGGAGTGTCCCTAAG -ACGGAATAACGGAGTGTCGTTCAG -ACGGAATAACGGAGTGTCGCATAG -ACGGAATAACGGAGTGTCGACAAG -ACGGAATAACGGAGTGTCAAGCAG -ACGGAATAACGGAGTGTCCGTCAA -ACGGAATAACGGAGTGTCGCTGAA -ACGGAATAACGGAGTGTCAGTACG -ACGGAATAACGGAGTGTCATCCGA -ACGGAATAACGGAGTGTCATGGGA -ACGGAATAACGGAGTGTCGTGCAA -ACGGAATAACGGAGTGTCGAGGAA -ACGGAATAACGGAGTGTCCAGGTA -ACGGAATAACGGAGTGTCGACTCT -ACGGAATAACGGAGTGTCAGTCCT -ACGGAATAACGGAGTGTCTAAGCC -ACGGAATAACGGAGTGTCATAGCC -ACGGAATAACGGAGTGTCTAACCG -ACGGAATAACGGAGTGTCATGCCA -ACGGAATAACGGGGTGAAGGAAAC -ACGGAATAACGGGGTGAAAACACC -ACGGAATAACGGGGTGAAATCGAG -ACGGAATAACGGGGTGAACTCCTT -ACGGAATAACGGGGTGAACCTGTT -ACGGAATAACGGGGTGAACGGTTT -ACGGAATAACGGGGTGAAGTGGTT -ACGGAATAACGGGGTGAAGCCTTT -ACGGAATAACGGGGTGAAGGTCTT -ACGGAATAACGGGGTGAAACGCTT -ACGGAATAACGGGGTGAAAGCGTT -ACGGAATAACGGGGTGAATTCGTC -ACGGAATAACGGGGTGAATCTCTC -ACGGAATAACGGGGTGAATGGATC -ACGGAATAACGGGGTGAACACTTC -ACGGAATAACGGGGTGAAGTACTC -ACGGAATAACGGGGTGAAGATGTC -ACGGAATAACGGGGTGAAACAGTC -ACGGAATAACGGGGTGAATTGCTG -ACGGAATAACGGGGTGAATCCATG -ACGGAATAACGGGGTGAATGTGTG -ACGGAATAACGGGGTGAACTAGTG -ACGGAATAACGGGGTGAACATCTG -ACGGAATAACGGGGTGAAGAGTTG -ACGGAATAACGGGGTGAAAGACTG -ACGGAATAACGGGGTGAATCGGTA -ACGGAATAACGGGGTGAATGCCTA -ACGGAATAACGGGGTGAACCACTA -ACGGAATAACGGGGTGAAGGAGTA -ACGGAATAACGGGGTGAATCGTCT -ACGGAATAACGGGGTGAATGCACT -ACGGAATAACGGGGTGAACTGACT -ACGGAATAACGGGGTGAACAACCT -ACGGAATAACGGGGTGAAGCTACT -ACGGAATAACGGGGTGAAGGATCT -ACGGAATAACGGGGTGAAAAGGCT -ACGGAATAACGGGGTGAATCAACC -ACGGAATAACGGGGTGAATGTTCC -ACGGAATAACGGGGTGAAATTCCC -ACGGAATAACGGGGTGAATTCTCG -ACGGAATAACGGGGTGAATAGACG -ACGGAATAACGGGGTGAAGTAACG -ACGGAATAACGGGGTGAAACTTCG -ACGGAATAACGGGGTGAATACGCA -ACGGAATAACGGGGTGAACTTGCA -ACGGAATAACGGGGTGAACGAACA -ACGGAATAACGGGGTGAACAGTCA -ACGGAATAACGGGGTGAAGATCCA -ACGGAATAACGGGGTGAAACGACA -ACGGAATAACGGGGTGAAAGCTCA -ACGGAATAACGGGGTGAATCACGT -ACGGAATAACGGGGTGAACGTAGT -ACGGAATAACGGGGTGAAGTCAGT -ACGGAATAACGGGGTGAAGAAGGT -ACGGAATAACGGGGTGAAAACCGT -ACGGAATAACGGGGTGAATTGTGC -ACGGAATAACGGGGTGAACTAAGC -ACGGAATAACGGGGTGAAACTAGC -ACGGAATAACGGGGTGAAAGATGC -ACGGAATAACGGGGTGAATGAAGG -ACGGAATAACGGGGTGAACAATGG -ACGGAATAACGGGGTGAAATGAGG -ACGGAATAACGGGGTGAAAATGGG -ACGGAATAACGGGGTGAATCCTGA -ACGGAATAACGGGGTGAATAGCGA -ACGGAATAACGGGGTGAACACAGA -ACGGAATAACGGGGTGAAGCAAGA -ACGGAATAACGGGGTGAAGGTTGA -ACGGAATAACGGGGTGAATCCGAT -ACGGAATAACGGGGTGAATGGCAT -ACGGAATAACGGGGTGAACGAGAT -ACGGAATAACGGGGTGAATACCAC -ACGGAATAACGGGGTGAACAGAAC -ACGGAATAACGGGGTGAAGTCTAC -ACGGAATAACGGGGTGAAACGTAC -ACGGAATAACGGGGTGAAAGTGAC -ACGGAATAACGGGGTGAACTGTAG -ACGGAATAACGGGGTGAACCTAAG -ACGGAATAACGGGGTGAAGTTCAG -ACGGAATAACGGGGTGAAGCATAG -ACGGAATAACGGGGTGAAGACAAG -ACGGAATAACGGGGTGAAAAGCAG -ACGGAATAACGGGGTGAACGTCAA -ACGGAATAACGGGGTGAAGCTGAA -ACGGAATAACGGGGTGAAAGTACG -ACGGAATAACGGGGTGAAATCCGA -ACGGAATAACGGGGTGAAATGGGA -ACGGAATAACGGGGTGAAGTGCAA -ACGGAATAACGGGGTGAAGAGGAA -ACGGAATAACGGGGTGAACAGGTA -ACGGAATAACGGGGTGAAGACTCT -ACGGAATAACGGGGTGAAAGTCCT -ACGGAATAACGGGGTGAATAAGCC -ACGGAATAACGGGGTGAAATAGCC -ACGGAATAACGGGGTGAATAACCG -ACGGAATAACGGGGTGAAATGCCA -ACGGAATAACGGCGTAACGGAAAC -ACGGAATAACGGCGTAACAACACC -ACGGAATAACGGCGTAACATCGAG -ACGGAATAACGGCGTAACCTCCTT -ACGGAATAACGGCGTAACCCTGTT -ACGGAATAACGGCGTAACCGGTTT -ACGGAATAACGGCGTAACGTGGTT -ACGGAATAACGGCGTAACGCCTTT -ACGGAATAACGGCGTAACGGTCTT -ACGGAATAACGGCGTAACACGCTT -ACGGAATAACGGCGTAACAGCGTT -ACGGAATAACGGCGTAACTTCGTC -ACGGAATAACGGCGTAACTCTCTC -ACGGAATAACGGCGTAACTGGATC -ACGGAATAACGGCGTAACCACTTC -ACGGAATAACGGCGTAACGTACTC -ACGGAATAACGGCGTAACGATGTC -ACGGAATAACGGCGTAACACAGTC -ACGGAATAACGGCGTAACTTGCTG -ACGGAATAACGGCGTAACTCCATG -ACGGAATAACGGCGTAACTGTGTG -ACGGAATAACGGCGTAACCTAGTG -ACGGAATAACGGCGTAACCATCTG -ACGGAATAACGGCGTAACGAGTTG -ACGGAATAACGGCGTAACAGACTG -ACGGAATAACGGCGTAACTCGGTA -ACGGAATAACGGCGTAACTGCCTA -ACGGAATAACGGCGTAACCCACTA -ACGGAATAACGGCGTAACGGAGTA -ACGGAATAACGGCGTAACTCGTCT -ACGGAATAACGGCGTAACTGCACT -ACGGAATAACGGCGTAACCTGACT -ACGGAATAACGGCGTAACCAACCT -ACGGAATAACGGCGTAACGCTACT -ACGGAATAACGGCGTAACGGATCT -ACGGAATAACGGCGTAACAAGGCT -ACGGAATAACGGCGTAACTCAACC -ACGGAATAACGGCGTAACTGTTCC -ACGGAATAACGGCGTAACATTCCC -ACGGAATAACGGCGTAACTTCTCG -ACGGAATAACGGCGTAACTAGACG -ACGGAATAACGGCGTAACGTAACG -ACGGAATAACGGCGTAACACTTCG -ACGGAATAACGGCGTAACTACGCA -ACGGAATAACGGCGTAACCTTGCA -ACGGAATAACGGCGTAACCGAACA -ACGGAATAACGGCGTAACCAGTCA -ACGGAATAACGGCGTAACGATCCA -ACGGAATAACGGCGTAACACGACA -ACGGAATAACGGCGTAACAGCTCA -ACGGAATAACGGCGTAACTCACGT -ACGGAATAACGGCGTAACCGTAGT -ACGGAATAACGGCGTAACGTCAGT -ACGGAATAACGGCGTAACGAAGGT -ACGGAATAACGGCGTAACAACCGT -ACGGAATAACGGCGTAACTTGTGC -ACGGAATAACGGCGTAACCTAAGC -ACGGAATAACGGCGTAACACTAGC -ACGGAATAACGGCGTAACAGATGC -ACGGAATAACGGCGTAACTGAAGG -ACGGAATAACGGCGTAACCAATGG -ACGGAATAACGGCGTAACATGAGG -ACGGAATAACGGCGTAACAATGGG -ACGGAATAACGGCGTAACTCCTGA -ACGGAATAACGGCGTAACTAGCGA -ACGGAATAACGGCGTAACCACAGA -ACGGAATAACGGCGTAACGCAAGA -ACGGAATAACGGCGTAACGGTTGA -ACGGAATAACGGCGTAACTCCGAT -ACGGAATAACGGCGTAACTGGCAT -ACGGAATAACGGCGTAACCGAGAT -ACGGAATAACGGCGTAACTACCAC -ACGGAATAACGGCGTAACCAGAAC -ACGGAATAACGGCGTAACGTCTAC -ACGGAATAACGGCGTAACACGTAC -ACGGAATAACGGCGTAACAGTGAC -ACGGAATAACGGCGTAACCTGTAG -ACGGAATAACGGCGTAACCCTAAG -ACGGAATAACGGCGTAACGTTCAG -ACGGAATAACGGCGTAACGCATAG -ACGGAATAACGGCGTAACGACAAG -ACGGAATAACGGCGTAACAAGCAG -ACGGAATAACGGCGTAACCGTCAA -ACGGAATAACGGCGTAACGCTGAA -ACGGAATAACGGCGTAACAGTACG -ACGGAATAACGGCGTAACATCCGA -ACGGAATAACGGCGTAACATGGGA -ACGGAATAACGGCGTAACGTGCAA -ACGGAATAACGGCGTAACGAGGAA -ACGGAATAACGGCGTAACCAGGTA -ACGGAATAACGGCGTAACGACTCT -ACGGAATAACGGCGTAACAGTCCT -ACGGAATAACGGCGTAACTAAGCC -ACGGAATAACGGCGTAACATAGCC -ACGGAATAACGGCGTAACTAACCG -ACGGAATAACGGCGTAACATGCCA -ACGGAATAACGGTGCTTGGGAAAC -ACGGAATAACGGTGCTTGAACACC -ACGGAATAACGGTGCTTGATCGAG -ACGGAATAACGGTGCTTGCTCCTT -ACGGAATAACGGTGCTTGCCTGTT -ACGGAATAACGGTGCTTGCGGTTT -ACGGAATAACGGTGCTTGGTGGTT -ACGGAATAACGGTGCTTGGCCTTT -ACGGAATAACGGTGCTTGGGTCTT -ACGGAATAACGGTGCTTGACGCTT -ACGGAATAACGGTGCTTGAGCGTT -ACGGAATAACGGTGCTTGTTCGTC -ACGGAATAACGGTGCTTGTCTCTC -ACGGAATAACGGTGCTTGTGGATC -ACGGAATAACGGTGCTTGCACTTC -ACGGAATAACGGTGCTTGGTACTC -ACGGAATAACGGTGCTTGGATGTC -ACGGAATAACGGTGCTTGACAGTC -ACGGAATAACGGTGCTTGTTGCTG -ACGGAATAACGGTGCTTGTCCATG -ACGGAATAACGGTGCTTGTGTGTG -ACGGAATAACGGTGCTTGCTAGTG -ACGGAATAACGGTGCTTGCATCTG -ACGGAATAACGGTGCTTGGAGTTG -ACGGAATAACGGTGCTTGAGACTG -ACGGAATAACGGTGCTTGTCGGTA -ACGGAATAACGGTGCTTGTGCCTA -ACGGAATAACGGTGCTTGCCACTA -ACGGAATAACGGTGCTTGGGAGTA -ACGGAATAACGGTGCTTGTCGTCT -ACGGAATAACGGTGCTTGTGCACT -ACGGAATAACGGTGCTTGCTGACT -ACGGAATAACGGTGCTTGCAACCT -ACGGAATAACGGTGCTTGGCTACT -ACGGAATAACGGTGCTTGGGATCT -ACGGAATAACGGTGCTTGAAGGCT -ACGGAATAACGGTGCTTGTCAACC -ACGGAATAACGGTGCTTGTGTTCC -ACGGAATAACGGTGCTTGATTCCC -ACGGAATAACGGTGCTTGTTCTCG -ACGGAATAACGGTGCTTGTAGACG -ACGGAATAACGGTGCTTGGTAACG -ACGGAATAACGGTGCTTGACTTCG -ACGGAATAACGGTGCTTGTACGCA -ACGGAATAACGGTGCTTGCTTGCA -ACGGAATAACGGTGCTTGCGAACA -ACGGAATAACGGTGCTTGCAGTCA -ACGGAATAACGGTGCTTGGATCCA -ACGGAATAACGGTGCTTGACGACA -ACGGAATAACGGTGCTTGAGCTCA -ACGGAATAACGGTGCTTGTCACGT -ACGGAATAACGGTGCTTGCGTAGT -ACGGAATAACGGTGCTTGGTCAGT -ACGGAATAACGGTGCTTGGAAGGT -ACGGAATAACGGTGCTTGAACCGT -ACGGAATAACGGTGCTTGTTGTGC -ACGGAATAACGGTGCTTGCTAAGC -ACGGAATAACGGTGCTTGACTAGC -ACGGAATAACGGTGCTTGAGATGC -ACGGAATAACGGTGCTTGTGAAGG -ACGGAATAACGGTGCTTGCAATGG -ACGGAATAACGGTGCTTGATGAGG -ACGGAATAACGGTGCTTGAATGGG -ACGGAATAACGGTGCTTGTCCTGA -ACGGAATAACGGTGCTTGTAGCGA -ACGGAATAACGGTGCTTGCACAGA -ACGGAATAACGGTGCTTGGCAAGA -ACGGAATAACGGTGCTTGGGTTGA -ACGGAATAACGGTGCTTGTCCGAT -ACGGAATAACGGTGCTTGTGGCAT -ACGGAATAACGGTGCTTGCGAGAT -ACGGAATAACGGTGCTTGTACCAC -ACGGAATAACGGTGCTTGCAGAAC -ACGGAATAACGGTGCTTGGTCTAC -ACGGAATAACGGTGCTTGACGTAC -ACGGAATAACGGTGCTTGAGTGAC -ACGGAATAACGGTGCTTGCTGTAG -ACGGAATAACGGTGCTTGCCTAAG -ACGGAATAACGGTGCTTGGTTCAG -ACGGAATAACGGTGCTTGGCATAG -ACGGAATAACGGTGCTTGGACAAG -ACGGAATAACGGTGCTTGAAGCAG -ACGGAATAACGGTGCTTGCGTCAA -ACGGAATAACGGTGCTTGGCTGAA -ACGGAATAACGGTGCTTGAGTACG -ACGGAATAACGGTGCTTGATCCGA -ACGGAATAACGGTGCTTGATGGGA -ACGGAATAACGGTGCTTGGTGCAA -ACGGAATAACGGTGCTTGGAGGAA -ACGGAATAACGGTGCTTGCAGGTA -ACGGAATAACGGTGCTTGGACTCT -ACGGAATAACGGTGCTTGAGTCCT -ACGGAATAACGGTGCTTGTAAGCC -ACGGAATAACGGTGCTTGATAGCC -ACGGAATAACGGTGCTTGTAACCG -ACGGAATAACGGTGCTTGATGCCA -ACGGAATAACGGAGCCTAGGAAAC -ACGGAATAACGGAGCCTAAACACC -ACGGAATAACGGAGCCTAATCGAG -ACGGAATAACGGAGCCTACTCCTT -ACGGAATAACGGAGCCTACCTGTT -ACGGAATAACGGAGCCTACGGTTT -ACGGAATAACGGAGCCTAGTGGTT -ACGGAATAACGGAGCCTAGCCTTT -ACGGAATAACGGAGCCTAGGTCTT -ACGGAATAACGGAGCCTAACGCTT -ACGGAATAACGGAGCCTAAGCGTT -ACGGAATAACGGAGCCTATTCGTC -ACGGAATAACGGAGCCTATCTCTC -ACGGAATAACGGAGCCTATGGATC -ACGGAATAACGGAGCCTACACTTC -ACGGAATAACGGAGCCTAGTACTC -ACGGAATAACGGAGCCTAGATGTC -ACGGAATAACGGAGCCTAACAGTC -ACGGAATAACGGAGCCTATTGCTG -ACGGAATAACGGAGCCTATCCATG -ACGGAATAACGGAGCCTATGTGTG -ACGGAATAACGGAGCCTACTAGTG -ACGGAATAACGGAGCCTACATCTG -ACGGAATAACGGAGCCTAGAGTTG -ACGGAATAACGGAGCCTAAGACTG -ACGGAATAACGGAGCCTATCGGTA -ACGGAATAACGGAGCCTATGCCTA -ACGGAATAACGGAGCCTACCACTA -ACGGAATAACGGAGCCTAGGAGTA -ACGGAATAACGGAGCCTATCGTCT -ACGGAATAACGGAGCCTATGCACT -ACGGAATAACGGAGCCTACTGACT -ACGGAATAACGGAGCCTACAACCT -ACGGAATAACGGAGCCTAGCTACT -ACGGAATAACGGAGCCTAGGATCT -ACGGAATAACGGAGCCTAAAGGCT -ACGGAATAACGGAGCCTATCAACC -ACGGAATAACGGAGCCTATGTTCC -ACGGAATAACGGAGCCTAATTCCC -ACGGAATAACGGAGCCTATTCTCG -ACGGAATAACGGAGCCTATAGACG -ACGGAATAACGGAGCCTAGTAACG -ACGGAATAACGGAGCCTAACTTCG -ACGGAATAACGGAGCCTATACGCA -ACGGAATAACGGAGCCTACTTGCA -ACGGAATAACGGAGCCTACGAACA -ACGGAATAACGGAGCCTACAGTCA -ACGGAATAACGGAGCCTAGATCCA -ACGGAATAACGGAGCCTAACGACA -ACGGAATAACGGAGCCTAAGCTCA -ACGGAATAACGGAGCCTATCACGT -ACGGAATAACGGAGCCTACGTAGT -ACGGAATAACGGAGCCTAGTCAGT -ACGGAATAACGGAGCCTAGAAGGT -ACGGAATAACGGAGCCTAAACCGT -ACGGAATAACGGAGCCTATTGTGC -ACGGAATAACGGAGCCTACTAAGC -ACGGAATAACGGAGCCTAACTAGC -ACGGAATAACGGAGCCTAAGATGC -ACGGAATAACGGAGCCTATGAAGG -ACGGAATAACGGAGCCTACAATGG -ACGGAATAACGGAGCCTAATGAGG -ACGGAATAACGGAGCCTAAATGGG -ACGGAATAACGGAGCCTATCCTGA -ACGGAATAACGGAGCCTATAGCGA -ACGGAATAACGGAGCCTACACAGA -ACGGAATAACGGAGCCTAGCAAGA -ACGGAATAACGGAGCCTAGGTTGA -ACGGAATAACGGAGCCTATCCGAT -ACGGAATAACGGAGCCTATGGCAT -ACGGAATAACGGAGCCTACGAGAT -ACGGAATAACGGAGCCTATACCAC -ACGGAATAACGGAGCCTACAGAAC -ACGGAATAACGGAGCCTAGTCTAC -ACGGAATAACGGAGCCTAACGTAC -ACGGAATAACGGAGCCTAAGTGAC -ACGGAATAACGGAGCCTACTGTAG -ACGGAATAACGGAGCCTACCTAAG -ACGGAATAACGGAGCCTAGTTCAG -ACGGAATAACGGAGCCTAGCATAG -ACGGAATAACGGAGCCTAGACAAG -ACGGAATAACGGAGCCTAAAGCAG -ACGGAATAACGGAGCCTACGTCAA -ACGGAATAACGGAGCCTAGCTGAA -ACGGAATAACGGAGCCTAAGTACG -ACGGAATAACGGAGCCTAATCCGA -ACGGAATAACGGAGCCTAATGGGA -ACGGAATAACGGAGCCTAGTGCAA -ACGGAATAACGGAGCCTAGAGGAA -ACGGAATAACGGAGCCTACAGGTA -ACGGAATAACGGAGCCTAGACTCT -ACGGAATAACGGAGCCTAAGTCCT -ACGGAATAACGGAGCCTATAAGCC -ACGGAATAACGGAGCCTAATAGCC -ACGGAATAACGGAGCCTATAACCG -ACGGAATAACGGAGCCTAATGCCA -ACGGAATAACGGAGCACTGGAAAC -ACGGAATAACGGAGCACTAACACC -ACGGAATAACGGAGCACTATCGAG -ACGGAATAACGGAGCACTCTCCTT -ACGGAATAACGGAGCACTCCTGTT -ACGGAATAACGGAGCACTCGGTTT -ACGGAATAACGGAGCACTGTGGTT -ACGGAATAACGGAGCACTGCCTTT -ACGGAATAACGGAGCACTGGTCTT -ACGGAATAACGGAGCACTACGCTT -ACGGAATAACGGAGCACTAGCGTT -ACGGAATAACGGAGCACTTTCGTC -ACGGAATAACGGAGCACTTCTCTC -ACGGAATAACGGAGCACTTGGATC -ACGGAATAACGGAGCACTCACTTC -ACGGAATAACGGAGCACTGTACTC -ACGGAATAACGGAGCACTGATGTC -ACGGAATAACGGAGCACTACAGTC -ACGGAATAACGGAGCACTTTGCTG -ACGGAATAACGGAGCACTTCCATG -ACGGAATAACGGAGCACTTGTGTG -ACGGAATAACGGAGCACTCTAGTG -ACGGAATAACGGAGCACTCATCTG -ACGGAATAACGGAGCACTGAGTTG -ACGGAATAACGGAGCACTAGACTG -ACGGAATAACGGAGCACTTCGGTA -ACGGAATAACGGAGCACTTGCCTA -ACGGAATAACGGAGCACTCCACTA -ACGGAATAACGGAGCACTGGAGTA -ACGGAATAACGGAGCACTTCGTCT -ACGGAATAACGGAGCACTTGCACT -ACGGAATAACGGAGCACTCTGACT -ACGGAATAACGGAGCACTCAACCT -ACGGAATAACGGAGCACTGCTACT -ACGGAATAACGGAGCACTGGATCT -ACGGAATAACGGAGCACTAAGGCT -ACGGAATAACGGAGCACTTCAACC -ACGGAATAACGGAGCACTTGTTCC -ACGGAATAACGGAGCACTATTCCC -ACGGAATAACGGAGCACTTTCTCG -ACGGAATAACGGAGCACTTAGACG -ACGGAATAACGGAGCACTGTAACG -ACGGAATAACGGAGCACTACTTCG -ACGGAATAACGGAGCACTTACGCA -ACGGAATAACGGAGCACTCTTGCA -ACGGAATAACGGAGCACTCGAACA -ACGGAATAACGGAGCACTCAGTCA -ACGGAATAACGGAGCACTGATCCA -ACGGAATAACGGAGCACTACGACA -ACGGAATAACGGAGCACTAGCTCA -ACGGAATAACGGAGCACTTCACGT -ACGGAATAACGGAGCACTCGTAGT -ACGGAATAACGGAGCACTGTCAGT -ACGGAATAACGGAGCACTGAAGGT -ACGGAATAACGGAGCACTAACCGT -ACGGAATAACGGAGCACTTTGTGC -ACGGAATAACGGAGCACTCTAAGC -ACGGAATAACGGAGCACTACTAGC -ACGGAATAACGGAGCACTAGATGC -ACGGAATAACGGAGCACTTGAAGG -ACGGAATAACGGAGCACTCAATGG -ACGGAATAACGGAGCACTATGAGG -ACGGAATAACGGAGCACTAATGGG -ACGGAATAACGGAGCACTTCCTGA -ACGGAATAACGGAGCACTTAGCGA -ACGGAATAACGGAGCACTCACAGA -ACGGAATAACGGAGCACTGCAAGA -ACGGAATAACGGAGCACTGGTTGA -ACGGAATAACGGAGCACTTCCGAT -ACGGAATAACGGAGCACTTGGCAT -ACGGAATAACGGAGCACTCGAGAT -ACGGAATAACGGAGCACTTACCAC -ACGGAATAACGGAGCACTCAGAAC -ACGGAATAACGGAGCACTGTCTAC -ACGGAATAACGGAGCACTACGTAC -ACGGAATAACGGAGCACTAGTGAC -ACGGAATAACGGAGCACTCTGTAG -ACGGAATAACGGAGCACTCCTAAG -ACGGAATAACGGAGCACTGTTCAG -ACGGAATAACGGAGCACTGCATAG -ACGGAATAACGGAGCACTGACAAG -ACGGAATAACGGAGCACTAAGCAG -ACGGAATAACGGAGCACTCGTCAA -ACGGAATAACGGAGCACTGCTGAA -ACGGAATAACGGAGCACTAGTACG -ACGGAATAACGGAGCACTATCCGA -ACGGAATAACGGAGCACTATGGGA -ACGGAATAACGGAGCACTGTGCAA -ACGGAATAACGGAGCACTGAGGAA -ACGGAATAACGGAGCACTCAGGTA -ACGGAATAACGGAGCACTGACTCT -ACGGAATAACGGAGCACTAGTCCT -ACGGAATAACGGAGCACTTAAGCC -ACGGAATAACGGAGCACTATAGCC -ACGGAATAACGGAGCACTTAACCG -ACGGAATAACGGAGCACTATGCCA -ACGGAATAACGGTGCAGAGGAAAC -ACGGAATAACGGTGCAGAAACACC -ACGGAATAACGGTGCAGAATCGAG -ACGGAATAACGGTGCAGACTCCTT -ACGGAATAACGGTGCAGACCTGTT -ACGGAATAACGGTGCAGACGGTTT -ACGGAATAACGGTGCAGAGTGGTT -ACGGAATAACGGTGCAGAGCCTTT -ACGGAATAACGGTGCAGAGGTCTT -ACGGAATAACGGTGCAGAACGCTT -ACGGAATAACGGTGCAGAAGCGTT -ACGGAATAACGGTGCAGATTCGTC -ACGGAATAACGGTGCAGATCTCTC -ACGGAATAACGGTGCAGATGGATC -ACGGAATAACGGTGCAGACACTTC -ACGGAATAACGGTGCAGAGTACTC -ACGGAATAACGGTGCAGAGATGTC -ACGGAATAACGGTGCAGAACAGTC -ACGGAATAACGGTGCAGATTGCTG -ACGGAATAACGGTGCAGATCCATG -ACGGAATAACGGTGCAGATGTGTG -ACGGAATAACGGTGCAGACTAGTG -ACGGAATAACGGTGCAGACATCTG -ACGGAATAACGGTGCAGAGAGTTG -ACGGAATAACGGTGCAGAAGACTG -ACGGAATAACGGTGCAGATCGGTA -ACGGAATAACGGTGCAGATGCCTA -ACGGAATAACGGTGCAGACCACTA -ACGGAATAACGGTGCAGAGGAGTA -ACGGAATAACGGTGCAGATCGTCT -ACGGAATAACGGTGCAGATGCACT -ACGGAATAACGGTGCAGACTGACT -ACGGAATAACGGTGCAGACAACCT -ACGGAATAACGGTGCAGAGCTACT -ACGGAATAACGGTGCAGAGGATCT -ACGGAATAACGGTGCAGAAAGGCT -ACGGAATAACGGTGCAGATCAACC -ACGGAATAACGGTGCAGATGTTCC -ACGGAATAACGGTGCAGAATTCCC -ACGGAATAACGGTGCAGATTCTCG -ACGGAATAACGGTGCAGATAGACG -ACGGAATAACGGTGCAGAGTAACG -ACGGAATAACGGTGCAGAACTTCG -ACGGAATAACGGTGCAGATACGCA -ACGGAATAACGGTGCAGACTTGCA -ACGGAATAACGGTGCAGACGAACA -ACGGAATAACGGTGCAGACAGTCA -ACGGAATAACGGTGCAGAGATCCA -ACGGAATAACGGTGCAGAACGACA -ACGGAATAACGGTGCAGAAGCTCA -ACGGAATAACGGTGCAGATCACGT -ACGGAATAACGGTGCAGACGTAGT -ACGGAATAACGGTGCAGAGTCAGT -ACGGAATAACGGTGCAGAGAAGGT -ACGGAATAACGGTGCAGAAACCGT -ACGGAATAACGGTGCAGATTGTGC -ACGGAATAACGGTGCAGACTAAGC -ACGGAATAACGGTGCAGAACTAGC -ACGGAATAACGGTGCAGAAGATGC -ACGGAATAACGGTGCAGATGAAGG -ACGGAATAACGGTGCAGACAATGG -ACGGAATAACGGTGCAGAATGAGG -ACGGAATAACGGTGCAGAAATGGG -ACGGAATAACGGTGCAGATCCTGA -ACGGAATAACGGTGCAGATAGCGA -ACGGAATAACGGTGCAGACACAGA -ACGGAATAACGGTGCAGAGCAAGA -ACGGAATAACGGTGCAGAGGTTGA -ACGGAATAACGGTGCAGATCCGAT -ACGGAATAACGGTGCAGATGGCAT -ACGGAATAACGGTGCAGACGAGAT -ACGGAATAACGGTGCAGATACCAC -ACGGAATAACGGTGCAGACAGAAC -ACGGAATAACGGTGCAGAGTCTAC -ACGGAATAACGGTGCAGAACGTAC -ACGGAATAACGGTGCAGAAGTGAC -ACGGAATAACGGTGCAGACTGTAG -ACGGAATAACGGTGCAGACCTAAG -ACGGAATAACGGTGCAGAGTTCAG -ACGGAATAACGGTGCAGAGCATAG -ACGGAATAACGGTGCAGAGACAAG -ACGGAATAACGGTGCAGAAAGCAG -ACGGAATAACGGTGCAGACGTCAA -ACGGAATAACGGTGCAGAGCTGAA -ACGGAATAACGGTGCAGAAGTACG -ACGGAATAACGGTGCAGAATCCGA -ACGGAATAACGGTGCAGAATGGGA -ACGGAATAACGGTGCAGAGTGCAA -ACGGAATAACGGTGCAGAGAGGAA -ACGGAATAACGGTGCAGACAGGTA -ACGGAATAACGGTGCAGAGACTCT -ACGGAATAACGGTGCAGAAGTCCT -ACGGAATAACGGTGCAGATAAGCC -ACGGAATAACGGTGCAGAATAGCC -ACGGAATAACGGTGCAGATAACCG -ACGGAATAACGGTGCAGAATGCCA -ACGGAATAACGGAGGTGAGGAAAC -ACGGAATAACGGAGGTGAAACACC -ACGGAATAACGGAGGTGAATCGAG -ACGGAATAACGGAGGTGACTCCTT -ACGGAATAACGGAGGTGACCTGTT -ACGGAATAACGGAGGTGACGGTTT -ACGGAATAACGGAGGTGAGTGGTT -ACGGAATAACGGAGGTGAGCCTTT -ACGGAATAACGGAGGTGAGGTCTT -ACGGAATAACGGAGGTGAACGCTT -ACGGAATAACGGAGGTGAAGCGTT -ACGGAATAACGGAGGTGATTCGTC -ACGGAATAACGGAGGTGATCTCTC -ACGGAATAACGGAGGTGATGGATC -ACGGAATAACGGAGGTGACACTTC -ACGGAATAACGGAGGTGAGTACTC -ACGGAATAACGGAGGTGAGATGTC -ACGGAATAACGGAGGTGAACAGTC -ACGGAATAACGGAGGTGATTGCTG -ACGGAATAACGGAGGTGATCCATG -ACGGAATAACGGAGGTGATGTGTG -ACGGAATAACGGAGGTGACTAGTG -ACGGAATAACGGAGGTGACATCTG -ACGGAATAACGGAGGTGAGAGTTG -ACGGAATAACGGAGGTGAAGACTG -ACGGAATAACGGAGGTGATCGGTA -ACGGAATAACGGAGGTGATGCCTA -ACGGAATAACGGAGGTGACCACTA -ACGGAATAACGGAGGTGAGGAGTA -ACGGAATAACGGAGGTGATCGTCT -ACGGAATAACGGAGGTGATGCACT -ACGGAATAACGGAGGTGACTGACT -ACGGAATAACGGAGGTGACAACCT -ACGGAATAACGGAGGTGAGCTACT -ACGGAATAACGGAGGTGAGGATCT -ACGGAATAACGGAGGTGAAAGGCT -ACGGAATAACGGAGGTGATCAACC -ACGGAATAACGGAGGTGATGTTCC -ACGGAATAACGGAGGTGAATTCCC -ACGGAATAACGGAGGTGATTCTCG -ACGGAATAACGGAGGTGATAGACG -ACGGAATAACGGAGGTGAGTAACG -ACGGAATAACGGAGGTGAACTTCG -ACGGAATAACGGAGGTGATACGCA -ACGGAATAACGGAGGTGACTTGCA -ACGGAATAACGGAGGTGACGAACA -ACGGAATAACGGAGGTGACAGTCA -ACGGAATAACGGAGGTGAGATCCA -ACGGAATAACGGAGGTGAACGACA -ACGGAATAACGGAGGTGAAGCTCA -ACGGAATAACGGAGGTGATCACGT -ACGGAATAACGGAGGTGACGTAGT -ACGGAATAACGGAGGTGAGTCAGT -ACGGAATAACGGAGGTGAGAAGGT -ACGGAATAACGGAGGTGAAACCGT -ACGGAATAACGGAGGTGATTGTGC -ACGGAATAACGGAGGTGACTAAGC -ACGGAATAACGGAGGTGAACTAGC -ACGGAATAACGGAGGTGAAGATGC -ACGGAATAACGGAGGTGATGAAGG -ACGGAATAACGGAGGTGACAATGG -ACGGAATAACGGAGGTGAATGAGG -ACGGAATAACGGAGGTGAAATGGG -ACGGAATAACGGAGGTGATCCTGA -ACGGAATAACGGAGGTGATAGCGA -ACGGAATAACGGAGGTGACACAGA -ACGGAATAACGGAGGTGAGCAAGA -ACGGAATAACGGAGGTGAGGTTGA -ACGGAATAACGGAGGTGATCCGAT -ACGGAATAACGGAGGTGATGGCAT -ACGGAATAACGGAGGTGACGAGAT -ACGGAATAACGGAGGTGATACCAC -ACGGAATAACGGAGGTGACAGAAC -ACGGAATAACGGAGGTGAGTCTAC -ACGGAATAACGGAGGTGAACGTAC -ACGGAATAACGGAGGTGAAGTGAC -ACGGAATAACGGAGGTGACTGTAG -ACGGAATAACGGAGGTGACCTAAG -ACGGAATAACGGAGGTGAGTTCAG -ACGGAATAACGGAGGTGAGCATAG -ACGGAATAACGGAGGTGAGACAAG -ACGGAATAACGGAGGTGAAAGCAG -ACGGAATAACGGAGGTGACGTCAA -ACGGAATAACGGAGGTGAGCTGAA -ACGGAATAACGGAGGTGAAGTACG -ACGGAATAACGGAGGTGAATCCGA -ACGGAATAACGGAGGTGAATGGGA -ACGGAATAACGGAGGTGAGTGCAA -ACGGAATAACGGAGGTGAGAGGAA -ACGGAATAACGGAGGTGACAGGTA -ACGGAATAACGGAGGTGAGACTCT -ACGGAATAACGGAGGTGAAGTCCT -ACGGAATAACGGAGGTGATAAGCC -ACGGAATAACGGAGGTGAATAGCC -ACGGAATAACGGAGGTGATAACCG -ACGGAATAACGGAGGTGAATGCCA -ACGGAATAACGGTGGCAAGGAAAC -ACGGAATAACGGTGGCAAAACACC -ACGGAATAACGGTGGCAAATCGAG -ACGGAATAACGGTGGCAACTCCTT -ACGGAATAACGGTGGCAACCTGTT -ACGGAATAACGGTGGCAACGGTTT -ACGGAATAACGGTGGCAAGTGGTT -ACGGAATAACGGTGGCAAGCCTTT -ACGGAATAACGGTGGCAAGGTCTT -ACGGAATAACGGTGGCAAACGCTT -ACGGAATAACGGTGGCAAAGCGTT -ACGGAATAACGGTGGCAATTCGTC -ACGGAATAACGGTGGCAATCTCTC -ACGGAATAACGGTGGCAATGGATC -ACGGAATAACGGTGGCAACACTTC -ACGGAATAACGGTGGCAAGTACTC -ACGGAATAACGGTGGCAAGATGTC -ACGGAATAACGGTGGCAAACAGTC -ACGGAATAACGGTGGCAATTGCTG -ACGGAATAACGGTGGCAATCCATG -ACGGAATAACGGTGGCAATGTGTG -ACGGAATAACGGTGGCAACTAGTG -ACGGAATAACGGTGGCAACATCTG -ACGGAATAACGGTGGCAAGAGTTG -ACGGAATAACGGTGGCAAAGACTG -ACGGAATAACGGTGGCAATCGGTA -ACGGAATAACGGTGGCAATGCCTA -ACGGAATAACGGTGGCAACCACTA -ACGGAATAACGGTGGCAAGGAGTA -ACGGAATAACGGTGGCAATCGTCT -ACGGAATAACGGTGGCAATGCACT -ACGGAATAACGGTGGCAACTGACT -ACGGAATAACGGTGGCAACAACCT -ACGGAATAACGGTGGCAAGCTACT -ACGGAATAACGGTGGCAAGGATCT -ACGGAATAACGGTGGCAAAAGGCT -ACGGAATAACGGTGGCAATCAACC -ACGGAATAACGGTGGCAATGTTCC -ACGGAATAACGGTGGCAAATTCCC -ACGGAATAACGGTGGCAATTCTCG -ACGGAATAACGGTGGCAATAGACG -ACGGAATAACGGTGGCAAGTAACG -ACGGAATAACGGTGGCAAACTTCG -ACGGAATAACGGTGGCAATACGCA -ACGGAATAACGGTGGCAACTTGCA -ACGGAATAACGGTGGCAACGAACA -ACGGAATAACGGTGGCAACAGTCA -ACGGAATAACGGTGGCAAGATCCA -ACGGAATAACGGTGGCAAACGACA -ACGGAATAACGGTGGCAAAGCTCA -ACGGAATAACGGTGGCAATCACGT -ACGGAATAACGGTGGCAACGTAGT -ACGGAATAACGGTGGCAAGTCAGT -ACGGAATAACGGTGGCAAGAAGGT -ACGGAATAACGGTGGCAAAACCGT -ACGGAATAACGGTGGCAATTGTGC -ACGGAATAACGGTGGCAACTAAGC -ACGGAATAACGGTGGCAAACTAGC -ACGGAATAACGGTGGCAAAGATGC -ACGGAATAACGGTGGCAATGAAGG -ACGGAATAACGGTGGCAACAATGG -ACGGAATAACGGTGGCAAATGAGG -ACGGAATAACGGTGGCAAAATGGG -ACGGAATAACGGTGGCAATCCTGA -ACGGAATAACGGTGGCAATAGCGA -ACGGAATAACGGTGGCAACACAGA -ACGGAATAACGGTGGCAAGCAAGA -ACGGAATAACGGTGGCAAGGTTGA -ACGGAATAACGGTGGCAATCCGAT -ACGGAATAACGGTGGCAATGGCAT -ACGGAATAACGGTGGCAACGAGAT -ACGGAATAACGGTGGCAATACCAC -ACGGAATAACGGTGGCAACAGAAC -ACGGAATAACGGTGGCAAGTCTAC -ACGGAATAACGGTGGCAAACGTAC -ACGGAATAACGGTGGCAAAGTGAC -ACGGAATAACGGTGGCAACTGTAG -ACGGAATAACGGTGGCAACCTAAG -ACGGAATAACGGTGGCAAGTTCAG -ACGGAATAACGGTGGCAAGCATAG -ACGGAATAACGGTGGCAAGACAAG -ACGGAATAACGGTGGCAAAAGCAG -ACGGAATAACGGTGGCAACGTCAA -ACGGAATAACGGTGGCAAGCTGAA -ACGGAATAACGGTGGCAAAGTACG -ACGGAATAACGGTGGCAAATCCGA -ACGGAATAACGGTGGCAAATGGGA -ACGGAATAACGGTGGCAAGTGCAA -ACGGAATAACGGTGGCAAGAGGAA -ACGGAATAACGGTGGCAACAGGTA -ACGGAATAACGGTGGCAAGACTCT -ACGGAATAACGGTGGCAAAGTCCT -ACGGAATAACGGTGGCAATAAGCC -ACGGAATAACGGTGGCAAATAGCC -ACGGAATAACGGTGGCAATAACCG -ACGGAATAACGGTGGCAAATGCCA -ACGGAATAACGGAGGATGGGAAAC -ACGGAATAACGGAGGATGAACACC -ACGGAATAACGGAGGATGATCGAG -ACGGAATAACGGAGGATGCTCCTT -ACGGAATAACGGAGGATGCCTGTT -ACGGAATAACGGAGGATGCGGTTT -ACGGAATAACGGAGGATGGTGGTT -ACGGAATAACGGAGGATGGCCTTT -ACGGAATAACGGAGGATGGGTCTT -ACGGAATAACGGAGGATGACGCTT -ACGGAATAACGGAGGATGAGCGTT -ACGGAATAACGGAGGATGTTCGTC -ACGGAATAACGGAGGATGTCTCTC -ACGGAATAACGGAGGATGTGGATC -ACGGAATAACGGAGGATGCACTTC -ACGGAATAACGGAGGATGGTACTC -ACGGAATAACGGAGGATGGATGTC -ACGGAATAACGGAGGATGACAGTC -ACGGAATAACGGAGGATGTTGCTG -ACGGAATAACGGAGGATGTCCATG -ACGGAATAACGGAGGATGTGTGTG -ACGGAATAACGGAGGATGCTAGTG -ACGGAATAACGGAGGATGCATCTG -ACGGAATAACGGAGGATGGAGTTG -ACGGAATAACGGAGGATGAGACTG -ACGGAATAACGGAGGATGTCGGTA -ACGGAATAACGGAGGATGTGCCTA -ACGGAATAACGGAGGATGCCACTA -ACGGAATAACGGAGGATGGGAGTA -ACGGAATAACGGAGGATGTCGTCT -ACGGAATAACGGAGGATGTGCACT -ACGGAATAACGGAGGATGCTGACT -ACGGAATAACGGAGGATGCAACCT -ACGGAATAACGGAGGATGGCTACT -ACGGAATAACGGAGGATGGGATCT -ACGGAATAACGGAGGATGAAGGCT -ACGGAATAACGGAGGATGTCAACC -ACGGAATAACGGAGGATGTGTTCC -ACGGAATAACGGAGGATGATTCCC -ACGGAATAACGGAGGATGTTCTCG -ACGGAATAACGGAGGATGTAGACG -ACGGAATAACGGAGGATGGTAACG -ACGGAATAACGGAGGATGACTTCG -ACGGAATAACGGAGGATGTACGCA -ACGGAATAACGGAGGATGCTTGCA -ACGGAATAACGGAGGATGCGAACA -ACGGAATAACGGAGGATGCAGTCA -ACGGAATAACGGAGGATGGATCCA -ACGGAATAACGGAGGATGACGACA -ACGGAATAACGGAGGATGAGCTCA -ACGGAATAACGGAGGATGTCACGT -ACGGAATAACGGAGGATGCGTAGT -ACGGAATAACGGAGGATGGTCAGT -ACGGAATAACGGAGGATGGAAGGT -ACGGAATAACGGAGGATGAACCGT -ACGGAATAACGGAGGATGTTGTGC -ACGGAATAACGGAGGATGCTAAGC -ACGGAATAACGGAGGATGACTAGC -ACGGAATAACGGAGGATGAGATGC -ACGGAATAACGGAGGATGTGAAGG -ACGGAATAACGGAGGATGCAATGG -ACGGAATAACGGAGGATGATGAGG -ACGGAATAACGGAGGATGAATGGG -ACGGAATAACGGAGGATGTCCTGA -ACGGAATAACGGAGGATGTAGCGA -ACGGAATAACGGAGGATGCACAGA -ACGGAATAACGGAGGATGGCAAGA -ACGGAATAACGGAGGATGGGTTGA -ACGGAATAACGGAGGATGTCCGAT -ACGGAATAACGGAGGATGTGGCAT -ACGGAATAACGGAGGATGCGAGAT -ACGGAATAACGGAGGATGTACCAC -ACGGAATAACGGAGGATGCAGAAC -ACGGAATAACGGAGGATGGTCTAC -ACGGAATAACGGAGGATGACGTAC -ACGGAATAACGGAGGATGAGTGAC -ACGGAATAACGGAGGATGCTGTAG -ACGGAATAACGGAGGATGCCTAAG -ACGGAATAACGGAGGATGGTTCAG -ACGGAATAACGGAGGATGGCATAG -ACGGAATAACGGAGGATGGACAAG -ACGGAATAACGGAGGATGAAGCAG -ACGGAATAACGGAGGATGCGTCAA -ACGGAATAACGGAGGATGGCTGAA -ACGGAATAACGGAGGATGAGTACG -ACGGAATAACGGAGGATGATCCGA -ACGGAATAACGGAGGATGATGGGA -ACGGAATAACGGAGGATGGTGCAA -ACGGAATAACGGAGGATGGAGGAA -ACGGAATAACGGAGGATGCAGGTA -ACGGAATAACGGAGGATGGACTCT -ACGGAATAACGGAGGATGAGTCCT -ACGGAATAACGGAGGATGTAAGCC -ACGGAATAACGGAGGATGATAGCC -ACGGAATAACGGAGGATGTAACCG -ACGGAATAACGGAGGATGATGCCA -ACGGAATAACGGGGGAATGGAAAC -ACGGAATAACGGGGGAATAACACC -ACGGAATAACGGGGGAATATCGAG -ACGGAATAACGGGGGAATCTCCTT -ACGGAATAACGGGGGAATCCTGTT -ACGGAATAACGGGGGAATCGGTTT -ACGGAATAACGGGGGAATGTGGTT -ACGGAATAACGGGGGAATGCCTTT -ACGGAATAACGGGGGAATGGTCTT -ACGGAATAACGGGGGAATACGCTT -ACGGAATAACGGGGGAATAGCGTT -ACGGAATAACGGGGGAATTTCGTC -ACGGAATAACGGGGGAATTCTCTC -ACGGAATAACGGGGGAATTGGATC -ACGGAATAACGGGGGAATCACTTC -ACGGAATAACGGGGGAATGTACTC -ACGGAATAACGGGGGAATGATGTC -ACGGAATAACGGGGGAATACAGTC -ACGGAATAACGGGGGAATTTGCTG -ACGGAATAACGGGGGAATTCCATG -ACGGAATAACGGGGGAATTGTGTG -ACGGAATAACGGGGGAATCTAGTG -ACGGAATAACGGGGGAATCATCTG -ACGGAATAACGGGGGAATGAGTTG -ACGGAATAACGGGGGAATAGACTG -ACGGAATAACGGGGGAATTCGGTA -ACGGAATAACGGGGGAATTGCCTA -ACGGAATAACGGGGGAATCCACTA -ACGGAATAACGGGGGAATGGAGTA -ACGGAATAACGGGGGAATTCGTCT -ACGGAATAACGGGGGAATTGCACT -ACGGAATAACGGGGGAATCTGACT -ACGGAATAACGGGGGAATCAACCT -ACGGAATAACGGGGGAATGCTACT -ACGGAATAACGGGGGAATGGATCT -ACGGAATAACGGGGGAATAAGGCT -ACGGAATAACGGGGGAATTCAACC -ACGGAATAACGGGGGAATTGTTCC -ACGGAATAACGGGGGAATATTCCC -ACGGAATAACGGGGGAATTTCTCG -ACGGAATAACGGGGGAATTAGACG -ACGGAATAACGGGGGAATGTAACG -ACGGAATAACGGGGGAATACTTCG -ACGGAATAACGGGGGAATTACGCA -ACGGAATAACGGGGGAATCTTGCA -ACGGAATAACGGGGGAATCGAACA -ACGGAATAACGGGGGAATCAGTCA -ACGGAATAACGGGGGAATGATCCA -ACGGAATAACGGGGGAATACGACA -ACGGAATAACGGGGGAATAGCTCA -ACGGAATAACGGGGGAATTCACGT -ACGGAATAACGGGGGAATCGTAGT -ACGGAATAACGGGGGAATGTCAGT -ACGGAATAACGGGGGAATGAAGGT -ACGGAATAACGGGGGAATAACCGT -ACGGAATAACGGGGGAATTTGTGC -ACGGAATAACGGGGGAATCTAAGC -ACGGAATAACGGGGGAATACTAGC -ACGGAATAACGGGGGAATAGATGC -ACGGAATAACGGGGGAATTGAAGG -ACGGAATAACGGGGGAATCAATGG -ACGGAATAACGGGGGAATATGAGG -ACGGAATAACGGGGGAATAATGGG -ACGGAATAACGGGGGAATTCCTGA -ACGGAATAACGGGGGAATTAGCGA -ACGGAATAACGGGGGAATCACAGA -ACGGAATAACGGGGGAATGCAAGA -ACGGAATAACGGGGGAATGGTTGA -ACGGAATAACGGGGGAATTCCGAT -ACGGAATAACGGGGGAATTGGCAT -ACGGAATAACGGGGGAATCGAGAT -ACGGAATAACGGGGGAATTACCAC -ACGGAATAACGGGGGAATCAGAAC -ACGGAATAACGGGGGAATGTCTAC -ACGGAATAACGGGGGAATACGTAC -ACGGAATAACGGGGGAATAGTGAC -ACGGAATAACGGGGGAATCTGTAG -ACGGAATAACGGGGGAATCCTAAG -ACGGAATAACGGGGGAATGTTCAG -ACGGAATAACGGGGGAATGCATAG -ACGGAATAACGGGGGAATGACAAG -ACGGAATAACGGGGGAATAAGCAG -ACGGAATAACGGGGGAATCGTCAA -ACGGAATAACGGGGGAATGCTGAA -ACGGAATAACGGGGGAATAGTACG -ACGGAATAACGGGGGAATATCCGA -ACGGAATAACGGGGGAATATGGGA -ACGGAATAACGGGGGAATGTGCAA -ACGGAATAACGGGGGAATGAGGAA -ACGGAATAACGGGGGAATCAGGTA -ACGGAATAACGGGGGAATGACTCT -ACGGAATAACGGGGGAATAGTCCT -ACGGAATAACGGGGGAATTAAGCC -ACGGAATAACGGGGGAATATAGCC -ACGGAATAACGGGGGAATTAACCG -ACGGAATAACGGGGGAATATGCCA -ACGGAATAACGGTGATCCGGAAAC -ACGGAATAACGGTGATCCAACACC -ACGGAATAACGGTGATCCATCGAG -ACGGAATAACGGTGATCCCTCCTT -ACGGAATAACGGTGATCCCCTGTT -ACGGAATAACGGTGATCCCGGTTT -ACGGAATAACGGTGATCCGTGGTT -ACGGAATAACGGTGATCCGCCTTT -ACGGAATAACGGTGATCCGGTCTT -ACGGAATAACGGTGATCCACGCTT -ACGGAATAACGGTGATCCAGCGTT -ACGGAATAACGGTGATCCTTCGTC -ACGGAATAACGGTGATCCTCTCTC -ACGGAATAACGGTGATCCTGGATC -ACGGAATAACGGTGATCCCACTTC -ACGGAATAACGGTGATCCGTACTC -ACGGAATAACGGTGATCCGATGTC -ACGGAATAACGGTGATCCACAGTC -ACGGAATAACGGTGATCCTTGCTG -ACGGAATAACGGTGATCCTCCATG -ACGGAATAACGGTGATCCTGTGTG -ACGGAATAACGGTGATCCCTAGTG -ACGGAATAACGGTGATCCCATCTG -ACGGAATAACGGTGATCCGAGTTG -ACGGAATAACGGTGATCCAGACTG -ACGGAATAACGGTGATCCTCGGTA -ACGGAATAACGGTGATCCTGCCTA -ACGGAATAACGGTGATCCCCACTA -ACGGAATAACGGTGATCCGGAGTA -ACGGAATAACGGTGATCCTCGTCT -ACGGAATAACGGTGATCCTGCACT -ACGGAATAACGGTGATCCCTGACT -ACGGAATAACGGTGATCCCAACCT -ACGGAATAACGGTGATCCGCTACT -ACGGAATAACGGTGATCCGGATCT -ACGGAATAACGGTGATCCAAGGCT -ACGGAATAACGGTGATCCTCAACC -ACGGAATAACGGTGATCCTGTTCC -ACGGAATAACGGTGATCCATTCCC -ACGGAATAACGGTGATCCTTCTCG -ACGGAATAACGGTGATCCTAGACG -ACGGAATAACGGTGATCCGTAACG -ACGGAATAACGGTGATCCACTTCG -ACGGAATAACGGTGATCCTACGCA -ACGGAATAACGGTGATCCCTTGCA -ACGGAATAACGGTGATCCCGAACA -ACGGAATAACGGTGATCCCAGTCA -ACGGAATAACGGTGATCCGATCCA -ACGGAATAACGGTGATCCACGACA -ACGGAATAACGGTGATCCAGCTCA -ACGGAATAACGGTGATCCTCACGT -ACGGAATAACGGTGATCCCGTAGT -ACGGAATAACGGTGATCCGTCAGT -ACGGAATAACGGTGATCCGAAGGT -ACGGAATAACGGTGATCCAACCGT -ACGGAATAACGGTGATCCTTGTGC -ACGGAATAACGGTGATCCCTAAGC -ACGGAATAACGGTGATCCACTAGC -ACGGAATAACGGTGATCCAGATGC -ACGGAATAACGGTGATCCTGAAGG -ACGGAATAACGGTGATCCCAATGG -ACGGAATAACGGTGATCCATGAGG -ACGGAATAACGGTGATCCAATGGG -ACGGAATAACGGTGATCCTCCTGA -ACGGAATAACGGTGATCCTAGCGA -ACGGAATAACGGTGATCCCACAGA -ACGGAATAACGGTGATCCGCAAGA -ACGGAATAACGGTGATCCGGTTGA -ACGGAATAACGGTGATCCTCCGAT -ACGGAATAACGGTGATCCTGGCAT -ACGGAATAACGGTGATCCCGAGAT -ACGGAATAACGGTGATCCTACCAC -ACGGAATAACGGTGATCCCAGAAC -ACGGAATAACGGTGATCCGTCTAC -ACGGAATAACGGTGATCCACGTAC -ACGGAATAACGGTGATCCAGTGAC -ACGGAATAACGGTGATCCCTGTAG -ACGGAATAACGGTGATCCCCTAAG -ACGGAATAACGGTGATCCGTTCAG -ACGGAATAACGGTGATCCGCATAG -ACGGAATAACGGTGATCCGACAAG -ACGGAATAACGGTGATCCAAGCAG -ACGGAATAACGGTGATCCCGTCAA -ACGGAATAACGGTGATCCGCTGAA -ACGGAATAACGGTGATCCAGTACG -ACGGAATAACGGTGATCCATCCGA -ACGGAATAACGGTGATCCATGGGA -ACGGAATAACGGTGATCCGTGCAA -ACGGAATAACGGTGATCCGAGGAA -ACGGAATAACGGTGATCCCAGGTA -ACGGAATAACGGTGATCCGACTCT -ACGGAATAACGGTGATCCAGTCCT -ACGGAATAACGGTGATCCTAAGCC -ACGGAATAACGGTGATCCATAGCC -ACGGAATAACGGTGATCCTAACCG -ACGGAATAACGGTGATCCATGCCA -ACGGAATAACGGCGATAGGGAAAC -ACGGAATAACGGCGATAGAACACC -ACGGAATAACGGCGATAGATCGAG -ACGGAATAACGGCGATAGCTCCTT -ACGGAATAACGGCGATAGCCTGTT -ACGGAATAACGGCGATAGCGGTTT -ACGGAATAACGGCGATAGGTGGTT -ACGGAATAACGGCGATAGGCCTTT -ACGGAATAACGGCGATAGGGTCTT -ACGGAATAACGGCGATAGACGCTT -ACGGAATAACGGCGATAGAGCGTT -ACGGAATAACGGCGATAGTTCGTC -ACGGAATAACGGCGATAGTCTCTC -ACGGAATAACGGCGATAGTGGATC -ACGGAATAACGGCGATAGCACTTC -ACGGAATAACGGCGATAGGTACTC -ACGGAATAACGGCGATAGGATGTC -ACGGAATAACGGCGATAGACAGTC -ACGGAATAACGGCGATAGTTGCTG -ACGGAATAACGGCGATAGTCCATG -ACGGAATAACGGCGATAGTGTGTG -ACGGAATAACGGCGATAGCTAGTG -ACGGAATAACGGCGATAGCATCTG -ACGGAATAACGGCGATAGGAGTTG -ACGGAATAACGGCGATAGAGACTG -ACGGAATAACGGCGATAGTCGGTA -ACGGAATAACGGCGATAGTGCCTA -ACGGAATAACGGCGATAGCCACTA -ACGGAATAACGGCGATAGGGAGTA -ACGGAATAACGGCGATAGTCGTCT -ACGGAATAACGGCGATAGTGCACT -ACGGAATAACGGCGATAGCTGACT -ACGGAATAACGGCGATAGCAACCT -ACGGAATAACGGCGATAGGCTACT -ACGGAATAACGGCGATAGGGATCT -ACGGAATAACGGCGATAGAAGGCT -ACGGAATAACGGCGATAGTCAACC -ACGGAATAACGGCGATAGTGTTCC -ACGGAATAACGGCGATAGATTCCC -ACGGAATAACGGCGATAGTTCTCG -ACGGAATAACGGCGATAGTAGACG -ACGGAATAACGGCGATAGGTAACG -ACGGAATAACGGCGATAGACTTCG -ACGGAATAACGGCGATAGTACGCA -ACGGAATAACGGCGATAGCTTGCA -ACGGAATAACGGCGATAGCGAACA -ACGGAATAACGGCGATAGCAGTCA -ACGGAATAACGGCGATAGGATCCA -ACGGAATAACGGCGATAGACGACA -ACGGAATAACGGCGATAGAGCTCA -ACGGAATAACGGCGATAGTCACGT -ACGGAATAACGGCGATAGCGTAGT -ACGGAATAACGGCGATAGGTCAGT -ACGGAATAACGGCGATAGGAAGGT -ACGGAATAACGGCGATAGAACCGT -ACGGAATAACGGCGATAGTTGTGC -ACGGAATAACGGCGATAGCTAAGC -ACGGAATAACGGCGATAGACTAGC -ACGGAATAACGGCGATAGAGATGC -ACGGAATAACGGCGATAGTGAAGG -ACGGAATAACGGCGATAGCAATGG -ACGGAATAACGGCGATAGATGAGG -ACGGAATAACGGCGATAGAATGGG -ACGGAATAACGGCGATAGTCCTGA -ACGGAATAACGGCGATAGTAGCGA -ACGGAATAACGGCGATAGCACAGA -ACGGAATAACGGCGATAGGCAAGA -ACGGAATAACGGCGATAGGGTTGA -ACGGAATAACGGCGATAGTCCGAT -ACGGAATAACGGCGATAGTGGCAT -ACGGAATAACGGCGATAGCGAGAT -ACGGAATAACGGCGATAGTACCAC -ACGGAATAACGGCGATAGCAGAAC -ACGGAATAACGGCGATAGGTCTAC -ACGGAATAACGGCGATAGACGTAC -ACGGAATAACGGCGATAGAGTGAC -ACGGAATAACGGCGATAGCTGTAG -ACGGAATAACGGCGATAGCCTAAG -ACGGAATAACGGCGATAGGTTCAG -ACGGAATAACGGCGATAGGCATAG -ACGGAATAACGGCGATAGGACAAG -ACGGAATAACGGCGATAGAAGCAG -ACGGAATAACGGCGATAGCGTCAA -ACGGAATAACGGCGATAGGCTGAA -ACGGAATAACGGCGATAGAGTACG -ACGGAATAACGGCGATAGATCCGA -ACGGAATAACGGCGATAGATGGGA -ACGGAATAACGGCGATAGGTGCAA -ACGGAATAACGGCGATAGGAGGAA -ACGGAATAACGGCGATAGCAGGTA -ACGGAATAACGGCGATAGGACTCT -ACGGAATAACGGCGATAGAGTCCT -ACGGAATAACGGCGATAGTAAGCC -ACGGAATAACGGCGATAGATAGCC -ACGGAATAACGGCGATAGTAACCG -ACGGAATAACGGCGATAGATGCCA -ACGGAATAACGGAGACACGGAAAC -ACGGAATAACGGAGACACAACACC -ACGGAATAACGGAGACACATCGAG -ACGGAATAACGGAGACACCTCCTT -ACGGAATAACGGAGACACCCTGTT -ACGGAATAACGGAGACACCGGTTT -ACGGAATAACGGAGACACGTGGTT -ACGGAATAACGGAGACACGCCTTT -ACGGAATAACGGAGACACGGTCTT -ACGGAATAACGGAGACACACGCTT -ACGGAATAACGGAGACACAGCGTT -ACGGAATAACGGAGACACTTCGTC -ACGGAATAACGGAGACACTCTCTC -ACGGAATAACGGAGACACTGGATC -ACGGAATAACGGAGACACCACTTC -ACGGAATAACGGAGACACGTACTC -ACGGAATAACGGAGACACGATGTC -ACGGAATAACGGAGACACACAGTC -ACGGAATAACGGAGACACTTGCTG -ACGGAATAACGGAGACACTCCATG -ACGGAATAACGGAGACACTGTGTG -ACGGAATAACGGAGACACCTAGTG -ACGGAATAACGGAGACACCATCTG -ACGGAATAACGGAGACACGAGTTG -ACGGAATAACGGAGACACAGACTG -ACGGAATAACGGAGACACTCGGTA -ACGGAATAACGGAGACACTGCCTA -ACGGAATAACGGAGACACCCACTA -ACGGAATAACGGAGACACGGAGTA -ACGGAATAACGGAGACACTCGTCT -ACGGAATAACGGAGACACTGCACT -ACGGAATAACGGAGACACCTGACT -ACGGAATAACGGAGACACCAACCT -ACGGAATAACGGAGACACGCTACT -ACGGAATAACGGAGACACGGATCT -ACGGAATAACGGAGACACAAGGCT -ACGGAATAACGGAGACACTCAACC -ACGGAATAACGGAGACACTGTTCC -ACGGAATAACGGAGACACATTCCC -ACGGAATAACGGAGACACTTCTCG -ACGGAATAACGGAGACACTAGACG -ACGGAATAACGGAGACACGTAACG -ACGGAATAACGGAGACACACTTCG -ACGGAATAACGGAGACACTACGCA -ACGGAATAACGGAGACACCTTGCA -ACGGAATAACGGAGACACCGAACA -ACGGAATAACGGAGACACCAGTCA -ACGGAATAACGGAGACACGATCCA -ACGGAATAACGGAGACACACGACA -ACGGAATAACGGAGACACAGCTCA -ACGGAATAACGGAGACACTCACGT -ACGGAATAACGGAGACACCGTAGT -ACGGAATAACGGAGACACGTCAGT -ACGGAATAACGGAGACACGAAGGT -ACGGAATAACGGAGACACAACCGT -ACGGAATAACGGAGACACTTGTGC -ACGGAATAACGGAGACACCTAAGC -ACGGAATAACGGAGACACACTAGC -ACGGAATAACGGAGACACAGATGC -ACGGAATAACGGAGACACTGAAGG -ACGGAATAACGGAGACACCAATGG -ACGGAATAACGGAGACACATGAGG -ACGGAATAACGGAGACACAATGGG -ACGGAATAACGGAGACACTCCTGA -ACGGAATAACGGAGACACTAGCGA -ACGGAATAACGGAGACACCACAGA -ACGGAATAACGGAGACACGCAAGA -ACGGAATAACGGAGACACGGTTGA -ACGGAATAACGGAGACACTCCGAT -ACGGAATAACGGAGACACTGGCAT -ACGGAATAACGGAGACACCGAGAT -ACGGAATAACGGAGACACTACCAC -ACGGAATAACGGAGACACCAGAAC -ACGGAATAACGGAGACACGTCTAC -ACGGAATAACGGAGACACACGTAC -ACGGAATAACGGAGACACAGTGAC -ACGGAATAACGGAGACACCTGTAG -ACGGAATAACGGAGACACCCTAAG -ACGGAATAACGGAGACACGTTCAG -ACGGAATAACGGAGACACGCATAG -ACGGAATAACGGAGACACGACAAG -ACGGAATAACGGAGACACAAGCAG -ACGGAATAACGGAGACACCGTCAA -ACGGAATAACGGAGACACGCTGAA -ACGGAATAACGGAGACACAGTACG -ACGGAATAACGGAGACACATCCGA -ACGGAATAACGGAGACACATGGGA -ACGGAATAACGGAGACACGTGCAA -ACGGAATAACGGAGACACGAGGAA -ACGGAATAACGGAGACACCAGGTA -ACGGAATAACGGAGACACGACTCT -ACGGAATAACGGAGACACAGTCCT -ACGGAATAACGGAGACACTAAGCC -ACGGAATAACGGAGACACATAGCC -ACGGAATAACGGAGACACTAACCG -ACGGAATAACGGAGACACATGCCA -ACGGAATAACGGAGAGCAGGAAAC -ACGGAATAACGGAGAGCAAACACC -ACGGAATAACGGAGAGCAATCGAG -ACGGAATAACGGAGAGCACTCCTT -ACGGAATAACGGAGAGCACCTGTT -ACGGAATAACGGAGAGCACGGTTT -ACGGAATAACGGAGAGCAGTGGTT -ACGGAATAACGGAGAGCAGCCTTT -ACGGAATAACGGAGAGCAGGTCTT -ACGGAATAACGGAGAGCAACGCTT -ACGGAATAACGGAGAGCAAGCGTT -ACGGAATAACGGAGAGCATTCGTC -ACGGAATAACGGAGAGCATCTCTC -ACGGAATAACGGAGAGCATGGATC -ACGGAATAACGGAGAGCACACTTC -ACGGAATAACGGAGAGCAGTACTC -ACGGAATAACGGAGAGCAGATGTC -ACGGAATAACGGAGAGCAACAGTC -ACGGAATAACGGAGAGCATTGCTG -ACGGAATAACGGAGAGCATCCATG -ACGGAATAACGGAGAGCATGTGTG -ACGGAATAACGGAGAGCACTAGTG -ACGGAATAACGGAGAGCACATCTG -ACGGAATAACGGAGAGCAGAGTTG -ACGGAATAACGGAGAGCAAGACTG -ACGGAATAACGGAGAGCATCGGTA -ACGGAATAACGGAGAGCATGCCTA -ACGGAATAACGGAGAGCACCACTA -ACGGAATAACGGAGAGCAGGAGTA -ACGGAATAACGGAGAGCATCGTCT -ACGGAATAACGGAGAGCATGCACT -ACGGAATAACGGAGAGCACTGACT -ACGGAATAACGGAGAGCACAACCT -ACGGAATAACGGAGAGCAGCTACT -ACGGAATAACGGAGAGCAGGATCT -ACGGAATAACGGAGAGCAAAGGCT -ACGGAATAACGGAGAGCATCAACC -ACGGAATAACGGAGAGCATGTTCC -ACGGAATAACGGAGAGCAATTCCC -ACGGAATAACGGAGAGCATTCTCG -ACGGAATAACGGAGAGCATAGACG -ACGGAATAACGGAGAGCAGTAACG -ACGGAATAACGGAGAGCAACTTCG -ACGGAATAACGGAGAGCATACGCA -ACGGAATAACGGAGAGCACTTGCA -ACGGAATAACGGAGAGCACGAACA -ACGGAATAACGGAGAGCACAGTCA -ACGGAATAACGGAGAGCAGATCCA -ACGGAATAACGGAGAGCAACGACA -ACGGAATAACGGAGAGCAAGCTCA -ACGGAATAACGGAGAGCATCACGT -ACGGAATAACGGAGAGCACGTAGT -ACGGAATAACGGAGAGCAGTCAGT -ACGGAATAACGGAGAGCAGAAGGT -ACGGAATAACGGAGAGCAAACCGT -ACGGAATAACGGAGAGCATTGTGC -ACGGAATAACGGAGAGCACTAAGC -ACGGAATAACGGAGAGCAACTAGC -ACGGAATAACGGAGAGCAAGATGC -ACGGAATAACGGAGAGCATGAAGG -ACGGAATAACGGAGAGCACAATGG -ACGGAATAACGGAGAGCAATGAGG -ACGGAATAACGGAGAGCAAATGGG -ACGGAATAACGGAGAGCATCCTGA -ACGGAATAACGGAGAGCATAGCGA -ACGGAATAACGGAGAGCACACAGA -ACGGAATAACGGAGAGCAGCAAGA -ACGGAATAACGGAGAGCAGGTTGA -ACGGAATAACGGAGAGCATCCGAT -ACGGAATAACGGAGAGCATGGCAT -ACGGAATAACGGAGAGCACGAGAT -ACGGAATAACGGAGAGCATACCAC -ACGGAATAACGGAGAGCACAGAAC -ACGGAATAACGGAGAGCAGTCTAC -ACGGAATAACGGAGAGCAACGTAC -ACGGAATAACGGAGAGCAAGTGAC -ACGGAATAACGGAGAGCACTGTAG -ACGGAATAACGGAGAGCACCTAAG -ACGGAATAACGGAGAGCAGTTCAG -ACGGAATAACGGAGAGCAGCATAG -ACGGAATAACGGAGAGCAGACAAG -ACGGAATAACGGAGAGCAAAGCAG -ACGGAATAACGGAGAGCACGTCAA -ACGGAATAACGGAGAGCAGCTGAA -ACGGAATAACGGAGAGCAAGTACG -ACGGAATAACGGAGAGCAATCCGA -ACGGAATAACGGAGAGCAATGGGA -ACGGAATAACGGAGAGCAGTGCAA -ACGGAATAACGGAGAGCAGAGGAA -ACGGAATAACGGAGAGCACAGGTA -ACGGAATAACGGAGAGCAGACTCT -ACGGAATAACGGAGAGCAAGTCCT -ACGGAATAACGGAGAGCATAAGCC -ACGGAATAACGGAGAGCAATAGCC -ACGGAATAACGGAGAGCATAACCG -ACGGAATAACGGAGAGCAATGCCA -ACGGAATAACGGTGAGGTGGAAAC -ACGGAATAACGGTGAGGTAACACC -ACGGAATAACGGTGAGGTATCGAG -ACGGAATAACGGTGAGGTCTCCTT -ACGGAATAACGGTGAGGTCCTGTT -ACGGAATAACGGTGAGGTCGGTTT -ACGGAATAACGGTGAGGTGTGGTT -ACGGAATAACGGTGAGGTGCCTTT -ACGGAATAACGGTGAGGTGGTCTT -ACGGAATAACGGTGAGGTACGCTT -ACGGAATAACGGTGAGGTAGCGTT -ACGGAATAACGGTGAGGTTTCGTC -ACGGAATAACGGTGAGGTTCTCTC -ACGGAATAACGGTGAGGTTGGATC -ACGGAATAACGGTGAGGTCACTTC -ACGGAATAACGGTGAGGTGTACTC -ACGGAATAACGGTGAGGTGATGTC -ACGGAATAACGGTGAGGTACAGTC -ACGGAATAACGGTGAGGTTTGCTG -ACGGAATAACGGTGAGGTTCCATG -ACGGAATAACGGTGAGGTTGTGTG -ACGGAATAACGGTGAGGTCTAGTG -ACGGAATAACGGTGAGGTCATCTG -ACGGAATAACGGTGAGGTGAGTTG -ACGGAATAACGGTGAGGTAGACTG -ACGGAATAACGGTGAGGTTCGGTA -ACGGAATAACGGTGAGGTTGCCTA -ACGGAATAACGGTGAGGTCCACTA -ACGGAATAACGGTGAGGTGGAGTA -ACGGAATAACGGTGAGGTTCGTCT -ACGGAATAACGGTGAGGTTGCACT -ACGGAATAACGGTGAGGTCTGACT -ACGGAATAACGGTGAGGTCAACCT -ACGGAATAACGGTGAGGTGCTACT -ACGGAATAACGGTGAGGTGGATCT -ACGGAATAACGGTGAGGTAAGGCT -ACGGAATAACGGTGAGGTTCAACC -ACGGAATAACGGTGAGGTTGTTCC -ACGGAATAACGGTGAGGTATTCCC -ACGGAATAACGGTGAGGTTTCTCG -ACGGAATAACGGTGAGGTTAGACG -ACGGAATAACGGTGAGGTGTAACG -ACGGAATAACGGTGAGGTACTTCG -ACGGAATAACGGTGAGGTTACGCA -ACGGAATAACGGTGAGGTCTTGCA -ACGGAATAACGGTGAGGTCGAACA -ACGGAATAACGGTGAGGTCAGTCA -ACGGAATAACGGTGAGGTGATCCA -ACGGAATAACGGTGAGGTACGACA -ACGGAATAACGGTGAGGTAGCTCA -ACGGAATAACGGTGAGGTTCACGT -ACGGAATAACGGTGAGGTCGTAGT -ACGGAATAACGGTGAGGTGTCAGT -ACGGAATAACGGTGAGGTGAAGGT -ACGGAATAACGGTGAGGTAACCGT -ACGGAATAACGGTGAGGTTTGTGC -ACGGAATAACGGTGAGGTCTAAGC -ACGGAATAACGGTGAGGTACTAGC -ACGGAATAACGGTGAGGTAGATGC -ACGGAATAACGGTGAGGTTGAAGG -ACGGAATAACGGTGAGGTCAATGG -ACGGAATAACGGTGAGGTATGAGG -ACGGAATAACGGTGAGGTAATGGG -ACGGAATAACGGTGAGGTTCCTGA -ACGGAATAACGGTGAGGTTAGCGA -ACGGAATAACGGTGAGGTCACAGA -ACGGAATAACGGTGAGGTGCAAGA -ACGGAATAACGGTGAGGTGGTTGA -ACGGAATAACGGTGAGGTTCCGAT -ACGGAATAACGGTGAGGTTGGCAT -ACGGAATAACGGTGAGGTCGAGAT -ACGGAATAACGGTGAGGTTACCAC -ACGGAATAACGGTGAGGTCAGAAC -ACGGAATAACGGTGAGGTGTCTAC -ACGGAATAACGGTGAGGTACGTAC -ACGGAATAACGGTGAGGTAGTGAC -ACGGAATAACGGTGAGGTCTGTAG -ACGGAATAACGGTGAGGTCCTAAG -ACGGAATAACGGTGAGGTGTTCAG -ACGGAATAACGGTGAGGTGCATAG -ACGGAATAACGGTGAGGTGACAAG -ACGGAATAACGGTGAGGTAAGCAG -ACGGAATAACGGTGAGGTCGTCAA -ACGGAATAACGGTGAGGTGCTGAA -ACGGAATAACGGTGAGGTAGTACG -ACGGAATAACGGTGAGGTATCCGA -ACGGAATAACGGTGAGGTATGGGA -ACGGAATAACGGTGAGGTGTGCAA -ACGGAATAACGGTGAGGTGAGGAA -ACGGAATAACGGTGAGGTCAGGTA -ACGGAATAACGGTGAGGTGACTCT -ACGGAATAACGGTGAGGTAGTCCT -ACGGAATAACGGTGAGGTTAAGCC -ACGGAATAACGGTGAGGTATAGCC -ACGGAATAACGGTGAGGTTAACCG -ACGGAATAACGGTGAGGTATGCCA -ACGGAATAACGGGATTCCGGAAAC -ACGGAATAACGGGATTCCAACACC -ACGGAATAACGGGATTCCATCGAG -ACGGAATAACGGGATTCCCTCCTT -ACGGAATAACGGGATTCCCCTGTT -ACGGAATAACGGGATTCCCGGTTT -ACGGAATAACGGGATTCCGTGGTT -ACGGAATAACGGGATTCCGCCTTT -ACGGAATAACGGGATTCCGGTCTT -ACGGAATAACGGGATTCCACGCTT -ACGGAATAACGGGATTCCAGCGTT -ACGGAATAACGGGATTCCTTCGTC -ACGGAATAACGGGATTCCTCTCTC -ACGGAATAACGGGATTCCTGGATC -ACGGAATAACGGGATTCCCACTTC -ACGGAATAACGGGATTCCGTACTC -ACGGAATAACGGGATTCCGATGTC -ACGGAATAACGGGATTCCACAGTC -ACGGAATAACGGGATTCCTTGCTG -ACGGAATAACGGGATTCCTCCATG -ACGGAATAACGGGATTCCTGTGTG -ACGGAATAACGGGATTCCCTAGTG -ACGGAATAACGGGATTCCCATCTG -ACGGAATAACGGGATTCCGAGTTG -ACGGAATAACGGGATTCCAGACTG -ACGGAATAACGGGATTCCTCGGTA -ACGGAATAACGGGATTCCTGCCTA -ACGGAATAACGGGATTCCCCACTA -ACGGAATAACGGGATTCCGGAGTA -ACGGAATAACGGGATTCCTCGTCT -ACGGAATAACGGGATTCCTGCACT -ACGGAATAACGGGATTCCCTGACT -ACGGAATAACGGGATTCCCAACCT -ACGGAATAACGGGATTCCGCTACT -ACGGAATAACGGGATTCCGGATCT -ACGGAATAACGGGATTCCAAGGCT -ACGGAATAACGGGATTCCTCAACC -ACGGAATAACGGGATTCCTGTTCC -ACGGAATAACGGGATTCCATTCCC -ACGGAATAACGGGATTCCTTCTCG -ACGGAATAACGGGATTCCTAGACG -ACGGAATAACGGGATTCCGTAACG -ACGGAATAACGGGATTCCACTTCG -ACGGAATAACGGGATTCCTACGCA -ACGGAATAACGGGATTCCCTTGCA -ACGGAATAACGGGATTCCCGAACA -ACGGAATAACGGGATTCCCAGTCA -ACGGAATAACGGGATTCCGATCCA -ACGGAATAACGGGATTCCACGACA -ACGGAATAACGGGATTCCAGCTCA -ACGGAATAACGGGATTCCTCACGT -ACGGAATAACGGGATTCCCGTAGT -ACGGAATAACGGGATTCCGTCAGT -ACGGAATAACGGGATTCCGAAGGT -ACGGAATAACGGGATTCCAACCGT -ACGGAATAACGGGATTCCTTGTGC -ACGGAATAACGGGATTCCCTAAGC -ACGGAATAACGGGATTCCACTAGC -ACGGAATAACGGGATTCCAGATGC -ACGGAATAACGGGATTCCTGAAGG -ACGGAATAACGGGATTCCCAATGG -ACGGAATAACGGGATTCCATGAGG -ACGGAATAACGGGATTCCAATGGG -ACGGAATAACGGGATTCCTCCTGA -ACGGAATAACGGGATTCCTAGCGA -ACGGAATAACGGGATTCCCACAGA -ACGGAATAACGGGATTCCGCAAGA -ACGGAATAACGGGATTCCGGTTGA -ACGGAATAACGGGATTCCTCCGAT -ACGGAATAACGGGATTCCTGGCAT -ACGGAATAACGGGATTCCCGAGAT -ACGGAATAACGGGATTCCTACCAC -ACGGAATAACGGGATTCCCAGAAC -ACGGAATAACGGGATTCCGTCTAC -ACGGAATAACGGGATTCCACGTAC -ACGGAATAACGGGATTCCAGTGAC -ACGGAATAACGGGATTCCCTGTAG -ACGGAATAACGGGATTCCCCTAAG -ACGGAATAACGGGATTCCGTTCAG -ACGGAATAACGGGATTCCGCATAG -ACGGAATAACGGGATTCCGACAAG -ACGGAATAACGGGATTCCAAGCAG -ACGGAATAACGGGATTCCCGTCAA -ACGGAATAACGGGATTCCGCTGAA -ACGGAATAACGGGATTCCAGTACG -ACGGAATAACGGGATTCCATCCGA -ACGGAATAACGGGATTCCATGGGA -ACGGAATAACGGGATTCCGTGCAA -ACGGAATAACGGGATTCCGAGGAA -ACGGAATAACGGGATTCCCAGGTA -ACGGAATAACGGGATTCCGACTCT -ACGGAATAACGGGATTCCAGTCCT -ACGGAATAACGGGATTCCTAAGCC -ACGGAATAACGGGATTCCATAGCC -ACGGAATAACGGGATTCCTAACCG -ACGGAATAACGGGATTCCATGCCA -ACGGAATAACGGCATTGGGGAAAC -ACGGAATAACGGCATTGGAACACC -ACGGAATAACGGCATTGGATCGAG -ACGGAATAACGGCATTGGCTCCTT -ACGGAATAACGGCATTGGCCTGTT -ACGGAATAACGGCATTGGCGGTTT -ACGGAATAACGGCATTGGGTGGTT -ACGGAATAACGGCATTGGGCCTTT -ACGGAATAACGGCATTGGGGTCTT -ACGGAATAACGGCATTGGACGCTT -ACGGAATAACGGCATTGGAGCGTT -ACGGAATAACGGCATTGGTTCGTC -ACGGAATAACGGCATTGGTCTCTC -ACGGAATAACGGCATTGGTGGATC -ACGGAATAACGGCATTGGCACTTC -ACGGAATAACGGCATTGGGTACTC -ACGGAATAACGGCATTGGGATGTC -ACGGAATAACGGCATTGGACAGTC -ACGGAATAACGGCATTGGTTGCTG -ACGGAATAACGGCATTGGTCCATG -ACGGAATAACGGCATTGGTGTGTG -ACGGAATAACGGCATTGGCTAGTG -ACGGAATAACGGCATTGGCATCTG -ACGGAATAACGGCATTGGGAGTTG -ACGGAATAACGGCATTGGAGACTG -ACGGAATAACGGCATTGGTCGGTA -ACGGAATAACGGCATTGGTGCCTA -ACGGAATAACGGCATTGGCCACTA -ACGGAATAACGGCATTGGGGAGTA -ACGGAATAACGGCATTGGTCGTCT -ACGGAATAACGGCATTGGTGCACT -ACGGAATAACGGCATTGGCTGACT -ACGGAATAACGGCATTGGCAACCT -ACGGAATAACGGCATTGGGCTACT -ACGGAATAACGGCATTGGGGATCT -ACGGAATAACGGCATTGGAAGGCT -ACGGAATAACGGCATTGGTCAACC -ACGGAATAACGGCATTGGTGTTCC -ACGGAATAACGGCATTGGATTCCC -ACGGAATAACGGCATTGGTTCTCG -ACGGAATAACGGCATTGGTAGACG -ACGGAATAACGGCATTGGGTAACG -ACGGAATAACGGCATTGGACTTCG -ACGGAATAACGGCATTGGTACGCA -ACGGAATAACGGCATTGGCTTGCA -ACGGAATAACGGCATTGGCGAACA -ACGGAATAACGGCATTGGCAGTCA -ACGGAATAACGGCATTGGGATCCA -ACGGAATAACGGCATTGGACGACA -ACGGAATAACGGCATTGGAGCTCA -ACGGAATAACGGCATTGGTCACGT -ACGGAATAACGGCATTGGCGTAGT -ACGGAATAACGGCATTGGGTCAGT -ACGGAATAACGGCATTGGGAAGGT -ACGGAATAACGGCATTGGAACCGT -ACGGAATAACGGCATTGGTTGTGC -ACGGAATAACGGCATTGGCTAAGC -ACGGAATAACGGCATTGGACTAGC -ACGGAATAACGGCATTGGAGATGC -ACGGAATAACGGCATTGGTGAAGG -ACGGAATAACGGCATTGGCAATGG -ACGGAATAACGGCATTGGATGAGG -ACGGAATAACGGCATTGGAATGGG -ACGGAATAACGGCATTGGTCCTGA -ACGGAATAACGGCATTGGTAGCGA -ACGGAATAACGGCATTGGCACAGA -ACGGAATAACGGCATTGGGCAAGA -ACGGAATAACGGCATTGGGGTTGA -ACGGAATAACGGCATTGGTCCGAT -ACGGAATAACGGCATTGGTGGCAT -ACGGAATAACGGCATTGGCGAGAT -ACGGAATAACGGCATTGGTACCAC -ACGGAATAACGGCATTGGCAGAAC -ACGGAATAACGGCATTGGGTCTAC -ACGGAATAACGGCATTGGACGTAC -ACGGAATAACGGCATTGGAGTGAC -ACGGAATAACGGCATTGGCTGTAG -ACGGAATAACGGCATTGGCCTAAG -ACGGAATAACGGCATTGGGTTCAG -ACGGAATAACGGCATTGGGCATAG -ACGGAATAACGGCATTGGGACAAG -ACGGAATAACGGCATTGGAAGCAG -ACGGAATAACGGCATTGGCGTCAA -ACGGAATAACGGCATTGGGCTGAA -ACGGAATAACGGCATTGGAGTACG -ACGGAATAACGGCATTGGATCCGA -ACGGAATAACGGCATTGGATGGGA -ACGGAATAACGGCATTGGGTGCAA -ACGGAATAACGGCATTGGGAGGAA -ACGGAATAACGGCATTGGCAGGTA -ACGGAATAACGGCATTGGGACTCT -ACGGAATAACGGCATTGGAGTCCT -ACGGAATAACGGCATTGGTAAGCC -ACGGAATAACGGCATTGGATAGCC -ACGGAATAACGGCATTGGTAACCG -ACGGAATAACGGCATTGGATGCCA -ACGGAATAACGGGATCGAGGAAAC -ACGGAATAACGGGATCGAAACACC -ACGGAATAACGGGATCGAATCGAG -ACGGAATAACGGGATCGACTCCTT -ACGGAATAACGGGATCGACCTGTT -ACGGAATAACGGGATCGACGGTTT -ACGGAATAACGGGATCGAGTGGTT -ACGGAATAACGGGATCGAGCCTTT -ACGGAATAACGGGATCGAGGTCTT -ACGGAATAACGGGATCGAACGCTT -ACGGAATAACGGGATCGAAGCGTT -ACGGAATAACGGGATCGATTCGTC -ACGGAATAACGGGATCGATCTCTC -ACGGAATAACGGGATCGATGGATC -ACGGAATAACGGGATCGACACTTC -ACGGAATAACGGGATCGAGTACTC -ACGGAATAACGGGATCGAGATGTC -ACGGAATAACGGGATCGAACAGTC -ACGGAATAACGGGATCGATTGCTG -ACGGAATAACGGGATCGATCCATG -ACGGAATAACGGGATCGATGTGTG -ACGGAATAACGGGATCGACTAGTG -ACGGAATAACGGGATCGACATCTG -ACGGAATAACGGGATCGAGAGTTG -ACGGAATAACGGGATCGAAGACTG -ACGGAATAACGGGATCGATCGGTA -ACGGAATAACGGGATCGATGCCTA -ACGGAATAACGGGATCGACCACTA -ACGGAATAACGGGATCGAGGAGTA -ACGGAATAACGGGATCGATCGTCT -ACGGAATAACGGGATCGATGCACT -ACGGAATAACGGGATCGACTGACT -ACGGAATAACGGGATCGACAACCT -ACGGAATAACGGGATCGAGCTACT -ACGGAATAACGGGATCGAGGATCT -ACGGAATAACGGGATCGAAAGGCT -ACGGAATAACGGGATCGATCAACC -ACGGAATAACGGGATCGATGTTCC -ACGGAATAACGGGATCGAATTCCC -ACGGAATAACGGGATCGATTCTCG -ACGGAATAACGGGATCGATAGACG -ACGGAATAACGGGATCGAGTAACG -ACGGAATAACGGGATCGAACTTCG -ACGGAATAACGGGATCGATACGCA -ACGGAATAACGGGATCGACTTGCA -ACGGAATAACGGGATCGACGAACA -ACGGAATAACGGGATCGACAGTCA -ACGGAATAACGGGATCGAGATCCA -ACGGAATAACGGGATCGAACGACA -ACGGAATAACGGGATCGAAGCTCA -ACGGAATAACGGGATCGATCACGT -ACGGAATAACGGGATCGACGTAGT -ACGGAATAACGGGATCGAGTCAGT -ACGGAATAACGGGATCGAGAAGGT -ACGGAATAACGGGATCGAAACCGT -ACGGAATAACGGGATCGATTGTGC -ACGGAATAACGGGATCGACTAAGC -ACGGAATAACGGGATCGAACTAGC -ACGGAATAACGGGATCGAAGATGC -ACGGAATAACGGGATCGATGAAGG -ACGGAATAACGGGATCGACAATGG -ACGGAATAACGGGATCGAATGAGG -ACGGAATAACGGGATCGAAATGGG -ACGGAATAACGGGATCGATCCTGA -ACGGAATAACGGGATCGATAGCGA -ACGGAATAACGGGATCGACACAGA -ACGGAATAACGGGATCGAGCAAGA -ACGGAATAACGGGATCGAGGTTGA -ACGGAATAACGGGATCGATCCGAT -ACGGAATAACGGGATCGATGGCAT -ACGGAATAACGGGATCGACGAGAT -ACGGAATAACGGGATCGATACCAC -ACGGAATAACGGGATCGACAGAAC -ACGGAATAACGGGATCGAGTCTAC -ACGGAATAACGGGATCGAACGTAC -ACGGAATAACGGGATCGAAGTGAC -ACGGAATAACGGGATCGACTGTAG -ACGGAATAACGGGATCGACCTAAG -ACGGAATAACGGGATCGAGTTCAG -ACGGAATAACGGGATCGAGCATAG -ACGGAATAACGGGATCGAGACAAG -ACGGAATAACGGGATCGAAAGCAG -ACGGAATAACGGGATCGACGTCAA -ACGGAATAACGGGATCGAGCTGAA -ACGGAATAACGGGATCGAAGTACG -ACGGAATAACGGGATCGAATCCGA -ACGGAATAACGGGATCGAATGGGA -ACGGAATAACGGGATCGAGTGCAA -ACGGAATAACGGGATCGAGAGGAA -ACGGAATAACGGGATCGACAGGTA -ACGGAATAACGGGATCGAGACTCT -ACGGAATAACGGGATCGAAGTCCT -ACGGAATAACGGGATCGATAAGCC -ACGGAATAACGGGATCGAATAGCC -ACGGAATAACGGGATCGATAACCG -ACGGAATAACGGGATCGAATGCCA -ACGGAATAACGGCACTACGGAAAC -ACGGAATAACGGCACTACAACACC -ACGGAATAACGGCACTACATCGAG -ACGGAATAACGGCACTACCTCCTT -ACGGAATAACGGCACTACCCTGTT -ACGGAATAACGGCACTACCGGTTT -ACGGAATAACGGCACTACGTGGTT -ACGGAATAACGGCACTACGCCTTT -ACGGAATAACGGCACTACGGTCTT -ACGGAATAACGGCACTACACGCTT -ACGGAATAACGGCACTACAGCGTT -ACGGAATAACGGCACTACTTCGTC -ACGGAATAACGGCACTACTCTCTC -ACGGAATAACGGCACTACTGGATC -ACGGAATAACGGCACTACCACTTC -ACGGAATAACGGCACTACGTACTC -ACGGAATAACGGCACTACGATGTC -ACGGAATAACGGCACTACACAGTC -ACGGAATAACGGCACTACTTGCTG -ACGGAATAACGGCACTACTCCATG -ACGGAATAACGGCACTACTGTGTG -ACGGAATAACGGCACTACCTAGTG -ACGGAATAACGGCACTACCATCTG -ACGGAATAACGGCACTACGAGTTG -ACGGAATAACGGCACTACAGACTG -ACGGAATAACGGCACTACTCGGTA -ACGGAATAACGGCACTACTGCCTA -ACGGAATAACGGCACTACCCACTA -ACGGAATAACGGCACTACGGAGTA -ACGGAATAACGGCACTACTCGTCT -ACGGAATAACGGCACTACTGCACT -ACGGAATAACGGCACTACCTGACT -ACGGAATAACGGCACTACCAACCT -ACGGAATAACGGCACTACGCTACT -ACGGAATAACGGCACTACGGATCT -ACGGAATAACGGCACTACAAGGCT -ACGGAATAACGGCACTACTCAACC -ACGGAATAACGGCACTACTGTTCC -ACGGAATAACGGCACTACATTCCC -ACGGAATAACGGCACTACTTCTCG -ACGGAATAACGGCACTACTAGACG -ACGGAATAACGGCACTACGTAACG -ACGGAATAACGGCACTACACTTCG -ACGGAATAACGGCACTACTACGCA -ACGGAATAACGGCACTACCTTGCA -ACGGAATAACGGCACTACCGAACA -ACGGAATAACGGCACTACCAGTCA -ACGGAATAACGGCACTACGATCCA -ACGGAATAACGGCACTACACGACA -ACGGAATAACGGCACTACAGCTCA -ACGGAATAACGGCACTACTCACGT -ACGGAATAACGGCACTACCGTAGT -ACGGAATAACGGCACTACGTCAGT -ACGGAATAACGGCACTACGAAGGT -ACGGAATAACGGCACTACAACCGT -ACGGAATAACGGCACTACTTGTGC -ACGGAATAACGGCACTACCTAAGC -ACGGAATAACGGCACTACACTAGC -ACGGAATAACGGCACTACAGATGC -ACGGAATAACGGCACTACTGAAGG -ACGGAATAACGGCACTACCAATGG -ACGGAATAACGGCACTACATGAGG -ACGGAATAACGGCACTACAATGGG -ACGGAATAACGGCACTACTCCTGA -ACGGAATAACGGCACTACTAGCGA -ACGGAATAACGGCACTACCACAGA -ACGGAATAACGGCACTACGCAAGA -ACGGAATAACGGCACTACGGTTGA -ACGGAATAACGGCACTACTCCGAT -ACGGAATAACGGCACTACTGGCAT -ACGGAATAACGGCACTACCGAGAT -ACGGAATAACGGCACTACTACCAC -ACGGAATAACGGCACTACCAGAAC -ACGGAATAACGGCACTACGTCTAC -ACGGAATAACGGCACTACACGTAC -ACGGAATAACGGCACTACAGTGAC -ACGGAATAACGGCACTACCTGTAG -ACGGAATAACGGCACTACCCTAAG -ACGGAATAACGGCACTACGTTCAG -ACGGAATAACGGCACTACGCATAG -ACGGAATAACGGCACTACGACAAG -ACGGAATAACGGCACTACAAGCAG -ACGGAATAACGGCACTACCGTCAA -ACGGAATAACGGCACTACGCTGAA -ACGGAATAACGGCACTACAGTACG -ACGGAATAACGGCACTACATCCGA -ACGGAATAACGGCACTACATGGGA -ACGGAATAACGGCACTACGTGCAA -ACGGAATAACGGCACTACGAGGAA -ACGGAATAACGGCACTACCAGGTA -ACGGAATAACGGCACTACGACTCT -ACGGAATAACGGCACTACAGTCCT -ACGGAATAACGGCACTACTAAGCC -ACGGAATAACGGCACTACATAGCC -ACGGAATAACGGCACTACTAACCG -ACGGAATAACGGCACTACATGCCA -ACGGAATAACGGAACCAGGGAAAC -ACGGAATAACGGAACCAGAACACC -ACGGAATAACGGAACCAGATCGAG -ACGGAATAACGGAACCAGCTCCTT -ACGGAATAACGGAACCAGCCTGTT -ACGGAATAACGGAACCAGCGGTTT -ACGGAATAACGGAACCAGGTGGTT -ACGGAATAACGGAACCAGGCCTTT -ACGGAATAACGGAACCAGGGTCTT -ACGGAATAACGGAACCAGACGCTT -ACGGAATAACGGAACCAGAGCGTT -ACGGAATAACGGAACCAGTTCGTC -ACGGAATAACGGAACCAGTCTCTC -ACGGAATAACGGAACCAGTGGATC -ACGGAATAACGGAACCAGCACTTC -ACGGAATAACGGAACCAGGTACTC -ACGGAATAACGGAACCAGGATGTC -ACGGAATAACGGAACCAGACAGTC -ACGGAATAACGGAACCAGTTGCTG -ACGGAATAACGGAACCAGTCCATG -ACGGAATAACGGAACCAGTGTGTG -ACGGAATAACGGAACCAGCTAGTG -ACGGAATAACGGAACCAGCATCTG -ACGGAATAACGGAACCAGGAGTTG -ACGGAATAACGGAACCAGAGACTG -ACGGAATAACGGAACCAGTCGGTA -ACGGAATAACGGAACCAGTGCCTA -ACGGAATAACGGAACCAGCCACTA -ACGGAATAACGGAACCAGGGAGTA -ACGGAATAACGGAACCAGTCGTCT -ACGGAATAACGGAACCAGTGCACT -ACGGAATAACGGAACCAGCTGACT -ACGGAATAACGGAACCAGCAACCT -ACGGAATAACGGAACCAGGCTACT -ACGGAATAACGGAACCAGGGATCT -ACGGAATAACGGAACCAGAAGGCT -ACGGAATAACGGAACCAGTCAACC -ACGGAATAACGGAACCAGTGTTCC -ACGGAATAACGGAACCAGATTCCC -ACGGAATAACGGAACCAGTTCTCG -ACGGAATAACGGAACCAGTAGACG -ACGGAATAACGGAACCAGGTAACG -ACGGAATAACGGAACCAGACTTCG -ACGGAATAACGGAACCAGTACGCA -ACGGAATAACGGAACCAGCTTGCA -ACGGAATAACGGAACCAGCGAACA -ACGGAATAACGGAACCAGCAGTCA -ACGGAATAACGGAACCAGGATCCA -ACGGAATAACGGAACCAGACGACA -ACGGAATAACGGAACCAGAGCTCA -ACGGAATAACGGAACCAGTCACGT -ACGGAATAACGGAACCAGCGTAGT -ACGGAATAACGGAACCAGGTCAGT -ACGGAATAACGGAACCAGGAAGGT -ACGGAATAACGGAACCAGAACCGT -ACGGAATAACGGAACCAGTTGTGC -ACGGAATAACGGAACCAGCTAAGC -ACGGAATAACGGAACCAGACTAGC -ACGGAATAACGGAACCAGAGATGC -ACGGAATAACGGAACCAGTGAAGG -ACGGAATAACGGAACCAGCAATGG -ACGGAATAACGGAACCAGATGAGG -ACGGAATAACGGAACCAGAATGGG -ACGGAATAACGGAACCAGTCCTGA -ACGGAATAACGGAACCAGTAGCGA -ACGGAATAACGGAACCAGCACAGA -ACGGAATAACGGAACCAGGCAAGA -ACGGAATAACGGAACCAGGGTTGA -ACGGAATAACGGAACCAGTCCGAT -ACGGAATAACGGAACCAGTGGCAT -ACGGAATAACGGAACCAGCGAGAT -ACGGAATAACGGAACCAGTACCAC -ACGGAATAACGGAACCAGCAGAAC -ACGGAATAACGGAACCAGGTCTAC -ACGGAATAACGGAACCAGACGTAC -ACGGAATAACGGAACCAGAGTGAC -ACGGAATAACGGAACCAGCTGTAG -ACGGAATAACGGAACCAGCCTAAG -ACGGAATAACGGAACCAGGTTCAG -ACGGAATAACGGAACCAGGCATAG -ACGGAATAACGGAACCAGGACAAG -ACGGAATAACGGAACCAGAAGCAG -ACGGAATAACGGAACCAGCGTCAA -ACGGAATAACGGAACCAGGCTGAA -ACGGAATAACGGAACCAGAGTACG -ACGGAATAACGGAACCAGATCCGA -ACGGAATAACGGAACCAGATGGGA -ACGGAATAACGGAACCAGGTGCAA -ACGGAATAACGGAACCAGGAGGAA -ACGGAATAACGGAACCAGCAGGTA -ACGGAATAACGGAACCAGGACTCT -ACGGAATAACGGAACCAGAGTCCT -ACGGAATAACGGAACCAGTAAGCC -ACGGAATAACGGAACCAGATAGCC -ACGGAATAACGGAACCAGTAACCG -ACGGAATAACGGAACCAGATGCCA -ACGGAATAACGGTACGTCGGAAAC -ACGGAATAACGGTACGTCAACACC -ACGGAATAACGGTACGTCATCGAG -ACGGAATAACGGTACGTCCTCCTT -ACGGAATAACGGTACGTCCCTGTT -ACGGAATAACGGTACGTCCGGTTT -ACGGAATAACGGTACGTCGTGGTT -ACGGAATAACGGTACGTCGCCTTT -ACGGAATAACGGTACGTCGGTCTT -ACGGAATAACGGTACGTCACGCTT -ACGGAATAACGGTACGTCAGCGTT -ACGGAATAACGGTACGTCTTCGTC -ACGGAATAACGGTACGTCTCTCTC -ACGGAATAACGGTACGTCTGGATC -ACGGAATAACGGTACGTCCACTTC -ACGGAATAACGGTACGTCGTACTC -ACGGAATAACGGTACGTCGATGTC -ACGGAATAACGGTACGTCACAGTC -ACGGAATAACGGTACGTCTTGCTG -ACGGAATAACGGTACGTCTCCATG -ACGGAATAACGGTACGTCTGTGTG -ACGGAATAACGGTACGTCCTAGTG -ACGGAATAACGGTACGTCCATCTG -ACGGAATAACGGTACGTCGAGTTG -ACGGAATAACGGTACGTCAGACTG -ACGGAATAACGGTACGTCTCGGTA -ACGGAATAACGGTACGTCTGCCTA -ACGGAATAACGGTACGTCCCACTA -ACGGAATAACGGTACGTCGGAGTA -ACGGAATAACGGTACGTCTCGTCT -ACGGAATAACGGTACGTCTGCACT -ACGGAATAACGGTACGTCCTGACT -ACGGAATAACGGTACGTCCAACCT -ACGGAATAACGGTACGTCGCTACT -ACGGAATAACGGTACGTCGGATCT -ACGGAATAACGGTACGTCAAGGCT -ACGGAATAACGGTACGTCTCAACC -ACGGAATAACGGTACGTCTGTTCC -ACGGAATAACGGTACGTCATTCCC -ACGGAATAACGGTACGTCTTCTCG -ACGGAATAACGGTACGTCTAGACG -ACGGAATAACGGTACGTCGTAACG -ACGGAATAACGGTACGTCACTTCG -ACGGAATAACGGTACGTCTACGCA -ACGGAATAACGGTACGTCCTTGCA -ACGGAATAACGGTACGTCCGAACA -ACGGAATAACGGTACGTCCAGTCA -ACGGAATAACGGTACGTCGATCCA -ACGGAATAACGGTACGTCACGACA -ACGGAATAACGGTACGTCAGCTCA -ACGGAATAACGGTACGTCTCACGT -ACGGAATAACGGTACGTCCGTAGT -ACGGAATAACGGTACGTCGTCAGT -ACGGAATAACGGTACGTCGAAGGT -ACGGAATAACGGTACGTCAACCGT -ACGGAATAACGGTACGTCTTGTGC -ACGGAATAACGGTACGTCCTAAGC -ACGGAATAACGGTACGTCACTAGC -ACGGAATAACGGTACGTCAGATGC -ACGGAATAACGGTACGTCTGAAGG -ACGGAATAACGGTACGTCCAATGG -ACGGAATAACGGTACGTCATGAGG -ACGGAATAACGGTACGTCAATGGG -ACGGAATAACGGTACGTCTCCTGA -ACGGAATAACGGTACGTCTAGCGA -ACGGAATAACGGTACGTCCACAGA -ACGGAATAACGGTACGTCGCAAGA -ACGGAATAACGGTACGTCGGTTGA -ACGGAATAACGGTACGTCTCCGAT -ACGGAATAACGGTACGTCTGGCAT -ACGGAATAACGGTACGTCCGAGAT -ACGGAATAACGGTACGTCTACCAC -ACGGAATAACGGTACGTCCAGAAC -ACGGAATAACGGTACGTCGTCTAC -ACGGAATAACGGTACGTCACGTAC -ACGGAATAACGGTACGTCAGTGAC -ACGGAATAACGGTACGTCCTGTAG -ACGGAATAACGGTACGTCCCTAAG -ACGGAATAACGGTACGTCGTTCAG -ACGGAATAACGGTACGTCGCATAG -ACGGAATAACGGTACGTCGACAAG -ACGGAATAACGGTACGTCAAGCAG -ACGGAATAACGGTACGTCCGTCAA -ACGGAATAACGGTACGTCGCTGAA -ACGGAATAACGGTACGTCAGTACG -ACGGAATAACGGTACGTCATCCGA -ACGGAATAACGGTACGTCATGGGA -ACGGAATAACGGTACGTCGTGCAA -ACGGAATAACGGTACGTCGAGGAA -ACGGAATAACGGTACGTCCAGGTA -ACGGAATAACGGTACGTCGACTCT -ACGGAATAACGGTACGTCAGTCCT -ACGGAATAACGGTACGTCTAAGCC -ACGGAATAACGGTACGTCATAGCC -ACGGAATAACGGTACGTCTAACCG -ACGGAATAACGGTACGTCATGCCA -ACGGAATAACGGTACACGGGAAAC -ACGGAATAACGGTACACGAACACC -ACGGAATAACGGTACACGATCGAG -ACGGAATAACGGTACACGCTCCTT -ACGGAATAACGGTACACGCCTGTT -ACGGAATAACGGTACACGCGGTTT -ACGGAATAACGGTACACGGTGGTT -ACGGAATAACGGTACACGGCCTTT -ACGGAATAACGGTACACGGGTCTT -ACGGAATAACGGTACACGACGCTT -ACGGAATAACGGTACACGAGCGTT -ACGGAATAACGGTACACGTTCGTC -ACGGAATAACGGTACACGTCTCTC -ACGGAATAACGGTACACGTGGATC -ACGGAATAACGGTACACGCACTTC -ACGGAATAACGGTACACGGTACTC -ACGGAATAACGGTACACGGATGTC -ACGGAATAACGGTACACGACAGTC -ACGGAATAACGGTACACGTTGCTG -ACGGAATAACGGTACACGTCCATG -ACGGAATAACGGTACACGTGTGTG -ACGGAATAACGGTACACGCTAGTG -ACGGAATAACGGTACACGCATCTG -ACGGAATAACGGTACACGGAGTTG -ACGGAATAACGGTACACGAGACTG -ACGGAATAACGGTACACGTCGGTA -ACGGAATAACGGTACACGTGCCTA -ACGGAATAACGGTACACGCCACTA -ACGGAATAACGGTACACGGGAGTA -ACGGAATAACGGTACACGTCGTCT -ACGGAATAACGGTACACGTGCACT -ACGGAATAACGGTACACGCTGACT -ACGGAATAACGGTACACGCAACCT -ACGGAATAACGGTACACGGCTACT -ACGGAATAACGGTACACGGGATCT -ACGGAATAACGGTACACGAAGGCT -ACGGAATAACGGTACACGTCAACC -ACGGAATAACGGTACACGTGTTCC -ACGGAATAACGGTACACGATTCCC -ACGGAATAACGGTACACGTTCTCG -ACGGAATAACGGTACACGTAGACG -ACGGAATAACGGTACACGGTAACG -ACGGAATAACGGTACACGACTTCG -ACGGAATAACGGTACACGTACGCA -ACGGAATAACGGTACACGCTTGCA -ACGGAATAACGGTACACGCGAACA -ACGGAATAACGGTACACGCAGTCA -ACGGAATAACGGTACACGGATCCA -ACGGAATAACGGTACACGACGACA -ACGGAATAACGGTACACGAGCTCA -ACGGAATAACGGTACACGTCACGT -ACGGAATAACGGTACACGCGTAGT -ACGGAATAACGGTACACGGTCAGT -ACGGAATAACGGTACACGGAAGGT -ACGGAATAACGGTACACGAACCGT -ACGGAATAACGGTACACGTTGTGC -ACGGAATAACGGTACACGCTAAGC -ACGGAATAACGGTACACGACTAGC -ACGGAATAACGGTACACGAGATGC -ACGGAATAACGGTACACGTGAAGG -ACGGAATAACGGTACACGCAATGG -ACGGAATAACGGTACACGATGAGG -ACGGAATAACGGTACACGAATGGG -ACGGAATAACGGTACACGTCCTGA -ACGGAATAACGGTACACGTAGCGA -ACGGAATAACGGTACACGCACAGA -ACGGAATAACGGTACACGGCAAGA -ACGGAATAACGGTACACGGGTTGA -ACGGAATAACGGTACACGTCCGAT -ACGGAATAACGGTACACGTGGCAT -ACGGAATAACGGTACACGCGAGAT -ACGGAATAACGGTACACGTACCAC -ACGGAATAACGGTACACGCAGAAC -ACGGAATAACGGTACACGGTCTAC -ACGGAATAACGGTACACGACGTAC -ACGGAATAACGGTACACGAGTGAC -ACGGAATAACGGTACACGCTGTAG -ACGGAATAACGGTACACGCCTAAG -ACGGAATAACGGTACACGGTTCAG -ACGGAATAACGGTACACGGCATAG -ACGGAATAACGGTACACGGACAAG -ACGGAATAACGGTACACGAAGCAG -ACGGAATAACGGTACACGCGTCAA -ACGGAATAACGGTACACGGCTGAA -ACGGAATAACGGTACACGAGTACG -ACGGAATAACGGTACACGATCCGA -ACGGAATAACGGTACACGATGGGA -ACGGAATAACGGTACACGGTGCAA -ACGGAATAACGGTACACGGAGGAA -ACGGAATAACGGTACACGCAGGTA -ACGGAATAACGGTACACGGACTCT -ACGGAATAACGGTACACGAGTCCT -ACGGAATAACGGTACACGTAAGCC -ACGGAATAACGGTACACGATAGCC -ACGGAATAACGGTACACGTAACCG -ACGGAATAACGGTACACGATGCCA -ACGGAATAACGGGACAGTGGAAAC -ACGGAATAACGGGACAGTAACACC -ACGGAATAACGGGACAGTATCGAG -ACGGAATAACGGGACAGTCTCCTT -ACGGAATAACGGGACAGTCCTGTT -ACGGAATAACGGGACAGTCGGTTT -ACGGAATAACGGGACAGTGTGGTT -ACGGAATAACGGGACAGTGCCTTT -ACGGAATAACGGGACAGTGGTCTT -ACGGAATAACGGGACAGTACGCTT -ACGGAATAACGGGACAGTAGCGTT -ACGGAATAACGGGACAGTTTCGTC -ACGGAATAACGGGACAGTTCTCTC -ACGGAATAACGGGACAGTTGGATC -ACGGAATAACGGGACAGTCACTTC -ACGGAATAACGGGACAGTGTACTC -ACGGAATAACGGGACAGTGATGTC -ACGGAATAACGGGACAGTACAGTC -ACGGAATAACGGGACAGTTTGCTG -ACGGAATAACGGGACAGTTCCATG -ACGGAATAACGGGACAGTTGTGTG -ACGGAATAACGGGACAGTCTAGTG -ACGGAATAACGGGACAGTCATCTG -ACGGAATAACGGGACAGTGAGTTG -ACGGAATAACGGGACAGTAGACTG -ACGGAATAACGGGACAGTTCGGTA -ACGGAATAACGGGACAGTTGCCTA -ACGGAATAACGGGACAGTCCACTA -ACGGAATAACGGGACAGTGGAGTA -ACGGAATAACGGGACAGTTCGTCT -ACGGAATAACGGGACAGTTGCACT -ACGGAATAACGGGACAGTCTGACT -ACGGAATAACGGGACAGTCAACCT -ACGGAATAACGGGACAGTGCTACT -ACGGAATAACGGGACAGTGGATCT -ACGGAATAACGGGACAGTAAGGCT -ACGGAATAACGGGACAGTTCAACC -ACGGAATAACGGGACAGTTGTTCC -ACGGAATAACGGGACAGTATTCCC -ACGGAATAACGGGACAGTTTCTCG -ACGGAATAACGGGACAGTTAGACG -ACGGAATAACGGGACAGTGTAACG -ACGGAATAACGGGACAGTACTTCG -ACGGAATAACGGGACAGTTACGCA -ACGGAATAACGGGACAGTCTTGCA -ACGGAATAACGGGACAGTCGAACA -ACGGAATAACGGGACAGTCAGTCA -ACGGAATAACGGGACAGTGATCCA -ACGGAATAACGGGACAGTACGACA -ACGGAATAACGGGACAGTAGCTCA -ACGGAATAACGGGACAGTTCACGT -ACGGAATAACGGGACAGTCGTAGT -ACGGAATAACGGGACAGTGTCAGT -ACGGAATAACGGGACAGTGAAGGT -ACGGAATAACGGGACAGTAACCGT -ACGGAATAACGGGACAGTTTGTGC -ACGGAATAACGGGACAGTCTAAGC -ACGGAATAACGGGACAGTACTAGC -ACGGAATAACGGGACAGTAGATGC -ACGGAATAACGGGACAGTTGAAGG -ACGGAATAACGGGACAGTCAATGG -ACGGAATAACGGGACAGTATGAGG -ACGGAATAACGGGACAGTAATGGG -ACGGAATAACGGGACAGTTCCTGA -ACGGAATAACGGGACAGTTAGCGA -ACGGAATAACGGGACAGTCACAGA -ACGGAATAACGGGACAGTGCAAGA -ACGGAATAACGGGACAGTGGTTGA -ACGGAATAACGGGACAGTTCCGAT -ACGGAATAACGGGACAGTTGGCAT -ACGGAATAACGGGACAGTCGAGAT -ACGGAATAACGGGACAGTTACCAC -ACGGAATAACGGGACAGTCAGAAC -ACGGAATAACGGGACAGTGTCTAC -ACGGAATAACGGGACAGTACGTAC -ACGGAATAACGGGACAGTAGTGAC -ACGGAATAACGGGACAGTCTGTAG -ACGGAATAACGGGACAGTCCTAAG -ACGGAATAACGGGACAGTGTTCAG -ACGGAATAACGGGACAGTGCATAG -ACGGAATAACGGGACAGTGACAAG -ACGGAATAACGGGACAGTAAGCAG -ACGGAATAACGGGACAGTCGTCAA -ACGGAATAACGGGACAGTGCTGAA -ACGGAATAACGGGACAGTAGTACG -ACGGAATAACGGGACAGTATCCGA -ACGGAATAACGGGACAGTATGGGA -ACGGAATAACGGGACAGTGTGCAA -ACGGAATAACGGGACAGTGAGGAA -ACGGAATAACGGGACAGTCAGGTA -ACGGAATAACGGGACAGTGACTCT -ACGGAATAACGGGACAGTAGTCCT -ACGGAATAACGGGACAGTTAAGCC -ACGGAATAACGGGACAGTATAGCC -ACGGAATAACGGGACAGTTAACCG -ACGGAATAACGGGACAGTATGCCA -ACGGAATAACGGTAGCTGGGAAAC -ACGGAATAACGGTAGCTGAACACC -ACGGAATAACGGTAGCTGATCGAG -ACGGAATAACGGTAGCTGCTCCTT -ACGGAATAACGGTAGCTGCCTGTT -ACGGAATAACGGTAGCTGCGGTTT -ACGGAATAACGGTAGCTGGTGGTT -ACGGAATAACGGTAGCTGGCCTTT -ACGGAATAACGGTAGCTGGGTCTT -ACGGAATAACGGTAGCTGACGCTT -ACGGAATAACGGTAGCTGAGCGTT -ACGGAATAACGGTAGCTGTTCGTC -ACGGAATAACGGTAGCTGTCTCTC -ACGGAATAACGGTAGCTGTGGATC -ACGGAATAACGGTAGCTGCACTTC -ACGGAATAACGGTAGCTGGTACTC -ACGGAATAACGGTAGCTGGATGTC -ACGGAATAACGGTAGCTGACAGTC -ACGGAATAACGGTAGCTGTTGCTG -ACGGAATAACGGTAGCTGTCCATG -ACGGAATAACGGTAGCTGTGTGTG -ACGGAATAACGGTAGCTGCTAGTG -ACGGAATAACGGTAGCTGCATCTG -ACGGAATAACGGTAGCTGGAGTTG -ACGGAATAACGGTAGCTGAGACTG -ACGGAATAACGGTAGCTGTCGGTA -ACGGAATAACGGTAGCTGTGCCTA -ACGGAATAACGGTAGCTGCCACTA -ACGGAATAACGGTAGCTGGGAGTA -ACGGAATAACGGTAGCTGTCGTCT -ACGGAATAACGGTAGCTGTGCACT -ACGGAATAACGGTAGCTGCTGACT -ACGGAATAACGGTAGCTGCAACCT -ACGGAATAACGGTAGCTGGCTACT -ACGGAATAACGGTAGCTGGGATCT -ACGGAATAACGGTAGCTGAAGGCT -ACGGAATAACGGTAGCTGTCAACC -ACGGAATAACGGTAGCTGTGTTCC -ACGGAATAACGGTAGCTGATTCCC -ACGGAATAACGGTAGCTGTTCTCG -ACGGAATAACGGTAGCTGTAGACG -ACGGAATAACGGTAGCTGGTAACG -ACGGAATAACGGTAGCTGACTTCG -ACGGAATAACGGTAGCTGTACGCA -ACGGAATAACGGTAGCTGCTTGCA -ACGGAATAACGGTAGCTGCGAACA -ACGGAATAACGGTAGCTGCAGTCA -ACGGAATAACGGTAGCTGGATCCA -ACGGAATAACGGTAGCTGACGACA -ACGGAATAACGGTAGCTGAGCTCA -ACGGAATAACGGTAGCTGTCACGT -ACGGAATAACGGTAGCTGCGTAGT -ACGGAATAACGGTAGCTGGTCAGT -ACGGAATAACGGTAGCTGGAAGGT -ACGGAATAACGGTAGCTGAACCGT -ACGGAATAACGGTAGCTGTTGTGC -ACGGAATAACGGTAGCTGCTAAGC -ACGGAATAACGGTAGCTGACTAGC -ACGGAATAACGGTAGCTGAGATGC -ACGGAATAACGGTAGCTGTGAAGG -ACGGAATAACGGTAGCTGCAATGG -ACGGAATAACGGTAGCTGATGAGG -ACGGAATAACGGTAGCTGAATGGG -ACGGAATAACGGTAGCTGTCCTGA -ACGGAATAACGGTAGCTGTAGCGA -ACGGAATAACGGTAGCTGCACAGA -ACGGAATAACGGTAGCTGGCAAGA -ACGGAATAACGGTAGCTGGGTTGA -ACGGAATAACGGTAGCTGTCCGAT -ACGGAATAACGGTAGCTGTGGCAT -ACGGAATAACGGTAGCTGCGAGAT -ACGGAATAACGGTAGCTGTACCAC -ACGGAATAACGGTAGCTGCAGAAC -ACGGAATAACGGTAGCTGGTCTAC -ACGGAATAACGGTAGCTGACGTAC -ACGGAATAACGGTAGCTGAGTGAC -ACGGAATAACGGTAGCTGCTGTAG -ACGGAATAACGGTAGCTGCCTAAG -ACGGAATAACGGTAGCTGGTTCAG -ACGGAATAACGGTAGCTGGCATAG -ACGGAATAACGGTAGCTGGACAAG -ACGGAATAACGGTAGCTGAAGCAG -ACGGAATAACGGTAGCTGCGTCAA -ACGGAATAACGGTAGCTGGCTGAA -ACGGAATAACGGTAGCTGAGTACG -ACGGAATAACGGTAGCTGATCCGA -ACGGAATAACGGTAGCTGATGGGA -ACGGAATAACGGTAGCTGGTGCAA -ACGGAATAACGGTAGCTGGAGGAA -ACGGAATAACGGTAGCTGCAGGTA -ACGGAATAACGGTAGCTGGACTCT -ACGGAATAACGGTAGCTGAGTCCT -ACGGAATAACGGTAGCTGTAAGCC -ACGGAATAACGGTAGCTGATAGCC -ACGGAATAACGGTAGCTGTAACCG -ACGGAATAACGGTAGCTGATGCCA -ACGGAATAACGGAAGCCTGGAAAC -ACGGAATAACGGAAGCCTAACACC -ACGGAATAACGGAAGCCTATCGAG -ACGGAATAACGGAAGCCTCTCCTT -ACGGAATAACGGAAGCCTCCTGTT -ACGGAATAACGGAAGCCTCGGTTT -ACGGAATAACGGAAGCCTGTGGTT -ACGGAATAACGGAAGCCTGCCTTT -ACGGAATAACGGAAGCCTGGTCTT -ACGGAATAACGGAAGCCTACGCTT -ACGGAATAACGGAAGCCTAGCGTT -ACGGAATAACGGAAGCCTTTCGTC -ACGGAATAACGGAAGCCTTCTCTC -ACGGAATAACGGAAGCCTTGGATC -ACGGAATAACGGAAGCCTCACTTC -ACGGAATAACGGAAGCCTGTACTC -ACGGAATAACGGAAGCCTGATGTC -ACGGAATAACGGAAGCCTACAGTC -ACGGAATAACGGAAGCCTTTGCTG -ACGGAATAACGGAAGCCTTCCATG -ACGGAATAACGGAAGCCTTGTGTG -ACGGAATAACGGAAGCCTCTAGTG -ACGGAATAACGGAAGCCTCATCTG -ACGGAATAACGGAAGCCTGAGTTG -ACGGAATAACGGAAGCCTAGACTG -ACGGAATAACGGAAGCCTTCGGTA -ACGGAATAACGGAAGCCTTGCCTA -ACGGAATAACGGAAGCCTCCACTA -ACGGAATAACGGAAGCCTGGAGTA -ACGGAATAACGGAAGCCTTCGTCT -ACGGAATAACGGAAGCCTTGCACT -ACGGAATAACGGAAGCCTCTGACT -ACGGAATAACGGAAGCCTCAACCT -ACGGAATAACGGAAGCCTGCTACT -ACGGAATAACGGAAGCCTGGATCT -ACGGAATAACGGAAGCCTAAGGCT -ACGGAATAACGGAAGCCTTCAACC -ACGGAATAACGGAAGCCTTGTTCC -ACGGAATAACGGAAGCCTATTCCC -ACGGAATAACGGAAGCCTTTCTCG -ACGGAATAACGGAAGCCTTAGACG -ACGGAATAACGGAAGCCTGTAACG -ACGGAATAACGGAAGCCTACTTCG -ACGGAATAACGGAAGCCTTACGCA -ACGGAATAACGGAAGCCTCTTGCA -ACGGAATAACGGAAGCCTCGAACA -ACGGAATAACGGAAGCCTCAGTCA -ACGGAATAACGGAAGCCTGATCCA -ACGGAATAACGGAAGCCTACGACA -ACGGAATAACGGAAGCCTAGCTCA -ACGGAATAACGGAAGCCTTCACGT -ACGGAATAACGGAAGCCTCGTAGT -ACGGAATAACGGAAGCCTGTCAGT -ACGGAATAACGGAAGCCTGAAGGT -ACGGAATAACGGAAGCCTAACCGT -ACGGAATAACGGAAGCCTTTGTGC -ACGGAATAACGGAAGCCTCTAAGC -ACGGAATAACGGAAGCCTACTAGC -ACGGAATAACGGAAGCCTAGATGC -ACGGAATAACGGAAGCCTTGAAGG -ACGGAATAACGGAAGCCTCAATGG -ACGGAATAACGGAAGCCTATGAGG -ACGGAATAACGGAAGCCTAATGGG -ACGGAATAACGGAAGCCTTCCTGA -ACGGAATAACGGAAGCCTTAGCGA -ACGGAATAACGGAAGCCTCACAGA -ACGGAATAACGGAAGCCTGCAAGA -ACGGAATAACGGAAGCCTGGTTGA -ACGGAATAACGGAAGCCTTCCGAT -ACGGAATAACGGAAGCCTTGGCAT -ACGGAATAACGGAAGCCTCGAGAT -ACGGAATAACGGAAGCCTTACCAC -ACGGAATAACGGAAGCCTCAGAAC -ACGGAATAACGGAAGCCTGTCTAC -ACGGAATAACGGAAGCCTACGTAC -ACGGAATAACGGAAGCCTAGTGAC -ACGGAATAACGGAAGCCTCTGTAG -ACGGAATAACGGAAGCCTCCTAAG -ACGGAATAACGGAAGCCTGTTCAG -ACGGAATAACGGAAGCCTGCATAG -ACGGAATAACGGAAGCCTGACAAG -ACGGAATAACGGAAGCCTAAGCAG -ACGGAATAACGGAAGCCTCGTCAA -ACGGAATAACGGAAGCCTGCTGAA -ACGGAATAACGGAAGCCTAGTACG -ACGGAATAACGGAAGCCTATCCGA -ACGGAATAACGGAAGCCTATGGGA -ACGGAATAACGGAAGCCTGTGCAA -ACGGAATAACGGAAGCCTGAGGAA -ACGGAATAACGGAAGCCTCAGGTA -ACGGAATAACGGAAGCCTGACTCT -ACGGAATAACGGAAGCCTAGTCCT -ACGGAATAACGGAAGCCTTAAGCC -ACGGAATAACGGAAGCCTATAGCC -ACGGAATAACGGAAGCCTTAACCG -ACGGAATAACGGAAGCCTATGCCA -ACGGAATAACGGCAGGTTGGAAAC -ACGGAATAACGGCAGGTTAACACC -ACGGAATAACGGCAGGTTATCGAG -ACGGAATAACGGCAGGTTCTCCTT -ACGGAATAACGGCAGGTTCCTGTT -ACGGAATAACGGCAGGTTCGGTTT -ACGGAATAACGGCAGGTTGTGGTT -ACGGAATAACGGCAGGTTGCCTTT -ACGGAATAACGGCAGGTTGGTCTT -ACGGAATAACGGCAGGTTACGCTT -ACGGAATAACGGCAGGTTAGCGTT -ACGGAATAACGGCAGGTTTTCGTC -ACGGAATAACGGCAGGTTTCTCTC -ACGGAATAACGGCAGGTTTGGATC -ACGGAATAACGGCAGGTTCACTTC -ACGGAATAACGGCAGGTTGTACTC -ACGGAATAACGGCAGGTTGATGTC -ACGGAATAACGGCAGGTTACAGTC -ACGGAATAACGGCAGGTTTTGCTG -ACGGAATAACGGCAGGTTTCCATG -ACGGAATAACGGCAGGTTTGTGTG -ACGGAATAACGGCAGGTTCTAGTG -ACGGAATAACGGCAGGTTCATCTG -ACGGAATAACGGCAGGTTGAGTTG -ACGGAATAACGGCAGGTTAGACTG -ACGGAATAACGGCAGGTTTCGGTA -ACGGAATAACGGCAGGTTTGCCTA -ACGGAATAACGGCAGGTTCCACTA -ACGGAATAACGGCAGGTTGGAGTA -ACGGAATAACGGCAGGTTTCGTCT -ACGGAATAACGGCAGGTTTGCACT -ACGGAATAACGGCAGGTTCTGACT -ACGGAATAACGGCAGGTTCAACCT -ACGGAATAACGGCAGGTTGCTACT -ACGGAATAACGGCAGGTTGGATCT -ACGGAATAACGGCAGGTTAAGGCT -ACGGAATAACGGCAGGTTTCAACC -ACGGAATAACGGCAGGTTTGTTCC -ACGGAATAACGGCAGGTTATTCCC -ACGGAATAACGGCAGGTTTTCTCG -ACGGAATAACGGCAGGTTTAGACG -ACGGAATAACGGCAGGTTGTAACG -ACGGAATAACGGCAGGTTACTTCG -ACGGAATAACGGCAGGTTTACGCA -ACGGAATAACGGCAGGTTCTTGCA -ACGGAATAACGGCAGGTTCGAACA -ACGGAATAACGGCAGGTTCAGTCA -ACGGAATAACGGCAGGTTGATCCA -ACGGAATAACGGCAGGTTACGACA -ACGGAATAACGGCAGGTTAGCTCA -ACGGAATAACGGCAGGTTTCACGT -ACGGAATAACGGCAGGTTCGTAGT -ACGGAATAACGGCAGGTTGTCAGT -ACGGAATAACGGCAGGTTGAAGGT -ACGGAATAACGGCAGGTTAACCGT -ACGGAATAACGGCAGGTTTTGTGC -ACGGAATAACGGCAGGTTCTAAGC -ACGGAATAACGGCAGGTTACTAGC -ACGGAATAACGGCAGGTTAGATGC -ACGGAATAACGGCAGGTTTGAAGG -ACGGAATAACGGCAGGTTCAATGG -ACGGAATAACGGCAGGTTATGAGG -ACGGAATAACGGCAGGTTAATGGG -ACGGAATAACGGCAGGTTTCCTGA -ACGGAATAACGGCAGGTTTAGCGA -ACGGAATAACGGCAGGTTCACAGA -ACGGAATAACGGCAGGTTGCAAGA -ACGGAATAACGGCAGGTTGGTTGA -ACGGAATAACGGCAGGTTTCCGAT -ACGGAATAACGGCAGGTTTGGCAT -ACGGAATAACGGCAGGTTCGAGAT -ACGGAATAACGGCAGGTTTACCAC -ACGGAATAACGGCAGGTTCAGAAC -ACGGAATAACGGCAGGTTGTCTAC -ACGGAATAACGGCAGGTTACGTAC -ACGGAATAACGGCAGGTTAGTGAC -ACGGAATAACGGCAGGTTCTGTAG -ACGGAATAACGGCAGGTTCCTAAG -ACGGAATAACGGCAGGTTGTTCAG -ACGGAATAACGGCAGGTTGCATAG -ACGGAATAACGGCAGGTTGACAAG -ACGGAATAACGGCAGGTTAAGCAG -ACGGAATAACGGCAGGTTCGTCAA -ACGGAATAACGGCAGGTTGCTGAA -ACGGAATAACGGCAGGTTAGTACG -ACGGAATAACGGCAGGTTATCCGA -ACGGAATAACGGCAGGTTATGGGA -ACGGAATAACGGCAGGTTGTGCAA -ACGGAATAACGGCAGGTTGAGGAA -ACGGAATAACGGCAGGTTCAGGTA -ACGGAATAACGGCAGGTTGACTCT -ACGGAATAACGGCAGGTTAGTCCT -ACGGAATAACGGCAGGTTTAAGCC -ACGGAATAACGGCAGGTTATAGCC -ACGGAATAACGGCAGGTTTAACCG -ACGGAATAACGGCAGGTTATGCCA -ACGGAATAACGGTAGGCAGGAAAC -ACGGAATAACGGTAGGCAAACACC -ACGGAATAACGGTAGGCAATCGAG -ACGGAATAACGGTAGGCACTCCTT -ACGGAATAACGGTAGGCACCTGTT -ACGGAATAACGGTAGGCACGGTTT -ACGGAATAACGGTAGGCAGTGGTT -ACGGAATAACGGTAGGCAGCCTTT -ACGGAATAACGGTAGGCAGGTCTT -ACGGAATAACGGTAGGCAACGCTT -ACGGAATAACGGTAGGCAAGCGTT -ACGGAATAACGGTAGGCATTCGTC -ACGGAATAACGGTAGGCATCTCTC -ACGGAATAACGGTAGGCATGGATC -ACGGAATAACGGTAGGCACACTTC -ACGGAATAACGGTAGGCAGTACTC -ACGGAATAACGGTAGGCAGATGTC -ACGGAATAACGGTAGGCAACAGTC -ACGGAATAACGGTAGGCATTGCTG -ACGGAATAACGGTAGGCATCCATG -ACGGAATAACGGTAGGCATGTGTG -ACGGAATAACGGTAGGCACTAGTG -ACGGAATAACGGTAGGCACATCTG -ACGGAATAACGGTAGGCAGAGTTG -ACGGAATAACGGTAGGCAAGACTG -ACGGAATAACGGTAGGCATCGGTA -ACGGAATAACGGTAGGCATGCCTA -ACGGAATAACGGTAGGCACCACTA -ACGGAATAACGGTAGGCAGGAGTA -ACGGAATAACGGTAGGCATCGTCT -ACGGAATAACGGTAGGCATGCACT -ACGGAATAACGGTAGGCACTGACT -ACGGAATAACGGTAGGCACAACCT -ACGGAATAACGGTAGGCAGCTACT -ACGGAATAACGGTAGGCAGGATCT -ACGGAATAACGGTAGGCAAAGGCT -ACGGAATAACGGTAGGCATCAACC -ACGGAATAACGGTAGGCATGTTCC -ACGGAATAACGGTAGGCAATTCCC -ACGGAATAACGGTAGGCATTCTCG -ACGGAATAACGGTAGGCATAGACG -ACGGAATAACGGTAGGCAGTAACG -ACGGAATAACGGTAGGCAACTTCG -ACGGAATAACGGTAGGCATACGCA -ACGGAATAACGGTAGGCACTTGCA -ACGGAATAACGGTAGGCACGAACA -ACGGAATAACGGTAGGCACAGTCA -ACGGAATAACGGTAGGCAGATCCA -ACGGAATAACGGTAGGCAACGACA -ACGGAATAACGGTAGGCAAGCTCA -ACGGAATAACGGTAGGCATCACGT -ACGGAATAACGGTAGGCACGTAGT -ACGGAATAACGGTAGGCAGTCAGT -ACGGAATAACGGTAGGCAGAAGGT -ACGGAATAACGGTAGGCAAACCGT -ACGGAATAACGGTAGGCATTGTGC -ACGGAATAACGGTAGGCACTAAGC -ACGGAATAACGGTAGGCAACTAGC -ACGGAATAACGGTAGGCAAGATGC -ACGGAATAACGGTAGGCATGAAGG -ACGGAATAACGGTAGGCACAATGG -ACGGAATAACGGTAGGCAATGAGG -ACGGAATAACGGTAGGCAAATGGG -ACGGAATAACGGTAGGCATCCTGA -ACGGAATAACGGTAGGCATAGCGA -ACGGAATAACGGTAGGCACACAGA -ACGGAATAACGGTAGGCAGCAAGA -ACGGAATAACGGTAGGCAGGTTGA -ACGGAATAACGGTAGGCATCCGAT -ACGGAATAACGGTAGGCATGGCAT -ACGGAATAACGGTAGGCACGAGAT -ACGGAATAACGGTAGGCATACCAC -ACGGAATAACGGTAGGCACAGAAC -ACGGAATAACGGTAGGCAGTCTAC -ACGGAATAACGGTAGGCAACGTAC -ACGGAATAACGGTAGGCAAGTGAC -ACGGAATAACGGTAGGCACTGTAG -ACGGAATAACGGTAGGCACCTAAG -ACGGAATAACGGTAGGCAGTTCAG -ACGGAATAACGGTAGGCAGCATAG -ACGGAATAACGGTAGGCAGACAAG -ACGGAATAACGGTAGGCAAAGCAG -ACGGAATAACGGTAGGCACGTCAA -ACGGAATAACGGTAGGCAGCTGAA -ACGGAATAACGGTAGGCAAGTACG -ACGGAATAACGGTAGGCAATCCGA -ACGGAATAACGGTAGGCAATGGGA -ACGGAATAACGGTAGGCAGTGCAA -ACGGAATAACGGTAGGCAGAGGAA -ACGGAATAACGGTAGGCACAGGTA -ACGGAATAACGGTAGGCAGACTCT -ACGGAATAACGGTAGGCAAGTCCT -ACGGAATAACGGTAGGCATAAGCC -ACGGAATAACGGTAGGCAATAGCC -ACGGAATAACGGTAGGCATAACCG -ACGGAATAACGGTAGGCAATGCCA -ACGGAATAACGGAAGGACGGAAAC -ACGGAATAACGGAAGGACAACACC -ACGGAATAACGGAAGGACATCGAG -ACGGAATAACGGAAGGACCTCCTT -ACGGAATAACGGAAGGACCCTGTT -ACGGAATAACGGAAGGACCGGTTT -ACGGAATAACGGAAGGACGTGGTT -ACGGAATAACGGAAGGACGCCTTT -ACGGAATAACGGAAGGACGGTCTT -ACGGAATAACGGAAGGACACGCTT -ACGGAATAACGGAAGGACAGCGTT -ACGGAATAACGGAAGGACTTCGTC -ACGGAATAACGGAAGGACTCTCTC -ACGGAATAACGGAAGGACTGGATC -ACGGAATAACGGAAGGACCACTTC -ACGGAATAACGGAAGGACGTACTC -ACGGAATAACGGAAGGACGATGTC -ACGGAATAACGGAAGGACACAGTC -ACGGAATAACGGAAGGACTTGCTG -ACGGAATAACGGAAGGACTCCATG -ACGGAATAACGGAAGGACTGTGTG -ACGGAATAACGGAAGGACCTAGTG -ACGGAATAACGGAAGGACCATCTG -ACGGAATAACGGAAGGACGAGTTG -ACGGAATAACGGAAGGACAGACTG -ACGGAATAACGGAAGGACTCGGTA -ACGGAATAACGGAAGGACTGCCTA -ACGGAATAACGGAAGGACCCACTA -ACGGAATAACGGAAGGACGGAGTA -ACGGAATAACGGAAGGACTCGTCT -ACGGAATAACGGAAGGACTGCACT -ACGGAATAACGGAAGGACCTGACT -ACGGAATAACGGAAGGACCAACCT -ACGGAATAACGGAAGGACGCTACT -ACGGAATAACGGAAGGACGGATCT -ACGGAATAACGGAAGGACAAGGCT -ACGGAATAACGGAAGGACTCAACC -ACGGAATAACGGAAGGACTGTTCC -ACGGAATAACGGAAGGACATTCCC -ACGGAATAACGGAAGGACTTCTCG -ACGGAATAACGGAAGGACTAGACG -ACGGAATAACGGAAGGACGTAACG -ACGGAATAACGGAAGGACACTTCG -ACGGAATAACGGAAGGACTACGCA -ACGGAATAACGGAAGGACCTTGCA -ACGGAATAACGGAAGGACCGAACA -ACGGAATAACGGAAGGACCAGTCA -ACGGAATAACGGAAGGACGATCCA -ACGGAATAACGGAAGGACACGACA -ACGGAATAACGGAAGGACAGCTCA -ACGGAATAACGGAAGGACTCACGT -ACGGAATAACGGAAGGACCGTAGT -ACGGAATAACGGAAGGACGTCAGT -ACGGAATAACGGAAGGACGAAGGT -ACGGAATAACGGAAGGACAACCGT -ACGGAATAACGGAAGGACTTGTGC -ACGGAATAACGGAAGGACCTAAGC -ACGGAATAACGGAAGGACACTAGC -ACGGAATAACGGAAGGACAGATGC -ACGGAATAACGGAAGGACTGAAGG -ACGGAATAACGGAAGGACCAATGG -ACGGAATAACGGAAGGACATGAGG -ACGGAATAACGGAAGGACAATGGG -ACGGAATAACGGAAGGACTCCTGA -ACGGAATAACGGAAGGACTAGCGA -ACGGAATAACGGAAGGACCACAGA -ACGGAATAACGGAAGGACGCAAGA -ACGGAATAACGGAAGGACGGTTGA -ACGGAATAACGGAAGGACTCCGAT -ACGGAATAACGGAAGGACTGGCAT -ACGGAATAACGGAAGGACCGAGAT -ACGGAATAACGGAAGGACTACCAC -ACGGAATAACGGAAGGACCAGAAC -ACGGAATAACGGAAGGACGTCTAC -ACGGAATAACGGAAGGACACGTAC -ACGGAATAACGGAAGGACAGTGAC -ACGGAATAACGGAAGGACCTGTAG -ACGGAATAACGGAAGGACCCTAAG -ACGGAATAACGGAAGGACGTTCAG -ACGGAATAACGGAAGGACGCATAG -ACGGAATAACGGAAGGACGACAAG -ACGGAATAACGGAAGGACAAGCAG -ACGGAATAACGGAAGGACCGTCAA -ACGGAATAACGGAAGGACGCTGAA -ACGGAATAACGGAAGGACAGTACG -ACGGAATAACGGAAGGACATCCGA -ACGGAATAACGGAAGGACATGGGA -ACGGAATAACGGAAGGACGTGCAA -ACGGAATAACGGAAGGACGAGGAA -ACGGAATAACGGAAGGACCAGGTA -ACGGAATAACGGAAGGACGACTCT -ACGGAATAACGGAAGGACAGTCCT -ACGGAATAACGGAAGGACTAAGCC -ACGGAATAACGGAAGGACATAGCC -ACGGAATAACGGAAGGACTAACCG -ACGGAATAACGGAAGGACATGCCA -ACGGAATAACGGCAGAAGGGAAAC -ACGGAATAACGGCAGAAGAACACC -ACGGAATAACGGCAGAAGATCGAG -ACGGAATAACGGCAGAAGCTCCTT -ACGGAATAACGGCAGAAGCCTGTT -ACGGAATAACGGCAGAAGCGGTTT -ACGGAATAACGGCAGAAGGTGGTT -ACGGAATAACGGCAGAAGGCCTTT -ACGGAATAACGGCAGAAGGGTCTT -ACGGAATAACGGCAGAAGACGCTT -ACGGAATAACGGCAGAAGAGCGTT -ACGGAATAACGGCAGAAGTTCGTC -ACGGAATAACGGCAGAAGTCTCTC -ACGGAATAACGGCAGAAGTGGATC -ACGGAATAACGGCAGAAGCACTTC -ACGGAATAACGGCAGAAGGTACTC -ACGGAATAACGGCAGAAGGATGTC -ACGGAATAACGGCAGAAGACAGTC -ACGGAATAACGGCAGAAGTTGCTG -ACGGAATAACGGCAGAAGTCCATG -ACGGAATAACGGCAGAAGTGTGTG -ACGGAATAACGGCAGAAGCTAGTG -ACGGAATAACGGCAGAAGCATCTG -ACGGAATAACGGCAGAAGGAGTTG -ACGGAATAACGGCAGAAGAGACTG -ACGGAATAACGGCAGAAGTCGGTA -ACGGAATAACGGCAGAAGTGCCTA -ACGGAATAACGGCAGAAGCCACTA -ACGGAATAACGGCAGAAGGGAGTA -ACGGAATAACGGCAGAAGTCGTCT -ACGGAATAACGGCAGAAGTGCACT -ACGGAATAACGGCAGAAGCTGACT -ACGGAATAACGGCAGAAGCAACCT -ACGGAATAACGGCAGAAGGCTACT -ACGGAATAACGGCAGAAGGGATCT -ACGGAATAACGGCAGAAGAAGGCT -ACGGAATAACGGCAGAAGTCAACC -ACGGAATAACGGCAGAAGTGTTCC -ACGGAATAACGGCAGAAGATTCCC -ACGGAATAACGGCAGAAGTTCTCG -ACGGAATAACGGCAGAAGTAGACG -ACGGAATAACGGCAGAAGGTAACG -ACGGAATAACGGCAGAAGACTTCG -ACGGAATAACGGCAGAAGTACGCA -ACGGAATAACGGCAGAAGCTTGCA -ACGGAATAACGGCAGAAGCGAACA -ACGGAATAACGGCAGAAGCAGTCA -ACGGAATAACGGCAGAAGGATCCA -ACGGAATAACGGCAGAAGACGACA -ACGGAATAACGGCAGAAGAGCTCA -ACGGAATAACGGCAGAAGTCACGT -ACGGAATAACGGCAGAAGCGTAGT -ACGGAATAACGGCAGAAGGTCAGT -ACGGAATAACGGCAGAAGGAAGGT -ACGGAATAACGGCAGAAGAACCGT -ACGGAATAACGGCAGAAGTTGTGC -ACGGAATAACGGCAGAAGCTAAGC -ACGGAATAACGGCAGAAGACTAGC -ACGGAATAACGGCAGAAGAGATGC -ACGGAATAACGGCAGAAGTGAAGG -ACGGAATAACGGCAGAAGCAATGG -ACGGAATAACGGCAGAAGATGAGG -ACGGAATAACGGCAGAAGAATGGG -ACGGAATAACGGCAGAAGTCCTGA -ACGGAATAACGGCAGAAGTAGCGA -ACGGAATAACGGCAGAAGCACAGA -ACGGAATAACGGCAGAAGGCAAGA -ACGGAATAACGGCAGAAGGGTTGA -ACGGAATAACGGCAGAAGTCCGAT -ACGGAATAACGGCAGAAGTGGCAT -ACGGAATAACGGCAGAAGCGAGAT -ACGGAATAACGGCAGAAGTACCAC -ACGGAATAACGGCAGAAGCAGAAC -ACGGAATAACGGCAGAAGGTCTAC -ACGGAATAACGGCAGAAGACGTAC -ACGGAATAACGGCAGAAGAGTGAC -ACGGAATAACGGCAGAAGCTGTAG -ACGGAATAACGGCAGAAGCCTAAG -ACGGAATAACGGCAGAAGGTTCAG -ACGGAATAACGGCAGAAGGCATAG -ACGGAATAACGGCAGAAGGACAAG -ACGGAATAACGGCAGAAGAAGCAG -ACGGAATAACGGCAGAAGCGTCAA -ACGGAATAACGGCAGAAGGCTGAA -ACGGAATAACGGCAGAAGAGTACG -ACGGAATAACGGCAGAAGATCCGA -ACGGAATAACGGCAGAAGATGGGA -ACGGAATAACGGCAGAAGGTGCAA -ACGGAATAACGGCAGAAGGAGGAA -ACGGAATAACGGCAGAAGCAGGTA -ACGGAATAACGGCAGAAGGACTCT -ACGGAATAACGGCAGAAGAGTCCT -ACGGAATAACGGCAGAAGTAAGCC -ACGGAATAACGGCAGAAGATAGCC -ACGGAATAACGGCAGAAGTAACCG -ACGGAATAACGGCAGAAGATGCCA -ACGGAATAACGGCAACGTGGAAAC -ACGGAATAACGGCAACGTAACACC -ACGGAATAACGGCAACGTATCGAG -ACGGAATAACGGCAACGTCTCCTT -ACGGAATAACGGCAACGTCCTGTT -ACGGAATAACGGCAACGTCGGTTT -ACGGAATAACGGCAACGTGTGGTT -ACGGAATAACGGCAACGTGCCTTT -ACGGAATAACGGCAACGTGGTCTT -ACGGAATAACGGCAACGTACGCTT -ACGGAATAACGGCAACGTAGCGTT -ACGGAATAACGGCAACGTTTCGTC -ACGGAATAACGGCAACGTTCTCTC -ACGGAATAACGGCAACGTTGGATC -ACGGAATAACGGCAACGTCACTTC -ACGGAATAACGGCAACGTGTACTC -ACGGAATAACGGCAACGTGATGTC -ACGGAATAACGGCAACGTACAGTC -ACGGAATAACGGCAACGTTTGCTG -ACGGAATAACGGCAACGTTCCATG -ACGGAATAACGGCAACGTTGTGTG -ACGGAATAACGGCAACGTCTAGTG -ACGGAATAACGGCAACGTCATCTG -ACGGAATAACGGCAACGTGAGTTG -ACGGAATAACGGCAACGTAGACTG -ACGGAATAACGGCAACGTTCGGTA -ACGGAATAACGGCAACGTTGCCTA -ACGGAATAACGGCAACGTCCACTA -ACGGAATAACGGCAACGTGGAGTA -ACGGAATAACGGCAACGTTCGTCT -ACGGAATAACGGCAACGTTGCACT -ACGGAATAACGGCAACGTCTGACT -ACGGAATAACGGCAACGTCAACCT -ACGGAATAACGGCAACGTGCTACT -ACGGAATAACGGCAACGTGGATCT -ACGGAATAACGGCAACGTAAGGCT -ACGGAATAACGGCAACGTTCAACC -ACGGAATAACGGCAACGTTGTTCC -ACGGAATAACGGCAACGTATTCCC -ACGGAATAACGGCAACGTTTCTCG -ACGGAATAACGGCAACGTTAGACG -ACGGAATAACGGCAACGTGTAACG -ACGGAATAACGGCAACGTACTTCG -ACGGAATAACGGCAACGTTACGCA -ACGGAATAACGGCAACGTCTTGCA -ACGGAATAACGGCAACGTCGAACA -ACGGAATAACGGCAACGTCAGTCA -ACGGAATAACGGCAACGTGATCCA -ACGGAATAACGGCAACGTACGACA -ACGGAATAACGGCAACGTAGCTCA -ACGGAATAACGGCAACGTTCACGT -ACGGAATAACGGCAACGTCGTAGT -ACGGAATAACGGCAACGTGTCAGT -ACGGAATAACGGCAACGTGAAGGT -ACGGAATAACGGCAACGTAACCGT -ACGGAATAACGGCAACGTTTGTGC -ACGGAATAACGGCAACGTCTAAGC -ACGGAATAACGGCAACGTACTAGC -ACGGAATAACGGCAACGTAGATGC -ACGGAATAACGGCAACGTTGAAGG -ACGGAATAACGGCAACGTCAATGG -ACGGAATAACGGCAACGTATGAGG -ACGGAATAACGGCAACGTAATGGG -ACGGAATAACGGCAACGTTCCTGA -ACGGAATAACGGCAACGTTAGCGA -ACGGAATAACGGCAACGTCACAGA -ACGGAATAACGGCAACGTGCAAGA -ACGGAATAACGGCAACGTGGTTGA -ACGGAATAACGGCAACGTTCCGAT -ACGGAATAACGGCAACGTTGGCAT -ACGGAATAACGGCAACGTCGAGAT -ACGGAATAACGGCAACGTTACCAC -ACGGAATAACGGCAACGTCAGAAC -ACGGAATAACGGCAACGTGTCTAC -ACGGAATAACGGCAACGTACGTAC -ACGGAATAACGGCAACGTAGTGAC -ACGGAATAACGGCAACGTCTGTAG -ACGGAATAACGGCAACGTCCTAAG -ACGGAATAACGGCAACGTGTTCAG -ACGGAATAACGGCAACGTGCATAG -ACGGAATAACGGCAACGTGACAAG -ACGGAATAACGGCAACGTAAGCAG -ACGGAATAACGGCAACGTCGTCAA -ACGGAATAACGGCAACGTGCTGAA -ACGGAATAACGGCAACGTAGTACG -ACGGAATAACGGCAACGTATCCGA -ACGGAATAACGGCAACGTATGGGA -ACGGAATAACGGCAACGTGTGCAA -ACGGAATAACGGCAACGTGAGGAA -ACGGAATAACGGCAACGTCAGGTA -ACGGAATAACGGCAACGTGACTCT -ACGGAATAACGGCAACGTAGTCCT -ACGGAATAACGGCAACGTTAAGCC -ACGGAATAACGGCAACGTATAGCC -ACGGAATAACGGCAACGTTAACCG -ACGGAATAACGGCAACGTATGCCA -ACGGAATAACGGGAAGCTGGAAAC -ACGGAATAACGGGAAGCTAACACC -ACGGAATAACGGGAAGCTATCGAG -ACGGAATAACGGGAAGCTCTCCTT -ACGGAATAACGGGAAGCTCCTGTT -ACGGAATAACGGGAAGCTCGGTTT -ACGGAATAACGGGAAGCTGTGGTT -ACGGAATAACGGGAAGCTGCCTTT -ACGGAATAACGGGAAGCTGGTCTT -ACGGAATAACGGGAAGCTACGCTT -ACGGAATAACGGGAAGCTAGCGTT -ACGGAATAACGGGAAGCTTTCGTC -ACGGAATAACGGGAAGCTTCTCTC -ACGGAATAACGGGAAGCTTGGATC -ACGGAATAACGGGAAGCTCACTTC -ACGGAATAACGGGAAGCTGTACTC -ACGGAATAACGGGAAGCTGATGTC -ACGGAATAACGGGAAGCTACAGTC -ACGGAATAACGGGAAGCTTTGCTG -ACGGAATAACGGGAAGCTTCCATG -ACGGAATAACGGGAAGCTTGTGTG -ACGGAATAACGGGAAGCTCTAGTG -ACGGAATAACGGGAAGCTCATCTG -ACGGAATAACGGGAAGCTGAGTTG -ACGGAATAACGGGAAGCTAGACTG -ACGGAATAACGGGAAGCTTCGGTA -ACGGAATAACGGGAAGCTTGCCTA -ACGGAATAACGGGAAGCTCCACTA -ACGGAATAACGGGAAGCTGGAGTA -ACGGAATAACGGGAAGCTTCGTCT -ACGGAATAACGGGAAGCTTGCACT -ACGGAATAACGGGAAGCTCTGACT -ACGGAATAACGGGAAGCTCAACCT -ACGGAATAACGGGAAGCTGCTACT -ACGGAATAACGGGAAGCTGGATCT -ACGGAATAACGGGAAGCTAAGGCT -ACGGAATAACGGGAAGCTTCAACC -ACGGAATAACGGGAAGCTTGTTCC -ACGGAATAACGGGAAGCTATTCCC -ACGGAATAACGGGAAGCTTTCTCG -ACGGAATAACGGGAAGCTTAGACG -ACGGAATAACGGGAAGCTGTAACG -ACGGAATAACGGGAAGCTACTTCG -ACGGAATAACGGGAAGCTTACGCA -ACGGAATAACGGGAAGCTCTTGCA -ACGGAATAACGGGAAGCTCGAACA -ACGGAATAACGGGAAGCTCAGTCA -ACGGAATAACGGGAAGCTGATCCA -ACGGAATAACGGGAAGCTACGACA -ACGGAATAACGGGAAGCTAGCTCA -ACGGAATAACGGGAAGCTTCACGT -ACGGAATAACGGGAAGCTCGTAGT -ACGGAATAACGGGAAGCTGTCAGT -ACGGAATAACGGGAAGCTGAAGGT -ACGGAATAACGGGAAGCTAACCGT -ACGGAATAACGGGAAGCTTTGTGC -ACGGAATAACGGGAAGCTCTAAGC -ACGGAATAACGGGAAGCTACTAGC -ACGGAATAACGGGAAGCTAGATGC -ACGGAATAACGGGAAGCTTGAAGG -ACGGAATAACGGGAAGCTCAATGG -ACGGAATAACGGGAAGCTATGAGG -ACGGAATAACGGGAAGCTAATGGG -ACGGAATAACGGGAAGCTTCCTGA -ACGGAATAACGGGAAGCTTAGCGA -ACGGAATAACGGGAAGCTCACAGA -ACGGAATAACGGGAAGCTGCAAGA -ACGGAATAACGGGAAGCTGGTTGA -ACGGAATAACGGGAAGCTTCCGAT -ACGGAATAACGGGAAGCTTGGCAT -ACGGAATAACGGGAAGCTCGAGAT -ACGGAATAACGGGAAGCTTACCAC -ACGGAATAACGGGAAGCTCAGAAC -ACGGAATAACGGGAAGCTGTCTAC -ACGGAATAACGGGAAGCTACGTAC -ACGGAATAACGGGAAGCTAGTGAC -ACGGAATAACGGGAAGCTCTGTAG -ACGGAATAACGGGAAGCTCCTAAG -ACGGAATAACGGGAAGCTGTTCAG -ACGGAATAACGGGAAGCTGCATAG -ACGGAATAACGGGAAGCTGACAAG -ACGGAATAACGGGAAGCTAAGCAG -ACGGAATAACGGGAAGCTCGTCAA -ACGGAATAACGGGAAGCTGCTGAA -ACGGAATAACGGGAAGCTAGTACG -ACGGAATAACGGGAAGCTATCCGA -ACGGAATAACGGGAAGCTATGGGA -ACGGAATAACGGGAAGCTGTGCAA -ACGGAATAACGGGAAGCTGAGGAA -ACGGAATAACGGGAAGCTCAGGTA -ACGGAATAACGGGAAGCTGACTCT -ACGGAATAACGGGAAGCTAGTCCT -ACGGAATAACGGGAAGCTTAAGCC -ACGGAATAACGGGAAGCTATAGCC -ACGGAATAACGGGAAGCTTAACCG -ACGGAATAACGGGAAGCTATGCCA -ACGGAATAACGGACGAGTGGAAAC -ACGGAATAACGGACGAGTAACACC -ACGGAATAACGGACGAGTATCGAG -ACGGAATAACGGACGAGTCTCCTT -ACGGAATAACGGACGAGTCCTGTT -ACGGAATAACGGACGAGTCGGTTT -ACGGAATAACGGACGAGTGTGGTT -ACGGAATAACGGACGAGTGCCTTT -ACGGAATAACGGACGAGTGGTCTT -ACGGAATAACGGACGAGTACGCTT -ACGGAATAACGGACGAGTAGCGTT -ACGGAATAACGGACGAGTTTCGTC -ACGGAATAACGGACGAGTTCTCTC -ACGGAATAACGGACGAGTTGGATC -ACGGAATAACGGACGAGTCACTTC -ACGGAATAACGGACGAGTGTACTC -ACGGAATAACGGACGAGTGATGTC -ACGGAATAACGGACGAGTACAGTC -ACGGAATAACGGACGAGTTTGCTG -ACGGAATAACGGACGAGTTCCATG -ACGGAATAACGGACGAGTTGTGTG -ACGGAATAACGGACGAGTCTAGTG -ACGGAATAACGGACGAGTCATCTG -ACGGAATAACGGACGAGTGAGTTG -ACGGAATAACGGACGAGTAGACTG -ACGGAATAACGGACGAGTTCGGTA -ACGGAATAACGGACGAGTTGCCTA -ACGGAATAACGGACGAGTCCACTA -ACGGAATAACGGACGAGTGGAGTA -ACGGAATAACGGACGAGTTCGTCT -ACGGAATAACGGACGAGTTGCACT -ACGGAATAACGGACGAGTCTGACT -ACGGAATAACGGACGAGTCAACCT -ACGGAATAACGGACGAGTGCTACT -ACGGAATAACGGACGAGTGGATCT -ACGGAATAACGGACGAGTAAGGCT -ACGGAATAACGGACGAGTTCAACC -ACGGAATAACGGACGAGTTGTTCC -ACGGAATAACGGACGAGTATTCCC -ACGGAATAACGGACGAGTTTCTCG -ACGGAATAACGGACGAGTTAGACG -ACGGAATAACGGACGAGTGTAACG -ACGGAATAACGGACGAGTACTTCG -ACGGAATAACGGACGAGTTACGCA -ACGGAATAACGGACGAGTCTTGCA -ACGGAATAACGGACGAGTCGAACA -ACGGAATAACGGACGAGTCAGTCA -ACGGAATAACGGACGAGTGATCCA -ACGGAATAACGGACGAGTACGACA -ACGGAATAACGGACGAGTAGCTCA -ACGGAATAACGGACGAGTTCACGT -ACGGAATAACGGACGAGTCGTAGT -ACGGAATAACGGACGAGTGTCAGT -ACGGAATAACGGACGAGTGAAGGT -ACGGAATAACGGACGAGTAACCGT -ACGGAATAACGGACGAGTTTGTGC -ACGGAATAACGGACGAGTCTAAGC -ACGGAATAACGGACGAGTACTAGC -ACGGAATAACGGACGAGTAGATGC -ACGGAATAACGGACGAGTTGAAGG -ACGGAATAACGGACGAGTCAATGG -ACGGAATAACGGACGAGTATGAGG -ACGGAATAACGGACGAGTAATGGG -ACGGAATAACGGACGAGTTCCTGA -ACGGAATAACGGACGAGTTAGCGA -ACGGAATAACGGACGAGTCACAGA -ACGGAATAACGGACGAGTGCAAGA -ACGGAATAACGGACGAGTGGTTGA -ACGGAATAACGGACGAGTTCCGAT -ACGGAATAACGGACGAGTTGGCAT -ACGGAATAACGGACGAGTCGAGAT -ACGGAATAACGGACGAGTTACCAC -ACGGAATAACGGACGAGTCAGAAC -ACGGAATAACGGACGAGTGTCTAC -ACGGAATAACGGACGAGTACGTAC -ACGGAATAACGGACGAGTAGTGAC -ACGGAATAACGGACGAGTCTGTAG -ACGGAATAACGGACGAGTCCTAAG -ACGGAATAACGGACGAGTGTTCAG -ACGGAATAACGGACGAGTGCATAG -ACGGAATAACGGACGAGTGACAAG -ACGGAATAACGGACGAGTAAGCAG -ACGGAATAACGGACGAGTCGTCAA -ACGGAATAACGGACGAGTGCTGAA -ACGGAATAACGGACGAGTAGTACG -ACGGAATAACGGACGAGTATCCGA -ACGGAATAACGGACGAGTATGGGA -ACGGAATAACGGACGAGTGTGCAA -ACGGAATAACGGACGAGTGAGGAA -ACGGAATAACGGACGAGTCAGGTA -ACGGAATAACGGACGAGTGACTCT -ACGGAATAACGGACGAGTAGTCCT -ACGGAATAACGGACGAGTTAAGCC -ACGGAATAACGGACGAGTATAGCC -ACGGAATAACGGACGAGTTAACCG -ACGGAATAACGGACGAGTATGCCA -ACGGAATAACGGCGAATCGGAAAC -ACGGAATAACGGCGAATCAACACC -ACGGAATAACGGCGAATCATCGAG -ACGGAATAACGGCGAATCCTCCTT -ACGGAATAACGGCGAATCCCTGTT -ACGGAATAACGGCGAATCCGGTTT -ACGGAATAACGGCGAATCGTGGTT -ACGGAATAACGGCGAATCGCCTTT -ACGGAATAACGGCGAATCGGTCTT -ACGGAATAACGGCGAATCACGCTT -ACGGAATAACGGCGAATCAGCGTT -ACGGAATAACGGCGAATCTTCGTC -ACGGAATAACGGCGAATCTCTCTC -ACGGAATAACGGCGAATCTGGATC -ACGGAATAACGGCGAATCCACTTC -ACGGAATAACGGCGAATCGTACTC -ACGGAATAACGGCGAATCGATGTC -ACGGAATAACGGCGAATCACAGTC -ACGGAATAACGGCGAATCTTGCTG -ACGGAATAACGGCGAATCTCCATG -ACGGAATAACGGCGAATCTGTGTG -ACGGAATAACGGCGAATCCTAGTG -ACGGAATAACGGCGAATCCATCTG -ACGGAATAACGGCGAATCGAGTTG -ACGGAATAACGGCGAATCAGACTG -ACGGAATAACGGCGAATCTCGGTA -ACGGAATAACGGCGAATCTGCCTA -ACGGAATAACGGCGAATCCCACTA -ACGGAATAACGGCGAATCGGAGTA -ACGGAATAACGGCGAATCTCGTCT -ACGGAATAACGGCGAATCTGCACT -ACGGAATAACGGCGAATCCTGACT -ACGGAATAACGGCGAATCCAACCT -ACGGAATAACGGCGAATCGCTACT -ACGGAATAACGGCGAATCGGATCT -ACGGAATAACGGCGAATCAAGGCT -ACGGAATAACGGCGAATCTCAACC -ACGGAATAACGGCGAATCTGTTCC -ACGGAATAACGGCGAATCATTCCC -ACGGAATAACGGCGAATCTTCTCG -ACGGAATAACGGCGAATCTAGACG -ACGGAATAACGGCGAATCGTAACG -ACGGAATAACGGCGAATCACTTCG -ACGGAATAACGGCGAATCTACGCA -ACGGAATAACGGCGAATCCTTGCA -ACGGAATAACGGCGAATCCGAACA -ACGGAATAACGGCGAATCCAGTCA -ACGGAATAACGGCGAATCGATCCA -ACGGAATAACGGCGAATCACGACA -ACGGAATAACGGCGAATCAGCTCA -ACGGAATAACGGCGAATCTCACGT -ACGGAATAACGGCGAATCCGTAGT -ACGGAATAACGGCGAATCGTCAGT -ACGGAATAACGGCGAATCGAAGGT -ACGGAATAACGGCGAATCAACCGT -ACGGAATAACGGCGAATCTTGTGC -ACGGAATAACGGCGAATCCTAAGC -ACGGAATAACGGCGAATCACTAGC -ACGGAATAACGGCGAATCAGATGC -ACGGAATAACGGCGAATCTGAAGG -ACGGAATAACGGCGAATCCAATGG -ACGGAATAACGGCGAATCATGAGG -ACGGAATAACGGCGAATCAATGGG -ACGGAATAACGGCGAATCTCCTGA -ACGGAATAACGGCGAATCTAGCGA -ACGGAATAACGGCGAATCCACAGA -ACGGAATAACGGCGAATCGCAAGA -ACGGAATAACGGCGAATCGGTTGA -ACGGAATAACGGCGAATCTCCGAT -ACGGAATAACGGCGAATCTGGCAT -ACGGAATAACGGCGAATCCGAGAT -ACGGAATAACGGCGAATCTACCAC -ACGGAATAACGGCGAATCCAGAAC -ACGGAATAACGGCGAATCGTCTAC -ACGGAATAACGGCGAATCACGTAC -ACGGAATAACGGCGAATCAGTGAC -ACGGAATAACGGCGAATCCTGTAG -ACGGAATAACGGCGAATCCCTAAG -ACGGAATAACGGCGAATCGTTCAG -ACGGAATAACGGCGAATCGCATAG -ACGGAATAACGGCGAATCGACAAG -ACGGAATAACGGCGAATCAAGCAG -ACGGAATAACGGCGAATCCGTCAA -ACGGAATAACGGCGAATCGCTGAA -ACGGAATAACGGCGAATCAGTACG -ACGGAATAACGGCGAATCATCCGA -ACGGAATAACGGCGAATCATGGGA -ACGGAATAACGGCGAATCGTGCAA -ACGGAATAACGGCGAATCGAGGAA -ACGGAATAACGGCGAATCCAGGTA -ACGGAATAACGGCGAATCGACTCT -ACGGAATAACGGCGAATCAGTCCT -ACGGAATAACGGCGAATCTAAGCC -ACGGAATAACGGCGAATCATAGCC -ACGGAATAACGGCGAATCTAACCG -ACGGAATAACGGCGAATCATGCCA -ACGGAATAACGGGGAATGGGAAAC -ACGGAATAACGGGGAATGAACACC -ACGGAATAACGGGGAATGATCGAG -ACGGAATAACGGGGAATGCTCCTT -ACGGAATAACGGGGAATGCCTGTT -ACGGAATAACGGGGAATGCGGTTT -ACGGAATAACGGGGAATGGTGGTT -ACGGAATAACGGGGAATGGCCTTT -ACGGAATAACGGGGAATGGGTCTT -ACGGAATAACGGGGAATGACGCTT -ACGGAATAACGGGGAATGAGCGTT -ACGGAATAACGGGGAATGTTCGTC -ACGGAATAACGGGGAATGTCTCTC -ACGGAATAACGGGGAATGTGGATC -ACGGAATAACGGGGAATGCACTTC -ACGGAATAACGGGGAATGGTACTC -ACGGAATAACGGGGAATGGATGTC -ACGGAATAACGGGGAATGACAGTC -ACGGAATAACGGGGAATGTTGCTG -ACGGAATAACGGGGAATGTCCATG -ACGGAATAACGGGGAATGTGTGTG -ACGGAATAACGGGGAATGCTAGTG -ACGGAATAACGGGGAATGCATCTG -ACGGAATAACGGGGAATGGAGTTG -ACGGAATAACGGGGAATGAGACTG -ACGGAATAACGGGGAATGTCGGTA -ACGGAATAACGGGGAATGTGCCTA -ACGGAATAACGGGGAATGCCACTA -ACGGAATAACGGGGAATGGGAGTA -ACGGAATAACGGGGAATGTCGTCT -ACGGAATAACGGGGAATGTGCACT -ACGGAATAACGGGGAATGCTGACT -ACGGAATAACGGGGAATGCAACCT -ACGGAATAACGGGGAATGGCTACT -ACGGAATAACGGGGAATGGGATCT -ACGGAATAACGGGGAATGAAGGCT -ACGGAATAACGGGGAATGTCAACC -ACGGAATAACGGGGAATGTGTTCC -ACGGAATAACGGGGAATGATTCCC -ACGGAATAACGGGGAATGTTCTCG -ACGGAATAACGGGGAATGTAGACG -ACGGAATAACGGGGAATGGTAACG -ACGGAATAACGGGGAATGACTTCG -ACGGAATAACGGGGAATGTACGCA -ACGGAATAACGGGGAATGCTTGCA -ACGGAATAACGGGGAATGCGAACA -ACGGAATAACGGGGAATGCAGTCA -ACGGAATAACGGGGAATGGATCCA -ACGGAATAACGGGGAATGACGACA -ACGGAATAACGGGGAATGAGCTCA -ACGGAATAACGGGGAATGTCACGT -ACGGAATAACGGGGAATGCGTAGT -ACGGAATAACGGGGAATGGTCAGT -ACGGAATAACGGGGAATGGAAGGT -ACGGAATAACGGGGAATGAACCGT -ACGGAATAACGGGGAATGTTGTGC -ACGGAATAACGGGGAATGCTAAGC -ACGGAATAACGGGGAATGACTAGC -ACGGAATAACGGGGAATGAGATGC -ACGGAATAACGGGGAATGTGAAGG -ACGGAATAACGGGGAATGCAATGG -ACGGAATAACGGGGAATGATGAGG -ACGGAATAACGGGGAATGAATGGG -ACGGAATAACGGGGAATGTCCTGA -ACGGAATAACGGGGAATGTAGCGA -ACGGAATAACGGGGAATGCACAGA -ACGGAATAACGGGGAATGGCAAGA -ACGGAATAACGGGGAATGGGTTGA -ACGGAATAACGGGGAATGTCCGAT -ACGGAATAACGGGGAATGTGGCAT -ACGGAATAACGGGGAATGCGAGAT -ACGGAATAACGGGGAATGTACCAC -ACGGAATAACGGGGAATGCAGAAC -ACGGAATAACGGGGAATGGTCTAC -ACGGAATAACGGGGAATGACGTAC -ACGGAATAACGGGGAATGAGTGAC -ACGGAATAACGGGGAATGCTGTAG -ACGGAATAACGGGGAATGCCTAAG -ACGGAATAACGGGGAATGGTTCAG -ACGGAATAACGGGGAATGGCATAG -ACGGAATAACGGGGAATGGACAAG -ACGGAATAACGGGGAATGAAGCAG -ACGGAATAACGGGGAATGCGTCAA -ACGGAATAACGGGGAATGGCTGAA -ACGGAATAACGGGGAATGAGTACG -ACGGAATAACGGGGAATGATCCGA -ACGGAATAACGGGGAATGATGGGA -ACGGAATAACGGGGAATGGTGCAA -ACGGAATAACGGGGAATGGAGGAA -ACGGAATAACGGGGAATGCAGGTA -ACGGAATAACGGGGAATGGACTCT -ACGGAATAACGGGGAATGAGTCCT -ACGGAATAACGGGGAATGTAAGCC -ACGGAATAACGGGGAATGATAGCC -ACGGAATAACGGGGAATGTAACCG -ACGGAATAACGGGGAATGATGCCA -ACGGAATAACGGCAAGTGGGAAAC -ACGGAATAACGGCAAGTGAACACC -ACGGAATAACGGCAAGTGATCGAG -ACGGAATAACGGCAAGTGCTCCTT -ACGGAATAACGGCAAGTGCCTGTT -ACGGAATAACGGCAAGTGCGGTTT -ACGGAATAACGGCAAGTGGTGGTT -ACGGAATAACGGCAAGTGGCCTTT -ACGGAATAACGGCAAGTGGGTCTT -ACGGAATAACGGCAAGTGACGCTT -ACGGAATAACGGCAAGTGAGCGTT -ACGGAATAACGGCAAGTGTTCGTC -ACGGAATAACGGCAAGTGTCTCTC -ACGGAATAACGGCAAGTGTGGATC -ACGGAATAACGGCAAGTGCACTTC -ACGGAATAACGGCAAGTGGTACTC -ACGGAATAACGGCAAGTGGATGTC -ACGGAATAACGGCAAGTGACAGTC -ACGGAATAACGGCAAGTGTTGCTG -ACGGAATAACGGCAAGTGTCCATG -ACGGAATAACGGCAAGTGTGTGTG -ACGGAATAACGGCAAGTGCTAGTG -ACGGAATAACGGCAAGTGCATCTG -ACGGAATAACGGCAAGTGGAGTTG -ACGGAATAACGGCAAGTGAGACTG -ACGGAATAACGGCAAGTGTCGGTA -ACGGAATAACGGCAAGTGTGCCTA -ACGGAATAACGGCAAGTGCCACTA -ACGGAATAACGGCAAGTGGGAGTA -ACGGAATAACGGCAAGTGTCGTCT -ACGGAATAACGGCAAGTGTGCACT -ACGGAATAACGGCAAGTGCTGACT -ACGGAATAACGGCAAGTGCAACCT -ACGGAATAACGGCAAGTGGCTACT -ACGGAATAACGGCAAGTGGGATCT -ACGGAATAACGGCAAGTGAAGGCT -ACGGAATAACGGCAAGTGTCAACC -ACGGAATAACGGCAAGTGTGTTCC -ACGGAATAACGGCAAGTGATTCCC -ACGGAATAACGGCAAGTGTTCTCG -ACGGAATAACGGCAAGTGTAGACG -ACGGAATAACGGCAAGTGGTAACG -ACGGAATAACGGCAAGTGACTTCG -ACGGAATAACGGCAAGTGTACGCA -ACGGAATAACGGCAAGTGCTTGCA -ACGGAATAACGGCAAGTGCGAACA -ACGGAATAACGGCAAGTGCAGTCA -ACGGAATAACGGCAAGTGGATCCA -ACGGAATAACGGCAAGTGACGACA -ACGGAATAACGGCAAGTGAGCTCA -ACGGAATAACGGCAAGTGTCACGT -ACGGAATAACGGCAAGTGCGTAGT -ACGGAATAACGGCAAGTGGTCAGT -ACGGAATAACGGCAAGTGGAAGGT -ACGGAATAACGGCAAGTGAACCGT -ACGGAATAACGGCAAGTGTTGTGC -ACGGAATAACGGCAAGTGCTAAGC -ACGGAATAACGGCAAGTGACTAGC -ACGGAATAACGGCAAGTGAGATGC -ACGGAATAACGGCAAGTGTGAAGG -ACGGAATAACGGCAAGTGCAATGG -ACGGAATAACGGCAAGTGATGAGG -ACGGAATAACGGCAAGTGAATGGG -ACGGAATAACGGCAAGTGTCCTGA -ACGGAATAACGGCAAGTGTAGCGA -ACGGAATAACGGCAAGTGCACAGA -ACGGAATAACGGCAAGTGGCAAGA -ACGGAATAACGGCAAGTGGGTTGA -ACGGAATAACGGCAAGTGTCCGAT -ACGGAATAACGGCAAGTGTGGCAT -ACGGAATAACGGCAAGTGCGAGAT -ACGGAATAACGGCAAGTGTACCAC -ACGGAATAACGGCAAGTGCAGAAC -ACGGAATAACGGCAAGTGGTCTAC -ACGGAATAACGGCAAGTGACGTAC -ACGGAATAACGGCAAGTGAGTGAC -ACGGAATAACGGCAAGTGCTGTAG -ACGGAATAACGGCAAGTGCCTAAG -ACGGAATAACGGCAAGTGGTTCAG -ACGGAATAACGGCAAGTGGCATAG -ACGGAATAACGGCAAGTGGACAAG -ACGGAATAACGGCAAGTGAAGCAG -ACGGAATAACGGCAAGTGCGTCAA -ACGGAATAACGGCAAGTGGCTGAA -ACGGAATAACGGCAAGTGAGTACG -ACGGAATAACGGCAAGTGATCCGA -ACGGAATAACGGCAAGTGATGGGA -ACGGAATAACGGCAAGTGGTGCAA -ACGGAATAACGGCAAGTGGAGGAA -ACGGAATAACGGCAAGTGCAGGTA -ACGGAATAACGGCAAGTGGACTCT -ACGGAATAACGGCAAGTGAGTCCT -ACGGAATAACGGCAAGTGTAAGCC -ACGGAATAACGGCAAGTGATAGCC -ACGGAATAACGGCAAGTGTAACCG -ACGGAATAACGGCAAGTGATGCCA -ACGGAATAACGGGAAGAGGGAAAC -ACGGAATAACGGGAAGAGAACACC -ACGGAATAACGGGAAGAGATCGAG -ACGGAATAACGGGAAGAGCTCCTT -ACGGAATAACGGGAAGAGCCTGTT -ACGGAATAACGGGAAGAGCGGTTT -ACGGAATAACGGGAAGAGGTGGTT -ACGGAATAACGGGAAGAGGCCTTT -ACGGAATAACGGGAAGAGGGTCTT -ACGGAATAACGGGAAGAGACGCTT -ACGGAATAACGGGAAGAGAGCGTT -ACGGAATAACGGGAAGAGTTCGTC -ACGGAATAACGGGAAGAGTCTCTC -ACGGAATAACGGGAAGAGTGGATC -ACGGAATAACGGGAAGAGCACTTC -ACGGAATAACGGGAAGAGGTACTC -ACGGAATAACGGGAAGAGGATGTC -ACGGAATAACGGGAAGAGACAGTC -ACGGAATAACGGGAAGAGTTGCTG -ACGGAATAACGGGAAGAGTCCATG -ACGGAATAACGGGAAGAGTGTGTG -ACGGAATAACGGGAAGAGCTAGTG -ACGGAATAACGGGAAGAGCATCTG -ACGGAATAACGGGAAGAGGAGTTG -ACGGAATAACGGGAAGAGAGACTG -ACGGAATAACGGGAAGAGTCGGTA -ACGGAATAACGGGAAGAGTGCCTA -ACGGAATAACGGGAAGAGCCACTA -ACGGAATAACGGGAAGAGGGAGTA -ACGGAATAACGGGAAGAGTCGTCT -ACGGAATAACGGGAAGAGTGCACT -ACGGAATAACGGGAAGAGCTGACT -ACGGAATAACGGGAAGAGCAACCT -ACGGAATAACGGGAAGAGGCTACT -ACGGAATAACGGGAAGAGGGATCT -ACGGAATAACGGGAAGAGAAGGCT -ACGGAATAACGGGAAGAGTCAACC -ACGGAATAACGGGAAGAGTGTTCC -ACGGAATAACGGGAAGAGATTCCC -ACGGAATAACGGGAAGAGTTCTCG -ACGGAATAACGGGAAGAGTAGACG -ACGGAATAACGGGAAGAGGTAACG -ACGGAATAACGGGAAGAGACTTCG -ACGGAATAACGGGAAGAGTACGCA -ACGGAATAACGGGAAGAGCTTGCA -ACGGAATAACGGGAAGAGCGAACA -ACGGAATAACGGGAAGAGCAGTCA -ACGGAATAACGGGAAGAGGATCCA -ACGGAATAACGGGAAGAGACGACA -ACGGAATAACGGGAAGAGAGCTCA -ACGGAATAACGGGAAGAGTCACGT -ACGGAATAACGGGAAGAGCGTAGT -ACGGAATAACGGGAAGAGGTCAGT -ACGGAATAACGGGAAGAGGAAGGT -ACGGAATAACGGGAAGAGAACCGT -ACGGAATAACGGGAAGAGTTGTGC -ACGGAATAACGGGAAGAGCTAAGC -ACGGAATAACGGGAAGAGACTAGC -ACGGAATAACGGGAAGAGAGATGC -ACGGAATAACGGGAAGAGTGAAGG -ACGGAATAACGGGAAGAGCAATGG -ACGGAATAACGGGAAGAGATGAGG -ACGGAATAACGGGAAGAGAATGGG -ACGGAATAACGGGAAGAGTCCTGA -ACGGAATAACGGGAAGAGTAGCGA -ACGGAATAACGGGAAGAGCACAGA -ACGGAATAACGGGAAGAGGCAAGA -ACGGAATAACGGGAAGAGGGTTGA -ACGGAATAACGGGAAGAGTCCGAT -ACGGAATAACGGGAAGAGTGGCAT -ACGGAATAACGGGAAGAGCGAGAT -ACGGAATAACGGGAAGAGTACCAC -ACGGAATAACGGGAAGAGCAGAAC -ACGGAATAACGGGAAGAGGTCTAC -ACGGAATAACGGGAAGAGACGTAC -ACGGAATAACGGGAAGAGAGTGAC -ACGGAATAACGGGAAGAGCTGTAG -ACGGAATAACGGGAAGAGCCTAAG -ACGGAATAACGGGAAGAGGTTCAG -ACGGAATAACGGGAAGAGGCATAG -ACGGAATAACGGGAAGAGGACAAG -ACGGAATAACGGGAAGAGAAGCAG -ACGGAATAACGGGAAGAGCGTCAA -ACGGAATAACGGGAAGAGGCTGAA -ACGGAATAACGGGAAGAGAGTACG -ACGGAATAACGGGAAGAGATCCGA -ACGGAATAACGGGAAGAGATGGGA -ACGGAATAACGGGAAGAGGTGCAA -ACGGAATAACGGGAAGAGGAGGAA -ACGGAATAACGGGAAGAGCAGGTA -ACGGAATAACGGGAAGAGGACTCT -ACGGAATAACGGGAAGAGAGTCCT -ACGGAATAACGGGAAGAGTAAGCC -ACGGAATAACGGGAAGAGATAGCC -ACGGAATAACGGGAAGAGTAACCG -ACGGAATAACGGGAAGAGATGCCA -ACGGAATAACGGGTACAGGGAAAC -ACGGAATAACGGGTACAGAACACC -ACGGAATAACGGGTACAGATCGAG -ACGGAATAACGGGTACAGCTCCTT -ACGGAATAACGGGTACAGCCTGTT -ACGGAATAACGGGTACAGCGGTTT -ACGGAATAACGGGTACAGGTGGTT -ACGGAATAACGGGTACAGGCCTTT -ACGGAATAACGGGTACAGGGTCTT -ACGGAATAACGGGTACAGACGCTT -ACGGAATAACGGGTACAGAGCGTT -ACGGAATAACGGGTACAGTTCGTC -ACGGAATAACGGGTACAGTCTCTC -ACGGAATAACGGGTACAGTGGATC -ACGGAATAACGGGTACAGCACTTC -ACGGAATAACGGGTACAGGTACTC -ACGGAATAACGGGTACAGGATGTC -ACGGAATAACGGGTACAGACAGTC -ACGGAATAACGGGTACAGTTGCTG -ACGGAATAACGGGTACAGTCCATG -ACGGAATAACGGGTACAGTGTGTG -ACGGAATAACGGGTACAGCTAGTG -ACGGAATAACGGGTACAGCATCTG -ACGGAATAACGGGTACAGGAGTTG -ACGGAATAACGGGTACAGAGACTG -ACGGAATAACGGGTACAGTCGGTA -ACGGAATAACGGGTACAGTGCCTA -ACGGAATAACGGGTACAGCCACTA -ACGGAATAACGGGTACAGGGAGTA -ACGGAATAACGGGTACAGTCGTCT -ACGGAATAACGGGTACAGTGCACT -ACGGAATAACGGGTACAGCTGACT -ACGGAATAACGGGTACAGCAACCT -ACGGAATAACGGGTACAGGCTACT -ACGGAATAACGGGTACAGGGATCT -ACGGAATAACGGGTACAGAAGGCT -ACGGAATAACGGGTACAGTCAACC -ACGGAATAACGGGTACAGTGTTCC -ACGGAATAACGGGTACAGATTCCC -ACGGAATAACGGGTACAGTTCTCG -ACGGAATAACGGGTACAGTAGACG -ACGGAATAACGGGTACAGGTAACG -ACGGAATAACGGGTACAGACTTCG -ACGGAATAACGGGTACAGTACGCA -ACGGAATAACGGGTACAGCTTGCA -ACGGAATAACGGGTACAGCGAACA -ACGGAATAACGGGTACAGCAGTCA -ACGGAATAACGGGTACAGGATCCA -ACGGAATAACGGGTACAGACGACA -ACGGAATAACGGGTACAGAGCTCA -ACGGAATAACGGGTACAGTCACGT -ACGGAATAACGGGTACAGCGTAGT -ACGGAATAACGGGTACAGGTCAGT -ACGGAATAACGGGTACAGGAAGGT -ACGGAATAACGGGTACAGAACCGT -ACGGAATAACGGGTACAGTTGTGC -ACGGAATAACGGGTACAGCTAAGC -ACGGAATAACGGGTACAGACTAGC -ACGGAATAACGGGTACAGAGATGC -ACGGAATAACGGGTACAGTGAAGG -ACGGAATAACGGGTACAGCAATGG -ACGGAATAACGGGTACAGATGAGG -ACGGAATAACGGGTACAGAATGGG -ACGGAATAACGGGTACAGTCCTGA -ACGGAATAACGGGTACAGTAGCGA -ACGGAATAACGGGTACAGCACAGA -ACGGAATAACGGGTACAGGCAAGA -ACGGAATAACGGGTACAGGGTTGA -ACGGAATAACGGGTACAGTCCGAT -ACGGAATAACGGGTACAGTGGCAT -ACGGAATAACGGGTACAGCGAGAT -ACGGAATAACGGGTACAGTACCAC -ACGGAATAACGGGTACAGCAGAAC -ACGGAATAACGGGTACAGGTCTAC -ACGGAATAACGGGTACAGACGTAC -ACGGAATAACGGGTACAGAGTGAC -ACGGAATAACGGGTACAGCTGTAG -ACGGAATAACGGGTACAGCCTAAG -ACGGAATAACGGGTACAGGTTCAG -ACGGAATAACGGGTACAGGCATAG -ACGGAATAACGGGTACAGGACAAG -ACGGAATAACGGGTACAGAAGCAG -ACGGAATAACGGGTACAGCGTCAA -ACGGAATAACGGGTACAGGCTGAA -ACGGAATAACGGGTACAGAGTACG -ACGGAATAACGGGTACAGATCCGA -ACGGAATAACGGGTACAGATGGGA -ACGGAATAACGGGTACAGGTGCAA -ACGGAATAACGGGTACAGGAGGAA -ACGGAATAACGGGTACAGCAGGTA -ACGGAATAACGGGTACAGGACTCT -ACGGAATAACGGGTACAGAGTCCT -ACGGAATAACGGGTACAGTAAGCC -ACGGAATAACGGGTACAGATAGCC -ACGGAATAACGGGTACAGTAACCG -ACGGAATAACGGGTACAGATGCCA -ACGGAATAACGGTCTGACGGAAAC -ACGGAATAACGGTCTGACAACACC -ACGGAATAACGGTCTGACATCGAG -ACGGAATAACGGTCTGACCTCCTT -ACGGAATAACGGTCTGACCCTGTT -ACGGAATAACGGTCTGACCGGTTT -ACGGAATAACGGTCTGACGTGGTT -ACGGAATAACGGTCTGACGCCTTT -ACGGAATAACGGTCTGACGGTCTT -ACGGAATAACGGTCTGACACGCTT -ACGGAATAACGGTCTGACAGCGTT -ACGGAATAACGGTCTGACTTCGTC -ACGGAATAACGGTCTGACTCTCTC -ACGGAATAACGGTCTGACTGGATC -ACGGAATAACGGTCTGACCACTTC -ACGGAATAACGGTCTGACGTACTC -ACGGAATAACGGTCTGACGATGTC -ACGGAATAACGGTCTGACACAGTC -ACGGAATAACGGTCTGACTTGCTG -ACGGAATAACGGTCTGACTCCATG -ACGGAATAACGGTCTGACTGTGTG -ACGGAATAACGGTCTGACCTAGTG -ACGGAATAACGGTCTGACCATCTG -ACGGAATAACGGTCTGACGAGTTG -ACGGAATAACGGTCTGACAGACTG -ACGGAATAACGGTCTGACTCGGTA -ACGGAATAACGGTCTGACTGCCTA -ACGGAATAACGGTCTGACCCACTA -ACGGAATAACGGTCTGACGGAGTA -ACGGAATAACGGTCTGACTCGTCT -ACGGAATAACGGTCTGACTGCACT -ACGGAATAACGGTCTGACCTGACT -ACGGAATAACGGTCTGACCAACCT -ACGGAATAACGGTCTGACGCTACT -ACGGAATAACGGTCTGACGGATCT -ACGGAATAACGGTCTGACAAGGCT -ACGGAATAACGGTCTGACTCAACC -ACGGAATAACGGTCTGACTGTTCC -ACGGAATAACGGTCTGACATTCCC -ACGGAATAACGGTCTGACTTCTCG -ACGGAATAACGGTCTGACTAGACG -ACGGAATAACGGTCTGACGTAACG -ACGGAATAACGGTCTGACACTTCG -ACGGAATAACGGTCTGACTACGCA -ACGGAATAACGGTCTGACCTTGCA -ACGGAATAACGGTCTGACCGAACA -ACGGAATAACGGTCTGACCAGTCA -ACGGAATAACGGTCTGACGATCCA -ACGGAATAACGGTCTGACACGACA -ACGGAATAACGGTCTGACAGCTCA -ACGGAATAACGGTCTGACTCACGT -ACGGAATAACGGTCTGACCGTAGT -ACGGAATAACGGTCTGACGTCAGT -ACGGAATAACGGTCTGACGAAGGT -ACGGAATAACGGTCTGACAACCGT -ACGGAATAACGGTCTGACTTGTGC -ACGGAATAACGGTCTGACCTAAGC -ACGGAATAACGGTCTGACACTAGC -ACGGAATAACGGTCTGACAGATGC -ACGGAATAACGGTCTGACTGAAGG -ACGGAATAACGGTCTGACCAATGG -ACGGAATAACGGTCTGACATGAGG -ACGGAATAACGGTCTGACAATGGG -ACGGAATAACGGTCTGACTCCTGA -ACGGAATAACGGTCTGACTAGCGA -ACGGAATAACGGTCTGACCACAGA -ACGGAATAACGGTCTGACGCAAGA -ACGGAATAACGGTCTGACGGTTGA -ACGGAATAACGGTCTGACTCCGAT -ACGGAATAACGGTCTGACTGGCAT -ACGGAATAACGGTCTGACCGAGAT -ACGGAATAACGGTCTGACTACCAC -ACGGAATAACGGTCTGACCAGAAC -ACGGAATAACGGTCTGACGTCTAC -ACGGAATAACGGTCTGACACGTAC -ACGGAATAACGGTCTGACAGTGAC -ACGGAATAACGGTCTGACCTGTAG -ACGGAATAACGGTCTGACCCTAAG -ACGGAATAACGGTCTGACGTTCAG -ACGGAATAACGGTCTGACGCATAG -ACGGAATAACGGTCTGACGACAAG -ACGGAATAACGGTCTGACAAGCAG -ACGGAATAACGGTCTGACCGTCAA -ACGGAATAACGGTCTGACGCTGAA -ACGGAATAACGGTCTGACAGTACG -ACGGAATAACGGTCTGACATCCGA -ACGGAATAACGGTCTGACATGGGA -ACGGAATAACGGTCTGACGTGCAA -ACGGAATAACGGTCTGACGAGGAA -ACGGAATAACGGTCTGACCAGGTA -ACGGAATAACGGTCTGACGACTCT -ACGGAATAACGGTCTGACAGTCCT -ACGGAATAACGGTCTGACTAAGCC -ACGGAATAACGGTCTGACATAGCC -ACGGAATAACGGTCTGACTAACCG -ACGGAATAACGGTCTGACATGCCA -ACGGAATAACGGCCTAGTGGAAAC -ACGGAATAACGGCCTAGTAACACC -ACGGAATAACGGCCTAGTATCGAG -ACGGAATAACGGCCTAGTCTCCTT -ACGGAATAACGGCCTAGTCCTGTT -ACGGAATAACGGCCTAGTCGGTTT -ACGGAATAACGGCCTAGTGTGGTT -ACGGAATAACGGCCTAGTGCCTTT -ACGGAATAACGGCCTAGTGGTCTT -ACGGAATAACGGCCTAGTACGCTT -ACGGAATAACGGCCTAGTAGCGTT -ACGGAATAACGGCCTAGTTTCGTC -ACGGAATAACGGCCTAGTTCTCTC -ACGGAATAACGGCCTAGTTGGATC -ACGGAATAACGGCCTAGTCACTTC -ACGGAATAACGGCCTAGTGTACTC -ACGGAATAACGGCCTAGTGATGTC -ACGGAATAACGGCCTAGTACAGTC -ACGGAATAACGGCCTAGTTTGCTG -ACGGAATAACGGCCTAGTTCCATG -ACGGAATAACGGCCTAGTTGTGTG -ACGGAATAACGGCCTAGTCTAGTG -ACGGAATAACGGCCTAGTCATCTG -ACGGAATAACGGCCTAGTGAGTTG -ACGGAATAACGGCCTAGTAGACTG -ACGGAATAACGGCCTAGTTCGGTA -ACGGAATAACGGCCTAGTTGCCTA -ACGGAATAACGGCCTAGTCCACTA -ACGGAATAACGGCCTAGTGGAGTA -ACGGAATAACGGCCTAGTTCGTCT -ACGGAATAACGGCCTAGTTGCACT -ACGGAATAACGGCCTAGTCTGACT -ACGGAATAACGGCCTAGTCAACCT -ACGGAATAACGGCCTAGTGCTACT -ACGGAATAACGGCCTAGTGGATCT -ACGGAATAACGGCCTAGTAAGGCT -ACGGAATAACGGCCTAGTTCAACC -ACGGAATAACGGCCTAGTTGTTCC -ACGGAATAACGGCCTAGTATTCCC -ACGGAATAACGGCCTAGTTTCTCG -ACGGAATAACGGCCTAGTTAGACG -ACGGAATAACGGCCTAGTGTAACG -ACGGAATAACGGCCTAGTACTTCG -ACGGAATAACGGCCTAGTTACGCA -ACGGAATAACGGCCTAGTCTTGCA -ACGGAATAACGGCCTAGTCGAACA -ACGGAATAACGGCCTAGTCAGTCA -ACGGAATAACGGCCTAGTGATCCA -ACGGAATAACGGCCTAGTACGACA -ACGGAATAACGGCCTAGTAGCTCA -ACGGAATAACGGCCTAGTTCACGT -ACGGAATAACGGCCTAGTCGTAGT -ACGGAATAACGGCCTAGTGTCAGT -ACGGAATAACGGCCTAGTGAAGGT -ACGGAATAACGGCCTAGTAACCGT -ACGGAATAACGGCCTAGTTTGTGC -ACGGAATAACGGCCTAGTCTAAGC -ACGGAATAACGGCCTAGTACTAGC -ACGGAATAACGGCCTAGTAGATGC -ACGGAATAACGGCCTAGTTGAAGG -ACGGAATAACGGCCTAGTCAATGG -ACGGAATAACGGCCTAGTATGAGG -ACGGAATAACGGCCTAGTAATGGG -ACGGAATAACGGCCTAGTTCCTGA -ACGGAATAACGGCCTAGTTAGCGA -ACGGAATAACGGCCTAGTCACAGA -ACGGAATAACGGCCTAGTGCAAGA -ACGGAATAACGGCCTAGTGGTTGA -ACGGAATAACGGCCTAGTTCCGAT -ACGGAATAACGGCCTAGTTGGCAT -ACGGAATAACGGCCTAGTCGAGAT -ACGGAATAACGGCCTAGTTACCAC -ACGGAATAACGGCCTAGTCAGAAC -ACGGAATAACGGCCTAGTGTCTAC -ACGGAATAACGGCCTAGTACGTAC -ACGGAATAACGGCCTAGTAGTGAC -ACGGAATAACGGCCTAGTCTGTAG -ACGGAATAACGGCCTAGTCCTAAG -ACGGAATAACGGCCTAGTGTTCAG -ACGGAATAACGGCCTAGTGCATAG -ACGGAATAACGGCCTAGTGACAAG -ACGGAATAACGGCCTAGTAAGCAG -ACGGAATAACGGCCTAGTCGTCAA -ACGGAATAACGGCCTAGTGCTGAA -ACGGAATAACGGCCTAGTAGTACG -ACGGAATAACGGCCTAGTATCCGA -ACGGAATAACGGCCTAGTATGGGA -ACGGAATAACGGCCTAGTGTGCAA -ACGGAATAACGGCCTAGTGAGGAA -ACGGAATAACGGCCTAGTCAGGTA -ACGGAATAACGGCCTAGTGACTCT -ACGGAATAACGGCCTAGTAGTCCT -ACGGAATAACGGCCTAGTTAAGCC -ACGGAATAACGGCCTAGTATAGCC -ACGGAATAACGGCCTAGTTAACCG -ACGGAATAACGGCCTAGTATGCCA -ACGGAATAACGGGCCTAAGGAAAC -ACGGAATAACGGGCCTAAAACACC -ACGGAATAACGGGCCTAAATCGAG -ACGGAATAACGGGCCTAACTCCTT -ACGGAATAACGGGCCTAACCTGTT -ACGGAATAACGGGCCTAACGGTTT -ACGGAATAACGGGCCTAAGTGGTT -ACGGAATAACGGGCCTAAGCCTTT -ACGGAATAACGGGCCTAAGGTCTT -ACGGAATAACGGGCCTAAACGCTT -ACGGAATAACGGGCCTAAAGCGTT -ACGGAATAACGGGCCTAATTCGTC -ACGGAATAACGGGCCTAATCTCTC -ACGGAATAACGGGCCTAATGGATC -ACGGAATAACGGGCCTAACACTTC -ACGGAATAACGGGCCTAAGTACTC -ACGGAATAACGGGCCTAAGATGTC -ACGGAATAACGGGCCTAAACAGTC -ACGGAATAACGGGCCTAATTGCTG -ACGGAATAACGGGCCTAATCCATG -ACGGAATAACGGGCCTAATGTGTG -ACGGAATAACGGGCCTAACTAGTG -ACGGAATAACGGGCCTAACATCTG -ACGGAATAACGGGCCTAAGAGTTG -ACGGAATAACGGGCCTAAAGACTG -ACGGAATAACGGGCCTAATCGGTA -ACGGAATAACGGGCCTAATGCCTA -ACGGAATAACGGGCCTAACCACTA -ACGGAATAACGGGCCTAAGGAGTA -ACGGAATAACGGGCCTAATCGTCT -ACGGAATAACGGGCCTAATGCACT -ACGGAATAACGGGCCTAACTGACT -ACGGAATAACGGGCCTAACAACCT -ACGGAATAACGGGCCTAAGCTACT -ACGGAATAACGGGCCTAAGGATCT -ACGGAATAACGGGCCTAAAAGGCT -ACGGAATAACGGGCCTAATCAACC -ACGGAATAACGGGCCTAATGTTCC -ACGGAATAACGGGCCTAAATTCCC -ACGGAATAACGGGCCTAATTCTCG -ACGGAATAACGGGCCTAATAGACG -ACGGAATAACGGGCCTAAGTAACG -ACGGAATAACGGGCCTAAACTTCG -ACGGAATAACGGGCCTAATACGCA -ACGGAATAACGGGCCTAACTTGCA -ACGGAATAACGGGCCTAACGAACA -ACGGAATAACGGGCCTAACAGTCA -ACGGAATAACGGGCCTAAGATCCA -ACGGAATAACGGGCCTAAACGACA -ACGGAATAACGGGCCTAAAGCTCA -ACGGAATAACGGGCCTAATCACGT -ACGGAATAACGGGCCTAACGTAGT -ACGGAATAACGGGCCTAAGTCAGT -ACGGAATAACGGGCCTAAGAAGGT -ACGGAATAACGGGCCTAAAACCGT -ACGGAATAACGGGCCTAATTGTGC -ACGGAATAACGGGCCTAACTAAGC -ACGGAATAACGGGCCTAAACTAGC -ACGGAATAACGGGCCTAAAGATGC -ACGGAATAACGGGCCTAATGAAGG -ACGGAATAACGGGCCTAACAATGG -ACGGAATAACGGGCCTAAATGAGG -ACGGAATAACGGGCCTAAAATGGG -ACGGAATAACGGGCCTAATCCTGA -ACGGAATAACGGGCCTAATAGCGA -ACGGAATAACGGGCCTAACACAGA -ACGGAATAACGGGCCTAAGCAAGA -ACGGAATAACGGGCCTAAGGTTGA -ACGGAATAACGGGCCTAATCCGAT -ACGGAATAACGGGCCTAATGGCAT -ACGGAATAACGGGCCTAACGAGAT -ACGGAATAACGGGCCTAATACCAC -ACGGAATAACGGGCCTAACAGAAC -ACGGAATAACGGGCCTAAGTCTAC -ACGGAATAACGGGCCTAAACGTAC -ACGGAATAACGGGCCTAAAGTGAC -ACGGAATAACGGGCCTAACTGTAG -ACGGAATAACGGGCCTAACCTAAG -ACGGAATAACGGGCCTAAGTTCAG -ACGGAATAACGGGCCTAAGCATAG -ACGGAATAACGGGCCTAAGACAAG -ACGGAATAACGGGCCTAAAAGCAG -ACGGAATAACGGGCCTAACGTCAA -ACGGAATAACGGGCCTAAGCTGAA -ACGGAATAACGGGCCTAAAGTACG -ACGGAATAACGGGCCTAAATCCGA -ACGGAATAACGGGCCTAAATGGGA -ACGGAATAACGGGCCTAAGTGCAA -ACGGAATAACGGGCCTAAGAGGAA -ACGGAATAACGGGCCTAACAGGTA -ACGGAATAACGGGCCTAAGACTCT -ACGGAATAACGGGCCTAAAGTCCT -ACGGAATAACGGGCCTAATAAGCC -ACGGAATAACGGGCCTAAATAGCC -ACGGAATAACGGGCCTAATAACCG -ACGGAATAACGGGCCTAAATGCCA -ACGGAATAACGGGCCATAGGAAAC -ACGGAATAACGGGCCATAAACACC -ACGGAATAACGGGCCATAATCGAG -ACGGAATAACGGGCCATACTCCTT -ACGGAATAACGGGCCATACCTGTT -ACGGAATAACGGGCCATACGGTTT -ACGGAATAACGGGCCATAGTGGTT -ACGGAATAACGGGCCATAGCCTTT -ACGGAATAACGGGCCATAGGTCTT -ACGGAATAACGGGCCATAACGCTT -ACGGAATAACGGGCCATAAGCGTT -ACGGAATAACGGGCCATATTCGTC -ACGGAATAACGGGCCATATCTCTC -ACGGAATAACGGGCCATATGGATC -ACGGAATAACGGGCCATACACTTC -ACGGAATAACGGGCCATAGTACTC -ACGGAATAACGGGCCATAGATGTC -ACGGAATAACGGGCCATAACAGTC -ACGGAATAACGGGCCATATTGCTG -ACGGAATAACGGGCCATATCCATG -ACGGAATAACGGGCCATATGTGTG -ACGGAATAACGGGCCATACTAGTG -ACGGAATAACGGGCCATACATCTG -ACGGAATAACGGGCCATAGAGTTG -ACGGAATAACGGGCCATAAGACTG -ACGGAATAACGGGCCATATCGGTA -ACGGAATAACGGGCCATATGCCTA -ACGGAATAACGGGCCATACCACTA -ACGGAATAACGGGCCATAGGAGTA -ACGGAATAACGGGCCATATCGTCT -ACGGAATAACGGGCCATATGCACT -ACGGAATAACGGGCCATACTGACT -ACGGAATAACGGGCCATACAACCT -ACGGAATAACGGGCCATAGCTACT -ACGGAATAACGGGCCATAGGATCT -ACGGAATAACGGGCCATAAAGGCT -ACGGAATAACGGGCCATATCAACC -ACGGAATAACGGGCCATATGTTCC -ACGGAATAACGGGCCATAATTCCC -ACGGAATAACGGGCCATATTCTCG -ACGGAATAACGGGCCATATAGACG -ACGGAATAACGGGCCATAGTAACG -ACGGAATAACGGGCCATAACTTCG -ACGGAATAACGGGCCATATACGCA -ACGGAATAACGGGCCATACTTGCA -ACGGAATAACGGGCCATACGAACA -ACGGAATAACGGGCCATACAGTCA -ACGGAATAACGGGCCATAGATCCA -ACGGAATAACGGGCCATAACGACA -ACGGAATAACGGGCCATAAGCTCA -ACGGAATAACGGGCCATATCACGT -ACGGAATAACGGGCCATACGTAGT -ACGGAATAACGGGCCATAGTCAGT -ACGGAATAACGGGCCATAGAAGGT -ACGGAATAACGGGCCATAAACCGT -ACGGAATAACGGGCCATATTGTGC -ACGGAATAACGGGCCATACTAAGC -ACGGAATAACGGGCCATAACTAGC -ACGGAATAACGGGCCATAAGATGC -ACGGAATAACGGGCCATATGAAGG -ACGGAATAACGGGCCATACAATGG -ACGGAATAACGGGCCATAATGAGG -ACGGAATAACGGGCCATAAATGGG -ACGGAATAACGGGCCATATCCTGA -ACGGAATAACGGGCCATATAGCGA -ACGGAATAACGGGCCATACACAGA -ACGGAATAACGGGCCATAGCAAGA -ACGGAATAACGGGCCATAGGTTGA -ACGGAATAACGGGCCATATCCGAT -ACGGAATAACGGGCCATATGGCAT -ACGGAATAACGGGCCATACGAGAT -ACGGAATAACGGGCCATATACCAC -ACGGAATAACGGGCCATACAGAAC -ACGGAATAACGGGCCATAGTCTAC -ACGGAATAACGGGCCATAACGTAC -ACGGAATAACGGGCCATAAGTGAC -ACGGAATAACGGGCCATACTGTAG -ACGGAATAACGGGCCATACCTAAG -ACGGAATAACGGGCCATAGTTCAG -ACGGAATAACGGGCCATAGCATAG -ACGGAATAACGGGCCATAGACAAG -ACGGAATAACGGGCCATAAAGCAG -ACGGAATAACGGGCCATACGTCAA -ACGGAATAACGGGCCATAGCTGAA -ACGGAATAACGGGCCATAAGTACG -ACGGAATAACGGGCCATAATCCGA -ACGGAATAACGGGCCATAATGGGA -ACGGAATAACGGGCCATAGTGCAA -ACGGAATAACGGGCCATAGAGGAA -ACGGAATAACGGGCCATACAGGTA -ACGGAATAACGGGCCATAGACTCT -ACGGAATAACGGGCCATAAGTCCT -ACGGAATAACGGGCCATATAAGCC -ACGGAATAACGGGCCATAATAGCC -ACGGAATAACGGGCCATATAACCG -ACGGAATAACGGGCCATAATGCCA -ACGGAATAACGGCCGTAAGGAAAC -ACGGAATAACGGCCGTAAAACACC -ACGGAATAACGGCCGTAAATCGAG -ACGGAATAACGGCCGTAACTCCTT -ACGGAATAACGGCCGTAACCTGTT -ACGGAATAACGGCCGTAACGGTTT -ACGGAATAACGGCCGTAAGTGGTT -ACGGAATAACGGCCGTAAGCCTTT -ACGGAATAACGGCCGTAAGGTCTT -ACGGAATAACGGCCGTAAACGCTT -ACGGAATAACGGCCGTAAAGCGTT -ACGGAATAACGGCCGTAATTCGTC -ACGGAATAACGGCCGTAATCTCTC -ACGGAATAACGGCCGTAATGGATC -ACGGAATAACGGCCGTAACACTTC -ACGGAATAACGGCCGTAAGTACTC -ACGGAATAACGGCCGTAAGATGTC -ACGGAATAACGGCCGTAAACAGTC -ACGGAATAACGGCCGTAATTGCTG -ACGGAATAACGGCCGTAATCCATG -ACGGAATAACGGCCGTAATGTGTG -ACGGAATAACGGCCGTAACTAGTG -ACGGAATAACGGCCGTAACATCTG -ACGGAATAACGGCCGTAAGAGTTG -ACGGAATAACGGCCGTAAAGACTG -ACGGAATAACGGCCGTAATCGGTA -ACGGAATAACGGCCGTAATGCCTA -ACGGAATAACGGCCGTAACCACTA -ACGGAATAACGGCCGTAAGGAGTA -ACGGAATAACGGCCGTAATCGTCT -ACGGAATAACGGCCGTAATGCACT -ACGGAATAACGGCCGTAACTGACT -ACGGAATAACGGCCGTAACAACCT -ACGGAATAACGGCCGTAAGCTACT -ACGGAATAACGGCCGTAAGGATCT -ACGGAATAACGGCCGTAAAAGGCT -ACGGAATAACGGCCGTAATCAACC -ACGGAATAACGGCCGTAATGTTCC -ACGGAATAACGGCCGTAAATTCCC -ACGGAATAACGGCCGTAATTCTCG -ACGGAATAACGGCCGTAATAGACG -ACGGAATAACGGCCGTAAGTAACG -ACGGAATAACGGCCGTAAACTTCG -ACGGAATAACGGCCGTAATACGCA -ACGGAATAACGGCCGTAACTTGCA -ACGGAATAACGGCCGTAACGAACA -ACGGAATAACGGCCGTAACAGTCA -ACGGAATAACGGCCGTAAGATCCA -ACGGAATAACGGCCGTAAACGACA -ACGGAATAACGGCCGTAAAGCTCA -ACGGAATAACGGCCGTAATCACGT -ACGGAATAACGGCCGTAACGTAGT -ACGGAATAACGGCCGTAAGTCAGT -ACGGAATAACGGCCGTAAGAAGGT -ACGGAATAACGGCCGTAAAACCGT -ACGGAATAACGGCCGTAATTGTGC -ACGGAATAACGGCCGTAACTAAGC -ACGGAATAACGGCCGTAAACTAGC -ACGGAATAACGGCCGTAAAGATGC -ACGGAATAACGGCCGTAATGAAGG -ACGGAATAACGGCCGTAACAATGG -ACGGAATAACGGCCGTAAATGAGG -ACGGAATAACGGCCGTAAAATGGG -ACGGAATAACGGCCGTAATCCTGA -ACGGAATAACGGCCGTAATAGCGA -ACGGAATAACGGCCGTAACACAGA -ACGGAATAACGGCCGTAAGCAAGA -ACGGAATAACGGCCGTAAGGTTGA -ACGGAATAACGGCCGTAATCCGAT -ACGGAATAACGGCCGTAATGGCAT -ACGGAATAACGGCCGTAACGAGAT -ACGGAATAACGGCCGTAATACCAC -ACGGAATAACGGCCGTAACAGAAC -ACGGAATAACGGCCGTAAGTCTAC -ACGGAATAACGGCCGTAAACGTAC -ACGGAATAACGGCCGTAAAGTGAC -ACGGAATAACGGCCGTAACTGTAG -ACGGAATAACGGCCGTAACCTAAG -ACGGAATAACGGCCGTAAGTTCAG -ACGGAATAACGGCCGTAAGCATAG -ACGGAATAACGGCCGTAAGACAAG -ACGGAATAACGGCCGTAAAAGCAG -ACGGAATAACGGCCGTAACGTCAA -ACGGAATAACGGCCGTAAGCTGAA -ACGGAATAACGGCCGTAAAGTACG -ACGGAATAACGGCCGTAAATCCGA -ACGGAATAACGGCCGTAAATGGGA -ACGGAATAACGGCCGTAAGTGCAA -ACGGAATAACGGCCGTAAGAGGAA -ACGGAATAACGGCCGTAACAGGTA -ACGGAATAACGGCCGTAAGACTCT -ACGGAATAACGGCCGTAAAGTCCT -ACGGAATAACGGCCGTAATAAGCC -ACGGAATAACGGCCGTAAATAGCC -ACGGAATAACGGCCGTAATAACCG -ACGGAATAACGGCCGTAAATGCCA -ACGGAATAACGGCCAATGGGAAAC -ACGGAATAACGGCCAATGAACACC -ACGGAATAACGGCCAATGATCGAG -ACGGAATAACGGCCAATGCTCCTT -ACGGAATAACGGCCAATGCCTGTT -ACGGAATAACGGCCAATGCGGTTT -ACGGAATAACGGCCAATGGTGGTT -ACGGAATAACGGCCAATGGCCTTT -ACGGAATAACGGCCAATGGGTCTT -ACGGAATAACGGCCAATGACGCTT -ACGGAATAACGGCCAATGAGCGTT -ACGGAATAACGGCCAATGTTCGTC -ACGGAATAACGGCCAATGTCTCTC -ACGGAATAACGGCCAATGTGGATC -ACGGAATAACGGCCAATGCACTTC -ACGGAATAACGGCCAATGGTACTC -ACGGAATAACGGCCAATGGATGTC -ACGGAATAACGGCCAATGACAGTC -ACGGAATAACGGCCAATGTTGCTG -ACGGAATAACGGCCAATGTCCATG -ACGGAATAACGGCCAATGTGTGTG -ACGGAATAACGGCCAATGCTAGTG -ACGGAATAACGGCCAATGCATCTG -ACGGAATAACGGCCAATGGAGTTG -ACGGAATAACGGCCAATGAGACTG -ACGGAATAACGGCCAATGTCGGTA -ACGGAATAACGGCCAATGTGCCTA -ACGGAATAACGGCCAATGCCACTA -ACGGAATAACGGCCAATGGGAGTA -ACGGAATAACGGCCAATGTCGTCT -ACGGAATAACGGCCAATGTGCACT -ACGGAATAACGGCCAATGCTGACT -ACGGAATAACGGCCAATGCAACCT -ACGGAATAACGGCCAATGGCTACT -ACGGAATAACGGCCAATGGGATCT -ACGGAATAACGGCCAATGAAGGCT -ACGGAATAACGGCCAATGTCAACC -ACGGAATAACGGCCAATGTGTTCC -ACGGAATAACGGCCAATGATTCCC -ACGGAATAACGGCCAATGTTCTCG -ACGGAATAACGGCCAATGTAGACG -ACGGAATAACGGCCAATGGTAACG -ACGGAATAACGGCCAATGACTTCG -ACGGAATAACGGCCAATGTACGCA -ACGGAATAACGGCCAATGCTTGCA -ACGGAATAACGGCCAATGCGAACA -ACGGAATAACGGCCAATGCAGTCA -ACGGAATAACGGCCAATGGATCCA -ACGGAATAACGGCCAATGACGACA -ACGGAATAACGGCCAATGAGCTCA -ACGGAATAACGGCCAATGTCACGT -ACGGAATAACGGCCAATGCGTAGT -ACGGAATAACGGCCAATGGTCAGT -ACGGAATAACGGCCAATGGAAGGT -ACGGAATAACGGCCAATGAACCGT -ACGGAATAACGGCCAATGTTGTGC -ACGGAATAACGGCCAATGCTAAGC -ACGGAATAACGGCCAATGACTAGC -ACGGAATAACGGCCAATGAGATGC -ACGGAATAACGGCCAATGTGAAGG -ACGGAATAACGGCCAATGCAATGG -ACGGAATAACGGCCAATGATGAGG -ACGGAATAACGGCCAATGAATGGG -ACGGAATAACGGCCAATGTCCTGA -ACGGAATAACGGCCAATGTAGCGA -ACGGAATAACGGCCAATGCACAGA -ACGGAATAACGGCCAATGGCAAGA -ACGGAATAACGGCCAATGGGTTGA -ACGGAATAACGGCCAATGTCCGAT -ACGGAATAACGGCCAATGTGGCAT -ACGGAATAACGGCCAATGCGAGAT -ACGGAATAACGGCCAATGTACCAC -ACGGAATAACGGCCAATGCAGAAC -ACGGAATAACGGCCAATGGTCTAC -ACGGAATAACGGCCAATGACGTAC -ACGGAATAACGGCCAATGAGTGAC -ACGGAATAACGGCCAATGCTGTAG -ACGGAATAACGGCCAATGCCTAAG -ACGGAATAACGGCCAATGGTTCAG -ACGGAATAACGGCCAATGGCATAG -ACGGAATAACGGCCAATGGACAAG -ACGGAATAACGGCCAATGAAGCAG -ACGGAATAACGGCCAATGCGTCAA -ACGGAATAACGGCCAATGGCTGAA -ACGGAATAACGGCCAATGAGTACG -ACGGAATAACGGCCAATGATCCGA -ACGGAATAACGGCCAATGATGGGA -ACGGAATAACGGCCAATGGTGCAA -ACGGAATAACGGCCAATGGAGGAA -ACGGAATAACGGCCAATGCAGGTA -ACGGAATAACGGCCAATGGACTCT -ACGGAATAACGGCCAATGAGTCCT -ACGGAATAACGGCCAATGTAAGCC -ACGGAATAACGGCCAATGATAGCC -ACGGAATAACGGCCAATGTAACCG -ACGGAATAACGGCCAATGATGCCA -ACGGAACTTCGAAACGGAGGAAAC -ACGGAACTTCGAAACGGAAACACC -ACGGAACTTCGAAACGGAATCGAG -ACGGAACTTCGAAACGGACTCCTT -ACGGAACTTCGAAACGGACCTGTT -ACGGAACTTCGAAACGGACGGTTT -ACGGAACTTCGAAACGGAGTGGTT -ACGGAACTTCGAAACGGAGCCTTT -ACGGAACTTCGAAACGGAGGTCTT -ACGGAACTTCGAAACGGAACGCTT -ACGGAACTTCGAAACGGAAGCGTT -ACGGAACTTCGAAACGGATTCGTC -ACGGAACTTCGAAACGGATCTCTC -ACGGAACTTCGAAACGGATGGATC -ACGGAACTTCGAAACGGACACTTC -ACGGAACTTCGAAACGGAGTACTC -ACGGAACTTCGAAACGGAGATGTC -ACGGAACTTCGAAACGGAACAGTC -ACGGAACTTCGAAACGGATTGCTG -ACGGAACTTCGAAACGGATCCATG -ACGGAACTTCGAAACGGATGTGTG -ACGGAACTTCGAAACGGACTAGTG -ACGGAACTTCGAAACGGACATCTG -ACGGAACTTCGAAACGGAGAGTTG -ACGGAACTTCGAAACGGAAGACTG -ACGGAACTTCGAAACGGATCGGTA -ACGGAACTTCGAAACGGATGCCTA -ACGGAACTTCGAAACGGACCACTA -ACGGAACTTCGAAACGGAGGAGTA -ACGGAACTTCGAAACGGATCGTCT -ACGGAACTTCGAAACGGATGCACT -ACGGAACTTCGAAACGGACTGACT -ACGGAACTTCGAAACGGACAACCT -ACGGAACTTCGAAACGGAGCTACT -ACGGAACTTCGAAACGGAGGATCT -ACGGAACTTCGAAACGGAAAGGCT -ACGGAACTTCGAAACGGATCAACC -ACGGAACTTCGAAACGGATGTTCC -ACGGAACTTCGAAACGGAATTCCC -ACGGAACTTCGAAACGGATTCTCG -ACGGAACTTCGAAACGGATAGACG -ACGGAACTTCGAAACGGAGTAACG -ACGGAACTTCGAAACGGAACTTCG -ACGGAACTTCGAAACGGATACGCA -ACGGAACTTCGAAACGGACTTGCA -ACGGAACTTCGAAACGGACGAACA -ACGGAACTTCGAAACGGACAGTCA -ACGGAACTTCGAAACGGAGATCCA -ACGGAACTTCGAAACGGAACGACA -ACGGAACTTCGAAACGGAAGCTCA -ACGGAACTTCGAAACGGATCACGT -ACGGAACTTCGAAACGGACGTAGT -ACGGAACTTCGAAACGGAGTCAGT -ACGGAACTTCGAAACGGAGAAGGT -ACGGAACTTCGAAACGGAAACCGT -ACGGAACTTCGAAACGGATTGTGC -ACGGAACTTCGAAACGGACTAAGC -ACGGAACTTCGAAACGGAACTAGC -ACGGAACTTCGAAACGGAAGATGC -ACGGAACTTCGAAACGGATGAAGG -ACGGAACTTCGAAACGGACAATGG -ACGGAACTTCGAAACGGAATGAGG -ACGGAACTTCGAAACGGAAATGGG -ACGGAACTTCGAAACGGATCCTGA -ACGGAACTTCGAAACGGATAGCGA -ACGGAACTTCGAAACGGACACAGA -ACGGAACTTCGAAACGGAGCAAGA -ACGGAACTTCGAAACGGAGGTTGA -ACGGAACTTCGAAACGGATCCGAT -ACGGAACTTCGAAACGGATGGCAT -ACGGAACTTCGAAACGGACGAGAT -ACGGAACTTCGAAACGGATACCAC -ACGGAACTTCGAAACGGACAGAAC -ACGGAACTTCGAAACGGAGTCTAC -ACGGAACTTCGAAACGGAACGTAC -ACGGAACTTCGAAACGGAAGTGAC -ACGGAACTTCGAAACGGACTGTAG -ACGGAACTTCGAAACGGACCTAAG -ACGGAACTTCGAAACGGAGTTCAG -ACGGAACTTCGAAACGGAGCATAG -ACGGAACTTCGAAACGGAGACAAG -ACGGAACTTCGAAACGGAAAGCAG -ACGGAACTTCGAAACGGACGTCAA -ACGGAACTTCGAAACGGAGCTGAA -ACGGAACTTCGAAACGGAAGTACG -ACGGAACTTCGAAACGGAATCCGA -ACGGAACTTCGAAACGGAATGGGA -ACGGAACTTCGAAACGGAGTGCAA -ACGGAACTTCGAAACGGAGAGGAA -ACGGAACTTCGAAACGGACAGGTA -ACGGAACTTCGAAACGGAGACTCT -ACGGAACTTCGAAACGGAAGTCCT -ACGGAACTTCGAAACGGATAAGCC -ACGGAACTTCGAAACGGAATAGCC -ACGGAACTTCGAAACGGATAACCG -ACGGAACTTCGAAACGGAATGCCA -ACGGAACTTCGAACCAACGGAAAC -ACGGAACTTCGAACCAACAACACC -ACGGAACTTCGAACCAACATCGAG -ACGGAACTTCGAACCAACCTCCTT -ACGGAACTTCGAACCAACCCTGTT -ACGGAACTTCGAACCAACCGGTTT -ACGGAACTTCGAACCAACGTGGTT -ACGGAACTTCGAACCAACGCCTTT -ACGGAACTTCGAACCAACGGTCTT -ACGGAACTTCGAACCAACACGCTT -ACGGAACTTCGAACCAACAGCGTT -ACGGAACTTCGAACCAACTTCGTC -ACGGAACTTCGAACCAACTCTCTC -ACGGAACTTCGAACCAACTGGATC -ACGGAACTTCGAACCAACCACTTC -ACGGAACTTCGAACCAACGTACTC -ACGGAACTTCGAACCAACGATGTC -ACGGAACTTCGAACCAACACAGTC -ACGGAACTTCGAACCAACTTGCTG -ACGGAACTTCGAACCAACTCCATG -ACGGAACTTCGAACCAACTGTGTG -ACGGAACTTCGAACCAACCTAGTG -ACGGAACTTCGAACCAACCATCTG -ACGGAACTTCGAACCAACGAGTTG -ACGGAACTTCGAACCAACAGACTG -ACGGAACTTCGAACCAACTCGGTA -ACGGAACTTCGAACCAACTGCCTA -ACGGAACTTCGAACCAACCCACTA -ACGGAACTTCGAACCAACGGAGTA -ACGGAACTTCGAACCAACTCGTCT -ACGGAACTTCGAACCAACTGCACT -ACGGAACTTCGAACCAACCTGACT -ACGGAACTTCGAACCAACCAACCT -ACGGAACTTCGAACCAACGCTACT -ACGGAACTTCGAACCAACGGATCT -ACGGAACTTCGAACCAACAAGGCT -ACGGAACTTCGAACCAACTCAACC -ACGGAACTTCGAACCAACTGTTCC -ACGGAACTTCGAACCAACATTCCC -ACGGAACTTCGAACCAACTTCTCG -ACGGAACTTCGAACCAACTAGACG -ACGGAACTTCGAACCAACGTAACG -ACGGAACTTCGAACCAACACTTCG -ACGGAACTTCGAACCAACTACGCA -ACGGAACTTCGAACCAACCTTGCA -ACGGAACTTCGAACCAACCGAACA -ACGGAACTTCGAACCAACCAGTCA -ACGGAACTTCGAACCAACGATCCA -ACGGAACTTCGAACCAACACGACA -ACGGAACTTCGAACCAACAGCTCA -ACGGAACTTCGAACCAACTCACGT -ACGGAACTTCGAACCAACCGTAGT -ACGGAACTTCGAACCAACGTCAGT -ACGGAACTTCGAACCAACGAAGGT -ACGGAACTTCGAACCAACAACCGT -ACGGAACTTCGAACCAACTTGTGC -ACGGAACTTCGAACCAACCTAAGC -ACGGAACTTCGAACCAACACTAGC -ACGGAACTTCGAACCAACAGATGC -ACGGAACTTCGAACCAACTGAAGG -ACGGAACTTCGAACCAACCAATGG -ACGGAACTTCGAACCAACATGAGG -ACGGAACTTCGAACCAACAATGGG -ACGGAACTTCGAACCAACTCCTGA -ACGGAACTTCGAACCAACTAGCGA -ACGGAACTTCGAACCAACCACAGA -ACGGAACTTCGAACCAACGCAAGA -ACGGAACTTCGAACCAACGGTTGA -ACGGAACTTCGAACCAACTCCGAT -ACGGAACTTCGAACCAACTGGCAT -ACGGAACTTCGAACCAACCGAGAT -ACGGAACTTCGAACCAACTACCAC -ACGGAACTTCGAACCAACCAGAAC -ACGGAACTTCGAACCAACGTCTAC -ACGGAACTTCGAACCAACACGTAC -ACGGAACTTCGAACCAACAGTGAC -ACGGAACTTCGAACCAACCTGTAG -ACGGAACTTCGAACCAACCCTAAG -ACGGAACTTCGAACCAACGTTCAG -ACGGAACTTCGAACCAACGCATAG -ACGGAACTTCGAACCAACGACAAG -ACGGAACTTCGAACCAACAAGCAG -ACGGAACTTCGAACCAACCGTCAA -ACGGAACTTCGAACCAACGCTGAA -ACGGAACTTCGAACCAACAGTACG -ACGGAACTTCGAACCAACATCCGA -ACGGAACTTCGAACCAACATGGGA -ACGGAACTTCGAACCAACGTGCAA -ACGGAACTTCGAACCAACGAGGAA -ACGGAACTTCGAACCAACCAGGTA -ACGGAACTTCGAACCAACGACTCT -ACGGAACTTCGAACCAACAGTCCT -ACGGAACTTCGAACCAACTAAGCC -ACGGAACTTCGAACCAACATAGCC -ACGGAACTTCGAACCAACTAACCG -ACGGAACTTCGAACCAACATGCCA -ACGGAACTTCGAGAGATCGGAAAC -ACGGAACTTCGAGAGATCAACACC -ACGGAACTTCGAGAGATCATCGAG -ACGGAACTTCGAGAGATCCTCCTT -ACGGAACTTCGAGAGATCCCTGTT -ACGGAACTTCGAGAGATCCGGTTT -ACGGAACTTCGAGAGATCGTGGTT -ACGGAACTTCGAGAGATCGCCTTT -ACGGAACTTCGAGAGATCGGTCTT -ACGGAACTTCGAGAGATCACGCTT -ACGGAACTTCGAGAGATCAGCGTT -ACGGAACTTCGAGAGATCTTCGTC -ACGGAACTTCGAGAGATCTCTCTC -ACGGAACTTCGAGAGATCTGGATC -ACGGAACTTCGAGAGATCCACTTC -ACGGAACTTCGAGAGATCGTACTC -ACGGAACTTCGAGAGATCGATGTC -ACGGAACTTCGAGAGATCACAGTC -ACGGAACTTCGAGAGATCTTGCTG -ACGGAACTTCGAGAGATCTCCATG -ACGGAACTTCGAGAGATCTGTGTG -ACGGAACTTCGAGAGATCCTAGTG -ACGGAACTTCGAGAGATCCATCTG -ACGGAACTTCGAGAGATCGAGTTG -ACGGAACTTCGAGAGATCAGACTG -ACGGAACTTCGAGAGATCTCGGTA -ACGGAACTTCGAGAGATCTGCCTA -ACGGAACTTCGAGAGATCCCACTA -ACGGAACTTCGAGAGATCGGAGTA -ACGGAACTTCGAGAGATCTCGTCT -ACGGAACTTCGAGAGATCTGCACT -ACGGAACTTCGAGAGATCCTGACT -ACGGAACTTCGAGAGATCCAACCT -ACGGAACTTCGAGAGATCGCTACT -ACGGAACTTCGAGAGATCGGATCT -ACGGAACTTCGAGAGATCAAGGCT -ACGGAACTTCGAGAGATCTCAACC -ACGGAACTTCGAGAGATCTGTTCC -ACGGAACTTCGAGAGATCATTCCC -ACGGAACTTCGAGAGATCTTCTCG -ACGGAACTTCGAGAGATCTAGACG -ACGGAACTTCGAGAGATCGTAACG -ACGGAACTTCGAGAGATCACTTCG -ACGGAACTTCGAGAGATCTACGCA -ACGGAACTTCGAGAGATCCTTGCA -ACGGAACTTCGAGAGATCCGAACA -ACGGAACTTCGAGAGATCCAGTCA -ACGGAACTTCGAGAGATCGATCCA -ACGGAACTTCGAGAGATCACGACA -ACGGAACTTCGAGAGATCAGCTCA -ACGGAACTTCGAGAGATCTCACGT -ACGGAACTTCGAGAGATCCGTAGT -ACGGAACTTCGAGAGATCGTCAGT -ACGGAACTTCGAGAGATCGAAGGT -ACGGAACTTCGAGAGATCAACCGT -ACGGAACTTCGAGAGATCTTGTGC -ACGGAACTTCGAGAGATCCTAAGC -ACGGAACTTCGAGAGATCACTAGC -ACGGAACTTCGAGAGATCAGATGC -ACGGAACTTCGAGAGATCTGAAGG -ACGGAACTTCGAGAGATCCAATGG -ACGGAACTTCGAGAGATCATGAGG -ACGGAACTTCGAGAGATCAATGGG -ACGGAACTTCGAGAGATCTCCTGA -ACGGAACTTCGAGAGATCTAGCGA -ACGGAACTTCGAGAGATCCACAGA -ACGGAACTTCGAGAGATCGCAAGA -ACGGAACTTCGAGAGATCGGTTGA -ACGGAACTTCGAGAGATCTCCGAT -ACGGAACTTCGAGAGATCTGGCAT -ACGGAACTTCGAGAGATCCGAGAT -ACGGAACTTCGAGAGATCTACCAC -ACGGAACTTCGAGAGATCCAGAAC -ACGGAACTTCGAGAGATCGTCTAC -ACGGAACTTCGAGAGATCACGTAC -ACGGAACTTCGAGAGATCAGTGAC -ACGGAACTTCGAGAGATCCTGTAG -ACGGAACTTCGAGAGATCCCTAAG -ACGGAACTTCGAGAGATCGTTCAG -ACGGAACTTCGAGAGATCGCATAG -ACGGAACTTCGAGAGATCGACAAG -ACGGAACTTCGAGAGATCAAGCAG -ACGGAACTTCGAGAGATCCGTCAA -ACGGAACTTCGAGAGATCGCTGAA -ACGGAACTTCGAGAGATCAGTACG -ACGGAACTTCGAGAGATCATCCGA -ACGGAACTTCGAGAGATCATGGGA -ACGGAACTTCGAGAGATCGTGCAA -ACGGAACTTCGAGAGATCGAGGAA -ACGGAACTTCGAGAGATCCAGGTA -ACGGAACTTCGAGAGATCGACTCT -ACGGAACTTCGAGAGATCAGTCCT -ACGGAACTTCGAGAGATCTAAGCC -ACGGAACTTCGAGAGATCATAGCC -ACGGAACTTCGAGAGATCTAACCG -ACGGAACTTCGAGAGATCATGCCA -ACGGAACTTCGACTTCTCGGAAAC -ACGGAACTTCGACTTCTCAACACC -ACGGAACTTCGACTTCTCATCGAG -ACGGAACTTCGACTTCTCCTCCTT -ACGGAACTTCGACTTCTCCCTGTT -ACGGAACTTCGACTTCTCCGGTTT -ACGGAACTTCGACTTCTCGTGGTT -ACGGAACTTCGACTTCTCGCCTTT -ACGGAACTTCGACTTCTCGGTCTT -ACGGAACTTCGACTTCTCACGCTT -ACGGAACTTCGACTTCTCAGCGTT -ACGGAACTTCGACTTCTCTTCGTC -ACGGAACTTCGACTTCTCTCTCTC -ACGGAACTTCGACTTCTCTGGATC -ACGGAACTTCGACTTCTCCACTTC -ACGGAACTTCGACTTCTCGTACTC -ACGGAACTTCGACTTCTCGATGTC -ACGGAACTTCGACTTCTCACAGTC -ACGGAACTTCGACTTCTCTTGCTG -ACGGAACTTCGACTTCTCTCCATG -ACGGAACTTCGACTTCTCTGTGTG -ACGGAACTTCGACTTCTCCTAGTG -ACGGAACTTCGACTTCTCCATCTG -ACGGAACTTCGACTTCTCGAGTTG -ACGGAACTTCGACTTCTCAGACTG -ACGGAACTTCGACTTCTCTCGGTA -ACGGAACTTCGACTTCTCTGCCTA -ACGGAACTTCGACTTCTCCCACTA -ACGGAACTTCGACTTCTCGGAGTA -ACGGAACTTCGACTTCTCTCGTCT -ACGGAACTTCGACTTCTCTGCACT -ACGGAACTTCGACTTCTCCTGACT -ACGGAACTTCGACTTCTCCAACCT -ACGGAACTTCGACTTCTCGCTACT -ACGGAACTTCGACTTCTCGGATCT -ACGGAACTTCGACTTCTCAAGGCT -ACGGAACTTCGACTTCTCTCAACC -ACGGAACTTCGACTTCTCTGTTCC -ACGGAACTTCGACTTCTCATTCCC -ACGGAACTTCGACTTCTCTTCTCG -ACGGAACTTCGACTTCTCTAGACG -ACGGAACTTCGACTTCTCGTAACG -ACGGAACTTCGACTTCTCACTTCG -ACGGAACTTCGACTTCTCTACGCA -ACGGAACTTCGACTTCTCCTTGCA -ACGGAACTTCGACTTCTCCGAACA -ACGGAACTTCGACTTCTCCAGTCA -ACGGAACTTCGACTTCTCGATCCA -ACGGAACTTCGACTTCTCACGACA -ACGGAACTTCGACTTCTCAGCTCA -ACGGAACTTCGACTTCTCTCACGT -ACGGAACTTCGACTTCTCCGTAGT -ACGGAACTTCGACTTCTCGTCAGT -ACGGAACTTCGACTTCTCGAAGGT -ACGGAACTTCGACTTCTCAACCGT -ACGGAACTTCGACTTCTCTTGTGC -ACGGAACTTCGACTTCTCCTAAGC -ACGGAACTTCGACTTCTCACTAGC -ACGGAACTTCGACTTCTCAGATGC -ACGGAACTTCGACTTCTCTGAAGG -ACGGAACTTCGACTTCTCCAATGG -ACGGAACTTCGACTTCTCATGAGG -ACGGAACTTCGACTTCTCAATGGG -ACGGAACTTCGACTTCTCTCCTGA -ACGGAACTTCGACTTCTCTAGCGA -ACGGAACTTCGACTTCTCCACAGA -ACGGAACTTCGACTTCTCGCAAGA -ACGGAACTTCGACTTCTCGGTTGA -ACGGAACTTCGACTTCTCTCCGAT -ACGGAACTTCGACTTCTCTGGCAT -ACGGAACTTCGACTTCTCCGAGAT -ACGGAACTTCGACTTCTCTACCAC -ACGGAACTTCGACTTCTCCAGAAC -ACGGAACTTCGACTTCTCGTCTAC -ACGGAACTTCGACTTCTCACGTAC -ACGGAACTTCGACTTCTCAGTGAC -ACGGAACTTCGACTTCTCCTGTAG -ACGGAACTTCGACTTCTCCCTAAG -ACGGAACTTCGACTTCTCGTTCAG -ACGGAACTTCGACTTCTCGCATAG -ACGGAACTTCGACTTCTCGACAAG -ACGGAACTTCGACTTCTCAAGCAG -ACGGAACTTCGACTTCTCCGTCAA -ACGGAACTTCGACTTCTCGCTGAA -ACGGAACTTCGACTTCTCAGTACG -ACGGAACTTCGACTTCTCATCCGA -ACGGAACTTCGACTTCTCATGGGA -ACGGAACTTCGACTTCTCGTGCAA -ACGGAACTTCGACTTCTCGAGGAA -ACGGAACTTCGACTTCTCCAGGTA -ACGGAACTTCGACTTCTCGACTCT -ACGGAACTTCGACTTCTCAGTCCT -ACGGAACTTCGACTTCTCTAAGCC -ACGGAACTTCGACTTCTCATAGCC -ACGGAACTTCGACTTCTCTAACCG -ACGGAACTTCGACTTCTCATGCCA -ACGGAACTTCGAGTTCCTGGAAAC -ACGGAACTTCGAGTTCCTAACACC -ACGGAACTTCGAGTTCCTATCGAG -ACGGAACTTCGAGTTCCTCTCCTT -ACGGAACTTCGAGTTCCTCCTGTT -ACGGAACTTCGAGTTCCTCGGTTT -ACGGAACTTCGAGTTCCTGTGGTT -ACGGAACTTCGAGTTCCTGCCTTT -ACGGAACTTCGAGTTCCTGGTCTT -ACGGAACTTCGAGTTCCTACGCTT -ACGGAACTTCGAGTTCCTAGCGTT -ACGGAACTTCGAGTTCCTTTCGTC -ACGGAACTTCGAGTTCCTTCTCTC -ACGGAACTTCGAGTTCCTTGGATC -ACGGAACTTCGAGTTCCTCACTTC -ACGGAACTTCGAGTTCCTGTACTC -ACGGAACTTCGAGTTCCTGATGTC -ACGGAACTTCGAGTTCCTACAGTC -ACGGAACTTCGAGTTCCTTTGCTG -ACGGAACTTCGAGTTCCTTCCATG -ACGGAACTTCGAGTTCCTTGTGTG -ACGGAACTTCGAGTTCCTCTAGTG -ACGGAACTTCGAGTTCCTCATCTG -ACGGAACTTCGAGTTCCTGAGTTG -ACGGAACTTCGAGTTCCTAGACTG -ACGGAACTTCGAGTTCCTTCGGTA -ACGGAACTTCGAGTTCCTTGCCTA -ACGGAACTTCGAGTTCCTCCACTA -ACGGAACTTCGAGTTCCTGGAGTA -ACGGAACTTCGAGTTCCTTCGTCT -ACGGAACTTCGAGTTCCTTGCACT -ACGGAACTTCGAGTTCCTCTGACT -ACGGAACTTCGAGTTCCTCAACCT -ACGGAACTTCGAGTTCCTGCTACT -ACGGAACTTCGAGTTCCTGGATCT -ACGGAACTTCGAGTTCCTAAGGCT -ACGGAACTTCGAGTTCCTTCAACC -ACGGAACTTCGAGTTCCTTGTTCC -ACGGAACTTCGAGTTCCTATTCCC -ACGGAACTTCGAGTTCCTTTCTCG -ACGGAACTTCGAGTTCCTTAGACG -ACGGAACTTCGAGTTCCTGTAACG -ACGGAACTTCGAGTTCCTACTTCG -ACGGAACTTCGAGTTCCTTACGCA -ACGGAACTTCGAGTTCCTCTTGCA -ACGGAACTTCGAGTTCCTCGAACA -ACGGAACTTCGAGTTCCTCAGTCA -ACGGAACTTCGAGTTCCTGATCCA -ACGGAACTTCGAGTTCCTACGACA -ACGGAACTTCGAGTTCCTAGCTCA -ACGGAACTTCGAGTTCCTTCACGT -ACGGAACTTCGAGTTCCTCGTAGT -ACGGAACTTCGAGTTCCTGTCAGT -ACGGAACTTCGAGTTCCTGAAGGT -ACGGAACTTCGAGTTCCTAACCGT -ACGGAACTTCGAGTTCCTTTGTGC -ACGGAACTTCGAGTTCCTCTAAGC -ACGGAACTTCGAGTTCCTACTAGC -ACGGAACTTCGAGTTCCTAGATGC -ACGGAACTTCGAGTTCCTTGAAGG -ACGGAACTTCGAGTTCCTCAATGG -ACGGAACTTCGAGTTCCTATGAGG -ACGGAACTTCGAGTTCCTAATGGG -ACGGAACTTCGAGTTCCTTCCTGA -ACGGAACTTCGAGTTCCTTAGCGA -ACGGAACTTCGAGTTCCTCACAGA -ACGGAACTTCGAGTTCCTGCAAGA -ACGGAACTTCGAGTTCCTGGTTGA -ACGGAACTTCGAGTTCCTTCCGAT -ACGGAACTTCGAGTTCCTTGGCAT -ACGGAACTTCGAGTTCCTCGAGAT -ACGGAACTTCGAGTTCCTTACCAC -ACGGAACTTCGAGTTCCTCAGAAC -ACGGAACTTCGAGTTCCTGTCTAC -ACGGAACTTCGAGTTCCTACGTAC -ACGGAACTTCGAGTTCCTAGTGAC -ACGGAACTTCGAGTTCCTCTGTAG -ACGGAACTTCGAGTTCCTCCTAAG -ACGGAACTTCGAGTTCCTGTTCAG -ACGGAACTTCGAGTTCCTGCATAG -ACGGAACTTCGAGTTCCTGACAAG -ACGGAACTTCGAGTTCCTAAGCAG -ACGGAACTTCGAGTTCCTCGTCAA -ACGGAACTTCGAGTTCCTGCTGAA -ACGGAACTTCGAGTTCCTAGTACG -ACGGAACTTCGAGTTCCTATCCGA -ACGGAACTTCGAGTTCCTATGGGA -ACGGAACTTCGAGTTCCTGTGCAA -ACGGAACTTCGAGTTCCTGAGGAA -ACGGAACTTCGAGTTCCTCAGGTA -ACGGAACTTCGAGTTCCTGACTCT -ACGGAACTTCGAGTTCCTAGTCCT -ACGGAACTTCGAGTTCCTTAAGCC -ACGGAACTTCGAGTTCCTATAGCC -ACGGAACTTCGAGTTCCTTAACCG -ACGGAACTTCGAGTTCCTATGCCA -ACGGAACTTCGATTTCGGGGAAAC -ACGGAACTTCGATTTCGGAACACC -ACGGAACTTCGATTTCGGATCGAG -ACGGAACTTCGATTTCGGCTCCTT -ACGGAACTTCGATTTCGGCCTGTT -ACGGAACTTCGATTTCGGCGGTTT -ACGGAACTTCGATTTCGGGTGGTT -ACGGAACTTCGATTTCGGGCCTTT -ACGGAACTTCGATTTCGGGGTCTT -ACGGAACTTCGATTTCGGACGCTT -ACGGAACTTCGATTTCGGAGCGTT -ACGGAACTTCGATTTCGGTTCGTC -ACGGAACTTCGATTTCGGTCTCTC -ACGGAACTTCGATTTCGGTGGATC -ACGGAACTTCGATTTCGGCACTTC -ACGGAACTTCGATTTCGGGTACTC -ACGGAACTTCGATTTCGGGATGTC -ACGGAACTTCGATTTCGGACAGTC -ACGGAACTTCGATTTCGGTTGCTG -ACGGAACTTCGATTTCGGTCCATG -ACGGAACTTCGATTTCGGTGTGTG -ACGGAACTTCGATTTCGGCTAGTG -ACGGAACTTCGATTTCGGCATCTG -ACGGAACTTCGATTTCGGGAGTTG -ACGGAACTTCGATTTCGGAGACTG -ACGGAACTTCGATTTCGGTCGGTA -ACGGAACTTCGATTTCGGTGCCTA -ACGGAACTTCGATTTCGGCCACTA -ACGGAACTTCGATTTCGGGGAGTA -ACGGAACTTCGATTTCGGTCGTCT -ACGGAACTTCGATTTCGGTGCACT -ACGGAACTTCGATTTCGGCTGACT -ACGGAACTTCGATTTCGGCAACCT -ACGGAACTTCGATTTCGGGCTACT -ACGGAACTTCGATTTCGGGGATCT -ACGGAACTTCGATTTCGGAAGGCT -ACGGAACTTCGATTTCGGTCAACC -ACGGAACTTCGATTTCGGTGTTCC -ACGGAACTTCGATTTCGGATTCCC -ACGGAACTTCGATTTCGGTTCTCG -ACGGAACTTCGATTTCGGTAGACG -ACGGAACTTCGATTTCGGGTAACG -ACGGAACTTCGATTTCGGACTTCG -ACGGAACTTCGATTTCGGTACGCA -ACGGAACTTCGATTTCGGCTTGCA -ACGGAACTTCGATTTCGGCGAACA -ACGGAACTTCGATTTCGGCAGTCA -ACGGAACTTCGATTTCGGGATCCA -ACGGAACTTCGATTTCGGACGACA -ACGGAACTTCGATTTCGGAGCTCA -ACGGAACTTCGATTTCGGTCACGT -ACGGAACTTCGATTTCGGCGTAGT -ACGGAACTTCGATTTCGGGTCAGT -ACGGAACTTCGATTTCGGGAAGGT -ACGGAACTTCGATTTCGGAACCGT -ACGGAACTTCGATTTCGGTTGTGC -ACGGAACTTCGATTTCGGCTAAGC -ACGGAACTTCGATTTCGGACTAGC -ACGGAACTTCGATTTCGGAGATGC -ACGGAACTTCGATTTCGGTGAAGG -ACGGAACTTCGATTTCGGCAATGG -ACGGAACTTCGATTTCGGATGAGG -ACGGAACTTCGATTTCGGAATGGG -ACGGAACTTCGATTTCGGTCCTGA -ACGGAACTTCGATTTCGGTAGCGA -ACGGAACTTCGATTTCGGCACAGA -ACGGAACTTCGATTTCGGGCAAGA -ACGGAACTTCGATTTCGGGGTTGA -ACGGAACTTCGATTTCGGTCCGAT -ACGGAACTTCGATTTCGGTGGCAT -ACGGAACTTCGATTTCGGCGAGAT -ACGGAACTTCGATTTCGGTACCAC -ACGGAACTTCGATTTCGGCAGAAC -ACGGAACTTCGATTTCGGGTCTAC -ACGGAACTTCGATTTCGGACGTAC -ACGGAACTTCGATTTCGGAGTGAC -ACGGAACTTCGATTTCGGCTGTAG -ACGGAACTTCGATTTCGGCCTAAG -ACGGAACTTCGATTTCGGGTTCAG -ACGGAACTTCGATTTCGGGCATAG -ACGGAACTTCGATTTCGGGACAAG -ACGGAACTTCGATTTCGGAAGCAG -ACGGAACTTCGATTTCGGCGTCAA -ACGGAACTTCGATTTCGGGCTGAA -ACGGAACTTCGATTTCGGAGTACG -ACGGAACTTCGATTTCGGATCCGA -ACGGAACTTCGATTTCGGATGGGA -ACGGAACTTCGATTTCGGGTGCAA -ACGGAACTTCGATTTCGGGAGGAA -ACGGAACTTCGATTTCGGCAGGTA -ACGGAACTTCGATTTCGGGACTCT -ACGGAACTTCGATTTCGGAGTCCT -ACGGAACTTCGATTTCGGTAAGCC -ACGGAACTTCGATTTCGGATAGCC -ACGGAACTTCGATTTCGGTAACCG -ACGGAACTTCGATTTCGGATGCCA -ACGGAACTTCGAGTTGTGGGAAAC -ACGGAACTTCGAGTTGTGAACACC -ACGGAACTTCGAGTTGTGATCGAG -ACGGAACTTCGAGTTGTGCTCCTT -ACGGAACTTCGAGTTGTGCCTGTT -ACGGAACTTCGAGTTGTGCGGTTT -ACGGAACTTCGAGTTGTGGTGGTT -ACGGAACTTCGAGTTGTGGCCTTT -ACGGAACTTCGAGTTGTGGGTCTT -ACGGAACTTCGAGTTGTGACGCTT -ACGGAACTTCGAGTTGTGAGCGTT -ACGGAACTTCGAGTTGTGTTCGTC -ACGGAACTTCGAGTTGTGTCTCTC -ACGGAACTTCGAGTTGTGTGGATC -ACGGAACTTCGAGTTGTGCACTTC -ACGGAACTTCGAGTTGTGGTACTC -ACGGAACTTCGAGTTGTGGATGTC -ACGGAACTTCGAGTTGTGACAGTC -ACGGAACTTCGAGTTGTGTTGCTG -ACGGAACTTCGAGTTGTGTCCATG -ACGGAACTTCGAGTTGTGTGTGTG -ACGGAACTTCGAGTTGTGCTAGTG -ACGGAACTTCGAGTTGTGCATCTG -ACGGAACTTCGAGTTGTGGAGTTG -ACGGAACTTCGAGTTGTGAGACTG -ACGGAACTTCGAGTTGTGTCGGTA -ACGGAACTTCGAGTTGTGTGCCTA -ACGGAACTTCGAGTTGTGCCACTA -ACGGAACTTCGAGTTGTGGGAGTA -ACGGAACTTCGAGTTGTGTCGTCT -ACGGAACTTCGAGTTGTGTGCACT -ACGGAACTTCGAGTTGTGCTGACT -ACGGAACTTCGAGTTGTGCAACCT -ACGGAACTTCGAGTTGTGGCTACT -ACGGAACTTCGAGTTGTGGGATCT -ACGGAACTTCGAGTTGTGAAGGCT -ACGGAACTTCGAGTTGTGTCAACC -ACGGAACTTCGAGTTGTGTGTTCC -ACGGAACTTCGAGTTGTGATTCCC -ACGGAACTTCGAGTTGTGTTCTCG -ACGGAACTTCGAGTTGTGTAGACG -ACGGAACTTCGAGTTGTGGTAACG -ACGGAACTTCGAGTTGTGACTTCG -ACGGAACTTCGAGTTGTGTACGCA -ACGGAACTTCGAGTTGTGCTTGCA -ACGGAACTTCGAGTTGTGCGAACA -ACGGAACTTCGAGTTGTGCAGTCA -ACGGAACTTCGAGTTGTGGATCCA -ACGGAACTTCGAGTTGTGACGACA -ACGGAACTTCGAGTTGTGAGCTCA -ACGGAACTTCGAGTTGTGTCACGT -ACGGAACTTCGAGTTGTGCGTAGT -ACGGAACTTCGAGTTGTGGTCAGT -ACGGAACTTCGAGTTGTGGAAGGT -ACGGAACTTCGAGTTGTGAACCGT -ACGGAACTTCGAGTTGTGTTGTGC -ACGGAACTTCGAGTTGTGCTAAGC -ACGGAACTTCGAGTTGTGACTAGC -ACGGAACTTCGAGTTGTGAGATGC -ACGGAACTTCGAGTTGTGTGAAGG -ACGGAACTTCGAGTTGTGCAATGG -ACGGAACTTCGAGTTGTGATGAGG -ACGGAACTTCGAGTTGTGAATGGG -ACGGAACTTCGAGTTGTGTCCTGA -ACGGAACTTCGAGTTGTGTAGCGA -ACGGAACTTCGAGTTGTGCACAGA -ACGGAACTTCGAGTTGTGGCAAGA -ACGGAACTTCGAGTTGTGGGTTGA -ACGGAACTTCGAGTTGTGTCCGAT -ACGGAACTTCGAGTTGTGTGGCAT -ACGGAACTTCGAGTTGTGCGAGAT -ACGGAACTTCGAGTTGTGTACCAC -ACGGAACTTCGAGTTGTGCAGAAC -ACGGAACTTCGAGTTGTGGTCTAC -ACGGAACTTCGAGTTGTGACGTAC -ACGGAACTTCGAGTTGTGAGTGAC -ACGGAACTTCGAGTTGTGCTGTAG -ACGGAACTTCGAGTTGTGCCTAAG -ACGGAACTTCGAGTTGTGGTTCAG -ACGGAACTTCGAGTTGTGGCATAG -ACGGAACTTCGAGTTGTGGACAAG -ACGGAACTTCGAGTTGTGAAGCAG -ACGGAACTTCGAGTTGTGCGTCAA -ACGGAACTTCGAGTTGTGGCTGAA -ACGGAACTTCGAGTTGTGAGTACG -ACGGAACTTCGAGTTGTGATCCGA -ACGGAACTTCGAGTTGTGATGGGA -ACGGAACTTCGAGTTGTGGTGCAA -ACGGAACTTCGAGTTGTGGAGGAA -ACGGAACTTCGAGTTGTGCAGGTA -ACGGAACTTCGAGTTGTGGACTCT -ACGGAACTTCGAGTTGTGAGTCCT -ACGGAACTTCGAGTTGTGTAAGCC -ACGGAACTTCGAGTTGTGATAGCC -ACGGAACTTCGAGTTGTGTAACCG -ACGGAACTTCGAGTTGTGATGCCA -ACGGAACTTCGATTTGCCGGAAAC -ACGGAACTTCGATTTGCCAACACC -ACGGAACTTCGATTTGCCATCGAG -ACGGAACTTCGATTTGCCCTCCTT -ACGGAACTTCGATTTGCCCCTGTT -ACGGAACTTCGATTTGCCCGGTTT -ACGGAACTTCGATTTGCCGTGGTT -ACGGAACTTCGATTTGCCGCCTTT -ACGGAACTTCGATTTGCCGGTCTT -ACGGAACTTCGATTTGCCACGCTT -ACGGAACTTCGATTTGCCAGCGTT -ACGGAACTTCGATTTGCCTTCGTC -ACGGAACTTCGATTTGCCTCTCTC -ACGGAACTTCGATTTGCCTGGATC -ACGGAACTTCGATTTGCCCACTTC -ACGGAACTTCGATTTGCCGTACTC -ACGGAACTTCGATTTGCCGATGTC -ACGGAACTTCGATTTGCCACAGTC -ACGGAACTTCGATTTGCCTTGCTG -ACGGAACTTCGATTTGCCTCCATG -ACGGAACTTCGATTTGCCTGTGTG -ACGGAACTTCGATTTGCCCTAGTG -ACGGAACTTCGATTTGCCCATCTG -ACGGAACTTCGATTTGCCGAGTTG -ACGGAACTTCGATTTGCCAGACTG -ACGGAACTTCGATTTGCCTCGGTA -ACGGAACTTCGATTTGCCTGCCTA -ACGGAACTTCGATTTGCCCCACTA -ACGGAACTTCGATTTGCCGGAGTA -ACGGAACTTCGATTTGCCTCGTCT -ACGGAACTTCGATTTGCCTGCACT -ACGGAACTTCGATTTGCCCTGACT -ACGGAACTTCGATTTGCCCAACCT -ACGGAACTTCGATTTGCCGCTACT -ACGGAACTTCGATTTGCCGGATCT -ACGGAACTTCGATTTGCCAAGGCT -ACGGAACTTCGATTTGCCTCAACC -ACGGAACTTCGATTTGCCTGTTCC -ACGGAACTTCGATTTGCCATTCCC -ACGGAACTTCGATTTGCCTTCTCG -ACGGAACTTCGATTTGCCTAGACG -ACGGAACTTCGATTTGCCGTAACG -ACGGAACTTCGATTTGCCACTTCG -ACGGAACTTCGATTTGCCTACGCA -ACGGAACTTCGATTTGCCCTTGCA -ACGGAACTTCGATTTGCCCGAACA -ACGGAACTTCGATTTGCCCAGTCA -ACGGAACTTCGATTTGCCGATCCA -ACGGAACTTCGATTTGCCACGACA -ACGGAACTTCGATTTGCCAGCTCA -ACGGAACTTCGATTTGCCTCACGT -ACGGAACTTCGATTTGCCCGTAGT -ACGGAACTTCGATTTGCCGTCAGT -ACGGAACTTCGATTTGCCGAAGGT -ACGGAACTTCGATTTGCCAACCGT -ACGGAACTTCGATTTGCCTTGTGC -ACGGAACTTCGATTTGCCCTAAGC -ACGGAACTTCGATTTGCCACTAGC -ACGGAACTTCGATTTGCCAGATGC -ACGGAACTTCGATTTGCCTGAAGG -ACGGAACTTCGATTTGCCCAATGG -ACGGAACTTCGATTTGCCATGAGG -ACGGAACTTCGATTTGCCAATGGG -ACGGAACTTCGATTTGCCTCCTGA -ACGGAACTTCGATTTGCCTAGCGA -ACGGAACTTCGATTTGCCCACAGA -ACGGAACTTCGATTTGCCGCAAGA -ACGGAACTTCGATTTGCCGGTTGA -ACGGAACTTCGATTTGCCTCCGAT -ACGGAACTTCGATTTGCCTGGCAT -ACGGAACTTCGATTTGCCCGAGAT -ACGGAACTTCGATTTGCCTACCAC -ACGGAACTTCGATTTGCCCAGAAC -ACGGAACTTCGATTTGCCGTCTAC -ACGGAACTTCGATTTGCCACGTAC -ACGGAACTTCGATTTGCCAGTGAC -ACGGAACTTCGATTTGCCCTGTAG -ACGGAACTTCGATTTGCCCCTAAG -ACGGAACTTCGATTTGCCGTTCAG -ACGGAACTTCGATTTGCCGCATAG -ACGGAACTTCGATTTGCCGACAAG -ACGGAACTTCGATTTGCCAAGCAG -ACGGAACTTCGATTTGCCCGTCAA -ACGGAACTTCGATTTGCCGCTGAA -ACGGAACTTCGATTTGCCAGTACG -ACGGAACTTCGATTTGCCATCCGA -ACGGAACTTCGATTTGCCATGGGA -ACGGAACTTCGATTTGCCGTGCAA -ACGGAACTTCGATTTGCCGAGGAA -ACGGAACTTCGATTTGCCCAGGTA -ACGGAACTTCGATTTGCCGACTCT -ACGGAACTTCGATTTGCCAGTCCT -ACGGAACTTCGATTTGCCTAAGCC -ACGGAACTTCGATTTGCCATAGCC -ACGGAACTTCGATTTGCCTAACCG -ACGGAACTTCGATTTGCCATGCCA -ACGGAACTTCGACTTGGTGGAAAC -ACGGAACTTCGACTTGGTAACACC -ACGGAACTTCGACTTGGTATCGAG -ACGGAACTTCGACTTGGTCTCCTT -ACGGAACTTCGACTTGGTCCTGTT -ACGGAACTTCGACTTGGTCGGTTT -ACGGAACTTCGACTTGGTGTGGTT -ACGGAACTTCGACTTGGTGCCTTT -ACGGAACTTCGACTTGGTGGTCTT -ACGGAACTTCGACTTGGTACGCTT -ACGGAACTTCGACTTGGTAGCGTT -ACGGAACTTCGACTTGGTTTCGTC -ACGGAACTTCGACTTGGTTCTCTC -ACGGAACTTCGACTTGGTTGGATC -ACGGAACTTCGACTTGGTCACTTC -ACGGAACTTCGACTTGGTGTACTC -ACGGAACTTCGACTTGGTGATGTC -ACGGAACTTCGACTTGGTACAGTC -ACGGAACTTCGACTTGGTTTGCTG -ACGGAACTTCGACTTGGTTCCATG -ACGGAACTTCGACTTGGTTGTGTG -ACGGAACTTCGACTTGGTCTAGTG -ACGGAACTTCGACTTGGTCATCTG -ACGGAACTTCGACTTGGTGAGTTG -ACGGAACTTCGACTTGGTAGACTG -ACGGAACTTCGACTTGGTTCGGTA -ACGGAACTTCGACTTGGTTGCCTA -ACGGAACTTCGACTTGGTCCACTA -ACGGAACTTCGACTTGGTGGAGTA -ACGGAACTTCGACTTGGTTCGTCT -ACGGAACTTCGACTTGGTTGCACT -ACGGAACTTCGACTTGGTCTGACT -ACGGAACTTCGACTTGGTCAACCT -ACGGAACTTCGACTTGGTGCTACT -ACGGAACTTCGACTTGGTGGATCT -ACGGAACTTCGACTTGGTAAGGCT -ACGGAACTTCGACTTGGTTCAACC -ACGGAACTTCGACTTGGTTGTTCC -ACGGAACTTCGACTTGGTATTCCC -ACGGAACTTCGACTTGGTTTCTCG -ACGGAACTTCGACTTGGTTAGACG -ACGGAACTTCGACTTGGTGTAACG -ACGGAACTTCGACTTGGTACTTCG -ACGGAACTTCGACTTGGTTACGCA -ACGGAACTTCGACTTGGTCTTGCA -ACGGAACTTCGACTTGGTCGAACA -ACGGAACTTCGACTTGGTCAGTCA -ACGGAACTTCGACTTGGTGATCCA -ACGGAACTTCGACTTGGTACGACA -ACGGAACTTCGACTTGGTAGCTCA -ACGGAACTTCGACTTGGTTCACGT -ACGGAACTTCGACTTGGTCGTAGT -ACGGAACTTCGACTTGGTGTCAGT -ACGGAACTTCGACTTGGTGAAGGT -ACGGAACTTCGACTTGGTAACCGT -ACGGAACTTCGACTTGGTTTGTGC -ACGGAACTTCGACTTGGTCTAAGC -ACGGAACTTCGACTTGGTACTAGC -ACGGAACTTCGACTTGGTAGATGC -ACGGAACTTCGACTTGGTTGAAGG -ACGGAACTTCGACTTGGTCAATGG -ACGGAACTTCGACTTGGTATGAGG -ACGGAACTTCGACTTGGTAATGGG -ACGGAACTTCGACTTGGTTCCTGA -ACGGAACTTCGACTTGGTTAGCGA -ACGGAACTTCGACTTGGTCACAGA -ACGGAACTTCGACTTGGTGCAAGA -ACGGAACTTCGACTTGGTGGTTGA -ACGGAACTTCGACTTGGTTCCGAT -ACGGAACTTCGACTTGGTTGGCAT -ACGGAACTTCGACTTGGTCGAGAT -ACGGAACTTCGACTTGGTTACCAC -ACGGAACTTCGACTTGGTCAGAAC -ACGGAACTTCGACTTGGTGTCTAC -ACGGAACTTCGACTTGGTACGTAC -ACGGAACTTCGACTTGGTAGTGAC -ACGGAACTTCGACTTGGTCTGTAG -ACGGAACTTCGACTTGGTCCTAAG -ACGGAACTTCGACTTGGTGTTCAG -ACGGAACTTCGACTTGGTGCATAG -ACGGAACTTCGACTTGGTGACAAG -ACGGAACTTCGACTTGGTAAGCAG -ACGGAACTTCGACTTGGTCGTCAA -ACGGAACTTCGACTTGGTGCTGAA -ACGGAACTTCGACTTGGTAGTACG -ACGGAACTTCGACTTGGTATCCGA -ACGGAACTTCGACTTGGTATGGGA -ACGGAACTTCGACTTGGTGTGCAA -ACGGAACTTCGACTTGGTGAGGAA -ACGGAACTTCGACTTGGTCAGGTA -ACGGAACTTCGACTTGGTGACTCT -ACGGAACTTCGACTTGGTAGTCCT -ACGGAACTTCGACTTGGTTAAGCC -ACGGAACTTCGACTTGGTATAGCC -ACGGAACTTCGACTTGGTTAACCG -ACGGAACTTCGACTTGGTATGCCA -ACGGAACTTCGACTTACGGGAAAC -ACGGAACTTCGACTTACGAACACC -ACGGAACTTCGACTTACGATCGAG -ACGGAACTTCGACTTACGCTCCTT -ACGGAACTTCGACTTACGCCTGTT -ACGGAACTTCGACTTACGCGGTTT -ACGGAACTTCGACTTACGGTGGTT -ACGGAACTTCGACTTACGGCCTTT -ACGGAACTTCGACTTACGGGTCTT -ACGGAACTTCGACTTACGACGCTT -ACGGAACTTCGACTTACGAGCGTT -ACGGAACTTCGACTTACGTTCGTC -ACGGAACTTCGACTTACGTCTCTC -ACGGAACTTCGACTTACGTGGATC -ACGGAACTTCGACTTACGCACTTC -ACGGAACTTCGACTTACGGTACTC -ACGGAACTTCGACTTACGGATGTC -ACGGAACTTCGACTTACGACAGTC -ACGGAACTTCGACTTACGTTGCTG -ACGGAACTTCGACTTACGTCCATG -ACGGAACTTCGACTTACGTGTGTG -ACGGAACTTCGACTTACGCTAGTG -ACGGAACTTCGACTTACGCATCTG -ACGGAACTTCGACTTACGGAGTTG -ACGGAACTTCGACTTACGAGACTG -ACGGAACTTCGACTTACGTCGGTA -ACGGAACTTCGACTTACGTGCCTA -ACGGAACTTCGACTTACGCCACTA -ACGGAACTTCGACTTACGGGAGTA -ACGGAACTTCGACTTACGTCGTCT -ACGGAACTTCGACTTACGTGCACT -ACGGAACTTCGACTTACGCTGACT -ACGGAACTTCGACTTACGCAACCT -ACGGAACTTCGACTTACGGCTACT -ACGGAACTTCGACTTACGGGATCT -ACGGAACTTCGACTTACGAAGGCT -ACGGAACTTCGACTTACGTCAACC -ACGGAACTTCGACTTACGTGTTCC -ACGGAACTTCGACTTACGATTCCC -ACGGAACTTCGACTTACGTTCTCG -ACGGAACTTCGACTTACGTAGACG -ACGGAACTTCGACTTACGGTAACG -ACGGAACTTCGACTTACGACTTCG -ACGGAACTTCGACTTACGTACGCA -ACGGAACTTCGACTTACGCTTGCA -ACGGAACTTCGACTTACGCGAACA -ACGGAACTTCGACTTACGCAGTCA -ACGGAACTTCGACTTACGGATCCA -ACGGAACTTCGACTTACGACGACA -ACGGAACTTCGACTTACGAGCTCA -ACGGAACTTCGACTTACGTCACGT -ACGGAACTTCGACTTACGCGTAGT -ACGGAACTTCGACTTACGGTCAGT -ACGGAACTTCGACTTACGGAAGGT -ACGGAACTTCGACTTACGAACCGT -ACGGAACTTCGACTTACGTTGTGC -ACGGAACTTCGACTTACGCTAAGC -ACGGAACTTCGACTTACGACTAGC -ACGGAACTTCGACTTACGAGATGC -ACGGAACTTCGACTTACGTGAAGG -ACGGAACTTCGACTTACGCAATGG -ACGGAACTTCGACTTACGATGAGG -ACGGAACTTCGACTTACGAATGGG -ACGGAACTTCGACTTACGTCCTGA -ACGGAACTTCGACTTACGTAGCGA -ACGGAACTTCGACTTACGCACAGA -ACGGAACTTCGACTTACGGCAAGA -ACGGAACTTCGACTTACGGGTTGA -ACGGAACTTCGACTTACGTCCGAT -ACGGAACTTCGACTTACGTGGCAT -ACGGAACTTCGACTTACGCGAGAT -ACGGAACTTCGACTTACGTACCAC -ACGGAACTTCGACTTACGCAGAAC -ACGGAACTTCGACTTACGGTCTAC -ACGGAACTTCGACTTACGACGTAC -ACGGAACTTCGACTTACGAGTGAC -ACGGAACTTCGACTTACGCTGTAG -ACGGAACTTCGACTTACGCCTAAG -ACGGAACTTCGACTTACGGTTCAG -ACGGAACTTCGACTTACGGCATAG -ACGGAACTTCGACTTACGGACAAG -ACGGAACTTCGACTTACGAAGCAG -ACGGAACTTCGACTTACGCGTCAA -ACGGAACTTCGACTTACGGCTGAA -ACGGAACTTCGACTTACGAGTACG -ACGGAACTTCGACTTACGATCCGA -ACGGAACTTCGACTTACGATGGGA -ACGGAACTTCGACTTACGGTGCAA -ACGGAACTTCGACTTACGGAGGAA -ACGGAACTTCGACTTACGCAGGTA -ACGGAACTTCGACTTACGGACTCT -ACGGAACTTCGACTTACGAGTCCT -ACGGAACTTCGACTTACGTAAGCC -ACGGAACTTCGACTTACGATAGCC -ACGGAACTTCGACTTACGTAACCG -ACGGAACTTCGACTTACGATGCCA -ACGGAACTTCGAGTTAGCGGAAAC -ACGGAACTTCGAGTTAGCAACACC -ACGGAACTTCGAGTTAGCATCGAG -ACGGAACTTCGAGTTAGCCTCCTT -ACGGAACTTCGAGTTAGCCCTGTT -ACGGAACTTCGAGTTAGCCGGTTT -ACGGAACTTCGAGTTAGCGTGGTT -ACGGAACTTCGAGTTAGCGCCTTT -ACGGAACTTCGAGTTAGCGGTCTT -ACGGAACTTCGAGTTAGCACGCTT -ACGGAACTTCGAGTTAGCAGCGTT -ACGGAACTTCGAGTTAGCTTCGTC -ACGGAACTTCGAGTTAGCTCTCTC -ACGGAACTTCGAGTTAGCTGGATC -ACGGAACTTCGAGTTAGCCACTTC -ACGGAACTTCGAGTTAGCGTACTC -ACGGAACTTCGAGTTAGCGATGTC -ACGGAACTTCGAGTTAGCACAGTC -ACGGAACTTCGAGTTAGCTTGCTG -ACGGAACTTCGAGTTAGCTCCATG -ACGGAACTTCGAGTTAGCTGTGTG -ACGGAACTTCGAGTTAGCCTAGTG -ACGGAACTTCGAGTTAGCCATCTG -ACGGAACTTCGAGTTAGCGAGTTG -ACGGAACTTCGAGTTAGCAGACTG -ACGGAACTTCGAGTTAGCTCGGTA -ACGGAACTTCGAGTTAGCTGCCTA -ACGGAACTTCGAGTTAGCCCACTA -ACGGAACTTCGAGTTAGCGGAGTA -ACGGAACTTCGAGTTAGCTCGTCT -ACGGAACTTCGAGTTAGCTGCACT -ACGGAACTTCGAGTTAGCCTGACT -ACGGAACTTCGAGTTAGCCAACCT -ACGGAACTTCGAGTTAGCGCTACT -ACGGAACTTCGAGTTAGCGGATCT -ACGGAACTTCGAGTTAGCAAGGCT -ACGGAACTTCGAGTTAGCTCAACC -ACGGAACTTCGAGTTAGCTGTTCC -ACGGAACTTCGAGTTAGCATTCCC -ACGGAACTTCGAGTTAGCTTCTCG -ACGGAACTTCGAGTTAGCTAGACG -ACGGAACTTCGAGTTAGCGTAACG -ACGGAACTTCGAGTTAGCACTTCG -ACGGAACTTCGAGTTAGCTACGCA -ACGGAACTTCGAGTTAGCCTTGCA -ACGGAACTTCGAGTTAGCCGAACA -ACGGAACTTCGAGTTAGCCAGTCA -ACGGAACTTCGAGTTAGCGATCCA -ACGGAACTTCGAGTTAGCACGACA -ACGGAACTTCGAGTTAGCAGCTCA -ACGGAACTTCGAGTTAGCTCACGT -ACGGAACTTCGAGTTAGCCGTAGT -ACGGAACTTCGAGTTAGCGTCAGT -ACGGAACTTCGAGTTAGCGAAGGT -ACGGAACTTCGAGTTAGCAACCGT -ACGGAACTTCGAGTTAGCTTGTGC -ACGGAACTTCGAGTTAGCCTAAGC -ACGGAACTTCGAGTTAGCACTAGC -ACGGAACTTCGAGTTAGCAGATGC -ACGGAACTTCGAGTTAGCTGAAGG -ACGGAACTTCGAGTTAGCCAATGG -ACGGAACTTCGAGTTAGCATGAGG -ACGGAACTTCGAGTTAGCAATGGG -ACGGAACTTCGAGTTAGCTCCTGA -ACGGAACTTCGAGTTAGCTAGCGA -ACGGAACTTCGAGTTAGCCACAGA -ACGGAACTTCGAGTTAGCGCAAGA -ACGGAACTTCGAGTTAGCGGTTGA -ACGGAACTTCGAGTTAGCTCCGAT -ACGGAACTTCGAGTTAGCTGGCAT -ACGGAACTTCGAGTTAGCCGAGAT -ACGGAACTTCGAGTTAGCTACCAC -ACGGAACTTCGAGTTAGCCAGAAC -ACGGAACTTCGAGTTAGCGTCTAC -ACGGAACTTCGAGTTAGCACGTAC -ACGGAACTTCGAGTTAGCAGTGAC -ACGGAACTTCGAGTTAGCCTGTAG -ACGGAACTTCGAGTTAGCCCTAAG -ACGGAACTTCGAGTTAGCGTTCAG -ACGGAACTTCGAGTTAGCGCATAG -ACGGAACTTCGAGTTAGCGACAAG -ACGGAACTTCGAGTTAGCAAGCAG -ACGGAACTTCGAGTTAGCCGTCAA -ACGGAACTTCGAGTTAGCGCTGAA -ACGGAACTTCGAGTTAGCAGTACG -ACGGAACTTCGAGTTAGCATCCGA -ACGGAACTTCGAGTTAGCATGGGA -ACGGAACTTCGAGTTAGCGTGCAA -ACGGAACTTCGAGTTAGCGAGGAA -ACGGAACTTCGAGTTAGCCAGGTA -ACGGAACTTCGAGTTAGCGACTCT -ACGGAACTTCGAGTTAGCAGTCCT -ACGGAACTTCGAGTTAGCTAAGCC -ACGGAACTTCGAGTTAGCATAGCC -ACGGAACTTCGAGTTAGCTAACCG -ACGGAACTTCGAGTTAGCATGCCA -ACGGAACTTCGAGTCTTCGGAAAC -ACGGAACTTCGAGTCTTCAACACC -ACGGAACTTCGAGTCTTCATCGAG -ACGGAACTTCGAGTCTTCCTCCTT -ACGGAACTTCGAGTCTTCCCTGTT -ACGGAACTTCGAGTCTTCCGGTTT -ACGGAACTTCGAGTCTTCGTGGTT -ACGGAACTTCGAGTCTTCGCCTTT -ACGGAACTTCGAGTCTTCGGTCTT -ACGGAACTTCGAGTCTTCACGCTT -ACGGAACTTCGAGTCTTCAGCGTT -ACGGAACTTCGAGTCTTCTTCGTC -ACGGAACTTCGAGTCTTCTCTCTC -ACGGAACTTCGAGTCTTCTGGATC -ACGGAACTTCGAGTCTTCCACTTC -ACGGAACTTCGAGTCTTCGTACTC -ACGGAACTTCGAGTCTTCGATGTC -ACGGAACTTCGAGTCTTCACAGTC -ACGGAACTTCGAGTCTTCTTGCTG -ACGGAACTTCGAGTCTTCTCCATG -ACGGAACTTCGAGTCTTCTGTGTG -ACGGAACTTCGAGTCTTCCTAGTG -ACGGAACTTCGAGTCTTCCATCTG -ACGGAACTTCGAGTCTTCGAGTTG -ACGGAACTTCGAGTCTTCAGACTG -ACGGAACTTCGAGTCTTCTCGGTA -ACGGAACTTCGAGTCTTCTGCCTA -ACGGAACTTCGAGTCTTCCCACTA -ACGGAACTTCGAGTCTTCGGAGTA -ACGGAACTTCGAGTCTTCTCGTCT -ACGGAACTTCGAGTCTTCTGCACT -ACGGAACTTCGAGTCTTCCTGACT -ACGGAACTTCGAGTCTTCCAACCT -ACGGAACTTCGAGTCTTCGCTACT -ACGGAACTTCGAGTCTTCGGATCT -ACGGAACTTCGAGTCTTCAAGGCT -ACGGAACTTCGAGTCTTCTCAACC -ACGGAACTTCGAGTCTTCTGTTCC -ACGGAACTTCGAGTCTTCATTCCC -ACGGAACTTCGAGTCTTCTTCTCG -ACGGAACTTCGAGTCTTCTAGACG -ACGGAACTTCGAGTCTTCGTAACG -ACGGAACTTCGAGTCTTCACTTCG -ACGGAACTTCGAGTCTTCTACGCA -ACGGAACTTCGAGTCTTCCTTGCA -ACGGAACTTCGAGTCTTCCGAACA -ACGGAACTTCGAGTCTTCCAGTCA -ACGGAACTTCGAGTCTTCGATCCA -ACGGAACTTCGAGTCTTCACGACA -ACGGAACTTCGAGTCTTCAGCTCA -ACGGAACTTCGAGTCTTCTCACGT -ACGGAACTTCGAGTCTTCCGTAGT -ACGGAACTTCGAGTCTTCGTCAGT -ACGGAACTTCGAGTCTTCGAAGGT -ACGGAACTTCGAGTCTTCAACCGT -ACGGAACTTCGAGTCTTCTTGTGC -ACGGAACTTCGAGTCTTCCTAAGC -ACGGAACTTCGAGTCTTCACTAGC -ACGGAACTTCGAGTCTTCAGATGC -ACGGAACTTCGAGTCTTCTGAAGG -ACGGAACTTCGAGTCTTCCAATGG -ACGGAACTTCGAGTCTTCATGAGG -ACGGAACTTCGAGTCTTCAATGGG -ACGGAACTTCGAGTCTTCTCCTGA -ACGGAACTTCGAGTCTTCTAGCGA -ACGGAACTTCGAGTCTTCCACAGA -ACGGAACTTCGAGTCTTCGCAAGA -ACGGAACTTCGAGTCTTCGGTTGA -ACGGAACTTCGAGTCTTCTCCGAT -ACGGAACTTCGAGTCTTCTGGCAT -ACGGAACTTCGAGTCTTCCGAGAT -ACGGAACTTCGAGTCTTCTACCAC -ACGGAACTTCGAGTCTTCCAGAAC -ACGGAACTTCGAGTCTTCGTCTAC -ACGGAACTTCGAGTCTTCACGTAC -ACGGAACTTCGAGTCTTCAGTGAC -ACGGAACTTCGAGTCTTCCTGTAG -ACGGAACTTCGAGTCTTCCCTAAG -ACGGAACTTCGAGTCTTCGTTCAG -ACGGAACTTCGAGTCTTCGCATAG -ACGGAACTTCGAGTCTTCGACAAG -ACGGAACTTCGAGTCTTCAAGCAG -ACGGAACTTCGAGTCTTCCGTCAA -ACGGAACTTCGAGTCTTCGCTGAA -ACGGAACTTCGAGTCTTCAGTACG -ACGGAACTTCGAGTCTTCATCCGA -ACGGAACTTCGAGTCTTCATGGGA -ACGGAACTTCGAGTCTTCGTGCAA -ACGGAACTTCGAGTCTTCGAGGAA -ACGGAACTTCGAGTCTTCCAGGTA -ACGGAACTTCGAGTCTTCGACTCT -ACGGAACTTCGAGTCTTCAGTCCT -ACGGAACTTCGAGTCTTCTAAGCC -ACGGAACTTCGAGTCTTCATAGCC -ACGGAACTTCGAGTCTTCTAACCG -ACGGAACTTCGAGTCTTCATGCCA -ACGGAACTTCGACTCTCTGGAAAC -ACGGAACTTCGACTCTCTAACACC -ACGGAACTTCGACTCTCTATCGAG -ACGGAACTTCGACTCTCTCTCCTT -ACGGAACTTCGACTCTCTCCTGTT -ACGGAACTTCGACTCTCTCGGTTT -ACGGAACTTCGACTCTCTGTGGTT -ACGGAACTTCGACTCTCTGCCTTT -ACGGAACTTCGACTCTCTGGTCTT -ACGGAACTTCGACTCTCTACGCTT -ACGGAACTTCGACTCTCTAGCGTT -ACGGAACTTCGACTCTCTTTCGTC -ACGGAACTTCGACTCTCTTCTCTC -ACGGAACTTCGACTCTCTTGGATC -ACGGAACTTCGACTCTCTCACTTC -ACGGAACTTCGACTCTCTGTACTC -ACGGAACTTCGACTCTCTGATGTC -ACGGAACTTCGACTCTCTACAGTC -ACGGAACTTCGACTCTCTTTGCTG -ACGGAACTTCGACTCTCTTCCATG -ACGGAACTTCGACTCTCTTGTGTG -ACGGAACTTCGACTCTCTCTAGTG -ACGGAACTTCGACTCTCTCATCTG -ACGGAACTTCGACTCTCTGAGTTG -ACGGAACTTCGACTCTCTAGACTG -ACGGAACTTCGACTCTCTTCGGTA -ACGGAACTTCGACTCTCTTGCCTA -ACGGAACTTCGACTCTCTCCACTA -ACGGAACTTCGACTCTCTGGAGTA -ACGGAACTTCGACTCTCTTCGTCT -ACGGAACTTCGACTCTCTTGCACT -ACGGAACTTCGACTCTCTCTGACT -ACGGAACTTCGACTCTCTCAACCT -ACGGAACTTCGACTCTCTGCTACT -ACGGAACTTCGACTCTCTGGATCT -ACGGAACTTCGACTCTCTAAGGCT -ACGGAACTTCGACTCTCTTCAACC -ACGGAACTTCGACTCTCTTGTTCC -ACGGAACTTCGACTCTCTATTCCC -ACGGAACTTCGACTCTCTTTCTCG -ACGGAACTTCGACTCTCTTAGACG -ACGGAACTTCGACTCTCTGTAACG -ACGGAACTTCGACTCTCTACTTCG -ACGGAACTTCGACTCTCTTACGCA -ACGGAACTTCGACTCTCTCTTGCA -ACGGAACTTCGACTCTCTCGAACA -ACGGAACTTCGACTCTCTCAGTCA -ACGGAACTTCGACTCTCTGATCCA -ACGGAACTTCGACTCTCTACGACA -ACGGAACTTCGACTCTCTAGCTCA -ACGGAACTTCGACTCTCTTCACGT -ACGGAACTTCGACTCTCTCGTAGT -ACGGAACTTCGACTCTCTGTCAGT -ACGGAACTTCGACTCTCTGAAGGT -ACGGAACTTCGACTCTCTAACCGT -ACGGAACTTCGACTCTCTTTGTGC -ACGGAACTTCGACTCTCTCTAAGC -ACGGAACTTCGACTCTCTACTAGC -ACGGAACTTCGACTCTCTAGATGC -ACGGAACTTCGACTCTCTTGAAGG -ACGGAACTTCGACTCTCTCAATGG -ACGGAACTTCGACTCTCTATGAGG -ACGGAACTTCGACTCTCTAATGGG -ACGGAACTTCGACTCTCTTCCTGA -ACGGAACTTCGACTCTCTTAGCGA -ACGGAACTTCGACTCTCTCACAGA -ACGGAACTTCGACTCTCTGCAAGA -ACGGAACTTCGACTCTCTGGTTGA -ACGGAACTTCGACTCTCTTCCGAT -ACGGAACTTCGACTCTCTTGGCAT -ACGGAACTTCGACTCTCTCGAGAT -ACGGAACTTCGACTCTCTTACCAC -ACGGAACTTCGACTCTCTCAGAAC -ACGGAACTTCGACTCTCTGTCTAC -ACGGAACTTCGACTCTCTACGTAC -ACGGAACTTCGACTCTCTAGTGAC -ACGGAACTTCGACTCTCTCTGTAG -ACGGAACTTCGACTCTCTCCTAAG -ACGGAACTTCGACTCTCTGTTCAG -ACGGAACTTCGACTCTCTGCATAG -ACGGAACTTCGACTCTCTGACAAG -ACGGAACTTCGACTCTCTAAGCAG -ACGGAACTTCGACTCTCTCGTCAA -ACGGAACTTCGACTCTCTGCTGAA -ACGGAACTTCGACTCTCTAGTACG -ACGGAACTTCGACTCTCTATCCGA -ACGGAACTTCGACTCTCTATGGGA -ACGGAACTTCGACTCTCTGTGCAA -ACGGAACTTCGACTCTCTGAGGAA -ACGGAACTTCGACTCTCTCAGGTA -ACGGAACTTCGACTCTCTGACTCT -ACGGAACTTCGACTCTCTAGTCCT -ACGGAACTTCGACTCTCTTAAGCC -ACGGAACTTCGACTCTCTATAGCC -ACGGAACTTCGACTCTCTTAACCG -ACGGAACTTCGACTCTCTATGCCA -ACGGAACTTCGAATCTGGGGAAAC -ACGGAACTTCGAATCTGGAACACC -ACGGAACTTCGAATCTGGATCGAG -ACGGAACTTCGAATCTGGCTCCTT -ACGGAACTTCGAATCTGGCCTGTT -ACGGAACTTCGAATCTGGCGGTTT -ACGGAACTTCGAATCTGGGTGGTT -ACGGAACTTCGAATCTGGGCCTTT -ACGGAACTTCGAATCTGGGGTCTT -ACGGAACTTCGAATCTGGACGCTT -ACGGAACTTCGAATCTGGAGCGTT -ACGGAACTTCGAATCTGGTTCGTC -ACGGAACTTCGAATCTGGTCTCTC -ACGGAACTTCGAATCTGGTGGATC -ACGGAACTTCGAATCTGGCACTTC -ACGGAACTTCGAATCTGGGTACTC -ACGGAACTTCGAATCTGGGATGTC -ACGGAACTTCGAATCTGGACAGTC -ACGGAACTTCGAATCTGGTTGCTG -ACGGAACTTCGAATCTGGTCCATG -ACGGAACTTCGAATCTGGTGTGTG -ACGGAACTTCGAATCTGGCTAGTG -ACGGAACTTCGAATCTGGCATCTG -ACGGAACTTCGAATCTGGGAGTTG -ACGGAACTTCGAATCTGGAGACTG -ACGGAACTTCGAATCTGGTCGGTA -ACGGAACTTCGAATCTGGTGCCTA -ACGGAACTTCGAATCTGGCCACTA -ACGGAACTTCGAATCTGGGGAGTA -ACGGAACTTCGAATCTGGTCGTCT -ACGGAACTTCGAATCTGGTGCACT -ACGGAACTTCGAATCTGGCTGACT -ACGGAACTTCGAATCTGGCAACCT -ACGGAACTTCGAATCTGGGCTACT -ACGGAACTTCGAATCTGGGGATCT -ACGGAACTTCGAATCTGGAAGGCT -ACGGAACTTCGAATCTGGTCAACC -ACGGAACTTCGAATCTGGTGTTCC -ACGGAACTTCGAATCTGGATTCCC -ACGGAACTTCGAATCTGGTTCTCG -ACGGAACTTCGAATCTGGTAGACG -ACGGAACTTCGAATCTGGGTAACG -ACGGAACTTCGAATCTGGACTTCG -ACGGAACTTCGAATCTGGTACGCA -ACGGAACTTCGAATCTGGCTTGCA -ACGGAACTTCGAATCTGGCGAACA -ACGGAACTTCGAATCTGGCAGTCA -ACGGAACTTCGAATCTGGGATCCA -ACGGAACTTCGAATCTGGACGACA -ACGGAACTTCGAATCTGGAGCTCA -ACGGAACTTCGAATCTGGTCACGT -ACGGAACTTCGAATCTGGCGTAGT -ACGGAACTTCGAATCTGGGTCAGT -ACGGAACTTCGAATCTGGGAAGGT -ACGGAACTTCGAATCTGGAACCGT -ACGGAACTTCGAATCTGGTTGTGC -ACGGAACTTCGAATCTGGCTAAGC -ACGGAACTTCGAATCTGGACTAGC -ACGGAACTTCGAATCTGGAGATGC -ACGGAACTTCGAATCTGGTGAAGG -ACGGAACTTCGAATCTGGCAATGG -ACGGAACTTCGAATCTGGATGAGG -ACGGAACTTCGAATCTGGAATGGG -ACGGAACTTCGAATCTGGTCCTGA -ACGGAACTTCGAATCTGGTAGCGA -ACGGAACTTCGAATCTGGCACAGA -ACGGAACTTCGAATCTGGGCAAGA -ACGGAACTTCGAATCTGGGGTTGA -ACGGAACTTCGAATCTGGTCCGAT -ACGGAACTTCGAATCTGGTGGCAT -ACGGAACTTCGAATCTGGCGAGAT -ACGGAACTTCGAATCTGGTACCAC -ACGGAACTTCGAATCTGGCAGAAC -ACGGAACTTCGAATCTGGGTCTAC -ACGGAACTTCGAATCTGGACGTAC -ACGGAACTTCGAATCTGGAGTGAC -ACGGAACTTCGAATCTGGCTGTAG -ACGGAACTTCGAATCTGGCCTAAG -ACGGAACTTCGAATCTGGGTTCAG -ACGGAACTTCGAATCTGGGCATAG -ACGGAACTTCGAATCTGGGACAAG -ACGGAACTTCGAATCTGGAAGCAG -ACGGAACTTCGAATCTGGCGTCAA -ACGGAACTTCGAATCTGGGCTGAA -ACGGAACTTCGAATCTGGAGTACG -ACGGAACTTCGAATCTGGATCCGA -ACGGAACTTCGAATCTGGATGGGA -ACGGAACTTCGAATCTGGGTGCAA -ACGGAACTTCGAATCTGGGAGGAA -ACGGAACTTCGAATCTGGCAGGTA -ACGGAACTTCGAATCTGGGACTCT -ACGGAACTTCGAATCTGGAGTCCT -ACGGAACTTCGAATCTGGTAAGCC -ACGGAACTTCGAATCTGGATAGCC -ACGGAACTTCGAATCTGGTAACCG -ACGGAACTTCGAATCTGGATGCCA -ACGGAACTTCGATTCCACGGAAAC -ACGGAACTTCGATTCCACAACACC -ACGGAACTTCGATTCCACATCGAG -ACGGAACTTCGATTCCACCTCCTT -ACGGAACTTCGATTCCACCCTGTT -ACGGAACTTCGATTCCACCGGTTT -ACGGAACTTCGATTCCACGTGGTT -ACGGAACTTCGATTCCACGCCTTT -ACGGAACTTCGATTCCACGGTCTT -ACGGAACTTCGATTCCACACGCTT -ACGGAACTTCGATTCCACAGCGTT -ACGGAACTTCGATTCCACTTCGTC -ACGGAACTTCGATTCCACTCTCTC -ACGGAACTTCGATTCCACTGGATC -ACGGAACTTCGATTCCACCACTTC -ACGGAACTTCGATTCCACGTACTC -ACGGAACTTCGATTCCACGATGTC -ACGGAACTTCGATTCCACACAGTC -ACGGAACTTCGATTCCACTTGCTG -ACGGAACTTCGATTCCACTCCATG -ACGGAACTTCGATTCCACTGTGTG -ACGGAACTTCGATTCCACCTAGTG -ACGGAACTTCGATTCCACCATCTG -ACGGAACTTCGATTCCACGAGTTG -ACGGAACTTCGATTCCACAGACTG -ACGGAACTTCGATTCCACTCGGTA -ACGGAACTTCGATTCCACTGCCTA -ACGGAACTTCGATTCCACCCACTA -ACGGAACTTCGATTCCACGGAGTA -ACGGAACTTCGATTCCACTCGTCT -ACGGAACTTCGATTCCACTGCACT -ACGGAACTTCGATTCCACCTGACT -ACGGAACTTCGATTCCACCAACCT -ACGGAACTTCGATTCCACGCTACT -ACGGAACTTCGATTCCACGGATCT -ACGGAACTTCGATTCCACAAGGCT -ACGGAACTTCGATTCCACTCAACC -ACGGAACTTCGATTCCACTGTTCC -ACGGAACTTCGATTCCACATTCCC -ACGGAACTTCGATTCCACTTCTCG -ACGGAACTTCGATTCCACTAGACG -ACGGAACTTCGATTCCACGTAACG -ACGGAACTTCGATTCCACACTTCG -ACGGAACTTCGATTCCACTACGCA -ACGGAACTTCGATTCCACCTTGCA -ACGGAACTTCGATTCCACCGAACA -ACGGAACTTCGATTCCACCAGTCA -ACGGAACTTCGATTCCACGATCCA -ACGGAACTTCGATTCCACACGACA -ACGGAACTTCGATTCCACAGCTCA -ACGGAACTTCGATTCCACTCACGT -ACGGAACTTCGATTCCACCGTAGT -ACGGAACTTCGATTCCACGTCAGT -ACGGAACTTCGATTCCACGAAGGT -ACGGAACTTCGATTCCACAACCGT -ACGGAACTTCGATTCCACTTGTGC -ACGGAACTTCGATTCCACCTAAGC -ACGGAACTTCGATTCCACACTAGC -ACGGAACTTCGATTCCACAGATGC -ACGGAACTTCGATTCCACTGAAGG -ACGGAACTTCGATTCCACCAATGG -ACGGAACTTCGATTCCACATGAGG -ACGGAACTTCGATTCCACAATGGG -ACGGAACTTCGATTCCACTCCTGA -ACGGAACTTCGATTCCACTAGCGA -ACGGAACTTCGATTCCACCACAGA -ACGGAACTTCGATTCCACGCAAGA -ACGGAACTTCGATTCCACGGTTGA -ACGGAACTTCGATTCCACTCCGAT -ACGGAACTTCGATTCCACTGGCAT -ACGGAACTTCGATTCCACCGAGAT -ACGGAACTTCGATTCCACTACCAC -ACGGAACTTCGATTCCACCAGAAC -ACGGAACTTCGATTCCACGTCTAC -ACGGAACTTCGATTCCACACGTAC -ACGGAACTTCGATTCCACAGTGAC -ACGGAACTTCGATTCCACCTGTAG -ACGGAACTTCGATTCCACCCTAAG -ACGGAACTTCGATTCCACGTTCAG -ACGGAACTTCGATTCCACGCATAG -ACGGAACTTCGATTCCACGACAAG -ACGGAACTTCGATTCCACAAGCAG -ACGGAACTTCGATTCCACCGTCAA -ACGGAACTTCGATTCCACGCTGAA -ACGGAACTTCGATTCCACAGTACG -ACGGAACTTCGATTCCACATCCGA -ACGGAACTTCGATTCCACATGGGA -ACGGAACTTCGATTCCACGTGCAA -ACGGAACTTCGATTCCACGAGGAA -ACGGAACTTCGATTCCACCAGGTA -ACGGAACTTCGATTCCACGACTCT -ACGGAACTTCGATTCCACAGTCCT -ACGGAACTTCGATTCCACTAAGCC -ACGGAACTTCGATTCCACATAGCC -ACGGAACTTCGATTCCACTAACCG -ACGGAACTTCGATTCCACATGCCA -ACGGAACTTCGACTCGTAGGAAAC -ACGGAACTTCGACTCGTAAACACC -ACGGAACTTCGACTCGTAATCGAG -ACGGAACTTCGACTCGTACTCCTT -ACGGAACTTCGACTCGTACCTGTT -ACGGAACTTCGACTCGTACGGTTT -ACGGAACTTCGACTCGTAGTGGTT -ACGGAACTTCGACTCGTAGCCTTT -ACGGAACTTCGACTCGTAGGTCTT -ACGGAACTTCGACTCGTAACGCTT -ACGGAACTTCGACTCGTAAGCGTT -ACGGAACTTCGACTCGTATTCGTC -ACGGAACTTCGACTCGTATCTCTC -ACGGAACTTCGACTCGTATGGATC -ACGGAACTTCGACTCGTACACTTC -ACGGAACTTCGACTCGTAGTACTC -ACGGAACTTCGACTCGTAGATGTC -ACGGAACTTCGACTCGTAACAGTC -ACGGAACTTCGACTCGTATTGCTG -ACGGAACTTCGACTCGTATCCATG -ACGGAACTTCGACTCGTATGTGTG -ACGGAACTTCGACTCGTACTAGTG -ACGGAACTTCGACTCGTACATCTG -ACGGAACTTCGACTCGTAGAGTTG -ACGGAACTTCGACTCGTAAGACTG -ACGGAACTTCGACTCGTATCGGTA -ACGGAACTTCGACTCGTATGCCTA -ACGGAACTTCGACTCGTACCACTA -ACGGAACTTCGACTCGTAGGAGTA -ACGGAACTTCGACTCGTATCGTCT -ACGGAACTTCGACTCGTATGCACT -ACGGAACTTCGACTCGTACTGACT -ACGGAACTTCGACTCGTACAACCT -ACGGAACTTCGACTCGTAGCTACT -ACGGAACTTCGACTCGTAGGATCT -ACGGAACTTCGACTCGTAAAGGCT -ACGGAACTTCGACTCGTATCAACC -ACGGAACTTCGACTCGTATGTTCC -ACGGAACTTCGACTCGTAATTCCC -ACGGAACTTCGACTCGTATTCTCG -ACGGAACTTCGACTCGTATAGACG -ACGGAACTTCGACTCGTAGTAACG -ACGGAACTTCGACTCGTAACTTCG -ACGGAACTTCGACTCGTATACGCA -ACGGAACTTCGACTCGTACTTGCA -ACGGAACTTCGACTCGTACGAACA -ACGGAACTTCGACTCGTACAGTCA -ACGGAACTTCGACTCGTAGATCCA -ACGGAACTTCGACTCGTAACGACA -ACGGAACTTCGACTCGTAAGCTCA -ACGGAACTTCGACTCGTATCACGT -ACGGAACTTCGACTCGTACGTAGT -ACGGAACTTCGACTCGTAGTCAGT -ACGGAACTTCGACTCGTAGAAGGT -ACGGAACTTCGACTCGTAAACCGT -ACGGAACTTCGACTCGTATTGTGC -ACGGAACTTCGACTCGTACTAAGC -ACGGAACTTCGACTCGTAACTAGC -ACGGAACTTCGACTCGTAAGATGC -ACGGAACTTCGACTCGTATGAAGG -ACGGAACTTCGACTCGTACAATGG -ACGGAACTTCGACTCGTAATGAGG -ACGGAACTTCGACTCGTAAATGGG -ACGGAACTTCGACTCGTATCCTGA -ACGGAACTTCGACTCGTATAGCGA -ACGGAACTTCGACTCGTACACAGA -ACGGAACTTCGACTCGTAGCAAGA -ACGGAACTTCGACTCGTAGGTTGA -ACGGAACTTCGACTCGTATCCGAT -ACGGAACTTCGACTCGTATGGCAT -ACGGAACTTCGACTCGTACGAGAT -ACGGAACTTCGACTCGTATACCAC -ACGGAACTTCGACTCGTACAGAAC -ACGGAACTTCGACTCGTAGTCTAC -ACGGAACTTCGACTCGTAACGTAC -ACGGAACTTCGACTCGTAAGTGAC -ACGGAACTTCGACTCGTACTGTAG -ACGGAACTTCGACTCGTACCTAAG -ACGGAACTTCGACTCGTAGTTCAG -ACGGAACTTCGACTCGTAGCATAG -ACGGAACTTCGACTCGTAGACAAG -ACGGAACTTCGACTCGTAAAGCAG -ACGGAACTTCGACTCGTACGTCAA -ACGGAACTTCGACTCGTAGCTGAA -ACGGAACTTCGACTCGTAAGTACG -ACGGAACTTCGACTCGTAATCCGA -ACGGAACTTCGACTCGTAATGGGA -ACGGAACTTCGACTCGTAGTGCAA -ACGGAACTTCGACTCGTAGAGGAA -ACGGAACTTCGACTCGTACAGGTA -ACGGAACTTCGACTCGTAGACTCT -ACGGAACTTCGACTCGTAAGTCCT -ACGGAACTTCGACTCGTATAAGCC -ACGGAACTTCGACTCGTAATAGCC -ACGGAACTTCGACTCGTATAACCG -ACGGAACTTCGACTCGTAATGCCA -ACGGAACTTCGAGTCGATGGAAAC -ACGGAACTTCGAGTCGATAACACC -ACGGAACTTCGAGTCGATATCGAG -ACGGAACTTCGAGTCGATCTCCTT -ACGGAACTTCGAGTCGATCCTGTT -ACGGAACTTCGAGTCGATCGGTTT -ACGGAACTTCGAGTCGATGTGGTT -ACGGAACTTCGAGTCGATGCCTTT -ACGGAACTTCGAGTCGATGGTCTT -ACGGAACTTCGAGTCGATACGCTT -ACGGAACTTCGAGTCGATAGCGTT -ACGGAACTTCGAGTCGATTTCGTC -ACGGAACTTCGAGTCGATTCTCTC -ACGGAACTTCGAGTCGATTGGATC -ACGGAACTTCGAGTCGATCACTTC -ACGGAACTTCGAGTCGATGTACTC -ACGGAACTTCGAGTCGATGATGTC -ACGGAACTTCGAGTCGATACAGTC -ACGGAACTTCGAGTCGATTTGCTG -ACGGAACTTCGAGTCGATTCCATG -ACGGAACTTCGAGTCGATTGTGTG -ACGGAACTTCGAGTCGATCTAGTG -ACGGAACTTCGAGTCGATCATCTG -ACGGAACTTCGAGTCGATGAGTTG -ACGGAACTTCGAGTCGATAGACTG -ACGGAACTTCGAGTCGATTCGGTA -ACGGAACTTCGAGTCGATTGCCTA -ACGGAACTTCGAGTCGATCCACTA -ACGGAACTTCGAGTCGATGGAGTA -ACGGAACTTCGAGTCGATTCGTCT -ACGGAACTTCGAGTCGATTGCACT -ACGGAACTTCGAGTCGATCTGACT -ACGGAACTTCGAGTCGATCAACCT -ACGGAACTTCGAGTCGATGCTACT -ACGGAACTTCGAGTCGATGGATCT -ACGGAACTTCGAGTCGATAAGGCT -ACGGAACTTCGAGTCGATTCAACC -ACGGAACTTCGAGTCGATTGTTCC -ACGGAACTTCGAGTCGATATTCCC -ACGGAACTTCGAGTCGATTTCTCG -ACGGAACTTCGAGTCGATTAGACG -ACGGAACTTCGAGTCGATGTAACG -ACGGAACTTCGAGTCGATACTTCG -ACGGAACTTCGAGTCGATTACGCA -ACGGAACTTCGAGTCGATCTTGCA -ACGGAACTTCGAGTCGATCGAACA -ACGGAACTTCGAGTCGATCAGTCA -ACGGAACTTCGAGTCGATGATCCA -ACGGAACTTCGAGTCGATACGACA -ACGGAACTTCGAGTCGATAGCTCA -ACGGAACTTCGAGTCGATTCACGT -ACGGAACTTCGAGTCGATCGTAGT -ACGGAACTTCGAGTCGATGTCAGT -ACGGAACTTCGAGTCGATGAAGGT -ACGGAACTTCGAGTCGATAACCGT -ACGGAACTTCGAGTCGATTTGTGC -ACGGAACTTCGAGTCGATCTAAGC -ACGGAACTTCGAGTCGATACTAGC -ACGGAACTTCGAGTCGATAGATGC -ACGGAACTTCGAGTCGATTGAAGG -ACGGAACTTCGAGTCGATCAATGG -ACGGAACTTCGAGTCGATATGAGG -ACGGAACTTCGAGTCGATAATGGG -ACGGAACTTCGAGTCGATTCCTGA -ACGGAACTTCGAGTCGATTAGCGA -ACGGAACTTCGAGTCGATCACAGA -ACGGAACTTCGAGTCGATGCAAGA -ACGGAACTTCGAGTCGATGGTTGA -ACGGAACTTCGAGTCGATTCCGAT -ACGGAACTTCGAGTCGATTGGCAT -ACGGAACTTCGAGTCGATCGAGAT -ACGGAACTTCGAGTCGATTACCAC -ACGGAACTTCGAGTCGATCAGAAC -ACGGAACTTCGAGTCGATGTCTAC -ACGGAACTTCGAGTCGATACGTAC -ACGGAACTTCGAGTCGATAGTGAC -ACGGAACTTCGAGTCGATCTGTAG -ACGGAACTTCGAGTCGATCCTAAG -ACGGAACTTCGAGTCGATGTTCAG -ACGGAACTTCGAGTCGATGCATAG -ACGGAACTTCGAGTCGATGACAAG -ACGGAACTTCGAGTCGATAAGCAG -ACGGAACTTCGAGTCGATCGTCAA -ACGGAACTTCGAGTCGATGCTGAA -ACGGAACTTCGAGTCGATAGTACG -ACGGAACTTCGAGTCGATATCCGA -ACGGAACTTCGAGTCGATATGGGA -ACGGAACTTCGAGTCGATGTGCAA -ACGGAACTTCGAGTCGATGAGGAA -ACGGAACTTCGAGTCGATCAGGTA -ACGGAACTTCGAGTCGATGACTCT -ACGGAACTTCGAGTCGATAGTCCT -ACGGAACTTCGAGTCGATTAAGCC -ACGGAACTTCGAGTCGATATAGCC -ACGGAACTTCGAGTCGATTAACCG -ACGGAACTTCGAGTCGATATGCCA -ACGGAACTTCGAGTCACAGGAAAC -ACGGAACTTCGAGTCACAAACACC -ACGGAACTTCGAGTCACAATCGAG -ACGGAACTTCGAGTCACACTCCTT -ACGGAACTTCGAGTCACACCTGTT -ACGGAACTTCGAGTCACACGGTTT -ACGGAACTTCGAGTCACAGTGGTT -ACGGAACTTCGAGTCACAGCCTTT -ACGGAACTTCGAGTCACAGGTCTT -ACGGAACTTCGAGTCACAACGCTT -ACGGAACTTCGAGTCACAAGCGTT -ACGGAACTTCGAGTCACATTCGTC -ACGGAACTTCGAGTCACATCTCTC -ACGGAACTTCGAGTCACATGGATC -ACGGAACTTCGAGTCACACACTTC -ACGGAACTTCGAGTCACAGTACTC -ACGGAACTTCGAGTCACAGATGTC -ACGGAACTTCGAGTCACAACAGTC -ACGGAACTTCGAGTCACATTGCTG -ACGGAACTTCGAGTCACATCCATG -ACGGAACTTCGAGTCACATGTGTG -ACGGAACTTCGAGTCACACTAGTG -ACGGAACTTCGAGTCACACATCTG -ACGGAACTTCGAGTCACAGAGTTG -ACGGAACTTCGAGTCACAAGACTG -ACGGAACTTCGAGTCACATCGGTA -ACGGAACTTCGAGTCACATGCCTA -ACGGAACTTCGAGTCACACCACTA -ACGGAACTTCGAGTCACAGGAGTA -ACGGAACTTCGAGTCACATCGTCT -ACGGAACTTCGAGTCACATGCACT -ACGGAACTTCGAGTCACACTGACT -ACGGAACTTCGAGTCACACAACCT -ACGGAACTTCGAGTCACAGCTACT -ACGGAACTTCGAGTCACAGGATCT -ACGGAACTTCGAGTCACAAAGGCT -ACGGAACTTCGAGTCACATCAACC -ACGGAACTTCGAGTCACATGTTCC -ACGGAACTTCGAGTCACAATTCCC -ACGGAACTTCGAGTCACATTCTCG -ACGGAACTTCGAGTCACATAGACG -ACGGAACTTCGAGTCACAGTAACG -ACGGAACTTCGAGTCACAACTTCG -ACGGAACTTCGAGTCACATACGCA -ACGGAACTTCGAGTCACACTTGCA -ACGGAACTTCGAGTCACACGAACA -ACGGAACTTCGAGTCACACAGTCA -ACGGAACTTCGAGTCACAGATCCA -ACGGAACTTCGAGTCACAACGACA -ACGGAACTTCGAGTCACAAGCTCA -ACGGAACTTCGAGTCACATCACGT -ACGGAACTTCGAGTCACACGTAGT -ACGGAACTTCGAGTCACAGTCAGT -ACGGAACTTCGAGTCACAGAAGGT -ACGGAACTTCGAGTCACAAACCGT -ACGGAACTTCGAGTCACATTGTGC -ACGGAACTTCGAGTCACACTAAGC -ACGGAACTTCGAGTCACAACTAGC -ACGGAACTTCGAGTCACAAGATGC -ACGGAACTTCGAGTCACATGAAGG -ACGGAACTTCGAGTCACACAATGG -ACGGAACTTCGAGTCACAATGAGG -ACGGAACTTCGAGTCACAAATGGG -ACGGAACTTCGAGTCACATCCTGA -ACGGAACTTCGAGTCACATAGCGA -ACGGAACTTCGAGTCACACACAGA -ACGGAACTTCGAGTCACAGCAAGA -ACGGAACTTCGAGTCACAGGTTGA -ACGGAACTTCGAGTCACATCCGAT -ACGGAACTTCGAGTCACATGGCAT -ACGGAACTTCGAGTCACACGAGAT -ACGGAACTTCGAGTCACATACCAC -ACGGAACTTCGAGTCACACAGAAC -ACGGAACTTCGAGTCACAGTCTAC -ACGGAACTTCGAGTCACAACGTAC -ACGGAACTTCGAGTCACAAGTGAC -ACGGAACTTCGAGTCACACTGTAG -ACGGAACTTCGAGTCACACCTAAG -ACGGAACTTCGAGTCACAGTTCAG -ACGGAACTTCGAGTCACAGCATAG -ACGGAACTTCGAGTCACAGACAAG -ACGGAACTTCGAGTCACAAAGCAG -ACGGAACTTCGAGTCACACGTCAA -ACGGAACTTCGAGTCACAGCTGAA -ACGGAACTTCGAGTCACAAGTACG -ACGGAACTTCGAGTCACAATCCGA -ACGGAACTTCGAGTCACAATGGGA -ACGGAACTTCGAGTCACAGTGCAA -ACGGAACTTCGAGTCACAGAGGAA -ACGGAACTTCGAGTCACACAGGTA -ACGGAACTTCGAGTCACAGACTCT -ACGGAACTTCGAGTCACAAGTCCT -ACGGAACTTCGAGTCACATAAGCC -ACGGAACTTCGAGTCACAATAGCC -ACGGAACTTCGAGTCACATAACCG -ACGGAACTTCGAGTCACAATGCCA -ACGGAACTTCGACTGTTGGGAAAC -ACGGAACTTCGACTGTTGAACACC -ACGGAACTTCGACTGTTGATCGAG -ACGGAACTTCGACTGTTGCTCCTT -ACGGAACTTCGACTGTTGCCTGTT -ACGGAACTTCGACTGTTGCGGTTT -ACGGAACTTCGACTGTTGGTGGTT -ACGGAACTTCGACTGTTGGCCTTT -ACGGAACTTCGACTGTTGGGTCTT -ACGGAACTTCGACTGTTGACGCTT -ACGGAACTTCGACTGTTGAGCGTT -ACGGAACTTCGACTGTTGTTCGTC -ACGGAACTTCGACTGTTGTCTCTC -ACGGAACTTCGACTGTTGTGGATC -ACGGAACTTCGACTGTTGCACTTC -ACGGAACTTCGACTGTTGGTACTC -ACGGAACTTCGACTGTTGGATGTC -ACGGAACTTCGACTGTTGACAGTC -ACGGAACTTCGACTGTTGTTGCTG -ACGGAACTTCGACTGTTGTCCATG -ACGGAACTTCGACTGTTGTGTGTG -ACGGAACTTCGACTGTTGCTAGTG -ACGGAACTTCGACTGTTGCATCTG -ACGGAACTTCGACTGTTGGAGTTG -ACGGAACTTCGACTGTTGAGACTG -ACGGAACTTCGACTGTTGTCGGTA -ACGGAACTTCGACTGTTGTGCCTA -ACGGAACTTCGACTGTTGCCACTA -ACGGAACTTCGACTGTTGGGAGTA -ACGGAACTTCGACTGTTGTCGTCT -ACGGAACTTCGACTGTTGTGCACT -ACGGAACTTCGACTGTTGCTGACT -ACGGAACTTCGACTGTTGCAACCT -ACGGAACTTCGACTGTTGGCTACT -ACGGAACTTCGACTGTTGGGATCT -ACGGAACTTCGACTGTTGAAGGCT -ACGGAACTTCGACTGTTGTCAACC -ACGGAACTTCGACTGTTGTGTTCC -ACGGAACTTCGACTGTTGATTCCC -ACGGAACTTCGACTGTTGTTCTCG -ACGGAACTTCGACTGTTGTAGACG -ACGGAACTTCGACTGTTGGTAACG -ACGGAACTTCGACTGTTGACTTCG -ACGGAACTTCGACTGTTGTACGCA -ACGGAACTTCGACTGTTGCTTGCA -ACGGAACTTCGACTGTTGCGAACA -ACGGAACTTCGACTGTTGCAGTCA -ACGGAACTTCGACTGTTGGATCCA -ACGGAACTTCGACTGTTGACGACA -ACGGAACTTCGACTGTTGAGCTCA -ACGGAACTTCGACTGTTGTCACGT -ACGGAACTTCGACTGTTGCGTAGT -ACGGAACTTCGACTGTTGGTCAGT -ACGGAACTTCGACTGTTGGAAGGT -ACGGAACTTCGACTGTTGAACCGT -ACGGAACTTCGACTGTTGTTGTGC -ACGGAACTTCGACTGTTGCTAAGC -ACGGAACTTCGACTGTTGACTAGC -ACGGAACTTCGACTGTTGAGATGC -ACGGAACTTCGACTGTTGTGAAGG -ACGGAACTTCGACTGTTGCAATGG -ACGGAACTTCGACTGTTGATGAGG -ACGGAACTTCGACTGTTGAATGGG -ACGGAACTTCGACTGTTGTCCTGA -ACGGAACTTCGACTGTTGTAGCGA -ACGGAACTTCGACTGTTGCACAGA -ACGGAACTTCGACTGTTGGCAAGA -ACGGAACTTCGACTGTTGGGTTGA -ACGGAACTTCGACTGTTGTCCGAT -ACGGAACTTCGACTGTTGTGGCAT -ACGGAACTTCGACTGTTGCGAGAT -ACGGAACTTCGACTGTTGTACCAC -ACGGAACTTCGACTGTTGCAGAAC -ACGGAACTTCGACTGTTGGTCTAC -ACGGAACTTCGACTGTTGACGTAC -ACGGAACTTCGACTGTTGAGTGAC -ACGGAACTTCGACTGTTGCTGTAG -ACGGAACTTCGACTGTTGCCTAAG -ACGGAACTTCGACTGTTGGTTCAG -ACGGAACTTCGACTGTTGGCATAG -ACGGAACTTCGACTGTTGGACAAG -ACGGAACTTCGACTGTTGAAGCAG -ACGGAACTTCGACTGTTGCGTCAA -ACGGAACTTCGACTGTTGGCTGAA -ACGGAACTTCGACTGTTGAGTACG -ACGGAACTTCGACTGTTGATCCGA -ACGGAACTTCGACTGTTGATGGGA -ACGGAACTTCGACTGTTGGTGCAA -ACGGAACTTCGACTGTTGGAGGAA -ACGGAACTTCGACTGTTGCAGGTA -ACGGAACTTCGACTGTTGGACTCT -ACGGAACTTCGACTGTTGAGTCCT -ACGGAACTTCGACTGTTGTAAGCC -ACGGAACTTCGACTGTTGATAGCC -ACGGAACTTCGACTGTTGTAACCG -ACGGAACTTCGACTGTTGATGCCA -ACGGAACTTCGAATGTCCGGAAAC -ACGGAACTTCGAATGTCCAACACC -ACGGAACTTCGAATGTCCATCGAG -ACGGAACTTCGAATGTCCCTCCTT -ACGGAACTTCGAATGTCCCCTGTT -ACGGAACTTCGAATGTCCCGGTTT -ACGGAACTTCGAATGTCCGTGGTT -ACGGAACTTCGAATGTCCGCCTTT -ACGGAACTTCGAATGTCCGGTCTT -ACGGAACTTCGAATGTCCACGCTT -ACGGAACTTCGAATGTCCAGCGTT -ACGGAACTTCGAATGTCCTTCGTC -ACGGAACTTCGAATGTCCTCTCTC -ACGGAACTTCGAATGTCCTGGATC -ACGGAACTTCGAATGTCCCACTTC -ACGGAACTTCGAATGTCCGTACTC -ACGGAACTTCGAATGTCCGATGTC -ACGGAACTTCGAATGTCCACAGTC -ACGGAACTTCGAATGTCCTTGCTG -ACGGAACTTCGAATGTCCTCCATG -ACGGAACTTCGAATGTCCTGTGTG -ACGGAACTTCGAATGTCCCTAGTG -ACGGAACTTCGAATGTCCCATCTG -ACGGAACTTCGAATGTCCGAGTTG -ACGGAACTTCGAATGTCCAGACTG -ACGGAACTTCGAATGTCCTCGGTA -ACGGAACTTCGAATGTCCTGCCTA -ACGGAACTTCGAATGTCCCCACTA -ACGGAACTTCGAATGTCCGGAGTA -ACGGAACTTCGAATGTCCTCGTCT -ACGGAACTTCGAATGTCCTGCACT -ACGGAACTTCGAATGTCCCTGACT -ACGGAACTTCGAATGTCCCAACCT -ACGGAACTTCGAATGTCCGCTACT -ACGGAACTTCGAATGTCCGGATCT -ACGGAACTTCGAATGTCCAAGGCT -ACGGAACTTCGAATGTCCTCAACC -ACGGAACTTCGAATGTCCTGTTCC -ACGGAACTTCGAATGTCCATTCCC -ACGGAACTTCGAATGTCCTTCTCG -ACGGAACTTCGAATGTCCTAGACG -ACGGAACTTCGAATGTCCGTAACG -ACGGAACTTCGAATGTCCACTTCG -ACGGAACTTCGAATGTCCTACGCA -ACGGAACTTCGAATGTCCCTTGCA -ACGGAACTTCGAATGTCCCGAACA -ACGGAACTTCGAATGTCCCAGTCA -ACGGAACTTCGAATGTCCGATCCA -ACGGAACTTCGAATGTCCACGACA -ACGGAACTTCGAATGTCCAGCTCA -ACGGAACTTCGAATGTCCTCACGT -ACGGAACTTCGAATGTCCCGTAGT -ACGGAACTTCGAATGTCCGTCAGT -ACGGAACTTCGAATGTCCGAAGGT -ACGGAACTTCGAATGTCCAACCGT -ACGGAACTTCGAATGTCCTTGTGC -ACGGAACTTCGAATGTCCCTAAGC -ACGGAACTTCGAATGTCCACTAGC -ACGGAACTTCGAATGTCCAGATGC -ACGGAACTTCGAATGTCCTGAAGG -ACGGAACTTCGAATGTCCCAATGG -ACGGAACTTCGAATGTCCATGAGG -ACGGAACTTCGAATGTCCAATGGG -ACGGAACTTCGAATGTCCTCCTGA -ACGGAACTTCGAATGTCCTAGCGA -ACGGAACTTCGAATGTCCCACAGA -ACGGAACTTCGAATGTCCGCAAGA -ACGGAACTTCGAATGTCCGGTTGA -ACGGAACTTCGAATGTCCTCCGAT -ACGGAACTTCGAATGTCCTGGCAT -ACGGAACTTCGAATGTCCCGAGAT -ACGGAACTTCGAATGTCCTACCAC -ACGGAACTTCGAATGTCCCAGAAC -ACGGAACTTCGAATGTCCGTCTAC -ACGGAACTTCGAATGTCCACGTAC -ACGGAACTTCGAATGTCCAGTGAC -ACGGAACTTCGAATGTCCCTGTAG -ACGGAACTTCGAATGTCCCCTAAG -ACGGAACTTCGAATGTCCGTTCAG -ACGGAACTTCGAATGTCCGCATAG -ACGGAACTTCGAATGTCCGACAAG -ACGGAACTTCGAATGTCCAAGCAG -ACGGAACTTCGAATGTCCCGTCAA -ACGGAACTTCGAATGTCCGCTGAA -ACGGAACTTCGAATGTCCAGTACG -ACGGAACTTCGAATGTCCATCCGA -ACGGAACTTCGAATGTCCATGGGA -ACGGAACTTCGAATGTCCGTGCAA -ACGGAACTTCGAATGTCCGAGGAA -ACGGAACTTCGAATGTCCCAGGTA -ACGGAACTTCGAATGTCCGACTCT -ACGGAACTTCGAATGTCCAGTCCT -ACGGAACTTCGAATGTCCTAAGCC -ACGGAACTTCGAATGTCCATAGCC -ACGGAACTTCGAATGTCCTAACCG -ACGGAACTTCGAATGTCCATGCCA -ACGGAACTTCGAGTGTGTGGAAAC -ACGGAACTTCGAGTGTGTAACACC -ACGGAACTTCGAGTGTGTATCGAG -ACGGAACTTCGAGTGTGTCTCCTT -ACGGAACTTCGAGTGTGTCCTGTT -ACGGAACTTCGAGTGTGTCGGTTT -ACGGAACTTCGAGTGTGTGTGGTT -ACGGAACTTCGAGTGTGTGCCTTT -ACGGAACTTCGAGTGTGTGGTCTT -ACGGAACTTCGAGTGTGTACGCTT -ACGGAACTTCGAGTGTGTAGCGTT -ACGGAACTTCGAGTGTGTTTCGTC -ACGGAACTTCGAGTGTGTTCTCTC -ACGGAACTTCGAGTGTGTTGGATC -ACGGAACTTCGAGTGTGTCACTTC -ACGGAACTTCGAGTGTGTGTACTC -ACGGAACTTCGAGTGTGTGATGTC -ACGGAACTTCGAGTGTGTACAGTC -ACGGAACTTCGAGTGTGTTTGCTG -ACGGAACTTCGAGTGTGTTCCATG -ACGGAACTTCGAGTGTGTTGTGTG -ACGGAACTTCGAGTGTGTCTAGTG -ACGGAACTTCGAGTGTGTCATCTG -ACGGAACTTCGAGTGTGTGAGTTG -ACGGAACTTCGAGTGTGTAGACTG -ACGGAACTTCGAGTGTGTTCGGTA -ACGGAACTTCGAGTGTGTTGCCTA -ACGGAACTTCGAGTGTGTCCACTA -ACGGAACTTCGAGTGTGTGGAGTA -ACGGAACTTCGAGTGTGTTCGTCT -ACGGAACTTCGAGTGTGTTGCACT -ACGGAACTTCGAGTGTGTCTGACT -ACGGAACTTCGAGTGTGTCAACCT -ACGGAACTTCGAGTGTGTGCTACT -ACGGAACTTCGAGTGTGTGGATCT -ACGGAACTTCGAGTGTGTAAGGCT -ACGGAACTTCGAGTGTGTTCAACC -ACGGAACTTCGAGTGTGTTGTTCC -ACGGAACTTCGAGTGTGTATTCCC -ACGGAACTTCGAGTGTGTTTCTCG -ACGGAACTTCGAGTGTGTTAGACG -ACGGAACTTCGAGTGTGTGTAACG -ACGGAACTTCGAGTGTGTACTTCG -ACGGAACTTCGAGTGTGTTACGCA -ACGGAACTTCGAGTGTGTCTTGCA -ACGGAACTTCGAGTGTGTCGAACA -ACGGAACTTCGAGTGTGTCAGTCA -ACGGAACTTCGAGTGTGTGATCCA -ACGGAACTTCGAGTGTGTACGACA -ACGGAACTTCGAGTGTGTAGCTCA -ACGGAACTTCGAGTGTGTTCACGT -ACGGAACTTCGAGTGTGTCGTAGT -ACGGAACTTCGAGTGTGTGTCAGT -ACGGAACTTCGAGTGTGTGAAGGT -ACGGAACTTCGAGTGTGTAACCGT -ACGGAACTTCGAGTGTGTTTGTGC -ACGGAACTTCGAGTGTGTCTAAGC -ACGGAACTTCGAGTGTGTACTAGC -ACGGAACTTCGAGTGTGTAGATGC -ACGGAACTTCGAGTGTGTTGAAGG -ACGGAACTTCGAGTGTGTCAATGG -ACGGAACTTCGAGTGTGTATGAGG -ACGGAACTTCGAGTGTGTAATGGG -ACGGAACTTCGAGTGTGTTCCTGA -ACGGAACTTCGAGTGTGTTAGCGA -ACGGAACTTCGAGTGTGTCACAGA -ACGGAACTTCGAGTGTGTGCAAGA -ACGGAACTTCGAGTGTGTGGTTGA -ACGGAACTTCGAGTGTGTTCCGAT -ACGGAACTTCGAGTGTGTTGGCAT -ACGGAACTTCGAGTGTGTCGAGAT -ACGGAACTTCGAGTGTGTTACCAC -ACGGAACTTCGAGTGTGTCAGAAC -ACGGAACTTCGAGTGTGTGTCTAC -ACGGAACTTCGAGTGTGTACGTAC -ACGGAACTTCGAGTGTGTAGTGAC -ACGGAACTTCGAGTGTGTCTGTAG -ACGGAACTTCGAGTGTGTCCTAAG -ACGGAACTTCGAGTGTGTGTTCAG -ACGGAACTTCGAGTGTGTGCATAG -ACGGAACTTCGAGTGTGTGACAAG -ACGGAACTTCGAGTGTGTAAGCAG -ACGGAACTTCGAGTGTGTCGTCAA -ACGGAACTTCGAGTGTGTGCTGAA -ACGGAACTTCGAGTGTGTAGTACG -ACGGAACTTCGAGTGTGTATCCGA -ACGGAACTTCGAGTGTGTATGGGA -ACGGAACTTCGAGTGTGTGTGCAA -ACGGAACTTCGAGTGTGTGAGGAA -ACGGAACTTCGAGTGTGTCAGGTA -ACGGAACTTCGAGTGTGTGACTCT -ACGGAACTTCGAGTGTGTAGTCCT -ACGGAACTTCGAGTGTGTTAAGCC -ACGGAACTTCGAGTGTGTATAGCC -ACGGAACTTCGAGTGTGTTAACCG -ACGGAACTTCGAGTGTGTATGCCA -ACGGAACTTCGAGTGCTAGGAAAC -ACGGAACTTCGAGTGCTAAACACC -ACGGAACTTCGAGTGCTAATCGAG -ACGGAACTTCGAGTGCTACTCCTT -ACGGAACTTCGAGTGCTACCTGTT -ACGGAACTTCGAGTGCTACGGTTT -ACGGAACTTCGAGTGCTAGTGGTT -ACGGAACTTCGAGTGCTAGCCTTT -ACGGAACTTCGAGTGCTAGGTCTT -ACGGAACTTCGAGTGCTAACGCTT -ACGGAACTTCGAGTGCTAAGCGTT -ACGGAACTTCGAGTGCTATTCGTC -ACGGAACTTCGAGTGCTATCTCTC -ACGGAACTTCGAGTGCTATGGATC -ACGGAACTTCGAGTGCTACACTTC -ACGGAACTTCGAGTGCTAGTACTC -ACGGAACTTCGAGTGCTAGATGTC -ACGGAACTTCGAGTGCTAACAGTC -ACGGAACTTCGAGTGCTATTGCTG -ACGGAACTTCGAGTGCTATCCATG -ACGGAACTTCGAGTGCTATGTGTG -ACGGAACTTCGAGTGCTACTAGTG -ACGGAACTTCGAGTGCTACATCTG -ACGGAACTTCGAGTGCTAGAGTTG -ACGGAACTTCGAGTGCTAAGACTG -ACGGAACTTCGAGTGCTATCGGTA -ACGGAACTTCGAGTGCTATGCCTA -ACGGAACTTCGAGTGCTACCACTA -ACGGAACTTCGAGTGCTAGGAGTA -ACGGAACTTCGAGTGCTATCGTCT -ACGGAACTTCGAGTGCTATGCACT -ACGGAACTTCGAGTGCTACTGACT -ACGGAACTTCGAGTGCTACAACCT -ACGGAACTTCGAGTGCTAGCTACT -ACGGAACTTCGAGTGCTAGGATCT -ACGGAACTTCGAGTGCTAAAGGCT -ACGGAACTTCGAGTGCTATCAACC -ACGGAACTTCGAGTGCTATGTTCC -ACGGAACTTCGAGTGCTAATTCCC -ACGGAACTTCGAGTGCTATTCTCG -ACGGAACTTCGAGTGCTATAGACG -ACGGAACTTCGAGTGCTAGTAACG -ACGGAACTTCGAGTGCTAACTTCG -ACGGAACTTCGAGTGCTATACGCA -ACGGAACTTCGAGTGCTACTTGCA -ACGGAACTTCGAGTGCTACGAACA -ACGGAACTTCGAGTGCTACAGTCA -ACGGAACTTCGAGTGCTAGATCCA -ACGGAACTTCGAGTGCTAACGACA -ACGGAACTTCGAGTGCTAAGCTCA -ACGGAACTTCGAGTGCTATCACGT -ACGGAACTTCGAGTGCTACGTAGT -ACGGAACTTCGAGTGCTAGTCAGT -ACGGAACTTCGAGTGCTAGAAGGT -ACGGAACTTCGAGTGCTAAACCGT -ACGGAACTTCGAGTGCTATTGTGC -ACGGAACTTCGAGTGCTACTAAGC -ACGGAACTTCGAGTGCTAACTAGC -ACGGAACTTCGAGTGCTAAGATGC -ACGGAACTTCGAGTGCTATGAAGG -ACGGAACTTCGAGTGCTACAATGG -ACGGAACTTCGAGTGCTAATGAGG -ACGGAACTTCGAGTGCTAAATGGG -ACGGAACTTCGAGTGCTATCCTGA -ACGGAACTTCGAGTGCTATAGCGA -ACGGAACTTCGAGTGCTACACAGA -ACGGAACTTCGAGTGCTAGCAAGA -ACGGAACTTCGAGTGCTAGGTTGA -ACGGAACTTCGAGTGCTATCCGAT -ACGGAACTTCGAGTGCTATGGCAT -ACGGAACTTCGAGTGCTACGAGAT -ACGGAACTTCGAGTGCTATACCAC -ACGGAACTTCGAGTGCTACAGAAC -ACGGAACTTCGAGTGCTAGTCTAC -ACGGAACTTCGAGTGCTAACGTAC -ACGGAACTTCGAGTGCTAAGTGAC -ACGGAACTTCGAGTGCTACTGTAG -ACGGAACTTCGAGTGCTACCTAAG -ACGGAACTTCGAGTGCTAGTTCAG -ACGGAACTTCGAGTGCTAGCATAG -ACGGAACTTCGAGTGCTAGACAAG -ACGGAACTTCGAGTGCTAAAGCAG -ACGGAACTTCGAGTGCTACGTCAA -ACGGAACTTCGAGTGCTAGCTGAA -ACGGAACTTCGAGTGCTAAGTACG -ACGGAACTTCGAGTGCTAATCCGA -ACGGAACTTCGAGTGCTAATGGGA -ACGGAACTTCGAGTGCTAGTGCAA -ACGGAACTTCGAGTGCTAGAGGAA -ACGGAACTTCGAGTGCTACAGGTA -ACGGAACTTCGAGTGCTAGACTCT -ACGGAACTTCGAGTGCTAAGTCCT -ACGGAACTTCGAGTGCTATAAGCC -ACGGAACTTCGAGTGCTAATAGCC -ACGGAACTTCGAGTGCTATAACCG -ACGGAACTTCGAGTGCTAATGCCA -ACGGAACTTCGACTGCATGGAAAC -ACGGAACTTCGACTGCATAACACC -ACGGAACTTCGACTGCATATCGAG -ACGGAACTTCGACTGCATCTCCTT -ACGGAACTTCGACTGCATCCTGTT -ACGGAACTTCGACTGCATCGGTTT -ACGGAACTTCGACTGCATGTGGTT -ACGGAACTTCGACTGCATGCCTTT -ACGGAACTTCGACTGCATGGTCTT -ACGGAACTTCGACTGCATACGCTT -ACGGAACTTCGACTGCATAGCGTT -ACGGAACTTCGACTGCATTTCGTC -ACGGAACTTCGACTGCATTCTCTC -ACGGAACTTCGACTGCATTGGATC -ACGGAACTTCGACTGCATCACTTC -ACGGAACTTCGACTGCATGTACTC -ACGGAACTTCGACTGCATGATGTC -ACGGAACTTCGACTGCATACAGTC -ACGGAACTTCGACTGCATTTGCTG -ACGGAACTTCGACTGCATTCCATG -ACGGAACTTCGACTGCATTGTGTG -ACGGAACTTCGACTGCATCTAGTG -ACGGAACTTCGACTGCATCATCTG -ACGGAACTTCGACTGCATGAGTTG -ACGGAACTTCGACTGCATAGACTG -ACGGAACTTCGACTGCATTCGGTA -ACGGAACTTCGACTGCATTGCCTA -ACGGAACTTCGACTGCATCCACTA -ACGGAACTTCGACTGCATGGAGTA -ACGGAACTTCGACTGCATTCGTCT -ACGGAACTTCGACTGCATTGCACT -ACGGAACTTCGACTGCATCTGACT -ACGGAACTTCGACTGCATCAACCT -ACGGAACTTCGACTGCATGCTACT -ACGGAACTTCGACTGCATGGATCT -ACGGAACTTCGACTGCATAAGGCT -ACGGAACTTCGACTGCATTCAACC -ACGGAACTTCGACTGCATTGTTCC -ACGGAACTTCGACTGCATATTCCC -ACGGAACTTCGACTGCATTTCTCG -ACGGAACTTCGACTGCATTAGACG -ACGGAACTTCGACTGCATGTAACG -ACGGAACTTCGACTGCATACTTCG -ACGGAACTTCGACTGCATTACGCA -ACGGAACTTCGACTGCATCTTGCA -ACGGAACTTCGACTGCATCGAACA -ACGGAACTTCGACTGCATCAGTCA -ACGGAACTTCGACTGCATGATCCA -ACGGAACTTCGACTGCATACGACA -ACGGAACTTCGACTGCATAGCTCA -ACGGAACTTCGACTGCATTCACGT -ACGGAACTTCGACTGCATCGTAGT -ACGGAACTTCGACTGCATGTCAGT -ACGGAACTTCGACTGCATGAAGGT -ACGGAACTTCGACTGCATAACCGT -ACGGAACTTCGACTGCATTTGTGC -ACGGAACTTCGACTGCATCTAAGC -ACGGAACTTCGACTGCATACTAGC -ACGGAACTTCGACTGCATAGATGC -ACGGAACTTCGACTGCATTGAAGG -ACGGAACTTCGACTGCATCAATGG -ACGGAACTTCGACTGCATATGAGG -ACGGAACTTCGACTGCATAATGGG -ACGGAACTTCGACTGCATTCCTGA -ACGGAACTTCGACTGCATTAGCGA -ACGGAACTTCGACTGCATCACAGA -ACGGAACTTCGACTGCATGCAAGA -ACGGAACTTCGACTGCATGGTTGA -ACGGAACTTCGACTGCATTCCGAT -ACGGAACTTCGACTGCATTGGCAT -ACGGAACTTCGACTGCATCGAGAT -ACGGAACTTCGACTGCATTACCAC -ACGGAACTTCGACTGCATCAGAAC -ACGGAACTTCGACTGCATGTCTAC -ACGGAACTTCGACTGCATACGTAC -ACGGAACTTCGACTGCATAGTGAC -ACGGAACTTCGACTGCATCTGTAG -ACGGAACTTCGACTGCATCCTAAG -ACGGAACTTCGACTGCATGTTCAG -ACGGAACTTCGACTGCATGCATAG -ACGGAACTTCGACTGCATGACAAG -ACGGAACTTCGACTGCATAAGCAG -ACGGAACTTCGACTGCATCGTCAA -ACGGAACTTCGACTGCATGCTGAA -ACGGAACTTCGACTGCATAGTACG -ACGGAACTTCGACTGCATATCCGA -ACGGAACTTCGACTGCATATGGGA -ACGGAACTTCGACTGCATGTGCAA -ACGGAACTTCGACTGCATGAGGAA -ACGGAACTTCGACTGCATCAGGTA -ACGGAACTTCGACTGCATGACTCT -ACGGAACTTCGACTGCATAGTCCT -ACGGAACTTCGACTGCATTAAGCC -ACGGAACTTCGACTGCATATAGCC -ACGGAACTTCGACTGCATTAACCG -ACGGAACTTCGACTGCATATGCCA -ACGGAACTTCGATTGGAGGGAAAC -ACGGAACTTCGATTGGAGAACACC -ACGGAACTTCGATTGGAGATCGAG -ACGGAACTTCGATTGGAGCTCCTT -ACGGAACTTCGATTGGAGCCTGTT -ACGGAACTTCGATTGGAGCGGTTT -ACGGAACTTCGATTGGAGGTGGTT -ACGGAACTTCGATTGGAGGCCTTT -ACGGAACTTCGATTGGAGGGTCTT -ACGGAACTTCGATTGGAGACGCTT -ACGGAACTTCGATTGGAGAGCGTT -ACGGAACTTCGATTGGAGTTCGTC -ACGGAACTTCGATTGGAGTCTCTC -ACGGAACTTCGATTGGAGTGGATC -ACGGAACTTCGATTGGAGCACTTC -ACGGAACTTCGATTGGAGGTACTC -ACGGAACTTCGATTGGAGGATGTC -ACGGAACTTCGATTGGAGACAGTC -ACGGAACTTCGATTGGAGTTGCTG -ACGGAACTTCGATTGGAGTCCATG -ACGGAACTTCGATTGGAGTGTGTG -ACGGAACTTCGATTGGAGCTAGTG -ACGGAACTTCGATTGGAGCATCTG -ACGGAACTTCGATTGGAGGAGTTG -ACGGAACTTCGATTGGAGAGACTG -ACGGAACTTCGATTGGAGTCGGTA -ACGGAACTTCGATTGGAGTGCCTA -ACGGAACTTCGATTGGAGCCACTA -ACGGAACTTCGATTGGAGGGAGTA -ACGGAACTTCGATTGGAGTCGTCT -ACGGAACTTCGATTGGAGTGCACT -ACGGAACTTCGATTGGAGCTGACT -ACGGAACTTCGATTGGAGCAACCT -ACGGAACTTCGATTGGAGGCTACT -ACGGAACTTCGATTGGAGGGATCT -ACGGAACTTCGATTGGAGAAGGCT -ACGGAACTTCGATTGGAGTCAACC -ACGGAACTTCGATTGGAGTGTTCC -ACGGAACTTCGATTGGAGATTCCC -ACGGAACTTCGATTGGAGTTCTCG -ACGGAACTTCGATTGGAGTAGACG -ACGGAACTTCGATTGGAGGTAACG -ACGGAACTTCGATTGGAGACTTCG -ACGGAACTTCGATTGGAGTACGCA -ACGGAACTTCGATTGGAGCTTGCA -ACGGAACTTCGATTGGAGCGAACA -ACGGAACTTCGATTGGAGCAGTCA -ACGGAACTTCGATTGGAGGATCCA -ACGGAACTTCGATTGGAGACGACA -ACGGAACTTCGATTGGAGAGCTCA -ACGGAACTTCGATTGGAGTCACGT -ACGGAACTTCGATTGGAGCGTAGT -ACGGAACTTCGATTGGAGGTCAGT -ACGGAACTTCGATTGGAGGAAGGT -ACGGAACTTCGATTGGAGAACCGT -ACGGAACTTCGATTGGAGTTGTGC -ACGGAACTTCGATTGGAGCTAAGC -ACGGAACTTCGATTGGAGACTAGC -ACGGAACTTCGATTGGAGAGATGC -ACGGAACTTCGATTGGAGTGAAGG -ACGGAACTTCGATTGGAGCAATGG -ACGGAACTTCGATTGGAGATGAGG -ACGGAACTTCGATTGGAGAATGGG -ACGGAACTTCGATTGGAGTCCTGA -ACGGAACTTCGATTGGAGTAGCGA -ACGGAACTTCGATTGGAGCACAGA -ACGGAACTTCGATTGGAGGCAAGA -ACGGAACTTCGATTGGAGGGTTGA -ACGGAACTTCGATTGGAGTCCGAT -ACGGAACTTCGATTGGAGTGGCAT -ACGGAACTTCGATTGGAGCGAGAT -ACGGAACTTCGATTGGAGTACCAC -ACGGAACTTCGATTGGAGCAGAAC -ACGGAACTTCGATTGGAGGTCTAC -ACGGAACTTCGATTGGAGACGTAC -ACGGAACTTCGATTGGAGAGTGAC -ACGGAACTTCGATTGGAGCTGTAG -ACGGAACTTCGATTGGAGCCTAAG -ACGGAACTTCGATTGGAGGTTCAG -ACGGAACTTCGATTGGAGGCATAG -ACGGAACTTCGATTGGAGGACAAG -ACGGAACTTCGATTGGAGAAGCAG -ACGGAACTTCGATTGGAGCGTCAA -ACGGAACTTCGATTGGAGGCTGAA -ACGGAACTTCGATTGGAGAGTACG -ACGGAACTTCGATTGGAGATCCGA -ACGGAACTTCGATTGGAGATGGGA -ACGGAACTTCGATTGGAGGTGCAA -ACGGAACTTCGATTGGAGGAGGAA -ACGGAACTTCGATTGGAGCAGGTA -ACGGAACTTCGATTGGAGGACTCT -ACGGAACTTCGATTGGAGAGTCCT -ACGGAACTTCGATTGGAGTAAGCC -ACGGAACTTCGATTGGAGATAGCC -ACGGAACTTCGATTGGAGTAACCG -ACGGAACTTCGATTGGAGATGCCA -ACGGAACTTCGACTGAGAGGAAAC -ACGGAACTTCGACTGAGAAACACC -ACGGAACTTCGACTGAGAATCGAG -ACGGAACTTCGACTGAGACTCCTT -ACGGAACTTCGACTGAGACCTGTT -ACGGAACTTCGACTGAGACGGTTT -ACGGAACTTCGACTGAGAGTGGTT -ACGGAACTTCGACTGAGAGCCTTT -ACGGAACTTCGACTGAGAGGTCTT -ACGGAACTTCGACTGAGAACGCTT -ACGGAACTTCGACTGAGAAGCGTT -ACGGAACTTCGACTGAGATTCGTC -ACGGAACTTCGACTGAGATCTCTC -ACGGAACTTCGACTGAGATGGATC -ACGGAACTTCGACTGAGACACTTC -ACGGAACTTCGACTGAGAGTACTC -ACGGAACTTCGACTGAGAGATGTC -ACGGAACTTCGACTGAGAACAGTC -ACGGAACTTCGACTGAGATTGCTG -ACGGAACTTCGACTGAGATCCATG -ACGGAACTTCGACTGAGATGTGTG -ACGGAACTTCGACTGAGACTAGTG -ACGGAACTTCGACTGAGACATCTG -ACGGAACTTCGACTGAGAGAGTTG -ACGGAACTTCGACTGAGAAGACTG -ACGGAACTTCGACTGAGATCGGTA -ACGGAACTTCGACTGAGATGCCTA -ACGGAACTTCGACTGAGACCACTA -ACGGAACTTCGACTGAGAGGAGTA -ACGGAACTTCGACTGAGATCGTCT -ACGGAACTTCGACTGAGATGCACT -ACGGAACTTCGACTGAGACTGACT -ACGGAACTTCGACTGAGACAACCT -ACGGAACTTCGACTGAGAGCTACT -ACGGAACTTCGACTGAGAGGATCT -ACGGAACTTCGACTGAGAAAGGCT -ACGGAACTTCGACTGAGATCAACC -ACGGAACTTCGACTGAGATGTTCC -ACGGAACTTCGACTGAGAATTCCC -ACGGAACTTCGACTGAGATTCTCG -ACGGAACTTCGACTGAGATAGACG -ACGGAACTTCGACTGAGAGTAACG -ACGGAACTTCGACTGAGAACTTCG -ACGGAACTTCGACTGAGATACGCA -ACGGAACTTCGACTGAGACTTGCA -ACGGAACTTCGACTGAGACGAACA -ACGGAACTTCGACTGAGACAGTCA -ACGGAACTTCGACTGAGAGATCCA -ACGGAACTTCGACTGAGAACGACA -ACGGAACTTCGACTGAGAAGCTCA -ACGGAACTTCGACTGAGATCACGT -ACGGAACTTCGACTGAGACGTAGT -ACGGAACTTCGACTGAGAGTCAGT -ACGGAACTTCGACTGAGAGAAGGT -ACGGAACTTCGACTGAGAAACCGT -ACGGAACTTCGACTGAGATTGTGC -ACGGAACTTCGACTGAGACTAAGC -ACGGAACTTCGACTGAGAACTAGC -ACGGAACTTCGACTGAGAAGATGC -ACGGAACTTCGACTGAGATGAAGG -ACGGAACTTCGACTGAGACAATGG -ACGGAACTTCGACTGAGAATGAGG -ACGGAACTTCGACTGAGAAATGGG -ACGGAACTTCGACTGAGATCCTGA -ACGGAACTTCGACTGAGATAGCGA -ACGGAACTTCGACTGAGACACAGA -ACGGAACTTCGACTGAGAGCAAGA -ACGGAACTTCGACTGAGAGGTTGA -ACGGAACTTCGACTGAGATCCGAT -ACGGAACTTCGACTGAGATGGCAT -ACGGAACTTCGACTGAGACGAGAT -ACGGAACTTCGACTGAGATACCAC -ACGGAACTTCGACTGAGACAGAAC -ACGGAACTTCGACTGAGAGTCTAC -ACGGAACTTCGACTGAGAACGTAC -ACGGAACTTCGACTGAGAAGTGAC -ACGGAACTTCGACTGAGACTGTAG -ACGGAACTTCGACTGAGACCTAAG -ACGGAACTTCGACTGAGAGTTCAG -ACGGAACTTCGACTGAGAGCATAG -ACGGAACTTCGACTGAGAGACAAG -ACGGAACTTCGACTGAGAAAGCAG -ACGGAACTTCGACTGAGACGTCAA -ACGGAACTTCGACTGAGAGCTGAA -ACGGAACTTCGACTGAGAAGTACG -ACGGAACTTCGACTGAGAATCCGA -ACGGAACTTCGACTGAGAATGGGA -ACGGAACTTCGACTGAGAGTGCAA -ACGGAACTTCGACTGAGAGAGGAA -ACGGAACTTCGACTGAGACAGGTA -ACGGAACTTCGACTGAGAGACTCT -ACGGAACTTCGACTGAGAAGTCCT -ACGGAACTTCGACTGAGATAAGCC -ACGGAACTTCGACTGAGAATAGCC -ACGGAACTTCGACTGAGATAACCG -ACGGAACTTCGACTGAGAATGCCA -ACGGAACTTCGAGTATCGGGAAAC -ACGGAACTTCGAGTATCGAACACC -ACGGAACTTCGAGTATCGATCGAG -ACGGAACTTCGAGTATCGCTCCTT -ACGGAACTTCGAGTATCGCCTGTT -ACGGAACTTCGAGTATCGCGGTTT -ACGGAACTTCGAGTATCGGTGGTT -ACGGAACTTCGAGTATCGGCCTTT -ACGGAACTTCGAGTATCGGGTCTT -ACGGAACTTCGAGTATCGACGCTT -ACGGAACTTCGAGTATCGAGCGTT -ACGGAACTTCGAGTATCGTTCGTC -ACGGAACTTCGAGTATCGTCTCTC -ACGGAACTTCGAGTATCGTGGATC -ACGGAACTTCGAGTATCGCACTTC -ACGGAACTTCGAGTATCGGTACTC -ACGGAACTTCGAGTATCGGATGTC -ACGGAACTTCGAGTATCGACAGTC -ACGGAACTTCGAGTATCGTTGCTG -ACGGAACTTCGAGTATCGTCCATG -ACGGAACTTCGAGTATCGTGTGTG -ACGGAACTTCGAGTATCGCTAGTG -ACGGAACTTCGAGTATCGCATCTG -ACGGAACTTCGAGTATCGGAGTTG -ACGGAACTTCGAGTATCGAGACTG -ACGGAACTTCGAGTATCGTCGGTA -ACGGAACTTCGAGTATCGTGCCTA -ACGGAACTTCGAGTATCGCCACTA -ACGGAACTTCGAGTATCGGGAGTA -ACGGAACTTCGAGTATCGTCGTCT -ACGGAACTTCGAGTATCGTGCACT -ACGGAACTTCGAGTATCGCTGACT -ACGGAACTTCGAGTATCGCAACCT -ACGGAACTTCGAGTATCGGCTACT -ACGGAACTTCGAGTATCGGGATCT -ACGGAACTTCGAGTATCGAAGGCT -ACGGAACTTCGAGTATCGTCAACC -ACGGAACTTCGAGTATCGTGTTCC -ACGGAACTTCGAGTATCGATTCCC -ACGGAACTTCGAGTATCGTTCTCG -ACGGAACTTCGAGTATCGTAGACG -ACGGAACTTCGAGTATCGGTAACG -ACGGAACTTCGAGTATCGACTTCG -ACGGAACTTCGAGTATCGTACGCA -ACGGAACTTCGAGTATCGCTTGCA -ACGGAACTTCGAGTATCGCGAACA -ACGGAACTTCGAGTATCGCAGTCA -ACGGAACTTCGAGTATCGGATCCA -ACGGAACTTCGAGTATCGACGACA -ACGGAACTTCGAGTATCGAGCTCA -ACGGAACTTCGAGTATCGTCACGT -ACGGAACTTCGAGTATCGCGTAGT -ACGGAACTTCGAGTATCGGTCAGT -ACGGAACTTCGAGTATCGGAAGGT -ACGGAACTTCGAGTATCGAACCGT -ACGGAACTTCGAGTATCGTTGTGC -ACGGAACTTCGAGTATCGCTAAGC -ACGGAACTTCGAGTATCGACTAGC -ACGGAACTTCGAGTATCGAGATGC -ACGGAACTTCGAGTATCGTGAAGG -ACGGAACTTCGAGTATCGCAATGG -ACGGAACTTCGAGTATCGATGAGG -ACGGAACTTCGAGTATCGAATGGG -ACGGAACTTCGAGTATCGTCCTGA -ACGGAACTTCGAGTATCGTAGCGA -ACGGAACTTCGAGTATCGCACAGA -ACGGAACTTCGAGTATCGGCAAGA -ACGGAACTTCGAGTATCGGGTTGA -ACGGAACTTCGAGTATCGTCCGAT -ACGGAACTTCGAGTATCGTGGCAT -ACGGAACTTCGAGTATCGCGAGAT -ACGGAACTTCGAGTATCGTACCAC -ACGGAACTTCGAGTATCGCAGAAC -ACGGAACTTCGAGTATCGGTCTAC -ACGGAACTTCGAGTATCGACGTAC -ACGGAACTTCGAGTATCGAGTGAC -ACGGAACTTCGAGTATCGCTGTAG -ACGGAACTTCGAGTATCGCCTAAG -ACGGAACTTCGAGTATCGGTTCAG -ACGGAACTTCGAGTATCGGCATAG -ACGGAACTTCGAGTATCGGACAAG -ACGGAACTTCGAGTATCGAAGCAG -ACGGAACTTCGAGTATCGCGTCAA -ACGGAACTTCGAGTATCGGCTGAA -ACGGAACTTCGAGTATCGAGTACG -ACGGAACTTCGAGTATCGATCCGA -ACGGAACTTCGAGTATCGATGGGA -ACGGAACTTCGAGTATCGGTGCAA -ACGGAACTTCGAGTATCGGAGGAA -ACGGAACTTCGAGTATCGCAGGTA -ACGGAACTTCGAGTATCGGACTCT -ACGGAACTTCGAGTATCGAGTCCT -ACGGAACTTCGAGTATCGTAAGCC -ACGGAACTTCGAGTATCGATAGCC -ACGGAACTTCGAGTATCGTAACCG -ACGGAACTTCGAGTATCGATGCCA -ACGGAACTTCGACTATGCGGAAAC -ACGGAACTTCGACTATGCAACACC -ACGGAACTTCGACTATGCATCGAG -ACGGAACTTCGACTATGCCTCCTT -ACGGAACTTCGACTATGCCCTGTT -ACGGAACTTCGACTATGCCGGTTT -ACGGAACTTCGACTATGCGTGGTT -ACGGAACTTCGACTATGCGCCTTT -ACGGAACTTCGACTATGCGGTCTT -ACGGAACTTCGACTATGCACGCTT -ACGGAACTTCGACTATGCAGCGTT -ACGGAACTTCGACTATGCTTCGTC -ACGGAACTTCGACTATGCTCTCTC -ACGGAACTTCGACTATGCTGGATC -ACGGAACTTCGACTATGCCACTTC -ACGGAACTTCGACTATGCGTACTC -ACGGAACTTCGACTATGCGATGTC -ACGGAACTTCGACTATGCACAGTC -ACGGAACTTCGACTATGCTTGCTG -ACGGAACTTCGACTATGCTCCATG -ACGGAACTTCGACTATGCTGTGTG -ACGGAACTTCGACTATGCCTAGTG -ACGGAACTTCGACTATGCCATCTG -ACGGAACTTCGACTATGCGAGTTG -ACGGAACTTCGACTATGCAGACTG -ACGGAACTTCGACTATGCTCGGTA -ACGGAACTTCGACTATGCTGCCTA -ACGGAACTTCGACTATGCCCACTA -ACGGAACTTCGACTATGCGGAGTA -ACGGAACTTCGACTATGCTCGTCT -ACGGAACTTCGACTATGCTGCACT -ACGGAACTTCGACTATGCCTGACT -ACGGAACTTCGACTATGCCAACCT -ACGGAACTTCGACTATGCGCTACT -ACGGAACTTCGACTATGCGGATCT -ACGGAACTTCGACTATGCAAGGCT -ACGGAACTTCGACTATGCTCAACC -ACGGAACTTCGACTATGCTGTTCC -ACGGAACTTCGACTATGCATTCCC -ACGGAACTTCGACTATGCTTCTCG -ACGGAACTTCGACTATGCTAGACG -ACGGAACTTCGACTATGCGTAACG -ACGGAACTTCGACTATGCACTTCG -ACGGAACTTCGACTATGCTACGCA -ACGGAACTTCGACTATGCCTTGCA -ACGGAACTTCGACTATGCCGAACA -ACGGAACTTCGACTATGCCAGTCA -ACGGAACTTCGACTATGCGATCCA -ACGGAACTTCGACTATGCACGACA -ACGGAACTTCGACTATGCAGCTCA -ACGGAACTTCGACTATGCTCACGT -ACGGAACTTCGACTATGCCGTAGT -ACGGAACTTCGACTATGCGTCAGT -ACGGAACTTCGACTATGCGAAGGT -ACGGAACTTCGACTATGCAACCGT -ACGGAACTTCGACTATGCTTGTGC -ACGGAACTTCGACTATGCCTAAGC -ACGGAACTTCGACTATGCACTAGC -ACGGAACTTCGACTATGCAGATGC -ACGGAACTTCGACTATGCTGAAGG -ACGGAACTTCGACTATGCCAATGG -ACGGAACTTCGACTATGCATGAGG -ACGGAACTTCGACTATGCAATGGG -ACGGAACTTCGACTATGCTCCTGA -ACGGAACTTCGACTATGCTAGCGA -ACGGAACTTCGACTATGCCACAGA -ACGGAACTTCGACTATGCGCAAGA -ACGGAACTTCGACTATGCGGTTGA -ACGGAACTTCGACTATGCTCCGAT -ACGGAACTTCGACTATGCTGGCAT -ACGGAACTTCGACTATGCCGAGAT -ACGGAACTTCGACTATGCTACCAC -ACGGAACTTCGACTATGCCAGAAC -ACGGAACTTCGACTATGCGTCTAC -ACGGAACTTCGACTATGCACGTAC -ACGGAACTTCGACTATGCAGTGAC -ACGGAACTTCGACTATGCCTGTAG -ACGGAACTTCGACTATGCCCTAAG -ACGGAACTTCGACTATGCGTTCAG -ACGGAACTTCGACTATGCGCATAG -ACGGAACTTCGACTATGCGACAAG -ACGGAACTTCGACTATGCAAGCAG -ACGGAACTTCGACTATGCCGTCAA -ACGGAACTTCGACTATGCGCTGAA -ACGGAACTTCGACTATGCAGTACG -ACGGAACTTCGACTATGCATCCGA -ACGGAACTTCGACTATGCATGGGA -ACGGAACTTCGACTATGCGTGCAA -ACGGAACTTCGACTATGCGAGGAA -ACGGAACTTCGACTATGCCAGGTA -ACGGAACTTCGACTATGCGACTCT -ACGGAACTTCGACTATGCAGTCCT -ACGGAACTTCGACTATGCTAAGCC -ACGGAACTTCGACTATGCATAGCC -ACGGAACTTCGACTATGCTAACCG -ACGGAACTTCGACTATGCATGCCA -ACGGAACTTCGACTACCAGGAAAC -ACGGAACTTCGACTACCAAACACC -ACGGAACTTCGACTACCAATCGAG -ACGGAACTTCGACTACCACTCCTT -ACGGAACTTCGACTACCACCTGTT -ACGGAACTTCGACTACCACGGTTT -ACGGAACTTCGACTACCAGTGGTT -ACGGAACTTCGACTACCAGCCTTT -ACGGAACTTCGACTACCAGGTCTT -ACGGAACTTCGACTACCAACGCTT -ACGGAACTTCGACTACCAAGCGTT -ACGGAACTTCGACTACCATTCGTC -ACGGAACTTCGACTACCATCTCTC -ACGGAACTTCGACTACCATGGATC -ACGGAACTTCGACTACCACACTTC -ACGGAACTTCGACTACCAGTACTC -ACGGAACTTCGACTACCAGATGTC -ACGGAACTTCGACTACCAACAGTC -ACGGAACTTCGACTACCATTGCTG -ACGGAACTTCGACTACCATCCATG -ACGGAACTTCGACTACCATGTGTG -ACGGAACTTCGACTACCACTAGTG -ACGGAACTTCGACTACCACATCTG -ACGGAACTTCGACTACCAGAGTTG -ACGGAACTTCGACTACCAAGACTG -ACGGAACTTCGACTACCATCGGTA -ACGGAACTTCGACTACCATGCCTA -ACGGAACTTCGACTACCACCACTA -ACGGAACTTCGACTACCAGGAGTA -ACGGAACTTCGACTACCATCGTCT -ACGGAACTTCGACTACCATGCACT -ACGGAACTTCGACTACCACTGACT -ACGGAACTTCGACTACCACAACCT -ACGGAACTTCGACTACCAGCTACT -ACGGAACTTCGACTACCAGGATCT -ACGGAACTTCGACTACCAAAGGCT -ACGGAACTTCGACTACCATCAACC -ACGGAACTTCGACTACCATGTTCC -ACGGAACTTCGACTACCAATTCCC -ACGGAACTTCGACTACCATTCTCG -ACGGAACTTCGACTACCATAGACG -ACGGAACTTCGACTACCAGTAACG -ACGGAACTTCGACTACCAACTTCG -ACGGAACTTCGACTACCATACGCA -ACGGAACTTCGACTACCACTTGCA -ACGGAACTTCGACTACCACGAACA -ACGGAACTTCGACTACCACAGTCA -ACGGAACTTCGACTACCAGATCCA -ACGGAACTTCGACTACCAACGACA -ACGGAACTTCGACTACCAAGCTCA -ACGGAACTTCGACTACCATCACGT -ACGGAACTTCGACTACCACGTAGT -ACGGAACTTCGACTACCAGTCAGT -ACGGAACTTCGACTACCAGAAGGT -ACGGAACTTCGACTACCAAACCGT -ACGGAACTTCGACTACCATTGTGC -ACGGAACTTCGACTACCACTAAGC -ACGGAACTTCGACTACCAACTAGC -ACGGAACTTCGACTACCAAGATGC -ACGGAACTTCGACTACCATGAAGG -ACGGAACTTCGACTACCACAATGG -ACGGAACTTCGACTACCAATGAGG -ACGGAACTTCGACTACCAAATGGG -ACGGAACTTCGACTACCATCCTGA -ACGGAACTTCGACTACCATAGCGA -ACGGAACTTCGACTACCACACAGA -ACGGAACTTCGACTACCAGCAAGA -ACGGAACTTCGACTACCAGGTTGA -ACGGAACTTCGACTACCATCCGAT -ACGGAACTTCGACTACCATGGCAT -ACGGAACTTCGACTACCACGAGAT -ACGGAACTTCGACTACCATACCAC -ACGGAACTTCGACTACCACAGAAC -ACGGAACTTCGACTACCAGTCTAC -ACGGAACTTCGACTACCAACGTAC -ACGGAACTTCGACTACCAAGTGAC -ACGGAACTTCGACTACCACTGTAG -ACGGAACTTCGACTACCACCTAAG -ACGGAACTTCGACTACCAGTTCAG -ACGGAACTTCGACTACCAGCATAG -ACGGAACTTCGACTACCAGACAAG -ACGGAACTTCGACTACCAAAGCAG -ACGGAACTTCGACTACCACGTCAA -ACGGAACTTCGACTACCAGCTGAA -ACGGAACTTCGACTACCAAGTACG -ACGGAACTTCGACTACCAATCCGA -ACGGAACTTCGACTACCAATGGGA -ACGGAACTTCGACTACCAGTGCAA -ACGGAACTTCGACTACCAGAGGAA -ACGGAACTTCGACTACCACAGGTA -ACGGAACTTCGACTACCAGACTCT -ACGGAACTTCGACTACCAAGTCCT -ACGGAACTTCGACTACCATAAGCC -ACGGAACTTCGACTACCAATAGCC -ACGGAACTTCGACTACCATAACCG -ACGGAACTTCGACTACCAATGCCA -ACGGAACTTCGAGTAGGAGGAAAC -ACGGAACTTCGAGTAGGAAACACC -ACGGAACTTCGAGTAGGAATCGAG -ACGGAACTTCGAGTAGGACTCCTT -ACGGAACTTCGAGTAGGACCTGTT -ACGGAACTTCGAGTAGGACGGTTT -ACGGAACTTCGAGTAGGAGTGGTT -ACGGAACTTCGAGTAGGAGCCTTT -ACGGAACTTCGAGTAGGAGGTCTT -ACGGAACTTCGAGTAGGAACGCTT -ACGGAACTTCGAGTAGGAAGCGTT -ACGGAACTTCGAGTAGGATTCGTC -ACGGAACTTCGAGTAGGATCTCTC -ACGGAACTTCGAGTAGGATGGATC -ACGGAACTTCGAGTAGGACACTTC -ACGGAACTTCGAGTAGGAGTACTC -ACGGAACTTCGAGTAGGAGATGTC -ACGGAACTTCGAGTAGGAACAGTC -ACGGAACTTCGAGTAGGATTGCTG -ACGGAACTTCGAGTAGGATCCATG -ACGGAACTTCGAGTAGGATGTGTG -ACGGAACTTCGAGTAGGACTAGTG -ACGGAACTTCGAGTAGGACATCTG -ACGGAACTTCGAGTAGGAGAGTTG -ACGGAACTTCGAGTAGGAAGACTG -ACGGAACTTCGAGTAGGATCGGTA -ACGGAACTTCGAGTAGGATGCCTA -ACGGAACTTCGAGTAGGACCACTA -ACGGAACTTCGAGTAGGAGGAGTA -ACGGAACTTCGAGTAGGATCGTCT -ACGGAACTTCGAGTAGGATGCACT -ACGGAACTTCGAGTAGGACTGACT -ACGGAACTTCGAGTAGGACAACCT -ACGGAACTTCGAGTAGGAGCTACT -ACGGAACTTCGAGTAGGAGGATCT -ACGGAACTTCGAGTAGGAAAGGCT -ACGGAACTTCGAGTAGGATCAACC -ACGGAACTTCGAGTAGGATGTTCC -ACGGAACTTCGAGTAGGAATTCCC -ACGGAACTTCGAGTAGGATTCTCG -ACGGAACTTCGAGTAGGATAGACG -ACGGAACTTCGAGTAGGAGTAACG -ACGGAACTTCGAGTAGGAACTTCG -ACGGAACTTCGAGTAGGATACGCA -ACGGAACTTCGAGTAGGACTTGCA -ACGGAACTTCGAGTAGGACGAACA -ACGGAACTTCGAGTAGGACAGTCA -ACGGAACTTCGAGTAGGAGATCCA -ACGGAACTTCGAGTAGGAACGACA -ACGGAACTTCGAGTAGGAAGCTCA -ACGGAACTTCGAGTAGGATCACGT -ACGGAACTTCGAGTAGGACGTAGT -ACGGAACTTCGAGTAGGAGTCAGT -ACGGAACTTCGAGTAGGAGAAGGT -ACGGAACTTCGAGTAGGAAACCGT -ACGGAACTTCGAGTAGGATTGTGC -ACGGAACTTCGAGTAGGACTAAGC -ACGGAACTTCGAGTAGGAACTAGC -ACGGAACTTCGAGTAGGAAGATGC -ACGGAACTTCGAGTAGGATGAAGG -ACGGAACTTCGAGTAGGACAATGG -ACGGAACTTCGAGTAGGAATGAGG -ACGGAACTTCGAGTAGGAAATGGG -ACGGAACTTCGAGTAGGATCCTGA -ACGGAACTTCGAGTAGGATAGCGA -ACGGAACTTCGAGTAGGACACAGA -ACGGAACTTCGAGTAGGAGCAAGA -ACGGAACTTCGAGTAGGAGGTTGA -ACGGAACTTCGAGTAGGATCCGAT -ACGGAACTTCGAGTAGGATGGCAT -ACGGAACTTCGAGTAGGACGAGAT -ACGGAACTTCGAGTAGGATACCAC -ACGGAACTTCGAGTAGGACAGAAC -ACGGAACTTCGAGTAGGAGTCTAC -ACGGAACTTCGAGTAGGAACGTAC -ACGGAACTTCGAGTAGGAAGTGAC -ACGGAACTTCGAGTAGGACTGTAG -ACGGAACTTCGAGTAGGACCTAAG -ACGGAACTTCGAGTAGGAGTTCAG -ACGGAACTTCGAGTAGGAGCATAG -ACGGAACTTCGAGTAGGAGACAAG -ACGGAACTTCGAGTAGGAAAGCAG -ACGGAACTTCGAGTAGGACGTCAA -ACGGAACTTCGAGTAGGAGCTGAA -ACGGAACTTCGAGTAGGAAGTACG -ACGGAACTTCGAGTAGGAATCCGA -ACGGAACTTCGAGTAGGAATGGGA -ACGGAACTTCGAGTAGGAGTGCAA -ACGGAACTTCGAGTAGGAGAGGAA -ACGGAACTTCGAGTAGGACAGGTA -ACGGAACTTCGAGTAGGAGACTCT -ACGGAACTTCGAGTAGGAAGTCCT -ACGGAACTTCGAGTAGGATAAGCC -ACGGAACTTCGAGTAGGAATAGCC -ACGGAACTTCGAGTAGGATAACCG -ACGGAACTTCGAGTAGGAATGCCA -ACGGAACTTCGATCTTCGGGAAAC -ACGGAACTTCGATCTTCGAACACC -ACGGAACTTCGATCTTCGATCGAG -ACGGAACTTCGATCTTCGCTCCTT -ACGGAACTTCGATCTTCGCCTGTT -ACGGAACTTCGATCTTCGCGGTTT -ACGGAACTTCGATCTTCGGTGGTT -ACGGAACTTCGATCTTCGGCCTTT -ACGGAACTTCGATCTTCGGGTCTT -ACGGAACTTCGATCTTCGACGCTT -ACGGAACTTCGATCTTCGAGCGTT -ACGGAACTTCGATCTTCGTTCGTC -ACGGAACTTCGATCTTCGTCTCTC -ACGGAACTTCGATCTTCGTGGATC -ACGGAACTTCGATCTTCGCACTTC -ACGGAACTTCGATCTTCGGTACTC -ACGGAACTTCGATCTTCGGATGTC -ACGGAACTTCGATCTTCGACAGTC -ACGGAACTTCGATCTTCGTTGCTG -ACGGAACTTCGATCTTCGTCCATG -ACGGAACTTCGATCTTCGTGTGTG -ACGGAACTTCGATCTTCGCTAGTG -ACGGAACTTCGATCTTCGCATCTG -ACGGAACTTCGATCTTCGGAGTTG -ACGGAACTTCGATCTTCGAGACTG -ACGGAACTTCGATCTTCGTCGGTA -ACGGAACTTCGATCTTCGTGCCTA -ACGGAACTTCGATCTTCGCCACTA -ACGGAACTTCGATCTTCGGGAGTA -ACGGAACTTCGATCTTCGTCGTCT -ACGGAACTTCGATCTTCGTGCACT -ACGGAACTTCGATCTTCGCTGACT -ACGGAACTTCGATCTTCGCAACCT -ACGGAACTTCGATCTTCGGCTACT -ACGGAACTTCGATCTTCGGGATCT -ACGGAACTTCGATCTTCGAAGGCT -ACGGAACTTCGATCTTCGTCAACC -ACGGAACTTCGATCTTCGTGTTCC -ACGGAACTTCGATCTTCGATTCCC -ACGGAACTTCGATCTTCGTTCTCG -ACGGAACTTCGATCTTCGTAGACG -ACGGAACTTCGATCTTCGGTAACG -ACGGAACTTCGATCTTCGACTTCG -ACGGAACTTCGATCTTCGTACGCA -ACGGAACTTCGATCTTCGCTTGCA -ACGGAACTTCGATCTTCGCGAACA -ACGGAACTTCGATCTTCGCAGTCA -ACGGAACTTCGATCTTCGGATCCA -ACGGAACTTCGATCTTCGACGACA -ACGGAACTTCGATCTTCGAGCTCA -ACGGAACTTCGATCTTCGTCACGT -ACGGAACTTCGATCTTCGCGTAGT -ACGGAACTTCGATCTTCGGTCAGT -ACGGAACTTCGATCTTCGGAAGGT -ACGGAACTTCGATCTTCGAACCGT -ACGGAACTTCGATCTTCGTTGTGC -ACGGAACTTCGATCTTCGCTAAGC -ACGGAACTTCGATCTTCGACTAGC -ACGGAACTTCGATCTTCGAGATGC -ACGGAACTTCGATCTTCGTGAAGG -ACGGAACTTCGATCTTCGCAATGG -ACGGAACTTCGATCTTCGATGAGG -ACGGAACTTCGATCTTCGAATGGG -ACGGAACTTCGATCTTCGTCCTGA -ACGGAACTTCGATCTTCGTAGCGA -ACGGAACTTCGATCTTCGCACAGA -ACGGAACTTCGATCTTCGGCAAGA -ACGGAACTTCGATCTTCGGGTTGA -ACGGAACTTCGATCTTCGTCCGAT -ACGGAACTTCGATCTTCGTGGCAT -ACGGAACTTCGATCTTCGCGAGAT -ACGGAACTTCGATCTTCGTACCAC -ACGGAACTTCGATCTTCGCAGAAC -ACGGAACTTCGATCTTCGGTCTAC -ACGGAACTTCGATCTTCGACGTAC -ACGGAACTTCGATCTTCGAGTGAC -ACGGAACTTCGATCTTCGCTGTAG -ACGGAACTTCGATCTTCGCCTAAG -ACGGAACTTCGATCTTCGGTTCAG -ACGGAACTTCGATCTTCGGCATAG -ACGGAACTTCGATCTTCGGACAAG -ACGGAACTTCGATCTTCGAAGCAG -ACGGAACTTCGATCTTCGCGTCAA -ACGGAACTTCGATCTTCGGCTGAA -ACGGAACTTCGATCTTCGAGTACG -ACGGAACTTCGATCTTCGATCCGA -ACGGAACTTCGATCTTCGATGGGA -ACGGAACTTCGATCTTCGGTGCAA -ACGGAACTTCGATCTTCGGAGGAA -ACGGAACTTCGATCTTCGCAGGTA -ACGGAACTTCGATCTTCGGACTCT -ACGGAACTTCGATCTTCGAGTCCT -ACGGAACTTCGATCTTCGTAAGCC -ACGGAACTTCGATCTTCGATAGCC -ACGGAACTTCGATCTTCGTAACCG -ACGGAACTTCGATCTTCGATGCCA -ACGGAACTTCGAACTTGCGGAAAC -ACGGAACTTCGAACTTGCAACACC -ACGGAACTTCGAACTTGCATCGAG -ACGGAACTTCGAACTTGCCTCCTT -ACGGAACTTCGAACTTGCCCTGTT -ACGGAACTTCGAACTTGCCGGTTT -ACGGAACTTCGAACTTGCGTGGTT -ACGGAACTTCGAACTTGCGCCTTT -ACGGAACTTCGAACTTGCGGTCTT -ACGGAACTTCGAACTTGCACGCTT -ACGGAACTTCGAACTTGCAGCGTT -ACGGAACTTCGAACTTGCTTCGTC -ACGGAACTTCGAACTTGCTCTCTC -ACGGAACTTCGAACTTGCTGGATC -ACGGAACTTCGAACTTGCCACTTC -ACGGAACTTCGAACTTGCGTACTC -ACGGAACTTCGAACTTGCGATGTC -ACGGAACTTCGAACTTGCACAGTC -ACGGAACTTCGAACTTGCTTGCTG -ACGGAACTTCGAACTTGCTCCATG -ACGGAACTTCGAACTTGCTGTGTG -ACGGAACTTCGAACTTGCCTAGTG -ACGGAACTTCGAACTTGCCATCTG -ACGGAACTTCGAACTTGCGAGTTG -ACGGAACTTCGAACTTGCAGACTG -ACGGAACTTCGAACTTGCTCGGTA -ACGGAACTTCGAACTTGCTGCCTA -ACGGAACTTCGAACTTGCCCACTA -ACGGAACTTCGAACTTGCGGAGTA -ACGGAACTTCGAACTTGCTCGTCT -ACGGAACTTCGAACTTGCTGCACT -ACGGAACTTCGAACTTGCCTGACT -ACGGAACTTCGAACTTGCCAACCT -ACGGAACTTCGAACTTGCGCTACT -ACGGAACTTCGAACTTGCGGATCT -ACGGAACTTCGAACTTGCAAGGCT -ACGGAACTTCGAACTTGCTCAACC -ACGGAACTTCGAACTTGCTGTTCC -ACGGAACTTCGAACTTGCATTCCC -ACGGAACTTCGAACTTGCTTCTCG -ACGGAACTTCGAACTTGCTAGACG -ACGGAACTTCGAACTTGCGTAACG -ACGGAACTTCGAACTTGCACTTCG -ACGGAACTTCGAACTTGCTACGCA -ACGGAACTTCGAACTTGCCTTGCA -ACGGAACTTCGAACTTGCCGAACA -ACGGAACTTCGAACTTGCCAGTCA -ACGGAACTTCGAACTTGCGATCCA -ACGGAACTTCGAACTTGCACGACA -ACGGAACTTCGAACTTGCAGCTCA -ACGGAACTTCGAACTTGCTCACGT -ACGGAACTTCGAACTTGCCGTAGT -ACGGAACTTCGAACTTGCGTCAGT -ACGGAACTTCGAACTTGCGAAGGT -ACGGAACTTCGAACTTGCAACCGT -ACGGAACTTCGAACTTGCTTGTGC -ACGGAACTTCGAACTTGCCTAAGC -ACGGAACTTCGAACTTGCACTAGC -ACGGAACTTCGAACTTGCAGATGC -ACGGAACTTCGAACTTGCTGAAGG -ACGGAACTTCGAACTTGCCAATGG -ACGGAACTTCGAACTTGCATGAGG -ACGGAACTTCGAACTTGCAATGGG -ACGGAACTTCGAACTTGCTCCTGA -ACGGAACTTCGAACTTGCTAGCGA -ACGGAACTTCGAACTTGCCACAGA -ACGGAACTTCGAACTTGCGCAAGA -ACGGAACTTCGAACTTGCGGTTGA -ACGGAACTTCGAACTTGCTCCGAT -ACGGAACTTCGAACTTGCTGGCAT -ACGGAACTTCGAACTTGCCGAGAT -ACGGAACTTCGAACTTGCTACCAC -ACGGAACTTCGAACTTGCCAGAAC -ACGGAACTTCGAACTTGCGTCTAC -ACGGAACTTCGAACTTGCACGTAC -ACGGAACTTCGAACTTGCAGTGAC -ACGGAACTTCGAACTTGCCTGTAG -ACGGAACTTCGAACTTGCCCTAAG -ACGGAACTTCGAACTTGCGTTCAG -ACGGAACTTCGAACTTGCGCATAG -ACGGAACTTCGAACTTGCGACAAG -ACGGAACTTCGAACTTGCAAGCAG -ACGGAACTTCGAACTTGCCGTCAA -ACGGAACTTCGAACTTGCGCTGAA -ACGGAACTTCGAACTTGCAGTACG -ACGGAACTTCGAACTTGCATCCGA -ACGGAACTTCGAACTTGCATGGGA -ACGGAACTTCGAACTTGCGTGCAA -ACGGAACTTCGAACTTGCGAGGAA -ACGGAACTTCGAACTTGCCAGGTA -ACGGAACTTCGAACTTGCGACTCT -ACGGAACTTCGAACTTGCAGTCCT -ACGGAACTTCGAACTTGCTAAGCC -ACGGAACTTCGAACTTGCATAGCC -ACGGAACTTCGAACTTGCTAACCG -ACGGAACTTCGAACTTGCATGCCA -ACGGAACTTCGAACTCTGGGAAAC -ACGGAACTTCGAACTCTGAACACC -ACGGAACTTCGAACTCTGATCGAG -ACGGAACTTCGAACTCTGCTCCTT -ACGGAACTTCGAACTCTGCCTGTT -ACGGAACTTCGAACTCTGCGGTTT -ACGGAACTTCGAACTCTGGTGGTT -ACGGAACTTCGAACTCTGGCCTTT -ACGGAACTTCGAACTCTGGGTCTT -ACGGAACTTCGAACTCTGACGCTT -ACGGAACTTCGAACTCTGAGCGTT -ACGGAACTTCGAACTCTGTTCGTC -ACGGAACTTCGAACTCTGTCTCTC -ACGGAACTTCGAACTCTGTGGATC -ACGGAACTTCGAACTCTGCACTTC -ACGGAACTTCGAACTCTGGTACTC -ACGGAACTTCGAACTCTGGATGTC -ACGGAACTTCGAACTCTGACAGTC -ACGGAACTTCGAACTCTGTTGCTG -ACGGAACTTCGAACTCTGTCCATG -ACGGAACTTCGAACTCTGTGTGTG -ACGGAACTTCGAACTCTGCTAGTG -ACGGAACTTCGAACTCTGCATCTG -ACGGAACTTCGAACTCTGGAGTTG -ACGGAACTTCGAACTCTGAGACTG -ACGGAACTTCGAACTCTGTCGGTA -ACGGAACTTCGAACTCTGTGCCTA -ACGGAACTTCGAACTCTGCCACTA -ACGGAACTTCGAACTCTGGGAGTA -ACGGAACTTCGAACTCTGTCGTCT -ACGGAACTTCGAACTCTGTGCACT -ACGGAACTTCGAACTCTGCTGACT -ACGGAACTTCGAACTCTGCAACCT -ACGGAACTTCGAACTCTGGCTACT -ACGGAACTTCGAACTCTGGGATCT -ACGGAACTTCGAACTCTGAAGGCT -ACGGAACTTCGAACTCTGTCAACC -ACGGAACTTCGAACTCTGTGTTCC -ACGGAACTTCGAACTCTGATTCCC -ACGGAACTTCGAACTCTGTTCTCG -ACGGAACTTCGAACTCTGTAGACG -ACGGAACTTCGAACTCTGGTAACG -ACGGAACTTCGAACTCTGACTTCG -ACGGAACTTCGAACTCTGTACGCA -ACGGAACTTCGAACTCTGCTTGCA -ACGGAACTTCGAACTCTGCGAACA -ACGGAACTTCGAACTCTGCAGTCA -ACGGAACTTCGAACTCTGGATCCA -ACGGAACTTCGAACTCTGACGACA -ACGGAACTTCGAACTCTGAGCTCA -ACGGAACTTCGAACTCTGTCACGT -ACGGAACTTCGAACTCTGCGTAGT -ACGGAACTTCGAACTCTGGTCAGT -ACGGAACTTCGAACTCTGGAAGGT -ACGGAACTTCGAACTCTGAACCGT -ACGGAACTTCGAACTCTGTTGTGC -ACGGAACTTCGAACTCTGCTAAGC -ACGGAACTTCGAACTCTGACTAGC -ACGGAACTTCGAACTCTGAGATGC -ACGGAACTTCGAACTCTGTGAAGG -ACGGAACTTCGAACTCTGCAATGG -ACGGAACTTCGAACTCTGATGAGG -ACGGAACTTCGAACTCTGAATGGG -ACGGAACTTCGAACTCTGTCCTGA -ACGGAACTTCGAACTCTGTAGCGA -ACGGAACTTCGAACTCTGCACAGA -ACGGAACTTCGAACTCTGGCAAGA -ACGGAACTTCGAACTCTGGGTTGA -ACGGAACTTCGAACTCTGTCCGAT -ACGGAACTTCGAACTCTGTGGCAT -ACGGAACTTCGAACTCTGCGAGAT -ACGGAACTTCGAACTCTGTACCAC -ACGGAACTTCGAACTCTGCAGAAC -ACGGAACTTCGAACTCTGGTCTAC -ACGGAACTTCGAACTCTGACGTAC -ACGGAACTTCGAACTCTGAGTGAC -ACGGAACTTCGAACTCTGCTGTAG -ACGGAACTTCGAACTCTGCCTAAG -ACGGAACTTCGAACTCTGGTTCAG -ACGGAACTTCGAACTCTGGCATAG -ACGGAACTTCGAACTCTGGACAAG -ACGGAACTTCGAACTCTGAAGCAG -ACGGAACTTCGAACTCTGCGTCAA -ACGGAACTTCGAACTCTGGCTGAA -ACGGAACTTCGAACTCTGAGTACG -ACGGAACTTCGAACTCTGATCCGA -ACGGAACTTCGAACTCTGATGGGA -ACGGAACTTCGAACTCTGGTGCAA -ACGGAACTTCGAACTCTGGAGGAA -ACGGAACTTCGAACTCTGCAGGTA -ACGGAACTTCGAACTCTGGACTCT -ACGGAACTTCGAACTCTGAGTCCT -ACGGAACTTCGAACTCTGTAAGCC -ACGGAACTTCGAACTCTGATAGCC -ACGGAACTTCGAACTCTGTAACCG -ACGGAACTTCGAACTCTGATGCCA -ACGGAACTTCGACCTCAAGGAAAC -ACGGAACTTCGACCTCAAAACACC -ACGGAACTTCGACCTCAAATCGAG -ACGGAACTTCGACCTCAACTCCTT -ACGGAACTTCGACCTCAACCTGTT -ACGGAACTTCGACCTCAACGGTTT -ACGGAACTTCGACCTCAAGTGGTT -ACGGAACTTCGACCTCAAGCCTTT -ACGGAACTTCGACCTCAAGGTCTT -ACGGAACTTCGACCTCAAACGCTT -ACGGAACTTCGACCTCAAAGCGTT -ACGGAACTTCGACCTCAATTCGTC -ACGGAACTTCGACCTCAATCTCTC -ACGGAACTTCGACCTCAATGGATC -ACGGAACTTCGACCTCAACACTTC -ACGGAACTTCGACCTCAAGTACTC -ACGGAACTTCGACCTCAAGATGTC -ACGGAACTTCGACCTCAAACAGTC -ACGGAACTTCGACCTCAATTGCTG -ACGGAACTTCGACCTCAATCCATG -ACGGAACTTCGACCTCAATGTGTG -ACGGAACTTCGACCTCAACTAGTG -ACGGAACTTCGACCTCAACATCTG -ACGGAACTTCGACCTCAAGAGTTG -ACGGAACTTCGACCTCAAAGACTG -ACGGAACTTCGACCTCAATCGGTA -ACGGAACTTCGACCTCAATGCCTA -ACGGAACTTCGACCTCAACCACTA -ACGGAACTTCGACCTCAAGGAGTA -ACGGAACTTCGACCTCAATCGTCT -ACGGAACTTCGACCTCAATGCACT -ACGGAACTTCGACCTCAACTGACT -ACGGAACTTCGACCTCAACAACCT -ACGGAACTTCGACCTCAAGCTACT -ACGGAACTTCGACCTCAAGGATCT -ACGGAACTTCGACCTCAAAAGGCT -ACGGAACTTCGACCTCAATCAACC -ACGGAACTTCGACCTCAATGTTCC -ACGGAACTTCGACCTCAAATTCCC -ACGGAACTTCGACCTCAATTCTCG -ACGGAACTTCGACCTCAATAGACG -ACGGAACTTCGACCTCAAGTAACG -ACGGAACTTCGACCTCAAACTTCG -ACGGAACTTCGACCTCAATACGCA -ACGGAACTTCGACCTCAACTTGCA -ACGGAACTTCGACCTCAACGAACA -ACGGAACTTCGACCTCAACAGTCA -ACGGAACTTCGACCTCAAGATCCA -ACGGAACTTCGACCTCAAACGACA -ACGGAACTTCGACCTCAAAGCTCA -ACGGAACTTCGACCTCAATCACGT -ACGGAACTTCGACCTCAACGTAGT -ACGGAACTTCGACCTCAAGTCAGT -ACGGAACTTCGACCTCAAGAAGGT -ACGGAACTTCGACCTCAAAACCGT -ACGGAACTTCGACCTCAATTGTGC -ACGGAACTTCGACCTCAACTAAGC -ACGGAACTTCGACCTCAAACTAGC -ACGGAACTTCGACCTCAAAGATGC -ACGGAACTTCGACCTCAATGAAGG -ACGGAACTTCGACCTCAACAATGG -ACGGAACTTCGACCTCAAATGAGG -ACGGAACTTCGACCTCAAAATGGG -ACGGAACTTCGACCTCAATCCTGA -ACGGAACTTCGACCTCAATAGCGA -ACGGAACTTCGACCTCAACACAGA -ACGGAACTTCGACCTCAAGCAAGA -ACGGAACTTCGACCTCAAGGTTGA -ACGGAACTTCGACCTCAATCCGAT -ACGGAACTTCGACCTCAATGGCAT -ACGGAACTTCGACCTCAACGAGAT -ACGGAACTTCGACCTCAATACCAC -ACGGAACTTCGACCTCAACAGAAC -ACGGAACTTCGACCTCAAGTCTAC -ACGGAACTTCGACCTCAAACGTAC -ACGGAACTTCGACCTCAAAGTGAC -ACGGAACTTCGACCTCAACTGTAG -ACGGAACTTCGACCTCAACCTAAG -ACGGAACTTCGACCTCAAGTTCAG -ACGGAACTTCGACCTCAAGCATAG -ACGGAACTTCGACCTCAAGACAAG -ACGGAACTTCGACCTCAAAAGCAG -ACGGAACTTCGACCTCAACGTCAA -ACGGAACTTCGACCTCAAGCTGAA -ACGGAACTTCGACCTCAAAGTACG -ACGGAACTTCGACCTCAAATCCGA -ACGGAACTTCGACCTCAAATGGGA -ACGGAACTTCGACCTCAAGTGCAA -ACGGAACTTCGACCTCAAGAGGAA -ACGGAACTTCGACCTCAACAGGTA -ACGGAACTTCGACCTCAAGACTCT -ACGGAACTTCGACCTCAAAGTCCT -ACGGAACTTCGACCTCAATAAGCC -ACGGAACTTCGACCTCAAATAGCC -ACGGAACTTCGACCTCAATAACCG -ACGGAACTTCGACCTCAAATGCCA -ACGGAACTTCGAACTGCTGGAAAC -ACGGAACTTCGAACTGCTAACACC -ACGGAACTTCGAACTGCTATCGAG -ACGGAACTTCGAACTGCTCTCCTT -ACGGAACTTCGAACTGCTCCTGTT -ACGGAACTTCGAACTGCTCGGTTT -ACGGAACTTCGAACTGCTGTGGTT -ACGGAACTTCGAACTGCTGCCTTT -ACGGAACTTCGAACTGCTGGTCTT -ACGGAACTTCGAACTGCTACGCTT -ACGGAACTTCGAACTGCTAGCGTT -ACGGAACTTCGAACTGCTTTCGTC -ACGGAACTTCGAACTGCTTCTCTC -ACGGAACTTCGAACTGCTTGGATC -ACGGAACTTCGAACTGCTCACTTC -ACGGAACTTCGAACTGCTGTACTC -ACGGAACTTCGAACTGCTGATGTC -ACGGAACTTCGAACTGCTACAGTC -ACGGAACTTCGAACTGCTTTGCTG -ACGGAACTTCGAACTGCTTCCATG -ACGGAACTTCGAACTGCTTGTGTG -ACGGAACTTCGAACTGCTCTAGTG -ACGGAACTTCGAACTGCTCATCTG -ACGGAACTTCGAACTGCTGAGTTG -ACGGAACTTCGAACTGCTAGACTG -ACGGAACTTCGAACTGCTTCGGTA -ACGGAACTTCGAACTGCTTGCCTA -ACGGAACTTCGAACTGCTCCACTA -ACGGAACTTCGAACTGCTGGAGTA -ACGGAACTTCGAACTGCTTCGTCT -ACGGAACTTCGAACTGCTTGCACT -ACGGAACTTCGAACTGCTCTGACT -ACGGAACTTCGAACTGCTCAACCT -ACGGAACTTCGAACTGCTGCTACT -ACGGAACTTCGAACTGCTGGATCT -ACGGAACTTCGAACTGCTAAGGCT -ACGGAACTTCGAACTGCTTCAACC -ACGGAACTTCGAACTGCTTGTTCC -ACGGAACTTCGAACTGCTATTCCC -ACGGAACTTCGAACTGCTTTCTCG -ACGGAACTTCGAACTGCTTAGACG -ACGGAACTTCGAACTGCTGTAACG -ACGGAACTTCGAACTGCTACTTCG -ACGGAACTTCGAACTGCTTACGCA -ACGGAACTTCGAACTGCTCTTGCA -ACGGAACTTCGAACTGCTCGAACA -ACGGAACTTCGAACTGCTCAGTCA -ACGGAACTTCGAACTGCTGATCCA -ACGGAACTTCGAACTGCTACGACA -ACGGAACTTCGAACTGCTAGCTCA -ACGGAACTTCGAACTGCTTCACGT -ACGGAACTTCGAACTGCTCGTAGT -ACGGAACTTCGAACTGCTGTCAGT -ACGGAACTTCGAACTGCTGAAGGT -ACGGAACTTCGAACTGCTAACCGT -ACGGAACTTCGAACTGCTTTGTGC -ACGGAACTTCGAACTGCTCTAAGC -ACGGAACTTCGAACTGCTACTAGC -ACGGAACTTCGAACTGCTAGATGC -ACGGAACTTCGAACTGCTTGAAGG -ACGGAACTTCGAACTGCTCAATGG -ACGGAACTTCGAACTGCTATGAGG -ACGGAACTTCGAACTGCTAATGGG -ACGGAACTTCGAACTGCTTCCTGA -ACGGAACTTCGAACTGCTTAGCGA -ACGGAACTTCGAACTGCTCACAGA -ACGGAACTTCGAACTGCTGCAAGA -ACGGAACTTCGAACTGCTGGTTGA -ACGGAACTTCGAACTGCTTCCGAT -ACGGAACTTCGAACTGCTTGGCAT -ACGGAACTTCGAACTGCTCGAGAT -ACGGAACTTCGAACTGCTTACCAC -ACGGAACTTCGAACTGCTCAGAAC -ACGGAACTTCGAACTGCTGTCTAC -ACGGAACTTCGAACTGCTACGTAC -ACGGAACTTCGAACTGCTAGTGAC -ACGGAACTTCGAACTGCTCTGTAG -ACGGAACTTCGAACTGCTCCTAAG -ACGGAACTTCGAACTGCTGTTCAG -ACGGAACTTCGAACTGCTGCATAG -ACGGAACTTCGAACTGCTGACAAG -ACGGAACTTCGAACTGCTAAGCAG -ACGGAACTTCGAACTGCTCGTCAA -ACGGAACTTCGAACTGCTGCTGAA -ACGGAACTTCGAACTGCTAGTACG -ACGGAACTTCGAACTGCTATCCGA -ACGGAACTTCGAACTGCTATGGGA -ACGGAACTTCGAACTGCTGTGCAA -ACGGAACTTCGAACTGCTGAGGAA -ACGGAACTTCGAACTGCTCAGGTA -ACGGAACTTCGAACTGCTGACTCT -ACGGAACTTCGAACTGCTAGTCCT -ACGGAACTTCGAACTGCTTAAGCC -ACGGAACTTCGAACTGCTATAGCC -ACGGAACTTCGAACTGCTTAACCG -ACGGAACTTCGAACTGCTATGCCA -ACGGAACTTCGATCTGGAGGAAAC -ACGGAACTTCGATCTGGAAACACC -ACGGAACTTCGATCTGGAATCGAG -ACGGAACTTCGATCTGGACTCCTT -ACGGAACTTCGATCTGGACCTGTT -ACGGAACTTCGATCTGGACGGTTT -ACGGAACTTCGATCTGGAGTGGTT -ACGGAACTTCGATCTGGAGCCTTT -ACGGAACTTCGATCTGGAGGTCTT -ACGGAACTTCGATCTGGAACGCTT -ACGGAACTTCGATCTGGAAGCGTT -ACGGAACTTCGATCTGGATTCGTC -ACGGAACTTCGATCTGGATCTCTC -ACGGAACTTCGATCTGGATGGATC -ACGGAACTTCGATCTGGACACTTC -ACGGAACTTCGATCTGGAGTACTC -ACGGAACTTCGATCTGGAGATGTC -ACGGAACTTCGATCTGGAACAGTC -ACGGAACTTCGATCTGGATTGCTG -ACGGAACTTCGATCTGGATCCATG -ACGGAACTTCGATCTGGATGTGTG -ACGGAACTTCGATCTGGACTAGTG -ACGGAACTTCGATCTGGACATCTG -ACGGAACTTCGATCTGGAGAGTTG -ACGGAACTTCGATCTGGAAGACTG -ACGGAACTTCGATCTGGATCGGTA -ACGGAACTTCGATCTGGATGCCTA -ACGGAACTTCGATCTGGACCACTA -ACGGAACTTCGATCTGGAGGAGTA -ACGGAACTTCGATCTGGATCGTCT -ACGGAACTTCGATCTGGATGCACT -ACGGAACTTCGATCTGGACTGACT -ACGGAACTTCGATCTGGACAACCT -ACGGAACTTCGATCTGGAGCTACT -ACGGAACTTCGATCTGGAGGATCT -ACGGAACTTCGATCTGGAAAGGCT -ACGGAACTTCGATCTGGATCAACC -ACGGAACTTCGATCTGGATGTTCC -ACGGAACTTCGATCTGGAATTCCC -ACGGAACTTCGATCTGGATTCTCG -ACGGAACTTCGATCTGGATAGACG -ACGGAACTTCGATCTGGAGTAACG -ACGGAACTTCGATCTGGAACTTCG -ACGGAACTTCGATCTGGATACGCA -ACGGAACTTCGATCTGGACTTGCA -ACGGAACTTCGATCTGGACGAACA -ACGGAACTTCGATCTGGACAGTCA -ACGGAACTTCGATCTGGAGATCCA -ACGGAACTTCGATCTGGAACGACA -ACGGAACTTCGATCTGGAAGCTCA -ACGGAACTTCGATCTGGATCACGT -ACGGAACTTCGATCTGGACGTAGT -ACGGAACTTCGATCTGGAGTCAGT -ACGGAACTTCGATCTGGAGAAGGT -ACGGAACTTCGATCTGGAAACCGT -ACGGAACTTCGATCTGGATTGTGC -ACGGAACTTCGATCTGGACTAAGC -ACGGAACTTCGATCTGGAACTAGC -ACGGAACTTCGATCTGGAAGATGC -ACGGAACTTCGATCTGGATGAAGG -ACGGAACTTCGATCTGGACAATGG -ACGGAACTTCGATCTGGAATGAGG -ACGGAACTTCGATCTGGAAATGGG -ACGGAACTTCGATCTGGATCCTGA -ACGGAACTTCGATCTGGATAGCGA -ACGGAACTTCGATCTGGACACAGA -ACGGAACTTCGATCTGGAGCAAGA -ACGGAACTTCGATCTGGAGGTTGA -ACGGAACTTCGATCTGGATCCGAT -ACGGAACTTCGATCTGGATGGCAT -ACGGAACTTCGATCTGGACGAGAT -ACGGAACTTCGATCTGGATACCAC -ACGGAACTTCGATCTGGACAGAAC -ACGGAACTTCGATCTGGAGTCTAC -ACGGAACTTCGATCTGGAACGTAC -ACGGAACTTCGATCTGGAAGTGAC -ACGGAACTTCGATCTGGACTGTAG -ACGGAACTTCGATCTGGACCTAAG -ACGGAACTTCGATCTGGAGTTCAG -ACGGAACTTCGATCTGGAGCATAG -ACGGAACTTCGATCTGGAGACAAG -ACGGAACTTCGATCTGGAAAGCAG -ACGGAACTTCGATCTGGACGTCAA -ACGGAACTTCGATCTGGAGCTGAA -ACGGAACTTCGATCTGGAAGTACG -ACGGAACTTCGATCTGGAATCCGA -ACGGAACTTCGATCTGGAATGGGA -ACGGAACTTCGATCTGGAGTGCAA -ACGGAACTTCGATCTGGAGAGGAA -ACGGAACTTCGATCTGGACAGGTA -ACGGAACTTCGATCTGGAGACTCT -ACGGAACTTCGATCTGGAAGTCCT -ACGGAACTTCGATCTGGATAAGCC -ACGGAACTTCGATCTGGAATAGCC -ACGGAACTTCGATCTGGATAACCG -ACGGAACTTCGATCTGGAATGCCA -ACGGAACTTCGAGCTAAGGGAAAC -ACGGAACTTCGAGCTAAGAACACC -ACGGAACTTCGAGCTAAGATCGAG -ACGGAACTTCGAGCTAAGCTCCTT -ACGGAACTTCGAGCTAAGCCTGTT -ACGGAACTTCGAGCTAAGCGGTTT -ACGGAACTTCGAGCTAAGGTGGTT -ACGGAACTTCGAGCTAAGGCCTTT -ACGGAACTTCGAGCTAAGGGTCTT -ACGGAACTTCGAGCTAAGACGCTT -ACGGAACTTCGAGCTAAGAGCGTT -ACGGAACTTCGAGCTAAGTTCGTC -ACGGAACTTCGAGCTAAGTCTCTC -ACGGAACTTCGAGCTAAGTGGATC -ACGGAACTTCGAGCTAAGCACTTC -ACGGAACTTCGAGCTAAGGTACTC -ACGGAACTTCGAGCTAAGGATGTC -ACGGAACTTCGAGCTAAGACAGTC -ACGGAACTTCGAGCTAAGTTGCTG -ACGGAACTTCGAGCTAAGTCCATG -ACGGAACTTCGAGCTAAGTGTGTG -ACGGAACTTCGAGCTAAGCTAGTG -ACGGAACTTCGAGCTAAGCATCTG -ACGGAACTTCGAGCTAAGGAGTTG -ACGGAACTTCGAGCTAAGAGACTG -ACGGAACTTCGAGCTAAGTCGGTA -ACGGAACTTCGAGCTAAGTGCCTA -ACGGAACTTCGAGCTAAGCCACTA -ACGGAACTTCGAGCTAAGGGAGTA -ACGGAACTTCGAGCTAAGTCGTCT -ACGGAACTTCGAGCTAAGTGCACT -ACGGAACTTCGAGCTAAGCTGACT -ACGGAACTTCGAGCTAAGCAACCT -ACGGAACTTCGAGCTAAGGCTACT -ACGGAACTTCGAGCTAAGGGATCT -ACGGAACTTCGAGCTAAGAAGGCT -ACGGAACTTCGAGCTAAGTCAACC -ACGGAACTTCGAGCTAAGTGTTCC -ACGGAACTTCGAGCTAAGATTCCC -ACGGAACTTCGAGCTAAGTTCTCG -ACGGAACTTCGAGCTAAGTAGACG -ACGGAACTTCGAGCTAAGGTAACG -ACGGAACTTCGAGCTAAGACTTCG -ACGGAACTTCGAGCTAAGTACGCA -ACGGAACTTCGAGCTAAGCTTGCA -ACGGAACTTCGAGCTAAGCGAACA -ACGGAACTTCGAGCTAAGCAGTCA -ACGGAACTTCGAGCTAAGGATCCA -ACGGAACTTCGAGCTAAGACGACA -ACGGAACTTCGAGCTAAGAGCTCA -ACGGAACTTCGAGCTAAGTCACGT -ACGGAACTTCGAGCTAAGCGTAGT -ACGGAACTTCGAGCTAAGGTCAGT -ACGGAACTTCGAGCTAAGGAAGGT -ACGGAACTTCGAGCTAAGAACCGT -ACGGAACTTCGAGCTAAGTTGTGC -ACGGAACTTCGAGCTAAGCTAAGC -ACGGAACTTCGAGCTAAGACTAGC -ACGGAACTTCGAGCTAAGAGATGC -ACGGAACTTCGAGCTAAGTGAAGG -ACGGAACTTCGAGCTAAGCAATGG -ACGGAACTTCGAGCTAAGATGAGG -ACGGAACTTCGAGCTAAGAATGGG -ACGGAACTTCGAGCTAAGTCCTGA -ACGGAACTTCGAGCTAAGTAGCGA -ACGGAACTTCGAGCTAAGCACAGA -ACGGAACTTCGAGCTAAGGCAAGA -ACGGAACTTCGAGCTAAGGGTTGA -ACGGAACTTCGAGCTAAGTCCGAT -ACGGAACTTCGAGCTAAGTGGCAT -ACGGAACTTCGAGCTAAGCGAGAT -ACGGAACTTCGAGCTAAGTACCAC -ACGGAACTTCGAGCTAAGCAGAAC -ACGGAACTTCGAGCTAAGGTCTAC -ACGGAACTTCGAGCTAAGACGTAC -ACGGAACTTCGAGCTAAGAGTGAC -ACGGAACTTCGAGCTAAGCTGTAG -ACGGAACTTCGAGCTAAGCCTAAG -ACGGAACTTCGAGCTAAGGTTCAG -ACGGAACTTCGAGCTAAGGCATAG -ACGGAACTTCGAGCTAAGGACAAG -ACGGAACTTCGAGCTAAGAAGCAG -ACGGAACTTCGAGCTAAGCGTCAA -ACGGAACTTCGAGCTAAGGCTGAA -ACGGAACTTCGAGCTAAGAGTACG -ACGGAACTTCGAGCTAAGATCCGA -ACGGAACTTCGAGCTAAGATGGGA -ACGGAACTTCGAGCTAAGGTGCAA -ACGGAACTTCGAGCTAAGGAGGAA -ACGGAACTTCGAGCTAAGCAGGTA -ACGGAACTTCGAGCTAAGGACTCT -ACGGAACTTCGAGCTAAGAGTCCT -ACGGAACTTCGAGCTAAGTAAGCC -ACGGAACTTCGAGCTAAGATAGCC -ACGGAACTTCGAGCTAAGTAACCG -ACGGAACTTCGAGCTAAGATGCCA -ACGGAACTTCGAACCTCAGGAAAC -ACGGAACTTCGAACCTCAAACACC -ACGGAACTTCGAACCTCAATCGAG -ACGGAACTTCGAACCTCACTCCTT -ACGGAACTTCGAACCTCACCTGTT -ACGGAACTTCGAACCTCACGGTTT -ACGGAACTTCGAACCTCAGTGGTT -ACGGAACTTCGAACCTCAGCCTTT -ACGGAACTTCGAACCTCAGGTCTT -ACGGAACTTCGAACCTCAACGCTT -ACGGAACTTCGAACCTCAAGCGTT -ACGGAACTTCGAACCTCATTCGTC -ACGGAACTTCGAACCTCATCTCTC -ACGGAACTTCGAACCTCATGGATC -ACGGAACTTCGAACCTCACACTTC -ACGGAACTTCGAACCTCAGTACTC -ACGGAACTTCGAACCTCAGATGTC -ACGGAACTTCGAACCTCAACAGTC -ACGGAACTTCGAACCTCATTGCTG -ACGGAACTTCGAACCTCATCCATG -ACGGAACTTCGAACCTCATGTGTG -ACGGAACTTCGAACCTCACTAGTG -ACGGAACTTCGAACCTCACATCTG -ACGGAACTTCGAACCTCAGAGTTG -ACGGAACTTCGAACCTCAAGACTG -ACGGAACTTCGAACCTCATCGGTA -ACGGAACTTCGAACCTCATGCCTA -ACGGAACTTCGAACCTCACCACTA -ACGGAACTTCGAACCTCAGGAGTA -ACGGAACTTCGAACCTCATCGTCT -ACGGAACTTCGAACCTCATGCACT -ACGGAACTTCGAACCTCACTGACT -ACGGAACTTCGAACCTCACAACCT -ACGGAACTTCGAACCTCAGCTACT -ACGGAACTTCGAACCTCAGGATCT -ACGGAACTTCGAACCTCAAAGGCT -ACGGAACTTCGAACCTCATCAACC -ACGGAACTTCGAACCTCATGTTCC -ACGGAACTTCGAACCTCAATTCCC -ACGGAACTTCGAACCTCATTCTCG -ACGGAACTTCGAACCTCATAGACG -ACGGAACTTCGAACCTCAGTAACG -ACGGAACTTCGAACCTCAACTTCG -ACGGAACTTCGAACCTCATACGCA -ACGGAACTTCGAACCTCACTTGCA -ACGGAACTTCGAACCTCACGAACA -ACGGAACTTCGAACCTCACAGTCA -ACGGAACTTCGAACCTCAGATCCA -ACGGAACTTCGAACCTCAACGACA -ACGGAACTTCGAACCTCAAGCTCA -ACGGAACTTCGAACCTCATCACGT -ACGGAACTTCGAACCTCACGTAGT -ACGGAACTTCGAACCTCAGTCAGT -ACGGAACTTCGAACCTCAGAAGGT -ACGGAACTTCGAACCTCAAACCGT -ACGGAACTTCGAACCTCATTGTGC -ACGGAACTTCGAACCTCACTAAGC -ACGGAACTTCGAACCTCAACTAGC -ACGGAACTTCGAACCTCAAGATGC -ACGGAACTTCGAACCTCATGAAGG -ACGGAACTTCGAACCTCACAATGG -ACGGAACTTCGAACCTCAATGAGG -ACGGAACTTCGAACCTCAAATGGG -ACGGAACTTCGAACCTCATCCTGA -ACGGAACTTCGAACCTCATAGCGA -ACGGAACTTCGAACCTCACACAGA -ACGGAACTTCGAACCTCAGCAAGA -ACGGAACTTCGAACCTCAGGTTGA -ACGGAACTTCGAACCTCATCCGAT -ACGGAACTTCGAACCTCATGGCAT -ACGGAACTTCGAACCTCACGAGAT -ACGGAACTTCGAACCTCATACCAC -ACGGAACTTCGAACCTCACAGAAC -ACGGAACTTCGAACCTCAGTCTAC -ACGGAACTTCGAACCTCAACGTAC -ACGGAACTTCGAACCTCAAGTGAC -ACGGAACTTCGAACCTCACTGTAG -ACGGAACTTCGAACCTCACCTAAG -ACGGAACTTCGAACCTCAGTTCAG -ACGGAACTTCGAACCTCAGCATAG -ACGGAACTTCGAACCTCAGACAAG -ACGGAACTTCGAACCTCAAAGCAG -ACGGAACTTCGAACCTCACGTCAA -ACGGAACTTCGAACCTCAGCTGAA -ACGGAACTTCGAACCTCAAGTACG -ACGGAACTTCGAACCTCAATCCGA -ACGGAACTTCGAACCTCAATGGGA -ACGGAACTTCGAACCTCAGTGCAA -ACGGAACTTCGAACCTCAGAGGAA -ACGGAACTTCGAACCTCACAGGTA -ACGGAACTTCGAACCTCAGACTCT -ACGGAACTTCGAACCTCAAGTCCT -ACGGAACTTCGAACCTCATAAGCC -ACGGAACTTCGAACCTCAATAGCC -ACGGAACTTCGAACCTCATAACCG -ACGGAACTTCGAACCTCAATGCCA -ACGGAACTTCGATCCTGTGGAAAC -ACGGAACTTCGATCCTGTAACACC -ACGGAACTTCGATCCTGTATCGAG -ACGGAACTTCGATCCTGTCTCCTT -ACGGAACTTCGATCCTGTCCTGTT -ACGGAACTTCGATCCTGTCGGTTT -ACGGAACTTCGATCCTGTGTGGTT -ACGGAACTTCGATCCTGTGCCTTT -ACGGAACTTCGATCCTGTGGTCTT -ACGGAACTTCGATCCTGTACGCTT -ACGGAACTTCGATCCTGTAGCGTT -ACGGAACTTCGATCCTGTTTCGTC -ACGGAACTTCGATCCTGTTCTCTC -ACGGAACTTCGATCCTGTTGGATC -ACGGAACTTCGATCCTGTCACTTC -ACGGAACTTCGATCCTGTGTACTC -ACGGAACTTCGATCCTGTGATGTC -ACGGAACTTCGATCCTGTACAGTC -ACGGAACTTCGATCCTGTTTGCTG -ACGGAACTTCGATCCTGTTCCATG -ACGGAACTTCGATCCTGTTGTGTG -ACGGAACTTCGATCCTGTCTAGTG -ACGGAACTTCGATCCTGTCATCTG -ACGGAACTTCGATCCTGTGAGTTG -ACGGAACTTCGATCCTGTAGACTG -ACGGAACTTCGATCCTGTTCGGTA -ACGGAACTTCGATCCTGTTGCCTA -ACGGAACTTCGATCCTGTCCACTA -ACGGAACTTCGATCCTGTGGAGTA -ACGGAACTTCGATCCTGTTCGTCT -ACGGAACTTCGATCCTGTTGCACT -ACGGAACTTCGATCCTGTCTGACT -ACGGAACTTCGATCCTGTCAACCT -ACGGAACTTCGATCCTGTGCTACT -ACGGAACTTCGATCCTGTGGATCT -ACGGAACTTCGATCCTGTAAGGCT -ACGGAACTTCGATCCTGTTCAACC -ACGGAACTTCGATCCTGTTGTTCC -ACGGAACTTCGATCCTGTATTCCC -ACGGAACTTCGATCCTGTTTCTCG -ACGGAACTTCGATCCTGTTAGACG -ACGGAACTTCGATCCTGTGTAACG -ACGGAACTTCGATCCTGTACTTCG -ACGGAACTTCGATCCTGTTACGCA -ACGGAACTTCGATCCTGTCTTGCA -ACGGAACTTCGATCCTGTCGAACA -ACGGAACTTCGATCCTGTCAGTCA -ACGGAACTTCGATCCTGTGATCCA -ACGGAACTTCGATCCTGTACGACA -ACGGAACTTCGATCCTGTAGCTCA -ACGGAACTTCGATCCTGTTCACGT -ACGGAACTTCGATCCTGTCGTAGT -ACGGAACTTCGATCCTGTGTCAGT -ACGGAACTTCGATCCTGTGAAGGT -ACGGAACTTCGATCCTGTAACCGT -ACGGAACTTCGATCCTGTTTGTGC -ACGGAACTTCGATCCTGTCTAAGC -ACGGAACTTCGATCCTGTACTAGC -ACGGAACTTCGATCCTGTAGATGC -ACGGAACTTCGATCCTGTTGAAGG -ACGGAACTTCGATCCTGTCAATGG -ACGGAACTTCGATCCTGTATGAGG -ACGGAACTTCGATCCTGTAATGGG -ACGGAACTTCGATCCTGTTCCTGA -ACGGAACTTCGATCCTGTTAGCGA -ACGGAACTTCGATCCTGTCACAGA -ACGGAACTTCGATCCTGTGCAAGA -ACGGAACTTCGATCCTGTGGTTGA -ACGGAACTTCGATCCTGTTCCGAT -ACGGAACTTCGATCCTGTTGGCAT -ACGGAACTTCGATCCTGTCGAGAT -ACGGAACTTCGATCCTGTTACCAC -ACGGAACTTCGATCCTGTCAGAAC -ACGGAACTTCGATCCTGTGTCTAC -ACGGAACTTCGATCCTGTACGTAC -ACGGAACTTCGATCCTGTAGTGAC -ACGGAACTTCGATCCTGTCTGTAG -ACGGAACTTCGATCCTGTCCTAAG -ACGGAACTTCGATCCTGTGTTCAG -ACGGAACTTCGATCCTGTGCATAG -ACGGAACTTCGATCCTGTGACAAG -ACGGAACTTCGATCCTGTAAGCAG -ACGGAACTTCGATCCTGTCGTCAA -ACGGAACTTCGATCCTGTGCTGAA -ACGGAACTTCGATCCTGTAGTACG -ACGGAACTTCGATCCTGTATCCGA -ACGGAACTTCGATCCTGTATGGGA -ACGGAACTTCGATCCTGTGTGCAA -ACGGAACTTCGATCCTGTGAGGAA -ACGGAACTTCGATCCTGTCAGGTA -ACGGAACTTCGATCCTGTGACTCT -ACGGAACTTCGATCCTGTAGTCCT -ACGGAACTTCGATCCTGTTAAGCC -ACGGAACTTCGATCCTGTATAGCC -ACGGAACTTCGATCCTGTTAACCG -ACGGAACTTCGATCCTGTATGCCA -ACGGAACTTCGACCCATTGGAAAC -ACGGAACTTCGACCCATTAACACC -ACGGAACTTCGACCCATTATCGAG -ACGGAACTTCGACCCATTCTCCTT -ACGGAACTTCGACCCATTCCTGTT -ACGGAACTTCGACCCATTCGGTTT -ACGGAACTTCGACCCATTGTGGTT -ACGGAACTTCGACCCATTGCCTTT -ACGGAACTTCGACCCATTGGTCTT -ACGGAACTTCGACCCATTACGCTT -ACGGAACTTCGACCCATTAGCGTT -ACGGAACTTCGACCCATTTTCGTC -ACGGAACTTCGACCCATTTCTCTC -ACGGAACTTCGACCCATTTGGATC -ACGGAACTTCGACCCATTCACTTC -ACGGAACTTCGACCCATTGTACTC -ACGGAACTTCGACCCATTGATGTC -ACGGAACTTCGACCCATTACAGTC -ACGGAACTTCGACCCATTTTGCTG -ACGGAACTTCGACCCATTTCCATG -ACGGAACTTCGACCCATTTGTGTG -ACGGAACTTCGACCCATTCTAGTG -ACGGAACTTCGACCCATTCATCTG -ACGGAACTTCGACCCATTGAGTTG -ACGGAACTTCGACCCATTAGACTG -ACGGAACTTCGACCCATTTCGGTA -ACGGAACTTCGACCCATTTGCCTA -ACGGAACTTCGACCCATTCCACTA -ACGGAACTTCGACCCATTGGAGTA -ACGGAACTTCGACCCATTTCGTCT -ACGGAACTTCGACCCATTTGCACT -ACGGAACTTCGACCCATTCTGACT -ACGGAACTTCGACCCATTCAACCT -ACGGAACTTCGACCCATTGCTACT -ACGGAACTTCGACCCATTGGATCT -ACGGAACTTCGACCCATTAAGGCT -ACGGAACTTCGACCCATTTCAACC -ACGGAACTTCGACCCATTTGTTCC -ACGGAACTTCGACCCATTATTCCC -ACGGAACTTCGACCCATTTTCTCG -ACGGAACTTCGACCCATTTAGACG -ACGGAACTTCGACCCATTGTAACG -ACGGAACTTCGACCCATTACTTCG -ACGGAACTTCGACCCATTTACGCA -ACGGAACTTCGACCCATTCTTGCA -ACGGAACTTCGACCCATTCGAACA -ACGGAACTTCGACCCATTCAGTCA -ACGGAACTTCGACCCATTGATCCA -ACGGAACTTCGACCCATTACGACA -ACGGAACTTCGACCCATTAGCTCA -ACGGAACTTCGACCCATTTCACGT -ACGGAACTTCGACCCATTCGTAGT -ACGGAACTTCGACCCATTGTCAGT -ACGGAACTTCGACCCATTGAAGGT -ACGGAACTTCGACCCATTAACCGT -ACGGAACTTCGACCCATTTTGTGC -ACGGAACTTCGACCCATTCTAAGC -ACGGAACTTCGACCCATTACTAGC -ACGGAACTTCGACCCATTAGATGC -ACGGAACTTCGACCCATTTGAAGG -ACGGAACTTCGACCCATTCAATGG -ACGGAACTTCGACCCATTATGAGG -ACGGAACTTCGACCCATTAATGGG -ACGGAACTTCGACCCATTTCCTGA -ACGGAACTTCGACCCATTTAGCGA -ACGGAACTTCGACCCATTCACAGA -ACGGAACTTCGACCCATTGCAAGA -ACGGAACTTCGACCCATTGGTTGA -ACGGAACTTCGACCCATTTCCGAT -ACGGAACTTCGACCCATTTGGCAT -ACGGAACTTCGACCCATTCGAGAT -ACGGAACTTCGACCCATTTACCAC -ACGGAACTTCGACCCATTCAGAAC -ACGGAACTTCGACCCATTGTCTAC -ACGGAACTTCGACCCATTACGTAC -ACGGAACTTCGACCCATTAGTGAC -ACGGAACTTCGACCCATTCTGTAG -ACGGAACTTCGACCCATTCCTAAG -ACGGAACTTCGACCCATTGTTCAG -ACGGAACTTCGACCCATTGCATAG -ACGGAACTTCGACCCATTGACAAG -ACGGAACTTCGACCCATTAAGCAG -ACGGAACTTCGACCCATTCGTCAA -ACGGAACTTCGACCCATTGCTGAA -ACGGAACTTCGACCCATTAGTACG -ACGGAACTTCGACCCATTATCCGA -ACGGAACTTCGACCCATTATGGGA -ACGGAACTTCGACCCATTGTGCAA -ACGGAACTTCGACCCATTGAGGAA -ACGGAACTTCGACCCATTCAGGTA -ACGGAACTTCGACCCATTGACTCT -ACGGAACTTCGACCCATTAGTCCT -ACGGAACTTCGACCCATTTAAGCC -ACGGAACTTCGACCCATTATAGCC -ACGGAACTTCGACCCATTTAACCG -ACGGAACTTCGACCCATTATGCCA -ACGGAACTTCGATCGTTCGGAAAC -ACGGAACTTCGATCGTTCAACACC -ACGGAACTTCGATCGTTCATCGAG -ACGGAACTTCGATCGTTCCTCCTT -ACGGAACTTCGATCGTTCCCTGTT -ACGGAACTTCGATCGTTCCGGTTT -ACGGAACTTCGATCGTTCGTGGTT -ACGGAACTTCGATCGTTCGCCTTT -ACGGAACTTCGATCGTTCGGTCTT -ACGGAACTTCGATCGTTCACGCTT -ACGGAACTTCGATCGTTCAGCGTT -ACGGAACTTCGATCGTTCTTCGTC -ACGGAACTTCGATCGTTCTCTCTC -ACGGAACTTCGATCGTTCTGGATC -ACGGAACTTCGATCGTTCCACTTC -ACGGAACTTCGATCGTTCGTACTC -ACGGAACTTCGATCGTTCGATGTC -ACGGAACTTCGATCGTTCACAGTC -ACGGAACTTCGATCGTTCTTGCTG -ACGGAACTTCGATCGTTCTCCATG -ACGGAACTTCGATCGTTCTGTGTG -ACGGAACTTCGATCGTTCCTAGTG -ACGGAACTTCGATCGTTCCATCTG -ACGGAACTTCGATCGTTCGAGTTG -ACGGAACTTCGATCGTTCAGACTG -ACGGAACTTCGATCGTTCTCGGTA -ACGGAACTTCGATCGTTCTGCCTA -ACGGAACTTCGATCGTTCCCACTA -ACGGAACTTCGATCGTTCGGAGTA -ACGGAACTTCGATCGTTCTCGTCT -ACGGAACTTCGATCGTTCTGCACT -ACGGAACTTCGATCGTTCCTGACT -ACGGAACTTCGATCGTTCCAACCT -ACGGAACTTCGATCGTTCGCTACT -ACGGAACTTCGATCGTTCGGATCT -ACGGAACTTCGATCGTTCAAGGCT -ACGGAACTTCGATCGTTCTCAACC -ACGGAACTTCGATCGTTCTGTTCC -ACGGAACTTCGATCGTTCATTCCC -ACGGAACTTCGATCGTTCTTCTCG -ACGGAACTTCGATCGTTCTAGACG -ACGGAACTTCGATCGTTCGTAACG -ACGGAACTTCGATCGTTCACTTCG -ACGGAACTTCGATCGTTCTACGCA -ACGGAACTTCGATCGTTCCTTGCA -ACGGAACTTCGATCGTTCCGAACA -ACGGAACTTCGATCGTTCCAGTCA -ACGGAACTTCGATCGTTCGATCCA -ACGGAACTTCGATCGTTCACGACA -ACGGAACTTCGATCGTTCAGCTCA -ACGGAACTTCGATCGTTCTCACGT -ACGGAACTTCGATCGTTCCGTAGT -ACGGAACTTCGATCGTTCGTCAGT -ACGGAACTTCGATCGTTCGAAGGT -ACGGAACTTCGATCGTTCAACCGT -ACGGAACTTCGATCGTTCTTGTGC -ACGGAACTTCGATCGTTCCTAAGC -ACGGAACTTCGATCGTTCACTAGC -ACGGAACTTCGATCGTTCAGATGC -ACGGAACTTCGATCGTTCTGAAGG -ACGGAACTTCGATCGTTCCAATGG -ACGGAACTTCGATCGTTCATGAGG -ACGGAACTTCGATCGTTCAATGGG -ACGGAACTTCGATCGTTCTCCTGA -ACGGAACTTCGATCGTTCTAGCGA -ACGGAACTTCGATCGTTCCACAGA -ACGGAACTTCGATCGTTCGCAAGA -ACGGAACTTCGATCGTTCGGTTGA -ACGGAACTTCGATCGTTCTCCGAT -ACGGAACTTCGATCGTTCTGGCAT -ACGGAACTTCGATCGTTCCGAGAT -ACGGAACTTCGATCGTTCTACCAC -ACGGAACTTCGATCGTTCCAGAAC -ACGGAACTTCGATCGTTCGTCTAC -ACGGAACTTCGATCGTTCACGTAC -ACGGAACTTCGATCGTTCAGTGAC -ACGGAACTTCGATCGTTCCTGTAG -ACGGAACTTCGATCGTTCCCTAAG -ACGGAACTTCGATCGTTCGTTCAG -ACGGAACTTCGATCGTTCGCATAG -ACGGAACTTCGATCGTTCGACAAG -ACGGAACTTCGATCGTTCAAGCAG -ACGGAACTTCGATCGTTCCGTCAA -ACGGAACTTCGATCGTTCGCTGAA -ACGGAACTTCGATCGTTCAGTACG -ACGGAACTTCGATCGTTCATCCGA -ACGGAACTTCGATCGTTCATGGGA -ACGGAACTTCGATCGTTCGTGCAA -ACGGAACTTCGATCGTTCGAGGAA -ACGGAACTTCGATCGTTCCAGGTA -ACGGAACTTCGATCGTTCGACTCT -ACGGAACTTCGATCGTTCAGTCCT -ACGGAACTTCGATCGTTCTAAGCC -ACGGAACTTCGATCGTTCATAGCC -ACGGAACTTCGATCGTTCTAACCG -ACGGAACTTCGATCGTTCATGCCA -ACGGAACTTCGAACGTAGGGAAAC -ACGGAACTTCGAACGTAGAACACC -ACGGAACTTCGAACGTAGATCGAG -ACGGAACTTCGAACGTAGCTCCTT -ACGGAACTTCGAACGTAGCCTGTT -ACGGAACTTCGAACGTAGCGGTTT -ACGGAACTTCGAACGTAGGTGGTT -ACGGAACTTCGAACGTAGGCCTTT -ACGGAACTTCGAACGTAGGGTCTT -ACGGAACTTCGAACGTAGACGCTT -ACGGAACTTCGAACGTAGAGCGTT -ACGGAACTTCGAACGTAGTTCGTC -ACGGAACTTCGAACGTAGTCTCTC -ACGGAACTTCGAACGTAGTGGATC -ACGGAACTTCGAACGTAGCACTTC -ACGGAACTTCGAACGTAGGTACTC -ACGGAACTTCGAACGTAGGATGTC -ACGGAACTTCGAACGTAGACAGTC -ACGGAACTTCGAACGTAGTTGCTG -ACGGAACTTCGAACGTAGTCCATG -ACGGAACTTCGAACGTAGTGTGTG -ACGGAACTTCGAACGTAGCTAGTG -ACGGAACTTCGAACGTAGCATCTG -ACGGAACTTCGAACGTAGGAGTTG -ACGGAACTTCGAACGTAGAGACTG -ACGGAACTTCGAACGTAGTCGGTA -ACGGAACTTCGAACGTAGTGCCTA -ACGGAACTTCGAACGTAGCCACTA -ACGGAACTTCGAACGTAGGGAGTA -ACGGAACTTCGAACGTAGTCGTCT -ACGGAACTTCGAACGTAGTGCACT -ACGGAACTTCGAACGTAGCTGACT -ACGGAACTTCGAACGTAGCAACCT -ACGGAACTTCGAACGTAGGCTACT -ACGGAACTTCGAACGTAGGGATCT -ACGGAACTTCGAACGTAGAAGGCT -ACGGAACTTCGAACGTAGTCAACC -ACGGAACTTCGAACGTAGTGTTCC -ACGGAACTTCGAACGTAGATTCCC -ACGGAACTTCGAACGTAGTTCTCG -ACGGAACTTCGAACGTAGTAGACG -ACGGAACTTCGAACGTAGGTAACG -ACGGAACTTCGAACGTAGACTTCG -ACGGAACTTCGAACGTAGTACGCA -ACGGAACTTCGAACGTAGCTTGCA -ACGGAACTTCGAACGTAGCGAACA -ACGGAACTTCGAACGTAGCAGTCA -ACGGAACTTCGAACGTAGGATCCA -ACGGAACTTCGAACGTAGACGACA -ACGGAACTTCGAACGTAGAGCTCA -ACGGAACTTCGAACGTAGTCACGT -ACGGAACTTCGAACGTAGCGTAGT -ACGGAACTTCGAACGTAGGTCAGT -ACGGAACTTCGAACGTAGGAAGGT -ACGGAACTTCGAACGTAGAACCGT -ACGGAACTTCGAACGTAGTTGTGC -ACGGAACTTCGAACGTAGCTAAGC -ACGGAACTTCGAACGTAGACTAGC -ACGGAACTTCGAACGTAGAGATGC -ACGGAACTTCGAACGTAGTGAAGG -ACGGAACTTCGAACGTAGCAATGG -ACGGAACTTCGAACGTAGATGAGG -ACGGAACTTCGAACGTAGAATGGG -ACGGAACTTCGAACGTAGTCCTGA -ACGGAACTTCGAACGTAGTAGCGA -ACGGAACTTCGAACGTAGCACAGA -ACGGAACTTCGAACGTAGGCAAGA -ACGGAACTTCGAACGTAGGGTTGA -ACGGAACTTCGAACGTAGTCCGAT -ACGGAACTTCGAACGTAGTGGCAT -ACGGAACTTCGAACGTAGCGAGAT -ACGGAACTTCGAACGTAGTACCAC -ACGGAACTTCGAACGTAGCAGAAC -ACGGAACTTCGAACGTAGGTCTAC -ACGGAACTTCGAACGTAGACGTAC -ACGGAACTTCGAACGTAGAGTGAC -ACGGAACTTCGAACGTAGCTGTAG -ACGGAACTTCGAACGTAGCCTAAG -ACGGAACTTCGAACGTAGGTTCAG -ACGGAACTTCGAACGTAGGCATAG -ACGGAACTTCGAACGTAGGACAAG -ACGGAACTTCGAACGTAGAAGCAG -ACGGAACTTCGAACGTAGCGTCAA -ACGGAACTTCGAACGTAGGCTGAA -ACGGAACTTCGAACGTAGAGTACG -ACGGAACTTCGAACGTAGATCCGA -ACGGAACTTCGAACGTAGATGGGA -ACGGAACTTCGAACGTAGGTGCAA -ACGGAACTTCGAACGTAGGAGGAA -ACGGAACTTCGAACGTAGCAGGTA -ACGGAACTTCGAACGTAGGACTCT -ACGGAACTTCGAACGTAGAGTCCT -ACGGAACTTCGAACGTAGTAAGCC -ACGGAACTTCGAACGTAGATAGCC -ACGGAACTTCGAACGTAGTAACCG -ACGGAACTTCGAACGTAGATGCCA -ACGGAACTTCGAACGGTAGGAAAC -ACGGAACTTCGAACGGTAAACACC -ACGGAACTTCGAACGGTAATCGAG -ACGGAACTTCGAACGGTACTCCTT -ACGGAACTTCGAACGGTACCTGTT -ACGGAACTTCGAACGGTACGGTTT -ACGGAACTTCGAACGGTAGTGGTT -ACGGAACTTCGAACGGTAGCCTTT -ACGGAACTTCGAACGGTAGGTCTT -ACGGAACTTCGAACGGTAACGCTT -ACGGAACTTCGAACGGTAAGCGTT -ACGGAACTTCGAACGGTATTCGTC -ACGGAACTTCGAACGGTATCTCTC -ACGGAACTTCGAACGGTATGGATC -ACGGAACTTCGAACGGTACACTTC -ACGGAACTTCGAACGGTAGTACTC -ACGGAACTTCGAACGGTAGATGTC -ACGGAACTTCGAACGGTAACAGTC -ACGGAACTTCGAACGGTATTGCTG -ACGGAACTTCGAACGGTATCCATG -ACGGAACTTCGAACGGTATGTGTG -ACGGAACTTCGAACGGTACTAGTG -ACGGAACTTCGAACGGTACATCTG -ACGGAACTTCGAACGGTAGAGTTG -ACGGAACTTCGAACGGTAAGACTG -ACGGAACTTCGAACGGTATCGGTA -ACGGAACTTCGAACGGTATGCCTA -ACGGAACTTCGAACGGTACCACTA -ACGGAACTTCGAACGGTAGGAGTA -ACGGAACTTCGAACGGTATCGTCT -ACGGAACTTCGAACGGTATGCACT -ACGGAACTTCGAACGGTACTGACT -ACGGAACTTCGAACGGTACAACCT -ACGGAACTTCGAACGGTAGCTACT -ACGGAACTTCGAACGGTAGGATCT -ACGGAACTTCGAACGGTAAAGGCT -ACGGAACTTCGAACGGTATCAACC -ACGGAACTTCGAACGGTATGTTCC -ACGGAACTTCGAACGGTAATTCCC -ACGGAACTTCGAACGGTATTCTCG -ACGGAACTTCGAACGGTATAGACG -ACGGAACTTCGAACGGTAGTAACG -ACGGAACTTCGAACGGTAACTTCG -ACGGAACTTCGAACGGTATACGCA -ACGGAACTTCGAACGGTACTTGCA -ACGGAACTTCGAACGGTACGAACA -ACGGAACTTCGAACGGTACAGTCA -ACGGAACTTCGAACGGTAGATCCA -ACGGAACTTCGAACGGTAACGACA -ACGGAACTTCGAACGGTAAGCTCA -ACGGAACTTCGAACGGTATCACGT -ACGGAACTTCGAACGGTACGTAGT -ACGGAACTTCGAACGGTAGTCAGT -ACGGAACTTCGAACGGTAGAAGGT -ACGGAACTTCGAACGGTAAACCGT -ACGGAACTTCGAACGGTATTGTGC -ACGGAACTTCGAACGGTACTAAGC -ACGGAACTTCGAACGGTAACTAGC -ACGGAACTTCGAACGGTAAGATGC -ACGGAACTTCGAACGGTATGAAGG -ACGGAACTTCGAACGGTACAATGG -ACGGAACTTCGAACGGTAATGAGG -ACGGAACTTCGAACGGTAAATGGG -ACGGAACTTCGAACGGTATCCTGA -ACGGAACTTCGAACGGTATAGCGA -ACGGAACTTCGAACGGTACACAGA -ACGGAACTTCGAACGGTAGCAAGA -ACGGAACTTCGAACGGTAGGTTGA -ACGGAACTTCGAACGGTATCCGAT -ACGGAACTTCGAACGGTATGGCAT -ACGGAACTTCGAACGGTACGAGAT -ACGGAACTTCGAACGGTATACCAC -ACGGAACTTCGAACGGTACAGAAC -ACGGAACTTCGAACGGTAGTCTAC -ACGGAACTTCGAACGGTAACGTAC -ACGGAACTTCGAACGGTAAGTGAC -ACGGAACTTCGAACGGTACTGTAG -ACGGAACTTCGAACGGTACCTAAG -ACGGAACTTCGAACGGTAGTTCAG -ACGGAACTTCGAACGGTAGCATAG -ACGGAACTTCGAACGGTAGACAAG -ACGGAACTTCGAACGGTAAAGCAG -ACGGAACTTCGAACGGTACGTCAA -ACGGAACTTCGAACGGTAGCTGAA -ACGGAACTTCGAACGGTAAGTACG -ACGGAACTTCGAACGGTAATCCGA -ACGGAACTTCGAACGGTAATGGGA -ACGGAACTTCGAACGGTAGTGCAA -ACGGAACTTCGAACGGTAGAGGAA -ACGGAACTTCGAACGGTACAGGTA -ACGGAACTTCGAACGGTAGACTCT -ACGGAACTTCGAACGGTAAGTCCT -ACGGAACTTCGAACGGTATAAGCC -ACGGAACTTCGAACGGTAATAGCC -ACGGAACTTCGAACGGTATAACCG -ACGGAACTTCGAACGGTAATGCCA -ACGGAACTTCGATCGACTGGAAAC -ACGGAACTTCGATCGACTAACACC -ACGGAACTTCGATCGACTATCGAG -ACGGAACTTCGATCGACTCTCCTT -ACGGAACTTCGATCGACTCCTGTT -ACGGAACTTCGATCGACTCGGTTT -ACGGAACTTCGATCGACTGTGGTT -ACGGAACTTCGATCGACTGCCTTT -ACGGAACTTCGATCGACTGGTCTT -ACGGAACTTCGATCGACTACGCTT -ACGGAACTTCGATCGACTAGCGTT -ACGGAACTTCGATCGACTTTCGTC -ACGGAACTTCGATCGACTTCTCTC -ACGGAACTTCGATCGACTTGGATC -ACGGAACTTCGATCGACTCACTTC -ACGGAACTTCGATCGACTGTACTC -ACGGAACTTCGATCGACTGATGTC -ACGGAACTTCGATCGACTACAGTC -ACGGAACTTCGATCGACTTTGCTG -ACGGAACTTCGATCGACTTCCATG -ACGGAACTTCGATCGACTTGTGTG -ACGGAACTTCGATCGACTCTAGTG -ACGGAACTTCGATCGACTCATCTG -ACGGAACTTCGATCGACTGAGTTG -ACGGAACTTCGATCGACTAGACTG -ACGGAACTTCGATCGACTTCGGTA -ACGGAACTTCGATCGACTTGCCTA -ACGGAACTTCGATCGACTCCACTA -ACGGAACTTCGATCGACTGGAGTA -ACGGAACTTCGATCGACTTCGTCT -ACGGAACTTCGATCGACTTGCACT -ACGGAACTTCGATCGACTCTGACT -ACGGAACTTCGATCGACTCAACCT -ACGGAACTTCGATCGACTGCTACT -ACGGAACTTCGATCGACTGGATCT -ACGGAACTTCGATCGACTAAGGCT -ACGGAACTTCGATCGACTTCAACC -ACGGAACTTCGATCGACTTGTTCC -ACGGAACTTCGATCGACTATTCCC -ACGGAACTTCGATCGACTTTCTCG -ACGGAACTTCGATCGACTTAGACG -ACGGAACTTCGATCGACTGTAACG -ACGGAACTTCGATCGACTACTTCG -ACGGAACTTCGATCGACTTACGCA -ACGGAACTTCGATCGACTCTTGCA -ACGGAACTTCGATCGACTCGAACA -ACGGAACTTCGATCGACTCAGTCA -ACGGAACTTCGATCGACTGATCCA -ACGGAACTTCGATCGACTACGACA -ACGGAACTTCGATCGACTAGCTCA -ACGGAACTTCGATCGACTTCACGT -ACGGAACTTCGATCGACTCGTAGT -ACGGAACTTCGATCGACTGTCAGT -ACGGAACTTCGATCGACTGAAGGT -ACGGAACTTCGATCGACTAACCGT -ACGGAACTTCGATCGACTTTGTGC -ACGGAACTTCGATCGACTCTAAGC -ACGGAACTTCGATCGACTACTAGC -ACGGAACTTCGATCGACTAGATGC -ACGGAACTTCGATCGACTTGAAGG -ACGGAACTTCGATCGACTCAATGG -ACGGAACTTCGATCGACTATGAGG -ACGGAACTTCGATCGACTAATGGG -ACGGAACTTCGATCGACTTCCTGA -ACGGAACTTCGATCGACTTAGCGA -ACGGAACTTCGATCGACTCACAGA -ACGGAACTTCGATCGACTGCAAGA -ACGGAACTTCGATCGACTGGTTGA -ACGGAACTTCGATCGACTTCCGAT -ACGGAACTTCGATCGACTTGGCAT -ACGGAACTTCGATCGACTCGAGAT -ACGGAACTTCGATCGACTTACCAC -ACGGAACTTCGATCGACTCAGAAC -ACGGAACTTCGATCGACTGTCTAC -ACGGAACTTCGATCGACTACGTAC -ACGGAACTTCGATCGACTAGTGAC -ACGGAACTTCGATCGACTCTGTAG -ACGGAACTTCGATCGACTCCTAAG -ACGGAACTTCGATCGACTGTTCAG -ACGGAACTTCGATCGACTGCATAG -ACGGAACTTCGATCGACTGACAAG -ACGGAACTTCGATCGACTAAGCAG -ACGGAACTTCGATCGACTCGTCAA -ACGGAACTTCGATCGACTGCTGAA -ACGGAACTTCGATCGACTAGTACG -ACGGAACTTCGATCGACTATCCGA -ACGGAACTTCGATCGACTATGGGA -ACGGAACTTCGATCGACTGTGCAA -ACGGAACTTCGATCGACTGAGGAA -ACGGAACTTCGATCGACTCAGGTA -ACGGAACTTCGATCGACTGACTCT -ACGGAACTTCGATCGACTAGTCCT -ACGGAACTTCGATCGACTTAAGCC -ACGGAACTTCGATCGACTATAGCC -ACGGAACTTCGATCGACTTAACCG -ACGGAACTTCGATCGACTATGCCA -ACGGAACTTCGAGCATACGGAAAC -ACGGAACTTCGAGCATACAACACC -ACGGAACTTCGAGCATACATCGAG -ACGGAACTTCGAGCATACCTCCTT -ACGGAACTTCGAGCATACCCTGTT -ACGGAACTTCGAGCATACCGGTTT -ACGGAACTTCGAGCATACGTGGTT -ACGGAACTTCGAGCATACGCCTTT -ACGGAACTTCGAGCATACGGTCTT -ACGGAACTTCGAGCATACACGCTT -ACGGAACTTCGAGCATACAGCGTT -ACGGAACTTCGAGCATACTTCGTC -ACGGAACTTCGAGCATACTCTCTC -ACGGAACTTCGAGCATACTGGATC -ACGGAACTTCGAGCATACCACTTC -ACGGAACTTCGAGCATACGTACTC -ACGGAACTTCGAGCATACGATGTC -ACGGAACTTCGAGCATACACAGTC -ACGGAACTTCGAGCATACTTGCTG -ACGGAACTTCGAGCATACTCCATG -ACGGAACTTCGAGCATACTGTGTG -ACGGAACTTCGAGCATACCTAGTG -ACGGAACTTCGAGCATACCATCTG -ACGGAACTTCGAGCATACGAGTTG -ACGGAACTTCGAGCATACAGACTG -ACGGAACTTCGAGCATACTCGGTA -ACGGAACTTCGAGCATACTGCCTA -ACGGAACTTCGAGCATACCCACTA -ACGGAACTTCGAGCATACGGAGTA -ACGGAACTTCGAGCATACTCGTCT -ACGGAACTTCGAGCATACTGCACT -ACGGAACTTCGAGCATACCTGACT -ACGGAACTTCGAGCATACCAACCT -ACGGAACTTCGAGCATACGCTACT -ACGGAACTTCGAGCATACGGATCT -ACGGAACTTCGAGCATACAAGGCT -ACGGAACTTCGAGCATACTCAACC -ACGGAACTTCGAGCATACTGTTCC -ACGGAACTTCGAGCATACATTCCC -ACGGAACTTCGAGCATACTTCTCG -ACGGAACTTCGAGCATACTAGACG -ACGGAACTTCGAGCATACGTAACG -ACGGAACTTCGAGCATACACTTCG -ACGGAACTTCGAGCATACTACGCA -ACGGAACTTCGAGCATACCTTGCA -ACGGAACTTCGAGCATACCGAACA -ACGGAACTTCGAGCATACCAGTCA -ACGGAACTTCGAGCATACGATCCA -ACGGAACTTCGAGCATACACGACA -ACGGAACTTCGAGCATACAGCTCA -ACGGAACTTCGAGCATACTCACGT -ACGGAACTTCGAGCATACCGTAGT -ACGGAACTTCGAGCATACGTCAGT -ACGGAACTTCGAGCATACGAAGGT -ACGGAACTTCGAGCATACAACCGT -ACGGAACTTCGAGCATACTTGTGC -ACGGAACTTCGAGCATACCTAAGC -ACGGAACTTCGAGCATACACTAGC -ACGGAACTTCGAGCATACAGATGC -ACGGAACTTCGAGCATACTGAAGG -ACGGAACTTCGAGCATACCAATGG -ACGGAACTTCGAGCATACATGAGG -ACGGAACTTCGAGCATACAATGGG -ACGGAACTTCGAGCATACTCCTGA -ACGGAACTTCGAGCATACTAGCGA -ACGGAACTTCGAGCATACCACAGA -ACGGAACTTCGAGCATACGCAAGA -ACGGAACTTCGAGCATACGGTTGA -ACGGAACTTCGAGCATACTCCGAT -ACGGAACTTCGAGCATACTGGCAT -ACGGAACTTCGAGCATACCGAGAT -ACGGAACTTCGAGCATACTACCAC -ACGGAACTTCGAGCATACCAGAAC -ACGGAACTTCGAGCATACGTCTAC -ACGGAACTTCGAGCATACACGTAC -ACGGAACTTCGAGCATACAGTGAC -ACGGAACTTCGAGCATACCTGTAG -ACGGAACTTCGAGCATACCCTAAG -ACGGAACTTCGAGCATACGTTCAG -ACGGAACTTCGAGCATACGCATAG -ACGGAACTTCGAGCATACGACAAG -ACGGAACTTCGAGCATACAAGCAG -ACGGAACTTCGAGCATACCGTCAA -ACGGAACTTCGAGCATACGCTGAA -ACGGAACTTCGAGCATACAGTACG -ACGGAACTTCGAGCATACATCCGA -ACGGAACTTCGAGCATACATGGGA -ACGGAACTTCGAGCATACGTGCAA -ACGGAACTTCGAGCATACGAGGAA -ACGGAACTTCGAGCATACCAGGTA -ACGGAACTTCGAGCATACGACTCT -ACGGAACTTCGAGCATACAGTCCT -ACGGAACTTCGAGCATACTAAGCC -ACGGAACTTCGAGCATACATAGCC -ACGGAACTTCGAGCATACTAACCG -ACGGAACTTCGAGCATACATGCCA -ACGGAACTTCGAGCACTTGGAAAC -ACGGAACTTCGAGCACTTAACACC -ACGGAACTTCGAGCACTTATCGAG -ACGGAACTTCGAGCACTTCTCCTT -ACGGAACTTCGAGCACTTCCTGTT -ACGGAACTTCGAGCACTTCGGTTT -ACGGAACTTCGAGCACTTGTGGTT -ACGGAACTTCGAGCACTTGCCTTT -ACGGAACTTCGAGCACTTGGTCTT -ACGGAACTTCGAGCACTTACGCTT -ACGGAACTTCGAGCACTTAGCGTT -ACGGAACTTCGAGCACTTTTCGTC -ACGGAACTTCGAGCACTTTCTCTC -ACGGAACTTCGAGCACTTTGGATC -ACGGAACTTCGAGCACTTCACTTC -ACGGAACTTCGAGCACTTGTACTC -ACGGAACTTCGAGCACTTGATGTC -ACGGAACTTCGAGCACTTACAGTC -ACGGAACTTCGAGCACTTTTGCTG -ACGGAACTTCGAGCACTTTCCATG -ACGGAACTTCGAGCACTTTGTGTG -ACGGAACTTCGAGCACTTCTAGTG -ACGGAACTTCGAGCACTTCATCTG -ACGGAACTTCGAGCACTTGAGTTG -ACGGAACTTCGAGCACTTAGACTG -ACGGAACTTCGAGCACTTTCGGTA -ACGGAACTTCGAGCACTTTGCCTA -ACGGAACTTCGAGCACTTCCACTA -ACGGAACTTCGAGCACTTGGAGTA -ACGGAACTTCGAGCACTTTCGTCT -ACGGAACTTCGAGCACTTTGCACT -ACGGAACTTCGAGCACTTCTGACT -ACGGAACTTCGAGCACTTCAACCT -ACGGAACTTCGAGCACTTGCTACT -ACGGAACTTCGAGCACTTGGATCT -ACGGAACTTCGAGCACTTAAGGCT -ACGGAACTTCGAGCACTTTCAACC -ACGGAACTTCGAGCACTTTGTTCC -ACGGAACTTCGAGCACTTATTCCC -ACGGAACTTCGAGCACTTTTCTCG -ACGGAACTTCGAGCACTTTAGACG -ACGGAACTTCGAGCACTTGTAACG -ACGGAACTTCGAGCACTTACTTCG -ACGGAACTTCGAGCACTTTACGCA -ACGGAACTTCGAGCACTTCTTGCA -ACGGAACTTCGAGCACTTCGAACA -ACGGAACTTCGAGCACTTCAGTCA -ACGGAACTTCGAGCACTTGATCCA -ACGGAACTTCGAGCACTTACGACA -ACGGAACTTCGAGCACTTAGCTCA -ACGGAACTTCGAGCACTTTCACGT -ACGGAACTTCGAGCACTTCGTAGT -ACGGAACTTCGAGCACTTGTCAGT -ACGGAACTTCGAGCACTTGAAGGT -ACGGAACTTCGAGCACTTAACCGT -ACGGAACTTCGAGCACTTTTGTGC -ACGGAACTTCGAGCACTTCTAAGC -ACGGAACTTCGAGCACTTACTAGC -ACGGAACTTCGAGCACTTAGATGC -ACGGAACTTCGAGCACTTTGAAGG -ACGGAACTTCGAGCACTTCAATGG -ACGGAACTTCGAGCACTTATGAGG -ACGGAACTTCGAGCACTTAATGGG -ACGGAACTTCGAGCACTTTCCTGA -ACGGAACTTCGAGCACTTTAGCGA -ACGGAACTTCGAGCACTTCACAGA -ACGGAACTTCGAGCACTTGCAAGA -ACGGAACTTCGAGCACTTGGTTGA -ACGGAACTTCGAGCACTTTCCGAT -ACGGAACTTCGAGCACTTTGGCAT -ACGGAACTTCGAGCACTTCGAGAT -ACGGAACTTCGAGCACTTTACCAC -ACGGAACTTCGAGCACTTCAGAAC -ACGGAACTTCGAGCACTTGTCTAC -ACGGAACTTCGAGCACTTACGTAC -ACGGAACTTCGAGCACTTAGTGAC -ACGGAACTTCGAGCACTTCTGTAG -ACGGAACTTCGAGCACTTCCTAAG -ACGGAACTTCGAGCACTTGTTCAG -ACGGAACTTCGAGCACTTGCATAG -ACGGAACTTCGAGCACTTGACAAG -ACGGAACTTCGAGCACTTAAGCAG -ACGGAACTTCGAGCACTTCGTCAA -ACGGAACTTCGAGCACTTGCTGAA -ACGGAACTTCGAGCACTTAGTACG -ACGGAACTTCGAGCACTTATCCGA -ACGGAACTTCGAGCACTTATGGGA -ACGGAACTTCGAGCACTTGTGCAA -ACGGAACTTCGAGCACTTGAGGAA -ACGGAACTTCGAGCACTTCAGGTA -ACGGAACTTCGAGCACTTGACTCT -ACGGAACTTCGAGCACTTAGTCCT -ACGGAACTTCGAGCACTTTAAGCC -ACGGAACTTCGAGCACTTATAGCC -ACGGAACTTCGAGCACTTTAACCG -ACGGAACTTCGAGCACTTATGCCA -ACGGAACTTCGAACACGAGGAAAC -ACGGAACTTCGAACACGAAACACC -ACGGAACTTCGAACACGAATCGAG -ACGGAACTTCGAACACGACTCCTT -ACGGAACTTCGAACACGACCTGTT -ACGGAACTTCGAACACGACGGTTT -ACGGAACTTCGAACACGAGTGGTT -ACGGAACTTCGAACACGAGCCTTT -ACGGAACTTCGAACACGAGGTCTT -ACGGAACTTCGAACACGAACGCTT -ACGGAACTTCGAACACGAAGCGTT -ACGGAACTTCGAACACGATTCGTC -ACGGAACTTCGAACACGATCTCTC -ACGGAACTTCGAACACGATGGATC -ACGGAACTTCGAACACGACACTTC -ACGGAACTTCGAACACGAGTACTC -ACGGAACTTCGAACACGAGATGTC -ACGGAACTTCGAACACGAACAGTC -ACGGAACTTCGAACACGATTGCTG -ACGGAACTTCGAACACGATCCATG -ACGGAACTTCGAACACGATGTGTG -ACGGAACTTCGAACACGACTAGTG -ACGGAACTTCGAACACGACATCTG -ACGGAACTTCGAACACGAGAGTTG -ACGGAACTTCGAACACGAAGACTG -ACGGAACTTCGAACACGATCGGTA -ACGGAACTTCGAACACGATGCCTA -ACGGAACTTCGAACACGACCACTA -ACGGAACTTCGAACACGAGGAGTA -ACGGAACTTCGAACACGATCGTCT -ACGGAACTTCGAACACGATGCACT -ACGGAACTTCGAACACGACTGACT -ACGGAACTTCGAACACGACAACCT -ACGGAACTTCGAACACGAGCTACT -ACGGAACTTCGAACACGAGGATCT -ACGGAACTTCGAACACGAAAGGCT -ACGGAACTTCGAACACGATCAACC -ACGGAACTTCGAACACGATGTTCC -ACGGAACTTCGAACACGAATTCCC -ACGGAACTTCGAACACGATTCTCG -ACGGAACTTCGAACACGATAGACG -ACGGAACTTCGAACACGAGTAACG -ACGGAACTTCGAACACGAACTTCG -ACGGAACTTCGAACACGATACGCA -ACGGAACTTCGAACACGACTTGCA -ACGGAACTTCGAACACGACGAACA -ACGGAACTTCGAACACGACAGTCA -ACGGAACTTCGAACACGAGATCCA -ACGGAACTTCGAACACGAACGACA -ACGGAACTTCGAACACGAAGCTCA -ACGGAACTTCGAACACGATCACGT -ACGGAACTTCGAACACGACGTAGT -ACGGAACTTCGAACACGAGTCAGT -ACGGAACTTCGAACACGAGAAGGT -ACGGAACTTCGAACACGAAACCGT -ACGGAACTTCGAACACGATTGTGC -ACGGAACTTCGAACACGACTAAGC -ACGGAACTTCGAACACGAACTAGC -ACGGAACTTCGAACACGAAGATGC -ACGGAACTTCGAACACGATGAAGG -ACGGAACTTCGAACACGACAATGG -ACGGAACTTCGAACACGAATGAGG -ACGGAACTTCGAACACGAAATGGG -ACGGAACTTCGAACACGATCCTGA -ACGGAACTTCGAACACGATAGCGA -ACGGAACTTCGAACACGACACAGA -ACGGAACTTCGAACACGAGCAAGA -ACGGAACTTCGAACACGAGGTTGA -ACGGAACTTCGAACACGATCCGAT -ACGGAACTTCGAACACGATGGCAT -ACGGAACTTCGAACACGACGAGAT -ACGGAACTTCGAACACGATACCAC -ACGGAACTTCGAACACGACAGAAC -ACGGAACTTCGAACACGAGTCTAC -ACGGAACTTCGAACACGAACGTAC -ACGGAACTTCGAACACGAAGTGAC -ACGGAACTTCGAACACGACTGTAG -ACGGAACTTCGAACACGACCTAAG -ACGGAACTTCGAACACGAGTTCAG -ACGGAACTTCGAACACGAGCATAG -ACGGAACTTCGAACACGAGACAAG -ACGGAACTTCGAACACGAAAGCAG -ACGGAACTTCGAACACGACGTCAA -ACGGAACTTCGAACACGAGCTGAA -ACGGAACTTCGAACACGAAGTACG -ACGGAACTTCGAACACGAATCCGA -ACGGAACTTCGAACACGAATGGGA -ACGGAACTTCGAACACGAGTGCAA -ACGGAACTTCGAACACGAGAGGAA -ACGGAACTTCGAACACGACAGGTA -ACGGAACTTCGAACACGAGACTCT -ACGGAACTTCGAACACGAAGTCCT -ACGGAACTTCGAACACGATAAGCC -ACGGAACTTCGAACACGAATAGCC -ACGGAACTTCGAACACGATAACCG -ACGGAACTTCGAACACGAATGCCA -ACGGAACTTCGATCACAGGGAAAC -ACGGAACTTCGATCACAGAACACC -ACGGAACTTCGATCACAGATCGAG -ACGGAACTTCGATCACAGCTCCTT -ACGGAACTTCGATCACAGCCTGTT -ACGGAACTTCGATCACAGCGGTTT -ACGGAACTTCGATCACAGGTGGTT -ACGGAACTTCGATCACAGGCCTTT -ACGGAACTTCGATCACAGGGTCTT -ACGGAACTTCGATCACAGACGCTT -ACGGAACTTCGATCACAGAGCGTT -ACGGAACTTCGATCACAGTTCGTC -ACGGAACTTCGATCACAGTCTCTC -ACGGAACTTCGATCACAGTGGATC -ACGGAACTTCGATCACAGCACTTC -ACGGAACTTCGATCACAGGTACTC -ACGGAACTTCGATCACAGGATGTC -ACGGAACTTCGATCACAGACAGTC -ACGGAACTTCGATCACAGTTGCTG -ACGGAACTTCGATCACAGTCCATG -ACGGAACTTCGATCACAGTGTGTG -ACGGAACTTCGATCACAGCTAGTG -ACGGAACTTCGATCACAGCATCTG -ACGGAACTTCGATCACAGGAGTTG -ACGGAACTTCGATCACAGAGACTG -ACGGAACTTCGATCACAGTCGGTA -ACGGAACTTCGATCACAGTGCCTA -ACGGAACTTCGATCACAGCCACTA -ACGGAACTTCGATCACAGGGAGTA -ACGGAACTTCGATCACAGTCGTCT -ACGGAACTTCGATCACAGTGCACT -ACGGAACTTCGATCACAGCTGACT -ACGGAACTTCGATCACAGCAACCT -ACGGAACTTCGATCACAGGCTACT -ACGGAACTTCGATCACAGGGATCT -ACGGAACTTCGATCACAGAAGGCT -ACGGAACTTCGATCACAGTCAACC -ACGGAACTTCGATCACAGTGTTCC -ACGGAACTTCGATCACAGATTCCC -ACGGAACTTCGATCACAGTTCTCG -ACGGAACTTCGATCACAGTAGACG -ACGGAACTTCGATCACAGGTAACG -ACGGAACTTCGATCACAGACTTCG -ACGGAACTTCGATCACAGTACGCA -ACGGAACTTCGATCACAGCTTGCA -ACGGAACTTCGATCACAGCGAACA -ACGGAACTTCGATCACAGCAGTCA -ACGGAACTTCGATCACAGGATCCA -ACGGAACTTCGATCACAGACGACA -ACGGAACTTCGATCACAGAGCTCA -ACGGAACTTCGATCACAGTCACGT -ACGGAACTTCGATCACAGCGTAGT -ACGGAACTTCGATCACAGGTCAGT -ACGGAACTTCGATCACAGGAAGGT -ACGGAACTTCGATCACAGAACCGT -ACGGAACTTCGATCACAGTTGTGC -ACGGAACTTCGATCACAGCTAAGC -ACGGAACTTCGATCACAGACTAGC -ACGGAACTTCGATCACAGAGATGC -ACGGAACTTCGATCACAGTGAAGG -ACGGAACTTCGATCACAGCAATGG -ACGGAACTTCGATCACAGATGAGG -ACGGAACTTCGATCACAGAATGGG -ACGGAACTTCGATCACAGTCCTGA -ACGGAACTTCGATCACAGTAGCGA -ACGGAACTTCGATCACAGCACAGA -ACGGAACTTCGATCACAGGCAAGA -ACGGAACTTCGATCACAGGGTTGA -ACGGAACTTCGATCACAGTCCGAT -ACGGAACTTCGATCACAGTGGCAT -ACGGAACTTCGATCACAGCGAGAT -ACGGAACTTCGATCACAGTACCAC -ACGGAACTTCGATCACAGCAGAAC -ACGGAACTTCGATCACAGGTCTAC -ACGGAACTTCGATCACAGACGTAC -ACGGAACTTCGATCACAGAGTGAC -ACGGAACTTCGATCACAGCTGTAG -ACGGAACTTCGATCACAGCCTAAG -ACGGAACTTCGATCACAGGTTCAG -ACGGAACTTCGATCACAGGCATAG -ACGGAACTTCGATCACAGGACAAG -ACGGAACTTCGATCACAGAAGCAG -ACGGAACTTCGATCACAGCGTCAA -ACGGAACTTCGATCACAGGCTGAA -ACGGAACTTCGATCACAGAGTACG -ACGGAACTTCGATCACAGATCCGA -ACGGAACTTCGATCACAGATGGGA -ACGGAACTTCGATCACAGGTGCAA -ACGGAACTTCGATCACAGGAGGAA -ACGGAACTTCGATCACAGCAGGTA -ACGGAACTTCGATCACAGGACTCT -ACGGAACTTCGATCACAGAGTCCT -ACGGAACTTCGATCACAGTAAGCC -ACGGAACTTCGATCACAGATAGCC -ACGGAACTTCGATCACAGTAACCG -ACGGAACTTCGATCACAGATGCCA -ACGGAACTTCGACCAGATGGAAAC -ACGGAACTTCGACCAGATAACACC -ACGGAACTTCGACCAGATATCGAG -ACGGAACTTCGACCAGATCTCCTT -ACGGAACTTCGACCAGATCCTGTT -ACGGAACTTCGACCAGATCGGTTT -ACGGAACTTCGACCAGATGTGGTT -ACGGAACTTCGACCAGATGCCTTT -ACGGAACTTCGACCAGATGGTCTT -ACGGAACTTCGACCAGATACGCTT -ACGGAACTTCGACCAGATAGCGTT -ACGGAACTTCGACCAGATTTCGTC -ACGGAACTTCGACCAGATTCTCTC -ACGGAACTTCGACCAGATTGGATC -ACGGAACTTCGACCAGATCACTTC -ACGGAACTTCGACCAGATGTACTC -ACGGAACTTCGACCAGATGATGTC -ACGGAACTTCGACCAGATACAGTC -ACGGAACTTCGACCAGATTTGCTG -ACGGAACTTCGACCAGATTCCATG -ACGGAACTTCGACCAGATTGTGTG -ACGGAACTTCGACCAGATCTAGTG -ACGGAACTTCGACCAGATCATCTG -ACGGAACTTCGACCAGATGAGTTG -ACGGAACTTCGACCAGATAGACTG -ACGGAACTTCGACCAGATTCGGTA -ACGGAACTTCGACCAGATTGCCTA -ACGGAACTTCGACCAGATCCACTA -ACGGAACTTCGACCAGATGGAGTA -ACGGAACTTCGACCAGATTCGTCT -ACGGAACTTCGACCAGATTGCACT -ACGGAACTTCGACCAGATCTGACT -ACGGAACTTCGACCAGATCAACCT -ACGGAACTTCGACCAGATGCTACT -ACGGAACTTCGACCAGATGGATCT -ACGGAACTTCGACCAGATAAGGCT -ACGGAACTTCGACCAGATTCAACC -ACGGAACTTCGACCAGATTGTTCC -ACGGAACTTCGACCAGATATTCCC -ACGGAACTTCGACCAGATTTCTCG -ACGGAACTTCGACCAGATTAGACG -ACGGAACTTCGACCAGATGTAACG -ACGGAACTTCGACCAGATACTTCG -ACGGAACTTCGACCAGATTACGCA -ACGGAACTTCGACCAGATCTTGCA -ACGGAACTTCGACCAGATCGAACA -ACGGAACTTCGACCAGATCAGTCA -ACGGAACTTCGACCAGATGATCCA -ACGGAACTTCGACCAGATACGACA -ACGGAACTTCGACCAGATAGCTCA -ACGGAACTTCGACCAGATTCACGT -ACGGAACTTCGACCAGATCGTAGT -ACGGAACTTCGACCAGATGTCAGT -ACGGAACTTCGACCAGATGAAGGT -ACGGAACTTCGACCAGATAACCGT -ACGGAACTTCGACCAGATTTGTGC -ACGGAACTTCGACCAGATCTAAGC -ACGGAACTTCGACCAGATACTAGC -ACGGAACTTCGACCAGATAGATGC -ACGGAACTTCGACCAGATTGAAGG -ACGGAACTTCGACCAGATCAATGG -ACGGAACTTCGACCAGATATGAGG -ACGGAACTTCGACCAGATAATGGG -ACGGAACTTCGACCAGATTCCTGA -ACGGAACTTCGACCAGATTAGCGA -ACGGAACTTCGACCAGATCACAGA -ACGGAACTTCGACCAGATGCAAGA -ACGGAACTTCGACCAGATGGTTGA -ACGGAACTTCGACCAGATTCCGAT -ACGGAACTTCGACCAGATTGGCAT -ACGGAACTTCGACCAGATCGAGAT -ACGGAACTTCGACCAGATTACCAC -ACGGAACTTCGACCAGATCAGAAC -ACGGAACTTCGACCAGATGTCTAC -ACGGAACTTCGACCAGATACGTAC -ACGGAACTTCGACCAGATAGTGAC -ACGGAACTTCGACCAGATCTGTAG -ACGGAACTTCGACCAGATCCTAAG -ACGGAACTTCGACCAGATGTTCAG -ACGGAACTTCGACCAGATGCATAG -ACGGAACTTCGACCAGATGACAAG -ACGGAACTTCGACCAGATAAGCAG -ACGGAACTTCGACCAGATCGTCAA -ACGGAACTTCGACCAGATGCTGAA -ACGGAACTTCGACCAGATAGTACG -ACGGAACTTCGACCAGATATCCGA -ACGGAACTTCGACCAGATATGGGA -ACGGAACTTCGACCAGATGTGCAA -ACGGAACTTCGACCAGATGAGGAA -ACGGAACTTCGACCAGATCAGGTA -ACGGAACTTCGACCAGATGACTCT -ACGGAACTTCGACCAGATAGTCCT -ACGGAACTTCGACCAGATTAAGCC -ACGGAACTTCGACCAGATATAGCC -ACGGAACTTCGACCAGATTAACCG -ACGGAACTTCGACCAGATATGCCA -ACGGAACTTCGAACAACGGGAAAC -ACGGAACTTCGAACAACGAACACC -ACGGAACTTCGAACAACGATCGAG -ACGGAACTTCGAACAACGCTCCTT -ACGGAACTTCGAACAACGCCTGTT -ACGGAACTTCGAACAACGCGGTTT -ACGGAACTTCGAACAACGGTGGTT -ACGGAACTTCGAACAACGGCCTTT -ACGGAACTTCGAACAACGGGTCTT -ACGGAACTTCGAACAACGACGCTT -ACGGAACTTCGAACAACGAGCGTT -ACGGAACTTCGAACAACGTTCGTC -ACGGAACTTCGAACAACGTCTCTC -ACGGAACTTCGAACAACGTGGATC -ACGGAACTTCGAACAACGCACTTC -ACGGAACTTCGAACAACGGTACTC -ACGGAACTTCGAACAACGGATGTC -ACGGAACTTCGAACAACGACAGTC -ACGGAACTTCGAACAACGTTGCTG -ACGGAACTTCGAACAACGTCCATG -ACGGAACTTCGAACAACGTGTGTG -ACGGAACTTCGAACAACGCTAGTG -ACGGAACTTCGAACAACGCATCTG -ACGGAACTTCGAACAACGGAGTTG -ACGGAACTTCGAACAACGAGACTG -ACGGAACTTCGAACAACGTCGGTA -ACGGAACTTCGAACAACGTGCCTA -ACGGAACTTCGAACAACGCCACTA -ACGGAACTTCGAACAACGGGAGTA -ACGGAACTTCGAACAACGTCGTCT -ACGGAACTTCGAACAACGTGCACT -ACGGAACTTCGAACAACGCTGACT -ACGGAACTTCGAACAACGCAACCT -ACGGAACTTCGAACAACGGCTACT -ACGGAACTTCGAACAACGGGATCT -ACGGAACTTCGAACAACGAAGGCT -ACGGAACTTCGAACAACGTCAACC -ACGGAACTTCGAACAACGTGTTCC -ACGGAACTTCGAACAACGATTCCC -ACGGAACTTCGAACAACGTTCTCG -ACGGAACTTCGAACAACGTAGACG -ACGGAACTTCGAACAACGGTAACG -ACGGAACTTCGAACAACGACTTCG -ACGGAACTTCGAACAACGTACGCA -ACGGAACTTCGAACAACGCTTGCA -ACGGAACTTCGAACAACGCGAACA -ACGGAACTTCGAACAACGCAGTCA -ACGGAACTTCGAACAACGGATCCA -ACGGAACTTCGAACAACGACGACA -ACGGAACTTCGAACAACGAGCTCA -ACGGAACTTCGAACAACGTCACGT -ACGGAACTTCGAACAACGCGTAGT -ACGGAACTTCGAACAACGGTCAGT -ACGGAACTTCGAACAACGGAAGGT -ACGGAACTTCGAACAACGAACCGT -ACGGAACTTCGAACAACGTTGTGC -ACGGAACTTCGAACAACGCTAAGC -ACGGAACTTCGAACAACGACTAGC -ACGGAACTTCGAACAACGAGATGC -ACGGAACTTCGAACAACGTGAAGG -ACGGAACTTCGAACAACGCAATGG -ACGGAACTTCGAACAACGATGAGG -ACGGAACTTCGAACAACGAATGGG -ACGGAACTTCGAACAACGTCCTGA -ACGGAACTTCGAACAACGTAGCGA -ACGGAACTTCGAACAACGCACAGA -ACGGAACTTCGAACAACGGCAAGA -ACGGAACTTCGAACAACGGGTTGA -ACGGAACTTCGAACAACGTCCGAT -ACGGAACTTCGAACAACGTGGCAT -ACGGAACTTCGAACAACGCGAGAT -ACGGAACTTCGAACAACGTACCAC -ACGGAACTTCGAACAACGCAGAAC -ACGGAACTTCGAACAACGGTCTAC -ACGGAACTTCGAACAACGACGTAC -ACGGAACTTCGAACAACGAGTGAC -ACGGAACTTCGAACAACGCTGTAG -ACGGAACTTCGAACAACGCCTAAG -ACGGAACTTCGAACAACGGTTCAG -ACGGAACTTCGAACAACGGCATAG -ACGGAACTTCGAACAACGGACAAG -ACGGAACTTCGAACAACGAAGCAG -ACGGAACTTCGAACAACGCGTCAA -ACGGAACTTCGAACAACGGCTGAA -ACGGAACTTCGAACAACGAGTACG -ACGGAACTTCGAACAACGATCCGA -ACGGAACTTCGAACAACGATGGGA -ACGGAACTTCGAACAACGGTGCAA -ACGGAACTTCGAACAACGGAGGAA -ACGGAACTTCGAACAACGCAGGTA -ACGGAACTTCGAACAACGGACTCT -ACGGAACTTCGAACAACGAGTCCT -ACGGAACTTCGAACAACGTAAGCC -ACGGAACTTCGAACAACGATAGCC -ACGGAACTTCGAACAACGTAACCG -ACGGAACTTCGAACAACGATGCCA -ACGGAACTTCGATCAAGCGGAAAC -ACGGAACTTCGATCAAGCAACACC -ACGGAACTTCGATCAAGCATCGAG -ACGGAACTTCGATCAAGCCTCCTT -ACGGAACTTCGATCAAGCCCTGTT -ACGGAACTTCGATCAAGCCGGTTT -ACGGAACTTCGATCAAGCGTGGTT -ACGGAACTTCGATCAAGCGCCTTT -ACGGAACTTCGATCAAGCGGTCTT -ACGGAACTTCGATCAAGCACGCTT -ACGGAACTTCGATCAAGCAGCGTT -ACGGAACTTCGATCAAGCTTCGTC -ACGGAACTTCGATCAAGCTCTCTC -ACGGAACTTCGATCAAGCTGGATC -ACGGAACTTCGATCAAGCCACTTC -ACGGAACTTCGATCAAGCGTACTC -ACGGAACTTCGATCAAGCGATGTC -ACGGAACTTCGATCAAGCACAGTC -ACGGAACTTCGATCAAGCTTGCTG -ACGGAACTTCGATCAAGCTCCATG -ACGGAACTTCGATCAAGCTGTGTG -ACGGAACTTCGATCAAGCCTAGTG -ACGGAACTTCGATCAAGCCATCTG -ACGGAACTTCGATCAAGCGAGTTG -ACGGAACTTCGATCAAGCAGACTG -ACGGAACTTCGATCAAGCTCGGTA -ACGGAACTTCGATCAAGCTGCCTA -ACGGAACTTCGATCAAGCCCACTA -ACGGAACTTCGATCAAGCGGAGTA -ACGGAACTTCGATCAAGCTCGTCT -ACGGAACTTCGATCAAGCTGCACT -ACGGAACTTCGATCAAGCCTGACT -ACGGAACTTCGATCAAGCCAACCT -ACGGAACTTCGATCAAGCGCTACT -ACGGAACTTCGATCAAGCGGATCT -ACGGAACTTCGATCAAGCAAGGCT -ACGGAACTTCGATCAAGCTCAACC -ACGGAACTTCGATCAAGCTGTTCC -ACGGAACTTCGATCAAGCATTCCC -ACGGAACTTCGATCAAGCTTCTCG -ACGGAACTTCGATCAAGCTAGACG -ACGGAACTTCGATCAAGCGTAACG -ACGGAACTTCGATCAAGCACTTCG -ACGGAACTTCGATCAAGCTACGCA -ACGGAACTTCGATCAAGCCTTGCA -ACGGAACTTCGATCAAGCCGAACA -ACGGAACTTCGATCAAGCCAGTCA -ACGGAACTTCGATCAAGCGATCCA -ACGGAACTTCGATCAAGCACGACA -ACGGAACTTCGATCAAGCAGCTCA -ACGGAACTTCGATCAAGCTCACGT -ACGGAACTTCGATCAAGCCGTAGT -ACGGAACTTCGATCAAGCGTCAGT -ACGGAACTTCGATCAAGCGAAGGT -ACGGAACTTCGATCAAGCAACCGT -ACGGAACTTCGATCAAGCTTGTGC -ACGGAACTTCGATCAAGCCTAAGC -ACGGAACTTCGATCAAGCACTAGC -ACGGAACTTCGATCAAGCAGATGC -ACGGAACTTCGATCAAGCTGAAGG -ACGGAACTTCGATCAAGCCAATGG -ACGGAACTTCGATCAAGCATGAGG -ACGGAACTTCGATCAAGCAATGGG -ACGGAACTTCGATCAAGCTCCTGA -ACGGAACTTCGATCAAGCTAGCGA -ACGGAACTTCGATCAAGCCACAGA -ACGGAACTTCGATCAAGCGCAAGA -ACGGAACTTCGATCAAGCGGTTGA -ACGGAACTTCGATCAAGCTCCGAT -ACGGAACTTCGATCAAGCTGGCAT -ACGGAACTTCGATCAAGCCGAGAT -ACGGAACTTCGATCAAGCTACCAC -ACGGAACTTCGATCAAGCCAGAAC -ACGGAACTTCGATCAAGCGTCTAC -ACGGAACTTCGATCAAGCACGTAC -ACGGAACTTCGATCAAGCAGTGAC -ACGGAACTTCGATCAAGCCTGTAG -ACGGAACTTCGATCAAGCCCTAAG -ACGGAACTTCGATCAAGCGTTCAG -ACGGAACTTCGATCAAGCGCATAG -ACGGAACTTCGATCAAGCGACAAG -ACGGAACTTCGATCAAGCAAGCAG -ACGGAACTTCGATCAAGCCGTCAA -ACGGAACTTCGATCAAGCGCTGAA -ACGGAACTTCGATCAAGCAGTACG -ACGGAACTTCGATCAAGCATCCGA -ACGGAACTTCGATCAAGCATGGGA -ACGGAACTTCGATCAAGCGTGCAA -ACGGAACTTCGATCAAGCGAGGAA -ACGGAACTTCGATCAAGCCAGGTA -ACGGAACTTCGATCAAGCGACTCT -ACGGAACTTCGATCAAGCAGTCCT -ACGGAACTTCGATCAAGCTAAGCC -ACGGAACTTCGATCAAGCATAGCC -ACGGAACTTCGATCAAGCTAACCG -ACGGAACTTCGATCAAGCATGCCA -ACGGAACTTCGACGTTCAGGAAAC -ACGGAACTTCGACGTTCAAACACC -ACGGAACTTCGACGTTCAATCGAG -ACGGAACTTCGACGTTCACTCCTT -ACGGAACTTCGACGTTCACCTGTT -ACGGAACTTCGACGTTCACGGTTT -ACGGAACTTCGACGTTCAGTGGTT -ACGGAACTTCGACGTTCAGCCTTT -ACGGAACTTCGACGTTCAGGTCTT -ACGGAACTTCGACGTTCAACGCTT -ACGGAACTTCGACGTTCAAGCGTT -ACGGAACTTCGACGTTCATTCGTC -ACGGAACTTCGACGTTCATCTCTC -ACGGAACTTCGACGTTCATGGATC -ACGGAACTTCGACGTTCACACTTC -ACGGAACTTCGACGTTCAGTACTC -ACGGAACTTCGACGTTCAGATGTC -ACGGAACTTCGACGTTCAACAGTC -ACGGAACTTCGACGTTCATTGCTG -ACGGAACTTCGACGTTCATCCATG -ACGGAACTTCGACGTTCATGTGTG -ACGGAACTTCGACGTTCACTAGTG -ACGGAACTTCGACGTTCACATCTG -ACGGAACTTCGACGTTCAGAGTTG -ACGGAACTTCGACGTTCAAGACTG -ACGGAACTTCGACGTTCATCGGTA -ACGGAACTTCGACGTTCATGCCTA -ACGGAACTTCGACGTTCACCACTA -ACGGAACTTCGACGTTCAGGAGTA -ACGGAACTTCGACGTTCATCGTCT -ACGGAACTTCGACGTTCATGCACT -ACGGAACTTCGACGTTCACTGACT -ACGGAACTTCGACGTTCACAACCT -ACGGAACTTCGACGTTCAGCTACT -ACGGAACTTCGACGTTCAGGATCT -ACGGAACTTCGACGTTCAAAGGCT -ACGGAACTTCGACGTTCATCAACC -ACGGAACTTCGACGTTCATGTTCC -ACGGAACTTCGACGTTCAATTCCC -ACGGAACTTCGACGTTCATTCTCG -ACGGAACTTCGACGTTCATAGACG -ACGGAACTTCGACGTTCAGTAACG -ACGGAACTTCGACGTTCAACTTCG -ACGGAACTTCGACGTTCATACGCA -ACGGAACTTCGACGTTCACTTGCA -ACGGAACTTCGACGTTCACGAACA -ACGGAACTTCGACGTTCACAGTCA -ACGGAACTTCGACGTTCAGATCCA -ACGGAACTTCGACGTTCAACGACA -ACGGAACTTCGACGTTCAAGCTCA -ACGGAACTTCGACGTTCATCACGT -ACGGAACTTCGACGTTCACGTAGT -ACGGAACTTCGACGTTCAGTCAGT -ACGGAACTTCGACGTTCAGAAGGT -ACGGAACTTCGACGTTCAAACCGT -ACGGAACTTCGACGTTCATTGTGC -ACGGAACTTCGACGTTCACTAAGC -ACGGAACTTCGACGTTCAACTAGC -ACGGAACTTCGACGTTCAAGATGC -ACGGAACTTCGACGTTCATGAAGG -ACGGAACTTCGACGTTCACAATGG -ACGGAACTTCGACGTTCAATGAGG -ACGGAACTTCGACGTTCAAATGGG -ACGGAACTTCGACGTTCATCCTGA -ACGGAACTTCGACGTTCATAGCGA -ACGGAACTTCGACGTTCACACAGA -ACGGAACTTCGACGTTCAGCAAGA -ACGGAACTTCGACGTTCAGGTTGA -ACGGAACTTCGACGTTCATCCGAT -ACGGAACTTCGACGTTCATGGCAT -ACGGAACTTCGACGTTCACGAGAT -ACGGAACTTCGACGTTCATACCAC -ACGGAACTTCGACGTTCACAGAAC -ACGGAACTTCGACGTTCAGTCTAC -ACGGAACTTCGACGTTCAACGTAC -ACGGAACTTCGACGTTCAAGTGAC -ACGGAACTTCGACGTTCACTGTAG -ACGGAACTTCGACGTTCACCTAAG -ACGGAACTTCGACGTTCAGTTCAG -ACGGAACTTCGACGTTCAGCATAG -ACGGAACTTCGACGTTCAGACAAG -ACGGAACTTCGACGTTCAAAGCAG -ACGGAACTTCGACGTTCACGTCAA -ACGGAACTTCGACGTTCAGCTGAA -ACGGAACTTCGACGTTCAAGTACG -ACGGAACTTCGACGTTCAATCCGA -ACGGAACTTCGACGTTCAATGGGA -ACGGAACTTCGACGTTCAGTGCAA -ACGGAACTTCGACGTTCAGAGGAA -ACGGAACTTCGACGTTCACAGGTA -ACGGAACTTCGACGTTCAGACTCT -ACGGAACTTCGACGTTCAAGTCCT -ACGGAACTTCGACGTTCATAAGCC -ACGGAACTTCGACGTTCAATAGCC -ACGGAACTTCGACGTTCATAACCG -ACGGAACTTCGACGTTCAATGCCA -ACGGAACTTCGAAGTCGTGGAAAC -ACGGAACTTCGAAGTCGTAACACC -ACGGAACTTCGAAGTCGTATCGAG -ACGGAACTTCGAAGTCGTCTCCTT -ACGGAACTTCGAAGTCGTCCTGTT -ACGGAACTTCGAAGTCGTCGGTTT -ACGGAACTTCGAAGTCGTGTGGTT -ACGGAACTTCGAAGTCGTGCCTTT -ACGGAACTTCGAAGTCGTGGTCTT -ACGGAACTTCGAAGTCGTACGCTT -ACGGAACTTCGAAGTCGTAGCGTT -ACGGAACTTCGAAGTCGTTTCGTC -ACGGAACTTCGAAGTCGTTCTCTC -ACGGAACTTCGAAGTCGTTGGATC -ACGGAACTTCGAAGTCGTCACTTC -ACGGAACTTCGAAGTCGTGTACTC -ACGGAACTTCGAAGTCGTGATGTC -ACGGAACTTCGAAGTCGTACAGTC -ACGGAACTTCGAAGTCGTTTGCTG -ACGGAACTTCGAAGTCGTTCCATG -ACGGAACTTCGAAGTCGTTGTGTG -ACGGAACTTCGAAGTCGTCTAGTG -ACGGAACTTCGAAGTCGTCATCTG -ACGGAACTTCGAAGTCGTGAGTTG -ACGGAACTTCGAAGTCGTAGACTG -ACGGAACTTCGAAGTCGTTCGGTA -ACGGAACTTCGAAGTCGTTGCCTA -ACGGAACTTCGAAGTCGTCCACTA -ACGGAACTTCGAAGTCGTGGAGTA -ACGGAACTTCGAAGTCGTTCGTCT -ACGGAACTTCGAAGTCGTTGCACT -ACGGAACTTCGAAGTCGTCTGACT -ACGGAACTTCGAAGTCGTCAACCT -ACGGAACTTCGAAGTCGTGCTACT -ACGGAACTTCGAAGTCGTGGATCT -ACGGAACTTCGAAGTCGTAAGGCT -ACGGAACTTCGAAGTCGTTCAACC -ACGGAACTTCGAAGTCGTTGTTCC -ACGGAACTTCGAAGTCGTATTCCC -ACGGAACTTCGAAGTCGTTTCTCG -ACGGAACTTCGAAGTCGTTAGACG -ACGGAACTTCGAAGTCGTGTAACG -ACGGAACTTCGAAGTCGTACTTCG -ACGGAACTTCGAAGTCGTTACGCA -ACGGAACTTCGAAGTCGTCTTGCA -ACGGAACTTCGAAGTCGTCGAACA -ACGGAACTTCGAAGTCGTCAGTCA -ACGGAACTTCGAAGTCGTGATCCA -ACGGAACTTCGAAGTCGTACGACA -ACGGAACTTCGAAGTCGTAGCTCA -ACGGAACTTCGAAGTCGTTCACGT -ACGGAACTTCGAAGTCGTCGTAGT -ACGGAACTTCGAAGTCGTGTCAGT -ACGGAACTTCGAAGTCGTGAAGGT -ACGGAACTTCGAAGTCGTAACCGT -ACGGAACTTCGAAGTCGTTTGTGC -ACGGAACTTCGAAGTCGTCTAAGC -ACGGAACTTCGAAGTCGTACTAGC -ACGGAACTTCGAAGTCGTAGATGC -ACGGAACTTCGAAGTCGTTGAAGG -ACGGAACTTCGAAGTCGTCAATGG -ACGGAACTTCGAAGTCGTATGAGG -ACGGAACTTCGAAGTCGTAATGGG -ACGGAACTTCGAAGTCGTTCCTGA -ACGGAACTTCGAAGTCGTTAGCGA -ACGGAACTTCGAAGTCGTCACAGA -ACGGAACTTCGAAGTCGTGCAAGA -ACGGAACTTCGAAGTCGTGGTTGA -ACGGAACTTCGAAGTCGTTCCGAT -ACGGAACTTCGAAGTCGTTGGCAT -ACGGAACTTCGAAGTCGTCGAGAT -ACGGAACTTCGAAGTCGTTACCAC -ACGGAACTTCGAAGTCGTCAGAAC -ACGGAACTTCGAAGTCGTGTCTAC -ACGGAACTTCGAAGTCGTACGTAC -ACGGAACTTCGAAGTCGTAGTGAC -ACGGAACTTCGAAGTCGTCTGTAG -ACGGAACTTCGAAGTCGTCCTAAG -ACGGAACTTCGAAGTCGTGTTCAG -ACGGAACTTCGAAGTCGTGCATAG -ACGGAACTTCGAAGTCGTGACAAG -ACGGAACTTCGAAGTCGTAAGCAG -ACGGAACTTCGAAGTCGTCGTCAA -ACGGAACTTCGAAGTCGTGCTGAA -ACGGAACTTCGAAGTCGTAGTACG -ACGGAACTTCGAAGTCGTATCCGA -ACGGAACTTCGAAGTCGTATGGGA -ACGGAACTTCGAAGTCGTGTGCAA -ACGGAACTTCGAAGTCGTGAGGAA -ACGGAACTTCGAAGTCGTCAGGTA -ACGGAACTTCGAAGTCGTGACTCT -ACGGAACTTCGAAGTCGTAGTCCT -ACGGAACTTCGAAGTCGTTAAGCC -ACGGAACTTCGAAGTCGTATAGCC -ACGGAACTTCGAAGTCGTTAACCG -ACGGAACTTCGAAGTCGTATGCCA -ACGGAACTTCGAAGTGTCGGAAAC -ACGGAACTTCGAAGTGTCAACACC -ACGGAACTTCGAAGTGTCATCGAG -ACGGAACTTCGAAGTGTCCTCCTT -ACGGAACTTCGAAGTGTCCCTGTT -ACGGAACTTCGAAGTGTCCGGTTT -ACGGAACTTCGAAGTGTCGTGGTT -ACGGAACTTCGAAGTGTCGCCTTT -ACGGAACTTCGAAGTGTCGGTCTT -ACGGAACTTCGAAGTGTCACGCTT -ACGGAACTTCGAAGTGTCAGCGTT -ACGGAACTTCGAAGTGTCTTCGTC -ACGGAACTTCGAAGTGTCTCTCTC -ACGGAACTTCGAAGTGTCTGGATC -ACGGAACTTCGAAGTGTCCACTTC -ACGGAACTTCGAAGTGTCGTACTC -ACGGAACTTCGAAGTGTCGATGTC -ACGGAACTTCGAAGTGTCACAGTC -ACGGAACTTCGAAGTGTCTTGCTG -ACGGAACTTCGAAGTGTCTCCATG -ACGGAACTTCGAAGTGTCTGTGTG -ACGGAACTTCGAAGTGTCCTAGTG -ACGGAACTTCGAAGTGTCCATCTG -ACGGAACTTCGAAGTGTCGAGTTG -ACGGAACTTCGAAGTGTCAGACTG -ACGGAACTTCGAAGTGTCTCGGTA -ACGGAACTTCGAAGTGTCTGCCTA -ACGGAACTTCGAAGTGTCCCACTA -ACGGAACTTCGAAGTGTCGGAGTA -ACGGAACTTCGAAGTGTCTCGTCT -ACGGAACTTCGAAGTGTCTGCACT -ACGGAACTTCGAAGTGTCCTGACT -ACGGAACTTCGAAGTGTCCAACCT -ACGGAACTTCGAAGTGTCGCTACT -ACGGAACTTCGAAGTGTCGGATCT -ACGGAACTTCGAAGTGTCAAGGCT -ACGGAACTTCGAAGTGTCTCAACC -ACGGAACTTCGAAGTGTCTGTTCC -ACGGAACTTCGAAGTGTCATTCCC -ACGGAACTTCGAAGTGTCTTCTCG -ACGGAACTTCGAAGTGTCTAGACG -ACGGAACTTCGAAGTGTCGTAACG -ACGGAACTTCGAAGTGTCACTTCG -ACGGAACTTCGAAGTGTCTACGCA -ACGGAACTTCGAAGTGTCCTTGCA -ACGGAACTTCGAAGTGTCCGAACA -ACGGAACTTCGAAGTGTCCAGTCA -ACGGAACTTCGAAGTGTCGATCCA -ACGGAACTTCGAAGTGTCACGACA -ACGGAACTTCGAAGTGTCAGCTCA -ACGGAACTTCGAAGTGTCTCACGT -ACGGAACTTCGAAGTGTCCGTAGT -ACGGAACTTCGAAGTGTCGTCAGT -ACGGAACTTCGAAGTGTCGAAGGT -ACGGAACTTCGAAGTGTCAACCGT -ACGGAACTTCGAAGTGTCTTGTGC -ACGGAACTTCGAAGTGTCCTAAGC -ACGGAACTTCGAAGTGTCACTAGC -ACGGAACTTCGAAGTGTCAGATGC -ACGGAACTTCGAAGTGTCTGAAGG -ACGGAACTTCGAAGTGTCCAATGG -ACGGAACTTCGAAGTGTCATGAGG -ACGGAACTTCGAAGTGTCAATGGG -ACGGAACTTCGAAGTGTCTCCTGA -ACGGAACTTCGAAGTGTCTAGCGA -ACGGAACTTCGAAGTGTCCACAGA -ACGGAACTTCGAAGTGTCGCAAGA -ACGGAACTTCGAAGTGTCGGTTGA -ACGGAACTTCGAAGTGTCTCCGAT -ACGGAACTTCGAAGTGTCTGGCAT -ACGGAACTTCGAAGTGTCCGAGAT -ACGGAACTTCGAAGTGTCTACCAC -ACGGAACTTCGAAGTGTCCAGAAC -ACGGAACTTCGAAGTGTCGTCTAC -ACGGAACTTCGAAGTGTCACGTAC -ACGGAACTTCGAAGTGTCAGTGAC -ACGGAACTTCGAAGTGTCCTGTAG -ACGGAACTTCGAAGTGTCCCTAAG -ACGGAACTTCGAAGTGTCGTTCAG -ACGGAACTTCGAAGTGTCGCATAG -ACGGAACTTCGAAGTGTCGACAAG -ACGGAACTTCGAAGTGTCAAGCAG -ACGGAACTTCGAAGTGTCCGTCAA -ACGGAACTTCGAAGTGTCGCTGAA -ACGGAACTTCGAAGTGTCAGTACG -ACGGAACTTCGAAGTGTCATCCGA -ACGGAACTTCGAAGTGTCATGGGA -ACGGAACTTCGAAGTGTCGTGCAA -ACGGAACTTCGAAGTGTCGAGGAA -ACGGAACTTCGAAGTGTCCAGGTA -ACGGAACTTCGAAGTGTCGACTCT -ACGGAACTTCGAAGTGTCAGTCCT -ACGGAACTTCGAAGTGTCTAAGCC -ACGGAACTTCGAAGTGTCATAGCC -ACGGAACTTCGAAGTGTCTAACCG -ACGGAACTTCGAAGTGTCATGCCA -ACGGAACTTCGAGGTGAAGGAAAC -ACGGAACTTCGAGGTGAAAACACC -ACGGAACTTCGAGGTGAAATCGAG -ACGGAACTTCGAGGTGAACTCCTT -ACGGAACTTCGAGGTGAACCTGTT -ACGGAACTTCGAGGTGAACGGTTT -ACGGAACTTCGAGGTGAAGTGGTT -ACGGAACTTCGAGGTGAAGCCTTT -ACGGAACTTCGAGGTGAAGGTCTT -ACGGAACTTCGAGGTGAAACGCTT -ACGGAACTTCGAGGTGAAAGCGTT -ACGGAACTTCGAGGTGAATTCGTC -ACGGAACTTCGAGGTGAATCTCTC -ACGGAACTTCGAGGTGAATGGATC -ACGGAACTTCGAGGTGAACACTTC -ACGGAACTTCGAGGTGAAGTACTC -ACGGAACTTCGAGGTGAAGATGTC -ACGGAACTTCGAGGTGAAACAGTC -ACGGAACTTCGAGGTGAATTGCTG -ACGGAACTTCGAGGTGAATCCATG -ACGGAACTTCGAGGTGAATGTGTG -ACGGAACTTCGAGGTGAACTAGTG -ACGGAACTTCGAGGTGAACATCTG -ACGGAACTTCGAGGTGAAGAGTTG -ACGGAACTTCGAGGTGAAAGACTG -ACGGAACTTCGAGGTGAATCGGTA -ACGGAACTTCGAGGTGAATGCCTA -ACGGAACTTCGAGGTGAACCACTA -ACGGAACTTCGAGGTGAAGGAGTA -ACGGAACTTCGAGGTGAATCGTCT -ACGGAACTTCGAGGTGAATGCACT -ACGGAACTTCGAGGTGAACTGACT -ACGGAACTTCGAGGTGAACAACCT -ACGGAACTTCGAGGTGAAGCTACT -ACGGAACTTCGAGGTGAAGGATCT -ACGGAACTTCGAGGTGAAAAGGCT -ACGGAACTTCGAGGTGAATCAACC -ACGGAACTTCGAGGTGAATGTTCC -ACGGAACTTCGAGGTGAAATTCCC -ACGGAACTTCGAGGTGAATTCTCG -ACGGAACTTCGAGGTGAATAGACG -ACGGAACTTCGAGGTGAAGTAACG -ACGGAACTTCGAGGTGAAACTTCG -ACGGAACTTCGAGGTGAATACGCA -ACGGAACTTCGAGGTGAACTTGCA -ACGGAACTTCGAGGTGAACGAACA -ACGGAACTTCGAGGTGAACAGTCA -ACGGAACTTCGAGGTGAAGATCCA -ACGGAACTTCGAGGTGAAACGACA -ACGGAACTTCGAGGTGAAAGCTCA -ACGGAACTTCGAGGTGAATCACGT -ACGGAACTTCGAGGTGAACGTAGT -ACGGAACTTCGAGGTGAAGTCAGT -ACGGAACTTCGAGGTGAAGAAGGT -ACGGAACTTCGAGGTGAAAACCGT -ACGGAACTTCGAGGTGAATTGTGC -ACGGAACTTCGAGGTGAACTAAGC -ACGGAACTTCGAGGTGAAACTAGC -ACGGAACTTCGAGGTGAAAGATGC -ACGGAACTTCGAGGTGAATGAAGG -ACGGAACTTCGAGGTGAACAATGG -ACGGAACTTCGAGGTGAAATGAGG -ACGGAACTTCGAGGTGAAAATGGG -ACGGAACTTCGAGGTGAATCCTGA -ACGGAACTTCGAGGTGAATAGCGA -ACGGAACTTCGAGGTGAACACAGA -ACGGAACTTCGAGGTGAAGCAAGA -ACGGAACTTCGAGGTGAAGGTTGA -ACGGAACTTCGAGGTGAATCCGAT -ACGGAACTTCGAGGTGAATGGCAT -ACGGAACTTCGAGGTGAACGAGAT -ACGGAACTTCGAGGTGAATACCAC -ACGGAACTTCGAGGTGAACAGAAC -ACGGAACTTCGAGGTGAAGTCTAC -ACGGAACTTCGAGGTGAAACGTAC -ACGGAACTTCGAGGTGAAAGTGAC -ACGGAACTTCGAGGTGAACTGTAG -ACGGAACTTCGAGGTGAACCTAAG -ACGGAACTTCGAGGTGAAGTTCAG -ACGGAACTTCGAGGTGAAGCATAG -ACGGAACTTCGAGGTGAAGACAAG -ACGGAACTTCGAGGTGAAAAGCAG -ACGGAACTTCGAGGTGAACGTCAA -ACGGAACTTCGAGGTGAAGCTGAA -ACGGAACTTCGAGGTGAAAGTACG -ACGGAACTTCGAGGTGAAATCCGA -ACGGAACTTCGAGGTGAAATGGGA -ACGGAACTTCGAGGTGAAGTGCAA -ACGGAACTTCGAGGTGAAGAGGAA -ACGGAACTTCGAGGTGAACAGGTA -ACGGAACTTCGAGGTGAAGACTCT -ACGGAACTTCGAGGTGAAAGTCCT -ACGGAACTTCGAGGTGAATAAGCC -ACGGAACTTCGAGGTGAAATAGCC -ACGGAACTTCGAGGTGAATAACCG -ACGGAACTTCGAGGTGAAATGCCA -ACGGAACTTCGACGTAACGGAAAC -ACGGAACTTCGACGTAACAACACC -ACGGAACTTCGACGTAACATCGAG -ACGGAACTTCGACGTAACCTCCTT -ACGGAACTTCGACGTAACCCTGTT -ACGGAACTTCGACGTAACCGGTTT -ACGGAACTTCGACGTAACGTGGTT -ACGGAACTTCGACGTAACGCCTTT -ACGGAACTTCGACGTAACGGTCTT -ACGGAACTTCGACGTAACACGCTT -ACGGAACTTCGACGTAACAGCGTT -ACGGAACTTCGACGTAACTTCGTC -ACGGAACTTCGACGTAACTCTCTC -ACGGAACTTCGACGTAACTGGATC -ACGGAACTTCGACGTAACCACTTC -ACGGAACTTCGACGTAACGTACTC -ACGGAACTTCGACGTAACGATGTC -ACGGAACTTCGACGTAACACAGTC -ACGGAACTTCGACGTAACTTGCTG -ACGGAACTTCGACGTAACTCCATG -ACGGAACTTCGACGTAACTGTGTG -ACGGAACTTCGACGTAACCTAGTG -ACGGAACTTCGACGTAACCATCTG -ACGGAACTTCGACGTAACGAGTTG -ACGGAACTTCGACGTAACAGACTG -ACGGAACTTCGACGTAACTCGGTA -ACGGAACTTCGACGTAACTGCCTA -ACGGAACTTCGACGTAACCCACTA -ACGGAACTTCGACGTAACGGAGTA -ACGGAACTTCGACGTAACTCGTCT -ACGGAACTTCGACGTAACTGCACT -ACGGAACTTCGACGTAACCTGACT -ACGGAACTTCGACGTAACCAACCT -ACGGAACTTCGACGTAACGCTACT -ACGGAACTTCGACGTAACGGATCT -ACGGAACTTCGACGTAACAAGGCT -ACGGAACTTCGACGTAACTCAACC -ACGGAACTTCGACGTAACTGTTCC -ACGGAACTTCGACGTAACATTCCC -ACGGAACTTCGACGTAACTTCTCG -ACGGAACTTCGACGTAACTAGACG -ACGGAACTTCGACGTAACGTAACG -ACGGAACTTCGACGTAACACTTCG -ACGGAACTTCGACGTAACTACGCA -ACGGAACTTCGACGTAACCTTGCA -ACGGAACTTCGACGTAACCGAACA -ACGGAACTTCGACGTAACCAGTCA -ACGGAACTTCGACGTAACGATCCA -ACGGAACTTCGACGTAACACGACA -ACGGAACTTCGACGTAACAGCTCA -ACGGAACTTCGACGTAACTCACGT -ACGGAACTTCGACGTAACCGTAGT -ACGGAACTTCGACGTAACGTCAGT -ACGGAACTTCGACGTAACGAAGGT -ACGGAACTTCGACGTAACAACCGT -ACGGAACTTCGACGTAACTTGTGC -ACGGAACTTCGACGTAACCTAAGC -ACGGAACTTCGACGTAACACTAGC -ACGGAACTTCGACGTAACAGATGC -ACGGAACTTCGACGTAACTGAAGG -ACGGAACTTCGACGTAACCAATGG -ACGGAACTTCGACGTAACATGAGG -ACGGAACTTCGACGTAACAATGGG -ACGGAACTTCGACGTAACTCCTGA -ACGGAACTTCGACGTAACTAGCGA -ACGGAACTTCGACGTAACCACAGA -ACGGAACTTCGACGTAACGCAAGA -ACGGAACTTCGACGTAACGGTTGA -ACGGAACTTCGACGTAACTCCGAT -ACGGAACTTCGACGTAACTGGCAT -ACGGAACTTCGACGTAACCGAGAT -ACGGAACTTCGACGTAACTACCAC -ACGGAACTTCGACGTAACCAGAAC -ACGGAACTTCGACGTAACGTCTAC -ACGGAACTTCGACGTAACACGTAC -ACGGAACTTCGACGTAACAGTGAC -ACGGAACTTCGACGTAACCTGTAG -ACGGAACTTCGACGTAACCCTAAG -ACGGAACTTCGACGTAACGTTCAG -ACGGAACTTCGACGTAACGCATAG -ACGGAACTTCGACGTAACGACAAG -ACGGAACTTCGACGTAACAAGCAG -ACGGAACTTCGACGTAACCGTCAA -ACGGAACTTCGACGTAACGCTGAA -ACGGAACTTCGACGTAACAGTACG -ACGGAACTTCGACGTAACATCCGA -ACGGAACTTCGACGTAACATGGGA -ACGGAACTTCGACGTAACGTGCAA -ACGGAACTTCGACGTAACGAGGAA -ACGGAACTTCGACGTAACCAGGTA -ACGGAACTTCGACGTAACGACTCT -ACGGAACTTCGACGTAACAGTCCT -ACGGAACTTCGACGTAACTAAGCC -ACGGAACTTCGACGTAACATAGCC -ACGGAACTTCGACGTAACTAACCG -ACGGAACTTCGACGTAACATGCCA -ACGGAACTTCGATGCTTGGGAAAC -ACGGAACTTCGATGCTTGAACACC -ACGGAACTTCGATGCTTGATCGAG -ACGGAACTTCGATGCTTGCTCCTT -ACGGAACTTCGATGCTTGCCTGTT -ACGGAACTTCGATGCTTGCGGTTT -ACGGAACTTCGATGCTTGGTGGTT -ACGGAACTTCGATGCTTGGCCTTT -ACGGAACTTCGATGCTTGGGTCTT -ACGGAACTTCGATGCTTGACGCTT -ACGGAACTTCGATGCTTGAGCGTT -ACGGAACTTCGATGCTTGTTCGTC -ACGGAACTTCGATGCTTGTCTCTC -ACGGAACTTCGATGCTTGTGGATC -ACGGAACTTCGATGCTTGCACTTC -ACGGAACTTCGATGCTTGGTACTC -ACGGAACTTCGATGCTTGGATGTC -ACGGAACTTCGATGCTTGACAGTC -ACGGAACTTCGATGCTTGTTGCTG -ACGGAACTTCGATGCTTGTCCATG -ACGGAACTTCGATGCTTGTGTGTG -ACGGAACTTCGATGCTTGCTAGTG -ACGGAACTTCGATGCTTGCATCTG -ACGGAACTTCGATGCTTGGAGTTG -ACGGAACTTCGATGCTTGAGACTG -ACGGAACTTCGATGCTTGTCGGTA -ACGGAACTTCGATGCTTGTGCCTA -ACGGAACTTCGATGCTTGCCACTA -ACGGAACTTCGATGCTTGGGAGTA -ACGGAACTTCGATGCTTGTCGTCT -ACGGAACTTCGATGCTTGTGCACT -ACGGAACTTCGATGCTTGCTGACT -ACGGAACTTCGATGCTTGCAACCT -ACGGAACTTCGATGCTTGGCTACT -ACGGAACTTCGATGCTTGGGATCT -ACGGAACTTCGATGCTTGAAGGCT -ACGGAACTTCGATGCTTGTCAACC -ACGGAACTTCGATGCTTGTGTTCC -ACGGAACTTCGATGCTTGATTCCC -ACGGAACTTCGATGCTTGTTCTCG -ACGGAACTTCGATGCTTGTAGACG -ACGGAACTTCGATGCTTGGTAACG -ACGGAACTTCGATGCTTGACTTCG -ACGGAACTTCGATGCTTGTACGCA -ACGGAACTTCGATGCTTGCTTGCA -ACGGAACTTCGATGCTTGCGAACA -ACGGAACTTCGATGCTTGCAGTCA -ACGGAACTTCGATGCTTGGATCCA -ACGGAACTTCGATGCTTGACGACA -ACGGAACTTCGATGCTTGAGCTCA -ACGGAACTTCGATGCTTGTCACGT -ACGGAACTTCGATGCTTGCGTAGT -ACGGAACTTCGATGCTTGGTCAGT -ACGGAACTTCGATGCTTGGAAGGT -ACGGAACTTCGATGCTTGAACCGT -ACGGAACTTCGATGCTTGTTGTGC -ACGGAACTTCGATGCTTGCTAAGC -ACGGAACTTCGATGCTTGACTAGC -ACGGAACTTCGATGCTTGAGATGC -ACGGAACTTCGATGCTTGTGAAGG -ACGGAACTTCGATGCTTGCAATGG -ACGGAACTTCGATGCTTGATGAGG -ACGGAACTTCGATGCTTGAATGGG -ACGGAACTTCGATGCTTGTCCTGA -ACGGAACTTCGATGCTTGTAGCGA -ACGGAACTTCGATGCTTGCACAGA -ACGGAACTTCGATGCTTGGCAAGA -ACGGAACTTCGATGCTTGGGTTGA -ACGGAACTTCGATGCTTGTCCGAT -ACGGAACTTCGATGCTTGTGGCAT -ACGGAACTTCGATGCTTGCGAGAT -ACGGAACTTCGATGCTTGTACCAC -ACGGAACTTCGATGCTTGCAGAAC -ACGGAACTTCGATGCTTGGTCTAC -ACGGAACTTCGATGCTTGACGTAC -ACGGAACTTCGATGCTTGAGTGAC -ACGGAACTTCGATGCTTGCTGTAG -ACGGAACTTCGATGCTTGCCTAAG -ACGGAACTTCGATGCTTGGTTCAG -ACGGAACTTCGATGCTTGGCATAG -ACGGAACTTCGATGCTTGGACAAG -ACGGAACTTCGATGCTTGAAGCAG -ACGGAACTTCGATGCTTGCGTCAA -ACGGAACTTCGATGCTTGGCTGAA -ACGGAACTTCGATGCTTGAGTACG -ACGGAACTTCGATGCTTGATCCGA -ACGGAACTTCGATGCTTGATGGGA -ACGGAACTTCGATGCTTGGTGCAA -ACGGAACTTCGATGCTTGGAGGAA -ACGGAACTTCGATGCTTGCAGGTA -ACGGAACTTCGATGCTTGGACTCT -ACGGAACTTCGATGCTTGAGTCCT -ACGGAACTTCGATGCTTGTAAGCC -ACGGAACTTCGATGCTTGATAGCC -ACGGAACTTCGATGCTTGTAACCG -ACGGAACTTCGATGCTTGATGCCA -ACGGAACTTCGAAGCCTAGGAAAC -ACGGAACTTCGAAGCCTAAACACC -ACGGAACTTCGAAGCCTAATCGAG -ACGGAACTTCGAAGCCTACTCCTT -ACGGAACTTCGAAGCCTACCTGTT -ACGGAACTTCGAAGCCTACGGTTT -ACGGAACTTCGAAGCCTAGTGGTT -ACGGAACTTCGAAGCCTAGCCTTT -ACGGAACTTCGAAGCCTAGGTCTT -ACGGAACTTCGAAGCCTAACGCTT -ACGGAACTTCGAAGCCTAAGCGTT -ACGGAACTTCGAAGCCTATTCGTC -ACGGAACTTCGAAGCCTATCTCTC -ACGGAACTTCGAAGCCTATGGATC -ACGGAACTTCGAAGCCTACACTTC -ACGGAACTTCGAAGCCTAGTACTC -ACGGAACTTCGAAGCCTAGATGTC -ACGGAACTTCGAAGCCTAACAGTC -ACGGAACTTCGAAGCCTATTGCTG -ACGGAACTTCGAAGCCTATCCATG -ACGGAACTTCGAAGCCTATGTGTG -ACGGAACTTCGAAGCCTACTAGTG -ACGGAACTTCGAAGCCTACATCTG -ACGGAACTTCGAAGCCTAGAGTTG -ACGGAACTTCGAAGCCTAAGACTG -ACGGAACTTCGAAGCCTATCGGTA -ACGGAACTTCGAAGCCTATGCCTA -ACGGAACTTCGAAGCCTACCACTA -ACGGAACTTCGAAGCCTAGGAGTA -ACGGAACTTCGAAGCCTATCGTCT -ACGGAACTTCGAAGCCTATGCACT -ACGGAACTTCGAAGCCTACTGACT -ACGGAACTTCGAAGCCTACAACCT -ACGGAACTTCGAAGCCTAGCTACT -ACGGAACTTCGAAGCCTAGGATCT -ACGGAACTTCGAAGCCTAAAGGCT -ACGGAACTTCGAAGCCTATCAACC -ACGGAACTTCGAAGCCTATGTTCC -ACGGAACTTCGAAGCCTAATTCCC -ACGGAACTTCGAAGCCTATTCTCG -ACGGAACTTCGAAGCCTATAGACG -ACGGAACTTCGAAGCCTAGTAACG -ACGGAACTTCGAAGCCTAACTTCG -ACGGAACTTCGAAGCCTATACGCA -ACGGAACTTCGAAGCCTACTTGCA -ACGGAACTTCGAAGCCTACGAACA -ACGGAACTTCGAAGCCTACAGTCA -ACGGAACTTCGAAGCCTAGATCCA -ACGGAACTTCGAAGCCTAACGACA -ACGGAACTTCGAAGCCTAAGCTCA -ACGGAACTTCGAAGCCTATCACGT -ACGGAACTTCGAAGCCTACGTAGT -ACGGAACTTCGAAGCCTAGTCAGT -ACGGAACTTCGAAGCCTAGAAGGT -ACGGAACTTCGAAGCCTAAACCGT -ACGGAACTTCGAAGCCTATTGTGC -ACGGAACTTCGAAGCCTACTAAGC -ACGGAACTTCGAAGCCTAACTAGC -ACGGAACTTCGAAGCCTAAGATGC -ACGGAACTTCGAAGCCTATGAAGG -ACGGAACTTCGAAGCCTACAATGG -ACGGAACTTCGAAGCCTAATGAGG -ACGGAACTTCGAAGCCTAAATGGG -ACGGAACTTCGAAGCCTATCCTGA -ACGGAACTTCGAAGCCTATAGCGA -ACGGAACTTCGAAGCCTACACAGA -ACGGAACTTCGAAGCCTAGCAAGA -ACGGAACTTCGAAGCCTAGGTTGA -ACGGAACTTCGAAGCCTATCCGAT -ACGGAACTTCGAAGCCTATGGCAT -ACGGAACTTCGAAGCCTACGAGAT -ACGGAACTTCGAAGCCTATACCAC -ACGGAACTTCGAAGCCTACAGAAC -ACGGAACTTCGAAGCCTAGTCTAC -ACGGAACTTCGAAGCCTAACGTAC -ACGGAACTTCGAAGCCTAAGTGAC -ACGGAACTTCGAAGCCTACTGTAG -ACGGAACTTCGAAGCCTACCTAAG -ACGGAACTTCGAAGCCTAGTTCAG -ACGGAACTTCGAAGCCTAGCATAG -ACGGAACTTCGAAGCCTAGACAAG -ACGGAACTTCGAAGCCTAAAGCAG -ACGGAACTTCGAAGCCTACGTCAA -ACGGAACTTCGAAGCCTAGCTGAA -ACGGAACTTCGAAGCCTAAGTACG -ACGGAACTTCGAAGCCTAATCCGA -ACGGAACTTCGAAGCCTAATGGGA -ACGGAACTTCGAAGCCTAGTGCAA -ACGGAACTTCGAAGCCTAGAGGAA -ACGGAACTTCGAAGCCTACAGGTA -ACGGAACTTCGAAGCCTAGACTCT -ACGGAACTTCGAAGCCTAAGTCCT -ACGGAACTTCGAAGCCTATAAGCC -ACGGAACTTCGAAGCCTAATAGCC -ACGGAACTTCGAAGCCTATAACCG -ACGGAACTTCGAAGCCTAATGCCA -ACGGAACTTCGAAGCACTGGAAAC -ACGGAACTTCGAAGCACTAACACC -ACGGAACTTCGAAGCACTATCGAG -ACGGAACTTCGAAGCACTCTCCTT -ACGGAACTTCGAAGCACTCCTGTT -ACGGAACTTCGAAGCACTCGGTTT -ACGGAACTTCGAAGCACTGTGGTT -ACGGAACTTCGAAGCACTGCCTTT -ACGGAACTTCGAAGCACTGGTCTT -ACGGAACTTCGAAGCACTACGCTT -ACGGAACTTCGAAGCACTAGCGTT -ACGGAACTTCGAAGCACTTTCGTC -ACGGAACTTCGAAGCACTTCTCTC -ACGGAACTTCGAAGCACTTGGATC -ACGGAACTTCGAAGCACTCACTTC -ACGGAACTTCGAAGCACTGTACTC -ACGGAACTTCGAAGCACTGATGTC -ACGGAACTTCGAAGCACTACAGTC -ACGGAACTTCGAAGCACTTTGCTG -ACGGAACTTCGAAGCACTTCCATG -ACGGAACTTCGAAGCACTTGTGTG -ACGGAACTTCGAAGCACTCTAGTG -ACGGAACTTCGAAGCACTCATCTG -ACGGAACTTCGAAGCACTGAGTTG -ACGGAACTTCGAAGCACTAGACTG -ACGGAACTTCGAAGCACTTCGGTA -ACGGAACTTCGAAGCACTTGCCTA -ACGGAACTTCGAAGCACTCCACTA -ACGGAACTTCGAAGCACTGGAGTA -ACGGAACTTCGAAGCACTTCGTCT -ACGGAACTTCGAAGCACTTGCACT -ACGGAACTTCGAAGCACTCTGACT -ACGGAACTTCGAAGCACTCAACCT -ACGGAACTTCGAAGCACTGCTACT -ACGGAACTTCGAAGCACTGGATCT -ACGGAACTTCGAAGCACTAAGGCT -ACGGAACTTCGAAGCACTTCAACC -ACGGAACTTCGAAGCACTTGTTCC -ACGGAACTTCGAAGCACTATTCCC -ACGGAACTTCGAAGCACTTTCTCG -ACGGAACTTCGAAGCACTTAGACG -ACGGAACTTCGAAGCACTGTAACG -ACGGAACTTCGAAGCACTACTTCG -ACGGAACTTCGAAGCACTTACGCA -ACGGAACTTCGAAGCACTCTTGCA -ACGGAACTTCGAAGCACTCGAACA -ACGGAACTTCGAAGCACTCAGTCA -ACGGAACTTCGAAGCACTGATCCA -ACGGAACTTCGAAGCACTACGACA -ACGGAACTTCGAAGCACTAGCTCA -ACGGAACTTCGAAGCACTTCACGT -ACGGAACTTCGAAGCACTCGTAGT -ACGGAACTTCGAAGCACTGTCAGT -ACGGAACTTCGAAGCACTGAAGGT -ACGGAACTTCGAAGCACTAACCGT -ACGGAACTTCGAAGCACTTTGTGC -ACGGAACTTCGAAGCACTCTAAGC -ACGGAACTTCGAAGCACTACTAGC -ACGGAACTTCGAAGCACTAGATGC -ACGGAACTTCGAAGCACTTGAAGG -ACGGAACTTCGAAGCACTCAATGG -ACGGAACTTCGAAGCACTATGAGG -ACGGAACTTCGAAGCACTAATGGG -ACGGAACTTCGAAGCACTTCCTGA -ACGGAACTTCGAAGCACTTAGCGA -ACGGAACTTCGAAGCACTCACAGA -ACGGAACTTCGAAGCACTGCAAGA -ACGGAACTTCGAAGCACTGGTTGA -ACGGAACTTCGAAGCACTTCCGAT -ACGGAACTTCGAAGCACTTGGCAT -ACGGAACTTCGAAGCACTCGAGAT -ACGGAACTTCGAAGCACTTACCAC -ACGGAACTTCGAAGCACTCAGAAC -ACGGAACTTCGAAGCACTGTCTAC -ACGGAACTTCGAAGCACTACGTAC -ACGGAACTTCGAAGCACTAGTGAC -ACGGAACTTCGAAGCACTCTGTAG -ACGGAACTTCGAAGCACTCCTAAG -ACGGAACTTCGAAGCACTGTTCAG -ACGGAACTTCGAAGCACTGCATAG -ACGGAACTTCGAAGCACTGACAAG -ACGGAACTTCGAAGCACTAAGCAG -ACGGAACTTCGAAGCACTCGTCAA -ACGGAACTTCGAAGCACTGCTGAA -ACGGAACTTCGAAGCACTAGTACG -ACGGAACTTCGAAGCACTATCCGA -ACGGAACTTCGAAGCACTATGGGA -ACGGAACTTCGAAGCACTGTGCAA -ACGGAACTTCGAAGCACTGAGGAA -ACGGAACTTCGAAGCACTCAGGTA -ACGGAACTTCGAAGCACTGACTCT -ACGGAACTTCGAAGCACTAGTCCT -ACGGAACTTCGAAGCACTTAAGCC -ACGGAACTTCGAAGCACTATAGCC -ACGGAACTTCGAAGCACTTAACCG -ACGGAACTTCGAAGCACTATGCCA -ACGGAACTTCGATGCAGAGGAAAC -ACGGAACTTCGATGCAGAAACACC -ACGGAACTTCGATGCAGAATCGAG -ACGGAACTTCGATGCAGACTCCTT -ACGGAACTTCGATGCAGACCTGTT -ACGGAACTTCGATGCAGACGGTTT -ACGGAACTTCGATGCAGAGTGGTT -ACGGAACTTCGATGCAGAGCCTTT -ACGGAACTTCGATGCAGAGGTCTT -ACGGAACTTCGATGCAGAACGCTT -ACGGAACTTCGATGCAGAAGCGTT -ACGGAACTTCGATGCAGATTCGTC -ACGGAACTTCGATGCAGATCTCTC -ACGGAACTTCGATGCAGATGGATC -ACGGAACTTCGATGCAGACACTTC -ACGGAACTTCGATGCAGAGTACTC -ACGGAACTTCGATGCAGAGATGTC -ACGGAACTTCGATGCAGAACAGTC -ACGGAACTTCGATGCAGATTGCTG -ACGGAACTTCGATGCAGATCCATG -ACGGAACTTCGATGCAGATGTGTG -ACGGAACTTCGATGCAGACTAGTG -ACGGAACTTCGATGCAGACATCTG -ACGGAACTTCGATGCAGAGAGTTG -ACGGAACTTCGATGCAGAAGACTG -ACGGAACTTCGATGCAGATCGGTA -ACGGAACTTCGATGCAGATGCCTA -ACGGAACTTCGATGCAGACCACTA -ACGGAACTTCGATGCAGAGGAGTA -ACGGAACTTCGATGCAGATCGTCT -ACGGAACTTCGATGCAGATGCACT -ACGGAACTTCGATGCAGACTGACT -ACGGAACTTCGATGCAGACAACCT -ACGGAACTTCGATGCAGAGCTACT -ACGGAACTTCGATGCAGAGGATCT -ACGGAACTTCGATGCAGAAAGGCT -ACGGAACTTCGATGCAGATCAACC -ACGGAACTTCGATGCAGATGTTCC -ACGGAACTTCGATGCAGAATTCCC -ACGGAACTTCGATGCAGATTCTCG -ACGGAACTTCGATGCAGATAGACG -ACGGAACTTCGATGCAGAGTAACG -ACGGAACTTCGATGCAGAACTTCG -ACGGAACTTCGATGCAGATACGCA -ACGGAACTTCGATGCAGACTTGCA -ACGGAACTTCGATGCAGACGAACA -ACGGAACTTCGATGCAGACAGTCA -ACGGAACTTCGATGCAGAGATCCA -ACGGAACTTCGATGCAGAACGACA -ACGGAACTTCGATGCAGAAGCTCA -ACGGAACTTCGATGCAGATCACGT -ACGGAACTTCGATGCAGACGTAGT -ACGGAACTTCGATGCAGAGTCAGT -ACGGAACTTCGATGCAGAGAAGGT -ACGGAACTTCGATGCAGAAACCGT -ACGGAACTTCGATGCAGATTGTGC -ACGGAACTTCGATGCAGACTAAGC -ACGGAACTTCGATGCAGAACTAGC -ACGGAACTTCGATGCAGAAGATGC -ACGGAACTTCGATGCAGATGAAGG -ACGGAACTTCGATGCAGACAATGG -ACGGAACTTCGATGCAGAATGAGG -ACGGAACTTCGATGCAGAAATGGG -ACGGAACTTCGATGCAGATCCTGA -ACGGAACTTCGATGCAGATAGCGA -ACGGAACTTCGATGCAGACACAGA -ACGGAACTTCGATGCAGAGCAAGA -ACGGAACTTCGATGCAGAGGTTGA -ACGGAACTTCGATGCAGATCCGAT -ACGGAACTTCGATGCAGATGGCAT -ACGGAACTTCGATGCAGACGAGAT -ACGGAACTTCGATGCAGATACCAC -ACGGAACTTCGATGCAGACAGAAC -ACGGAACTTCGATGCAGAGTCTAC -ACGGAACTTCGATGCAGAACGTAC -ACGGAACTTCGATGCAGAAGTGAC -ACGGAACTTCGATGCAGACTGTAG -ACGGAACTTCGATGCAGACCTAAG -ACGGAACTTCGATGCAGAGTTCAG -ACGGAACTTCGATGCAGAGCATAG -ACGGAACTTCGATGCAGAGACAAG -ACGGAACTTCGATGCAGAAAGCAG -ACGGAACTTCGATGCAGACGTCAA -ACGGAACTTCGATGCAGAGCTGAA -ACGGAACTTCGATGCAGAAGTACG -ACGGAACTTCGATGCAGAATCCGA -ACGGAACTTCGATGCAGAATGGGA -ACGGAACTTCGATGCAGAGTGCAA -ACGGAACTTCGATGCAGAGAGGAA -ACGGAACTTCGATGCAGACAGGTA -ACGGAACTTCGATGCAGAGACTCT -ACGGAACTTCGATGCAGAAGTCCT -ACGGAACTTCGATGCAGATAAGCC -ACGGAACTTCGATGCAGAATAGCC -ACGGAACTTCGATGCAGATAACCG -ACGGAACTTCGATGCAGAATGCCA -ACGGAACTTCGAAGGTGAGGAAAC -ACGGAACTTCGAAGGTGAAACACC -ACGGAACTTCGAAGGTGAATCGAG -ACGGAACTTCGAAGGTGACTCCTT -ACGGAACTTCGAAGGTGACCTGTT -ACGGAACTTCGAAGGTGACGGTTT -ACGGAACTTCGAAGGTGAGTGGTT -ACGGAACTTCGAAGGTGAGCCTTT -ACGGAACTTCGAAGGTGAGGTCTT -ACGGAACTTCGAAGGTGAACGCTT -ACGGAACTTCGAAGGTGAAGCGTT -ACGGAACTTCGAAGGTGATTCGTC -ACGGAACTTCGAAGGTGATCTCTC -ACGGAACTTCGAAGGTGATGGATC -ACGGAACTTCGAAGGTGACACTTC -ACGGAACTTCGAAGGTGAGTACTC -ACGGAACTTCGAAGGTGAGATGTC -ACGGAACTTCGAAGGTGAACAGTC -ACGGAACTTCGAAGGTGATTGCTG -ACGGAACTTCGAAGGTGATCCATG -ACGGAACTTCGAAGGTGATGTGTG -ACGGAACTTCGAAGGTGACTAGTG -ACGGAACTTCGAAGGTGACATCTG -ACGGAACTTCGAAGGTGAGAGTTG -ACGGAACTTCGAAGGTGAAGACTG -ACGGAACTTCGAAGGTGATCGGTA -ACGGAACTTCGAAGGTGATGCCTA -ACGGAACTTCGAAGGTGACCACTA -ACGGAACTTCGAAGGTGAGGAGTA -ACGGAACTTCGAAGGTGATCGTCT -ACGGAACTTCGAAGGTGATGCACT -ACGGAACTTCGAAGGTGACTGACT -ACGGAACTTCGAAGGTGACAACCT -ACGGAACTTCGAAGGTGAGCTACT -ACGGAACTTCGAAGGTGAGGATCT -ACGGAACTTCGAAGGTGAAAGGCT -ACGGAACTTCGAAGGTGATCAACC -ACGGAACTTCGAAGGTGATGTTCC -ACGGAACTTCGAAGGTGAATTCCC -ACGGAACTTCGAAGGTGATTCTCG -ACGGAACTTCGAAGGTGATAGACG -ACGGAACTTCGAAGGTGAGTAACG -ACGGAACTTCGAAGGTGAACTTCG -ACGGAACTTCGAAGGTGATACGCA -ACGGAACTTCGAAGGTGACTTGCA -ACGGAACTTCGAAGGTGACGAACA -ACGGAACTTCGAAGGTGACAGTCA -ACGGAACTTCGAAGGTGAGATCCA -ACGGAACTTCGAAGGTGAACGACA -ACGGAACTTCGAAGGTGAAGCTCA -ACGGAACTTCGAAGGTGATCACGT -ACGGAACTTCGAAGGTGACGTAGT -ACGGAACTTCGAAGGTGAGTCAGT -ACGGAACTTCGAAGGTGAGAAGGT -ACGGAACTTCGAAGGTGAAACCGT -ACGGAACTTCGAAGGTGATTGTGC -ACGGAACTTCGAAGGTGACTAAGC -ACGGAACTTCGAAGGTGAACTAGC -ACGGAACTTCGAAGGTGAAGATGC -ACGGAACTTCGAAGGTGATGAAGG -ACGGAACTTCGAAGGTGACAATGG -ACGGAACTTCGAAGGTGAATGAGG -ACGGAACTTCGAAGGTGAAATGGG -ACGGAACTTCGAAGGTGATCCTGA -ACGGAACTTCGAAGGTGATAGCGA -ACGGAACTTCGAAGGTGACACAGA -ACGGAACTTCGAAGGTGAGCAAGA -ACGGAACTTCGAAGGTGAGGTTGA -ACGGAACTTCGAAGGTGATCCGAT -ACGGAACTTCGAAGGTGATGGCAT -ACGGAACTTCGAAGGTGACGAGAT -ACGGAACTTCGAAGGTGATACCAC -ACGGAACTTCGAAGGTGACAGAAC -ACGGAACTTCGAAGGTGAGTCTAC -ACGGAACTTCGAAGGTGAACGTAC -ACGGAACTTCGAAGGTGAAGTGAC -ACGGAACTTCGAAGGTGACTGTAG -ACGGAACTTCGAAGGTGACCTAAG -ACGGAACTTCGAAGGTGAGTTCAG -ACGGAACTTCGAAGGTGAGCATAG -ACGGAACTTCGAAGGTGAGACAAG -ACGGAACTTCGAAGGTGAAAGCAG -ACGGAACTTCGAAGGTGACGTCAA -ACGGAACTTCGAAGGTGAGCTGAA -ACGGAACTTCGAAGGTGAAGTACG -ACGGAACTTCGAAGGTGAATCCGA -ACGGAACTTCGAAGGTGAATGGGA -ACGGAACTTCGAAGGTGAGTGCAA -ACGGAACTTCGAAGGTGAGAGGAA -ACGGAACTTCGAAGGTGACAGGTA -ACGGAACTTCGAAGGTGAGACTCT -ACGGAACTTCGAAGGTGAAGTCCT -ACGGAACTTCGAAGGTGATAAGCC -ACGGAACTTCGAAGGTGAATAGCC -ACGGAACTTCGAAGGTGATAACCG -ACGGAACTTCGAAGGTGAATGCCA -ACGGAACTTCGATGGCAAGGAAAC -ACGGAACTTCGATGGCAAAACACC -ACGGAACTTCGATGGCAAATCGAG -ACGGAACTTCGATGGCAACTCCTT -ACGGAACTTCGATGGCAACCTGTT -ACGGAACTTCGATGGCAACGGTTT -ACGGAACTTCGATGGCAAGTGGTT -ACGGAACTTCGATGGCAAGCCTTT -ACGGAACTTCGATGGCAAGGTCTT -ACGGAACTTCGATGGCAAACGCTT -ACGGAACTTCGATGGCAAAGCGTT -ACGGAACTTCGATGGCAATTCGTC -ACGGAACTTCGATGGCAATCTCTC -ACGGAACTTCGATGGCAATGGATC -ACGGAACTTCGATGGCAACACTTC -ACGGAACTTCGATGGCAAGTACTC -ACGGAACTTCGATGGCAAGATGTC -ACGGAACTTCGATGGCAAACAGTC -ACGGAACTTCGATGGCAATTGCTG -ACGGAACTTCGATGGCAATCCATG -ACGGAACTTCGATGGCAATGTGTG -ACGGAACTTCGATGGCAACTAGTG -ACGGAACTTCGATGGCAACATCTG -ACGGAACTTCGATGGCAAGAGTTG -ACGGAACTTCGATGGCAAAGACTG -ACGGAACTTCGATGGCAATCGGTA -ACGGAACTTCGATGGCAATGCCTA -ACGGAACTTCGATGGCAACCACTA -ACGGAACTTCGATGGCAAGGAGTA -ACGGAACTTCGATGGCAATCGTCT -ACGGAACTTCGATGGCAATGCACT -ACGGAACTTCGATGGCAACTGACT -ACGGAACTTCGATGGCAACAACCT -ACGGAACTTCGATGGCAAGCTACT -ACGGAACTTCGATGGCAAGGATCT -ACGGAACTTCGATGGCAAAAGGCT -ACGGAACTTCGATGGCAATCAACC -ACGGAACTTCGATGGCAATGTTCC -ACGGAACTTCGATGGCAAATTCCC -ACGGAACTTCGATGGCAATTCTCG -ACGGAACTTCGATGGCAATAGACG -ACGGAACTTCGATGGCAAGTAACG -ACGGAACTTCGATGGCAAACTTCG -ACGGAACTTCGATGGCAATACGCA -ACGGAACTTCGATGGCAACTTGCA -ACGGAACTTCGATGGCAACGAACA -ACGGAACTTCGATGGCAACAGTCA -ACGGAACTTCGATGGCAAGATCCA -ACGGAACTTCGATGGCAAACGACA -ACGGAACTTCGATGGCAAAGCTCA -ACGGAACTTCGATGGCAATCACGT -ACGGAACTTCGATGGCAACGTAGT -ACGGAACTTCGATGGCAAGTCAGT -ACGGAACTTCGATGGCAAGAAGGT -ACGGAACTTCGATGGCAAAACCGT -ACGGAACTTCGATGGCAATTGTGC -ACGGAACTTCGATGGCAACTAAGC -ACGGAACTTCGATGGCAAACTAGC -ACGGAACTTCGATGGCAAAGATGC -ACGGAACTTCGATGGCAATGAAGG -ACGGAACTTCGATGGCAACAATGG -ACGGAACTTCGATGGCAAATGAGG -ACGGAACTTCGATGGCAAAATGGG -ACGGAACTTCGATGGCAATCCTGA -ACGGAACTTCGATGGCAATAGCGA -ACGGAACTTCGATGGCAACACAGA -ACGGAACTTCGATGGCAAGCAAGA -ACGGAACTTCGATGGCAAGGTTGA -ACGGAACTTCGATGGCAATCCGAT -ACGGAACTTCGATGGCAATGGCAT -ACGGAACTTCGATGGCAACGAGAT -ACGGAACTTCGATGGCAATACCAC -ACGGAACTTCGATGGCAACAGAAC -ACGGAACTTCGATGGCAAGTCTAC -ACGGAACTTCGATGGCAAACGTAC -ACGGAACTTCGATGGCAAAGTGAC -ACGGAACTTCGATGGCAACTGTAG -ACGGAACTTCGATGGCAACCTAAG -ACGGAACTTCGATGGCAAGTTCAG -ACGGAACTTCGATGGCAAGCATAG -ACGGAACTTCGATGGCAAGACAAG -ACGGAACTTCGATGGCAAAAGCAG -ACGGAACTTCGATGGCAACGTCAA -ACGGAACTTCGATGGCAAGCTGAA -ACGGAACTTCGATGGCAAAGTACG -ACGGAACTTCGATGGCAAATCCGA -ACGGAACTTCGATGGCAAATGGGA -ACGGAACTTCGATGGCAAGTGCAA -ACGGAACTTCGATGGCAAGAGGAA -ACGGAACTTCGATGGCAACAGGTA -ACGGAACTTCGATGGCAAGACTCT -ACGGAACTTCGATGGCAAAGTCCT -ACGGAACTTCGATGGCAATAAGCC -ACGGAACTTCGATGGCAAATAGCC -ACGGAACTTCGATGGCAATAACCG -ACGGAACTTCGATGGCAAATGCCA -ACGGAACTTCGAAGGATGGGAAAC -ACGGAACTTCGAAGGATGAACACC -ACGGAACTTCGAAGGATGATCGAG -ACGGAACTTCGAAGGATGCTCCTT -ACGGAACTTCGAAGGATGCCTGTT -ACGGAACTTCGAAGGATGCGGTTT -ACGGAACTTCGAAGGATGGTGGTT -ACGGAACTTCGAAGGATGGCCTTT -ACGGAACTTCGAAGGATGGGTCTT -ACGGAACTTCGAAGGATGACGCTT -ACGGAACTTCGAAGGATGAGCGTT -ACGGAACTTCGAAGGATGTTCGTC -ACGGAACTTCGAAGGATGTCTCTC -ACGGAACTTCGAAGGATGTGGATC -ACGGAACTTCGAAGGATGCACTTC -ACGGAACTTCGAAGGATGGTACTC -ACGGAACTTCGAAGGATGGATGTC -ACGGAACTTCGAAGGATGACAGTC -ACGGAACTTCGAAGGATGTTGCTG -ACGGAACTTCGAAGGATGTCCATG -ACGGAACTTCGAAGGATGTGTGTG -ACGGAACTTCGAAGGATGCTAGTG -ACGGAACTTCGAAGGATGCATCTG -ACGGAACTTCGAAGGATGGAGTTG -ACGGAACTTCGAAGGATGAGACTG -ACGGAACTTCGAAGGATGTCGGTA -ACGGAACTTCGAAGGATGTGCCTA -ACGGAACTTCGAAGGATGCCACTA -ACGGAACTTCGAAGGATGGGAGTA -ACGGAACTTCGAAGGATGTCGTCT -ACGGAACTTCGAAGGATGTGCACT -ACGGAACTTCGAAGGATGCTGACT -ACGGAACTTCGAAGGATGCAACCT -ACGGAACTTCGAAGGATGGCTACT -ACGGAACTTCGAAGGATGGGATCT -ACGGAACTTCGAAGGATGAAGGCT -ACGGAACTTCGAAGGATGTCAACC -ACGGAACTTCGAAGGATGTGTTCC -ACGGAACTTCGAAGGATGATTCCC -ACGGAACTTCGAAGGATGTTCTCG -ACGGAACTTCGAAGGATGTAGACG -ACGGAACTTCGAAGGATGGTAACG -ACGGAACTTCGAAGGATGACTTCG -ACGGAACTTCGAAGGATGTACGCA -ACGGAACTTCGAAGGATGCTTGCA -ACGGAACTTCGAAGGATGCGAACA -ACGGAACTTCGAAGGATGCAGTCA -ACGGAACTTCGAAGGATGGATCCA -ACGGAACTTCGAAGGATGACGACA -ACGGAACTTCGAAGGATGAGCTCA -ACGGAACTTCGAAGGATGTCACGT -ACGGAACTTCGAAGGATGCGTAGT -ACGGAACTTCGAAGGATGGTCAGT -ACGGAACTTCGAAGGATGGAAGGT -ACGGAACTTCGAAGGATGAACCGT -ACGGAACTTCGAAGGATGTTGTGC -ACGGAACTTCGAAGGATGCTAAGC -ACGGAACTTCGAAGGATGACTAGC -ACGGAACTTCGAAGGATGAGATGC -ACGGAACTTCGAAGGATGTGAAGG -ACGGAACTTCGAAGGATGCAATGG -ACGGAACTTCGAAGGATGATGAGG -ACGGAACTTCGAAGGATGAATGGG -ACGGAACTTCGAAGGATGTCCTGA -ACGGAACTTCGAAGGATGTAGCGA -ACGGAACTTCGAAGGATGCACAGA -ACGGAACTTCGAAGGATGGCAAGA -ACGGAACTTCGAAGGATGGGTTGA -ACGGAACTTCGAAGGATGTCCGAT -ACGGAACTTCGAAGGATGTGGCAT -ACGGAACTTCGAAGGATGCGAGAT -ACGGAACTTCGAAGGATGTACCAC -ACGGAACTTCGAAGGATGCAGAAC -ACGGAACTTCGAAGGATGGTCTAC -ACGGAACTTCGAAGGATGACGTAC -ACGGAACTTCGAAGGATGAGTGAC -ACGGAACTTCGAAGGATGCTGTAG -ACGGAACTTCGAAGGATGCCTAAG -ACGGAACTTCGAAGGATGGTTCAG -ACGGAACTTCGAAGGATGGCATAG -ACGGAACTTCGAAGGATGGACAAG -ACGGAACTTCGAAGGATGAAGCAG -ACGGAACTTCGAAGGATGCGTCAA -ACGGAACTTCGAAGGATGGCTGAA -ACGGAACTTCGAAGGATGAGTACG -ACGGAACTTCGAAGGATGATCCGA -ACGGAACTTCGAAGGATGATGGGA -ACGGAACTTCGAAGGATGGTGCAA -ACGGAACTTCGAAGGATGGAGGAA -ACGGAACTTCGAAGGATGCAGGTA -ACGGAACTTCGAAGGATGGACTCT -ACGGAACTTCGAAGGATGAGTCCT -ACGGAACTTCGAAGGATGTAAGCC -ACGGAACTTCGAAGGATGATAGCC -ACGGAACTTCGAAGGATGTAACCG -ACGGAACTTCGAAGGATGATGCCA -ACGGAACTTCGAGGGAATGGAAAC -ACGGAACTTCGAGGGAATAACACC -ACGGAACTTCGAGGGAATATCGAG -ACGGAACTTCGAGGGAATCTCCTT -ACGGAACTTCGAGGGAATCCTGTT -ACGGAACTTCGAGGGAATCGGTTT -ACGGAACTTCGAGGGAATGTGGTT -ACGGAACTTCGAGGGAATGCCTTT -ACGGAACTTCGAGGGAATGGTCTT -ACGGAACTTCGAGGGAATACGCTT -ACGGAACTTCGAGGGAATAGCGTT -ACGGAACTTCGAGGGAATTTCGTC -ACGGAACTTCGAGGGAATTCTCTC -ACGGAACTTCGAGGGAATTGGATC -ACGGAACTTCGAGGGAATCACTTC -ACGGAACTTCGAGGGAATGTACTC -ACGGAACTTCGAGGGAATGATGTC -ACGGAACTTCGAGGGAATACAGTC -ACGGAACTTCGAGGGAATTTGCTG -ACGGAACTTCGAGGGAATTCCATG -ACGGAACTTCGAGGGAATTGTGTG -ACGGAACTTCGAGGGAATCTAGTG -ACGGAACTTCGAGGGAATCATCTG -ACGGAACTTCGAGGGAATGAGTTG -ACGGAACTTCGAGGGAATAGACTG -ACGGAACTTCGAGGGAATTCGGTA -ACGGAACTTCGAGGGAATTGCCTA -ACGGAACTTCGAGGGAATCCACTA -ACGGAACTTCGAGGGAATGGAGTA -ACGGAACTTCGAGGGAATTCGTCT -ACGGAACTTCGAGGGAATTGCACT -ACGGAACTTCGAGGGAATCTGACT -ACGGAACTTCGAGGGAATCAACCT -ACGGAACTTCGAGGGAATGCTACT -ACGGAACTTCGAGGGAATGGATCT -ACGGAACTTCGAGGGAATAAGGCT -ACGGAACTTCGAGGGAATTCAACC -ACGGAACTTCGAGGGAATTGTTCC -ACGGAACTTCGAGGGAATATTCCC -ACGGAACTTCGAGGGAATTTCTCG -ACGGAACTTCGAGGGAATTAGACG -ACGGAACTTCGAGGGAATGTAACG -ACGGAACTTCGAGGGAATACTTCG -ACGGAACTTCGAGGGAATTACGCA -ACGGAACTTCGAGGGAATCTTGCA -ACGGAACTTCGAGGGAATCGAACA -ACGGAACTTCGAGGGAATCAGTCA -ACGGAACTTCGAGGGAATGATCCA -ACGGAACTTCGAGGGAATACGACA -ACGGAACTTCGAGGGAATAGCTCA -ACGGAACTTCGAGGGAATTCACGT -ACGGAACTTCGAGGGAATCGTAGT -ACGGAACTTCGAGGGAATGTCAGT -ACGGAACTTCGAGGGAATGAAGGT -ACGGAACTTCGAGGGAATAACCGT -ACGGAACTTCGAGGGAATTTGTGC -ACGGAACTTCGAGGGAATCTAAGC -ACGGAACTTCGAGGGAATACTAGC -ACGGAACTTCGAGGGAATAGATGC -ACGGAACTTCGAGGGAATTGAAGG -ACGGAACTTCGAGGGAATCAATGG -ACGGAACTTCGAGGGAATATGAGG -ACGGAACTTCGAGGGAATAATGGG -ACGGAACTTCGAGGGAATTCCTGA -ACGGAACTTCGAGGGAATTAGCGA -ACGGAACTTCGAGGGAATCACAGA -ACGGAACTTCGAGGGAATGCAAGA -ACGGAACTTCGAGGGAATGGTTGA -ACGGAACTTCGAGGGAATTCCGAT -ACGGAACTTCGAGGGAATTGGCAT -ACGGAACTTCGAGGGAATCGAGAT -ACGGAACTTCGAGGGAATTACCAC -ACGGAACTTCGAGGGAATCAGAAC -ACGGAACTTCGAGGGAATGTCTAC -ACGGAACTTCGAGGGAATACGTAC -ACGGAACTTCGAGGGAATAGTGAC -ACGGAACTTCGAGGGAATCTGTAG -ACGGAACTTCGAGGGAATCCTAAG -ACGGAACTTCGAGGGAATGTTCAG -ACGGAACTTCGAGGGAATGCATAG -ACGGAACTTCGAGGGAATGACAAG -ACGGAACTTCGAGGGAATAAGCAG -ACGGAACTTCGAGGGAATCGTCAA -ACGGAACTTCGAGGGAATGCTGAA -ACGGAACTTCGAGGGAATAGTACG -ACGGAACTTCGAGGGAATATCCGA -ACGGAACTTCGAGGGAATATGGGA -ACGGAACTTCGAGGGAATGTGCAA -ACGGAACTTCGAGGGAATGAGGAA -ACGGAACTTCGAGGGAATCAGGTA -ACGGAACTTCGAGGGAATGACTCT -ACGGAACTTCGAGGGAATAGTCCT -ACGGAACTTCGAGGGAATTAAGCC -ACGGAACTTCGAGGGAATATAGCC -ACGGAACTTCGAGGGAATTAACCG -ACGGAACTTCGAGGGAATATGCCA -ACGGAACTTCGATGATCCGGAAAC -ACGGAACTTCGATGATCCAACACC -ACGGAACTTCGATGATCCATCGAG -ACGGAACTTCGATGATCCCTCCTT -ACGGAACTTCGATGATCCCCTGTT -ACGGAACTTCGATGATCCCGGTTT -ACGGAACTTCGATGATCCGTGGTT -ACGGAACTTCGATGATCCGCCTTT -ACGGAACTTCGATGATCCGGTCTT -ACGGAACTTCGATGATCCACGCTT -ACGGAACTTCGATGATCCAGCGTT -ACGGAACTTCGATGATCCTTCGTC -ACGGAACTTCGATGATCCTCTCTC -ACGGAACTTCGATGATCCTGGATC -ACGGAACTTCGATGATCCCACTTC -ACGGAACTTCGATGATCCGTACTC -ACGGAACTTCGATGATCCGATGTC -ACGGAACTTCGATGATCCACAGTC -ACGGAACTTCGATGATCCTTGCTG -ACGGAACTTCGATGATCCTCCATG -ACGGAACTTCGATGATCCTGTGTG -ACGGAACTTCGATGATCCCTAGTG -ACGGAACTTCGATGATCCCATCTG -ACGGAACTTCGATGATCCGAGTTG -ACGGAACTTCGATGATCCAGACTG -ACGGAACTTCGATGATCCTCGGTA -ACGGAACTTCGATGATCCTGCCTA -ACGGAACTTCGATGATCCCCACTA -ACGGAACTTCGATGATCCGGAGTA -ACGGAACTTCGATGATCCTCGTCT -ACGGAACTTCGATGATCCTGCACT -ACGGAACTTCGATGATCCCTGACT -ACGGAACTTCGATGATCCCAACCT -ACGGAACTTCGATGATCCGCTACT -ACGGAACTTCGATGATCCGGATCT -ACGGAACTTCGATGATCCAAGGCT -ACGGAACTTCGATGATCCTCAACC -ACGGAACTTCGATGATCCTGTTCC -ACGGAACTTCGATGATCCATTCCC -ACGGAACTTCGATGATCCTTCTCG -ACGGAACTTCGATGATCCTAGACG -ACGGAACTTCGATGATCCGTAACG -ACGGAACTTCGATGATCCACTTCG -ACGGAACTTCGATGATCCTACGCA -ACGGAACTTCGATGATCCCTTGCA -ACGGAACTTCGATGATCCCGAACA -ACGGAACTTCGATGATCCCAGTCA -ACGGAACTTCGATGATCCGATCCA -ACGGAACTTCGATGATCCACGACA -ACGGAACTTCGATGATCCAGCTCA -ACGGAACTTCGATGATCCTCACGT -ACGGAACTTCGATGATCCCGTAGT -ACGGAACTTCGATGATCCGTCAGT -ACGGAACTTCGATGATCCGAAGGT -ACGGAACTTCGATGATCCAACCGT -ACGGAACTTCGATGATCCTTGTGC -ACGGAACTTCGATGATCCCTAAGC -ACGGAACTTCGATGATCCACTAGC -ACGGAACTTCGATGATCCAGATGC -ACGGAACTTCGATGATCCTGAAGG -ACGGAACTTCGATGATCCCAATGG -ACGGAACTTCGATGATCCATGAGG -ACGGAACTTCGATGATCCAATGGG -ACGGAACTTCGATGATCCTCCTGA -ACGGAACTTCGATGATCCTAGCGA -ACGGAACTTCGATGATCCCACAGA -ACGGAACTTCGATGATCCGCAAGA -ACGGAACTTCGATGATCCGGTTGA -ACGGAACTTCGATGATCCTCCGAT -ACGGAACTTCGATGATCCTGGCAT -ACGGAACTTCGATGATCCCGAGAT -ACGGAACTTCGATGATCCTACCAC -ACGGAACTTCGATGATCCCAGAAC -ACGGAACTTCGATGATCCGTCTAC -ACGGAACTTCGATGATCCACGTAC -ACGGAACTTCGATGATCCAGTGAC -ACGGAACTTCGATGATCCCTGTAG -ACGGAACTTCGATGATCCCCTAAG -ACGGAACTTCGATGATCCGTTCAG -ACGGAACTTCGATGATCCGCATAG -ACGGAACTTCGATGATCCGACAAG -ACGGAACTTCGATGATCCAAGCAG -ACGGAACTTCGATGATCCCGTCAA -ACGGAACTTCGATGATCCGCTGAA -ACGGAACTTCGATGATCCAGTACG -ACGGAACTTCGATGATCCATCCGA -ACGGAACTTCGATGATCCATGGGA -ACGGAACTTCGATGATCCGTGCAA -ACGGAACTTCGATGATCCGAGGAA -ACGGAACTTCGATGATCCCAGGTA -ACGGAACTTCGATGATCCGACTCT -ACGGAACTTCGATGATCCAGTCCT -ACGGAACTTCGATGATCCTAAGCC -ACGGAACTTCGATGATCCATAGCC -ACGGAACTTCGATGATCCTAACCG -ACGGAACTTCGATGATCCATGCCA -ACGGAACTTCGACGATAGGGAAAC -ACGGAACTTCGACGATAGAACACC -ACGGAACTTCGACGATAGATCGAG -ACGGAACTTCGACGATAGCTCCTT -ACGGAACTTCGACGATAGCCTGTT -ACGGAACTTCGACGATAGCGGTTT -ACGGAACTTCGACGATAGGTGGTT -ACGGAACTTCGACGATAGGCCTTT -ACGGAACTTCGACGATAGGGTCTT -ACGGAACTTCGACGATAGACGCTT -ACGGAACTTCGACGATAGAGCGTT -ACGGAACTTCGACGATAGTTCGTC -ACGGAACTTCGACGATAGTCTCTC -ACGGAACTTCGACGATAGTGGATC -ACGGAACTTCGACGATAGCACTTC -ACGGAACTTCGACGATAGGTACTC -ACGGAACTTCGACGATAGGATGTC -ACGGAACTTCGACGATAGACAGTC -ACGGAACTTCGACGATAGTTGCTG -ACGGAACTTCGACGATAGTCCATG -ACGGAACTTCGACGATAGTGTGTG -ACGGAACTTCGACGATAGCTAGTG -ACGGAACTTCGACGATAGCATCTG -ACGGAACTTCGACGATAGGAGTTG -ACGGAACTTCGACGATAGAGACTG -ACGGAACTTCGACGATAGTCGGTA -ACGGAACTTCGACGATAGTGCCTA -ACGGAACTTCGACGATAGCCACTA -ACGGAACTTCGACGATAGGGAGTA -ACGGAACTTCGACGATAGTCGTCT -ACGGAACTTCGACGATAGTGCACT -ACGGAACTTCGACGATAGCTGACT -ACGGAACTTCGACGATAGCAACCT -ACGGAACTTCGACGATAGGCTACT -ACGGAACTTCGACGATAGGGATCT -ACGGAACTTCGACGATAGAAGGCT -ACGGAACTTCGACGATAGTCAACC -ACGGAACTTCGACGATAGTGTTCC -ACGGAACTTCGACGATAGATTCCC -ACGGAACTTCGACGATAGTTCTCG -ACGGAACTTCGACGATAGTAGACG -ACGGAACTTCGACGATAGGTAACG -ACGGAACTTCGACGATAGACTTCG -ACGGAACTTCGACGATAGTACGCA -ACGGAACTTCGACGATAGCTTGCA -ACGGAACTTCGACGATAGCGAACA -ACGGAACTTCGACGATAGCAGTCA -ACGGAACTTCGACGATAGGATCCA -ACGGAACTTCGACGATAGACGACA -ACGGAACTTCGACGATAGAGCTCA -ACGGAACTTCGACGATAGTCACGT -ACGGAACTTCGACGATAGCGTAGT -ACGGAACTTCGACGATAGGTCAGT -ACGGAACTTCGACGATAGGAAGGT -ACGGAACTTCGACGATAGAACCGT -ACGGAACTTCGACGATAGTTGTGC -ACGGAACTTCGACGATAGCTAAGC -ACGGAACTTCGACGATAGACTAGC -ACGGAACTTCGACGATAGAGATGC -ACGGAACTTCGACGATAGTGAAGG -ACGGAACTTCGACGATAGCAATGG -ACGGAACTTCGACGATAGATGAGG -ACGGAACTTCGACGATAGAATGGG -ACGGAACTTCGACGATAGTCCTGA -ACGGAACTTCGACGATAGTAGCGA -ACGGAACTTCGACGATAGCACAGA -ACGGAACTTCGACGATAGGCAAGA -ACGGAACTTCGACGATAGGGTTGA -ACGGAACTTCGACGATAGTCCGAT -ACGGAACTTCGACGATAGTGGCAT -ACGGAACTTCGACGATAGCGAGAT -ACGGAACTTCGACGATAGTACCAC -ACGGAACTTCGACGATAGCAGAAC -ACGGAACTTCGACGATAGGTCTAC -ACGGAACTTCGACGATAGACGTAC -ACGGAACTTCGACGATAGAGTGAC -ACGGAACTTCGACGATAGCTGTAG -ACGGAACTTCGACGATAGCCTAAG -ACGGAACTTCGACGATAGGTTCAG -ACGGAACTTCGACGATAGGCATAG -ACGGAACTTCGACGATAGGACAAG -ACGGAACTTCGACGATAGAAGCAG -ACGGAACTTCGACGATAGCGTCAA -ACGGAACTTCGACGATAGGCTGAA -ACGGAACTTCGACGATAGAGTACG -ACGGAACTTCGACGATAGATCCGA -ACGGAACTTCGACGATAGATGGGA -ACGGAACTTCGACGATAGGTGCAA -ACGGAACTTCGACGATAGGAGGAA -ACGGAACTTCGACGATAGCAGGTA -ACGGAACTTCGACGATAGGACTCT -ACGGAACTTCGACGATAGAGTCCT -ACGGAACTTCGACGATAGTAAGCC -ACGGAACTTCGACGATAGATAGCC -ACGGAACTTCGACGATAGTAACCG -ACGGAACTTCGACGATAGATGCCA -ACGGAACTTCGAAGACACGGAAAC -ACGGAACTTCGAAGACACAACACC -ACGGAACTTCGAAGACACATCGAG -ACGGAACTTCGAAGACACCTCCTT -ACGGAACTTCGAAGACACCCTGTT -ACGGAACTTCGAAGACACCGGTTT -ACGGAACTTCGAAGACACGTGGTT -ACGGAACTTCGAAGACACGCCTTT -ACGGAACTTCGAAGACACGGTCTT -ACGGAACTTCGAAGACACACGCTT -ACGGAACTTCGAAGACACAGCGTT -ACGGAACTTCGAAGACACTTCGTC -ACGGAACTTCGAAGACACTCTCTC -ACGGAACTTCGAAGACACTGGATC -ACGGAACTTCGAAGACACCACTTC -ACGGAACTTCGAAGACACGTACTC -ACGGAACTTCGAAGACACGATGTC -ACGGAACTTCGAAGACACACAGTC -ACGGAACTTCGAAGACACTTGCTG -ACGGAACTTCGAAGACACTCCATG -ACGGAACTTCGAAGACACTGTGTG -ACGGAACTTCGAAGACACCTAGTG -ACGGAACTTCGAAGACACCATCTG -ACGGAACTTCGAAGACACGAGTTG -ACGGAACTTCGAAGACACAGACTG -ACGGAACTTCGAAGACACTCGGTA -ACGGAACTTCGAAGACACTGCCTA -ACGGAACTTCGAAGACACCCACTA -ACGGAACTTCGAAGACACGGAGTA -ACGGAACTTCGAAGACACTCGTCT -ACGGAACTTCGAAGACACTGCACT -ACGGAACTTCGAAGACACCTGACT -ACGGAACTTCGAAGACACCAACCT -ACGGAACTTCGAAGACACGCTACT -ACGGAACTTCGAAGACACGGATCT -ACGGAACTTCGAAGACACAAGGCT -ACGGAACTTCGAAGACACTCAACC -ACGGAACTTCGAAGACACTGTTCC -ACGGAACTTCGAAGACACATTCCC -ACGGAACTTCGAAGACACTTCTCG -ACGGAACTTCGAAGACACTAGACG -ACGGAACTTCGAAGACACGTAACG -ACGGAACTTCGAAGACACACTTCG -ACGGAACTTCGAAGACACTACGCA -ACGGAACTTCGAAGACACCTTGCA -ACGGAACTTCGAAGACACCGAACA -ACGGAACTTCGAAGACACCAGTCA -ACGGAACTTCGAAGACACGATCCA -ACGGAACTTCGAAGACACACGACA -ACGGAACTTCGAAGACACAGCTCA -ACGGAACTTCGAAGACACTCACGT -ACGGAACTTCGAAGACACCGTAGT -ACGGAACTTCGAAGACACGTCAGT -ACGGAACTTCGAAGACACGAAGGT -ACGGAACTTCGAAGACACAACCGT -ACGGAACTTCGAAGACACTTGTGC -ACGGAACTTCGAAGACACCTAAGC -ACGGAACTTCGAAGACACACTAGC -ACGGAACTTCGAAGACACAGATGC -ACGGAACTTCGAAGACACTGAAGG -ACGGAACTTCGAAGACACCAATGG -ACGGAACTTCGAAGACACATGAGG -ACGGAACTTCGAAGACACAATGGG -ACGGAACTTCGAAGACACTCCTGA -ACGGAACTTCGAAGACACTAGCGA -ACGGAACTTCGAAGACACCACAGA -ACGGAACTTCGAAGACACGCAAGA -ACGGAACTTCGAAGACACGGTTGA -ACGGAACTTCGAAGACACTCCGAT -ACGGAACTTCGAAGACACTGGCAT -ACGGAACTTCGAAGACACCGAGAT -ACGGAACTTCGAAGACACTACCAC -ACGGAACTTCGAAGACACCAGAAC -ACGGAACTTCGAAGACACGTCTAC -ACGGAACTTCGAAGACACACGTAC -ACGGAACTTCGAAGACACAGTGAC -ACGGAACTTCGAAGACACCTGTAG -ACGGAACTTCGAAGACACCCTAAG -ACGGAACTTCGAAGACACGTTCAG -ACGGAACTTCGAAGACACGCATAG -ACGGAACTTCGAAGACACGACAAG -ACGGAACTTCGAAGACACAAGCAG -ACGGAACTTCGAAGACACCGTCAA -ACGGAACTTCGAAGACACGCTGAA -ACGGAACTTCGAAGACACAGTACG -ACGGAACTTCGAAGACACATCCGA -ACGGAACTTCGAAGACACATGGGA -ACGGAACTTCGAAGACACGTGCAA -ACGGAACTTCGAAGACACGAGGAA -ACGGAACTTCGAAGACACCAGGTA -ACGGAACTTCGAAGACACGACTCT -ACGGAACTTCGAAGACACAGTCCT -ACGGAACTTCGAAGACACTAAGCC -ACGGAACTTCGAAGACACATAGCC -ACGGAACTTCGAAGACACTAACCG -ACGGAACTTCGAAGACACATGCCA -ACGGAACTTCGAAGAGCAGGAAAC -ACGGAACTTCGAAGAGCAAACACC -ACGGAACTTCGAAGAGCAATCGAG -ACGGAACTTCGAAGAGCACTCCTT -ACGGAACTTCGAAGAGCACCTGTT -ACGGAACTTCGAAGAGCACGGTTT -ACGGAACTTCGAAGAGCAGTGGTT -ACGGAACTTCGAAGAGCAGCCTTT -ACGGAACTTCGAAGAGCAGGTCTT -ACGGAACTTCGAAGAGCAACGCTT -ACGGAACTTCGAAGAGCAAGCGTT -ACGGAACTTCGAAGAGCATTCGTC -ACGGAACTTCGAAGAGCATCTCTC -ACGGAACTTCGAAGAGCATGGATC -ACGGAACTTCGAAGAGCACACTTC -ACGGAACTTCGAAGAGCAGTACTC -ACGGAACTTCGAAGAGCAGATGTC -ACGGAACTTCGAAGAGCAACAGTC -ACGGAACTTCGAAGAGCATTGCTG -ACGGAACTTCGAAGAGCATCCATG -ACGGAACTTCGAAGAGCATGTGTG -ACGGAACTTCGAAGAGCACTAGTG -ACGGAACTTCGAAGAGCACATCTG -ACGGAACTTCGAAGAGCAGAGTTG -ACGGAACTTCGAAGAGCAAGACTG -ACGGAACTTCGAAGAGCATCGGTA -ACGGAACTTCGAAGAGCATGCCTA -ACGGAACTTCGAAGAGCACCACTA -ACGGAACTTCGAAGAGCAGGAGTA -ACGGAACTTCGAAGAGCATCGTCT -ACGGAACTTCGAAGAGCATGCACT -ACGGAACTTCGAAGAGCACTGACT -ACGGAACTTCGAAGAGCACAACCT -ACGGAACTTCGAAGAGCAGCTACT -ACGGAACTTCGAAGAGCAGGATCT -ACGGAACTTCGAAGAGCAAAGGCT -ACGGAACTTCGAAGAGCATCAACC -ACGGAACTTCGAAGAGCATGTTCC -ACGGAACTTCGAAGAGCAATTCCC -ACGGAACTTCGAAGAGCATTCTCG -ACGGAACTTCGAAGAGCATAGACG -ACGGAACTTCGAAGAGCAGTAACG -ACGGAACTTCGAAGAGCAACTTCG -ACGGAACTTCGAAGAGCATACGCA -ACGGAACTTCGAAGAGCACTTGCA -ACGGAACTTCGAAGAGCACGAACA -ACGGAACTTCGAAGAGCACAGTCA -ACGGAACTTCGAAGAGCAGATCCA -ACGGAACTTCGAAGAGCAACGACA -ACGGAACTTCGAAGAGCAAGCTCA -ACGGAACTTCGAAGAGCATCACGT -ACGGAACTTCGAAGAGCACGTAGT -ACGGAACTTCGAAGAGCAGTCAGT -ACGGAACTTCGAAGAGCAGAAGGT -ACGGAACTTCGAAGAGCAAACCGT -ACGGAACTTCGAAGAGCATTGTGC -ACGGAACTTCGAAGAGCACTAAGC -ACGGAACTTCGAAGAGCAACTAGC -ACGGAACTTCGAAGAGCAAGATGC -ACGGAACTTCGAAGAGCATGAAGG -ACGGAACTTCGAAGAGCACAATGG -ACGGAACTTCGAAGAGCAATGAGG -ACGGAACTTCGAAGAGCAAATGGG -ACGGAACTTCGAAGAGCATCCTGA -ACGGAACTTCGAAGAGCATAGCGA -ACGGAACTTCGAAGAGCACACAGA -ACGGAACTTCGAAGAGCAGCAAGA -ACGGAACTTCGAAGAGCAGGTTGA -ACGGAACTTCGAAGAGCATCCGAT -ACGGAACTTCGAAGAGCATGGCAT -ACGGAACTTCGAAGAGCACGAGAT -ACGGAACTTCGAAGAGCATACCAC -ACGGAACTTCGAAGAGCACAGAAC -ACGGAACTTCGAAGAGCAGTCTAC -ACGGAACTTCGAAGAGCAACGTAC -ACGGAACTTCGAAGAGCAAGTGAC -ACGGAACTTCGAAGAGCACTGTAG -ACGGAACTTCGAAGAGCACCTAAG -ACGGAACTTCGAAGAGCAGTTCAG -ACGGAACTTCGAAGAGCAGCATAG -ACGGAACTTCGAAGAGCAGACAAG -ACGGAACTTCGAAGAGCAAAGCAG -ACGGAACTTCGAAGAGCACGTCAA -ACGGAACTTCGAAGAGCAGCTGAA -ACGGAACTTCGAAGAGCAAGTACG -ACGGAACTTCGAAGAGCAATCCGA -ACGGAACTTCGAAGAGCAATGGGA -ACGGAACTTCGAAGAGCAGTGCAA -ACGGAACTTCGAAGAGCAGAGGAA -ACGGAACTTCGAAGAGCACAGGTA -ACGGAACTTCGAAGAGCAGACTCT -ACGGAACTTCGAAGAGCAAGTCCT -ACGGAACTTCGAAGAGCATAAGCC -ACGGAACTTCGAAGAGCAATAGCC -ACGGAACTTCGAAGAGCATAACCG -ACGGAACTTCGAAGAGCAATGCCA -ACGGAACTTCGATGAGGTGGAAAC -ACGGAACTTCGATGAGGTAACACC -ACGGAACTTCGATGAGGTATCGAG -ACGGAACTTCGATGAGGTCTCCTT -ACGGAACTTCGATGAGGTCCTGTT -ACGGAACTTCGATGAGGTCGGTTT -ACGGAACTTCGATGAGGTGTGGTT -ACGGAACTTCGATGAGGTGCCTTT -ACGGAACTTCGATGAGGTGGTCTT -ACGGAACTTCGATGAGGTACGCTT -ACGGAACTTCGATGAGGTAGCGTT -ACGGAACTTCGATGAGGTTTCGTC -ACGGAACTTCGATGAGGTTCTCTC -ACGGAACTTCGATGAGGTTGGATC -ACGGAACTTCGATGAGGTCACTTC -ACGGAACTTCGATGAGGTGTACTC -ACGGAACTTCGATGAGGTGATGTC -ACGGAACTTCGATGAGGTACAGTC -ACGGAACTTCGATGAGGTTTGCTG -ACGGAACTTCGATGAGGTTCCATG -ACGGAACTTCGATGAGGTTGTGTG -ACGGAACTTCGATGAGGTCTAGTG -ACGGAACTTCGATGAGGTCATCTG -ACGGAACTTCGATGAGGTGAGTTG -ACGGAACTTCGATGAGGTAGACTG -ACGGAACTTCGATGAGGTTCGGTA -ACGGAACTTCGATGAGGTTGCCTA -ACGGAACTTCGATGAGGTCCACTA -ACGGAACTTCGATGAGGTGGAGTA -ACGGAACTTCGATGAGGTTCGTCT -ACGGAACTTCGATGAGGTTGCACT -ACGGAACTTCGATGAGGTCTGACT -ACGGAACTTCGATGAGGTCAACCT -ACGGAACTTCGATGAGGTGCTACT -ACGGAACTTCGATGAGGTGGATCT -ACGGAACTTCGATGAGGTAAGGCT -ACGGAACTTCGATGAGGTTCAACC -ACGGAACTTCGATGAGGTTGTTCC -ACGGAACTTCGATGAGGTATTCCC -ACGGAACTTCGATGAGGTTTCTCG -ACGGAACTTCGATGAGGTTAGACG -ACGGAACTTCGATGAGGTGTAACG -ACGGAACTTCGATGAGGTACTTCG -ACGGAACTTCGATGAGGTTACGCA -ACGGAACTTCGATGAGGTCTTGCA -ACGGAACTTCGATGAGGTCGAACA -ACGGAACTTCGATGAGGTCAGTCA -ACGGAACTTCGATGAGGTGATCCA -ACGGAACTTCGATGAGGTACGACA -ACGGAACTTCGATGAGGTAGCTCA -ACGGAACTTCGATGAGGTTCACGT -ACGGAACTTCGATGAGGTCGTAGT -ACGGAACTTCGATGAGGTGTCAGT -ACGGAACTTCGATGAGGTGAAGGT -ACGGAACTTCGATGAGGTAACCGT -ACGGAACTTCGATGAGGTTTGTGC -ACGGAACTTCGATGAGGTCTAAGC -ACGGAACTTCGATGAGGTACTAGC -ACGGAACTTCGATGAGGTAGATGC -ACGGAACTTCGATGAGGTTGAAGG -ACGGAACTTCGATGAGGTCAATGG -ACGGAACTTCGATGAGGTATGAGG -ACGGAACTTCGATGAGGTAATGGG -ACGGAACTTCGATGAGGTTCCTGA -ACGGAACTTCGATGAGGTTAGCGA -ACGGAACTTCGATGAGGTCACAGA -ACGGAACTTCGATGAGGTGCAAGA -ACGGAACTTCGATGAGGTGGTTGA -ACGGAACTTCGATGAGGTTCCGAT -ACGGAACTTCGATGAGGTTGGCAT -ACGGAACTTCGATGAGGTCGAGAT -ACGGAACTTCGATGAGGTTACCAC -ACGGAACTTCGATGAGGTCAGAAC -ACGGAACTTCGATGAGGTGTCTAC -ACGGAACTTCGATGAGGTACGTAC -ACGGAACTTCGATGAGGTAGTGAC -ACGGAACTTCGATGAGGTCTGTAG -ACGGAACTTCGATGAGGTCCTAAG -ACGGAACTTCGATGAGGTGTTCAG -ACGGAACTTCGATGAGGTGCATAG -ACGGAACTTCGATGAGGTGACAAG -ACGGAACTTCGATGAGGTAAGCAG -ACGGAACTTCGATGAGGTCGTCAA -ACGGAACTTCGATGAGGTGCTGAA -ACGGAACTTCGATGAGGTAGTACG -ACGGAACTTCGATGAGGTATCCGA -ACGGAACTTCGATGAGGTATGGGA -ACGGAACTTCGATGAGGTGTGCAA -ACGGAACTTCGATGAGGTGAGGAA -ACGGAACTTCGATGAGGTCAGGTA -ACGGAACTTCGATGAGGTGACTCT -ACGGAACTTCGATGAGGTAGTCCT -ACGGAACTTCGATGAGGTTAAGCC -ACGGAACTTCGATGAGGTATAGCC -ACGGAACTTCGATGAGGTTAACCG -ACGGAACTTCGATGAGGTATGCCA -ACGGAACTTCGAGATTCCGGAAAC -ACGGAACTTCGAGATTCCAACACC -ACGGAACTTCGAGATTCCATCGAG -ACGGAACTTCGAGATTCCCTCCTT -ACGGAACTTCGAGATTCCCCTGTT -ACGGAACTTCGAGATTCCCGGTTT -ACGGAACTTCGAGATTCCGTGGTT -ACGGAACTTCGAGATTCCGCCTTT -ACGGAACTTCGAGATTCCGGTCTT -ACGGAACTTCGAGATTCCACGCTT -ACGGAACTTCGAGATTCCAGCGTT -ACGGAACTTCGAGATTCCTTCGTC -ACGGAACTTCGAGATTCCTCTCTC -ACGGAACTTCGAGATTCCTGGATC -ACGGAACTTCGAGATTCCCACTTC -ACGGAACTTCGAGATTCCGTACTC -ACGGAACTTCGAGATTCCGATGTC -ACGGAACTTCGAGATTCCACAGTC -ACGGAACTTCGAGATTCCTTGCTG -ACGGAACTTCGAGATTCCTCCATG -ACGGAACTTCGAGATTCCTGTGTG -ACGGAACTTCGAGATTCCCTAGTG -ACGGAACTTCGAGATTCCCATCTG -ACGGAACTTCGAGATTCCGAGTTG -ACGGAACTTCGAGATTCCAGACTG -ACGGAACTTCGAGATTCCTCGGTA -ACGGAACTTCGAGATTCCTGCCTA -ACGGAACTTCGAGATTCCCCACTA -ACGGAACTTCGAGATTCCGGAGTA -ACGGAACTTCGAGATTCCTCGTCT -ACGGAACTTCGAGATTCCTGCACT -ACGGAACTTCGAGATTCCCTGACT -ACGGAACTTCGAGATTCCCAACCT -ACGGAACTTCGAGATTCCGCTACT -ACGGAACTTCGAGATTCCGGATCT -ACGGAACTTCGAGATTCCAAGGCT -ACGGAACTTCGAGATTCCTCAACC -ACGGAACTTCGAGATTCCTGTTCC -ACGGAACTTCGAGATTCCATTCCC -ACGGAACTTCGAGATTCCTTCTCG -ACGGAACTTCGAGATTCCTAGACG -ACGGAACTTCGAGATTCCGTAACG -ACGGAACTTCGAGATTCCACTTCG -ACGGAACTTCGAGATTCCTACGCA -ACGGAACTTCGAGATTCCCTTGCA -ACGGAACTTCGAGATTCCCGAACA -ACGGAACTTCGAGATTCCCAGTCA -ACGGAACTTCGAGATTCCGATCCA -ACGGAACTTCGAGATTCCACGACA -ACGGAACTTCGAGATTCCAGCTCA -ACGGAACTTCGAGATTCCTCACGT -ACGGAACTTCGAGATTCCCGTAGT -ACGGAACTTCGAGATTCCGTCAGT -ACGGAACTTCGAGATTCCGAAGGT -ACGGAACTTCGAGATTCCAACCGT -ACGGAACTTCGAGATTCCTTGTGC -ACGGAACTTCGAGATTCCCTAAGC -ACGGAACTTCGAGATTCCACTAGC -ACGGAACTTCGAGATTCCAGATGC -ACGGAACTTCGAGATTCCTGAAGG -ACGGAACTTCGAGATTCCCAATGG -ACGGAACTTCGAGATTCCATGAGG -ACGGAACTTCGAGATTCCAATGGG -ACGGAACTTCGAGATTCCTCCTGA -ACGGAACTTCGAGATTCCTAGCGA -ACGGAACTTCGAGATTCCCACAGA -ACGGAACTTCGAGATTCCGCAAGA -ACGGAACTTCGAGATTCCGGTTGA -ACGGAACTTCGAGATTCCTCCGAT -ACGGAACTTCGAGATTCCTGGCAT -ACGGAACTTCGAGATTCCCGAGAT -ACGGAACTTCGAGATTCCTACCAC -ACGGAACTTCGAGATTCCCAGAAC -ACGGAACTTCGAGATTCCGTCTAC -ACGGAACTTCGAGATTCCACGTAC -ACGGAACTTCGAGATTCCAGTGAC -ACGGAACTTCGAGATTCCCTGTAG -ACGGAACTTCGAGATTCCCCTAAG -ACGGAACTTCGAGATTCCGTTCAG -ACGGAACTTCGAGATTCCGCATAG -ACGGAACTTCGAGATTCCGACAAG -ACGGAACTTCGAGATTCCAAGCAG -ACGGAACTTCGAGATTCCCGTCAA -ACGGAACTTCGAGATTCCGCTGAA -ACGGAACTTCGAGATTCCAGTACG -ACGGAACTTCGAGATTCCATCCGA -ACGGAACTTCGAGATTCCATGGGA -ACGGAACTTCGAGATTCCGTGCAA -ACGGAACTTCGAGATTCCGAGGAA -ACGGAACTTCGAGATTCCCAGGTA -ACGGAACTTCGAGATTCCGACTCT -ACGGAACTTCGAGATTCCAGTCCT -ACGGAACTTCGAGATTCCTAAGCC -ACGGAACTTCGAGATTCCATAGCC -ACGGAACTTCGAGATTCCTAACCG -ACGGAACTTCGAGATTCCATGCCA -ACGGAACTTCGACATTGGGGAAAC -ACGGAACTTCGACATTGGAACACC -ACGGAACTTCGACATTGGATCGAG -ACGGAACTTCGACATTGGCTCCTT -ACGGAACTTCGACATTGGCCTGTT -ACGGAACTTCGACATTGGCGGTTT -ACGGAACTTCGACATTGGGTGGTT -ACGGAACTTCGACATTGGGCCTTT -ACGGAACTTCGACATTGGGGTCTT -ACGGAACTTCGACATTGGACGCTT -ACGGAACTTCGACATTGGAGCGTT -ACGGAACTTCGACATTGGTTCGTC -ACGGAACTTCGACATTGGTCTCTC -ACGGAACTTCGACATTGGTGGATC -ACGGAACTTCGACATTGGCACTTC -ACGGAACTTCGACATTGGGTACTC -ACGGAACTTCGACATTGGGATGTC -ACGGAACTTCGACATTGGACAGTC -ACGGAACTTCGACATTGGTTGCTG -ACGGAACTTCGACATTGGTCCATG -ACGGAACTTCGACATTGGTGTGTG -ACGGAACTTCGACATTGGCTAGTG -ACGGAACTTCGACATTGGCATCTG -ACGGAACTTCGACATTGGGAGTTG -ACGGAACTTCGACATTGGAGACTG -ACGGAACTTCGACATTGGTCGGTA -ACGGAACTTCGACATTGGTGCCTA -ACGGAACTTCGACATTGGCCACTA -ACGGAACTTCGACATTGGGGAGTA -ACGGAACTTCGACATTGGTCGTCT -ACGGAACTTCGACATTGGTGCACT -ACGGAACTTCGACATTGGCTGACT -ACGGAACTTCGACATTGGCAACCT -ACGGAACTTCGACATTGGGCTACT -ACGGAACTTCGACATTGGGGATCT -ACGGAACTTCGACATTGGAAGGCT -ACGGAACTTCGACATTGGTCAACC -ACGGAACTTCGACATTGGTGTTCC -ACGGAACTTCGACATTGGATTCCC -ACGGAACTTCGACATTGGTTCTCG -ACGGAACTTCGACATTGGTAGACG -ACGGAACTTCGACATTGGGTAACG -ACGGAACTTCGACATTGGACTTCG -ACGGAACTTCGACATTGGTACGCA -ACGGAACTTCGACATTGGCTTGCA -ACGGAACTTCGACATTGGCGAACA -ACGGAACTTCGACATTGGCAGTCA -ACGGAACTTCGACATTGGGATCCA -ACGGAACTTCGACATTGGACGACA -ACGGAACTTCGACATTGGAGCTCA -ACGGAACTTCGACATTGGTCACGT -ACGGAACTTCGACATTGGCGTAGT -ACGGAACTTCGACATTGGGTCAGT -ACGGAACTTCGACATTGGGAAGGT -ACGGAACTTCGACATTGGAACCGT -ACGGAACTTCGACATTGGTTGTGC -ACGGAACTTCGACATTGGCTAAGC -ACGGAACTTCGACATTGGACTAGC -ACGGAACTTCGACATTGGAGATGC -ACGGAACTTCGACATTGGTGAAGG -ACGGAACTTCGACATTGGCAATGG -ACGGAACTTCGACATTGGATGAGG -ACGGAACTTCGACATTGGAATGGG -ACGGAACTTCGACATTGGTCCTGA -ACGGAACTTCGACATTGGTAGCGA -ACGGAACTTCGACATTGGCACAGA -ACGGAACTTCGACATTGGGCAAGA -ACGGAACTTCGACATTGGGGTTGA -ACGGAACTTCGACATTGGTCCGAT -ACGGAACTTCGACATTGGTGGCAT -ACGGAACTTCGACATTGGCGAGAT -ACGGAACTTCGACATTGGTACCAC -ACGGAACTTCGACATTGGCAGAAC -ACGGAACTTCGACATTGGGTCTAC -ACGGAACTTCGACATTGGACGTAC -ACGGAACTTCGACATTGGAGTGAC -ACGGAACTTCGACATTGGCTGTAG -ACGGAACTTCGACATTGGCCTAAG -ACGGAACTTCGACATTGGGTTCAG -ACGGAACTTCGACATTGGGCATAG -ACGGAACTTCGACATTGGGACAAG -ACGGAACTTCGACATTGGAAGCAG -ACGGAACTTCGACATTGGCGTCAA -ACGGAACTTCGACATTGGGCTGAA -ACGGAACTTCGACATTGGAGTACG -ACGGAACTTCGACATTGGATCCGA -ACGGAACTTCGACATTGGATGGGA -ACGGAACTTCGACATTGGGTGCAA -ACGGAACTTCGACATTGGGAGGAA -ACGGAACTTCGACATTGGCAGGTA -ACGGAACTTCGACATTGGGACTCT -ACGGAACTTCGACATTGGAGTCCT -ACGGAACTTCGACATTGGTAAGCC -ACGGAACTTCGACATTGGATAGCC -ACGGAACTTCGACATTGGTAACCG -ACGGAACTTCGACATTGGATGCCA -ACGGAACTTCGAGATCGAGGAAAC -ACGGAACTTCGAGATCGAAACACC -ACGGAACTTCGAGATCGAATCGAG -ACGGAACTTCGAGATCGACTCCTT -ACGGAACTTCGAGATCGACCTGTT -ACGGAACTTCGAGATCGACGGTTT -ACGGAACTTCGAGATCGAGTGGTT -ACGGAACTTCGAGATCGAGCCTTT -ACGGAACTTCGAGATCGAGGTCTT -ACGGAACTTCGAGATCGAACGCTT -ACGGAACTTCGAGATCGAAGCGTT -ACGGAACTTCGAGATCGATTCGTC -ACGGAACTTCGAGATCGATCTCTC -ACGGAACTTCGAGATCGATGGATC -ACGGAACTTCGAGATCGACACTTC -ACGGAACTTCGAGATCGAGTACTC -ACGGAACTTCGAGATCGAGATGTC -ACGGAACTTCGAGATCGAACAGTC -ACGGAACTTCGAGATCGATTGCTG -ACGGAACTTCGAGATCGATCCATG -ACGGAACTTCGAGATCGATGTGTG -ACGGAACTTCGAGATCGACTAGTG -ACGGAACTTCGAGATCGACATCTG -ACGGAACTTCGAGATCGAGAGTTG -ACGGAACTTCGAGATCGAAGACTG -ACGGAACTTCGAGATCGATCGGTA -ACGGAACTTCGAGATCGATGCCTA -ACGGAACTTCGAGATCGACCACTA -ACGGAACTTCGAGATCGAGGAGTA -ACGGAACTTCGAGATCGATCGTCT -ACGGAACTTCGAGATCGATGCACT -ACGGAACTTCGAGATCGACTGACT -ACGGAACTTCGAGATCGACAACCT -ACGGAACTTCGAGATCGAGCTACT -ACGGAACTTCGAGATCGAGGATCT -ACGGAACTTCGAGATCGAAAGGCT -ACGGAACTTCGAGATCGATCAACC -ACGGAACTTCGAGATCGATGTTCC -ACGGAACTTCGAGATCGAATTCCC -ACGGAACTTCGAGATCGATTCTCG -ACGGAACTTCGAGATCGATAGACG -ACGGAACTTCGAGATCGAGTAACG -ACGGAACTTCGAGATCGAACTTCG -ACGGAACTTCGAGATCGATACGCA -ACGGAACTTCGAGATCGACTTGCA -ACGGAACTTCGAGATCGACGAACA -ACGGAACTTCGAGATCGACAGTCA -ACGGAACTTCGAGATCGAGATCCA -ACGGAACTTCGAGATCGAACGACA -ACGGAACTTCGAGATCGAAGCTCA -ACGGAACTTCGAGATCGATCACGT -ACGGAACTTCGAGATCGACGTAGT -ACGGAACTTCGAGATCGAGTCAGT -ACGGAACTTCGAGATCGAGAAGGT -ACGGAACTTCGAGATCGAAACCGT -ACGGAACTTCGAGATCGATTGTGC -ACGGAACTTCGAGATCGACTAAGC -ACGGAACTTCGAGATCGAACTAGC -ACGGAACTTCGAGATCGAAGATGC -ACGGAACTTCGAGATCGATGAAGG -ACGGAACTTCGAGATCGACAATGG -ACGGAACTTCGAGATCGAATGAGG -ACGGAACTTCGAGATCGAAATGGG -ACGGAACTTCGAGATCGATCCTGA -ACGGAACTTCGAGATCGATAGCGA -ACGGAACTTCGAGATCGACACAGA -ACGGAACTTCGAGATCGAGCAAGA -ACGGAACTTCGAGATCGAGGTTGA -ACGGAACTTCGAGATCGATCCGAT -ACGGAACTTCGAGATCGATGGCAT -ACGGAACTTCGAGATCGACGAGAT -ACGGAACTTCGAGATCGATACCAC -ACGGAACTTCGAGATCGACAGAAC -ACGGAACTTCGAGATCGAGTCTAC -ACGGAACTTCGAGATCGAACGTAC -ACGGAACTTCGAGATCGAAGTGAC -ACGGAACTTCGAGATCGACTGTAG -ACGGAACTTCGAGATCGACCTAAG -ACGGAACTTCGAGATCGAGTTCAG -ACGGAACTTCGAGATCGAGCATAG -ACGGAACTTCGAGATCGAGACAAG -ACGGAACTTCGAGATCGAAAGCAG -ACGGAACTTCGAGATCGACGTCAA -ACGGAACTTCGAGATCGAGCTGAA -ACGGAACTTCGAGATCGAAGTACG -ACGGAACTTCGAGATCGAATCCGA -ACGGAACTTCGAGATCGAATGGGA -ACGGAACTTCGAGATCGAGTGCAA -ACGGAACTTCGAGATCGAGAGGAA -ACGGAACTTCGAGATCGACAGGTA -ACGGAACTTCGAGATCGAGACTCT -ACGGAACTTCGAGATCGAAGTCCT -ACGGAACTTCGAGATCGATAAGCC -ACGGAACTTCGAGATCGAATAGCC -ACGGAACTTCGAGATCGATAACCG -ACGGAACTTCGAGATCGAATGCCA -ACGGAACTTCGACACTACGGAAAC -ACGGAACTTCGACACTACAACACC -ACGGAACTTCGACACTACATCGAG -ACGGAACTTCGACACTACCTCCTT -ACGGAACTTCGACACTACCCTGTT -ACGGAACTTCGACACTACCGGTTT -ACGGAACTTCGACACTACGTGGTT -ACGGAACTTCGACACTACGCCTTT -ACGGAACTTCGACACTACGGTCTT -ACGGAACTTCGACACTACACGCTT -ACGGAACTTCGACACTACAGCGTT -ACGGAACTTCGACACTACTTCGTC -ACGGAACTTCGACACTACTCTCTC -ACGGAACTTCGACACTACTGGATC -ACGGAACTTCGACACTACCACTTC -ACGGAACTTCGACACTACGTACTC -ACGGAACTTCGACACTACGATGTC -ACGGAACTTCGACACTACACAGTC -ACGGAACTTCGACACTACTTGCTG -ACGGAACTTCGACACTACTCCATG -ACGGAACTTCGACACTACTGTGTG -ACGGAACTTCGACACTACCTAGTG -ACGGAACTTCGACACTACCATCTG -ACGGAACTTCGACACTACGAGTTG -ACGGAACTTCGACACTACAGACTG -ACGGAACTTCGACACTACTCGGTA -ACGGAACTTCGACACTACTGCCTA -ACGGAACTTCGACACTACCCACTA -ACGGAACTTCGACACTACGGAGTA -ACGGAACTTCGACACTACTCGTCT -ACGGAACTTCGACACTACTGCACT -ACGGAACTTCGACACTACCTGACT -ACGGAACTTCGACACTACCAACCT -ACGGAACTTCGACACTACGCTACT -ACGGAACTTCGACACTACGGATCT -ACGGAACTTCGACACTACAAGGCT -ACGGAACTTCGACACTACTCAACC -ACGGAACTTCGACACTACTGTTCC -ACGGAACTTCGACACTACATTCCC -ACGGAACTTCGACACTACTTCTCG -ACGGAACTTCGACACTACTAGACG -ACGGAACTTCGACACTACGTAACG -ACGGAACTTCGACACTACACTTCG -ACGGAACTTCGACACTACTACGCA -ACGGAACTTCGACACTACCTTGCA -ACGGAACTTCGACACTACCGAACA -ACGGAACTTCGACACTACCAGTCA -ACGGAACTTCGACACTACGATCCA -ACGGAACTTCGACACTACACGACA -ACGGAACTTCGACACTACAGCTCA -ACGGAACTTCGACACTACTCACGT -ACGGAACTTCGACACTACCGTAGT -ACGGAACTTCGACACTACGTCAGT -ACGGAACTTCGACACTACGAAGGT -ACGGAACTTCGACACTACAACCGT -ACGGAACTTCGACACTACTTGTGC -ACGGAACTTCGACACTACCTAAGC -ACGGAACTTCGACACTACACTAGC -ACGGAACTTCGACACTACAGATGC -ACGGAACTTCGACACTACTGAAGG -ACGGAACTTCGACACTACCAATGG -ACGGAACTTCGACACTACATGAGG -ACGGAACTTCGACACTACAATGGG -ACGGAACTTCGACACTACTCCTGA -ACGGAACTTCGACACTACTAGCGA -ACGGAACTTCGACACTACCACAGA -ACGGAACTTCGACACTACGCAAGA -ACGGAACTTCGACACTACGGTTGA -ACGGAACTTCGACACTACTCCGAT -ACGGAACTTCGACACTACTGGCAT -ACGGAACTTCGACACTACCGAGAT -ACGGAACTTCGACACTACTACCAC -ACGGAACTTCGACACTACCAGAAC -ACGGAACTTCGACACTACGTCTAC -ACGGAACTTCGACACTACACGTAC -ACGGAACTTCGACACTACAGTGAC -ACGGAACTTCGACACTACCTGTAG -ACGGAACTTCGACACTACCCTAAG -ACGGAACTTCGACACTACGTTCAG -ACGGAACTTCGACACTACGCATAG -ACGGAACTTCGACACTACGACAAG -ACGGAACTTCGACACTACAAGCAG -ACGGAACTTCGACACTACCGTCAA -ACGGAACTTCGACACTACGCTGAA -ACGGAACTTCGACACTACAGTACG -ACGGAACTTCGACACTACATCCGA -ACGGAACTTCGACACTACATGGGA -ACGGAACTTCGACACTACGTGCAA -ACGGAACTTCGACACTACGAGGAA -ACGGAACTTCGACACTACCAGGTA -ACGGAACTTCGACACTACGACTCT -ACGGAACTTCGACACTACAGTCCT -ACGGAACTTCGACACTACTAAGCC -ACGGAACTTCGACACTACATAGCC -ACGGAACTTCGACACTACTAACCG -ACGGAACTTCGACACTACATGCCA -ACGGAACTTCGAAACCAGGGAAAC -ACGGAACTTCGAAACCAGAACACC -ACGGAACTTCGAAACCAGATCGAG -ACGGAACTTCGAAACCAGCTCCTT -ACGGAACTTCGAAACCAGCCTGTT -ACGGAACTTCGAAACCAGCGGTTT -ACGGAACTTCGAAACCAGGTGGTT -ACGGAACTTCGAAACCAGGCCTTT -ACGGAACTTCGAAACCAGGGTCTT -ACGGAACTTCGAAACCAGACGCTT -ACGGAACTTCGAAACCAGAGCGTT -ACGGAACTTCGAAACCAGTTCGTC -ACGGAACTTCGAAACCAGTCTCTC -ACGGAACTTCGAAACCAGTGGATC -ACGGAACTTCGAAACCAGCACTTC -ACGGAACTTCGAAACCAGGTACTC -ACGGAACTTCGAAACCAGGATGTC -ACGGAACTTCGAAACCAGACAGTC -ACGGAACTTCGAAACCAGTTGCTG -ACGGAACTTCGAAACCAGTCCATG -ACGGAACTTCGAAACCAGTGTGTG -ACGGAACTTCGAAACCAGCTAGTG -ACGGAACTTCGAAACCAGCATCTG -ACGGAACTTCGAAACCAGGAGTTG -ACGGAACTTCGAAACCAGAGACTG -ACGGAACTTCGAAACCAGTCGGTA -ACGGAACTTCGAAACCAGTGCCTA -ACGGAACTTCGAAACCAGCCACTA -ACGGAACTTCGAAACCAGGGAGTA -ACGGAACTTCGAAACCAGTCGTCT -ACGGAACTTCGAAACCAGTGCACT -ACGGAACTTCGAAACCAGCTGACT -ACGGAACTTCGAAACCAGCAACCT -ACGGAACTTCGAAACCAGGCTACT -ACGGAACTTCGAAACCAGGGATCT -ACGGAACTTCGAAACCAGAAGGCT -ACGGAACTTCGAAACCAGTCAACC -ACGGAACTTCGAAACCAGTGTTCC -ACGGAACTTCGAAACCAGATTCCC -ACGGAACTTCGAAACCAGTTCTCG -ACGGAACTTCGAAACCAGTAGACG -ACGGAACTTCGAAACCAGGTAACG -ACGGAACTTCGAAACCAGACTTCG -ACGGAACTTCGAAACCAGTACGCA -ACGGAACTTCGAAACCAGCTTGCA -ACGGAACTTCGAAACCAGCGAACA -ACGGAACTTCGAAACCAGCAGTCA -ACGGAACTTCGAAACCAGGATCCA -ACGGAACTTCGAAACCAGACGACA -ACGGAACTTCGAAACCAGAGCTCA -ACGGAACTTCGAAACCAGTCACGT -ACGGAACTTCGAAACCAGCGTAGT -ACGGAACTTCGAAACCAGGTCAGT -ACGGAACTTCGAAACCAGGAAGGT -ACGGAACTTCGAAACCAGAACCGT -ACGGAACTTCGAAACCAGTTGTGC -ACGGAACTTCGAAACCAGCTAAGC -ACGGAACTTCGAAACCAGACTAGC -ACGGAACTTCGAAACCAGAGATGC -ACGGAACTTCGAAACCAGTGAAGG -ACGGAACTTCGAAACCAGCAATGG -ACGGAACTTCGAAACCAGATGAGG -ACGGAACTTCGAAACCAGAATGGG -ACGGAACTTCGAAACCAGTCCTGA -ACGGAACTTCGAAACCAGTAGCGA -ACGGAACTTCGAAACCAGCACAGA -ACGGAACTTCGAAACCAGGCAAGA -ACGGAACTTCGAAACCAGGGTTGA -ACGGAACTTCGAAACCAGTCCGAT -ACGGAACTTCGAAACCAGTGGCAT -ACGGAACTTCGAAACCAGCGAGAT -ACGGAACTTCGAAACCAGTACCAC -ACGGAACTTCGAAACCAGCAGAAC -ACGGAACTTCGAAACCAGGTCTAC -ACGGAACTTCGAAACCAGACGTAC -ACGGAACTTCGAAACCAGAGTGAC -ACGGAACTTCGAAACCAGCTGTAG -ACGGAACTTCGAAACCAGCCTAAG -ACGGAACTTCGAAACCAGGTTCAG -ACGGAACTTCGAAACCAGGCATAG -ACGGAACTTCGAAACCAGGACAAG -ACGGAACTTCGAAACCAGAAGCAG -ACGGAACTTCGAAACCAGCGTCAA -ACGGAACTTCGAAACCAGGCTGAA -ACGGAACTTCGAAACCAGAGTACG -ACGGAACTTCGAAACCAGATCCGA -ACGGAACTTCGAAACCAGATGGGA -ACGGAACTTCGAAACCAGGTGCAA -ACGGAACTTCGAAACCAGGAGGAA -ACGGAACTTCGAAACCAGCAGGTA -ACGGAACTTCGAAACCAGGACTCT -ACGGAACTTCGAAACCAGAGTCCT -ACGGAACTTCGAAACCAGTAAGCC -ACGGAACTTCGAAACCAGATAGCC -ACGGAACTTCGAAACCAGTAACCG -ACGGAACTTCGAAACCAGATGCCA -ACGGAACTTCGATACGTCGGAAAC -ACGGAACTTCGATACGTCAACACC -ACGGAACTTCGATACGTCATCGAG -ACGGAACTTCGATACGTCCTCCTT -ACGGAACTTCGATACGTCCCTGTT -ACGGAACTTCGATACGTCCGGTTT -ACGGAACTTCGATACGTCGTGGTT -ACGGAACTTCGATACGTCGCCTTT -ACGGAACTTCGATACGTCGGTCTT -ACGGAACTTCGATACGTCACGCTT -ACGGAACTTCGATACGTCAGCGTT -ACGGAACTTCGATACGTCTTCGTC -ACGGAACTTCGATACGTCTCTCTC -ACGGAACTTCGATACGTCTGGATC -ACGGAACTTCGATACGTCCACTTC -ACGGAACTTCGATACGTCGTACTC -ACGGAACTTCGATACGTCGATGTC -ACGGAACTTCGATACGTCACAGTC -ACGGAACTTCGATACGTCTTGCTG -ACGGAACTTCGATACGTCTCCATG -ACGGAACTTCGATACGTCTGTGTG -ACGGAACTTCGATACGTCCTAGTG -ACGGAACTTCGATACGTCCATCTG -ACGGAACTTCGATACGTCGAGTTG -ACGGAACTTCGATACGTCAGACTG -ACGGAACTTCGATACGTCTCGGTA -ACGGAACTTCGATACGTCTGCCTA -ACGGAACTTCGATACGTCCCACTA -ACGGAACTTCGATACGTCGGAGTA -ACGGAACTTCGATACGTCTCGTCT -ACGGAACTTCGATACGTCTGCACT -ACGGAACTTCGATACGTCCTGACT -ACGGAACTTCGATACGTCCAACCT -ACGGAACTTCGATACGTCGCTACT -ACGGAACTTCGATACGTCGGATCT -ACGGAACTTCGATACGTCAAGGCT -ACGGAACTTCGATACGTCTCAACC -ACGGAACTTCGATACGTCTGTTCC -ACGGAACTTCGATACGTCATTCCC -ACGGAACTTCGATACGTCTTCTCG -ACGGAACTTCGATACGTCTAGACG -ACGGAACTTCGATACGTCGTAACG -ACGGAACTTCGATACGTCACTTCG -ACGGAACTTCGATACGTCTACGCA -ACGGAACTTCGATACGTCCTTGCA -ACGGAACTTCGATACGTCCGAACA -ACGGAACTTCGATACGTCCAGTCA -ACGGAACTTCGATACGTCGATCCA -ACGGAACTTCGATACGTCACGACA -ACGGAACTTCGATACGTCAGCTCA -ACGGAACTTCGATACGTCTCACGT -ACGGAACTTCGATACGTCCGTAGT -ACGGAACTTCGATACGTCGTCAGT -ACGGAACTTCGATACGTCGAAGGT -ACGGAACTTCGATACGTCAACCGT -ACGGAACTTCGATACGTCTTGTGC -ACGGAACTTCGATACGTCCTAAGC -ACGGAACTTCGATACGTCACTAGC -ACGGAACTTCGATACGTCAGATGC -ACGGAACTTCGATACGTCTGAAGG -ACGGAACTTCGATACGTCCAATGG -ACGGAACTTCGATACGTCATGAGG -ACGGAACTTCGATACGTCAATGGG -ACGGAACTTCGATACGTCTCCTGA -ACGGAACTTCGATACGTCTAGCGA -ACGGAACTTCGATACGTCCACAGA -ACGGAACTTCGATACGTCGCAAGA -ACGGAACTTCGATACGTCGGTTGA -ACGGAACTTCGATACGTCTCCGAT -ACGGAACTTCGATACGTCTGGCAT -ACGGAACTTCGATACGTCCGAGAT -ACGGAACTTCGATACGTCTACCAC -ACGGAACTTCGATACGTCCAGAAC -ACGGAACTTCGATACGTCGTCTAC -ACGGAACTTCGATACGTCACGTAC -ACGGAACTTCGATACGTCAGTGAC -ACGGAACTTCGATACGTCCTGTAG -ACGGAACTTCGATACGTCCCTAAG -ACGGAACTTCGATACGTCGTTCAG -ACGGAACTTCGATACGTCGCATAG -ACGGAACTTCGATACGTCGACAAG -ACGGAACTTCGATACGTCAAGCAG -ACGGAACTTCGATACGTCCGTCAA -ACGGAACTTCGATACGTCGCTGAA -ACGGAACTTCGATACGTCAGTACG -ACGGAACTTCGATACGTCATCCGA -ACGGAACTTCGATACGTCATGGGA -ACGGAACTTCGATACGTCGTGCAA -ACGGAACTTCGATACGTCGAGGAA -ACGGAACTTCGATACGTCCAGGTA -ACGGAACTTCGATACGTCGACTCT -ACGGAACTTCGATACGTCAGTCCT -ACGGAACTTCGATACGTCTAAGCC -ACGGAACTTCGATACGTCATAGCC -ACGGAACTTCGATACGTCTAACCG -ACGGAACTTCGATACGTCATGCCA -ACGGAACTTCGATACACGGGAAAC -ACGGAACTTCGATACACGAACACC -ACGGAACTTCGATACACGATCGAG -ACGGAACTTCGATACACGCTCCTT -ACGGAACTTCGATACACGCCTGTT -ACGGAACTTCGATACACGCGGTTT -ACGGAACTTCGATACACGGTGGTT -ACGGAACTTCGATACACGGCCTTT -ACGGAACTTCGATACACGGGTCTT -ACGGAACTTCGATACACGACGCTT -ACGGAACTTCGATACACGAGCGTT -ACGGAACTTCGATACACGTTCGTC -ACGGAACTTCGATACACGTCTCTC -ACGGAACTTCGATACACGTGGATC -ACGGAACTTCGATACACGCACTTC -ACGGAACTTCGATACACGGTACTC -ACGGAACTTCGATACACGGATGTC -ACGGAACTTCGATACACGACAGTC -ACGGAACTTCGATACACGTTGCTG -ACGGAACTTCGATACACGTCCATG -ACGGAACTTCGATACACGTGTGTG -ACGGAACTTCGATACACGCTAGTG -ACGGAACTTCGATACACGCATCTG -ACGGAACTTCGATACACGGAGTTG -ACGGAACTTCGATACACGAGACTG -ACGGAACTTCGATACACGTCGGTA -ACGGAACTTCGATACACGTGCCTA -ACGGAACTTCGATACACGCCACTA -ACGGAACTTCGATACACGGGAGTA -ACGGAACTTCGATACACGTCGTCT -ACGGAACTTCGATACACGTGCACT -ACGGAACTTCGATACACGCTGACT -ACGGAACTTCGATACACGCAACCT -ACGGAACTTCGATACACGGCTACT -ACGGAACTTCGATACACGGGATCT -ACGGAACTTCGATACACGAAGGCT -ACGGAACTTCGATACACGTCAACC -ACGGAACTTCGATACACGTGTTCC -ACGGAACTTCGATACACGATTCCC -ACGGAACTTCGATACACGTTCTCG -ACGGAACTTCGATACACGTAGACG -ACGGAACTTCGATACACGGTAACG -ACGGAACTTCGATACACGACTTCG -ACGGAACTTCGATACACGTACGCA -ACGGAACTTCGATACACGCTTGCA -ACGGAACTTCGATACACGCGAACA -ACGGAACTTCGATACACGCAGTCA -ACGGAACTTCGATACACGGATCCA -ACGGAACTTCGATACACGACGACA -ACGGAACTTCGATACACGAGCTCA -ACGGAACTTCGATACACGTCACGT -ACGGAACTTCGATACACGCGTAGT -ACGGAACTTCGATACACGGTCAGT -ACGGAACTTCGATACACGGAAGGT -ACGGAACTTCGATACACGAACCGT -ACGGAACTTCGATACACGTTGTGC -ACGGAACTTCGATACACGCTAAGC -ACGGAACTTCGATACACGACTAGC -ACGGAACTTCGATACACGAGATGC -ACGGAACTTCGATACACGTGAAGG -ACGGAACTTCGATACACGCAATGG -ACGGAACTTCGATACACGATGAGG -ACGGAACTTCGATACACGAATGGG -ACGGAACTTCGATACACGTCCTGA -ACGGAACTTCGATACACGTAGCGA -ACGGAACTTCGATACACGCACAGA -ACGGAACTTCGATACACGGCAAGA -ACGGAACTTCGATACACGGGTTGA -ACGGAACTTCGATACACGTCCGAT -ACGGAACTTCGATACACGTGGCAT -ACGGAACTTCGATACACGCGAGAT -ACGGAACTTCGATACACGTACCAC -ACGGAACTTCGATACACGCAGAAC -ACGGAACTTCGATACACGGTCTAC -ACGGAACTTCGATACACGACGTAC -ACGGAACTTCGATACACGAGTGAC -ACGGAACTTCGATACACGCTGTAG -ACGGAACTTCGATACACGCCTAAG -ACGGAACTTCGATACACGGTTCAG -ACGGAACTTCGATACACGGCATAG -ACGGAACTTCGATACACGGACAAG -ACGGAACTTCGATACACGAAGCAG -ACGGAACTTCGATACACGCGTCAA -ACGGAACTTCGATACACGGCTGAA -ACGGAACTTCGATACACGAGTACG -ACGGAACTTCGATACACGATCCGA -ACGGAACTTCGATACACGATGGGA -ACGGAACTTCGATACACGGTGCAA -ACGGAACTTCGATACACGGAGGAA -ACGGAACTTCGATACACGCAGGTA -ACGGAACTTCGATACACGGACTCT -ACGGAACTTCGATACACGAGTCCT -ACGGAACTTCGATACACGTAAGCC -ACGGAACTTCGATACACGATAGCC -ACGGAACTTCGATACACGTAACCG -ACGGAACTTCGATACACGATGCCA -ACGGAACTTCGAGACAGTGGAAAC -ACGGAACTTCGAGACAGTAACACC -ACGGAACTTCGAGACAGTATCGAG -ACGGAACTTCGAGACAGTCTCCTT -ACGGAACTTCGAGACAGTCCTGTT -ACGGAACTTCGAGACAGTCGGTTT -ACGGAACTTCGAGACAGTGTGGTT -ACGGAACTTCGAGACAGTGCCTTT -ACGGAACTTCGAGACAGTGGTCTT -ACGGAACTTCGAGACAGTACGCTT -ACGGAACTTCGAGACAGTAGCGTT -ACGGAACTTCGAGACAGTTTCGTC -ACGGAACTTCGAGACAGTTCTCTC -ACGGAACTTCGAGACAGTTGGATC -ACGGAACTTCGAGACAGTCACTTC -ACGGAACTTCGAGACAGTGTACTC -ACGGAACTTCGAGACAGTGATGTC -ACGGAACTTCGAGACAGTACAGTC -ACGGAACTTCGAGACAGTTTGCTG -ACGGAACTTCGAGACAGTTCCATG -ACGGAACTTCGAGACAGTTGTGTG -ACGGAACTTCGAGACAGTCTAGTG -ACGGAACTTCGAGACAGTCATCTG -ACGGAACTTCGAGACAGTGAGTTG -ACGGAACTTCGAGACAGTAGACTG -ACGGAACTTCGAGACAGTTCGGTA -ACGGAACTTCGAGACAGTTGCCTA -ACGGAACTTCGAGACAGTCCACTA -ACGGAACTTCGAGACAGTGGAGTA -ACGGAACTTCGAGACAGTTCGTCT -ACGGAACTTCGAGACAGTTGCACT -ACGGAACTTCGAGACAGTCTGACT -ACGGAACTTCGAGACAGTCAACCT -ACGGAACTTCGAGACAGTGCTACT -ACGGAACTTCGAGACAGTGGATCT -ACGGAACTTCGAGACAGTAAGGCT -ACGGAACTTCGAGACAGTTCAACC -ACGGAACTTCGAGACAGTTGTTCC -ACGGAACTTCGAGACAGTATTCCC -ACGGAACTTCGAGACAGTTTCTCG -ACGGAACTTCGAGACAGTTAGACG -ACGGAACTTCGAGACAGTGTAACG -ACGGAACTTCGAGACAGTACTTCG -ACGGAACTTCGAGACAGTTACGCA -ACGGAACTTCGAGACAGTCTTGCA -ACGGAACTTCGAGACAGTCGAACA -ACGGAACTTCGAGACAGTCAGTCA -ACGGAACTTCGAGACAGTGATCCA -ACGGAACTTCGAGACAGTACGACA -ACGGAACTTCGAGACAGTAGCTCA -ACGGAACTTCGAGACAGTTCACGT -ACGGAACTTCGAGACAGTCGTAGT -ACGGAACTTCGAGACAGTGTCAGT -ACGGAACTTCGAGACAGTGAAGGT -ACGGAACTTCGAGACAGTAACCGT -ACGGAACTTCGAGACAGTTTGTGC -ACGGAACTTCGAGACAGTCTAAGC -ACGGAACTTCGAGACAGTACTAGC -ACGGAACTTCGAGACAGTAGATGC -ACGGAACTTCGAGACAGTTGAAGG -ACGGAACTTCGAGACAGTCAATGG -ACGGAACTTCGAGACAGTATGAGG -ACGGAACTTCGAGACAGTAATGGG -ACGGAACTTCGAGACAGTTCCTGA -ACGGAACTTCGAGACAGTTAGCGA -ACGGAACTTCGAGACAGTCACAGA -ACGGAACTTCGAGACAGTGCAAGA -ACGGAACTTCGAGACAGTGGTTGA -ACGGAACTTCGAGACAGTTCCGAT -ACGGAACTTCGAGACAGTTGGCAT -ACGGAACTTCGAGACAGTCGAGAT -ACGGAACTTCGAGACAGTTACCAC -ACGGAACTTCGAGACAGTCAGAAC -ACGGAACTTCGAGACAGTGTCTAC -ACGGAACTTCGAGACAGTACGTAC -ACGGAACTTCGAGACAGTAGTGAC -ACGGAACTTCGAGACAGTCTGTAG -ACGGAACTTCGAGACAGTCCTAAG -ACGGAACTTCGAGACAGTGTTCAG -ACGGAACTTCGAGACAGTGCATAG -ACGGAACTTCGAGACAGTGACAAG -ACGGAACTTCGAGACAGTAAGCAG -ACGGAACTTCGAGACAGTCGTCAA -ACGGAACTTCGAGACAGTGCTGAA -ACGGAACTTCGAGACAGTAGTACG -ACGGAACTTCGAGACAGTATCCGA -ACGGAACTTCGAGACAGTATGGGA -ACGGAACTTCGAGACAGTGTGCAA -ACGGAACTTCGAGACAGTGAGGAA -ACGGAACTTCGAGACAGTCAGGTA -ACGGAACTTCGAGACAGTGACTCT -ACGGAACTTCGAGACAGTAGTCCT -ACGGAACTTCGAGACAGTTAAGCC -ACGGAACTTCGAGACAGTATAGCC -ACGGAACTTCGAGACAGTTAACCG -ACGGAACTTCGAGACAGTATGCCA -ACGGAACTTCGATAGCTGGGAAAC -ACGGAACTTCGATAGCTGAACACC -ACGGAACTTCGATAGCTGATCGAG -ACGGAACTTCGATAGCTGCTCCTT -ACGGAACTTCGATAGCTGCCTGTT -ACGGAACTTCGATAGCTGCGGTTT -ACGGAACTTCGATAGCTGGTGGTT -ACGGAACTTCGATAGCTGGCCTTT -ACGGAACTTCGATAGCTGGGTCTT -ACGGAACTTCGATAGCTGACGCTT -ACGGAACTTCGATAGCTGAGCGTT -ACGGAACTTCGATAGCTGTTCGTC -ACGGAACTTCGATAGCTGTCTCTC -ACGGAACTTCGATAGCTGTGGATC -ACGGAACTTCGATAGCTGCACTTC -ACGGAACTTCGATAGCTGGTACTC -ACGGAACTTCGATAGCTGGATGTC -ACGGAACTTCGATAGCTGACAGTC -ACGGAACTTCGATAGCTGTTGCTG -ACGGAACTTCGATAGCTGTCCATG -ACGGAACTTCGATAGCTGTGTGTG -ACGGAACTTCGATAGCTGCTAGTG -ACGGAACTTCGATAGCTGCATCTG -ACGGAACTTCGATAGCTGGAGTTG -ACGGAACTTCGATAGCTGAGACTG -ACGGAACTTCGATAGCTGTCGGTA -ACGGAACTTCGATAGCTGTGCCTA -ACGGAACTTCGATAGCTGCCACTA -ACGGAACTTCGATAGCTGGGAGTA -ACGGAACTTCGATAGCTGTCGTCT -ACGGAACTTCGATAGCTGTGCACT -ACGGAACTTCGATAGCTGCTGACT -ACGGAACTTCGATAGCTGCAACCT -ACGGAACTTCGATAGCTGGCTACT -ACGGAACTTCGATAGCTGGGATCT -ACGGAACTTCGATAGCTGAAGGCT -ACGGAACTTCGATAGCTGTCAACC -ACGGAACTTCGATAGCTGTGTTCC -ACGGAACTTCGATAGCTGATTCCC -ACGGAACTTCGATAGCTGTTCTCG -ACGGAACTTCGATAGCTGTAGACG -ACGGAACTTCGATAGCTGGTAACG -ACGGAACTTCGATAGCTGACTTCG -ACGGAACTTCGATAGCTGTACGCA -ACGGAACTTCGATAGCTGCTTGCA -ACGGAACTTCGATAGCTGCGAACA -ACGGAACTTCGATAGCTGCAGTCA -ACGGAACTTCGATAGCTGGATCCA -ACGGAACTTCGATAGCTGACGACA -ACGGAACTTCGATAGCTGAGCTCA -ACGGAACTTCGATAGCTGTCACGT -ACGGAACTTCGATAGCTGCGTAGT -ACGGAACTTCGATAGCTGGTCAGT -ACGGAACTTCGATAGCTGGAAGGT -ACGGAACTTCGATAGCTGAACCGT -ACGGAACTTCGATAGCTGTTGTGC -ACGGAACTTCGATAGCTGCTAAGC -ACGGAACTTCGATAGCTGACTAGC -ACGGAACTTCGATAGCTGAGATGC -ACGGAACTTCGATAGCTGTGAAGG -ACGGAACTTCGATAGCTGCAATGG -ACGGAACTTCGATAGCTGATGAGG -ACGGAACTTCGATAGCTGAATGGG -ACGGAACTTCGATAGCTGTCCTGA -ACGGAACTTCGATAGCTGTAGCGA -ACGGAACTTCGATAGCTGCACAGA -ACGGAACTTCGATAGCTGGCAAGA -ACGGAACTTCGATAGCTGGGTTGA -ACGGAACTTCGATAGCTGTCCGAT -ACGGAACTTCGATAGCTGTGGCAT -ACGGAACTTCGATAGCTGCGAGAT -ACGGAACTTCGATAGCTGTACCAC -ACGGAACTTCGATAGCTGCAGAAC -ACGGAACTTCGATAGCTGGTCTAC -ACGGAACTTCGATAGCTGACGTAC -ACGGAACTTCGATAGCTGAGTGAC -ACGGAACTTCGATAGCTGCTGTAG -ACGGAACTTCGATAGCTGCCTAAG -ACGGAACTTCGATAGCTGGTTCAG -ACGGAACTTCGATAGCTGGCATAG -ACGGAACTTCGATAGCTGGACAAG -ACGGAACTTCGATAGCTGAAGCAG -ACGGAACTTCGATAGCTGCGTCAA -ACGGAACTTCGATAGCTGGCTGAA -ACGGAACTTCGATAGCTGAGTACG -ACGGAACTTCGATAGCTGATCCGA -ACGGAACTTCGATAGCTGATGGGA -ACGGAACTTCGATAGCTGGTGCAA -ACGGAACTTCGATAGCTGGAGGAA -ACGGAACTTCGATAGCTGCAGGTA -ACGGAACTTCGATAGCTGGACTCT -ACGGAACTTCGATAGCTGAGTCCT -ACGGAACTTCGATAGCTGTAAGCC -ACGGAACTTCGATAGCTGATAGCC -ACGGAACTTCGATAGCTGTAACCG -ACGGAACTTCGATAGCTGATGCCA -ACGGAACTTCGAAAGCCTGGAAAC -ACGGAACTTCGAAAGCCTAACACC -ACGGAACTTCGAAAGCCTATCGAG -ACGGAACTTCGAAAGCCTCTCCTT -ACGGAACTTCGAAAGCCTCCTGTT -ACGGAACTTCGAAAGCCTCGGTTT -ACGGAACTTCGAAAGCCTGTGGTT -ACGGAACTTCGAAAGCCTGCCTTT -ACGGAACTTCGAAAGCCTGGTCTT -ACGGAACTTCGAAAGCCTACGCTT -ACGGAACTTCGAAAGCCTAGCGTT -ACGGAACTTCGAAAGCCTTTCGTC -ACGGAACTTCGAAAGCCTTCTCTC -ACGGAACTTCGAAAGCCTTGGATC -ACGGAACTTCGAAAGCCTCACTTC -ACGGAACTTCGAAAGCCTGTACTC -ACGGAACTTCGAAAGCCTGATGTC -ACGGAACTTCGAAAGCCTACAGTC -ACGGAACTTCGAAAGCCTTTGCTG -ACGGAACTTCGAAAGCCTTCCATG -ACGGAACTTCGAAAGCCTTGTGTG -ACGGAACTTCGAAAGCCTCTAGTG -ACGGAACTTCGAAAGCCTCATCTG -ACGGAACTTCGAAAGCCTGAGTTG -ACGGAACTTCGAAAGCCTAGACTG -ACGGAACTTCGAAAGCCTTCGGTA -ACGGAACTTCGAAAGCCTTGCCTA -ACGGAACTTCGAAAGCCTCCACTA -ACGGAACTTCGAAAGCCTGGAGTA -ACGGAACTTCGAAAGCCTTCGTCT -ACGGAACTTCGAAAGCCTTGCACT -ACGGAACTTCGAAAGCCTCTGACT -ACGGAACTTCGAAAGCCTCAACCT -ACGGAACTTCGAAAGCCTGCTACT -ACGGAACTTCGAAAGCCTGGATCT -ACGGAACTTCGAAAGCCTAAGGCT -ACGGAACTTCGAAAGCCTTCAACC -ACGGAACTTCGAAAGCCTTGTTCC -ACGGAACTTCGAAAGCCTATTCCC -ACGGAACTTCGAAAGCCTTTCTCG -ACGGAACTTCGAAAGCCTTAGACG -ACGGAACTTCGAAAGCCTGTAACG -ACGGAACTTCGAAAGCCTACTTCG -ACGGAACTTCGAAAGCCTTACGCA -ACGGAACTTCGAAAGCCTCTTGCA -ACGGAACTTCGAAAGCCTCGAACA -ACGGAACTTCGAAAGCCTCAGTCA -ACGGAACTTCGAAAGCCTGATCCA -ACGGAACTTCGAAAGCCTACGACA -ACGGAACTTCGAAAGCCTAGCTCA -ACGGAACTTCGAAAGCCTTCACGT -ACGGAACTTCGAAAGCCTCGTAGT -ACGGAACTTCGAAAGCCTGTCAGT -ACGGAACTTCGAAAGCCTGAAGGT -ACGGAACTTCGAAAGCCTAACCGT -ACGGAACTTCGAAAGCCTTTGTGC -ACGGAACTTCGAAAGCCTCTAAGC -ACGGAACTTCGAAAGCCTACTAGC -ACGGAACTTCGAAAGCCTAGATGC -ACGGAACTTCGAAAGCCTTGAAGG -ACGGAACTTCGAAAGCCTCAATGG -ACGGAACTTCGAAAGCCTATGAGG -ACGGAACTTCGAAAGCCTAATGGG -ACGGAACTTCGAAAGCCTTCCTGA -ACGGAACTTCGAAAGCCTTAGCGA -ACGGAACTTCGAAAGCCTCACAGA -ACGGAACTTCGAAAGCCTGCAAGA -ACGGAACTTCGAAAGCCTGGTTGA -ACGGAACTTCGAAAGCCTTCCGAT -ACGGAACTTCGAAAGCCTTGGCAT -ACGGAACTTCGAAAGCCTCGAGAT -ACGGAACTTCGAAAGCCTTACCAC -ACGGAACTTCGAAAGCCTCAGAAC -ACGGAACTTCGAAAGCCTGTCTAC -ACGGAACTTCGAAAGCCTACGTAC -ACGGAACTTCGAAAGCCTAGTGAC -ACGGAACTTCGAAAGCCTCTGTAG -ACGGAACTTCGAAAGCCTCCTAAG -ACGGAACTTCGAAAGCCTGTTCAG -ACGGAACTTCGAAAGCCTGCATAG -ACGGAACTTCGAAAGCCTGACAAG -ACGGAACTTCGAAAGCCTAAGCAG -ACGGAACTTCGAAAGCCTCGTCAA -ACGGAACTTCGAAAGCCTGCTGAA -ACGGAACTTCGAAAGCCTAGTACG -ACGGAACTTCGAAAGCCTATCCGA -ACGGAACTTCGAAAGCCTATGGGA -ACGGAACTTCGAAAGCCTGTGCAA -ACGGAACTTCGAAAGCCTGAGGAA -ACGGAACTTCGAAAGCCTCAGGTA -ACGGAACTTCGAAAGCCTGACTCT -ACGGAACTTCGAAAGCCTAGTCCT -ACGGAACTTCGAAAGCCTTAAGCC -ACGGAACTTCGAAAGCCTATAGCC -ACGGAACTTCGAAAGCCTTAACCG -ACGGAACTTCGAAAGCCTATGCCA -ACGGAACTTCGACAGGTTGGAAAC -ACGGAACTTCGACAGGTTAACACC -ACGGAACTTCGACAGGTTATCGAG -ACGGAACTTCGACAGGTTCTCCTT -ACGGAACTTCGACAGGTTCCTGTT -ACGGAACTTCGACAGGTTCGGTTT -ACGGAACTTCGACAGGTTGTGGTT -ACGGAACTTCGACAGGTTGCCTTT -ACGGAACTTCGACAGGTTGGTCTT -ACGGAACTTCGACAGGTTACGCTT -ACGGAACTTCGACAGGTTAGCGTT -ACGGAACTTCGACAGGTTTTCGTC -ACGGAACTTCGACAGGTTTCTCTC -ACGGAACTTCGACAGGTTTGGATC -ACGGAACTTCGACAGGTTCACTTC -ACGGAACTTCGACAGGTTGTACTC -ACGGAACTTCGACAGGTTGATGTC -ACGGAACTTCGACAGGTTACAGTC -ACGGAACTTCGACAGGTTTTGCTG -ACGGAACTTCGACAGGTTTCCATG -ACGGAACTTCGACAGGTTTGTGTG -ACGGAACTTCGACAGGTTCTAGTG -ACGGAACTTCGACAGGTTCATCTG -ACGGAACTTCGACAGGTTGAGTTG -ACGGAACTTCGACAGGTTAGACTG -ACGGAACTTCGACAGGTTTCGGTA -ACGGAACTTCGACAGGTTTGCCTA -ACGGAACTTCGACAGGTTCCACTA -ACGGAACTTCGACAGGTTGGAGTA -ACGGAACTTCGACAGGTTTCGTCT -ACGGAACTTCGACAGGTTTGCACT -ACGGAACTTCGACAGGTTCTGACT -ACGGAACTTCGACAGGTTCAACCT -ACGGAACTTCGACAGGTTGCTACT -ACGGAACTTCGACAGGTTGGATCT -ACGGAACTTCGACAGGTTAAGGCT -ACGGAACTTCGACAGGTTTCAACC -ACGGAACTTCGACAGGTTTGTTCC -ACGGAACTTCGACAGGTTATTCCC -ACGGAACTTCGACAGGTTTTCTCG -ACGGAACTTCGACAGGTTTAGACG -ACGGAACTTCGACAGGTTGTAACG -ACGGAACTTCGACAGGTTACTTCG -ACGGAACTTCGACAGGTTTACGCA -ACGGAACTTCGACAGGTTCTTGCA -ACGGAACTTCGACAGGTTCGAACA -ACGGAACTTCGACAGGTTCAGTCA -ACGGAACTTCGACAGGTTGATCCA -ACGGAACTTCGACAGGTTACGACA -ACGGAACTTCGACAGGTTAGCTCA -ACGGAACTTCGACAGGTTTCACGT -ACGGAACTTCGACAGGTTCGTAGT -ACGGAACTTCGACAGGTTGTCAGT -ACGGAACTTCGACAGGTTGAAGGT -ACGGAACTTCGACAGGTTAACCGT -ACGGAACTTCGACAGGTTTTGTGC -ACGGAACTTCGACAGGTTCTAAGC -ACGGAACTTCGACAGGTTACTAGC -ACGGAACTTCGACAGGTTAGATGC -ACGGAACTTCGACAGGTTTGAAGG -ACGGAACTTCGACAGGTTCAATGG -ACGGAACTTCGACAGGTTATGAGG -ACGGAACTTCGACAGGTTAATGGG -ACGGAACTTCGACAGGTTTCCTGA -ACGGAACTTCGACAGGTTTAGCGA -ACGGAACTTCGACAGGTTCACAGA -ACGGAACTTCGACAGGTTGCAAGA -ACGGAACTTCGACAGGTTGGTTGA -ACGGAACTTCGACAGGTTTCCGAT -ACGGAACTTCGACAGGTTTGGCAT -ACGGAACTTCGACAGGTTCGAGAT -ACGGAACTTCGACAGGTTTACCAC -ACGGAACTTCGACAGGTTCAGAAC -ACGGAACTTCGACAGGTTGTCTAC -ACGGAACTTCGACAGGTTACGTAC -ACGGAACTTCGACAGGTTAGTGAC -ACGGAACTTCGACAGGTTCTGTAG -ACGGAACTTCGACAGGTTCCTAAG -ACGGAACTTCGACAGGTTGTTCAG -ACGGAACTTCGACAGGTTGCATAG -ACGGAACTTCGACAGGTTGACAAG -ACGGAACTTCGACAGGTTAAGCAG -ACGGAACTTCGACAGGTTCGTCAA -ACGGAACTTCGACAGGTTGCTGAA -ACGGAACTTCGACAGGTTAGTACG -ACGGAACTTCGACAGGTTATCCGA -ACGGAACTTCGACAGGTTATGGGA -ACGGAACTTCGACAGGTTGTGCAA -ACGGAACTTCGACAGGTTGAGGAA -ACGGAACTTCGACAGGTTCAGGTA -ACGGAACTTCGACAGGTTGACTCT -ACGGAACTTCGACAGGTTAGTCCT -ACGGAACTTCGACAGGTTTAAGCC -ACGGAACTTCGACAGGTTATAGCC -ACGGAACTTCGACAGGTTTAACCG -ACGGAACTTCGACAGGTTATGCCA -ACGGAACTTCGATAGGCAGGAAAC -ACGGAACTTCGATAGGCAAACACC -ACGGAACTTCGATAGGCAATCGAG -ACGGAACTTCGATAGGCACTCCTT -ACGGAACTTCGATAGGCACCTGTT -ACGGAACTTCGATAGGCACGGTTT -ACGGAACTTCGATAGGCAGTGGTT -ACGGAACTTCGATAGGCAGCCTTT -ACGGAACTTCGATAGGCAGGTCTT -ACGGAACTTCGATAGGCAACGCTT -ACGGAACTTCGATAGGCAAGCGTT -ACGGAACTTCGATAGGCATTCGTC -ACGGAACTTCGATAGGCATCTCTC -ACGGAACTTCGATAGGCATGGATC -ACGGAACTTCGATAGGCACACTTC -ACGGAACTTCGATAGGCAGTACTC -ACGGAACTTCGATAGGCAGATGTC -ACGGAACTTCGATAGGCAACAGTC -ACGGAACTTCGATAGGCATTGCTG -ACGGAACTTCGATAGGCATCCATG -ACGGAACTTCGATAGGCATGTGTG -ACGGAACTTCGATAGGCACTAGTG -ACGGAACTTCGATAGGCACATCTG -ACGGAACTTCGATAGGCAGAGTTG -ACGGAACTTCGATAGGCAAGACTG -ACGGAACTTCGATAGGCATCGGTA -ACGGAACTTCGATAGGCATGCCTA -ACGGAACTTCGATAGGCACCACTA -ACGGAACTTCGATAGGCAGGAGTA -ACGGAACTTCGATAGGCATCGTCT -ACGGAACTTCGATAGGCATGCACT -ACGGAACTTCGATAGGCACTGACT -ACGGAACTTCGATAGGCACAACCT -ACGGAACTTCGATAGGCAGCTACT -ACGGAACTTCGATAGGCAGGATCT -ACGGAACTTCGATAGGCAAAGGCT -ACGGAACTTCGATAGGCATCAACC -ACGGAACTTCGATAGGCATGTTCC -ACGGAACTTCGATAGGCAATTCCC -ACGGAACTTCGATAGGCATTCTCG -ACGGAACTTCGATAGGCATAGACG -ACGGAACTTCGATAGGCAGTAACG -ACGGAACTTCGATAGGCAACTTCG -ACGGAACTTCGATAGGCATACGCA -ACGGAACTTCGATAGGCACTTGCA -ACGGAACTTCGATAGGCACGAACA -ACGGAACTTCGATAGGCACAGTCA -ACGGAACTTCGATAGGCAGATCCA -ACGGAACTTCGATAGGCAACGACA -ACGGAACTTCGATAGGCAAGCTCA -ACGGAACTTCGATAGGCATCACGT -ACGGAACTTCGATAGGCACGTAGT -ACGGAACTTCGATAGGCAGTCAGT -ACGGAACTTCGATAGGCAGAAGGT -ACGGAACTTCGATAGGCAAACCGT -ACGGAACTTCGATAGGCATTGTGC -ACGGAACTTCGATAGGCACTAAGC -ACGGAACTTCGATAGGCAACTAGC -ACGGAACTTCGATAGGCAAGATGC -ACGGAACTTCGATAGGCATGAAGG -ACGGAACTTCGATAGGCACAATGG -ACGGAACTTCGATAGGCAATGAGG -ACGGAACTTCGATAGGCAAATGGG -ACGGAACTTCGATAGGCATCCTGA -ACGGAACTTCGATAGGCATAGCGA -ACGGAACTTCGATAGGCACACAGA -ACGGAACTTCGATAGGCAGCAAGA -ACGGAACTTCGATAGGCAGGTTGA -ACGGAACTTCGATAGGCATCCGAT -ACGGAACTTCGATAGGCATGGCAT -ACGGAACTTCGATAGGCACGAGAT -ACGGAACTTCGATAGGCATACCAC -ACGGAACTTCGATAGGCACAGAAC -ACGGAACTTCGATAGGCAGTCTAC -ACGGAACTTCGATAGGCAACGTAC -ACGGAACTTCGATAGGCAAGTGAC -ACGGAACTTCGATAGGCACTGTAG -ACGGAACTTCGATAGGCACCTAAG -ACGGAACTTCGATAGGCAGTTCAG -ACGGAACTTCGATAGGCAGCATAG -ACGGAACTTCGATAGGCAGACAAG -ACGGAACTTCGATAGGCAAAGCAG -ACGGAACTTCGATAGGCACGTCAA -ACGGAACTTCGATAGGCAGCTGAA -ACGGAACTTCGATAGGCAAGTACG -ACGGAACTTCGATAGGCAATCCGA -ACGGAACTTCGATAGGCAATGGGA -ACGGAACTTCGATAGGCAGTGCAA -ACGGAACTTCGATAGGCAGAGGAA -ACGGAACTTCGATAGGCACAGGTA -ACGGAACTTCGATAGGCAGACTCT -ACGGAACTTCGATAGGCAAGTCCT -ACGGAACTTCGATAGGCATAAGCC -ACGGAACTTCGATAGGCAATAGCC -ACGGAACTTCGATAGGCATAACCG -ACGGAACTTCGATAGGCAATGCCA -ACGGAACTTCGAAAGGACGGAAAC -ACGGAACTTCGAAAGGACAACACC -ACGGAACTTCGAAAGGACATCGAG -ACGGAACTTCGAAAGGACCTCCTT -ACGGAACTTCGAAAGGACCCTGTT -ACGGAACTTCGAAAGGACCGGTTT -ACGGAACTTCGAAAGGACGTGGTT -ACGGAACTTCGAAAGGACGCCTTT -ACGGAACTTCGAAAGGACGGTCTT -ACGGAACTTCGAAAGGACACGCTT -ACGGAACTTCGAAAGGACAGCGTT -ACGGAACTTCGAAAGGACTTCGTC -ACGGAACTTCGAAAGGACTCTCTC -ACGGAACTTCGAAAGGACTGGATC -ACGGAACTTCGAAAGGACCACTTC -ACGGAACTTCGAAAGGACGTACTC -ACGGAACTTCGAAAGGACGATGTC -ACGGAACTTCGAAAGGACACAGTC -ACGGAACTTCGAAAGGACTTGCTG -ACGGAACTTCGAAAGGACTCCATG -ACGGAACTTCGAAAGGACTGTGTG -ACGGAACTTCGAAAGGACCTAGTG -ACGGAACTTCGAAAGGACCATCTG -ACGGAACTTCGAAAGGACGAGTTG -ACGGAACTTCGAAAGGACAGACTG -ACGGAACTTCGAAAGGACTCGGTA -ACGGAACTTCGAAAGGACTGCCTA -ACGGAACTTCGAAAGGACCCACTA -ACGGAACTTCGAAAGGACGGAGTA -ACGGAACTTCGAAAGGACTCGTCT -ACGGAACTTCGAAAGGACTGCACT -ACGGAACTTCGAAAGGACCTGACT -ACGGAACTTCGAAAGGACCAACCT -ACGGAACTTCGAAAGGACGCTACT -ACGGAACTTCGAAAGGACGGATCT -ACGGAACTTCGAAAGGACAAGGCT -ACGGAACTTCGAAAGGACTCAACC -ACGGAACTTCGAAAGGACTGTTCC -ACGGAACTTCGAAAGGACATTCCC -ACGGAACTTCGAAAGGACTTCTCG -ACGGAACTTCGAAAGGACTAGACG -ACGGAACTTCGAAAGGACGTAACG -ACGGAACTTCGAAAGGACACTTCG -ACGGAACTTCGAAAGGACTACGCA -ACGGAACTTCGAAAGGACCTTGCA -ACGGAACTTCGAAAGGACCGAACA -ACGGAACTTCGAAAGGACCAGTCA -ACGGAACTTCGAAAGGACGATCCA -ACGGAACTTCGAAAGGACACGACA -ACGGAACTTCGAAAGGACAGCTCA -ACGGAACTTCGAAAGGACTCACGT -ACGGAACTTCGAAAGGACCGTAGT -ACGGAACTTCGAAAGGACGTCAGT -ACGGAACTTCGAAAGGACGAAGGT -ACGGAACTTCGAAAGGACAACCGT -ACGGAACTTCGAAAGGACTTGTGC -ACGGAACTTCGAAAGGACCTAAGC -ACGGAACTTCGAAAGGACACTAGC -ACGGAACTTCGAAAGGACAGATGC -ACGGAACTTCGAAAGGACTGAAGG -ACGGAACTTCGAAAGGACCAATGG -ACGGAACTTCGAAAGGACATGAGG -ACGGAACTTCGAAAGGACAATGGG -ACGGAACTTCGAAAGGACTCCTGA -ACGGAACTTCGAAAGGACTAGCGA -ACGGAACTTCGAAAGGACCACAGA -ACGGAACTTCGAAAGGACGCAAGA -ACGGAACTTCGAAAGGACGGTTGA -ACGGAACTTCGAAAGGACTCCGAT -ACGGAACTTCGAAAGGACTGGCAT -ACGGAACTTCGAAAGGACCGAGAT -ACGGAACTTCGAAAGGACTACCAC -ACGGAACTTCGAAAGGACCAGAAC -ACGGAACTTCGAAAGGACGTCTAC -ACGGAACTTCGAAAGGACACGTAC -ACGGAACTTCGAAAGGACAGTGAC -ACGGAACTTCGAAAGGACCTGTAG -ACGGAACTTCGAAAGGACCCTAAG -ACGGAACTTCGAAAGGACGTTCAG -ACGGAACTTCGAAAGGACGCATAG -ACGGAACTTCGAAAGGACGACAAG -ACGGAACTTCGAAAGGACAAGCAG -ACGGAACTTCGAAAGGACCGTCAA -ACGGAACTTCGAAAGGACGCTGAA -ACGGAACTTCGAAAGGACAGTACG -ACGGAACTTCGAAAGGACATCCGA -ACGGAACTTCGAAAGGACATGGGA -ACGGAACTTCGAAAGGACGTGCAA -ACGGAACTTCGAAAGGACGAGGAA -ACGGAACTTCGAAAGGACCAGGTA -ACGGAACTTCGAAAGGACGACTCT -ACGGAACTTCGAAAGGACAGTCCT -ACGGAACTTCGAAAGGACTAAGCC -ACGGAACTTCGAAAGGACATAGCC -ACGGAACTTCGAAAGGACTAACCG -ACGGAACTTCGAAAGGACATGCCA -ACGGAACTTCGACAGAAGGGAAAC -ACGGAACTTCGACAGAAGAACACC -ACGGAACTTCGACAGAAGATCGAG -ACGGAACTTCGACAGAAGCTCCTT -ACGGAACTTCGACAGAAGCCTGTT -ACGGAACTTCGACAGAAGCGGTTT -ACGGAACTTCGACAGAAGGTGGTT -ACGGAACTTCGACAGAAGGCCTTT -ACGGAACTTCGACAGAAGGGTCTT -ACGGAACTTCGACAGAAGACGCTT -ACGGAACTTCGACAGAAGAGCGTT -ACGGAACTTCGACAGAAGTTCGTC -ACGGAACTTCGACAGAAGTCTCTC -ACGGAACTTCGACAGAAGTGGATC -ACGGAACTTCGACAGAAGCACTTC -ACGGAACTTCGACAGAAGGTACTC -ACGGAACTTCGACAGAAGGATGTC -ACGGAACTTCGACAGAAGACAGTC -ACGGAACTTCGACAGAAGTTGCTG -ACGGAACTTCGACAGAAGTCCATG -ACGGAACTTCGACAGAAGTGTGTG -ACGGAACTTCGACAGAAGCTAGTG -ACGGAACTTCGACAGAAGCATCTG -ACGGAACTTCGACAGAAGGAGTTG -ACGGAACTTCGACAGAAGAGACTG -ACGGAACTTCGACAGAAGTCGGTA -ACGGAACTTCGACAGAAGTGCCTA -ACGGAACTTCGACAGAAGCCACTA -ACGGAACTTCGACAGAAGGGAGTA -ACGGAACTTCGACAGAAGTCGTCT -ACGGAACTTCGACAGAAGTGCACT -ACGGAACTTCGACAGAAGCTGACT -ACGGAACTTCGACAGAAGCAACCT -ACGGAACTTCGACAGAAGGCTACT -ACGGAACTTCGACAGAAGGGATCT -ACGGAACTTCGACAGAAGAAGGCT -ACGGAACTTCGACAGAAGTCAACC -ACGGAACTTCGACAGAAGTGTTCC -ACGGAACTTCGACAGAAGATTCCC -ACGGAACTTCGACAGAAGTTCTCG -ACGGAACTTCGACAGAAGTAGACG -ACGGAACTTCGACAGAAGGTAACG -ACGGAACTTCGACAGAAGACTTCG -ACGGAACTTCGACAGAAGTACGCA -ACGGAACTTCGACAGAAGCTTGCA -ACGGAACTTCGACAGAAGCGAACA -ACGGAACTTCGACAGAAGCAGTCA -ACGGAACTTCGACAGAAGGATCCA -ACGGAACTTCGACAGAAGACGACA -ACGGAACTTCGACAGAAGAGCTCA -ACGGAACTTCGACAGAAGTCACGT -ACGGAACTTCGACAGAAGCGTAGT -ACGGAACTTCGACAGAAGGTCAGT -ACGGAACTTCGACAGAAGGAAGGT -ACGGAACTTCGACAGAAGAACCGT -ACGGAACTTCGACAGAAGTTGTGC -ACGGAACTTCGACAGAAGCTAAGC -ACGGAACTTCGACAGAAGACTAGC -ACGGAACTTCGACAGAAGAGATGC -ACGGAACTTCGACAGAAGTGAAGG -ACGGAACTTCGACAGAAGCAATGG -ACGGAACTTCGACAGAAGATGAGG -ACGGAACTTCGACAGAAGAATGGG -ACGGAACTTCGACAGAAGTCCTGA -ACGGAACTTCGACAGAAGTAGCGA -ACGGAACTTCGACAGAAGCACAGA -ACGGAACTTCGACAGAAGGCAAGA -ACGGAACTTCGACAGAAGGGTTGA -ACGGAACTTCGACAGAAGTCCGAT -ACGGAACTTCGACAGAAGTGGCAT -ACGGAACTTCGACAGAAGCGAGAT -ACGGAACTTCGACAGAAGTACCAC -ACGGAACTTCGACAGAAGCAGAAC -ACGGAACTTCGACAGAAGGTCTAC -ACGGAACTTCGACAGAAGACGTAC -ACGGAACTTCGACAGAAGAGTGAC -ACGGAACTTCGACAGAAGCTGTAG -ACGGAACTTCGACAGAAGCCTAAG -ACGGAACTTCGACAGAAGGTTCAG -ACGGAACTTCGACAGAAGGCATAG -ACGGAACTTCGACAGAAGGACAAG -ACGGAACTTCGACAGAAGAAGCAG -ACGGAACTTCGACAGAAGCGTCAA -ACGGAACTTCGACAGAAGGCTGAA -ACGGAACTTCGACAGAAGAGTACG -ACGGAACTTCGACAGAAGATCCGA -ACGGAACTTCGACAGAAGATGGGA -ACGGAACTTCGACAGAAGGTGCAA -ACGGAACTTCGACAGAAGGAGGAA -ACGGAACTTCGACAGAAGCAGGTA -ACGGAACTTCGACAGAAGGACTCT -ACGGAACTTCGACAGAAGAGTCCT -ACGGAACTTCGACAGAAGTAAGCC -ACGGAACTTCGACAGAAGATAGCC -ACGGAACTTCGACAGAAGTAACCG -ACGGAACTTCGACAGAAGATGCCA -ACGGAACTTCGACAACGTGGAAAC -ACGGAACTTCGACAACGTAACACC -ACGGAACTTCGACAACGTATCGAG -ACGGAACTTCGACAACGTCTCCTT -ACGGAACTTCGACAACGTCCTGTT -ACGGAACTTCGACAACGTCGGTTT -ACGGAACTTCGACAACGTGTGGTT -ACGGAACTTCGACAACGTGCCTTT -ACGGAACTTCGACAACGTGGTCTT -ACGGAACTTCGACAACGTACGCTT -ACGGAACTTCGACAACGTAGCGTT -ACGGAACTTCGACAACGTTTCGTC -ACGGAACTTCGACAACGTTCTCTC -ACGGAACTTCGACAACGTTGGATC -ACGGAACTTCGACAACGTCACTTC -ACGGAACTTCGACAACGTGTACTC -ACGGAACTTCGACAACGTGATGTC -ACGGAACTTCGACAACGTACAGTC -ACGGAACTTCGACAACGTTTGCTG -ACGGAACTTCGACAACGTTCCATG -ACGGAACTTCGACAACGTTGTGTG -ACGGAACTTCGACAACGTCTAGTG -ACGGAACTTCGACAACGTCATCTG -ACGGAACTTCGACAACGTGAGTTG -ACGGAACTTCGACAACGTAGACTG -ACGGAACTTCGACAACGTTCGGTA -ACGGAACTTCGACAACGTTGCCTA -ACGGAACTTCGACAACGTCCACTA -ACGGAACTTCGACAACGTGGAGTA -ACGGAACTTCGACAACGTTCGTCT -ACGGAACTTCGACAACGTTGCACT -ACGGAACTTCGACAACGTCTGACT -ACGGAACTTCGACAACGTCAACCT -ACGGAACTTCGACAACGTGCTACT -ACGGAACTTCGACAACGTGGATCT -ACGGAACTTCGACAACGTAAGGCT -ACGGAACTTCGACAACGTTCAACC -ACGGAACTTCGACAACGTTGTTCC -ACGGAACTTCGACAACGTATTCCC -ACGGAACTTCGACAACGTTTCTCG -ACGGAACTTCGACAACGTTAGACG -ACGGAACTTCGACAACGTGTAACG -ACGGAACTTCGACAACGTACTTCG -ACGGAACTTCGACAACGTTACGCA -ACGGAACTTCGACAACGTCTTGCA -ACGGAACTTCGACAACGTCGAACA -ACGGAACTTCGACAACGTCAGTCA -ACGGAACTTCGACAACGTGATCCA -ACGGAACTTCGACAACGTACGACA -ACGGAACTTCGACAACGTAGCTCA -ACGGAACTTCGACAACGTTCACGT -ACGGAACTTCGACAACGTCGTAGT -ACGGAACTTCGACAACGTGTCAGT -ACGGAACTTCGACAACGTGAAGGT -ACGGAACTTCGACAACGTAACCGT -ACGGAACTTCGACAACGTTTGTGC -ACGGAACTTCGACAACGTCTAAGC -ACGGAACTTCGACAACGTACTAGC -ACGGAACTTCGACAACGTAGATGC -ACGGAACTTCGACAACGTTGAAGG -ACGGAACTTCGACAACGTCAATGG -ACGGAACTTCGACAACGTATGAGG -ACGGAACTTCGACAACGTAATGGG -ACGGAACTTCGACAACGTTCCTGA -ACGGAACTTCGACAACGTTAGCGA -ACGGAACTTCGACAACGTCACAGA -ACGGAACTTCGACAACGTGCAAGA -ACGGAACTTCGACAACGTGGTTGA -ACGGAACTTCGACAACGTTCCGAT -ACGGAACTTCGACAACGTTGGCAT -ACGGAACTTCGACAACGTCGAGAT -ACGGAACTTCGACAACGTTACCAC -ACGGAACTTCGACAACGTCAGAAC -ACGGAACTTCGACAACGTGTCTAC -ACGGAACTTCGACAACGTACGTAC -ACGGAACTTCGACAACGTAGTGAC -ACGGAACTTCGACAACGTCTGTAG -ACGGAACTTCGACAACGTCCTAAG -ACGGAACTTCGACAACGTGTTCAG -ACGGAACTTCGACAACGTGCATAG -ACGGAACTTCGACAACGTGACAAG -ACGGAACTTCGACAACGTAAGCAG -ACGGAACTTCGACAACGTCGTCAA -ACGGAACTTCGACAACGTGCTGAA -ACGGAACTTCGACAACGTAGTACG -ACGGAACTTCGACAACGTATCCGA -ACGGAACTTCGACAACGTATGGGA -ACGGAACTTCGACAACGTGTGCAA -ACGGAACTTCGACAACGTGAGGAA -ACGGAACTTCGACAACGTCAGGTA -ACGGAACTTCGACAACGTGACTCT -ACGGAACTTCGACAACGTAGTCCT -ACGGAACTTCGACAACGTTAAGCC -ACGGAACTTCGACAACGTATAGCC -ACGGAACTTCGACAACGTTAACCG -ACGGAACTTCGACAACGTATGCCA -ACGGAACTTCGAGAAGCTGGAAAC -ACGGAACTTCGAGAAGCTAACACC -ACGGAACTTCGAGAAGCTATCGAG -ACGGAACTTCGAGAAGCTCTCCTT -ACGGAACTTCGAGAAGCTCCTGTT -ACGGAACTTCGAGAAGCTCGGTTT -ACGGAACTTCGAGAAGCTGTGGTT -ACGGAACTTCGAGAAGCTGCCTTT -ACGGAACTTCGAGAAGCTGGTCTT -ACGGAACTTCGAGAAGCTACGCTT -ACGGAACTTCGAGAAGCTAGCGTT -ACGGAACTTCGAGAAGCTTTCGTC -ACGGAACTTCGAGAAGCTTCTCTC -ACGGAACTTCGAGAAGCTTGGATC -ACGGAACTTCGAGAAGCTCACTTC -ACGGAACTTCGAGAAGCTGTACTC -ACGGAACTTCGAGAAGCTGATGTC -ACGGAACTTCGAGAAGCTACAGTC -ACGGAACTTCGAGAAGCTTTGCTG -ACGGAACTTCGAGAAGCTTCCATG -ACGGAACTTCGAGAAGCTTGTGTG -ACGGAACTTCGAGAAGCTCTAGTG -ACGGAACTTCGAGAAGCTCATCTG -ACGGAACTTCGAGAAGCTGAGTTG -ACGGAACTTCGAGAAGCTAGACTG -ACGGAACTTCGAGAAGCTTCGGTA -ACGGAACTTCGAGAAGCTTGCCTA -ACGGAACTTCGAGAAGCTCCACTA -ACGGAACTTCGAGAAGCTGGAGTA -ACGGAACTTCGAGAAGCTTCGTCT -ACGGAACTTCGAGAAGCTTGCACT -ACGGAACTTCGAGAAGCTCTGACT -ACGGAACTTCGAGAAGCTCAACCT -ACGGAACTTCGAGAAGCTGCTACT -ACGGAACTTCGAGAAGCTGGATCT -ACGGAACTTCGAGAAGCTAAGGCT -ACGGAACTTCGAGAAGCTTCAACC -ACGGAACTTCGAGAAGCTTGTTCC -ACGGAACTTCGAGAAGCTATTCCC -ACGGAACTTCGAGAAGCTTTCTCG -ACGGAACTTCGAGAAGCTTAGACG -ACGGAACTTCGAGAAGCTGTAACG -ACGGAACTTCGAGAAGCTACTTCG -ACGGAACTTCGAGAAGCTTACGCA -ACGGAACTTCGAGAAGCTCTTGCA -ACGGAACTTCGAGAAGCTCGAACA -ACGGAACTTCGAGAAGCTCAGTCA -ACGGAACTTCGAGAAGCTGATCCA -ACGGAACTTCGAGAAGCTACGACA -ACGGAACTTCGAGAAGCTAGCTCA -ACGGAACTTCGAGAAGCTTCACGT -ACGGAACTTCGAGAAGCTCGTAGT -ACGGAACTTCGAGAAGCTGTCAGT -ACGGAACTTCGAGAAGCTGAAGGT -ACGGAACTTCGAGAAGCTAACCGT -ACGGAACTTCGAGAAGCTTTGTGC -ACGGAACTTCGAGAAGCTCTAAGC -ACGGAACTTCGAGAAGCTACTAGC -ACGGAACTTCGAGAAGCTAGATGC -ACGGAACTTCGAGAAGCTTGAAGG -ACGGAACTTCGAGAAGCTCAATGG -ACGGAACTTCGAGAAGCTATGAGG -ACGGAACTTCGAGAAGCTAATGGG -ACGGAACTTCGAGAAGCTTCCTGA -ACGGAACTTCGAGAAGCTTAGCGA -ACGGAACTTCGAGAAGCTCACAGA -ACGGAACTTCGAGAAGCTGCAAGA -ACGGAACTTCGAGAAGCTGGTTGA -ACGGAACTTCGAGAAGCTTCCGAT -ACGGAACTTCGAGAAGCTTGGCAT -ACGGAACTTCGAGAAGCTCGAGAT -ACGGAACTTCGAGAAGCTTACCAC -ACGGAACTTCGAGAAGCTCAGAAC -ACGGAACTTCGAGAAGCTGTCTAC -ACGGAACTTCGAGAAGCTACGTAC -ACGGAACTTCGAGAAGCTAGTGAC -ACGGAACTTCGAGAAGCTCTGTAG -ACGGAACTTCGAGAAGCTCCTAAG -ACGGAACTTCGAGAAGCTGTTCAG -ACGGAACTTCGAGAAGCTGCATAG -ACGGAACTTCGAGAAGCTGACAAG -ACGGAACTTCGAGAAGCTAAGCAG -ACGGAACTTCGAGAAGCTCGTCAA -ACGGAACTTCGAGAAGCTGCTGAA -ACGGAACTTCGAGAAGCTAGTACG -ACGGAACTTCGAGAAGCTATCCGA -ACGGAACTTCGAGAAGCTATGGGA -ACGGAACTTCGAGAAGCTGTGCAA -ACGGAACTTCGAGAAGCTGAGGAA -ACGGAACTTCGAGAAGCTCAGGTA -ACGGAACTTCGAGAAGCTGACTCT -ACGGAACTTCGAGAAGCTAGTCCT -ACGGAACTTCGAGAAGCTTAAGCC -ACGGAACTTCGAGAAGCTATAGCC -ACGGAACTTCGAGAAGCTTAACCG -ACGGAACTTCGAGAAGCTATGCCA -ACGGAACTTCGAACGAGTGGAAAC -ACGGAACTTCGAACGAGTAACACC -ACGGAACTTCGAACGAGTATCGAG -ACGGAACTTCGAACGAGTCTCCTT -ACGGAACTTCGAACGAGTCCTGTT -ACGGAACTTCGAACGAGTCGGTTT -ACGGAACTTCGAACGAGTGTGGTT -ACGGAACTTCGAACGAGTGCCTTT -ACGGAACTTCGAACGAGTGGTCTT -ACGGAACTTCGAACGAGTACGCTT -ACGGAACTTCGAACGAGTAGCGTT -ACGGAACTTCGAACGAGTTTCGTC -ACGGAACTTCGAACGAGTTCTCTC -ACGGAACTTCGAACGAGTTGGATC -ACGGAACTTCGAACGAGTCACTTC -ACGGAACTTCGAACGAGTGTACTC -ACGGAACTTCGAACGAGTGATGTC -ACGGAACTTCGAACGAGTACAGTC -ACGGAACTTCGAACGAGTTTGCTG -ACGGAACTTCGAACGAGTTCCATG -ACGGAACTTCGAACGAGTTGTGTG -ACGGAACTTCGAACGAGTCTAGTG -ACGGAACTTCGAACGAGTCATCTG -ACGGAACTTCGAACGAGTGAGTTG -ACGGAACTTCGAACGAGTAGACTG -ACGGAACTTCGAACGAGTTCGGTA -ACGGAACTTCGAACGAGTTGCCTA -ACGGAACTTCGAACGAGTCCACTA -ACGGAACTTCGAACGAGTGGAGTA -ACGGAACTTCGAACGAGTTCGTCT -ACGGAACTTCGAACGAGTTGCACT -ACGGAACTTCGAACGAGTCTGACT -ACGGAACTTCGAACGAGTCAACCT -ACGGAACTTCGAACGAGTGCTACT -ACGGAACTTCGAACGAGTGGATCT -ACGGAACTTCGAACGAGTAAGGCT -ACGGAACTTCGAACGAGTTCAACC -ACGGAACTTCGAACGAGTTGTTCC -ACGGAACTTCGAACGAGTATTCCC -ACGGAACTTCGAACGAGTTTCTCG -ACGGAACTTCGAACGAGTTAGACG -ACGGAACTTCGAACGAGTGTAACG -ACGGAACTTCGAACGAGTACTTCG -ACGGAACTTCGAACGAGTTACGCA -ACGGAACTTCGAACGAGTCTTGCA -ACGGAACTTCGAACGAGTCGAACA -ACGGAACTTCGAACGAGTCAGTCA -ACGGAACTTCGAACGAGTGATCCA -ACGGAACTTCGAACGAGTACGACA -ACGGAACTTCGAACGAGTAGCTCA -ACGGAACTTCGAACGAGTTCACGT -ACGGAACTTCGAACGAGTCGTAGT -ACGGAACTTCGAACGAGTGTCAGT -ACGGAACTTCGAACGAGTGAAGGT -ACGGAACTTCGAACGAGTAACCGT -ACGGAACTTCGAACGAGTTTGTGC -ACGGAACTTCGAACGAGTCTAAGC -ACGGAACTTCGAACGAGTACTAGC -ACGGAACTTCGAACGAGTAGATGC -ACGGAACTTCGAACGAGTTGAAGG -ACGGAACTTCGAACGAGTCAATGG -ACGGAACTTCGAACGAGTATGAGG -ACGGAACTTCGAACGAGTAATGGG -ACGGAACTTCGAACGAGTTCCTGA -ACGGAACTTCGAACGAGTTAGCGA -ACGGAACTTCGAACGAGTCACAGA -ACGGAACTTCGAACGAGTGCAAGA -ACGGAACTTCGAACGAGTGGTTGA -ACGGAACTTCGAACGAGTTCCGAT -ACGGAACTTCGAACGAGTTGGCAT -ACGGAACTTCGAACGAGTCGAGAT -ACGGAACTTCGAACGAGTTACCAC -ACGGAACTTCGAACGAGTCAGAAC -ACGGAACTTCGAACGAGTGTCTAC -ACGGAACTTCGAACGAGTACGTAC -ACGGAACTTCGAACGAGTAGTGAC -ACGGAACTTCGAACGAGTCTGTAG -ACGGAACTTCGAACGAGTCCTAAG -ACGGAACTTCGAACGAGTGTTCAG -ACGGAACTTCGAACGAGTGCATAG -ACGGAACTTCGAACGAGTGACAAG -ACGGAACTTCGAACGAGTAAGCAG -ACGGAACTTCGAACGAGTCGTCAA -ACGGAACTTCGAACGAGTGCTGAA -ACGGAACTTCGAACGAGTAGTACG -ACGGAACTTCGAACGAGTATCCGA -ACGGAACTTCGAACGAGTATGGGA -ACGGAACTTCGAACGAGTGTGCAA -ACGGAACTTCGAACGAGTGAGGAA -ACGGAACTTCGAACGAGTCAGGTA -ACGGAACTTCGAACGAGTGACTCT -ACGGAACTTCGAACGAGTAGTCCT -ACGGAACTTCGAACGAGTTAAGCC -ACGGAACTTCGAACGAGTATAGCC -ACGGAACTTCGAACGAGTTAACCG -ACGGAACTTCGAACGAGTATGCCA -ACGGAACTTCGACGAATCGGAAAC -ACGGAACTTCGACGAATCAACACC -ACGGAACTTCGACGAATCATCGAG -ACGGAACTTCGACGAATCCTCCTT -ACGGAACTTCGACGAATCCCTGTT -ACGGAACTTCGACGAATCCGGTTT -ACGGAACTTCGACGAATCGTGGTT -ACGGAACTTCGACGAATCGCCTTT -ACGGAACTTCGACGAATCGGTCTT -ACGGAACTTCGACGAATCACGCTT -ACGGAACTTCGACGAATCAGCGTT -ACGGAACTTCGACGAATCTTCGTC -ACGGAACTTCGACGAATCTCTCTC -ACGGAACTTCGACGAATCTGGATC -ACGGAACTTCGACGAATCCACTTC -ACGGAACTTCGACGAATCGTACTC -ACGGAACTTCGACGAATCGATGTC -ACGGAACTTCGACGAATCACAGTC -ACGGAACTTCGACGAATCTTGCTG -ACGGAACTTCGACGAATCTCCATG -ACGGAACTTCGACGAATCTGTGTG -ACGGAACTTCGACGAATCCTAGTG -ACGGAACTTCGACGAATCCATCTG -ACGGAACTTCGACGAATCGAGTTG -ACGGAACTTCGACGAATCAGACTG -ACGGAACTTCGACGAATCTCGGTA -ACGGAACTTCGACGAATCTGCCTA -ACGGAACTTCGACGAATCCCACTA -ACGGAACTTCGACGAATCGGAGTA -ACGGAACTTCGACGAATCTCGTCT -ACGGAACTTCGACGAATCTGCACT -ACGGAACTTCGACGAATCCTGACT -ACGGAACTTCGACGAATCCAACCT -ACGGAACTTCGACGAATCGCTACT -ACGGAACTTCGACGAATCGGATCT -ACGGAACTTCGACGAATCAAGGCT -ACGGAACTTCGACGAATCTCAACC -ACGGAACTTCGACGAATCTGTTCC -ACGGAACTTCGACGAATCATTCCC -ACGGAACTTCGACGAATCTTCTCG -ACGGAACTTCGACGAATCTAGACG -ACGGAACTTCGACGAATCGTAACG -ACGGAACTTCGACGAATCACTTCG -ACGGAACTTCGACGAATCTACGCA -ACGGAACTTCGACGAATCCTTGCA -ACGGAACTTCGACGAATCCGAACA -ACGGAACTTCGACGAATCCAGTCA -ACGGAACTTCGACGAATCGATCCA -ACGGAACTTCGACGAATCACGACA -ACGGAACTTCGACGAATCAGCTCA -ACGGAACTTCGACGAATCTCACGT -ACGGAACTTCGACGAATCCGTAGT -ACGGAACTTCGACGAATCGTCAGT -ACGGAACTTCGACGAATCGAAGGT -ACGGAACTTCGACGAATCAACCGT -ACGGAACTTCGACGAATCTTGTGC -ACGGAACTTCGACGAATCCTAAGC -ACGGAACTTCGACGAATCACTAGC -ACGGAACTTCGACGAATCAGATGC -ACGGAACTTCGACGAATCTGAAGG -ACGGAACTTCGACGAATCCAATGG -ACGGAACTTCGACGAATCATGAGG -ACGGAACTTCGACGAATCAATGGG -ACGGAACTTCGACGAATCTCCTGA -ACGGAACTTCGACGAATCTAGCGA -ACGGAACTTCGACGAATCCACAGA -ACGGAACTTCGACGAATCGCAAGA -ACGGAACTTCGACGAATCGGTTGA -ACGGAACTTCGACGAATCTCCGAT -ACGGAACTTCGACGAATCTGGCAT -ACGGAACTTCGACGAATCCGAGAT -ACGGAACTTCGACGAATCTACCAC -ACGGAACTTCGACGAATCCAGAAC -ACGGAACTTCGACGAATCGTCTAC -ACGGAACTTCGACGAATCACGTAC -ACGGAACTTCGACGAATCAGTGAC -ACGGAACTTCGACGAATCCTGTAG -ACGGAACTTCGACGAATCCCTAAG -ACGGAACTTCGACGAATCGTTCAG -ACGGAACTTCGACGAATCGCATAG -ACGGAACTTCGACGAATCGACAAG -ACGGAACTTCGACGAATCAAGCAG -ACGGAACTTCGACGAATCCGTCAA -ACGGAACTTCGACGAATCGCTGAA -ACGGAACTTCGACGAATCAGTACG -ACGGAACTTCGACGAATCATCCGA -ACGGAACTTCGACGAATCATGGGA -ACGGAACTTCGACGAATCGTGCAA -ACGGAACTTCGACGAATCGAGGAA -ACGGAACTTCGACGAATCCAGGTA -ACGGAACTTCGACGAATCGACTCT -ACGGAACTTCGACGAATCAGTCCT -ACGGAACTTCGACGAATCTAAGCC -ACGGAACTTCGACGAATCATAGCC -ACGGAACTTCGACGAATCTAACCG -ACGGAACTTCGACGAATCATGCCA -ACGGAACTTCGAGGAATGGGAAAC -ACGGAACTTCGAGGAATGAACACC -ACGGAACTTCGAGGAATGATCGAG -ACGGAACTTCGAGGAATGCTCCTT -ACGGAACTTCGAGGAATGCCTGTT -ACGGAACTTCGAGGAATGCGGTTT -ACGGAACTTCGAGGAATGGTGGTT -ACGGAACTTCGAGGAATGGCCTTT -ACGGAACTTCGAGGAATGGGTCTT -ACGGAACTTCGAGGAATGACGCTT -ACGGAACTTCGAGGAATGAGCGTT -ACGGAACTTCGAGGAATGTTCGTC -ACGGAACTTCGAGGAATGTCTCTC -ACGGAACTTCGAGGAATGTGGATC -ACGGAACTTCGAGGAATGCACTTC -ACGGAACTTCGAGGAATGGTACTC -ACGGAACTTCGAGGAATGGATGTC -ACGGAACTTCGAGGAATGACAGTC -ACGGAACTTCGAGGAATGTTGCTG -ACGGAACTTCGAGGAATGTCCATG -ACGGAACTTCGAGGAATGTGTGTG -ACGGAACTTCGAGGAATGCTAGTG -ACGGAACTTCGAGGAATGCATCTG -ACGGAACTTCGAGGAATGGAGTTG -ACGGAACTTCGAGGAATGAGACTG -ACGGAACTTCGAGGAATGTCGGTA -ACGGAACTTCGAGGAATGTGCCTA -ACGGAACTTCGAGGAATGCCACTA -ACGGAACTTCGAGGAATGGGAGTA -ACGGAACTTCGAGGAATGTCGTCT -ACGGAACTTCGAGGAATGTGCACT -ACGGAACTTCGAGGAATGCTGACT -ACGGAACTTCGAGGAATGCAACCT -ACGGAACTTCGAGGAATGGCTACT -ACGGAACTTCGAGGAATGGGATCT -ACGGAACTTCGAGGAATGAAGGCT -ACGGAACTTCGAGGAATGTCAACC -ACGGAACTTCGAGGAATGTGTTCC -ACGGAACTTCGAGGAATGATTCCC -ACGGAACTTCGAGGAATGTTCTCG -ACGGAACTTCGAGGAATGTAGACG -ACGGAACTTCGAGGAATGGTAACG -ACGGAACTTCGAGGAATGACTTCG -ACGGAACTTCGAGGAATGTACGCA -ACGGAACTTCGAGGAATGCTTGCA -ACGGAACTTCGAGGAATGCGAACA -ACGGAACTTCGAGGAATGCAGTCA -ACGGAACTTCGAGGAATGGATCCA -ACGGAACTTCGAGGAATGACGACA -ACGGAACTTCGAGGAATGAGCTCA -ACGGAACTTCGAGGAATGTCACGT -ACGGAACTTCGAGGAATGCGTAGT -ACGGAACTTCGAGGAATGGTCAGT -ACGGAACTTCGAGGAATGGAAGGT -ACGGAACTTCGAGGAATGAACCGT -ACGGAACTTCGAGGAATGTTGTGC -ACGGAACTTCGAGGAATGCTAAGC -ACGGAACTTCGAGGAATGACTAGC -ACGGAACTTCGAGGAATGAGATGC -ACGGAACTTCGAGGAATGTGAAGG -ACGGAACTTCGAGGAATGCAATGG -ACGGAACTTCGAGGAATGATGAGG -ACGGAACTTCGAGGAATGAATGGG -ACGGAACTTCGAGGAATGTCCTGA -ACGGAACTTCGAGGAATGTAGCGA -ACGGAACTTCGAGGAATGCACAGA -ACGGAACTTCGAGGAATGGCAAGA -ACGGAACTTCGAGGAATGGGTTGA -ACGGAACTTCGAGGAATGTCCGAT -ACGGAACTTCGAGGAATGTGGCAT -ACGGAACTTCGAGGAATGCGAGAT -ACGGAACTTCGAGGAATGTACCAC -ACGGAACTTCGAGGAATGCAGAAC -ACGGAACTTCGAGGAATGGTCTAC -ACGGAACTTCGAGGAATGACGTAC -ACGGAACTTCGAGGAATGAGTGAC -ACGGAACTTCGAGGAATGCTGTAG -ACGGAACTTCGAGGAATGCCTAAG -ACGGAACTTCGAGGAATGGTTCAG -ACGGAACTTCGAGGAATGGCATAG -ACGGAACTTCGAGGAATGGACAAG -ACGGAACTTCGAGGAATGAAGCAG -ACGGAACTTCGAGGAATGCGTCAA -ACGGAACTTCGAGGAATGGCTGAA -ACGGAACTTCGAGGAATGAGTACG -ACGGAACTTCGAGGAATGATCCGA -ACGGAACTTCGAGGAATGATGGGA -ACGGAACTTCGAGGAATGGTGCAA -ACGGAACTTCGAGGAATGGAGGAA -ACGGAACTTCGAGGAATGCAGGTA -ACGGAACTTCGAGGAATGGACTCT -ACGGAACTTCGAGGAATGAGTCCT -ACGGAACTTCGAGGAATGTAAGCC -ACGGAACTTCGAGGAATGATAGCC -ACGGAACTTCGAGGAATGTAACCG -ACGGAACTTCGAGGAATGATGCCA -ACGGAACTTCGACAAGTGGGAAAC -ACGGAACTTCGACAAGTGAACACC -ACGGAACTTCGACAAGTGATCGAG -ACGGAACTTCGACAAGTGCTCCTT -ACGGAACTTCGACAAGTGCCTGTT -ACGGAACTTCGACAAGTGCGGTTT -ACGGAACTTCGACAAGTGGTGGTT -ACGGAACTTCGACAAGTGGCCTTT -ACGGAACTTCGACAAGTGGGTCTT -ACGGAACTTCGACAAGTGACGCTT -ACGGAACTTCGACAAGTGAGCGTT -ACGGAACTTCGACAAGTGTTCGTC -ACGGAACTTCGACAAGTGTCTCTC -ACGGAACTTCGACAAGTGTGGATC -ACGGAACTTCGACAAGTGCACTTC -ACGGAACTTCGACAAGTGGTACTC -ACGGAACTTCGACAAGTGGATGTC -ACGGAACTTCGACAAGTGACAGTC -ACGGAACTTCGACAAGTGTTGCTG -ACGGAACTTCGACAAGTGTCCATG -ACGGAACTTCGACAAGTGTGTGTG -ACGGAACTTCGACAAGTGCTAGTG -ACGGAACTTCGACAAGTGCATCTG -ACGGAACTTCGACAAGTGGAGTTG -ACGGAACTTCGACAAGTGAGACTG -ACGGAACTTCGACAAGTGTCGGTA -ACGGAACTTCGACAAGTGTGCCTA -ACGGAACTTCGACAAGTGCCACTA -ACGGAACTTCGACAAGTGGGAGTA -ACGGAACTTCGACAAGTGTCGTCT -ACGGAACTTCGACAAGTGTGCACT -ACGGAACTTCGACAAGTGCTGACT -ACGGAACTTCGACAAGTGCAACCT -ACGGAACTTCGACAAGTGGCTACT -ACGGAACTTCGACAAGTGGGATCT -ACGGAACTTCGACAAGTGAAGGCT -ACGGAACTTCGACAAGTGTCAACC -ACGGAACTTCGACAAGTGTGTTCC -ACGGAACTTCGACAAGTGATTCCC -ACGGAACTTCGACAAGTGTTCTCG -ACGGAACTTCGACAAGTGTAGACG -ACGGAACTTCGACAAGTGGTAACG -ACGGAACTTCGACAAGTGACTTCG -ACGGAACTTCGACAAGTGTACGCA -ACGGAACTTCGACAAGTGCTTGCA -ACGGAACTTCGACAAGTGCGAACA -ACGGAACTTCGACAAGTGCAGTCA -ACGGAACTTCGACAAGTGGATCCA -ACGGAACTTCGACAAGTGACGACA -ACGGAACTTCGACAAGTGAGCTCA -ACGGAACTTCGACAAGTGTCACGT -ACGGAACTTCGACAAGTGCGTAGT -ACGGAACTTCGACAAGTGGTCAGT -ACGGAACTTCGACAAGTGGAAGGT -ACGGAACTTCGACAAGTGAACCGT -ACGGAACTTCGACAAGTGTTGTGC -ACGGAACTTCGACAAGTGCTAAGC -ACGGAACTTCGACAAGTGACTAGC -ACGGAACTTCGACAAGTGAGATGC -ACGGAACTTCGACAAGTGTGAAGG -ACGGAACTTCGACAAGTGCAATGG -ACGGAACTTCGACAAGTGATGAGG -ACGGAACTTCGACAAGTGAATGGG -ACGGAACTTCGACAAGTGTCCTGA -ACGGAACTTCGACAAGTGTAGCGA -ACGGAACTTCGACAAGTGCACAGA -ACGGAACTTCGACAAGTGGCAAGA -ACGGAACTTCGACAAGTGGGTTGA -ACGGAACTTCGACAAGTGTCCGAT -ACGGAACTTCGACAAGTGTGGCAT -ACGGAACTTCGACAAGTGCGAGAT -ACGGAACTTCGACAAGTGTACCAC -ACGGAACTTCGACAAGTGCAGAAC -ACGGAACTTCGACAAGTGGTCTAC -ACGGAACTTCGACAAGTGACGTAC -ACGGAACTTCGACAAGTGAGTGAC -ACGGAACTTCGACAAGTGCTGTAG -ACGGAACTTCGACAAGTGCCTAAG -ACGGAACTTCGACAAGTGGTTCAG -ACGGAACTTCGACAAGTGGCATAG -ACGGAACTTCGACAAGTGGACAAG -ACGGAACTTCGACAAGTGAAGCAG -ACGGAACTTCGACAAGTGCGTCAA -ACGGAACTTCGACAAGTGGCTGAA -ACGGAACTTCGACAAGTGAGTACG -ACGGAACTTCGACAAGTGATCCGA -ACGGAACTTCGACAAGTGATGGGA -ACGGAACTTCGACAAGTGGTGCAA -ACGGAACTTCGACAAGTGGAGGAA -ACGGAACTTCGACAAGTGCAGGTA -ACGGAACTTCGACAAGTGGACTCT -ACGGAACTTCGACAAGTGAGTCCT -ACGGAACTTCGACAAGTGTAAGCC -ACGGAACTTCGACAAGTGATAGCC -ACGGAACTTCGACAAGTGTAACCG -ACGGAACTTCGACAAGTGATGCCA -ACGGAACTTCGAGAAGAGGGAAAC -ACGGAACTTCGAGAAGAGAACACC -ACGGAACTTCGAGAAGAGATCGAG -ACGGAACTTCGAGAAGAGCTCCTT -ACGGAACTTCGAGAAGAGCCTGTT -ACGGAACTTCGAGAAGAGCGGTTT -ACGGAACTTCGAGAAGAGGTGGTT -ACGGAACTTCGAGAAGAGGCCTTT -ACGGAACTTCGAGAAGAGGGTCTT -ACGGAACTTCGAGAAGAGACGCTT -ACGGAACTTCGAGAAGAGAGCGTT -ACGGAACTTCGAGAAGAGTTCGTC -ACGGAACTTCGAGAAGAGTCTCTC -ACGGAACTTCGAGAAGAGTGGATC -ACGGAACTTCGAGAAGAGCACTTC -ACGGAACTTCGAGAAGAGGTACTC -ACGGAACTTCGAGAAGAGGATGTC -ACGGAACTTCGAGAAGAGACAGTC -ACGGAACTTCGAGAAGAGTTGCTG -ACGGAACTTCGAGAAGAGTCCATG -ACGGAACTTCGAGAAGAGTGTGTG -ACGGAACTTCGAGAAGAGCTAGTG -ACGGAACTTCGAGAAGAGCATCTG -ACGGAACTTCGAGAAGAGGAGTTG -ACGGAACTTCGAGAAGAGAGACTG -ACGGAACTTCGAGAAGAGTCGGTA -ACGGAACTTCGAGAAGAGTGCCTA -ACGGAACTTCGAGAAGAGCCACTA -ACGGAACTTCGAGAAGAGGGAGTA -ACGGAACTTCGAGAAGAGTCGTCT -ACGGAACTTCGAGAAGAGTGCACT -ACGGAACTTCGAGAAGAGCTGACT -ACGGAACTTCGAGAAGAGCAACCT -ACGGAACTTCGAGAAGAGGCTACT -ACGGAACTTCGAGAAGAGGGATCT -ACGGAACTTCGAGAAGAGAAGGCT -ACGGAACTTCGAGAAGAGTCAACC -ACGGAACTTCGAGAAGAGTGTTCC -ACGGAACTTCGAGAAGAGATTCCC -ACGGAACTTCGAGAAGAGTTCTCG -ACGGAACTTCGAGAAGAGTAGACG -ACGGAACTTCGAGAAGAGGTAACG -ACGGAACTTCGAGAAGAGACTTCG -ACGGAACTTCGAGAAGAGTACGCA -ACGGAACTTCGAGAAGAGCTTGCA -ACGGAACTTCGAGAAGAGCGAACA -ACGGAACTTCGAGAAGAGCAGTCA -ACGGAACTTCGAGAAGAGGATCCA -ACGGAACTTCGAGAAGAGACGACA -ACGGAACTTCGAGAAGAGAGCTCA -ACGGAACTTCGAGAAGAGTCACGT -ACGGAACTTCGAGAAGAGCGTAGT -ACGGAACTTCGAGAAGAGGTCAGT -ACGGAACTTCGAGAAGAGGAAGGT -ACGGAACTTCGAGAAGAGAACCGT -ACGGAACTTCGAGAAGAGTTGTGC -ACGGAACTTCGAGAAGAGCTAAGC -ACGGAACTTCGAGAAGAGACTAGC -ACGGAACTTCGAGAAGAGAGATGC -ACGGAACTTCGAGAAGAGTGAAGG -ACGGAACTTCGAGAAGAGCAATGG -ACGGAACTTCGAGAAGAGATGAGG -ACGGAACTTCGAGAAGAGAATGGG -ACGGAACTTCGAGAAGAGTCCTGA -ACGGAACTTCGAGAAGAGTAGCGA -ACGGAACTTCGAGAAGAGCACAGA -ACGGAACTTCGAGAAGAGGCAAGA -ACGGAACTTCGAGAAGAGGGTTGA -ACGGAACTTCGAGAAGAGTCCGAT -ACGGAACTTCGAGAAGAGTGGCAT -ACGGAACTTCGAGAAGAGCGAGAT -ACGGAACTTCGAGAAGAGTACCAC -ACGGAACTTCGAGAAGAGCAGAAC -ACGGAACTTCGAGAAGAGGTCTAC -ACGGAACTTCGAGAAGAGACGTAC -ACGGAACTTCGAGAAGAGAGTGAC -ACGGAACTTCGAGAAGAGCTGTAG -ACGGAACTTCGAGAAGAGCCTAAG -ACGGAACTTCGAGAAGAGGTTCAG -ACGGAACTTCGAGAAGAGGCATAG -ACGGAACTTCGAGAAGAGGACAAG -ACGGAACTTCGAGAAGAGAAGCAG -ACGGAACTTCGAGAAGAGCGTCAA -ACGGAACTTCGAGAAGAGGCTGAA -ACGGAACTTCGAGAAGAGAGTACG -ACGGAACTTCGAGAAGAGATCCGA -ACGGAACTTCGAGAAGAGATGGGA -ACGGAACTTCGAGAAGAGGTGCAA -ACGGAACTTCGAGAAGAGGAGGAA -ACGGAACTTCGAGAAGAGCAGGTA -ACGGAACTTCGAGAAGAGGACTCT -ACGGAACTTCGAGAAGAGAGTCCT -ACGGAACTTCGAGAAGAGTAAGCC -ACGGAACTTCGAGAAGAGATAGCC -ACGGAACTTCGAGAAGAGTAACCG -ACGGAACTTCGAGAAGAGATGCCA -ACGGAACTTCGAGTACAGGGAAAC -ACGGAACTTCGAGTACAGAACACC -ACGGAACTTCGAGTACAGATCGAG -ACGGAACTTCGAGTACAGCTCCTT -ACGGAACTTCGAGTACAGCCTGTT -ACGGAACTTCGAGTACAGCGGTTT -ACGGAACTTCGAGTACAGGTGGTT -ACGGAACTTCGAGTACAGGCCTTT -ACGGAACTTCGAGTACAGGGTCTT -ACGGAACTTCGAGTACAGACGCTT -ACGGAACTTCGAGTACAGAGCGTT -ACGGAACTTCGAGTACAGTTCGTC -ACGGAACTTCGAGTACAGTCTCTC -ACGGAACTTCGAGTACAGTGGATC -ACGGAACTTCGAGTACAGCACTTC -ACGGAACTTCGAGTACAGGTACTC -ACGGAACTTCGAGTACAGGATGTC -ACGGAACTTCGAGTACAGACAGTC -ACGGAACTTCGAGTACAGTTGCTG -ACGGAACTTCGAGTACAGTCCATG -ACGGAACTTCGAGTACAGTGTGTG -ACGGAACTTCGAGTACAGCTAGTG -ACGGAACTTCGAGTACAGCATCTG -ACGGAACTTCGAGTACAGGAGTTG -ACGGAACTTCGAGTACAGAGACTG -ACGGAACTTCGAGTACAGTCGGTA -ACGGAACTTCGAGTACAGTGCCTA -ACGGAACTTCGAGTACAGCCACTA -ACGGAACTTCGAGTACAGGGAGTA -ACGGAACTTCGAGTACAGTCGTCT -ACGGAACTTCGAGTACAGTGCACT -ACGGAACTTCGAGTACAGCTGACT -ACGGAACTTCGAGTACAGCAACCT -ACGGAACTTCGAGTACAGGCTACT -ACGGAACTTCGAGTACAGGGATCT -ACGGAACTTCGAGTACAGAAGGCT -ACGGAACTTCGAGTACAGTCAACC -ACGGAACTTCGAGTACAGTGTTCC -ACGGAACTTCGAGTACAGATTCCC -ACGGAACTTCGAGTACAGTTCTCG -ACGGAACTTCGAGTACAGTAGACG -ACGGAACTTCGAGTACAGGTAACG -ACGGAACTTCGAGTACAGACTTCG -ACGGAACTTCGAGTACAGTACGCA -ACGGAACTTCGAGTACAGCTTGCA -ACGGAACTTCGAGTACAGCGAACA -ACGGAACTTCGAGTACAGCAGTCA -ACGGAACTTCGAGTACAGGATCCA -ACGGAACTTCGAGTACAGACGACA -ACGGAACTTCGAGTACAGAGCTCA -ACGGAACTTCGAGTACAGTCACGT -ACGGAACTTCGAGTACAGCGTAGT -ACGGAACTTCGAGTACAGGTCAGT -ACGGAACTTCGAGTACAGGAAGGT -ACGGAACTTCGAGTACAGAACCGT -ACGGAACTTCGAGTACAGTTGTGC -ACGGAACTTCGAGTACAGCTAAGC -ACGGAACTTCGAGTACAGACTAGC -ACGGAACTTCGAGTACAGAGATGC -ACGGAACTTCGAGTACAGTGAAGG -ACGGAACTTCGAGTACAGCAATGG -ACGGAACTTCGAGTACAGATGAGG -ACGGAACTTCGAGTACAGAATGGG -ACGGAACTTCGAGTACAGTCCTGA -ACGGAACTTCGAGTACAGTAGCGA -ACGGAACTTCGAGTACAGCACAGA -ACGGAACTTCGAGTACAGGCAAGA -ACGGAACTTCGAGTACAGGGTTGA -ACGGAACTTCGAGTACAGTCCGAT -ACGGAACTTCGAGTACAGTGGCAT -ACGGAACTTCGAGTACAGCGAGAT -ACGGAACTTCGAGTACAGTACCAC -ACGGAACTTCGAGTACAGCAGAAC -ACGGAACTTCGAGTACAGGTCTAC -ACGGAACTTCGAGTACAGACGTAC -ACGGAACTTCGAGTACAGAGTGAC -ACGGAACTTCGAGTACAGCTGTAG -ACGGAACTTCGAGTACAGCCTAAG -ACGGAACTTCGAGTACAGGTTCAG -ACGGAACTTCGAGTACAGGCATAG -ACGGAACTTCGAGTACAGGACAAG -ACGGAACTTCGAGTACAGAAGCAG -ACGGAACTTCGAGTACAGCGTCAA -ACGGAACTTCGAGTACAGGCTGAA -ACGGAACTTCGAGTACAGAGTACG -ACGGAACTTCGAGTACAGATCCGA -ACGGAACTTCGAGTACAGATGGGA -ACGGAACTTCGAGTACAGGTGCAA -ACGGAACTTCGAGTACAGGAGGAA -ACGGAACTTCGAGTACAGCAGGTA -ACGGAACTTCGAGTACAGGACTCT -ACGGAACTTCGAGTACAGAGTCCT -ACGGAACTTCGAGTACAGTAAGCC -ACGGAACTTCGAGTACAGATAGCC -ACGGAACTTCGAGTACAGTAACCG -ACGGAACTTCGAGTACAGATGCCA -ACGGAACTTCGATCTGACGGAAAC -ACGGAACTTCGATCTGACAACACC -ACGGAACTTCGATCTGACATCGAG -ACGGAACTTCGATCTGACCTCCTT -ACGGAACTTCGATCTGACCCTGTT -ACGGAACTTCGATCTGACCGGTTT -ACGGAACTTCGATCTGACGTGGTT -ACGGAACTTCGATCTGACGCCTTT -ACGGAACTTCGATCTGACGGTCTT -ACGGAACTTCGATCTGACACGCTT -ACGGAACTTCGATCTGACAGCGTT -ACGGAACTTCGATCTGACTTCGTC -ACGGAACTTCGATCTGACTCTCTC -ACGGAACTTCGATCTGACTGGATC -ACGGAACTTCGATCTGACCACTTC -ACGGAACTTCGATCTGACGTACTC -ACGGAACTTCGATCTGACGATGTC -ACGGAACTTCGATCTGACACAGTC -ACGGAACTTCGATCTGACTTGCTG -ACGGAACTTCGATCTGACTCCATG -ACGGAACTTCGATCTGACTGTGTG -ACGGAACTTCGATCTGACCTAGTG -ACGGAACTTCGATCTGACCATCTG -ACGGAACTTCGATCTGACGAGTTG -ACGGAACTTCGATCTGACAGACTG -ACGGAACTTCGATCTGACTCGGTA -ACGGAACTTCGATCTGACTGCCTA -ACGGAACTTCGATCTGACCCACTA -ACGGAACTTCGATCTGACGGAGTA -ACGGAACTTCGATCTGACTCGTCT -ACGGAACTTCGATCTGACTGCACT -ACGGAACTTCGATCTGACCTGACT -ACGGAACTTCGATCTGACCAACCT -ACGGAACTTCGATCTGACGCTACT -ACGGAACTTCGATCTGACGGATCT -ACGGAACTTCGATCTGACAAGGCT -ACGGAACTTCGATCTGACTCAACC -ACGGAACTTCGATCTGACTGTTCC -ACGGAACTTCGATCTGACATTCCC -ACGGAACTTCGATCTGACTTCTCG -ACGGAACTTCGATCTGACTAGACG -ACGGAACTTCGATCTGACGTAACG -ACGGAACTTCGATCTGACACTTCG -ACGGAACTTCGATCTGACTACGCA -ACGGAACTTCGATCTGACCTTGCA -ACGGAACTTCGATCTGACCGAACA -ACGGAACTTCGATCTGACCAGTCA -ACGGAACTTCGATCTGACGATCCA -ACGGAACTTCGATCTGACACGACA -ACGGAACTTCGATCTGACAGCTCA -ACGGAACTTCGATCTGACTCACGT -ACGGAACTTCGATCTGACCGTAGT -ACGGAACTTCGATCTGACGTCAGT -ACGGAACTTCGATCTGACGAAGGT -ACGGAACTTCGATCTGACAACCGT -ACGGAACTTCGATCTGACTTGTGC -ACGGAACTTCGATCTGACCTAAGC -ACGGAACTTCGATCTGACACTAGC -ACGGAACTTCGATCTGACAGATGC -ACGGAACTTCGATCTGACTGAAGG -ACGGAACTTCGATCTGACCAATGG -ACGGAACTTCGATCTGACATGAGG -ACGGAACTTCGATCTGACAATGGG -ACGGAACTTCGATCTGACTCCTGA -ACGGAACTTCGATCTGACTAGCGA -ACGGAACTTCGATCTGACCACAGA -ACGGAACTTCGATCTGACGCAAGA -ACGGAACTTCGATCTGACGGTTGA -ACGGAACTTCGATCTGACTCCGAT -ACGGAACTTCGATCTGACTGGCAT -ACGGAACTTCGATCTGACCGAGAT -ACGGAACTTCGATCTGACTACCAC -ACGGAACTTCGATCTGACCAGAAC -ACGGAACTTCGATCTGACGTCTAC -ACGGAACTTCGATCTGACACGTAC -ACGGAACTTCGATCTGACAGTGAC -ACGGAACTTCGATCTGACCTGTAG -ACGGAACTTCGATCTGACCCTAAG -ACGGAACTTCGATCTGACGTTCAG -ACGGAACTTCGATCTGACGCATAG -ACGGAACTTCGATCTGACGACAAG -ACGGAACTTCGATCTGACAAGCAG -ACGGAACTTCGATCTGACCGTCAA -ACGGAACTTCGATCTGACGCTGAA -ACGGAACTTCGATCTGACAGTACG -ACGGAACTTCGATCTGACATCCGA -ACGGAACTTCGATCTGACATGGGA -ACGGAACTTCGATCTGACGTGCAA -ACGGAACTTCGATCTGACGAGGAA -ACGGAACTTCGATCTGACCAGGTA -ACGGAACTTCGATCTGACGACTCT -ACGGAACTTCGATCTGACAGTCCT -ACGGAACTTCGATCTGACTAAGCC -ACGGAACTTCGATCTGACATAGCC -ACGGAACTTCGATCTGACTAACCG -ACGGAACTTCGATCTGACATGCCA -ACGGAACTTCGACCTAGTGGAAAC -ACGGAACTTCGACCTAGTAACACC -ACGGAACTTCGACCTAGTATCGAG -ACGGAACTTCGACCTAGTCTCCTT -ACGGAACTTCGACCTAGTCCTGTT -ACGGAACTTCGACCTAGTCGGTTT -ACGGAACTTCGACCTAGTGTGGTT -ACGGAACTTCGACCTAGTGCCTTT -ACGGAACTTCGACCTAGTGGTCTT -ACGGAACTTCGACCTAGTACGCTT -ACGGAACTTCGACCTAGTAGCGTT -ACGGAACTTCGACCTAGTTTCGTC -ACGGAACTTCGACCTAGTTCTCTC -ACGGAACTTCGACCTAGTTGGATC -ACGGAACTTCGACCTAGTCACTTC -ACGGAACTTCGACCTAGTGTACTC -ACGGAACTTCGACCTAGTGATGTC -ACGGAACTTCGACCTAGTACAGTC -ACGGAACTTCGACCTAGTTTGCTG -ACGGAACTTCGACCTAGTTCCATG -ACGGAACTTCGACCTAGTTGTGTG -ACGGAACTTCGACCTAGTCTAGTG -ACGGAACTTCGACCTAGTCATCTG -ACGGAACTTCGACCTAGTGAGTTG -ACGGAACTTCGACCTAGTAGACTG -ACGGAACTTCGACCTAGTTCGGTA -ACGGAACTTCGACCTAGTTGCCTA -ACGGAACTTCGACCTAGTCCACTA -ACGGAACTTCGACCTAGTGGAGTA -ACGGAACTTCGACCTAGTTCGTCT -ACGGAACTTCGACCTAGTTGCACT -ACGGAACTTCGACCTAGTCTGACT -ACGGAACTTCGACCTAGTCAACCT -ACGGAACTTCGACCTAGTGCTACT -ACGGAACTTCGACCTAGTGGATCT -ACGGAACTTCGACCTAGTAAGGCT -ACGGAACTTCGACCTAGTTCAACC -ACGGAACTTCGACCTAGTTGTTCC -ACGGAACTTCGACCTAGTATTCCC -ACGGAACTTCGACCTAGTTTCTCG -ACGGAACTTCGACCTAGTTAGACG -ACGGAACTTCGACCTAGTGTAACG -ACGGAACTTCGACCTAGTACTTCG -ACGGAACTTCGACCTAGTTACGCA -ACGGAACTTCGACCTAGTCTTGCA -ACGGAACTTCGACCTAGTCGAACA -ACGGAACTTCGACCTAGTCAGTCA -ACGGAACTTCGACCTAGTGATCCA -ACGGAACTTCGACCTAGTACGACA -ACGGAACTTCGACCTAGTAGCTCA -ACGGAACTTCGACCTAGTTCACGT -ACGGAACTTCGACCTAGTCGTAGT -ACGGAACTTCGACCTAGTGTCAGT -ACGGAACTTCGACCTAGTGAAGGT -ACGGAACTTCGACCTAGTAACCGT -ACGGAACTTCGACCTAGTTTGTGC -ACGGAACTTCGACCTAGTCTAAGC -ACGGAACTTCGACCTAGTACTAGC -ACGGAACTTCGACCTAGTAGATGC -ACGGAACTTCGACCTAGTTGAAGG -ACGGAACTTCGACCTAGTCAATGG -ACGGAACTTCGACCTAGTATGAGG -ACGGAACTTCGACCTAGTAATGGG -ACGGAACTTCGACCTAGTTCCTGA -ACGGAACTTCGACCTAGTTAGCGA -ACGGAACTTCGACCTAGTCACAGA -ACGGAACTTCGACCTAGTGCAAGA -ACGGAACTTCGACCTAGTGGTTGA -ACGGAACTTCGACCTAGTTCCGAT -ACGGAACTTCGACCTAGTTGGCAT -ACGGAACTTCGACCTAGTCGAGAT -ACGGAACTTCGACCTAGTTACCAC -ACGGAACTTCGACCTAGTCAGAAC -ACGGAACTTCGACCTAGTGTCTAC -ACGGAACTTCGACCTAGTACGTAC -ACGGAACTTCGACCTAGTAGTGAC -ACGGAACTTCGACCTAGTCTGTAG -ACGGAACTTCGACCTAGTCCTAAG -ACGGAACTTCGACCTAGTGTTCAG -ACGGAACTTCGACCTAGTGCATAG -ACGGAACTTCGACCTAGTGACAAG -ACGGAACTTCGACCTAGTAAGCAG -ACGGAACTTCGACCTAGTCGTCAA -ACGGAACTTCGACCTAGTGCTGAA -ACGGAACTTCGACCTAGTAGTACG -ACGGAACTTCGACCTAGTATCCGA -ACGGAACTTCGACCTAGTATGGGA -ACGGAACTTCGACCTAGTGTGCAA -ACGGAACTTCGACCTAGTGAGGAA -ACGGAACTTCGACCTAGTCAGGTA -ACGGAACTTCGACCTAGTGACTCT -ACGGAACTTCGACCTAGTAGTCCT -ACGGAACTTCGACCTAGTTAAGCC -ACGGAACTTCGACCTAGTATAGCC -ACGGAACTTCGACCTAGTTAACCG -ACGGAACTTCGACCTAGTATGCCA -ACGGAACTTCGAGCCTAAGGAAAC -ACGGAACTTCGAGCCTAAAACACC -ACGGAACTTCGAGCCTAAATCGAG -ACGGAACTTCGAGCCTAACTCCTT -ACGGAACTTCGAGCCTAACCTGTT -ACGGAACTTCGAGCCTAACGGTTT -ACGGAACTTCGAGCCTAAGTGGTT -ACGGAACTTCGAGCCTAAGCCTTT -ACGGAACTTCGAGCCTAAGGTCTT -ACGGAACTTCGAGCCTAAACGCTT -ACGGAACTTCGAGCCTAAAGCGTT -ACGGAACTTCGAGCCTAATTCGTC -ACGGAACTTCGAGCCTAATCTCTC -ACGGAACTTCGAGCCTAATGGATC -ACGGAACTTCGAGCCTAACACTTC -ACGGAACTTCGAGCCTAAGTACTC -ACGGAACTTCGAGCCTAAGATGTC -ACGGAACTTCGAGCCTAAACAGTC -ACGGAACTTCGAGCCTAATTGCTG -ACGGAACTTCGAGCCTAATCCATG -ACGGAACTTCGAGCCTAATGTGTG -ACGGAACTTCGAGCCTAACTAGTG -ACGGAACTTCGAGCCTAACATCTG -ACGGAACTTCGAGCCTAAGAGTTG -ACGGAACTTCGAGCCTAAAGACTG -ACGGAACTTCGAGCCTAATCGGTA -ACGGAACTTCGAGCCTAATGCCTA -ACGGAACTTCGAGCCTAACCACTA -ACGGAACTTCGAGCCTAAGGAGTA -ACGGAACTTCGAGCCTAATCGTCT -ACGGAACTTCGAGCCTAATGCACT -ACGGAACTTCGAGCCTAACTGACT -ACGGAACTTCGAGCCTAACAACCT -ACGGAACTTCGAGCCTAAGCTACT -ACGGAACTTCGAGCCTAAGGATCT -ACGGAACTTCGAGCCTAAAAGGCT -ACGGAACTTCGAGCCTAATCAACC -ACGGAACTTCGAGCCTAATGTTCC -ACGGAACTTCGAGCCTAAATTCCC -ACGGAACTTCGAGCCTAATTCTCG -ACGGAACTTCGAGCCTAATAGACG -ACGGAACTTCGAGCCTAAGTAACG -ACGGAACTTCGAGCCTAAACTTCG -ACGGAACTTCGAGCCTAATACGCA -ACGGAACTTCGAGCCTAACTTGCA -ACGGAACTTCGAGCCTAACGAACA -ACGGAACTTCGAGCCTAACAGTCA -ACGGAACTTCGAGCCTAAGATCCA -ACGGAACTTCGAGCCTAAACGACA -ACGGAACTTCGAGCCTAAAGCTCA -ACGGAACTTCGAGCCTAATCACGT -ACGGAACTTCGAGCCTAACGTAGT -ACGGAACTTCGAGCCTAAGTCAGT -ACGGAACTTCGAGCCTAAGAAGGT -ACGGAACTTCGAGCCTAAAACCGT -ACGGAACTTCGAGCCTAATTGTGC -ACGGAACTTCGAGCCTAACTAAGC -ACGGAACTTCGAGCCTAAACTAGC -ACGGAACTTCGAGCCTAAAGATGC -ACGGAACTTCGAGCCTAATGAAGG -ACGGAACTTCGAGCCTAACAATGG -ACGGAACTTCGAGCCTAAATGAGG -ACGGAACTTCGAGCCTAAAATGGG -ACGGAACTTCGAGCCTAATCCTGA -ACGGAACTTCGAGCCTAATAGCGA -ACGGAACTTCGAGCCTAACACAGA -ACGGAACTTCGAGCCTAAGCAAGA -ACGGAACTTCGAGCCTAAGGTTGA -ACGGAACTTCGAGCCTAATCCGAT -ACGGAACTTCGAGCCTAATGGCAT -ACGGAACTTCGAGCCTAACGAGAT -ACGGAACTTCGAGCCTAATACCAC -ACGGAACTTCGAGCCTAACAGAAC -ACGGAACTTCGAGCCTAAGTCTAC -ACGGAACTTCGAGCCTAAACGTAC -ACGGAACTTCGAGCCTAAAGTGAC -ACGGAACTTCGAGCCTAACTGTAG -ACGGAACTTCGAGCCTAACCTAAG -ACGGAACTTCGAGCCTAAGTTCAG -ACGGAACTTCGAGCCTAAGCATAG -ACGGAACTTCGAGCCTAAGACAAG -ACGGAACTTCGAGCCTAAAAGCAG -ACGGAACTTCGAGCCTAACGTCAA -ACGGAACTTCGAGCCTAAGCTGAA -ACGGAACTTCGAGCCTAAAGTACG -ACGGAACTTCGAGCCTAAATCCGA -ACGGAACTTCGAGCCTAAATGGGA -ACGGAACTTCGAGCCTAAGTGCAA -ACGGAACTTCGAGCCTAAGAGGAA -ACGGAACTTCGAGCCTAACAGGTA -ACGGAACTTCGAGCCTAAGACTCT -ACGGAACTTCGAGCCTAAAGTCCT -ACGGAACTTCGAGCCTAATAAGCC -ACGGAACTTCGAGCCTAAATAGCC -ACGGAACTTCGAGCCTAATAACCG -ACGGAACTTCGAGCCTAAATGCCA -ACGGAACTTCGAGCCATAGGAAAC -ACGGAACTTCGAGCCATAAACACC -ACGGAACTTCGAGCCATAATCGAG -ACGGAACTTCGAGCCATACTCCTT -ACGGAACTTCGAGCCATACCTGTT -ACGGAACTTCGAGCCATACGGTTT -ACGGAACTTCGAGCCATAGTGGTT -ACGGAACTTCGAGCCATAGCCTTT -ACGGAACTTCGAGCCATAGGTCTT -ACGGAACTTCGAGCCATAACGCTT -ACGGAACTTCGAGCCATAAGCGTT -ACGGAACTTCGAGCCATATTCGTC -ACGGAACTTCGAGCCATATCTCTC -ACGGAACTTCGAGCCATATGGATC -ACGGAACTTCGAGCCATACACTTC -ACGGAACTTCGAGCCATAGTACTC -ACGGAACTTCGAGCCATAGATGTC -ACGGAACTTCGAGCCATAACAGTC -ACGGAACTTCGAGCCATATTGCTG -ACGGAACTTCGAGCCATATCCATG -ACGGAACTTCGAGCCATATGTGTG -ACGGAACTTCGAGCCATACTAGTG -ACGGAACTTCGAGCCATACATCTG -ACGGAACTTCGAGCCATAGAGTTG -ACGGAACTTCGAGCCATAAGACTG -ACGGAACTTCGAGCCATATCGGTA -ACGGAACTTCGAGCCATATGCCTA -ACGGAACTTCGAGCCATACCACTA -ACGGAACTTCGAGCCATAGGAGTA -ACGGAACTTCGAGCCATATCGTCT -ACGGAACTTCGAGCCATATGCACT -ACGGAACTTCGAGCCATACTGACT -ACGGAACTTCGAGCCATACAACCT -ACGGAACTTCGAGCCATAGCTACT -ACGGAACTTCGAGCCATAGGATCT -ACGGAACTTCGAGCCATAAAGGCT -ACGGAACTTCGAGCCATATCAACC -ACGGAACTTCGAGCCATATGTTCC -ACGGAACTTCGAGCCATAATTCCC -ACGGAACTTCGAGCCATATTCTCG -ACGGAACTTCGAGCCATATAGACG -ACGGAACTTCGAGCCATAGTAACG -ACGGAACTTCGAGCCATAACTTCG -ACGGAACTTCGAGCCATATACGCA -ACGGAACTTCGAGCCATACTTGCA -ACGGAACTTCGAGCCATACGAACA -ACGGAACTTCGAGCCATACAGTCA -ACGGAACTTCGAGCCATAGATCCA -ACGGAACTTCGAGCCATAACGACA -ACGGAACTTCGAGCCATAAGCTCA -ACGGAACTTCGAGCCATATCACGT -ACGGAACTTCGAGCCATACGTAGT -ACGGAACTTCGAGCCATAGTCAGT -ACGGAACTTCGAGCCATAGAAGGT -ACGGAACTTCGAGCCATAAACCGT -ACGGAACTTCGAGCCATATTGTGC -ACGGAACTTCGAGCCATACTAAGC -ACGGAACTTCGAGCCATAACTAGC -ACGGAACTTCGAGCCATAAGATGC -ACGGAACTTCGAGCCATATGAAGG -ACGGAACTTCGAGCCATACAATGG -ACGGAACTTCGAGCCATAATGAGG -ACGGAACTTCGAGCCATAAATGGG -ACGGAACTTCGAGCCATATCCTGA -ACGGAACTTCGAGCCATATAGCGA -ACGGAACTTCGAGCCATACACAGA -ACGGAACTTCGAGCCATAGCAAGA -ACGGAACTTCGAGCCATAGGTTGA -ACGGAACTTCGAGCCATATCCGAT -ACGGAACTTCGAGCCATATGGCAT -ACGGAACTTCGAGCCATACGAGAT -ACGGAACTTCGAGCCATATACCAC -ACGGAACTTCGAGCCATACAGAAC -ACGGAACTTCGAGCCATAGTCTAC -ACGGAACTTCGAGCCATAACGTAC -ACGGAACTTCGAGCCATAAGTGAC -ACGGAACTTCGAGCCATACTGTAG -ACGGAACTTCGAGCCATACCTAAG -ACGGAACTTCGAGCCATAGTTCAG -ACGGAACTTCGAGCCATAGCATAG -ACGGAACTTCGAGCCATAGACAAG -ACGGAACTTCGAGCCATAAAGCAG -ACGGAACTTCGAGCCATACGTCAA -ACGGAACTTCGAGCCATAGCTGAA -ACGGAACTTCGAGCCATAAGTACG -ACGGAACTTCGAGCCATAATCCGA -ACGGAACTTCGAGCCATAATGGGA -ACGGAACTTCGAGCCATAGTGCAA -ACGGAACTTCGAGCCATAGAGGAA -ACGGAACTTCGAGCCATACAGGTA -ACGGAACTTCGAGCCATAGACTCT -ACGGAACTTCGAGCCATAAGTCCT -ACGGAACTTCGAGCCATATAAGCC -ACGGAACTTCGAGCCATAATAGCC -ACGGAACTTCGAGCCATATAACCG -ACGGAACTTCGAGCCATAATGCCA -ACGGAACTTCGACCGTAAGGAAAC -ACGGAACTTCGACCGTAAAACACC -ACGGAACTTCGACCGTAAATCGAG -ACGGAACTTCGACCGTAACTCCTT -ACGGAACTTCGACCGTAACCTGTT -ACGGAACTTCGACCGTAACGGTTT -ACGGAACTTCGACCGTAAGTGGTT -ACGGAACTTCGACCGTAAGCCTTT -ACGGAACTTCGACCGTAAGGTCTT -ACGGAACTTCGACCGTAAACGCTT -ACGGAACTTCGACCGTAAAGCGTT -ACGGAACTTCGACCGTAATTCGTC -ACGGAACTTCGACCGTAATCTCTC -ACGGAACTTCGACCGTAATGGATC -ACGGAACTTCGACCGTAACACTTC -ACGGAACTTCGACCGTAAGTACTC -ACGGAACTTCGACCGTAAGATGTC -ACGGAACTTCGACCGTAAACAGTC -ACGGAACTTCGACCGTAATTGCTG -ACGGAACTTCGACCGTAATCCATG -ACGGAACTTCGACCGTAATGTGTG -ACGGAACTTCGACCGTAACTAGTG -ACGGAACTTCGACCGTAACATCTG -ACGGAACTTCGACCGTAAGAGTTG -ACGGAACTTCGACCGTAAAGACTG -ACGGAACTTCGACCGTAATCGGTA -ACGGAACTTCGACCGTAATGCCTA -ACGGAACTTCGACCGTAACCACTA -ACGGAACTTCGACCGTAAGGAGTA -ACGGAACTTCGACCGTAATCGTCT -ACGGAACTTCGACCGTAATGCACT -ACGGAACTTCGACCGTAACTGACT -ACGGAACTTCGACCGTAACAACCT -ACGGAACTTCGACCGTAAGCTACT -ACGGAACTTCGACCGTAAGGATCT -ACGGAACTTCGACCGTAAAAGGCT -ACGGAACTTCGACCGTAATCAACC -ACGGAACTTCGACCGTAATGTTCC -ACGGAACTTCGACCGTAAATTCCC -ACGGAACTTCGACCGTAATTCTCG -ACGGAACTTCGACCGTAATAGACG -ACGGAACTTCGACCGTAAGTAACG -ACGGAACTTCGACCGTAAACTTCG -ACGGAACTTCGACCGTAATACGCA -ACGGAACTTCGACCGTAACTTGCA -ACGGAACTTCGACCGTAACGAACA -ACGGAACTTCGACCGTAACAGTCA -ACGGAACTTCGACCGTAAGATCCA -ACGGAACTTCGACCGTAAACGACA -ACGGAACTTCGACCGTAAAGCTCA -ACGGAACTTCGACCGTAATCACGT -ACGGAACTTCGACCGTAACGTAGT -ACGGAACTTCGACCGTAAGTCAGT -ACGGAACTTCGACCGTAAGAAGGT -ACGGAACTTCGACCGTAAAACCGT -ACGGAACTTCGACCGTAATTGTGC -ACGGAACTTCGACCGTAACTAAGC -ACGGAACTTCGACCGTAAACTAGC -ACGGAACTTCGACCGTAAAGATGC -ACGGAACTTCGACCGTAATGAAGG -ACGGAACTTCGACCGTAACAATGG -ACGGAACTTCGACCGTAAATGAGG -ACGGAACTTCGACCGTAAAATGGG -ACGGAACTTCGACCGTAATCCTGA -ACGGAACTTCGACCGTAATAGCGA -ACGGAACTTCGACCGTAACACAGA -ACGGAACTTCGACCGTAAGCAAGA -ACGGAACTTCGACCGTAAGGTTGA -ACGGAACTTCGACCGTAATCCGAT -ACGGAACTTCGACCGTAATGGCAT -ACGGAACTTCGACCGTAACGAGAT -ACGGAACTTCGACCGTAATACCAC -ACGGAACTTCGACCGTAACAGAAC -ACGGAACTTCGACCGTAAGTCTAC -ACGGAACTTCGACCGTAAACGTAC -ACGGAACTTCGACCGTAAAGTGAC -ACGGAACTTCGACCGTAACTGTAG -ACGGAACTTCGACCGTAACCTAAG -ACGGAACTTCGACCGTAAGTTCAG -ACGGAACTTCGACCGTAAGCATAG -ACGGAACTTCGACCGTAAGACAAG -ACGGAACTTCGACCGTAAAAGCAG -ACGGAACTTCGACCGTAACGTCAA -ACGGAACTTCGACCGTAAGCTGAA -ACGGAACTTCGACCGTAAAGTACG -ACGGAACTTCGACCGTAAATCCGA -ACGGAACTTCGACCGTAAATGGGA -ACGGAACTTCGACCGTAAGTGCAA -ACGGAACTTCGACCGTAAGAGGAA -ACGGAACTTCGACCGTAACAGGTA -ACGGAACTTCGACCGTAAGACTCT -ACGGAACTTCGACCGTAAAGTCCT -ACGGAACTTCGACCGTAATAAGCC -ACGGAACTTCGACCGTAAATAGCC -ACGGAACTTCGACCGTAATAACCG -ACGGAACTTCGACCGTAAATGCCA -ACGGAACTTCGACCAATGGGAAAC -ACGGAACTTCGACCAATGAACACC -ACGGAACTTCGACCAATGATCGAG -ACGGAACTTCGACCAATGCTCCTT -ACGGAACTTCGACCAATGCCTGTT -ACGGAACTTCGACCAATGCGGTTT -ACGGAACTTCGACCAATGGTGGTT -ACGGAACTTCGACCAATGGCCTTT -ACGGAACTTCGACCAATGGGTCTT -ACGGAACTTCGACCAATGACGCTT -ACGGAACTTCGACCAATGAGCGTT -ACGGAACTTCGACCAATGTTCGTC -ACGGAACTTCGACCAATGTCTCTC -ACGGAACTTCGACCAATGTGGATC -ACGGAACTTCGACCAATGCACTTC -ACGGAACTTCGACCAATGGTACTC -ACGGAACTTCGACCAATGGATGTC -ACGGAACTTCGACCAATGACAGTC -ACGGAACTTCGACCAATGTTGCTG -ACGGAACTTCGACCAATGTCCATG -ACGGAACTTCGACCAATGTGTGTG -ACGGAACTTCGACCAATGCTAGTG -ACGGAACTTCGACCAATGCATCTG -ACGGAACTTCGACCAATGGAGTTG -ACGGAACTTCGACCAATGAGACTG -ACGGAACTTCGACCAATGTCGGTA -ACGGAACTTCGACCAATGTGCCTA -ACGGAACTTCGACCAATGCCACTA -ACGGAACTTCGACCAATGGGAGTA -ACGGAACTTCGACCAATGTCGTCT -ACGGAACTTCGACCAATGTGCACT -ACGGAACTTCGACCAATGCTGACT -ACGGAACTTCGACCAATGCAACCT -ACGGAACTTCGACCAATGGCTACT -ACGGAACTTCGACCAATGGGATCT -ACGGAACTTCGACCAATGAAGGCT -ACGGAACTTCGACCAATGTCAACC -ACGGAACTTCGACCAATGTGTTCC -ACGGAACTTCGACCAATGATTCCC -ACGGAACTTCGACCAATGTTCTCG -ACGGAACTTCGACCAATGTAGACG -ACGGAACTTCGACCAATGGTAACG -ACGGAACTTCGACCAATGACTTCG -ACGGAACTTCGACCAATGTACGCA -ACGGAACTTCGACCAATGCTTGCA -ACGGAACTTCGACCAATGCGAACA -ACGGAACTTCGACCAATGCAGTCA -ACGGAACTTCGACCAATGGATCCA -ACGGAACTTCGACCAATGACGACA -ACGGAACTTCGACCAATGAGCTCA -ACGGAACTTCGACCAATGTCACGT -ACGGAACTTCGACCAATGCGTAGT -ACGGAACTTCGACCAATGGTCAGT -ACGGAACTTCGACCAATGGAAGGT -ACGGAACTTCGACCAATGAACCGT -ACGGAACTTCGACCAATGTTGTGC -ACGGAACTTCGACCAATGCTAAGC -ACGGAACTTCGACCAATGACTAGC -ACGGAACTTCGACCAATGAGATGC -ACGGAACTTCGACCAATGTGAAGG -ACGGAACTTCGACCAATGCAATGG -ACGGAACTTCGACCAATGATGAGG -ACGGAACTTCGACCAATGAATGGG -ACGGAACTTCGACCAATGTCCTGA -ACGGAACTTCGACCAATGTAGCGA -ACGGAACTTCGACCAATGCACAGA -ACGGAACTTCGACCAATGGCAAGA -ACGGAACTTCGACCAATGGGTTGA -ACGGAACTTCGACCAATGTCCGAT -ACGGAACTTCGACCAATGTGGCAT -ACGGAACTTCGACCAATGCGAGAT -ACGGAACTTCGACCAATGTACCAC -ACGGAACTTCGACCAATGCAGAAC -ACGGAACTTCGACCAATGGTCTAC -ACGGAACTTCGACCAATGACGTAC -ACGGAACTTCGACCAATGAGTGAC -ACGGAACTTCGACCAATGCTGTAG -ACGGAACTTCGACCAATGCCTAAG -ACGGAACTTCGACCAATGGTTCAG -ACGGAACTTCGACCAATGGCATAG -ACGGAACTTCGACCAATGGACAAG -ACGGAACTTCGACCAATGAAGCAG -ACGGAACTTCGACCAATGCGTCAA -ACGGAACTTCGACCAATGGCTGAA -ACGGAACTTCGACCAATGAGTACG -ACGGAACTTCGACCAATGATCCGA -ACGGAACTTCGACCAATGATGGGA -ACGGAACTTCGACCAATGGTGCAA -ACGGAACTTCGACCAATGGAGGAA -ACGGAACTTCGACCAATGCAGGTA -ACGGAACTTCGACCAATGGACTCT -ACGGAACTTCGACCAATGAGTCCT -ACGGAACTTCGACCAATGTAAGCC -ACGGAACTTCGACCAATGATAGCC -ACGGAACTTCGACCAATGTAACCG -ACGGAACTTCGACCAATGATGCCA -ACGGAAACGCATAACGGAGGAAAC -ACGGAAACGCATAACGGAAACACC -ACGGAAACGCATAACGGAATCGAG -ACGGAAACGCATAACGGACTCCTT -ACGGAAACGCATAACGGACCTGTT -ACGGAAACGCATAACGGACGGTTT -ACGGAAACGCATAACGGAGTGGTT -ACGGAAACGCATAACGGAGCCTTT -ACGGAAACGCATAACGGAGGTCTT -ACGGAAACGCATAACGGAACGCTT -ACGGAAACGCATAACGGAAGCGTT -ACGGAAACGCATAACGGATTCGTC -ACGGAAACGCATAACGGATCTCTC -ACGGAAACGCATAACGGATGGATC -ACGGAAACGCATAACGGACACTTC -ACGGAAACGCATAACGGAGTACTC -ACGGAAACGCATAACGGAGATGTC -ACGGAAACGCATAACGGAACAGTC -ACGGAAACGCATAACGGATTGCTG -ACGGAAACGCATAACGGATCCATG -ACGGAAACGCATAACGGATGTGTG -ACGGAAACGCATAACGGACTAGTG -ACGGAAACGCATAACGGACATCTG -ACGGAAACGCATAACGGAGAGTTG -ACGGAAACGCATAACGGAAGACTG -ACGGAAACGCATAACGGATCGGTA -ACGGAAACGCATAACGGATGCCTA -ACGGAAACGCATAACGGACCACTA -ACGGAAACGCATAACGGAGGAGTA -ACGGAAACGCATAACGGATCGTCT -ACGGAAACGCATAACGGATGCACT -ACGGAAACGCATAACGGACTGACT -ACGGAAACGCATAACGGACAACCT -ACGGAAACGCATAACGGAGCTACT -ACGGAAACGCATAACGGAGGATCT -ACGGAAACGCATAACGGAAAGGCT -ACGGAAACGCATAACGGATCAACC -ACGGAAACGCATAACGGATGTTCC -ACGGAAACGCATAACGGAATTCCC -ACGGAAACGCATAACGGATTCTCG -ACGGAAACGCATAACGGATAGACG -ACGGAAACGCATAACGGAGTAACG -ACGGAAACGCATAACGGAACTTCG -ACGGAAACGCATAACGGATACGCA -ACGGAAACGCATAACGGACTTGCA -ACGGAAACGCATAACGGACGAACA -ACGGAAACGCATAACGGACAGTCA -ACGGAAACGCATAACGGAGATCCA -ACGGAAACGCATAACGGAACGACA -ACGGAAACGCATAACGGAAGCTCA -ACGGAAACGCATAACGGATCACGT -ACGGAAACGCATAACGGACGTAGT -ACGGAAACGCATAACGGAGTCAGT -ACGGAAACGCATAACGGAGAAGGT -ACGGAAACGCATAACGGAAACCGT -ACGGAAACGCATAACGGATTGTGC -ACGGAAACGCATAACGGACTAAGC -ACGGAAACGCATAACGGAACTAGC -ACGGAAACGCATAACGGAAGATGC -ACGGAAACGCATAACGGATGAAGG -ACGGAAACGCATAACGGACAATGG -ACGGAAACGCATAACGGAATGAGG -ACGGAAACGCATAACGGAAATGGG -ACGGAAACGCATAACGGATCCTGA -ACGGAAACGCATAACGGATAGCGA -ACGGAAACGCATAACGGACACAGA -ACGGAAACGCATAACGGAGCAAGA -ACGGAAACGCATAACGGAGGTTGA -ACGGAAACGCATAACGGATCCGAT -ACGGAAACGCATAACGGATGGCAT -ACGGAAACGCATAACGGACGAGAT -ACGGAAACGCATAACGGATACCAC -ACGGAAACGCATAACGGACAGAAC -ACGGAAACGCATAACGGAGTCTAC -ACGGAAACGCATAACGGAACGTAC -ACGGAAACGCATAACGGAAGTGAC -ACGGAAACGCATAACGGACTGTAG -ACGGAAACGCATAACGGACCTAAG -ACGGAAACGCATAACGGAGTTCAG -ACGGAAACGCATAACGGAGCATAG -ACGGAAACGCATAACGGAGACAAG -ACGGAAACGCATAACGGAAAGCAG -ACGGAAACGCATAACGGACGTCAA -ACGGAAACGCATAACGGAGCTGAA -ACGGAAACGCATAACGGAAGTACG -ACGGAAACGCATAACGGAATCCGA -ACGGAAACGCATAACGGAATGGGA -ACGGAAACGCATAACGGAGTGCAA -ACGGAAACGCATAACGGAGAGGAA -ACGGAAACGCATAACGGACAGGTA -ACGGAAACGCATAACGGAGACTCT -ACGGAAACGCATAACGGAAGTCCT -ACGGAAACGCATAACGGATAAGCC -ACGGAAACGCATAACGGAATAGCC -ACGGAAACGCATAACGGATAACCG -ACGGAAACGCATAACGGAATGCCA -ACGGAAACGCATACCAACGGAAAC -ACGGAAACGCATACCAACAACACC -ACGGAAACGCATACCAACATCGAG -ACGGAAACGCATACCAACCTCCTT -ACGGAAACGCATACCAACCCTGTT -ACGGAAACGCATACCAACCGGTTT -ACGGAAACGCATACCAACGTGGTT -ACGGAAACGCATACCAACGCCTTT -ACGGAAACGCATACCAACGGTCTT -ACGGAAACGCATACCAACACGCTT -ACGGAAACGCATACCAACAGCGTT -ACGGAAACGCATACCAACTTCGTC -ACGGAAACGCATACCAACTCTCTC -ACGGAAACGCATACCAACTGGATC -ACGGAAACGCATACCAACCACTTC -ACGGAAACGCATACCAACGTACTC -ACGGAAACGCATACCAACGATGTC -ACGGAAACGCATACCAACACAGTC -ACGGAAACGCATACCAACTTGCTG -ACGGAAACGCATACCAACTCCATG -ACGGAAACGCATACCAACTGTGTG -ACGGAAACGCATACCAACCTAGTG -ACGGAAACGCATACCAACCATCTG -ACGGAAACGCATACCAACGAGTTG -ACGGAAACGCATACCAACAGACTG -ACGGAAACGCATACCAACTCGGTA -ACGGAAACGCATACCAACTGCCTA -ACGGAAACGCATACCAACCCACTA -ACGGAAACGCATACCAACGGAGTA -ACGGAAACGCATACCAACTCGTCT -ACGGAAACGCATACCAACTGCACT -ACGGAAACGCATACCAACCTGACT -ACGGAAACGCATACCAACCAACCT -ACGGAAACGCATACCAACGCTACT -ACGGAAACGCATACCAACGGATCT -ACGGAAACGCATACCAACAAGGCT -ACGGAAACGCATACCAACTCAACC -ACGGAAACGCATACCAACTGTTCC -ACGGAAACGCATACCAACATTCCC -ACGGAAACGCATACCAACTTCTCG -ACGGAAACGCATACCAACTAGACG -ACGGAAACGCATACCAACGTAACG -ACGGAAACGCATACCAACACTTCG -ACGGAAACGCATACCAACTACGCA -ACGGAAACGCATACCAACCTTGCA -ACGGAAACGCATACCAACCGAACA -ACGGAAACGCATACCAACCAGTCA -ACGGAAACGCATACCAACGATCCA -ACGGAAACGCATACCAACACGACA -ACGGAAACGCATACCAACAGCTCA -ACGGAAACGCATACCAACTCACGT -ACGGAAACGCATACCAACCGTAGT -ACGGAAACGCATACCAACGTCAGT -ACGGAAACGCATACCAACGAAGGT -ACGGAAACGCATACCAACAACCGT -ACGGAAACGCATACCAACTTGTGC -ACGGAAACGCATACCAACCTAAGC -ACGGAAACGCATACCAACACTAGC -ACGGAAACGCATACCAACAGATGC -ACGGAAACGCATACCAACTGAAGG -ACGGAAACGCATACCAACCAATGG -ACGGAAACGCATACCAACATGAGG -ACGGAAACGCATACCAACAATGGG -ACGGAAACGCATACCAACTCCTGA -ACGGAAACGCATACCAACTAGCGA -ACGGAAACGCATACCAACCACAGA -ACGGAAACGCATACCAACGCAAGA -ACGGAAACGCATACCAACGGTTGA -ACGGAAACGCATACCAACTCCGAT -ACGGAAACGCATACCAACTGGCAT -ACGGAAACGCATACCAACCGAGAT -ACGGAAACGCATACCAACTACCAC -ACGGAAACGCATACCAACCAGAAC -ACGGAAACGCATACCAACGTCTAC -ACGGAAACGCATACCAACACGTAC -ACGGAAACGCATACCAACAGTGAC -ACGGAAACGCATACCAACCTGTAG -ACGGAAACGCATACCAACCCTAAG -ACGGAAACGCATACCAACGTTCAG -ACGGAAACGCATACCAACGCATAG -ACGGAAACGCATACCAACGACAAG -ACGGAAACGCATACCAACAAGCAG -ACGGAAACGCATACCAACCGTCAA -ACGGAAACGCATACCAACGCTGAA -ACGGAAACGCATACCAACAGTACG -ACGGAAACGCATACCAACATCCGA -ACGGAAACGCATACCAACATGGGA -ACGGAAACGCATACCAACGTGCAA -ACGGAAACGCATACCAACGAGGAA -ACGGAAACGCATACCAACCAGGTA -ACGGAAACGCATACCAACGACTCT -ACGGAAACGCATACCAACAGTCCT -ACGGAAACGCATACCAACTAAGCC -ACGGAAACGCATACCAACATAGCC -ACGGAAACGCATACCAACTAACCG -ACGGAAACGCATACCAACATGCCA -ACGGAAACGCATGAGATCGGAAAC -ACGGAAACGCATGAGATCAACACC -ACGGAAACGCATGAGATCATCGAG -ACGGAAACGCATGAGATCCTCCTT -ACGGAAACGCATGAGATCCCTGTT -ACGGAAACGCATGAGATCCGGTTT -ACGGAAACGCATGAGATCGTGGTT -ACGGAAACGCATGAGATCGCCTTT -ACGGAAACGCATGAGATCGGTCTT -ACGGAAACGCATGAGATCACGCTT -ACGGAAACGCATGAGATCAGCGTT -ACGGAAACGCATGAGATCTTCGTC -ACGGAAACGCATGAGATCTCTCTC -ACGGAAACGCATGAGATCTGGATC -ACGGAAACGCATGAGATCCACTTC -ACGGAAACGCATGAGATCGTACTC -ACGGAAACGCATGAGATCGATGTC -ACGGAAACGCATGAGATCACAGTC -ACGGAAACGCATGAGATCTTGCTG -ACGGAAACGCATGAGATCTCCATG -ACGGAAACGCATGAGATCTGTGTG -ACGGAAACGCATGAGATCCTAGTG -ACGGAAACGCATGAGATCCATCTG -ACGGAAACGCATGAGATCGAGTTG -ACGGAAACGCATGAGATCAGACTG -ACGGAAACGCATGAGATCTCGGTA -ACGGAAACGCATGAGATCTGCCTA -ACGGAAACGCATGAGATCCCACTA -ACGGAAACGCATGAGATCGGAGTA -ACGGAAACGCATGAGATCTCGTCT -ACGGAAACGCATGAGATCTGCACT -ACGGAAACGCATGAGATCCTGACT -ACGGAAACGCATGAGATCCAACCT -ACGGAAACGCATGAGATCGCTACT -ACGGAAACGCATGAGATCGGATCT -ACGGAAACGCATGAGATCAAGGCT -ACGGAAACGCATGAGATCTCAACC -ACGGAAACGCATGAGATCTGTTCC -ACGGAAACGCATGAGATCATTCCC -ACGGAAACGCATGAGATCTTCTCG -ACGGAAACGCATGAGATCTAGACG -ACGGAAACGCATGAGATCGTAACG -ACGGAAACGCATGAGATCACTTCG -ACGGAAACGCATGAGATCTACGCA -ACGGAAACGCATGAGATCCTTGCA -ACGGAAACGCATGAGATCCGAACA -ACGGAAACGCATGAGATCCAGTCA -ACGGAAACGCATGAGATCGATCCA -ACGGAAACGCATGAGATCACGACA -ACGGAAACGCATGAGATCAGCTCA -ACGGAAACGCATGAGATCTCACGT -ACGGAAACGCATGAGATCCGTAGT -ACGGAAACGCATGAGATCGTCAGT -ACGGAAACGCATGAGATCGAAGGT -ACGGAAACGCATGAGATCAACCGT -ACGGAAACGCATGAGATCTTGTGC -ACGGAAACGCATGAGATCCTAAGC -ACGGAAACGCATGAGATCACTAGC -ACGGAAACGCATGAGATCAGATGC -ACGGAAACGCATGAGATCTGAAGG -ACGGAAACGCATGAGATCCAATGG -ACGGAAACGCATGAGATCATGAGG -ACGGAAACGCATGAGATCAATGGG -ACGGAAACGCATGAGATCTCCTGA -ACGGAAACGCATGAGATCTAGCGA -ACGGAAACGCATGAGATCCACAGA -ACGGAAACGCATGAGATCGCAAGA -ACGGAAACGCATGAGATCGGTTGA -ACGGAAACGCATGAGATCTCCGAT -ACGGAAACGCATGAGATCTGGCAT -ACGGAAACGCATGAGATCCGAGAT -ACGGAAACGCATGAGATCTACCAC -ACGGAAACGCATGAGATCCAGAAC -ACGGAAACGCATGAGATCGTCTAC -ACGGAAACGCATGAGATCACGTAC -ACGGAAACGCATGAGATCAGTGAC -ACGGAAACGCATGAGATCCTGTAG -ACGGAAACGCATGAGATCCCTAAG -ACGGAAACGCATGAGATCGTTCAG -ACGGAAACGCATGAGATCGCATAG -ACGGAAACGCATGAGATCGACAAG -ACGGAAACGCATGAGATCAAGCAG -ACGGAAACGCATGAGATCCGTCAA -ACGGAAACGCATGAGATCGCTGAA -ACGGAAACGCATGAGATCAGTACG -ACGGAAACGCATGAGATCATCCGA -ACGGAAACGCATGAGATCATGGGA -ACGGAAACGCATGAGATCGTGCAA -ACGGAAACGCATGAGATCGAGGAA -ACGGAAACGCATGAGATCCAGGTA -ACGGAAACGCATGAGATCGACTCT -ACGGAAACGCATGAGATCAGTCCT -ACGGAAACGCATGAGATCTAAGCC -ACGGAAACGCATGAGATCATAGCC -ACGGAAACGCATGAGATCTAACCG -ACGGAAACGCATGAGATCATGCCA -ACGGAAACGCATCTTCTCGGAAAC -ACGGAAACGCATCTTCTCAACACC -ACGGAAACGCATCTTCTCATCGAG -ACGGAAACGCATCTTCTCCTCCTT -ACGGAAACGCATCTTCTCCCTGTT -ACGGAAACGCATCTTCTCCGGTTT -ACGGAAACGCATCTTCTCGTGGTT -ACGGAAACGCATCTTCTCGCCTTT -ACGGAAACGCATCTTCTCGGTCTT -ACGGAAACGCATCTTCTCACGCTT -ACGGAAACGCATCTTCTCAGCGTT -ACGGAAACGCATCTTCTCTTCGTC -ACGGAAACGCATCTTCTCTCTCTC -ACGGAAACGCATCTTCTCTGGATC -ACGGAAACGCATCTTCTCCACTTC -ACGGAAACGCATCTTCTCGTACTC -ACGGAAACGCATCTTCTCGATGTC -ACGGAAACGCATCTTCTCACAGTC -ACGGAAACGCATCTTCTCTTGCTG -ACGGAAACGCATCTTCTCTCCATG -ACGGAAACGCATCTTCTCTGTGTG -ACGGAAACGCATCTTCTCCTAGTG -ACGGAAACGCATCTTCTCCATCTG -ACGGAAACGCATCTTCTCGAGTTG -ACGGAAACGCATCTTCTCAGACTG -ACGGAAACGCATCTTCTCTCGGTA -ACGGAAACGCATCTTCTCTGCCTA -ACGGAAACGCATCTTCTCCCACTA -ACGGAAACGCATCTTCTCGGAGTA -ACGGAAACGCATCTTCTCTCGTCT -ACGGAAACGCATCTTCTCTGCACT -ACGGAAACGCATCTTCTCCTGACT -ACGGAAACGCATCTTCTCCAACCT -ACGGAAACGCATCTTCTCGCTACT -ACGGAAACGCATCTTCTCGGATCT -ACGGAAACGCATCTTCTCAAGGCT -ACGGAAACGCATCTTCTCTCAACC -ACGGAAACGCATCTTCTCTGTTCC -ACGGAAACGCATCTTCTCATTCCC -ACGGAAACGCATCTTCTCTTCTCG -ACGGAAACGCATCTTCTCTAGACG -ACGGAAACGCATCTTCTCGTAACG -ACGGAAACGCATCTTCTCACTTCG -ACGGAAACGCATCTTCTCTACGCA -ACGGAAACGCATCTTCTCCTTGCA -ACGGAAACGCATCTTCTCCGAACA -ACGGAAACGCATCTTCTCCAGTCA -ACGGAAACGCATCTTCTCGATCCA -ACGGAAACGCATCTTCTCACGACA -ACGGAAACGCATCTTCTCAGCTCA -ACGGAAACGCATCTTCTCTCACGT -ACGGAAACGCATCTTCTCCGTAGT -ACGGAAACGCATCTTCTCGTCAGT -ACGGAAACGCATCTTCTCGAAGGT -ACGGAAACGCATCTTCTCAACCGT -ACGGAAACGCATCTTCTCTTGTGC -ACGGAAACGCATCTTCTCCTAAGC -ACGGAAACGCATCTTCTCACTAGC -ACGGAAACGCATCTTCTCAGATGC -ACGGAAACGCATCTTCTCTGAAGG -ACGGAAACGCATCTTCTCCAATGG -ACGGAAACGCATCTTCTCATGAGG -ACGGAAACGCATCTTCTCAATGGG -ACGGAAACGCATCTTCTCTCCTGA -ACGGAAACGCATCTTCTCTAGCGA -ACGGAAACGCATCTTCTCCACAGA -ACGGAAACGCATCTTCTCGCAAGA -ACGGAAACGCATCTTCTCGGTTGA -ACGGAAACGCATCTTCTCTCCGAT -ACGGAAACGCATCTTCTCTGGCAT -ACGGAAACGCATCTTCTCCGAGAT -ACGGAAACGCATCTTCTCTACCAC -ACGGAAACGCATCTTCTCCAGAAC -ACGGAAACGCATCTTCTCGTCTAC -ACGGAAACGCATCTTCTCACGTAC -ACGGAAACGCATCTTCTCAGTGAC -ACGGAAACGCATCTTCTCCTGTAG -ACGGAAACGCATCTTCTCCCTAAG -ACGGAAACGCATCTTCTCGTTCAG -ACGGAAACGCATCTTCTCGCATAG -ACGGAAACGCATCTTCTCGACAAG -ACGGAAACGCATCTTCTCAAGCAG -ACGGAAACGCATCTTCTCCGTCAA -ACGGAAACGCATCTTCTCGCTGAA -ACGGAAACGCATCTTCTCAGTACG -ACGGAAACGCATCTTCTCATCCGA -ACGGAAACGCATCTTCTCATGGGA -ACGGAAACGCATCTTCTCGTGCAA -ACGGAAACGCATCTTCTCGAGGAA -ACGGAAACGCATCTTCTCCAGGTA -ACGGAAACGCATCTTCTCGACTCT -ACGGAAACGCATCTTCTCAGTCCT -ACGGAAACGCATCTTCTCTAAGCC -ACGGAAACGCATCTTCTCATAGCC -ACGGAAACGCATCTTCTCTAACCG -ACGGAAACGCATCTTCTCATGCCA -ACGGAAACGCATGTTCCTGGAAAC -ACGGAAACGCATGTTCCTAACACC -ACGGAAACGCATGTTCCTATCGAG -ACGGAAACGCATGTTCCTCTCCTT -ACGGAAACGCATGTTCCTCCTGTT -ACGGAAACGCATGTTCCTCGGTTT -ACGGAAACGCATGTTCCTGTGGTT -ACGGAAACGCATGTTCCTGCCTTT -ACGGAAACGCATGTTCCTGGTCTT -ACGGAAACGCATGTTCCTACGCTT -ACGGAAACGCATGTTCCTAGCGTT -ACGGAAACGCATGTTCCTTTCGTC -ACGGAAACGCATGTTCCTTCTCTC -ACGGAAACGCATGTTCCTTGGATC -ACGGAAACGCATGTTCCTCACTTC -ACGGAAACGCATGTTCCTGTACTC -ACGGAAACGCATGTTCCTGATGTC -ACGGAAACGCATGTTCCTACAGTC -ACGGAAACGCATGTTCCTTTGCTG -ACGGAAACGCATGTTCCTTCCATG -ACGGAAACGCATGTTCCTTGTGTG -ACGGAAACGCATGTTCCTCTAGTG -ACGGAAACGCATGTTCCTCATCTG -ACGGAAACGCATGTTCCTGAGTTG -ACGGAAACGCATGTTCCTAGACTG -ACGGAAACGCATGTTCCTTCGGTA -ACGGAAACGCATGTTCCTTGCCTA -ACGGAAACGCATGTTCCTCCACTA -ACGGAAACGCATGTTCCTGGAGTA -ACGGAAACGCATGTTCCTTCGTCT -ACGGAAACGCATGTTCCTTGCACT -ACGGAAACGCATGTTCCTCTGACT -ACGGAAACGCATGTTCCTCAACCT -ACGGAAACGCATGTTCCTGCTACT -ACGGAAACGCATGTTCCTGGATCT -ACGGAAACGCATGTTCCTAAGGCT -ACGGAAACGCATGTTCCTTCAACC -ACGGAAACGCATGTTCCTTGTTCC -ACGGAAACGCATGTTCCTATTCCC -ACGGAAACGCATGTTCCTTTCTCG -ACGGAAACGCATGTTCCTTAGACG -ACGGAAACGCATGTTCCTGTAACG -ACGGAAACGCATGTTCCTACTTCG -ACGGAAACGCATGTTCCTTACGCA -ACGGAAACGCATGTTCCTCTTGCA -ACGGAAACGCATGTTCCTCGAACA -ACGGAAACGCATGTTCCTCAGTCA -ACGGAAACGCATGTTCCTGATCCA -ACGGAAACGCATGTTCCTACGACA -ACGGAAACGCATGTTCCTAGCTCA -ACGGAAACGCATGTTCCTTCACGT -ACGGAAACGCATGTTCCTCGTAGT -ACGGAAACGCATGTTCCTGTCAGT -ACGGAAACGCATGTTCCTGAAGGT -ACGGAAACGCATGTTCCTAACCGT -ACGGAAACGCATGTTCCTTTGTGC -ACGGAAACGCATGTTCCTCTAAGC -ACGGAAACGCATGTTCCTACTAGC -ACGGAAACGCATGTTCCTAGATGC -ACGGAAACGCATGTTCCTTGAAGG -ACGGAAACGCATGTTCCTCAATGG -ACGGAAACGCATGTTCCTATGAGG -ACGGAAACGCATGTTCCTAATGGG -ACGGAAACGCATGTTCCTTCCTGA -ACGGAAACGCATGTTCCTTAGCGA -ACGGAAACGCATGTTCCTCACAGA -ACGGAAACGCATGTTCCTGCAAGA -ACGGAAACGCATGTTCCTGGTTGA -ACGGAAACGCATGTTCCTTCCGAT -ACGGAAACGCATGTTCCTTGGCAT -ACGGAAACGCATGTTCCTCGAGAT -ACGGAAACGCATGTTCCTTACCAC -ACGGAAACGCATGTTCCTCAGAAC -ACGGAAACGCATGTTCCTGTCTAC -ACGGAAACGCATGTTCCTACGTAC -ACGGAAACGCATGTTCCTAGTGAC -ACGGAAACGCATGTTCCTCTGTAG -ACGGAAACGCATGTTCCTCCTAAG -ACGGAAACGCATGTTCCTGTTCAG -ACGGAAACGCATGTTCCTGCATAG -ACGGAAACGCATGTTCCTGACAAG -ACGGAAACGCATGTTCCTAAGCAG -ACGGAAACGCATGTTCCTCGTCAA -ACGGAAACGCATGTTCCTGCTGAA -ACGGAAACGCATGTTCCTAGTACG -ACGGAAACGCATGTTCCTATCCGA -ACGGAAACGCATGTTCCTATGGGA -ACGGAAACGCATGTTCCTGTGCAA -ACGGAAACGCATGTTCCTGAGGAA -ACGGAAACGCATGTTCCTCAGGTA -ACGGAAACGCATGTTCCTGACTCT -ACGGAAACGCATGTTCCTAGTCCT -ACGGAAACGCATGTTCCTTAAGCC -ACGGAAACGCATGTTCCTATAGCC -ACGGAAACGCATGTTCCTTAACCG -ACGGAAACGCATGTTCCTATGCCA -ACGGAAACGCATTTTCGGGGAAAC -ACGGAAACGCATTTTCGGAACACC -ACGGAAACGCATTTTCGGATCGAG -ACGGAAACGCATTTTCGGCTCCTT -ACGGAAACGCATTTTCGGCCTGTT -ACGGAAACGCATTTTCGGCGGTTT -ACGGAAACGCATTTTCGGGTGGTT -ACGGAAACGCATTTTCGGGCCTTT -ACGGAAACGCATTTTCGGGGTCTT -ACGGAAACGCATTTTCGGACGCTT -ACGGAAACGCATTTTCGGAGCGTT -ACGGAAACGCATTTTCGGTTCGTC -ACGGAAACGCATTTTCGGTCTCTC -ACGGAAACGCATTTTCGGTGGATC -ACGGAAACGCATTTTCGGCACTTC -ACGGAAACGCATTTTCGGGTACTC -ACGGAAACGCATTTTCGGGATGTC -ACGGAAACGCATTTTCGGACAGTC -ACGGAAACGCATTTTCGGTTGCTG -ACGGAAACGCATTTTCGGTCCATG -ACGGAAACGCATTTTCGGTGTGTG -ACGGAAACGCATTTTCGGCTAGTG -ACGGAAACGCATTTTCGGCATCTG -ACGGAAACGCATTTTCGGGAGTTG -ACGGAAACGCATTTTCGGAGACTG -ACGGAAACGCATTTTCGGTCGGTA -ACGGAAACGCATTTTCGGTGCCTA -ACGGAAACGCATTTTCGGCCACTA -ACGGAAACGCATTTTCGGGGAGTA -ACGGAAACGCATTTTCGGTCGTCT -ACGGAAACGCATTTTCGGTGCACT -ACGGAAACGCATTTTCGGCTGACT -ACGGAAACGCATTTTCGGCAACCT -ACGGAAACGCATTTTCGGGCTACT -ACGGAAACGCATTTTCGGGGATCT -ACGGAAACGCATTTTCGGAAGGCT -ACGGAAACGCATTTTCGGTCAACC -ACGGAAACGCATTTTCGGTGTTCC -ACGGAAACGCATTTTCGGATTCCC -ACGGAAACGCATTTTCGGTTCTCG -ACGGAAACGCATTTTCGGTAGACG -ACGGAAACGCATTTTCGGGTAACG -ACGGAAACGCATTTTCGGACTTCG -ACGGAAACGCATTTTCGGTACGCA -ACGGAAACGCATTTTCGGCTTGCA -ACGGAAACGCATTTTCGGCGAACA -ACGGAAACGCATTTTCGGCAGTCA -ACGGAAACGCATTTTCGGGATCCA -ACGGAAACGCATTTTCGGACGACA -ACGGAAACGCATTTTCGGAGCTCA -ACGGAAACGCATTTTCGGTCACGT -ACGGAAACGCATTTTCGGCGTAGT -ACGGAAACGCATTTTCGGGTCAGT -ACGGAAACGCATTTTCGGGAAGGT -ACGGAAACGCATTTTCGGAACCGT -ACGGAAACGCATTTTCGGTTGTGC -ACGGAAACGCATTTTCGGCTAAGC -ACGGAAACGCATTTTCGGACTAGC -ACGGAAACGCATTTTCGGAGATGC -ACGGAAACGCATTTTCGGTGAAGG -ACGGAAACGCATTTTCGGCAATGG -ACGGAAACGCATTTTCGGATGAGG -ACGGAAACGCATTTTCGGAATGGG -ACGGAAACGCATTTTCGGTCCTGA -ACGGAAACGCATTTTCGGTAGCGA -ACGGAAACGCATTTTCGGCACAGA -ACGGAAACGCATTTTCGGGCAAGA -ACGGAAACGCATTTTCGGGGTTGA -ACGGAAACGCATTTTCGGTCCGAT -ACGGAAACGCATTTTCGGTGGCAT -ACGGAAACGCATTTTCGGCGAGAT -ACGGAAACGCATTTTCGGTACCAC -ACGGAAACGCATTTTCGGCAGAAC -ACGGAAACGCATTTTCGGGTCTAC -ACGGAAACGCATTTTCGGACGTAC -ACGGAAACGCATTTTCGGAGTGAC -ACGGAAACGCATTTTCGGCTGTAG -ACGGAAACGCATTTTCGGCCTAAG -ACGGAAACGCATTTTCGGGTTCAG -ACGGAAACGCATTTTCGGGCATAG -ACGGAAACGCATTTTCGGGACAAG -ACGGAAACGCATTTTCGGAAGCAG -ACGGAAACGCATTTTCGGCGTCAA -ACGGAAACGCATTTTCGGGCTGAA -ACGGAAACGCATTTTCGGAGTACG -ACGGAAACGCATTTTCGGATCCGA -ACGGAAACGCATTTTCGGATGGGA -ACGGAAACGCATTTTCGGGTGCAA -ACGGAAACGCATTTTCGGGAGGAA -ACGGAAACGCATTTTCGGCAGGTA -ACGGAAACGCATTTTCGGGACTCT -ACGGAAACGCATTTTCGGAGTCCT -ACGGAAACGCATTTTCGGTAAGCC -ACGGAAACGCATTTTCGGATAGCC -ACGGAAACGCATTTTCGGTAACCG -ACGGAAACGCATTTTCGGATGCCA -ACGGAAACGCATGTTGTGGGAAAC -ACGGAAACGCATGTTGTGAACACC -ACGGAAACGCATGTTGTGATCGAG -ACGGAAACGCATGTTGTGCTCCTT -ACGGAAACGCATGTTGTGCCTGTT -ACGGAAACGCATGTTGTGCGGTTT -ACGGAAACGCATGTTGTGGTGGTT -ACGGAAACGCATGTTGTGGCCTTT -ACGGAAACGCATGTTGTGGGTCTT -ACGGAAACGCATGTTGTGACGCTT -ACGGAAACGCATGTTGTGAGCGTT -ACGGAAACGCATGTTGTGTTCGTC -ACGGAAACGCATGTTGTGTCTCTC -ACGGAAACGCATGTTGTGTGGATC -ACGGAAACGCATGTTGTGCACTTC -ACGGAAACGCATGTTGTGGTACTC -ACGGAAACGCATGTTGTGGATGTC -ACGGAAACGCATGTTGTGACAGTC -ACGGAAACGCATGTTGTGTTGCTG -ACGGAAACGCATGTTGTGTCCATG -ACGGAAACGCATGTTGTGTGTGTG -ACGGAAACGCATGTTGTGCTAGTG -ACGGAAACGCATGTTGTGCATCTG -ACGGAAACGCATGTTGTGGAGTTG -ACGGAAACGCATGTTGTGAGACTG -ACGGAAACGCATGTTGTGTCGGTA -ACGGAAACGCATGTTGTGTGCCTA -ACGGAAACGCATGTTGTGCCACTA -ACGGAAACGCATGTTGTGGGAGTA -ACGGAAACGCATGTTGTGTCGTCT -ACGGAAACGCATGTTGTGTGCACT -ACGGAAACGCATGTTGTGCTGACT -ACGGAAACGCATGTTGTGCAACCT -ACGGAAACGCATGTTGTGGCTACT -ACGGAAACGCATGTTGTGGGATCT -ACGGAAACGCATGTTGTGAAGGCT -ACGGAAACGCATGTTGTGTCAACC -ACGGAAACGCATGTTGTGTGTTCC -ACGGAAACGCATGTTGTGATTCCC -ACGGAAACGCATGTTGTGTTCTCG -ACGGAAACGCATGTTGTGTAGACG -ACGGAAACGCATGTTGTGGTAACG -ACGGAAACGCATGTTGTGACTTCG -ACGGAAACGCATGTTGTGTACGCA -ACGGAAACGCATGTTGTGCTTGCA -ACGGAAACGCATGTTGTGCGAACA -ACGGAAACGCATGTTGTGCAGTCA -ACGGAAACGCATGTTGTGGATCCA -ACGGAAACGCATGTTGTGACGACA -ACGGAAACGCATGTTGTGAGCTCA -ACGGAAACGCATGTTGTGTCACGT -ACGGAAACGCATGTTGTGCGTAGT -ACGGAAACGCATGTTGTGGTCAGT -ACGGAAACGCATGTTGTGGAAGGT -ACGGAAACGCATGTTGTGAACCGT -ACGGAAACGCATGTTGTGTTGTGC -ACGGAAACGCATGTTGTGCTAAGC -ACGGAAACGCATGTTGTGACTAGC -ACGGAAACGCATGTTGTGAGATGC -ACGGAAACGCATGTTGTGTGAAGG -ACGGAAACGCATGTTGTGCAATGG -ACGGAAACGCATGTTGTGATGAGG -ACGGAAACGCATGTTGTGAATGGG -ACGGAAACGCATGTTGTGTCCTGA -ACGGAAACGCATGTTGTGTAGCGA -ACGGAAACGCATGTTGTGCACAGA -ACGGAAACGCATGTTGTGGCAAGA -ACGGAAACGCATGTTGTGGGTTGA -ACGGAAACGCATGTTGTGTCCGAT -ACGGAAACGCATGTTGTGTGGCAT -ACGGAAACGCATGTTGTGCGAGAT -ACGGAAACGCATGTTGTGTACCAC -ACGGAAACGCATGTTGTGCAGAAC -ACGGAAACGCATGTTGTGGTCTAC -ACGGAAACGCATGTTGTGACGTAC -ACGGAAACGCATGTTGTGAGTGAC -ACGGAAACGCATGTTGTGCTGTAG -ACGGAAACGCATGTTGTGCCTAAG -ACGGAAACGCATGTTGTGGTTCAG -ACGGAAACGCATGTTGTGGCATAG -ACGGAAACGCATGTTGTGGACAAG -ACGGAAACGCATGTTGTGAAGCAG -ACGGAAACGCATGTTGTGCGTCAA -ACGGAAACGCATGTTGTGGCTGAA -ACGGAAACGCATGTTGTGAGTACG -ACGGAAACGCATGTTGTGATCCGA -ACGGAAACGCATGTTGTGATGGGA -ACGGAAACGCATGTTGTGGTGCAA -ACGGAAACGCATGTTGTGGAGGAA -ACGGAAACGCATGTTGTGCAGGTA -ACGGAAACGCATGTTGTGGACTCT -ACGGAAACGCATGTTGTGAGTCCT -ACGGAAACGCATGTTGTGTAAGCC -ACGGAAACGCATGTTGTGATAGCC -ACGGAAACGCATGTTGTGTAACCG -ACGGAAACGCATGTTGTGATGCCA -ACGGAAACGCATTTTGCCGGAAAC -ACGGAAACGCATTTTGCCAACACC -ACGGAAACGCATTTTGCCATCGAG -ACGGAAACGCATTTTGCCCTCCTT -ACGGAAACGCATTTTGCCCCTGTT -ACGGAAACGCATTTTGCCCGGTTT -ACGGAAACGCATTTTGCCGTGGTT -ACGGAAACGCATTTTGCCGCCTTT -ACGGAAACGCATTTTGCCGGTCTT -ACGGAAACGCATTTTGCCACGCTT -ACGGAAACGCATTTTGCCAGCGTT -ACGGAAACGCATTTTGCCTTCGTC -ACGGAAACGCATTTTGCCTCTCTC -ACGGAAACGCATTTTGCCTGGATC -ACGGAAACGCATTTTGCCCACTTC -ACGGAAACGCATTTTGCCGTACTC -ACGGAAACGCATTTTGCCGATGTC -ACGGAAACGCATTTTGCCACAGTC -ACGGAAACGCATTTTGCCTTGCTG -ACGGAAACGCATTTTGCCTCCATG -ACGGAAACGCATTTTGCCTGTGTG -ACGGAAACGCATTTTGCCCTAGTG -ACGGAAACGCATTTTGCCCATCTG -ACGGAAACGCATTTTGCCGAGTTG -ACGGAAACGCATTTTGCCAGACTG -ACGGAAACGCATTTTGCCTCGGTA -ACGGAAACGCATTTTGCCTGCCTA -ACGGAAACGCATTTTGCCCCACTA -ACGGAAACGCATTTTGCCGGAGTA -ACGGAAACGCATTTTGCCTCGTCT -ACGGAAACGCATTTTGCCTGCACT -ACGGAAACGCATTTTGCCCTGACT -ACGGAAACGCATTTTGCCCAACCT -ACGGAAACGCATTTTGCCGCTACT -ACGGAAACGCATTTTGCCGGATCT -ACGGAAACGCATTTTGCCAAGGCT -ACGGAAACGCATTTTGCCTCAACC -ACGGAAACGCATTTTGCCTGTTCC -ACGGAAACGCATTTTGCCATTCCC -ACGGAAACGCATTTTGCCTTCTCG -ACGGAAACGCATTTTGCCTAGACG -ACGGAAACGCATTTTGCCGTAACG -ACGGAAACGCATTTTGCCACTTCG -ACGGAAACGCATTTTGCCTACGCA -ACGGAAACGCATTTTGCCCTTGCA -ACGGAAACGCATTTTGCCCGAACA -ACGGAAACGCATTTTGCCCAGTCA -ACGGAAACGCATTTTGCCGATCCA -ACGGAAACGCATTTTGCCACGACA -ACGGAAACGCATTTTGCCAGCTCA -ACGGAAACGCATTTTGCCTCACGT -ACGGAAACGCATTTTGCCCGTAGT -ACGGAAACGCATTTTGCCGTCAGT -ACGGAAACGCATTTTGCCGAAGGT -ACGGAAACGCATTTTGCCAACCGT -ACGGAAACGCATTTTGCCTTGTGC -ACGGAAACGCATTTTGCCCTAAGC -ACGGAAACGCATTTTGCCACTAGC -ACGGAAACGCATTTTGCCAGATGC -ACGGAAACGCATTTTGCCTGAAGG -ACGGAAACGCATTTTGCCCAATGG -ACGGAAACGCATTTTGCCATGAGG -ACGGAAACGCATTTTGCCAATGGG -ACGGAAACGCATTTTGCCTCCTGA -ACGGAAACGCATTTTGCCTAGCGA -ACGGAAACGCATTTTGCCCACAGA -ACGGAAACGCATTTTGCCGCAAGA -ACGGAAACGCATTTTGCCGGTTGA -ACGGAAACGCATTTTGCCTCCGAT -ACGGAAACGCATTTTGCCTGGCAT -ACGGAAACGCATTTTGCCCGAGAT -ACGGAAACGCATTTTGCCTACCAC -ACGGAAACGCATTTTGCCCAGAAC -ACGGAAACGCATTTTGCCGTCTAC -ACGGAAACGCATTTTGCCACGTAC -ACGGAAACGCATTTTGCCAGTGAC -ACGGAAACGCATTTTGCCCTGTAG -ACGGAAACGCATTTTGCCCCTAAG -ACGGAAACGCATTTTGCCGTTCAG -ACGGAAACGCATTTTGCCGCATAG -ACGGAAACGCATTTTGCCGACAAG -ACGGAAACGCATTTTGCCAAGCAG -ACGGAAACGCATTTTGCCCGTCAA -ACGGAAACGCATTTTGCCGCTGAA -ACGGAAACGCATTTTGCCAGTACG -ACGGAAACGCATTTTGCCATCCGA -ACGGAAACGCATTTTGCCATGGGA -ACGGAAACGCATTTTGCCGTGCAA -ACGGAAACGCATTTTGCCGAGGAA -ACGGAAACGCATTTTGCCCAGGTA -ACGGAAACGCATTTTGCCGACTCT -ACGGAAACGCATTTTGCCAGTCCT -ACGGAAACGCATTTTGCCTAAGCC -ACGGAAACGCATTTTGCCATAGCC -ACGGAAACGCATTTTGCCTAACCG -ACGGAAACGCATTTTGCCATGCCA -ACGGAAACGCATCTTGGTGGAAAC -ACGGAAACGCATCTTGGTAACACC -ACGGAAACGCATCTTGGTATCGAG -ACGGAAACGCATCTTGGTCTCCTT -ACGGAAACGCATCTTGGTCCTGTT -ACGGAAACGCATCTTGGTCGGTTT -ACGGAAACGCATCTTGGTGTGGTT -ACGGAAACGCATCTTGGTGCCTTT -ACGGAAACGCATCTTGGTGGTCTT -ACGGAAACGCATCTTGGTACGCTT -ACGGAAACGCATCTTGGTAGCGTT -ACGGAAACGCATCTTGGTTTCGTC -ACGGAAACGCATCTTGGTTCTCTC -ACGGAAACGCATCTTGGTTGGATC -ACGGAAACGCATCTTGGTCACTTC -ACGGAAACGCATCTTGGTGTACTC -ACGGAAACGCATCTTGGTGATGTC -ACGGAAACGCATCTTGGTACAGTC -ACGGAAACGCATCTTGGTTTGCTG -ACGGAAACGCATCTTGGTTCCATG -ACGGAAACGCATCTTGGTTGTGTG -ACGGAAACGCATCTTGGTCTAGTG -ACGGAAACGCATCTTGGTCATCTG -ACGGAAACGCATCTTGGTGAGTTG -ACGGAAACGCATCTTGGTAGACTG -ACGGAAACGCATCTTGGTTCGGTA -ACGGAAACGCATCTTGGTTGCCTA -ACGGAAACGCATCTTGGTCCACTA -ACGGAAACGCATCTTGGTGGAGTA -ACGGAAACGCATCTTGGTTCGTCT -ACGGAAACGCATCTTGGTTGCACT -ACGGAAACGCATCTTGGTCTGACT -ACGGAAACGCATCTTGGTCAACCT -ACGGAAACGCATCTTGGTGCTACT -ACGGAAACGCATCTTGGTGGATCT -ACGGAAACGCATCTTGGTAAGGCT -ACGGAAACGCATCTTGGTTCAACC -ACGGAAACGCATCTTGGTTGTTCC -ACGGAAACGCATCTTGGTATTCCC -ACGGAAACGCATCTTGGTTTCTCG -ACGGAAACGCATCTTGGTTAGACG -ACGGAAACGCATCTTGGTGTAACG -ACGGAAACGCATCTTGGTACTTCG -ACGGAAACGCATCTTGGTTACGCA -ACGGAAACGCATCTTGGTCTTGCA -ACGGAAACGCATCTTGGTCGAACA -ACGGAAACGCATCTTGGTCAGTCA -ACGGAAACGCATCTTGGTGATCCA -ACGGAAACGCATCTTGGTACGACA -ACGGAAACGCATCTTGGTAGCTCA -ACGGAAACGCATCTTGGTTCACGT -ACGGAAACGCATCTTGGTCGTAGT -ACGGAAACGCATCTTGGTGTCAGT -ACGGAAACGCATCTTGGTGAAGGT -ACGGAAACGCATCTTGGTAACCGT -ACGGAAACGCATCTTGGTTTGTGC -ACGGAAACGCATCTTGGTCTAAGC -ACGGAAACGCATCTTGGTACTAGC -ACGGAAACGCATCTTGGTAGATGC -ACGGAAACGCATCTTGGTTGAAGG -ACGGAAACGCATCTTGGTCAATGG -ACGGAAACGCATCTTGGTATGAGG -ACGGAAACGCATCTTGGTAATGGG -ACGGAAACGCATCTTGGTTCCTGA -ACGGAAACGCATCTTGGTTAGCGA -ACGGAAACGCATCTTGGTCACAGA -ACGGAAACGCATCTTGGTGCAAGA -ACGGAAACGCATCTTGGTGGTTGA -ACGGAAACGCATCTTGGTTCCGAT -ACGGAAACGCATCTTGGTTGGCAT -ACGGAAACGCATCTTGGTCGAGAT -ACGGAAACGCATCTTGGTTACCAC -ACGGAAACGCATCTTGGTCAGAAC -ACGGAAACGCATCTTGGTGTCTAC -ACGGAAACGCATCTTGGTACGTAC -ACGGAAACGCATCTTGGTAGTGAC -ACGGAAACGCATCTTGGTCTGTAG -ACGGAAACGCATCTTGGTCCTAAG -ACGGAAACGCATCTTGGTGTTCAG -ACGGAAACGCATCTTGGTGCATAG -ACGGAAACGCATCTTGGTGACAAG -ACGGAAACGCATCTTGGTAAGCAG -ACGGAAACGCATCTTGGTCGTCAA -ACGGAAACGCATCTTGGTGCTGAA -ACGGAAACGCATCTTGGTAGTACG -ACGGAAACGCATCTTGGTATCCGA -ACGGAAACGCATCTTGGTATGGGA -ACGGAAACGCATCTTGGTGTGCAA -ACGGAAACGCATCTTGGTGAGGAA -ACGGAAACGCATCTTGGTCAGGTA -ACGGAAACGCATCTTGGTGACTCT -ACGGAAACGCATCTTGGTAGTCCT -ACGGAAACGCATCTTGGTTAAGCC -ACGGAAACGCATCTTGGTATAGCC -ACGGAAACGCATCTTGGTTAACCG -ACGGAAACGCATCTTGGTATGCCA -ACGGAAACGCATCTTACGGGAAAC -ACGGAAACGCATCTTACGAACACC -ACGGAAACGCATCTTACGATCGAG -ACGGAAACGCATCTTACGCTCCTT -ACGGAAACGCATCTTACGCCTGTT -ACGGAAACGCATCTTACGCGGTTT -ACGGAAACGCATCTTACGGTGGTT -ACGGAAACGCATCTTACGGCCTTT -ACGGAAACGCATCTTACGGGTCTT -ACGGAAACGCATCTTACGACGCTT -ACGGAAACGCATCTTACGAGCGTT -ACGGAAACGCATCTTACGTTCGTC -ACGGAAACGCATCTTACGTCTCTC -ACGGAAACGCATCTTACGTGGATC -ACGGAAACGCATCTTACGCACTTC -ACGGAAACGCATCTTACGGTACTC -ACGGAAACGCATCTTACGGATGTC -ACGGAAACGCATCTTACGACAGTC -ACGGAAACGCATCTTACGTTGCTG -ACGGAAACGCATCTTACGTCCATG -ACGGAAACGCATCTTACGTGTGTG -ACGGAAACGCATCTTACGCTAGTG -ACGGAAACGCATCTTACGCATCTG -ACGGAAACGCATCTTACGGAGTTG -ACGGAAACGCATCTTACGAGACTG -ACGGAAACGCATCTTACGTCGGTA -ACGGAAACGCATCTTACGTGCCTA -ACGGAAACGCATCTTACGCCACTA -ACGGAAACGCATCTTACGGGAGTA -ACGGAAACGCATCTTACGTCGTCT -ACGGAAACGCATCTTACGTGCACT -ACGGAAACGCATCTTACGCTGACT -ACGGAAACGCATCTTACGCAACCT -ACGGAAACGCATCTTACGGCTACT -ACGGAAACGCATCTTACGGGATCT -ACGGAAACGCATCTTACGAAGGCT -ACGGAAACGCATCTTACGTCAACC -ACGGAAACGCATCTTACGTGTTCC -ACGGAAACGCATCTTACGATTCCC -ACGGAAACGCATCTTACGTTCTCG -ACGGAAACGCATCTTACGTAGACG -ACGGAAACGCATCTTACGGTAACG -ACGGAAACGCATCTTACGACTTCG -ACGGAAACGCATCTTACGTACGCA -ACGGAAACGCATCTTACGCTTGCA -ACGGAAACGCATCTTACGCGAACA -ACGGAAACGCATCTTACGCAGTCA -ACGGAAACGCATCTTACGGATCCA -ACGGAAACGCATCTTACGACGACA -ACGGAAACGCATCTTACGAGCTCA -ACGGAAACGCATCTTACGTCACGT -ACGGAAACGCATCTTACGCGTAGT -ACGGAAACGCATCTTACGGTCAGT -ACGGAAACGCATCTTACGGAAGGT -ACGGAAACGCATCTTACGAACCGT -ACGGAAACGCATCTTACGTTGTGC -ACGGAAACGCATCTTACGCTAAGC -ACGGAAACGCATCTTACGACTAGC -ACGGAAACGCATCTTACGAGATGC -ACGGAAACGCATCTTACGTGAAGG -ACGGAAACGCATCTTACGCAATGG -ACGGAAACGCATCTTACGATGAGG -ACGGAAACGCATCTTACGAATGGG -ACGGAAACGCATCTTACGTCCTGA -ACGGAAACGCATCTTACGTAGCGA -ACGGAAACGCATCTTACGCACAGA -ACGGAAACGCATCTTACGGCAAGA -ACGGAAACGCATCTTACGGGTTGA -ACGGAAACGCATCTTACGTCCGAT -ACGGAAACGCATCTTACGTGGCAT -ACGGAAACGCATCTTACGCGAGAT -ACGGAAACGCATCTTACGTACCAC -ACGGAAACGCATCTTACGCAGAAC -ACGGAAACGCATCTTACGGTCTAC -ACGGAAACGCATCTTACGACGTAC -ACGGAAACGCATCTTACGAGTGAC -ACGGAAACGCATCTTACGCTGTAG -ACGGAAACGCATCTTACGCCTAAG -ACGGAAACGCATCTTACGGTTCAG -ACGGAAACGCATCTTACGGCATAG -ACGGAAACGCATCTTACGGACAAG -ACGGAAACGCATCTTACGAAGCAG -ACGGAAACGCATCTTACGCGTCAA -ACGGAAACGCATCTTACGGCTGAA -ACGGAAACGCATCTTACGAGTACG -ACGGAAACGCATCTTACGATCCGA -ACGGAAACGCATCTTACGATGGGA -ACGGAAACGCATCTTACGGTGCAA -ACGGAAACGCATCTTACGGAGGAA -ACGGAAACGCATCTTACGCAGGTA -ACGGAAACGCATCTTACGGACTCT -ACGGAAACGCATCTTACGAGTCCT -ACGGAAACGCATCTTACGTAAGCC -ACGGAAACGCATCTTACGATAGCC -ACGGAAACGCATCTTACGTAACCG -ACGGAAACGCATCTTACGATGCCA -ACGGAAACGCATGTTAGCGGAAAC -ACGGAAACGCATGTTAGCAACACC -ACGGAAACGCATGTTAGCATCGAG -ACGGAAACGCATGTTAGCCTCCTT -ACGGAAACGCATGTTAGCCCTGTT -ACGGAAACGCATGTTAGCCGGTTT -ACGGAAACGCATGTTAGCGTGGTT -ACGGAAACGCATGTTAGCGCCTTT -ACGGAAACGCATGTTAGCGGTCTT -ACGGAAACGCATGTTAGCACGCTT -ACGGAAACGCATGTTAGCAGCGTT -ACGGAAACGCATGTTAGCTTCGTC -ACGGAAACGCATGTTAGCTCTCTC -ACGGAAACGCATGTTAGCTGGATC -ACGGAAACGCATGTTAGCCACTTC -ACGGAAACGCATGTTAGCGTACTC -ACGGAAACGCATGTTAGCGATGTC -ACGGAAACGCATGTTAGCACAGTC -ACGGAAACGCATGTTAGCTTGCTG -ACGGAAACGCATGTTAGCTCCATG -ACGGAAACGCATGTTAGCTGTGTG -ACGGAAACGCATGTTAGCCTAGTG -ACGGAAACGCATGTTAGCCATCTG -ACGGAAACGCATGTTAGCGAGTTG -ACGGAAACGCATGTTAGCAGACTG -ACGGAAACGCATGTTAGCTCGGTA -ACGGAAACGCATGTTAGCTGCCTA -ACGGAAACGCATGTTAGCCCACTA -ACGGAAACGCATGTTAGCGGAGTA -ACGGAAACGCATGTTAGCTCGTCT -ACGGAAACGCATGTTAGCTGCACT -ACGGAAACGCATGTTAGCCTGACT -ACGGAAACGCATGTTAGCCAACCT -ACGGAAACGCATGTTAGCGCTACT -ACGGAAACGCATGTTAGCGGATCT -ACGGAAACGCATGTTAGCAAGGCT -ACGGAAACGCATGTTAGCTCAACC -ACGGAAACGCATGTTAGCTGTTCC -ACGGAAACGCATGTTAGCATTCCC -ACGGAAACGCATGTTAGCTTCTCG -ACGGAAACGCATGTTAGCTAGACG -ACGGAAACGCATGTTAGCGTAACG -ACGGAAACGCATGTTAGCACTTCG -ACGGAAACGCATGTTAGCTACGCA -ACGGAAACGCATGTTAGCCTTGCA -ACGGAAACGCATGTTAGCCGAACA -ACGGAAACGCATGTTAGCCAGTCA -ACGGAAACGCATGTTAGCGATCCA -ACGGAAACGCATGTTAGCACGACA -ACGGAAACGCATGTTAGCAGCTCA -ACGGAAACGCATGTTAGCTCACGT -ACGGAAACGCATGTTAGCCGTAGT -ACGGAAACGCATGTTAGCGTCAGT -ACGGAAACGCATGTTAGCGAAGGT -ACGGAAACGCATGTTAGCAACCGT -ACGGAAACGCATGTTAGCTTGTGC -ACGGAAACGCATGTTAGCCTAAGC -ACGGAAACGCATGTTAGCACTAGC -ACGGAAACGCATGTTAGCAGATGC -ACGGAAACGCATGTTAGCTGAAGG -ACGGAAACGCATGTTAGCCAATGG -ACGGAAACGCATGTTAGCATGAGG -ACGGAAACGCATGTTAGCAATGGG -ACGGAAACGCATGTTAGCTCCTGA -ACGGAAACGCATGTTAGCTAGCGA -ACGGAAACGCATGTTAGCCACAGA -ACGGAAACGCATGTTAGCGCAAGA -ACGGAAACGCATGTTAGCGGTTGA -ACGGAAACGCATGTTAGCTCCGAT -ACGGAAACGCATGTTAGCTGGCAT -ACGGAAACGCATGTTAGCCGAGAT -ACGGAAACGCATGTTAGCTACCAC -ACGGAAACGCATGTTAGCCAGAAC -ACGGAAACGCATGTTAGCGTCTAC -ACGGAAACGCATGTTAGCACGTAC -ACGGAAACGCATGTTAGCAGTGAC -ACGGAAACGCATGTTAGCCTGTAG -ACGGAAACGCATGTTAGCCCTAAG -ACGGAAACGCATGTTAGCGTTCAG -ACGGAAACGCATGTTAGCGCATAG -ACGGAAACGCATGTTAGCGACAAG -ACGGAAACGCATGTTAGCAAGCAG -ACGGAAACGCATGTTAGCCGTCAA -ACGGAAACGCATGTTAGCGCTGAA -ACGGAAACGCATGTTAGCAGTACG -ACGGAAACGCATGTTAGCATCCGA -ACGGAAACGCATGTTAGCATGGGA -ACGGAAACGCATGTTAGCGTGCAA -ACGGAAACGCATGTTAGCGAGGAA -ACGGAAACGCATGTTAGCCAGGTA -ACGGAAACGCATGTTAGCGACTCT -ACGGAAACGCATGTTAGCAGTCCT -ACGGAAACGCATGTTAGCTAAGCC -ACGGAAACGCATGTTAGCATAGCC -ACGGAAACGCATGTTAGCTAACCG -ACGGAAACGCATGTTAGCATGCCA -ACGGAAACGCATGTCTTCGGAAAC -ACGGAAACGCATGTCTTCAACACC -ACGGAAACGCATGTCTTCATCGAG -ACGGAAACGCATGTCTTCCTCCTT -ACGGAAACGCATGTCTTCCCTGTT -ACGGAAACGCATGTCTTCCGGTTT -ACGGAAACGCATGTCTTCGTGGTT -ACGGAAACGCATGTCTTCGCCTTT -ACGGAAACGCATGTCTTCGGTCTT -ACGGAAACGCATGTCTTCACGCTT -ACGGAAACGCATGTCTTCAGCGTT -ACGGAAACGCATGTCTTCTTCGTC -ACGGAAACGCATGTCTTCTCTCTC -ACGGAAACGCATGTCTTCTGGATC -ACGGAAACGCATGTCTTCCACTTC -ACGGAAACGCATGTCTTCGTACTC -ACGGAAACGCATGTCTTCGATGTC -ACGGAAACGCATGTCTTCACAGTC -ACGGAAACGCATGTCTTCTTGCTG -ACGGAAACGCATGTCTTCTCCATG -ACGGAAACGCATGTCTTCTGTGTG -ACGGAAACGCATGTCTTCCTAGTG -ACGGAAACGCATGTCTTCCATCTG -ACGGAAACGCATGTCTTCGAGTTG -ACGGAAACGCATGTCTTCAGACTG -ACGGAAACGCATGTCTTCTCGGTA -ACGGAAACGCATGTCTTCTGCCTA -ACGGAAACGCATGTCTTCCCACTA -ACGGAAACGCATGTCTTCGGAGTA -ACGGAAACGCATGTCTTCTCGTCT -ACGGAAACGCATGTCTTCTGCACT -ACGGAAACGCATGTCTTCCTGACT -ACGGAAACGCATGTCTTCCAACCT -ACGGAAACGCATGTCTTCGCTACT -ACGGAAACGCATGTCTTCGGATCT -ACGGAAACGCATGTCTTCAAGGCT -ACGGAAACGCATGTCTTCTCAACC -ACGGAAACGCATGTCTTCTGTTCC -ACGGAAACGCATGTCTTCATTCCC -ACGGAAACGCATGTCTTCTTCTCG -ACGGAAACGCATGTCTTCTAGACG -ACGGAAACGCATGTCTTCGTAACG -ACGGAAACGCATGTCTTCACTTCG -ACGGAAACGCATGTCTTCTACGCA -ACGGAAACGCATGTCTTCCTTGCA -ACGGAAACGCATGTCTTCCGAACA -ACGGAAACGCATGTCTTCCAGTCA -ACGGAAACGCATGTCTTCGATCCA -ACGGAAACGCATGTCTTCACGACA -ACGGAAACGCATGTCTTCAGCTCA -ACGGAAACGCATGTCTTCTCACGT -ACGGAAACGCATGTCTTCCGTAGT -ACGGAAACGCATGTCTTCGTCAGT -ACGGAAACGCATGTCTTCGAAGGT -ACGGAAACGCATGTCTTCAACCGT -ACGGAAACGCATGTCTTCTTGTGC -ACGGAAACGCATGTCTTCCTAAGC -ACGGAAACGCATGTCTTCACTAGC -ACGGAAACGCATGTCTTCAGATGC -ACGGAAACGCATGTCTTCTGAAGG -ACGGAAACGCATGTCTTCCAATGG -ACGGAAACGCATGTCTTCATGAGG -ACGGAAACGCATGTCTTCAATGGG -ACGGAAACGCATGTCTTCTCCTGA -ACGGAAACGCATGTCTTCTAGCGA -ACGGAAACGCATGTCTTCCACAGA -ACGGAAACGCATGTCTTCGCAAGA -ACGGAAACGCATGTCTTCGGTTGA -ACGGAAACGCATGTCTTCTCCGAT -ACGGAAACGCATGTCTTCTGGCAT -ACGGAAACGCATGTCTTCCGAGAT -ACGGAAACGCATGTCTTCTACCAC -ACGGAAACGCATGTCTTCCAGAAC -ACGGAAACGCATGTCTTCGTCTAC -ACGGAAACGCATGTCTTCACGTAC -ACGGAAACGCATGTCTTCAGTGAC -ACGGAAACGCATGTCTTCCTGTAG -ACGGAAACGCATGTCTTCCCTAAG -ACGGAAACGCATGTCTTCGTTCAG -ACGGAAACGCATGTCTTCGCATAG -ACGGAAACGCATGTCTTCGACAAG -ACGGAAACGCATGTCTTCAAGCAG -ACGGAAACGCATGTCTTCCGTCAA -ACGGAAACGCATGTCTTCGCTGAA -ACGGAAACGCATGTCTTCAGTACG -ACGGAAACGCATGTCTTCATCCGA -ACGGAAACGCATGTCTTCATGGGA -ACGGAAACGCATGTCTTCGTGCAA -ACGGAAACGCATGTCTTCGAGGAA -ACGGAAACGCATGTCTTCCAGGTA -ACGGAAACGCATGTCTTCGACTCT -ACGGAAACGCATGTCTTCAGTCCT -ACGGAAACGCATGTCTTCTAAGCC -ACGGAAACGCATGTCTTCATAGCC -ACGGAAACGCATGTCTTCTAACCG -ACGGAAACGCATGTCTTCATGCCA -ACGGAAACGCATCTCTCTGGAAAC -ACGGAAACGCATCTCTCTAACACC -ACGGAAACGCATCTCTCTATCGAG -ACGGAAACGCATCTCTCTCTCCTT -ACGGAAACGCATCTCTCTCCTGTT -ACGGAAACGCATCTCTCTCGGTTT -ACGGAAACGCATCTCTCTGTGGTT -ACGGAAACGCATCTCTCTGCCTTT -ACGGAAACGCATCTCTCTGGTCTT -ACGGAAACGCATCTCTCTACGCTT -ACGGAAACGCATCTCTCTAGCGTT -ACGGAAACGCATCTCTCTTTCGTC -ACGGAAACGCATCTCTCTTCTCTC -ACGGAAACGCATCTCTCTTGGATC -ACGGAAACGCATCTCTCTCACTTC -ACGGAAACGCATCTCTCTGTACTC -ACGGAAACGCATCTCTCTGATGTC -ACGGAAACGCATCTCTCTACAGTC -ACGGAAACGCATCTCTCTTTGCTG -ACGGAAACGCATCTCTCTTCCATG -ACGGAAACGCATCTCTCTTGTGTG -ACGGAAACGCATCTCTCTCTAGTG -ACGGAAACGCATCTCTCTCATCTG -ACGGAAACGCATCTCTCTGAGTTG -ACGGAAACGCATCTCTCTAGACTG -ACGGAAACGCATCTCTCTTCGGTA -ACGGAAACGCATCTCTCTTGCCTA -ACGGAAACGCATCTCTCTCCACTA -ACGGAAACGCATCTCTCTGGAGTA -ACGGAAACGCATCTCTCTTCGTCT -ACGGAAACGCATCTCTCTTGCACT -ACGGAAACGCATCTCTCTCTGACT -ACGGAAACGCATCTCTCTCAACCT -ACGGAAACGCATCTCTCTGCTACT -ACGGAAACGCATCTCTCTGGATCT -ACGGAAACGCATCTCTCTAAGGCT -ACGGAAACGCATCTCTCTTCAACC -ACGGAAACGCATCTCTCTTGTTCC -ACGGAAACGCATCTCTCTATTCCC -ACGGAAACGCATCTCTCTTTCTCG -ACGGAAACGCATCTCTCTTAGACG -ACGGAAACGCATCTCTCTGTAACG -ACGGAAACGCATCTCTCTACTTCG -ACGGAAACGCATCTCTCTTACGCA -ACGGAAACGCATCTCTCTCTTGCA -ACGGAAACGCATCTCTCTCGAACA -ACGGAAACGCATCTCTCTCAGTCA -ACGGAAACGCATCTCTCTGATCCA -ACGGAAACGCATCTCTCTACGACA -ACGGAAACGCATCTCTCTAGCTCA -ACGGAAACGCATCTCTCTTCACGT -ACGGAAACGCATCTCTCTCGTAGT -ACGGAAACGCATCTCTCTGTCAGT -ACGGAAACGCATCTCTCTGAAGGT -ACGGAAACGCATCTCTCTAACCGT -ACGGAAACGCATCTCTCTTTGTGC -ACGGAAACGCATCTCTCTCTAAGC -ACGGAAACGCATCTCTCTACTAGC -ACGGAAACGCATCTCTCTAGATGC -ACGGAAACGCATCTCTCTTGAAGG -ACGGAAACGCATCTCTCTCAATGG -ACGGAAACGCATCTCTCTATGAGG -ACGGAAACGCATCTCTCTAATGGG -ACGGAAACGCATCTCTCTTCCTGA -ACGGAAACGCATCTCTCTTAGCGA -ACGGAAACGCATCTCTCTCACAGA -ACGGAAACGCATCTCTCTGCAAGA -ACGGAAACGCATCTCTCTGGTTGA -ACGGAAACGCATCTCTCTTCCGAT -ACGGAAACGCATCTCTCTTGGCAT -ACGGAAACGCATCTCTCTCGAGAT -ACGGAAACGCATCTCTCTTACCAC -ACGGAAACGCATCTCTCTCAGAAC -ACGGAAACGCATCTCTCTGTCTAC -ACGGAAACGCATCTCTCTACGTAC -ACGGAAACGCATCTCTCTAGTGAC -ACGGAAACGCATCTCTCTCTGTAG -ACGGAAACGCATCTCTCTCCTAAG -ACGGAAACGCATCTCTCTGTTCAG -ACGGAAACGCATCTCTCTGCATAG -ACGGAAACGCATCTCTCTGACAAG -ACGGAAACGCATCTCTCTAAGCAG -ACGGAAACGCATCTCTCTCGTCAA -ACGGAAACGCATCTCTCTGCTGAA -ACGGAAACGCATCTCTCTAGTACG -ACGGAAACGCATCTCTCTATCCGA -ACGGAAACGCATCTCTCTATGGGA -ACGGAAACGCATCTCTCTGTGCAA -ACGGAAACGCATCTCTCTGAGGAA -ACGGAAACGCATCTCTCTCAGGTA -ACGGAAACGCATCTCTCTGACTCT -ACGGAAACGCATCTCTCTAGTCCT -ACGGAAACGCATCTCTCTTAAGCC -ACGGAAACGCATCTCTCTATAGCC -ACGGAAACGCATCTCTCTTAACCG -ACGGAAACGCATCTCTCTATGCCA -ACGGAAACGCATATCTGGGGAAAC -ACGGAAACGCATATCTGGAACACC -ACGGAAACGCATATCTGGATCGAG -ACGGAAACGCATATCTGGCTCCTT -ACGGAAACGCATATCTGGCCTGTT -ACGGAAACGCATATCTGGCGGTTT -ACGGAAACGCATATCTGGGTGGTT -ACGGAAACGCATATCTGGGCCTTT -ACGGAAACGCATATCTGGGGTCTT -ACGGAAACGCATATCTGGACGCTT -ACGGAAACGCATATCTGGAGCGTT -ACGGAAACGCATATCTGGTTCGTC -ACGGAAACGCATATCTGGTCTCTC -ACGGAAACGCATATCTGGTGGATC -ACGGAAACGCATATCTGGCACTTC -ACGGAAACGCATATCTGGGTACTC -ACGGAAACGCATATCTGGGATGTC -ACGGAAACGCATATCTGGACAGTC -ACGGAAACGCATATCTGGTTGCTG -ACGGAAACGCATATCTGGTCCATG -ACGGAAACGCATATCTGGTGTGTG -ACGGAAACGCATATCTGGCTAGTG -ACGGAAACGCATATCTGGCATCTG -ACGGAAACGCATATCTGGGAGTTG -ACGGAAACGCATATCTGGAGACTG -ACGGAAACGCATATCTGGTCGGTA -ACGGAAACGCATATCTGGTGCCTA -ACGGAAACGCATATCTGGCCACTA -ACGGAAACGCATATCTGGGGAGTA -ACGGAAACGCATATCTGGTCGTCT -ACGGAAACGCATATCTGGTGCACT -ACGGAAACGCATATCTGGCTGACT -ACGGAAACGCATATCTGGCAACCT -ACGGAAACGCATATCTGGGCTACT -ACGGAAACGCATATCTGGGGATCT -ACGGAAACGCATATCTGGAAGGCT -ACGGAAACGCATATCTGGTCAACC -ACGGAAACGCATATCTGGTGTTCC -ACGGAAACGCATATCTGGATTCCC -ACGGAAACGCATATCTGGTTCTCG -ACGGAAACGCATATCTGGTAGACG -ACGGAAACGCATATCTGGGTAACG -ACGGAAACGCATATCTGGACTTCG -ACGGAAACGCATATCTGGTACGCA -ACGGAAACGCATATCTGGCTTGCA -ACGGAAACGCATATCTGGCGAACA -ACGGAAACGCATATCTGGCAGTCA -ACGGAAACGCATATCTGGGATCCA -ACGGAAACGCATATCTGGACGACA -ACGGAAACGCATATCTGGAGCTCA -ACGGAAACGCATATCTGGTCACGT -ACGGAAACGCATATCTGGCGTAGT -ACGGAAACGCATATCTGGGTCAGT -ACGGAAACGCATATCTGGGAAGGT -ACGGAAACGCATATCTGGAACCGT -ACGGAAACGCATATCTGGTTGTGC -ACGGAAACGCATATCTGGCTAAGC -ACGGAAACGCATATCTGGACTAGC -ACGGAAACGCATATCTGGAGATGC -ACGGAAACGCATATCTGGTGAAGG -ACGGAAACGCATATCTGGCAATGG -ACGGAAACGCATATCTGGATGAGG -ACGGAAACGCATATCTGGAATGGG -ACGGAAACGCATATCTGGTCCTGA -ACGGAAACGCATATCTGGTAGCGA -ACGGAAACGCATATCTGGCACAGA -ACGGAAACGCATATCTGGGCAAGA -ACGGAAACGCATATCTGGGGTTGA -ACGGAAACGCATATCTGGTCCGAT -ACGGAAACGCATATCTGGTGGCAT -ACGGAAACGCATATCTGGCGAGAT -ACGGAAACGCATATCTGGTACCAC -ACGGAAACGCATATCTGGCAGAAC -ACGGAAACGCATATCTGGGTCTAC -ACGGAAACGCATATCTGGACGTAC -ACGGAAACGCATATCTGGAGTGAC -ACGGAAACGCATATCTGGCTGTAG -ACGGAAACGCATATCTGGCCTAAG -ACGGAAACGCATATCTGGGTTCAG -ACGGAAACGCATATCTGGGCATAG -ACGGAAACGCATATCTGGGACAAG -ACGGAAACGCATATCTGGAAGCAG -ACGGAAACGCATATCTGGCGTCAA -ACGGAAACGCATATCTGGGCTGAA -ACGGAAACGCATATCTGGAGTACG -ACGGAAACGCATATCTGGATCCGA -ACGGAAACGCATATCTGGATGGGA -ACGGAAACGCATATCTGGGTGCAA -ACGGAAACGCATATCTGGGAGGAA -ACGGAAACGCATATCTGGCAGGTA -ACGGAAACGCATATCTGGGACTCT -ACGGAAACGCATATCTGGAGTCCT -ACGGAAACGCATATCTGGTAAGCC -ACGGAAACGCATATCTGGATAGCC -ACGGAAACGCATATCTGGTAACCG -ACGGAAACGCATATCTGGATGCCA -ACGGAAACGCATTTCCACGGAAAC -ACGGAAACGCATTTCCACAACACC -ACGGAAACGCATTTCCACATCGAG -ACGGAAACGCATTTCCACCTCCTT -ACGGAAACGCATTTCCACCCTGTT -ACGGAAACGCATTTCCACCGGTTT -ACGGAAACGCATTTCCACGTGGTT -ACGGAAACGCATTTCCACGCCTTT -ACGGAAACGCATTTCCACGGTCTT -ACGGAAACGCATTTCCACACGCTT -ACGGAAACGCATTTCCACAGCGTT -ACGGAAACGCATTTCCACTTCGTC -ACGGAAACGCATTTCCACTCTCTC -ACGGAAACGCATTTCCACTGGATC -ACGGAAACGCATTTCCACCACTTC -ACGGAAACGCATTTCCACGTACTC -ACGGAAACGCATTTCCACGATGTC -ACGGAAACGCATTTCCACACAGTC -ACGGAAACGCATTTCCACTTGCTG -ACGGAAACGCATTTCCACTCCATG -ACGGAAACGCATTTCCACTGTGTG -ACGGAAACGCATTTCCACCTAGTG -ACGGAAACGCATTTCCACCATCTG -ACGGAAACGCATTTCCACGAGTTG -ACGGAAACGCATTTCCACAGACTG -ACGGAAACGCATTTCCACTCGGTA -ACGGAAACGCATTTCCACTGCCTA -ACGGAAACGCATTTCCACCCACTA -ACGGAAACGCATTTCCACGGAGTA -ACGGAAACGCATTTCCACTCGTCT -ACGGAAACGCATTTCCACTGCACT -ACGGAAACGCATTTCCACCTGACT -ACGGAAACGCATTTCCACCAACCT -ACGGAAACGCATTTCCACGCTACT -ACGGAAACGCATTTCCACGGATCT -ACGGAAACGCATTTCCACAAGGCT -ACGGAAACGCATTTCCACTCAACC -ACGGAAACGCATTTCCACTGTTCC -ACGGAAACGCATTTCCACATTCCC -ACGGAAACGCATTTCCACTTCTCG -ACGGAAACGCATTTCCACTAGACG -ACGGAAACGCATTTCCACGTAACG -ACGGAAACGCATTTCCACACTTCG -ACGGAAACGCATTTCCACTACGCA -ACGGAAACGCATTTCCACCTTGCA -ACGGAAACGCATTTCCACCGAACA -ACGGAAACGCATTTCCACCAGTCA -ACGGAAACGCATTTCCACGATCCA -ACGGAAACGCATTTCCACACGACA -ACGGAAACGCATTTCCACAGCTCA -ACGGAAACGCATTTCCACTCACGT -ACGGAAACGCATTTCCACCGTAGT -ACGGAAACGCATTTCCACGTCAGT -ACGGAAACGCATTTCCACGAAGGT -ACGGAAACGCATTTCCACAACCGT -ACGGAAACGCATTTCCACTTGTGC -ACGGAAACGCATTTCCACCTAAGC -ACGGAAACGCATTTCCACACTAGC -ACGGAAACGCATTTCCACAGATGC -ACGGAAACGCATTTCCACTGAAGG -ACGGAAACGCATTTCCACCAATGG -ACGGAAACGCATTTCCACATGAGG -ACGGAAACGCATTTCCACAATGGG -ACGGAAACGCATTTCCACTCCTGA -ACGGAAACGCATTTCCACTAGCGA -ACGGAAACGCATTTCCACCACAGA -ACGGAAACGCATTTCCACGCAAGA -ACGGAAACGCATTTCCACGGTTGA -ACGGAAACGCATTTCCACTCCGAT -ACGGAAACGCATTTCCACTGGCAT -ACGGAAACGCATTTCCACCGAGAT -ACGGAAACGCATTTCCACTACCAC -ACGGAAACGCATTTCCACCAGAAC -ACGGAAACGCATTTCCACGTCTAC -ACGGAAACGCATTTCCACACGTAC -ACGGAAACGCATTTCCACAGTGAC -ACGGAAACGCATTTCCACCTGTAG -ACGGAAACGCATTTCCACCCTAAG -ACGGAAACGCATTTCCACGTTCAG -ACGGAAACGCATTTCCACGCATAG -ACGGAAACGCATTTCCACGACAAG -ACGGAAACGCATTTCCACAAGCAG -ACGGAAACGCATTTCCACCGTCAA -ACGGAAACGCATTTCCACGCTGAA -ACGGAAACGCATTTCCACAGTACG -ACGGAAACGCATTTCCACATCCGA -ACGGAAACGCATTTCCACATGGGA -ACGGAAACGCATTTCCACGTGCAA -ACGGAAACGCATTTCCACGAGGAA -ACGGAAACGCATTTCCACCAGGTA -ACGGAAACGCATTTCCACGACTCT -ACGGAAACGCATTTCCACAGTCCT -ACGGAAACGCATTTCCACTAAGCC -ACGGAAACGCATTTCCACATAGCC -ACGGAAACGCATTTCCACTAACCG -ACGGAAACGCATTTCCACATGCCA -ACGGAAACGCATCTCGTAGGAAAC -ACGGAAACGCATCTCGTAAACACC -ACGGAAACGCATCTCGTAATCGAG -ACGGAAACGCATCTCGTACTCCTT -ACGGAAACGCATCTCGTACCTGTT -ACGGAAACGCATCTCGTACGGTTT -ACGGAAACGCATCTCGTAGTGGTT -ACGGAAACGCATCTCGTAGCCTTT -ACGGAAACGCATCTCGTAGGTCTT -ACGGAAACGCATCTCGTAACGCTT -ACGGAAACGCATCTCGTAAGCGTT -ACGGAAACGCATCTCGTATTCGTC -ACGGAAACGCATCTCGTATCTCTC -ACGGAAACGCATCTCGTATGGATC -ACGGAAACGCATCTCGTACACTTC -ACGGAAACGCATCTCGTAGTACTC -ACGGAAACGCATCTCGTAGATGTC -ACGGAAACGCATCTCGTAACAGTC -ACGGAAACGCATCTCGTATTGCTG -ACGGAAACGCATCTCGTATCCATG -ACGGAAACGCATCTCGTATGTGTG -ACGGAAACGCATCTCGTACTAGTG -ACGGAAACGCATCTCGTACATCTG -ACGGAAACGCATCTCGTAGAGTTG -ACGGAAACGCATCTCGTAAGACTG -ACGGAAACGCATCTCGTATCGGTA -ACGGAAACGCATCTCGTATGCCTA -ACGGAAACGCATCTCGTACCACTA -ACGGAAACGCATCTCGTAGGAGTA -ACGGAAACGCATCTCGTATCGTCT -ACGGAAACGCATCTCGTATGCACT -ACGGAAACGCATCTCGTACTGACT -ACGGAAACGCATCTCGTACAACCT -ACGGAAACGCATCTCGTAGCTACT -ACGGAAACGCATCTCGTAGGATCT -ACGGAAACGCATCTCGTAAAGGCT -ACGGAAACGCATCTCGTATCAACC -ACGGAAACGCATCTCGTATGTTCC -ACGGAAACGCATCTCGTAATTCCC -ACGGAAACGCATCTCGTATTCTCG -ACGGAAACGCATCTCGTATAGACG -ACGGAAACGCATCTCGTAGTAACG -ACGGAAACGCATCTCGTAACTTCG -ACGGAAACGCATCTCGTATACGCA -ACGGAAACGCATCTCGTACTTGCA -ACGGAAACGCATCTCGTACGAACA -ACGGAAACGCATCTCGTACAGTCA -ACGGAAACGCATCTCGTAGATCCA -ACGGAAACGCATCTCGTAACGACA -ACGGAAACGCATCTCGTAAGCTCA -ACGGAAACGCATCTCGTATCACGT -ACGGAAACGCATCTCGTACGTAGT -ACGGAAACGCATCTCGTAGTCAGT -ACGGAAACGCATCTCGTAGAAGGT -ACGGAAACGCATCTCGTAAACCGT -ACGGAAACGCATCTCGTATTGTGC -ACGGAAACGCATCTCGTACTAAGC -ACGGAAACGCATCTCGTAACTAGC -ACGGAAACGCATCTCGTAAGATGC -ACGGAAACGCATCTCGTATGAAGG -ACGGAAACGCATCTCGTACAATGG -ACGGAAACGCATCTCGTAATGAGG -ACGGAAACGCATCTCGTAAATGGG -ACGGAAACGCATCTCGTATCCTGA -ACGGAAACGCATCTCGTATAGCGA -ACGGAAACGCATCTCGTACACAGA -ACGGAAACGCATCTCGTAGCAAGA -ACGGAAACGCATCTCGTAGGTTGA -ACGGAAACGCATCTCGTATCCGAT -ACGGAAACGCATCTCGTATGGCAT -ACGGAAACGCATCTCGTACGAGAT -ACGGAAACGCATCTCGTATACCAC -ACGGAAACGCATCTCGTACAGAAC -ACGGAAACGCATCTCGTAGTCTAC -ACGGAAACGCATCTCGTAACGTAC -ACGGAAACGCATCTCGTAAGTGAC -ACGGAAACGCATCTCGTACTGTAG -ACGGAAACGCATCTCGTACCTAAG -ACGGAAACGCATCTCGTAGTTCAG -ACGGAAACGCATCTCGTAGCATAG -ACGGAAACGCATCTCGTAGACAAG -ACGGAAACGCATCTCGTAAAGCAG -ACGGAAACGCATCTCGTACGTCAA -ACGGAAACGCATCTCGTAGCTGAA -ACGGAAACGCATCTCGTAAGTACG -ACGGAAACGCATCTCGTAATCCGA -ACGGAAACGCATCTCGTAATGGGA -ACGGAAACGCATCTCGTAGTGCAA -ACGGAAACGCATCTCGTAGAGGAA -ACGGAAACGCATCTCGTACAGGTA -ACGGAAACGCATCTCGTAGACTCT -ACGGAAACGCATCTCGTAAGTCCT -ACGGAAACGCATCTCGTATAAGCC -ACGGAAACGCATCTCGTAATAGCC -ACGGAAACGCATCTCGTATAACCG -ACGGAAACGCATCTCGTAATGCCA -ACGGAAACGCATGTCGATGGAAAC -ACGGAAACGCATGTCGATAACACC -ACGGAAACGCATGTCGATATCGAG -ACGGAAACGCATGTCGATCTCCTT -ACGGAAACGCATGTCGATCCTGTT -ACGGAAACGCATGTCGATCGGTTT -ACGGAAACGCATGTCGATGTGGTT -ACGGAAACGCATGTCGATGCCTTT -ACGGAAACGCATGTCGATGGTCTT -ACGGAAACGCATGTCGATACGCTT -ACGGAAACGCATGTCGATAGCGTT -ACGGAAACGCATGTCGATTTCGTC -ACGGAAACGCATGTCGATTCTCTC -ACGGAAACGCATGTCGATTGGATC -ACGGAAACGCATGTCGATCACTTC -ACGGAAACGCATGTCGATGTACTC -ACGGAAACGCATGTCGATGATGTC -ACGGAAACGCATGTCGATACAGTC -ACGGAAACGCATGTCGATTTGCTG -ACGGAAACGCATGTCGATTCCATG -ACGGAAACGCATGTCGATTGTGTG -ACGGAAACGCATGTCGATCTAGTG -ACGGAAACGCATGTCGATCATCTG -ACGGAAACGCATGTCGATGAGTTG -ACGGAAACGCATGTCGATAGACTG -ACGGAAACGCATGTCGATTCGGTA -ACGGAAACGCATGTCGATTGCCTA -ACGGAAACGCATGTCGATCCACTA -ACGGAAACGCATGTCGATGGAGTA -ACGGAAACGCATGTCGATTCGTCT -ACGGAAACGCATGTCGATTGCACT -ACGGAAACGCATGTCGATCTGACT -ACGGAAACGCATGTCGATCAACCT -ACGGAAACGCATGTCGATGCTACT -ACGGAAACGCATGTCGATGGATCT -ACGGAAACGCATGTCGATAAGGCT -ACGGAAACGCATGTCGATTCAACC -ACGGAAACGCATGTCGATTGTTCC -ACGGAAACGCATGTCGATATTCCC -ACGGAAACGCATGTCGATTTCTCG -ACGGAAACGCATGTCGATTAGACG -ACGGAAACGCATGTCGATGTAACG -ACGGAAACGCATGTCGATACTTCG -ACGGAAACGCATGTCGATTACGCA -ACGGAAACGCATGTCGATCTTGCA -ACGGAAACGCATGTCGATCGAACA -ACGGAAACGCATGTCGATCAGTCA -ACGGAAACGCATGTCGATGATCCA -ACGGAAACGCATGTCGATACGACA -ACGGAAACGCATGTCGATAGCTCA -ACGGAAACGCATGTCGATTCACGT -ACGGAAACGCATGTCGATCGTAGT -ACGGAAACGCATGTCGATGTCAGT -ACGGAAACGCATGTCGATGAAGGT -ACGGAAACGCATGTCGATAACCGT -ACGGAAACGCATGTCGATTTGTGC -ACGGAAACGCATGTCGATCTAAGC -ACGGAAACGCATGTCGATACTAGC -ACGGAAACGCATGTCGATAGATGC -ACGGAAACGCATGTCGATTGAAGG -ACGGAAACGCATGTCGATCAATGG -ACGGAAACGCATGTCGATATGAGG -ACGGAAACGCATGTCGATAATGGG -ACGGAAACGCATGTCGATTCCTGA -ACGGAAACGCATGTCGATTAGCGA -ACGGAAACGCATGTCGATCACAGA -ACGGAAACGCATGTCGATGCAAGA -ACGGAAACGCATGTCGATGGTTGA -ACGGAAACGCATGTCGATTCCGAT -ACGGAAACGCATGTCGATTGGCAT -ACGGAAACGCATGTCGATCGAGAT -ACGGAAACGCATGTCGATTACCAC -ACGGAAACGCATGTCGATCAGAAC -ACGGAAACGCATGTCGATGTCTAC -ACGGAAACGCATGTCGATACGTAC -ACGGAAACGCATGTCGATAGTGAC -ACGGAAACGCATGTCGATCTGTAG -ACGGAAACGCATGTCGATCCTAAG -ACGGAAACGCATGTCGATGTTCAG -ACGGAAACGCATGTCGATGCATAG -ACGGAAACGCATGTCGATGACAAG -ACGGAAACGCATGTCGATAAGCAG -ACGGAAACGCATGTCGATCGTCAA -ACGGAAACGCATGTCGATGCTGAA -ACGGAAACGCATGTCGATAGTACG -ACGGAAACGCATGTCGATATCCGA -ACGGAAACGCATGTCGATATGGGA -ACGGAAACGCATGTCGATGTGCAA -ACGGAAACGCATGTCGATGAGGAA -ACGGAAACGCATGTCGATCAGGTA -ACGGAAACGCATGTCGATGACTCT -ACGGAAACGCATGTCGATAGTCCT -ACGGAAACGCATGTCGATTAAGCC -ACGGAAACGCATGTCGATATAGCC -ACGGAAACGCATGTCGATTAACCG -ACGGAAACGCATGTCGATATGCCA -ACGGAAACGCATGTCACAGGAAAC -ACGGAAACGCATGTCACAAACACC -ACGGAAACGCATGTCACAATCGAG -ACGGAAACGCATGTCACACTCCTT -ACGGAAACGCATGTCACACCTGTT -ACGGAAACGCATGTCACACGGTTT -ACGGAAACGCATGTCACAGTGGTT -ACGGAAACGCATGTCACAGCCTTT -ACGGAAACGCATGTCACAGGTCTT -ACGGAAACGCATGTCACAACGCTT -ACGGAAACGCATGTCACAAGCGTT -ACGGAAACGCATGTCACATTCGTC -ACGGAAACGCATGTCACATCTCTC -ACGGAAACGCATGTCACATGGATC -ACGGAAACGCATGTCACACACTTC -ACGGAAACGCATGTCACAGTACTC -ACGGAAACGCATGTCACAGATGTC -ACGGAAACGCATGTCACAACAGTC -ACGGAAACGCATGTCACATTGCTG -ACGGAAACGCATGTCACATCCATG -ACGGAAACGCATGTCACATGTGTG -ACGGAAACGCATGTCACACTAGTG -ACGGAAACGCATGTCACACATCTG -ACGGAAACGCATGTCACAGAGTTG -ACGGAAACGCATGTCACAAGACTG -ACGGAAACGCATGTCACATCGGTA -ACGGAAACGCATGTCACATGCCTA -ACGGAAACGCATGTCACACCACTA -ACGGAAACGCATGTCACAGGAGTA -ACGGAAACGCATGTCACATCGTCT -ACGGAAACGCATGTCACATGCACT -ACGGAAACGCATGTCACACTGACT -ACGGAAACGCATGTCACACAACCT -ACGGAAACGCATGTCACAGCTACT -ACGGAAACGCATGTCACAGGATCT -ACGGAAACGCATGTCACAAAGGCT -ACGGAAACGCATGTCACATCAACC -ACGGAAACGCATGTCACATGTTCC -ACGGAAACGCATGTCACAATTCCC -ACGGAAACGCATGTCACATTCTCG -ACGGAAACGCATGTCACATAGACG -ACGGAAACGCATGTCACAGTAACG -ACGGAAACGCATGTCACAACTTCG -ACGGAAACGCATGTCACATACGCA -ACGGAAACGCATGTCACACTTGCA -ACGGAAACGCATGTCACACGAACA -ACGGAAACGCATGTCACACAGTCA -ACGGAAACGCATGTCACAGATCCA -ACGGAAACGCATGTCACAACGACA -ACGGAAACGCATGTCACAAGCTCA -ACGGAAACGCATGTCACATCACGT -ACGGAAACGCATGTCACACGTAGT -ACGGAAACGCATGTCACAGTCAGT -ACGGAAACGCATGTCACAGAAGGT -ACGGAAACGCATGTCACAAACCGT -ACGGAAACGCATGTCACATTGTGC -ACGGAAACGCATGTCACACTAAGC -ACGGAAACGCATGTCACAACTAGC -ACGGAAACGCATGTCACAAGATGC -ACGGAAACGCATGTCACATGAAGG -ACGGAAACGCATGTCACACAATGG -ACGGAAACGCATGTCACAATGAGG -ACGGAAACGCATGTCACAAATGGG -ACGGAAACGCATGTCACATCCTGA -ACGGAAACGCATGTCACATAGCGA -ACGGAAACGCATGTCACACACAGA -ACGGAAACGCATGTCACAGCAAGA -ACGGAAACGCATGTCACAGGTTGA -ACGGAAACGCATGTCACATCCGAT -ACGGAAACGCATGTCACATGGCAT -ACGGAAACGCATGTCACACGAGAT -ACGGAAACGCATGTCACATACCAC -ACGGAAACGCATGTCACACAGAAC -ACGGAAACGCATGTCACAGTCTAC -ACGGAAACGCATGTCACAACGTAC -ACGGAAACGCATGTCACAAGTGAC -ACGGAAACGCATGTCACACTGTAG -ACGGAAACGCATGTCACACCTAAG -ACGGAAACGCATGTCACAGTTCAG -ACGGAAACGCATGTCACAGCATAG -ACGGAAACGCATGTCACAGACAAG -ACGGAAACGCATGTCACAAAGCAG -ACGGAAACGCATGTCACACGTCAA -ACGGAAACGCATGTCACAGCTGAA -ACGGAAACGCATGTCACAAGTACG -ACGGAAACGCATGTCACAATCCGA -ACGGAAACGCATGTCACAATGGGA -ACGGAAACGCATGTCACAGTGCAA -ACGGAAACGCATGTCACAGAGGAA -ACGGAAACGCATGTCACACAGGTA -ACGGAAACGCATGTCACAGACTCT -ACGGAAACGCATGTCACAAGTCCT -ACGGAAACGCATGTCACATAAGCC -ACGGAAACGCATGTCACAATAGCC -ACGGAAACGCATGTCACATAACCG -ACGGAAACGCATGTCACAATGCCA -ACGGAAACGCATCTGTTGGGAAAC -ACGGAAACGCATCTGTTGAACACC -ACGGAAACGCATCTGTTGATCGAG -ACGGAAACGCATCTGTTGCTCCTT -ACGGAAACGCATCTGTTGCCTGTT -ACGGAAACGCATCTGTTGCGGTTT -ACGGAAACGCATCTGTTGGTGGTT -ACGGAAACGCATCTGTTGGCCTTT -ACGGAAACGCATCTGTTGGGTCTT -ACGGAAACGCATCTGTTGACGCTT -ACGGAAACGCATCTGTTGAGCGTT -ACGGAAACGCATCTGTTGTTCGTC -ACGGAAACGCATCTGTTGTCTCTC -ACGGAAACGCATCTGTTGTGGATC -ACGGAAACGCATCTGTTGCACTTC -ACGGAAACGCATCTGTTGGTACTC -ACGGAAACGCATCTGTTGGATGTC -ACGGAAACGCATCTGTTGACAGTC -ACGGAAACGCATCTGTTGTTGCTG -ACGGAAACGCATCTGTTGTCCATG -ACGGAAACGCATCTGTTGTGTGTG -ACGGAAACGCATCTGTTGCTAGTG -ACGGAAACGCATCTGTTGCATCTG -ACGGAAACGCATCTGTTGGAGTTG -ACGGAAACGCATCTGTTGAGACTG -ACGGAAACGCATCTGTTGTCGGTA -ACGGAAACGCATCTGTTGTGCCTA -ACGGAAACGCATCTGTTGCCACTA -ACGGAAACGCATCTGTTGGGAGTA -ACGGAAACGCATCTGTTGTCGTCT -ACGGAAACGCATCTGTTGTGCACT -ACGGAAACGCATCTGTTGCTGACT -ACGGAAACGCATCTGTTGCAACCT -ACGGAAACGCATCTGTTGGCTACT -ACGGAAACGCATCTGTTGGGATCT -ACGGAAACGCATCTGTTGAAGGCT -ACGGAAACGCATCTGTTGTCAACC -ACGGAAACGCATCTGTTGTGTTCC -ACGGAAACGCATCTGTTGATTCCC -ACGGAAACGCATCTGTTGTTCTCG -ACGGAAACGCATCTGTTGTAGACG -ACGGAAACGCATCTGTTGGTAACG -ACGGAAACGCATCTGTTGACTTCG -ACGGAAACGCATCTGTTGTACGCA -ACGGAAACGCATCTGTTGCTTGCA -ACGGAAACGCATCTGTTGCGAACA -ACGGAAACGCATCTGTTGCAGTCA -ACGGAAACGCATCTGTTGGATCCA -ACGGAAACGCATCTGTTGACGACA -ACGGAAACGCATCTGTTGAGCTCA -ACGGAAACGCATCTGTTGTCACGT -ACGGAAACGCATCTGTTGCGTAGT -ACGGAAACGCATCTGTTGGTCAGT -ACGGAAACGCATCTGTTGGAAGGT -ACGGAAACGCATCTGTTGAACCGT -ACGGAAACGCATCTGTTGTTGTGC -ACGGAAACGCATCTGTTGCTAAGC -ACGGAAACGCATCTGTTGACTAGC -ACGGAAACGCATCTGTTGAGATGC -ACGGAAACGCATCTGTTGTGAAGG -ACGGAAACGCATCTGTTGCAATGG -ACGGAAACGCATCTGTTGATGAGG -ACGGAAACGCATCTGTTGAATGGG -ACGGAAACGCATCTGTTGTCCTGA -ACGGAAACGCATCTGTTGTAGCGA -ACGGAAACGCATCTGTTGCACAGA -ACGGAAACGCATCTGTTGGCAAGA -ACGGAAACGCATCTGTTGGGTTGA -ACGGAAACGCATCTGTTGTCCGAT -ACGGAAACGCATCTGTTGTGGCAT -ACGGAAACGCATCTGTTGCGAGAT -ACGGAAACGCATCTGTTGTACCAC -ACGGAAACGCATCTGTTGCAGAAC -ACGGAAACGCATCTGTTGGTCTAC -ACGGAAACGCATCTGTTGACGTAC -ACGGAAACGCATCTGTTGAGTGAC -ACGGAAACGCATCTGTTGCTGTAG -ACGGAAACGCATCTGTTGCCTAAG -ACGGAAACGCATCTGTTGGTTCAG -ACGGAAACGCATCTGTTGGCATAG -ACGGAAACGCATCTGTTGGACAAG -ACGGAAACGCATCTGTTGAAGCAG -ACGGAAACGCATCTGTTGCGTCAA -ACGGAAACGCATCTGTTGGCTGAA -ACGGAAACGCATCTGTTGAGTACG -ACGGAAACGCATCTGTTGATCCGA -ACGGAAACGCATCTGTTGATGGGA -ACGGAAACGCATCTGTTGGTGCAA -ACGGAAACGCATCTGTTGGAGGAA -ACGGAAACGCATCTGTTGCAGGTA -ACGGAAACGCATCTGTTGGACTCT -ACGGAAACGCATCTGTTGAGTCCT -ACGGAAACGCATCTGTTGTAAGCC -ACGGAAACGCATCTGTTGATAGCC -ACGGAAACGCATCTGTTGTAACCG -ACGGAAACGCATCTGTTGATGCCA -ACGGAAACGCATATGTCCGGAAAC -ACGGAAACGCATATGTCCAACACC -ACGGAAACGCATATGTCCATCGAG -ACGGAAACGCATATGTCCCTCCTT -ACGGAAACGCATATGTCCCCTGTT -ACGGAAACGCATATGTCCCGGTTT -ACGGAAACGCATATGTCCGTGGTT -ACGGAAACGCATATGTCCGCCTTT -ACGGAAACGCATATGTCCGGTCTT -ACGGAAACGCATATGTCCACGCTT -ACGGAAACGCATATGTCCAGCGTT -ACGGAAACGCATATGTCCTTCGTC -ACGGAAACGCATATGTCCTCTCTC -ACGGAAACGCATATGTCCTGGATC -ACGGAAACGCATATGTCCCACTTC -ACGGAAACGCATATGTCCGTACTC -ACGGAAACGCATATGTCCGATGTC -ACGGAAACGCATATGTCCACAGTC -ACGGAAACGCATATGTCCTTGCTG -ACGGAAACGCATATGTCCTCCATG -ACGGAAACGCATATGTCCTGTGTG -ACGGAAACGCATATGTCCCTAGTG -ACGGAAACGCATATGTCCCATCTG -ACGGAAACGCATATGTCCGAGTTG -ACGGAAACGCATATGTCCAGACTG -ACGGAAACGCATATGTCCTCGGTA -ACGGAAACGCATATGTCCTGCCTA -ACGGAAACGCATATGTCCCCACTA -ACGGAAACGCATATGTCCGGAGTA -ACGGAAACGCATATGTCCTCGTCT -ACGGAAACGCATATGTCCTGCACT -ACGGAAACGCATATGTCCCTGACT -ACGGAAACGCATATGTCCCAACCT -ACGGAAACGCATATGTCCGCTACT -ACGGAAACGCATATGTCCGGATCT -ACGGAAACGCATATGTCCAAGGCT -ACGGAAACGCATATGTCCTCAACC -ACGGAAACGCATATGTCCTGTTCC -ACGGAAACGCATATGTCCATTCCC -ACGGAAACGCATATGTCCTTCTCG -ACGGAAACGCATATGTCCTAGACG -ACGGAAACGCATATGTCCGTAACG -ACGGAAACGCATATGTCCACTTCG -ACGGAAACGCATATGTCCTACGCA -ACGGAAACGCATATGTCCCTTGCA -ACGGAAACGCATATGTCCCGAACA -ACGGAAACGCATATGTCCCAGTCA -ACGGAAACGCATATGTCCGATCCA -ACGGAAACGCATATGTCCACGACA -ACGGAAACGCATATGTCCAGCTCA -ACGGAAACGCATATGTCCTCACGT -ACGGAAACGCATATGTCCCGTAGT -ACGGAAACGCATATGTCCGTCAGT -ACGGAAACGCATATGTCCGAAGGT -ACGGAAACGCATATGTCCAACCGT -ACGGAAACGCATATGTCCTTGTGC -ACGGAAACGCATATGTCCCTAAGC -ACGGAAACGCATATGTCCACTAGC -ACGGAAACGCATATGTCCAGATGC -ACGGAAACGCATATGTCCTGAAGG -ACGGAAACGCATATGTCCCAATGG -ACGGAAACGCATATGTCCATGAGG -ACGGAAACGCATATGTCCAATGGG -ACGGAAACGCATATGTCCTCCTGA -ACGGAAACGCATATGTCCTAGCGA -ACGGAAACGCATATGTCCCACAGA -ACGGAAACGCATATGTCCGCAAGA -ACGGAAACGCATATGTCCGGTTGA -ACGGAAACGCATATGTCCTCCGAT -ACGGAAACGCATATGTCCTGGCAT -ACGGAAACGCATATGTCCCGAGAT -ACGGAAACGCATATGTCCTACCAC -ACGGAAACGCATATGTCCCAGAAC -ACGGAAACGCATATGTCCGTCTAC -ACGGAAACGCATATGTCCACGTAC -ACGGAAACGCATATGTCCAGTGAC -ACGGAAACGCATATGTCCCTGTAG -ACGGAAACGCATATGTCCCCTAAG -ACGGAAACGCATATGTCCGTTCAG -ACGGAAACGCATATGTCCGCATAG -ACGGAAACGCATATGTCCGACAAG -ACGGAAACGCATATGTCCAAGCAG -ACGGAAACGCATATGTCCCGTCAA -ACGGAAACGCATATGTCCGCTGAA -ACGGAAACGCATATGTCCAGTACG -ACGGAAACGCATATGTCCATCCGA -ACGGAAACGCATATGTCCATGGGA -ACGGAAACGCATATGTCCGTGCAA -ACGGAAACGCATATGTCCGAGGAA -ACGGAAACGCATATGTCCCAGGTA -ACGGAAACGCATATGTCCGACTCT -ACGGAAACGCATATGTCCAGTCCT -ACGGAAACGCATATGTCCTAAGCC -ACGGAAACGCATATGTCCATAGCC -ACGGAAACGCATATGTCCTAACCG -ACGGAAACGCATATGTCCATGCCA -ACGGAAACGCATGTGTGTGGAAAC -ACGGAAACGCATGTGTGTAACACC -ACGGAAACGCATGTGTGTATCGAG -ACGGAAACGCATGTGTGTCTCCTT -ACGGAAACGCATGTGTGTCCTGTT -ACGGAAACGCATGTGTGTCGGTTT -ACGGAAACGCATGTGTGTGTGGTT -ACGGAAACGCATGTGTGTGCCTTT -ACGGAAACGCATGTGTGTGGTCTT -ACGGAAACGCATGTGTGTACGCTT -ACGGAAACGCATGTGTGTAGCGTT -ACGGAAACGCATGTGTGTTTCGTC -ACGGAAACGCATGTGTGTTCTCTC -ACGGAAACGCATGTGTGTTGGATC -ACGGAAACGCATGTGTGTCACTTC -ACGGAAACGCATGTGTGTGTACTC -ACGGAAACGCATGTGTGTGATGTC -ACGGAAACGCATGTGTGTACAGTC -ACGGAAACGCATGTGTGTTTGCTG -ACGGAAACGCATGTGTGTTCCATG -ACGGAAACGCATGTGTGTTGTGTG -ACGGAAACGCATGTGTGTCTAGTG -ACGGAAACGCATGTGTGTCATCTG -ACGGAAACGCATGTGTGTGAGTTG -ACGGAAACGCATGTGTGTAGACTG -ACGGAAACGCATGTGTGTTCGGTA -ACGGAAACGCATGTGTGTTGCCTA -ACGGAAACGCATGTGTGTCCACTA -ACGGAAACGCATGTGTGTGGAGTA -ACGGAAACGCATGTGTGTTCGTCT -ACGGAAACGCATGTGTGTTGCACT -ACGGAAACGCATGTGTGTCTGACT -ACGGAAACGCATGTGTGTCAACCT -ACGGAAACGCATGTGTGTGCTACT -ACGGAAACGCATGTGTGTGGATCT -ACGGAAACGCATGTGTGTAAGGCT -ACGGAAACGCATGTGTGTTCAACC -ACGGAAACGCATGTGTGTTGTTCC -ACGGAAACGCATGTGTGTATTCCC -ACGGAAACGCATGTGTGTTTCTCG -ACGGAAACGCATGTGTGTTAGACG -ACGGAAACGCATGTGTGTGTAACG -ACGGAAACGCATGTGTGTACTTCG -ACGGAAACGCATGTGTGTTACGCA -ACGGAAACGCATGTGTGTCTTGCA -ACGGAAACGCATGTGTGTCGAACA -ACGGAAACGCATGTGTGTCAGTCA -ACGGAAACGCATGTGTGTGATCCA -ACGGAAACGCATGTGTGTACGACA -ACGGAAACGCATGTGTGTAGCTCA -ACGGAAACGCATGTGTGTTCACGT -ACGGAAACGCATGTGTGTCGTAGT -ACGGAAACGCATGTGTGTGTCAGT -ACGGAAACGCATGTGTGTGAAGGT -ACGGAAACGCATGTGTGTAACCGT -ACGGAAACGCATGTGTGTTTGTGC -ACGGAAACGCATGTGTGTCTAAGC -ACGGAAACGCATGTGTGTACTAGC -ACGGAAACGCATGTGTGTAGATGC -ACGGAAACGCATGTGTGTTGAAGG -ACGGAAACGCATGTGTGTCAATGG -ACGGAAACGCATGTGTGTATGAGG -ACGGAAACGCATGTGTGTAATGGG -ACGGAAACGCATGTGTGTTCCTGA -ACGGAAACGCATGTGTGTTAGCGA -ACGGAAACGCATGTGTGTCACAGA -ACGGAAACGCATGTGTGTGCAAGA -ACGGAAACGCATGTGTGTGGTTGA -ACGGAAACGCATGTGTGTTCCGAT -ACGGAAACGCATGTGTGTTGGCAT -ACGGAAACGCATGTGTGTCGAGAT -ACGGAAACGCATGTGTGTTACCAC -ACGGAAACGCATGTGTGTCAGAAC -ACGGAAACGCATGTGTGTGTCTAC -ACGGAAACGCATGTGTGTACGTAC -ACGGAAACGCATGTGTGTAGTGAC -ACGGAAACGCATGTGTGTCTGTAG -ACGGAAACGCATGTGTGTCCTAAG -ACGGAAACGCATGTGTGTGTTCAG -ACGGAAACGCATGTGTGTGCATAG -ACGGAAACGCATGTGTGTGACAAG -ACGGAAACGCATGTGTGTAAGCAG -ACGGAAACGCATGTGTGTCGTCAA -ACGGAAACGCATGTGTGTGCTGAA -ACGGAAACGCATGTGTGTAGTACG -ACGGAAACGCATGTGTGTATCCGA -ACGGAAACGCATGTGTGTATGGGA -ACGGAAACGCATGTGTGTGTGCAA -ACGGAAACGCATGTGTGTGAGGAA -ACGGAAACGCATGTGTGTCAGGTA -ACGGAAACGCATGTGTGTGACTCT -ACGGAAACGCATGTGTGTAGTCCT -ACGGAAACGCATGTGTGTTAAGCC -ACGGAAACGCATGTGTGTATAGCC -ACGGAAACGCATGTGTGTTAACCG -ACGGAAACGCATGTGTGTATGCCA -ACGGAAACGCATGTGCTAGGAAAC -ACGGAAACGCATGTGCTAAACACC -ACGGAAACGCATGTGCTAATCGAG -ACGGAAACGCATGTGCTACTCCTT -ACGGAAACGCATGTGCTACCTGTT -ACGGAAACGCATGTGCTACGGTTT -ACGGAAACGCATGTGCTAGTGGTT -ACGGAAACGCATGTGCTAGCCTTT -ACGGAAACGCATGTGCTAGGTCTT -ACGGAAACGCATGTGCTAACGCTT -ACGGAAACGCATGTGCTAAGCGTT -ACGGAAACGCATGTGCTATTCGTC -ACGGAAACGCATGTGCTATCTCTC -ACGGAAACGCATGTGCTATGGATC -ACGGAAACGCATGTGCTACACTTC -ACGGAAACGCATGTGCTAGTACTC -ACGGAAACGCATGTGCTAGATGTC -ACGGAAACGCATGTGCTAACAGTC -ACGGAAACGCATGTGCTATTGCTG -ACGGAAACGCATGTGCTATCCATG -ACGGAAACGCATGTGCTATGTGTG -ACGGAAACGCATGTGCTACTAGTG -ACGGAAACGCATGTGCTACATCTG -ACGGAAACGCATGTGCTAGAGTTG -ACGGAAACGCATGTGCTAAGACTG -ACGGAAACGCATGTGCTATCGGTA -ACGGAAACGCATGTGCTATGCCTA -ACGGAAACGCATGTGCTACCACTA -ACGGAAACGCATGTGCTAGGAGTA -ACGGAAACGCATGTGCTATCGTCT -ACGGAAACGCATGTGCTATGCACT -ACGGAAACGCATGTGCTACTGACT -ACGGAAACGCATGTGCTACAACCT -ACGGAAACGCATGTGCTAGCTACT -ACGGAAACGCATGTGCTAGGATCT -ACGGAAACGCATGTGCTAAAGGCT -ACGGAAACGCATGTGCTATCAACC -ACGGAAACGCATGTGCTATGTTCC -ACGGAAACGCATGTGCTAATTCCC -ACGGAAACGCATGTGCTATTCTCG -ACGGAAACGCATGTGCTATAGACG -ACGGAAACGCATGTGCTAGTAACG -ACGGAAACGCATGTGCTAACTTCG -ACGGAAACGCATGTGCTATACGCA -ACGGAAACGCATGTGCTACTTGCA -ACGGAAACGCATGTGCTACGAACA -ACGGAAACGCATGTGCTACAGTCA -ACGGAAACGCATGTGCTAGATCCA -ACGGAAACGCATGTGCTAACGACA -ACGGAAACGCATGTGCTAAGCTCA -ACGGAAACGCATGTGCTATCACGT -ACGGAAACGCATGTGCTACGTAGT -ACGGAAACGCATGTGCTAGTCAGT -ACGGAAACGCATGTGCTAGAAGGT -ACGGAAACGCATGTGCTAAACCGT -ACGGAAACGCATGTGCTATTGTGC -ACGGAAACGCATGTGCTACTAAGC -ACGGAAACGCATGTGCTAACTAGC -ACGGAAACGCATGTGCTAAGATGC -ACGGAAACGCATGTGCTATGAAGG -ACGGAAACGCATGTGCTACAATGG -ACGGAAACGCATGTGCTAATGAGG -ACGGAAACGCATGTGCTAAATGGG -ACGGAAACGCATGTGCTATCCTGA -ACGGAAACGCATGTGCTATAGCGA -ACGGAAACGCATGTGCTACACAGA -ACGGAAACGCATGTGCTAGCAAGA -ACGGAAACGCATGTGCTAGGTTGA -ACGGAAACGCATGTGCTATCCGAT -ACGGAAACGCATGTGCTATGGCAT -ACGGAAACGCATGTGCTACGAGAT -ACGGAAACGCATGTGCTATACCAC -ACGGAAACGCATGTGCTACAGAAC -ACGGAAACGCATGTGCTAGTCTAC -ACGGAAACGCATGTGCTAACGTAC -ACGGAAACGCATGTGCTAAGTGAC -ACGGAAACGCATGTGCTACTGTAG -ACGGAAACGCATGTGCTACCTAAG -ACGGAAACGCATGTGCTAGTTCAG -ACGGAAACGCATGTGCTAGCATAG -ACGGAAACGCATGTGCTAGACAAG -ACGGAAACGCATGTGCTAAAGCAG -ACGGAAACGCATGTGCTACGTCAA -ACGGAAACGCATGTGCTAGCTGAA -ACGGAAACGCATGTGCTAAGTACG -ACGGAAACGCATGTGCTAATCCGA -ACGGAAACGCATGTGCTAATGGGA -ACGGAAACGCATGTGCTAGTGCAA -ACGGAAACGCATGTGCTAGAGGAA -ACGGAAACGCATGTGCTACAGGTA -ACGGAAACGCATGTGCTAGACTCT -ACGGAAACGCATGTGCTAAGTCCT -ACGGAAACGCATGTGCTATAAGCC -ACGGAAACGCATGTGCTAATAGCC -ACGGAAACGCATGTGCTATAACCG -ACGGAAACGCATGTGCTAATGCCA -ACGGAAACGCATCTGCATGGAAAC -ACGGAAACGCATCTGCATAACACC -ACGGAAACGCATCTGCATATCGAG -ACGGAAACGCATCTGCATCTCCTT -ACGGAAACGCATCTGCATCCTGTT -ACGGAAACGCATCTGCATCGGTTT -ACGGAAACGCATCTGCATGTGGTT -ACGGAAACGCATCTGCATGCCTTT -ACGGAAACGCATCTGCATGGTCTT -ACGGAAACGCATCTGCATACGCTT -ACGGAAACGCATCTGCATAGCGTT -ACGGAAACGCATCTGCATTTCGTC -ACGGAAACGCATCTGCATTCTCTC -ACGGAAACGCATCTGCATTGGATC -ACGGAAACGCATCTGCATCACTTC -ACGGAAACGCATCTGCATGTACTC -ACGGAAACGCATCTGCATGATGTC -ACGGAAACGCATCTGCATACAGTC -ACGGAAACGCATCTGCATTTGCTG -ACGGAAACGCATCTGCATTCCATG -ACGGAAACGCATCTGCATTGTGTG -ACGGAAACGCATCTGCATCTAGTG -ACGGAAACGCATCTGCATCATCTG -ACGGAAACGCATCTGCATGAGTTG -ACGGAAACGCATCTGCATAGACTG -ACGGAAACGCATCTGCATTCGGTA -ACGGAAACGCATCTGCATTGCCTA -ACGGAAACGCATCTGCATCCACTA -ACGGAAACGCATCTGCATGGAGTA -ACGGAAACGCATCTGCATTCGTCT -ACGGAAACGCATCTGCATTGCACT -ACGGAAACGCATCTGCATCTGACT -ACGGAAACGCATCTGCATCAACCT -ACGGAAACGCATCTGCATGCTACT -ACGGAAACGCATCTGCATGGATCT -ACGGAAACGCATCTGCATAAGGCT -ACGGAAACGCATCTGCATTCAACC -ACGGAAACGCATCTGCATTGTTCC -ACGGAAACGCATCTGCATATTCCC -ACGGAAACGCATCTGCATTTCTCG -ACGGAAACGCATCTGCATTAGACG -ACGGAAACGCATCTGCATGTAACG -ACGGAAACGCATCTGCATACTTCG -ACGGAAACGCATCTGCATTACGCA -ACGGAAACGCATCTGCATCTTGCA -ACGGAAACGCATCTGCATCGAACA -ACGGAAACGCATCTGCATCAGTCA -ACGGAAACGCATCTGCATGATCCA -ACGGAAACGCATCTGCATACGACA -ACGGAAACGCATCTGCATAGCTCA -ACGGAAACGCATCTGCATTCACGT -ACGGAAACGCATCTGCATCGTAGT -ACGGAAACGCATCTGCATGTCAGT -ACGGAAACGCATCTGCATGAAGGT -ACGGAAACGCATCTGCATAACCGT -ACGGAAACGCATCTGCATTTGTGC -ACGGAAACGCATCTGCATCTAAGC -ACGGAAACGCATCTGCATACTAGC -ACGGAAACGCATCTGCATAGATGC -ACGGAAACGCATCTGCATTGAAGG -ACGGAAACGCATCTGCATCAATGG -ACGGAAACGCATCTGCATATGAGG -ACGGAAACGCATCTGCATAATGGG -ACGGAAACGCATCTGCATTCCTGA -ACGGAAACGCATCTGCATTAGCGA -ACGGAAACGCATCTGCATCACAGA -ACGGAAACGCATCTGCATGCAAGA -ACGGAAACGCATCTGCATGGTTGA -ACGGAAACGCATCTGCATTCCGAT -ACGGAAACGCATCTGCATTGGCAT -ACGGAAACGCATCTGCATCGAGAT -ACGGAAACGCATCTGCATTACCAC -ACGGAAACGCATCTGCATCAGAAC -ACGGAAACGCATCTGCATGTCTAC -ACGGAAACGCATCTGCATACGTAC -ACGGAAACGCATCTGCATAGTGAC -ACGGAAACGCATCTGCATCTGTAG -ACGGAAACGCATCTGCATCCTAAG -ACGGAAACGCATCTGCATGTTCAG -ACGGAAACGCATCTGCATGCATAG -ACGGAAACGCATCTGCATGACAAG -ACGGAAACGCATCTGCATAAGCAG -ACGGAAACGCATCTGCATCGTCAA -ACGGAAACGCATCTGCATGCTGAA -ACGGAAACGCATCTGCATAGTACG -ACGGAAACGCATCTGCATATCCGA -ACGGAAACGCATCTGCATATGGGA -ACGGAAACGCATCTGCATGTGCAA -ACGGAAACGCATCTGCATGAGGAA -ACGGAAACGCATCTGCATCAGGTA -ACGGAAACGCATCTGCATGACTCT -ACGGAAACGCATCTGCATAGTCCT -ACGGAAACGCATCTGCATTAAGCC -ACGGAAACGCATCTGCATATAGCC -ACGGAAACGCATCTGCATTAACCG -ACGGAAACGCATCTGCATATGCCA -ACGGAAACGCATTTGGAGGGAAAC -ACGGAAACGCATTTGGAGAACACC -ACGGAAACGCATTTGGAGATCGAG -ACGGAAACGCATTTGGAGCTCCTT -ACGGAAACGCATTTGGAGCCTGTT -ACGGAAACGCATTTGGAGCGGTTT -ACGGAAACGCATTTGGAGGTGGTT -ACGGAAACGCATTTGGAGGCCTTT -ACGGAAACGCATTTGGAGGGTCTT -ACGGAAACGCATTTGGAGACGCTT -ACGGAAACGCATTTGGAGAGCGTT -ACGGAAACGCATTTGGAGTTCGTC -ACGGAAACGCATTTGGAGTCTCTC -ACGGAAACGCATTTGGAGTGGATC -ACGGAAACGCATTTGGAGCACTTC -ACGGAAACGCATTTGGAGGTACTC -ACGGAAACGCATTTGGAGGATGTC -ACGGAAACGCATTTGGAGACAGTC -ACGGAAACGCATTTGGAGTTGCTG -ACGGAAACGCATTTGGAGTCCATG -ACGGAAACGCATTTGGAGTGTGTG -ACGGAAACGCATTTGGAGCTAGTG -ACGGAAACGCATTTGGAGCATCTG -ACGGAAACGCATTTGGAGGAGTTG -ACGGAAACGCATTTGGAGAGACTG -ACGGAAACGCATTTGGAGTCGGTA -ACGGAAACGCATTTGGAGTGCCTA -ACGGAAACGCATTTGGAGCCACTA -ACGGAAACGCATTTGGAGGGAGTA -ACGGAAACGCATTTGGAGTCGTCT -ACGGAAACGCATTTGGAGTGCACT -ACGGAAACGCATTTGGAGCTGACT -ACGGAAACGCATTTGGAGCAACCT -ACGGAAACGCATTTGGAGGCTACT -ACGGAAACGCATTTGGAGGGATCT -ACGGAAACGCATTTGGAGAAGGCT -ACGGAAACGCATTTGGAGTCAACC -ACGGAAACGCATTTGGAGTGTTCC -ACGGAAACGCATTTGGAGATTCCC -ACGGAAACGCATTTGGAGTTCTCG -ACGGAAACGCATTTGGAGTAGACG -ACGGAAACGCATTTGGAGGTAACG -ACGGAAACGCATTTGGAGACTTCG -ACGGAAACGCATTTGGAGTACGCA -ACGGAAACGCATTTGGAGCTTGCA -ACGGAAACGCATTTGGAGCGAACA -ACGGAAACGCATTTGGAGCAGTCA -ACGGAAACGCATTTGGAGGATCCA -ACGGAAACGCATTTGGAGACGACA -ACGGAAACGCATTTGGAGAGCTCA -ACGGAAACGCATTTGGAGTCACGT -ACGGAAACGCATTTGGAGCGTAGT -ACGGAAACGCATTTGGAGGTCAGT -ACGGAAACGCATTTGGAGGAAGGT -ACGGAAACGCATTTGGAGAACCGT -ACGGAAACGCATTTGGAGTTGTGC -ACGGAAACGCATTTGGAGCTAAGC -ACGGAAACGCATTTGGAGACTAGC -ACGGAAACGCATTTGGAGAGATGC -ACGGAAACGCATTTGGAGTGAAGG -ACGGAAACGCATTTGGAGCAATGG -ACGGAAACGCATTTGGAGATGAGG -ACGGAAACGCATTTGGAGAATGGG -ACGGAAACGCATTTGGAGTCCTGA -ACGGAAACGCATTTGGAGTAGCGA -ACGGAAACGCATTTGGAGCACAGA -ACGGAAACGCATTTGGAGGCAAGA -ACGGAAACGCATTTGGAGGGTTGA -ACGGAAACGCATTTGGAGTCCGAT -ACGGAAACGCATTTGGAGTGGCAT -ACGGAAACGCATTTGGAGCGAGAT -ACGGAAACGCATTTGGAGTACCAC -ACGGAAACGCATTTGGAGCAGAAC -ACGGAAACGCATTTGGAGGTCTAC -ACGGAAACGCATTTGGAGACGTAC -ACGGAAACGCATTTGGAGAGTGAC -ACGGAAACGCATTTGGAGCTGTAG -ACGGAAACGCATTTGGAGCCTAAG -ACGGAAACGCATTTGGAGGTTCAG -ACGGAAACGCATTTGGAGGCATAG -ACGGAAACGCATTTGGAGGACAAG -ACGGAAACGCATTTGGAGAAGCAG -ACGGAAACGCATTTGGAGCGTCAA -ACGGAAACGCATTTGGAGGCTGAA -ACGGAAACGCATTTGGAGAGTACG -ACGGAAACGCATTTGGAGATCCGA -ACGGAAACGCATTTGGAGATGGGA -ACGGAAACGCATTTGGAGGTGCAA -ACGGAAACGCATTTGGAGGAGGAA -ACGGAAACGCATTTGGAGCAGGTA -ACGGAAACGCATTTGGAGGACTCT -ACGGAAACGCATTTGGAGAGTCCT -ACGGAAACGCATTTGGAGTAAGCC -ACGGAAACGCATTTGGAGATAGCC -ACGGAAACGCATTTGGAGTAACCG -ACGGAAACGCATTTGGAGATGCCA -ACGGAAACGCATCTGAGAGGAAAC -ACGGAAACGCATCTGAGAAACACC -ACGGAAACGCATCTGAGAATCGAG -ACGGAAACGCATCTGAGACTCCTT -ACGGAAACGCATCTGAGACCTGTT -ACGGAAACGCATCTGAGACGGTTT -ACGGAAACGCATCTGAGAGTGGTT -ACGGAAACGCATCTGAGAGCCTTT -ACGGAAACGCATCTGAGAGGTCTT -ACGGAAACGCATCTGAGAACGCTT -ACGGAAACGCATCTGAGAAGCGTT -ACGGAAACGCATCTGAGATTCGTC -ACGGAAACGCATCTGAGATCTCTC -ACGGAAACGCATCTGAGATGGATC -ACGGAAACGCATCTGAGACACTTC -ACGGAAACGCATCTGAGAGTACTC -ACGGAAACGCATCTGAGAGATGTC -ACGGAAACGCATCTGAGAACAGTC -ACGGAAACGCATCTGAGATTGCTG -ACGGAAACGCATCTGAGATCCATG -ACGGAAACGCATCTGAGATGTGTG -ACGGAAACGCATCTGAGACTAGTG -ACGGAAACGCATCTGAGACATCTG -ACGGAAACGCATCTGAGAGAGTTG -ACGGAAACGCATCTGAGAAGACTG -ACGGAAACGCATCTGAGATCGGTA -ACGGAAACGCATCTGAGATGCCTA -ACGGAAACGCATCTGAGACCACTA -ACGGAAACGCATCTGAGAGGAGTA -ACGGAAACGCATCTGAGATCGTCT -ACGGAAACGCATCTGAGATGCACT -ACGGAAACGCATCTGAGACTGACT -ACGGAAACGCATCTGAGACAACCT -ACGGAAACGCATCTGAGAGCTACT -ACGGAAACGCATCTGAGAGGATCT -ACGGAAACGCATCTGAGAAAGGCT -ACGGAAACGCATCTGAGATCAACC -ACGGAAACGCATCTGAGATGTTCC -ACGGAAACGCATCTGAGAATTCCC -ACGGAAACGCATCTGAGATTCTCG -ACGGAAACGCATCTGAGATAGACG -ACGGAAACGCATCTGAGAGTAACG -ACGGAAACGCATCTGAGAACTTCG -ACGGAAACGCATCTGAGATACGCA -ACGGAAACGCATCTGAGACTTGCA -ACGGAAACGCATCTGAGACGAACA -ACGGAAACGCATCTGAGACAGTCA -ACGGAAACGCATCTGAGAGATCCA -ACGGAAACGCATCTGAGAACGACA -ACGGAAACGCATCTGAGAAGCTCA -ACGGAAACGCATCTGAGATCACGT -ACGGAAACGCATCTGAGACGTAGT -ACGGAAACGCATCTGAGAGTCAGT -ACGGAAACGCATCTGAGAGAAGGT -ACGGAAACGCATCTGAGAAACCGT -ACGGAAACGCATCTGAGATTGTGC -ACGGAAACGCATCTGAGACTAAGC -ACGGAAACGCATCTGAGAACTAGC -ACGGAAACGCATCTGAGAAGATGC -ACGGAAACGCATCTGAGATGAAGG -ACGGAAACGCATCTGAGACAATGG -ACGGAAACGCATCTGAGAATGAGG -ACGGAAACGCATCTGAGAAATGGG -ACGGAAACGCATCTGAGATCCTGA -ACGGAAACGCATCTGAGATAGCGA -ACGGAAACGCATCTGAGACACAGA -ACGGAAACGCATCTGAGAGCAAGA -ACGGAAACGCATCTGAGAGGTTGA -ACGGAAACGCATCTGAGATCCGAT -ACGGAAACGCATCTGAGATGGCAT -ACGGAAACGCATCTGAGACGAGAT -ACGGAAACGCATCTGAGATACCAC -ACGGAAACGCATCTGAGACAGAAC -ACGGAAACGCATCTGAGAGTCTAC -ACGGAAACGCATCTGAGAACGTAC -ACGGAAACGCATCTGAGAAGTGAC -ACGGAAACGCATCTGAGACTGTAG -ACGGAAACGCATCTGAGACCTAAG -ACGGAAACGCATCTGAGAGTTCAG -ACGGAAACGCATCTGAGAGCATAG -ACGGAAACGCATCTGAGAGACAAG -ACGGAAACGCATCTGAGAAAGCAG -ACGGAAACGCATCTGAGACGTCAA -ACGGAAACGCATCTGAGAGCTGAA -ACGGAAACGCATCTGAGAAGTACG -ACGGAAACGCATCTGAGAATCCGA -ACGGAAACGCATCTGAGAATGGGA -ACGGAAACGCATCTGAGAGTGCAA -ACGGAAACGCATCTGAGAGAGGAA -ACGGAAACGCATCTGAGACAGGTA -ACGGAAACGCATCTGAGAGACTCT -ACGGAAACGCATCTGAGAAGTCCT -ACGGAAACGCATCTGAGATAAGCC -ACGGAAACGCATCTGAGAATAGCC -ACGGAAACGCATCTGAGATAACCG -ACGGAAACGCATCTGAGAATGCCA -ACGGAAACGCATGTATCGGGAAAC -ACGGAAACGCATGTATCGAACACC -ACGGAAACGCATGTATCGATCGAG -ACGGAAACGCATGTATCGCTCCTT -ACGGAAACGCATGTATCGCCTGTT -ACGGAAACGCATGTATCGCGGTTT -ACGGAAACGCATGTATCGGTGGTT -ACGGAAACGCATGTATCGGCCTTT -ACGGAAACGCATGTATCGGGTCTT -ACGGAAACGCATGTATCGACGCTT -ACGGAAACGCATGTATCGAGCGTT -ACGGAAACGCATGTATCGTTCGTC -ACGGAAACGCATGTATCGTCTCTC -ACGGAAACGCATGTATCGTGGATC -ACGGAAACGCATGTATCGCACTTC -ACGGAAACGCATGTATCGGTACTC -ACGGAAACGCATGTATCGGATGTC -ACGGAAACGCATGTATCGACAGTC -ACGGAAACGCATGTATCGTTGCTG -ACGGAAACGCATGTATCGTCCATG -ACGGAAACGCATGTATCGTGTGTG -ACGGAAACGCATGTATCGCTAGTG -ACGGAAACGCATGTATCGCATCTG -ACGGAAACGCATGTATCGGAGTTG -ACGGAAACGCATGTATCGAGACTG -ACGGAAACGCATGTATCGTCGGTA -ACGGAAACGCATGTATCGTGCCTA -ACGGAAACGCATGTATCGCCACTA -ACGGAAACGCATGTATCGGGAGTA -ACGGAAACGCATGTATCGTCGTCT -ACGGAAACGCATGTATCGTGCACT -ACGGAAACGCATGTATCGCTGACT -ACGGAAACGCATGTATCGCAACCT -ACGGAAACGCATGTATCGGCTACT -ACGGAAACGCATGTATCGGGATCT -ACGGAAACGCATGTATCGAAGGCT -ACGGAAACGCATGTATCGTCAACC -ACGGAAACGCATGTATCGTGTTCC -ACGGAAACGCATGTATCGATTCCC -ACGGAAACGCATGTATCGTTCTCG -ACGGAAACGCATGTATCGTAGACG -ACGGAAACGCATGTATCGGTAACG -ACGGAAACGCATGTATCGACTTCG -ACGGAAACGCATGTATCGTACGCA -ACGGAAACGCATGTATCGCTTGCA -ACGGAAACGCATGTATCGCGAACA -ACGGAAACGCATGTATCGCAGTCA -ACGGAAACGCATGTATCGGATCCA -ACGGAAACGCATGTATCGACGACA -ACGGAAACGCATGTATCGAGCTCA -ACGGAAACGCATGTATCGTCACGT -ACGGAAACGCATGTATCGCGTAGT -ACGGAAACGCATGTATCGGTCAGT -ACGGAAACGCATGTATCGGAAGGT -ACGGAAACGCATGTATCGAACCGT -ACGGAAACGCATGTATCGTTGTGC -ACGGAAACGCATGTATCGCTAAGC -ACGGAAACGCATGTATCGACTAGC -ACGGAAACGCATGTATCGAGATGC -ACGGAAACGCATGTATCGTGAAGG -ACGGAAACGCATGTATCGCAATGG -ACGGAAACGCATGTATCGATGAGG -ACGGAAACGCATGTATCGAATGGG -ACGGAAACGCATGTATCGTCCTGA -ACGGAAACGCATGTATCGTAGCGA -ACGGAAACGCATGTATCGCACAGA -ACGGAAACGCATGTATCGGCAAGA -ACGGAAACGCATGTATCGGGTTGA -ACGGAAACGCATGTATCGTCCGAT -ACGGAAACGCATGTATCGTGGCAT -ACGGAAACGCATGTATCGCGAGAT -ACGGAAACGCATGTATCGTACCAC -ACGGAAACGCATGTATCGCAGAAC -ACGGAAACGCATGTATCGGTCTAC -ACGGAAACGCATGTATCGACGTAC -ACGGAAACGCATGTATCGAGTGAC -ACGGAAACGCATGTATCGCTGTAG -ACGGAAACGCATGTATCGCCTAAG -ACGGAAACGCATGTATCGGTTCAG -ACGGAAACGCATGTATCGGCATAG -ACGGAAACGCATGTATCGGACAAG -ACGGAAACGCATGTATCGAAGCAG -ACGGAAACGCATGTATCGCGTCAA -ACGGAAACGCATGTATCGGCTGAA -ACGGAAACGCATGTATCGAGTACG -ACGGAAACGCATGTATCGATCCGA -ACGGAAACGCATGTATCGATGGGA -ACGGAAACGCATGTATCGGTGCAA -ACGGAAACGCATGTATCGGAGGAA -ACGGAAACGCATGTATCGCAGGTA -ACGGAAACGCATGTATCGGACTCT -ACGGAAACGCATGTATCGAGTCCT -ACGGAAACGCATGTATCGTAAGCC -ACGGAAACGCATGTATCGATAGCC -ACGGAAACGCATGTATCGTAACCG -ACGGAAACGCATGTATCGATGCCA -ACGGAAACGCATCTATGCGGAAAC -ACGGAAACGCATCTATGCAACACC -ACGGAAACGCATCTATGCATCGAG -ACGGAAACGCATCTATGCCTCCTT -ACGGAAACGCATCTATGCCCTGTT -ACGGAAACGCATCTATGCCGGTTT -ACGGAAACGCATCTATGCGTGGTT -ACGGAAACGCATCTATGCGCCTTT -ACGGAAACGCATCTATGCGGTCTT -ACGGAAACGCATCTATGCACGCTT -ACGGAAACGCATCTATGCAGCGTT -ACGGAAACGCATCTATGCTTCGTC -ACGGAAACGCATCTATGCTCTCTC -ACGGAAACGCATCTATGCTGGATC -ACGGAAACGCATCTATGCCACTTC -ACGGAAACGCATCTATGCGTACTC -ACGGAAACGCATCTATGCGATGTC -ACGGAAACGCATCTATGCACAGTC -ACGGAAACGCATCTATGCTTGCTG -ACGGAAACGCATCTATGCTCCATG -ACGGAAACGCATCTATGCTGTGTG -ACGGAAACGCATCTATGCCTAGTG -ACGGAAACGCATCTATGCCATCTG -ACGGAAACGCATCTATGCGAGTTG -ACGGAAACGCATCTATGCAGACTG -ACGGAAACGCATCTATGCTCGGTA -ACGGAAACGCATCTATGCTGCCTA -ACGGAAACGCATCTATGCCCACTA -ACGGAAACGCATCTATGCGGAGTA -ACGGAAACGCATCTATGCTCGTCT -ACGGAAACGCATCTATGCTGCACT -ACGGAAACGCATCTATGCCTGACT -ACGGAAACGCATCTATGCCAACCT -ACGGAAACGCATCTATGCGCTACT -ACGGAAACGCATCTATGCGGATCT -ACGGAAACGCATCTATGCAAGGCT -ACGGAAACGCATCTATGCTCAACC -ACGGAAACGCATCTATGCTGTTCC -ACGGAAACGCATCTATGCATTCCC -ACGGAAACGCATCTATGCTTCTCG -ACGGAAACGCATCTATGCTAGACG -ACGGAAACGCATCTATGCGTAACG -ACGGAAACGCATCTATGCACTTCG -ACGGAAACGCATCTATGCTACGCA -ACGGAAACGCATCTATGCCTTGCA -ACGGAAACGCATCTATGCCGAACA -ACGGAAACGCATCTATGCCAGTCA -ACGGAAACGCATCTATGCGATCCA -ACGGAAACGCATCTATGCACGACA -ACGGAAACGCATCTATGCAGCTCA -ACGGAAACGCATCTATGCTCACGT -ACGGAAACGCATCTATGCCGTAGT -ACGGAAACGCATCTATGCGTCAGT -ACGGAAACGCATCTATGCGAAGGT -ACGGAAACGCATCTATGCAACCGT -ACGGAAACGCATCTATGCTTGTGC -ACGGAAACGCATCTATGCCTAAGC -ACGGAAACGCATCTATGCACTAGC -ACGGAAACGCATCTATGCAGATGC -ACGGAAACGCATCTATGCTGAAGG -ACGGAAACGCATCTATGCCAATGG -ACGGAAACGCATCTATGCATGAGG -ACGGAAACGCATCTATGCAATGGG -ACGGAAACGCATCTATGCTCCTGA -ACGGAAACGCATCTATGCTAGCGA -ACGGAAACGCATCTATGCCACAGA -ACGGAAACGCATCTATGCGCAAGA -ACGGAAACGCATCTATGCGGTTGA -ACGGAAACGCATCTATGCTCCGAT -ACGGAAACGCATCTATGCTGGCAT -ACGGAAACGCATCTATGCCGAGAT -ACGGAAACGCATCTATGCTACCAC -ACGGAAACGCATCTATGCCAGAAC -ACGGAAACGCATCTATGCGTCTAC -ACGGAAACGCATCTATGCACGTAC -ACGGAAACGCATCTATGCAGTGAC -ACGGAAACGCATCTATGCCTGTAG -ACGGAAACGCATCTATGCCCTAAG -ACGGAAACGCATCTATGCGTTCAG -ACGGAAACGCATCTATGCGCATAG -ACGGAAACGCATCTATGCGACAAG -ACGGAAACGCATCTATGCAAGCAG -ACGGAAACGCATCTATGCCGTCAA -ACGGAAACGCATCTATGCGCTGAA -ACGGAAACGCATCTATGCAGTACG -ACGGAAACGCATCTATGCATCCGA -ACGGAAACGCATCTATGCATGGGA -ACGGAAACGCATCTATGCGTGCAA -ACGGAAACGCATCTATGCGAGGAA -ACGGAAACGCATCTATGCCAGGTA -ACGGAAACGCATCTATGCGACTCT -ACGGAAACGCATCTATGCAGTCCT -ACGGAAACGCATCTATGCTAAGCC -ACGGAAACGCATCTATGCATAGCC -ACGGAAACGCATCTATGCTAACCG -ACGGAAACGCATCTATGCATGCCA -ACGGAAACGCATCTACCAGGAAAC -ACGGAAACGCATCTACCAAACACC -ACGGAAACGCATCTACCAATCGAG -ACGGAAACGCATCTACCACTCCTT -ACGGAAACGCATCTACCACCTGTT -ACGGAAACGCATCTACCACGGTTT -ACGGAAACGCATCTACCAGTGGTT -ACGGAAACGCATCTACCAGCCTTT -ACGGAAACGCATCTACCAGGTCTT -ACGGAAACGCATCTACCAACGCTT -ACGGAAACGCATCTACCAAGCGTT -ACGGAAACGCATCTACCATTCGTC -ACGGAAACGCATCTACCATCTCTC -ACGGAAACGCATCTACCATGGATC -ACGGAAACGCATCTACCACACTTC -ACGGAAACGCATCTACCAGTACTC -ACGGAAACGCATCTACCAGATGTC -ACGGAAACGCATCTACCAACAGTC -ACGGAAACGCATCTACCATTGCTG -ACGGAAACGCATCTACCATCCATG -ACGGAAACGCATCTACCATGTGTG -ACGGAAACGCATCTACCACTAGTG -ACGGAAACGCATCTACCACATCTG -ACGGAAACGCATCTACCAGAGTTG -ACGGAAACGCATCTACCAAGACTG -ACGGAAACGCATCTACCATCGGTA -ACGGAAACGCATCTACCATGCCTA -ACGGAAACGCATCTACCACCACTA -ACGGAAACGCATCTACCAGGAGTA -ACGGAAACGCATCTACCATCGTCT -ACGGAAACGCATCTACCATGCACT -ACGGAAACGCATCTACCACTGACT -ACGGAAACGCATCTACCACAACCT -ACGGAAACGCATCTACCAGCTACT -ACGGAAACGCATCTACCAGGATCT -ACGGAAACGCATCTACCAAAGGCT -ACGGAAACGCATCTACCATCAACC -ACGGAAACGCATCTACCATGTTCC -ACGGAAACGCATCTACCAATTCCC -ACGGAAACGCATCTACCATTCTCG -ACGGAAACGCATCTACCATAGACG -ACGGAAACGCATCTACCAGTAACG -ACGGAAACGCATCTACCAACTTCG -ACGGAAACGCATCTACCATACGCA -ACGGAAACGCATCTACCACTTGCA -ACGGAAACGCATCTACCACGAACA -ACGGAAACGCATCTACCACAGTCA -ACGGAAACGCATCTACCAGATCCA -ACGGAAACGCATCTACCAACGACA -ACGGAAACGCATCTACCAAGCTCA -ACGGAAACGCATCTACCATCACGT -ACGGAAACGCATCTACCACGTAGT -ACGGAAACGCATCTACCAGTCAGT -ACGGAAACGCATCTACCAGAAGGT -ACGGAAACGCATCTACCAAACCGT -ACGGAAACGCATCTACCATTGTGC -ACGGAAACGCATCTACCACTAAGC -ACGGAAACGCATCTACCAACTAGC -ACGGAAACGCATCTACCAAGATGC -ACGGAAACGCATCTACCATGAAGG -ACGGAAACGCATCTACCACAATGG -ACGGAAACGCATCTACCAATGAGG -ACGGAAACGCATCTACCAAATGGG -ACGGAAACGCATCTACCATCCTGA -ACGGAAACGCATCTACCATAGCGA -ACGGAAACGCATCTACCACACAGA -ACGGAAACGCATCTACCAGCAAGA -ACGGAAACGCATCTACCAGGTTGA -ACGGAAACGCATCTACCATCCGAT -ACGGAAACGCATCTACCATGGCAT -ACGGAAACGCATCTACCACGAGAT -ACGGAAACGCATCTACCATACCAC -ACGGAAACGCATCTACCACAGAAC -ACGGAAACGCATCTACCAGTCTAC -ACGGAAACGCATCTACCAACGTAC -ACGGAAACGCATCTACCAAGTGAC -ACGGAAACGCATCTACCACTGTAG -ACGGAAACGCATCTACCACCTAAG -ACGGAAACGCATCTACCAGTTCAG -ACGGAAACGCATCTACCAGCATAG -ACGGAAACGCATCTACCAGACAAG -ACGGAAACGCATCTACCAAAGCAG -ACGGAAACGCATCTACCACGTCAA -ACGGAAACGCATCTACCAGCTGAA -ACGGAAACGCATCTACCAAGTACG -ACGGAAACGCATCTACCAATCCGA -ACGGAAACGCATCTACCAATGGGA -ACGGAAACGCATCTACCAGTGCAA -ACGGAAACGCATCTACCAGAGGAA -ACGGAAACGCATCTACCACAGGTA -ACGGAAACGCATCTACCAGACTCT -ACGGAAACGCATCTACCAAGTCCT -ACGGAAACGCATCTACCATAAGCC -ACGGAAACGCATCTACCAATAGCC -ACGGAAACGCATCTACCATAACCG -ACGGAAACGCATCTACCAATGCCA -ACGGAAACGCATGTAGGAGGAAAC -ACGGAAACGCATGTAGGAAACACC -ACGGAAACGCATGTAGGAATCGAG -ACGGAAACGCATGTAGGACTCCTT -ACGGAAACGCATGTAGGACCTGTT -ACGGAAACGCATGTAGGACGGTTT -ACGGAAACGCATGTAGGAGTGGTT -ACGGAAACGCATGTAGGAGCCTTT -ACGGAAACGCATGTAGGAGGTCTT -ACGGAAACGCATGTAGGAACGCTT -ACGGAAACGCATGTAGGAAGCGTT -ACGGAAACGCATGTAGGATTCGTC -ACGGAAACGCATGTAGGATCTCTC -ACGGAAACGCATGTAGGATGGATC -ACGGAAACGCATGTAGGACACTTC -ACGGAAACGCATGTAGGAGTACTC -ACGGAAACGCATGTAGGAGATGTC -ACGGAAACGCATGTAGGAACAGTC -ACGGAAACGCATGTAGGATTGCTG -ACGGAAACGCATGTAGGATCCATG -ACGGAAACGCATGTAGGATGTGTG -ACGGAAACGCATGTAGGACTAGTG -ACGGAAACGCATGTAGGACATCTG -ACGGAAACGCATGTAGGAGAGTTG -ACGGAAACGCATGTAGGAAGACTG -ACGGAAACGCATGTAGGATCGGTA -ACGGAAACGCATGTAGGATGCCTA -ACGGAAACGCATGTAGGACCACTA -ACGGAAACGCATGTAGGAGGAGTA -ACGGAAACGCATGTAGGATCGTCT -ACGGAAACGCATGTAGGATGCACT -ACGGAAACGCATGTAGGACTGACT -ACGGAAACGCATGTAGGACAACCT -ACGGAAACGCATGTAGGAGCTACT -ACGGAAACGCATGTAGGAGGATCT -ACGGAAACGCATGTAGGAAAGGCT -ACGGAAACGCATGTAGGATCAACC -ACGGAAACGCATGTAGGATGTTCC -ACGGAAACGCATGTAGGAATTCCC -ACGGAAACGCATGTAGGATTCTCG -ACGGAAACGCATGTAGGATAGACG -ACGGAAACGCATGTAGGAGTAACG -ACGGAAACGCATGTAGGAACTTCG -ACGGAAACGCATGTAGGATACGCA -ACGGAAACGCATGTAGGACTTGCA -ACGGAAACGCATGTAGGACGAACA -ACGGAAACGCATGTAGGACAGTCA -ACGGAAACGCATGTAGGAGATCCA -ACGGAAACGCATGTAGGAACGACA -ACGGAAACGCATGTAGGAAGCTCA -ACGGAAACGCATGTAGGATCACGT -ACGGAAACGCATGTAGGACGTAGT -ACGGAAACGCATGTAGGAGTCAGT -ACGGAAACGCATGTAGGAGAAGGT -ACGGAAACGCATGTAGGAAACCGT -ACGGAAACGCATGTAGGATTGTGC -ACGGAAACGCATGTAGGACTAAGC -ACGGAAACGCATGTAGGAACTAGC -ACGGAAACGCATGTAGGAAGATGC -ACGGAAACGCATGTAGGATGAAGG -ACGGAAACGCATGTAGGACAATGG -ACGGAAACGCATGTAGGAATGAGG -ACGGAAACGCATGTAGGAAATGGG -ACGGAAACGCATGTAGGATCCTGA -ACGGAAACGCATGTAGGATAGCGA -ACGGAAACGCATGTAGGACACAGA -ACGGAAACGCATGTAGGAGCAAGA -ACGGAAACGCATGTAGGAGGTTGA -ACGGAAACGCATGTAGGATCCGAT -ACGGAAACGCATGTAGGATGGCAT -ACGGAAACGCATGTAGGACGAGAT -ACGGAAACGCATGTAGGATACCAC -ACGGAAACGCATGTAGGACAGAAC -ACGGAAACGCATGTAGGAGTCTAC -ACGGAAACGCATGTAGGAACGTAC -ACGGAAACGCATGTAGGAAGTGAC -ACGGAAACGCATGTAGGACTGTAG -ACGGAAACGCATGTAGGACCTAAG -ACGGAAACGCATGTAGGAGTTCAG -ACGGAAACGCATGTAGGAGCATAG -ACGGAAACGCATGTAGGAGACAAG -ACGGAAACGCATGTAGGAAAGCAG -ACGGAAACGCATGTAGGACGTCAA -ACGGAAACGCATGTAGGAGCTGAA -ACGGAAACGCATGTAGGAAGTACG -ACGGAAACGCATGTAGGAATCCGA -ACGGAAACGCATGTAGGAATGGGA -ACGGAAACGCATGTAGGAGTGCAA -ACGGAAACGCATGTAGGAGAGGAA -ACGGAAACGCATGTAGGACAGGTA -ACGGAAACGCATGTAGGAGACTCT -ACGGAAACGCATGTAGGAAGTCCT -ACGGAAACGCATGTAGGATAAGCC -ACGGAAACGCATGTAGGAATAGCC -ACGGAAACGCATGTAGGATAACCG -ACGGAAACGCATGTAGGAATGCCA -ACGGAAACGCATTCTTCGGGAAAC -ACGGAAACGCATTCTTCGAACACC -ACGGAAACGCATTCTTCGATCGAG -ACGGAAACGCATTCTTCGCTCCTT -ACGGAAACGCATTCTTCGCCTGTT -ACGGAAACGCATTCTTCGCGGTTT -ACGGAAACGCATTCTTCGGTGGTT -ACGGAAACGCATTCTTCGGCCTTT -ACGGAAACGCATTCTTCGGGTCTT -ACGGAAACGCATTCTTCGACGCTT -ACGGAAACGCATTCTTCGAGCGTT -ACGGAAACGCATTCTTCGTTCGTC -ACGGAAACGCATTCTTCGTCTCTC -ACGGAAACGCATTCTTCGTGGATC -ACGGAAACGCATTCTTCGCACTTC -ACGGAAACGCATTCTTCGGTACTC -ACGGAAACGCATTCTTCGGATGTC -ACGGAAACGCATTCTTCGACAGTC -ACGGAAACGCATTCTTCGTTGCTG -ACGGAAACGCATTCTTCGTCCATG -ACGGAAACGCATTCTTCGTGTGTG -ACGGAAACGCATTCTTCGCTAGTG -ACGGAAACGCATTCTTCGCATCTG -ACGGAAACGCATTCTTCGGAGTTG -ACGGAAACGCATTCTTCGAGACTG -ACGGAAACGCATTCTTCGTCGGTA -ACGGAAACGCATTCTTCGTGCCTA -ACGGAAACGCATTCTTCGCCACTA -ACGGAAACGCATTCTTCGGGAGTA -ACGGAAACGCATTCTTCGTCGTCT -ACGGAAACGCATTCTTCGTGCACT -ACGGAAACGCATTCTTCGCTGACT -ACGGAAACGCATTCTTCGCAACCT -ACGGAAACGCATTCTTCGGCTACT -ACGGAAACGCATTCTTCGGGATCT -ACGGAAACGCATTCTTCGAAGGCT -ACGGAAACGCATTCTTCGTCAACC -ACGGAAACGCATTCTTCGTGTTCC -ACGGAAACGCATTCTTCGATTCCC -ACGGAAACGCATTCTTCGTTCTCG -ACGGAAACGCATTCTTCGTAGACG -ACGGAAACGCATTCTTCGGTAACG -ACGGAAACGCATTCTTCGACTTCG -ACGGAAACGCATTCTTCGTACGCA -ACGGAAACGCATTCTTCGCTTGCA -ACGGAAACGCATTCTTCGCGAACA -ACGGAAACGCATTCTTCGCAGTCA -ACGGAAACGCATTCTTCGGATCCA -ACGGAAACGCATTCTTCGACGACA -ACGGAAACGCATTCTTCGAGCTCA -ACGGAAACGCATTCTTCGTCACGT -ACGGAAACGCATTCTTCGCGTAGT -ACGGAAACGCATTCTTCGGTCAGT -ACGGAAACGCATTCTTCGGAAGGT -ACGGAAACGCATTCTTCGAACCGT -ACGGAAACGCATTCTTCGTTGTGC -ACGGAAACGCATTCTTCGCTAAGC -ACGGAAACGCATTCTTCGACTAGC -ACGGAAACGCATTCTTCGAGATGC -ACGGAAACGCATTCTTCGTGAAGG -ACGGAAACGCATTCTTCGCAATGG -ACGGAAACGCATTCTTCGATGAGG -ACGGAAACGCATTCTTCGAATGGG -ACGGAAACGCATTCTTCGTCCTGA -ACGGAAACGCATTCTTCGTAGCGA -ACGGAAACGCATTCTTCGCACAGA -ACGGAAACGCATTCTTCGGCAAGA -ACGGAAACGCATTCTTCGGGTTGA -ACGGAAACGCATTCTTCGTCCGAT -ACGGAAACGCATTCTTCGTGGCAT -ACGGAAACGCATTCTTCGCGAGAT -ACGGAAACGCATTCTTCGTACCAC -ACGGAAACGCATTCTTCGCAGAAC -ACGGAAACGCATTCTTCGGTCTAC -ACGGAAACGCATTCTTCGACGTAC -ACGGAAACGCATTCTTCGAGTGAC -ACGGAAACGCATTCTTCGCTGTAG -ACGGAAACGCATTCTTCGCCTAAG -ACGGAAACGCATTCTTCGGTTCAG -ACGGAAACGCATTCTTCGGCATAG -ACGGAAACGCATTCTTCGGACAAG -ACGGAAACGCATTCTTCGAAGCAG -ACGGAAACGCATTCTTCGCGTCAA -ACGGAAACGCATTCTTCGGCTGAA -ACGGAAACGCATTCTTCGAGTACG -ACGGAAACGCATTCTTCGATCCGA -ACGGAAACGCATTCTTCGATGGGA -ACGGAAACGCATTCTTCGGTGCAA -ACGGAAACGCATTCTTCGGAGGAA -ACGGAAACGCATTCTTCGCAGGTA -ACGGAAACGCATTCTTCGGACTCT -ACGGAAACGCATTCTTCGAGTCCT -ACGGAAACGCATTCTTCGTAAGCC -ACGGAAACGCATTCTTCGATAGCC -ACGGAAACGCATTCTTCGTAACCG -ACGGAAACGCATTCTTCGATGCCA -ACGGAAACGCATACTTGCGGAAAC -ACGGAAACGCATACTTGCAACACC -ACGGAAACGCATACTTGCATCGAG -ACGGAAACGCATACTTGCCTCCTT -ACGGAAACGCATACTTGCCCTGTT -ACGGAAACGCATACTTGCCGGTTT -ACGGAAACGCATACTTGCGTGGTT -ACGGAAACGCATACTTGCGCCTTT -ACGGAAACGCATACTTGCGGTCTT -ACGGAAACGCATACTTGCACGCTT -ACGGAAACGCATACTTGCAGCGTT -ACGGAAACGCATACTTGCTTCGTC -ACGGAAACGCATACTTGCTCTCTC -ACGGAAACGCATACTTGCTGGATC -ACGGAAACGCATACTTGCCACTTC -ACGGAAACGCATACTTGCGTACTC -ACGGAAACGCATACTTGCGATGTC -ACGGAAACGCATACTTGCACAGTC -ACGGAAACGCATACTTGCTTGCTG -ACGGAAACGCATACTTGCTCCATG -ACGGAAACGCATACTTGCTGTGTG -ACGGAAACGCATACTTGCCTAGTG -ACGGAAACGCATACTTGCCATCTG -ACGGAAACGCATACTTGCGAGTTG -ACGGAAACGCATACTTGCAGACTG -ACGGAAACGCATACTTGCTCGGTA -ACGGAAACGCATACTTGCTGCCTA -ACGGAAACGCATACTTGCCCACTA -ACGGAAACGCATACTTGCGGAGTA -ACGGAAACGCATACTTGCTCGTCT -ACGGAAACGCATACTTGCTGCACT -ACGGAAACGCATACTTGCCTGACT -ACGGAAACGCATACTTGCCAACCT -ACGGAAACGCATACTTGCGCTACT -ACGGAAACGCATACTTGCGGATCT -ACGGAAACGCATACTTGCAAGGCT -ACGGAAACGCATACTTGCTCAACC -ACGGAAACGCATACTTGCTGTTCC -ACGGAAACGCATACTTGCATTCCC -ACGGAAACGCATACTTGCTTCTCG -ACGGAAACGCATACTTGCTAGACG -ACGGAAACGCATACTTGCGTAACG -ACGGAAACGCATACTTGCACTTCG -ACGGAAACGCATACTTGCTACGCA -ACGGAAACGCATACTTGCCTTGCA -ACGGAAACGCATACTTGCCGAACA -ACGGAAACGCATACTTGCCAGTCA -ACGGAAACGCATACTTGCGATCCA -ACGGAAACGCATACTTGCACGACA -ACGGAAACGCATACTTGCAGCTCA -ACGGAAACGCATACTTGCTCACGT -ACGGAAACGCATACTTGCCGTAGT -ACGGAAACGCATACTTGCGTCAGT -ACGGAAACGCATACTTGCGAAGGT -ACGGAAACGCATACTTGCAACCGT -ACGGAAACGCATACTTGCTTGTGC -ACGGAAACGCATACTTGCCTAAGC -ACGGAAACGCATACTTGCACTAGC -ACGGAAACGCATACTTGCAGATGC -ACGGAAACGCATACTTGCTGAAGG -ACGGAAACGCATACTTGCCAATGG -ACGGAAACGCATACTTGCATGAGG -ACGGAAACGCATACTTGCAATGGG -ACGGAAACGCATACTTGCTCCTGA -ACGGAAACGCATACTTGCTAGCGA -ACGGAAACGCATACTTGCCACAGA -ACGGAAACGCATACTTGCGCAAGA -ACGGAAACGCATACTTGCGGTTGA -ACGGAAACGCATACTTGCTCCGAT -ACGGAAACGCATACTTGCTGGCAT -ACGGAAACGCATACTTGCCGAGAT -ACGGAAACGCATACTTGCTACCAC -ACGGAAACGCATACTTGCCAGAAC -ACGGAAACGCATACTTGCGTCTAC -ACGGAAACGCATACTTGCACGTAC -ACGGAAACGCATACTTGCAGTGAC -ACGGAAACGCATACTTGCCTGTAG -ACGGAAACGCATACTTGCCCTAAG -ACGGAAACGCATACTTGCGTTCAG -ACGGAAACGCATACTTGCGCATAG -ACGGAAACGCATACTTGCGACAAG -ACGGAAACGCATACTTGCAAGCAG -ACGGAAACGCATACTTGCCGTCAA -ACGGAAACGCATACTTGCGCTGAA -ACGGAAACGCATACTTGCAGTACG -ACGGAAACGCATACTTGCATCCGA -ACGGAAACGCATACTTGCATGGGA -ACGGAAACGCATACTTGCGTGCAA -ACGGAAACGCATACTTGCGAGGAA -ACGGAAACGCATACTTGCCAGGTA -ACGGAAACGCATACTTGCGACTCT -ACGGAAACGCATACTTGCAGTCCT -ACGGAAACGCATACTTGCTAAGCC -ACGGAAACGCATACTTGCATAGCC -ACGGAAACGCATACTTGCTAACCG -ACGGAAACGCATACTTGCATGCCA -ACGGAAACGCATACTCTGGGAAAC -ACGGAAACGCATACTCTGAACACC -ACGGAAACGCATACTCTGATCGAG -ACGGAAACGCATACTCTGCTCCTT -ACGGAAACGCATACTCTGCCTGTT -ACGGAAACGCATACTCTGCGGTTT -ACGGAAACGCATACTCTGGTGGTT -ACGGAAACGCATACTCTGGCCTTT -ACGGAAACGCATACTCTGGGTCTT -ACGGAAACGCATACTCTGACGCTT -ACGGAAACGCATACTCTGAGCGTT -ACGGAAACGCATACTCTGTTCGTC -ACGGAAACGCATACTCTGTCTCTC -ACGGAAACGCATACTCTGTGGATC -ACGGAAACGCATACTCTGCACTTC -ACGGAAACGCATACTCTGGTACTC -ACGGAAACGCATACTCTGGATGTC -ACGGAAACGCATACTCTGACAGTC -ACGGAAACGCATACTCTGTTGCTG -ACGGAAACGCATACTCTGTCCATG -ACGGAAACGCATACTCTGTGTGTG -ACGGAAACGCATACTCTGCTAGTG -ACGGAAACGCATACTCTGCATCTG -ACGGAAACGCATACTCTGGAGTTG -ACGGAAACGCATACTCTGAGACTG -ACGGAAACGCATACTCTGTCGGTA -ACGGAAACGCATACTCTGTGCCTA -ACGGAAACGCATACTCTGCCACTA -ACGGAAACGCATACTCTGGGAGTA -ACGGAAACGCATACTCTGTCGTCT -ACGGAAACGCATACTCTGTGCACT -ACGGAAACGCATACTCTGCTGACT -ACGGAAACGCATACTCTGCAACCT -ACGGAAACGCATACTCTGGCTACT -ACGGAAACGCATACTCTGGGATCT -ACGGAAACGCATACTCTGAAGGCT -ACGGAAACGCATACTCTGTCAACC -ACGGAAACGCATACTCTGTGTTCC -ACGGAAACGCATACTCTGATTCCC -ACGGAAACGCATACTCTGTTCTCG -ACGGAAACGCATACTCTGTAGACG -ACGGAAACGCATACTCTGGTAACG -ACGGAAACGCATACTCTGACTTCG -ACGGAAACGCATACTCTGTACGCA -ACGGAAACGCATACTCTGCTTGCA -ACGGAAACGCATACTCTGCGAACA -ACGGAAACGCATACTCTGCAGTCA -ACGGAAACGCATACTCTGGATCCA -ACGGAAACGCATACTCTGACGACA -ACGGAAACGCATACTCTGAGCTCA -ACGGAAACGCATACTCTGTCACGT -ACGGAAACGCATACTCTGCGTAGT -ACGGAAACGCATACTCTGGTCAGT -ACGGAAACGCATACTCTGGAAGGT -ACGGAAACGCATACTCTGAACCGT -ACGGAAACGCATACTCTGTTGTGC -ACGGAAACGCATACTCTGCTAAGC -ACGGAAACGCATACTCTGACTAGC -ACGGAAACGCATACTCTGAGATGC -ACGGAAACGCATACTCTGTGAAGG -ACGGAAACGCATACTCTGCAATGG -ACGGAAACGCATACTCTGATGAGG -ACGGAAACGCATACTCTGAATGGG -ACGGAAACGCATACTCTGTCCTGA -ACGGAAACGCATACTCTGTAGCGA -ACGGAAACGCATACTCTGCACAGA -ACGGAAACGCATACTCTGGCAAGA -ACGGAAACGCATACTCTGGGTTGA -ACGGAAACGCATACTCTGTCCGAT -ACGGAAACGCATACTCTGTGGCAT -ACGGAAACGCATACTCTGCGAGAT -ACGGAAACGCATACTCTGTACCAC -ACGGAAACGCATACTCTGCAGAAC -ACGGAAACGCATACTCTGGTCTAC -ACGGAAACGCATACTCTGACGTAC -ACGGAAACGCATACTCTGAGTGAC -ACGGAAACGCATACTCTGCTGTAG -ACGGAAACGCATACTCTGCCTAAG -ACGGAAACGCATACTCTGGTTCAG -ACGGAAACGCATACTCTGGCATAG -ACGGAAACGCATACTCTGGACAAG -ACGGAAACGCATACTCTGAAGCAG -ACGGAAACGCATACTCTGCGTCAA -ACGGAAACGCATACTCTGGCTGAA -ACGGAAACGCATACTCTGAGTACG -ACGGAAACGCATACTCTGATCCGA -ACGGAAACGCATACTCTGATGGGA -ACGGAAACGCATACTCTGGTGCAA -ACGGAAACGCATACTCTGGAGGAA -ACGGAAACGCATACTCTGCAGGTA -ACGGAAACGCATACTCTGGACTCT -ACGGAAACGCATACTCTGAGTCCT -ACGGAAACGCATACTCTGTAAGCC -ACGGAAACGCATACTCTGATAGCC -ACGGAAACGCATACTCTGTAACCG -ACGGAAACGCATACTCTGATGCCA -ACGGAAACGCATCCTCAAGGAAAC -ACGGAAACGCATCCTCAAAACACC -ACGGAAACGCATCCTCAAATCGAG -ACGGAAACGCATCCTCAACTCCTT -ACGGAAACGCATCCTCAACCTGTT -ACGGAAACGCATCCTCAACGGTTT -ACGGAAACGCATCCTCAAGTGGTT -ACGGAAACGCATCCTCAAGCCTTT -ACGGAAACGCATCCTCAAGGTCTT -ACGGAAACGCATCCTCAAACGCTT -ACGGAAACGCATCCTCAAAGCGTT -ACGGAAACGCATCCTCAATTCGTC -ACGGAAACGCATCCTCAATCTCTC -ACGGAAACGCATCCTCAATGGATC -ACGGAAACGCATCCTCAACACTTC -ACGGAAACGCATCCTCAAGTACTC -ACGGAAACGCATCCTCAAGATGTC -ACGGAAACGCATCCTCAAACAGTC -ACGGAAACGCATCCTCAATTGCTG -ACGGAAACGCATCCTCAATCCATG -ACGGAAACGCATCCTCAATGTGTG -ACGGAAACGCATCCTCAACTAGTG -ACGGAAACGCATCCTCAACATCTG -ACGGAAACGCATCCTCAAGAGTTG -ACGGAAACGCATCCTCAAAGACTG -ACGGAAACGCATCCTCAATCGGTA -ACGGAAACGCATCCTCAATGCCTA -ACGGAAACGCATCCTCAACCACTA -ACGGAAACGCATCCTCAAGGAGTA -ACGGAAACGCATCCTCAATCGTCT -ACGGAAACGCATCCTCAATGCACT -ACGGAAACGCATCCTCAACTGACT -ACGGAAACGCATCCTCAACAACCT -ACGGAAACGCATCCTCAAGCTACT -ACGGAAACGCATCCTCAAGGATCT -ACGGAAACGCATCCTCAAAAGGCT -ACGGAAACGCATCCTCAATCAACC -ACGGAAACGCATCCTCAATGTTCC -ACGGAAACGCATCCTCAAATTCCC -ACGGAAACGCATCCTCAATTCTCG -ACGGAAACGCATCCTCAATAGACG -ACGGAAACGCATCCTCAAGTAACG -ACGGAAACGCATCCTCAAACTTCG -ACGGAAACGCATCCTCAATACGCA -ACGGAAACGCATCCTCAACTTGCA -ACGGAAACGCATCCTCAACGAACA -ACGGAAACGCATCCTCAACAGTCA -ACGGAAACGCATCCTCAAGATCCA -ACGGAAACGCATCCTCAAACGACA -ACGGAAACGCATCCTCAAAGCTCA -ACGGAAACGCATCCTCAATCACGT -ACGGAAACGCATCCTCAACGTAGT -ACGGAAACGCATCCTCAAGTCAGT -ACGGAAACGCATCCTCAAGAAGGT -ACGGAAACGCATCCTCAAAACCGT -ACGGAAACGCATCCTCAATTGTGC -ACGGAAACGCATCCTCAACTAAGC -ACGGAAACGCATCCTCAAACTAGC -ACGGAAACGCATCCTCAAAGATGC -ACGGAAACGCATCCTCAATGAAGG -ACGGAAACGCATCCTCAACAATGG -ACGGAAACGCATCCTCAAATGAGG -ACGGAAACGCATCCTCAAAATGGG -ACGGAAACGCATCCTCAATCCTGA -ACGGAAACGCATCCTCAATAGCGA -ACGGAAACGCATCCTCAACACAGA -ACGGAAACGCATCCTCAAGCAAGA -ACGGAAACGCATCCTCAAGGTTGA -ACGGAAACGCATCCTCAATCCGAT -ACGGAAACGCATCCTCAATGGCAT -ACGGAAACGCATCCTCAACGAGAT -ACGGAAACGCATCCTCAATACCAC -ACGGAAACGCATCCTCAACAGAAC -ACGGAAACGCATCCTCAAGTCTAC -ACGGAAACGCATCCTCAAACGTAC -ACGGAAACGCATCCTCAAAGTGAC -ACGGAAACGCATCCTCAACTGTAG -ACGGAAACGCATCCTCAACCTAAG -ACGGAAACGCATCCTCAAGTTCAG -ACGGAAACGCATCCTCAAGCATAG -ACGGAAACGCATCCTCAAGACAAG -ACGGAAACGCATCCTCAAAAGCAG -ACGGAAACGCATCCTCAACGTCAA -ACGGAAACGCATCCTCAAGCTGAA -ACGGAAACGCATCCTCAAAGTACG -ACGGAAACGCATCCTCAAATCCGA -ACGGAAACGCATCCTCAAATGGGA -ACGGAAACGCATCCTCAAGTGCAA -ACGGAAACGCATCCTCAAGAGGAA -ACGGAAACGCATCCTCAACAGGTA -ACGGAAACGCATCCTCAAGACTCT -ACGGAAACGCATCCTCAAAGTCCT -ACGGAAACGCATCCTCAATAAGCC -ACGGAAACGCATCCTCAAATAGCC -ACGGAAACGCATCCTCAATAACCG -ACGGAAACGCATCCTCAAATGCCA -ACGGAAACGCATACTGCTGGAAAC -ACGGAAACGCATACTGCTAACACC -ACGGAAACGCATACTGCTATCGAG -ACGGAAACGCATACTGCTCTCCTT -ACGGAAACGCATACTGCTCCTGTT -ACGGAAACGCATACTGCTCGGTTT -ACGGAAACGCATACTGCTGTGGTT -ACGGAAACGCATACTGCTGCCTTT -ACGGAAACGCATACTGCTGGTCTT -ACGGAAACGCATACTGCTACGCTT -ACGGAAACGCATACTGCTAGCGTT -ACGGAAACGCATACTGCTTTCGTC -ACGGAAACGCATACTGCTTCTCTC -ACGGAAACGCATACTGCTTGGATC -ACGGAAACGCATACTGCTCACTTC -ACGGAAACGCATACTGCTGTACTC -ACGGAAACGCATACTGCTGATGTC -ACGGAAACGCATACTGCTACAGTC -ACGGAAACGCATACTGCTTTGCTG -ACGGAAACGCATACTGCTTCCATG -ACGGAAACGCATACTGCTTGTGTG -ACGGAAACGCATACTGCTCTAGTG -ACGGAAACGCATACTGCTCATCTG -ACGGAAACGCATACTGCTGAGTTG -ACGGAAACGCATACTGCTAGACTG -ACGGAAACGCATACTGCTTCGGTA -ACGGAAACGCATACTGCTTGCCTA -ACGGAAACGCATACTGCTCCACTA -ACGGAAACGCATACTGCTGGAGTA -ACGGAAACGCATACTGCTTCGTCT -ACGGAAACGCATACTGCTTGCACT -ACGGAAACGCATACTGCTCTGACT -ACGGAAACGCATACTGCTCAACCT -ACGGAAACGCATACTGCTGCTACT -ACGGAAACGCATACTGCTGGATCT -ACGGAAACGCATACTGCTAAGGCT -ACGGAAACGCATACTGCTTCAACC -ACGGAAACGCATACTGCTTGTTCC -ACGGAAACGCATACTGCTATTCCC -ACGGAAACGCATACTGCTTTCTCG -ACGGAAACGCATACTGCTTAGACG -ACGGAAACGCATACTGCTGTAACG -ACGGAAACGCATACTGCTACTTCG -ACGGAAACGCATACTGCTTACGCA -ACGGAAACGCATACTGCTCTTGCA -ACGGAAACGCATACTGCTCGAACA -ACGGAAACGCATACTGCTCAGTCA -ACGGAAACGCATACTGCTGATCCA -ACGGAAACGCATACTGCTACGACA -ACGGAAACGCATACTGCTAGCTCA -ACGGAAACGCATACTGCTTCACGT -ACGGAAACGCATACTGCTCGTAGT -ACGGAAACGCATACTGCTGTCAGT -ACGGAAACGCATACTGCTGAAGGT -ACGGAAACGCATACTGCTAACCGT -ACGGAAACGCATACTGCTTTGTGC -ACGGAAACGCATACTGCTCTAAGC -ACGGAAACGCATACTGCTACTAGC -ACGGAAACGCATACTGCTAGATGC -ACGGAAACGCATACTGCTTGAAGG -ACGGAAACGCATACTGCTCAATGG -ACGGAAACGCATACTGCTATGAGG -ACGGAAACGCATACTGCTAATGGG -ACGGAAACGCATACTGCTTCCTGA -ACGGAAACGCATACTGCTTAGCGA -ACGGAAACGCATACTGCTCACAGA -ACGGAAACGCATACTGCTGCAAGA -ACGGAAACGCATACTGCTGGTTGA -ACGGAAACGCATACTGCTTCCGAT -ACGGAAACGCATACTGCTTGGCAT -ACGGAAACGCATACTGCTCGAGAT -ACGGAAACGCATACTGCTTACCAC -ACGGAAACGCATACTGCTCAGAAC -ACGGAAACGCATACTGCTGTCTAC -ACGGAAACGCATACTGCTACGTAC -ACGGAAACGCATACTGCTAGTGAC -ACGGAAACGCATACTGCTCTGTAG -ACGGAAACGCATACTGCTCCTAAG -ACGGAAACGCATACTGCTGTTCAG -ACGGAAACGCATACTGCTGCATAG -ACGGAAACGCATACTGCTGACAAG -ACGGAAACGCATACTGCTAAGCAG -ACGGAAACGCATACTGCTCGTCAA -ACGGAAACGCATACTGCTGCTGAA -ACGGAAACGCATACTGCTAGTACG -ACGGAAACGCATACTGCTATCCGA -ACGGAAACGCATACTGCTATGGGA -ACGGAAACGCATACTGCTGTGCAA -ACGGAAACGCATACTGCTGAGGAA -ACGGAAACGCATACTGCTCAGGTA -ACGGAAACGCATACTGCTGACTCT -ACGGAAACGCATACTGCTAGTCCT -ACGGAAACGCATACTGCTTAAGCC -ACGGAAACGCATACTGCTATAGCC -ACGGAAACGCATACTGCTTAACCG -ACGGAAACGCATACTGCTATGCCA -ACGGAAACGCATTCTGGAGGAAAC -ACGGAAACGCATTCTGGAAACACC -ACGGAAACGCATTCTGGAATCGAG -ACGGAAACGCATTCTGGACTCCTT -ACGGAAACGCATTCTGGACCTGTT -ACGGAAACGCATTCTGGACGGTTT -ACGGAAACGCATTCTGGAGTGGTT -ACGGAAACGCATTCTGGAGCCTTT -ACGGAAACGCATTCTGGAGGTCTT -ACGGAAACGCATTCTGGAACGCTT -ACGGAAACGCATTCTGGAAGCGTT -ACGGAAACGCATTCTGGATTCGTC -ACGGAAACGCATTCTGGATCTCTC -ACGGAAACGCATTCTGGATGGATC -ACGGAAACGCATTCTGGACACTTC -ACGGAAACGCATTCTGGAGTACTC -ACGGAAACGCATTCTGGAGATGTC -ACGGAAACGCATTCTGGAACAGTC -ACGGAAACGCATTCTGGATTGCTG -ACGGAAACGCATTCTGGATCCATG -ACGGAAACGCATTCTGGATGTGTG -ACGGAAACGCATTCTGGACTAGTG -ACGGAAACGCATTCTGGACATCTG -ACGGAAACGCATTCTGGAGAGTTG -ACGGAAACGCATTCTGGAAGACTG -ACGGAAACGCATTCTGGATCGGTA -ACGGAAACGCATTCTGGATGCCTA -ACGGAAACGCATTCTGGACCACTA -ACGGAAACGCATTCTGGAGGAGTA -ACGGAAACGCATTCTGGATCGTCT -ACGGAAACGCATTCTGGATGCACT -ACGGAAACGCATTCTGGACTGACT -ACGGAAACGCATTCTGGACAACCT -ACGGAAACGCATTCTGGAGCTACT -ACGGAAACGCATTCTGGAGGATCT -ACGGAAACGCATTCTGGAAAGGCT -ACGGAAACGCATTCTGGATCAACC -ACGGAAACGCATTCTGGATGTTCC -ACGGAAACGCATTCTGGAATTCCC -ACGGAAACGCATTCTGGATTCTCG -ACGGAAACGCATTCTGGATAGACG -ACGGAAACGCATTCTGGAGTAACG -ACGGAAACGCATTCTGGAACTTCG -ACGGAAACGCATTCTGGATACGCA -ACGGAAACGCATTCTGGACTTGCA -ACGGAAACGCATTCTGGACGAACA -ACGGAAACGCATTCTGGACAGTCA -ACGGAAACGCATTCTGGAGATCCA -ACGGAAACGCATTCTGGAACGACA -ACGGAAACGCATTCTGGAAGCTCA -ACGGAAACGCATTCTGGATCACGT -ACGGAAACGCATTCTGGACGTAGT -ACGGAAACGCATTCTGGAGTCAGT -ACGGAAACGCATTCTGGAGAAGGT -ACGGAAACGCATTCTGGAAACCGT -ACGGAAACGCATTCTGGATTGTGC -ACGGAAACGCATTCTGGACTAAGC -ACGGAAACGCATTCTGGAACTAGC -ACGGAAACGCATTCTGGAAGATGC -ACGGAAACGCATTCTGGATGAAGG -ACGGAAACGCATTCTGGACAATGG -ACGGAAACGCATTCTGGAATGAGG -ACGGAAACGCATTCTGGAAATGGG -ACGGAAACGCATTCTGGATCCTGA -ACGGAAACGCATTCTGGATAGCGA -ACGGAAACGCATTCTGGACACAGA -ACGGAAACGCATTCTGGAGCAAGA -ACGGAAACGCATTCTGGAGGTTGA -ACGGAAACGCATTCTGGATCCGAT -ACGGAAACGCATTCTGGATGGCAT -ACGGAAACGCATTCTGGACGAGAT -ACGGAAACGCATTCTGGATACCAC -ACGGAAACGCATTCTGGACAGAAC -ACGGAAACGCATTCTGGAGTCTAC -ACGGAAACGCATTCTGGAACGTAC -ACGGAAACGCATTCTGGAAGTGAC -ACGGAAACGCATTCTGGACTGTAG -ACGGAAACGCATTCTGGACCTAAG -ACGGAAACGCATTCTGGAGTTCAG -ACGGAAACGCATTCTGGAGCATAG -ACGGAAACGCATTCTGGAGACAAG -ACGGAAACGCATTCTGGAAAGCAG -ACGGAAACGCATTCTGGACGTCAA -ACGGAAACGCATTCTGGAGCTGAA -ACGGAAACGCATTCTGGAAGTACG -ACGGAAACGCATTCTGGAATCCGA -ACGGAAACGCATTCTGGAATGGGA -ACGGAAACGCATTCTGGAGTGCAA -ACGGAAACGCATTCTGGAGAGGAA -ACGGAAACGCATTCTGGACAGGTA -ACGGAAACGCATTCTGGAGACTCT -ACGGAAACGCATTCTGGAAGTCCT -ACGGAAACGCATTCTGGATAAGCC -ACGGAAACGCATTCTGGAATAGCC -ACGGAAACGCATTCTGGATAACCG -ACGGAAACGCATTCTGGAATGCCA -ACGGAAACGCATGCTAAGGGAAAC -ACGGAAACGCATGCTAAGAACACC -ACGGAAACGCATGCTAAGATCGAG -ACGGAAACGCATGCTAAGCTCCTT -ACGGAAACGCATGCTAAGCCTGTT -ACGGAAACGCATGCTAAGCGGTTT -ACGGAAACGCATGCTAAGGTGGTT -ACGGAAACGCATGCTAAGGCCTTT -ACGGAAACGCATGCTAAGGGTCTT -ACGGAAACGCATGCTAAGACGCTT -ACGGAAACGCATGCTAAGAGCGTT -ACGGAAACGCATGCTAAGTTCGTC -ACGGAAACGCATGCTAAGTCTCTC -ACGGAAACGCATGCTAAGTGGATC -ACGGAAACGCATGCTAAGCACTTC -ACGGAAACGCATGCTAAGGTACTC -ACGGAAACGCATGCTAAGGATGTC -ACGGAAACGCATGCTAAGACAGTC -ACGGAAACGCATGCTAAGTTGCTG -ACGGAAACGCATGCTAAGTCCATG -ACGGAAACGCATGCTAAGTGTGTG -ACGGAAACGCATGCTAAGCTAGTG -ACGGAAACGCATGCTAAGCATCTG -ACGGAAACGCATGCTAAGGAGTTG -ACGGAAACGCATGCTAAGAGACTG -ACGGAAACGCATGCTAAGTCGGTA -ACGGAAACGCATGCTAAGTGCCTA -ACGGAAACGCATGCTAAGCCACTA -ACGGAAACGCATGCTAAGGGAGTA -ACGGAAACGCATGCTAAGTCGTCT -ACGGAAACGCATGCTAAGTGCACT -ACGGAAACGCATGCTAAGCTGACT -ACGGAAACGCATGCTAAGCAACCT -ACGGAAACGCATGCTAAGGCTACT -ACGGAAACGCATGCTAAGGGATCT -ACGGAAACGCATGCTAAGAAGGCT -ACGGAAACGCATGCTAAGTCAACC -ACGGAAACGCATGCTAAGTGTTCC -ACGGAAACGCATGCTAAGATTCCC -ACGGAAACGCATGCTAAGTTCTCG -ACGGAAACGCATGCTAAGTAGACG -ACGGAAACGCATGCTAAGGTAACG -ACGGAAACGCATGCTAAGACTTCG -ACGGAAACGCATGCTAAGTACGCA -ACGGAAACGCATGCTAAGCTTGCA -ACGGAAACGCATGCTAAGCGAACA -ACGGAAACGCATGCTAAGCAGTCA -ACGGAAACGCATGCTAAGGATCCA -ACGGAAACGCATGCTAAGACGACA -ACGGAAACGCATGCTAAGAGCTCA -ACGGAAACGCATGCTAAGTCACGT -ACGGAAACGCATGCTAAGCGTAGT -ACGGAAACGCATGCTAAGGTCAGT -ACGGAAACGCATGCTAAGGAAGGT -ACGGAAACGCATGCTAAGAACCGT -ACGGAAACGCATGCTAAGTTGTGC -ACGGAAACGCATGCTAAGCTAAGC -ACGGAAACGCATGCTAAGACTAGC -ACGGAAACGCATGCTAAGAGATGC -ACGGAAACGCATGCTAAGTGAAGG -ACGGAAACGCATGCTAAGCAATGG -ACGGAAACGCATGCTAAGATGAGG -ACGGAAACGCATGCTAAGAATGGG -ACGGAAACGCATGCTAAGTCCTGA -ACGGAAACGCATGCTAAGTAGCGA -ACGGAAACGCATGCTAAGCACAGA -ACGGAAACGCATGCTAAGGCAAGA -ACGGAAACGCATGCTAAGGGTTGA -ACGGAAACGCATGCTAAGTCCGAT -ACGGAAACGCATGCTAAGTGGCAT -ACGGAAACGCATGCTAAGCGAGAT -ACGGAAACGCATGCTAAGTACCAC -ACGGAAACGCATGCTAAGCAGAAC -ACGGAAACGCATGCTAAGGTCTAC -ACGGAAACGCATGCTAAGACGTAC -ACGGAAACGCATGCTAAGAGTGAC -ACGGAAACGCATGCTAAGCTGTAG -ACGGAAACGCATGCTAAGCCTAAG -ACGGAAACGCATGCTAAGGTTCAG -ACGGAAACGCATGCTAAGGCATAG -ACGGAAACGCATGCTAAGGACAAG -ACGGAAACGCATGCTAAGAAGCAG -ACGGAAACGCATGCTAAGCGTCAA -ACGGAAACGCATGCTAAGGCTGAA -ACGGAAACGCATGCTAAGAGTACG -ACGGAAACGCATGCTAAGATCCGA -ACGGAAACGCATGCTAAGATGGGA -ACGGAAACGCATGCTAAGGTGCAA -ACGGAAACGCATGCTAAGGAGGAA -ACGGAAACGCATGCTAAGCAGGTA -ACGGAAACGCATGCTAAGGACTCT -ACGGAAACGCATGCTAAGAGTCCT -ACGGAAACGCATGCTAAGTAAGCC -ACGGAAACGCATGCTAAGATAGCC -ACGGAAACGCATGCTAAGTAACCG -ACGGAAACGCATGCTAAGATGCCA -ACGGAAACGCATACCTCAGGAAAC -ACGGAAACGCATACCTCAAACACC -ACGGAAACGCATACCTCAATCGAG -ACGGAAACGCATACCTCACTCCTT -ACGGAAACGCATACCTCACCTGTT -ACGGAAACGCATACCTCACGGTTT -ACGGAAACGCATACCTCAGTGGTT -ACGGAAACGCATACCTCAGCCTTT -ACGGAAACGCATACCTCAGGTCTT -ACGGAAACGCATACCTCAACGCTT -ACGGAAACGCATACCTCAAGCGTT -ACGGAAACGCATACCTCATTCGTC -ACGGAAACGCATACCTCATCTCTC -ACGGAAACGCATACCTCATGGATC -ACGGAAACGCATACCTCACACTTC -ACGGAAACGCATACCTCAGTACTC -ACGGAAACGCATACCTCAGATGTC -ACGGAAACGCATACCTCAACAGTC -ACGGAAACGCATACCTCATTGCTG -ACGGAAACGCATACCTCATCCATG -ACGGAAACGCATACCTCATGTGTG -ACGGAAACGCATACCTCACTAGTG -ACGGAAACGCATACCTCACATCTG -ACGGAAACGCATACCTCAGAGTTG -ACGGAAACGCATACCTCAAGACTG -ACGGAAACGCATACCTCATCGGTA -ACGGAAACGCATACCTCATGCCTA -ACGGAAACGCATACCTCACCACTA -ACGGAAACGCATACCTCAGGAGTA -ACGGAAACGCATACCTCATCGTCT -ACGGAAACGCATACCTCATGCACT -ACGGAAACGCATACCTCACTGACT -ACGGAAACGCATACCTCACAACCT -ACGGAAACGCATACCTCAGCTACT -ACGGAAACGCATACCTCAGGATCT -ACGGAAACGCATACCTCAAAGGCT -ACGGAAACGCATACCTCATCAACC -ACGGAAACGCATACCTCATGTTCC -ACGGAAACGCATACCTCAATTCCC -ACGGAAACGCATACCTCATTCTCG -ACGGAAACGCATACCTCATAGACG -ACGGAAACGCATACCTCAGTAACG -ACGGAAACGCATACCTCAACTTCG -ACGGAAACGCATACCTCATACGCA -ACGGAAACGCATACCTCACTTGCA -ACGGAAACGCATACCTCACGAACA -ACGGAAACGCATACCTCACAGTCA -ACGGAAACGCATACCTCAGATCCA -ACGGAAACGCATACCTCAACGACA -ACGGAAACGCATACCTCAAGCTCA -ACGGAAACGCATACCTCATCACGT -ACGGAAACGCATACCTCACGTAGT -ACGGAAACGCATACCTCAGTCAGT -ACGGAAACGCATACCTCAGAAGGT -ACGGAAACGCATACCTCAAACCGT -ACGGAAACGCATACCTCATTGTGC -ACGGAAACGCATACCTCACTAAGC -ACGGAAACGCATACCTCAACTAGC -ACGGAAACGCATACCTCAAGATGC -ACGGAAACGCATACCTCATGAAGG -ACGGAAACGCATACCTCACAATGG -ACGGAAACGCATACCTCAATGAGG -ACGGAAACGCATACCTCAAATGGG -ACGGAAACGCATACCTCATCCTGA -ACGGAAACGCATACCTCATAGCGA -ACGGAAACGCATACCTCACACAGA -ACGGAAACGCATACCTCAGCAAGA -ACGGAAACGCATACCTCAGGTTGA -ACGGAAACGCATACCTCATCCGAT -ACGGAAACGCATACCTCATGGCAT -ACGGAAACGCATACCTCACGAGAT -ACGGAAACGCATACCTCATACCAC -ACGGAAACGCATACCTCACAGAAC -ACGGAAACGCATACCTCAGTCTAC -ACGGAAACGCATACCTCAACGTAC -ACGGAAACGCATACCTCAAGTGAC -ACGGAAACGCATACCTCACTGTAG -ACGGAAACGCATACCTCACCTAAG -ACGGAAACGCATACCTCAGTTCAG -ACGGAAACGCATACCTCAGCATAG -ACGGAAACGCATACCTCAGACAAG -ACGGAAACGCATACCTCAAAGCAG -ACGGAAACGCATACCTCACGTCAA -ACGGAAACGCATACCTCAGCTGAA -ACGGAAACGCATACCTCAAGTACG -ACGGAAACGCATACCTCAATCCGA -ACGGAAACGCATACCTCAATGGGA -ACGGAAACGCATACCTCAGTGCAA -ACGGAAACGCATACCTCAGAGGAA -ACGGAAACGCATACCTCACAGGTA -ACGGAAACGCATACCTCAGACTCT -ACGGAAACGCATACCTCAAGTCCT -ACGGAAACGCATACCTCATAAGCC -ACGGAAACGCATACCTCAATAGCC -ACGGAAACGCATACCTCATAACCG -ACGGAAACGCATACCTCAATGCCA -ACGGAAACGCATTCCTGTGGAAAC -ACGGAAACGCATTCCTGTAACACC -ACGGAAACGCATTCCTGTATCGAG -ACGGAAACGCATTCCTGTCTCCTT -ACGGAAACGCATTCCTGTCCTGTT -ACGGAAACGCATTCCTGTCGGTTT -ACGGAAACGCATTCCTGTGTGGTT -ACGGAAACGCATTCCTGTGCCTTT -ACGGAAACGCATTCCTGTGGTCTT -ACGGAAACGCATTCCTGTACGCTT -ACGGAAACGCATTCCTGTAGCGTT -ACGGAAACGCATTCCTGTTTCGTC -ACGGAAACGCATTCCTGTTCTCTC -ACGGAAACGCATTCCTGTTGGATC -ACGGAAACGCATTCCTGTCACTTC -ACGGAAACGCATTCCTGTGTACTC -ACGGAAACGCATTCCTGTGATGTC -ACGGAAACGCATTCCTGTACAGTC -ACGGAAACGCATTCCTGTTTGCTG -ACGGAAACGCATTCCTGTTCCATG -ACGGAAACGCATTCCTGTTGTGTG -ACGGAAACGCATTCCTGTCTAGTG -ACGGAAACGCATTCCTGTCATCTG -ACGGAAACGCATTCCTGTGAGTTG -ACGGAAACGCATTCCTGTAGACTG -ACGGAAACGCATTCCTGTTCGGTA -ACGGAAACGCATTCCTGTTGCCTA -ACGGAAACGCATTCCTGTCCACTA -ACGGAAACGCATTCCTGTGGAGTA -ACGGAAACGCATTCCTGTTCGTCT -ACGGAAACGCATTCCTGTTGCACT -ACGGAAACGCATTCCTGTCTGACT -ACGGAAACGCATTCCTGTCAACCT -ACGGAAACGCATTCCTGTGCTACT -ACGGAAACGCATTCCTGTGGATCT -ACGGAAACGCATTCCTGTAAGGCT -ACGGAAACGCATTCCTGTTCAACC -ACGGAAACGCATTCCTGTTGTTCC -ACGGAAACGCATTCCTGTATTCCC -ACGGAAACGCATTCCTGTTTCTCG -ACGGAAACGCATTCCTGTTAGACG -ACGGAAACGCATTCCTGTGTAACG -ACGGAAACGCATTCCTGTACTTCG -ACGGAAACGCATTCCTGTTACGCA -ACGGAAACGCATTCCTGTCTTGCA -ACGGAAACGCATTCCTGTCGAACA -ACGGAAACGCATTCCTGTCAGTCA -ACGGAAACGCATTCCTGTGATCCA -ACGGAAACGCATTCCTGTACGACA -ACGGAAACGCATTCCTGTAGCTCA -ACGGAAACGCATTCCTGTTCACGT -ACGGAAACGCATTCCTGTCGTAGT -ACGGAAACGCATTCCTGTGTCAGT -ACGGAAACGCATTCCTGTGAAGGT -ACGGAAACGCATTCCTGTAACCGT -ACGGAAACGCATTCCTGTTTGTGC -ACGGAAACGCATTCCTGTCTAAGC -ACGGAAACGCATTCCTGTACTAGC -ACGGAAACGCATTCCTGTAGATGC -ACGGAAACGCATTCCTGTTGAAGG -ACGGAAACGCATTCCTGTCAATGG -ACGGAAACGCATTCCTGTATGAGG -ACGGAAACGCATTCCTGTAATGGG -ACGGAAACGCATTCCTGTTCCTGA -ACGGAAACGCATTCCTGTTAGCGA -ACGGAAACGCATTCCTGTCACAGA -ACGGAAACGCATTCCTGTGCAAGA -ACGGAAACGCATTCCTGTGGTTGA -ACGGAAACGCATTCCTGTTCCGAT -ACGGAAACGCATTCCTGTTGGCAT -ACGGAAACGCATTCCTGTCGAGAT -ACGGAAACGCATTCCTGTTACCAC -ACGGAAACGCATTCCTGTCAGAAC -ACGGAAACGCATTCCTGTGTCTAC -ACGGAAACGCATTCCTGTACGTAC -ACGGAAACGCATTCCTGTAGTGAC -ACGGAAACGCATTCCTGTCTGTAG -ACGGAAACGCATTCCTGTCCTAAG -ACGGAAACGCATTCCTGTGTTCAG -ACGGAAACGCATTCCTGTGCATAG -ACGGAAACGCATTCCTGTGACAAG -ACGGAAACGCATTCCTGTAAGCAG -ACGGAAACGCATTCCTGTCGTCAA -ACGGAAACGCATTCCTGTGCTGAA -ACGGAAACGCATTCCTGTAGTACG -ACGGAAACGCATTCCTGTATCCGA -ACGGAAACGCATTCCTGTATGGGA -ACGGAAACGCATTCCTGTGTGCAA -ACGGAAACGCATTCCTGTGAGGAA -ACGGAAACGCATTCCTGTCAGGTA -ACGGAAACGCATTCCTGTGACTCT -ACGGAAACGCATTCCTGTAGTCCT -ACGGAAACGCATTCCTGTTAAGCC -ACGGAAACGCATTCCTGTATAGCC -ACGGAAACGCATTCCTGTTAACCG -ACGGAAACGCATTCCTGTATGCCA -ACGGAAACGCATCCCATTGGAAAC -ACGGAAACGCATCCCATTAACACC -ACGGAAACGCATCCCATTATCGAG -ACGGAAACGCATCCCATTCTCCTT -ACGGAAACGCATCCCATTCCTGTT -ACGGAAACGCATCCCATTCGGTTT -ACGGAAACGCATCCCATTGTGGTT -ACGGAAACGCATCCCATTGCCTTT -ACGGAAACGCATCCCATTGGTCTT -ACGGAAACGCATCCCATTACGCTT -ACGGAAACGCATCCCATTAGCGTT -ACGGAAACGCATCCCATTTTCGTC -ACGGAAACGCATCCCATTTCTCTC -ACGGAAACGCATCCCATTTGGATC -ACGGAAACGCATCCCATTCACTTC -ACGGAAACGCATCCCATTGTACTC -ACGGAAACGCATCCCATTGATGTC -ACGGAAACGCATCCCATTACAGTC -ACGGAAACGCATCCCATTTTGCTG -ACGGAAACGCATCCCATTTCCATG -ACGGAAACGCATCCCATTTGTGTG -ACGGAAACGCATCCCATTCTAGTG -ACGGAAACGCATCCCATTCATCTG -ACGGAAACGCATCCCATTGAGTTG -ACGGAAACGCATCCCATTAGACTG -ACGGAAACGCATCCCATTTCGGTA -ACGGAAACGCATCCCATTTGCCTA -ACGGAAACGCATCCCATTCCACTA -ACGGAAACGCATCCCATTGGAGTA -ACGGAAACGCATCCCATTTCGTCT -ACGGAAACGCATCCCATTTGCACT -ACGGAAACGCATCCCATTCTGACT -ACGGAAACGCATCCCATTCAACCT -ACGGAAACGCATCCCATTGCTACT -ACGGAAACGCATCCCATTGGATCT -ACGGAAACGCATCCCATTAAGGCT -ACGGAAACGCATCCCATTTCAACC -ACGGAAACGCATCCCATTTGTTCC -ACGGAAACGCATCCCATTATTCCC -ACGGAAACGCATCCCATTTTCTCG -ACGGAAACGCATCCCATTTAGACG -ACGGAAACGCATCCCATTGTAACG -ACGGAAACGCATCCCATTACTTCG -ACGGAAACGCATCCCATTTACGCA -ACGGAAACGCATCCCATTCTTGCA -ACGGAAACGCATCCCATTCGAACA -ACGGAAACGCATCCCATTCAGTCA -ACGGAAACGCATCCCATTGATCCA -ACGGAAACGCATCCCATTACGACA -ACGGAAACGCATCCCATTAGCTCA -ACGGAAACGCATCCCATTTCACGT -ACGGAAACGCATCCCATTCGTAGT -ACGGAAACGCATCCCATTGTCAGT -ACGGAAACGCATCCCATTGAAGGT -ACGGAAACGCATCCCATTAACCGT -ACGGAAACGCATCCCATTTTGTGC -ACGGAAACGCATCCCATTCTAAGC -ACGGAAACGCATCCCATTACTAGC -ACGGAAACGCATCCCATTAGATGC -ACGGAAACGCATCCCATTTGAAGG -ACGGAAACGCATCCCATTCAATGG -ACGGAAACGCATCCCATTATGAGG -ACGGAAACGCATCCCATTAATGGG -ACGGAAACGCATCCCATTTCCTGA -ACGGAAACGCATCCCATTTAGCGA -ACGGAAACGCATCCCATTCACAGA -ACGGAAACGCATCCCATTGCAAGA -ACGGAAACGCATCCCATTGGTTGA -ACGGAAACGCATCCCATTTCCGAT -ACGGAAACGCATCCCATTTGGCAT -ACGGAAACGCATCCCATTCGAGAT -ACGGAAACGCATCCCATTTACCAC -ACGGAAACGCATCCCATTCAGAAC -ACGGAAACGCATCCCATTGTCTAC -ACGGAAACGCATCCCATTACGTAC -ACGGAAACGCATCCCATTAGTGAC -ACGGAAACGCATCCCATTCTGTAG -ACGGAAACGCATCCCATTCCTAAG -ACGGAAACGCATCCCATTGTTCAG -ACGGAAACGCATCCCATTGCATAG -ACGGAAACGCATCCCATTGACAAG -ACGGAAACGCATCCCATTAAGCAG -ACGGAAACGCATCCCATTCGTCAA -ACGGAAACGCATCCCATTGCTGAA -ACGGAAACGCATCCCATTAGTACG -ACGGAAACGCATCCCATTATCCGA -ACGGAAACGCATCCCATTATGGGA -ACGGAAACGCATCCCATTGTGCAA -ACGGAAACGCATCCCATTGAGGAA -ACGGAAACGCATCCCATTCAGGTA -ACGGAAACGCATCCCATTGACTCT -ACGGAAACGCATCCCATTAGTCCT -ACGGAAACGCATCCCATTTAAGCC -ACGGAAACGCATCCCATTATAGCC -ACGGAAACGCATCCCATTTAACCG -ACGGAAACGCATCCCATTATGCCA -ACGGAAACGCATTCGTTCGGAAAC -ACGGAAACGCATTCGTTCAACACC -ACGGAAACGCATTCGTTCATCGAG -ACGGAAACGCATTCGTTCCTCCTT -ACGGAAACGCATTCGTTCCCTGTT -ACGGAAACGCATTCGTTCCGGTTT -ACGGAAACGCATTCGTTCGTGGTT -ACGGAAACGCATTCGTTCGCCTTT -ACGGAAACGCATTCGTTCGGTCTT -ACGGAAACGCATTCGTTCACGCTT -ACGGAAACGCATTCGTTCAGCGTT -ACGGAAACGCATTCGTTCTTCGTC -ACGGAAACGCATTCGTTCTCTCTC -ACGGAAACGCATTCGTTCTGGATC -ACGGAAACGCATTCGTTCCACTTC -ACGGAAACGCATTCGTTCGTACTC -ACGGAAACGCATTCGTTCGATGTC -ACGGAAACGCATTCGTTCACAGTC -ACGGAAACGCATTCGTTCTTGCTG -ACGGAAACGCATTCGTTCTCCATG -ACGGAAACGCATTCGTTCTGTGTG -ACGGAAACGCATTCGTTCCTAGTG -ACGGAAACGCATTCGTTCCATCTG -ACGGAAACGCATTCGTTCGAGTTG -ACGGAAACGCATTCGTTCAGACTG -ACGGAAACGCATTCGTTCTCGGTA -ACGGAAACGCATTCGTTCTGCCTA -ACGGAAACGCATTCGTTCCCACTA -ACGGAAACGCATTCGTTCGGAGTA -ACGGAAACGCATTCGTTCTCGTCT -ACGGAAACGCATTCGTTCTGCACT -ACGGAAACGCATTCGTTCCTGACT -ACGGAAACGCATTCGTTCCAACCT -ACGGAAACGCATTCGTTCGCTACT -ACGGAAACGCATTCGTTCGGATCT -ACGGAAACGCATTCGTTCAAGGCT -ACGGAAACGCATTCGTTCTCAACC -ACGGAAACGCATTCGTTCTGTTCC -ACGGAAACGCATTCGTTCATTCCC -ACGGAAACGCATTCGTTCTTCTCG -ACGGAAACGCATTCGTTCTAGACG -ACGGAAACGCATTCGTTCGTAACG -ACGGAAACGCATTCGTTCACTTCG -ACGGAAACGCATTCGTTCTACGCA -ACGGAAACGCATTCGTTCCTTGCA -ACGGAAACGCATTCGTTCCGAACA -ACGGAAACGCATTCGTTCCAGTCA -ACGGAAACGCATTCGTTCGATCCA -ACGGAAACGCATTCGTTCACGACA -ACGGAAACGCATTCGTTCAGCTCA -ACGGAAACGCATTCGTTCTCACGT -ACGGAAACGCATTCGTTCCGTAGT -ACGGAAACGCATTCGTTCGTCAGT -ACGGAAACGCATTCGTTCGAAGGT -ACGGAAACGCATTCGTTCAACCGT -ACGGAAACGCATTCGTTCTTGTGC -ACGGAAACGCATTCGTTCCTAAGC -ACGGAAACGCATTCGTTCACTAGC -ACGGAAACGCATTCGTTCAGATGC -ACGGAAACGCATTCGTTCTGAAGG -ACGGAAACGCATTCGTTCCAATGG -ACGGAAACGCATTCGTTCATGAGG -ACGGAAACGCATTCGTTCAATGGG -ACGGAAACGCATTCGTTCTCCTGA -ACGGAAACGCATTCGTTCTAGCGA -ACGGAAACGCATTCGTTCCACAGA -ACGGAAACGCATTCGTTCGCAAGA -ACGGAAACGCATTCGTTCGGTTGA -ACGGAAACGCATTCGTTCTCCGAT -ACGGAAACGCATTCGTTCTGGCAT -ACGGAAACGCATTCGTTCCGAGAT -ACGGAAACGCATTCGTTCTACCAC -ACGGAAACGCATTCGTTCCAGAAC -ACGGAAACGCATTCGTTCGTCTAC -ACGGAAACGCATTCGTTCACGTAC -ACGGAAACGCATTCGTTCAGTGAC -ACGGAAACGCATTCGTTCCTGTAG -ACGGAAACGCATTCGTTCCCTAAG -ACGGAAACGCATTCGTTCGTTCAG -ACGGAAACGCATTCGTTCGCATAG -ACGGAAACGCATTCGTTCGACAAG -ACGGAAACGCATTCGTTCAAGCAG -ACGGAAACGCATTCGTTCCGTCAA -ACGGAAACGCATTCGTTCGCTGAA -ACGGAAACGCATTCGTTCAGTACG -ACGGAAACGCATTCGTTCATCCGA -ACGGAAACGCATTCGTTCATGGGA -ACGGAAACGCATTCGTTCGTGCAA -ACGGAAACGCATTCGTTCGAGGAA -ACGGAAACGCATTCGTTCCAGGTA -ACGGAAACGCATTCGTTCGACTCT -ACGGAAACGCATTCGTTCAGTCCT -ACGGAAACGCATTCGTTCTAAGCC -ACGGAAACGCATTCGTTCATAGCC -ACGGAAACGCATTCGTTCTAACCG -ACGGAAACGCATTCGTTCATGCCA -ACGGAAACGCATACGTAGGGAAAC -ACGGAAACGCATACGTAGAACACC -ACGGAAACGCATACGTAGATCGAG -ACGGAAACGCATACGTAGCTCCTT -ACGGAAACGCATACGTAGCCTGTT -ACGGAAACGCATACGTAGCGGTTT -ACGGAAACGCATACGTAGGTGGTT -ACGGAAACGCATACGTAGGCCTTT -ACGGAAACGCATACGTAGGGTCTT -ACGGAAACGCATACGTAGACGCTT -ACGGAAACGCATACGTAGAGCGTT -ACGGAAACGCATACGTAGTTCGTC -ACGGAAACGCATACGTAGTCTCTC -ACGGAAACGCATACGTAGTGGATC -ACGGAAACGCATACGTAGCACTTC -ACGGAAACGCATACGTAGGTACTC -ACGGAAACGCATACGTAGGATGTC -ACGGAAACGCATACGTAGACAGTC -ACGGAAACGCATACGTAGTTGCTG -ACGGAAACGCATACGTAGTCCATG -ACGGAAACGCATACGTAGTGTGTG -ACGGAAACGCATACGTAGCTAGTG -ACGGAAACGCATACGTAGCATCTG -ACGGAAACGCATACGTAGGAGTTG -ACGGAAACGCATACGTAGAGACTG -ACGGAAACGCATACGTAGTCGGTA -ACGGAAACGCATACGTAGTGCCTA -ACGGAAACGCATACGTAGCCACTA -ACGGAAACGCATACGTAGGGAGTA -ACGGAAACGCATACGTAGTCGTCT -ACGGAAACGCATACGTAGTGCACT -ACGGAAACGCATACGTAGCTGACT -ACGGAAACGCATACGTAGCAACCT -ACGGAAACGCATACGTAGGCTACT -ACGGAAACGCATACGTAGGGATCT -ACGGAAACGCATACGTAGAAGGCT -ACGGAAACGCATACGTAGTCAACC -ACGGAAACGCATACGTAGTGTTCC -ACGGAAACGCATACGTAGATTCCC -ACGGAAACGCATACGTAGTTCTCG -ACGGAAACGCATACGTAGTAGACG -ACGGAAACGCATACGTAGGTAACG -ACGGAAACGCATACGTAGACTTCG -ACGGAAACGCATACGTAGTACGCA -ACGGAAACGCATACGTAGCTTGCA -ACGGAAACGCATACGTAGCGAACA -ACGGAAACGCATACGTAGCAGTCA -ACGGAAACGCATACGTAGGATCCA -ACGGAAACGCATACGTAGACGACA -ACGGAAACGCATACGTAGAGCTCA -ACGGAAACGCATACGTAGTCACGT -ACGGAAACGCATACGTAGCGTAGT -ACGGAAACGCATACGTAGGTCAGT -ACGGAAACGCATACGTAGGAAGGT -ACGGAAACGCATACGTAGAACCGT -ACGGAAACGCATACGTAGTTGTGC -ACGGAAACGCATACGTAGCTAAGC -ACGGAAACGCATACGTAGACTAGC -ACGGAAACGCATACGTAGAGATGC -ACGGAAACGCATACGTAGTGAAGG -ACGGAAACGCATACGTAGCAATGG -ACGGAAACGCATACGTAGATGAGG -ACGGAAACGCATACGTAGAATGGG -ACGGAAACGCATACGTAGTCCTGA -ACGGAAACGCATACGTAGTAGCGA -ACGGAAACGCATACGTAGCACAGA -ACGGAAACGCATACGTAGGCAAGA -ACGGAAACGCATACGTAGGGTTGA -ACGGAAACGCATACGTAGTCCGAT -ACGGAAACGCATACGTAGTGGCAT -ACGGAAACGCATACGTAGCGAGAT -ACGGAAACGCATACGTAGTACCAC -ACGGAAACGCATACGTAGCAGAAC -ACGGAAACGCATACGTAGGTCTAC -ACGGAAACGCATACGTAGACGTAC -ACGGAAACGCATACGTAGAGTGAC -ACGGAAACGCATACGTAGCTGTAG -ACGGAAACGCATACGTAGCCTAAG -ACGGAAACGCATACGTAGGTTCAG -ACGGAAACGCATACGTAGGCATAG -ACGGAAACGCATACGTAGGACAAG -ACGGAAACGCATACGTAGAAGCAG -ACGGAAACGCATACGTAGCGTCAA -ACGGAAACGCATACGTAGGCTGAA -ACGGAAACGCATACGTAGAGTACG -ACGGAAACGCATACGTAGATCCGA -ACGGAAACGCATACGTAGATGGGA -ACGGAAACGCATACGTAGGTGCAA -ACGGAAACGCATACGTAGGAGGAA -ACGGAAACGCATACGTAGCAGGTA -ACGGAAACGCATACGTAGGACTCT -ACGGAAACGCATACGTAGAGTCCT -ACGGAAACGCATACGTAGTAAGCC -ACGGAAACGCATACGTAGATAGCC -ACGGAAACGCATACGTAGTAACCG -ACGGAAACGCATACGTAGATGCCA -ACGGAAACGCATACGGTAGGAAAC -ACGGAAACGCATACGGTAAACACC -ACGGAAACGCATACGGTAATCGAG -ACGGAAACGCATACGGTACTCCTT -ACGGAAACGCATACGGTACCTGTT -ACGGAAACGCATACGGTACGGTTT -ACGGAAACGCATACGGTAGTGGTT -ACGGAAACGCATACGGTAGCCTTT -ACGGAAACGCATACGGTAGGTCTT -ACGGAAACGCATACGGTAACGCTT -ACGGAAACGCATACGGTAAGCGTT -ACGGAAACGCATACGGTATTCGTC -ACGGAAACGCATACGGTATCTCTC -ACGGAAACGCATACGGTATGGATC -ACGGAAACGCATACGGTACACTTC -ACGGAAACGCATACGGTAGTACTC -ACGGAAACGCATACGGTAGATGTC -ACGGAAACGCATACGGTAACAGTC -ACGGAAACGCATACGGTATTGCTG -ACGGAAACGCATACGGTATCCATG -ACGGAAACGCATACGGTATGTGTG -ACGGAAACGCATACGGTACTAGTG -ACGGAAACGCATACGGTACATCTG -ACGGAAACGCATACGGTAGAGTTG -ACGGAAACGCATACGGTAAGACTG -ACGGAAACGCATACGGTATCGGTA -ACGGAAACGCATACGGTATGCCTA -ACGGAAACGCATACGGTACCACTA -ACGGAAACGCATACGGTAGGAGTA -ACGGAAACGCATACGGTATCGTCT -ACGGAAACGCATACGGTATGCACT -ACGGAAACGCATACGGTACTGACT -ACGGAAACGCATACGGTACAACCT -ACGGAAACGCATACGGTAGCTACT -ACGGAAACGCATACGGTAGGATCT -ACGGAAACGCATACGGTAAAGGCT -ACGGAAACGCATACGGTATCAACC -ACGGAAACGCATACGGTATGTTCC -ACGGAAACGCATACGGTAATTCCC -ACGGAAACGCATACGGTATTCTCG -ACGGAAACGCATACGGTATAGACG -ACGGAAACGCATACGGTAGTAACG -ACGGAAACGCATACGGTAACTTCG -ACGGAAACGCATACGGTATACGCA -ACGGAAACGCATACGGTACTTGCA -ACGGAAACGCATACGGTACGAACA -ACGGAAACGCATACGGTACAGTCA -ACGGAAACGCATACGGTAGATCCA -ACGGAAACGCATACGGTAACGACA -ACGGAAACGCATACGGTAAGCTCA -ACGGAAACGCATACGGTATCACGT -ACGGAAACGCATACGGTACGTAGT -ACGGAAACGCATACGGTAGTCAGT -ACGGAAACGCATACGGTAGAAGGT -ACGGAAACGCATACGGTAAACCGT -ACGGAAACGCATACGGTATTGTGC -ACGGAAACGCATACGGTACTAAGC -ACGGAAACGCATACGGTAACTAGC -ACGGAAACGCATACGGTAAGATGC -ACGGAAACGCATACGGTATGAAGG -ACGGAAACGCATACGGTACAATGG -ACGGAAACGCATACGGTAATGAGG -ACGGAAACGCATACGGTAAATGGG -ACGGAAACGCATACGGTATCCTGA -ACGGAAACGCATACGGTATAGCGA -ACGGAAACGCATACGGTACACAGA -ACGGAAACGCATACGGTAGCAAGA -ACGGAAACGCATACGGTAGGTTGA -ACGGAAACGCATACGGTATCCGAT -ACGGAAACGCATACGGTATGGCAT -ACGGAAACGCATACGGTACGAGAT -ACGGAAACGCATACGGTATACCAC -ACGGAAACGCATACGGTACAGAAC -ACGGAAACGCATACGGTAGTCTAC -ACGGAAACGCATACGGTAACGTAC -ACGGAAACGCATACGGTAAGTGAC -ACGGAAACGCATACGGTACTGTAG -ACGGAAACGCATACGGTACCTAAG -ACGGAAACGCATACGGTAGTTCAG -ACGGAAACGCATACGGTAGCATAG -ACGGAAACGCATACGGTAGACAAG -ACGGAAACGCATACGGTAAAGCAG -ACGGAAACGCATACGGTACGTCAA -ACGGAAACGCATACGGTAGCTGAA -ACGGAAACGCATACGGTAAGTACG -ACGGAAACGCATACGGTAATCCGA -ACGGAAACGCATACGGTAATGGGA -ACGGAAACGCATACGGTAGTGCAA -ACGGAAACGCATACGGTAGAGGAA -ACGGAAACGCATACGGTACAGGTA -ACGGAAACGCATACGGTAGACTCT -ACGGAAACGCATACGGTAAGTCCT -ACGGAAACGCATACGGTATAAGCC -ACGGAAACGCATACGGTAATAGCC -ACGGAAACGCATACGGTATAACCG -ACGGAAACGCATACGGTAATGCCA -ACGGAAACGCATTCGACTGGAAAC -ACGGAAACGCATTCGACTAACACC -ACGGAAACGCATTCGACTATCGAG -ACGGAAACGCATTCGACTCTCCTT -ACGGAAACGCATTCGACTCCTGTT -ACGGAAACGCATTCGACTCGGTTT -ACGGAAACGCATTCGACTGTGGTT -ACGGAAACGCATTCGACTGCCTTT -ACGGAAACGCATTCGACTGGTCTT -ACGGAAACGCATTCGACTACGCTT -ACGGAAACGCATTCGACTAGCGTT -ACGGAAACGCATTCGACTTTCGTC -ACGGAAACGCATTCGACTTCTCTC -ACGGAAACGCATTCGACTTGGATC -ACGGAAACGCATTCGACTCACTTC -ACGGAAACGCATTCGACTGTACTC -ACGGAAACGCATTCGACTGATGTC -ACGGAAACGCATTCGACTACAGTC -ACGGAAACGCATTCGACTTTGCTG -ACGGAAACGCATTCGACTTCCATG -ACGGAAACGCATTCGACTTGTGTG -ACGGAAACGCATTCGACTCTAGTG -ACGGAAACGCATTCGACTCATCTG -ACGGAAACGCATTCGACTGAGTTG -ACGGAAACGCATTCGACTAGACTG -ACGGAAACGCATTCGACTTCGGTA -ACGGAAACGCATTCGACTTGCCTA -ACGGAAACGCATTCGACTCCACTA -ACGGAAACGCATTCGACTGGAGTA -ACGGAAACGCATTCGACTTCGTCT -ACGGAAACGCATTCGACTTGCACT -ACGGAAACGCATTCGACTCTGACT -ACGGAAACGCATTCGACTCAACCT -ACGGAAACGCATTCGACTGCTACT -ACGGAAACGCATTCGACTGGATCT -ACGGAAACGCATTCGACTAAGGCT -ACGGAAACGCATTCGACTTCAACC -ACGGAAACGCATTCGACTTGTTCC -ACGGAAACGCATTCGACTATTCCC -ACGGAAACGCATTCGACTTTCTCG -ACGGAAACGCATTCGACTTAGACG -ACGGAAACGCATTCGACTGTAACG -ACGGAAACGCATTCGACTACTTCG -ACGGAAACGCATTCGACTTACGCA -ACGGAAACGCATTCGACTCTTGCA -ACGGAAACGCATTCGACTCGAACA -ACGGAAACGCATTCGACTCAGTCA -ACGGAAACGCATTCGACTGATCCA -ACGGAAACGCATTCGACTACGACA -ACGGAAACGCATTCGACTAGCTCA -ACGGAAACGCATTCGACTTCACGT -ACGGAAACGCATTCGACTCGTAGT -ACGGAAACGCATTCGACTGTCAGT -ACGGAAACGCATTCGACTGAAGGT -ACGGAAACGCATTCGACTAACCGT -ACGGAAACGCATTCGACTTTGTGC -ACGGAAACGCATTCGACTCTAAGC -ACGGAAACGCATTCGACTACTAGC -ACGGAAACGCATTCGACTAGATGC -ACGGAAACGCATTCGACTTGAAGG -ACGGAAACGCATTCGACTCAATGG -ACGGAAACGCATTCGACTATGAGG -ACGGAAACGCATTCGACTAATGGG -ACGGAAACGCATTCGACTTCCTGA -ACGGAAACGCATTCGACTTAGCGA -ACGGAAACGCATTCGACTCACAGA -ACGGAAACGCATTCGACTGCAAGA -ACGGAAACGCATTCGACTGGTTGA -ACGGAAACGCATTCGACTTCCGAT -ACGGAAACGCATTCGACTTGGCAT -ACGGAAACGCATTCGACTCGAGAT -ACGGAAACGCATTCGACTTACCAC -ACGGAAACGCATTCGACTCAGAAC -ACGGAAACGCATTCGACTGTCTAC -ACGGAAACGCATTCGACTACGTAC -ACGGAAACGCATTCGACTAGTGAC -ACGGAAACGCATTCGACTCTGTAG -ACGGAAACGCATTCGACTCCTAAG -ACGGAAACGCATTCGACTGTTCAG -ACGGAAACGCATTCGACTGCATAG -ACGGAAACGCATTCGACTGACAAG -ACGGAAACGCATTCGACTAAGCAG -ACGGAAACGCATTCGACTCGTCAA -ACGGAAACGCATTCGACTGCTGAA -ACGGAAACGCATTCGACTAGTACG -ACGGAAACGCATTCGACTATCCGA -ACGGAAACGCATTCGACTATGGGA -ACGGAAACGCATTCGACTGTGCAA -ACGGAAACGCATTCGACTGAGGAA -ACGGAAACGCATTCGACTCAGGTA -ACGGAAACGCATTCGACTGACTCT -ACGGAAACGCATTCGACTAGTCCT -ACGGAAACGCATTCGACTTAAGCC -ACGGAAACGCATTCGACTATAGCC -ACGGAAACGCATTCGACTTAACCG -ACGGAAACGCATTCGACTATGCCA -ACGGAAACGCATGCATACGGAAAC -ACGGAAACGCATGCATACAACACC -ACGGAAACGCATGCATACATCGAG -ACGGAAACGCATGCATACCTCCTT -ACGGAAACGCATGCATACCCTGTT -ACGGAAACGCATGCATACCGGTTT -ACGGAAACGCATGCATACGTGGTT -ACGGAAACGCATGCATACGCCTTT -ACGGAAACGCATGCATACGGTCTT -ACGGAAACGCATGCATACACGCTT -ACGGAAACGCATGCATACAGCGTT -ACGGAAACGCATGCATACTTCGTC -ACGGAAACGCATGCATACTCTCTC -ACGGAAACGCATGCATACTGGATC -ACGGAAACGCATGCATACCACTTC -ACGGAAACGCATGCATACGTACTC -ACGGAAACGCATGCATACGATGTC -ACGGAAACGCATGCATACACAGTC -ACGGAAACGCATGCATACTTGCTG -ACGGAAACGCATGCATACTCCATG -ACGGAAACGCATGCATACTGTGTG -ACGGAAACGCATGCATACCTAGTG -ACGGAAACGCATGCATACCATCTG -ACGGAAACGCATGCATACGAGTTG -ACGGAAACGCATGCATACAGACTG -ACGGAAACGCATGCATACTCGGTA -ACGGAAACGCATGCATACTGCCTA -ACGGAAACGCATGCATACCCACTA -ACGGAAACGCATGCATACGGAGTA -ACGGAAACGCATGCATACTCGTCT -ACGGAAACGCATGCATACTGCACT -ACGGAAACGCATGCATACCTGACT -ACGGAAACGCATGCATACCAACCT -ACGGAAACGCATGCATACGCTACT -ACGGAAACGCATGCATACGGATCT -ACGGAAACGCATGCATACAAGGCT -ACGGAAACGCATGCATACTCAACC -ACGGAAACGCATGCATACTGTTCC -ACGGAAACGCATGCATACATTCCC -ACGGAAACGCATGCATACTTCTCG -ACGGAAACGCATGCATACTAGACG -ACGGAAACGCATGCATACGTAACG -ACGGAAACGCATGCATACACTTCG -ACGGAAACGCATGCATACTACGCA -ACGGAAACGCATGCATACCTTGCA -ACGGAAACGCATGCATACCGAACA -ACGGAAACGCATGCATACCAGTCA -ACGGAAACGCATGCATACGATCCA -ACGGAAACGCATGCATACACGACA -ACGGAAACGCATGCATACAGCTCA -ACGGAAACGCATGCATACTCACGT -ACGGAAACGCATGCATACCGTAGT -ACGGAAACGCATGCATACGTCAGT -ACGGAAACGCATGCATACGAAGGT -ACGGAAACGCATGCATACAACCGT -ACGGAAACGCATGCATACTTGTGC -ACGGAAACGCATGCATACCTAAGC -ACGGAAACGCATGCATACACTAGC -ACGGAAACGCATGCATACAGATGC -ACGGAAACGCATGCATACTGAAGG -ACGGAAACGCATGCATACCAATGG -ACGGAAACGCATGCATACATGAGG -ACGGAAACGCATGCATACAATGGG -ACGGAAACGCATGCATACTCCTGA -ACGGAAACGCATGCATACTAGCGA -ACGGAAACGCATGCATACCACAGA -ACGGAAACGCATGCATACGCAAGA -ACGGAAACGCATGCATACGGTTGA -ACGGAAACGCATGCATACTCCGAT -ACGGAAACGCATGCATACTGGCAT -ACGGAAACGCATGCATACCGAGAT -ACGGAAACGCATGCATACTACCAC -ACGGAAACGCATGCATACCAGAAC -ACGGAAACGCATGCATACGTCTAC -ACGGAAACGCATGCATACACGTAC -ACGGAAACGCATGCATACAGTGAC -ACGGAAACGCATGCATACCTGTAG -ACGGAAACGCATGCATACCCTAAG -ACGGAAACGCATGCATACGTTCAG -ACGGAAACGCATGCATACGCATAG -ACGGAAACGCATGCATACGACAAG -ACGGAAACGCATGCATACAAGCAG -ACGGAAACGCATGCATACCGTCAA -ACGGAAACGCATGCATACGCTGAA -ACGGAAACGCATGCATACAGTACG -ACGGAAACGCATGCATACATCCGA -ACGGAAACGCATGCATACATGGGA -ACGGAAACGCATGCATACGTGCAA -ACGGAAACGCATGCATACGAGGAA -ACGGAAACGCATGCATACCAGGTA -ACGGAAACGCATGCATACGACTCT -ACGGAAACGCATGCATACAGTCCT -ACGGAAACGCATGCATACTAAGCC -ACGGAAACGCATGCATACATAGCC -ACGGAAACGCATGCATACTAACCG -ACGGAAACGCATGCATACATGCCA -ACGGAAACGCATGCACTTGGAAAC -ACGGAAACGCATGCACTTAACACC -ACGGAAACGCATGCACTTATCGAG -ACGGAAACGCATGCACTTCTCCTT -ACGGAAACGCATGCACTTCCTGTT -ACGGAAACGCATGCACTTCGGTTT -ACGGAAACGCATGCACTTGTGGTT -ACGGAAACGCATGCACTTGCCTTT -ACGGAAACGCATGCACTTGGTCTT -ACGGAAACGCATGCACTTACGCTT -ACGGAAACGCATGCACTTAGCGTT -ACGGAAACGCATGCACTTTTCGTC -ACGGAAACGCATGCACTTTCTCTC -ACGGAAACGCATGCACTTTGGATC -ACGGAAACGCATGCACTTCACTTC -ACGGAAACGCATGCACTTGTACTC -ACGGAAACGCATGCACTTGATGTC -ACGGAAACGCATGCACTTACAGTC -ACGGAAACGCATGCACTTTTGCTG -ACGGAAACGCATGCACTTTCCATG -ACGGAAACGCATGCACTTTGTGTG -ACGGAAACGCATGCACTTCTAGTG -ACGGAAACGCATGCACTTCATCTG -ACGGAAACGCATGCACTTGAGTTG -ACGGAAACGCATGCACTTAGACTG -ACGGAAACGCATGCACTTTCGGTA -ACGGAAACGCATGCACTTTGCCTA -ACGGAAACGCATGCACTTCCACTA -ACGGAAACGCATGCACTTGGAGTA -ACGGAAACGCATGCACTTTCGTCT -ACGGAAACGCATGCACTTTGCACT -ACGGAAACGCATGCACTTCTGACT -ACGGAAACGCATGCACTTCAACCT -ACGGAAACGCATGCACTTGCTACT -ACGGAAACGCATGCACTTGGATCT -ACGGAAACGCATGCACTTAAGGCT -ACGGAAACGCATGCACTTTCAACC -ACGGAAACGCATGCACTTTGTTCC -ACGGAAACGCATGCACTTATTCCC -ACGGAAACGCATGCACTTTTCTCG -ACGGAAACGCATGCACTTTAGACG -ACGGAAACGCATGCACTTGTAACG -ACGGAAACGCATGCACTTACTTCG -ACGGAAACGCATGCACTTTACGCA -ACGGAAACGCATGCACTTCTTGCA -ACGGAAACGCATGCACTTCGAACA -ACGGAAACGCATGCACTTCAGTCA -ACGGAAACGCATGCACTTGATCCA -ACGGAAACGCATGCACTTACGACA -ACGGAAACGCATGCACTTAGCTCA -ACGGAAACGCATGCACTTTCACGT -ACGGAAACGCATGCACTTCGTAGT -ACGGAAACGCATGCACTTGTCAGT -ACGGAAACGCATGCACTTGAAGGT -ACGGAAACGCATGCACTTAACCGT -ACGGAAACGCATGCACTTTTGTGC -ACGGAAACGCATGCACTTCTAAGC -ACGGAAACGCATGCACTTACTAGC -ACGGAAACGCATGCACTTAGATGC -ACGGAAACGCATGCACTTTGAAGG -ACGGAAACGCATGCACTTCAATGG -ACGGAAACGCATGCACTTATGAGG -ACGGAAACGCATGCACTTAATGGG -ACGGAAACGCATGCACTTTCCTGA -ACGGAAACGCATGCACTTTAGCGA -ACGGAAACGCATGCACTTCACAGA -ACGGAAACGCATGCACTTGCAAGA -ACGGAAACGCATGCACTTGGTTGA -ACGGAAACGCATGCACTTTCCGAT -ACGGAAACGCATGCACTTTGGCAT -ACGGAAACGCATGCACTTCGAGAT -ACGGAAACGCATGCACTTTACCAC -ACGGAAACGCATGCACTTCAGAAC -ACGGAAACGCATGCACTTGTCTAC -ACGGAAACGCATGCACTTACGTAC -ACGGAAACGCATGCACTTAGTGAC -ACGGAAACGCATGCACTTCTGTAG -ACGGAAACGCATGCACTTCCTAAG -ACGGAAACGCATGCACTTGTTCAG -ACGGAAACGCATGCACTTGCATAG -ACGGAAACGCATGCACTTGACAAG -ACGGAAACGCATGCACTTAAGCAG -ACGGAAACGCATGCACTTCGTCAA -ACGGAAACGCATGCACTTGCTGAA -ACGGAAACGCATGCACTTAGTACG -ACGGAAACGCATGCACTTATCCGA -ACGGAAACGCATGCACTTATGGGA -ACGGAAACGCATGCACTTGTGCAA -ACGGAAACGCATGCACTTGAGGAA -ACGGAAACGCATGCACTTCAGGTA -ACGGAAACGCATGCACTTGACTCT -ACGGAAACGCATGCACTTAGTCCT -ACGGAAACGCATGCACTTTAAGCC -ACGGAAACGCATGCACTTATAGCC -ACGGAAACGCATGCACTTTAACCG -ACGGAAACGCATGCACTTATGCCA -ACGGAAACGCATACACGAGGAAAC -ACGGAAACGCATACACGAAACACC -ACGGAAACGCATACACGAATCGAG -ACGGAAACGCATACACGACTCCTT -ACGGAAACGCATACACGACCTGTT -ACGGAAACGCATACACGACGGTTT -ACGGAAACGCATACACGAGTGGTT -ACGGAAACGCATACACGAGCCTTT -ACGGAAACGCATACACGAGGTCTT -ACGGAAACGCATACACGAACGCTT -ACGGAAACGCATACACGAAGCGTT -ACGGAAACGCATACACGATTCGTC -ACGGAAACGCATACACGATCTCTC -ACGGAAACGCATACACGATGGATC -ACGGAAACGCATACACGACACTTC -ACGGAAACGCATACACGAGTACTC -ACGGAAACGCATACACGAGATGTC -ACGGAAACGCATACACGAACAGTC -ACGGAAACGCATACACGATTGCTG -ACGGAAACGCATACACGATCCATG -ACGGAAACGCATACACGATGTGTG -ACGGAAACGCATACACGACTAGTG -ACGGAAACGCATACACGACATCTG -ACGGAAACGCATACACGAGAGTTG -ACGGAAACGCATACACGAAGACTG -ACGGAAACGCATACACGATCGGTA -ACGGAAACGCATACACGATGCCTA -ACGGAAACGCATACACGACCACTA -ACGGAAACGCATACACGAGGAGTA -ACGGAAACGCATACACGATCGTCT -ACGGAAACGCATACACGATGCACT -ACGGAAACGCATACACGACTGACT -ACGGAAACGCATACACGACAACCT -ACGGAAACGCATACACGAGCTACT -ACGGAAACGCATACACGAGGATCT -ACGGAAACGCATACACGAAAGGCT -ACGGAAACGCATACACGATCAACC -ACGGAAACGCATACACGATGTTCC -ACGGAAACGCATACACGAATTCCC -ACGGAAACGCATACACGATTCTCG -ACGGAAACGCATACACGATAGACG -ACGGAAACGCATACACGAGTAACG -ACGGAAACGCATACACGAACTTCG -ACGGAAACGCATACACGATACGCA -ACGGAAACGCATACACGACTTGCA -ACGGAAACGCATACACGACGAACA -ACGGAAACGCATACACGACAGTCA -ACGGAAACGCATACACGAGATCCA -ACGGAAACGCATACACGAACGACA -ACGGAAACGCATACACGAAGCTCA -ACGGAAACGCATACACGATCACGT -ACGGAAACGCATACACGACGTAGT -ACGGAAACGCATACACGAGTCAGT -ACGGAAACGCATACACGAGAAGGT -ACGGAAACGCATACACGAAACCGT -ACGGAAACGCATACACGATTGTGC -ACGGAAACGCATACACGACTAAGC -ACGGAAACGCATACACGAACTAGC -ACGGAAACGCATACACGAAGATGC -ACGGAAACGCATACACGATGAAGG -ACGGAAACGCATACACGACAATGG -ACGGAAACGCATACACGAATGAGG -ACGGAAACGCATACACGAAATGGG -ACGGAAACGCATACACGATCCTGA -ACGGAAACGCATACACGATAGCGA -ACGGAAACGCATACACGACACAGA -ACGGAAACGCATACACGAGCAAGA -ACGGAAACGCATACACGAGGTTGA -ACGGAAACGCATACACGATCCGAT -ACGGAAACGCATACACGATGGCAT -ACGGAAACGCATACACGACGAGAT -ACGGAAACGCATACACGATACCAC -ACGGAAACGCATACACGACAGAAC -ACGGAAACGCATACACGAGTCTAC -ACGGAAACGCATACACGAACGTAC -ACGGAAACGCATACACGAAGTGAC -ACGGAAACGCATACACGACTGTAG -ACGGAAACGCATACACGACCTAAG -ACGGAAACGCATACACGAGTTCAG -ACGGAAACGCATACACGAGCATAG -ACGGAAACGCATACACGAGACAAG -ACGGAAACGCATACACGAAAGCAG -ACGGAAACGCATACACGACGTCAA -ACGGAAACGCATACACGAGCTGAA -ACGGAAACGCATACACGAAGTACG -ACGGAAACGCATACACGAATCCGA -ACGGAAACGCATACACGAATGGGA -ACGGAAACGCATACACGAGTGCAA -ACGGAAACGCATACACGAGAGGAA -ACGGAAACGCATACACGACAGGTA -ACGGAAACGCATACACGAGACTCT -ACGGAAACGCATACACGAAGTCCT -ACGGAAACGCATACACGATAAGCC -ACGGAAACGCATACACGAATAGCC -ACGGAAACGCATACACGATAACCG -ACGGAAACGCATACACGAATGCCA -ACGGAAACGCATTCACAGGGAAAC -ACGGAAACGCATTCACAGAACACC -ACGGAAACGCATTCACAGATCGAG -ACGGAAACGCATTCACAGCTCCTT -ACGGAAACGCATTCACAGCCTGTT -ACGGAAACGCATTCACAGCGGTTT -ACGGAAACGCATTCACAGGTGGTT -ACGGAAACGCATTCACAGGCCTTT -ACGGAAACGCATTCACAGGGTCTT -ACGGAAACGCATTCACAGACGCTT -ACGGAAACGCATTCACAGAGCGTT -ACGGAAACGCATTCACAGTTCGTC -ACGGAAACGCATTCACAGTCTCTC -ACGGAAACGCATTCACAGTGGATC -ACGGAAACGCATTCACAGCACTTC -ACGGAAACGCATTCACAGGTACTC -ACGGAAACGCATTCACAGGATGTC -ACGGAAACGCATTCACAGACAGTC -ACGGAAACGCATTCACAGTTGCTG -ACGGAAACGCATTCACAGTCCATG -ACGGAAACGCATTCACAGTGTGTG -ACGGAAACGCATTCACAGCTAGTG -ACGGAAACGCATTCACAGCATCTG -ACGGAAACGCATTCACAGGAGTTG -ACGGAAACGCATTCACAGAGACTG -ACGGAAACGCATTCACAGTCGGTA -ACGGAAACGCATTCACAGTGCCTA -ACGGAAACGCATTCACAGCCACTA -ACGGAAACGCATTCACAGGGAGTA -ACGGAAACGCATTCACAGTCGTCT -ACGGAAACGCATTCACAGTGCACT -ACGGAAACGCATTCACAGCTGACT -ACGGAAACGCATTCACAGCAACCT -ACGGAAACGCATTCACAGGCTACT -ACGGAAACGCATTCACAGGGATCT -ACGGAAACGCATTCACAGAAGGCT -ACGGAAACGCATTCACAGTCAACC -ACGGAAACGCATTCACAGTGTTCC -ACGGAAACGCATTCACAGATTCCC -ACGGAAACGCATTCACAGTTCTCG -ACGGAAACGCATTCACAGTAGACG -ACGGAAACGCATTCACAGGTAACG -ACGGAAACGCATTCACAGACTTCG -ACGGAAACGCATTCACAGTACGCA -ACGGAAACGCATTCACAGCTTGCA -ACGGAAACGCATTCACAGCGAACA -ACGGAAACGCATTCACAGCAGTCA -ACGGAAACGCATTCACAGGATCCA -ACGGAAACGCATTCACAGACGACA -ACGGAAACGCATTCACAGAGCTCA -ACGGAAACGCATTCACAGTCACGT -ACGGAAACGCATTCACAGCGTAGT -ACGGAAACGCATTCACAGGTCAGT -ACGGAAACGCATTCACAGGAAGGT -ACGGAAACGCATTCACAGAACCGT -ACGGAAACGCATTCACAGTTGTGC -ACGGAAACGCATTCACAGCTAAGC -ACGGAAACGCATTCACAGACTAGC -ACGGAAACGCATTCACAGAGATGC -ACGGAAACGCATTCACAGTGAAGG -ACGGAAACGCATTCACAGCAATGG -ACGGAAACGCATTCACAGATGAGG -ACGGAAACGCATTCACAGAATGGG -ACGGAAACGCATTCACAGTCCTGA -ACGGAAACGCATTCACAGTAGCGA -ACGGAAACGCATTCACAGCACAGA -ACGGAAACGCATTCACAGGCAAGA -ACGGAAACGCATTCACAGGGTTGA -ACGGAAACGCATTCACAGTCCGAT -ACGGAAACGCATTCACAGTGGCAT -ACGGAAACGCATTCACAGCGAGAT -ACGGAAACGCATTCACAGTACCAC -ACGGAAACGCATTCACAGCAGAAC -ACGGAAACGCATTCACAGGTCTAC -ACGGAAACGCATTCACAGACGTAC -ACGGAAACGCATTCACAGAGTGAC -ACGGAAACGCATTCACAGCTGTAG -ACGGAAACGCATTCACAGCCTAAG -ACGGAAACGCATTCACAGGTTCAG -ACGGAAACGCATTCACAGGCATAG -ACGGAAACGCATTCACAGGACAAG -ACGGAAACGCATTCACAGAAGCAG -ACGGAAACGCATTCACAGCGTCAA -ACGGAAACGCATTCACAGGCTGAA -ACGGAAACGCATTCACAGAGTACG -ACGGAAACGCATTCACAGATCCGA -ACGGAAACGCATTCACAGATGGGA -ACGGAAACGCATTCACAGGTGCAA -ACGGAAACGCATTCACAGGAGGAA -ACGGAAACGCATTCACAGCAGGTA -ACGGAAACGCATTCACAGGACTCT -ACGGAAACGCATTCACAGAGTCCT -ACGGAAACGCATTCACAGTAAGCC -ACGGAAACGCATTCACAGATAGCC -ACGGAAACGCATTCACAGTAACCG -ACGGAAACGCATTCACAGATGCCA -ACGGAAACGCATCCAGATGGAAAC -ACGGAAACGCATCCAGATAACACC -ACGGAAACGCATCCAGATATCGAG -ACGGAAACGCATCCAGATCTCCTT -ACGGAAACGCATCCAGATCCTGTT -ACGGAAACGCATCCAGATCGGTTT -ACGGAAACGCATCCAGATGTGGTT -ACGGAAACGCATCCAGATGCCTTT -ACGGAAACGCATCCAGATGGTCTT -ACGGAAACGCATCCAGATACGCTT -ACGGAAACGCATCCAGATAGCGTT -ACGGAAACGCATCCAGATTTCGTC -ACGGAAACGCATCCAGATTCTCTC -ACGGAAACGCATCCAGATTGGATC -ACGGAAACGCATCCAGATCACTTC -ACGGAAACGCATCCAGATGTACTC -ACGGAAACGCATCCAGATGATGTC -ACGGAAACGCATCCAGATACAGTC -ACGGAAACGCATCCAGATTTGCTG -ACGGAAACGCATCCAGATTCCATG -ACGGAAACGCATCCAGATTGTGTG -ACGGAAACGCATCCAGATCTAGTG -ACGGAAACGCATCCAGATCATCTG -ACGGAAACGCATCCAGATGAGTTG -ACGGAAACGCATCCAGATAGACTG -ACGGAAACGCATCCAGATTCGGTA -ACGGAAACGCATCCAGATTGCCTA -ACGGAAACGCATCCAGATCCACTA -ACGGAAACGCATCCAGATGGAGTA -ACGGAAACGCATCCAGATTCGTCT -ACGGAAACGCATCCAGATTGCACT -ACGGAAACGCATCCAGATCTGACT -ACGGAAACGCATCCAGATCAACCT -ACGGAAACGCATCCAGATGCTACT -ACGGAAACGCATCCAGATGGATCT -ACGGAAACGCATCCAGATAAGGCT -ACGGAAACGCATCCAGATTCAACC -ACGGAAACGCATCCAGATTGTTCC -ACGGAAACGCATCCAGATATTCCC -ACGGAAACGCATCCAGATTTCTCG -ACGGAAACGCATCCAGATTAGACG -ACGGAAACGCATCCAGATGTAACG -ACGGAAACGCATCCAGATACTTCG -ACGGAAACGCATCCAGATTACGCA -ACGGAAACGCATCCAGATCTTGCA -ACGGAAACGCATCCAGATCGAACA -ACGGAAACGCATCCAGATCAGTCA -ACGGAAACGCATCCAGATGATCCA -ACGGAAACGCATCCAGATACGACA -ACGGAAACGCATCCAGATAGCTCA -ACGGAAACGCATCCAGATTCACGT -ACGGAAACGCATCCAGATCGTAGT -ACGGAAACGCATCCAGATGTCAGT -ACGGAAACGCATCCAGATGAAGGT -ACGGAAACGCATCCAGATAACCGT -ACGGAAACGCATCCAGATTTGTGC -ACGGAAACGCATCCAGATCTAAGC -ACGGAAACGCATCCAGATACTAGC -ACGGAAACGCATCCAGATAGATGC -ACGGAAACGCATCCAGATTGAAGG -ACGGAAACGCATCCAGATCAATGG -ACGGAAACGCATCCAGATATGAGG -ACGGAAACGCATCCAGATAATGGG -ACGGAAACGCATCCAGATTCCTGA -ACGGAAACGCATCCAGATTAGCGA -ACGGAAACGCATCCAGATCACAGA -ACGGAAACGCATCCAGATGCAAGA -ACGGAAACGCATCCAGATGGTTGA -ACGGAAACGCATCCAGATTCCGAT -ACGGAAACGCATCCAGATTGGCAT -ACGGAAACGCATCCAGATCGAGAT -ACGGAAACGCATCCAGATTACCAC -ACGGAAACGCATCCAGATCAGAAC -ACGGAAACGCATCCAGATGTCTAC -ACGGAAACGCATCCAGATACGTAC -ACGGAAACGCATCCAGATAGTGAC -ACGGAAACGCATCCAGATCTGTAG -ACGGAAACGCATCCAGATCCTAAG -ACGGAAACGCATCCAGATGTTCAG -ACGGAAACGCATCCAGATGCATAG -ACGGAAACGCATCCAGATGACAAG -ACGGAAACGCATCCAGATAAGCAG -ACGGAAACGCATCCAGATCGTCAA -ACGGAAACGCATCCAGATGCTGAA -ACGGAAACGCATCCAGATAGTACG -ACGGAAACGCATCCAGATATCCGA -ACGGAAACGCATCCAGATATGGGA -ACGGAAACGCATCCAGATGTGCAA -ACGGAAACGCATCCAGATGAGGAA -ACGGAAACGCATCCAGATCAGGTA -ACGGAAACGCATCCAGATGACTCT -ACGGAAACGCATCCAGATAGTCCT -ACGGAAACGCATCCAGATTAAGCC -ACGGAAACGCATCCAGATATAGCC -ACGGAAACGCATCCAGATTAACCG -ACGGAAACGCATCCAGATATGCCA -ACGGAAACGCATACAACGGGAAAC -ACGGAAACGCATACAACGAACACC -ACGGAAACGCATACAACGATCGAG -ACGGAAACGCATACAACGCTCCTT -ACGGAAACGCATACAACGCCTGTT -ACGGAAACGCATACAACGCGGTTT -ACGGAAACGCATACAACGGTGGTT -ACGGAAACGCATACAACGGCCTTT -ACGGAAACGCATACAACGGGTCTT -ACGGAAACGCATACAACGACGCTT -ACGGAAACGCATACAACGAGCGTT -ACGGAAACGCATACAACGTTCGTC -ACGGAAACGCATACAACGTCTCTC -ACGGAAACGCATACAACGTGGATC -ACGGAAACGCATACAACGCACTTC -ACGGAAACGCATACAACGGTACTC -ACGGAAACGCATACAACGGATGTC -ACGGAAACGCATACAACGACAGTC -ACGGAAACGCATACAACGTTGCTG -ACGGAAACGCATACAACGTCCATG -ACGGAAACGCATACAACGTGTGTG -ACGGAAACGCATACAACGCTAGTG -ACGGAAACGCATACAACGCATCTG -ACGGAAACGCATACAACGGAGTTG -ACGGAAACGCATACAACGAGACTG -ACGGAAACGCATACAACGTCGGTA -ACGGAAACGCATACAACGTGCCTA -ACGGAAACGCATACAACGCCACTA -ACGGAAACGCATACAACGGGAGTA -ACGGAAACGCATACAACGTCGTCT -ACGGAAACGCATACAACGTGCACT -ACGGAAACGCATACAACGCTGACT -ACGGAAACGCATACAACGCAACCT -ACGGAAACGCATACAACGGCTACT -ACGGAAACGCATACAACGGGATCT -ACGGAAACGCATACAACGAAGGCT -ACGGAAACGCATACAACGTCAACC -ACGGAAACGCATACAACGTGTTCC -ACGGAAACGCATACAACGATTCCC -ACGGAAACGCATACAACGTTCTCG -ACGGAAACGCATACAACGTAGACG -ACGGAAACGCATACAACGGTAACG -ACGGAAACGCATACAACGACTTCG -ACGGAAACGCATACAACGTACGCA -ACGGAAACGCATACAACGCTTGCA -ACGGAAACGCATACAACGCGAACA -ACGGAAACGCATACAACGCAGTCA -ACGGAAACGCATACAACGGATCCA -ACGGAAACGCATACAACGACGACA -ACGGAAACGCATACAACGAGCTCA -ACGGAAACGCATACAACGTCACGT -ACGGAAACGCATACAACGCGTAGT -ACGGAAACGCATACAACGGTCAGT -ACGGAAACGCATACAACGGAAGGT -ACGGAAACGCATACAACGAACCGT -ACGGAAACGCATACAACGTTGTGC -ACGGAAACGCATACAACGCTAAGC -ACGGAAACGCATACAACGACTAGC -ACGGAAACGCATACAACGAGATGC -ACGGAAACGCATACAACGTGAAGG -ACGGAAACGCATACAACGCAATGG -ACGGAAACGCATACAACGATGAGG -ACGGAAACGCATACAACGAATGGG -ACGGAAACGCATACAACGTCCTGA -ACGGAAACGCATACAACGTAGCGA -ACGGAAACGCATACAACGCACAGA -ACGGAAACGCATACAACGGCAAGA -ACGGAAACGCATACAACGGGTTGA -ACGGAAACGCATACAACGTCCGAT -ACGGAAACGCATACAACGTGGCAT -ACGGAAACGCATACAACGCGAGAT -ACGGAAACGCATACAACGTACCAC -ACGGAAACGCATACAACGCAGAAC -ACGGAAACGCATACAACGGTCTAC -ACGGAAACGCATACAACGACGTAC -ACGGAAACGCATACAACGAGTGAC -ACGGAAACGCATACAACGCTGTAG -ACGGAAACGCATACAACGCCTAAG -ACGGAAACGCATACAACGGTTCAG -ACGGAAACGCATACAACGGCATAG -ACGGAAACGCATACAACGGACAAG -ACGGAAACGCATACAACGAAGCAG -ACGGAAACGCATACAACGCGTCAA -ACGGAAACGCATACAACGGCTGAA -ACGGAAACGCATACAACGAGTACG -ACGGAAACGCATACAACGATCCGA -ACGGAAACGCATACAACGATGGGA -ACGGAAACGCATACAACGGTGCAA -ACGGAAACGCATACAACGGAGGAA -ACGGAAACGCATACAACGCAGGTA -ACGGAAACGCATACAACGGACTCT -ACGGAAACGCATACAACGAGTCCT -ACGGAAACGCATACAACGTAAGCC -ACGGAAACGCATACAACGATAGCC -ACGGAAACGCATACAACGTAACCG -ACGGAAACGCATACAACGATGCCA -ACGGAAACGCATTCAAGCGGAAAC -ACGGAAACGCATTCAAGCAACACC -ACGGAAACGCATTCAAGCATCGAG -ACGGAAACGCATTCAAGCCTCCTT -ACGGAAACGCATTCAAGCCCTGTT -ACGGAAACGCATTCAAGCCGGTTT -ACGGAAACGCATTCAAGCGTGGTT -ACGGAAACGCATTCAAGCGCCTTT -ACGGAAACGCATTCAAGCGGTCTT -ACGGAAACGCATTCAAGCACGCTT -ACGGAAACGCATTCAAGCAGCGTT -ACGGAAACGCATTCAAGCTTCGTC -ACGGAAACGCATTCAAGCTCTCTC -ACGGAAACGCATTCAAGCTGGATC -ACGGAAACGCATTCAAGCCACTTC -ACGGAAACGCATTCAAGCGTACTC -ACGGAAACGCATTCAAGCGATGTC -ACGGAAACGCATTCAAGCACAGTC -ACGGAAACGCATTCAAGCTTGCTG -ACGGAAACGCATTCAAGCTCCATG -ACGGAAACGCATTCAAGCTGTGTG -ACGGAAACGCATTCAAGCCTAGTG -ACGGAAACGCATTCAAGCCATCTG -ACGGAAACGCATTCAAGCGAGTTG -ACGGAAACGCATTCAAGCAGACTG -ACGGAAACGCATTCAAGCTCGGTA -ACGGAAACGCATTCAAGCTGCCTA -ACGGAAACGCATTCAAGCCCACTA -ACGGAAACGCATTCAAGCGGAGTA -ACGGAAACGCATTCAAGCTCGTCT -ACGGAAACGCATTCAAGCTGCACT -ACGGAAACGCATTCAAGCCTGACT -ACGGAAACGCATTCAAGCCAACCT -ACGGAAACGCATTCAAGCGCTACT -ACGGAAACGCATTCAAGCGGATCT -ACGGAAACGCATTCAAGCAAGGCT -ACGGAAACGCATTCAAGCTCAACC -ACGGAAACGCATTCAAGCTGTTCC -ACGGAAACGCATTCAAGCATTCCC -ACGGAAACGCATTCAAGCTTCTCG -ACGGAAACGCATTCAAGCTAGACG -ACGGAAACGCATTCAAGCGTAACG -ACGGAAACGCATTCAAGCACTTCG -ACGGAAACGCATTCAAGCTACGCA -ACGGAAACGCATTCAAGCCTTGCA -ACGGAAACGCATTCAAGCCGAACA -ACGGAAACGCATTCAAGCCAGTCA -ACGGAAACGCATTCAAGCGATCCA -ACGGAAACGCATTCAAGCACGACA -ACGGAAACGCATTCAAGCAGCTCA -ACGGAAACGCATTCAAGCTCACGT -ACGGAAACGCATTCAAGCCGTAGT -ACGGAAACGCATTCAAGCGTCAGT -ACGGAAACGCATTCAAGCGAAGGT -ACGGAAACGCATTCAAGCAACCGT -ACGGAAACGCATTCAAGCTTGTGC -ACGGAAACGCATTCAAGCCTAAGC -ACGGAAACGCATTCAAGCACTAGC -ACGGAAACGCATTCAAGCAGATGC -ACGGAAACGCATTCAAGCTGAAGG -ACGGAAACGCATTCAAGCCAATGG -ACGGAAACGCATTCAAGCATGAGG -ACGGAAACGCATTCAAGCAATGGG -ACGGAAACGCATTCAAGCTCCTGA -ACGGAAACGCATTCAAGCTAGCGA -ACGGAAACGCATTCAAGCCACAGA -ACGGAAACGCATTCAAGCGCAAGA -ACGGAAACGCATTCAAGCGGTTGA -ACGGAAACGCATTCAAGCTCCGAT -ACGGAAACGCATTCAAGCTGGCAT -ACGGAAACGCATTCAAGCCGAGAT -ACGGAAACGCATTCAAGCTACCAC -ACGGAAACGCATTCAAGCCAGAAC -ACGGAAACGCATTCAAGCGTCTAC -ACGGAAACGCATTCAAGCACGTAC -ACGGAAACGCATTCAAGCAGTGAC -ACGGAAACGCATTCAAGCCTGTAG -ACGGAAACGCATTCAAGCCCTAAG -ACGGAAACGCATTCAAGCGTTCAG -ACGGAAACGCATTCAAGCGCATAG -ACGGAAACGCATTCAAGCGACAAG -ACGGAAACGCATTCAAGCAAGCAG -ACGGAAACGCATTCAAGCCGTCAA -ACGGAAACGCATTCAAGCGCTGAA -ACGGAAACGCATTCAAGCAGTACG -ACGGAAACGCATTCAAGCATCCGA -ACGGAAACGCATTCAAGCATGGGA -ACGGAAACGCATTCAAGCGTGCAA -ACGGAAACGCATTCAAGCGAGGAA -ACGGAAACGCATTCAAGCCAGGTA -ACGGAAACGCATTCAAGCGACTCT -ACGGAAACGCATTCAAGCAGTCCT -ACGGAAACGCATTCAAGCTAAGCC -ACGGAAACGCATTCAAGCATAGCC -ACGGAAACGCATTCAAGCTAACCG -ACGGAAACGCATTCAAGCATGCCA -ACGGAAACGCATCGTTCAGGAAAC -ACGGAAACGCATCGTTCAAACACC -ACGGAAACGCATCGTTCAATCGAG -ACGGAAACGCATCGTTCACTCCTT -ACGGAAACGCATCGTTCACCTGTT -ACGGAAACGCATCGTTCACGGTTT -ACGGAAACGCATCGTTCAGTGGTT -ACGGAAACGCATCGTTCAGCCTTT -ACGGAAACGCATCGTTCAGGTCTT -ACGGAAACGCATCGTTCAACGCTT -ACGGAAACGCATCGTTCAAGCGTT -ACGGAAACGCATCGTTCATTCGTC -ACGGAAACGCATCGTTCATCTCTC -ACGGAAACGCATCGTTCATGGATC -ACGGAAACGCATCGTTCACACTTC -ACGGAAACGCATCGTTCAGTACTC -ACGGAAACGCATCGTTCAGATGTC -ACGGAAACGCATCGTTCAACAGTC -ACGGAAACGCATCGTTCATTGCTG -ACGGAAACGCATCGTTCATCCATG -ACGGAAACGCATCGTTCATGTGTG -ACGGAAACGCATCGTTCACTAGTG -ACGGAAACGCATCGTTCACATCTG -ACGGAAACGCATCGTTCAGAGTTG -ACGGAAACGCATCGTTCAAGACTG -ACGGAAACGCATCGTTCATCGGTA -ACGGAAACGCATCGTTCATGCCTA -ACGGAAACGCATCGTTCACCACTA -ACGGAAACGCATCGTTCAGGAGTA -ACGGAAACGCATCGTTCATCGTCT -ACGGAAACGCATCGTTCATGCACT -ACGGAAACGCATCGTTCACTGACT -ACGGAAACGCATCGTTCACAACCT -ACGGAAACGCATCGTTCAGCTACT -ACGGAAACGCATCGTTCAGGATCT -ACGGAAACGCATCGTTCAAAGGCT -ACGGAAACGCATCGTTCATCAACC -ACGGAAACGCATCGTTCATGTTCC -ACGGAAACGCATCGTTCAATTCCC -ACGGAAACGCATCGTTCATTCTCG -ACGGAAACGCATCGTTCATAGACG -ACGGAAACGCATCGTTCAGTAACG -ACGGAAACGCATCGTTCAACTTCG -ACGGAAACGCATCGTTCATACGCA -ACGGAAACGCATCGTTCACTTGCA -ACGGAAACGCATCGTTCACGAACA -ACGGAAACGCATCGTTCACAGTCA -ACGGAAACGCATCGTTCAGATCCA -ACGGAAACGCATCGTTCAACGACA -ACGGAAACGCATCGTTCAAGCTCA -ACGGAAACGCATCGTTCATCACGT -ACGGAAACGCATCGTTCACGTAGT -ACGGAAACGCATCGTTCAGTCAGT -ACGGAAACGCATCGTTCAGAAGGT -ACGGAAACGCATCGTTCAAACCGT -ACGGAAACGCATCGTTCATTGTGC -ACGGAAACGCATCGTTCACTAAGC -ACGGAAACGCATCGTTCAACTAGC -ACGGAAACGCATCGTTCAAGATGC -ACGGAAACGCATCGTTCATGAAGG -ACGGAAACGCATCGTTCACAATGG -ACGGAAACGCATCGTTCAATGAGG -ACGGAAACGCATCGTTCAAATGGG -ACGGAAACGCATCGTTCATCCTGA -ACGGAAACGCATCGTTCATAGCGA -ACGGAAACGCATCGTTCACACAGA -ACGGAAACGCATCGTTCAGCAAGA -ACGGAAACGCATCGTTCAGGTTGA -ACGGAAACGCATCGTTCATCCGAT -ACGGAAACGCATCGTTCATGGCAT -ACGGAAACGCATCGTTCACGAGAT -ACGGAAACGCATCGTTCATACCAC -ACGGAAACGCATCGTTCACAGAAC -ACGGAAACGCATCGTTCAGTCTAC -ACGGAAACGCATCGTTCAACGTAC -ACGGAAACGCATCGTTCAAGTGAC -ACGGAAACGCATCGTTCACTGTAG -ACGGAAACGCATCGTTCACCTAAG -ACGGAAACGCATCGTTCAGTTCAG -ACGGAAACGCATCGTTCAGCATAG -ACGGAAACGCATCGTTCAGACAAG -ACGGAAACGCATCGTTCAAAGCAG -ACGGAAACGCATCGTTCACGTCAA -ACGGAAACGCATCGTTCAGCTGAA -ACGGAAACGCATCGTTCAAGTACG -ACGGAAACGCATCGTTCAATCCGA -ACGGAAACGCATCGTTCAATGGGA -ACGGAAACGCATCGTTCAGTGCAA -ACGGAAACGCATCGTTCAGAGGAA -ACGGAAACGCATCGTTCACAGGTA -ACGGAAACGCATCGTTCAGACTCT -ACGGAAACGCATCGTTCAAGTCCT -ACGGAAACGCATCGTTCATAAGCC -ACGGAAACGCATCGTTCAATAGCC -ACGGAAACGCATCGTTCATAACCG -ACGGAAACGCATCGTTCAATGCCA -ACGGAAACGCATAGTCGTGGAAAC -ACGGAAACGCATAGTCGTAACACC -ACGGAAACGCATAGTCGTATCGAG -ACGGAAACGCATAGTCGTCTCCTT -ACGGAAACGCATAGTCGTCCTGTT -ACGGAAACGCATAGTCGTCGGTTT -ACGGAAACGCATAGTCGTGTGGTT -ACGGAAACGCATAGTCGTGCCTTT -ACGGAAACGCATAGTCGTGGTCTT -ACGGAAACGCATAGTCGTACGCTT -ACGGAAACGCATAGTCGTAGCGTT -ACGGAAACGCATAGTCGTTTCGTC -ACGGAAACGCATAGTCGTTCTCTC -ACGGAAACGCATAGTCGTTGGATC -ACGGAAACGCATAGTCGTCACTTC -ACGGAAACGCATAGTCGTGTACTC -ACGGAAACGCATAGTCGTGATGTC -ACGGAAACGCATAGTCGTACAGTC -ACGGAAACGCATAGTCGTTTGCTG -ACGGAAACGCATAGTCGTTCCATG -ACGGAAACGCATAGTCGTTGTGTG -ACGGAAACGCATAGTCGTCTAGTG -ACGGAAACGCATAGTCGTCATCTG -ACGGAAACGCATAGTCGTGAGTTG -ACGGAAACGCATAGTCGTAGACTG -ACGGAAACGCATAGTCGTTCGGTA -ACGGAAACGCATAGTCGTTGCCTA -ACGGAAACGCATAGTCGTCCACTA -ACGGAAACGCATAGTCGTGGAGTA -ACGGAAACGCATAGTCGTTCGTCT -ACGGAAACGCATAGTCGTTGCACT -ACGGAAACGCATAGTCGTCTGACT -ACGGAAACGCATAGTCGTCAACCT -ACGGAAACGCATAGTCGTGCTACT -ACGGAAACGCATAGTCGTGGATCT -ACGGAAACGCATAGTCGTAAGGCT -ACGGAAACGCATAGTCGTTCAACC -ACGGAAACGCATAGTCGTTGTTCC -ACGGAAACGCATAGTCGTATTCCC -ACGGAAACGCATAGTCGTTTCTCG -ACGGAAACGCATAGTCGTTAGACG -ACGGAAACGCATAGTCGTGTAACG -ACGGAAACGCATAGTCGTACTTCG -ACGGAAACGCATAGTCGTTACGCA -ACGGAAACGCATAGTCGTCTTGCA -ACGGAAACGCATAGTCGTCGAACA -ACGGAAACGCATAGTCGTCAGTCA -ACGGAAACGCATAGTCGTGATCCA -ACGGAAACGCATAGTCGTACGACA -ACGGAAACGCATAGTCGTAGCTCA -ACGGAAACGCATAGTCGTTCACGT -ACGGAAACGCATAGTCGTCGTAGT -ACGGAAACGCATAGTCGTGTCAGT -ACGGAAACGCATAGTCGTGAAGGT -ACGGAAACGCATAGTCGTAACCGT -ACGGAAACGCATAGTCGTTTGTGC -ACGGAAACGCATAGTCGTCTAAGC -ACGGAAACGCATAGTCGTACTAGC -ACGGAAACGCATAGTCGTAGATGC -ACGGAAACGCATAGTCGTTGAAGG -ACGGAAACGCATAGTCGTCAATGG -ACGGAAACGCATAGTCGTATGAGG -ACGGAAACGCATAGTCGTAATGGG -ACGGAAACGCATAGTCGTTCCTGA -ACGGAAACGCATAGTCGTTAGCGA -ACGGAAACGCATAGTCGTCACAGA -ACGGAAACGCATAGTCGTGCAAGA -ACGGAAACGCATAGTCGTGGTTGA -ACGGAAACGCATAGTCGTTCCGAT -ACGGAAACGCATAGTCGTTGGCAT -ACGGAAACGCATAGTCGTCGAGAT -ACGGAAACGCATAGTCGTTACCAC -ACGGAAACGCATAGTCGTCAGAAC -ACGGAAACGCATAGTCGTGTCTAC -ACGGAAACGCATAGTCGTACGTAC -ACGGAAACGCATAGTCGTAGTGAC -ACGGAAACGCATAGTCGTCTGTAG -ACGGAAACGCATAGTCGTCCTAAG -ACGGAAACGCATAGTCGTGTTCAG -ACGGAAACGCATAGTCGTGCATAG -ACGGAAACGCATAGTCGTGACAAG -ACGGAAACGCATAGTCGTAAGCAG -ACGGAAACGCATAGTCGTCGTCAA -ACGGAAACGCATAGTCGTGCTGAA -ACGGAAACGCATAGTCGTAGTACG -ACGGAAACGCATAGTCGTATCCGA -ACGGAAACGCATAGTCGTATGGGA -ACGGAAACGCATAGTCGTGTGCAA -ACGGAAACGCATAGTCGTGAGGAA -ACGGAAACGCATAGTCGTCAGGTA -ACGGAAACGCATAGTCGTGACTCT -ACGGAAACGCATAGTCGTAGTCCT -ACGGAAACGCATAGTCGTTAAGCC -ACGGAAACGCATAGTCGTATAGCC -ACGGAAACGCATAGTCGTTAACCG -ACGGAAACGCATAGTCGTATGCCA -ACGGAAACGCATAGTGTCGGAAAC -ACGGAAACGCATAGTGTCAACACC -ACGGAAACGCATAGTGTCATCGAG -ACGGAAACGCATAGTGTCCTCCTT -ACGGAAACGCATAGTGTCCCTGTT -ACGGAAACGCATAGTGTCCGGTTT -ACGGAAACGCATAGTGTCGTGGTT -ACGGAAACGCATAGTGTCGCCTTT -ACGGAAACGCATAGTGTCGGTCTT -ACGGAAACGCATAGTGTCACGCTT -ACGGAAACGCATAGTGTCAGCGTT -ACGGAAACGCATAGTGTCTTCGTC -ACGGAAACGCATAGTGTCTCTCTC -ACGGAAACGCATAGTGTCTGGATC -ACGGAAACGCATAGTGTCCACTTC -ACGGAAACGCATAGTGTCGTACTC -ACGGAAACGCATAGTGTCGATGTC -ACGGAAACGCATAGTGTCACAGTC -ACGGAAACGCATAGTGTCTTGCTG -ACGGAAACGCATAGTGTCTCCATG -ACGGAAACGCATAGTGTCTGTGTG -ACGGAAACGCATAGTGTCCTAGTG -ACGGAAACGCATAGTGTCCATCTG -ACGGAAACGCATAGTGTCGAGTTG -ACGGAAACGCATAGTGTCAGACTG -ACGGAAACGCATAGTGTCTCGGTA -ACGGAAACGCATAGTGTCTGCCTA -ACGGAAACGCATAGTGTCCCACTA -ACGGAAACGCATAGTGTCGGAGTA -ACGGAAACGCATAGTGTCTCGTCT -ACGGAAACGCATAGTGTCTGCACT -ACGGAAACGCATAGTGTCCTGACT -ACGGAAACGCATAGTGTCCAACCT -ACGGAAACGCATAGTGTCGCTACT -ACGGAAACGCATAGTGTCGGATCT -ACGGAAACGCATAGTGTCAAGGCT -ACGGAAACGCATAGTGTCTCAACC -ACGGAAACGCATAGTGTCTGTTCC -ACGGAAACGCATAGTGTCATTCCC -ACGGAAACGCATAGTGTCTTCTCG -ACGGAAACGCATAGTGTCTAGACG -ACGGAAACGCATAGTGTCGTAACG -ACGGAAACGCATAGTGTCACTTCG -ACGGAAACGCATAGTGTCTACGCA -ACGGAAACGCATAGTGTCCTTGCA -ACGGAAACGCATAGTGTCCGAACA -ACGGAAACGCATAGTGTCCAGTCA -ACGGAAACGCATAGTGTCGATCCA -ACGGAAACGCATAGTGTCACGACA -ACGGAAACGCATAGTGTCAGCTCA -ACGGAAACGCATAGTGTCTCACGT -ACGGAAACGCATAGTGTCCGTAGT -ACGGAAACGCATAGTGTCGTCAGT -ACGGAAACGCATAGTGTCGAAGGT -ACGGAAACGCATAGTGTCAACCGT -ACGGAAACGCATAGTGTCTTGTGC -ACGGAAACGCATAGTGTCCTAAGC -ACGGAAACGCATAGTGTCACTAGC -ACGGAAACGCATAGTGTCAGATGC -ACGGAAACGCATAGTGTCTGAAGG -ACGGAAACGCATAGTGTCCAATGG -ACGGAAACGCATAGTGTCATGAGG -ACGGAAACGCATAGTGTCAATGGG -ACGGAAACGCATAGTGTCTCCTGA -ACGGAAACGCATAGTGTCTAGCGA -ACGGAAACGCATAGTGTCCACAGA -ACGGAAACGCATAGTGTCGCAAGA -ACGGAAACGCATAGTGTCGGTTGA -ACGGAAACGCATAGTGTCTCCGAT -ACGGAAACGCATAGTGTCTGGCAT -ACGGAAACGCATAGTGTCCGAGAT -ACGGAAACGCATAGTGTCTACCAC -ACGGAAACGCATAGTGTCCAGAAC -ACGGAAACGCATAGTGTCGTCTAC -ACGGAAACGCATAGTGTCACGTAC -ACGGAAACGCATAGTGTCAGTGAC -ACGGAAACGCATAGTGTCCTGTAG -ACGGAAACGCATAGTGTCCCTAAG -ACGGAAACGCATAGTGTCGTTCAG -ACGGAAACGCATAGTGTCGCATAG -ACGGAAACGCATAGTGTCGACAAG -ACGGAAACGCATAGTGTCAAGCAG -ACGGAAACGCATAGTGTCCGTCAA -ACGGAAACGCATAGTGTCGCTGAA -ACGGAAACGCATAGTGTCAGTACG -ACGGAAACGCATAGTGTCATCCGA -ACGGAAACGCATAGTGTCATGGGA -ACGGAAACGCATAGTGTCGTGCAA -ACGGAAACGCATAGTGTCGAGGAA -ACGGAAACGCATAGTGTCCAGGTA -ACGGAAACGCATAGTGTCGACTCT -ACGGAAACGCATAGTGTCAGTCCT -ACGGAAACGCATAGTGTCTAAGCC -ACGGAAACGCATAGTGTCATAGCC -ACGGAAACGCATAGTGTCTAACCG -ACGGAAACGCATAGTGTCATGCCA -ACGGAAACGCATGGTGAAGGAAAC -ACGGAAACGCATGGTGAAAACACC -ACGGAAACGCATGGTGAAATCGAG -ACGGAAACGCATGGTGAACTCCTT -ACGGAAACGCATGGTGAACCTGTT -ACGGAAACGCATGGTGAACGGTTT -ACGGAAACGCATGGTGAAGTGGTT -ACGGAAACGCATGGTGAAGCCTTT -ACGGAAACGCATGGTGAAGGTCTT -ACGGAAACGCATGGTGAAACGCTT -ACGGAAACGCATGGTGAAAGCGTT -ACGGAAACGCATGGTGAATTCGTC -ACGGAAACGCATGGTGAATCTCTC -ACGGAAACGCATGGTGAATGGATC -ACGGAAACGCATGGTGAACACTTC -ACGGAAACGCATGGTGAAGTACTC -ACGGAAACGCATGGTGAAGATGTC -ACGGAAACGCATGGTGAAACAGTC -ACGGAAACGCATGGTGAATTGCTG -ACGGAAACGCATGGTGAATCCATG -ACGGAAACGCATGGTGAATGTGTG -ACGGAAACGCATGGTGAACTAGTG -ACGGAAACGCATGGTGAACATCTG -ACGGAAACGCATGGTGAAGAGTTG -ACGGAAACGCATGGTGAAAGACTG -ACGGAAACGCATGGTGAATCGGTA -ACGGAAACGCATGGTGAATGCCTA -ACGGAAACGCATGGTGAACCACTA -ACGGAAACGCATGGTGAAGGAGTA -ACGGAAACGCATGGTGAATCGTCT -ACGGAAACGCATGGTGAATGCACT -ACGGAAACGCATGGTGAACTGACT -ACGGAAACGCATGGTGAACAACCT -ACGGAAACGCATGGTGAAGCTACT -ACGGAAACGCATGGTGAAGGATCT -ACGGAAACGCATGGTGAAAAGGCT -ACGGAAACGCATGGTGAATCAACC -ACGGAAACGCATGGTGAATGTTCC -ACGGAAACGCATGGTGAAATTCCC -ACGGAAACGCATGGTGAATTCTCG -ACGGAAACGCATGGTGAATAGACG -ACGGAAACGCATGGTGAAGTAACG -ACGGAAACGCATGGTGAAACTTCG -ACGGAAACGCATGGTGAATACGCA -ACGGAAACGCATGGTGAACTTGCA -ACGGAAACGCATGGTGAACGAACA -ACGGAAACGCATGGTGAACAGTCA -ACGGAAACGCATGGTGAAGATCCA -ACGGAAACGCATGGTGAAACGACA -ACGGAAACGCATGGTGAAAGCTCA -ACGGAAACGCATGGTGAATCACGT -ACGGAAACGCATGGTGAACGTAGT -ACGGAAACGCATGGTGAAGTCAGT -ACGGAAACGCATGGTGAAGAAGGT -ACGGAAACGCATGGTGAAAACCGT -ACGGAAACGCATGGTGAATTGTGC -ACGGAAACGCATGGTGAACTAAGC -ACGGAAACGCATGGTGAAACTAGC -ACGGAAACGCATGGTGAAAGATGC -ACGGAAACGCATGGTGAATGAAGG -ACGGAAACGCATGGTGAACAATGG -ACGGAAACGCATGGTGAAATGAGG -ACGGAAACGCATGGTGAAAATGGG -ACGGAAACGCATGGTGAATCCTGA -ACGGAAACGCATGGTGAATAGCGA -ACGGAAACGCATGGTGAACACAGA -ACGGAAACGCATGGTGAAGCAAGA -ACGGAAACGCATGGTGAAGGTTGA -ACGGAAACGCATGGTGAATCCGAT -ACGGAAACGCATGGTGAATGGCAT -ACGGAAACGCATGGTGAACGAGAT -ACGGAAACGCATGGTGAATACCAC -ACGGAAACGCATGGTGAACAGAAC -ACGGAAACGCATGGTGAAGTCTAC -ACGGAAACGCATGGTGAAACGTAC -ACGGAAACGCATGGTGAAAGTGAC -ACGGAAACGCATGGTGAACTGTAG -ACGGAAACGCATGGTGAACCTAAG -ACGGAAACGCATGGTGAAGTTCAG -ACGGAAACGCATGGTGAAGCATAG -ACGGAAACGCATGGTGAAGACAAG -ACGGAAACGCATGGTGAAAAGCAG -ACGGAAACGCATGGTGAACGTCAA -ACGGAAACGCATGGTGAAGCTGAA -ACGGAAACGCATGGTGAAAGTACG -ACGGAAACGCATGGTGAAATCCGA -ACGGAAACGCATGGTGAAATGGGA -ACGGAAACGCATGGTGAAGTGCAA -ACGGAAACGCATGGTGAAGAGGAA -ACGGAAACGCATGGTGAACAGGTA -ACGGAAACGCATGGTGAAGACTCT -ACGGAAACGCATGGTGAAAGTCCT -ACGGAAACGCATGGTGAATAAGCC -ACGGAAACGCATGGTGAAATAGCC -ACGGAAACGCATGGTGAATAACCG -ACGGAAACGCATGGTGAAATGCCA -ACGGAAACGCATCGTAACGGAAAC -ACGGAAACGCATCGTAACAACACC -ACGGAAACGCATCGTAACATCGAG -ACGGAAACGCATCGTAACCTCCTT -ACGGAAACGCATCGTAACCCTGTT -ACGGAAACGCATCGTAACCGGTTT -ACGGAAACGCATCGTAACGTGGTT -ACGGAAACGCATCGTAACGCCTTT -ACGGAAACGCATCGTAACGGTCTT -ACGGAAACGCATCGTAACACGCTT -ACGGAAACGCATCGTAACAGCGTT -ACGGAAACGCATCGTAACTTCGTC -ACGGAAACGCATCGTAACTCTCTC -ACGGAAACGCATCGTAACTGGATC -ACGGAAACGCATCGTAACCACTTC -ACGGAAACGCATCGTAACGTACTC -ACGGAAACGCATCGTAACGATGTC -ACGGAAACGCATCGTAACACAGTC -ACGGAAACGCATCGTAACTTGCTG -ACGGAAACGCATCGTAACTCCATG -ACGGAAACGCATCGTAACTGTGTG -ACGGAAACGCATCGTAACCTAGTG -ACGGAAACGCATCGTAACCATCTG -ACGGAAACGCATCGTAACGAGTTG -ACGGAAACGCATCGTAACAGACTG -ACGGAAACGCATCGTAACTCGGTA -ACGGAAACGCATCGTAACTGCCTA -ACGGAAACGCATCGTAACCCACTA -ACGGAAACGCATCGTAACGGAGTA -ACGGAAACGCATCGTAACTCGTCT -ACGGAAACGCATCGTAACTGCACT -ACGGAAACGCATCGTAACCTGACT -ACGGAAACGCATCGTAACCAACCT -ACGGAAACGCATCGTAACGCTACT -ACGGAAACGCATCGTAACGGATCT -ACGGAAACGCATCGTAACAAGGCT -ACGGAAACGCATCGTAACTCAACC -ACGGAAACGCATCGTAACTGTTCC -ACGGAAACGCATCGTAACATTCCC -ACGGAAACGCATCGTAACTTCTCG -ACGGAAACGCATCGTAACTAGACG -ACGGAAACGCATCGTAACGTAACG -ACGGAAACGCATCGTAACACTTCG -ACGGAAACGCATCGTAACTACGCA -ACGGAAACGCATCGTAACCTTGCA -ACGGAAACGCATCGTAACCGAACA -ACGGAAACGCATCGTAACCAGTCA -ACGGAAACGCATCGTAACGATCCA -ACGGAAACGCATCGTAACACGACA -ACGGAAACGCATCGTAACAGCTCA -ACGGAAACGCATCGTAACTCACGT -ACGGAAACGCATCGTAACCGTAGT -ACGGAAACGCATCGTAACGTCAGT -ACGGAAACGCATCGTAACGAAGGT -ACGGAAACGCATCGTAACAACCGT -ACGGAAACGCATCGTAACTTGTGC -ACGGAAACGCATCGTAACCTAAGC -ACGGAAACGCATCGTAACACTAGC -ACGGAAACGCATCGTAACAGATGC -ACGGAAACGCATCGTAACTGAAGG -ACGGAAACGCATCGTAACCAATGG -ACGGAAACGCATCGTAACATGAGG -ACGGAAACGCATCGTAACAATGGG -ACGGAAACGCATCGTAACTCCTGA -ACGGAAACGCATCGTAACTAGCGA -ACGGAAACGCATCGTAACCACAGA -ACGGAAACGCATCGTAACGCAAGA -ACGGAAACGCATCGTAACGGTTGA -ACGGAAACGCATCGTAACTCCGAT -ACGGAAACGCATCGTAACTGGCAT -ACGGAAACGCATCGTAACCGAGAT -ACGGAAACGCATCGTAACTACCAC -ACGGAAACGCATCGTAACCAGAAC -ACGGAAACGCATCGTAACGTCTAC -ACGGAAACGCATCGTAACACGTAC -ACGGAAACGCATCGTAACAGTGAC -ACGGAAACGCATCGTAACCTGTAG -ACGGAAACGCATCGTAACCCTAAG -ACGGAAACGCATCGTAACGTTCAG -ACGGAAACGCATCGTAACGCATAG -ACGGAAACGCATCGTAACGACAAG -ACGGAAACGCATCGTAACAAGCAG -ACGGAAACGCATCGTAACCGTCAA -ACGGAAACGCATCGTAACGCTGAA -ACGGAAACGCATCGTAACAGTACG -ACGGAAACGCATCGTAACATCCGA -ACGGAAACGCATCGTAACATGGGA -ACGGAAACGCATCGTAACGTGCAA -ACGGAAACGCATCGTAACGAGGAA -ACGGAAACGCATCGTAACCAGGTA -ACGGAAACGCATCGTAACGACTCT -ACGGAAACGCATCGTAACAGTCCT -ACGGAAACGCATCGTAACTAAGCC -ACGGAAACGCATCGTAACATAGCC -ACGGAAACGCATCGTAACTAACCG -ACGGAAACGCATCGTAACATGCCA -ACGGAAACGCATTGCTTGGGAAAC -ACGGAAACGCATTGCTTGAACACC -ACGGAAACGCATTGCTTGATCGAG -ACGGAAACGCATTGCTTGCTCCTT -ACGGAAACGCATTGCTTGCCTGTT -ACGGAAACGCATTGCTTGCGGTTT -ACGGAAACGCATTGCTTGGTGGTT -ACGGAAACGCATTGCTTGGCCTTT -ACGGAAACGCATTGCTTGGGTCTT -ACGGAAACGCATTGCTTGACGCTT -ACGGAAACGCATTGCTTGAGCGTT -ACGGAAACGCATTGCTTGTTCGTC -ACGGAAACGCATTGCTTGTCTCTC -ACGGAAACGCATTGCTTGTGGATC -ACGGAAACGCATTGCTTGCACTTC -ACGGAAACGCATTGCTTGGTACTC -ACGGAAACGCATTGCTTGGATGTC -ACGGAAACGCATTGCTTGACAGTC -ACGGAAACGCATTGCTTGTTGCTG -ACGGAAACGCATTGCTTGTCCATG -ACGGAAACGCATTGCTTGTGTGTG -ACGGAAACGCATTGCTTGCTAGTG -ACGGAAACGCATTGCTTGCATCTG -ACGGAAACGCATTGCTTGGAGTTG -ACGGAAACGCATTGCTTGAGACTG -ACGGAAACGCATTGCTTGTCGGTA -ACGGAAACGCATTGCTTGTGCCTA -ACGGAAACGCATTGCTTGCCACTA -ACGGAAACGCATTGCTTGGGAGTA -ACGGAAACGCATTGCTTGTCGTCT -ACGGAAACGCATTGCTTGTGCACT -ACGGAAACGCATTGCTTGCTGACT -ACGGAAACGCATTGCTTGCAACCT -ACGGAAACGCATTGCTTGGCTACT -ACGGAAACGCATTGCTTGGGATCT -ACGGAAACGCATTGCTTGAAGGCT -ACGGAAACGCATTGCTTGTCAACC -ACGGAAACGCATTGCTTGTGTTCC -ACGGAAACGCATTGCTTGATTCCC -ACGGAAACGCATTGCTTGTTCTCG -ACGGAAACGCATTGCTTGTAGACG -ACGGAAACGCATTGCTTGGTAACG -ACGGAAACGCATTGCTTGACTTCG -ACGGAAACGCATTGCTTGTACGCA -ACGGAAACGCATTGCTTGCTTGCA -ACGGAAACGCATTGCTTGCGAACA -ACGGAAACGCATTGCTTGCAGTCA -ACGGAAACGCATTGCTTGGATCCA -ACGGAAACGCATTGCTTGACGACA -ACGGAAACGCATTGCTTGAGCTCA -ACGGAAACGCATTGCTTGTCACGT -ACGGAAACGCATTGCTTGCGTAGT -ACGGAAACGCATTGCTTGGTCAGT -ACGGAAACGCATTGCTTGGAAGGT -ACGGAAACGCATTGCTTGAACCGT -ACGGAAACGCATTGCTTGTTGTGC -ACGGAAACGCATTGCTTGCTAAGC -ACGGAAACGCATTGCTTGACTAGC -ACGGAAACGCATTGCTTGAGATGC -ACGGAAACGCATTGCTTGTGAAGG -ACGGAAACGCATTGCTTGCAATGG -ACGGAAACGCATTGCTTGATGAGG -ACGGAAACGCATTGCTTGAATGGG -ACGGAAACGCATTGCTTGTCCTGA -ACGGAAACGCATTGCTTGTAGCGA -ACGGAAACGCATTGCTTGCACAGA -ACGGAAACGCATTGCTTGGCAAGA -ACGGAAACGCATTGCTTGGGTTGA -ACGGAAACGCATTGCTTGTCCGAT -ACGGAAACGCATTGCTTGTGGCAT -ACGGAAACGCATTGCTTGCGAGAT -ACGGAAACGCATTGCTTGTACCAC -ACGGAAACGCATTGCTTGCAGAAC -ACGGAAACGCATTGCTTGGTCTAC -ACGGAAACGCATTGCTTGACGTAC -ACGGAAACGCATTGCTTGAGTGAC -ACGGAAACGCATTGCTTGCTGTAG -ACGGAAACGCATTGCTTGCCTAAG -ACGGAAACGCATTGCTTGGTTCAG -ACGGAAACGCATTGCTTGGCATAG -ACGGAAACGCATTGCTTGGACAAG -ACGGAAACGCATTGCTTGAAGCAG -ACGGAAACGCATTGCTTGCGTCAA -ACGGAAACGCATTGCTTGGCTGAA -ACGGAAACGCATTGCTTGAGTACG -ACGGAAACGCATTGCTTGATCCGA -ACGGAAACGCATTGCTTGATGGGA -ACGGAAACGCATTGCTTGGTGCAA -ACGGAAACGCATTGCTTGGAGGAA -ACGGAAACGCATTGCTTGCAGGTA -ACGGAAACGCATTGCTTGGACTCT -ACGGAAACGCATTGCTTGAGTCCT -ACGGAAACGCATTGCTTGTAAGCC -ACGGAAACGCATTGCTTGATAGCC -ACGGAAACGCATTGCTTGTAACCG -ACGGAAACGCATTGCTTGATGCCA -ACGGAAACGCATAGCCTAGGAAAC -ACGGAAACGCATAGCCTAAACACC -ACGGAAACGCATAGCCTAATCGAG -ACGGAAACGCATAGCCTACTCCTT -ACGGAAACGCATAGCCTACCTGTT -ACGGAAACGCATAGCCTACGGTTT -ACGGAAACGCATAGCCTAGTGGTT -ACGGAAACGCATAGCCTAGCCTTT -ACGGAAACGCATAGCCTAGGTCTT -ACGGAAACGCATAGCCTAACGCTT -ACGGAAACGCATAGCCTAAGCGTT -ACGGAAACGCATAGCCTATTCGTC -ACGGAAACGCATAGCCTATCTCTC -ACGGAAACGCATAGCCTATGGATC -ACGGAAACGCATAGCCTACACTTC -ACGGAAACGCATAGCCTAGTACTC -ACGGAAACGCATAGCCTAGATGTC -ACGGAAACGCATAGCCTAACAGTC -ACGGAAACGCATAGCCTATTGCTG -ACGGAAACGCATAGCCTATCCATG -ACGGAAACGCATAGCCTATGTGTG -ACGGAAACGCATAGCCTACTAGTG -ACGGAAACGCATAGCCTACATCTG -ACGGAAACGCATAGCCTAGAGTTG -ACGGAAACGCATAGCCTAAGACTG -ACGGAAACGCATAGCCTATCGGTA -ACGGAAACGCATAGCCTATGCCTA -ACGGAAACGCATAGCCTACCACTA -ACGGAAACGCATAGCCTAGGAGTA -ACGGAAACGCATAGCCTATCGTCT -ACGGAAACGCATAGCCTATGCACT -ACGGAAACGCATAGCCTACTGACT -ACGGAAACGCATAGCCTACAACCT -ACGGAAACGCATAGCCTAGCTACT -ACGGAAACGCATAGCCTAGGATCT -ACGGAAACGCATAGCCTAAAGGCT -ACGGAAACGCATAGCCTATCAACC -ACGGAAACGCATAGCCTATGTTCC -ACGGAAACGCATAGCCTAATTCCC -ACGGAAACGCATAGCCTATTCTCG -ACGGAAACGCATAGCCTATAGACG -ACGGAAACGCATAGCCTAGTAACG -ACGGAAACGCATAGCCTAACTTCG -ACGGAAACGCATAGCCTATACGCA -ACGGAAACGCATAGCCTACTTGCA -ACGGAAACGCATAGCCTACGAACA -ACGGAAACGCATAGCCTACAGTCA -ACGGAAACGCATAGCCTAGATCCA -ACGGAAACGCATAGCCTAACGACA -ACGGAAACGCATAGCCTAAGCTCA -ACGGAAACGCATAGCCTATCACGT -ACGGAAACGCATAGCCTACGTAGT -ACGGAAACGCATAGCCTAGTCAGT -ACGGAAACGCATAGCCTAGAAGGT -ACGGAAACGCATAGCCTAAACCGT -ACGGAAACGCATAGCCTATTGTGC -ACGGAAACGCATAGCCTACTAAGC -ACGGAAACGCATAGCCTAACTAGC -ACGGAAACGCATAGCCTAAGATGC -ACGGAAACGCATAGCCTATGAAGG -ACGGAAACGCATAGCCTACAATGG -ACGGAAACGCATAGCCTAATGAGG -ACGGAAACGCATAGCCTAAATGGG -ACGGAAACGCATAGCCTATCCTGA -ACGGAAACGCATAGCCTATAGCGA -ACGGAAACGCATAGCCTACACAGA -ACGGAAACGCATAGCCTAGCAAGA -ACGGAAACGCATAGCCTAGGTTGA -ACGGAAACGCATAGCCTATCCGAT -ACGGAAACGCATAGCCTATGGCAT -ACGGAAACGCATAGCCTACGAGAT -ACGGAAACGCATAGCCTATACCAC -ACGGAAACGCATAGCCTACAGAAC -ACGGAAACGCATAGCCTAGTCTAC -ACGGAAACGCATAGCCTAACGTAC -ACGGAAACGCATAGCCTAAGTGAC -ACGGAAACGCATAGCCTACTGTAG -ACGGAAACGCATAGCCTACCTAAG -ACGGAAACGCATAGCCTAGTTCAG -ACGGAAACGCATAGCCTAGCATAG -ACGGAAACGCATAGCCTAGACAAG -ACGGAAACGCATAGCCTAAAGCAG -ACGGAAACGCATAGCCTACGTCAA -ACGGAAACGCATAGCCTAGCTGAA -ACGGAAACGCATAGCCTAAGTACG -ACGGAAACGCATAGCCTAATCCGA -ACGGAAACGCATAGCCTAATGGGA -ACGGAAACGCATAGCCTAGTGCAA -ACGGAAACGCATAGCCTAGAGGAA -ACGGAAACGCATAGCCTACAGGTA -ACGGAAACGCATAGCCTAGACTCT -ACGGAAACGCATAGCCTAAGTCCT -ACGGAAACGCATAGCCTATAAGCC -ACGGAAACGCATAGCCTAATAGCC -ACGGAAACGCATAGCCTATAACCG -ACGGAAACGCATAGCCTAATGCCA -ACGGAAACGCATAGCACTGGAAAC -ACGGAAACGCATAGCACTAACACC -ACGGAAACGCATAGCACTATCGAG -ACGGAAACGCATAGCACTCTCCTT -ACGGAAACGCATAGCACTCCTGTT -ACGGAAACGCATAGCACTCGGTTT -ACGGAAACGCATAGCACTGTGGTT -ACGGAAACGCATAGCACTGCCTTT -ACGGAAACGCATAGCACTGGTCTT -ACGGAAACGCATAGCACTACGCTT -ACGGAAACGCATAGCACTAGCGTT -ACGGAAACGCATAGCACTTTCGTC -ACGGAAACGCATAGCACTTCTCTC -ACGGAAACGCATAGCACTTGGATC -ACGGAAACGCATAGCACTCACTTC -ACGGAAACGCATAGCACTGTACTC -ACGGAAACGCATAGCACTGATGTC -ACGGAAACGCATAGCACTACAGTC -ACGGAAACGCATAGCACTTTGCTG -ACGGAAACGCATAGCACTTCCATG -ACGGAAACGCATAGCACTTGTGTG -ACGGAAACGCATAGCACTCTAGTG -ACGGAAACGCATAGCACTCATCTG -ACGGAAACGCATAGCACTGAGTTG -ACGGAAACGCATAGCACTAGACTG -ACGGAAACGCATAGCACTTCGGTA -ACGGAAACGCATAGCACTTGCCTA -ACGGAAACGCATAGCACTCCACTA -ACGGAAACGCATAGCACTGGAGTA -ACGGAAACGCATAGCACTTCGTCT -ACGGAAACGCATAGCACTTGCACT -ACGGAAACGCATAGCACTCTGACT -ACGGAAACGCATAGCACTCAACCT -ACGGAAACGCATAGCACTGCTACT -ACGGAAACGCATAGCACTGGATCT -ACGGAAACGCATAGCACTAAGGCT -ACGGAAACGCATAGCACTTCAACC -ACGGAAACGCATAGCACTTGTTCC -ACGGAAACGCATAGCACTATTCCC -ACGGAAACGCATAGCACTTTCTCG -ACGGAAACGCATAGCACTTAGACG -ACGGAAACGCATAGCACTGTAACG -ACGGAAACGCATAGCACTACTTCG -ACGGAAACGCATAGCACTTACGCA -ACGGAAACGCATAGCACTCTTGCA -ACGGAAACGCATAGCACTCGAACA -ACGGAAACGCATAGCACTCAGTCA -ACGGAAACGCATAGCACTGATCCA -ACGGAAACGCATAGCACTACGACA -ACGGAAACGCATAGCACTAGCTCA -ACGGAAACGCATAGCACTTCACGT -ACGGAAACGCATAGCACTCGTAGT -ACGGAAACGCATAGCACTGTCAGT -ACGGAAACGCATAGCACTGAAGGT -ACGGAAACGCATAGCACTAACCGT -ACGGAAACGCATAGCACTTTGTGC -ACGGAAACGCATAGCACTCTAAGC -ACGGAAACGCATAGCACTACTAGC -ACGGAAACGCATAGCACTAGATGC -ACGGAAACGCATAGCACTTGAAGG -ACGGAAACGCATAGCACTCAATGG -ACGGAAACGCATAGCACTATGAGG -ACGGAAACGCATAGCACTAATGGG -ACGGAAACGCATAGCACTTCCTGA -ACGGAAACGCATAGCACTTAGCGA -ACGGAAACGCATAGCACTCACAGA -ACGGAAACGCATAGCACTGCAAGA -ACGGAAACGCATAGCACTGGTTGA -ACGGAAACGCATAGCACTTCCGAT -ACGGAAACGCATAGCACTTGGCAT -ACGGAAACGCATAGCACTCGAGAT -ACGGAAACGCATAGCACTTACCAC -ACGGAAACGCATAGCACTCAGAAC -ACGGAAACGCATAGCACTGTCTAC -ACGGAAACGCATAGCACTACGTAC -ACGGAAACGCATAGCACTAGTGAC -ACGGAAACGCATAGCACTCTGTAG -ACGGAAACGCATAGCACTCCTAAG -ACGGAAACGCATAGCACTGTTCAG -ACGGAAACGCATAGCACTGCATAG -ACGGAAACGCATAGCACTGACAAG -ACGGAAACGCATAGCACTAAGCAG -ACGGAAACGCATAGCACTCGTCAA -ACGGAAACGCATAGCACTGCTGAA -ACGGAAACGCATAGCACTAGTACG -ACGGAAACGCATAGCACTATCCGA -ACGGAAACGCATAGCACTATGGGA -ACGGAAACGCATAGCACTGTGCAA -ACGGAAACGCATAGCACTGAGGAA -ACGGAAACGCATAGCACTCAGGTA -ACGGAAACGCATAGCACTGACTCT -ACGGAAACGCATAGCACTAGTCCT -ACGGAAACGCATAGCACTTAAGCC -ACGGAAACGCATAGCACTATAGCC -ACGGAAACGCATAGCACTTAACCG -ACGGAAACGCATAGCACTATGCCA -ACGGAAACGCATTGCAGAGGAAAC -ACGGAAACGCATTGCAGAAACACC -ACGGAAACGCATTGCAGAATCGAG -ACGGAAACGCATTGCAGACTCCTT -ACGGAAACGCATTGCAGACCTGTT -ACGGAAACGCATTGCAGACGGTTT -ACGGAAACGCATTGCAGAGTGGTT -ACGGAAACGCATTGCAGAGCCTTT -ACGGAAACGCATTGCAGAGGTCTT -ACGGAAACGCATTGCAGAACGCTT -ACGGAAACGCATTGCAGAAGCGTT -ACGGAAACGCATTGCAGATTCGTC -ACGGAAACGCATTGCAGATCTCTC -ACGGAAACGCATTGCAGATGGATC -ACGGAAACGCATTGCAGACACTTC -ACGGAAACGCATTGCAGAGTACTC -ACGGAAACGCATTGCAGAGATGTC -ACGGAAACGCATTGCAGAACAGTC -ACGGAAACGCATTGCAGATTGCTG -ACGGAAACGCATTGCAGATCCATG -ACGGAAACGCATTGCAGATGTGTG -ACGGAAACGCATTGCAGACTAGTG -ACGGAAACGCATTGCAGACATCTG -ACGGAAACGCATTGCAGAGAGTTG -ACGGAAACGCATTGCAGAAGACTG -ACGGAAACGCATTGCAGATCGGTA -ACGGAAACGCATTGCAGATGCCTA -ACGGAAACGCATTGCAGACCACTA -ACGGAAACGCATTGCAGAGGAGTA -ACGGAAACGCATTGCAGATCGTCT -ACGGAAACGCATTGCAGATGCACT -ACGGAAACGCATTGCAGACTGACT -ACGGAAACGCATTGCAGACAACCT -ACGGAAACGCATTGCAGAGCTACT -ACGGAAACGCATTGCAGAGGATCT -ACGGAAACGCATTGCAGAAAGGCT -ACGGAAACGCATTGCAGATCAACC -ACGGAAACGCATTGCAGATGTTCC -ACGGAAACGCATTGCAGAATTCCC -ACGGAAACGCATTGCAGATTCTCG -ACGGAAACGCATTGCAGATAGACG -ACGGAAACGCATTGCAGAGTAACG -ACGGAAACGCATTGCAGAACTTCG -ACGGAAACGCATTGCAGATACGCA -ACGGAAACGCATTGCAGACTTGCA -ACGGAAACGCATTGCAGACGAACA -ACGGAAACGCATTGCAGACAGTCA -ACGGAAACGCATTGCAGAGATCCA -ACGGAAACGCATTGCAGAACGACA -ACGGAAACGCATTGCAGAAGCTCA -ACGGAAACGCATTGCAGATCACGT -ACGGAAACGCATTGCAGACGTAGT -ACGGAAACGCATTGCAGAGTCAGT -ACGGAAACGCATTGCAGAGAAGGT -ACGGAAACGCATTGCAGAAACCGT -ACGGAAACGCATTGCAGATTGTGC -ACGGAAACGCATTGCAGACTAAGC -ACGGAAACGCATTGCAGAACTAGC -ACGGAAACGCATTGCAGAAGATGC -ACGGAAACGCATTGCAGATGAAGG -ACGGAAACGCATTGCAGACAATGG -ACGGAAACGCATTGCAGAATGAGG -ACGGAAACGCATTGCAGAAATGGG -ACGGAAACGCATTGCAGATCCTGA -ACGGAAACGCATTGCAGATAGCGA -ACGGAAACGCATTGCAGACACAGA -ACGGAAACGCATTGCAGAGCAAGA -ACGGAAACGCATTGCAGAGGTTGA -ACGGAAACGCATTGCAGATCCGAT -ACGGAAACGCATTGCAGATGGCAT -ACGGAAACGCATTGCAGACGAGAT -ACGGAAACGCATTGCAGATACCAC -ACGGAAACGCATTGCAGACAGAAC -ACGGAAACGCATTGCAGAGTCTAC -ACGGAAACGCATTGCAGAACGTAC -ACGGAAACGCATTGCAGAAGTGAC -ACGGAAACGCATTGCAGACTGTAG -ACGGAAACGCATTGCAGACCTAAG -ACGGAAACGCATTGCAGAGTTCAG -ACGGAAACGCATTGCAGAGCATAG -ACGGAAACGCATTGCAGAGACAAG -ACGGAAACGCATTGCAGAAAGCAG -ACGGAAACGCATTGCAGACGTCAA -ACGGAAACGCATTGCAGAGCTGAA -ACGGAAACGCATTGCAGAAGTACG -ACGGAAACGCATTGCAGAATCCGA -ACGGAAACGCATTGCAGAATGGGA -ACGGAAACGCATTGCAGAGTGCAA -ACGGAAACGCATTGCAGAGAGGAA -ACGGAAACGCATTGCAGACAGGTA -ACGGAAACGCATTGCAGAGACTCT -ACGGAAACGCATTGCAGAAGTCCT -ACGGAAACGCATTGCAGATAAGCC -ACGGAAACGCATTGCAGAATAGCC -ACGGAAACGCATTGCAGATAACCG -ACGGAAACGCATTGCAGAATGCCA -ACGGAAACGCATAGGTGAGGAAAC -ACGGAAACGCATAGGTGAAACACC -ACGGAAACGCATAGGTGAATCGAG -ACGGAAACGCATAGGTGACTCCTT -ACGGAAACGCATAGGTGACCTGTT -ACGGAAACGCATAGGTGACGGTTT -ACGGAAACGCATAGGTGAGTGGTT -ACGGAAACGCATAGGTGAGCCTTT -ACGGAAACGCATAGGTGAGGTCTT -ACGGAAACGCATAGGTGAACGCTT -ACGGAAACGCATAGGTGAAGCGTT -ACGGAAACGCATAGGTGATTCGTC -ACGGAAACGCATAGGTGATCTCTC -ACGGAAACGCATAGGTGATGGATC -ACGGAAACGCATAGGTGACACTTC -ACGGAAACGCATAGGTGAGTACTC -ACGGAAACGCATAGGTGAGATGTC -ACGGAAACGCATAGGTGAACAGTC -ACGGAAACGCATAGGTGATTGCTG -ACGGAAACGCATAGGTGATCCATG -ACGGAAACGCATAGGTGATGTGTG -ACGGAAACGCATAGGTGACTAGTG -ACGGAAACGCATAGGTGACATCTG -ACGGAAACGCATAGGTGAGAGTTG -ACGGAAACGCATAGGTGAAGACTG -ACGGAAACGCATAGGTGATCGGTA -ACGGAAACGCATAGGTGATGCCTA -ACGGAAACGCATAGGTGACCACTA -ACGGAAACGCATAGGTGAGGAGTA -ACGGAAACGCATAGGTGATCGTCT -ACGGAAACGCATAGGTGATGCACT -ACGGAAACGCATAGGTGACTGACT -ACGGAAACGCATAGGTGACAACCT -ACGGAAACGCATAGGTGAGCTACT -ACGGAAACGCATAGGTGAGGATCT -ACGGAAACGCATAGGTGAAAGGCT -ACGGAAACGCATAGGTGATCAACC -ACGGAAACGCATAGGTGATGTTCC -ACGGAAACGCATAGGTGAATTCCC -ACGGAAACGCATAGGTGATTCTCG -ACGGAAACGCATAGGTGATAGACG -ACGGAAACGCATAGGTGAGTAACG -ACGGAAACGCATAGGTGAACTTCG -ACGGAAACGCATAGGTGATACGCA -ACGGAAACGCATAGGTGACTTGCA -ACGGAAACGCATAGGTGACGAACA -ACGGAAACGCATAGGTGACAGTCA -ACGGAAACGCATAGGTGAGATCCA -ACGGAAACGCATAGGTGAACGACA -ACGGAAACGCATAGGTGAAGCTCA -ACGGAAACGCATAGGTGATCACGT -ACGGAAACGCATAGGTGACGTAGT -ACGGAAACGCATAGGTGAGTCAGT -ACGGAAACGCATAGGTGAGAAGGT -ACGGAAACGCATAGGTGAAACCGT -ACGGAAACGCATAGGTGATTGTGC -ACGGAAACGCATAGGTGACTAAGC -ACGGAAACGCATAGGTGAACTAGC -ACGGAAACGCATAGGTGAAGATGC -ACGGAAACGCATAGGTGATGAAGG -ACGGAAACGCATAGGTGACAATGG -ACGGAAACGCATAGGTGAATGAGG -ACGGAAACGCATAGGTGAAATGGG -ACGGAAACGCATAGGTGATCCTGA -ACGGAAACGCATAGGTGATAGCGA -ACGGAAACGCATAGGTGACACAGA -ACGGAAACGCATAGGTGAGCAAGA -ACGGAAACGCATAGGTGAGGTTGA -ACGGAAACGCATAGGTGATCCGAT -ACGGAAACGCATAGGTGATGGCAT -ACGGAAACGCATAGGTGACGAGAT -ACGGAAACGCATAGGTGATACCAC -ACGGAAACGCATAGGTGACAGAAC -ACGGAAACGCATAGGTGAGTCTAC -ACGGAAACGCATAGGTGAACGTAC -ACGGAAACGCATAGGTGAAGTGAC -ACGGAAACGCATAGGTGACTGTAG -ACGGAAACGCATAGGTGACCTAAG -ACGGAAACGCATAGGTGAGTTCAG -ACGGAAACGCATAGGTGAGCATAG -ACGGAAACGCATAGGTGAGACAAG -ACGGAAACGCATAGGTGAAAGCAG -ACGGAAACGCATAGGTGACGTCAA -ACGGAAACGCATAGGTGAGCTGAA -ACGGAAACGCATAGGTGAAGTACG -ACGGAAACGCATAGGTGAATCCGA -ACGGAAACGCATAGGTGAATGGGA -ACGGAAACGCATAGGTGAGTGCAA -ACGGAAACGCATAGGTGAGAGGAA -ACGGAAACGCATAGGTGACAGGTA -ACGGAAACGCATAGGTGAGACTCT -ACGGAAACGCATAGGTGAAGTCCT -ACGGAAACGCATAGGTGATAAGCC -ACGGAAACGCATAGGTGAATAGCC -ACGGAAACGCATAGGTGATAACCG -ACGGAAACGCATAGGTGAATGCCA -ACGGAAACGCATTGGCAAGGAAAC -ACGGAAACGCATTGGCAAAACACC -ACGGAAACGCATTGGCAAATCGAG -ACGGAAACGCATTGGCAACTCCTT -ACGGAAACGCATTGGCAACCTGTT -ACGGAAACGCATTGGCAACGGTTT -ACGGAAACGCATTGGCAAGTGGTT -ACGGAAACGCATTGGCAAGCCTTT -ACGGAAACGCATTGGCAAGGTCTT -ACGGAAACGCATTGGCAAACGCTT -ACGGAAACGCATTGGCAAAGCGTT -ACGGAAACGCATTGGCAATTCGTC -ACGGAAACGCATTGGCAATCTCTC -ACGGAAACGCATTGGCAATGGATC -ACGGAAACGCATTGGCAACACTTC -ACGGAAACGCATTGGCAAGTACTC -ACGGAAACGCATTGGCAAGATGTC -ACGGAAACGCATTGGCAAACAGTC -ACGGAAACGCATTGGCAATTGCTG -ACGGAAACGCATTGGCAATCCATG -ACGGAAACGCATTGGCAATGTGTG -ACGGAAACGCATTGGCAACTAGTG -ACGGAAACGCATTGGCAACATCTG -ACGGAAACGCATTGGCAAGAGTTG -ACGGAAACGCATTGGCAAAGACTG -ACGGAAACGCATTGGCAATCGGTA -ACGGAAACGCATTGGCAATGCCTA -ACGGAAACGCATTGGCAACCACTA -ACGGAAACGCATTGGCAAGGAGTA -ACGGAAACGCATTGGCAATCGTCT -ACGGAAACGCATTGGCAATGCACT -ACGGAAACGCATTGGCAACTGACT -ACGGAAACGCATTGGCAACAACCT -ACGGAAACGCATTGGCAAGCTACT -ACGGAAACGCATTGGCAAGGATCT -ACGGAAACGCATTGGCAAAAGGCT -ACGGAAACGCATTGGCAATCAACC -ACGGAAACGCATTGGCAATGTTCC -ACGGAAACGCATTGGCAAATTCCC -ACGGAAACGCATTGGCAATTCTCG -ACGGAAACGCATTGGCAATAGACG -ACGGAAACGCATTGGCAAGTAACG -ACGGAAACGCATTGGCAAACTTCG -ACGGAAACGCATTGGCAATACGCA -ACGGAAACGCATTGGCAACTTGCA -ACGGAAACGCATTGGCAACGAACA -ACGGAAACGCATTGGCAACAGTCA -ACGGAAACGCATTGGCAAGATCCA -ACGGAAACGCATTGGCAAACGACA -ACGGAAACGCATTGGCAAAGCTCA -ACGGAAACGCATTGGCAATCACGT -ACGGAAACGCATTGGCAACGTAGT -ACGGAAACGCATTGGCAAGTCAGT -ACGGAAACGCATTGGCAAGAAGGT -ACGGAAACGCATTGGCAAAACCGT -ACGGAAACGCATTGGCAATTGTGC -ACGGAAACGCATTGGCAACTAAGC -ACGGAAACGCATTGGCAAACTAGC -ACGGAAACGCATTGGCAAAGATGC -ACGGAAACGCATTGGCAATGAAGG -ACGGAAACGCATTGGCAACAATGG -ACGGAAACGCATTGGCAAATGAGG -ACGGAAACGCATTGGCAAAATGGG -ACGGAAACGCATTGGCAATCCTGA -ACGGAAACGCATTGGCAATAGCGA -ACGGAAACGCATTGGCAACACAGA -ACGGAAACGCATTGGCAAGCAAGA -ACGGAAACGCATTGGCAAGGTTGA -ACGGAAACGCATTGGCAATCCGAT -ACGGAAACGCATTGGCAATGGCAT -ACGGAAACGCATTGGCAACGAGAT -ACGGAAACGCATTGGCAATACCAC -ACGGAAACGCATTGGCAACAGAAC -ACGGAAACGCATTGGCAAGTCTAC -ACGGAAACGCATTGGCAAACGTAC -ACGGAAACGCATTGGCAAAGTGAC -ACGGAAACGCATTGGCAACTGTAG -ACGGAAACGCATTGGCAACCTAAG -ACGGAAACGCATTGGCAAGTTCAG -ACGGAAACGCATTGGCAAGCATAG -ACGGAAACGCATTGGCAAGACAAG -ACGGAAACGCATTGGCAAAAGCAG -ACGGAAACGCATTGGCAACGTCAA -ACGGAAACGCATTGGCAAGCTGAA -ACGGAAACGCATTGGCAAAGTACG -ACGGAAACGCATTGGCAAATCCGA -ACGGAAACGCATTGGCAAATGGGA -ACGGAAACGCATTGGCAAGTGCAA -ACGGAAACGCATTGGCAAGAGGAA -ACGGAAACGCATTGGCAACAGGTA -ACGGAAACGCATTGGCAAGACTCT -ACGGAAACGCATTGGCAAAGTCCT -ACGGAAACGCATTGGCAATAAGCC -ACGGAAACGCATTGGCAAATAGCC -ACGGAAACGCATTGGCAATAACCG -ACGGAAACGCATTGGCAAATGCCA -ACGGAAACGCATAGGATGGGAAAC -ACGGAAACGCATAGGATGAACACC -ACGGAAACGCATAGGATGATCGAG -ACGGAAACGCATAGGATGCTCCTT -ACGGAAACGCATAGGATGCCTGTT -ACGGAAACGCATAGGATGCGGTTT -ACGGAAACGCATAGGATGGTGGTT -ACGGAAACGCATAGGATGGCCTTT -ACGGAAACGCATAGGATGGGTCTT -ACGGAAACGCATAGGATGACGCTT -ACGGAAACGCATAGGATGAGCGTT -ACGGAAACGCATAGGATGTTCGTC -ACGGAAACGCATAGGATGTCTCTC -ACGGAAACGCATAGGATGTGGATC -ACGGAAACGCATAGGATGCACTTC -ACGGAAACGCATAGGATGGTACTC -ACGGAAACGCATAGGATGGATGTC -ACGGAAACGCATAGGATGACAGTC -ACGGAAACGCATAGGATGTTGCTG -ACGGAAACGCATAGGATGTCCATG -ACGGAAACGCATAGGATGTGTGTG -ACGGAAACGCATAGGATGCTAGTG -ACGGAAACGCATAGGATGCATCTG -ACGGAAACGCATAGGATGGAGTTG -ACGGAAACGCATAGGATGAGACTG -ACGGAAACGCATAGGATGTCGGTA -ACGGAAACGCATAGGATGTGCCTA -ACGGAAACGCATAGGATGCCACTA -ACGGAAACGCATAGGATGGGAGTA -ACGGAAACGCATAGGATGTCGTCT -ACGGAAACGCATAGGATGTGCACT -ACGGAAACGCATAGGATGCTGACT -ACGGAAACGCATAGGATGCAACCT -ACGGAAACGCATAGGATGGCTACT -ACGGAAACGCATAGGATGGGATCT -ACGGAAACGCATAGGATGAAGGCT -ACGGAAACGCATAGGATGTCAACC -ACGGAAACGCATAGGATGTGTTCC -ACGGAAACGCATAGGATGATTCCC -ACGGAAACGCATAGGATGTTCTCG -ACGGAAACGCATAGGATGTAGACG -ACGGAAACGCATAGGATGGTAACG -ACGGAAACGCATAGGATGACTTCG -ACGGAAACGCATAGGATGTACGCA -ACGGAAACGCATAGGATGCTTGCA -ACGGAAACGCATAGGATGCGAACA -ACGGAAACGCATAGGATGCAGTCA -ACGGAAACGCATAGGATGGATCCA -ACGGAAACGCATAGGATGACGACA -ACGGAAACGCATAGGATGAGCTCA -ACGGAAACGCATAGGATGTCACGT -ACGGAAACGCATAGGATGCGTAGT -ACGGAAACGCATAGGATGGTCAGT -ACGGAAACGCATAGGATGGAAGGT -ACGGAAACGCATAGGATGAACCGT -ACGGAAACGCATAGGATGTTGTGC -ACGGAAACGCATAGGATGCTAAGC -ACGGAAACGCATAGGATGACTAGC -ACGGAAACGCATAGGATGAGATGC -ACGGAAACGCATAGGATGTGAAGG -ACGGAAACGCATAGGATGCAATGG -ACGGAAACGCATAGGATGATGAGG -ACGGAAACGCATAGGATGAATGGG -ACGGAAACGCATAGGATGTCCTGA -ACGGAAACGCATAGGATGTAGCGA -ACGGAAACGCATAGGATGCACAGA -ACGGAAACGCATAGGATGGCAAGA -ACGGAAACGCATAGGATGGGTTGA -ACGGAAACGCATAGGATGTCCGAT -ACGGAAACGCATAGGATGTGGCAT -ACGGAAACGCATAGGATGCGAGAT -ACGGAAACGCATAGGATGTACCAC -ACGGAAACGCATAGGATGCAGAAC -ACGGAAACGCATAGGATGGTCTAC -ACGGAAACGCATAGGATGACGTAC -ACGGAAACGCATAGGATGAGTGAC -ACGGAAACGCATAGGATGCTGTAG -ACGGAAACGCATAGGATGCCTAAG -ACGGAAACGCATAGGATGGTTCAG -ACGGAAACGCATAGGATGGCATAG -ACGGAAACGCATAGGATGGACAAG -ACGGAAACGCATAGGATGAAGCAG -ACGGAAACGCATAGGATGCGTCAA -ACGGAAACGCATAGGATGGCTGAA -ACGGAAACGCATAGGATGAGTACG -ACGGAAACGCATAGGATGATCCGA -ACGGAAACGCATAGGATGATGGGA -ACGGAAACGCATAGGATGGTGCAA -ACGGAAACGCATAGGATGGAGGAA -ACGGAAACGCATAGGATGCAGGTA -ACGGAAACGCATAGGATGGACTCT -ACGGAAACGCATAGGATGAGTCCT -ACGGAAACGCATAGGATGTAAGCC -ACGGAAACGCATAGGATGATAGCC -ACGGAAACGCATAGGATGTAACCG -ACGGAAACGCATAGGATGATGCCA -ACGGAAACGCATGGGAATGGAAAC -ACGGAAACGCATGGGAATAACACC -ACGGAAACGCATGGGAATATCGAG -ACGGAAACGCATGGGAATCTCCTT -ACGGAAACGCATGGGAATCCTGTT -ACGGAAACGCATGGGAATCGGTTT -ACGGAAACGCATGGGAATGTGGTT -ACGGAAACGCATGGGAATGCCTTT -ACGGAAACGCATGGGAATGGTCTT -ACGGAAACGCATGGGAATACGCTT -ACGGAAACGCATGGGAATAGCGTT -ACGGAAACGCATGGGAATTTCGTC -ACGGAAACGCATGGGAATTCTCTC -ACGGAAACGCATGGGAATTGGATC -ACGGAAACGCATGGGAATCACTTC -ACGGAAACGCATGGGAATGTACTC -ACGGAAACGCATGGGAATGATGTC -ACGGAAACGCATGGGAATACAGTC -ACGGAAACGCATGGGAATTTGCTG -ACGGAAACGCATGGGAATTCCATG -ACGGAAACGCATGGGAATTGTGTG -ACGGAAACGCATGGGAATCTAGTG -ACGGAAACGCATGGGAATCATCTG -ACGGAAACGCATGGGAATGAGTTG -ACGGAAACGCATGGGAATAGACTG -ACGGAAACGCATGGGAATTCGGTA -ACGGAAACGCATGGGAATTGCCTA -ACGGAAACGCATGGGAATCCACTA -ACGGAAACGCATGGGAATGGAGTA -ACGGAAACGCATGGGAATTCGTCT -ACGGAAACGCATGGGAATTGCACT -ACGGAAACGCATGGGAATCTGACT -ACGGAAACGCATGGGAATCAACCT -ACGGAAACGCATGGGAATGCTACT -ACGGAAACGCATGGGAATGGATCT -ACGGAAACGCATGGGAATAAGGCT -ACGGAAACGCATGGGAATTCAACC -ACGGAAACGCATGGGAATTGTTCC -ACGGAAACGCATGGGAATATTCCC -ACGGAAACGCATGGGAATTTCTCG -ACGGAAACGCATGGGAATTAGACG -ACGGAAACGCATGGGAATGTAACG -ACGGAAACGCATGGGAATACTTCG -ACGGAAACGCATGGGAATTACGCA -ACGGAAACGCATGGGAATCTTGCA -ACGGAAACGCATGGGAATCGAACA -ACGGAAACGCATGGGAATCAGTCA -ACGGAAACGCATGGGAATGATCCA -ACGGAAACGCATGGGAATACGACA -ACGGAAACGCATGGGAATAGCTCA -ACGGAAACGCATGGGAATTCACGT -ACGGAAACGCATGGGAATCGTAGT -ACGGAAACGCATGGGAATGTCAGT -ACGGAAACGCATGGGAATGAAGGT -ACGGAAACGCATGGGAATAACCGT -ACGGAAACGCATGGGAATTTGTGC -ACGGAAACGCATGGGAATCTAAGC -ACGGAAACGCATGGGAATACTAGC -ACGGAAACGCATGGGAATAGATGC -ACGGAAACGCATGGGAATTGAAGG -ACGGAAACGCATGGGAATCAATGG -ACGGAAACGCATGGGAATATGAGG -ACGGAAACGCATGGGAATAATGGG -ACGGAAACGCATGGGAATTCCTGA -ACGGAAACGCATGGGAATTAGCGA -ACGGAAACGCATGGGAATCACAGA -ACGGAAACGCATGGGAATGCAAGA -ACGGAAACGCATGGGAATGGTTGA -ACGGAAACGCATGGGAATTCCGAT -ACGGAAACGCATGGGAATTGGCAT -ACGGAAACGCATGGGAATCGAGAT -ACGGAAACGCATGGGAATTACCAC -ACGGAAACGCATGGGAATCAGAAC -ACGGAAACGCATGGGAATGTCTAC -ACGGAAACGCATGGGAATACGTAC -ACGGAAACGCATGGGAATAGTGAC -ACGGAAACGCATGGGAATCTGTAG -ACGGAAACGCATGGGAATCCTAAG -ACGGAAACGCATGGGAATGTTCAG -ACGGAAACGCATGGGAATGCATAG -ACGGAAACGCATGGGAATGACAAG -ACGGAAACGCATGGGAATAAGCAG -ACGGAAACGCATGGGAATCGTCAA -ACGGAAACGCATGGGAATGCTGAA -ACGGAAACGCATGGGAATAGTACG -ACGGAAACGCATGGGAATATCCGA -ACGGAAACGCATGGGAATATGGGA -ACGGAAACGCATGGGAATGTGCAA -ACGGAAACGCATGGGAATGAGGAA -ACGGAAACGCATGGGAATCAGGTA -ACGGAAACGCATGGGAATGACTCT -ACGGAAACGCATGGGAATAGTCCT -ACGGAAACGCATGGGAATTAAGCC -ACGGAAACGCATGGGAATATAGCC -ACGGAAACGCATGGGAATTAACCG -ACGGAAACGCATGGGAATATGCCA -ACGGAAACGCATTGATCCGGAAAC -ACGGAAACGCATTGATCCAACACC -ACGGAAACGCATTGATCCATCGAG -ACGGAAACGCATTGATCCCTCCTT -ACGGAAACGCATTGATCCCCTGTT -ACGGAAACGCATTGATCCCGGTTT -ACGGAAACGCATTGATCCGTGGTT -ACGGAAACGCATTGATCCGCCTTT -ACGGAAACGCATTGATCCGGTCTT -ACGGAAACGCATTGATCCACGCTT -ACGGAAACGCATTGATCCAGCGTT -ACGGAAACGCATTGATCCTTCGTC -ACGGAAACGCATTGATCCTCTCTC -ACGGAAACGCATTGATCCTGGATC -ACGGAAACGCATTGATCCCACTTC -ACGGAAACGCATTGATCCGTACTC -ACGGAAACGCATTGATCCGATGTC -ACGGAAACGCATTGATCCACAGTC -ACGGAAACGCATTGATCCTTGCTG -ACGGAAACGCATTGATCCTCCATG -ACGGAAACGCATTGATCCTGTGTG -ACGGAAACGCATTGATCCCTAGTG -ACGGAAACGCATTGATCCCATCTG -ACGGAAACGCATTGATCCGAGTTG -ACGGAAACGCATTGATCCAGACTG -ACGGAAACGCATTGATCCTCGGTA -ACGGAAACGCATTGATCCTGCCTA -ACGGAAACGCATTGATCCCCACTA -ACGGAAACGCATTGATCCGGAGTA -ACGGAAACGCATTGATCCTCGTCT -ACGGAAACGCATTGATCCTGCACT -ACGGAAACGCATTGATCCCTGACT -ACGGAAACGCATTGATCCCAACCT -ACGGAAACGCATTGATCCGCTACT -ACGGAAACGCATTGATCCGGATCT -ACGGAAACGCATTGATCCAAGGCT -ACGGAAACGCATTGATCCTCAACC -ACGGAAACGCATTGATCCTGTTCC -ACGGAAACGCATTGATCCATTCCC -ACGGAAACGCATTGATCCTTCTCG -ACGGAAACGCATTGATCCTAGACG -ACGGAAACGCATTGATCCGTAACG -ACGGAAACGCATTGATCCACTTCG -ACGGAAACGCATTGATCCTACGCA -ACGGAAACGCATTGATCCCTTGCA -ACGGAAACGCATTGATCCCGAACA -ACGGAAACGCATTGATCCCAGTCA -ACGGAAACGCATTGATCCGATCCA -ACGGAAACGCATTGATCCACGACA -ACGGAAACGCATTGATCCAGCTCA -ACGGAAACGCATTGATCCTCACGT -ACGGAAACGCATTGATCCCGTAGT -ACGGAAACGCATTGATCCGTCAGT -ACGGAAACGCATTGATCCGAAGGT -ACGGAAACGCATTGATCCAACCGT -ACGGAAACGCATTGATCCTTGTGC -ACGGAAACGCATTGATCCCTAAGC -ACGGAAACGCATTGATCCACTAGC -ACGGAAACGCATTGATCCAGATGC -ACGGAAACGCATTGATCCTGAAGG -ACGGAAACGCATTGATCCCAATGG -ACGGAAACGCATTGATCCATGAGG -ACGGAAACGCATTGATCCAATGGG -ACGGAAACGCATTGATCCTCCTGA -ACGGAAACGCATTGATCCTAGCGA -ACGGAAACGCATTGATCCCACAGA -ACGGAAACGCATTGATCCGCAAGA -ACGGAAACGCATTGATCCGGTTGA -ACGGAAACGCATTGATCCTCCGAT -ACGGAAACGCATTGATCCTGGCAT -ACGGAAACGCATTGATCCCGAGAT -ACGGAAACGCATTGATCCTACCAC -ACGGAAACGCATTGATCCCAGAAC -ACGGAAACGCATTGATCCGTCTAC -ACGGAAACGCATTGATCCACGTAC -ACGGAAACGCATTGATCCAGTGAC -ACGGAAACGCATTGATCCCTGTAG -ACGGAAACGCATTGATCCCCTAAG -ACGGAAACGCATTGATCCGTTCAG -ACGGAAACGCATTGATCCGCATAG -ACGGAAACGCATTGATCCGACAAG -ACGGAAACGCATTGATCCAAGCAG -ACGGAAACGCATTGATCCCGTCAA -ACGGAAACGCATTGATCCGCTGAA -ACGGAAACGCATTGATCCAGTACG -ACGGAAACGCATTGATCCATCCGA -ACGGAAACGCATTGATCCATGGGA -ACGGAAACGCATTGATCCGTGCAA -ACGGAAACGCATTGATCCGAGGAA -ACGGAAACGCATTGATCCCAGGTA -ACGGAAACGCATTGATCCGACTCT -ACGGAAACGCATTGATCCAGTCCT -ACGGAAACGCATTGATCCTAAGCC -ACGGAAACGCATTGATCCATAGCC -ACGGAAACGCATTGATCCTAACCG -ACGGAAACGCATTGATCCATGCCA -ACGGAAACGCATCGATAGGGAAAC -ACGGAAACGCATCGATAGAACACC -ACGGAAACGCATCGATAGATCGAG -ACGGAAACGCATCGATAGCTCCTT -ACGGAAACGCATCGATAGCCTGTT -ACGGAAACGCATCGATAGCGGTTT -ACGGAAACGCATCGATAGGTGGTT -ACGGAAACGCATCGATAGGCCTTT -ACGGAAACGCATCGATAGGGTCTT -ACGGAAACGCATCGATAGACGCTT -ACGGAAACGCATCGATAGAGCGTT -ACGGAAACGCATCGATAGTTCGTC -ACGGAAACGCATCGATAGTCTCTC -ACGGAAACGCATCGATAGTGGATC -ACGGAAACGCATCGATAGCACTTC -ACGGAAACGCATCGATAGGTACTC -ACGGAAACGCATCGATAGGATGTC -ACGGAAACGCATCGATAGACAGTC -ACGGAAACGCATCGATAGTTGCTG -ACGGAAACGCATCGATAGTCCATG -ACGGAAACGCATCGATAGTGTGTG -ACGGAAACGCATCGATAGCTAGTG -ACGGAAACGCATCGATAGCATCTG -ACGGAAACGCATCGATAGGAGTTG -ACGGAAACGCATCGATAGAGACTG -ACGGAAACGCATCGATAGTCGGTA -ACGGAAACGCATCGATAGTGCCTA -ACGGAAACGCATCGATAGCCACTA -ACGGAAACGCATCGATAGGGAGTA -ACGGAAACGCATCGATAGTCGTCT -ACGGAAACGCATCGATAGTGCACT -ACGGAAACGCATCGATAGCTGACT -ACGGAAACGCATCGATAGCAACCT -ACGGAAACGCATCGATAGGCTACT -ACGGAAACGCATCGATAGGGATCT -ACGGAAACGCATCGATAGAAGGCT -ACGGAAACGCATCGATAGTCAACC -ACGGAAACGCATCGATAGTGTTCC -ACGGAAACGCATCGATAGATTCCC -ACGGAAACGCATCGATAGTTCTCG -ACGGAAACGCATCGATAGTAGACG -ACGGAAACGCATCGATAGGTAACG -ACGGAAACGCATCGATAGACTTCG -ACGGAAACGCATCGATAGTACGCA -ACGGAAACGCATCGATAGCTTGCA -ACGGAAACGCATCGATAGCGAACA -ACGGAAACGCATCGATAGCAGTCA -ACGGAAACGCATCGATAGGATCCA -ACGGAAACGCATCGATAGACGACA -ACGGAAACGCATCGATAGAGCTCA -ACGGAAACGCATCGATAGTCACGT -ACGGAAACGCATCGATAGCGTAGT -ACGGAAACGCATCGATAGGTCAGT -ACGGAAACGCATCGATAGGAAGGT -ACGGAAACGCATCGATAGAACCGT -ACGGAAACGCATCGATAGTTGTGC -ACGGAAACGCATCGATAGCTAAGC -ACGGAAACGCATCGATAGACTAGC -ACGGAAACGCATCGATAGAGATGC -ACGGAAACGCATCGATAGTGAAGG -ACGGAAACGCATCGATAGCAATGG -ACGGAAACGCATCGATAGATGAGG -ACGGAAACGCATCGATAGAATGGG -ACGGAAACGCATCGATAGTCCTGA -ACGGAAACGCATCGATAGTAGCGA -ACGGAAACGCATCGATAGCACAGA -ACGGAAACGCATCGATAGGCAAGA -ACGGAAACGCATCGATAGGGTTGA -ACGGAAACGCATCGATAGTCCGAT -ACGGAAACGCATCGATAGTGGCAT -ACGGAAACGCATCGATAGCGAGAT -ACGGAAACGCATCGATAGTACCAC -ACGGAAACGCATCGATAGCAGAAC -ACGGAAACGCATCGATAGGTCTAC -ACGGAAACGCATCGATAGACGTAC -ACGGAAACGCATCGATAGAGTGAC -ACGGAAACGCATCGATAGCTGTAG -ACGGAAACGCATCGATAGCCTAAG -ACGGAAACGCATCGATAGGTTCAG -ACGGAAACGCATCGATAGGCATAG -ACGGAAACGCATCGATAGGACAAG -ACGGAAACGCATCGATAGAAGCAG -ACGGAAACGCATCGATAGCGTCAA -ACGGAAACGCATCGATAGGCTGAA -ACGGAAACGCATCGATAGAGTACG -ACGGAAACGCATCGATAGATCCGA -ACGGAAACGCATCGATAGATGGGA -ACGGAAACGCATCGATAGGTGCAA -ACGGAAACGCATCGATAGGAGGAA -ACGGAAACGCATCGATAGCAGGTA -ACGGAAACGCATCGATAGGACTCT -ACGGAAACGCATCGATAGAGTCCT -ACGGAAACGCATCGATAGTAAGCC -ACGGAAACGCATCGATAGATAGCC -ACGGAAACGCATCGATAGTAACCG -ACGGAAACGCATCGATAGATGCCA -ACGGAAACGCATAGACACGGAAAC -ACGGAAACGCATAGACACAACACC -ACGGAAACGCATAGACACATCGAG -ACGGAAACGCATAGACACCTCCTT -ACGGAAACGCATAGACACCCTGTT -ACGGAAACGCATAGACACCGGTTT -ACGGAAACGCATAGACACGTGGTT -ACGGAAACGCATAGACACGCCTTT -ACGGAAACGCATAGACACGGTCTT -ACGGAAACGCATAGACACACGCTT -ACGGAAACGCATAGACACAGCGTT -ACGGAAACGCATAGACACTTCGTC -ACGGAAACGCATAGACACTCTCTC -ACGGAAACGCATAGACACTGGATC -ACGGAAACGCATAGACACCACTTC -ACGGAAACGCATAGACACGTACTC -ACGGAAACGCATAGACACGATGTC -ACGGAAACGCATAGACACACAGTC -ACGGAAACGCATAGACACTTGCTG -ACGGAAACGCATAGACACTCCATG -ACGGAAACGCATAGACACTGTGTG -ACGGAAACGCATAGACACCTAGTG -ACGGAAACGCATAGACACCATCTG -ACGGAAACGCATAGACACGAGTTG -ACGGAAACGCATAGACACAGACTG -ACGGAAACGCATAGACACTCGGTA -ACGGAAACGCATAGACACTGCCTA -ACGGAAACGCATAGACACCCACTA -ACGGAAACGCATAGACACGGAGTA -ACGGAAACGCATAGACACTCGTCT -ACGGAAACGCATAGACACTGCACT -ACGGAAACGCATAGACACCTGACT -ACGGAAACGCATAGACACCAACCT -ACGGAAACGCATAGACACGCTACT -ACGGAAACGCATAGACACGGATCT -ACGGAAACGCATAGACACAAGGCT -ACGGAAACGCATAGACACTCAACC -ACGGAAACGCATAGACACTGTTCC -ACGGAAACGCATAGACACATTCCC -ACGGAAACGCATAGACACTTCTCG -ACGGAAACGCATAGACACTAGACG -ACGGAAACGCATAGACACGTAACG -ACGGAAACGCATAGACACACTTCG -ACGGAAACGCATAGACACTACGCA -ACGGAAACGCATAGACACCTTGCA -ACGGAAACGCATAGACACCGAACA -ACGGAAACGCATAGACACCAGTCA -ACGGAAACGCATAGACACGATCCA -ACGGAAACGCATAGACACACGACA -ACGGAAACGCATAGACACAGCTCA -ACGGAAACGCATAGACACTCACGT -ACGGAAACGCATAGACACCGTAGT -ACGGAAACGCATAGACACGTCAGT -ACGGAAACGCATAGACACGAAGGT -ACGGAAACGCATAGACACAACCGT -ACGGAAACGCATAGACACTTGTGC -ACGGAAACGCATAGACACCTAAGC -ACGGAAACGCATAGACACACTAGC -ACGGAAACGCATAGACACAGATGC -ACGGAAACGCATAGACACTGAAGG -ACGGAAACGCATAGACACCAATGG -ACGGAAACGCATAGACACATGAGG -ACGGAAACGCATAGACACAATGGG -ACGGAAACGCATAGACACTCCTGA -ACGGAAACGCATAGACACTAGCGA -ACGGAAACGCATAGACACCACAGA -ACGGAAACGCATAGACACGCAAGA -ACGGAAACGCATAGACACGGTTGA -ACGGAAACGCATAGACACTCCGAT -ACGGAAACGCATAGACACTGGCAT -ACGGAAACGCATAGACACCGAGAT -ACGGAAACGCATAGACACTACCAC -ACGGAAACGCATAGACACCAGAAC -ACGGAAACGCATAGACACGTCTAC -ACGGAAACGCATAGACACACGTAC -ACGGAAACGCATAGACACAGTGAC -ACGGAAACGCATAGACACCTGTAG -ACGGAAACGCATAGACACCCTAAG -ACGGAAACGCATAGACACGTTCAG -ACGGAAACGCATAGACACGCATAG -ACGGAAACGCATAGACACGACAAG -ACGGAAACGCATAGACACAAGCAG -ACGGAAACGCATAGACACCGTCAA -ACGGAAACGCATAGACACGCTGAA -ACGGAAACGCATAGACACAGTACG -ACGGAAACGCATAGACACATCCGA -ACGGAAACGCATAGACACATGGGA -ACGGAAACGCATAGACACGTGCAA -ACGGAAACGCATAGACACGAGGAA -ACGGAAACGCATAGACACCAGGTA -ACGGAAACGCATAGACACGACTCT -ACGGAAACGCATAGACACAGTCCT -ACGGAAACGCATAGACACTAAGCC -ACGGAAACGCATAGACACATAGCC -ACGGAAACGCATAGACACTAACCG -ACGGAAACGCATAGACACATGCCA -ACGGAAACGCATAGAGCAGGAAAC -ACGGAAACGCATAGAGCAAACACC -ACGGAAACGCATAGAGCAATCGAG -ACGGAAACGCATAGAGCACTCCTT -ACGGAAACGCATAGAGCACCTGTT -ACGGAAACGCATAGAGCACGGTTT -ACGGAAACGCATAGAGCAGTGGTT -ACGGAAACGCATAGAGCAGCCTTT -ACGGAAACGCATAGAGCAGGTCTT -ACGGAAACGCATAGAGCAACGCTT -ACGGAAACGCATAGAGCAAGCGTT -ACGGAAACGCATAGAGCATTCGTC -ACGGAAACGCATAGAGCATCTCTC -ACGGAAACGCATAGAGCATGGATC -ACGGAAACGCATAGAGCACACTTC -ACGGAAACGCATAGAGCAGTACTC -ACGGAAACGCATAGAGCAGATGTC -ACGGAAACGCATAGAGCAACAGTC -ACGGAAACGCATAGAGCATTGCTG -ACGGAAACGCATAGAGCATCCATG -ACGGAAACGCATAGAGCATGTGTG -ACGGAAACGCATAGAGCACTAGTG -ACGGAAACGCATAGAGCACATCTG -ACGGAAACGCATAGAGCAGAGTTG -ACGGAAACGCATAGAGCAAGACTG -ACGGAAACGCATAGAGCATCGGTA -ACGGAAACGCATAGAGCATGCCTA -ACGGAAACGCATAGAGCACCACTA -ACGGAAACGCATAGAGCAGGAGTA -ACGGAAACGCATAGAGCATCGTCT -ACGGAAACGCATAGAGCATGCACT -ACGGAAACGCATAGAGCACTGACT -ACGGAAACGCATAGAGCACAACCT -ACGGAAACGCATAGAGCAGCTACT -ACGGAAACGCATAGAGCAGGATCT -ACGGAAACGCATAGAGCAAAGGCT -ACGGAAACGCATAGAGCATCAACC -ACGGAAACGCATAGAGCATGTTCC -ACGGAAACGCATAGAGCAATTCCC -ACGGAAACGCATAGAGCATTCTCG -ACGGAAACGCATAGAGCATAGACG -ACGGAAACGCATAGAGCAGTAACG -ACGGAAACGCATAGAGCAACTTCG -ACGGAAACGCATAGAGCATACGCA -ACGGAAACGCATAGAGCACTTGCA -ACGGAAACGCATAGAGCACGAACA -ACGGAAACGCATAGAGCACAGTCA -ACGGAAACGCATAGAGCAGATCCA -ACGGAAACGCATAGAGCAACGACA -ACGGAAACGCATAGAGCAAGCTCA -ACGGAAACGCATAGAGCATCACGT -ACGGAAACGCATAGAGCACGTAGT -ACGGAAACGCATAGAGCAGTCAGT -ACGGAAACGCATAGAGCAGAAGGT -ACGGAAACGCATAGAGCAAACCGT -ACGGAAACGCATAGAGCATTGTGC -ACGGAAACGCATAGAGCACTAAGC -ACGGAAACGCATAGAGCAACTAGC -ACGGAAACGCATAGAGCAAGATGC -ACGGAAACGCATAGAGCATGAAGG -ACGGAAACGCATAGAGCACAATGG -ACGGAAACGCATAGAGCAATGAGG -ACGGAAACGCATAGAGCAAATGGG -ACGGAAACGCATAGAGCATCCTGA -ACGGAAACGCATAGAGCATAGCGA -ACGGAAACGCATAGAGCACACAGA -ACGGAAACGCATAGAGCAGCAAGA -ACGGAAACGCATAGAGCAGGTTGA -ACGGAAACGCATAGAGCATCCGAT -ACGGAAACGCATAGAGCATGGCAT -ACGGAAACGCATAGAGCACGAGAT -ACGGAAACGCATAGAGCATACCAC -ACGGAAACGCATAGAGCACAGAAC -ACGGAAACGCATAGAGCAGTCTAC -ACGGAAACGCATAGAGCAACGTAC -ACGGAAACGCATAGAGCAAGTGAC -ACGGAAACGCATAGAGCACTGTAG -ACGGAAACGCATAGAGCACCTAAG -ACGGAAACGCATAGAGCAGTTCAG -ACGGAAACGCATAGAGCAGCATAG -ACGGAAACGCATAGAGCAGACAAG -ACGGAAACGCATAGAGCAAAGCAG -ACGGAAACGCATAGAGCACGTCAA -ACGGAAACGCATAGAGCAGCTGAA -ACGGAAACGCATAGAGCAAGTACG -ACGGAAACGCATAGAGCAATCCGA -ACGGAAACGCATAGAGCAATGGGA -ACGGAAACGCATAGAGCAGTGCAA -ACGGAAACGCATAGAGCAGAGGAA -ACGGAAACGCATAGAGCACAGGTA -ACGGAAACGCATAGAGCAGACTCT -ACGGAAACGCATAGAGCAAGTCCT -ACGGAAACGCATAGAGCATAAGCC -ACGGAAACGCATAGAGCAATAGCC -ACGGAAACGCATAGAGCATAACCG -ACGGAAACGCATAGAGCAATGCCA -ACGGAAACGCATTGAGGTGGAAAC -ACGGAAACGCATTGAGGTAACACC -ACGGAAACGCATTGAGGTATCGAG -ACGGAAACGCATTGAGGTCTCCTT -ACGGAAACGCATTGAGGTCCTGTT -ACGGAAACGCATTGAGGTCGGTTT -ACGGAAACGCATTGAGGTGTGGTT -ACGGAAACGCATTGAGGTGCCTTT -ACGGAAACGCATTGAGGTGGTCTT -ACGGAAACGCATTGAGGTACGCTT -ACGGAAACGCATTGAGGTAGCGTT -ACGGAAACGCATTGAGGTTTCGTC -ACGGAAACGCATTGAGGTTCTCTC -ACGGAAACGCATTGAGGTTGGATC -ACGGAAACGCATTGAGGTCACTTC -ACGGAAACGCATTGAGGTGTACTC -ACGGAAACGCATTGAGGTGATGTC -ACGGAAACGCATTGAGGTACAGTC -ACGGAAACGCATTGAGGTTTGCTG -ACGGAAACGCATTGAGGTTCCATG -ACGGAAACGCATTGAGGTTGTGTG -ACGGAAACGCATTGAGGTCTAGTG -ACGGAAACGCATTGAGGTCATCTG -ACGGAAACGCATTGAGGTGAGTTG -ACGGAAACGCATTGAGGTAGACTG -ACGGAAACGCATTGAGGTTCGGTA -ACGGAAACGCATTGAGGTTGCCTA -ACGGAAACGCATTGAGGTCCACTA -ACGGAAACGCATTGAGGTGGAGTA -ACGGAAACGCATTGAGGTTCGTCT -ACGGAAACGCATTGAGGTTGCACT -ACGGAAACGCATTGAGGTCTGACT -ACGGAAACGCATTGAGGTCAACCT -ACGGAAACGCATTGAGGTGCTACT -ACGGAAACGCATTGAGGTGGATCT -ACGGAAACGCATTGAGGTAAGGCT -ACGGAAACGCATTGAGGTTCAACC -ACGGAAACGCATTGAGGTTGTTCC -ACGGAAACGCATTGAGGTATTCCC -ACGGAAACGCATTGAGGTTTCTCG -ACGGAAACGCATTGAGGTTAGACG -ACGGAAACGCATTGAGGTGTAACG -ACGGAAACGCATTGAGGTACTTCG -ACGGAAACGCATTGAGGTTACGCA -ACGGAAACGCATTGAGGTCTTGCA -ACGGAAACGCATTGAGGTCGAACA -ACGGAAACGCATTGAGGTCAGTCA -ACGGAAACGCATTGAGGTGATCCA -ACGGAAACGCATTGAGGTACGACA -ACGGAAACGCATTGAGGTAGCTCA -ACGGAAACGCATTGAGGTTCACGT -ACGGAAACGCATTGAGGTCGTAGT -ACGGAAACGCATTGAGGTGTCAGT -ACGGAAACGCATTGAGGTGAAGGT -ACGGAAACGCATTGAGGTAACCGT -ACGGAAACGCATTGAGGTTTGTGC -ACGGAAACGCATTGAGGTCTAAGC -ACGGAAACGCATTGAGGTACTAGC -ACGGAAACGCATTGAGGTAGATGC -ACGGAAACGCATTGAGGTTGAAGG -ACGGAAACGCATTGAGGTCAATGG -ACGGAAACGCATTGAGGTATGAGG -ACGGAAACGCATTGAGGTAATGGG -ACGGAAACGCATTGAGGTTCCTGA -ACGGAAACGCATTGAGGTTAGCGA -ACGGAAACGCATTGAGGTCACAGA -ACGGAAACGCATTGAGGTGCAAGA -ACGGAAACGCATTGAGGTGGTTGA -ACGGAAACGCATTGAGGTTCCGAT -ACGGAAACGCATTGAGGTTGGCAT -ACGGAAACGCATTGAGGTCGAGAT -ACGGAAACGCATTGAGGTTACCAC -ACGGAAACGCATTGAGGTCAGAAC -ACGGAAACGCATTGAGGTGTCTAC -ACGGAAACGCATTGAGGTACGTAC -ACGGAAACGCATTGAGGTAGTGAC -ACGGAAACGCATTGAGGTCTGTAG -ACGGAAACGCATTGAGGTCCTAAG -ACGGAAACGCATTGAGGTGTTCAG -ACGGAAACGCATTGAGGTGCATAG -ACGGAAACGCATTGAGGTGACAAG -ACGGAAACGCATTGAGGTAAGCAG -ACGGAAACGCATTGAGGTCGTCAA -ACGGAAACGCATTGAGGTGCTGAA -ACGGAAACGCATTGAGGTAGTACG -ACGGAAACGCATTGAGGTATCCGA -ACGGAAACGCATTGAGGTATGGGA -ACGGAAACGCATTGAGGTGTGCAA -ACGGAAACGCATTGAGGTGAGGAA -ACGGAAACGCATTGAGGTCAGGTA -ACGGAAACGCATTGAGGTGACTCT -ACGGAAACGCATTGAGGTAGTCCT -ACGGAAACGCATTGAGGTTAAGCC -ACGGAAACGCATTGAGGTATAGCC -ACGGAAACGCATTGAGGTTAACCG -ACGGAAACGCATTGAGGTATGCCA -ACGGAAACGCATGATTCCGGAAAC -ACGGAAACGCATGATTCCAACACC -ACGGAAACGCATGATTCCATCGAG -ACGGAAACGCATGATTCCCTCCTT -ACGGAAACGCATGATTCCCCTGTT -ACGGAAACGCATGATTCCCGGTTT -ACGGAAACGCATGATTCCGTGGTT -ACGGAAACGCATGATTCCGCCTTT -ACGGAAACGCATGATTCCGGTCTT -ACGGAAACGCATGATTCCACGCTT -ACGGAAACGCATGATTCCAGCGTT -ACGGAAACGCATGATTCCTTCGTC -ACGGAAACGCATGATTCCTCTCTC -ACGGAAACGCATGATTCCTGGATC -ACGGAAACGCATGATTCCCACTTC -ACGGAAACGCATGATTCCGTACTC -ACGGAAACGCATGATTCCGATGTC -ACGGAAACGCATGATTCCACAGTC -ACGGAAACGCATGATTCCTTGCTG -ACGGAAACGCATGATTCCTCCATG -ACGGAAACGCATGATTCCTGTGTG -ACGGAAACGCATGATTCCCTAGTG -ACGGAAACGCATGATTCCCATCTG -ACGGAAACGCATGATTCCGAGTTG -ACGGAAACGCATGATTCCAGACTG -ACGGAAACGCATGATTCCTCGGTA -ACGGAAACGCATGATTCCTGCCTA -ACGGAAACGCATGATTCCCCACTA -ACGGAAACGCATGATTCCGGAGTA -ACGGAAACGCATGATTCCTCGTCT -ACGGAAACGCATGATTCCTGCACT -ACGGAAACGCATGATTCCCTGACT -ACGGAAACGCATGATTCCCAACCT -ACGGAAACGCATGATTCCGCTACT -ACGGAAACGCATGATTCCGGATCT -ACGGAAACGCATGATTCCAAGGCT -ACGGAAACGCATGATTCCTCAACC -ACGGAAACGCATGATTCCTGTTCC -ACGGAAACGCATGATTCCATTCCC -ACGGAAACGCATGATTCCTTCTCG -ACGGAAACGCATGATTCCTAGACG -ACGGAAACGCATGATTCCGTAACG -ACGGAAACGCATGATTCCACTTCG -ACGGAAACGCATGATTCCTACGCA -ACGGAAACGCATGATTCCCTTGCA -ACGGAAACGCATGATTCCCGAACA -ACGGAAACGCATGATTCCCAGTCA -ACGGAAACGCATGATTCCGATCCA -ACGGAAACGCATGATTCCACGACA -ACGGAAACGCATGATTCCAGCTCA -ACGGAAACGCATGATTCCTCACGT -ACGGAAACGCATGATTCCCGTAGT -ACGGAAACGCATGATTCCGTCAGT -ACGGAAACGCATGATTCCGAAGGT -ACGGAAACGCATGATTCCAACCGT -ACGGAAACGCATGATTCCTTGTGC -ACGGAAACGCATGATTCCCTAAGC -ACGGAAACGCATGATTCCACTAGC -ACGGAAACGCATGATTCCAGATGC -ACGGAAACGCATGATTCCTGAAGG -ACGGAAACGCATGATTCCCAATGG -ACGGAAACGCATGATTCCATGAGG -ACGGAAACGCATGATTCCAATGGG -ACGGAAACGCATGATTCCTCCTGA -ACGGAAACGCATGATTCCTAGCGA -ACGGAAACGCATGATTCCCACAGA -ACGGAAACGCATGATTCCGCAAGA -ACGGAAACGCATGATTCCGGTTGA -ACGGAAACGCATGATTCCTCCGAT -ACGGAAACGCATGATTCCTGGCAT -ACGGAAACGCATGATTCCCGAGAT -ACGGAAACGCATGATTCCTACCAC -ACGGAAACGCATGATTCCCAGAAC -ACGGAAACGCATGATTCCGTCTAC -ACGGAAACGCATGATTCCACGTAC -ACGGAAACGCATGATTCCAGTGAC -ACGGAAACGCATGATTCCCTGTAG -ACGGAAACGCATGATTCCCCTAAG -ACGGAAACGCATGATTCCGTTCAG -ACGGAAACGCATGATTCCGCATAG -ACGGAAACGCATGATTCCGACAAG -ACGGAAACGCATGATTCCAAGCAG -ACGGAAACGCATGATTCCCGTCAA -ACGGAAACGCATGATTCCGCTGAA -ACGGAAACGCATGATTCCAGTACG -ACGGAAACGCATGATTCCATCCGA -ACGGAAACGCATGATTCCATGGGA -ACGGAAACGCATGATTCCGTGCAA -ACGGAAACGCATGATTCCGAGGAA -ACGGAAACGCATGATTCCCAGGTA -ACGGAAACGCATGATTCCGACTCT -ACGGAAACGCATGATTCCAGTCCT -ACGGAAACGCATGATTCCTAAGCC -ACGGAAACGCATGATTCCATAGCC -ACGGAAACGCATGATTCCTAACCG -ACGGAAACGCATGATTCCATGCCA -ACGGAAACGCATCATTGGGGAAAC -ACGGAAACGCATCATTGGAACACC -ACGGAAACGCATCATTGGATCGAG -ACGGAAACGCATCATTGGCTCCTT -ACGGAAACGCATCATTGGCCTGTT -ACGGAAACGCATCATTGGCGGTTT -ACGGAAACGCATCATTGGGTGGTT -ACGGAAACGCATCATTGGGCCTTT -ACGGAAACGCATCATTGGGGTCTT -ACGGAAACGCATCATTGGACGCTT -ACGGAAACGCATCATTGGAGCGTT -ACGGAAACGCATCATTGGTTCGTC -ACGGAAACGCATCATTGGTCTCTC -ACGGAAACGCATCATTGGTGGATC -ACGGAAACGCATCATTGGCACTTC -ACGGAAACGCATCATTGGGTACTC -ACGGAAACGCATCATTGGGATGTC -ACGGAAACGCATCATTGGACAGTC -ACGGAAACGCATCATTGGTTGCTG -ACGGAAACGCATCATTGGTCCATG -ACGGAAACGCATCATTGGTGTGTG -ACGGAAACGCATCATTGGCTAGTG -ACGGAAACGCATCATTGGCATCTG -ACGGAAACGCATCATTGGGAGTTG -ACGGAAACGCATCATTGGAGACTG -ACGGAAACGCATCATTGGTCGGTA -ACGGAAACGCATCATTGGTGCCTA -ACGGAAACGCATCATTGGCCACTA -ACGGAAACGCATCATTGGGGAGTA -ACGGAAACGCATCATTGGTCGTCT -ACGGAAACGCATCATTGGTGCACT -ACGGAAACGCATCATTGGCTGACT -ACGGAAACGCATCATTGGCAACCT -ACGGAAACGCATCATTGGGCTACT -ACGGAAACGCATCATTGGGGATCT -ACGGAAACGCATCATTGGAAGGCT -ACGGAAACGCATCATTGGTCAACC -ACGGAAACGCATCATTGGTGTTCC -ACGGAAACGCATCATTGGATTCCC -ACGGAAACGCATCATTGGTTCTCG -ACGGAAACGCATCATTGGTAGACG -ACGGAAACGCATCATTGGGTAACG -ACGGAAACGCATCATTGGACTTCG -ACGGAAACGCATCATTGGTACGCA -ACGGAAACGCATCATTGGCTTGCA -ACGGAAACGCATCATTGGCGAACA -ACGGAAACGCATCATTGGCAGTCA -ACGGAAACGCATCATTGGGATCCA -ACGGAAACGCATCATTGGACGACA -ACGGAAACGCATCATTGGAGCTCA -ACGGAAACGCATCATTGGTCACGT -ACGGAAACGCATCATTGGCGTAGT -ACGGAAACGCATCATTGGGTCAGT -ACGGAAACGCATCATTGGGAAGGT -ACGGAAACGCATCATTGGAACCGT -ACGGAAACGCATCATTGGTTGTGC -ACGGAAACGCATCATTGGCTAAGC -ACGGAAACGCATCATTGGACTAGC -ACGGAAACGCATCATTGGAGATGC -ACGGAAACGCATCATTGGTGAAGG -ACGGAAACGCATCATTGGCAATGG -ACGGAAACGCATCATTGGATGAGG -ACGGAAACGCATCATTGGAATGGG -ACGGAAACGCATCATTGGTCCTGA -ACGGAAACGCATCATTGGTAGCGA -ACGGAAACGCATCATTGGCACAGA -ACGGAAACGCATCATTGGGCAAGA -ACGGAAACGCATCATTGGGGTTGA -ACGGAAACGCATCATTGGTCCGAT -ACGGAAACGCATCATTGGTGGCAT -ACGGAAACGCATCATTGGCGAGAT -ACGGAAACGCATCATTGGTACCAC -ACGGAAACGCATCATTGGCAGAAC -ACGGAAACGCATCATTGGGTCTAC -ACGGAAACGCATCATTGGACGTAC -ACGGAAACGCATCATTGGAGTGAC -ACGGAAACGCATCATTGGCTGTAG -ACGGAAACGCATCATTGGCCTAAG -ACGGAAACGCATCATTGGGTTCAG -ACGGAAACGCATCATTGGGCATAG -ACGGAAACGCATCATTGGGACAAG -ACGGAAACGCATCATTGGAAGCAG -ACGGAAACGCATCATTGGCGTCAA -ACGGAAACGCATCATTGGGCTGAA -ACGGAAACGCATCATTGGAGTACG -ACGGAAACGCATCATTGGATCCGA -ACGGAAACGCATCATTGGATGGGA -ACGGAAACGCATCATTGGGTGCAA -ACGGAAACGCATCATTGGGAGGAA -ACGGAAACGCATCATTGGCAGGTA -ACGGAAACGCATCATTGGGACTCT -ACGGAAACGCATCATTGGAGTCCT -ACGGAAACGCATCATTGGTAAGCC -ACGGAAACGCATCATTGGATAGCC -ACGGAAACGCATCATTGGTAACCG -ACGGAAACGCATCATTGGATGCCA -ACGGAAACGCATGATCGAGGAAAC -ACGGAAACGCATGATCGAAACACC -ACGGAAACGCATGATCGAATCGAG -ACGGAAACGCATGATCGACTCCTT -ACGGAAACGCATGATCGACCTGTT -ACGGAAACGCATGATCGACGGTTT -ACGGAAACGCATGATCGAGTGGTT -ACGGAAACGCATGATCGAGCCTTT -ACGGAAACGCATGATCGAGGTCTT -ACGGAAACGCATGATCGAACGCTT -ACGGAAACGCATGATCGAAGCGTT -ACGGAAACGCATGATCGATTCGTC -ACGGAAACGCATGATCGATCTCTC -ACGGAAACGCATGATCGATGGATC -ACGGAAACGCATGATCGACACTTC -ACGGAAACGCATGATCGAGTACTC -ACGGAAACGCATGATCGAGATGTC -ACGGAAACGCATGATCGAACAGTC -ACGGAAACGCATGATCGATTGCTG -ACGGAAACGCATGATCGATCCATG -ACGGAAACGCATGATCGATGTGTG -ACGGAAACGCATGATCGACTAGTG -ACGGAAACGCATGATCGACATCTG -ACGGAAACGCATGATCGAGAGTTG -ACGGAAACGCATGATCGAAGACTG -ACGGAAACGCATGATCGATCGGTA -ACGGAAACGCATGATCGATGCCTA -ACGGAAACGCATGATCGACCACTA -ACGGAAACGCATGATCGAGGAGTA -ACGGAAACGCATGATCGATCGTCT -ACGGAAACGCATGATCGATGCACT -ACGGAAACGCATGATCGACTGACT -ACGGAAACGCATGATCGACAACCT -ACGGAAACGCATGATCGAGCTACT -ACGGAAACGCATGATCGAGGATCT -ACGGAAACGCATGATCGAAAGGCT -ACGGAAACGCATGATCGATCAACC -ACGGAAACGCATGATCGATGTTCC -ACGGAAACGCATGATCGAATTCCC -ACGGAAACGCATGATCGATTCTCG -ACGGAAACGCATGATCGATAGACG -ACGGAAACGCATGATCGAGTAACG -ACGGAAACGCATGATCGAACTTCG -ACGGAAACGCATGATCGATACGCA -ACGGAAACGCATGATCGACTTGCA -ACGGAAACGCATGATCGACGAACA -ACGGAAACGCATGATCGACAGTCA -ACGGAAACGCATGATCGAGATCCA -ACGGAAACGCATGATCGAACGACA -ACGGAAACGCATGATCGAAGCTCA -ACGGAAACGCATGATCGATCACGT -ACGGAAACGCATGATCGACGTAGT -ACGGAAACGCATGATCGAGTCAGT -ACGGAAACGCATGATCGAGAAGGT -ACGGAAACGCATGATCGAAACCGT -ACGGAAACGCATGATCGATTGTGC -ACGGAAACGCATGATCGACTAAGC -ACGGAAACGCATGATCGAACTAGC -ACGGAAACGCATGATCGAAGATGC -ACGGAAACGCATGATCGATGAAGG -ACGGAAACGCATGATCGACAATGG -ACGGAAACGCATGATCGAATGAGG -ACGGAAACGCATGATCGAAATGGG -ACGGAAACGCATGATCGATCCTGA -ACGGAAACGCATGATCGATAGCGA -ACGGAAACGCATGATCGACACAGA -ACGGAAACGCATGATCGAGCAAGA -ACGGAAACGCATGATCGAGGTTGA -ACGGAAACGCATGATCGATCCGAT -ACGGAAACGCATGATCGATGGCAT -ACGGAAACGCATGATCGACGAGAT -ACGGAAACGCATGATCGATACCAC -ACGGAAACGCATGATCGACAGAAC -ACGGAAACGCATGATCGAGTCTAC -ACGGAAACGCATGATCGAACGTAC -ACGGAAACGCATGATCGAAGTGAC -ACGGAAACGCATGATCGACTGTAG -ACGGAAACGCATGATCGACCTAAG -ACGGAAACGCATGATCGAGTTCAG -ACGGAAACGCATGATCGAGCATAG -ACGGAAACGCATGATCGAGACAAG -ACGGAAACGCATGATCGAAAGCAG -ACGGAAACGCATGATCGACGTCAA -ACGGAAACGCATGATCGAGCTGAA -ACGGAAACGCATGATCGAAGTACG -ACGGAAACGCATGATCGAATCCGA -ACGGAAACGCATGATCGAATGGGA -ACGGAAACGCATGATCGAGTGCAA -ACGGAAACGCATGATCGAGAGGAA -ACGGAAACGCATGATCGACAGGTA -ACGGAAACGCATGATCGAGACTCT -ACGGAAACGCATGATCGAAGTCCT -ACGGAAACGCATGATCGATAAGCC -ACGGAAACGCATGATCGAATAGCC -ACGGAAACGCATGATCGATAACCG -ACGGAAACGCATGATCGAATGCCA -ACGGAAACGCATCACTACGGAAAC -ACGGAAACGCATCACTACAACACC -ACGGAAACGCATCACTACATCGAG -ACGGAAACGCATCACTACCTCCTT -ACGGAAACGCATCACTACCCTGTT -ACGGAAACGCATCACTACCGGTTT -ACGGAAACGCATCACTACGTGGTT -ACGGAAACGCATCACTACGCCTTT -ACGGAAACGCATCACTACGGTCTT -ACGGAAACGCATCACTACACGCTT -ACGGAAACGCATCACTACAGCGTT -ACGGAAACGCATCACTACTTCGTC -ACGGAAACGCATCACTACTCTCTC -ACGGAAACGCATCACTACTGGATC -ACGGAAACGCATCACTACCACTTC -ACGGAAACGCATCACTACGTACTC -ACGGAAACGCATCACTACGATGTC -ACGGAAACGCATCACTACACAGTC -ACGGAAACGCATCACTACTTGCTG -ACGGAAACGCATCACTACTCCATG -ACGGAAACGCATCACTACTGTGTG -ACGGAAACGCATCACTACCTAGTG -ACGGAAACGCATCACTACCATCTG -ACGGAAACGCATCACTACGAGTTG -ACGGAAACGCATCACTACAGACTG -ACGGAAACGCATCACTACTCGGTA -ACGGAAACGCATCACTACTGCCTA -ACGGAAACGCATCACTACCCACTA -ACGGAAACGCATCACTACGGAGTA -ACGGAAACGCATCACTACTCGTCT -ACGGAAACGCATCACTACTGCACT -ACGGAAACGCATCACTACCTGACT -ACGGAAACGCATCACTACCAACCT -ACGGAAACGCATCACTACGCTACT -ACGGAAACGCATCACTACGGATCT -ACGGAAACGCATCACTACAAGGCT -ACGGAAACGCATCACTACTCAACC -ACGGAAACGCATCACTACTGTTCC -ACGGAAACGCATCACTACATTCCC -ACGGAAACGCATCACTACTTCTCG -ACGGAAACGCATCACTACTAGACG -ACGGAAACGCATCACTACGTAACG -ACGGAAACGCATCACTACACTTCG -ACGGAAACGCATCACTACTACGCA -ACGGAAACGCATCACTACCTTGCA -ACGGAAACGCATCACTACCGAACA -ACGGAAACGCATCACTACCAGTCA -ACGGAAACGCATCACTACGATCCA -ACGGAAACGCATCACTACACGACA -ACGGAAACGCATCACTACAGCTCA -ACGGAAACGCATCACTACTCACGT -ACGGAAACGCATCACTACCGTAGT -ACGGAAACGCATCACTACGTCAGT -ACGGAAACGCATCACTACGAAGGT -ACGGAAACGCATCACTACAACCGT -ACGGAAACGCATCACTACTTGTGC -ACGGAAACGCATCACTACCTAAGC -ACGGAAACGCATCACTACACTAGC -ACGGAAACGCATCACTACAGATGC -ACGGAAACGCATCACTACTGAAGG -ACGGAAACGCATCACTACCAATGG -ACGGAAACGCATCACTACATGAGG -ACGGAAACGCATCACTACAATGGG -ACGGAAACGCATCACTACTCCTGA -ACGGAAACGCATCACTACTAGCGA -ACGGAAACGCATCACTACCACAGA -ACGGAAACGCATCACTACGCAAGA -ACGGAAACGCATCACTACGGTTGA -ACGGAAACGCATCACTACTCCGAT -ACGGAAACGCATCACTACTGGCAT -ACGGAAACGCATCACTACCGAGAT -ACGGAAACGCATCACTACTACCAC -ACGGAAACGCATCACTACCAGAAC -ACGGAAACGCATCACTACGTCTAC -ACGGAAACGCATCACTACACGTAC -ACGGAAACGCATCACTACAGTGAC -ACGGAAACGCATCACTACCTGTAG -ACGGAAACGCATCACTACCCTAAG -ACGGAAACGCATCACTACGTTCAG -ACGGAAACGCATCACTACGCATAG -ACGGAAACGCATCACTACGACAAG -ACGGAAACGCATCACTACAAGCAG -ACGGAAACGCATCACTACCGTCAA -ACGGAAACGCATCACTACGCTGAA -ACGGAAACGCATCACTACAGTACG -ACGGAAACGCATCACTACATCCGA -ACGGAAACGCATCACTACATGGGA -ACGGAAACGCATCACTACGTGCAA -ACGGAAACGCATCACTACGAGGAA -ACGGAAACGCATCACTACCAGGTA -ACGGAAACGCATCACTACGACTCT -ACGGAAACGCATCACTACAGTCCT -ACGGAAACGCATCACTACTAAGCC -ACGGAAACGCATCACTACATAGCC -ACGGAAACGCATCACTACTAACCG -ACGGAAACGCATCACTACATGCCA -ACGGAAACGCATAACCAGGGAAAC -ACGGAAACGCATAACCAGAACACC -ACGGAAACGCATAACCAGATCGAG -ACGGAAACGCATAACCAGCTCCTT -ACGGAAACGCATAACCAGCCTGTT -ACGGAAACGCATAACCAGCGGTTT -ACGGAAACGCATAACCAGGTGGTT -ACGGAAACGCATAACCAGGCCTTT -ACGGAAACGCATAACCAGGGTCTT -ACGGAAACGCATAACCAGACGCTT -ACGGAAACGCATAACCAGAGCGTT -ACGGAAACGCATAACCAGTTCGTC -ACGGAAACGCATAACCAGTCTCTC -ACGGAAACGCATAACCAGTGGATC -ACGGAAACGCATAACCAGCACTTC -ACGGAAACGCATAACCAGGTACTC -ACGGAAACGCATAACCAGGATGTC -ACGGAAACGCATAACCAGACAGTC -ACGGAAACGCATAACCAGTTGCTG -ACGGAAACGCATAACCAGTCCATG -ACGGAAACGCATAACCAGTGTGTG -ACGGAAACGCATAACCAGCTAGTG -ACGGAAACGCATAACCAGCATCTG -ACGGAAACGCATAACCAGGAGTTG -ACGGAAACGCATAACCAGAGACTG -ACGGAAACGCATAACCAGTCGGTA -ACGGAAACGCATAACCAGTGCCTA -ACGGAAACGCATAACCAGCCACTA -ACGGAAACGCATAACCAGGGAGTA -ACGGAAACGCATAACCAGTCGTCT -ACGGAAACGCATAACCAGTGCACT -ACGGAAACGCATAACCAGCTGACT -ACGGAAACGCATAACCAGCAACCT -ACGGAAACGCATAACCAGGCTACT -ACGGAAACGCATAACCAGGGATCT -ACGGAAACGCATAACCAGAAGGCT -ACGGAAACGCATAACCAGTCAACC -ACGGAAACGCATAACCAGTGTTCC -ACGGAAACGCATAACCAGATTCCC -ACGGAAACGCATAACCAGTTCTCG -ACGGAAACGCATAACCAGTAGACG -ACGGAAACGCATAACCAGGTAACG -ACGGAAACGCATAACCAGACTTCG -ACGGAAACGCATAACCAGTACGCA -ACGGAAACGCATAACCAGCTTGCA -ACGGAAACGCATAACCAGCGAACA -ACGGAAACGCATAACCAGCAGTCA -ACGGAAACGCATAACCAGGATCCA -ACGGAAACGCATAACCAGACGACA -ACGGAAACGCATAACCAGAGCTCA -ACGGAAACGCATAACCAGTCACGT -ACGGAAACGCATAACCAGCGTAGT -ACGGAAACGCATAACCAGGTCAGT -ACGGAAACGCATAACCAGGAAGGT -ACGGAAACGCATAACCAGAACCGT -ACGGAAACGCATAACCAGTTGTGC -ACGGAAACGCATAACCAGCTAAGC -ACGGAAACGCATAACCAGACTAGC -ACGGAAACGCATAACCAGAGATGC -ACGGAAACGCATAACCAGTGAAGG -ACGGAAACGCATAACCAGCAATGG -ACGGAAACGCATAACCAGATGAGG -ACGGAAACGCATAACCAGAATGGG -ACGGAAACGCATAACCAGTCCTGA -ACGGAAACGCATAACCAGTAGCGA -ACGGAAACGCATAACCAGCACAGA -ACGGAAACGCATAACCAGGCAAGA -ACGGAAACGCATAACCAGGGTTGA -ACGGAAACGCATAACCAGTCCGAT -ACGGAAACGCATAACCAGTGGCAT -ACGGAAACGCATAACCAGCGAGAT -ACGGAAACGCATAACCAGTACCAC -ACGGAAACGCATAACCAGCAGAAC -ACGGAAACGCATAACCAGGTCTAC -ACGGAAACGCATAACCAGACGTAC -ACGGAAACGCATAACCAGAGTGAC -ACGGAAACGCATAACCAGCTGTAG -ACGGAAACGCATAACCAGCCTAAG -ACGGAAACGCATAACCAGGTTCAG -ACGGAAACGCATAACCAGGCATAG -ACGGAAACGCATAACCAGGACAAG -ACGGAAACGCATAACCAGAAGCAG -ACGGAAACGCATAACCAGCGTCAA -ACGGAAACGCATAACCAGGCTGAA -ACGGAAACGCATAACCAGAGTACG -ACGGAAACGCATAACCAGATCCGA -ACGGAAACGCATAACCAGATGGGA -ACGGAAACGCATAACCAGGTGCAA -ACGGAAACGCATAACCAGGAGGAA -ACGGAAACGCATAACCAGCAGGTA -ACGGAAACGCATAACCAGGACTCT -ACGGAAACGCATAACCAGAGTCCT -ACGGAAACGCATAACCAGTAAGCC -ACGGAAACGCATAACCAGATAGCC -ACGGAAACGCATAACCAGTAACCG -ACGGAAACGCATAACCAGATGCCA -ACGGAAACGCATTACGTCGGAAAC -ACGGAAACGCATTACGTCAACACC -ACGGAAACGCATTACGTCATCGAG -ACGGAAACGCATTACGTCCTCCTT -ACGGAAACGCATTACGTCCCTGTT -ACGGAAACGCATTACGTCCGGTTT -ACGGAAACGCATTACGTCGTGGTT -ACGGAAACGCATTACGTCGCCTTT -ACGGAAACGCATTACGTCGGTCTT -ACGGAAACGCATTACGTCACGCTT -ACGGAAACGCATTACGTCAGCGTT -ACGGAAACGCATTACGTCTTCGTC -ACGGAAACGCATTACGTCTCTCTC -ACGGAAACGCATTACGTCTGGATC -ACGGAAACGCATTACGTCCACTTC -ACGGAAACGCATTACGTCGTACTC -ACGGAAACGCATTACGTCGATGTC -ACGGAAACGCATTACGTCACAGTC -ACGGAAACGCATTACGTCTTGCTG -ACGGAAACGCATTACGTCTCCATG -ACGGAAACGCATTACGTCTGTGTG -ACGGAAACGCATTACGTCCTAGTG -ACGGAAACGCATTACGTCCATCTG -ACGGAAACGCATTACGTCGAGTTG -ACGGAAACGCATTACGTCAGACTG -ACGGAAACGCATTACGTCTCGGTA -ACGGAAACGCATTACGTCTGCCTA -ACGGAAACGCATTACGTCCCACTA -ACGGAAACGCATTACGTCGGAGTA -ACGGAAACGCATTACGTCTCGTCT -ACGGAAACGCATTACGTCTGCACT -ACGGAAACGCATTACGTCCTGACT -ACGGAAACGCATTACGTCCAACCT -ACGGAAACGCATTACGTCGCTACT -ACGGAAACGCATTACGTCGGATCT -ACGGAAACGCATTACGTCAAGGCT -ACGGAAACGCATTACGTCTCAACC -ACGGAAACGCATTACGTCTGTTCC -ACGGAAACGCATTACGTCATTCCC -ACGGAAACGCATTACGTCTTCTCG -ACGGAAACGCATTACGTCTAGACG -ACGGAAACGCATTACGTCGTAACG -ACGGAAACGCATTACGTCACTTCG -ACGGAAACGCATTACGTCTACGCA -ACGGAAACGCATTACGTCCTTGCA -ACGGAAACGCATTACGTCCGAACA -ACGGAAACGCATTACGTCCAGTCA -ACGGAAACGCATTACGTCGATCCA -ACGGAAACGCATTACGTCACGACA -ACGGAAACGCATTACGTCAGCTCA -ACGGAAACGCATTACGTCTCACGT -ACGGAAACGCATTACGTCCGTAGT -ACGGAAACGCATTACGTCGTCAGT -ACGGAAACGCATTACGTCGAAGGT -ACGGAAACGCATTACGTCAACCGT -ACGGAAACGCATTACGTCTTGTGC -ACGGAAACGCATTACGTCCTAAGC -ACGGAAACGCATTACGTCACTAGC -ACGGAAACGCATTACGTCAGATGC -ACGGAAACGCATTACGTCTGAAGG -ACGGAAACGCATTACGTCCAATGG -ACGGAAACGCATTACGTCATGAGG -ACGGAAACGCATTACGTCAATGGG -ACGGAAACGCATTACGTCTCCTGA -ACGGAAACGCATTACGTCTAGCGA -ACGGAAACGCATTACGTCCACAGA -ACGGAAACGCATTACGTCGCAAGA -ACGGAAACGCATTACGTCGGTTGA -ACGGAAACGCATTACGTCTCCGAT -ACGGAAACGCATTACGTCTGGCAT -ACGGAAACGCATTACGTCCGAGAT -ACGGAAACGCATTACGTCTACCAC -ACGGAAACGCATTACGTCCAGAAC -ACGGAAACGCATTACGTCGTCTAC -ACGGAAACGCATTACGTCACGTAC -ACGGAAACGCATTACGTCAGTGAC -ACGGAAACGCATTACGTCCTGTAG -ACGGAAACGCATTACGTCCCTAAG -ACGGAAACGCATTACGTCGTTCAG -ACGGAAACGCATTACGTCGCATAG -ACGGAAACGCATTACGTCGACAAG -ACGGAAACGCATTACGTCAAGCAG -ACGGAAACGCATTACGTCCGTCAA -ACGGAAACGCATTACGTCGCTGAA -ACGGAAACGCATTACGTCAGTACG -ACGGAAACGCATTACGTCATCCGA -ACGGAAACGCATTACGTCATGGGA -ACGGAAACGCATTACGTCGTGCAA -ACGGAAACGCATTACGTCGAGGAA -ACGGAAACGCATTACGTCCAGGTA -ACGGAAACGCATTACGTCGACTCT -ACGGAAACGCATTACGTCAGTCCT -ACGGAAACGCATTACGTCTAAGCC -ACGGAAACGCATTACGTCATAGCC -ACGGAAACGCATTACGTCTAACCG -ACGGAAACGCATTACGTCATGCCA -ACGGAAACGCATTACACGGGAAAC -ACGGAAACGCATTACACGAACACC -ACGGAAACGCATTACACGATCGAG -ACGGAAACGCATTACACGCTCCTT -ACGGAAACGCATTACACGCCTGTT -ACGGAAACGCATTACACGCGGTTT -ACGGAAACGCATTACACGGTGGTT -ACGGAAACGCATTACACGGCCTTT -ACGGAAACGCATTACACGGGTCTT -ACGGAAACGCATTACACGACGCTT -ACGGAAACGCATTACACGAGCGTT -ACGGAAACGCATTACACGTTCGTC -ACGGAAACGCATTACACGTCTCTC -ACGGAAACGCATTACACGTGGATC -ACGGAAACGCATTACACGCACTTC -ACGGAAACGCATTACACGGTACTC -ACGGAAACGCATTACACGGATGTC -ACGGAAACGCATTACACGACAGTC -ACGGAAACGCATTACACGTTGCTG -ACGGAAACGCATTACACGTCCATG -ACGGAAACGCATTACACGTGTGTG -ACGGAAACGCATTACACGCTAGTG -ACGGAAACGCATTACACGCATCTG -ACGGAAACGCATTACACGGAGTTG -ACGGAAACGCATTACACGAGACTG -ACGGAAACGCATTACACGTCGGTA -ACGGAAACGCATTACACGTGCCTA -ACGGAAACGCATTACACGCCACTA -ACGGAAACGCATTACACGGGAGTA -ACGGAAACGCATTACACGTCGTCT -ACGGAAACGCATTACACGTGCACT -ACGGAAACGCATTACACGCTGACT -ACGGAAACGCATTACACGCAACCT -ACGGAAACGCATTACACGGCTACT -ACGGAAACGCATTACACGGGATCT -ACGGAAACGCATTACACGAAGGCT -ACGGAAACGCATTACACGTCAACC -ACGGAAACGCATTACACGTGTTCC -ACGGAAACGCATTACACGATTCCC -ACGGAAACGCATTACACGTTCTCG -ACGGAAACGCATTACACGTAGACG -ACGGAAACGCATTACACGGTAACG -ACGGAAACGCATTACACGACTTCG -ACGGAAACGCATTACACGTACGCA -ACGGAAACGCATTACACGCTTGCA -ACGGAAACGCATTACACGCGAACA -ACGGAAACGCATTACACGCAGTCA -ACGGAAACGCATTACACGGATCCA -ACGGAAACGCATTACACGACGACA -ACGGAAACGCATTACACGAGCTCA -ACGGAAACGCATTACACGTCACGT -ACGGAAACGCATTACACGCGTAGT -ACGGAAACGCATTACACGGTCAGT -ACGGAAACGCATTACACGGAAGGT -ACGGAAACGCATTACACGAACCGT -ACGGAAACGCATTACACGTTGTGC -ACGGAAACGCATTACACGCTAAGC -ACGGAAACGCATTACACGACTAGC -ACGGAAACGCATTACACGAGATGC -ACGGAAACGCATTACACGTGAAGG -ACGGAAACGCATTACACGCAATGG -ACGGAAACGCATTACACGATGAGG -ACGGAAACGCATTACACGAATGGG -ACGGAAACGCATTACACGTCCTGA -ACGGAAACGCATTACACGTAGCGA -ACGGAAACGCATTACACGCACAGA -ACGGAAACGCATTACACGGCAAGA -ACGGAAACGCATTACACGGGTTGA -ACGGAAACGCATTACACGTCCGAT -ACGGAAACGCATTACACGTGGCAT -ACGGAAACGCATTACACGCGAGAT -ACGGAAACGCATTACACGTACCAC -ACGGAAACGCATTACACGCAGAAC -ACGGAAACGCATTACACGGTCTAC -ACGGAAACGCATTACACGACGTAC -ACGGAAACGCATTACACGAGTGAC -ACGGAAACGCATTACACGCTGTAG -ACGGAAACGCATTACACGCCTAAG -ACGGAAACGCATTACACGGTTCAG -ACGGAAACGCATTACACGGCATAG -ACGGAAACGCATTACACGGACAAG -ACGGAAACGCATTACACGAAGCAG -ACGGAAACGCATTACACGCGTCAA -ACGGAAACGCATTACACGGCTGAA -ACGGAAACGCATTACACGAGTACG -ACGGAAACGCATTACACGATCCGA -ACGGAAACGCATTACACGATGGGA -ACGGAAACGCATTACACGGTGCAA -ACGGAAACGCATTACACGGAGGAA -ACGGAAACGCATTACACGCAGGTA -ACGGAAACGCATTACACGGACTCT -ACGGAAACGCATTACACGAGTCCT -ACGGAAACGCATTACACGTAAGCC -ACGGAAACGCATTACACGATAGCC -ACGGAAACGCATTACACGTAACCG -ACGGAAACGCATTACACGATGCCA -ACGGAAACGCATGACAGTGGAAAC -ACGGAAACGCATGACAGTAACACC -ACGGAAACGCATGACAGTATCGAG -ACGGAAACGCATGACAGTCTCCTT -ACGGAAACGCATGACAGTCCTGTT -ACGGAAACGCATGACAGTCGGTTT -ACGGAAACGCATGACAGTGTGGTT -ACGGAAACGCATGACAGTGCCTTT -ACGGAAACGCATGACAGTGGTCTT -ACGGAAACGCATGACAGTACGCTT -ACGGAAACGCATGACAGTAGCGTT -ACGGAAACGCATGACAGTTTCGTC -ACGGAAACGCATGACAGTTCTCTC -ACGGAAACGCATGACAGTTGGATC -ACGGAAACGCATGACAGTCACTTC -ACGGAAACGCATGACAGTGTACTC -ACGGAAACGCATGACAGTGATGTC -ACGGAAACGCATGACAGTACAGTC -ACGGAAACGCATGACAGTTTGCTG -ACGGAAACGCATGACAGTTCCATG -ACGGAAACGCATGACAGTTGTGTG -ACGGAAACGCATGACAGTCTAGTG -ACGGAAACGCATGACAGTCATCTG -ACGGAAACGCATGACAGTGAGTTG -ACGGAAACGCATGACAGTAGACTG -ACGGAAACGCATGACAGTTCGGTA -ACGGAAACGCATGACAGTTGCCTA -ACGGAAACGCATGACAGTCCACTA -ACGGAAACGCATGACAGTGGAGTA -ACGGAAACGCATGACAGTTCGTCT -ACGGAAACGCATGACAGTTGCACT -ACGGAAACGCATGACAGTCTGACT -ACGGAAACGCATGACAGTCAACCT -ACGGAAACGCATGACAGTGCTACT -ACGGAAACGCATGACAGTGGATCT -ACGGAAACGCATGACAGTAAGGCT -ACGGAAACGCATGACAGTTCAACC -ACGGAAACGCATGACAGTTGTTCC -ACGGAAACGCATGACAGTATTCCC -ACGGAAACGCATGACAGTTTCTCG -ACGGAAACGCATGACAGTTAGACG -ACGGAAACGCATGACAGTGTAACG -ACGGAAACGCATGACAGTACTTCG -ACGGAAACGCATGACAGTTACGCA -ACGGAAACGCATGACAGTCTTGCA -ACGGAAACGCATGACAGTCGAACA -ACGGAAACGCATGACAGTCAGTCA -ACGGAAACGCATGACAGTGATCCA -ACGGAAACGCATGACAGTACGACA -ACGGAAACGCATGACAGTAGCTCA -ACGGAAACGCATGACAGTTCACGT -ACGGAAACGCATGACAGTCGTAGT -ACGGAAACGCATGACAGTGTCAGT -ACGGAAACGCATGACAGTGAAGGT -ACGGAAACGCATGACAGTAACCGT -ACGGAAACGCATGACAGTTTGTGC -ACGGAAACGCATGACAGTCTAAGC -ACGGAAACGCATGACAGTACTAGC -ACGGAAACGCATGACAGTAGATGC -ACGGAAACGCATGACAGTTGAAGG -ACGGAAACGCATGACAGTCAATGG -ACGGAAACGCATGACAGTATGAGG -ACGGAAACGCATGACAGTAATGGG -ACGGAAACGCATGACAGTTCCTGA -ACGGAAACGCATGACAGTTAGCGA -ACGGAAACGCATGACAGTCACAGA -ACGGAAACGCATGACAGTGCAAGA -ACGGAAACGCATGACAGTGGTTGA -ACGGAAACGCATGACAGTTCCGAT -ACGGAAACGCATGACAGTTGGCAT -ACGGAAACGCATGACAGTCGAGAT -ACGGAAACGCATGACAGTTACCAC -ACGGAAACGCATGACAGTCAGAAC -ACGGAAACGCATGACAGTGTCTAC -ACGGAAACGCATGACAGTACGTAC -ACGGAAACGCATGACAGTAGTGAC -ACGGAAACGCATGACAGTCTGTAG -ACGGAAACGCATGACAGTCCTAAG -ACGGAAACGCATGACAGTGTTCAG -ACGGAAACGCATGACAGTGCATAG -ACGGAAACGCATGACAGTGACAAG -ACGGAAACGCATGACAGTAAGCAG -ACGGAAACGCATGACAGTCGTCAA -ACGGAAACGCATGACAGTGCTGAA -ACGGAAACGCATGACAGTAGTACG -ACGGAAACGCATGACAGTATCCGA -ACGGAAACGCATGACAGTATGGGA -ACGGAAACGCATGACAGTGTGCAA -ACGGAAACGCATGACAGTGAGGAA -ACGGAAACGCATGACAGTCAGGTA -ACGGAAACGCATGACAGTGACTCT -ACGGAAACGCATGACAGTAGTCCT -ACGGAAACGCATGACAGTTAAGCC -ACGGAAACGCATGACAGTATAGCC -ACGGAAACGCATGACAGTTAACCG -ACGGAAACGCATGACAGTATGCCA -ACGGAAACGCATTAGCTGGGAAAC -ACGGAAACGCATTAGCTGAACACC -ACGGAAACGCATTAGCTGATCGAG -ACGGAAACGCATTAGCTGCTCCTT -ACGGAAACGCATTAGCTGCCTGTT -ACGGAAACGCATTAGCTGCGGTTT -ACGGAAACGCATTAGCTGGTGGTT -ACGGAAACGCATTAGCTGGCCTTT -ACGGAAACGCATTAGCTGGGTCTT -ACGGAAACGCATTAGCTGACGCTT -ACGGAAACGCATTAGCTGAGCGTT -ACGGAAACGCATTAGCTGTTCGTC -ACGGAAACGCATTAGCTGTCTCTC -ACGGAAACGCATTAGCTGTGGATC -ACGGAAACGCATTAGCTGCACTTC -ACGGAAACGCATTAGCTGGTACTC -ACGGAAACGCATTAGCTGGATGTC -ACGGAAACGCATTAGCTGACAGTC -ACGGAAACGCATTAGCTGTTGCTG -ACGGAAACGCATTAGCTGTCCATG -ACGGAAACGCATTAGCTGTGTGTG -ACGGAAACGCATTAGCTGCTAGTG -ACGGAAACGCATTAGCTGCATCTG -ACGGAAACGCATTAGCTGGAGTTG -ACGGAAACGCATTAGCTGAGACTG -ACGGAAACGCATTAGCTGTCGGTA -ACGGAAACGCATTAGCTGTGCCTA -ACGGAAACGCATTAGCTGCCACTA -ACGGAAACGCATTAGCTGGGAGTA -ACGGAAACGCATTAGCTGTCGTCT -ACGGAAACGCATTAGCTGTGCACT -ACGGAAACGCATTAGCTGCTGACT -ACGGAAACGCATTAGCTGCAACCT -ACGGAAACGCATTAGCTGGCTACT -ACGGAAACGCATTAGCTGGGATCT -ACGGAAACGCATTAGCTGAAGGCT -ACGGAAACGCATTAGCTGTCAACC -ACGGAAACGCATTAGCTGTGTTCC -ACGGAAACGCATTAGCTGATTCCC -ACGGAAACGCATTAGCTGTTCTCG -ACGGAAACGCATTAGCTGTAGACG -ACGGAAACGCATTAGCTGGTAACG -ACGGAAACGCATTAGCTGACTTCG -ACGGAAACGCATTAGCTGTACGCA -ACGGAAACGCATTAGCTGCTTGCA -ACGGAAACGCATTAGCTGCGAACA -ACGGAAACGCATTAGCTGCAGTCA -ACGGAAACGCATTAGCTGGATCCA -ACGGAAACGCATTAGCTGACGACA -ACGGAAACGCATTAGCTGAGCTCA -ACGGAAACGCATTAGCTGTCACGT -ACGGAAACGCATTAGCTGCGTAGT -ACGGAAACGCATTAGCTGGTCAGT -ACGGAAACGCATTAGCTGGAAGGT -ACGGAAACGCATTAGCTGAACCGT -ACGGAAACGCATTAGCTGTTGTGC -ACGGAAACGCATTAGCTGCTAAGC -ACGGAAACGCATTAGCTGACTAGC -ACGGAAACGCATTAGCTGAGATGC -ACGGAAACGCATTAGCTGTGAAGG -ACGGAAACGCATTAGCTGCAATGG -ACGGAAACGCATTAGCTGATGAGG -ACGGAAACGCATTAGCTGAATGGG -ACGGAAACGCATTAGCTGTCCTGA -ACGGAAACGCATTAGCTGTAGCGA -ACGGAAACGCATTAGCTGCACAGA -ACGGAAACGCATTAGCTGGCAAGA -ACGGAAACGCATTAGCTGGGTTGA -ACGGAAACGCATTAGCTGTCCGAT -ACGGAAACGCATTAGCTGTGGCAT -ACGGAAACGCATTAGCTGCGAGAT -ACGGAAACGCATTAGCTGTACCAC -ACGGAAACGCATTAGCTGCAGAAC -ACGGAAACGCATTAGCTGGTCTAC -ACGGAAACGCATTAGCTGACGTAC -ACGGAAACGCATTAGCTGAGTGAC -ACGGAAACGCATTAGCTGCTGTAG -ACGGAAACGCATTAGCTGCCTAAG -ACGGAAACGCATTAGCTGGTTCAG -ACGGAAACGCATTAGCTGGCATAG -ACGGAAACGCATTAGCTGGACAAG -ACGGAAACGCATTAGCTGAAGCAG -ACGGAAACGCATTAGCTGCGTCAA -ACGGAAACGCATTAGCTGGCTGAA -ACGGAAACGCATTAGCTGAGTACG -ACGGAAACGCATTAGCTGATCCGA -ACGGAAACGCATTAGCTGATGGGA -ACGGAAACGCATTAGCTGGTGCAA -ACGGAAACGCATTAGCTGGAGGAA -ACGGAAACGCATTAGCTGCAGGTA -ACGGAAACGCATTAGCTGGACTCT -ACGGAAACGCATTAGCTGAGTCCT -ACGGAAACGCATTAGCTGTAAGCC -ACGGAAACGCATTAGCTGATAGCC -ACGGAAACGCATTAGCTGTAACCG -ACGGAAACGCATTAGCTGATGCCA -ACGGAAACGCATAAGCCTGGAAAC -ACGGAAACGCATAAGCCTAACACC -ACGGAAACGCATAAGCCTATCGAG -ACGGAAACGCATAAGCCTCTCCTT -ACGGAAACGCATAAGCCTCCTGTT -ACGGAAACGCATAAGCCTCGGTTT -ACGGAAACGCATAAGCCTGTGGTT -ACGGAAACGCATAAGCCTGCCTTT -ACGGAAACGCATAAGCCTGGTCTT -ACGGAAACGCATAAGCCTACGCTT -ACGGAAACGCATAAGCCTAGCGTT -ACGGAAACGCATAAGCCTTTCGTC -ACGGAAACGCATAAGCCTTCTCTC -ACGGAAACGCATAAGCCTTGGATC -ACGGAAACGCATAAGCCTCACTTC -ACGGAAACGCATAAGCCTGTACTC -ACGGAAACGCATAAGCCTGATGTC -ACGGAAACGCATAAGCCTACAGTC -ACGGAAACGCATAAGCCTTTGCTG -ACGGAAACGCATAAGCCTTCCATG -ACGGAAACGCATAAGCCTTGTGTG -ACGGAAACGCATAAGCCTCTAGTG -ACGGAAACGCATAAGCCTCATCTG -ACGGAAACGCATAAGCCTGAGTTG -ACGGAAACGCATAAGCCTAGACTG -ACGGAAACGCATAAGCCTTCGGTA -ACGGAAACGCATAAGCCTTGCCTA -ACGGAAACGCATAAGCCTCCACTA -ACGGAAACGCATAAGCCTGGAGTA -ACGGAAACGCATAAGCCTTCGTCT -ACGGAAACGCATAAGCCTTGCACT -ACGGAAACGCATAAGCCTCTGACT -ACGGAAACGCATAAGCCTCAACCT -ACGGAAACGCATAAGCCTGCTACT -ACGGAAACGCATAAGCCTGGATCT -ACGGAAACGCATAAGCCTAAGGCT -ACGGAAACGCATAAGCCTTCAACC -ACGGAAACGCATAAGCCTTGTTCC -ACGGAAACGCATAAGCCTATTCCC -ACGGAAACGCATAAGCCTTTCTCG -ACGGAAACGCATAAGCCTTAGACG -ACGGAAACGCATAAGCCTGTAACG -ACGGAAACGCATAAGCCTACTTCG -ACGGAAACGCATAAGCCTTACGCA -ACGGAAACGCATAAGCCTCTTGCA -ACGGAAACGCATAAGCCTCGAACA -ACGGAAACGCATAAGCCTCAGTCA -ACGGAAACGCATAAGCCTGATCCA -ACGGAAACGCATAAGCCTACGACA -ACGGAAACGCATAAGCCTAGCTCA -ACGGAAACGCATAAGCCTTCACGT -ACGGAAACGCATAAGCCTCGTAGT -ACGGAAACGCATAAGCCTGTCAGT -ACGGAAACGCATAAGCCTGAAGGT -ACGGAAACGCATAAGCCTAACCGT -ACGGAAACGCATAAGCCTTTGTGC -ACGGAAACGCATAAGCCTCTAAGC -ACGGAAACGCATAAGCCTACTAGC -ACGGAAACGCATAAGCCTAGATGC -ACGGAAACGCATAAGCCTTGAAGG -ACGGAAACGCATAAGCCTCAATGG -ACGGAAACGCATAAGCCTATGAGG -ACGGAAACGCATAAGCCTAATGGG -ACGGAAACGCATAAGCCTTCCTGA -ACGGAAACGCATAAGCCTTAGCGA -ACGGAAACGCATAAGCCTCACAGA -ACGGAAACGCATAAGCCTGCAAGA -ACGGAAACGCATAAGCCTGGTTGA -ACGGAAACGCATAAGCCTTCCGAT -ACGGAAACGCATAAGCCTTGGCAT -ACGGAAACGCATAAGCCTCGAGAT -ACGGAAACGCATAAGCCTTACCAC -ACGGAAACGCATAAGCCTCAGAAC -ACGGAAACGCATAAGCCTGTCTAC -ACGGAAACGCATAAGCCTACGTAC -ACGGAAACGCATAAGCCTAGTGAC -ACGGAAACGCATAAGCCTCTGTAG -ACGGAAACGCATAAGCCTCCTAAG -ACGGAAACGCATAAGCCTGTTCAG -ACGGAAACGCATAAGCCTGCATAG -ACGGAAACGCATAAGCCTGACAAG -ACGGAAACGCATAAGCCTAAGCAG -ACGGAAACGCATAAGCCTCGTCAA -ACGGAAACGCATAAGCCTGCTGAA -ACGGAAACGCATAAGCCTAGTACG -ACGGAAACGCATAAGCCTATCCGA -ACGGAAACGCATAAGCCTATGGGA -ACGGAAACGCATAAGCCTGTGCAA -ACGGAAACGCATAAGCCTGAGGAA -ACGGAAACGCATAAGCCTCAGGTA -ACGGAAACGCATAAGCCTGACTCT -ACGGAAACGCATAAGCCTAGTCCT -ACGGAAACGCATAAGCCTTAAGCC -ACGGAAACGCATAAGCCTATAGCC -ACGGAAACGCATAAGCCTTAACCG -ACGGAAACGCATAAGCCTATGCCA -ACGGAAACGCATCAGGTTGGAAAC -ACGGAAACGCATCAGGTTAACACC -ACGGAAACGCATCAGGTTATCGAG -ACGGAAACGCATCAGGTTCTCCTT -ACGGAAACGCATCAGGTTCCTGTT -ACGGAAACGCATCAGGTTCGGTTT -ACGGAAACGCATCAGGTTGTGGTT -ACGGAAACGCATCAGGTTGCCTTT -ACGGAAACGCATCAGGTTGGTCTT -ACGGAAACGCATCAGGTTACGCTT -ACGGAAACGCATCAGGTTAGCGTT -ACGGAAACGCATCAGGTTTTCGTC -ACGGAAACGCATCAGGTTTCTCTC -ACGGAAACGCATCAGGTTTGGATC -ACGGAAACGCATCAGGTTCACTTC -ACGGAAACGCATCAGGTTGTACTC -ACGGAAACGCATCAGGTTGATGTC -ACGGAAACGCATCAGGTTACAGTC -ACGGAAACGCATCAGGTTTTGCTG -ACGGAAACGCATCAGGTTTCCATG -ACGGAAACGCATCAGGTTTGTGTG -ACGGAAACGCATCAGGTTCTAGTG -ACGGAAACGCATCAGGTTCATCTG -ACGGAAACGCATCAGGTTGAGTTG -ACGGAAACGCATCAGGTTAGACTG -ACGGAAACGCATCAGGTTTCGGTA -ACGGAAACGCATCAGGTTTGCCTA -ACGGAAACGCATCAGGTTCCACTA -ACGGAAACGCATCAGGTTGGAGTA -ACGGAAACGCATCAGGTTTCGTCT -ACGGAAACGCATCAGGTTTGCACT -ACGGAAACGCATCAGGTTCTGACT -ACGGAAACGCATCAGGTTCAACCT -ACGGAAACGCATCAGGTTGCTACT -ACGGAAACGCATCAGGTTGGATCT -ACGGAAACGCATCAGGTTAAGGCT -ACGGAAACGCATCAGGTTTCAACC -ACGGAAACGCATCAGGTTTGTTCC -ACGGAAACGCATCAGGTTATTCCC -ACGGAAACGCATCAGGTTTTCTCG -ACGGAAACGCATCAGGTTTAGACG -ACGGAAACGCATCAGGTTGTAACG -ACGGAAACGCATCAGGTTACTTCG -ACGGAAACGCATCAGGTTTACGCA -ACGGAAACGCATCAGGTTCTTGCA -ACGGAAACGCATCAGGTTCGAACA -ACGGAAACGCATCAGGTTCAGTCA -ACGGAAACGCATCAGGTTGATCCA -ACGGAAACGCATCAGGTTACGACA -ACGGAAACGCATCAGGTTAGCTCA -ACGGAAACGCATCAGGTTTCACGT -ACGGAAACGCATCAGGTTCGTAGT -ACGGAAACGCATCAGGTTGTCAGT -ACGGAAACGCATCAGGTTGAAGGT -ACGGAAACGCATCAGGTTAACCGT -ACGGAAACGCATCAGGTTTTGTGC -ACGGAAACGCATCAGGTTCTAAGC -ACGGAAACGCATCAGGTTACTAGC -ACGGAAACGCATCAGGTTAGATGC -ACGGAAACGCATCAGGTTTGAAGG -ACGGAAACGCATCAGGTTCAATGG -ACGGAAACGCATCAGGTTATGAGG -ACGGAAACGCATCAGGTTAATGGG -ACGGAAACGCATCAGGTTTCCTGA -ACGGAAACGCATCAGGTTTAGCGA -ACGGAAACGCATCAGGTTCACAGA -ACGGAAACGCATCAGGTTGCAAGA -ACGGAAACGCATCAGGTTGGTTGA -ACGGAAACGCATCAGGTTTCCGAT -ACGGAAACGCATCAGGTTTGGCAT -ACGGAAACGCATCAGGTTCGAGAT -ACGGAAACGCATCAGGTTTACCAC -ACGGAAACGCATCAGGTTCAGAAC -ACGGAAACGCATCAGGTTGTCTAC -ACGGAAACGCATCAGGTTACGTAC -ACGGAAACGCATCAGGTTAGTGAC -ACGGAAACGCATCAGGTTCTGTAG -ACGGAAACGCATCAGGTTCCTAAG -ACGGAAACGCATCAGGTTGTTCAG -ACGGAAACGCATCAGGTTGCATAG -ACGGAAACGCATCAGGTTGACAAG -ACGGAAACGCATCAGGTTAAGCAG -ACGGAAACGCATCAGGTTCGTCAA -ACGGAAACGCATCAGGTTGCTGAA -ACGGAAACGCATCAGGTTAGTACG -ACGGAAACGCATCAGGTTATCCGA -ACGGAAACGCATCAGGTTATGGGA -ACGGAAACGCATCAGGTTGTGCAA -ACGGAAACGCATCAGGTTGAGGAA -ACGGAAACGCATCAGGTTCAGGTA -ACGGAAACGCATCAGGTTGACTCT -ACGGAAACGCATCAGGTTAGTCCT -ACGGAAACGCATCAGGTTTAAGCC -ACGGAAACGCATCAGGTTATAGCC -ACGGAAACGCATCAGGTTTAACCG -ACGGAAACGCATCAGGTTATGCCA -ACGGAAACGCATTAGGCAGGAAAC -ACGGAAACGCATTAGGCAAACACC -ACGGAAACGCATTAGGCAATCGAG -ACGGAAACGCATTAGGCACTCCTT -ACGGAAACGCATTAGGCACCTGTT -ACGGAAACGCATTAGGCACGGTTT -ACGGAAACGCATTAGGCAGTGGTT -ACGGAAACGCATTAGGCAGCCTTT -ACGGAAACGCATTAGGCAGGTCTT -ACGGAAACGCATTAGGCAACGCTT -ACGGAAACGCATTAGGCAAGCGTT -ACGGAAACGCATTAGGCATTCGTC -ACGGAAACGCATTAGGCATCTCTC -ACGGAAACGCATTAGGCATGGATC -ACGGAAACGCATTAGGCACACTTC -ACGGAAACGCATTAGGCAGTACTC -ACGGAAACGCATTAGGCAGATGTC -ACGGAAACGCATTAGGCAACAGTC -ACGGAAACGCATTAGGCATTGCTG -ACGGAAACGCATTAGGCATCCATG -ACGGAAACGCATTAGGCATGTGTG -ACGGAAACGCATTAGGCACTAGTG -ACGGAAACGCATTAGGCACATCTG -ACGGAAACGCATTAGGCAGAGTTG -ACGGAAACGCATTAGGCAAGACTG -ACGGAAACGCATTAGGCATCGGTA -ACGGAAACGCATTAGGCATGCCTA -ACGGAAACGCATTAGGCACCACTA -ACGGAAACGCATTAGGCAGGAGTA -ACGGAAACGCATTAGGCATCGTCT -ACGGAAACGCATTAGGCATGCACT -ACGGAAACGCATTAGGCACTGACT -ACGGAAACGCATTAGGCACAACCT -ACGGAAACGCATTAGGCAGCTACT -ACGGAAACGCATTAGGCAGGATCT -ACGGAAACGCATTAGGCAAAGGCT -ACGGAAACGCATTAGGCATCAACC -ACGGAAACGCATTAGGCATGTTCC -ACGGAAACGCATTAGGCAATTCCC -ACGGAAACGCATTAGGCATTCTCG -ACGGAAACGCATTAGGCATAGACG -ACGGAAACGCATTAGGCAGTAACG -ACGGAAACGCATTAGGCAACTTCG -ACGGAAACGCATTAGGCATACGCA -ACGGAAACGCATTAGGCACTTGCA -ACGGAAACGCATTAGGCACGAACA -ACGGAAACGCATTAGGCACAGTCA -ACGGAAACGCATTAGGCAGATCCA -ACGGAAACGCATTAGGCAACGACA -ACGGAAACGCATTAGGCAAGCTCA -ACGGAAACGCATTAGGCATCACGT -ACGGAAACGCATTAGGCACGTAGT -ACGGAAACGCATTAGGCAGTCAGT -ACGGAAACGCATTAGGCAGAAGGT -ACGGAAACGCATTAGGCAAACCGT -ACGGAAACGCATTAGGCATTGTGC -ACGGAAACGCATTAGGCACTAAGC -ACGGAAACGCATTAGGCAACTAGC -ACGGAAACGCATTAGGCAAGATGC -ACGGAAACGCATTAGGCATGAAGG -ACGGAAACGCATTAGGCACAATGG -ACGGAAACGCATTAGGCAATGAGG -ACGGAAACGCATTAGGCAAATGGG -ACGGAAACGCATTAGGCATCCTGA -ACGGAAACGCATTAGGCATAGCGA -ACGGAAACGCATTAGGCACACAGA -ACGGAAACGCATTAGGCAGCAAGA -ACGGAAACGCATTAGGCAGGTTGA -ACGGAAACGCATTAGGCATCCGAT -ACGGAAACGCATTAGGCATGGCAT -ACGGAAACGCATTAGGCACGAGAT -ACGGAAACGCATTAGGCATACCAC -ACGGAAACGCATTAGGCACAGAAC -ACGGAAACGCATTAGGCAGTCTAC -ACGGAAACGCATTAGGCAACGTAC -ACGGAAACGCATTAGGCAAGTGAC -ACGGAAACGCATTAGGCACTGTAG -ACGGAAACGCATTAGGCACCTAAG -ACGGAAACGCATTAGGCAGTTCAG -ACGGAAACGCATTAGGCAGCATAG -ACGGAAACGCATTAGGCAGACAAG -ACGGAAACGCATTAGGCAAAGCAG -ACGGAAACGCATTAGGCACGTCAA -ACGGAAACGCATTAGGCAGCTGAA -ACGGAAACGCATTAGGCAAGTACG -ACGGAAACGCATTAGGCAATCCGA -ACGGAAACGCATTAGGCAATGGGA -ACGGAAACGCATTAGGCAGTGCAA -ACGGAAACGCATTAGGCAGAGGAA -ACGGAAACGCATTAGGCACAGGTA -ACGGAAACGCATTAGGCAGACTCT -ACGGAAACGCATTAGGCAAGTCCT -ACGGAAACGCATTAGGCATAAGCC -ACGGAAACGCATTAGGCAATAGCC -ACGGAAACGCATTAGGCATAACCG -ACGGAAACGCATTAGGCAATGCCA -ACGGAAACGCATAAGGACGGAAAC -ACGGAAACGCATAAGGACAACACC -ACGGAAACGCATAAGGACATCGAG -ACGGAAACGCATAAGGACCTCCTT -ACGGAAACGCATAAGGACCCTGTT -ACGGAAACGCATAAGGACCGGTTT -ACGGAAACGCATAAGGACGTGGTT -ACGGAAACGCATAAGGACGCCTTT -ACGGAAACGCATAAGGACGGTCTT -ACGGAAACGCATAAGGACACGCTT -ACGGAAACGCATAAGGACAGCGTT -ACGGAAACGCATAAGGACTTCGTC -ACGGAAACGCATAAGGACTCTCTC -ACGGAAACGCATAAGGACTGGATC -ACGGAAACGCATAAGGACCACTTC -ACGGAAACGCATAAGGACGTACTC -ACGGAAACGCATAAGGACGATGTC -ACGGAAACGCATAAGGACACAGTC -ACGGAAACGCATAAGGACTTGCTG -ACGGAAACGCATAAGGACTCCATG -ACGGAAACGCATAAGGACTGTGTG -ACGGAAACGCATAAGGACCTAGTG -ACGGAAACGCATAAGGACCATCTG -ACGGAAACGCATAAGGACGAGTTG -ACGGAAACGCATAAGGACAGACTG -ACGGAAACGCATAAGGACTCGGTA -ACGGAAACGCATAAGGACTGCCTA -ACGGAAACGCATAAGGACCCACTA -ACGGAAACGCATAAGGACGGAGTA -ACGGAAACGCATAAGGACTCGTCT -ACGGAAACGCATAAGGACTGCACT -ACGGAAACGCATAAGGACCTGACT -ACGGAAACGCATAAGGACCAACCT -ACGGAAACGCATAAGGACGCTACT -ACGGAAACGCATAAGGACGGATCT -ACGGAAACGCATAAGGACAAGGCT -ACGGAAACGCATAAGGACTCAACC -ACGGAAACGCATAAGGACTGTTCC -ACGGAAACGCATAAGGACATTCCC -ACGGAAACGCATAAGGACTTCTCG -ACGGAAACGCATAAGGACTAGACG -ACGGAAACGCATAAGGACGTAACG -ACGGAAACGCATAAGGACACTTCG -ACGGAAACGCATAAGGACTACGCA -ACGGAAACGCATAAGGACCTTGCA -ACGGAAACGCATAAGGACCGAACA -ACGGAAACGCATAAGGACCAGTCA -ACGGAAACGCATAAGGACGATCCA -ACGGAAACGCATAAGGACACGACA -ACGGAAACGCATAAGGACAGCTCA -ACGGAAACGCATAAGGACTCACGT -ACGGAAACGCATAAGGACCGTAGT -ACGGAAACGCATAAGGACGTCAGT -ACGGAAACGCATAAGGACGAAGGT -ACGGAAACGCATAAGGACAACCGT -ACGGAAACGCATAAGGACTTGTGC -ACGGAAACGCATAAGGACCTAAGC -ACGGAAACGCATAAGGACACTAGC -ACGGAAACGCATAAGGACAGATGC -ACGGAAACGCATAAGGACTGAAGG -ACGGAAACGCATAAGGACCAATGG -ACGGAAACGCATAAGGACATGAGG -ACGGAAACGCATAAGGACAATGGG -ACGGAAACGCATAAGGACTCCTGA -ACGGAAACGCATAAGGACTAGCGA -ACGGAAACGCATAAGGACCACAGA -ACGGAAACGCATAAGGACGCAAGA -ACGGAAACGCATAAGGACGGTTGA -ACGGAAACGCATAAGGACTCCGAT -ACGGAAACGCATAAGGACTGGCAT -ACGGAAACGCATAAGGACCGAGAT -ACGGAAACGCATAAGGACTACCAC -ACGGAAACGCATAAGGACCAGAAC -ACGGAAACGCATAAGGACGTCTAC -ACGGAAACGCATAAGGACACGTAC -ACGGAAACGCATAAGGACAGTGAC -ACGGAAACGCATAAGGACCTGTAG -ACGGAAACGCATAAGGACCCTAAG -ACGGAAACGCATAAGGACGTTCAG -ACGGAAACGCATAAGGACGCATAG -ACGGAAACGCATAAGGACGACAAG -ACGGAAACGCATAAGGACAAGCAG -ACGGAAACGCATAAGGACCGTCAA -ACGGAAACGCATAAGGACGCTGAA -ACGGAAACGCATAAGGACAGTACG -ACGGAAACGCATAAGGACATCCGA -ACGGAAACGCATAAGGACATGGGA -ACGGAAACGCATAAGGACGTGCAA -ACGGAAACGCATAAGGACGAGGAA -ACGGAAACGCATAAGGACCAGGTA -ACGGAAACGCATAAGGACGACTCT -ACGGAAACGCATAAGGACAGTCCT -ACGGAAACGCATAAGGACTAAGCC -ACGGAAACGCATAAGGACATAGCC -ACGGAAACGCATAAGGACTAACCG -ACGGAAACGCATAAGGACATGCCA -ACGGAAACGCATCAGAAGGGAAAC -ACGGAAACGCATCAGAAGAACACC -ACGGAAACGCATCAGAAGATCGAG -ACGGAAACGCATCAGAAGCTCCTT -ACGGAAACGCATCAGAAGCCTGTT -ACGGAAACGCATCAGAAGCGGTTT -ACGGAAACGCATCAGAAGGTGGTT -ACGGAAACGCATCAGAAGGCCTTT -ACGGAAACGCATCAGAAGGGTCTT -ACGGAAACGCATCAGAAGACGCTT -ACGGAAACGCATCAGAAGAGCGTT -ACGGAAACGCATCAGAAGTTCGTC -ACGGAAACGCATCAGAAGTCTCTC -ACGGAAACGCATCAGAAGTGGATC -ACGGAAACGCATCAGAAGCACTTC -ACGGAAACGCATCAGAAGGTACTC -ACGGAAACGCATCAGAAGGATGTC -ACGGAAACGCATCAGAAGACAGTC -ACGGAAACGCATCAGAAGTTGCTG -ACGGAAACGCATCAGAAGTCCATG -ACGGAAACGCATCAGAAGTGTGTG -ACGGAAACGCATCAGAAGCTAGTG -ACGGAAACGCATCAGAAGCATCTG -ACGGAAACGCATCAGAAGGAGTTG -ACGGAAACGCATCAGAAGAGACTG -ACGGAAACGCATCAGAAGTCGGTA -ACGGAAACGCATCAGAAGTGCCTA -ACGGAAACGCATCAGAAGCCACTA -ACGGAAACGCATCAGAAGGGAGTA -ACGGAAACGCATCAGAAGTCGTCT -ACGGAAACGCATCAGAAGTGCACT -ACGGAAACGCATCAGAAGCTGACT -ACGGAAACGCATCAGAAGCAACCT -ACGGAAACGCATCAGAAGGCTACT -ACGGAAACGCATCAGAAGGGATCT -ACGGAAACGCATCAGAAGAAGGCT -ACGGAAACGCATCAGAAGTCAACC -ACGGAAACGCATCAGAAGTGTTCC -ACGGAAACGCATCAGAAGATTCCC -ACGGAAACGCATCAGAAGTTCTCG -ACGGAAACGCATCAGAAGTAGACG -ACGGAAACGCATCAGAAGGTAACG -ACGGAAACGCATCAGAAGACTTCG -ACGGAAACGCATCAGAAGTACGCA -ACGGAAACGCATCAGAAGCTTGCA -ACGGAAACGCATCAGAAGCGAACA -ACGGAAACGCATCAGAAGCAGTCA -ACGGAAACGCATCAGAAGGATCCA -ACGGAAACGCATCAGAAGACGACA -ACGGAAACGCATCAGAAGAGCTCA -ACGGAAACGCATCAGAAGTCACGT -ACGGAAACGCATCAGAAGCGTAGT -ACGGAAACGCATCAGAAGGTCAGT -ACGGAAACGCATCAGAAGGAAGGT -ACGGAAACGCATCAGAAGAACCGT -ACGGAAACGCATCAGAAGTTGTGC -ACGGAAACGCATCAGAAGCTAAGC -ACGGAAACGCATCAGAAGACTAGC -ACGGAAACGCATCAGAAGAGATGC -ACGGAAACGCATCAGAAGTGAAGG -ACGGAAACGCATCAGAAGCAATGG -ACGGAAACGCATCAGAAGATGAGG -ACGGAAACGCATCAGAAGAATGGG -ACGGAAACGCATCAGAAGTCCTGA -ACGGAAACGCATCAGAAGTAGCGA -ACGGAAACGCATCAGAAGCACAGA -ACGGAAACGCATCAGAAGGCAAGA -ACGGAAACGCATCAGAAGGGTTGA -ACGGAAACGCATCAGAAGTCCGAT -ACGGAAACGCATCAGAAGTGGCAT -ACGGAAACGCATCAGAAGCGAGAT -ACGGAAACGCATCAGAAGTACCAC -ACGGAAACGCATCAGAAGCAGAAC -ACGGAAACGCATCAGAAGGTCTAC -ACGGAAACGCATCAGAAGACGTAC -ACGGAAACGCATCAGAAGAGTGAC -ACGGAAACGCATCAGAAGCTGTAG -ACGGAAACGCATCAGAAGCCTAAG -ACGGAAACGCATCAGAAGGTTCAG -ACGGAAACGCATCAGAAGGCATAG -ACGGAAACGCATCAGAAGGACAAG -ACGGAAACGCATCAGAAGAAGCAG -ACGGAAACGCATCAGAAGCGTCAA -ACGGAAACGCATCAGAAGGCTGAA -ACGGAAACGCATCAGAAGAGTACG -ACGGAAACGCATCAGAAGATCCGA -ACGGAAACGCATCAGAAGATGGGA -ACGGAAACGCATCAGAAGGTGCAA -ACGGAAACGCATCAGAAGGAGGAA -ACGGAAACGCATCAGAAGCAGGTA -ACGGAAACGCATCAGAAGGACTCT -ACGGAAACGCATCAGAAGAGTCCT -ACGGAAACGCATCAGAAGTAAGCC -ACGGAAACGCATCAGAAGATAGCC -ACGGAAACGCATCAGAAGTAACCG -ACGGAAACGCATCAGAAGATGCCA -ACGGAAACGCATCAACGTGGAAAC -ACGGAAACGCATCAACGTAACACC -ACGGAAACGCATCAACGTATCGAG -ACGGAAACGCATCAACGTCTCCTT -ACGGAAACGCATCAACGTCCTGTT -ACGGAAACGCATCAACGTCGGTTT -ACGGAAACGCATCAACGTGTGGTT -ACGGAAACGCATCAACGTGCCTTT -ACGGAAACGCATCAACGTGGTCTT -ACGGAAACGCATCAACGTACGCTT -ACGGAAACGCATCAACGTAGCGTT -ACGGAAACGCATCAACGTTTCGTC -ACGGAAACGCATCAACGTTCTCTC -ACGGAAACGCATCAACGTTGGATC -ACGGAAACGCATCAACGTCACTTC -ACGGAAACGCATCAACGTGTACTC -ACGGAAACGCATCAACGTGATGTC -ACGGAAACGCATCAACGTACAGTC -ACGGAAACGCATCAACGTTTGCTG -ACGGAAACGCATCAACGTTCCATG -ACGGAAACGCATCAACGTTGTGTG -ACGGAAACGCATCAACGTCTAGTG -ACGGAAACGCATCAACGTCATCTG -ACGGAAACGCATCAACGTGAGTTG -ACGGAAACGCATCAACGTAGACTG -ACGGAAACGCATCAACGTTCGGTA -ACGGAAACGCATCAACGTTGCCTA -ACGGAAACGCATCAACGTCCACTA -ACGGAAACGCATCAACGTGGAGTA -ACGGAAACGCATCAACGTTCGTCT -ACGGAAACGCATCAACGTTGCACT -ACGGAAACGCATCAACGTCTGACT -ACGGAAACGCATCAACGTCAACCT -ACGGAAACGCATCAACGTGCTACT -ACGGAAACGCATCAACGTGGATCT -ACGGAAACGCATCAACGTAAGGCT -ACGGAAACGCATCAACGTTCAACC -ACGGAAACGCATCAACGTTGTTCC -ACGGAAACGCATCAACGTATTCCC -ACGGAAACGCATCAACGTTTCTCG -ACGGAAACGCATCAACGTTAGACG -ACGGAAACGCATCAACGTGTAACG -ACGGAAACGCATCAACGTACTTCG -ACGGAAACGCATCAACGTTACGCA -ACGGAAACGCATCAACGTCTTGCA -ACGGAAACGCATCAACGTCGAACA -ACGGAAACGCATCAACGTCAGTCA -ACGGAAACGCATCAACGTGATCCA -ACGGAAACGCATCAACGTACGACA -ACGGAAACGCATCAACGTAGCTCA -ACGGAAACGCATCAACGTTCACGT -ACGGAAACGCATCAACGTCGTAGT -ACGGAAACGCATCAACGTGTCAGT -ACGGAAACGCATCAACGTGAAGGT -ACGGAAACGCATCAACGTAACCGT -ACGGAAACGCATCAACGTTTGTGC -ACGGAAACGCATCAACGTCTAAGC -ACGGAAACGCATCAACGTACTAGC -ACGGAAACGCATCAACGTAGATGC -ACGGAAACGCATCAACGTTGAAGG -ACGGAAACGCATCAACGTCAATGG -ACGGAAACGCATCAACGTATGAGG -ACGGAAACGCATCAACGTAATGGG -ACGGAAACGCATCAACGTTCCTGA -ACGGAAACGCATCAACGTTAGCGA -ACGGAAACGCATCAACGTCACAGA -ACGGAAACGCATCAACGTGCAAGA -ACGGAAACGCATCAACGTGGTTGA -ACGGAAACGCATCAACGTTCCGAT -ACGGAAACGCATCAACGTTGGCAT -ACGGAAACGCATCAACGTCGAGAT -ACGGAAACGCATCAACGTTACCAC -ACGGAAACGCATCAACGTCAGAAC -ACGGAAACGCATCAACGTGTCTAC -ACGGAAACGCATCAACGTACGTAC -ACGGAAACGCATCAACGTAGTGAC -ACGGAAACGCATCAACGTCTGTAG -ACGGAAACGCATCAACGTCCTAAG -ACGGAAACGCATCAACGTGTTCAG -ACGGAAACGCATCAACGTGCATAG -ACGGAAACGCATCAACGTGACAAG -ACGGAAACGCATCAACGTAAGCAG -ACGGAAACGCATCAACGTCGTCAA -ACGGAAACGCATCAACGTGCTGAA -ACGGAAACGCATCAACGTAGTACG -ACGGAAACGCATCAACGTATCCGA -ACGGAAACGCATCAACGTATGGGA -ACGGAAACGCATCAACGTGTGCAA -ACGGAAACGCATCAACGTGAGGAA -ACGGAAACGCATCAACGTCAGGTA -ACGGAAACGCATCAACGTGACTCT -ACGGAAACGCATCAACGTAGTCCT -ACGGAAACGCATCAACGTTAAGCC -ACGGAAACGCATCAACGTATAGCC -ACGGAAACGCATCAACGTTAACCG -ACGGAAACGCATCAACGTATGCCA -ACGGAAACGCATGAAGCTGGAAAC -ACGGAAACGCATGAAGCTAACACC -ACGGAAACGCATGAAGCTATCGAG -ACGGAAACGCATGAAGCTCTCCTT -ACGGAAACGCATGAAGCTCCTGTT -ACGGAAACGCATGAAGCTCGGTTT -ACGGAAACGCATGAAGCTGTGGTT -ACGGAAACGCATGAAGCTGCCTTT -ACGGAAACGCATGAAGCTGGTCTT -ACGGAAACGCATGAAGCTACGCTT -ACGGAAACGCATGAAGCTAGCGTT -ACGGAAACGCATGAAGCTTTCGTC -ACGGAAACGCATGAAGCTTCTCTC -ACGGAAACGCATGAAGCTTGGATC -ACGGAAACGCATGAAGCTCACTTC -ACGGAAACGCATGAAGCTGTACTC -ACGGAAACGCATGAAGCTGATGTC -ACGGAAACGCATGAAGCTACAGTC -ACGGAAACGCATGAAGCTTTGCTG -ACGGAAACGCATGAAGCTTCCATG -ACGGAAACGCATGAAGCTTGTGTG -ACGGAAACGCATGAAGCTCTAGTG -ACGGAAACGCATGAAGCTCATCTG -ACGGAAACGCATGAAGCTGAGTTG -ACGGAAACGCATGAAGCTAGACTG -ACGGAAACGCATGAAGCTTCGGTA -ACGGAAACGCATGAAGCTTGCCTA -ACGGAAACGCATGAAGCTCCACTA -ACGGAAACGCATGAAGCTGGAGTA -ACGGAAACGCATGAAGCTTCGTCT -ACGGAAACGCATGAAGCTTGCACT -ACGGAAACGCATGAAGCTCTGACT -ACGGAAACGCATGAAGCTCAACCT -ACGGAAACGCATGAAGCTGCTACT -ACGGAAACGCATGAAGCTGGATCT -ACGGAAACGCATGAAGCTAAGGCT -ACGGAAACGCATGAAGCTTCAACC -ACGGAAACGCATGAAGCTTGTTCC -ACGGAAACGCATGAAGCTATTCCC -ACGGAAACGCATGAAGCTTTCTCG -ACGGAAACGCATGAAGCTTAGACG -ACGGAAACGCATGAAGCTGTAACG -ACGGAAACGCATGAAGCTACTTCG -ACGGAAACGCATGAAGCTTACGCA -ACGGAAACGCATGAAGCTCTTGCA -ACGGAAACGCATGAAGCTCGAACA -ACGGAAACGCATGAAGCTCAGTCA -ACGGAAACGCATGAAGCTGATCCA -ACGGAAACGCATGAAGCTACGACA -ACGGAAACGCATGAAGCTAGCTCA -ACGGAAACGCATGAAGCTTCACGT -ACGGAAACGCATGAAGCTCGTAGT -ACGGAAACGCATGAAGCTGTCAGT -ACGGAAACGCATGAAGCTGAAGGT -ACGGAAACGCATGAAGCTAACCGT -ACGGAAACGCATGAAGCTTTGTGC -ACGGAAACGCATGAAGCTCTAAGC -ACGGAAACGCATGAAGCTACTAGC -ACGGAAACGCATGAAGCTAGATGC -ACGGAAACGCATGAAGCTTGAAGG -ACGGAAACGCATGAAGCTCAATGG -ACGGAAACGCATGAAGCTATGAGG -ACGGAAACGCATGAAGCTAATGGG -ACGGAAACGCATGAAGCTTCCTGA -ACGGAAACGCATGAAGCTTAGCGA -ACGGAAACGCATGAAGCTCACAGA -ACGGAAACGCATGAAGCTGCAAGA -ACGGAAACGCATGAAGCTGGTTGA -ACGGAAACGCATGAAGCTTCCGAT -ACGGAAACGCATGAAGCTTGGCAT -ACGGAAACGCATGAAGCTCGAGAT -ACGGAAACGCATGAAGCTTACCAC -ACGGAAACGCATGAAGCTCAGAAC -ACGGAAACGCATGAAGCTGTCTAC -ACGGAAACGCATGAAGCTACGTAC -ACGGAAACGCATGAAGCTAGTGAC -ACGGAAACGCATGAAGCTCTGTAG -ACGGAAACGCATGAAGCTCCTAAG -ACGGAAACGCATGAAGCTGTTCAG -ACGGAAACGCATGAAGCTGCATAG -ACGGAAACGCATGAAGCTGACAAG -ACGGAAACGCATGAAGCTAAGCAG -ACGGAAACGCATGAAGCTCGTCAA -ACGGAAACGCATGAAGCTGCTGAA -ACGGAAACGCATGAAGCTAGTACG -ACGGAAACGCATGAAGCTATCCGA -ACGGAAACGCATGAAGCTATGGGA -ACGGAAACGCATGAAGCTGTGCAA -ACGGAAACGCATGAAGCTGAGGAA -ACGGAAACGCATGAAGCTCAGGTA -ACGGAAACGCATGAAGCTGACTCT -ACGGAAACGCATGAAGCTAGTCCT -ACGGAAACGCATGAAGCTTAAGCC -ACGGAAACGCATGAAGCTATAGCC -ACGGAAACGCATGAAGCTTAACCG -ACGGAAACGCATGAAGCTATGCCA -ACGGAAACGCATACGAGTGGAAAC -ACGGAAACGCATACGAGTAACACC -ACGGAAACGCATACGAGTATCGAG -ACGGAAACGCATACGAGTCTCCTT -ACGGAAACGCATACGAGTCCTGTT -ACGGAAACGCATACGAGTCGGTTT -ACGGAAACGCATACGAGTGTGGTT -ACGGAAACGCATACGAGTGCCTTT -ACGGAAACGCATACGAGTGGTCTT -ACGGAAACGCATACGAGTACGCTT -ACGGAAACGCATACGAGTAGCGTT -ACGGAAACGCATACGAGTTTCGTC -ACGGAAACGCATACGAGTTCTCTC -ACGGAAACGCATACGAGTTGGATC -ACGGAAACGCATACGAGTCACTTC -ACGGAAACGCATACGAGTGTACTC -ACGGAAACGCATACGAGTGATGTC -ACGGAAACGCATACGAGTACAGTC -ACGGAAACGCATACGAGTTTGCTG -ACGGAAACGCATACGAGTTCCATG -ACGGAAACGCATACGAGTTGTGTG -ACGGAAACGCATACGAGTCTAGTG -ACGGAAACGCATACGAGTCATCTG -ACGGAAACGCATACGAGTGAGTTG -ACGGAAACGCATACGAGTAGACTG -ACGGAAACGCATACGAGTTCGGTA -ACGGAAACGCATACGAGTTGCCTA -ACGGAAACGCATACGAGTCCACTA -ACGGAAACGCATACGAGTGGAGTA -ACGGAAACGCATACGAGTTCGTCT -ACGGAAACGCATACGAGTTGCACT -ACGGAAACGCATACGAGTCTGACT -ACGGAAACGCATACGAGTCAACCT -ACGGAAACGCATACGAGTGCTACT -ACGGAAACGCATACGAGTGGATCT -ACGGAAACGCATACGAGTAAGGCT -ACGGAAACGCATACGAGTTCAACC -ACGGAAACGCATACGAGTTGTTCC -ACGGAAACGCATACGAGTATTCCC -ACGGAAACGCATACGAGTTTCTCG -ACGGAAACGCATACGAGTTAGACG -ACGGAAACGCATACGAGTGTAACG -ACGGAAACGCATACGAGTACTTCG -ACGGAAACGCATACGAGTTACGCA -ACGGAAACGCATACGAGTCTTGCA -ACGGAAACGCATACGAGTCGAACA -ACGGAAACGCATACGAGTCAGTCA -ACGGAAACGCATACGAGTGATCCA -ACGGAAACGCATACGAGTACGACA -ACGGAAACGCATACGAGTAGCTCA -ACGGAAACGCATACGAGTTCACGT -ACGGAAACGCATACGAGTCGTAGT -ACGGAAACGCATACGAGTGTCAGT -ACGGAAACGCATACGAGTGAAGGT -ACGGAAACGCATACGAGTAACCGT -ACGGAAACGCATACGAGTTTGTGC -ACGGAAACGCATACGAGTCTAAGC -ACGGAAACGCATACGAGTACTAGC -ACGGAAACGCATACGAGTAGATGC -ACGGAAACGCATACGAGTTGAAGG -ACGGAAACGCATACGAGTCAATGG -ACGGAAACGCATACGAGTATGAGG -ACGGAAACGCATACGAGTAATGGG -ACGGAAACGCATACGAGTTCCTGA -ACGGAAACGCATACGAGTTAGCGA -ACGGAAACGCATACGAGTCACAGA -ACGGAAACGCATACGAGTGCAAGA -ACGGAAACGCATACGAGTGGTTGA -ACGGAAACGCATACGAGTTCCGAT -ACGGAAACGCATACGAGTTGGCAT -ACGGAAACGCATACGAGTCGAGAT -ACGGAAACGCATACGAGTTACCAC -ACGGAAACGCATACGAGTCAGAAC -ACGGAAACGCATACGAGTGTCTAC -ACGGAAACGCATACGAGTACGTAC -ACGGAAACGCATACGAGTAGTGAC -ACGGAAACGCATACGAGTCTGTAG -ACGGAAACGCATACGAGTCCTAAG -ACGGAAACGCATACGAGTGTTCAG -ACGGAAACGCATACGAGTGCATAG -ACGGAAACGCATACGAGTGACAAG -ACGGAAACGCATACGAGTAAGCAG -ACGGAAACGCATACGAGTCGTCAA -ACGGAAACGCATACGAGTGCTGAA -ACGGAAACGCATACGAGTAGTACG -ACGGAAACGCATACGAGTATCCGA -ACGGAAACGCATACGAGTATGGGA -ACGGAAACGCATACGAGTGTGCAA -ACGGAAACGCATACGAGTGAGGAA -ACGGAAACGCATACGAGTCAGGTA -ACGGAAACGCATACGAGTGACTCT -ACGGAAACGCATACGAGTAGTCCT -ACGGAAACGCATACGAGTTAAGCC -ACGGAAACGCATACGAGTATAGCC -ACGGAAACGCATACGAGTTAACCG -ACGGAAACGCATACGAGTATGCCA -ACGGAAACGCATCGAATCGGAAAC -ACGGAAACGCATCGAATCAACACC -ACGGAAACGCATCGAATCATCGAG -ACGGAAACGCATCGAATCCTCCTT -ACGGAAACGCATCGAATCCCTGTT -ACGGAAACGCATCGAATCCGGTTT -ACGGAAACGCATCGAATCGTGGTT -ACGGAAACGCATCGAATCGCCTTT -ACGGAAACGCATCGAATCGGTCTT -ACGGAAACGCATCGAATCACGCTT -ACGGAAACGCATCGAATCAGCGTT -ACGGAAACGCATCGAATCTTCGTC -ACGGAAACGCATCGAATCTCTCTC -ACGGAAACGCATCGAATCTGGATC -ACGGAAACGCATCGAATCCACTTC -ACGGAAACGCATCGAATCGTACTC -ACGGAAACGCATCGAATCGATGTC -ACGGAAACGCATCGAATCACAGTC -ACGGAAACGCATCGAATCTTGCTG -ACGGAAACGCATCGAATCTCCATG -ACGGAAACGCATCGAATCTGTGTG -ACGGAAACGCATCGAATCCTAGTG -ACGGAAACGCATCGAATCCATCTG -ACGGAAACGCATCGAATCGAGTTG -ACGGAAACGCATCGAATCAGACTG -ACGGAAACGCATCGAATCTCGGTA -ACGGAAACGCATCGAATCTGCCTA -ACGGAAACGCATCGAATCCCACTA -ACGGAAACGCATCGAATCGGAGTA -ACGGAAACGCATCGAATCTCGTCT -ACGGAAACGCATCGAATCTGCACT -ACGGAAACGCATCGAATCCTGACT -ACGGAAACGCATCGAATCCAACCT -ACGGAAACGCATCGAATCGCTACT -ACGGAAACGCATCGAATCGGATCT -ACGGAAACGCATCGAATCAAGGCT -ACGGAAACGCATCGAATCTCAACC -ACGGAAACGCATCGAATCTGTTCC -ACGGAAACGCATCGAATCATTCCC -ACGGAAACGCATCGAATCTTCTCG -ACGGAAACGCATCGAATCTAGACG -ACGGAAACGCATCGAATCGTAACG -ACGGAAACGCATCGAATCACTTCG -ACGGAAACGCATCGAATCTACGCA -ACGGAAACGCATCGAATCCTTGCA -ACGGAAACGCATCGAATCCGAACA -ACGGAAACGCATCGAATCCAGTCA -ACGGAAACGCATCGAATCGATCCA -ACGGAAACGCATCGAATCACGACA -ACGGAAACGCATCGAATCAGCTCA -ACGGAAACGCATCGAATCTCACGT -ACGGAAACGCATCGAATCCGTAGT -ACGGAAACGCATCGAATCGTCAGT -ACGGAAACGCATCGAATCGAAGGT -ACGGAAACGCATCGAATCAACCGT -ACGGAAACGCATCGAATCTTGTGC -ACGGAAACGCATCGAATCCTAAGC -ACGGAAACGCATCGAATCACTAGC -ACGGAAACGCATCGAATCAGATGC -ACGGAAACGCATCGAATCTGAAGG -ACGGAAACGCATCGAATCCAATGG -ACGGAAACGCATCGAATCATGAGG -ACGGAAACGCATCGAATCAATGGG -ACGGAAACGCATCGAATCTCCTGA -ACGGAAACGCATCGAATCTAGCGA -ACGGAAACGCATCGAATCCACAGA -ACGGAAACGCATCGAATCGCAAGA -ACGGAAACGCATCGAATCGGTTGA -ACGGAAACGCATCGAATCTCCGAT -ACGGAAACGCATCGAATCTGGCAT -ACGGAAACGCATCGAATCCGAGAT -ACGGAAACGCATCGAATCTACCAC -ACGGAAACGCATCGAATCCAGAAC -ACGGAAACGCATCGAATCGTCTAC -ACGGAAACGCATCGAATCACGTAC -ACGGAAACGCATCGAATCAGTGAC -ACGGAAACGCATCGAATCCTGTAG -ACGGAAACGCATCGAATCCCTAAG -ACGGAAACGCATCGAATCGTTCAG -ACGGAAACGCATCGAATCGCATAG -ACGGAAACGCATCGAATCGACAAG -ACGGAAACGCATCGAATCAAGCAG -ACGGAAACGCATCGAATCCGTCAA -ACGGAAACGCATCGAATCGCTGAA -ACGGAAACGCATCGAATCAGTACG -ACGGAAACGCATCGAATCATCCGA -ACGGAAACGCATCGAATCATGGGA -ACGGAAACGCATCGAATCGTGCAA -ACGGAAACGCATCGAATCGAGGAA -ACGGAAACGCATCGAATCCAGGTA -ACGGAAACGCATCGAATCGACTCT -ACGGAAACGCATCGAATCAGTCCT -ACGGAAACGCATCGAATCTAAGCC -ACGGAAACGCATCGAATCATAGCC -ACGGAAACGCATCGAATCTAACCG -ACGGAAACGCATCGAATCATGCCA -ACGGAAACGCATGGAATGGGAAAC -ACGGAAACGCATGGAATGAACACC -ACGGAAACGCATGGAATGATCGAG -ACGGAAACGCATGGAATGCTCCTT -ACGGAAACGCATGGAATGCCTGTT -ACGGAAACGCATGGAATGCGGTTT -ACGGAAACGCATGGAATGGTGGTT -ACGGAAACGCATGGAATGGCCTTT -ACGGAAACGCATGGAATGGGTCTT -ACGGAAACGCATGGAATGACGCTT -ACGGAAACGCATGGAATGAGCGTT -ACGGAAACGCATGGAATGTTCGTC -ACGGAAACGCATGGAATGTCTCTC -ACGGAAACGCATGGAATGTGGATC -ACGGAAACGCATGGAATGCACTTC -ACGGAAACGCATGGAATGGTACTC -ACGGAAACGCATGGAATGGATGTC -ACGGAAACGCATGGAATGACAGTC -ACGGAAACGCATGGAATGTTGCTG -ACGGAAACGCATGGAATGTCCATG -ACGGAAACGCATGGAATGTGTGTG -ACGGAAACGCATGGAATGCTAGTG -ACGGAAACGCATGGAATGCATCTG -ACGGAAACGCATGGAATGGAGTTG -ACGGAAACGCATGGAATGAGACTG -ACGGAAACGCATGGAATGTCGGTA -ACGGAAACGCATGGAATGTGCCTA -ACGGAAACGCATGGAATGCCACTA -ACGGAAACGCATGGAATGGGAGTA -ACGGAAACGCATGGAATGTCGTCT -ACGGAAACGCATGGAATGTGCACT -ACGGAAACGCATGGAATGCTGACT -ACGGAAACGCATGGAATGCAACCT -ACGGAAACGCATGGAATGGCTACT -ACGGAAACGCATGGAATGGGATCT -ACGGAAACGCATGGAATGAAGGCT -ACGGAAACGCATGGAATGTCAACC -ACGGAAACGCATGGAATGTGTTCC -ACGGAAACGCATGGAATGATTCCC -ACGGAAACGCATGGAATGTTCTCG -ACGGAAACGCATGGAATGTAGACG -ACGGAAACGCATGGAATGGTAACG -ACGGAAACGCATGGAATGACTTCG -ACGGAAACGCATGGAATGTACGCA -ACGGAAACGCATGGAATGCTTGCA -ACGGAAACGCATGGAATGCGAACA -ACGGAAACGCATGGAATGCAGTCA -ACGGAAACGCATGGAATGGATCCA -ACGGAAACGCATGGAATGACGACA -ACGGAAACGCATGGAATGAGCTCA -ACGGAAACGCATGGAATGTCACGT -ACGGAAACGCATGGAATGCGTAGT -ACGGAAACGCATGGAATGGTCAGT -ACGGAAACGCATGGAATGGAAGGT -ACGGAAACGCATGGAATGAACCGT -ACGGAAACGCATGGAATGTTGTGC -ACGGAAACGCATGGAATGCTAAGC -ACGGAAACGCATGGAATGACTAGC -ACGGAAACGCATGGAATGAGATGC -ACGGAAACGCATGGAATGTGAAGG -ACGGAAACGCATGGAATGCAATGG -ACGGAAACGCATGGAATGATGAGG -ACGGAAACGCATGGAATGAATGGG -ACGGAAACGCATGGAATGTCCTGA -ACGGAAACGCATGGAATGTAGCGA -ACGGAAACGCATGGAATGCACAGA -ACGGAAACGCATGGAATGGCAAGA -ACGGAAACGCATGGAATGGGTTGA -ACGGAAACGCATGGAATGTCCGAT -ACGGAAACGCATGGAATGTGGCAT -ACGGAAACGCATGGAATGCGAGAT -ACGGAAACGCATGGAATGTACCAC -ACGGAAACGCATGGAATGCAGAAC -ACGGAAACGCATGGAATGGTCTAC -ACGGAAACGCATGGAATGACGTAC -ACGGAAACGCATGGAATGAGTGAC -ACGGAAACGCATGGAATGCTGTAG -ACGGAAACGCATGGAATGCCTAAG -ACGGAAACGCATGGAATGGTTCAG -ACGGAAACGCATGGAATGGCATAG -ACGGAAACGCATGGAATGGACAAG -ACGGAAACGCATGGAATGAAGCAG -ACGGAAACGCATGGAATGCGTCAA -ACGGAAACGCATGGAATGGCTGAA -ACGGAAACGCATGGAATGAGTACG -ACGGAAACGCATGGAATGATCCGA -ACGGAAACGCATGGAATGATGGGA -ACGGAAACGCATGGAATGGTGCAA -ACGGAAACGCATGGAATGGAGGAA -ACGGAAACGCATGGAATGCAGGTA -ACGGAAACGCATGGAATGGACTCT -ACGGAAACGCATGGAATGAGTCCT -ACGGAAACGCATGGAATGTAAGCC -ACGGAAACGCATGGAATGATAGCC -ACGGAAACGCATGGAATGTAACCG -ACGGAAACGCATGGAATGATGCCA -ACGGAAACGCATCAAGTGGGAAAC -ACGGAAACGCATCAAGTGAACACC -ACGGAAACGCATCAAGTGATCGAG -ACGGAAACGCATCAAGTGCTCCTT -ACGGAAACGCATCAAGTGCCTGTT -ACGGAAACGCATCAAGTGCGGTTT -ACGGAAACGCATCAAGTGGTGGTT -ACGGAAACGCATCAAGTGGCCTTT -ACGGAAACGCATCAAGTGGGTCTT -ACGGAAACGCATCAAGTGACGCTT -ACGGAAACGCATCAAGTGAGCGTT -ACGGAAACGCATCAAGTGTTCGTC -ACGGAAACGCATCAAGTGTCTCTC -ACGGAAACGCATCAAGTGTGGATC -ACGGAAACGCATCAAGTGCACTTC -ACGGAAACGCATCAAGTGGTACTC -ACGGAAACGCATCAAGTGGATGTC -ACGGAAACGCATCAAGTGACAGTC -ACGGAAACGCATCAAGTGTTGCTG -ACGGAAACGCATCAAGTGTCCATG -ACGGAAACGCATCAAGTGTGTGTG -ACGGAAACGCATCAAGTGCTAGTG -ACGGAAACGCATCAAGTGCATCTG -ACGGAAACGCATCAAGTGGAGTTG -ACGGAAACGCATCAAGTGAGACTG -ACGGAAACGCATCAAGTGTCGGTA -ACGGAAACGCATCAAGTGTGCCTA -ACGGAAACGCATCAAGTGCCACTA -ACGGAAACGCATCAAGTGGGAGTA -ACGGAAACGCATCAAGTGTCGTCT -ACGGAAACGCATCAAGTGTGCACT -ACGGAAACGCATCAAGTGCTGACT -ACGGAAACGCATCAAGTGCAACCT -ACGGAAACGCATCAAGTGGCTACT -ACGGAAACGCATCAAGTGGGATCT -ACGGAAACGCATCAAGTGAAGGCT -ACGGAAACGCATCAAGTGTCAACC -ACGGAAACGCATCAAGTGTGTTCC -ACGGAAACGCATCAAGTGATTCCC -ACGGAAACGCATCAAGTGTTCTCG -ACGGAAACGCATCAAGTGTAGACG -ACGGAAACGCATCAAGTGGTAACG -ACGGAAACGCATCAAGTGACTTCG -ACGGAAACGCATCAAGTGTACGCA -ACGGAAACGCATCAAGTGCTTGCA -ACGGAAACGCATCAAGTGCGAACA -ACGGAAACGCATCAAGTGCAGTCA -ACGGAAACGCATCAAGTGGATCCA -ACGGAAACGCATCAAGTGACGACA -ACGGAAACGCATCAAGTGAGCTCA -ACGGAAACGCATCAAGTGTCACGT -ACGGAAACGCATCAAGTGCGTAGT -ACGGAAACGCATCAAGTGGTCAGT -ACGGAAACGCATCAAGTGGAAGGT -ACGGAAACGCATCAAGTGAACCGT -ACGGAAACGCATCAAGTGTTGTGC -ACGGAAACGCATCAAGTGCTAAGC -ACGGAAACGCATCAAGTGACTAGC -ACGGAAACGCATCAAGTGAGATGC -ACGGAAACGCATCAAGTGTGAAGG -ACGGAAACGCATCAAGTGCAATGG -ACGGAAACGCATCAAGTGATGAGG -ACGGAAACGCATCAAGTGAATGGG -ACGGAAACGCATCAAGTGTCCTGA -ACGGAAACGCATCAAGTGTAGCGA -ACGGAAACGCATCAAGTGCACAGA -ACGGAAACGCATCAAGTGGCAAGA -ACGGAAACGCATCAAGTGGGTTGA -ACGGAAACGCATCAAGTGTCCGAT -ACGGAAACGCATCAAGTGTGGCAT -ACGGAAACGCATCAAGTGCGAGAT -ACGGAAACGCATCAAGTGTACCAC -ACGGAAACGCATCAAGTGCAGAAC -ACGGAAACGCATCAAGTGGTCTAC -ACGGAAACGCATCAAGTGACGTAC -ACGGAAACGCATCAAGTGAGTGAC -ACGGAAACGCATCAAGTGCTGTAG -ACGGAAACGCATCAAGTGCCTAAG -ACGGAAACGCATCAAGTGGTTCAG -ACGGAAACGCATCAAGTGGCATAG -ACGGAAACGCATCAAGTGGACAAG -ACGGAAACGCATCAAGTGAAGCAG -ACGGAAACGCATCAAGTGCGTCAA -ACGGAAACGCATCAAGTGGCTGAA -ACGGAAACGCATCAAGTGAGTACG -ACGGAAACGCATCAAGTGATCCGA -ACGGAAACGCATCAAGTGATGGGA -ACGGAAACGCATCAAGTGGTGCAA -ACGGAAACGCATCAAGTGGAGGAA -ACGGAAACGCATCAAGTGCAGGTA -ACGGAAACGCATCAAGTGGACTCT -ACGGAAACGCATCAAGTGAGTCCT -ACGGAAACGCATCAAGTGTAAGCC -ACGGAAACGCATCAAGTGATAGCC -ACGGAAACGCATCAAGTGTAACCG -ACGGAAACGCATCAAGTGATGCCA -ACGGAAACGCATGAAGAGGGAAAC -ACGGAAACGCATGAAGAGAACACC -ACGGAAACGCATGAAGAGATCGAG -ACGGAAACGCATGAAGAGCTCCTT -ACGGAAACGCATGAAGAGCCTGTT -ACGGAAACGCATGAAGAGCGGTTT -ACGGAAACGCATGAAGAGGTGGTT -ACGGAAACGCATGAAGAGGCCTTT -ACGGAAACGCATGAAGAGGGTCTT -ACGGAAACGCATGAAGAGACGCTT -ACGGAAACGCATGAAGAGAGCGTT -ACGGAAACGCATGAAGAGTTCGTC -ACGGAAACGCATGAAGAGTCTCTC -ACGGAAACGCATGAAGAGTGGATC -ACGGAAACGCATGAAGAGCACTTC -ACGGAAACGCATGAAGAGGTACTC -ACGGAAACGCATGAAGAGGATGTC -ACGGAAACGCATGAAGAGACAGTC -ACGGAAACGCATGAAGAGTTGCTG -ACGGAAACGCATGAAGAGTCCATG -ACGGAAACGCATGAAGAGTGTGTG -ACGGAAACGCATGAAGAGCTAGTG -ACGGAAACGCATGAAGAGCATCTG -ACGGAAACGCATGAAGAGGAGTTG -ACGGAAACGCATGAAGAGAGACTG -ACGGAAACGCATGAAGAGTCGGTA -ACGGAAACGCATGAAGAGTGCCTA -ACGGAAACGCATGAAGAGCCACTA -ACGGAAACGCATGAAGAGGGAGTA -ACGGAAACGCATGAAGAGTCGTCT -ACGGAAACGCATGAAGAGTGCACT -ACGGAAACGCATGAAGAGCTGACT -ACGGAAACGCATGAAGAGCAACCT -ACGGAAACGCATGAAGAGGCTACT -ACGGAAACGCATGAAGAGGGATCT -ACGGAAACGCATGAAGAGAAGGCT -ACGGAAACGCATGAAGAGTCAACC -ACGGAAACGCATGAAGAGTGTTCC -ACGGAAACGCATGAAGAGATTCCC -ACGGAAACGCATGAAGAGTTCTCG -ACGGAAACGCATGAAGAGTAGACG -ACGGAAACGCATGAAGAGGTAACG -ACGGAAACGCATGAAGAGACTTCG -ACGGAAACGCATGAAGAGTACGCA -ACGGAAACGCATGAAGAGCTTGCA -ACGGAAACGCATGAAGAGCGAACA -ACGGAAACGCATGAAGAGCAGTCA -ACGGAAACGCATGAAGAGGATCCA -ACGGAAACGCATGAAGAGACGACA -ACGGAAACGCATGAAGAGAGCTCA -ACGGAAACGCATGAAGAGTCACGT -ACGGAAACGCATGAAGAGCGTAGT -ACGGAAACGCATGAAGAGGTCAGT -ACGGAAACGCATGAAGAGGAAGGT -ACGGAAACGCATGAAGAGAACCGT -ACGGAAACGCATGAAGAGTTGTGC -ACGGAAACGCATGAAGAGCTAAGC -ACGGAAACGCATGAAGAGACTAGC -ACGGAAACGCATGAAGAGAGATGC -ACGGAAACGCATGAAGAGTGAAGG -ACGGAAACGCATGAAGAGCAATGG -ACGGAAACGCATGAAGAGATGAGG -ACGGAAACGCATGAAGAGAATGGG -ACGGAAACGCATGAAGAGTCCTGA -ACGGAAACGCATGAAGAGTAGCGA -ACGGAAACGCATGAAGAGCACAGA -ACGGAAACGCATGAAGAGGCAAGA -ACGGAAACGCATGAAGAGGGTTGA -ACGGAAACGCATGAAGAGTCCGAT -ACGGAAACGCATGAAGAGTGGCAT -ACGGAAACGCATGAAGAGCGAGAT -ACGGAAACGCATGAAGAGTACCAC -ACGGAAACGCATGAAGAGCAGAAC -ACGGAAACGCATGAAGAGGTCTAC -ACGGAAACGCATGAAGAGACGTAC -ACGGAAACGCATGAAGAGAGTGAC -ACGGAAACGCATGAAGAGCTGTAG -ACGGAAACGCATGAAGAGCCTAAG -ACGGAAACGCATGAAGAGGTTCAG -ACGGAAACGCATGAAGAGGCATAG -ACGGAAACGCATGAAGAGGACAAG -ACGGAAACGCATGAAGAGAAGCAG -ACGGAAACGCATGAAGAGCGTCAA -ACGGAAACGCATGAAGAGGCTGAA -ACGGAAACGCATGAAGAGAGTACG -ACGGAAACGCATGAAGAGATCCGA -ACGGAAACGCATGAAGAGATGGGA -ACGGAAACGCATGAAGAGGTGCAA -ACGGAAACGCATGAAGAGGAGGAA -ACGGAAACGCATGAAGAGCAGGTA -ACGGAAACGCATGAAGAGGACTCT -ACGGAAACGCATGAAGAGAGTCCT -ACGGAAACGCATGAAGAGTAAGCC -ACGGAAACGCATGAAGAGATAGCC -ACGGAAACGCATGAAGAGTAACCG -ACGGAAACGCATGAAGAGATGCCA -ACGGAAACGCATGTACAGGGAAAC -ACGGAAACGCATGTACAGAACACC -ACGGAAACGCATGTACAGATCGAG -ACGGAAACGCATGTACAGCTCCTT -ACGGAAACGCATGTACAGCCTGTT -ACGGAAACGCATGTACAGCGGTTT -ACGGAAACGCATGTACAGGTGGTT -ACGGAAACGCATGTACAGGCCTTT -ACGGAAACGCATGTACAGGGTCTT -ACGGAAACGCATGTACAGACGCTT -ACGGAAACGCATGTACAGAGCGTT -ACGGAAACGCATGTACAGTTCGTC -ACGGAAACGCATGTACAGTCTCTC -ACGGAAACGCATGTACAGTGGATC -ACGGAAACGCATGTACAGCACTTC -ACGGAAACGCATGTACAGGTACTC -ACGGAAACGCATGTACAGGATGTC -ACGGAAACGCATGTACAGACAGTC -ACGGAAACGCATGTACAGTTGCTG -ACGGAAACGCATGTACAGTCCATG -ACGGAAACGCATGTACAGTGTGTG -ACGGAAACGCATGTACAGCTAGTG -ACGGAAACGCATGTACAGCATCTG -ACGGAAACGCATGTACAGGAGTTG -ACGGAAACGCATGTACAGAGACTG -ACGGAAACGCATGTACAGTCGGTA -ACGGAAACGCATGTACAGTGCCTA -ACGGAAACGCATGTACAGCCACTA -ACGGAAACGCATGTACAGGGAGTA -ACGGAAACGCATGTACAGTCGTCT -ACGGAAACGCATGTACAGTGCACT -ACGGAAACGCATGTACAGCTGACT -ACGGAAACGCATGTACAGCAACCT -ACGGAAACGCATGTACAGGCTACT -ACGGAAACGCATGTACAGGGATCT -ACGGAAACGCATGTACAGAAGGCT -ACGGAAACGCATGTACAGTCAACC -ACGGAAACGCATGTACAGTGTTCC -ACGGAAACGCATGTACAGATTCCC -ACGGAAACGCATGTACAGTTCTCG -ACGGAAACGCATGTACAGTAGACG -ACGGAAACGCATGTACAGGTAACG -ACGGAAACGCATGTACAGACTTCG -ACGGAAACGCATGTACAGTACGCA -ACGGAAACGCATGTACAGCTTGCA -ACGGAAACGCATGTACAGCGAACA -ACGGAAACGCATGTACAGCAGTCA -ACGGAAACGCATGTACAGGATCCA -ACGGAAACGCATGTACAGACGACA -ACGGAAACGCATGTACAGAGCTCA -ACGGAAACGCATGTACAGTCACGT -ACGGAAACGCATGTACAGCGTAGT -ACGGAAACGCATGTACAGGTCAGT -ACGGAAACGCATGTACAGGAAGGT -ACGGAAACGCATGTACAGAACCGT -ACGGAAACGCATGTACAGTTGTGC -ACGGAAACGCATGTACAGCTAAGC -ACGGAAACGCATGTACAGACTAGC -ACGGAAACGCATGTACAGAGATGC -ACGGAAACGCATGTACAGTGAAGG -ACGGAAACGCATGTACAGCAATGG -ACGGAAACGCATGTACAGATGAGG -ACGGAAACGCATGTACAGAATGGG -ACGGAAACGCATGTACAGTCCTGA -ACGGAAACGCATGTACAGTAGCGA -ACGGAAACGCATGTACAGCACAGA -ACGGAAACGCATGTACAGGCAAGA -ACGGAAACGCATGTACAGGGTTGA -ACGGAAACGCATGTACAGTCCGAT -ACGGAAACGCATGTACAGTGGCAT -ACGGAAACGCATGTACAGCGAGAT -ACGGAAACGCATGTACAGTACCAC -ACGGAAACGCATGTACAGCAGAAC -ACGGAAACGCATGTACAGGTCTAC -ACGGAAACGCATGTACAGACGTAC -ACGGAAACGCATGTACAGAGTGAC -ACGGAAACGCATGTACAGCTGTAG -ACGGAAACGCATGTACAGCCTAAG -ACGGAAACGCATGTACAGGTTCAG -ACGGAAACGCATGTACAGGCATAG -ACGGAAACGCATGTACAGGACAAG -ACGGAAACGCATGTACAGAAGCAG -ACGGAAACGCATGTACAGCGTCAA -ACGGAAACGCATGTACAGGCTGAA -ACGGAAACGCATGTACAGAGTACG -ACGGAAACGCATGTACAGATCCGA -ACGGAAACGCATGTACAGATGGGA -ACGGAAACGCATGTACAGGTGCAA -ACGGAAACGCATGTACAGGAGGAA -ACGGAAACGCATGTACAGCAGGTA -ACGGAAACGCATGTACAGGACTCT -ACGGAAACGCATGTACAGAGTCCT -ACGGAAACGCATGTACAGTAAGCC -ACGGAAACGCATGTACAGATAGCC -ACGGAAACGCATGTACAGTAACCG -ACGGAAACGCATGTACAGATGCCA -ACGGAAACGCATTCTGACGGAAAC -ACGGAAACGCATTCTGACAACACC -ACGGAAACGCATTCTGACATCGAG -ACGGAAACGCATTCTGACCTCCTT -ACGGAAACGCATTCTGACCCTGTT -ACGGAAACGCATTCTGACCGGTTT -ACGGAAACGCATTCTGACGTGGTT -ACGGAAACGCATTCTGACGCCTTT -ACGGAAACGCATTCTGACGGTCTT -ACGGAAACGCATTCTGACACGCTT -ACGGAAACGCATTCTGACAGCGTT -ACGGAAACGCATTCTGACTTCGTC -ACGGAAACGCATTCTGACTCTCTC -ACGGAAACGCATTCTGACTGGATC -ACGGAAACGCATTCTGACCACTTC -ACGGAAACGCATTCTGACGTACTC -ACGGAAACGCATTCTGACGATGTC -ACGGAAACGCATTCTGACACAGTC -ACGGAAACGCATTCTGACTTGCTG -ACGGAAACGCATTCTGACTCCATG -ACGGAAACGCATTCTGACTGTGTG -ACGGAAACGCATTCTGACCTAGTG -ACGGAAACGCATTCTGACCATCTG -ACGGAAACGCATTCTGACGAGTTG -ACGGAAACGCATTCTGACAGACTG -ACGGAAACGCATTCTGACTCGGTA -ACGGAAACGCATTCTGACTGCCTA -ACGGAAACGCATTCTGACCCACTA -ACGGAAACGCATTCTGACGGAGTA -ACGGAAACGCATTCTGACTCGTCT -ACGGAAACGCATTCTGACTGCACT -ACGGAAACGCATTCTGACCTGACT -ACGGAAACGCATTCTGACCAACCT -ACGGAAACGCATTCTGACGCTACT -ACGGAAACGCATTCTGACGGATCT -ACGGAAACGCATTCTGACAAGGCT -ACGGAAACGCATTCTGACTCAACC -ACGGAAACGCATTCTGACTGTTCC -ACGGAAACGCATTCTGACATTCCC -ACGGAAACGCATTCTGACTTCTCG -ACGGAAACGCATTCTGACTAGACG -ACGGAAACGCATTCTGACGTAACG -ACGGAAACGCATTCTGACACTTCG -ACGGAAACGCATTCTGACTACGCA -ACGGAAACGCATTCTGACCTTGCA -ACGGAAACGCATTCTGACCGAACA -ACGGAAACGCATTCTGACCAGTCA -ACGGAAACGCATTCTGACGATCCA -ACGGAAACGCATTCTGACACGACA -ACGGAAACGCATTCTGACAGCTCA -ACGGAAACGCATTCTGACTCACGT -ACGGAAACGCATTCTGACCGTAGT -ACGGAAACGCATTCTGACGTCAGT -ACGGAAACGCATTCTGACGAAGGT -ACGGAAACGCATTCTGACAACCGT -ACGGAAACGCATTCTGACTTGTGC -ACGGAAACGCATTCTGACCTAAGC -ACGGAAACGCATTCTGACACTAGC -ACGGAAACGCATTCTGACAGATGC -ACGGAAACGCATTCTGACTGAAGG -ACGGAAACGCATTCTGACCAATGG -ACGGAAACGCATTCTGACATGAGG -ACGGAAACGCATTCTGACAATGGG -ACGGAAACGCATTCTGACTCCTGA -ACGGAAACGCATTCTGACTAGCGA -ACGGAAACGCATTCTGACCACAGA -ACGGAAACGCATTCTGACGCAAGA -ACGGAAACGCATTCTGACGGTTGA -ACGGAAACGCATTCTGACTCCGAT -ACGGAAACGCATTCTGACTGGCAT -ACGGAAACGCATTCTGACCGAGAT -ACGGAAACGCATTCTGACTACCAC -ACGGAAACGCATTCTGACCAGAAC -ACGGAAACGCATTCTGACGTCTAC -ACGGAAACGCATTCTGACACGTAC -ACGGAAACGCATTCTGACAGTGAC -ACGGAAACGCATTCTGACCTGTAG -ACGGAAACGCATTCTGACCCTAAG -ACGGAAACGCATTCTGACGTTCAG -ACGGAAACGCATTCTGACGCATAG -ACGGAAACGCATTCTGACGACAAG -ACGGAAACGCATTCTGACAAGCAG -ACGGAAACGCATTCTGACCGTCAA -ACGGAAACGCATTCTGACGCTGAA -ACGGAAACGCATTCTGACAGTACG -ACGGAAACGCATTCTGACATCCGA -ACGGAAACGCATTCTGACATGGGA -ACGGAAACGCATTCTGACGTGCAA -ACGGAAACGCATTCTGACGAGGAA -ACGGAAACGCATTCTGACCAGGTA -ACGGAAACGCATTCTGACGACTCT -ACGGAAACGCATTCTGACAGTCCT -ACGGAAACGCATTCTGACTAAGCC -ACGGAAACGCATTCTGACATAGCC -ACGGAAACGCATTCTGACTAACCG -ACGGAAACGCATTCTGACATGCCA -ACGGAAACGCATCCTAGTGGAAAC -ACGGAAACGCATCCTAGTAACACC -ACGGAAACGCATCCTAGTATCGAG -ACGGAAACGCATCCTAGTCTCCTT -ACGGAAACGCATCCTAGTCCTGTT -ACGGAAACGCATCCTAGTCGGTTT -ACGGAAACGCATCCTAGTGTGGTT -ACGGAAACGCATCCTAGTGCCTTT -ACGGAAACGCATCCTAGTGGTCTT -ACGGAAACGCATCCTAGTACGCTT -ACGGAAACGCATCCTAGTAGCGTT -ACGGAAACGCATCCTAGTTTCGTC -ACGGAAACGCATCCTAGTTCTCTC -ACGGAAACGCATCCTAGTTGGATC -ACGGAAACGCATCCTAGTCACTTC -ACGGAAACGCATCCTAGTGTACTC -ACGGAAACGCATCCTAGTGATGTC -ACGGAAACGCATCCTAGTACAGTC -ACGGAAACGCATCCTAGTTTGCTG -ACGGAAACGCATCCTAGTTCCATG -ACGGAAACGCATCCTAGTTGTGTG -ACGGAAACGCATCCTAGTCTAGTG -ACGGAAACGCATCCTAGTCATCTG -ACGGAAACGCATCCTAGTGAGTTG -ACGGAAACGCATCCTAGTAGACTG -ACGGAAACGCATCCTAGTTCGGTA -ACGGAAACGCATCCTAGTTGCCTA -ACGGAAACGCATCCTAGTCCACTA -ACGGAAACGCATCCTAGTGGAGTA -ACGGAAACGCATCCTAGTTCGTCT -ACGGAAACGCATCCTAGTTGCACT -ACGGAAACGCATCCTAGTCTGACT -ACGGAAACGCATCCTAGTCAACCT -ACGGAAACGCATCCTAGTGCTACT -ACGGAAACGCATCCTAGTGGATCT -ACGGAAACGCATCCTAGTAAGGCT -ACGGAAACGCATCCTAGTTCAACC -ACGGAAACGCATCCTAGTTGTTCC -ACGGAAACGCATCCTAGTATTCCC -ACGGAAACGCATCCTAGTTTCTCG -ACGGAAACGCATCCTAGTTAGACG -ACGGAAACGCATCCTAGTGTAACG -ACGGAAACGCATCCTAGTACTTCG -ACGGAAACGCATCCTAGTTACGCA -ACGGAAACGCATCCTAGTCTTGCA -ACGGAAACGCATCCTAGTCGAACA -ACGGAAACGCATCCTAGTCAGTCA -ACGGAAACGCATCCTAGTGATCCA -ACGGAAACGCATCCTAGTACGACA -ACGGAAACGCATCCTAGTAGCTCA -ACGGAAACGCATCCTAGTTCACGT -ACGGAAACGCATCCTAGTCGTAGT -ACGGAAACGCATCCTAGTGTCAGT -ACGGAAACGCATCCTAGTGAAGGT -ACGGAAACGCATCCTAGTAACCGT -ACGGAAACGCATCCTAGTTTGTGC -ACGGAAACGCATCCTAGTCTAAGC -ACGGAAACGCATCCTAGTACTAGC -ACGGAAACGCATCCTAGTAGATGC -ACGGAAACGCATCCTAGTTGAAGG -ACGGAAACGCATCCTAGTCAATGG -ACGGAAACGCATCCTAGTATGAGG -ACGGAAACGCATCCTAGTAATGGG -ACGGAAACGCATCCTAGTTCCTGA -ACGGAAACGCATCCTAGTTAGCGA -ACGGAAACGCATCCTAGTCACAGA -ACGGAAACGCATCCTAGTGCAAGA -ACGGAAACGCATCCTAGTGGTTGA -ACGGAAACGCATCCTAGTTCCGAT -ACGGAAACGCATCCTAGTTGGCAT -ACGGAAACGCATCCTAGTCGAGAT -ACGGAAACGCATCCTAGTTACCAC -ACGGAAACGCATCCTAGTCAGAAC -ACGGAAACGCATCCTAGTGTCTAC -ACGGAAACGCATCCTAGTACGTAC -ACGGAAACGCATCCTAGTAGTGAC -ACGGAAACGCATCCTAGTCTGTAG -ACGGAAACGCATCCTAGTCCTAAG -ACGGAAACGCATCCTAGTGTTCAG -ACGGAAACGCATCCTAGTGCATAG -ACGGAAACGCATCCTAGTGACAAG -ACGGAAACGCATCCTAGTAAGCAG -ACGGAAACGCATCCTAGTCGTCAA -ACGGAAACGCATCCTAGTGCTGAA -ACGGAAACGCATCCTAGTAGTACG -ACGGAAACGCATCCTAGTATCCGA -ACGGAAACGCATCCTAGTATGGGA -ACGGAAACGCATCCTAGTGTGCAA -ACGGAAACGCATCCTAGTGAGGAA -ACGGAAACGCATCCTAGTCAGGTA -ACGGAAACGCATCCTAGTGACTCT -ACGGAAACGCATCCTAGTAGTCCT -ACGGAAACGCATCCTAGTTAAGCC -ACGGAAACGCATCCTAGTATAGCC -ACGGAAACGCATCCTAGTTAACCG -ACGGAAACGCATCCTAGTATGCCA -ACGGAAACGCATGCCTAAGGAAAC -ACGGAAACGCATGCCTAAAACACC -ACGGAAACGCATGCCTAAATCGAG -ACGGAAACGCATGCCTAACTCCTT -ACGGAAACGCATGCCTAACCTGTT -ACGGAAACGCATGCCTAACGGTTT -ACGGAAACGCATGCCTAAGTGGTT -ACGGAAACGCATGCCTAAGCCTTT -ACGGAAACGCATGCCTAAGGTCTT -ACGGAAACGCATGCCTAAACGCTT -ACGGAAACGCATGCCTAAAGCGTT -ACGGAAACGCATGCCTAATTCGTC -ACGGAAACGCATGCCTAATCTCTC -ACGGAAACGCATGCCTAATGGATC -ACGGAAACGCATGCCTAACACTTC -ACGGAAACGCATGCCTAAGTACTC -ACGGAAACGCATGCCTAAGATGTC -ACGGAAACGCATGCCTAAACAGTC -ACGGAAACGCATGCCTAATTGCTG -ACGGAAACGCATGCCTAATCCATG -ACGGAAACGCATGCCTAATGTGTG -ACGGAAACGCATGCCTAACTAGTG -ACGGAAACGCATGCCTAACATCTG -ACGGAAACGCATGCCTAAGAGTTG -ACGGAAACGCATGCCTAAAGACTG -ACGGAAACGCATGCCTAATCGGTA -ACGGAAACGCATGCCTAATGCCTA -ACGGAAACGCATGCCTAACCACTA -ACGGAAACGCATGCCTAAGGAGTA -ACGGAAACGCATGCCTAATCGTCT -ACGGAAACGCATGCCTAATGCACT -ACGGAAACGCATGCCTAACTGACT -ACGGAAACGCATGCCTAACAACCT -ACGGAAACGCATGCCTAAGCTACT -ACGGAAACGCATGCCTAAGGATCT -ACGGAAACGCATGCCTAAAAGGCT -ACGGAAACGCATGCCTAATCAACC -ACGGAAACGCATGCCTAATGTTCC -ACGGAAACGCATGCCTAAATTCCC -ACGGAAACGCATGCCTAATTCTCG -ACGGAAACGCATGCCTAATAGACG -ACGGAAACGCATGCCTAAGTAACG -ACGGAAACGCATGCCTAAACTTCG -ACGGAAACGCATGCCTAATACGCA -ACGGAAACGCATGCCTAACTTGCA -ACGGAAACGCATGCCTAACGAACA -ACGGAAACGCATGCCTAACAGTCA -ACGGAAACGCATGCCTAAGATCCA -ACGGAAACGCATGCCTAAACGACA -ACGGAAACGCATGCCTAAAGCTCA -ACGGAAACGCATGCCTAATCACGT -ACGGAAACGCATGCCTAACGTAGT -ACGGAAACGCATGCCTAAGTCAGT -ACGGAAACGCATGCCTAAGAAGGT -ACGGAAACGCATGCCTAAAACCGT -ACGGAAACGCATGCCTAATTGTGC -ACGGAAACGCATGCCTAACTAAGC -ACGGAAACGCATGCCTAAACTAGC -ACGGAAACGCATGCCTAAAGATGC -ACGGAAACGCATGCCTAATGAAGG -ACGGAAACGCATGCCTAACAATGG -ACGGAAACGCATGCCTAAATGAGG -ACGGAAACGCATGCCTAAAATGGG -ACGGAAACGCATGCCTAATCCTGA -ACGGAAACGCATGCCTAATAGCGA -ACGGAAACGCATGCCTAACACAGA -ACGGAAACGCATGCCTAAGCAAGA -ACGGAAACGCATGCCTAAGGTTGA -ACGGAAACGCATGCCTAATCCGAT -ACGGAAACGCATGCCTAATGGCAT -ACGGAAACGCATGCCTAACGAGAT -ACGGAAACGCATGCCTAATACCAC -ACGGAAACGCATGCCTAACAGAAC -ACGGAAACGCATGCCTAAGTCTAC -ACGGAAACGCATGCCTAAACGTAC -ACGGAAACGCATGCCTAAAGTGAC -ACGGAAACGCATGCCTAACTGTAG -ACGGAAACGCATGCCTAACCTAAG -ACGGAAACGCATGCCTAAGTTCAG -ACGGAAACGCATGCCTAAGCATAG -ACGGAAACGCATGCCTAAGACAAG -ACGGAAACGCATGCCTAAAAGCAG -ACGGAAACGCATGCCTAACGTCAA -ACGGAAACGCATGCCTAAGCTGAA -ACGGAAACGCATGCCTAAAGTACG -ACGGAAACGCATGCCTAAATCCGA -ACGGAAACGCATGCCTAAATGGGA -ACGGAAACGCATGCCTAAGTGCAA -ACGGAAACGCATGCCTAAGAGGAA -ACGGAAACGCATGCCTAACAGGTA -ACGGAAACGCATGCCTAAGACTCT -ACGGAAACGCATGCCTAAAGTCCT -ACGGAAACGCATGCCTAATAAGCC -ACGGAAACGCATGCCTAAATAGCC -ACGGAAACGCATGCCTAATAACCG -ACGGAAACGCATGCCTAAATGCCA -ACGGAAACGCATGCCATAGGAAAC -ACGGAAACGCATGCCATAAACACC -ACGGAAACGCATGCCATAATCGAG -ACGGAAACGCATGCCATACTCCTT -ACGGAAACGCATGCCATACCTGTT -ACGGAAACGCATGCCATACGGTTT -ACGGAAACGCATGCCATAGTGGTT -ACGGAAACGCATGCCATAGCCTTT -ACGGAAACGCATGCCATAGGTCTT -ACGGAAACGCATGCCATAACGCTT -ACGGAAACGCATGCCATAAGCGTT -ACGGAAACGCATGCCATATTCGTC -ACGGAAACGCATGCCATATCTCTC -ACGGAAACGCATGCCATATGGATC -ACGGAAACGCATGCCATACACTTC -ACGGAAACGCATGCCATAGTACTC -ACGGAAACGCATGCCATAGATGTC -ACGGAAACGCATGCCATAACAGTC -ACGGAAACGCATGCCATATTGCTG -ACGGAAACGCATGCCATATCCATG -ACGGAAACGCATGCCATATGTGTG -ACGGAAACGCATGCCATACTAGTG -ACGGAAACGCATGCCATACATCTG -ACGGAAACGCATGCCATAGAGTTG -ACGGAAACGCATGCCATAAGACTG -ACGGAAACGCATGCCATATCGGTA -ACGGAAACGCATGCCATATGCCTA -ACGGAAACGCATGCCATACCACTA -ACGGAAACGCATGCCATAGGAGTA -ACGGAAACGCATGCCATATCGTCT -ACGGAAACGCATGCCATATGCACT -ACGGAAACGCATGCCATACTGACT -ACGGAAACGCATGCCATACAACCT -ACGGAAACGCATGCCATAGCTACT -ACGGAAACGCATGCCATAGGATCT -ACGGAAACGCATGCCATAAAGGCT -ACGGAAACGCATGCCATATCAACC -ACGGAAACGCATGCCATATGTTCC -ACGGAAACGCATGCCATAATTCCC -ACGGAAACGCATGCCATATTCTCG -ACGGAAACGCATGCCATATAGACG -ACGGAAACGCATGCCATAGTAACG -ACGGAAACGCATGCCATAACTTCG -ACGGAAACGCATGCCATATACGCA -ACGGAAACGCATGCCATACTTGCA -ACGGAAACGCATGCCATACGAACA -ACGGAAACGCATGCCATACAGTCA -ACGGAAACGCATGCCATAGATCCA -ACGGAAACGCATGCCATAACGACA -ACGGAAACGCATGCCATAAGCTCA -ACGGAAACGCATGCCATATCACGT -ACGGAAACGCATGCCATACGTAGT -ACGGAAACGCATGCCATAGTCAGT -ACGGAAACGCATGCCATAGAAGGT -ACGGAAACGCATGCCATAAACCGT -ACGGAAACGCATGCCATATTGTGC -ACGGAAACGCATGCCATACTAAGC -ACGGAAACGCATGCCATAACTAGC -ACGGAAACGCATGCCATAAGATGC -ACGGAAACGCATGCCATATGAAGG -ACGGAAACGCATGCCATACAATGG -ACGGAAACGCATGCCATAATGAGG -ACGGAAACGCATGCCATAAATGGG -ACGGAAACGCATGCCATATCCTGA -ACGGAAACGCATGCCATATAGCGA -ACGGAAACGCATGCCATACACAGA -ACGGAAACGCATGCCATAGCAAGA -ACGGAAACGCATGCCATAGGTTGA -ACGGAAACGCATGCCATATCCGAT -ACGGAAACGCATGCCATATGGCAT -ACGGAAACGCATGCCATACGAGAT -ACGGAAACGCATGCCATATACCAC -ACGGAAACGCATGCCATACAGAAC -ACGGAAACGCATGCCATAGTCTAC -ACGGAAACGCATGCCATAACGTAC -ACGGAAACGCATGCCATAAGTGAC -ACGGAAACGCATGCCATACTGTAG -ACGGAAACGCATGCCATACCTAAG -ACGGAAACGCATGCCATAGTTCAG -ACGGAAACGCATGCCATAGCATAG -ACGGAAACGCATGCCATAGACAAG -ACGGAAACGCATGCCATAAAGCAG -ACGGAAACGCATGCCATACGTCAA -ACGGAAACGCATGCCATAGCTGAA -ACGGAAACGCATGCCATAAGTACG -ACGGAAACGCATGCCATAATCCGA -ACGGAAACGCATGCCATAATGGGA -ACGGAAACGCATGCCATAGTGCAA -ACGGAAACGCATGCCATAGAGGAA -ACGGAAACGCATGCCATACAGGTA -ACGGAAACGCATGCCATAGACTCT -ACGGAAACGCATGCCATAAGTCCT -ACGGAAACGCATGCCATATAAGCC -ACGGAAACGCATGCCATAATAGCC -ACGGAAACGCATGCCATATAACCG -ACGGAAACGCATGCCATAATGCCA -ACGGAAACGCATCCGTAAGGAAAC -ACGGAAACGCATCCGTAAAACACC -ACGGAAACGCATCCGTAAATCGAG -ACGGAAACGCATCCGTAACTCCTT -ACGGAAACGCATCCGTAACCTGTT -ACGGAAACGCATCCGTAACGGTTT -ACGGAAACGCATCCGTAAGTGGTT -ACGGAAACGCATCCGTAAGCCTTT -ACGGAAACGCATCCGTAAGGTCTT -ACGGAAACGCATCCGTAAACGCTT -ACGGAAACGCATCCGTAAAGCGTT -ACGGAAACGCATCCGTAATTCGTC -ACGGAAACGCATCCGTAATCTCTC -ACGGAAACGCATCCGTAATGGATC -ACGGAAACGCATCCGTAACACTTC -ACGGAAACGCATCCGTAAGTACTC -ACGGAAACGCATCCGTAAGATGTC -ACGGAAACGCATCCGTAAACAGTC -ACGGAAACGCATCCGTAATTGCTG -ACGGAAACGCATCCGTAATCCATG -ACGGAAACGCATCCGTAATGTGTG -ACGGAAACGCATCCGTAACTAGTG -ACGGAAACGCATCCGTAACATCTG -ACGGAAACGCATCCGTAAGAGTTG -ACGGAAACGCATCCGTAAAGACTG -ACGGAAACGCATCCGTAATCGGTA -ACGGAAACGCATCCGTAATGCCTA -ACGGAAACGCATCCGTAACCACTA -ACGGAAACGCATCCGTAAGGAGTA -ACGGAAACGCATCCGTAATCGTCT -ACGGAAACGCATCCGTAATGCACT -ACGGAAACGCATCCGTAACTGACT -ACGGAAACGCATCCGTAACAACCT -ACGGAAACGCATCCGTAAGCTACT -ACGGAAACGCATCCGTAAGGATCT -ACGGAAACGCATCCGTAAAAGGCT -ACGGAAACGCATCCGTAATCAACC -ACGGAAACGCATCCGTAATGTTCC -ACGGAAACGCATCCGTAAATTCCC -ACGGAAACGCATCCGTAATTCTCG -ACGGAAACGCATCCGTAATAGACG -ACGGAAACGCATCCGTAAGTAACG -ACGGAAACGCATCCGTAAACTTCG -ACGGAAACGCATCCGTAATACGCA -ACGGAAACGCATCCGTAACTTGCA -ACGGAAACGCATCCGTAACGAACA -ACGGAAACGCATCCGTAACAGTCA -ACGGAAACGCATCCGTAAGATCCA -ACGGAAACGCATCCGTAAACGACA -ACGGAAACGCATCCGTAAAGCTCA -ACGGAAACGCATCCGTAATCACGT -ACGGAAACGCATCCGTAACGTAGT -ACGGAAACGCATCCGTAAGTCAGT -ACGGAAACGCATCCGTAAGAAGGT -ACGGAAACGCATCCGTAAAACCGT -ACGGAAACGCATCCGTAATTGTGC -ACGGAAACGCATCCGTAACTAAGC -ACGGAAACGCATCCGTAAACTAGC -ACGGAAACGCATCCGTAAAGATGC -ACGGAAACGCATCCGTAATGAAGG -ACGGAAACGCATCCGTAACAATGG -ACGGAAACGCATCCGTAAATGAGG -ACGGAAACGCATCCGTAAAATGGG -ACGGAAACGCATCCGTAATCCTGA -ACGGAAACGCATCCGTAATAGCGA -ACGGAAACGCATCCGTAACACAGA -ACGGAAACGCATCCGTAAGCAAGA -ACGGAAACGCATCCGTAAGGTTGA -ACGGAAACGCATCCGTAATCCGAT -ACGGAAACGCATCCGTAATGGCAT -ACGGAAACGCATCCGTAACGAGAT -ACGGAAACGCATCCGTAATACCAC -ACGGAAACGCATCCGTAACAGAAC -ACGGAAACGCATCCGTAAGTCTAC -ACGGAAACGCATCCGTAAACGTAC -ACGGAAACGCATCCGTAAAGTGAC -ACGGAAACGCATCCGTAACTGTAG -ACGGAAACGCATCCGTAACCTAAG -ACGGAAACGCATCCGTAAGTTCAG -ACGGAAACGCATCCGTAAGCATAG -ACGGAAACGCATCCGTAAGACAAG -ACGGAAACGCATCCGTAAAAGCAG -ACGGAAACGCATCCGTAACGTCAA -ACGGAAACGCATCCGTAAGCTGAA -ACGGAAACGCATCCGTAAAGTACG -ACGGAAACGCATCCGTAAATCCGA -ACGGAAACGCATCCGTAAATGGGA -ACGGAAACGCATCCGTAAGTGCAA -ACGGAAACGCATCCGTAAGAGGAA -ACGGAAACGCATCCGTAACAGGTA -ACGGAAACGCATCCGTAAGACTCT -ACGGAAACGCATCCGTAAAGTCCT -ACGGAAACGCATCCGTAATAAGCC -ACGGAAACGCATCCGTAAATAGCC -ACGGAAACGCATCCGTAATAACCG -ACGGAAACGCATCCGTAAATGCCA -ACGGAAACGCATCCAATGGGAAAC -ACGGAAACGCATCCAATGAACACC -ACGGAAACGCATCCAATGATCGAG -ACGGAAACGCATCCAATGCTCCTT -ACGGAAACGCATCCAATGCCTGTT -ACGGAAACGCATCCAATGCGGTTT -ACGGAAACGCATCCAATGGTGGTT -ACGGAAACGCATCCAATGGCCTTT -ACGGAAACGCATCCAATGGGTCTT -ACGGAAACGCATCCAATGACGCTT -ACGGAAACGCATCCAATGAGCGTT -ACGGAAACGCATCCAATGTTCGTC -ACGGAAACGCATCCAATGTCTCTC -ACGGAAACGCATCCAATGTGGATC -ACGGAAACGCATCCAATGCACTTC -ACGGAAACGCATCCAATGGTACTC -ACGGAAACGCATCCAATGGATGTC -ACGGAAACGCATCCAATGACAGTC -ACGGAAACGCATCCAATGTTGCTG -ACGGAAACGCATCCAATGTCCATG -ACGGAAACGCATCCAATGTGTGTG -ACGGAAACGCATCCAATGCTAGTG -ACGGAAACGCATCCAATGCATCTG -ACGGAAACGCATCCAATGGAGTTG -ACGGAAACGCATCCAATGAGACTG -ACGGAAACGCATCCAATGTCGGTA -ACGGAAACGCATCCAATGTGCCTA -ACGGAAACGCATCCAATGCCACTA -ACGGAAACGCATCCAATGGGAGTA -ACGGAAACGCATCCAATGTCGTCT -ACGGAAACGCATCCAATGTGCACT -ACGGAAACGCATCCAATGCTGACT -ACGGAAACGCATCCAATGCAACCT -ACGGAAACGCATCCAATGGCTACT -ACGGAAACGCATCCAATGGGATCT -ACGGAAACGCATCCAATGAAGGCT -ACGGAAACGCATCCAATGTCAACC -ACGGAAACGCATCCAATGTGTTCC -ACGGAAACGCATCCAATGATTCCC -ACGGAAACGCATCCAATGTTCTCG -ACGGAAACGCATCCAATGTAGACG -ACGGAAACGCATCCAATGGTAACG -ACGGAAACGCATCCAATGACTTCG -ACGGAAACGCATCCAATGTACGCA -ACGGAAACGCATCCAATGCTTGCA -ACGGAAACGCATCCAATGCGAACA -ACGGAAACGCATCCAATGCAGTCA -ACGGAAACGCATCCAATGGATCCA -ACGGAAACGCATCCAATGACGACA -ACGGAAACGCATCCAATGAGCTCA -ACGGAAACGCATCCAATGTCACGT -ACGGAAACGCATCCAATGCGTAGT -ACGGAAACGCATCCAATGGTCAGT -ACGGAAACGCATCCAATGGAAGGT -ACGGAAACGCATCCAATGAACCGT -ACGGAAACGCATCCAATGTTGTGC -ACGGAAACGCATCCAATGCTAAGC -ACGGAAACGCATCCAATGACTAGC -ACGGAAACGCATCCAATGAGATGC -ACGGAAACGCATCCAATGTGAAGG -ACGGAAACGCATCCAATGCAATGG -ACGGAAACGCATCCAATGATGAGG -ACGGAAACGCATCCAATGAATGGG -ACGGAAACGCATCCAATGTCCTGA -ACGGAAACGCATCCAATGTAGCGA -ACGGAAACGCATCCAATGCACAGA -ACGGAAACGCATCCAATGGCAAGA -ACGGAAACGCATCCAATGGGTTGA -ACGGAAACGCATCCAATGTCCGAT -ACGGAAACGCATCCAATGTGGCAT -ACGGAAACGCATCCAATGCGAGAT -ACGGAAACGCATCCAATGTACCAC -ACGGAAACGCATCCAATGCAGAAC -ACGGAAACGCATCCAATGGTCTAC -ACGGAAACGCATCCAATGACGTAC -ACGGAAACGCATCCAATGAGTGAC -ACGGAAACGCATCCAATGCTGTAG -ACGGAAACGCATCCAATGCCTAAG -ACGGAAACGCATCCAATGGTTCAG -ACGGAAACGCATCCAATGGCATAG -ACGGAAACGCATCCAATGGACAAG -ACGGAAACGCATCCAATGAAGCAG -ACGGAAACGCATCCAATGCGTCAA -ACGGAAACGCATCCAATGGCTGAA -ACGGAAACGCATCCAATGAGTACG -ACGGAAACGCATCCAATGATCCGA -ACGGAAACGCATCCAATGATGGGA -ACGGAAACGCATCCAATGGTGCAA -ACGGAAACGCATCCAATGGAGGAA -ACGGAAACGCATCCAATGCAGGTA -ACGGAAACGCATCCAATGGACTCT -ACGGAAACGCATCCAATGAGTCCT -ACGGAAACGCATCCAATGTAAGCC -ACGGAAACGCATCCAATGATAGCC -ACGGAAACGCATCCAATGTAACCG -ACGGAAACGCATCCAATGATGCCA -ACGGAATTGCACAACGGAGGAAAC -ACGGAATTGCACAACGGAAACACC -ACGGAATTGCACAACGGAATCGAG -ACGGAATTGCACAACGGACTCCTT -ACGGAATTGCACAACGGACCTGTT -ACGGAATTGCACAACGGACGGTTT -ACGGAATTGCACAACGGAGTGGTT -ACGGAATTGCACAACGGAGCCTTT -ACGGAATTGCACAACGGAGGTCTT -ACGGAATTGCACAACGGAACGCTT -ACGGAATTGCACAACGGAAGCGTT -ACGGAATTGCACAACGGATTCGTC -ACGGAATTGCACAACGGATCTCTC -ACGGAATTGCACAACGGATGGATC -ACGGAATTGCACAACGGACACTTC -ACGGAATTGCACAACGGAGTACTC -ACGGAATTGCACAACGGAGATGTC -ACGGAATTGCACAACGGAACAGTC -ACGGAATTGCACAACGGATTGCTG -ACGGAATTGCACAACGGATCCATG -ACGGAATTGCACAACGGATGTGTG -ACGGAATTGCACAACGGACTAGTG -ACGGAATTGCACAACGGACATCTG -ACGGAATTGCACAACGGAGAGTTG -ACGGAATTGCACAACGGAAGACTG -ACGGAATTGCACAACGGATCGGTA -ACGGAATTGCACAACGGATGCCTA -ACGGAATTGCACAACGGACCACTA -ACGGAATTGCACAACGGAGGAGTA -ACGGAATTGCACAACGGATCGTCT -ACGGAATTGCACAACGGATGCACT -ACGGAATTGCACAACGGACTGACT -ACGGAATTGCACAACGGACAACCT -ACGGAATTGCACAACGGAGCTACT -ACGGAATTGCACAACGGAGGATCT -ACGGAATTGCACAACGGAAAGGCT -ACGGAATTGCACAACGGATCAACC -ACGGAATTGCACAACGGATGTTCC -ACGGAATTGCACAACGGAATTCCC -ACGGAATTGCACAACGGATTCTCG -ACGGAATTGCACAACGGATAGACG -ACGGAATTGCACAACGGAGTAACG -ACGGAATTGCACAACGGAACTTCG -ACGGAATTGCACAACGGATACGCA -ACGGAATTGCACAACGGACTTGCA -ACGGAATTGCACAACGGACGAACA -ACGGAATTGCACAACGGACAGTCA -ACGGAATTGCACAACGGAGATCCA -ACGGAATTGCACAACGGAACGACA -ACGGAATTGCACAACGGAAGCTCA -ACGGAATTGCACAACGGATCACGT -ACGGAATTGCACAACGGACGTAGT -ACGGAATTGCACAACGGAGTCAGT -ACGGAATTGCACAACGGAGAAGGT -ACGGAATTGCACAACGGAAACCGT -ACGGAATTGCACAACGGATTGTGC -ACGGAATTGCACAACGGACTAAGC -ACGGAATTGCACAACGGAACTAGC -ACGGAATTGCACAACGGAAGATGC -ACGGAATTGCACAACGGATGAAGG -ACGGAATTGCACAACGGACAATGG -ACGGAATTGCACAACGGAATGAGG -ACGGAATTGCACAACGGAAATGGG -ACGGAATTGCACAACGGATCCTGA -ACGGAATTGCACAACGGATAGCGA -ACGGAATTGCACAACGGACACAGA -ACGGAATTGCACAACGGAGCAAGA -ACGGAATTGCACAACGGAGGTTGA -ACGGAATTGCACAACGGATCCGAT -ACGGAATTGCACAACGGATGGCAT -ACGGAATTGCACAACGGACGAGAT -ACGGAATTGCACAACGGATACCAC -ACGGAATTGCACAACGGACAGAAC -ACGGAATTGCACAACGGAGTCTAC -ACGGAATTGCACAACGGAACGTAC -ACGGAATTGCACAACGGAAGTGAC -ACGGAATTGCACAACGGACTGTAG -ACGGAATTGCACAACGGACCTAAG -ACGGAATTGCACAACGGAGTTCAG -ACGGAATTGCACAACGGAGCATAG -ACGGAATTGCACAACGGAGACAAG -ACGGAATTGCACAACGGAAAGCAG -ACGGAATTGCACAACGGACGTCAA -ACGGAATTGCACAACGGAGCTGAA -ACGGAATTGCACAACGGAAGTACG -ACGGAATTGCACAACGGAATCCGA -ACGGAATTGCACAACGGAATGGGA -ACGGAATTGCACAACGGAGTGCAA -ACGGAATTGCACAACGGAGAGGAA -ACGGAATTGCACAACGGACAGGTA -ACGGAATTGCACAACGGAGACTCT -ACGGAATTGCACAACGGAAGTCCT -ACGGAATTGCACAACGGATAAGCC -ACGGAATTGCACAACGGAATAGCC -ACGGAATTGCACAACGGATAACCG -ACGGAATTGCACAACGGAATGCCA -ACGGAATTGCACACCAACGGAAAC -ACGGAATTGCACACCAACAACACC -ACGGAATTGCACACCAACATCGAG -ACGGAATTGCACACCAACCTCCTT -ACGGAATTGCACACCAACCCTGTT -ACGGAATTGCACACCAACCGGTTT -ACGGAATTGCACACCAACGTGGTT -ACGGAATTGCACACCAACGCCTTT -ACGGAATTGCACACCAACGGTCTT -ACGGAATTGCACACCAACACGCTT -ACGGAATTGCACACCAACAGCGTT -ACGGAATTGCACACCAACTTCGTC -ACGGAATTGCACACCAACTCTCTC -ACGGAATTGCACACCAACTGGATC -ACGGAATTGCACACCAACCACTTC -ACGGAATTGCACACCAACGTACTC -ACGGAATTGCACACCAACGATGTC -ACGGAATTGCACACCAACACAGTC -ACGGAATTGCACACCAACTTGCTG -ACGGAATTGCACACCAACTCCATG -ACGGAATTGCACACCAACTGTGTG -ACGGAATTGCACACCAACCTAGTG -ACGGAATTGCACACCAACCATCTG -ACGGAATTGCACACCAACGAGTTG -ACGGAATTGCACACCAACAGACTG -ACGGAATTGCACACCAACTCGGTA -ACGGAATTGCACACCAACTGCCTA -ACGGAATTGCACACCAACCCACTA -ACGGAATTGCACACCAACGGAGTA -ACGGAATTGCACACCAACTCGTCT -ACGGAATTGCACACCAACTGCACT -ACGGAATTGCACACCAACCTGACT -ACGGAATTGCACACCAACCAACCT -ACGGAATTGCACACCAACGCTACT -ACGGAATTGCACACCAACGGATCT -ACGGAATTGCACACCAACAAGGCT -ACGGAATTGCACACCAACTCAACC -ACGGAATTGCACACCAACTGTTCC -ACGGAATTGCACACCAACATTCCC -ACGGAATTGCACACCAACTTCTCG -ACGGAATTGCACACCAACTAGACG -ACGGAATTGCACACCAACGTAACG -ACGGAATTGCACACCAACACTTCG -ACGGAATTGCACACCAACTACGCA -ACGGAATTGCACACCAACCTTGCA -ACGGAATTGCACACCAACCGAACA -ACGGAATTGCACACCAACCAGTCA -ACGGAATTGCACACCAACGATCCA -ACGGAATTGCACACCAACACGACA -ACGGAATTGCACACCAACAGCTCA -ACGGAATTGCACACCAACTCACGT -ACGGAATTGCACACCAACCGTAGT -ACGGAATTGCACACCAACGTCAGT -ACGGAATTGCACACCAACGAAGGT -ACGGAATTGCACACCAACAACCGT -ACGGAATTGCACACCAACTTGTGC -ACGGAATTGCACACCAACCTAAGC -ACGGAATTGCACACCAACACTAGC -ACGGAATTGCACACCAACAGATGC -ACGGAATTGCACACCAACTGAAGG -ACGGAATTGCACACCAACCAATGG -ACGGAATTGCACACCAACATGAGG -ACGGAATTGCACACCAACAATGGG -ACGGAATTGCACACCAACTCCTGA -ACGGAATTGCACACCAACTAGCGA -ACGGAATTGCACACCAACCACAGA -ACGGAATTGCACACCAACGCAAGA -ACGGAATTGCACACCAACGGTTGA -ACGGAATTGCACACCAACTCCGAT -ACGGAATTGCACACCAACTGGCAT -ACGGAATTGCACACCAACCGAGAT -ACGGAATTGCACACCAACTACCAC -ACGGAATTGCACACCAACCAGAAC -ACGGAATTGCACACCAACGTCTAC -ACGGAATTGCACACCAACACGTAC -ACGGAATTGCACACCAACAGTGAC -ACGGAATTGCACACCAACCTGTAG -ACGGAATTGCACACCAACCCTAAG -ACGGAATTGCACACCAACGTTCAG -ACGGAATTGCACACCAACGCATAG -ACGGAATTGCACACCAACGACAAG -ACGGAATTGCACACCAACAAGCAG -ACGGAATTGCACACCAACCGTCAA -ACGGAATTGCACACCAACGCTGAA -ACGGAATTGCACACCAACAGTACG -ACGGAATTGCACACCAACATCCGA -ACGGAATTGCACACCAACATGGGA -ACGGAATTGCACACCAACGTGCAA -ACGGAATTGCACACCAACGAGGAA -ACGGAATTGCACACCAACCAGGTA -ACGGAATTGCACACCAACGACTCT -ACGGAATTGCACACCAACAGTCCT -ACGGAATTGCACACCAACTAAGCC -ACGGAATTGCACACCAACATAGCC -ACGGAATTGCACACCAACTAACCG -ACGGAATTGCACACCAACATGCCA -ACGGAATTGCACGAGATCGGAAAC -ACGGAATTGCACGAGATCAACACC -ACGGAATTGCACGAGATCATCGAG -ACGGAATTGCACGAGATCCTCCTT -ACGGAATTGCACGAGATCCCTGTT -ACGGAATTGCACGAGATCCGGTTT -ACGGAATTGCACGAGATCGTGGTT -ACGGAATTGCACGAGATCGCCTTT -ACGGAATTGCACGAGATCGGTCTT -ACGGAATTGCACGAGATCACGCTT -ACGGAATTGCACGAGATCAGCGTT -ACGGAATTGCACGAGATCTTCGTC -ACGGAATTGCACGAGATCTCTCTC -ACGGAATTGCACGAGATCTGGATC -ACGGAATTGCACGAGATCCACTTC -ACGGAATTGCACGAGATCGTACTC -ACGGAATTGCACGAGATCGATGTC -ACGGAATTGCACGAGATCACAGTC -ACGGAATTGCACGAGATCTTGCTG -ACGGAATTGCACGAGATCTCCATG -ACGGAATTGCACGAGATCTGTGTG -ACGGAATTGCACGAGATCCTAGTG -ACGGAATTGCACGAGATCCATCTG -ACGGAATTGCACGAGATCGAGTTG -ACGGAATTGCACGAGATCAGACTG -ACGGAATTGCACGAGATCTCGGTA -ACGGAATTGCACGAGATCTGCCTA -ACGGAATTGCACGAGATCCCACTA -ACGGAATTGCACGAGATCGGAGTA -ACGGAATTGCACGAGATCTCGTCT -ACGGAATTGCACGAGATCTGCACT -ACGGAATTGCACGAGATCCTGACT -ACGGAATTGCACGAGATCCAACCT -ACGGAATTGCACGAGATCGCTACT -ACGGAATTGCACGAGATCGGATCT -ACGGAATTGCACGAGATCAAGGCT -ACGGAATTGCACGAGATCTCAACC -ACGGAATTGCACGAGATCTGTTCC -ACGGAATTGCACGAGATCATTCCC -ACGGAATTGCACGAGATCTTCTCG -ACGGAATTGCACGAGATCTAGACG -ACGGAATTGCACGAGATCGTAACG -ACGGAATTGCACGAGATCACTTCG -ACGGAATTGCACGAGATCTACGCA -ACGGAATTGCACGAGATCCTTGCA -ACGGAATTGCACGAGATCCGAACA -ACGGAATTGCACGAGATCCAGTCA -ACGGAATTGCACGAGATCGATCCA -ACGGAATTGCACGAGATCACGACA -ACGGAATTGCACGAGATCAGCTCA -ACGGAATTGCACGAGATCTCACGT -ACGGAATTGCACGAGATCCGTAGT -ACGGAATTGCACGAGATCGTCAGT -ACGGAATTGCACGAGATCGAAGGT -ACGGAATTGCACGAGATCAACCGT -ACGGAATTGCACGAGATCTTGTGC -ACGGAATTGCACGAGATCCTAAGC -ACGGAATTGCACGAGATCACTAGC -ACGGAATTGCACGAGATCAGATGC -ACGGAATTGCACGAGATCTGAAGG -ACGGAATTGCACGAGATCCAATGG -ACGGAATTGCACGAGATCATGAGG -ACGGAATTGCACGAGATCAATGGG -ACGGAATTGCACGAGATCTCCTGA -ACGGAATTGCACGAGATCTAGCGA -ACGGAATTGCACGAGATCCACAGA -ACGGAATTGCACGAGATCGCAAGA -ACGGAATTGCACGAGATCGGTTGA -ACGGAATTGCACGAGATCTCCGAT -ACGGAATTGCACGAGATCTGGCAT -ACGGAATTGCACGAGATCCGAGAT -ACGGAATTGCACGAGATCTACCAC -ACGGAATTGCACGAGATCCAGAAC -ACGGAATTGCACGAGATCGTCTAC -ACGGAATTGCACGAGATCACGTAC -ACGGAATTGCACGAGATCAGTGAC -ACGGAATTGCACGAGATCCTGTAG -ACGGAATTGCACGAGATCCCTAAG -ACGGAATTGCACGAGATCGTTCAG -ACGGAATTGCACGAGATCGCATAG -ACGGAATTGCACGAGATCGACAAG -ACGGAATTGCACGAGATCAAGCAG -ACGGAATTGCACGAGATCCGTCAA -ACGGAATTGCACGAGATCGCTGAA -ACGGAATTGCACGAGATCAGTACG -ACGGAATTGCACGAGATCATCCGA -ACGGAATTGCACGAGATCATGGGA -ACGGAATTGCACGAGATCGTGCAA -ACGGAATTGCACGAGATCGAGGAA -ACGGAATTGCACGAGATCCAGGTA -ACGGAATTGCACGAGATCGACTCT -ACGGAATTGCACGAGATCAGTCCT -ACGGAATTGCACGAGATCTAAGCC -ACGGAATTGCACGAGATCATAGCC -ACGGAATTGCACGAGATCTAACCG -ACGGAATTGCACGAGATCATGCCA -ACGGAATTGCACCTTCTCGGAAAC -ACGGAATTGCACCTTCTCAACACC -ACGGAATTGCACCTTCTCATCGAG -ACGGAATTGCACCTTCTCCTCCTT -ACGGAATTGCACCTTCTCCCTGTT -ACGGAATTGCACCTTCTCCGGTTT -ACGGAATTGCACCTTCTCGTGGTT -ACGGAATTGCACCTTCTCGCCTTT -ACGGAATTGCACCTTCTCGGTCTT -ACGGAATTGCACCTTCTCACGCTT -ACGGAATTGCACCTTCTCAGCGTT -ACGGAATTGCACCTTCTCTTCGTC -ACGGAATTGCACCTTCTCTCTCTC -ACGGAATTGCACCTTCTCTGGATC -ACGGAATTGCACCTTCTCCACTTC -ACGGAATTGCACCTTCTCGTACTC -ACGGAATTGCACCTTCTCGATGTC -ACGGAATTGCACCTTCTCACAGTC -ACGGAATTGCACCTTCTCTTGCTG -ACGGAATTGCACCTTCTCTCCATG -ACGGAATTGCACCTTCTCTGTGTG -ACGGAATTGCACCTTCTCCTAGTG -ACGGAATTGCACCTTCTCCATCTG -ACGGAATTGCACCTTCTCGAGTTG -ACGGAATTGCACCTTCTCAGACTG -ACGGAATTGCACCTTCTCTCGGTA -ACGGAATTGCACCTTCTCTGCCTA -ACGGAATTGCACCTTCTCCCACTA -ACGGAATTGCACCTTCTCGGAGTA -ACGGAATTGCACCTTCTCTCGTCT -ACGGAATTGCACCTTCTCTGCACT -ACGGAATTGCACCTTCTCCTGACT -ACGGAATTGCACCTTCTCCAACCT -ACGGAATTGCACCTTCTCGCTACT -ACGGAATTGCACCTTCTCGGATCT -ACGGAATTGCACCTTCTCAAGGCT -ACGGAATTGCACCTTCTCTCAACC -ACGGAATTGCACCTTCTCTGTTCC -ACGGAATTGCACCTTCTCATTCCC -ACGGAATTGCACCTTCTCTTCTCG -ACGGAATTGCACCTTCTCTAGACG -ACGGAATTGCACCTTCTCGTAACG -ACGGAATTGCACCTTCTCACTTCG -ACGGAATTGCACCTTCTCTACGCA -ACGGAATTGCACCTTCTCCTTGCA -ACGGAATTGCACCTTCTCCGAACA -ACGGAATTGCACCTTCTCCAGTCA -ACGGAATTGCACCTTCTCGATCCA -ACGGAATTGCACCTTCTCACGACA -ACGGAATTGCACCTTCTCAGCTCA -ACGGAATTGCACCTTCTCTCACGT -ACGGAATTGCACCTTCTCCGTAGT -ACGGAATTGCACCTTCTCGTCAGT -ACGGAATTGCACCTTCTCGAAGGT -ACGGAATTGCACCTTCTCAACCGT -ACGGAATTGCACCTTCTCTTGTGC -ACGGAATTGCACCTTCTCCTAAGC -ACGGAATTGCACCTTCTCACTAGC -ACGGAATTGCACCTTCTCAGATGC -ACGGAATTGCACCTTCTCTGAAGG -ACGGAATTGCACCTTCTCCAATGG -ACGGAATTGCACCTTCTCATGAGG -ACGGAATTGCACCTTCTCAATGGG -ACGGAATTGCACCTTCTCTCCTGA -ACGGAATTGCACCTTCTCTAGCGA -ACGGAATTGCACCTTCTCCACAGA -ACGGAATTGCACCTTCTCGCAAGA -ACGGAATTGCACCTTCTCGGTTGA -ACGGAATTGCACCTTCTCTCCGAT -ACGGAATTGCACCTTCTCTGGCAT -ACGGAATTGCACCTTCTCCGAGAT -ACGGAATTGCACCTTCTCTACCAC -ACGGAATTGCACCTTCTCCAGAAC -ACGGAATTGCACCTTCTCGTCTAC -ACGGAATTGCACCTTCTCACGTAC -ACGGAATTGCACCTTCTCAGTGAC -ACGGAATTGCACCTTCTCCTGTAG -ACGGAATTGCACCTTCTCCCTAAG -ACGGAATTGCACCTTCTCGTTCAG -ACGGAATTGCACCTTCTCGCATAG -ACGGAATTGCACCTTCTCGACAAG -ACGGAATTGCACCTTCTCAAGCAG -ACGGAATTGCACCTTCTCCGTCAA -ACGGAATTGCACCTTCTCGCTGAA -ACGGAATTGCACCTTCTCAGTACG -ACGGAATTGCACCTTCTCATCCGA -ACGGAATTGCACCTTCTCATGGGA -ACGGAATTGCACCTTCTCGTGCAA -ACGGAATTGCACCTTCTCGAGGAA -ACGGAATTGCACCTTCTCCAGGTA -ACGGAATTGCACCTTCTCGACTCT -ACGGAATTGCACCTTCTCAGTCCT -ACGGAATTGCACCTTCTCTAAGCC -ACGGAATTGCACCTTCTCATAGCC -ACGGAATTGCACCTTCTCTAACCG -ACGGAATTGCACCTTCTCATGCCA -ACGGAATTGCACGTTCCTGGAAAC -ACGGAATTGCACGTTCCTAACACC -ACGGAATTGCACGTTCCTATCGAG -ACGGAATTGCACGTTCCTCTCCTT -ACGGAATTGCACGTTCCTCCTGTT -ACGGAATTGCACGTTCCTCGGTTT -ACGGAATTGCACGTTCCTGTGGTT -ACGGAATTGCACGTTCCTGCCTTT -ACGGAATTGCACGTTCCTGGTCTT -ACGGAATTGCACGTTCCTACGCTT -ACGGAATTGCACGTTCCTAGCGTT -ACGGAATTGCACGTTCCTTTCGTC -ACGGAATTGCACGTTCCTTCTCTC -ACGGAATTGCACGTTCCTTGGATC -ACGGAATTGCACGTTCCTCACTTC -ACGGAATTGCACGTTCCTGTACTC -ACGGAATTGCACGTTCCTGATGTC -ACGGAATTGCACGTTCCTACAGTC -ACGGAATTGCACGTTCCTTTGCTG -ACGGAATTGCACGTTCCTTCCATG -ACGGAATTGCACGTTCCTTGTGTG -ACGGAATTGCACGTTCCTCTAGTG -ACGGAATTGCACGTTCCTCATCTG -ACGGAATTGCACGTTCCTGAGTTG -ACGGAATTGCACGTTCCTAGACTG -ACGGAATTGCACGTTCCTTCGGTA -ACGGAATTGCACGTTCCTTGCCTA -ACGGAATTGCACGTTCCTCCACTA -ACGGAATTGCACGTTCCTGGAGTA -ACGGAATTGCACGTTCCTTCGTCT -ACGGAATTGCACGTTCCTTGCACT -ACGGAATTGCACGTTCCTCTGACT -ACGGAATTGCACGTTCCTCAACCT -ACGGAATTGCACGTTCCTGCTACT -ACGGAATTGCACGTTCCTGGATCT -ACGGAATTGCACGTTCCTAAGGCT -ACGGAATTGCACGTTCCTTCAACC -ACGGAATTGCACGTTCCTTGTTCC -ACGGAATTGCACGTTCCTATTCCC -ACGGAATTGCACGTTCCTTTCTCG -ACGGAATTGCACGTTCCTTAGACG -ACGGAATTGCACGTTCCTGTAACG -ACGGAATTGCACGTTCCTACTTCG -ACGGAATTGCACGTTCCTTACGCA -ACGGAATTGCACGTTCCTCTTGCA -ACGGAATTGCACGTTCCTCGAACA -ACGGAATTGCACGTTCCTCAGTCA -ACGGAATTGCACGTTCCTGATCCA -ACGGAATTGCACGTTCCTACGACA -ACGGAATTGCACGTTCCTAGCTCA -ACGGAATTGCACGTTCCTTCACGT -ACGGAATTGCACGTTCCTCGTAGT -ACGGAATTGCACGTTCCTGTCAGT -ACGGAATTGCACGTTCCTGAAGGT -ACGGAATTGCACGTTCCTAACCGT -ACGGAATTGCACGTTCCTTTGTGC -ACGGAATTGCACGTTCCTCTAAGC -ACGGAATTGCACGTTCCTACTAGC -ACGGAATTGCACGTTCCTAGATGC -ACGGAATTGCACGTTCCTTGAAGG -ACGGAATTGCACGTTCCTCAATGG -ACGGAATTGCACGTTCCTATGAGG -ACGGAATTGCACGTTCCTAATGGG -ACGGAATTGCACGTTCCTTCCTGA -ACGGAATTGCACGTTCCTTAGCGA -ACGGAATTGCACGTTCCTCACAGA -ACGGAATTGCACGTTCCTGCAAGA -ACGGAATTGCACGTTCCTGGTTGA -ACGGAATTGCACGTTCCTTCCGAT -ACGGAATTGCACGTTCCTTGGCAT -ACGGAATTGCACGTTCCTCGAGAT -ACGGAATTGCACGTTCCTTACCAC -ACGGAATTGCACGTTCCTCAGAAC -ACGGAATTGCACGTTCCTGTCTAC -ACGGAATTGCACGTTCCTACGTAC -ACGGAATTGCACGTTCCTAGTGAC -ACGGAATTGCACGTTCCTCTGTAG -ACGGAATTGCACGTTCCTCCTAAG -ACGGAATTGCACGTTCCTGTTCAG -ACGGAATTGCACGTTCCTGCATAG -ACGGAATTGCACGTTCCTGACAAG -ACGGAATTGCACGTTCCTAAGCAG -ACGGAATTGCACGTTCCTCGTCAA -ACGGAATTGCACGTTCCTGCTGAA -ACGGAATTGCACGTTCCTAGTACG -ACGGAATTGCACGTTCCTATCCGA -ACGGAATTGCACGTTCCTATGGGA -ACGGAATTGCACGTTCCTGTGCAA -ACGGAATTGCACGTTCCTGAGGAA -ACGGAATTGCACGTTCCTCAGGTA -ACGGAATTGCACGTTCCTGACTCT -ACGGAATTGCACGTTCCTAGTCCT -ACGGAATTGCACGTTCCTTAAGCC -ACGGAATTGCACGTTCCTATAGCC -ACGGAATTGCACGTTCCTTAACCG -ACGGAATTGCACGTTCCTATGCCA -ACGGAATTGCACTTTCGGGGAAAC -ACGGAATTGCACTTTCGGAACACC -ACGGAATTGCACTTTCGGATCGAG -ACGGAATTGCACTTTCGGCTCCTT -ACGGAATTGCACTTTCGGCCTGTT -ACGGAATTGCACTTTCGGCGGTTT -ACGGAATTGCACTTTCGGGTGGTT -ACGGAATTGCACTTTCGGGCCTTT -ACGGAATTGCACTTTCGGGGTCTT -ACGGAATTGCACTTTCGGACGCTT -ACGGAATTGCACTTTCGGAGCGTT -ACGGAATTGCACTTTCGGTTCGTC -ACGGAATTGCACTTTCGGTCTCTC -ACGGAATTGCACTTTCGGTGGATC -ACGGAATTGCACTTTCGGCACTTC -ACGGAATTGCACTTTCGGGTACTC -ACGGAATTGCACTTTCGGGATGTC -ACGGAATTGCACTTTCGGACAGTC -ACGGAATTGCACTTTCGGTTGCTG -ACGGAATTGCACTTTCGGTCCATG -ACGGAATTGCACTTTCGGTGTGTG -ACGGAATTGCACTTTCGGCTAGTG -ACGGAATTGCACTTTCGGCATCTG -ACGGAATTGCACTTTCGGGAGTTG -ACGGAATTGCACTTTCGGAGACTG -ACGGAATTGCACTTTCGGTCGGTA -ACGGAATTGCACTTTCGGTGCCTA -ACGGAATTGCACTTTCGGCCACTA -ACGGAATTGCACTTTCGGGGAGTA -ACGGAATTGCACTTTCGGTCGTCT -ACGGAATTGCACTTTCGGTGCACT -ACGGAATTGCACTTTCGGCTGACT -ACGGAATTGCACTTTCGGCAACCT -ACGGAATTGCACTTTCGGGCTACT -ACGGAATTGCACTTTCGGGGATCT -ACGGAATTGCACTTTCGGAAGGCT -ACGGAATTGCACTTTCGGTCAACC -ACGGAATTGCACTTTCGGTGTTCC -ACGGAATTGCACTTTCGGATTCCC -ACGGAATTGCACTTTCGGTTCTCG -ACGGAATTGCACTTTCGGTAGACG -ACGGAATTGCACTTTCGGGTAACG -ACGGAATTGCACTTTCGGACTTCG -ACGGAATTGCACTTTCGGTACGCA -ACGGAATTGCACTTTCGGCTTGCA -ACGGAATTGCACTTTCGGCGAACA -ACGGAATTGCACTTTCGGCAGTCA -ACGGAATTGCACTTTCGGGATCCA -ACGGAATTGCACTTTCGGACGACA -ACGGAATTGCACTTTCGGAGCTCA -ACGGAATTGCACTTTCGGTCACGT -ACGGAATTGCACTTTCGGCGTAGT -ACGGAATTGCACTTTCGGGTCAGT -ACGGAATTGCACTTTCGGGAAGGT -ACGGAATTGCACTTTCGGAACCGT -ACGGAATTGCACTTTCGGTTGTGC -ACGGAATTGCACTTTCGGCTAAGC -ACGGAATTGCACTTTCGGACTAGC -ACGGAATTGCACTTTCGGAGATGC -ACGGAATTGCACTTTCGGTGAAGG -ACGGAATTGCACTTTCGGCAATGG -ACGGAATTGCACTTTCGGATGAGG -ACGGAATTGCACTTTCGGAATGGG -ACGGAATTGCACTTTCGGTCCTGA -ACGGAATTGCACTTTCGGTAGCGA -ACGGAATTGCACTTTCGGCACAGA -ACGGAATTGCACTTTCGGGCAAGA -ACGGAATTGCACTTTCGGGGTTGA -ACGGAATTGCACTTTCGGTCCGAT -ACGGAATTGCACTTTCGGTGGCAT -ACGGAATTGCACTTTCGGCGAGAT -ACGGAATTGCACTTTCGGTACCAC -ACGGAATTGCACTTTCGGCAGAAC -ACGGAATTGCACTTTCGGGTCTAC -ACGGAATTGCACTTTCGGACGTAC -ACGGAATTGCACTTTCGGAGTGAC -ACGGAATTGCACTTTCGGCTGTAG -ACGGAATTGCACTTTCGGCCTAAG -ACGGAATTGCACTTTCGGGTTCAG -ACGGAATTGCACTTTCGGGCATAG -ACGGAATTGCACTTTCGGGACAAG -ACGGAATTGCACTTTCGGAAGCAG -ACGGAATTGCACTTTCGGCGTCAA -ACGGAATTGCACTTTCGGGCTGAA -ACGGAATTGCACTTTCGGAGTACG -ACGGAATTGCACTTTCGGATCCGA -ACGGAATTGCACTTTCGGATGGGA -ACGGAATTGCACTTTCGGGTGCAA -ACGGAATTGCACTTTCGGGAGGAA -ACGGAATTGCACTTTCGGCAGGTA -ACGGAATTGCACTTTCGGGACTCT -ACGGAATTGCACTTTCGGAGTCCT -ACGGAATTGCACTTTCGGTAAGCC -ACGGAATTGCACTTTCGGATAGCC -ACGGAATTGCACTTTCGGTAACCG -ACGGAATTGCACTTTCGGATGCCA -ACGGAATTGCACGTTGTGGGAAAC -ACGGAATTGCACGTTGTGAACACC -ACGGAATTGCACGTTGTGATCGAG -ACGGAATTGCACGTTGTGCTCCTT -ACGGAATTGCACGTTGTGCCTGTT -ACGGAATTGCACGTTGTGCGGTTT -ACGGAATTGCACGTTGTGGTGGTT -ACGGAATTGCACGTTGTGGCCTTT -ACGGAATTGCACGTTGTGGGTCTT -ACGGAATTGCACGTTGTGACGCTT -ACGGAATTGCACGTTGTGAGCGTT -ACGGAATTGCACGTTGTGTTCGTC -ACGGAATTGCACGTTGTGTCTCTC -ACGGAATTGCACGTTGTGTGGATC -ACGGAATTGCACGTTGTGCACTTC -ACGGAATTGCACGTTGTGGTACTC -ACGGAATTGCACGTTGTGGATGTC -ACGGAATTGCACGTTGTGACAGTC -ACGGAATTGCACGTTGTGTTGCTG -ACGGAATTGCACGTTGTGTCCATG -ACGGAATTGCACGTTGTGTGTGTG -ACGGAATTGCACGTTGTGCTAGTG -ACGGAATTGCACGTTGTGCATCTG -ACGGAATTGCACGTTGTGGAGTTG -ACGGAATTGCACGTTGTGAGACTG -ACGGAATTGCACGTTGTGTCGGTA -ACGGAATTGCACGTTGTGTGCCTA -ACGGAATTGCACGTTGTGCCACTA -ACGGAATTGCACGTTGTGGGAGTA -ACGGAATTGCACGTTGTGTCGTCT -ACGGAATTGCACGTTGTGTGCACT -ACGGAATTGCACGTTGTGCTGACT -ACGGAATTGCACGTTGTGCAACCT -ACGGAATTGCACGTTGTGGCTACT -ACGGAATTGCACGTTGTGGGATCT -ACGGAATTGCACGTTGTGAAGGCT -ACGGAATTGCACGTTGTGTCAACC -ACGGAATTGCACGTTGTGTGTTCC -ACGGAATTGCACGTTGTGATTCCC -ACGGAATTGCACGTTGTGTTCTCG -ACGGAATTGCACGTTGTGTAGACG -ACGGAATTGCACGTTGTGGTAACG -ACGGAATTGCACGTTGTGACTTCG -ACGGAATTGCACGTTGTGTACGCA -ACGGAATTGCACGTTGTGCTTGCA -ACGGAATTGCACGTTGTGCGAACA -ACGGAATTGCACGTTGTGCAGTCA -ACGGAATTGCACGTTGTGGATCCA -ACGGAATTGCACGTTGTGACGACA -ACGGAATTGCACGTTGTGAGCTCA -ACGGAATTGCACGTTGTGTCACGT -ACGGAATTGCACGTTGTGCGTAGT -ACGGAATTGCACGTTGTGGTCAGT -ACGGAATTGCACGTTGTGGAAGGT -ACGGAATTGCACGTTGTGAACCGT -ACGGAATTGCACGTTGTGTTGTGC -ACGGAATTGCACGTTGTGCTAAGC -ACGGAATTGCACGTTGTGACTAGC -ACGGAATTGCACGTTGTGAGATGC -ACGGAATTGCACGTTGTGTGAAGG -ACGGAATTGCACGTTGTGCAATGG -ACGGAATTGCACGTTGTGATGAGG -ACGGAATTGCACGTTGTGAATGGG -ACGGAATTGCACGTTGTGTCCTGA -ACGGAATTGCACGTTGTGTAGCGA -ACGGAATTGCACGTTGTGCACAGA -ACGGAATTGCACGTTGTGGCAAGA -ACGGAATTGCACGTTGTGGGTTGA -ACGGAATTGCACGTTGTGTCCGAT -ACGGAATTGCACGTTGTGTGGCAT -ACGGAATTGCACGTTGTGCGAGAT -ACGGAATTGCACGTTGTGTACCAC -ACGGAATTGCACGTTGTGCAGAAC -ACGGAATTGCACGTTGTGGTCTAC -ACGGAATTGCACGTTGTGACGTAC -ACGGAATTGCACGTTGTGAGTGAC -ACGGAATTGCACGTTGTGCTGTAG -ACGGAATTGCACGTTGTGCCTAAG -ACGGAATTGCACGTTGTGGTTCAG -ACGGAATTGCACGTTGTGGCATAG -ACGGAATTGCACGTTGTGGACAAG -ACGGAATTGCACGTTGTGAAGCAG -ACGGAATTGCACGTTGTGCGTCAA -ACGGAATTGCACGTTGTGGCTGAA -ACGGAATTGCACGTTGTGAGTACG -ACGGAATTGCACGTTGTGATCCGA -ACGGAATTGCACGTTGTGATGGGA -ACGGAATTGCACGTTGTGGTGCAA -ACGGAATTGCACGTTGTGGAGGAA -ACGGAATTGCACGTTGTGCAGGTA -ACGGAATTGCACGTTGTGGACTCT -ACGGAATTGCACGTTGTGAGTCCT -ACGGAATTGCACGTTGTGTAAGCC -ACGGAATTGCACGTTGTGATAGCC -ACGGAATTGCACGTTGTGTAACCG -ACGGAATTGCACGTTGTGATGCCA -ACGGAATTGCACTTTGCCGGAAAC -ACGGAATTGCACTTTGCCAACACC -ACGGAATTGCACTTTGCCATCGAG -ACGGAATTGCACTTTGCCCTCCTT -ACGGAATTGCACTTTGCCCCTGTT -ACGGAATTGCACTTTGCCCGGTTT -ACGGAATTGCACTTTGCCGTGGTT -ACGGAATTGCACTTTGCCGCCTTT -ACGGAATTGCACTTTGCCGGTCTT -ACGGAATTGCACTTTGCCACGCTT -ACGGAATTGCACTTTGCCAGCGTT -ACGGAATTGCACTTTGCCTTCGTC -ACGGAATTGCACTTTGCCTCTCTC -ACGGAATTGCACTTTGCCTGGATC -ACGGAATTGCACTTTGCCCACTTC -ACGGAATTGCACTTTGCCGTACTC -ACGGAATTGCACTTTGCCGATGTC -ACGGAATTGCACTTTGCCACAGTC -ACGGAATTGCACTTTGCCTTGCTG -ACGGAATTGCACTTTGCCTCCATG -ACGGAATTGCACTTTGCCTGTGTG -ACGGAATTGCACTTTGCCCTAGTG -ACGGAATTGCACTTTGCCCATCTG -ACGGAATTGCACTTTGCCGAGTTG -ACGGAATTGCACTTTGCCAGACTG -ACGGAATTGCACTTTGCCTCGGTA -ACGGAATTGCACTTTGCCTGCCTA -ACGGAATTGCACTTTGCCCCACTA -ACGGAATTGCACTTTGCCGGAGTA -ACGGAATTGCACTTTGCCTCGTCT -ACGGAATTGCACTTTGCCTGCACT -ACGGAATTGCACTTTGCCCTGACT -ACGGAATTGCACTTTGCCCAACCT -ACGGAATTGCACTTTGCCGCTACT -ACGGAATTGCACTTTGCCGGATCT -ACGGAATTGCACTTTGCCAAGGCT -ACGGAATTGCACTTTGCCTCAACC -ACGGAATTGCACTTTGCCTGTTCC -ACGGAATTGCACTTTGCCATTCCC -ACGGAATTGCACTTTGCCTTCTCG -ACGGAATTGCACTTTGCCTAGACG -ACGGAATTGCACTTTGCCGTAACG -ACGGAATTGCACTTTGCCACTTCG -ACGGAATTGCACTTTGCCTACGCA -ACGGAATTGCACTTTGCCCTTGCA -ACGGAATTGCACTTTGCCCGAACA -ACGGAATTGCACTTTGCCCAGTCA -ACGGAATTGCACTTTGCCGATCCA -ACGGAATTGCACTTTGCCACGACA -ACGGAATTGCACTTTGCCAGCTCA -ACGGAATTGCACTTTGCCTCACGT -ACGGAATTGCACTTTGCCCGTAGT -ACGGAATTGCACTTTGCCGTCAGT -ACGGAATTGCACTTTGCCGAAGGT -ACGGAATTGCACTTTGCCAACCGT -ACGGAATTGCACTTTGCCTTGTGC -ACGGAATTGCACTTTGCCCTAAGC -ACGGAATTGCACTTTGCCACTAGC -ACGGAATTGCACTTTGCCAGATGC -ACGGAATTGCACTTTGCCTGAAGG -ACGGAATTGCACTTTGCCCAATGG -ACGGAATTGCACTTTGCCATGAGG -ACGGAATTGCACTTTGCCAATGGG -ACGGAATTGCACTTTGCCTCCTGA -ACGGAATTGCACTTTGCCTAGCGA -ACGGAATTGCACTTTGCCCACAGA -ACGGAATTGCACTTTGCCGCAAGA -ACGGAATTGCACTTTGCCGGTTGA -ACGGAATTGCACTTTGCCTCCGAT -ACGGAATTGCACTTTGCCTGGCAT -ACGGAATTGCACTTTGCCCGAGAT -ACGGAATTGCACTTTGCCTACCAC -ACGGAATTGCACTTTGCCCAGAAC -ACGGAATTGCACTTTGCCGTCTAC -ACGGAATTGCACTTTGCCACGTAC -ACGGAATTGCACTTTGCCAGTGAC -ACGGAATTGCACTTTGCCCTGTAG -ACGGAATTGCACTTTGCCCCTAAG -ACGGAATTGCACTTTGCCGTTCAG -ACGGAATTGCACTTTGCCGCATAG -ACGGAATTGCACTTTGCCGACAAG -ACGGAATTGCACTTTGCCAAGCAG -ACGGAATTGCACTTTGCCCGTCAA -ACGGAATTGCACTTTGCCGCTGAA -ACGGAATTGCACTTTGCCAGTACG -ACGGAATTGCACTTTGCCATCCGA -ACGGAATTGCACTTTGCCATGGGA -ACGGAATTGCACTTTGCCGTGCAA -ACGGAATTGCACTTTGCCGAGGAA -ACGGAATTGCACTTTGCCCAGGTA -ACGGAATTGCACTTTGCCGACTCT -ACGGAATTGCACTTTGCCAGTCCT -ACGGAATTGCACTTTGCCTAAGCC -ACGGAATTGCACTTTGCCATAGCC -ACGGAATTGCACTTTGCCTAACCG -ACGGAATTGCACTTTGCCATGCCA -ACGGAATTGCACCTTGGTGGAAAC -ACGGAATTGCACCTTGGTAACACC -ACGGAATTGCACCTTGGTATCGAG -ACGGAATTGCACCTTGGTCTCCTT -ACGGAATTGCACCTTGGTCCTGTT -ACGGAATTGCACCTTGGTCGGTTT -ACGGAATTGCACCTTGGTGTGGTT -ACGGAATTGCACCTTGGTGCCTTT -ACGGAATTGCACCTTGGTGGTCTT -ACGGAATTGCACCTTGGTACGCTT -ACGGAATTGCACCTTGGTAGCGTT -ACGGAATTGCACCTTGGTTTCGTC -ACGGAATTGCACCTTGGTTCTCTC -ACGGAATTGCACCTTGGTTGGATC -ACGGAATTGCACCTTGGTCACTTC -ACGGAATTGCACCTTGGTGTACTC -ACGGAATTGCACCTTGGTGATGTC -ACGGAATTGCACCTTGGTACAGTC -ACGGAATTGCACCTTGGTTTGCTG -ACGGAATTGCACCTTGGTTCCATG -ACGGAATTGCACCTTGGTTGTGTG -ACGGAATTGCACCTTGGTCTAGTG -ACGGAATTGCACCTTGGTCATCTG -ACGGAATTGCACCTTGGTGAGTTG -ACGGAATTGCACCTTGGTAGACTG -ACGGAATTGCACCTTGGTTCGGTA -ACGGAATTGCACCTTGGTTGCCTA -ACGGAATTGCACCTTGGTCCACTA -ACGGAATTGCACCTTGGTGGAGTA -ACGGAATTGCACCTTGGTTCGTCT -ACGGAATTGCACCTTGGTTGCACT -ACGGAATTGCACCTTGGTCTGACT -ACGGAATTGCACCTTGGTCAACCT -ACGGAATTGCACCTTGGTGCTACT -ACGGAATTGCACCTTGGTGGATCT -ACGGAATTGCACCTTGGTAAGGCT -ACGGAATTGCACCTTGGTTCAACC -ACGGAATTGCACCTTGGTTGTTCC -ACGGAATTGCACCTTGGTATTCCC -ACGGAATTGCACCTTGGTTTCTCG -ACGGAATTGCACCTTGGTTAGACG -ACGGAATTGCACCTTGGTGTAACG -ACGGAATTGCACCTTGGTACTTCG -ACGGAATTGCACCTTGGTTACGCA -ACGGAATTGCACCTTGGTCTTGCA -ACGGAATTGCACCTTGGTCGAACA -ACGGAATTGCACCTTGGTCAGTCA -ACGGAATTGCACCTTGGTGATCCA -ACGGAATTGCACCTTGGTACGACA -ACGGAATTGCACCTTGGTAGCTCA -ACGGAATTGCACCTTGGTTCACGT -ACGGAATTGCACCTTGGTCGTAGT -ACGGAATTGCACCTTGGTGTCAGT -ACGGAATTGCACCTTGGTGAAGGT -ACGGAATTGCACCTTGGTAACCGT -ACGGAATTGCACCTTGGTTTGTGC -ACGGAATTGCACCTTGGTCTAAGC -ACGGAATTGCACCTTGGTACTAGC -ACGGAATTGCACCTTGGTAGATGC -ACGGAATTGCACCTTGGTTGAAGG -ACGGAATTGCACCTTGGTCAATGG -ACGGAATTGCACCTTGGTATGAGG -ACGGAATTGCACCTTGGTAATGGG -ACGGAATTGCACCTTGGTTCCTGA -ACGGAATTGCACCTTGGTTAGCGA -ACGGAATTGCACCTTGGTCACAGA -ACGGAATTGCACCTTGGTGCAAGA -ACGGAATTGCACCTTGGTGGTTGA -ACGGAATTGCACCTTGGTTCCGAT -ACGGAATTGCACCTTGGTTGGCAT -ACGGAATTGCACCTTGGTCGAGAT -ACGGAATTGCACCTTGGTTACCAC -ACGGAATTGCACCTTGGTCAGAAC -ACGGAATTGCACCTTGGTGTCTAC -ACGGAATTGCACCTTGGTACGTAC -ACGGAATTGCACCTTGGTAGTGAC -ACGGAATTGCACCTTGGTCTGTAG -ACGGAATTGCACCTTGGTCCTAAG -ACGGAATTGCACCTTGGTGTTCAG -ACGGAATTGCACCTTGGTGCATAG -ACGGAATTGCACCTTGGTGACAAG -ACGGAATTGCACCTTGGTAAGCAG -ACGGAATTGCACCTTGGTCGTCAA -ACGGAATTGCACCTTGGTGCTGAA -ACGGAATTGCACCTTGGTAGTACG -ACGGAATTGCACCTTGGTATCCGA -ACGGAATTGCACCTTGGTATGGGA -ACGGAATTGCACCTTGGTGTGCAA -ACGGAATTGCACCTTGGTGAGGAA -ACGGAATTGCACCTTGGTCAGGTA -ACGGAATTGCACCTTGGTGACTCT -ACGGAATTGCACCTTGGTAGTCCT -ACGGAATTGCACCTTGGTTAAGCC -ACGGAATTGCACCTTGGTATAGCC -ACGGAATTGCACCTTGGTTAACCG -ACGGAATTGCACCTTGGTATGCCA -ACGGAATTGCACCTTACGGGAAAC -ACGGAATTGCACCTTACGAACACC -ACGGAATTGCACCTTACGATCGAG -ACGGAATTGCACCTTACGCTCCTT -ACGGAATTGCACCTTACGCCTGTT -ACGGAATTGCACCTTACGCGGTTT -ACGGAATTGCACCTTACGGTGGTT -ACGGAATTGCACCTTACGGCCTTT -ACGGAATTGCACCTTACGGGTCTT -ACGGAATTGCACCTTACGACGCTT -ACGGAATTGCACCTTACGAGCGTT -ACGGAATTGCACCTTACGTTCGTC -ACGGAATTGCACCTTACGTCTCTC -ACGGAATTGCACCTTACGTGGATC -ACGGAATTGCACCTTACGCACTTC -ACGGAATTGCACCTTACGGTACTC -ACGGAATTGCACCTTACGGATGTC -ACGGAATTGCACCTTACGACAGTC -ACGGAATTGCACCTTACGTTGCTG -ACGGAATTGCACCTTACGTCCATG -ACGGAATTGCACCTTACGTGTGTG -ACGGAATTGCACCTTACGCTAGTG -ACGGAATTGCACCTTACGCATCTG -ACGGAATTGCACCTTACGGAGTTG -ACGGAATTGCACCTTACGAGACTG -ACGGAATTGCACCTTACGTCGGTA -ACGGAATTGCACCTTACGTGCCTA -ACGGAATTGCACCTTACGCCACTA -ACGGAATTGCACCTTACGGGAGTA -ACGGAATTGCACCTTACGTCGTCT -ACGGAATTGCACCTTACGTGCACT -ACGGAATTGCACCTTACGCTGACT -ACGGAATTGCACCTTACGCAACCT -ACGGAATTGCACCTTACGGCTACT -ACGGAATTGCACCTTACGGGATCT -ACGGAATTGCACCTTACGAAGGCT -ACGGAATTGCACCTTACGTCAACC -ACGGAATTGCACCTTACGTGTTCC -ACGGAATTGCACCTTACGATTCCC -ACGGAATTGCACCTTACGTTCTCG -ACGGAATTGCACCTTACGTAGACG -ACGGAATTGCACCTTACGGTAACG -ACGGAATTGCACCTTACGACTTCG -ACGGAATTGCACCTTACGTACGCA -ACGGAATTGCACCTTACGCTTGCA -ACGGAATTGCACCTTACGCGAACA -ACGGAATTGCACCTTACGCAGTCA -ACGGAATTGCACCTTACGGATCCA -ACGGAATTGCACCTTACGACGACA -ACGGAATTGCACCTTACGAGCTCA -ACGGAATTGCACCTTACGTCACGT -ACGGAATTGCACCTTACGCGTAGT -ACGGAATTGCACCTTACGGTCAGT -ACGGAATTGCACCTTACGGAAGGT -ACGGAATTGCACCTTACGAACCGT -ACGGAATTGCACCTTACGTTGTGC -ACGGAATTGCACCTTACGCTAAGC -ACGGAATTGCACCTTACGACTAGC -ACGGAATTGCACCTTACGAGATGC -ACGGAATTGCACCTTACGTGAAGG -ACGGAATTGCACCTTACGCAATGG -ACGGAATTGCACCTTACGATGAGG -ACGGAATTGCACCTTACGAATGGG -ACGGAATTGCACCTTACGTCCTGA -ACGGAATTGCACCTTACGTAGCGA -ACGGAATTGCACCTTACGCACAGA -ACGGAATTGCACCTTACGGCAAGA -ACGGAATTGCACCTTACGGGTTGA -ACGGAATTGCACCTTACGTCCGAT -ACGGAATTGCACCTTACGTGGCAT -ACGGAATTGCACCTTACGCGAGAT -ACGGAATTGCACCTTACGTACCAC -ACGGAATTGCACCTTACGCAGAAC -ACGGAATTGCACCTTACGGTCTAC -ACGGAATTGCACCTTACGACGTAC -ACGGAATTGCACCTTACGAGTGAC -ACGGAATTGCACCTTACGCTGTAG -ACGGAATTGCACCTTACGCCTAAG -ACGGAATTGCACCTTACGGTTCAG -ACGGAATTGCACCTTACGGCATAG -ACGGAATTGCACCTTACGGACAAG -ACGGAATTGCACCTTACGAAGCAG -ACGGAATTGCACCTTACGCGTCAA -ACGGAATTGCACCTTACGGCTGAA -ACGGAATTGCACCTTACGAGTACG -ACGGAATTGCACCTTACGATCCGA -ACGGAATTGCACCTTACGATGGGA -ACGGAATTGCACCTTACGGTGCAA -ACGGAATTGCACCTTACGGAGGAA -ACGGAATTGCACCTTACGCAGGTA -ACGGAATTGCACCTTACGGACTCT -ACGGAATTGCACCTTACGAGTCCT -ACGGAATTGCACCTTACGTAAGCC -ACGGAATTGCACCTTACGATAGCC -ACGGAATTGCACCTTACGTAACCG -ACGGAATTGCACCTTACGATGCCA -ACGGAATTGCACGTTAGCGGAAAC -ACGGAATTGCACGTTAGCAACACC -ACGGAATTGCACGTTAGCATCGAG -ACGGAATTGCACGTTAGCCTCCTT -ACGGAATTGCACGTTAGCCCTGTT -ACGGAATTGCACGTTAGCCGGTTT -ACGGAATTGCACGTTAGCGTGGTT -ACGGAATTGCACGTTAGCGCCTTT -ACGGAATTGCACGTTAGCGGTCTT -ACGGAATTGCACGTTAGCACGCTT -ACGGAATTGCACGTTAGCAGCGTT -ACGGAATTGCACGTTAGCTTCGTC -ACGGAATTGCACGTTAGCTCTCTC -ACGGAATTGCACGTTAGCTGGATC -ACGGAATTGCACGTTAGCCACTTC -ACGGAATTGCACGTTAGCGTACTC -ACGGAATTGCACGTTAGCGATGTC -ACGGAATTGCACGTTAGCACAGTC -ACGGAATTGCACGTTAGCTTGCTG -ACGGAATTGCACGTTAGCTCCATG -ACGGAATTGCACGTTAGCTGTGTG -ACGGAATTGCACGTTAGCCTAGTG -ACGGAATTGCACGTTAGCCATCTG -ACGGAATTGCACGTTAGCGAGTTG -ACGGAATTGCACGTTAGCAGACTG -ACGGAATTGCACGTTAGCTCGGTA -ACGGAATTGCACGTTAGCTGCCTA -ACGGAATTGCACGTTAGCCCACTA -ACGGAATTGCACGTTAGCGGAGTA -ACGGAATTGCACGTTAGCTCGTCT -ACGGAATTGCACGTTAGCTGCACT -ACGGAATTGCACGTTAGCCTGACT -ACGGAATTGCACGTTAGCCAACCT -ACGGAATTGCACGTTAGCGCTACT -ACGGAATTGCACGTTAGCGGATCT -ACGGAATTGCACGTTAGCAAGGCT -ACGGAATTGCACGTTAGCTCAACC -ACGGAATTGCACGTTAGCTGTTCC -ACGGAATTGCACGTTAGCATTCCC -ACGGAATTGCACGTTAGCTTCTCG -ACGGAATTGCACGTTAGCTAGACG -ACGGAATTGCACGTTAGCGTAACG -ACGGAATTGCACGTTAGCACTTCG -ACGGAATTGCACGTTAGCTACGCA -ACGGAATTGCACGTTAGCCTTGCA -ACGGAATTGCACGTTAGCCGAACA -ACGGAATTGCACGTTAGCCAGTCA -ACGGAATTGCACGTTAGCGATCCA -ACGGAATTGCACGTTAGCACGACA -ACGGAATTGCACGTTAGCAGCTCA -ACGGAATTGCACGTTAGCTCACGT -ACGGAATTGCACGTTAGCCGTAGT -ACGGAATTGCACGTTAGCGTCAGT -ACGGAATTGCACGTTAGCGAAGGT -ACGGAATTGCACGTTAGCAACCGT -ACGGAATTGCACGTTAGCTTGTGC -ACGGAATTGCACGTTAGCCTAAGC -ACGGAATTGCACGTTAGCACTAGC -ACGGAATTGCACGTTAGCAGATGC -ACGGAATTGCACGTTAGCTGAAGG -ACGGAATTGCACGTTAGCCAATGG -ACGGAATTGCACGTTAGCATGAGG -ACGGAATTGCACGTTAGCAATGGG -ACGGAATTGCACGTTAGCTCCTGA -ACGGAATTGCACGTTAGCTAGCGA -ACGGAATTGCACGTTAGCCACAGA -ACGGAATTGCACGTTAGCGCAAGA -ACGGAATTGCACGTTAGCGGTTGA -ACGGAATTGCACGTTAGCTCCGAT -ACGGAATTGCACGTTAGCTGGCAT -ACGGAATTGCACGTTAGCCGAGAT -ACGGAATTGCACGTTAGCTACCAC -ACGGAATTGCACGTTAGCCAGAAC -ACGGAATTGCACGTTAGCGTCTAC -ACGGAATTGCACGTTAGCACGTAC -ACGGAATTGCACGTTAGCAGTGAC -ACGGAATTGCACGTTAGCCTGTAG -ACGGAATTGCACGTTAGCCCTAAG -ACGGAATTGCACGTTAGCGTTCAG -ACGGAATTGCACGTTAGCGCATAG -ACGGAATTGCACGTTAGCGACAAG -ACGGAATTGCACGTTAGCAAGCAG -ACGGAATTGCACGTTAGCCGTCAA -ACGGAATTGCACGTTAGCGCTGAA -ACGGAATTGCACGTTAGCAGTACG -ACGGAATTGCACGTTAGCATCCGA -ACGGAATTGCACGTTAGCATGGGA -ACGGAATTGCACGTTAGCGTGCAA -ACGGAATTGCACGTTAGCGAGGAA -ACGGAATTGCACGTTAGCCAGGTA -ACGGAATTGCACGTTAGCGACTCT -ACGGAATTGCACGTTAGCAGTCCT -ACGGAATTGCACGTTAGCTAAGCC -ACGGAATTGCACGTTAGCATAGCC -ACGGAATTGCACGTTAGCTAACCG -ACGGAATTGCACGTTAGCATGCCA -ACGGAATTGCACGTCTTCGGAAAC -ACGGAATTGCACGTCTTCAACACC -ACGGAATTGCACGTCTTCATCGAG -ACGGAATTGCACGTCTTCCTCCTT -ACGGAATTGCACGTCTTCCCTGTT -ACGGAATTGCACGTCTTCCGGTTT -ACGGAATTGCACGTCTTCGTGGTT -ACGGAATTGCACGTCTTCGCCTTT -ACGGAATTGCACGTCTTCGGTCTT -ACGGAATTGCACGTCTTCACGCTT -ACGGAATTGCACGTCTTCAGCGTT -ACGGAATTGCACGTCTTCTTCGTC -ACGGAATTGCACGTCTTCTCTCTC -ACGGAATTGCACGTCTTCTGGATC -ACGGAATTGCACGTCTTCCACTTC -ACGGAATTGCACGTCTTCGTACTC -ACGGAATTGCACGTCTTCGATGTC -ACGGAATTGCACGTCTTCACAGTC -ACGGAATTGCACGTCTTCTTGCTG -ACGGAATTGCACGTCTTCTCCATG -ACGGAATTGCACGTCTTCTGTGTG -ACGGAATTGCACGTCTTCCTAGTG -ACGGAATTGCACGTCTTCCATCTG -ACGGAATTGCACGTCTTCGAGTTG -ACGGAATTGCACGTCTTCAGACTG -ACGGAATTGCACGTCTTCTCGGTA -ACGGAATTGCACGTCTTCTGCCTA -ACGGAATTGCACGTCTTCCCACTA -ACGGAATTGCACGTCTTCGGAGTA -ACGGAATTGCACGTCTTCTCGTCT -ACGGAATTGCACGTCTTCTGCACT -ACGGAATTGCACGTCTTCCTGACT -ACGGAATTGCACGTCTTCCAACCT -ACGGAATTGCACGTCTTCGCTACT -ACGGAATTGCACGTCTTCGGATCT -ACGGAATTGCACGTCTTCAAGGCT -ACGGAATTGCACGTCTTCTCAACC -ACGGAATTGCACGTCTTCTGTTCC -ACGGAATTGCACGTCTTCATTCCC -ACGGAATTGCACGTCTTCTTCTCG -ACGGAATTGCACGTCTTCTAGACG -ACGGAATTGCACGTCTTCGTAACG -ACGGAATTGCACGTCTTCACTTCG -ACGGAATTGCACGTCTTCTACGCA -ACGGAATTGCACGTCTTCCTTGCA -ACGGAATTGCACGTCTTCCGAACA -ACGGAATTGCACGTCTTCCAGTCA -ACGGAATTGCACGTCTTCGATCCA -ACGGAATTGCACGTCTTCACGACA -ACGGAATTGCACGTCTTCAGCTCA -ACGGAATTGCACGTCTTCTCACGT -ACGGAATTGCACGTCTTCCGTAGT -ACGGAATTGCACGTCTTCGTCAGT -ACGGAATTGCACGTCTTCGAAGGT -ACGGAATTGCACGTCTTCAACCGT -ACGGAATTGCACGTCTTCTTGTGC -ACGGAATTGCACGTCTTCCTAAGC -ACGGAATTGCACGTCTTCACTAGC -ACGGAATTGCACGTCTTCAGATGC -ACGGAATTGCACGTCTTCTGAAGG -ACGGAATTGCACGTCTTCCAATGG -ACGGAATTGCACGTCTTCATGAGG -ACGGAATTGCACGTCTTCAATGGG -ACGGAATTGCACGTCTTCTCCTGA -ACGGAATTGCACGTCTTCTAGCGA -ACGGAATTGCACGTCTTCCACAGA -ACGGAATTGCACGTCTTCGCAAGA -ACGGAATTGCACGTCTTCGGTTGA -ACGGAATTGCACGTCTTCTCCGAT -ACGGAATTGCACGTCTTCTGGCAT -ACGGAATTGCACGTCTTCCGAGAT -ACGGAATTGCACGTCTTCTACCAC -ACGGAATTGCACGTCTTCCAGAAC -ACGGAATTGCACGTCTTCGTCTAC -ACGGAATTGCACGTCTTCACGTAC -ACGGAATTGCACGTCTTCAGTGAC -ACGGAATTGCACGTCTTCCTGTAG -ACGGAATTGCACGTCTTCCCTAAG -ACGGAATTGCACGTCTTCGTTCAG -ACGGAATTGCACGTCTTCGCATAG -ACGGAATTGCACGTCTTCGACAAG -ACGGAATTGCACGTCTTCAAGCAG -ACGGAATTGCACGTCTTCCGTCAA -ACGGAATTGCACGTCTTCGCTGAA -ACGGAATTGCACGTCTTCAGTACG -ACGGAATTGCACGTCTTCATCCGA -ACGGAATTGCACGTCTTCATGGGA -ACGGAATTGCACGTCTTCGTGCAA -ACGGAATTGCACGTCTTCGAGGAA -ACGGAATTGCACGTCTTCCAGGTA -ACGGAATTGCACGTCTTCGACTCT -ACGGAATTGCACGTCTTCAGTCCT -ACGGAATTGCACGTCTTCTAAGCC -ACGGAATTGCACGTCTTCATAGCC -ACGGAATTGCACGTCTTCTAACCG -ACGGAATTGCACGTCTTCATGCCA -ACGGAATTGCACCTCTCTGGAAAC -ACGGAATTGCACCTCTCTAACACC -ACGGAATTGCACCTCTCTATCGAG -ACGGAATTGCACCTCTCTCTCCTT -ACGGAATTGCACCTCTCTCCTGTT -ACGGAATTGCACCTCTCTCGGTTT -ACGGAATTGCACCTCTCTGTGGTT -ACGGAATTGCACCTCTCTGCCTTT -ACGGAATTGCACCTCTCTGGTCTT -ACGGAATTGCACCTCTCTACGCTT -ACGGAATTGCACCTCTCTAGCGTT -ACGGAATTGCACCTCTCTTTCGTC -ACGGAATTGCACCTCTCTTCTCTC -ACGGAATTGCACCTCTCTTGGATC -ACGGAATTGCACCTCTCTCACTTC -ACGGAATTGCACCTCTCTGTACTC -ACGGAATTGCACCTCTCTGATGTC -ACGGAATTGCACCTCTCTACAGTC -ACGGAATTGCACCTCTCTTTGCTG -ACGGAATTGCACCTCTCTTCCATG -ACGGAATTGCACCTCTCTTGTGTG -ACGGAATTGCACCTCTCTCTAGTG -ACGGAATTGCACCTCTCTCATCTG -ACGGAATTGCACCTCTCTGAGTTG -ACGGAATTGCACCTCTCTAGACTG -ACGGAATTGCACCTCTCTTCGGTA -ACGGAATTGCACCTCTCTTGCCTA -ACGGAATTGCACCTCTCTCCACTA -ACGGAATTGCACCTCTCTGGAGTA -ACGGAATTGCACCTCTCTTCGTCT -ACGGAATTGCACCTCTCTTGCACT -ACGGAATTGCACCTCTCTCTGACT -ACGGAATTGCACCTCTCTCAACCT -ACGGAATTGCACCTCTCTGCTACT -ACGGAATTGCACCTCTCTGGATCT -ACGGAATTGCACCTCTCTAAGGCT -ACGGAATTGCACCTCTCTTCAACC -ACGGAATTGCACCTCTCTTGTTCC -ACGGAATTGCACCTCTCTATTCCC -ACGGAATTGCACCTCTCTTTCTCG -ACGGAATTGCACCTCTCTTAGACG -ACGGAATTGCACCTCTCTGTAACG -ACGGAATTGCACCTCTCTACTTCG -ACGGAATTGCACCTCTCTTACGCA -ACGGAATTGCACCTCTCTCTTGCA -ACGGAATTGCACCTCTCTCGAACA -ACGGAATTGCACCTCTCTCAGTCA -ACGGAATTGCACCTCTCTGATCCA -ACGGAATTGCACCTCTCTACGACA -ACGGAATTGCACCTCTCTAGCTCA -ACGGAATTGCACCTCTCTTCACGT -ACGGAATTGCACCTCTCTCGTAGT -ACGGAATTGCACCTCTCTGTCAGT -ACGGAATTGCACCTCTCTGAAGGT -ACGGAATTGCACCTCTCTAACCGT -ACGGAATTGCACCTCTCTTTGTGC -ACGGAATTGCACCTCTCTCTAAGC -ACGGAATTGCACCTCTCTACTAGC -ACGGAATTGCACCTCTCTAGATGC -ACGGAATTGCACCTCTCTTGAAGG -ACGGAATTGCACCTCTCTCAATGG -ACGGAATTGCACCTCTCTATGAGG -ACGGAATTGCACCTCTCTAATGGG -ACGGAATTGCACCTCTCTTCCTGA -ACGGAATTGCACCTCTCTTAGCGA -ACGGAATTGCACCTCTCTCACAGA -ACGGAATTGCACCTCTCTGCAAGA -ACGGAATTGCACCTCTCTGGTTGA -ACGGAATTGCACCTCTCTTCCGAT -ACGGAATTGCACCTCTCTTGGCAT -ACGGAATTGCACCTCTCTCGAGAT -ACGGAATTGCACCTCTCTTACCAC -ACGGAATTGCACCTCTCTCAGAAC -ACGGAATTGCACCTCTCTGTCTAC -ACGGAATTGCACCTCTCTACGTAC -ACGGAATTGCACCTCTCTAGTGAC -ACGGAATTGCACCTCTCTCTGTAG -ACGGAATTGCACCTCTCTCCTAAG -ACGGAATTGCACCTCTCTGTTCAG -ACGGAATTGCACCTCTCTGCATAG -ACGGAATTGCACCTCTCTGACAAG -ACGGAATTGCACCTCTCTAAGCAG -ACGGAATTGCACCTCTCTCGTCAA -ACGGAATTGCACCTCTCTGCTGAA -ACGGAATTGCACCTCTCTAGTACG -ACGGAATTGCACCTCTCTATCCGA -ACGGAATTGCACCTCTCTATGGGA -ACGGAATTGCACCTCTCTGTGCAA -ACGGAATTGCACCTCTCTGAGGAA -ACGGAATTGCACCTCTCTCAGGTA -ACGGAATTGCACCTCTCTGACTCT -ACGGAATTGCACCTCTCTAGTCCT -ACGGAATTGCACCTCTCTTAAGCC -ACGGAATTGCACCTCTCTATAGCC -ACGGAATTGCACCTCTCTTAACCG -ACGGAATTGCACCTCTCTATGCCA -ACGGAATTGCACATCTGGGGAAAC -ACGGAATTGCACATCTGGAACACC -ACGGAATTGCACATCTGGATCGAG -ACGGAATTGCACATCTGGCTCCTT -ACGGAATTGCACATCTGGCCTGTT -ACGGAATTGCACATCTGGCGGTTT -ACGGAATTGCACATCTGGGTGGTT -ACGGAATTGCACATCTGGGCCTTT -ACGGAATTGCACATCTGGGGTCTT -ACGGAATTGCACATCTGGACGCTT -ACGGAATTGCACATCTGGAGCGTT -ACGGAATTGCACATCTGGTTCGTC -ACGGAATTGCACATCTGGTCTCTC -ACGGAATTGCACATCTGGTGGATC -ACGGAATTGCACATCTGGCACTTC -ACGGAATTGCACATCTGGGTACTC -ACGGAATTGCACATCTGGGATGTC -ACGGAATTGCACATCTGGACAGTC -ACGGAATTGCACATCTGGTTGCTG -ACGGAATTGCACATCTGGTCCATG -ACGGAATTGCACATCTGGTGTGTG -ACGGAATTGCACATCTGGCTAGTG -ACGGAATTGCACATCTGGCATCTG -ACGGAATTGCACATCTGGGAGTTG -ACGGAATTGCACATCTGGAGACTG -ACGGAATTGCACATCTGGTCGGTA -ACGGAATTGCACATCTGGTGCCTA -ACGGAATTGCACATCTGGCCACTA -ACGGAATTGCACATCTGGGGAGTA -ACGGAATTGCACATCTGGTCGTCT -ACGGAATTGCACATCTGGTGCACT -ACGGAATTGCACATCTGGCTGACT -ACGGAATTGCACATCTGGCAACCT -ACGGAATTGCACATCTGGGCTACT -ACGGAATTGCACATCTGGGGATCT -ACGGAATTGCACATCTGGAAGGCT -ACGGAATTGCACATCTGGTCAACC -ACGGAATTGCACATCTGGTGTTCC -ACGGAATTGCACATCTGGATTCCC -ACGGAATTGCACATCTGGTTCTCG -ACGGAATTGCACATCTGGTAGACG -ACGGAATTGCACATCTGGGTAACG -ACGGAATTGCACATCTGGACTTCG -ACGGAATTGCACATCTGGTACGCA -ACGGAATTGCACATCTGGCTTGCA -ACGGAATTGCACATCTGGCGAACA -ACGGAATTGCACATCTGGCAGTCA -ACGGAATTGCACATCTGGGATCCA -ACGGAATTGCACATCTGGACGACA -ACGGAATTGCACATCTGGAGCTCA -ACGGAATTGCACATCTGGTCACGT -ACGGAATTGCACATCTGGCGTAGT -ACGGAATTGCACATCTGGGTCAGT -ACGGAATTGCACATCTGGGAAGGT -ACGGAATTGCACATCTGGAACCGT -ACGGAATTGCACATCTGGTTGTGC -ACGGAATTGCACATCTGGCTAAGC -ACGGAATTGCACATCTGGACTAGC -ACGGAATTGCACATCTGGAGATGC -ACGGAATTGCACATCTGGTGAAGG -ACGGAATTGCACATCTGGCAATGG -ACGGAATTGCACATCTGGATGAGG -ACGGAATTGCACATCTGGAATGGG -ACGGAATTGCACATCTGGTCCTGA -ACGGAATTGCACATCTGGTAGCGA -ACGGAATTGCACATCTGGCACAGA -ACGGAATTGCACATCTGGGCAAGA -ACGGAATTGCACATCTGGGGTTGA -ACGGAATTGCACATCTGGTCCGAT -ACGGAATTGCACATCTGGTGGCAT -ACGGAATTGCACATCTGGCGAGAT -ACGGAATTGCACATCTGGTACCAC -ACGGAATTGCACATCTGGCAGAAC -ACGGAATTGCACATCTGGGTCTAC -ACGGAATTGCACATCTGGACGTAC -ACGGAATTGCACATCTGGAGTGAC -ACGGAATTGCACATCTGGCTGTAG -ACGGAATTGCACATCTGGCCTAAG -ACGGAATTGCACATCTGGGTTCAG -ACGGAATTGCACATCTGGGCATAG -ACGGAATTGCACATCTGGGACAAG -ACGGAATTGCACATCTGGAAGCAG -ACGGAATTGCACATCTGGCGTCAA -ACGGAATTGCACATCTGGGCTGAA -ACGGAATTGCACATCTGGAGTACG -ACGGAATTGCACATCTGGATCCGA -ACGGAATTGCACATCTGGATGGGA -ACGGAATTGCACATCTGGGTGCAA -ACGGAATTGCACATCTGGGAGGAA -ACGGAATTGCACATCTGGCAGGTA -ACGGAATTGCACATCTGGGACTCT -ACGGAATTGCACATCTGGAGTCCT -ACGGAATTGCACATCTGGTAAGCC -ACGGAATTGCACATCTGGATAGCC -ACGGAATTGCACATCTGGTAACCG -ACGGAATTGCACATCTGGATGCCA -ACGGAATTGCACTTCCACGGAAAC -ACGGAATTGCACTTCCACAACACC -ACGGAATTGCACTTCCACATCGAG -ACGGAATTGCACTTCCACCTCCTT -ACGGAATTGCACTTCCACCCTGTT -ACGGAATTGCACTTCCACCGGTTT -ACGGAATTGCACTTCCACGTGGTT -ACGGAATTGCACTTCCACGCCTTT -ACGGAATTGCACTTCCACGGTCTT -ACGGAATTGCACTTCCACACGCTT -ACGGAATTGCACTTCCACAGCGTT -ACGGAATTGCACTTCCACTTCGTC -ACGGAATTGCACTTCCACTCTCTC -ACGGAATTGCACTTCCACTGGATC -ACGGAATTGCACTTCCACCACTTC -ACGGAATTGCACTTCCACGTACTC -ACGGAATTGCACTTCCACGATGTC -ACGGAATTGCACTTCCACACAGTC -ACGGAATTGCACTTCCACTTGCTG -ACGGAATTGCACTTCCACTCCATG -ACGGAATTGCACTTCCACTGTGTG -ACGGAATTGCACTTCCACCTAGTG -ACGGAATTGCACTTCCACCATCTG -ACGGAATTGCACTTCCACGAGTTG -ACGGAATTGCACTTCCACAGACTG -ACGGAATTGCACTTCCACTCGGTA -ACGGAATTGCACTTCCACTGCCTA -ACGGAATTGCACTTCCACCCACTA -ACGGAATTGCACTTCCACGGAGTA -ACGGAATTGCACTTCCACTCGTCT -ACGGAATTGCACTTCCACTGCACT -ACGGAATTGCACTTCCACCTGACT -ACGGAATTGCACTTCCACCAACCT -ACGGAATTGCACTTCCACGCTACT -ACGGAATTGCACTTCCACGGATCT -ACGGAATTGCACTTCCACAAGGCT -ACGGAATTGCACTTCCACTCAACC -ACGGAATTGCACTTCCACTGTTCC -ACGGAATTGCACTTCCACATTCCC -ACGGAATTGCACTTCCACTTCTCG -ACGGAATTGCACTTCCACTAGACG -ACGGAATTGCACTTCCACGTAACG -ACGGAATTGCACTTCCACACTTCG -ACGGAATTGCACTTCCACTACGCA -ACGGAATTGCACTTCCACCTTGCA -ACGGAATTGCACTTCCACCGAACA -ACGGAATTGCACTTCCACCAGTCA -ACGGAATTGCACTTCCACGATCCA -ACGGAATTGCACTTCCACACGACA -ACGGAATTGCACTTCCACAGCTCA -ACGGAATTGCACTTCCACTCACGT -ACGGAATTGCACTTCCACCGTAGT -ACGGAATTGCACTTCCACGTCAGT -ACGGAATTGCACTTCCACGAAGGT -ACGGAATTGCACTTCCACAACCGT -ACGGAATTGCACTTCCACTTGTGC -ACGGAATTGCACTTCCACCTAAGC -ACGGAATTGCACTTCCACACTAGC -ACGGAATTGCACTTCCACAGATGC -ACGGAATTGCACTTCCACTGAAGG -ACGGAATTGCACTTCCACCAATGG -ACGGAATTGCACTTCCACATGAGG -ACGGAATTGCACTTCCACAATGGG -ACGGAATTGCACTTCCACTCCTGA -ACGGAATTGCACTTCCACTAGCGA -ACGGAATTGCACTTCCACCACAGA -ACGGAATTGCACTTCCACGCAAGA -ACGGAATTGCACTTCCACGGTTGA -ACGGAATTGCACTTCCACTCCGAT -ACGGAATTGCACTTCCACTGGCAT -ACGGAATTGCACTTCCACCGAGAT -ACGGAATTGCACTTCCACTACCAC -ACGGAATTGCACTTCCACCAGAAC -ACGGAATTGCACTTCCACGTCTAC -ACGGAATTGCACTTCCACACGTAC -ACGGAATTGCACTTCCACAGTGAC -ACGGAATTGCACTTCCACCTGTAG -ACGGAATTGCACTTCCACCCTAAG -ACGGAATTGCACTTCCACGTTCAG -ACGGAATTGCACTTCCACGCATAG -ACGGAATTGCACTTCCACGACAAG -ACGGAATTGCACTTCCACAAGCAG -ACGGAATTGCACTTCCACCGTCAA -ACGGAATTGCACTTCCACGCTGAA -ACGGAATTGCACTTCCACAGTACG -ACGGAATTGCACTTCCACATCCGA -ACGGAATTGCACTTCCACATGGGA -ACGGAATTGCACTTCCACGTGCAA -ACGGAATTGCACTTCCACGAGGAA -ACGGAATTGCACTTCCACCAGGTA -ACGGAATTGCACTTCCACGACTCT -ACGGAATTGCACTTCCACAGTCCT -ACGGAATTGCACTTCCACTAAGCC -ACGGAATTGCACTTCCACATAGCC -ACGGAATTGCACTTCCACTAACCG -ACGGAATTGCACTTCCACATGCCA -ACGGAATTGCACCTCGTAGGAAAC -ACGGAATTGCACCTCGTAAACACC -ACGGAATTGCACCTCGTAATCGAG -ACGGAATTGCACCTCGTACTCCTT -ACGGAATTGCACCTCGTACCTGTT -ACGGAATTGCACCTCGTACGGTTT -ACGGAATTGCACCTCGTAGTGGTT -ACGGAATTGCACCTCGTAGCCTTT -ACGGAATTGCACCTCGTAGGTCTT -ACGGAATTGCACCTCGTAACGCTT -ACGGAATTGCACCTCGTAAGCGTT -ACGGAATTGCACCTCGTATTCGTC -ACGGAATTGCACCTCGTATCTCTC -ACGGAATTGCACCTCGTATGGATC -ACGGAATTGCACCTCGTACACTTC -ACGGAATTGCACCTCGTAGTACTC -ACGGAATTGCACCTCGTAGATGTC -ACGGAATTGCACCTCGTAACAGTC -ACGGAATTGCACCTCGTATTGCTG -ACGGAATTGCACCTCGTATCCATG -ACGGAATTGCACCTCGTATGTGTG -ACGGAATTGCACCTCGTACTAGTG -ACGGAATTGCACCTCGTACATCTG -ACGGAATTGCACCTCGTAGAGTTG -ACGGAATTGCACCTCGTAAGACTG -ACGGAATTGCACCTCGTATCGGTA -ACGGAATTGCACCTCGTATGCCTA -ACGGAATTGCACCTCGTACCACTA -ACGGAATTGCACCTCGTAGGAGTA -ACGGAATTGCACCTCGTATCGTCT -ACGGAATTGCACCTCGTATGCACT -ACGGAATTGCACCTCGTACTGACT -ACGGAATTGCACCTCGTACAACCT -ACGGAATTGCACCTCGTAGCTACT -ACGGAATTGCACCTCGTAGGATCT -ACGGAATTGCACCTCGTAAAGGCT -ACGGAATTGCACCTCGTATCAACC -ACGGAATTGCACCTCGTATGTTCC -ACGGAATTGCACCTCGTAATTCCC -ACGGAATTGCACCTCGTATTCTCG -ACGGAATTGCACCTCGTATAGACG -ACGGAATTGCACCTCGTAGTAACG -ACGGAATTGCACCTCGTAACTTCG -ACGGAATTGCACCTCGTATACGCA -ACGGAATTGCACCTCGTACTTGCA -ACGGAATTGCACCTCGTACGAACA -ACGGAATTGCACCTCGTACAGTCA -ACGGAATTGCACCTCGTAGATCCA -ACGGAATTGCACCTCGTAACGACA -ACGGAATTGCACCTCGTAAGCTCA -ACGGAATTGCACCTCGTATCACGT -ACGGAATTGCACCTCGTACGTAGT -ACGGAATTGCACCTCGTAGTCAGT -ACGGAATTGCACCTCGTAGAAGGT -ACGGAATTGCACCTCGTAAACCGT -ACGGAATTGCACCTCGTATTGTGC -ACGGAATTGCACCTCGTACTAAGC -ACGGAATTGCACCTCGTAACTAGC -ACGGAATTGCACCTCGTAAGATGC -ACGGAATTGCACCTCGTATGAAGG -ACGGAATTGCACCTCGTACAATGG -ACGGAATTGCACCTCGTAATGAGG -ACGGAATTGCACCTCGTAAATGGG -ACGGAATTGCACCTCGTATCCTGA -ACGGAATTGCACCTCGTATAGCGA -ACGGAATTGCACCTCGTACACAGA -ACGGAATTGCACCTCGTAGCAAGA -ACGGAATTGCACCTCGTAGGTTGA -ACGGAATTGCACCTCGTATCCGAT -ACGGAATTGCACCTCGTATGGCAT -ACGGAATTGCACCTCGTACGAGAT -ACGGAATTGCACCTCGTATACCAC -ACGGAATTGCACCTCGTACAGAAC -ACGGAATTGCACCTCGTAGTCTAC -ACGGAATTGCACCTCGTAACGTAC -ACGGAATTGCACCTCGTAAGTGAC -ACGGAATTGCACCTCGTACTGTAG -ACGGAATTGCACCTCGTACCTAAG -ACGGAATTGCACCTCGTAGTTCAG -ACGGAATTGCACCTCGTAGCATAG -ACGGAATTGCACCTCGTAGACAAG -ACGGAATTGCACCTCGTAAAGCAG -ACGGAATTGCACCTCGTACGTCAA -ACGGAATTGCACCTCGTAGCTGAA -ACGGAATTGCACCTCGTAAGTACG -ACGGAATTGCACCTCGTAATCCGA -ACGGAATTGCACCTCGTAATGGGA -ACGGAATTGCACCTCGTAGTGCAA -ACGGAATTGCACCTCGTAGAGGAA -ACGGAATTGCACCTCGTACAGGTA -ACGGAATTGCACCTCGTAGACTCT -ACGGAATTGCACCTCGTAAGTCCT -ACGGAATTGCACCTCGTATAAGCC -ACGGAATTGCACCTCGTAATAGCC -ACGGAATTGCACCTCGTATAACCG -ACGGAATTGCACCTCGTAATGCCA -ACGGAATTGCACGTCGATGGAAAC -ACGGAATTGCACGTCGATAACACC -ACGGAATTGCACGTCGATATCGAG -ACGGAATTGCACGTCGATCTCCTT -ACGGAATTGCACGTCGATCCTGTT -ACGGAATTGCACGTCGATCGGTTT -ACGGAATTGCACGTCGATGTGGTT -ACGGAATTGCACGTCGATGCCTTT -ACGGAATTGCACGTCGATGGTCTT -ACGGAATTGCACGTCGATACGCTT -ACGGAATTGCACGTCGATAGCGTT -ACGGAATTGCACGTCGATTTCGTC -ACGGAATTGCACGTCGATTCTCTC -ACGGAATTGCACGTCGATTGGATC -ACGGAATTGCACGTCGATCACTTC -ACGGAATTGCACGTCGATGTACTC -ACGGAATTGCACGTCGATGATGTC -ACGGAATTGCACGTCGATACAGTC -ACGGAATTGCACGTCGATTTGCTG -ACGGAATTGCACGTCGATTCCATG -ACGGAATTGCACGTCGATTGTGTG -ACGGAATTGCACGTCGATCTAGTG -ACGGAATTGCACGTCGATCATCTG -ACGGAATTGCACGTCGATGAGTTG -ACGGAATTGCACGTCGATAGACTG -ACGGAATTGCACGTCGATTCGGTA -ACGGAATTGCACGTCGATTGCCTA -ACGGAATTGCACGTCGATCCACTA -ACGGAATTGCACGTCGATGGAGTA -ACGGAATTGCACGTCGATTCGTCT -ACGGAATTGCACGTCGATTGCACT -ACGGAATTGCACGTCGATCTGACT -ACGGAATTGCACGTCGATCAACCT -ACGGAATTGCACGTCGATGCTACT -ACGGAATTGCACGTCGATGGATCT -ACGGAATTGCACGTCGATAAGGCT -ACGGAATTGCACGTCGATTCAACC -ACGGAATTGCACGTCGATTGTTCC -ACGGAATTGCACGTCGATATTCCC -ACGGAATTGCACGTCGATTTCTCG -ACGGAATTGCACGTCGATTAGACG -ACGGAATTGCACGTCGATGTAACG -ACGGAATTGCACGTCGATACTTCG -ACGGAATTGCACGTCGATTACGCA -ACGGAATTGCACGTCGATCTTGCA -ACGGAATTGCACGTCGATCGAACA -ACGGAATTGCACGTCGATCAGTCA -ACGGAATTGCACGTCGATGATCCA -ACGGAATTGCACGTCGATACGACA -ACGGAATTGCACGTCGATAGCTCA -ACGGAATTGCACGTCGATTCACGT -ACGGAATTGCACGTCGATCGTAGT -ACGGAATTGCACGTCGATGTCAGT -ACGGAATTGCACGTCGATGAAGGT -ACGGAATTGCACGTCGATAACCGT -ACGGAATTGCACGTCGATTTGTGC -ACGGAATTGCACGTCGATCTAAGC -ACGGAATTGCACGTCGATACTAGC -ACGGAATTGCACGTCGATAGATGC -ACGGAATTGCACGTCGATTGAAGG -ACGGAATTGCACGTCGATCAATGG -ACGGAATTGCACGTCGATATGAGG -ACGGAATTGCACGTCGATAATGGG -ACGGAATTGCACGTCGATTCCTGA -ACGGAATTGCACGTCGATTAGCGA -ACGGAATTGCACGTCGATCACAGA -ACGGAATTGCACGTCGATGCAAGA -ACGGAATTGCACGTCGATGGTTGA -ACGGAATTGCACGTCGATTCCGAT -ACGGAATTGCACGTCGATTGGCAT -ACGGAATTGCACGTCGATCGAGAT -ACGGAATTGCACGTCGATTACCAC -ACGGAATTGCACGTCGATCAGAAC -ACGGAATTGCACGTCGATGTCTAC -ACGGAATTGCACGTCGATACGTAC -ACGGAATTGCACGTCGATAGTGAC -ACGGAATTGCACGTCGATCTGTAG -ACGGAATTGCACGTCGATCCTAAG -ACGGAATTGCACGTCGATGTTCAG -ACGGAATTGCACGTCGATGCATAG -ACGGAATTGCACGTCGATGACAAG -ACGGAATTGCACGTCGATAAGCAG -ACGGAATTGCACGTCGATCGTCAA -ACGGAATTGCACGTCGATGCTGAA -ACGGAATTGCACGTCGATAGTACG -ACGGAATTGCACGTCGATATCCGA -ACGGAATTGCACGTCGATATGGGA -ACGGAATTGCACGTCGATGTGCAA -ACGGAATTGCACGTCGATGAGGAA -ACGGAATTGCACGTCGATCAGGTA -ACGGAATTGCACGTCGATGACTCT -ACGGAATTGCACGTCGATAGTCCT -ACGGAATTGCACGTCGATTAAGCC -ACGGAATTGCACGTCGATATAGCC -ACGGAATTGCACGTCGATTAACCG -ACGGAATTGCACGTCGATATGCCA -ACGGAATTGCACGTCACAGGAAAC -ACGGAATTGCACGTCACAAACACC -ACGGAATTGCACGTCACAATCGAG -ACGGAATTGCACGTCACACTCCTT -ACGGAATTGCACGTCACACCTGTT -ACGGAATTGCACGTCACACGGTTT -ACGGAATTGCACGTCACAGTGGTT -ACGGAATTGCACGTCACAGCCTTT -ACGGAATTGCACGTCACAGGTCTT -ACGGAATTGCACGTCACAACGCTT -ACGGAATTGCACGTCACAAGCGTT -ACGGAATTGCACGTCACATTCGTC -ACGGAATTGCACGTCACATCTCTC -ACGGAATTGCACGTCACATGGATC -ACGGAATTGCACGTCACACACTTC -ACGGAATTGCACGTCACAGTACTC -ACGGAATTGCACGTCACAGATGTC -ACGGAATTGCACGTCACAACAGTC -ACGGAATTGCACGTCACATTGCTG -ACGGAATTGCACGTCACATCCATG -ACGGAATTGCACGTCACATGTGTG -ACGGAATTGCACGTCACACTAGTG -ACGGAATTGCACGTCACACATCTG -ACGGAATTGCACGTCACAGAGTTG -ACGGAATTGCACGTCACAAGACTG -ACGGAATTGCACGTCACATCGGTA -ACGGAATTGCACGTCACATGCCTA -ACGGAATTGCACGTCACACCACTA -ACGGAATTGCACGTCACAGGAGTA -ACGGAATTGCACGTCACATCGTCT -ACGGAATTGCACGTCACATGCACT -ACGGAATTGCACGTCACACTGACT -ACGGAATTGCACGTCACACAACCT -ACGGAATTGCACGTCACAGCTACT -ACGGAATTGCACGTCACAGGATCT -ACGGAATTGCACGTCACAAAGGCT -ACGGAATTGCACGTCACATCAACC -ACGGAATTGCACGTCACATGTTCC -ACGGAATTGCACGTCACAATTCCC -ACGGAATTGCACGTCACATTCTCG -ACGGAATTGCACGTCACATAGACG -ACGGAATTGCACGTCACAGTAACG -ACGGAATTGCACGTCACAACTTCG -ACGGAATTGCACGTCACATACGCA -ACGGAATTGCACGTCACACTTGCA -ACGGAATTGCACGTCACACGAACA -ACGGAATTGCACGTCACACAGTCA -ACGGAATTGCACGTCACAGATCCA -ACGGAATTGCACGTCACAACGACA -ACGGAATTGCACGTCACAAGCTCA -ACGGAATTGCACGTCACATCACGT -ACGGAATTGCACGTCACACGTAGT -ACGGAATTGCACGTCACAGTCAGT -ACGGAATTGCACGTCACAGAAGGT -ACGGAATTGCACGTCACAAACCGT -ACGGAATTGCACGTCACATTGTGC -ACGGAATTGCACGTCACACTAAGC -ACGGAATTGCACGTCACAACTAGC -ACGGAATTGCACGTCACAAGATGC -ACGGAATTGCACGTCACATGAAGG -ACGGAATTGCACGTCACACAATGG -ACGGAATTGCACGTCACAATGAGG -ACGGAATTGCACGTCACAAATGGG -ACGGAATTGCACGTCACATCCTGA -ACGGAATTGCACGTCACATAGCGA -ACGGAATTGCACGTCACACACAGA -ACGGAATTGCACGTCACAGCAAGA -ACGGAATTGCACGTCACAGGTTGA -ACGGAATTGCACGTCACATCCGAT -ACGGAATTGCACGTCACATGGCAT -ACGGAATTGCACGTCACACGAGAT -ACGGAATTGCACGTCACATACCAC -ACGGAATTGCACGTCACACAGAAC -ACGGAATTGCACGTCACAGTCTAC -ACGGAATTGCACGTCACAACGTAC -ACGGAATTGCACGTCACAAGTGAC -ACGGAATTGCACGTCACACTGTAG -ACGGAATTGCACGTCACACCTAAG -ACGGAATTGCACGTCACAGTTCAG -ACGGAATTGCACGTCACAGCATAG -ACGGAATTGCACGTCACAGACAAG -ACGGAATTGCACGTCACAAAGCAG -ACGGAATTGCACGTCACACGTCAA -ACGGAATTGCACGTCACAGCTGAA -ACGGAATTGCACGTCACAAGTACG -ACGGAATTGCACGTCACAATCCGA -ACGGAATTGCACGTCACAATGGGA -ACGGAATTGCACGTCACAGTGCAA -ACGGAATTGCACGTCACAGAGGAA -ACGGAATTGCACGTCACACAGGTA -ACGGAATTGCACGTCACAGACTCT -ACGGAATTGCACGTCACAAGTCCT -ACGGAATTGCACGTCACATAAGCC -ACGGAATTGCACGTCACAATAGCC -ACGGAATTGCACGTCACATAACCG -ACGGAATTGCACGTCACAATGCCA -ACGGAATTGCACCTGTTGGGAAAC -ACGGAATTGCACCTGTTGAACACC -ACGGAATTGCACCTGTTGATCGAG -ACGGAATTGCACCTGTTGCTCCTT -ACGGAATTGCACCTGTTGCCTGTT -ACGGAATTGCACCTGTTGCGGTTT -ACGGAATTGCACCTGTTGGTGGTT -ACGGAATTGCACCTGTTGGCCTTT -ACGGAATTGCACCTGTTGGGTCTT -ACGGAATTGCACCTGTTGACGCTT -ACGGAATTGCACCTGTTGAGCGTT -ACGGAATTGCACCTGTTGTTCGTC -ACGGAATTGCACCTGTTGTCTCTC -ACGGAATTGCACCTGTTGTGGATC -ACGGAATTGCACCTGTTGCACTTC -ACGGAATTGCACCTGTTGGTACTC -ACGGAATTGCACCTGTTGGATGTC -ACGGAATTGCACCTGTTGACAGTC -ACGGAATTGCACCTGTTGTTGCTG -ACGGAATTGCACCTGTTGTCCATG -ACGGAATTGCACCTGTTGTGTGTG -ACGGAATTGCACCTGTTGCTAGTG -ACGGAATTGCACCTGTTGCATCTG -ACGGAATTGCACCTGTTGGAGTTG -ACGGAATTGCACCTGTTGAGACTG -ACGGAATTGCACCTGTTGTCGGTA -ACGGAATTGCACCTGTTGTGCCTA -ACGGAATTGCACCTGTTGCCACTA -ACGGAATTGCACCTGTTGGGAGTA -ACGGAATTGCACCTGTTGTCGTCT -ACGGAATTGCACCTGTTGTGCACT -ACGGAATTGCACCTGTTGCTGACT -ACGGAATTGCACCTGTTGCAACCT -ACGGAATTGCACCTGTTGGCTACT -ACGGAATTGCACCTGTTGGGATCT -ACGGAATTGCACCTGTTGAAGGCT -ACGGAATTGCACCTGTTGTCAACC -ACGGAATTGCACCTGTTGTGTTCC -ACGGAATTGCACCTGTTGATTCCC -ACGGAATTGCACCTGTTGTTCTCG -ACGGAATTGCACCTGTTGTAGACG -ACGGAATTGCACCTGTTGGTAACG -ACGGAATTGCACCTGTTGACTTCG -ACGGAATTGCACCTGTTGTACGCA -ACGGAATTGCACCTGTTGCTTGCA -ACGGAATTGCACCTGTTGCGAACA -ACGGAATTGCACCTGTTGCAGTCA -ACGGAATTGCACCTGTTGGATCCA -ACGGAATTGCACCTGTTGACGACA -ACGGAATTGCACCTGTTGAGCTCA -ACGGAATTGCACCTGTTGTCACGT -ACGGAATTGCACCTGTTGCGTAGT -ACGGAATTGCACCTGTTGGTCAGT -ACGGAATTGCACCTGTTGGAAGGT -ACGGAATTGCACCTGTTGAACCGT -ACGGAATTGCACCTGTTGTTGTGC -ACGGAATTGCACCTGTTGCTAAGC -ACGGAATTGCACCTGTTGACTAGC -ACGGAATTGCACCTGTTGAGATGC -ACGGAATTGCACCTGTTGTGAAGG -ACGGAATTGCACCTGTTGCAATGG -ACGGAATTGCACCTGTTGATGAGG -ACGGAATTGCACCTGTTGAATGGG -ACGGAATTGCACCTGTTGTCCTGA -ACGGAATTGCACCTGTTGTAGCGA -ACGGAATTGCACCTGTTGCACAGA -ACGGAATTGCACCTGTTGGCAAGA -ACGGAATTGCACCTGTTGGGTTGA -ACGGAATTGCACCTGTTGTCCGAT -ACGGAATTGCACCTGTTGTGGCAT -ACGGAATTGCACCTGTTGCGAGAT -ACGGAATTGCACCTGTTGTACCAC -ACGGAATTGCACCTGTTGCAGAAC -ACGGAATTGCACCTGTTGGTCTAC -ACGGAATTGCACCTGTTGACGTAC -ACGGAATTGCACCTGTTGAGTGAC -ACGGAATTGCACCTGTTGCTGTAG -ACGGAATTGCACCTGTTGCCTAAG -ACGGAATTGCACCTGTTGGTTCAG -ACGGAATTGCACCTGTTGGCATAG -ACGGAATTGCACCTGTTGGACAAG -ACGGAATTGCACCTGTTGAAGCAG -ACGGAATTGCACCTGTTGCGTCAA -ACGGAATTGCACCTGTTGGCTGAA -ACGGAATTGCACCTGTTGAGTACG -ACGGAATTGCACCTGTTGATCCGA -ACGGAATTGCACCTGTTGATGGGA -ACGGAATTGCACCTGTTGGTGCAA -ACGGAATTGCACCTGTTGGAGGAA -ACGGAATTGCACCTGTTGCAGGTA -ACGGAATTGCACCTGTTGGACTCT -ACGGAATTGCACCTGTTGAGTCCT -ACGGAATTGCACCTGTTGTAAGCC -ACGGAATTGCACCTGTTGATAGCC -ACGGAATTGCACCTGTTGTAACCG -ACGGAATTGCACCTGTTGATGCCA -ACGGAATTGCACATGTCCGGAAAC -ACGGAATTGCACATGTCCAACACC -ACGGAATTGCACATGTCCATCGAG -ACGGAATTGCACATGTCCCTCCTT -ACGGAATTGCACATGTCCCCTGTT -ACGGAATTGCACATGTCCCGGTTT -ACGGAATTGCACATGTCCGTGGTT -ACGGAATTGCACATGTCCGCCTTT -ACGGAATTGCACATGTCCGGTCTT -ACGGAATTGCACATGTCCACGCTT -ACGGAATTGCACATGTCCAGCGTT -ACGGAATTGCACATGTCCTTCGTC -ACGGAATTGCACATGTCCTCTCTC -ACGGAATTGCACATGTCCTGGATC -ACGGAATTGCACATGTCCCACTTC -ACGGAATTGCACATGTCCGTACTC -ACGGAATTGCACATGTCCGATGTC -ACGGAATTGCACATGTCCACAGTC -ACGGAATTGCACATGTCCTTGCTG -ACGGAATTGCACATGTCCTCCATG -ACGGAATTGCACATGTCCTGTGTG -ACGGAATTGCACATGTCCCTAGTG -ACGGAATTGCACATGTCCCATCTG -ACGGAATTGCACATGTCCGAGTTG -ACGGAATTGCACATGTCCAGACTG -ACGGAATTGCACATGTCCTCGGTA -ACGGAATTGCACATGTCCTGCCTA -ACGGAATTGCACATGTCCCCACTA -ACGGAATTGCACATGTCCGGAGTA -ACGGAATTGCACATGTCCTCGTCT -ACGGAATTGCACATGTCCTGCACT -ACGGAATTGCACATGTCCCTGACT -ACGGAATTGCACATGTCCCAACCT -ACGGAATTGCACATGTCCGCTACT -ACGGAATTGCACATGTCCGGATCT -ACGGAATTGCACATGTCCAAGGCT -ACGGAATTGCACATGTCCTCAACC -ACGGAATTGCACATGTCCTGTTCC -ACGGAATTGCACATGTCCATTCCC -ACGGAATTGCACATGTCCTTCTCG -ACGGAATTGCACATGTCCTAGACG -ACGGAATTGCACATGTCCGTAACG -ACGGAATTGCACATGTCCACTTCG -ACGGAATTGCACATGTCCTACGCA -ACGGAATTGCACATGTCCCTTGCA -ACGGAATTGCACATGTCCCGAACA -ACGGAATTGCACATGTCCCAGTCA -ACGGAATTGCACATGTCCGATCCA -ACGGAATTGCACATGTCCACGACA -ACGGAATTGCACATGTCCAGCTCA -ACGGAATTGCACATGTCCTCACGT -ACGGAATTGCACATGTCCCGTAGT -ACGGAATTGCACATGTCCGTCAGT -ACGGAATTGCACATGTCCGAAGGT -ACGGAATTGCACATGTCCAACCGT -ACGGAATTGCACATGTCCTTGTGC -ACGGAATTGCACATGTCCCTAAGC -ACGGAATTGCACATGTCCACTAGC -ACGGAATTGCACATGTCCAGATGC -ACGGAATTGCACATGTCCTGAAGG -ACGGAATTGCACATGTCCCAATGG -ACGGAATTGCACATGTCCATGAGG -ACGGAATTGCACATGTCCAATGGG -ACGGAATTGCACATGTCCTCCTGA -ACGGAATTGCACATGTCCTAGCGA -ACGGAATTGCACATGTCCCACAGA -ACGGAATTGCACATGTCCGCAAGA -ACGGAATTGCACATGTCCGGTTGA -ACGGAATTGCACATGTCCTCCGAT -ACGGAATTGCACATGTCCTGGCAT -ACGGAATTGCACATGTCCCGAGAT -ACGGAATTGCACATGTCCTACCAC -ACGGAATTGCACATGTCCCAGAAC -ACGGAATTGCACATGTCCGTCTAC -ACGGAATTGCACATGTCCACGTAC -ACGGAATTGCACATGTCCAGTGAC -ACGGAATTGCACATGTCCCTGTAG -ACGGAATTGCACATGTCCCCTAAG -ACGGAATTGCACATGTCCGTTCAG -ACGGAATTGCACATGTCCGCATAG -ACGGAATTGCACATGTCCGACAAG -ACGGAATTGCACATGTCCAAGCAG -ACGGAATTGCACATGTCCCGTCAA -ACGGAATTGCACATGTCCGCTGAA -ACGGAATTGCACATGTCCAGTACG -ACGGAATTGCACATGTCCATCCGA -ACGGAATTGCACATGTCCATGGGA -ACGGAATTGCACATGTCCGTGCAA -ACGGAATTGCACATGTCCGAGGAA -ACGGAATTGCACATGTCCCAGGTA -ACGGAATTGCACATGTCCGACTCT -ACGGAATTGCACATGTCCAGTCCT -ACGGAATTGCACATGTCCTAAGCC -ACGGAATTGCACATGTCCATAGCC -ACGGAATTGCACATGTCCTAACCG -ACGGAATTGCACATGTCCATGCCA -ACGGAATTGCACGTGTGTGGAAAC -ACGGAATTGCACGTGTGTAACACC -ACGGAATTGCACGTGTGTATCGAG -ACGGAATTGCACGTGTGTCTCCTT -ACGGAATTGCACGTGTGTCCTGTT -ACGGAATTGCACGTGTGTCGGTTT -ACGGAATTGCACGTGTGTGTGGTT -ACGGAATTGCACGTGTGTGCCTTT -ACGGAATTGCACGTGTGTGGTCTT -ACGGAATTGCACGTGTGTACGCTT -ACGGAATTGCACGTGTGTAGCGTT -ACGGAATTGCACGTGTGTTTCGTC -ACGGAATTGCACGTGTGTTCTCTC -ACGGAATTGCACGTGTGTTGGATC -ACGGAATTGCACGTGTGTCACTTC -ACGGAATTGCACGTGTGTGTACTC -ACGGAATTGCACGTGTGTGATGTC -ACGGAATTGCACGTGTGTACAGTC -ACGGAATTGCACGTGTGTTTGCTG -ACGGAATTGCACGTGTGTTCCATG -ACGGAATTGCACGTGTGTTGTGTG -ACGGAATTGCACGTGTGTCTAGTG -ACGGAATTGCACGTGTGTCATCTG -ACGGAATTGCACGTGTGTGAGTTG -ACGGAATTGCACGTGTGTAGACTG -ACGGAATTGCACGTGTGTTCGGTA -ACGGAATTGCACGTGTGTTGCCTA -ACGGAATTGCACGTGTGTCCACTA -ACGGAATTGCACGTGTGTGGAGTA -ACGGAATTGCACGTGTGTTCGTCT -ACGGAATTGCACGTGTGTTGCACT -ACGGAATTGCACGTGTGTCTGACT -ACGGAATTGCACGTGTGTCAACCT -ACGGAATTGCACGTGTGTGCTACT -ACGGAATTGCACGTGTGTGGATCT -ACGGAATTGCACGTGTGTAAGGCT -ACGGAATTGCACGTGTGTTCAACC -ACGGAATTGCACGTGTGTTGTTCC -ACGGAATTGCACGTGTGTATTCCC -ACGGAATTGCACGTGTGTTTCTCG -ACGGAATTGCACGTGTGTTAGACG -ACGGAATTGCACGTGTGTGTAACG -ACGGAATTGCACGTGTGTACTTCG -ACGGAATTGCACGTGTGTTACGCA -ACGGAATTGCACGTGTGTCTTGCA -ACGGAATTGCACGTGTGTCGAACA -ACGGAATTGCACGTGTGTCAGTCA -ACGGAATTGCACGTGTGTGATCCA -ACGGAATTGCACGTGTGTACGACA -ACGGAATTGCACGTGTGTAGCTCA -ACGGAATTGCACGTGTGTTCACGT -ACGGAATTGCACGTGTGTCGTAGT -ACGGAATTGCACGTGTGTGTCAGT -ACGGAATTGCACGTGTGTGAAGGT -ACGGAATTGCACGTGTGTAACCGT -ACGGAATTGCACGTGTGTTTGTGC -ACGGAATTGCACGTGTGTCTAAGC -ACGGAATTGCACGTGTGTACTAGC -ACGGAATTGCACGTGTGTAGATGC -ACGGAATTGCACGTGTGTTGAAGG -ACGGAATTGCACGTGTGTCAATGG -ACGGAATTGCACGTGTGTATGAGG -ACGGAATTGCACGTGTGTAATGGG -ACGGAATTGCACGTGTGTTCCTGA -ACGGAATTGCACGTGTGTTAGCGA -ACGGAATTGCACGTGTGTCACAGA -ACGGAATTGCACGTGTGTGCAAGA -ACGGAATTGCACGTGTGTGGTTGA -ACGGAATTGCACGTGTGTTCCGAT -ACGGAATTGCACGTGTGTTGGCAT -ACGGAATTGCACGTGTGTCGAGAT -ACGGAATTGCACGTGTGTTACCAC -ACGGAATTGCACGTGTGTCAGAAC -ACGGAATTGCACGTGTGTGTCTAC -ACGGAATTGCACGTGTGTACGTAC -ACGGAATTGCACGTGTGTAGTGAC -ACGGAATTGCACGTGTGTCTGTAG -ACGGAATTGCACGTGTGTCCTAAG -ACGGAATTGCACGTGTGTGTTCAG -ACGGAATTGCACGTGTGTGCATAG -ACGGAATTGCACGTGTGTGACAAG -ACGGAATTGCACGTGTGTAAGCAG -ACGGAATTGCACGTGTGTCGTCAA -ACGGAATTGCACGTGTGTGCTGAA -ACGGAATTGCACGTGTGTAGTACG -ACGGAATTGCACGTGTGTATCCGA -ACGGAATTGCACGTGTGTATGGGA -ACGGAATTGCACGTGTGTGTGCAA -ACGGAATTGCACGTGTGTGAGGAA -ACGGAATTGCACGTGTGTCAGGTA -ACGGAATTGCACGTGTGTGACTCT -ACGGAATTGCACGTGTGTAGTCCT -ACGGAATTGCACGTGTGTTAAGCC -ACGGAATTGCACGTGTGTATAGCC -ACGGAATTGCACGTGTGTTAACCG -ACGGAATTGCACGTGTGTATGCCA -ACGGAATTGCACGTGCTAGGAAAC -ACGGAATTGCACGTGCTAAACACC -ACGGAATTGCACGTGCTAATCGAG -ACGGAATTGCACGTGCTACTCCTT -ACGGAATTGCACGTGCTACCTGTT -ACGGAATTGCACGTGCTACGGTTT -ACGGAATTGCACGTGCTAGTGGTT -ACGGAATTGCACGTGCTAGCCTTT -ACGGAATTGCACGTGCTAGGTCTT -ACGGAATTGCACGTGCTAACGCTT -ACGGAATTGCACGTGCTAAGCGTT -ACGGAATTGCACGTGCTATTCGTC -ACGGAATTGCACGTGCTATCTCTC -ACGGAATTGCACGTGCTATGGATC -ACGGAATTGCACGTGCTACACTTC -ACGGAATTGCACGTGCTAGTACTC -ACGGAATTGCACGTGCTAGATGTC -ACGGAATTGCACGTGCTAACAGTC -ACGGAATTGCACGTGCTATTGCTG -ACGGAATTGCACGTGCTATCCATG -ACGGAATTGCACGTGCTATGTGTG -ACGGAATTGCACGTGCTACTAGTG -ACGGAATTGCACGTGCTACATCTG -ACGGAATTGCACGTGCTAGAGTTG -ACGGAATTGCACGTGCTAAGACTG -ACGGAATTGCACGTGCTATCGGTA -ACGGAATTGCACGTGCTATGCCTA -ACGGAATTGCACGTGCTACCACTA -ACGGAATTGCACGTGCTAGGAGTA -ACGGAATTGCACGTGCTATCGTCT -ACGGAATTGCACGTGCTATGCACT -ACGGAATTGCACGTGCTACTGACT -ACGGAATTGCACGTGCTACAACCT -ACGGAATTGCACGTGCTAGCTACT -ACGGAATTGCACGTGCTAGGATCT -ACGGAATTGCACGTGCTAAAGGCT -ACGGAATTGCACGTGCTATCAACC -ACGGAATTGCACGTGCTATGTTCC -ACGGAATTGCACGTGCTAATTCCC -ACGGAATTGCACGTGCTATTCTCG -ACGGAATTGCACGTGCTATAGACG -ACGGAATTGCACGTGCTAGTAACG -ACGGAATTGCACGTGCTAACTTCG -ACGGAATTGCACGTGCTATACGCA -ACGGAATTGCACGTGCTACTTGCA -ACGGAATTGCACGTGCTACGAACA -ACGGAATTGCACGTGCTACAGTCA -ACGGAATTGCACGTGCTAGATCCA -ACGGAATTGCACGTGCTAACGACA -ACGGAATTGCACGTGCTAAGCTCA -ACGGAATTGCACGTGCTATCACGT -ACGGAATTGCACGTGCTACGTAGT -ACGGAATTGCACGTGCTAGTCAGT -ACGGAATTGCACGTGCTAGAAGGT -ACGGAATTGCACGTGCTAAACCGT -ACGGAATTGCACGTGCTATTGTGC -ACGGAATTGCACGTGCTACTAAGC -ACGGAATTGCACGTGCTAACTAGC -ACGGAATTGCACGTGCTAAGATGC -ACGGAATTGCACGTGCTATGAAGG -ACGGAATTGCACGTGCTACAATGG -ACGGAATTGCACGTGCTAATGAGG -ACGGAATTGCACGTGCTAAATGGG -ACGGAATTGCACGTGCTATCCTGA -ACGGAATTGCACGTGCTATAGCGA -ACGGAATTGCACGTGCTACACAGA -ACGGAATTGCACGTGCTAGCAAGA -ACGGAATTGCACGTGCTAGGTTGA -ACGGAATTGCACGTGCTATCCGAT -ACGGAATTGCACGTGCTATGGCAT -ACGGAATTGCACGTGCTACGAGAT -ACGGAATTGCACGTGCTATACCAC -ACGGAATTGCACGTGCTACAGAAC -ACGGAATTGCACGTGCTAGTCTAC -ACGGAATTGCACGTGCTAACGTAC -ACGGAATTGCACGTGCTAAGTGAC -ACGGAATTGCACGTGCTACTGTAG -ACGGAATTGCACGTGCTACCTAAG -ACGGAATTGCACGTGCTAGTTCAG -ACGGAATTGCACGTGCTAGCATAG -ACGGAATTGCACGTGCTAGACAAG -ACGGAATTGCACGTGCTAAAGCAG -ACGGAATTGCACGTGCTACGTCAA -ACGGAATTGCACGTGCTAGCTGAA -ACGGAATTGCACGTGCTAAGTACG -ACGGAATTGCACGTGCTAATCCGA -ACGGAATTGCACGTGCTAATGGGA -ACGGAATTGCACGTGCTAGTGCAA -ACGGAATTGCACGTGCTAGAGGAA -ACGGAATTGCACGTGCTACAGGTA -ACGGAATTGCACGTGCTAGACTCT -ACGGAATTGCACGTGCTAAGTCCT -ACGGAATTGCACGTGCTATAAGCC -ACGGAATTGCACGTGCTAATAGCC -ACGGAATTGCACGTGCTATAACCG -ACGGAATTGCACGTGCTAATGCCA -ACGGAATTGCACCTGCATGGAAAC -ACGGAATTGCACCTGCATAACACC -ACGGAATTGCACCTGCATATCGAG -ACGGAATTGCACCTGCATCTCCTT -ACGGAATTGCACCTGCATCCTGTT -ACGGAATTGCACCTGCATCGGTTT -ACGGAATTGCACCTGCATGTGGTT -ACGGAATTGCACCTGCATGCCTTT -ACGGAATTGCACCTGCATGGTCTT -ACGGAATTGCACCTGCATACGCTT -ACGGAATTGCACCTGCATAGCGTT -ACGGAATTGCACCTGCATTTCGTC -ACGGAATTGCACCTGCATTCTCTC -ACGGAATTGCACCTGCATTGGATC -ACGGAATTGCACCTGCATCACTTC -ACGGAATTGCACCTGCATGTACTC -ACGGAATTGCACCTGCATGATGTC -ACGGAATTGCACCTGCATACAGTC -ACGGAATTGCACCTGCATTTGCTG -ACGGAATTGCACCTGCATTCCATG -ACGGAATTGCACCTGCATTGTGTG -ACGGAATTGCACCTGCATCTAGTG -ACGGAATTGCACCTGCATCATCTG -ACGGAATTGCACCTGCATGAGTTG -ACGGAATTGCACCTGCATAGACTG -ACGGAATTGCACCTGCATTCGGTA -ACGGAATTGCACCTGCATTGCCTA -ACGGAATTGCACCTGCATCCACTA -ACGGAATTGCACCTGCATGGAGTA -ACGGAATTGCACCTGCATTCGTCT -ACGGAATTGCACCTGCATTGCACT -ACGGAATTGCACCTGCATCTGACT -ACGGAATTGCACCTGCATCAACCT -ACGGAATTGCACCTGCATGCTACT -ACGGAATTGCACCTGCATGGATCT -ACGGAATTGCACCTGCATAAGGCT -ACGGAATTGCACCTGCATTCAACC -ACGGAATTGCACCTGCATTGTTCC -ACGGAATTGCACCTGCATATTCCC -ACGGAATTGCACCTGCATTTCTCG -ACGGAATTGCACCTGCATTAGACG -ACGGAATTGCACCTGCATGTAACG -ACGGAATTGCACCTGCATACTTCG -ACGGAATTGCACCTGCATTACGCA -ACGGAATTGCACCTGCATCTTGCA -ACGGAATTGCACCTGCATCGAACA -ACGGAATTGCACCTGCATCAGTCA -ACGGAATTGCACCTGCATGATCCA -ACGGAATTGCACCTGCATACGACA -ACGGAATTGCACCTGCATAGCTCA -ACGGAATTGCACCTGCATTCACGT -ACGGAATTGCACCTGCATCGTAGT -ACGGAATTGCACCTGCATGTCAGT -ACGGAATTGCACCTGCATGAAGGT -ACGGAATTGCACCTGCATAACCGT -ACGGAATTGCACCTGCATTTGTGC -ACGGAATTGCACCTGCATCTAAGC -ACGGAATTGCACCTGCATACTAGC -ACGGAATTGCACCTGCATAGATGC -ACGGAATTGCACCTGCATTGAAGG -ACGGAATTGCACCTGCATCAATGG -ACGGAATTGCACCTGCATATGAGG -ACGGAATTGCACCTGCATAATGGG -ACGGAATTGCACCTGCATTCCTGA -ACGGAATTGCACCTGCATTAGCGA -ACGGAATTGCACCTGCATCACAGA -ACGGAATTGCACCTGCATGCAAGA -ACGGAATTGCACCTGCATGGTTGA -ACGGAATTGCACCTGCATTCCGAT -ACGGAATTGCACCTGCATTGGCAT -ACGGAATTGCACCTGCATCGAGAT -ACGGAATTGCACCTGCATTACCAC -ACGGAATTGCACCTGCATCAGAAC -ACGGAATTGCACCTGCATGTCTAC -ACGGAATTGCACCTGCATACGTAC -ACGGAATTGCACCTGCATAGTGAC -ACGGAATTGCACCTGCATCTGTAG -ACGGAATTGCACCTGCATCCTAAG -ACGGAATTGCACCTGCATGTTCAG -ACGGAATTGCACCTGCATGCATAG -ACGGAATTGCACCTGCATGACAAG -ACGGAATTGCACCTGCATAAGCAG -ACGGAATTGCACCTGCATCGTCAA -ACGGAATTGCACCTGCATGCTGAA -ACGGAATTGCACCTGCATAGTACG -ACGGAATTGCACCTGCATATCCGA -ACGGAATTGCACCTGCATATGGGA -ACGGAATTGCACCTGCATGTGCAA -ACGGAATTGCACCTGCATGAGGAA -ACGGAATTGCACCTGCATCAGGTA -ACGGAATTGCACCTGCATGACTCT -ACGGAATTGCACCTGCATAGTCCT -ACGGAATTGCACCTGCATTAAGCC -ACGGAATTGCACCTGCATATAGCC -ACGGAATTGCACCTGCATTAACCG -ACGGAATTGCACCTGCATATGCCA -ACGGAATTGCACTTGGAGGGAAAC -ACGGAATTGCACTTGGAGAACACC -ACGGAATTGCACTTGGAGATCGAG -ACGGAATTGCACTTGGAGCTCCTT -ACGGAATTGCACTTGGAGCCTGTT -ACGGAATTGCACTTGGAGCGGTTT -ACGGAATTGCACTTGGAGGTGGTT -ACGGAATTGCACTTGGAGGCCTTT -ACGGAATTGCACTTGGAGGGTCTT -ACGGAATTGCACTTGGAGACGCTT -ACGGAATTGCACTTGGAGAGCGTT -ACGGAATTGCACTTGGAGTTCGTC -ACGGAATTGCACTTGGAGTCTCTC -ACGGAATTGCACTTGGAGTGGATC -ACGGAATTGCACTTGGAGCACTTC -ACGGAATTGCACTTGGAGGTACTC -ACGGAATTGCACTTGGAGGATGTC -ACGGAATTGCACTTGGAGACAGTC -ACGGAATTGCACTTGGAGTTGCTG -ACGGAATTGCACTTGGAGTCCATG -ACGGAATTGCACTTGGAGTGTGTG -ACGGAATTGCACTTGGAGCTAGTG -ACGGAATTGCACTTGGAGCATCTG -ACGGAATTGCACTTGGAGGAGTTG -ACGGAATTGCACTTGGAGAGACTG -ACGGAATTGCACTTGGAGTCGGTA -ACGGAATTGCACTTGGAGTGCCTA -ACGGAATTGCACTTGGAGCCACTA -ACGGAATTGCACTTGGAGGGAGTA -ACGGAATTGCACTTGGAGTCGTCT -ACGGAATTGCACTTGGAGTGCACT -ACGGAATTGCACTTGGAGCTGACT -ACGGAATTGCACTTGGAGCAACCT -ACGGAATTGCACTTGGAGGCTACT -ACGGAATTGCACTTGGAGGGATCT -ACGGAATTGCACTTGGAGAAGGCT -ACGGAATTGCACTTGGAGTCAACC -ACGGAATTGCACTTGGAGTGTTCC -ACGGAATTGCACTTGGAGATTCCC -ACGGAATTGCACTTGGAGTTCTCG -ACGGAATTGCACTTGGAGTAGACG -ACGGAATTGCACTTGGAGGTAACG -ACGGAATTGCACTTGGAGACTTCG -ACGGAATTGCACTTGGAGTACGCA -ACGGAATTGCACTTGGAGCTTGCA -ACGGAATTGCACTTGGAGCGAACA -ACGGAATTGCACTTGGAGCAGTCA -ACGGAATTGCACTTGGAGGATCCA -ACGGAATTGCACTTGGAGACGACA -ACGGAATTGCACTTGGAGAGCTCA -ACGGAATTGCACTTGGAGTCACGT -ACGGAATTGCACTTGGAGCGTAGT -ACGGAATTGCACTTGGAGGTCAGT -ACGGAATTGCACTTGGAGGAAGGT -ACGGAATTGCACTTGGAGAACCGT -ACGGAATTGCACTTGGAGTTGTGC -ACGGAATTGCACTTGGAGCTAAGC -ACGGAATTGCACTTGGAGACTAGC -ACGGAATTGCACTTGGAGAGATGC -ACGGAATTGCACTTGGAGTGAAGG -ACGGAATTGCACTTGGAGCAATGG -ACGGAATTGCACTTGGAGATGAGG -ACGGAATTGCACTTGGAGAATGGG -ACGGAATTGCACTTGGAGTCCTGA -ACGGAATTGCACTTGGAGTAGCGA -ACGGAATTGCACTTGGAGCACAGA -ACGGAATTGCACTTGGAGGCAAGA -ACGGAATTGCACTTGGAGGGTTGA -ACGGAATTGCACTTGGAGTCCGAT -ACGGAATTGCACTTGGAGTGGCAT -ACGGAATTGCACTTGGAGCGAGAT -ACGGAATTGCACTTGGAGTACCAC -ACGGAATTGCACTTGGAGCAGAAC -ACGGAATTGCACTTGGAGGTCTAC -ACGGAATTGCACTTGGAGACGTAC -ACGGAATTGCACTTGGAGAGTGAC -ACGGAATTGCACTTGGAGCTGTAG -ACGGAATTGCACTTGGAGCCTAAG -ACGGAATTGCACTTGGAGGTTCAG -ACGGAATTGCACTTGGAGGCATAG -ACGGAATTGCACTTGGAGGACAAG -ACGGAATTGCACTTGGAGAAGCAG -ACGGAATTGCACTTGGAGCGTCAA -ACGGAATTGCACTTGGAGGCTGAA -ACGGAATTGCACTTGGAGAGTACG -ACGGAATTGCACTTGGAGATCCGA -ACGGAATTGCACTTGGAGATGGGA -ACGGAATTGCACTTGGAGGTGCAA -ACGGAATTGCACTTGGAGGAGGAA -ACGGAATTGCACTTGGAGCAGGTA -ACGGAATTGCACTTGGAGGACTCT -ACGGAATTGCACTTGGAGAGTCCT -ACGGAATTGCACTTGGAGTAAGCC -ACGGAATTGCACTTGGAGATAGCC -ACGGAATTGCACTTGGAGTAACCG -ACGGAATTGCACTTGGAGATGCCA -ACGGAATTGCACCTGAGAGGAAAC -ACGGAATTGCACCTGAGAAACACC -ACGGAATTGCACCTGAGAATCGAG -ACGGAATTGCACCTGAGACTCCTT -ACGGAATTGCACCTGAGACCTGTT -ACGGAATTGCACCTGAGACGGTTT -ACGGAATTGCACCTGAGAGTGGTT -ACGGAATTGCACCTGAGAGCCTTT -ACGGAATTGCACCTGAGAGGTCTT -ACGGAATTGCACCTGAGAACGCTT -ACGGAATTGCACCTGAGAAGCGTT -ACGGAATTGCACCTGAGATTCGTC -ACGGAATTGCACCTGAGATCTCTC -ACGGAATTGCACCTGAGATGGATC -ACGGAATTGCACCTGAGACACTTC -ACGGAATTGCACCTGAGAGTACTC -ACGGAATTGCACCTGAGAGATGTC -ACGGAATTGCACCTGAGAACAGTC -ACGGAATTGCACCTGAGATTGCTG -ACGGAATTGCACCTGAGATCCATG -ACGGAATTGCACCTGAGATGTGTG -ACGGAATTGCACCTGAGACTAGTG -ACGGAATTGCACCTGAGACATCTG -ACGGAATTGCACCTGAGAGAGTTG -ACGGAATTGCACCTGAGAAGACTG -ACGGAATTGCACCTGAGATCGGTA -ACGGAATTGCACCTGAGATGCCTA -ACGGAATTGCACCTGAGACCACTA -ACGGAATTGCACCTGAGAGGAGTA -ACGGAATTGCACCTGAGATCGTCT -ACGGAATTGCACCTGAGATGCACT -ACGGAATTGCACCTGAGACTGACT -ACGGAATTGCACCTGAGACAACCT -ACGGAATTGCACCTGAGAGCTACT -ACGGAATTGCACCTGAGAGGATCT -ACGGAATTGCACCTGAGAAAGGCT -ACGGAATTGCACCTGAGATCAACC -ACGGAATTGCACCTGAGATGTTCC -ACGGAATTGCACCTGAGAATTCCC -ACGGAATTGCACCTGAGATTCTCG -ACGGAATTGCACCTGAGATAGACG -ACGGAATTGCACCTGAGAGTAACG -ACGGAATTGCACCTGAGAACTTCG -ACGGAATTGCACCTGAGATACGCA -ACGGAATTGCACCTGAGACTTGCA -ACGGAATTGCACCTGAGACGAACA -ACGGAATTGCACCTGAGACAGTCA -ACGGAATTGCACCTGAGAGATCCA -ACGGAATTGCACCTGAGAACGACA -ACGGAATTGCACCTGAGAAGCTCA -ACGGAATTGCACCTGAGATCACGT -ACGGAATTGCACCTGAGACGTAGT -ACGGAATTGCACCTGAGAGTCAGT -ACGGAATTGCACCTGAGAGAAGGT -ACGGAATTGCACCTGAGAAACCGT -ACGGAATTGCACCTGAGATTGTGC -ACGGAATTGCACCTGAGACTAAGC -ACGGAATTGCACCTGAGAACTAGC -ACGGAATTGCACCTGAGAAGATGC -ACGGAATTGCACCTGAGATGAAGG -ACGGAATTGCACCTGAGACAATGG -ACGGAATTGCACCTGAGAATGAGG -ACGGAATTGCACCTGAGAAATGGG -ACGGAATTGCACCTGAGATCCTGA -ACGGAATTGCACCTGAGATAGCGA -ACGGAATTGCACCTGAGACACAGA -ACGGAATTGCACCTGAGAGCAAGA -ACGGAATTGCACCTGAGAGGTTGA -ACGGAATTGCACCTGAGATCCGAT -ACGGAATTGCACCTGAGATGGCAT -ACGGAATTGCACCTGAGACGAGAT -ACGGAATTGCACCTGAGATACCAC -ACGGAATTGCACCTGAGACAGAAC -ACGGAATTGCACCTGAGAGTCTAC -ACGGAATTGCACCTGAGAACGTAC -ACGGAATTGCACCTGAGAAGTGAC -ACGGAATTGCACCTGAGACTGTAG -ACGGAATTGCACCTGAGACCTAAG -ACGGAATTGCACCTGAGAGTTCAG -ACGGAATTGCACCTGAGAGCATAG -ACGGAATTGCACCTGAGAGACAAG -ACGGAATTGCACCTGAGAAAGCAG -ACGGAATTGCACCTGAGACGTCAA -ACGGAATTGCACCTGAGAGCTGAA -ACGGAATTGCACCTGAGAAGTACG -ACGGAATTGCACCTGAGAATCCGA -ACGGAATTGCACCTGAGAATGGGA -ACGGAATTGCACCTGAGAGTGCAA -ACGGAATTGCACCTGAGAGAGGAA -ACGGAATTGCACCTGAGACAGGTA -ACGGAATTGCACCTGAGAGACTCT -ACGGAATTGCACCTGAGAAGTCCT -ACGGAATTGCACCTGAGATAAGCC -ACGGAATTGCACCTGAGAATAGCC -ACGGAATTGCACCTGAGATAACCG -ACGGAATTGCACCTGAGAATGCCA -ACGGAATTGCACGTATCGGGAAAC -ACGGAATTGCACGTATCGAACACC -ACGGAATTGCACGTATCGATCGAG -ACGGAATTGCACGTATCGCTCCTT -ACGGAATTGCACGTATCGCCTGTT -ACGGAATTGCACGTATCGCGGTTT -ACGGAATTGCACGTATCGGTGGTT -ACGGAATTGCACGTATCGGCCTTT -ACGGAATTGCACGTATCGGGTCTT -ACGGAATTGCACGTATCGACGCTT -ACGGAATTGCACGTATCGAGCGTT -ACGGAATTGCACGTATCGTTCGTC -ACGGAATTGCACGTATCGTCTCTC -ACGGAATTGCACGTATCGTGGATC -ACGGAATTGCACGTATCGCACTTC -ACGGAATTGCACGTATCGGTACTC -ACGGAATTGCACGTATCGGATGTC -ACGGAATTGCACGTATCGACAGTC -ACGGAATTGCACGTATCGTTGCTG -ACGGAATTGCACGTATCGTCCATG -ACGGAATTGCACGTATCGTGTGTG -ACGGAATTGCACGTATCGCTAGTG -ACGGAATTGCACGTATCGCATCTG -ACGGAATTGCACGTATCGGAGTTG -ACGGAATTGCACGTATCGAGACTG -ACGGAATTGCACGTATCGTCGGTA -ACGGAATTGCACGTATCGTGCCTA -ACGGAATTGCACGTATCGCCACTA -ACGGAATTGCACGTATCGGGAGTA -ACGGAATTGCACGTATCGTCGTCT -ACGGAATTGCACGTATCGTGCACT -ACGGAATTGCACGTATCGCTGACT -ACGGAATTGCACGTATCGCAACCT -ACGGAATTGCACGTATCGGCTACT -ACGGAATTGCACGTATCGGGATCT -ACGGAATTGCACGTATCGAAGGCT -ACGGAATTGCACGTATCGTCAACC -ACGGAATTGCACGTATCGTGTTCC -ACGGAATTGCACGTATCGATTCCC -ACGGAATTGCACGTATCGTTCTCG -ACGGAATTGCACGTATCGTAGACG -ACGGAATTGCACGTATCGGTAACG -ACGGAATTGCACGTATCGACTTCG -ACGGAATTGCACGTATCGTACGCA -ACGGAATTGCACGTATCGCTTGCA -ACGGAATTGCACGTATCGCGAACA -ACGGAATTGCACGTATCGCAGTCA -ACGGAATTGCACGTATCGGATCCA -ACGGAATTGCACGTATCGACGACA -ACGGAATTGCACGTATCGAGCTCA -ACGGAATTGCACGTATCGTCACGT -ACGGAATTGCACGTATCGCGTAGT -ACGGAATTGCACGTATCGGTCAGT -ACGGAATTGCACGTATCGGAAGGT -ACGGAATTGCACGTATCGAACCGT -ACGGAATTGCACGTATCGTTGTGC -ACGGAATTGCACGTATCGCTAAGC -ACGGAATTGCACGTATCGACTAGC -ACGGAATTGCACGTATCGAGATGC -ACGGAATTGCACGTATCGTGAAGG -ACGGAATTGCACGTATCGCAATGG -ACGGAATTGCACGTATCGATGAGG -ACGGAATTGCACGTATCGAATGGG -ACGGAATTGCACGTATCGTCCTGA -ACGGAATTGCACGTATCGTAGCGA -ACGGAATTGCACGTATCGCACAGA -ACGGAATTGCACGTATCGGCAAGA -ACGGAATTGCACGTATCGGGTTGA -ACGGAATTGCACGTATCGTCCGAT -ACGGAATTGCACGTATCGTGGCAT -ACGGAATTGCACGTATCGCGAGAT -ACGGAATTGCACGTATCGTACCAC -ACGGAATTGCACGTATCGCAGAAC -ACGGAATTGCACGTATCGGTCTAC -ACGGAATTGCACGTATCGACGTAC -ACGGAATTGCACGTATCGAGTGAC -ACGGAATTGCACGTATCGCTGTAG -ACGGAATTGCACGTATCGCCTAAG -ACGGAATTGCACGTATCGGTTCAG -ACGGAATTGCACGTATCGGCATAG -ACGGAATTGCACGTATCGGACAAG -ACGGAATTGCACGTATCGAAGCAG -ACGGAATTGCACGTATCGCGTCAA -ACGGAATTGCACGTATCGGCTGAA -ACGGAATTGCACGTATCGAGTACG -ACGGAATTGCACGTATCGATCCGA -ACGGAATTGCACGTATCGATGGGA -ACGGAATTGCACGTATCGGTGCAA -ACGGAATTGCACGTATCGGAGGAA -ACGGAATTGCACGTATCGCAGGTA -ACGGAATTGCACGTATCGGACTCT -ACGGAATTGCACGTATCGAGTCCT -ACGGAATTGCACGTATCGTAAGCC -ACGGAATTGCACGTATCGATAGCC -ACGGAATTGCACGTATCGTAACCG -ACGGAATTGCACGTATCGATGCCA -ACGGAATTGCACCTATGCGGAAAC -ACGGAATTGCACCTATGCAACACC -ACGGAATTGCACCTATGCATCGAG -ACGGAATTGCACCTATGCCTCCTT -ACGGAATTGCACCTATGCCCTGTT -ACGGAATTGCACCTATGCCGGTTT -ACGGAATTGCACCTATGCGTGGTT -ACGGAATTGCACCTATGCGCCTTT -ACGGAATTGCACCTATGCGGTCTT -ACGGAATTGCACCTATGCACGCTT -ACGGAATTGCACCTATGCAGCGTT -ACGGAATTGCACCTATGCTTCGTC -ACGGAATTGCACCTATGCTCTCTC -ACGGAATTGCACCTATGCTGGATC -ACGGAATTGCACCTATGCCACTTC -ACGGAATTGCACCTATGCGTACTC -ACGGAATTGCACCTATGCGATGTC -ACGGAATTGCACCTATGCACAGTC -ACGGAATTGCACCTATGCTTGCTG -ACGGAATTGCACCTATGCTCCATG -ACGGAATTGCACCTATGCTGTGTG -ACGGAATTGCACCTATGCCTAGTG -ACGGAATTGCACCTATGCCATCTG -ACGGAATTGCACCTATGCGAGTTG -ACGGAATTGCACCTATGCAGACTG -ACGGAATTGCACCTATGCTCGGTA -ACGGAATTGCACCTATGCTGCCTA -ACGGAATTGCACCTATGCCCACTA -ACGGAATTGCACCTATGCGGAGTA -ACGGAATTGCACCTATGCTCGTCT -ACGGAATTGCACCTATGCTGCACT -ACGGAATTGCACCTATGCCTGACT -ACGGAATTGCACCTATGCCAACCT -ACGGAATTGCACCTATGCGCTACT -ACGGAATTGCACCTATGCGGATCT -ACGGAATTGCACCTATGCAAGGCT -ACGGAATTGCACCTATGCTCAACC -ACGGAATTGCACCTATGCTGTTCC -ACGGAATTGCACCTATGCATTCCC -ACGGAATTGCACCTATGCTTCTCG -ACGGAATTGCACCTATGCTAGACG -ACGGAATTGCACCTATGCGTAACG -ACGGAATTGCACCTATGCACTTCG -ACGGAATTGCACCTATGCTACGCA -ACGGAATTGCACCTATGCCTTGCA -ACGGAATTGCACCTATGCCGAACA -ACGGAATTGCACCTATGCCAGTCA -ACGGAATTGCACCTATGCGATCCA -ACGGAATTGCACCTATGCACGACA -ACGGAATTGCACCTATGCAGCTCA -ACGGAATTGCACCTATGCTCACGT -ACGGAATTGCACCTATGCCGTAGT -ACGGAATTGCACCTATGCGTCAGT -ACGGAATTGCACCTATGCGAAGGT -ACGGAATTGCACCTATGCAACCGT -ACGGAATTGCACCTATGCTTGTGC -ACGGAATTGCACCTATGCCTAAGC -ACGGAATTGCACCTATGCACTAGC -ACGGAATTGCACCTATGCAGATGC -ACGGAATTGCACCTATGCTGAAGG -ACGGAATTGCACCTATGCCAATGG -ACGGAATTGCACCTATGCATGAGG -ACGGAATTGCACCTATGCAATGGG -ACGGAATTGCACCTATGCTCCTGA -ACGGAATTGCACCTATGCTAGCGA -ACGGAATTGCACCTATGCCACAGA -ACGGAATTGCACCTATGCGCAAGA -ACGGAATTGCACCTATGCGGTTGA -ACGGAATTGCACCTATGCTCCGAT -ACGGAATTGCACCTATGCTGGCAT -ACGGAATTGCACCTATGCCGAGAT -ACGGAATTGCACCTATGCTACCAC -ACGGAATTGCACCTATGCCAGAAC -ACGGAATTGCACCTATGCGTCTAC -ACGGAATTGCACCTATGCACGTAC -ACGGAATTGCACCTATGCAGTGAC -ACGGAATTGCACCTATGCCTGTAG -ACGGAATTGCACCTATGCCCTAAG -ACGGAATTGCACCTATGCGTTCAG -ACGGAATTGCACCTATGCGCATAG -ACGGAATTGCACCTATGCGACAAG -ACGGAATTGCACCTATGCAAGCAG -ACGGAATTGCACCTATGCCGTCAA -ACGGAATTGCACCTATGCGCTGAA -ACGGAATTGCACCTATGCAGTACG -ACGGAATTGCACCTATGCATCCGA -ACGGAATTGCACCTATGCATGGGA -ACGGAATTGCACCTATGCGTGCAA -ACGGAATTGCACCTATGCGAGGAA -ACGGAATTGCACCTATGCCAGGTA -ACGGAATTGCACCTATGCGACTCT -ACGGAATTGCACCTATGCAGTCCT -ACGGAATTGCACCTATGCTAAGCC -ACGGAATTGCACCTATGCATAGCC -ACGGAATTGCACCTATGCTAACCG -ACGGAATTGCACCTATGCATGCCA -ACGGAATTGCACCTACCAGGAAAC -ACGGAATTGCACCTACCAAACACC -ACGGAATTGCACCTACCAATCGAG -ACGGAATTGCACCTACCACTCCTT -ACGGAATTGCACCTACCACCTGTT -ACGGAATTGCACCTACCACGGTTT -ACGGAATTGCACCTACCAGTGGTT -ACGGAATTGCACCTACCAGCCTTT -ACGGAATTGCACCTACCAGGTCTT -ACGGAATTGCACCTACCAACGCTT -ACGGAATTGCACCTACCAAGCGTT -ACGGAATTGCACCTACCATTCGTC -ACGGAATTGCACCTACCATCTCTC -ACGGAATTGCACCTACCATGGATC -ACGGAATTGCACCTACCACACTTC -ACGGAATTGCACCTACCAGTACTC -ACGGAATTGCACCTACCAGATGTC -ACGGAATTGCACCTACCAACAGTC -ACGGAATTGCACCTACCATTGCTG -ACGGAATTGCACCTACCATCCATG -ACGGAATTGCACCTACCATGTGTG -ACGGAATTGCACCTACCACTAGTG -ACGGAATTGCACCTACCACATCTG -ACGGAATTGCACCTACCAGAGTTG -ACGGAATTGCACCTACCAAGACTG -ACGGAATTGCACCTACCATCGGTA -ACGGAATTGCACCTACCATGCCTA -ACGGAATTGCACCTACCACCACTA -ACGGAATTGCACCTACCAGGAGTA -ACGGAATTGCACCTACCATCGTCT -ACGGAATTGCACCTACCATGCACT -ACGGAATTGCACCTACCACTGACT -ACGGAATTGCACCTACCACAACCT -ACGGAATTGCACCTACCAGCTACT -ACGGAATTGCACCTACCAGGATCT -ACGGAATTGCACCTACCAAAGGCT -ACGGAATTGCACCTACCATCAACC -ACGGAATTGCACCTACCATGTTCC -ACGGAATTGCACCTACCAATTCCC -ACGGAATTGCACCTACCATTCTCG -ACGGAATTGCACCTACCATAGACG -ACGGAATTGCACCTACCAGTAACG -ACGGAATTGCACCTACCAACTTCG -ACGGAATTGCACCTACCATACGCA -ACGGAATTGCACCTACCACTTGCA -ACGGAATTGCACCTACCACGAACA -ACGGAATTGCACCTACCACAGTCA -ACGGAATTGCACCTACCAGATCCA -ACGGAATTGCACCTACCAACGACA -ACGGAATTGCACCTACCAAGCTCA -ACGGAATTGCACCTACCATCACGT -ACGGAATTGCACCTACCACGTAGT -ACGGAATTGCACCTACCAGTCAGT -ACGGAATTGCACCTACCAGAAGGT -ACGGAATTGCACCTACCAAACCGT -ACGGAATTGCACCTACCATTGTGC -ACGGAATTGCACCTACCACTAAGC -ACGGAATTGCACCTACCAACTAGC -ACGGAATTGCACCTACCAAGATGC -ACGGAATTGCACCTACCATGAAGG -ACGGAATTGCACCTACCACAATGG -ACGGAATTGCACCTACCAATGAGG -ACGGAATTGCACCTACCAAATGGG -ACGGAATTGCACCTACCATCCTGA -ACGGAATTGCACCTACCATAGCGA -ACGGAATTGCACCTACCACACAGA -ACGGAATTGCACCTACCAGCAAGA -ACGGAATTGCACCTACCAGGTTGA -ACGGAATTGCACCTACCATCCGAT -ACGGAATTGCACCTACCATGGCAT -ACGGAATTGCACCTACCACGAGAT -ACGGAATTGCACCTACCATACCAC -ACGGAATTGCACCTACCACAGAAC -ACGGAATTGCACCTACCAGTCTAC -ACGGAATTGCACCTACCAACGTAC -ACGGAATTGCACCTACCAAGTGAC -ACGGAATTGCACCTACCACTGTAG -ACGGAATTGCACCTACCACCTAAG -ACGGAATTGCACCTACCAGTTCAG -ACGGAATTGCACCTACCAGCATAG -ACGGAATTGCACCTACCAGACAAG -ACGGAATTGCACCTACCAAAGCAG -ACGGAATTGCACCTACCACGTCAA -ACGGAATTGCACCTACCAGCTGAA -ACGGAATTGCACCTACCAAGTACG -ACGGAATTGCACCTACCAATCCGA -ACGGAATTGCACCTACCAATGGGA -ACGGAATTGCACCTACCAGTGCAA -ACGGAATTGCACCTACCAGAGGAA -ACGGAATTGCACCTACCACAGGTA -ACGGAATTGCACCTACCAGACTCT -ACGGAATTGCACCTACCAAGTCCT -ACGGAATTGCACCTACCATAAGCC -ACGGAATTGCACCTACCAATAGCC -ACGGAATTGCACCTACCATAACCG -ACGGAATTGCACCTACCAATGCCA -ACGGAATTGCACGTAGGAGGAAAC -ACGGAATTGCACGTAGGAAACACC -ACGGAATTGCACGTAGGAATCGAG -ACGGAATTGCACGTAGGACTCCTT -ACGGAATTGCACGTAGGACCTGTT -ACGGAATTGCACGTAGGACGGTTT -ACGGAATTGCACGTAGGAGTGGTT -ACGGAATTGCACGTAGGAGCCTTT -ACGGAATTGCACGTAGGAGGTCTT -ACGGAATTGCACGTAGGAACGCTT -ACGGAATTGCACGTAGGAAGCGTT -ACGGAATTGCACGTAGGATTCGTC -ACGGAATTGCACGTAGGATCTCTC -ACGGAATTGCACGTAGGATGGATC -ACGGAATTGCACGTAGGACACTTC -ACGGAATTGCACGTAGGAGTACTC -ACGGAATTGCACGTAGGAGATGTC -ACGGAATTGCACGTAGGAACAGTC -ACGGAATTGCACGTAGGATTGCTG -ACGGAATTGCACGTAGGATCCATG -ACGGAATTGCACGTAGGATGTGTG -ACGGAATTGCACGTAGGACTAGTG -ACGGAATTGCACGTAGGACATCTG -ACGGAATTGCACGTAGGAGAGTTG -ACGGAATTGCACGTAGGAAGACTG -ACGGAATTGCACGTAGGATCGGTA -ACGGAATTGCACGTAGGATGCCTA -ACGGAATTGCACGTAGGACCACTA -ACGGAATTGCACGTAGGAGGAGTA -ACGGAATTGCACGTAGGATCGTCT -ACGGAATTGCACGTAGGATGCACT -ACGGAATTGCACGTAGGACTGACT -ACGGAATTGCACGTAGGACAACCT -ACGGAATTGCACGTAGGAGCTACT -ACGGAATTGCACGTAGGAGGATCT -ACGGAATTGCACGTAGGAAAGGCT -ACGGAATTGCACGTAGGATCAACC -ACGGAATTGCACGTAGGATGTTCC -ACGGAATTGCACGTAGGAATTCCC -ACGGAATTGCACGTAGGATTCTCG -ACGGAATTGCACGTAGGATAGACG -ACGGAATTGCACGTAGGAGTAACG -ACGGAATTGCACGTAGGAACTTCG -ACGGAATTGCACGTAGGATACGCA -ACGGAATTGCACGTAGGACTTGCA -ACGGAATTGCACGTAGGACGAACA -ACGGAATTGCACGTAGGACAGTCA -ACGGAATTGCACGTAGGAGATCCA -ACGGAATTGCACGTAGGAACGACA -ACGGAATTGCACGTAGGAAGCTCA -ACGGAATTGCACGTAGGATCACGT -ACGGAATTGCACGTAGGACGTAGT -ACGGAATTGCACGTAGGAGTCAGT -ACGGAATTGCACGTAGGAGAAGGT -ACGGAATTGCACGTAGGAAACCGT -ACGGAATTGCACGTAGGATTGTGC -ACGGAATTGCACGTAGGACTAAGC -ACGGAATTGCACGTAGGAACTAGC -ACGGAATTGCACGTAGGAAGATGC -ACGGAATTGCACGTAGGATGAAGG -ACGGAATTGCACGTAGGACAATGG -ACGGAATTGCACGTAGGAATGAGG -ACGGAATTGCACGTAGGAAATGGG -ACGGAATTGCACGTAGGATCCTGA -ACGGAATTGCACGTAGGATAGCGA -ACGGAATTGCACGTAGGACACAGA -ACGGAATTGCACGTAGGAGCAAGA -ACGGAATTGCACGTAGGAGGTTGA -ACGGAATTGCACGTAGGATCCGAT -ACGGAATTGCACGTAGGATGGCAT -ACGGAATTGCACGTAGGACGAGAT -ACGGAATTGCACGTAGGATACCAC -ACGGAATTGCACGTAGGACAGAAC -ACGGAATTGCACGTAGGAGTCTAC -ACGGAATTGCACGTAGGAACGTAC -ACGGAATTGCACGTAGGAAGTGAC -ACGGAATTGCACGTAGGACTGTAG -ACGGAATTGCACGTAGGACCTAAG -ACGGAATTGCACGTAGGAGTTCAG -ACGGAATTGCACGTAGGAGCATAG -ACGGAATTGCACGTAGGAGACAAG -ACGGAATTGCACGTAGGAAAGCAG -ACGGAATTGCACGTAGGACGTCAA -ACGGAATTGCACGTAGGAGCTGAA -ACGGAATTGCACGTAGGAAGTACG -ACGGAATTGCACGTAGGAATCCGA -ACGGAATTGCACGTAGGAATGGGA -ACGGAATTGCACGTAGGAGTGCAA -ACGGAATTGCACGTAGGAGAGGAA -ACGGAATTGCACGTAGGACAGGTA -ACGGAATTGCACGTAGGAGACTCT -ACGGAATTGCACGTAGGAAGTCCT -ACGGAATTGCACGTAGGATAAGCC -ACGGAATTGCACGTAGGAATAGCC -ACGGAATTGCACGTAGGATAACCG -ACGGAATTGCACGTAGGAATGCCA -ACGGAATTGCACTCTTCGGGAAAC -ACGGAATTGCACTCTTCGAACACC -ACGGAATTGCACTCTTCGATCGAG -ACGGAATTGCACTCTTCGCTCCTT -ACGGAATTGCACTCTTCGCCTGTT -ACGGAATTGCACTCTTCGCGGTTT -ACGGAATTGCACTCTTCGGTGGTT -ACGGAATTGCACTCTTCGGCCTTT -ACGGAATTGCACTCTTCGGGTCTT -ACGGAATTGCACTCTTCGACGCTT -ACGGAATTGCACTCTTCGAGCGTT -ACGGAATTGCACTCTTCGTTCGTC -ACGGAATTGCACTCTTCGTCTCTC -ACGGAATTGCACTCTTCGTGGATC -ACGGAATTGCACTCTTCGCACTTC -ACGGAATTGCACTCTTCGGTACTC -ACGGAATTGCACTCTTCGGATGTC -ACGGAATTGCACTCTTCGACAGTC -ACGGAATTGCACTCTTCGTTGCTG -ACGGAATTGCACTCTTCGTCCATG -ACGGAATTGCACTCTTCGTGTGTG -ACGGAATTGCACTCTTCGCTAGTG -ACGGAATTGCACTCTTCGCATCTG -ACGGAATTGCACTCTTCGGAGTTG -ACGGAATTGCACTCTTCGAGACTG -ACGGAATTGCACTCTTCGTCGGTA -ACGGAATTGCACTCTTCGTGCCTA -ACGGAATTGCACTCTTCGCCACTA -ACGGAATTGCACTCTTCGGGAGTA -ACGGAATTGCACTCTTCGTCGTCT -ACGGAATTGCACTCTTCGTGCACT -ACGGAATTGCACTCTTCGCTGACT -ACGGAATTGCACTCTTCGCAACCT -ACGGAATTGCACTCTTCGGCTACT -ACGGAATTGCACTCTTCGGGATCT -ACGGAATTGCACTCTTCGAAGGCT -ACGGAATTGCACTCTTCGTCAACC -ACGGAATTGCACTCTTCGTGTTCC -ACGGAATTGCACTCTTCGATTCCC -ACGGAATTGCACTCTTCGTTCTCG -ACGGAATTGCACTCTTCGTAGACG -ACGGAATTGCACTCTTCGGTAACG -ACGGAATTGCACTCTTCGACTTCG -ACGGAATTGCACTCTTCGTACGCA -ACGGAATTGCACTCTTCGCTTGCA -ACGGAATTGCACTCTTCGCGAACA -ACGGAATTGCACTCTTCGCAGTCA -ACGGAATTGCACTCTTCGGATCCA -ACGGAATTGCACTCTTCGACGACA -ACGGAATTGCACTCTTCGAGCTCA -ACGGAATTGCACTCTTCGTCACGT -ACGGAATTGCACTCTTCGCGTAGT -ACGGAATTGCACTCTTCGGTCAGT -ACGGAATTGCACTCTTCGGAAGGT -ACGGAATTGCACTCTTCGAACCGT -ACGGAATTGCACTCTTCGTTGTGC -ACGGAATTGCACTCTTCGCTAAGC -ACGGAATTGCACTCTTCGACTAGC -ACGGAATTGCACTCTTCGAGATGC -ACGGAATTGCACTCTTCGTGAAGG -ACGGAATTGCACTCTTCGCAATGG -ACGGAATTGCACTCTTCGATGAGG -ACGGAATTGCACTCTTCGAATGGG -ACGGAATTGCACTCTTCGTCCTGA -ACGGAATTGCACTCTTCGTAGCGA -ACGGAATTGCACTCTTCGCACAGA -ACGGAATTGCACTCTTCGGCAAGA -ACGGAATTGCACTCTTCGGGTTGA -ACGGAATTGCACTCTTCGTCCGAT -ACGGAATTGCACTCTTCGTGGCAT -ACGGAATTGCACTCTTCGCGAGAT -ACGGAATTGCACTCTTCGTACCAC -ACGGAATTGCACTCTTCGCAGAAC -ACGGAATTGCACTCTTCGGTCTAC -ACGGAATTGCACTCTTCGACGTAC -ACGGAATTGCACTCTTCGAGTGAC -ACGGAATTGCACTCTTCGCTGTAG -ACGGAATTGCACTCTTCGCCTAAG -ACGGAATTGCACTCTTCGGTTCAG -ACGGAATTGCACTCTTCGGCATAG -ACGGAATTGCACTCTTCGGACAAG -ACGGAATTGCACTCTTCGAAGCAG -ACGGAATTGCACTCTTCGCGTCAA -ACGGAATTGCACTCTTCGGCTGAA -ACGGAATTGCACTCTTCGAGTACG -ACGGAATTGCACTCTTCGATCCGA -ACGGAATTGCACTCTTCGATGGGA -ACGGAATTGCACTCTTCGGTGCAA -ACGGAATTGCACTCTTCGGAGGAA -ACGGAATTGCACTCTTCGCAGGTA -ACGGAATTGCACTCTTCGGACTCT -ACGGAATTGCACTCTTCGAGTCCT -ACGGAATTGCACTCTTCGTAAGCC -ACGGAATTGCACTCTTCGATAGCC -ACGGAATTGCACTCTTCGTAACCG -ACGGAATTGCACTCTTCGATGCCA -ACGGAATTGCACACTTGCGGAAAC -ACGGAATTGCACACTTGCAACACC -ACGGAATTGCACACTTGCATCGAG -ACGGAATTGCACACTTGCCTCCTT -ACGGAATTGCACACTTGCCCTGTT -ACGGAATTGCACACTTGCCGGTTT -ACGGAATTGCACACTTGCGTGGTT -ACGGAATTGCACACTTGCGCCTTT -ACGGAATTGCACACTTGCGGTCTT -ACGGAATTGCACACTTGCACGCTT -ACGGAATTGCACACTTGCAGCGTT -ACGGAATTGCACACTTGCTTCGTC -ACGGAATTGCACACTTGCTCTCTC -ACGGAATTGCACACTTGCTGGATC -ACGGAATTGCACACTTGCCACTTC -ACGGAATTGCACACTTGCGTACTC -ACGGAATTGCACACTTGCGATGTC -ACGGAATTGCACACTTGCACAGTC -ACGGAATTGCACACTTGCTTGCTG -ACGGAATTGCACACTTGCTCCATG -ACGGAATTGCACACTTGCTGTGTG -ACGGAATTGCACACTTGCCTAGTG -ACGGAATTGCACACTTGCCATCTG -ACGGAATTGCACACTTGCGAGTTG -ACGGAATTGCACACTTGCAGACTG -ACGGAATTGCACACTTGCTCGGTA -ACGGAATTGCACACTTGCTGCCTA -ACGGAATTGCACACTTGCCCACTA -ACGGAATTGCACACTTGCGGAGTA -ACGGAATTGCACACTTGCTCGTCT -ACGGAATTGCACACTTGCTGCACT -ACGGAATTGCACACTTGCCTGACT -ACGGAATTGCACACTTGCCAACCT -ACGGAATTGCACACTTGCGCTACT -ACGGAATTGCACACTTGCGGATCT -ACGGAATTGCACACTTGCAAGGCT -ACGGAATTGCACACTTGCTCAACC -ACGGAATTGCACACTTGCTGTTCC -ACGGAATTGCACACTTGCATTCCC -ACGGAATTGCACACTTGCTTCTCG -ACGGAATTGCACACTTGCTAGACG -ACGGAATTGCACACTTGCGTAACG -ACGGAATTGCACACTTGCACTTCG -ACGGAATTGCACACTTGCTACGCA -ACGGAATTGCACACTTGCCTTGCA -ACGGAATTGCACACTTGCCGAACA -ACGGAATTGCACACTTGCCAGTCA -ACGGAATTGCACACTTGCGATCCA -ACGGAATTGCACACTTGCACGACA -ACGGAATTGCACACTTGCAGCTCA -ACGGAATTGCACACTTGCTCACGT -ACGGAATTGCACACTTGCCGTAGT -ACGGAATTGCACACTTGCGTCAGT -ACGGAATTGCACACTTGCGAAGGT -ACGGAATTGCACACTTGCAACCGT -ACGGAATTGCACACTTGCTTGTGC -ACGGAATTGCACACTTGCCTAAGC -ACGGAATTGCACACTTGCACTAGC -ACGGAATTGCACACTTGCAGATGC -ACGGAATTGCACACTTGCTGAAGG -ACGGAATTGCACACTTGCCAATGG -ACGGAATTGCACACTTGCATGAGG -ACGGAATTGCACACTTGCAATGGG -ACGGAATTGCACACTTGCTCCTGA -ACGGAATTGCACACTTGCTAGCGA -ACGGAATTGCACACTTGCCACAGA -ACGGAATTGCACACTTGCGCAAGA -ACGGAATTGCACACTTGCGGTTGA -ACGGAATTGCACACTTGCTCCGAT -ACGGAATTGCACACTTGCTGGCAT -ACGGAATTGCACACTTGCCGAGAT -ACGGAATTGCACACTTGCTACCAC -ACGGAATTGCACACTTGCCAGAAC -ACGGAATTGCACACTTGCGTCTAC -ACGGAATTGCACACTTGCACGTAC -ACGGAATTGCACACTTGCAGTGAC -ACGGAATTGCACACTTGCCTGTAG -ACGGAATTGCACACTTGCCCTAAG -ACGGAATTGCACACTTGCGTTCAG -ACGGAATTGCACACTTGCGCATAG -ACGGAATTGCACACTTGCGACAAG -ACGGAATTGCACACTTGCAAGCAG -ACGGAATTGCACACTTGCCGTCAA -ACGGAATTGCACACTTGCGCTGAA -ACGGAATTGCACACTTGCAGTACG -ACGGAATTGCACACTTGCATCCGA -ACGGAATTGCACACTTGCATGGGA -ACGGAATTGCACACTTGCGTGCAA -ACGGAATTGCACACTTGCGAGGAA -ACGGAATTGCACACTTGCCAGGTA -ACGGAATTGCACACTTGCGACTCT -ACGGAATTGCACACTTGCAGTCCT -ACGGAATTGCACACTTGCTAAGCC -ACGGAATTGCACACTTGCATAGCC -ACGGAATTGCACACTTGCTAACCG -ACGGAATTGCACACTTGCATGCCA -ACGGAATTGCACACTCTGGGAAAC -ACGGAATTGCACACTCTGAACACC -ACGGAATTGCACACTCTGATCGAG -ACGGAATTGCACACTCTGCTCCTT -ACGGAATTGCACACTCTGCCTGTT -ACGGAATTGCACACTCTGCGGTTT -ACGGAATTGCACACTCTGGTGGTT -ACGGAATTGCACACTCTGGCCTTT -ACGGAATTGCACACTCTGGGTCTT -ACGGAATTGCACACTCTGACGCTT -ACGGAATTGCACACTCTGAGCGTT -ACGGAATTGCACACTCTGTTCGTC -ACGGAATTGCACACTCTGTCTCTC -ACGGAATTGCACACTCTGTGGATC -ACGGAATTGCACACTCTGCACTTC -ACGGAATTGCACACTCTGGTACTC -ACGGAATTGCACACTCTGGATGTC -ACGGAATTGCACACTCTGACAGTC -ACGGAATTGCACACTCTGTTGCTG -ACGGAATTGCACACTCTGTCCATG -ACGGAATTGCACACTCTGTGTGTG -ACGGAATTGCACACTCTGCTAGTG -ACGGAATTGCACACTCTGCATCTG -ACGGAATTGCACACTCTGGAGTTG -ACGGAATTGCACACTCTGAGACTG -ACGGAATTGCACACTCTGTCGGTA -ACGGAATTGCACACTCTGTGCCTA -ACGGAATTGCACACTCTGCCACTA -ACGGAATTGCACACTCTGGGAGTA -ACGGAATTGCACACTCTGTCGTCT -ACGGAATTGCACACTCTGTGCACT -ACGGAATTGCACACTCTGCTGACT -ACGGAATTGCACACTCTGCAACCT -ACGGAATTGCACACTCTGGCTACT -ACGGAATTGCACACTCTGGGATCT -ACGGAATTGCACACTCTGAAGGCT -ACGGAATTGCACACTCTGTCAACC -ACGGAATTGCACACTCTGTGTTCC -ACGGAATTGCACACTCTGATTCCC -ACGGAATTGCACACTCTGTTCTCG -ACGGAATTGCACACTCTGTAGACG -ACGGAATTGCACACTCTGGTAACG -ACGGAATTGCACACTCTGACTTCG -ACGGAATTGCACACTCTGTACGCA -ACGGAATTGCACACTCTGCTTGCA -ACGGAATTGCACACTCTGCGAACA -ACGGAATTGCACACTCTGCAGTCA -ACGGAATTGCACACTCTGGATCCA -ACGGAATTGCACACTCTGACGACA -ACGGAATTGCACACTCTGAGCTCA -ACGGAATTGCACACTCTGTCACGT -ACGGAATTGCACACTCTGCGTAGT -ACGGAATTGCACACTCTGGTCAGT -ACGGAATTGCACACTCTGGAAGGT -ACGGAATTGCACACTCTGAACCGT -ACGGAATTGCACACTCTGTTGTGC -ACGGAATTGCACACTCTGCTAAGC -ACGGAATTGCACACTCTGACTAGC -ACGGAATTGCACACTCTGAGATGC -ACGGAATTGCACACTCTGTGAAGG -ACGGAATTGCACACTCTGCAATGG -ACGGAATTGCACACTCTGATGAGG -ACGGAATTGCACACTCTGAATGGG -ACGGAATTGCACACTCTGTCCTGA -ACGGAATTGCACACTCTGTAGCGA -ACGGAATTGCACACTCTGCACAGA -ACGGAATTGCACACTCTGGCAAGA -ACGGAATTGCACACTCTGGGTTGA -ACGGAATTGCACACTCTGTCCGAT -ACGGAATTGCACACTCTGTGGCAT -ACGGAATTGCACACTCTGCGAGAT -ACGGAATTGCACACTCTGTACCAC -ACGGAATTGCACACTCTGCAGAAC -ACGGAATTGCACACTCTGGTCTAC -ACGGAATTGCACACTCTGACGTAC -ACGGAATTGCACACTCTGAGTGAC -ACGGAATTGCACACTCTGCTGTAG -ACGGAATTGCACACTCTGCCTAAG -ACGGAATTGCACACTCTGGTTCAG -ACGGAATTGCACACTCTGGCATAG -ACGGAATTGCACACTCTGGACAAG -ACGGAATTGCACACTCTGAAGCAG -ACGGAATTGCACACTCTGCGTCAA -ACGGAATTGCACACTCTGGCTGAA -ACGGAATTGCACACTCTGAGTACG -ACGGAATTGCACACTCTGATCCGA -ACGGAATTGCACACTCTGATGGGA -ACGGAATTGCACACTCTGGTGCAA -ACGGAATTGCACACTCTGGAGGAA -ACGGAATTGCACACTCTGCAGGTA -ACGGAATTGCACACTCTGGACTCT -ACGGAATTGCACACTCTGAGTCCT -ACGGAATTGCACACTCTGTAAGCC -ACGGAATTGCACACTCTGATAGCC -ACGGAATTGCACACTCTGTAACCG -ACGGAATTGCACACTCTGATGCCA -ACGGAATTGCACCCTCAAGGAAAC -ACGGAATTGCACCCTCAAAACACC -ACGGAATTGCACCCTCAAATCGAG -ACGGAATTGCACCCTCAACTCCTT -ACGGAATTGCACCCTCAACCTGTT -ACGGAATTGCACCCTCAACGGTTT -ACGGAATTGCACCCTCAAGTGGTT -ACGGAATTGCACCCTCAAGCCTTT -ACGGAATTGCACCCTCAAGGTCTT -ACGGAATTGCACCCTCAAACGCTT -ACGGAATTGCACCCTCAAAGCGTT -ACGGAATTGCACCCTCAATTCGTC -ACGGAATTGCACCCTCAATCTCTC -ACGGAATTGCACCCTCAATGGATC -ACGGAATTGCACCCTCAACACTTC -ACGGAATTGCACCCTCAAGTACTC -ACGGAATTGCACCCTCAAGATGTC -ACGGAATTGCACCCTCAAACAGTC -ACGGAATTGCACCCTCAATTGCTG -ACGGAATTGCACCCTCAATCCATG -ACGGAATTGCACCCTCAATGTGTG -ACGGAATTGCACCCTCAACTAGTG -ACGGAATTGCACCCTCAACATCTG -ACGGAATTGCACCCTCAAGAGTTG -ACGGAATTGCACCCTCAAAGACTG -ACGGAATTGCACCCTCAATCGGTA -ACGGAATTGCACCCTCAATGCCTA -ACGGAATTGCACCCTCAACCACTA -ACGGAATTGCACCCTCAAGGAGTA -ACGGAATTGCACCCTCAATCGTCT -ACGGAATTGCACCCTCAATGCACT -ACGGAATTGCACCCTCAACTGACT -ACGGAATTGCACCCTCAACAACCT -ACGGAATTGCACCCTCAAGCTACT -ACGGAATTGCACCCTCAAGGATCT -ACGGAATTGCACCCTCAAAAGGCT -ACGGAATTGCACCCTCAATCAACC -ACGGAATTGCACCCTCAATGTTCC -ACGGAATTGCACCCTCAAATTCCC -ACGGAATTGCACCCTCAATTCTCG -ACGGAATTGCACCCTCAATAGACG -ACGGAATTGCACCCTCAAGTAACG -ACGGAATTGCACCCTCAAACTTCG -ACGGAATTGCACCCTCAATACGCA -ACGGAATTGCACCCTCAACTTGCA -ACGGAATTGCACCCTCAACGAACA -ACGGAATTGCACCCTCAACAGTCA -ACGGAATTGCACCCTCAAGATCCA -ACGGAATTGCACCCTCAAACGACA -ACGGAATTGCACCCTCAAAGCTCA -ACGGAATTGCACCCTCAATCACGT -ACGGAATTGCACCCTCAACGTAGT -ACGGAATTGCACCCTCAAGTCAGT -ACGGAATTGCACCCTCAAGAAGGT -ACGGAATTGCACCCTCAAAACCGT -ACGGAATTGCACCCTCAATTGTGC -ACGGAATTGCACCCTCAACTAAGC -ACGGAATTGCACCCTCAAACTAGC -ACGGAATTGCACCCTCAAAGATGC -ACGGAATTGCACCCTCAATGAAGG -ACGGAATTGCACCCTCAACAATGG -ACGGAATTGCACCCTCAAATGAGG -ACGGAATTGCACCCTCAAAATGGG -ACGGAATTGCACCCTCAATCCTGA -ACGGAATTGCACCCTCAATAGCGA -ACGGAATTGCACCCTCAACACAGA -ACGGAATTGCACCCTCAAGCAAGA -ACGGAATTGCACCCTCAAGGTTGA -ACGGAATTGCACCCTCAATCCGAT -ACGGAATTGCACCCTCAATGGCAT -ACGGAATTGCACCCTCAACGAGAT -ACGGAATTGCACCCTCAATACCAC -ACGGAATTGCACCCTCAACAGAAC -ACGGAATTGCACCCTCAAGTCTAC -ACGGAATTGCACCCTCAAACGTAC -ACGGAATTGCACCCTCAAAGTGAC -ACGGAATTGCACCCTCAACTGTAG -ACGGAATTGCACCCTCAACCTAAG -ACGGAATTGCACCCTCAAGTTCAG -ACGGAATTGCACCCTCAAGCATAG -ACGGAATTGCACCCTCAAGACAAG -ACGGAATTGCACCCTCAAAAGCAG -ACGGAATTGCACCCTCAACGTCAA -ACGGAATTGCACCCTCAAGCTGAA -ACGGAATTGCACCCTCAAAGTACG -ACGGAATTGCACCCTCAAATCCGA -ACGGAATTGCACCCTCAAATGGGA -ACGGAATTGCACCCTCAAGTGCAA -ACGGAATTGCACCCTCAAGAGGAA -ACGGAATTGCACCCTCAACAGGTA -ACGGAATTGCACCCTCAAGACTCT -ACGGAATTGCACCCTCAAAGTCCT -ACGGAATTGCACCCTCAATAAGCC -ACGGAATTGCACCCTCAAATAGCC -ACGGAATTGCACCCTCAATAACCG -ACGGAATTGCACCCTCAAATGCCA -ACGGAATTGCACACTGCTGGAAAC -ACGGAATTGCACACTGCTAACACC -ACGGAATTGCACACTGCTATCGAG -ACGGAATTGCACACTGCTCTCCTT -ACGGAATTGCACACTGCTCCTGTT -ACGGAATTGCACACTGCTCGGTTT -ACGGAATTGCACACTGCTGTGGTT -ACGGAATTGCACACTGCTGCCTTT -ACGGAATTGCACACTGCTGGTCTT -ACGGAATTGCACACTGCTACGCTT -ACGGAATTGCACACTGCTAGCGTT -ACGGAATTGCACACTGCTTTCGTC -ACGGAATTGCACACTGCTTCTCTC -ACGGAATTGCACACTGCTTGGATC -ACGGAATTGCACACTGCTCACTTC -ACGGAATTGCACACTGCTGTACTC -ACGGAATTGCACACTGCTGATGTC -ACGGAATTGCACACTGCTACAGTC -ACGGAATTGCACACTGCTTTGCTG -ACGGAATTGCACACTGCTTCCATG -ACGGAATTGCACACTGCTTGTGTG -ACGGAATTGCACACTGCTCTAGTG -ACGGAATTGCACACTGCTCATCTG -ACGGAATTGCACACTGCTGAGTTG -ACGGAATTGCACACTGCTAGACTG -ACGGAATTGCACACTGCTTCGGTA -ACGGAATTGCACACTGCTTGCCTA -ACGGAATTGCACACTGCTCCACTA -ACGGAATTGCACACTGCTGGAGTA -ACGGAATTGCACACTGCTTCGTCT -ACGGAATTGCACACTGCTTGCACT -ACGGAATTGCACACTGCTCTGACT -ACGGAATTGCACACTGCTCAACCT -ACGGAATTGCACACTGCTGCTACT -ACGGAATTGCACACTGCTGGATCT -ACGGAATTGCACACTGCTAAGGCT -ACGGAATTGCACACTGCTTCAACC -ACGGAATTGCACACTGCTTGTTCC -ACGGAATTGCACACTGCTATTCCC -ACGGAATTGCACACTGCTTTCTCG -ACGGAATTGCACACTGCTTAGACG -ACGGAATTGCACACTGCTGTAACG -ACGGAATTGCACACTGCTACTTCG -ACGGAATTGCACACTGCTTACGCA -ACGGAATTGCACACTGCTCTTGCA -ACGGAATTGCACACTGCTCGAACA -ACGGAATTGCACACTGCTCAGTCA -ACGGAATTGCACACTGCTGATCCA -ACGGAATTGCACACTGCTACGACA -ACGGAATTGCACACTGCTAGCTCA -ACGGAATTGCACACTGCTTCACGT -ACGGAATTGCACACTGCTCGTAGT -ACGGAATTGCACACTGCTGTCAGT -ACGGAATTGCACACTGCTGAAGGT -ACGGAATTGCACACTGCTAACCGT -ACGGAATTGCACACTGCTTTGTGC -ACGGAATTGCACACTGCTCTAAGC -ACGGAATTGCACACTGCTACTAGC -ACGGAATTGCACACTGCTAGATGC -ACGGAATTGCACACTGCTTGAAGG -ACGGAATTGCACACTGCTCAATGG -ACGGAATTGCACACTGCTATGAGG -ACGGAATTGCACACTGCTAATGGG -ACGGAATTGCACACTGCTTCCTGA -ACGGAATTGCACACTGCTTAGCGA -ACGGAATTGCACACTGCTCACAGA -ACGGAATTGCACACTGCTGCAAGA -ACGGAATTGCACACTGCTGGTTGA -ACGGAATTGCACACTGCTTCCGAT -ACGGAATTGCACACTGCTTGGCAT -ACGGAATTGCACACTGCTCGAGAT -ACGGAATTGCACACTGCTTACCAC -ACGGAATTGCACACTGCTCAGAAC -ACGGAATTGCACACTGCTGTCTAC -ACGGAATTGCACACTGCTACGTAC -ACGGAATTGCACACTGCTAGTGAC -ACGGAATTGCACACTGCTCTGTAG -ACGGAATTGCACACTGCTCCTAAG -ACGGAATTGCACACTGCTGTTCAG -ACGGAATTGCACACTGCTGCATAG -ACGGAATTGCACACTGCTGACAAG -ACGGAATTGCACACTGCTAAGCAG -ACGGAATTGCACACTGCTCGTCAA -ACGGAATTGCACACTGCTGCTGAA -ACGGAATTGCACACTGCTAGTACG -ACGGAATTGCACACTGCTATCCGA -ACGGAATTGCACACTGCTATGGGA -ACGGAATTGCACACTGCTGTGCAA -ACGGAATTGCACACTGCTGAGGAA -ACGGAATTGCACACTGCTCAGGTA -ACGGAATTGCACACTGCTGACTCT -ACGGAATTGCACACTGCTAGTCCT -ACGGAATTGCACACTGCTTAAGCC -ACGGAATTGCACACTGCTATAGCC -ACGGAATTGCACACTGCTTAACCG -ACGGAATTGCACACTGCTATGCCA -ACGGAATTGCACTCTGGAGGAAAC -ACGGAATTGCACTCTGGAAACACC -ACGGAATTGCACTCTGGAATCGAG -ACGGAATTGCACTCTGGACTCCTT -ACGGAATTGCACTCTGGACCTGTT -ACGGAATTGCACTCTGGACGGTTT -ACGGAATTGCACTCTGGAGTGGTT -ACGGAATTGCACTCTGGAGCCTTT -ACGGAATTGCACTCTGGAGGTCTT -ACGGAATTGCACTCTGGAACGCTT -ACGGAATTGCACTCTGGAAGCGTT -ACGGAATTGCACTCTGGATTCGTC -ACGGAATTGCACTCTGGATCTCTC -ACGGAATTGCACTCTGGATGGATC -ACGGAATTGCACTCTGGACACTTC -ACGGAATTGCACTCTGGAGTACTC -ACGGAATTGCACTCTGGAGATGTC -ACGGAATTGCACTCTGGAACAGTC -ACGGAATTGCACTCTGGATTGCTG -ACGGAATTGCACTCTGGATCCATG -ACGGAATTGCACTCTGGATGTGTG -ACGGAATTGCACTCTGGACTAGTG -ACGGAATTGCACTCTGGACATCTG -ACGGAATTGCACTCTGGAGAGTTG -ACGGAATTGCACTCTGGAAGACTG -ACGGAATTGCACTCTGGATCGGTA -ACGGAATTGCACTCTGGATGCCTA -ACGGAATTGCACTCTGGACCACTA -ACGGAATTGCACTCTGGAGGAGTA -ACGGAATTGCACTCTGGATCGTCT -ACGGAATTGCACTCTGGATGCACT -ACGGAATTGCACTCTGGACTGACT -ACGGAATTGCACTCTGGACAACCT -ACGGAATTGCACTCTGGAGCTACT -ACGGAATTGCACTCTGGAGGATCT -ACGGAATTGCACTCTGGAAAGGCT -ACGGAATTGCACTCTGGATCAACC -ACGGAATTGCACTCTGGATGTTCC -ACGGAATTGCACTCTGGAATTCCC -ACGGAATTGCACTCTGGATTCTCG -ACGGAATTGCACTCTGGATAGACG -ACGGAATTGCACTCTGGAGTAACG -ACGGAATTGCACTCTGGAACTTCG -ACGGAATTGCACTCTGGATACGCA -ACGGAATTGCACTCTGGACTTGCA -ACGGAATTGCACTCTGGACGAACA -ACGGAATTGCACTCTGGACAGTCA -ACGGAATTGCACTCTGGAGATCCA -ACGGAATTGCACTCTGGAACGACA -ACGGAATTGCACTCTGGAAGCTCA -ACGGAATTGCACTCTGGATCACGT -ACGGAATTGCACTCTGGACGTAGT -ACGGAATTGCACTCTGGAGTCAGT -ACGGAATTGCACTCTGGAGAAGGT -ACGGAATTGCACTCTGGAAACCGT -ACGGAATTGCACTCTGGATTGTGC -ACGGAATTGCACTCTGGACTAAGC -ACGGAATTGCACTCTGGAACTAGC -ACGGAATTGCACTCTGGAAGATGC -ACGGAATTGCACTCTGGATGAAGG -ACGGAATTGCACTCTGGACAATGG -ACGGAATTGCACTCTGGAATGAGG -ACGGAATTGCACTCTGGAAATGGG -ACGGAATTGCACTCTGGATCCTGA -ACGGAATTGCACTCTGGATAGCGA -ACGGAATTGCACTCTGGACACAGA -ACGGAATTGCACTCTGGAGCAAGA -ACGGAATTGCACTCTGGAGGTTGA -ACGGAATTGCACTCTGGATCCGAT -ACGGAATTGCACTCTGGATGGCAT -ACGGAATTGCACTCTGGACGAGAT -ACGGAATTGCACTCTGGATACCAC -ACGGAATTGCACTCTGGACAGAAC -ACGGAATTGCACTCTGGAGTCTAC -ACGGAATTGCACTCTGGAACGTAC -ACGGAATTGCACTCTGGAAGTGAC -ACGGAATTGCACTCTGGACTGTAG -ACGGAATTGCACTCTGGACCTAAG -ACGGAATTGCACTCTGGAGTTCAG -ACGGAATTGCACTCTGGAGCATAG -ACGGAATTGCACTCTGGAGACAAG -ACGGAATTGCACTCTGGAAAGCAG -ACGGAATTGCACTCTGGACGTCAA -ACGGAATTGCACTCTGGAGCTGAA -ACGGAATTGCACTCTGGAAGTACG -ACGGAATTGCACTCTGGAATCCGA -ACGGAATTGCACTCTGGAATGGGA -ACGGAATTGCACTCTGGAGTGCAA -ACGGAATTGCACTCTGGAGAGGAA -ACGGAATTGCACTCTGGACAGGTA -ACGGAATTGCACTCTGGAGACTCT -ACGGAATTGCACTCTGGAAGTCCT -ACGGAATTGCACTCTGGATAAGCC -ACGGAATTGCACTCTGGAATAGCC -ACGGAATTGCACTCTGGATAACCG -ACGGAATTGCACTCTGGAATGCCA -ACGGAATTGCACGCTAAGGGAAAC -ACGGAATTGCACGCTAAGAACACC -ACGGAATTGCACGCTAAGATCGAG -ACGGAATTGCACGCTAAGCTCCTT -ACGGAATTGCACGCTAAGCCTGTT -ACGGAATTGCACGCTAAGCGGTTT -ACGGAATTGCACGCTAAGGTGGTT -ACGGAATTGCACGCTAAGGCCTTT -ACGGAATTGCACGCTAAGGGTCTT -ACGGAATTGCACGCTAAGACGCTT -ACGGAATTGCACGCTAAGAGCGTT -ACGGAATTGCACGCTAAGTTCGTC -ACGGAATTGCACGCTAAGTCTCTC -ACGGAATTGCACGCTAAGTGGATC -ACGGAATTGCACGCTAAGCACTTC -ACGGAATTGCACGCTAAGGTACTC -ACGGAATTGCACGCTAAGGATGTC -ACGGAATTGCACGCTAAGACAGTC -ACGGAATTGCACGCTAAGTTGCTG -ACGGAATTGCACGCTAAGTCCATG -ACGGAATTGCACGCTAAGTGTGTG -ACGGAATTGCACGCTAAGCTAGTG -ACGGAATTGCACGCTAAGCATCTG -ACGGAATTGCACGCTAAGGAGTTG -ACGGAATTGCACGCTAAGAGACTG -ACGGAATTGCACGCTAAGTCGGTA -ACGGAATTGCACGCTAAGTGCCTA -ACGGAATTGCACGCTAAGCCACTA -ACGGAATTGCACGCTAAGGGAGTA -ACGGAATTGCACGCTAAGTCGTCT -ACGGAATTGCACGCTAAGTGCACT -ACGGAATTGCACGCTAAGCTGACT -ACGGAATTGCACGCTAAGCAACCT -ACGGAATTGCACGCTAAGGCTACT -ACGGAATTGCACGCTAAGGGATCT -ACGGAATTGCACGCTAAGAAGGCT -ACGGAATTGCACGCTAAGTCAACC -ACGGAATTGCACGCTAAGTGTTCC -ACGGAATTGCACGCTAAGATTCCC -ACGGAATTGCACGCTAAGTTCTCG -ACGGAATTGCACGCTAAGTAGACG -ACGGAATTGCACGCTAAGGTAACG -ACGGAATTGCACGCTAAGACTTCG -ACGGAATTGCACGCTAAGTACGCA -ACGGAATTGCACGCTAAGCTTGCA -ACGGAATTGCACGCTAAGCGAACA -ACGGAATTGCACGCTAAGCAGTCA -ACGGAATTGCACGCTAAGGATCCA -ACGGAATTGCACGCTAAGACGACA -ACGGAATTGCACGCTAAGAGCTCA -ACGGAATTGCACGCTAAGTCACGT -ACGGAATTGCACGCTAAGCGTAGT -ACGGAATTGCACGCTAAGGTCAGT -ACGGAATTGCACGCTAAGGAAGGT -ACGGAATTGCACGCTAAGAACCGT -ACGGAATTGCACGCTAAGTTGTGC -ACGGAATTGCACGCTAAGCTAAGC -ACGGAATTGCACGCTAAGACTAGC -ACGGAATTGCACGCTAAGAGATGC -ACGGAATTGCACGCTAAGTGAAGG -ACGGAATTGCACGCTAAGCAATGG -ACGGAATTGCACGCTAAGATGAGG -ACGGAATTGCACGCTAAGAATGGG -ACGGAATTGCACGCTAAGTCCTGA -ACGGAATTGCACGCTAAGTAGCGA -ACGGAATTGCACGCTAAGCACAGA -ACGGAATTGCACGCTAAGGCAAGA -ACGGAATTGCACGCTAAGGGTTGA -ACGGAATTGCACGCTAAGTCCGAT -ACGGAATTGCACGCTAAGTGGCAT -ACGGAATTGCACGCTAAGCGAGAT -ACGGAATTGCACGCTAAGTACCAC -ACGGAATTGCACGCTAAGCAGAAC -ACGGAATTGCACGCTAAGGTCTAC -ACGGAATTGCACGCTAAGACGTAC -ACGGAATTGCACGCTAAGAGTGAC -ACGGAATTGCACGCTAAGCTGTAG -ACGGAATTGCACGCTAAGCCTAAG -ACGGAATTGCACGCTAAGGTTCAG -ACGGAATTGCACGCTAAGGCATAG -ACGGAATTGCACGCTAAGGACAAG -ACGGAATTGCACGCTAAGAAGCAG -ACGGAATTGCACGCTAAGCGTCAA -ACGGAATTGCACGCTAAGGCTGAA -ACGGAATTGCACGCTAAGAGTACG -ACGGAATTGCACGCTAAGATCCGA -ACGGAATTGCACGCTAAGATGGGA -ACGGAATTGCACGCTAAGGTGCAA -ACGGAATTGCACGCTAAGGAGGAA -ACGGAATTGCACGCTAAGCAGGTA -ACGGAATTGCACGCTAAGGACTCT -ACGGAATTGCACGCTAAGAGTCCT -ACGGAATTGCACGCTAAGTAAGCC -ACGGAATTGCACGCTAAGATAGCC -ACGGAATTGCACGCTAAGTAACCG -ACGGAATTGCACGCTAAGATGCCA -ACGGAATTGCACACCTCAGGAAAC -ACGGAATTGCACACCTCAAACACC -ACGGAATTGCACACCTCAATCGAG -ACGGAATTGCACACCTCACTCCTT -ACGGAATTGCACACCTCACCTGTT -ACGGAATTGCACACCTCACGGTTT -ACGGAATTGCACACCTCAGTGGTT -ACGGAATTGCACACCTCAGCCTTT -ACGGAATTGCACACCTCAGGTCTT -ACGGAATTGCACACCTCAACGCTT -ACGGAATTGCACACCTCAAGCGTT -ACGGAATTGCACACCTCATTCGTC -ACGGAATTGCACACCTCATCTCTC -ACGGAATTGCACACCTCATGGATC -ACGGAATTGCACACCTCACACTTC -ACGGAATTGCACACCTCAGTACTC -ACGGAATTGCACACCTCAGATGTC -ACGGAATTGCACACCTCAACAGTC -ACGGAATTGCACACCTCATTGCTG -ACGGAATTGCACACCTCATCCATG -ACGGAATTGCACACCTCATGTGTG -ACGGAATTGCACACCTCACTAGTG -ACGGAATTGCACACCTCACATCTG -ACGGAATTGCACACCTCAGAGTTG -ACGGAATTGCACACCTCAAGACTG -ACGGAATTGCACACCTCATCGGTA -ACGGAATTGCACACCTCATGCCTA -ACGGAATTGCACACCTCACCACTA -ACGGAATTGCACACCTCAGGAGTA -ACGGAATTGCACACCTCATCGTCT -ACGGAATTGCACACCTCATGCACT -ACGGAATTGCACACCTCACTGACT -ACGGAATTGCACACCTCACAACCT -ACGGAATTGCACACCTCAGCTACT -ACGGAATTGCACACCTCAGGATCT -ACGGAATTGCACACCTCAAAGGCT -ACGGAATTGCACACCTCATCAACC -ACGGAATTGCACACCTCATGTTCC -ACGGAATTGCACACCTCAATTCCC -ACGGAATTGCACACCTCATTCTCG -ACGGAATTGCACACCTCATAGACG -ACGGAATTGCACACCTCAGTAACG -ACGGAATTGCACACCTCAACTTCG -ACGGAATTGCACACCTCATACGCA -ACGGAATTGCACACCTCACTTGCA -ACGGAATTGCACACCTCACGAACA -ACGGAATTGCACACCTCACAGTCA -ACGGAATTGCACACCTCAGATCCA -ACGGAATTGCACACCTCAACGACA -ACGGAATTGCACACCTCAAGCTCA -ACGGAATTGCACACCTCATCACGT -ACGGAATTGCACACCTCACGTAGT -ACGGAATTGCACACCTCAGTCAGT -ACGGAATTGCACACCTCAGAAGGT -ACGGAATTGCACACCTCAAACCGT -ACGGAATTGCACACCTCATTGTGC -ACGGAATTGCACACCTCACTAAGC -ACGGAATTGCACACCTCAACTAGC -ACGGAATTGCACACCTCAAGATGC -ACGGAATTGCACACCTCATGAAGG -ACGGAATTGCACACCTCACAATGG -ACGGAATTGCACACCTCAATGAGG -ACGGAATTGCACACCTCAAATGGG -ACGGAATTGCACACCTCATCCTGA -ACGGAATTGCACACCTCATAGCGA -ACGGAATTGCACACCTCACACAGA -ACGGAATTGCACACCTCAGCAAGA -ACGGAATTGCACACCTCAGGTTGA -ACGGAATTGCACACCTCATCCGAT -ACGGAATTGCACACCTCATGGCAT -ACGGAATTGCACACCTCACGAGAT -ACGGAATTGCACACCTCATACCAC -ACGGAATTGCACACCTCACAGAAC -ACGGAATTGCACACCTCAGTCTAC -ACGGAATTGCACACCTCAACGTAC -ACGGAATTGCACACCTCAAGTGAC -ACGGAATTGCACACCTCACTGTAG -ACGGAATTGCACACCTCACCTAAG -ACGGAATTGCACACCTCAGTTCAG -ACGGAATTGCACACCTCAGCATAG -ACGGAATTGCACACCTCAGACAAG -ACGGAATTGCACACCTCAAAGCAG -ACGGAATTGCACACCTCACGTCAA -ACGGAATTGCACACCTCAGCTGAA -ACGGAATTGCACACCTCAAGTACG -ACGGAATTGCACACCTCAATCCGA -ACGGAATTGCACACCTCAATGGGA -ACGGAATTGCACACCTCAGTGCAA -ACGGAATTGCACACCTCAGAGGAA -ACGGAATTGCACACCTCACAGGTA -ACGGAATTGCACACCTCAGACTCT -ACGGAATTGCACACCTCAAGTCCT -ACGGAATTGCACACCTCATAAGCC -ACGGAATTGCACACCTCAATAGCC -ACGGAATTGCACACCTCATAACCG -ACGGAATTGCACACCTCAATGCCA -ACGGAATTGCACTCCTGTGGAAAC -ACGGAATTGCACTCCTGTAACACC -ACGGAATTGCACTCCTGTATCGAG -ACGGAATTGCACTCCTGTCTCCTT -ACGGAATTGCACTCCTGTCCTGTT -ACGGAATTGCACTCCTGTCGGTTT -ACGGAATTGCACTCCTGTGTGGTT -ACGGAATTGCACTCCTGTGCCTTT -ACGGAATTGCACTCCTGTGGTCTT -ACGGAATTGCACTCCTGTACGCTT -ACGGAATTGCACTCCTGTAGCGTT -ACGGAATTGCACTCCTGTTTCGTC -ACGGAATTGCACTCCTGTTCTCTC -ACGGAATTGCACTCCTGTTGGATC -ACGGAATTGCACTCCTGTCACTTC -ACGGAATTGCACTCCTGTGTACTC -ACGGAATTGCACTCCTGTGATGTC -ACGGAATTGCACTCCTGTACAGTC -ACGGAATTGCACTCCTGTTTGCTG -ACGGAATTGCACTCCTGTTCCATG -ACGGAATTGCACTCCTGTTGTGTG -ACGGAATTGCACTCCTGTCTAGTG -ACGGAATTGCACTCCTGTCATCTG -ACGGAATTGCACTCCTGTGAGTTG -ACGGAATTGCACTCCTGTAGACTG -ACGGAATTGCACTCCTGTTCGGTA -ACGGAATTGCACTCCTGTTGCCTA -ACGGAATTGCACTCCTGTCCACTA -ACGGAATTGCACTCCTGTGGAGTA -ACGGAATTGCACTCCTGTTCGTCT -ACGGAATTGCACTCCTGTTGCACT -ACGGAATTGCACTCCTGTCTGACT -ACGGAATTGCACTCCTGTCAACCT -ACGGAATTGCACTCCTGTGCTACT -ACGGAATTGCACTCCTGTGGATCT -ACGGAATTGCACTCCTGTAAGGCT -ACGGAATTGCACTCCTGTTCAACC -ACGGAATTGCACTCCTGTTGTTCC -ACGGAATTGCACTCCTGTATTCCC -ACGGAATTGCACTCCTGTTTCTCG -ACGGAATTGCACTCCTGTTAGACG -ACGGAATTGCACTCCTGTGTAACG -ACGGAATTGCACTCCTGTACTTCG -ACGGAATTGCACTCCTGTTACGCA -ACGGAATTGCACTCCTGTCTTGCA -ACGGAATTGCACTCCTGTCGAACA -ACGGAATTGCACTCCTGTCAGTCA -ACGGAATTGCACTCCTGTGATCCA -ACGGAATTGCACTCCTGTACGACA -ACGGAATTGCACTCCTGTAGCTCA -ACGGAATTGCACTCCTGTTCACGT -ACGGAATTGCACTCCTGTCGTAGT -ACGGAATTGCACTCCTGTGTCAGT -ACGGAATTGCACTCCTGTGAAGGT -ACGGAATTGCACTCCTGTAACCGT -ACGGAATTGCACTCCTGTTTGTGC -ACGGAATTGCACTCCTGTCTAAGC -ACGGAATTGCACTCCTGTACTAGC -ACGGAATTGCACTCCTGTAGATGC -ACGGAATTGCACTCCTGTTGAAGG -ACGGAATTGCACTCCTGTCAATGG -ACGGAATTGCACTCCTGTATGAGG -ACGGAATTGCACTCCTGTAATGGG -ACGGAATTGCACTCCTGTTCCTGA -ACGGAATTGCACTCCTGTTAGCGA -ACGGAATTGCACTCCTGTCACAGA -ACGGAATTGCACTCCTGTGCAAGA -ACGGAATTGCACTCCTGTGGTTGA -ACGGAATTGCACTCCTGTTCCGAT -ACGGAATTGCACTCCTGTTGGCAT -ACGGAATTGCACTCCTGTCGAGAT -ACGGAATTGCACTCCTGTTACCAC -ACGGAATTGCACTCCTGTCAGAAC -ACGGAATTGCACTCCTGTGTCTAC -ACGGAATTGCACTCCTGTACGTAC -ACGGAATTGCACTCCTGTAGTGAC -ACGGAATTGCACTCCTGTCTGTAG -ACGGAATTGCACTCCTGTCCTAAG -ACGGAATTGCACTCCTGTGTTCAG -ACGGAATTGCACTCCTGTGCATAG -ACGGAATTGCACTCCTGTGACAAG -ACGGAATTGCACTCCTGTAAGCAG -ACGGAATTGCACTCCTGTCGTCAA -ACGGAATTGCACTCCTGTGCTGAA -ACGGAATTGCACTCCTGTAGTACG -ACGGAATTGCACTCCTGTATCCGA -ACGGAATTGCACTCCTGTATGGGA -ACGGAATTGCACTCCTGTGTGCAA -ACGGAATTGCACTCCTGTGAGGAA -ACGGAATTGCACTCCTGTCAGGTA -ACGGAATTGCACTCCTGTGACTCT -ACGGAATTGCACTCCTGTAGTCCT -ACGGAATTGCACTCCTGTTAAGCC -ACGGAATTGCACTCCTGTATAGCC -ACGGAATTGCACTCCTGTTAACCG -ACGGAATTGCACTCCTGTATGCCA -ACGGAATTGCACCCCATTGGAAAC -ACGGAATTGCACCCCATTAACACC -ACGGAATTGCACCCCATTATCGAG -ACGGAATTGCACCCCATTCTCCTT -ACGGAATTGCACCCCATTCCTGTT -ACGGAATTGCACCCCATTCGGTTT -ACGGAATTGCACCCCATTGTGGTT -ACGGAATTGCACCCCATTGCCTTT -ACGGAATTGCACCCCATTGGTCTT -ACGGAATTGCACCCCATTACGCTT -ACGGAATTGCACCCCATTAGCGTT -ACGGAATTGCACCCCATTTTCGTC -ACGGAATTGCACCCCATTTCTCTC -ACGGAATTGCACCCCATTTGGATC -ACGGAATTGCACCCCATTCACTTC -ACGGAATTGCACCCCATTGTACTC -ACGGAATTGCACCCCATTGATGTC -ACGGAATTGCACCCCATTACAGTC -ACGGAATTGCACCCCATTTTGCTG -ACGGAATTGCACCCCATTTCCATG -ACGGAATTGCACCCCATTTGTGTG -ACGGAATTGCACCCCATTCTAGTG -ACGGAATTGCACCCCATTCATCTG -ACGGAATTGCACCCCATTGAGTTG -ACGGAATTGCACCCCATTAGACTG -ACGGAATTGCACCCCATTTCGGTA -ACGGAATTGCACCCCATTTGCCTA -ACGGAATTGCACCCCATTCCACTA -ACGGAATTGCACCCCATTGGAGTA -ACGGAATTGCACCCCATTTCGTCT -ACGGAATTGCACCCCATTTGCACT -ACGGAATTGCACCCCATTCTGACT -ACGGAATTGCACCCCATTCAACCT -ACGGAATTGCACCCCATTGCTACT -ACGGAATTGCACCCCATTGGATCT -ACGGAATTGCACCCCATTAAGGCT -ACGGAATTGCACCCCATTTCAACC -ACGGAATTGCACCCCATTTGTTCC -ACGGAATTGCACCCCATTATTCCC -ACGGAATTGCACCCCATTTTCTCG -ACGGAATTGCACCCCATTTAGACG -ACGGAATTGCACCCCATTGTAACG -ACGGAATTGCACCCCATTACTTCG -ACGGAATTGCACCCCATTTACGCA -ACGGAATTGCACCCCATTCTTGCA -ACGGAATTGCACCCCATTCGAACA -ACGGAATTGCACCCCATTCAGTCA -ACGGAATTGCACCCCATTGATCCA -ACGGAATTGCACCCCATTACGACA -ACGGAATTGCACCCCATTAGCTCA -ACGGAATTGCACCCCATTTCACGT -ACGGAATTGCACCCCATTCGTAGT -ACGGAATTGCACCCCATTGTCAGT -ACGGAATTGCACCCCATTGAAGGT -ACGGAATTGCACCCCATTAACCGT -ACGGAATTGCACCCCATTTTGTGC -ACGGAATTGCACCCCATTCTAAGC -ACGGAATTGCACCCCATTACTAGC -ACGGAATTGCACCCCATTAGATGC -ACGGAATTGCACCCCATTTGAAGG -ACGGAATTGCACCCCATTCAATGG -ACGGAATTGCACCCCATTATGAGG -ACGGAATTGCACCCCATTAATGGG -ACGGAATTGCACCCCATTTCCTGA -ACGGAATTGCACCCCATTTAGCGA -ACGGAATTGCACCCCATTCACAGA -ACGGAATTGCACCCCATTGCAAGA -ACGGAATTGCACCCCATTGGTTGA -ACGGAATTGCACCCCATTTCCGAT -ACGGAATTGCACCCCATTTGGCAT -ACGGAATTGCACCCCATTCGAGAT -ACGGAATTGCACCCCATTTACCAC -ACGGAATTGCACCCCATTCAGAAC -ACGGAATTGCACCCCATTGTCTAC -ACGGAATTGCACCCCATTACGTAC -ACGGAATTGCACCCCATTAGTGAC -ACGGAATTGCACCCCATTCTGTAG -ACGGAATTGCACCCCATTCCTAAG -ACGGAATTGCACCCCATTGTTCAG -ACGGAATTGCACCCCATTGCATAG -ACGGAATTGCACCCCATTGACAAG -ACGGAATTGCACCCCATTAAGCAG -ACGGAATTGCACCCCATTCGTCAA -ACGGAATTGCACCCCATTGCTGAA -ACGGAATTGCACCCCATTAGTACG -ACGGAATTGCACCCCATTATCCGA -ACGGAATTGCACCCCATTATGGGA -ACGGAATTGCACCCCATTGTGCAA -ACGGAATTGCACCCCATTGAGGAA -ACGGAATTGCACCCCATTCAGGTA -ACGGAATTGCACCCCATTGACTCT -ACGGAATTGCACCCCATTAGTCCT -ACGGAATTGCACCCCATTTAAGCC -ACGGAATTGCACCCCATTATAGCC -ACGGAATTGCACCCCATTTAACCG -ACGGAATTGCACCCCATTATGCCA -ACGGAATTGCACTCGTTCGGAAAC -ACGGAATTGCACTCGTTCAACACC -ACGGAATTGCACTCGTTCATCGAG -ACGGAATTGCACTCGTTCCTCCTT -ACGGAATTGCACTCGTTCCCTGTT -ACGGAATTGCACTCGTTCCGGTTT -ACGGAATTGCACTCGTTCGTGGTT -ACGGAATTGCACTCGTTCGCCTTT -ACGGAATTGCACTCGTTCGGTCTT -ACGGAATTGCACTCGTTCACGCTT -ACGGAATTGCACTCGTTCAGCGTT -ACGGAATTGCACTCGTTCTTCGTC -ACGGAATTGCACTCGTTCTCTCTC -ACGGAATTGCACTCGTTCTGGATC -ACGGAATTGCACTCGTTCCACTTC -ACGGAATTGCACTCGTTCGTACTC -ACGGAATTGCACTCGTTCGATGTC -ACGGAATTGCACTCGTTCACAGTC -ACGGAATTGCACTCGTTCTTGCTG -ACGGAATTGCACTCGTTCTCCATG -ACGGAATTGCACTCGTTCTGTGTG -ACGGAATTGCACTCGTTCCTAGTG -ACGGAATTGCACTCGTTCCATCTG -ACGGAATTGCACTCGTTCGAGTTG -ACGGAATTGCACTCGTTCAGACTG -ACGGAATTGCACTCGTTCTCGGTA -ACGGAATTGCACTCGTTCTGCCTA -ACGGAATTGCACTCGTTCCCACTA -ACGGAATTGCACTCGTTCGGAGTA -ACGGAATTGCACTCGTTCTCGTCT -ACGGAATTGCACTCGTTCTGCACT -ACGGAATTGCACTCGTTCCTGACT -ACGGAATTGCACTCGTTCCAACCT -ACGGAATTGCACTCGTTCGCTACT -ACGGAATTGCACTCGTTCGGATCT -ACGGAATTGCACTCGTTCAAGGCT -ACGGAATTGCACTCGTTCTCAACC -ACGGAATTGCACTCGTTCTGTTCC -ACGGAATTGCACTCGTTCATTCCC -ACGGAATTGCACTCGTTCTTCTCG -ACGGAATTGCACTCGTTCTAGACG -ACGGAATTGCACTCGTTCGTAACG -ACGGAATTGCACTCGTTCACTTCG -ACGGAATTGCACTCGTTCTACGCA -ACGGAATTGCACTCGTTCCTTGCA -ACGGAATTGCACTCGTTCCGAACA -ACGGAATTGCACTCGTTCCAGTCA -ACGGAATTGCACTCGTTCGATCCA -ACGGAATTGCACTCGTTCACGACA -ACGGAATTGCACTCGTTCAGCTCA -ACGGAATTGCACTCGTTCTCACGT -ACGGAATTGCACTCGTTCCGTAGT -ACGGAATTGCACTCGTTCGTCAGT -ACGGAATTGCACTCGTTCGAAGGT -ACGGAATTGCACTCGTTCAACCGT -ACGGAATTGCACTCGTTCTTGTGC -ACGGAATTGCACTCGTTCCTAAGC -ACGGAATTGCACTCGTTCACTAGC -ACGGAATTGCACTCGTTCAGATGC -ACGGAATTGCACTCGTTCTGAAGG -ACGGAATTGCACTCGTTCCAATGG -ACGGAATTGCACTCGTTCATGAGG -ACGGAATTGCACTCGTTCAATGGG -ACGGAATTGCACTCGTTCTCCTGA -ACGGAATTGCACTCGTTCTAGCGA -ACGGAATTGCACTCGTTCCACAGA -ACGGAATTGCACTCGTTCGCAAGA -ACGGAATTGCACTCGTTCGGTTGA -ACGGAATTGCACTCGTTCTCCGAT -ACGGAATTGCACTCGTTCTGGCAT -ACGGAATTGCACTCGTTCCGAGAT -ACGGAATTGCACTCGTTCTACCAC -ACGGAATTGCACTCGTTCCAGAAC -ACGGAATTGCACTCGTTCGTCTAC -ACGGAATTGCACTCGTTCACGTAC -ACGGAATTGCACTCGTTCAGTGAC -ACGGAATTGCACTCGTTCCTGTAG -ACGGAATTGCACTCGTTCCCTAAG -ACGGAATTGCACTCGTTCGTTCAG -ACGGAATTGCACTCGTTCGCATAG -ACGGAATTGCACTCGTTCGACAAG -ACGGAATTGCACTCGTTCAAGCAG -ACGGAATTGCACTCGTTCCGTCAA -ACGGAATTGCACTCGTTCGCTGAA -ACGGAATTGCACTCGTTCAGTACG -ACGGAATTGCACTCGTTCATCCGA -ACGGAATTGCACTCGTTCATGGGA -ACGGAATTGCACTCGTTCGTGCAA -ACGGAATTGCACTCGTTCGAGGAA -ACGGAATTGCACTCGTTCCAGGTA -ACGGAATTGCACTCGTTCGACTCT -ACGGAATTGCACTCGTTCAGTCCT -ACGGAATTGCACTCGTTCTAAGCC -ACGGAATTGCACTCGTTCATAGCC -ACGGAATTGCACTCGTTCTAACCG -ACGGAATTGCACTCGTTCATGCCA -ACGGAATTGCACACGTAGGGAAAC -ACGGAATTGCACACGTAGAACACC -ACGGAATTGCACACGTAGATCGAG -ACGGAATTGCACACGTAGCTCCTT -ACGGAATTGCACACGTAGCCTGTT -ACGGAATTGCACACGTAGCGGTTT -ACGGAATTGCACACGTAGGTGGTT -ACGGAATTGCACACGTAGGCCTTT -ACGGAATTGCACACGTAGGGTCTT -ACGGAATTGCACACGTAGACGCTT -ACGGAATTGCACACGTAGAGCGTT -ACGGAATTGCACACGTAGTTCGTC -ACGGAATTGCACACGTAGTCTCTC -ACGGAATTGCACACGTAGTGGATC -ACGGAATTGCACACGTAGCACTTC -ACGGAATTGCACACGTAGGTACTC -ACGGAATTGCACACGTAGGATGTC -ACGGAATTGCACACGTAGACAGTC -ACGGAATTGCACACGTAGTTGCTG -ACGGAATTGCACACGTAGTCCATG -ACGGAATTGCACACGTAGTGTGTG -ACGGAATTGCACACGTAGCTAGTG -ACGGAATTGCACACGTAGCATCTG -ACGGAATTGCACACGTAGGAGTTG -ACGGAATTGCACACGTAGAGACTG -ACGGAATTGCACACGTAGTCGGTA -ACGGAATTGCACACGTAGTGCCTA -ACGGAATTGCACACGTAGCCACTA -ACGGAATTGCACACGTAGGGAGTA -ACGGAATTGCACACGTAGTCGTCT -ACGGAATTGCACACGTAGTGCACT -ACGGAATTGCACACGTAGCTGACT -ACGGAATTGCACACGTAGCAACCT -ACGGAATTGCACACGTAGGCTACT -ACGGAATTGCACACGTAGGGATCT -ACGGAATTGCACACGTAGAAGGCT -ACGGAATTGCACACGTAGTCAACC -ACGGAATTGCACACGTAGTGTTCC -ACGGAATTGCACACGTAGATTCCC -ACGGAATTGCACACGTAGTTCTCG -ACGGAATTGCACACGTAGTAGACG -ACGGAATTGCACACGTAGGTAACG -ACGGAATTGCACACGTAGACTTCG -ACGGAATTGCACACGTAGTACGCA -ACGGAATTGCACACGTAGCTTGCA -ACGGAATTGCACACGTAGCGAACA -ACGGAATTGCACACGTAGCAGTCA -ACGGAATTGCACACGTAGGATCCA -ACGGAATTGCACACGTAGACGACA -ACGGAATTGCACACGTAGAGCTCA -ACGGAATTGCACACGTAGTCACGT -ACGGAATTGCACACGTAGCGTAGT -ACGGAATTGCACACGTAGGTCAGT -ACGGAATTGCACACGTAGGAAGGT -ACGGAATTGCACACGTAGAACCGT -ACGGAATTGCACACGTAGTTGTGC -ACGGAATTGCACACGTAGCTAAGC -ACGGAATTGCACACGTAGACTAGC -ACGGAATTGCACACGTAGAGATGC -ACGGAATTGCACACGTAGTGAAGG -ACGGAATTGCACACGTAGCAATGG -ACGGAATTGCACACGTAGATGAGG -ACGGAATTGCACACGTAGAATGGG -ACGGAATTGCACACGTAGTCCTGA -ACGGAATTGCACACGTAGTAGCGA -ACGGAATTGCACACGTAGCACAGA -ACGGAATTGCACACGTAGGCAAGA -ACGGAATTGCACACGTAGGGTTGA -ACGGAATTGCACACGTAGTCCGAT -ACGGAATTGCACACGTAGTGGCAT -ACGGAATTGCACACGTAGCGAGAT -ACGGAATTGCACACGTAGTACCAC -ACGGAATTGCACACGTAGCAGAAC -ACGGAATTGCACACGTAGGTCTAC -ACGGAATTGCACACGTAGACGTAC -ACGGAATTGCACACGTAGAGTGAC -ACGGAATTGCACACGTAGCTGTAG -ACGGAATTGCACACGTAGCCTAAG -ACGGAATTGCACACGTAGGTTCAG -ACGGAATTGCACACGTAGGCATAG -ACGGAATTGCACACGTAGGACAAG -ACGGAATTGCACACGTAGAAGCAG -ACGGAATTGCACACGTAGCGTCAA -ACGGAATTGCACACGTAGGCTGAA -ACGGAATTGCACACGTAGAGTACG -ACGGAATTGCACACGTAGATCCGA -ACGGAATTGCACACGTAGATGGGA -ACGGAATTGCACACGTAGGTGCAA -ACGGAATTGCACACGTAGGAGGAA -ACGGAATTGCACACGTAGCAGGTA -ACGGAATTGCACACGTAGGACTCT -ACGGAATTGCACACGTAGAGTCCT -ACGGAATTGCACACGTAGTAAGCC -ACGGAATTGCACACGTAGATAGCC -ACGGAATTGCACACGTAGTAACCG -ACGGAATTGCACACGTAGATGCCA -ACGGAATTGCACACGGTAGGAAAC -ACGGAATTGCACACGGTAAACACC -ACGGAATTGCACACGGTAATCGAG -ACGGAATTGCACACGGTACTCCTT -ACGGAATTGCACACGGTACCTGTT -ACGGAATTGCACACGGTACGGTTT -ACGGAATTGCACACGGTAGTGGTT -ACGGAATTGCACACGGTAGCCTTT -ACGGAATTGCACACGGTAGGTCTT -ACGGAATTGCACACGGTAACGCTT -ACGGAATTGCACACGGTAAGCGTT -ACGGAATTGCACACGGTATTCGTC -ACGGAATTGCACACGGTATCTCTC -ACGGAATTGCACACGGTATGGATC -ACGGAATTGCACACGGTACACTTC -ACGGAATTGCACACGGTAGTACTC -ACGGAATTGCACACGGTAGATGTC -ACGGAATTGCACACGGTAACAGTC -ACGGAATTGCACACGGTATTGCTG -ACGGAATTGCACACGGTATCCATG -ACGGAATTGCACACGGTATGTGTG -ACGGAATTGCACACGGTACTAGTG -ACGGAATTGCACACGGTACATCTG -ACGGAATTGCACACGGTAGAGTTG -ACGGAATTGCACACGGTAAGACTG -ACGGAATTGCACACGGTATCGGTA -ACGGAATTGCACACGGTATGCCTA -ACGGAATTGCACACGGTACCACTA -ACGGAATTGCACACGGTAGGAGTA -ACGGAATTGCACACGGTATCGTCT -ACGGAATTGCACACGGTATGCACT -ACGGAATTGCACACGGTACTGACT -ACGGAATTGCACACGGTACAACCT -ACGGAATTGCACACGGTAGCTACT -ACGGAATTGCACACGGTAGGATCT -ACGGAATTGCACACGGTAAAGGCT -ACGGAATTGCACACGGTATCAACC -ACGGAATTGCACACGGTATGTTCC -ACGGAATTGCACACGGTAATTCCC -ACGGAATTGCACACGGTATTCTCG -ACGGAATTGCACACGGTATAGACG -ACGGAATTGCACACGGTAGTAACG -ACGGAATTGCACACGGTAACTTCG -ACGGAATTGCACACGGTATACGCA -ACGGAATTGCACACGGTACTTGCA -ACGGAATTGCACACGGTACGAACA -ACGGAATTGCACACGGTACAGTCA -ACGGAATTGCACACGGTAGATCCA -ACGGAATTGCACACGGTAACGACA -ACGGAATTGCACACGGTAAGCTCA -ACGGAATTGCACACGGTATCACGT -ACGGAATTGCACACGGTACGTAGT -ACGGAATTGCACACGGTAGTCAGT -ACGGAATTGCACACGGTAGAAGGT -ACGGAATTGCACACGGTAAACCGT -ACGGAATTGCACACGGTATTGTGC -ACGGAATTGCACACGGTACTAAGC -ACGGAATTGCACACGGTAACTAGC -ACGGAATTGCACACGGTAAGATGC -ACGGAATTGCACACGGTATGAAGG -ACGGAATTGCACACGGTACAATGG -ACGGAATTGCACACGGTAATGAGG -ACGGAATTGCACACGGTAAATGGG -ACGGAATTGCACACGGTATCCTGA -ACGGAATTGCACACGGTATAGCGA -ACGGAATTGCACACGGTACACAGA -ACGGAATTGCACACGGTAGCAAGA -ACGGAATTGCACACGGTAGGTTGA -ACGGAATTGCACACGGTATCCGAT -ACGGAATTGCACACGGTATGGCAT -ACGGAATTGCACACGGTACGAGAT -ACGGAATTGCACACGGTATACCAC -ACGGAATTGCACACGGTACAGAAC -ACGGAATTGCACACGGTAGTCTAC -ACGGAATTGCACACGGTAACGTAC -ACGGAATTGCACACGGTAAGTGAC -ACGGAATTGCACACGGTACTGTAG -ACGGAATTGCACACGGTACCTAAG -ACGGAATTGCACACGGTAGTTCAG -ACGGAATTGCACACGGTAGCATAG -ACGGAATTGCACACGGTAGACAAG -ACGGAATTGCACACGGTAAAGCAG -ACGGAATTGCACACGGTACGTCAA -ACGGAATTGCACACGGTAGCTGAA -ACGGAATTGCACACGGTAAGTACG -ACGGAATTGCACACGGTAATCCGA -ACGGAATTGCACACGGTAATGGGA -ACGGAATTGCACACGGTAGTGCAA -ACGGAATTGCACACGGTAGAGGAA -ACGGAATTGCACACGGTACAGGTA -ACGGAATTGCACACGGTAGACTCT -ACGGAATTGCACACGGTAAGTCCT -ACGGAATTGCACACGGTATAAGCC -ACGGAATTGCACACGGTAATAGCC -ACGGAATTGCACACGGTATAACCG -ACGGAATTGCACACGGTAATGCCA -ACGGAATTGCACTCGACTGGAAAC -ACGGAATTGCACTCGACTAACACC -ACGGAATTGCACTCGACTATCGAG -ACGGAATTGCACTCGACTCTCCTT -ACGGAATTGCACTCGACTCCTGTT -ACGGAATTGCACTCGACTCGGTTT -ACGGAATTGCACTCGACTGTGGTT -ACGGAATTGCACTCGACTGCCTTT -ACGGAATTGCACTCGACTGGTCTT -ACGGAATTGCACTCGACTACGCTT -ACGGAATTGCACTCGACTAGCGTT -ACGGAATTGCACTCGACTTTCGTC -ACGGAATTGCACTCGACTTCTCTC -ACGGAATTGCACTCGACTTGGATC -ACGGAATTGCACTCGACTCACTTC -ACGGAATTGCACTCGACTGTACTC -ACGGAATTGCACTCGACTGATGTC -ACGGAATTGCACTCGACTACAGTC -ACGGAATTGCACTCGACTTTGCTG -ACGGAATTGCACTCGACTTCCATG -ACGGAATTGCACTCGACTTGTGTG -ACGGAATTGCACTCGACTCTAGTG -ACGGAATTGCACTCGACTCATCTG -ACGGAATTGCACTCGACTGAGTTG -ACGGAATTGCACTCGACTAGACTG -ACGGAATTGCACTCGACTTCGGTA -ACGGAATTGCACTCGACTTGCCTA -ACGGAATTGCACTCGACTCCACTA -ACGGAATTGCACTCGACTGGAGTA -ACGGAATTGCACTCGACTTCGTCT -ACGGAATTGCACTCGACTTGCACT -ACGGAATTGCACTCGACTCTGACT -ACGGAATTGCACTCGACTCAACCT -ACGGAATTGCACTCGACTGCTACT -ACGGAATTGCACTCGACTGGATCT -ACGGAATTGCACTCGACTAAGGCT -ACGGAATTGCACTCGACTTCAACC -ACGGAATTGCACTCGACTTGTTCC -ACGGAATTGCACTCGACTATTCCC -ACGGAATTGCACTCGACTTTCTCG -ACGGAATTGCACTCGACTTAGACG -ACGGAATTGCACTCGACTGTAACG -ACGGAATTGCACTCGACTACTTCG -ACGGAATTGCACTCGACTTACGCA -ACGGAATTGCACTCGACTCTTGCA -ACGGAATTGCACTCGACTCGAACA -ACGGAATTGCACTCGACTCAGTCA -ACGGAATTGCACTCGACTGATCCA -ACGGAATTGCACTCGACTACGACA -ACGGAATTGCACTCGACTAGCTCA -ACGGAATTGCACTCGACTTCACGT -ACGGAATTGCACTCGACTCGTAGT -ACGGAATTGCACTCGACTGTCAGT -ACGGAATTGCACTCGACTGAAGGT -ACGGAATTGCACTCGACTAACCGT -ACGGAATTGCACTCGACTTTGTGC -ACGGAATTGCACTCGACTCTAAGC -ACGGAATTGCACTCGACTACTAGC -ACGGAATTGCACTCGACTAGATGC -ACGGAATTGCACTCGACTTGAAGG -ACGGAATTGCACTCGACTCAATGG -ACGGAATTGCACTCGACTATGAGG -ACGGAATTGCACTCGACTAATGGG -ACGGAATTGCACTCGACTTCCTGA -ACGGAATTGCACTCGACTTAGCGA -ACGGAATTGCACTCGACTCACAGA -ACGGAATTGCACTCGACTGCAAGA -ACGGAATTGCACTCGACTGGTTGA -ACGGAATTGCACTCGACTTCCGAT -ACGGAATTGCACTCGACTTGGCAT -ACGGAATTGCACTCGACTCGAGAT -ACGGAATTGCACTCGACTTACCAC -ACGGAATTGCACTCGACTCAGAAC -ACGGAATTGCACTCGACTGTCTAC -ACGGAATTGCACTCGACTACGTAC -ACGGAATTGCACTCGACTAGTGAC -ACGGAATTGCACTCGACTCTGTAG -ACGGAATTGCACTCGACTCCTAAG -ACGGAATTGCACTCGACTGTTCAG -ACGGAATTGCACTCGACTGCATAG -ACGGAATTGCACTCGACTGACAAG -ACGGAATTGCACTCGACTAAGCAG -ACGGAATTGCACTCGACTCGTCAA -ACGGAATTGCACTCGACTGCTGAA -ACGGAATTGCACTCGACTAGTACG -ACGGAATTGCACTCGACTATCCGA -ACGGAATTGCACTCGACTATGGGA -ACGGAATTGCACTCGACTGTGCAA -ACGGAATTGCACTCGACTGAGGAA -ACGGAATTGCACTCGACTCAGGTA -ACGGAATTGCACTCGACTGACTCT -ACGGAATTGCACTCGACTAGTCCT -ACGGAATTGCACTCGACTTAAGCC -ACGGAATTGCACTCGACTATAGCC -ACGGAATTGCACTCGACTTAACCG -ACGGAATTGCACTCGACTATGCCA -ACGGAATTGCACGCATACGGAAAC -ACGGAATTGCACGCATACAACACC -ACGGAATTGCACGCATACATCGAG -ACGGAATTGCACGCATACCTCCTT -ACGGAATTGCACGCATACCCTGTT -ACGGAATTGCACGCATACCGGTTT -ACGGAATTGCACGCATACGTGGTT -ACGGAATTGCACGCATACGCCTTT -ACGGAATTGCACGCATACGGTCTT -ACGGAATTGCACGCATACACGCTT -ACGGAATTGCACGCATACAGCGTT -ACGGAATTGCACGCATACTTCGTC -ACGGAATTGCACGCATACTCTCTC -ACGGAATTGCACGCATACTGGATC -ACGGAATTGCACGCATACCACTTC -ACGGAATTGCACGCATACGTACTC -ACGGAATTGCACGCATACGATGTC -ACGGAATTGCACGCATACACAGTC -ACGGAATTGCACGCATACTTGCTG -ACGGAATTGCACGCATACTCCATG -ACGGAATTGCACGCATACTGTGTG -ACGGAATTGCACGCATACCTAGTG -ACGGAATTGCACGCATACCATCTG -ACGGAATTGCACGCATACGAGTTG -ACGGAATTGCACGCATACAGACTG -ACGGAATTGCACGCATACTCGGTA -ACGGAATTGCACGCATACTGCCTA -ACGGAATTGCACGCATACCCACTA -ACGGAATTGCACGCATACGGAGTA -ACGGAATTGCACGCATACTCGTCT -ACGGAATTGCACGCATACTGCACT -ACGGAATTGCACGCATACCTGACT -ACGGAATTGCACGCATACCAACCT -ACGGAATTGCACGCATACGCTACT -ACGGAATTGCACGCATACGGATCT -ACGGAATTGCACGCATACAAGGCT -ACGGAATTGCACGCATACTCAACC -ACGGAATTGCACGCATACTGTTCC -ACGGAATTGCACGCATACATTCCC -ACGGAATTGCACGCATACTTCTCG -ACGGAATTGCACGCATACTAGACG -ACGGAATTGCACGCATACGTAACG -ACGGAATTGCACGCATACACTTCG -ACGGAATTGCACGCATACTACGCA -ACGGAATTGCACGCATACCTTGCA -ACGGAATTGCACGCATACCGAACA -ACGGAATTGCACGCATACCAGTCA -ACGGAATTGCACGCATACGATCCA -ACGGAATTGCACGCATACACGACA -ACGGAATTGCACGCATACAGCTCA -ACGGAATTGCACGCATACTCACGT -ACGGAATTGCACGCATACCGTAGT -ACGGAATTGCACGCATACGTCAGT -ACGGAATTGCACGCATACGAAGGT -ACGGAATTGCACGCATACAACCGT -ACGGAATTGCACGCATACTTGTGC -ACGGAATTGCACGCATACCTAAGC -ACGGAATTGCACGCATACACTAGC -ACGGAATTGCACGCATACAGATGC -ACGGAATTGCACGCATACTGAAGG -ACGGAATTGCACGCATACCAATGG -ACGGAATTGCACGCATACATGAGG -ACGGAATTGCACGCATACAATGGG -ACGGAATTGCACGCATACTCCTGA -ACGGAATTGCACGCATACTAGCGA -ACGGAATTGCACGCATACCACAGA -ACGGAATTGCACGCATACGCAAGA -ACGGAATTGCACGCATACGGTTGA -ACGGAATTGCACGCATACTCCGAT -ACGGAATTGCACGCATACTGGCAT -ACGGAATTGCACGCATACCGAGAT -ACGGAATTGCACGCATACTACCAC -ACGGAATTGCACGCATACCAGAAC -ACGGAATTGCACGCATACGTCTAC -ACGGAATTGCACGCATACACGTAC -ACGGAATTGCACGCATACAGTGAC -ACGGAATTGCACGCATACCTGTAG -ACGGAATTGCACGCATACCCTAAG -ACGGAATTGCACGCATACGTTCAG -ACGGAATTGCACGCATACGCATAG -ACGGAATTGCACGCATACGACAAG -ACGGAATTGCACGCATACAAGCAG -ACGGAATTGCACGCATACCGTCAA -ACGGAATTGCACGCATACGCTGAA -ACGGAATTGCACGCATACAGTACG -ACGGAATTGCACGCATACATCCGA -ACGGAATTGCACGCATACATGGGA -ACGGAATTGCACGCATACGTGCAA -ACGGAATTGCACGCATACGAGGAA -ACGGAATTGCACGCATACCAGGTA -ACGGAATTGCACGCATACGACTCT -ACGGAATTGCACGCATACAGTCCT -ACGGAATTGCACGCATACTAAGCC -ACGGAATTGCACGCATACATAGCC -ACGGAATTGCACGCATACTAACCG -ACGGAATTGCACGCATACATGCCA -ACGGAATTGCACGCACTTGGAAAC -ACGGAATTGCACGCACTTAACACC -ACGGAATTGCACGCACTTATCGAG -ACGGAATTGCACGCACTTCTCCTT -ACGGAATTGCACGCACTTCCTGTT -ACGGAATTGCACGCACTTCGGTTT -ACGGAATTGCACGCACTTGTGGTT -ACGGAATTGCACGCACTTGCCTTT -ACGGAATTGCACGCACTTGGTCTT -ACGGAATTGCACGCACTTACGCTT -ACGGAATTGCACGCACTTAGCGTT -ACGGAATTGCACGCACTTTTCGTC -ACGGAATTGCACGCACTTTCTCTC -ACGGAATTGCACGCACTTTGGATC -ACGGAATTGCACGCACTTCACTTC -ACGGAATTGCACGCACTTGTACTC -ACGGAATTGCACGCACTTGATGTC -ACGGAATTGCACGCACTTACAGTC -ACGGAATTGCACGCACTTTTGCTG -ACGGAATTGCACGCACTTTCCATG -ACGGAATTGCACGCACTTTGTGTG -ACGGAATTGCACGCACTTCTAGTG -ACGGAATTGCACGCACTTCATCTG -ACGGAATTGCACGCACTTGAGTTG -ACGGAATTGCACGCACTTAGACTG -ACGGAATTGCACGCACTTTCGGTA -ACGGAATTGCACGCACTTTGCCTA -ACGGAATTGCACGCACTTCCACTA -ACGGAATTGCACGCACTTGGAGTA -ACGGAATTGCACGCACTTTCGTCT -ACGGAATTGCACGCACTTTGCACT -ACGGAATTGCACGCACTTCTGACT -ACGGAATTGCACGCACTTCAACCT -ACGGAATTGCACGCACTTGCTACT -ACGGAATTGCACGCACTTGGATCT -ACGGAATTGCACGCACTTAAGGCT -ACGGAATTGCACGCACTTTCAACC -ACGGAATTGCACGCACTTTGTTCC -ACGGAATTGCACGCACTTATTCCC -ACGGAATTGCACGCACTTTTCTCG -ACGGAATTGCACGCACTTTAGACG -ACGGAATTGCACGCACTTGTAACG -ACGGAATTGCACGCACTTACTTCG -ACGGAATTGCACGCACTTTACGCA -ACGGAATTGCACGCACTTCTTGCA -ACGGAATTGCACGCACTTCGAACA -ACGGAATTGCACGCACTTCAGTCA -ACGGAATTGCACGCACTTGATCCA -ACGGAATTGCACGCACTTACGACA -ACGGAATTGCACGCACTTAGCTCA -ACGGAATTGCACGCACTTTCACGT -ACGGAATTGCACGCACTTCGTAGT -ACGGAATTGCACGCACTTGTCAGT -ACGGAATTGCACGCACTTGAAGGT -ACGGAATTGCACGCACTTAACCGT -ACGGAATTGCACGCACTTTTGTGC -ACGGAATTGCACGCACTTCTAAGC -ACGGAATTGCACGCACTTACTAGC -ACGGAATTGCACGCACTTAGATGC -ACGGAATTGCACGCACTTTGAAGG -ACGGAATTGCACGCACTTCAATGG -ACGGAATTGCACGCACTTATGAGG -ACGGAATTGCACGCACTTAATGGG -ACGGAATTGCACGCACTTTCCTGA -ACGGAATTGCACGCACTTTAGCGA -ACGGAATTGCACGCACTTCACAGA -ACGGAATTGCACGCACTTGCAAGA -ACGGAATTGCACGCACTTGGTTGA -ACGGAATTGCACGCACTTTCCGAT -ACGGAATTGCACGCACTTTGGCAT -ACGGAATTGCACGCACTTCGAGAT -ACGGAATTGCACGCACTTTACCAC -ACGGAATTGCACGCACTTCAGAAC -ACGGAATTGCACGCACTTGTCTAC -ACGGAATTGCACGCACTTACGTAC -ACGGAATTGCACGCACTTAGTGAC -ACGGAATTGCACGCACTTCTGTAG -ACGGAATTGCACGCACTTCCTAAG -ACGGAATTGCACGCACTTGTTCAG -ACGGAATTGCACGCACTTGCATAG -ACGGAATTGCACGCACTTGACAAG -ACGGAATTGCACGCACTTAAGCAG -ACGGAATTGCACGCACTTCGTCAA -ACGGAATTGCACGCACTTGCTGAA -ACGGAATTGCACGCACTTAGTACG -ACGGAATTGCACGCACTTATCCGA -ACGGAATTGCACGCACTTATGGGA -ACGGAATTGCACGCACTTGTGCAA -ACGGAATTGCACGCACTTGAGGAA -ACGGAATTGCACGCACTTCAGGTA -ACGGAATTGCACGCACTTGACTCT -ACGGAATTGCACGCACTTAGTCCT -ACGGAATTGCACGCACTTTAAGCC -ACGGAATTGCACGCACTTATAGCC -ACGGAATTGCACGCACTTTAACCG -ACGGAATTGCACGCACTTATGCCA -ACGGAATTGCACACACGAGGAAAC -ACGGAATTGCACACACGAAACACC -ACGGAATTGCACACACGAATCGAG -ACGGAATTGCACACACGACTCCTT -ACGGAATTGCACACACGACCTGTT -ACGGAATTGCACACACGACGGTTT -ACGGAATTGCACACACGAGTGGTT -ACGGAATTGCACACACGAGCCTTT -ACGGAATTGCACACACGAGGTCTT -ACGGAATTGCACACACGAACGCTT -ACGGAATTGCACACACGAAGCGTT -ACGGAATTGCACACACGATTCGTC -ACGGAATTGCACACACGATCTCTC -ACGGAATTGCACACACGATGGATC -ACGGAATTGCACACACGACACTTC -ACGGAATTGCACACACGAGTACTC -ACGGAATTGCACACACGAGATGTC -ACGGAATTGCACACACGAACAGTC -ACGGAATTGCACACACGATTGCTG -ACGGAATTGCACACACGATCCATG -ACGGAATTGCACACACGATGTGTG -ACGGAATTGCACACACGACTAGTG -ACGGAATTGCACACACGACATCTG -ACGGAATTGCACACACGAGAGTTG -ACGGAATTGCACACACGAAGACTG -ACGGAATTGCACACACGATCGGTA -ACGGAATTGCACACACGATGCCTA -ACGGAATTGCACACACGACCACTA -ACGGAATTGCACACACGAGGAGTA -ACGGAATTGCACACACGATCGTCT -ACGGAATTGCACACACGATGCACT -ACGGAATTGCACACACGACTGACT -ACGGAATTGCACACACGACAACCT -ACGGAATTGCACACACGAGCTACT -ACGGAATTGCACACACGAGGATCT -ACGGAATTGCACACACGAAAGGCT -ACGGAATTGCACACACGATCAACC -ACGGAATTGCACACACGATGTTCC -ACGGAATTGCACACACGAATTCCC -ACGGAATTGCACACACGATTCTCG -ACGGAATTGCACACACGATAGACG -ACGGAATTGCACACACGAGTAACG -ACGGAATTGCACACACGAACTTCG -ACGGAATTGCACACACGATACGCA -ACGGAATTGCACACACGACTTGCA -ACGGAATTGCACACACGACGAACA -ACGGAATTGCACACACGACAGTCA -ACGGAATTGCACACACGAGATCCA -ACGGAATTGCACACACGAACGACA -ACGGAATTGCACACACGAAGCTCA -ACGGAATTGCACACACGATCACGT -ACGGAATTGCACACACGACGTAGT -ACGGAATTGCACACACGAGTCAGT -ACGGAATTGCACACACGAGAAGGT -ACGGAATTGCACACACGAAACCGT -ACGGAATTGCACACACGATTGTGC -ACGGAATTGCACACACGACTAAGC -ACGGAATTGCACACACGAACTAGC -ACGGAATTGCACACACGAAGATGC -ACGGAATTGCACACACGATGAAGG -ACGGAATTGCACACACGACAATGG -ACGGAATTGCACACACGAATGAGG -ACGGAATTGCACACACGAAATGGG -ACGGAATTGCACACACGATCCTGA -ACGGAATTGCACACACGATAGCGA -ACGGAATTGCACACACGACACAGA -ACGGAATTGCACACACGAGCAAGA -ACGGAATTGCACACACGAGGTTGA -ACGGAATTGCACACACGATCCGAT -ACGGAATTGCACACACGATGGCAT -ACGGAATTGCACACACGACGAGAT -ACGGAATTGCACACACGATACCAC -ACGGAATTGCACACACGACAGAAC -ACGGAATTGCACACACGAGTCTAC -ACGGAATTGCACACACGAACGTAC -ACGGAATTGCACACACGAAGTGAC -ACGGAATTGCACACACGACTGTAG -ACGGAATTGCACACACGACCTAAG -ACGGAATTGCACACACGAGTTCAG -ACGGAATTGCACACACGAGCATAG -ACGGAATTGCACACACGAGACAAG -ACGGAATTGCACACACGAAAGCAG -ACGGAATTGCACACACGACGTCAA -ACGGAATTGCACACACGAGCTGAA -ACGGAATTGCACACACGAAGTACG -ACGGAATTGCACACACGAATCCGA -ACGGAATTGCACACACGAATGGGA -ACGGAATTGCACACACGAGTGCAA -ACGGAATTGCACACACGAGAGGAA -ACGGAATTGCACACACGACAGGTA -ACGGAATTGCACACACGAGACTCT -ACGGAATTGCACACACGAAGTCCT -ACGGAATTGCACACACGATAAGCC -ACGGAATTGCACACACGAATAGCC -ACGGAATTGCACACACGATAACCG -ACGGAATTGCACACACGAATGCCA -ACGGAATTGCACTCACAGGGAAAC -ACGGAATTGCACTCACAGAACACC -ACGGAATTGCACTCACAGATCGAG -ACGGAATTGCACTCACAGCTCCTT -ACGGAATTGCACTCACAGCCTGTT -ACGGAATTGCACTCACAGCGGTTT -ACGGAATTGCACTCACAGGTGGTT -ACGGAATTGCACTCACAGGCCTTT -ACGGAATTGCACTCACAGGGTCTT -ACGGAATTGCACTCACAGACGCTT -ACGGAATTGCACTCACAGAGCGTT -ACGGAATTGCACTCACAGTTCGTC -ACGGAATTGCACTCACAGTCTCTC -ACGGAATTGCACTCACAGTGGATC -ACGGAATTGCACTCACAGCACTTC -ACGGAATTGCACTCACAGGTACTC -ACGGAATTGCACTCACAGGATGTC -ACGGAATTGCACTCACAGACAGTC -ACGGAATTGCACTCACAGTTGCTG -ACGGAATTGCACTCACAGTCCATG -ACGGAATTGCACTCACAGTGTGTG -ACGGAATTGCACTCACAGCTAGTG -ACGGAATTGCACTCACAGCATCTG -ACGGAATTGCACTCACAGGAGTTG -ACGGAATTGCACTCACAGAGACTG -ACGGAATTGCACTCACAGTCGGTA -ACGGAATTGCACTCACAGTGCCTA -ACGGAATTGCACTCACAGCCACTA -ACGGAATTGCACTCACAGGGAGTA -ACGGAATTGCACTCACAGTCGTCT -ACGGAATTGCACTCACAGTGCACT -ACGGAATTGCACTCACAGCTGACT -ACGGAATTGCACTCACAGCAACCT -ACGGAATTGCACTCACAGGCTACT -ACGGAATTGCACTCACAGGGATCT -ACGGAATTGCACTCACAGAAGGCT -ACGGAATTGCACTCACAGTCAACC -ACGGAATTGCACTCACAGTGTTCC -ACGGAATTGCACTCACAGATTCCC -ACGGAATTGCACTCACAGTTCTCG -ACGGAATTGCACTCACAGTAGACG -ACGGAATTGCACTCACAGGTAACG -ACGGAATTGCACTCACAGACTTCG -ACGGAATTGCACTCACAGTACGCA -ACGGAATTGCACTCACAGCTTGCA -ACGGAATTGCACTCACAGCGAACA -ACGGAATTGCACTCACAGCAGTCA -ACGGAATTGCACTCACAGGATCCA -ACGGAATTGCACTCACAGACGACA -ACGGAATTGCACTCACAGAGCTCA -ACGGAATTGCACTCACAGTCACGT -ACGGAATTGCACTCACAGCGTAGT -ACGGAATTGCACTCACAGGTCAGT -ACGGAATTGCACTCACAGGAAGGT -ACGGAATTGCACTCACAGAACCGT -ACGGAATTGCACTCACAGTTGTGC -ACGGAATTGCACTCACAGCTAAGC -ACGGAATTGCACTCACAGACTAGC -ACGGAATTGCACTCACAGAGATGC -ACGGAATTGCACTCACAGTGAAGG -ACGGAATTGCACTCACAGCAATGG -ACGGAATTGCACTCACAGATGAGG -ACGGAATTGCACTCACAGAATGGG -ACGGAATTGCACTCACAGTCCTGA -ACGGAATTGCACTCACAGTAGCGA -ACGGAATTGCACTCACAGCACAGA -ACGGAATTGCACTCACAGGCAAGA -ACGGAATTGCACTCACAGGGTTGA -ACGGAATTGCACTCACAGTCCGAT -ACGGAATTGCACTCACAGTGGCAT -ACGGAATTGCACTCACAGCGAGAT -ACGGAATTGCACTCACAGTACCAC -ACGGAATTGCACTCACAGCAGAAC -ACGGAATTGCACTCACAGGTCTAC -ACGGAATTGCACTCACAGACGTAC -ACGGAATTGCACTCACAGAGTGAC -ACGGAATTGCACTCACAGCTGTAG -ACGGAATTGCACTCACAGCCTAAG -ACGGAATTGCACTCACAGGTTCAG -ACGGAATTGCACTCACAGGCATAG -ACGGAATTGCACTCACAGGACAAG -ACGGAATTGCACTCACAGAAGCAG -ACGGAATTGCACTCACAGCGTCAA -ACGGAATTGCACTCACAGGCTGAA -ACGGAATTGCACTCACAGAGTACG -ACGGAATTGCACTCACAGATCCGA -ACGGAATTGCACTCACAGATGGGA -ACGGAATTGCACTCACAGGTGCAA -ACGGAATTGCACTCACAGGAGGAA -ACGGAATTGCACTCACAGCAGGTA -ACGGAATTGCACTCACAGGACTCT -ACGGAATTGCACTCACAGAGTCCT -ACGGAATTGCACTCACAGTAAGCC -ACGGAATTGCACTCACAGATAGCC -ACGGAATTGCACTCACAGTAACCG -ACGGAATTGCACTCACAGATGCCA -ACGGAATTGCACCCAGATGGAAAC -ACGGAATTGCACCCAGATAACACC -ACGGAATTGCACCCAGATATCGAG -ACGGAATTGCACCCAGATCTCCTT -ACGGAATTGCACCCAGATCCTGTT -ACGGAATTGCACCCAGATCGGTTT -ACGGAATTGCACCCAGATGTGGTT -ACGGAATTGCACCCAGATGCCTTT -ACGGAATTGCACCCAGATGGTCTT -ACGGAATTGCACCCAGATACGCTT -ACGGAATTGCACCCAGATAGCGTT -ACGGAATTGCACCCAGATTTCGTC -ACGGAATTGCACCCAGATTCTCTC -ACGGAATTGCACCCAGATTGGATC -ACGGAATTGCACCCAGATCACTTC -ACGGAATTGCACCCAGATGTACTC -ACGGAATTGCACCCAGATGATGTC -ACGGAATTGCACCCAGATACAGTC -ACGGAATTGCACCCAGATTTGCTG -ACGGAATTGCACCCAGATTCCATG -ACGGAATTGCACCCAGATTGTGTG -ACGGAATTGCACCCAGATCTAGTG -ACGGAATTGCACCCAGATCATCTG -ACGGAATTGCACCCAGATGAGTTG -ACGGAATTGCACCCAGATAGACTG -ACGGAATTGCACCCAGATTCGGTA -ACGGAATTGCACCCAGATTGCCTA -ACGGAATTGCACCCAGATCCACTA -ACGGAATTGCACCCAGATGGAGTA -ACGGAATTGCACCCAGATTCGTCT -ACGGAATTGCACCCAGATTGCACT -ACGGAATTGCACCCAGATCTGACT -ACGGAATTGCACCCAGATCAACCT -ACGGAATTGCACCCAGATGCTACT -ACGGAATTGCACCCAGATGGATCT -ACGGAATTGCACCCAGATAAGGCT -ACGGAATTGCACCCAGATTCAACC -ACGGAATTGCACCCAGATTGTTCC -ACGGAATTGCACCCAGATATTCCC -ACGGAATTGCACCCAGATTTCTCG -ACGGAATTGCACCCAGATTAGACG -ACGGAATTGCACCCAGATGTAACG -ACGGAATTGCACCCAGATACTTCG -ACGGAATTGCACCCAGATTACGCA -ACGGAATTGCACCCAGATCTTGCA -ACGGAATTGCACCCAGATCGAACA -ACGGAATTGCACCCAGATCAGTCA -ACGGAATTGCACCCAGATGATCCA -ACGGAATTGCACCCAGATACGACA -ACGGAATTGCACCCAGATAGCTCA -ACGGAATTGCACCCAGATTCACGT -ACGGAATTGCACCCAGATCGTAGT -ACGGAATTGCACCCAGATGTCAGT -ACGGAATTGCACCCAGATGAAGGT -ACGGAATTGCACCCAGATAACCGT -ACGGAATTGCACCCAGATTTGTGC -ACGGAATTGCACCCAGATCTAAGC -ACGGAATTGCACCCAGATACTAGC -ACGGAATTGCACCCAGATAGATGC -ACGGAATTGCACCCAGATTGAAGG -ACGGAATTGCACCCAGATCAATGG -ACGGAATTGCACCCAGATATGAGG -ACGGAATTGCACCCAGATAATGGG -ACGGAATTGCACCCAGATTCCTGA -ACGGAATTGCACCCAGATTAGCGA -ACGGAATTGCACCCAGATCACAGA -ACGGAATTGCACCCAGATGCAAGA -ACGGAATTGCACCCAGATGGTTGA -ACGGAATTGCACCCAGATTCCGAT -ACGGAATTGCACCCAGATTGGCAT -ACGGAATTGCACCCAGATCGAGAT -ACGGAATTGCACCCAGATTACCAC -ACGGAATTGCACCCAGATCAGAAC -ACGGAATTGCACCCAGATGTCTAC -ACGGAATTGCACCCAGATACGTAC -ACGGAATTGCACCCAGATAGTGAC -ACGGAATTGCACCCAGATCTGTAG -ACGGAATTGCACCCAGATCCTAAG -ACGGAATTGCACCCAGATGTTCAG -ACGGAATTGCACCCAGATGCATAG -ACGGAATTGCACCCAGATGACAAG -ACGGAATTGCACCCAGATAAGCAG -ACGGAATTGCACCCAGATCGTCAA -ACGGAATTGCACCCAGATGCTGAA -ACGGAATTGCACCCAGATAGTACG -ACGGAATTGCACCCAGATATCCGA -ACGGAATTGCACCCAGATATGGGA -ACGGAATTGCACCCAGATGTGCAA -ACGGAATTGCACCCAGATGAGGAA -ACGGAATTGCACCCAGATCAGGTA -ACGGAATTGCACCCAGATGACTCT -ACGGAATTGCACCCAGATAGTCCT -ACGGAATTGCACCCAGATTAAGCC -ACGGAATTGCACCCAGATATAGCC -ACGGAATTGCACCCAGATTAACCG -ACGGAATTGCACCCAGATATGCCA -ACGGAATTGCACACAACGGGAAAC -ACGGAATTGCACACAACGAACACC -ACGGAATTGCACACAACGATCGAG -ACGGAATTGCACACAACGCTCCTT -ACGGAATTGCACACAACGCCTGTT -ACGGAATTGCACACAACGCGGTTT -ACGGAATTGCACACAACGGTGGTT -ACGGAATTGCACACAACGGCCTTT -ACGGAATTGCACACAACGGGTCTT -ACGGAATTGCACACAACGACGCTT -ACGGAATTGCACACAACGAGCGTT -ACGGAATTGCACACAACGTTCGTC -ACGGAATTGCACACAACGTCTCTC -ACGGAATTGCACACAACGTGGATC -ACGGAATTGCACACAACGCACTTC -ACGGAATTGCACACAACGGTACTC -ACGGAATTGCACACAACGGATGTC -ACGGAATTGCACACAACGACAGTC -ACGGAATTGCACACAACGTTGCTG -ACGGAATTGCACACAACGTCCATG -ACGGAATTGCACACAACGTGTGTG -ACGGAATTGCACACAACGCTAGTG -ACGGAATTGCACACAACGCATCTG -ACGGAATTGCACACAACGGAGTTG -ACGGAATTGCACACAACGAGACTG -ACGGAATTGCACACAACGTCGGTA -ACGGAATTGCACACAACGTGCCTA -ACGGAATTGCACACAACGCCACTA -ACGGAATTGCACACAACGGGAGTA -ACGGAATTGCACACAACGTCGTCT -ACGGAATTGCACACAACGTGCACT -ACGGAATTGCACACAACGCTGACT -ACGGAATTGCACACAACGCAACCT -ACGGAATTGCACACAACGGCTACT -ACGGAATTGCACACAACGGGATCT -ACGGAATTGCACACAACGAAGGCT -ACGGAATTGCACACAACGTCAACC -ACGGAATTGCACACAACGTGTTCC -ACGGAATTGCACACAACGATTCCC -ACGGAATTGCACACAACGTTCTCG -ACGGAATTGCACACAACGTAGACG -ACGGAATTGCACACAACGGTAACG -ACGGAATTGCACACAACGACTTCG -ACGGAATTGCACACAACGTACGCA -ACGGAATTGCACACAACGCTTGCA -ACGGAATTGCACACAACGCGAACA -ACGGAATTGCACACAACGCAGTCA -ACGGAATTGCACACAACGGATCCA -ACGGAATTGCACACAACGACGACA -ACGGAATTGCACACAACGAGCTCA -ACGGAATTGCACACAACGTCACGT -ACGGAATTGCACACAACGCGTAGT -ACGGAATTGCACACAACGGTCAGT -ACGGAATTGCACACAACGGAAGGT -ACGGAATTGCACACAACGAACCGT -ACGGAATTGCACACAACGTTGTGC -ACGGAATTGCACACAACGCTAAGC -ACGGAATTGCACACAACGACTAGC -ACGGAATTGCACACAACGAGATGC -ACGGAATTGCACACAACGTGAAGG -ACGGAATTGCACACAACGCAATGG -ACGGAATTGCACACAACGATGAGG -ACGGAATTGCACACAACGAATGGG -ACGGAATTGCACACAACGTCCTGA -ACGGAATTGCACACAACGTAGCGA -ACGGAATTGCACACAACGCACAGA -ACGGAATTGCACACAACGGCAAGA -ACGGAATTGCACACAACGGGTTGA -ACGGAATTGCACACAACGTCCGAT -ACGGAATTGCACACAACGTGGCAT -ACGGAATTGCACACAACGCGAGAT -ACGGAATTGCACACAACGTACCAC -ACGGAATTGCACACAACGCAGAAC -ACGGAATTGCACACAACGGTCTAC -ACGGAATTGCACACAACGACGTAC -ACGGAATTGCACACAACGAGTGAC -ACGGAATTGCACACAACGCTGTAG -ACGGAATTGCACACAACGCCTAAG -ACGGAATTGCACACAACGGTTCAG -ACGGAATTGCACACAACGGCATAG -ACGGAATTGCACACAACGGACAAG -ACGGAATTGCACACAACGAAGCAG -ACGGAATTGCACACAACGCGTCAA -ACGGAATTGCACACAACGGCTGAA -ACGGAATTGCACACAACGAGTACG -ACGGAATTGCACACAACGATCCGA -ACGGAATTGCACACAACGATGGGA -ACGGAATTGCACACAACGGTGCAA -ACGGAATTGCACACAACGGAGGAA -ACGGAATTGCACACAACGCAGGTA -ACGGAATTGCACACAACGGACTCT -ACGGAATTGCACACAACGAGTCCT -ACGGAATTGCACACAACGTAAGCC -ACGGAATTGCACACAACGATAGCC -ACGGAATTGCACACAACGTAACCG -ACGGAATTGCACACAACGATGCCA -ACGGAATTGCACTCAAGCGGAAAC -ACGGAATTGCACTCAAGCAACACC -ACGGAATTGCACTCAAGCATCGAG -ACGGAATTGCACTCAAGCCTCCTT -ACGGAATTGCACTCAAGCCCTGTT -ACGGAATTGCACTCAAGCCGGTTT -ACGGAATTGCACTCAAGCGTGGTT -ACGGAATTGCACTCAAGCGCCTTT -ACGGAATTGCACTCAAGCGGTCTT -ACGGAATTGCACTCAAGCACGCTT -ACGGAATTGCACTCAAGCAGCGTT -ACGGAATTGCACTCAAGCTTCGTC -ACGGAATTGCACTCAAGCTCTCTC -ACGGAATTGCACTCAAGCTGGATC -ACGGAATTGCACTCAAGCCACTTC -ACGGAATTGCACTCAAGCGTACTC -ACGGAATTGCACTCAAGCGATGTC -ACGGAATTGCACTCAAGCACAGTC -ACGGAATTGCACTCAAGCTTGCTG -ACGGAATTGCACTCAAGCTCCATG -ACGGAATTGCACTCAAGCTGTGTG -ACGGAATTGCACTCAAGCCTAGTG -ACGGAATTGCACTCAAGCCATCTG -ACGGAATTGCACTCAAGCGAGTTG -ACGGAATTGCACTCAAGCAGACTG -ACGGAATTGCACTCAAGCTCGGTA -ACGGAATTGCACTCAAGCTGCCTA -ACGGAATTGCACTCAAGCCCACTA -ACGGAATTGCACTCAAGCGGAGTA -ACGGAATTGCACTCAAGCTCGTCT -ACGGAATTGCACTCAAGCTGCACT -ACGGAATTGCACTCAAGCCTGACT -ACGGAATTGCACTCAAGCCAACCT -ACGGAATTGCACTCAAGCGCTACT -ACGGAATTGCACTCAAGCGGATCT -ACGGAATTGCACTCAAGCAAGGCT -ACGGAATTGCACTCAAGCTCAACC -ACGGAATTGCACTCAAGCTGTTCC -ACGGAATTGCACTCAAGCATTCCC -ACGGAATTGCACTCAAGCTTCTCG -ACGGAATTGCACTCAAGCTAGACG -ACGGAATTGCACTCAAGCGTAACG -ACGGAATTGCACTCAAGCACTTCG -ACGGAATTGCACTCAAGCTACGCA -ACGGAATTGCACTCAAGCCTTGCA -ACGGAATTGCACTCAAGCCGAACA -ACGGAATTGCACTCAAGCCAGTCA -ACGGAATTGCACTCAAGCGATCCA -ACGGAATTGCACTCAAGCACGACA -ACGGAATTGCACTCAAGCAGCTCA -ACGGAATTGCACTCAAGCTCACGT -ACGGAATTGCACTCAAGCCGTAGT -ACGGAATTGCACTCAAGCGTCAGT -ACGGAATTGCACTCAAGCGAAGGT -ACGGAATTGCACTCAAGCAACCGT -ACGGAATTGCACTCAAGCTTGTGC -ACGGAATTGCACTCAAGCCTAAGC -ACGGAATTGCACTCAAGCACTAGC -ACGGAATTGCACTCAAGCAGATGC -ACGGAATTGCACTCAAGCTGAAGG -ACGGAATTGCACTCAAGCCAATGG -ACGGAATTGCACTCAAGCATGAGG -ACGGAATTGCACTCAAGCAATGGG -ACGGAATTGCACTCAAGCTCCTGA -ACGGAATTGCACTCAAGCTAGCGA -ACGGAATTGCACTCAAGCCACAGA -ACGGAATTGCACTCAAGCGCAAGA -ACGGAATTGCACTCAAGCGGTTGA -ACGGAATTGCACTCAAGCTCCGAT -ACGGAATTGCACTCAAGCTGGCAT -ACGGAATTGCACTCAAGCCGAGAT -ACGGAATTGCACTCAAGCTACCAC -ACGGAATTGCACTCAAGCCAGAAC -ACGGAATTGCACTCAAGCGTCTAC -ACGGAATTGCACTCAAGCACGTAC -ACGGAATTGCACTCAAGCAGTGAC -ACGGAATTGCACTCAAGCCTGTAG -ACGGAATTGCACTCAAGCCCTAAG -ACGGAATTGCACTCAAGCGTTCAG -ACGGAATTGCACTCAAGCGCATAG -ACGGAATTGCACTCAAGCGACAAG -ACGGAATTGCACTCAAGCAAGCAG -ACGGAATTGCACTCAAGCCGTCAA -ACGGAATTGCACTCAAGCGCTGAA -ACGGAATTGCACTCAAGCAGTACG -ACGGAATTGCACTCAAGCATCCGA -ACGGAATTGCACTCAAGCATGGGA -ACGGAATTGCACTCAAGCGTGCAA -ACGGAATTGCACTCAAGCGAGGAA -ACGGAATTGCACTCAAGCCAGGTA -ACGGAATTGCACTCAAGCGACTCT -ACGGAATTGCACTCAAGCAGTCCT -ACGGAATTGCACTCAAGCTAAGCC -ACGGAATTGCACTCAAGCATAGCC -ACGGAATTGCACTCAAGCTAACCG -ACGGAATTGCACTCAAGCATGCCA -ACGGAATTGCACCGTTCAGGAAAC -ACGGAATTGCACCGTTCAAACACC -ACGGAATTGCACCGTTCAATCGAG -ACGGAATTGCACCGTTCACTCCTT -ACGGAATTGCACCGTTCACCTGTT -ACGGAATTGCACCGTTCACGGTTT -ACGGAATTGCACCGTTCAGTGGTT -ACGGAATTGCACCGTTCAGCCTTT -ACGGAATTGCACCGTTCAGGTCTT -ACGGAATTGCACCGTTCAACGCTT -ACGGAATTGCACCGTTCAAGCGTT -ACGGAATTGCACCGTTCATTCGTC -ACGGAATTGCACCGTTCATCTCTC -ACGGAATTGCACCGTTCATGGATC -ACGGAATTGCACCGTTCACACTTC -ACGGAATTGCACCGTTCAGTACTC -ACGGAATTGCACCGTTCAGATGTC -ACGGAATTGCACCGTTCAACAGTC -ACGGAATTGCACCGTTCATTGCTG -ACGGAATTGCACCGTTCATCCATG -ACGGAATTGCACCGTTCATGTGTG -ACGGAATTGCACCGTTCACTAGTG -ACGGAATTGCACCGTTCACATCTG -ACGGAATTGCACCGTTCAGAGTTG -ACGGAATTGCACCGTTCAAGACTG -ACGGAATTGCACCGTTCATCGGTA -ACGGAATTGCACCGTTCATGCCTA -ACGGAATTGCACCGTTCACCACTA -ACGGAATTGCACCGTTCAGGAGTA -ACGGAATTGCACCGTTCATCGTCT -ACGGAATTGCACCGTTCATGCACT -ACGGAATTGCACCGTTCACTGACT -ACGGAATTGCACCGTTCACAACCT -ACGGAATTGCACCGTTCAGCTACT -ACGGAATTGCACCGTTCAGGATCT -ACGGAATTGCACCGTTCAAAGGCT -ACGGAATTGCACCGTTCATCAACC -ACGGAATTGCACCGTTCATGTTCC -ACGGAATTGCACCGTTCAATTCCC -ACGGAATTGCACCGTTCATTCTCG -ACGGAATTGCACCGTTCATAGACG -ACGGAATTGCACCGTTCAGTAACG -ACGGAATTGCACCGTTCAACTTCG -ACGGAATTGCACCGTTCATACGCA -ACGGAATTGCACCGTTCACTTGCA -ACGGAATTGCACCGTTCACGAACA -ACGGAATTGCACCGTTCACAGTCA -ACGGAATTGCACCGTTCAGATCCA -ACGGAATTGCACCGTTCAACGACA -ACGGAATTGCACCGTTCAAGCTCA -ACGGAATTGCACCGTTCATCACGT -ACGGAATTGCACCGTTCACGTAGT -ACGGAATTGCACCGTTCAGTCAGT -ACGGAATTGCACCGTTCAGAAGGT -ACGGAATTGCACCGTTCAAACCGT -ACGGAATTGCACCGTTCATTGTGC -ACGGAATTGCACCGTTCACTAAGC -ACGGAATTGCACCGTTCAACTAGC -ACGGAATTGCACCGTTCAAGATGC -ACGGAATTGCACCGTTCATGAAGG -ACGGAATTGCACCGTTCACAATGG -ACGGAATTGCACCGTTCAATGAGG -ACGGAATTGCACCGTTCAAATGGG -ACGGAATTGCACCGTTCATCCTGA -ACGGAATTGCACCGTTCATAGCGA -ACGGAATTGCACCGTTCACACAGA -ACGGAATTGCACCGTTCAGCAAGA -ACGGAATTGCACCGTTCAGGTTGA -ACGGAATTGCACCGTTCATCCGAT -ACGGAATTGCACCGTTCATGGCAT -ACGGAATTGCACCGTTCACGAGAT -ACGGAATTGCACCGTTCATACCAC -ACGGAATTGCACCGTTCACAGAAC -ACGGAATTGCACCGTTCAGTCTAC -ACGGAATTGCACCGTTCAACGTAC -ACGGAATTGCACCGTTCAAGTGAC -ACGGAATTGCACCGTTCACTGTAG -ACGGAATTGCACCGTTCACCTAAG -ACGGAATTGCACCGTTCAGTTCAG -ACGGAATTGCACCGTTCAGCATAG -ACGGAATTGCACCGTTCAGACAAG -ACGGAATTGCACCGTTCAAAGCAG -ACGGAATTGCACCGTTCACGTCAA -ACGGAATTGCACCGTTCAGCTGAA -ACGGAATTGCACCGTTCAAGTACG -ACGGAATTGCACCGTTCAATCCGA -ACGGAATTGCACCGTTCAATGGGA -ACGGAATTGCACCGTTCAGTGCAA -ACGGAATTGCACCGTTCAGAGGAA -ACGGAATTGCACCGTTCACAGGTA -ACGGAATTGCACCGTTCAGACTCT -ACGGAATTGCACCGTTCAAGTCCT -ACGGAATTGCACCGTTCATAAGCC -ACGGAATTGCACCGTTCAATAGCC -ACGGAATTGCACCGTTCATAACCG -ACGGAATTGCACCGTTCAATGCCA -ACGGAATTGCACAGTCGTGGAAAC -ACGGAATTGCACAGTCGTAACACC -ACGGAATTGCACAGTCGTATCGAG -ACGGAATTGCACAGTCGTCTCCTT -ACGGAATTGCACAGTCGTCCTGTT -ACGGAATTGCACAGTCGTCGGTTT -ACGGAATTGCACAGTCGTGTGGTT -ACGGAATTGCACAGTCGTGCCTTT -ACGGAATTGCACAGTCGTGGTCTT -ACGGAATTGCACAGTCGTACGCTT -ACGGAATTGCACAGTCGTAGCGTT -ACGGAATTGCACAGTCGTTTCGTC -ACGGAATTGCACAGTCGTTCTCTC -ACGGAATTGCACAGTCGTTGGATC -ACGGAATTGCACAGTCGTCACTTC -ACGGAATTGCACAGTCGTGTACTC -ACGGAATTGCACAGTCGTGATGTC -ACGGAATTGCACAGTCGTACAGTC -ACGGAATTGCACAGTCGTTTGCTG -ACGGAATTGCACAGTCGTTCCATG -ACGGAATTGCACAGTCGTTGTGTG -ACGGAATTGCACAGTCGTCTAGTG -ACGGAATTGCACAGTCGTCATCTG -ACGGAATTGCACAGTCGTGAGTTG -ACGGAATTGCACAGTCGTAGACTG -ACGGAATTGCACAGTCGTTCGGTA -ACGGAATTGCACAGTCGTTGCCTA -ACGGAATTGCACAGTCGTCCACTA -ACGGAATTGCACAGTCGTGGAGTA -ACGGAATTGCACAGTCGTTCGTCT -ACGGAATTGCACAGTCGTTGCACT -ACGGAATTGCACAGTCGTCTGACT -ACGGAATTGCACAGTCGTCAACCT -ACGGAATTGCACAGTCGTGCTACT -ACGGAATTGCACAGTCGTGGATCT -ACGGAATTGCACAGTCGTAAGGCT -ACGGAATTGCACAGTCGTTCAACC -ACGGAATTGCACAGTCGTTGTTCC -ACGGAATTGCACAGTCGTATTCCC -ACGGAATTGCACAGTCGTTTCTCG -ACGGAATTGCACAGTCGTTAGACG -ACGGAATTGCACAGTCGTGTAACG -ACGGAATTGCACAGTCGTACTTCG -ACGGAATTGCACAGTCGTTACGCA -ACGGAATTGCACAGTCGTCTTGCA -ACGGAATTGCACAGTCGTCGAACA -ACGGAATTGCACAGTCGTCAGTCA -ACGGAATTGCACAGTCGTGATCCA -ACGGAATTGCACAGTCGTACGACA -ACGGAATTGCACAGTCGTAGCTCA -ACGGAATTGCACAGTCGTTCACGT -ACGGAATTGCACAGTCGTCGTAGT -ACGGAATTGCACAGTCGTGTCAGT -ACGGAATTGCACAGTCGTGAAGGT -ACGGAATTGCACAGTCGTAACCGT -ACGGAATTGCACAGTCGTTTGTGC -ACGGAATTGCACAGTCGTCTAAGC -ACGGAATTGCACAGTCGTACTAGC -ACGGAATTGCACAGTCGTAGATGC -ACGGAATTGCACAGTCGTTGAAGG -ACGGAATTGCACAGTCGTCAATGG -ACGGAATTGCACAGTCGTATGAGG -ACGGAATTGCACAGTCGTAATGGG -ACGGAATTGCACAGTCGTTCCTGA -ACGGAATTGCACAGTCGTTAGCGA -ACGGAATTGCACAGTCGTCACAGA -ACGGAATTGCACAGTCGTGCAAGA -ACGGAATTGCACAGTCGTGGTTGA -ACGGAATTGCACAGTCGTTCCGAT -ACGGAATTGCACAGTCGTTGGCAT -ACGGAATTGCACAGTCGTCGAGAT -ACGGAATTGCACAGTCGTTACCAC -ACGGAATTGCACAGTCGTCAGAAC -ACGGAATTGCACAGTCGTGTCTAC -ACGGAATTGCACAGTCGTACGTAC -ACGGAATTGCACAGTCGTAGTGAC -ACGGAATTGCACAGTCGTCTGTAG -ACGGAATTGCACAGTCGTCCTAAG -ACGGAATTGCACAGTCGTGTTCAG -ACGGAATTGCACAGTCGTGCATAG -ACGGAATTGCACAGTCGTGACAAG -ACGGAATTGCACAGTCGTAAGCAG -ACGGAATTGCACAGTCGTCGTCAA -ACGGAATTGCACAGTCGTGCTGAA -ACGGAATTGCACAGTCGTAGTACG -ACGGAATTGCACAGTCGTATCCGA -ACGGAATTGCACAGTCGTATGGGA -ACGGAATTGCACAGTCGTGTGCAA -ACGGAATTGCACAGTCGTGAGGAA -ACGGAATTGCACAGTCGTCAGGTA -ACGGAATTGCACAGTCGTGACTCT -ACGGAATTGCACAGTCGTAGTCCT -ACGGAATTGCACAGTCGTTAAGCC -ACGGAATTGCACAGTCGTATAGCC -ACGGAATTGCACAGTCGTTAACCG -ACGGAATTGCACAGTCGTATGCCA -ACGGAATTGCACAGTGTCGGAAAC -ACGGAATTGCACAGTGTCAACACC -ACGGAATTGCACAGTGTCATCGAG -ACGGAATTGCACAGTGTCCTCCTT -ACGGAATTGCACAGTGTCCCTGTT -ACGGAATTGCACAGTGTCCGGTTT -ACGGAATTGCACAGTGTCGTGGTT -ACGGAATTGCACAGTGTCGCCTTT -ACGGAATTGCACAGTGTCGGTCTT -ACGGAATTGCACAGTGTCACGCTT -ACGGAATTGCACAGTGTCAGCGTT -ACGGAATTGCACAGTGTCTTCGTC -ACGGAATTGCACAGTGTCTCTCTC -ACGGAATTGCACAGTGTCTGGATC -ACGGAATTGCACAGTGTCCACTTC -ACGGAATTGCACAGTGTCGTACTC -ACGGAATTGCACAGTGTCGATGTC -ACGGAATTGCACAGTGTCACAGTC -ACGGAATTGCACAGTGTCTTGCTG -ACGGAATTGCACAGTGTCTCCATG -ACGGAATTGCACAGTGTCTGTGTG -ACGGAATTGCACAGTGTCCTAGTG -ACGGAATTGCACAGTGTCCATCTG -ACGGAATTGCACAGTGTCGAGTTG -ACGGAATTGCACAGTGTCAGACTG -ACGGAATTGCACAGTGTCTCGGTA -ACGGAATTGCACAGTGTCTGCCTA -ACGGAATTGCACAGTGTCCCACTA -ACGGAATTGCACAGTGTCGGAGTA -ACGGAATTGCACAGTGTCTCGTCT -ACGGAATTGCACAGTGTCTGCACT -ACGGAATTGCACAGTGTCCTGACT -ACGGAATTGCACAGTGTCCAACCT -ACGGAATTGCACAGTGTCGCTACT -ACGGAATTGCACAGTGTCGGATCT -ACGGAATTGCACAGTGTCAAGGCT -ACGGAATTGCACAGTGTCTCAACC -ACGGAATTGCACAGTGTCTGTTCC -ACGGAATTGCACAGTGTCATTCCC -ACGGAATTGCACAGTGTCTTCTCG -ACGGAATTGCACAGTGTCTAGACG -ACGGAATTGCACAGTGTCGTAACG -ACGGAATTGCACAGTGTCACTTCG -ACGGAATTGCACAGTGTCTACGCA -ACGGAATTGCACAGTGTCCTTGCA -ACGGAATTGCACAGTGTCCGAACA -ACGGAATTGCACAGTGTCCAGTCA -ACGGAATTGCACAGTGTCGATCCA -ACGGAATTGCACAGTGTCACGACA -ACGGAATTGCACAGTGTCAGCTCA -ACGGAATTGCACAGTGTCTCACGT -ACGGAATTGCACAGTGTCCGTAGT -ACGGAATTGCACAGTGTCGTCAGT -ACGGAATTGCACAGTGTCGAAGGT -ACGGAATTGCACAGTGTCAACCGT -ACGGAATTGCACAGTGTCTTGTGC -ACGGAATTGCACAGTGTCCTAAGC -ACGGAATTGCACAGTGTCACTAGC -ACGGAATTGCACAGTGTCAGATGC -ACGGAATTGCACAGTGTCTGAAGG -ACGGAATTGCACAGTGTCCAATGG -ACGGAATTGCACAGTGTCATGAGG -ACGGAATTGCACAGTGTCAATGGG -ACGGAATTGCACAGTGTCTCCTGA -ACGGAATTGCACAGTGTCTAGCGA -ACGGAATTGCACAGTGTCCACAGA -ACGGAATTGCACAGTGTCGCAAGA -ACGGAATTGCACAGTGTCGGTTGA -ACGGAATTGCACAGTGTCTCCGAT -ACGGAATTGCACAGTGTCTGGCAT -ACGGAATTGCACAGTGTCCGAGAT -ACGGAATTGCACAGTGTCTACCAC -ACGGAATTGCACAGTGTCCAGAAC -ACGGAATTGCACAGTGTCGTCTAC -ACGGAATTGCACAGTGTCACGTAC -ACGGAATTGCACAGTGTCAGTGAC -ACGGAATTGCACAGTGTCCTGTAG -ACGGAATTGCACAGTGTCCCTAAG -ACGGAATTGCACAGTGTCGTTCAG -ACGGAATTGCACAGTGTCGCATAG -ACGGAATTGCACAGTGTCGACAAG -ACGGAATTGCACAGTGTCAAGCAG -ACGGAATTGCACAGTGTCCGTCAA -ACGGAATTGCACAGTGTCGCTGAA -ACGGAATTGCACAGTGTCAGTACG -ACGGAATTGCACAGTGTCATCCGA -ACGGAATTGCACAGTGTCATGGGA -ACGGAATTGCACAGTGTCGTGCAA -ACGGAATTGCACAGTGTCGAGGAA -ACGGAATTGCACAGTGTCCAGGTA -ACGGAATTGCACAGTGTCGACTCT -ACGGAATTGCACAGTGTCAGTCCT -ACGGAATTGCACAGTGTCTAAGCC -ACGGAATTGCACAGTGTCATAGCC -ACGGAATTGCACAGTGTCTAACCG -ACGGAATTGCACAGTGTCATGCCA -ACGGAATTGCACGGTGAAGGAAAC -ACGGAATTGCACGGTGAAAACACC -ACGGAATTGCACGGTGAAATCGAG -ACGGAATTGCACGGTGAACTCCTT -ACGGAATTGCACGGTGAACCTGTT -ACGGAATTGCACGGTGAACGGTTT -ACGGAATTGCACGGTGAAGTGGTT -ACGGAATTGCACGGTGAAGCCTTT -ACGGAATTGCACGGTGAAGGTCTT -ACGGAATTGCACGGTGAAACGCTT -ACGGAATTGCACGGTGAAAGCGTT -ACGGAATTGCACGGTGAATTCGTC -ACGGAATTGCACGGTGAATCTCTC -ACGGAATTGCACGGTGAATGGATC -ACGGAATTGCACGGTGAACACTTC -ACGGAATTGCACGGTGAAGTACTC -ACGGAATTGCACGGTGAAGATGTC -ACGGAATTGCACGGTGAAACAGTC -ACGGAATTGCACGGTGAATTGCTG -ACGGAATTGCACGGTGAATCCATG -ACGGAATTGCACGGTGAATGTGTG -ACGGAATTGCACGGTGAACTAGTG -ACGGAATTGCACGGTGAACATCTG -ACGGAATTGCACGGTGAAGAGTTG -ACGGAATTGCACGGTGAAAGACTG -ACGGAATTGCACGGTGAATCGGTA -ACGGAATTGCACGGTGAATGCCTA -ACGGAATTGCACGGTGAACCACTA -ACGGAATTGCACGGTGAAGGAGTA -ACGGAATTGCACGGTGAATCGTCT -ACGGAATTGCACGGTGAATGCACT -ACGGAATTGCACGGTGAACTGACT -ACGGAATTGCACGGTGAACAACCT -ACGGAATTGCACGGTGAAGCTACT -ACGGAATTGCACGGTGAAGGATCT -ACGGAATTGCACGGTGAAAAGGCT -ACGGAATTGCACGGTGAATCAACC -ACGGAATTGCACGGTGAATGTTCC -ACGGAATTGCACGGTGAAATTCCC -ACGGAATTGCACGGTGAATTCTCG -ACGGAATTGCACGGTGAATAGACG -ACGGAATTGCACGGTGAAGTAACG -ACGGAATTGCACGGTGAAACTTCG -ACGGAATTGCACGGTGAATACGCA -ACGGAATTGCACGGTGAACTTGCA -ACGGAATTGCACGGTGAACGAACA -ACGGAATTGCACGGTGAACAGTCA -ACGGAATTGCACGGTGAAGATCCA -ACGGAATTGCACGGTGAAACGACA -ACGGAATTGCACGGTGAAAGCTCA -ACGGAATTGCACGGTGAATCACGT -ACGGAATTGCACGGTGAACGTAGT -ACGGAATTGCACGGTGAAGTCAGT -ACGGAATTGCACGGTGAAGAAGGT -ACGGAATTGCACGGTGAAAACCGT -ACGGAATTGCACGGTGAATTGTGC -ACGGAATTGCACGGTGAACTAAGC -ACGGAATTGCACGGTGAAACTAGC -ACGGAATTGCACGGTGAAAGATGC -ACGGAATTGCACGGTGAATGAAGG -ACGGAATTGCACGGTGAACAATGG -ACGGAATTGCACGGTGAAATGAGG -ACGGAATTGCACGGTGAAAATGGG -ACGGAATTGCACGGTGAATCCTGA -ACGGAATTGCACGGTGAATAGCGA -ACGGAATTGCACGGTGAACACAGA -ACGGAATTGCACGGTGAAGCAAGA -ACGGAATTGCACGGTGAAGGTTGA -ACGGAATTGCACGGTGAATCCGAT -ACGGAATTGCACGGTGAATGGCAT -ACGGAATTGCACGGTGAACGAGAT -ACGGAATTGCACGGTGAATACCAC -ACGGAATTGCACGGTGAACAGAAC -ACGGAATTGCACGGTGAAGTCTAC -ACGGAATTGCACGGTGAAACGTAC -ACGGAATTGCACGGTGAAAGTGAC -ACGGAATTGCACGGTGAACTGTAG -ACGGAATTGCACGGTGAACCTAAG -ACGGAATTGCACGGTGAAGTTCAG -ACGGAATTGCACGGTGAAGCATAG -ACGGAATTGCACGGTGAAGACAAG -ACGGAATTGCACGGTGAAAAGCAG -ACGGAATTGCACGGTGAACGTCAA -ACGGAATTGCACGGTGAAGCTGAA -ACGGAATTGCACGGTGAAAGTACG -ACGGAATTGCACGGTGAAATCCGA -ACGGAATTGCACGGTGAAATGGGA -ACGGAATTGCACGGTGAAGTGCAA -ACGGAATTGCACGGTGAAGAGGAA -ACGGAATTGCACGGTGAACAGGTA -ACGGAATTGCACGGTGAAGACTCT -ACGGAATTGCACGGTGAAAGTCCT -ACGGAATTGCACGGTGAATAAGCC -ACGGAATTGCACGGTGAAATAGCC -ACGGAATTGCACGGTGAATAACCG -ACGGAATTGCACGGTGAAATGCCA -ACGGAATTGCACCGTAACGGAAAC -ACGGAATTGCACCGTAACAACACC -ACGGAATTGCACCGTAACATCGAG -ACGGAATTGCACCGTAACCTCCTT -ACGGAATTGCACCGTAACCCTGTT -ACGGAATTGCACCGTAACCGGTTT -ACGGAATTGCACCGTAACGTGGTT -ACGGAATTGCACCGTAACGCCTTT -ACGGAATTGCACCGTAACGGTCTT -ACGGAATTGCACCGTAACACGCTT -ACGGAATTGCACCGTAACAGCGTT -ACGGAATTGCACCGTAACTTCGTC -ACGGAATTGCACCGTAACTCTCTC -ACGGAATTGCACCGTAACTGGATC -ACGGAATTGCACCGTAACCACTTC -ACGGAATTGCACCGTAACGTACTC -ACGGAATTGCACCGTAACGATGTC -ACGGAATTGCACCGTAACACAGTC -ACGGAATTGCACCGTAACTTGCTG -ACGGAATTGCACCGTAACTCCATG -ACGGAATTGCACCGTAACTGTGTG -ACGGAATTGCACCGTAACCTAGTG -ACGGAATTGCACCGTAACCATCTG -ACGGAATTGCACCGTAACGAGTTG -ACGGAATTGCACCGTAACAGACTG -ACGGAATTGCACCGTAACTCGGTA -ACGGAATTGCACCGTAACTGCCTA -ACGGAATTGCACCGTAACCCACTA -ACGGAATTGCACCGTAACGGAGTA -ACGGAATTGCACCGTAACTCGTCT -ACGGAATTGCACCGTAACTGCACT -ACGGAATTGCACCGTAACCTGACT -ACGGAATTGCACCGTAACCAACCT -ACGGAATTGCACCGTAACGCTACT -ACGGAATTGCACCGTAACGGATCT -ACGGAATTGCACCGTAACAAGGCT -ACGGAATTGCACCGTAACTCAACC -ACGGAATTGCACCGTAACTGTTCC -ACGGAATTGCACCGTAACATTCCC -ACGGAATTGCACCGTAACTTCTCG -ACGGAATTGCACCGTAACTAGACG -ACGGAATTGCACCGTAACGTAACG -ACGGAATTGCACCGTAACACTTCG -ACGGAATTGCACCGTAACTACGCA -ACGGAATTGCACCGTAACCTTGCA -ACGGAATTGCACCGTAACCGAACA -ACGGAATTGCACCGTAACCAGTCA -ACGGAATTGCACCGTAACGATCCA -ACGGAATTGCACCGTAACACGACA -ACGGAATTGCACCGTAACAGCTCA -ACGGAATTGCACCGTAACTCACGT -ACGGAATTGCACCGTAACCGTAGT -ACGGAATTGCACCGTAACGTCAGT -ACGGAATTGCACCGTAACGAAGGT -ACGGAATTGCACCGTAACAACCGT -ACGGAATTGCACCGTAACTTGTGC -ACGGAATTGCACCGTAACCTAAGC -ACGGAATTGCACCGTAACACTAGC -ACGGAATTGCACCGTAACAGATGC -ACGGAATTGCACCGTAACTGAAGG -ACGGAATTGCACCGTAACCAATGG -ACGGAATTGCACCGTAACATGAGG -ACGGAATTGCACCGTAACAATGGG -ACGGAATTGCACCGTAACTCCTGA -ACGGAATTGCACCGTAACTAGCGA -ACGGAATTGCACCGTAACCACAGA -ACGGAATTGCACCGTAACGCAAGA -ACGGAATTGCACCGTAACGGTTGA -ACGGAATTGCACCGTAACTCCGAT -ACGGAATTGCACCGTAACTGGCAT -ACGGAATTGCACCGTAACCGAGAT -ACGGAATTGCACCGTAACTACCAC -ACGGAATTGCACCGTAACCAGAAC -ACGGAATTGCACCGTAACGTCTAC -ACGGAATTGCACCGTAACACGTAC -ACGGAATTGCACCGTAACAGTGAC -ACGGAATTGCACCGTAACCTGTAG -ACGGAATTGCACCGTAACCCTAAG -ACGGAATTGCACCGTAACGTTCAG -ACGGAATTGCACCGTAACGCATAG -ACGGAATTGCACCGTAACGACAAG -ACGGAATTGCACCGTAACAAGCAG -ACGGAATTGCACCGTAACCGTCAA -ACGGAATTGCACCGTAACGCTGAA -ACGGAATTGCACCGTAACAGTACG -ACGGAATTGCACCGTAACATCCGA -ACGGAATTGCACCGTAACATGGGA -ACGGAATTGCACCGTAACGTGCAA -ACGGAATTGCACCGTAACGAGGAA -ACGGAATTGCACCGTAACCAGGTA -ACGGAATTGCACCGTAACGACTCT -ACGGAATTGCACCGTAACAGTCCT -ACGGAATTGCACCGTAACTAAGCC -ACGGAATTGCACCGTAACATAGCC -ACGGAATTGCACCGTAACTAACCG -ACGGAATTGCACCGTAACATGCCA -ACGGAATTGCACTGCTTGGGAAAC -ACGGAATTGCACTGCTTGAACACC -ACGGAATTGCACTGCTTGATCGAG -ACGGAATTGCACTGCTTGCTCCTT -ACGGAATTGCACTGCTTGCCTGTT -ACGGAATTGCACTGCTTGCGGTTT -ACGGAATTGCACTGCTTGGTGGTT -ACGGAATTGCACTGCTTGGCCTTT -ACGGAATTGCACTGCTTGGGTCTT -ACGGAATTGCACTGCTTGACGCTT -ACGGAATTGCACTGCTTGAGCGTT -ACGGAATTGCACTGCTTGTTCGTC -ACGGAATTGCACTGCTTGTCTCTC -ACGGAATTGCACTGCTTGTGGATC -ACGGAATTGCACTGCTTGCACTTC -ACGGAATTGCACTGCTTGGTACTC -ACGGAATTGCACTGCTTGGATGTC -ACGGAATTGCACTGCTTGACAGTC -ACGGAATTGCACTGCTTGTTGCTG -ACGGAATTGCACTGCTTGTCCATG -ACGGAATTGCACTGCTTGTGTGTG -ACGGAATTGCACTGCTTGCTAGTG -ACGGAATTGCACTGCTTGCATCTG -ACGGAATTGCACTGCTTGGAGTTG -ACGGAATTGCACTGCTTGAGACTG -ACGGAATTGCACTGCTTGTCGGTA -ACGGAATTGCACTGCTTGTGCCTA -ACGGAATTGCACTGCTTGCCACTA -ACGGAATTGCACTGCTTGGGAGTA -ACGGAATTGCACTGCTTGTCGTCT -ACGGAATTGCACTGCTTGTGCACT -ACGGAATTGCACTGCTTGCTGACT -ACGGAATTGCACTGCTTGCAACCT -ACGGAATTGCACTGCTTGGCTACT -ACGGAATTGCACTGCTTGGGATCT -ACGGAATTGCACTGCTTGAAGGCT -ACGGAATTGCACTGCTTGTCAACC -ACGGAATTGCACTGCTTGTGTTCC -ACGGAATTGCACTGCTTGATTCCC -ACGGAATTGCACTGCTTGTTCTCG -ACGGAATTGCACTGCTTGTAGACG -ACGGAATTGCACTGCTTGGTAACG -ACGGAATTGCACTGCTTGACTTCG -ACGGAATTGCACTGCTTGTACGCA -ACGGAATTGCACTGCTTGCTTGCA -ACGGAATTGCACTGCTTGCGAACA -ACGGAATTGCACTGCTTGCAGTCA -ACGGAATTGCACTGCTTGGATCCA -ACGGAATTGCACTGCTTGACGACA -ACGGAATTGCACTGCTTGAGCTCA -ACGGAATTGCACTGCTTGTCACGT -ACGGAATTGCACTGCTTGCGTAGT -ACGGAATTGCACTGCTTGGTCAGT -ACGGAATTGCACTGCTTGGAAGGT -ACGGAATTGCACTGCTTGAACCGT -ACGGAATTGCACTGCTTGTTGTGC -ACGGAATTGCACTGCTTGCTAAGC -ACGGAATTGCACTGCTTGACTAGC -ACGGAATTGCACTGCTTGAGATGC -ACGGAATTGCACTGCTTGTGAAGG -ACGGAATTGCACTGCTTGCAATGG -ACGGAATTGCACTGCTTGATGAGG -ACGGAATTGCACTGCTTGAATGGG -ACGGAATTGCACTGCTTGTCCTGA -ACGGAATTGCACTGCTTGTAGCGA -ACGGAATTGCACTGCTTGCACAGA -ACGGAATTGCACTGCTTGGCAAGA -ACGGAATTGCACTGCTTGGGTTGA -ACGGAATTGCACTGCTTGTCCGAT -ACGGAATTGCACTGCTTGTGGCAT -ACGGAATTGCACTGCTTGCGAGAT -ACGGAATTGCACTGCTTGTACCAC -ACGGAATTGCACTGCTTGCAGAAC -ACGGAATTGCACTGCTTGGTCTAC -ACGGAATTGCACTGCTTGACGTAC -ACGGAATTGCACTGCTTGAGTGAC -ACGGAATTGCACTGCTTGCTGTAG -ACGGAATTGCACTGCTTGCCTAAG -ACGGAATTGCACTGCTTGGTTCAG -ACGGAATTGCACTGCTTGGCATAG -ACGGAATTGCACTGCTTGGACAAG -ACGGAATTGCACTGCTTGAAGCAG -ACGGAATTGCACTGCTTGCGTCAA -ACGGAATTGCACTGCTTGGCTGAA -ACGGAATTGCACTGCTTGAGTACG -ACGGAATTGCACTGCTTGATCCGA -ACGGAATTGCACTGCTTGATGGGA -ACGGAATTGCACTGCTTGGTGCAA -ACGGAATTGCACTGCTTGGAGGAA -ACGGAATTGCACTGCTTGCAGGTA -ACGGAATTGCACTGCTTGGACTCT -ACGGAATTGCACTGCTTGAGTCCT -ACGGAATTGCACTGCTTGTAAGCC -ACGGAATTGCACTGCTTGATAGCC -ACGGAATTGCACTGCTTGTAACCG -ACGGAATTGCACTGCTTGATGCCA -ACGGAATTGCACAGCCTAGGAAAC -ACGGAATTGCACAGCCTAAACACC -ACGGAATTGCACAGCCTAATCGAG -ACGGAATTGCACAGCCTACTCCTT -ACGGAATTGCACAGCCTACCTGTT -ACGGAATTGCACAGCCTACGGTTT -ACGGAATTGCACAGCCTAGTGGTT -ACGGAATTGCACAGCCTAGCCTTT -ACGGAATTGCACAGCCTAGGTCTT -ACGGAATTGCACAGCCTAACGCTT -ACGGAATTGCACAGCCTAAGCGTT -ACGGAATTGCACAGCCTATTCGTC -ACGGAATTGCACAGCCTATCTCTC -ACGGAATTGCACAGCCTATGGATC -ACGGAATTGCACAGCCTACACTTC -ACGGAATTGCACAGCCTAGTACTC -ACGGAATTGCACAGCCTAGATGTC -ACGGAATTGCACAGCCTAACAGTC -ACGGAATTGCACAGCCTATTGCTG -ACGGAATTGCACAGCCTATCCATG -ACGGAATTGCACAGCCTATGTGTG -ACGGAATTGCACAGCCTACTAGTG -ACGGAATTGCACAGCCTACATCTG -ACGGAATTGCACAGCCTAGAGTTG -ACGGAATTGCACAGCCTAAGACTG -ACGGAATTGCACAGCCTATCGGTA -ACGGAATTGCACAGCCTATGCCTA -ACGGAATTGCACAGCCTACCACTA -ACGGAATTGCACAGCCTAGGAGTA -ACGGAATTGCACAGCCTATCGTCT -ACGGAATTGCACAGCCTATGCACT -ACGGAATTGCACAGCCTACTGACT -ACGGAATTGCACAGCCTACAACCT -ACGGAATTGCACAGCCTAGCTACT -ACGGAATTGCACAGCCTAGGATCT -ACGGAATTGCACAGCCTAAAGGCT -ACGGAATTGCACAGCCTATCAACC -ACGGAATTGCACAGCCTATGTTCC -ACGGAATTGCACAGCCTAATTCCC -ACGGAATTGCACAGCCTATTCTCG -ACGGAATTGCACAGCCTATAGACG -ACGGAATTGCACAGCCTAGTAACG -ACGGAATTGCACAGCCTAACTTCG -ACGGAATTGCACAGCCTATACGCA -ACGGAATTGCACAGCCTACTTGCA -ACGGAATTGCACAGCCTACGAACA -ACGGAATTGCACAGCCTACAGTCA -ACGGAATTGCACAGCCTAGATCCA -ACGGAATTGCACAGCCTAACGACA -ACGGAATTGCACAGCCTAAGCTCA -ACGGAATTGCACAGCCTATCACGT -ACGGAATTGCACAGCCTACGTAGT -ACGGAATTGCACAGCCTAGTCAGT -ACGGAATTGCACAGCCTAGAAGGT -ACGGAATTGCACAGCCTAAACCGT -ACGGAATTGCACAGCCTATTGTGC -ACGGAATTGCACAGCCTACTAAGC -ACGGAATTGCACAGCCTAACTAGC -ACGGAATTGCACAGCCTAAGATGC -ACGGAATTGCACAGCCTATGAAGG -ACGGAATTGCACAGCCTACAATGG -ACGGAATTGCACAGCCTAATGAGG -ACGGAATTGCACAGCCTAAATGGG -ACGGAATTGCACAGCCTATCCTGA -ACGGAATTGCACAGCCTATAGCGA -ACGGAATTGCACAGCCTACACAGA -ACGGAATTGCACAGCCTAGCAAGA -ACGGAATTGCACAGCCTAGGTTGA -ACGGAATTGCACAGCCTATCCGAT -ACGGAATTGCACAGCCTATGGCAT -ACGGAATTGCACAGCCTACGAGAT -ACGGAATTGCACAGCCTATACCAC -ACGGAATTGCACAGCCTACAGAAC -ACGGAATTGCACAGCCTAGTCTAC -ACGGAATTGCACAGCCTAACGTAC -ACGGAATTGCACAGCCTAAGTGAC -ACGGAATTGCACAGCCTACTGTAG -ACGGAATTGCACAGCCTACCTAAG -ACGGAATTGCACAGCCTAGTTCAG -ACGGAATTGCACAGCCTAGCATAG -ACGGAATTGCACAGCCTAGACAAG -ACGGAATTGCACAGCCTAAAGCAG -ACGGAATTGCACAGCCTACGTCAA -ACGGAATTGCACAGCCTAGCTGAA -ACGGAATTGCACAGCCTAAGTACG -ACGGAATTGCACAGCCTAATCCGA -ACGGAATTGCACAGCCTAATGGGA -ACGGAATTGCACAGCCTAGTGCAA -ACGGAATTGCACAGCCTAGAGGAA -ACGGAATTGCACAGCCTACAGGTA -ACGGAATTGCACAGCCTAGACTCT -ACGGAATTGCACAGCCTAAGTCCT -ACGGAATTGCACAGCCTATAAGCC -ACGGAATTGCACAGCCTAATAGCC -ACGGAATTGCACAGCCTATAACCG -ACGGAATTGCACAGCCTAATGCCA -ACGGAATTGCACAGCACTGGAAAC -ACGGAATTGCACAGCACTAACACC -ACGGAATTGCACAGCACTATCGAG -ACGGAATTGCACAGCACTCTCCTT -ACGGAATTGCACAGCACTCCTGTT -ACGGAATTGCACAGCACTCGGTTT -ACGGAATTGCACAGCACTGTGGTT -ACGGAATTGCACAGCACTGCCTTT -ACGGAATTGCACAGCACTGGTCTT -ACGGAATTGCACAGCACTACGCTT -ACGGAATTGCACAGCACTAGCGTT -ACGGAATTGCACAGCACTTTCGTC -ACGGAATTGCACAGCACTTCTCTC -ACGGAATTGCACAGCACTTGGATC -ACGGAATTGCACAGCACTCACTTC -ACGGAATTGCACAGCACTGTACTC -ACGGAATTGCACAGCACTGATGTC -ACGGAATTGCACAGCACTACAGTC -ACGGAATTGCACAGCACTTTGCTG -ACGGAATTGCACAGCACTTCCATG -ACGGAATTGCACAGCACTTGTGTG -ACGGAATTGCACAGCACTCTAGTG -ACGGAATTGCACAGCACTCATCTG -ACGGAATTGCACAGCACTGAGTTG -ACGGAATTGCACAGCACTAGACTG -ACGGAATTGCACAGCACTTCGGTA -ACGGAATTGCACAGCACTTGCCTA -ACGGAATTGCACAGCACTCCACTA -ACGGAATTGCACAGCACTGGAGTA -ACGGAATTGCACAGCACTTCGTCT -ACGGAATTGCACAGCACTTGCACT -ACGGAATTGCACAGCACTCTGACT -ACGGAATTGCACAGCACTCAACCT -ACGGAATTGCACAGCACTGCTACT -ACGGAATTGCACAGCACTGGATCT -ACGGAATTGCACAGCACTAAGGCT -ACGGAATTGCACAGCACTTCAACC -ACGGAATTGCACAGCACTTGTTCC -ACGGAATTGCACAGCACTATTCCC -ACGGAATTGCACAGCACTTTCTCG -ACGGAATTGCACAGCACTTAGACG -ACGGAATTGCACAGCACTGTAACG -ACGGAATTGCACAGCACTACTTCG -ACGGAATTGCACAGCACTTACGCA -ACGGAATTGCACAGCACTCTTGCA -ACGGAATTGCACAGCACTCGAACA -ACGGAATTGCACAGCACTCAGTCA -ACGGAATTGCACAGCACTGATCCA -ACGGAATTGCACAGCACTACGACA -ACGGAATTGCACAGCACTAGCTCA -ACGGAATTGCACAGCACTTCACGT -ACGGAATTGCACAGCACTCGTAGT -ACGGAATTGCACAGCACTGTCAGT -ACGGAATTGCACAGCACTGAAGGT -ACGGAATTGCACAGCACTAACCGT -ACGGAATTGCACAGCACTTTGTGC -ACGGAATTGCACAGCACTCTAAGC -ACGGAATTGCACAGCACTACTAGC -ACGGAATTGCACAGCACTAGATGC -ACGGAATTGCACAGCACTTGAAGG -ACGGAATTGCACAGCACTCAATGG -ACGGAATTGCACAGCACTATGAGG -ACGGAATTGCACAGCACTAATGGG -ACGGAATTGCACAGCACTTCCTGA -ACGGAATTGCACAGCACTTAGCGA -ACGGAATTGCACAGCACTCACAGA -ACGGAATTGCACAGCACTGCAAGA -ACGGAATTGCACAGCACTGGTTGA -ACGGAATTGCACAGCACTTCCGAT -ACGGAATTGCACAGCACTTGGCAT -ACGGAATTGCACAGCACTCGAGAT -ACGGAATTGCACAGCACTTACCAC -ACGGAATTGCACAGCACTCAGAAC -ACGGAATTGCACAGCACTGTCTAC -ACGGAATTGCACAGCACTACGTAC -ACGGAATTGCACAGCACTAGTGAC -ACGGAATTGCACAGCACTCTGTAG -ACGGAATTGCACAGCACTCCTAAG -ACGGAATTGCACAGCACTGTTCAG -ACGGAATTGCACAGCACTGCATAG -ACGGAATTGCACAGCACTGACAAG -ACGGAATTGCACAGCACTAAGCAG -ACGGAATTGCACAGCACTCGTCAA -ACGGAATTGCACAGCACTGCTGAA -ACGGAATTGCACAGCACTAGTACG -ACGGAATTGCACAGCACTATCCGA -ACGGAATTGCACAGCACTATGGGA -ACGGAATTGCACAGCACTGTGCAA -ACGGAATTGCACAGCACTGAGGAA -ACGGAATTGCACAGCACTCAGGTA -ACGGAATTGCACAGCACTGACTCT -ACGGAATTGCACAGCACTAGTCCT -ACGGAATTGCACAGCACTTAAGCC -ACGGAATTGCACAGCACTATAGCC -ACGGAATTGCACAGCACTTAACCG -ACGGAATTGCACAGCACTATGCCA -ACGGAATTGCACTGCAGAGGAAAC -ACGGAATTGCACTGCAGAAACACC -ACGGAATTGCACTGCAGAATCGAG -ACGGAATTGCACTGCAGACTCCTT -ACGGAATTGCACTGCAGACCTGTT -ACGGAATTGCACTGCAGACGGTTT -ACGGAATTGCACTGCAGAGTGGTT -ACGGAATTGCACTGCAGAGCCTTT -ACGGAATTGCACTGCAGAGGTCTT -ACGGAATTGCACTGCAGAACGCTT -ACGGAATTGCACTGCAGAAGCGTT -ACGGAATTGCACTGCAGATTCGTC -ACGGAATTGCACTGCAGATCTCTC -ACGGAATTGCACTGCAGATGGATC -ACGGAATTGCACTGCAGACACTTC -ACGGAATTGCACTGCAGAGTACTC -ACGGAATTGCACTGCAGAGATGTC -ACGGAATTGCACTGCAGAACAGTC -ACGGAATTGCACTGCAGATTGCTG -ACGGAATTGCACTGCAGATCCATG -ACGGAATTGCACTGCAGATGTGTG -ACGGAATTGCACTGCAGACTAGTG -ACGGAATTGCACTGCAGACATCTG -ACGGAATTGCACTGCAGAGAGTTG -ACGGAATTGCACTGCAGAAGACTG -ACGGAATTGCACTGCAGATCGGTA -ACGGAATTGCACTGCAGATGCCTA -ACGGAATTGCACTGCAGACCACTA -ACGGAATTGCACTGCAGAGGAGTA -ACGGAATTGCACTGCAGATCGTCT -ACGGAATTGCACTGCAGATGCACT -ACGGAATTGCACTGCAGACTGACT -ACGGAATTGCACTGCAGACAACCT -ACGGAATTGCACTGCAGAGCTACT -ACGGAATTGCACTGCAGAGGATCT -ACGGAATTGCACTGCAGAAAGGCT -ACGGAATTGCACTGCAGATCAACC -ACGGAATTGCACTGCAGATGTTCC -ACGGAATTGCACTGCAGAATTCCC -ACGGAATTGCACTGCAGATTCTCG -ACGGAATTGCACTGCAGATAGACG -ACGGAATTGCACTGCAGAGTAACG -ACGGAATTGCACTGCAGAACTTCG -ACGGAATTGCACTGCAGATACGCA -ACGGAATTGCACTGCAGACTTGCA -ACGGAATTGCACTGCAGACGAACA -ACGGAATTGCACTGCAGACAGTCA -ACGGAATTGCACTGCAGAGATCCA -ACGGAATTGCACTGCAGAACGACA -ACGGAATTGCACTGCAGAAGCTCA -ACGGAATTGCACTGCAGATCACGT -ACGGAATTGCACTGCAGACGTAGT -ACGGAATTGCACTGCAGAGTCAGT -ACGGAATTGCACTGCAGAGAAGGT -ACGGAATTGCACTGCAGAAACCGT -ACGGAATTGCACTGCAGATTGTGC -ACGGAATTGCACTGCAGACTAAGC -ACGGAATTGCACTGCAGAACTAGC -ACGGAATTGCACTGCAGAAGATGC -ACGGAATTGCACTGCAGATGAAGG -ACGGAATTGCACTGCAGACAATGG -ACGGAATTGCACTGCAGAATGAGG -ACGGAATTGCACTGCAGAAATGGG -ACGGAATTGCACTGCAGATCCTGA -ACGGAATTGCACTGCAGATAGCGA -ACGGAATTGCACTGCAGACACAGA -ACGGAATTGCACTGCAGAGCAAGA -ACGGAATTGCACTGCAGAGGTTGA -ACGGAATTGCACTGCAGATCCGAT -ACGGAATTGCACTGCAGATGGCAT -ACGGAATTGCACTGCAGACGAGAT -ACGGAATTGCACTGCAGATACCAC -ACGGAATTGCACTGCAGACAGAAC -ACGGAATTGCACTGCAGAGTCTAC -ACGGAATTGCACTGCAGAACGTAC -ACGGAATTGCACTGCAGAAGTGAC -ACGGAATTGCACTGCAGACTGTAG -ACGGAATTGCACTGCAGACCTAAG -ACGGAATTGCACTGCAGAGTTCAG -ACGGAATTGCACTGCAGAGCATAG -ACGGAATTGCACTGCAGAGACAAG -ACGGAATTGCACTGCAGAAAGCAG -ACGGAATTGCACTGCAGACGTCAA -ACGGAATTGCACTGCAGAGCTGAA -ACGGAATTGCACTGCAGAAGTACG -ACGGAATTGCACTGCAGAATCCGA -ACGGAATTGCACTGCAGAATGGGA -ACGGAATTGCACTGCAGAGTGCAA -ACGGAATTGCACTGCAGAGAGGAA -ACGGAATTGCACTGCAGACAGGTA -ACGGAATTGCACTGCAGAGACTCT -ACGGAATTGCACTGCAGAAGTCCT -ACGGAATTGCACTGCAGATAAGCC -ACGGAATTGCACTGCAGAATAGCC -ACGGAATTGCACTGCAGATAACCG -ACGGAATTGCACTGCAGAATGCCA -ACGGAATTGCACAGGTGAGGAAAC -ACGGAATTGCACAGGTGAAACACC -ACGGAATTGCACAGGTGAATCGAG -ACGGAATTGCACAGGTGACTCCTT -ACGGAATTGCACAGGTGACCTGTT -ACGGAATTGCACAGGTGACGGTTT -ACGGAATTGCACAGGTGAGTGGTT -ACGGAATTGCACAGGTGAGCCTTT -ACGGAATTGCACAGGTGAGGTCTT -ACGGAATTGCACAGGTGAACGCTT -ACGGAATTGCACAGGTGAAGCGTT -ACGGAATTGCACAGGTGATTCGTC -ACGGAATTGCACAGGTGATCTCTC -ACGGAATTGCACAGGTGATGGATC -ACGGAATTGCACAGGTGACACTTC -ACGGAATTGCACAGGTGAGTACTC -ACGGAATTGCACAGGTGAGATGTC -ACGGAATTGCACAGGTGAACAGTC -ACGGAATTGCACAGGTGATTGCTG -ACGGAATTGCACAGGTGATCCATG -ACGGAATTGCACAGGTGATGTGTG -ACGGAATTGCACAGGTGACTAGTG -ACGGAATTGCACAGGTGACATCTG -ACGGAATTGCACAGGTGAGAGTTG -ACGGAATTGCACAGGTGAAGACTG -ACGGAATTGCACAGGTGATCGGTA -ACGGAATTGCACAGGTGATGCCTA -ACGGAATTGCACAGGTGACCACTA -ACGGAATTGCACAGGTGAGGAGTA -ACGGAATTGCACAGGTGATCGTCT -ACGGAATTGCACAGGTGATGCACT -ACGGAATTGCACAGGTGACTGACT -ACGGAATTGCACAGGTGACAACCT -ACGGAATTGCACAGGTGAGCTACT -ACGGAATTGCACAGGTGAGGATCT -ACGGAATTGCACAGGTGAAAGGCT -ACGGAATTGCACAGGTGATCAACC -ACGGAATTGCACAGGTGATGTTCC -ACGGAATTGCACAGGTGAATTCCC -ACGGAATTGCACAGGTGATTCTCG -ACGGAATTGCACAGGTGATAGACG -ACGGAATTGCACAGGTGAGTAACG -ACGGAATTGCACAGGTGAACTTCG -ACGGAATTGCACAGGTGATACGCA -ACGGAATTGCACAGGTGACTTGCA -ACGGAATTGCACAGGTGACGAACA -ACGGAATTGCACAGGTGACAGTCA -ACGGAATTGCACAGGTGAGATCCA -ACGGAATTGCACAGGTGAACGACA -ACGGAATTGCACAGGTGAAGCTCA -ACGGAATTGCACAGGTGATCACGT -ACGGAATTGCACAGGTGACGTAGT -ACGGAATTGCACAGGTGAGTCAGT -ACGGAATTGCACAGGTGAGAAGGT -ACGGAATTGCACAGGTGAAACCGT -ACGGAATTGCACAGGTGATTGTGC -ACGGAATTGCACAGGTGACTAAGC -ACGGAATTGCACAGGTGAACTAGC -ACGGAATTGCACAGGTGAAGATGC -ACGGAATTGCACAGGTGATGAAGG -ACGGAATTGCACAGGTGACAATGG -ACGGAATTGCACAGGTGAATGAGG -ACGGAATTGCACAGGTGAAATGGG -ACGGAATTGCACAGGTGATCCTGA -ACGGAATTGCACAGGTGATAGCGA -ACGGAATTGCACAGGTGACACAGA -ACGGAATTGCACAGGTGAGCAAGA -ACGGAATTGCACAGGTGAGGTTGA -ACGGAATTGCACAGGTGATCCGAT -ACGGAATTGCACAGGTGATGGCAT -ACGGAATTGCACAGGTGACGAGAT -ACGGAATTGCACAGGTGATACCAC -ACGGAATTGCACAGGTGACAGAAC -ACGGAATTGCACAGGTGAGTCTAC -ACGGAATTGCACAGGTGAACGTAC -ACGGAATTGCACAGGTGAAGTGAC -ACGGAATTGCACAGGTGACTGTAG -ACGGAATTGCACAGGTGACCTAAG -ACGGAATTGCACAGGTGAGTTCAG -ACGGAATTGCACAGGTGAGCATAG -ACGGAATTGCACAGGTGAGACAAG -ACGGAATTGCACAGGTGAAAGCAG -ACGGAATTGCACAGGTGACGTCAA -ACGGAATTGCACAGGTGAGCTGAA -ACGGAATTGCACAGGTGAAGTACG -ACGGAATTGCACAGGTGAATCCGA -ACGGAATTGCACAGGTGAATGGGA -ACGGAATTGCACAGGTGAGTGCAA -ACGGAATTGCACAGGTGAGAGGAA -ACGGAATTGCACAGGTGACAGGTA -ACGGAATTGCACAGGTGAGACTCT -ACGGAATTGCACAGGTGAAGTCCT -ACGGAATTGCACAGGTGATAAGCC -ACGGAATTGCACAGGTGAATAGCC -ACGGAATTGCACAGGTGATAACCG -ACGGAATTGCACAGGTGAATGCCA -ACGGAATTGCACTGGCAAGGAAAC -ACGGAATTGCACTGGCAAAACACC -ACGGAATTGCACTGGCAAATCGAG -ACGGAATTGCACTGGCAACTCCTT -ACGGAATTGCACTGGCAACCTGTT -ACGGAATTGCACTGGCAACGGTTT -ACGGAATTGCACTGGCAAGTGGTT -ACGGAATTGCACTGGCAAGCCTTT -ACGGAATTGCACTGGCAAGGTCTT -ACGGAATTGCACTGGCAAACGCTT -ACGGAATTGCACTGGCAAAGCGTT -ACGGAATTGCACTGGCAATTCGTC -ACGGAATTGCACTGGCAATCTCTC -ACGGAATTGCACTGGCAATGGATC -ACGGAATTGCACTGGCAACACTTC -ACGGAATTGCACTGGCAAGTACTC -ACGGAATTGCACTGGCAAGATGTC -ACGGAATTGCACTGGCAAACAGTC -ACGGAATTGCACTGGCAATTGCTG -ACGGAATTGCACTGGCAATCCATG -ACGGAATTGCACTGGCAATGTGTG -ACGGAATTGCACTGGCAACTAGTG -ACGGAATTGCACTGGCAACATCTG -ACGGAATTGCACTGGCAAGAGTTG -ACGGAATTGCACTGGCAAAGACTG -ACGGAATTGCACTGGCAATCGGTA -ACGGAATTGCACTGGCAATGCCTA -ACGGAATTGCACTGGCAACCACTA -ACGGAATTGCACTGGCAAGGAGTA -ACGGAATTGCACTGGCAATCGTCT -ACGGAATTGCACTGGCAATGCACT -ACGGAATTGCACTGGCAACTGACT -ACGGAATTGCACTGGCAACAACCT -ACGGAATTGCACTGGCAAGCTACT -ACGGAATTGCACTGGCAAGGATCT -ACGGAATTGCACTGGCAAAAGGCT -ACGGAATTGCACTGGCAATCAACC -ACGGAATTGCACTGGCAATGTTCC -ACGGAATTGCACTGGCAAATTCCC -ACGGAATTGCACTGGCAATTCTCG -ACGGAATTGCACTGGCAATAGACG -ACGGAATTGCACTGGCAAGTAACG -ACGGAATTGCACTGGCAAACTTCG -ACGGAATTGCACTGGCAATACGCA -ACGGAATTGCACTGGCAACTTGCA -ACGGAATTGCACTGGCAACGAACA -ACGGAATTGCACTGGCAACAGTCA -ACGGAATTGCACTGGCAAGATCCA -ACGGAATTGCACTGGCAAACGACA -ACGGAATTGCACTGGCAAAGCTCA -ACGGAATTGCACTGGCAATCACGT -ACGGAATTGCACTGGCAACGTAGT -ACGGAATTGCACTGGCAAGTCAGT -ACGGAATTGCACTGGCAAGAAGGT -ACGGAATTGCACTGGCAAAACCGT -ACGGAATTGCACTGGCAATTGTGC -ACGGAATTGCACTGGCAACTAAGC -ACGGAATTGCACTGGCAAACTAGC -ACGGAATTGCACTGGCAAAGATGC -ACGGAATTGCACTGGCAATGAAGG -ACGGAATTGCACTGGCAACAATGG -ACGGAATTGCACTGGCAAATGAGG -ACGGAATTGCACTGGCAAAATGGG -ACGGAATTGCACTGGCAATCCTGA -ACGGAATTGCACTGGCAATAGCGA -ACGGAATTGCACTGGCAACACAGA -ACGGAATTGCACTGGCAAGCAAGA -ACGGAATTGCACTGGCAAGGTTGA -ACGGAATTGCACTGGCAATCCGAT -ACGGAATTGCACTGGCAATGGCAT -ACGGAATTGCACTGGCAACGAGAT -ACGGAATTGCACTGGCAATACCAC -ACGGAATTGCACTGGCAACAGAAC -ACGGAATTGCACTGGCAAGTCTAC -ACGGAATTGCACTGGCAAACGTAC -ACGGAATTGCACTGGCAAAGTGAC -ACGGAATTGCACTGGCAACTGTAG -ACGGAATTGCACTGGCAACCTAAG -ACGGAATTGCACTGGCAAGTTCAG -ACGGAATTGCACTGGCAAGCATAG -ACGGAATTGCACTGGCAAGACAAG -ACGGAATTGCACTGGCAAAAGCAG -ACGGAATTGCACTGGCAACGTCAA -ACGGAATTGCACTGGCAAGCTGAA -ACGGAATTGCACTGGCAAAGTACG -ACGGAATTGCACTGGCAAATCCGA -ACGGAATTGCACTGGCAAATGGGA -ACGGAATTGCACTGGCAAGTGCAA -ACGGAATTGCACTGGCAAGAGGAA -ACGGAATTGCACTGGCAACAGGTA -ACGGAATTGCACTGGCAAGACTCT -ACGGAATTGCACTGGCAAAGTCCT -ACGGAATTGCACTGGCAATAAGCC -ACGGAATTGCACTGGCAAATAGCC -ACGGAATTGCACTGGCAATAACCG -ACGGAATTGCACTGGCAAATGCCA -ACGGAATTGCACAGGATGGGAAAC -ACGGAATTGCACAGGATGAACACC -ACGGAATTGCACAGGATGATCGAG -ACGGAATTGCACAGGATGCTCCTT -ACGGAATTGCACAGGATGCCTGTT -ACGGAATTGCACAGGATGCGGTTT -ACGGAATTGCACAGGATGGTGGTT -ACGGAATTGCACAGGATGGCCTTT -ACGGAATTGCACAGGATGGGTCTT -ACGGAATTGCACAGGATGACGCTT -ACGGAATTGCACAGGATGAGCGTT -ACGGAATTGCACAGGATGTTCGTC -ACGGAATTGCACAGGATGTCTCTC -ACGGAATTGCACAGGATGTGGATC -ACGGAATTGCACAGGATGCACTTC -ACGGAATTGCACAGGATGGTACTC -ACGGAATTGCACAGGATGGATGTC -ACGGAATTGCACAGGATGACAGTC -ACGGAATTGCACAGGATGTTGCTG -ACGGAATTGCACAGGATGTCCATG -ACGGAATTGCACAGGATGTGTGTG -ACGGAATTGCACAGGATGCTAGTG -ACGGAATTGCACAGGATGCATCTG -ACGGAATTGCACAGGATGGAGTTG -ACGGAATTGCACAGGATGAGACTG -ACGGAATTGCACAGGATGTCGGTA -ACGGAATTGCACAGGATGTGCCTA -ACGGAATTGCACAGGATGCCACTA -ACGGAATTGCACAGGATGGGAGTA -ACGGAATTGCACAGGATGTCGTCT -ACGGAATTGCACAGGATGTGCACT -ACGGAATTGCACAGGATGCTGACT -ACGGAATTGCACAGGATGCAACCT -ACGGAATTGCACAGGATGGCTACT -ACGGAATTGCACAGGATGGGATCT -ACGGAATTGCACAGGATGAAGGCT -ACGGAATTGCACAGGATGTCAACC -ACGGAATTGCACAGGATGTGTTCC -ACGGAATTGCACAGGATGATTCCC -ACGGAATTGCACAGGATGTTCTCG -ACGGAATTGCACAGGATGTAGACG -ACGGAATTGCACAGGATGGTAACG -ACGGAATTGCACAGGATGACTTCG -ACGGAATTGCACAGGATGTACGCA -ACGGAATTGCACAGGATGCTTGCA -ACGGAATTGCACAGGATGCGAACA -ACGGAATTGCACAGGATGCAGTCA -ACGGAATTGCACAGGATGGATCCA -ACGGAATTGCACAGGATGACGACA -ACGGAATTGCACAGGATGAGCTCA -ACGGAATTGCACAGGATGTCACGT -ACGGAATTGCACAGGATGCGTAGT -ACGGAATTGCACAGGATGGTCAGT -ACGGAATTGCACAGGATGGAAGGT -ACGGAATTGCACAGGATGAACCGT -ACGGAATTGCACAGGATGTTGTGC -ACGGAATTGCACAGGATGCTAAGC -ACGGAATTGCACAGGATGACTAGC -ACGGAATTGCACAGGATGAGATGC -ACGGAATTGCACAGGATGTGAAGG -ACGGAATTGCACAGGATGCAATGG -ACGGAATTGCACAGGATGATGAGG -ACGGAATTGCACAGGATGAATGGG -ACGGAATTGCACAGGATGTCCTGA -ACGGAATTGCACAGGATGTAGCGA -ACGGAATTGCACAGGATGCACAGA -ACGGAATTGCACAGGATGGCAAGA -ACGGAATTGCACAGGATGGGTTGA -ACGGAATTGCACAGGATGTCCGAT -ACGGAATTGCACAGGATGTGGCAT -ACGGAATTGCACAGGATGCGAGAT -ACGGAATTGCACAGGATGTACCAC -ACGGAATTGCACAGGATGCAGAAC -ACGGAATTGCACAGGATGGTCTAC -ACGGAATTGCACAGGATGACGTAC -ACGGAATTGCACAGGATGAGTGAC -ACGGAATTGCACAGGATGCTGTAG -ACGGAATTGCACAGGATGCCTAAG -ACGGAATTGCACAGGATGGTTCAG -ACGGAATTGCACAGGATGGCATAG -ACGGAATTGCACAGGATGGACAAG -ACGGAATTGCACAGGATGAAGCAG -ACGGAATTGCACAGGATGCGTCAA -ACGGAATTGCACAGGATGGCTGAA -ACGGAATTGCACAGGATGAGTACG -ACGGAATTGCACAGGATGATCCGA -ACGGAATTGCACAGGATGATGGGA -ACGGAATTGCACAGGATGGTGCAA -ACGGAATTGCACAGGATGGAGGAA -ACGGAATTGCACAGGATGCAGGTA -ACGGAATTGCACAGGATGGACTCT -ACGGAATTGCACAGGATGAGTCCT -ACGGAATTGCACAGGATGTAAGCC -ACGGAATTGCACAGGATGATAGCC -ACGGAATTGCACAGGATGTAACCG -ACGGAATTGCACAGGATGATGCCA -ACGGAATTGCACGGGAATGGAAAC -ACGGAATTGCACGGGAATAACACC -ACGGAATTGCACGGGAATATCGAG -ACGGAATTGCACGGGAATCTCCTT -ACGGAATTGCACGGGAATCCTGTT -ACGGAATTGCACGGGAATCGGTTT -ACGGAATTGCACGGGAATGTGGTT -ACGGAATTGCACGGGAATGCCTTT -ACGGAATTGCACGGGAATGGTCTT -ACGGAATTGCACGGGAATACGCTT -ACGGAATTGCACGGGAATAGCGTT -ACGGAATTGCACGGGAATTTCGTC -ACGGAATTGCACGGGAATTCTCTC -ACGGAATTGCACGGGAATTGGATC -ACGGAATTGCACGGGAATCACTTC -ACGGAATTGCACGGGAATGTACTC -ACGGAATTGCACGGGAATGATGTC -ACGGAATTGCACGGGAATACAGTC -ACGGAATTGCACGGGAATTTGCTG -ACGGAATTGCACGGGAATTCCATG -ACGGAATTGCACGGGAATTGTGTG -ACGGAATTGCACGGGAATCTAGTG -ACGGAATTGCACGGGAATCATCTG -ACGGAATTGCACGGGAATGAGTTG -ACGGAATTGCACGGGAATAGACTG -ACGGAATTGCACGGGAATTCGGTA -ACGGAATTGCACGGGAATTGCCTA -ACGGAATTGCACGGGAATCCACTA -ACGGAATTGCACGGGAATGGAGTA -ACGGAATTGCACGGGAATTCGTCT -ACGGAATTGCACGGGAATTGCACT -ACGGAATTGCACGGGAATCTGACT -ACGGAATTGCACGGGAATCAACCT -ACGGAATTGCACGGGAATGCTACT -ACGGAATTGCACGGGAATGGATCT -ACGGAATTGCACGGGAATAAGGCT -ACGGAATTGCACGGGAATTCAACC -ACGGAATTGCACGGGAATTGTTCC -ACGGAATTGCACGGGAATATTCCC -ACGGAATTGCACGGGAATTTCTCG -ACGGAATTGCACGGGAATTAGACG -ACGGAATTGCACGGGAATGTAACG -ACGGAATTGCACGGGAATACTTCG -ACGGAATTGCACGGGAATTACGCA -ACGGAATTGCACGGGAATCTTGCA -ACGGAATTGCACGGGAATCGAACA -ACGGAATTGCACGGGAATCAGTCA -ACGGAATTGCACGGGAATGATCCA -ACGGAATTGCACGGGAATACGACA -ACGGAATTGCACGGGAATAGCTCA -ACGGAATTGCACGGGAATTCACGT -ACGGAATTGCACGGGAATCGTAGT -ACGGAATTGCACGGGAATGTCAGT -ACGGAATTGCACGGGAATGAAGGT -ACGGAATTGCACGGGAATAACCGT -ACGGAATTGCACGGGAATTTGTGC -ACGGAATTGCACGGGAATCTAAGC -ACGGAATTGCACGGGAATACTAGC -ACGGAATTGCACGGGAATAGATGC -ACGGAATTGCACGGGAATTGAAGG -ACGGAATTGCACGGGAATCAATGG -ACGGAATTGCACGGGAATATGAGG -ACGGAATTGCACGGGAATAATGGG -ACGGAATTGCACGGGAATTCCTGA -ACGGAATTGCACGGGAATTAGCGA -ACGGAATTGCACGGGAATCACAGA -ACGGAATTGCACGGGAATGCAAGA -ACGGAATTGCACGGGAATGGTTGA -ACGGAATTGCACGGGAATTCCGAT -ACGGAATTGCACGGGAATTGGCAT -ACGGAATTGCACGGGAATCGAGAT -ACGGAATTGCACGGGAATTACCAC -ACGGAATTGCACGGGAATCAGAAC -ACGGAATTGCACGGGAATGTCTAC -ACGGAATTGCACGGGAATACGTAC -ACGGAATTGCACGGGAATAGTGAC -ACGGAATTGCACGGGAATCTGTAG -ACGGAATTGCACGGGAATCCTAAG -ACGGAATTGCACGGGAATGTTCAG -ACGGAATTGCACGGGAATGCATAG -ACGGAATTGCACGGGAATGACAAG -ACGGAATTGCACGGGAATAAGCAG -ACGGAATTGCACGGGAATCGTCAA -ACGGAATTGCACGGGAATGCTGAA -ACGGAATTGCACGGGAATAGTACG -ACGGAATTGCACGGGAATATCCGA -ACGGAATTGCACGGGAATATGGGA -ACGGAATTGCACGGGAATGTGCAA -ACGGAATTGCACGGGAATGAGGAA -ACGGAATTGCACGGGAATCAGGTA -ACGGAATTGCACGGGAATGACTCT -ACGGAATTGCACGGGAATAGTCCT -ACGGAATTGCACGGGAATTAAGCC -ACGGAATTGCACGGGAATATAGCC -ACGGAATTGCACGGGAATTAACCG -ACGGAATTGCACGGGAATATGCCA -ACGGAATTGCACTGATCCGGAAAC -ACGGAATTGCACTGATCCAACACC -ACGGAATTGCACTGATCCATCGAG -ACGGAATTGCACTGATCCCTCCTT -ACGGAATTGCACTGATCCCCTGTT -ACGGAATTGCACTGATCCCGGTTT -ACGGAATTGCACTGATCCGTGGTT -ACGGAATTGCACTGATCCGCCTTT -ACGGAATTGCACTGATCCGGTCTT -ACGGAATTGCACTGATCCACGCTT -ACGGAATTGCACTGATCCAGCGTT -ACGGAATTGCACTGATCCTTCGTC -ACGGAATTGCACTGATCCTCTCTC -ACGGAATTGCACTGATCCTGGATC -ACGGAATTGCACTGATCCCACTTC -ACGGAATTGCACTGATCCGTACTC -ACGGAATTGCACTGATCCGATGTC -ACGGAATTGCACTGATCCACAGTC -ACGGAATTGCACTGATCCTTGCTG -ACGGAATTGCACTGATCCTCCATG -ACGGAATTGCACTGATCCTGTGTG -ACGGAATTGCACTGATCCCTAGTG -ACGGAATTGCACTGATCCCATCTG -ACGGAATTGCACTGATCCGAGTTG -ACGGAATTGCACTGATCCAGACTG -ACGGAATTGCACTGATCCTCGGTA -ACGGAATTGCACTGATCCTGCCTA -ACGGAATTGCACTGATCCCCACTA -ACGGAATTGCACTGATCCGGAGTA -ACGGAATTGCACTGATCCTCGTCT -ACGGAATTGCACTGATCCTGCACT -ACGGAATTGCACTGATCCCTGACT -ACGGAATTGCACTGATCCCAACCT -ACGGAATTGCACTGATCCGCTACT -ACGGAATTGCACTGATCCGGATCT -ACGGAATTGCACTGATCCAAGGCT -ACGGAATTGCACTGATCCTCAACC -ACGGAATTGCACTGATCCTGTTCC -ACGGAATTGCACTGATCCATTCCC -ACGGAATTGCACTGATCCTTCTCG -ACGGAATTGCACTGATCCTAGACG -ACGGAATTGCACTGATCCGTAACG -ACGGAATTGCACTGATCCACTTCG -ACGGAATTGCACTGATCCTACGCA -ACGGAATTGCACTGATCCCTTGCA -ACGGAATTGCACTGATCCCGAACA -ACGGAATTGCACTGATCCCAGTCA -ACGGAATTGCACTGATCCGATCCA -ACGGAATTGCACTGATCCACGACA -ACGGAATTGCACTGATCCAGCTCA -ACGGAATTGCACTGATCCTCACGT -ACGGAATTGCACTGATCCCGTAGT -ACGGAATTGCACTGATCCGTCAGT -ACGGAATTGCACTGATCCGAAGGT -ACGGAATTGCACTGATCCAACCGT -ACGGAATTGCACTGATCCTTGTGC -ACGGAATTGCACTGATCCCTAAGC -ACGGAATTGCACTGATCCACTAGC -ACGGAATTGCACTGATCCAGATGC -ACGGAATTGCACTGATCCTGAAGG -ACGGAATTGCACTGATCCCAATGG -ACGGAATTGCACTGATCCATGAGG -ACGGAATTGCACTGATCCAATGGG -ACGGAATTGCACTGATCCTCCTGA -ACGGAATTGCACTGATCCTAGCGA -ACGGAATTGCACTGATCCCACAGA -ACGGAATTGCACTGATCCGCAAGA -ACGGAATTGCACTGATCCGGTTGA -ACGGAATTGCACTGATCCTCCGAT -ACGGAATTGCACTGATCCTGGCAT -ACGGAATTGCACTGATCCCGAGAT -ACGGAATTGCACTGATCCTACCAC -ACGGAATTGCACTGATCCCAGAAC -ACGGAATTGCACTGATCCGTCTAC -ACGGAATTGCACTGATCCACGTAC -ACGGAATTGCACTGATCCAGTGAC -ACGGAATTGCACTGATCCCTGTAG -ACGGAATTGCACTGATCCCCTAAG -ACGGAATTGCACTGATCCGTTCAG -ACGGAATTGCACTGATCCGCATAG -ACGGAATTGCACTGATCCGACAAG -ACGGAATTGCACTGATCCAAGCAG -ACGGAATTGCACTGATCCCGTCAA -ACGGAATTGCACTGATCCGCTGAA -ACGGAATTGCACTGATCCAGTACG -ACGGAATTGCACTGATCCATCCGA -ACGGAATTGCACTGATCCATGGGA -ACGGAATTGCACTGATCCGTGCAA -ACGGAATTGCACTGATCCGAGGAA -ACGGAATTGCACTGATCCCAGGTA -ACGGAATTGCACTGATCCGACTCT -ACGGAATTGCACTGATCCAGTCCT -ACGGAATTGCACTGATCCTAAGCC -ACGGAATTGCACTGATCCATAGCC -ACGGAATTGCACTGATCCTAACCG -ACGGAATTGCACTGATCCATGCCA -ACGGAATTGCACCGATAGGGAAAC -ACGGAATTGCACCGATAGAACACC -ACGGAATTGCACCGATAGATCGAG -ACGGAATTGCACCGATAGCTCCTT -ACGGAATTGCACCGATAGCCTGTT -ACGGAATTGCACCGATAGCGGTTT -ACGGAATTGCACCGATAGGTGGTT -ACGGAATTGCACCGATAGGCCTTT -ACGGAATTGCACCGATAGGGTCTT -ACGGAATTGCACCGATAGACGCTT -ACGGAATTGCACCGATAGAGCGTT -ACGGAATTGCACCGATAGTTCGTC -ACGGAATTGCACCGATAGTCTCTC -ACGGAATTGCACCGATAGTGGATC -ACGGAATTGCACCGATAGCACTTC -ACGGAATTGCACCGATAGGTACTC -ACGGAATTGCACCGATAGGATGTC -ACGGAATTGCACCGATAGACAGTC -ACGGAATTGCACCGATAGTTGCTG -ACGGAATTGCACCGATAGTCCATG -ACGGAATTGCACCGATAGTGTGTG -ACGGAATTGCACCGATAGCTAGTG -ACGGAATTGCACCGATAGCATCTG -ACGGAATTGCACCGATAGGAGTTG -ACGGAATTGCACCGATAGAGACTG -ACGGAATTGCACCGATAGTCGGTA -ACGGAATTGCACCGATAGTGCCTA -ACGGAATTGCACCGATAGCCACTA -ACGGAATTGCACCGATAGGGAGTA -ACGGAATTGCACCGATAGTCGTCT -ACGGAATTGCACCGATAGTGCACT -ACGGAATTGCACCGATAGCTGACT -ACGGAATTGCACCGATAGCAACCT -ACGGAATTGCACCGATAGGCTACT -ACGGAATTGCACCGATAGGGATCT -ACGGAATTGCACCGATAGAAGGCT -ACGGAATTGCACCGATAGTCAACC -ACGGAATTGCACCGATAGTGTTCC -ACGGAATTGCACCGATAGATTCCC -ACGGAATTGCACCGATAGTTCTCG -ACGGAATTGCACCGATAGTAGACG -ACGGAATTGCACCGATAGGTAACG -ACGGAATTGCACCGATAGACTTCG -ACGGAATTGCACCGATAGTACGCA -ACGGAATTGCACCGATAGCTTGCA -ACGGAATTGCACCGATAGCGAACA -ACGGAATTGCACCGATAGCAGTCA -ACGGAATTGCACCGATAGGATCCA -ACGGAATTGCACCGATAGACGACA -ACGGAATTGCACCGATAGAGCTCA -ACGGAATTGCACCGATAGTCACGT -ACGGAATTGCACCGATAGCGTAGT -ACGGAATTGCACCGATAGGTCAGT -ACGGAATTGCACCGATAGGAAGGT -ACGGAATTGCACCGATAGAACCGT -ACGGAATTGCACCGATAGTTGTGC -ACGGAATTGCACCGATAGCTAAGC -ACGGAATTGCACCGATAGACTAGC -ACGGAATTGCACCGATAGAGATGC -ACGGAATTGCACCGATAGTGAAGG -ACGGAATTGCACCGATAGCAATGG -ACGGAATTGCACCGATAGATGAGG -ACGGAATTGCACCGATAGAATGGG -ACGGAATTGCACCGATAGTCCTGA -ACGGAATTGCACCGATAGTAGCGA -ACGGAATTGCACCGATAGCACAGA -ACGGAATTGCACCGATAGGCAAGA -ACGGAATTGCACCGATAGGGTTGA -ACGGAATTGCACCGATAGTCCGAT -ACGGAATTGCACCGATAGTGGCAT -ACGGAATTGCACCGATAGCGAGAT -ACGGAATTGCACCGATAGTACCAC -ACGGAATTGCACCGATAGCAGAAC -ACGGAATTGCACCGATAGGTCTAC -ACGGAATTGCACCGATAGACGTAC -ACGGAATTGCACCGATAGAGTGAC -ACGGAATTGCACCGATAGCTGTAG -ACGGAATTGCACCGATAGCCTAAG -ACGGAATTGCACCGATAGGTTCAG -ACGGAATTGCACCGATAGGCATAG -ACGGAATTGCACCGATAGGACAAG -ACGGAATTGCACCGATAGAAGCAG -ACGGAATTGCACCGATAGCGTCAA -ACGGAATTGCACCGATAGGCTGAA -ACGGAATTGCACCGATAGAGTACG -ACGGAATTGCACCGATAGATCCGA -ACGGAATTGCACCGATAGATGGGA -ACGGAATTGCACCGATAGGTGCAA -ACGGAATTGCACCGATAGGAGGAA -ACGGAATTGCACCGATAGCAGGTA -ACGGAATTGCACCGATAGGACTCT -ACGGAATTGCACCGATAGAGTCCT -ACGGAATTGCACCGATAGTAAGCC -ACGGAATTGCACCGATAGATAGCC -ACGGAATTGCACCGATAGTAACCG -ACGGAATTGCACCGATAGATGCCA -ACGGAATTGCACAGACACGGAAAC -ACGGAATTGCACAGACACAACACC -ACGGAATTGCACAGACACATCGAG -ACGGAATTGCACAGACACCTCCTT -ACGGAATTGCACAGACACCCTGTT -ACGGAATTGCACAGACACCGGTTT -ACGGAATTGCACAGACACGTGGTT -ACGGAATTGCACAGACACGCCTTT -ACGGAATTGCACAGACACGGTCTT -ACGGAATTGCACAGACACACGCTT -ACGGAATTGCACAGACACAGCGTT -ACGGAATTGCACAGACACTTCGTC -ACGGAATTGCACAGACACTCTCTC -ACGGAATTGCACAGACACTGGATC -ACGGAATTGCACAGACACCACTTC -ACGGAATTGCACAGACACGTACTC -ACGGAATTGCACAGACACGATGTC -ACGGAATTGCACAGACACACAGTC -ACGGAATTGCACAGACACTTGCTG -ACGGAATTGCACAGACACTCCATG -ACGGAATTGCACAGACACTGTGTG -ACGGAATTGCACAGACACCTAGTG -ACGGAATTGCACAGACACCATCTG -ACGGAATTGCACAGACACGAGTTG -ACGGAATTGCACAGACACAGACTG -ACGGAATTGCACAGACACTCGGTA -ACGGAATTGCACAGACACTGCCTA -ACGGAATTGCACAGACACCCACTA -ACGGAATTGCACAGACACGGAGTA -ACGGAATTGCACAGACACTCGTCT -ACGGAATTGCACAGACACTGCACT -ACGGAATTGCACAGACACCTGACT -ACGGAATTGCACAGACACCAACCT -ACGGAATTGCACAGACACGCTACT -ACGGAATTGCACAGACACGGATCT -ACGGAATTGCACAGACACAAGGCT -ACGGAATTGCACAGACACTCAACC -ACGGAATTGCACAGACACTGTTCC -ACGGAATTGCACAGACACATTCCC -ACGGAATTGCACAGACACTTCTCG -ACGGAATTGCACAGACACTAGACG -ACGGAATTGCACAGACACGTAACG -ACGGAATTGCACAGACACACTTCG -ACGGAATTGCACAGACACTACGCA -ACGGAATTGCACAGACACCTTGCA -ACGGAATTGCACAGACACCGAACA -ACGGAATTGCACAGACACCAGTCA -ACGGAATTGCACAGACACGATCCA -ACGGAATTGCACAGACACACGACA -ACGGAATTGCACAGACACAGCTCA -ACGGAATTGCACAGACACTCACGT -ACGGAATTGCACAGACACCGTAGT -ACGGAATTGCACAGACACGTCAGT -ACGGAATTGCACAGACACGAAGGT -ACGGAATTGCACAGACACAACCGT -ACGGAATTGCACAGACACTTGTGC -ACGGAATTGCACAGACACCTAAGC -ACGGAATTGCACAGACACACTAGC -ACGGAATTGCACAGACACAGATGC -ACGGAATTGCACAGACACTGAAGG -ACGGAATTGCACAGACACCAATGG -ACGGAATTGCACAGACACATGAGG -ACGGAATTGCACAGACACAATGGG -ACGGAATTGCACAGACACTCCTGA -ACGGAATTGCACAGACACTAGCGA -ACGGAATTGCACAGACACCACAGA -ACGGAATTGCACAGACACGCAAGA -ACGGAATTGCACAGACACGGTTGA -ACGGAATTGCACAGACACTCCGAT -ACGGAATTGCACAGACACTGGCAT -ACGGAATTGCACAGACACCGAGAT -ACGGAATTGCACAGACACTACCAC -ACGGAATTGCACAGACACCAGAAC -ACGGAATTGCACAGACACGTCTAC -ACGGAATTGCACAGACACACGTAC -ACGGAATTGCACAGACACAGTGAC -ACGGAATTGCACAGACACCTGTAG -ACGGAATTGCACAGACACCCTAAG -ACGGAATTGCACAGACACGTTCAG -ACGGAATTGCACAGACACGCATAG -ACGGAATTGCACAGACACGACAAG -ACGGAATTGCACAGACACAAGCAG -ACGGAATTGCACAGACACCGTCAA -ACGGAATTGCACAGACACGCTGAA -ACGGAATTGCACAGACACAGTACG -ACGGAATTGCACAGACACATCCGA -ACGGAATTGCACAGACACATGGGA -ACGGAATTGCACAGACACGTGCAA -ACGGAATTGCACAGACACGAGGAA -ACGGAATTGCACAGACACCAGGTA -ACGGAATTGCACAGACACGACTCT -ACGGAATTGCACAGACACAGTCCT -ACGGAATTGCACAGACACTAAGCC -ACGGAATTGCACAGACACATAGCC -ACGGAATTGCACAGACACTAACCG -ACGGAATTGCACAGACACATGCCA -ACGGAATTGCACAGAGCAGGAAAC -ACGGAATTGCACAGAGCAAACACC -ACGGAATTGCACAGAGCAATCGAG -ACGGAATTGCACAGAGCACTCCTT -ACGGAATTGCACAGAGCACCTGTT -ACGGAATTGCACAGAGCACGGTTT -ACGGAATTGCACAGAGCAGTGGTT -ACGGAATTGCACAGAGCAGCCTTT -ACGGAATTGCACAGAGCAGGTCTT -ACGGAATTGCACAGAGCAACGCTT -ACGGAATTGCACAGAGCAAGCGTT -ACGGAATTGCACAGAGCATTCGTC -ACGGAATTGCACAGAGCATCTCTC -ACGGAATTGCACAGAGCATGGATC -ACGGAATTGCACAGAGCACACTTC -ACGGAATTGCACAGAGCAGTACTC -ACGGAATTGCACAGAGCAGATGTC -ACGGAATTGCACAGAGCAACAGTC -ACGGAATTGCACAGAGCATTGCTG -ACGGAATTGCACAGAGCATCCATG -ACGGAATTGCACAGAGCATGTGTG -ACGGAATTGCACAGAGCACTAGTG -ACGGAATTGCACAGAGCACATCTG -ACGGAATTGCACAGAGCAGAGTTG -ACGGAATTGCACAGAGCAAGACTG -ACGGAATTGCACAGAGCATCGGTA -ACGGAATTGCACAGAGCATGCCTA -ACGGAATTGCACAGAGCACCACTA -ACGGAATTGCACAGAGCAGGAGTA -ACGGAATTGCACAGAGCATCGTCT -ACGGAATTGCACAGAGCATGCACT -ACGGAATTGCACAGAGCACTGACT -ACGGAATTGCACAGAGCACAACCT -ACGGAATTGCACAGAGCAGCTACT -ACGGAATTGCACAGAGCAGGATCT -ACGGAATTGCACAGAGCAAAGGCT -ACGGAATTGCACAGAGCATCAACC -ACGGAATTGCACAGAGCATGTTCC -ACGGAATTGCACAGAGCAATTCCC -ACGGAATTGCACAGAGCATTCTCG -ACGGAATTGCACAGAGCATAGACG -ACGGAATTGCACAGAGCAGTAACG -ACGGAATTGCACAGAGCAACTTCG -ACGGAATTGCACAGAGCATACGCA -ACGGAATTGCACAGAGCACTTGCA -ACGGAATTGCACAGAGCACGAACA -ACGGAATTGCACAGAGCACAGTCA -ACGGAATTGCACAGAGCAGATCCA -ACGGAATTGCACAGAGCAACGACA -ACGGAATTGCACAGAGCAAGCTCA -ACGGAATTGCACAGAGCATCACGT -ACGGAATTGCACAGAGCACGTAGT -ACGGAATTGCACAGAGCAGTCAGT -ACGGAATTGCACAGAGCAGAAGGT -ACGGAATTGCACAGAGCAAACCGT -ACGGAATTGCACAGAGCATTGTGC -ACGGAATTGCACAGAGCACTAAGC -ACGGAATTGCACAGAGCAACTAGC -ACGGAATTGCACAGAGCAAGATGC -ACGGAATTGCACAGAGCATGAAGG -ACGGAATTGCACAGAGCACAATGG -ACGGAATTGCACAGAGCAATGAGG -ACGGAATTGCACAGAGCAAATGGG -ACGGAATTGCACAGAGCATCCTGA -ACGGAATTGCACAGAGCATAGCGA -ACGGAATTGCACAGAGCACACAGA -ACGGAATTGCACAGAGCAGCAAGA -ACGGAATTGCACAGAGCAGGTTGA -ACGGAATTGCACAGAGCATCCGAT -ACGGAATTGCACAGAGCATGGCAT -ACGGAATTGCACAGAGCACGAGAT -ACGGAATTGCACAGAGCATACCAC -ACGGAATTGCACAGAGCACAGAAC -ACGGAATTGCACAGAGCAGTCTAC -ACGGAATTGCACAGAGCAACGTAC -ACGGAATTGCACAGAGCAAGTGAC -ACGGAATTGCACAGAGCACTGTAG -ACGGAATTGCACAGAGCACCTAAG -ACGGAATTGCACAGAGCAGTTCAG -ACGGAATTGCACAGAGCAGCATAG -ACGGAATTGCACAGAGCAGACAAG -ACGGAATTGCACAGAGCAAAGCAG -ACGGAATTGCACAGAGCACGTCAA -ACGGAATTGCACAGAGCAGCTGAA -ACGGAATTGCACAGAGCAAGTACG -ACGGAATTGCACAGAGCAATCCGA -ACGGAATTGCACAGAGCAATGGGA -ACGGAATTGCACAGAGCAGTGCAA -ACGGAATTGCACAGAGCAGAGGAA -ACGGAATTGCACAGAGCACAGGTA -ACGGAATTGCACAGAGCAGACTCT -ACGGAATTGCACAGAGCAAGTCCT -ACGGAATTGCACAGAGCATAAGCC -ACGGAATTGCACAGAGCAATAGCC -ACGGAATTGCACAGAGCATAACCG -ACGGAATTGCACAGAGCAATGCCA -ACGGAATTGCACTGAGGTGGAAAC -ACGGAATTGCACTGAGGTAACACC -ACGGAATTGCACTGAGGTATCGAG -ACGGAATTGCACTGAGGTCTCCTT -ACGGAATTGCACTGAGGTCCTGTT -ACGGAATTGCACTGAGGTCGGTTT -ACGGAATTGCACTGAGGTGTGGTT -ACGGAATTGCACTGAGGTGCCTTT -ACGGAATTGCACTGAGGTGGTCTT -ACGGAATTGCACTGAGGTACGCTT -ACGGAATTGCACTGAGGTAGCGTT -ACGGAATTGCACTGAGGTTTCGTC -ACGGAATTGCACTGAGGTTCTCTC -ACGGAATTGCACTGAGGTTGGATC -ACGGAATTGCACTGAGGTCACTTC -ACGGAATTGCACTGAGGTGTACTC -ACGGAATTGCACTGAGGTGATGTC -ACGGAATTGCACTGAGGTACAGTC -ACGGAATTGCACTGAGGTTTGCTG -ACGGAATTGCACTGAGGTTCCATG -ACGGAATTGCACTGAGGTTGTGTG -ACGGAATTGCACTGAGGTCTAGTG -ACGGAATTGCACTGAGGTCATCTG -ACGGAATTGCACTGAGGTGAGTTG -ACGGAATTGCACTGAGGTAGACTG -ACGGAATTGCACTGAGGTTCGGTA -ACGGAATTGCACTGAGGTTGCCTA -ACGGAATTGCACTGAGGTCCACTA -ACGGAATTGCACTGAGGTGGAGTA -ACGGAATTGCACTGAGGTTCGTCT -ACGGAATTGCACTGAGGTTGCACT -ACGGAATTGCACTGAGGTCTGACT -ACGGAATTGCACTGAGGTCAACCT -ACGGAATTGCACTGAGGTGCTACT -ACGGAATTGCACTGAGGTGGATCT -ACGGAATTGCACTGAGGTAAGGCT -ACGGAATTGCACTGAGGTTCAACC -ACGGAATTGCACTGAGGTTGTTCC -ACGGAATTGCACTGAGGTATTCCC -ACGGAATTGCACTGAGGTTTCTCG -ACGGAATTGCACTGAGGTTAGACG -ACGGAATTGCACTGAGGTGTAACG -ACGGAATTGCACTGAGGTACTTCG -ACGGAATTGCACTGAGGTTACGCA -ACGGAATTGCACTGAGGTCTTGCA -ACGGAATTGCACTGAGGTCGAACA -ACGGAATTGCACTGAGGTCAGTCA -ACGGAATTGCACTGAGGTGATCCA -ACGGAATTGCACTGAGGTACGACA -ACGGAATTGCACTGAGGTAGCTCA -ACGGAATTGCACTGAGGTTCACGT -ACGGAATTGCACTGAGGTCGTAGT -ACGGAATTGCACTGAGGTGTCAGT -ACGGAATTGCACTGAGGTGAAGGT -ACGGAATTGCACTGAGGTAACCGT -ACGGAATTGCACTGAGGTTTGTGC -ACGGAATTGCACTGAGGTCTAAGC -ACGGAATTGCACTGAGGTACTAGC -ACGGAATTGCACTGAGGTAGATGC -ACGGAATTGCACTGAGGTTGAAGG -ACGGAATTGCACTGAGGTCAATGG -ACGGAATTGCACTGAGGTATGAGG -ACGGAATTGCACTGAGGTAATGGG -ACGGAATTGCACTGAGGTTCCTGA -ACGGAATTGCACTGAGGTTAGCGA -ACGGAATTGCACTGAGGTCACAGA -ACGGAATTGCACTGAGGTGCAAGA -ACGGAATTGCACTGAGGTGGTTGA -ACGGAATTGCACTGAGGTTCCGAT -ACGGAATTGCACTGAGGTTGGCAT -ACGGAATTGCACTGAGGTCGAGAT -ACGGAATTGCACTGAGGTTACCAC -ACGGAATTGCACTGAGGTCAGAAC -ACGGAATTGCACTGAGGTGTCTAC -ACGGAATTGCACTGAGGTACGTAC -ACGGAATTGCACTGAGGTAGTGAC -ACGGAATTGCACTGAGGTCTGTAG -ACGGAATTGCACTGAGGTCCTAAG -ACGGAATTGCACTGAGGTGTTCAG -ACGGAATTGCACTGAGGTGCATAG -ACGGAATTGCACTGAGGTGACAAG -ACGGAATTGCACTGAGGTAAGCAG -ACGGAATTGCACTGAGGTCGTCAA -ACGGAATTGCACTGAGGTGCTGAA -ACGGAATTGCACTGAGGTAGTACG -ACGGAATTGCACTGAGGTATCCGA -ACGGAATTGCACTGAGGTATGGGA -ACGGAATTGCACTGAGGTGTGCAA -ACGGAATTGCACTGAGGTGAGGAA -ACGGAATTGCACTGAGGTCAGGTA -ACGGAATTGCACTGAGGTGACTCT -ACGGAATTGCACTGAGGTAGTCCT -ACGGAATTGCACTGAGGTTAAGCC -ACGGAATTGCACTGAGGTATAGCC -ACGGAATTGCACTGAGGTTAACCG -ACGGAATTGCACTGAGGTATGCCA -ACGGAATTGCACGATTCCGGAAAC -ACGGAATTGCACGATTCCAACACC -ACGGAATTGCACGATTCCATCGAG -ACGGAATTGCACGATTCCCTCCTT -ACGGAATTGCACGATTCCCCTGTT -ACGGAATTGCACGATTCCCGGTTT -ACGGAATTGCACGATTCCGTGGTT -ACGGAATTGCACGATTCCGCCTTT -ACGGAATTGCACGATTCCGGTCTT -ACGGAATTGCACGATTCCACGCTT -ACGGAATTGCACGATTCCAGCGTT -ACGGAATTGCACGATTCCTTCGTC -ACGGAATTGCACGATTCCTCTCTC -ACGGAATTGCACGATTCCTGGATC -ACGGAATTGCACGATTCCCACTTC -ACGGAATTGCACGATTCCGTACTC -ACGGAATTGCACGATTCCGATGTC -ACGGAATTGCACGATTCCACAGTC -ACGGAATTGCACGATTCCTTGCTG -ACGGAATTGCACGATTCCTCCATG -ACGGAATTGCACGATTCCTGTGTG -ACGGAATTGCACGATTCCCTAGTG -ACGGAATTGCACGATTCCCATCTG -ACGGAATTGCACGATTCCGAGTTG -ACGGAATTGCACGATTCCAGACTG -ACGGAATTGCACGATTCCTCGGTA -ACGGAATTGCACGATTCCTGCCTA -ACGGAATTGCACGATTCCCCACTA -ACGGAATTGCACGATTCCGGAGTA -ACGGAATTGCACGATTCCTCGTCT -ACGGAATTGCACGATTCCTGCACT -ACGGAATTGCACGATTCCCTGACT -ACGGAATTGCACGATTCCCAACCT -ACGGAATTGCACGATTCCGCTACT -ACGGAATTGCACGATTCCGGATCT -ACGGAATTGCACGATTCCAAGGCT -ACGGAATTGCACGATTCCTCAACC -ACGGAATTGCACGATTCCTGTTCC -ACGGAATTGCACGATTCCATTCCC -ACGGAATTGCACGATTCCTTCTCG -ACGGAATTGCACGATTCCTAGACG -ACGGAATTGCACGATTCCGTAACG -ACGGAATTGCACGATTCCACTTCG -ACGGAATTGCACGATTCCTACGCA -ACGGAATTGCACGATTCCCTTGCA -ACGGAATTGCACGATTCCCGAACA -ACGGAATTGCACGATTCCCAGTCA -ACGGAATTGCACGATTCCGATCCA -ACGGAATTGCACGATTCCACGACA -ACGGAATTGCACGATTCCAGCTCA -ACGGAATTGCACGATTCCTCACGT -ACGGAATTGCACGATTCCCGTAGT -ACGGAATTGCACGATTCCGTCAGT -ACGGAATTGCACGATTCCGAAGGT -ACGGAATTGCACGATTCCAACCGT -ACGGAATTGCACGATTCCTTGTGC -ACGGAATTGCACGATTCCCTAAGC -ACGGAATTGCACGATTCCACTAGC -ACGGAATTGCACGATTCCAGATGC -ACGGAATTGCACGATTCCTGAAGG -ACGGAATTGCACGATTCCCAATGG -ACGGAATTGCACGATTCCATGAGG -ACGGAATTGCACGATTCCAATGGG -ACGGAATTGCACGATTCCTCCTGA -ACGGAATTGCACGATTCCTAGCGA -ACGGAATTGCACGATTCCCACAGA -ACGGAATTGCACGATTCCGCAAGA -ACGGAATTGCACGATTCCGGTTGA -ACGGAATTGCACGATTCCTCCGAT -ACGGAATTGCACGATTCCTGGCAT -ACGGAATTGCACGATTCCCGAGAT -ACGGAATTGCACGATTCCTACCAC -ACGGAATTGCACGATTCCCAGAAC -ACGGAATTGCACGATTCCGTCTAC -ACGGAATTGCACGATTCCACGTAC -ACGGAATTGCACGATTCCAGTGAC -ACGGAATTGCACGATTCCCTGTAG -ACGGAATTGCACGATTCCCCTAAG -ACGGAATTGCACGATTCCGTTCAG -ACGGAATTGCACGATTCCGCATAG -ACGGAATTGCACGATTCCGACAAG -ACGGAATTGCACGATTCCAAGCAG -ACGGAATTGCACGATTCCCGTCAA -ACGGAATTGCACGATTCCGCTGAA -ACGGAATTGCACGATTCCAGTACG -ACGGAATTGCACGATTCCATCCGA -ACGGAATTGCACGATTCCATGGGA -ACGGAATTGCACGATTCCGTGCAA -ACGGAATTGCACGATTCCGAGGAA -ACGGAATTGCACGATTCCCAGGTA -ACGGAATTGCACGATTCCGACTCT -ACGGAATTGCACGATTCCAGTCCT -ACGGAATTGCACGATTCCTAAGCC -ACGGAATTGCACGATTCCATAGCC -ACGGAATTGCACGATTCCTAACCG -ACGGAATTGCACGATTCCATGCCA -ACGGAATTGCACCATTGGGGAAAC -ACGGAATTGCACCATTGGAACACC -ACGGAATTGCACCATTGGATCGAG -ACGGAATTGCACCATTGGCTCCTT -ACGGAATTGCACCATTGGCCTGTT -ACGGAATTGCACCATTGGCGGTTT -ACGGAATTGCACCATTGGGTGGTT -ACGGAATTGCACCATTGGGCCTTT -ACGGAATTGCACCATTGGGGTCTT -ACGGAATTGCACCATTGGACGCTT -ACGGAATTGCACCATTGGAGCGTT -ACGGAATTGCACCATTGGTTCGTC -ACGGAATTGCACCATTGGTCTCTC -ACGGAATTGCACCATTGGTGGATC -ACGGAATTGCACCATTGGCACTTC -ACGGAATTGCACCATTGGGTACTC -ACGGAATTGCACCATTGGGATGTC -ACGGAATTGCACCATTGGACAGTC -ACGGAATTGCACCATTGGTTGCTG -ACGGAATTGCACCATTGGTCCATG -ACGGAATTGCACCATTGGTGTGTG -ACGGAATTGCACCATTGGCTAGTG -ACGGAATTGCACCATTGGCATCTG -ACGGAATTGCACCATTGGGAGTTG -ACGGAATTGCACCATTGGAGACTG -ACGGAATTGCACCATTGGTCGGTA -ACGGAATTGCACCATTGGTGCCTA -ACGGAATTGCACCATTGGCCACTA -ACGGAATTGCACCATTGGGGAGTA -ACGGAATTGCACCATTGGTCGTCT -ACGGAATTGCACCATTGGTGCACT -ACGGAATTGCACCATTGGCTGACT -ACGGAATTGCACCATTGGCAACCT -ACGGAATTGCACCATTGGGCTACT -ACGGAATTGCACCATTGGGGATCT -ACGGAATTGCACCATTGGAAGGCT -ACGGAATTGCACCATTGGTCAACC -ACGGAATTGCACCATTGGTGTTCC -ACGGAATTGCACCATTGGATTCCC -ACGGAATTGCACCATTGGTTCTCG -ACGGAATTGCACCATTGGTAGACG -ACGGAATTGCACCATTGGGTAACG -ACGGAATTGCACCATTGGACTTCG -ACGGAATTGCACCATTGGTACGCA -ACGGAATTGCACCATTGGCTTGCA -ACGGAATTGCACCATTGGCGAACA -ACGGAATTGCACCATTGGCAGTCA -ACGGAATTGCACCATTGGGATCCA -ACGGAATTGCACCATTGGACGACA -ACGGAATTGCACCATTGGAGCTCA -ACGGAATTGCACCATTGGTCACGT -ACGGAATTGCACCATTGGCGTAGT -ACGGAATTGCACCATTGGGTCAGT -ACGGAATTGCACCATTGGGAAGGT -ACGGAATTGCACCATTGGAACCGT -ACGGAATTGCACCATTGGTTGTGC -ACGGAATTGCACCATTGGCTAAGC -ACGGAATTGCACCATTGGACTAGC -ACGGAATTGCACCATTGGAGATGC -ACGGAATTGCACCATTGGTGAAGG -ACGGAATTGCACCATTGGCAATGG -ACGGAATTGCACCATTGGATGAGG -ACGGAATTGCACCATTGGAATGGG -ACGGAATTGCACCATTGGTCCTGA -ACGGAATTGCACCATTGGTAGCGA -ACGGAATTGCACCATTGGCACAGA -ACGGAATTGCACCATTGGGCAAGA -ACGGAATTGCACCATTGGGGTTGA -ACGGAATTGCACCATTGGTCCGAT -ACGGAATTGCACCATTGGTGGCAT -ACGGAATTGCACCATTGGCGAGAT -ACGGAATTGCACCATTGGTACCAC -ACGGAATTGCACCATTGGCAGAAC -ACGGAATTGCACCATTGGGTCTAC -ACGGAATTGCACCATTGGACGTAC -ACGGAATTGCACCATTGGAGTGAC -ACGGAATTGCACCATTGGCTGTAG -ACGGAATTGCACCATTGGCCTAAG -ACGGAATTGCACCATTGGGTTCAG -ACGGAATTGCACCATTGGGCATAG -ACGGAATTGCACCATTGGGACAAG -ACGGAATTGCACCATTGGAAGCAG -ACGGAATTGCACCATTGGCGTCAA -ACGGAATTGCACCATTGGGCTGAA -ACGGAATTGCACCATTGGAGTACG -ACGGAATTGCACCATTGGATCCGA -ACGGAATTGCACCATTGGATGGGA -ACGGAATTGCACCATTGGGTGCAA -ACGGAATTGCACCATTGGGAGGAA -ACGGAATTGCACCATTGGCAGGTA -ACGGAATTGCACCATTGGGACTCT -ACGGAATTGCACCATTGGAGTCCT -ACGGAATTGCACCATTGGTAAGCC -ACGGAATTGCACCATTGGATAGCC -ACGGAATTGCACCATTGGTAACCG -ACGGAATTGCACCATTGGATGCCA -ACGGAATTGCACGATCGAGGAAAC -ACGGAATTGCACGATCGAAACACC -ACGGAATTGCACGATCGAATCGAG -ACGGAATTGCACGATCGACTCCTT -ACGGAATTGCACGATCGACCTGTT -ACGGAATTGCACGATCGACGGTTT -ACGGAATTGCACGATCGAGTGGTT -ACGGAATTGCACGATCGAGCCTTT -ACGGAATTGCACGATCGAGGTCTT -ACGGAATTGCACGATCGAACGCTT -ACGGAATTGCACGATCGAAGCGTT -ACGGAATTGCACGATCGATTCGTC -ACGGAATTGCACGATCGATCTCTC -ACGGAATTGCACGATCGATGGATC -ACGGAATTGCACGATCGACACTTC -ACGGAATTGCACGATCGAGTACTC -ACGGAATTGCACGATCGAGATGTC -ACGGAATTGCACGATCGAACAGTC -ACGGAATTGCACGATCGATTGCTG -ACGGAATTGCACGATCGATCCATG -ACGGAATTGCACGATCGATGTGTG -ACGGAATTGCACGATCGACTAGTG -ACGGAATTGCACGATCGACATCTG -ACGGAATTGCACGATCGAGAGTTG -ACGGAATTGCACGATCGAAGACTG -ACGGAATTGCACGATCGATCGGTA -ACGGAATTGCACGATCGATGCCTA -ACGGAATTGCACGATCGACCACTA -ACGGAATTGCACGATCGAGGAGTA -ACGGAATTGCACGATCGATCGTCT -ACGGAATTGCACGATCGATGCACT -ACGGAATTGCACGATCGACTGACT -ACGGAATTGCACGATCGACAACCT -ACGGAATTGCACGATCGAGCTACT -ACGGAATTGCACGATCGAGGATCT -ACGGAATTGCACGATCGAAAGGCT -ACGGAATTGCACGATCGATCAACC -ACGGAATTGCACGATCGATGTTCC -ACGGAATTGCACGATCGAATTCCC -ACGGAATTGCACGATCGATTCTCG -ACGGAATTGCACGATCGATAGACG -ACGGAATTGCACGATCGAGTAACG -ACGGAATTGCACGATCGAACTTCG -ACGGAATTGCACGATCGATACGCA -ACGGAATTGCACGATCGACTTGCA -ACGGAATTGCACGATCGACGAACA -ACGGAATTGCACGATCGACAGTCA -ACGGAATTGCACGATCGAGATCCA -ACGGAATTGCACGATCGAACGACA -ACGGAATTGCACGATCGAAGCTCA -ACGGAATTGCACGATCGATCACGT -ACGGAATTGCACGATCGACGTAGT -ACGGAATTGCACGATCGAGTCAGT -ACGGAATTGCACGATCGAGAAGGT -ACGGAATTGCACGATCGAAACCGT -ACGGAATTGCACGATCGATTGTGC -ACGGAATTGCACGATCGACTAAGC -ACGGAATTGCACGATCGAACTAGC -ACGGAATTGCACGATCGAAGATGC -ACGGAATTGCACGATCGATGAAGG -ACGGAATTGCACGATCGACAATGG -ACGGAATTGCACGATCGAATGAGG -ACGGAATTGCACGATCGAAATGGG -ACGGAATTGCACGATCGATCCTGA -ACGGAATTGCACGATCGATAGCGA -ACGGAATTGCACGATCGACACAGA -ACGGAATTGCACGATCGAGCAAGA -ACGGAATTGCACGATCGAGGTTGA -ACGGAATTGCACGATCGATCCGAT -ACGGAATTGCACGATCGATGGCAT -ACGGAATTGCACGATCGACGAGAT -ACGGAATTGCACGATCGATACCAC -ACGGAATTGCACGATCGACAGAAC -ACGGAATTGCACGATCGAGTCTAC -ACGGAATTGCACGATCGAACGTAC -ACGGAATTGCACGATCGAAGTGAC -ACGGAATTGCACGATCGACTGTAG -ACGGAATTGCACGATCGACCTAAG -ACGGAATTGCACGATCGAGTTCAG -ACGGAATTGCACGATCGAGCATAG -ACGGAATTGCACGATCGAGACAAG -ACGGAATTGCACGATCGAAAGCAG -ACGGAATTGCACGATCGACGTCAA -ACGGAATTGCACGATCGAGCTGAA -ACGGAATTGCACGATCGAAGTACG -ACGGAATTGCACGATCGAATCCGA -ACGGAATTGCACGATCGAATGGGA -ACGGAATTGCACGATCGAGTGCAA -ACGGAATTGCACGATCGAGAGGAA -ACGGAATTGCACGATCGACAGGTA -ACGGAATTGCACGATCGAGACTCT -ACGGAATTGCACGATCGAAGTCCT -ACGGAATTGCACGATCGATAAGCC -ACGGAATTGCACGATCGAATAGCC -ACGGAATTGCACGATCGATAACCG -ACGGAATTGCACGATCGAATGCCA -ACGGAATTGCACCACTACGGAAAC -ACGGAATTGCACCACTACAACACC -ACGGAATTGCACCACTACATCGAG -ACGGAATTGCACCACTACCTCCTT -ACGGAATTGCACCACTACCCTGTT -ACGGAATTGCACCACTACCGGTTT -ACGGAATTGCACCACTACGTGGTT -ACGGAATTGCACCACTACGCCTTT -ACGGAATTGCACCACTACGGTCTT -ACGGAATTGCACCACTACACGCTT -ACGGAATTGCACCACTACAGCGTT -ACGGAATTGCACCACTACTTCGTC -ACGGAATTGCACCACTACTCTCTC -ACGGAATTGCACCACTACTGGATC -ACGGAATTGCACCACTACCACTTC -ACGGAATTGCACCACTACGTACTC -ACGGAATTGCACCACTACGATGTC -ACGGAATTGCACCACTACACAGTC -ACGGAATTGCACCACTACTTGCTG -ACGGAATTGCACCACTACTCCATG -ACGGAATTGCACCACTACTGTGTG -ACGGAATTGCACCACTACCTAGTG -ACGGAATTGCACCACTACCATCTG -ACGGAATTGCACCACTACGAGTTG -ACGGAATTGCACCACTACAGACTG -ACGGAATTGCACCACTACTCGGTA -ACGGAATTGCACCACTACTGCCTA -ACGGAATTGCACCACTACCCACTA -ACGGAATTGCACCACTACGGAGTA -ACGGAATTGCACCACTACTCGTCT -ACGGAATTGCACCACTACTGCACT -ACGGAATTGCACCACTACCTGACT -ACGGAATTGCACCACTACCAACCT -ACGGAATTGCACCACTACGCTACT -ACGGAATTGCACCACTACGGATCT -ACGGAATTGCACCACTACAAGGCT -ACGGAATTGCACCACTACTCAACC -ACGGAATTGCACCACTACTGTTCC -ACGGAATTGCACCACTACATTCCC -ACGGAATTGCACCACTACTTCTCG -ACGGAATTGCACCACTACTAGACG -ACGGAATTGCACCACTACGTAACG -ACGGAATTGCACCACTACACTTCG -ACGGAATTGCACCACTACTACGCA -ACGGAATTGCACCACTACCTTGCA -ACGGAATTGCACCACTACCGAACA -ACGGAATTGCACCACTACCAGTCA -ACGGAATTGCACCACTACGATCCA -ACGGAATTGCACCACTACACGACA -ACGGAATTGCACCACTACAGCTCA -ACGGAATTGCACCACTACTCACGT -ACGGAATTGCACCACTACCGTAGT -ACGGAATTGCACCACTACGTCAGT -ACGGAATTGCACCACTACGAAGGT -ACGGAATTGCACCACTACAACCGT -ACGGAATTGCACCACTACTTGTGC -ACGGAATTGCACCACTACCTAAGC -ACGGAATTGCACCACTACACTAGC -ACGGAATTGCACCACTACAGATGC -ACGGAATTGCACCACTACTGAAGG -ACGGAATTGCACCACTACCAATGG -ACGGAATTGCACCACTACATGAGG -ACGGAATTGCACCACTACAATGGG -ACGGAATTGCACCACTACTCCTGA -ACGGAATTGCACCACTACTAGCGA -ACGGAATTGCACCACTACCACAGA -ACGGAATTGCACCACTACGCAAGA -ACGGAATTGCACCACTACGGTTGA -ACGGAATTGCACCACTACTCCGAT -ACGGAATTGCACCACTACTGGCAT -ACGGAATTGCACCACTACCGAGAT -ACGGAATTGCACCACTACTACCAC -ACGGAATTGCACCACTACCAGAAC -ACGGAATTGCACCACTACGTCTAC -ACGGAATTGCACCACTACACGTAC -ACGGAATTGCACCACTACAGTGAC -ACGGAATTGCACCACTACCTGTAG -ACGGAATTGCACCACTACCCTAAG -ACGGAATTGCACCACTACGTTCAG -ACGGAATTGCACCACTACGCATAG -ACGGAATTGCACCACTACGACAAG -ACGGAATTGCACCACTACAAGCAG -ACGGAATTGCACCACTACCGTCAA -ACGGAATTGCACCACTACGCTGAA -ACGGAATTGCACCACTACAGTACG -ACGGAATTGCACCACTACATCCGA -ACGGAATTGCACCACTACATGGGA -ACGGAATTGCACCACTACGTGCAA -ACGGAATTGCACCACTACGAGGAA -ACGGAATTGCACCACTACCAGGTA -ACGGAATTGCACCACTACGACTCT -ACGGAATTGCACCACTACAGTCCT -ACGGAATTGCACCACTACTAAGCC -ACGGAATTGCACCACTACATAGCC -ACGGAATTGCACCACTACTAACCG -ACGGAATTGCACCACTACATGCCA -ACGGAATTGCACAACCAGGGAAAC -ACGGAATTGCACAACCAGAACACC -ACGGAATTGCACAACCAGATCGAG -ACGGAATTGCACAACCAGCTCCTT -ACGGAATTGCACAACCAGCCTGTT -ACGGAATTGCACAACCAGCGGTTT -ACGGAATTGCACAACCAGGTGGTT -ACGGAATTGCACAACCAGGCCTTT -ACGGAATTGCACAACCAGGGTCTT -ACGGAATTGCACAACCAGACGCTT -ACGGAATTGCACAACCAGAGCGTT -ACGGAATTGCACAACCAGTTCGTC -ACGGAATTGCACAACCAGTCTCTC -ACGGAATTGCACAACCAGTGGATC -ACGGAATTGCACAACCAGCACTTC -ACGGAATTGCACAACCAGGTACTC -ACGGAATTGCACAACCAGGATGTC -ACGGAATTGCACAACCAGACAGTC -ACGGAATTGCACAACCAGTTGCTG -ACGGAATTGCACAACCAGTCCATG -ACGGAATTGCACAACCAGTGTGTG -ACGGAATTGCACAACCAGCTAGTG -ACGGAATTGCACAACCAGCATCTG -ACGGAATTGCACAACCAGGAGTTG -ACGGAATTGCACAACCAGAGACTG -ACGGAATTGCACAACCAGTCGGTA -ACGGAATTGCACAACCAGTGCCTA -ACGGAATTGCACAACCAGCCACTA -ACGGAATTGCACAACCAGGGAGTA -ACGGAATTGCACAACCAGTCGTCT -ACGGAATTGCACAACCAGTGCACT -ACGGAATTGCACAACCAGCTGACT -ACGGAATTGCACAACCAGCAACCT -ACGGAATTGCACAACCAGGCTACT -ACGGAATTGCACAACCAGGGATCT -ACGGAATTGCACAACCAGAAGGCT -ACGGAATTGCACAACCAGTCAACC -ACGGAATTGCACAACCAGTGTTCC -ACGGAATTGCACAACCAGATTCCC -ACGGAATTGCACAACCAGTTCTCG -ACGGAATTGCACAACCAGTAGACG -ACGGAATTGCACAACCAGGTAACG -ACGGAATTGCACAACCAGACTTCG -ACGGAATTGCACAACCAGTACGCA -ACGGAATTGCACAACCAGCTTGCA -ACGGAATTGCACAACCAGCGAACA -ACGGAATTGCACAACCAGCAGTCA -ACGGAATTGCACAACCAGGATCCA -ACGGAATTGCACAACCAGACGACA -ACGGAATTGCACAACCAGAGCTCA -ACGGAATTGCACAACCAGTCACGT -ACGGAATTGCACAACCAGCGTAGT -ACGGAATTGCACAACCAGGTCAGT -ACGGAATTGCACAACCAGGAAGGT -ACGGAATTGCACAACCAGAACCGT -ACGGAATTGCACAACCAGTTGTGC -ACGGAATTGCACAACCAGCTAAGC -ACGGAATTGCACAACCAGACTAGC -ACGGAATTGCACAACCAGAGATGC -ACGGAATTGCACAACCAGTGAAGG -ACGGAATTGCACAACCAGCAATGG -ACGGAATTGCACAACCAGATGAGG -ACGGAATTGCACAACCAGAATGGG -ACGGAATTGCACAACCAGTCCTGA -ACGGAATTGCACAACCAGTAGCGA -ACGGAATTGCACAACCAGCACAGA -ACGGAATTGCACAACCAGGCAAGA -ACGGAATTGCACAACCAGGGTTGA -ACGGAATTGCACAACCAGTCCGAT -ACGGAATTGCACAACCAGTGGCAT -ACGGAATTGCACAACCAGCGAGAT -ACGGAATTGCACAACCAGTACCAC -ACGGAATTGCACAACCAGCAGAAC -ACGGAATTGCACAACCAGGTCTAC -ACGGAATTGCACAACCAGACGTAC -ACGGAATTGCACAACCAGAGTGAC -ACGGAATTGCACAACCAGCTGTAG -ACGGAATTGCACAACCAGCCTAAG -ACGGAATTGCACAACCAGGTTCAG -ACGGAATTGCACAACCAGGCATAG -ACGGAATTGCACAACCAGGACAAG -ACGGAATTGCACAACCAGAAGCAG -ACGGAATTGCACAACCAGCGTCAA -ACGGAATTGCACAACCAGGCTGAA -ACGGAATTGCACAACCAGAGTACG -ACGGAATTGCACAACCAGATCCGA -ACGGAATTGCACAACCAGATGGGA -ACGGAATTGCACAACCAGGTGCAA -ACGGAATTGCACAACCAGGAGGAA -ACGGAATTGCACAACCAGCAGGTA -ACGGAATTGCACAACCAGGACTCT -ACGGAATTGCACAACCAGAGTCCT -ACGGAATTGCACAACCAGTAAGCC -ACGGAATTGCACAACCAGATAGCC -ACGGAATTGCACAACCAGTAACCG -ACGGAATTGCACAACCAGATGCCA -ACGGAATTGCACTACGTCGGAAAC -ACGGAATTGCACTACGTCAACACC -ACGGAATTGCACTACGTCATCGAG -ACGGAATTGCACTACGTCCTCCTT -ACGGAATTGCACTACGTCCCTGTT -ACGGAATTGCACTACGTCCGGTTT -ACGGAATTGCACTACGTCGTGGTT -ACGGAATTGCACTACGTCGCCTTT -ACGGAATTGCACTACGTCGGTCTT -ACGGAATTGCACTACGTCACGCTT -ACGGAATTGCACTACGTCAGCGTT -ACGGAATTGCACTACGTCTTCGTC -ACGGAATTGCACTACGTCTCTCTC -ACGGAATTGCACTACGTCTGGATC -ACGGAATTGCACTACGTCCACTTC -ACGGAATTGCACTACGTCGTACTC -ACGGAATTGCACTACGTCGATGTC -ACGGAATTGCACTACGTCACAGTC -ACGGAATTGCACTACGTCTTGCTG -ACGGAATTGCACTACGTCTCCATG -ACGGAATTGCACTACGTCTGTGTG -ACGGAATTGCACTACGTCCTAGTG -ACGGAATTGCACTACGTCCATCTG -ACGGAATTGCACTACGTCGAGTTG -ACGGAATTGCACTACGTCAGACTG -ACGGAATTGCACTACGTCTCGGTA -ACGGAATTGCACTACGTCTGCCTA -ACGGAATTGCACTACGTCCCACTA -ACGGAATTGCACTACGTCGGAGTA -ACGGAATTGCACTACGTCTCGTCT -ACGGAATTGCACTACGTCTGCACT -ACGGAATTGCACTACGTCCTGACT -ACGGAATTGCACTACGTCCAACCT -ACGGAATTGCACTACGTCGCTACT -ACGGAATTGCACTACGTCGGATCT -ACGGAATTGCACTACGTCAAGGCT -ACGGAATTGCACTACGTCTCAACC -ACGGAATTGCACTACGTCTGTTCC -ACGGAATTGCACTACGTCATTCCC -ACGGAATTGCACTACGTCTTCTCG -ACGGAATTGCACTACGTCTAGACG -ACGGAATTGCACTACGTCGTAACG -ACGGAATTGCACTACGTCACTTCG -ACGGAATTGCACTACGTCTACGCA -ACGGAATTGCACTACGTCCTTGCA -ACGGAATTGCACTACGTCCGAACA -ACGGAATTGCACTACGTCCAGTCA -ACGGAATTGCACTACGTCGATCCA -ACGGAATTGCACTACGTCACGACA -ACGGAATTGCACTACGTCAGCTCA -ACGGAATTGCACTACGTCTCACGT -ACGGAATTGCACTACGTCCGTAGT -ACGGAATTGCACTACGTCGTCAGT -ACGGAATTGCACTACGTCGAAGGT -ACGGAATTGCACTACGTCAACCGT -ACGGAATTGCACTACGTCTTGTGC -ACGGAATTGCACTACGTCCTAAGC -ACGGAATTGCACTACGTCACTAGC -ACGGAATTGCACTACGTCAGATGC -ACGGAATTGCACTACGTCTGAAGG -ACGGAATTGCACTACGTCCAATGG -ACGGAATTGCACTACGTCATGAGG -ACGGAATTGCACTACGTCAATGGG -ACGGAATTGCACTACGTCTCCTGA -ACGGAATTGCACTACGTCTAGCGA -ACGGAATTGCACTACGTCCACAGA -ACGGAATTGCACTACGTCGCAAGA -ACGGAATTGCACTACGTCGGTTGA -ACGGAATTGCACTACGTCTCCGAT -ACGGAATTGCACTACGTCTGGCAT -ACGGAATTGCACTACGTCCGAGAT -ACGGAATTGCACTACGTCTACCAC -ACGGAATTGCACTACGTCCAGAAC -ACGGAATTGCACTACGTCGTCTAC -ACGGAATTGCACTACGTCACGTAC -ACGGAATTGCACTACGTCAGTGAC -ACGGAATTGCACTACGTCCTGTAG -ACGGAATTGCACTACGTCCCTAAG -ACGGAATTGCACTACGTCGTTCAG -ACGGAATTGCACTACGTCGCATAG -ACGGAATTGCACTACGTCGACAAG -ACGGAATTGCACTACGTCAAGCAG -ACGGAATTGCACTACGTCCGTCAA -ACGGAATTGCACTACGTCGCTGAA -ACGGAATTGCACTACGTCAGTACG -ACGGAATTGCACTACGTCATCCGA -ACGGAATTGCACTACGTCATGGGA -ACGGAATTGCACTACGTCGTGCAA -ACGGAATTGCACTACGTCGAGGAA -ACGGAATTGCACTACGTCCAGGTA -ACGGAATTGCACTACGTCGACTCT -ACGGAATTGCACTACGTCAGTCCT -ACGGAATTGCACTACGTCTAAGCC -ACGGAATTGCACTACGTCATAGCC -ACGGAATTGCACTACGTCTAACCG -ACGGAATTGCACTACGTCATGCCA -ACGGAATTGCACTACACGGGAAAC -ACGGAATTGCACTACACGAACACC -ACGGAATTGCACTACACGATCGAG -ACGGAATTGCACTACACGCTCCTT -ACGGAATTGCACTACACGCCTGTT -ACGGAATTGCACTACACGCGGTTT -ACGGAATTGCACTACACGGTGGTT -ACGGAATTGCACTACACGGCCTTT -ACGGAATTGCACTACACGGGTCTT -ACGGAATTGCACTACACGACGCTT -ACGGAATTGCACTACACGAGCGTT -ACGGAATTGCACTACACGTTCGTC -ACGGAATTGCACTACACGTCTCTC -ACGGAATTGCACTACACGTGGATC -ACGGAATTGCACTACACGCACTTC -ACGGAATTGCACTACACGGTACTC -ACGGAATTGCACTACACGGATGTC -ACGGAATTGCACTACACGACAGTC -ACGGAATTGCACTACACGTTGCTG -ACGGAATTGCACTACACGTCCATG -ACGGAATTGCACTACACGTGTGTG -ACGGAATTGCACTACACGCTAGTG -ACGGAATTGCACTACACGCATCTG -ACGGAATTGCACTACACGGAGTTG -ACGGAATTGCACTACACGAGACTG -ACGGAATTGCACTACACGTCGGTA -ACGGAATTGCACTACACGTGCCTA -ACGGAATTGCACTACACGCCACTA -ACGGAATTGCACTACACGGGAGTA -ACGGAATTGCACTACACGTCGTCT -ACGGAATTGCACTACACGTGCACT -ACGGAATTGCACTACACGCTGACT -ACGGAATTGCACTACACGCAACCT -ACGGAATTGCACTACACGGCTACT -ACGGAATTGCACTACACGGGATCT -ACGGAATTGCACTACACGAAGGCT -ACGGAATTGCACTACACGTCAACC -ACGGAATTGCACTACACGTGTTCC -ACGGAATTGCACTACACGATTCCC -ACGGAATTGCACTACACGTTCTCG -ACGGAATTGCACTACACGTAGACG -ACGGAATTGCACTACACGGTAACG -ACGGAATTGCACTACACGACTTCG -ACGGAATTGCACTACACGTACGCA -ACGGAATTGCACTACACGCTTGCA -ACGGAATTGCACTACACGCGAACA -ACGGAATTGCACTACACGCAGTCA -ACGGAATTGCACTACACGGATCCA -ACGGAATTGCACTACACGACGACA -ACGGAATTGCACTACACGAGCTCA -ACGGAATTGCACTACACGTCACGT -ACGGAATTGCACTACACGCGTAGT -ACGGAATTGCACTACACGGTCAGT -ACGGAATTGCACTACACGGAAGGT -ACGGAATTGCACTACACGAACCGT -ACGGAATTGCACTACACGTTGTGC -ACGGAATTGCACTACACGCTAAGC -ACGGAATTGCACTACACGACTAGC -ACGGAATTGCACTACACGAGATGC -ACGGAATTGCACTACACGTGAAGG -ACGGAATTGCACTACACGCAATGG -ACGGAATTGCACTACACGATGAGG -ACGGAATTGCACTACACGAATGGG -ACGGAATTGCACTACACGTCCTGA -ACGGAATTGCACTACACGTAGCGA -ACGGAATTGCACTACACGCACAGA -ACGGAATTGCACTACACGGCAAGA -ACGGAATTGCACTACACGGGTTGA -ACGGAATTGCACTACACGTCCGAT -ACGGAATTGCACTACACGTGGCAT -ACGGAATTGCACTACACGCGAGAT -ACGGAATTGCACTACACGTACCAC -ACGGAATTGCACTACACGCAGAAC -ACGGAATTGCACTACACGGTCTAC -ACGGAATTGCACTACACGACGTAC -ACGGAATTGCACTACACGAGTGAC -ACGGAATTGCACTACACGCTGTAG -ACGGAATTGCACTACACGCCTAAG -ACGGAATTGCACTACACGGTTCAG -ACGGAATTGCACTACACGGCATAG -ACGGAATTGCACTACACGGACAAG -ACGGAATTGCACTACACGAAGCAG -ACGGAATTGCACTACACGCGTCAA -ACGGAATTGCACTACACGGCTGAA -ACGGAATTGCACTACACGAGTACG -ACGGAATTGCACTACACGATCCGA -ACGGAATTGCACTACACGATGGGA -ACGGAATTGCACTACACGGTGCAA -ACGGAATTGCACTACACGGAGGAA -ACGGAATTGCACTACACGCAGGTA -ACGGAATTGCACTACACGGACTCT -ACGGAATTGCACTACACGAGTCCT -ACGGAATTGCACTACACGTAAGCC -ACGGAATTGCACTACACGATAGCC -ACGGAATTGCACTACACGTAACCG -ACGGAATTGCACTACACGATGCCA -ACGGAATTGCACGACAGTGGAAAC -ACGGAATTGCACGACAGTAACACC -ACGGAATTGCACGACAGTATCGAG -ACGGAATTGCACGACAGTCTCCTT -ACGGAATTGCACGACAGTCCTGTT -ACGGAATTGCACGACAGTCGGTTT -ACGGAATTGCACGACAGTGTGGTT -ACGGAATTGCACGACAGTGCCTTT -ACGGAATTGCACGACAGTGGTCTT -ACGGAATTGCACGACAGTACGCTT -ACGGAATTGCACGACAGTAGCGTT -ACGGAATTGCACGACAGTTTCGTC -ACGGAATTGCACGACAGTTCTCTC -ACGGAATTGCACGACAGTTGGATC -ACGGAATTGCACGACAGTCACTTC -ACGGAATTGCACGACAGTGTACTC -ACGGAATTGCACGACAGTGATGTC -ACGGAATTGCACGACAGTACAGTC -ACGGAATTGCACGACAGTTTGCTG -ACGGAATTGCACGACAGTTCCATG -ACGGAATTGCACGACAGTTGTGTG -ACGGAATTGCACGACAGTCTAGTG -ACGGAATTGCACGACAGTCATCTG -ACGGAATTGCACGACAGTGAGTTG -ACGGAATTGCACGACAGTAGACTG -ACGGAATTGCACGACAGTTCGGTA -ACGGAATTGCACGACAGTTGCCTA -ACGGAATTGCACGACAGTCCACTA -ACGGAATTGCACGACAGTGGAGTA -ACGGAATTGCACGACAGTTCGTCT -ACGGAATTGCACGACAGTTGCACT -ACGGAATTGCACGACAGTCTGACT -ACGGAATTGCACGACAGTCAACCT -ACGGAATTGCACGACAGTGCTACT -ACGGAATTGCACGACAGTGGATCT -ACGGAATTGCACGACAGTAAGGCT -ACGGAATTGCACGACAGTTCAACC -ACGGAATTGCACGACAGTTGTTCC -ACGGAATTGCACGACAGTATTCCC -ACGGAATTGCACGACAGTTTCTCG -ACGGAATTGCACGACAGTTAGACG -ACGGAATTGCACGACAGTGTAACG -ACGGAATTGCACGACAGTACTTCG -ACGGAATTGCACGACAGTTACGCA -ACGGAATTGCACGACAGTCTTGCA -ACGGAATTGCACGACAGTCGAACA -ACGGAATTGCACGACAGTCAGTCA -ACGGAATTGCACGACAGTGATCCA -ACGGAATTGCACGACAGTACGACA -ACGGAATTGCACGACAGTAGCTCA -ACGGAATTGCACGACAGTTCACGT -ACGGAATTGCACGACAGTCGTAGT -ACGGAATTGCACGACAGTGTCAGT -ACGGAATTGCACGACAGTGAAGGT -ACGGAATTGCACGACAGTAACCGT -ACGGAATTGCACGACAGTTTGTGC -ACGGAATTGCACGACAGTCTAAGC -ACGGAATTGCACGACAGTACTAGC -ACGGAATTGCACGACAGTAGATGC -ACGGAATTGCACGACAGTTGAAGG -ACGGAATTGCACGACAGTCAATGG -ACGGAATTGCACGACAGTATGAGG -ACGGAATTGCACGACAGTAATGGG -ACGGAATTGCACGACAGTTCCTGA -ACGGAATTGCACGACAGTTAGCGA -ACGGAATTGCACGACAGTCACAGA -ACGGAATTGCACGACAGTGCAAGA -ACGGAATTGCACGACAGTGGTTGA -ACGGAATTGCACGACAGTTCCGAT -ACGGAATTGCACGACAGTTGGCAT -ACGGAATTGCACGACAGTCGAGAT -ACGGAATTGCACGACAGTTACCAC -ACGGAATTGCACGACAGTCAGAAC -ACGGAATTGCACGACAGTGTCTAC -ACGGAATTGCACGACAGTACGTAC -ACGGAATTGCACGACAGTAGTGAC -ACGGAATTGCACGACAGTCTGTAG -ACGGAATTGCACGACAGTCCTAAG -ACGGAATTGCACGACAGTGTTCAG -ACGGAATTGCACGACAGTGCATAG -ACGGAATTGCACGACAGTGACAAG -ACGGAATTGCACGACAGTAAGCAG -ACGGAATTGCACGACAGTCGTCAA -ACGGAATTGCACGACAGTGCTGAA -ACGGAATTGCACGACAGTAGTACG -ACGGAATTGCACGACAGTATCCGA -ACGGAATTGCACGACAGTATGGGA -ACGGAATTGCACGACAGTGTGCAA -ACGGAATTGCACGACAGTGAGGAA -ACGGAATTGCACGACAGTCAGGTA -ACGGAATTGCACGACAGTGACTCT -ACGGAATTGCACGACAGTAGTCCT -ACGGAATTGCACGACAGTTAAGCC -ACGGAATTGCACGACAGTATAGCC -ACGGAATTGCACGACAGTTAACCG -ACGGAATTGCACGACAGTATGCCA -ACGGAATTGCACTAGCTGGGAAAC -ACGGAATTGCACTAGCTGAACACC -ACGGAATTGCACTAGCTGATCGAG -ACGGAATTGCACTAGCTGCTCCTT -ACGGAATTGCACTAGCTGCCTGTT -ACGGAATTGCACTAGCTGCGGTTT -ACGGAATTGCACTAGCTGGTGGTT -ACGGAATTGCACTAGCTGGCCTTT -ACGGAATTGCACTAGCTGGGTCTT -ACGGAATTGCACTAGCTGACGCTT -ACGGAATTGCACTAGCTGAGCGTT -ACGGAATTGCACTAGCTGTTCGTC -ACGGAATTGCACTAGCTGTCTCTC -ACGGAATTGCACTAGCTGTGGATC -ACGGAATTGCACTAGCTGCACTTC -ACGGAATTGCACTAGCTGGTACTC -ACGGAATTGCACTAGCTGGATGTC -ACGGAATTGCACTAGCTGACAGTC -ACGGAATTGCACTAGCTGTTGCTG -ACGGAATTGCACTAGCTGTCCATG -ACGGAATTGCACTAGCTGTGTGTG -ACGGAATTGCACTAGCTGCTAGTG -ACGGAATTGCACTAGCTGCATCTG -ACGGAATTGCACTAGCTGGAGTTG -ACGGAATTGCACTAGCTGAGACTG -ACGGAATTGCACTAGCTGTCGGTA -ACGGAATTGCACTAGCTGTGCCTA -ACGGAATTGCACTAGCTGCCACTA -ACGGAATTGCACTAGCTGGGAGTA -ACGGAATTGCACTAGCTGTCGTCT -ACGGAATTGCACTAGCTGTGCACT -ACGGAATTGCACTAGCTGCTGACT -ACGGAATTGCACTAGCTGCAACCT -ACGGAATTGCACTAGCTGGCTACT -ACGGAATTGCACTAGCTGGGATCT -ACGGAATTGCACTAGCTGAAGGCT -ACGGAATTGCACTAGCTGTCAACC -ACGGAATTGCACTAGCTGTGTTCC -ACGGAATTGCACTAGCTGATTCCC -ACGGAATTGCACTAGCTGTTCTCG -ACGGAATTGCACTAGCTGTAGACG -ACGGAATTGCACTAGCTGGTAACG -ACGGAATTGCACTAGCTGACTTCG -ACGGAATTGCACTAGCTGTACGCA -ACGGAATTGCACTAGCTGCTTGCA -ACGGAATTGCACTAGCTGCGAACA -ACGGAATTGCACTAGCTGCAGTCA -ACGGAATTGCACTAGCTGGATCCA -ACGGAATTGCACTAGCTGACGACA -ACGGAATTGCACTAGCTGAGCTCA -ACGGAATTGCACTAGCTGTCACGT -ACGGAATTGCACTAGCTGCGTAGT -ACGGAATTGCACTAGCTGGTCAGT -ACGGAATTGCACTAGCTGGAAGGT -ACGGAATTGCACTAGCTGAACCGT -ACGGAATTGCACTAGCTGTTGTGC -ACGGAATTGCACTAGCTGCTAAGC -ACGGAATTGCACTAGCTGACTAGC -ACGGAATTGCACTAGCTGAGATGC -ACGGAATTGCACTAGCTGTGAAGG -ACGGAATTGCACTAGCTGCAATGG -ACGGAATTGCACTAGCTGATGAGG -ACGGAATTGCACTAGCTGAATGGG -ACGGAATTGCACTAGCTGTCCTGA -ACGGAATTGCACTAGCTGTAGCGA -ACGGAATTGCACTAGCTGCACAGA -ACGGAATTGCACTAGCTGGCAAGA -ACGGAATTGCACTAGCTGGGTTGA -ACGGAATTGCACTAGCTGTCCGAT -ACGGAATTGCACTAGCTGTGGCAT -ACGGAATTGCACTAGCTGCGAGAT -ACGGAATTGCACTAGCTGTACCAC -ACGGAATTGCACTAGCTGCAGAAC -ACGGAATTGCACTAGCTGGTCTAC -ACGGAATTGCACTAGCTGACGTAC -ACGGAATTGCACTAGCTGAGTGAC -ACGGAATTGCACTAGCTGCTGTAG -ACGGAATTGCACTAGCTGCCTAAG -ACGGAATTGCACTAGCTGGTTCAG -ACGGAATTGCACTAGCTGGCATAG -ACGGAATTGCACTAGCTGGACAAG -ACGGAATTGCACTAGCTGAAGCAG -ACGGAATTGCACTAGCTGCGTCAA -ACGGAATTGCACTAGCTGGCTGAA -ACGGAATTGCACTAGCTGAGTACG -ACGGAATTGCACTAGCTGATCCGA -ACGGAATTGCACTAGCTGATGGGA -ACGGAATTGCACTAGCTGGTGCAA -ACGGAATTGCACTAGCTGGAGGAA -ACGGAATTGCACTAGCTGCAGGTA -ACGGAATTGCACTAGCTGGACTCT -ACGGAATTGCACTAGCTGAGTCCT -ACGGAATTGCACTAGCTGTAAGCC -ACGGAATTGCACTAGCTGATAGCC -ACGGAATTGCACTAGCTGTAACCG -ACGGAATTGCACTAGCTGATGCCA -ACGGAATTGCACAAGCCTGGAAAC -ACGGAATTGCACAAGCCTAACACC -ACGGAATTGCACAAGCCTATCGAG -ACGGAATTGCACAAGCCTCTCCTT -ACGGAATTGCACAAGCCTCCTGTT -ACGGAATTGCACAAGCCTCGGTTT -ACGGAATTGCACAAGCCTGTGGTT -ACGGAATTGCACAAGCCTGCCTTT -ACGGAATTGCACAAGCCTGGTCTT -ACGGAATTGCACAAGCCTACGCTT -ACGGAATTGCACAAGCCTAGCGTT -ACGGAATTGCACAAGCCTTTCGTC -ACGGAATTGCACAAGCCTTCTCTC -ACGGAATTGCACAAGCCTTGGATC -ACGGAATTGCACAAGCCTCACTTC -ACGGAATTGCACAAGCCTGTACTC -ACGGAATTGCACAAGCCTGATGTC -ACGGAATTGCACAAGCCTACAGTC -ACGGAATTGCACAAGCCTTTGCTG -ACGGAATTGCACAAGCCTTCCATG -ACGGAATTGCACAAGCCTTGTGTG -ACGGAATTGCACAAGCCTCTAGTG -ACGGAATTGCACAAGCCTCATCTG -ACGGAATTGCACAAGCCTGAGTTG -ACGGAATTGCACAAGCCTAGACTG -ACGGAATTGCACAAGCCTTCGGTA -ACGGAATTGCACAAGCCTTGCCTA -ACGGAATTGCACAAGCCTCCACTA -ACGGAATTGCACAAGCCTGGAGTA -ACGGAATTGCACAAGCCTTCGTCT -ACGGAATTGCACAAGCCTTGCACT -ACGGAATTGCACAAGCCTCTGACT -ACGGAATTGCACAAGCCTCAACCT -ACGGAATTGCACAAGCCTGCTACT -ACGGAATTGCACAAGCCTGGATCT -ACGGAATTGCACAAGCCTAAGGCT -ACGGAATTGCACAAGCCTTCAACC -ACGGAATTGCACAAGCCTTGTTCC -ACGGAATTGCACAAGCCTATTCCC -ACGGAATTGCACAAGCCTTTCTCG -ACGGAATTGCACAAGCCTTAGACG -ACGGAATTGCACAAGCCTGTAACG -ACGGAATTGCACAAGCCTACTTCG -ACGGAATTGCACAAGCCTTACGCA -ACGGAATTGCACAAGCCTCTTGCA -ACGGAATTGCACAAGCCTCGAACA -ACGGAATTGCACAAGCCTCAGTCA -ACGGAATTGCACAAGCCTGATCCA -ACGGAATTGCACAAGCCTACGACA -ACGGAATTGCACAAGCCTAGCTCA -ACGGAATTGCACAAGCCTTCACGT -ACGGAATTGCACAAGCCTCGTAGT -ACGGAATTGCACAAGCCTGTCAGT -ACGGAATTGCACAAGCCTGAAGGT -ACGGAATTGCACAAGCCTAACCGT -ACGGAATTGCACAAGCCTTTGTGC -ACGGAATTGCACAAGCCTCTAAGC -ACGGAATTGCACAAGCCTACTAGC -ACGGAATTGCACAAGCCTAGATGC -ACGGAATTGCACAAGCCTTGAAGG -ACGGAATTGCACAAGCCTCAATGG -ACGGAATTGCACAAGCCTATGAGG -ACGGAATTGCACAAGCCTAATGGG -ACGGAATTGCACAAGCCTTCCTGA -ACGGAATTGCACAAGCCTTAGCGA -ACGGAATTGCACAAGCCTCACAGA -ACGGAATTGCACAAGCCTGCAAGA -ACGGAATTGCACAAGCCTGGTTGA -ACGGAATTGCACAAGCCTTCCGAT -ACGGAATTGCACAAGCCTTGGCAT -ACGGAATTGCACAAGCCTCGAGAT -ACGGAATTGCACAAGCCTTACCAC -ACGGAATTGCACAAGCCTCAGAAC -ACGGAATTGCACAAGCCTGTCTAC -ACGGAATTGCACAAGCCTACGTAC -ACGGAATTGCACAAGCCTAGTGAC -ACGGAATTGCACAAGCCTCTGTAG -ACGGAATTGCACAAGCCTCCTAAG -ACGGAATTGCACAAGCCTGTTCAG -ACGGAATTGCACAAGCCTGCATAG -ACGGAATTGCACAAGCCTGACAAG -ACGGAATTGCACAAGCCTAAGCAG -ACGGAATTGCACAAGCCTCGTCAA -ACGGAATTGCACAAGCCTGCTGAA -ACGGAATTGCACAAGCCTAGTACG -ACGGAATTGCACAAGCCTATCCGA -ACGGAATTGCACAAGCCTATGGGA -ACGGAATTGCACAAGCCTGTGCAA -ACGGAATTGCACAAGCCTGAGGAA -ACGGAATTGCACAAGCCTCAGGTA -ACGGAATTGCACAAGCCTGACTCT -ACGGAATTGCACAAGCCTAGTCCT -ACGGAATTGCACAAGCCTTAAGCC -ACGGAATTGCACAAGCCTATAGCC -ACGGAATTGCACAAGCCTTAACCG -ACGGAATTGCACAAGCCTATGCCA -ACGGAATTGCACCAGGTTGGAAAC -ACGGAATTGCACCAGGTTAACACC -ACGGAATTGCACCAGGTTATCGAG -ACGGAATTGCACCAGGTTCTCCTT -ACGGAATTGCACCAGGTTCCTGTT -ACGGAATTGCACCAGGTTCGGTTT -ACGGAATTGCACCAGGTTGTGGTT -ACGGAATTGCACCAGGTTGCCTTT -ACGGAATTGCACCAGGTTGGTCTT -ACGGAATTGCACCAGGTTACGCTT -ACGGAATTGCACCAGGTTAGCGTT -ACGGAATTGCACCAGGTTTTCGTC -ACGGAATTGCACCAGGTTTCTCTC -ACGGAATTGCACCAGGTTTGGATC -ACGGAATTGCACCAGGTTCACTTC -ACGGAATTGCACCAGGTTGTACTC -ACGGAATTGCACCAGGTTGATGTC -ACGGAATTGCACCAGGTTACAGTC -ACGGAATTGCACCAGGTTTTGCTG -ACGGAATTGCACCAGGTTTCCATG -ACGGAATTGCACCAGGTTTGTGTG -ACGGAATTGCACCAGGTTCTAGTG -ACGGAATTGCACCAGGTTCATCTG -ACGGAATTGCACCAGGTTGAGTTG -ACGGAATTGCACCAGGTTAGACTG -ACGGAATTGCACCAGGTTTCGGTA -ACGGAATTGCACCAGGTTTGCCTA -ACGGAATTGCACCAGGTTCCACTA -ACGGAATTGCACCAGGTTGGAGTA -ACGGAATTGCACCAGGTTTCGTCT -ACGGAATTGCACCAGGTTTGCACT -ACGGAATTGCACCAGGTTCTGACT -ACGGAATTGCACCAGGTTCAACCT -ACGGAATTGCACCAGGTTGCTACT -ACGGAATTGCACCAGGTTGGATCT -ACGGAATTGCACCAGGTTAAGGCT -ACGGAATTGCACCAGGTTTCAACC -ACGGAATTGCACCAGGTTTGTTCC -ACGGAATTGCACCAGGTTATTCCC -ACGGAATTGCACCAGGTTTTCTCG -ACGGAATTGCACCAGGTTTAGACG -ACGGAATTGCACCAGGTTGTAACG -ACGGAATTGCACCAGGTTACTTCG -ACGGAATTGCACCAGGTTTACGCA -ACGGAATTGCACCAGGTTCTTGCA -ACGGAATTGCACCAGGTTCGAACA -ACGGAATTGCACCAGGTTCAGTCA -ACGGAATTGCACCAGGTTGATCCA -ACGGAATTGCACCAGGTTACGACA -ACGGAATTGCACCAGGTTAGCTCA -ACGGAATTGCACCAGGTTTCACGT -ACGGAATTGCACCAGGTTCGTAGT -ACGGAATTGCACCAGGTTGTCAGT -ACGGAATTGCACCAGGTTGAAGGT -ACGGAATTGCACCAGGTTAACCGT -ACGGAATTGCACCAGGTTTTGTGC -ACGGAATTGCACCAGGTTCTAAGC -ACGGAATTGCACCAGGTTACTAGC -ACGGAATTGCACCAGGTTAGATGC -ACGGAATTGCACCAGGTTTGAAGG -ACGGAATTGCACCAGGTTCAATGG -ACGGAATTGCACCAGGTTATGAGG -ACGGAATTGCACCAGGTTAATGGG -ACGGAATTGCACCAGGTTTCCTGA -ACGGAATTGCACCAGGTTTAGCGA -ACGGAATTGCACCAGGTTCACAGA -ACGGAATTGCACCAGGTTGCAAGA -ACGGAATTGCACCAGGTTGGTTGA -ACGGAATTGCACCAGGTTTCCGAT -ACGGAATTGCACCAGGTTTGGCAT -ACGGAATTGCACCAGGTTCGAGAT -ACGGAATTGCACCAGGTTTACCAC -ACGGAATTGCACCAGGTTCAGAAC -ACGGAATTGCACCAGGTTGTCTAC -ACGGAATTGCACCAGGTTACGTAC -ACGGAATTGCACCAGGTTAGTGAC -ACGGAATTGCACCAGGTTCTGTAG -ACGGAATTGCACCAGGTTCCTAAG -ACGGAATTGCACCAGGTTGTTCAG -ACGGAATTGCACCAGGTTGCATAG -ACGGAATTGCACCAGGTTGACAAG -ACGGAATTGCACCAGGTTAAGCAG -ACGGAATTGCACCAGGTTCGTCAA -ACGGAATTGCACCAGGTTGCTGAA -ACGGAATTGCACCAGGTTAGTACG -ACGGAATTGCACCAGGTTATCCGA -ACGGAATTGCACCAGGTTATGGGA -ACGGAATTGCACCAGGTTGTGCAA -ACGGAATTGCACCAGGTTGAGGAA -ACGGAATTGCACCAGGTTCAGGTA -ACGGAATTGCACCAGGTTGACTCT -ACGGAATTGCACCAGGTTAGTCCT -ACGGAATTGCACCAGGTTTAAGCC -ACGGAATTGCACCAGGTTATAGCC -ACGGAATTGCACCAGGTTTAACCG -ACGGAATTGCACCAGGTTATGCCA -ACGGAATTGCACTAGGCAGGAAAC -ACGGAATTGCACTAGGCAAACACC -ACGGAATTGCACTAGGCAATCGAG -ACGGAATTGCACTAGGCACTCCTT -ACGGAATTGCACTAGGCACCTGTT -ACGGAATTGCACTAGGCACGGTTT -ACGGAATTGCACTAGGCAGTGGTT -ACGGAATTGCACTAGGCAGCCTTT -ACGGAATTGCACTAGGCAGGTCTT -ACGGAATTGCACTAGGCAACGCTT -ACGGAATTGCACTAGGCAAGCGTT -ACGGAATTGCACTAGGCATTCGTC -ACGGAATTGCACTAGGCATCTCTC -ACGGAATTGCACTAGGCATGGATC -ACGGAATTGCACTAGGCACACTTC -ACGGAATTGCACTAGGCAGTACTC -ACGGAATTGCACTAGGCAGATGTC -ACGGAATTGCACTAGGCAACAGTC -ACGGAATTGCACTAGGCATTGCTG -ACGGAATTGCACTAGGCATCCATG -ACGGAATTGCACTAGGCATGTGTG -ACGGAATTGCACTAGGCACTAGTG -ACGGAATTGCACTAGGCACATCTG -ACGGAATTGCACTAGGCAGAGTTG -ACGGAATTGCACTAGGCAAGACTG -ACGGAATTGCACTAGGCATCGGTA -ACGGAATTGCACTAGGCATGCCTA -ACGGAATTGCACTAGGCACCACTA -ACGGAATTGCACTAGGCAGGAGTA -ACGGAATTGCACTAGGCATCGTCT -ACGGAATTGCACTAGGCATGCACT -ACGGAATTGCACTAGGCACTGACT -ACGGAATTGCACTAGGCACAACCT -ACGGAATTGCACTAGGCAGCTACT -ACGGAATTGCACTAGGCAGGATCT -ACGGAATTGCACTAGGCAAAGGCT -ACGGAATTGCACTAGGCATCAACC -ACGGAATTGCACTAGGCATGTTCC -ACGGAATTGCACTAGGCAATTCCC -ACGGAATTGCACTAGGCATTCTCG -ACGGAATTGCACTAGGCATAGACG -ACGGAATTGCACTAGGCAGTAACG -ACGGAATTGCACTAGGCAACTTCG -ACGGAATTGCACTAGGCATACGCA -ACGGAATTGCACTAGGCACTTGCA -ACGGAATTGCACTAGGCACGAACA -ACGGAATTGCACTAGGCACAGTCA -ACGGAATTGCACTAGGCAGATCCA -ACGGAATTGCACTAGGCAACGACA -ACGGAATTGCACTAGGCAAGCTCA -ACGGAATTGCACTAGGCATCACGT -ACGGAATTGCACTAGGCACGTAGT -ACGGAATTGCACTAGGCAGTCAGT -ACGGAATTGCACTAGGCAGAAGGT -ACGGAATTGCACTAGGCAAACCGT -ACGGAATTGCACTAGGCATTGTGC -ACGGAATTGCACTAGGCACTAAGC -ACGGAATTGCACTAGGCAACTAGC -ACGGAATTGCACTAGGCAAGATGC -ACGGAATTGCACTAGGCATGAAGG -ACGGAATTGCACTAGGCACAATGG -ACGGAATTGCACTAGGCAATGAGG -ACGGAATTGCACTAGGCAAATGGG -ACGGAATTGCACTAGGCATCCTGA -ACGGAATTGCACTAGGCATAGCGA -ACGGAATTGCACTAGGCACACAGA -ACGGAATTGCACTAGGCAGCAAGA -ACGGAATTGCACTAGGCAGGTTGA -ACGGAATTGCACTAGGCATCCGAT -ACGGAATTGCACTAGGCATGGCAT -ACGGAATTGCACTAGGCACGAGAT -ACGGAATTGCACTAGGCATACCAC -ACGGAATTGCACTAGGCACAGAAC -ACGGAATTGCACTAGGCAGTCTAC -ACGGAATTGCACTAGGCAACGTAC -ACGGAATTGCACTAGGCAAGTGAC -ACGGAATTGCACTAGGCACTGTAG -ACGGAATTGCACTAGGCACCTAAG -ACGGAATTGCACTAGGCAGTTCAG -ACGGAATTGCACTAGGCAGCATAG -ACGGAATTGCACTAGGCAGACAAG -ACGGAATTGCACTAGGCAAAGCAG -ACGGAATTGCACTAGGCACGTCAA -ACGGAATTGCACTAGGCAGCTGAA -ACGGAATTGCACTAGGCAAGTACG -ACGGAATTGCACTAGGCAATCCGA -ACGGAATTGCACTAGGCAATGGGA -ACGGAATTGCACTAGGCAGTGCAA -ACGGAATTGCACTAGGCAGAGGAA -ACGGAATTGCACTAGGCACAGGTA -ACGGAATTGCACTAGGCAGACTCT -ACGGAATTGCACTAGGCAAGTCCT -ACGGAATTGCACTAGGCATAAGCC -ACGGAATTGCACTAGGCAATAGCC -ACGGAATTGCACTAGGCATAACCG -ACGGAATTGCACTAGGCAATGCCA -ACGGAATTGCACAAGGACGGAAAC -ACGGAATTGCACAAGGACAACACC -ACGGAATTGCACAAGGACATCGAG -ACGGAATTGCACAAGGACCTCCTT -ACGGAATTGCACAAGGACCCTGTT -ACGGAATTGCACAAGGACCGGTTT -ACGGAATTGCACAAGGACGTGGTT -ACGGAATTGCACAAGGACGCCTTT -ACGGAATTGCACAAGGACGGTCTT -ACGGAATTGCACAAGGACACGCTT -ACGGAATTGCACAAGGACAGCGTT -ACGGAATTGCACAAGGACTTCGTC -ACGGAATTGCACAAGGACTCTCTC -ACGGAATTGCACAAGGACTGGATC -ACGGAATTGCACAAGGACCACTTC -ACGGAATTGCACAAGGACGTACTC -ACGGAATTGCACAAGGACGATGTC -ACGGAATTGCACAAGGACACAGTC -ACGGAATTGCACAAGGACTTGCTG -ACGGAATTGCACAAGGACTCCATG -ACGGAATTGCACAAGGACTGTGTG -ACGGAATTGCACAAGGACCTAGTG -ACGGAATTGCACAAGGACCATCTG -ACGGAATTGCACAAGGACGAGTTG -ACGGAATTGCACAAGGACAGACTG -ACGGAATTGCACAAGGACTCGGTA -ACGGAATTGCACAAGGACTGCCTA -ACGGAATTGCACAAGGACCCACTA -ACGGAATTGCACAAGGACGGAGTA -ACGGAATTGCACAAGGACTCGTCT -ACGGAATTGCACAAGGACTGCACT -ACGGAATTGCACAAGGACCTGACT -ACGGAATTGCACAAGGACCAACCT -ACGGAATTGCACAAGGACGCTACT -ACGGAATTGCACAAGGACGGATCT -ACGGAATTGCACAAGGACAAGGCT -ACGGAATTGCACAAGGACTCAACC -ACGGAATTGCACAAGGACTGTTCC -ACGGAATTGCACAAGGACATTCCC -ACGGAATTGCACAAGGACTTCTCG -ACGGAATTGCACAAGGACTAGACG -ACGGAATTGCACAAGGACGTAACG -ACGGAATTGCACAAGGACACTTCG -ACGGAATTGCACAAGGACTACGCA -ACGGAATTGCACAAGGACCTTGCA -ACGGAATTGCACAAGGACCGAACA -ACGGAATTGCACAAGGACCAGTCA -ACGGAATTGCACAAGGACGATCCA -ACGGAATTGCACAAGGACACGACA -ACGGAATTGCACAAGGACAGCTCA -ACGGAATTGCACAAGGACTCACGT -ACGGAATTGCACAAGGACCGTAGT -ACGGAATTGCACAAGGACGTCAGT -ACGGAATTGCACAAGGACGAAGGT -ACGGAATTGCACAAGGACAACCGT -ACGGAATTGCACAAGGACTTGTGC -ACGGAATTGCACAAGGACCTAAGC -ACGGAATTGCACAAGGACACTAGC -ACGGAATTGCACAAGGACAGATGC -ACGGAATTGCACAAGGACTGAAGG -ACGGAATTGCACAAGGACCAATGG -ACGGAATTGCACAAGGACATGAGG -ACGGAATTGCACAAGGACAATGGG -ACGGAATTGCACAAGGACTCCTGA -ACGGAATTGCACAAGGACTAGCGA -ACGGAATTGCACAAGGACCACAGA -ACGGAATTGCACAAGGACGCAAGA -ACGGAATTGCACAAGGACGGTTGA -ACGGAATTGCACAAGGACTCCGAT -ACGGAATTGCACAAGGACTGGCAT -ACGGAATTGCACAAGGACCGAGAT -ACGGAATTGCACAAGGACTACCAC -ACGGAATTGCACAAGGACCAGAAC -ACGGAATTGCACAAGGACGTCTAC -ACGGAATTGCACAAGGACACGTAC -ACGGAATTGCACAAGGACAGTGAC -ACGGAATTGCACAAGGACCTGTAG -ACGGAATTGCACAAGGACCCTAAG -ACGGAATTGCACAAGGACGTTCAG -ACGGAATTGCACAAGGACGCATAG -ACGGAATTGCACAAGGACGACAAG -ACGGAATTGCACAAGGACAAGCAG -ACGGAATTGCACAAGGACCGTCAA -ACGGAATTGCACAAGGACGCTGAA -ACGGAATTGCACAAGGACAGTACG -ACGGAATTGCACAAGGACATCCGA -ACGGAATTGCACAAGGACATGGGA -ACGGAATTGCACAAGGACGTGCAA -ACGGAATTGCACAAGGACGAGGAA -ACGGAATTGCACAAGGACCAGGTA -ACGGAATTGCACAAGGACGACTCT -ACGGAATTGCACAAGGACAGTCCT -ACGGAATTGCACAAGGACTAAGCC -ACGGAATTGCACAAGGACATAGCC -ACGGAATTGCACAAGGACTAACCG -ACGGAATTGCACAAGGACATGCCA -ACGGAATTGCACCAGAAGGGAAAC -ACGGAATTGCACCAGAAGAACACC -ACGGAATTGCACCAGAAGATCGAG -ACGGAATTGCACCAGAAGCTCCTT -ACGGAATTGCACCAGAAGCCTGTT -ACGGAATTGCACCAGAAGCGGTTT -ACGGAATTGCACCAGAAGGTGGTT -ACGGAATTGCACCAGAAGGCCTTT -ACGGAATTGCACCAGAAGGGTCTT -ACGGAATTGCACCAGAAGACGCTT -ACGGAATTGCACCAGAAGAGCGTT -ACGGAATTGCACCAGAAGTTCGTC -ACGGAATTGCACCAGAAGTCTCTC -ACGGAATTGCACCAGAAGTGGATC -ACGGAATTGCACCAGAAGCACTTC -ACGGAATTGCACCAGAAGGTACTC -ACGGAATTGCACCAGAAGGATGTC -ACGGAATTGCACCAGAAGACAGTC -ACGGAATTGCACCAGAAGTTGCTG -ACGGAATTGCACCAGAAGTCCATG -ACGGAATTGCACCAGAAGTGTGTG -ACGGAATTGCACCAGAAGCTAGTG -ACGGAATTGCACCAGAAGCATCTG -ACGGAATTGCACCAGAAGGAGTTG -ACGGAATTGCACCAGAAGAGACTG -ACGGAATTGCACCAGAAGTCGGTA -ACGGAATTGCACCAGAAGTGCCTA -ACGGAATTGCACCAGAAGCCACTA -ACGGAATTGCACCAGAAGGGAGTA -ACGGAATTGCACCAGAAGTCGTCT -ACGGAATTGCACCAGAAGTGCACT -ACGGAATTGCACCAGAAGCTGACT -ACGGAATTGCACCAGAAGCAACCT -ACGGAATTGCACCAGAAGGCTACT -ACGGAATTGCACCAGAAGGGATCT -ACGGAATTGCACCAGAAGAAGGCT -ACGGAATTGCACCAGAAGTCAACC -ACGGAATTGCACCAGAAGTGTTCC -ACGGAATTGCACCAGAAGATTCCC -ACGGAATTGCACCAGAAGTTCTCG -ACGGAATTGCACCAGAAGTAGACG -ACGGAATTGCACCAGAAGGTAACG -ACGGAATTGCACCAGAAGACTTCG -ACGGAATTGCACCAGAAGTACGCA -ACGGAATTGCACCAGAAGCTTGCA -ACGGAATTGCACCAGAAGCGAACA -ACGGAATTGCACCAGAAGCAGTCA -ACGGAATTGCACCAGAAGGATCCA -ACGGAATTGCACCAGAAGACGACA -ACGGAATTGCACCAGAAGAGCTCA -ACGGAATTGCACCAGAAGTCACGT -ACGGAATTGCACCAGAAGCGTAGT -ACGGAATTGCACCAGAAGGTCAGT -ACGGAATTGCACCAGAAGGAAGGT -ACGGAATTGCACCAGAAGAACCGT -ACGGAATTGCACCAGAAGTTGTGC -ACGGAATTGCACCAGAAGCTAAGC -ACGGAATTGCACCAGAAGACTAGC -ACGGAATTGCACCAGAAGAGATGC -ACGGAATTGCACCAGAAGTGAAGG -ACGGAATTGCACCAGAAGCAATGG -ACGGAATTGCACCAGAAGATGAGG -ACGGAATTGCACCAGAAGAATGGG -ACGGAATTGCACCAGAAGTCCTGA -ACGGAATTGCACCAGAAGTAGCGA -ACGGAATTGCACCAGAAGCACAGA -ACGGAATTGCACCAGAAGGCAAGA -ACGGAATTGCACCAGAAGGGTTGA -ACGGAATTGCACCAGAAGTCCGAT -ACGGAATTGCACCAGAAGTGGCAT -ACGGAATTGCACCAGAAGCGAGAT -ACGGAATTGCACCAGAAGTACCAC -ACGGAATTGCACCAGAAGCAGAAC -ACGGAATTGCACCAGAAGGTCTAC -ACGGAATTGCACCAGAAGACGTAC -ACGGAATTGCACCAGAAGAGTGAC -ACGGAATTGCACCAGAAGCTGTAG -ACGGAATTGCACCAGAAGCCTAAG -ACGGAATTGCACCAGAAGGTTCAG -ACGGAATTGCACCAGAAGGCATAG -ACGGAATTGCACCAGAAGGACAAG -ACGGAATTGCACCAGAAGAAGCAG -ACGGAATTGCACCAGAAGCGTCAA -ACGGAATTGCACCAGAAGGCTGAA -ACGGAATTGCACCAGAAGAGTACG -ACGGAATTGCACCAGAAGATCCGA -ACGGAATTGCACCAGAAGATGGGA -ACGGAATTGCACCAGAAGGTGCAA -ACGGAATTGCACCAGAAGGAGGAA -ACGGAATTGCACCAGAAGCAGGTA -ACGGAATTGCACCAGAAGGACTCT -ACGGAATTGCACCAGAAGAGTCCT -ACGGAATTGCACCAGAAGTAAGCC -ACGGAATTGCACCAGAAGATAGCC -ACGGAATTGCACCAGAAGTAACCG -ACGGAATTGCACCAGAAGATGCCA -ACGGAATTGCACCAACGTGGAAAC -ACGGAATTGCACCAACGTAACACC -ACGGAATTGCACCAACGTATCGAG -ACGGAATTGCACCAACGTCTCCTT -ACGGAATTGCACCAACGTCCTGTT -ACGGAATTGCACCAACGTCGGTTT -ACGGAATTGCACCAACGTGTGGTT -ACGGAATTGCACCAACGTGCCTTT -ACGGAATTGCACCAACGTGGTCTT -ACGGAATTGCACCAACGTACGCTT -ACGGAATTGCACCAACGTAGCGTT -ACGGAATTGCACCAACGTTTCGTC -ACGGAATTGCACCAACGTTCTCTC -ACGGAATTGCACCAACGTTGGATC -ACGGAATTGCACCAACGTCACTTC -ACGGAATTGCACCAACGTGTACTC -ACGGAATTGCACCAACGTGATGTC -ACGGAATTGCACCAACGTACAGTC -ACGGAATTGCACCAACGTTTGCTG -ACGGAATTGCACCAACGTTCCATG -ACGGAATTGCACCAACGTTGTGTG -ACGGAATTGCACCAACGTCTAGTG -ACGGAATTGCACCAACGTCATCTG -ACGGAATTGCACCAACGTGAGTTG -ACGGAATTGCACCAACGTAGACTG -ACGGAATTGCACCAACGTTCGGTA -ACGGAATTGCACCAACGTTGCCTA -ACGGAATTGCACCAACGTCCACTA -ACGGAATTGCACCAACGTGGAGTA -ACGGAATTGCACCAACGTTCGTCT -ACGGAATTGCACCAACGTTGCACT -ACGGAATTGCACCAACGTCTGACT -ACGGAATTGCACCAACGTCAACCT -ACGGAATTGCACCAACGTGCTACT -ACGGAATTGCACCAACGTGGATCT -ACGGAATTGCACCAACGTAAGGCT -ACGGAATTGCACCAACGTTCAACC -ACGGAATTGCACCAACGTTGTTCC -ACGGAATTGCACCAACGTATTCCC -ACGGAATTGCACCAACGTTTCTCG -ACGGAATTGCACCAACGTTAGACG -ACGGAATTGCACCAACGTGTAACG -ACGGAATTGCACCAACGTACTTCG -ACGGAATTGCACCAACGTTACGCA -ACGGAATTGCACCAACGTCTTGCA -ACGGAATTGCACCAACGTCGAACA -ACGGAATTGCACCAACGTCAGTCA -ACGGAATTGCACCAACGTGATCCA -ACGGAATTGCACCAACGTACGACA -ACGGAATTGCACCAACGTAGCTCA -ACGGAATTGCACCAACGTTCACGT -ACGGAATTGCACCAACGTCGTAGT -ACGGAATTGCACCAACGTGTCAGT -ACGGAATTGCACCAACGTGAAGGT -ACGGAATTGCACCAACGTAACCGT -ACGGAATTGCACCAACGTTTGTGC -ACGGAATTGCACCAACGTCTAAGC -ACGGAATTGCACCAACGTACTAGC -ACGGAATTGCACCAACGTAGATGC -ACGGAATTGCACCAACGTTGAAGG -ACGGAATTGCACCAACGTCAATGG -ACGGAATTGCACCAACGTATGAGG -ACGGAATTGCACCAACGTAATGGG -ACGGAATTGCACCAACGTTCCTGA -ACGGAATTGCACCAACGTTAGCGA -ACGGAATTGCACCAACGTCACAGA -ACGGAATTGCACCAACGTGCAAGA -ACGGAATTGCACCAACGTGGTTGA -ACGGAATTGCACCAACGTTCCGAT -ACGGAATTGCACCAACGTTGGCAT -ACGGAATTGCACCAACGTCGAGAT -ACGGAATTGCACCAACGTTACCAC -ACGGAATTGCACCAACGTCAGAAC -ACGGAATTGCACCAACGTGTCTAC -ACGGAATTGCACCAACGTACGTAC -ACGGAATTGCACCAACGTAGTGAC -ACGGAATTGCACCAACGTCTGTAG -ACGGAATTGCACCAACGTCCTAAG -ACGGAATTGCACCAACGTGTTCAG -ACGGAATTGCACCAACGTGCATAG -ACGGAATTGCACCAACGTGACAAG -ACGGAATTGCACCAACGTAAGCAG -ACGGAATTGCACCAACGTCGTCAA -ACGGAATTGCACCAACGTGCTGAA -ACGGAATTGCACCAACGTAGTACG -ACGGAATTGCACCAACGTATCCGA -ACGGAATTGCACCAACGTATGGGA -ACGGAATTGCACCAACGTGTGCAA -ACGGAATTGCACCAACGTGAGGAA -ACGGAATTGCACCAACGTCAGGTA -ACGGAATTGCACCAACGTGACTCT -ACGGAATTGCACCAACGTAGTCCT -ACGGAATTGCACCAACGTTAAGCC -ACGGAATTGCACCAACGTATAGCC -ACGGAATTGCACCAACGTTAACCG -ACGGAATTGCACCAACGTATGCCA -ACGGAATTGCACGAAGCTGGAAAC -ACGGAATTGCACGAAGCTAACACC -ACGGAATTGCACGAAGCTATCGAG -ACGGAATTGCACGAAGCTCTCCTT -ACGGAATTGCACGAAGCTCCTGTT -ACGGAATTGCACGAAGCTCGGTTT -ACGGAATTGCACGAAGCTGTGGTT -ACGGAATTGCACGAAGCTGCCTTT -ACGGAATTGCACGAAGCTGGTCTT -ACGGAATTGCACGAAGCTACGCTT -ACGGAATTGCACGAAGCTAGCGTT -ACGGAATTGCACGAAGCTTTCGTC -ACGGAATTGCACGAAGCTTCTCTC -ACGGAATTGCACGAAGCTTGGATC -ACGGAATTGCACGAAGCTCACTTC -ACGGAATTGCACGAAGCTGTACTC -ACGGAATTGCACGAAGCTGATGTC -ACGGAATTGCACGAAGCTACAGTC -ACGGAATTGCACGAAGCTTTGCTG -ACGGAATTGCACGAAGCTTCCATG -ACGGAATTGCACGAAGCTTGTGTG -ACGGAATTGCACGAAGCTCTAGTG -ACGGAATTGCACGAAGCTCATCTG -ACGGAATTGCACGAAGCTGAGTTG -ACGGAATTGCACGAAGCTAGACTG -ACGGAATTGCACGAAGCTTCGGTA -ACGGAATTGCACGAAGCTTGCCTA -ACGGAATTGCACGAAGCTCCACTA -ACGGAATTGCACGAAGCTGGAGTA -ACGGAATTGCACGAAGCTTCGTCT -ACGGAATTGCACGAAGCTTGCACT -ACGGAATTGCACGAAGCTCTGACT -ACGGAATTGCACGAAGCTCAACCT -ACGGAATTGCACGAAGCTGCTACT -ACGGAATTGCACGAAGCTGGATCT -ACGGAATTGCACGAAGCTAAGGCT -ACGGAATTGCACGAAGCTTCAACC -ACGGAATTGCACGAAGCTTGTTCC -ACGGAATTGCACGAAGCTATTCCC -ACGGAATTGCACGAAGCTTTCTCG -ACGGAATTGCACGAAGCTTAGACG -ACGGAATTGCACGAAGCTGTAACG -ACGGAATTGCACGAAGCTACTTCG -ACGGAATTGCACGAAGCTTACGCA -ACGGAATTGCACGAAGCTCTTGCA -ACGGAATTGCACGAAGCTCGAACA -ACGGAATTGCACGAAGCTCAGTCA -ACGGAATTGCACGAAGCTGATCCA -ACGGAATTGCACGAAGCTACGACA -ACGGAATTGCACGAAGCTAGCTCA -ACGGAATTGCACGAAGCTTCACGT -ACGGAATTGCACGAAGCTCGTAGT -ACGGAATTGCACGAAGCTGTCAGT -ACGGAATTGCACGAAGCTGAAGGT -ACGGAATTGCACGAAGCTAACCGT -ACGGAATTGCACGAAGCTTTGTGC -ACGGAATTGCACGAAGCTCTAAGC -ACGGAATTGCACGAAGCTACTAGC -ACGGAATTGCACGAAGCTAGATGC -ACGGAATTGCACGAAGCTTGAAGG -ACGGAATTGCACGAAGCTCAATGG -ACGGAATTGCACGAAGCTATGAGG -ACGGAATTGCACGAAGCTAATGGG -ACGGAATTGCACGAAGCTTCCTGA -ACGGAATTGCACGAAGCTTAGCGA -ACGGAATTGCACGAAGCTCACAGA -ACGGAATTGCACGAAGCTGCAAGA -ACGGAATTGCACGAAGCTGGTTGA -ACGGAATTGCACGAAGCTTCCGAT -ACGGAATTGCACGAAGCTTGGCAT -ACGGAATTGCACGAAGCTCGAGAT -ACGGAATTGCACGAAGCTTACCAC -ACGGAATTGCACGAAGCTCAGAAC -ACGGAATTGCACGAAGCTGTCTAC -ACGGAATTGCACGAAGCTACGTAC -ACGGAATTGCACGAAGCTAGTGAC -ACGGAATTGCACGAAGCTCTGTAG -ACGGAATTGCACGAAGCTCCTAAG -ACGGAATTGCACGAAGCTGTTCAG -ACGGAATTGCACGAAGCTGCATAG -ACGGAATTGCACGAAGCTGACAAG -ACGGAATTGCACGAAGCTAAGCAG -ACGGAATTGCACGAAGCTCGTCAA -ACGGAATTGCACGAAGCTGCTGAA -ACGGAATTGCACGAAGCTAGTACG -ACGGAATTGCACGAAGCTATCCGA -ACGGAATTGCACGAAGCTATGGGA -ACGGAATTGCACGAAGCTGTGCAA -ACGGAATTGCACGAAGCTGAGGAA -ACGGAATTGCACGAAGCTCAGGTA -ACGGAATTGCACGAAGCTGACTCT -ACGGAATTGCACGAAGCTAGTCCT -ACGGAATTGCACGAAGCTTAAGCC -ACGGAATTGCACGAAGCTATAGCC -ACGGAATTGCACGAAGCTTAACCG -ACGGAATTGCACGAAGCTATGCCA -ACGGAATTGCACACGAGTGGAAAC -ACGGAATTGCACACGAGTAACACC -ACGGAATTGCACACGAGTATCGAG -ACGGAATTGCACACGAGTCTCCTT -ACGGAATTGCACACGAGTCCTGTT -ACGGAATTGCACACGAGTCGGTTT -ACGGAATTGCACACGAGTGTGGTT -ACGGAATTGCACACGAGTGCCTTT -ACGGAATTGCACACGAGTGGTCTT -ACGGAATTGCACACGAGTACGCTT -ACGGAATTGCACACGAGTAGCGTT -ACGGAATTGCACACGAGTTTCGTC -ACGGAATTGCACACGAGTTCTCTC -ACGGAATTGCACACGAGTTGGATC -ACGGAATTGCACACGAGTCACTTC -ACGGAATTGCACACGAGTGTACTC -ACGGAATTGCACACGAGTGATGTC -ACGGAATTGCACACGAGTACAGTC -ACGGAATTGCACACGAGTTTGCTG -ACGGAATTGCACACGAGTTCCATG -ACGGAATTGCACACGAGTTGTGTG -ACGGAATTGCACACGAGTCTAGTG -ACGGAATTGCACACGAGTCATCTG -ACGGAATTGCACACGAGTGAGTTG -ACGGAATTGCACACGAGTAGACTG -ACGGAATTGCACACGAGTTCGGTA -ACGGAATTGCACACGAGTTGCCTA -ACGGAATTGCACACGAGTCCACTA -ACGGAATTGCACACGAGTGGAGTA -ACGGAATTGCACACGAGTTCGTCT -ACGGAATTGCACACGAGTTGCACT -ACGGAATTGCACACGAGTCTGACT -ACGGAATTGCACACGAGTCAACCT -ACGGAATTGCACACGAGTGCTACT -ACGGAATTGCACACGAGTGGATCT -ACGGAATTGCACACGAGTAAGGCT -ACGGAATTGCACACGAGTTCAACC -ACGGAATTGCACACGAGTTGTTCC -ACGGAATTGCACACGAGTATTCCC -ACGGAATTGCACACGAGTTTCTCG -ACGGAATTGCACACGAGTTAGACG -ACGGAATTGCACACGAGTGTAACG -ACGGAATTGCACACGAGTACTTCG -ACGGAATTGCACACGAGTTACGCA -ACGGAATTGCACACGAGTCTTGCA -ACGGAATTGCACACGAGTCGAACA -ACGGAATTGCACACGAGTCAGTCA -ACGGAATTGCACACGAGTGATCCA -ACGGAATTGCACACGAGTACGACA -ACGGAATTGCACACGAGTAGCTCA -ACGGAATTGCACACGAGTTCACGT -ACGGAATTGCACACGAGTCGTAGT -ACGGAATTGCACACGAGTGTCAGT -ACGGAATTGCACACGAGTGAAGGT -ACGGAATTGCACACGAGTAACCGT -ACGGAATTGCACACGAGTTTGTGC -ACGGAATTGCACACGAGTCTAAGC -ACGGAATTGCACACGAGTACTAGC -ACGGAATTGCACACGAGTAGATGC -ACGGAATTGCACACGAGTTGAAGG -ACGGAATTGCACACGAGTCAATGG -ACGGAATTGCACACGAGTATGAGG -ACGGAATTGCACACGAGTAATGGG -ACGGAATTGCACACGAGTTCCTGA -ACGGAATTGCACACGAGTTAGCGA -ACGGAATTGCACACGAGTCACAGA -ACGGAATTGCACACGAGTGCAAGA -ACGGAATTGCACACGAGTGGTTGA -ACGGAATTGCACACGAGTTCCGAT -ACGGAATTGCACACGAGTTGGCAT -ACGGAATTGCACACGAGTCGAGAT -ACGGAATTGCACACGAGTTACCAC -ACGGAATTGCACACGAGTCAGAAC -ACGGAATTGCACACGAGTGTCTAC -ACGGAATTGCACACGAGTACGTAC -ACGGAATTGCACACGAGTAGTGAC -ACGGAATTGCACACGAGTCTGTAG -ACGGAATTGCACACGAGTCCTAAG -ACGGAATTGCACACGAGTGTTCAG -ACGGAATTGCACACGAGTGCATAG -ACGGAATTGCACACGAGTGACAAG -ACGGAATTGCACACGAGTAAGCAG -ACGGAATTGCACACGAGTCGTCAA -ACGGAATTGCACACGAGTGCTGAA -ACGGAATTGCACACGAGTAGTACG -ACGGAATTGCACACGAGTATCCGA -ACGGAATTGCACACGAGTATGGGA -ACGGAATTGCACACGAGTGTGCAA -ACGGAATTGCACACGAGTGAGGAA -ACGGAATTGCACACGAGTCAGGTA -ACGGAATTGCACACGAGTGACTCT -ACGGAATTGCACACGAGTAGTCCT -ACGGAATTGCACACGAGTTAAGCC -ACGGAATTGCACACGAGTATAGCC -ACGGAATTGCACACGAGTTAACCG -ACGGAATTGCACACGAGTATGCCA -ACGGAATTGCACCGAATCGGAAAC -ACGGAATTGCACCGAATCAACACC -ACGGAATTGCACCGAATCATCGAG -ACGGAATTGCACCGAATCCTCCTT -ACGGAATTGCACCGAATCCCTGTT -ACGGAATTGCACCGAATCCGGTTT -ACGGAATTGCACCGAATCGTGGTT -ACGGAATTGCACCGAATCGCCTTT -ACGGAATTGCACCGAATCGGTCTT -ACGGAATTGCACCGAATCACGCTT -ACGGAATTGCACCGAATCAGCGTT -ACGGAATTGCACCGAATCTTCGTC -ACGGAATTGCACCGAATCTCTCTC -ACGGAATTGCACCGAATCTGGATC -ACGGAATTGCACCGAATCCACTTC -ACGGAATTGCACCGAATCGTACTC -ACGGAATTGCACCGAATCGATGTC -ACGGAATTGCACCGAATCACAGTC -ACGGAATTGCACCGAATCTTGCTG -ACGGAATTGCACCGAATCTCCATG -ACGGAATTGCACCGAATCTGTGTG -ACGGAATTGCACCGAATCCTAGTG -ACGGAATTGCACCGAATCCATCTG -ACGGAATTGCACCGAATCGAGTTG -ACGGAATTGCACCGAATCAGACTG -ACGGAATTGCACCGAATCTCGGTA -ACGGAATTGCACCGAATCTGCCTA -ACGGAATTGCACCGAATCCCACTA -ACGGAATTGCACCGAATCGGAGTA -ACGGAATTGCACCGAATCTCGTCT -ACGGAATTGCACCGAATCTGCACT -ACGGAATTGCACCGAATCCTGACT -ACGGAATTGCACCGAATCCAACCT -ACGGAATTGCACCGAATCGCTACT -ACGGAATTGCACCGAATCGGATCT -ACGGAATTGCACCGAATCAAGGCT -ACGGAATTGCACCGAATCTCAACC -ACGGAATTGCACCGAATCTGTTCC -ACGGAATTGCACCGAATCATTCCC -ACGGAATTGCACCGAATCTTCTCG -ACGGAATTGCACCGAATCTAGACG -ACGGAATTGCACCGAATCGTAACG -ACGGAATTGCACCGAATCACTTCG -ACGGAATTGCACCGAATCTACGCA -ACGGAATTGCACCGAATCCTTGCA -ACGGAATTGCACCGAATCCGAACA -ACGGAATTGCACCGAATCCAGTCA -ACGGAATTGCACCGAATCGATCCA -ACGGAATTGCACCGAATCACGACA -ACGGAATTGCACCGAATCAGCTCA -ACGGAATTGCACCGAATCTCACGT -ACGGAATTGCACCGAATCCGTAGT -ACGGAATTGCACCGAATCGTCAGT -ACGGAATTGCACCGAATCGAAGGT -ACGGAATTGCACCGAATCAACCGT -ACGGAATTGCACCGAATCTTGTGC -ACGGAATTGCACCGAATCCTAAGC -ACGGAATTGCACCGAATCACTAGC -ACGGAATTGCACCGAATCAGATGC -ACGGAATTGCACCGAATCTGAAGG -ACGGAATTGCACCGAATCCAATGG -ACGGAATTGCACCGAATCATGAGG -ACGGAATTGCACCGAATCAATGGG -ACGGAATTGCACCGAATCTCCTGA -ACGGAATTGCACCGAATCTAGCGA -ACGGAATTGCACCGAATCCACAGA -ACGGAATTGCACCGAATCGCAAGA -ACGGAATTGCACCGAATCGGTTGA -ACGGAATTGCACCGAATCTCCGAT -ACGGAATTGCACCGAATCTGGCAT -ACGGAATTGCACCGAATCCGAGAT -ACGGAATTGCACCGAATCTACCAC -ACGGAATTGCACCGAATCCAGAAC -ACGGAATTGCACCGAATCGTCTAC -ACGGAATTGCACCGAATCACGTAC -ACGGAATTGCACCGAATCAGTGAC -ACGGAATTGCACCGAATCCTGTAG -ACGGAATTGCACCGAATCCCTAAG -ACGGAATTGCACCGAATCGTTCAG -ACGGAATTGCACCGAATCGCATAG -ACGGAATTGCACCGAATCGACAAG -ACGGAATTGCACCGAATCAAGCAG -ACGGAATTGCACCGAATCCGTCAA -ACGGAATTGCACCGAATCGCTGAA -ACGGAATTGCACCGAATCAGTACG -ACGGAATTGCACCGAATCATCCGA -ACGGAATTGCACCGAATCATGGGA -ACGGAATTGCACCGAATCGTGCAA -ACGGAATTGCACCGAATCGAGGAA -ACGGAATTGCACCGAATCCAGGTA -ACGGAATTGCACCGAATCGACTCT -ACGGAATTGCACCGAATCAGTCCT -ACGGAATTGCACCGAATCTAAGCC -ACGGAATTGCACCGAATCATAGCC -ACGGAATTGCACCGAATCTAACCG -ACGGAATTGCACCGAATCATGCCA -ACGGAATTGCACGGAATGGGAAAC -ACGGAATTGCACGGAATGAACACC -ACGGAATTGCACGGAATGATCGAG -ACGGAATTGCACGGAATGCTCCTT -ACGGAATTGCACGGAATGCCTGTT -ACGGAATTGCACGGAATGCGGTTT -ACGGAATTGCACGGAATGGTGGTT -ACGGAATTGCACGGAATGGCCTTT -ACGGAATTGCACGGAATGGGTCTT -ACGGAATTGCACGGAATGACGCTT -ACGGAATTGCACGGAATGAGCGTT -ACGGAATTGCACGGAATGTTCGTC -ACGGAATTGCACGGAATGTCTCTC -ACGGAATTGCACGGAATGTGGATC -ACGGAATTGCACGGAATGCACTTC -ACGGAATTGCACGGAATGGTACTC -ACGGAATTGCACGGAATGGATGTC -ACGGAATTGCACGGAATGACAGTC -ACGGAATTGCACGGAATGTTGCTG -ACGGAATTGCACGGAATGTCCATG -ACGGAATTGCACGGAATGTGTGTG -ACGGAATTGCACGGAATGCTAGTG -ACGGAATTGCACGGAATGCATCTG -ACGGAATTGCACGGAATGGAGTTG -ACGGAATTGCACGGAATGAGACTG -ACGGAATTGCACGGAATGTCGGTA -ACGGAATTGCACGGAATGTGCCTA -ACGGAATTGCACGGAATGCCACTA -ACGGAATTGCACGGAATGGGAGTA -ACGGAATTGCACGGAATGTCGTCT -ACGGAATTGCACGGAATGTGCACT -ACGGAATTGCACGGAATGCTGACT -ACGGAATTGCACGGAATGCAACCT -ACGGAATTGCACGGAATGGCTACT -ACGGAATTGCACGGAATGGGATCT -ACGGAATTGCACGGAATGAAGGCT -ACGGAATTGCACGGAATGTCAACC -ACGGAATTGCACGGAATGTGTTCC -ACGGAATTGCACGGAATGATTCCC -ACGGAATTGCACGGAATGTTCTCG -ACGGAATTGCACGGAATGTAGACG -ACGGAATTGCACGGAATGGTAACG -ACGGAATTGCACGGAATGACTTCG -ACGGAATTGCACGGAATGTACGCA -ACGGAATTGCACGGAATGCTTGCA -ACGGAATTGCACGGAATGCGAACA -ACGGAATTGCACGGAATGCAGTCA -ACGGAATTGCACGGAATGGATCCA -ACGGAATTGCACGGAATGACGACA -ACGGAATTGCACGGAATGAGCTCA -ACGGAATTGCACGGAATGTCACGT -ACGGAATTGCACGGAATGCGTAGT -ACGGAATTGCACGGAATGGTCAGT -ACGGAATTGCACGGAATGGAAGGT -ACGGAATTGCACGGAATGAACCGT -ACGGAATTGCACGGAATGTTGTGC -ACGGAATTGCACGGAATGCTAAGC -ACGGAATTGCACGGAATGACTAGC -ACGGAATTGCACGGAATGAGATGC -ACGGAATTGCACGGAATGTGAAGG -ACGGAATTGCACGGAATGCAATGG -ACGGAATTGCACGGAATGATGAGG -ACGGAATTGCACGGAATGAATGGG -ACGGAATTGCACGGAATGTCCTGA -ACGGAATTGCACGGAATGTAGCGA -ACGGAATTGCACGGAATGCACAGA -ACGGAATTGCACGGAATGGCAAGA -ACGGAATTGCACGGAATGGGTTGA -ACGGAATTGCACGGAATGTCCGAT -ACGGAATTGCACGGAATGTGGCAT -ACGGAATTGCACGGAATGCGAGAT -ACGGAATTGCACGGAATGTACCAC -ACGGAATTGCACGGAATGCAGAAC -ACGGAATTGCACGGAATGGTCTAC -ACGGAATTGCACGGAATGACGTAC -ACGGAATTGCACGGAATGAGTGAC -ACGGAATTGCACGGAATGCTGTAG -ACGGAATTGCACGGAATGCCTAAG -ACGGAATTGCACGGAATGGTTCAG -ACGGAATTGCACGGAATGGCATAG -ACGGAATTGCACGGAATGGACAAG -ACGGAATTGCACGGAATGAAGCAG -ACGGAATTGCACGGAATGCGTCAA -ACGGAATTGCACGGAATGGCTGAA -ACGGAATTGCACGGAATGAGTACG -ACGGAATTGCACGGAATGATCCGA -ACGGAATTGCACGGAATGATGGGA -ACGGAATTGCACGGAATGGTGCAA -ACGGAATTGCACGGAATGGAGGAA -ACGGAATTGCACGGAATGCAGGTA -ACGGAATTGCACGGAATGGACTCT -ACGGAATTGCACGGAATGAGTCCT -ACGGAATTGCACGGAATGTAAGCC -ACGGAATTGCACGGAATGATAGCC -ACGGAATTGCACGGAATGTAACCG -ACGGAATTGCACGGAATGATGCCA -ACGGAATTGCACCAAGTGGGAAAC -ACGGAATTGCACCAAGTGAACACC -ACGGAATTGCACCAAGTGATCGAG -ACGGAATTGCACCAAGTGCTCCTT -ACGGAATTGCACCAAGTGCCTGTT -ACGGAATTGCACCAAGTGCGGTTT -ACGGAATTGCACCAAGTGGTGGTT -ACGGAATTGCACCAAGTGGCCTTT -ACGGAATTGCACCAAGTGGGTCTT -ACGGAATTGCACCAAGTGACGCTT -ACGGAATTGCACCAAGTGAGCGTT -ACGGAATTGCACCAAGTGTTCGTC -ACGGAATTGCACCAAGTGTCTCTC -ACGGAATTGCACCAAGTGTGGATC -ACGGAATTGCACCAAGTGCACTTC -ACGGAATTGCACCAAGTGGTACTC -ACGGAATTGCACCAAGTGGATGTC -ACGGAATTGCACCAAGTGACAGTC -ACGGAATTGCACCAAGTGTTGCTG -ACGGAATTGCACCAAGTGTCCATG -ACGGAATTGCACCAAGTGTGTGTG -ACGGAATTGCACCAAGTGCTAGTG -ACGGAATTGCACCAAGTGCATCTG -ACGGAATTGCACCAAGTGGAGTTG -ACGGAATTGCACCAAGTGAGACTG -ACGGAATTGCACCAAGTGTCGGTA -ACGGAATTGCACCAAGTGTGCCTA -ACGGAATTGCACCAAGTGCCACTA -ACGGAATTGCACCAAGTGGGAGTA -ACGGAATTGCACCAAGTGTCGTCT -ACGGAATTGCACCAAGTGTGCACT -ACGGAATTGCACCAAGTGCTGACT -ACGGAATTGCACCAAGTGCAACCT -ACGGAATTGCACCAAGTGGCTACT -ACGGAATTGCACCAAGTGGGATCT -ACGGAATTGCACCAAGTGAAGGCT -ACGGAATTGCACCAAGTGTCAACC -ACGGAATTGCACCAAGTGTGTTCC -ACGGAATTGCACCAAGTGATTCCC -ACGGAATTGCACCAAGTGTTCTCG -ACGGAATTGCACCAAGTGTAGACG -ACGGAATTGCACCAAGTGGTAACG -ACGGAATTGCACCAAGTGACTTCG -ACGGAATTGCACCAAGTGTACGCA -ACGGAATTGCACCAAGTGCTTGCA -ACGGAATTGCACCAAGTGCGAACA -ACGGAATTGCACCAAGTGCAGTCA -ACGGAATTGCACCAAGTGGATCCA -ACGGAATTGCACCAAGTGACGACA -ACGGAATTGCACCAAGTGAGCTCA -ACGGAATTGCACCAAGTGTCACGT -ACGGAATTGCACCAAGTGCGTAGT -ACGGAATTGCACCAAGTGGTCAGT -ACGGAATTGCACCAAGTGGAAGGT -ACGGAATTGCACCAAGTGAACCGT -ACGGAATTGCACCAAGTGTTGTGC -ACGGAATTGCACCAAGTGCTAAGC -ACGGAATTGCACCAAGTGACTAGC -ACGGAATTGCACCAAGTGAGATGC -ACGGAATTGCACCAAGTGTGAAGG -ACGGAATTGCACCAAGTGCAATGG -ACGGAATTGCACCAAGTGATGAGG -ACGGAATTGCACCAAGTGAATGGG -ACGGAATTGCACCAAGTGTCCTGA -ACGGAATTGCACCAAGTGTAGCGA -ACGGAATTGCACCAAGTGCACAGA -ACGGAATTGCACCAAGTGGCAAGA -ACGGAATTGCACCAAGTGGGTTGA -ACGGAATTGCACCAAGTGTCCGAT -ACGGAATTGCACCAAGTGTGGCAT -ACGGAATTGCACCAAGTGCGAGAT -ACGGAATTGCACCAAGTGTACCAC -ACGGAATTGCACCAAGTGCAGAAC -ACGGAATTGCACCAAGTGGTCTAC -ACGGAATTGCACCAAGTGACGTAC -ACGGAATTGCACCAAGTGAGTGAC -ACGGAATTGCACCAAGTGCTGTAG -ACGGAATTGCACCAAGTGCCTAAG -ACGGAATTGCACCAAGTGGTTCAG -ACGGAATTGCACCAAGTGGCATAG -ACGGAATTGCACCAAGTGGACAAG -ACGGAATTGCACCAAGTGAAGCAG -ACGGAATTGCACCAAGTGCGTCAA -ACGGAATTGCACCAAGTGGCTGAA -ACGGAATTGCACCAAGTGAGTACG -ACGGAATTGCACCAAGTGATCCGA -ACGGAATTGCACCAAGTGATGGGA -ACGGAATTGCACCAAGTGGTGCAA -ACGGAATTGCACCAAGTGGAGGAA -ACGGAATTGCACCAAGTGCAGGTA -ACGGAATTGCACCAAGTGGACTCT -ACGGAATTGCACCAAGTGAGTCCT -ACGGAATTGCACCAAGTGTAAGCC -ACGGAATTGCACCAAGTGATAGCC -ACGGAATTGCACCAAGTGTAACCG -ACGGAATTGCACCAAGTGATGCCA -ACGGAATTGCACGAAGAGGGAAAC -ACGGAATTGCACGAAGAGAACACC -ACGGAATTGCACGAAGAGATCGAG -ACGGAATTGCACGAAGAGCTCCTT -ACGGAATTGCACGAAGAGCCTGTT -ACGGAATTGCACGAAGAGCGGTTT -ACGGAATTGCACGAAGAGGTGGTT -ACGGAATTGCACGAAGAGGCCTTT -ACGGAATTGCACGAAGAGGGTCTT -ACGGAATTGCACGAAGAGACGCTT -ACGGAATTGCACGAAGAGAGCGTT -ACGGAATTGCACGAAGAGTTCGTC -ACGGAATTGCACGAAGAGTCTCTC -ACGGAATTGCACGAAGAGTGGATC -ACGGAATTGCACGAAGAGCACTTC -ACGGAATTGCACGAAGAGGTACTC -ACGGAATTGCACGAAGAGGATGTC -ACGGAATTGCACGAAGAGACAGTC -ACGGAATTGCACGAAGAGTTGCTG -ACGGAATTGCACGAAGAGTCCATG -ACGGAATTGCACGAAGAGTGTGTG -ACGGAATTGCACGAAGAGCTAGTG -ACGGAATTGCACGAAGAGCATCTG -ACGGAATTGCACGAAGAGGAGTTG -ACGGAATTGCACGAAGAGAGACTG -ACGGAATTGCACGAAGAGTCGGTA -ACGGAATTGCACGAAGAGTGCCTA -ACGGAATTGCACGAAGAGCCACTA -ACGGAATTGCACGAAGAGGGAGTA -ACGGAATTGCACGAAGAGTCGTCT -ACGGAATTGCACGAAGAGTGCACT -ACGGAATTGCACGAAGAGCTGACT -ACGGAATTGCACGAAGAGCAACCT -ACGGAATTGCACGAAGAGGCTACT -ACGGAATTGCACGAAGAGGGATCT -ACGGAATTGCACGAAGAGAAGGCT -ACGGAATTGCACGAAGAGTCAACC -ACGGAATTGCACGAAGAGTGTTCC -ACGGAATTGCACGAAGAGATTCCC -ACGGAATTGCACGAAGAGTTCTCG -ACGGAATTGCACGAAGAGTAGACG -ACGGAATTGCACGAAGAGGTAACG -ACGGAATTGCACGAAGAGACTTCG -ACGGAATTGCACGAAGAGTACGCA -ACGGAATTGCACGAAGAGCTTGCA -ACGGAATTGCACGAAGAGCGAACA -ACGGAATTGCACGAAGAGCAGTCA -ACGGAATTGCACGAAGAGGATCCA -ACGGAATTGCACGAAGAGACGACA -ACGGAATTGCACGAAGAGAGCTCA -ACGGAATTGCACGAAGAGTCACGT -ACGGAATTGCACGAAGAGCGTAGT -ACGGAATTGCACGAAGAGGTCAGT -ACGGAATTGCACGAAGAGGAAGGT -ACGGAATTGCACGAAGAGAACCGT -ACGGAATTGCACGAAGAGTTGTGC -ACGGAATTGCACGAAGAGCTAAGC -ACGGAATTGCACGAAGAGACTAGC -ACGGAATTGCACGAAGAGAGATGC -ACGGAATTGCACGAAGAGTGAAGG -ACGGAATTGCACGAAGAGCAATGG -ACGGAATTGCACGAAGAGATGAGG -ACGGAATTGCACGAAGAGAATGGG -ACGGAATTGCACGAAGAGTCCTGA -ACGGAATTGCACGAAGAGTAGCGA -ACGGAATTGCACGAAGAGCACAGA -ACGGAATTGCACGAAGAGGCAAGA -ACGGAATTGCACGAAGAGGGTTGA -ACGGAATTGCACGAAGAGTCCGAT -ACGGAATTGCACGAAGAGTGGCAT -ACGGAATTGCACGAAGAGCGAGAT -ACGGAATTGCACGAAGAGTACCAC -ACGGAATTGCACGAAGAGCAGAAC -ACGGAATTGCACGAAGAGGTCTAC -ACGGAATTGCACGAAGAGACGTAC -ACGGAATTGCACGAAGAGAGTGAC -ACGGAATTGCACGAAGAGCTGTAG -ACGGAATTGCACGAAGAGCCTAAG -ACGGAATTGCACGAAGAGGTTCAG -ACGGAATTGCACGAAGAGGCATAG -ACGGAATTGCACGAAGAGGACAAG -ACGGAATTGCACGAAGAGAAGCAG -ACGGAATTGCACGAAGAGCGTCAA -ACGGAATTGCACGAAGAGGCTGAA -ACGGAATTGCACGAAGAGAGTACG -ACGGAATTGCACGAAGAGATCCGA -ACGGAATTGCACGAAGAGATGGGA -ACGGAATTGCACGAAGAGGTGCAA -ACGGAATTGCACGAAGAGGAGGAA -ACGGAATTGCACGAAGAGCAGGTA -ACGGAATTGCACGAAGAGGACTCT -ACGGAATTGCACGAAGAGAGTCCT -ACGGAATTGCACGAAGAGTAAGCC -ACGGAATTGCACGAAGAGATAGCC -ACGGAATTGCACGAAGAGTAACCG -ACGGAATTGCACGAAGAGATGCCA -ACGGAATTGCACGTACAGGGAAAC -ACGGAATTGCACGTACAGAACACC -ACGGAATTGCACGTACAGATCGAG -ACGGAATTGCACGTACAGCTCCTT -ACGGAATTGCACGTACAGCCTGTT -ACGGAATTGCACGTACAGCGGTTT -ACGGAATTGCACGTACAGGTGGTT -ACGGAATTGCACGTACAGGCCTTT -ACGGAATTGCACGTACAGGGTCTT -ACGGAATTGCACGTACAGACGCTT -ACGGAATTGCACGTACAGAGCGTT -ACGGAATTGCACGTACAGTTCGTC -ACGGAATTGCACGTACAGTCTCTC -ACGGAATTGCACGTACAGTGGATC -ACGGAATTGCACGTACAGCACTTC -ACGGAATTGCACGTACAGGTACTC -ACGGAATTGCACGTACAGGATGTC -ACGGAATTGCACGTACAGACAGTC -ACGGAATTGCACGTACAGTTGCTG -ACGGAATTGCACGTACAGTCCATG -ACGGAATTGCACGTACAGTGTGTG -ACGGAATTGCACGTACAGCTAGTG -ACGGAATTGCACGTACAGCATCTG -ACGGAATTGCACGTACAGGAGTTG -ACGGAATTGCACGTACAGAGACTG -ACGGAATTGCACGTACAGTCGGTA -ACGGAATTGCACGTACAGTGCCTA -ACGGAATTGCACGTACAGCCACTA -ACGGAATTGCACGTACAGGGAGTA -ACGGAATTGCACGTACAGTCGTCT -ACGGAATTGCACGTACAGTGCACT -ACGGAATTGCACGTACAGCTGACT -ACGGAATTGCACGTACAGCAACCT -ACGGAATTGCACGTACAGGCTACT -ACGGAATTGCACGTACAGGGATCT -ACGGAATTGCACGTACAGAAGGCT -ACGGAATTGCACGTACAGTCAACC -ACGGAATTGCACGTACAGTGTTCC -ACGGAATTGCACGTACAGATTCCC -ACGGAATTGCACGTACAGTTCTCG -ACGGAATTGCACGTACAGTAGACG -ACGGAATTGCACGTACAGGTAACG -ACGGAATTGCACGTACAGACTTCG -ACGGAATTGCACGTACAGTACGCA -ACGGAATTGCACGTACAGCTTGCA -ACGGAATTGCACGTACAGCGAACA -ACGGAATTGCACGTACAGCAGTCA -ACGGAATTGCACGTACAGGATCCA -ACGGAATTGCACGTACAGACGACA -ACGGAATTGCACGTACAGAGCTCA -ACGGAATTGCACGTACAGTCACGT -ACGGAATTGCACGTACAGCGTAGT -ACGGAATTGCACGTACAGGTCAGT -ACGGAATTGCACGTACAGGAAGGT -ACGGAATTGCACGTACAGAACCGT -ACGGAATTGCACGTACAGTTGTGC -ACGGAATTGCACGTACAGCTAAGC -ACGGAATTGCACGTACAGACTAGC -ACGGAATTGCACGTACAGAGATGC -ACGGAATTGCACGTACAGTGAAGG -ACGGAATTGCACGTACAGCAATGG -ACGGAATTGCACGTACAGATGAGG -ACGGAATTGCACGTACAGAATGGG -ACGGAATTGCACGTACAGTCCTGA -ACGGAATTGCACGTACAGTAGCGA -ACGGAATTGCACGTACAGCACAGA -ACGGAATTGCACGTACAGGCAAGA -ACGGAATTGCACGTACAGGGTTGA -ACGGAATTGCACGTACAGTCCGAT -ACGGAATTGCACGTACAGTGGCAT -ACGGAATTGCACGTACAGCGAGAT -ACGGAATTGCACGTACAGTACCAC -ACGGAATTGCACGTACAGCAGAAC -ACGGAATTGCACGTACAGGTCTAC -ACGGAATTGCACGTACAGACGTAC -ACGGAATTGCACGTACAGAGTGAC -ACGGAATTGCACGTACAGCTGTAG -ACGGAATTGCACGTACAGCCTAAG -ACGGAATTGCACGTACAGGTTCAG -ACGGAATTGCACGTACAGGCATAG -ACGGAATTGCACGTACAGGACAAG -ACGGAATTGCACGTACAGAAGCAG -ACGGAATTGCACGTACAGCGTCAA -ACGGAATTGCACGTACAGGCTGAA -ACGGAATTGCACGTACAGAGTACG -ACGGAATTGCACGTACAGATCCGA -ACGGAATTGCACGTACAGATGGGA -ACGGAATTGCACGTACAGGTGCAA -ACGGAATTGCACGTACAGGAGGAA -ACGGAATTGCACGTACAGCAGGTA -ACGGAATTGCACGTACAGGACTCT -ACGGAATTGCACGTACAGAGTCCT -ACGGAATTGCACGTACAGTAAGCC -ACGGAATTGCACGTACAGATAGCC -ACGGAATTGCACGTACAGTAACCG -ACGGAATTGCACGTACAGATGCCA -ACGGAATTGCACTCTGACGGAAAC -ACGGAATTGCACTCTGACAACACC -ACGGAATTGCACTCTGACATCGAG -ACGGAATTGCACTCTGACCTCCTT -ACGGAATTGCACTCTGACCCTGTT -ACGGAATTGCACTCTGACCGGTTT -ACGGAATTGCACTCTGACGTGGTT -ACGGAATTGCACTCTGACGCCTTT -ACGGAATTGCACTCTGACGGTCTT -ACGGAATTGCACTCTGACACGCTT -ACGGAATTGCACTCTGACAGCGTT -ACGGAATTGCACTCTGACTTCGTC -ACGGAATTGCACTCTGACTCTCTC -ACGGAATTGCACTCTGACTGGATC -ACGGAATTGCACTCTGACCACTTC -ACGGAATTGCACTCTGACGTACTC -ACGGAATTGCACTCTGACGATGTC -ACGGAATTGCACTCTGACACAGTC -ACGGAATTGCACTCTGACTTGCTG -ACGGAATTGCACTCTGACTCCATG -ACGGAATTGCACTCTGACTGTGTG -ACGGAATTGCACTCTGACCTAGTG -ACGGAATTGCACTCTGACCATCTG -ACGGAATTGCACTCTGACGAGTTG -ACGGAATTGCACTCTGACAGACTG -ACGGAATTGCACTCTGACTCGGTA -ACGGAATTGCACTCTGACTGCCTA -ACGGAATTGCACTCTGACCCACTA -ACGGAATTGCACTCTGACGGAGTA -ACGGAATTGCACTCTGACTCGTCT -ACGGAATTGCACTCTGACTGCACT -ACGGAATTGCACTCTGACCTGACT -ACGGAATTGCACTCTGACCAACCT -ACGGAATTGCACTCTGACGCTACT -ACGGAATTGCACTCTGACGGATCT -ACGGAATTGCACTCTGACAAGGCT -ACGGAATTGCACTCTGACTCAACC -ACGGAATTGCACTCTGACTGTTCC -ACGGAATTGCACTCTGACATTCCC -ACGGAATTGCACTCTGACTTCTCG -ACGGAATTGCACTCTGACTAGACG -ACGGAATTGCACTCTGACGTAACG -ACGGAATTGCACTCTGACACTTCG -ACGGAATTGCACTCTGACTACGCA -ACGGAATTGCACTCTGACCTTGCA -ACGGAATTGCACTCTGACCGAACA -ACGGAATTGCACTCTGACCAGTCA -ACGGAATTGCACTCTGACGATCCA -ACGGAATTGCACTCTGACACGACA -ACGGAATTGCACTCTGACAGCTCA -ACGGAATTGCACTCTGACTCACGT -ACGGAATTGCACTCTGACCGTAGT -ACGGAATTGCACTCTGACGTCAGT -ACGGAATTGCACTCTGACGAAGGT -ACGGAATTGCACTCTGACAACCGT -ACGGAATTGCACTCTGACTTGTGC -ACGGAATTGCACTCTGACCTAAGC -ACGGAATTGCACTCTGACACTAGC -ACGGAATTGCACTCTGACAGATGC -ACGGAATTGCACTCTGACTGAAGG -ACGGAATTGCACTCTGACCAATGG -ACGGAATTGCACTCTGACATGAGG -ACGGAATTGCACTCTGACAATGGG -ACGGAATTGCACTCTGACTCCTGA -ACGGAATTGCACTCTGACTAGCGA -ACGGAATTGCACTCTGACCACAGA -ACGGAATTGCACTCTGACGCAAGA -ACGGAATTGCACTCTGACGGTTGA -ACGGAATTGCACTCTGACTCCGAT -ACGGAATTGCACTCTGACTGGCAT -ACGGAATTGCACTCTGACCGAGAT -ACGGAATTGCACTCTGACTACCAC -ACGGAATTGCACTCTGACCAGAAC -ACGGAATTGCACTCTGACGTCTAC -ACGGAATTGCACTCTGACACGTAC -ACGGAATTGCACTCTGACAGTGAC -ACGGAATTGCACTCTGACCTGTAG -ACGGAATTGCACTCTGACCCTAAG -ACGGAATTGCACTCTGACGTTCAG -ACGGAATTGCACTCTGACGCATAG -ACGGAATTGCACTCTGACGACAAG -ACGGAATTGCACTCTGACAAGCAG -ACGGAATTGCACTCTGACCGTCAA -ACGGAATTGCACTCTGACGCTGAA -ACGGAATTGCACTCTGACAGTACG -ACGGAATTGCACTCTGACATCCGA -ACGGAATTGCACTCTGACATGGGA -ACGGAATTGCACTCTGACGTGCAA -ACGGAATTGCACTCTGACGAGGAA -ACGGAATTGCACTCTGACCAGGTA -ACGGAATTGCACTCTGACGACTCT -ACGGAATTGCACTCTGACAGTCCT -ACGGAATTGCACTCTGACTAAGCC -ACGGAATTGCACTCTGACATAGCC -ACGGAATTGCACTCTGACTAACCG -ACGGAATTGCACTCTGACATGCCA -ACGGAATTGCACCCTAGTGGAAAC -ACGGAATTGCACCCTAGTAACACC -ACGGAATTGCACCCTAGTATCGAG -ACGGAATTGCACCCTAGTCTCCTT -ACGGAATTGCACCCTAGTCCTGTT -ACGGAATTGCACCCTAGTCGGTTT -ACGGAATTGCACCCTAGTGTGGTT -ACGGAATTGCACCCTAGTGCCTTT -ACGGAATTGCACCCTAGTGGTCTT -ACGGAATTGCACCCTAGTACGCTT -ACGGAATTGCACCCTAGTAGCGTT -ACGGAATTGCACCCTAGTTTCGTC -ACGGAATTGCACCCTAGTTCTCTC -ACGGAATTGCACCCTAGTTGGATC -ACGGAATTGCACCCTAGTCACTTC -ACGGAATTGCACCCTAGTGTACTC -ACGGAATTGCACCCTAGTGATGTC -ACGGAATTGCACCCTAGTACAGTC -ACGGAATTGCACCCTAGTTTGCTG -ACGGAATTGCACCCTAGTTCCATG -ACGGAATTGCACCCTAGTTGTGTG -ACGGAATTGCACCCTAGTCTAGTG -ACGGAATTGCACCCTAGTCATCTG -ACGGAATTGCACCCTAGTGAGTTG -ACGGAATTGCACCCTAGTAGACTG -ACGGAATTGCACCCTAGTTCGGTA -ACGGAATTGCACCCTAGTTGCCTA -ACGGAATTGCACCCTAGTCCACTA -ACGGAATTGCACCCTAGTGGAGTA -ACGGAATTGCACCCTAGTTCGTCT -ACGGAATTGCACCCTAGTTGCACT -ACGGAATTGCACCCTAGTCTGACT -ACGGAATTGCACCCTAGTCAACCT -ACGGAATTGCACCCTAGTGCTACT -ACGGAATTGCACCCTAGTGGATCT -ACGGAATTGCACCCTAGTAAGGCT -ACGGAATTGCACCCTAGTTCAACC -ACGGAATTGCACCCTAGTTGTTCC -ACGGAATTGCACCCTAGTATTCCC -ACGGAATTGCACCCTAGTTTCTCG -ACGGAATTGCACCCTAGTTAGACG -ACGGAATTGCACCCTAGTGTAACG -ACGGAATTGCACCCTAGTACTTCG -ACGGAATTGCACCCTAGTTACGCA -ACGGAATTGCACCCTAGTCTTGCA -ACGGAATTGCACCCTAGTCGAACA -ACGGAATTGCACCCTAGTCAGTCA -ACGGAATTGCACCCTAGTGATCCA -ACGGAATTGCACCCTAGTACGACA -ACGGAATTGCACCCTAGTAGCTCA -ACGGAATTGCACCCTAGTTCACGT -ACGGAATTGCACCCTAGTCGTAGT -ACGGAATTGCACCCTAGTGTCAGT -ACGGAATTGCACCCTAGTGAAGGT -ACGGAATTGCACCCTAGTAACCGT -ACGGAATTGCACCCTAGTTTGTGC -ACGGAATTGCACCCTAGTCTAAGC -ACGGAATTGCACCCTAGTACTAGC -ACGGAATTGCACCCTAGTAGATGC -ACGGAATTGCACCCTAGTTGAAGG -ACGGAATTGCACCCTAGTCAATGG -ACGGAATTGCACCCTAGTATGAGG -ACGGAATTGCACCCTAGTAATGGG -ACGGAATTGCACCCTAGTTCCTGA -ACGGAATTGCACCCTAGTTAGCGA -ACGGAATTGCACCCTAGTCACAGA -ACGGAATTGCACCCTAGTGCAAGA -ACGGAATTGCACCCTAGTGGTTGA -ACGGAATTGCACCCTAGTTCCGAT -ACGGAATTGCACCCTAGTTGGCAT -ACGGAATTGCACCCTAGTCGAGAT -ACGGAATTGCACCCTAGTTACCAC -ACGGAATTGCACCCTAGTCAGAAC -ACGGAATTGCACCCTAGTGTCTAC -ACGGAATTGCACCCTAGTACGTAC -ACGGAATTGCACCCTAGTAGTGAC -ACGGAATTGCACCCTAGTCTGTAG -ACGGAATTGCACCCTAGTCCTAAG -ACGGAATTGCACCCTAGTGTTCAG -ACGGAATTGCACCCTAGTGCATAG -ACGGAATTGCACCCTAGTGACAAG -ACGGAATTGCACCCTAGTAAGCAG -ACGGAATTGCACCCTAGTCGTCAA -ACGGAATTGCACCCTAGTGCTGAA -ACGGAATTGCACCCTAGTAGTACG -ACGGAATTGCACCCTAGTATCCGA -ACGGAATTGCACCCTAGTATGGGA -ACGGAATTGCACCCTAGTGTGCAA -ACGGAATTGCACCCTAGTGAGGAA -ACGGAATTGCACCCTAGTCAGGTA -ACGGAATTGCACCCTAGTGACTCT -ACGGAATTGCACCCTAGTAGTCCT -ACGGAATTGCACCCTAGTTAAGCC -ACGGAATTGCACCCTAGTATAGCC -ACGGAATTGCACCCTAGTTAACCG -ACGGAATTGCACCCTAGTATGCCA -ACGGAATTGCACGCCTAAGGAAAC -ACGGAATTGCACGCCTAAAACACC -ACGGAATTGCACGCCTAAATCGAG -ACGGAATTGCACGCCTAACTCCTT -ACGGAATTGCACGCCTAACCTGTT -ACGGAATTGCACGCCTAACGGTTT -ACGGAATTGCACGCCTAAGTGGTT -ACGGAATTGCACGCCTAAGCCTTT -ACGGAATTGCACGCCTAAGGTCTT -ACGGAATTGCACGCCTAAACGCTT -ACGGAATTGCACGCCTAAAGCGTT -ACGGAATTGCACGCCTAATTCGTC -ACGGAATTGCACGCCTAATCTCTC -ACGGAATTGCACGCCTAATGGATC -ACGGAATTGCACGCCTAACACTTC -ACGGAATTGCACGCCTAAGTACTC -ACGGAATTGCACGCCTAAGATGTC -ACGGAATTGCACGCCTAAACAGTC -ACGGAATTGCACGCCTAATTGCTG -ACGGAATTGCACGCCTAATCCATG -ACGGAATTGCACGCCTAATGTGTG -ACGGAATTGCACGCCTAACTAGTG -ACGGAATTGCACGCCTAACATCTG -ACGGAATTGCACGCCTAAGAGTTG -ACGGAATTGCACGCCTAAAGACTG -ACGGAATTGCACGCCTAATCGGTA -ACGGAATTGCACGCCTAATGCCTA -ACGGAATTGCACGCCTAACCACTA -ACGGAATTGCACGCCTAAGGAGTA -ACGGAATTGCACGCCTAATCGTCT -ACGGAATTGCACGCCTAATGCACT -ACGGAATTGCACGCCTAACTGACT -ACGGAATTGCACGCCTAACAACCT -ACGGAATTGCACGCCTAAGCTACT -ACGGAATTGCACGCCTAAGGATCT -ACGGAATTGCACGCCTAAAAGGCT -ACGGAATTGCACGCCTAATCAACC -ACGGAATTGCACGCCTAATGTTCC -ACGGAATTGCACGCCTAAATTCCC -ACGGAATTGCACGCCTAATTCTCG -ACGGAATTGCACGCCTAATAGACG -ACGGAATTGCACGCCTAAGTAACG -ACGGAATTGCACGCCTAAACTTCG -ACGGAATTGCACGCCTAATACGCA -ACGGAATTGCACGCCTAACTTGCA -ACGGAATTGCACGCCTAACGAACA -ACGGAATTGCACGCCTAACAGTCA -ACGGAATTGCACGCCTAAGATCCA -ACGGAATTGCACGCCTAAACGACA -ACGGAATTGCACGCCTAAAGCTCA -ACGGAATTGCACGCCTAATCACGT -ACGGAATTGCACGCCTAACGTAGT -ACGGAATTGCACGCCTAAGTCAGT -ACGGAATTGCACGCCTAAGAAGGT -ACGGAATTGCACGCCTAAAACCGT -ACGGAATTGCACGCCTAATTGTGC -ACGGAATTGCACGCCTAACTAAGC -ACGGAATTGCACGCCTAAACTAGC -ACGGAATTGCACGCCTAAAGATGC -ACGGAATTGCACGCCTAATGAAGG -ACGGAATTGCACGCCTAACAATGG -ACGGAATTGCACGCCTAAATGAGG -ACGGAATTGCACGCCTAAAATGGG -ACGGAATTGCACGCCTAATCCTGA -ACGGAATTGCACGCCTAATAGCGA -ACGGAATTGCACGCCTAACACAGA -ACGGAATTGCACGCCTAAGCAAGA -ACGGAATTGCACGCCTAAGGTTGA -ACGGAATTGCACGCCTAATCCGAT -ACGGAATTGCACGCCTAATGGCAT -ACGGAATTGCACGCCTAACGAGAT -ACGGAATTGCACGCCTAATACCAC -ACGGAATTGCACGCCTAACAGAAC -ACGGAATTGCACGCCTAAGTCTAC -ACGGAATTGCACGCCTAAACGTAC -ACGGAATTGCACGCCTAAAGTGAC -ACGGAATTGCACGCCTAACTGTAG -ACGGAATTGCACGCCTAACCTAAG -ACGGAATTGCACGCCTAAGTTCAG -ACGGAATTGCACGCCTAAGCATAG -ACGGAATTGCACGCCTAAGACAAG -ACGGAATTGCACGCCTAAAAGCAG -ACGGAATTGCACGCCTAACGTCAA -ACGGAATTGCACGCCTAAGCTGAA -ACGGAATTGCACGCCTAAAGTACG -ACGGAATTGCACGCCTAAATCCGA -ACGGAATTGCACGCCTAAATGGGA -ACGGAATTGCACGCCTAAGTGCAA -ACGGAATTGCACGCCTAAGAGGAA -ACGGAATTGCACGCCTAACAGGTA -ACGGAATTGCACGCCTAAGACTCT -ACGGAATTGCACGCCTAAAGTCCT -ACGGAATTGCACGCCTAATAAGCC -ACGGAATTGCACGCCTAAATAGCC -ACGGAATTGCACGCCTAATAACCG -ACGGAATTGCACGCCTAAATGCCA -ACGGAATTGCACGCCATAGGAAAC -ACGGAATTGCACGCCATAAACACC -ACGGAATTGCACGCCATAATCGAG -ACGGAATTGCACGCCATACTCCTT -ACGGAATTGCACGCCATACCTGTT -ACGGAATTGCACGCCATACGGTTT -ACGGAATTGCACGCCATAGTGGTT -ACGGAATTGCACGCCATAGCCTTT -ACGGAATTGCACGCCATAGGTCTT -ACGGAATTGCACGCCATAACGCTT -ACGGAATTGCACGCCATAAGCGTT -ACGGAATTGCACGCCATATTCGTC -ACGGAATTGCACGCCATATCTCTC -ACGGAATTGCACGCCATATGGATC -ACGGAATTGCACGCCATACACTTC -ACGGAATTGCACGCCATAGTACTC -ACGGAATTGCACGCCATAGATGTC -ACGGAATTGCACGCCATAACAGTC -ACGGAATTGCACGCCATATTGCTG -ACGGAATTGCACGCCATATCCATG -ACGGAATTGCACGCCATATGTGTG -ACGGAATTGCACGCCATACTAGTG -ACGGAATTGCACGCCATACATCTG -ACGGAATTGCACGCCATAGAGTTG -ACGGAATTGCACGCCATAAGACTG -ACGGAATTGCACGCCATATCGGTA -ACGGAATTGCACGCCATATGCCTA -ACGGAATTGCACGCCATACCACTA -ACGGAATTGCACGCCATAGGAGTA -ACGGAATTGCACGCCATATCGTCT -ACGGAATTGCACGCCATATGCACT -ACGGAATTGCACGCCATACTGACT -ACGGAATTGCACGCCATACAACCT -ACGGAATTGCACGCCATAGCTACT -ACGGAATTGCACGCCATAGGATCT -ACGGAATTGCACGCCATAAAGGCT -ACGGAATTGCACGCCATATCAACC -ACGGAATTGCACGCCATATGTTCC -ACGGAATTGCACGCCATAATTCCC -ACGGAATTGCACGCCATATTCTCG -ACGGAATTGCACGCCATATAGACG -ACGGAATTGCACGCCATAGTAACG -ACGGAATTGCACGCCATAACTTCG -ACGGAATTGCACGCCATATACGCA -ACGGAATTGCACGCCATACTTGCA -ACGGAATTGCACGCCATACGAACA -ACGGAATTGCACGCCATACAGTCA -ACGGAATTGCACGCCATAGATCCA -ACGGAATTGCACGCCATAACGACA -ACGGAATTGCACGCCATAAGCTCA -ACGGAATTGCACGCCATATCACGT -ACGGAATTGCACGCCATACGTAGT -ACGGAATTGCACGCCATAGTCAGT -ACGGAATTGCACGCCATAGAAGGT -ACGGAATTGCACGCCATAAACCGT -ACGGAATTGCACGCCATATTGTGC -ACGGAATTGCACGCCATACTAAGC -ACGGAATTGCACGCCATAACTAGC -ACGGAATTGCACGCCATAAGATGC -ACGGAATTGCACGCCATATGAAGG -ACGGAATTGCACGCCATACAATGG -ACGGAATTGCACGCCATAATGAGG -ACGGAATTGCACGCCATAAATGGG -ACGGAATTGCACGCCATATCCTGA -ACGGAATTGCACGCCATATAGCGA -ACGGAATTGCACGCCATACACAGA -ACGGAATTGCACGCCATAGCAAGA -ACGGAATTGCACGCCATAGGTTGA -ACGGAATTGCACGCCATATCCGAT -ACGGAATTGCACGCCATATGGCAT -ACGGAATTGCACGCCATACGAGAT -ACGGAATTGCACGCCATATACCAC -ACGGAATTGCACGCCATACAGAAC -ACGGAATTGCACGCCATAGTCTAC -ACGGAATTGCACGCCATAACGTAC -ACGGAATTGCACGCCATAAGTGAC -ACGGAATTGCACGCCATACTGTAG -ACGGAATTGCACGCCATACCTAAG -ACGGAATTGCACGCCATAGTTCAG -ACGGAATTGCACGCCATAGCATAG -ACGGAATTGCACGCCATAGACAAG -ACGGAATTGCACGCCATAAAGCAG -ACGGAATTGCACGCCATACGTCAA -ACGGAATTGCACGCCATAGCTGAA -ACGGAATTGCACGCCATAAGTACG -ACGGAATTGCACGCCATAATCCGA -ACGGAATTGCACGCCATAATGGGA -ACGGAATTGCACGCCATAGTGCAA -ACGGAATTGCACGCCATAGAGGAA -ACGGAATTGCACGCCATACAGGTA -ACGGAATTGCACGCCATAGACTCT -ACGGAATTGCACGCCATAAGTCCT -ACGGAATTGCACGCCATATAAGCC -ACGGAATTGCACGCCATAATAGCC -ACGGAATTGCACGCCATATAACCG -ACGGAATTGCACGCCATAATGCCA -ACGGAATTGCACCCGTAAGGAAAC -ACGGAATTGCACCCGTAAAACACC -ACGGAATTGCACCCGTAAATCGAG -ACGGAATTGCACCCGTAACTCCTT -ACGGAATTGCACCCGTAACCTGTT -ACGGAATTGCACCCGTAACGGTTT -ACGGAATTGCACCCGTAAGTGGTT -ACGGAATTGCACCCGTAAGCCTTT -ACGGAATTGCACCCGTAAGGTCTT -ACGGAATTGCACCCGTAAACGCTT -ACGGAATTGCACCCGTAAAGCGTT -ACGGAATTGCACCCGTAATTCGTC -ACGGAATTGCACCCGTAATCTCTC -ACGGAATTGCACCCGTAATGGATC -ACGGAATTGCACCCGTAACACTTC -ACGGAATTGCACCCGTAAGTACTC -ACGGAATTGCACCCGTAAGATGTC -ACGGAATTGCACCCGTAAACAGTC -ACGGAATTGCACCCGTAATTGCTG -ACGGAATTGCACCCGTAATCCATG -ACGGAATTGCACCCGTAATGTGTG -ACGGAATTGCACCCGTAACTAGTG -ACGGAATTGCACCCGTAACATCTG -ACGGAATTGCACCCGTAAGAGTTG -ACGGAATTGCACCCGTAAAGACTG -ACGGAATTGCACCCGTAATCGGTA -ACGGAATTGCACCCGTAATGCCTA -ACGGAATTGCACCCGTAACCACTA -ACGGAATTGCACCCGTAAGGAGTA -ACGGAATTGCACCCGTAATCGTCT -ACGGAATTGCACCCGTAATGCACT -ACGGAATTGCACCCGTAACTGACT -ACGGAATTGCACCCGTAACAACCT -ACGGAATTGCACCCGTAAGCTACT -ACGGAATTGCACCCGTAAGGATCT -ACGGAATTGCACCCGTAAAAGGCT -ACGGAATTGCACCCGTAATCAACC -ACGGAATTGCACCCGTAATGTTCC -ACGGAATTGCACCCGTAAATTCCC -ACGGAATTGCACCCGTAATTCTCG -ACGGAATTGCACCCGTAATAGACG -ACGGAATTGCACCCGTAAGTAACG -ACGGAATTGCACCCGTAAACTTCG -ACGGAATTGCACCCGTAATACGCA -ACGGAATTGCACCCGTAACTTGCA -ACGGAATTGCACCCGTAACGAACA -ACGGAATTGCACCCGTAACAGTCA -ACGGAATTGCACCCGTAAGATCCA -ACGGAATTGCACCCGTAAACGACA -ACGGAATTGCACCCGTAAAGCTCA -ACGGAATTGCACCCGTAATCACGT -ACGGAATTGCACCCGTAACGTAGT -ACGGAATTGCACCCGTAAGTCAGT -ACGGAATTGCACCCGTAAGAAGGT -ACGGAATTGCACCCGTAAAACCGT -ACGGAATTGCACCCGTAATTGTGC -ACGGAATTGCACCCGTAACTAAGC -ACGGAATTGCACCCGTAAACTAGC -ACGGAATTGCACCCGTAAAGATGC -ACGGAATTGCACCCGTAATGAAGG -ACGGAATTGCACCCGTAACAATGG -ACGGAATTGCACCCGTAAATGAGG -ACGGAATTGCACCCGTAAAATGGG -ACGGAATTGCACCCGTAATCCTGA -ACGGAATTGCACCCGTAATAGCGA -ACGGAATTGCACCCGTAACACAGA -ACGGAATTGCACCCGTAAGCAAGA -ACGGAATTGCACCCGTAAGGTTGA -ACGGAATTGCACCCGTAATCCGAT -ACGGAATTGCACCCGTAATGGCAT -ACGGAATTGCACCCGTAACGAGAT -ACGGAATTGCACCCGTAATACCAC -ACGGAATTGCACCCGTAACAGAAC -ACGGAATTGCACCCGTAAGTCTAC -ACGGAATTGCACCCGTAAACGTAC -ACGGAATTGCACCCGTAAAGTGAC -ACGGAATTGCACCCGTAACTGTAG -ACGGAATTGCACCCGTAACCTAAG -ACGGAATTGCACCCGTAAGTTCAG -ACGGAATTGCACCCGTAAGCATAG -ACGGAATTGCACCCGTAAGACAAG -ACGGAATTGCACCCGTAAAAGCAG -ACGGAATTGCACCCGTAACGTCAA -ACGGAATTGCACCCGTAAGCTGAA -ACGGAATTGCACCCGTAAAGTACG -ACGGAATTGCACCCGTAAATCCGA -ACGGAATTGCACCCGTAAATGGGA -ACGGAATTGCACCCGTAAGTGCAA -ACGGAATTGCACCCGTAAGAGGAA -ACGGAATTGCACCCGTAACAGGTA -ACGGAATTGCACCCGTAAGACTCT -ACGGAATTGCACCCGTAAAGTCCT -ACGGAATTGCACCCGTAATAAGCC -ACGGAATTGCACCCGTAAATAGCC -ACGGAATTGCACCCGTAATAACCG -ACGGAATTGCACCCGTAAATGCCA -ACGGAATTGCACCCAATGGGAAAC -ACGGAATTGCACCCAATGAACACC -ACGGAATTGCACCCAATGATCGAG -ACGGAATTGCACCCAATGCTCCTT -ACGGAATTGCACCCAATGCCTGTT -ACGGAATTGCACCCAATGCGGTTT -ACGGAATTGCACCCAATGGTGGTT -ACGGAATTGCACCCAATGGCCTTT -ACGGAATTGCACCCAATGGGTCTT -ACGGAATTGCACCCAATGACGCTT -ACGGAATTGCACCCAATGAGCGTT -ACGGAATTGCACCCAATGTTCGTC -ACGGAATTGCACCCAATGTCTCTC -ACGGAATTGCACCCAATGTGGATC -ACGGAATTGCACCCAATGCACTTC -ACGGAATTGCACCCAATGGTACTC -ACGGAATTGCACCCAATGGATGTC -ACGGAATTGCACCCAATGACAGTC -ACGGAATTGCACCCAATGTTGCTG -ACGGAATTGCACCCAATGTCCATG -ACGGAATTGCACCCAATGTGTGTG -ACGGAATTGCACCCAATGCTAGTG -ACGGAATTGCACCCAATGCATCTG -ACGGAATTGCACCCAATGGAGTTG -ACGGAATTGCACCCAATGAGACTG -ACGGAATTGCACCCAATGTCGGTA -ACGGAATTGCACCCAATGTGCCTA -ACGGAATTGCACCCAATGCCACTA -ACGGAATTGCACCCAATGGGAGTA -ACGGAATTGCACCCAATGTCGTCT -ACGGAATTGCACCCAATGTGCACT -ACGGAATTGCACCCAATGCTGACT -ACGGAATTGCACCCAATGCAACCT -ACGGAATTGCACCCAATGGCTACT -ACGGAATTGCACCCAATGGGATCT -ACGGAATTGCACCCAATGAAGGCT -ACGGAATTGCACCCAATGTCAACC -ACGGAATTGCACCCAATGTGTTCC -ACGGAATTGCACCCAATGATTCCC -ACGGAATTGCACCCAATGTTCTCG -ACGGAATTGCACCCAATGTAGACG -ACGGAATTGCACCCAATGGTAACG -ACGGAATTGCACCCAATGACTTCG -ACGGAATTGCACCCAATGTACGCA -ACGGAATTGCACCCAATGCTTGCA -ACGGAATTGCACCCAATGCGAACA -ACGGAATTGCACCCAATGCAGTCA -ACGGAATTGCACCCAATGGATCCA -ACGGAATTGCACCCAATGACGACA -ACGGAATTGCACCCAATGAGCTCA -ACGGAATTGCACCCAATGTCACGT -ACGGAATTGCACCCAATGCGTAGT -ACGGAATTGCACCCAATGGTCAGT -ACGGAATTGCACCCAATGGAAGGT -ACGGAATTGCACCCAATGAACCGT -ACGGAATTGCACCCAATGTTGTGC -ACGGAATTGCACCCAATGCTAAGC -ACGGAATTGCACCCAATGACTAGC -ACGGAATTGCACCCAATGAGATGC -ACGGAATTGCACCCAATGTGAAGG -ACGGAATTGCACCCAATGCAATGG -ACGGAATTGCACCCAATGATGAGG -ACGGAATTGCACCCAATGAATGGG -ACGGAATTGCACCCAATGTCCTGA -ACGGAATTGCACCCAATGTAGCGA -ACGGAATTGCACCCAATGCACAGA -ACGGAATTGCACCCAATGGCAAGA -ACGGAATTGCACCCAATGGGTTGA -ACGGAATTGCACCCAATGTCCGAT -ACGGAATTGCACCCAATGTGGCAT -ACGGAATTGCACCCAATGCGAGAT -ACGGAATTGCACCCAATGTACCAC -ACGGAATTGCACCCAATGCAGAAC -ACGGAATTGCACCCAATGGTCTAC -ACGGAATTGCACCCAATGACGTAC -ACGGAATTGCACCCAATGAGTGAC -ACGGAATTGCACCCAATGCTGTAG -ACGGAATTGCACCCAATGCCTAAG -ACGGAATTGCACCCAATGGTTCAG -ACGGAATTGCACCCAATGGCATAG -ACGGAATTGCACCCAATGGACAAG -ACGGAATTGCACCCAATGAAGCAG -ACGGAATTGCACCCAATGCGTCAA -ACGGAATTGCACCCAATGGCTGAA -ACGGAATTGCACCCAATGAGTACG -ACGGAATTGCACCCAATGATCCGA -ACGGAATTGCACCCAATGATGGGA -ACGGAATTGCACCCAATGGTGCAA -ACGGAATTGCACCCAATGGAGGAA -ACGGAATTGCACCCAATGCAGGTA -ACGGAATTGCACCCAATGGACTCT -ACGGAATTGCACCCAATGAGTCCT -ACGGAATTGCACCCAATGTAAGCC -ACGGAATTGCACCCAATGATAGCC -ACGGAATTGCACCCAATGTAACCG -ACGGAATTGCACCCAATGATGCCA -ACGGAAGAACACAACGGAGGAAAC -ACGGAAGAACACAACGGAAACACC -ACGGAAGAACACAACGGAATCGAG -ACGGAAGAACACAACGGACTCCTT -ACGGAAGAACACAACGGACCTGTT -ACGGAAGAACACAACGGACGGTTT -ACGGAAGAACACAACGGAGTGGTT -ACGGAAGAACACAACGGAGCCTTT -ACGGAAGAACACAACGGAGGTCTT -ACGGAAGAACACAACGGAACGCTT -ACGGAAGAACACAACGGAAGCGTT -ACGGAAGAACACAACGGATTCGTC -ACGGAAGAACACAACGGATCTCTC -ACGGAAGAACACAACGGATGGATC -ACGGAAGAACACAACGGACACTTC -ACGGAAGAACACAACGGAGTACTC -ACGGAAGAACACAACGGAGATGTC -ACGGAAGAACACAACGGAACAGTC -ACGGAAGAACACAACGGATTGCTG -ACGGAAGAACACAACGGATCCATG -ACGGAAGAACACAACGGATGTGTG -ACGGAAGAACACAACGGACTAGTG -ACGGAAGAACACAACGGACATCTG -ACGGAAGAACACAACGGAGAGTTG -ACGGAAGAACACAACGGAAGACTG -ACGGAAGAACACAACGGATCGGTA -ACGGAAGAACACAACGGATGCCTA -ACGGAAGAACACAACGGACCACTA -ACGGAAGAACACAACGGAGGAGTA -ACGGAAGAACACAACGGATCGTCT -ACGGAAGAACACAACGGATGCACT -ACGGAAGAACACAACGGACTGACT -ACGGAAGAACACAACGGACAACCT -ACGGAAGAACACAACGGAGCTACT -ACGGAAGAACACAACGGAGGATCT -ACGGAAGAACACAACGGAAAGGCT -ACGGAAGAACACAACGGATCAACC -ACGGAAGAACACAACGGATGTTCC -ACGGAAGAACACAACGGAATTCCC -ACGGAAGAACACAACGGATTCTCG -ACGGAAGAACACAACGGATAGACG -ACGGAAGAACACAACGGAGTAACG -ACGGAAGAACACAACGGAACTTCG -ACGGAAGAACACAACGGATACGCA -ACGGAAGAACACAACGGACTTGCA -ACGGAAGAACACAACGGACGAACA -ACGGAAGAACACAACGGACAGTCA -ACGGAAGAACACAACGGAGATCCA -ACGGAAGAACACAACGGAACGACA -ACGGAAGAACACAACGGAAGCTCA -ACGGAAGAACACAACGGATCACGT -ACGGAAGAACACAACGGACGTAGT -ACGGAAGAACACAACGGAGTCAGT -ACGGAAGAACACAACGGAGAAGGT -ACGGAAGAACACAACGGAAACCGT -ACGGAAGAACACAACGGATTGTGC -ACGGAAGAACACAACGGACTAAGC -ACGGAAGAACACAACGGAACTAGC -ACGGAAGAACACAACGGAAGATGC -ACGGAAGAACACAACGGATGAAGG -ACGGAAGAACACAACGGACAATGG -ACGGAAGAACACAACGGAATGAGG -ACGGAAGAACACAACGGAAATGGG -ACGGAAGAACACAACGGATCCTGA -ACGGAAGAACACAACGGATAGCGA -ACGGAAGAACACAACGGACACAGA -ACGGAAGAACACAACGGAGCAAGA -ACGGAAGAACACAACGGAGGTTGA -ACGGAAGAACACAACGGATCCGAT -ACGGAAGAACACAACGGATGGCAT -ACGGAAGAACACAACGGACGAGAT -ACGGAAGAACACAACGGATACCAC -ACGGAAGAACACAACGGACAGAAC -ACGGAAGAACACAACGGAGTCTAC -ACGGAAGAACACAACGGAACGTAC -ACGGAAGAACACAACGGAAGTGAC -ACGGAAGAACACAACGGACTGTAG -ACGGAAGAACACAACGGACCTAAG -ACGGAAGAACACAACGGAGTTCAG -ACGGAAGAACACAACGGAGCATAG -ACGGAAGAACACAACGGAGACAAG -ACGGAAGAACACAACGGAAAGCAG -ACGGAAGAACACAACGGACGTCAA -ACGGAAGAACACAACGGAGCTGAA -ACGGAAGAACACAACGGAAGTACG -ACGGAAGAACACAACGGAATCCGA -ACGGAAGAACACAACGGAATGGGA -ACGGAAGAACACAACGGAGTGCAA -ACGGAAGAACACAACGGAGAGGAA -ACGGAAGAACACAACGGACAGGTA -ACGGAAGAACACAACGGAGACTCT -ACGGAAGAACACAACGGAAGTCCT -ACGGAAGAACACAACGGATAAGCC -ACGGAAGAACACAACGGAATAGCC -ACGGAAGAACACAACGGATAACCG -ACGGAAGAACACAACGGAATGCCA -ACGGAAGAACACACCAACGGAAAC -ACGGAAGAACACACCAACAACACC -ACGGAAGAACACACCAACATCGAG -ACGGAAGAACACACCAACCTCCTT -ACGGAAGAACACACCAACCCTGTT -ACGGAAGAACACACCAACCGGTTT -ACGGAAGAACACACCAACGTGGTT -ACGGAAGAACACACCAACGCCTTT -ACGGAAGAACACACCAACGGTCTT -ACGGAAGAACACACCAACACGCTT -ACGGAAGAACACACCAACAGCGTT -ACGGAAGAACACACCAACTTCGTC -ACGGAAGAACACACCAACTCTCTC -ACGGAAGAACACACCAACTGGATC -ACGGAAGAACACACCAACCACTTC -ACGGAAGAACACACCAACGTACTC -ACGGAAGAACACACCAACGATGTC -ACGGAAGAACACACCAACACAGTC -ACGGAAGAACACACCAACTTGCTG -ACGGAAGAACACACCAACTCCATG -ACGGAAGAACACACCAACTGTGTG -ACGGAAGAACACACCAACCTAGTG -ACGGAAGAACACACCAACCATCTG -ACGGAAGAACACACCAACGAGTTG -ACGGAAGAACACACCAACAGACTG -ACGGAAGAACACACCAACTCGGTA -ACGGAAGAACACACCAACTGCCTA -ACGGAAGAACACACCAACCCACTA -ACGGAAGAACACACCAACGGAGTA -ACGGAAGAACACACCAACTCGTCT -ACGGAAGAACACACCAACTGCACT -ACGGAAGAACACACCAACCTGACT -ACGGAAGAACACACCAACCAACCT -ACGGAAGAACACACCAACGCTACT -ACGGAAGAACACACCAACGGATCT -ACGGAAGAACACACCAACAAGGCT -ACGGAAGAACACACCAACTCAACC -ACGGAAGAACACACCAACTGTTCC -ACGGAAGAACACACCAACATTCCC -ACGGAAGAACACACCAACTTCTCG -ACGGAAGAACACACCAACTAGACG -ACGGAAGAACACACCAACGTAACG -ACGGAAGAACACACCAACACTTCG -ACGGAAGAACACACCAACTACGCA -ACGGAAGAACACACCAACCTTGCA -ACGGAAGAACACACCAACCGAACA -ACGGAAGAACACACCAACCAGTCA -ACGGAAGAACACACCAACGATCCA -ACGGAAGAACACACCAACACGACA -ACGGAAGAACACACCAACAGCTCA -ACGGAAGAACACACCAACTCACGT -ACGGAAGAACACACCAACCGTAGT -ACGGAAGAACACACCAACGTCAGT -ACGGAAGAACACACCAACGAAGGT -ACGGAAGAACACACCAACAACCGT -ACGGAAGAACACACCAACTTGTGC -ACGGAAGAACACACCAACCTAAGC -ACGGAAGAACACACCAACACTAGC -ACGGAAGAACACACCAACAGATGC -ACGGAAGAACACACCAACTGAAGG -ACGGAAGAACACACCAACCAATGG -ACGGAAGAACACACCAACATGAGG -ACGGAAGAACACACCAACAATGGG -ACGGAAGAACACACCAACTCCTGA -ACGGAAGAACACACCAACTAGCGA -ACGGAAGAACACACCAACCACAGA -ACGGAAGAACACACCAACGCAAGA -ACGGAAGAACACACCAACGGTTGA -ACGGAAGAACACACCAACTCCGAT -ACGGAAGAACACACCAACTGGCAT -ACGGAAGAACACACCAACCGAGAT -ACGGAAGAACACACCAACTACCAC -ACGGAAGAACACACCAACCAGAAC -ACGGAAGAACACACCAACGTCTAC -ACGGAAGAACACACCAACACGTAC -ACGGAAGAACACACCAACAGTGAC -ACGGAAGAACACACCAACCTGTAG -ACGGAAGAACACACCAACCCTAAG -ACGGAAGAACACACCAACGTTCAG -ACGGAAGAACACACCAACGCATAG -ACGGAAGAACACACCAACGACAAG -ACGGAAGAACACACCAACAAGCAG -ACGGAAGAACACACCAACCGTCAA -ACGGAAGAACACACCAACGCTGAA -ACGGAAGAACACACCAACAGTACG -ACGGAAGAACACACCAACATCCGA -ACGGAAGAACACACCAACATGGGA -ACGGAAGAACACACCAACGTGCAA -ACGGAAGAACACACCAACGAGGAA -ACGGAAGAACACACCAACCAGGTA -ACGGAAGAACACACCAACGACTCT -ACGGAAGAACACACCAACAGTCCT -ACGGAAGAACACACCAACTAAGCC -ACGGAAGAACACACCAACATAGCC -ACGGAAGAACACACCAACTAACCG -ACGGAAGAACACACCAACATGCCA -ACGGAAGAACACGAGATCGGAAAC -ACGGAAGAACACGAGATCAACACC -ACGGAAGAACACGAGATCATCGAG -ACGGAAGAACACGAGATCCTCCTT -ACGGAAGAACACGAGATCCCTGTT -ACGGAAGAACACGAGATCCGGTTT -ACGGAAGAACACGAGATCGTGGTT -ACGGAAGAACACGAGATCGCCTTT -ACGGAAGAACACGAGATCGGTCTT -ACGGAAGAACACGAGATCACGCTT -ACGGAAGAACACGAGATCAGCGTT -ACGGAAGAACACGAGATCTTCGTC -ACGGAAGAACACGAGATCTCTCTC -ACGGAAGAACACGAGATCTGGATC -ACGGAAGAACACGAGATCCACTTC -ACGGAAGAACACGAGATCGTACTC -ACGGAAGAACACGAGATCGATGTC -ACGGAAGAACACGAGATCACAGTC -ACGGAAGAACACGAGATCTTGCTG -ACGGAAGAACACGAGATCTCCATG -ACGGAAGAACACGAGATCTGTGTG -ACGGAAGAACACGAGATCCTAGTG -ACGGAAGAACACGAGATCCATCTG -ACGGAAGAACACGAGATCGAGTTG -ACGGAAGAACACGAGATCAGACTG -ACGGAAGAACACGAGATCTCGGTA -ACGGAAGAACACGAGATCTGCCTA -ACGGAAGAACACGAGATCCCACTA -ACGGAAGAACACGAGATCGGAGTA -ACGGAAGAACACGAGATCTCGTCT -ACGGAAGAACACGAGATCTGCACT -ACGGAAGAACACGAGATCCTGACT -ACGGAAGAACACGAGATCCAACCT -ACGGAAGAACACGAGATCGCTACT -ACGGAAGAACACGAGATCGGATCT -ACGGAAGAACACGAGATCAAGGCT -ACGGAAGAACACGAGATCTCAACC -ACGGAAGAACACGAGATCTGTTCC -ACGGAAGAACACGAGATCATTCCC -ACGGAAGAACACGAGATCTTCTCG -ACGGAAGAACACGAGATCTAGACG -ACGGAAGAACACGAGATCGTAACG -ACGGAAGAACACGAGATCACTTCG -ACGGAAGAACACGAGATCTACGCA -ACGGAAGAACACGAGATCCTTGCA -ACGGAAGAACACGAGATCCGAACA -ACGGAAGAACACGAGATCCAGTCA -ACGGAAGAACACGAGATCGATCCA -ACGGAAGAACACGAGATCACGACA -ACGGAAGAACACGAGATCAGCTCA -ACGGAAGAACACGAGATCTCACGT -ACGGAAGAACACGAGATCCGTAGT -ACGGAAGAACACGAGATCGTCAGT -ACGGAAGAACACGAGATCGAAGGT -ACGGAAGAACACGAGATCAACCGT -ACGGAAGAACACGAGATCTTGTGC -ACGGAAGAACACGAGATCCTAAGC -ACGGAAGAACACGAGATCACTAGC -ACGGAAGAACACGAGATCAGATGC -ACGGAAGAACACGAGATCTGAAGG -ACGGAAGAACACGAGATCCAATGG -ACGGAAGAACACGAGATCATGAGG -ACGGAAGAACACGAGATCAATGGG -ACGGAAGAACACGAGATCTCCTGA -ACGGAAGAACACGAGATCTAGCGA -ACGGAAGAACACGAGATCCACAGA -ACGGAAGAACACGAGATCGCAAGA -ACGGAAGAACACGAGATCGGTTGA -ACGGAAGAACACGAGATCTCCGAT -ACGGAAGAACACGAGATCTGGCAT -ACGGAAGAACACGAGATCCGAGAT -ACGGAAGAACACGAGATCTACCAC -ACGGAAGAACACGAGATCCAGAAC -ACGGAAGAACACGAGATCGTCTAC -ACGGAAGAACACGAGATCACGTAC -ACGGAAGAACACGAGATCAGTGAC -ACGGAAGAACACGAGATCCTGTAG -ACGGAAGAACACGAGATCCCTAAG -ACGGAAGAACACGAGATCGTTCAG -ACGGAAGAACACGAGATCGCATAG -ACGGAAGAACACGAGATCGACAAG -ACGGAAGAACACGAGATCAAGCAG -ACGGAAGAACACGAGATCCGTCAA -ACGGAAGAACACGAGATCGCTGAA -ACGGAAGAACACGAGATCAGTACG -ACGGAAGAACACGAGATCATCCGA -ACGGAAGAACACGAGATCATGGGA -ACGGAAGAACACGAGATCGTGCAA -ACGGAAGAACACGAGATCGAGGAA -ACGGAAGAACACGAGATCCAGGTA -ACGGAAGAACACGAGATCGACTCT -ACGGAAGAACACGAGATCAGTCCT -ACGGAAGAACACGAGATCTAAGCC -ACGGAAGAACACGAGATCATAGCC -ACGGAAGAACACGAGATCTAACCG -ACGGAAGAACACGAGATCATGCCA -ACGGAAGAACACCTTCTCGGAAAC -ACGGAAGAACACCTTCTCAACACC -ACGGAAGAACACCTTCTCATCGAG -ACGGAAGAACACCTTCTCCTCCTT -ACGGAAGAACACCTTCTCCCTGTT -ACGGAAGAACACCTTCTCCGGTTT -ACGGAAGAACACCTTCTCGTGGTT -ACGGAAGAACACCTTCTCGCCTTT -ACGGAAGAACACCTTCTCGGTCTT -ACGGAAGAACACCTTCTCACGCTT -ACGGAAGAACACCTTCTCAGCGTT -ACGGAAGAACACCTTCTCTTCGTC -ACGGAAGAACACCTTCTCTCTCTC -ACGGAAGAACACCTTCTCTGGATC -ACGGAAGAACACCTTCTCCACTTC -ACGGAAGAACACCTTCTCGTACTC -ACGGAAGAACACCTTCTCGATGTC -ACGGAAGAACACCTTCTCACAGTC -ACGGAAGAACACCTTCTCTTGCTG -ACGGAAGAACACCTTCTCTCCATG -ACGGAAGAACACCTTCTCTGTGTG -ACGGAAGAACACCTTCTCCTAGTG -ACGGAAGAACACCTTCTCCATCTG -ACGGAAGAACACCTTCTCGAGTTG -ACGGAAGAACACCTTCTCAGACTG -ACGGAAGAACACCTTCTCTCGGTA -ACGGAAGAACACCTTCTCTGCCTA -ACGGAAGAACACCTTCTCCCACTA -ACGGAAGAACACCTTCTCGGAGTA -ACGGAAGAACACCTTCTCTCGTCT -ACGGAAGAACACCTTCTCTGCACT -ACGGAAGAACACCTTCTCCTGACT -ACGGAAGAACACCTTCTCCAACCT -ACGGAAGAACACCTTCTCGCTACT -ACGGAAGAACACCTTCTCGGATCT -ACGGAAGAACACCTTCTCAAGGCT -ACGGAAGAACACCTTCTCTCAACC -ACGGAAGAACACCTTCTCTGTTCC -ACGGAAGAACACCTTCTCATTCCC -ACGGAAGAACACCTTCTCTTCTCG -ACGGAAGAACACCTTCTCTAGACG -ACGGAAGAACACCTTCTCGTAACG -ACGGAAGAACACCTTCTCACTTCG -ACGGAAGAACACCTTCTCTACGCA -ACGGAAGAACACCTTCTCCTTGCA -ACGGAAGAACACCTTCTCCGAACA -ACGGAAGAACACCTTCTCCAGTCA -ACGGAAGAACACCTTCTCGATCCA -ACGGAAGAACACCTTCTCACGACA -ACGGAAGAACACCTTCTCAGCTCA -ACGGAAGAACACCTTCTCTCACGT -ACGGAAGAACACCTTCTCCGTAGT -ACGGAAGAACACCTTCTCGTCAGT -ACGGAAGAACACCTTCTCGAAGGT -ACGGAAGAACACCTTCTCAACCGT -ACGGAAGAACACCTTCTCTTGTGC -ACGGAAGAACACCTTCTCCTAAGC -ACGGAAGAACACCTTCTCACTAGC -ACGGAAGAACACCTTCTCAGATGC -ACGGAAGAACACCTTCTCTGAAGG -ACGGAAGAACACCTTCTCCAATGG -ACGGAAGAACACCTTCTCATGAGG -ACGGAAGAACACCTTCTCAATGGG -ACGGAAGAACACCTTCTCTCCTGA -ACGGAAGAACACCTTCTCTAGCGA -ACGGAAGAACACCTTCTCCACAGA -ACGGAAGAACACCTTCTCGCAAGA -ACGGAAGAACACCTTCTCGGTTGA -ACGGAAGAACACCTTCTCTCCGAT -ACGGAAGAACACCTTCTCTGGCAT -ACGGAAGAACACCTTCTCCGAGAT -ACGGAAGAACACCTTCTCTACCAC -ACGGAAGAACACCTTCTCCAGAAC -ACGGAAGAACACCTTCTCGTCTAC -ACGGAAGAACACCTTCTCACGTAC -ACGGAAGAACACCTTCTCAGTGAC -ACGGAAGAACACCTTCTCCTGTAG -ACGGAAGAACACCTTCTCCCTAAG -ACGGAAGAACACCTTCTCGTTCAG -ACGGAAGAACACCTTCTCGCATAG -ACGGAAGAACACCTTCTCGACAAG -ACGGAAGAACACCTTCTCAAGCAG -ACGGAAGAACACCTTCTCCGTCAA -ACGGAAGAACACCTTCTCGCTGAA -ACGGAAGAACACCTTCTCAGTACG -ACGGAAGAACACCTTCTCATCCGA -ACGGAAGAACACCTTCTCATGGGA -ACGGAAGAACACCTTCTCGTGCAA -ACGGAAGAACACCTTCTCGAGGAA -ACGGAAGAACACCTTCTCCAGGTA -ACGGAAGAACACCTTCTCGACTCT -ACGGAAGAACACCTTCTCAGTCCT -ACGGAAGAACACCTTCTCTAAGCC -ACGGAAGAACACCTTCTCATAGCC -ACGGAAGAACACCTTCTCTAACCG -ACGGAAGAACACCTTCTCATGCCA -ACGGAAGAACACGTTCCTGGAAAC -ACGGAAGAACACGTTCCTAACACC -ACGGAAGAACACGTTCCTATCGAG -ACGGAAGAACACGTTCCTCTCCTT -ACGGAAGAACACGTTCCTCCTGTT -ACGGAAGAACACGTTCCTCGGTTT -ACGGAAGAACACGTTCCTGTGGTT -ACGGAAGAACACGTTCCTGCCTTT -ACGGAAGAACACGTTCCTGGTCTT -ACGGAAGAACACGTTCCTACGCTT -ACGGAAGAACACGTTCCTAGCGTT -ACGGAAGAACACGTTCCTTTCGTC -ACGGAAGAACACGTTCCTTCTCTC -ACGGAAGAACACGTTCCTTGGATC -ACGGAAGAACACGTTCCTCACTTC -ACGGAAGAACACGTTCCTGTACTC -ACGGAAGAACACGTTCCTGATGTC -ACGGAAGAACACGTTCCTACAGTC -ACGGAAGAACACGTTCCTTTGCTG -ACGGAAGAACACGTTCCTTCCATG -ACGGAAGAACACGTTCCTTGTGTG -ACGGAAGAACACGTTCCTCTAGTG -ACGGAAGAACACGTTCCTCATCTG -ACGGAAGAACACGTTCCTGAGTTG -ACGGAAGAACACGTTCCTAGACTG -ACGGAAGAACACGTTCCTTCGGTA -ACGGAAGAACACGTTCCTTGCCTA -ACGGAAGAACACGTTCCTCCACTA -ACGGAAGAACACGTTCCTGGAGTA -ACGGAAGAACACGTTCCTTCGTCT -ACGGAAGAACACGTTCCTTGCACT -ACGGAAGAACACGTTCCTCTGACT -ACGGAAGAACACGTTCCTCAACCT -ACGGAAGAACACGTTCCTGCTACT -ACGGAAGAACACGTTCCTGGATCT -ACGGAAGAACACGTTCCTAAGGCT -ACGGAAGAACACGTTCCTTCAACC -ACGGAAGAACACGTTCCTTGTTCC -ACGGAAGAACACGTTCCTATTCCC -ACGGAAGAACACGTTCCTTTCTCG -ACGGAAGAACACGTTCCTTAGACG -ACGGAAGAACACGTTCCTGTAACG -ACGGAAGAACACGTTCCTACTTCG -ACGGAAGAACACGTTCCTTACGCA -ACGGAAGAACACGTTCCTCTTGCA -ACGGAAGAACACGTTCCTCGAACA -ACGGAAGAACACGTTCCTCAGTCA -ACGGAAGAACACGTTCCTGATCCA -ACGGAAGAACACGTTCCTACGACA -ACGGAAGAACACGTTCCTAGCTCA -ACGGAAGAACACGTTCCTTCACGT -ACGGAAGAACACGTTCCTCGTAGT -ACGGAAGAACACGTTCCTGTCAGT -ACGGAAGAACACGTTCCTGAAGGT -ACGGAAGAACACGTTCCTAACCGT -ACGGAAGAACACGTTCCTTTGTGC -ACGGAAGAACACGTTCCTCTAAGC -ACGGAAGAACACGTTCCTACTAGC -ACGGAAGAACACGTTCCTAGATGC -ACGGAAGAACACGTTCCTTGAAGG -ACGGAAGAACACGTTCCTCAATGG -ACGGAAGAACACGTTCCTATGAGG -ACGGAAGAACACGTTCCTAATGGG -ACGGAAGAACACGTTCCTTCCTGA -ACGGAAGAACACGTTCCTTAGCGA -ACGGAAGAACACGTTCCTCACAGA -ACGGAAGAACACGTTCCTGCAAGA -ACGGAAGAACACGTTCCTGGTTGA -ACGGAAGAACACGTTCCTTCCGAT -ACGGAAGAACACGTTCCTTGGCAT -ACGGAAGAACACGTTCCTCGAGAT -ACGGAAGAACACGTTCCTTACCAC -ACGGAAGAACACGTTCCTCAGAAC -ACGGAAGAACACGTTCCTGTCTAC -ACGGAAGAACACGTTCCTACGTAC -ACGGAAGAACACGTTCCTAGTGAC -ACGGAAGAACACGTTCCTCTGTAG -ACGGAAGAACACGTTCCTCCTAAG -ACGGAAGAACACGTTCCTGTTCAG -ACGGAAGAACACGTTCCTGCATAG -ACGGAAGAACACGTTCCTGACAAG -ACGGAAGAACACGTTCCTAAGCAG -ACGGAAGAACACGTTCCTCGTCAA -ACGGAAGAACACGTTCCTGCTGAA -ACGGAAGAACACGTTCCTAGTACG -ACGGAAGAACACGTTCCTATCCGA -ACGGAAGAACACGTTCCTATGGGA -ACGGAAGAACACGTTCCTGTGCAA -ACGGAAGAACACGTTCCTGAGGAA -ACGGAAGAACACGTTCCTCAGGTA -ACGGAAGAACACGTTCCTGACTCT -ACGGAAGAACACGTTCCTAGTCCT -ACGGAAGAACACGTTCCTTAAGCC -ACGGAAGAACACGTTCCTATAGCC -ACGGAAGAACACGTTCCTTAACCG -ACGGAAGAACACGTTCCTATGCCA -ACGGAAGAACACTTTCGGGGAAAC -ACGGAAGAACACTTTCGGAACACC -ACGGAAGAACACTTTCGGATCGAG -ACGGAAGAACACTTTCGGCTCCTT -ACGGAAGAACACTTTCGGCCTGTT -ACGGAAGAACACTTTCGGCGGTTT -ACGGAAGAACACTTTCGGGTGGTT -ACGGAAGAACACTTTCGGGCCTTT -ACGGAAGAACACTTTCGGGGTCTT -ACGGAAGAACACTTTCGGACGCTT -ACGGAAGAACACTTTCGGAGCGTT -ACGGAAGAACACTTTCGGTTCGTC -ACGGAAGAACACTTTCGGTCTCTC -ACGGAAGAACACTTTCGGTGGATC -ACGGAAGAACACTTTCGGCACTTC -ACGGAAGAACACTTTCGGGTACTC -ACGGAAGAACACTTTCGGGATGTC -ACGGAAGAACACTTTCGGACAGTC -ACGGAAGAACACTTTCGGTTGCTG -ACGGAAGAACACTTTCGGTCCATG -ACGGAAGAACACTTTCGGTGTGTG -ACGGAAGAACACTTTCGGCTAGTG -ACGGAAGAACACTTTCGGCATCTG -ACGGAAGAACACTTTCGGGAGTTG -ACGGAAGAACACTTTCGGAGACTG -ACGGAAGAACACTTTCGGTCGGTA -ACGGAAGAACACTTTCGGTGCCTA -ACGGAAGAACACTTTCGGCCACTA -ACGGAAGAACACTTTCGGGGAGTA -ACGGAAGAACACTTTCGGTCGTCT -ACGGAAGAACACTTTCGGTGCACT -ACGGAAGAACACTTTCGGCTGACT -ACGGAAGAACACTTTCGGCAACCT -ACGGAAGAACACTTTCGGGCTACT -ACGGAAGAACACTTTCGGGGATCT -ACGGAAGAACACTTTCGGAAGGCT -ACGGAAGAACACTTTCGGTCAACC -ACGGAAGAACACTTTCGGTGTTCC -ACGGAAGAACACTTTCGGATTCCC -ACGGAAGAACACTTTCGGTTCTCG -ACGGAAGAACACTTTCGGTAGACG -ACGGAAGAACACTTTCGGGTAACG -ACGGAAGAACACTTTCGGACTTCG -ACGGAAGAACACTTTCGGTACGCA -ACGGAAGAACACTTTCGGCTTGCA -ACGGAAGAACACTTTCGGCGAACA -ACGGAAGAACACTTTCGGCAGTCA -ACGGAAGAACACTTTCGGGATCCA -ACGGAAGAACACTTTCGGACGACA -ACGGAAGAACACTTTCGGAGCTCA -ACGGAAGAACACTTTCGGTCACGT -ACGGAAGAACACTTTCGGCGTAGT -ACGGAAGAACACTTTCGGGTCAGT -ACGGAAGAACACTTTCGGGAAGGT -ACGGAAGAACACTTTCGGAACCGT -ACGGAAGAACACTTTCGGTTGTGC -ACGGAAGAACACTTTCGGCTAAGC -ACGGAAGAACACTTTCGGACTAGC -ACGGAAGAACACTTTCGGAGATGC -ACGGAAGAACACTTTCGGTGAAGG -ACGGAAGAACACTTTCGGCAATGG -ACGGAAGAACACTTTCGGATGAGG -ACGGAAGAACACTTTCGGAATGGG -ACGGAAGAACACTTTCGGTCCTGA -ACGGAAGAACACTTTCGGTAGCGA -ACGGAAGAACACTTTCGGCACAGA -ACGGAAGAACACTTTCGGGCAAGA -ACGGAAGAACACTTTCGGGGTTGA -ACGGAAGAACACTTTCGGTCCGAT -ACGGAAGAACACTTTCGGTGGCAT -ACGGAAGAACACTTTCGGCGAGAT -ACGGAAGAACACTTTCGGTACCAC -ACGGAAGAACACTTTCGGCAGAAC -ACGGAAGAACACTTTCGGGTCTAC -ACGGAAGAACACTTTCGGACGTAC -ACGGAAGAACACTTTCGGAGTGAC -ACGGAAGAACACTTTCGGCTGTAG -ACGGAAGAACACTTTCGGCCTAAG -ACGGAAGAACACTTTCGGGTTCAG -ACGGAAGAACACTTTCGGGCATAG -ACGGAAGAACACTTTCGGGACAAG -ACGGAAGAACACTTTCGGAAGCAG -ACGGAAGAACACTTTCGGCGTCAA -ACGGAAGAACACTTTCGGGCTGAA -ACGGAAGAACACTTTCGGAGTACG -ACGGAAGAACACTTTCGGATCCGA -ACGGAAGAACACTTTCGGATGGGA -ACGGAAGAACACTTTCGGGTGCAA -ACGGAAGAACACTTTCGGGAGGAA -ACGGAAGAACACTTTCGGCAGGTA -ACGGAAGAACACTTTCGGGACTCT -ACGGAAGAACACTTTCGGAGTCCT -ACGGAAGAACACTTTCGGTAAGCC -ACGGAAGAACACTTTCGGATAGCC -ACGGAAGAACACTTTCGGTAACCG -ACGGAAGAACACTTTCGGATGCCA -ACGGAAGAACACGTTGTGGGAAAC -ACGGAAGAACACGTTGTGAACACC -ACGGAAGAACACGTTGTGATCGAG -ACGGAAGAACACGTTGTGCTCCTT -ACGGAAGAACACGTTGTGCCTGTT -ACGGAAGAACACGTTGTGCGGTTT -ACGGAAGAACACGTTGTGGTGGTT -ACGGAAGAACACGTTGTGGCCTTT -ACGGAAGAACACGTTGTGGGTCTT -ACGGAAGAACACGTTGTGACGCTT -ACGGAAGAACACGTTGTGAGCGTT -ACGGAAGAACACGTTGTGTTCGTC -ACGGAAGAACACGTTGTGTCTCTC -ACGGAAGAACACGTTGTGTGGATC -ACGGAAGAACACGTTGTGCACTTC -ACGGAAGAACACGTTGTGGTACTC -ACGGAAGAACACGTTGTGGATGTC -ACGGAAGAACACGTTGTGACAGTC -ACGGAAGAACACGTTGTGTTGCTG -ACGGAAGAACACGTTGTGTCCATG -ACGGAAGAACACGTTGTGTGTGTG -ACGGAAGAACACGTTGTGCTAGTG -ACGGAAGAACACGTTGTGCATCTG -ACGGAAGAACACGTTGTGGAGTTG -ACGGAAGAACACGTTGTGAGACTG -ACGGAAGAACACGTTGTGTCGGTA -ACGGAAGAACACGTTGTGTGCCTA -ACGGAAGAACACGTTGTGCCACTA -ACGGAAGAACACGTTGTGGGAGTA -ACGGAAGAACACGTTGTGTCGTCT -ACGGAAGAACACGTTGTGTGCACT -ACGGAAGAACACGTTGTGCTGACT -ACGGAAGAACACGTTGTGCAACCT -ACGGAAGAACACGTTGTGGCTACT -ACGGAAGAACACGTTGTGGGATCT -ACGGAAGAACACGTTGTGAAGGCT -ACGGAAGAACACGTTGTGTCAACC -ACGGAAGAACACGTTGTGTGTTCC -ACGGAAGAACACGTTGTGATTCCC -ACGGAAGAACACGTTGTGTTCTCG -ACGGAAGAACACGTTGTGTAGACG -ACGGAAGAACACGTTGTGGTAACG -ACGGAAGAACACGTTGTGACTTCG -ACGGAAGAACACGTTGTGTACGCA -ACGGAAGAACACGTTGTGCTTGCA -ACGGAAGAACACGTTGTGCGAACA -ACGGAAGAACACGTTGTGCAGTCA -ACGGAAGAACACGTTGTGGATCCA -ACGGAAGAACACGTTGTGACGACA -ACGGAAGAACACGTTGTGAGCTCA -ACGGAAGAACACGTTGTGTCACGT -ACGGAAGAACACGTTGTGCGTAGT -ACGGAAGAACACGTTGTGGTCAGT -ACGGAAGAACACGTTGTGGAAGGT -ACGGAAGAACACGTTGTGAACCGT -ACGGAAGAACACGTTGTGTTGTGC -ACGGAAGAACACGTTGTGCTAAGC -ACGGAAGAACACGTTGTGACTAGC -ACGGAAGAACACGTTGTGAGATGC -ACGGAAGAACACGTTGTGTGAAGG -ACGGAAGAACACGTTGTGCAATGG -ACGGAAGAACACGTTGTGATGAGG -ACGGAAGAACACGTTGTGAATGGG -ACGGAAGAACACGTTGTGTCCTGA -ACGGAAGAACACGTTGTGTAGCGA -ACGGAAGAACACGTTGTGCACAGA -ACGGAAGAACACGTTGTGGCAAGA -ACGGAAGAACACGTTGTGGGTTGA -ACGGAAGAACACGTTGTGTCCGAT -ACGGAAGAACACGTTGTGTGGCAT -ACGGAAGAACACGTTGTGCGAGAT -ACGGAAGAACACGTTGTGTACCAC -ACGGAAGAACACGTTGTGCAGAAC -ACGGAAGAACACGTTGTGGTCTAC -ACGGAAGAACACGTTGTGACGTAC -ACGGAAGAACACGTTGTGAGTGAC -ACGGAAGAACACGTTGTGCTGTAG -ACGGAAGAACACGTTGTGCCTAAG -ACGGAAGAACACGTTGTGGTTCAG -ACGGAAGAACACGTTGTGGCATAG -ACGGAAGAACACGTTGTGGACAAG -ACGGAAGAACACGTTGTGAAGCAG -ACGGAAGAACACGTTGTGCGTCAA -ACGGAAGAACACGTTGTGGCTGAA -ACGGAAGAACACGTTGTGAGTACG -ACGGAAGAACACGTTGTGATCCGA -ACGGAAGAACACGTTGTGATGGGA -ACGGAAGAACACGTTGTGGTGCAA -ACGGAAGAACACGTTGTGGAGGAA -ACGGAAGAACACGTTGTGCAGGTA -ACGGAAGAACACGTTGTGGACTCT -ACGGAAGAACACGTTGTGAGTCCT -ACGGAAGAACACGTTGTGTAAGCC -ACGGAAGAACACGTTGTGATAGCC -ACGGAAGAACACGTTGTGTAACCG -ACGGAAGAACACGTTGTGATGCCA -ACGGAAGAACACTTTGCCGGAAAC -ACGGAAGAACACTTTGCCAACACC -ACGGAAGAACACTTTGCCATCGAG -ACGGAAGAACACTTTGCCCTCCTT -ACGGAAGAACACTTTGCCCCTGTT -ACGGAAGAACACTTTGCCCGGTTT -ACGGAAGAACACTTTGCCGTGGTT -ACGGAAGAACACTTTGCCGCCTTT -ACGGAAGAACACTTTGCCGGTCTT -ACGGAAGAACACTTTGCCACGCTT -ACGGAAGAACACTTTGCCAGCGTT -ACGGAAGAACACTTTGCCTTCGTC -ACGGAAGAACACTTTGCCTCTCTC -ACGGAAGAACACTTTGCCTGGATC -ACGGAAGAACACTTTGCCCACTTC -ACGGAAGAACACTTTGCCGTACTC -ACGGAAGAACACTTTGCCGATGTC -ACGGAAGAACACTTTGCCACAGTC -ACGGAAGAACACTTTGCCTTGCTG -ACGGAAGAACACTTTGCCTCCATG -ACGGAAGAACACTTTGCCTGTGTG -ACGGAAGAACACTTTGCCCTAGTG -ACGGAAGAACACTTTGCCCATCTG -ACGGAAGAACACTTTGCCGAGTTG -ACGGAAGAACACTTTGCCAGACTG -ACGGAAGAACACTTTGCCTCGGTA -ACGGAAGAACACTTTGCCTGCCTA -ACGGAAGAACACTTTGCCCCACTA -ACGGAAGAACACTTTGCCGGAGTA -ACGGAAGAACACTTTGCCTCGTCT -ACGGAAGAACACTTTGCCTGCACT -ACGGAAGAACACTTTGCCCTGACT -ACGGAAGAACACTTTGCCCAACCT -ACGGAAGAACACTTTGCCGCTACT -ACGGAAGAACACTTTGCCGGATCT -ACGGAAGAACACTTTGCCAAGGCT -ACGGAAGAACACTTTGCCTCAACC -ACGGAAGAACACTTTGCCTGTTCC -ACGGAAGAACACTTTGCCATTCCC -ACGGAAGAACACTTTGCCTTCTCG -ACGGAAGAACACTTTGCCTAGACG -ACGGAAGAACACTTTGCCGTAACG -ACGGAAGAACACTTTGCCACTTCG -ACGGAAGAACACTTTGCCTACGCA -ACGGAAGAACACTTTGCCCTTGCA -ACGGAAGAACACTTTGCCCGAACA -ACGGAAGAACACTTTGCCCAGTCA -ACGGAAGAACACTTTGCCGATCCA -ACGGAAGAACACTTTGCCACGACA -ACGGAAGAACACTTTGCCAGCTCA -ACGGAAGAACACTTTGCCTCACGT -ACGGAAGAACACTTTGCCCGTAGT -ACGGAAGAACACTTTGCCGTCAGT -ACGGAAGAACACTTTGCCGAAGGT -ACGGAAGAACACTTTGCCAACCGT -ACGGAAGAACACTTTGCCTTGTGC -ACGGAAGAACACTTTGCCCTAAGC -ACGGAAGAACACTTTGCCACTAGC -ACGGAAGAACACTTTGCCAGATGC -ACGGAAGAACACTTTGCCTGAAGG -ACGGAAGAACACTTTGCCCAATGG -ACGGAAGAACACTTTGCCATGAGG -ACGGAAGAACACTTTGCCAATGGG -ACGGAAGAACACTTTGCCTCCTGA -ACGGAAGAACACTTTGCCTAGCGA -ACGGAAGAACACTTTGCCCACAGA -ACGGAAGAACACTTTGCCGCAAGA -ACGGAAGAACACTTTGCCGGTTGA -ACGGAAGAACACTTTGCCTCCGAT -ACGGAAGAACACTTTGCCTGGCAT -ACGGAAGAACACTTTGCCCGAGAT -ACGGAAGAACACTTTGCCTACCAC -ACGGAAGAACACTTTGCCCAGAAC -ACGGAAGAACACTTTGCCGTCTAC -ACGGAAGAACACTTTGCCACGTAC -ACGGAAGAACACTTTGCCAGTGAC -ACGGAAGAACACTTTGCCCTGTAG -ACGGAAGAACACTTTGCCCCTAAG -ACGGAAGAACACTTTGCCGTTCAG -ACGGAAGAACACTTTGCCGCATAG -ACGGAAGAACACTTTGCCGACAAG -ACGGAAGAACACTTTGCCAAGCAG -ACGGAAGAACACTTTGCCCGTCAA -ACGGAAGAACACTTTGCCGCTGAA -ACGGAAGAACACTTTGCCAGTACG -ACGGAAGAACACTTTGCCATCCGA -ACGGAAGAACACTTTGCCATGGGA -ACGGAAGAACACTTTGCCGTGCAA -ACGGAAGAACACTTTGCCGAGGAA -ACGGAAGAACACTTTGCCCAGGTA -ACGGAAGAACACTTTGCCGACTCT -ACGGAAGAACACTTTGCCAGTCCT -ACGGAAGAACACTTTGCCTAAGCC -ACGGAAGAACACTTTGCCATAGCC -ACGGAAGAACACTTTGCCTAACCG -ACGGAAGAACACTTTGCCATGCCA -ACGGAAGAACACCTTGGTGGAAAC -ACGGAAGAACACCTTGGTAACACC -ACGGAAGAACACCTTGGTATCGAG -ACGGAAGAACACCTTGGTCTCCTT -ACGGAAGAACACCTTGGTCCTGTT -ACGGAAGAACACCTTGGTCGGTTT -ACGGAAGAACACCTTGGTGTGGTT -ACGGAAGAACACCTTGGTGCCTTT -ACGGAAGAACACCTTGGTGGTCTT -ACGGAAGAACACCTTGGTACGCTT -ACGGAAGAACACCTTGGTAGCGTT -ACGGAAGAACACCTTGGTTTCGTC -ACGGAAGAACACCTTGGTTCTCTC -ACGGAAGAACACCTTGGTTGGATC -ACGGAAGAACACCTTGGTCACTTC -ACGGAAGAACACCTTGGTGTACTC -ACGGAAGAACACCTTGGTGATGTC -ACGGAAGAACACCTTGGTACAGTC -ACGGAAGAACACCTTGGTTTGCTG -ACGGAAGAACACCTTGGTTCCATG -ACGGAAGAACACCTTGGTTGTGTG -ACGGAAGAACACCTTGGTCTAGTG -ACGGAAGAACACCTTGGTCATCTG -ACGGAAGAACACCTTGGTGAGTTG -ACGGAAGAACACCTTGGTAGACTG -ACGGAAGAACACCTTGGTTCGGTA -ACGGAAGAACACCTTGGTTGCCTA -ACGGAAGAACACCTTGGTCCACTA -ACGGAAGAACACCTTGGTGGAGTA -ACGGAAGAACACCTTGGTTCGTCT -ACGGAAGAACACCTTGGTTGCACT -ACGGAAGAACACCTTGGTCTGACT -ACGGAAGAACACCTTGGTCAACCT -ACGGAAGAACACCTTGGTGCTACT -ACGGAAGAACACCTTGGTGGATCT -ACGGAAGAACACCTTGGTAAGGCT -ACGGAAGAACACCTTGGTTCAACC -ACGGAAGAACACCTTGGTTGTTCC -ACGGAAGAACACCTTGGTATTCCC -ACGGAAGAACACCTTGGTTTCTCG -ACGGAAGAACACCTTGGTTAGACG -ACGGAAGAACACCTTGGTGTAACG -ACGGAAGAACACCTTGGTACTTCG -ACGGAAGAACACCTTGGTTACGCA -ACGGAAGAACACCTTGGTCTTGCA -ACGGAAGAACACCTTGGTCGAACA -ACGGAAGAACACCTTGGTCAGTCA -ACGGAAGAACACCTTGGTGATCCA -ACGGAAGAACACCTTGGTACGACA -ACGGAAGAACACCTTGGTAGCTCA -ACGGAAGAACACCTTGGTTCACGT -ACGGAAGAACACCTTGGTCGTAGT -ACGGAAGAACACCTTGGTGTCAGT -ACGGAAGAACACCTTGGTGAAGGT -ACGGAAGAACACCTTGGTAACCGT -ACGGAAGAACACCTTGGTTTGTGC -ACGGAAGAACACCTTGGTCTAAGC -ACGGAAGAACACCTTGGTACTAGC -ACGGAAGAACACCTTGGTAGATGC -ACGGAAGAACACCTTGGTTGAAGG -ACGGAAGAACACCTTGGTCAATGG -ACGGAAGAACACCTTGGTATGAGG -ACGGAAGAACACCTTGGTAATGGG -ACGGAAGAACACCTTGGTTCCTGA -ACGGAAGAACACCTTGGTTAGCGA -ACGGAAGAACACCTTGGTCACAGA -ACGGAAGAACACCTTGGTGCAAGA -ACGGAAGAACACCTTGGTGGTTGA -ACGGAAGAACACCTTGGTTCCGAT -ACGGAAGAACACCTTGGTTGGCAT -ACGGAAGAACACCTTGGTCGAGAT -ACGGAAGAACACCTTGGTTACCAC -ACGGAAGAACACCTTGGTCAGAAC -ACGGAAGAACACCTTGGTGTCTAC -ACGGAAGAACACCTTGGTACGTAC -ACGGAAGAACACCTTGGTAGTGAC -ACGGAAGAACACCTTGGTCTGTAG -ACGGAAGAACACCTTGGTCCTAAG -ACGGAAGAACACCTTGGTGTTCAG -ACGGAAGAACACCTTGGTGCATAG -ACGGAAGAACACCTTGGTGACAAG -ACGGAAGAACACCTTGGTAAGCAG -ACGGAAGAACACCTTGGTCGTCAA -ACGGAAGAACACCTTGGTGCTGAA -ACGGAAGAACACCTTGGTAGTACG -ACGGAAGAACACCTTGGTATCCGA -ACGGAAGAACACCTTGGTATGGGA -ACGGAAGAACACCTTGGTGTGCAA -ACGGAAGAACACCTTGGTGAGGAA -ACGGAAGAACACCTTGGTCAGGTA -ACGGAAGAACACCTTGGTGACTCT -ACGGAAGAACACCTTGGTAGTCCT -ACGGAAGAACACCTTGGTTAAGCC -ACGGAAGAACACCTTGGTATAGCC -ACGGAAGAACACCTTGGTTAACCG -ACGGAAGAACACCTTGGTATGCCA -ACGGAAGAACACCTTACGGGAAAC -ACGGAAGAACACCTTACGAACACC -ACGGAAGAACACCTTACGATCGAG -ACGGAAGAACACCTTACGCTCCTT -ACGGAAGAACACCTTACGCCTGTT -ACGGAAGAACACCTTACGCGGTTT -ACGGAAGAACACCTTACGGTGGTT -ACGGAAGAACACCTTACGGCCTTT -ACGGAAGAACACCTTACGGGTCTT -ACGGAAGAACACCTTACGACGCTT -ACGGAAGAACACCTTACGAGCGTT -ACGGAAGAACACCTTACGTTCGTC -ACGGAAGAACACCTTACGTCTCTC -ACGGAAGAACACCTTACGTGGATC -ACGGAAGAACACCTTACGCACTTC -ACGGAAGAACACCTTACGGTACTC -ACGGAAGAACACCTTACGGATGTC -ACGGAAGAACACCTTACGACAGTC -ACGGAAGAACACCTTACGTTGCTG -ACGGAAGAACACCTTACGTCCATG -ACGGAAGAACACCTTACGTGTGTG -ACGGAAGAACACCTTACGCTAGTG -ACGGAAGAACACCTTACGCATCTG -ACGGAAGAACACCTTACGGAGTTG -ACGGAAGAACACCTTACGAGACTG -ACGGAAGAACACCTTACGTCGGTA -ACGGAAGAACACCTTACGTGCCTA -ACGGAAGAACACCTTACGCCACTA -ACGGAAGAACACCTTACGGGAGTA -ACGGAAGAACACCTTACGTCGTCT -ACGGAAGAACACCTTACGTGCACT -ACGGAAGAACACCTTACGCTGACT -ACGGAAGAACACCTTACGCAACCT -ACGGAAGAACACCTTACGGCTACT -ACGGAAGAACACCTTACGGGATCT -ACGGAAGAACACCTTACGAAGGCT -ACGGAAGAACACCTTACGTCAACC -ACGGAAGAACACCTTACGTGTTCC -ACGGAAGAACACCTTACGATTCCC -ACGGAAGAACACCTTACGTTCTCG -ACGGAAGAACACCTTACGTAGACG -ACGGAAGAACACCTTACGGTAACG -ACGGAAGAACACCTTACGACTTCG -ACGGAAGAACACCTTACGTACGCA -ACGGAAGAACACCTTACGCTTGCA -ACGGAAGAACACCTTACGCGAACA -ACGGAAGAACACCTTACGCAGTCA -ACGGAAGAACACCTTACGGATCCA -ACGGAAGAACACCTTACGACGACA -ACGGAAGAACACCTTACGAGCTCA -ACGGAAGAACACCTTACGTCACGT -ACGGAAGAACACCTTACGCGTAGT -ACGGAAGAACACCTTACGGTCAGT -ACGGAAGAACACCTTACGGAAGGT -ACGGAAGAACACCTTACGAACCGT -ACGGAAGAACACCTTACGTTGTGC -ACGGAAGAACACCTTACGCTAAGC -ACGGAAGAACACCTTACGACTAGC -ACGGAAGAACACCTTACGAGATGC -ACGGAAGAACACCTTACGTGAAGG -ACGGAAGAACACCTTACGCAATGG -ACGGAAGAACACCTTACGATGAGG -ACGGAAGAACACCTTACGAATGGG -ACGGAAGAACACCTTACGTCCTGA -ACGGAAGAACACCTTACGTAGCGA -ACGGAAGAACACCTTACGCACAGA -ACGGAAGAACACCTTACGGCAAGA -ACGGAAGAACACCTTACGGGTTGA -ACGGAAGAACACCTTACGTCCGAT -ACGGAAGAACACCTTACGTGGCAT -ACGGAAGAACACCTTACGCGAGAT -ACGGAAGAACACCTTACGTACCAC -ACGGAAGAACACCTTACGCAGAAC -ACGGAAGAACACCTTACGGTCTAC -ACGGAAGAACACCTTACGACGTAC -ACGGAAGAACACCTTACGAGTGAC -ACGGAAGAACACCTTACGCTGTAG -ACGGAAGAACACCTTACGCCTAAG -ACGGAAGAACACCTTACGGTTCAG -ACGGAAGAACACCTTACGGCATAG -ACGGAAGAACACCTTACGGACAAG -ACGGAAGAACACCTTACGAAGCAG -ACGGAAGAACACCTTACGCGTCAA -ACGGAAGAACACCTTACGGCTGAA -ACGGAAGAACACCTTACGAGTACG -ACGGAAGAACACCTTACGATCCGA -ACGGAAGAACACCTTACGATGGGA -ACGGAAGAACACCTTACGGTGCAA -ACGGAAGAACACCTTACGGAGGAA -ACGGAAGAACACCTTACGCAGGTA -ACGGAAGAACACCTTACGGACTCT -ACGGAAGAACACCTTACGAGTCCT -ACGGAAGAACACCTTACGTAAGCC -ACGGAAGAACACCTTACGATAGCC -ACGGAAGAACACCTTACGTAACCG -ACGGAAGAACACCTTACGATGCCA -ACGGAAGAACACGTTAGCGGAAAC -ACGGAAGAACACGTTAGCAACACC -ACGGAAGAACACGTTAGCATCGAG -ACGGAAGAACACGTTAGCCTCCTT -ACGGAAGAACACGTTAGCCCTGTT -ACGGAAGAACACGTTAGCCGGTTT -ACGGAAGAACACGTTAGCGTGGTT -ACGGAAGAACACGTTAGCGCCTTT -ACGGAAGAACACGTTAGCGGTCTT -ACGGAAGAACACGTTAGCACGCTT -ACGGAAGAACACGTTAGCAGCGTT -ACGGAAGAACACGTTAGCTTCGTC -ACGGAAGAACACGTTAGCTCTCTC -ACGGAAGAACACGTTAGCTGGATC -ACGGAAGAACACGTTAGCCACTTC -ACGGAAGAACACGTTAGCGTACTC -ACGGAAGAACACGTTAGCGATGTC -ACGGAAGAACACGTTAGCACAGTC -ACGGAAGAACACGTTAGCTTGCTG -ACGGAAGAACACGTTAGCTCCATG -ACGGAAGAACACGTTAGCTGTGTG -ACGGAAGAACACGTTAGCCTAGTG -ACGGAAGAACACGTTAGCCATCTG -ACGGAAGAACACGTTAGCGAGTTG -ACGGAAGAACACGTTAGCAGACTG -ACGGAAGAACACGTTAGCTCGGTA -ACGGAAGAACACGTTAGCTGCCTA -ACGGAAGAACACGTTAGCCCACTA -ACGGAAGAACACGTTAGCGGAGTA -ACGGAAGAACACGTTAGCTCGTCT -ACGGAAGAACACGTTAGCTGCACT -ACGGAAGAACACGTTAGCCTGACT -ACGGAAGAACACGTTAGCCAACCT -ACGGAAGAACACGTTAGCGCTACT -ACGGAAGAACACGTTAGCGGATCT -ACGGAAGAACACGTTAGCAAGGCT -ACGGAAGAACACGTTAGCTCAACC -ACGGAAGAACACGTTAGCTGTTCC -ACGGAAGAACACGTTAGCATTCCC -ACGGAAGAACACGTTAGCTTCTCG -ACGGAAGAACACGTTAGCTAGACG -ACGGAAGAACACGTTAGCGTAACG -ACGGAAGAACACGTTAGCACTTCG -ACGGAAGAACACGTTAGCTACGCA -ACGGAAGAACACGTTAGCCTTGCA -ACGGAAGAACACGTTAGCCGAACA -ACGGAAGAACACGTTAGCCAGTCA -ACGGAAGAACACGTTAGCGATCCA -ACGGAAGAACACGTTAGCACGACA -ACGGAAGAACACGTTAGCAGCTCA -ACGGAAGAACACGTTAGCTCACGT -ACGGAAGAACACGTTAGCCGTAGT -ACGGAAGAACACGTTAGCGTCAGT -ACGGAAGAACACGTTAGCGAAGGT -ACGGAAGAACACGTTAGCAACCGT -ACGGAAGAACACGTTAGCTTGTGC -ACGGAAGAACACGTTAGCCTAAGC -ACGGAAGAACACGTTAGCACTAGC -ACGGAAGAACACGTTAGCAGATGC -ACGGAAGAACACGTTAGCTGAAGG -ACGGAAGAACACGTTAGCCAATGG -ACGGAAGAACACGTTAGCATGAGG -ACGGAAGAACACGTTAGCAATGGG -ACGGAAGAACACGTTAGCTCCTGA -ACGGAAGAACACGTTAGCTAGCGA -ACGGAAGAACACGTTAGCCACAGA -ACGGAAGAACACGTTAGCGCAAGA -ACGGAAGAACACGTTAGCGGTTGA -ACGGAAGAACACGTTAGCTCCGAT -ACGGAAGAACACGTTAGCTGGCAT -ACGGAAGAACACGTTAGCCGAGAT -ACGGAAGAACACGTTAGCTACCAC -ACGGAAGAACACGTTAGCCAGAAC -ACGGAAGAACACGTTAGCGTCTAC -ACGGAAGAACACGTTAGCACGTAC -ACGGAAGAACACGTTAGCAGTGAC -ACGGAAGAACACGTTAGCCTGTAG -ACGGAAGAACACGTTAGCCCTAAG -ACGGAAGAACACGTTAGCGTTCAG -ACGGAAGAACACGTTAGCGCATAG -ACGGAAGAACACGTTAGCGACAAG -ACGGAAGAACACGTTAGCAAGCAG -ACGGAAGAACACGTTAGCCGTCAA -ACGGAAGAACACGTTAGCGCTGAA -ACGGAAGAACACGTTAGCAGTACG -ACGGAAGAACACGTTAGCATCCGA -ACGGAAGAACACGTTAGCATGGGA -ACGGAAGAACACGTTAGCGTGCAA -ACGGAAGAACACGTTAGCGAGGAA -ACGGAAGAACACGTTAGCCAGGTA -ACGGAAGAACACGTTAGCGACTCT -ACGGAAGAACACGTTAGCAGTCCT -ACGGAAGAACACGTTAGCTAAGCC -ACGGAAGAACACGTTAGCATAGCC -ACGGAAGAACACGTTAGCTAACCG -ACGGAAGAACACGTTAGCATGCCA -ACGGAAGAACACGTCTTCGGAAAC -ACGGAAGAACACGTCTTCAACACC -ACGGAAGAACACGTCTTCATCGAG -ACGGAAGAACACGTCTTCCTCCTT -ACGGAAGAACACGTCTTCCCTGTT -ACGGAAGAACACGTCTTCCGGTTT -ACGGAAGAACACGTCTTCGTGGTT -ACGGAAGAACACGTCTTCGCCTTT -ACGGAAGAACACGTCTTCGGTCTT -ACGGAAGAACACGTCTTCACGCTT -ACGGAAGAACACGTCTTCAGCGTT -ACGGAAGAACACGTCTTCTTCGTC -ACGGAAGAACACGTCTTCTCTCTC -ACGGAAGAACACGTCTTCTGGATC -ACGGAAGAACACGTCTTCCACTTC -ACGGAAGAACACGTCTTCGTACTC -ACGGAAGAACACGTCTTCGATGTC -ACGGAAGAACACGTCTTCACAGTC -ACGGAAGAACACGTCTTCTTGCTG -ACGGAAGAACACGTCTTCTCCATG -ACGGAAGAACACGTCTTCTGTGTG -ACGGAAGAACACGTCTTCCTAGTG -ACGGAAGAACACGTCTTCCATCTG -ACGGAAGAACACGTCTTCGAGTTG -ACGGAAGAACACGTCTTCAGACTG -ACGGAAGAACACGTCTTCTCGGTA -ACGGAAGAACACGTCTTCTGCCTA -ACGGAAGAACACGTCTTCCCACTA -ACGGAAGAACACGTCTTCGGAGTA -ACGGAAGAACACGTCTTCTCGTCT -ACGGAAGAACACGTCTTCTGCACT -ACGGAAGAACACGTCTTCCTGACT -ACGGAAGAACACGTCTTCCAACCT -ACGGAAGAACACGTCTTCGCTACT -ACGGAAGAACACGTCTTCGGATCT -ACGGAAGAACACGTCTTCAAGGCT -ACGGAAGAACACGTCTTCTCAACC -ACGGAAGAACACGTCTTCTGTTCC -ACGGAAGAACACGTCTTCATTCCC -ACGGAAGAACACGTCTTCTTCTCG -ACGGAAGAACACGTCTTCTAGACG -ACGGAAGAACACGTCTTCGTAACG -ACGGAAGAACACGTCTTCACTTCG -ACGGAAGAACACGTCTTCTACGCA -ACGGAAGAACACGTCTTCCTTGCA -ACGGAAGAACACGTCTTCCGAACA -ACGGAAGAACACGTCTTCCAGTCA -ACGGAAGAACACGTCTTCGATCCA -ACGGAAGAACACGTCTTCACGACA -ACGGAAGAACACGTCTTCAGCTCA -ACGGAAGAACACGTCTTCTCACGT -ACGGAAGAACACGTCTTCCGTAGT -ACGGAAGAACACGTCTTCGTCAGT -ACGGAAGAACACGTCTTCGAAGGT -ACGGAAGAACACGTCTTCAACCGT -ACGGAAGAACACGTCTTCTTGTGC -ACGGAAGAACACGTCTTCCTAAGC -ACGGAAGAACACGTCTTCACTAGC -ACGGAAGAACACGTCTTCAGATGC -ACGGAAGAACACGTCTTCTGAAGG -ACGGAAGAACACGTCTTCCAATGG -ACGGAAGAACACGTCTTCATGAGG -ACGGAAGAACACGTCTTCAATGGG -ACGGAAGAACACGTCTTCTCCTGA -ACGGAAGAACACGTCTTCTAGCGA -ACGGAAGAACACGTCTTCCACAGA -ACGGAAGAACACGTCTTCGCAAGA -ACGGAAGAACACGTCTTCGGTTGA -ACGGAAGAACACGTCTTCTCCGAT -ACGGAAGAACACGTCTTCTGGCAT -ACGGAAGAACACGTCTTCCGAGAT -ACGGAAGAACACGTCTTCTACCAC -ACGGAAGAACACGTCTTCCAGAAC -ACGGAAGAACACGTCTTCGTCTAC -ACGGAAGAACACGTCTTCACGTAC -ACGGAAGAACACGTCTTCAGTGAC -ACGGAAGAACACGTCTTCCTGTAG -ACGGAAGAACACGTCTTCCCTAAG -ACGGAAGAACACGTCTTCGTTCAG -ACGGAAGAACACGTCTTCGCATAG -ACGGAAGAACACGTCTTCGACAAG -ACGGAAGAACACGTCTTCAAGCAG -ACGGAAGAACACGTCTTCCGTCAA -ACGGAAGAACACGTCTTCGCTGAA -ACGGAAGAACACGTCTTCAGTACG -ACGGAAGAACACGTCTTCATCCGA -ACGGAAGAACACGTCTTCATGGGA -ACGGAAGAACACGTCTTCGTGCAA -ACGGAAGAACACGTCTTCGAGGAA -ACGGAAGAACACGTCTTCCAGGTA -ACGGAAGAACACGTCTTCGACTCT -ACGGAAGAACACGTCTTCAGTCCT -ACGGAAGAACACGTCTTCTAAGCC -ACGGAAGAACACGTCTTCATAGCC -ACGGAAGAACACGTCTTCTAACCG -ACGGAAGAACACGTCTTCATGCCA -ACGGAAGAACACCTCTCTGGAAAC -ACGGAAGAACACCTCTCTAACACC -ACGGAAGAACACCTCTCTATCGAG -ACGGAAGAACACCTCTCTCTCCTT -ACGGAAGAACACCTCTCTCCTGTT -ACGGAAGAACACCTCTCTCGGTTT -ACGGAAGAACACCTCTCTGTGGTT -ACGGAAGAACACCTCTCTGCCTTT -ACGGAAGAACACCTCTCTGGTCTT -ACGGAAGAACACCTCTCTACGCTT -ACGGAAGAACACCTCTCTAGCGTT -ACGGAAGAACACCTCTCTTTCGTC -ACGGAAGAACACCTCTCTTCTCTC -ACGGAAGAACACCTCTCTTGGATC -ACGGAAGAACACCTCTCTCACTTC -ACGGAAGAACACCTCTCTGTACTC -ACGGAAGAACACCTCTCTGATGTC -ACGGAAGAACACCTCTCTACAGTC -ACGGAAGAACACCTCTCTTTGCTG -ACGGAAGAACACCTCTCTTCCATG -ACGGAAGAACACCTCTCTTGTGTG -ACGGAAGAACACCTCTCTCTAGTG -ACGGAAGAACACCTCTCTCATCTG -ACGGAAGAACACCTCTCTGAGTTG -ACGGAAGAACACCTCTCTAGACTG -ACGGAAGAACACCTCTCTTCGGTA -ACGGAAGAACACCTCTCTTGCCTA -ACGGAAGAACACCTCTCTCCACTA -ACGGAAGAACACCTCTCTGGAGTA -ACGGAAGAACACCTCTCTTCGTCT -ACGGAAGAACACCTCTCTTGCACT -ACGGAAGAACACCTCTCTCTGACT -ACGGAAGAACACCTCTCTCAACCT -ACGGAAGAACACCTCTCTGCTACT -ACGGAAGAACACCTCTCTGGATCT -ACGGAAGAACACCTCTCTAAGGCT -ACGGAAGAACACCTCTCTTCAACC -ACGGAAGAACACCTCTCTTGTTCC -ACGGAAGAACACCTCTCTATTCCC -ACGGAAGAACACCTCTCTTTCTCG -ACGGAAGAACACCTCTCTTAGACG -ACGGAAGAACACCTCTCTGTAACG -ACGGAAGAACACCTCTCTACTTCG -ACGGAAGAACACCTCTCTTACGCA -ACGGAAGAACACCTCTCTCTTGCA -ACGGAAGAACACCTCTCTCGAACA -ACGGAAGAACACCTCTCTCAGTCA -ACGGAAGAACACCTCTCTGATCCA -ACGGAAGAACACCTCTCTACGACA -ACGGAAGAACACCTCTCTAGCTCA -ACGGAAGAACACCTCTCTTCACGT -ACGGAAGAACACCTCTCTCGTAGT -ACGGAAGAACACCTCTCTGTCAGT -ACGGAAGAACACCTCTCTGAAGGT -ACGGAAGAACACCTCTCTAACCGT -ACGGAAGAACACCTCTCTTTGTGC -ACGGAAGAACACCTCTCTCTAAGC -ACGGAAGAACACCTCTCTACTAGC -ACGGAAGAACACCTCTCTAGATGC -ACGGAAGAACACCTCTCTTGAAGG -ACGGAAGAACACCTCTCTCAATGG -ACGGAAGAACACCTCTCTATGAGG -ACGGAAGAACACCTCTCTAATGGG -ACGGAAGAACACCTCTCTTCCTGA -ACGGAAGAACACCTCTCTTAGCGA -ACGGAAGAACACCTCTCTCACAGA -ACGGAAGAACACCTCTCTGCAAGA -ACGGAAGAACACCTCTCTGGTTGA -ACGGAAGAACACCTCTCTTCCGAT -ACGGAAGAACACCTCTCTTGGCAT -ACGGAAGAACACCTCTCTCGAGAT -ACGGAAGAACACCTCTCTTACCAC -ACGGAAGAACACCTCTCTCAGAAC -ACGGAAGAACACCTCTCTGTCTAC -ACGGAAGAACACCTCTCTACGTAC -ACGGAAGAACACCTCTCTAGTGAC -ACGGAAGAACACCTCTCTCTGTAG -ACGGAAGAACACCTCTCTCCTAAG -ACGGAAGAACACCTCTCTGTTCAG -ACGGAAGAACACCTCTCTGCATAG -ACGGAAGAACACCTCTCTGACAAG -ACGGAAGAACACCTCTCTAAGCAG -ACGGAAGAACACCTCTCTCGTCAA -ACGGAAGAACACCTCTCTGCTGAA -ACGGAAGAACACCTCTCTAGTACG -ACGGAAGAACACCTCTCTATCCGA -ACGGAAGAACACCTCTCTATGGGA -ACGGAAGAACACCTCTCTGTGCAA -ACGGAAGAACACCTCTCTGAGGAA -ACGGAAGAACACCTCTCTCAGGTA -ACGGAAGAACACCTCTCTGACTCT -ACGGAAGAACACCTCTCTAGTCCT -ACGGAAGAACACCTCTCTTAAGCC -ACGGAAGAACACCTCTCTATAGCC -ACGGAAGAACACCTCTCTTAACCG -ACGGAAGAACACCTCTCTATGCCA -ACGGAAGAACACATCTGGGGAAAC -ACGGAAGAACACATCTGGAACACC -ACGGAAGAACACATCTGGATCGAG -ACGGAAGAACACATCTGGCTCCTT -ACGGAAGAACACATCTGGCCTGTT -ACGGAAGAACACATCTGGCGGTTT -ACGGAAGAACACATCTGGGTGGTT -ACGGAAGAACACATCTGGGCCTTT -ACGGAAGAACACATCTGGGGTCTT -ACGGAAGAACACATCTGGACGCTT -ACGGAAGAACACATCTGGAGCGTT -ACGGAAGAACACATCTGGTTCGTC -ACGGAAGAACACATCTGGTCTCTC -ACGGAAGAACACATCTGGTGGATC -ACGGAAGAACACATCTGGCACTTC -ACGGAAGAACACATCTGGGTACTC -ACGGAAGAACACATCTGGGATGTC -ACGGAAGAACACATCTGGACAGTC -ACGGAAGAACACATCTGGTTGCTG -ACGGAAGAACACATCTGGTCCATG -ACGGAAGAACACATCTGGTGTGTG -ACGGAAGAACACATCTGGCTAGTG -ACGGAAGAACACATCTGGCATCTG -ACGGAAGAACACATCTGGGAGTTG -ACGGAAGAACACATCTGGAGACTG -ACGGAAGAACACATCTGGTCGGTA -ACGGAAGAACACATCTGGTGCCTA -ACGGAAGAACACATCTGGCCACTA -ACGGAAGAACACATCTGGGGAGTA -ACGGAAGAACACATCTGGTCGTCT -ACGGAAGAACACATCTGGTGCACT -ACGGAAGAACACATCTGGCTGACT -ACGGAAGAACACATCTGGCAACCT -ACGGAAGAACACATCTGGGCTACT -ACGGAAGAACACATCTGGGGATCT -ACGGAAGAACACATCTGGAAGGCT -ACGGAAGAACACATCTGGTCAACC -ACGGAAGAACACATCTGGTGTTCC -ACGGAAGAACACATCTGGATTCCC -ACGGAAGAACACATCTGGTTCTCG -ACGGAAGAACACATCTGGTAGACG -ACGGAAGAACACATCTGGGTAACG -ACGGAAGAACACATCTGGACTTCG -ACGGAAGAACACATCTGGTACGCA -ACGGAAGAACACATCTGGCTTGCA -ACGGAAGAACACATCTGGCGAACA -ACGGAAGAACACATCTGGCAGTCA -ACGGAAGAACACATCTGGGATCCA -ACGGAAGAACACATCTGGACGACA -ACGGAAGAACACATCTGGAGCTCA -ACGGAAGAACACATCTGGTCACGT -ACGGAAGAACACATCTGGCGTAGT -ACGGAAGAACACATCTGGGTCAGT -ACGGAAGAACACATCTGGGAAGGT -ACGGAAGAACACATCTGGAACCGT -ACGGAAGAACACATCTGGTTGTGC -ACGGAAGAACACATCTGGCTAAGC -ACGGAAGAACACATCTGGACTAGC -ACGGAAGAACACATCTGGAGATGC -ACGGAAGAACACATCTGGTGAAGG -ACGGAAGAACACATCTGGCAATGG -ACGGAAGAACACATCTGGATGAGG -ACGGAAGAACACATCTGGAATGGG -ACGGAAGAACACATCTGGTCCTGA -ACGGAAGAACACATCTGGTAGCGA -ACGGAAGAACACATCTGGCACAGA -ACGGAAGAACACATCTGGGCAAGA -ACGGAAGAACACATCTGGGGTTGA -ACGGAAGAACACATCTGGTCCGAT -ACGGAAGAACACATCTGGTGGCAT -ACGGAAGAACACATCTGGCGAGAT -ACGGAAGAACACATCTGGTACCAC -ACGGAAGAACACATCTGGCAGAAC -ACGGAAGAACACATCTGGGTCTAC -ACGGAAGAACACATCTGGACGTAC -ACGGAAGAACACATCTGGAGTGAC -ACGGAAGAACACATCTGGCTGTAG -ACGGAAGAACACATCTGGCCTAAG -ACGGAAGAACACATCTGGGTTCAG -ACGGAAGAACACATCTGGGCATAG -ACGGAAGAACACATCTGGGACAAG -ACGGAAGAACACATCTGGAAGCAG -ACGGAAGAACACATCTGGCGTCAA -ACGGAAGAACACATCTGGGCTGAA -ACGGAAGAACACATCTGGAGTACG -ACGGAAGAACACATCTGGATCCGA -ACGGAAGAACACATCTGGATGGGA -ACGGAAGAACACATCTGGGTGCAA -ACGGAAGAACACATCTGGGAGGAA -ACGGAAGAACACATCTGGCAGGTA -ACGGAAGAACACATCTGGGACTCT -ACGGAAGAACACATCTGGAGTCCT -ACGGAAGAACACATCTGGTAAGCC -ACGGAAGAACACATCTGGATAGCC -ACGGAAGAACACATCTGGTAACCG -ACGGAAGAACACATCTGGATGCCA -ACGGAAGAACACTTCCACGGAAAC -ACGGAAGAACACTTCCACAACACC -ACGGAAGAACACTTCCACATCGAG -ACGGAAGAACACTTCCACCTCCTT -ACGGAAGAACACTTCCACCCTGTT -ACGGAAGAACACTTCCACCGGTTT -ACGGAAGAACACTTCCACGTGGTT -ACGGAAGAACACTTCCACGCCTTT -ACGGAAGAACACTTCCACGGTCTT -ACGGAAGAACACTTCCACACGCTT -ACGGAAGAACACTTCCACAGCGTT -ACGGAAGAACACTTCCACTTCGTC -ACGGAAGAACACTTCCACTCTCTC -ACGGAAGAACACTTCCACTGGATC -ACGGAAGAACACTTCCACCACTTC -ACGGAAGAACACTTCCACGTACTC -ACGGAAGAACACTTCCACGATGTC -ACGGAAGAACACTTCCACACAGTC -ACGGAAGAACACTTCCACTTGCTG -ACGGAAGAACACTTCCACTCCATG -ACGGAAGAACACTTCCACTGTGTG -ACGGAAGAACACTTCCACCTAGTG -ACGGAAGAACACTTCCACCATCTG -ACGGAAGAACACTTCCACGAGTTG -ACGGAAGAACACTTCCACAGACTG -ACGGAAGAACACTTCCACTCGGTA -ACGGAAGAACACTTCCACTGCCTA -ACGGAAGAACACTTCCACCCACTA -ACGGAAGAACACTTCCACGGAGTA -ACGGAAGAACACTTCCACTCGTCT -ACGGAAGAACACTTCCACTGCACT -ACGGAAGAACACTTCCACCTGACT -ACGGAAGAACACTTCCACCAACCT -ACGGAAGAACACTTCCACGCTACT -ACGGAAGAACACTTCCACGGATCT -ACGGAAGAACACTTCCACAAGGCT -ACGGAAGAACACTTCCACTCAACC -ACGGAAGAACACTTCCACTGTTCC -ACGGAAGAACACTTCCACATTCCC -ACGGAAGAACACTTCCACTTCTCG -ACGGAAGAACACTTCCACTAGACG -ACGGAAGAACACTTCCACGTAACG -ACGGAAGAACACTTCCACACTTCG -ACGGAAGAACACTTCCACTACGCA -ACGGAAGAACACTTCCACCTTGCA -ACGGAAGAACACTTCCACCGAACA -ACGGAAGAACACTTCCACCAGTCA -ACGGAAGAACACTTCCACGATCCA -ACGGAAGAACACTTCCACACGACA -ACGGAAGAACACTTCCACAGCTCA -ACGGAAGAACACTTCCACTCACGT -ACGGAAGAACACTTCCACCGTAGT -ACGGAAGAACACTTCCACGTCAGT -ACGGAAGAACACTTCCACGAAGGT -ACGGAAGAACACTTCCACAACCGT -ACGGAAGAACACTTCCACTTGTGC -ACGGAAGAACACTTCCACCTAAGC -ACGGAAGAACACTTCCACACTAGC -ACGGAAGAACACTTCCACAGATGC -ACGGAAGAACACTTCCACTGAAGG -ACGGAAGAACACTTCCACCAATGG -ACGGAAGAACACTTCCACATGAGG -ACGGAAGAACACTTCCACAATGGG -ACGGAAGAACACTTCCACTCCTGA -ACGGAAGAACACTTCCACTAGCGA -ACGGAAGAACACTTCCACCACAGA -ACGGAAGAACACTTCCACGCAAGA -ACGGAAGAACACTTCCACGGTTGA -ACGGAAGAACACTTCCACTCCGAT -ACGGAAGAACACTTCCACTGGCAT -ACGGAAGAACACTTCCACCGAGAT -ACGGAAGAACACTTCCACTACCAC -ACGGAAGAACACTTCCACCAGAAC -ACGGAAGAACACTTCCACGTCTAC -ACGGAAGAACACTTCCACACGTAC -ACGGAAGAACACTTCCACAGTGAC -ACGGAAGAACACTTCCACCTGTAG -ACGGAAGAACACTTCCACCCTAAG -ACGGAAGAACACTTCCACGTTCAG -ACGGAAGAACACTTCCACGCATAG -ACGGAAGAACACTTCCACGACAAG -ACGGAAGAACACTTCCACAAGCAG -ACGGAAGAACACTTCCACCGTCAA -ACGGAAGAACACTTCCACGCTGAA -ACGGAAGAACACTTCCACAGTACG -ACGGAAGAACACTTCCACATCCGA -ACGGAAGAACACTTCCACATGGGA -ACGGAAGAACACTTCCACGTGCAA -ACGGAAGAACACTTCCACGAGGAA -ACGGAAGAACACTTCCACCAGGTA -ACGGAAGAACACTTCCACGACTCT -ACGGAAGAACACTTCCACAGTCCT -ACGGAAGAACACTTCCACTAAGCC -ACGGAAGAACACTTCCACATAGCC -ACGGAAGAACACTTCCACTAACCG -ACGGAAGAACACTTCCACATGCCA -ACGGAAGAACACCTCGTAGGAAAC -ACGGAAGAACACCTCGTAAACACC -ACGGAAGAACACCTCGTAATCGAG -ACGGAAGAACACCTCGTACTCCTT -ACGGAAGAACACCTCGTACCTGTT -ACGGAAGAACACCTCGTACGGTTT -ACGGAAGAACACCTCGTAGTGGTT -ACGGAAGAACACCTCGTAGCCTTT -ACGGAAGAACACCTCGTAGGTCTT -ACGGAAGAACACCTCGTAACGCTT -ACGGAAGAACACCTCGTAAGCGTT -ACGGAAGAACACCTCGTATTCGTC -ACGGAAGAACACCTCGTATCTCTC -ACGGAAGAACACCTCGTATGGATC -ACGGAAGAACACCTCGTACACTTC -ACGGAAGAACACCTCGTAGTACTC -ACGGAAGAACACCTCGTAGATGTC -ACGGAAGAACACCTCGTAACAGTC -ACGGAAGAACACCTCGTATTGCTG -ACGGAAGAACACCTCGTATCCATG -ACGGAAGAACACCTCGTATGTGTG -ACGGAAGAACACCTCGTACTAGTG -ACGGAAGAACACCTCGTACATCTG -ACGGAAGAACACCTCGTAGAGTTG -ACGGAAGAACACCTCGTAAGACTG -ACGGAAGAACACCTCGTATCGGTA -ACGGAAGAACACCTCGTATGCCTA -ACGGAAGAACACCTCGTACCACTA -ACGGAAGAACACCTCGTAGGAGTA -ACGGAAGAACACCTCGTATCGTCT -ACGGAAGAACACCTCGTATGCACT -ACGGAAGAACACCTCGTACTGACT -ACGGAAGAACACCTCGTACAACCT -ACGGAAGAACACCTCGTAGCTACT -ACGGAAGAACACCTCGTAGGATCT -ACGGAAGAACACCTCGTAAAGGCT -ACGGAAGAACACCTCGTATCAACC -ACGGAAGAACACCTCGTATGTTCC -ACGGAAGAACACCTCGTAATTCCC -ACGGAAGAACACCTCGTATTCTCG -ACGGAAGAACACCTCGTATAGACG -ACGGAAGAACACCTCGTAGTAACG -ACGGAAGAACACCTCGTAACTTCG -ACGGAAGAACACCTCGTATACGCA -ACGGAAGAACACCTCGTACTTGCA -ACGGAAGAACACCTCGTACGAACA -ACGGAAGAACACCTCGTACAGTCA -ACGGAAGAACACCTCGTAGATCCA -ACGGAAGAACACCTCGTAACGACA -ACGGAAGAACACCTCGTAAGCTCA -ACGGAAGAACACCTCGTATCACGT -ACGGAAGAACACCTCGTACGTAGT -ACGGAAGAACACCTCGTAGTCAGT -ACGGAAGAACACCTCGTAGAAGGT -ACGGAAGAACACCTCGTAAACCGT -ACGGAAGAACACCTCGTATTGTGC -ACGGAAGAACACCTCGTACTAAGC -ACGGAAGAACACCTCGTAACTAGC -ACGGAAGAACACCTCGTAAGATGC -ACGGAAGAACACCTCGTATGAAGG -ACGGAAGAACACCTCGTACAATGG -ACGGAAGAACACCTCGTAATGAGG -ACGGAAGAACACCTCGTAAATGGG -ACGGAAGAACACCTCGTATCCTGA -ACGGAAGAACACCTCGTATAGCGA -ACGGAAGAACACCTCGTACACAGA -ACGGAAGAACACCTCGTAGCAAGA -ACGGAAGAACACCTCGTAGGTTGA -ACGGAAGAACACCTCGTATCCGAT -ACGGAAGAACACCTCGTATGGCAT -ACGGAAGAACACCTCGTACGAGAT -ACGGAAGAACACCTCGTATACCAC -ACGGAAGAACACCTCGTACAGAAC -ACGGAAGAACACCTCGTAGTCTAC -ACGGAAGAACACCTCGTAACGTAC -ACGGAAGAACACCTCGTAAGTGAC -ACGGAAGAACACCTCGTACTGTAG -ACGGAAGAACACCTCGTACCTAAG -ACGGAAGAACACCTCGTAGTTCAG -ACGGAAGAACACCTCGTAGCATAG -ACGGAAGAACACCTCGTAGACAAG -ACGGAAGAACACCTCGTAAAGCAG -ACGGAAGAACACCTCGTACGTCAA -ACGGAAGAACACCTCGTAGCTGAA -ACGGAAGAACACCTCGTAAGTACG -ACGGAAGAACACCTCGTAATCCGA -ACGGAAGAACACCTCGTAATGGGA -ACGGAAGAACACCTCGTAGTGCAA -ACGGAAGAACACCTCGTAGAGGAA -ACGGAAGAACACCTCGTACAGGTA -ACGGAAGAACACCTCGTAGACTCT -ACGGAAGAACACCTCGTAAGTCCT -ACGGAAGAACACCTCGTATAAGCC -ACGGAAGAACACCTCGTAATAGCC -ACGGAAGAACACCTCGTATAACCG -ACGGAAGAACACCTCGTAATGCCA -ACGGAAGAACACGTCGATGGAAAC -ACGGAAGAACACGTCGATAACACC -ACGGAAGAACACGTCGATATCGAG -ACGGAAGAACACGTCGATCTCCTT -ACGGAAGAACACGTCGATCCTGTT -ACGGAAGAACACGTCGATCGGTTT -ACGGAAGAACACGTCGATGTGGTT -ACGGAAGAACACGTCGATGCCTTT -ACGGAAGAACACGTCGATGGTCTT -ACGGAAGAACACGTCGATACGCTT -ACGGAAGAACACGTCGATAGCGTT -ACGGAAGAACACGTCGATTTCGTC -ACGGAAGAACACGTCGATTCTCTC -ACGGAAGAACACGTCGATTGGATC -ACGGAAGAACACGTCGATCACTTC -ACGGAAGAACACGTCGATGTACTC -ACGGAAGAACACGTCGATGATGTC -ACGGAAGAACACGTCGATACAGTC -ACGGAAGAACACGTCGATTTGCTG -ACGGAAGAACACGTCGATTCCATG -ACGGAAGAACACGTCGATTGTGTG -ACGGAAGAACACGTCGATCTAGTG -ACGGAAGAACACGTCGATCATCTG -ACGGAAGAACACGTCGATGAGTTG -ACGGAAGAACACGTCGATAGACTG -ACGGAAGAACACGTCGATTCGGTA -ACGGAAGAACACGTCGATTGCCTA -ACGGAAGAACACGTCGATCCACTA -ACGGAAGAACACGTCGATGGAGTA -ACGGAAGAACACGTCGATTCGTCT -ACGGAAGAACACGTCGATTGCACT -ACGGAAGAACACGTCGATCTGACT -ACGGAAGAACACGTCGATCAACCT -ACGGAAGAACACGTCGATGCTACT -ACGGAAGAACACGTCGATGGATCT -ACGGAAGAACACGTCGATAAGGCT -ACGGAAGAACACGTCGATTCAACC -ACGGAAGAACACGTCGATTGTTCC -ACGGAAGAACACGTCGATATTCCC -ACGGAAGAACACGTCGATTTCTCG -ACGGAAGAACACGTCGATTAGACG -ACGGAAGAACACGTCGATGTAACG -ACGGAAGAACACGTCGATACTTCG -ACGGAAGAACACGTCGATTACGCA -ACGGAAGAACACGTCGATCTTGCA -ACGGAAGAACACGTCGATCGAACA -ACGGAAGAACACGTCGATCAGTCA -ACGGAAGAACACGTCGATGATCCA -ACGGAAGAACACGTCGATACGACA -ACGGAAGAACACGTCGATAGCTCA -ACGGAAGAACACGTCGATTCACGT -ACGGAAGAACACGTCGATCGTAGT -ACGGAAGAACACGTCGATGTCAGT -ACGGAAGAACACGTCGATGAAGGT -ACGGAAGAACACGTCGATAACCGT -ACGGAAGAACACGTCGATTTGTGC -ACGGAAGAACACGTCGATCTAAGC -ACGGAAGAACACGTCGATACTAGC -ACGGAAGAACACGTCGATAGATGC -ACGGAAGAACACGTCGATTGAAGG -ACGGAAGAACACGTCGATCAATGG -ACGGAAGAACACGTCGATATGAGG -ACGGAAGAACACGTCGATAATGGG -ACGGAAGAACACGTCGATTCCTGA -ACGGAAGAACACGTCGATTAGCGA -ACGGAAGAACACGTCGATCACAGA -ACGGAAGAACACGTCGATGCAAGA -ACGGAAGAACACGTCGATGGTTGA -ACGGAAGAACACGTCGATTCCGAT -ACGGAAGAACACGTCGATTGGCAT -ACGGAAGAACACGTCGATCGAGAT -ACGGAAGAACACGTCGATTACCAC -ACGGAAGAACACGTCGATCAGAAC -ACGGAAGAACACGTCGATGTCTAC -ACGGAAGAACACGTCGATACGTAC -ACGGAAGAACACGTCGATAGTGAC -ACGGAAGAACACGTCGATCTGTAG -ACGGAAGAACACGTCGATCCTAAG -ACGGAAGAACACGTCGATGTTCAG -ACGGAAGAACACGTCGATGCATAG -ACGGAAGAACACGTCGATGACAAG -ACGGAAGAACACGTCGATAAGCAG -ACGGAAGAACACGTCGATCGTCAA -ACGGAAGAACACGTCGATGCTGAA -ACGGAAGAACACGTCGATAGTACG -ACGGAAGAACACGTCGATATCCGA -ACGGAAGAACACGTCGATATGGGA -ACGGAAGAACACGTCGATGTGCAA -ACGGAAGAACACGTCGATGAGGAA -ACGGAAGAACACGTCGATCAGGTA -ACGGAAGAACACGTCGATGACTCT -ACGGAAGAACACGTCGATAGTCCT -ACGGAAGAACACGTCGATTAAGCC -ACGGAAGAACACGTCGATATAGCC -ACGGAAGAACACGTCGATTAACCG -ACGGAAGAACACGTCGATATGCCA -ACGGAAGAACACGTCACAGGAAAC -ACGGAAGAACACGTCACAAACACC -ACGGAAGAACACGTCACAATCGAG -ACGGAAGAACACGTCACACTCCTT -ACGGAAGAACACGTCACACCTGTT -ACGGAAGAACACGTCACACGGTTT -ACGGAAGAACACGTCACAGTGGTT -ACGGAAGAACACGTCACAGCCTTT -ACGGAAGAACACGTCACAGGTCTT -ACGGAAGAACACGTCACAACGCTT -ACGGAAGAACACGTCACAAGCGTT -ACGGAAGAACACGTCACATTCGTC -ACGGAAGAACACGTCACATCTCTC -ACGGAAGAACACGTCACATGGATC -ACGGAAGAACACGTCACACACTTC -ACGGAAGAACACGTCACAGTACTC -ACGGAAGAACACGTCACAGATGTC -ACGGAAGAACACGTCACAACAGTC -ACGGAAGAACACGTCACATTGCTG -ACGGAAGAACACGTCACATCCATG -ACGGAAGAACACGTCACATGTGTG -ACGGAAGAACACGTCACACTAGTG -ACGGAAGAACACGTCACACATCTG -ACGGAAGAACACGTCACAGAGTTG -ACGGAAGAACACGTCACAAGACTG -ACGGAAGAACACGTCACATCGGTA -ACGGAAGAACACGTCACATGCCTA -ACGGAAGAACACGTCACACCACTA -ACGGAAGAACACGTCACAGGAGTA -ACGGAAGAACACGTCACATCGTCT -ACGGAAGAACACGTCACATGCACT -ACGGAAGAACACGTCACACTGACT -ACGGAAGAACACGTCACACAACCT -ACGGAAGAACACGTCACAGCTACT -ACGGAAGAACACGTCACAGGATCT -ACGGAAGAACACGTCACAAAGGCT -ACGGAAGAACACGTCACATCAACC -ACGGAAGAACACGTCACATGTTCC -ACGGAAGAACACGTCACAATTCCC -ACGGAAGAACACGTCACATTCTCG -ACGGAAGAACACGTCACATAGACG -ACGGAAGAACACGTCACAGTAACG -ACGGAAGAACACGTCACAACTTCG -ACGGAAGAACACGTCACATACGCA -ACGGAAGAACACGTCACACTTGCA -ACGGAAGAACACGTCACACGAACA -ACGGAAGAACACGTCACACAGTCA -ACGGAAGAACACGTCACAGATCCA -ACGGAAGAACACGTCACAACGACA -ACGGAAGAACACGTCACAAGCTCA -ACGGAAGAACACGTCACATCACGT -ACGGAAGAACACGTCACACGTAGT -ACGGAAGAACACGTCACAGTCAGT -ACGGAAGAACACGTCACAGAAGGT -ACGGAAGAACACGTCACAAACCGT -ACGGAAGAACACGTCACATTGTGC -ACGGAAGAACACGTCACACTAAGC -ACGGAAGAACACGTCACAACTAGC -ACGGAAGAACACGTCACAAGATGC -ACGGAAGAACACGTCACATGAAGG -ACGGAAGAACACGTCACACAATGG -ACGGAAGAACACGTCACAATGAGG -ACGGAAGAACACGTCACAAATGGG -ACGGAAGAACACGTCACATCCTGA -ACGGAAGAACACGTCACATAGCGA -ACGGAAGAACACGTCACACACAGA -ACGGAAGAACACGTCACAGCAAGA -ACGGAAGAACACGTCACAGGTTGA -ACGGAAGAACACGTCACATCCGAT -ACGGAAGAACACGTCACATGGCAT -ACGGAAGAACACGTCACACGAGAT -ACGGAAGAACACGTCACATACCAC -ACGGAAGAACACGTCACACAGAAC -ACGGAAGAACACGTCACAGTCTAC -ACGGAAGAACACGTCACAACGTAC -ACGGAAGAACACGTCACAAGTGAC -ACGGAAGAACACGTCACACTGTAG -ACGGAAGAACACGTCACACCTAAG -ACGGAAGAACACGTCACAGTTCAG -ACGGAAGAACACGTCACAGCATAG -ACGGAAGAACACGTCACAGACAAG -ACGGAAGAACACGTCACAAAGCAG -ACGGAAGAACACGTCACACGTCAA -ACGGAAGAACACGTCACAGCTGAA -ACGGAAGAACACGTCACAAGTACG -ACGGAAGAACACGTCACAATCCGA -ACGGAAGAACACGTCACAATGGGA -ACGGAAGAACACGTCACAGTGCAA -ACGGAAGAACACGTCACAGAGGAA -ACGGAAGAACACGTCACACAGGTA -ACGGAAGAACACGTCACAGACTCT -ACGGAAGAACACGTCACAAGTCCT -ACGGAAGAACACGTCACATAAGCC -ACGGAAGAACACGTCACAATAGCC -ACGGAAGAACACGTCACATAACCG -ACGGAAGAACACGTCACAATGCCA -ACGGAAGAACACCTGTTGGGAAAC -ACGGAAGAACACCTGTTGAACACC -ACGGAAGAACACCTGTTGATCGAG -ACGGAAGAACACCTGTTGCTCCTT -ACGGAAGAACACCTGTTGCCTGTT -ACGGAAGAACACCTGTTGCGGTTT -ACGGAAGAACACCTGTTGGTGGTT -ACGGAAGAACACCTGTTGGCCTTT -ACGGAAGAACACCTGTTGGGTCTT -ACGGAAGAACACCTGTTGACGCTT -ACGGAAGAACACCTGTTGAGCGTT -ACGGAAGAACACCTGTTGTTCGTC -ACGGAAGAACACCTGTTGTCTCTC -ACGGAAGAACACCTGTTGTGGATC -ACGGAAGAACACCTGTTGCACTTC -ACGGAAGAACACCTGTTGGTACTC -ACGGAAGAACACCTGTTGGATGTC -ACGGAAGAACACCTGTTGACAGTC -ACGGAAGAACACCTGTTGTTGCTG -ACGGAAGAACACCTGTTGTCCATG -ACGGAAGAACACCTGTTGTGTGTG -ACGGAAGAACACCTGTTGCTAGTG -ACGGAAGAACACCTGTTGCATCTG -ACGGAAGAACACCTGTTGGAGTTG -ACGGAAGAACACCTGTTGAGACTG -ACGGAAGAACACCTGTTGTCGGTA -ACGGAAGAACACCTGTTGTGCCTA -ACGGAAGAACACCTGTTGCCACTA -ACGGAAGAACACCTGTTGGGAGTA -ACGGAAGAACACCTGTTGTCGTCT -ACGGAAGAACACCTGTTGTGCACT -ACGGAAGAACACCTGTTGCTGACT -ACGGAAGAACACCTGTTGCAACCT -ACGGAAGAACACCTGTTGGCTACT -ACGGAAGAACACCTGTTGGGATCT -ACGGAAGAACACCTGTTGAAGGCT -ACGGAAGAACACCTGTTGTCAACC -ACGGAAGAACACCTGTTGTGTTCC -ACGGAAGAACACCTGTTGATTCCC -ACGGAAGAACACCTGTTGTTCTCG -ACGGAAGAACACCTGTTGTAGACG -ACGGAAGAACACCTGTTGGTAACG -ACGGAAGAACACCTGTTGACTTCG -ACGGAAGAACACCTGTTGTACGCA -ACGGAAGAACACCTGTTGCTTGCA -ACGGAAGAACACCTGTTGCGAACA -ACGGAAGAACACCTGTTGCAGTCA -ACGGAAGAACACCTGTTGGATCCA -ACGGAAGAACACCTGTTGACGACA -ACGGAAGAACACCTGTTGAGCTCA -ACGGAAGAACACCTGTTGTCACGT -ACGGAAGAACACCTGTTGCGTAGT -ACGGAAGAACACCTGTTGGTCAGT -ACGGAAGAACACCTGTTGGAAGGT -ACGGAAGAACACCTGTTGAACCGT -ACGGAAGAACACCTGTTGTTGTGC -ACGGAAGAACACCTGTTGCTAAGC -ACGGAAGAACACCTGTTGACTAGC -ACGGAAGAACACCTGTTGAGATGC -ACGGAAGAACACCTGTTGTGAAGG -ACGGAAGAACACCTGTTGCAATGG -ACGGAAGAACACCTGTTGATGAGG -ACGGAAGAACACCTGTTGAATGGG -ACGGAAGAACACCTGTTGTCCTGA -ACGGAAGAACACCTGTTGTAGCGA -ACGGAAGAACACCTGTTGCACAGA -ACGGAAGAACACCTGTTGGCAAGA -ACGGAAGAACACCTGTTGGGTTGA -ACGGAAGAACACCTGTTGTCCGAT -ACGGAAGAACACCTGTTGTGGCAT -ACGGAAGAACACCTGTTGCGAGAT -ACGGAAGAACACCTGTTGTACCAC -ACGGAAGAACACCTGTTGCAGAAC -ACGGAAGAACACCTGTTGGTCTAC -ACGGAAGAACACCTGTTGACGTAC -ACGGAAGAACACCTGTTGAGTGAC -ACGGAAGAACACCTGTTGCTGTAG -ACGGAAGAACACCTGTTGCCTAAG -ACGGAAGAACACCTGTTGGTTCAG -ACGGAAGAACACCTGTTGGCATAG -ACGGAAGAACACCTGTTGGACAAG -ACGGAAGAACACCTGTTGAAGCAG -ACGGAAGAACACCTGTTGCGTCAA -ACGGAAGAACACCTGTTGGCTGAA -ACGGAAGAACACCTGTTGAGTACG -ACGGAAGAACACCTGTTGATCCGA -ACGGAAGAACACCTGTTGATGGGA -ACGGAAGAACACCTGTTGGTGCAA -ACGGAAGAACACCTGTTGGAGGAA -ACGGAAGAACACCTGTTGCAGGTA -ACGGAAGAACACCTGTTGGACTCT -ACGGAAGAACACCTGTTGAGTCCT -ACGGAAGAACACCTGTTGTAAGCC -ACGGAAGAACACCTGTTGATAGCC -ACGGAAGAACACCTGTTGTAACCG -ACGGAAGAACACCTGTTGATGCCA -ACGGAAGAACACATGTCCGGAAAC -ACGGAAGAACACATGTCCAACACC -ACGGAAGAACACATGTCCATCGAG -ACGGAAGAACACATGTCCCTCCTT -ACGGAAGAACACATGTCCCCTGTT -ACGGAAGAACACATGTCCCGGTTT -ACGGAAGAACACATGTCCGTGGTT -ACGGAAGAACACATGTCCGCCTTT -ACGGAAGAACACATGTCCGGTCTT -ACGGAAGAACACATGTCCACGCTT -ACGGAAGAACACATGTCCAGCGTT -ACGGAAGAACACATGTCCTTCGTC -ACGGAAGAACACATGTCCTCTCTC -ACGGAAGAACACATGTCCTGGATC -ACGGAAGAACACATGTCCCACTTC -ACGGAAGAACACATGTCCGTACTC -ACGGAAGAACACATGTCCGATGTC -ACGGAAGAACACATGTCCACAGTC -ACGGAAGAACACATGTCCTTGCTG -ACGGAAGAACACATGTCCTCCATG -ACGGAAGAACACATGTCCTGTGTG -ACGGAAGAACACATGTCCCTAGTG -ACGGAAGAACACATGTCCCATCTG -ACGGAAGAACACATGTCCGAGTTG -ACGGAAGAACACATGTCCAGACTG -ACGGAAGAACACATGTCCTCGGTA -ACGGAAGAACACATGTCCTGCCTA -ACGGAAGAACACATGTCCCCACTA -ACGGAAGAACACATGTCCGGAGTA -ACGGAAGAACACATGTCCTCGTCT -ACGGAAGAACACATGTCCTGCACT -ACGGAAGAACACATGTCCCTGACT -ACGGAAGAACACATGTCCCAACCT -ACGGAAGAACACATGTCCGCTACT -ACGGAAGAACACATGTCCGGATCT -ACGGAAGAACACATGTCCAAGGCT -ACGGAAGAACACATGTCCTCAACC -ACGGAAGAACACATGTCCTGTTCC -ACGGAAGAACACATGTCCATTCCC -ACGGAAGAACACATGTCCTTCTCG -ACGGAAGAACACATGTCCTAGACG -ACGGAAGAACACATGTCCGTAACG -ACGGAAGAACACATGTCCACTTCG -ACGGAAGAACACATGTCCTACGCA -ACGGAAGAACACATGTCCCTTGCA -ACGGAAGAACACATGTCCCGAACA -ACGGAAGAACACATGTCCCAGTCA -ACGGAAGAACACATGTCCGATCCA -ACGGAAGAACACATGTCCACGACA -ACGGAAGAACACATGTCCAGCTCA -ACGGAAGAACACATGTCCTCACGT -ACGGAAGAACACATGTCCCGTAGT -ACGGAAGAACACATGTCCGTCAGT -ACGGAAGAACACATGTCCGAAGGT -ACGGAAGAACACATGTCCAACCGT -ACGGAAGAACACATGTCCTTGTGC -ACGGAAGAACACATGTCCCTAAGC -ACGGAAGAACACATGTCCACTAGC -ACGGAAGAACACATGTCCAGATGC -ACGGAAGAACACATGTCCTGAAGG -ACGGAAGAACACATGTCCCAATGG -ACGGAAGAACACATGTCCATGAGG -ACGGAAGAACACATGTCCAATGGG -ACGGAAGAACACATGTCCTCCTGA -ACGGAAGAACACATGTCCTAGCGA -ACGGAAGAACACATGTCCCACAGA -ACGGAAGAACACATGTCCGCAAGA -ACGGAAGAACACATGTCCGGTTGA -ACGGAAGAACACATGTCCTCCGAT -ACGGAAGAACACATGTCCTGGCAT -ACGGAAGAACACATGTCCCGAGAT -ACGGAAGAACACATGTCCTACCAC -ACGGAAGAACACATGTCCCAGAAC -ACGGAAGAACACATGTCCGTCTAC -ACGGAAGAACACATGTCCACGTAC -ACGGAAGAACACATGTCCAGTGAC -ACGGAAGAACACATGTCCCTGTAG -ACGGAAGAACACATGTCCCCTAAG -ACGGAAGAACACATGTCCGTTCAG -ACGGAAGAACACATGTCCGCATAG -ACGGAAGAACACATGTCCGACAAG -ACGGAAGAACACATGTCCAAGCAG -ACGGAAGAACACATGTCCCGTCAA -ACGGAAGAACACATGTCCGCTGAA -ACGGAAGAACACATGTCCAGTACG -ACGGAAGAACACATGTCCATCCGA -ACGGAAGAACACATGTCCATGGGA -ACGGAAGAACACATGTCCGTGCAA -ACGGAAGAACACATGTCCGAGGAA -ACGGAAGAACACATGTCCCAGGTA -ACGGAAGAACACATGTCCGACTCT -ACGGAAGAACACATGTCCAGTCCT -ACGGAAGAACACATGTCCTAAGCC -ACGGAAGAACACATGTCCATAGCC -ACGGAAGAACACATGTCCTAACCG -ACGGAAGAACACATGTCCATGCCA -ACGGAAGAACACGTGTGTGGAAAC -ACGGAAGAACACGTGTGTAACACC -ACGGAAGAACACGTGTGTATCGAG -ACGGAAGAACACGTGTGTCTCCTT -ACGGAAGAACACGTGTGTCCTGTT -ACGGAAGAACACGTGTGTCGGTTT -ACGGAAGAACACGTGTGTGTGGTT -ACGGAAGAACACGTGTGTGCCTTT -ACGGAAGAACACGTGTGTGGTCTT -ACGGAAGAACACGTGTGTACGCTT -ACGGAAGAACACGTGTGTAGCGTT -ACGGAAGAACACGTGTGTTTCGTC -ACGGAAGAACACGTGTGTTCTCTC -ACGGAAGAACACGTGTGTTGGATC -ACGGAAGAACACGTGTGTCACTTC -ACGGAAGAACACGTGTGTGTACTC -ACGGAAGAACACGTGTGTGATGTC -ACGGAAGAACACGTGTGTACAGTC -ACGGAAGAACACGTGTGTTTGCTG -ACGGAAGAACACGTGTGTTCCATG -ACGGAAGAACACGTGTGTTGTGTG -ACGGAAGAACACGTGTGTCTAGTG -ACGGAAGAACACGTGTGTCATCTG -ACGGAAGAACACGTGTGTGAGTTG -ACGGAAGAACACGTGTGTAGACTG -ACGGAAGAACACGTGTGTTCGGTA -ACGGAAGAACACGTGTGTTGCCTA -ACGGAAGAACACGTGTGTCCACTA -ACGGAAGAACACGTGTGTGGAGTA -ACGGAAGAACACGTGTGTTCGTCT -ACGGAAGAACACGTGTGTTGCACT -ACGGAAGAACACGTGTGTCTGACT -ACGGAAGAACACGTGTGTCAACCT -ACGGAAGAACACGTGTGTGCTACT -ACGGAAGAACACGTGTGTGGATCT -ACGGAAGAACACGTGTGTAAGGCT -ACGGAAGAACACGTGTGTTCAACC -ACGGAAGAACACGTGTGTTGTTCC -ACGGAAGAACACGTGTGTATTCCC -ACGGAAGAACACGTGTGTTTCTCG -ACGGAAGAACACGTGTGTTAGACG -ACGGAAGAACACGTGTGTGTAACG -ACGGAAGAACACGTGTGTACTTCG -ACGGAAGAACACGTGTGTTACGCA -ACGGAAGAACACGTGTGTCTTGCA -ACGGAAGAACACGTGTGTCGAACA -ACGGAAGAACACGTGTGTCAGTCA -ACGGAAGAACACGTGTGTGATCCA -ACGGAAGAACACGTGTGTACGACA -ACGGAAGAACACGTGTGTAGCTCA -ACGGAAGAACACGTGTGTTCACGT -ACGGAAGAACACGTGTGTCGTAGT -ACGGAAGAACACGTGTGTGTCAGT -ACGGAAGAACACGTGTGTGAAGGT -ACGGAAGAACACGTGTGTAACCGT -ACGGAAGAACACGTGTGTTTGTGC -ACGGAAGAACACGTGTGTCTAAGC -ACGGAAGAACACGTGTGTACTAGC -ACGGAAGAACACGTGTGTAGATGC -ACGGAAGAACACGTGTGTTGAAGG -ACGGAAGAACACGTGTGTCAATGG -ACGGAAGAACACGTGTGTATGAGG -ACGGAAGAACACGTGTGTAATGGG -ACGGAAGAACACGTGTGTTCCTGA -ACGGAAGAACACGTGTGTTAGCGA -ACGGAAGAACACGTGTGTCACAGA -ACGGAAGAACACGTGTGTGCAAGA -ACGGAAGAACACGTGTGTGGTTGA -ACGGAAGAACACGTGTGTTCCGAT -ACGGAAGAACACGTGTGTTGGCAT -ACGGAAGAACACGTGTGTCGAGAT -ACGGAAGAACACGTGTGTTACCAC -ACGGAAGAACACGTGTGTCAGAAC -ACGGAAGAACACGTGTGTGTCTAC -ACGGAAGAACACGTGTGTACGTAC -ACGGAAGAACACGTGTGTAGTGAC -ACGGAAGAACACGTGTGTCTGTAG -ACGGAAGAACACGTGTGTCCTAAG -ACGGAAGAACACGTGTGTGTTCAG -ACGGAAGAACACGTGTGTGCATAG -ACGGAAGAACACGTGTGTGACAAG -ACGGAAGAACACGTGTGTAAGCAG -ACGGAAGAACACGTGTGTCGTCAA -ACGGAAGAACACGTGTGTGCTGAA -ACGGAAGAACACGTGTGTAGTACG -ACGGAAGAACACGTGTGTATCCGA -ACGGAAGAACACGTGTGTATGGGA -ACGGAAGAACACGTGTGTGTGCAA -ACGGAAGAACACGTGTGTGAGGAA -ACGGAAGAACACGTGTGTCAGGTA -ACGGAAGAACACGTGTGTGACTCT -ACGGAAGAACACGTGTGTAGTCCT -ACGGAAGAACACGTGTGTTAAGCC -ACGGAAGAACACGTGTGTATAGCC -ACGGAAGAACACGTGTGTTAACCG -ACGGAAGAACACGTGTGTATGCCA -ACGGAAGAACACGTGCTAGGAAAC -ACGGAAGAACACGTGCTAAACACC -ACGGAAGAACACGTGCTAATCGAG -ACGGAAGAACACGTGCTACTCCTT -ACGGAAGAACACGTGCTACCTGTT -ACGGAAGAACACGTGCTACGGTTT -ACGGAAGAACACGTGCTAGTGGTT -ACGGAAGAACACGTGCTAGCCTTT -ACGGAAGAACACGTGCTAGGTCTT -ACGGAAGAACACGTGCTAACGCTT -ACGGAAGAACACGTGCTAAGCGTT -ACGGAAGAACACGTGCTATTCGTC -ACGGAAGAACACGTGCTATCTCTC -ACGGAAGAACACGTGCTATGGATC -ACGGAAGAACACGTGCTACACTTC -ACGGAAGAACACGTGCTAGTACTC -ACGGAAGAACACGTGCTAGATGTC -ACGGAAGAACACGTGCTAACAGTC -ACGGAAGAACACGTGCTATTGCTG -ACGGAAGAACACGTGCTATCCATG -ACGGAAGAACACGTGCTATGTGTG -ACGGAAGAACACGTGCTACTAGTG -ACGGAAGAACACGTGCTACATCTG -ACGGAAGAACACGTGCTAGAGTTG -ACGGAAGAACACGTGCTAAGACTG -ACGGAAGAACACGTGCTATCGGTA -ACGGAAGAACACGTGCTATGCCTA -ACGGAAGAACACGTGCTACCACTA -ACGGAAGAACACGTGCTAGGAGTA -ACGGAAGAACACGTGCTATCGTCT -ACGGAAGAACACGTGCTATGCACT -ACGGAAGAACACGTGCTACTGACT -ACGGAAGAACACGTGCTACAACCT -ACGGAAGAACACGTGCTAGCTACT -ACGGAAGAACACGTGCTAGGATCT -ACGGAAGAACACGTGCTAAAGGCT -ACGGAAGAACACGTGCTATCAACC -ACGGAAGAACACGTGCTATGTTCC -ACGGAAGAACACGTGCTAATTCCC -ACGGAAGAACACGTGCTATTCTCG -ACGGAAGAACACGTGCTATAGACG -ACGGAAGAACACGTGCTAGTAACG -ACGGAAGAACACGTGCTAACTTCG -ACGGAAGAACACGTGCTATACGCA -ACGGAAGAACACGTGCTACTTGCA -ACGGAAGAACACGTGCTACGAACA -ACGGAAGAACACGTGCTACAGTCA -ACGGAAGAACACGTGCTAGATCCA -ACGGAAGAACACGTGCTAACGACA -ACGGAAGAACACGTGCTAAGCTCA -ACGGAAGAACACGTGCTATCACGT -ACGGAAGAACACGTGCTACGTAGT -ACGGAAGAACACGTGCTAGTCAGT -ACGGAAGAACACGTGCTAGAAGGT -ACGGAAGAACACGTGCTAAACCGT -ACGGAAGAACACGTGCTATTGTGC -ACGGAAGAACACGTGCTACTAAGC -ACGGAAGAACACGTGCTAACTAGC -ACGGAAGAACACGTGCTAAGATGC -ACGGAAGAACACGTGCTATGAAGG -ACGGAAGAACACGTGCTACAATGG -ACGGAAGAACACGTGCTAATGAGG -ACGGAAGAACACGTGCTAAATGGG -ACGGAAGAACACGTGCTATCCTGA -ACGGAAGAACACGTGCTATAGCGA -ACGGAAGAACACGTGCTACACAGA -ACGGAAGAACACGTGCTAGCAAGA -ACGGAAGAACACGTGCTAGGTTGA -ACGGAAGAACACGTGCTATCCGAT -ACGGAAGAACACGTGCTATGGCAT -ACGGAAGAACACGTGCTACGAGAT -ACGGAAGAACACGTGCTATACCAC -ACGGAAGAACACGTGCTACAGAAC -ACGGAAGAACACGTGCTAGTCTAC -ACGGAAGAACACGTGCTAACGTAC -ACGGAAGAACACGTGCTAAGTGAC -ACGGAAGAACACGTGCTACTGTAG -ACGGAAGAACACGTGCTACCTAAG -ACGGAAGAACACGTGCTAGTTCAG -ACGGAAGAACACGTGCTAGCATAG -ACGGAAGAACACGTGCTAGACAAG -ACGGAAGAACACGTGCTAAAGCAG -ACGGAAGAACACGTGCTACGTCAA -ACGGAAGAACACGTGCTAGCTGAA -ACGGAAGAACACGTGCTAAGTACG -ACGGAAGAACACGTGCTAATCCGA -ACGGAAGAACACGTGCTAATGGGA -ACGGAAGAACACGTGCTAGTGCAA -ACGGAAGAACACGTGCTAGAGGAA -ACGGAAGAACACGTGCTACAGGTA -ACGGAAGAACACGTGCTAGACTCT -ACGGAAGAACACGTGCTAAGTCCT -ACGGAAGAACACGTGCTATAAGCC -ACGGAAGAACACGTGCTAATAGCC -ACGGAAGAACACGTGCTATAACCG -ACGGAAGAACACGTGCTAATGCCA -ACGGAAGAACACCTGCATGGAAAC -ACGGAAGAACACCTGCATAACACC -ACGGAAGAACACCTGCATATCGAG -ACGGAAGAACACCTGCATCTCCTT -ACGGAAGAACACCTGCATCCTGTT -ACGGAAGAACACCTGCATCGGTTT -ACGGAAGAACACCTGCATGTGGTT -ACGGAAGAACACCTGCATGCCTTT -ACGGAAGAACACCTGCATGGTCTT -ACGGAAGAACACCTGCATACGCTT -ACGGAAGAACACCTGCATAGCGTT -ACGGAAGAACACCTGCATTTCGTC -ACGGAAGAACACCTGCATTCTCTC -ACGGAAGAACACCTGCATTGGATC -ACGGAAGAACACCTGCATCACTTC -ACGGAAGAACACCTGCATGTACTC -ACGGAAGAACACCTGCATGATGTC -ACGGAAGAACACCTGCATACAGTC -ACGGAAGAACACCTGCATTTGCTG -ACGGAAGAACACCTGCATTCCATG -ACGGAAGAACACCTGCATTGTGTG -ACGGAAGAACACCTGCATCTAGTG -ACGGAAGAACACCTGCATCATCTG -ACGGAAGAACACCTGCATGAGTTG -ACGGAAGAACACCTGCATAGACTG -ACGGAAGAACACCTGCATTCGGTA -ACGGAAGAACACCTGCATTGCCTA -ACGGAAGAACACCTGCATCCACTA -ACGGAAGAACACCTGCATGGAGTA -ACGGAAGAACACCTGCATTCGTCT -ACGGAAGAACACCTGCATTGCACT -ACGGAAGAACACCTGCATCTGACT -ACGGAAGAACACCTGCATCAACCT -ACGGAAGAACACCTGCATGCTACT -ACGGAAGAACACCTGCATGGATCT -ACGGAAGAACACCTGCATAAGGCT -ACGGAAGAACACCTGCATTCAACC -ACGGAAGAACACCTGCATTGTTCC -ACGGAAGAACACCTGCATATTCCC -ACGGAAGAACACCTGCATTTCTCG -ACGGAAGAACACCTGCATTAGACG -ACGGAAGAACACCTGCATGTAACG -ACGGAAGAACACCTGCATACTTCG -ACGGAAGAACACCTGCATTACGCA -ACGGAAGAACACCTGCATCTTGCA -ACGGAAGAACACCTGCATCGAACA -ACGGAAGAACACCTGCATCAGTCA -ACGGAAGAACACCTGCATGATCCA -ACGGAAGAACACCTGCATACGACA -ACGGAAGAACACCTGCATAGCTCA -ACGGAAGAACACCTGCATTCACGT -ACGGAAGAACACCTGCATCGTAGT -ACGGAAGAACACCTGCATGTCAGT -ACGGAAGAACACCTGCATGAAGGT -ACGGAAGAACACCTGCATAACCGT -ACGGAAGAACACCTGCATTTGTGC -ACGGAAGAACACCTGCATCTAAGC -ACGGAAGAACACCTGCATACTAGC -ACGGAAGAACACCTGCATAGATGC -ACGGAAGAACACCTGCATTGAAGG -ACGGAAGAACACCTGCATCAATGG -ACGGAAGAACACCTGCATATGAGG -ACGGAAGAACACCTGCATAATGGG -ACGGAAGAACACCTGCATTCCTGA -ACGGAAGAACACCTGCATTAGCGA -ACGGAAGAACACCTGCATCACAGA -ACGGAAGAACACCTGCATGCAAGA -ACGGAAGAACACCTGCATGGTTGA -ACGGAAGAACACCTGCATTCCGAT -ACGGAAGAACACCTGCATTGGCAT -ACGGAAGAACACCTGCATCGAGAT -ACGGAAGAACACCTGCATTACCAC -ACGGAAGAACACCTGCATCAGAAC -ACGGAAGAACACCTGCATGTCTAC -ACGGAAGAACACCTGCATACGTAC -ACGGAAGAACACCTGCATAGTGAC -ACGGAAGAACACCTGCATCTGTAG -ACGGAAGAACACCTGCATCCTAAG -ACGGAAGAACACCTGCATGTTCAG -ACGGAAGAACACCTGCATGCATAG -ACGGAAGAACACCTGCATGACAAG -ACGGAAGAACACCTGCATAAGCAG -ACGGAAGAACACCTGCATCGTCAA -ACGGAAGAACACCTGCATGCTGAA -ACGGAAGAACACCTGCATAGTACG -ACGGAAGAACACCTGCATATCCGA -ACGGAAGAACACCTGCATATGGGA -ACGGAAGAACACCTGCATGTGCAA -ACGGAAGAACACCTGCATGAGGAA -ACGGAAGAACACCTGCATCAGGTA -ACGGAAGAACACCTGCATGACTCT -ACGGAAGAACACCTGCATAGTCCT -ACGGAAGAACACCTGCATTAAGCC -ACGGAAGAACACCTGCATATAGCC -ACGGAAGAACACCTGCATTAACCG -ACGGAAGAACACCTGCATATGCCA -ACGGAAGAACACTTGGAGGGAAAC -ACGGAAGAACACTTGGAGAACACC -ACGGAAGAACACTTGGAGATCGAG -ACGGAAGAACACTTGGAGCTCCTT -ACGGAAGAACACTTGGAGCCTGTT -ACGGAAGAACACTTGGAGCGGTTT -ACGGAAGAACACTTGGAGGTGGTT -ACGGAAGAACACTTGGAGGCCTTT -ACGGAAGAACACTTGGAGGGTCTT -ACGGAAGAACACTTGGAGACGCTT -ACGGAAGAACACTTGGAGAGCGTT -ACGGAAGAACACTTGGAGTTCGTC -ACGGAAGAACACTTGGAGTCTCTC -ACGGAAGAACACTTGGAGTGGATC -ACGGAAGAACACTTGGAGCACTTC -ACGGAAGAACACTTGGAGGTACTC -ACGGAAGAACACTTGGAGGATGTC -ACGGAAGAACACTTGGAGACAGTC -ACGGAAGAACACTTGGAGTTGCTG -ACGGAAGAACACTTGGAGTCCATG -ACGGAAGAACACTTGGAGTGTGTG -ACGGAAGAACACTTGGAGCTAGTG -ACGGAAGAACACTTGGAGCATCTG -ACGGAAGAACACTTGGAGGAGTTG -ACGGAAGAACACTTGGAGAGACTG -ACGGAAGAACACTTGGAGTCGGTA -ACGGAAGAACACTTGGAGTGCCTA -ACGGAAGAACACTTGGAGCCACTA -ACGGAAGAACACTTGGAGGGAGTA -ACGGAAGAACACTTGGAGTCGTCT -ACGGAAGAACACTTGGAGTGCACT -ACGGAAGAACACTTGGAGCTGACT -ACGGAAGAACACTTGGAGCAACCT -ACGGAAGAACACTTGGAGGCTACT -ACGGAAGAACACTTGGAGGGATCT -ACGGAAGAACACTTGGAGAAGGCT -ACGGAAGAACACTTGGAGTCAACC -ACGGAAGAACACTTGGAGTGTTCC -ACGGAAGAACACTTGGAGATTCCC -ACGGAAGAACACTTGGAGTTCTCG -ACGGAAGAACACTTGGAGTAGACG -ACGGAAGAACACTTGGAGGTAACG -ACGGAAGAACACTTGGAGACTTCG -ACGGAAGAACACTTGGAGTACGCA -ACGGAAGAACACTTGGAGCTTGCA -ACGGAAGAACACTTGGAGCGAACA -ACGGAAGAACACTTGGAGCAGTCA -ACGGAAGAACACTTGGAGGATCCA -ACGGAAGAACACTTGGAGACGACA -ACGGAAGAACACTTGGAGAGCTCA -ACGGAAGAACACTTGGAGTCACGT -ACGGAAGAACACTTGGAGCGTAGT -ACGGAAGAACACTTGGAGGTCAGT -ACGGAAGAACACTTGGAGGAAGGT -ACGGAAGAACACTTGGAGAACCGT -ACGGAAGAACACTTGGAGTTGTGC -ACGGAAGAACACTTGGAGCTAAGC -ACGGAAGAACACTTGGAGACTAGC -ACGGAAGAACACTTGGAGAGATGC -ACGGAAGAACACTTGGAGTGAAGG -ACGGAAGAACACTTGGAGCAATGG -ACGGAAGAACACTTGGAGATGAGG -ACGGAAGAACACTTGGAGAATGGG -ACGGAAGAACACTTGGAGTCCTGA -ACGGAAGAACACTTGGAGTAGCGA -ACGGAAGAACACTTGGAGCACAGA -ACGGAAGAACACTTGGAGGCAAGA -ACGGAAGAACACTTGGAGGGTTGA -ACGGAAGAACACTTGGAGTCCGAT -ACGGAAGAACACTTGGAGTGGCAT -ACGGAAGAACACTTGGAGCGAGAT -ACGGAAGAACACTTGGAGTACCAC -ACGGAAGAACACTTGGAGCAGAAC -ACGGAAGAACACTTGGAGGTCTAC -ACGGAAGAACACTTGGAGACGTAC -ACGGAAGAACACTTGGAGAGTGAC -ACGGAAGAACACTTGGAGCTGTAG -ACGGAAGAACACTTGGAGCCTAAG -ACGGAAGAACACTTGGAGGTTCAG -ACGGAAGAACACTTGGAGGCATAG -ACGGAAGAACACTTGGAGGACAAG -ACGGAAGAACACTTGGAGAAGCAG -ACGGAAGAACACTTGGAGCGTCAA -ACGGAAGAACACTTGGAGGCTGAA -ACGGAAGAACACTTGGAGAGTACG -ACGGAAGAACACTTGGAGATCCGA -ACGGAAGAACACTTGGAGATGGGA -ACGGAAGAACACTTGGAGGTGCAA -ACGGAAGAACACTTGGAGGAGGAA -ACGGAAGAACACTTGGAGCAGGTA -ACGGAAGAACACTTGGAGGACTCT -ACGGAAGAACACTTGGAGAGTCCT -ACGGAAGAACACTTGGAGTAAGCC -ACGGAAGAACACTTGGAGATAGCC -ACGGAAGAACACTTGGAGTAACCG -ACGGAAGAACACTTGGAGATGCCA -ACGGAAGAACACCTGAGAGGAAAC -ACGGAAGAACACCTGAGAAACACC -ACGGAAGAACACCTGAGAATCGAG -ACGGAAGAACACCTGAGACTCCTT -ACGGAAGAACACCTGAGACCTGTT -ACGGAAGAACACCTGAGACGGTTT -ACGGAAGAACACCTGAGAGTGGTT -ACGGAAGAACACCTGAGAGCCTTT -ACGGAAGAACACCTGAGAGGTCTT -ACGGAAGAACACCTGAGAACGCTT -ACGGAAGAACACCTGAGAAGCGTT -ACGGAAGAACACCTGAGATTCGTC -ACGGAAGAACACCTGAGATCTCTC -ACGGAAGAACACCTGAGATGGATC -ACGGAAGAACACCTGAGACACTTC -ACGGAAGAACACCTGAGAGTACTC -ACGGAAGAACACCTGAGAGATGTC -ACGGAAGAACACCTGAGAACAGTC -ACGGAAGAACACCTGAGATTGCTG -ACGGAAGAACACCTGAGATCCATG -ACGGAAGAACACCTGAGATGTGTG -ACGGAAGAACACCTGAGACTAGTG -ACGGAAGAACACCTGAGACATCTG -ACGGAAGAACACCTGAGAGAGTTG -ACGGAAGAACACCTGAGAAGACTG -ACGGAAGAACACCTGAGATCGGTA -ACGGAAGAACACCTGAGATGCCTA -ACGGAAGAACACCTGAGACCACTA -ACGGAAGAACACCTGAGAGGAGTA -ACGGAAGAACACCTGAGATCGTCT -ACGGAAGAACACCTGAGATGCACT -ACGGAAGAACACCTGAGACTGACT -ACGGAAGAACACCTGAGACAACCT -ACGGAAGAACACCTGAGAGCTACT -ACGGAAGAACACCTGAGAGGATCT -ACGGAAGAACACCTGAGAAAGGCT -ACGGAAGAACACCTGAGATCAACC -ACGGAAGAACACCTGAGATGTTCC -ACGGAAGAACACCTGAGAATTCCC -ACGGAAGAACACCTGAGATTCTCG -ACGGAAGAACACCTGAGATAGACG -ACGGAAGAACACCTGAGAGTAACG -ACGGAAGAACACCTGAGAACTTCG -ACGGAAGAACACCTGAGATACGCA -ACGGAAGAACACCTGAGACTTGCA -ACGGAAGAACACCTGAGACGAACA -ACGGAAGAACACCTGAGACAGTCA -ACGGAAGAACACCTGAGAGATCCA -ACGGAAGAACACCTGAGAACGACA -ACGGAAGAACACCTGAGAAGCTCA -ACGGAAGAACACCTGAGATCACGT -ACGGAAGAACACCTGAGACGTAGT -ACGGAAGAACACCTGAGAGTCAGT -ACGGAAGAACACCTGAGAGAAGGT -ACGGAAGAACACCTGAGAAACCGT -ACGGAAGAACACCTGAGATTGTGC -ACGGAAGAACACCTGAGACTAAGC -ACGGAAGAACACCTGAGAACTAGC -ACGGAAGAACACCTGAGAAGATGC -ACGGAAGAACACCTGAGATGAAGG -ACGGAAGAACACCTGAGACAATGG -ACGGAAGAACACCTGAGAATGAGG -ACGGAAGAACACCTGAGAAATGGG -ACGGAAGAACACCTGAGATCCTGA -ACGGAAGAACACCTGAGATAGCGA -ACGGAAGAACACCTGAGACACAGA -ACGGAAGAACACCTGAGAGCAAGA -ACGGAAGAACACCTGAGAGGTTGA -ACGGAAGAACACCTGAGATCCGAT -ACGGAAGAACACCTGAGATGGCAT -ACGGAAGAACACCTGAGACGAGAT -ACGGAAGAACACCTGAGATACCAC -ACGGAAGAACACCTGAGACAGAAC -ACGGAAGAACACCTGAGAGTCTAC -ACGGAAGAACACCTGAGAACGTAC -ACGGAAGAACACCTGAGAAGTGAC -ACGGAAGAACACCTGAGACTGTAG -ACGGAAGAACACCTGAGACCTAAG -ACGGAAGAACACCTGAGAGTTCAG -ACGGAAGAACACCTGAGAGCATAG -ACGGAAGAACACCTGAGAGACAAG -ACGGAAGAACACCTGAGAAAGCAG -ACGGAAGAACACCTGAGACGTCAA -ACGGAAGAACACCTGAGAGCTGAA -ACGGAAGAACACCTGAGAAGTACG -ACGGAAGAACACCTGAGAATCCGA -ACGGAAGAACACCTGAGAATGGGA -ACGGAAGAACACCTGAGAGTGCAA -ACGGAAGAACACCTGAGAGAGGAA -ACGGAAGAACACCTGAGACAGGTA -ACGGAAGAACACCTGAGAGACTCT -ACGGAAGAACACCTGAGAAGTCCT -ACGGAAGAACACCTGAGATAAGCC -ACGGAAGAACACCTGAGAATAGCC -ACGGAAGAACACCTGAGATAACCG -ACGGAAGAACACCTGAGAATGCCA -ACGGAAGAACACGTATCGGGAAAC -ACGGAAGAACACGTATCGAACACC -ACGGAAGAACACGTATCGATCGAG -ACGGAAGAACACGTATCGCTCCTT -ACGGAAGAACACGTATCGCCTGTT -ACGGAAGAACACGTATCGCGGTTT -ACGGAAGAACACGTATCGGTGGTT -ACGGAAGAACACGTATCGGCCTTT -ACGGAAGAACACGTATCGGGTCTT -ACGGAAGAACACGTATCGACGCTT -ACGGAAGAACACGTATCGAGCGTT -ACGGAAGAACACGTATCGTTCGTC -ACGGAAGAACACGTATCGTCTCTC -ACGGAAGAACACGTATCGTGGATC -ACGGAAGAACACGTATCGCACTTC -ACGGAAGAACACGTATCGGTACTC -ACGGAAGAACACGTATCGGATGTC -ACGGAAGAACACGTATCGACAGTC -ACGGAAGAACACGTATCGTTGCTG -ACGGAAGAACACGTATCGTCCATG -ACGGAAGAACACGTATCGTGTGTG -ACGGAAGAACACGTATCGCTAGTG -ACGGAAGAACACGTATCGCATCTG -ACGGAAGAACACGTATCGGAGTTG -ACGGAAGAACACGTATCGAGACTG -ACGGAAGAACACGTATCGTCGGTA -ACGGAAGAACACGTATCGTGCCTA -ACGGAAGAACACGTATCGCCACTA -ACGGAAGAACACGTATCGGGAGTA -ACGGAAGAACACGTATCGTCGTCT -ACGGAAGAACACGTATCGTGCACT -ACGGAAGAACACGTATCGCTGACT -ACGGAAGAACACGTATCGCAACCT -ACGGAAGAACACGTATCGGCTACT -ACGGAAGAACACGTATCGGGATCT -ACGGAAGAACACGTATCGAAGGCT -ACGGAAGAACACGTATCGTCAACC -ACGGAAGAACACGTATCGTGTTCC -ACGGAAGAACACGTATCGATTCCC -ACGGAAGAACACGTATCGTTCTCG -ACGGAAGAACACGTATCGTAGACG -ACGGAAGAACACGTATCGGTAACG -ACGGAAGAACACGTATCGACTTCG -ACGGAAGAACACGTATCGTACGCA -ACGGAAGAACACGTATCGCTTGCA -ACGGAAGAACACGTATCGCGAACA -ACGGAAGAACACGTATCGCAGTCA -ACGGAAGAACACGTATCGGATCCA -ACGGAAGAACACGTATCGACGACA -ACGGAAGAACACGTATCGAGCTCA -ACGGAAGAACACGTATCGTCACGT -ACGGAAGAACACGTATCGCGTAGT -ACGGAAGAACACGTATCGGTCAGT -ACGGAAGAACACGTATCGGAAGGT -ACGGAAGAACACGTATCGAACCGT -ACGGAAGAACACGTATCGTTGTGC -ACGGAAGAACACGTATCGCTAAGC -ACGGAAGAACACGTATCGACTAGC -ACGGAAGAACACGTATCGAGATGC -ACGGAAGAACACGTATCGTGAAGG -ACGGAAGAACACGTATCGCAATGG -ACGGAAGAACACGTATCGATGAGG -ACGGAAGAACACGTATCGAATGGG -ACGGAAGAACACGTATCGTCCTGA -ACGGAAGAACACGTATCGTAGCGA -ACGGAAGAACACGTATCGCACAGA -ACGGAAGAACACGTATCGGCAAGA -ACGGAAGAACACGTATCGGGTTGA -ACGGAAGAACACGTATCGTCCGAT -ACGGAAGAACACGTATCGTGGCAT -ACGGAAGAACACGTATCGCGAGAT -ACGGAAGAACACGTATCGTACCAC -ACGGAAGAACACGTATCGCAGAAC -ACGGAAGAACACGTATCGGTCTAC -ACGGAAGAACACGTATCGACGTAC -ACGGAAGAACACGTATCGAGTGAC -ACGGAAGAACACGTATCGCTGTAG -ACGGAAGAACACGTATCGCCTAAG -ACGGAAGAACACGTATCGGTTCAG -ACGGAAGAACACGTATCGGCATAG -ACGGAAGAACACGTATCGGACAAG -ACGGAAGAACACGTATCGAAGCAG -ACGGAAGAACACGTATCGCGTCAA -ACGGAAGAACACGTATCGGCTGAA -ACGGAAGAACACGTATCGAGTACG -ACGGAAGAACACGTATCGATCCGA -ACGGAAGAACACGTATCGATGGGA -ACGGAAGAACACGTATCGGTGCAA -ACGGAAGAACACGTATCGGAGGAA -ACGGAAGAACACGTATCGCAGGTA -ACGGAAGAACACGTATCGGACTCT -ACGGAAGAACACGTATCGAGTCCT -ACGGAAGAACACGTATCGTAAGCC -ACGGAAGAACACGTATCGATAGCC -ACGGAAGAACACGTATCGTAACCG -ACGGAAGAACACGTATCGATGCCA -ACGGAAGAACACCTATGCGGAAAC -ACGGAAGAACACCTATGCAACACC -ACGGAAGAACACCTATGCATCGAG -ACGGAAGAACACCTATGCCTCCTT -ACGGAAGAACACCTATGCCCTGTT -ACGGAAGAACACCTATGCCGGTTT -ACGGAAGAACACCTATGCGTGGTT -ACGGAAGAACACCTATGCGCCTTT -ACGGAAGAACACCTATGCGGTCTT -ACGGAAGAACACCTATGCACGCTT -ACGGAAGAACACCTATGCAGCGTT -ACGGAAGAACACCTATGCTTCGTC -ACGGAAGAACACCTATGCTCTCTC -ACGGAAGAACACCTATGCTGGATC -ACGGAAGAACACCTATGCCACTTC -ACGGAAGAACACCTATGCGTACTC -ACGGAAGAACACCTATGCGATGTC -ACGGAAGAACACCTATGCACAGTC -ACGGAAGAACACCTATGCTTGCTG -ACGGAAGAACACCTATGCTCCATG -ACGGAAGAACACCTATGCTGTGTG -ACGGAAGAACACCTATGCCTAGTG -ACGGAAGAACACCTATGCCATCTG -ACGGAAGAACACCTATGCGAGTTG -ACGGAAGAACACCTATGCAGACTG -ACGGAAGAACACCTATGCTCGGTA -ACGGAAGAACACCTATGCTGCCTA -ACGGAAGAACACCTATGCCCACTA -ACGGAAGAACACCTATGCGGAGTA -ACGGAAGAACACCTATGCTCGTCT -ACGGAAGAACACCTATGCTGCACT -ACGGAAGAACACCTATGCCTGACT -ACGGAAGAACACCTATGCCAACCT -ACGGAAGAACACCTATGCGCTACT -ACGGAAGAACACCTATGCGGATCT -ACGGAAGAACACCTATGCAAGGCT -ACGGAAGAACACCTATGCTCAACC -ACGGAAGAACACCTATGCTGTTCC -ACGGAAGAACACCTATGCATTCCC -ACGGAAGAACACCTATGCTTCTCG -ACGGAAGAACACCTATGCTAGACG -ACGGAAGAACACCTATGCGTAACG -ACGGAAGAACACCTATGCACTTCG -ACGGAAGAACACCTATGCTACGCA -ACGGAAGAACACCTATGCCTTGCA -ACGGAAGAACACCTATGCCGAACA -ACGGAAGAACACCTATGCCAGTCA -ACGGAAGAACACCTATGCGATCCA -ACGGAAGAACACCTATGCACGACA -ACGGAAGAACACCTATGCAGCTCA -ACGGAAGAACACCTATGCTCACGT -ACGGAAGAACACCTATGCCGTAGT -ACGGAAGAACACCTATGCGTCAGT -ACGGAAGAACACCTATGCGAAGGT -ACGGAAGAACACCTATGCAACCGT -ACGGAAGAACACCTATGCTTGTGC -ACGGAAGAACACCTATGCCTAAGC -ACGGAAGAACACCTATGCACTAGC -ACGGAAGAACACCTATGCAGATGC -ACGGAAGAACACCTATGCTGAAGG -ACGGAAGAACACCTATGCCAATGG -ACGGAAGAACACCTATGCATGAGG -ACGGAAGAACACCTATGCAATGGG -ACGGAAGAACACCTATGCTCCTGA -ACGGAAGAACACCTATGCTAGCGA -ACGGAAGAACACCTATGCCACAGA -ACGGAAGAACACCTATGCGCAAGA -ACGGAAGAACACCTATGCGGTTGA -ACGGAAGAACACCTATGCTCCGAT -ACGGAAGAACACCTATGCTGGCAT -ACGGAAGAACACCTATGCCGAGAT -ACGGAAGAACACCTATGCTACCAC -ACGGAAGAACACCTATGCCAGAAC -ACGGAAGAACACCTATGCGTCTAC -ACGGAAGAACACCTATGCACGTAC -ACGGAAGAACACCTATGCAGTGAC -ACGGAAGAACACCTATGCCTGTAG -ACGGAAGAACACCTATGCCCTAAG -ACGGAAGAACACCTATGCGTTCAG -ACGGAAGAACACCTATGCGCATAG -ACGGAAGAACACCTATGCGACAAG -ACGGAAGAACACCTATGCAAGCAG -ACGGAAGAACACCTATGCCGTCAA -ACGGAAGAACACCTATGCGCTGAA -ACGGAAGAACACCTATGCAGTACG -ACGGAAGAACACCTATGCATCCGA -ACGGAAGAACACCTATGCATGGGA -ACGGAAGAACACCTATGCGTGCAA -ACGGAAGAACACCTATGCGAGGAA -ACGGAAGAACACCTATGCCAGGTA -ACGGAAGAACACCTATGCGACTCT -ACGGAAGAACACCTATGCAGTCCT -ACGGAAGAACACCTATGCTAAGCC -ACGGAAGAACACCTATGCATAGCC -ACGGAAGAACACCTATGCTAACCG -ACGGAAGAACACCTATGCATGCCA -ACGGAAGAACACCTACCAGGAAAC -ACGGAAGAACACCTACCAAACACC -ACGGAAGAACACCTACCAATCGAG -ACGGAAGAACACCTACCACTCCTT -ACGGAAGAACACCTACCACCTGTT -ACGGAAGAACACCTACCACGGTTT -ACGGAAGAACACCTACCAGTGGTT -ACGGAAGAACACCTACCAGCCTTT -ACGGAAGAACACCTACCAGGTCTT -ACGGAAGAACACCTACCAACGCTT -ACGGAAGAACACCTACCAAGCGTT -ACGGAAGAACACCTACCATTCGTC -ACGGAAGAACACCTACCATCTCTC -ACGGAAGAACACCTACCATGGATC -ACGGAAGAACACCTACCACACTTC -ACGGAAGAACACCTACCAGTACTC -ACGGAAGAACACCTACCAGATGTC -ACGGAAGAACACCTACCAACAGTC -ACGGAAGAACACCTACCATTGCTG -ACGGAAGAACACCTACCATCCATG -ACGGAAGAACACCTACCATGTGTG -ACGGAAGAACACCTACCACTAGTG -ACGGAAGAACACCTACCACATCTG -ACGGAAGAACACCTACCAGAGTTG -ACGGAAGAACACCTACCAAGACTG -ACGGAAGAACACCTACCATCGGTA -ACGGAAGAACACCTACCATGCCTA -ACGGAAGAACACCTACCACCACTA -ACGGAAGAACACCTACCAGGAGTA -ACGGAAGAACACCTACCATCGTCT -ACGGAAGAACACCTACCATGCACT -ACGGAAGAACACCTACCACTGACT -ACGGAAGAACACCTACCACAACCT -ACGGAAGAACACCTACCAGCTACT -ACGGAAGAACACCTACCAGGATCT -ACGGAAGAACACCTACCAAAGGCT -ACGGAAGAACACCTACCATCAACC -ACGGAAGAACACCTACCATGTTCC -ACGGAAGAACACCTACCAATTCCC -ACGGAAGAACACCTACCATTCTCG -ACGGAAGAACACCTACCATAGACG -ACGGAAGAACACCTACCAGTAACG -ACGGAAGAACACCTACCAACTTCG -ACGGAAGAACACCTACCATACGCA -ACGGAAGAACACCTACCACTTGCA -ACGGAAGAACACCTACCACGAACA -ACGGAAGAACACCTACCACAGTCA -ACGGAAGAACACCTACCAGATCCA -ACGGAAGAACACCTACCAACGACA -ACGGAAGAACACCTACCAAGCTCA -ACGGAAGAACACCTACCATCACGT -ACGGAAGAACACCTACCACGTAGT -ACGGAAGAACACCTACCAGTCAGT -ACGGAAGAACACCTACCAGAAGGT -ACGGAAGAACACCTACCAAACCGT -ACGGAAGAACACCTACCATTGTGC -ACGGAAGAACACCTACCACTAAGC -ACGGAAGAACACCTACCAACTAGC -ACGGAAGAACACCTACCAAGATGC -ACGGAAGAACACCTACCATGAAGG -ACGGAAGAACACCTACCACAATGG -ACGGAAGAACACCTACCAATGAGG -ACGGAAGAACACCTACCAAATGGG -ACGGAAGAACACCTACCATCCTGA -ACGGAAGAACACCTACCATAGCGA -ACGGAAGAACACCTACCACACAGA -ACGGAAGAACACCTACCAGCAAGA -ACGGAAGAACACCTACCAGGTTGA -ACGGAAGAACACCTACCATCCGAT -ACGGAAGAACACCTACCATGGCAT -ACGGAAGAACACCTACCACGAGAT -ACGGAAGAACACCTACCATACCAC -ACGGAAGAACACCTACCACAGAAC -ACGGAAGAACACCTACCAGTCTAC -ACGGAAGAACACCTACCAACGTAC -ACGGAAGAACACCTACCAAGTGAC -ACGGAAGAACACCTACCACTGTAG -ACGGAAGAACACCTACCACCTAAG -ACGGAAGAACACCTACCAGTTCAG -ACGGAAGAACACCTACCAGCATAG -ACGGAAGAACACCTACCAGACAAG -ACGGAAGAACACCTACCAAAGCAG -ACGGAAGAACACCTACCACGTCAA -ACGGAAGAACACCTACCAGCTGAA -ACGGAAGAACACCTACCAAGTACG -ACGGAAGAACACCTACCAATCCGA -ACGGAAGAACACCTACCAATGGGA -ACGGAAGAACACCTACCAGTGCAA -ACGGAAGAACACCTACCAGAGGAA -ACGGAAGAACACCTACCACAGGTA -ACGGAAGAACACCTACCAGACTCT -ACGGAAGAACACCTACCAAGTCCT -ACGGAAGAACACCTACCATAAGCC -ACGGAAGAACACCTACCAATAGCC -ACGGAAGAACACCTACCATAACCG -ACGGAAGAACACCTACCAATGCCA -ACGGAAGAACACGTAGGAGGAAAC -ACGGAAGAACACGTAGGAAACACC -ACGGAAGAACACGTAGGAATCGAG -ACGGAAGAACACGTAGGACTCCTT -ACGGAAGAACACGTAGGACCTGTT -ACGGAAGAACACGTAGGACGGTTT -ACGGAAGAACACGTAGGAGTGGTT -ACGGAAGAACACGTAGGAGCCTTT -ACGGAAGAACACGTAGGAGGTCTT -ACGGAAGAACACGTAGGAACGCTT -ACGGAAGAACACGTAGGAAGCGTT -ACGGAAGAACACGTAGGATTCGTC -ACGGAAGAACACGTAGGATCTCTC -ACGGAAGAACACGTAGGATGGATC -ACGGAAGAACACGTAGGACACTTC -ACGGAAGAACACGTAGGAGTACTC -ACGGAAGAACACGTAGGAGATGTC -ACGGAAGAACACGTAGGAACAGTC -ACGGAAGAACACGTAGGATTGCTG -ACGGAAGAACACGTAGGATCCATG -ACGGAAGAACACGTAGGATGTGTG -ACGGAAGAACACGTAGGACTAGTG -ACGGAAGAACACGTAGGACATCTG -ACGGAAGAACACGTAGGAGAGTTG -ACGGAAGAACACGTAGGAAGACTG -ACGGAAGAACACGTAGGATCGGTA -ACGGAAGAACACGTAGGATGCCTA -ACGGAAGAACACGTAGGACCACTA -ACGGAAGAACACGTAGGAGGAGTA -ACGGAAGAACACGTAGGATCGTCT -ACGGAAGAACACGTAGGATGCACT -ACGGAAGAACACGTAGGACTGACT -ACGGAAGAACACGTAGGACAACCT -ACGGAAGAACACGTAGGAGCTACT -ACGGAAGAACACGTAGGAGGATCT -ACGGAAGAACACGTAGGAAAGGCT -ACGGAAGAACACGTAGGATCAACC -ACGGAAGAACACGTAGGATGTTCC -ACGGAAGAACACGTAGGAATTCCC -ACGGAAGAACACGTAGGATTCTCG -ACGGAAGAACACGTAGGATAGACG -ACGGAAGAACACGTAGGAGTAACG -ACGGAAGAACACGTAGGAACTTCG -ACGGAAGAACACGTAGGATACGCA -ACGGAAGAACACGTAGGACTTGCA -ACGGAAGAACACGTAGGACGAACA -ACGGAAGAACACGTAGGACAGTCA -ACGGAAGAACACGTAGGAGATCCA -ACGGAAGAACACGTAGGAACGACA -ACGGAAGAACACGTAGGAAGCTCA -ACGGAAGAACACGTAGGATCACGT -ACGGAAGAACACGTAGGACGTAGT -ACGGAAGAACACGTAGGAGTCAGT -ACGGAAGAACACGTAGGAGAAGGT -ACGGAAGAACACGTAGGAAACCGT -ACGGAAGAACACGTAGGATTGTGC -ACGGAAGAACACGTAGGACTAAGC -ACGGAAGAACACGTAGGAACTAGC -ACGGAAGAACACGTAGGAAGATGC -ACGGAAGAACACGTAGGATGAAGG -ACGGAAGAACACGTAGGACAATGG -ACGGAAGAACACGTAGGAATGAGG -ACGGAAGAACACGTAGGAAATGGG -ACGGAAGAACACGTAGGATCCTGA -ACGGAAGAACACGTAGGATAGCGA -ACGGAAGAACACGTAGGACACAGA -ACGGAAGAACACGTAGGAGCAAGA -ACGGAAGAACACGTAGGAGGTTGA -ACGGAAGAACACGTAGGATCCGAT -ACGGAAGAACACGTAGGATGGCAT -ACGGAAGAACACGTAGGACGAGAT -ACGGAAGAACACGTAGGATACCAC -ACGGAAGAACACGTAGGACAGAAC -ACGGAAGAACACGTAGGAGTCTAC -ACGGAAGAACACGTAGGAACGTAC -ACGGAAGAACACGTAGGAAGTGAC -ACGGAAGAACACGTAGGACTGTAG -ACGGAAGAACACGTAGGACCTAAG -ACGGAAGAACACGTAGGAGTTCAG -ACGGAAGAACACGTAGGAGCATAG -ACGGAAGAACACGTAGGAGACAAG -ACGGAAGAACACGTAGGAAAGCAG -ACGGAAGAACACGTAGGACGTCAA -ACGGAAGAACACGTAGGAGCTGAA -ACGGAAGAACACGTAGGAAGTACG -ACGGAAGAACACGTAGGAATCCGA -ACGGAAGAACACGTAGGAATGGGA -ACGGAAGAACACGTAGGAGTGCAA -ACGGAAGAACACGTAGGAGAGGAA -ACGGAAGAACACGTAGGACAGGTA -ACGGAAGAACACGTAGGAGACTCT -ACGGAAGAACACGTAGGAAGTCCT -ACGGAAGAACACGTAGGATAAGCC -ACGGAAGAACACGTAGGAATAGCC -ACGGAAGAACACGTAGGATAACCG -ACGGAAGAACACGTAGGAATGCCA -ACGGAAGAACACTCTTCGGGAAAC -ACGGAAGAACACTCTTCGAACACC -ACGGAAGAACACTCTTCGATCGAG -ACGGAAGAACACTCTTCGCTCCTT -ACGGAAGAACACTCTTCGCCTGTT -ACGGAAGAACACTCTTCGCGGTTT -ACGGAAGAACACTCTTCGGTGGTT -ACGGAAGAACACTCTTCGGCCTTT -ACGGAAGAACACTCTTCGGGTCTT -ACGGAAGAACACTCTTCGACGCTT -ACGGAAGAACACTCTTCGAGCGTT -ACGGAAGAACACTCTTCGTTCGTC -ACGGAAGAACACTCTTCGTCTCTC -ACGGAAGAACACTCTTCGTGGATC -ACGGAAGAACACTCTTCGCACTTC -ACGGAAGAACACTCTTCGGTACTC -ACGGAAGAACACTCTTCGGATGTC -ACGGAAGAACACTCTTCGACAGTC -ACGGAAGAACACTCTTCGTTGCTG -ACGGAAGAACACTCTTCGTCCATG -ACGGAAGAACACTCTTCGTGTGTG -ACGGAAGAACACTCTTCGCTAGTG -ACGGAAGAACACTCTTCGCATCTG -ACGGAAGAACACTCTTCGGAGTTG -ACGGAAGAACACTCTTCGAGACTG -ACGGAAGAACACTCTTCGTCGGTA -ACGGAAGAACACTCTTCGTGCCTA -ACGGAAGAACACTCTTCGCCACTA -ACGGAAGAACACTCTTCGGGAGTA -ACGGAAGAACACTCTTCGTCGTCT -ACGGAAGAACACTCTTCGTGCACT -ACGGAAGAACACTCTTCGCTGACT -ACGGAAGAACACTCTTCGCAACCT -ACGGAAGAACACTCTTCGGCTACT -ACGGAAGAACACTCTTCGGGATCT -ACGGAAGAACACTCTTCGAAGGCT -ACGGAAGAACACTCTTCGTCAACC -ACGGAAGAACACTCTTCGTGTTCC -ACGGAAGAACACTCTTCGATTCCC -ACGGAAGAACACTCTTCGTTCTCG -ACGGAAGAACACTCTTCGTAGACG -ACGGAAGAACACTCTTCGGTAACG -ACGGAAGAACACTCTTCGACTTCG -ACGGAAGAACACTCTTCGTACGCA -ACGGAAGAACACTCTTCGCTTGCA -ACGGAAGAACACTCTTCGCGAACA -ACGGAAGAACACTCTTCGCAGTCA -ACGGAAGAACACTCTTCGGATCCA -ACGGAAGAACACTCTTCGACGACA -ACGGAAGAACACTCTTCGAGCTCA -ACGGAAGAACACTCTTCGTCACGT -ACGGAAGAACACTCTTCGCGTAGT -ACGGAAGAACACTCTTCGGTCAGT -ACGGAAGAACACTCTTCGGAAGGT -ACGGAAGAACACTCTTCGAACCGT -ACGGAAGAACACTCTTCGTTGTGC -ACGGAAGAACACTCTTCGCTAAGC -ACGGAAGAACACTCTTCGACTAGC -ACGGAAGAACACTCTTCGAGATGC -ACGGAAGAACACTCTTCGTGAAGG -ACGGAAGAACACTCTTCGCAATGG -ACGGAAGAACACTCTTCGATGAGG -ACGGAAGAACACTCTTCGAATGGG -ACGGAAGAACACTCTTCGTCCTGA -ACGGAAGAACACTCTTCGTAGCGA -ACGGAAGAACACTCTTCGCACAGA -ACGGAAGAACACTCTTCGGCAAGA -ACGGAAGAACACTCTTCGGGTTGA -ACGGAAGAACACTCTTCGTCCGAT -ACGGAAGAACACTCTTCGTGGCAT -ACGGAAGAACACTCTTCGCGAGAT -ACGGAAGAACACTCTTCGTACCAC -ACGGAAGAACACTCTTCGCAGAAC -ACGGAAGAACACTCTTCGGTCTAC -ACGGAAGAACACTCTTCGACGTAC -ACGGAAGAACACTCTTCGAGTGAC -ACGGAAGAACACTCTTCGCTGTAG -ACGGAAGAACACTCTTCGCCTAAG -ACGGAAGAACACTCTTCGGTTCAG -ACGGAAGAACACTCTTCGGCATAG -ACGGAAGAACACTCTTCGGACAAG -ACGGAAGAACACTCTTCGAAGCAG -ACGGAAGAACACTCTTCGCGTCAA -ACGGAAGAACACTCTTCGGCTGAA -ACGGAAGAACACTCTTCGAGTACG -ACGGAAGAACACTCTTCGATCCGA -ACGGAAGAACACTCTTCGATGGGA -ACGGAAGAACACTCTTCGGTGCAA -ACGGAAGAACACTCTTCGGAGGAA -ACGGAAGAACACTCTTCGCAGGTA -ACGGAAGAACACTCTTCGGACTCT -ACGGAAGAACACTCTTCGAGTCCT -ACGGAAGAACACTCTTCGTAAGCC -ACGGAAGAACACTCTTCGATAGCC -ACGGAAGAACACTCTTCGTAACCG -ACGGAAGAACACTCTTCGATGCCA -ACGGAAGAACACACTTGCGGAAAC -ACGGAAGAACACACTTGCAACACC -ACGGAAGAACACACTTGCATCGAG -ACGGAAGAACACACTTGCCTCCTT -ACGGAAGAACACACTTGCCCTGTT -ACGGAAGAACACACTTGCCGGTTT -ACGGAAGAACACACTTGCGTGGTT -ACGGAAGAACACACTTGCGCCTTT -ACGGAAGAACACACTTGCGGTCTT -ACGGAAGAACACACTTGCACGCTT -ACGGAAGAACACACTTGCAGCGTT -ACGGAAGAACACACTTGCTTCGTC -ACGGAAGAACACACTTGCTCTCTC -ACGGAAGAACACACTTGCTGGATC -ACGGAAGAACACACTTGCCACTTC -ACGGAAGAACACACTTGCGTACTC -ACGGAAGAACACACTTGCGATGTC -ACGGAAGAACACACTTGCACAGTC -ACGGAAGAACACACTTGCTTGCTG -ACGGAAGAACACACTTGCTCCATG -ACGGAAGAACACACTTGCTGTGTG -ACGGAAGAACACACTTGCCTAGTG -ACGGAAGAACACACTTGCCATCTG -ACGGAAGAACACACTTGCGAGTTG -ACGGAAGAACACACTTGCAGACTG -ACGGAAGAACACACTTGCTCGGTA -ACGGAAGAACACACTTGCTGCCTA -ACGGAAGAACACACTTGCCCACTA -ACGGAAGAACACACTTGCGGAGTA -ACGGAAGAACACACTTGCTCGTCT -ACGGAAGAACACACTTGCTGCACT -ACGGAAGAACACACTTGCCTGACT -ACGGAAGAACACACTTGCCAACCT -ACGGAAGAACACACTTGCGCTACT -ACGGAAGAACACACTTGCGGATCT -ACGGAAGAACACACTTGCAAGGCT -ACGGAAGAACACACTTGCTCAACC -ACGGAAGAACACACTTGCTGTTCC -ACGGAAGAACACACTTGCATTCCC -ACGGAAGAACACACTTGCTTCTCG -ACGGAAGAACACACTTGCTAGACG -ACGGAAGAACACACTTGCGTAACG -ACGGAAGAACACACTTGCACTTCG -ACGGAAGAACACACTTGCTACGCA -ACGGAAGAACACACTTGCCTTGCA -ACGGAAGAACACACTTGCCGAACA -ACGGAAGAACACACTTGCCAGTCA -ACGGAAGAACACACTTGCGATCCA -ACGGAAGAACACACTTGCACGACA -ACGGAAGAACACACTTGCAGCTCA -ACGGAAGAACACACTTGCTCACGT -ACGGAAGAACACACTTGCCGTAGT -ACGGAAGAACACACTTGCGTCAGT -ACGGAAGAACACACTTGCGAAGGT -ACGGAAGAACACACTTGCAACCGT -ACGGAAGAACACACTTGCTTGTGC -ACGGAAGAACACACTTGCCTAAGC -ACGGAAGAACACACTTGCACTAGC -ACGGAAGAACACACTTGCAGATGC -ACGGAAGAACACACTTGCTGAAGG -ACGGAAGAACACACTTGCCAATGG -ACGGAAGAACACACTTGCATGAGG -ACGGAAGAACACACTTGCAATGGG -ACGGAAGAACACACTTGCTCCTGA -ACGGAAGAACACACTTGCTAGCGA -ACGGAAGAACACACTTGCCACAGA -ACGGAAGAACACACTTGCGCAAGA -ACGGAAGAACACACTTGCGGTTGA -ACGGAAGAACACACTTGCTCCGAT -ACGGAAGAACACACTTGCTGGCAT -ACGGAAGAACACACTTGCCGAGAT -ACGGAAGAACACACTTGCTACCAC -ACGGAAGAACACACTTGCCAGAAC -ACGGAAGAACACACTTGCGTCTAC -ACGGAAGAACACACTTGCACGTAC -ACGGAAGAACACACTTGCAGTGAC -ACGGAAGAACACACTTGCCTGTAG -ACGGAAGAACACACTTGCCCTAAG -ACGGAAGAACACACTTGCGTTCAG -ACGGAAGAACACACTTGCGCATAG -ACGGAAGAACACACTTGCGACAAG -ACGGAAGAACACACTTGCAAGCAG -ACGGAAGAACACACTTGCCGTCAA -ACGGAAGAACACACTTGCGCTGAA -ACGGAAGAACACACTTGCAGTACG -ACGGAAGAACACACTTGCATCCGA -ACGGAAGAACACACTTGCATGGGA -ACGGAAGAACACACTTGCGTGCAA -ACGGAAGAACACACTTGCGAGGAA -ACGGAAGAACACACTTGCCAGGTA -ACGGAAGAACACACTTGCGACTCT -ACGGAAGAACACACTTGCAGTCCT -ACGGAAGAACACACTTGCTAAGCC -ACGGAAGAACACACTTGCATAGCC -ACGGAAGAACACACTTGCTAACCG -ACGGAAGAACACACTTGCATGCCA -ACGGAAGAACACACTCTGGGAAAC -ACGGAAGAACACACTCTGAACACC -ACGGAAGAACACACTCTGATCGAG -ACGGAAGAACACACTCTGCTCCTT -ACGGAAGAACACACTCTGCCTGTT -ACGGAAGAACACACTCTGCGGTTT -ACGGAAGAACACACTCTGGTGGTT -ACGGAAGAACACACTCTGGCCTTT -ACGGAAGAACACACTCTGGGTCTT -ACGGAAGAACACACTCTGACGCTT -ACGGAAGAACACACTCTGAGCGTT -ACGGAAGAACACACTCTGTTCGTC -ACGGAAGAACACACTCTGTCTCTC -ACGGAAGAACACACTCTGTGGATC -ACGGAAGAACACACTCTGCACTTC -ACGGAAGAACACACTCTGGTACTC -ACGGAAGAACACACTCTGGATGTC -ACGGAAGAACACACTCTGACAGTC -ACGGAAGAACACACTCTGTTGCTG -ACGGAAGAACACACTCTGTCCATG -ACGGAAGAACACACTCTGTGTGTG -ACGGAAGAACACACTCTGCTAGTG -ACGGAAGAACACACTCTGCATCTG -ACGGAAGAACACACTCTGGAGTTG -ACGGAAGAACACACTCTGAGACTG -ACGGAAGAACACACTCTGTCGGTA -ACGGAAGAACACACTCTGTGCCTA -ACGGAAGAACACACTCTGCCACTA -ACGGAAGAACACACTCTGGGAGTA -ACGGAAGAACACACTCTGTCGTCT -ACGGAAGAACACACTCTGTGCACT -ACGGAAGAACACACTCTGCTGACT -ACGGAAGAACACACTCTGCAACCT -ACGGAAGAACACACTCTGGCTACT -ACGGAAGAACACACTCTGGGATCT -ACGGAAGAACACACTCTGAAGGCT -ACGGAAGAACACACTCTGTCAACC -ACGGAAGAACACACTCTGTGTTCC -ACGGAAGAACACACTCTGATTCCC -ACGGAAGAACACACTCTGTTCTCG -ACGGAAGAACACACTCTGTAGACG -ACGGAAGAACACACTCTGGTAACG -ACGGAAGAACACACTCTGACTTCG -ACGGAAGAACACACTCTGTACGCA -ACGGAAGAACACACTCTGCTTGCA -ACGGAAGAACACACTCTGCGAACA -ACGGAAGAACACACTCTGCAGTCA -ACGGAAGAACACACTCTGGATCCA -ACGGAAGAACACACTCTGACGACA -ACGGAAGAACACACTCTGAGCTCA -ACGGAAGAACACACTCTGTCACGT -ACGGAAGAACACACTCTGCGTAGT -ACGGAAGAACACACTCTGGTCAGT -ACGGAAGAACACACTCTGGAAGGT -ACGGAAGAACACACTCTGAACCGT -ACGGAAGAACACACTCTGTTGTGC -ACGGAAGAACACACTCTGCTAAGC -ACGGAAGAACACACTCTGACTAGC -ACGGAAGAACACACTCTGAGATGC -ACGGAAGAACACACTCTGTGAAGG -ACGGAAGAACACACTCTGCAATGG -ACGGAAGAACACACTCTGATGAGG -ACGGAAGAACACACTCTGAATGGG -ACGGAAGAACACACTCTGTCCTGA -ACGGAAGAACACACTCTGTAGCGA -ACGGAAGAACACACTCTGCACAGA -ACGGAAGAACACACTCTGGCAAGA -ACGGAAGAACACACTCTGGGTTGA -ACGGAAGAACACACTCTGTCCGAT -ACGGAAGAACACACTCTGTGGCAT -ACGGAAGAACACACTCTGCGAGAT -ACGGAAGAACACACTCTGTACCAC -ACGGAAGAACACACTCTGCAGAAC -ACGGAAGAACACACTCTGGTCTAC -ACGGAAGAACACACTCTGACGTAC -ACGGAAGAACACACTCTGAGTGAC -ACGGAAGAACACACTCTGCTGTAG -ACGGAAGAACACACTCTGCCTAAG -ACGGAAGAACACACTCTGGTTCAG -ACGGAAGAACACACTCTGGCATAG -ACGGAAGAACACACTCTGGACAAG -ACGGAAGAACACACTCTGAAGCAG -ACGGAAGAACACACTCTGCGTCAA -ACGGAAGAACACACTCTGGCTGAA -ACGGAAGAACACACTCTGAGTACG -ACGGAAGAACACACTCTGATCCGA -ACGGAAGAACACACTCTGATGGGA -ACGGAAGAACACACTCTGGTGCAA -ACGGAAGAACACACTCTGGAGGAA -ACGGAAGAACACACTCTGCAGGTA -ACGGAAGAACACACTCTGGACTCT -ACGGAAGAACACACTCTGAGTCCT -ACGGAAGAACACACTCTGTAAGCC -ACGGAAGAACACACTCTGATAGCC -ACGGAAGAACACACTCTGTAACCG -ACGGAAGAACACACTCTGATGCCA -ACGGAAGAACACCCTCAAGGAAAC -ACGGAAGAACACCCTCAAAACACC -ACGGAAGAACACCCTCAAATCGAG -ACGGAAGAACACCCTCAACTCCTT -ACGGAAGAACACCCTCAACCTGTT -ACGGAAGAACACCCTCAACGGTTT -ACGGAAGAACACCCTCAAGTGGTT -ACGGAAGAACACCCTCAAGCCTTT -ACGGAAGAACACCCTCAAGGTCTT -ACGGAAGAACACCCTCAAACGCTT -ACGGAAGAACACCCTCAAAGCGTT -ACGGAAGAACACCCTCAATTCGTC -ACGGAAGAACACCCTCAATCTCTC -ACGGAAGAACACCCTCAATGGATC -ACGGAAGAACACCCTCAACACTTC -ACGGAAGAACACCCTCAAGTACTC -ACGGAAGAACACCCTCAAGATGTC -ACGGAAGAACACCCTCAAACAGTC -ACGGAAGAACACCCTCAATTGCTG -ACGGAAGAACACCCTCAATCCATG -ACGGAAGAACACCCTCAATGTGTG -ACGGAAGAACACCCTCAACTAGTG -ACGGAAGAACACCCTCAACATCTG -ACGGAAGAACACCCTCAAGAGTTG -ACGGAAGAACACCCTCAAAGACTG -ACGGAAGAACACCCTCAATCGGTA -ACGGAAGAACACCCTCAATGCCTA -ACGGAAGAACACCCTCAACCACTA -ACGGAAGAACACCCTCAAGGAGTA -ACGGAAGAACACCCTCAATCGTCT -ACGGAAGAACACCCTCAATGCACT -ACGGAAGAACACCCTCAACTGACT -ACGGAAGAACACCCTCAACAACCT -ACGGAAGAACACCCTCAAGCTACT -ACGGAAGAACACCCTCAAGGATCT -ACGGAAGAACACCCTCAAAAGGCT -ACGGAAGAACACCCTCAATCAACC -ACGGAAGAACACCCTCAATGTTCC -ACGGAAGAACACCCTCAAATTCCC -ACGGAAGAACACCCTCAATTCTCG -ACGGAAGAACACCCTCAATAGACG -ACGGAAGAACACCCTCAAGTAACG -ACGGAAGAACACCCTCAAACTTCG -ACGGAAGAACACCCTCAATACGCA -ACGGAAGAACACCCTCAACTTGCA -ACGGAAGAACACCCTCAACGAACA -ACGGAAGAACACCCTCAACAGTCA -ACGGAAGAACACCCTCAAGATCCA -ACGGAAGAACACCCTCAAACGACA -ACGGAAGAACACCCTCAAAGCTCA -ACGGAAGAACACCCTCAATCACGT -ACGGAAGAACACCCTCAACGTAGT -ACGGAAGAACACCCTCAAGTCAGT -ACGGAAGAACACCCTCAAGAAGGT -ACGGAAGAACACCCTCAAAACCGT -ACGGAAGAACACCCTCAATTGTGC -ACGGAAGAACACCCTCAACTAAGC -ACGGAAGAACACCCTCAAACTAGC -ACGGAAGAACACCCTCAAAGATGC -ACGGAAGAACACCCTCAATGAAGG -ACGGAAGAACACCCTCAACAATGG -ACGGAAGAACACCCTCAAATGAGG -ACGGAAGAACACCCTCAAAATGGG -ACGGAAGAACACCCTCAATCCTGA -ACGGAAGAACACCCTCAATAGCGA -ACGGAAGAACACCCTCAACACAGA -ACGGAAGAACACCCTCAAGCAAGA -ACGGAAGAACACCCTCAAGGTTGA -ACGGAAGAACACCCTCAATCCGAT -ACGGAAGAACACCCTCAATGGCAT -ACGGAAGAACACCCTCAACGAGAT -ACGGAAGAACACCCTCAATACCAC -ACGGAAGAACACCCTCAACAGAAC -ACGGAAGAACACCCTCAAGTCTAC -ACGGAAGAACACCCTCAAACGTAC -ACGGAAGAACACCCTCAAAGTGAC -ACGGAAGAACACCCTCAACTGTAG -ACGGAAGAACACCCTCAACCTAAG -ACGGAAGAACACCCTCAAGTTCAG -ACGGAAGAACACCCTCAAGCATAG -ACGGAAGAACACCCTCAAGACAAG -ACGGAAGAACACCCTCAAAAGCAG -ACGGAAGAACACCCTCAACGTCAA -ACGGAAGAACACCCTCAAGCTGAA -ACGGAAGAACACCCTCAAAGTACG -ACGGAAGAACACCCTCAAATCCGA -ACGGAAGAACACCCTCAAATGGGA -ACGGAAGAACACCCTCAAGTGCAA -ACGGAAGAACACCCTCAAGAGGAA -ACGGAAGAACACCCTCAACAGGTA -ACGGAAGAACACCCTCAAGACTCT -ACGGAAGAACACCCTCAAAGTCCT -ACGGAAGAACACCCTCAATAAGCC -ACGGAAGAACACCCTCAAATAGCC -ACGGAAGAACACCCTCAATAACCG -ACGGAAGAACACCCTCAAATGCCA -ACGGAAGAACACACTGCTGGAAAC -ACGGAAGAACACACTGCTAACACC -ACGGAAGAACACACTGCTATCGAG -ACGGAAGAACACACTGCTCTCCTT -ACGGAAGAACACACTGCTCCTGTT -ACGGAAGAACACACTGCTCGGTTT -ACGGAAGAACACACTGCTGTGGTT -ACGGAAGAACACACTGCTGCCTTT -ACGGAAGAACACACTGCTGGTCTT -ACGGAAGAACACACTGCTACGCTT -ACGGAAGAACACACTGCTAGCGTT -ACGGAAGAACACACTGCTTTCGTC -ACGGAAGAACACACTGCTTCTCTC -ACGGAAGAACACACTGCTTGGATC -ACGGAAGAACACACTGCTCACTTC -ACGGAAGAACACACTGCTGTACTC -ACGGAAGAACACACTGCTGATGTC -ACGGAAGAACACACTGCTACAGTC -ACGGAAGAACACACTGCTTTGCTG -ACGGAAGAACACACTGCTTCCATG -ACGGAAGAACACACTGCTTGTGTG -ACGGAAGAACACACTGCTCTAGTG -ACGGAAGAACACACTGCTCATCTG -ACGGAAGAACACACTGCTGAGTTG -ACGGAAGAACACACTGCTAGACTG -ACGGAAGAACACACTGCTTCGGTA -ACGGAAGAACACACTGCTTGCCTA -ACGGAAGAACACACTGCTCCACTA -ACGGAAGAACACACTGCTGGAGTA -ACGGAAGAACACACTGCTTCGTCT -ACGGAAGAACACACTGCTTGCACT -ACGGAAGAACACACTGCTCTGACT -ACGGAAGAACACACTGCTCAACCT -ACGGAAGAACACACTGCTGCTACT -ACGGAAGAACACACTGCTGGATCT -ACGGAAGAACACACTGCTAAGGCT -ACGGAAGAACACACTGCTTCAACC -ACGGAAGAACACACTGCTTGTTCC -ACGGAAGAACACACTGCTATTCCC -ACGGAAGAACACACTGCTTTCTCG -ACGGAAGAACACACTGCTTAGACG -ACGGAAGAACACACTGCTGTAACG -ACGGAAGAACACACTGCTACTTCG -ACGGAAGAACACACTGCTTACGCA -ACGGAAGAACACACTGCTCTTGCA -ACGGAAGAACACACTGCTCGAACA -ACGGAAGAACACACTGCTCAGTCA -ACGGAAGAACACACTGCTGATCCA -ACGGAAGAACACACTGCTACGACA -ACGGAAGAACACACTGCTAGCTCA -ACGGAAGAACACACTGCTTCACGT -ACGGAAGAACACACTGCTCGTAGT -ACGGAAGAACACACTGCTGTCAGT -ACGGAAGAACACACTGCTGAAGGT -ACGGAAGAACACACTGCTAACCGT -ACGGAAGAACACACTGCTTTGTGC -ACGGAAGAACACACTGCTCTAAGC -ACGGAAGAACACACTGCTACTAGC -ACGGAAGAACACACTGCTAGATGC -ACGGAAGAACACACTGCTTGAAGG -ACGGAAGAACACACTGCTCAATGG -ACGGAAGAACACACTGCTATGAGG -ACGGAAGAACACACTGCTAATGGG -ACGGAAGAACACACTGCTTCCTGA -ACGGAAGAACACACTGCTTAGCGA -ACGGAAGAACACACTGCTCACAGA -ACGGAAGAACACACTGCTGCAAGA -ACGGAAGAACACACTGCTGGTTGA -ACGGAAGAACACACTGCTTCCGAT -ACGGAAGAACACACTGCTTGGCAT -ACGGAAGAACACACTGCTCGAGAT -ACGGAAGAACACACTGCTTACCAC -ACGGAAGAACACACTGCTCAGAAC -ACGGAAGAACACACTGCTGTCTAC -ACGGAAGAACACACTGCTACGTAC -ACGGAAGAACACACTGCTAGTGAC -ACGGAAGAACACACTGCTCTGTAG -ACGGAAGAACACACTGCTCCTAAG -ACGGAAGAACACACTGCTGTTCAG -ACGGAAGAACACACTGCTGCATAG -ACGGAAGAACACACTGCTGACAAG -ACGGAAGAACACACTGCTAAGCAG -ACGGAAGAACACACTGCTCGTCAA -ACGGAAGAACACACTGCTGCTGAA -ACGGAAGAACACACTGCTAGTACG -ACGGAAGAACACACTGCTATCCGA -ACGGAAGAACACACTGCTATGGGA -ACGGAAGAACACACTGCTGTGCAA -ACGGAAGAACACACTGCTGAGGAA -ACGGAAGAACACACTGCTCAGGTA -ACGGAAGAACACACTGCTGACTCT -ACGGAAGAACACACTGCTAGTCCT -ACGGAAGAACACACTGCTTAAGCC -ACGGAAGAACACACTGCTATAGCC -ACGGAAGAACACACTGCTTAACCG -ACGGAAGAACACACTGCTATGCCA -ACGGAAGAACACTCTGGAGGAAAC -ACGGAAGAACACTCTGGAAACACC -ACGGAAGAACACTCTGGAATCGAG -ACGGAAGAACACTCTGGACTCCTT -ACGGAAGAACACTCTGGACCTGTT -ACGGAAGAACACTCTGGACGGTTT -ACGGAAGAACACTCTGGAGTGGTT -ACGGAAGAACACTCTGGAGCCTTT -ACGGAAGAACACTCTGGAGGTCTT -ACGGAAGAACACTCTGGAACGCTT -ACGGAAGAACACTCTGGAAGCGTT -ACGGAAGAACACTCTGGATTCGTC -ACGGAAGAACACTCTGGATCTCTC -ACGGAAGAACACTCTGGATGGATC -ACGGAAGAACACTCTGGACACTTC -ACGGAAGAACACTCTGGAGTACTC -ACGGAAGAACACTCTGGAGATGTC -ACGGAAGAACACTCTGGAACAGTC -ACGGAAGAACACTCTGGATTGCTG -ACGGAAGAACACTCTGGATCCATG -ACGGAAGAACACTCTGGATGTGTG -ACGGAAGAACACTCTGGACTAGTG -ACGGAAGAACACTCTGGACATCTG -ACGGAAGAACACTCTGGAGAGTTG -ACGGAAGAACACTCTGGAAGACTG -ACGGAAGAACACTCTGGATCGGTA -ACGGAAGAACACTCTGGATGCCTA -ACGGAAGAACACTCTGGACCACTA -ACGGAAGAACACTCTGGAGGAGTA -ACGGAAGAACACTCTGGATCGTCT -ACGGAAGAACACTCTGGATGCACT -ACGGAAGAACACTCTGGACTGACT -ACGGAAGAACACTCTGGACAACCT -ACGGAAGAACACTCTGGAGCTACT -ACGGAAGAACACTCTGGAGGATCT -ACGGAAGAACACTCTGGAAAGGCT -ACGGAAGAACACTCTGGATCAACC -ACGGAAGAACACTCTGGATGTTCC -ACGGAAGAACACTCTGGAATTCCC -ACGGAAGAACACTCTGGATTCTCG -ACGGAAGAACACTCTGGATAGACG -ACGGAAGAACACTCTGGAGTAACG -ACGGAAGAACACTCTGGAACTTCG -ACGGAAGAACACTCTGGATACGCA -ACGGAAGAACACTCTGGACTTGCA -ACGGAAGAACACTCTGGACGAACA -ACGGAAGAACACTCTGGACAGTCA -ACGGAAGAACACTCTGGAGATCCA -ACGGAAGAACACTCTGGAACGACA -ACGGAAGAACACTCTGGAAGCTCA -ACGGAAGAACACTCTGGATCACGT -ACGGAAGAACACTCTGGACGTAGT -ACGGAAGAACACTCTGGAGTCAGT -ACGGAAGAACACTCTGGAGAAGGT -ACGGAAGAACACTCTGGAAACCGT -ACGGAAGAACACTCTGGATTGTGC -ACGGAAGAACACTCTGGACTAAGC -ACGGAAGAACACTCTGGAACTAGC -ACGGAAGAACACTCTGGAAGATGC -ACGGAAGAACACTCTGGATGAAGG -ACGGAAGAACACTCTGGACAATGG -ACGGAAGAACACTCTGGAATGAGG -ACGGAAGAACACTCTGGAAATGGG -ACGGAAGAACACTCTGGATCCTGA -ACGGAAGAACACTCTGGATAGCGA -ACGGAAGAACACTCTGGACACAGA -ACGGAAGAACACTCTGGAGCAAGA -ACGGAAGAACACTCTGGAGGTTGA -ACGGAAGAACACTCTGGATCCGAT -ACGGAAGAACACTCTGGATGGCAT -ACGGAAGAACACTCTGGACGAGAT -ACGGAAGAACACTCTGGATACCAC -ACGGAAGAACACTCTGGACAGAAC -ACGGAAGAACACTCTGGAGTCTAC -ACGGAAGAACACTCTGGAACGTAC -ACGGAAGAACACTCTGGAAGTGAC -ACGGAAGAACACTCTGGACTGTAG -ACGGAAGAACACTCTGGACCTAAG -ACGGAAGAACACTCTGGAGTTCAG -ACGGAAGAACACTCTGGAGCATAG -ACGGAAGAACACTCTGGAGACAAG -ACGGAAGAACACTCTGGAAAGCAG -ACGGAAGAACACTCTGGACGTCAA -ACGGAAGAACACTCTGGAGCTGAA -ACGGAAGAACACTCTGGAAGTACG -ACGGAAGAACACTCTGGAATCCGA -ACGGAAGAACACTCTGGAATGGGA -ACGGAAGAACACTCTGGAGTGCAA -ACGGAAGAACACTCTGGAGAGGAA -ACGGAAGAACACTCTGGACAGGTA -ACGGAAGAACACTCTGGAGACTCT -ACGGAAGAACACTCTGGAAGTCCT -ACGGAAGAACACTCTGGATAAGCC -ACGGAAGAACACTCTGGAATAGCC -ACGGAAGAACACTCTGGATAACCG -ACGGAAGAACACTCTGGAATGCCA -ACGGAAGAACACGCTAAGGGAAAC -ACGGAAGAACACGCTAAGAACACC -ACGGAAGAACACGCTAAGATCGAG -ACGGAAGAACACGCTAAGCTCCTT -ACGGAAGAACACGCTAAGCCTGTT -ACGGAAGAACACGCTAAGCGGTTT -ACGGAAGAACACGCTAAGGTGGTT -ACGGAAGAACACGCTAAGGCCTTT -ACGGAAGAACACGCTAAGGGTCTT -ACGGAAGAACACGCTAAGACGCTT -ACGGAAGAACACGCTAAGAGCGTT -ACGGAAGAACACGCTAAGTTCGTC -ACGGAAGAACACGCTAAGTCTCTC -ACGGAAGAACACGCTAAGTGGATC -ACGGAAGAACACGCTAAGCACTTC -ACGGAAGAACACGCTAAGGTACTC -ACGGAAGAACACGCTAAGGATGTC -ACGGAAGAACACGCTAAGACAGTC -ACGGAAGAACACGCTAAGTTGCTG -ACGGAAGAACACGCTAAGTCCATG -ACGGAAGAACACGCTAAGTGTGTG -ACGGAAGAACACGCTAAGCTAGTG -ACGGAAGAACACGCTAAGCATCTG -ACGGAAGAACACGCTAAGGAGTTG -ACGGAAGAACACGCTAAGAGACTG -ACGGAAGAACACGCTAAGTCGGTA -ACGGAAGAACACGCTAAGTGCCTA -ACGGAAGAACACGCTAAGCCACTA -ACGGAAGAACACGCTAAGGGAGTA -ACGGAAGAACACGCTAAGTCGTCT -ACGGAAGAACACGCTAAGTGCACT -ACGGAAGAACACGCTAAGCTGACT -ACGGAAGAACACGCTAAGCAACCT -ACGGAAGAACACGCTAAGGCTACT -ACGGAAGAACACGCTAAGGGATCT -ACGGAAGAACACGCTAAGAAGGCT -ACGGAAGAACACGCTAAGTCAACC -ACGGAAGAACACGCTAAGTGTTCC -ACGGAAGAACACGCTAAGATTCCC -ACGGAAGAACACGCTAAGTTCTCG -ACGGAAGAACACGCTAAGTAGACG -ACGGAAGAACACGCTAAGGTAACG -ACGGAAGAACACGCTAAGACTTCG -ACGGAAGAACACGCTAAGTACGCA -ACGGAAGAACACGCTAAGCTTGCA -ACGGAAGAACACGCTAAGCGAACA -ACGGAAGAACACGCTAAGCAGTCA -ACGGAAGAACACGCTAAGGATCCA -ACGGAAGAACACGCTAAGACGACA -ACGGAAGAACACGCTAAGAGCTCA -ACGGAAGAACACGCTAAGTCACGT -ACGGAAGAACACGCTAAGCGTAGT -ACGGAAGAACACGCTAAGGTCAGT -ACGGAAGAACACGCTAAGGAAGGT -ACGGAAGAACACGCTAAGAACCGT -ACGGAAGAACACGCTAAGTTGTGC -ACGGAAGAACACGCTAAGCTAAGC -ACGGAAGAACACGCTAAGACTAGC -ACGGAAGAACACGCTAAGAGATGC -ACGGAAGAACACGCTAAGTGAAGG -ACGGAAGAACACGCTAAGCAATGG -ACGGAAGAACACGCTAAGATGAGG -ACGGAAGAACACGCTAAGAATGGG -ACGGAAGAACACGCTAAGTCCTGA -ACGGAAGAACACGCTAAGTAGCGA -ACGGAAGAACACGCTAAGCACAGA -ACGGAAGAACACGCTAAGGCAAGA -ACGGAAGAACACGCTAAGGGTTGA -ACGGAAGAACACGCTAAGTCCGAT -ACGGAAGAACACGCTAAGTGGCAT -ACGGAAGAACACGCTAAGCGAGAT -ACGGAAGAACACGCTAAGTACCAC -ACGGAAGAACACGCTAAGCAGAAC -ACGGAAGAACACGCTAAGGTCTAC -ACGGAAGAACACGCTAAGACGTAC -ACGGAAGAACACGCTAAGAGTGAC -ACGGAAGAACACGCTAAGCTGTAG -ACGGAAGAACACGCTAAGCCTAAG -ACGGAAGAACACGCTAAGGTTCAG -ACGGAAGAACACGCTAAGGCATAG -ACGGAAGAACACGCTAAGGACAAG -ACGGAAGAACACGCTAAGAAGCAG -ACGGAAGAACACGCTAAGCGTCAA -ACGGAAGAACACGCTAAGGCTGAA -ACGGAAGAACACGCTAAGAGTACG -ACGGAAGAACACGCTAAGATCCGA -ACGGAAGAACACGCTAAGATGGGA -ACGGAAGAACACGCTAAGGTGCAA -ACGGAAGAACACGCTAAGGAGGAA -ACGGAAGAACACGCTAAGCAGGTA -ACGGAAGAACACGCTAAGGACTCT -ACGGAAGAACACGCTAAGAGTCCT -ACGGAAGAACACGCTAAGTAAGCC -ACGGAAGAACACGCTAAGATAGCC -ACGGAAGAACACGCTAAGTAACCG -ACGGAAGAACACGCTAAGATGCCA -ACGGAAGAACACACCTCAGGAAAC -ACGGAAGAACACACCTCAAACACC -ACGGAAGAACACACCTCAATCGAG -ACGGAAGAACACACCTCACTCCTT -ACGGAAGAACACACCTCACCTGTT -ACGGAAGAACACACCTCACGGTTT -ACGGAAGAACACACCTCAGTGGTT -ACGGAAGAACACACCTCAGCCTTT -ACGGAAGAACACACCTCAGGTCTT -ACGGAAGAACACACCTCAACGCTT -ACGGAAGAACACACCTCAAGCGTT -ACGGAAGAACACACCTCATTCGTC -ACGGAAGAACACACCTCATCTCTC -ACGGAAGAACACACCTCATGGATC -ACGGAAGAACACACCTCACACTTC -ACGGAAGAACACACCTCAGTACTC -ACGGAAGAACACACCTCAGATGTC -ACGGAAGAACACACCTCAACAGTC -ACGGAAGAACACACCTCATTGCTG -ACGGAAGAACACACCTCATCCATG -ACGGAAGAACACACCTCATGTGTG -ACGGAAGAACACACCTCACTAGTG -ACGGAAGAACACACCTCACATCTG -ACGGAAGAACACACCTCAGAGTTG -ACGGAAGAACACACCTCAAGACTG -ACGGAAGAACACACCTCATCGGTA -ACGGAAGAACACACCTCATGCCTA -ACGGAAGAACACACCTCACCACTA -ACGGAAGAACACACCTCAGGAGTA -ACGGAAGAACACACCTCATCGTCT -ACGGAAGAACACACCTCATGCACT -ACGGAAGAACACACCTCACTGACT -ACGGAAGAACACACCTCACAACCT -ACGGAAGAACACACCTCAGCTACT -ACGGAAGAACACACCTCAGGATCT -ACGGAAGAACACACCTCAAAGGCT -ACGGAAGAACACACCTCATCAACC -ACGGAAGAACACACCTCATGTTCC -ACGGAAGAACACACCTCAATTCCC -ACGGAAGAACACACCTCATTCTCG -ACGGAAGAACACACCTCATAGACG -ACGGAAGAACACACCTCAGTAACG -ACGGAAGAACACACCTCAACTTCG -ACGGAAGAACACACCTCATACGCA -ACGGAAGAACACACCTCACTTGCA -ACGGAAGAACACACCTCACGAACA -ACGGAAGAACACACCTCACAGTCA -ACGGAAGAACACACCTCAGATCCA -ACGGAAGAACACACCTCAACGACA -ACGGAAGAACACACCTCAAGCTCA -ACGGAAGAACACACCTCATCACGT -ACGGAAGAACACACCTCACGTAGT -ACGGAAGAACACACCTCAGTCAGT -ACGGAAGAACACACCTCAGAAGGT -ACGGAAGAACACACCTCAAACCGT -ACGGAAGAACACACCTCATTGTGC -ACGGAAGAACACACCTCACTAAGC -ACGGAAGAACACACCTCAACTAGC -ACGGAAGAACACACCTCAAGATGC -ACGGAAGAACACACCTCATGAAGG -ACGGAAGAACACACCTCACAATGG -ACGGAAGAACACACCTCAATGAGG -ACGGAAGAACACACCTCAAATGGG -ACGGAAGAACACACCTCATCCTGA -ACGGAAGAACACACCTCATAGCGA -ACGGAAGAACACACCTCACACAGA -ACGGAAGAACACACCTCAGCAAGA -ACGGAAGAACACACCTCAGGTTGA -ACGGAAGAACACACCTCATCCGAT -ACGGAAGAACACACCTCATGGCAT -ACGGAAGAACACACCTCACGAGAT -ACGGAAGAACACACCTCATACCAC -ACGGAAGAACACACCTCACAGAAC -ACGGAAGAACACACCTCAGTCTAC -ACGGAAGAACACACCTCAACGTAC -ACGGAAGAACACACCTCAAGTGAC -ACGGAAGAACACACCTCACTGTAG -ACGGAAGAACACACCTCACCTAAG -ACGGAAGAACACACCTCAGTTCAG -ACGGAAGAACACACCTCAGCATAG -ACGGAAGAACACACCTCAGACAAG -ACGGAAGAACACACCTCAAAGCAG -ACGGAAGAACACACCTCACGTCAA -ACGGAAGAACACACCTCAGCTGAA -ACGGAAGAACACACCTCAAGTACG -ACGGAAGAACACACCTCAATCCGA -ACGGAAGAACACACCTCAATGGGA -ACGGAAGAACACACCTCAGTGCAA -ACGGAAGAACACACCTCAGAGGAA -ACGGAAGAACACACCTCACAGGTA -ACGGAAGAACACACCTCAGACTCT -ACGGAAGAACACACCTCAAGTCCT -ACGGAAGAACACACCTCATAAGCC -ACGGAAGAACACACCTCAATAGCC -ACGGAAGAACACACCTCATAACCG -ACGGAAGAACACACCTCAATGCCA -ACGGAAGAACACTCCTGTGGAAAC -ACGGAAGAACACTCCTGTAACACC -ACGGAAGAACACTCCTGTATCGAG -ACGGAAGAACACTCCTGTCTCCTT -ACGGAAGAACACTCCTGTCCTGTT -ACGGAAGAACACTCCTGTCGGTTT -ACGGAAGAACACTCCTGTGTGGTT -ACGGAAGAACACTCCTGTGCCTTT -ACGGAAGAACACTCCTGTGGTCTT -ACGGAAGAACACTCCTGTACGCTT -ACGGAAGAACACTCCTGTAGCGTT -ACGGAAGAACACTCCTGTTTCGTC -ACGGAAGAACACTCCTGTTCTCTC -ACGGAAGAACACTCCTGTTGGATC -ACGGAAGAACACTCCTGTCACTTC -ACGGAAGAACACTCCTGTGTACTC -ACGGAAGAACACTCCTGTGATGTC -ACGGAAGAACACTCCTGTACAGTC -ACGGAAGAACACTCCTGTTTGCTG -ACGGAAGAACACTCCTGTTCCATG -ACGGAAGAACACTCCTGTTGTGTG -ACGGAAGAACACTCCTGTCTAGTG -ACGGAAGAACACTCCTGTCATCTG -ACGGAAGAACACTCCTGTGAGTTG -ACGGAAGAACACTCCTGTAGACTG -ACGGAAGAACACTCCTGTTCGGTA -ACGGAAGAACACTCCTGTTGCCTA -ACGGAAGAACACTCCTGTCCACTA -ACGGAAGAACACTCCTGTGGAGTA -ACGGAAGAACACTCCTGTTCGTCT -ACGGAAGAACACTCCTGTTGCACT -ACGGAAGAACACTCCTGTCTGACT -ACGGAAGAACACTCCTGTCAACCT -ACGGAAGAACACTCCTGTGCTACT -ACGGAAGAACACTCCTGTGGATCT -ACGGAAGAACACTCCTGTAAGGCT -ACGGAAGAACACTCCTGTTCAACC -ACGGAAGAACACTCCTGTTGTTCC -ACGGAAGAACACTCCTGTATTCCC -ACGGAAGAACACTCCTGTTTCTCG -ACGGAAGAACACTCCTGTTAGACG -ACGGAAGAACACTCCTGTGTAACG -ACGGAAGAACACTCCTGTACTTCG -ACGGAAGAACACTCCTGTTACGCA -ACGGAAGAACACTCCTGTCTTGCA -ACGGAAGAACACTCCTGTCGAACA -ACGGAAGAACACTCCTGTCAGTCA -ACGGAAGAACACTCCTGTGATCCA -ACGGAAGAACACTCCTGTACGACA -ACGGAAGAACACTCCTGTAGCTCA -ACGGAAGAACACTCCTGTTCACGT -ACGGAAGAACACTCCTGTCGTAGT -ACGGAAGAACACTCCTGTGTCAGT -ACGGAAGAACACTCCTGTGAAGGT -ACGGAAGAACACTCCTGTAACCGT -ACGGAAGAACACTCCTGTTTGTGC -ACGGAAGAACACTCCTGTCTAAGC -ACGGAAGAACACTCCTGTACTAGC -ACGGAAGAACACTCCTGTAGATGC -ACGGAAGAACACTCCTGTTGAAGG -ACGGAAGAACACTCCTGTCAATGG -ACGGAAGAACACTCCTGTATGAGG -ACGGAAGAACACTCCTGTAATGGG -ACGGAAGAACACTCCTGTTCCTGA -ACGGAAGAACACTCCTGTTAGCGA -ACGGAAGAACACTCCTGTCACAGA -ACGGAAGAACACTCCTGTGCAAGA -ACGGAAGAACACTCCTGTGGTTGA -ACGGAAGAACACTCCTGTTCCGAT -ACGGAAGAACACTCCTGTTGGCAT -ACGGAAGAACACTCCTGTCGAGAT -ACGGAAGAACACTCCTGTTACCAC -ACGGAAGAACACTCCTGTCAGAAC -ACGGAAGAACACTCCTGTGTCTAC -ACGGAAGAACACTCCTGTACGTAC -ACGGAAGAACACTCCTGTAGTGAC -ACGGAAGAACACTCCTGTCTGTAG -ACGGAAGAACACTCCTGTCCTAAG -ACGGAAGAACACTCCTGTGTTCAG -ACGGAAGAACACTCCTGTGCATAG -ACGGAAGAACACTCCTGTGACAAG -ACGGAAGAACACTCCTGTAAGCAG -ACGGAAGAACACTCCTGTCGTCAA -ACGGAAGAACACTCCTGTGCTGAA -ACGGAAGAACACTCCTGTAGTACG -ACGGAAGAACACTCCTGTATCCGA -ACGGAAGAACACTCCTGTATGGGA -ACGGAAGAACACTCCTGTGTGCAA -ACGGAAGAACACTCCTGTGAGGAA -ACGGAAGAACACTCCTGTCAGGTA -ACGGAAGAACACTCCTGTGACTCT -ACGGAAGAACACTCCTGTAGTCCT -ACGGAAGAACACTCCTGTTAAGCC -ACGGAAGAACACTCCTGTATAGCC -ACGGAAGAACACTCCTGTTAACCG -ACGGAAGAACACTCCTGTATGCCA -ACGGAAGAACACCCCATTGGAAAC -ACGGAAGAACACCCCATTAACACC -ACGGAAGAACACCCCATTATCGAG -ACGGAAGAACACCCCATTCTCCTT -ACGGAAGAACACCCCATTCCTGTT -ACGGAAGAACACCCCATTCGGTTT -ACGGAAGAACACCCCATTGTGGTT -ACGGAAGAACACCCCATTGCCTTT -ACGGAAGAACACCCCATTGGTCTT -ACGGAAGAACACCCCATTACGCTT -ACGGAAGAACACCCCATTAGCGTT -ACGGAAGAACACCCCATTTTCGTC -ACGGAAGAACACCCCATTTCTCTC -ACGGAAGAACACCCCATTTGGATC -ACGGAAGAACACCCCATTCACTTC -ACGGAAGAACACCCCATTGTACTC -ACGGAAGAACACCCCATTGATGTC -ACGGAAGAACACCCCATTACAGTC -ACGGAAGAACACCCCATTTTGCTG -ACGGAAGAACACCCCATTTCCATG -ACGGAAGAACACCCCATTTGTGTG -ACGGAAGAACACCCCATTCTAGTG -ACGGAAGAACACCCCATTCATCTG -ACGGAAGAACACCCCATTGAGTTG -ACGGAAGAACACCCCATTAGACTG -ACGGAAGAACACCCCATTTCGGTA -ACGGAAGAACACCCCATTTGCCTA -ACGGAAGAACACCCCATTCCACTA -ACGGAAGAACACCCCATTGGAGTA -ACGGAAGAACACCCCATTTCGTCT -ACGGAAGAACACCCCATTTGCACT -ACGGAAGAACACCCCATTCTGACT -ACGGAAGAACACCCCATTCAACCT -ACGGAAGAACACCCCATTGCTACT -ACGGAAGAACACCCCATTGGATCT -ACGGAAGAACACCCCATTAAGGCT -ACGGAAGAACACCCCATTTCAACC -ACGGAAGAACACCCCATTTGTTCC -ACGGAAGAACACCCCATTATTCCC -ACGGAAGAACACCCCATTTTCTCG -ACGGAAGAACACCCCATTTAGACG -ACGGAAGAACACCCCATTGTAACG -ACGGAAGAACACCCCATTACTTCG -ACGGAAGAACACCCCATTTACGCA -ACGGAAGAACACCCCATTCTTGCA -ACGGAAGAACACCCCATTCGAACA -ACGGAAGAACACCCCATTCAGTCA -ACGGAAGAACACCCCATTGATCCA -ACGGAAGAACACCCCATTACGACA -ACGGAAGAACACCCCATTAGCTCA -ACGGAAGAACACCCCATTTCACGT -ACGGAAGAACACCCCATTCGTAGT -ACGGAAGAACACCCCATTGTCAGT -ACGGAAGAACACCCCATTGAAGGT -ACGGAAGAACACCCCATTAACCGT -ACGGAAGAACACCCCATTTTGTGC -ACGGAAGAACACCCCATTCTAAGC -ACGGAAGAACACCCCATTACTAGC -ACGGAAGAACACCCCATTAGATGC -ACGGAAGAACACCCCATTTGAAGG -ACGGAAGAACACCCCATTCAATGG -ACGGAAGAACACCCCATTATGAGG -ACGGAAGAACACCCCATTAATGGG -ACGGAAGAACACCCCATTTCCTGA -ACGGAAGAACACCCCATTTAGCGA -ACGGAAGAACACCCCATTCACAGA -ACGGAAGAACACCCCATTGCAAGA -ACGGAAGAACACCCCATTGGTTGA -ACGGAAGAACACCCCATTTCCGAT -ACGGAAGAACACCCCATTTGGCAT -ACGGAAGAACACCCCATTCGAGAT -ACGGAAGAACACCCCATTTACCAC -ACGGAAGAACACCCCATTCAGAAC -ACGGAAGAACACCCCATTGTCTAC -ACGGAAGAACACCCCATTACGTAC -ACGGAAGAACACCCCATTAGTGAC -ACGGAAGAACACCCCATTCTGTAG -ACGGAAGAACACCCCATTCCTAAG -ACGGAAGAACACCCCATTGTTCAG -ACGGAAGAACACCCCATTGCATAG -ACGGAAGAACACCCCATTGACAAG -ACGGAAGAACACCCCATTAAGCAG -ACGGAAGAACACCCCATTCGTCAA -ACGGAAGAACACCCCATTGCTGAA -ACGGAAGAACACCCCATTAGTACG -ACGGAAGAACACCCCATTATCCGA -ACGGAAGAACACCCCATTATGGGA -ACGGAAGAACACCCCATTGTGCAA -ACGGAAGAACACCCCATTGAGGAA -ACGGAAGAACACCCCATTCAGGTA -ACGGAAGAACACCCCATTGACTCT -ACGGAAGAACACCCCATTAGTCCT -ACGGAAGAACACCCCATTTAAGCC -ACGGAAGAACACCCCATTATAGCC -ACGGAAGAACACCCCATTTAACCG -ACGGAAGAACACCCCATTATGCCA -ACGGAAGAACACTCGTTCGGAAAC -ACGGAAGAACACTCGTTCAACACC -ACGGAAGAACACTCGTTCATCGAG -ACGGAAGAACACTCGTTCCTCCTT -ACGGAAGAACACTCGTTCCCTGTT -ACGGAAGAACACTCGTTCCGGTTT -ACGGAAGAACACTCGTTCGTGGTT -ACGGAAGAACACTCGTTCGCCTTT -ACGGAAGAACACTCGTTCGGTCTT -ACGGAAGAACACTCGTTCACGCTT -ACGGAAGAACACTCGTTCAGCGTT -ACGGAAGAACACTCGTTCTTCGTC -ACGGAAGAACACTCGTTCTCTCTC -ACGGAAGAACACTCGTTCTGGATC -ACGGAAGAACACTCGTTCCACTTC -ACGGAAGAACACTCGTTCGTACTC -ACGGAAGAACACTCGTTCGATGTC -ACGGAAGAACACTCGTTCACAGTC -ACGGAAGAACACTCGTTCTTGCTG -ACGGAAGAACACTCGTTCTCCATG -ACGGAAGAACACTCGTTCTGTGTG -ACGGAAGAACACTCGTTCCTAGTG -ACGGAAGAACACTCGTTCCATCTG -ACGGAAGAACACTCGTTCGAGTTG -ACGGAAGAACACTCGTTCAGACTG -ACGGAAGAACACTCGTTCTCGGTA -ACGGAAGAACACTCGTTCTGCCTA -ACGGAAGAACACTCGTTCCCACTA -ACGGAAGAACACTCGTTCGGAGTA -ACGGAAGAACACTCGTTCTCGTCT -ACGGAAGAACACTCGTTCTGCACT -ACGGAAGAACACTCGTTCCTGACT -ACGGAAGAACACTCGTTCCAACCT -ACGGAAGAACACTCGTTCGCTACT -ACGGAAGAACACTCGTTCGGATCT -ACGGAAGAACACTCGTTCAAGGCT -ACGGAAGAACACTCGTTCTCAACC -ACGGAAGAACACTCGTTCTGTTCC -ACGGAAGAACACTCGTTCATTCCC -ACGGAAGAACACTCGTTCTTCTCG -ACGGAAGAACACTCGTTCTAGACG -ACGGAAGAACACTCGTTCGTAACG -ACGGAAGAACACTCGTTCACTTCG -ACGGAAGAACACTCGTTCTACGCA -ACGGAAGAACACTCGTTCCTTGCA -ACGGAAGAACACTCGTTCCGAACA -ACGGAAGAACACTCGTTCCAGTCA -ACGGAAGAACACTCGTTCGATCCA -ACGGAAGAACACTCGTTCACGACA -ACGGAAGAACACTCGTTCAGCTCA -ACGGAAGAACACTCGTTCTCACGT -ACGGAAGAACACTCGTTCCGTAGT -ACGGAAGAACACTCGTTCGTCAGT -ACGGAAGAACACTCGTTCGAAGGT -ACGGAAGAACACTCGTTCAACCGT -ACGGAAGAACACTCGTTCTTGTGC -ACGGAAGAACACTCGTTCCTAAGC -ACGGAAGAACACTCGTTCACTAGC -ACGGAAGAACACTCGTTCAGATGC -ACGGAAGAACACTCGTTCTGAAGG -ACGGAAGAACACTCGTTCCAATGG -ACGGAAGAACACTCGTTCATGAGG -ACGGAAGAACACTCGTTCAATGGG -ACGGAAGAACACTCGTTCTCCTGA -ACGGAAGAACACTCGTTCTAGCGA -ACGGAAGAACACTCGTTCCACAGA -ACGGAAGAACACTCGTTCGCAAGA -ACGGAAGAACACTCGTTCGGTTGA -ACGGAAGAACACTCGTTCTCCGAT -ACGGAAGAACACTCGTTCTGGCAT -ACGGAAGAACACTCGTTCCGAGAT -ACGGAAGAACACTCGTTCTACCAC -ACGGAAGAACACTCGTTCCAGAAC -ACGGAAGAACACTCGTTCGTCTAC -ACGGAAGAACACTCGTTCACGTAC -ACGGAAGAACACTCGTTCAGTGAC -ACGGAAGAACACTCGTTCCTGTAG -ACGGAAGAACACTCGTTCCCTAAG -ACGGAAGAACACTCGTTCGTTCAG -ACGGAAGAACACTCGTTCGCATAG -ACGGAAGAACACTCGTTCGACAAG -ACGGAAGAACACTCGTTCAAGCAG -ACGGAAGAACACTCGTTCCGTCAA -ACGGAAGAACACTCGTTCGCTGAA -ACGGAAGAACACTCGTTCAGTACG -ACGGAAGAACACTCGTTCATCCGA -ACGGAAGAACACTCGTTCATGGGA -ACGGAAGAACACTCGTTCGTGCAA -ACGGAAGAACACTCGTTCGAGGAA -ACGGAAGAACACTCGTTCCAGGTA -ACGGAAGAACACTCGTTCGACTCT -ACGGAAGAACACTCGTTCAGTCCT -ACGGAAGAACACTCGTTCTAAGCC -ACGGAAGAACACTCGTTCATAGCC -ACGGAAGAACACTCGTTCTAACCG -ACGGAAGAACACTCGTTCATGCCA -ACGGAAGAACACACGTAGGGAAAC -ACGGAAGAACACACGTAGAACACC -ACGGAAGAACACACGTAGATCGAG -ACGGAAGAACACACGTAGCTCCTT -ACGGAAGAACACACGTAGCCTGTT -ACGGAAGAACACACGTAGCGGTTT -ACGGAAGAACACACGTAGGTGGTT -ACGGAAGAACACACGTAGGCCTTT -ACGGAAGAACACACGTAGGGTCTT -ACGGAAGAACACACGTAGACGCTT -ACGGAAGAACACACGTAGAGCGTT -ACGGAAGAACACACGTAGTTCGTC -ACGGAAGAACACACGTAGTCTCTC -ACGGAAGAACACACGTAGTGGATC -ACGGAAGAACACACGTAGCACTTC -ACGGAAGAACACACGTAGGTACTC -ACGGAAGAACACACGTAGGATGTC -ACGGAAGAACACACGTAGACAGTC -ACGGAAGAACACACGTAGTTGCTG -ACGGAAGAACACACGTAGTCCATG -ACGGAAGAACACACGTAGTGTGTG -ACGGAAGAACACACGTAGCTAGTG -ACGGAAGAACACACGTAGCATCTG -ACGGAAGAACACACGTAGGAGTTG -ACGGAAGAACACACGTAGAGACTG -ACGGAAGAACACACGTAGTCGGTA -ACGGAAGAACACACGTAGTGCCTA -ACGGAAGAACACACGTAGCCACTA -ACGGAAGAACACACGTAGGGAGTA -ACGGAAGAACACACGTAGTCGTCT -ACGGAAGAACACACGTAGTGCACT -ACGGAAGAACACACGTAGCTGACT -ACGGAAGAACACACGTAGCAACCT -ACGGAAGAACACACGTAGGCTACT -ACGGAAGAACACACGTAGGGATCT -ACGGAAGAACACACGTAGAAGGCT -ACGGAAGAACACACGTAGTCAACC -ACGGAAGAACACACGTAGTGTTCC -ACGGAAGAACACACGTAGATTCCC -ACGGAAGAACACACGTAGTTCTCG -ACGGAAGAACACACGTAGTAGACG -ACGGAAGAACACACGTAGGTAACG -ACGGAAGAACACACGTAGACTTCG -ACGGAAGAACACACGTAGTACGCA -ACGGAAGAACACACGTAGCTTGCA -ACGGAAGAACACACGTAGCGAACA -ACGGAAGAACACACGTAGCAGTCA -ACGGAAGAACACACGTAGGATCCA -ACGGAAGAACACACGTAGACGACA -ACGGAAGAACACACGTAGAGCTCA -ACGGAAGAACACACGTAGTCACGT -ACGGAAGAACACACGTAGCGTAGT -ACGGAAGAACACACGTAGGTCAGT -ACGGAAGAACACACGTAGGAAGGT -ACGGAAGAACACACGTAGAACCGT -ACGGAAGAACACACGTAGTTGTGC -ACGGAAGAACACACGTAGCTAAGC -ACGGAAGAACACACGTAGACTAGC -ACGGAAGAACACACGTAGAGATGC -ACGGAAGAACACACGTAGTGAAGG -ACGGAAGAACACACGTAGCAATGG -ACGGAAGAACACACGTAGATGAGG -ACGGAAGAACACACGTAGAATGGG -ACGGAAGAACACACGTAGTCCTGA -ACGGAAGAACACACGTAGTAGCGA -ACGGAAGAACACACGTAGCACAGA -ACGGAAGAACACACGTAGGCAAGA -ACGGAAGAACACACGTAGGGTTGA -ACGGAAGAACACACGTAGTCCGAT -ACGGAAGAACACACGTAGTGGCAT -ACGGAAGAACACACGTAGCGAGAT -ACGGAAGAACACACGTAGTACCAC -ACGGAAGAACACACGTAGCAGAAC -ACGGAAGAACACACGTAGGTCTAC -ACGGAAGAACACACGTAGACGTAC -ACGGAAGAACACACGTAGAGTGAC -ACGGAAGAACACACGTAGCTGTAG -ACGGAAGAACACACGTAGCCTAAG -ACGGAAGAACACACGTAGGTTCAG -ACGGAAGAACACACGTAGGCATAG -ACGGAAGAACACACGTAGGACAAG -ACGGAAGAACACACGTAGAAGCAG -ACGGAAGAACACACGTAGCGTCAA -ACGGAAGAACACACGTAGGCTGAA -ACGGAAGAACACACGTAGAGTACG -ACGGAAGAACACACGTAGATCCGA -ACGGAAGAACACACGTAGATGGGA -ACGGAAGAACACACGTAGGTGCAA -ACGGAAGAACACACGTAGGAGGAA -ACGGAAGAACACACGTAGCAGGTA -ACGGAAGAACACACGTAGGACTCT -ACGGAAGAACACACGTAGAGTCCT -ACGGAAGAACACACGTAGTAAGCC -ACGGAAGAACACACGTAGATAGCC -ACGGAAGAACACACGTAGTAACCG -ACGGAAGAACACACGTAGATGCCA -ACGGAAGAACACACGGTAGGAAAC -ACGGAAGAACACACGGTAAACACC -ACGGAAGAACACACGGTAATCGAG -ACGGAAGAACACACGGTACTCCTT -ACGGAAGAACACACGGTACCTGTT -ACGGAAGAACACACGGTACGGTTT -ACGGAAGAACACACGGTAGTGGTT -ACGGAAGAACACACGGTAGCCTTT -ACGGAAGAACACACGGTAGGTCTT -ACGGAAGAACACACGGTAACGCTT -ACGGAAGAACACACGGTAAGCGTT -ACGGAAGAACACACGGTATTCGTC -ACGGAAGAACACACGGTATCTCTC -ACGGAAGAACACACGGTATGGATC -ACGGAAGAACACACGGTACACTTC -ACGGAAGAACACACGGTAGTACTC -ACGGAAGAACACACGGTAGATGTC -ACGGAAGAACACACGGTAACAGTC -ACGGAAGAACACACGGTATTGCTG -ACGGAAGAACACACGGTATCCATG -ACGGAAGAACACACGGTATGTGTG -ACGGAAGAACACACGGTACTAGTG -ACGGAAGAACACACGGTACATCTG -ACGGAAGAACACACGGTAGAGTTG -ACGGAAGAACACACGGTAAGACTG -ACGGAAGAACACACGGTATCGGTA -ACGGAAGAACACACGGTATGCCTA -ACGGAAGAACACACGGTACCACTA -ACGGAAGAACACACGGTAGGAGTA -ACGGAAGAACACACGGTATCGTCT -ACGGAAGAACACACGGTATGCACT -ACGGAAGAACACACGGTACTGACT -ACGGAAGAACACACGGTACAACCT -ACGGAAGAACACACGGTAGCTACT -ACGGAAGAACACACGGTAGGATCT -ACGGAAGAACACACGGTAAAGGCT -ACGGAAGAACACACGGTATCAACC -ACGGAAGAACACACGGTATGTTCC -ACGGAAGAACACACGGTAATTCCC -ACGGAAGAACACACGGTATTCTCG -ACGGAAGAACACACGGTATAGACG -ACGGAAGAACACACGGTAGTAACG -ACGGAAGAACACACGGTAACTTCG -ACGGAAGAACACACGGTATACGCA -ACGGAAGAACACACGGTACTTGCA -ACGGAAGAACACACGGTACGAACA -ACGGAAGAACACACGGTACAGTCA -ACGGAAGAACACACGGTAGATCCA -ACGGAAGAACACACGGTAACGACA -ACGGAAGAACACACGGTAAGCTCA -ACGGAAGAACACACGGTATCACGT -ACGGAAGAACACACGGTACGTAGT -ACGGAAGAACACACGGTAGTCAGT -ACGGAAGAACACACGGTAGAAGGT -ACGGAAGAACACACGGTAAACCGT -ACGGAAGAACACACGGTATTGTGC -ACGGAAGAACACACGGTACTAAGC -ACGGAAGAACACACGGTAACTAGC -ACGGAAGAACACACGGTAAGATGC -ACGGAAGAACACACGGTATGAAGG -ACGGAAGAACACACGGTACAATGG -ACGGAAGAACACACGGTAATGAGG -ACGGAAGAACACACGGTAAATGGG -ACGGAAGAACACACGGTATCCTGA -ACGGAAGAACACACGGTATAGCGA -ACGGAAGAACACACGGTACACAGA -ACGGAAGAACACACGGTAGCAAGA -ACGGAAGAACACACGGTAGGTTGA -ACGGAAGAACACACGGTATCCGAT -ACGGAAGAACACACGGTATGGCAT -ACGGAAGAACACACGGTACGAGAT -ACGGAAGAACACACGGTATACCAC -ACGGAAGAACACACGGTACAGAAC -ACGGAAGAACACACGGTAGTCTAC -ACGGAAGAACACACGGTAACGTAC -ACGGAAGAACACACGGTAAGTGAC -ACGGAAGAACACACGGTACTGTAG -ACGGAAGAACACACGGTACCTAAG -ACGGAAGAACACACGGTAGTTCAG -ACGGAAGAACACACGGTAGCATAG -ACGGAAGAACACACGGTAGACAAG -ACGGAAGAACACACGGTAAAGCAG -ACGGAAGAACACACGGTACGTCAA -ACGGAAGAACACACGGTAGCTGAA -ACGGAAGAACACACGGTAAGTACG -ACGGAAGAACACACGGTAATCCGA -ACGGAAGAACACACGGTAATGGGA -ACGGAAGAACACACGGTAGTGCAA -ACGGAAGAACACACGGTAGAGGAA -ACGGAAGAACACACGGTACAGGTA -ACGGAAGAACACACGGTAGACTCT -ACGGAAGAACACACGGTAAGTCCT -ACGGAAGAACACACGGTATAAGCC -ACGGAAGAACACACGGTAATAGCC -ACGGAAGAACACACGGTATAACCG -ACGGAAGAACACACGGTAATGCCA -ACGGAAGAACACTCGACTGGAAAC -ACGGAAGAACACTCGACTAACACC -ACGGAAGAACACTCGACTATCGAG -ACGGAAGAACACTCGACTCTCCTT -ACGGAAGAACACTCGACTCCTGTT -ACGGAAGAACACTCGACTCGGTTT -ACGGAAGAACACTCGACTGTGGTT -ACGGAAGAACACTCGACTGCCTTT -ACGGAAGAACACTCGACTGGTCTT -ACGGAAGAACACTCGACTACGCTT -ACGGAAGAACACTCGACTAGCGTT -ACGGAAGAACACTCGACTTTCGTC -ACGGAAGAACACTCGACTTCTCTC -ACGGAAGAACACTCGACTTGGATC -ACGGAAGAACACTCGACTCACTTC -ACGGAAGAACACTCGACTGTACTC -ACGGAAGAACACTCGACTGATGTC -ACGGAAGAACACTCGACTACAGTC -ACGGAAGAACACTCGACTTTGCTG -ACGGAAGAACACTCGACTTCCATG -ACGGAAGAACACTCGACTTGTGTG -ACGGAAGAACACTCGACTCTAGTG -ACGGAAGAACACTCGACTCATCTG -ACGGAAGAACACTCGACTGAGTTG -ACGGAAGAACACTCGACTAGACTG -ACGGAAGAACACTCGACTTCGGTA -ACGGAAGAACACTCGACTTGCCTA -ACGGAAGAACACTCGACTCCACTA -ACGGAAGAACACTCGACTGGAGTA -ACGGAAGAACACTCGACTTCGTCT -ACGGAAGAACACTCGACTTGCACT -ACGGAAGAACACTCGACTCTGACT -ACGGAAGAACACTCGACTCAACCT -ACGGAAGAACACTCGACTGCTACT -ACGGAAGAACACTCGACTGGATCT -ACGGAAGAACACTCGACTAAGGCT -ACGGAAGAACACTCGACTTCAACC -ACGGAAGAACACTCGACTTGTTCC -ACGGAAGAACACTCGACTATTCCC -ACGGAAGAACACTCGACTTTCTCG -ACGGAAGAACACTCGACTTAGACG -ACGGAAGAACACTCGACTGTAACG -ACGGAAGAACACTCGACTACTTCG -ACGGAAGAACACTCGACTTACGCA -ACGGAAGAACACTCGACTCTTGCA -ACGGAAGAACACTCGACTCGAACA -ACGGAAGAACACTCGACTCAGTCA -ACGGAAGAACACTCGACTGATCCA -ACGGAAGAACACTCGACTACGACA -ACGGAAGAACACTCGACTAGCTCA -ACGGAAGAACACTCGACTTCACGT -ACGGAAGAACACTCGACTCGTAGT -ACGGAAGAACACTCGACTGTCAGT -ACGGAAGAACACTCGACTGAAGGT -ACGGAAGAACACTCGACTAACCGT -ACGGAAGAACACTCGACTTTGTGC -ACGGAAGAACACTCGACTCTAAGC -ACGGAAGAACACTCGACTACTAGC -ACGGAAGAACACTCGACTAGATGC -ACGGAAGAACACTCGACTTGAAGG -ACGGAAGAACACTCGACTCAATGG -ACGGAAGAACACTCGACTATGAGG -ACGGAAGAACACTCGACTAATGGG -ACGGAAGAACACTCGACTTCCTGA -ACGGAAGAACACTCGACTTAGCGA -ACGGAAGAACACTCGACTCACAGA -ACGGAAGAACACTCGACTGCAAGA -ACGGAAGAACACTCGACTGGTTGA -ACGGAAGAACACTCGACTTCCGAT -ACGGAAGAACACTCGACTTGGCAT -ACGGAAGAACACTCGACTCGAGAT -ACGGAAGAACACTCGACTTACCAC -ACGGAAGAACACTCGACTCAGAAC -ACGGAAGAACACTCGACTGTCTAC -ACGGAAGAACACTCGACTACGTAC -ACGGAAGAACACTCGACTAGTGAC -ACGGAAGAACACTCGACTCTGTAG -ACGGAAGAACACTCGACTCCTAAG -ACGGAAGAACACTCGACTGTTCAG -ACGGAAGAACACTCGACTGCATAG -ACGGAAGAACACTCGACTGACAAG -ACGGAAGAACACTCGACTAAGCAG -ACGGAAGAACACTCGACTCGTCAA -ACGGAAGAACACTCGACTGCTGAA -ACGGAAGAACACTCGACTAGTACG -ACGGAAGAACACTCGACTATCCGA -ACGGAAGAACACTCGACTATGGGA -ACGGAAGAACACTCGACTGTGCAA -ACGGAAGAACACTCGACTGAGGAA -ACGGAAGAACACTCGACTCAGGTA -ACGGAAGAACACTCGACTGACTCT -ACGGAAGAACACTCGACTAGTCCT -ACGGAAGAACACTCGACTTAAGCC -ACGGAAGAACACTCGACTATAGCC -ACGGAAGAACACTCGACTTAACCG -ACGGAAGAACACTCGACTATGCCA -ACGGAAGAACACGCATACGGAAAC -ACGGAAGAACACGCATACAACACC -ACGGAAGAACACGCATACATCGAG -ACGGAAGAACACGCATACCTCCTT -ACGGAAGAACACGCATACCCTGTT -ACGGAAGAACACGCATACCGGTTT -ACGGAAGAACACGCATACGTGGTT -ACGGAAGAACACGCATACGCCTTT -ACGGAAGAACACGCATACGGTCTT -ACGGAAGAACACGCATACACGCTT -ACGGAAGAACACGCATACAGCGTT -ACGGAAGAACACGCATACTTCGTC -ACGGAAGAACACGCATACTCTCTC -ACGGAAGAACACGCATACTGGATC -ACGGAAGAACACGCATACCACTTC -ACGGAAGAACACGCATACGTACTC -ACGGAAGAACACGCATACGATGTC -ACGGAAGAACACGCATACACAGTC -ACGGAAGAACACGCATACTTGCTG -ACGGAAGAACACGCATACTCCATG -ACGGAAGAACACGCATACTGTGTG -ACGGAAGAACACGCATACCTAGTG -ACGGAAGAACACGCATACCATCTG -ACGGAAGAACACGCATACGAGTTG -ACGGAAGAACACGCATACAGACTG -ACGGAAGAACACGCATACTCGGTA -ACGGAAGAACACGCATACTGCCTA -ACGGAAGAACACGCATACCCACTA -ACGGAAGAACACGCATACGGAGTA -ACGGAAGAACACGCATACTCGTCT -ACGGAAGAACACGCATACTGCACT -ACGGAAGAACACGCATACCTGACT -ACGGAAGAACACGCATACCAACCT -ACGGAAGAACACGCATACGCTACT -ACGGAAGAACACGCATACGGATCT -ACGGAAGAACACGCATACAAGGCT -ACGGAAGAACACGCATACTCAACC -ACGGAAGAACACGCATACTGTTCC -ACGGAAGAACACGCATACATTCCC -ACGGAAGAACACGCATACTTCTCG -ACGGAAGAACACGCATACTAGACG -ACGGAAGAACACGCATACGTAACG -ACGGAAGAACACGCATACACTTCG -ACGGAAGAACACGCATACTACGCA -ACGGAAGAACACGCATACCTTGCA -ACGGAAGAACACGCATACCGAACA -ACGGAAGAACACGCATACCAGTCA -ACGGAAGAACACGCATACGATCCA -ACGGAAGAACACGCATACACGACA -ACGGAAGAACACGCATACAGCTCA -ACGGAAGAACACGCATACTCACGT -ACGGAAGAACACGCATACCGTAGT -ACGGAAGAACACGCATACGTCAGT -ACGGAAGAACACGCATACGAAGGT -ACGGAAGAACACGCATACAACCGT -ACGGAAGAACACGCATACTTGTGC -ACGGAAGAACACGCATACCTAAGC -ACGGAAGAACACGCATACACTAGC -ACGGAAGAACACGCATACAGATGC -ACGGAAGAACACGCATACTGAAGG -ACGGAAGAACACGCATACCAATGG -ACGGAAGAACACGCATACATGAGG -ACGGAAGAACACGCATACAATGGG -ACGGAAGAACACGCATACTCCTGA -ACGGAAGAACACGCATACTAGCGA -ACGGAAGAACACGCATACCACAGA -ACGGAAGAACACGCATACGCAAGA -ACGGAAGAACACGCATACGGTTGA -ACGGAAGAACACGCATACTCCGAT -ACGGAAGAACACGCATACTGGCAT -ACGGAAGAACACGCATACCGAGAT -ACGGAAGAACACGCATACTACCAC -ACGGAAGAACACGCATACCAGAAC -ACGGAAGAACACGCATACGTCTAC -ACGGAAGAACACGCATACACGTAC -ACGGAAGAACACGCATACAGTGAC -ACGGAAGAACACGCATACCTGTAG -ACGGAAGAACACGCATACCCTAAG -ACGGAAGAACACGCATACGTTCAG -ACGGAAGAACACGCATACGCATAG -ACGGAAGAACACGCATACGACAAG -ACGGAAGAACACGCATACAAGCAG -ACGGAAGAACACGCATACCGTCAA -ACGGAAGAACACGCATACGCTGAA -ACGGAAGAACACGCATACAGTACG -ACGGAAGAACACGCATACATCCGA -ACGGAAGAACACGCATACATGGGA -ACGGAAGAACACGCATACGTGCAA -ACGGAAGAACACGCATACGAGGAA -ACGGAAGAACACGCATACCAGGTA -ACGGAAGAACACGCATACGACTCT -ACGGAAGAACACGCATACAGTCCT -ACGGAAGAACACGCATACTAAGCC -ACGGAAGAACACGCATACATAGCC -ACGGAAGAACACGCATACTAACCG -ACGGAAGAACACGCATACATGCCA -ACGGAAGAACACGCACTTGGAAAC -ACGGAAGAACACGCACTTAACACC -ACGGAAGAACACGCACTTATCGAG -ACGGAAGAACACGCACTTCTCCTT -ACGGAAGAACACGCACTTCCTGTT -ACGGAAGAACACGCACTTCGGTTT -ACGGAAGAACACGCACTTGTGGTT -ACGGAAGAACACGCACTTGCCTTT -ACGGAAGAACACGCACTTGGTCTT -ACGGAAGAACACGCACTTACGCTT -ACGGAAGAACACGCACTTAGCGTT -ACGGAAGAACACGCACTTTTCGTC -ACGGAAGAACACGCACTTTCTCTC -ACGGAAGAACACGCACTTTGGATC -ACGGAAGAACACGCACTTCACTTC -ACGGAAGAACACGCACTTGTACTC -ACGGAAGAACACGCACTTGATGTC -ACGGAAGAACACGCACTTACAGTC -ACGGAAGAACACGCACTTTTGCTG -ACGGAAGAACACGCACTTTCCATG -ACGGAAGAACACGCACTTTGTGTG -ACGGAAGAACACGCACTTCTAGTG -ACGGAAGAACACGCACTTCATCTG -ACGGAAGAACACGCACTTGAGTTG -ACGGAAGAACACGCACTTAGACTG -ACGGAAGAACACGCACTTTCGGTA -ACGGAAGAACACGCACTTTGCCTA -ACGGAAGAACACGCACTTCCACTA -ACGGAAGAACACGCACTTGGAGTA -ACGGAAGAACACGCACTTTCGTCT -ACGGAAGAACACGCACTTTGCACT -ACGGAAGAACACGCACTTCTGACT -ACGGAAGAACACGCACTTCAACCT -ACGGAAGAACACGCACTTGCTACT -ACGGAAGAACACGCACTTGGATCT -ACGGAAGAACACGCACTTAAGGCT -ACGGAAGAACACGCACTTTCAACC -ACGGAAGAACACGCACTTTGTTCC -ACGGAAGAACACGCACTTATTCCC -ACGGAAGAACACGCACTTTTCTCG -ACGGAAGAACACGCACTTTAGACG -ACGGAAGAACACGCACTTGTAACG -ACGGAAGAACACGCACTTACTTCG -ACGGAAGAACACGCACTTTACGCA -ACGGAAGAACACGCACTTCTTGCA -ACGGAAGAACACGCACTTCGAACA -ACGGAAGAACACGCACTTCAGTCA -ACGGAAGAACACGCACTTGATCCA -ACGGAAGAACACGCACTTACGACA -ACGGAAGAACACGCACTTAGCTCA -ACGGAAGAACACGCACTTTCACGT -ACGGAAGAACACGCACTTCGTAGT -ACGGAAGAACACGCACTTGTCAGT -ACGGAAGAACACGCACTTGAAGGT -ACGGAAGAACACGCACTTAACCGT -ACGGAAGAACACGCACTTTTGTGC -ACGGAAGAACACGCACTTCTAAGC -ACGGAAGAACACGCACTTACTAGC -ACGGAAGAACACGCACTTAGATGC -ACGGAAGAACACGCACTTTGAAGG -ACGGAAGAACACGCACTTCAATGG -ACGGAAGAACACGCACTTATGAGG -ACGGAAGAACACGCACTTAATGGG -ACGGAAGAACACGCACTTTCCTGA -ACGGAAGAACACGCACTTTAGCGA -ACGGAAGAACACGCACTTCACAGA -ACGGAAGAACACGCACTTGCAAGA -ACGGAAGAACACGCACTTGGTTGA -ACGGAAGAACACGCACTTTCCGAT -ACGGAAGAACACGCACTTTGGCAT -ACGGAAGAACACGCACTTCGAGAT -ACGGAAGAACACGCACTTTACCAC -ACGGAAGAACACGCACTTCAGAAC -ACGGAAGAACACGCACTTGTCTAC -ACGGAAGAACACGCACTTACGTAC -ACGGAAGAACACGCACTTAGTGAC -ACGGAAGAACACGCACTTCTGTAG -ACGGAAGAACACGCACTTCCTAAG -ACGGAAGAACACGCACTTGTTCAG -ACGGAAGAACACGCACTTGCATAG -ACGGAAGAACACGCACTTGACAAG -ACGGAAGAACACGCACTTAAGCAG -ACGGAAGAACACGCACTTCGTCAA -ACGGAAGAACACGCACTTGCTGAA -ACGGAAGAACACGCACTTAGTACG -ACGGAAGAACACGCACTTATCCGA -ACGGAAGAACACGCACTTATGGGA -ACGGAAGAACACGCACTTGTGCAA -ACGGAAGAACACGCACTTGAGGAA -ACGGAAGAACACGCACTTCAGGTA -ACGGAAGAACACGCACTTGACTCT -ACGGAAGAACACGCACTTAGTCCT -ACGGAAGAACACGCACTTTAAGCC -ACGGAAGAACACGCACTTATAGCC -ACGGAAGAACACGCACTTTAACCG -ACGGAAGAACACGCACTTATGCCA -ACGGAAGAACACACACGAGGAAAC -ACGGAAGAACACACACGAAACACC -ACGGAAGAACACACACGAATCGAG -ACGGAAGAACACACACGACTCCTT -ACGGAAGAACACACACGACCTGTT -ACGGAAGAACACACACGACGGTTT -ACGGAAGAACACACACGAGTGGTT -ACGGAAGAACACACACGAGCCTTT -ACGGAAGAACACACACGAGGTCTT -ACGGAAGAACACACACGAACGCTT -ACGGAAGAACACACACGAAGCGTT -ACGGAAGAACACACACGATTCGTC -ACGGAAGAACACACACGATCTCTC -ACGGAAGAACACACACGATGGATC -ACGGAAGAACACACACGACACTTC -ACGGAAGAACACACACGAGTACTC -ACGGAAGAACACACACGAGATGTC -ACGGAAGAACACACACGAACAGTC -ACGGAAGAACACACACGATTGCTG -ACGGAAGAACACACACGATCCATG -ACGGAAGAACACACACGATGTGTG -ACGGAAGAACACACACGACTAGTG -ACGGAAGAACACACACGACATCTG -ACGGAAGAACACACACGAGAGTTG -ACGGAAGAACACACACGAAGACTG -ACGGAAGAACACACACGATCGGTA -ACGGAAGAACACACACGATGCCTA -ACGGAAGAACACACACGACCACTA -ACGGAAGAACACACACGAGGAGTA -ACGGAAGAACACACACGATCGTCT -ACGGAAGAACACACACGATGCACT -ACGGAAGAACACACACGACTGACT -ACGGAAGAACACACACGACAACCT -ACGGAAGAACACACACGAGCTACT -ACGGAAGAACACACACGAGGATCT -ACGGAAGAACACACACGAAAGGCT -ACGGAAGAACACACACGATCAACC -ACGGAAGAACACACACGATGTTCC -ACGGAAGAACACACACGAATTCCC -ACGGAAGAACACACACGATTCTCG -ACGGAAGAACACACACGATAGACG -ACGGAAGAACACACACGAGTAACG -ACGGAAGAACACACACGAACTTCG -ACGGAAGAACACACACGATACGCA -ACGGAAGAACACACACGACTTGCA -ACGGAAGAACACACACGACGAACA -ACGGAAGAACACACACGACAGTCA -ACGGAAGAACACACACGAGATCCA -ACGGAAGAACACACACGAACGACA -ACGGAAGAACACACACGAAGCTCA -ACGGAAGAACACACACGATCACGT -ACGGAAGAACACACACGACGTAGT -ACGGAAGAACACACACGAGTCAGT -ACGGAAGAACACACACGAGAAGGT -ACGGAAGAACACACACGAAACCGT -ACGGAAGAACACACACGATTGTGC -ACGGAAGAACACACACGACTAAGC -ACGGAAGAACACACACGAACTAGC -ACGGAAGAACACACACGAAGATGC -ACGGAAGAACACACACGATGAAGG -ACGGAAGAACACACACGACAATGG -ACGGAAGAACACACACGAATGAGG -ACGGAAGAACACACACGAAATGGG -ACGGAAGAACACACACGATCCTGA -ACGGAAGAACACACACGATAGCGA -ACGGAAGAACACACACGACACAGA -ACGGAAGAACACACACGAGCAAGA -ACGGAAGAACACACACGAGGTTGA -ACGGAAGAACACACACGATCCGAT -ACGGAAGAACACACACGATGGCAT -ACGGAAGAACACACACGACGAGAT -ACGGAAGAACACACACGATACCAC -ACGGAAGAACACACACGACAGAAC -ACGGAAGAACACACACGAGTCTAC -ACGGAAGAACACACACGAACGTAC -ACGGAAGAACACACACGAAGTGAC -ACGGAAGAACACACACGACTGTAG -ACGGAAGAACACACACGACCTAAG -ACGGAAGAACACACACGAGTTCAG -ACGGAAGAACACACACGAGCATAG -ACGGAAGAACACACACGAGACAAG -ACGGAAGAACACACACGAAAGCAG -ACGGAAGAACACACACGACGTCAA -ACGGAAGAACACACACGAGCTGAA -ACGGAAGAACACACACGAAGTACG -ACGGAAGAACACACACGAATCCGA -ACGGAAGAACACACACGAATGGGA -ACGGAAGAACACACACGAGTGCAA -ACGGAAGAACACACACGAGAGGAA -ACGGAAGAACACACACGACAGGTA -ACGGAAGAACACACACGAGACTCT -ACGGAAGAACACACACGAAGTCCT -ACGGAAGAACACACACGATAAGCC -ACGGAAGAACACACACGAATAGCC -ACGGAAGAACACACACGATAACCG -ACGGAAGAACACACACGAATGCCA -ACGGAAGAACACTCACAGGGAAAC -ACGGAAGAACACTCACAGAACACC -ACGGAAGAACACTCACAGATCGAG -ACGGAAGAACACTCACAGCTCCTT -ACGGAAGAACACTCACAGCCTGTT -ACGGAAGAACACTCACAGCGGTTT -ACGGAAGAACACTCACAGGTGGTT -ACGGAAGAACACTCACAGGCCTTT -ACGGAAGAACACTCACAGGGTCTT -ACGGAAGAACACTCACAGACGCTT -ACGGAAGAACACTCACAGAGCGTT -ACGGAAGAACACTCACAGTTCGTC -ACGGAAGAACACTCACAGTCTCTC -ACGGAAGAACACTCACAGTGGATC -ACGGAAGAACACTCACAGCACTTC -ACGGAAGAACACTCACAGGTACTC -ACGGAAGAACACTCACAGGATGTC -ACGGAAGAACACTCACAGACAGTC -ACGGAAGAACACTCACAGTTGCTG -ACGGAAGAACACTCACAGTCCATG -ACGGAAGAACACTCACAGTGTGTG -ACGGAAGAACACTCACAGCTAGTG -ACGGAAGAACACTCACAGCATCTG -ACGGAAGAACACTCACAGGAGTTG -ACGGAAGAACACTCACAGAGACTG -ACGGAAGAACACTCACAGTCGGTA -ACGGAAGAACACTCACAGTGCCTA -ACGGAAGAACACTCACAGCCACTA -ACGGAAGAACACTCACAGGGAGTA -ACGGAAGAACACTCACAGTCGTCT -ACGGAAGAACACTCACAGTGCACT -ACGGAAGAACACTCACAGCTGACT -ACGGAAGAACACTCACAGCAACCT -ACGGAAGAACACTCACAGGCTACT -ACGGAAGAACACTCACAGGGATCT -ACGGAAGAACACTCACAGAAGGCT -ACGGAAGAACACTCACAGTCAACC -ACGGAAGAACACTCACAGTGTTCC -ACGGAAGAACACTCACAGATTCCC -ACGGAAGAACACTCACAGTTCTCG -ACGGAAGAACACTCACAGTAGACG -ACGGAAGAACACTCACAGGTAACG -ACGGAAGAACACTCACAGACTTCG -ACGGAAGAACACTCACAGTACGCA -ACGGAAGAACACTCACAGCTTGCA -ACGGAAGAACACTCACAGCGAACA -ACGGAAGAACACTCACAGCAGTCA -ACGGAAGAACACTCACAGGATCCA -ACGGAAGAACACTCACAGACGACA -ACGGAAGAACACTCACAGAGCTCA -ACGGAAGAACACTCACAGTCACGT -ACGGAAGAACACTCACAGCGTAGT -ACGGAAGAACACTCACAGGTCAGT -ACGGAAGAACACTCACAGGAAGGT -ACGGAAGAACACTCACAGAACCGT -ACGGAAGAACACTCACAGTTGTGC -ACGGAAGAACACTCACAGCTAAGC -ACGGAAGAACACTCACAGACTAGC -ACGGAAGAACACTCACAGAGATGC -ACGGAAGAACACTCACAGTGAAGG -ACGGAAGAACACTCACAGCAATGG -ACGGAAGAACACTCACAGATGAGG -ACGGAAGAACACTCACAGAATGGG -ACGGAAGAACACTCACAGTCCTGA -ACGGAAGAACACTCACAGTAGCGA -ACGGAAGAACACTCACAGCACAGA -ACGGAAGAACACTCACAGGCAAGA -ACGGAAGAACACTCACAGGGTTGA -ACGGAAGAACACTCACAGTCCGAT -ACGGAAGAACACTCACAGTGGCAT -ACGGAAGAACACTCACAGCGAGAT -ACGGAAGAACACTCACAGTACCAC -ACGGAAGAACACTCACAGCAGAAC -ACGGAAGAACACTCACAGGTCTAC -ACGGAAGAACACTCACAGACGTAC -ACGGAAGAACACTCACAGAGTGAC -ACGGAAGAACACTCACAGCTGTAG -ACGGAAGAACACTCACAGCCTAAG -ACGGAAGAACACTCACAGGTTCAG -ACGGAAGAACACTCACAGGCATAG -ACGGAAGAACACTCACAGGACAAG -ACGGAAGAACACTCACAGAAGCAG -ACGGAAGAACACTCACAGCGTCAA -ACGGAAGAACACTCACAGGCTGAA -ACGGAAGAACACTCACAGAGTACG -ACGGAAGAACACTCACAGATCCGA -ACGGAAGAACACTCACAGATGGGA -ACGGAAGAACACTCACAGGTGCAA -ACGGAAGAACACTCACAGGAGGAA -ACGGAAGAACACTCACAGCAGGTA -ACGGAAGAACACTCACAGGACTCT -ACGGAAGAACACTCACAGAGTCCT -ACGGAAGAACACTCACAGTAAGCC -ACGGAAGAACACTCACAGATAGCC -ACGGAAGAACACTCACAGTAACCG -ACGGAAGAACACTCACAGATGCCA -ACGGAAGAACACCCAGATGGAAAC -ACGGAAGAACACCCAGATAACACC -ACGGAAGAACACCCAGATATCGAG -ACGGAAGAACACCCAGATCTCCTT -ACGGAAGAACACCCAGATCCTGTT -ACGGAAGAACACCCAGATCGGTTT -ACGGAAGAACACCCAGATGTGGTT -ACGGAAGAACACCCAGATGCCTTT -ACGGAAGAACACCCAGATGGTCTT -ACGGAAGAACACCCAGATACGCTT -ACGGAAGAACACCCAGATAGCGTT -ACGGAAGAACACCCAGATTTCGTC -ACGGAAGAACACCCAGATTCTCTC -ACGGAAGAACACCCAGATTGGATC -ACGGAAGAACACCCAGATCACTTC -ACGGAAGAACACCCAGATGTACTC -ACGGAAGAACACCCAGATGATGTC -ACGGAAGAACACCCAGATACAGTC -ACGGAAGAACACCCAGATTTGCTG -ACGGAAGAACACCCAGATTCCATG -ACGGAAGAACACCCAGATTGTGTG -ACGGAAGAACACCCAGATCTAGTG -ACGGAAGAACACCCAGATCATCTG -ACGGAAGAACACCCAGATGAGTTG -ACGGAAGAACACCCAGATAGACTG -ACGGAAGAACACCCAGATTCGGTA -ACGGAAGAACACCCAGATTGCCTA -ACGGAAGAACACCCAGATCCACTA -ACGGAAGAACACCCAGATGGAGTA -ACGGAAGAACACCCAGATTCGTCT -ACGGAAGAACACCCAGATTGCACT -ACGGAAGAACACCCAGATCTGACT -ACGGAAGAACACCCAGATCAACCT -ACGGAAGAACACCCAGATGCTACT -ACGGAAGAACACCCAGATGGATCT -ACGGAAGAACACCCAGATAAGGCT -ACGGAAGAACACCCAGATTCAACC -ACGGAAGAACACCCAGATTGTTCC -ACGGAAGAACACCCAGATATTCCC -ACGGAAGAACACCCAGATTTCTCG -ACGGAAGAACACCCAGATTAGACG -ACGGAAGAACACCCAGATGTAACG -ACGGAAGAACACCCAGATACTTCG -ACGGAAGAACACCCAGATTACGCA -ACGGAAGAACACCCAGATCTTGCA -ACGGAAGAACACCCAGATCGAACA -ACGGAAGAACACCCAGATCAGTCA -ACGGAAGAACACCCAGATGATCCA -ACGGAAGAACACCCAGATACGACA -ACGGAAGAACACCCAGATAGCTCA -ACGGAAGAACACCCAGATTCACGT -ACGGAAGAACACCCAGATCGTAGT -ACGGAAGAACACCCAGATGTCAGT -ACGGAAGAACACCCAGATGAAGGT -ACGGAAGAACACCCAGATAACCGT -ACGGAAGAACACCCAGATTTGTGC -ACGGAAGAACACCCAGATCTAAGC -ACGGAAGAACACCCAGATACTAGC -ACGGAAGAACACCCAGATAGATGC -ACGGAAGAACACCCAGATTGAAGG -ACGGAAGAACACCCAGATCAATGG -ACGGAAGAACACCCAGATATGAGG -ACGGAAGAACACCCAGATAATGGG -ACGGAAGAACACCCAGATTCCTGA -ACGGAAGAACACCCAGATTAGCGA -ACGGAAGAACACCCAGATCACAGA -ACGGAAGAACACCCAGATGCAAGA -ACGGAAGAACACCCAGATGGTTGA -ACGGAAGAACACCCAGATTCCGAT -ACGGAAGAACACCCAGATTGGCAT -ACGGAAGAACACCCAGATCGAGAT -ACGGAAGAACACCCAGATTACCAC -ACGGAAGAACACCCAGATCAGAAC -ACGGAAGAACACCCAGATGTCTAC -ACGGAAGAACACCCAGATACGTAC -ACGGAAGAACACCCAGATAGTGAC -ACGGAAGAACACCCAGATCTGTAG -ACGGAAGAACACCCAGATCCTAAG -ACGGAAGAACACCCAGATGTTCAG -ACGGAAGAACACCCAGATGCATAG -ACGGAAGAACACCCAGATGACAAG -ACGGAAGAACACCCAGATAAGCAG -ACGGAAGAACACCCAGATCGTCAA -ACGGAAGAACACCCAGATGCTGAA -ACGGAAGAACACCCAGATAGTACG -ACGGAAGAACACCCAGATATCCGA -ACGGAAGAACACCCAGATATGGGA -ACGGAAGAACACCCAGATGTGCAA -ACGGAAGAACACCCAGATGAGGAA -ACGGAAGAACACCCAGATCAGGTA -ACGGAAGAACACCCAGATGACTCT -ACGGAAGAACACCCAGATAGTCCT -ACGGAAGAACACCCAGATTAAGCC -ACGGAAGAACACCCAGATATAGCC -ACGGAAGAACACCCAGATTAACCG -ACGGAAGAACACCCAGATATGCCA -ACGGAAGAACACACAACGGGAAAC -ACGGAAGAACACACAACGAACACC -ACGGAAGAACACACAACGATCGAG -ACGGAAGAACACACAACGCTCCTT -ACGGAAGAACACACAACGCCTGTT -ACGGAAGAACACACAACGCGGTTT -ACGGAAGAACACACAACGGTGGTT -ACGGAAGAACACACAACGGCCTTT -ACGGAAGAACACACAACGGGTCTT -ACGGAAGAACACACAACGACGCTT -ACGGAAGAACACACAACGAGCGTT -ACGGAAGAACACACAACGTTCGTC -ACGGAAGAACACACAACGTCTCTC -ACGGAAGAACACACAACGTGGATC -ACGGAAGAACACACAACGCACTTC -ACGGAAGAACACACAACGGTACTC -ACGGAAGAACACACAACGGATGTC -ACGGAAGAACACACAACGACAGTC -ACGGAAGAACACACAACGTTGCTG -ACGGAAGAACACACAACGTCCATG -ACGGAAGAACACACAACGTGTGTG -ACGGAAGAACACACAACGCTAGTG -ACGGAAGAACACACAACGCATCTG -ACGGAAGAACACACAACGGAGTTG -ACGGAAGAACACACAACGAGACTG -ACGGAAGAACACACAACGTCGGTA -ACGGAAGAACACACAACGTGCCTA -ACGGAAGAACACACAACGCCACTA -ACGGAAGAACACACAACGGGAGTA -ACGGAAGAACACACAACGTCGTCT -ACGGAAGAACACACAACGTGCACT -ACGGAAGAACACACAACGCTGACT -ACGGAAGAACACACAACGCAACCT -ACGGAAGAACACACAACGGCTACT -ACGGAAGAACACACAACGGGATCT -ACGGAAGAACACACAACGAAGGCT -ACGGAAGAACACACAACGTCAACC -ACGGAAGAACACACAACGTGTTCC -ACGGAAGAACACACAACGATTCCC -ACGGAAGAACACACAACGTTCTCG -ACGGAAGAACACACAACGTAGACG -ACGGAAGAACACACAACGGTAACG -ACGGAAGAACACACAACGACTTCG -ACGGAAGAACACACAACGTACGCA -ACGGAAGAACACACAACGCTTGCA -ACGGAAGAACACACAACGCGAACA -ACGGAAGAACACACAACGCAGTCA -ACGGAAGAACACACAACGGATCCA -ACGGAAGAACACACAACGACGACA -ACGGAAGAACACACAACGAGCTCA -ACGGAAGAACACACAACGTCACGT -ACGGAAGAACACACAACGCGTAGT -ACGGAAGAACACACAACGGTCAGT -ACGGAAGAACACACAACGGAAGGT -ACGGAAGAACACACAACGAACCGT -ACGGAAGAACACACAACGTTGTGC -ACGGAAGAACACACAACGCTAAGC -ACGGAAGAACACACAACGACTAGC -ACGGAAGAACACACAACGAGATGC -ACGGAAGAACACACAACGTGAAGG -ACGGAAGAACACACAACGCAATGG -ACGGAAGAACACACAACGATGAGG -ACGGAAGAACACACAACGAATGGG -ACGGAAGAACACACAACGTCCTGA -ACGGAAGAACACACAACGTAGCGA -ACGGAAGAACACACAACGCACAGA -ACGGAAGAACACACAACGGCAAGA -ACGGAAGAACACACAACGGGTTGA -ACGGAAGAACACACAACGTCCGAT -ACGGAAGAACACACAACGTGGCAT -ACGGAAGAACACACAACGCGAGAT -ACGGAAGAACACACAACGTACCAC -ACGGAAGAACACACAACGCAGAAC -ACGGAAGAACACACAACGGTCTAC -ACGGAAGAACACACAACGACGTAC -ACGGAAGAACACACAACGAGTGAC -ACGGAAGAACACACAACGCTGTAG -ACGGAAGAACACACAACGCCTAAG -ACGGAAGAACACACAACGGTTCAG -ACGGAAGAACACACAACGGCATAG -ACGGAAGAACACACAACGGACAAG -ACGGAAGAACACACAACGAAGCAG -ACGGAAGAACACACAACGCGTCAA -ACGGAAGAACACACAACGGCTGAA -ACGGAAGAACACACAACGAGTACG -ACGGAAGAACACACAACGATCCGA -ACGGAAGAACACACAACGATGGGA -ACGGAAGAACACACAACGGTGCAA -ACGGAAGAACACACAACGGAGGAA -ACGGAAGAACACACAACGCAGGTA -ACGGAAGAACACACAACGGACTCT -ACGGAAGAACACACAACGAGTCCT -ACGGAAGAACACACAACGTAAGCC -ACGGAAGAACACACAACGATAGCC -ACGGAAGAACACACAACGTAACCG -ACGGAAGAACACACAACGATGCCA -ACGGAAGAACACTCAAGCGGAAAC -ACGGAAGAACACTCAAGCAACACC -ACGGAAGAACACTCAAGCATCGAG -ACGGAAGAACACTCAAGCCTCCTT -ACGGAAGAACACTCAAGCCCTGTT -ACGGAAGAACACTCAAGCCGGTTT -ACGGAAGAACACTCAAGCGTGGTT -ACGGAAGAACACTCAAGCGCCTTT -ACGGAAGAACACTCAAGCGGTCTT -ACGGAAGAACACTCAAGCACGCTT -ACGGAAGAACACTCAAGCAGCGTT -ACGGAAGAACACTCAAGCTTCGTC -ACGGAAGAACACTCAAGCTCTCTC -ACGGAAGAACACTCAAGCTGGATC -ACGGAAGAACACTCAAGCCACTTC -ACGGAAGAACACTCAAGCGTACTC -ACGGAAGAACACTCAAGCGATGTC -ACGGAAGAACACTCAAGCACAGTC -ACGGAAGAACACTCAAGCTTGCTG -ACGGAAGAACACTCAAGCTCCATG -ACGGAAGAACACTCAAGCTGTGTG -ACGGAAGAACACTCAAGCCTAGTG -ACGGAAGAACACTCAAGCCATCTG -ACGGAAGAACACTCAAGCGAGTTG -ACGGAAGAACACTCAAGCAGACTG -ACGGAAGAACACTCAAGCTCGGTA -ACGGAAGAACACTCAAGCTGCCTA -ACGGAAGAACACTCAAGCCCACTA -ACGGAAGAACACTCAAGCGGAGTA -ACGGAAGAACACTCAAGCTCGTCT -ACGGAAGAACACTCAAGCTGCACT -ACGGAAGAACACTCAAGCCTGACT -ACGGAAGAACACTCAAGCCAACCT -ACGGAAGAACACTCAAGCGCTACT -ACGGAAGAACACTCAAGCGGATCT -ACGGAAGAACACTCAAGCAAGGCT -ACGGAAGAACACTCAAGCTCAACC -ACGGAAGAACACTCAAGCTGTTCC -ACGGAAGAACACTCAAGCATTCCC -ACGGAAGAACACTCAAGCTTCTCG -ACGGAAGAACACTCAAGCTAGACG -ACGGAAGAACACTCAAGCGTAACG -ACGGAAGAACACTCAAGCACTTCG -ACGGAAGAACACTCAAGCTACGCA -ACGGAAGAACACTCAAGCCTTGCA -ACGGAAGAACACTCAAGCCGAACA -ACGGAAGAACACTCAAGCCAGTCA -ACGGAAGAACACTCAAGCGATCCA -ACGGAAGAACACTCAAGCACGACA -ACGGAAGAACACTCAAGCAGCTCA -ACGGAAGAACACTCAAGCTCACGT -ACGGAAGAACACTCAAGCCGTAGT -ACGGAAGAACACTCAAGCGTCAGT -ACGGAAGAACACTCAAGCGAAGGT -ACGGAAGAACACTCAAGCAACCGT -ACGGAAGAACACTCAAGCTTGTGC -ACGGAAGAACACTCAAGCCTAAGC -ACGGAAGAACACTCAAGCACTAGC -ACGGAAGAACACTCAAGCAGATGC -ACGGAAGAACACTCAAGCTGAAGG -ACGGAAGAACACTCAAGCCAATGG -ACGGAAGAACACTCAAGCATGAGG -ACGGAAGAACACTCAAGCAATGGG -ACGGAAGAACACTCAAGCTCCTGA -ACGGAAGAACACTCAAGCTAGCGA -ACGGAAGAACACTCAAGCCACAGA -ACGGAAGAACACTCAAGCGCAAGA -ACGGAAGAACACTCAAGCGGTTGA -ACGGAAGAACACTCAAGCTCCGAT -ACGGAAGAACACTCAAGCTGGCAT -ACGGAAGAACACTCAAGCCGAGAT -ACGGAAGAACACTCAAGCTACCAC -ACGGAAGAACACTCAAGCCAGAAC -ACGGAAGAACACTCAAGCGTCTAC -ACGGAAGAACACTCAAGCACGTAC -ACGGAAGAACACTCAAGCAGTGAC -ACGGAAGAACACTCAAGCCTGTAG -ACGGAAGAACACTCAAGCCCTAAG -ACGGAAGAACACTCAAGCGTTCAG -ACGGAAGAACACTCAAGCGCATAG -ACGGAAGAACACTCAAGCGACAAG -ACGGAAGAACACTCAAGCAAGCAG -ACGGAAGAACACTCAAGCCGTCAA -ACGGAAGAACACTCAAGCGCTGAA -ACGGAAGAACACTCAAGCAGTACG -ACGGAAGAACACTCAAGCATCCGA -ACGGAAGAACACTCAAGCATGGGA -ACGGAAGAACACTCAAGCGTGCAA -ACGGAAGAACACTCAAGCGAGGAA -ACGGAAGAACACTCAAGCCAGGTA -ACGGAAGAACACTCAAGCGACTCT -ACGGAAGAACACTCAAGCAGTCCT -ACGGAAGAACACTCAAGCTAAGCC -ACGGAAGAACACTCAAGCATAGCC -ACGGAAGAACACTCAAGCTAACCG -ACGGAAGAACACTCAAGCATGCCA -ACGGAAGAACACCGTTCAGGAAAC -ACGGAAGAACACCGTTCAAACACC -ACGGAAGAACACCGTTCAATCGAG -ACGGAAGAACACCGTTCACTCCTT -ACGGAAGAACACCGTTCACCTGTT -ACGGAAGAACACCGTTCACGGTTT -ACGGAAGAACACCGTTCAGTGGTT -ACGGAAGAACACCGTTCAGCCTTT -ACGGAAGAACACCGTTCAGGTCTT -ACGGAAGAACACCGTTCAACGCTT -ACGGAAGAACACCGTTCAAGCGTT -ACGGAAGAACACCGTTCATTCGTC -ACGGAAGAACACCGTTCATCTCTC -ACGGAAGAACACCGTTCATGGATC -ACGGAAGAACACCGTTCACACTTC -ACGGAAGAACACCGTTCAGTACTC -ACGGAAGAACACCGTTCAGATGTC -ACGGAAGAACACCGTTCAACAGTC -ACGGAAGAACACCGTTCATTGCTG -ACGGAAGAACACCGTTCATCCATG -ACGGAAGAACACCGTTCATGTGTG -ACGGAAGAACACCGTTCACTAGTG -ACGGAAGAACACCGTTCACATCTG -ACGGAAGAACACCGTTCAGAGTTG -ACGGAAGAACACCGTTCAAGACTG -ACGGAAGAACACCGTTCATCGGTA -ACGGAAGAACACCGTTCATGCCTA -ACGGAAGAACACCGTTCACCACTA -ACGGAAGAACACCGTTCAGGAGTA -ACGGAAGAACACCGTTCATCGTCT -ACGGAAGAACACCGTTCATGCACT -ACGGAAGAACACCGTTCACTGACT -ACGGAAGAACACCGTTCACAACCT -ACGGAAGAACACCGTTCAGCTACT -ACGGAAGAACACCGTTCAGGATCT -ACGGAAGAACACCGTTCAAAGGCT -ACGGAAGAACACCGTTCATCAACC -ACGGAAGAACACCGTTCATGTTCC -ACGGAAGAACACCGTTCAATTCCC -ACGGAAGAACACCGTTCATTCTCG -ACGGAAGAACACCGTTCATAGACG -ACGGAAGAACACCGTTCAGTAACG -ACGGAAGAACACCGTTCAACTTCG -ACGGAAGAACACCGTTCATACGCA -ACGGAAGAACACCGTTCACTTGCA -ACGGAAGAACACCGTTCACGAACA -ACGGAAGAACACCGTTCACAGTCA -ACGGAAGAACACCGTTCAGATCCA -ACGGAAGAACACCGTTCAACGACA -ACGGAAGAACACCGTTCAAGCTCA -ACGGAAGAACACCGTTCATCACGT -ACGGAAGAACACCGTTCACGTAGT -ACGGAAGAACACCGTTCAGTCAGT -ACGGAAGAACACCGTTCAGAAGGT -ACGGAAGAACACCGTTCAAACCGT -ACGGAAGAACACCGTTCATTGTGC -ACGGAAGAACACCGTTCACTAAGC -ACGGAAGAACACCGTTCAACTAGC -ACGGAAGAACACCGTTCAAGATGC -ACGGAAGAACACCGTTCATGAAGG -ACGGAAGAACACCGTTCACAATGG -ACGGAAGAACACCGTTCAATGAGG -ACGGAAGAACACCGTTCAAATGGG -ACGGAAGAACACCGTTCATCCTGA -ACGGAAGAACACCGTTCATAGCGA -ACGGAAGAACACCGTTCACACAGA -ACGGAAGAACACCGTTCAGCAAGA -ACGGAAGAACACCGTTCAGGTTGA -ACGGAAGAACACCGTTCATCCGAT -ACGGAAGAACACCGTTCATGGCAT -ACGGAAGAACACCGTTCACGAGAT -ACGGAAGAACACCGTTCATACCAC -ACGGAAGAACACCGTTCACAGAAC -ACGGAAGAACACCGTTCAGTCTAC -ACGGAAGAACACCGTTCAACGTAC -ACGGAAGAACACCGTTCAAGTGAC -ACGGAAGAACACCGTTCACTGTAG -ACGGAAGAACACCGTTCACCTAAG -ACGGAAGAACACCGTTCAGTTCAG -ACGGAAGAACACCGTTCAGCATAG -ACGGAAGAACACCGTTCAGACAAG -ACGGAAGAACACCGTTCAAAGCAG -ACGGAAGAACACCGTTCACGTCAA -ACGGAAGAACACCGTTCAGCTGAA -ACGGAAGAACACCGTTCAAGTACG -ACGGAAGAACACCGTTCAATCCGA -ACGGAAGAACACCGTTCAATGGGA -ACGGAAGAACACCGTTCAGTGCAA -ACGGAAGAACACCGTTCAGAGGAA -ACGGAAGAACACCGTTCACAGGTA -ACGGAAGAACACCGTTCAGACTCT -ACGGAAGAACACCGTTCAAGTCCT -ACGGAAGAACACCGTTCATAAGCC -ACGGAAGAACACCGTTCAATAGCC -ACGGAAGAACACCGTTCATAACCG -ACGGAAGAACACCGTTCAATGCCA -ACGGAAGAACACAGTCGTGGAAAC -ACGGAAGAACACAGTCGTAACACC -ACGGAAGAACACAGTCGTATCGAG -ACGGAAGAACACAGTCGTCTCCTT -ACGGAAGAACACAGTCGTCCTGTT -ACGGAAGAACACAGTCGTCGGTTT -ACGGAAGAACACAGTCGTGTGGTT -ACGGAAGAACACAGTCGTGCCTTT -ACGGAAGAACACAGTCGTGGTCTT -ACGGAAGAACACAGTCGTACGCTT -ACGGAAGAACACAGTCGTAGCGTT -ACGGAAGAACACAGTCGTTTCGTC -ACGGAAGAACACAGTCGTTCTCTC -ACGGAAGAACACAGTCGTTGGATC -ACGGAAGAACACAGTCGTCACTTC -ACGGAAGAACACAGTCGTGTACTC -ACGGAAGAACACAGTCGTGATGTC -ACGGAAGAACACAGTCGTACAGTC -ACGGAAGAACACAGTCGTTTGCTG -ACGGAAGAACACAGTCGTTCCATG -ACGGAAGAACACAGTCGTTGTGTG -ACGGAAGAACACAGTCGTCTAGTG -ACGGAAGAACACAGTCGTCATCTG -ACGGAAGAACACAGTCGTGAGTTG -ACGGAAGAACACAGTCGTAGACTG -ACGGAAGAACACAGTCGTTCGGTA -ACGGAAGAACACAGTCGTTGCCTA -ACGGAAGAACACAGTCGTCCACTA -ACGGAAGAACACAGTCGTGGAGTA -ACGGAAGAACACAGTCGTTCGTCT -ACGGAAGAACACAGTCGTTGCACT -ACGGAAGAACACAGTCGTCTGACT -ACGGAAGAACACAGTCGTCAACCT -ACGGAAGAACACAGTCGTGCTACT -ACGGAAGAACACAGTCGTGGATCT -ACGGAAGAACACAGTCGTAAGGCT -ACGGAAGAACACAGTCGTTCAACC -ACGGAAGAACACAGTCGTTGTTCC -ACGGAAGAACACAGTCGTATTCCC -ACGGAAGAACACAGTCGTTTCTCG -ACGGAAGAACACAGTCGTTAGACG -ACGGAAGAACACAGTCGTGTAACG -ACGGAAGAACACAGTCGTACTTCG -ACGGAAGAACACAGTCGTTACGCA -ACGGAAGAACACAGTCGTCTTGCA -ACGGAAGAACACAGTCGTCGAACA -ACGGAAGAACACAGTCGTCAGTCA -ACGGAAGAACACAGTCGTGATCCA -ACGGAAGAACACAGTCGTACGACA -ACGGAAGAACACAGTCGTAGCTCA -ACGGAAGAACACAGTCGTTCACGT -ACGGAAGAACACAGTCGTCGTAGT -ACGGAAGAACACAGTCGTGTCAGT -ACGGAAGAACACAGTCGTGAAGGT -ACGGAAGAACACAGTCGTAACCGT -ACGGAAGAACACAGTCGTTTGTGC -ACGGAAGAACACAGTCGTCTAAGC -ACGGAAGAACACAGTCGTACTAGC -ACGGAAGAACACAGTCGTAGATGC -ACGGAAGAACACAGTCGTTGAAGG -ACGGAAGAACACAGTCGTCAATGG -ACGGAAGAACACAGTCGTATGAGG -ACGGAAGAACACAGTCGTAATGGG -ACGGAAGAACACAGTCGTTCCTGA -ACGGAAGAACACAGTCGTTAGCGA -ACGGAAGAACACAGTCGTCACAGA -ACGGAAGAACACAGTCGTGCAAGA -ACGGAAGAACACAGTCGTGGTTGA -ACGGAAGAACACAGTCGTTCCGAT -ACGGAAGAACACAGTCGTTGGCAT -ACGGAAGAACACAGTCGTCGAGAT -ACGGAAGAACACAGTCGTTACCAC -ACGGAAGAACACAGTCGTCAGAAC -ACGGAAGAACACAGTCGTGTCTAC -ACGGAAGAACACAGTCGTACGTAC -ACGGAAGAACACAGTCGTAGTGAC -ACGGAAGAACACAGTCGTCTGTAG -ACGGAAGAACACAGTCGTCCTAAG -ACGGAAGAACACAGTCGTGTTCAG -ACGGAAGAACACAGTCGTGCATAG -ACGGAAGAACACAGTCGTGACAAG -ACGGAAGAACACAGTCGTAAGCAG -ACGGAAGAACACAGTCGTCGTCAA -ACGGAAGAACACAGTCGTGCTGAA -ACGGAAGAACACAGTCGTAGTACG -ACGGAAGAACACAGTCGTATCCGA -ACGGAAGAACACAGTCGTATGGGA -ACGGAAGAACACAGTCGTGTGCAA -ACGGAAGAACACAGTCGTGAGGAA -ACGGAAGAACACAGTCGTCAGGTA -ACGGAAGAACACAGTCGTGACTCT -ACGGAAGAACACAGTCGTAGTCCT -ACGGAAGAACACAGTCGTTAAGCC -ACGGAAGAACACAGTCGTATAGCC -ACGGAAGAACACAGTCGTTAACCG -ACGGAAGAACACAGTCGTATGCCA -ACGGAAGAACACAGTGTCGGAAAC -ACGGAAGAACACAGTGTCAACACC -ACGGAAGAACACAGTGTCATCGAG -ACGGAAGAACACAGTGTCCTCCTT -ACGGAAGAACACAGTGTCCCTGTT -ACGGAAGAACACAGTGTCCGGTTT -ACGGAAGAACACAGTGTCGTGGTT -ACGGAAGAACACAGTGTCGCCTTT -ACGGAAGAACACAGTGTCGGTCTT -ACGGAAGAACACAGTGTCACGCTT -ACGGAAGAACACAGTGTCAGCGTT -ACGGAAGAACACAGTGTCTTCGTC -ACGGAAGAACACAGTGTCTCTCTC -ACGGAAGAACACAGTGTCTGGATC -ACGGAAGAACACAGTGTCCACTTC -ACGGAAGAACACAGTGTCGTACTC -ACGGAAGAACACAGTGTCGATGTC -ACGGAAGAACACAGTGTCACAGTC -ACGGAAGAACACAGTGTCTTGCTG -ACGGAAGAACACAGTGTCTCCATG -ACGGAAGAACACAGTGTCTGTGTG -ACGGAAGAACACAGTGTCCTAGTG -ACGGAAGAACACAGTGTCCATCTG -ACGGAAGAACACAGTGTCGAGTTG -ACGGAAGAACACAGTGTCAGACTG -ACGGAAGAACACAGTGTCTCGGTA -ACGGAAGAACACAGTGTCTGCCTA -ACGGAAGAACACAGTGTCCCACTA -ACGGAAGAACACAGTGTCGGAGTA -ACGGAAGAACACAGTGTCTCGTCT -ACGGAAGAACACAGTGTCTGCACT -ACGGAAGAACACAGTGTCCTGACT -ACGGAAGAACACAGTGTCCAACCT -ACGGAAGAACACAGTGTCGCTACT -ACGGAAGAACACAGTGTCGGATCT -ACGGAAGAACACAGTGTCAAGGCT -ACGGAAGAACACAGTGTCTCAACC -ACGGAAGAACACAGTGTCTGTTCC -ACGGAAGAACACAGTGTCATTCCC -ACGGAAGAACACAGTGTCTTCTCG -ACGGAAGAACACAGTGTCTAGACG -ACGGAAGAACACAGTGTCGTAACG -ACGGAAGAACACAGTGTCACTTCG -ACGGAAGAACACAGTGTCTACGCA -ACGGAAGAACACAGTGTCCTTGCA -ACGGAAGAACACAGTGTCCGAACA -ACGGAAGAACACAGTGTCCAGTCA -ACGGAAGAACACAGTGTCGATCCA -ACGGAAGAACACAGTGTCACGACA -ACGGAAGAACACAGTGTCAGCTCA -ACGGAAGAACACAGTGTCTCACGT -ACGGAAGAACACAGTGTCCGTAGT -ACGGAAGAACACAGTGTCGTCAGT -ACGGAAGAACACAGTGTCGAAGGT -ACGGAAGAACACAGTGTCAACCGT -ACGGAAGAACACAGTGTCTTGTGC -ACGGAAGAACACAGTGTCCTAAGC -ACGGAAGAACACAGTGTCACTAGC -ACGGAAGAACACAGTGTCAGATGC -ACGGAAGAACACAGTGTCTGAAGG -ACGGAAGAACACAGTGTCCAATGG -ACGGAAGAACACAGTGTCATGAGG -ACGGAAGAACACAGTGTCAATGGG -ACGGAAGAACACAGTGTCTCCTGA -ACGGAAGAACACAGTGTCTAGCGA -ACGGAAGAACACAGTGTCCACAGA -ACGGAAGAACACAGTGTCGCAAGA -ACGGAAGAACACAGTGTCGGTTGA -ACGGAAGAACACAGTGTCTCCGAT -ACGGAAGAACACAGTGTCTGGCAT -ACGGAAGAACACAGTGTCCGAGAT -ACGGAAGAACACAGTGTCTACCAC -ACGGAAGAACACAGTGTCCAGAAC -ACGGAAGAACACAGTGTCGTCTAC -ACGGAAGAACACAGTGTCACGTAC -ACGGAAGAACACAGTGTCAGTGAC -ACGGAAGAACACAGTGTCCTGTAG -ACGGAAGAACACAGTGTCCCTAAG -ACGGAAGAACACAGTGTCGTTCAG -ACGGAAGAACACAGTGTCGCATAG -ACGGAAGAACACAGTGTCGACAAG -ACGGAAGAACACAGTGTCAAGCAG -ACGGAAGAACACAGTGTCCGTCAA -ACGGAAGAACACAGTGTCGCTGAA -ACGGAAGAACACAGTGTCAGTACG -ACGGAAGAACACAGTGTCATCCGA -ACGGAAGAACACAGTGTCATGGGA -ACGGAAGAACACAGTGTCGTGCAA -ACGGAAGAACACAGTGTCGAGGAA -ACGGAAGAACACAGTGTCCAGGTA -ACGGAAGAACACAGTGTCGACTCT -ACGGAAGAACACAGTGTCAGTCCT -ACGGAAGAACACAGTGTCTAAGCC -ACGGAAGAACACAGTGTCATAGCC -ACGGAAGAACACAGTGTCTAACCG -ACGGAAGAACACAGTGTCATGCCA -ACGGAAGAACACGGTGAAGGAAAC -ACGGAAGAACACGGTGAAAACACC -ACGGAAGAACACGGTGAAATCGAG -ACGGAAGAACACGGTGAACTCCTT -ACGGAAGAACACGGTGAACCTGTT -ACGGAAGAACACGGTGAACGGTTT -ACGGAAGAACACGGTGAAGTGGTT -ACGGAAGAACACGGTGAAGCCTTT -ACGGAAGAACACGGTGAAGGTCTT -ACGGAAGAACACGGTGAAACGCTT -ACGGAAGAACACGGTGAAAGCGTT -ACGGAAGAACACGGTGAATTCGTC -ACGGAAGAACACGGTGAATCTCTC -ACGGAAGAACACGGTGAATGGATC -ACGGAAGAACACGGTGAACACTTC -ACGGAAGAACACGGTGAAGTACTC -ACGGAAGAACACGGTGAAGATGTC -ACGGAAGAACACGGTGAAACAGTC -ACGGAAGAACACGGTGAATTGCTG -ACGGAAGAACACGGTGAATCCATG -ACGGAAGAACACGGTGAATGTGTG -ACGGAAGAACACGGTGAACTAGTG -ACGGAAGAACACGGTGAACATCTG -ACGGAAGAACACGGTGAAGAGTTG -ACGGAAGAACACGGTGAAAGACTG -ACGGAAGAACACGGTGAATCGGTA -ACGGAAGAACACGGTGAATGCCTA -ACGGAAGAACACGGTGAACCACTA -ACGGAAGAACACGGTGAAGGAGTA -ACGGAAGAACACGGTGAATCGTCT -ACGGAAGAACACGGTGAATGCACT -ACGGAAGAACACGGTGAACTGACT -ACGGAAGAACACGGTGAACAACCT -ACGGAAGAACACGGTGAAGCTACT -ACGGAAGAACACGGTGAAGGATCT -ACGGAAGAACACGGTGAAAAGGCT -ACGGAAGAACACGGTGAATCAACC -ACGGAAGAACACGGTGAATGTTCC -ACGGAAGAACACGGTGAAATTCCC -ACGGAAGAACACGGTGAATTCTCG -ACGGAAGAACACGGTGAATAGACG -ACGGAAGAACACGGTGAAGTAACG -ACGGAAGAACACGGTGAAACTTCG -ACGGAAGAACACGGTGAATACGCA -ACGGAAGAACACGGTGAACTTGCA -ACGGAAGAACACGGTGAACGAACA -ACGGAAGAACACGGTGAACAGTCA -ACGGAAGAACACGGTGAAGATCCA -ACGGAAGAACACGGTGAAACGACA -ACGGAAGAACACGGTGAAAGCTCA -ACGGAAGAACACGGTGAATCACGT -ACGGAAGAACACGGTGAACGTAGT -ACGGAAGAACACGGTGAAGTCAGT -ACGGAAGAACACGGTGAAGAAGGT -ACGGAAGAACACGGTGAAAACCGT -ACGGAAGAACACGGTGAATTGTGC -ACGGAAGAACACGGTGAACTAAGC -ACGGAAGAACACGGTGAAACTAGC -ACGGAAGAACACGGTGAAAGATGC -ACGGAAGAACACGGTGAATGAAGG -ACGGAAGAACACGGTGAACAATGG -ACGGAAGAACACGGTGAAATGAGG -ACGGAAGAACACGGTGAAAATGGG -ACGGAAGAACACGGTGAATCCTGA -ACGGAAGAACACGGTGAATAGCGA -ACGGAAGAACACGGTGAACACAGA -ACGGAAGAACACGGTGAAGCAAGA -ACGGAAGAACACGGTGAAGGTTGA -ACGGAAGAACACGGTGAATCCGAT -ACGGAAGAACACGGTGAATGGCAT -ACGGAAGAACACGGTGAACGAGAT -ACGGAAGAACACGGTGAATACCAC -ACGGAAGAACACGGTGAACAGAAC -ACGGAAGAACACGGTGAAGTCTAC -ACGGAAGAACACGGTGAAACGTAC -ACGGAAGAACACGGTGAAAGTGAC -ACGGAAGAACACGGTGAACTGTAG -ACGGAAGAACACGGTGAACCTAAG -ACGGAAGAACACGGTGAAGTTCAG -ACGGAAGAACACGGTGAAGCATAG -ACGGAAGAACACGGTGAAGACAAG -ACGGAAGAACACGGTGAAAAGCAG -ACGGAAGAACACGGTGAACGTCAA -ACGGAAGAACACGGTGAAGCTGAA -ACGGAAGAACACGGTGAAAGTACG -ACGGAAGAACACGGTGAAATCCGA -ACGGAAGAACACGGTGAAATGGGA -ACGGAAGAACACGGTGAAGTGCAA -ACGGAAGAACACGGTGAAGAGGAA -ACGGAAGAACACGGTGAACAGGTA -ACGGAAGAACACGGTGAAGACTCT -ACGGAAGAACACGGTGAAAGTCCT -ACGGAAGAACACGGTGAATAAGCC -ACGGAAGAACACGGTGAAATAGCC -ACGGAAGAACACGGTGAATAACCG -ACGGAAGAACACGGTGAAATGCCA -ACGGAAGAACACCGTAACGGAAAC -ACGGAAGAACACCGTAACAACACC -ACGGAAGAACACCGTAACATCGAG -ACGGAAGAACACCGTAACCTCCTT -ACGGAAGAACACCGTAACCCTGTT -ACGGAAGAACACCGTAACCGGTTT -ACGGAAGAACACCGTAACGTGGTT -ACGGAAGAACACCGTAACGCCTTT -ACGGAAGAACACCGTAACGGTCTT -ACGGAAGAACACCGTAACACGCTT -ACGGAAGAACACCGTAACAGCGTT -ACGGAAGAACACCGTAACTTCGTC -ACGGAAGAACACCGTAACTCTCTC -ACGGAAGAACACCGTAACTGGATC -ACGGAAGAACACCGTAACCACTTC -ACGGAAGAACACCGTAACGTACTC -ACGGAAGAACACCGTAACGATGTC -ACGGAAGAACACCGTAACACAGTC -ACGGAAGAACACCGTAACTTGCTG -ACGGAAGAACACCGTAACTCCATG -ACGGAAGAACACCGTAACTGTGTG -ACGGAAGAACACCGTAACCTAGTG -ACGGAAGAACACCGTAACCATCTG -ACGGAAGAACACCGTAACGAGTTG -ACGGAAGAACACCGTAACAGACTG -ACGGAAGAACACCGTAACTCGGTA -ACGGAAGAACACCGTAACTGCCTA -ACGGAAGAACACCGTAACCCACTA -ACGGAAGAACACCGTAACGGAGTA -ACGGAAGAACACCGTAACTCGTCT -ACGGAAGAACACCGTAACTGCACT -ACGGAAGAACACCGTAACCTGACT -ACGGAAGAACACCGTAACCAACCT -ACGGAAGAACACCGTAACGCTACT -ACGGAAGAACACCGTAACGGATCT -ACGGAAGAACACCGTAACAAGGCT -ACGGAAGAACACCGTAACTCAACC -ACGGAAGAACACCGTAACTGTTCC -ACGGAAGAACACCGTAACATTCCC -ACGGAAGAACACCGTAACTTCTCG -ACGGAAGAACACCGTAACTAGACG -ACGGAAGAACACCGTAACGTAACG -ACGGAAGAACACCGTAACACTTCG -ACGGAAGAACACCGTAACTACGCA -ACGGAAGAACACCGTAACCTTGCA -ACGGAAGAACACCGTAACCGAACA -ACGGAAGAACACCGTAACCAGTCA -ACGGAAGAACACCGTAACGATCCA -ACGGAAGAACACCGTAACACGACA -ACGGAAGAACACCGTAACAGCTCA -ACGGAAGAACACCGTAACTCACGT -ACGGAAGAACACCGTAACCGTAGT -ACGGAAGAACACCGTAACGTCAGT -ACGGAAGAACACCGTAACGAAGGT -ACGGAAGAACACCGTAACAACCGT -ACGGAAGAACACCGTAACTTGTGC -ACGGAAGAACACCGTAACCTAAGC -ACGGAAGAACACCGTAACACTAGC -ACGGAAGAACACCGTAACAGATGC -ACGGAAGAACACCGTAACTGAAGG -ACGGAAGAACACCGTAACCAATGG -ACGGAAGAACACCGTAACATGAGG -ACGGAAGAACACCGTAACAATGGG -ACGGAAGAACACCGTAACTCCTGA -ACGGAAGAACACCGTAACTAGCGA -ACGGAAGAACACCGTAACCACAGA -ACGGAAGAACACCGTAACGCAAGA -ACGGAAGAACACCGTAACGGTTGA -ACGGAAGAACACCGTAACTCCGAT -ACGGAAGAACACCGTAACTGGCAT -ACGGAAGAACACCGTAACCGAGAT -ACGGAAGAACACCGTAACTACCAC -ACGGAAGAACACCGTAACCAGAAC -ACGGAAGAACACCGTAACGTCTAC -ACGGAAGAACACCGTAACACGTAC -ACGGAAGAACACCGTAACAGTGAC -ACGGAAGAACACCGTAACCTGTAG -ACGGAAGAACACCGTAACCCTAAG -ACGGAAGAACACCGTAACGTTCAG -ACGGAAGAACACCGTAACGCATAG -ACGGAAGAACACCGTAACGACAAG -ACGGAAGAACACCGTAACAAGCAG -ACGGAAGAACACCGTAACCGTCAA -ACGGAAGAACACCGTAACGCTGAA -ACGGAAGAACACCGTAACAGTACG -ACGGAAGAACACCGTAACATCCGA -ACGGAAGAACACCGTAACATGGGA -ACGGAAGAACACCGTAACGTGCAA -ACGGAAGAACACCGTAACGAGGAA -ACGGAAGAACACCGTAACCAGGTA -ACGGAAGAACACCGTAACGACTCT -ACGGAAGAACACCGTAACAGTCCT -ACGGAAGAACACCGTAACTAAGCC -ACGGAAGAACACCGTAACATAGCC -ACGGAAGAACACCGTAACTAACCG -ACGGAAGAACACCGTAACATGCCA -ACGGAAGAACACTGCTTGGGAAAC -ACGGAAGAACACTGCTTGAACACC -ACGGAAGAACACTGCTTGATCGAG -ACGGAAGAACACTGCTTGCTCCTT -ACGGAAGAACACTGCTTGCCTGTT -ACGGAAGAACACTGCTTGCGGTTT -ACGGAAGAACACTGCTTGGTGGTT -ACGGAAGAACACTGCTTGGCCTTT -ACGGAAGAACACTGCTTGGGTCTT -ACGGAAGAACACTGCTTGACGCTT -ACGGAAGAACACTGCTTGAGCGTT -ACGGAAGAACACTGCTTGTTCGTC -ACGGAAGAACACTGCTTGTCTCTC -ACGGAAGAACACTGCTTGTGGATC -ACGGAAGAACACTGCTTGCACTTC -ACGGAAGAACACTGCTTGGTACTC -ACGGAAGAACACTGCTTGGATGTC -ACGGAAGAACACTGCTTGACAGTC -ACGGAAGAACACTGCTTGTTGCTG -ACGGAAGAACACTGCTTGTCCATG -ACGGAAGAACACTGCTTGTGTGTG -ACGGAAGAACACTGCTTGCTAGTG -ACGGAAGAACACTGCTTGCATCTG -ACGGAAGAACACTGCTTGGAGTTG -ACGGAAGAACACTGCTTGAGACTG -ACGGAAGAACACTGCTTGTCGGTA -ACGGAAGAACACTGCTTGTGCCTA -ACGGAAGAACACTGCTTGCCACTA -ACGGAAGAACACTGCTTGGGAGTA -ACGGAAGAACACTGCTTGTCGTCT -ACGGAAGAACACTGCTTGTGCACT -ACGGAAGAACACTGCTTGCTGACT -ACGGAAGAACACTGCTTGCAACCT -ACGGAAGAACACTGCTTGGCTACT -ACGGAAGAACACTGCTTGGGATCT -ACGGAAGAACACTGCTTGAAGGCT -ACGGAAGAACACTGCTTGTCAACC -ACGGAAGAACACTGCTTGTGTTCC -ACGGAAGAACACTGCTTGATTCCC -ACGGAAGAACACTGCTTGTTCTCG -ACGGAAGAACACTGCTTGTAGACG -ACGGAAGAACACTGCTTGGTAACG -ACGGAAGAACACTGCTTGACTTCG -ACGGAAGAACACTGCTTGTACGCA -ACGGAAGAACACTGCTTGCTTGCA -ACGGAAGAACACTGCTTGCGAACA -ACGGAAGAACACTGCTTGCAGTCA -ACGGAAGAACACTGCTTGGATCCA -ACGGAAGAACACTGCTTGACGACA -ACGGAAGAACACTGCTTGAGCTCA -ACGGAAGAACACTGCTTGTCACGT -ACGGAAGAACACTGCTTGCGTAGT -ACGGAAGAACACTGCTTGGTCAGT -ACGGAAGAACACTGCTTGGAAGGT -ACGGAAGAACACTGCTTGAACCGT -ACGGAAGAACACTGCTTGTTGTGC -ACGGAAGAACACTGCTTGCTAAGC -ACGGAAGAACACTGCTTGACTAGC -ACGGAAGAACACTGCTTGAGATGC -ACGGAAGAACACTGCTTGTGAAGG -ACGGAAGAACACTGCTTGCAATGG -ACGGAAGAACACTGCTTGATGAGG -ACGGAAGAACACTGCTTGAATGGG -ACGGAAGAACACTGCTTGTCCTGA -ACGGAAGAACACTGCTTGTAGCGA -ACGGAAGAACACTGCTTGCACAGA -ACGGAAGAACACTGCTTGGCAAGA -ACGGAAGAACACTGCTTGGGTTGA -ACGGAAGAACACTGCTTGTCCGAT -ACGGAAGAACACTGCTTGTGGCAT -ACGGAAGAACACTGCTTGCGAGAT -ACGGAAGAACACTGCTTGTACCAC -ACGGAAGAACACTGCTTGCAGAAC -ACGGAAGAACACTGCTTGGTCTAC -ACGGAAGAACACTGCTTGACGTAC -ACGGAAGAACACTGCTTGAGTGAC -ACGGAAGAACACTGCTTGCTGTAG -ACGGAAGAACACTGCTTGCCTAAG -ACGGAAGAACACTGCTTGGTTCAG -ACGGAAGAACACTGCTTGGCATAG -ACGGAAGAACACTGCTTGGACAAG -ACGGAAGAACACTGCTTGAAGCAG -ACGGAAGAACACTGCTTGCGTCAA -ACGGAAGAACACTGCTTGGCTGAA -ACGGAAGAACACTGCTTGAGTACG -ACGGAAGAACACTGCTTGATCCGA -ACGGAAGAACACTGCTTGATGGGA -ACGGAAGAACACTGCTTGGTGCAA -ACGGAAGAACACTGCTTGGAGGAA -ACGGAAGAACACTGCTTGCAGGTA -ACGGAAGAACACTGCTTGGACTCT -ACGGAAGAACACTGCTTGAGTCCT -ACGGAAGAACACTGCTTGTAAGCC -ACGGAAGAACACTGCTTGATAGCC -ACGGAAGAACACTGCTTGTAACCG -ACGGAAGAACACTGCTTGATGCCA -ACGGAAGAACACAGCCTAGGAAAC -ACGGAAGAACACAGCCTAAACACC -ACGGAAGAACACAGCCTAATCGAG -ACGGAAGAACACAGCCTACTCCTT -ACGGAAGAACACAGCCTACCTGTT -ACGGAAGAACACAGCCTACGGTTT -ACGGAAGAACACAGCCTAGTGGTT -ACGGAAGAACACAGCCTAGCCTTT -ACGGAAGAACACAGCCTAGGTCTT -ACGGAAGAACACAGCCTAACGCTT -ACGGAAGAACACAGCCTAAGCGTT -ACGGAAGAACACAGCCTATTCGTC -ACGGAAGAACACAGCCTATCTCTC -ACGGAAGAACACAGCCTATGGATC -ACGGAAGAACACAGCCTACACTTC -ACGGAAGAACACAGCCTAGTACTC -ACGGAAGAACACAGCCTAGATGTC -ACGGAAGAACACAGCCTAACAGTC -ACGGAAGAACACAGCCTATTGCTG -ACGGAAGAACACAGCCTATCCATG -ACGGAAGAACACAGCCTATGTGTG -ACGGAAGAACACAGCCTACTAGTG -ACGGAAGAACACAGCCTACATCTG -ACGGAAGAACACAGCCTAGAGTTG -ACGGAAGAACACAGCCTAAGACTG -ACGGAAGAACACAGCCTATCGGTA -ACGGAAGAACACAGCCTATGCCTA -ACGGAAGAACACAGCCTACCACTA -ACGGAAGAACACAGCCTAGGAGTA -ACGGAAGAACACAGCCTATCGTCT -ACGGAAGAACACAGCCTATGCACT -ACGGAAGAACACAGCCTACTGACT -ACGGAAGAACACAGCCTACAACCT -ACGGAAGAACACAGCCTAGCTACT -ACGGAAGAACACAGCCTAGGATCT -ACGGAAGAACACAGCCTAAAGGCT -ACGGAAGAACACAGCCTATCAACC -ACGGAAGAACACAGCCTATGTTCC -ACGGAAGAACACAGCCTAATTCCC -ACGGAAGAACACAGCCTATTCTCG -ACGGAAGAACACAGCCTATAGACG -ACGGAAGAACACAGCCTAGTAACG -ACGGAAGAACACAGCCTAACTTCG -ACGGAAGAACACAGCCTATACGCA -ACGGAAGAACACAGCCTACTTGCA -ACGGAAGAACACAGCCTACGAACA -ACGGAAGAACACAGCCTACAGTCA -ACGGAAGAACACAGCCTAGATCCA -ACGGAAGAACACAGCCTAACGACA -ACGGAAGAACACAGCCTAAGCTCA -ACGGAAGAACACAGCCTATCACGT -ACGGAAGAACACAGCCTACGTAGT -ACGGAAGAACACAGCCTAGTCAGT -ACGGAAGAACACAGCCTAGAAGGT -ACGGAAGAACACAGCCTAAACCGT -ACGGAAGAACACAGCCTATTGTGC -ACGGAAGAACACAGCCTACTAAGC -ACGGAAGAACACAGCCTAACTAGC -ACGGAAGAACACAGCCTAAGATGC -ACGGAAGAACACAGCCTATGAAGG -ACGGAAGAACACAGCCTACAATGG -ACGGAAGAACACAGCCTAATGAGG -ACGGAAGAACACAGCCTAAATGGG -ACGGAAGAACACAGCCTATCCTGA -ACGGAAGAACACAGCCTATAGCGA -ACGGAAGAACACAGCCTACACAGA -ACGGAAGAACACAGCCTAGCAAGA -ACGGAAGAACACAGCCTAGGTTGA -ACGGAAGAACACAGCCTATCCGAT -ACGGAAGAACACAGCCTATGGCAT -ACGGAAGAACACAGCCTACGAGAT -ACGGAAGAACACAGCCTATACCAC -ACGGAAGAACACAGCCTACAGAAC -ACGGAAGAACACAGCCTAGTCTAC -ACGGAAGAACACAGCCTAACGTAC -ACGGAAGAACACAGCCTAAGTGAC -ACGGAAGAACACAGCCTACTGTAG -ACGGAAGAACACAGCCTACCTAAG -ACGGAAGAACACAGCCTAGTTCAG -ACGGAAGAACACAGCCTAGCATAG -ACGGAAGAACACAGCCTAGACAAG -ACGGAAGAACACAGCCTAAAGCAG -ACGGAAGAACACAGCCTACGTCAA -ACGGAAGAACACAGCCTAGCTGAA -ACGGAAGAACACAGCCTAAGTACG -ACGGAAGAACACAGCCTAATCCGA -ACGGAAGAACACAGCCTAATGGGA -ACGGAAGAACACAGCCTAGTGCAA -ACGGAAGAACACAGCCTAGAGGAA -ACGGAAGAACACAGCCTACAGGTA -ACGGAAGAACACAGCCTAGACTCT -ACGGAAGAACACAGCCTAAGTCCT -ACGGAAGAACACAGCCTATAAGCC -ACGGAAGAACACAGCCTAATAGCC -ACGGAAGAACACAGCCTATAACCG -ACGGAAGAACACAGCCTAATGCCA -ACGGAAGAACACAGCACTGGAAAC -ACGGAAGAACACAGCACTAACACC -ACGGAAGAACACAGCACTATCGAG -ACGGAAGAACACAGCACTCTCCTT -ACGGAAGAACACAGCACTCCTGTT -ACGGAAGAACACAGCACTCGGTTT -ACGGAAGAACACAGCACTGTGGTT -ACGGAAGAACACAGCACTGCCTTT -ACGGAAGAACACAGCACTGGTCTT -ACGGAAGAACACAGCACTACGCTT -ACGGAAGAACACAGCACTAGCGTT -ACGGAAGAACACAGCACTTTCGTC -ACGGAAGAACACAGCACTTCTCTC -ACGGAAGAACACAGCACTTGGATC -ACGGAAGAACACAGCACTCACTTC -ACGGAAGAACACAGCACTGTACTC -ACGGAAGAACACAGCACTGATGTC -ACGGAAGAACACAGCACTACAGTC -ACGGAAGAACACAGCACTTTGCTG -ACGGAAGAACACAGCACTTCCATG -ACGGAAGAACACAGCACTTGTGTG -ACGGAAGAACACAGCACTCTAGTG -ACGGAAGAACACAGCACTCATCTG -ACGGAAGAACACAGCACTGAGTTG -ACGGAAGAACACAGCACTAGACTG -ACGGAAGAACACAGCACTTCGGTA -ACGGAAGAACACAGCACTTGCCTA -ACGGAAGAACACAGCACTCCACTA -ACGGAAGAACACAGCACTGGAGTA -ACGGAAGAACACAGCACTTCGTCT -ACGGAAGAACACAGCACTTGCACT -ACGGAAGAACACAGCACTCTGACT -ACGGAAGAACACAGCACTCAACCT -ACGGAAGAACACAGCACTGCTACT -ACGGAAGAACACAGCACTGGATCT -ACGGAAGAACACAGCACTAAGGCT -ACGGAAGAACACAGCACTTCAACC -ACGGAAGAACACAGCACTTGTTCC -ACGGAAGAACACAGCACTATTCCC -ACGGAAGAACACAGCACTTTCTCG -ACGGAAGAACACAGCACTTAGACG -ACGGAAGAACACAGCACTGTAACG -ACGGAAGAACACAGCACTACTTCG -ACGGAAGAACACAGCACTTACGCA -ACGGAAGAACACAGCACTCTTGCA -ACGGAAGAACACAGCACTCGAACA -ACGGAAGAACACAGCACTCAGTCA -ACGGAAGAACACAGCACTGATCCA -ACGGAAGAACACAGCACTACGACA -ACGGAAGAACACAGCACTAGCTCA -ACGGAAGAACACAGCACTTCACGT -ACGGAAGAACACAGCACTCGTAGT -ACGGAAGAACACAGCACTGTCAGT -ACGGAAGAACACAGCACTGAAGGT -ACGGAAGAACACAGCACTAACCGT -ACGGAAGAACACAGCACTTTGTGC -ACGGAAGAACACAGCACTCTAAGC -ACGGAAGAACACAGCACTACTAGC -ACGGAAGAACACAGCACTAGATGC -ACGGAAGAACACAGCACTTGAAGG -ACGGAAGAACACAGCACTCAATGG -ACGGAAGAACACAGCACTATGAGG -ACGGAAGAACACAGCACTAATGGG -ACGGAAGAACACAGCACTTCCTGA -ACGGAAGAACACAGCACTTAGCGA -ACGGAAGAACACAGCACTCACAGA -ACGGAAGAACACAGCACTGCAAGA -ACGGAAGAACACAGCACTGGTTGA -ACGGAAGAACACAGCACTTCCGAT -ACGGAAGAACACAGCACTTGGCAT -ACGGAAGAACACAGCACTCGAGAT -ACGGAAGAACACAGCACTTACCAC -ACGGAAGAACACAGCACTCAGAAC -ACGGAAGAACACAGCACTGTCTAC -ACGGAAGAACACAGCACTACGTAC -ACGGAAGAACACAGCACTAGTGAC -ACGGAAGAACACAGCACTCTGTAG -ACGGAAGAACACAGCACTCCTAAG -ACGGAAGAACACAGCACTGTTCAG -ACGGAAGAACACAGCACTGCATAG -ACGGAAGAACACAGCACTGACAAG -ACGGAAGAACACAGCACTAAGCAG -ACGGAAGAACACAGCACTCGTCAA -ACGGAAGAACACAGCACTGCTGAA -ACGGAAGAACACAGCACTAGTACG -ACGGAAGAACACAGCACTATCCGA -ACGGAAGAACACAGCACTATGGGA -ACGGAAGAACACAGCACTGTGCAA -ACGGAAGAACACAGCACTGAGGAA -ACGGAAGAACACAGCACTCAGGTA -ACGGAAGAACACAGCACTGACTCT -ACGGAAGAACACAGCACTAGTCCT -ACGGAAGAACACAGCACTTAAGCC -ACGGAAGAACACAGCACTATAGCC -ACGGAAGAACACAGCACTTAACCG -ACGGAAGAACACAGCACTATGCCA -ACGGAAGAACACTGCAGAGGAAAC -ACGGAAGAACACTGCAGAAACACC -ACGGAAGAACACTGCAGAATCGAG -ACGGAAGAACACTGCAGACTCCTT -ACGGAAGAACACTGCAGACCTGTT -ACGGAAGAACACTGCAGACGGTTT -ACGGAAGAACACTGCAGAGTGGTT -ACGGAAGAACACTGCAGAGCCTTT -ACGGAAGAACACTGCAGAGGTCTT -ACGGAAGAACACTGCAGAACGCTT -ACGGAAGAACACTGCAGAAGCGTT -ACGGAAGAACACTGCAGATTCGTC -ACGGAAGAACACTGCAGATCTCTC -ACGGAAGAACACTGCAGATGGATC -ACGGAAGAACACTGCAGACACTTC -ACGGAAGAACACTGCAGAGTACTC -ACGGAAGAACACTGCAGAGATGTC -ACGGAAGAACACTGCAGAACAGTC -ACGGAAGAACACTGCAGATTGCTG -ACGGAAGAACACTGCAGATCCATG -ACGGAAGAACACTGCAGATGTGTG -ACGGAAGAACACTGCAGACTAGTG -ACGGAAGAACACTGCAGACATCTG -ACGGAAGAACACTGCAGAGAGTTG -ACGGAAGAACACTGCAGAAGACTG -ACGGAAGAACACTGCAGATCGGTA -ACGGAAGAACACTGCAGATGCCTA -ACGGAAGAACACTGCAGACCACTA -ACGGAAGAACACTGCAGAGGAGTA -ACGGAAGAACACTGCAGATCGTCT -ACGGAAGAACACTGCAGATGCACT -ACGGAAGAACACTGCAGACTGACT -ACGGAAGAACACTGCAGACAACCT -ACGGAAGAACACTGCAGAGCTACT -ACGGAAGAACACTGCAGAGGATCT -ACGGAAGAACACTGCAGAAAGGCT -ACGGAAGAACACTGCAGATCAACC -ACGGAAGAACACTGCAGATGTTCC -ACGGAAGAACACTGCAGAATTCCC -ACGGAAGAACACTGCAGATTCTCG -ACGGAAGAACACTGCAGATAGACG -ACGGAAGAACACTGCAGAGTAACG -ACGGAAGAACACTGCAGAACTTCG -ACGGAAGAACACTGCAGATACGCA -ACGGAAGAACACTGCAGACTTGCA -ACGGAAGAACACTGCAGACGAACA -ACGGAAGAACACTGCAGACAGTCA -ACGGAAGAACACTGCAGAGATCCA -ACGGAAGAACACTGCAGAACGACA -ACGGAAGAACACTGCAGAAGCTCA -ACGGAAGAACACTGCAGATCACGT -ACGGAAGAACACTGCAGACGTAGT -ACGGAAGAACACTGCAGAGTCAGT -ACGGAAGAACACTGCAGAGAAGGT -ACGGAAGAACACTGCAGAAACCGT -ACGGAAGAACACTGCAGATTGTGC -ACGGAAGAACACTGCAGACTAAGC -ACGGAAGAACACTGCAGAACTAGC -ACGGAAGAACACTGCAGAAGATGC -ACGGAAGAACACTGCAGATGAAGG -ACGGAAGAACACTGCAGACAATGG -ACGGAAGAACACTGCAGAATGAGG -ACGGAAGAACACTGCAGAAATGGG -ACGGAAGAACACTGCAGATCCTGA -ACGGAAGAACACTGCAGATAGCGA -ACGGAAGAACACTGCAGACACAGA -ACGGAAGAACACTGCAGAGCAAGA -ACGGAAGAACACTGCAGAGGTTGA -ACGGAAGAACACTGCAGATCCGAT -ACGGAAGAACACTGCAGATGGCAT -ACGGAAGAACACTGCAGACGAGAT -ACGGAAGAACACTGCAGATACCAC -ACGGAAGAACACTGCAGACAGAAC -ACGGAAGAACACTGCAGAGTCTAC -ACGGAAGAACACTGCAGAACGTAC -ACGGAAGAACACTGCAGAAGTGAC -ACGGAAGAACACTGCAGACTGTAG -ACGGAAGAACACTGCAGACCTAAG -ACGGAAGAACACTGCAGAGTTCAG -ACGGAAGAACACTGCAGAGCATAG -ACGGAAGAACACTGCAGAGACAAG -ACGGAAGAACACTGCAGAAAGCAG -ACGGAAGAACACTGCAGACGTCAA -ACGGAAGAACACTGCAGAGCTGAA -ACGGAAGAACACTGCAGAAGTACG -ACGGAAGAACACTGCAGAATCCGA -ACGGAAGAACACTGCAGAATGGGA -ACGGAAGAACACTGCAGAGTGCAA -ACGGAAGAACACTGCAGAGAGGAA -ACGGAAGAACACTGCAGACAGGTA -ACGGAAGAACACTGCAGAGACTCT -ACGGAAGAACACTGCAGAAGTCCT -ACGGAAGAACACTGCAGATAAGCC -ACGGAAGAACACTGCAGAATAGCC -ACGGAAGAACACTGCAGATAACCG -ACGGAAGAACACTGCAGAATGCCA -ACGGAAGAACACAGGTGAGGAAAC -ACGGAAGAACACAGGTGAAACACC -ACGGAAGAACACAGGTGAATCGAG -ACGGAAGAACACAGGTGACTCCTT -ACGGAAGAACACAGGTGACCTGTT -ACGGAAGAACACAGGTGACGGTTT -ACGGAAGAACACAGGTGAGTGGTT -ACGGAAGAACACAGGTGAGCCTTT -ACGGAAGAACACAGGTGAGGTCTT -ACGGAAGAACACAGGTGAACGCTT -ACGGAAGAACACAGGTGAAGCGTT -ACGGAAGAACACAGGTGATTCGTC -ACGGAAGAACACAGGTGATCTCTC -ACGGAAGAACACAGGTGATGGATC -ACGGAAGAACACAGGTGACACTTC -ACGGAAGAACACAGGTGAGTACTC -ACGGAAGAACACAGGTGAGATGTC -ACGGAAGAACACAGGTGAACAGTC -ACGGAAGAACACAGGTGATTGCTG -ACGGAAGAACACAGGTGATCCATG -ACGGAAGAACACAGGTGATGTGTG -ACGGAAGAACACAGGTGACTAGTG -ACGGAAGAACACAGGTGACATCTG -ACGGAAGAACACAGGTGAGAGTTG -ACGGAAGAACACAGGTGAAGACTG -ACGGAAGAACACAGGTGATCGGTA -ACGGAAGAACACAGGTGATGCCTA -ACGGAAGAACACAGGTGACCACTA -ACGGAAGAACACAGGTGAGGAGTA -ACGGAAGAACACAGGTGATCGTCT -ACGGAAGAACACAGGTGATGCACT -ACGGAAGAACACAGGTGACTGACT -ACGGAAGAACACAGGTGACAACCT -ACGGAAGAACACAGGTGAGCTACT -ACGGAAGAACACAGGTGAGGATCT -ACGGAAGAACACAGGTGAAAGGCT -ACGGAAGAACACAGGTGATCAACC -ACGGAAGAACACAGGTGATGTTCC -ACGGAAGAACACAGGTGAATTCCC -ACGGAAGAACACAGGTGATTCTCG -ACGGAAGAACACAGGTGATAGACG -ACGGAAGAACACAGGTGAGTAACG -ACGGAAGAACACAGGTGAACTTCG -ACGGAAGAACACAGGTGATACGCA -ACGGAAGAACACAGGTGACTTGCA -ACGGAAGAACACAGGTGACGAACA -ACGGAAGAACACAGGTGACAGTCA -ACGGAAGAACACAGGTGAGATCCA -ACGGAAGAACACAGGTGAACGACA -ACGGAAGAACACAGGTGAAGCTCA -ACGGAAGAACACAGGTGATCACGT -ACGGAAGAACACAGGTGACGTAGT -ACGGAAGAACACAGGTGAGTCAGT -ACGGAAGAACACAGGTGAGAAGGT -ACGGAAGAACACAGGTGAAACCGT -ACGGAAGAACACAGGTGATTGTGC -ACGGAAGAACACAGGTGACTAAGC -ACGGAAGAACACAGGTGAACTAGC -ACGGAAGAACACAGGTGAAGATGC -ACGGAAGAACACAGGTGATGAAGG -ACGGAAGAACACAGGTGACAATGG -ACGGAAGAACACAGGTGAATGAGG -ACGGAAGAACACAGGTGAAATGGG -ACGGAAGAACACAGGTGATCCTGA -ACGGAAGAACACAGGTGATAGCGA -ACGGAAGAACACAGGTGACACAGA -ACGGAAGAACACAGGTGAGCAAGA -ACGGAAGAACACAGGTGAGGTTGA -ACGGAAGAACACAGGTGATCCGAT -ACGGAAGAACACAGGTGATGGCAT -ACGGAAGAACACAGGTGACGAGAT -ACGGAAGAACACAGGTGATACCAC -ACGGAAGAACACAGGTGACAGAAC -ACGGAAGAACACAGGTGAGTCTAC -ACGGAAGAACACAGGTGAACGTAC -ACGGAAGAACACAGGTGAAGTGAC -ACGGAAGAACACAGGTGACTGTAG -ACGGAAGAACACAGGTGACCTAAG -ACGGAAGAACACAGGTGAGTTCAG -ACGGAAGAACACAGGTGAGCATAG -ACGGAAGAACACAGGTGAGACAAG -ACGGAAGAACACAGGTGAAAGCAG -ACGGAAGAACACAGGTGACGTCAA -ACGGAAGAACACAGGTGAGCTGAA -ACGGAAGAACACAGGTGAAGTACG -ACGGAAGAACACAGGTGAATCCGA -ACGGAAGAACACAGGTGAATGGGA -ACGGAAGAACACAGGTGAGTGCAA -ACGGAAGAACACAGGTGAGAGGAA -ACGGAAGAACACAGGTGACAGGTA -ACGGAAGAACACAGGTGAGACTCT -ACGGAAGAACACAGGTGAAGTCCT -ACGGAAGAACACAGGTGATAAGCC -ACGGAAGAACACAGGTGAATAGCC -ACGGAAGAACACAGGTGATAACCG -ACGGAAGAACACAGGTGAATGCCA -ACGGAAGAACACTGGCAAGGAAAC -ACGGAAGAACACTGGCAAAACACC -ACGGAAGAACACTGGCAAATCGAG -ACGGAAGAACACTGGCAACTCCTT -ACGGAAGAACACTGGCAACCTGTT -ACGGAAGAACACTGGCAACGGTTT -ACGGAAGAACACTGGCAAGTGGTT -ACGGAAGAACACTGGCAAGCCTTT -ACGGAAGAACACTGGCAAGGTCTT -ACGGAAGAACACTGGCAAACGCTT -ACGGAAGAACACTGGCAAAGCGTT -ACGGAAGAACACTGGCAATTCGTC -ACGGAAGAACACTGGCAATCTCTC -ACGGAAGAACACTGGCAATGGATC -ACGGAAGAACACTGGCAACACTTC -ACGGAAGAACACTGGCAAGTACTC -ACGGAAGAACACTGGCAAGATGTC -ACGGAAGAACACTGGCAAACAGTC -ACGGAAGAACACTGGCAATTGCTG -ACGGAAGAACACTGGCAATCCATG -ACGGAAGAACACTGGCAATGTGTG -ACGGAAGAACACTGGCAACTAGTG -ACGGAAGAACACTGGCAACATCTG -ACGGAAGAACACTGGCAAGAGTTG -ACGGAAGAACACTGGCAAAGACTG -ACGGAAGAACACTGGCAATCGGTA -ACGGAAGAACACTGGCAATGCCTA -ACGGAAGAACACTGGCAACCACTA -ACGGAAGAACACTGGCAAGGAGTA -ACGGAAGAACACTGGCAATCGTCT -ACGGAAGAACACTGGCAATGCACT -ACGGAAGAACACTGGCAACTGACT -ACGGAAGAACACTGGCAACAACCT -ACGGAAGAACACTGGCAAGCTACT -ACGGAAGAACACTGGCAAGGATCT -ACGGAAGAACACTGGCAAAAGGCT -ACGGAAGAACACTGGCAATCAACC -ACGGAAGAACACTGGCAATGTTCC -ACGGAAGAACACTGGCAAATTCCC -ACGGAAGAACACTGGCAATTCTCG -ACGGAAGAACACTGGCAATAGACG -ACGGAAGAACACTGGCAAGTAACG -ACGGAAGAACACTGGCAAACTTCG -ACGGAAGAACACTGGCAATACGCA -ACGGAAGAACACTGGCAACTTGCA -ACGGAAGAACACTGGCAACGAACA -ACGGAAGAACACTGGCAACAGTCA -ACGGAAGAACACTGGCAAGATCCA -ACGGAAGAACACTGGCAAACGACA -ACGGAAGAACACTGGCAAAGCTCA -ACGGAAGAACACTGGCAATCACGT -ACGGAAGAACACTGGCAACGTAGT -ACGGAAGAACACTGGCAAGTCAGT -ACGGAAGAACACTGGCAAGAAGGT -ACGGAAGAACACTGGCAAAACCGT -ACGGAAGAACACTGGCAATTGTGC -ACGGAAGAACACTGGCAACTAAGC -ACGGAAGAACACTGGCAAACTAGC -ACGGAAGAACACTGGCAAAGATGC -ACGGAAGAACACTGGCAATGAAGG -ACGGAAGAACACTGGCAACAATGG -ACGGAAGAACACTGGCAAATGAGG -ACGGAAGAACACTGGCAAAATGGG -ACGGAAGAACACTGGCAATCCTGA -ACGGAAGAACACTGGCAATAGCGA -ACGGAAGAACACTGGCAACACAGA -ACGGAAGAACACTGGCAAGCAAGA -ACGGAAGAACACTGGCAAGGTTGA -ACGGAAGAACACTGGCAATCCGAT -ACGGAAGAACACTGGCAATGGCAT -ACGGAAGAACACTGGCAACGAGAT -ACGGAAGAACACTGGCAATACCAC -ACGGAAGAACACTGGCAACAGAAC -ACGGAAGAACACTGGCAAGTCTAC -ACGGAAGAACACTGGCAAACGTAC -ACGGAAGAACACTGGCAAAGTGAC -ACGGAAGAACACTGGCAACTGTAG -ACGGAAGAACACTGGCAACCTAAG -ACGGAAGAACACTGGCAAGTTCAG -ACGGAAGAACACTGGCAAGCATAG -ACGGAAGAACACTGGCAAGACAAG -ACGGAAGAACACTGGCAAAAGCAG -ACGGAAGAACACTGGCAACGTCAA -ACGGAAGAACACTGGCAAGCTGAA -ACGGAAGAACACTGGCAAAGTACG -ACGGAAGAACACTGGCAAATCCGA -ACGGAAGAACACTGGCAAATGGGA -ACGGAAGAACACTGGCAAGTGCAA -ACGGAAGAACACTGGCAAGAGGAA -ACGGAAGAACACTGGCAACAGGTA -ACGGAAGAACACTGGCAAGACTCT -ACGGAAGAACACTGGCAAAGTCCT -ACGGAAGAACACTGGCAATAAGCC -ACGGAAGAACACTGGCAAATAGCC -ACGGAAGAACACTGGCAATAACCG -ACGGAAGAACACTGGCAAATGCCA -ACGGAAGAACACAGGATGGGAAAC -ACGGAAGAACACAGGATGAACACC -ACGGAAGAACACAGGATGATCGAG -ACGGAAGAACACAGGATGCTCCTT -ACGGAAGAACACAGGATGCCTGTT -ACGGAAGAACACAGGATGCGGTTT -ACGGAAGAACACAGGATGGTGGTT -ACGGAAGAACACAGGATGGCCTTT -ACGGAAGAACACAGGATGGGTCTT -ACGGAAGAACACAGGATGACGCTT -ACGGAAGAACACAGGATGAGCGTT -ACGGAAGAACACAGGATGTTCGTC -ACGGAAGAACACAGGATGTCTCTC -ACGGAAGAACACAGGATGTGGATC -ACGGAAGAACACAGGATGCACTTC -ACGGAAGAACACAGGATGGTACTC -ACGGAAGAACACAGGATGGATGTC -ACGGAAGAACACAGGATGACAGTC -ACGGAAGAACACAGGATGTTGCTG -ACGGAAGAACACAGGATGTCCATG -ACGGAAGAACACAGGATGTGTGTG -ACGGAAGAACACAGGATGCTAGTG -ACGGAAGAACACAGGATGCATCTG -ACGGAAGAACACAGGATGGAGTTG -ACGGAAGAACACAGGATGAGACTG -ACGGAAGAACACAGGATGTCGGTA -ACGGAAGAACACAGGATGTGCCTA -ACGGAAGAACACAGGATGCCACTA -ACGGAAGAACACAGGATGGGAGTA -ACGGAAGAACACAGGATGTCGTCT -ACGGAAGAACACAGGATGTGCACT -ACGGAAGAACACAGGATGCTGACT -ACGGAAGAACACAGGATGCAACCT -ACGGAAGAACACAGGATGGCTACT -ACGGAAGAACACAGGATGGGATCT -ACGGAAGAACACAGGATGAAGGCT -ACGGAAGAACACAGGATGTCAACC -ACGGAAGAACACAGGATGTGTTCC -ACGGAAGAACACAGGATGATTCCC -ACGGAAGAACACAGGATGTTCTCG -ACGGAAGAACACAGGATGTAGACG -ACGGAAGAACACAGGATGGTAACG -ACGGAAGAACACAGGATGACTTCG -ACGGAAGAACACAGGATGTACGCA -ACGGAAGAACACAGGATGCTTGCA -ACGGAAGAACACAGGATGCGAACA -ACGGAAGAACACAGGATGCAGTCA -ACGGAAGAACACAGGATGGATCCA -ACGGAAGAACACAGGATGACGACA -ACGGAAGAACACAGGATGAGCTCA -ACGGAAGAACACAGGATGTCACGT -ACGGAAGAACACAGGATGCGTAGT -ACGGAAGAACACAGGATGGTCAGT -ACGGAAGAACACAGGATGGAAGGT -ACGGAAGAACACAGGATGAACCGT -ACGGAAGAACACAGGATGTTGTGC -ACGGAAGAACACAGGATGCTAAGC -ACGGAAGAACACAGGATGACTAGC -ACGGAAGAACACAGGATGAGATGC -ACGGAAGAACACAGGATGTGAAGG -ACGGAAGAACACAGGATGCAATGG -ACGGAAGAACACAGGATGATGAGG -ACGGAAGAACACAGGATGAATGGG -ACGGAAGAACACAGGATGTCCTGA -ACGGAAGAACACAGGATGTAGCGA -ACGGAAGAACACAGGATGCACAGA -ACGGAAGAACACAGGATGGCAAGA -ACGGAAGAACACAGGATGGGTTGA -ACGGAAGAACACAGGATGTCCGAT -ACGGAAGAACACAGGATGTGGCAT -ACGGAAGAACACAGGATGCGAGAT -ACGGAAGAACACAGGATGTACCAC -ACGGAAGAACACAGGATGCAGAAC -ACGGAAGAACACAGGATGGTCTAC -ACGGAAGAACACAGGATGACGTAC -ACGGAAGAACACAGGATGAGTGAC -ACGGAAGAACACAGGATGCTGTAG -ACGGAAGAACACAGGATGCCTAAG -ACGGAAGAACACAGGATGGTTCAG -ACGGAAGAACACAGGATGGCATAG -ACGGAAGAACACAGGATGGACAAG -ACGGAAGAACACAGGATGAAGCAG -ACGGAAGAACACAGGATGCGTCAA -ACGGAAGAACACAGGATGGCTGAA -ACGGAAGAACACAGGATGAGTACG -ACGGAAGAACACAGGATGATCCGA -ACGGAAGAACACAGGATGATGGGA -ACGGAAGAACACAGGATGGTGCAA -ACGGAAGAACACAGGATGGAGGAA -ACGGAAGAACACAGGATGCAGGTA -ACGGAAGAACACAGGATGGACTCT -ACGGAAGAACACAGGATGAGTCCT -ACGGAAGAACACAGGATGTAAGCC -ACGGAAGAACACAGGATGATAGCC -ACGGAAGAACACAGGATGTAACCG -ACGGAAGAACACAGGATGATGCCA -ACGGAAGAACACGGGAATGGAAAC -ACGGAAGAACACGGGAATAACACC -ACGGAAGAACACGGGAATATCGAG -ACGGAAGAACACGGGAATCTCCTT -ACGGAAGAACACGGGAATCCTGTT -ACGGAAGAACACGGGAATCGGTTT -ACGGAAGAACACGGGAATGTGGTT -ACGGAAGAACACGGGAATGCCTTT -ACGGAAGAACACGGGAATGGTCTT -ACGGAAGAACACGGGAATACGCTT -ACGGAAGAACACGGGAATAGCGTT -ACGGAAGAACACGGGAATTTCGTC -ACGGAAGAACACGGGAATTCTCTC -ACGGAAGAACACGGGAATTGGATC -ACGGAAGAACACGGGAATCACTTC -ACGGAAGAACACGGGAATGTACTC -ACGGAAGAACACGGGAATGATGTC -ACGGAAGAACACGGGAATACAGTC -ACGGAAGAACACGGGAATTTGCTG -ACGGAAGAACACGGGAATTCCATG -ACGGAAGAACACGGGAATTGTGTG -ACGGAAGAACACGGGAATCTAGTG -ACGGAAGAACACGGGAATCATCTG -ACGGAAGAACACGGGAATGAGTTG -ACGGAAGAACACGGGAATAGACTG -ACGGAAGAACACGGGAATTCGGTA -ACGGAAGAACACGGGAATTGCCTA -ACGGAAGAACACGGGAATCCACTA -ACGGAAGAACACGGGAATGGAGTA -ACGGAAGAACACGGGAATTCGTCT -ACGGAAGAACACGGGAATTGCACT -ACGGAAGAACACGGGAATCTGACT -ACGGAAGAACACGGGAATCAACCT -ACGGAAGAACACGGGAATGCTACT -ACGGAAGAACACGGGAATGGATCT -ACGGAAGAACACGGGAATAAGGCT -ACGGAAGAACACGGGAATTCAACC -ACGGAAGAACACGGGAATTGTTCC -ACGGAAGAACACGGGAATATTCCC -ACGGAAGAACACGGGAATTTCTCG -ACGGAAGAACACGGGAATTAGACG -ACGGAAGAACACGGGAATGTAACG -ACGGAAGAACACGGGAATACTTCG -ACGGAAGAACACGGGAATTACGCA -ACGGAAGAACACGGGAATCTTGCA -ACGGAAGAACACGGGAATCGAACA -ACGGAAGAACACGGGAATCAGTCA -ACGGAAGAACACGGGAATGATCCA -ACGGAAGAACACGGGAATACGACA -ACGGAAGAACACGGGAATAGCTCA -ACGGAAGAACACGGGAATTCACGT -ACGGAAGAACACGGGAATCGTAGT -ACGGAAGAACACGGGAATGTCAGT -ACGGAAGAACACGGGAATGAAGGT -ACGGAAGAACACGGGAATAACCGT -ACGGAAGAACACGGGAATTTGTGC -ACGGAAGAACACGGGAATCTAAGC -ACGGAAGAACACGGGAATACTAGC -ACGGAAGAACACGGGAATAGATGC -ACGGAAGAACACGGGAATTGAAGG -ACGGAAGAACACGGGAATCAATGG -ACGGAAGAACACGGGAATATGAGG -ACGGAAGAACACGGGAATAATGGG -ACGGAAGAACACGGGAATTCCTGA -ACGGAAGAACACGGGAATTAGCGA -ACGGAAGAACACGGGAATCACAGA -ACGGAAGAACACGGGAATGCAAGA -ACGGAAGAACACGGGAATGGTTGA -ACGGAAGAACACGGGAATTCCGAT -ACGGAAGAACACGGGAATTGGCAT -ACGGAAGAACACGGGAATCGAGAT -ACGGAAGAACACGGGAATTACCAC -ACGGAAGAACACGGGAATCAGAAC -ACGGAAGAACACGGGAATGTCTAC -ACGGAAGAACACGGGAATACGTAC -ACGGAAGAACACGGGAATAGTGAC -ACGGAAGAACACGGGAATCTGTAG -ACGGAAGAACACGGGAATCCTAAG -ACGGAAGAACACGGGAATGTTCAG -ACGGAAGAACACGGGAATGCATAG -ACGGAAGAACACGGGAATGACAAG -ACGGAAGAACACGGGAATAAGCAG -ACGGAAGAACACGGGAATCGTCAA -ACGGAAGAACACGGGAATGCTGAA -ACGGAAGAACACGGGAATAGTACG -ACGGAAGAACACGGGAATATCCGA -ACGGAAGAACACGGGAATATGGGA -ACGGAAGAACACGGGAATGTGCAA -ACGGAAGAACACGGGAATGAGGAA -ACGGAAGAACACGGGAATCAGGTA -ACGGAAGAACACGGGAATGACTCT -ACGGAAGAACACGGGAATAGTCCT -ACGGAAGAACACGGGAATTAAGCC -ACGGAAGAACACGGGAATATAGCC -ACGGAAGAACACGGGAATTAACCG -ACGGAAGAACACGGGAATATGCCA -ACGGAAGAACACTGATCCGGAAAC -ACGGAAGAACACTGATCCAACACC -ACGGAAGAACACTGATCCATCGAG -ACGGAAGAACACTGATCCCTCCTT -ACGGAAGAACACTGATCCCCTGTT -ACGGAAGAACACTGATCCCGGTTT -ACGGAAGAACACTGATCCGTGGTT -ACGGAAGAACACTGATCCGCCTTT -ACGGAAGAACACTGATCCGGTCTT -ACGGAAGAACACTGATCCACGCTT -ACGGAAGAACACTGATCCAGCGTT -ACGGAAGAACACTGATCCTTCGTC -ACGGAAGAACACTGATCCTCTCTC -ACGGAAGAACACTGATCCTGGATC -ACGGAAGAACACTGATCCCACTTC -ACGGAAGAACACTGATCCGTACTC -ACGGAAGAACACTGATCCGATGTC -ACGGAAGAACACTGATCCACAGTC -ACGGAAGAACACTGATCCTTGCTG -ACGGAAGAACACTGATCCTCCATG -ACGGAAGAACACTGATCCTGTGTG -ACGGAAGAACACTGATCCCTAGTG -ACGGAAGAACACTGATCCCATCTG -ACGGAAGAACACTGATCCGAGTTG -ACGGAAGAACACTGATCCAGACTG -ACGGAAGAACACTGATCCTCGGTA -ACGGAAGAACACTGATCCTGCCTA -ACGGAAGAACACTGATCCCCACTA -ACGGAAGAACACTGATCCGGAGTA -ACGGAAGAACACTGATCCTCGTCT -ACGGAAGAACACTGATCCTGCACT -ACGGAAGAACACTGATCCCTGACT -ACGGAAGAACACTGATCCCAACCT -ACGGAAGAACACTGATCCGCTACT -ACGGAAGAACACTGATCCGGATCT -ACGGAAGAACACTGATCCAAGGCT -ACGGAAGAACACTGATCCTCAACC -ACGGAAGAACACTGATCCTGTTCC -ACGGAAGAACACTGATCCATTCCC -ACGGAAGAACACTGATCCTTCTCG -ACGGAAGAACACTGATCCTAGACG -ACGGAAGAACACTGATCCGTAACG -ACGGAAGAACACTGATCCACTTCG -ACGGAAGAACACTGATCCTACGCA -ACGGAAGAACACTGATCCCTTGCA -ACGGAAGAACACTGATCCCGAACA -ACGGAAGAACACTGATCCCAGTCA -ACGGAAGAACACTGATCCGATCCA -ACGGAAGAACACTGATCCACGACA -ACGGAAGAACACTGATCCAGCTCA -ACGGAAGAACACTGATCCTCACGT -ACGGAAGAACACTGATCCCGTAGT -ACGGAAGAACACTGATCCGTCAGT -ACGGAAGAACACTGATCCGAAGGT -ACGGAAGAACACTGATCCAACCGT -ACGGAAGAACACTGATCCTTGTGC -ACGGAAGAACACTGATCCCTAAGC -ACGGAAGAACACTGATCCACTAGC -ACGGAAGAACACTGATCCAGATGC -ACGGAAGAACACTGATCCTGAAGG -ACGGAAGAACACTGATCCCAATGG -ACGGAAGAACACTGATCCATGAGG -ACGGAAGAACACTGATCCAATGGG -ACGGAAGAACACTGATCCTCCTGA -ACGGAAGAACACTGATCCTAGCGA -ACGGAAGAACACTGATCCCACAGA -ACGGAAGAACACTGATCCGCAAGA -ACGGAAGAACACTGATCCGGTTGA -ACGGAAGAACACTGATCCTCCGAT -ACGGAAGAACACTGATCCTGGCAT -ACGGAAGAACACTGATCCCGAGAT -ACGGAAGAACACTGATCCTACCAC -ACGGAAGAACACTGATCCCAGAAC -ACGGAAGAACACTGATCCGTCTAC -ACGGAAGAACACTGATCCACGTAC -ACGGAAGAACACTGATCCAGTGAC -ACGGAAGAACACTGATCCCTGTAG -ACGGAAGAACACTGATCCCCTAAG -ACGGAAGAACACTGATCCGTTCAG -ACGGAAGAACACTGATCCGCATAG -ACGGAAGAACACTGATCCGACAAG -ACGGAAGAACACTGATCCAAGCAG -ACGGAAGAACACTGATCCCGTCAA -ACGGAAGAACACTGATCCGCTGAA -ACGGAAGAACACTGATCCAGTACG -ACGGAAGAACACTGATCCATCCGA -ACGGAAGAACACTGATCCATGGGA -ACGGAAGAACACTGATCCGTGCAA -ACGGAAGAACACTGATCCGAGGAA -ACGGAAGAACACTGATCCCAGGTA -ACGGAAGAACACTGATCCGACTCT -ACGGAAGAACACTGATCCAGTCCT -ACGGAAGAACACTGATCCTAAGCC -ACGGAAGAACACTGATCCATAGCC -ACGGAAGAACACTGATCCTAACCG -ACGGAAGAACACTGATCCATGCCA -ACGGAAGAACACCGATAGGGAAAC -ACGGAAGAACACCGATAGAACACC -ACGGAAGAACACCGATAGATCGAG -ACGGAAGAACACCGATAGCTCCTT -ACGGAAGAACACCGATAGCCTGTT -ACGGAAGAACACCGATAGCGGTTT -ACGGAAGAACACCGATAGGTGGTT -ACGGAAGAACACCGATAGGCCTTT -ACGGAAGAACACCGATAGGGTCTT -ACGGAAGAACACCGATAGACGCTT -ACGGAAGAACACCGATAGAGCGTT -ACGGAAGAACACCGATAGTTCGTC -ACGGAAGAACACCGATAGTCTCTC -ACGGAAGAACACCGATAGTGGATC -ACGGAAGAACACCGATAGCACTTC -ACGGAAGAACACCGATAGGTACTC -ACGGAAGAACACCGATAGGATGTC -ACGGAAGAACACCGATAGACAGTC -ACGGAAGAACACCGATAGTTGCTG -ACGGAAGAACACCGATAGTCCATG -ACGGAAGAACACCGATAGTGTGTG -ACGGAAGAACACCGATAGCTAGTG -ACGGAAGAACACCGATAGCATCTG -ACGGAAGAACACCGATAGGAGTTG -ACGGAAGAACACCGATAGAGACTG -ACGGAAGAACACCGATAGTCGGTA -ACGGAAGAACACCGATAGTGCCTA -ACGGAAGAACACCGATAGCCACTA -ACGGAAGAACACCGATAGGGAGTA -ACGGAAGAACACCGATAGTCGTCT -ACGGAAGAACACCGATAGTGCACT -ACGGAAGAACACCGATAGCTGACT -ACGGAAGAACACCGATAGCAACCT -ACGGAAGAACACCGATAGGCTACT -ACGGAAGAACACCGATAGGGATCT -ACGGAAGAACACCGATAGAAGGCT -ACGGAAGAACACCGATAGTCAACC -ACGGAAGAACACCGATAGTGTTCC -ACGGAAGAACACCGATAGATTCCC -ACGGAAGAACACCGATAGTTCTCG -ACGGAAGAACACCGATAGTAGACG -ACGGAAGAACACCGATAGGTAACG -ACGGAAGAACACCGATAGACTTCG -ACGGAAGAACACCGATAGTACGCA -ACGGAAGAACACCGATAGCTTGCA -ACGGAAGAACACCGATAGCGAACA -ACGGAAGAACACCGATAGCAGTCA -ACGGAAGAACACCGATAGGATCCA -ACGGAAGAACACCGATAGACGACA -ACGGAAGAACACCGATAGAGCTCA -ACGGAAGAACACCGATAGTCACGT -ACGGAAGAACACCGATAGCGTAGT -ACGGAAGAACACCGATAGGTCAGT -ACGGAAGAACACCGATAGGAAGGT -ACGGAAGAACACCGATAGAACCGT -ACGGAAGAACACCGATAGTTGTGC -ACGGAAGAACACCGATAGCTAAGC -ACGGAAGAACACCGATAGACTAGC -ACGGAAGAACACCGATAGAGATGC -ACGGAAGAACACCGATAGTGAAGG -ACGGAAGAACACCGATAGCAATGG -ACGGAAGAACACCGATAGATGAGG -ACGGAAGAACACCGATAGAATGGG -ACGGAAGAACACCGATAGTCCTGA -ACGGAAGAACACCGATAGTAGCGA -ACGGAAGAACACCGATAGCACAGA -ACGGAAGAACACCGATAGGCAAGA -ACGGAAGAACACCGATAGGGTTGA -ACGGAAGAACACCGATAGTCCGAT -ACGGAAGAACACCGATAGTGGCAT -ACGGAAGAACACCGATAGCGAGAT -ACGGAAGAACACCGATAGTACCAC -ACGGAAGAACACCGATAGCAGAAC -ACGGAAGAACACCGATAGGTCTAC -ACGGAAGAACACCGATAGACGTAC -ACGGAAGAACACCGATAGAGTGAC -ACGGAAGAACACCGATAGCTGTAG -ACGGAAGAACACCGATAGCCTAAG -ACGGAAGAACACCGATAGGTTCAG -ACGGAAGAACACCGATAGGCATAG -ACGGAAGAACACCGATAGGACAAG -ACGGAAGAACACCGATAGAAGCAG -ACGGAAGAACACCGATAGCGTCAA -ACGGAAGAACACCGATAGGCTGAA -ACGGAAGAACACCGATAGAGTACG -ACGGAAGAACACCGATAGATCCGA -ACGGAAGAACACCGATAGATGGGA -ACGGAAGAACACCGATAGGTGCAA -ACGGAAGAACACCGATAGGAGGAA -ACGGAAGAACACCGATAGCAGGTA -ACGGAAGAACACCGATAGGACTCT -ACGGAAGAACACCGATAGAGTCCT -ACGGAAGAACACCGATAGTAAGCC -ACGGAAGAACACCGATAGATAGCC -ACGGAAGAACACCGATAGTAACCG -ACGGAAGAACACCGATAGATGCCA -ACGGAAGAACACAGACACGGAAAC -ACGGAAGAACACAGACACAACACC -ACGGAAGAACACAGACACATCGAG -ACGGAAGAACACAGACACCTCCTT -ACGGAAGAACACAGACACCCTGTT -ACGGAAGAACACAGACACCGGTTT -ACGGAAGAACACAGACACGTGGTT -ACGGAAGAACACAGACACGCCTTT -ACGGAAGAACACAGACACGGTCTT -ACGGAAGAACACAGACACACGCTT -ACGGAAGAACACAGACACAGCGTT -ACGGAAGAACACAGACACTTCGTC -ACGGAAGAACACAGACACTCTCTC -ACGGAAGAACACAGACACTGGATC -ACGGAAGAACACAGACACCACTTC -ACGGAAGAACACAGACACGTACTC -ACGGAAGAACACAGACACGATGTC -ACGGAAGAACACAGACACACAGTC -ACGGAAGAACACAGACACTTGCTG -ACGGAAGAACACAGACACTCCATG -ACGGAAGAACACAGACACTGTGTG -ACGGAAGAACACAGACACCTAGTG -ACGGAAGAACACAGACACCATCTG -ACGGAAGAACACAGACACGAGTTG -ACGGAAGAACACAGACACAGACTG -ACGGAAGAACACAGACACTCGGTA -ACGGAAGAACACAGACACTGCCTA -ACGGAAGAACACAGACACCCACTA -ACGGAAGAACACAGACACGGAGTA -ACGGAAGAACACAGACACTCGTCT -ACGGAAGAACACAGACACTGCACT -ACGGAAGAACACAGACACCTGACT -ACGGAAGAACACAGACACCAACCT -ACGGAAGAACACAGACACGCTACT -ACGGAAGAACACAGACACGGATCT -ACGGAAGAACACAGACACAAGGCT -ACGGAAGAACACAGACACTCAACC -ACGGAAGAACACAGACACTGTTCC -ACGGAAGAACACAGACACATTCCC -ACGGAAGAACACAGACACTTCTCG -ACGGAAGAACACAGACACTAGACG -ACGGAAGAACACAGACACGTAACG -ACGGAAGAACACAGACACACTTCG -ACGGAAGAACACAGACACTACGCA -ACGGAAGAACACAGACACCTTGCA -ACGGAAGAACACAGACACCGAACA -ACGGAAGAACACAGACACCAGTCA -ACGGAAGAACACAGACACGATCCA -ACGGAAGAACACAGACACACGACA -ACGGAAGAACACAGACACAGCTCA -ACGGAAGAACACAGACACTCACGT -ACGGAAGAACACAGACACCGTAGT -ACGGAAGAACACAGACACGTCAGT -ACGGAAGAACACAGACACGAAGGT -ACGGAAGAACACAGACACAACCGT -ACGGAAGAACACAGACACTTGTGC -ACGGAAGAACACAGACACCTAAGC -ACGGAAGAACACAGACACACTAGC -ACGGAAGAACACAGACACAGATGC -ACGGAAGAACACAGACACTGAAGG -ACGGAAGAACACAGACACCAATGG -ACGGAAGAACACAGACACATGAGG -ACGGAAGAACACAGACACAATGGG -ACGGAAGAACACAGACACTCCTGA -ACGGAAGAACACAGACACTAGCGA -ACGGAAGAACACAGACACCACAGA -ACGGAAGAACACAGACACGCAAGA -ACGGAAGAACACAGACACGGTTGA -ACGGAAGAACACAGACACTCCGAT -ACGGAAGAACACAGACACTGGCAT -ACGGAAGAACACAGACACCGAGAT -ACGGAAGAACACAGACACTACCAC -ACGGAAGAACACAGACACCAGAAC -ACGGAAGAACACAGACACGTCTAC -ACGGAAGAACACAGACACACGTAC -ACGGAAGAACACAGACACAGTGAC -ACGGAAGAACACAGACACCTGTAG -ACGGAAGAACACAGACACCCTAAG -ACGGAAGAACACAGACACGTTCAG -ACGGAAGAACACAGACACGCATAG -ACGGAAGAACACAGACACGACAAG -ACGGAAGAACACAGACACAAGCAG -ACGGAAGAACACAGACACCGTCAA -ACGGAAGAACACAGACACGCTGAA -ACGGAAGAACACAGACACAGTACG -ACGGAAGAACACAGACACATCCGA -ACGGAAGAACACAGACACATGGGA -ACGGAAGAACACAGACACGTGCAA -ACGGAAGAACACAGACACGAGGAA -ACGGAAGAACACAGACACCAGGTA -ACGGAAGAACACAGACACGACTCT -ACGGAAGAACACAGACACAGTCCT -ACGGAAGAACACAGACACTAAGCC -ACGGAAGAACACAGACACATAGCC -ACGGAAGAACACAGACACTAACCG -ACGGAAGAACACAGACACATGCCA -ACGGAAGAACACAGAGCAGGAAAC -ACGGAAGAACACAGAGCAAACACC -ACGGAAGAACACAGAGCAATCGAG -ACGGAAGAACACAGAGCACTCCTT -ACGGAAGAACACAGAGCACCTGTT -ACGGAAGAACACAGAGCACGGTTT -ACGGAAGAACACAGAGCAGTGGTT -ACGGAAGAACACAGAGCAGCCTTT -ACGGAAGAACACAGAGCAGGTCTT -ACGGAAGAACACAGAGCAACGCTT -ACGGAAGAACACAGAGCAAGCGTT -ACGGAAGAACACAGAGCATTCGTC -ACGGAAGAACACAGAGCATCTCTC -ACGGAAGAACACAGAGCATGGATC -ACGGAAGAACACAGAGCACACTTC -ACGGAAGAACACAGAGCAGTACTC -ACGGAAGAACACAGAGCAGATGTC -ACGGAAGAACACAGAGCAACAGTC -ACGGAAGAACACAGAGCATTGCTG -ACGGAAGAACACAGAGCATCCATG -ACGGAAGAACACAGAGCATGTGTG -ACGGAAGAACACAGAGCACTAGTG -ACGGAAGAACACAGAGCACATCTG -ACGGAAGAACACAGAGCAGAGTTG -ACGGAAGAACACAGAGCAAGACTG -ACGGAAGAACACAGAGCATCGGTA -ACGGAAGAACACAGAGCATGCCTA -ACGGAAGAACACAGAGCACCACTA -ACGGAAGAACACAGAGCAGGAGTA -ACGGAAGAACACAGAGCATCGTCT -ACGGAAGAACACAGAGCATGCACT -ACGGAAGAACACAGAGCACTGACT -ACGGAAGAACACAGAGCACAACCT -ACGGAAGAACACAGAGCAGCTACT -ACGGAAGAACACAGAGCAGGATCT -ACGGAAGAACACAGAGCAAAGGCT -ACGGAAGAACACAGAGCATCAACC -ACGGAAGAACACAGAGCATGTTCC -ACGGAAGAACACAGAGCAATTCCC -ACGGAAGAACACAGAGCATTCTCG -ACGGAAGAACACAGAGCATAGACG -ACGGAAGAACACAGAGCAGTAACG -ACGGAAGAACACAGAGCAACTTCG -ACGGAAGAACACAGAGCATACGCA -ACGGAAGAACACAGAGCACTTGCA -ACGGAAGAACACAGAGCACGAACA -ACGGAAGAACACAGAGCACAGTCA -ACGGAAGAACACAGAGCAGATCCA -ACGGAAGAACACAGAGCAACGACA -ACGGAAGAACACAGAGCAAGCTCA -ACGGAAGAACACAGAGCATCACGT -ACGGAAGAACACAGAGCACGTAGT -ACGGAAGAACACAGAGCAGTCAGT -ACGGAAGAACACAGAGCAGAAGGT -ACGGAAGAACACAGAGCAAACCGT -ACGGAAGAACACAGAGCATTGTGC -ACGGAAGAACACAGAGCACTAAGC -ACGGAAGAACACAGAGCAACTAGC -ACGGAAGAACACAGAGCAAGATGC -ACGGAAGAACACAGAGCATGAAGG -ACGGAAGAACACAGAGCACAATGG -ACGGAAGAACACAGAGCAATGAGG -ACGGAAGAACACAGAGCAAATGGG -ACGGAAGAACACAGAGCATCCTGA -ACGGAAGAACACAGAGCATAGCGA -ACGGAAGAACACAGAGCACACAGA -ACGGAAGAACACAGAGCAGCAAGA -ACGGAAGAACACAGAGCAGGTTGA -ACGGAAGAACACAGAGCATCCGAT -ACGGAAGAACACAGAGCATGGCAT -ACGGAAGAACACAGAGCACGAGAT -ACGGAAGAACACAGAGCATACCAC -ACGGAAGAACACAGAGCACAGAAC -ACGGAAGAACACAGAGCAGTCTAC -ACGGAAGAACACAGAGCAACGTAC -ACGGAAGAACACAGAGCAAGTGAC -ACGGAAGAACACAGAGCACTGTAG -ACGGAAGAACACAGAGCACCTAAG -ACGGAAGAACACAGAGCAGTTCAG -ACGGAAGAACACAGAGCAGCATAG -ACGGAAGAACACAGAGCAGACAAG -ACGGAAGAACACAGAGCAAAGCAG -ACGGAAGAACACAGAGCACGTCAA -ACGGAAGAACACAGAGCAGCTGAA -ACGGAAGAACACAGAGCAAGTACG -ACGGAAGAACACAGAGCAATCCGA -ACGGAAGAACACAGAGCAATGGGA -ACGGAAGAACACAGAGCAGTGCAA -ACGGAAGAACACAGAGCAGAGGAA -ACGGAAGAACACAGAGCACAGGTA -ACGGAAGAACACAGAGCAGACTCT -ACGGAAGAACACAGAGCAAGTCCT -ACGGAAGAACACAGAGCATAAGCC -ACGGAAGAACACAGAGCAATAGCC -ACGGAAGAACACAGAGCATAACCG -ACGGAAGAACACAGAGCAATGCCA -ACGGAAGAACACTGAGGTGGAAAC -ACGGAAGAACACTGAGGTAACACC -ACGGAAGAACACTGAGGTATCGAG -ACGGAAGAACACTGAGGTCTCCTT -ACGGAAGAACACTGAGGTCCTGTT -ACGGAAGAACACTGAGGTCGGTTT -ACGGAAGAACACTGAGGTGTGGTT -ACGGAAGAACACTGAGGTGCCTTT -ACGGAAGAACACTGAGGTGGTCTT -ACGGAAGAACACTGAGGTACGCTT -ACGGAAGAACACTGAGGTAGCGTT -ACGGAAGAACACTGAGGTTTCGTC -ACGGAAGAACACTGAGGTTCTCTC -ACGGAAGAACACTGAGGTTGGATC -ACGGAAGAACACTGAGGTCACTTC -ACGGAAGAACACTGAGGTGTACTC -ACGGAAGAACACTGAGGTGATGTC -ACGGAAGAACACTGAGGTACAGTC -ACGGAAGAACACTGAGGTTTGCTG -ACGGAAGAACACTGAGGTTCCATG -ACGGAAGAACACTGAGGTTGTGTG -ACGGAAGAACACTGAGGTCTAGTG -ACGGAAGAACACTGAGGTCATCTG -ACGGAAGAACACTGAGGTGAGTTG -ACGGAAGAACACTGAGGTAGACTG -ACGGAAGAACACTGAGGTTCGGTA -ACGGAAGAACACTGAGGTTGCCTA -ACGGAAGAACACTGAGGTCCACTA -ACGGAAGAACACTGAGGTGGAGTA -ACGGAAGAACACTGAGGTTCGTCT -ACGGAAGAACACTGAGGTTGCACT -ACGGAAGAACACTGAGGTCTGACT -ACGGAAGAACACTGAGGTCAACCT -ACGGAAGAACACTGAGGTGCTACT -ACGGAAGAACACTGAGGTGGATCT -ACGGAAGAACACTGAGGTAAGGCT -ACGGAAGAACACTGAGGTTCAACC -ACGGAAGAACACTGAGGTTGTTCC -ACGGAAGAACACTGAGGTATTCCC -ACGGAAGAACACTGAGGTTTCTCG -ACGGAAGAACACTGAGGTTAGACG -ACGGAAGAACACTGAGGTGTAACG -ACGGAAGAACACTGAGGTACTTCG -ACGGAAGAACACTGAGGTTACGCA -ACGGAAGAACACTGAGGTCTTGCA -ACGGAAGAACACTGAGGTCGAACA -ACGGAAGAACACTGAGGTCAGTCA -ACGGAAGAACACTGAGGTGATCCA -ACGGAAGAACACTGAGGTACGACA -ACGGAAGAACACTGAGGTAGCTCA -ACGGAAGAACACTGAGGTTCACGT -ACGGAAGAACACTGAGGTCGTAGT -ACGGAAGAACACTGAGGTGTCAGT -ACGGAAGAACACTGAGGTGAAGGT -ACGGAAGAACACTGAGGTAACCGT -ACGGAAGAACACTGAGGTTTGTGC -ACGGAAGAACACTGAGGTCTAAGC -ACGGAAGAACACTGAGGTACTAGC -ACGGAAGAACACTGAGGTAGATGC -ACGGAAGAACACTGAGGTTGAAGG -ACGGAAGAACACTGAGGTCAATGG -ACGGAAGAACACTGAGGTATGAGG -ACGGAAGAACACTGAGGTAATGGG -ACGGAAGAACACTGAGGTTCCTGA -ACGGAAGAACACTGAGGTTAGCGA -ACGGAAGAACACTGAGGTCACAGA -ACGGAAGAACACTGAGGTGCAAGA -ACGGAAGAACACTGAGGTGGTTGA -ACGGAAGAACACTGAGGTTCCGAT -ACGGAAGAACACTGAGGTTGGCAT -ACGGAAGAACACTGAGGTCGAGAT -ACGGAAGAACACTGAGGTTACCAC -ACGGAAGAACACTGAGGTCAGAAC -ACGGAAGAACACTGAGGTGTCTAC -ACGGAAGAACACTGAGGTACGTAC -ACGGAAGAACACTGAGGTAGTGAC -ACGGAAGAACACTGAGGTCTGTAG -ACGGAAGAACACTGAGGTCCTAAG -ACGGAAGAACACTGAGGTGTTCAG -ACGGAAGAACACTGAGGTGCATAG -ACGGAAGAACACTGAGGTGACAAG -ACGGAAGAACACTGAGGTAAGCAG -ACGGAAGAACACTGAGGTCGTCAA -ACGGAAGAACACTGAGGTGCTGAA -ACGGAAGAACACTGAGGTAGTACG -ACGGAAGAACACTGAGGTATCCGA -ACGGAAGAACACTGAGGTATGGGA -ACGGAAGAACACTGAGGTGTGCAA -ACGGAAGAACACTGAGGTGAGGAA -ACGGAAGAACACTGAGGTCAGGTA -ACGGAAGAACACTGAGGTGACTCT -ACGGAAGAACACTGAGGTAGTCCT -ACGGAAGAACACTGAGGTTAAGCC -ACGGAAGAACACTGAGGTATAGCC -ACGGAAGAACACTGAGGTTAACCG -ACGGAAGAACACTGAGGTATGCCA -ACGGAAGAACACGATTCCGGAAAC -ACGGAAGAACACGATTCCAACACC -ACGGAAGAACACGATTCCATCGAG -ACGGAAGAACACGATTCCCTCCTT -ACGGAAGAACACGATTCCCCTGTT -ACGGAAGAACACGATTCCCGGTTT -ACGGAAGAACACGATTCCGTGGTT -ACGGAAGAACACGATTCCGCCTTT -ACGGAAGAACACGATTCCGGTCTT -ACGGAAGAACACGATTCCACGCTT -ACGGAAGAACACGATTCCAGCGTT -ACGGAAGAACACGATTCCTTCGTC -ACGGAAGAACACGATTCCTCTCTC -ACGGAAGAACACGATTCCTGGATC -ACGGAAGAACACGATTCCCACTTC -ACGGAAGAACACGATTCCGTACTC -ACGGAAGAACACGATTCCGATGTC -ACGGAAGAACACGATTCCACAGTC -ACGGAAGAACACGATTCCTTGCTG -ACGGAAGAACACGATTCCTCCATG -ACGGAAGAACACGATTCCTGTGTG -ACGGAAGAACACGATTCCCTAGTG -ACGGAAGAACACGATTCCCATCTG -ACGGAAGAACACGATTCCGAGTTG -ACGGAAGAACACGATTCCAGACTG -ACGGAAGAACACGATTCCTCGGTA -ACGGAAGAACACGATTCCTGCCTA -ACGGAAGAACACGATTCCCCACTA -ACGGAAGAACACGATTCCGGAGTA -ACGGAAGAACACGATTCCTCGTCT -ACGGAAGAACACGATTCCTGCACT -ACGGAAGAACACGATTCCCTGACT -ACGGAAGAACACGATTCCCAACCT -ACGGAAGAACACGATTCCGCTACT -ACGGAAGAACACGATTCCGGATCT -ACGGAAGAACACGATTCCAAGGCT -ACGGAAGAACACGATTCCTCAACC -ACGGAAGAACACGATTCCTGTTCC -ACGGAAGAACACGATTCCATTCCC -ACGGAAGAACACGATTCCTTCTCG -ACGGAAGAACACGATTCCTAGACG -ACGGAAGAACACGATTCCGTAACG -ACGGAAGAACACGATTCCACTTCG -ACGGAAGAACACGATTCCTACGCA -ACGGAAGAACACGATTCCCTTGCA -ACGGAAGAACACGATTCCCGAACA -ACGGAAGAACACGATTCCCAGTCA -ACGGAAGAACACGATTCCGATCCA -ACGGAAGAACACGATTCCACGACA -ACGGAAGAACACGATTCCAGCTCA -ACGGAAGAACACGATTCCTCACGT -ACGGAAGAACACGATTCCCGTAGT -ACGGAAGAACACGATTCCGTCAGT -ACGGAAGAACACGATTCCGAAGGT -ACGGAAGAACACGATTCCAACCGT -ACGGAAGAACACGATTCCTTGTGC -ACGGAAGAACACGATTCCCTAAGC -ACGGAAGAACACGATTCCACTAGC -ACGGAAGAACACGATTCCAGATGC -ACGGAAGAACACGATTCCTGAAGG -ACGGAAGAACACGATTCCCAATGG -ACGGAAGAACACGATTCCATGAGG -ACGGAAGAACACGATTCCAATGGG -ACGGAAGAACACGATTCCTCCTGA -ACGGAAGAACACGATTCCTAGCGA -ACGGAAGAACACGATTCCCACAGA -ACGGAAGAACACGATTCCGCAAGA -ACGGAAGAACACGATTCCGGTTGA -ACGGAAGAACACGATTCCTCCGAT -ACGGAAGAACACGATTCCTGGCAT -ACGGAAGAACACGATTCCCGAGAT -ACGGAAGAACACGATTCCTACCAC -ACGGAAGAACACGATTCCCAGAAC -ACGGAAGAACACGATTCCGTCTAC -ACGGAAGAACACGATTCCACGTAC -ACGGAAGAACACGATTCCAGTGAC -ACGGAAGAACACGATTCCCTGTAG -ACGGAAGAACACGATTCCCCTAAG -ACGGAAGAACACGATTCCGTTCAG -ACGGAAGAACACGATTCCGCATAG -ACGGAAGAACACGATTCCGACAAG -ACGGAAGAACACGATTCCAAGCAG -ACGGAAGAACACGATTCCCGTCAA -ACGGAAGAACACGATTCCGCTGAA -ACGGAAGAACACGATTCCAGTACG -ACGGAAGAACACGATTCCATCCGA -ACGGAAGAACACGATTCCATGGGA -ACGGAAGAACACGATTCCGTGCAA -ACGGAAGAACACGATTCCGAGGAA -ACGGAAGAACACGATTCCCAGGTA -ACGGAAGAACACGATTCCGACTCT -ACGGAAGAACACGATTCCAGTCCT -ACGGAAGAACACGATTCCTAAGCC -ACGGAAGAACACGATTCCATAGCC -ACGGAAGAACACGATTCCTAACCG -ACGGAAGAACACGATTCCATGCCA -ACGGAAGAACACCATTGGGGAAAC -ACGGAAGAACACCATTGGAACACC -ACGGAAGAACACCATTGGATCGAG -ACGGAAGAACACCATTGGCTCCTT -ACGGAAGAACACCATTGGCCTGTT -ACGGAAGAACACCATTGGCGGTTT -ACGGAAGAACACCATTGGGTGGTT -ACGGAAGAACACCATTGGGCCTTT -ACGGAAGAACACCATTGGGGTCTT -ACGGAAGAACACCATTGGACGCTT -ACGGAAGAACACCATTGGAGCGTT -ACGGAAGAACACCATTGGTTCGTC -ACGGAAGAACACCATTGGTCTCTC -ACGGAAGAACACCATTGGTGGATC -ACGGAAGAACACCATTGGCACTTC -ACGGAAGAACACCATTGGGTACTC -ACGGAAGAACACCATTGGGATGTC -ACGGAAGAACACCATTGGACAGTC -ACGGAAGAACACCATTGGTTGCTG -ACGGAAGAACACCATTGGTCCATG -ACGGAAGAACACCATTGGTGTGTG -ACGGAAGAACACCATTGGCTAGTG -ACGGAAGAACACCATTGGCATCTG -ACGGAAGAACACCATTGGGAGTTG -ACGGAAGAACACCATTGGAGACTG -ACGGAAGAACACCATTGGTCGGTA -ACGGAAGAACACCATTGGTGCCTA -ACGGAAGAACACCATTGGCCACTA -ACGGAAGAACACCATTGGGGAGTA -ACGGAAGAACACCATTGGTCGTCT -ACGGAAGAACACCATTGGTGCACT -ACGGAAGAACACCATTGGCTGACT -ACGGAAGAACACCATTGGCAACCT -ACGGAAGAACACCATTGGGCTACT -ACGGAAGAACACCATTGGGGATCT -ACGGAAGAACACCATTGGAAGGCT -ACGGAAGAACACCATTGGTCAACC -ACGGAAGAACACCATTGGTGTTCC -ACGGAAGAACACCATTGGATTCCC -ACGGAAGAACACCATTGGTTCTCG -ACGGAAGAACACCATTGGTAGACG -ACGGAAGAACACCATTGGGTAACG -ACGGAAGAACACCATTGGACTTCG -ACGGAAGAACACCATTGGTACGCA -ACGGAAGAACACCATTGGCTTGCA -ACGGAAGAACACCATTGGCGAACA -ACGGAAGAACACCATTGGCAGTCA -ACGGAAGAACACCATTGGGATCCA -ACGGAAGAACACCATTGGACGACA -ACGGAAGAACACCATTGGAGCTCA -ACGGAAGAACACCATTGGTCACGT -ACGGAAGAACACCATTGGCGTAGT -ACGGAAGAACACCATTGGGTCAGT -ACGGAAGAACACCATTGGGAAGGT -ACGGAAGAACACCATTGGAACCGT -ACGGAAGAACACCATTGGTTGTGC -ACGGAAGAACACCATTGGCTAAGC -ACGGAAGAACACCATTGGACTAGC -ACGGAAGAACACCATTGGAGATGC -ACGGAAGAACACCATTGGTGAAGG -ACGGAAGAACACCATTGGCAATGG -ACGGAAGAACACCATTGGATGAGG -ACGGAAGAACACCATTGGAATGGG -ACGGAAGAACACCATTGGTCCTGA -ACGGAAGAACACCATTGGTAGCGA -ACGGAAGAACACCATTGGCACAGA -ACGGAAGAACACCATTGGGCAAGA -ACGGAAGAACACCATTGGGGTTGA -ACGGAAGAACACCATTGGTCCGAT -ACGGAAGAACACCATTGGTGGCAT -ACGGAAGAACACCATTGGCGAGAT -ACGGAAGAACACCATTGGTACCAC -ACGGAAGAACACCATTGGCAGAAC -ACGGAAGAACACCATTGGGTCTAC -ACGGAAGAACACCATTGGACGTAC -ACGGAAGAACACCATTGGAGTGAC -ACGGAAGAACACCATTGGCTGTAG -ACGGAAGAACACCATTGGCCTAAG -ACGGAAGAACACCATTGGGTTCAG -ACGGAAGAACACCATTGGGCATAG -ACGGAAGAACACCATTGGGACAAG -ACGGAAGAACACCATTGGAAGCAG -ACGGAAGAACACCATTGGCGTCAA -ACGGAAGAACACCATTGGGCTGAA -ACGGAAGAACACCATTGGAGTACG -ACGGAAGAACACCATTGGATCCGA -ACGGAAGAACACCATTGGATGGGA -ACGGAAGAACACCATTGGGTGCAA -ACGGAAGAACACCATTGGGAGGAA -ACGGAAGAACACCATTGGCAGGTA -ACGGAAGAACACCATTGGGACTCT -ACGGAAGAACACCATTGGAGTCCT -ACGGAAGAACACCATTGGTAAGCC -ACGGAAGAACACCATTGGATAGCC -ACGGAAGAACACCATTGGTAACCG -ACGGAAGAACACCATTGGATGCCA -ACGGAAGAACACGATCGAGGAAAC -ACGGAAGAACACGATCGAAACACC -ACGGAAGAACACGATCGAATCGAG -ACGGAAGAACACGATCGACTCCTT -ACGGAAGAACACGATCGACCTGTT -ACGGAAGAACACGATCGACGGTTT -ACGGAAGAACACGATCGAGTGGTT -ACGGAAGAACACGATCGAGCCTTT -ACGGAAGAACACGATCGAGGTCTT -ACGGAAGAACACGATCGAACGCTT -ACGGAAGAACACGATCGAAGCGTT -ACGGAAGAACACGATCGATTCGTC -ACGGAAGAACACGATCGATCTCTC -ACGGAAGAACACGATCGATGGATC -ACGGAAGAACACGATCGACACTTC -ACGGAAGAACACGATCGAGTACTC -ACGGAAGAACACGATCGAGATGTC -ACGGAAGAACACGATCGAACAGTC -ACGGAAGAACACGATCGATTGCTG -ACGGAAGAACACGATCGATCCATG -ACGGAAGAACACGATCGATGTGTG -ACGGAAGAACACGATCGACTAGTG -ACGGAAGAACACGATCGACATCTG -ACGGAAGAACACGATCGAGAGTTG -ACGGAAGAACACGATCGAAGACTG -ACGGAAGAACACGATCGATCGGTA -ACGGAAGAACACGATCGATGCCTA -ACGGAAGAACACGATCGACCACTA -ACGGAAGAACACGATCGAGGAGTA -ACGGAAGAACACGATCGATCGTCT -ACGGAAGAACACGATCGATGCACT -ACGGAAGAACACGATCGACTGACT -ACGGAAGAACACGATCGACAACCT -ACGGAAGAACACGATCGAGCTACT -ACGGAAGAACACGATCGAGGATCT -ACGGAAGAACACGATCGAAAGGCT -ACGGAAGAACACGATCGATCAACC -ACGGAAGAACACGATCGATGTTCC -ACGGAAGAACACGATCGAATTCCC -ACGGAAGAACACGATCGATTCTCG -ACGGAAGAACACGATCGATAGACG -ACGGAAGAACACGATCGAGTAACG -ACGGAAGAACACGATCGAACTTCG -ACGGAAGAACACGATCGATACGCA -ACGGAAGAACACGATCGACTTGCA -ACGGAAGAACACGATCGACGAACA -ACGGAAGAACACGATCGACAGTCA -ACGGAAGAACACGATCGAGATCCA -ACGGAAGAACACGATCGAACGACA -ACGGAAGAACACGATCGAAGCTCA -ACGGAAGAACACGATCGATCACGT -ACGGAAGAACACGATCGACGTAGT -ACGGAAGAACACGATCGAGTCAGT -ACGGAAGAACACGATCGAGAAGGT -ACGGAAGAACACGATCGAAACCGT -ACGGAAGAACACGATCGATTGTGC -ACGGAAGAACACGATCGACTAAGC -ACGGAAGAACACGATCGAACTAGC -ACGGAAGAACACGATCGAAGATGC -ACGGAAGAACACGATCGATGAAGG -ACGGAAGAACACGATCGACAATGG -ACGGAAGAACACGATCGAATGAGG -ACGGAAGAACACGATCGAAATGGG -ACGGAAGAACACGATCGATCCTGA -ACGGAAGAACACGATCGATAGCGA -ACGGAAGAACACGATCGACACAGA -ACGGAAGAACACGATCGAGCAAGA -ACGGAAGAACACGATCGAGGTTGA -ACGGAAGAACACGATCGATCCGAT -ACGGAAGAACACGATCGATGGCAT -ACGGAAGAACACGATCGACGAGAT -ACGGAAGAACACGATCGATACCAC -ACGGAAGAACACGATCGACAGAAC -ACGGAAGAACACGATCGAGTCTAC -ACGGAAGAACACGATCGAACGTAC -ACGGAAGAACACGATCGAAGTGAC -ACGGAAGAACACGATCGACTGTAG -ACGGAAGAACACGATCGACCTAAG -ACGGAAGAACACGATCGAGTTCAG -ACGGAAGAACACGATCGAGCATAG -ACGGAAGAACACGATCGAGACAAG -ACGGAAGAACACGATCGAAAGCAG -ACGGAAGAACACGATCGACGTCAA -ACGGAAGAACACGATCGAGCTGAA -ACGGAAGAACACGATCGAAGTACG -ACGGAAGAACACGATCGAATCCGA -ACGGAAGAACACGATCGAATGGGA -ACGGAAGAACACGATCGAGTGCAA -ACGGAAGAACACGATCGAGAGGAA -ACGGAAGAACACGATCGACAGGTA -ACGGAAGAACACGATCGAGACTCT -ACGGAAGAACACGATCGAAGTCCT -ACGGAAGAACACGATCGATAAGCC -ACGGAAGAACACGATCGAATAGCC -ACGGAAGAACACGATCGATAACCG -ACGGAAGAACACGATCGAATGCCA -ACGGAAGAACACCACTACGGAAAC -ACGGAAGAACACCACTACAACACC -ACGGAAGAACACCACTACATCGAG -ACGGAAGAACACCACTACCTCCTT -ACGGAAGAACACCACTACCCTGTT -ACGGAAGAACACCACTACCGGTTT -ACGGAAGAACACCACTACGTGGTT -ACGGAAGAACACCACTACGCCTTT -ACGGAAGAACACCACTACGGTCTT -ACGGAAGAACACCACTACACGCTT -ACGGAAGAACACCACTACAGCGTT -ACGGAAGAACACCACTACTTCGTC -ACGGAAGAACACCACTACTCTCTC -ACGGAAGAACACCACTACTGGATC -ACGGAAGAACACCACTACCACTTC -ACGGAAGAACACCACTACGTACTC -ACGGAAGAACACCACTACGATGTC -ACGGAAGAACACCACTACACAGTC -ACGGAAGAACACCACTACTTGCTG -ACGGAAGAACACCACTACTCCATG -ACGGAAGAACACCACTACTGTGTG -ACGGAAGAACACCACTACCTAGTG -ACGGAAGAACACCACTACCATCTG -ACGGAAGAACACCACTACGAGTTG -ACGGAAGAACACCACTACAGACTG -ACGGAAGAACACCACTACTCGGTA -ACGGAAGAACACCACTACTGCCTA -ACGGAAGAACACCACTACCCACTA -ACGGAAGAACACCACTACGGAGTA -ACGGAAGAACACCACTACTCGTCT -ACGGAAGAACACCACTACTGCACT -ACGGAAGAACACCACTACCTGACT -ACGGAAGAACACCACTACCAACCT -ACGGAAGAACACCACTACGCTACT -ACGGAAGAACACCACTACGGATCT -ACGGAAGAACACCACTACAAGGCT -ACGGAAGAACACCACTACTCAACC -ACGGAAGAACACCACTACTGTTCC -ACGGAAGAACACCACTACATTCCC -ACGGAAGAACACCACTACTTCTCG -ACGGAAGAACACCACTACTAGACG -ACGGAAGAACACCACTACGTAACG -ACGGAAGAACACCACTACACTTCG -ACGGAAGAACACCACTACTACGCA -ACGGAAGAACACCACTACCTTGCA -ACGGAAGAACACCACTACCGAACA -ACGGAAGAACACCACTACCAGTCA -ACGGAAGAACACCACTACGATCCA -ACGGAAGAACACCACTACACGACA -ACGGAAGAACACCACTACAGCTCA -ACGGAAGAACACCACTACTCACGT -ACGGAAGAACACCACTACCGTAGT -ACGGAAGAACACCACTACGTCAGT -ACGGAAGAACACCACTACGAAGGT -ACGGAAGAACACCACTACAACCGT -ACGGAAGAACACCACTACTTGTGC -ACGGAAGAACACCACTACCTAAGC -ACGGAAGAACACCACTACACTAGC -ACGGAAGAACACCACTACAGATGC -ACGGAAGAACACCACTACTGAAGG -ACGGAAGAACACCACTACCAATGG -ACGGAAGAACACCACTACATGAGG -ACGGAAGAACACCACTACAATGGG -ACGGAAGAACACCACTACTCCTGA -ACGGAAGAACACCACTACTAGCGA -ACGGAAGAACACCACTACCACAGA -ACGGAAGAACACCACTACGCAAGA -ACGGAAGAACACCACTACGGTTGA -ACGGAAGAACACCACTACTCCGAT -ACGGAAGAACACCACTACTGGCAT -ACGGAAGAACACCACTACCGAGAT -ACGGAAGAACACCACTACTACCAC -ACGGAAGAACACCACTACCAGAAC -ACGGAAGAACACCACTACGTCTAC -ACGGAAGAACACCACTACACGTAC -ACGGAAGAACACCACTACAGTGAC -ACGGAAGAACACCACTACCTGTAG -ACGGAAGAACACCACTACCCTAAG -ACGGAAGAACACCACTACGTTCAG -ACGGAAGAACACCACTACGCATAG -ACGGAAGAACACCACTACGACAAG -ACGGAAGAACACCACTACAAGCAG -ACGGAAGAACACCACTACCGTCAA -ACGGAAGAACACCACTACGCTGAA -ACGGAAGAACACCACTACAGTACG -ACGGAAGAACACCACTACATCCGA -ACGGAAGAACACCACTACATGGGA -ACGGAAGAACACCACTACGTGCAA -ACGGAAGAACACCACTACGAGGAA -ACGGAAGAACACCACTACCAGGTA -ACGGAAGAACACCACTACGACTCT -ACGGAAGAACACCACTACAGTCCT -ACGGAAGAACACCACTACTAAGCC -ACGGAAGAACACCACTACATAGCC -ACGGAAGAACACCACTACTAACCG -ACGGAAGAACACCACTACATGCCA -ACGGAAGAACACAACCAGGGAAAC -ACGGAAGAACACAACCAGAACACC -ACGGAAGAACACAACCAGATCGAG -ACGGAAGAACACAACCAGCTCCTT -ACGGAAGAACACAACCAGCCTGTT -ACGGAAGAACACAACCAGCGGTTT -ACGGAAGAACACAACCAGGTGGTT -ACGGAAGAACACAACCAGGCCTTT -ACGGAAGAACACAACCAGGGTCTT -ACGGAAGAACACAACCAGACGCTT -ACGGAAGAACACAACCAGAGCGTT -ACGGAAGAACACAACCAGTTCGTC -ACGGAAGAACACAACCAGTCTCTC -ACGGAAGAACACAACCAGTGGATC -ACGGAAGAACACAACCAGCACTTC -ACGGAAGAACACAACCAGGTACTC -ACGGAAGAACACAACCAGGATGTC -ACGGAAGAACACAACCAGACAGTC -ACGGAAGAACACAACCAGTTGCTG -ACGGAAGAACACAACCAGTCCATG -ACGGAAGAACACAACCAGTGTGTG -ACGGAAGAACACAACCAGCTAGTG -ACGGAAGAACACAACCAGCATCTG -ACGGAAGAACACAACCAGGAGTTG -ACGGAAGAACACAACCAGAGACTG -ACGGAAGAACACAACCAGTCGGTA -ACGGAAGAACACAACCAGTGCCTA -ACGGAAGAACACAACCAGCCACTA -ACGGAAGAACACAACCAGGGAGTA -ACGGAAGAACACAACCAGTCGTCT -ACGGAAGAACACAACCAGTGCACT -ACGGAAGAACACAACCAGCTGACT -ACGGAAGAACACAACCAGCAACCT -ACGGAAGAACACAACCAGGCTACT -ACGGAAGAACACAACCAGGGATCT -ACGGAAGAACACAACCAGAAGGCT -ACGGAAGAACACAACCAGTCAACC -ACGGAAGAACACAACCAGTGTTCC -ACGGAAGAACACAACCAGATTCCC -ACGGAAGAACACAACCAGTTCTCG -ACGGAAGAACACAACCAGTAGACG -ACGGAAGAACACAACCAGGTAACG -ACGGAAGAACACAACCAGACTTCG -ACGGAAGAACACAACCAGTACGCA -ACGGAAGAACACAACCAGCTTGCA -ACGGAAGAACACAACCAGCGAACA -ACGGAAGAACACAACCAGCAGTCA -ACGGAAGAACACAACCAGGATCCA -ACGGAAGAACACAACCAGACGACA -ACGGAAGAACACAACCAGAGCTCA -ACGGAAGAACACAACCAGTCACGT -ACGGAAGAACACAACCAGCGTAGT -ACGGAAGAACACAACCAGGTCAGT -ACGGAAGAACACAACCAGGAAGGT -ACGGAAGAACACAACCAGAACCGT -ACGGAAGAACACAACCAGTTGTGC -ACGGAAGAACACAACCAGCTAAGC -ACGGAAGAACACAACCAGACTAGC -ACGGAAGAACACAACCAGAGATGC -ACGGAAGAACACAACCAGTGAAGG -ACGGAAGAACACAACCAGCAATGG -ACGGAAGAACACAACCAGATGAGG -ACGGAAGAACACAACCAGAATGGG -ACGGAAGAACACAACCAGTCCTGA -ACGGAAGAACACAACCAGTAGCGA -ACGGAAGAACACAACCAGCACAGA -ACGGAAGAACACAACCAGGCAAGA -ACGGAAGAACACAACCAGGGTTGA -ACGGAAGAACACAACCAGTCCGAT -ACGGAAGAACACAACCAGTGGCAT -ACGGAAGAACACAACCAGCGAGAT -ACGGAAGAACACAACCAGTACCAC -ACGGAAGAACACAACCAGCAGAAC -ACGGAAGAACACAACCAGGTCTAC -ACGGAAGAACACAACCAGACGTAC -ACGGAAGAACACAACCAGAGTGAC -ACGGAAGAACACAACCAGCTGTAG -ACGGAAGAACACAACCAGCCTAAG -ACGGAAGAACACAACCAGGTTCAG -ACGGAAGAACACAACCAGGCATAG -ACGGAAGAACACAACCAGGACAAG -ACGGAAGAACACAACCAGAAGCAG -ACGGAAGAACACAACCAGCGTCAA -ACGGAAGAACACAACCAGGCTGAA -ACGGAAGAACACAACCAGAGTACG -ACGGAAGAACACAACCAGATCCGA -ACGGAAGAACACAACCAGATGGGA -ACGGAAGAACACAACCAGGTGCAA -ACGGAAGAACACAACCAGGAGGAA -ACGGAAGAACACAACCAGCAGGTA -ACGGAAGAACACAACCAGGACTCT -ACGGAAGAACACAACCAGAGTCCT -ACGGAAGAACACAACCAGTAAGCC -ACGGAAGAACACAACCAGATAGCC -ACGGAAGAACACAACCAGTAACCG -ACGGAAGAACACAACCAGATGCCA -ACGGAAGAACACTACGTCGGAAAC -ACGGAAGAACACTACGTCAACACC -ACGGAAGAACACTACGTCATCGAG -ACGGAAGAACACTACGTCCTCCTT -ACGGAAGAACACTACGTCCCTGTT -ACGGAAGAACACTACGTCCGGTTT -ACGGAAGAACACTACGTCGTGGTT -ACGGAAGAACACTACGTCGCCTTT -ACGGAAGAACACTACGTCGGTCTT -ACGGAAGAACACTACGTCACGCTT -ACGGAAGAACACTACGTCAGCGTT -ACGGAAGAACACTACGTCTTCGTC -ACGGAAGAACACTACGTCTCTCTC -ACGGAAGAACACTACGTCTGGATC -ACGGAAGAACACTACGTCCACTTC -ACGGAAGAACACTACGTCGTACTC -ACGGAAGAACACTACGTCGATGTC -ACGGAAGAACACTACGTCACAGTC -ACGGAAGAACACTACGTCTTGCTG -ACGGAAGAACACTACGTCTCCATG -ACGGAAGAACACTACGTCTGTGTG -ACGGAAGAACACTACGTCCTAGTG -ACGGAAGAACACTACGTCCATCTG -ACGGAAGAACACTACGTCGAGTTG -ACGGAAGAACACTACGTCAGACTG -ACGGAAGAACACTACGTCTCGGTA -ACGGAAGAACACTACGTCTGCCTA -ACGGAAGAACACTACGTCCCACTA -ACGGAAGAACACTACGTCGGAGTA -ACGGAAGAACACTACGTCTCGTCT -ACGGAAGAACACTACGTCTGCACT -ACGGAAGAACACTACGTCCTGACT -ACGGAAGAACACTACGTCCAACCT -ACGGAAGAACACTACGTCGCTACT -ACGGAAGAACACTACGTCGGATCT -ACGGAAGAACACTACGTCAAGGCT -ACGGAAGAACACTACGTCTCAACC -ACGGAAGAACACTACGTCTGTTCC -ACGGAAGAACACTACGTCATTCCC -ACGGAAGAACACTACGTCTTCTCG -ACGGAAGAACACTACGTCTAGACG -ACGGAAGAACACTACGTCGTAACG -ACGGAAGAACACTACGTCACTTCG -ACGGAAGAACACTACGTCTACGCA -ACGGAAGAACACTACGTCCTTGCA -ACGGAAGAACACTACGTCCGAACA -ACGGAAGAACACTACGTCCAGTCA -ACGGAAGAACACTACGTCGATCCA -ACGGAAGAACACTACGTCACGACA -ACGGAAGAACACTACGTCAGCTCA -ACGGAAGAACACTACGTCTCACGT -ACGGAAGAACACTACGTCCGTAGT -ACGGAAGAACACTACGTCGTCAGT -ACGGAAGAACACTACGTCGAAGGT -ACGGAAGAACACTACGTCAACCGT -ACGGAAGAACACTACGTCTTGTGC -ACGGAAGAACACTACGTCCTAAGC -ACGGAAGAACACTACGTCACTAGC -ACGGAAGAACACTACGTCAGATGC -ACGGAAGAACACTACGTCTGAAGG -ACGGAAGAACACTACGTCCAATGG -ACGGAAGAACACTACGTCATGAGG -ACGGAAGAACACTACGTCAATGGG -ACGGAAGAACACTACGTCTCCTGA -ACGGAAGAACACTACGTCTAGCGA -ACGGAAGAACACTACGTCCACAGA -ACGGAAGAACACTACGTCGCAAGA -ACGGAAGAACACTACGTCGGTTGA -ACGGAAGAACACTACGTCTCCGAT -ACGGAAGAACACTACGTCTGGCAT -ACGGAAGAACACTACGTCCGAGAT -ACGGAAGAACACTACGTCTACCAC -ACGGAAGAACACTACGTCCAGAAC -ACGGAAGAACACTACGTCGTCTAC -ACGGAAGAACACTACGTCACGTAC -ACGGAAGAACACTACGTCAGTGAC -ACGGAAGAACACTACGTCCTGTAG -ACGGAAGAACACTACGTCCCTAAG -ACGGAAGAACACTACGTCGTTCAG -ACGGAAGAACACTACGTCGCATAG -ACGGAAGAACACTACGTCGACAAG -ACGGAAGAACACTACGTCAAGCAG -ACGGAAGAACACTACGTCCGTCAA -ACGGAAGAACACTACGTCGCTGAA -ACGGAAGAACACTACGTCAGTACG -ACGGAAGAACACTACGTCATCCGA -ACGGAAGAACACTACGTCATGGGA -ACGGAAGAACACTACGTCGTGCAA -ACGGAAGAACACTACGTCGAGGAA -ACGGAAGAACACTACGTCCAGGTA -ACGGAAGAACACTACGTCGACTCT -ACGGAAGAACACTACGTCAGTCCT -ACGGAAGAACACTACGTCTAAGCC -ACGGAAGAACACTACGTCATAGCC -ACGGAAGAACACTACGTCTAACCG -ACGGAAGAACACTACGTCATGCCA -ACGGAAGAACACTACACGGGAAAC -ACGGAAGAACACTACACGAACACC -ACGGAAGAACACTACACGATCGAG -ACGGAAGAACACTACACGCTCCTT -ACGGAAGAACACTACACGCCTGTT -ACGGAAGAACACTACACGCGGTTT -ACGGAAGAACACTACACGGTGGTT -ACGGAAGAACACTACACGGCCTTT -ACGGAAGAACACTACACGGGTCTT -ACGGAAGAACACTACACGACGCTT -ACGGAAGAACACTACACGAGCGTT -ACGGAAGAACACTACACGTTCGTC -ACGGAAGAACACTACACGTCTCTC -ACGGAAGAACACTACACGTGGATC -ACGGAAGAACACTACACGCACTTC -ACGGAAGAACACTACACGGTACTC -ACGGAAGAACACTACACGGATGTC -ACGGAAGAACACTACACGACAGTC -ACGGAAGAACACTACACGTTGCTG -ACGGAAGAACACTACACGTCCATG -ACGGAAGAACACTACACGTGTGTG -ACGGAAGAACACTACACGCTAGTG -ACGGAAGAACACTACACGCATCTG -ACGGAAGAACACTACACGGAGTTG -ACGGAAGAACACTACACGAGACTG -ACGGAAGAACACTACACGTCGGTA -ACGGAAGAACACTACACGTGCCTA -ACGGAAGAACACTACACGCCACTA -ACGGAAGAACACTACACGGGAGTA -ACGGAAGAACACTACACGTCGTCT -ACGGAAGAACACTACACGTGCACT -ACGGAAGAACACTACACGCTGACT -ACGGAAGAACACTACACGCAACCT -ACGGAAGAACACTACACGGCTACT -ACGGAAGAACACTACACGGGATCT -ACGGAAGAACACTACACGAAGGCT -ACGGAAGAACACTACACGTCAACC -ACGGAAGAACACTACACGTGTTCC -ACGGAAGAACACTACACGATTCCC -ACGGAAGAACACTACACGTTCTCG -ACGGAAGAACACTACACGTAGACG -ACGGAAGAACACTACACGGTAACG -ACGGAAGAACACTACACGACTTCG -ACGGAAGAACACTACACGTACGCA -ACGGAAGAACACTACACGCTTGCA -ACGGAAGAACACTACACGCGAACA -ACGGAAGAACACTACACGCAGTCA -ACGGAAGAACACTACACGGATCCA -ACGGAAGAACACTACACGACGACA -ACGGAAGAACACTACACGAGCTCA -ACGGAAGAACACTACACGTCACGT -ACGGAAGAACACTACACGCGTAGT -ACGGAAGAACACTACACGGTCAGT -ACGGAAGAACACTACACGGAAGGT -ACGGAAGAACACTACACGAACCGT -ACGGAAGAACACTACACGTTGTGC -ACGGAAGAACACTACACGCTAAGC -ACGGAAGAACACTACACGACTAGC -ACGGAAGAACACTACACGAGATGC -ACGGAAGAACACTACACGTGAAGG -ACGGAAGAACACTACACGCAATGG -ACGGAAGAACACTACACGATGAGG -ACGGAAGAACACTACACGAATGGG -ACGGAAGAACACTACACGTCCTGA -ACGGAAGAACACTACACGTAGCGA -ACGGAAGAACACTACACGCACAGA -ACGGAAGAACACTACACGGCAAGA -ACGGAAGAACACTACACGGGTTGA -ACGGAAGAACACTACACGTCCGAT -ACGGAAGAACACTACACGTGGCAT -ACGGAAGAACACTACACGCGAGAT -ACGGAAGAACACTACACGTACCAC -ACGGAAGAACACTACACGCAGAAC -ACGGAAGAACACTACACGGTCTAC -ACGGAAGAACACTACACGACGTAC -ACGGAAGAACACTACACGAGTGAC -ACGGAAGAACACTACACGCTGTAG -ACGGAAGAACACTACACGCCTAAG -ACGGAAGAACACTACACGGTTCAG -ACGGAAGAACACTACACGGCATAG -ACGGAAGAACACTACACGGACAAG -ACGGAAGAACACTACACGAAGCAG -ACGGAAGAACACTACACGCGTCAA -ACGGAAGAACACTACACGGCTGAA -ACGGAAGAACACTACACGAGTACG -ACGGAAGAACACTACACGATCCGA -ACGGAAGAACACTACACGATGGGA -ACGGAAGAACACTACACGGTGCAA -ACGGAAGAACACTACACGGAGGAA -ACGGAAGAACACTACACGCAGGTA -ACGGAAGAACACTACACGGACTCT -ACGGAAGAACACTACACGAGTCCT -ACGGAAGAACACTACACGTAAGCC -ACGGAAGAACACTACACGATAGCC -ACGGAAGAACACTACACGTAACCG -ACGGAAGAACACTACACGATGCCA -ACGGAAGAACACGACAGTGGAAAC -ACGGAAGAACACGACAGTAACACC -ACGGAAGAACACGACAGTATCGAG -ACGGAAGAACACGACAGTCTCCTT -ACGGAAGAACACGACAGTCCTGTT -ACGGAAGAACACGACAGTCGGTTT -ACGGAAGAACACGACAGTGTGGTT -ACGGAAGAACACGACAGTGCCTTT -ACGGAAGAACACGACAGTGGTCTT -ACGGAAGAACACGACAGTACGCTT -ACGGAAGAACACGACAGTAGCGTT -ACGGAAGAACACGACAGTTTCGTC -ACGGAAGAACACGACAGTTCTCTC -ACGGAAGAACACGACAGTTGGATC -ACGGAAGAACACGACAGTCACTTC -ACGGAAGAACACGACAGTGTACTC -ACGGAAGAACACGACAGTGATGTC -ACGGAAGAACACGACAGTACAGTC -ACGGAAGAACACGACAGTTTGCTG -ACGGAAGAACACGACAGTTCCATG -ACGGAAGAACACGACAGTTGTGTG -ACGGAAGAACACGACAGTCTAGTG -ACGGAAGAACACGACAGTCATCTG -ACGGAAGAACACGACAGTGAGTTG -ACGGAAGAACACGACAGTAGACTG -ACGGAAGAACACGACAGTTCGGTA -ACGGAAGAACACGACAGTTGCCTA -ACGGAAGAACACGACAGTCCACTA -ACGGAAGAACACGACAGTGGAGTA -ACGGAAGAACACGACAGTTCGTCT -ACGGAAGAACACGACAGTTGCACT -ACGGAAGAACACGACAGTCTGACT -ACGGAAGAACACGACAGTCAACCT -ACGGAAGAACACGACAGTGCTACT -ACGGAAGAACACGACAGTGGATCT -ACGGAAGAACACGACAGTAAGGCT -ACGGAAGAACACGACAGTTCAACC -ACGGAAGAACACGACAGTTGTTCC -ACGGAAGAACACGACAGTATTCCC -ACGGAAGAACACGACAGTTTCTCG -ACGGAAGAACACGACAGTTAGACG -ACGGAAGAACACGACAGTGTAACG -ACGGAAGAACACGACAGTACTTCG -ACGGAAGAACACGACAGTTACGCA -ACGGAAGAACACGACAGTCTTGCA -ACGGAAGAACACGACAGTCGAACA -ACGGAAGAACACGACAGTCAGTCA -ACGGAAGAACACGACAGTGATCCA -ACGGAAGAACACGACAGTACGACA -ACGGAAGAACACGACAGTAGCTCA -ACGGAAGAACACGACAGTTCACGT -ACGGAAGAACACGACAGTCGTAGT -ACGGAAGAACACGACAGTGTCAGT -ACGGAAGAACACGACAGTGAAGGT -ACGGAAGAACACGACAGTAACCGT -ACGGAAGAACACGACAGTTTGTGC -ACGGAAGAACACGACAGTCTAAGC -ACGGAAGAACACGACAGTACTAGC -ACGGAAGAACACGACAGTAGATGC -ACGGAAGAACACGACAGTTGAAGG -ACGGAAGAACACGACAGTCAATGG -ACGGAAGAACACGACAGTATGAGG -ACGGAAGAACACGACAGTAATGGG -ACGGAAGAACACGACAGTTCCTGA -ACGGAAGAACACGACAGTTAGCGA -ACGGAAGAACACGACAGTCACAGA -ACGGAAGAACACGACAGTGCAAGA -ACGGAAGAACACGACAGTGGTTGA -ACGGAAGAACACGACAGTTCCGAT -ACGGAAGAACACGACAGTTGGCAT -ACGGAAGAACACGACAGTCGAGAT -ACGGAAGAACACGACAGTTACCAC -ACGGAAGAACACGACAGTCAGAAC -ACGGAAGAACACGACAGTGTCTAC -ACGGAAGAACACGACAGTACGTAC -ACGGAAGAACACGACAGTAGTGAC -ACGGAAGAACACGACAGTCTGTAG -ACGGAAGAACACGACAGTCCTAAG -ACGGAAGAACACGACAGTGTTCAG -ACGGAAGAACACGACAGTGCATAG -ACGGAAGAACACGACAGTGACAAG -ACGGAAGAACACGACAGTAAGCAG -ACGGAAGAACACGACAGTCGTCAA -ACGGAAGAACACGACAGTGCTGAA -ACGGAAGAACACGACAGTAGTACG -ACGGAAGAACACGACAGTATCCGA -ACGGAAGAACACGACAGTATGGGA -ACGGAAGAACACGACAGTGTGCAA -ACGGAAGAACACGACAGTGAGGAA -ACGGAAGAACACGACAGTCAGGTA -ACGGAAGAACACGACAGTGACTCT -ACGGAAGAACACGACAGTAGTCCT -ACGGAAGAACACGACAGTTAAGCC -ACGGAAGAACACGACAGTATAGCC -ACGGAAGAACACGACAGTTAACCG -ACGGAAGAACACGACAGTATGCCA -ACGGAAGAACACTAGCTGGGAAAC -ACGGAAGAACACTAGCTGAACACC -ACGGAAGAACACTAGCTGATCGAG -ACGGAAGAACACTAGCTGCTCCTT -ACGGAAGAACACTAGCTGCCTGTT -ACGGAAGAACACTAGCTGCGGTTT -ACGGAAGAACACTAGCTGGTGGTT -ACGGAAGAACACTAGCTGGCCTTT -ACGGAAGAACACTAGCTGGGTCTT -ACGGAAGAACACTAGCTGACGCTT -ACGGAAGAACACTAGCTGAGCGTT -ACGGAAGAACACTAGCTGTTCGTC -ACGGAAGAACACTAGCTGTCTCTC -ACGGAAGAACACTAGCTGTGGATC -ACGGAAGAACACTAGCTGCACTTC -ACGGAAGAACACTAGCTGGTACTC -ACGGAAGAACACTAGCTGGATGTC -ACGGAAGAACACTAGCTGACAGTC -ACGGAAGAACACTAGCTGTTGCTG -ACGGAAGAACACTAGCTGTCCATG -ACGGAAGAACACTAGCTGTGTGTG -ACGGAAGAACACTAGCTGCTAGTG -ACGGAAGAACACTAGCTGCATCTG -ACGGAAGAACACTAGCTGGAGTTG -ACGGAAGAACACTAGCTGAGACTG -ACGGAAGAACACTAGCTGTCGGTA -ACGGAAGAACACTAGCTGTGCCTA -ACGGAAGAACACTAGCTGCCACTA -ACGGAAGAACACTAGCTGGGAGTA -ACGGAAGAACACTAGCTGTCGTCT -ACGGAAGAACACTAGCTGTGCACT -ACGGAAGAACACTAGCTGCTGACT -ACGGAAGAACACTAGCTGCAACCT -ACGGAAGAACACTAGCTGGCTACT -ACGGAAGAACACTAGCTGGGATCT -ACGGAAGAACACTAGCTGAAGGCT -ACGGAAGAACACTAGCTGTCAACC -ACGGAAGAACACTAGCTGTGTTCC -ACGGAAGAACACTAGCTGATTCCC -ACGGAAGAACACTAGCTGTTCTCG -ACGGAAGAACACTAGCTGTAGACG -ACGGAAGAACACTAGCTGGTAACG -ACGGAAGAACACTAGCTGACTTCG -ACGGAAGAACACTAGCTGTACGCA -ACGGAAGAACACTAGCTGCTTGCA -ACGGAAGAACACTAGCTGCGAACA -ACGGAAGAACACTAGCTGCAGTCA -ACGGAAGAACACTAGCTGGATCCA -ACGGAAGAACACTAGCTGACGACA -ACGGAAGAACACTAGCTGAGCTCA -ACGGAAGAACACTAGCTGTCACGT -ACGGAAGAACACTAGCTGCGTAGT -ACGGAAGAACACTAGCTGGTCAGT -ACGGAAGAACACTAGCTGGAAGGT -ACGGAAGAACACTAGCTGAACCGT -ACGGAAGAACACTAGCTGTTGTGC -ACGGAAGAACACTAGCTGCTAAGC -ACGGAAGAACACTAGCTGACTAGC -ACGGAAGAACACTAGCTGAGATGC -ACGGAAGAACACTAGCTGTGAAGG -ACGGAAGAACACTAGCTGCAATGG -ACGGAAGAACACTAGCTGATGAGG -ACGGAAGAACACTAGCTGAATGGG -ACGGAAGAACACTAGCTGTCCTGA -ACGGAAGAACACTAGCTGTAGCGA -ACGGAAGAACACTAGCTGCACAGA -ACGGAAGAACACTAGCTGGCAAGA -ACGGAAGAACACTAGCTGGGTTGA -ACGGAAGAACACTAGCTGTCCGAT -ACGGAAGAACACTAGCTGTGGCAT -ACGGAAGAACACTAGCTGCGAGAT -ACGGAAGAACACTAGCTGTACCAC -ACGGAAGAACACTAGCTGCAGAAC -ACGGAAGAACACTAGCTGGTCTAC -ACGGAAGAACACTAGCTGACGTAC -ACGGAAGAACACTAGCTGAGTGAC -ACGGAAGAACACTAGCTGCTGTAG -ACGGAAGAACACTAGCTGCCTAAG -ACGGAAGAACACTAGCTGGTTCAG -ACGGAAGAACACTAGCTGGCATAG -ACGGAAGAACACTAGCTGGACAAG -ACGGAAGAACACTAGCTGAAGCAG -ACGGAAGAACACTAGCTGCGTCAA -ACGGAAGAACACTAGCTGGCTGAA -ACGGAAGAACACTAGCTGAGTACG -ACGGAAGAACACTAGCTGATCCGA -ACGGAAGAACACTAGCTGATGGGA -ACGGAAGAACACTAGCTGGTGCAA -ACGGAAGAACACTAGCTGGAGGAA -ACGGAAGAACACTAGCTGCAGGTA -ACGGAAGAACACTAGCTGGACTCT -ACGGAAGAACACTAGCTGAGTCCT -ACGGAAGAACACTAGCTGTAAGCC -ACGGAAGAACACTAGCTGATAGCC -ACGGAAGAACACTAGCTGTAACCG -ACGGAAGAACACTAGCTGATGCCA -ACGGAAGAACACAAGCCTGGAAAC -ACGGAAGAACACAAGCCTAACACC -ACGGAAGAACACAAGCCTATCGAG -ACGGAAGAACACAAGCCTCTCCTT -ACGGAAGAACACAAGCCTCCTGTT -ACGGAAGAACACAAGCCTCGGTTT -ACGGAAGAACACAAGCCTGTGGTT -ACGGAAGAACACAAGCCTGCCTTT -ACGGAAGAACACAAGCCTGGTCTT -ACGGAAGAACACAAGCCTACGCTT -ACGGAAGAACACAAGCCTAGCGTT -ACGGAAGAACACAAGCCTTTCGTC -ACGGAAGAACACAAGCCTTCTCTC -ACGGAAGAACACAAGCCTTGGATC -ACGGAAGAACACAAGCCTCACTTC -ACGGAAGAACACAAGCCTGTACTC -ACGGAAGAACACAAGCCTGATGTC -ACGGAAGAACACAAGCCTACAGTC -ACGGAAGAACACAAGCCTTTGCTG -ACGGAAGAACACAAGCCTTCCATG -ACGGAAGAACACAAGCCTTGTGTG -ACGGAAGAACACAAGCCTCTAGTG -ACGGAAGAACACAAGCCTCATCTG -ACGGAAGAACACAAGCCTGAGTTG -ACGGAAGAACACAAGCCTAGACTG -ACGGAAGAACACAAGCCTTCGGTA -ACGGAAGAACACAAGCCTTGCCTA -ACGGAAGAACACAAGCCTCCACTA -ACGGAAGAACACAAGCCTGGAGTA -ACGGAAGAACACAAGCCTTCGTCT -ACGGAAGAACACAAGCCTTGCACT -ACGGAAGAACACAAGCCTCTGACT -ACGGAAGAACACAAGCCTCAACCT -ACGGAAGAACACAAGCCTGCTACT -ACGGAAGAACACAAGCCTGGATCT -ACGGAAGAACACAAGCCTAAGGCT -ACGGAAGAACACAAGCCTTCAACC -ACGGAAGAACACAAGCCTTGTTCC -ACGGAAGAACACAAGCCTATTCCC -ACGGAAGAACACAAGCCTTTCTCG -ACGGAAGAACACAAGCCTTAGACG -ACGGAAGAACACAAGCCTGTAACG -ACGGAAGAACACAAGCCTACTTCG -ACGGAAGAACACAAGCCTTACGCA -ACGGAAGAACACAAGCCTCTTGCA -ACGGAAGAACACAAGCCTCGAACA -ACGGAAGAACACAAGCCTCAGTCA -ACGGAAGAACACAAGCCTGATCCA -ACGGAAGAACACAAGCCTACGACA -ACGGAAGAACACAAGCCTAGCTCA -ACGGAAGAACACAAGCCTTCACGT -ACGGAAGAACACAAGCCTCGTAGT -ACGGAAGAACACAAGCCTGTCAGT -ACGGAAGAACACAAGCCTGAAGGT -ACGGAAGAACACAAGCCTAACCGT -ACGGAAGAACACAAGCCTTTGTGC -ACGGAAGAACACAAGCCTCTAAGC -ACGGAAGAACACAAGCCTACTAGC -ACGGAAGAACACAAGCCTAGATGC -ACGGAAGAACACAAGCCTTGAAGG -ACGGAAGAACACAAGCCTCAATGG -ACGGAAGAACACAAGCCTATGAGG -ACGGAAGAACACAAGCCTAATGGG -ACGGAAGAACACAAGCCTTCCTGA -ACGGAAGAACACAAGCCTTAGCGA -ACGGAAGAACACAAGCCTCACAGA -ACGGAAGAACACAAGCCTGCAAGA -ACGGAAGAACACAAGCCTGGTTGA -ACGGAAGAACACAAGCCTTCCGAT -ACGGAAGAACACAAGCCTTGGCAT -ACGGAAGAACACAAGCCTCGAGAT -ACGGAAGAACACAAGCCTTACCAC -ACGGAAGAACACAAGCCTCAGAAC -ACGGAAGAACACAAGCCTGTCTAC -ACGGAAGAACACAAGCCTACGTAC -ACGGAAGAACACAAGCCTAGTGAC -ACGGAAGAACACAAGCCTCTGTAG -ACGGAAGAACACAAGCCTCCTAAG -ACGGAAGAACACAAGCCTGTTCAG -ACGGAAGAACACAAGCCTGCATAG -ACGGAAGAACACAAGCCTGACAAG -ACGGAAGAACACAAGCCTAAGCAG -ACGGAAGAACACAAGCCTCGTCAA -ACGGAAGAACACAAGCCTGCTGAA -ACGGAAGAACACAAGCCTAGTACG -ACGGAAGAACACAAGCCTATCCGA -ACGGAAGAACACAAGCCTATGGGA -ACGGAAGAACACAAGCCTGTGCAA -ACGGAAGAACACAAGCCTGAGGAA -ACGGAAGAACACAAGCCTCAGGTA -ACGGAAGAACACAAGCCTGACTCT -ACGGAAGAACACAAGCCTAGTCCT -ACGGAAGAACACAAGCCTTAAGCC -ACGGAAGAACACAAGCCTATAGCC -ACGGAAGAACACAAGCCTTAACCG -ACGGAAGAACACAAGCCTATGCCA -ACGGAAGAACACCAGGTTGGAAAC -ACGGAAGAACACCAGGTTAACACC -ACGGAAGAACACCAGGTTATCGAG -ACGGAAGAACACCAGGTTCTCCTT -ACGGAAGAACACCAGGTTCCTGTT -ACGGAAGAACACCAGGTTCGGTTT -ACGGAAGAACACCAGGTTGTGGTT -ACGGAAGAACACCAGGTTGCCTTT -ACGGAAGAACACCAGGTTGGTCTT -ACGGAAGAACACCAGGTTACGCTT -ACGGAAGAACACCAGGTTAGCGTT -ACGGAAGAACACCAGGTTTTCGTC -ACGGAAGAACACCAGGTTTCTCTC -ACGGAAGAACACCAGGTTTGGATC -ACGGAAGAACACCAGGTTCACTTC -ACGGAAGAACACCAGGTTGTACTC -ACGGAAGAACACCAGGTTGATGTC -ACGGAAGAACACCAGGTTACAGTC -ACGGAAGAACACCAGGTTTTGCTG -ACGGAAGAACACCAGGTTTCCATG -ACGGAAGAACACCAGGTTTGTGTG -ACGGAAGAACACCAGGTTCTAGTG -ACGGAAGAACACCAGGTTCATCTG -ACGGAAGAACACCAGGTTGAGTTG -ACGGAAGAACACCAGGTTAGACTG -ACGGAAGAACACCAGGTTTCGGTA -ACGGAAGAACACCAGGTTTGCCTA -ACGGAAGAACACCAGGTTCCACTA -ACGGAAGAACACCAGGTTGGAGTA -ACGGAAGAACACCAGGTTTCGTCT -ACGGAAGAACACCAGGTTTGCACT -ACGGAAGAACACCAGGTTCTGACT -ACGGAAGAACACCAGGTTCAACCT -ACGGAAGAACACCAGGTTGCTACT -ACGGAAGAACACCAGGTTGGATCT -ACGGAAGAACACCAGGTTAAGGCT -ACGGAAGAACACCAGGTTTCAACC -ACGGAAGAACACCAGGTTTGTTCC -ACGGAAGAACACCAGGTTATTCCC -ACGGAAGAACACCAGGTTTTCTCG -ACGGAAGAACACCAGGTTTAGACG -ACGGAAGAACACCAGGTTGTAACG -ACGGAAGAACACCAGGTTACTTCG -ACGGAAGAACACCAGGTTTACGCA -ACGGAAGAACACCAGGTTCTTGCA -ACGGAAGAACACCAGGTTCGAACA -ACGGAAGAACACCAGGTTCAGTCA -ACGGAAGAACACCAGGTTGATCCA -ACGGAAGAACACCAGGTTACGACA -ACGGAAGAACACCAGGTTAGCTCA -ACGGAAGAACACCAGGTTTCACGT -ACGGAAGAACACCAGGTTCGTAGT -ACGGAAGAACACCAGGTTGTCAGT -ACGGAAGAACACCAGGTTGAAGGT -ACGGAAGAACACCAGGTTAACCGT -ACGGAAGAACACCAGGTTTTGTGC -ACGGAAGAACACCAGGTTCTAAGC -ACGGAAGAACACCAGGTTACTAGC -ACGGAAGAACACCAGGTTAGATGC -ACGGAAGAACACCAGGTTTGAAGG -ACGGAAGAACACCAGGTTCAATGG -ACGGAAGAACACCAGGTTATGAGG -ACGGAAGAACACCAGGTTAATGGG -ACGGAAGAACACCAGGTTTCCTGA -ACGGAAGAACACCAGGTTTAGCGA -ACGGAAGAACACCAGGTTCACAGA -ACGGAAGAACACCAGGTTGCAAGA -ACGGAAGAACACCAGGTTGGTTGA -ACGGAAGAACACCAGGTTTCCGAT -ACGGAAGAACACCAGGTTTGGCAT -ACGGAAGAACACCAGGTTCGAGAT -ACGGAAGAACACCAGGTTTACCAC -ACGGAAGAACACCAGGTTCAGAAC -ACGGAAGAACACCAGGTTGTCTAC -ACGGAAGAACACCAGGTTACGTAC -ACGGAAGAACACCAGGTTAGTGAC -ACGGAAGAACACCAGGTTCTGTAG -ACGGAAGAACACCAGGTTCCTAAG -ACGGAAGAACACCAGGTTGTTCAG -ACGGAAGAACACCAGGTTGCATAG -ACGGAAGAACACCAGGTTGACAAG -ACGGAAGAACACCAGGTTAAGCAG -ACGGAAGAACACCAGGTTCGTCAA -ACGGAAGAACACCAGGTTGCTGAA -ACGGAAGAACACCAGGTTAGTACG -ACGGAAGAACACCAGGTTATCCGA -ACGGAAGAACACCAGGTTATGGGA -ACGGAAGAACACCAGGTTGTGCAA -ACGGAAGAACACCAGGTTGAGGAA -ACGGAAGAACACCAGGTTCAGGTA -ACGGAAGAACACCAGGTTGACTCT -ACGGAAGAACACCAGGTTAGTCCT -ACGGAAGAACACCAGGTTTAAGCC -ACGGAAGAACACCAGGTTATAGCC -ACGGAAGAACACCAGGTTTAACCG -ACGGAAGAACACCAGGTTATGCCA -ACGGAAGAACACTAGGCAGGAAAC -ACGGAAGAACACTAGGCAAACACC -ACGGAAGAACACTAGGCAATCGAG -ACGGAAGAACACTAGGCACTCCTT -ACGGAAGAACACTAGGCACCTGTT -ACGGAAGAACACTAGGCACGGTTT -ACGGAAGAACACTAGGCAGTGGTT -ACGGAAGAACACTAGGCAGCCTTT -ACGGAAGAACACTAGGCAGGTCTT -ACGGAAGAACACTAGGCAACGCTT -ACGGAAGAACACTAGGCAAGCGTT -ACGGAAGAACACTAGGCATTCGTC -ACGGAAGAACACTAGGCATCTCTC -ACGGAAGAACACTAGGCATGGATC -ACGGAAGAACACTAGGCACACTTC -ACGGAAGAACACTAGGCAGTACTC -ACGGAAGAACACTAGGCAGATGTC -ACGGAAGAACACTAGGCAACAGTC -ACGGAAGAACACTAGGCATTGCTG -ACGGAAGAACACTAGGCATCCATG -ACGGAAGAACACTAGGCATGTGTG -ACGGAAGAACACTAGGCACTAGTG -ACGGAAGAACACTAGGCACATCTG -ACGGAAGAACACTAGGCAGAGTTG -ACGGAAGAACACTAGGCAAGACTG -ACGGAAGAACACTAGGCATCGGTA -ACGGAAGAACACTAGGCATGCCTA -ACGGAAGAACACTAGGCACCACTA -ACGGAAGAACACTAGGCAGGAGTA -ACGGAAGAACACTAGGCATCGTCT -ACGGAAGAACACTAGGCATGCACT -ACGGAAGAACACTAGGCACTGACT -ACGGAAGAACACTAGGCACAACCT -ACGGAAGAACACTAGGCAGCTACT -ACGGAAGAACACTAGGCAGGATCT -ACGGAAGAACACTAGGCAAAGGCT -ACGGAAGAACACTAGGCATCAACC -ACGGAAGAACACTAGGCATGTTCC -ACGGAAGAACACTAGGCAATTCCC -ACGGAAGAACACTAGGCATTCTCG -ACGGAAGAACACTAGGCATAGACG -ACGGAAGAACACTAGGCAGTAACG -ACGGAAGAACACTAGGCAACTTCG -ACGGAAGAACACTAGGCATACGCA -ACGGAAGAACACTAGGCACTTGCA -ACGGAAGAACACTAGGCACGAACA -ACGGAAGAACACTAGGCACAGTCA -ACGGAAGAACACTAGGCAGATCCA -ACGGAAGAACACTAGGCAACGACA -ACGGAAGAACACTAGGCAAGCTCA -ACGGAAGAACACTAGGCATCACGT -ACGGAAGAACACTAGGCACGTAGT -ACGGAAGAACACTAGGCAGTCAGT -ACGGAAGAACACTAGGCAGAAGGT -ACGGAAGAACACTAGGCAAACCGT -ACGGAAGAACACTAGGCATTGTGC -ACGGAAGAACACTAGGCACTAAGC -ACGGAAGAACACTAGGCAACTAGC -ACGGAAGAACACTAGGCAAGATGC -ACGGAAGAACACTAGGCATGAAGG -ACGGAAGAACACTAGGCACAATGG -ACGGAAGAACACTAGGCAATGAGG -ACGGAAGAACACTAGGCAAATGGG -ACGGAAGAACACTAGGCATCCTGA -ACGGAAGAACACTAGGCATAGCGA -ACGGAAGAACACTAGGCACACAGA -ACGGAAGAACACTAGGCAGCAAGA -ACGGAAGAACACTAGGCAGGTTGA -ACGGAAGAACACTAGGCATCCGAT -ACGGAAGAACACTAGGCATGGCAT -ACGGAAGAACACTAGGCACGAGAT -ACGGAAGAACACTAGGCATACCAC -ACGGAAGAACACTAGGCACAGAAC -ACGGAAGAACACTAGGCAGTCTAC -ACGGAAGAACACTAGGCAACGTAC -ACGGAAGAACACTAGGCAAGTGAC -ACGGAAGAACACTAGGCACTGTAG -ACGGAAGAACACTAGGCACCTAAG -ACGGAAGAACACTAGGCAGTTCAG -ACGGAAGAACACTAGGCAGCATAG -ACGGAAGAACACTAGGCAGACAAG -ACGGAAGAACACTAGGCAAAGCAG -ACGGAAGAACACTAGGCACGTCAA -ACGGAAGAACACTAGGCAGCTGAA -ACGGAAGAACACTAGGCAAGTACG -ACGGAAGAACACTAGGCAATCCGA -ACGGAAGAACACTAGGCAATGGGA -ACGGAAGAACACTAGGCAGTGCAA -ACGGAAGAACACTAGGCAGAGGAA -ACGGAAGAACACTAGGCACAGGTA -ACGGAAGAACACTAGGCAGACTCT -ACGGAAGAACACTAGGCAAGTCCT -ACGGAAGAACACTAGGCATAAGCC -ACGGAAGAACACTAGGCAATAGCC -ACGGAAGAACACTAGGCATAACCG -ACGGAAGAACACTAGGCAATGCCA -ACGGAAGAACACAAGGACGGAAAC -ACGGAAGAACACAAGGACAACACC -ACGGAAGAACACAAGGACATCGAG -ACGGAAGAACACAAGGACCTCCTT -ACGGAAGAACACAAGGACCCTGTT -ACGGAAGAACACAAGGACCGGTTT -ACGGAAGAACACAAGGACGTGGTT -ACGGAAGAACACAAGGACGCCTTT -ACGGAAGAACACAAGGACGGTCTT -ACGGAAGAACACAAGGACACGCTT -ACGGAAGAACACAAGGACAGCGTT -ACGGAAGAACACAAGGACTTCGTC -ACGGAAGAACACAAGGACTCTCTC -ACGGAAGAACACAAGGACTGGATC -ACGGAAGAACACAAGGACCACTTC -ACGGAAGAACACAAGGACGTACTC -ACGGAAGAACACAAGGACGATGTC -ACGGAAGAACACAAGGACACAGTC -ACGGAAGAACACAAGGACTTGCTG -ACGGAAGAACACAAGGACTCCATG -ACGGAAGAACACAAGGACTGTGTG -ACGGAAGAACACAAGGACCTAGTG -ACGGAAGAACACAAGGACCATCTG -ACGGAAGAACACAAGGACGAGTTG -ACGGAAGAACACAAGGACAGACTG -ACGGAAGAACACAAGGACTCGGTA -ACGGAAGAACACAAGGACTGCCTA -ACGGAAGAACACAAGGACCCACTA -ACGGAAGAACACAAGGACGGAGTA -ACGGAAGAACACAAGGACTCGTCT -ACGGAAGAACACAAGGACTGCACT -ACGGAAGAACACAAGGACCTGACT -ACGGAAGAACACAAGGACCAACCT -ACGGAAGAACACAAGGACGCTACT -ACGGAAGAACACAAGGACGGATCT -ACGGAAGAACACAAGGACAAGGCT -ACGGAAGAACACAAGGACTCAACC -ACGGAAGAACACAAGGACTGTTCC -ACGGAAGAACACAAGGACATTCCC -ACGGAAGAACACAAGGACTTCTCG -ACGGAAGAACACAAGGACTAGACG -ACGGAAGAACACAAGGACGTAACG -ACGGAAGAACACAAGGACACTTCG -ACGGAAGAACACAAGGACTACGCA -ACGGAAGAACACAAGGACCTTGCA -ACGGAAGAACACAAGGACCGAACA -ACGGAAGAACACAAGGACCAGTCA -ACGGAAGAACACAAGGACGATCCA -ACGGAAGAACACAAGGACACGACA -ACGGAAGAACACAAGGACAGCTCA -ACGGAAGAACACAAGGACTCACGT -ACGGAAGAACACAAGGACCGTAGT -ACGGAAGAACACAAGGACGTCAGT -ACGGAAGAACACAAGGACGAAGGT -ACGGAAGAACACAAGGACAACCGT -ACGGAAGAACACAAGGACTTGTGC -ACGGAAGAACACAAGGACCTAAGC -ACGGAAGAACACAAGGACACTAGC -ACGGAAGAACACAAGGACAGATGC -ACGGAAGAACACAAGGACTGAAGG -ACGGAAGAACACAAGGACCAATGG -ACGGAAGAACACAAGGACATGAGG -ACGGAAGAACACAAGGACAATGGG -ACGGAAGAACACAAGGACTCCTGA -ACGGAAGAACACAAGGACTAGCGA -ACGGAAGAACACAAGGACCACAGA -ACGGAAGAACACAAGGACGCAAGA -ACGGAAGAACACAAGGACGGTTGA -ACGGAAGAACACAAGGACTCCGAT -ACGGAAGAACACAAGGACTGGCAT -ACGGAAGAACACAAGGACCGAGAT -ACGGAAGAACACAAGGACTACCAC -ACGGAAGAACACAAGGACCAGAAC -ACGGAAGAACACAAGGACGTCTAC -ACGGAAGAACACAAGGACACGTAC -ACGGAAGAACACAAGGACAGTGAC -ACGGAAGAACACAAGGACCTGTAG -ACGGAAGAACACAAGGACCCTAAG -ACGGAAGAACACAAGGACGTTCAG -ACGGAAGAACACAAGGACGCATAG -ACGGAAGAACACAAGGACGACAAG -ACGGAAGAACACAAGGACAAGCAG -ACGGAAGAACACAAGGACCGTCAA -ACGGAAGAACACAAGGACGCTGAA -ACGGAAGAACACAAGGACAGTACG -ACGGAAGAACACAAGGACATCCGA -ACGGAAGAACACAAGGACATGGGA -ACGGAAGAACACAAGGACGTGCAA -ACGGAAGAACACAAGGACGAGGAA -ACGGAAGAACACAAGGACCAGGTA -ACGGAAGAACACAAGGACGACTCT -ACGGAAGAACACAAGGACAGTCCT -ACGGAAGAACACAAGGACTAAGCC -ACGGAAGAACACAAGGACATAGCC -ACGGAAGAACACAAGGACTAACCG -ACGGAAGAACACAAGGACATGCCA -ACGGAAGAACACCAGAAGGGAAAC -ACGGAAGAACACCAGAAGAACACC -ACGGAAGAACACCAGAAGATCGAG -ACGGAAGAACACCAGAAGCTCCTT -ACGGAAGAACACCAGAAGCCTGTT -ACGGAAGAACACCAGAAGCGGTTT -ACGGAAGAACACCAGAAGGTGGTT -ACGGAAGAACACCAGAAGGCCTTT -ACGGAAGAACACCAGAAGGGTCTT -ACGGAAGAACACCAGAAGACGCTT -ACGGAAGAACACCAGAAGAGCGTT -ACGGAAGAACACCAGAAGTTCGTC -ACGGAAGAACACCAGAAGTCTCTC -ACGGAAGAACACCAGAAGTGGATC -ACGGAAGAACACCAGAAGCACTTC -ACGGAAGAACACCAGAAGGTACTC -ACGGAAGAACACCAGAAGGATGTC -ACGGAAGAACACCAGAAGACAGTC -ACGGAAGAACACCAGAAGTTGCTG -ACGGAAGAACACCAGAAGTCCATG -ACGGAAGAACACCAGAAGTGTGTG -ACGGAAGAACACCAGAAGCTAGTG -ACGGAAGAACACCAGAAGCATCTG -ACGGAAGAACACCAGAAGGAGTTG -ACGGAAGAACACCAGAAGAGACTG -ACGGAAGAACACCAGAAGTCGGTA -ACGGAAGAACACCAGAAGTGCCTA -ACGGAAGAACACCAGAAGCCACTA -ACGGAAGAACACCAGAAGGGAGTA -ACGGAAGAACACCAGAAGTCGTCT -ACGGAAGAACACCAGAAGTGCACT -ACGGAAGAACACCAGAAGCTGACT -ACGGAAGAACACCAGAAGCAACCT -ACGGAAGAACACCAGAAGGCTACT -ACGGAAGAACACCAGAAGGGATCT -ACGGAAGAACACCAGAAGAAGGCT -ACGGAAGAACACCAGAAGTCAACC -ACGGAAGAACACCAGAAGTGTTCC -ACGGAAGAACACCAGAAGATTCCC -ACGGAAGAACACCAGAAGTTCTCG -ACGGAAGAACACCAGAAGTAGACG -ACGGAAGAACACCAGAAGGTAACG -ACGGAAGAACACCAGAAGACTTCG -ACGGAAGAACACCAGAAGTACGCA -ACGGAAGAACACCAGAAGCTTGCA -ACGGAAGAACACCAGAAGCGAACA -ACGGAAGAACACCAGAAGCAGTCA -ACGGAAGAACACCAGAAGGATCCA -ACGGAAGAACACCAGAAGACGACA -ACGGAAGAACACCAGAAGAGCTCA -ACGGAAGAACACCAGAAGTCACGT -ACGGAAGAACACCAGAAGCGTAGT -ACGGAAGAACACCAGAAGGTCAGT -ACGGAAGAACACCAGAAGGAAGGT -ACGGAAGAACACCAGAAGAACCGT -ACGGAAGAACACCAGAAGTTGTGC -ACGGAAGAACACCAGAAGCTAAGC -ACGGAAGAACACCAGAAGACTAGC -ACGGAAGAACACCAGAAGAGATGC -ACGGAAGAACACCAGAAGTGAAGG -ACGGAAGAACACCAGAAGCAATGG -ACGGAAGAACACCAGAAGATGAGG -ACGGAAGAACACCAGAAGAATGGG -ACGGAAGAACACCAGAAGTCCTGA -ACGGAAGAACACCAGAAGTAGCGA -ACGGAAGAACACCAGAAGCACAGA -ACGGAAGAACACCAGAAGGCAAGA -ACGGAAGAACACCAGAAGGGTTGA -ACGGAAGAACACCAGAAGTCCGAT -ACGGAAGAACACCAGAAGTGGCAT -ACGGAAGAACACCAGAAGCGAGAT -ACGGAAGAACACCAGAAGTACCAC -ACGGAAGAACACCAGAAGCAGAAC -ACGGAAGAACACCAGAAGGTCTAC -ACGGAAGAACACCAGAAGACGTAC -ACGGAAGAACACCAGAAGAGTGAC -ACGGAAGAACACCAGAAGCTGTAG -ACGGAAGAACACCAGAAGCCTAAG -ACGGAAGAACACCAGAAGGTTCAG -ACGGAAGAACACCAGAAGGCATAG -ACGGAAGAACACCAGAAGGACAAG -ACGGAAGAACACCAGAAGAAGCAG -ACGGAAGAACACCAGAAGCGTCAA -ACGGAAGAACACCAGAAGGCTGAA -ACGGAAGAACACCAGAAGAGTACG -ACGGAAGAACACCAGAAGATCCGA -ACGGAAGAACACCAGAAGATGGGA -ACGGAAGAACACCAGAAGGTGCAA -ACGGAAGAACACCAGAAGGAGGAA -ACGGAAGAACACCAGAAGCAGGTA -ACGGAAGAACACCAGAAGGACTCT -ACGGAAGAACACCAGAAGAGTCCT -ACGGAAGAACACCAGAAGTAAGCC -ACGGAAGAACACCAGAAGATAGCC -ACGGAAGAACACCAGAAGTAACCG -ACGGAAGAACACCAGAAGATGCCA -ACGGAAGAACACCAACGTGGAAAC -ACGGAAGAACACCAACGTAACACC -ACGGAAGAACACCAACGTATCGAG -ACGGAAGAACACCAACGTCTCCTT -ACGGAAGAACACCAACGTCCTGTT -ACGGAAGAACACCAACGTCGGTTT -ACGGAAGAACACCAACGTGTGGTT -ACGGAAGAACACCAACGTGCCTTT -ACGGAAGAACACCAACGTGGTCTT -ACGGAAGAACACCAACGTACGCTT -ACGGAAGAACACCAACGTAGCGTT -ACGGAAGAACACCAACGTTTCGTC -ACGGAAGAACACCAACGTTCTCTC -ACGGAAGAACACCAACGTTGGATC -ACGGAAGAACACCAACGTCACTTC -ACGGAAGAACACCAACGTGTACTC -ACGGAAGAACACCAACGTGATGTC -ACGGAAGAACACCAACGTACAGTC -ACGGAAGAACACCAACGTTTGCTG -ACGGAAGAACACCAACGTTCCATG -ACGGAAGAACACCAACGTTGTGTG -ACGGAAGAACACCAACGTCTAGTG -ACGGAAGAACACCAACGTCATCTG -ACGGAAGAACACCAACGTGAGTTG -ACGGAAGAACACCAACGTAGACTG -ACGGAAGAACACCAACGTTCGGTA -ACGGAAGAACACCAACGTTGCCTA -ACGGAAGAACACCAACGTCCACTA -ACGGAAGAACACCAACGTGGAGTA -ACGGAAGAACACCAACGTTCGTCT -ACGGAAGAACACCAACGTTGCACT -ACGGAAGAACACCAACGTCTGACT -ACGGAAGAACACCAACGTCAACCT -ACGGAAGAACACCAACGTGCTACT -ACGGAAGAACACCAACGTGGATCT -ACGGAAGAACACCAACGTAAGGCT -ACGGAAGAACACCAACGTTCAACC -ACGGAAGAACACCAACGTTGTTCC -ACGGAAGAACACCAACGTATTCCC -ACGGAAGAACACCAACGTTTCTCG -ACGGAAGAACACCAACGTTAGACG -ACGGAAGAACACCAACGTGTAACG -ACGGAAGAACACCAACGTACTTCG -ACGGAAGAACACCAACGTTACGCA -ACGGAAGAACACCAACGTCTTGCA -ACGGAAGAACACCAACGTCGAACA -ACGGAAGAACACCAACGTCAGTCA -ACGGAAGAACACCAACGTGATCCA -ACGGAAGAACACCAACGTACGACA -ACGGAAGAACACCAACGTAGCTCA -ACGGAAGAACACCAACGTTCACGT -ACGGAAGAACACCAACGTCGTAGT -ACGGAAGAACACCAACGTGTCAGT -ACGGAAGAACACCAACGTGAAGGT -ACGGAAGAACACCAACGTAACCGT -ACGGAAGAACACCAACGTTTGTGC -ACGGAAGAACACCAACGTCTAAGC -ACGGAAGAACACCAACGTACTAGC -ACGGAAGAACACCAACGTAGATGC -ACGGAAGAACACCAACGTTGAAGG -ACGGAAGAACACCAACGTCAATGG -ACGGAAGAACACCAACGTATGAGG -ACGGAAGAACACCAACGTAATGGG -ACGGAAGAACACCAACGTTCCTGA -ACGGAAGAACACCAACGTTAGCGA -ACGGAAGAACACCAACGTCACAGA -ACGGAAGAACACCAACGTGCAAGA -ACGGAAGAACACCAACGTGGTTGA -ACGGAAGAACACCAACGTTCCGAT -ACGGAAGAACACCAACGTTGGCAT -ACGGAAGAACACCAACGTCGAGAT -ACGGAAGAACACCAACGTTACCAC -ACGGAAGAACACCAACGTCAGAAC -ACGGAAGAACACCAACGTGTCTAC -ACGGAAGAACACCAACGTACGTAC -ACGGAAGAACACCAACGTAGTGAC -ACGGAAGAACACCAACGTCTGTAG -ACGGAAGAACACCAACGTCCTAAG -ACGGAAGAACACCAACGTGTTCAG -ACGGAAGAACACCAACGTGCATAG -ACGGAAGAACACCAACGTGACAAG -ACGGAAGAACACCAACGTAAGCAG -ACGGAAGAACACCAACGTCGTCAA -ACGGAAGAACACCAACGTGCTGAA -ACGGAAGAACACCAACGTAGTACG -ACGGAAGAACACCAACGTATCCGA -ACGGAAGAACACCAACGTATGGGA -ACGGAAGAACACCAACGTGTGCAA -ACGGAAGAACACCAACGTGAGGAA -ACGGAAGAACACCAACGTCAGGTA -ACGGAAGAACACCAACGTGACTCT -ACGGAAGAACACCAACGTAGTCCT -ACGGAAGAACACCAACGTTAAGCC -ACGGAAGAACACCAACGTATAGCC -ACGGAAGAACACCAACGTTAACCG -ACGGAAGAACACCAACGTATGCCA -ACGGAAGAACACGAAGCTGGAAAC -ACGGAAGAACACGAAGCTAACACC -ACGGAAGAACACGAAGCTATCGAG -ACGGAAGAACACGAAGCTCTCCTT -ACGGAAGAACACGAAGCTCCTGTT -ACGGAAGAACACGAAGCTCGGTTT -ACGGAAGAACACGAAGCTGTGGTT -ACGGAAGAACACGAAGCTGCCTTT -ACGGAAGAACACGAAGCTGGTCTT -ACGGAAGAACACGAAGCTACGCTT -ACGGAAGAACACGAAGCTAGCGTT -ACGGAAGAACACGAAGCTTTCGTC -ACGGAAGAACACGAAGCTTCTCTC -ACGGAAGAACACGAAGCTTGGATC -ACGGAAGAACACGAAGCTCACTTC -ACGGAAGAACACGAAGCTGTACTC -ACGGAAGAACACGAAGCTGATGTC -ACGGAAGAACACGAAGCTACAGTC -ACGGAAGAACACGAAGCTTTGCTG -ACGGAAGAACACGAAGCTTCCATG -ACGGAAGAACACGAAGCTTGTGTG -ACGGAAGAACACGAAGCTCTAGTG -ACGGAAGAACACGAAGCTCATCTG -ACGGAAGAACACGAAGCTGAGTTG -ACGGAAGAACACGAAGCTAGACTG -ACGGAAGAACACGAAGCTTCGGTA -ACGGAAGAACACGAAGCTTGCCTA -ACGGAAGAACACGAAGCTCCACTA -ACGGAAGAACACGAAGCTGGAGTA -ACGGAAGAACACGAAGCTTCGTCT -ACGGAAGAACACGAAGCTTGCACT -ACGGAAGAACACGAAGCTCTGACT -ACGGAAGAACACGAAGCTCAACCT -ACGGAAGAACACGAAGCTGCTACT -ACGGAAGAACACGAAGCTGGATCT -ACGGAAGAACACGAAGCTAAGGCT -ACGGAAGAACACGAAGCTTCAACC -ACGGAAGAACACGAAGCTTGTTCC -ACGGAAGAACACGAAGCTATTCCC -ACGGAAGAACACGAAGCTTTCTCG -ACGGAAGAACACGAAGCTTAGACG -ACGGAAGAACACGAAGCTGTAACG -ACGGAAGAACACGAAGCTACTTCG -ACGGAAGAACACGAAGCTTACGCA -ACGGAAGAACACGAAGCTCTTGCA -ACGGAAGAACACGAAGCTCGAACA -ACGGAAGAACACGAAGCTCAGTCA -ACGGAAGAACACGAAGCTGATCCA -ACGGAAGAACACGAAGCTACGACA -ACGGAAGAACACGAAGCTAGCTCA -ACGGAAGAACACGAAGCTTCACGT -ACGGAAGAACACGAAGCTCGTAGT -ACGGAAGAACACGAAGCTGTCAGT -ACGGAAGAACACGAAGCTGAAGGT -ACGGAAGAACACGAAGCTAACCGT -ACGGAAGAACACGAAGCTTTGTGC -ACGGAAGAACACGAAGCTCTAAGC -ACGGAAGAACACGAAGCTACTAGC -ACGGAAGAACACGAAGCTAGATGC -ACGGAAGAACACGAAGCTTGAAGG -ACGGAAGAACACGAAGCTCAATGG -ACGGAAGAACACGAAGCTATGAGG -ACGGAAGAACACGAAGCTAATGGG -ACGGAAGAACACGAAGCTTCCTGA -ACGGAAGAACACGAAGCTTAGCGA -ACGGAAGAACACGAAGCTCACAGA -ACGGAAGAACACGAAGCTGCAAGA -ACGGAAGAACACGAAGCTGGTTGA -ACGGAAGAACACGAAGCTTCCGAT -ACGGAAGAACACGAAGCTTGGCAT -ACGGAAGAACACGAAGCTCGAGAT -ACGGAAGAACACGAAGCTTACCAC -ACGGAAGAACACGAAGCTCAGAAC -ACGGAAGAACACGAAGCTGTCTAC -ACGGAAGAACACGAAGCTACGTAC -ACGGAAGAACACGAAGCTAGTGAC -ACGGAAGAACACGAAGCTCTGTAG -ACGGAAGAACACGAAGCTCCTAAG -ACGGAAGAACACGAAGCTGTTCAG -ACGGAAGAACACGAAGCTGCATAG -ACGGAAGAACACGAAGCTGACAAG -ACGGAAGAACACGAAGCTAAGCAG -ACGGAAGAACACGAAGCTCGTCAA -ACGGAAGAACACGAAGCTGCTGAA -ACGGAAGAACACGAAGCTAGTACG -ACGGAAGAACACGAAGCTATCCGA -ACGGAAGAACACGAAGCTATGGGA -ACGGAAGAACACGAAGCTGTGCAA -ACGGAAGAACACGAAGCTGAGGAA -ACGGAAGAACACGAAGCTCAGGTA -ACGGAAGAACACGAAGCTGACTCT -ACGGAAGAACACGAAGCTAGTCCT -ACGGAAGAACACGAAGCTTAAGCC -ACGGAAGAACACGAAGCTATAGCC -ACGGAAGAACACGAAGCTTAACCG -ACGGAAGAACACGAAGCTATGCCA -ACGGAAGAACACACGAGTGGAAAC -ACGGAAGAACACACGAGTAACACC -ACGGAAGAACACACGAGTATCGAG -ACGGAAGAACACACGAGTCTCCTT -ACGGAAGAACACACGAGTCCTGTT -ACGGAAGAACACACGAGTCGGTTT -ACGGAAGAACACACGAGTGTGGTT -ACGGAAGAACACACGAGTGCCTTT -ACGGAAGAACACACGAGTGGTCTT -ACGGAAGAACACACGAGTACGCTT -ACGGAAGAACACACGAGTAGCGTT -ACGGAAGAACACACGAGTTTCGTC -ACGGAAGAACACACGAGTTCTCTC -ACGGAAGAACACACGAGTTGGATC -ACGGAAGAACACACGAGTCACTTC -ACGGAAGAACACACGAGTGTACTC -ACGGAAGAACACACGAGTGATGTC -ACGGAAGAACACACGAGTACAGTC -ACGGAAGAACACACGAGTTTGCTG -ACGGAAGAACACACGAGTTCCATG -ACGGAAGAACACACGAGTTGTGTG -ACGGAAGAACACACGAGTCTAGTG -ACGGAAGAACACACGAGTCATCTG -ACGGAAGAACACACGAGTGAGTTG -ACGGAAGAACACACGAGTAGACTG -ACGGAAGAACACACGAGTTCGGTA -ACGGAAGAACACACGAGTTGCCTA -ACGGAAGAACACACGAGTCCACTA -ACGGAAGAACACACGAGTGGAGTA -ACGGAAGAACACACGAGTTCGTCT -ACGGAAGAACACACGAGTTGCACT -ACGGAAGAACACACGAGTCTGACT -ACGGAAGAACACACGAGTCAACCT -ACGGAAGAACACACGAGTGCTACT -ACGGAAGAACACACGAGTGGATCT -ACGGAAGAACACACGAGTAAGGCT -ACGGAAGAACACACGAGTTCAACC -ACGGAAGAACACACGAGTTGTTCC -ACGGAAGAACACACGAGTATTCCC -ACGGAAGAACACACGAGTTTCTCG -ACGGAAGAACACACGAGTTAGACG -ACGGAAGAACACACGAGTGTAACG -ACGGAAGAACACACGAGTACTTCG -ACGGAAGAACACACGAGTTACGCA -ACGGAAGAACACACGAGTCTTGCA -ACGGAAGAACACACGAGTCGAACA -ACGGAAGAACACACGAGTCAGTCA -ACGGAAGAACACACGAGTGATCCA -ACGGAAGAACACACGAGTACGACA -ACGGAAGAACACACGAGTAGCTCA -ACGGAAGAACACACGAGTTCACGT -ACGGAAGAACACACGAGTCGTAGT -ACGGAAGAACACACGAGTGTCAGT -ACGGAAGAACACACGAGTGAAGGT -ACGGAAGAACACACGAGTAACCGT -ACGGAAGAACACACGAGTTTGTGC -ACGGAAGAACACACGAGTCTAAGC -ACGGAAGAACACACGAGTACTAGC -ACGGAAGAACACACGAGTAGATGC -ACGGAAGAACACACGAGTTGAAGG -ACGGAAGAACACACGAGTCAATGG -ACGGAAGAACACACGAGTATGAGG -ACGGAAGAACACACGAGTAATGGG -ACGGAAGAACACACGAGTTCCTGA -ACGGAAGAACACACGAGTTAGCGA -ACGGAAGAACACACGAGTCACAGA -ACGGAAGAACACACGAGTGCAAGA -ACGGAAGAACACACGAGTGGTTGA -ACGGAAGAACACACGAGTTCCGAT -ACGGAAGAACACACGAGTTGGCAT -ACGGAAGAACACACGAGTCGAGAT -ACGGAAGAACACACGAGTTACCAC -ACGGAAGAACACACGAGTCAGAAC -ACGGAAGAACACACGAGTGTCTAC -ACGGAAGAACACACGAGTACGTAC -ACGGAAGAACACACGAGTAGTGAC -ACGGAAGAACACACGAGTCTGTAG -ACGGAAGAACACACGAGTCCTAAG -ACGGAAGAACACACGAGTGTTCAG -ACGGAAGAACACACGAGTGCATAG -ACGGAAGAACACACGAGTGACAAG -ACGGAAGAACACACGAGTAAGCAG -ACGGAAGAACACACGAGTCGTCAA -ACGGAAGAACACACGAGTGCTGAA -ACGGAAGAACACACGAGTAGTACG -ACGGAAGAACACACGAGTATCCGA -ACGGAAGAACACACGAGTATGGGA -ACGGAAGAACACACGAGTGTGCAA -ACGGAAGAACACACGAGTGAGGAA -ACGGAAGAACACACGAGTCAGGTA -ACGGAAGAACACACGAGTGACTCT -ACGGAAGAACACACGAGTAGTCCT -ACGGAAGAACACACGAGTTAAGCC -ACGGAAGAACACACGAGTATAGCC -ACGGAAGAACACACGAGTTAACCG -ACGGAAGAACACACGAGTATGCCA -ACGGAAGAACACCGAATCGGAAAC -ACGGAAGAACACCGAATCAACACC -ACGGAAGAACACCGAATCATCGAG -ACGGAAGAACACCGAATCCTCCTT -ACGGAAGAACACCGAATCCCTGTT -ACGGAAGAACACCGAATCCGGTTT -ACGGAAGAACACCGAATCGTGGTT -ACGGAAGAACACCGAATCGCCTTT -ACGGAAGAACACCGAATCGGTCTT -ACGGAAGAACACCGAATCACGCTT -ACGGAAGAACACCGAATCAGCGTT -ACGGAAGAACACCGAATCTTCGTC -ACGGAAGAACACCGAATCTCTCTC -ACGGAAGAACACCGAATCTGGATC -ACGGAAGAACACCGAATCCACTTC -ACGGAAGAACACCGAATCGTACTC -ACGGAAGAACACCGAATCGATGTC -ACGGAAGAACACCGAATCACAGTC -ACGGAAGAACACCGAATCTTGCTG -ACGGAAGAACACCGAATCTCCATG -ACGGAAGAACACCGAATCTGTGTG -ACGGAAGAACACCGAATCCTAGTG -ACGGAAGAACACCGAATCCATCTG -ACGGAAGAACACCGAATCGAGTTG -ACGGAAGAACACCGAATCAGACTG -ACGGAAGAACACCGAATCTCGGTA -ACGGAAGAACACCGAATCTGCCTA -ACGGAAGAACACCGAATCCCACTA -ACGGAAGAACACCGAATCGGAGTA -ACGGAAGAACACCGAATCTCGTCT -ACGGAAGAACACCGAATCTGCACT -ACGGAAGAACACCGAATCCTGACT -ACGGAAGAACACCGAATCCAACCT -ACGGAAGAACACCGAATCGCTACT -ACGGAAGAACACCGAATCGGATCT -ACGGAAGAACACCGAATCAAGGCT -ACGGAAGAACACCGAATCTCAACC -ACGGAAGAACACCGAATCTGTTCC -ACGGAAGAACACCGAATCATTCCC -ACGGAAGAACACCGAATCTTCTCG -ACGGAAGAACACCGAATCTAGACG -ACGGAAGAACACCGAATCGTAACG -ACGGAAGAACACCGAATCACTTCG -ACGGAAGAACACCGAATCTACGCA -ACGGAAGAACACCGAATCCTTGCA -ACGGAAGAACACCGAATCCGAACA -ACGGAAGAACACCGAATCCAGTCA -ACGGAAGAACACCGAATCGATCCA -ACGGAAGAACACCGAATCACGACA -ACGGAAGAACACCGAATCAGCTCA -ACGGAAGAACACCGAATCTCACGT -ACGGAAGAACACCGAATCCGTAGT -ACGGAAGAACACCGAATCGTCAGT -ACGGAAGAACACCGAATCGAAGGT -ACGGAAGAACACCGAATCAACCGT -ACGGAAGAACACCGAATCTTGTGC -ACGGAAGAACACCGAATCCTAAGC -ACGGAAGAACACCGAATCACTAGC -ACGGAAGAACACCGAATCAGATGC -ACGGAAGAACACCGAATCTGAAGG -ACGGAAGAACACCGAATCCAATGG -ACGGAAGAACACCGAATCATGAGG -ACGGAAGAACACCGAATCAATGGG -ACGGAAGAACACCGAATCTCCTGA -ACGGAAGAACACCGAATCTAGCGA -ACGGAAGAACACCGAATCCACAGA -ACGGAAGAACACCGAATCGCAAGA -ACGGAAGAACACCGAATCGGTTGA -ACGGAAGAACACCGAATCTCCGAT -ACGGAAGAACACCGAATCTGGCAT -ACGGAAGAACACCGAATCCGAGAT -ACGGAAGAACACCGAATCTACCAC -ACGGAAGAACACCGAATCCAGAAC -ACGGAAGAACACCGAATCGTCTAC -ACGGAAGAACACCGAATCACGTAC -ACGGAAGAACACCGAATCAGTGAC -ACGGAAGAACACCGAATCCTGTAG -ACGGAAGAACACCGAATCCCTAAG -ACGGAAGAACACCGAATCGTTCAG -ACGGAAGAACACCGAATCGCATAG -ACGGAAGAACACCGAATCGACAAG -ACGGAAGAACACCGAATCAAGCAG -ACGGAAGAACACCGAATCCGTCAA -ACGGAAGAACACCGAATCGCTGAA -ACGGAAGAACACCGAATCAGTACG -ACGGAAGAACACCGAATCATCCGA -ACGGAAGAACACCGAATCATGGGA -ACGGAAGAACACCGAATCGTGCAA -ACGGAAGAACACCGAATCGAGGAA -ACGGAAGAACACCGAATCCAGGTA -ACGGAAGAACACCGAATCGACTCT -ACGGAAGAACACCGAATCAGTCCT -ACGGAAGAACACCGAATCTAAGCC -ACGGAAGAACACCGAATCATAGCC -ACGGAAGAACACCGAATCTAACCG -ACGGAAGAACACCGAATCATGCCA -ACGGAAGAACACGGAATGGGAAAC -ACGGAAGAACACGGAATGAACACC -ACGGAAGAACACGGAATGATCGAG -ACGGAAGAACACGGAATGCTCCTT -ACGGAAGAACACGGAATGCCTGTT -ACGGAAGAACACGGAATGCGGTTT -ACGGAAGAACACGGAATGGTGGTT -ACGGAAGAACACGGAATGGCCTTT -ACGGAAGAACACGGAATGGGTCTT -ACGGAAGAACACGGAATGACGCTT -ACGGAAGAACACGGAATGAGCGTT -ACGGAAGAACACGGAATGTTCGTC -ACGGAAGAACACGGAATGTCTCTC -ACGGAAGAACACGGAATGTGGATC -ACGGAAGAACACGGAATGCACTTC -ACGGAAGAACACGGAATGGTACTC -ACGGAAGAACACGGAATGGATGTC -ACGGAAGAACACGGAATGACAGTC -ACGGAAGAACACGGAATGTTGCTG -ACGGAAGAACACGGAATGTCCATG -ACGGAAGAACACGGAATGTGTGTG -ACGGAAGAACACGGAATGCTAGTG -ACGGAAGAACACGGAATGCATCTG -ACGGAAGAACACGGAATGGAGTTG -ACGGAAGAACACGGAATGAGACTG -ACGGAAGAACACGGAATGTCGGTA -ACGGAAGAACACGGAATGTGCCTA -ACGGAAGAACACGGAATGCCACTA -ACGGAAGAACACGGAATGGGAGTA -ACGGAAGAACACGGAATGTCGTCT -ACGGAAGAACACGGAATGTGCACT -ACGGAAGAACACGGAATGCTGACT -ACGGAAGAACACGGAATGCAACCT -ACGGAAGAACACGGAATGGCTACT -ACGGAAGAACACGGAATGGGATCT -ACGGAAGAACACGGAATGAAGGCT -ACGGAAGAACACGGAATGTCAACC -ACGGAAGAACACGGAATGTGTTCC -ACGGAAGAACACGGAATGATTCCC -ACGGAAGAACACGGAATGTTCTCG -ACGGAAGAACACGGAATGTAGACG -ACGGAAGAACACGGAATGGTAACG -ACGGAAGAACACGGAATGACTTCG -ACGGAAGAACACGGAATGTACGCA -ACGGAAGAACACGGAATGCTTGCA -ACGGAAGAACACGGAATGCGAACA -ACGGAAGAACACGGAATGCAGTCA -ACGGAAGAACACGGAATGGATCCA -ACGGAAGAACACGGAATGACGACA -ACGGAAGAACACGGAATGAGCTCA -ACGGAAGAACACGGAATGTCACGT -ACGGAAGAACACGGAATGCGTAGT -ACGGAAGAACACGGAATGGTCAGT -ACGGAAGAACACGGAATGGAAGGT -ACGGAAGAACACGGAATGAACCGT -ACGGAAGAACACGGAATGTTGTGC -ACGGAAGAACACGGAATGCTAAGC -ACGGAAGAACACGGAATGACTAGC -ACGGAAGAACACGGAATGAGATGC -ACGGAAGAACACGGAATGTGAAGG -ACGGAAGAACACGGAATGCAATGG -ACGGAAGAACACGGAATGATGAGG -ACGGAAGAACACGGAATGAATGGG -ACGGAAGAACACGGAATGTCCTGA -ACGGAAGAACACGGAATGTAGCGA -ACGGAAGAACACGGAATGCACAGA -ACGGAAGAACACGGAATGGCAAGA -ACGGAAGAACACGGAATGGGTTGA -ACGGAAGAACACGGAATGTCCGAT -ACGGAAGAACACGGAATGTGGCAT -ACGGAAGAACACGGAATGCGAGAT -ACGGAAGAACACGGAATGTACCAC -ACGGAAGAACACGGAATGCAGAAC -ACGGAAGAACACGGAATGGTCTAC -ACGGAAGAACACGGAATGACGTAC -ACGGAAGAACACGGAATGAGTGAC -ACGGAAGAACACGGAATGCTGTAG -ACGGAAGAACACGGAATGCCTAAG -ACGGAAGAACACGGAATGGTTCAG -ACGGAAGAACACGGAATGGCATAG -ACGGAAGAACACGGAATGGACAAG -ACGGAAGAACACGGAATGAAGCAG -ACGGAAGAACACGGAATGCGTCAA -ACGGAAGAACACGGAATGGCTGAA -ACGGAAGAACACGGAATGAGTACG -ACGGAAGAACACGGAATGATCCGA -ACGGAAGAACACGGAATGATGGGA -ACGGAAGAACACGGAATGGTGCAA -ACGGAAGAACACGGAATGGAGGAA -ACGGAAGAACACGGAATGCAGGTA -ACGGAAGAACACGGAATGGACTCT -ACGGAAGAACACGGAATGAGTCCT -ACGGAAGAACACGGAATGTAAGCC -ACGGAAGAACACGGAATGATAGCC -ACGGAAGAACACGGAATGTAACCG -ACGGAAGAACACGGAATGATGCCA -ACGGAAGAACACCAAGTGGGAAAC -ACGGAAGAACACCAAGTGAACACC -ACGGAAGAACACCAAGTGATCGAG -ACGGAAGAACACCAAGTGCTCCTT -ACGGAAGAACACCAAGTGCCTGTT -ACGGAAGAACACCAAGTGCGGTTT -ACGGAAGAACACCAAGTGGTGGTT -ACGGAAGAACACCAAGTGGCCTTT -ACGGAAGAACACCAAGTGGGTCTT -ACGGAAGAACACCAAGTGACGCTT -ACGGAAGAACACCAAGTGAGCGTT -ACGGAAGAACACCAAGTGTTCGTC -ACGGAAGAACACCAAGTGTCTCTC -ACGGAAGAACACCAAGTGTGGATC -ACGGAAGAACACCAAGTGCACTTC -ACGGAAGAACACCAAGTGGTACTC -ACGGAAGAACACCAAGTGGATGTC -ACGGAAGAACACCAAGTGACAGTC -ACGGAAGAACACCAAGTGTTGCTG -ACGGAAGAACACCAAGTGTCCATG -ACGGAAGAACACCAAGTGTGTGTG -ACGGAAGAACACCAAGTGCTAGTG -ACGGAAGAACACCAAGTGCATCTG -ACGGAAGAACACCAAGTGGAGTTG -ACGGAAGAACACCAAGTGAGACTG -ACGGAAGAACACCAAGTGTCGGTA -ACGGAAGAACACCAAGTGTGCCTA -ACGGAAGAACACCAAGTGCCACTA -ACGGAAGAACACCAAGTGGGAGTA -ACGGAAGAACACCAAGTGTCGTCT -ACGGAAGAACACCAAGTGTGCACT -ACGGAAGAACACCAAGTGCTGACT -ACGGAAGAACACCAAGTGCAACCT -ACGGAAGAACACCAAGTGGCTACT -ACGGAAGAACACCAAGTGGGATCT -ACGGAAGAACACCAAGTGAAGGCT -ACGGAAGAACACCAAGTGTCAACC -ACGGAAGAACACCAAGTGTGTTCC -ACGGAAGAACACCAAGTGATTCCC -ACGGAAGAACACCAAGTGTTCTCG -ACGGAAGAACACCAAGTGTAGACG -ACGGAAGAACACCAAGTGGTAACG -ACGGAAGAACACCAAGTGACTTCG -ACGGAAGAACACCAAGTGTACGCA -ACGGAAGAACACCAAGTGCTTGCA -ACGGAAGAACACCAAGTGCGAACA -ACGGAAGAACACCAAGTGCAGTCA -ACGGAAGAACACCAAGTGGATCCA -ACGGAAGAACACCAAGTGACGACA -ACGGAAGAACACCAAGTGAGCTCA -ACGGAAGAACACCAAGTGTCACGT -ACGGAAGAACACCAAGTGCGTAGT -ACGGAAGAACACCAAGTGGTCAGT -ACGGAAGAACACCAAGTGGAAGGT -ACGGAAGAACACCAAGTGAACCGT -ACGGAAGAACACCAAGTGTTGTGC -ACGGAAGAACACCAAGTGCTAAGC -ACGGAAGAACACCAAGTGACTAGC -ACGGAAGAACACCAAGTGAGATGC -ACGGAAGAACACCAAGTGTGAAGG -ACGGAAGAACACCAAGTGCAATGG -ACGGAAGAACACCAAGTGATGAGG -ACGGAAGAACACCAAGTGAATGGG -ACGGAAGAACACCAAGTGTCCTGA -ACGGAAGAACACCAAGTGTAGCGA -ACGGAAGAACACCAAGTGCACAGA -ACGGAAGAACACCAAGTGGCAAGA -ACGGAAGAACACCAAGTGGGTTGA -ACGGAAGAACACCAAGTGTCCGAT -ACGGAAGAACACCAAGTGTGGCAT -ACGGAAGAACACCAAGTGCGAGAT -ACGGAAGAACACCAAGTGTACCAC -ACGGAAGAACACCAAGTGCAGAAC -ACGGAAGAACACCAAGTGGTCTAC -ACGGAAGAACACCAAGTGACGTAC -ACGGAAGAACACCAAGTGAGTGAC -ACGGAAGAACACCAAGTGCTGTAG -ACGGAAGAACACCAAGTGCCTAAG -ACGGAAGAACACCAAGTGGTTCAG -ACGGAAGAACACCAAGTGGCATAG -ACGGAAGAACACCAAGTGGACAAG -ACGGAAGAACACCAAGTGAAGCAG -ACGGAAGAACACCAAGTGCGTCAA -ACGGAAGAACACCAAGTGGCTGAA -ACGGAAGAACACCAAGTGAGTACG -ACGGAAGAACACCAAGTGATCCGA -ACGGAAGAACACCAAGTGATGGGA -ACGGAAGAACACCAAGTGGTGCAA -ACGGAAGAACACCAAGTGGAGGAA -ACGGAAGAACACCAAGTGCAGGTA -ACGGAAGAACACCAAGTGGACTCT -ACGGAAGAACACCAAGTGAGTCCT -ACGGAAGAACACCAAGTGTAAGCC -ACGGAAGAACACCAAGTGATAGCC -ACGGAAGAACACCAAGTGTAACCG -ACGGAAGAACACCAAGTGATGCCA -ACGGAAGAACACGAAGAGGGAAAC -ACGGAAGAACACGAAGAGAACACC -ACGGAAGAACACGAAGAGATCGAG -ACGGAAGAACACGAAGAGCTCCTT -ACGGAAGAACACGAAGAGCCTGTT -ACGGAAGAACACGAAGAGCGGTTT -ACGGAAGAACACGAAGAGGTGGTT -ACGGAAGAACACGAAGAGGCCTTT -ACGGAAGAACACGAAGAGGGTCTT -ACGGAAGAACACGAAGAGACGCTT -ACGGAAGAACACGAAGAGAGCGTT -ACGGAAGAACACGAAGAGTTCGTC -ACGGAAGAACACGAAGAGTCTCTC -ACGGAAGAACACGAAGAGTGGATC -ACGGAAGAACACGAAGAGCACTTC -ACGGAAGAACACGAAGAGGTACTC -ACGGAAGAACACGAAGAGGATGTC -ACGGAAGAACACGAAGAGACAGTC -ACGGAAGAACACGAAGAGTTGCTG -ACGGAAGAACACGAAGAGTCCATG -ACGGAAGAACACGAAGAGTGTGTG -ACGGAAGAACACGAAGAGCTAGTG -ACGGAAGAACACGAAGAGCATCTG -ACGGAAGAACACGAAGAGGAGTTG -ACGGAAGAACACGAAGAGAGACTG -ACGGAAGAACACGAAGAGTCGGTA -ACGGAAGAACACGAAGAGTGCCTA -ACGGAAGAACACGAAGAGCCACTA -ACGGAAGAACACGAAGAGGGAGTA -ACGGAAGAACACGAAGAGTCGTCT -ACGGAAGAACACGAAGAGTGCACT -ACGGAAGAACACGAAGAGCTGACT -ACGGAAGAACACGAAGAGCAACCT -ACGGAAGAACACGAAGAGGCTACT -ACGGAAGAACACGAAGAGGGATCT -ACGGAAGAACACGAAGAGAAGGCT -ACGGAAGAACACGAAGAGTCAACC -ACGGAAGAACACGAAGAGTGTTCC -ACGGAAGAACACGAAGAGATTCCC -ACGGAAGAACACGAAGAGTTCTCG -ACGGAAGAACACGAAGAGTAGACG -ACGGAAGAACACGAAGAGGTAACG -ACGGAAGAACACGAAGAGACTTCG -ACGGAAGAACACGAAGAGTACGCA -ACGGAAGAACACGAAGAGCTTGCA -ACGGAAGAACACGAAGAGCGAACA -ACGGAAGAACACGAAGAGCAGTCA -ACGGAAGAACACGAAGAGGATCCA -ACGGAAGAACACGAAGAGACGACA -ACGGAAGAACACGAAGAGAGCTCA -ACGGAAGAACACGAAGAGTCACGT -ACGGAAGAACACGAAGAGCGTAGT -ACGGAAGAACACGAAGAGGTCAGT -ACGGAAGAACACGAAGAGGAAGGT -ACGGAAGAACACGAAGAGAACCGT -ACGGAAGAACACGAAGAGTTGTGC -ACGGAAGAACACGAAGAGCTAAGC -ACGGAAGAACACGAAGAGACTAGC -ACGGAAGAACACGAAGAGAGATGC -ACGGAAGAACACGAAGAGTGAAGG -ACGGAAGAACACGAAGAGCAATGG -ACGGAAGAACACGAAGAGATGAGG -ACGGAAGAACACGAAGAGAATGGG -ACGGAAGAACACGAAGAGTCCTGA -ACGGAAGAACACGAAGAGTAGCGA -ACGGAAGAACACGAAGAGCACAGA -ACGGAAGAACACGAAGAGGCAAGA -ACGGAAGAACACGAAGAGGGTTGA -ACGGAAGAACACGAAGAGTCCGAT -ACGGAAGAACACGAAGAGTGGCAT -ACGGAAGAACACGAAGAGCGAGAT -ACGGAAGAACACGAAGAGTACCAC -ACGGAAGAACACGAAGAGCAGAAC -ACGGAAGAACACGAAGAGGTCTAC -ACGGAAGAACACGAAGAGACGTAC -ACGGAAGAACACGAAGAGAGTGAC -ACGGAAGAACACGAAGAGCTGTAG -ACGGAAGAACACGAAGAGCCTAAG -ACGGAAGAACACGAAGAGGTTCAG -ACGGAAGAACACGAAGAGGCATAG -ACGGAAGAACACGAAGAGGACAAG -ACGGAAGAACACGAAGAGAAGCAG -ACGGAAGAACACGAAGAGCGTCAA -ACGGAAGAACACGAAGAGGCTGAA -ACGGAAGAACACGAAGAGAGTACG -ACGGAAGAACACGAAGAGATCCGA -ACGGAAGAACACGAAGAGATGGGA -ACGGAAGAACACGAAGAGGTGCAA -ACGGAAGAACACGAAGAGGAGGAA -ACGGAAGAACACGAAGAGCAGGTA -ACGGAAGAACACGAAGAGGACTCT -ACGGAAGAACACGAAGAGAGTCCT -ACGGAAGAACACGAAGAGTAAGCC -ACGGAAGAACACGAAGAGATAGCC -ACGGAAGAACACGAAGAGTAACCG -ACGGAAGAACACGAAGAGATGCCA -ACGGAAGAACACGTACAGGGAAAC -ACGGAAGAACACGTACAGAACACC -ACGGAAGAACACGTACAGATCGAG -ACGGAAGAACACGTACAGCTCCTT -ACGGAAGAACACGTACAGCCTGTT -ACGGAAGAACACGTACAGCGGTTT -ACGGAAGAACACGTACAGGTGGTT -ACGGAAGAACACGTACAGGCCTTT -ACGGAAGAACACGTACAGGGTCTT -ACGGAAGAACACGTACAGACGCTT -ACGGAAGAACACGTACAGAGCGTT -ACGGAAGAACACGTACAGTTCGTC -ACGGAAGAACACGTACAGTCTCTC -ACGGAAGAACACGTACAGTGGATC -ACGGAAGAACACGTACAGCACTTC -ACGGAAGAACACGTACAGGTACTC -ACGGAAGAACACGTACAGGATGTC -ACGGAAGAACACGTACAGACAGTC -ACGGAAGAACACGTACAGTTGCTG -ACGGAAGAACACGTACAGTCCATG -ACGGAAGAACACGTACAGTGTGTG -ACGGAAGAACACGTACAGCTAGTG -ACGGAAGAACACGTACAGCATCTG -ACGGAAGAACACGTACAGGAGTTG -ACGGAAGAACACGTACAGAGACTG -ACGGAAGAACACGTACAGTCGGTA -ACGGAAGAACACGTACAGTGCCTA -ACGGAAGAACACGTACAGCCACTA -ACGGAAGAACACGTACAGGGAGTA -ACGGAAGAACACGTACAGTCGTCT -ACGGAAGAACACGTACAGTGCACT -ACGGAAGAACACGTACAGCTGACT -ACGGAAGAACACGTACAGCAACCT -ACGGAAGAACACGTACAGGCTACT -ACGGAAGAACACGTACAGGGATCT -ACGGAAGAACACGTACAGAAGGCT -ACGGAAGAACACGTACAGTCAACC -ACGGAAGAACACGTACAGTGTTCC -ACGGAAGAACACGTACAGATTCCC -ACGGAAGAACACGTACAGTTCTCG -ACGGAAGAACACGTACAGTAGACG -ACGGAAGAACACGTACAGGTAACG -ACGGAAGAACACGTACAGACTTCG -ACGGAAGAACACGTACAGTACGCA -ACGGAAGAACACGTACAGCTTGCA -ACGGAAGAACACGTACAGCGAACA -ACGGAAGAACACGTACAGCAGTCA -ACGGAAGAACACGTACAGGATCCA -ACGGAAGAACACGTACAGACGACA -ACGGAAGAACACGTACAGAGCTCA -ACGGAAGAACACGTACAGTCACGT -ACGGAAGAACACGTACAGCGTAGT -ACGGAAGAACACGTACAGGTCAGT -ACGGAAGAACACGTACAGGAAGGT -ACGGAAGAACACGTACAGAACCGT -ACGGAAGAACACGTACAGTTGTGC -ACGGAAGAACACGTACAGCTAAGC -ACGGAAGAACACGTACAGACTAGC -ACGGAAGAACACGTACAGAGATGC -ACGGAAGAACACGTACAGTGAAGG -ACGGAAGAACACGTACAGCAATGG -ACGGAAGAACACGTACAGATGAGG -ACGGAAGAACACGTACAGAATGGG -ACGGAAGAACACGTACAGTCCTGA -ACGGAAGAACACGTACAGTAGCGA -ACGGAAGAACACGTACAGCACAGA -ACGGAAGAACACGTACAGGCAAGA -ACGGAAGAACACGTACAGGGTTGA -ACGGAAGAACACGTACAGTCCGAT -ACGGAAGAACACGTACAGTGGCAT -ACGGAAGAACACGTACAGCGAGAT -ACGGAAGAACACGTACAGTACCAC -ACGGAAGAACACGTACAGCAGAAC -ACGGAAGAACACGTACAGGTCTAC -ACGGAAGAACACGTACAGACGTAC -ACGGAAGAACACGTACAGAGTGAC -ACGGAAGAACACGTACAGCTGTAG -ACGGAAGAACACGTACAGCCTAAG -ACGGAAGAACACGTACAGGTTCAG -ACGGAAGAACACGTACAGGCATAG -ACGGAAGAACACGTACAGGACAAG -ACGGAAGAACACGTACAGAAGCAG -ACGGAAGAACACGTACAGCGTCAA -ACGGAAGAACACGTACAGGCTGAA -ACGGAAGAACACGTACAGAGTACG -ACGGAAGAACACGTACAGATCCGA -ACGGAAGAACACGTACAGATGGGA -ACGGAAGAACACGTACAGGTGCAA -ACGGAAGAACACGTACAGGAGGAA -ACGGAAGAACACGTACAGCAGGTA -ACGGAAGAACACGTACAGGACTCT -ACGGAAGAACACGTACAGAGTCCT -ACGGAAGAACACGTACAGTAAGCC -ACGGAAGAACACGTACAGATAGCC -ACGGAAGAACACGTACAGTAACCG -ACGGAAGAACACGTACAGATGCCA -ACGGAAGAACACTCTGACGGAAAC -ACGGAAGAACACTCTGACAACACC -ACGGAAGAACACTCTGACATCGAG -ACGGAAGAACACTCTGACCTCCTT -ACGGAAGAACACTCTGACCCTGTT -ACGGAAGAACACTCTGACCGGTTT -ACGGAAGAACACTCTGACGTGGTT -ACGGAAGAACACTCTGACGCCTTT -ACGGAAGAACACTCTGACGGTCTT -ACGGAAGAACACTCTGACACGCTT -ACGGAAGAACACTCTGACAGCGTT -ACGGAAGAACACTCTGACTTCGTC -ACGGAAGAACACTCTGACTCTCTC -ACGGAAGAACACTCTGACTGGATC -ACGGAAGAACACTCTGACCACTTC -ACGGAAGAACACTCTGACGTACTC -ACGGAAGAACACTCTGACGATGTC -ACGGAAGAACACTCTGACACAGTC -ACGGAAGAACACTCTGACTTGCTG -ACGGAAGAACACTCTGACTCCATG -ACGGAAGAACACTCTGACTGTGTG -ACGGAAGAACACTCTGACCTAGTG -ACGGAAGAACACTCTGACCATCTG -ACGGAAGAACACTCTGACGAGTTG -ACGGAAGAACACTCTGACAGACTG -ACGGAAGAACACTCTGACTCGGTA -ACGGAAGAACACTCTGACTGCCTA -ACGGAAGAACACTCTGACCCACTA -ACGGAAGAACACTCTGACGGAGTA -ACGGAAGAACACTCTGACTCGTCT -ACGGAAGAACACTCTGACTGCACT -ACGGAAGAACACTCTGACCTGACT -ACGGAAGAACACTCTGACCAACCT -ACGGAAGAACACTCTGACGCTACT -ACGGAAGAACACTCTGACGGATCT -ACGGAAGAACACTCTGACAAGGCT -ACGGAAGAACACTCTGACTCAACC -ACGGAAGAACACTCTGACTGTTCC -ACGGAAGAACACTCTGACATTCCC -ACGGAAGAACACTCTGACTTCTCG -ACGGAAGAACACTCTGACTAGACG -ACGGAAGAACACTCTGACGTAACG -ACGGAAGAACACTCTGACACTTCG -ACGGAAGAACACTCTGACTACGCA -ACGGAAGAACACTCTGACCTTGCA -ACGGAAGAACACTCTGACCGAACA -ACGGAAGAACACTCTGACCAGTCA -ACGGAAGAACACTCTGACGATCCA -ACGGAAGAACACTCTGACACGACA -ACGGAAGAACACTCTGACAGCTCA -ACGGAAGAACACTCTGACTCACGT -ACGGAAGAACACTCTGACCGTAGT -ACGGAAGAACACTCTGACGTCAGT -ACGGAAGAACACTCTGACGAAGGT -ACGGAAGAACACTCTGACAACCGT -ACGGAAGAACACTCTGACTTGTGC -ACGGAAGAACACTCTGACCTAAGC -ACGGAAGAACACTCTGACACTAGC -ACGGAAGAACACTCTGACAGATGC -ACGGAAGAACACTCTGACTGAAGG -ACGGAAGAACACTCTGACCAATGG -ACGGAAGAACACTCTGACATGAGG -ACGGAAGAACACTCTGACAATGGG -ACGGAAGAACACTCTGACTCCTGA -ACGGAAGAACACTCTGACTAGCGA -ACGGAAGAACACTCTGACCACAGA -ACGGAAGAACACTCTGACGCAAGA -ACGGAAGAACACTCTGACGGTTGA -ACGGAAGAACACTCTGACTCCGAT -ACGGAAGAACACTCTGACTGGCAT -ACGGAAGAACACTCTGACCGAGAT -ACGGAAGAACACTCTGACTACCAC -ACGGAAGAACACTCTGACCAGAAC -ACGGAAGAACACTCTGACGTCTAC -ACGGAAGAACACTCTGACACGTAC -ACGGAAGAACACTCTGACAGTGAC -ACGGAAGAACACTCTGACCTGTAG -ACGGAAGAACACTCTGACCCTAAG -ACGGAAGAACACTCTGACGTTCAG -ACGGAAGAACACTCTGACGCATAG -ACGGAAGAACACTCTGACGACAAG -ACGGAAGAACACTCTGACAAGCAG -ACGGAAGAACACTCTGACCGTCAA -ACGGAAGAACACTCTGACGCTGAA -ACGGAAGAACACTCTGACAGTACG -ACGGAAGAACACTCTGACATCCGA -ACGGAAGAACACTCTGACATGGGA -ACGGAAGAACACTCTGACGTGCAA -ACGGAAGAACACTCTGACGAGGAA -ACGGAAGAACACTCTGACCAGGTA -ACGGAAGAACACTCTGACGACTCT -ACGGAAGAACACTCTGACAGTCCT -ACGGAAGAACACTCTGACTAAGCC -ACGGAAGAACACTCTGACATAGCC -ACGGAAGAACACTCTGACTAACCG -ACGGAAGAACACTCTGACATGCCA -ACGGAAGAACACCCTAGTGGAAAC -ACGGAAGAACACCCTAGTAACACC -ACGGAAGAACACCCTAGTATCGAG -ACGGAAGAACACCCTAGTCTCCTT -ACGGAAGAACACCCTAGTCCTGTT -ACGGAAGAACACCCTAGTCGGTTT -ACGGAAGAACACCCTAGTGTGGTT -ACGGAAGAACACCCTAGTGCCTTT -ACGGAAGAACACCCTAGTGGTCTT -ACGGAAGAACACCCTAGTACGCTT -ACGGAAGAACACCCTAGTAGCGTT -ACGGAAGAACACCCTAGTTTCGTC -ACGGAAGAACACCCTAGTTCTCTC -ACGGAAGAACACCCTAGTTGGATC -ACGGAAGAACACCCTAGTCACTTC -ACGGAAGAACACCCTAGTGTACTC -ACGGAAGAACACCCTAGTGATGTC -ACGGAAGAACACCCTAGTACAGTC -ACGGAAGAACACCCTAGTTTGCTG -ACGGAAGAACACCCTAGTTCCATG -ACGGAAGAACACCCTAGTTGTGTG -ACGGAAGAACACCCTAGTCTAGTG -ACGGAAGAACACCCTAGTCATCTG -ACGGAAGAACACCCTAGTGAGTTG -ACGGAAGAACACCCTAGTAGACTG -ACGGAAGAACACCCTAGTTCGGTA -ACGGAAGAACACCCTAGTTGCCTA -ACGGAAGAACACCCTAGTCCACTA -ACGGAAGAACACCCTAGTGGAGTA -ACGGAAGAACACCCTAGTTCGTCT -ACGGAAGAACACCCTAGTTGCACT -ACGGAAGAACACCCTAGTCTGACT -ACGGAAGAACACCCTAGTCAACCT -ACGGAAGAACACCCTAGTGCTACT -ACGGAAGAACACCCTAGTGGATCT -ACGGAAGAACACCCTAGTAAGGCT -ACGGAAGAACACCCTAGTTCAACC -ACGGAAGAACACCCTAGTTGTTCC -ACGGAAGAACACCCTAGTATTCCC -ACGGAAGAACACCCTAGTTTCTCG -ACGGAAGAACACCCTAGTTAGACG -ACGGAAGAACACCCTAGTGTAACG -ACGGAAGAACACCCTAGTACTTCG -ACGGAAGAACACCCTAGTTACGCA -ACGGAAGAACACCCTAGTCTTGCA -ACGGAAGAACACCCTAGTCGAACA -ACGGAAGAACACCCTAGTCAGTCA -ACGGAAGAACACCCTAGTGATCCA -ACGGAAGAACACCCTAGTACGACA -ACGGAAGAACACCCTAGTAGCTCA -ACGGAAGAACACCCTAGTTCACGT -ACGGAAGAACACCCTAGTCGTAGT -ACGGAAGAACACCCTAGTGTCAGT -ACGGAAGAACACCCTAGTGAAGGT -ACGGAAGAACACCCTAGTAACCGT -ACGGAAGAACACCCTAGTTTGTGC -ACGGAAGAACACCCTAGTCTAAGC -ACGGAAGAACACCCTAGTACTAGC -ACGGAAGAACACCCTAGTAGATGC -ACGGAAGAACACCCTAGTTGAAGG -ACGGAAGAACACCCTAGTCAATGG -ACGGAAGAACACCCTAGTATGAGG -ACGGAAGAACACCCTAGTAATGGG -ACGGAAGAACACCCTAGTTCCTGA -ACGGAAGAACACCCTAGTTAGCGA -ACGGAAGAACACCCTAGTCACAGA -ACGGAAGAACACCCTAGTGCAAGA -ACGGAAGAACACCCTAGTGGTTGA -ACGGAAGAACACCCTAGTTCCGAT -ACGGAAGAACACCCTAGTTGGCAT -ACGGAAGAACACCCTAGTCGAGAT -ACGGAAGAACACCCTAGTTACCAC -ACGGAAGAACACCCTAGTCAGAAC -ACGGAAGAACACCCTAGTGTCTAC -ACGGAAGAACACCCTAGTACGTAC -ACGGAAGAACACCCTAGTAGTGAC -ACGGAAGAACACCCTAGTCTGTAG -ACGGAAGAACACCCTAGTCCTAAG -ACGGAAGAACACCCTAGTGTTCAG -ACGGAAGAACACCCTAGTGCATAG -ACGGAAGAACACCCTAGTGACAAG -ACGGAAGAACACCCTAGTAAGCAG -ACGGAAGAACACCCTAGTCGTCAA -ACGGAAGAACACCCTAGTGCTGAA -ACGGAAGAACACCCTAGTAGTACG -ACGGAAGAACACCCTAGTATCCGA -ACGGAAGAACACCCTAGTATGGGA -ACGGAAGAACACCCTAGTGTGCAA -ACGGAAGAACACCCTAGTGAGGAA -ACGGAAGAACACCCTAGTCAGGTA -ACGGAAGAACACCCTAGTGACTCT -ACGGAAGAACACCCTAGTAGTCCT -ACGGAAGAACACCCTAGTTAAGCC -ACGGAAGAACACCCTAGTATAGCC -ACGGAAGAACACCCTAGTTAACCG -ACGGAAGAACACCCTAGTATGCCA -ACGGAAGAACACGCCTAAGGAAAC -ACGGAAGAACACGCCTAAAACACC -ACGGAAGAACACGCCTAAATCGAG -ACGGAAGAACACGCCTAACTCCTT -ACGGAAGAACACGCCTAACCTGTT -ACGGAAGAACACGCCTAACGGTTT -ACGGAAGAACACGCCTAAGTGGTT -ACGGAAGAACACGCCTAAGCCTTT -ACGGAAGAACACGCCTAAGGTCTT -ACGGAAGAACACGCCTAAACGCTT -ACGGAAGAACACGCCTAAAGCGTT -ACGGAAGAACACGCCTAATTCGTC -ACGGAAGAACACGCCTAATCTCTC -ACGGAAGAACACGCCTAATGGATC -ACGGAAGAACACGCCTAACACTTC -ACGGAAGAACACGCCTAAGTACTC -ACGGAAGAACACGCCTAAGATGTC -ACGGAAGAACACGCCTAAACAGTC -ACGGAAGAACACGCCTAATTGCTG -ACGGAAGAACACGCCTAATCCATG -ACGGAAGAACACGCCTAATGTGTG -ACGGAAGAACACGCCTAACTAGTG -ACGGAAGAACACGCCTAACATCTG -ACGGAAGAACACGCCTAAGAGTTG -ACGGAAGAACACGCCTAAAGACTG -ACGGAAGAACACGCCTAATCGGTA -ACGGAAGAACACGCCTAATGCCTA -ACGGAAGAACACGCCTAACCACTA -ACGGAAGAACACGCCTAAGGAGTA -ACGGAAGAACACGCCTAATCGTCT -ACGGAAGAACACGCCTAATGCACT -ACGGAAGAACACGCCTAACTGACT -ACGGAAGAACACGCCTAACAACCT -ACGGAAGAACACGCCTAAGCTACT -ACGGAAGAACACGCCTAAGGATCT -ACGGAAGAACACGCCTAAAAGGCT -ACGGAAGAACACGCCTAATCAACC -ACGGAAGAACACGCCTAATGTTCC -ACGGAAGAACACGCCTAAATTCCC -ACGGAAGAACACGCCTAATTCTCG -ACGGAAGAACACGCCTAATAGACG -ACGGAAGAACACGCCTAAGTAACG -ACGGAAGAACACGCCTAAACTTCG -ACGGAAGAACACGCCTAATACGCA -ACGGAAGAACACGCCTAACTTGCA -ACGGAAGAACACGCCTAACGAACA -ACGGAAGAACACGCCTAACAGTCA -ACGGAAGAACACGCCTAAGATCCA -ACGGAAGAACACGCCTAAACGACA -ACGGAAGAACACGCCTAAAGCTCA -ACGGAAGAACACGCCTAATCACGT -ACGGAAGAACACGCCTAACGTAGT -ACGGAAGAACACGCCTAAGTCAGT -ACGGAAGAACACGCCTAAGAAGGT -ACGGAAGAACACGCCTAAAACCGT -ACGGAAGAACACGCCTAATTGTGC -ACGGAAGAACACGCCTAACTAAGC -ACGGAAGAACACGCCTAAACTAGC -ACGGAAGAACACGCCTAAAGATGC -ACGGAAGAACACGCCTAATGAAGG -ACGGAAGAACACGCCTAACAATGG -ACGGAAGAACACGCCTAAATGAGG -ACGGAAGAACACGCCTAAAATGGG -ACGGAAGAACACGCCTAATCCTGA -ACGGAAGAACACGCCTAATAGCGA -ACGGAAGAACACGCCTAACACAGA -ACGGAAGAACACGCCTAAGCAAGA -ACGGAAGAACACGCCTAAGGTTGA -ACGGAAGAACACGCCTAATCCGAT -ACGGAAGAACACGCCTAATGGCAT -ACGGAAGAACACGCCTAACGAGAT -ACGGAAGAACACGCCTAATACCAC -ACGGAAGAACACGCCTAACAGAAC -ACGGAAGAACACGCCTAAGTCTAC -ACGGAAGAACACGCCTAAACGTAC -ACGGAAGAACACGCCTAAAGTGAC -ACGGAAGAACACGCCTAACTGTAG -ACGGAAGAACACGCCTAACCTAAG -ACGGAAGAACACGCCTAAGTTCAG -ACGGAAGAACACGCCTAAGCATAG -ACGGAAGAACACGCCTAAGACAAG -ACGGAAGAACACGCCTAAAAGCAG -ACGGAAGAACACGCCTAACGTCAA -ACGGAAGAACACGCCTAAGCTGAA -ACGGAAGAACACGCCTAAAGTACG -ACGGAAGAACACGCCTAAATCCGA -ACGGAAGAACACGCCTAAATGGGA -ACGGAAGAACACGCCTAAGTGCAA -ACGGAAGAACACGCCTAAGAGGAA -ACGGAAGAACACGCCTAACAGGTA -ACGGAAGAACACGCCTAAGACTCT -ACGGAAGAACACGCCTAAAGTCCT -ACGGAAGAACACGCCTAATAAGCC -ACGGAAGAACACGCCTAAATAGCC -ACGGAAGAACACGCCTAATAACCG -ACGGAAGAACACGCCTAAATGCCA -ACGGAAGAACACGCCATAGGAAAC -ACGGAAGAACACGCCATAAACACC -ACGGAAGAACACGCCATAATCGAG -ACGGAAGAACACGCCATACTCCTT -ACGGAAGAACACGCCATACCTGTT -ACGGAAGAACACGCCATACGGTTT -ACGGAAGAACACGCCATAGTGGTT -ACGGAAGAACACGCCATAGCCTTT -ACGGAAGAACACGCCATAGGTCTT -ACGGAAGAACACGCCATAACGCTT -ACGGAAGAACACGCCATAAGCGTT -ACGGAAGAACACGCCATATTCGTC -ACGGAAGAACACGCCATATCTCTC -ACGGAAGAACACGCCATATGGATC -ACGGAAGAACACGCCATACACTTC -ACGGAAGAACACGCCATAGTACTC -ACGGAAGAACACGCCATAGATGTC -ACGGAAGAACACGCCATAACAGTC -ACGGAAGAACACGCCATATTGCTG -ACGGAAGAACACGCCATATCCATG -ACGGAAGAACACGCCATATGTGTG -ACGGAAGAACACGCCATACTAGTG -ACGGAAGAACACGCCATACATCTG -ACGGAAGAACACGCCATAGAGTTG -ACGGAAGAACACGCCATAAGACTG -ACGGAAGAACACGCCATATCGGTA -ACGGAAGAACACGCCATATGCCTA -ACGGAAGAACACGCCATACCACTA -ACGGAAGAACACGCCATAGGAGTA -ACGGAAGAACACGCCATATCGTCT -ACGGAAGAACACGCCATATGCACT -ACGGAAGAACACGCCATACTGACT -ACGGAAGAACACGCCATACAACCT -ACGGAAGAACACGCCATAGCTACT -ACGGAAGAACACGCCATAGGATCT -ACGGAAGAACACGCCATAAAGGCT -ACGGAAGAACACGCCATATCAACC -ACGGAAGAACACGCCATATGTTCC -ACGGAAGAACACGCCATAATTCCC -ACGGAAGAACACGCCATATTCTCG -ACGGAAGAACACGCCATATAGACG -ACGGAAGAACACGCCATAGTAACG -ACGGAAGAACACGCCATAACTTCG -ACGGAAGAACACGCCATATACGCA -ACGGAAGAACACGCCATACTTGCA -ACGGAAGAACACGCCATACGAACA -ACGGAAGAACACGCCATACAGTCA -ACGGAAGAACACGCCATAGATCCA -ACGGAAGAACACGCCATAACGACA -ACGGAAGAACACGCCATAAGCTCA -ACGGAAGAACACGCCATATCACGT -ACGGAAGAACACGCCATACGTAGT -ACGGAAGAACACGCCATAGTCAGT -ACGGAAGAACACGCCATAGAAGGT -ACGGAAGAACACGCCATAAACCGT -ACGGAAGAACACGCCATATTGTGC -ACGGAAGAACACGCCATACTAAGC -ACGGAAGAACACGCCATAACTAGC -ACGGAAGAACACGCCATAAGATGC -ACGGAAGAACACGCCATATGAAGG -ACGGAAGAACACGCCATACAATGG -ACGGAAGAACACGCCATAATGAGG -ACGGAAGAACACGCCATAAATGGG -ACGGAAGAACACGCCATATCCTGA -ACGGAAGAACACGCCATATAGCGA -ACGGAAGAACACGCCATACACAGA -ACGGAAGAACACGCCATAGCAAGA -ACGGAAGAACACGCCATAGGTTGA -ACGGAAGAACACGCCATATCCGAT -ACGGAAGAACACGCCATATGGCAT -ACGGAAGAACACGCCATACGAGAT -ACGGAAGAACACGCCATATACCAC -ACGGAAGAACACGCCATACAGAAC -ACGGAAGAACACGCCATAGTCTAC -ACGGAAGAACACGCCATAACGTAC -ACGGAAGAACACGCCATAAGTGAC -ACGGAAGAACACGCCATACTGTAG -ACGGAAGAACACGCCATACCTAAG -ACGGAAGAACACGCCATAGTTCAG -ACGGAAGAACACGCCATAGCATAG -ACGGAAGAACACGCCATAGACAAG -ACGGAAGAACACGCCATAAAGCAG -ACGGAAGAACACGCCATACGTCAA -ACGGAAGAACACGCCATAGCTGAA -ACGGAAGAACACGCCATAAGTACG -ACGGAAGAACACGCCATAATCCGA -ACGGAAGAACACGCCATAATGGGA -ACGGAAGAACACGCCATAGTGCAA -ACGGAAGAACACGCCATAGAGGAA -ACGGAAGAACACGCCATACAGGTA -ACGGAAGAACACGCCATAGACTCT -ACGGAAGAACACGCCATAAGTCCT -ACGGAAGAACACGCCATATAAGCC -ACGGAAGAACACGCCATAATAGCC -ACGGAAGAACACGCCATATAACCG -ACGGAAGAACACGCCATAATGCCA -ACGGAAGAACACCCGTAAGGAAAC -ACGGAAGAACACCCGTAAAACACC -ACGGAAGAACACCCGTAAATCGAG -ACGGAAGAACACCCGTAACTCCTT -ACGGAAGAACACCCGTAACCTGTT -ACGGAAGAACACCCGTAACGGTTT -ACGGAAGAACACCCGTAAGTGGTT -ACGGAAGAACACCCGTAAGCCTTT -ACGGAAGAACACCCGTAAGGTCTT -ACGGAAGAACACCCGTAAACGCTT -ACGGAAGAACACCCGTAAAGCGTT -ACGGAAGAACACCCGTAATTCGTC -ACGGAAGAACACCCGTAATCTCTC -ACGGAAGAACACCCGTAATGGATC -ACGGAAGAACACCCGTAACACTTC -ACGGAAGAACACCCGTAAGTACTC -ACGGAAGAACACCCGTAAGATGTC -ACGGAAGAACACCCGTAAACAGTC -ACGGAAGAACACCCGTAATTGCTG -ACGGAAGAACACCCGTAATCCATG -ACGGAAGAACACCCGTAATGTGTG -ACGGAAGAACACCCGTAACTAGTG -ACGGAAGAACACCCGTAACATCTG -ACGGAAGAACACCCGTAAGAGTTG -ACGGAAGAACACCCGTAAAGACTG -ACGGAAGAACACCCGTAATCGGTA -ACGGAAGAACACCCGTAATGCCTA -ACGGAAGAACACCCGTAACCACTA -ACGGAAGAACACCCGTAAGGAGTA -ACGGAAGAACACCCGTAATCGTCT -ACGGAAGAACACCCGTAATGCACT -ACGGAAGAACACCCGTAACTGACT -ACGGAAGAACACCCGTAACAACCT -ACGGAAGAACACCCGTAAGCTACT -ACGGAAGAACACCCGTAAGGATCT -ACGGAAGAACACCCGTAAAAGGCT -ACGGAAGAACACCCGTAATCAACC -ACGGAAGAACACCCGTAATGTTCC -ACGGAAGAACACCCGTAAATTCCC -ACGGAAGAACACCCGTAATTCTCG -ACGGAAGAACACCCGTAATAGACG -ACGGAAGAACACCCGTAAGTAACG -ACGGAAGAACACCCGTAAACTTCG -ACGGAAGAACACCCGTAATACGCA -ACGGAAGAACACCCGTAACTTGCA -ACGGAAGAACACCCGTAACGAACA -ACGGAAGAACACCCGTAACAGTCA -ACGGAAGAACACCCGTAAGATCCA -ACGGAAGAACACCCGTAAACGACA -ACGGAAGAACACCCGTAAAGCTCA -ACGGAAGAACACCCGTAATCACGT -ACGGAAGAACACCCGTAACGTAGT -ACGGAAGAACACCCGTAAGTCAGT -ACGGAAGAACACCCGTAAGAAGGT -ACGGAAGAACACCCGTAAAACCGT -ACGGAAGAACACCCGTAATTGTGC -ACGGAAGAACACCCGTAACTAAGC -ACGGAAGAACACCCGTAAACTAGC -ACGGAAGAACACCCGTAAAGATGC -ACGGAAGAACACCCGTAATGAAGG -ACGGAAGAACACCCGTAACAATGG -ACGGAAGAACACCCGTAAATGAGG -ACGGAAGAACACCCGTAAAATGGG -ACGGAAGAACACCCGTAATCCTGA -ACGGAAGAACACCCGTAATAGCGA -ACGGAAGAACACCCGTAACACAGA -ACGGAAGAACACCCGTAAGCAAGA -ACGGAAGAACACCCGTAAGGTTGA -ACGGAAGAACACCCGTAATCCGAT -ACGGAAGAACACCCGTAATGGCAT -ACGGAAGAACACCCGTAACGAGAT -ACGGAAGAACACCCGTAATACCAC -ACGGAAGAACACCCGTAACAGAAC -ACGGAAGAACACCCGTAAGTCTAC -ACGGAAGAACACCCGTAAACGTAC -ACGGAAGAACACCCGTAAAGTGAC -ACGGAAGAACACCCGTAACTGTAG -ACGGAAGAACACCCGTAACCTAAG -ACGGAAGAACACCCGTAAGTTCAG -ACGGAAGAACACCCGTAAGCATAG -ACGGAAGAACACCCGTAAGACAAG -ACGGAAGAACACCCGTAAAAGCAG -ACGGAAGAACACCCGTAACGTCAA -ACGGAAGAACACCCGTAAGCTGAA -ACGGAAGAACACCCGTAAAGTACG -ACGGAAGAACACCCGTAAATCCGA -ACGGAAGAACACCCGTAAATGGGA -ACGGAAGAACACCCGTAAGTGCAA -ACGGAAGAACACCCGTAAGAGGAA -ACGGAAGAACACCCGTAACAGGTA -ACGGAAGAACACCCGTAAGACTCT -ACGGAAGAACACCCGTAAAGTCCT -ACGGAAGAACACCCGTAATAAGCC -ACGGAAGAACACCCGTAAATAGCC -ACGGAAGAACACCCGTAATAACCG -ACGGAAGAACACCCGTAAATGCCA -ACGGAAGAACACCCAATGGGAAAC -ACGGAAGAACACCCAATGAACACC -ACGGAAGAACACCCAATGATCGAG -ACGGAAGAACACCCAATGCTCCTT -ACGGAAGAACACCCAATGCCTGTT -ACGGAAGAACACCCAATGCGGTTT -ACGGAAGAACACCCAATGGTGGTT -ACGGAAGAACACCCAATGGCCTTT -ACGGAAGAACACCCAATGGGTCTT -ACGGAAGAACACCCAATGACGCTT -ACGGAAGAACACCCAATGAGCGTT -ACGGAAGAACACCCAATGTTCGTC -ACGGAAGAACACCCAATGTCTCTC -ACGGAAGAACACCCAATGTGGATC -ACGGAAGAACACCCAATGCACTTC -ACGGAAGAACACCCAATGGTACTC -ACGGAAGAACACCCAATGGATGTC -ACGGAAGAACACCCAATGACAGTC -ACGGAAGAACACCCAATGTTGCTG -ACGGAAGAACACCCAATGTCCATG -ACGGAAGAACACCCAATGTGTGTG -ACGGAAGAACACCCAATGCTAGTG -ACGGAAGAACACCCAATGCATCTG -ACGGAAGAACACCCAATGGAGTTG -ACGGAAGAACACCCAATGAGACTG -ACGGAAGAACACCCAATGTCGGTA -ACGGAAGAACACCCAATGTGCCTA -ACGGAAGAACACCCAATGCCACTA -ACGGAAGAACACCCAATGGGAGTA -ACGGAAGAACACCCAATGTCGTCT -ACGGAAGAACACCCAATGTGCACT -ACGGAAGAACACCCAATGCTGACT -ACGGAAGAACACCCAATGCAACCT -ACGGAAGAACACCCAATGGCTACT -ACGGAAGAACACCCAATGGGATCT -ACGGAAGAACACCCAATGAAGGCT -ACGGAAGAACACCCAATGTCAACC -ACGGAAGAACACCCAATGTGTTCC -ACGGAAGAACACCCAATGATTCCC -ACGGAAGAACACCCAATGTTCTCG -ACGGAAGAACACCCAATGTAGACG -ACGGAAGAACACCCAATGGTAACG -ACGGAAGAACACCCAATGACTTCG -ACGGAAGAACACCCAATGTACGCA -ACGGAAGAACACCCAATGCTTGCA -ACGGAAGAACACCCAATGCGAACA -ACGGAAGAACACCCAATGCAGTCA -ACGGAAGAACACCCAATGGATCCA -ACGGAAGAACACCCAATGACGACA -ACGGAAGAACACCCAATGAGCTCA -ACGGAAGAACACCCAATGTCACGT -ACGGAAGAACACCCAATGCGTAGT -ACGGAAGAACACCCAATGGTCAGT -ACGGAAGAACACCCAATGGAAGGT -ACGGAAGAACACCCAATGAACCGT -ACGGAAGAACACCCAATGTTGTGC -ACGGAAGAACACCCAATGCTAAGC -ACGGAAGAACACCCAATGACTAGC -ACGGAAGAACACCCAATGAGATGC -ACGGAAGAACACCCAATGTGAAGG -ACGGAAGAACACCCAATGCAATGG -ACGGAAGAACACCCAATGATGAGG -ACGGAAGAACACCCAATGAATGGG -ACGGAAGAACACCCAATGTCCTGA -ACGGAAGAACACCCAATGTAGCGA -ACGGAAGAACACCCAATGCACAGA -ACGGAAGAACACCCAATGGCAAGA -ACGGAAGAACACCCAATGGGTTGA -ACGGAAGAACACCCAATGTCCGAT -ACGGAAGAACACCCAATGTGGCAT -ACGGAAGAACACCCAATGCGAGAT -ACGGAAGAACACCCAATGTACCAC -ACGGAAGAACACCCAATGCAGAAC -ACGGAAGAACACCCAATGGTCTAC -ACGGAAGAACACCCAATGACGTAC -ACGGAAGAACACCCAATGAGTGAC -ACGGAAGAACACCCAATGCTGTAG -ACGGAAGAACACCCAATGCCTAAG -ACGGAAGAACACCCAATGGTTCAG -ACGGAAGAACACCCAATGGCATAG -ACGGAAGAACACCCAATGGACAAG -ACGGAAGAACACCCAATGAAGCAG -ACGGAAGAACACCCAATGCGTCAA -ACGGAAGAACACCCAATGGCTGAA -ACGGAAGAACACCCAATGAGTACG -ACGGAAGAACACCCAATGATCCGA -ACGGAAGAACACCCAATGATGGGA -ACGGAAGAACACCCAATGGTGCAA -ACGGAAGAACACCCAATGGAGGAA -ACGGAAGAACACCCAATGCAGGTA -ACGGAAGAACACCCAATGGACTCT -ACGGAAGAACACCCAATGAGTCCT -ACGGAAGAACACCCAATGTAAGCC -ACGGAAGAACACCCAATGATAGCC -ACGGAAGAACACCCAATGTAACCG -ACGGAAGAACACCCAATGATGCCA -ACGGAAAGTCACAACGGAGGAAAC -ACGGAAAGTCACAACGGAAACACC -ACGGAAAGTCACAACGGAATCGAG -ACGGAAAGTCACAACGGACTCCTT -ACGGAAAGTCACAACGGACCTGTT -ACGGAAAGTCACAACGGACGGTTT -ACGGAAAGTCACAACGGAGTGGTT -ACGGAAAGTCACAACGGAGCCTTT -ACGGAAAGTCACAACGGAGGTCTT -ACGGAAAGTCACAACGGAACGCTT -ACGGAAAGTCACAACGGAAGCGTT -ACGGAAAGTCACAACGGATTCGTC -ACGGAAAGTCACAACGGATCTCTC -ACGGAAAGTCACAACGGATGGATC -ACGGAAAGTCACAACGGACACTTC -ACGGAAAGTCACAACGGAGTACTC -ACGGAAAGTCACAACGGAGATGTC -ACGGAAAGTCACAACGGAACAGTC -ACGGAAAGTCACAACGGATTGCTG -ACGGAAAGTCACAACGGATCCATG -ACGGAAAGTCACAACGGATGTGTG -ACGGAAAGTCACAACGGACTAGTG -ACGGAAAGTCACAACGGACATCTG -ACGGAAAGTCACAACGGAGAGTTG -ACGGAAAGTCACAACGGAAGACTG -ACGGAAAGTCACAACGGATCGGTA -ACGGAAAGTCACAACGGATGCCTA -ACGGAAAGTCACAACGGACCACTA -ACGGAAAGTCACAACGGAGGAGTA -ACGGAAAGTCACAACGGATCGTCT -ACGGAAAGTCACAACGGATGCACT -ACGGAAAGTCACAACGGACTGACT -ACGGAAAGTCACAACGGACAACCT -ACGGAAAGTCACAACGGAGCTACT -ACGGAAAGTCACAACGGAGGATCT -ACGGAAAGTCACAACGGAAAGGCT -ACGGAAAGTCACAACGGATCAACC -ACGGAAAGTCACAACGGATGTTCC -ACGGAAAGTCACAACGGAATTCCC -ACGGAAAGTCACAACGGATTCTCG -ACGGAAAGTCACAACGGATAGACG -ACGGAAAGTCACAACGGAGTAACG -ACGGAAAGTCACAACGGAACTTCG -ACGGAAAGTCACAACGGATACGCA -ACGGAAAGTCACAACGGACTTGCA -ACGGAAAGTCACAACGGACGAACA -ACGGAAAGTCACAACGGACAGTCA -ACGGAAAGTCACAACGGAGATCCA -ACGGAAAGTCACAACGGAACGACA -ACGGAAAGTCACAACGGAAGCTCA -ACGGAAAGTCACAACGGATCACGT -ACGGAAAGTCACAACGGACGTAGT -ACGGAAAGTCACAACGGAGTCAGT -ACGGAAAGTCACAACGGAGAAGGT -ACGGAAAGTCACAACGGAAACCGT -ACGGAAAGTCACAACGGATTGTGC -ACGGAAAGTCACAACGGACTAAGC -ACGGAAAGTCACAACGGAACTAGC -ACGGAAAGTCACAACGGAAGATGC -ACGGAAAGTCACAACGGATGAAGG -ACGGAAAGTCACAACGGACAATGG -ACGGAAAGTCACAACGGAATGAGG -ACGGAAAGTCACAACGGAAATGGG -ACGGAAAGTCACAACGGATCCTGA -ACGGAAAGTCACAACGGATAGCGA -ACGGAAAGTCACAACGGACACAGA -ACGGAAAGTCACAACGGAGCAAGA -ACGGAAAGTCACAACGGAGGTTGA -ACGGAAAGTCACAACGGATCCGAT -ACGGAAAGTCACAACGGATGGCAT -ACGGAAAGTCACAACGGACGAGAT -ACGGAAAGTCACAACGGATACCAC -ACGGAAAGTCACAACGGACAGAAC -ACGGAAAGTCACAACGGAGTCTAC -ACGGAAAGTCACAACGGAACGTAC -ACGGAAAGTCACAACGGAAGTGAC -ACGGAAAGTCACAACGGACTGTAG -ACGGAAAGTCACAACGGACCTAAG -ACGGAAAGTCACAACGGAGTTCAG -ACGGAAAGTCACAACGGAGCATAG -ACGGAAAGTCACAACGGAGACAAG -ACGGAAAGTCACAACGGAAAGCAG -ACGGAAAGTCACAACGGACGTCAA -ACGGAAAGTCACAACGGAGCTGAA -ACGGAAAGTCACAACGGAAGTACG -ACGGAAAGTCACAACGGAATCCGA -ACGGAAAGTCACAACGGAATGGGA -ACGGAAAGTCACAACGGAGTGCAA -ACGGAAAGTCACAACGGAGAGGAA -ACGGAAAGTCACAACGGACAGGTA -ACGGAAAGTCACAACGGAGACTCT -ACGGAAAGTCACAACGGAAGTCCT -ACGGAAAGTCACAACGGATAAGCC -ACGGAAAGTCACAACGGAATAGCC -ACGGAAAGTCACAACGGATAACCG -ACGGAAAGTCACAACGGAATGCCA -ACGGAAAGTCACACCAACGGAAAC -ACGGAAAGTCACACCAACAACACC -ACGGAAAGTCACACCAACATCGAG -ACGGAAAGTCACACCAACCTCCTT -ACGGAAAGTCACACCAACCCTGTT -ACGGAAAGTCACACCAACCGGTTT -ACGGAAAGTCACACCAACGTGGTT -ACGGAAAGTCACACCAACGCCTTT -ACGGAAAGTCACACCAACGGTCTT -ACGGAAAGTCACACCAACACGCTT -ACGGAAAGTCACACCAACAGCGTT -ACGGAAAGTCACACCAACTTCGTC -ACGGAAAGTCACACCAACTCTCTC -ACGGAAAGTCACACCAACTGGATC -ACGGAAAGTCACACCAACCACTTC -ACGGAAAGTCACACCAACGTACTC -ACGGAAAGTCACACCAACGATGTC -ACGGAAAGTCACACCAACACAGTC -ACGGAAAGTCACACCAACTTGCTG -ACGGAAAGTCACACCAACTCCATG -ACGGAAAGTCACACCAACTGTGTG -ACGGAAAGTCACACCAACCTAGTG -ACGGAAAGTCACACCAACCATCTG -ACGGAAAGTCACACCAACGAGTTG -ACGGAAAGTCACACCAACAGACTG -ACGGAAAGTCACACCAACTCGGTA -ACGGAAAGTCACACCAACTGCCTA -ACGGAAAGTCACACCAACCCACTA -ACGGAAAGTCACACCAACGGAGTA -ACGGAAAGTCACACCAACTCGTCT -ACGGAAAGTCACACCAACTGCACT -ACGGAAAGTCACACCAACCTGACT -ACGGAAAGTCACACCAACCAACCT -ACGGAAAGTCACACCAACGCTACT -ACGGAAAGTCACACCAACGGATCT -ACGGAAAGTCACACCAACAAGGCT -ACGGAAAGTCACACCAACTCAACC -ACGGAAAGTCACACCAACTGTTCC -ACGGAAAGTCACACCAACATTCCC -ACGGAAAGTCACACCAACTTCTCG -ACGGAAAGTCACACCAACTAGACG -ACGGAAAGTCACACCAACGTAACG -ACGGAAAGTCACACCAACACTTCG -ACGGAAAGTCACACCAACTACGCA -ACGGAAAGTCACACCAACCTTGCA -ACGGAAAGTCACACCAACCGAACA -ACGGAAAGTCACACCAACCAGTCA -ACGGAAAGTCACACCAACGATCCA -ACGGAAAGTCACACCAACACGACA -ACGGAAAGTCACACCAACAGCTCA -ACGGAAAGTCACACCAACTCACGT -ACGGAAAGTCACACCAACCGTAGT -ACGGAAAGTCACACCAACGTCAGT -ACGGAAAGTCACACCAACGAAGGT -ACGGAAAGTCACACCAACAACCGT -ACGGAAAGTCACACCAACTTGTGC -ACGGAAAGTCACACCAACCTAAGC -ACGGAAAGTCACACCAACACTAGC -ACGGAAAGTCACACCAACAGATGC -ACGGAAAGTCACACCAACTGAAGG -ACGGAAAGTCACACCAACCAATGG -ACGGAAAGTCACACCAACATGAGG -ACGGAAAGTCACACCAACAATGGG -ACGGAAAGTCACACCAACTCCTGA -ACGGAAAGTCACACCAACTAGCGA -ACGGAAAGTCACACCAACCACAGA -ACGGAAAGTCACACCAACGCAAGA -ACGGAAAGTCACACCAACGGTTGA -ACGGAAAGTCACACCAACTCCGAT -ACGGAAAGTCACACCAACTGGCAT -ACGGAAAGTCACACCAACCGAGAT -ACGGAAAGTCACACCAACTACCAC -ACGGAAAGTCACACCAACCAGAAC -ACGGAAAGTCACACCAACGTCTAC -ACGGAAAGTCACACCAACACGTAC -ACGGAAAGTCACACCAACAGTGAC -ACGGAAAGTCACACCAACCTGTAG -ACGGAAAGTCACACCAACCCTAAG -ACGGAAAGTCACACCAACGTTCAG -ACGGAAAGTCACACCAACGCATAG -ACGGAAAGTCACACCAACGACAAG -ACGGAAAGTCACACCAACAAGCAG -ACGGAAAGTCACACCAACCGTCAA -ACGGAAAGTCACACCAACGCTGAA -ACGGAAAGTCACACCAACAGTACG -ACGGAAAGTCACACCAACATCCGA -ACGGAAAGTCACACCAACATGGGA -ACGGAAAGTCACACCAACGTGCAA -ACGGAAAGTCACACCAACGAGGAA -ACGGAAAGTCACACCAACCAGGTA -ACGGAAAGTCACACCAACGACTCT -ACGGAAAGTCACACCAACAGTCCT -ACGGAAAGTCACACCAACTAAGCC -ACGGAAAGTCACACCAACATAGCC -ACGGAAAGTCACACCAACTAACCG -ACGGAAAGTCACACCAACATGCCA -ACGGAAAGTCACGAGATCGGAAAC -ACGGAAAGTCACGAGATCAACACC -ACGGAAAGTCACGAGATCATCGAG -ACGGAAAGTCACGAGATCCTCCTT -ACGGAAAGTCACGAGATCCCTGTT -ACGGAAAGTCACGAGATCCGGTTT -ACGGAAAGTCACGAGATCGTGGTT -ACGGAAAGTCACGAGATCGCCTTT -ACGGAAAGTCACGAGATCGGTCTT -ACGGAAAGTCACGAGATCACGCTT -ACGGAAAGTCACGAGATCAGCGTT -ACGGAAAGTCACGAGATCTTCGTC -ACGGAAAGTCACGAGATCTCTCTC -ACGGAAAGTCACGAGATCTGGATC -ACGGAAAGTCACGAGATCCACTTC -ACGGAAAGTCACGAGATCGTACTC -ACGGAAAGTCACGAGATCGATGTC -ACGGAAAGTCACGAGATCACAGTC -ACGGAAAGTCACGAGATCTTGCTG -ACGGAAAGTCACGAGATCTCCATG -ACGGAAAGTCACGAGATCTGTGTG -ACGGAAAGTCACGAGATCCTAGTG -ACGGAAAGTCACGAGATCCATCTG -ACGGAAAGTCACGAGATCGAGTTG -ACGGAAAGTCACGAGATCAGACTG -ACGGAAAGTCACGAGATCTCGGTA -ACGGAAAGTCACGAGATCTGCCTA -ACGGAAAGTCACGAGATCCCACTA -ACGGAAAGTCACGAGATCGGAGTA -ACGGAAAGTCACGAGATCTCGTCT -ACGGAAAGTCACGAGATCTGCACT -ACGGAAAGTCACGAGATCCTGACT -ACGGAAAGTCACGAGATCCAACCT -ACGGAAAGTCACGAGATCGCTACT -ACGGAAAGTCACGAGATCGGATCT -ACGGAAAGTCACGAGATCAAGGCT -ACGGAAAGTCACGAGATCTCAACC -ACGGAAAGTCACGAGATCTGTTCC -ACGGAAAGTCACGAGATCATTCCC -ACGGAAAGTCACGAGATCTTCTCG -ACGGAAAGTCACGAGATCTAGACG -ACGGAAAGTCACGAGATCGTAACG -ACGGAAAGTCACGAGATCACTTCG -ACGGAAAGTCACGAGATCTACGCA -ACGGAAAGTCACGAGATCCTTGCA -ACGGAAAGTCACGAGATCCGAACA -ACGGAAAGTCACGAGATCCAGTCA -ACGGAAAGTCACGAGATCGATCCA -ACGGAAAGTCACGAGATCACGACA -ACGGAAAGTCACGAGATCAGCTCA -ACGGAAAGTCACGAGATCTCACGT -ACGGAAAGTCACGAGATCCGTAGT -ACGGAAAGTCACGAGATCGTCAGT -ACGGAAAGTCACGAGATCGAAGGT -ACGGAAAGTCACGAGATCAACCGT -ACGGAAAGTCACGAGATCTTGTGC -ACGGAAAGTCACGAGATCCTAAGC -ACGGAAAGTCACGAGATCACTAGC -ACGGAAAGTCACGAGATCAGATGC -ACGGAAAGTCACGAGATCTGAAGG -ACGGAAAGTCACGAGATCCAATGG -ACGGAAAGTCACGAGATCATGAGG -ACGGAAAGTCACGAGATCAATGGG -ACGGAAAGTCACGAGATCTCCTGA -ACGGAAAGTCACGAGATCTAGCGA -ACGGAAAGTCACGAGATCCACAGA -ACGGAAAGTCACGAGATCGCAAGA -ACGGAAAGTCACGAGATCGGTTGA -ACGGAAAGTCACGAGATCTCCGAT -ACGGAAAGTCACGAGATCTGGCAT -ACGGAAAGTCACGAGATCCGAGAT -ACGGAAAGTCACGAGATCTACCAC -ACGGAAAGTCACGAGATCCAGAAC -ACGGAAAGTCACGAGATCGTCTAC -ACGGAAAGTCACGAGATCACGTAC -ACGGAAAGTCACGAGATCAGTGAC -ACGGAAAGTCACGAGATCCTGTAG -ACGGAAAGTCACGAGATCCCTAAG -ACGGAAAGTCACGAGATCGTTCAG -ACGGAAAGTCACGAGATCGCATAG -ACGGAAAGTCACGAGATCGACAAG -ACGGAAAGTCACGAGATCAAGCAG -ACGGAAAGTCACGAGATCCGTCAA -ACGGAAAGTCACGAGATCGCTGAA -ACGGAAAGTCACGAGATCAGTACG -ACGGAAAGTCACGAGATCATCCGA -ACGGAAAGTCACGAGATCATGGGA -ACGGAAAGTCACGAGATCGTGCAA -ACGGAAAGTCACGAGATCGAGGAA -ACGGAAAGTCACGAGATCCAGGTA -ACGGAAAGTCACGAGATCGACTCT -ACGGAAAGTCACGAGATCAGTCCT -ACGGAAAGTCACGAGATCTAAGCC -ACGGAAAGTCACGAGATCATAGCC -ACGGAAAGTCACGAGATCTAACCG -ACGGAAAGTCACGAGATCATGCCA -ACGGAAAGTCACCTTCTCGGAAAC -ACGGAAAGTCACCTTCTCAACACC -ACGGAAAGTCACCTTCTCATCGAG -ACGGAAAGTCACCTTCTCCTCCTT -ACGGAAAGTCACCTTCTCCCTGTT -ACGGAAAGTCACCTTCTCCGGTTT -ACGGAAAGTCACCTTCTCGTGGTT -ACGGAAAGTCACCTTCTCGCCTTT -ACGGAAAGTCACCTTCTCGGTCTT -ACGGAAAGTCACCTTCTCACGCTT -ACGGAAAGTCACCTTCTCAGCGTT -ACGGAAAGTCACCTTCTCTTCGTC -ACGGAAAGTCACCTTCTCTCTCTC -ACGGAAAGTCACCTTCTCTGGATC -ACGGAAAGTCACCTTCTCCACTTC -ACGGAAAGTCACCTTCTCGTACTC -ACGGAAAGTCACCTTCTCGATGTC -ACGGAAAGTCACCTTCTCACAGTC -ACGGAAAGTCACCTTCTCTTGCTG -ACGGAAAGTCACCTTCTCTCCATG -ACGGAAAGTCACCTTCTCTGTGTG -ACGGAAAGTCACCTTCTCCTAGTG -ACGGAAAGTCACCTTCTCCATCTG -ACGGAAAGTCACCTTCTCGAGTTG -ACGGAAAGTCACCTTCTCAGACTG -ACGGAAAGTCACCTTCTCTCGGTA -ACGGAAAGTCACCTTCTCTGCCTA -ACGGAAAGTCACCTTCTCCCACTA -ACGGAAAGTCACCTTCTCGGAGTA -ACGGAAAGTCACCTTCTCTCGTCT -ACGGAAAGTCACCTTCTCTGCACT -ACGGAAAGTCACCTTCTCCTGACT -ACGGAAAGTCACCTTCTCCAACCT -ACGGAAAGTCACCTTCTCGCTACT -ACGGAAAGTCACCTTCTCGGATCT -ACGGAAAGTCACCTTCTCAAGGCT -ACGGAAAGTCACCTTCTCTCAACC -ACGGAAAGTCACCTTCTCTGTTCC -ACGGAAAGTCACCTTCTCATTCCC -ACGGAAAGTCACCTTCTCTTCTCG -ACGGAAAGTCACCTTCTCTAGACG -ACGGAAAGTCACCTTCTCGTAACG -ACGGAAAGTCACCTTCTCACTTCG -ACGGAAAGTCACCTTCTCTACGCA -ACGGAAAGTCACCTTCTCCTTGCA -ACGGAAAGTCACCTTCTCCGAACA -ACGGAAAGTCACCTTCTCCAGTCA -ACGGAAAGTCACCTTCTCGATCCA -ACGGAAAGTCACCTTCTCACGACA -ACGGAAAGTCACCTTCTCAGCTCA -ACGGAAAGTCACCTTCTCTCACGT -ACGGAAAGTCACCTTCTCCGTAGT -ACGGAAAGTCACCTTCTCGTCAGT -ACGGAAAGTCACCTTCTCGAAGGT -ACGGAAAGTCACCTTCTCAACCGT -ACGGAAAGTCACCTTCTCTTGTGC -ACGGAAAGTCACCTTCTCCTAAGC -ACGGAAAGTCACCTTCTCACTAGC -ACGGAAAGTCACCTTCTCAGATGC -ACGGAAAGTCACCTTCTCTGAAGG -ACGGAAAGTCACCTTCTCCAATGG -ACGGAAAGTCACCTTCTCATGAGG -ACGGAAAGTCACCTTCTCAATGGG -ACGGAAAGTCACCTTCTCTCCTGA -ACGGAAAGTCACCTTCTCTAGCGA -ACGGAAAGTCACCTTCTCCACAGA -ACGGAAAGTCACCTTCTCGCAAGA -ACGGAAAGTCACCTTCTCGGTTGA -ACGGAAAGTCACCTTCTCTCCGAT -ACGGAAAGTCACCTTCTCTGGCAT -ACGGAAAGTCACCTTCTCCGAGAT -ACGGAAAGTCACCTTCTCTACCAC -ACGGAAAGTCACCTTCTCCAGAAC -ACGGAAAGTCACCTTCTCGTCTAC -ACGGAAAGTCACCTTCTCACGTAC -ACGGAAAGTCACCTTCTCAGTGAC -ACGGAAAGTCACCTTCTCCTGTAG -ACGGAAAGTCACCTTCTCCCTAAG -ACGGAAAGTCACCTTCTCGTTCAG -ACGGAAAGTCACCTTCTCGCATAG -ACGGAAAGTCACCTTCTCGACAAG -ACGGAAAGTCACCTTCTCAAGCAG -ACGGAAAGTCACCTTCTCCGTCAA -ACGGAAAGTCACCTTCTCGCTGAA -ACGGAAAGTCACCTTCTCAGTACG -ACGGAAAGTCACCTTCTCATCCGA -ACGGAAAGTCACCTTCTCATGGGA -ACGGAAAGTCACCTTCTCGTGCAA -ACGGAAAGTCACCTTCTCGAGGAA -ACGGAAAGTCACCTTCTCCAGGTA -ACGGAAAGTCACCTTCTCGACTCT -ACGGAAAGTCACCTTCTCAGTCCT -ACGGAAAGTCACCTTCTCTAAGCC -ACGGAAAGTCACCTTCTCATAGCC -ACGGAAAGTCACCTTCTCTAACCG -ACGGAAAGTCACCTTCTCATGCCA -ACGGAAAGTCACGTTCCTGGAAAC -ACGGAAAGTCACGTTCCTAACACC -ACGGAAAGTCACGTTCCTATCGAG -ACGGAAAGTCACGTTCCTCTCCTT -ACGGAAAGTCACGTTCCTCCTGTT -ACGGAAAGTCACGTTCCTCGGTTT -ACGGAAAGTCACGTTCCTGTGGTT -ACGGAAAGTCACGTTCCTGCCTTT -ACGGAAAGTCACGTTCCTGGTCTT -ACGGAAAGTCACGTTCCTACGCTT -ACGGAAAGTCACGTTCCTAGCGTT -ACGGAAAGTCACGTTCCTTTCGTC -ACGGAAAGTCACGTTCCTTCTCTC -ACGGAAAGTCACGTTCCTTGGATC -ACGGAAAGTCACGTTCCTCACTTC -ACGGAAAGTCACGTTCCTGTACTC -ACGGAAAGTCACGTTCCTGATGTC -ACGGAAAGTCACGTTCCTACAGTC -ACGGAAAGTCACGTTCCTTTGCTG -ACGGAAAGTCACGTTCCTTCCATG -ACGGAAAGTCACGTTCCTTGTGTG -ACGGAAAGTCACGTTCCTCTAGTG -ACGGAAAGTCACGTTCCTCATCTG -ACGGAAAGTCACGTTCCTGAGTTG -ACGGAAAGTCACGTTCCTAGACTG -ACGGAAAGTCACGTTCCTTCGGTA -ACGGAAAGTCACGTTCCTTGCCTA -ACGGAAAGTCACGTTCCTCCACTA -ACGGAAAGTCACGTTCCTGGAGTA -ACGGAAAGTCACGTTCCTTCGTCT -ACGGAAAGTCACGTTCCTTGCACT -ACGGAAAGTCACGTTCCTCTGACT -ACGGAAAGTCACGTTCCTCAACCT -ACGGAAAGTCACGTTCCTGCTACT -ACGGAAAGTCACGTTCCTGGATCT -ACGGAAAGTCACGTTCCTAAGGCT -ACGGAAAGTCACGTTCCTTCAACC -ACGGAAAGTCACGTTCCTTGTTCC -ACGGAAAGTCACGTTCCTATTCCC -ACGGAAAGTCACGTTCCTTTCTCG -ACGGAAAGTCACGTTCCTTAGACG -ACGGAAAGTCACGTTCCTGTAACG -ACGGAAAGTCACGTTCCTACTTCG -ACGGAAAGTCACGTTCCTTACGCA -ACGGAAAGTCACGTTCCTCTTGCA -ACGGAAAGTCACGTTCCTCGAACA -ACGGAAAGTCACGTTCCTCAGTCA -ACGGAAAGTCACGTTCCTGATCCA -ACGGAAAGTCACGTTCCTACGACA -ACGGAAAGTCACGTTCCTAGCTCA -ACGGAAAGTCACGTTCCTTCACGT -ACGGAAAGTCACGTTCCTCGTAGT -ACGGAAAGTCACGTTCCTGTCAGT -ACGGAAAGTCACGTTCCTGAAGGT -ACGGAAAGTCACGTTCCTAACCGT -ACGGAAAGTCACGTTCCTTTGTGC -ACGGAAAGTCACGTTCCTCTAAGC -ACGGAAAGTCACGTTCCTACTAGC -ACGGAAAGTCACGTTCCTAGATGC -ACGGAAAGTCACGTTCCTTGAAGG -ACGGAAAGTCACGTTCCTCAATGG -ACGGAAAGTCACGTTCCTATGAGG -ACGGAAAGTCACGTTCCTAATGGG -ACGGAAAGTCACGTTCCTTCCTGA -ACGGAAAGTCACGTTCCTTAGCGA -ACGGAAAGTCACGTTCCTCACAGA -ACGGAAAGTCACGTTCCTGCAAGA -ACGGAAAGTCACGTTCCTGGTTGA -ACGGAAAGTCACGTTCCTTCCGAT -ACGGAAAGTCACGTTCCTTGGCAT -ACGGAAAGTCACGTTCCTCGAGAT -ACGGAAAGTCACGTTCCTTACCAC -ACGGAAAGTCACGTTCCTCAGAAC -ACGGAAAGTCACGTTCCTGTCTAC -ACGGAAAGTCACGTTCCTACGTAC -ACGGAAAGTCACGTTCCTAGTGAC -ACGGAAAGTCACGTTCCTCTGTAG -ACGGAAAGTCACGTTCCTCCTAAG -ACGGAAAGTCACGTTCCTGTTCAG -ACGGAAAGTCACGTTCCTGCATAG -ACGGAAAGTCACGTTCCTGACAAG -ACGGAAAGTCACGTTCCTAAGCAG -ACGGAAAGTCACGTTCCTCGTCAA -ACGGAAAGTCACGTTCCTGCTGAA -ACGGAAAGTCACGTTCCTAGTACG -ACGGAAAGTCACGTTCCTATCCGA -ACGGAAAGTCACGTTCCTATGGGA -ACGGAAAGTCACGTTCCTGTGCAA -ACGGAAAGTCACGTTCCTGAGGAA -ACGGAAAGTCACGTTCCTCAGGTA -ACGGAAAGTCACGTTCCTGACTCT -ACGGAAAGTCACGTTCCTAGTCCT -ACGGAAAGTCACGTTCCTTAAGCC -ACGGAAAGTCACGTTCCTATAGCC -ACGGAAAGTCACGTTCCTTAACCG -ACGGAAAGTCACGTTCCTATGCCA -ACGGAAAGTCACTTTCGGGGAAAC -ACGGAAAGTCACTTTCGGAACACC -ACGGAAAGTCACTTTCGGATCGAG -ACGGAAAGTCACTTTCGGCTCCTT -ACGGAAAGTCACTTTCGGCCTGTT -ACGGAAAGTCACTTTCGGCGGTTT -ACGGAAAGTCACTTTCGGGTGGTT -ACGGAAAGTCACTTTCGGGCCTTT -ACGGAAAGTCACTTTCGGGGTCTT -ACGGAAAGTCACTTTCGGACGCTT -ACGGAAAGTCACTTTCGGAGCGTT -ACGGAAAGTCACTTTCGGTTCGTC -ACGGAAAGTCACTTTCGGTCTCTC -ACGGAAAGTCACTTTCGGTGGATC -ACGGAAAGTCACTTTCGGCACTTC -ACGGAAAGTCACTTTCGGGTACTC -ACGGAAAGTCACTTTCGGGATGTC -ACGGAAAGTCACTTTCGGACAGTC -ACGGAAAGTCACTTTCGGTTGCTG -ACGGAAAGTCACTTTCGGTCCATG -ACGGAAAGTCACTTTCGGTGTGTG -ACGGAAAGTCACTTTCGGCTAGTG -ACGGAAAGTCACTTTCGGCATCTG -ACGGAAAGTCACTTTCGGGAGTTG -ACGGAAAGTCACTTTCGGAGACTG -ACGGAAAGTCACTTTCGGTCGGTA -ACGGAAAGTCACTTTCGGTGCCTA -ACGGAAAGTCACTTTCGGCCACTA -ACGGAAAGTCACTTTCGGGGAGTA -ACGGAAAGTCACTTTCGGTCGTCT -ACGGAAAGTCACTTTCGGTGCACT -ACGGAAAGTCACTTTCGGCTGACT -ACGGAAAGTCACTTTCGGCAACCT -ACGGAAAGTCACTTTCGGGCTACT -ACGGAAAGTCACTTTCGGGGATCT -ACGGAAAGTCACTTTCGGAAGGCT -ACGGAAAGTCACTTTCGGTCAACC -ACGGAAAGTCACTTTCGGTGTTCC -ACGGAAAGTCACTTTCGGATTCCC -ACGGAAAGTCACTTTCGGTTCTCG -ACGGAAAGTCACTTTCGGTAGACG -ACGGAAAGTCACTTTCGGGTAACG -ACGGAAAGTCACTTTCGGACTTCG -ACGGAAAGTCACTTTCGGTACGCA -ACGGAAAGTCACTTTCGGCTTGCA -ACGGAAAGTCACTTTCGGCGAACA -ACGGAAAGTCACTTTCGGCAGTCA -ACGGAAAGTCACTTTCGGGATCCA -ACGGAAAGTCACTTTCGGACGACA -ACGGAAAGTCACTTTCGGAGCTCA -ACGGAAAGTCACTTTCGGTCACGT -ACGGAAAGTCACTTTCGGCGTAGT -ACGGAAAGTCACTTTCGGGTCAGT -ACGGAAAGTCACTTTCGGGAAGGT -ACGGAAAGTCACTTTCGGAACCGT -ACGGAAAGTCACTTTCGGTTGTGC -ACGGAAAGTCACTTTCGGCTAAGC -ACGGAAAGTCACTTTCGGACTAGC -ACGGAAAGTCACTTTCGGAGATGC -ACGGAAAGTCACTTTCGGTGAAGG -ACGGAAAGTCACTTTCGGCAATGG -ACGGAAAGTCACTTTCGGATGAGG -ACGGAAAGTCACTTTCGGAATGGG -ACGGAAAGTCACTTTCGGTCCTGA -ACGGAAAGTCACTTTCGGTAGCGA -ACGGAAAGTCACTTTCGGCACAGA -ACGGAAAGTCACTTTCGGGCAAGA -ACGGAAAGTCACTTTCGGGGTTGA -ACGGAAAGTCACTTTCGGTCCGAT -ACGGAAAGTCACTTTCGGTGGCAT -ACGGAAAGTCACTTTCGGCGAGAT -ACGGAAAGTCACTTTCGGTACCAC -ACGGAAAGTCACTTTCGGCAGAAC -ACGGAAAGTCACTTTCGGGTCTAC -ACGGAAAGTCACTTTCGGACGTAC -ACGGAAAGTCACTTTCGGAGTGAC -ACGGAAAGTCACTTTCGGCTGTAG -ACGGAAAGTCACTTTCGGCCTAAG -ACGGAAAGTCACTTTCGGGTTCAG -ACGGAAAGTCACTTTCGGGCATAG -ACGGAAAGTCACTTTCGGGACAAG -ACGGAAAGTCACTTTCGGAAGCAG -ACGGAAAGTCACTTTCGGCGTCAA -ACGGAAAGTCACTTTCGGGCTGAA -ACGGAAAGTCACTTTCGGAGTACG -ACGGAAAGTCACTTTCGGATCCGA -ACGGAAAGTCACTTTCGGATGGGA -ACGGAAAGTCACTTTCGGGTGCAA -ACGGAAAGTCACTTTCGGGAGGAA -ACGGAAAGTCACTTTCGGCAGGTA -ACGGAAAGTCACTTTCGGGACTCT -ACGGAAAGTCACTTTCGGAGTCCT -ACGGAAAGTCACTTTCGGTAAGCC -ACGGAAAGTCACTTTCGGATAGCC -ACGGAAAGTCACTTTCGGTAACCG -ACGGAAAGTCACTTTCGGATGCCA -ACGGAAAGTCACGTTGTGGGAAAC -ACGGAAAGTCACGTTGTGAACACC -ACGGAAAGTCACGTTGTGATCGAG -ACGGAAAGTCACGTTGTGCTCCTT -ACGGAAAGTCACGTTGTGCCTGTT -ACGGAAAGTCACGTTGTGCGGTTT -ACGGAAAGTCACGTTGTGGTGGTT -ACGGAAAGTCACGTTGTGGCCTTT -ACGGAAAGTCACGTTGTGGGTCTT -ACGGAAAGTCACGTTGTGACGCTT -ACGGAAAGTCACGTTGTGAGCGTT -ACGGAAAGTCACGTTGTGTTCGTC -ACGGAAAGTCACGTTGTGTCTCTC -ACGGAAAGTCACGTTGTGTGGATC -ACGGAAAGTCACGTTGTGCACTTC -ACGGAAAGTCACGTTGTGGTACTC -ACGGAAAGTCACGTTGTGGATGTC -ACGGAAAGTCACGTTGTGACAGTC -ACGGAAAGTCACGTTGTGTTGCTG -ACGGAAAGTCACGTTGTGTCCATG -ACGGAAAGTCACGTTGTGTGTGTG -ACGGAAAGTCACGTTGTGCTAGTG -ACGGAAAGTCACGTTGTGCATCTG -ACGGAAAGTCACGTTGTGGAGTTG -ACGGAAAGTCACGTTGTGAGACTG -ACGGAAAGTCACGTTGTGTCGGTA -ACGGAAAGTCACGTTGTGTGCCTA -ACGGAAAGTCACGTTGTGCCACTA -ACGGAAAGTCACGTTGTGGGAGTA -ACGGAAAGTCACGTTGTGTCGTCT -ACGGAAAGTCACGTTGTGTGCACT -ACGGAAAGTCACGTTGTGCTGACT -ACGGAAAGTCACGTTGTGCAACCT -ACGGAAAGTCACGTTGTGGCTACT -ACGGAAAGTCACGTTGTGGGATCT -ACGGAAAGTCACGTTGTGAAGGCT -ACGGAAAGTCACGTTGTGTCAACC -ACGGAAAGTCACGTTGTGTGTTCC -ACGGAAAGTCACGTTGTGATTCCC -ACGGAAAGTCACGTTGTGTTCTCG -ACGGAAAGTCACGTTGTGTAGACG -ACGGAAAGTCACGTTGTGGTAACG -ACGGAAAGTCACGTTGTGACTTCG -ACGGAAAGTCACGTTGTGTACGCA -ACGGAAAGTCACGTTGTGCTTGCA -ACGGAAAGTCACGTTGTGCGAACA -ACGGAAAGTCACGTTGTGCAGTCA -ACGGAAAGTCACGTTGTGGATCCA -ACGGAAAGTCACGTTGTGACGACA -ACGGAAAGTCACGTTGTGAGCTCA -ACGGAAAGTCACGTTGTGTCACGT -ACGGAAAGTCACGTTGTGCGTAGT -ACGGAAAGTCACGTTGTGGTCAGT -ACGGAAAGTCACGTTGTGGAAGGT -ACGGAAAGTCACGTTGTGAACCGT -ACGGAAAGTCACGTTGTGTTGTGC -ACGGAAAGTCACGTTGTGCTAAGC -ACGGAAAGTCACGTTGTGACTAGC -ACGGAAAGTCACGTTGTGAGATGC -ACGGAAAGTCACGTTGTGTGAAGG -ACGGAAAGTCACGTTGTGCAATGG -ACGGAAAGTCACGTTGTGATGAGG -ACGGAAAGTCACGTTGTGAATGGG -ACGGAAAGTCACGTTGTGTCCTGA -ACGGAAAGTCACGTTGTGTAGCGA -ACGGAAAGTCACGTTGTGCACAGA -ACGGAAAGTCACGTTGTGGCAAGA -ACGGAAAGTCACGTTGTGGGTTGA -ACGGAAAGTCACGTTGTGTCCGAT -ACGGAAAGTCACGTTGTGTGGCAT -ACGGAAAGTCACGTTGTGCGAGAT -ACGGAAAGTCACGTTGTGTACCAC -ACGGAAAGTCACGTTGTGCAGAAC -ACGGAAAGTCACGTTGTGGTCTAC -ACGGAAAGTCACGTTGTGACGTAC -ACGGAAAGTCACGTTGTGAGTGAC -ACGGAAAGTCACGTTGTGCTGTAG -ACGGAAAGTCACGTTGTGCCTAAG -ACGGAAAGTCACGTTGTGGTTCAG -ACGGAAAGTCACGTTGTGGCATAG -ACGGAAAGTCACGTTGTGGACAAG -ACGGAAAGTCACGTTGTGAAGCAG -ACGGAAAGTCACGTTGTGCGTCAA -ACGGAAAGTCACGTTGTGGCTGAA -ACGGAAAGTCACGTTGTGAGTACG -ACGGAAAGTCACGTTGTGATCCGA -ACGGAAAGTCACGTTGTGATGGGA -ACGGAAAGTCACGTTGTGGTGCAA -ACGGAAAGTCACGTTGTGGAGGAA -ACGGAAAGTCACGTTGTGCAGGTA -ACGGAAAGTCACGTTGTGGACTCT -ACGGAAAGTCACGTTGTGAGTCCT -ACGGAAAGTCACGTTGTGTAAGCC -ACGGAAAGTCACGTTGTGATAGCC -ACGGAAAGTCACGTTGTGTAACCG -ACGGAAAGTCACGTTGTGATGCCA -ACGGAAAGTCACTTTGCCGGAAAC -ACGGAAAGTCACTTTGCCAACACC -ACGGAAAGTCACTTTGCCATCGAG -ACGGAAAGTCACTTTGCCCTCCTT -ACGGAAAGTCACTTTGCCCCTGTT -ACGGAAAGTCACTTTGCCCGGTTT -ACGGAAAGTCACTTTGCCGTGGTT -ACGGAAAGTCACTTTGCCGCCTTT -ACGGAAAGTCACTTTGCCGGTCTT -ACGGAAAGTCACTTTGCCACGCTT -ACGGAAAGTCACTTTGCCAGCGTT -ACGGAAAGTCACTTTGCCTTCGTC -ACGGAAAGTCACTTTGCCTCTCTC -ACGGAAAGTCACTTTGCCTGGATC -ACGGAAAGTCACTTTGCCCACTTC -ACGGAAAGTCACTTTGCCGTACTC -ACGGAAAGTCACTTTGCCGATGTC -ACGGAAAGTCACTTTGCCACAGTC -ACGGAAAGTCACTTTGCCTTGCTG -ACGGAAAGTCACTTTGCCTCCATG -ACGGAAAGTCACTTTGCCTGTGTG -ACGGAAAGTCACTTTGCCCTAGTG -ACGGAAAGTCACTTTGCCCATCTG -ACGGAAAGTCACTTTGCCGAGTTG -ACGGAAAGTCACTTTGCCAGACTG -ACGGAAAGTCACTTTGCCTCGGTA -ACGGAAAGTCACTTTGCCTGCCTA -ACGGAAAGTCACTTTGCCCCACTA -ACGGAAAGTCACTTTGCCGGAGTA -ACGGAAAGTCACTTTGCCTCGTCT -ACGGAAAGTCACTTTGCCTGCACT -ACGGAAAGTCACTTTGCCCTGACT -ACGGAAAGTCACTTTGCCCAACCT -ACGGAAAGTCACTTTGCCGCTACT -ACGGAAAGTCACTTTGCCGGATCT -ACGGAAAGTCACTTTGCCAAGGCT -ACGGAAAGTCACTTTGCCTCAACC -ACGGAAAGTCACTTTGCCTGTTCC -ACGGAAAGTCACTTTGCCATTCCC -ACGGAAAGTCACTTTGCCTTCTCG -ACGGAAAGTCACTTTGCCTAGACG -ACGGAAAGTCACTTTGCCGTAACG -ACGGAAAGTCACTTTGCCACTTCG -ACGGAAAGTCACTTTGCCTACGCA -ACGGAAAGTCACTTTGCCCTTGCA -ACGGAAAGTCACTTTGCCCGAACA -ACGGAAAGTCACTTTGCCCAGTCA -ACGGAAAGTCACTTTGCCGATCCA -ACGGAAAGTCACTTTGCCACGACA -ACGGAAAGTCACTTTGCCAGCTCA -ACGGAAAGTCACTTTGCCTCACGT -ACGGAAAGTCACTTTGCCCGTAGT -ACGGAAAGTCACTTTGCCGTCAGT -ACGGAAAGTCACTTTGCCGAAGGT -ACGGAAAGTCACTTTGCCAACCGT -ACGGAAAGTCACTTTGCCTTGTGC -ACGGAAAGTCACTTTGCCCTAAGC -ACGGAAAGTCACTTTGCCACTAGC -ACGGAAAGTCACTTTGCCAGATGC -ACGGAAAGTCACTTTGCCTGAAGG -ACGGAAAGTCACTTTGCCCAATGG -ACGGAAAGTCACTTTGCCATGAGG -ACGGAAAGTCACTTTGCCAATGGG -ACGGAAAGTCACTTTGCCTCCTGA -ACGGAAAGTCACTTTGCCTAGCGA -ACGGAAAGTCACTTTGCCCACAGA -ACGGAAAGTCACTTTGCCGCAAGA -ACGGAAAGTCACTTTGCCGGTTGA -ACGGAAAGTCACTTTGCCTCCGAT -ACGGAAAGTCACTTTGCCTGGCAT -ACGGAAAGTCACTTTGCCCGAGAT -ACGGAAAGTCACTTTGCCTACCAC -ACGGAAAGTCACTTTGCCCAGAAC -ACGGAAAGTCACTTTGCCGTCTAC -ACGGAAAGTCACTTTGCCACGTAC -ACGGAAAGTCACTTTGCCAGTGAC -ACGGAAAGTCACTTTGCCCTGTAG -ACGGAAAGTCACTTTGCCCCTAAG -ACGGAAAGTCACTTTGCCGTTCAG -ACGGAAAGTCACTTTGCCGCATAG -ACGGAAAGTCACTTTGCCGACAAG -ACGGAAAGTCACTTTGCCAAGCAG -ACGGAAAGTCACTTTGCCCGTCAA -ACGGAAAGTCACTTTGCCGCTGAA -ACGGAAAGTCACTTTGCCAGTACG -ACGGAAAGTCACTTTGCCATCCGA -ACGGAAAGTCACTTTGCCATGGGA -ACGGAAAGTCACTTTGCCGTGCAA -ACGGAAAGTCACTTTGCCGAGGAA -ACGGAAAGTCACTTTGCCCAGGTA -ACGGAAAGTCACTTTGCCGACTCT -ACGGAAAGTCACTTTGCCAGTCCT -ACGGAAAGTCACTTTGCCTAAGCC -ACGGAAAGTCACTTTGCCATAGCC -ACGGAAAGTCACTTTGCCTAACCG -ACGGAAAGTCACTTTGCCATGCCA -ACGGAAAGTCACCTTGGTGGAAAC -ACGGAAAGTCACCTTGGTAACACC -ACGGAAAGTCACCTTGGTATCGAG -ACGGAAAGTCACCTTGGTCTCCTT -ACGGAAAGTCACCTTGGTCCTGTT -ACGGAAAGTCACCTTGGTCGGTTT -ACGGAAAGTCACCTTGGTGTGGTT -ACGGAAAGTCACCTTGGTGCCTTT -ACGGAAAGTCACCTTGGTGGTCTT -ACGGAAAGTCACCTTGGTACGCTT -ACGGAAAGTCACCTTGGTAGCGTT -ACGGAAAGTCACCTTGGTTTCGTC -ACGGAAAGTCACCTTGGTTCTCTC -ACGGAAAGTCACCTTGGTTGGATC -ACGGAAAGTCACCTTGGTCACTTC -ACGGAAAGTCACCTTGGTGTACTC -ACGGAAAGTCACCTTGGTGATGTC -ACGGAAAGTCACCTTGGTACAGTC -ACGGAAAGTCACCTTGGTTTGCTG -ACGGAAAGTCACCTTGGTTCCATG -ACGGAAAGTCACCTTGGTTGTGTG -ACGGAAAGTCACCTTGGTCTAGTG -ACGGAAAGTCACCTTGGTCATCTG -ACGGAAAGTCACCTTGGTGAGTTG -ACGGAAAGTCACCTTGGTAGACTG -ACGGAAAGTCACCTTGGTTCGGTA -ACGGAAAGTCACCTTGGTTGCCTA -ACGGAAAGTCACCTTGGTCCACTA -ACGGAAAGTCACCTTGGTGGAGTA -ACGGAAAGTCACCTTGGTTCGTCT -ACGGAAAGTCACCTTGGTTGCACT -ACGGAAAGTCACCTTGGTCTGACT -ACGGAAAGTCACCTTGGTCAACCT -ACGGAAAGTCACCTTGGTGCTACT -ACGGAAAGTCACCTTGGTGGATCT -ACGGAAAGTCACCTTGGTAAGGCT -ACGGAAAGTCACCTTGGTTCAACC -ACGGAAAGTCACCTTGGTTGTTCC -ACGGAAAGTCACCTTGGTATTCCC -ACGGAAAGTCACCTTGGTTTCTCG -ACGGAAAGTCACCTTGGTTAGACG -ACGGAAAGTCACCTTGGTGTAACG -ACGGAAAGTCACCTTGGTACTTCG -ACGGAAAGTCACCTTGGTTACGCA -ACGGAAAGTCACCTTGGTCTTGCA -ACGGAAAGTCACCTTGGTCGAACA -ACGGAAAGTCACCTTGGTCAGTCA -ACGGAAAGTCACCTTGGTGATCCA -ACGGAAAGTCACCTTGGTACGACA -ACGGAAAGTCACCTTGGTAGCTCA -ACGGAAAGTCACCTTGGTTCACGT -ACGGAAAGTCACCTTGGTCGTAGT -ACGGAAAGTCACCTTGGTGTCAGT -ACGGAAAGTCACCTTGGTGAAGGT -ACGGAAAGTCACCTTGGTAACCGT -ACGGAAAGTCACCTTGGTTTGTGC -ACGGAAAGTCACCTTGGTCTAAGC -ACGGAAAGTCACCTTGGTACTAGC -ACGGAAAGTCACCTTGGTAGATGC -ACGGAAAGTCACCTTGGTTGAAGG -ACGGAAAGTCACCTTGGTCAATGG -ACGGAAAGTCACCTTGGTATGAGG -ACGGAAAGTCACCTTGGTAATGGG -ACGGAAAGTCACCTTGGTTCCTGA -ACGGAAAGTCACCTTGGTTAGCGA -ACGGAAAGTCACCTTGGTCACAGA -ACGGAAAGTCACCTTGGTGCAAGA -ACGGAAAGTCACCTTGGTGGTTGA -ACGGAAAGTCACCTTGGTTCCGAT -ACGGAAAGTCACCTTGGTTGGCAT -ACGGAAAGTCACCTTGGTCGAGAT -ACGGAAAGTCACCTTGGTTACCAC -ACGGAAAGTCACCTTGGTCAGAAC -ACGGAAAGTCACCTTGGTGTCTAC -ACGGAAAGTCACCTTGGTACGTAC -ACGGAAAGTCACCTTGGTAGTGAC -ACGGAAAGTCACCTTGGTCTGTAG -ACGGAAAGTCACCTTGGTCCTAAG -ACGGAAAGTCACCTTGGTGTTCAG -ACGGAAAGTCACCTTGGTGCATAG -ACGGAAAGTCACCTTGGTGACAAG -ACGGAAAGTCACCTTGGTAAGCAG -ACGGAAAGTCACCTTGGTCGTCAA -ACGGAAAGTCACCTTGGTGCTGAA -ACGGAAAGTCACCTTGGTAGTACG -ACGGAAAGTCACCTTGGTATCCGA -ACGGAAAGTCACCTTGGTATGGGA -ACGGAAAGTCACCTTGGTGTGCAA -ACGGAAAGTCACCTTGGTGAGGAA -ACGGAAAGTCACCTTGGTCAGGTA -ACGGAAAGTCACCTTGGTGACTCT -ACGGAAAGTCACCTTGGTAGTCCT -ACGGAAAGTCACCTTGGTTAAGCC -ACGGAAAGTCACCTTGGTATAGCC -ACGGAAAGTCACCTTGGTTAACCG -ACGGAAAGTCACCTTGGTATGCCA -ACGGAAAGTCACCTTACGGGAAAC -ACGGAAAGTCACCTTACGAACACC -ACGGAAAGTCACCTTACGATCGAG -ACGGAAAGTCACCTTACGCTCCTT -ACGGAAAGTCACCTTACGCCTGTT -ACGGAAAGTCACCTTACGCGGTTT -ACGGAAAGTCACCTTACGGTGGTT -ACGGAAAGTCACCTTACGGCCTTT -ACGGAAAGTCACCTTACGGGTCTT -ACGGAAAGTCACCTTACGACGCTT -ACGGAAAGTCACCTTACGAGCGTT -ACGGAAAGTCACCTTACGTTCGTC -ACGGAAAGTCACCTTACGTCTCTC -ACGGAAAGTCACCTTACGTGGATC -ACGGAAAGTCACCTTACGCACTTC -ACGGAAAGTCACCTTACGGTACTC -ACGGAAAGTCACCTTACGGATGTC -ACGGAAAGTCACCTTACGACAGTC -ACGGAAAGTCACCTTACGTTGCTG -ACGGAAAGTCACCTTACGTCCATG -ACGGAAAGTCACCTTACGTGTGTG -ACGGAAAGTCACCTTACGCTAGTG -ACGGAAAGTCACCTTACGCATCTG -ACGGAAAGTCACCTTACGGAGTTG -ACGGAAAGTCACCTTACGAGACTG -ACGGAAAGTCACCTTACGTCGGTA -ACGGAAAGTCACCTTACGTGCCTA -ACGGAAAGTCACCTTACGCCACTA -ACGGAAAGTCACCTTACGGGAGTA -ACGGAAAGTCACCTTACGTCGTCT -ACGGAAAGTCACCTTACGTGCACT -ACGGAAAGTCACCTTACGCTGACT -ACGGAAAGTCACCTTACGCAACCT -ACGGAAAGTCACCTTACGGCTACT -ACGGAAAGTCACCTTACGGGATCT -ACGGAAAGTCACCTTACGAAGGCT -ACGGAAAGTCACCTTACGTCAACC -ACGGAAAGTCACCTTACGTGTTCC -ACGGAAAGTCACCTTACGATTCCC -ACGGAAAGTCACCTTACGTTCTCG -ACGGAAAGTCACCTTACGTAGACG -ACGGAAAGTCACCTTACGGTAACG -ACGGAAAGTCACCTTACGACTTCG -ACGGAAAGTCACCTTACGTACGCA -ACGGAAAGTCACCTTACGCTTGCA -ACGGAAAGTCACCTTACGCGAACA -ACGGAAAGTCACCTTACGCAGTCA -ACGGAAAGTCACCTTACGGATCCA -ACGGAAAGTCACCTTACGACGACA -ACGGAAAGTCACCTTACGAGCTCA -ACGGAAAGTCACCTTACGTCACGT -ACGGAAAGTCACCTTACGCGTAGT -ACGGAAAGTCACCTTACGGTCAGT -ACGGAAAGTCACCTTACGGAAGGT -ACGGAAAGTCACCTTACGAACCGT -ACGGAAAGTCACCTTACGTTGTGC -ACGGAAAGTCACCTTACGCTAAGC -ACGGAAAGTCACCTTACGACTAGC -ACGGAAAGTCACCTTACGAGATGC -ACGGAAAGTCACCTTACGTGAAGG -ACGGAAAGTCACCTTACGCAATGG -ACGGAAAGTCACCTTACGATGAGG -ACGGAAAGTCACCTTACGAATGGG -ACGGAAAGTCACCTTACGTCCTGA -ACGGAAAGTCACCTTACGTAGCGA -ACGGAAAGTCACCTTACGCACAGA -ACGGAAAGTCACCTTACGGCAAGA -ACGGAAAGTCACCTTACGGGTTGA -ACGGAAAGTCACCTTACGTCCGAT -ACGGAAAGTCACCTTACGTGGCAT -ACGGAAAGTCACCTTACGCGAGAT -ACGGAAAGTCACCTTACGTACCAC -ACGGAAAGTCACCTTACGCAGAAC -ACGGAAAGTCACCTTACGGTCTAC -ACGGAAAGTCACCTTACGACGTAC -ACGGAAAGTCACCTTACGAGTGAC -ACGGAAAGTCACCTTACGCTGTAG -ACGGAAAGTCACCTTACGCCTAAG -ACGGAAAGTCACCTTACGGTTCAG -ACGGAAAGTCACCTTACGGCATAG -ACGGAAAGTCACCTTACGGACAAG -ACGGAAAGTCACCTTACGAAGCAG -ACGGAAAGTCACCTTACGCGTCAA -ACGGAAAGTCACCTTACGGCTGAA -ACGGAAAGTCACCTTACGAGTACG -ACGGAAAGTCACCTTACGATCCGA -ACGGAAAGTCACCTTACGATGGGA -ACGGAAAGTCACCTTACGGTGCAA -ACGGAAAGTCACCTTACGGAGGAA -ACGGAAAGTCACCTTACGCAGGTA -ACGGAAAGTCACCTTACGGACTCT -ACGGAAAGTCACCTTACGAGTCCT -ACGGAAAGTCACCTTACGTAAGCC -ACGGAAAGTCACCTTACGATAGCC -ACGGAAAGTCACCTTACGTAACCG -ACGGAAAGTCACCTTACGATGCCA -ACGGAAAGTCACGTTAGCGGAAAC -ACGGAAAGTCACGTTAGCAACACC -ACGGAAAGTCACGTTAGCATCGAG -ACGGAAAGTCACGTTAGCCTCCTT -ACGGAAAGTCACGTTAGCCCTGTT -ACGGAAAGTCACGTTAGCCGGTTT -ACGGAAAGTCACGTTAGCGTGGTT -ACGGAAAGTCACGTTAGCGCCTTT -ACGGAAAGTCACGTTAGCGGTCTT -ACGGAAAGTCACGTTAGCACGCTT -ACGGAAAGTCACGTTAGCAGCGTT -ACGGAAAGTCACGTTAGCTTCGTC -ACGGAAAGTCACGTTAGCTCTCTC -ACGGAAAGTCACGTTAGCTGGATC -ACGGAAAGTCACGTTAGCCACTTC -ACGGAAAGTCACGTTAGCGTACTC -ACGGAAAGTCACGTTAGCGATGTC -ACGGAAAGTCACGTTAGCACAGTC -ACGGAAAGTCACGTTAGCTTGCTG -ACGGAAAGTCACGTTAGCTCCATG -ACGGAAAGTCACGTTAGCTGTGTG -ACGGAAAGTCACGTTAGCCTAGTG -ACGGAAAGTCACGTTAGCCATCTG -ACGGAAAGTCACGTTAGCGAGTTG -ACGGAAAGTCACGTTAGCAGACTG -ACGGAAAGTCACGTTAGCTCGGTA -ACGGAAAGTCACGTTAGCTGCCTA -ACGGAAAGTCACGTTAGCCCACTA -ACGGAAAGTCACGTTAGCGGAGTA -ACGGAAAGTCACGTTAGCTCGTCT -ACGGAAAGTCACGTTAGCTGCACT -ACGGAAAGTCACGTTAGCCTGACT -ACGGAAAGTCACGTTAGCCAACCT -ACGGAAAGTCACGTTAGCGCTACT -ACGGAAAGTCACGTTAGCGGATCT -ACGGAAAGTCACGTTAGCAAGGCT -ACGGAAAGTCACGTTAGCTCAACC -ACGGAAAGTCACGTTAGCTGTTCC -ACGGAAAGTCACGTTAGCATTCCC -ACGGAAAGTCACGTTAGCTTCTCG -ACGGAAAGTCACGTTAGCTAGACG -ACGGAAAGTCACGTTAGCGTAACG -ACGGAAAGTCACGTTAGCACTTCG -ACGGAAAGTCACGTTAGCTACGCA -ACGGAAAGTCACGTTAGCCTTGCA -ACGGAAAGTCACGTTAGCCGAACA -ACGGAAAGTCACGTTAGCCAGTCA -ACGGAAAGTCACGTTAGCGATCCA -ACGGAAAGTCACGTTAGCACGACA -ACGGAAAGTCACGTTAGCAGCTCA -ACGGAAAGTCACGTTAGCTCACGT -ACGGAAAGTCACGTTAGCCGTAGT -ACGGAAAGTCACGTTAGCGTCAGT -ACGGAAAGTCACGTTAGCGAAGGT -ACGGAAAGTCACGTTAGCAACCGT -ACGGAAAGTCACGTTAGCTTGTGC -ACGGAAAGTCACGTTAGCCTAAGC -ACGGAAAGTCACGTTAGCACTAGC -ACGGAAAGTCACGTTAGCAGATGC -ACGGAAAGTCACGTTAGCTGAAGG -ACGGAAAGTCACGTTAGCCAATGG -ACGGAAAGTCACGTTAGCATGAGG -ACGGAAAGTCACGTTAGCAATGGG -ACGGAAAGTCACGTTAGCTCCTGA -ACGGAAAGTCACGTTAGCTAGCGA -ACGGAAAGTCACGTTAGCCACAGA -ACGGAAAGTCACGTTAGCGCAAGA -ACGGAAAGTCACGTTAGCGGTTGA -ACGGAAAGTCACGTTAGCTCCGAT -ACGGAAAGTCACGTTAGCTGGCAT -ACGGAAAGTCACGTTAGCCGAGAT -ACGGAAAGTCACGTTAGCTACCAC -ACGGAAAGTCACGTTAGCCAGAAC -ACGGAAAGTCACGTTAGCGTCTAC -ACGGAAAGTCACGTTAGCACGTAC -ACGGAAAGTCACGTTAGCAGTGAC -ACGGAAAGTCACGTTAGCCTGTAG -ACGGAAAGTCACGTTAGCCCTAAG -ACGGAAAGTCACGTTAGCGTTCAG -ACGGAAAGTCACGTTAGCGCATAG -ACGGAAAGTCACGTTAGCGACAAG -ACGGAAAGTCACGTTAGCAAGCAG -ACGGAAAGTCACGTTAGCCGTCAA -ACGGAAAGTCACGTTAGCGCTGAA -ACGGAAAGTCACGTTAGCAGTACG -ACGGAAAGTCACGTTAGCATCCGA -ACGGAAAGTCACGTTAGCATGGGA -ACGGAAAGTCACGTTAGCGTGCAA -ACGGAAAGTCACGTTAGCGAGGAA -ACGGAAAGTCACGTTAGCCAGGTA -ACGGAAAGTCACGTTAGCGACTCT -ACGGAAAGTCACGTTAGCAGTCCT -ACGGAAAGTCACGTTAGCTAAGCC -ACGGAAAGTCACGTTAGCATAGCC -ACGGAAAGTCACGTTAGCTAACCG -ACGGAAAGTCACGTTAGCATGCCA -ACGGAAAGTCACGTCTTCGGAAAC -ACGGAAAGTCACGTCTTCAACACC -ACGGAAAGTCACGTCTTCATCGAG -ACGGAAAGTCACGTCTTCCTCCTT -ACGGAAAGTCACGTCTTCCCTGTT -ACGGAAAGTCACGTCTTCCGGTTT -ACGGAAAGTCACGTCTTCGTGGTT -ACGGAAAGTCACGTCTTCGCCTTT -ACGGAAAGTCACGTCTTCGGTCTT -ACGGAAAGTCACGTCTTCACGCTT -ACGGAAAGTCACGTCTTCAGCGTT -ACGGAAAGTCACGTCTTCTTCGTC -ACGGAAAGTCACGTCTTCTCTCTC -ACGGAAAGTCACGTCTTCTGGATC -ACGGAAAGTCACGTCTTCCACTTC -ACGGAAAGTCACGTCTTCGTACTC -ACGGAAAGTCACGTCTTCGATGTC -ACGGAAAGTCACGTCTTCACAGTC -ACGGAAAGTCACGTCTTCTTGCTG -ACGGAAAGTCACGTCTTCTCCATG -ACGGAAAGTCACGTCTTCTGTGTG -ACGGAAAGTCACGTCTTCCTAGTG -ACGGAAAGTCACGTCTTCCATCTG -ACGGAAAGTCACGTCTTCGAGTTG -ACGGAAAGTCACGTCTTCAGACTG -ACGGAAAGTCACGTCTTCTCGGTA -ACGGAAAGTCACGTCTTCTGCCTA -ACGGAAAGTCACGTCTTCCCACTA -ACGGAAAGTCACGTCTTCGGAGTA -ACGGAAAGTCACGTCTTCTCGTCT -ACGGAAAGTCACGTCTTCTGCACT -ACGGAAAGTCACGTCTTCCTGACT -ACGGAAAGTCACGTCTTCCAACCT -ACGGAAAGTCACGTCTTCGCTACT -ACGGAAAGTCACGTCTTCGGATCT -ACGGAAAGTCACGTCTTCAAGGCT -ACGGAAAGTCACGTCTTCTCAACC -ACGGAAAGTCACGTCTTCTGTTCC -ACGGAAAGTCACGTCTTCATTCCC -ACGGAAAGTCACGTCTTCTTCTCG -ACGGAAAGTCACGTCTTCTAGACG -ACGGAAAGTCACGTCTTCGTAACG -ACGGAAAGTCACGTCTTCACTTCG -ACGGAAAGTCACGTCTTCTACGCA -ACGGAAAGTCACGTCTTCCTTGCA -ACGGAAAGTCACGTCTTCCGAACA -ACGGAAAGTCACGTCTTCCAGTCA -ACGGAAAGTCACGTCTTCGATCCA -ACGGAAAGTCACGTCTTCACGACA -ACGGAAAGTCACGTCTTCAGCTCA -ACGGAAAGTCACGTCTTCTCACGT -ACGGAAAGTCACGTCTTCCGTAGT -ACGGAAAGTCACGTCTTCGTCAGT -ACGGAAAGTCACGTCTTCGAAGGT -ACGGAAAGTCACGTCTTCAACCGT -ACGGAAAGTCACGTCTTCTTGTGC -ACGGAAAGTCACGTCTTCCTAAGC -ACGGAAAGTCACGTCTTCACTAGC -ACGGAAAGTCACGTCTTCAGATGC -ACGGAAAGTCACGTCTTCTGAAGG -ACGGAAAGTCACGTCTTCCAATGG -ACGGAAAGTCACGTCTTCATGAGG -ACGGAAAGTCACGTCTTCAATGGG -ACGGAAAGTCACGTCTTCTCCTGA -ACGGAAAGTCACGTCTTCTAGCGA -ACGGAAAGTCACGTCTTCCACAGA -ACGGAAAGTCACGTCTTCGCAAGA -ACGGAAAGTCACGTCTTCGGTTGA -ACGGAAAGTCACGTCTTCTCCGAT -ACGGAAAGTCACGTCTTCTGGCAT -ACGGAAAGTCACGTCTTCCGAGAT -ACGGAAAGTCACGTCTTCTACCAC -ACGGAAAGTCACGTCTTCCAGAAC -ACGGAAAGTCACGTCTTCGTCTAC -ACGGAAAGTCACGTCTTCACGTAC -ACGGAAAGTCACGTCTTCAGTGAC -ACGGAAAGTCACGTCTTCCTGTAG -ACGGAAAGTCACGTCTTCCCTAAG -ACGGAAAGTCACGTCTTCGTTCAG -ACGGAAAGTCACGTCTTCGCATAG -ACGGAAAGTCACGTCTTCGACAAG -ACGGAAAGTCACGTCTTCAAGCAG -ACGGAAAGTCACGTCTTCCGTCAA -ACGGAAAGTCACGTCTTCGCTGAA -ACGGAAAGTCACGTCTTCAGTACG -ACGGAAAGTCACGTCTTCATCCGA -ACGGAAAGTCACGTCTTCATGGGA -ACGGAAAGTCACGTCTTCGTGCAA -ACGGAAAGTCACGTCTTCGAGGAA -ACGGAAAGTCACGTCTTCCAGGTA -ACGGAAAGTCACGTCTTCGACTCT -ACGGAAAGTCACGTCTTCAGTCCT -ACGGAAAGTCACGTCTTCTAAGCC -ACGGAAAGTCACGTCTTCATAGCC -ACGGAAAGTCACGTCTTCTAACCG -ACGGAAAGTCACGTCTTCATGCCA -ACGGAAAGTCACCTCTCTGGAAAC -ACGGAAAGTCACCTCTCTAACACC -ACGGAAAGTCACCTCTCTATCGAG -ACGGAAAGTCACCTCTCTCTCCTT -ACGGAAAGTCACCTCTCTCCTGTT -ACGGAAAGTCACCTCTCTCGGTTT -ACGGAAAGTCACCTCTCTGTGGTT -ACGGAAAGTCACCTCTCTGCCTTT -ACGGAAAGTCACCTCTCTGGTCTT -ACGGAAAGTCACCTCTCTACGCTT -ACGGAAAGTCACCTCTCTAGCGTT -ACGGAAAGTCACCTCTCTTTCGTC -ACGGAAAGTCACCTCTCTTCTCTC -ACGGAAAGTCACCTCTCTTGGATC -ACGGAAAGTCACCTCTCTCACTTC -ACGGAAAGTCACCTCTCTGTACTC -ACGGAAAGTCACCTCTCTGATGTC -ACGGAAAGTCACCTCTCTACAGTC -ACGGAAAGTCACCTCTCTTTGCTG -ACGGAAAGTCACCTCTCTTCCATG -ACGGAAAGTCACCTCTCTTGTGTG -ACGGAAAGTCACCTCTCTCTAGTG -ACGGAAAGTCACCTCTCTCATCTG -ACGGAAAGTCACCTCTCTGAGTTG -ACGGAAAGTCACCTCTCTAGACTG -ACGGAAAGTCACCTCTCTTCGGTA -ACGGAAAGTCACCTCTCTTGCCTA -ACGGAAAGTCACCTCTCTCCACTA -ACGGAAAGTCACCTCTCTGGAGTA -ACGGAAAGTCACCTCTCTTCGTCT -ACGGAAAGTCACCTCTCTTGCACT -ACGGAAAGTCACCTCTCTCTGACT -ACGGAAAGTCACCTCTCTCAACCT -ACGGAAAGTCACCTCTCTGCTACT -ACGGAAAGTCACCTCTCTGGATCT -ACGGAAAGTCACCTCTCTAAGGCT -ACGGAAAGTCACCTCTCTTCAACC -ACGGAAAGTCACCTCTCTTGTTCC -ACGGAAAGTCACCTCTCTATTCCC -ACGGAAAGTCACCTCTCTTTCTCG -ACGGAAAGTCACCTCTCTTAGACG -ACGGAAAGTCACCTCTCTGTAACG -ACGGAAAGTCACCTCTCTACTTCG -ACGGAAAGTCACCTCTCTTACGCA -ACGGAAAGTCACCTCTCTCTTGCA -ACGGAAAGTCACCTCTCTCGAACA -ACGGAAAGTCACCTCTCTCAGTCA -ACGGAAAGTCACCTCTCTGATCCA -ACGGAAAGTCACCTCTCTACGACA -ACGGAAAGTCACCTCTCTAGCTCA -ACGGAAAGTCACCTCTCTTCACGT -ACGGAAAGTCACCTCTCTCGTAGT -ACGGAAAGTCACCTCTCTGTCAGT -ACGGAAAGTCACCTCTCTGAAGGT -ACGGAAAGTCACCTCTCTAACCGT -ACGGAAAGTCACCTCTCTTTGTGC -ACGGAAAGTCACCTCTCTCTAAGC -ACGGAAAGTCACCTCTCTACTAGC -ACGGAAAGTCACCTCTCTAGATGC -ACGGAAAGTCACCTCTCTTGAAGG -ACGGAAAGTCACCTCTCTCAATGG -ACGGAAAGTCACCTCTCTATGAGG -ACGGAAAGTCACCTCTCTAATGGG -ACGGAAAGTCACCTCTCTTCCTGA -ACGGAAAGTCACCTCTCTTAGCGA -ACGGAAAGTCACCTCTCTCACAGA -ACGGAAAGTCACCTCTCTGCAAGA -ACGGAAAGTCACCTCTCTGGTTGA -ACGGAAAGTCACCTCTCTTCCGAT -ACGGAAAGTCACCTCTCTTGGCAT -ACGGAAAGTCACCTCTCTCGAGAT -ACGGAAAGTCACCTCTCTTACCAC -ACGGAAAGTCACCTCTCTCAGAAC -ACGGAAAGTCACCTCTCTGTCTAC -ACGGAAAGTCACCTCTCTACGTAC -ACGGAAAGTCACCTCTCTAGTGAC -ACGGAAAGTCACCTCTCTCTGTAG -ACGGAAAGTCACCTCTCTCCTAAG -ACGGAAAGTCACCTCTCTGTTCAG -ACGGAAAGTCACCTCTCTGCATAG -ACGGAAAGTCACCTCTCTGACAAG -ACGGAAAGTCACCTCTCTAAGCAG -ACGGAAAGTCACCTCTCTCGTCAA -ACGGAAAGTCACCTCTCTGCTGAA -ACGGAAAGTCACCTCTCTAGTACG -ACGGAAAGTCACCTCTCTATCCGA -ACGGAAAGTCACCTCTCTATGGGA -ACGGAAAGTCACCTCTCTGTGCAA -ACGGAAAGTCACCTCTCTGAGGAA -ACGGAAAGTCACCTCTCTCAGGTA -ACGGAAAGTCACCTCTCTGACTCT -ACGGAAAGTCACCTCTCTAGTCCT -ACGGAAAGTCACCTCTCTTAAGCC -ACGGAAAGTCACCTCTCTATAGCC -ACGGAAAGTCACCTCTCTTAACCG -ACGGAAAGTCACCTCTCTATGCCA -ACGGAAAGTCACATCTGGGGAAAC -ACGGAAAGTCACATCTGGAACACC -ACGGAAAGTCACATCTGGATCGAG -ACGGAAAGTCACATCTGGCTCCTT -ACGGAAAGTCACATCTGGCCTGTT -ACGGAAAGTCACATCTGGCGGTTT -ACGGAAAGTCACATCTGGGTGGTT -ACGGAAAGTCACATCTGGGCCTTT -ACGGAAAGTCACATCTGGGGTCTT -ACGGAAAGTCACATCTGGACGCTT -ACGGAAAGTCACATCTGGAGCGTT -ACGGAAAGTCACATCTGGTTCGTC -ACGGAAAGTCACATCTGGTCTCTC -ACGGAAAGTCACATCTGGTGGATC -ACGGAAAGTCACATCTGGCACTTC -ACGGAAAGTCACATCTGGGTACTC -ACGGAAAGTCACATCTGGGATGTC -ACGGAAAGTCACATCTGGACAGTC -ACGGAAAGTCACATCTGGTTGCTG -ACGGAAAGTCACATCTGGTCCATG -ACGGAAAGTCACATCTGGTGTGTG -ACGGAAAGTCACATCTGGCTAGTG -ACGGAAAGTCACATCTGGCATCTG -ACGGAAAGTCACATCTGGGAGTTG -ACGGAAAGTCACATCTGGAGACTG -ACGGAAAGTCACATCTGGTCGGTA -ACGGAAAGTCACATCTGGTGCCTA -ACGGAAAGTCACATCTGGCCACTA -ACGGAAAGTCACATCTGGGGAGTA -ACGGAAAGTCACATCTGGTCGTCT -ACGGAAAGTCACATCTGGTGCACT -ACGGAAAGTCACATCTGGCTGACT -ACGGAAAGTCACATCTGGCAACCT -ACGGAAAGTCACATCTGGGCTACT -ACGGAAAGTCACATCTGGGGATCT -ACGGAAAGTCACATCTGGAAGGCT -ACGGAAAGTCACATCTGGTCAACC -ACGGAAAGTCACATCTGGTGTTCC -ACGGAAAGTCACATCTGGATTCCC -ACGGAAAGTCACATCTGGTTCTCG -ACGGAAAGTCACATCTGGTAGACG -ACGGAAAGTCACATCTGGGTAACG -ACGGAAAGTCACATCTGGACTTCG -ACGGAAAGTCACATCTGGTACGCA -ACGGAAAGTCACATCTGGCTTGCA -ACGGAAAGTCACATCTGGCGAACA -ACGGAAAGTCACATCTGGCAGTCA -ACGGAAAGTCACATCTGGGATCCA -ACGGAAAGTCACATCTGGACGACA -ACGGAAAGTCACATCTGGAGCTCA -ACGGAAAGTCACATCTGGTCACGT -ACGGAAAGTCACATCTGGCGTAGT -ACGGAAAGTCACATCTGGGTCAGT -ACGGAAAGTCACATCTGGGAAGGT -ACGGAAAGTCACATCTGGAACCGT -ACGGAAAGTCACATCTGGTTGTGC -ACGGAAAGTCACATCTGGCTAAGC -ACGGAAAGTCACATCTGGACTAGC -ACGGAAAGTCACATCTGGAGATGC -ACGGAAAGTCACATCTGGTGAAGG -ACGGAAAGTCACATCTGGCAATGG -ACGGAAAGTCACATCTGGATGAGG -ACGGAAAGTCACATCTGGAATGGG -ACGGAAAGTCACATCTGGTCCTGA -ACGGAAAGTCACATCTGGTAGCGA -ACGGAAAGTCACATCTGGCACAGA -ACGGAAAGTCACATCTGGGCAAGA -ACGGAAAGTCACATCTGGGGTTGA -ACGGAAAGTCACATCTGGTCCGAT -ACGGAAAGTCACATCTGGTGGCAT -ACGGAAAGTCACATCTGGCGAGAT -ACGGAAAGTCACATCTGGTACCAC -ACGGAAAGTCACATCTGGCAGAAC -ACGGAAAGTCACATCTGGGTCTAC -ACGGAAAGTCACATCTGGACGTAC -ACGGAAAGTCACATCTGGAGTGAC -ACGGAAAGTCACATCTGGCTGTAG -ACGGAAAGTCACATCTGGCCTAAG -ACGGAAAGTCACATCTGGGTTCAG -ACGGAAAGTCACATCTGGGCATAG -ACGGAAAGTCACATCTGGGACAAG -ACGGAAAGTCACATCTGGAAGCAG -ACGGAAAGTCACATCTGGCGTCAA -ACGGAAAGTCACATCTGGGCTGAA -ACGGAAAGTCACATCTGGAGTACG -ACGGAAAGTCACATCTGGATCCGA -ACGGAAAGTCACATCTGGATGGGA -ACGGAAAGTCACATCTGGGTGCAA -ACGGAAAGTCACATCTGGGAGGAA -ACGGAAAGTCACATCTGGCAGGTA -ACGGAAAGTCACATCTGGGACTCT -ACGGAAAGTCACATCTGGAGTCCT -ACGGAAAGTCACATCTGGTAAGCC -ACGGAAAGTCACATCTGGATAGCC -ACGGAAAGTCACATCTGGTAACCG -ACGGAAAGTCACATCTGGATGCCA -ACGGAAAGTCACTTCCACGGAAAC -ACGGAAAGTCACTTCCACAACACC -ACGGAAAGTCACTTCCACATCGAG -ACGGAAAGTCACTTCCACCTCCTT -ACGGAAAGTCACTTCCACCCTGTT -ACGGAAAGTCACTTCCACCGGTTT -ACGGAAAGTCACTTCCACGTGGTT -ACGGAAAGTCACTTCCACGCCTTT -ACGGAAAGTCACTTCCACGGTCTT -ACGGAAAGTCACTTCCACACGCTT -ACGGAAAGTCACTTCCACAGCGTT -ACGGAAAGTCACTTCCACTTCGTC -ACGGAAAGTCACTTCCACTCTCTC -ACGGAAAGTCACTTCCACTGGATC -ACGGAAAGTCACTTCCACCACTTC -ACGGAAAGTCACTTCCACGTACTC -ACGGAAAGTCACTTCCACGATGTC -ACGGAAAGTCACTTCCACACAGTC -ACGGAAAGTCACTTCCACTTGCTG -ACGGAAAGTCACTTCCACTCCATG -ACGGAAAGTCACTTCCACTGTGTG -ACGGAAAGTCACTTCCACCTAGTG -ACGGAAAGTCACTTCCACCATCTG -ACGGAAAGTCACTTCCACGAGTTG -ACGGAAAGTCACTTCCACAGACTG -ACGGAAAGTCACTTCCACTCGGTA -ACGGAAAGTCACTTCCACTGCCTA -ACGGAAAGTCACTTCCACCCACTA -ACGGAAAGTCACTTCCACGGAGTA -ACGGAAAGTCACTTCCACTCGTCT -ACGGAAAGTCACTTCCACTGCACT -ACGGAAAGTCACTTCCACCTGACT -ACGGAAAGTCACTTCCACCAACCT -ACGGAAAGTCACTTCCACGCTACT -ACGGAAAGTCACTTCCACGGATCT -ACGGAAAGTCACTTCCACAAGGCT -ACGGAAAGTCACTTCCACTCAACC -ACGGAAAGTCACTTCCACTGTTCC -ACGGAAAGTCACTTCCACATTCCC -ACGGAAAGTCACTTCCACTTCTCG -ACGGAAAGTCACTTCCACTAGACG -ACGGAAAGTCACTTCCACGTAACG -ACGGAAAGTCACTTCCACACTTCG -ACGGAAAGTCACTTCCACTACGCA -ACGGAAAGTCACTTCCACCTTGCA -ACGGAAAGTCACTTCCACCGAACA -ACGGAAAGTCACTTCCACCAGTCA -ACGGAAAGTCACTTCCACGATCCA -ACGGAAAGTCACTTCCACACGACA -ACGGAAAGTCACTTCCACAGCTCA -ACGGAAAGTCACTTCCACTCACGT -ACGGAAAGTCACTTCCACCGTAGT -ACGGAAAGTCACTTCCACGTCAGT -ACGGAAAGTCACTTCCACGAAGGT -ACGGAAAGTCACTTCCACAACCGT -ACGGAAAGTCACTTCCACTTGTGC -ACGGAAAGTCACTTCCACCTAAGC -ACGGAAAGTCACTTCCACACTAGC -ACGGAAAGTCACTTCCACAGATGC -ACGGAAAGTCACTTCCACTGAAGG -ACGGAAAGTCACTTCCACCAATGG -ACGGAAAGTCACTTCCACATGAGG -ACGGAAAGTCACTTCCACAATGGG -ACGGAAAGTCACTTCCACTCCTGA -ACGGAAAGTCACTTCCACTAGCGA -ACGGAAAGTCACTTCCACCACAGA -ACGGAAAGTCACTTCCACGCAAGA -ACGGAAAGTCACTTCCACGGTTGA -ACGGAAAGTCACTTCCACTCCGAT -ACGGAAAGTCACTTCCACTGGCAT -ACGGAAAGTCACTTCCACCGAGAT -ACGGAAAGTCACTTCCACTACCAC -ACGGAAAGTCACTTCCACCAGAAC -ACGGAAAGTCACTTCCACGTCTAC -ACGGAAAGTCACTTCCACACGTAC -ACGGAAAGTCACTTCCACAGTGAC -ACGGAAAGTCACTTCCACCTGTAG -ACGGAAAGTCACTTCCACCCTAAG -ACGGAAAGTCACTTCCACGTTCAG -ACGGAAAGTCACTTCCACGCATAG -ACGGAAAGTCACTTCCACGACAAG -ACGGAAAGTCACTTCCACAAGCAG -ACGGAAAGTCACTTCCACCGTCAA -ACGGAAAGTCACTTCCACGCTGAA -ACGGAAAGTCACTTCCACAGTACG -ACGGAAAGTCACTTCCACATCCGA -ACGGAAAGTCACTTCCACATGGGA -ACGGAAAGTCACTTCCACGTGCAA -ACGGAAAGTCACTTCCACGAGGAA -ACGGAAAGTCACTTCCACCAGGTA -ACGGAAAGTCACTTCCACGACTCT -ACGGAAAGTCACTTCCACAGTCCT -ACGGAAAGTCACTTCCACTAAGCC -ACGGAAAGTCACTTCCACATAGCC -ACGGAAAGTCACTTCCACTAACCG -ACGGAAAGTCACTTCCACATGCCA -ACGGAAAGTCACCTCGTAGGAAAC -ACGGAAAGTCACCTCGTAAACACC -ACGGAAAGTCACCTCGTAATCGAG -ACGGAAAGTCACCTCGTACTCCTT -ACGGAAAGTCACCTCGTACCTGTT -ACGGAAAGTCACCTCGTACGGTTT -ACGGAAAGTCACCTCGTAGTGGTT -ACGGAAAGTCACCTCGTAGCCTTT -ACGGAAAGTCACCTCGTAGGTCTT -ACGGAAAGTCACCTCGTAACGCTT -ACGGAAAGTCACCTCGTAAGCGTT -ACGGAAAGTCACCTCGTATTCGTC -ACGGAAAGTCACCTCGTATCTCTC -ACGGAAAGTCACCTCGTATGGATC -ACGGAAAGTCACCTCGTACACTTC -ACGGAAAGTCACCTCGTAGTACTC -ACGGAAAGTCACCTCGTAGATGTC -ACGGAAAGTCACCTCGTAACAGTC -ACGGAAAGTCACCTCGTATTGCTG -ACGGAAAGTCACCTCGTATCCATG -ACGGAAAGTCACCTCGTATGTGTG -ACGGAAAGTCACCTCGTACTAGTG -ACGGAAAGTCACCTCGTACATCTG -ACGGAAAGTCACCTCGTAGAGTTG -ACGGAAAGTCACCTCGTAAGACTG -ACGGAAAGTCACCTCGTATCGGTA -ACGGAAAGTCACCTCGTATGCCTA -ACGGAAAGTCACCTCGTACCACTA -ACGGAAAGTCACCTCGTAGGAGTA -ACGGAAAGTCACCTCGTATCGTCT -ACGGAAAGTCACCTCGTATGCACT -ACGGAAAGTCACCTCGTACTGACT -ACGGAAAGTCACCTCGTACAACCT -ACGGAAAGTCACCTCGTAGCTACT -ACGGAAAGTCACCTCGTAGGATCT -ACGGAAAGTCACCTCGTAAAGGCT -ACGGAAAGTCACCTCGTATCAACC -ACGGAAAGTCACCTCGTATGTTCC -ACGGAAAGTCACCTCGTAATTCCC -ACGGAAAGTCACCTCGTATTCTCG -ACGGAAAGTCACCTCGTATAGACG -ACGGAAAGTCACCTCGTAGTAACG -ACGGAAAGTCACCTCGTAACTTCG -ACGGAAAGTCACCTCGTATACGCA -ACGGAAAGTCACCTCGTACTTGCA -ACGGAAAGTCACCTCGTACGAACA -ACGGAAAGTCACCTCGTACAGTCA -ACGGAAAGTCACCTCGTAGATCCA -ACGGAAAGTCACCTCGTAACGACA -ACGGAAAGTCACCTCGTAAGCTCA -ACGGAAAGTCACCTCGTATCACGT -ACGGAAAGTCACCTCGTACGTAGT -ACGGAAAGTCACCTCGTAGTCAGT -ACGGAAAGTCACCTCGTAGAAGGT -ACGGAAAGTCACCTCGTAAACCGT -ACGGAAAGTCACCTCGTATTGTGC -ACGGAAAGTCACCTCGTACTAAGC -ACGGAAAGTCACCTCGTAACTAGC -ACGGAAAGTCACCTCGTAAGATGC -ACGGAAAGTCACCTCGTATGAAGG -ACGGAAAGTCACCTCGTACAATGG -ACGGAAAGTCACCTCGTAATGAGG -ACGGAAAGTCACCTCGTAAATGGG -ACGGAAAGTCACCTCGTATCCTGA -ACGGAAAGTCACCTCGTATAGCGA -ACGGAAAGTCACCTCGTACACAGA -ACGGAAAGTCACCTCGTAGCAAGA -ACGGAAAGTCACCTCGTAGGTTGA -ACGGAAAGTCACCTCGTATCCGAT -ACGGAAAGTCACCTCGTATGGCAT -ACGGAAAGTCACCTCGTACGAGAT -ACGGAAAGTCACCTCGTATACCAC -ACGGAAAGTCACCTCGTACAGAAC -ACGGAAAGTCACCTCGTAGTCTAC -ACGGAAAGTCACCTCGTAACGTAC -ACGGAAAGTCACCTCGTAAGTGAC -ACGGAAAGTCACCTCGTACTGTAG -ACGGAAAGTCACCTCGTACCTAAG -ACGGAAAGTCACCTCGTAGTTCAG -ACGGAAAGTCACCTCGTAGCATAG -ACGGAAAGTCACCTCGTAGACAAG -ACGGAAAGTCACCTCGTAAAGCAG -ACGGAAAGTCACCTCGTACGTCAA -ACGGAAAGTCACCTCGTAGCTGAA -ACGGAAAGTCACCTCGTAAGTACG -ACGGAAAGTCACCTCGTAATCCGA -ACGGAAAGTCACCTCGTAATGGGA -ACGGAAAGTCACCTCGTAGTGCAA -ACGGAAAGTCACCTCGTAGAGGAA -ACGGAAAGTCACCTCGTACAGGTA -ACGGAAAGTCACCTCGTAGACTCT -ACGGAAAGTCACCTCGTAAGTCCT -ACGGAAAGTCACCTCGTATAAGCC -ACGGAAAGTCACCTCGTAATAGCC -ACGGAAAGTCACCTCGTATAACCG -ACGGAAAGTCACCTCGTAATGCCA -ACGGAAAGTCACGTCGATGGAAAC -ACGGAAAGTCACGTCGATAACACC -ACGGAAAGTCACGTCGATATCGAG -ACGGAAAGTCACGTCGATCTCCTT -ACGGAAAGTCACGTCGATCCTGTT -ACGGAAAGTCACGTCGATCGGTTT -ACGGAAAGTCACGTCGATGTGGTT -ACGGAAAGTCACGTCGATGCCTTT -ACGGAAAGTCACGTCGATGGTCTT -ACGGAAAGTCACGTCGATACGCTT -ACGGAAAGTCACGTCGATAGCGTT -ACGGAAAGTCACGTCGATTTCGTC -ACGGAAAGTCACGTCGATTCTCTC -ACGGAAAGTCACGTCGATTGGATC -ACGGAAAGTCACGTCGATCACTTC -ACGGAAAGTCACGTCGATGTACTC -ACGGAAAGTCACGTCGATGATGTC -ACGGAAAGTCACGTCGATACAGTC -ACGGAAAGTCACGTCGATTTGCTG -ACGGAAAGTCACGTCGATTCCATG -ACGGAAAGTCACGTCGATTGTGTG -ACGGAAAGTCACGTCGATCTAGTG -ACGGAAAGTCACGTCGATCATCTG -ACGGAAAGTCACGTCGATGAGTTG -ACGGAAAGTCACGTCGATAGACTG -ACGGAAAGTCACGTCGATTCGGTA -ACGGAAAGTCACGTCGATTGCCTA -ACGGAAAGTCACGTCGATCCACTA -ACGGAAAGTCACGTCGATGGAGTA -ACGGAAAGTCACGTCGATTCGTCT -ACGGAAAGTCACGTCGATTGCACT -ACGGAAAGTCACGTCGATCTGACT -ACGGAAAGTCACGTCGATCAACCT -ACGGAAAGTCACGTCGATGCTACT -ACGGAAAGTCACGTCGATGGATCT -ACGGAAAGTCACGTCGATAAGGCT -ACGGAAAGTCACGTCGATTCAACC -ACGGAAAGTCACGTCGATTGTTCC -ACGGAAAGTCACGTCGATATTCCC -ACGGAAAGTCACGTCGATTTCTCG -ACGGAAAGTCACGTCGATTAGACG -ACGGAAAGTCACGTCGATGTAACG -ACGGAAAGTCACGTCGATACTTCG -ACGGAAAGTCACGTCGATTACGCA -ACGGAAAGTCACGTCGATCTTGCA -ACGGAAAGTCACGTCGATCGAACA -ACGGAAAGTCACGTCGATCAGTCA -ACGGAAAGTCACGTCGATGATCCA -ACGGAAAGTCACGTCGATACGACA -ACGGAAAGTCACGTCGATAGCTCA -ACGGAAAGTCACGTCGATTCACGT -ACGGAAAGTCACGTCGATCGTAGT -ACGGAAAGTCACGTCGATGTCAGT -ACGGAAAGTCACGTCGATGAAGGT -ACGGAAAGTCACGTCGATAACCGT -ACGGAAAGTCACGTCGATTTGTGC -ACGGAAAGTCACGTCGATCTAAGC -ACGGAAAGTCACGTCGATACTAGC -ACGGAAAGTCACGTCGATAGATGC -ACGGAAAGTCACGTCGATTGAAGG -ACGGAAAGTCACGTCGATCAATGG -ACGGAAAGTCACGTCGATATGAGG -ACGGAAAGTCACGTCGATAATGGG -ACGGAAAGTCACGTCGATTCCTGA -ACGGAAAGTCACGTCGATTAGCGA -ACGGAAAGTCACGTCGATCACAGA -ACGGAAAGTCACGTCGATGCAAGA -ACGGAAAGTCACGTCGATGGTTGA -ACGGAAAGTCACGTCGATTCCGAT -ACGGAAAGTCACGTCGATTGGCAT -ACGGAAAGTCACGTCGATCGAGAT -ACGGAAAGTCACGTCGATTACCAC -ACGGAAAGTCACGTCGATCAGAAC -ACGGAAAGTCACGTCGATGTCTAC -ACGGAAAGTCACGTCGATACGTAC -ACGGAAAGTCACGTCGATAGTGAC -ACGGAAAGTCACGTCGATCTGTAG -ACGGAAAGTCACGTCGATCCTAAG -ACGGAAAGTCACGTCGATGTTCAG -ACGGAAAGTCACGTCGATGCATAG -ACGGAAAGTCACGTCGATGACAAG -ACGGAAAGTCACGTCGATAAGCAG -ACGGAAAGTCACGTCGATCGTCAA -ACGGAAAGTCACGTCGATGCTGAA -ACGGAAAGTCACGTCGATAGTACG -ACGGAAAGTCACGTCGATATCCGA -ACGGAAAGTCACGTCGATATGGGA -ACGGAAAGTCACGTCGATGTGCAA -ACGGAAAGTCACGTCGATGAGGAA -ACGGAAAGTCACGTCGATCAGGTA -ACGGAAAGTCACGTCGATGACTCT -ACGGAAAGTCACGTCGATAGTCCT -ACGGAAAGTCACGTCGATTAAGCC -ACGGAAAGTCACGTCGATATAGCC -ACGGAAAGTCACGTCGATTAACCG -ACGGAAAGTCACGTCGATATGCCA -ACGGAAAGTCACGTCACAGGAAAC -ACGGAAAGTCACGTCACAAACACC -ACGGAAAGTCACGTCACAATCGAG -ACGGAAAGTCACGTCACACTCCTT -ACGGAAAGTCACGTCACACCTGTT -ACGGAAAGTCACGTCACACGGTTT -ACGGAAAGTCACGTCACAGTGGTT -ACGGAAAGTCACGTCACAGCCTTT -ACGGAAAGTCACGTCACAGGTCTT -ACGGAAAGTCACGTCACAACGCTT -ACGGAAAGTCACGTCACAAGCGTT -ACGGAAAGTCACGTCACATTCGTC -ACGGAAAGTCACGTCACATCTCTC -ACGGAAAGTCACGTCACATGGATC -ACGGAAAGTCACGTCACACACTTC -ACGGAAAGTCACGTCACAGTACTC -ACGGAAAGTCACGTCACAGATGTC -ACGGAAAGTCACGTCACAACAGTC -ACGGAAAGTCACGTCACATTGCTG -ACGGAAAGTCACGTCACATCCATG -ACGGAAAGTCACGTCACATGTGTG -ACGGAAAGTCACGTCACACTAGTG -ACGGAAAGTCACGTCACACATCTG -ACGGAAAGTCACGTCACAGAGTTG -ACGGAAAGTCACGTCACAAGACTG -ACGGAAAGTCACGTCACATCGGTA -ACGGAAAGTCACGTCACATGCCTA -ACGGAAAGTCACGTCACACCACTA -ACGGAAAGTCACGTCACAGGAGTA -ACGGAAAGTCACGTCACATCGTCT -ACGGAAAGTCACGTCACATGCACT -ACGGAAAGTCACGTCACACTGACT -ACGGAAAGTCACGTCACACAACCT -ACGGAAAGTCACGTCACAGCTACT -ACGGAAAGTCACGTCACAGGATCT -ACGGAAAGTCACGTCACAAAGGCT -ACGGAAAGTCACGTCACATCAACC -ACGGAAAGTCACGTCACATGTTCC -ACGGAAAGTCACGTCACAATTCCC -ACGGAAAGTCACGTCACATTCTCG -ACGGAAAGTCACGTCACATAGACG -ACGGAAAGTCACGTCACAGTAACG -ACGGAAAGTCACGTCACAACTTCG -ACGGAAAGTCACGTCACATACGCA -ACGGAAAGTCACGTCACACTTGCA -ACGGAAAGTCACGTCACACGAACA -ACGGAAAGTCACGTCACACAGTCA -ACGGAAAGTCACGTCACAGATCCA -ACGGAAAGTCACGTCACAACGACA -ACGGAAAGTCACGTCACAAGCTCA -ACGGAAAGTCACGTCACATCACGT -ACGGAAAGTCACGTCACACGTAGT -ACGGAAAGTCACGTCACAGTCAGT -ACGGAAAGTCACGTCACAGAAGGT -ACGGAAAGTCACGTCACAAACCGT -ACGGAAAGTCACGTCACATTGTGC -ACGGAAAGTCACGTCACACTAAGC -ACGGAAAGTCACGTCACAACTAGC -ACGGAAAGTCACGTCACAAGATGC -ACGGAAAGTCACGTCACATGAAGG -ACGGAAAGTCACGTCACACAATGG -ACGGAAAGTCACGTCACAATGAGG -ACGGAAAGTCACGTCACAAATGGG -ACGGAAAGTCACGTCACATCCTGA -ACGGAAAGTCACGTCACATAGCGA -ACGGAAAGTCACGTCACACACAGA -ACGGAAAGTCACGTCACAGCAAGA -ACGGAAAGTCACGTCACAGGTTGA -ACGGAAAGTCACGTCACATCCGAT -ACGGAAAGTCACGTCACATGGCAT -ACGGAAAGTCACGTCACACGAGAT -ACGGAAAGTCACGTCACATACCAC -ACGGAAAGTCACGTCACACAGAAC -ACGGAAAGTCACGTCACAGTCTAC -ACGGAAAGTCACGTCACAACGTAC -ACGGAAAGTCACGTCACAAGTGAC -ACGGAAAGTCACGTCACACTGTAG -ACGGAAAGTCACGTCACACCTAAG -ACGGAAAGTCACGTCACAGTTCAG -ACGGAAAGTCACGTCACAGCATAG -ACGGAAAGTCACGTCACAGACAAG -ACGGAAAGTCACGTCACAAAGCAG -ACGGAAAGTCACGTCACACGTCAA -ACGGAAAGTCACGTCACAGCTGAA -ACGGAAAGTCACGTCACAAGTACG -ACGGAAAGTCACGTCACAATCCGA -ACGGAAAGTCACGTCACAATGGGA -ACGGAAAGTCACGTCACAGTGCAA -ACGGAAAGTCACGTCACAGAGGAA -ACGGAAAGTCACGTCACACAGGTA -ACGGAAAGTCACGTCACAGACTCT -ACGGAAAGTCACGTCACAAGTCCT -ACGGAAAGTCACGTCACATAAGCC -ACGGAAAGTCACGTCACAATAGCC -ACGGAAAGTCACGTCACATAACCG -ACGGAAAGTCACGTCACAATGCCA -ACGGAAAGTCACCTGTTGGGAAAC -ACGGAAAGTCACCTGTTGAACACC -ACGGAAAGTCACCTGTTGATCGAG -ACGGAAAGTCACCTGTTGCTCCTT -ACGGAAAGTCACCTGTTGCCTGTT -ACGGAAAGTCACCTGTTGCGGTTT -ACGGAAAGTCACCTGTTGGTGGTT -ACGGAAAGTCACCTGTTGGCCTTT -ACGGAAAGTCACCTGTTGGGTCTT -ACGGAAAGTCACCTGTTGACGCTT -ACGGAAAGTCACCTGTTGAGCGTT -ACGGAAAGTCACCTGTTGTTCGTC -ACGGAAAGTCACCTGTTGTCTCTC -ACGGAAAGTCACCTGTTGTGGATC -ACGGAAAGTCACCTGTTGCACTTC -ACGGAAAGTCACCTGTTGGTACTC -ACGGAAAGTCACCTGTTGGATGTC -ACGGAAAGTCACCTGTTGACAGTC -ACGGAAAGTCACCTGTTGTTGCTG -ACGGAAAGTCACCTGTTGTCCATG -ACGGAAAGTCACCTGTTGTGTGTG -ACGGAAAGTCACCTGTTGCTAGTG -ACGGAAAGTCACCTGTTGCATCTG -ACGGAAAGTCACCTGTTGGAGTTG -ACGGAAAGTCACCTGTTGAGACTG -ACGGAAAGTCACCTGTTGTCGGTA -ACGGAAAGTCACCTGTTGTGCCTA -ACGGAAAGTCACCTGTTGCCACTA -ACGGAAAGTCACCTGTTGGGAGTA -ACGGAAAGTCACCTGTTGTCGTCT -ACGGAAAGTCACCTGTTGTGCACT -ACGGAAAGTCACCTGTTGCTGACT -ACGGAAAGTCACCTGTTGCAACCT -ACGGAAAGTCACCTGTTGGCTACT -ACGGAAAGTCACCTGTTGGGATCT -ACGGAAAGTCACCTGTTGAAGGCT -ACGGAAAGTCACCTGTTGTCAACC -ACGGAAAGTCACCTGTTGTGTTCC -ACGGAAAGTCACCTGTTGATTCCC -ACGGAAAGTCACCTGTTGTTCTCG -ACGGAAAGTCACCTGTTGTAGACG -ACGGAAAGTCACCTGTTGGTAACG -ACGGAAAGTCACCTGTTGACTTCG -ACGGAAAGTCACCTGTTGTACGCA -ACGGAAAGTCACCTGTTGCTTGCA -ACGGAAAGTCACCTGTTGCGAACA -ACGGAAAGTCACCTGTTGCAGTCA -ACGGAAAGTCACCTGTTGGATCCA -ACGGAAAGTCACCTGTTGACGACA -ACGGAAAGTCACCTGTTGAGCTCA -ACGGAAAGTCACCTGTTGTCACGT -ACGGAAAGTCACCTGTTGCGTAGT -ACGGAAAGTCACCTGTTGGTCAGT -ACGGAAAGTCACCTGTTGGAAGGT -ACGGAAAGTCACCTGTTGAACCGT -ACGGAAAGTCACCTGTTGTTGTGC -ACGGAAAGTCACCTGTTGCTAAGC -ACGGAAAGTCACCTGTTGACTAGC -ACGGAAAGTCACCTGTTGAGATGC -ACGGAAAGTCACCTGTTGTGAAGG -ACGGAAAGTCACCTGTTGCAATGG -ACGGAAAGTCACCTGTTGATGAGG -ACGGAAAGTCACCTGTTGAATGGG -ACGGAAAGTCACCTGTTGTCCTGA -ACGGAAAGTCACCTGTTGTAGCGA -ACGGAAAGTCACCTGTTGCACAGA -ACGGAAAGTCACCTGTTGGCAAGA -ACGGAAAGTCACCTGTTGGGTTGA -ACGGAAAGTCACCTGTTGTCCGAT -ACGGAAAGTCACCTGTTGTGGCAT -ACGGAAAGTCACCTGTTGCGAGAT -ACGGAAAGTCACCTGTTGTACCAC -ACGGAAAGTCACCTGTTGCAGAAC -ACGGAAAGTCACCTGTTGGTCTAC -ACGGAAAGTCACCTGTTGACGTAC -ACGGAAAGTCACCTGTTGAGTGAC -ACGGAAAGTCACCTGTTGCTGTAG -ACGGAAAGTCACCTGTTGCCTAAG -ACGGAAAGTCACCTGTTGGTTCAG -ACGGAAAGTCACCTGTTGGCATAG -ACGGAAAGTCACCTGTTGGACAAG -ACGGAAAGTCACCTGTTGAAGCAG -ACGGAAAGTCACCTGTTGCGTCAA -ACGGAAAGTCACCTGTTGGCTGAA -ACGGAAAGTCACCTGTTGAGTACG -ACGGAAAGTCACCTGTTGATCCGA -ACGGAAAGTCACCTGTTGATGGGA -ACGGAAAGTCACCTGTTGGTGCAA -ACGGAAAGTCACCTGTTGGAGGAA -ACGGAAAGTCACCTGTTGCAGGTA -ACGGAAAGTCACCTGTTGGACTCT -ACGGAAAGTCACCTGTTGAGTCCT -ACGGAAAGTCACCTGTTGTAAGCC -ACGGAAAGTCACCTGTTGATAGCC -ACGGAAAGTCACCTGTTGTAACCG -ACGGAAAGTCACCTGTTGATGCCA -ACGGAAAGTCACATGTCCGGAAAC -ACGGAAAGTCACATGTCCAACACC -ACGGAAAGTCACATGTCCATCGAG -ACGGAAAGTCACATGTCCCTCCTT -ACGGAAAGTCACATGTCCCCTGTT -ACGGAAAGTCACATGTCCCGGTTT -ACGGAAAGTCACATGTCCGTGGTT -ACGGAAAGTCACATGTCCGCCTTT -ACGGAAAGTCACATGTCCGGTCTT -ACGGAAAGTCACATGTCCACGCTT -ACGGAAAGTCACATGTCCAGCGTT -ACGGAAAGTCACATGTCCTTCGTC -ACGGAAAGTCACATGTCCTCTCTC -ACGGAAAGTCACATGTCCTGGATC -ACGGAAAGTCACATGTCCCACTTC -ACGGAAAGTCACATGTCCGTACTC -ACGGAAAGTCACATGTCCGATGTC -ACGGAAAGTCACATGTCCACAGTC -ACGGAAAGTCACATGTCCTTGCTG -ACGGAAAGTCACATGTCCTCCATG -ACGGAAAGTCACATGTCCTGTGTG -ACGGAAAGTCACATGTCCCTAGTG -ACGGAAAGTCACATGTCCCATCTG -ACGGAAAGTCACATGTCCGAGTTG -ACGGAAAGTCACATGTCCAGACTG -ACGGAAAGTCACATGTCCTCGGTA -ACGGAAAGTCACATGTCCTGCCTA -ACGGAAAGTCACATGTCCCCACTA -ACGGAAAGTCACATGTCCGGAGTA -ACGGAAAGTCACATGTCCTCGTCT -ACGGAAAGTCACATGTCCTGCACT -ACGGAAAGTCACATGTCCCTGACT -ACGGAAAGTCACATGTCCCAACCT -ACGGAAAGTCACATGTCCGCTACT -ACGGAAAGTCACATGTCCGGATCT -ACGGAAAGTCACATGTCCAAGGCT -ACGGAAAGTCACATGTCCTCAACC -ACGGAAAGTCACATGTCCTGTTCC -ACGGAAAGTCACATGTCCATTCCC -ACGGAAAGTCACATGTCCTTCTCG -ACGGAAAGTCACATGTCCTAGACG -ACGGAAAGTCACATGTCCGTAACG -ACGGAAAGTCACATGTCCACTTCG -ACGGAAAGTCACATGTCCTACGCA -ACGGAAAGTCACATGTCCCTTGCA -ACGGAAAGTCACATGTCCCGAACA -ACGGAAAGTCACATGTCCCAGTCA -ACGGAAAGTCACATGTCCGATCCA -ACGGAAAGTCACATGTCCACGACA -ACGGAAAGTCACATGTCCAGCTCA -ACGGAAAGTCACATGTCCTCACGT -ACGGAAAGTCACATGTCCCGTAGT -ACGGAAAGTCACATGTCCGTCAGT -ACGGAAAGTCACATGTCCGAAGGT -ACGGAAAGTCACATGTCCAACCGT -ACGGAAAGTCACATGTCCTTGTGC -ACGGAAAGTCACATGTCCCTAAGC -ACGGAAAGTCACATGTCCACTAGC -ACGGAAAGTCACATGTCCAGATGC -ACGGAAAGTCACATGTCCTGAAGG -ACGGAAAGTCACATGTCCCAATGG -ACGGAAAGTCACATGTCCATGAGG -ACGGAAAGTCACATGTCCAATGGG -ACGGAAAGTCACATGTCCTCCTGA -ACGGAAAGTCACATGTCCTAGCGA -ACGGAAAGTCACATGTCCCACAGA -ACGGAAAGTCACATGTCCGCAAGA -ACGGAAAGTCACATGTCCGGTTGA -ACGGAAAGTCACATGTCCTCCGAT -ACGGAAAGTCACATGTCCTGGCAT -ACGGAAAGTCACATGTCCCGAGAT -ACGGAAAGTCACATGTCCTACCAC -ACGGAAAGTCACATGTCCCAGAAC -ACGGAAAGTCACATGTCCGTCTAC -ACGGAAAGTCACATGTCCACGTAC -ACGGAAAGTCACATGTCCAGTGAC -ACGGAAAGTCACATGTCCCTGTAG -ACGGAAAGTCACATGTCCCCTAAG -ACGGAAAGTCACATGTCCGTTCAG -ACGGAAAGTCACATGTCCGCATAG -ACGGAAAGTCACATGTCCGACAAG -ACGGAAAGTCACATGTCCAAGCAG -ACGGAAAGTCACATGTCCCGTCAA -ACGGAAAGTCACATGTCCGCTGAA -ACGGAAAGTCACATGTCCAGTACG -ACGGAAAGTCACATGTCCATCCGA -ACGGAAAGTCACATGTCCATGGGA -ACGGAAAGTCACATGTCCGTGCAA -ACGGAAAGTCACATGTCCGAGGAA -ACGGAAAGTCACATGTCCCAGGTA -ACGGAAAGTCACATGTCCGACTCT -ACGGAAAGTCACATGTCCAGTCCT -ACGGAAAGTCACATGTCCTAAGCC -ACGGAAAGTCACATGTCCATAGCC -ACGGAAAGTCACATGTCCTAACCG -ACGGAAAGTCACATGTCCATGCCA -ACGGAAAGTCACGTGTGTGGAAAC -ACGGAAAGTCACGTGTGTAACACC -ACGGAAAGTCACGTGTGTATCGAG -ACGGAAAGTCACGTGTGTCTCCTT -ACGGAAAGTCACGTGTGTCCTGTT -ACGGAAAGTCACGTGTGTCGGTTT -ACGGAAAGTCACGTGTGTGTGGTT -ACGGAAAGTCACGTGTGTGCCTTT -ACGGAAAGTCACGTGTGTGGTCTT -ACGGAAAGTCACGTGTGTACGCTT -ACGGAAAGTCACGTGTGTAGCGTT -ACGGAAAGTCACGTGTGTTTCGTC -ACGGAAAGTCACGTGTGTTCTCTC -ACGGAAAGTCACGTGTGTTGGATC -ACGGAAAGTCACGTGTGTCACTTC -ACGGAAAGTCACGTGTGTGTACTC -ACGGAAAGTCACGTGTGTGATGTC -ACGGAAAGTCACGTGTGTACAGTC -ACGGAAAGTCACGTGTGTTTGCTG -ACGGAAAGTCACGTGTGTTCCATG -ACGGAAAGTCACGTGTGTTGTGTG -ACGGAAAGTCACGTGTGTCTAGTG -ACGGAAAGTCACGTGTGTCATCTG -ACGGAAAGTCACGTGTGTGAGTTG -ACGGAAAGTCACGTGTGTAGACTG -ACGGAAAGTCACGTGTGTTCGGTA -ACGGAAAGTCACGTGTGTTGCCTA -ACGGAAAGTCACGTGTGTCCACTA -ACGGAAAGTCACGTGTGTGGAGTA -ACGGAAAGTCACGTGTGTTCGTCT -ACGGAAAGTCACGTGTGTTGCACT -ACGGAAAGTCACGTGTGTCTGACT -ACGGAAAGTCACGTGTGTCAACCT -ACGGAAAGTCACGTGTGTGCTACT -ACGGAAAGTCACGTGTGTGGATCT -ACGGAAAGTCACGTGTGTAAGGCT -ACGGAAAGTCACGTGTGTTCAACC -ACGGAAAGTCACGTGTGTTGTTCC -ACGGAAAGTCACGTGTGTATTCCC -ACGGAAAGTCACGTGTGTTTCTCG -ACGGAAAGTCACGTGTGTTAGACG -ACGGAAAGTCACGTGTGTGTAACG -ACGGAAAGTCACGTGTGTACTTCG -ACGGAAAGTCACGTGTGTTACGCA -ACGGAAAGTCACGTGTGTCTTGCA -ACGGAAAGTCACGTGTGTCGAACA -ACGGAAAGTCACGTGTGTCAGTCA -ACGGAAAGTCACGTGTGTGATCCA -ACGGAAAGTCACGTGTGTACGACA -ACGGAAAGTCACGTGTGTAGCTCA -ACGGAAAGTCACGTGTGTTCACGT -ACGGAAAGTCACGTGTGTCGTAGT -ACGGAAAGTCACGTGTGTGTCAGT -ACGGAAAGTCACGTGTGTGAAGGT -ACGGAAAGTCACGTGTGTAACCGT -ACGGAAAGTCACGTGTGTTTGTGC -ACGGAAAGTCACGTGTGTCTAAGC -ACGGAAAGTCACGTGTGTACTAGC -ACGGAAAGTCACGTGTGTAGATGC -ACGGAAAGTCACGTGTGTTGAAGG -ACGGAAAGTCACGTGTGTCAATGG -ACGGAAAGTCACGTGTGTATGAGG -ACGGAAAGTCACGTGTGTAATGGG -ACGGAAAGTCACGTGTGTTCCTGA -ACGGAAAGTCACGTGTGTTAGCGA -ACGGAAAGTCACGTGTGTCACAGA -ACGGAAAGTCACGTGTGTGCAAGA -ACGGAAAGTCACGTGTGTGGTTGA -ACGGAAAGTCACGTGTGTTCCGAT -ACGGAAAGTCACGTGTGTTGGCAT -ACGGAAAGTCACGTGTGTCGAGAT -ACGGAAAGTCACGTGTGTTACCAC -ACGGAAAGTCACGTGTGTCAGAAC -ACGGAAAGTCACGTGTGTGTCTAC -ACGGAAAGTCACGTGTGTACGTAC -ACGGAAAGTCACGTGTGTAGTGAC -ACGGAAAGTCACGTGTGTCTGTAG -ACGGAAAGTCACGTGTGTCCTAAG -ACGGAAAGTCACGTGTGTGTTCAG -ACGGAAAGTCACGTGTGTGCATAG -ACGGAAAGTCACGTGTGTGACAAG -ACGGAAAGTCACGTGTGTAAGCAG -ACGGAAAGTCACGTGTGTCGTCAA -ACGGAAAGTCACGTGTGTGCTGAA -ACGGAAAGTCACGTGTGTAGTACG -ACGGAAAGTCACGTGTGTATCCGA -ACGGAAAGTCACGTGTGTATGGGA -ACGGAAAGTCACGTGTGTGTGCAA -ACGGAAAGTCACGTGTGTGAGGAA -ACGGAAAGTCACGTGTGTCAGGTA -ACGGAAAGTCACGTGTGTGACTCT -ACGGAAAGTCACGTGTGTAGTCCT -ACGGAAAGTCACGTGTGTTAAGCC -ACGGAAAGTCACGTGTGTATAGCC -ACGGAAAGTCACGTGTGTTAACCG -ACGGAAAGTCACGTGTGTATGCCA -ACGGAAAGTCACGTGCTAGGAAAC -ACGGAAAGTCACGTGCTAAACACC -ACGGAAAGTCACGTGCTAATCGAG -ACGGAAAGTCACGTGCTACTCCTT -ACGGAAAGTCACGTGCTACCTGTT -ACGGAAAGTCACGTGCTACGGTTT -ACGGAAAGTCACGTGCTAGTGGTT -ACGGAAAGTCACGTGCTAGCCTTT -ACGGAAAGTCACGTGCTAGGTCTT -ACGGAAAGTCACGTGCTAACGCTT -ACGGAAAGTCACGTGCTAAGCGTT -ACGGAAAGTCACGTGCTATTCGTC -ACGGAAAGTCACGTGCTATCTCTC -ACGGAAAGTCACGTGCTATGGATC -ACGGAAAGTCACGTGCTACACTTC -ACGGAAAGTCACGTGCTAGTACTC -ACGGAAAGTCACGTGCTAGATGTC -ACGGAAAGTCACGTGCTAACAGTC -ACGGAAAGTCACGTGCTATTGCTG -ACGGAAAGTCACGTGCTATCCATG -ACGGAAAGTCACGTGCTATGTGTG -ACGGAAAGTCACGTGCTACTAGTG -ACGGAAAGTCACGTGCTACATCTG -ACGGAAAGTCACGTGCTAGAGTTG -ACGGAAAGTCACGTGCTAAGACTG -ACGGAAAGTCACGTGCTATCGGTA -ACGGAAAGTCACGTGCTATGCCTA -ACGGAAAGTCACGTGCTACCACTA -ACGGAAAGTCACGTGCTAGGAGTA -ACGGAAAGTCACGTGCTATCGTCT -ACGGAAAGTCACGTGCTATGCACT -ACGGAAAGTCACGTGCTACTGACT -ACGGAAAGTCACGTGCTACAACCT -ACGGAAAGTCACGTGCTAGCTACT -ACGGAAAGTCACGTGCTAGGATCT -ACGGAAAGTCACGTGCTAAAGGCT -ACGGAAAGTCACGTGCTATCAACC -ACGGAAAGTCACGTGCTATGTTCC -ACGGAAAGTCACGTGCTAATTCCC -ACGGAAAGTCACGTGCTATTCTCG -ACGGAAAGTCACGTGCTATAGACG -ACGGAAAGTCACGTGCTAGTAACG -ACGGAAAGTCACGTGCTAACTTCG -ACGGAAAGTCACGTGCTATACGCA -ACGGAAAGTCACGTGCTACTTGCA -ACGGAAAGTCACGTGCTACGAACA -ACGGAAAGTCACGTGCTACAGTCA -ACGGAAAGTCACGTGCTAGATCCA -ACGGAAAGTCACGTGCTAACGACA -ACGGAAAGTCACGTGCTAAGCTCA -ACGGAAAGTCACGTGCTATCACGT -ACGGAAAGTCACGTGCTACGTAGT -ACGGAAAGTCACGTGCTAGTCAGT -ACGGAAAGTCACGTGCTAGAAGGT -ACGGAAAGTCACGTGCTAAACCGT -ACGGAAAGTCACGTGCTATTGTGC -ACGGAAAGTCACGTGCTACTAAGC -ACGGAAAGTCACGTGCTAACTAGC -ACGGAAAGTCACGTGCTAAGATGC -ACGGAAAGTCACGTGCTATGAAGG -ACGGAAAGTCACGTGCTACAATGG -ACGGAAAGTCACGTGCTAATGAGG -ACGGAAAGTCACGTGCTAAATGGG -ACGGAAAGTCACGTGCTATCCTGA -ACGGAAAGTCACGTGCTATAGCGA -ACGGAAAGTCACGTGCTACACAGA -ACGGAAAGTCACGTGCTAGCAAGA -ACGGAAAGTCACGTGCTAGGTTGA -ACGGAAAGTCACGTGCTATCCGAT -ACGGAAAGTCACGTGCTATGGCAT -ACGGAAAGTCACGTGCTACGAGAT -ACGGAAAGTCACGTGCTATACCAC -ACGGAAAGTCACGTGCTACAGAAC -ACGGAAAGTCACGTGCTAGTCTAC -ACGGAAAGTCACGTGCTAACGTAC -ACGGAAAGTCACGTGCTAAGTGAC -ACGGAAAGTCACGTGCTACTGTAG -ACGGAAAGTCACGTGCTACCTAAG -ACGGAAAGTCACGTGCTAGTTCAG -ACGGAAAGTCACGTGCTAGCATAG -ACGGAAAGTCACGTGCTAGACAAG -ACGGAAAGTCACGTGCTAAAGCAG -ACGGAAAGTCACGTGCTACGTCAA -ACGGAAAGTCACGTGCTAGCTGAA -ACGGAAAGTCACGTGCTAAGTACG -ACGGAAAGTCACGTGCTAATCCGA -ACGGAAAGTCACGTGCTAATGGGA -ACGGAAAGTCACGTGCTAGTGCAA -ACGGAAAGTCACGTGCTAGAGGAA -ACGGAAAGTCACGTGCTACAGGTA -ACGGAAAGTCACGTGCTAGACTCT -ACGGAAAGTCACGTGCTAAGTCCT -ACGGAAAGTCACGTGCTATAAGCC -ACGGAAAGTCACGTGCTAATAGCC -ACGGAAAGTCACGTGCTATAACCG -ACGGAAAGTCACGTGCTAATGCCA -ACGGAAAGTCACCTGCATGGAAAC -ACGGAAAGTCACCTGCATAACACC -ACGGAAAGTCACCTGCATATCGAG -ACGGAAAGTCACCTGCATCTCCTT -ACGGAAAGTCACCTGCATCCTGTT -ACGGAAAGTCACCTGCATCGGTTT -ACGGAAAGTCACCTGCATGTGGTT -ACGGAAAGTCACCTGCATGCCTTT -ACGGAAAGTCACCTGCATGGTCTT -ACGGAAAGTCACCTGCATACGCTT -ACGGAAAGTCACCTGCATAGCGTT -ACGGAAAGTCACCTGCATTTCGTC -ACGGAAAGTCACCTGCATTCTCTC -ACGGAAAGTCACCTGCATTGGATC -ACGGAAAGTCACCTGCATCACTTC -ACGGAAAGTCACCTGCATGTACTC -ACGGAAAGTCACCTGCATGATGTC -ACGGAAAGTCACCTGCATACAGTC -ACGGAAAGTCACCTGCATTTGCTG -ACGGAAAGTCACCTGCATTCCATG -ACGGAAAGTCACCTGCATTGTGTG -ACGGAAAGTCACCTGCATCTAGTG -ACGGAAAGTCACCTGCATCATCTG -ACGGAAAGTCACCTGCATGAGTTG -ACGGAAAGTCACCTGCATAGACTG -ACGGAAAGTCACCTGCATTCGGTA -ACGGAAAGTCACCTGCATTGCCTA -ACGGAAAGTCACCTGCATCCACTA -ACGGAAAGTCACCTGCATGGAGTA -ACGGAAAGTCACCTGCATTCGTCT -ACGGAAAGTCACCTGCATTGCACT -ACGGAAAGTCACCTGCATCTGACT -ACGGAAAGTCACCTGCATCAACCT -ACGGAAAGTCACCTGCATGCTACT -ACGGAAAGTCACCTGCATGGATCT -ACGGAAAGTCACCTGCATAAGGCT -ACGGAAAGTCACCTGCATTCAACC -ACGGAAAGTCACCTGCATTGTTCC -ACGGAAAGTCACCTGCATATTCCC -ACGGAAAGTCACCTGCATTTCTCG -ACGGAAAGTCACCTGCATTAGACG -ACGGAAAGTCACCTGCATGTAACG -ACGGAAAGTCACCTGCATACTTCG -ACGGAAAGTCACCTGCATTACGCA -ACGGAAAGTCACCTGCATCTTGCA -ACGGAAAGTCACCTGCATCGAACA -ACGGAAAGTCACCTGCATCAGTCA -ACGGAAAGTCACCTGCATGATCCA -ACGGAAAGTCACCTGCATACGACA -ACGGAAAGTCACCTGCATAGCTCA -ACGGAAAGTCACCTGCATTCACGT -ACGGAAAGTCACCTGCATCGTAGT -ACGGAAAGTCACCTGCATGTCAGT -ACGGAAAGTCACCTGCATGAAGGT -ACGGAAAGTCACCTGCATAACCGT -ACGGAAAGTCACCTGCATTTGTGC -ACGGAAAGTCACCTGCATCTAAGC -ACGGAAAGTCACCTGCATACTAGC -ACGGAAAGTCACCTGCATAGATGC -ACGGAAAGTCACCTGCATTGAAGG -ACGGAAAGTCACCTGCATCAATGG -ACGGAAAGTCACCTGCATATGAGG -ACGGAAAGTCACCTGCATAATGGG -ACGGAAAGTCACCTGCATTCCTGA -ACGGAAAGTCACCTGCATTAGCGA -ACGGAAAGTCACCTGCATCACAGA -ACGGAAAGTCACCTGCATGCAAGA -ACGGAAAGTCACCTGCATGGTTGA -ACGGAAAGTCACCTGCATTCCGAT -ACGGAAAGTCACCTGCATTGGCAT -ACGGAAAGTCACCTGCATCGAGAT -ACGGAAAGTCACCTGCATTACCAC -ACGGAAAGTCACCTGCATCAGAAC -ACGGAAAGTCACCTGCATGTCTAC -ACGGAAAGTCACCTGCATACGTAC -ACGGAAAGTCACCTGCATAGTGAC -ACGGAAAGTCACCTGCATCTGTAG -ACGGAAAGTCACCTGCATCCTAAG -ACGGAAAGTCACCTGCATGTTCAG -ACGGAAAGTCACCTGCATGCATAG -ACGGAAAGTCACCTGCATGACAAG -ACGGAAAGTCACCTGCATAAGCAG -ACGGAAAGTCACCTGCATCGTCAA -ACGGAAAGTCACCTGCATGCTGAA -ACGGAAAGTCACCTGCATAGTACG -ACGGAAAGTCACCTGCATATCCGA -ACGGAAAGTCACCTGCATATGGGA -ACGGAAAGTCACCTGCATGTGCAA -ACGGAAAGTCACCTGCATGAGGAA -ACGGAAAGTCACCTGCATCAGGTA -ACGGAAAGTCACCTGCATGACTCT -ACGGAAAGTCACCTGCATAGTCCT -ACGGAAAGTCACCTGCATTAAGCC -ACGGAAAGTCACCTGCATATAGCC -ACGGAAAGTCACCTGCATTAACCG -ACGGAAAGTCACCTGCATATGCCA -ACGGAAAGTCACTTGGAGGGAAAC -ACGGAAAGTCACTTGGAGAACACC -ACGGAAAGTCACTTGGAGATCGAG -ACGGAAAGTCACTTGGAGCTCCTT -ACGGAAAGTCACTTGGAGCCTGTT -ACGGAAAGTCACTTGGAGCGGTTT -ACGGAAAGTCACTTGGAGGTGGTT -ACGGAAAGTCACTTGGAGGCCTTT -ACGGAAAGTCACTTGGAGGGTCTT -ACGGAAAGTCACTTGGAGACGCTT -ACGGAAAGTCACTTGGAGAGCGTT -ACGGAAAGTCACTTGGAGTTCGTC -ACGGAAAGTCACTTGGAGTCTCTC -ACGGAAAGTCACTTGGAGTGGATC -ACGGAAAGTCACTTGGAGCACTTC -ACGGAAAGTCACTTGGAGGTACTC -ACGGAAAGTCACTTGGAGGATGTC -ACGGAAAGTCACTTGGAGACAGTC -ACGGAAAGTCACTTGGAGTTGCTG -ACGGAAAGTCACTTGGAGTCCATG -ACGGAAAGTCACTTGGAGTGTGTG -ACGGAAAGTCACTTGGAGCTAGTG -ACGGAAAGTCACTTGGAGCATCTG -ACGGAAAGTCACTTGGAGGAGTTG -ACGGAAAGTCACTTGGAGAGACTG -ACGGAAAGTCACTTGGAGTCGGTA -ACGGAAAGTCACTTGGAGTGCCTA -ACGGAAAGTCACTTGGAGCCACTA -ACGGAAAGTCACTTGGAGGGAGTA -ACGGAAAGTCACTTGGAGTCGTCT -ACGGAAAGTCACTTGGAGTGCACT -ACGGAAAGTCACTTGGAGCTGACT -ACGGAAAGTCACTTGGAGCAACCT -ACGGAAAGTCACTTGGAGGCTACT -ACGGAAAGTCACTTGGAGGGATCT -ACGGAAAGTCACTTGGAGAAGGCT -ACGGAAAGTCACTTGGAGTCAACC -ACGGAAAGTCACTTGGAGTGTTCC -ACGGAAAGTCACTTGGAGATTCCC -ACGGAAAGTCACTTGGAGTTCTCG -ACGGAAAGTCACTTGGAGTAGACG -ACGGAAAGTCACTTGGAGGTAACG -ACGGAAAGTCACTTGGAGACTTCG -ACGGAAAGTCACTTGGAGTACGCA -ACGGAAAGTCACTTGGAGCTTGCA -ACGGAAAGTCACTTGGAGCGAACA -ACGGAAAGTCACTTGGAGCAGTCA -ACGGAAAGTCACTTGGAGGATCCA -ACGGAAAGTCACTTGGAGACGACA -ACGGAAAGTCACTTGGAGAGCTCA -ACGGAAAGTCACTTGGAGTCACGT -ACGGAAAGTCACTTGGAGCGTAGT -ACGGAAAGTCACTTGGAGGTCAGT -ACGGAAAGTCACTTGGAGGAAGGT -ACGGAAAGTCACTTGGAGAACCGT -ACGGAAAGTCACTTGGAGTTGTGC -ACGGAAAGTCACTTGGAGCTAAGC -ACGGAAAGTCACTTGGAGACTAGC -ACGGAAAGTCACTTGGAGAGATGC -ACGGAAAGTCACTTGGAGTGAAGG -ACGGAAAGTCACTTGGAGCAATGG -ACGGAAAGTCACTTGGAGATGAGG -ACGGAAAGTCACTTGGAGAATGGG -ACGGAAAGTCACTTGGAGTCCTGA -ACGGAAAGTCACTTGGAGTAGCGA -ACGGAAAGTCACTTGGAGCACAGA -ACGGAAAGTCACTTGGAGGCAAGA -ACGGAAAGTCACTTGGAGGGTTGA -ACGGAAAGTCACTTGGAGTCCGAT -ACGGAAAGTCACTTGGAGTGGCAT -ACGGAAAGTCACTTGGAGCGAGAT -ACGGAAAGTCACTTGGAGTACCAC -ACGGAAAGTCACTTGGAGCAGAAC -ACGGAAAGTCACTTGGAGGTCTAC -ACGGAAAGTCACTTGGAGACGTAC -ACGGAAAGTCACTTGGAGAGTGAC -ACGGAAAGTCACTTGGAGCTGTAG -ACGGAAAGTCACTTGGAGCCTAAG -ACGGAAAGTCACTTGGAGGTTCAG -ACGGAAAGTCACTTGGAGGCATAG -ACGGAAAGTCACTTGGAGGACAAG -ACGGAAAGTCACTTGGAGAAGCAG -ACGGAAAGTCACTTGGAGCGTCAA -ACGGAAAGTCACTTGGAGGCTGAA -ACGGAAAGTCACTTGGAGAGTACG -ACGGAAAGTCACTTGGAGATCCGA -ACGGAAAGTCACTTGGAGATGGGA -ACGGAAAGTCACTTGGAGGTGCAA -ACGGAAAGTCACTTGGAGGAGGAA -ACGGAAAGTCACTTGGAGCAGGTA -ACGGAAAGTCACTTGGAGGACTCT -ACGGAAAGTCACTTGGAGAGTCCT -ACGGAAAGTCACTTGGAGTAAGCC -ACGGAAAGTCACTTGGAGATAGCC -ACGGAAAGTCACTTGGAGTAACCG -ACGGAAAGTCACTTGGAGATGCCA -ACGGAAAGTCACCTGAGAGGAAAC -ACGGAAAGTCACCTGAGAAACACC -ACGGAAAGTCACCTGAGAATCGAG -ACGGAAAGTCACCTGAGACTCCTT -ACGGAAAGTCACCTGAGACCTGTT -ACGGAAAGTCACCTGAGACGGTTT -ACGGAAAGTCACCTGAGAGTGGTT -ACGGAAAGTCACCTGAGAGCCTTT -ACGGAAAGTCACCTGAGAGGTCTT -ACGGAAAGTCACCTGAGAACGCTT -ACGGAAAGTCACCTGAGAAGCGTT -ACGGAAAGTCACCTGAGATTCGTC -ACGGAAAGTCACCTGAGATCTCTC -ACGGAAAGTCACCTGAGATGGATC -ACGGAAAGTCACCTGAGACACTTC -ACGGAAAGTCACCTGAGAGTACTC -ACGGAAAGTCACCTGAGAGATGTC -ACGGAAAGTCACCTGAGAACAGTC -ACGGAAAGTCACCTGAGATTGCTG -ACGGAAAGTCACCTGAGATCCATG -ACGGAAAGTCACCTGAGATGTGTG -ACGGAAAGTCACCTGAGACTAGTG -ACGGAAAGTCACCTGAGACATCTG -ACGGAAAGTCACCTGAGAGAGTTG -ACGGAAAGTCACCTGAGAAGACTG -ACGGAAAGTCACCTGAGATCGGTA -ACGGAAAGTCACCTGAGATGCCTA -ACGGAAAGTCACCTGAGACCACTA -ACGGAAAGTCACCTGAGAGGAGTA -ACGGAAAGTCACCTGAGATCGTCT -ACGGAAAGTCACCTGAGATGCACT -ACGGAAAGTCACCTGAGACTGACT -ACGGAAAGTCACCTGAGACAACCT -ACGGAAAGTCACCTGAGAGCTACT -ACGGAAAGTCACCTGAGAGGATCT -ACGGAAAGTCACCTGAGAAAGGCT -ACGGAAAGTCACCTGAGATCAACC -ACGGAAAGTCACCTGAGATGTTCC -ACGGAAAGTCACCTGAGAATTCCC -ACGGAAAGTCACCTGAGATTCTCG -ACGGAAAGTCACCTGAGATAGACG -ACGGAAAGTCACCTGAGAGTAACG -ACGGAAAGTCACCTGAGAACTTCG -ACGGAAAGTCACCTGAGATACGCA -ACGGAAAGTCACCTGAGACTTGCA -ACGGAAAGTCACCTGAGACGAACA -ACGGAAAGTCACCTGAGACAGTCA -ACGGAAAGTCACCTGAGAGATCCA -ACGGAAAGTCACCTGAGAACGACA -ACGGAAAGTCACCTGAGAAGCTCA -ACGGAAAGTCACCTGAGATCACGT -ACGGAAAGTCACCTGAGACGTAGT -ACGGAAAGTCACCTGAGAGTCAGT -ACGGAAAGTCACCTGAGAGAAGGT -ACGGAAAGTCACCTGAGAAACCGT -ACGGAAAGTCACCTGAGATTGTGC -ACGGAAAGTCACCTGAGACTAAGC -ACGGAAAGTCACCTGAGAACTAGC -ACGGAAAGTCACCTGAGAAGATGC -ACGGAAAGTCACCTGAGATGAAGG -ACGGAAAGTCACCTGAGACAATGG -ACGGAAAGTCACCTGAGAATGAGG -ACGGAAAGTCACCTGAGAAATGGG -ACGGAAAGTCACCTGAGATCCTGA -ACGGAAAGTCACCTGAGATAGCGA -ACGGAAAGTCACCTGAGACACAGA -ACGGAAAGTCACCTGAGAGCAAGA -ACGGAAAGTCACCTGAGAGGTTGA -ACGGAAAGTCACCTGAGATCCGAT -ACGGAAAGTCACCTGAGATGGCAT -ACGGAAAGTCACCTGAGACGAGAT -ACGGAAAGTCACCTGAGATACCAC -ACGGAAAGTCACCTGAGACAGAAC -ACGGAAAGTCACCTGAGAGTCTAC -ACGGAAAGTCACCTGAGAACGTAC -ACGGAAAGTCACCTGAGAAGTGAC -ACGGAAAGTCACCTGAGACTGTAG -ACGGAAAGTCACCTGAGACCTAAG -ACGGAAAGTCACCTGAGAGTTCAG -ACGGAAAGTCACCTGAGAGCATAG -ACGGAAAGTCACCTGAGAGACAAG -ACGGAAAGTCACCTGAGAAAGCAG -ACGGAAAGTCACCTGAGACGTCAA -ACGGAAAGTCACCTGAGAGCTGAA -ACGGAAAGTCACCTGAGAAGTACG -ACGGAAAGTCACCTGAGAATCCGA -ACGGAAAGTCACCTGAGAATGGGA -ACGGAAAGTCACCTGAGAGTGCAA -ACGGAAAGTCACCTGAGAGAGGAA -ACGGAAAGTCACCTGAGACAGGTA -ACGGAAAGTCACCTGAGAGACTCT -ACGGAAAGTCACCTGAGAAGTCCT -ACGGAAAGTCACCTGAGATAAGCC -ACGGAAAGTCACCTGAGAATAGCC -ACGGAAAGTCACCTGAGATAACCG -ACGGAAAGTCACCTGAGAATGCCA -ACGGAAAGTCACGTATCGGGAAAC -ACGGAAAGTCACGTATCGAACACC -ACGGAAAGTCACGTATCGATCGAG -ACGGAAAGTCACGTATCGCTCCTT -ACGGAAAGTCACGTATCGCCTGTT -ACGGAAAGTCACGTATCGCGGTTT -ACGGAAAGTCACGTATCGGTGGTT -ACGGAAAGTCACGTATCGGCCTTT -ACGGAAAGTCACGTATCGGGTCTT -ACGGAAAGTCACGTATCGACGCTT -ACGGAAAGTCACGTATCGAGCGTT -ACGGAAAGTCACGTATCGTTCGTC -ACGGAAAGTCACGTATCGTCTCTC -ACGGAAAGTCACGTATCGTGGATC -ACGGAAAGTCACGTATCGCACTTC -ACGGAAAGTCACGTATCGGTACTC -ACGGAAAGTCACGTATCGGATGTC -ACGGAAAGTCACGTATCGACAGTC -ACGGAAAGTCACGTATCGTTGCTG -ACGGAAAGTCACGTATCGTCCATG -ACGGAAAGTCACGTATCGTGTGTG -ACGGAAAGTCACGTATCGCTAGTG -ACGGAAAGTCACGTATCGCATCTG -ACGGAAAGTCACGTATCGGAGTTG -ACGGAAAGTCACGTATCGAGACTG -ACGGAAAGTCACGTATCGTCGGTA -ACGGAAAGTCACGTATCGTGCCTA -ACGGAAAGTCACGTATCGCCACTA -ACGGAAAGTCACGTATCGGGAGTA -ACGGAAAGTCACGTATCGTCGTCT -ACGGAAAGTCACGTATCGTGCACT -ACGGAAAGTCACGTATCGCTGACT -ACGGAAAGTCACGTATCGCAACCT -ACGGAAAGTCACGTATCGGCTACT -ACGGAAAGTCACGTATCGGGATCT -ACGGAAAGTCACGTATCGAAGGCT -ACGGAAAGTCACGTATCGTCAACC -ACGGAAAGTCACGTATCGTGTTCC -ACGGAAAGTCACGTATCGATTCCC -ACGGAAAGTCACGTATCGTTCTCG -ACGGAAAGTCACGTATCGTAGACG -ACGGAAAGTCACGTATCGGTAACG -ACGGAAAGTCACGTATCGACTTCG -ACGGAAAGTCACGTATCGTACGCA -ACGGAAAGTCACGTATCGCTTGCA -ACGGAAAGTCACGTATCGCGAACA -ACGGAAAGTCACGTATCGCAGTCA -ACGGAAAGTCACGTATCGGATCCA -ACGGAAAGTCACGTATCGACGACA -ACGGAAAGTCACGTATCGAGCTCA -ACGGAAAGTCACGTATCGTCACGT -ACGGAAAGTCACGTATCGCGTAGT -ACGGAAAGTCACGTATCGGTCAGT -ACGGAAAGTCACGTATCGGAAGGT -ACGGAAAGTCACGTATCGAACCGT -ACGGAAAGTCACGTATCGTTGTGC -ACGGAAAGTCACGTATCGCTAAGC -ACGGAAAGTCACGTATCGACTAGC -ACGGAAAGTCACGTATCGAGATGC -ACGGAAAGTCACGTATCGTGAAGG -ACGGAAAGTCACGTATCGCAATGG -ACGGAAAGTCACGTATCGATGAGG -ACGGAAAGTCACGTATCGAATGGG -ACGGAAAGTCACGTATCGTCCTGA -ACGGAAAGTCACGTATCGTAGCGA -ACGGAAAGTCACGTATCGCACAGA -ACGGAAAGTCACGTATCGGCAAGA -ACGGAAAGTCACGTATCGGGTTGA -ACGGAAAGTCACGTATCGTCCGAT -ACGGAAAGTCACGTATCGTGGCAT -ACGGAAAGTCACGTATCGCGAGAT -ACGGAAAGTCACGTATCGTACCAC -ACGGAAAGTCACGTATCGCAGAAC -ACGGAAAGTCACGTATCGGTCTAC -ACGGAAAGTCACGTATCGACGTAC -ACGGAAAGTCACGTATCGAGTGAC -ACGGAAAGTCACGTATCGCTGTAG -ACGGAAAGTCACGTATCGCCTAAG -ACGGAAAGTCACGTATCGGTTCAG -ACGGAAAGTCACGTATCGGCATAG -ACGGAAAGTCACGTATCGGACAAG -ACGGAAAGTCACGTATCGAAGCAG -ACGGAAAGTCACGTATCGCGTCAA -ACGGAAAGTCACGTATCGGCTGAA -ACGGAAAGTCACGTATCGAGTACG -ACGGAAAGTCACGTATCGATCCGA -ACGGAAAGTCACGTATCGATGGGA -ACGGAAAGTCACGTATCGGTGCAA -ACGGAAAGTCACGTATCGGAGGAA -ACGGAAAGTCACGTATCGCAGGTA -ACGGAAAGTCACGTATCGGACTCT -ACGGAAAGTCACGTATCGAGTCCT -ACGGAAAGTCACGTATCGTAAGCC -ACGGAAAGTCACGTATCGATAGCC -ACGGAAAGTCACGTATCGTAACCG -ACGGAAAGTCACGTATCGATGCCA -ACGGAAAGTCACCTATGCGGAAAC -ACGGAAAGTCACCTATGCAACACC -ACGGAAAGTCACCTATGCATCGAG -ACGGAAAGTCACCTATGCCTCCTT -ACGGAAAGTCACCTATGCCCTGTT -ACGGAAAGTCACCTATGCCGGTTT -ACGGAAAGTCACCTATGCGTGGTT -ACGGAAAGTCACCTATGCGCCTTT -ACGGAAAGTCACCTATGCGGTCTT -ACGGAAAGTCACCTATGCACGCTT -ACGGAAAGTCACCTATGCAGCGTT -ACGGAAAGTCACCTATGCTTCGTC -ACGGAAAGTCACCTATGCTCTCTC -ACGGAAAGTCACCTATGCTGGATC -ACGGAAAGTCACCTATGCCACTTC -ACGGAAAGTCACCTATGCGTACTC -ACGGAAAGTCACCTATGCGATGTC -ACGGAAAGTCACCTATGCACAGTC -ACGGAAAGTCACCTATGCTTGCTG -ACGGAAAGTCACCTATGCTCCATG -ACGGAAAGTCACCTATGCTGTGTG -ACGGAAAGTCACCTATGCCTAGTG -ACGGAAAGTCACCTATGCCATCTG -ACGGAAAGTCACCTATGCGAGTTG -ACGGAAAGTCACCTATGCAGACTG -ACGGAAAGTCACCTATGCTCGGTA -ACGGAAAGTCACCTATGCTGCCTA -ACGGAAAGTCACCTATGCCCACTA -ACGGAAAGTCACCTATGCGGAGTA -ACGGAAAGTCACCTATGCTCGTCT -ACGGAAAGTCACCTATGCTGCACT -ACGGAAAGTCACCTATGCCTGACT -ACGGAAAGTCACCTATGCCAACCT -ACGGAAAGTCACCTATGCGCTACT -ACGGAAAGTCACCTATGCGGATCT -ACGGAAAGTCACCTATGCAAGGCT -ACGGAAAGTCACCTATGCTCAACC -ACGGAAAGTCACCTATGCTGTTCC -ACGGAAAGTCACCTATGCATTCCC -ACGGAAAGTCACCTATGCTTCTCG -ACGGAAAGTCACCTATGCTAGACG -ACGGAAAGTCACCTATGCGTAACG -ACGGAAAGTCACCTATGCACTTCG -ACGGAAAGTCACCTATGCTACGCA -ACGGAAAGTCACCTATGCCTTGCA -ACGGAAAGTCACCTATGCCGAACA -ACGGAAAGTCACCTATGCCAGTCA -ACGGAAAGTCACCTATGCGATCCA -ACGGAAAGTCACCTATGCACGACA -ACGGAAAGTCACCTATGCAGCTCA -ACGGAAAGTCACCTATGCTCACGT -ACGGAAAGTCACCTATGCCGTAGT -ACGGAAAGTCACCTATGCGTCAGT -ACGGAAAGTCACCTATGCGAAGGT -ACGGAAAGTCACCTATGCAACCGT -ACGGAAAGTCACCTATGCTTGTGC -ACGGAAAGTCACCTATGCCTAAGC -ACGGAAAGTCACCTATGCACTAGC -ACGGAAAGTCACCTATGCAGATGC -ACGGAAAGTCACCTATGCTGAAGG -ACGGAAAGTCACCTATGCCAATGG -ACGGAAAGTCACCTATGCATGAGG -ACGGAAAGTCACCTATGCAATGGG -ACGGAAAGTCACCTATGCTCCTGA -ACGGAAAGTCACCTATGCTAGCGA -ACGGAAAGTCACCTATGCCACAGA -ACGGAAAGTCACCTATGCGCAAGA -ACGGAAAGTCACCTATGCGGTTGA -ACGGAAAGTCACCTATGCTCCGAT -ACGGAAAGTCACCTATGCTGGCAT -ACGGAAAGTCACCTATGCCGAGAT -ACGGAAAGTCACCTATGCTACCAC -ACGGAAAGTCACCTATGCCAGAAC -ACGGAAAGTCACCTATGCGTCTAC -ACGGAAAGTCACCTATGCACGTAC -ACGGAAAGTCACCTATGCAGTGAC -ACGGAAAGTCACCTATGCCTGTAG -ACGGAAAGTCACCTATGCCCTAAG -ACGGAAAGTCACCTATGCGTTCAG -ACGGAAAGTCACCTATGCGCATAG -ACGGAAAGTCACCTATGCGACAAG -ACGGAAAGTCACCTATGCAAGCAG -ACGGAAAGTCACCTATGCCGTCAA -ACGGAAAGTCACCTATGCGCTGAA -ACGGAAAGTCACCTATGCAGTACG -ACGGAAAGTCACCTATGCATCCGA -ACGGAAAGTCACCTATGCATGGGA -ACGGAAAGTCACCTATGCGTGCAA -ACGGAAAGTCACCTATGCGAGGAA -ACGGAAAGTCACCTATGCCAGGTA -ACGGAAAGTCACCTATGCGACTCT -ACGGAAAGTCACCTATGCAGTCCT -ACGGAAAGTCACCTATGCTAAGCC -ACGGAAAGTCACCTATGCATAGCC -ACGGAAAGTCACCTATGCTAACCG -ACGGAAAGTCACCTATGCATGCCA -ACGGAAAGTCACCTACCAGGAAAC -ACGGAAAGTCACCTACCAAACACC -ACGGAAAGTCACCTACCAATCGAG -ACGGAAAGTCACCTACCACTCCTT -ACGGAAAGTCACCTACCACCTGTT -ACGGAAAGTCACCTACCACGGTTT -ACGGAAAGTCACCTACCAGTGGTT -ACGGAAAGTCACCTACCAGCCTTT -ACGGAAAGTCACCTACCAGGTCTT -ACGGAAAGTCACCTACCAACGCTT -ACGGAAAGTCACCTACCAAGCGTT -ACGGAAAGTCACCTACCATTCGTC -ACGGAAAGTCACCTACCATCTCTC -ACGGAAAGTCACCTACCATGGATC -ACGGAAAGTCACCTACCACACTTC -ACGGAAAGTCACCTACCAGTACTC -ACGGAAAGTCACCTACCAGATGTC -ACGGAAAGTCACCTACCAACAGTC -ACGGAAAGTCACCTACCATTGCTG -ACGGAAAGTCACCTACCATCCATG -ACGGAAAGTCACCTACCATGTGTG -ACGGAAAGTCACCTACCACTAGTG -ACGGAAAGTCACCTACCACATCTG -ACGGAAAGTCACCTACCAGAGTTG -ACGGAAAGTCACCTACCAAGACTG -ACGGAAAGTCACCTACCATCGGTA -ACGGAAAGTCACCTACCATGCCTA -ACGGAAAGTCACCTACCACCACTA -ACGGAAAGTCACCTACCAGGAGTA -ACGGAAAGTCACCTACCATCGTCT -ACGGAAAGTCACCTACCATGCACT -ACGGAAAGTCACCTACCACTGACT -ACGGAAAGTCACCTACCACAACCT -ACGGAAAGTCACCTACCAGCTACT -ACGGAAAGTCACCTACCAGGATCT -ACGGAAAGTCACCTACCAAAGGCT -ACGGAAAGTCACCTACCATCAACC -ACGGAAAGTCACCTACCATGTTCC -ACGGAAAGTCACCTACCAATTCCC -ACGGAAAGTCACCTACCATTCTCG -ACGGAAAGTCACCTACCATAGACG -ACGGAAAGTCACCTACCAGTAACG -ACGGAAAGTCACCTACCAACTTCG -ACGGAAAGTCACCTACCATACGCA -ACGGAAAGTCACCTACCACTTGCA -ACGGAAAGTCACCTACCACGAACA -ACGGAAAGTCACCTACCACAGTCA -ACGGAAAGTCACCTACCAGATCCA -ACGGAAAGTCACCTACCAACGACA -ACGGAAAGTCACCTACCAAGCTCA -ACGGAAAGTCACCTACCATCACGT -ACGGAAAGTCACCTACCACGTAGT -ACGGAAAGTCACCTACCAGTCAGT -ACGGAAAGTCACCTACCAGAAGGT -ACGGAAAGTCACCTACCAAACCGT -ACGGAAAGTCACCTACCATTGTGC -ACGGAAAGTCACCTACCACTAAGC -ACGGAAAGTCACCTACCAACTAGC -ACGGAAAGTCACCTACCAAGATGC -ACGGAAAGTCACCTACCATGAAGG -ACGGAAAGTCACCTACCACAATGG -ACGGAAAGTCACCTACCAATGAGG -ACGGAAAGTCACCTACCAAATGGG -ACGGAAAGTCACCTACCATCCTGA -ACGGAAAGTCACCTACCATAGCGA -ACGGAAAGTCACCTACCACACAGA -ACGGAAAGTCACCTACCAGCAAGA -ACGGAAAGTCACCTACCAGGTTGA -ACGGAAAGTCACCTACCATCCGAT -ACGGAAAGTCACCTACCATGGCAT -ACGGAAAGTCACCTACCACGAGAT -ACGGAAAGTCACCTACCATACCAC -ACGGAAAGTCACCTACCACAGAAC -ACGGAAAGTCACCTACCAGTCTAC -ACGGAAAGTCACCTACCAACGTAC -ACGGAAAGTCACCTACCAAGTGAC -ACGGAAAGTCACCTACCACTGTAG -ACGGAAAGTCACCTACCACCTAAG -ACGGAAAGTCACCTACCAGTTCAG -ACGGAAAGTCACCTACCAGCATAG -ACGGAAAGTCACCTACCAGACAAG -ACGGAAAGTCACCTACCAAAGCAG -ACGGAAAGTCACCTACCACGTCAA -ACGGAAAGTCACCTACCAGCTGAA -ACGGAAAGTCACCTACCAAGTACG -ACGGAAAGTCACCTACCAATCCGA -ACGGAAAGTCACCTACCAATGGGA -ACGGAAAGTCACCTACCAGTGCAA -ACGGAAAGTCACCTACCAGAGGAA -ACGGAAAGTCACCTACCACAGGTA -ACGGAAAGTCACCTACCAGACTCT -ACGGAAAGTCACCTACCAAGTCCT -ACGGAAAGTCACCTACCATAAGCC -ACGGAAAGTCACCTACCAATAGCC -ACGGAAAGTCACCTACCATAACCG -ACGGAAAGTCACCTACCAATGCCA -ACGGAAAGTCACGTAGGAGGAAAC -ACGGAAAGTCACGTAGGAAACACC -ACGGAAAGTCACGTAGGAATCGAG -ACGGAAAGTCACGTAGGACTCCTT -ACGGAAAGTCACGTAGGACCTGTT -ACGGAAAGTCACGTAGGACGGTTT -ACGGAAAGTCACGTAGGAGTGGTT -ACGGAAAGTCACGTAGGAGCCTTT -ACGGAAAGTCACGTAGGAGGTCTT -ACGGAAAGTCACGTAGGAACGCTT -ACGGAAAGTCACGTAGGAAGCGTT -ACGGAAAGTCACGTAGGATTCGTC -ACGGAAAGTCACGTAGGATCTCTC -ACGGAAAGTCACGTAGGATGGATC -ACGGAAAGTCACGTAGGACACTTC -ACGGAAAGTCACGTAGGAGTACTC -ACGGAAAGTCACGTAGGAGATGTC -ACGGAAAGTCACGTAGGAACAGTC -ACGGAAAGTCACGTAGGATTGCTG -ACGGAAAGTCACGTAGGATCCATG -ACGGAAAGTCACGTAGGATGTGTG -ACGGAAAGTCACGTAGGACTAGTG -ACGGAAAGTCACGTAGGACATCTG -ACGGAAAGTCACGTAGGAGAGTTG -ACGGAAAGTCACGTAGGAAGACTG -ACGGAAAGTCACGTAGGATCGGTA -ACGGAAAGTCACGTAGGATGCCTA -ACGGAAAGTCACGTAGGACCACTA -ACGGAAAGTCACGTAGGAGGAGTA -ACGGAAAGTCACGTAGGATCGTCT -ACGGAAAGTCACGTAGGATGCACT -ACGGAAAGTCACGTAGGACTGACT -ACGGAAAGTCACGTAGGACAACCT -ACGGAAAGTCACGTAGGAGCTACT -ACGGAAAGTCACGTAGGAGGATCT -ACGGAAAGTCACGTAGGAAAGGCT -ACGGAAAGTCACGTAGGATCAACC -ACGGAAAGTCACGTAGGATGTTCC -ACGGAAAGTCACGTAGGAATTCCC -ACGGAAAGTCACGTAGGATTCTCG -ACGGAAAGTCACGTAGGATAGACG -ACGGAAAGTCACGTAGGAGTAACG -ACGGAAAGTCACGTAGGAACTTCG -ACGGAAAGTCACGTAGGATACGCA -ACGGAAAGTCACGTAGGACTTGCA -ACGGAAAGTCACGTAGGACGAACA -ACGGAAAGTCACGTAGGACAGTCA -ACGGAAAGTCACGTAGGAGATCCA -ACGGAAAGTCACGTAGGAACGACA -ACGGAAAGTCACGTAGGAAGCTCA -ACGGAAAGTCACGTAGGATCACGT -ACGGAAAGTCACGTAGGACGTAGT -ACGGAAAGTCACGTAGGAGTCAGT -ACGGAAAGTCACGTAGGAGAAGGT -ACGGAAAGTCACGTAGGAAACCGT -ACGGAAAGTCACGTAGGATTGTGC -ACGGAAAGTCACGTAGGACTAAGC -ACGGAAAGTCACGTAGGAACTAGC -ACGGAAAGTCACGTAGGAAGATGC -ACGGAAAGTCACGTAGGATGAAGG -ACGGAAAGTCACGTAGGACAATGG -ACGGAAAGTCACGTAGGAATGAGG -ACGGAAAGTCACGTAGGAAATGGG -ACGGAAAGTCACGTAGGATCCTGA -ACGGAAAGTCACGTAGGATAGCGA -ACGGAAAGTCACGTAGGACACAGA -ACGGAAAGTCACGTAGGAGCAAGA -ACGGAAAGTCACGTAGGAGGTTGA -ACGGAAAGTCACGTAGGATCCGAT -ACGGAAAGTCACGTAGGATGGCAT -ACGGAAAGTCACGTAGGACGAGAT -ACGGAAAGTCACGTAGGATACCAC -ACGGAAAGTCACGTAGGACAGAAC -ACGGAAAGTCACGTAGGAGTCTAC -ACGGAAAGTCACGTAGGAACGTAC -ACGGAAAGTCACGTAGGAAGTGAC -ACGGAAAGTCACGTAGGACTGTAG -ACGGAAAGTCACGTAGGACCTAAG -ACGGAAAGTCACGTAGGAGTTCAG -ACGGAAAGTCACGTAGGAGCATAG -ACGGAAAGTCACGTAGGAGACAAG -ACGGAAAGTCACGTAGGAAAGCAG -ACGGAAAGTCACGTAGGACGTCAA -ACGGAAAGTCACGTAGGAGCTGAA -ACGGAAAGTCACGTAGGAAGTACG -ACGGAAAGTCACGTAGGAATCCGA -ACGGAAAGTCACGTAGGAATGGGA -ACGGAAAGTCACGTAGGAGTGCAA -ACGGAAAGTCACGTAGGAGAGGAA -ACGGAAAGTCACGTAGGACAGGTA -ACGGAAAGTCACGTAGGAGACTCT -ACGGAAAGTCACGTAGGAAGTCCT -ACGGAAAGTCACGTAGGATAAGCC -ACGGAAAGTCACGTAGGAATAGCC -ACGGAAAGTCACGTAGGATAACCG -ACGGAAAGTCACGTAGGAATGCCA -ACGGAAAGTCACTCTTCGGGAAAC -ACGGAAAGTCACTCTTCGAACACC -ACGGAAAGTCACTCTTCGATCGAG -ACGGAAAGTCACTCTTCGCTCCTT -ACGGAAAGTCACTCTTCGCCTGTT -ACGGAAAGTCACTCTTCGCGGTTT -ACGGAAAGTCACTCTTCGGTGGTT -ACGGAAAGTCACTCTTCGGCCTTT -ACGGAAAGTCACTCTTCGGGTCTT -ACGGAAAGTCACTCTTCGACGCTT -ACGGAAAGTCACTCTTCGAGCGTT -ACGGAAAGTCACTCTTCGTTCGTC -ACGGAAAGTCACTCTTCGTCTCTC -ACGGAAAGTCACTCTTCGTGGATC -ACGGAAAGTCACTCTTCGCACTTC -ACGGAAAGTCACTCTTCGGTACTC -ACGGAAAGTCACTCTTCGGATGTC -ACGGAAAGTCACTCTTCGACAGTC -ACGGAAAGTCACTCTTCGTTGCTG -ACGGAAAGTCACTCTTCGTCCATG -ACGGAAAGTCACTCTTCGTGTGTG -ACGGAAAGTCACTCTTCGCTAGTG -ACGGAAAGTCACTCTTCGCATCTG -ACGGAAAGTCACTCTTCGGAGTTG -ACGGAAAGTCACTCTTCGAGACTG -ACGGAAAGTCACTCTTCGTCGGTA -ACGGAAAGTCACTCTTCGTGCCTA -ACGGAAAGTCACTCTTCGCCACTA -ACGGAAAGTCACTCTTCGGGAGTA -ACGGAAAGTCACTCTTCGTCGTCT -ACGGAAAGTCACTCTTCGTGCACT -ACGGAAAGTCACTCTTCGCTGACT -ACGGAAAGTCACTCTTCGCAACCT -ACGGAAAGTCACTCTTCGGCTACT -ACGGAAAGTCACTCTTCGGGATCT -ACGGAAAGTCACTCTTCGAAGGCT -ACGGAAAGTCACTCTTCGTCAACC -ACGGAAAGTCACTCTTCGTGTTCC -ACGGAAAGTCACTCTTCGATTCCC -ACGGAAAGTCACTCTTCGTTCTCG -ACGGAAAGTCACTCTTCGTAGACG -ACGGAAAGTCACTCTTCGGTAACG -ACGGAAAGTCACTCTTCGACTTCG -ACGGAAAGTCACTCTTCGTACGCA -ACGGAAAGTCACTCTTCGCTTGCA -ACGGAAAGTCACTCTTCGCGAACA -ACGGAAAGTCACTCTTCGCAGTCA -ACGGAAAGTCACTCTTCGGATCCA -ACGGAAAGTCACTCTTCGACGACA -ACGGAAAGTCACTCTTCGAGCTCA -ACGGAAAGTCACTCTTCGTCACGT -ACGGAAAGTCACTCTTCGCGTAGT -ACGGAAAGTCACTCTTCGGTCAGT -ACGGAAAGTCACTCTTCGGAAGGT -ACGGAAAGTCACTCTTCGAACCGT -ACGGAAAGTCACTCTTCGTTGTGC -ACGGAAAGTCACTCTTCGCTAAGC -ACGGAAAGTCACTCTTCGACTAGC -ACGGAAAGTCACTCTTCGAGATGC -ACGGAAAGTCACTCTTCGTGAAGG -ACGGAAAGTCACTCTTCGCAATGG -ACGGAAAGTCACTCTTCGATGAGG -ACGGAAAGTCACTCTTCGAATGGG -ACGGAAAGTCACTCTTCGTCCTGA -ACGGAAAGTCACTCTTCGTAGCGA -ACGGAAAGTCACTCTTCGCACAGA -ACGGAAAGTCACTCTTCGGCAAGA -ACGGAAAGTCACTCTTCGGGTTGA -ACGGAAAGTCACTCTTCGTCCGAT -ACGGAAAGTCACTCTTCGTGGCAT -ACGGAAAGTCACTCTTCGCGAGAT -ACGGAAAGTCACTCTTCGTACCAC -ACGGAAAGTCACTCTTCGCAGAAC -ACGGAAAGTCACTCTTCGGTCTAC -ACGGAAAGTCACTCTTCGACGTAC -ACGGAAAGTCACTCTTCGAGTGAC -ACGGAAAGTCACTCTTCGCTGTAG -ACGGAAAGTCACTCTTCGCCTAAG -ACGGAAAGTCACTCTTCGGTTCAG -ACGGAAAGTCACTCTTCGGCATAG -ACGGAAAGTCACTCTTCGGACAAG -ACGGAAAGTCACTCTTCGAAGCAG -ACGGAAAGTCACTCTTCGCGTCAA -ACGGAAAGTCACTCTTCGGCTGAA -ACGGAAAGTCACTCTTCGAGTACG -ACGGAAAGTCACTCTTCGATCCGA -ACGGAAAGTCACTCTTCGATGGGA -ACGGAAAGTCACTCTTCGGTGCAA -ACGGAAAGTCACTCTTCGGAGGAA -ACGGAAAGTCACTCTTCGCAGGTA -ACGGAAAGTCACTCTTCGGACTCT -ACGGAAAGTCACTCTTCGAGTCCT -ACGGAAAGTCACTCTTCGTAAGCC -ACGGAAAGTCACTCTTCGATAGCC -ACGGAAAGTCACTCTTCGTAACCG -ACGGAAAGTCACTCTTCGATGCCA -ACGGAAAGTCACACTTGCGGAAAC -ACGGAAAGTCACACTTGCAACACC -ACGGAAAGTCACACTTGCATCGAG -ACGGAAAGTCACACTTGCCTCCTT -ACGGAAAGTCACACTTGCCCTGTT -ACGGAAAGTCACACTTGCCGGTTT -ACGGAAAGTCACACTTGCGTGGTT -ACGGAAAGTCACACTTGCGCCTTT -ACGGAAAGTCACACTTGCGGTCTT -ACGGAAAGTCACACTTGCACGCTT -ACGGAAAGTCACACTTGCAGCGTT -ACGGAAAGTCACACTTGCTTCGTC -ACGGAAAGTCACACTTGCTCTCTC -ACGGAAAGTCACACTTGCTGGATC -ACGGAAAGTCACACTTGCCACTTC -ACGGAAAGTCACACTTGCGTACTC -ACGGAAAGTCACACTTGCGATGTC -ACGGAAAGTCACACTTGCACAGTC -ACGGAAAGTCACACTTGCTTGCTG -ACGGAAAGTCACACTTGCTCCATG -ACGGAAAGTCACACTTGCTGTGTG -ACGGAAAGTCACACTTGCCTAGTG -ACGGAAAGTCACACTTGCCATCTG -ACGGAAAGTCACACTTGCGAGTTG -ACGGAAAGTCACACTTGCAGACTG -ACGGAAAGTCACACTTGCTCGGTA -ACGGAAAGTCACACTTGCTGCCTA -ACGGAAAGTCACACTTGCCCACTA -ACGGAAAGTCACACTTGCGGAGTA -ACGGAAAGTCACACTTGCTCGTCT -ACGGAAAGTCACACTTGCTGCACT -ACGGAAAGTCACACTTGCCTGACT -ACGGAAAGTCACACTTGCCAACCT -ACGGAAAGTCACACTTGCGCTACT -ACGGAAAGTCACACTTGCGGATCT -ACGGAAAGTCACACTTGCAAGGCT -ACGGAAAGTCACACTTGCTCAACC -ACGGAAAGTCACACTTGCTGTTCC -ACGGAAAGTCACACTTGCATTCCC -ACGGAAAGTCACACTTGCTTCTCG -ACGGAAAGTCACACTTGCTAGACG -ACGGAAAGTCACACTTGCGTAACG -ACGGAAAGTCACACTTGCACTTCG -ACGGAAAGTCACACTTGCTACGCA -ACGGAAAGTCACACTTGCCTTGCA -ACGGAAAGTCACACTTGCCGAACA -ACGGAAAGTCACACTTGCCAGTCA -ACGGAAAGTCACACTTGCGATCCA -ACGGAAAGTCACACTTGCACGACA -ACGGAAAGTCACACTTGCAGCTCA -ACGGAAAGTCACACTTGCTCACGT -ACGGAAAGTCACACTTGCCGTAGT -ACGGAAAGTCACACTTGCGTCAGT -ACGGAAAGTCACACTTGCGAAGGT -ACGGAAAGTCACACTTGCAACCGT -ACGGAAAGTCACACTTGCTTGTGC -ACGGAAAGTCACACTTGCCTAAGC -ACGGAAAGTCACACTTGCACTAGC -ACGGAAAGTCACACTTGCAGATGC -ACGGAAAGTCACACTTGCTGAAGG -ACGGAAAGTCACACTTGCCAATGG -ACGGAAAGTCACACTTGCATGAGG -ACGGAAAGTCACACTTGCAATGGG -ACGGAAAGTCACACTTGCTCCTGA -ACGGAAAGTCACACTTGCTAGCGA -ACGGAAAGTCACACTTGCCACAGA -ACGGAAAGTCACACTTGCGCAAGA -ACGGAAAGTCACACTTGCGGTTGA -ACGGAAAGTCACACTTGCTCCGAT -ACGGAAAGTCACACTTGCTGGCAT -ACGGAAAGTCACACTTGCCGAGAT -ACGGAAAGTCACACTTGCTACCAC -ACGGAAAGTCACACTTGCCAGAAC -ACGGAAAGTCACACTTGCGTCTAC -ACGGAAAGTCACACTTGCACGTAC -ACGGAAAGTCACACTTGCAGTGAC -ACGGAAAGTCACACTTGCCTGTAG -ACGGAAAGTCACACTTGCCCTAAG -ACGGAAAGTCACACTTGCGTTCAG -ACGGAAAGTCACACTTGCGCATAG -ACGGAAAGTCACACTTGCGACAAG -ACGGAAAGTCACACTTGCAAGCAG -ACGGAAAGTCACACTTGCCGTCAA -ACGGAAAGTCACACTTGCGCTGAA -ACGGAAAGTCACACTTGCAGTACG -ACGGAAAGTCACACTTGCATCCGA -ACGGAAAGTCACACTTGCATGGGA -ACGGAAAGTCACACTTGCGTGCAA -ACGGAAAGTCACACTTGCGAGGAA -ACGGAAAGTCACACTTGCCAGGTA -ACGGAAAGTCACACTTGCGACTCT -ACGGAAAGTCACACTTGCAGTCCT -ACGGAAAGTCACACTTGCTAAGCC -ACGGAAAGTCACACTTGCATAGCC -ACGGAAAGTCACACTTGCTAACCG -ACGGAAAGTCACACTTGCATGCCA -ACGGAAAGTCACACTCTGGGAAAC -ACGGAAAGTCACACTCTGAACACC -ACGGAAAGTCACACTCTGATCGAG -ACGGAAAGTCACACTCTGCTCCTT -ACGGAAAGTCACACTCTGCCTGTT -ACGGAAAGTCACACTCTGCGGTTT -ACGGAAAGTCACACTCTGGTGGTT -ACGGAAAGTCACACTCTGGCCTTT -ACGGAAAGTCACACTCTGGGTCTT -ACGGAAAGTCACACTCTGACGCTT -ACGGAAAGTCACACTCTGAGCGTT -ACGGAAAGTCACACTCTGTTCGTC -ACGGAAAGTCACACTCTGTCTCTC -ACGGAAAGTCACACTCTGTGGATC -ACGGAAAGTCACACTCTGCACTTC -ACGGAAAGTCACACTCTGGTACTC -ACGGAAAGTCACACTCTGGATGTC -ACGGAAAGTCACACTCTGACAGTC -ACGGAAAGTCACACTCTGTTGCTG -ACGGAAAGTCACACTCTGTCCATG -ACGGAAAGTCACACTCTGTGTGTG -ACGGAAAGTCACACTCTGCTAGTG -ACGGAAAGTCACACTCTGCATCTG -ACGGAAAGTCACACTCTGGAGTTG -ACGGAAAGTCACACTCTGAGACTG -ACGGAAAGTCACACTCTGTCGGTA -ACGGAAAGTCACACTCTGTGCCTA -ACGGAAAGTCACACTCTGCCACTA -ACGGAAAGTCACACTCTGGGAGTA -ACGGAAAGTCACACTCTGTCGTCT -ACGGAAAGTCACACTCTGTGCACT -ACGGAAAGTCACACTCTGCTGACT -ACGGAAAGTCACACTCTGCAACCT -ACGGAAAGTCACACTCTGGCTACT -ACGGAAAGTCACACTCTGGGATCT -ACGGAAAGTCACACTCTGAAGGCT -ACGGAAAGTCACACTCTGTCAACC -ACGGAAAGTCACACTCTGTGTTCC -ACGGAAAGTCACACTCTGATTCCC -ACGGAAAGTCACACTCTGTTCTCG -ACGGAAAGTCACACTCTGTAGACG -ACGGAAAGTCACACTCTGGTAACG -ACGGAAAGTCACACTCTGACTTCG -ACGGAAAGTCACACTCTGTACGCA -ACGGAAAGTCACACTCTGCTTGCA -ACGGAAAGTCACACTCTGCGAACA -ACGGAAAGTCACACTCTGCAGTCA -ACGGAAAGTCACACTCTGGATCCA -ACGGAAAGTCACACTCTGACGACA -ACGGAAAGTCACACTCTGAGCTCA -ACGGAAAGTCACACTCTGTCACGT -ACGGAAAGTCACACTCTGCGTAGT -ACGGAAAGTCACACTCTGGTCAGT -ACGGAAAGTCACACTCTGGAAGGT -ACGGAAAGTCACACTCTGAACCGT -ACGGAAAGTCACACTCTGTTGTGC -ACGGAAAGTCACACTCTGCTAAGC -ACGGAAAGTCACACTCTGACTAGC -ACGGAAAGTCACACTCTGAGATGC -ACGGAAAGTCACACTCTGTGAAGG -ACGGAAAGTCACACTCTGCAATGG -ACGGAAAGTCACACTCTGATGAGG -ACGGAAAGTCACACTCTGAATGGG -ACGGAAAGTCACACTCTGTCCTGA -ACGGAAAGTCACACTCTGTAGCGA -ACGGAAAGTCACACTCTGCACAGA -ACGGAAAGTCACACTCTGGCAAGA -ACGGAAAGTCACACTCTGGGTTGA -ACGGAAAGTCACACTCTGTCCGAT -ACGGAAAGTCACACTCTGTGGCAT -ACGGAAAGTCACACTCTGCGAGAT -ACGGAAAGTCACACTCTGTACCAC -ACGGAAAGTCACACTCTGCAGAAC -ACGGAAAGTCACACTCTGGTCTAC -ACGGAAAGTCACACTCTGACGTAC -ACGGAAAGTCACACTCTGAGTGAC -ACGGAAAGTCACACTCTGCTGTAG -ACGGAAAGTCACACTCTGCCTAAG -ACGGAAAGTCACACTCTGGTTCAG -ACGGAAAGTCACACTCTGGCATAG -ACGGAAAGTCACACTCTGGACAAG -ACGGAAAGTCACACTCTGAAGCAG -ACGGAAAGTCACACTCTGCGTCAA -ACGGAAAGTCACACTCTGGCTGAA -ACGGAAAGTCACACTCTGAGTACG -ACGGAAAGTCACACTCTGATCCGA -ACGGAAAGTCACACTCTGATGGGA -ACGGAAAGTCACACTCTGGTGCAA -ACGGAAAGTCACACTCTGGAGGAA -ACGGAAAGTCACACTCTGCAGGTA -ACGGAAAGTCACACTCTGGACTCT -ACGGAAAGTCACACTCTGAGTCCT -ACGGAAAGTCACACTCTGTAAGCC -ACGGAAAGTCACACTCTGATAGCC -ACGGAAAGTCACACTCTGTAACCG -ACGGAAAGTCACACTCTGATGCCA -ACGGAAAGTCACCCTCAAGGAAAC -ACGGAAAGTCACCCTCAAAACACC -ACGGAAAGTCACCCTCAAATCGAG -ACGGAAAGTCACCCTCAACTCCTT -ACGGAAAGTCACCCTCAACCTGTT -ACGGAAAGTCACCCTCAACGGTTT -ACGGAAAGTCACCCTCAAGTGGTT -ACGGAAAGTCACCCTCAAGCCTTT -ACGGAAAGTCACCCTCAAGGTCTT -ACGGAAAGTCACCCTCAAACGCTT -ACGGAAAGTCACCCTCAAAGCGTT -ACGGAAAGTCACCCTCAATTCGTC -ACGGAAAGTCACCCTCAATCTCTC -ACGGAAAGTCACCCTCAATGGATC -ACGGAAAGTCACCCTCAACACTTC -ACGGAAAGTCACCCTCAAGTACTC -ACGGAAAGTCACCCTCAAGATGTC -ACGGAAAGTCACCCTCAAACAGTC -ACGGAAAGTCACCCTCAATTGCTG -ACGGAAAGTCACCCTCAATCCATG -ACGGAAAGTCACCCTCAATGTGTG -ACGGAAAGTCACCCTCAACTAGTG -ACGGAAAGTCACCCTCAACATCTG -ACGGAAAGTCACCCTCAAGAGTTG -ACGGAAAGTCACCCTCAAAGACTG -ACGGAAAGTCACCCTCAATCGGTA -ACGGAAAGTCACCCTCAATGCCTA -ACGGAAAGTCACCCTCAACCACTA -ACGGAAAGTCACCCTCAAGGAGTA -ACGGAAAGTCACCCTCAATCGTCT -ACGGAAAGTCACCCTCAATGCACT -ACGGAAAGTCACCCTCAACTGACT -ACGGAAAGTCACCCTCAACAACCT -ACGGAAAGTCACCCTCAAGCTACT -ACGGAAAGTCACCCTCAAGGATCT -ACGGAAAGTCACCCTCAAAAGGCT -ACGGAAAGTCACCCTCAATCAACC -ACGGAAAGTCACCCTCAATGTTCC -ACGGAAAGTCACCCTCAAATTCCC -ACGGAAAGTCACCCTCAATTCTCG -ACGGAAAGTCACCCTCAATAGACG -ACGGAAAGTCACCCTCAAGTAACG -ACGGAAAGTCACCCTCAAACTTCG -ACGGAAAGTCACCCTCAATACGCA -ACGGAAAGTCACCCTCAACTTGCA -ACGGAAAGTCACCCTCAACGAACA -ACGGAAAGTCACCCTCAACAGTCA -ACGGAAAGTCACCCTCAAGATCCA -ACGGAAAGTCACCCTCAAACGACA -ACGGAAAGTCACCCTCAAAGCTCA -ACGGAAAGTCACCCTCAATCACGT -ACGGAAAGTCACCCTCAACGTAGT -ACGGAAAGTCACCCTCAAGTCAGT -ACGGAAAGTCACCCTCAAGAAGGT -ACGGAAAGTCACCCTCAAAACCGT -ACGGAAAGTCACCCTCAATTGTGC -ACGGAAAGTCACCCTCAACTAAGC -ACGGAAAGTCACCCTCAAACTAGC -ACGGAAAGTCACCCTCAAAGATGC -ACGGAAAGTCACCCTCAATGAAGG -ACGGAAAGTCACCCTCAACAATGG -ACGGAAAGTCACCCTCAAATGAGG -ACGGAAAGTCACCCTCAAAATGGG -ACGGAAAGTCACCCTCAATCCTGA -ACGGAAAGTCACCCTCAATAGCGA -ACGGAAAGTCACCCTCAACACAGA -ACGGAAAGTCACCCTCAAGCAAGA -ACGGAAAGTCACCCTCAAGGTTGA -ACGGAAAGTCACCCTCAATCCGAT -ACGGAAAGTCACCCTCAATGGCAT -ACGGAAAGTCACCCTCAACGAGAT -ACGGAAAGTCACCCTCAATACCAC -ACGGAAAGTCACCCTCAACAGAAC -ACGGAAAGTCACCCTCAAGTCTAC -ACGGAAAGTCACCCTCAAACGTAC -ACGGAAAGTCACCCTCAAAGTGAC -ACGGAAAGTCACCCTCAACTGTAG -ACGGAAAGTCACCCTCAACCTAAG -ACGGAAAGTCACCCTCAAGTTCAG -ACGGAAAGTCACCCTCAAGCATAG -ACGGAAAGTCACCCTCAAGACAAG -ACGGAAAGTCACCCTCAAAAGCAG -ACGGAAAGTCACCCTCAACGTCAA -ACGGAAAGTCACCCTCAAGCTGAA -ACGGAAAGTCACCCTCAAAGTACG -ACGGAAAGTCACCCTCAAATCCGA -ACGGAAAGTCACCCTCAAATGGGA -ACGGAAAGTCACCCTCAAGTGCAA -ACGGAAAGTCACCCTCAAGAGGAA -ACGGAAAGTCACCCTCAACAGGTA -ACGGAAAGTCACCCTCAAGACTCT -ACGGAAAGTCACCCTCAAAGTCCT -ACGGAAAGTCACCCTCAATAAGCC -ACGGAAAGTCACCCTCAAATAGCC -ACGGAAAGTCACCCTCAATAACCG -ACGGAAAGTCACCCTCAAATGCCA -ACGGAAAGTCACACTGCTGGAAAC -ACGGAAAGTCACACTGCTAACACC -ACGGAAAGTCACACTGCTATCGAG -ACGGAAAGTCACACTGCTCTCCTT -ACGGAAAGTCACACTGCTCCTGTT -ACGGAAAGTCACACTGCTCGGTTT -ACGGAAAGTCACACTGCTGTGGTT -ACGGAAAGTCACACTGCTGCCTTT -ACGGAAAGTCACACTGCTGGTCTT -ACGGAAAGTCACACTGCTACGCTT -ACGGAAAGTCACACTGCTAGCGTT -ACGGAAAGTCACACTGCTTTCGTC -ACGGAAAGTCACACTGCTTCTCTC -ACGGAAAGTCACACTGCTTGGATC -ACGGAAAGTCACACTGCTCACTTC -ACGGAAAGTCACACTGCTGTACTC -ACGGAAAGTCACACTGCTGATGTC -ACGGAAAGTCACACTGCTACAGTC -ACGGAAAGTCACACTGCTTTGCTG -ACGGAAAGTCACACTGCTTCCATG -ACGGAAAGTCACACTGCTTGTGTG -ACGGAAAGTCACACTGCTCTAGTG -ACGGAAAGTCACACTGCTCATCTG -ACGGAAAGTCACACTGCTGAGTTG -ACGGAAAGTCACACTGCTAGACTG -ACGGAAAGTCACACTGCTTCGGTA -ACGGAAAGTCACACTGCTTGCCTA -ACGGAAAGTCACACTGCTCCACTA -ACGGAAAGTCACACTGCTGGAGTA -ACGGAAAGTCACACTGCTTCGTCT -ACGGAAAGTCACACTGCTTGCACT -ACGGAAAGTCACACTGCTCTGACT -ACGGAAAGTCACACTGCTCAACCT -ACGGAAAGTCACACTGCTGCTACT -ACGGAAAGTCACACTGCTGGATCT -ACGGAAAGTCACACTGCTAAGGCT -ACGGAAAGTCACACTGCTTCAACC -ACGGAAAGTCACACTGCTTGTTCC -ACGGAAAGTCACACTGCTATTCCC -ACGGAAAGTCACACTGCTTTCTCG -ACGGAAAGTCACACTGCTTAGACG -ACGGAAAGTCACACTGCTGTAACG -ACGGAAAGTCACACTGCTACTTCG -ACGGAAAGTCACACTGCTTACGCA -ACGGAAAGTCACACTGCTCTTGCA -ACGGAAAGTCACACTGCTCGAACA -ACGGAAAGTCACACTGCTCAGTCA -ACGGAAAGTCACACTGCTGATCCA -ACGGAAAGTCACACTGCTACGACA -ACGGAAAGTCACACTGCTAGCTCA -ACGGAAAGTCACACTGCTTCACGT -ACGGAAAGTCACACTGCTCGTAGT -ACGGAAAGTCACACTGCTGTCAGT -ACGGAAAGTCACACTGCTGAAGGT -ACGGAAAGTCACACTGCTAACCGT -ACGGAAAGTCACACTGCTTTGTGC -ACGGAAAGTCACACTGCTCTAAGC -ACGGAAAGTCACACTGCTACTAGC -ACGGAAAGTCACACTGCTAGATGC -ACGGAAAGTCACACTGCTTGAAGG -ACGGAAAGTCACACTGCTCAATGG -ACGGAAAGTCACACTGCTATGAGG -ACGGAAAGTCACACTGCTAATGGG -ACGGAAAGTCACACTGCTTCCTGA -ACGGAAAGTCACACTGCTTAGCGA -ACGGAAAGTCACACTGCTCACAGA -ACGGAAAGTCACACTGCTGCAAGA -ACGGAAAGTCACACTGCTGGTTGA -ACGGAAAGTCACACTGCTTCCGAT -ACGGAAAGTCACACTGCTTGGCAT -ACGGAAAGTCACACTGCTCGAGAT -ACGGAAAGTCACACTGCTTACCAC -ACGGAAAGTCACACTGCTCAGAAC -ACGGAAAGTCACACTGCTGTCTAC -ACGGAAAGTCACACTGCTACGTAC -ACGGAAAGTCACACTGCTAGTGAC -ACGGAAAGTCACACTGCTCTGTAG -ACGGAAAGTCACACTGCTCCTAAG -ACGGAAAGTCACACTGCTGTTCAG -ACGGAAAGTCACACTGCTGCATAG -ACGGAAAGTCACACTGCTGACAAG -ACGGAAAGTCACACTGCTAAGCAG -ACGGAAAGTCACACTGCTCGTCAA -ACGGAAAGTCACACTGCTGCTGAA -ACGGAAAGTCACACTGCTAGTACG -ACGGAAAGTCACACTGCTATCCGA -ACGGAAAGTCACACTGCTATGGGA -ACGGAAAGTCACACTGCTGTGCAA -ACGGAAAGTCACACTGCTGAGGAA -ACGGAAAGTCACACTGCTCAGGTA -ACGGAAAGTCACACTGCTGACTCT -ACGGAAAGTCACACTGCTAGTCCT -ACGGAAAGTCACACTGCTTAAGCC -ACGGAAAGTCACACTGCTATAGCC -ACGGAAAGTCACACTGCTTAACCG -ACGGAAAGTCACACTGCTATGCCA -ACGGAAAGTCACTCTGGAGGAAAC -ACGGAAAGTCACTCTGGAAACACC -ACGGAAAGTCACTCTGGAATCGAG -ACGGAAAGTCACTCTGGACTCCTT -ACGGAAAGTCACTCTGGACCTGTT -ACGGAAAGTCACTCTGGACGGTTT -ACGGAAAGTCACTCTGGAGTGGTT -ACGGAAAGTCACTCTGGAGCCTTT -ACGGAAAGTCACTCTGGAGGTCTT -ACGGAAAGTCACTCTGGAACGCTT -ACGGAAAGTCACTCTGGAAGCGTT -ACGGAAAGTCACTCTGGATTCGTC -ACGGAAAGTCACTCTGGATCTCTC -ACGGAAAGTCACTCTGGATGGATC -ACGGAAAGTCACTCTGGACACTTC -ACGGAAAGTCACTCTGGAGTACTC -ACGGAAAGTCACTCTGGAGATGTC -ACGGAAAGTCACTCTGGAACAGTC -ACGGAAAGTCACTCTGGATTGCTG -ACGGAAAGTCACTCTGGATCCATG -ACGGAAAGTCACTCTGGATGTGTG -ACGGAAAGTCACTCTGGACTAGTG -ACGGAAAGTCACTCTGGACATCTG -ACGGAAAGTCACTCTGGAGAGTTG -ACGGAAAGTCACTCTGGAAGACTG -ACGGAAAGTCACTCTGGATCGGTA -ACGGAAAGTCACTCTGGATGCCTA -ACGGAAAGTCACTCTGGACCACTA -ACGGAAAGTCACTCTGGAGGAGTA -ACGGAAAGTCACTCTGGATCGTCT -ACGGAAAGTCACTCTGGATGCACT -ACGGAAAGTCACTCTGGACTGACT -ACGGAAAGTCACTCTGGACAACCT -ACGGAAAGTCACTCTGGAGCTACT -ACGGAAAGTCACTCTGGAGGATCT -ACGGAAAGTCACTCTGGAAAGGCT -ACGGAAAGTCACTCTGGATCAACC -ACGGAAAGTCACTCTGGATGTTCC -ACGGAAAGTCACTCTGGAATTCCC -ACGGAAAGTCACTCTGGATTCTCG -ACGGAAAGTCACTCTGGATAGACG -ACGGAAAGTCACTCTGGAGTAACG -ACGGAAAGTCACTCTGGAACTTCG -ACGGAAAGTCACTCTGGATACGCA -ACGGAAAGTCACTCTGGACTTGCA -ACGGAAAGTCACTCTGGACGAACA -ACGGAAAGTCACTCTGGACAGTCA -ACGGAAAGTCACTCTGGAGATCCA -ACGGAAAGTCACTCTGGAACGACA -ACGGAAAGTCACTCTGGAAGCTCA -ACGGAAAGTCACTCTGGATCACGT -ACGGAAAGTCACTCTGGACGTAGT -ACGGAAAGTCACTCTGGAGTCAGT -ACGGAAAGTCACTCTGGAGAAGGT -ACGGAAAGTCACTCTGGAAACCGT -ACGGAAAGTCACTCTGGATTGTGC -ACGGAAAGTCACTCTGGACTAAGC -ACGGAAAGTCACTCTGGAACTAGC -ACGGAAAGTCACTCTGGAAGATGC -ACGGAAAGTCACTCTGGATGAAGG -ACGGAAAGTCACTCTGGACAATGG -ACGGAAAGTCACTCTGGAATGAGG -ACGGAAAGTCACTCTGGAAATGGG -ACGGAAAGTCACTCTGGATCCTGA -ACGGAAAGTCACTCTGGATAGCGA -ACGGAAAGTCACTCTGGACACAGA -ACGGAAAGTCACTCTGGAGCAAGA -ACGGAAAGTCACTCTGGAGGTTGA -ACGGAAAGTCACTCTGGATCCGAT -ACGGAAAGTCACTCTGGATGGCAT -ACGGAAAGTCACTCTGGACGAGAT -ACGGAAAGTCACTCTGGATACCAC -ACGGAAAGTCACTCTGGACAGAAC -ACGGAAAGTCACTCTGGAGTCTAC -ACGGAAAGTCACTCTGGAACGTAC -ACGGAAAGTCACTCTGGAAGTGAC -ACGGAAAGTCACTCTGGACTGTAG -ACGGAAAGTCACTCTGGACCTAAG -ACGGAAAGTCACTCTGGAGTTCAG -ACGGAAAGTCACTCTGGAGCATAG -ACGGAAAGTCACTCTGGAGACAAG -ACGGAAAGTCACTCTGGAAAGCAG -ACGGAAAGTCACTCTGGACGTCAA -ACGGAAAGTCACTCTGGAGCTGAA -ACGGAAAGTCACTCTGGAAGTACG -ACGGAAAGTCACTCTGGAATCCGA -ACGGAAAGTCACTCTGGAATGGGA -ACGGAAAGTCACTCTGGAGTGCAA -ACGGAAAGTCACTCTGGAGAGGAA -ACGGAAAGTCACTCTGGACAGGTA -ACGGAAAGTCACTCTGGAGACTCT -ACGGAAAGTCACTCTGGAAGTCCT -ACGGAAAGTCACTCTGGATAAGCC -ACGGAAAGTCACTCTGGAATAGCC -ACGGAAAGTCACTCTGGATAACCG -ACGGAAAGTCACTCTGGAATGCCA -ACGGAAAGTCACGCTAAGGGAAAC -ACGGAAAGTCACGCTAAGAACACC -ACGGAAAGTCACGCTAAGATCGAG -ACGGAAAGTCACGCTAAGCTCCTT -ACGGAAAGTCACGCTAAGCCTGTT -ACGGAAAGTCACGCTAAGCGGTTT -ACGGAAAGTCACGCTAAGGTGGTT -ACGGAAAGTCACGCTAAGGCCTTT -ACGGAAAGTCACGCTAAGGGTCTT -ACGGAAAGTCACGCTAAGACGCTT -ACGGAAAGTCACGCTAAGAGCGTT -ACGGAAAGTCACGCTAAGTTCGTC -ACGGAAAGTCACGCTAAGTCTCTC -ACGGAAAGTCACGCTAAGTGGATC -ACGGAAAGTCACGCTAAGCACTTC -ACGGAAAGTCACGCTAAGGTACTC -ACGGAAAGTCACGCTAAGGATGTC -ACGGAAAGTCACGCTAAGACAGTC -ACGGAAAGTCACGCTAAGTTGCTG -ACGGAAAGTCACGCTAAGTCCATG -ACGGAAAGTCACGCTAAGTGTGTG -ACGGAAAGTCACGCTAAGCTAGTG -ACGGAAAGTCACGCTAAGCATCTG -ACGGAAAGTCACGCTAAGGAGTTG -ACGGAAAGTCACGCTAAGAGACTG -ACGGAAAGTCACGCTAAGTCGGTA -ACGGAAAGTCACGCTAAGTGCCTA -ACGGAAAGTCACGCTAAGCCACTA -ACGGAAAGTCACGCTAAGGGAGTA -ACGGAAAGTCACGCTAAGTCGTCT -ACGGAAAGTCACGCTAAGTGCACT -ACGGAAAGTCACGCTAAGCTGACT -ACGGAAAGTCACGCTAAGCAACCT -ACGGAAAGTCACGCTAAGGCTACT -ACGGAAAGTCACGCTAAGGGATCT -ACGGAAAGTCACGCTAAGAAGGCT -ACGGAAAGTCACGCTAAGTCAACC -ACGGAAAGTCACGCTAAGTGTTCC -ACGGAAAGTCACGCTAAGATTCCC -ACGGAAAGTCACGCTAAGTTCTCG -ACGGAAAGTCACGCTAAGTAGACG -ACGGAAAGTCACGCTAAGGTAACG -ACGGAAAGTCACGCTAAGACTTCG -ACGGAAAGTCACGCTAAGTACGCA -ACGGAAAGTCACGCTAAGCTTGCA -ACGGAAAGTCACGCTAAGCGAACA -ACGGAAAGTCACGCTAAGCAGTCA -ACGGAAAGTCACGCTAAGGATCCA -ACGGAAAGTCACGCTAAGACGACA -ACGGAAAGTCACGCTAAGAGCTCA -ACGGAAAGTCACGCTAAGTCACGT -ACGGAAAGTCACGCTAAGCGTAGT -ACGGAAAGTCACGCTAAGGTCAGT -ACGGAAAGTCACGCTAAGGAAGGT -ACGGAAAGTCACGCTAAGAACCGT -ACGGAAAGTCACGCTAAGTTGTGC -ACGGAAAGTCACGCTAAGCTAAGC -ACGGAAAGTCACGCTAAGACTAGC -ACGGAAAGTCACGCTAAGAGATGC -ACGGAAAGTCACGCTAAGTGAAGG -ACGGAAAGTCACGCTAAGCAATGG -ACGGAAAGTCACGCTAAGATGAGG -ACGGAAAGTCACGCTAAGAATGGG -ACGGAAAGTCACGCTAAGTCCTGA -ACGGAAAGTCACGCTAAGTAGCGA -ACGGAAAGTCACGCTAAGCACAGA -ACGGAAAGTCACGCTAAGGCAAGA -ACGGAAAGTCACGCTAAGGGTTGA -ACGGAAAGTCACGCTAAGTCCGAT -ACGGAAAGTCACGCTAAGTGGCAT -ACGGAAAGTCACGCTAAGCGAGAT -ACGGAAAGTCACGCTAAGTACCAC -ACGGAAAGTCACGCTAAGCAGAAC -ACGGAAAGTCACGCTAAGGTCTAC -ACGGAAAGTCACGCTAAGACGTAC -ACGGAAAGTCACGCTAAGAGTGAC -ACGGAAAGTCACGCTAAGCTGTAG -ACGGAAAGTCACGCTAAGCCTAAG -ACGGAAAGTCACGCTAAGGTTCAG -ACGGAAAGTCACGCTAAGGCATAG -ACGGAAAGTCACGCTAAGGACAAG -ACGGAAAGTCACGCTAAGAAGCAG -ACGGAAAGTCACGCTAAGCGTCAA -ACGGAAAGTCACGCTAAGGCTGAA -ACGGAAAGTCACGCTAAGAGTACG -ACGGAAAGTCACGCTAAGATCCGA -ACGGAAAGTCACGCTAAGATGGGA -ACGGAAAGTCACGCTAAGGTGCAA -ACGGAAAGTCACGCTAAGGAGGAA -ACGGAAAGTCACGCTAAGCAGGTA -ACGGAAAGTCACGCTAAGGACTCT -ACGGAAAGTCACGCTAAGAGTCCT -ACGGAAAGTCACGCTAAGTAAGCC -ACGGAAAGTCACGCTAAGATAGCC -ACGGAAAGTCACGCTAAGTAACCG -ACGGAAAGTCACGCTAAGATGCCA -ACGGAAAGTCACACCTCAGGAAAC -ACGGAAAGTCACACCTCAAACACC -ACGGAAAGTCACACCTCAATCGAG -ACGGAAAGTCACACCTCACTCCTT -ACGGAAAGTCACACCTCACCTGTT -ACGGAAAGTCACACCTCACGGTTT -ACGGAAAGTCACACCTCAGTGGTT -ACGGAAAGTCACACCTCAGCCTTT -ACGGAAAGTCACACCTCAGGTCTT -ACGGAAAGTCACACCTCAACGCTT -ACGGAAAGTCACACCTCAAGCGTT -ACGGAAAGTCACACCTCATTCGTC -ACGGAAAGTCACACCTCATCTCTC -ACGGAAAGTCACACCTCATGGATC -ACGGAAAGTCACACCTCACACTTC -ACGGAAAGTCACACCTCAGTACTC -ACGGAAAGTCACACCTCAGATGTC -ACGGAAAGTCACACCTCAACAGTC -ACGGAAAGTCACACCTCATTGCTG -ACGGAAAGTCACACCTCATCCATG -ACGGAAAGTCACACCTCATGTGTG -ACGGAAAGTCACACCTCACTAGTG -ACGGAAAGTCACACCTCACATCTG -ACGGAAAGTCACACCTCAGAGTTG -ACGGAAAGTCACACCTCAAGACTG -ACGGAAAGTCACACCTCATCGGTA -ACGGAAAGTCACACCTCATGCCTA -ACGGAAAGTCACACCTCACCACTA -ACGGAAAGTCACACCTCAGGAGTA -ACGGAAAGTCACACCTCATCGTCT -ACGGAAAGTCACACCTCATGCACT -ACGGAAAGTCACACCTCACTGACT -ACGGAAAGTCACACCTCACAACCT -ACGGAAAGTCACACCTCAGCTACT -ACGGAAAGTCACACCTCAGGATCT -ACGGAAAGTCACACCTCAAAGGCT -ACGGAAAGTCACACCTCATCAACC -ACGGAAAGTCACACCTCATGTTCC -ACGGAAAGTCACACCTCAATTCCC -ACGGAAAGTCACACCTCATTCTCG -ACGGAAAGTCACACCTCATAGACG -ACGGAAAGTCACACCTCAGTAACG -ACGGAAAGTCACACCTCAACTTCG -ACGGAAAGTCACACCTCATACGCA -ACGGAAAGTCACACCTCACTTGCA -ACGGAAAGTCACACCTCACGAACA -ACGGAAAGTCACACCTCACAGTCA -ACGGAAAGTCACACCTCAGATCCA -ACGGAAAGTCACACCTCAACGACA -ACGGAAAGTCACACCTCAAGCTCA -ACGGAAAGTCACACCTCATCACGT -ACGGAAAGTCACACCTCACGTAGT -ACGGAAAGTCACACCTCAGTCAGT -ACGGAAAGTCACACCTCAGAAGGT -ACGGAAAGTCACACCTCAAACCGT -ACGGAAAGTCACACCTCATTGTGC -ACGGAAAGTCACACCTCACTAAGC -ACGGAAAGTCACACCTCAACTAGC -ACGGAAAGTCACACCTCAAGATGC -ACGGAAAGTCACACCTCATGAAGG -ACGGAAAGTCACACCTCACAATGG -ACGGAAAGTCACACCTCAATGAGG -ACGGAAAGTCACACCTCAAATGGG -ACGGAAAGTCACACCTCATCCTGA -ACGGAAAGTCACACCTCATAGCGA -ACGGAAAGTCACACCTCACACAGA -ACGGAAAGTCACACCTCAGCAAGA -ACGGAAAGTCACACCTCAGGTTGA -ACGGAAAGTCACACCTCATCCGAT -ACGGAAAGTCACACCTCATGGCAT -ACGGAAAGTCACACCTCACGAGAT -ACGGAAAGTCACACCTCATACCAC -ACGGAAAGTCACACCTCACAGAAC -ACGGAAAGTCACACCTCAGTCTAC -ACGGAAAGTCACACCTCAACGTAC -ACGGAAAGTCACACCTCAAGTGAC -ACGGAAAGTCACACCTCACTGTAG -ACGGAAAGTCACACCTCACCTAAG -ACGGAAAGTCACACCTCAGTTCAG -ACGGAAAGTCACACCTCAGCATAG -ACGGAAAGTCACACCTCAGACAAG -ACGGAAAGTCACACCTCAAAGCAG -ACGGAAAGTCACACCTCACGTCAA -ACGGAAAGTCACACCTCAGCTGAA -ACGGAAAGTCACACCTCAAGTACG -ACGGAAAGTCACACCTCAATCCGA -ACGGAAAGTCACACCTCAATGGGA -ACGGAAAGTCACACCTCAGTGCAA -ACGGAAAGTCACACCTCAGAGGAA -ACGGAAAGTCACACCTCACAGGTA -ACGGAAAGTCACACCTCAGACTCT -ACGGAAAGTCACACCTCAAGTCCT -ACGGAAAGTCACACCTCATAAGCC -ACGGAAAGTCACACCTCAATAGCC -ACGGAAAGTCACACCTCATAACCG -ACGGAAAGTCACACCTCAATGCCA -ACGGAAAGTCACTCCTGTGGAAAC -ACGGAAAGTCACTCCTGTAACACC -ACGGAAAGTCACTCCTGTATCGAG -ACGGAAAGTCACTCCTGTCTCCTT -ACGGAAAGTCACTCCTGTCCTGTT -ACGGAAAGTCACTCCTGTCGGTTT -ACGGAAAGTCACTCCTGTGTGGTT -ACGGAAAGTCACTCCTGTGCCTTT -ACGGAAAGTCACTCCTGTGGTCTT -ACGGAAAGTCACTCCTGTACGCTT -ACGGAAAGTCACTCCTGTAGCGTT -ACGGAAAGTCACTCCTGTTTCGTC -ACGGAAAGTCACTCCTGTTCTCTC -ACGGAAAGTCACTCCTGTTGGATC -ACGGAAAGTCACTCCTGTCACTTC -ACGGAAAGTCACTCCTGTGTACTC -ACGGAAAGTCACTCCTGTGATGTC -ACGGAAAGTCACTCCTGTACAGTC -ACGGAAAGTCACTCCTGTTTGCTG -ACGGAAAGTCACTCCTGTTCCATG -ACGGAAAGTCACTCCTGTTGTGTG -ACGGAAAGTCACTCCTGTCTAGTG -ACGGAAAGTCACTCCTGTCATCTG -ACGGAAAGTCACTCCTGTGAGTTG -ACGGAAAGTCACTCCTGTAGACTG -ACGGAAAGTCACTCCTGTTCGGTA -ACGGAAAGTCACTCCTGTTGCCTA -ACGGAAAGTCACTCCTGTCCACTA -ACGGAAAGTCACTCCTGTGGAGTA -ACGGAAAGTCACTCCTGTTCGTCT -ACGGAAAGTCACTCCTGTTGCACT -ACGGAAAGTCACTCCTGTCTGACT -ACGGAAAGTCACTCCTGTCAACCT -ACGGAAAGTCACTCCTGTGCTACT -ACGGAAAGTCACTCCTGTGGATCT -ACGGAAAGTCACTCCTGTAAGGCT -ACGGAAAGTCACTCCTGTTCAACC -ACGGAAAGTCACTCCTGTTGTTCC -ACGGAAAGTCACTCCTGTATTCCC -ACGGAAAGTCACTCCTGTTTCTCG -ACGGAAAGTCACTCCTGTTAGACG -ACGGAAAGTCACTCCTGTGTAACG -ACGGAAAGTCACTCCTGTACTTCG -ACGGAAAGTCACTCCTGTTACGCA -ACGGAAAGTCACTCCTGTCTTGCA -ACGGAAAGTCACTCCTGTCGAACA -ACGGAAAGTCACTCCTGTCAGTCA -ACGGAAAGTCACTCCTGTGATCCA -ACGGAAAGTCACTCCTGTACGACA -ACGGAAAGTCACTCCTGTAGCTCA -ACGGAAAGTCACTCCTGTTCACGT -ACGGAAAGTCACTCCTGTCGTAGT -ACGGAAAGTCACTCCTGTGTCAGT -ACGGAAAGTCACTCCTGTGAAGGT -ACGGAAAGTCACTCCTGTAACCGT -ACGGAAAGTCACTCCTGTTTGTGC -ACGGAAAGTCACTCCTGTCTAAGC -ACGGAAAGTCACTCCTGTACTAGC -ACGGAAAGTCACTCCTGTAGATGC -ACGGAAAGTCACTCCTGTTGAAGG -ACGGAAAGTCACTCCTGTCAATGG -ACGGAAAGTCACTCCTGTATGAGG -ACGGAAAGTCACTCCTGTAATGGG -ACGGAAAGTCACTCCTGTTCCTGA -ACGGAAAGTCACTCCTGTTAGCGA -ACGGAAAGTCACTCCTGTCACAGA -ACGGAAAGTCACTCCTGTGCAAGA -ACGGAAAGTCACTCCTGTGGTTGA -ACGGAAAGTCACTCCTGTTCCGAT -ACGGAAAGTCACTCCTGTTGGCAT -ACGGAAAGTCACTCCTGTCGAGAT -ACGGAAAGTCACTCCTGTTACCAC -ACGGAAAGTCACTCCTGTCAGAAC -ACGGAAAGTCACTCCTGTGTCTAC -ACGGAAAGTCACTCCTGTACGTAC -ACGGAAAGTCACTCCTGTAGTGAC -ACGGAAAGTCACTCCTGTCTGTAG -ACGGAAAGTCACTCCTGTCCTAAG -ACGGAAAGTCACTCCTGTGTTCAG -ACGGAAAGTCACTCCTGTGCATAG -ACGGAAAGTCACTCCTGTGACAAG -ACGGAAAGTCACTCCTGTAAGCAG -ACGGAAAGTCACTCCTGTCGTCAA -ACGGAAAGTCACTCCTGTGCTGAA -ACGGAAAGTCACTCCTGTAGTACG -ACGGAAAGTCACTCCTGTATCCGA -ACGGAAAGTCACTCCTGTATGGGA -ACGGAAAGTCACTCCTGTGTGCAA -ACGGAAAGTCACTCCTGTGAGGAA -ACGGAAAGTCACTCCTGTCAGGTA -ACGGAAAGTCACTCCTGTGACTCT -ACGGAAAGTCACTCCTGTAGTCCT -ACGGAAAGTCACTCCTGTTAAGCC -ACGGAAAGTCACTCCTGTATAGCC -ACGGAAAGTCACTCCTGTTAACCG -ACGGAAAGTCACTCCTGTATGCCA -ACGGAAAGTCACCCCATTGGAAAC -ACGGAAAGTCACCCCATTAACACC -ACGGAAAGTCACCCCATTATCGAG -ACGGAAAGTCACCCCATTCTCCTT -ACGGAAAGTCACCCCATTCCTGTT -ACGGAAAGTCACCCCATTCGGTTT -ACGGAAAGTCACCCCATTGTGGTT -ACGGAAAGTCACCCCATTGCCTTT -ACGGAAAGTCACCCCATTGGTCTT -ACGGAAAGTCACCCCATTACGCTT -ACGGAAAGTCACCCCATTAGCGTT -ACGGAAAGTCACCCCATTTTCGTC -ACGGAAAGTCACCCCATTTCTCTC -ACGGAAAGTCACCCCATTTGGATC -ACGGAAAGTCACCCCATTCACTTC -ACGGAAAGTCACCCCATTGTACTC -ACGGAAAGTCACCCCATTGATGTC -ACGGAAAGTCACCCCATTACAGTC -ACGGAAAGTCACCCCATTTTGCTG -ACGGAAAGTCACCCCATTTCCATG -ACGGAAAGTCACCCCATTTGTGTG -ACGGAAAGTCACCCCATTCTAGTG -ACGGAAAGTCACCCCATTCATCTG -ACGGAAAGTCACCCCATTGAGTTG -ACGGAAAGTCACCCCATTAGACTG -ACGGAAAGTCACCCCATTTCGGTA -ACGGAAAGTCACCCCATTTGCCTA -ACGGAAAGTCACCCCATTCCACTA -ACGGAAAGTCACCCCATTGGAGTA -ACGGAAAGTCACCCCATTTCGTCT -ACGGAAAGTCACCCCATTTGCACT -ACGGAAAGTCACCCCATTCTGACT -ACGGAAAGTCACCCCATTCAACCT -ACGGAAAGTCACCCCATTGCTACT -ACGGAAAGTCACCCCATTGGATCT -ACGGAAAGTCACCCCATTAAGGCT -ACGGAAAGTCACCCCATTTCAACC -ACGGAAAGTCACCCCATTTGTTCC -ACGGAAAGTCACCCCATTATTCCC -ACGGAAAGTCACCCCATTTTCTCG -ACGGAAAGTCACCCCATTTAGACG -ACGGAAAGTCACCCCATTGTAACG -ACGGAAAGTCACCCCATTACTTCG -ACGGAAAGTCACCCCATTTACGCA -ACGGAAAGTCACCCCATTCTTGCA -ACGGAAAGTCACCCCATTCGAACA -ACGGAAAGTCACCCCATTCAGTCA -ACGGAAAGTCACCCCATTGATCCA -ACGGAAAGTCACCCCATTACGACA -ACGGAAAGTCACCCCATTAGCTCA -ACGGAAAGTCACCCCATTTCACGT -ACGGAAAGTCACCCCATTCGTAGT -ACGGAAAGTCACCCCATTGTCAGT -ACGGAAAGTCACCCCATTGAAGGT -ACGGAAAGTCACCCCATTAACCGT -ACGGAAAGTCACCCCATTTTGTGC -ACGGAAAGTCACCCCATTCTAAGC -ACGGAAAGTCACCCCATTACTAGC -ACGGAAAGTCACCCCATTAGATGC -ACGGAAAGTCACCCCATTTGAAGG -ACGGAAAGTCACCCCATTCAATGG -ACGGAAAGTCACCCCATTATGAGG -ACGGAAAGTCACCCCATTAATGGG -ACGGAAAGTCACCCCATTTCCTGA -ACGGAAAGTCACCCCATTTAGCGA -ACGGAAAGTCACCCCATTCACAGA -ACGGAAAGTCACCCCATTGCAAGA -ACGGAAAGTCACCCCATTGGTTGA -ACGGAAAGTCACCCCATTTCCGAT -ACGGAAAGTCACCCCATTTGGCAT -ACGGAAAGTCACCCCATTCGAGAT -ACGGAAAGTCACCCCATTTACCAC -ACGGAAAGTCACCCCATTCAGAAC -ACGGAAAGTCACCCCATTGTCTAC -ACGGAAAGTCACCCCATTACGTAC -ACGGAAAGTCACCCCATTAGTGAC -ACGGAAAGTCACCCCATTCTGTAG -ACGGAAAGTCACCCCATTCCTAAG -ACGGAAAGTCACCCCATTGTTCAG -ACGGAAAGTCACCCCATTGCATAG -ACGGAAAGTCACCCCATTGACAAG -ACGGAAAGTCACCCCATTAAGCAG -ACGGAAAGTCACCCCATTCGTCAA -ACGGAAAGTCACCCCATTGCTGAA -ACGGAAAGTCACCCCATTAGTACG -ACGGAAAGTCACCCCATTATCCGA -ACGGAAAGTCACCCCATTATGGGA -ACGGAAAGTCACCCCATTGTGCAA -ACGGAAAGTCACCCCATTGAGGAA -ACGGAAAGTCACCCCATTCAGGTA -ACGGAAAGTCACCCCATTGACTCT -ACGGAAAGTCACCCCATTAGTCCT -ACGGAAAGTCACCCCATTTAAGCC -ACGGAAAGTCACCCCATTATAGCC -ACGGAAAGTCACCCCATTTAACCG -ACGGAAAGTCACCCCATTATGCCA -ACGGAAAGTCACTCGTTCGGAAAC -ACGGAAAGTCACTCGTTCAACACC -ACGGAAAGTCACTCGTTCATCGAG -ACGGAAAGTCACTCGTTCCTCCTT -ACGGAAAGTCACTCGTTCCCTGTT -ACGGAAAGTCACTCGTTCCGGTTT -ACGGAAAGTCACTCGTTCGTGGTT -ACGGAAAGTCACTCGTTCGCCTTT -ACGGAAAGTCACTCGTTCGGTCTT -ACGGAAAGTCACTCGTTCACGCTT -ACGGAAAGTCACTCGTTCAGCGTT -ACGGAAAGTCACTCGTTCTTCGTC -ACGGAAAGTCACTCGTTCTCTCTC -ACGGAAAGTCACTCGTTCTGGATC -ACGGAAAGTCACTCGTTCCACTTC -ACGGAAAGTCACTCGTTCGTACTC -ACGGAAAGTCACTCGTTCGATGTC -ACGGAAAGTCACTCGTTCACAGTC -ACGGAAAGTCACTCGTTCTTGCTG -ACGGAAAGTCACTCGTTCTCCATG -ACGGAAAGTCACTCGTTCTGTGTG -ACGGAAAGTCACTCGTTCCTAGTG -ACGGAAAGTCACTCGTTCCATCTG -ACGGAAAGTCACTCGTTCGAGTTG -ACGGAAAGTCACTCGTTCAGACTG -ACGGAAAGTCACTCGTTCTCGGTA -ACGGAAAGTCACTCGTTCTGCCTA -ACGGAAAGTCACTCGTTCCCACTA -ACGGAAAGTCACTCGTTCGGAGTA -ACGGAAAGTCACTCGTTCTCGTCT -ACGGAAAGTCACTCGTTCTGCACT -ACGGAAAGTCACTCGTTCCTGACT -ACGGAAAGTCACTCGTTCCAACCT -ACGGAAAGTCACTCGTTCGCTACT -ACGGAAAGTCACTCGTTCGGATCT -ACGGAAAGTCACTCGTTCAAGGCT -ACGGAAAGTCACTCGTTCTCAACC -ACGGAAAGTCACTCGTTCTGTTCC -ACGGAAAGTCACTCGTTCATTCCC -ACGGAAAGTCACTCGTTCTTCTCG -ACGGAAAGTCACTCGTTCTAGACG -ACGGAAAGTCACTCGTTCGTAACG -ACGGAAAGTCACTCGTTCACTTCG -ACGGAAAGTCACTCGTTCTACGCA -ACGGAAAGTCACTCGTTCCTTGCA -ACGGAAAGTCACTCGTTCCGAACA -ACGGAAAGTCACTCGTTCCAGTCA -ACGGAAAGTCACTCGTTCGATCCA -ACGGAAAGTCACTCGTTCACGACA -ACGGAAAGTCACTCGTTCAGCTCA -ACGGAAAGTCACTCGTTCTCACGT -ACGGAAAGTCACTCGTTCCGTAGT -ACGGAAAGTCACTCGTTCGTCAGT -ACGGAAAGTCACTCGTTCGAAGGT -ACGGAAAGTCACTCGTTCAACCGT -ACGGAAAGTCACTCGTTCTTGTGC -ACGGAAAGTCACTCGTTCCTAAGC -ACGGAAAGTCACTCGTTCACTAGC -ACGGAAAGTCACTCGTTCAGATGC -ACGGAAAGTCACTCGTTCTGAAGG -ACGGAAAGTCACTCGTTCCAATGG -ACGGAAAGTCACTCGTTCATGAGG -ACGGAAAGTCACTCGTTCAATGGG -ACGGAAAGTCACTCGTTCTCCTGA -ACGGAAAGTCACTCGTTCTAGCGA -ACGGAAAGTCACTCGTTCCACAGA -ACGGAAAGTCACTCGTTCGCAAGA -ACGGAAAGTCACTCGTTCGGTTGA -ACGGAAAGTCACTCGTTCTCCGAT -ACGGAAAGTCACTCGTTCTGGCAT -ACGGAAAGTCACTCGTTCCGAGAT -ACGGAAAGTCACTCGTTCTACCAC -ACGGAAAGTCACTCGTTCCAGAAC -ACGGAAAGTCACTCGTTCGTCTAC -ACGGAAAGTCACTCGTTCACGTAC -ACGGAAAGTCACTCGTTCAGTGAC -ACGGAAAGTCACTCGTTCCTGTAG -ACGGAAAGTCACTCGTTCCCTAAG -ACGGAAAGTCACTCGTTCGTTCAG -ACGGAAAGTCACTCGTTCGCATAG -ACGGAAAGTCACTCGTTCGACAAG -ACGGAAAGTCACTCGTTCAAGCAG -ACGGAAAGTCACTCGTTCCGTCAA -ACGGAAAGTCACTCGTTCGCTGAA -ACGGAAAGTCACTCGTTCAGTACG -ACGGAAAGTCACTCGTTCATCCGA -ACGGAAAGTCACTCGTTCATGGGA -ACGGAAAGTCACTCGTTCGTGCAA -ACGGAAAGTCACTCGTTCGAGGAA -ACGGAAAGTCACTCGTTCCAGGTA -ACGGAAAGTCACTCGTTCGACTCT -ACGGAAAGTCACTCGTTCAGTCCT -ACGGAAAGTCACTCGTTCTAAGCC -ACGGAAAGTCACTCGTTCATAGCC -ACGGAAAGTCACTCGTTCTAACCG -ACGGAAAGTCACTCGTTCATGCCA -ACGGAAAGTCACACGTAGGGAAAC -ACGGAAAGTCACACGTAGAACACC -ACGGAAAGTCACACGTAGATCGAG -ACGGAAAGTCACACGTAGCTCCTT -ACGGAAAGTCACACGTAGCCTGTT -ACGGAAAGTCACACGTAGCGGTTT -ACGGAAAGTCACACGTAGGTGGTT -ACGGAAAGTCACACGTAGGCCTTT -ACGGAAAGTCACACGTAGGGTCTT -ACGGAAAGTCACACGTAGACGCTT -ACGGAAAGTCACACGTAGAGCGTT -ACGGAAAGTCACACGTAGTTCGTC -ACGGAAAGTCACACGTAGTCTCTC -ACGGAAAGTCACACGTAGTGGATC -ACGGAAAGTCACACGTAGCACTTC -ACGGAAAGTCACACGTAGGTACTC -ACGGAAAGTCACACGTAGGATGTC -ACGGAAAGTCACACGTAGACAGTC -ACGGAAAGTCACACGTAGTTGCTG -ACGGAAAGTCACACGTAGTCCATG -ACGGAAAGTCACACGTAGTGTGTG -ACGGAAAGTCACACGTAGCTAGTG -ACGGAAAGTCACACGTAGCATCTG -ACGGAAAGTCACACGTAGGAGTTG -ACGGAAAGTCACACGTAGAGACTG -ACGGAAAGTCACACGTAGTCGGTA -ACGGAAAGTCACACGTAGTGCCTA -ACGGAAAGTCACACGTAGCCACTA -ACGGAAAGTCACACGTAGGGAGTA -ACGGAAAGTCACACGTAGTCGTCT -ACGGAAAGTCACACGTAGTGCACT -ACGGAAAGTCACACGTAGCTGACT -ACGGAAAGTCACACGTAGCAACCT -ACGGAAAGTCACACGTAGGCTACT -ACGGAAAGTCACACGTAGGGATCT -ACGGAAAGTCACACGTAGAAGGCT -ACGGAAAGTCACACGTAGTCAACC -ACGGAAAGTCACACGTAGTGTTCC -ACGGAAAGTCACACGTAGATTCCC -ACGGAAAGTCACACGTAGTTCTCG -ACGGAAAGTCACACGTAGTAGACG -ACGGAAAGTCACACGTAGGTAACG -ACGGAAAGTCACACGTAGACTTCG -ACGGAAAGTCACACGTAGTACGCA -ACGGAAAGTCACACGTAGCTTGCA -ACGGAAAGTCACACGTAGCGAACA -ACGGAAAGTCACACGTAGCAGTCA -ACGGAAAGTCACACGTAGGATCCA -ACGGAAAGTCACACGTAGACGACA -ACGGAAAGTCACACGTAGAGCTCA -ACGGAAAGTCACACGTAGTCACGT -ACGGAAAGTCACACGTAGCGTAGT -ACGGAAAGTCACACGTAGGTCAGT -ACGGAAAGTCACACGTAGGAAGGT -ACGGAAAGTCACACGTAGAACCGT -ACGGAAAGTCACACGTAGTTGTGC -ACGGAAAGTCACACGTAGCTAAGC -ACGGAAAGTCACACGTAGACTAGC -ACGGAAAGTCACACGTAGAGATGC -ACGGAAAGTCACACGTAGTGAAGG -ACGGAAAGTCACACGTAGCAATGG -ACGGAAAGTCACACGTAGATGAGG -ACGGAAAGTCACACGTAGAATGGG -ACGGAAAGTCACACGTAGTCCTGA -ACGGAAAGTCACACGTAGTAGCGA -ACGGAAAGTCACACGTAGCACAGA -ACGGAAAGTCACACGTAGGCAAGA -ACGGAAAGTCACACGTAGGGTTGA -ACGGAAAGTCACACGTAGTCCGAT -ACGGAAAGTCACACGTAGTGGCAT -ACGGAAAGTCACACGTAGCGAGAT -ACGGAAAGTCACACGTAGTACCAC -ACGGAAAGTCACACGTAGCAGAAC -ACGGAAAGTCACACGTAGGTCTAC -ACGGAAAGTCACACGTAGACGTAC -ACGGAAAGTCACACGTAGAGTGAC -ACGGAAAGTCACACGTAGCTGTAG -ACGGAAAGTCACACGTAGCCTAAG -ACGGAAAGTCACACGTAGGTTCAG -ACGGAAAGTCACACGTAGGCATAG -ACGGAAAGTCACACGTAGGACAAG -ACGGAAAGTCACACGTAGAAGCAG -ACGGAAAGTCACACGTAGCGTCAA -ACGGAAAGTCACACGTAGGCTGAA -ACGGAAAGTCACACGTAGAGTACG -ACGGAAAGTCACACGTAGATCCGA -ACGGAAAGTCACACGTAGATGGGA -ACGGAAAGTCACACGTAGGTGCAA -ACGGAAAGTCACACGTAGGAGGAA -ACGGAAAGTCACACGTAGCAGGTA -ACGGAAAGTCACACGTAGGACTCT -ACGGAAAGTCACACGTAGAGTCCT -ACGGAAAGTCACACGTAGTAAGCC -ACGGAAAGTCACACGTAGATAGCC -ACGGAAAGTCACACGTAGTAACCG -ACGGAAAGTCACACGTAGATGCCA -ACGGAAAGTCACACGGTAGGAAAC -ACGGAAAGTCACACGGTAAACACC -ACGGAAAGTCACACGGTAATCGAG -ACGGAAAGTCACACGGTACTCCTT -ACGGAAAGTCACACGGTACCTGTT -ACGGAAAGTCACACGGTACGGTTT -ACGGAAAGTCACACGGTAGTGGTT -ACGGAAAGTCACACGGTAGCCTTT -ACGGAAAGTCACACGGTAGGTCTT -ACGGAAAGTCACACGGTAACGCTT -ACGGAAAGTCACACGGTAAGCGTT -ACGGAAAGTCACACGGTATTCGTC -ACGGAAAGTCACACGGTATCTCTC -ACGGAAAGTCACACGGTATGGATC -ACGGAAAGTCACACGGTACACTTC -ACGGAAAGTCACACGGTAGTACTC -ACGGAAAGTCACACGGTAGATGTC -ACGGAAAGTCACACGGTAACAGTC -ACGGAAAGTCACACGGTATTGCTG -ACGGAAAGTCACACGGTATCCATG -ACGGAAAGTCACACGGTATGTGTG -ACGGAAAGTCACACGGTACTAGTG -ACGGAAAGTCACACGGTACATCTG -ACGGAAAGTCACACGGTAGAGTTG -ACGGAAAGTCACACGGTAAGACTG -ACGGAAAGTCACACGGTATCGGTA -ACGGAAAGTCACACGGTATGCCTA -ACGGAAAGTCACACGGTACCACTA -ACGGAAAGTCACACGGTAGGAGTA -ACGGAAAGTCACACGGTATCGTCT -ACGGAAAGTCACACGGTATGCACT -ACGGAAAGTCACACGGTACTGACT -ACGGAAAGTCACACGGTACAACCT -ACGGAAAGTCACACGGTAGCTACT -ACGGAAAGTCACACGGTAGGATCT -ACGGAAAGTCACACGGTAAAGGCT -ACGGAAAGTCACACGGTATCAACC -ACGGAAAGTCACACGGTATGTTCC -ACGGAAAGTCACACGGTAATTCCC -ACGGAAAGTCACACGGTATTCTCG -ACGGAAAGTCACACGGTATAGACG -ACGGAAAGTCACACGGTAGTAACG -ACGGAAAGTCACACGGTAACTTCG -ACGGAAAGTCACACGGTATACGCA -ACGGAAAGTCACACGGTACTTGCA -ACGGAAAGTCACACGGTACGAACA -ACGGAAAGTCACACGGTACAGTCA -ACGGAAAGTCACACGGTAGATCCA -ACGGAAAGTCACACGGTAACGACA -ACGGAAAGTCACACGGTAAGCTCA -ACGGAAAGTCACACGGTATCACGT -ACGGAAAGTCACACGGTACGTAGT -ACGGAAAGTCACACGGTAGTCAGT -ACGGAAAGTCACACGGTAGAAGGT -ACGGAAAGTCACACGGTAAACCGT -ACGGAAAGTCACACGGTATTGTGC -ACGGAAAGTCACACGGTACTAAGC -ACGGAAAGTCACACGGTAACTAGC -ACGGAAAGTCACACGGTAAGATGC -ACGGAAAGTCACACGGTATGAAGG -ACGGAAAGTCACACGGTACAATGG -ACGGAAAGTCACACGGTAATGAGG -ACGGAAAGTCACACGGTAAATGGG -ACGGAAAGTCACACGGTATCCTGA -ACGGAAAGTCACACGGTATAGCGA -ACGGAAAGTCACACGGTACACAGA -ACGGAAAGTCACACGGTAGCAAGA -ACGGAAAGTCACACGGTAGGTTGA -ACGGAAAGTCACACGGTATCCGAT -ACGGAAAGTCACACGGTATGGCAT -ACGGAAAGTCACACGGTACGAGAT -ACGGAAAGTCACACGGTATACCAC -ACGGAAAGTCACACGGTACAGAAC -ACGGAAAGTCACACGGTAGTCTAC -ACGGAAAGTCACACGGTAACGTAC -ACGGAAAGTCACACGGTAAGTGAC -ACGGAAAGTCACACGGTACTGTAG -ACGGAAAGTCACACGGTACCTAAG -ACGGAAAGTCACACGGTAGTTCAG -ACGGAAAGTCACACGGTAGCATAG -ACGGAAAGTCACACGGTAGACAAG -ACGGAAAGTCACACGGTAAAGCAG -ACGGAAAGTCACACGGTACGTCAA -ACGGAAAGTCACACGGTAGCTGAA -ACGGAAAGTCACACGGTAAGTACG -ACGGAAAGTCACACGGTAATCCGA -ACGGAAAGTCACACGGTAATGGGA -ACGGAAAGTCACACGGTAGTGCAA -ACGGAAAGTCACACGGTAGAGGAA -ACGGAAAGTCACACGGTACAGGTA -ACGGAAAGTCACACGGTAGACTCT -ACGGAAAGTCACACGGTAAGTCCT -ACGGAAAGTCACACGGTATAAGCC -ACGGAAAGTCACACGGTAATAGCC -ACGGAAAGTCACACGGTATAACCG -ACGGAAAGTCACACGGTAATGCCA -ACGGAAAGTCACTCGACTGGAAAC -ACGGAAAGTCACTCGACTAACACC -ACGGAAAGTCACTCGACTATCGAG -ACGGAAAGTCACTCGACTCTCCTT -ACGGAAAGTCACTCGACTCCTGTT -ACGGAAAGTCACTCGACTCGGTTT -ACGGAAAGTCACTCGACTGTGGTT -ACGGAAAGTCACTCGACTGCCTTT -ACGGAAAGTCACTCGACTGGTCTT -ACGGAAAGTCACTCGACTACGCTT -ACGGAAAGTCACTCGACTAGCGTT -ACGGAAAGTCACTCGACTTTCGTC -ACGGAAAGTCACTCGACTTCTCTC -ACGGAAAGTCACTCGACTTGGATC -ACGGAAAGTCACTCGACTCACTTC -ACGGAAAGTCACTCGACTGTACTC -ACGGAAAGTCACTCGACTGATGTC -ACGGAAAGTCACTCGACTACAGTC -ACGGAAAGTCACTCGACTTTGCTG -ACGGAAAGTCACTCGACTTCCATG -ACGGAAAGTCACTCGACTTGTGTG -ACGGAAAGTCACTCGACTCTAGTG -ACGGAAAGTCACTCGACTCATCTG -ACGGAAAGTCACTCGACTGAGTTG -ACGGAAAGTCACTCGACTAGACTG -ACGGAAAGTCACTCGACTTCGGTA -ACGGAAAGTCACTCGACTTGCCTA -ACGGAAAGTCACTCGACTCCACTA -ACGGAAAGTCACTCGACTGGAGTA -ACGGAAAGTCACTCGACTTCGTCT -ACGGAAAGTCACTCGACTTGCACT -ACGGAAAGTCACTCGACTCTGACT -ACGGAAAGTCACTCGACTCAACCT -ACGGAAAGTCACTCGACTGCTACT -ACGGAAAGTCACTCGACTGGATCT -ACGGAAAGTCACTCGACTAAGGCT -ACGGAAAGTCACTCGACTTCAACC -ACGGAAAGTCACTCGACTTGTTCC -ACGGAAAGTCACTCGACTATTCCC -ACGGAAAGTCACTCGACTTTCTCG -ACGGAAAGTCACTCGACTTAGACG -ACGGAAAGTCACTCGACTGTAACG -ACGGAAAGTCACTCGACTACTTCG -ACGGAAAGTCACTCGACTTACGCA -ACGGAAAGTCACTCGACTCTTGCA -ACGGAAAGTCACTCGACTCGAACA -ACGGAAAGTCACTCGACTCAGTCA -ACGGAAAGTCACTCGACTGATCCA -ACGGAAAGTCACTCGACTACGACA -ACGGAAAGTCACTCGACTAGCTCA -ACGGAAAGTCACTCGACTTCACGT -ACGGAAAGTCACTCGACTCGTAGT -ACGGAAAGTCACTCGACTGTCAGT -ACGGAAAGTCACTCGACTGAAGGT -ACGGAAAGTCACTCGACTAACCGT -ACGGAAAGTCACTCGACTTTGTGC -ACGGAAAGTCACTCGACTCTAAGC -ACGGAAAGTCACTCGACTACTAGC -ACGGAAAGTCACTCGACTAGATGC -ACGGAAAGTCACTCGACTTGAAGG -ACGGAAAGTCACTCGACTCAATGG -ACGGAAAGTCACTCGACTATGAGG -ACGGAAAGTCACTCGACTAATGGG -ACGGAAAGTCACTCGACTTCCTGA -ACGGAAAGTCACTCGACTTAGCGA -ACGGAAAGTCACTCGACTCACAGA -ACGGAAAGTCACTCGACTGCAAGA -ACGGAAAGTCACTCGACTGGTTGA -ACGGAAAGTCACTCGACTTCCGAT -ACGGAAAGTCACTCGACTTGGCAT -ACGGAAAGTCACTCGACTCGAGAT -ACGGAAAGTCACTCGACTTACCAC -ACGGAAAGTCACTCGACTCAGAAC -ACGGAAAGTCACTCGACTGTCTAC -ACGGAAAGTCACTCGACTACGTAC -ACGGAAAGTCACTCGACTAGTGAC -ACGGAAAGTCACTCGACTCTGTAG -ACGGAAAGTCACTCGACTCCTAAG -ACGGAAAGTCACTCGACTGTTCAG -ACGGAAAGTCACTCGACTGCATAG -ACGGAAAGTCACTCGACTGACAAG -ACGGAAAGTCACTCGACTAAGCAG -ACGGAAAGTCACTCGACTCGTCAA -ACGGAAAGTCACTCGACTGCTGAA -ACGGAAAGTCACTCGACTAGTACG -ACGGAAAGTCACTCGACTATCCGA -ACGGAAAGTCACTCGACTATGGGA -ACGGAAAGTCACTCGACTGTGCAA -ACGGAAAGTCACTCGACTGAGGAA -ACGGAAAGTCACTCGACTCAGGTA -ACGGAAAGTCACTCGACTGACTCT -ACGGAAAGTCACTCGACTAGTCCT -ACGGAAAGTCACTCGACTTAAGCC -ACGGAAAGTCACTCGACTATAGCC -ACGGAAAGTCACTCGACTTAACCG -ACGGAAAGTCACTCGACTATGCCA -ACGGAAAGTCACGCATACGGAAAC -ACGGAAAGTCACGCATACAACACC -ACGGAAAGTCACGCATACATCGAG -ACGGAAAGTCACGCATACCTCCTT -ACGGAAAGTCACGCATACCCTGTT -ACGGAAAGTCACGCATACCGGTTT -ACGGAAAGTCACGCATACGTGGTT -ACGGAAAGTCACGCATACGCCTTT -ACGGAAAGTCACGCATACGGTCTT -ACGGAAAGTCACGCATACACGCTT -ACGGAAAGTCACGCATACAGCGTT -ACGGAAAGTCACGCATACTTCGTC -ACGGAAAGTCACGCATACTCTCTC -ACGGAAAGTCACGCATACTGGATC -ACGGAAAGTCACGCATACCACTTC -ACGGAAAGTCACGCATACGTACTC -ACGGAAAGTCACGCATACGATGTC -ACGGAAAGTCACGCATACACAGTC -ACGGAAAGTCACGCATACTTGCTG -ACGGAAAGTCACGCATACTCCATG -ACGGAAAGTCACGCATACTGTGTG -ACGGAAAGTCACGCATACCTAGTG -ACGGAAAGTCACGCATACCATCTG -ACGGAAAGTCACGCATACGAGTTG -ACGGAAAGTCACGCATACAGACTG -ACGGAAAGTCACGCATACTCGGTA -ACGGAAAGTCACGCATACTGCCTA -ACGGAAAGTCACGCATACCCACTA -ACGGAAAGTCACGCATACGGAGTA -ACGGAAAGTCACGCATACTCGTCT -ACGGAAAGTCACGCATACTGCACT -ACGGAAAGTCACGCATACCTGACT -ACGGAAAGTCACGCATACCAACCT -ACGGAAAGTCACGCATACGCTACT -ACGGAAAGTCACGCATACGGATCT -ACGGAAAGTCACGCATACAAGGCT -ACGGAAAGTCACGCATACTCAACC -ACGGAAAGTCACGCATACTGTTCC -ACGGAAAGTCACGCATACATTCCC -ACGGAAAGTCACGCATACTTCTCG -ACGGAAAGTCACGCATACTAGACG -ACGGAAAGTCACGCATACGTAACG -ACGGAAAGTCACGCATACACTTCG -ACGGAAAGTCACGCATACTACGCA -ACGGAAAGTCACGCATACCTTGCA -ACGGAAAGTCACGCATACCGAACA -ACGGAAAGTCACGCATACCAGTCA -ACGGAAAGTCACGCATACGATCCA -ACGGAAAGTCACGCATACACGACA -ACGGAAAGTCACGCATACAGCTCA -ACGGAAAGTCACGCATACTCACGT -ACGGAAAGTCACGCATACCGTAGT -ACGGAAAGTCACGCATACGTCAGT -ACGGAAAGTCACGCATACGAAGGT -ACGGAAAGTCACGCATACAACCGT -ACGGAAAGTCACGCATACTTGTGC -ACGGAAAGTCACGCATACCTAAGC -ACGGAAAGTCACGCATACACTAGC -ACGGAAAGTCACGCATACAGATGC -ACGGAAAGTCACGCATACTGAAGG -ACGGAAAGTCACGCATACCAATGG -ACGGAAAGTCACGCATACATGAGG -ACGGAAAGTCACGCATACAATGGG -ACGGAAAGTCACGCATACTCCTGA -ACGGAAAGTCACGCATACTAGCGA -ACGGAAAGTCACGCATACCACAGA -ACGGAAAGTCACGCATACGCAAGA -ACGGAAAGTCACGCATACGGTTGA -ACGGAAAGTCACGCATACTCCGAT -ACGGAAAGTCACGCATACTGGCAT -ACGGAAAGTCACGCATACCGAGAT -ACGGAAAGTCACGCATACTACCAC -ACGGAAAGTCACGCATACCAGAAC -ACGGAAAGTCACGCATACGTCTAC -ACGGAAAGTCACGCATACACGTAC -ACGGAAAGTCACGCATACAGTGAC -ACGGAAAGTCACGCATACCTGTAG -ACGGAAAGTCACGCATACCCTAAG -ACGGAAAGTCACGCATACGTTCAG -ACGGAAAGTCACGCATACGCATAG -ACGGAAAGTCACGCATACGACAAG -ACGGAAAGTCACGCATACAAGCAG -ACGGAAAGTCACGCATACCGTCAA -ACGGAAAGTCACGCATACGCTGAA -ACGGAAAGTCACGCATACAGTACG -ACGGAAAGTCACGCATACATCCGA -ACGGAAAGTCACGCATACATGGGA -ACGGAAAGTCACGCATACGTGCAA -ACGGAAAGTCACGCATACGAGGAA -ACGGAAAGTCACGCATACCAGGTA -ACGGAAAGTCACGCATACGACTCT -ACGGAAAGTCACGCATACAGTCCT -ACGGAAAGTCACGCATACTAAGCC -ACGGAAAGTCACGCATACATAGCC -ACGGAAAGTCACGCATACTAACCG -ACGGAAAGTCACGCATACATGCCA -ACGGAAAGTCACGCACTTGGAAAC -ACGGAAAGTCACGCACTTAACACC -ACGGAAAGTCACGCACTTATCGAG -ACGGAAAGTCACGCACTTCTCCTT -ACGGAAAGTCACGCACTTCCTGTT -ACGGAAAGTCACGCACTTCGGTTT -ACGGAAAGTCACGCACTTGTGGTT -ACGGAAAGTCACGCACTTGCCTTT -ACGGAAAGTCACGCACTTGGTCTT -ACGGAAAGTCACGCACTTACGCTT -ACGGAAAGTCACGCACTTAGCGTT -ACGGAAAGTCACGCACTTTTCGTC -ACGGAAAGTCACGCACTTTCTCTC -ACGGAAAGTCACGCACTTTGGATC -ACGGAAAGTCACGCACTTCACTTC -ACGGAAAGTCACGCACTTGTACTC -ACGGAAAGTCACGCACTTGATGTC -ACGGAAAGTCACGCACTTACAGTC -ACGGAAAGTCACGCACTTTTGCTG -ACGGAAAGTCACGCACTTTCCATG -ACGGAAAGTCACGCACTTTGTGTG -ACGGAAAGTCACGCACTTCTAGTG -ACGGAAAGTCACGCACTTCATCTG -ACGGAAAGTCACGCACTTGAGTTG -ACGGAAAGTCACGCACTTAGACTG -ACGGAAAGTCACGCACTTTCGGTA -ACGGAAAGTCACGCACTTTGCCTA -ACGGAAAGTCACGCACTTCCACTA -ACGGAAAGTCACGCACTTGGAGTA -ACGGAAAGTCACGCACTTTCGTCT -ACGGAAAGTCACGCACTTTGCACT -ACGGAAAGTCACGCACTTCTGACT -ACGGAAAGTCACGCACTTCAACCT -ACGGAAAGTCACGCACTTGCTACT -ACGGAAAGTCACGCACTTGGATCT -ACGGAAAGTCACGCACTTAAGGCT -ACGGAAAGTCACGCACTTTCAACC -ACGGAAAGTCACGCACTTTGTTCC -ACGGAAAGTCACGCACTTATTCCC -ACGGAAAGTCACGCACTTTTCTCG -ACGGAAAGTCACGCACTTTAGACG -ACGGAAAGTCACGCACTTGTAACG -ACGGAAAGTCACGCACTTACTTCG -ACGGAAAGTCACGCACTTTACGCA -ACGGAAAGTCACGCACTTCTTGCA -ACGGAAAGTCACGCACTTCGAACA -ACGGAAAGTCACGCACTTCAGTCA -ACGGAAAGTCACGCACTTGATCCA -ACGGAAAGTCACGCACTTACGACA -ACGGAAAGTCACGCACTTAGCTCA -ACGGAAAGTCACGCACTTTCACGT -ACGGAAAGTCACGCACTTCGTAGT -ACGGAAAGTCACGCACTTGTCAGT -ACGGAAAGTCACGCACTTGAAGGT -ACGGAAAGTCACGCACTTAACCGT -ACGGAAAGTCACGCACTTTTGTGC -ACGGAAAGTCACGCACTTCTAAGC -ACGGAAAGTCACGCACTTACTAGC -ACGGAAAGTCACGCACTTAGATGC -ACGGAAAGTCACGCACTTTGAAGG -ACGGAAAGTCACGCACTTCAATGG -ACGGAAAGTCACGCACTTATGAGG -ACGGAAAGTCACGCACTTAATGGG -ACGGAAAGTCACGCACTTTCCTGA -ACGGAAAGTCACGCACTTTAGCGA -ACGGAAAGTCACGCACTTCACAGA -ACGGAAAGTCACGCACTTGCAAGA -ACGGAAAGTCACGCACTTGGTTGA -ACGGAAAGTCACGCACTTTCCGAT -ACGGAAAGTCACGCACTTTGGCAT -ACGGAAAGTCACGCACTTCGAGAT -ACGGAAAGTCACGCACTTTACCAC -ACGGAAAGTCACGCACTTCAGAAC -ACGGAAAGTCACGCACTTGTCTAC -ACGGAAAGTCACGCACTTACGTAC -ACGGAAAGTCACGCACTTAGTGAC -ACGGAAAGTCACGCACTTCTGTAG -ACGGAAAGTCACGCACTTCCTAAG -ACGGAAAGTCACGCACTTGTTCAG -ACGGAAAGTCACGCACTTGCATAG -ACGGAAAGTCACGCACTTGACAAG -ACGGAAAGTCACGCACTTAAGCAG -ACGGAAAGTCACGCACTTCGTCAA -ACGGAAAGTCACGCACTTGCTGAA -ACGGAAAGTCACGCACTTAGTACG -ACGGAAAGTCACGCACTTATCCGA -ACGGAAAGTCACGCACTTATGGGA -ACGGAAAGTCACGCACTTGTGCAA -ACGGAAAGTCACGCACTTGAGGAA -ACGGAAAGTCACGCACTTCAGGTA -ACGGAAAGTCACGCACTTGACTCT -ACGGAAAGTCACGCACTTAGTCCT -ACGGAAAGTCACGCACTTTAAGCC -ACGGAAAGTCACGCACTTATAGCC -ACGGAAAGTCACGCACTTTAACCG -ACGGAAAGTCACGCACTTATGCCA -ACGGAAAGTCACACACGAGGAAAC -ACGGAAAGTCACACACGAAACACC -ACGGAAAGTCACACACGAATCGAG -ACGGAAAGTCACACACGACTCCTT -ACGGAAAGTCACACACGACCTGTT -ACGGAAAGTCACACACGACGGTTT -ACGGAAAGTCACACACGAGTGGTT -ACGGAAAGTCACACACGAGCCTTT -ACGGAAAGTCACACACGAGGTCTT -ACGGAAAGTCACACACGAACGCTT -ACGGAAAGTCACACACGAAGCGTT -ACGGAAAGTCACACACGATTCGTC -ACGGAAAGTCACACACGATCTCTC -ACGGAAAGTCACACACGATGGATC -ACGGAAAGTCACACACGACACTTC -ACGGAAAGTCACACACGAGTACTC -ACGGAAAGTCACACACGAGATGTC -ACGGAAAGTCACACACGAACAGTC -ACGGAAAGTCACACACGATTGCTG -ACGGAAAGTCACACACGATCCATG -ACGGAAAGTCACACACGATGTGTG -ACGGAAAGTCACACACGACTAGTG -ACGGAAAGTCACACACGACATCTG -ACGGAAAGTCACACACGAGAGTTG -ACGGAAAGTCACACACGAAGACTG -ACGGAAAGTCACACACGATCGGTA -ACGGAAAGTCACACACGATGCCTA -ACGGAAAGTCACACACGACCACTA -ACGGAAAGTCACACACGAGGAGTA -ACGGAAAGTCACACACGATCGTCT -ACGGAAAGTCACACACGATGCACT -ACGGAAAGTCACACACGACTGACT -ACGGAAAGTCACACACGACAACCT -ACGGAAAGTCACACACGAGCTACT -ACGGAAAGTCACACACGAGGATCT -ACGGAAAGTCACACACGAAAGGCT -ACGGAAAGTCACACACGATCAACC -ACGGAAAGTCACACACGATGTTCC -ACGGAAAGTCACACACGAATTCCC -ACGGAAAGTCACACACGATTCTCG -ACGGAAAGTCACACACGATAGACG -ACGGAAAGTCACACACGAGTAACG -ACGGAAAGTCACACACGAACTTCG -ACGGAAAGTCACACACGATACGCA -ACGGAAAGTCACACACGACTTGCA -ACGGAAAGTCACACACGACGAACA -ACGGAAAGTCACACACGACAGTCA -ACGGAAAGTCACACACGAGATCCA -ACGGAAAGTCACACACGAACGACA -ACGGAAAGTCACACACGAAGCTCA -ACGGAAAGTCACACACGATCACGT -ACGGAAAGTCACACACGACGTAGT -ACGGAAAGTCACACACGAGTCAGT -ACGGAAAGTCACACACGAGAAGGT -ACGGAAAGTCACACACGAAACCGT -ACGGAAAGTCACACACGATTGTGC -ACGGAAAGTCACACACGACTAAGC -ACGGAAAGTCACACACGAACTAGC -ACGGAAAGTCACACACGAAGATGC -ACGGAAAGTCACACACGATGAAGG -ACGGAAAGTCACACACGACAATGG -ACGGAAAGTCACACACGAATGAGG -ACGGAAAGTCACACACGAAATGGG -ACGGAAAGTCACACACGATCCTGA -ACGGAAAGTCACACACGATAGCGA -ACGGAAAGTCACACACGACACAGA -ACGGAAAGTCACACACGAGCAAGA -ACGGAAAGTCACACACGAGGTTGA -ACGGAAAGTCACACACGATCCGAT -ACGGAAAGTCACACACGATGGCAT -ACGGAAAGTCACACACGACGAGAT -ACGGAAAGTCACACACGATACCAC -ACGGAAAGTCACACACGACAGAAC -ACGGAAAGTCACACACGAGTCTAC -ACGGAAAGTCACACACGAACGTAC -ACGGAAAGTCACACACGAAGTGAC -ACGGAAAGTCACACACGACTGTAG -ACGGAAAGTCACACACGACCTAAG -ACGGAAAGTCACACACGAGTTCAG -ACGGAAAGTCACACACGAGCATAG -ACGGAAAGTCACACACGAGACAAG -ACGGAAAGTCACACACGAAAGCAG -ACGGAAAGTCACACACGACGTCAA -ACGGAAAGTCACACACGAGCTGAA -ACGGAAAGTCACACACGAAGTACG -ACGGAAAGTCACACACGAATCCGA -ACGGAAAGTCACACACGAATGGGA -ACGGAAAGTCACACACGAGTGCAA -ACGGAAAGTCACACACGAGAGGAA -ACGGAAAGTCACACACGACAGGTA -ACGGAAAGTCACACACGAGACTCT -ACGGAAAGTCACACACGAAGTCCT -ACGGAAAGTCACACACGATAAGCC -ACGGAAAGTCACACACGAATAGCC -ACGGAAAGTCACACACGATAACCG -ACGGAAAGTCACACACGAATGCCA -ACGGAAAGTCACTCACAGGGAAAC -ACGGAAAGTCACTCACAGAACACC -ACGGAAAGTCACTCACAGATCGAG -ACGGAAAGTCACTCACAGCTCCTT -ACGGAAAGTCACTCACAGCCTGTT -ACGGAAAGTCACTCACAGCGGTTT -ACGGAAAGTCACTCACAGGTGGTT -ACGGAAAGTCACTCACAGGCCTTT -ACGGAAAGTCACTCACAGGGTCTT -ACGGAAAGTCACTCACAGACGCTT -ACGGAAAGTCACTCACAGAGCGTT -ACGGAAAGTCACTCACAGTTCGTC -ACGGAAAGTCACTCACAGTCTCTC -ACGGAAAGTCACTCACAGTGGATC -ACGGAAAGTCACTCACAGCACTTC -ACGGAAAGTCACTCACAGGTACTC -ACGGAAAGTCACTCACAGGATGTC -ACGGAAAGTCACTCACAGACAGTC -ACGGAAAGTCACTCACAGTTGCTG -ACGGAAAGTCACTCACAGTCCATG -ACGGAAAGTCACTCACAGTGTGTG -ACGGAAAGTCACTCACAGCTAGTG -ACGGAAAGTCACTCACAGCATCTG -ACGGAAAGTCACTCACAGGAGTTG -ACGGAAAGTCACTCACAGAGACTG -ACGGAAAGTCACTCACAGTCGGTA -ACGGAAAGTCACTCACAGTGCCTA -ACGGAAAGTCACTCACAGCCACTA -ACGGAAAGTCACTCACAGGGAGTA -ACGGAAAGTCACTCACAGTCGTCT -ACGGAAAGTCACTCACAGTGCACT -ACGGAAAGTCACTCACAGCTGACT -ACGGAAAGTCACTCACAGCAACCT -ACGGAAAGTCACTCACAGGCTACT -ACGGAAAGTCACTCACAGGGATCT -ACGGAAAGTCACTCACAGAAGGCT -ACGGAAAGTCACTCACAGTCAACC -ACGGAAAGTCACTCACAGTGTTCC -ACGGAAAGTCACTCACAGATTCCC -ACGGAAAGTCACTCACAGTTCTCG -ACGGAAAGTCACTCACAGTAGACG -ACGGAAAGTCACTCACAGGTAACG -ACGGAAAGTCACTCACAGACTTCG -ACGGAAAGTCACTCACAGTACGCA -ACGGAAAGTCACTCACAGCTTGCA -ACGGAAAGTCACTCACAGCGAACA -ACGGAAAGTCACTCACAGCAGTCA -ACGGAAAGTCACTCACAGGATCCA -ACGGAAAGTCACTCACAGACGACA -ACGGAAAGTCACTCACAGAGCTCA -ACGGAAAGTCACTCACAGTCACGT -ACGGAAAGTCACTCACAGCGTAGT -ACGGAAAGTCACTCACAGGTCAGT -ACGGAAAGTCACTCACAGGAAGGT -ACGGAAAGTCACTCACAGAACCGT -ACGGAAAGTCACTCACAGTTGTGC -ACGGAAAGTCACTCACAGCTAAGC -ACGGAAAGTCACTCACAGACTAGC -ACGGAAAGTCACTCACAGAGATGC -ACGGAAAGTCACTCACAGTGAAGG -ACGGAAAGTCACTCACAGCAATGG -ACGGAAAGTCACTCACAGATGAGG -ACGGAAAGTCACTCACAGAATGGG -ACGGAAAGTCACTCACAGTCCTGA -ACGGAAAGTCACTCACAGTAGCGA -ACGGAAAGTCACTCACAGCACAGA -ACGGAAAGTCACTCACAGGCAAGA -ACGGAAAGTCACTCACAGGGTTGA -ACGGAAAGTCACTCACAGTCCGAT -ACGGAAAGTCACTCACAGTGGCAT -ACGGAAAGTCACTCACAGCGAGAT -ACGGAAAGTCACTCACAGTACCAC -ACGGAAAGTCACTCACAGCAGAAC -ACGGAAAGTCACTCACAGGTCTAC -ACGGAAAGTCACTCACAGACGTAC -ACGGAAAGTCACTCACAGAGTGAC -ACGGAAAGTCACTCACAGCTGTAG -ACGGAAAGTCACTCACAGCCTAAG -ACGGAAAGTCACTCACAGGTTCAG -ACGGAAAGTCACTCACAGGCATAG -ACGGAAAGTCACTCACAGGACAAG -ACGGAAAGTCACTCACAGAAGCAG -ACGGAAAGTCACTCACAGCGTCAA -ACGGAAAGTCACTCACAGGCTGAA -ACGGAAAGTCACTCACAGAGTACG -ACGGAAAGTCACTCACAGATCCGA -ACGGAAAGTCACTCACAGATGGGA -ACGGAAAGTCACTCACAGGTGCAA -ACGGAAAGTCACTCACAGGAGGAA -ACGGAAAGTCACTCACAGCAGGTA -ACGGAAAGTCACTCACAGGACTCT -ACGGAAAGTCACTCACAGAGTCCT -ACGGAAAGTCACTCACAGTAAGCC -ACGGAAAGTCACTCACAGATAGCC -ACGGAAAGTCACTCACAGTAACCG -ACGGAAAGTCACTCACAGATGCCA -ACGGAAAGTCACCCAGATGGAAAC -ACGGAAAGTCACCCAGATAACACC -ACGGAAAGTCACCCAGATATCGAG -ACGGAAAGTCACCCAGATCTCCTT -ACGGAAAGTCACCCAGATCCTGTT -ACGGAAAGTCACCCAGATCGGTTT -ACGGAAAGTCACCCAGATGTGGTT -ACGGAAAGTCACCCAGATGCCTTT -ACGGAAAGTCACCCAGATGGTCTT -ACGGAAAGTCACCCAGATACGCTT -ACGGAAAGTCACCCAGATAGCGTT -ACGGAAAGTCACCCAGATTTCGTC -ACGGAAAGTCACCCAGATTCTCTC -ACGGAAAGTCACCCAGATTGGATC -ACGGAAAGTCACCCAGATCACTTC -ACGGAAAGTCACCCAGATGTACTC -ACGGAAAGTCACCCAGATGATGTC -ACGGAAAGTCACCCAGATACAGTC -ACGGAAAGTCACCCAGATTTGCTG -ACGGAAAGTCACCCAGATTCCATG -ACGGAAAGTCACCCAGATTGTGTG -ACGGAAAGTCACCCAGATCTAGTG -ACGGAAAGTCACCCAGATCATCTG -ACGGAAAGTCACCCAGATGAGTTG -ACGGAAAGTCACCCAGATAGACTG -ACGGAAAGTCACCCAGATTCGGTA -ACGGAAAGTCACCCAGATTGCCTA -ACGGAAAGTCACCCAGATCCACTA -ACGGAAAGTCACCCAGATGGAGTA -ACGGAAAGTCACCCAGATTCGTCT -ACGGAAAGTCACCCAGATTGCACT -ACGGAAAGTCACCCAGATCTGACT -ACGGAAAGTCACCCAGATCAACCT -ACGGAAAGTCACCCAGATGCTACT -ACGGAAAGTCACCCAGATGGATCT -ACGGAAAGTCACCCAGATAAGGCT -ACGGAAAGTCACCCAGATTCAACC -ACGGAAAGTCACCCAGATTGTTCC -ACGGAAAGTCACCCAGATATTCCC -ACGGAAAGTCACCCAGATTTCTCG -ACGGAAAGTCACCCAGATTAGACG -ACGGAAAGTCACCCAGATGTAACG -ACGGAAAGTCACCCAGATACTTCG -ACGGAAAGTCACCCAGATTACGCA -ACGGAAAGTCACCCAGATCTTGCA -ACGGAAAGTCACCCAGATCGAACA -ACGGAAAGTCACCCAGATCAGTCA -ACGGAAAGTCACCCAGATGATCCA -ACGGAAAGTCACCCAGATACGACA -ACGGAAAGTCACCCAGATAGCTCA -ACGGAAAGTCACCCAGATTCACGT -ACGGAAAGTCACCCAGATCGTAGT -ACGGAAAGTCACCCAGATGTCAGT -ACGGAAAGTCACCCAGATGAAGGT -ACGGAAAGTCACCCAGATAACCGT -ACGGAAAGTCACCCAGATTTGTGC -ACGGAAAGTCACCCAGATCTAAGC -ACGGAAAGTCACCCAGATACTAGC -ACGGAAAGTCACCCAGATAGATGC -ACGGAAAGTCACCCAGATTGAAGG -ACGGAAAGTCACCCAGATCAATGG -ACGGAAAGTCACCCAGATATGAGG -ACGGAAAGTCACCCAGATAATGGG -ACGGAAAGTCACCCAGATTCCTGA -ACGGAAAGTCACCCAGATTAGCGA -ACGGAAAGTCACCCAGATCACAGA -ACGGAAAGTCACCCAGATGCAAGA -ACGGAAAGTCACCCAGATGGTTGA -ACGGAAAGTCACCCAGATTCCGAT -ACGGAAAGTCACCCAGATTGGCAT -ACGGAAAGTCACCCAGATCGAGAT -ACGGAAAGTCACCCAGATTACCAC -ACGGAAAGTCACCCAGATCAGAAC -ACGGAAAGTCACCCAGATGTCTAC -ACGGAAAGTCACCCAGATACGTAC -ACGGAAAGTCACCCAGATAGTGAC -ACGGAAAGTCACCCAGATCTGTAG -ACGGAAAGTCACCCAGATCCTAAG -ACGGAAAGTCACCCAGATGTTCAG -ACGGAAAGTCACCCAGATGCATAG -ACGGAAAGTCACCCAGATGACAAG -ACGGAAAGTCACCCAGATAAGCAG -ACGGAAAGTCACCCAGATCGTCAA -ACGGAAAGTCACCCAGATGCTGAA -ACGGAAAGTCACCCAGATAGTACG -ACGGAAAGTCACCCAGATATCCGA -ACGGAAAGTCACCCAGATATGGGA -ACGGAAAGTCACCCAGATGTGCAA -ACGGAAAGTCACCCAGATGAGGAA -ACGGAAAGTCACCCAGATCAGGTA -ACGGAAAGTCACCCAGATGACTCT -ACGGAAAGTCACCCAGATAGTCCT -ACGGAAAGTCACCCAGATTAAGCC -ACGGAAAGTCACCCAGATATAGCC -ACGGAAAGTCACCCAGATTAACCG -ACGGAAAGTCACCCAGATATGCCA -ACGGAAAGTCACACAACGGGAAAC -ACGGAAAGTCACACAACGAACACC -ACGGAAAGTCACACAACGATCGAG -ACGGAAAGTCACACAACGCTCCTT -ACGGAAAGTCACACAACGCCTGTT -ACGGAAAGTCACACAACGCGGTTT -ACGGAAAGTCACACAACGGTGGTT -ACGGAAAGTCACACAACGGCCTTT -ACGGAAAGTCACACAACGGGTCTT -ACGGAAAGTCACACAACGACGCTT -ACGGAAAGTCACACAACGAGCGTT -ACGGAAAGTCACACAACGTTCGTC -ACGGAAAGTCACACAACGTCTCTC -ACGGAAAGTCACACAACGTGGATC -ACGGAAAGTCACACAACGCACTTC -ACGGAAAGTCACACAACGGTACTC -ACGGAAAGTCACACAACGGATGTC -ACGGAAAGTCACACAACGACAGTC -ACGGAAAGTCACACAACGTTGCTG -ACGGAAAGTCACACAACGTCCATG -ACGGAAAGTCACACAACGTGTGTG -ACGGAAAGTCACACAACGCTAGTG -ACGGAAAGTCACACAACGCATCTG -ACGGAAAGTCACACAACGGAGTTG -ACGGAAAGTCACACAACGAGACTG -ACGGAAAGTCACACAACGTCGGTA -ACGGAAAGTCACACAACGTGCCTA -ACGGAAAGTCACACAACGCCACTA -ACGGAAAGTCACACAACGGGAGTA -ACGGAAAGTCACACAACGTCGTCT -ACGGAAAGTCACACAACGTGCACT -ACGGAAAGTCACACAACGCTGACT -ACGGAAAGTCACACAACGCAACCT -ACGGAAAGTCACACAACGGCTACT -ACGGAAAGTCACACAACGGGATCT -ACGGAAAGTCACACAACGAAGGCT -ACGGAAAGTCACACAACGTCAACC -ACGGAAAGTCACACAACGTGTTCC -ACGGAAAGTCACACAACGATTCCC -ACGGAAAGTCACACAACGTTCTCG -ACGGAAAGTCACACAACGTAGACG -ACGGAAAGTCACACAACGGTAACG -ACGGAAAGTCACACAACGACTTCG -ACGGAAAGTCACACAACGTACGCA -ACGGAAAGTCACACAACGCTTGCA -ACGGAAAGTCACACAACGCGAACA -ACGGAAAGTCACACAACGCAGTCA -ACGGAAAGTCACACAACGGATCCA -ACGGAAAGTCACACAACGACGACA -ACGGAAAGTCACACAACGAGCTCA -ACGGAAAGTCACACAACGTCACGT -ACGGAAAGTCACACAACGCGTAGT -ACGGAAAGTCACACAACGGTCAGT -ACGGAAAGTCACACAACGGAAGGT -ACGGAAAGTCACACAACGAACCGT -ACGGAAAGTCACACAACGTTGTGC -ACGGAAAGTCACACAACGCTAAGC -ACGGAAAGTCACACAACGACTAGC -ACGGAAAGTCACACAACGAGATGC -ACGGAAAGTCACACAACGTGAAGG -ACGGAAAGTCACACAACGCAATGG -ACGGAAAGTCACACAACGATGAGG -ACGGAAAGTCACACAACGAATGGG -ACGGAAAGTCACACAACGTCCTGA -ACGGAAAGTCACACAACGTAGCGA -ACGGAAAGTCACACAACGCACAGA -ACGGAAAGTCACACAACGGCAAGA -ACGGAAAGTCACACAACGGGTTGA -ACGGAAAGTCACACAACGTCCGAT -ACGGAAAGTCACACAACGTGGCAT -ACGGAAAGTCACACAACGCGAGAT -ACGGAAAGTCACACAACGTACCAC -ACGGAAAGTCACACAACGCAGAAC -ACGGAAAGTCACACAACGGTCTAC -ACGGAAAGTCACACAACGACGTAC -ACGGAAAGTCACACAACGAGTGAC -ACGGAAAGTCACACAACGCTGTAG -ACGGAAAGTCACACAACGCCTAAG -ACGGAAAGTCACACAACGGTTCAG -ACGGAAAGTCACACAACGGCATAG -ACGGAAAGTCACACAACGGACAAG -ACGGAAAGTCACACAACGAAGCAG -ACGGAAAGTCACACAACGCGTCAA -ACGGAAAGTCACACAACGGCTGAA -ACGGAAAGTCACACAACGAGTACG -ACGGAAAGTCACACAACGATCCGA -ACGGAAAGTCACACAACGATGGGA -ACGGAAAGTCACACAACGGTGCAA -ACGGAAAGTCACACAACGGAGGAA -ACGGAAAGTCACACAACGCAGGTA -ACGGAAAGTCACACAACGGACTCT -ACGGAAAGTCACACAACGAGTCCT -ACGGAAAGTCACACAACGTAAGCC -ACGGAAAGTCACACAACGATAGCC -ACGGAAAGTCACACAACGTAACCG -ACGGAAAGTCACACAACGATGCCA -ACGGAAAGTCACTCAAGCGGAAAC -ACGGAAAGTCACTCAAGCAACACC -ACGGAAAGTCACTCAAGCATCGAG -ACGGAAAGTCACTCAAGCCTCCTT -ACGGAAAGTCACTCAAGCCCTGTT -ACGGAAAGTCACTCAAGCCGGTTT -ACGGAAAGTCACTCAAGCGTGGTT -ACGGAAAGTCACTCAAGCGCCTTT -ACGGAAAGTCACTCAAGCGGTCTT -ACGGAAAGTCACTCAAGCACGCTT -ACGGAAAGTCACTCAAGCAGCGTT -ACGGAAAGTCACTCAAGCTTCGTC -ACGGAAAGTCACTCAAGCTCTCTC -ACGGAAAGTCACTCAAGCTGGATC -ACGGAAAGTCACTCAAGCCACTTC -ACGGAAAGTCACTCAAGCGTACTC -ACGGAAAGTCACTCAAGCGATGTC -ACGGAAAGTCACTCAAGCACAGTC -ACGGAAAGTCACTCAAGCTTGCTG -ACGGAAAGTCACTCAAGCTCCATG -ACGGAAAGTCACTCAAGCTGTGTG -ACGGAAAGTCACTCAAGCCTAGTG -ACGGAAAGTCACTCAAGCCATCTG -ACGGAAAGTCACTCAAGCGAGTTG -ACGGAAAGTCACTCAAGCAGACTG -ACGGAAAGTCACTCAAGCTCGGTA -ACGGAAAGTCACTCAAGCTGCCTA -ACGGAAAGTCACTCAAGCCCACTA -ACGGAAAGTCACTCAAGCGGAGTA -ACGGAAAGTCACTCAAGCTCGTCT -ACGGAAAGTCACTCAAGCTGCACT -ACGGAAAGTCACTCAAGCCTGACT -ACGGAAAGTCACTCAAGCCAACCT -ACGGAAAGTCACTCAAGCGCTACT -ACGGAAAGTCACTCAAGCGGATCT -ACGGAAAGTCACTCAAGCAAGGCT -ACGGAAAGTCACTCAAGCTCAACC -ACGGAAAGTCACTCAAGCTGTTCC -ACGGAAAGTCACTCAAGCATTCCC -ACGGAAAGTCACTCAAGCTTCTCG -ACGGAAAGTCACTCAAGCTAGACG -ACGGAAAGTCACTCAAGCGTAACG -ACGGAAAGTCACTCAAGCACTTCG -ACGGAAAGTCACTCAAGCTACGCA -ACGGAAAGTCACTCAAGCCTTGCA -ACGGAAAGTCACTCAAGCCGAACA -ACGGAAAGTCACTCAAGCCAGTCA -ACGGAAAGTCACTCAAGCGATCCA -ACGGAAAGTCACTCAAGCACGACA -ACGGAAAGTCACTCAAGCAGCTCA -ACGGAAAGTCACTCAAGCTCACGT -ACGGAAAGTCACTCAAGCCGTAGT -ACGGAAAGTCACTCAAGCGTCAGT -ACGGAAAGTCACTCAAGCGAAGGT -ACGGAAAGTCACTCAAGCAACCGT -ACGGAAAGTCACTCAAGCTTGTGC -ACGGAAAGTCACTCAAGCCTAAGC -ACGGAAAGTCACTCAAGCACTAGC -ACGGAAAGTCACTCAAGCAGATGC -ACGGAAAGTCACTCAAGCTGAAGG -ACGGAAAGTCACTCAAGCCAATGG -ACGGAAAGTCACTCAAGCATGAGG -ACGGAAAGTCACTCAAGCAATGGG -ACGGAAAGTCACTCAAGCTCCTGA -ACGGAAAGTCACTCAAGCTAGCGA -ACGGAAAGTCACTCAAGCCACAGA -ACGGAAAGTCACTCAAGCGCAAGA -ACGGAAAGTCACTCAAGCGGTTGA -ACGGAAAGTCACTCAAGCTCCGAT -ACGGAAAGTCACTCAAGCTGGCAT -ACGGAAAGTCACTCAAGCCGAGAT -ACGGAAAGTCACTCAAGCTACCAC -ACGGAAAGTCACTCAAGCCAGAAC -ACGGAAAGTCACTCAAGCGTCTAC -ACGGAAAGTCACTCAAGCACGTAC -ACGGAAAGTCACTCAAGCAGTGAC -ACGGAAAGTCACTCAAGCCTGTAG -ACGGAAAGTCACTCAAGCCCTAAG -ACGGAAAGTCACTCAAGCGTTCAG -ACGGAAAGTCACTCAAGCGCATAG -ACGGAAAGTCACTCAAGCGACAAG -ACGGAAAGTCACTCAAGCAAGCAG -ACGGAAAGTCACTCAAGCCGTCAA -ACGGAAAGTCACTCAAGCGCTGAA -ACGGAAAGTCACTCAAGCAGTACG -ACGGAAAGTCACTCAAGCATCCGA -ACGGAAAGTCACTCAAGCATGGGA -ACGGAAAGTCACTCAAGCGTGCAA -ACGGAAAGTCACTCAAGCGAGGAA -ACGGAAAGTCACTCAAGCCAGGTA -ACGGAAAGTCACTCAAGCGACTCT -ACGGAAAGTCACTCAAGCAGTCCT -ACGGAAAGTCACTCAAGCTAAGCC -ACGGAAAGTCACTCAAGCATAGCC -ACGGAAAGTCACTCAAGCTAACCG -ACGGAAAGTCACTCAAGCATGCCA -ACGGAAAGTCACCGTTCAGGAAAC -ACGGAAAGTCACCGTTCAAACACC -ACGGAAAGTCACCGTTCAATCGAG -ACGGAAAGTCACCGTTCACTCCTT -ACGGAAAGTCACCGTTCACCTGTT -ACGGAAAGTCACCGTTCACGGTTT -ACGGAAAGTCACCGTTCAGTGGTT -ACGGAAAGTCACCGTTCAGCCTTT -ACGGAAAGTCACCGTTCAGGTCTT -ACGGAAAGTCACCGTTCAACGCTT -ACGGAAAGTCACCGTTCAAGCGTT -ACGGAAAGTCACCGTTCATTCGTC -ACGGAAAGTCACCGTTCATCTCTC -ACGGAAAGTCACCGTTCATGGATC -ACGGAAAGTCACCGTTCACACTTC -ACGGAAAGTCACCGTTCAGTACTC -ACGGAAAGTCACCGTTCAGATGTC -ACGGAAAGTCACCGTTCAACAGTC -ACGGAAAGTCACCGTTCATTGCTG -ACGGAAAGTCACCGTTCATCCATG -ACGGAAAGTCACCGTTCATGTGTG -ACGGAAAGTCACCGTTCACTAGTG -ACGGAAAGTCACCGTTCACATCTG -ACGGAAAGTCACCGTTCAGAGTTG -ACGGAAAGTCACCGTTCAAGACTG -ACGGAAAGTCACCGTTCATCGGTA -ACGGAAAGTCACCGTTCATGCCTA -ACGGAAAGTCACCGTTCACCACTA -ACGGAAAGTCACCGTTCAGGAGTA -ACGGAAAGTCACCGTTCATCGTCT -ACGGAAAGTCACCGTTCATGCACT -ACGGAAAGTCACCGTTCACTGACT -ACGGAAAGTCACCGTTCACAACCT -ACGGAAAGTCACCGTTCAGCTACT -ACGGAAAGTCACCGTTCAGGATCT -ACGGAAAGTCACCGTTCAAAGGCT -ACGGAAAGTCACCGTTCATCAACC -ACGGAAAGTCACCGTTCATGTTCC -ACGGAAAGTCACCGTTCAATTCCC -ACGGAAAGTCACCGTTCATTCTCG -ACGGAAAGTCACCGTTCATAGACG -ACGGAAAGTCACCGTTCAGTAACG -ACGGAAAGTCACCGTTCAACTTCG -ACGGAAAGTCACCGTTCATACGCA -ACGGAAAGTCACCGTTCACTTGCA -ACGGAAAGTCACCGTTCACGAACA -ACGGAAAGTCACCGTTCACAGTCA -ACGGAAAGTCACCGTTCAGATCCA -ACGGAAAGTCACCGTTCAACGACA -ACGGAAAGTCACCGTTCAAGCTCA -ACGGAAAGTCACCGTTCATCACGT -ACGGAAAGTCACCGTTCACGTAGT -ACGGAAAGTCACCGTTCAGTCAGT -ACGGAAAGTCACCGTTCAGAAGGT -ACGGAAAGTCACCGTTCAAACCGT -ACGGAAAGTCACCGTTCATTGTGC -ACGGAAAGTCACCGTTCACTAAGC -ACGGAAAGTCACCGTTCAACTAGC -ACGGAAAGTCACCGTTCAAGATGC -ACGGAAAGTCACCGTTCATGAAGG -ACGGAAAGTCACCGTTCACAATGG -ACGGAAAGTCACCGTTCAATGAGG -ACGGAAAGTCACCGTTCAAATGGG -ACGGAAAGTCACCGTTCATCCTGA -ACGGAAAGTCACCGTTCATAGCGA -ACGGAAAGTCACCGTTCACACAGA -ACGGAAAGTCACCGTTCAGCAAGA -ACGGAAAGTCACCGTTCAGGTTGA -ACGGAAAGTCACCGTTCATCCGAT -ACGGAAAGTCACCGTTCATGGCAT -ACGGAAAGTCACCGTTCACGAGAT -ACGGAAAGTCACCGTTCATACCAC -ACGGAAAGTCACCGTTCACAGAAC -ACGGAAAGTCACCGTTCAGTCTAC -ACGGAAAGTCACCGTTCAACGTAC -ACGGAAAGTCACCGTTCAAGTGAC -ACGGAAAGTCACCGTTCACTGTAG -ACGGAAAGTCACCGTTCACCTAAG -ACGGAAAGTCACCGTTCAGTTCAG -ACGGAAAGTCACCGTTCAGCATAG -ACGGAAAGTCACCGTTCAGACAAG -ACGGAAAGTCACCGTTCAAAGCAG -ACGGAAAGTCACCGTTCACGTCAA -ACGGAAAGTCACCGTTCAGCTGAA -ACGGAAAGTCACCGTTCAAGTACG -ACGGAAAGTCACCGTTCAATCCGA -ACGGAAAGTCACCGTTCAATGGGA -ACGGAAAGTCACCGTTCAGTGCAA -ACGGAAAGTCACCGTTCAGAGGAA -ACGGAAAGTCACCGTTCACAGGTA -ACGGAAAGTCACCGTTCAGACTCT -ACGGAAAGTCACCGTTCAAGTCCT -ACGGAAAGTCACCGTTCATAAGCC -ACGGAAAGTCACCGTTCAATAGCC -ACGGAAAGTCACCGTTCATAACCG -ACGGAAAGTCACCGTTCAATGCCA -ACGGAAAGTCACAGTCGTGGAAAC -ACGGAAAGTCACAGTCGTAACACC -ACGGAAAGTCACAGTCGTATCGAG -ACGGAAAGTCACAGTCGTCTCCTT -ACGGAAAGTCACAGTCGTCCTGTT -ACGGAAAGTCACAGTCGTCGGTTT -ACGGAAAGTCACAGTCGTGTGGTT -ACGGAAAGTCACAGTCGTGCCTTT -ACGGAAAGTCACAGTCGTGGTCTT -ACGGAAAGTCACAGTCGTACGCTT -ACGGAAAGTCACAGTCGTAGCGTT -ACGGAAAGTCACAGTCGTTTCGTC -ACGGAAAGTCACAGTCGTTCTCTC -ACGGAAAGTCACAGTCGTTGGATC -ACGGAAAGTCACAGTCGTCACTTC -ACGGAAAGTCACAGTCGTGTACTC -ACGGAAAGTCACAGTCGTGATGTC -ACGGAAAGTCACAGTCGTACAGTC -ACGGAAAGTCACAGTCGTTTGCTG -ACGGAAAGTCACAGTCGTTCCATG -ACGGAAAGTCACAGTCGTTGTGTG -ACGGAAAGTCACAGTCGTCTAGTG -ACGGAAAGTCACAGTCGTCATCTG -ACGGAAAGTCACAGTCGTGAGTTG -ACGGAAAGTCACAGTCGTAGACTG -ACGGAAAGTCACAGTCGTTCGGTA -ACGGAAAGTCACAGTCGTTGCCTA -ACGGAAAGTCACAGTCGTCCACTA -ACGGAAAGTCACAGTCGTGGAGTA -ACGGAAAGTCACAGTCGTTCGTCT -ACGGAAAGTCACAGTCGTTGCACT -ACGGAAAGTCACAGTCGTCTGACT -ACGGAAAGTCACAGTCGTCAACCT -ACGGAAAGTCACAGTCGTGCTACT -ACGGAAAGTCACAGTCGTGGATCT -ACGGAAAGTCACAGTCGTAAGGCT -ACGGAAAGTCACAGTCGTTCAACC -ACGGAAAGTCACAGTCGTTGTTCC -ACGGAAAGTCACAGTCGTATTCCC -ACGGAAAGTCACAGTCGTTTCTCG -ACGGAAAGTCACAGTCGTTAGACG -ACGGAAAGTCACAGTCGTGTAACG -ACGGAAAGTCACAGTCGTACTTCG -ACGGAAAGTCACAGTCGTTACGCA -ACGGAAAGTCACAGTCGTCTTGCA -ACGGAAAGTCACAGTCGTCGAACA -ACGGAAAGTCACAGTCGTCAGTCA -ACGGAAAGTCACAGTCGTGATCCA -ACGGAAAGTCACAGTCGTACGACA -ACGGAAAGTCACAGTCGTAGCTCA -ACGGAAAGTCACAGTCGTTCACGT -ACGGAAAGTCACAGTCGTCGTAGT -ACGGAAAGTCACAGTCGTGTCAGT -ACGGAAAGTCACAGTCGTGAAGGT -ACGGAAAGTCACAGTCGTAACCGT -ACGGAAAGTCACAGTCGTTTGTGC -ACGGAAAGTCACAGTCGTCTAAGC -ACGGAAAGTCACAGTCGTACTAGC -ACGGAAAGTCACAGTCGTAGATGC -ACGGAAAGTCACAGTCGTTGAAGG -ACGGAAAGTCACAGTCGTCAATGG -ACGGAAAGTCACAGTCGTATGAGG -ACGGAAAGTCACAGTCGTAATGGG -ACGGAAAGTCACAGTCGTTCCTGA -ACGGAAAGTCACAGTCGTTAGCGA -ACGGAAAGTCACAGTCGTCACAGA -ACGGAAAGTCACAGTCGTGCAAGA -ACGGAAAGTCACAGTCGTGGTTGA -ACGGAAAGTCACAGTCGTTCCGAT -ACGGAAAGTCACAGTCGTTGGCAT -ACGGAAAGTCACAGTCGTCGAGAT -ACGGAAAGTCACAGTCGTTACCAC -ACGGAAAGTCACAGTCGTCAGAAC -ACGGAAAGTCACAGTCGTGTCTAC -ACGGAAAGTCACAGTCGTACGTAC -ACGGAAAGTCACAGTCGTAGTGAC -ACGGAAAGTCACAGTCGTCTGTAG -ACGGAAAGTCACAGTCGTCCTAAG -ACGGAAAGTCACAGTCGTGTTCAG -ACGGAAAGTCACAGTCGTGCATAG -ACGGAAAGTCACAGTCGTGACAAG -ACGGAAAGTCACAGTCGTAAGCAG -ACGGAAAGTCACAGTCGTCGTCAA -ACGGAAAGTCACAGTCGTGCTGAA -ACGGAAAGTCACAGTCGTAGTACG -ACGGAAAGTCACAGTCGTATCCGA -ACGGAAAGTCACAGTCGTATGGGA -ACGGAAAGTCACAGTCGTGTGCAA -ACGGAAAGTCACAGTCGTGAGGAA -ACGGAAAGTCACAGTCGTCAGGTA -ACGGAAAGTCACAGTCGTGACTCT -ACGGAAAGTCACAGTCGTAGTCCT -ACGGAAAGTCACAGTCGTTAAGCC -ACGGAAAGTCACAGTCGTATAGCC -ACGGAAAGTCACAGTCGTTAACCG -ACGGAAAGTCACAGTCGTATGCCA -ACGGAAAGTCACAGTGTCGGAAAC -ACGGAAAGTCACAGTGTCAACACC -ACGGAAAGTCACAGTGTCATCGAG -ACGGAAAGTCACAGTGTCCTCCTT -ACGGAAAGTCACAGTGTCCCTGTT -ACGGAAAGTCACAGTGTCCGGTTT -ACGGAAAGTCACAGTGTCGTGGTT -ACGGAAAGTCACAGTGTCGCCTTT -ACGGAAAGTCACAGTGTCGGTCTT -ACGGAAAGTCACAGTGTCACGCTT -ACGGAAAGTCACAGTGTCAGCGTT -ACGGAAAGTCACAGTGTCTTCGTC -ACGGAAAGTCACAGTGTCTCTCTC -ACGGAAAGTCACAGTGTCTGGATC -ACGGAAAGTCACAGTGTCCACTTC -ACGGAAAGTCACAGTGTCGTACTC -ACGGAAAGTCACAGTGTCGATGTC -ACGGAAAGTCACAGTGTCACAGTC -ACGGAAAGTCACAGTGTCTTGCTG -ACGGAAAGTCACAGTGTCTCCATG -ACGGAAAGTCACAGTGTCTGTGTG -ACGGAAAGTCACAGTGTCCTAGTG -ACGGAAAGTCACAGTGTCCATCTG -ACGGAAAGTCACAGTGTCGAGTTG -ACGGAAAGTCACAGTGTCAGACTG -ACGGAAAGTCACAGTGTCTCGGTA -ACGGAAAGTCACAGTGTCTGCCTA -ACGGAAAGTCACAGTGTCCCACTA -ACGGAAAGTCACAGTGTCGGAGTA -ACGGAAAGTCACAGTGTCTCGTCT -ACGGAAAGTCACAGTGTCTGCACT -ACGGAAAGTCACAGTGTCCTGACT -ACGGAAAGTCACAGTGTCCAACCT -ACGGAAAGTCACAGTGTCGCTACT -ACGGAAAGTCACAGTGTCGGATCT -ACGGAAAGTCACAGTGTCAAGGCT -ACGGAAAGTCACAGTGTCTCAACC -ACGGAAAGTCACAGTGTCTGTTCC -ACGGAAAGTCACAGTGTCATTCCC -ACGGAAAGTCACAGTGTCTTCTCG -ACGGAAAGTCACAGTGTCTAGACG -ACGGAAAGTCACAGTGTCGTAACG -ACGGAAAGTCACAGTGTCACTTCG -ACGGAAAGTCACAGTGTCTACGCA -ACGGAAAGTCACAGTGTCCTTGCA -ACGGAAAGTCACAGTGTCCGAACA -ACGGAAAGTCACAGTGTCCAGTCA -ACGGAAAGTCACAGTGTCGATCCA -ACGGAAAGTCACAGTGTCACGACA -ACGGAAAGTCACAGTGTCAGCTCA -ACGGAAAGTCACAGTGTCTCACGT -ACGGAAAGTCACAGTGTCCGTAGT -ACGGAAAGTCACAGTGTCGTCAGT -ACGGAAAGTCACAGTGTCGAAGGT -ACGGAAAGTCACAGTGTCAACCGT -ACGGAAAGTCACAGTGTCTTGTGC -ACGGAAAGTCACAGTGTCCTAAGC -ACGGAAAGTCACAGTGTCACTAGC -ACGGAAAGTCACAGTGTCAGATGC -ACGGAAAGTCACAGTGTCTGAAGG -ACGGAAAGTCACAGTGTCCAATGG -ACGGAAAGTCACAGTGTCATGAGG -ACGGAAAGTCACAGTGTCAATGGG -ACGGAAAGTCACAGTGTCTCCTGA -ACGGAAAGTCACAGTGTCTAGCGA -ACGGAAAGTCACAGTGTCCACAGA -ACGGAAAGTCACAGTGTCGCAAGA -ACGGAAAGTCACAGTGTCGGTTGA -ACGGAAAGTCACAGTGTCTCCGAT -ACGGAAAGTCACAGTGTCTGGCAT -ACGGAAAGTCACAGTGTCCGAGAT -ACGGAAAGTCACAGTGTCTACCAC -ACGGAAAGTCACAGTGTCCAGAAC -ACGGAAAGTCACAGTGTCGTCTAC -ACGGAAAGTCACAGTGTCACGTAC -ACGGAAAGTCACAGTGTCAGTGAC -ACGGAAAGTCACAGTGTCCTGTAG -ACGGAAAGTCACAGTGTCCCTAAG -ACGGAAAGTCACAGTGTCGTTCAG -ACGGAAAGTCACAGTGTCGCATAG -ACGGAAAGTCACAGTGTCGACAAG -ACGGAAAGTCACAGTGTCAAGCAG -ACGGAAAGTCACAGTGTCCGTCAA -ACGGAAAGTCACAGTGTCGCTGAA -ACGGAAAGTCACAGTGTCAGTACG -ACGGAAAGTCACAGTGTCATCCGA -ACGGAAAGTCACAGTGTCATGGGA -ACGGAAAGTCACAGTGTCGTGCAA -ACGGAAAGTCACAGTGTCGAGGAA -ACGGAAAGTCACAGTGTCCAGGTA -ACGGAAAGTCACAGTGTCGACTCT -ACGGAAAGTCACAGTGTCAGTCCT -ACGGAAAGTCACAGTGTCTAAGCC -ACGGAAAGTCACAGTGTCATAGCC -ACGGAAAGTCACAGTGTCTAACCG -ACGGAAAGTCACAGTGTCATGCCA -ACGGAAAGTCACGGTGAAGGAAAC -ACGGAAAGTCACGGTGAAAACACC -ACGGAAAGTCACGGTGAAATCGAG -ACGGAAAGTCACGGTGAACTCCTT -ACGGAAAGTCACGGTGAACCTGTT -ACGGAAAGTCACGGTGAACGGTTT -ACGGAAAGTCACGGTGAAGTGGTT -ACGGAAAGTCACGGTGAAGCCTTT -ACGGAAAGTCACGGTGAAGGTCTT -ACGGAAAGTCACGGTGAAACGCTT -ACGGAAAGTCACGGTGAAAGCGTT -ACGGAAAGTCACGGTGAATTCGTC -ACGGAAAGTCACGGTGAATCTCTC -ACGGAAAGTCACGGTGAATGGATC -ACGGAAAGTCACGGTGAACACTTC -ACGGAAAGTCACGGTGAAGTACTC -ACGGAAAGTCACGGTGAAGATGTC -ACGGAAAGTCACGGTGAAACAGTC -ACGGAAAGTCACGGTGAATTGCTG -ACGGAAAGTCACGGTGAATCCATG -ACGGAAAGTCACGGTGAATGTGTG -ACGGAAAGTCACGGTGAACTAGTG -ACGGAAAGTCACGGTGAACATCTG -ACGGAAAGTCACGGTGAAGAGTTG -ACGGAAAGTCACGGTGAAAGACTG -ACGGAAAGTCACGGTGAATCGGTA -ACGGAAAGTCACGGTGAATGCCTA -ACGGAAAGTCACGGTGAACCACTA -ACGGAAAGTCACGGTGAAGGAGTA -ACGGAAAGTCACGGTGAATCGTCT -ACGGAAAGTCACGGTGAATGCACT -ACGGAAAGTCACGGTGAACTGACT -ACGGAAAGTCACGGTGAACAACCT -ACGGAAAGTCACGGTGAAGCTACT -ACGGAAAGTCACGGTGAAGGATCT -ACGGAAAGTCACGGTGAAAAGGCT -ACGGAAAGTCACGGTGAATCAACC -ACGGAAAGTCACGGTGAATGTTCC -ACGGAAAGTCACGGTGAAATTCCC -ACGGAAAGTCACGGTGAATTCTCG -ACGGAAAGTCACGGTGAATAGACG -ACGGAAAGTCACGGTGAAGTAACG -ACGGAAAGTCACGGTGAAACTTCG -ACGGAAAGTCACGGTGAATACGCA -ACGGAAAGTCACGGTGAACTTGCA -ACGGAAAGTCACGGTGAACGAACA -ACGGAAAGTCACGGTGAACAGTCA -ACGGAAAGTCACGGTGAAGATCCA -ACGGAAAGTCACGGTGAAACGACA -ACGGAAAGTCACGGTGAAAGCTCA -ACGGAAAGTCACGGTGAATCACGT -ACGGAAAGTCACGGTGAACGTAGT -ACGGAAAGTCACGGTGAAGTCAGT -ACGGAAAGTCACGGTGAAGAAGGT -ACGGAAAGTCACGGTGAAAACCGT -ACGGAAAGTCACGGTGAATTGTGC -ACGGAAAGTCACGGTGAACTAAGC -ACGGAAAGTCACGGTGAAACTAGC -ACGGAAAGTCACGGTGAAAGATGC -ACGGAAAGTCACGGTGAATGAAGG -ACGGAAAGTCACGGTGAACAATGG -ACGGAAAGTCACGGTGAAATGAGG -ACGGAAAGTCACGGTGAAAATGGG -ACGGAAAGTCACGGTGAATCCTGA -ACGGAAAGTCACGGTGAATAGCGA -ACGGAAAGTCACGGTGAACACAGA -ACGGAAAGTCACGGTGAAGCAAGA -ACGGAAAGTCACGGTGAAGGTTGA -ACGGAAAGTCACGGTGAATCCGAT -ACGGAAAGTCACGGTGAATGGCAT -ACGGAAAGTCACGGTGAACGAGAT -ACGGAAAGTCACGGTGAATACCAC -ACGGAAAGTCACGGTGAACAGAAC -ACGGAAAGTCACGGTGAAGTCTAC -ACGGAAAGTCACGGTGAAACGTAC -ACGGAAAGTCACGGTGAAAGTGAC -ACGGAAAGTCACGGTGAACTGTAG -ACGGAAAGTCACGGTGAACCTAAG -ACGGAAAGTCACGGTGAAGTTCAG -ACGGAAAGTCACGGTGAAGCATAG -ACGGAAAGTCACGGTGAAGACAAG -ACGGAAAGTCACGGTGAAAAGCAG -ACGGAAAGTCACGGTGAACGTCAA -ACGGAAAGTCACGGTGAAGCTGAA -ACGGAAAGTCACGGTGAAAGTACG -ACGGAAAGTCACGGTGAAATCCGA -ACGGAAAGTCACGGTGAAATGGGA -ACGGAAAGTCACGGTGAAGTGCAA -ACGGAAAGTCACGGTGAAGAGGAA -ACGGAAAGTCACGGTGAACAGGTA -ACGGAAAGTCACGGTGAAGACTCT -ACGGAAAGTCACGGTGAAAGTCCT -ACGGAAAGTCACGGTGAATAAGCC -ACGGAAAGTCACGGTGAAATAGCC -ACGGAAAGTCACGGTGAATAACCG -ACGGAAAGTCACGGTGAAATGCCA -ACGGAAAGTCACCGTAACGGAAAC -ACGGAAAGTCACCGTAACAACACC -ACGGAAAGTCACCGTAACATCGAG -ACGGAAAGTCACCGTAACCTCCTT -ACGGAAAGTCACCGTAACCCTGTT -ACGGAAAGTCACCGTAACCGGTTT -ACGGAAAGTCACCGTAACGTGGTT -ACGGAAAGTCACCGTAACGCCTTT -ACGGAAAGTCACCGTAACGGTCTT -ACGGAAAGTCACCGTAACACGCTT -ACGGAAAGTCACCGTAACAGCGTT -ACGGAAAGTCACCGTAACTTCGTC -ACGGAAAGTCACCGTAACTCTCTC -ACGGAAAGTCACCGTAACTGGATC -ACGGAAAGTCACCGTAACCACTTC -ACGGAAAGTCACCGTAACGTACTC -ACGGAAAGTCACCGTAACGATGTC -ACGGAAAGTCACCGTAACACAGTC -ACGGAAAGTCACCGTAACTTGCTG -ACGGAAAGTCACCGTAACTCCATG -ACGGAAAGTCACCGTAACTGTGTG -ACGGAAAGTCACCGTAACCTAGTG -ACGGAAAGTCACCGTAACCATCTG -ACGGAAAGTCACCGTAACGAGTTG -ACGGAAAGTCACCGTAACAGACTG -ACGGAAAGTCACCGTAACTCGGTA -ACGGAAAGTCACCGTAACTGCCTA -ACGGAAAGTCACCGTAACCCACTA -ACGGAAAGTCACCGTAACGGAGTA -ACGGAAAGTCACCGTAACTCGTCT -ACGGAAAGTCACCGTAACTGCACT -ACGGAAAGTCACCGTAACCTGACT -ACGGAAAGTCACCGTAACCAACCT -ACGGAAAGTCACCGTAACGCTACT -ACGGAAAGTCACCGTAACGGATCT -ACGGAAAGTCACCGTAACAAGGCT -ACGGAAAGTCACCGTAACTCAACC -ACGGAAAGTCACCGTAACTGTTCC -ACGGAAAGTCACCGTAACATTCCC -ACGGAAAGTCACCGTAACTTCTCG -ACGGAAAGTCACCGTAACTAGACG -ACGGAAAGTCACCGTAACGTAACG -ACGGAAAGTCACCGTAACACTTCG -ACGGAAAGTCACCGTAACTACGCA -ACGGAAAGTCACCGTAACCTTGCA -ACGGAAAGTCACCGTAACCGAACA -ACGGAAAGTCACCGTAACCAGTCA -ACGGAAAGTCACCGTAACGATCCA -ACGGAAAGTCACCGTAACACGACA -ACGGAAAGTCACCGTAACAGCTCA -ACGGAAAGTCACCGTAACTCACGT -ACGGAAAGTCACCGTAACCGTAGT -ACGGAAAGTCACCGTAACGTCAGT -ACGGAAAGTCACCGTAACGAAGGT -ACGGAAAGTCACCGTAACAACCGT -ACGGAAAGTCACCGTAACTTGTGC -ACGGAAAGTCACCGTAACCTAAGC -ACGGAAAGTCACCGTAACACTAGC -ACGGAAAGTCACCGTAACAGATGC -ACGGAAAGTCACCGTAACTGAAGG -ACGGAAAGTCACCGTAACCAATGG -ACGGAAAGTCACCGTAACATGAGG -ACGGAAAGTCACCGTAACAATGGG -ACGGAAAGTCACCGTAACTCCTGA -ACGGAAAGTCACCGTAACTAGCGA -ACGGAAAGTCACCGTAACCACAGA -ACGGAAAGTCACCGTAACGCAAGA -ACGGAAAGTCACCGTAACGGTTGA -ACGGAAAGTCACCGTAACTCCGAT -ACGGAAAGTCACCGTAACTGGCAT -ACGGAAAGTCACCGTAACCGAGAT -ACGGAAAGTCACCGTAACTACCAC -ACGGAAAGTCACCGTAACCAGAAC -ACGGAAAGTCACCGTAACGTCTAC -ACGGAAAGTCACCGTAACACGTAC -ACGGAAAGTCACCGTAACAGTGAC -ACGGAAAGTCACCGTAACCTGTAG -ACGGAAAGTCACCGTAACCCTAAG -ACGGAAAGTCACCGTAACGTTCAG -ACGGAAAGTCACCGTAACGCATAG -ACGGAAAGTCACCGTAACGACAAG -ACGGAAAGTCACCGTAACAAGCAG -ACGGAAAGTCACCGTAACCGTCAA -ACGGAAAGTCACCGTAACGCTGAA -ACGGAAAGTCACCGTAACAGTACG -ACGGAAAGTCACCGTAACATCCGA -ACGGAAAGTCACCGTAACATGGGA -ACGGAAAGTCACCGTAACGTGCAA -ACGGAAAGTCACCGTAACGAGGAA -ACGGAAAGTCACCGTAACCAGGTA -ACGGAAAGTCACCGTAACGACTCT -ACGGAAAGTCACCGTAACAGTCCT -ACGGAAAGTCACCGTAACTAAGCC -ACGGAAAGTCACCGTAACATAGCC -ACGGAAAGTCACCGTAACTAACCG -ACGGAAAGTCACCGTAACATGCCA -ACGGAAAGTCACTGCTTGGGAAAC -ACGGAAAGTCACTGCTTGAACACC -ACGGAAAGTCACTGCTTGATCGAG -ACGGAAAGTCACTGCTTGCTCCTT -ACGGAAAGTCACTGCTTGCCTGTT -ACGGAAAGTCACTGCTTGCGGTTT -ACGGAAAGTCACTGCTTGGTGGTT -ACGGAAAGTCACTGCTTGGCCTTT -ACGGAAAGTCACTGCTTGGGTCTT -ACGGAAAGTCACTGCTTGACGCTT -ACGGAAAGTCACTGCTTGAGCGTT -ACGGAAAGTCACTGCTTGTTCGTC -ACGGAAAGTCACTGCTTGTCTCTC -ACGGAAAGTCACTGCTTGTGGATC -ACGGAAAGTCACTGCTTGCACTTC -ACGGAAAGTCACTGCTTGGTACTC -ACGGAAAGTCACTGCTTGGATGTC -ACGGAAAGTCACTGCTTGACAGTC -ACGGAAAGTCACTGCTTGTTGCTG -ACGGAAAGTCACTGCTTGTCCATG -ACGGAAAGTCACTGCTTGTGTGTG -ACGGAAAGTCACTGCTTGCTAGTG -ACGGAAAGTCACTGCTTGCATCTG -ACGGAAAGTCACTGCTTGGAGTTG -ACGGAAAGTCACTGCTTGAGACTG -ACGGAAAGTCACTGCTTGTCGGTA -ACGGAAAGTCACTGCTTGTGCCTA -ACGGAAAGTCACTGCTTGCCACTA -ACGGAAAGTCACTGCTTGGGAGTA -ACGGAAAGTCACTGCTTGTCGTCT -ACGGAAAGTCACTGCTTGTGCACT -ACGGAAAGTCACTGCTTGCTGACT -ACGGAAAGTCACTGCTTGCAACCT -ACGGAAAGTCACTGCTTGGCTACT -ACGGAAAGTCACTGCTTGGGATCT -ACGGAAAGTCACTGCTTGAAGGCT -ACGGAAAGTCACTGCTTGTCAACC -ACGGAAAGTCACTGCTTGTGTTCC -ACGGAAAGTCACTGCTTGATTCCC -ACGGAAAGTCACTGCTTGTTCTCG -ACGGAAAGTCACTGCTTGTAGACG -ACGGAAAGTCACTGCTTGGTAACG -ACGGAAAGTCACTGCTTGACTTCG -ACGGAAAGTCACTGCTTGTACGCA -ACGGAAAGTCACTGCTTGCTTGCA -ACGGAAAGTCACTGCTTGCGAACA -ACGGAAAGTCACTGCTTGCAGTCA -ACGGAAAGTCACTGCTTGGATCCA -ACGGAAAGTCACTGCTTGACGACA -ACGGAAAGTCACTGCTTGAGCTCA -ACGGAAAGTCACTGCTTGTCACGT -ACGGAAAGTCACTGCTTGCGTAGT -ACGGAAAGTCACTGCTTGGTCAGT -ACGGAAAGTCACTGCTTGGAAGGT -ACGGAAAGTCACTGCTTGAACCGT -ACGGAAAGTCACTGCTTGTTGTGC -ACGGAAAGTCACTGCTTGCTAAGC -ACGGAAAGTCACTGCTTGACTAGC -ACGGAAAGTCACTGCTTGAGATGC -ACGGAAAGTCACTGCTTGTGAAGG -ACGGAAAGTCACTGCTTGCAATGG -ACGGAAAGTCACTGCTTGATGAGG -ACGGAAAGTCACTGCTTGAATGGG -ACGGAAAGTCACTGCTTGTCCTGA -ACGGAAAGTCACTGCTTGTAGCGA -ACGGAAAGTCACTGCTTGCACAGA -ACGGAAAGTCACTGCTTGGCAAGA -ACGGAAAGTCACTGCTTGGGTTGA -ACGGAAAGTCACTGCTTGTCCGAT -ACGGAAAGTCACTGCTTGTGGCAT -ACGGAAAGTCACTGCTTGCGAGAT -ACGGAAAGTCACTGCTTGTACCAC -ACGGAAAGTCACTGCTTGCAGAAC -ACGGAAAGTCACTGCTTGGTCTAC -ACGGAAAGTCACTGCTTGACGTAC -ACGGAAAGTCACTGCTTGAGTGAC -ACGGAAAGTCACTGCTTGCTGTAG -ACGGAAAGTCACTGCTTGCCTAAG -ACGGAAAGTCACTGCTTGGTTCAG -ACGGAAAGTCACTGCTTGGCATAG -ACGGAAAGTCACTGCTTGGACAAG -ACGGAAAGTCACTGCTTGAAGCAG -ACGGAAAGTCACTGCTTGCGTCAA -ACGGAAAGTCACTGCTTGGCTGAA -ACGGAAAGTCACTGCTTGAGTACG -ACGGAAAGTCACTGCTTGATCCGA -ACGGAAAGTCACTGCTTGATGGGA -ACGGAAAGTCACTGCTTGGTGCAA -ACGGAAAGTCACTGCTTGGAGGAA -ACGGAAAGTCACTGCTTGCAGGTA -ACGGAAAGTCACTGCTTGGACTCT -ACGGAAAGTCACTGCTTGAGTCCT -ACGGAAAGTCACTGCTTGTAAGCC -ACGGAAAGTCACTGCTTGATAGCC -ACGGAAAGTCACTGCTTGTAACCG -ACGGAAAGTCACTGCTTGATGCCA -ACGGAAAGTCACAGCCTAGGAAAC -ACGGAAAGTCACAGCCTAAACACC -ACGGAAAGTCACAGCCTAATCGAG -ACGGAAAGTCACAGCCTACTCCTT -ACGGAAAGTCACAGCCTACCTGTT -ACGGAAAGTCACAGCCTACGGTTT -ACGGAAAGTCACAGCCTAGTGGTT -ACGGAAAGTCACAGCCTAGCCTTT -ACGGAAAGTCACAGCCTAGGTCTT -ACGGAAAGTCACAGCCTAACGCTT -ACGGAAAGTCACAGCCTAAGCGTT -ACGGAAAGTCACAGCCTATTCGTC -ACGGAAAGTCACAGCCTATCTCTC -ACGGAAAGTCACAGCCTATGGATC -ACGGAAAGTCACAGCCTACACTTC -ACGGAAAGTCACAGCCTAGTACTC -ACGGAAAGTCACAGCCTAGATGTC -ACGGAAAGTCACAGCCTAACAGTC -ACGGAAAGTCACAGCCTATTGCTG -ACGGAAAGTCACAGCCTATCCATG -ACGGAAAGTCACAGCCTATGTGTG -ACGGAAAGTCACAGCCTACTAGTG -ACGGAAAGTCACAGCCTACATCTG -ACGGAAAGTCACAGCCTAGAGTTG -ACGGAAAGTCACAGCCTAAGACTG -ACGGAAAGTCACAGCCTATCGGTA -ACGGAAAGTCACAGCCTATGCCTA -ACGGAAAGTCACAGCCTACCACTA -ACGGAAAGTCACAGCCTAGGAGTA -ACGGAAAGTCACAGCCTATCGTCT -ACGGAAAGTCACAGCCTATGCACT -ACGGAAAGTCACAGCCTACTGACT -ACGGAAAGTCACAGCCTACAACCT -ACGGAAAGTCACAGCCTAGCTACT -ACGGAAAGTCACAGCCTAGGATCT -ACGGAAAGTCACAGCCTAAAGGCT -ACGGAAAGTCACAGCCTATCAACC -ACGGAAAGTCACAGCCTATGTTCC -ACGGAAAGTCACAGCCTAATTCCC -ACGGAAAGTCACAGCCTATTCTCG -ACGGAAAGTCACAGCCTATAGACG -ACGGAAAGTCACAGCCTAGTAACG -ACGGAAAGTCACAGCCTAACTTCG -ACGGAAAGTCACAGCCTATACGCA -ACGGAAAGTCACAGCCTACTTGCA -ACGGAAAGTCACAGCCTACGAACA -ACGGAAAGTCACAGCCTACAGTCA -ACGGAAAGTCACAGCCTAGATCCA -ACGGAAAGTCACAGCCTAACGACA -ACGGAAAGTCACAGCCTAAGCTCA -ACGGAAAGTCACAGCCTATCACGT -ACGGAAAGTCACAGCCTACGTAGT -ACGGAAAGTCACAGCCTAGTCAGT -ACGGAAAGTCACAGCCTAGAAGGT -ACGGAAAGTCACAGCCTAAACCGT -ACGGAAAGTCACAGCCTATTGTGC -ACGGAAAGTCACAGCCTACTAAGC -ACGGAAAGTCACAGCCTAACTAGC -ACGGAAAGTCACAGCCTAAGATGC -ACGGAAAGTCACAGCCTATGAAGG -ACGGAAAGTCACAGCCTACAATGG -ACGGAAAGTCACAGCCTAATGAGG -ACGGAAAGTCACAGCCTAAATGGG -ACGGAAAGTCACAGCCTATCCTGA -ACGGAAAGTCACAGCCTATAGCGA -ACGGAAAGTCACAGCCTACACAGA -ACGGAAAGTCACAGCCTAGCAAGA -ACGGAAAGTCACAGCCTAGGTTGA -ACGGAAAGTCACAGCCTATCCGAT -ACGGAAAGTCACAGCCTATGGCAT -ACGGAAAGTCACAGCCTACGAGAT -ACGGAAAGTCACAGCCTATACCAC -ACGGAAAGTCACAGCCTACAGAAC -ACGGAAAGTCACAGCCTAGTCTAC -ACGGAAAGTCACAGCCTAACGTAC -ACGGAAAGTCACAGCCTAAGTGAC -ACGGAAAGTCACAGCCTACTGTAG -ACGGAAAGTCACAGCCTACCTAAG -ACGGAAAGTCACAGCCTAGTTCAG -ACGGAAAGTCACAGCCTAGCATAG -ACGGAAAGTCACAGCCTAGACAAG -ACGGAAAGTCACAGCCTAAAGCAG -ACGGAAAGTCACAGCCTACGTCAA -ACGGAAAGTCACAGCCTAGCTGAA -ACGGAAAGTCACAGCCTAAGTACG -ACGGAAAGTCACAGCCTAATCCGA -ACGGAAAGTCACAGCCTAATGGGA -ACGGAAAGTCACAGCCTAGTGCAA -ACGGAAAGTCACAGCCTAGAGGAA -ACGGAAAGTCACAGCCTACAGGTA -ACGGAAAGTCACAGCCTAGACTCT -ACGGAAAGTCACAGCCTAAGTCCT -ACGGAAAGTCACAGCCTATAAGCC -ACGGAAAGTCACAGCCTAATAGCC -ACGGAAAGTCACAGCCTATAACCG -ACGGAAAGTCACAGCCTAATGCCA -ACGGAAAGTCACAGCACTGGAAAC -ACGGAAAGTCACAGCACTAACACC -ACGGAAAGTCACAGCACTATCGAG -ACGGAAAGTCACAGCACTCTCCTT -ACGGAAAGTCACAGCACTCCTGTT -ACGGAAAGTCACAGCACTCGGTTT -ACGGAAAGTCACAGCACTGTGGTT -ACGGAAAGTCACAGCACTGCCTTT -ACGGAAAGTCACAGCACTGGTCTT -ACGGAAAGTCACAGCACTACGCTT -ACGGAAAGTCACAGCACTAGCGTT -ACGGAAAGTCACAGCACTTTCGTC -ACGGAAAGTCACAGCACTTCTCTC -ACGGAAAGTCACAGCACTTGGATC -ACGGAAAGTCACAGCACTCACTTC -ACGGAAAGTCACAGCACTGTACTC -ACGGAAAGTCACAGCACTGATGTC -ACGGAAAGTCACAGCACTACAGTC -ACGGAAAGTCACAGCACTTTGCTG -ACGGAAAGTCACAGCACTTCCATG -ACGGAAAGTCACAGCACTTGTGTG -ACGGAAAGTCACAGCACTCTAGTG -ACGGAAAGTCACAGCACTCATCTG -ACGGAAAGTCACAGCACTGAGTTG -ACGGAAAGTCACAGCACTAGACTG -ACGGAAAGTCACAGCACTTCGGTA -ACGGAAAGTCACAGCACTTGCCTA -ACGGAAAGTCACAGCACTCCACTA -ACGGAAAGTCACAGCACTGGAGTA -ACGGAAAGTCACAGCACTTCGTCT -ACGGAAAGTCACAGCACTTGCACT -ACGGAAAGTCACAGCACTCTGACT -ACGGAAAGTCACAGCACTCAACCT -ACGGAAAGTCACAGCACTGCTACT -ACGGAAAGTCACAGCACTGGATCT -ACGGAAAGTCACAGCACTAAGGCT -ACGGAAAGTCACAGCACTTCAACC -ACGGAAAGTCACAGCACTTGTTCC -ACGGAAAGTCACAGCACTATTCCC -ACGGAAAGTCACAGCACTTTCTCG -ACGGAAAGTCACAGCACTTAGACG -ACGGAAAGTCACAGCACTGTAACG -ACGGAAAGTCACAGCACTACTTCG -ACGGAAAGTCACAGCACTTACGCA -ACGGAAAGTCACAGCACTCTTGCA -ACGGAAAGTCACAGCACTCGAACA -ACGGAAAGTCACAGCACTCAGTCA -ACGGAAAGTCACAGCACTGATCCA -ACGGAAAGTCACAGCACTACGACA -ACGGAAAGTCACAGCACTAGCTCA -ACGGAAAGTCACAGCACTTCACGT -ACGGAAAGTCACAGCACTCGTAGT -ACGGAAAGTCACAGCACTGTCAGT -ACGGAAAGTCACAGCACTGAAGGT -ACGGAAAGTCACAGCACTAACCGT -ACGGAAAGTCACAGCACTTTGTGC -ACGGAAAGTCACAGCACTCTAAGC -ACGGAAAGTCACAGCACTACTAGC -ACGGAAAGTCACAGCACTAGATGC -ACGGAAAGTCACAGCACTTGAAGG -ACGGAAAGTCACAGCACTCAATGG -ACGGAAAGTCACAGCACTATGAGG -ACGGAAAGTCACAGCACTAATGGG -ACGGAAAGTCACAGCACTTCCTGA -ACGGAAAGTCACAGCACTTAGCGA -ACGGAAAGTCACAGCACTCACAGA -ACGGAAAGTCACAGCACTGCAAGA -ACGGAAAGTCACAGCACTGGTTGA -ACGGAAAGTCACAGCACTTCCGAT -ACGGAAAGTCACAGCACTTGGCAT -ACGGAAAGTCACAGCACTCGAGAT -ACGGAAAGTCACAGCACTTACCAC -ACGGAAAGTCACAGCACTCAGAAC -ACGGAAAGTCACAGCACTGTCTAC -ACGGAAAGTCACAGCACTACGTAC -ACGGAAAGTCACAGCACTAGTGAC -ACGGAAAGTCACAGCACTCTGTAG -ACGGAAAGTCACAGCACTCCTAAG -ACGGAAAGTCACAGCACTGTTCAG -ACGGAAAGTCACAGCACTGCATAG -ACGGAAAGTCACAGCACTGACAAG -ACGGAAAGTCACAGCACTAAGCAG -ACGGAAAGTCACAGCACTCGTCAA -ACGGAAAGTCACAGCACTGCTGAA -ACGGAAAGTCACAGCACTAGTACG -ACGGAAAGTCACAGCACTATCCGA -ACGGAAAGTCACAGCACTATGGGA -ACGGAAAGTCACAGCACTGTGCAA -ACGGAAAGTCACAGCACTGAGGAA -ACGGAAAGTCACAGCACTCAGGTA -ACGGAAAGTCACAGCACTGACTCT -ACGGAAAGTCACAGCACTAGTCCT -ACGGAAAGTCACAGCACTTAAGCC -ACGGAAAGTCACAGCACTATAGCC -ACGGAAAGTCACAGCACTTAACCG -ACGGAAAGTCACAGCACTATGCCA -ACGGAAAGTCACTGCAGAGGAAAC -ACGGAAAGTCACTGCAGAAACACC -ACGGAAAGTCACTGCAGAATCGAG -ACGGAAAGTCACTGCAGACTCCTT -ACGGAAAGTCACTGCAGACCTGTT -ACGGAAAGTCACTGCAGACGGTTT -ACGGAAAGTCACTGCAGAGTGGTT -ACGGAAAGTCACTGCAGAGCCTTT -ACGGAAAGTCACTGCAGAGGTCTT -ACGGAAAGTCACTGCAGAACGCTT -ACGGAAAGTCACTGCAGAAGCGTT -ACGGAAAGTCACTGCAGATTCGTC -ACGGAAAGTCACTGCAGATCTCTC -ACGGAAAGTCACTGCAGATGGATC -ACGGAAAGTCACTGCAGACACTTC -ACGGAAAGTCACTGCAGAGTACTC -ACGGAAAGTCACTGCAGAGATGTC -ACGGAAAGTCACTGCAGAACAGTC -ACGGAAAGTCACTGCAGATTGCTG -ACGGAAAGTCACTGCAGATCCATG -ACGGAAAGTCACTGCAGATGTGTG -ACGGAAAGTCACTGCAGACTAGTG -ACGGAAAGTCACTGCAGACATCTG -ACGGAAAGTCACTGCAGAGAGTTG -ACGGAAAGTCACTGCAGAAGACTG -ACGGAAAGTCACTGCAGATCGGTA -ACGGAAAGTCACTGCAGATGCCTA -ACGGAAAGTCACTGCAGACCACTA -ACGGAAAGTCACTGCAGAGGAGTA -ACGGAAAGTCACTGCAGATCGTCT -ACGGAAAGTCACTGCAGATGCACT -ACGGAAAGTCACTGCAGACTGACT -ACGGAAAGTCACTGCAGACAACCT -ACGGAAAGTCACTGCAGAGCTACT -ACGGAAAGTCACTGCAGAGGATCT -ACGGAAAGTCACTGCAGAAAGGCT -ACGGAAAGTCACTGCAGATCAACC -ACGGAAAGTCACTGCAGATGTTCC -ACGGAAAGTCACTGCAGAATTCCC -ACGGAAAGTCACTGCAGATTCTCG -ACGGAAAGTCACTGCAGATAGACG -ACGGAAAGTCACTGCAGAGTAACG -ACGGAAAGTCACTGCAGAACTTCG -ACGGAAAGTCACTGCAGATACGCA -ACGGAAAGTCACTGCAGACTTGCA -ACGGAAAGTCACTGCAGACGAACA -ACGGAAAGTCACTGCAGACAGTCA -ACGGAAAGTCACTGCAGAGATCCA -ACGGAAAGTCACTGCAGAACGACA -ACGGAAAGTCACTGCAGAAGCTCA -ACGGAAAGTCACTGCAGATCACGT -ACGGAAAGTCACTGCAGACGTAGT -ACGGAAAGTCACTGCAGAGTCAGT -ACGGAAAGTCACTGCAGAGAAGGT -ACGGAAAGTCACTGCAGAAACCGT -ACGGAAAGTCACTGCAGATTGTGC -ACGGAAAGTCACTGCAGACTAAGC -ACGGAAAGTCACTGCAGAACTAGC -ACGGAAAGTCACTGCAGAAGATGC -ACGGAAAGTCACTGCAGATGAAGG -ACGGAAAGTCACTGCAGACAATGG -ACGGAAAGTCACTGCAGAATGAGG -ACGGAAAGTCACTGCAGAAATGGG -ACGGAAAGTCACTGCAGATCCTGA -ACGGAAAGTCACTGCAGATAGCGA -ACGGAAAGTCACTGCAGACACAGA -ACGGAAAGTCACTGCAGAGCAAGA -ACGGAAAGTCACTGCAGAGGTTGA -ACGGAAAGTCACTGCAGATCCGAT -ACGGAAAGTCACTGCAGATGGCAT -ACGGAAAGTCACTGCAGACGAGAT -ACGGAAAGTCACTGCAGATACCAC -ACGGAAAGTCACTGCAGACAGAAC -ACGGAAAGTCACTGCAGAGTCTAC -ACGGAAAGTCACTGCAGAACGTAC -ACGGAAAGTCACTGCAGAAGTGAC -ACGGAAAGTCACTGCAGACTGTAG -ACGGAAAGTCACTGCAGACCTAAG -ACGGAAAGTCACTGCAGAGTTCAG -ACGGAAAGTCACTGCAGAGCATAG -ACGGAAAGTCACTGCAGAGACAAG -ACGGAAAGTCACTGCAGAAAGCAG -ACGGAAAGTCACTGCAGACGTCAA -ACGGAAAGTCACTGCAGAGCTGAA -ACGGAAAGTCACTGCAGAAGTACG -ACGGAAAGTCACTGCAGAATCCGA -ACGGAAAGTCACTGCAGAATGGGA -ACGGAAAGTCACTGCAGAGTGCAA -ACGGAAAGTCACTGCAGAGAGGAA -ACGGAAAGTCACTGCAGACAGGTA -ACGGAAAGTCACTGCAGAGACTCT -ACGGAAAGTCACTGCAGAAGTCCT -ACGGAAAGTCACTGCAGATAAGCC -ACGGAAAGTCACTGCAGAATAGCC -ACGGAAAGTCACTGCAGATAACCG -ACGGAAAGTCACTGCAGAATGCCA -ACGGAAAGTCACAGGTGAGGAAAC -ACGGAAAGTCACAGGTGAAACACC -ACGGAAAGTCACAGGTGAATCGAG -ACGGAAAGTCACAGGTGACTCCTT -ACGGAAAGTCACAGGTGACCTGTT -ACGGAAAGTCACAGGTGACGGTTT -ACGGAAAGTCACAGGTGAGTGGTT -ACGGAAAGTCACAGGTGAGCCTTT -ACGGAAAGTCACAGGTGAGGTCTT -ACGGAAAGTCACAGGTGAACGCTT -ACGGAAAGTCACAGGTGAAGCGTT -ACGGAAAGTCACAGGTGATTCGTC -ACGGAAAGTCACAGGTGATCTCTC -ACGGAAAGTCACAGGTGATGGATC -ACGGAAAGTCACAGGTGACACTTC -ACGGAAAGTCACAGGTGAGTACTC -ACGGAAAGTCACAGGTGAGATGTC -ACGGAAAGTCACAGGTGAACAGTC -ACGGAAAGTCACAGGTGATTGCTG -ACGGAAAGTCACAGGTGATCCATG -ACGGAAAGTCACAGGTGATGTGTG -ACGGAAAGTCACAGGTGACTAGTG -ACGGAAAGTCACAGGTGACATCTG -ACGGAAAGTCACAGGTGAGAGTTG -ACGGAAAGTCACAGGTGAAGACTG -ACGGAAAGTCACAGGTGATCGGTA -ACGGAAAGTCACAGGTGATGCCTA -ACGGAAAGTCACAGGTGACCACTA -ACGGAAAGTCACAGGTGAGGAGTA -ACGGAAAGTCACAGGTGATCGTCT -ACGGAAAGTCACAGGTGATGCACT -ACGGAAAGTCACAGGTGACTGACT -ACGGAAAGTCACAGGTGACAACCT -ACGGAAAGTCACAGGTGAGCTACT -ACGGAAAGTCACAGGTGAGGATCT -ACGGAAAGTCACAGGTGAAAGGCT -ACGGAAAGTCACAGGTGATCAACC -ACGGAAAGTCACAGGTGATGTTCC -ACGGAAAGTCACAGGTGAATTCCC -ACGGAAAGTCACAGGTGATTCTCG -ACGGAAAGTCACAGGTGATAGACG -ACGGAAAGTCACAGGTGAGTAACG -ACGGAAAGTCACAGGTGAACTTCG -ACGGAAAGTCACAGGTGATACGCA -ACGGAAAGTCACAGGTGACTTGCA -ACGGAAAGTCACAGGTGACGAACA -ACGGAAAGTCACAGGTGACAGTCA -ACGGAAAGTCACAGGTGAGATCCA -ACGGAAAGTCACAGGTGAACGACA -ACGGAAAGTCACAGGTGAAGCTCA -ACGGAAAGTCACAGGTGATCACGT -ACGGAAAGTCACAGGTGACGTAGT -ACGGAAAGTCACAGGTGAGTCAGT -ACGGAAAGTCACAGGTGAGAAGGT -ACGGAAAGTCACAGGTGAAACCGT -ACGGAAAGTCACAGGTGATTGTGC -ACGGAAAGTCACAGGTGACTAAGC -ACGGAAAGTCACAGGTGAACTAGC -ACGGAAAGTCACAGGTGAAGATGC -ACGGAAAGTCACAGGTGATGAAGG -ACGGAAAGTCACAGGTGACAATGG -ACGGAAAGTCACAGGTGAATGAGG -ACGGAAAGTCACAGGTGAAATGGG -ACGGAAAGTCACAGGTGATCCTGA -ACGGAAAGTCACAGGTGATAGCGA -ACGGAAAGTCACAGGTGACACAGA -ACGGAAAGTCACAGGTGAGCAAGA -ACGGAAAGTCACAGGTGAGGTTGA -ACGGAAAGTCACAGGTGATCCGAT -ACGGAAAGTCACAGGTGATGGCAT -ACGGAAAGTCACAGGTGACGAGAT -ACGGAAAGTCACAGGTGATACCAC -ACGGAAAGTCACAGGTGACAGAAC -ACGGAAAGTCACAGGTGAGTCTAC -ACGGAAAGTCACAGGTGAACGTAC -ACGGAAAGTCACAGGTGAAGTGAC -ACGGAAAGTCACAGGTGACTGTAG -ACGGAAAGTCACAGGTGACCTAAG -ACGGAAAGTCACAGGTGAGTTCAG -ACGGAAAGTCACAGGTGAGCATAG -ACGGAAAGTCACAGGTGAGACAAG -ACGGAAAGTCACAGGTGAAAGCAG -ACGGAAAGTCACAGGTGACGTCAA -ACGGAAAGTCACAGGTGAGCTGAA -ACGGAAAGTCACAGGTGAAGTACG -ACGGAAAGTCACAGGTGAATCCGA -ACGGAAAGTCACAGGTGAATGGGA -ACGGAAAGTCACAGGTGAGTGCAA -ACGGAAAGTCACAGGTGAGAGGAA -ACGGAAAGTCACAGGTGACAGGTA -ACGGAAAGTCACAGGTGAGACTCT -ACGGAAAGTCACAGGTGAAGTCCT -ACGGAAAGTCACAGGTGATAAGCC -ACGGAAAGTCACAGGTGAATAGCC -ACGGAAAGTCACAGGTGATAACCG -ACGGAAAGTCACAGGTGAATGCCA -ACGGAAAGTCACTGGCAAGGAAAC -ACGGAAAGTCACTGGCAAAACACC -ACGGAAAGTCACTGGCAAATCGAG -ACGGAAAGTCACTGGCAACTCCTT -ACGGAAAGTCACTGGCAACCTGTT -ACGGAAAGTCACTGGCAACGGTTT -ACGGAAAGTCACTGGCAAGTGGTT -ACGGAAAGTCACTGGCAAGCCTTT -ACGGAAAGTCACTGGCAAGGTCTT -ACGGAAAGTCACTGGCAAACGCTT -ACGGAAAGTCACTGGCAAAGCGTT -ACGGAAAGTCACTGGCAATTCGTC -ACGGAAAGTCACTGGCAATCTCTC -ACGGAAAGTCACTGGCAATGGATC -ACGGAAAGTCACTGGCAACACTTC -ACGGAAAGTCACTGGCAAGTACTC -ACGGAAAGTCACTGGCAAGATGTC -ACGGAAAGTCACTGGCAAACAGTC -ACGGAAAGTCACTGGCAATTGCTG -ACGGAAAGTCACTGGCAATCCATG -ACGGAAAGTCACTGGCAATGTGTG -ACGGAAAGTCACTGGCAACTAGTG -ACGGAAAGTCACTGGCAACATCTG -ACGGAAAGTCACTGGCAAGAGTTG -ACGGAAAGTCACTGGCAAAGACTG -ACGGAAAGTCACTGGCAATCGGTA -ACGGAAAGTCACTGGCAATGCCTA -ACGGAAAGTCACTGGCAACCACTA -ACGGAAAGTCACTGGCAAGGAGTA -ACGGAAAGTCACTGGCAATCGTCT -ACGGAAAGTCACTGGCAATGCACT -ACGGAAAGTCACTGGCAACTGACT -ACGGAAAGTCACTGGCAACAACCT -ACGGAAAGTCACTGGCAAGCTACT -ACGGAAAGTCACTGGCAAGGATCT -ACGGAAAGTCACTGGCAAAAGGCT -ACGGAAAGTCACTGGCAATCAACC -ACGGAAAGTCACTGGCAATGTTCC -ACGGAAAGTCACTGGCAAATTCCC -ACGGAAAGTCACTGGCAATTCTCG -ACGGAAAGTCACTGGCAATAGACG -ACGGAAAGTCACTGGCAAGTAACG -ACGGAAAGTCACTGGCAAACTTCG -ACGGAAAGTCACTGGCAATACGCA -ACGGAAAGTCACTGGCAACTTGCA -ACGGAAAGTCACTGGCAACGAACA -ACGGAAAGTCACTGGCAACAGTCA -ACGGAAAGTCACTGGCAAGATCCA -ACGGAAAGTCACTGGCAAACGACA -ACGGAAAGTCACTGGCAAAGCTCA -ACGGAAAGTCACTGGCAATCACGT -ACGGAAAGTCACTGGCAACGTAGT -ACGGAAAGTCACTGGCAAGTCAGT -ACGGAAAGTCACTGGCAAGAAGGT -ACGGAAAGTCACTGGCAAAACCGT -ACGGAAAGTCACTGGCAATTGTGC -ACGGAAAGTCACTGGCAACTAAGC -ACGGAAAGTCACTGGCAAACTAGC -ACGGAAAGTCACTGGCAAAGATGC -ACGGAAAGTCACTGGCAATGAAGG -ACGGAAAGTCACTGGCAACAATGG -ACGGAAAGTCACTGGCAAATGAGG -ACGGAAAGTCACTGGCAAAATGGG -ACGGAAAGTCACTGGCAATCCTGA -ACGGAAAGTCACTGGCAATAGCGA -ACGGAAAGTCACTGGCAACACAGA -ACGGAAAGTCACTGGCAAGCAAGA -ACGGAAAGTCACTGGCAAGGTTGA -ACGGAAAGTCACTGGCAATCCGAT -ACGGAAAGTCACTGGCAATGGCAT -ACGGAAAGTCACTGGCAACGAGAT -ACGGAAAGTCACTGGCAATACCAC -ACGGAAAGTCACTGGCAACAGAAC -ACGGAAAGTCACTGGCAAGTCTAC -ACGGAAAGTCACTGGCAAACGTAC -ACGGAAAGTCACTGGCAAAGTGAC -ACGGAAAGTCACTGGCAACTGTAG -ACGGAAAGTCACTGGCAACCTAAG -ACGGAAAGTCACTGGCAAGTTCAG -ACGGAAAGTCACTGGCAAGCATAG -ACGGAAAGTCACTGGCAAGACAAG -ACGGAAAGTCACTGGCAAAAGCAG -ACGGAAAGTCACTGGCAACGTCAA -ACGGAAAGTCACTGGCAAGCTGAA -ACGGAAAGTCACTGGCAAAGTACG -ACGGAAAGTCACTGGCAAATCCGA -ACGGAAAGTCACTGGCAAATGGGA -ACGGAAAGTCACTGGCAAGTGCAA -ACGGAAAGTCACTGGCAAGAGGAA -ACGGAAAGTCACTGGCAACAGGTA -ACGGAAAGTCACTGGCAAGACTCT -ACGGAAAGTCACTGGCAAAGTCCT -ACGGAAAGTCACTGGCAATAAGCC -ACGGAAAGTCACTGGCAAATAGCC -ACGGAAAGTCACTGGCAATAACCG -ACGGAAAGTCACTGGCAAATGCCA -ACGGAAAGTCACAGGATGGGAAAC -ACGGAAAGTCACAGGATGAACACC -ACGGAAAGTCACAGGATGATCGAG -ACGGAAAGTCACAGGATGCTCCTT -ACGGAAAGTCACAGGATGCCTGTT -ACGGAAAGTCACAGGATGCGGTTT -ACGGAAAGTCACAGGATGGTGGTT -ACGGAAAGTCACAGGATGGCCTTT -ACGGAAAGTCACAGGATGGGTCTT -ACGGAAAGTCACAGGATGACGCTT -ACGGAAAGTCACAGGATGAGCGTT -ACGGAAAGTCACAGGATGTTCGTC -ACGGAAAGTCACAGGATGTCTCTC -ACGGAAAGTCACAGGATGTGGATC -ACGGAAAGTCACAGGATGCACTTC -ACGGAAAGTCACAGGATGGTACTC -ACGGAAAGTCACAGGATGGATGTC -ACGGAAAGTCACAGGATGACAGTC -ACGGAAAGTCACAGGATGTTGCTG -ACGGAAAGTCACAGGATGTCCATG -ACGGAAAGTCACAGGATGTGTGTG -ACGGAAAGTCACAGGATGCTAGTG -ACGGAAAGTCACAGGATGCATCTG -ACGGAAAGTCACAGGATGGAGTTG -ACGGAAAGTCACAGGATGAGACTG -ACGGAAAGTCACAGGATGTCGGTA -ACGGAAAGTCACAGGATGTGCCTA -ACGGAAAGTCACAGGATGCCACTA -ACGGAAAGTCACAGGATGGGAGTA -ACGGAAAGTCACAGGATGTCGTCT -ACGGAAAGTCACAGGATGTGCACT -ACGGAAAGTCACAGGATGCTGACT -ACGGAAAGTCACAGGATGCAACCT -ACGGAAAGTCACAGGATGGCTACT -ACGGAAAGTCACAGGATGGGATCT -ACGGAAAGTCACAGGATGAAGGCT -ACGGAAAGTCACAGGATGTCAACC -ACGGAAAGTCACAGGATGTGTTCC -ACGGAAAGTCACAGGATGATTCCC -ACGGAAAGTCACAGGATGTTCTCG -ACGGAAAGTCACAGGATGTAGACG -ACGGAAAGTCACAGGATGGTAACG -ACGGAAAGTCACAGGATGACTTCG -ACGGAAAGTCACAGGATGTACGCA -ACGGAAAGTCACAGGATGCTTGCA -ACGGAAAGTCACAGGATGCGAACA -ACGGAAAGTCACAGGATGCAGTCA -ACGGAAAGTCACAGGATGGATCCA -ACGGAAAGTCACAGGATGACGACA -ACGGAAAGTCACAGGATGAGCTCA -ACGGAAAGTCACAGGATGTCACGT -ACGGAAAGTCACAGGATGCGTAGT -ACGGAAAGTCACAGGATGGTCAGT -ACGGAAAGTCACAGGATGGAAGGT -ACGGAAAGTCACAGGATGAACCGT -ACGGAAAGTCACAGGATGTTGTGC -ACGGAAAGTCACAGGATGCTAAGC -ACGGAAAGTCACAGGATGACTAGC -ACGGAAAGTCACAGGATGAGATGC -ACGGAAAGTCACAGGATGTGAAGG -ACGGAAAGTCACAGGATGCAATGG -ACGGAAAGTCACAGGATGATGAGG -ACGGAAAGTCACAGGATGAATGGG -ACGGAAAGTCACAGGATGTCCTGA -ACGGAAAGTCACAGGATGTAGCGA -ACGGAAAGTCACAGGATGCACAGA -ACGGAAAGTCACAGGATGGCAAGA -ACGGAAAGTCACAGGATGGGTTGA -ACGGAAAGTCACAGGATGTCCGAT -ACGGAAAGTCACAGGATGTGGCAT -ACGGAAAGTCACAGGATGCGAGAT -ACGGAAAGTCACAGGATGTACCAC -ACGGAAAGTCACAGGATGCAGAAC -ACGGAAAGTCACAGGATGGTCTAC -ACGGAAAGTCACAGGATGACGTAC -ACGGAAAGTCACAGGATGAGTGAC -ACGGAAAGTCACAGGATGCTGTAG -ACGGAAAGTCACAGGATGCCTAAG -ACGGAAAGTCACAGGATGGTTCAG -ACGGAAAGTCACAGGATGGCATAG -ACGGAAAGTCACAGGATGGACAAG -ACGGAAAGTCACAGGATGAAGCAG -ACGGAAAGTCACAGGATGCGTCAA -ACGGAAAGTCACAGGATGGCTGAA -ACGGAAAGTCACAGGATGAGTACG -ACGGAAAGTCACAGGATGATCCGA -ACGGAAAGTCACAGGATGATGGGA -ACGGAAAGTCACAGGATGGTGCAA -ACGGAAAGTCACAGGATGGAGGAA -ACGGAAAGTCACAGGATGCAGGTA -ACGGAAAGTCACAGGATGGACTCT -ACGGAAAGTCACAGGATGAGTCCT -ACGGAAAGTCACAGGATGTAAGCC -ACGGAAAGTCACAGGATGATAGCC -ACGGAAAGTCACAGGATGTAACCG -ACGGAAAGTCACAGGATGATGCCA -ACGGAAAGTCACGGGAATGGAAAC -ACGGAAAGTCACGGGAATAACACC -ACGGAAAGTCACGGGAATATCGAG -ACGGAAAGTCACGGGAATCTCCTT -ACGGAAAGTCACGGGAATCCTGTT -ACGGAAAGTCACGGGAATCGGTTT -ACGGAAAGTCACGGGAATGTGGTT -ACGGAAAGTCACGGGAATGCCTTT -ACGGAAAGTCACGGGAATGGTCTT -ACGGAAAGTCACGGGAATACGCTT -ACGGAAAGTCACGGGAATAGCGTT -ACGGAAAGTCACGGGAATTTCGTC -ACGGAAAGTCACGGGAATTCTCTC -ACGGAAAGTCACGGGAATTGGATC -ACGGAAAGTCACGGGAATCACTTC -ACGGAAAGTCACGGGAATGTACTC -ACGGAAAGTCACGGGAATGATGTC -ACGGAAAGTCACGGGAATACAGTC -ACGGAAAGTCACGGGAATTTGCTG -ACGGAAAGTCACGGGAATTCCATG -ACGGAAAGTCACGGGAATTGTGTG -ACGGAAAGTCACGGGAATCTAGTG -ACGGAAAGTCACGGGAATCATCTG -ACGGAAAGTCACGGGAATGAGTTG -ACGGAAAGTCACGGGAATAGACTG -ACGGAAAGTCACGGGAATTCGGTA -ACGGAAAGTCACGGGAATTGCCTA -ACGGAAAGTCACGGGAATCCACTA -ACGGAAAGTCACGGGAATGGAGTA -ACGGAAAGTCACGGGAATTCGTCT -ACGGAAAGTCACGGGAATTGCACT -ACGGAAAGTCACGGGAATCTGACT -ACGGAAAGTCACGGGAATCAACCT -ACGGAAAGTCACGGGAATGCTACT -ACGGAAAGTCACGGGAATGGATCT -ACGGAAAGTCACGGGAATAAGGCT -ACGGAAAGTCACGGGAATTCAACC -ACGGAAAGTCACGGGAATTGTTCC -ACGGAAAGTCACGGGAATATTCCC -ACGGAAAGTCACGGGAATTTCTCG -ACGGAAAGTCACGGGAATTAGACG -ACGGAAAGTCACGGGAATGTAACG -ACGGAAAGTCACGGGAATACTTCG -ACGGAAAGTCACGGGAATTACGCA -ACGGAAAGTCACGGGAATCTTGCA -ACGGAAAGTCACGGGAATCGAACA -ACGGAAAGTCACGGGAATCAGTCA -ACGGAAAGTCACGGGAATGATCCA -ACGGAAAGTCACGGGAATACGACA -ACGGAAAGTCACGGGAATAGCTCA -ACGGAAAGTCACGGGAATTCACGT -ACGGAAAGTCACGGGAATCGTAGT -ACGGAAAGTCACGGGAATGTCAGT -ACGGAAAGTCACGGGAATGAAGGT -ACGGAAAGTCACGGGAATAACCGT -ACGGAAAGTCACGGGAATTTGTGC -ACGGAAAGTCACGGGAATCTAAGC -ACGGAAAGTCACGGGAATACTAGC -ACGGAAAGTCACGGGAATAGATGC -ACGGAAAGTCACGGGAATTGAAGG -ACGGAAAGTCACGGGAATCAATGG -ACGGAAAGTCACGGGAATATGAGG -ACGGAAAGTCACGGGAATAATGGG -ACGGAAAGTCACGGGAATTCCTGA -ACGGAAAGTCACGGGAATTAGCGA -ACGGAAAGTCACGGGAATCACAGA -ACGGAAAGTCACGGGAATGCAAGA -ACGGAAAGTCACGGGAATGGTTGA -ACGGAAAGTCACGGGAATTCCGAT -ACGGAAAGTCACGGGAATTGGCAT -ACGGAAAGTCACGGGAATCGAGAT -ACGGAAAGTCACGGGAATTACCAC -ACGGAAAGTCACGGGAATCAGAAC -ACGGAAAGTCACGGGAATGTCTAC -ACGGAAAGTCACGGGAATACGTAC -ACGGAAAGTCACGGGAATAGTGAC -ACGGAAAGTCACGGGAATCTGTAG -ACGGAAAGTCACGGGAATCCTAAG -ACGGAAAGTCACGGGAATGTTCAG -ACGGAAAGTCACGGGAATGCATAG -ACGGAAAGTCACGGGAATGACAAG -ACGGAAAGTCACGGGAATAAGCAG -ACGGAAAGTCACGGGAATCGTCAA -ACGGAAAGTCACGGGAATGCTGAA -ACGGAAAGTCACGGGAATAGTACG -ACGGAAAGTCACGGGAATATCCGA -ACGGAAAGTCACGGGAATATGGGA -ACGGAAAGTCACGGGAATGTGCAA -ACGGAAAGTCACGGGAATGAGGAA -ACGGAAAGTCACGGGAATCAGGTA -ACGGAAAGTCACGGGAATGACTCT -ACGGAAAGTCACGGGAATAGTCCT -ACGGAAAGTCACGGGAATTAAGCC -ACGGAAAGTCACGGGAATATAGCC -ACGGAAAGTCACGGGAATTAACCG -ACGGAAAGTCACGGGAATATGCCA -ACGGAAAGTCACTGATCCGGAAAC -ACGGAAAGTCACTGATCCAACACC -ACGGAAAGTCACTGATCCATCGAG -ACGGAAAGTCACTGATCCCTCCTT -ACGGAAAGTCACTGATCCCCTGTT -ACGGAAAGTCACTGATCCCGGTTT -ACGGAAAGTCACTGATCCGTGGTT -ACGGAAAGTCACTGATCCGCCTTT -ACGGAAAGTCACTGATCCGGTCTT -ACGGAAAGTCACTGATCCACGCTT -ACGGAAAGTCACTGATCCAGCGTT -ACGGAAAGTCACTGATCCTTCGTC -ACGGAAAGTCACTGATCCTCTCTC -ACGGAAAGTCACTGATCCTGGATC -ACGGAAAGTCACTGATCCCACTTC -ACGGAAAGTCACTGATCCGTACTC -ACGGAAAGTCACTGATCCGATGTC -ACGGAAAGTCACTGATCCACAGTC -ACGGAAAGTCACTGATCCTTGCTG -ACGGAAAGTCACTGATCCTCCATG -ACGGAAAGTCACTGATCCTGTGTG -ACGGAAAGTCACTGATCCCTAGTG -ACGGAAAGTCACTGATCCCATCTG -ACGGAAAGTCACTGATCCGAGTTG -ACGGAAAGTCACTGATCCAGACTG -ACGGAAAGTCACTGATCCTCGGTA -ACGGAAAGTCACTGATCCTGCCTA -ACGGAAAGTCACTGATCCCCACTA -ACGGAAAGTCACTGATCCGGAGTA -ACGGAAAGTCACTGATCCTCGTCT -ACGGAAAGTCACTGATCCTGCACT -ACGGAAAGTCACTGATCCCTGACT -ACGGAAAGTCACTGATCCCAACCT -ACGGAAAGTCACTGATCCGCTACT -ACGGAAAGTCACTGATCCGGATCT -ACGGAAAGTCACTGATCCAAGGCT -ACGGAAAGTCACTGATCCTCAACC -ACGGAAAGTCACTGATCCTGTTCC -ACGGAAAGTCACTGATCCATTCCC -ACGGAAAGTCACTGATCCTTCTCG -ACGGAAAGTCACTGATCCTAGACG -ACGGAAAGTCACTGATCCGTAACG -ACGGAAAGTCACTGATCCACTTCG -ACGGAAAGTCACTGATCCTACGCA -ACGGAAAGTCACTGATCCCTTGCA -ACGGAAAGTCACTGATCCCGAACA -ACGGAAAGTCACTGATCCCAGTCA -ACGGAAAGTCACTGATCCGATCCA -ACGGAAAGTCACTGATCCACGACA -ACGGAAAGTCACTGATCCAGCTCA -ACGGAAAGTCACTGATCCTCACGT -ACGGAAAGTCACTGATCCCGTAGT -ACGGAAAGTCACTGATCCGTCAGT -ACGGAAAGTCACTGATCCGAAGGT -ACGGAAAGTCACTGATCCAACCGT -ACGGAAAGTCACTGATCCTTGTGC -ACGGAAAGTCACTGATCCCTAAGC -ACGGAAAGTCACTGATCCACTAGC -ACGGAAAGTCACTGATCCAGATGC -ACGGAAAGTCACTGATCCTGAAGG -ACGGAAAGTCACTGATCCCAATGG -ACGGAAAGTCACTGATCCATGAGG -ACGGAAAGTCACTGATCCAATGGG -ACGGAAAGTCACTGATCCTCCTGA -ACGGAAAGTCACTGATCCTAGCGA -ACGGAAAGTCACTGATCCCACAGA -ACGGAAAGTCACTGATCCGCAAGA -ACGGAAAGTCACTGATCCGGTTGA -ACGGAAAGTCACTGATCCTCCGAT -ACGGAAAGTCACTGATCCTGGCAT -ACGGAAAGTCACTGATCCCGAGAT -ACGGAAAGTCACTGATCCTACCAC -ACGGAAAGTCACTGATCCCAGAAC -ACGGAAAGTCACTGATCCGTCTAC -ACGGAAAGTCACTGATCCACGTAC -ACGGAAAGTCACTGATCCAGTGAC -ACGGAAAGTCACTGATCCCTGTAG -ACGGAAAGTCACTGATCCCCTAAG -ACGGAAAGTCACTGATCCGTTCAG -ACGGAAAGTCACTGATCCGCATAG -ACGGAAAGTCACTGATCCGACAAG -ACGGAAAGTCACTGATCCAAGCAG -ACGGAAAGTCACTGATCCCGTCAA -ACGGAAAGTCACTGATCCGCTGAA -ACGGAAAGTCACTGATCCAGTACG -ACGGAAAGTCACTGATCCATCCGA -ACGGAAAGTCACTGATCCATGGGA -ACGGAAAGTCACTGATCCGTGCAA -ACGGAAAGTCACTGATCCGAGGAA -ACGGAAAGTCACTGATCCCAGGTA -ACGGAAAGTCACTGATCCGACTCT -ACGGAAAGTCACTGATCCAGTCCT -ACGGAAAGTCACTGATCCTAAGCC -ACGGAAAGTCACTGATCCATAGCC -ACGGAAAGTCACTGATCCTAACCG -ACGGAAAGTCACTGATCCATGCCA -ACGGAAAGTCACCGATAGGGAAAC -ACGGAAAGTCACCGATAGAACACC -ACGGAAAGTCACCGATAGATCGAG -ACGGAAAGTCACCGATAGCTCCTT -ACGGAAAGTCACCGATAGCCTGTT -ACGGAAAGTCACCGATAGCGGTTT -ACGGAAAGTCACCGATAGGTGGTT -ACGGAAAGTCACCGATAGGCCTTT -ACGGAAAGTCACCGATAGGGTCTT -ACGGAAAGTCACCGATAGACGCTT -ACGGAAAGTCACCGATAGAGCGTT -ACGGAAAGTCACCGATAGTTCGTC -ACGGAAAGTCACCGATAGTCTCTC -ACGGAAAGTCACCGATAGTGGATC -ACGGAAAGTCACCGATAGCACTTC -ACGGAAAGTCACCGATAGGTACTC -ACGGAAAGTCACCGATAGGATGTC -ACGGAAAGTCACCGATAGACAGTC -ACGGAAAGTCACCGATAGTTGCTG -ACGGAAAGTCACCGATAGTCCATG -ACGGAAAGTCACCGATAGTGTGTG -ACGGAAAGTCACCGATAGCTAGTG -ACGGAAAGTCACCGATAGCATCTG -ACGGAAAGTCACCGATAGGAGTTG -ACGGAAAGTCACCGATAGAGACTG -ACGGAAAGTCACCGATAGTCGGTA -ACGGAAAGTCACCGATAGTGCCTA -ACGGAAAGTCACCGATAGCCACTA -ACGGAAAGTCACCGATAGGGAGTA -ACGGAAAGTCACCGATAGTCGTCT -ACGGAAAGTCACCGATAGTGCACT -ACGGAAAGTCACCGATAGCTGACT -ACGGAAAGTCACCGATAGCAACCT -ACGGAAAGTCACCGATAGGCTACT -ACGGAAAGTCACCGATAGGGATCT -ACGGAAAGTCACCGATAGAAGGCT -ACGGAAAGTCACCGATAGTCAACC -ACGGAAAGTCACCGATAGTGTTCC -ACGGAAAGTCACCGATAGATTCCC -ACGGAAAGTCACCGATAGTTCTCG -ACGGAAAGTCACCGATAGTAGACG -ACGGAAAGTCACCGATAGGTAACG -ACGGAAAGTCACCGATAGACTTCG -ACGGAAAGTCACCGATAGTACGCA -ACGGAAAGTCACCGATAGCTTGCA -ACGGAAAGTCACCGATAGCGAACA -ACGGAAAGTCACCGATAGCAGTCA -ACGGAAAGTCACCGATAGGATCCA -ACGGAAAGTCACCGATAGACGACA -ACGGAAAGTCACCGATAGAGCTCA -ACGGAAAGTCACCGATAGTCACGT -ACGGAAAGTCACCGATAGCGTAGT -ACGGAAAGTCACCGATAGGTCAGT -ACGGAAAGTCACCGATAGGAAGGT -ACGGAAAGTCACCGATAGAACCGT -ACGGAAAGTCACCGATAGTTGTGC -ACGGAAAGTCACCGATAGCTAAGC -ACGGAAAGTCACCGATAGACTAGC -ACGGAAAGTCACCGATAGAGATGC -ACGGAAAGTCACCGATAGTGAAGG -ACGGAAAGTCACCGATAGCAATGG -ACGGAAAGTCACCGATAGATGAGG -ACGGAAAGTCACCGATAGAATGGG -ACGGAAAGTCACCGATAGTCCTGA -ACGGAAAGTCACCGATAGTAGCGA -ACGGAAAGTCACCGATAGCACAGA -ACGGAAAGTCACCGATAGGCAAGA -ACGGAAAGTCACCGATAGGGTTGA -ACGGAAAGTCACCGATAGTCCGAT -ACGGAAAGTCACCGATAGTGGCAT -ACGGAAAGTCACCGATAGCGAGAT -ACGGAAAGTCACCGATAGTACCAC -ACGGAAAGTCACCGATAGCAGAAC -ACGGAAAGTCACCGATAGGTCTAC -ACGGAAAGTCACCGATAGACGTAC -ACGGAAAGTCACCGATAGAGTGAC -ACGGAAAGTCACCGATAGCTGTAG -ACGGAAAGTCACCGATAGCCTAAG -ACGGAAAGTCACCGATAGGTTCAG -ACGGAAAGTCACCGATAGGCATAG -ACGGAAAGTCACCGATAGGACAAG -ACGGAAAGTCACCGATAGAAGCAG -ACGGAAAGTCACCGATAGCGTCAA -ACGGAAAGTCACCGATAGGCTGAA -ACGGAAAGTCACCGATAGAGTACG -ACGGAAAGTCACCGATAGATCCGA -ACGGAAAGTCACCGATAGATGGGA -ACGGAAAGTCACCGATAGGTGCAA -ACGGAAAGTCACCGATAGGAGGAA -ACGGAAAGTCACCGATAGCAGGTA -ACGGAAAGTCACCGATAGGACTCT -ACGGAAAGTCACCGATAGAGTCCT -ACGGAAAGTCACCGATAGTAAGCC -ACGGAAAGTCACCGATAGATAGCC -ACGGAAAGTCACCGATAGTAACCG -ACGGAAAGTCACCGATAGATGCCA -ACGGAAAGTCACAGACACGGAAAC -ACGGAAAGTCACAGACACAACACC -ACGGAAAGTCACAGACACATCGAG -ACGGAAAGTCACAGACACCTCCTT -ACGGAAAGTCACAGACACCCTGTT -ACGGAAAGTCACAGACACCGGTTT -ACGGAAAGTCACAGACACGTGGTT -ACGGAAAGTCACAGACACGCCTTT -ACGGAAAGTCACAGACACGGTCTT -ACGGAAAGTCACAGACACACGCTT -ACGGAAAGTCACAGACACAGCGTT -ACGGAAAGTCACAGACACTTCGTC -ACGGAAAGTCACAGACACTCTCTC -ACGGAAAGTCACAGACACTGGATC -ACGGAAAGTCACAGACACCACTTC -ACGGAAAGTCACAGACACGTACTC -ACGGAAAGTCACAGACACGATGTC -ACGGAAAGTCACAGACACACAGTC -ACGGAAAGTCACAGACACTTGCTG -ACGGAAAGTCACAGACACTCCATG -ACGGAAAGTCACAGACACTGTGTG -ACGGAAAGTCACAGACACCTAGTG -ACGGAAAGTCACAGACACCATCTG -ACGGAAAGTCACAGACACGAGTTG -ACGGAAAGTCACAGACACAGACTG -ACGGAAAGTCACAGACACTCGGTA -ACGGAAAGTCACAGACACTGCCTA -ACGGAAAGTCACAGACACCCACTA -ACGGAAAGTCACAGACACGGAGTA -ACGGAAAGTCACAGACACTCGTCT -ACGGAAAGTCACAGACACTGCACT -ACGGAAAGTCACAGACACCTGACT -ACGGAAAGTCACAGACACCAACCT -ACGGAAAGTCACAGACACGCTACT -ACGGAAAGTCACAGACACGGATCT -ACGGAAAGTCACAGACACAAGGCT -ACGGAAAGTCACAGACACTCAACC -ACGGAAAGTCACAGACACTGTTCC -ACGGAAAGTCACAGACACATTCCC -ACGGAAAGTCACAGACACTTCTCG -ACGGAAAGTCACAGACACTAGACG -ACGGAAAGTCACAGACACGTAACG -ACGGAAAGTCACAGACACACTTCG -ACGGAAAGTCACAGACACTACGCA -ACGGAAAGTCACAGACACCTTGCA -ACGGAAAGTCACAGACACCGAACA -ACGGAAAGTCACAGACACCAGTCA -ACGGAAAGTCACAGACACGATCCA -ACGGAAAGTCACAGACACACGACA -ACGGAAAGTCACAGACACAGCTCA -ACGGAAAGTCACAGACACTCACGT -ACGGAAAGTCACAGACACCGTAGT -ACGGAAAGTCACAGACACGTCAGT -ACGGAAAGTCACAGACACGAAGGT -ACGGAAAGTCACAGACACAACCGT -ACGGAAAGTCACAGACACTTGTGC -ACGGAAAGTCACAGACACCTAAGC -ACGGAAAGTCACAGACACACTAGC -ACGGAAAGTCACAGACACAGATGC -ACGGAAAGTCACAGACACTGAAGG -ACGGAAAGTCACAGACACCAATGG -ACGGAAAGTCACAGACACATGAGG -ACGGAAAGTCACAGACACAATGGG -ACGGAAAGTCACAGACACTCCTGA -ACGGAAAGTCACAGACACTAGCGA -ACGGAAAGTCACAGACACCACAGA -ACGGAAAGTCACAGACACGCAAGA -ACGGAAAGTCACAGACACGGTTGA -ACGGAAAGTCACAGACACTCCGAT -ACGGAAAGTCACAGACACTGGCAT -ACGGAAAGTCACAGACACCGAGAT -ACGGAAAGTCACAGACACTACCAC -ACGGAAAGTCACAGACACCAGAAC -ACGGAAAGTCACAGACACGTCTAC -ACGGAAAGTCACAGACACACGTAC -ACGGAAAGTCACAGACACAGTGAC -ACGGAAAGTCACAGACACCTGTAG -ACGGAAAGTCACAGACACCCTAAG -ACGGAAAGTCACAGACACGTTCAG -ACGGAAAGTCACAGACACGCATAG -ACGGAAAGTCACAGACACGACAAG -ACGGAAAGTCACAGACACAAGCAG -ACGGAAAGTCACAGACACCGTCAA -ACGGAAAGTCACAGACACGCTGAA -ACGGAAAGTCACAGACACAGTACG -ACGGAAAGTCACAGACACATCCGA -ACGGAAAGTCACAGACACATGGGA -ACGGAAAGTCACAGACACGTGCAA -ACGGAAAGTCACAGACACGAGGAA -ACGGAAAGTCACAGACACCAGGTA -ACGGAAAGTCACAGACACGACTCT -ACGGAAAGTCACAGACACAGTCCT -ACGGAAAGTCACAGACACTAAGCC -ACGGAAAGTCACAGACACATAGCC -ACGGAAAGTCACAGACACTAACCG -ACGGAAAGTCACAGACACATGCCA -ACGGAAAGTCACAGAGCAGGAAAC -ACGGAAAGTCACAGAGCAAACACC -ACGGAAAGTCACAGAGCAATCGAG -ACGGAAAGTCACAGAGCACTCCTT -ACGGAAAGTCACAGAGCACCTGTT -ACGGAAAGTCACAGAGCACGGTTT -ACGGAAAGTCACAGAGCAGTGGTT -ACGGAAAGTCACAGAGCAGCCTTT -ACGGAAAGTCACAGAGCAGGTCTT -ACGGAAAGTCACAGAGCAACGCTT -ACGGAAAGTCACAGAGCAAGCGTT -ACGGAAAGTCACAGAGCATTCGTC -ACGGAAAGTCACAGAGCATCTCTC -ACGGAAAGTCACAGAGCATGGATC -ACGGAAAGTCACAGAGCACACTTC -ACGGAAAGTCACAGAGCAGTACTC -ACGGAAAGTCACAGAGCAGATGTC -ACGGAAAGTCACAGAGCAACAGTC -ACGGAAAGTCACAGAGCATTGCTG -ACGGAAAGTCACAGAGCATCCATG -ACGGAAAGTCACAGAGCATGTGTG -ACGGAAAGTCACAGAGCACTAGTG -ACGGAAAGTCACAGAGCACATCTG -ACGGAAAGTCACAGAGCAGAGTTG -ACGGAAAGTCACAGAGCAAGACTG -ACGGAAAGTCACAGAGCATCGGTA -ACGGAAAGTCACAGAGCATGCCTA -ACGGAAAGTCACAGAGCACCACTA -ACGGAAAGTCACAGAGCAGGAGTA -ACGGAAAGTCACAGAGCATCGTCT -ACGGAAAGTCACAGAGCATGCACT -ACGGAAAGTCACAGAGCACTGACT -ACGGAAAGTCACAGAGCACAACCT -ACGGAAAGTCACAGAGCAGCTACT -ACGGAAAGTCACAGAGCAGGATCT -ACGGAAAGTCACAGAGCAAAGGCT -ACGGAAAGTCACAGAGCATCAACC -ACGGAAAGTCACAGAGCATGTTCC -ACGGAAAGTCACAGAGCAATTCCC -ACGGAAAGTCACAGAGCATTCTCG -ACGGAAAGTCACAGAGCATAGACG -ACGGAAAGTCACAGAGCAGTAACG -ACGGAAAGTCACAGAGCAACTTCG -ACGGAAAGTCACAGAGCATACGCA -ACGGAAAGTCACAGAGCACTTGCA -ACGGAAAGTCACAGAGCACGAACA -ACGGAAAGTCACAGAGCACAGTCA -ACGGAAAGTCACAGAGCAGATCCA -ACGGAAAGTCACAGAGCAACGACA -ACGGAAAGTCACAGAGCAAGCTCA -ACGGAAAGTCACAGAGCATCACGT -ACGGAAAGTCACAGAGCACGTAGT -ACGGAAAGTCACAGAGCAGTCAGT -ACGGAAAGTCACAGAGCAGAAGGT -ACGGAAAGTCACAGAGCAAACCGT -ACGGAAAGTCACAGAGCATTGTGC -ACGGAAAGTCACAGAGCACTAAGC -ACGGAAAGTCACAGAGCAACTAGC -ACGGAAAGTCACAGAGCAAGATGC -ACGGAAAGTCACAGAGCATGAAGG -ACGGAAAGTCACAGAGCACAATGG -ACGGAAAGTCACAGAGCAATGAGG -ACGGAAAGTCACAGAGCAAATGGG -ACGGAAAGTCACAGAGCATCCTGA -ACGGAAAGTCACAGAGCATAGCGA -ACGGAAAGTCACAGAGCACACAGA -ACGGAAAGTCACAGAGCAGCAAGA -ACGGAAAGTCACAGAGCAGGTTGA -ACGGAAAGTCACAGAGCATCCGAT -ACGGAAAGTCACAGAGCATGGCAT -ACGGAAAGTCACAGAGCACGAGAT -ACGGAAAGTCACAGAGCATACCAC -ACGGAAAGTCACAGAGCACAGAAC -ACGGAAAGTCACAGAGCAGTCTAC -ACGGAAAGTCACAGAGCAACGTAC -ACGGAAAGTCACAGAGCAAGTGAC -ACGGAAAGTCACAGAGCACTGTAG -ACGGAAAGTCACAGAGCACCTAAG -ACGGAAAGTCACAGAGCAGTTCAG -ACGGAAAGTCACAGAGCAGCATAG -ACGGAAAGTCACAGAGCAGACAAG -ACGGAAAGTCACAGAGCAAAGCAG -ACGGAAAGTCACAGAGCACGTCAA -ACGGAAAGTCACAGAGCAGCTGAA -ACGGAAAGTCACAGAGCAAGTACG -ACGGAAAGTCACAGAGCAATCCGA -ACGGAAAGTCACAGAGCAATGGGA -ACGGAAAGTCACAGAGCAGTGCAA -ACGGAAAGTCACAGAGCAGAGGAA -ACGGAAAGTCACAGAGCACAGGTA -ACGGAAAGTCACAGAGCAGACTCT -ACGGAAAGTCACAGAGCAAGTCCT -ACGGAAAGTCACAGAGCATAAGCC -ACGGAAAGTCACAGAGCAATAGCC -ACGGAAAGTCACAGAGCATAACCG -ACGGAAAGTCACAGAGCAATGCCA -ACGGAAAGTCACTGAGGTGGAAAC -ACGGAAAGTCACTGAGGTAACACC -ACGGAAAGTCACTGAGGTATCGAG -ACGGAAAGTCACTGAGGTCTCCTT -ACGGAAAGTCACTGAGGTCCTGTT -ACGGAAAGTCACTGAGGTCGGTTT -ACGGAAAGTCACTGAGGTGTGGTT -ACGGAAAGTCACTGAGGTGCCTTT -ACGGAAAGTCACTGAGGTGGTCTT -ACGGAAAGTCACTGAGGTACGCTT -ACGGAAAGTCACTGAGGTAGCGTT -ACGGAAAGTCACTGAGGTTTCGTC -ACGGAAAGTCACTGAGGTTCTCTC -ACGGAAAGTCACTGAGGTTGGATC -ACGGAAAGTCACTGAGGTCACTTC -ACGGAAAGTCACTGAGGTGTACTC -ACGGAAAGTCACTGAGGTGATGTC -ACGGAAAGTCACTGAGGTACAGTC -ACGGAAAGTCACTGAGGTTTGCTG -ACGGAAAGTCACTGAGGTTCCATG -ACGGAAAGTCACTGAGGTTGTGTG -ACGGAAAGTCACTGAGGTCTAGTG -ACGGAAAGTCACTGAGGTCATCTG -ACGGAAAGTCACTGAGGTGAGTTG -ACGGAAAGTCACTGAGGTAGACTG -ACGGAAAGTCACTGAGGTTCGGTA -ACGGAAAGTCACTGAGGTTGCCTA -ACGGAAAGTCACTGAGGTCCACTA -ACGGAAAGTCACTGAGGTGGAGTA -ACGGAAAGTCACTGAGGTTCGTCT -ACGGAAAGTCACTGAGGTTGCACT -ACGGAAAGTCACTGAGGTCTGACT -ACGGAAAGTCACTGAGGTCAACCT -ACGGAAAGTCACTGAGGTGCTACT -ACGGAAAGTCACTGAGGTGGATCT -ACGGAAAGTCACTGAGGTAAGGCT -ACGGAAAGTCACTGAGGTTCAACC -ACGGAAAGTCACTGAGGTTGTTCC -ACGGAAAGTCACTGAGGTATTCCC -ACGGAAAGTCACTGAGGTTTCTCG -ACGGAAAGTCACTGAGGTTAGACG -ACGGAAAGTCACTGAGGTGTAACG -ACGGAAAGTCACTGAGGTACTTCG -ACGGAAAGTCACTGAGGTTACGCA -ACGGAAAGTCACTGAGGTCTTGCA -ACGGAAAGTCACTGAGGTCGAACA -ACGGAAAGTCACTGAGGTCAGTCA -ACGGAAAGTCACTGAGGTGATCCA -ACGGAAAGTCACTGAGGTACGACA -ACGGAAAGTCACTGAGGTAGCTCA -ACGGAAAGTCACTGAGGTTCACGT -ACGGAAAGTCACTGAGGTCGTAGT -ACGGAAAGTCACTGAGGTGTCAGT -ACGGAAAGTCACTGAGGTGAAGGT -ACGGAAAGTCACTGAGGTAACCGT -ACGGAAAGTCACTGAGGTTTGTGC -ACGGAAAGTCACTGAGGTCTAAGC -ACGGAAAGTCACTGAGGTACTAGC -ACGGAAAGTCACTGAGGTAGATGC -ACGGAAAGTCACTGAGGTTGAAGG -ACGGAAAGTCACTGAGGTCAATGG -ACGGAAAGTCACTGAGGTATGAGG -ACGGAAAGTCACTGAGGTAATGGG -ACGGAAAGTCACTGAGGTTCCTGA -ACGGAAAGTCACTGAGGTTAGCGA -ACGGAAAGTCACTGAGGTCACAGA -ACGGAAAGTCACTGAGGTGCAAGA -ACGGAAAGTCACTGAGGTGGTTGA -ACGGAAAGTCACTGAGGTTCCGAT -ACGGAAAGTCACTGAGGTTGGCAT -ACGGAAAGTCACTGAGGTCGAGAT -ACGGAAAGTCACTGAGGTTACCAC -ACGGAAAGTCACTGAGGTCAGAAC -ACGGAAAGTCACTGAGGTGTCTAC -ACGGAAAGTCACTGAGGTACGTAC -ACGGAAAGTCACTGAGGTAGTGAC -ACGGAAAGTCACTGAGGTCTGTAG -ACGGAAAGTCACTGAGGTCCTAAG -ACGGAAAGTCACTGAGGTGTTCAG -ACGGAAAGTCACTGAGGTGCATAG -ACGGAAAGTCACTGAGGTGACAAG -ACGGAAAGTCACTGAGGTAAGCAG -ACGGAAAGTCACTGAGGTCGTCAA -ACGGAAAGTCACTGAGGTGCTGAA -ACGGAAAGTCACTGAGGTAGTACG -ACGGAAAGTCACTGAGGTATCCGA -ACGGAAAGTCACTGAGGTATGGGA -ACGGAAAGTCACTGAGGTGTGCAA -ACGGAAAGTCACTGAGGTGAGGAA -ACGGAAAGTCACTGAGGTCAGGTA -ACGGAAAGTCACTGAGGTGACTCT -ACGGAAAGTCACTGAGGTAGTCCT -ACGGAAAGTCACTGAGGTTAAGCC -ACGGAAAGTCACTGAGGTATAGCC -ACGGAAAGTCACTGAGGTTAACCG -ACGGAAAGTCACTGAGGTATGCCA -ACGGAAAGTCACGATTCCGGAAAC -ACGGAAAGTCACGATTCCAACACC -ACGGAAAGTCACGATTCCATCGAG -ACGGAAAGTCACGATTCCCTCCTT -ACGGAAAGTCACGATTCCCCTGTT -ACGGAAAGTCACGATTCCCGGTTT -ACGGAAAGTCACGATTCCGTGGTT -ACGGAAAGTCACGATTCCGCCTTT -ACGGAAAGTCACGATTCCGGTCTT -ACGGAAAGTCACGATTCCACGCTT -ACGGAAAGTCACGATTCCAGCGTT -ACGGAAAGTCACGATTCCTTCGTC -ACGGAAAGTCACGATTCCTCTCTC -ACGGAAAGTCACGATTCCTGGATC -ACGGAAAGTCACGATTCCCACTTC -ACGGAAAGTCACGATTCCGTACTC -ACGGAAAGTCACGATTCCGATGTC -ACGGAAAGTCACGATTCCACAGTC -ACGGAAAGTCACGATTCCTTGCTG -ACGGAAAGTCACGATTCCTCCATG -ACGGAAAGTCACGATTCCTGTGTG -ACGGAAAGTCACGATTCCCTAGTG -ACGGAAAGTCACGATTCCCATCTG -ACGGAAAGTCACGATTCCGAGTTG -ACGGAAAGTCACGATTCCAGACTG -ACGGAAAGTCACGATTCCTCGGTA -ACGGAAAGTCACGATTCCTGCCTA -ACGGAAAGTCACGATTCCCCACTA -ACGGAAAGTCACGATTCCGGAGTA -ACGGAAAGTCACGATTCCTCGTCT -ACGGAAAGTCACGATTCCTGCACT -ACGGAAAGTCACGATTCCCTGACT -ACGGAAAGTCACGATTCCCAACCT -ACGGAAAGTCACGATTCCGCTACT -ACGGAAAGTCACGATTCCGGATCT -ACGGAAAGTCACGATTCCAAGGCT -ACGGAAAGTCACGATTCCTCAACC -ACGGAAAGTCACGATTCCTGTTCC -ACGGAAAGTCACGATTCCATTCCC -ACGGAAAGTCACGATTCCTTCTCG -ACGGAAAGTCACGATTCCTAGACG -ACGGAAAGTCACGATTCCGTAACG -ACGGAAAGTCACGATTCCACTTCG -ACGGAAAGTCACGATTCCTACGCA -ACGGAAAGTCACGATTCCCTTGCA -ACGGAAAGTCACGATTCCCGAACA -ACGGAAAGTCACGATTCCCAGTCA -ACGGAAAGTCACGATTCCGATCCA -ACGGAAAGTCACGATTCCACGACA -ACGGAAAGTCACGATTCCAGCTCA -ACGGAAAGTCACGATTCCTCACGT -ACGGAAAGTCACGATTCCCGTAGT -ACGGAAAGTCACGATTCCGTCAGT -ACGGAAAGTCACGATTCCGAAGGT -ACGGAAAGTCACGATTCCAACCGT -ACGGAAAGTCACGATTCCTTGTGC -ACGGAAAGTCACGATTCCCTAAGC -ACGGAAAGTCACGATTCCACTAGC -ACGGAAAGTCACGATTCCAGATGC -ACGGAAAGTCACGATTCCTGAAGG -ACGGAAAGTCACGATTCCCAATGG -ACGGAAAGTCACGATTCCATGAGG -ACGGAAAGTCACGATTCCAATGGG -ACGGAAAGTCACGATTCCTCCTGA -ACGGAAAGTCACGATTCCTAGCGA -ACGGAAAGTCACGATTCCCACAGA -ACGGAAAGTCACGATTCCGCAAGA -ACGGAAAGTCACGATTCCGGTTGA -ACGGAAAGTCACGATTCCTCCGAT -ACGGAAAGTCACGATTCCTGGCAT -ACGGAAAGTCACGATTCCCGAGAT -ACGGAAAGTCACGATTCCTACCAC -ACGGAAAGTCACGATTCCCAGAAC -ACGGAAAGTCACGATTCCGTCTAC -ACGGAAAGTCACGATTCCACGTAC -ACGGAAAGTCACGATTCCAGTGAC -ACGGAAAGTCACGATTCCCTGTAG -ACGGAAAGTCACGATTCCCCTAAG -ACGGAAAGTCACGATTCCGTTCAG -ACGGAAAGTCACGATTCCGCATAG -ACGGAAAGTCACGATTCCGACAAG -ACGGAAAGTCACGATTCCAAGCAG -ACGGAAAGTCACGATTCCCGTCAA -ACGGAAAGTCACGATTCCGCTGAA -ACGGAAAGTCACGATTCCAGTACG -ACGGAAAGTCACGATTCCATCCGA -ACGGAAAGTCACGATTCCATGGGA -ACGGAAAGTCACGATTCCGTGCAA -ACGGAAAGTCACGATTCCGAGGAA -ACGGAAAGTCACGATTCCCAGGTA -ACGGAAAGTCACGATTCCGACTCT -ACGGAAAGTCACGATTCCAGTCCT -ACGGAAAGTCACGATTCCTAAGCC -ACGGAAAGTCACGATTCCATAGCC -ACGGAAAGTCACGATTCCTAACCG -ACGGAAAGTCACGATTCCATGCCA -ACGGAAAGTCACCATTGGGGAAAC -ACGGAAAGTCACCATTGGAACACC -ACGGAAAGTCACCATTGGATCGAG -ACGGAAAGTCACCATTGGCTCCTT -ACGGAAAGTCACCATTGGCCTGTT -ACGGAAAGTCACCATTGGCGGTTT -ACGGAAAGTCACCATTGGGTGGTT -ACGGAAAGTCACCATTGGGCCTTT -ACGGAAAGTCACCATTGGGGTCTT -ACGGAAAGTCACCATTGGACGCTT -ACGGAAAGTCACCATTGGAGCGTT -ACGGAAAGTCACCATTGGTTCGTC -ACGGAAAGTCACCATTGGTCTCTC -ACGGAAAGTCACCATTGGTGGATC -ACGGAAAGTCACCATTGGCACTTC -ACGGAAAGTCACCATTGGGTACTC -ACGGAAAGTCACCATTGGGATGTC -ACGGAAAGTCACCATTGGACAGTC -ACGGAAAGTCACCATTGGTTGCTG -ACGGAAAGTCACCATTGGTCCATG -ACGGAAAGTCACCATTGGTGTGTG -ACGGAAAGTCACCATTGGCTAGTG -ACGGAAAGTCACCATTGGCATCTG -ACGGAAAGTCACCATTGGGAGTTG -ACGGAAAGTCACCATTGGAGACTG -ACGGAAAGTCACCATTGGTCGGTA -ACGGAAAGTCACCATTGGTGCCTA -ACGGAAAGTCACCATTGGCCACTA -ACGGAAAGTCACCATTGGGGAGTA -ACGGAAAGTCACCATTGGTCGTCT -ACGGAAAGTCACCATTGGTGCACT -ACGGAAAGTCACCATTGGCTGACT -ACGGAAAGTCACCATTGGCAACCT -ACGGAAAGTCACCATTGGGCTACT -ACGGAAAGTCACCATTGGGGATCT -ACGGAAAGTCACCATTGGAAGGCT -ACGGAAAGTCACCATTGGTCAACC -ACGGAAAGTCACCATTGGTGTTCC -ACGGAAAGTCACCATTGGATTCCC -ACGGAAAGTCACCATTGGTTCTCG -ACGGAAAGTCACCATTGGTAGACG -ACGGAAAGTCACCATTGGGTAACG -ACGGAAAGTCACCATTGGACTTCG -ACGGAAAGTCACCATTGGTACGCA -ACGGAAAGTCACCATTGGCTTGCA -ACGGAAAGTCACCATTGGCGAACA -ACGGAAAGTCACCATTGGCAGTCA -ACGGAAAGTCACCATTGGGATCCA -ACGGAAAGTCACCATTGGACGACA -ACGGAAAGTCACCATTGGAGCTCA -ACGGAAAGTCACCATTGGTCACGT -ACGGAAAGTCACCATTGGCGTAGT -ACGGAAAGTCACCATTGGGTCAGT -ACGGAAAGTCACCATTGGGAAGGT -ACGGAAAGTCACCATTGGAACCGT -ACGGAAAGTCACCATTGGTTGTGC -ACGGAAAGTCACCATTGGCTAAGC -ACGGAAAGTCACCATTGGACTAGC -ACGGAAAGTCACCATTGGAGATGC -ACGGAAAGTCACCATTGGTGAAGG -ACGGAAAGTCACCATTGGCAATGG -ACGGAAAGTCACCATTGGATGAGG -ACGGAAAGTCACCATTGGAATGGG -ACGGAAAGTCACCATTGGTCCTGA -ACGGAAAGTCACCATTGGTAGCGA -ACGGAAAGTCACCATTGGCACAGA -ACGGAAAGTCACCATTGGGCAAGA -ACGGAAAGTCACCATTGGGGTTGA -ACGGAAAGTCACCATTGGTCCGAT -ACGGAAAGTCACCATTGGTGGCAT -ACGGAAAGTCACCATTGGCGAGAT -ACGGAAAGTCACCATTGGTACCAC -ACGGAAAGTCACCATTGGCAGAAC -ACGGAAAGTCACCATTGGGTCTAC -ACGGAAAGTCACCATTGGACGTAC -ACGGAAAGTCACCATTGGAGTGAC -ACGGAAAGTCACCATTGGCTGTAG -ACGGAAAGTCACCATTGGCCTAAG -ACGGAAAGTCACCATTGGGTTCAG -ACGGAAAGTCACCATTGGGCATAG -ACGGAAAGTCACCATTGGGACAAG -ACGGAAAGTCACCATTGGAAGCAG -ACGGAAAGTCACCATTGGCGTCAA -ACGGAAAGTCACCATTGGGCTGAA -ACGGAAAGTCACCATTGGAGTACG -ACGGAAAGTCACCATTGGATCCGA -ACGGAAAGTCACCATTGGATGGGA -ACGGAAAGTCACCATTGGGTGCAA -ACGGAAAGTCACCATTGGGAGGAA -ACGGAAAGTCACCATTGGCAGGTA -ACGGAAAGTCACCATTGGGACTCT -ACGGAAAGTCACCATTGGAGTCCT -ACGGAAAGTCACCATTGGTAAGCC -ACGGAAAGTCACCATTGGATAGCC -ACGGAAAGTCACCATTGGTAACCG -ACGGAAAGTCACCATTGGATGCCA -ACGGAAAGTCACGATCGAGGAAAC -ACGGAAAGTCACGATCGAAACACC -ACGGAAAGTCACGATCGAATCGAG -ACGGAAAGTCACGATCGACTCCTT -ACGGAAAGTCACGATCGACCTGTT -ACGGAAAGTCACGATCGACGGTTT -ACGGAAAGTCACGATCGAGTGGTT -ACGGAAAGTCACGATCGAGCCTTT -ACGGAAAGTCACGATCGAGGTCTT -ACGGAAAGTCACGATCGAACGCTT -ACGGAAAGTCACGATCGAAGCGTT -ACGGAAAGTCACGATCGATTCGTC -ACGGAAAGTCACGATCGATCTCTC -ACGGAAAGTCACGATCGATGGATC -ACGGAAAGTCACGATCGACACTTC -ACGGAAAGTCACGATCGAGTACTC -ACGGAAAGTCACGATCGAGATGTC -ACGGAAAGTCACGATCGAACAGTC -ACGGAAAGTCACGATCGATTGCTG -ACGGAAAGTCACGATCGATCCATG -ACGGAAAGTCACGATCGATGTGTG -ACGGAAAGTCACGATCGACTAGTG -ACGGAAAGTCACGATCGACATCTG -ACGGAAAGTCACGATCGAGAGTTG -ACGGAAAGTCACGATCGAAGACTG -ACGGAAAGTCACGATCGATCGGTA -ACGGAAAGTCACGATCGATGCCTA -ACGGAAAGTCACGATCGACCACTA -ACGGAAAGTCACGATCGAGGAGTA -ACGGAAAGTCACGATCGATCGTCT -ACGGAAAGTCACGATCGATGCACT -ACGGAAAGTCACGATCGACTGACT -ACGGAAAGTCACGATCGACAACCT -ACGGAAAGTCACGATCGAGCTACT -ACGGAAAGTCACGATCGAGGATCT -ACGGAAAGTCACGATCGAAAGGCT -ACGGAAAGTCACGATCGATCAACC -ACGGAAAGTCACGATCGATGTTCC -ACGGAAAGTCACGATCGAATTCCC -ACGGAAAGTCACGATCGATTCTCG -ACGGAAAGTCACGATCGATAGACG -ACGGAAAGTCACGATCGAGTAACG -ACGGAAAGTCACGATCGAACTTCG -ACGGAAAGTCACGATCGATACGCA -ACGGAAAGTCACGATCGACTTGCA -ACGGAAAGTCACGATCGACGAACA -ACGGAAAGTCACGATCGACAGTCA -ACGGAAAGTCACGATCGAGATCCA -ACGGAAAGTCACGATCGAACGACA -ACGGAAAGTCACGATCGAAGCTCA -ACGGAAAGTCACGATCGATCACGT -ACGGAAAGTCACGATCGACGTAGT -ACGGAAAGTCACGATCGAGTCAGT -ACGGAAAGTCACGATCGAGAAGGT -ACGGAAAGTCACGATCGAAACCGT -ACGGAAAGTCACGATCGATTGTGC -ACGGAAAGTCACGATCGACTAAGC -ACGGAAAGTCACGATCGAACTAGC -ACGGAAAGTCACGATCGAAGATGC -ACGGAAAGTCACGATCGATGAAGG -ACGGAAAGTCACGATCGACAATGG -ACGGAAAGTCACGATCGAATGAGG -ACGGAAAGTCACGATCGAAATGGG -ACGGAAAGTCACGATCGATCCTGA -ACGGAAAGTCACGATCGATAGCGA -ACGGAAAGTCACGATCGACACAGA -ACGGAAAGTCACGATCGAGCAAGA -ACGGAAAGTCACGATCGAGGTTGA -ACGGAAAGTCACGATCGATCCGAT -ACGGAAAGTCACGATCGATGGCAT -ACGGAAAGTCACGATCGACGAGAT -ACGGAAAGTCACGATCGATACCAC -ACGGAAAGTCACGATCGACAGAAC -ACGGAAAGTCACGATCGAGTCTAC -ACGGAAAGTCACGATCGAACGTAC -ACGGAAAGTCACGATCGAAGTGAC -ACGGAAAGTCACGATCGACTGTAG -ACGGAAAGTCACGATCGACCTAAG -ACGGAAAGTCACGATCGAGTTCAG -ACGGAAAGTCACGATCGAGCATAG -ACGGAAAGTCACGATCGAGACAAG -ACGGAAAGTCACGATCGAAAGCAG -ACGGAAAGTCACGATCGACGTCAA -ACGGAAAGTCACGATCGAGCTGAA -ACGGAAAGTCACGATCGAAGTACG -ACGGAAAGTCACGATCGAATCCGA -ACGGAAAGTCACGATCGAATGGGA -ACGGAAAGTCACGATCGAGTGCAA -ACGGAAAGTCACGATCGAGAGGAA -ACGGAAAGTCACGATCGACAGGTA -ACGGAAAGTCACGATCGAGACTCT -ACGGAAAGTCACGATCGAAGTCCT -ACGGAAAGTCACGATCGATAAGCC -ACGGAAAGTCACGATCGAATAGCC -ACGGAAAGTCACGATCGATAACCG -ACGGAAAGTCACGATCGAATGCCA -ACGGAAAGTCACCACTACGGAAAC -ACGGAAAGTCACCACTACAACACC -ACGGAAAGTCACCACTACATCGAG -ACGGAAAGTCACCACTACCTCCTT -ACGGAAAGTCACCACTACCCTGTT -ACGGAAAGTCACCACTACCGGTTT -ACGGAAAGTCACCACTACGTGGTT -ACGGAAAGTCACCACTACGCCTTT -ACGGAAAGTCACCACTACGGTCTT -ACGGAAAGTCACCACTACACGCTT -ACGGAAAGTCACCACTACAGCGTT -ACGGAAAGTCACCACTACTTCGTC -ACGGAAAGTCACCACTACTCTCTC -ACGGAAAGTCACCACTACTGGATC -ACGGAAAGTCACCACTACCACTTC -ACGGAAAGTCACCACTACGTACTC -ACGGAAAGTCACCACTACGATGTC -ACGGAAAGTCACCACTACACAGTC -ACGGAAAGTCACCACTACTTGCTG -ACGGAAAGTCACCACTACTCCATG -ACGGAAAGTCACCACTACTGTGTG -ACGGAAAGTCACCACTACCTAGTG -ACGGAAAGTCACCACTACCATCTG -ACGGAAAGTCACCACTACGAGTTG -ACGGAAAGTCACCACTACAGACTG -ACGGAAAGTCACCACTACTCGGTA -ACGGAAAGTCACCACTACTGCCTA -ACGGAAAGTCACCACTACCCACTA -ACGGAAAGTCACCACTACGGAGTA -ACGGAAAGTCACCACTACTCGTCT -ACGGAAAGTCACCACTACTGCACT -ACGGAAAGTCACCACTACCTGACT -ACGGAAAGTCACCACTACCAACCT -ACGGAAAGTCACCACTACGCTACT -ACGGAAAGTCACCACTACGGATCT -ACGGAAAGTCACCACTACAAGGCT -ACGGAAAGTCACCACTACTCAACC -ACGGAAAGTCACCACTACTGTTCC -ACGGAAAGTCACCACTACATTCCC -ACGGAAAGTCACCACTACTTCTCG -ACGGAAAGTCACCACTACTAGACG -ACGGAAAGTCACCACTACGTAACG -ACGGAAAGTCACCACTACACTTCG -ACGGAAAGTCACCACTACTACGCA -ACGGAAAGTCACCACTACCTTGCA -ACGGAAAGTCACCACTACCGAACA -ACGGAAAGTCACCACTACCAGTCA -ACGGAAAGTCACCACTACGATCCA -ACGGAAAGTCACCACTACACGACA -ACGGAAAGTCACCACTACAGCTCA -ACGGAAAGTCACCACTACTCACGT -ACGGAAAGTCACCACTACCGTAGT -ACGGAAAGTCACCACTACGTCAGT -ACGGAAAGTCACCACTACGAAGGT -ACGGAAAGTCACCACTACAACCGT -ACGGAAAGTCACCACTACTTGTGC -ACGGAAAGTCACCACTACCTAAGC -ACGGAAAGTCACCACTACACTAGC -ACGGAAAGTCACCACTACAGATGC -ACGGAAAGTCACCACTACTGAAGG -ACGGAAAGTCACCACTACCAATGG -ACGGAAAGTCACCACTACATGAGG -ACGGAAAGTCACCACTACAATGGG -ACGGAAAGTCACCACTACTCCTGA -ACGGAAAGTCACCACTACTAGCGA -ACGGAAAGTCACCACTACCACAGA -ACGGAAAGTCACCACTACGCAAGA -ACGGAAAGTCACCACTACGGTTGA -ACGGAAAGTCACCACTACTCCGAT -ACGGAAAGTCACCACTACTGGCAT -ACGGAAAGTCACCACTACCGAGAT -ACGGAAAGTCACCACTACTACCAC -ACGGAAAGTCACCACTACCAGAAC -ACGGAAAGTCACCACTACGTCTAC -ACGGAAAGTCACCACTACACGTAC -ACGGAAAGTCACCACTACAGTGAC -ACGGAAAGTCACCACTACCTGTAG -ACGGAAAGTCACCACTACCCTAAG -ACGGAAAGTCACCACTACGTTCAG -ACGGAAAGTCACCACTACGCATAG -ACGGAAAGTCACCACTACGACAAG -ACGGAAAGTCACCACTACAAGCAG -ACGGAAAGTCACCACTACCGTCAA -ACGGAAAGTCACCACTACGCTGAA -ACGGAAAGTCACCACTACAGTACG -ACGGAAAGTCACCACTACATCCGA -ACGGAAAGTCACCACTACATGGGA -ACGGAAAGTCACCACTACGTGCAA -ACGGAAAGTCACCACTACGAGGAA -ACGGAAAGTCACCACTACCAGGTA -ACGGAAAGTCACCACTACGACTCT -ACGGAAAGTCACCACTACAGTCCT -ACGGAAAGTCACCACTACTAAGCC -ACGGAAAGTCACCACTACATAGCC -ACGGAAAGTCACCACTACTAACCG -ACGGAAAGTCACCACTACATGCCA -ACGGAAAGTCACAACCAGGGAAAC -ACGGAAAGTCACAACCAGAACACC -ACGGAAAGTCACAACCAGATCGAG -ACGGAAAGTCACAACCAGCTCCTT -ACGGAAAGTCACAACCAGCCTGTT -ACGGAAAGTCACAACCAGCGGTTT -ACGGAAAGTCACAACCAGGTGGTT -ACGGAAAGTCACAACCAGGCCTTT -ACGGAAAGTCACAACCAGGGTCTT -ACGGAAAGTCACAACCAGACGCTT -ACGGAAAGTCACAACCAGAGCGTT -ACGGAAAGTCACAACCAGTTCGTC -ACGGAAAGTCACAACCAGTCTCTC -ACGGAAAGTCACAACCAGTGGATC -ACGGAAAGTCACAACCAGCACTTC -ACGGAAAGTCACAACCAGGTACTC -ACGGAAAGTCACAACCAGGATGTC -ACGGAAAGTCACAACCAGACAGTC -ACGGAAAGTCACAACCAGTTGCTG -ACGGAAAGTCACAACCAGTCCATG -ACGGAAAGTCACAACCAGTGTGTG -ACGGAAAGTCACAACCAGCTAGTG -ACGGAAAGTCACAACCAGCATCTG -ACGGAAAGTCACAACCAGGAGTTG -ACGGAAAGTCACAACCAGAGACTG -ACGGAAAGTCACAACCAGTCGGTA -ACGGAAAGTCACAACCAGTGCCTA -ACGGAAAGTCACAACCAGCCACTA -ACGGAAAGTCACAACCAGGGAGTA -ACGGAAAGTCACAACCAGTCGTCT -ACGGAAAGTCACAACCAGTGCACT -ACGGAAAGTCACAACCAGCTGACT -ACGGAAAGTCACAACCAGCAACCT -ACGGAAAGTCACAACCAGGCTACT -ACGGAAAGTCACAACCAGGGATCT -ACGGAAAGTCACAACCAGAAGGCT -ACGGAAAGTCACAACCAGTCAACC -ACGGAAAGTCACAACCAGTGTTCC -ACGGAAAGTCACAACCAGATTCCC -ACGGAAAGTCACAACCAGTTCTCG -ACGGAAAGTCACAACCAGTAGACG -ACGGAAAGTCACAACCAGGTAACG -ACGGAAAGTCACAACCAGACTTCG -ACGGAAAGTCACAACCAGTACGCA -ACGGAAAGTCACAACCAGCTTGCA -ACGGAAAGTCACAACCAGCGAACA -ACGGAAAGTCACAACCAGCAGTCA -ACGGAAAGTCACAACCAGGATCCA -ACGGAAAGTCACAACCAGACGACA -ACGGAAAGTCACAACCAGAGCTCA -ACGGAAAGTCACAACCAGTCACGT -ACGGAAAGTCACAACCAGCGTAGT -ACGGAAAGTCACAACCAGGTCAGT -ACGGAAAGTCACAACCAGGAAGGT -ACGGAAAGTCACAACCAGAACCGT -ACGGAAAGTCACAACCAGTTGTGC -ACGGAAAGTCACAACCAGCTAAGC -ACGGAAAGTCACAACCAGACTAGC -ACGGAAAGTCACAACCAGAGATGC -ACGGAAAGTCACAACCAGTGAAGG -ACGGAAAGTCACAACCAGCAATGG -ACGGAAAGTCACAACCAGATGAGG -ACGGAAAGTCACAACCAGAATGGG -ACGGAAAGTCACAACCAGTCCTGA -ACGGAAAGTCACAACCAGTAGCGA -ACGGAAAGTCACAACCAGCACAGA -ACGGAAAGTCACAACCAGGCAAGA -ACGGAAAGTCACAACCAGGGTTGA -ACGGAAAGTCACAACCAGTCCGAT -ACGGAAAGTCACAACCAGTGGCAT -ACGGAAAGTCACAACCAGCGAGAT -ACGGAAAGTCACAACCAGTACCAC -ACGGAAAGTCACAACCAGCAGAAC -ACGGAAAGTCACAACCAGGTCTAC -ACGGAAAGTCACAACCAGACGTAC -ACGGAAAGTCACAACCAGAGTGAC -ACGGAAAGTCACAACCAGCTGTAG -ACGGAAAGTCACAACCAGCCTAAG -ACGGAAAGTCACAACCAGGTTCAG -ACGGAAAGTCACAACCAGGCATAG -ACGGAAAGTCACAACCAGGACAAG -ACGGAAAGTCACAACCAGAAGCAG -ACGGAAAGTCACAACCAGCGTCAA -ACGGAAAGTCACAACCAGGCTGAA -ACGGAAAGTCACAACCAGAGTACG -ACGGAAAGTCACAACCAGATCCGA -ACGGAAAGTCACAACCAGATGGGA -ACGGAAAGTCACAACCAGGTGCAA -ACGGAAAGTCACAACCAGGAGGAA -ACGGAAAGTCACAACCAGCAGGTA -ACGGAAAGTCACAACCAGGACTCT -ACGGAAAGTCACAACCAGAGTCCT -ACGGAAAGTCACAACCAGTAAGCC -ACGGAAAGTCACAACCAGATAGCC -ACGGAAAGTCACAACCAGTAACCG -ACGGAAAGTCACAACCAGATGCCA -ACGGAAAGTCACTACGTCGGAAAC -ACGGAAAGTCACTACGTCAACACC -ACGGAAAGTCACTACGTCATCGAG -ACGGAAAGTCACTACGTCCTCCTT -ACGGAAAGTCACTACGTCCCTGTT -ACGGAAAGTCACTACGTCCGGTTT -ACGGAAAGTCACTACGTCGTGGTT -ACGGAAAGTCACTACGTCGCCTTT -ACGGAAAGTCACTACGTCGGTCTT -ACGGAAAGTCACTACGTCACGCTT -ACGGAAAGTCACTACGTCAGCGTT -ACGGAAAGTCACTACGTCTTCGTC -ACGGAAAGTCACTACGTCTCTCTC -ACGGAAAGTCACTACGTCTGGATC -ACGGAAAGTCACTACGTCCACTTC -ACGGAAAGTCACTACGTCGTACTC -ACGGAAAGTCACTACGTCGATGTC -ACGGAAAGTCACTACGTCACAGTC -ACGGAAAGTCACTACGTCTTGCTG -ACGGAAAGTCACTACGTCTCCATG -ACGGAAAGTCACTACGTCTGTGTG -ACGGAAAGTCACTACGTCCTAGTG -ACGGAAAGTCACTACGTCCATCTG -ACGGAAAGTCACTACGTCGAGTTG -ACGGAAAGTCACTACGTCAGACTG -ACGGAAAGTCACTACGTCTCGGTA -ACGGAAAGTCACTACGTCTGCCTA -ACGGAAAGTCACTACGTCCCACTA -ACGGAAAGTCACTACGTCGGAGTA -ACGGAAAGTCACTACGTCTCGTCT -ACGGAAAGTCACTACGTCTGCACT -ACGGAAAGTCACTACGTCCTGACT -ACGGAAAGTCACTACGTCCAACCT -ACGGAAAGTCACTACGTCGCTACT -ACGGAAAGTCACTACGTCGGATCT -ACGGAAAGTCACTACGTCAAGGCT -ACGGAAAGTCACTACGTCTCAACC -ACGGAAAGTCACTACGTCTGTTCC -ACGGAAAGTCACTACGTCATTCCC -ACGGAAAGTCACTACGTCTTCTCG -ACGGAAAGTCACTACGTCTAGACG -ACGGAAAGTCACTACGTCGTAACG -ACGGAAAGTCACTACGTCACTTCG -ACGGAAAGTCACTACGTCTACGCA -ACGGAAAGTCACTACGTCCTTGCA -ACGGAAAGTCACTACGTCCGAACA -ACGGAAAGTCACTACGTCCAGTCA -ACGGAAAGTCACTACGTCGATCCA -ACGGAAAGTCACTACGTCACGACA -ACGGAAAGTCACTACGTCAGCTCA -ACGGAAAGTCACTACGTCTCACGT -ACGGAAAGTCACTACGTCCGTAGT -ACGGAAAGTCACTACGTCGTCAGT -ACGGAAAGTCACTACGTCGAAGGT -ACGGAAAGTCACTACGTCAACCGT -ACGGAAAGTCACTACGTCTTGTGC -ACGGAAAGTCACTACGTCCTAAGC -ACGGAAAGTCACTACGTCACTAGC -ACGGAAAGTCACTACGTCAGATGC -ACGGAAAGTCACTACGTCTGAAGG -ACGGAAAGTCACTACGTCCAATGG -ACGGAAAGTCACTACGTCATGAGG -ACGGAAAGTCACTACGTCAATGGG -ACGGAAAGTCACTACGTCTCCTGA -ACGGAAAGTCACTACGTCTAGCGA -ACGGAAAGTCACTACGTCCACAGA -ACGGAAAGTCACTACGTCGCAAGA -ACGGAAAGTCACTACGTCGGTTGA -ACGGAAAGTCACTACGTCTCCGAT -ACGGAAAGTCACTACGTCTGGCAT -ACGGAAAGTCACTACGTCCGAGAT -ACGGAAAGTCACTACGTCTACCAC -ACGGAAAGTCACTACGTCCAGAAC -ACGGAAAGTCACTACGTCGTCTAC -ACGGAAAGTCACTACGTCACGTAC -ACGGAAAGTCACTACGTCAGTGAC -ACGGAAAGTCACTACGTCCTGTAG -ACGGAAAGTCACTACGTCCCTAAG -ACGGAAAGTCACTACGTCGTTCAG -ACGGAAAGTCACTACGTCGCATAG -ACGGAAAGTCACTACGTCGACAAG -ACGGAAAGTCACTACGTCAAGCAG -ACGGAAAGTCACTACGTCCGTCAA -ACGGAAAGTCACTACGTCGCTGAA -ACGGAAAGTCACTACGTCAGTACG -ACGGAAAGTCACTACGTCATCCGA -ACGGAAAGTCACTACGTCATGGGA -ACGGAAAGTCACTACGTCGTGCAA -ACGGAAAGTCACTACGTCGAGGAA -ACGGAAAGTCACTACGTCCAGGTA -ACGGAAAGTCACTACGTCGACTCT -ACGGAAAGTCACTACGTCAGTCCT -ACGGAAAGTCACTACGTCTAAGCC -ACGGAAAGTCACTACGTCATAGCC -ACGGAAAGTCACTACGTCTAACCG -ACGGAAAGTCACTACGTCATGCCA -ACGGAAAGTCACTACACGGGAAAC -ACGGAAAGTCACTACACGAACACC -ACGGAAAGTCACTACACGATCGAG -ACGGAAAGTCACTACACGCTCCTT -ACGGAAAGTCACTACACGCCTGTT -ACGGAAAGTCACTACACGCGGTTT -ACGGAAAGTCACTACACGGTGGTT -ACGGAAAGTCACTACACGGCCTTT -ACGGAAAGTCACTACACGGGTCTT -ACGGAAAGTCACTACACGACGCTT -ACGGAAAGTCACTACACGAGCGTT -ACGGAAAGTCACTACACGTTCGTC -ACGGAAAGTCACTACACGTCTCTC -ACGGAAAGTCACTACACGTGGATC -ACGGAAAGTCACTACACGCACTTC -ACGGAAAGTCACTACACGGTACTC -ACGGAAAGTCACTACACGGATGTC -ACGGAAAGTCACTACACGACAGTC -ACGGAAAGTCACTACACGTTGCTG -ACGGAAAGTCACTACACGTCCATG -ACGGAAAGTCACTACACGTGTGTG -ACGGAAAGTCACTACACGCTAGTG -ACGGAAAGTCACTACACGCATCTG -ACGGAAAGTCACTACACGGAGTTG -ACGGAAAGTCACTACACGAGACTG -ACGGAAAGTCACTACACGTCGGTA -ACGGAAAGTCACTACACGTGCCTA -ACGGAAAGTCACTACACGCCACTA -ACGGAAAGTCACTACACGGGAGTA -ACGGAAAGTCACTACACGTCGTCT -ACGGAAAGTCACTACACGTGCACT -ACGGAAAGTCACTACACGCTGACT -ACGGAAAGTCACTACACGCAACCT -ACGGAAAGTCACTACACGGCTACT -ACGGAAAGTCACTACACGGGATCT -ACGGAAAGTCACTACACGAAGGCT -ACGGAAAGTCACTACACGTCAACC -ACGGAAAGTCACTACACGTGTTCC -ACGGAAAGTCACTACACGATTCCC -ACGGAAAGTCACTACACGTTCTCG -ACGGAAAGTCACTACACGTAGACG -ACGGAAAGTCACTACACGGTAACG -ACGGAAAGTCACTACACGACTTCG -ACGGAAAGTCACTACACGTACGCA -ACGGAAAGTCACTACACGCTTGCA -ACGGAAAGTCACTACACGCGAACA -ACGGAAAGTCACTACACGCAGTCA -ACGGAAAGTCACTACACGGATCCA -ACGGAAAGTCACTACACGACGACA -ACGGAAAGTCACTACACGAGCTCA -ACGGAAAGTCACTACACGTCACGT -ACGGAAAGTCACTACACGCGTAGT -ACGGAAAGTCACTACACGGTCAGT -ACGGAAAGTCACTACACGGAAGGT -ACGGAAAGTCACTACACGAACCGT -ACGGAAAGTCACTACACGTTGTGC -ACGGAAAGTCACTACACGCTAAGC -ACGGAAAGTCACTACACGACTAGC -ACGGAAAGTCACTACACGAGATGC -ACGGAAAGTCACTACACGTGAAGG -ACGGAAAGTCACTACACGCAATGG -ACGGAAAGTCACTACACGATGAGG -ACGGAAAGTCACTACACGAATGGG -ACGGAAAGTCACTACACGTCCTGA -ACGGAAAGTCACTACACGTAGCGA -ACGGAAAGTCACTACACGCACAGA -ACGGAAAGTCACTACACGGCAAGA -ACGGAAAGTCACTACACGGGTTGA -ACGGAAAGTCACTACACGTCCGAT -ACGGAAAGTCACTACACGTGGCAT -ACGGAAAGTCACTACACGCGAGAT -ACGGAAAGTCACTACACGTACCAC -ACGGAAAGTCACTACACGCAGAAC -ACGGAAAGTCACTACACGGTCTAC -ACGGAAAGTCACTACACGACGTAC -ACGGAAAGTCACTACACGAGTGAC -ACGGAAAGTCACTACACGCTGTAG -ACGGAAAGTCACTACACGCCTAAG -ACGGAAAGTCACTACACGGTTCAG -ACGGAAAGTCACTACACGGCATAG -ACGGAAAGTCACTACACGGACAAG -ACGGAAAGTCACTACACGAAGCAG -ACGGAAAGTCACTACACGCGTCAA -ACGGAAAGTCACTACACGGCTGAA -ACGGAAAGTCACTACACGAGTACG -ACGGAAAGTCACTACACGATCCGA -ACGGAAAGTCACTACACGATGGGA -ACGGAAAGTCACTACACGGTGCAA -ACGGAAAGTCACTACACGGAGGAA -ACGGAAAGTCACTACACGCAGGTA -ACGGAAAGTCACTACACGGACTCT -ACGGAAAGTCACTACACGAGTCCT -ACGGAAAGTCACTACACGTAAGCC -ACGGAAAGTCACTACACGATAGCC -ACGGAAAGTCACTACACGTAACCG -ACGGAAAGTCACTACACGATGCCA -ACGGAAAGTCACGACAGTGGAAAC -ACGGAAAGTCACGACAGTAACACC -ACGGAAAGTCACGACAGTATCGAG -ACGGAAAGTCACGACAGTCTCCTT -ACGGAAAGTCACGACAGTCCTGTT -ACGGAAAGTCACGACAGTCGGTTT -ACGGAAAGTCACGACAGTGTGGTT -ACGGAAAGTCACGACAGTGCCTTT -ACGGAAAGTCACGACAGTGGTCTT -ACGGAAAGTCACGACAGTACGCTT -ACGGAAAGTCACGACAGTAGCGTT -ACGGAAAGTCACGACAGTTTCGTC -ACGGAAAGTCACGACAGTTCTCTC -ACGGAAAGTCACGACAGTTGGATC -ACGGAAAGTCACGACAGTCACTTC -ACGGAAAGTCACGACAGTGTACTC -ACGGAAAGTCACGACAGTGATGTC -ACGGAAAGTCACGACAGTACAGTC -ACGGAAAGTCACGACAGTTTGCTG -ACGGAAAGTCACGACAGTTCCATG -ACGGAAAGTCACGACAGTTGTGTG -ACGGAAAGTCACGACAGTCTAGTG -ACGGAAAGTCACGACAGTCATCTG -ACGGAAAGTCACGACAGTGAGTTG -ACGGAAAGTCACGACAGTAGACTG -ACGGAAAGTCACGACAGTTCGGTA -ACGGAAAGTCACGACAGTTGCCTA -ACGGAAAGTCACGACAGTCCACTA -ACGGAAAGTCACGACAGTGGAGTA -ACGGAAAGTCACGACAGTTCGTCT -ACGGAAAGTCACGACAGTTGCACT -ACGGAAAGTCACGACAGTCTGACT -ACGGAAAGTCACGACAGTCAACCT -ACGGAAAGTCACGACAGTGCTACT -ACGGAAAGTCACGACAGTGGATCT -ACGGAAAGTCACGACAGTAAGGCT -ACGGAAAGTCACGACAGTTCAACC -ACGGAAAGTCACGACAGTTGTTCC -ACGGAAAGTCACGACAGTATTCCC -ACGGAAAGTCACGACAGTTTCTCG -ACGGAAAGTCACGACAGTTAGACG -ACGGAAAGTCACGACAGTGTAACG -ACGGAAAGTCACGACAGTACTTCG -ACGGAAAGTCACGACAGTTACGCA -ACGGAAAGTCACGACAGTCTTGCA -ACGGAAAGTCACGACAGTCGAACA -ACGGAAAGTCACGACAGTCAGTCA -ACGGAAAGTCACGACAGTGATCCA -ACGGAAAGTCACGACAGTACGACA -ACGGAAAGTCACGACAGTAGCTCA -ACGGAAAGTCACGACAGTTCACGT -ACGGAAAGTCACGACAGTCGTAGT -ACGGAAAGTCACGACAGTGTCAGT -ACGGAAAGTCACGACAGTGAAGGT -ACGGAAAGTCACGACAGTAACCGT -ACGGAAAGTCACGACAGTTTGTGC -ACGGAAAGTCACGACAGTCTAAGC -ACGGAAAGTCACGACAGTACTAGC -ACGGAAAGTCACGACAGTAGATGC -ACGGAAAGTCACGACAGTTGAAGG -ACGGAAAGTCACGACAGTCAATGG -ACGGAAAGTCACGACAGTATGAGG -ACGGAAAGTCACGACAGTAATGGG -ACGGAAAGTCACGACAGTTCCTGA -ACGGAAAGTCACGACAGTTAGCGA -ACGGAAAGTCACGACAGTCACAGA -ACGGAAAGTCACGACAGTGCAAGA -ACGGAAAGTCACGACAGTGGTTGA -ACGGAAAGTCACGACAGTTCCGAT -ACGGAAAGTCACGACAGTTGGCAT -ACGGAAAGTCACGACAGTCGAGAT -ACGGAAAGTCACGACAGTTACCAC -ACGGAAAGTCACGACAGTCAGAAC -ACGGAAAGTCACGACAGTGTCTAC -ACGGAAAGTCACGACAGTACGTAC -ACGGAAAGTCACGACAGTAGTGAC -ACGGAAAGTCACGACAGTCTGTAG -ACGGAAAGTCACGACAGTCCTAAG -ACGGAAAGTCACGACAGTGTTCAG -ACGGAAAGTCACGACAGTGCATAG -ACGGAAAGTCACGACAGTGACAAG -ACGGAAAGTCACGACAGTAAGCAG -ACGGAAAGTCACGACAGTCGTCAA -ACGGAAAGTCACGACAGTGCTGAA -ACGGAAAGTCACGACAGTAGTACG -ACGGAAAGTCACGACAGTATCCGA -ACGGAAAGTCACGACAGTATGGGA -ACGGAAAGTCACGACAGTGTGCAA -ACGGAAAGTCACGACAGTGAGGAA -ACGGAAAGTCACGACAGTCAGGTA -ACGGAAAGTCACGACAGTGACTCT -ACGGAAAGTCACGACAGTAGTCCT -ACGGAAAGTCACGACAGTTAAGCC -ACGGAAAGTCACGACAGTATAGCC -ACGGAAAGTCACGACAGTTAACCG -ACGGAAAGTCACGACAGTATGCCA -ACGGAAAGTCACTAGCTGGGAAAC -ACGGAAAGTCACTAGCTGAACACC -ACGGAAAGTCACTAGCTGATCGAG -ACGGAAAGTCACTAGCTGCTCCTT -ACGGAAAGTCACTAGCTGCCTGTT -ACGGAAAGTCACTAGCTGCGGTTT -ACGGAAAGTCACTAGCTGGTGGTT -ACGGAAAGTCACTAGCTGGCCTTT -ACGGAAAGTCACTAGCTGGGTCTT -ACGGAAAGTCACTAGCTGACGCTT -ACGGAAAGTCACTAGCTGAGCGTT -ACGGAAAGTCACTAGCTGTTCGTC -ACGGAAAGTCACTAGCTGTCTCTC -ACGGAAAGTCACTAGCTGTGGATC -ACGGAAAGTCACTAGCTGCACTTC -ACGGAAAGTCACTAGCTGGTACTC -ACGGAAAGTCACTAGCTGGATGTC -ACGGAAAGTCACTAGCTGACAGTC -ACGGAAAGTCACTAGCTGTTGCTG -ACGGAAAGTCACTAGCTGTCCATG -ACGGAAAGTCACTAGCTGTGTGTG -ACGGAAAGTCACTAGCTGCTAGTG -ACGGAAAGTCACTAGCTGCATCTG -ACGGAAAGTCACTAGCTGGAGTTG -ACGGAAAGTCACTAGCTGAGACTG -ACGGAAAGTCACTAGCTGTCGGTA -ACGGAAAGTCACTAGCTGTGCCTA -ACGGAAAGTCACTAGCTGCCACTA -ACGGAAAGTCACTAGCTGGGAGTA -ACGGAAAGTCACTAGCTGTCGTCT -ACGGAAAGTCACTAGCTGTGCACT -ACGGAAAGTCACTAGCTGCTGACT -ACGGAAAGTCACTAGCTGCAACCT -ACGGAAAGTCACTAGCTGGCTACT -ACGGAAAGTCACTAGCTGGGATCT -ACGGAAAGTCACTAGCTGAAGGCT -ACGGAAAGTCACTAGCTGTCAACC -ACGGAAAGTCACTAGCTGTGTTCC -ACGGAAAGTCACTAGCTGATTCCC -ACGGAAAGTCACTAGCTGTTCTCG -ACGGAAAGTCACTAGCTGTAGACG -ACGGAAAGTCACTAGCTGGTAACG -ACGGAAAGTCACTAGCTGACTTCG -ACGGAAAGTCACTAGCTGTACGCA -ACGGAAAGTCACTAGCTGCTTGCA -ACGGAAAGTCACTAGCTGCGAACA -ACGGAAAGTCACTAGCTGCAGTCA -ACGGAAAGTCACTAGCTGGATCCA -ACGGAAAGTCACTAGCTGACGACA -ACGGAAAGTCACTAGCTGAGCTCA -ACGGAAAGTCACTAGCTGTCACGT -ACGGAAAGTCACTAGCTGCGTAGT -ACGGAAAGTCACTAGCTGGTCAGT -ACGGAAAGTCACTAGCTGGAAGGT -ACGGAAAGTCACTAGCTGAACCGT -ACGGAAAGTCACTAGCTGTTGTGC -ACGGAAAGTCACTAGCTGCTAAGC -ACGGAAAGTCACTAGCTGACTAGC -ACGGAAAGTCACTAGCTGAGATGC -ACGGAAAGTCACTAGCTGTGAAGG -ACGGAAAGTCACTAGCTGCAATGG -ACGGAAAGTCACTAGCTGATGAGG -ACGGAAAGTCACTAGCTGAATGGG -ACGGAAAGTCACTAGCTGTCCTGA -ACGGAAAGTCACTAGCTGTAGCGA -ACGGAAAGTCACTAGCTGCACAGA -ACGGAAAGTCACTAGCTGGCAAGA -ACGGAAAGTCACTAGCTGGGTTGA -ACGGAAAGTCACTAGCTGTCCGAT -ACGGAAAGTCACTAGCTGTGGCAT -ACGGAAAGTCACTAGCTGCGAGAT -ACGGAAAGTCACTAGCTGTACCAC -ACGGAAAGTCACTAGCTGCAGAAC -ACGGAAAGTCACTAGCTGGTCTAC -ACGGAAAGTCACTAGCTGACGTAC -ACGGAAAGTCACTAGCTGAGTGAC -ACGGAAAGTCACTAGCTGCTGTAG -ACGGAAAGTCACTAGCTGCCTAAG -ACGGAAAGTCACTAGCTGGTTCAG -ACGGAAAGTCACTAGCTGGCATAG -ACGGAAAGTCACTAGCTGGACAAG -ACGGAAAGTCACTAGCTGAAGCAG -ACGGAAAGTCACTAGCTGCGTCAA -ACGGAAAGTCACTAGCTGGCTGAA -ACGGAAAGTCACTAGCTGAGTACG -ACGGAAAGTCACTAGCTGATCCGA -ACGGAAAGTCACTAGCTGATGGGA -ACGGAAAGTCACTAGCTGGTGCAA -ACGGAAAGTCACTAGCTGGAGGAA -ACGGAAAGTCACTAGCTGCAGGTA -ACGGAAAGTCACTAGCTGGACTCT -ACGGAAAGTCACTAGCTGAGTCCT -ACGGAAAGTCACTAGCTGTAAGCC -ACGGAAAGTCACTAGCTGATAGCC -ACGGAAAGTCACTAGCTGTAACCG -ACGGAAAGTCACTAGCTGATGCCA -ACGGAAAGTCACAAGCCTGGAAAC -ACGGAAAGTCACAAGCCTAACACC -ACGGAAAGTCACAAGCCTATCGAG -ACGGAAAGTCACAAGCCTCTCCTT -ACGGAAAGTCACAAGCCTCCTGTT -ACGGAAAGTCACAAGCCTCGGTTT -ACGGAAAGTCACAAGCCTGTGGTT -ACGGAAAGTCACAAGCCTGCCTTT -ACGGAAAGTCACAAGCCTGGTCTT -ACGGAAAGTCACAAGCCTACGCTT -ACGGAAAGTCACAAGCCTAGCGTT -ACGGAAAGTCACAAGCCTTTCGTC -ACGGAAAGTCACAAGCCTTCTCTC -ACGGAAAGTCACAAGCCTTGGATC -ACGGAAAGTCACAAGCCTCACTTC -ACGGAAAGTCACAAGCCTGTACTC -ACGGAAAGTCACAAGCCTGATGTC -ACGGAAAGTCACAAGCCTACAGTC -ACGGAAAGTCACAAGCCTTTGCTG -ACGGAAAGTCACAAGCCTTCCATG -ACGGAAAGTCACAAGCCTTGTGTG -ACGGAAAGTCACAAGCCTCTAGTG -ACGGAAAGTCACAAGCCTCATCTG -ACGGAAAGTCACAAGCCTGAGTTG -ACGGAAAGTCACAAGCCTAGACTG -ACGGAAAGTCACAAGCCTTCGGTA -ACGGAAAGTCACAAGCCTTGCCTA -ACGGAAAGTCACAAGCCTCCACTA -ACGGAAAGTCACAAGCCTGGAGTA -ACGGAAAGTCACAAGCCTTCGTCT -ACGGAAAGTCACAAGCCTTGCACT -ACGGAAAGTCACAAGCCTCTGACT -ACGGAAAGTCACAAGCCTCAACCT -ACGGAAAGTCACAAGCCTGCTACT -ACGGAAAGTCACAAGCCTGGATCT -ACGGAAAGTCACAAGCCTAAGGCT -ACGGAAAGTCACAAGCCTTCAACC -ACGGAAAGTCACAAGCCTTGTTCC -ACGGAAAGTCACAAGCCTATTCCC -ACGGAAAGTCACAAGCCTTTCTCG -ACGGAAAGTCACAAGCCTTAGACG -ACGGAAAGTCACAAGCCTGTAACG -ACGGAAAGTCACAAGCCTACTTCG -ACGGAAAGTCACAAGCCTTACGCA -ACGGAAAGTCACAAGCCTCTTGCA -ACGGAAAGTCACAAGCCTCGAACA -ACGGAAAGTCACAAGCCTCAGTCA -ACGGAAAGTCACAAGCCTGATCCA -ACGGAAAGTCACAAGCCTACGACA -ACGGAAAGTCACAAGCCTAGCTCA -ACGGAAAGTCACAAGCCTTCACGT -ACGGAAAGTCACAAGCCTCGTAGT -ACGGAAAGTCACAAGCCTGTCAGT -ACGGAAAGTCACAAGCCTGAAGGT -ACGGAAAGTCACAAGCCTAACCGT -ACGGAAAGTCACAAGCCTTTGTGC -ACGGAAAGTCACAAGCCTCTAAGC -ACGGAAAGTCACAAGCCTACTAGC -ACGGAAAGTCACAAGCCTAGATGC -ACGGAAAGTCACAAGCCTTGAAGG -ACGGAAAGTCACAAGCCTCAATGG -ACGGAAAGTCACAAGCCTATGAGG -ACGGAAAGTCACAAGCCTAATGGG -ACGGAAAGTCACAAGCCTTCCTGA -ACGGAAAGTCACAAGCCTTAGCGA -ACGGAAAGTCACAAGCCTCACAGA -ACGGAAAGTCACAAGCCTGCAAGA -ACGGAAAGTCACAAGCCTGGTTGA -ACGGAAAGTCACAAGCCTTCCGAT -ACGGAAAGTCACAAGCCTTGGCAT -ACGGAAAGTCACAAGCCTCGAGAT -ACGGAAAGTCACAAGCCTTACCAC -ACGGAAAGTCACAAGCCTCAGAAC -ACGGAAAGTCACAAGCCTGTCTAC -ACGGAAAGTCACAAGCCTACGTAC -ACGGAAAGTCACAAGCCTAGTGAC -ACGGAAAGTCACAAGCCTCTGTAG -ACGGAAAGTCACAAGCCTCCTAAG -ACGGAAAGTCACAAGCCTGTTCAG -ACGGAAAGTCACAAGCCTGCATAG -ACGGAAAGTCACAAGCCTGACAAG -ACGGAAAGTCACAAGCCTAAGCAG -ACGGAAAGTCACAAGCCTCGTCAA -ACGGAAAGTCACAAGCCTGCTGAA -ACGGAAAGTCACAAGCCTAGTACG -ACGGAAAGTCACAAGCCTATCCGA -ACGGAAAGTCACAAGCCTATGGGA -ACGGAAAGTCACAAGCCTGTGCAA -ACGGAAAGTCACAAGCCTGAGGAA -ACGGAAAGTCACAAGCCTCAGGTA -ACGGAAAGTCACAAGCCTGACTCT -ACGGAAAGTCACAAGCCTAGTCCT -ACGGAAAGTCACAAGCCTTAAGCC -ACGGAAAGTCACAAGCCTATAGCC -ACGGAAAGTCACAAGCCTTAACCG -ACGGAAAGTCACAAGCCTATGCCA -ACGGAAAGTCACCAGGTTGGAAAC -ACGGAAAGTCACCAGGTTAACACC -ACGGAAAGTCACCAGGTTATCGAG -ACGGAAAGTCACCAGGTTCTCCTT -ACGGAAAGTCACCAGGTTCCTGTT -ACGGAAAGTCACCAGGTTCGGTTT -ACGGAAAGTCACCAGGTTGTGGTT -ACGGAAAGTCACCAGGTTGCCTTT -ACGGAAAGTCACCAGGTTGGTCTT -ACGGAAAGTCACCAGGTTACGCTT -ACGGAAAGTCACCAGGTTAGCGTT -ACGGAAAGTCACCAGGTTTTCGTC -ACGGAAAGTCACCAGGTTTCTCTC -ACGGAAAGTCACCAGGTTTGGATC -ACGGAAAGTCACCAGGTTCACTTC -ACGGAAAGTCACCAGGTTGTACTC -ACGGAAAGTCACCAGGTTGATGTC -ACGGAAAGTCACCAGGTTACAGTC -ACGGAAAGTCACCAGGTTTTGCTG -ACGGAAAGTCACCAGGTTTCCATG -ACGGAAAGTCACCAGGTTTGTGTG -ACGGAAAGTCACCAGGTTCTAGTG -ACGGAAAGTCACCAGGTTCATCTG -ACGGAAAGTCACCAGGTTGAGTTG -ACGGAAAGTCACCAGGTTAGACTG -ACGGAAAGTCACCAGGTTTCGGTA -ACGGAAAGTCACCAGGTTTGCCTA -ACGGAAAGTCACCAGGTTCCACTA -ACGGAAAGTCACCAGGTTGGAGTA -ACGGAAAGTCACCAGGTTTCGTCT -ACGGAAAGTCACCAGGTTTGCACT -ACGGAAAGTCACCAGGTTCTGACT -ACGGAAAGTCACCAGGTTCAACCT -ACGGAAAGTCACCAGGTTGCTACT -ACGGAAAGTCACCAGGTTGGATCT -ACGGAAAGTCACCAGGTTAAGGCT -ACGGAAAGTCACCAGGTTTCAACC -ACGGAAAGTCACCAGGTTTGTTCC -ACGGAAAGTCACCAGGTTATTCCC -ACGGAAAGTCACCAGGTTTTCTCG -ACGGAAAGTCACCAGGTTTAGACG -ACGGAAAGTCACCAGGTTGTAACG -ACGGAAAGTCACCAGGTTACTTCG -ACGGAAAGTCACCAGGTTTACGCA -ACGGAAAGTCACCAGGTTCTTGCA -ACGGAAAGTCACCAGGTTCGAACA -ACGGAAAGTCACCAGGTTCAGTCA -ACGGAAAGTCACCAGGTTGATCCA -ACGGAAAGTCACCAGGTTACGACA -ACGGAAAGTCACCAGGTTAGCTCA -ACGGAAAGTCACCAGGTTTCACGT -ACGGAAAGTCACCAGGTTCGTAGT -ACGGAAAGTCACCAGGTTGTCAGT -ACGGAAAGTCACCAGGTTGAAGGT -ACGGAAAGTCACCAGGTTAACCGT -ACGGAAAGTCACCAGGTTTTGTGC -ACGGAAAGTCACCAGGTTCTAAGC -ACGGAAAGTCACCAGGTTACTAGC -ACGGAAAGTCACCAGGTTAGATGC -ACGGAAAGTCACCAGGTTTGAAGG -ACGGAAAGTCACCAGGTTCAATGG -ACGGAAAGTCACCAGGTTATGAGG -ACGGAAAGTCACCAGGTTAATGGG -ACGGAAAGTCACCAGGTTTCCTGA -ACGGAAAGTCACCAGGTTTAGCGA -ACGGAAAGTCACCAGGTTCACAGA -ACGGAAAGTCACCAGGTTGCAAGA -ACGGAAAGTCACCAGGTTGGTTGA -ACGGAAAGTCACCAGGTTTCCGAT -ACGGAAAGTCACCAGGTTTGGCAT -ACGGAAAGTCACCAGGTTCGAGAT -ACGGAAAGTCACCAGGTTTACCAC -ACGGAAAGTCACCAGGTTCAGAAC -ACGGAAAGTCACCAGGTTGTCTAC -ACGGAAAGTCACCAGGTTACGTAC -ACGGAAAGTCACCAGGTTAGTGAC -ACGGAAAGTCACCAGGTTCTGTAG -ACGGAAAGTCACCAGGTTCCTAAG -ACGGAAAGTCACCAGGTTGTTCAG -ACGGAAAGTCACCAGGTTGCATAG -ACGGAAAGTCACCAGGTTGACAAG -ACGGAAAGTCACCAGGTTAAGCAG -ACGGAAAGTCACCAGGTTCGTCAA -ACGGAAAGTCACCAGGTTGCTGAA -ACGGAAAGTCACCAGGTTAGTACG -ACGGAAAGTCACCAGGTTATCCGA -ACGGAAAGTCACCAGGTTATGGGA -ACGGAAAGTCACCAGGTTGTGCAA -ACGGAAAGTCACCAGGTTGAGGAA -ACGGAAAGTCACCAGGTTCAGGTA -ACGGAAAGTCACCAGGTTGACTCT -ACGGAAAGTCACCAGGTTAGTCCT -ACGGAAAGTCACCAGGTTTAAGCC -ACGGAAAGTCACCAGGTTATAGCC -ACGGAAAGTCACCAGGTTTAACCG -ACGGAAAGTCACCAGGTTATGCCA -ACGGAAAGTCACTAGGCAGGAAAC -ACGGAAAGTCACTAGGCAAACACC -ACGGAAAGTCACTAGGCAATCGAG -ACGGAAAGTCACTAGGCACTCCTT -ACGGAAAGTCACTAGGCACCTGTT -ACGGAAAGTCACTAGGCACGGTTT -ACGGAAAGTCACTAGGCAGTGGTT -ACGGAAAGTCACTAGGCAGCCTTT -ACGGAAAGTCACTAGGCAGGTCTT -ACGGAAAGTCACTAGGCAACGCTT -ACGGAAAGTCACTAGGCAAGCGTT -ACGGAAAGTCACTAGGCATTCGTC -ACGGAAAGTCACTAGGCATCTCTC -ACGGAAAGTCACTAGGCATGGATC -ACGGAAAGTCACTAGGCACACTTC -ACGGAAAGTCACTAGGCAGTACTC -ACGGAAAGTCACTAGGCAGATGTC -ACGGAAAGTCACTAGGCAACAGTC -ACGGAAAGTCACTAGGCATTGCTG -ACGGAAAGTCACTAGGCATCCATG -ACGGAAAGTCACTAGGCATGTGTG -ACGGAAAGTCACTAGGCACTAGTG -ACGGAAAGTCACTAGGCACATCTG -ACGGAAAGTCACTAGGCAGAGTTG -ACGGAAAGTCACTAGGCAAGACTG -ACGGAAAGTCACTAGGCATCGGTA -ACGGAAAGTCACTAGGCATGCCTA -ACGGAAAGTCACTAGGCACCACTA -ACGGAAAGTCACTAGGCAGGAGTA -ACGGAAAGTCACTAGGCATCGTCT -ACGGAAAGTCACTAGGCATGCACT -ACGGAAAGTCACTAGGCACTGACT -ACGGAAAGTCACTAGGCACAACCT -ACGGAAAGTCACTAGGCAGCTACT -ACGGAAAGTCACTAGGCAGGATCT -ACGGAAAGTCACTAGGCAAAGGCT -ACGGAAAGTCACTAGGCATCAACC -ACGGAAAGTCACTAGGCATGTTCC -ACGGAAAGTCACTAGGCAATTCCC -ACGGAAAGTCACTAGGCATTCTCG -ACGGAAAGTCACTAGGCATAGACG -ACGGAAAGTCACTAGGCAGTAACG -ACGGAAAGTCACTAGGCAACTTCG -ACGGAAAGTCACTAGGCATACGCA -ACGGAAAGTCACTAGGCACTTGCA -ACGGAAAGTCACTAGGCACGAACA -ACGGAAAGTCACTAGGCACAGTCA -ACGGAAAGTCACTAGGCAGATCCA -ACGGAAAGTCACTAGGCAACGACA -ACGGAAAGTCACTAGGCAAGCTCA -ACGGAAAGTCACTAGGCATCACGT -ACGGAAAGTCACTAGGCACGTAGT -ACGGAAAGTCACTAGGCAGTCAGT -ACGGAAAGTCACTAGGCAGAAGGT -ACGGAAAGTCACTAGGCAAACCGT -ACGGAAAGTCACTAGGCATTGTGC -ACGGAAAGTCACTAGGCACTAAGC -ACGGAAAGTCACTAGGCAACTAGC -ACGGAAAGTCACTAGGCAAGATGC -ACGGAAAGTCACTAGGCATGAAGG -ACGGAAAGTCACTAGGCACAATGG -ACGGAAAGTCACTAGGCAATGAGG -ACGGAAAGTCACTAGGCAAATGGG -ACGGAAAGTCACTAGGCATCCTGA -ACGGAAAGTCACTAGGCATAGCGA -ACGGAAAGTCACTAGGCACACAGA -ACGGAAAGTCACTAGGCAGCAAGA -ACGGAAAGTCACTAGGCAGGTTGA -ACGGAAAGTCACTAGGCATCCGAT -ACGGAAAGTCACTAGGCATGGCAT -ACGGAAAGTCACTAGGCACGAGAT -ACGGAAAGTCACTAGGCATACCAC -ACGGAAAGTCACTAGGCACAGAAC -ACGGAAAGTCACTAGGCAGTCTAC -ACGGAAAGTCACTAGGCAACGTAC -ACGGAAAGTCACTAGGCAAGTGAC -ACGGAAAGTCACTAGGCACTGTAG -ACGGAAAGTCACTAGGCACCTAAG -ACGGAAAGTCACTAGGCAGTTCAG -ACGGAAAGTCACTAGGCAGCATAG -ACGGAAAGTCACTAGGCAGACAAG -ACGGAAAGTCACTAGGCAAAGCAG -ACGGAAAGTCACTAGGCACGTCAA -ACGGAAAGTCACTAGGCAGCTGAA -ACGGAAAGTCACTAGGCAAGTACG -ACGGAAAGTCACTAGGCAATCCGA -ACGGAAAGTCACTAGGCAATGGGA -ACGGAAAGTCACTAGGCAGTGCAA -ACGGAAAGTCACTAGGCAGAGGAA -ACGGAAAGTCACTAGGCACAGGTA -ACGGAAAGTCACTAGGCAGACTCT -ACGGAAAGTCACTAGGCAAGTCCT -ACGGAAAGTCACTAGGCATAAGCC -ACGGAAAGTCACTAGGCAATAGCC -ACGGAAAGTCACTAGGCATAACCG -ACGGAAAGTCACTAGGCAATGCCA -ACGGAAAGTCACAAGGACGGAAAC -ACGGAAAGTCACAAGGACAACACC -ACGGAAAGTCACAAGGACATCGAG -ACGGAAAGTCACAAGGACCTCCTT -ACGGAAAGTCACAAGGACCCTGTT -ACGGAAAGTCACAAGGACCGGTTT -ACGGAAAGTCACAAGGACGTGGTT -ACGGAAAGTCACAAGGACGCCTTT -ACGGAAAGTCACAAGGACGGTCTT -ACGGAAAGTCACAAGGACACGCTT -ACGGAAAGTCACAAGGACAGCGTT -ACGGAAAGTCACAAGGACTTCGTC -ACGGAAAGTCACAAGGACTCTCTC -ACGGAAAGTCACAAGGACTGGATC -ACGGAAAGTCACAAGGACCACTTC -ACGGAAAGTCACAAGGACGTACTC -ACGGAAAGTCACAAGGACGATGTC -ACGGAAAGTCACAAGGACACAGTC -ACGGAAAGTCACAAGGACTTGCTG -ACGGAAAGTCACAAGGACTCCATG -ACGGAAAGTCACAAGGACTGTGTG -ACGGAAAGTCACAAGGACCTAGTG -ACGGAAAGTCACAAGGACCATCTG -ACGGAAAGTCACAAGGACGAGTTG -ACGGAAAGTCACAAGGACAGACTG -ACGGAAAGTCACAAGGACTCGGTA -ACGGAAAGTCACAAGGACTGCCTA -ACGGAAAGTCACAAGGACCCACTA -ACGGAAAGTCACAAGGACGGAGTA -ACGGAAAGTCACAAGGACTCGTCT -ACGGAAAGTCACAAGGACTGCACT -ACGGAAAGTCACAAGGACCTGACT -ACGGAAAGTCACAAGGACCAACCT -ACGGAAAGTCACAAGGACGCTACT -ACGGAAAGTCACAAGGACGGATCT -ACGGAAAGTCACAAGGACAAGGCT -ACGGAAAGTCACAAGGACTCAACC -ACGGAAAGTCACAAGGACTGTTCC -ACGGAAAGTCACAAGGACATTCCC -ACGGAAAGTCACAAGGACTTCTCG -ACGGAAAGTCACAAGGACTAGACG -ACGGAAAGTCACAAGGACGTAACG -ACGGAAAGTCACAAGGACACTTCG -ACGGAAAGTCACAAGGACTACGCA -ACGGAAAGTCACAAGGACCTTGCA -ACGGAAAGTCACAAGGACCGAACA -ACGGAAAGTCACAAGGACCAGTCA -ACGGAAAGTCACAAGGACGATCCA -ACGGAAAGTCACAAGGACACGACA -ACGGAAAGTCACAAGGACAGCTCA -ACGGAAAGTCACAAGGACTCACGT -ACGGAAAGTCACAAGGACCGTAGT -ACGGAAAGTCACAAGGACGTCAGT -ACGGAAAGTCACAAGGACGAAGGT -ACGGAAAGTCACAAGGACAACCGT -ACGGAAAGTCACAAGGACTTGTGC -ACGGAAAGTCACAAGGACCTAAGC -ACGGAAAGTCACAAGGACACTAGC -ACGGAAAGTCACAAGGACAGATGC -ACGGAAAGTCACAAGGACTGAAGG -ACGGAAAGTCACAAGGACCAATGG -ACGGAAAGTCACAAGGACATGAGG -ACGGAAAGTCACAAGGACAATGGG -ACGGAAAGTCACAAGGACTCCTGA -ACGGAAAGTCACAAGGACTAGCGA -ACGGAAAGTCACAAGGACCACAGA -ACGGAAAGTCACAAGGACGCAAGA -ACGGAAAGTCACAAGGACGGTTGA -ACGGAAAGTCACAAGGACTCCGAT -ACGGAAAGTCACAAGGACTGGCAT -ACGGAAAGTCACAAGGACCGAGAT -ACGGAAAGTCACAAGGACTACCAC -ACGGAAAGTCACAAGGACCAGAAC -ACGGAAAGTCACAAGGACGTCTAC -ACGGAAAGTCACAAGGACACGTAC -ACGGAAAGTCACAAGGACAGTGAC -ACGGAAAGTCACAAGGACCTGTAG -ACGGAAAGTCACAAGGACCCTAAG -ACGGAAAGTCACAAGGACGTTCAG -ACGGAAAGTCACAAGGACGCATAG -ACGGAAAGTCACAAGGACGACAAG -ACGGAAAGTCACAAGGACAAGCAG -ACGGAAAGTCACAAGGACCGTCAA -ACGGAAAGTCACAAGGACGCTGAA -ACGGAAAGTCACAAGGACAGTACG -ACGGAAAGTCACAAGGACATCCGA -ACGGAAAGTCACAAGGACATGGGA -ACGGAAAGTCACAAGGACGTGCAA -ACGGAAAGTCACAAGGACGAGGAA -ACGGAAAGTCACAAGGACCAGGTA -ACGGAAAGTCACAAGGACGACTCT -ACGGAAAGTCACAAGGACAGTCCT -ACGGAAAGTCACAAGGACTAAGCC -ACGGAAAGTCACAAGGACATAGCC -ACGGAAAGTCACAAGGACTAACCG -ACGGAAAGTCACAAGGACATGCCA -ACGGAAAGTCACCAGAAGGGAAAC -ACGGAAAGTCACCAGAAGAACACC -ACGGAAAGTCACCAGAAGATCGAG -ACGGAAAGTCACCAGAAGCTCCTT -ACGGAAAGTCACCAGAAGCCTGTT -ACGGAAAGTCACCAGAAGCGGTTT -ACGGAAAGTCACCAGAAGGTGGTT -ACGGAAAGTCACCAGAAGGCCTTT -ACGGAAAGTCACCAGAAGGGTCTT -ACGGAAAGTCACCAGAAGACGCTT -ACGGAAAGTCACCAGAAGAGCGTT -ACGGAAAGTCACCAGAAGTTCGTC -ACGGAAAGTCACCAGAAGTCTCTC -ACGGAAAGTCACCAGAAGTGGATC -ACGGAAAGTCACCAGAAGCACTTC -ACGGAAAGTCACCAGAAGGTACTC -ACGGAAAGTCACCAGAAGGATGTC -ACGGAAAGTCACCAGAAGACAGTC -ACGGAAAGTCACCAGAAGTTGCTG -ACGGAAAGTCACCAGAAGTCCATG -ACGGAAAGTCACCAGAAGTGTGTG -ACGGAAAGTCACCAGAAGCTAGTG -ACGGAAAGTCACCAGAAGCATCTG -ACGGAAAGTCACCAGAAGGAGTTG -ACGGAAAGTCACCAGAAGAGACTG -ACGGAAAGTCACCAGAAGTCGGTA -ACGGAAAGTCACCAGAAGTGCCTA -ACGGAAAGTCACCAGAAGCCACTA -ACGGAAAGTCACCAGAAGGGAGTA -ACGGAAAGTCACCAGAAGTCGTCT -ACGGAAAGTCACCAGAAGTGCACT -ACGGAAAGTCACCAGAAGCTGACT -ACGGAAAGTCACCAGAAGCAACCT -ACGGAAAGTCACCAGAAGGCTACT -ACGGAAAGTCACCAGAAGGGATCT -ACGGAAAGTCACCAGAAGAAGGCT -ACGGAAAGTCACCAGAAGTCAACC -ACGGAAAGTCACCAGAAGTGTTCC -ACGGAAAGTCACCAGAAGATTCCC -ACGGAAAGTCACCAGAAGTTCTCG -ACGGAAAGTCACCAGAAGTAGACG -ACGGAAAGTCACCAGAAGGTAACG -ACGGAAAGTCACCAGAAGACTTCG -ACGGAAAGTCACCAGAAGTACGCA -ACGGAAAGTCACCAGAAGCTTGCA -ACGGAAAGTCACCAGAAGCGAACA -ACGGAAAGTCACCAGAAGCAGTCA -ACGGAAAGTCACCAGAAGGATCCA -ACGGAAAGTCACCAGAAGACGACA -ACGGAAAGTCACCAGAAGAGCTCA -ACGGAAAGTCACCAGAAGTCACGT -ACGGAAAGTCACCAGAAGCGTAGT -ACGGAAAGTCACCAGAAGGTCAGT -ACGGAAAGTCACCAGAAGGAAGGT -ACGGAAAGTCACCAGAAGAACCGT -ACGGAAAGTCACCAGAAGTTGTGC -ACGGAAAGTCACCAGAAGCTAAGC -ACGGAAAGTCACCAGAAGACTAGC -ACGGAAAGTCACCAGAAGAGATGC -ACGGAAAGTCACCAGAAGTGAAGG -ACGGAAAGTCACCAGAAGCAATGG -ACGGAAAGTCACCAGAAGATGAGG -ACGGAAAGTCACCAGAAGAATGGG -ACGGAAAGTCACCAGAAGTCCTGA -ACGGAAAGTCACCAGAAGTAGCGA -ACGGAAAGTCACCAGAAGCACAGA -ACGGAAAGTCACCAGAAGGCAAGA -ACGGAAAGTCACCAGAAGGGTTGA -ACGGAAAGTCACCAGAAGTCCGAT -ACGGAAAGTCACCAGAAGTGGCAT -ACGGAAAGTCACCAGAAGCGAGAT -ACGGAAAGTCACCAGAAGTACCAC -ACGGAAAGTCACCAGAAGCAGAAC -ACGGAAAGTCACCAGAAGGTCTAC -ACGGAAAGTCACCAGAAGACGTAC -ACGGAAAGTCACCAGAAGAGTGAC -ACGGAAAGTCACCAGAAGCTGTAG -ACGGAAAGTCACCAGAAGCCTAAG -ACGGAAAGTCACCAGAAGGTTCAG -ACGGAAAGTCACCAGAAGGCATAG -ACGGAAAGTCACCAGAAGGACAAG -ACGGAAAGTCACCAGAAGAAGCAG -ACGGAAAGTCACCAGAAGCGTCAA -ACGGAAAGTCACCAGAAGGCTGAA -ACGGAAAGTCACCAGAAGAGTACG -ACGGAAAGTCACCAGAAGATCCGA -ACGGAAAGTCACCAGAAGATGGGA -ACGGAAAGTCACCAGAAGGTGCAA -ACGGAAAGTCACCAGAAGGAGGAA -ACGGAAAGTCACCAGAAGCAGGTA -ACGGAAAGTCACCAGAAGGACTCT -ACGGAAAGTCACCAGAAGAGTCCT -ACGGAAAGTCACCAGAAGTAAGCC -ACGGAAAGTCACCAGAAGATAGCC -ACGGAAAGTCACCAGAAGTAACCG -ACGGAAAGTCACCAGAAGATGCCA -ACGGAAAGTCACCAACGTGGAAAC -ACGGAAAGTCACCAACGTAACACC -ACGGAAAGTCACCAACGTATCGAG -ACGGAAAGTCACCAACGTCTCCTT -ACGGAAAGTCACCAACGTCCTGTT -ACGGAAAGTCACCAACGTCGGTTT -ACGGAAAGTCACCAACGTGTGGTT -ACGGAAAGTCACCAACGTGCCTTT -ACGGAAAGTCACCAACGTGGTCTT -ACGGAAAGTCACCAACGTACGCTT -ACGGAAAGTCACCAACGTAGCGTT -ACGGAAAGTCACCAACGTTTCGTC -ACGGAAAGTCACCAACGTTCTCTC -ACGGAAAGTCACCAACGTTGGATC -ACGGAAAGTCACCAACGTCACTTC -ACGGAAAGTCACCAACGTGTACTC -ACGGAAAGTCACCAACGTGATGTC -ACGGAAAGTCACCAACGTACAGTC -ACGGAAAGTCACCAACGTTTGCTG -ACGGAAAGTCACCAACGTTCCATG -ACGGAAAGTCACCAACGTTGTGTG -ACGGAAAGTCACCAACGTCTAGTG -ACGGAAAGTCACCAACGTCATCTG -ACGGAAAGTCACCAACGTGAGTTG -ACGGAAAGTCACCAACGTAGACTG -ACGGAAAGTCACCAACGTTCGGTA -ACGGAAAGTCACCAACGTTGCCTA -ACGGAAAGTCACCAACGTCCACTA -ACGGAAAGTCACCAACGTGGAGTA -ACGGAAAGTCACCAACGTTCGTCT -ACGGAAAGTCACCAACGTTGCACT -ACGGAAAGTCACCAACGTCTGACT -ACGGAAAGTCACCAACGTCAACCT -ACGGAAAGTCACCAACGTGCTACT -ACGGAAAGTCACCAACGTGGATCT -ACGGAAAGTCACCAACGTAAGGCT -ACGGAAAGTCACCAACGTTCAACC -ACGGAAAGTCACCAACGTTGTTCC -ACGGAAAGTCACCAACGTATTCCC -ACGGAAAGTCACCAACGTTTCTCG -ACGGAAAGTCACCAACGTTAGACG -ACGGAAAGTCACCAACGTGTAACG -ACGGAAAGTCACCAACGTACTTCG -ACGGAAAGTCACCAACGTTACGCA -ACGGAAAGTCACCAACGTCTTGCA -ACGGAAAGTCACCAACGTCGAACA -ACGGAAAGTCACCAACGTCAGTCA -ACGGAAAGTCACCAACGTGATCCA -ACGGAAAGTCACCAACGTACGACA -ACGGAAAGTCACCAACGTAGCTCA -ACGGAAAGTCACCAACGTTCACGT -ACGGAAAGTCACCAACGTCGTAGT -ACGGAAAGTCACCAACGTGTCAGT -ACGGAAAGTCACCAACGTGAAGGT -ACGGAAAGTCACCAACGTAACCGT -ACGGAAAGTCACCAACGTTTGTGC -ACGGAAAGTCACCAACGTCTAAGC -ACGGAAAGTCACCAACGTACTAGC -ACGGAAAGTCACCAACGTAGATGC -ACGGAAAGTCACCAACGTTGAAGG -ACGGAAAGTCACCAACGTCAATGG -ACGGAAAGTCACCAACGTATGAGG -ACGGAAAGTCACCAACGTAATGGG -ACGGAAAGTCACCAACGTTCCTGA -ACGGAAAGTCACCAACGTTAGCGA -ACGGAAAGTCACCAACGTCACAGA -ACGGAAAGTCACCAACGTGCAAGA -ACGGAAAGTCACCAACGTGGTTGA -ACGGAAAGTCACCAACGTTCCGAT -ACGGAAAGTCACCAACGTTGGCAT -ACGGAAAGTCACCAACGTCGAGAT -ACGGAAAGTCACCAACGTTACCAC -ACGGAAAGTCACCAACGTCAGAAC -ACGGAAAGTCACCAACGTGTCTAC -ACGGAAAGTCACCAACGTACGTAC -ACGGAAAGTCACCAACGTAGTGAC -ACGGAAAGTCACCAACGTCTGTAG -ACGGAAAGTCACCAACGTCCTAAG -ACGGAAAGTCACCAACGTGTTCAG -ACGGAAAGTCACCAACGTGCATAG -ACGGAAAGTCACCAACGTGACAAG -ACGGAAAGTCACCAACGTAAGCAG -ACGGAAAGTCACCAACGTCGTCAA -ACGGAAAGTCACCAACGTGCTGAA -ACGGAAAGTCACCAACGTAGTACG -ACGGAAAGTCACCAACGTATCCGA -ACGGAAAGTCACCAACGTATGGGA -ACGGAAAGTCACCAACGTGTGCAA -ACGGAAAGTCACCAACGTGAGGAA -ACGGAAAGTCACCAACGTCAGGTA -ACGGAAAGTCACCAACGTGACTCT -ACGGAAAGTCACCAACGTAGTCCT -ACGGAAAGTCACCAACGTTAAGCC -ACGGAAAGTCACCAACGTATAGCC -ACGGAAAGTCACCAACGTTAACCG -ACGGAAAGTCACCAACGTATGCCA -ACGGAAAGTCACGAAGCTGGAAAC -ACGGAAAGTCACGAAGCTAACACC -ACGGAAAGTCACGAAGCTATCGAG -ACGGAAAGTCACGAAGCTCTCCTT -ACGGAAAGTCACGAAGCTCCTGTT -ACGGAAAGTCACGAAGCTCGGTTT -ACGGAAAGTCACGAAGCTGTGGTT -ACGGAAAGTCACGAAGCTGCCTTT -ACGGAAAGTCACGAAGCTGGTCTT -ACGGAAAGTCACGAAGCTACGCTT -ACGGAAAGTCACGAAGCTAGCGTT -ACGGAAAGTCACGAAGCTTTCGTC -ACGGAAAGTCACGAAGCTTCTCTC -ACGGAAAGTCACGAAGCTTGGATC -ACGGAAAGTCACGAAGCTCACTTC -ACGGAAAGTCACGAAGCTGTACTC -ACGGAAAGTCACGAAGCTGATGTC -ACGGAAAGTCACGAAGCTACAGTC -ACGGAAAGTCACGAAGCTTTGCTG -ACGGAAAGTCACGAAGCTTCCATG -ACGGAAAGTCACGAAGCTTGTGTG -ACGGAAAGTCACGAAGCTCTAGTG -ACGGAAAGTCACGAAGCTCATCTG -ACGGAAAGTCACGAAGCTGAGTTG -ACGGAAAGTCACGAAGCTAGACTG -ACGGAAAGTCACGAAGCTTCGGTA -ACGGAAAGTCACGAAGCTTGCCTA -ACGGAAAGTCACGAAGCTCCACTA -ACGGAAAGTCACGAAGCTGGAGTA -ACGGAAAGTCACGAAGCTTCGTCT -ACGGAAAGTCACGAAGCTTGCACT -ACGGAAAGTCACGAAGCTCTGACT -ACGGAAAGTCACGAAGCTCAACCT -ACGGAAAGTCACGAAGCTGCTACT -ACGGAAAGTCACGAAGCTGGATCT -ACGGAAAGTCACGAAGCTAAGGCT -ACGGAAAGTCACGAAGCTTCAACC -ACGGAAAGTCACGAAGCTTGTTCC -ACGGAAAGTCACGAAGCTATTCCC -ACGGAAAGTCACGAAGCTTTCTCG -ACGGAAAGTCACGAAGCTTAGACG -ACGGAAAGTCACGAAGCTGTAACG -ACGGAAAGTCACGAAGCTACTTCG -ACGGAAAGTCACGAAGCTTACGCA -ACGGAAAGTCACGAAGCTCTTGCA -ACGGAAAGTCACGAAGCTCGAACA -ACGGAAAGTCACGAAGCTCAGTCA -ACGGAAAGTCACGAAGCTGATCCA -ACGGAAAGTCACGAAGCTACGACA -ACGGAAAGTCACGAAGCTAGCTCA -ACGGAAAGTCACGAAGCTTCACGT -ACGGAAAGTCACGAAGCTCGTAGT -ACGGAAAGTCACGAAGCTGTCAGT -ACGGAAAGTCACGAAGCTGAAGGT -ACGGAAAGTCACGAAGCTAACCGT -ACGGAAAGTCACGAAGCTTTGTGC -ACGGAAAGTCACGAAGCTCTAAGC -ACGGAAAGTCACGAAGCTACTAGC -ACGGAAAGTCACGAAGCTAGATGC -ACGGAAAGTCACGAAGCTTGAAGG -ACGGAAAGTCACGAAGCTCAATGG -ACGGAAAGTCACGAAGCTATGAGG -ACGGAAAGTCACGAAGCTAATGGG -ACGGAAAGTCACGAAGCTTCCTGA -ACGGAAAGTCACGAAGCTTAGCGA -ACGGAAAGTCACGAAGCTCACAGA -ACGGAAAGTCACGAAGCTGCAAGA -ACGGAAAGTCACGAAGCTGGTTGA -ACGGAAAGTCACGAAGCTTCCGAT -ACGGAAAGTCACGAAGCTTGGCAT -ACGGAAAGTCACGAAGCTCGAGAT -ACGGAAAGTCACGAAGCTTACCAC -ACGGAAAGTCACGAAGCTCAGAAC -ACGGAAAGTCACGAAGCTGTCTAC -ACGGAAAGTCACGAAGCTACGTAC -ACGGAAAGTCACGAAGCTAGTGAC -ACGGAAAGTCACGAAGCTCTGTAG -ACGGAAAGTCACGAAGCTCCTAAG -ACGGAAAGTCACGAAGCTGTTCAG -ACGGAAAGTCACGAAGCTGCATAG -ACGGAAAGTCACGAAGCTGACAAG -ACGGAAAGTCACGAAGCTAAGCAG -ACGGAAAGTCACGAAGCTCGTCAA -ACGGAAAGTCACGAAGCTGCTGAA -ACGGAAAGTCACGAAGCTAGTACG -ACGGAAAGTCACGAAGCTATCCGA -ACGGAAAGTCACGAAGCTATGGGA -ACGGAAAGTCACGAAGCTGTGCAA -ACGGAAAGTCACGAAGCTGAGGAA -ACGGAAAGTCACGAAGCTCAGGTA -ACGGAAAGTCACGAAGCTGACTCT -ACGGAAAGTCACGAAGCTAGTCCT -ACGGAAAGTCACGAAGCTTAAGCC -ACGGAAAGTCACGAAGCTATAGCC -ACGGAAAGTCACGAAGCTTAACCG -ACGGAAAGTCACGAAGCTATGCCA -ACGGAAAGTCACACGAGTGGAAAC -ACGGAAAGTCACACGAGTAACACC -ACGGAAAGTCACACGAGTATCGAG -ACGGAAAGTCACACGAGTCTCCTT -ACGGAAAGTCACACGAGTCCTGTT -ACGGAAAGTCACACGAGTCGGTTT -ACGGAAAGTCACACGAGTGTGGTT -ACGGAAAGTCACACGAGTGCCTTT -ACGGAAAGTCACACGAGTGGTCTT -ACGGAAAGTCACACGAGTACGCTT -ACGGAAAGTCACACGAGTAGCGTT -ACGGAAAGTCACACGAGTTTCGTC -ACGGAAAGTCACACGAGTTCTCTC -ACGGAAAGTCACACGAGTTGGATC -ACGGAAAGTCACACGAGTCACTTC -ACGGAAAGTCACACGAGTGTACTC -ACGGAAAGTCACACGAGTGATGTC -ACGGAAAGTCACACGAGTACAGTC -ACGGAAAGTCACACGAGTTTGCTG -ACGGAAAGTCACACGAGTTCCATG -ACGGAAAGTCACACGAGTTGTGTG -ACGGAAAGTCACACGAGTCTAGTG -ACGGAAAGTCACACGAGTCATCTG -ACGGAAAGTCACACGAGTGAGTTG -ACGGAAAGTCACACGAGTAGACTG -ACGGAAAGTCACACGAGTTCGGTA -ACGGAAAGTCACACGAGTTGCCTA -ACGGAAAGTCACACGAGTCCACTA -ACGGAAAGTCACACGAGTGGAGTA -ACGGAAAGTCACACGAGTTCGTCT -ACGGAAAGTCACACGAGTTGCACT -ACGGAAAGTCACACGAGTCTGACT -ACGGAAAGTCACACGAGTCAACCT -ACGGAAAGTCACACGAGTGCTACT -ACGGAAAGTCACACGAGTGGATCT -ACGGAAAGTCACACGAGTAAGGCT -ACGGAAAGTCACACGAGTTCAACC -ACGGAAAGTCACACGAGTTGTTCC -ACGGAAAGTCACACGAGTATTCCC -ACGGAAAGTCACACGAGTTTCTCG -ACGGAAAGTCACACGAGTTAGACG -ACGGAAAGTCACACGAGTGTAACG -ACGGAAAGTCACACGAGTACTTCG -ACGGAAAGTCACACGAGTTACGCA -ACGGAAAGTCACACGAGTCTTGCA -ACGGAAAGTCACACGAGTCGAACA -ACGGAAAGTCACACGAGTCAGTCA -ACGGAAAGTCACACGAGTGATCCA -ACGGAAAGTCACACGAGTACGACA -ACGGAAAGTCACACGAGTAGCTCA -ACGGAAAGTCACACGAGTTCACGT -ACGGAAAGTCACACGAGTCGTAGT -ACGGAAAGTCACACGAGTGTCAGT -ACGGAAAGTCACACGAGTGAAGGT -ACGGAAAGTCACACGAGTAACCGT -ACGGAAAGTCACACGAGTTTGTGC -ACGGAAAGTCACACGAGTCTAAGC -ACGGAAAGTCACACGAGTACTAGC -ACGGAAAGTCACACGAGTAGATGC -ACGGAAAGTCACACGAGTTGAAGG -ACGGAAAGTCACACGAGTCAATGG -ACGGAAAGTCACACGAGTATGAGG -ACGGAAAGTCACACGAGTAATGGG -ACGGAAAGTCACACGAGTTCCTGA -ACGGAAAGTCACACGAGTTAGCGA -ACGGAAAGTCACACGAGTCACAGA -ACGGAAAGTCACACGAGTGCAAGA -ACGGAAAGTCACACGAGTGGTTGA -ACGGAAAGTCACACGAGTTCCGAT -ACGGAAAGTCACACGAGTTGGCAT -ACGGAAAGTCACACGAGTCGAGAT -ACGGAAAGTCACACGAGTTACCAC -ACGGAAAGTCACACGAGTCAGAAC -ACGGAAAGTCACACGAGTGTCTAC -ACGGAAAGTCACACGAGTACGTAC -ACGGAAAGTCACACGAGTAGTGAC -ACGGAAAGTCACACGAGTCTGTAG -ACGGAAAGTCACACGAGTCCTAAG -ACGGAAAGTCACACGAGTGTTCAG -ACGGAAAGTCACACGAGTGCATAG -ACGGAAAGTCACACGAGTGACAAG -ACGGAAAGTCACACGAGTAAGCAG -ACGGAAAGTCACACGAGTCGTCAA -ACGGAAAGTCACACGAGTGCTGAA -ACGGAAAGTCACACGAGTAGTACG -ACGGAAAGTCACACGAGTATCCGA -ACGGAAAGTCACACGAGTATGGGA -ACGGAAAGTCACACGAGTGTGCAA -ACGGAAAGTCACACGAGTGAGGAA -ACGGAAAGTCACACGAGTCAGGTA -ACGGAAAGTCACACGAGTGACTCT -ACGGAAAGTCACACGAGTAGTCCT -ACGGAAAGTCACACGAGTTAAGCC -ACGGAAAGTCACACGAGTATAGCC -ACGGAAAGTCACACGAGTTAACCG -ACGGAAAGTCACACGAGTATGCCA -ACGGAAAGTCACCGAATCGGAAAC -ACGGAAAGTCACCGAATCAACACC -ACGGAAAGTCACCGAATCATCGAG -ACGGAAAGTCACCGAATCCTCCTT -ACGGAAAGTCACCGAATCCCTGTT -ACGGAAAGTCACCGAATCCGGTTT -ACGGAAAGTCACCGAATCGTGGTT -ACGGAAAGTCACCGAATCGCCTTT -ACGGAAAGTCACCGAATCGGTCTT -ACGGAAAGTCACCGAATCACGCTT -ACGGAAAGTCACCGAATCAGCGTT -ACGGAAAGTCACCGAATCTTCGTC -ACGGAAAGTCACCGAATCTCTCTC -ACGGAAAGTCACCGAATCTGGATC -ACGGAAAGTCACCGAATCCACTTC -ACGGAAAGTCACCGAATCGTACTC -ACGGAAAGTCACCGAATCGATGTC -ACGGAAAGTCACCGAATCACAGTC -ACGGAAAGTCACCGAATCTTGCTG -ACGGAAAGTCACCGAATCTCCATG -ACGGAAAGTCACCGAATCTGTGTG -ACGGAAAGTCACCGAATCCTAGTG -ACGGAAAGTCACCGAATCCATCTG -ACGGAAAGTCACCGAATCGAGTTG -ACGGAAAGTCACCGAATCAGACTG -ACGGAAAGTCACCGAATCTCGGTA -ACGGAAAGTCACCGAATCTGCCTA -ACGGAAAGTCACCGAATCCCACTA -ACGGAAAGTCACCGAATCGGAGTA -ACGGAAAGTCACCGAATCTCGTCT -ACGGAAAGTCACCGAATCTGCACT -ACGGAAAGTCACCGAATCCTGACT -ACGGAAAGTCACCGAATCCAACCT -ACGGAAAGTCACCGAATCGCTACT -ACGGAAAGTCACCGAATCGGATCT -ACGGAAAGTCACCGAATCAAGGCT -ACGGAAAGTCACCGAATCTCAACC -ACGGAAAGTCACCGAATCTGTTCC -ACGGAAAGTCACCGAATCATTCCC -ACGGAAAGTCACCGAATCTTCTCG -ACGGAAAGTCACCGAATCTAGACG -ACGGAAAGTCACCGAATCGTAACG -ACGGAAAGTCACCGAATCACTTCG -ACGGAAAGTCACCGAATCTACGCA -ACGGAAAGTCACCGAATCCTTGCA -ACGGAAAGTCACCGAATCCGAACA -ACGGAAAGTCACCGAATCCAGTCA -ACGGAAAGTCACCGAATCGATCCA -ACGGAAAGTCACCGAATCACGACA -ACGGAAAGTCACCGAATCAGCTCA -ACGGAAAGTCACCGAATCTCACGT -ACGGAAAGTCACCGAATCCGTAGT -ACGGAAAGTCACCGAATCGTCAGT -ACGGAAAGTCACCGAATCGAAGGT -ACGGAAAGTCACCGAATCAACCGT -ACGGAAAGTCACCGAATCTTGTGC -ACGGAAAGTCACCGAATCCTAAGC -ACGGAAAGTCACCGAATCACTAGC -ACGGAAAGTCACCGAATCAGATGC -ACGGAAAGTCACCGAATCTGAAGG -ACGGAAAGTCACCGAATCCAATGG -ACGGAAAGTCACCGAATCATGAGG -ACGGAAAGTCACCGAATCAATGGG -ACGGAAAGTCACCGAATCTCCTGA -ACGGAAAGTCACCGAATCTAGCGA -ACGGAAAGTCACCGAATCCACAGA -ACGGAAAGTCACCGAATCGCAAGA -ACGGAAAGTCACCGAATCGGTTGA -ACGGAAAGTCACCGAATCTCCGAT -ACGGAAAGTCACCGAATCTGGCAT -ACGGAAAGTCACCGAATCCGAGAT -ACGGAAAGTCACCGAATCTACCAC -ACGGAAAGTCACCGAATCCAGAAC -ACGGAAAGTCACCGAATCGTCTAC -ACGGAAAGTCACCGAATCACGTAC -ACGGAAAGTCACCGAATCAGTGAC -ACGGAAAGTCACCGAATCCTGTAG -ACGGAAAGTCACCGAATCCCTAAG -ACGGAAAGTCACCGAATCGTTCAG -ACGGAAAGTCACCGAATCGCATAG -ACGGAAAGTCACCGAATCGACAAG -ACGGAAAGTCACCGAATCAAGCAG -ACGGAAAGTCACCGAATCCGTCAA -ACGGAAAGTCACCGAATCGCTGAA -ACGGAAAGTCACCGAATCAGTACG -ACGGAAAGTCACCGAATCATCCGA -ACGGAAAGTCACCGAATCATGGGA -ACGGAAAGTCACCGAATCGTGCAA -ACGGAAAGTCACCGAATCGAGGAA -ACGGAAAGTCACCGAATCCAGGTA -ACGGAAAGTCACCGAATCGACTCT -ACGGAAAGTCACCGAATCAGTCCT -ACGGAAAGTCACCGAATCTAAGCC -ACGGAAAGTCACCGAATCATAGCC -ACGGAAAGTCACCGAATCTAACCG -ACGGAAAGTCACCGAATCATGCCA -ACGGAAAGTCACGGAATGGGAAAC -ACGGAAAGTCACGGAATGAACACC -ACGGAAAGTCACGGAATGATCGAG -ACGGAAAGTCACGGAATGCTCCTT -ACGGAAAGTCACGGAATGCCTGTT -ACGGAAAGTCACGGAATGCGGTTT -ACGGAAAGTCACGGAATGGTGGTT -ACGGAAAGTCACGGAATGGCCTTT -ACGGAAAGTCACGGAATGGGTCTT -ACGGAAAGTCACGGAATGACGCTT -ACGGAAAGTCACGGAATGAGCGTT -ACGGAAAGTCACGGAATGTTCGTC -ACGGAAAGTCACGGAATGTCTCTC -ACGGAAAGTCACGGAATGTGGATC -ACGGAAAGTCACGGAATGCACTTC -ACGGAAAGTCACGGAATGGTACTC -ACGGAAAGTCACGGAATGGATGTC -ACGGAAAGTCACGGAATGACAGTC -ACGGAAAGTCACGGAATGTTGCTG -ACGGAAAGTCACGGAATGTCCATG -ACGGAAAGTCACGGAATGTGTGTG -ACGGAAAGTCACGGAATGCTAGTG -ACGGAAAGTCACGGAATGCATCTG -ACGGAAAGTCACGGAATGGAGTTG -ACGGAAAGTCACGGAATGAGACTG -ACGGAAAGTCACGGAATGTCGGTA -ACGGAAAGTCACGGAATGTGCCTA -ACGGAAAGTCACGGAATGCCACTA -ACGGAAAGTCACGGAATGGGAGTA -ACGGAAAGTCACGGAATGTCGTCT -ACGGAAAGTCACGGAATGTGCACT -ACGGAAAGTCACGGAATGCTGACT -ACGGAAAGTCACGGAATGCAACCT -ACGGAAAGTCACGGAATGGCTACT -ACGGAAAGTCACGGAATGGGATCT -ACGGAAAGTCACGGAATGAAGGCT -ACGGAAAGTCACGGAATGTCAACC -ACGGAAAGTCACGGAATGTGTTCC -ACGGAAAGTCACGGAATGATTCCC -ACGGAAAGTCACGGAATGTTCTCG -ACGGAAAGTCACGGAATGTAGACG -ACGGAAAGTCACGGAATGGTAACG -ACGGAAAGTCACGGAATGACTTCG -ACGGAAAGTCACGGAATGTACGCA -ACGGAAAGTCACGGAATGCTTGCA -ACGGAAAGTCACGGAATGCGAACA -ACGGAAAGTCACGGAATGCAGTCA -ACGGAAAGTCACGGAATGGATCCA -ACGGAAAGTCACGGAATGACGACA -ACGGAAAGTCACGGAATGAGCTCA -ACGGAAAGTCACGGAATGTCACGT -ACGGAAAGTCACGGAATGCGTAGT -ACGGAAAGTCACGGAATGGTCAGT -ACGGAAAGTCACGGAATGGAAGGT -ACGGAAAGTCACGGAATGAACCGT -ACGGAAAGTCACGGAATGTTGTGC -ACGGAAAGTCACGGAATGCTAAGC -ACGGAAAGTCACGGAATGACTAGC -ACGGAAAGTCACGGAATGAGATGC -ACGGAAAGTCACGGAATGTGAAGG -ACGGAAAGTCACGGAATGCAATGG -ACGGAAAGTCACGGAATGATGAGG -ACGGAAAGTCACGGAATGAATGGG -ACGGAAAGTCACGGAATGTCCTGA -ACGGAAAGTCACGGAATGTAGCGA -ACGGAAAGTCACGGAATGCACAGA -ACGGAAAGTCACGGAATGGCAAGA -ACGGAAAGTCACGGAATGGGTTGA -ACGGAAAGTCACGGAATGTCCGAT -ACGGAAAGTCACGGAATGTGGCAT -ACGGAAAGTCACGGAATGCGAGAT -ACGGAAAGTCACGGAATGTACCAC -ACGGAAAGTCACGGAATGCAGAAC -ACGGAAAGTCACGGAATGGTCTAC -ACGGAAAGTCACGGAATGACGTAC -ACGGAAAGTCACGGAATGAGTGAC -ACGGAAAGTCACGGAATGCTGTAG -ACGGAAAGTCACGGAATGCCTAAG -ACGGAAAGTCACGGAATGGTTCAG -ACGGAAAGTCACGGAATGGCATAG -ACGGAAAGTCACGGAATGGACAAG -ACGGAAAGTCACGGAATGAAGCAG -ACGGAAAGTCACGGAATGCGTCAA -ACGGAAAGTCACGGAATGGCTGAA -ACGGAAAGTCACGGAATGAGTACG -ACGGAAAGTCACGGAATGATCCGA -ACGGAAAGTCACGGAATGATGGGA -ACGGAAAGTCACGGAATGGTGCAA -ACGGAAAGTCACGGAATGGAGGAA -ACGGAAAGTCACGGAATGCAGGTA -ACGGAAAGTCACGGAATGGACTCT -ACGGAAAGTCACGGAATGAGTCCT -ACGGAAAGTCACGGAATGTAAGCC -ACGGAAAGTCACGGAATGATAGCC -ACGGAAAGTCACGGAATGTAACCG -ACGGAAAGTCACGGAATGATGCCA -ACGGAAAGTCACCAAGTGGGAAAC -ACGGAAAGTCACCAAGTGAACACC -ACGGAAAGTCACCAAGTGATCGAG -ACGGAAAGTCACCAAGTGCTCCTT -ACGGAAAGTCACCAAGTGCCTGTT -ACGGAAAGTCACCAAGTGCGGTTT -ACGGAAAGTCACCAAGTGGTGGTT -ACGGAAAGTCACCAAGTGGCCTTT -ACGGAAAGTCACCAAGTGGGTCTT -ACGGAAAGTCACCAAGTGACGCTT -ACGGAAAGTCACCAAGTGAGCGTT -ACGGAAAGTCACCAAGTGTTCGTC -ACGGAAAGTCACCAAGTGTCTCTC -ACGGAAAGTCACCAAGTGTGGATC -ACGGAAAGTCACCAAGTGCACTTC -ACGGAAAGTCACCAAGTGGTACTC -ACGGAAAGTCACCAAGTGGATGTC -ACGGAAAGTCACCAAGTGACAGTC -ACGGAAAGTCACCAAGTGTTGCTG -ACGGAAAGTCACCAAGTGTCCATG -ACGGAAAGTCACCAAGTGTGTGTG -ACGGAAAGTCACCAAGTGCTAGTG -ACGGAAAGTCACCAAGTGCATCTG -ACGGAAAGTCACCAAGTGGAGTTG -ACGGAAAGTCACCAAGTGAGACTG -ACGGAAAGTCACCAAGTGTCGGTA -ACGGAAAGTCACCAAGTGTGCCTA -ACGGAAAGTCACCAAGTGCCACTA -ACGGAAAGTCACCAAGTGGGAGTA -ACGGAAAGTCACCAAGTGTCGTCT -ACGGAAAGTCACCAAGTGTGCACT -ACGGAAAGTCACCAAGTGCTGACT -ACGGAAAGTCACCAAGTGCAACCT -ACGGAAAGTCACCAAGTGGCTACT -ACGGAAAGTCACCAAGTGGGATCT -ACGGAAAGTCACCAAGTGAAGGCT -ACGGAAAGTCACCAAGTGTCAACC -ACGGAAAGTCACCAAGTGTGTTCC -ACGGAAAGTCACCAAGTGATTCCC -ACGGAAAGTCACCAAGTGTTCTCG -ACGGAAAGTCACCAAGTGTAGACG -ACGGAAAGTCACCAAGTGGTAACG -ACGGAAAGTCACCAAGTGACTTCG -ACGGAAAGTCACCAAGTGTACGCA -ACGGAAAGTCACCAAGTGCTTGCA -ACGGAAAGTCACCAAGTGCGAACA -ACGGAAAGTCACCAAGTGCAGTCA -ACGGAAAGTCACCAAGTGGATCCA -ACGGAAAGTCACCAAGTGACGACA -ACGGAAAGTCACCAAGTGAGCTCA -ACGGAAAGTCACCAAGTGTCACGT -ACGGAAAGTCACCAAGTGCGTAGT -ACGGAAAGTCACCAAGTGGTCAGT -ACGGAAAGTCACCAAGTGGAAGGT -ACGGAAAGTCACCAAGTGAACCGT -ACGGAAAGTCACCAAGTGTTGTGC -ACGGAAAGTCACCAAGTGCTAAGC -ACGGAAAGTCACCAAGTGACTAGC -ACGGAAAGTCACCAAGTGAGATGC -ACGGAAAGTCACCAAGTGTGAAGG -ACGGAAAGTCACCAAGTGCAATGG -ACGGAAAGTCACCAAGTGATGAGG -ACGGAAAGTCACCAAGTGAATGGG -ACGGAAAGTCACCAAGTGTCCTGA -ACGGAAAGTCACCAAGTGTAGCGA -ACGGAAAGTCACCAAGTGCACAGA -ACGGAAAGTCACCAAGTGGCAAGA -ACGGAAAGTCACCAAGTGGGTTGA -ACGGAAAGTCACCAAGTGTCCGAT -ACGGAAAGTCACCAAGTGTGGCAT -ACGGAAAGTCACCAAGTGCGAGAT -ACGGAAAGTCACCAAGTGTACCAC -ACGGAAAGTCACCAAGTGCAGAAC -ACGGAAAGTCACCAAGTGGTCTAC -ACGGAAAGTCACCAAGTGACGTAC -ACGGAAAGTCACCAAGTGAGTGAC -ACGGAAAGTCACCAAGTGCTGTAG -ACGGAAAGTCACCAAGTGCCTAAG -ACGGAAAGTCACCAAGTGGTTCAG -ACGGAAAGTCACCAAGTGGCATAG -ACGGAAAGTCACCAAGTGGACAAG -ACGGAAAGTCACCAAGTGAAGCAG -ACGGAAAGTCACCAAGTGCGTCAA -ACGGAAAGTCACCAAGTGGCTGAA -ACGGAAAGTCACCAAGTGAGTACG -ACGGAAAGTCACCAAGTGATCCGA -ACGGAAAGTCACCAAGTGATGGGA -ACGGAAAGTCACCAAGTGGTGCAA -ACGGAAAGTCACCAAGTGGAGGAA -ACGGAAAGTCACCAAGTGCAGGTA -ACGGAAAGTCACCAAGTGGACTCT -ACGGAAAGTCACCAAGTGAGTCCT -ACGGAAAGTCACCAAGTGTAAGCC -ACGGAAAGTCACCAAGTGATAGCC -ACGGAAAGTCACCAAGTGTAACCG -ACGGAAAGTCACCAAGTGATGCCA -ACGGAAAGTCACGAAGAGGGAAAC -ACGGAAAGTCACGAAGAGAACACC -ACGGAAAGTCACGAAGAGATCGAG -ACGGAAAGTCACGAAGAGCTCCTT -ACGGAAAGTCACGAAGAGCCTGTT -ACGGAAAGTCACGAAGAGCGGTTT -ACGGAAAGTCACGAAGAGGTGGTT -ACGGAAAGTCACGAAGAGGCCTTT -ACGGAAAGTCACGAAGAGGGTCTT -ACGGAAAGTCACGAAGAGACGCTT -ACGGAAAGTCACGAAGAGAGCGTT -ACGGAAAGTCACGAAGAGTTCGTC -ACGGAAAGTCACGAAGAGTCTCTC -ACGGAAAGTCACGAAGAGTGGATC -ACGGAAAGTCACGAAGAGCACTTC -ACGGAAAGTCACGAAGAGGTACTC -ACGGAAAGTCACGAAGAGGATGTC -ACGGAAAGTCACGAAGAGACAGTC -ACGGAAAGTCACGAAGAGTTGCTG -ACGGAAAGTCACGAAGAGTCCATG -ACGGAAAGTCACGAAGAGTGTGTG -ACGGAAAGTCACGAAGAGCTAGTG -ACGGAAAGTCACGAAGAGCATCTG -ACGGAAAGTCACGAAGAGGAGTTG -ACGGAAAGTCACGAAGAGAGACTG -ACGGAAAGTCACGAAGAGTCGGTA -ACGGAAAGTCACGAAGAGTGCCTA -ACGGAAAGTCACGAAGAGCCACTA -ACGGAAAGTCACGAAGAGGGAGTA -ACGGAAAGTCACGAAGAGTCGTCT -ACGGAAAGTCACGAAGAGTGCACT -ACGGAAAGTCACGAAGAGCTGACT -ACGGAAAGTCACGAAGAGCAACCT -ACGGAAAGTCACGAAGAGGCTACT -ACGGAAAGTCACGAAGAGGGATCT -ACGGAAAGTCACGAAGAGAAGGCT -ACGGAAAGTCACGAAGAGTCAACC -ACGGAAAGTCACGAAGAGTGTTCC -ACGGAAAGTCACGAAGAGATTCCC -ACGGAAAGTCACGAAGAGTTCTCG -ACGGAAAGTCACGAAGAGTAGACG -ACGGAAAGTCACGAAGAGGTAACG -ACGGAAAGTCACGAAGAGACTTCG -ACGGAAAGTCACGAAGAGTACGCA -ACGGAAAGTCACGAAGAGCTTGCA -ACGGAAAGTCACGAAGAGCGAACA -ACGGAAAGTCACGAAGAGCAGTCA -ACGGAAAGTCACGAAGAGGATCCA -ACGGAAAGTCACGAAGAGACGACA -ACGGAAAGTCACGAAGAGAGCTCA -ACGGAAAGTCACGAAGAGTCACGT -ACGGAAAGTCACGAAGAGCGTAGT -ACGGAAAGTCACGAAGAGGTCAGT -ACGGAAAGTCACGAAGAGGAAGGT -ACGGAAAGTCACGAAGAGAACCGT -ACGGAAAGTCACGAAGAGTTGTGC -ACGGAAAGTCACGAAGAGCTAAGC -ACGGAAAGTCACGAAGAGACTAGC -ACGGAAAGTCACGAAGAGAGATGC -ACGGAAAGTCACGAAGAGTGAAGG -ACGGAAAGTCACGAAGAGCAATGG -ACGGAAAGTCACGAAGAGATGAGG -ACGGAAAGTCACGAAGAGAATGGG -ACGGAAAGTCACGAAGAGTCCTGA -ACGGAAAGTCACGAAGAGTAGCGA -ACGGAAAGTCACGAAGAGCACAGA -ACGGAAAGTCACGAAGAGGCAAGA -ACGGAAAGTCACGAAGAGGGTTGA -ACGGAAAGTCACGAAGAGTCCGAT -ACGGAAAGTCACGAAGAGTGGCAT -ACGGAAAGTCACGAAGAGCGAGAT -ACGGAAAGTCACGAAGAGTACCAC -ACGGAAAGTCACGAAGAGCAGAAC -ACGGAAAGTCACGAAGAGGTCTAC -ACGGAAAGTCACGAAGAGACGTAC -ACGGAAAGTCACGAAGAGAGTGAC -ACGGAAAGTCACGAAGAGCTGTAG -ACGGAAAGTCACGAAGAGCCTAAG -ACGGAAAGTCACGAAGAGGTTCAG -ACGGAAAGTCACGAAGAGGCATAG -ACGGAAAGTCACGAAGAGGACAAG -ACGGAAAGTCACGAAGAGAAGCAG -ACGGAAAGTCACGAAGAGCGTCAA -ACGGAAAGTCACGAAGAGGCTGAA -ACGGAAAGTCACGAAGAGAGTACG -ACGGAAAGTCACGAAGAGATCCGA -ACGGAAAGTCACGAAGAGATGGGA -ACGGAAAGTCACGAAGAGGTGCAA -ACGGAAAGTCACGAAGAGGAGGAA -ACGGAAAGTCACGAAGAGCAGGTA -ACGGAAAGTCACGAAGAGGACTCT -ACGGAAAGTCACGAAGAGAGTCCT -ACGGAAAGTCACGAAGAGTAAGCC -ACGGAAAGTCACGAAGAGATAGCC -ACGGAAAGTCACGAAGAGTAACCG -ACGGAAAGTCACGAAGAGATGCCA -ACGGAAAGTCACGTACAGGGAAAC -ACGGAAAGTCACGTACAGAACACC -ACGGAAAGTCACGTACAGATCGAG -ACGGAAAGTCACGTACAGCTCCTT -ACGGAAAGTCACGTACAGCCTGTT -ACGGAAAGTCACGTACAGCGGTTT -ACGGAAAGTCACGTACAGGTGGTT -ACGGAAAGTCACGTACAGGCCTTT -ACGGAAAGTCACGTACAGGGTCTT -ACGGAAAGTCACGTACAGACGCTT -ACGGAAAGTCACGTACAGAGCGTT -ACGGAAAGTCACGTACAGTTCGTC -ACGGAAAGTCACGTACAGTCTCTC -ACGGAAAGTCACGTACAGTGGATC -ACGGAAAGTCACGTACAGCACTTC -ACGGAAAGTCACGTACAGGTACTC -ACGGAAAGTCACGTACAGGATGTC -ACGGAAAGTCACGTACAGACAGTC -ACGGAAAGTCACGTACAGTTGCTG -ACGGAAAGTCACGTACAGTCCATG -ACGGAAAGTCACGTACAGTGTGTG -ACGGAAAGTCACGTACAGCTAGTG -ACGGAAAGTCACGTACAGCATCTG -ACGGAAAGTCACGTACAGGAGTTG -ACGGAAAGTCACGTACAGAGACTG -ACGGAAAGTCACGTACAGTCGGTA -ACGGAAAGTCACGTACAGTGCCTA -ACGGAAAGTCACGTACAGCCACTA -ACGGAAAGTCACGTACAGGGAGTA -ACGGAAAGTCACGTACAGTCGTCT -ACGGAAAGTCACGTACAGTGCACT -ACGGAAAGTCACGTACAGCTGACT -ACGGAAAGTCACGTACAGCAACCT -ACGGAAAGTCACGTACAGGCTACT -ACGGAAAGTCACGTACAGGGATCT -ACGGAAAGTCACGTACAGAAGGCT -ACGGAAAGTCACGTACAGTCAACC -ACGGAAAGTCACGTACAGTGTTCC -ACGGAAAGTCACGTACAGATTCCC -ACGGAAAGTCACGTACAGTTCTCG -ACGGAAAGTCACGTACAGTAGACG -ACGGAAAGTCACGTACAGGTAACG -ACGGAAAGTCACGTACAGACTTCG -ACGGAAAGTCACGTACAGTACGCA -ACGGAAAGTCACGTACAGCTTGCA -ACGGAAAGTCACGTACAGCGAACA -ACGGAAAGTCACGTACAGCAGTCA -ACGGAAAGTCACGTACAGGATCCA -ACGGAAAGTCACGTACAGACGACA -ACGGAAAGTCACGTACAGAGCTCA -ACGGAAAGTCACGTACAGTCACGT -ACGGAAAGTCACGTACAGCGTAGT -ACGGAAAGTCACGTACAGGTCAGT -ACGGAAAGTCACGTACAGGAAGGT -ACGGAAAGTCACGTACAGAACCGT -ACGGAAAGTCACGTACAGTTGTGC -ACGGAAAGTCACGTACAGCTAAGC -ACGGAAAGTCACGTACAGACTAGC -ACGGAAAGTCACGTACAGAGATGC -ACGGAAAGTCACGTACAGTGAAGG -ACGGAAAGTCACGTACAGCAATGG -ACGGAAAGTCACGTACAGATGAGG -ACGGAAAGTCACGTACAGAATGGG -ACGGAAAGTCACGTACAGTCCTGA -ACGGAAAGTCACGTACAGTAGCGA -ACGGAAAGTCACGTACAGCACAGA -ACGGAAAGTCACGTACAGGCAAGA -ACGGAAAGTCACGTACAGGGTTGA -ACGGAAAGTCACGTACAGTCCGAT -ACGGAAAGTCACGTACAGTGGCAT -ACGGAAAGTCACGTACAGCGAGAT -ACGGAAAGTCACGTACAGTACCAC -ACGGAAAGTCACGTACAGCAGAAC -ACGGAAAGTCACGTACAGGTCTAC -ACGGAAAGTCACGTACAGACGTAC -ACGGAAAGTCACGTACAGAGTGAC -ACGGAAAGTCACGTACAGCTGTAG -ACGGAAAGTCACGTACAGCCTAAG -ACGGAAAGTCACGTACAGGTTCAG -ACGGAAAGTCACGTACAGGCATAG -ACGGAAAGTCACGTACAGGACAAG -ACGGAAAGTCACGTACAGAAGCAG -ACGGAAAGTCACGTACAGCGTCAA -ACGGAAAGTCACGTACAGGCTGAA -ACGGAAAGTCACGTACAGAGTACG -ACGGAAAGTCACGTACAGATCCGA -ACGGAAAGTCACGTACAGATGGGA -ACGGAAAGTCACGTACAGGTGCAA -ACGGAAAGTCACGTACAGGAGGAA -ACGGAAAGTCACGTACAGCAGGTA -ACGGAAAGTCACGTACAGGACTCT -ACGGAAAGTCACGTACAGAGTCCT -ACGGAAAGTCACGTACAGTAAGCC -ACGGAAAGTCACGTACAGATAGCC -ACGGAAAGTCACGTACAGTAACCG -ACGGAAAGTCACGTACAGATGCCA -ACGGAAAGTCACTCTGACGGAAAC -ACGGAAAGTCACTCTGACAACACC -ACGGAAAGTCACTCTGACATCGAG -ACGGAAAGTCACTCTGACCTCCTT -ACGGAAAGTCACTCTGACCCTGTT -ACGGAAAGTCACTCTGACCGGTTT -ACGGAAAGTCACTCTGACGTGGTT -ACGGAAAGTCACTCTGACGCCTTT -ACGGAAAGTCACTCTGACGGTCTT -ACGGAAAGTCACTCTGACACGCTT -ACGGAAAGTCACTCTGACAGCGTT -ACGGAAAGTCACTCTGACTTCGTC -ACGGAAAGTCACTCTGACTCTCTC -ACGGAAAGTCACTCTGACTGGATC -ACGGAAAGTCACTCTGACCACTTC -ACGGAAAGTCACTCTGACGTACTC -ACGGAAAGTCACTCTGACGATGTC -ACGGAAAGTCACTCTGACACAGTC -ACGGAAAGTCACTCTGACTTGCTG -ACGGAAAGTCACTCTGACTCCATG -ACGGAAAGTCACTCTGACTGTGTG -ACGGAAAGTCACTCTGACCTAGTG -ACGGAAAGTCACTCTGACCATCTG -ACGGAAAGTCACTCTGACGAGTTG -ACGGAAAGTCACTCTGACAGACTG -ACGGAAAGTCACTCTGACTCGGTA -ACGGAAAGTCACTCTGACTGCCTA -ACGGAAAGTCACTCTGACCCACTA -ACGGAAAGTCACTCTGACGGAGTA -ACGGAAAGTCACTCTGACTCGTCT -ACGGAAAGTCACTCTGACTGCACT -ACGGAAAGTCACTCTGACCTGACT -ACGGAAAGTCACTCTGACCAACCT -ACGGAAAGTCACTCTGACGCTACT -ACGGAAAGTCACTCTGACGGATCT -ACGGAAAGTCACTCTGACAAGGCT -ACGGAAAGTCACTCTGACTCAACC -ACGGAAAGTCACTCTGACTGTTCC -ACGGAAAGTCACTCTGACATTCCC -ACGGAAAGTCACTCTGACTTCTCG -ACGGAAAGTCACTCTGACTAGACG -ACGGAAAGTCACTCTGACGTAACG -ACGGAAAGTCACTCTGACACTTCG -ACGGAAAGTCACTCTGACTACGCA -ACGGAAAGTCACTCTGACCTTGCA -ACGGAAAGTCACTCTGACCGAACA -ACGGAAAGTCACTCTGACCAGTCA -ACGGAAAGTCACTCTGACGATCCA -ACGGAAAGTCACTCTGACACGACA -ACGGAAAGTCACTCTGACAGCTCA -ACGGAAAGTCACTCTGACTCACGT -ACGGAAAGTCACTCTGACCGTAGT -ACGGAAAGTCACTCTGACGTCAGT -ACGGAAAGTCACTCTGACGAAGGT -ACGGAAAGTCACTCTGACAACCGT -ACGGAAAGTCACTCTGACTTGTGC -ACGGAAAGTCACTCTGACCTAAGC -ACGGAAAGTCACTCTGACACTAGC -ACGGAAAGTCACTCTGACAGATGC -ACGGAAAGTCACTCTGACTGAAGG -ACGGAAAGTCACTCTGACCAATGG -ACGGAAAGTCACTCTGACATGAGG -ACGGAAAGTCACTCTGACAATGGG -ACGGAAAGTCACTCTGACTCCTGA -ACGGAAAGTCACTCTGACTAGCGA -ACGGAAAGTCACTCTGACCACAGA -ACGGAAAGTCACTCTGACGCAAGA -ACGGAAAGTCACTCTGACGGTTGA -ACGGAAAGTCACTCTGACTCCGAT -ACGGAAAGTCACTCTGACTGGCAT -ACGGAAAGTCACTCTGACCGAGAT -ACGGAAAGTCACTCTGACTACCAC -ACGGAAAGTCACTCTGACCAGAAC -ACGGAAAGTCACTCTGACGTCTAC -ACGGAAAGTCACTCTGACACGTAC -ACGGAAAGTCACTCTGACAGTGAC -ACGGAAAGTCACTCTGACCTGTAG -ACGGAAAGTCACTCTGACCCTAAG -ACGGAAAGTCACTCTGACGTTCAG -ACGGAAAGTCACTCTGACGCATAG -ACGGAAAGTCACTCTGACGACAAG -ACGGAAAGTCACTCTGACAAGCAG -ACGGAAAGTCACTCTGACCGTCAA -ACGGAAAGTCACTCTGACGCTGAA -ACGGAAAGTCACTCTGACAGTACG -ACGGAAAGTCACTCTGACATCCGA -ACGGAAAGTCACTCTGACATGGGA -ACGGAAAGTCACTCTGACGTGCAA -ACGGAAAGTCACTCTGACGAGGAA -ACGGAAAGTCACTCTGACCAGGTA -ACGGAAAGTCACTCTGACGACTCT -ACGGAAAGTCACTCTGACAGTCCT -ACGGAAAGTCACTCTGACTAAGCC -ACGGAAAGTCACTCTGACATAGCC -ACGGAAAGTCACTCTGACTAACCG -ACGGAAAGTCACTCTGACATGCCA -ACGGAAAGTCACCCTAGTGGAAAC -ACGGAAAGTCACCCTAGTAACACC -ACGGAAAGTCACCCTAGTATCGAG -ACGGAAAGTCACCCTAGTCTCCTT -ACGGAAAGTCACCCTAGTCCTGTT -ACGGAAAGTCACCCTAGTCGGTTT -ACGGAAAGTCACCCTAGTGTGGTT -ACGGAAAGTCACCCTAGTGCCTTT -ACGGAAAGTCACCCTAGTGGTCTT -ACGGAAAGTCACCCTAGTACGCTT -ACGGAAAGTCACCCTAGTAGCGTT -ACGGAAAGTCACCCTAGTTTCGTC -ACGGAAAGTCACCCTAGTTCTCTC -ACGGAAAGTCACCCTAGTTGGATC -ACGGAAAGTCACCCTAGTCACTTC -ACGGAAAGTCACCCTAGTGTACTC -ACGGAAAGTCACCCTAGTGATGTC -ACGGAAAGTCACCCTAGTACAGTC -ACGGAAAGTCACCCTAGTTTGCTG -ACGGAAAGTCACCCTAGTTCCATG -ACGGAAAGTCACCCTAGTTGTGTG -ACGGAAAGTCACCCTAGTCTAGTG -ACGGAAAGTCACCCTAGTCATCTG -ACGGAAAGTCACCCTAGTGAGTTG -ACGGAAAGTCACCCTAGTAGACTG -ACGGAAAGTCACCCTAGTTCGGTA -ACGGAAAGTCACCCTAGTTGCCTA -ACGGAAAGTCACCCTAGTCCACTA -ACGGAAAGTCACCCTAGTGGAGTA -ACGGAAAGTCACCCTAGTTCGTCT -ACGGAAAGTCACCCTAGTTGCACT -ACGGAAAGTCACCCTAGTCTGACT -ACGGAAAGTCACCCTAGTCAACCT -ACGGAAAGTCACCCTAGTGCTACT -ACGGAAAGTCACCCTAGTGGATCT -ACGGAAAGTCACCCTAGTAAGGCT -ACGGAAAGTCACCCTAGTTCAACC -ACGGAAAGTCACCCTAGTTGTTCC -ACGGAAAGTCACCCTAGTATTCCC -ACGGAAAGTCACCCTAGTTTCTCG -ACGGAAAGTCACCCTAGTTAGACG -ACGGAAAGTCACCCTAGTGTAACG -ACGGAAAGTCACCCTAGTACTTCG -ACGGAAAGTCACCCTAGTTACGCA -ACGGAAAGTCACCCTAGTCTTGCA -ACGGAAAGTCACCCTAGTCGAACA -ACGGAAAGTCACCCTAGTCAGTCA -ACGGAAAGTCACCCTAGTGATCCA -ACGGAAAGTCACCCTAGTACGACA -ACGGAAAGTCACCCTAGTAGCTCA -ACGGAAAGTCACCCTAGTTCACGT -ACGGAAAGTCACCCTAGTCGTAGT -ACGGAAAGTCACCCTAGTGTCAGT -ACGGAAAGTCACCCTAGTGAAGGT -ACGGAAAGTCACCCTAGTAACCGT -ACGGAAAGTCACCCTAGTTTGTGC -ACGGAAAGTCACCCTAGTCTAAGC -ACGGAAAGTCACCCTAGTACTAGC -ACGGAAAGTCACCCTAGTAGATGC -ACGGAAAGTCACCCTAGTTGAAGG -ACGGAAAGTCACCCTAGTCAATGG -ACGGAAAGTCACCCTAGTATGAGG -ACGGAAAGTCACCCTAGTAATGGG -ACGGAAAGTCACCCTAGTTCCTGA -ACGGAAAGTCACCCTAGTTAGCGA -ACGGAAAGTCACCCTAGTCACAGA -ACGGAAAGTCACCCTAGTGCAAGA -ACGGAAAGTCACCCTAGTGGTTGA -ACGGAAAGTCACCCTAGTTCCGAT -ACGGAAAGTCACCCTAGTTGGCAT -ACGGAAAGTCACCCTAGTCGAGAT -ACGGAAAGTCACCCTAGTTACCAC -ACGGAAAGTCACCCTAGTCAGAAC -ACGGAAAGTCACCCTAGTGTCTAC -ACGGAAAGTCACCCTAGTACGTAC -ACGGAAAGTCACCCTAGTAGTGAC -ACGGAAAGTCACCCTAGTCTGTAG -ACGGAAAGTCACCCTAGTCCTAAG -ACGGAAAGTCACCCTAGTGTTCAG -ACGGAAAGTCACCCTAGTGCATAG -ACGGAAAGTCACCCTAGTGACAAG -ACGGAAAGTCACCCTAGTAAGCAG -ACGGAAAGTCACCCTAGTCGTCAA -ACGGAAAGTCACCCTAGTGCTGAA -ACGGAAAGTCACCCTAGTAGTACG -ACGGAAAGTCACCCTAGTATCCGA -ACGGAAAGTCACCCTAGTATGGGA -ACGGAAAGTCACCCTAGTGTGCAA -ACGGAAAGTCACCCTAGTGAGGAA -ACGGAAAGTCACCCTAGTCAGGTA -ACGGAAAGTCACCCTAGTGACTCT -ACGGAAAGTCACCCTAGTAGTCCT -ACGGAAAGTCACCCTAGTTAAGCC -ACGGAAAGTCACCCTAGTATAGCC -ACGGAAAGTCACCCTAGTTAACCG -ACGGAAAGTCACCCTAGTATGCCA -ACGGAAAGTCACGCCTAAGGAAAC -ACGGAAAGTCACGCCTAAAACACC -ACGGAAAGTCACGCCTAAATCGAG -ACGGAAAGTCACGCCTAACTCCTT -ACGGAAAGTCACGCCTAACCTGTT -ACGGAAAGTCACGCCTAACGGTTT -ACGGAAAGTCACGCCTAAGTGGTT -ACGGAAAGTCACGCCTAAGCCTTT -ACGGAAAGTCACGCCTAAGGTCTT -ACGGAAAGTCACGCCTAAACGCTT -ACGGAAAGTCACGCCTAAAGCGTT -ACGGAAAGTCACGCCTAATTCGTC -ACGGAAAGTCACGCCTAATCTCTC -ACGGAAAGTCACGCCTAATGGATC -ACGGAAAGTCACGCCTAACACTTC -ACGGAAAGTCACGCCTAAGTACTC -ACGGAAAGTCACGCCTAAGATGTC -ACGGAAAGTCACGCCTAAACAGTC -ACGGAAAGTCACGCCTAATTGCTG -ACGGAAAGTCACGCCTAATCCATG -ACGGAAAGTCACGCCTAATGTGTG -ACGGAAAGTCACGCCTAACTAGTG -ACGGAAAGTCACGCCTAACATCTG -ACGGAAAGTCACGCCTAAGAGTTG -ACGGAAAGTCACGCCTAAAGACTG -ACGGAAAGTCACGCCTAATCGGTA -ACGGAAAGTCACGCCTAATGCCTA -ACGGAAAGTCACGCCTAACCACTA -ACGGAAAGTCACGCCTAAGGAGTA -ACGGAAAGTCACGCCTAATCGTCT -ACGGAAAGTCACGCCTAATGCACT -ACGGAAAGTCACGCCTAACTGACT -ACGGAAAGTCACGCCTAACAACCT -ACGGAAAGTCACGCCTAAGCTACT -ACGGAAAGTCACGCCTAAGGATCT -ACGGAAAGTCACGCCTAAAAGGCT -ACGGAAAGTCACGCCTAATCAACC -ACGGAAAGTCACGCCTAATGTTCC -ACGGAAAGTCACGCCTAAATTCCC -ACGGAAAGTCACGCCTAATTCTCG -ACGGAAAGTCACGCCTAATAGACG -ACGGAAAGTCACGCCTAAGTAACG -ACGGAAAGTCACGCCTAAACTTCG -ACGGAAAGTCACGCCTAATACGCA -ACGGAAAGTCACGCCTAACTTGCA -ACGGAAAGTCACGCCTAACGAACA -ACGGAAAGTCACGCCTAACAGTCA -ACGGAAAGTCACGCCTAAGATCCA -ACGGAAAGTCACGCCTAAACGACA -ACGGAAAGTCACGCCTAAAGCTCA -ACGGAAAGTCACGCCTAATCACGT -ACGGAAAGTCACGCCTAACGTAGT -ACGGAAAGTCACGCCTAAGTCAGT -ACGGAAAGTCACGCCTAAGAAGGT -ACGGAAAGTCACGCCTAAAACCGT -ACGGAAAGTCACGCCTAATTGTGC -ACGGAAAGTCACGCCTAACTAAGC -ACGGAAAGTCACGCCTAAACTAGC -ACGGAAAGTCACGCCTAAAGATGC -ACGGAAAGTCACGCCTAATGAAGG -ACGGAAAGTCACGCCTAACAATGG -ACGGAAAGTCACGCCTAAATGAGG -ACGGAAAGTCACGCCTAAAATGGG -ACGGAAAGTCACGCCTAATCCTGA -ACGGAAAGTCACGCCTAATAGCGA -ACGGAAAGTCACGCCTAACACAGA -ACGGAAAGTCACGCCTAAGCAAGA -ACGGAAAGTCACGCCTAAGGTTGA -ACGGAAAGTCACGCCTAATCCGAT -ACGGAAAGTCACGCCTAATGGCAT -ACGGAAAGTCACGCCTAACGAGAT -ACGGAAAGTCACGCCTAATACCAC -ACGGAAAGTCACGCCTAACAGAAC -ACGGAAAGTCACGCCTAAGTCTAC -ACGGAAAGTCACGCCTAAACGTAC -ACGGAAAGTCACGCCTAAAGTGAC -ACGGAAAGTCACGCCTAACTGTAG -ACGGAAAGTCACGCCTAACCTAAG -ACGGAAAGTCACGCCTAAGTTCAG -ACGGAAAGTCACGCCTAAGCATAG -ACGGAAAGTCACGCCTAAGACAAG -ACGGAAAGTCACGCCTAAAAGCAG -ACGGAAAGTCACGCCTAACGTCAA -ACGGAAAGTCACGCCTAAGCTGAA -ACGGAAAGTCACGCCTAAAGTACG -ACGGAAAGTCACGCCTAAATCCGA -ACGGAAAGTCACGCCTAAATGGGA -ACGGAAAGTCACGCCTAAGTGCAA -ACGGAAAGTCACGCCTAAGAGGAA -ACGGAAAGTCACGCCTAACAGGTA -ACGGAAAGTCACGCCTAAGACTCT -ACGGAAAGTCACGCCTAAAGTCCT -ACGGAAAGTCACGCCTAATAAGCC -ACGGAAAGTCACGCCTAAATAGCC -ACGGAAAGTCACGCCTAATAACCG -ACGGAAAGTCACGCCTAAATGCCA -ACGGAAAGTCACGCCATAGGAAAC -ACGGAAAGTCACGCCATAAACACC -ACGGAAAGTCACGCCATAATCGAG -ACGGAAAGTCACGCCATACTCCTT -ACGGAAAGTCACGCCATACCTGTT -ACGGAAAGTCACGCCATACGGTTT -ACGGAAAGTCACGCCATAGTGGTT -ACGGAAAGTCACGCCATAGCCTTT -ACGGAAAGTCACGCCATAGGTCTT -ACGGAAAGTCACGCCATAACGCTT -ACGGAAAGTCACGCCATAAGCGTT -ACGGAAAGTCACGCCATATTCGTC -ACGGAAAGTCACGCCATATCTCTC -ACGGAAAGTCACGCCATATGGATC -ACGGAAAGTCACGCCATACACTTC -ACGGAAAGTCACGCCATAGTACTC -ACGGAAAGTCACGCCATAGATGTC -ACGGAAAGTCACGCCATAACAGTC -ACGGAAAGTCACGCCATATTGCTG -ACGGAAAGTCACGCCATATCCATG -ACGGAAAGTCACGCCATATGTGTG -ACGGAAAGTCACGCCATACTAGTG -ACGGAAAGTCACGCCATACATCTG -ACGGAAAGTCACGCCATAGAGTTG -ACGGAAAGTCACGCCATAAGACTG -ACGGAAAGTCACGCCATATCGGTA -ACGGAAAGTCACGCCATATGCCTA -ACGGAAAGTCACGCCATACCACTA -ACGGAAAGTCACGCCATAGGAGTA -ACGGAAAGTCACGCCATATCGTCT -ACGGAAAGTCACGCCATATGCACT -ACGGAAAGTCACGCCATACTGACT -ACGGAAAGTCACGCCATACAACCT -ACGGAAAGTCACGCCATAGCTACT -ACGGAAAGTCACGCCATAGGATCT -ACGGAAAGTCACGCCATAAAGGCT -ACGGAAAGTCACGCCATATCAACC -ACGGAAAGTCACGCCATATGTTCC -ACGGAAAGTCACGCCATAATTCCC -ACGGAAAGTCACGCCATATTCTCG -ACGGAAAGTCACGCCATATAGACG -ACGGAAAGTCACGCCATAGTAACG -ACGGAAAGTCACGCCATAACTTCG -ACGGAAAGTCACGCCATATACGCA -ACGGAAAGTCACGCCATACTTGCA -ACGGAAAGTCACGCCATACGAACA -ACGGAAAGTCACGCCATACAGTCA -ACGGAAAGTCACGCCATAGATCCA -ACGGAAAGTCACGCCATAACGACA -ACGGAAAGTCACGCCATAAGCTCA -ACGGAAAGTCACGCCATATCACGT -ACGGAAAGTCACGCCATACGTAGT -ACGGAAAGTCACGCCATAGTCAGT -ACGGAAAGTCACGCCATAGAAGGT -ACGGAAAGTCACGCCATAAACCGT -ACGGAAAGTCACGCCATATTGTGC -ACGGAAAGTCACGCCATACTAAGC -ACGGAAAGTCACGCCATAACTAGC -ACGGAAAGTCACGCCATAAGATGC -ACGGAAAGTCACGCCATATGAAGG -ACGGAAAGTCACGCCATACAATGG -ACGGAAAGTCACGCCATAATGAGG -ACGGAAAGTCACGCCATAAATGGG -ACGGAAAGTCACGCCATATCCTGA -ACGGAAAGTCACGCCATATAGCGA -ACGGAAAGTCACGCCATACACAGA -ACGGAAAGTCACGCCATAGCAAGA -ACGGAAAGTCACGCCATAGGTTGA -ACGGAAAGTCACGCCATATCCGAT -ACGGAAAGTCACGCCATATGGCAT -ACGGAAAGTCACGCCATACGAGAT -ACGGAAAGTCACGCCATATACCAC -ACGGAAAGTCACGCCATACAGAAC -ACGGAAAGTCACGCCATAGTCTAC -ACGGAAAGTCACGCCATAACGTAC -ACGGAAAGTCACGCCATAAGTGAC -ACGGAAAGTCACGCCATACTGTAG -ACGGAAAGTCACGCCATACCTAAG -ACGGAAAGTCACGCCATAGTTCAG -ACGGAAAGTCACGCCATAGCATAG -ACGGAAAGTCACGCCATAGACAAG -ACGGAAAGTCACGCCATAAAGCAG -ACGGAAAGTCACGCCATACGTCAA -ACGGAAAGTCACGCCATAGCTGAA -ACGGAAAGTCACGCCATAAGTACG -ACGGAAAGTCACGCCATAATCCGA -ACGGAAAGTCACGCCATAATGGGA -ACGGAAAGTCACGCCATAGTGCAA -ACGGAAAGTCACGCCATAGAGGAA -ACGGAAAGTCACGCCATACAGGTA -ACGGAAAGTCACGCCATAGACTCT -ACGGAAAGTCACGCCATAAGTCCT -ACGGAAAGTCACGCCATATAAGCC -ACGGAAAGTCACGCCATAATAGCC -ACGGAAAGTCACGCCATATAACCG -ACGGAAAGTCACGCCATAATGCCA -ACGGAAAGTCACCCGTAAGGAAAC -ACGGAAAGTCACCCGTAAAACACC -ACGGAAAGTCACCCGTAAATCGAG -ACGGAAAGTCACCCGTAACTCCTT -ACGGAAAGTCACCCGTAACCTGTT -ACGGAAAGTCACCCGTAACGGTTT -ACGGAAAGTCACCCGTAAGTGGTT -ACGGAAAGTCACCCGTAAGCCTTT -ACGGAAAGTCACCCGTAAGGTCTT -ACGGAAAGTCACCCGTAAACGCTT -ACGGAAAGTCACCCGTAAAGCGTT -ACGGAAAGTCACCCGTAATTCGTC -ACGGAAAGTCACCCGTAATCTCTC -ACGGAAAGTCACCCGTAATGGATC -ACGGAAAGTCACCCGTAACACTTC -ACGGAAAGTCACCCGTAAGTACTC -ACGGAAAGTCACCCGTAAGATGTC -ACGGAAAGTCACCCGTAAACAGTC -ACGGAAAGTCACCCGTAATTGCTG -ACGGAAAGTCACCCGTAATCCATG -ACGGAAAGTCACCCGTAATGTGTG -ACGGAAAGTCACCCGTAACTAGTG -ACGGAAAGTCACCCGTAACATCTG -ACGGAAAGTCACCCGTAAGAGTTG -ACGGAAAGTCACCCGTAAAGACTG -ACGGAAAGTCACCCGTAATCGGTA -ACGGAAAGTCACCCGTAATGCCTA -ACGGAAAGTCACCCGTAACCACTA -ACGGAAAGTCACCCGTAAGGAGTA -ACGGAAAGTCACCCGTAATCGTCT -ACGGAAAGTCACCCGTAATGCACT -ACGGAAAGTCACCCGTAACTGACT -ACGGAAAGTCACCCGTAACAACCT -ACGGAAAGTCACCCGTAAGCTACT -ACGGAAAGTCACCCGTAAGGATCT -ACGGAAAGTCACCCGTAAAAGGCT -ACGGAAAGTCACCCGTAATCAACC -ACGGAAAGTCACCCGTAATGTTCC -ACGGAAAGTCACCCGTAAATTCCC -ACGGAAAGTCACCCGTAATTCTCG -ACGGAAAGTCACCCGTAATAGACG -ACGGAAAGTCACCCGTAAGTAACG -ACGGAAAGTCACCCGTAAACTTCG -ACGGAAAGTCACCCGTAATACGCA -ACGGAAAGTCACCCGTAACTTGCA -ACGGAAAGTCACCCGTAACGAACA -ACGGAAAGTCACCCGTAACAGTCA -ACGGAAAGTCACCCGTAAGATCCA -ACGGAAAGTCACCCGTAAACGACA -ACGGAAAGTCACCCGTAAAGCTCA -ACGGAAAGTCACCCGTAATCACGT -ACGGAAAGTCACCCGTAACGTAGT -ACGGAAAGTCACCCGTAAGTCAGT -ACGGAAAGTCACCCGTAAGAAGGT -ACGGAAAGTCACCCGTAAAACCGT -ACGGAAAGTCACCCGTAATTGTGC -ACGGAAAGTCACCCGTAACTAAGC -ACGGAAAGTCACCCGTAAACTAGC -ACGGAAAGTCACCCGTAAAGATGC -ACGGAAAGTCACCCGTAATGAAGG -ACGGAAAGTCACCCGTAACAATGG -ACGGAAAGTCACCCGTAAATGAGG -ACGGAAAGTCACCCGTAAAATGGG -ACGGAAAGTCACCCGTAATCCTGA -ACGGAAAGTCACCCGTAATAGCGA -ACGGAAAGTCACCCGTAACACAGA -ACGGAAAGTCACCCGTAAGCAAGA -ACGGAAAGTCACCCGTAAGGTTGA -ACGGAAAGTCACCCGTAATCCGAT -ACGGAAAGTCACCCGTAATGGCAT -ACGGAAAGTCACCCGTAACGAGAT -ACGGAAAGTCACCCGTAATACCAC -ACGGAAAGTCACCCGTAACAGAAC -ACGGAAAGTCACCCGTAAGTCTAC -ACGGAAAGTCACCCGTAAACGTAC -ACGGAAAGTCACCCGTAAAGTGAC -ACGGAAAGTCACCCGTAACTGTAG -ACGGAAAGTCACCCGTAACCTAAG -ACGGAAAGTCACCCGTAAGTTCAG -ACGGAAAGTCACCCGTAAGCATAG -ACGGAAAGTCACCCGTAAGACAAG -ACGGAAAGTCACCCGTAAAAGCAG -ACGGAAAGTCACCCGTAACGTCAA -ACGGAAAGTCACCCGTAAGCTGAA -ACGGAAAGTCACCCGTAAAGTACG -ACGGAAAGTCACCCGTAAATCCGA -ACGGAAAGTCACCCGTAAATGGGA -ACGGAAAGTCACCCGTAAGTGCAA -ACGGAAAGTCACCCGTAAGAGGAA -ACGGAAAGTCACCCGTAACAGGTA -ACGGAAAGTCACCCGTAAGACTCT -ACGGAAAGTCACCCGTAAAGTCCT -ACGGAAAGTCACCCGTAATAAGCC -ACGGAAAGTCACCCGTAAATAGCC -ACGGAAAGTCACCCGTAATAACCG -ACGGAAAGTCACCCGTAAATGCCA -ACGGAAAGTCACCCAATGGGAAAC -ACGGAAAGTCACCCAATGAACACC -ACGGAAAGTCACCCAATGATCGAG -ACGGAAAGTCACCCAATGCTCCTT -ACGGAAAGTCACCCAATGCCTGTT -ACGGAAAGTCACCCAATGCGGTTT -ACGGAAAGTCACCCAATGGTGGTT -ACGGAAAGTCACCCAATGGCCTTT -ACGGAAAGTCACCCAATGGGTCTT -ACGGAAAGTCACCCAATGACGCTT -ACGGAAAGTCACCCAATGAGCGTT -ACGGAAAGTCACCCAATGTTCGTC -ACGGAAAGTCACCCAATGTCTCTC -ACGGAAAGTCACCCAATGTGGATC -ACGGAAAGTCACCCAATGCACTTC -ACGGAAAGTCACCCAATGGTACTC -ACGGAAAGTCACCCAATGGATGTC -ACGGAAAGTCACCCAATGACAGTC -ACGGAAAGTCACCCAATGTTGCTG -ACGGAAAGTCACCCAATGTCCATG -ACGGAAAGTCACCCAATGTGTGTG -ACGGAAAGTCACCCAATGCTAGTG -ACGGAAAGTCACCCAATGCATCTG -ACGGAAAGTCACCCAATGGAGTTG -ACGGAAAGTCACCCAATGAGACTG -ACGGAAAGTCACCCAATGTCGGTA -ACGGAAAGTCACCCAATGTGCCTA -ACGGAAAGTCACCCAATGCCACTA -ACGGAAAGTCACCCAATGGGAGTA -ACGGAAAGTCACCCAATGTCGTCT -ACGGAAAGTCACCCAATGTGCACT -ACGGAAAGTCACCCAATGCTGACT -ACGGAAAGTCACCCAATGCAACCT -ACGGAAAGTCACCCAATGGCTACT -ACGGAAAGTCACCCAATGGGATCT -ACGGAAAGTCACCCAATGAAGGCT -ACGGAAAGTCACCCAATGTCAACC -ACGGAAAGTCACCCAATGTGTTCC -ACGGAAAGTCACCCAATGATTCCC -ACGGAAAGTCACCCAATGTTCTCG -ACGGAAAGTCACCCAATGTAGACG -ACGGAAAGTCACCCAATGGTAACG -ACGGAAAGTCACCCAATGACTTCG -ACGGAAAGTCACCCAATGTACGCA -ACGGAAAGTCACCCAATGCTTGCA -ACGGAAAGTCACCCAATGCGAACA -ACGGAAAGTCACCCAATGCAGTCA -ACGGAAAGTCACCCAATGGATCCA -ACGGAAAGTCACCCAATGACGACA -ACGGAAAGTCACCCAATGAGCTCA -ACGGAAAGTCACCCAATGTCACGT -ACGGAAAGTCACCCAATGCGTAGT -ACGGAAAGTCACCCAATGGTCAGT -ACGGAAAGTCACCCAATGGAAGGT -ACGGAAAGTCACCCAATGAACCGT -ACGGAAAGTCACCCAATGTTGTGC -ACGGAAAGTCACCCAATGCTAAGC -ACGGAAAGTCACCCAATGACTAGC -ACGGAAAGTCACCCAATGAGATGC -ACGGAAAGTCACCCAATGTGAAGG -ACGGAAAGTCACCCAATGCAATGG -ACGGAAAGTCACCCAATGATGAGG -ACGGAAAGTCACCCAATGAATGGG -ACGGAAAGTCACCCAATGTCCTGA -ACGGAAAGTCACCCAATGTAGCGA -ACGGAAAGTCACCCAATGCACAGA -ACGGAAAGTCACCCAATGGCAAGA -ACGGAAAGTCACCCAATGGGTTGA -ACGGAAAGTCACCCAATGTCCGAT -ACGGAAAGTCACCCAATGTGGCAT -ACGGAAAGTCACCCAATGCGAGAT -ACGGAAAGTCACCCAATGTACCAC -ACGGAAAGTCACCCAATGCAGAAC -ACGGAAAGTCACCCAATGGTCTAC -ACGGAAAGTCACCCAATGACGTAC -ACGGAAAGTCACCCAATGAGTGAC -ACGGAAAGTCACCCAATGCTGTAG -ACGGAAAGTCACCCAATGCCTAAG -ACGGAAAGTCACCCAATGGTTCAG -ACGGAAAGTCACCCAATGGCATAG -ACGGAAAGTCACCCAATGGACAAG -ACGGAAAGTCACCCAATGAAGCAG -ACGGAAAGTCACCCAATGCGTCAA -ACGGAAAGTCACCCAATGGCTGAA -ACGGAAAGTCACCCAATGAGTACG -ACGGAAAGTCACCCAATGATCCGA -ACGGAAAGTCACCCAATGATGGGA -ACGGAAAGTCACCCAATGGTGCAA -ACGGAAAGTCACCCAATGGAGGAA -ACGGAAAGTCACCCAATGCAGGTA -ACGGAAAGTCACCCAATGGACTCT -ACGGAAAGTCACCCAATGAGTCCT -ACGGAAAGTCACCCAATGTAAGCC -ACGGAAAGTCACCCAATGATAGCC -ACGGAAAGTCACCCAATGTAACCG -ACGGAAAGTCACCCAATGATGCCA -ACGGAAATCCAGAACGGAGGAAAC -ACGGAAATCCAGAACGGAAACACC -ACGGAAATCCAGAACGGAATCGAG -ACGGAAATCCAGAACGGACTCCTT -ACGGAAATCCAGAACGGACCTGTT -ACGGAAATCCAGAACGGACGGTTT -ACGGAAATCCAGAACGGAGTGGTT -ACGGAAATCCAGAACGGAGCCTTT -ACGGAAATCCAGAACGGAGGTCTT -ACGGAAATCCAGAACGGAACGCTT -ACGGAAATCCAGAACGGAAGCGTT -ACGGAAATCCAGAACGGATTCGTC -ACGGAAATCCAGAACGGATCTCTC -ACGGAAATCCAGAACGGATGGATC -ACGGAAATCCAGAACGGACACTTC -ACGGAAATCCAGAACGGAGTACTC -ACGGAAATCCAGAACGGAGATGTC -ACGGAAATCCAGAACGGAACAGTC -ACGGAAATCCAGAACGGATTGCTG -ACGGAAATCCAGAACGGATCCATG -ACGGAAATCCAGAACGGATGTGTG -ACGGAAATCCAGAACGGACTAGTG -ACGGAAATCCAGAACGGACATCTG -ACGGAAATCCAGAACGGAGAGTTG -ACGGAAATCCAGAACGGAAGACTG -ACGGAAATCCAGAACGGATCGGTA -ACGGAAATCCAGAACGGATGCCTA -ACGGAAATCCAGAACGGACCACTA -ACGGAAATCCAGAACGGAGGAGTA -ACGGAAATCCAGAACGGATCGTCT -ACGGAAATCCAGAACGGATGCACT -ACGGAAATCCAGAACGGACTGACT -ACGGAAATCCAGAACGGACAACCT -ACGGAAATCCAGAACGGAGCTACT -ACGGAAATCCAGAACGGAGGATCT -ACGGAAATCCAGAACGGAAAGGCT -ACGGAAATCCAGAACGGATCAACC -ACGGAAATCCAGAACGGATGTTCC -ACGGAAATCCAGAACGGAATTCCC -ACGGAAATCCAGAACGGATTCTCG -ACGGAAATCCAGAACGGATAGACG -ACGGAAATCCAGAACGGAGTAACG -ACGGAAATCCAGAACGGAACTTCG -ACGGAAATCCAGAACGGATACGCA -ACGGAAATCCAGAACGGACTTGCA -ACGGAAATCCAGAACGGACGAACA -ACGGAAATCCAGAACGGACAGTCA -ACGGAAATCCAGAACGGAGATCCA -ACGGAAATCCAGAACGGAACGACA -ACGGAAATCCAGAACGGAAGCTCA -ACGGAAATCCAGAACGGATCACGT -ACGGAAATCCAGAACGGACGTAGT -ACGGAAATCCAGAACGGAGTCAGT -ACGGAAATCCAGAACGGAGAAGGT -ACGGAAATCCAGAACGGAAACCGT -ACGGAAATCCAGAACGGATTGTGC -ACGGAAATCCAGAACGGACTAAGC -ACGGAAATCCAGAACGGAACTAGC -ACGGAAATCCAGAACGGAAGATGC -ACGGAAATCCAGAACGGATGAAGG -ACGGAAATCCAGAACGGACAATGG -ACGGAAATCCAGAACGGAATGAGG -ACGGAAATCCAGAACGGAAATGGG -ACGGAAATCCAGAACGGATCCTGA -ACGGAAATCCAGAACGGATAGCGA -ACGGAAATCCAGAACGGACACAGA -ACGGAAATCCAGAACGGAGCAAGA -ACGGAAATCCAGAACGGAGGTTGA -ACGGAAATCCAGAACGGATCCGAT -ACGGAAATCCAGAACGGATGGCAT -ACGGAAATCCAGAACGGACGAGAT -ACGGAAATCCAGAACGGATACCAC -ACGGAAATCCAGAACGGACAGAAC -ACGGAAATCCAGAACGGAGTCTAC -ACGGAAATCCAGAACGGAACGTAC -ACGGAAATCCAGAACGGAAGTGAC -ACGGAAATCCAGAACGGACTGTAG -ACGGAAATCCAGAACGGACCTAAG -ACGGAAATCCAGAACGGAGTTCAG -ACGGAAATCCAGAACGGAGCATAG -ACGGAAATCCAGAACGGAGACAAG -ACGGAAATCCAGAACGGAAAGCAG -ACGGAAATCCAGAACGGACGTCAA -ACGGAAATCCAGAACGGAGCTGAA -ACGGAAATCCAGAACGGAAGTACG -ACGGAAATCCAGAACGGAATCCGA -ACGGAAATCCAGAACGGAATGGGA -ACGGAAATCCAGAACGGAGTGCAA -ACGGAAATCCAGAACGGAGAGGAA -ACGGAAATCCAGAACGGACAGGTA -ACGGAAATCCAGAACGGAGACTCT -ACGGAAATCCAGAACGGAAGTCCT -ACGGAAATCCAGAACGGATAAGCC -ACGGAAATCCAGAACGGAATAGCC -ACGGAAATCCAGAACGGATAACCG -ACGGAAATCCAGAACGGAATGCCA -ACGGAAATCCAGACCAACGGAAAC -ACGGAAATCCAGACCAACAACACC -ACGGAAATCCAGACCAACATCGAG -ACGGAAATCCAGACCAACCTCCTT -ACGGAAATCCAGACCAACCCTGTT -ACGGAAATCCAGACCAACCGGTTT -ACGGAAATCCAGACCAACGTGGTT -ACGGAAATCCAGACCAACGCCTTT -ACGGAAATCCAGACCAACGGTCTT -ACGGAAATCCAGACCAACACGCTT -ACGGAAATCCAGACCAACAGCGTT -ACGGAAATCCAGACCAACTTCGTC -ACGGAAATCCAGACCAACTCTCTC -ACGGAAATCCAGACCAACTGGATC -ACGGAAATCCAGACCAACCACTTC -ACGGAAATCCAGACCAACGTACTC -ACGGAAATCCAGACCAACGATGTC -ACGGAAATCCAGACCAACACAGTC -ACGGAAATCCAGACCAACTTGCTG -ACGGAAATCCAGACCAACTCCATG -ACGGAAATCCAGACCAACTGTGTG -ACGGAAATCCAGACCAACCTAGTG -ACGGAAATCCAGACCAACCATCTG -ACGGAAATCCAGACCAACGAGTTG -ACGGAAATCCAGACCAACAGACTG -ACGGAAATCCAGACCAACTCGGTA -ACGGAAATCCAGACCAACTGCCTA -ACGGAAATCCAGACCAACCCACTA -ACGGAAATCCAGACCAACGGAGTA -ACGGAAATCCAGACCAACTCGTCT -ACGGAAATCCAGACCAACTGCACT -ACGGAAATCCAGACCAACCTGACT -ACGGAAATCCAGACCAACCAACCT -ACGGAAATCCAGACCAACGCTACT -ACGGAAATCCAGACCAACGGATCT -ACGGAAATCCAGACCAACAAGGCT -ACGGAAATCCAGACCAACTCAACC -ACGGAAATCCAGACCAACTGTTCC -ACGGAAATCCAGACCAACATTCCC -ACGGAAATCCAGACCAACTTCTCG -ACGGAAATCCAGACCAACTAGACG -ACGGAAATCCAGACCAACGTAACG -ACGGAAATCCAGACCAACACTTCG -ACGGAAATCCAGACCAACTACGCA -ACGGAAATCCAGACCAACCTTGCA -ACGGAAATCCAGACCAACCGAACA -ACGGAAATCCAGACCAACCAGTCA -ACGGAAATCCAGACCAACGATCCA -ACGGAAATCCAGACCAACACGACA -ACGGAAATCCAGACCAACAGCTCA -ACGGAAATCCAGACCAACTCACGT -ACGGAAATCCAGACCAACCGTAGT -ACGGAAATCCAGACCAACGTCAGT -ACGGAAATCCAGACCAACGAAGGT -ACGGAAATCCAGACCAACAACCGT -ACGGAAATCCAGACCAACTTGTGC -ACGGAAATCCAGACCAACCTAAGC -ACGGAAATCCAGACCAACACTAGC -ACGGAAATCCAGACCAACAGATGC -ACGGAAATCCAGACCAACTGAAGG -ACGGAAATCCAGACCAACCAATGG -ACGGAAATCCAGACCAACATGAGG -ACGGAAATCCAGACCAACAATGGG -ACGGAAATCCAGACCAACTCCTGA -ACGGAAATCCAGACCAACTAGCGA -ACGGAAATCCAGACCAACCACAGA -ACGGAAATCCAGACCAACGCAAGA -ACGGAAATCCAGACCAACGGTTGA -ACGGAAATCCAGACCAACTCCGAT -ACGGAAATCCAGACCAACTGGCAT -ACGGAAATCCAGACCAACCGAGAT -ACGGAAATCCAGACCAACTACCAC -ACGGAAATCCAGACCAACCAGAAC -ACGGAAATCCAGACCAACGTCTAC -ACGGAAATCCAGACCAACACGTAC -ACGGAAATCCAGACCAACAGTGAC -ACGGAAATCCAGACCAACCTGTAG -ACGGAAATCCAGACCAACCCTAAG -ACGGAAATCCAGACCAACGTTCAG -ACGGAAATCCAGACCAACGCATAG -ACGGAAATCCAGACCAACGACAAG -ACGGAAATCCAGACCAACAAGCAG -ACGGAAATCCAGACCAACCGTCAA -ACGGAAATCCAGACCAACGCTGAA -ACGGAAATCCAGACCAACAGTACG -ACGGAAATCCAGACCAACATCCGA -ACGGAAATCCAGACCAACATGGGA -ACGGAAATCCAGACCAACGTGCAA -ACGGAAATCCAGACCAACGAGGAA -ACGGAAATCCAGACCAACCAGGTA -ACGGAAATCCAGACCAACGACTCT -ACGGAAATCCAGACCAACAGTCCT -ACGGAAATCCAGACCAACTAAGCC -ACGGAAATCCAGACCAACATAGCC -ACGGAAATCCAGACCAACTAACCG -ACGGAAATCCAGACCAACATGCCA -ACGGAAATCCAGGAGATCGGAAAC -ACGGAAATCCAGGAGATCAACACC -ACGGAAATCCAGGAGATCATCGAG -ACGGAAATCCAGGAGATCCTCCTT -ACGGAAATCCAGGAGATCCCTGTT -ACGGAAATCCAGGAGATCCGGTTT -ACGGAAATCCAGGAGATCGTGGTT -ACGGAAATCCAGGAGATCGCCTTT -ACGGAAATCCAGGAGATCGGTCTT -ACGGAAATCCAGGAGATCACGCTT -ACGGAAATCCAGGAGATCAGCGTT -ACGGAAATCCAGGAGATCTTCGTC -ACGGAAATCCAGGAGATCTCTCTC -ACGGAAATCCAGGAGATCTGGATC -ACGGAAATCCAGGAGATCCACTTC -ACGGAAATCCAGGAGATCGTACTC -ACGGAAATCCAGGAGATCGATGTC -ACGGAAATCCAGGAGATCACAGTC -ACGGAAATCCAGGAGATCTTGCTG -ACGGAAATCCAGGAGATCTCCATG -ACGGAAATCCAGGAGATCTGTGTG -ACGGAAATCCAGGAGATCCTAGTG -ACGGAAATCCAGGAGATCCATCTG -ACGGAAATCCAGGAGATCGAGTTG -ACGGAAATCCAGGAGATCAGACTG -ACGGAAATCCAGGAGATCTCGGTA -ACGGAAATCCAGGAGATCTGCCTA -ACGGAAATCCAGGAGATCCCACTA -ACGGAAATCCAGGAGATCGGAGTA -ACGGAAATCCAGGAGATCTCGTCT -ACGGAAATCCAGGAGATCTGCACT -ACGGAAATCCAGGAGATCCTGACT -ACGGAAATCCAGGAGATCCAACCT -ACGGAAATCCAGGAGATCGCTACT -ACGGAAATCCAGGAGATCGGATCT -ACGGAAATCCAGGAGATCAAGGCT -ACGGAAATCCAGGAGATCTCAACC -ACGGAAATCCAGGAGATCTGTTCC -ACGGAAATCCAGGAGATCATTCCC -ACGGAAATCCAGGAGATCTTCTCG -ACGGAAATCCAGGAGATCTAGACG -ACGGAAATCCAGGAGATCGTAACG -ACGGAAATCCAGGAGATCACTTCG -ACGGAAATCCAGGAGATCTACGCA -ACGGAAATCCAGGAGATCCTTGCA -ACGGAAATCCAGGAGATCCGAACA -ACGGAAATCCAGGAGATCCAGTCA -ACGGAAATCCAGGAGATCGATCCA -ACGGAAATCCAGGAGATCACGACA -ACGGAAATCCAGGAGATCAGCTCA -ACGGAAATCCAGGAGATCTCACGT -ACGGAAATCCAGGAGATCCGTAGT -ACGGAAATCCAGGAGATCGTCAGT -ACGGAAATCCAGGAGATCGAAGGT -ACGGAAATCCAGGAGATCAACCGT -ACGGAAATCCAGGAGATCTTGTGC -ACGGAAATCCAGGAGATCCTAAGC -ACGGAAATCCAGGAGATCACTAGC -ACGGAAATCCAGGAGATCAGATGC -ACGGAAATCCAGGAGATCTGAAGG -ACGGAAATCCAGGAGATCCAATGG -ACGGAAATCCAGGAGATCATGAGG -ACGGAAATCCAGGAGATCAATGGG -ACGGAAATCCAGGAGATCTCCTGA -ACGGAAATCCAGGAGATCTAGCGA -ACGGAAATCCAGGAGATCCACAGA -ACGGAAATCCAGGAGATCGCAAGA -ACGGAAATCCAGGAGATCGGTTGA -ACGGAAATCCAGGAGATCTCCGAT -ACGGAAATCCAGGAGATCTGGCAT -ACGGAAATCCAGGAGATCCGAGAT -ACGGAAATCCAGGAGATCTACCAC -ACGGAAATCCAGGAGATCCAGAAC -ACGGAAATCCAGGAGATCGTCTAC -ACGGAAATCCAGGAGATCACGTAC -ACGGAAATCCAGGAGATCAGTGAC -ACGGAAATCCAGGAGATCCTGTAG -ACGGAAATCCAGGAGATCCCTAAG -ACGGAAATCCAGGAGATCGTTCAG -ACGGAAATCCAGGAGATCGCATAG -ACGGAAATCCAGGAGATCGACAAG -ACGGAAATCCAGGAGATCAAGCAG -ACGGAAATCCAGGAGATCCGTCAA -ACGGAAATCCAGGAGATCGCTGAA -ACGGAAATCCAGGAGATCAGTACG -ACGGAAATCCAGGAGATCATCCGA -ACGGAAATCCAGGAGATCATGGGA -ACGGAAATCCAGGAGATCGTGCAA -ACGGAAATCCAGGAGATCGAGGAA -ACGGAAATCCAGGAGATCCAGGTA -ACGGAAATCCAGGAGATCGACTCT -ACGGAAATCCAGGAGATCAGTCCT -ACGGAAATCCAGGAGATCTAAGCC -ACGGAAATCCAGGAGATCATAGCC -ACGGAAATCCAGGAGATCTAACCG -ACGGAAATCCAGGAGATCATGCCA -ACGGAAATCCAGCTTCTCGGAAAC -ACGGAAATCCAGCTTCTCAACACC -ACGGAAATCCAGCTTCTCATCGAG -ACGGAAATCCAGCTTCTCCTCCTT -ACGGAAATCCAGCTTCTCCCTGTT -ACGGAAATCCAGCTTCTCCGGTTT -ACGGAAATCCAGCTTCTCGTGGTT -ACGGAAATCCAGCTTCTCGCCTTT -ACGGAAATCCAGCTTCTCGGTCTT -ACGGAAATCCAGCTTCTCACGCTT -ACGGAAATCCAGCTTCTCAGCGTT -ACGGAAATCCAGCTTCTCTTCGTC -ACGGAAATCCAGCTTCTCTCTCTC -ACGGAAATCCAGCTTCTCTGGATC -ACGGAAATCCAGCTTCTCCACTTC -ACGGAAATCCAGCTTCTCGTACTC -ACGGAAATCCAGCTTCTCGATGTC -ACGGAAATCCAGCTTCTCACAGTC -ACGGAAATCCAGCTTCTCTTGCTG -ACGGAAATCCAGCTTCTCTCCATG -ACGGAAATCCAGCTTCTCTGTGTG -ACGGAAATCCAGCTTCTCCTAGTG -ACGGAAATCCAGCTTCTCCATCTG -ACGGAAATCCAGCTTCTCGAGTTG -ACGGAAATCCAGCTTCTCAGACTG -ACGGAAATCCAGCTTCTCTCGGTA -ACGGAAATCCAGCTTCTCTGCCTA -ACGGAAATCCAGCTTCTCCCACTA -ACGGAAATCCAGCTTCTCGGAGTA -ACGGAAATCCAGCTTCTCTCGTCT -ACGGAAATCCAGCTTCTCTGCACT -ACGGAAATCCAGCTTCTCCTGACT -ACGGAAATCCAGCTTCTCCAACCT -ACGGAAATCCAGCTTCTCGCTACT -ACGGAAATCCAGCTTCTCGGATCT -ACGGAAATCCAGCTTCTCAAGGCT -ACGGAAATCCAGCTTCTCTCAACC -ACGGAAATCCAGCTTCTCTGTTCC -ACGGAAATCCAGCTTCTCATTCCC -ACGGAAATCCAGCTTCTCTTCTCG -ACGGAAATCCAGCTTCTCTAGACG -ACGGAAATCCAGCTTCTCGTAACG -ACGGAAATCCAGCTTCTCACTTCG -ACGGAAATCCAGCTTCTCTACGCA -ACGGAAATCCAGCTTCTCCTTGCA -ACGGAAATCCAGCTTCTCCGAACA -ACGGAAATCCAGCTTCTCCAGTCA -ACGGAAATCCAGCTTCTCGATCCA -ACGGAAATCCAGCTTCTCACGACA -ACGGAAATCCAGCTTCTCAGCTCA -ACGGAAATCCAGCTTCTCTCACGT -ACGGAAATCCAGCTTCTCCGTAGT -ACGGAAATCCAGCTTCTCGTCAGT -ACGGAAATCCAGCTTCTCGAAGGT -ACGGAAATCCAGCTTCTCAACCGT -ACGGAAATCCAGCTTCTCTTGTGC -ACGGAAATCCAGCTTCTCCTAAGC -ACGGAAATCCAGCTTCTCACTAGC -ACGGAAATCCAGCTTCTCAGATGC -ACGGAAATCCAGCTTCTCTGAAGG -ACGGAAATCCAGCTTCTCCAATGG -ACGGAAATCCAGCTTCTCATGAGG -ACGGAAATCCAGCTTCTCAATGGG -ACGGAAATCCAGCTTCTCTCCTGA -ACGGAAATCCAGCTTCTCTAGCGA -ACGGAAATCCAGCTTCTCCACAGA -ACGGAAATCCAGCTTCTCGCAAGA -ACGGAAATCCAGCTTCTCGGTTGA -ACGGAAATCCAGCTTCTCTCCGAT -ACGGAAATCCAGCTTCTCTGGCAT -ACGGAAATCCAGCTTCTCCGAGAT -ACGGAAATCCAGCTTCTCTACCAC -ACGGAAATCCAGCTTCTCCAGAAC -ACGGAAATCCAGCTTCTCGTCTAC -ACGGAAATCCAGCTTCTCACGTAC -ACGGAAATCCAGCTTCTCAGTGAC -ACGGAAATCCAGCTTCTCCTGTAG -ACGGAAATCCAGCTTCTCCCTAAG -ACGGAAATCCAGCTTCTCGTTCAG -ACGGAAATCCAGCTTCTCGCATAG -ACGGAAATCCAGCTTCTCGACAAG -ACGGAAATCCAGCTTCTCAAGCAG -ACGGAAATCCAGCTTCTCCGTCAA -ACGGAAATCCAGCTTCTCGCTGAA -ACGGAAATCCAGCTTCTCAGTACG -ACGGAAATCCAGCTTCTCATCCGA -ACGGAAATCCAGCTTCTCATGGGA -ACGGAAATCCAGCTTCTCGTGCAA -ACGGAAATCCAGCTTCTCGAGGAA -ACGGAAATCCAGCTTCTCCAGGTA -ACGGAAATCCAGCTTCTCGACTCT -ACGGAAATCCAGCTTCTCAGTCCT -ACGGAAATCCAGCTTCTCTAAGCC -ACGGAAATCCAGCTTCTCATAGCC -ACGGAAATCCAGCTTCTCTAACCG -ACGGAAATCCAGCTTCTCATGCCA -ACGGAAATCCAGGTTCCTGGAAAC -ACGGAAATCCAGGTTCCTAACACC -ACGGAAATCCAGGTTCCTATCGAG -ACGGAAATCCAGGTTCCTCTCCTT -ACGGAAATCCAGGTTCCTCCTGTT -ACGGAAATCCAGGTTCCTCGGTTT -ACGGAAATCCAGGTTCCTGTGGTT -ACGGAAATCCAGGTTCCTGCCTTT -ACGGAAATCCAGGTTCCTGGTCTT -ACGGAAATCCAGGTTCCTACGCTT -ACGGAAATCCAGGTTCCTAGCGTT -ACGGAAATCCAGGTTCCTTTCGTC -ACGGAAATCCAGGTTCCTTCTCTC -ACGGAAATCCAGGTTCCTTGGATC -ACGGAAATCCAGGTTCCTCACTTC -ACGGAAATCCAGGTTCCTGTACTC -ACGGAAATCCAGGTTCCTGATGTC -ACGGAAATCCAGGTTCCTACAGTC -ACGGAAATCCAGGTTCCTTTGCTG -ACGGAAATCCAGGTTCCTTCCATG -ACGGAAATCCAGGTTCCTTGTGTG -ACGGAAATCCAGGTTCCTCTAGTG -ACGGAAATCCAGGTTCCTCATCTG -ACGGAAATCCAGGTTCCTGAGTTG -ACGGAAATCCAGGTTCCTAGACTG -ACGGAAATCCAGGTTCCTTCGGTA -ACGGAAATCCAGGTTCCTTGCCTA -ACGGAAATCCAGGTTCCTCCACTA -ACGGAAATCCAGGTTCCTGGAGTA -ACGGAAATCCAGGTTCCTTCGTCT -ACGGAAATCCAGGTTCCTTGCACT -ACGGAAATCCAGGTTCCTCTGACT -ACGGAAATCCAGGTTCCTCAACCT -ACGGAAATCCAGGTTCCTGCTACT -ACGGAAATCCAGGTTCCTGGATCT -ACGGAAATCCAGGTTCCTAAGGCT -ACGGAAATCCAGGTTCCTTCAACC -ACGGAAATCCAGGTTCCTTGTTCC -ACGGAAATCCAGGTTCCTATTCCC -ACGGAAATCCAGGTTCCTTTCTCG -ACGGAAATCCAGGTTCCTTAGACG -ACGGAAATCCAGGTTCCTGTAACG -ACGGAAATCCAGGTTCCTACTTCG -ACGGAAATCCAGGTTCCTTACGCA -ACGGAAATCCAGGTTCCTCTTGCA -ACGGAAATCCAGGTTCCTCGAACA -ACGGAAATCCAGGTTCCTCAGTCA -ACGGAAATCCAGGTTCCTGATCCA -ACGGAAATCCAGGTTCCTACGACA -ACGGAAATCCAGGTTCCTAGCTCA -ACGGAAATCCAGGTTCCTTCACGT -ACGGAAATCCAGGTTCCTCGTAGT -ACGGAAATCCAGGTTCCTGTCAGT -ACGGAAATCCAGGTTCCTGAAGGT -ACGGAAATCCAGGTTCCTAACCGT -ACGGAAATCCAGGTTCCTTTGTGC -ACGGAAATCCAGGTTCCTCTAAGC -ACGGAAATCCAGGTTCCTACTAGC -ACGGAAATCCAGGTTCCTAGATGC -ACGGAAATCCAGGTTCCTTGAAGG -ACGGAAATCCAGGTTCCTCAATGG -ACGGAAATCCAGGTTCCTATGAGG -ACGGAAATCCAGGTTCCTAATGGG -ACGGAAATCCAGGTTCCTTCCTGA -ACGGAAATCCAGGTTCCTTAGCGA -ACGGAAATCCAGGTTCCTCACAGA -ACGGAAATCCAGGTTCCTGCAAGA -ACGGAAATCCAGGTTCCTGGTTGA -ACGGAAATCCAGGTTCCTTCCGAT -ACGGAAATCCAGGTTCCTTGGCAT -ACGGAAATCCAGGTTCCTCGAGAT -ACGGAAATCCAGGTTCCTTACCAC -ACGGAAATCCAGGTTCCTCAGAAC -ACGGAAATCCAGGTTCCTGTCTAC -ACGGAAATCCAGGTTCCTACGTAC -ACGGAAATCCAGGTTCCTAGTGAC -ACGGAAATCCAGGTTCCTCTGTAG -ACGGAAATCCAGGTTCCTCCTAAG -ACGGAAATCCAGGTTCCTGTTCAG -ACGGAAATCCAGGTTCCTGCATAG -ACGGAAATCCAGGTTCCTGACAAG -ACGGAAATCCAGGTTCCTAAGCAG -ACGGAAATCCAGGTTCCTCGTCAA -ACGGAAATCCAGGTTCCTGCTGAA -ACGGAAATCCAGGTTCCTAGTACG -ACGGAAATCCAGGTTCCTATCCGA -ACGGAAATCCAGGTTCCTATGGGA -ACGGAAATCCAGGTTCCTGTGCAA -ACGGAAATCCAGGTTCCTGAGGAA -ACGGAAATCCAGGTTCCTCAGGTA -ACGGAAATCCAGGTTCCTGACTCT -ACGGAAATCCAGGTTCCTAGTCCT -ACGGAAATCCAGGTTCCTTAAGCC -ACGGAAATCCAGGTTCCTATAGCC -ACGGAAATCCAGGTTCCTTAACCG -ACGGAAATCCAGGTTCCTATGCCA -ACGGAAATCCAGTTTCGGGGAAAC -ACGGAAATCCAGTTTCGGAACACC -ACGGAAATCCAGTTTCGGATCGAG -ACGGAAATCCAGTTTCGGCTCCTT -ACGGAAATCCAGTTTCGGCCTGTT -ACGGAAATCCAGTTTCGGCGGTTT -ACGGAAATCCAGTTTCGGGTGGTT -ACGGAAATCCAGTTTCGGGCCTTT -ACGGAAATCCAGTTTCGGGGTCTT -ACGGAAATCCAGTTTCGGACGCTT -ACGGAAATCCAGTTTCGGAGCGTT -ACGGAAATCCAGTTTCGGTTCGTC -ACGGAAATCCAGTTTCGGTCTCTC -ACGGAAATCCAGTTTCGGTGGATC -ACGGAAATCCAGTTTCGGCACTTC -ACGGAAATCCAGTTTCGGGTACTC -ACGGAAATCCAGTTTCGGGATGTC -ACGGAAATCCAGTTTCGGACAGTC -ACGGAAATCCAGTTTCGGTTGCTG -ACGGAAATCCAGTTTCGGTCCATG -ACGGAAATCCAGTTTCGGTGTGTG -ACGGAAATCCAGTTTCGGCTAGTG -ACGGAAATCCAGTTTCGGCATCTG -ACGGAAATCCAGTTTCGGGAGTTG -ACGGAAATCCAGTTTCGGAGACTG -ACGGAAATCCAGTTTCGGTCGGTA -ACGGAAATCCAGTTTCGGTGCCTA -ACGGAAATCCAGTTTCGGCCACTA -ACGGAAATCCAGTTTCGGGGAGTA -ACGGAAATCCAGTTTCGGTCGTCT -ACGGAAATCCAGTTTCGGTGCACT -ACGGAAATCCAGTTTCGGCTGACT -ACGGAAATCCAGTTTCGGCAACCT -ACGGAAATCCAGTTTCGGGCTACT -ACGGAAATCCAGTTTCGGGGATCT -ACGGAAATCCAGTTTCGGAAGGCT -ACGGAAATCCAGTTTCGGTCAACC -ACGGAAATCCAGTTTCGGTGTTCC -ACGGAAATCCAGTTTCGGATTCCC -ACGGAAATCCAGTTTCGGTTCTCG -ACGGAAATCCAGTTTCGGTAGACG -ACGGAAATCCAGTTTCGGGTAACG -ACGGAAATCCAGTTTCGGACTTCG -ACGGAAATCCAGTTTCGGTACGCA -ACGGAAATCCAGTTTCGGCTTGCA -ACGGAAATCCAGTTTCGGCGAACA -ACGGAAATCCAGTTTCGGCAGTCA -ACGGAAATCCAGTTTCGGGATCCA -ACGGAAATCCAGTTTCGGACGACA -ACGGAAATCCAGTTTCGGAGCTCA -ACGGAAATCCAGTTTCGGTCACGT -ACGGAAATCCAGTTTCGGCGTAGT -ACGGAAATCCAGTTTCGGGTCAGT -ACGGAAATCCAGTTTCGGGAAGGT -ACGGAAATCCAGTTTCGGAACCGT -ACGGAAATCCAGTTTCGGTTGTGC -ACGGAAATCCAGTTTCGGCTAAGC -ACGGAAATCCAGTTTCGGACTAGC -ACGGAAATCCAGTTTCGGAGATGC -ACGGAAATCCAGTTTCGGTGAAGG -ACGGAAATCCAGTTTCGGCAATGG -ACGGAAATCCAGTTTCGGATGAGG -ACGGAAATCCAGTTTCGGAATGGG -ACGGAAATCCAGTTTCGGTCCTGA -ACGGAAATCCAGTTTCGGTAGCGA -ACGGAAATCCAGTTTCGGCACAGA -ACGGAAATCCAGTTTCGGGCAAGA -ACGGAAATCCAGTTTCGGGGTTGA -ACGGAAATCCAGTTTCGGTCCGAT -ACGGAAATCCAGTTTCGGTGGCAT -ACGGAAATCCAGTTTCGGCGAGAT -ACGGAAATCCAGTTTCGGTACCAC -ACGGAAATCCAGTTTCGGCAGAAC -ACGGAAATCCAGTTTCGGGTCTAC -ACGGAAATCCAGTTTCGGACGTAC -ACGGAAATCCAGTTTCGGAGTGAC -ACGGAAATCCAGTTTCGGCTGTAG -ACGGAAATCCAGTTTCGGCCTAAG -ACGGAAATCCAGTTTCGGGTTCAG -ACGGAAATCCAGTTTCGGGCATAG -ACGGAAATCCAGTTTCGGGACAAG -ACGGAAATCCAGTTTCGGAAGCAG -ACGGAAATCCAGTTTCGGCGTCAA -ACGGAAATCCAGTTTCGGGCTGAA -ACGGAAATCCAGTTTCGGAGTACG -ACGGAAATCCAGTTTCGGATCCGA -ACGGAAATCCAGTTTCGGATGGGA -ACGGAAATCCAGTTTCGGGTGCAA -ACGGAAATCCAGTTTCGGGAGGAA -ACGGAAATCCAGTTTCGGCAGGTA -ACGGAAATCCAGTTTCGGGACTCT -ACGGAAATCCAGTTTCGGAGTCCT -ACGGAAATCCAGTTTCGGTAAGCC -ACGGAAATCCAGTTTCGGATAGCC -ACGGAAATCCAGTTTCGGTAACCG -ACGGAAATCCAGTTTCGGATGCCA -ACGGAAATCCAGGTTGTGGGAAAC -ACGGAAATCCAGGTTGTGAACACC -ACGGAAATCCAGGTTGTGATCGAG -ACGGAAATCCAGGTTGTGCTCCTT -ACGGAAATCCAGGTTGTGCCTGTT -ACGGAAATCCAGGTTGTGCGGTTT -ACGGAAATCCAGGTTGTGGTGGTT -ACGGAAATCCAGGTTGTGGCCTTT -ACGGAAATCCAGGTTGTGGGTCTT -ACGGAAATCCAGGTTGTGACGCTT -ACGGAAATCCAGGTTGTGAGCGTT -ACGGAAATCCAGGTTGTGTTCGTC -ACGGAAATCCAGGTTGTGTCTCTC -ACGGAAATCCAGGTTGTGTGGATC -ACGGAAATCCAGGTTGTGCACTTC -ACGGAAATCCAGGTTGTGGTACTC -ACGGAAATCCAGGTTGTGGATGTC -ACGGAAATCCAGGTTGTGACAGTC -ACGGAAATCCAGGTTGTGTTGCTG -ACGGAAATCCAGGTTGTGTCCATG -ACGGAAATCCAGGTTGTGTGTGTG -ACGGAAATCCAGGTTGTGCTAGTG -ACGGAAATCCAGGTTGTGCATCTG -ACGGAAATCCAGGTTGTGGAGTTG -ACGGAAATCCAGGTTGTGAGACTG -ACGGAAATCCAGGTTGTGTCGGTA -ACGGAAATCCAGGTTGTGTGCCTA -ACGGAAATCCAGGTTGTGCCACTA -ACGGAAATCCAGGTTGTGGGAGTA -ACGGAAATCCAGGTTGTGTCGTCT -ACGGAAATCCAGGTTGTGTGCACT -ACGGAAATCCAGGTTGTGCTGACT -ACGGAAATCCAGGTTGTGCAACCT -ACGGAAATCCAGGTTGTGGCTACT -ACGGAAATCCAGGTTGTGGGATCT -ACGGAAATCCAGGTTGTGAAGGCT -ACGGAAATCCAGGTTGTGTCAACC -ACGGAAATCCAGGTTGTGTGTTCC -ACGGAAATCCAGGTTGTGATTCCC -ACGGAAATCCAGGTTGTGTTCTCG -ACGGAAATCCAGGTTGTGTAGACG -ACGGAAATCCAGGTTGTGGTAACG -ACGGAAATCCAGGTTGTGACTTCG -ACGGAAATCCAGGTTGTGTACGCA -ACGGAAATCCAGGTTGTGCTTGCA -ACGGAAATCCAGGTTGTGCGAACA -ACGGAAATCCAGGTTGTGCAGTCA -ACGGAAATCCAGGTTGTGGATCCA -ACGGAAATCCAGGTTGTGACGACA -ACGGAAATCCAGGTTGTGAGCTCA -ACGGAAATCCAGGTTGTGTCACGT -ACGGAAATCCAGGTTGTGCGTAGT -ACGGAAATCCAGGTTGTGGTCAGT -ACGGAAATCCAGGTTGTGGAAGGT -ACGGAAATCCAGGTTGTGAACCGT -ACGGAAATCCAGGTTGTGTTGTGC -ACGGAAATCCAGGTTGTGCTAAGC -ACGGAAATCCAGGTTGTGACTAGC -ACGGAAATCCAGGTTGTGAGATGC -ACGGAAATCCAGGTTGTGTGAAGG -ACGGAAATCCAGGTTGTGCAATGG -ACGGAAATCCAGGTTGTGATGAGG -ACGGAAATCCAGGTTGTGAATGGG -ACGGAAATCCAGGTTGTGTCCTGA -ACGGAAATCCAGGTTGTGTAGCGA -ACGGAAATCCAGGTTGTGCACAGA -ACGGAAATCCAGGTTGTGGCAAGA -ACGGAAATCCAGGTTGTGGGTTGA -ACGGAAATCCAGGTTGTGTCCGAT -ACGGAAATCCAGGTTGTGTGGCAT -ACGGAAATCCAGGTTGTGCGAGAT -ACGGAAATCCAGGTTGTGTACCAC -ACGGAAATCCAGGTTGTGCAGAAC -ACGGAAATCCAGGTTGTGGTCTAC -ACGGAAATCCAGGTTGTGACGTAC -ACGGAAATCCAGGTTGTGAGTGAC -ACGGAAATCCAGGTTGTGCTGTAG -ACGGAAATCCAGGTTGTGCCTAAG -ACGGAAATCCAGGTTGTGGTTCAG -ACGGAAATCCAGGTTGTGGCATAG -ACGGAAATCCAGGTTGTGGACAAG -ACGGAAATCCAGGTTGTGAAGCAG -ACGGAAATCCAGGTTGTGCGTCAA -ACGGAAATCCAGGTTGTGGCTGAA -ACGGAAATCCAGGTTGTGAGTACG -ACGGAAATCCAGGTTGTGATCCGA -ACGGAAATCCAGGTTGTGATGGGA -ACGGAAATCCAGGTTGTGGTGCAA -ACGGAAATCCAGGTTGTGGAGGAA -ACGGAAATCCAGGTTGTGCAGGTA -ACGGAAATCCAGGTTGTGGACTCT -ACGGAAATCCAGGTTGTGAGTCCT -ACGGAAATCCAGGTTGTGTAAGCC -ACGGAAATCCAGGTTGTGATAGCC -ACGGAAATCCAGGTTGTGTAACCG -ACGGAAATCCAGGTTGTGATGCCA -ACGGAAATCCAGTTTGCCGGAAAC -ACGGAAATCCAGTTTGCCAACACC -ACGGAAATCCAGTTTGCCATCGAG -ACGGAAATCCAGTTTGCCCTCCTT -ACGGAAATCCAGTTTGCCCCTGTT -ACGGAAATCCAGTTTGCCCGGTTT -ACGGAAATCCAGTTTGCCGTGGTT -ACGGAAATCCAGTTTGCCGCCTTT -ACGGAAATCCAGTTTGCCGGTCTT -ACGGAAATCCAGTTTGCCACGCTT -ACGGAAATCCAGTTTGCCAGCGTT -ACGGAAATCCAGTTTGCCTTCGTC -ACGGAAATCCAGTTTGCCTCTCTC -ACGGAAATCCAGTTTGCCTGGATC -ACGGAAATCCAGTTTGCCCACTTC -ACGGAAATCCAGTTTGCCGTACTC -ACGGAAATCCAGTTTGCCGATGTC -ACGGAAATCCAGTTTGCCACAGTC -ACGGAAATCCAGTTTGCCTTGCTG -ACGGAAATCCAGTTTGCCTCCATG -ACGGAAATCCAGTTTGCCTGTGTG -ACGGAAATCCAGTTTGCCCTAGTG -ACGGAAATCCAGTTTGCCCATCTG -ACGGAAATCCAGTTTGCCGAGTTG -ACGGAAATCCAGTTTGCCAGACTG -ACGGAAATCCAGTTTGCCTCGGTA -ACGGAAATCCAGTTTGCCTGCCTA -ACGGAAATCCAGTTTGCCCCACTA -ACGGAAATCCAGTTTGCCGGAGTA -ACGGAAATCCAGTTTGCCTCGTCT -ACGGAAATCCAGTTTGCCTGCACT -ACGGAAATCCAGTTTGCCCTGACT -ACGGAAATCCAGTTTGCCCAACCT -ACGGAAATCCAGTTTGCCGCTACT -ACGGAAATCCAGTTTGCCGGATCT -ACGGAAATCCAGTTTGCCAAGGCT -ACGGAAATCCAGTTTGCCTCAACC -ACGGAAATCCAGTTTGCCTGTTCC -ACGGAAATCCAGTTTGCCATTCCC -ACGGAAATCCAGTTTGCCTTCTCG -ACGGAAATCCAGTTTGCCTAGACG -ACGGAAATCCAGTTTGCCGTAACG -ACGGAAATCCAGTTTGCCACTTCG -ACGGAAATCCAGTTTGCCTACGCA -ACGGAAATCCAGTTTGCCCTTGCA -ACGGAAATCCAGTTTGCCCGAACA -ACGGAAATCCAGTTTGCCCAGTCA -ACGGAAATCCAGTTTGCCGATCCA -ACGGAAATCCAGTTTGCCACGACA -ACGGAAATCCAGTTTGCCAGCTCA -ACGGAAATCCAGTTTGCCTCACGT -ACGGAAATCCAGTTTGCCCGTAGT -ACGGAAATCCAGTTTGCCGTCAGT -ACGGAAATCCAGTTTGCCGAAGGT -ACGGAAATCCAGTTTGCCAACCGT -ACGGAAATCCAGTTTGCCTTGTGC -ACGGAAATCCAGTTTGCCCTAAGC -ACGGAAATCCAGTTTGCCACTAGC -ACGGAAATCCAGTTTGCCAGATGC -ACGGAAATCCAGTTTGCCTGAAGG -ACGGAAATCCAGTTTGCCCAATGG -ACGGAAATCCAGTTTGCCATGAGG -ACGGAAATCCAGTTTGCCAATGGG -ACGGAAATCCAGTTTGCCTCCTGA -ACGGAAATCCAGTTTGCCTAGCGA -ACGGAAATCCAGTTTGCCCACAGA -ACGGAAATCCAGTTTGCCGCAAGA -ACGGAAATCCAGTTTGCCGGTTGA -ACGGAAATCCAGTTTGCCTCCGAT -ACGGAAATCCAGTTTGCCTGGCAT -ACGGAAATCCAGTTTGCCCGAGAT -ACGGAAATCCAGTTTGCCTACCAC -ACGGAAATCCAGTTTGCCCAGAAC -ACGGAAATCCAGTTTGCCGTCTAC -ACGGAAATCCAGTTTGCCACGTAC -ACGGAAATCCAGTTTGCCAGTGAC -ACGGAAATCCAGTTTGCCCTGTAG -ACGGAAATCCAGTTTGCCCCTAAG -ACGGAAATCCAGTTTGCCGTTCAG -ACGGAAATCCAGTTTGCCGCATAG -ACGGAAATCCAGTTTGCCGACAAG -ACGGAAATCCAGTTTGCCAAGCAG -ACGGAAATCCAGTTTGCCCGTCAA -ACGGAAATCCAGTTTGCCGCTGAA -ACGGAAATCCAGTTTGCCAGTACG -ACGGAAATCCAGTTTGCCATCCGA -ACGGAAATCCAGTTTGCCATGGGA -ACGGAAATCCAGTTTGCCGTGCAA -ACGGAAATCCAGTTTGCCGAGGAA -ACGGAAATCCAGTTTGCCCAGGTA -ACGGAAATCCAGTTTGCCGACTCT -ACGGAAATCCAGTTTGCCAGTCCT -ACGGAAATCCAGTTTGCCTAAGCC -ACGGAAATCCAGTTTGCCATAGCC -ACGGAAATCCAGTTTGCCTAACCG -ACGGAAATCCAGTTTGCCATGCCA -ACGGAAATCCAGCTTGGTGGAAAC -ACGGAAATCCAGCTTGGTAACACC -ACGGAAATCCAGCTTGGTATCGAG -ACGGAAATCCAGCTTGGTCTCCTT -ACGGAAATCCAGCTTGGTCCTGTT -ACGGAAATCCAGCTTGGTCGGTTT -ACGGAAATCCAGCTTGGTGTGGTT -ACGGAAATCCAGCTTGGTGCCTTT -ACGGAAATCCAGCTTGGTGGTCTT -ACGGAAATCCAGCTTGGTACGCTT -ACGGAAATCCAGCTTGGTAGCGTT -ACGGAAATCCAGCTTGGTTTCGTC -ACGGAAATCCAGCTTGGTTCTCTC -ACGGAAATCCAGCTTGGTTGGATC -ACGGAAATCCAGCTTGGTCACTTC -ACGGAAATCCAGCTTGGTGTACTC -ACGGAAATCCAGCTTGGTGATGTC -ACGGAAATCCAGCTTGGTACAGTC -ACGGAAATCCAGCTTGGTTTGCTG -ACGGAAATCCAGCTTGGTTCCATG -ACGGAAATCCAGCTTGGTTGTGTG -ACGGAAATCCAGCTTGGTCTAGTG -ACGGAAATCCAGCTTGGTCATCTG -ACGGAAATCCAGCTTGGTGAGTTG -ACGGAAATCCAGCTTGGTAGACTG -ACGGAAATCCAGCTTGGTTCGGTA -ACGGAAATCCAGCTTGGTTGCCTA -ACGGAAATCCAGCTTGGTCCACTA -ACGGAAATCCAGCTTGGTGGAGTA -ACGGAAATCCAGCTTGGTTCGTCT -ACGGAAATCCAGCTTGGTTGCACT -ACGGAAATCCAGCTTGGTCTGACT -ACGGAAATCCAGCTTGGTCAACCT -ACGGAAATCCAGCTTGGTGCTACT -ACGGAAATCCAGCTTGGTGGATCT -ACGGAAATCCAGCTTGGTAAGGCT -ACGGAAATCCAGCTTGGTTCAACC -ACGGAAATCCAGCTTGGTTGTTCC -ACGGAAATCCAGCTTGGTATTCCC -ACGGAAATCCAGCTTGGTTTCTCG -ACGGAAATCCAGCTTGGTTAGACG -ACGGAAATCCAGCTTGGTGTAACG -ACGGAAATCCAGCTTGGTACTTCG -ACGGAAATCCAGCTTGGTTACGCA -ACGGAAATCCAGCTTGGTCTTGCA -ACGGAAATCCAGCTTGGTCGAACA -ACGGAAATCCAGCTTGGTCAGTCA -ACGGAAATCCAGCTTGGTGATCCA -ACGGAAATCCAGCTTGGTACGACA -ACGGAAATCCAGCTTGGTAGCTCA -ACGGAAATCCAGCTTGGTTCACGT -ACGGAAATCCAGCTTGGTCGTAGT -ACGGAAATCCAGCTTGGTGTCAGT -ACGGAAATCCAGCTTGGTGAAGGT -ACGGAAATCCAGCTTGGTAACCGT -ACGGAAATCCAGCTTGGTTTGTGC -ACGGAAATCCAGCTTGGTCTAAGC -ACGGAAATCCAGCTTGGTACTAGC -ACGGAAATCCAGCTTGGTAGATGC -ACGGAAATCCAGCTTGGTTGAAGG -ACGGAAATCCAGCTTGGTCAATGG -ACGGAAATCCAGCTTGGTATGAGG -ACGGAAATCCAGCTTGGTAATGGG -ACGGAAATCCAGCTTGGTTCCTGA -ACGGAAATCCAGCTTGGTTAGCGA -ACGGAAATCCAGCTTGGTCACAGA -ACGGAAATCCAGCTTGGTGCAAGA -ACGGAAATCCAGCTTGGTGGTTGA -ACGGAAATCCAGCTTGGTTCCGAT -ACGGAAATCCAGCTTGGTTGGCAT -ACGGAAATCCAGCTTGGTCGAGAT -ACGGAAATCCAGCTTGGTTACCAC -ACGGAAATCCAGCTTGGTCAGAAC -ACGGAAATCCAGCTTGGTGTCTAC -ACGGAAATCCAGCTTGGTACGTAC -ACGGAAATCCAGCTTGGTAGTGAC -ACGGAAATCCAGCTTGGTCTGTAG -ACGGAAATCCAGCTTGGTCCTAAG -ACGGAAATCCAGCTTGGTGTTCAG -ACGGAAATCCAGCTTGGTGCATAG -ACGGAAATCCAGCTTGGTGACAAG -ACGGAAATCCAGCTTGGTAAGCAG -ACGGAAATCCAGCTTGGTCGTCAA -ACGGAAATCCAGCTTGGTGCTGAA -ACGGAAATCCAGCTTGGTAGTACG -ACGGAAATCCAGCTTGGTATCCGA -ACGGAAATCCAGCTTGGTATGGGA -ACGGAAATCCAGCTTGGTGTGCAA -ACGGAAATCCAGCTTGGTGAGGAA -ACGGAAATCCAGCTTGGTCAGGTA -ACGGAAATCCAGCTTGGTGACTCT -ACGGAAATCCAGCTTGGTAGTCCT -ACGGAAATCCAGCTTGGTTAAGCC -ACGGAAATCCAGCTTGGTATAGCC -ACGGAAATCCAGCTTGGTTAACCG -ACGGAAATCCAGCTTGGTATGCCA -ACGGAAATCCAGCTTACGGGAAAC -ACGGAAATCCAGCTTACGAACACC -ACGGAAATCCAGCTTACGATCGAG -ACGGAAATCCAGCTTACGCTCCTT -ACGGAAATCCAGCTTACGCCTGTT -ACGGAAATCCAGCTTACGCGGTTT -ACGGAAATCCAGCTTACGGTGGTT -ACGGAAATCCAGCTTACGGCCTTT -ACGGAAATCCAGCTTACGGGTCTT -ACGGAAATCCAGCTTACGACGCTT -ACGGAAATCCAGCTTACGAGCGTT -ACGGAAATCCAGCTTACGTTCGTC -ACGGAAATCCAGCTTACGTCTCTC -ACGGAAATCCAGCTTACGTGGATC -ACGGAAATCCAGCTTACGCACTTC -ACGGAAATCCAGCTTACGGTACTC -ACGGAAATCCAGCTTACGGATGTC -ACGGAAATCCAGCTTACGACAGTC -ACGGAAATCCAGCTTACGTTGCTG -ACGGAAATCCAGCTTACGTCCATG -ACGGAAATCCAGCTTACGTGTGTG -ACGGAAATCCAGCTTACGCTAGTG -ACGGAAATCCAGCTTACGCATCTG -ACGGAAATCCAGCTTACGGAGTTG -ACGGAAATCCAGCTTACGAGACTG -ACGGAAATCCAGCTTACGTCGGTA -ACGGAAATCCAGCTTACGTGCCTA -ACGGAAATCCAGCTTACGCCACTA -ACGGAAATCCAGCTTACGGGAGTA -ACGGAAATCCAGCTTACGTCGTCT -ACGGAAATCCAGCTTACGTGCACT -ACGGAAATCCAGCTTACGCTGACT -ACGGAAATCCAGCTTACGCAACCT -ACGGAAATCCAGCTTACGGCTACT -ACGGAAATCCAGCTTACGGGATCT -ACGGAAATCCAGCTTACGAAGGCT -ACGGAAATCCAGCTTACGTCAACC -ACGGAAATCCAGCTTACGTGTTCC -ACGGAAATCCAGCTTACGATTCCC -ACGGAAATCCAGCTTACGTTCTCG -ACGGAAATCCAGCTTACGTAGACG -ACGGAAATCCAGCTTACGGTAACG -ACGGAAATCCAGCTTACGACTTCG -ACGGAAATCCAGCTTACGTACGCA -ACGGAAATCCAGCTTACGCTTGCA -ACGGAAATCCAGCTTACGCGAACA -ACGGAAATCCAGCTTACGCAGTCA -ACGGAAATCCAGCTTACGGATCCA -ACGGAAATCCAGCTTACGACGACA -ACGGAAATCCAGCTTACGAGCTCA -ACGGAAATCCAGCTTACGTCACGT -ACGGAAATCCAGCTTACGCGTAGT -ACGGAAATCCAGCTTACGGTCAGT -ACGGAAATCCAGCTTACGGAAGGT -ACGGAAATCCAGCTTACGAACCGT -ACGGAAATCCAGCTTACGTTGTGC -ACGGAAATCCAGCTTACGCTAAGC -ACGGAAATCCAGCTTACGACTAGC -ACGGAAATCCAGCTTACGAGATGC -ACGGAAATCCAGCTTACGTGAAGG -ACGGAAATCCAGCTTACGCAATGG -ACGGAAATCCAGCTTACGATGAGG -ACGGAAATCCAGCTTACGAATGGG -ACGGAAATCCAGCTTACGTCCTGA -ACGGAAATCCAGCTTACGTAGCGA -ACGGAAATCCAGCTTACGCACAGA -ACGGAAATCCAGCTTACGGCAAGA -ACGGAAATCCAGCTTACGGGTTGA -ACGGAAATCCAGCTTACGTCCGAT -ACGGAAATCCAGCTTACGTGGCAT -ACGGAAATCCAGCTTACGCGAGAT -ACGGAAATCCAGCTTACGTACCAC -ACGGAAATCCAGCTTACGCAGAAC -ACGGAAATCCAGCTTACGGTCTAC -ACGGAAATCCAGCTTACGACGTAC -ACGGAAATCCAGCTTACGAGTGAC -ACGGAAATCCAGCTTACGCTGTAG -ACGGAAATCCAGCTTACGCCTAAG -ACGGAAATCCAGCTTACGGTTCAG -ACGGAAATCCAGCTTACGGCATAG -ACGGAAATCCAGCTTACGGACAAG -ACGGAAATCCAGCTTACGAAGCAG -ACGGAAATCCAGCTTACGCGTCAA -ACGGAAATCCAGCTTACGGCTGAA -ACGGAAATCCAGCTTACGAGTACG -ACGGAAATCCAGCTTACGATCCGA -ACGGAAATCCAGCTTACGATGGGA -ACGGAAATCCAGCTTACGGTGCAA -ACGGAAATCCAGCTTACGGAGGAA -ACGGAAATCCAGCTTACGCAGGTA -ACGGAAATCCAGCTTACGGACTCT -ACGGAAATCCAGCTTACGAGTCCT -ACGGAAATCCAGCTTACGTAAGCC -ACGGAAATCCAGCTTACGATAGCC -ACGGAAATCCAGCTTACGTAACCG -ACGGAAATCCAGCTTACGATGCCA -ACGGAAATCCAGGTTAGCGGAAAC -ACGGAAATCCAGGTTAGCAACACC -ACGGAAATCCAGGTTAGCATCGAG -ACGGAAATCCAGGTTAGCCTCCTT -ACGGAAATCCAGGTTAGCCCTGTT -ACGGAAATCCAGGTTAGCCGGTTT -ACGGAAATCCAGGTTAGCGTGGTT -ACGGAAATCCAGGTTAGCGCCTTT -ACGGAAATCCAGGTTAGCGGTCTT -ACGGAAATCCAGGTTAGCACGCTT -ACGGAAATCCAGGTTAGCAGCGTT -ACGGAAATCCAGGTTAGCTTCGTC -ACGGAAATCCAGGTTAGCTCTCTC -ACGGAAATCCAGGTTAGCTGGATC -ACGGAAATCCAGGTTAGCCACTTC -ACGGAAATCCAGGTTAGCGTACTC -ACGGAAATCCAGGTTAGCGATGTC -ACGGAAATCCAGGTTAGCACAGTC -ACGGAAATCCAGGTTAGCTTGCTG -ACGGAAATCCAGGTTAGCTCCATG -ACGGAAATCCAGGTTAGCTGTGTG -ACGGAAATCCAGGTTAGCCTAGTG -ACGGAAATCCAGGTTAGCCATCTG -ACGGAAATCCAGGTTAGCGAGTTG -ACGGAAATCCAGGTTAGCAGACTG -ACGGAAATCCAGGTTAGCTCGGTA -ACGGAAATCCAGGTTAGCTGCCTA -ACGGAAATCCAGGTTAGCCCACTA -ACGGAAATCCAGGTTAGCGGAGTA -ACGGAAATCCAGGTTAGCTCGTCT -ACGGAAATCCAGGTTAGCTGCACT -ACGGAAATCCAGGTTAGCCTGACT -ACGGAAATCCAGGTTAGCCAACCT -ACGGAAATCCAGGTTAGCGCTACT -ACGGAAATCCAGGTTAGCGGATCT -ACGGAAATCCAGGTTAGCAAGGCT -ACGGAAATCCAGGTTAGCTCAACC -ACGGAAATCCAGGTTAGCTGTTCC -ACGGAAATCCAGGTTAGCATTCCC -ACGGAAATCCAGGTTAGCTTCTCG -ACGGAAATCCAGGTTAGCTAGACG -ACGGAAATCCAGGTTAGCGTAACG -ACGGAAATCCAGGTTAGCACTTCG -ACGGAAATCCAGGTTAGCTACGCA -ACGGAAATCCAGGTTAGCCTTGCA -ACGGAAATCCAGGTTAGCCGAACA -ACGGAAATCCAGGTTAGCCAGTCA -ACGGAAATCCAGGTTAGCGATCCA -ACGGAAATCCAGGTTAGCACGACA -ACGGAAATCCAGGTTAGCAGCTCA -ACGGAAATCCAGGTTAGCTCACGT -ACGGAAATCCAGGTTAGCCGTAGT -ACGGAAATCCAGGTTAGCGTCAGT -ACGGAAATCCAGGTTAGCGAAGGT -ACGGAAATCCAGGTTAGCAACCGT -ACGGAAATCCAGGTTAGCTTGTGC -ACGGAAATCCAGGTTAGCCTAAGC -ACGGAAATCCAGGTTAGCACTAGC -ACGGAAATCCAGGTTAGCAGATGC -ACGGAAATCCAGGTTAGCTGAAGG -ACGGAAATCCAGGTTAGCCAATGG -ACGGAAATCCAGGTTAGCATGAGG -ACGGAAATCCAGGTTAGCAATGGG -ACGGAAATCCAGGTTAGCTCCTGA -ACGGAAATCCAGGTTAGCTAGCGA -ACGGAAATCCAGGTTAGCCACAGA -ACGGAAATCCAGGTTAGCGCAAGA -ACGGAAATCCAGGTTAGCGGTTGA -ACGGAAATCCAGGTTAGCTCCGAT -ACGGAAATCCAGGTTAGCTGGCAT -ACGGAAATCCAGGTTAGCCGAGAT -ACGGAAATCCAGGTTAGCTACCAC -ACGGAAATCCAGGTTAGCCAGAAC -ACGGAAATCCAGGTTAGCGTCTAC -ACGGAAATCCAGGTTAGCACGTAC -ACGGAAATCCAGGTTAGCAGTGAC -ACGGAAATCCAGGTTAGCCTGTAG -ACGGAAATCCAGGTTAGCCCTAAG -ACGGAAATCCAGGTTAGCGTTCAG -ACGGAAATCCAGGTTAGCGCATAG -ACGGAAATCCAGGTTAGCGACAAG -ACGGAAATCCAGGTTAGCAAGCAG -ACGGAAATCCAGGTTAGCCGTCAA -ACGGAAATCCAGGTTAGCGCTGAA -ACGGAAATCCAGGTTAGCAGTACG -ACGGAAATCCAGGTTAGCATCCGA -ACGGAAATCCAGGTTAGCATGGGA -ACGGAAATCCAGGTTAGCGTGCAA -ACGGAAATCCAGGTTAGCGAGGAA -ACGGAAATCCAGGTTAGCCAGGTA -ACGGAAATCCAGGTTAGCGACTCT -ACGGAAATCCAGGTTAGCAGTCCT -ACGGAAATCCAGGTTAGCTAAGCC -ACGGAAATCCAGGTTAGCATAGCC -ACGGAAATCCAGGTTAGCTAACCG -ACGGAAATCCAGGTTAGCATGCCA -ACGGAAATCCAGGTCTTCGGAAAC -ACGGAAATCCAGGTCTTCAACACC -ACGGAAATCCAGGTCTTCATCGAG -ACGGAAATCCAGGTCTTCCTCCTT -ACGGAAATCCAGGTCTTCCCTGTT -ACGGAAATCCAGGTCTTCCGGTTT -ACGGAAATCCAGGTCTTCGTGGTT -ACGGAAATCCAGGTCTTCGCCTTT -ACGGAAATCCAGGTCTTCGGTCTT -ACGGAAATCCAGGTCTTCACGCTT -ACGGAAATCCAGGTCTTCAGCGTT -ACGGAAATCCAGGTCTTCTTCGTC -ACGGAAATCCAGGTCTTCTCTCTC -ACGGAAATCCAGGTCTTCTGGATC -ACGGAAATCCAGGTCTTCCACTTC -ACGGAAATCCAGGTCTTCGTACTC -ACGGAAATCCAGGTCTTCGATGTC -ACGGAAATCCAGGTCTTCACAGTC -ACGGAAATCCAGGTCTTCTTGCTG -ACGGAAATCCAGGTCTTCTCCATG -ACGGAAATCCAGGTCTTCTGTGTG -ACGGAAATCCAGGTCTTCCTAGTG -ACGGAAATCCAGGTCTTCCATCTG -ACGGAAATCCAGGTCTTCGAGTTG -ACGGAAATCCAGGTCTTCAGACTG -ACGGAAATCCAGGTCTTCTCGGTA -ACGGAAATCCAGGTCTTCTGCCTA -ACGGAAATCCAGGTCTTCCCACTA -ACGGAAATCCAGGTCTTCGGAGTA -ACGGAAATCCAGGTCTTCTCGTCT -ACGGAAATCCAGGTCTTCTGCACT -ACGGAAATCCAGGTCTTCCTGACT -ACGGAAATCCAGGTCTTCCAACCT -ACGGAAATCCAGGTCTTCGCTACT -ACGGAAATCCAGGTCTTCGGATCT -ACGGAAATCCAGGTCTTCAAGGCT -ACGGAAATCCAGGTCTTCTCAACC -ACGGAAATCCAGGTCTTCTGTTCC -ACGGAAATCCAGGTCTTCATTCCC -ACGGAAATCCAGGTCTTCTTCTCG -ACGGAAATCCAGGTCTTCTAGACG -ACGGAAATCCAGGTCTTCGTAACG -ACGGAAATCCAGGTCTTCACTTCG -ACGGAAATCCAGGTCTTCTACGCA -ACGGAAATCCAGGTCTTCCTTGCA -ACGGAAATCCAGGTCTTCCGAACA -ACGGAAATCCAGGTCTTCCAGTCA -ACGGAAATCCAGGTCTTCGATCCA -ACGGAAATCCAGGTCTTCACGACA -ACGGAAATCCAGGTCTTCAGCTCA -ACGGAAATCCAGGTCTTCTCACGT -ACGGAAATCCAGGTCTTCCGTAGT -ACGGAAATCCAGGTCTTCGTCAGT -ACGGAAATCCAGGTCTTCGAAGGT -ACGGAAATCCAGGTCTTCAACCGT -ACGGAAATCCAGGTCTTCTTGTGC -ACGGAAATCCAGGTCTTCCTAAGC -ACGGAAATCCAGGTCTTCACTAGC -ACGGAAATCCAGGTCTTCAGATGC -ACGGAAATCCAGGTCTTCTGAAGG -ACGGAAATCCAGGTCTTCCAATGG -ACGGAAATCCAGGTCTTCATGAGG -ACGGAAATCCAGGTCTTCAATGGG -ACGGAAATCCAGGTCTTCTCCTGA -ACGGAAATCCAGGTCTTCTAGCGA -ACGGAAATCCAGGTCTTCCACAGA -ACGGAAATCCAGGTCTTCGCAAGA -ACGGAAATCCAGGTCTTCGGTTGA -ACGGAAATCCAGGTCTTCTCCGAT -ACGGAAATCCAGGTCTTCTGGCAT -ACGGAAATCCAGGTCTTCCGAGAT -ACGGAAATCCAGGTCTTCTACCAC -ACGGAAATCCAGGTCTTCCAGAAC -ACGGAAATCCAGGTCTTCGTCTAC -ACGGAAATCCAGGTCTTCACGTAC -ACGGAAATCCAGGTCTTCAGTGAC -ACGGAAATCCAGGTCTTCCTGTAG -ACGGAAATCCAGGTCTTCCCTAAG -ACGGAAATCCAGGTCTTCGTTCAG -ACGGAAATCCAGGTCTTCGCATAG -ACGGAAATCCAGGTCTTCGACAAG -ACGGAAATCCAGGTCTTCAAGCAG -ACGGAAATCCAGGTCTTCCGTCAA -ACGGAAATCCAGGTCTTCGCTGAA -ACGGAAATCCAGGTCTTCAGTACG -ACGGAAATCCAGGTCTTCATCCGA -ACGGAAATCCAGGTCTTCATGGGA -ACGGAAATCCAGGTCTTCGTGCAA -ACGGAAATCCAGGTCTTCGAGGAA -ACGGAAATCCAGGTCTTCCAGGTA -ACGGAAATCCAGGTCTTCGACTCT -ACGGAAATCCAGGTCTTCAGTCCT -ACGGAAATCCAGGTCTTCTAAGCC -ACGGAAATCCAGGTCTTCATAGCC -ACGGAAATCCAGGTCTTCTAACCG -ACGGAAATCCAGGTCTTCATGCCA -ACGGAAATCCAGCTCTCTGGAAAC -ACGGAAATCCAGCTCTCTAACACC -ACGGAAATCCAGCTCTCTATCGAG -ACGGAAATCCAGCTCTCTCTCCTT -ACGGAAATCCAGCTCTCTCCTGTT -ACGGAAATCCAGCTCTCTCGGTTT -ACGGAAATCCAGCTCTCTGTGGTT -ACGGAAATCCAGCTCTCTGCCTTT -ACGGAAATCCAGCTCTCTGGTCTT -ACGGAAATCCAGCTCTCTACGCTT -ACGGAAATCCAGCTCTCTAGCGTT -ACGGAAATCCAGCTCTCTTTCGTC -ACGGAAATCCAGCTCTCTTCTCTC -ACGGAAATCCAGCTCTCTTGGATC -ACGGAAATCCAGCTCTCTCACTTC -ACGGAAATCCAGCTCTCTGTACTC -ACGGAAATCCAGCTCTCTGATGTC -ACGGAAATCCAGCTCTCTACAGTC -ACGGAAATCCAGCTCTCTTTGCTG -ACGGAAATCCAGCTCTCTTCCATG -ACGGAAATCCAGCTCTCTTGTGTG -ACGGAAATCCAGCTCTCTCTAGTG -ACGGAAATCCAGCTCTCTCATCTG -ACGGAAATCCAGCTCTCTGAGTTG -ACGGAAATCCAGCTCTCTAGACTG -ACGGAAATCCAGCTCTCTTCGGTA -ACGGAAATCCAGCTCTCTTGCCTA -ACGGAAATCCAGCTCTCTCCACTA -ACGGAAATCCAGCTCTCTGGAGTA -ACGGAAATCCAGCTCTCTTCGTCT -ACGGAAATCCAGCTCTCTTGCACT -ACGGAAATCCAGCTCTCTCTGACT -ACGGAAATCCAGCTCTCTCAACCT -ACGGAAATCCAGCTCTCTGCTACT -ACGGAAATCCAGCTCTCTGGATCT -ACGGAAATCCAGCTCTCTAAGGCT -ACGGAAATCCAGCTCTCTTCAACC -ACGGAAATCCAGCTCTCTTGTTCC -ACGGAAATCCAGCTCTCTATTCCC -ACGGAAATCCAGCTCTCTTTCTCG -ACGGAAATCCAGCTCTCTTAGACG -ACGGAAATCCAGCTCTCTGTAACG -ACGGAAATCCAGCTCTCTACTTCG -ACGGAAATCCAGCTCTCTTACGCA -ACGGAAATCCAGCTCTCTCTTGCA -ACGGAAATCCAGCTCTCTCGAACA -ACGGAAATCCAGCTCTCTCAGTCA -ACGGAAATCCAGCTCTCTGATCCA -ACGGAAATCCAGCTCTCTACGACA -ACGGAAATCCAGCTCTCTAGCTCA -ACGGAAATCCAGCTCTCTTCACGT -ACGGAAATCCAGCTCTCTCGTAGT -ACGGAAATCCAGCTCTCTGTCAGT -ACGGAAATCCAGCTCTCTGAAGGT -ACGGAAATCCAGCTCTCTAACCGT -ACGGAAATCCAGCTCTCTTTGTGC -ACGGAAATCCAGCTCTCTCTAAGC -ACGGAAATCCAGCTCTCTACTAGC -ACGGAAATCCAGCTCTCTAGATGC -ACGGAAATCCAGCTCTCTTGAAGG -ACGGAAATCCAGCTCTCTCAATGG -ACGGAAATCCAGCTCTCTATGAGG -ACGGAAATCCAGCTCTCTAATGGG -ACGGAAATCCAGCTCTCTTCCTGA -ACGGAAATCCAGCTCTCTTAGCGA -ACGGAAATCCAGCTCTCTCACAGA -ACGGAAATCCAGCTCTCTGCAAGA -ACGGAAATCCAGCTCTCTGGTTGA -ACGGAAATCCAGCTCTCTTCCGAT -ACGGAAATCCAGCTCTCTTGGCAT -ACGGAAATCCAGCTCTCTCGAGAT -ACGGAAATCCAGCTCTCTTACCAC -ACGGAAATCCAGCTCTCTCAGAAC -ACGGAAATCCAGCTCTCTGTCTAC -ACGGAAATCCAGCTCTCTACGTAC -ACGGAAATCCAGCTCTCTAGTGAC -ACGGAAATCCAGCTCTCTCTGTAG -ACGGAAATCCAGCTCTCTCCTAAG -ACGGAAATCCAGCTCTCTGTTCAG -ACGGAAATCCAGCTCTCTGCATAG -ACGGAAATCCAGCTCTCTGACAAG -ACGGAAATCCAGCTCTCTAAGCAG -ACGGAAATCCAGCTCTCTCGTCAA -ACGGAAATCCAGCTCTCTGCTGAA -ACGGAAATCCAGCTCTCTAGTACG -ACGGAAATCCAGCTCTCTATCCGA -ACGGAAATCCAGCTCTCTATGGGA -ACGGAAATCCAGCTCTCTGTGCAA -ACGGAAATCCAGCTCTCTGAGGAA -ACGGAAATCCAGCTCTCTCAGGTA -ACGGAAATCCAGCTCTCTGACTCT -ACGGAAATCCAGCTCTCTAGTCCT -ACGGAAATCCAGCTCTCTTAAGCC -ACGGAAATCCAGCTCTCTATAGCC -ACGGAAATCCAGCTCTCTTAACCG -ACGGAAATCCAGCTCTCTATGCCA -ACGGAAATCCAGATCTGGGGAAAC -ACGGAAATCCAGATCTGGAACACC -ACGGAAATCCAGATCTGGATCGAG -ACGGAAATCCAGATCTGGCTCCTT -ACGGAAATCCAGATCTGGCCTGTT -ACGGAAATCCAGATCTGGCGGTTT -ACGGAAATCCAGATCTGGGTGGTT -ACGGAAATCCAGATCTGGGCCTTT -ACGGAAATCCAGATCTGGGGTCTT -ACGGAAATCCAGATCTGGACGCTT -ACGGAAATCCAGATCTGGAGCGTT -ACGGAAATCCAGATCTGGTTCGTC -ACGGAAATCCAGATCTGGTCTCTC -ACGGAAATCCAGATCTGGTGGATC -ACGGAAATCCAGATCTGGCACTTC -ACGGAAATCCAGATCTGGGTACTC -ACGGAAATCCAGATCTGGGATGTC -ACGGAAATCCAGATCTGGACAGTC -ACGGAAATCCAGATCTGGTTGCTG -ACGGAAATCCAGATCTGGTCCATG -ACGGAAATCCAGATCTGGTGTGTG -ACGGAAATCCAGATCTGGCTAGTG -ACGGAAATCCAGATCTGGCATCTG -ACGGAAATCCAGATCTGGGAGTTG -ACGGAAATCCAGATCTGGAGACTG -ACGGAAATCCAGATCTGGTCGGTA -ACGGAAATCCAGATCTGGTGCCTA -ACGGAAATCCAGATCTGGCCACTA -ACGGAAATCCAGATCTGGGGAGTA -ACGGAAATCCAGATCTGGTCGTCT -ACGGAAATCCAGATCTGGTGCACT -ACGGAAATCCAGATCTGGCTGACT -ACGGAAATCCAGATCTGGCAACCT -ACGGAAATCCAGATCTGGGCTACT -ACGGAAATCCAGATCTGGGGATCT -ACGGAAATCCAGATCTGGAAGGCT -ACGGAAATCCAGATCTGGTCAACC -ACGGAAATCCAGATCTGGTGTTCC -ACGGAAATCCAGATCTGGATTCCC -ACGGAAATCCAGATCTGGTTCTCG -ACGGAAATCCAGATCTGGTAGACG -ACGGAAATCCAGATCTGGGTAACG -ACGGAAATCCAGATCTGGACTTCG -ACGGAAATCCAGATCTGGTACGCA -ACGGAAATCCAGATCTGGCTTGCA -ACGGAAATCCAGATCTGGCGAACA -ACGGAAATCCAGATCTGGCAGTCA -ACGGAAATCCAGATCTGGGATCCA -ACGGAAATCCAGATCTGGACGACA -ACGGAAATCCAGATCTGGAGCTCA -ACGGAAATCCAGATCTGGTCACGT -ACGGAAATCCAGATCTGGCGTAGT -ACGGAAATCCAGATCTGGGTCAGT -ACGGAAATCCAGATCTGGGAAGGT -ACGGAAATCCAGATCTGGAACCGT -ACGGAAATCCAGATCTGGTTGTGC -ACGGAAATCCAGATCTGGCTAAGC -ACGGAAATCCAGATCTGGACTAGC -ACGGAAATCCAGATCTGGAGATGC -ACGGAAATCCAGATCTGGTGAAGG -ACGGAAATCCAGATCTGGCAATGG -ACGGAAATCCAGATCTGGATGAGG -ACGGAAATCCAGATCTGGAATGGG -ACGGAAATCCAGATCTGGTCCTGA -ACGGAAATCCAGATCTGGTAGCGA -ACGGAAATCCAGATCTGGCACAGA -ACGGAAATCCAGATCTGGGCAAGA -ACGGAAATCCAGATCTGGGGTTGA -ACGGAAATCCAGATCTGGTCCGAT -ACGGAAATCCAGATCTGGTGGCAT -ACGGAAATCCAGATCTGGCGAGAT -ACGGAAATCCAGATCTGGTACCAC -ACGGAAATCCAGATCTGGCAGAAC -ACGGAAATCCAGATCTGGGTCTAC -ACGGAAATCCAGATCTGGACGTAC -ACGGAAATCCAGATCTGGAGTGAC -ACGGAAATCCAGATCTGGCTGTAG -ACGGAAATCCAGATCTGGCCTAAG -ACGGAAATCCAGATCTGGGTTCAG -ACGGAAATCCAGATCTGGGCATAG -ACGGAAATCCAGATCTGGGACAAG -ACGGAAATCCAGATCTGGAAGCAG -ACGGAAATCCAGATCTGGCGTCAA -ACGGAAATCCAGATCTGGGCTGAA -ACGGAAATCCAGATCTGGAGTACG -ACGGAAATCCAGATCTGGATCCGA -ACGGAAATCCAGATCTGGATGGGA -ACGGAAATCCAGATCTGGGTGCAA -ACGGAAATCCAGATCTGGGAGGAA -ACGGAAATCCAGATCTGGCAGGTA -ACGGAAATCCAGATCTGGGACTCT -ACGGAAATCCAGATCTGGAGTCCT -ACGGAAATCCAGATCTGGTAAGCC -ACGGAAATCCAGATCTGGATAGCC -ACGGAAATCCAGATCTGGTAACCG -ACGGAAATCCAGATCTGGATGCCA -ACGGAAATCCAGTTCCACGGAAAC -ACGGAAATCCAGTTCCACAACACC -ACGGAAATCCAGTTCCACATCGAG -ACGGAAATCCAGTTCCACCTCCTT -ACGGAAATCCAGTTCCACCCTGTT -ACGGAAATCCAGTTCCACCGGTTT -ACGGAAATCCAGTTCCACGTGGTT -ACGGAAATCCAGTTCCACGCCTTT -ACGGAAATCCAGTTCCACGGTCTT -ACGGAAATCCAGTTCCACACGCTT -ACGGAAATCCAGTTCCACAGCGTT -ACGGAAATCCAGTTCCACTTCGTC -ACGGAAATCCAGTTCCACTCTCTC -ACGGAAATCCAGTTCCACTGGATC -ACGGAAATCCAGTTCCACCACTTC -ACGGAAATCCAGTTCCACGTACTC -ACGGAAATCCAGTTCCACGATGTC -ACGGAAATCCAGTTCCACACAGTC -ACGGAAATCCAGTTCCACTTGCTG -ACGGAAATCCAGTTCCACTCCATG -ACGGAAATCCAGTTCCACTGTGTG -ACGGAAATCCAGTTCCACCTAGTG -ACGGAAATCCAGTTCCACCATCTG -ACGGAAATCCAGTTCCACGAGTTG -ACGGAAATCCAGTTCCACAGACTG -ACGGAAATCCAGTTCCACTCGGTA -ACGGAAATCCAGTTCCACTGCCTA -ACGGAAATCCAGTTCCACCCACTA -ACGGAAATCCAGTTCCACGGAGTA -ACGGAAATCCAGTTCCACTCGTCT -ACGGAAATCCAGTTCCACTGCACT -ACGGAAATCCAGTTCCACCTGACT -ACGGAAATCCAGTTCCACCAACCT -ACGGAAATCCAGTTCCACGCTACT -ACGGAAATCCAGTTCCACGGATCT -ACGGAAATCCAGTTCCACAAGGCT -ACGGAAATCCAGTTCCACTCAACC -ACGGAAATCCAGTTCCACTGTTCC -ACGGAAATCCAGTTCCACATTCCC -ACGGAAATCCAGTTCCACTTCTCG -ACGGAAATCCAGTTCCACTAGACG -ACGGAAATCCAGTTCCACGTAACG -ACGGAAATCCAGTTCCACACTTCG -ACGGAAATCCAGTTCCACTACGCA -ACGGAAATCCAGTTCCACCTTGCA -ACGGAAATCCAGTTCCACCGAACA -ACGGAAATCCAGTTCCACCAGTCA -ACGGAAATCCAGTTCCACGATCCA -ACGGAAATCCAGTTCCACACGACA -ACGGAAATCCAGTTCCACAGCTCA -ACGGAAATCCAGTTCCACTCACGT -ACGGAAATCCAGTTCCACCGTAGT -ACGGAAATCCAGTTCCACGTCAGT -ACGGAAATCCAGTTCCACGAAGGT -ACGGAAATCCAGTTCCACAACCGT -ACGGAAATCCAGTTCCACTTGTGC -ACGGAAATCCAGTTCCACCTAAGC -ACGGAAATCCAGTTCCACACTAGC -ACGGAAATCCAGTTCCACAGATGC -ACGGAAATCCAGTTCCACTGAAGG -ACGGAAATCCAGTTCCACCAATGG -ACGGAAATCCAGTTCCACATGAGG -ACGGAAATCCAGTTCCACAATGGG -ACGGAAATCCAGTTCCACTCCTGA -ACGGAAATCCAGTTCCACTAGCGA -ACGGAAATCCAGTTCCACCACAGA -ACGGAAATCCAGTTCCACGCAAGA -ACGGAAATCCAGTTCCACGGTTGA -ACGGAAATCCAGTTCCACTCCGAT -ACGGAAATCCAGTTCCACTGGCAT -ACGGAAATCCAGTTCCACCGAGAT -ACGGAAATCCAGTTCCACTACCAC -ACGGAAATCCAGTTCCACCAGAAC -ACGGAAATCCAGTTCCACGTCTAC -ACGGAAATCCAGTTCCACACGTAC -ACGGAAATCCAGTTCCACAGTGAC -ACGGAAATCCAGTTCCACCTGTAG -ACGGAAATCCAGTTCCACCCTAAG -ACGGAAATCCAGTTCCACGTTCAG -ACGGAAATCCAGTTCCACGCATAG -ACGGAAATCCAGTTCCACGACAAG -ACGGAAATCCAGTTCCACAAGCAG -ACGGAAATCCAGTTCCACCGTCAA -ACGGAAATCCAGTTCCACGCTGAA -ACGGAAATCCAGTTCCACAGTACG -ACGGAAATCCAGTTCCACATCCGA -ACGGAAATCCAGTTCCACATGGGA -ACGGAAATCCAGTTCCACGTGCAA -ACGGAAATCCAGTTCCACGAGGAA -ACGGAAATCCAGTTCCACCAGGTA -ACGGAAATCCAGTTCCACGACTCT -ACGGAAATCCAGTTCCACAGTCCT -ACGGAAATCCAGTTCCACTAAGCC -ACGGAAATCCAGTTCCACATAGCC -ACGGAAATCCAGTTCCACTAACCG -ACGGAAATCCAGTTCCACATGCCA -ACGGAAATCCAGCTCGTAGGAAAC -ACGGAAATCCAGCTCGTAAACACC -ACGGAAATCCAGCTCGTAATCGAG -ACGGAAATCCAGCTCGTACTCCTT -ACGGAAATCCAGCTCGTACCTGTT -ACGGAAATCCAGCTCGTACGGTTT -ACGGAAATCCAGCTCGTAGTGGTT -ACGGAAATCCAGCTCGTAGCCTTT -ACGGAAATCCAGCTCGTAGGTCTT -ACGGAAATCCAGCTCGTAACGCTT -ACGGAAATCCAGCTCGTAAGCGTT -ACGGAAATCCAGCTCGTATTCGTC -ACGGAAATCCAGCTCGTATCTCTC -ACGGAAATCCAGCTCGTATGGATC -ACGGAAATCCAGCTCGTACACTTC -ACGGAAATCCAGCTCGTAGTACTC -ACGGAAATCCAGCTCGTAGATGTC -ACGGAAATCCAGCTCGTAACAGTC -ACGGAAATCCAGCTCGTATTGCTG -ACGGAAATCCAGCTCGTATCCATG -ACGGAAATCCAGCTCGTATGTGTG -ACGGAAATCCAGCTCGTACTAGTG -ACGGAAATCCAGCTCGTACATCTG -ACGGAAATCCAGCTCGTAGAGTTG -ACGGAAATCCAGCTCGTAAGACTG -ACGGAAATCCAGCTCGTATCGGTA -ACGGAAATCCAGCTCGTATGCCTA -ACGGAAATCCAGCTCGTACCACTA -ACGGAAATCCAGCTCGTAGGAGTA -ACGGAAATCCAGCTCGTATCGTCT -ACGGAAATCCAGCTCGTATGCACT -ACGGAAATCCAGCTCGTACTGACT -ACGGAAATCCAGCTCGTACAACCT -ACGGAAATCCAGCTCGTAGCTACT -ACGGAAATCCAGCTCGTAGGATCT -ACGGAAATCCAGCTCGTAAAGGCT -ACGGAAATCCAGCTCGTATCAACC -ACGGAAATCCAGCTCGTATGTTCC -ACGGAAATCCAGCTCGTAATTCCC -ACGGAAATCCAGCTCGTATTCTCG -ACGGAAATCCAGCTCGTATAGACG -ACGGAAATCCAGCTCGTAGTAACG -ACGGAAATCCAGCTCGTAACTTCG -ACGGAAATCCAGCTCGTATACGCA -ACGGAAATCCAGCTCGTACTTGCA -ACGGAAATCCAGCTCGTACGAACA -ACGGAAATCCAGCTCGTACAGTCA -ACGGAAATCCAGCTCGTAGATCCA -ACGGAAATCCAGCTCGTAACGACA -ACGGAAATCCAGCTCGTAAGCTCA -ACGGAAATCCAGCTCGTATCACGT -ACGGAAATCCAGCTCGTACGTAGT -ACGGAAATCCAGCTCGTAGTCAGT -ACGGAAATCCAGCTCGTAGAAGGT -ACGGAAATCCAGCTCGTAAACCGT -ACGGAAATCCAGCTCGTATTGTGC -ACGGAAATCCAGCTCGTACTAAGC -ACGGAAATCCAGCTCGTAACTAGC -ACGGAAATCCAGCTCGTAAGATGC -ACGGAAATCCAGCTCGTATGAAGG -ACGGAAATCCAGCTCGTACAATGG -ACGGAAATCCAGCTCGTAATGAGG -ACGGAAATCCAGCTCGTAAATGGG -ACGGAAATCCAGCTCGTATCCTGA -ACGGAAATCCAGCTCGTATAGCGA -ACGGAAATCCAGCTCGTACACAGA -ACGGAAATCCAGCTCGTAGCAAGA -ACGGAAATCCAGCTCGTAGGTTGA -ACGGAAATCCAGCTCGTATCCGAT -ACGGAAATCCAGCTCGTATGGCAT -ACGGAAATCCAGCTCGTACGAGAT -ACGGAAATCCAGCTCGTATACCAC -ACGGAAATCCAGCTCGTACAGAAC -ACGGAAATCCAGCTCGTAGTCTAC -ACGGAAATCCAGCTCGTAACGTAC -ACGGAAATCCAGCTCGTAAGTGAC -ACGGAAATCCAGCTCGTACTGTAG -ACGGAAATCCAGCTCGTACCTAAG -ACGGAAATCCAGCTCGTAGTTCAG -ACGGAAATCCAGCTCGTAGCATAG -ACGGAAATCCAGCTCGTAGACAAG -ACGGAAATCCAGCTCGTAAAGCAG -ACGGAAATCCAGCTCGTACGTCAA -ACGGAAATCCAGCTCGTAGCTGAA -ACGGAAATCCAGCTCGTAAGTACG -ACGGAAATCCAGCTCGTAATCCGA -ACGGAAATCCAGCTCGTAATGGGA -ACGGAAATCCAGCTCGTAGTGCAA -ACGGAAATCCAGCTCGTAGAGGAA -ACGGAAATCCAGCTCGTACAGGTA -ACGGAAATCCAGCTCGTAGACTCT -ACGGAAATCCAGCTCGTAAGTCCT -ACGGAAATCCAGCTCGTATAAGCC -ACGGAAATCCAGCTCGTAATAGCC -ACGGAAATCCAGCTCGTATAACCG -ACGGAAATCCAGCTCGTAATGCCA -ACGGAAATCCAGGTCGATGGAAAC -ACGGAAATCCAGGTCGATAACACC -ACGGAAATCCAGGTCGATATCGAG -ACGGAAATCCAGGTCGATCTCCTT -ACGGAAATCCAGGTCGATCCTGTT -ACGGAAATCCAGGTCGATCGGTTT -ACGGAAATCCAGGTCGATGTGGTT -ACGGAAATCCAGGTCGATGCCTTT -ACGGAAATCCAGGTCGATGGTCTT -ACGGAAATCCAGGTCGATACGCTT -ACGGAAATCCAGGTCGATAGCGTT -ACGGAAATCCAGGTCGATTTCGTC -ACGGAAATCCAGGTCGATTCTCTC -ACGGAAATCCAGGTCGATTGGATC -ACGGAAATCCAGGTCGATCACTTC -ACGGAAATCCAGGTCGATGTACTC -ACGGAAATCCAGGTCGATGATGTC -ACGGAAATCCAGGTCGATACAGTC -ACGGAAATCCAGGTCGATTTGCTG -ACGGAAATCCAGGTCGATTCCATG -ACGGAAATCCAGGTCGATTGTGTG -ACGGAAATCCAGGTCGATCTAGTG -ACGGAAATCCAGGTCGATCATCTG -ACGGAAATCCAGGTCGATGAGTTG -ACGGAAATCCAGGTCGATAGACTG -ACGGAAATCCAGGTCGATTCGGTA -ACGGAAATCCAGGTCGATTGCCTA -ACGGAAATCCAGGTCGATCCACTA -ACGGAAATCCAGGTCGATGGAGTA -ACGGAAATCCAGGTCGATTCGTCT -ACGGAAATCCAGGTCGATTGCACT -ACGGAAATCCAGGTCGATCTGACT -ACGGAAATCCAGGTCGATCAACCT -ACGGAAATCCAGGTCGATGCTACT -ACGGAAATCCAGGTCGATGGATCT -ACGGAAATCCAGGTCGATAAGGCT -ACGGAAATCCAGGTCGATTCAACC -ACGGAAATCCAGGTCGATTGTTCC -ACGGAAATCCAGGTCGATATTCCC -ACGGAAATCCAGGTCGATTTCTCG -ACGGAAATCCAGGTCGATTAGACG -ACGGAAATCCAGGTCGATGTAACG -ACGGAAATCCAGGTCGATACTTCG -ACGGAAATCCAGGTCGATTACGCA -ACGGAAATCCAGGTCGATCTTGCA -ACGGAAATCCAGGTCGATCGAACA -ACGGAAATCCAGGTCGATCAGTCA -ACGGAAATCCAGGTCGATGATCCA -ACGGAAATCCAGGTCGATACGACA -ACGGAAATCCAGGTCGATAGCTCA -ACGGAAATCCAGGTCGATTCACGT -ACGGAAATCCAGGTCGATCGTAGT -ACGGAAATCCAGGTCGATGTCAGT -ACGGAAATCCAGGTCGATGAAGGT -ACGGAAATCCAGGTCGATAACCGT -ACGGAAATCCAGGTCGATTTGTGC -ACGGAAATCCAGGTCGATCTAAGC -ACGGAAATCCAGGTCGATACTAGC -ACGGAAATCCAGGTCGATAGATGC -ACGGAAATCCAGGTCGATTGAAGG -ACGGAAATCCAGGTCGATCAATGG -ACGGAAATCCAGGTCGATATGAGG -ACGGAAATCCAGGTCGATAATGGG -ACGGAAATCCAGGTCGATTCCTGA -ACGGAAATCCAGGTCGATTAGCGA -ACGGAAATCCAGGTCGATCACAGA -ACGGAAATCCAGGTCGATGCAAGA -ACGGAAATCCAGGTCGATGGTTGA -ACGGAAATCCAGGTCGATTCCGAT -ACGGAAATCCAGGTCGATTGGCAT -ACGGAAATCCAGGTCGATCGAGAT -ACGGAAATCCAGGTCGATTACCAC -ACGGAAATCCAGGTCGATCAGAAC -ACGGAAATCCAGGTCGATGTCTAC -ACGGAAATCCAGGTCGATACGTAC -ACGGAAATCCAGGTCGATAGTGAC -ACGGAAATCCAGGTCGATCTGTAG -ACGGAAATCCAGGTCGATCCTAAG -ACGGAAATCCAGGTCGATGTTCAG -ACGGAAATCCAGGTCGATGCATAG -ACGGAAATCCAGGTCGATGACAAG -ACGGAAATCCAGGTCGATAAGCAG -ACGGAAATCCAGGTCGATCGTCAA -ACGGAAATCCAGGTCGATGCTGAA -ACGGAAATCCAGGTCGATAGTACG -ACGGAAATCCAGGTCGATATCCGA -ACGGAAATCCAGGTCGATATGGGA -ACGGAAATCCAGGTCGATGTGCAA -ACGGAAATCCAGGTCGATGAGGAA -ACGGAAATCCAGGTCGATCAGGTA -ACGGAAATCCAGGTCGATGACTCT -ACGGAAATCCAGGTCGATAGTCCT -ACGGAAATCCAGGTCGATTAAGCC -ACGGAAATCCAGGTCGATATAGCC -ACGGAAATCCAGGTCGATTAACCG -ACGGAAATCCAGGTCGATATGCCA -ACGGAAATCCAGGTCACAGGAAAC -ACGGAAATCCAGGTCACAAACACC -ACGGAAATCCAGGTCACAATCGAG -ACGGAAATCCAGGTCACACTCCTT -ACGGAAATCCAGGTCACACCTGTT -ACGGAAATCCAGGTCACACGGTTT -ACGGAAATCCAGGTCACAGTGGTT -ACGGAAATCCAGGTCACAGCCTTT -ACGGAAATCCAGGTCACAGGTCTT -ACGGAAATCCAGGTCACAACGCTT -ACGGAAATCCAGGTCACAAGCGTT -ACGGAAATCCAGGTCACATTCGTC -ACGGAAATCCAGGTCACATCTCTC -ACGGAAATCCAGGTCACATGGATC -ACGGAAATCCAGGTCACACACTTC -ACGGAAATCCAGGTCACAGTACTC -ACGGAAATCCAGGTCACAGATGTC -ACGGAAATCCAGGTCACAACAGTC -ACGGAAATCCAGGTCACATTGCTG -ACGGAAATCCAGGTCACATCCATG -ACGGAAATCCAGGTCACATGTGTG -ACGGAAATCCAGGTCACACTAGTG -ACGGAAATCCAGGTCACACATCTG -ACGGAAATCCAGGTCACAGAGTTG -ACGGAAATCCAGGTCACAAGACTG -ACGGAAATCCAGGTCACATCGGTA -ACGGAAATCCAGGTCACATGCCTA -ACGGAAATCCAGGTCACACCACTA -ACGGAAATCCAGGTCACAGGAGTA -ACGGAAATCCAGGTCACATCGTCT -ACGGAAATCCAGGTCACATGCACT -ACGGAAATCCAGGTCACACTGACT -ACGGAAATCCAGGTCACACAACCT -ACGGAAATCCAGGTCACAGCTACT -ACGGAAATCCAGGTCACAGGATCT -ACGGAAATCCAGGTCACAAAGGCT -ACGGAAATCCAGGTCACATCAACC -ACGGAAATCCAGGTCACATGTTCC -ACGGAAATCCAGGTCACAATTCCC -ACGGAAATCCAGGTCACATTCTCG -ACGGAAATCCAGGTCACATAGACG -ACGGAAATCCAGGTCACAGTAACG -ACGGAAATCCAGGTCACAACTTCG -ACGGAAATCCAGGTCACATACGCA -ACGGAAATCCAGGTCACACTTGCA -ACGGAAATCCAGGTCACACGAACA -ACGGAAATCCAGGTCACACAGTCA -ACGGAAATCCAGGTCACAGATCCA -ACGGAAATCCAGGTCACAACGACA -ACGGAAATCCAGGTCACAAGCTCA -ACGGAAATCCAGGTCACATCACGT -ACGGAAATCCAGGTCACACGTAGT -ACGGAAATCCAGGTCACAGTCAGT -ACGGAAATCCAGGTCACAGAAGGT -ACGGAAATCCAGGTCACAAACCGT -ACGGAAATCCAGGTCACATTGTGC -ACGGAAATCCAGGTCACACTAAGC -ACGGAAATCCAGGTCACAACTAGC -ACGGAAATCCAGGTCACAAGATGC -ACGGAAATCCAGGTCACATGAAGG -ACGGAAATCCAGGTCACACAATGG -ACGGAAATCCAGGTCACAATGAGG -ACGGAAATCCAGGTCACAAATGGG -ACGGAAATCCAGGTCACATCCTGA -ACGGAAATCCAGGTCACATAGCGA -ACGGAAATCCAGGTCACACACAGA -ACGGAAATCCAGGTCACAGCAAGA -ACGGAAATCCAGGTCACAGGTTGA -ACGGAAATCCAGGTCACATCCGAT -ACGGAAATCCAGGTCACATGGCAT -ACGGAAATCCAGGTCACACGAGAT -ACGGAAATCCAGGTCACATACCAC -ACGGAAATCCAGGTCACACAGAAC -ACGGAAATCCAGGTCACAGTCTAC -ACGGAAATCCAGGTCACAACGTAC -ACGGAAATCCAGGTCACAAGTGAC -ACGGAAATCCAGGTCACACTGTAG -ACGGAAATCCAGGTCACACCTAAG -ACGGAAATCCAGGTCACAGTTCAG -ACGGAAATCCAGGTCACAGCATAG -ACGGAAATCCAGGTCACAGACAAG -ACGGAAATCCAGGTCACAAAGCAG -ACGGAAATCCAGGTCACACGTCAA -ACGGAAATCCAGGTCACAGCTGAA -ACGGAAATCCAGGTCACAAGTACG -ACGGAAATCCAGGTCACAATCCGA -ACGGAAATCCAGGTCACAATGGGA -ACGGAAATCCAGGTCACAGTGCAA -ACGGAAATCCAGGTCACAGAGGAA -ACGGAAATCCAGGTCACACAGGTA -ACGGAAATCCAGGTCACAGACTCT -ACGGAAATCCAGGTCACAAGTCCT -ACGGAAATCCAGGTCACATAAGCC -ACGGAAATCCAGGTCACAATAGCC -ACGGAAATCCAGGTCACATAACCG -ACGGAAATCCAGGTCACAATGCCA -ACGGAAATCCAGCTGTTGGGAAAC -ACGGAAATCCAGCTGTTGAACACC -ACGGAAATCCAGCTGTTGATCGAG -ACGGAAATCCAGCTGTTGCTCCTT -ACGGAAATCCAGCTGTTGCCTGTT -ACGGAAATCCAGCTGTTGCGGTTT -ACGGAAATCCAGCTGTTGGTGGTT -ACGGAAATCCAGCTGTTGGCCTTT -ACGGAAATCCAGCTGTTGGGTCTT -ACGGAAATCCAGCTGTTGACGCTT -ACGGAAATCCAGCTGTTGAGCGTT -ACGGAAATCCAGCTGTTGTTCGTC -ACGGAAATCCAGCTGTTGTCTCTC -ACGGAAATCCAGCTGTTGTGGATC -ACGGAAATCCAGCTGTTGCACTTC -ACGGAAATCCAGCTGTTGGTACTC -ACGGAAATCCAGCTGTTGGATGTC -ACGGAAATCCAGCTGTTGACAGTC -ACGGAAATCCAGCTGTTGTTGCTG -ACGGAAATCCAGCTGTTGTCCATG -ACGGAAATCCAGCTGTTGTGTGTG -ACGGAAATCCAGCTGTTGCTAGTG -ACGGAAATCCAGCTGTTGCATCTG -ACGGAAATCCAGCTGTTGGAGTTG -ACGGAAATCCAGCTGTTGAGACTG -ACGGAAATCCAGCTGTTGTCGGTA -ACGGAAATCCAGCTGTTGTGCCTA -ACGGAAATCCAGCTGTTGCCACTA -ACGGAAATCCAGCTGTTGGGAGTA -ACGGAAATCCAGCTGTTGTCGTCT -ACGGAAATCCAGCTGTTGTGCACT -ACGGAAATCCAGCTGTTGCTGACT -ACGGAAATCCAGCTGTTGCAACCT -ACGGAAATCCAGCTGTTGGCTACT -ACGGAAATCCAGCTGTTGGGATCT -ACGGAAATCCAGCTGTTGAAGGCT -ACGGAAATCCAGCTGTTGTCAACC -ACGGAAATCCAGCTGTTGTGTTCC -ACGGAAATCCAGCTGTTGATTCCC -ACGGAAATCCAGCTGTTGTTCTCG -ACGGAAATCCAGCTGTTGTAGACG -ACGGAAATCCAGCTGTTGGTAACG -ACGGAAATCCAGCTGTTGACTTCG -ACGGAAATCCAGCTGTTGTACGCA -ACGGAAATCCAGCTGTTGCTTGCA -ACGGAAATCCAGCTGTTGCGAACA -ACGGAAATCCAGCTGTTGCAGTCA -ACGGAAATCCAGCTGTTGGATCCA -ACGGAAATCCAGCTGTTGACGACA -ACGGAAATCCAGCTGTTGAGCTCA -ACGGAAATCCAGCTGTTGTCACGT -ACGGAAATCCAGCTGTTGCGTAGT -ACGGAAATCCAGCTGTTGGTCAGT -ACGGAAATCCAGCTGTTGGAAGGT -ACGGAAATCCAGCTGTTGAACCGT -ACGGAAATCCAGCTGTTGTTGTGC -ACGGAAATCCAGCTGTTGCTAAGC -ACGGAAATCCAGCTGTTGACTAGC -ACGGAAATCCAGCTGTTGAGATGC -ACGGAAATCCAGCTGTTGTGAAGG -ACGGAAATCCAGCTGTTGCAATGG -ACGGAAATCCAGCTGTTGATGAGG -ACGGAAATCCAGCTGTTGAATGGG -ACGGAAATCCAGCTGTTGTCCTGA -ACGGAAATCCAGCTGTTGTAGCGA -ACGGAAATCCAGCTGTTGCACAGA -ACGGAAATCCAGCTGTTGGCAAGA -ACGGAAATCCAGCTGTTGGGTTGA -ACGGAAATCCAGCTGTTGTCCGAT -ACGGAAATCCAGCTGTTGTGGCAT -ACGGAAATCCAGCTGTTGCGAGAT -ACGGAAATCCAGCTGTTGTACCAC -ACGGAAATCCAGCTGTTGCAGAAC -ACGGAAATCCAGCTGTTGGTCTAC -ACGGAAATCCAGCTGTTGACGTAC -ACGGAAATCCAGCTGTTGAGTGAC -ACGGAAATCCAGCTGTTGCTGTAG -ACGGAAATCCAGCTGTTGCCTAAG -ACGGAAATCCAGCTGTTGGTTCAG -ACGGAAATCCAGCTGTTGGCATAG -ACGGAAATCCAGCTGTTGGACAAG -ACGGAAATCCAGCTGTTGAAGCAG -ACGGAAATCCAGCTGTTGCGTCAA -ACGGAAATCCAGCTGTTGGCTGAA -ACGGAAATCCAGCTGTTGAGTACG -ACGGAAATCCAGCTGTTGATCCGA -ACGGAAATCCAGCTGTTGATGGGA -ACGGAAATCCAGCTGTTGGTGCAA -ACGGAAATCCAGCTGTTGGAGGAA -ACGGAAATCCAGCTGTTGCAGGTA -ACGGAAATCCAGCTGTTGGACTCT -ACGGAAATCCAGCTGTTGAGTCCT -ACGGAAATCCAGCTGTTGTAAGCC -ACGGAAATCCAGCTGTTGATAGCC -ACGGAAATCCAGCTGTTGTAACCG -ACGGAAATCCAGCTGTTGATGCCA -ACGGAAATCCAGATGTCCGGAAAC -ACGGAAATCCAGATGTCCAACACC -ACGGAAATCCAGATGTCCATCGAG -ACGGAAATCCAGATGTCCCTCCTT -ACGGAAATCCAGATGTCCCCTGTT -ACGGAAATCCAGATGTCCCGGTTT -ACGGAAATCCAGATGTCCGTGGTT -ACGGAAATCCAGATGTCCGCCTTT -ACGGAAATCCAGATGTCCGGTCTT -ACGGAAATCCAGATGTCCACGCTT -ACGGAAATCCAGATGTCCAGCGTT -ACGGAAATCCAGATGTCCTTCGTC -ACGGAAATCCAGATGTCCTCTCTC -ACGGAAATCCAGATGTCCTGGATC -ACGGAAATCCAGATGTCCCACTTC -ACGGAAATCCAGATGTCCGTACTC -ACGGAAATCCAGATGTCCGATGTC -ACGGAAATCCAGATGTCCACAGTC -ACGGAAATCCAGATGTCCTTGCTG -ACGGAAATCCAGATGTCCTCCATG -ACGGAAATCCAGATGTCCTGTGTG -ACGGAAATCCAGATGTCCCTAGTG -ACGGAAATCCAGATGTCCCATCTG -ACGGAAATCCAGATGTCCGAGTTG -ACGGAAATCCAGATGTCCAGACTG -ACGGAAATCCAGATGTCCTCGGTA -ACGGAAATCCAGATGTCCTGCCTA -ACGGAAATCCAGATGTCCCCACTA -ACGGAAATCCAGATGTCCGGAGTA -ACGGAAATCCAGATGTCCTCGTCT -ACGGAAATCCAGATGTCCTGCACT -ACGGAAATCCAGATGTCCCTGACT -ACGGAAATCCAGATGTCCCAACCT -ACGGAAATCCAGATGTCCGCTACT -ACGGAAATCCAGATGTCCGGATCT -ACGGAAATCCAGATGTCCAAGGCT -ACGGAAATCCAGATGTCCTCAACC -ACGGAAATCCAGATGTCCTGTTCC -ACGGAAATCCAGATGTCCATTCCC -ACGGAAATCCAGATGTCCTTCTCG -ACGGAAATCCAGATGTCCTAGACG -ACGGAAATCCAGATGTCCGTAACG -ACGGAAATCCAGATGTCCACTTCG -ACGGAAATCCAGATGTCCTACGCA -ACGGAAATCCAGATGTCCCTTGCA -ACGGAAATCCAGATGTCCCGAACA -ACGGAAATCCAGATGTCCCAGTCA -ACGGAAATCCAGATGTCCGATCCA -ACGGAAATCCAGATGTCCACGACA -ACGGAAATCCAGATGTCCAGCTCA -ACGGAAATCCAGATGTCCTCACGT -ACGGAAATCCAGATGTCCCGTAGT -ACGGAAATCCAGATGTCCGTCAGT -ACGGAAATCCAGATGTCCGAAGGT -ACGGAAATCCAGATGTCCAACCGT -ACGGAAATCCAGATGTCCTTGTGC -ACGGAAATCCAGATGTCCCTAAGC -ACGGAAATCCAGATGTCCACTAGC -ACGGAAATCCAGATGTCCAGATGC -ACGGAAATCCAGATGTCCTGAAGG -ACGGAAATCCAGATGTCCCAATGG -ACGGAAATCCAGATGTCCATGAGG -ACGGAAATCCAGATGTCCAATGGG -ACGGAAATCCAGATGTCCTCCTGA -ACGGAAATCCAGATGTCCTAGCGA -ACGGAAATCCAGATGTCCCACAGA -ACGGAAATCCAGATGTCCGCAAGA -ACGGAAATCCAGATGTCCGGTTGA -ACGGAAATCCAGATGTCCTCCGAT -ACGGAAATCCAGATGTCCTGGCAT -ACGGAAATCCAGATGTCCCGAGAT -ACGGAAATCCAGATGTCCTACCAC -ACGGAAATCCAGATGTCCCAGAAC -ACGGAAATCCAGATGTCCGTCTAC -ACGGAAATCCAGATGTCCACGTAC -ACGGAAATCCAGATGTCCAGTGAC -ACGGAAATCCAGATGTCCCTGTAG -ACGGAAATCCAGATGTCCCCTAAG -ACGGAAATCCAGATGTCCGTTCAG -ACGGAAATCCAGATGTCCGCATAG -ACGGAAATCCAGATGTCCGACAAG -ACGGAAATCCAGATGTCCAAGCAG -ACGGAAATCCAGATGTCCCGTCAA -ACGGAAATCCAGATGTCCGCTGAA -ACGGAAATCCAGATGTCCAGTACG -ACGGAAATCCAGATGTCCATCCGA -ACGGAAATCCAGATGTCCATGGGA -ACGGAAATCCAGATGTCCGTGCAA -ACGGAAATCCAGATGTCCGAGGAA -ACGGAAATCCAGATGTCCCAGGTA -ACGGAAATCCAGATGTCCGACTCT -ACGGAAATCCAGATGTCCAGTCCT -ACGGAAATCCAGATGTCCTAAGCC -ACGGAAATCCAGATGTCCATAGCC -ACGGAAATCCAGATGTCCTAACCG -ACGGAAATCCAGATGTCCATGCCA -ACGGAAATCCAGGTGTGTGGAAAC -ACGGAAATCCAGGTGTGTAACACC -ACGGAAATCCAGGTGTGTATCGAG -ACGGAAATCCAGGTGTGTCTCCTT -ACGGAAATCCAGGTGTGTCCTGTT -ACGGAAATCCAGGTGTGTCGGTTT -ACGGAAATCCAGGTGTGTGTGGTT -ACGGAAATCCAGGTGTGTGCCTTT -ACGGAAATCCAGGTGTGTGGTCTT -ACGGAAATCCAGGTGTGTACGCTT -ACGGAAATCCAGGTGTGTAGCGTT -ACGGAAATCCAGGTGTGTTTCGTC -ACGGAAATCCAGGTGTGTTCTCTC -ACGGAAATCCAGGTGTGTTGGATC -ACGGAAATCCAGGTGTGTCACTTC -ACGGAAATCCAGGTGTGTGTACTC -ACGGAAATCCAGGTGTGTGATGTC -ACGGAAATCCAGGTGTGTACAGTC -ACGGAAATCCAGGTGTGTTTGCTG -ACGGAAATCCAGGTGTGTTCCATG -ACGGAAATCCAGGTGTGTTGTGTG -ACGGAAATCCAGGTGTGTCTAGTG -ACGGAAATCCAGGTGTGTCATCTG -ACGGAAATCCAGGTGTGTGAGTTG -ACGGAAATCCAGGTGTGTAGACTG -ACGGAAATCCAGGTGTGTTCGGTA -ACGGAAATCCAGGTGTGTTGCCTA -ACGGAAATCCAGGTGTGTCCACTA -ACGGAAATCCAGGTGTGTGGAGTA -ACGGAAATCCAGGTGTGTTCGTCT -ACGGAAATCCAGGTGTGTTGCACT -ACGGAAATCCAGGTGTGTCTGACT -ACGGAAATCCAGGTGTGTCAACCT -ACGGAAATCCAGGTGTGTGCTACT -ACGGAAATCCAGGTGTGTGGATCT -ACGGAAATCCAGGTGTGTAAGGCT -ACGGAAATCCAGGTGTGTTCAACC -ACGGAAATCCAGGTGTGTTGTTCC -ACGGAAATCCAGGTGTGTATTCCC -ACGGAAATCCAGGTGTGTTTCTCG -ACGGAAATCCAGGTGTGTTAGACG -ACGGAAATCCAGGTGTGTGTAACG -ACGGAAATCCAGGTGTGTACTTCG -ACGGAAATCCAGGTGTGTTACGCA -ACGGAAATCCAGGTGTGTCTTGCA -ACGGAAATCCAGGTGTGTCGAACA -ACGGAAATCCAGGTGTGTCAGTCA -ACGGAAATCCAGGTGTGTGATCCA -ACGGAAATCCAGGTGTGTACGACA -ACGGAAATCCAGGTGTGTAGCTCA -ACGGAAATCCAGGTGTGTTCACGT -ACGGAAATCCAGGTGTGTCGTAGT -ACGGAAATCCAGGTGTGTGTCAGT -ACGGAAATCCAGGTGTGTGAAGGT -ACGGAAATCCAGGTGTGTAACCGT -ACGGAAATCCAGGTGTGTTTGTGC -ACGGAAATCCAGGTGTGTCTAAGC -ACGGAAATCCAGGTGTGTACTAGC -ACGGAAATCCAGGTGTGTAGATGC -ACGGAAATCCAGGTGTGTTGAAGG -ACGGAAATCCAGGTGTGTCAATGG -ACGGAAATCCAGGTGTGTATGAGG -ACGGAAATCCAGGTGTGTAATGGG -ACGGAAATCCAGGTGTGTTCCTGA -ACGGAAATCCAGGTGTGTTAGCGA -ACGGAAATCCAGGTGTGTCACAGA -ACGGAAATCCAGGTGTGTGCAAGA -ACGGAAATCCAGGTGTGTGGTTGA -ACGGAAATCCAGGTGTGTTCCGAT -ACGGAAATCCAGGTGTGTTGGCAT -ACGGAAATCCAGGTGTGTCGAGAT -ACGGAAATCCAGGTGTGTTACCAC -ACGGAAATCCAGGTGTGTCAGAAC -ACGGAAATCCAGGTGTGTGTCTAC -ACGGAAATCCAGGTGTGTACGTAC -ACGGAAATCCAGGTGTGTAGTGAC -ACGGAAATCCAGGTGTGTCTGTAG -ACGGAAATCCAGGTGTGTCCTAAG -ACGGAAATCCAGGTGTGTGTTCAG -ACGGAAATCCAGGTGTGTGCATAG -ACGGAAATCCAGGTGTGTGACAAG -ACGGAAATCCAGGTGTGTAAGCAG -ACGGAAATCCAGGTGTGTCGTCAA -ACGGAAATCCAGGTGTGTGCTGAA -ACGGAAATCCAGGTGTGTAGTACG -ACGGAAATCCAGGTGTGTATCCGA -ACGGAAATCCAGGTGTGTATGGGA -ACGGAAATCCAGGTGTGTGTGCAA -ACGGAAATCCAGGTGTGTGAGGAA -ACGGAAATCCAGGTGTGTCAGGTA -ACGGAAATCCAGGTGTGTGACTCT -ACGGAAATCCAGGTGTGTAGTCCT -ACGGAAATCCAGGTGTGTTAAGCC -ACGGAAATCCAGGTGTGTATAGCC -ACGGAAATCCAGGTGTGTTAACCG -ACGGAAATCCAGGTGTGTATGCCA -ACGGAAATCCAGGTGCTAGGAAAC -ACGGAAATCCAGGTGCTAAACACC -ACGGAAATCCAGGTGCTAATCGAG -ACGGAAATCCAGGTGCTACTCCTT -ACGGAAATCCAGGTGCTACCTGTT -ACGGAAATCCAGGTGCTACGGTTT -ACGGAAATCCAGGTGCTAGTGGTT -ACGGAAATCCAGGTGCTAGCCTTT -ACGGAAATCCAGGTGCTAGGTCTT -ACGGAAATCCAGGTGCTAACGCTT -ACGGAAATCCAGGTGCTAAGCGTT -ACGGAAATCCAGGTGCTATTCGTC -ACGGAAATCCAGGTGCTATCTCTC -ACGGAAATCCAGGTGCTATGGATC -ACGGAAATCCAGGTGCTACACTTC -ACGGAAATCCAGGTGCTAGTACTC -ACGGAAATCCAGGTGCTAGATGTC -ACGGAAATCCAGGTGCTAACAGTC -ACGGAAATCCAGGTGCTATTGCTG -ACGGAAATCCAGGTGCTATCCATG -ACGGAAATCCAGGTGCTATGTGTG -ACGGAAATCCAGGTGCTACTAGTG -ACGGAAATCCAGGTGCTACATCTG -ACGGAAATCCAGGTGCTAGAGTTG -ACGGAAATCCAGGTGCTAAGACTG -ACGGAAATCCAGGTGCTATCGGTA -ACGGAAATCCAGGTGCTATGCCTA -ACGGAAATCCAGGTGCTACCACTA -ACGGAAATCCAGGTGCTAGGAGTA -ACGGAAATCCAGGTGCTATCGTCT -ACGGAAATCCAGGTGCTATGCACT -ACGGAAATCCAGGTGCTACTGACT -ACGGAAATCCAGGTGCTACAACCT -ACGGAAATCCAGGTGCTAGCTACT -ACGGAAATCCAGGTGCTAGGATCT -ACGGAAATCCAGGTGCTAAAGGCT -ACGGAAATCCAGGTGCTATCAACC -ACGGAAATCCAGGTGCTATGTTCC -ACGGAAATCCAGGTGCTAATTCCC -ACGGAAATCCAGGTGCTATTCTCG -ACGGAAATCCAGGTGCTATAGACG -ACGGAAATCCAGGTGCTAGTAACG -ACGGAAATCCAGGTGCTAACTTCG -ACGGAAATCCAGGTGCTATACGCA -ACGGAAATCCAGGTGCTACTTGCA -ACGGAAATCCAGGTGCTACGAACA -ACGGAAATCCAGGTGCTACAGTCA -ACGGAAATCCAGGTGCTAGATCCA -ACGGAAATCCAGGTGCTAACGACA -ACGGAAATCCAGGTGCTAAGCTCA -ACGGAAATCCAGGTGCTATCACGT -ACGGAAATCCAGGTGCTACGTAGT -ACGGAAATCCAGGTGCTAGTCAGT -ACGGAAATCCAGGTGCTAGAAGGT -ACGGAAATCCAGGTGCTAAACCGT -ACGGAAATCCAGGTGCTATTGTGC -ACGGAAATCCAGGTGCTACTAAGC -ACGGAAATCCAGGTGCTAACTAGC -ACGGAAATCCAGGTGCTAAGATGC -ACGGAAATCCAGGTGCTATGAAGG -ACGGAAATCCAGGTGCTACAATGG -ACGGAAATCCAGGTGCTAATGAGG -ACGGAAATCCAGGTGCTAAATGGG -ACGGAAATCCAGGTGCTATCCTGA -ACGGAAATCCAGGTGCTATAGCGA -ACGGAAATCCAGGTGCTACACAGA -ACGGAAATCCAGGTGCTAGCAAGA -ACGGAAATCCAGGTGCTAGGTTGA -ACGGAAATCCAGGTGCTATCCGAT -ACGGAAATCCAGGTGCTATGGCAT -ACGGAAATCCAGGTGCTACGAGAT -ACGGAAATCCAGGTGCTATACCAC -ACGGAAATCCAGGTGCTACAGAAC -ACGGAAATCCAGGTGCTAGTCTAC -ACGGAAATCCAGGTGCTAACGTAC -ACGGAAATCCAGGTGCTAAGTGAC -ACGGAAATCCAGGTGCTACTGTAG -ACGGAAATCCAGGTGCTACCTAAG -ACGGAAATCCAGGTGCTAGTTCAG -ACGGAAATCCAGGTGCTAGCATAG -ACGGAAATCCAGGTGCTAGACAAG -ACGGAAATCCAGGTGCTAAAGCAG -ACGGAAATCCAGGTGCTACGTCAA -ACGGAAATCCAGGTGCTAGCTGAA -ACGGAAATCCAGGTGCTAAGTACG -ACGGAAATCCAGGTGCTAATCCGA -ACGGAAATCCAGGTGCTAATGGGA -ACGGAAATCCAGGTGCTAGTGCAA -ACGGAAATCCAGGTGCTAGAGGAA -ACGGAAATCCAGGTGCTACAGGTA -ACGGAAATCCAGGTGCTAGACTCT -ACGGAAATCCAGGTGCTAAGTCCT -ACGGAAATCCAGGTGCTATAAGCC -ACGGAAATCCAGGTGCTAATAGCC -ACGGAAATCCAGGTGCTATAACCG -ACGGAAATCCAGGTGCTAATGCCA -ACGGAAATCCAGCTGCATGGAAAC -ACGGAAATCCAGCTGCATAACACC -ACGGAAATCCAGCTGCATATCGAG -ACGGAAATCCAGCTGCATCTCCTT -ACGGAAATCCAGCTGCATCCTGTT -ACGGAAATCCAGCTGCATCGGTTT -ACGGAAATCCAGCTGCATGTGGTT -ACGGAAATCCAGCTGCATGCCTTT -ACGGAAATCCAGCTGCATGGTCTT -ACGGAAATCCAGCTGCATACGCTT -ACGGAAATCCAGCTGCATAGCGTT -ACGGAAATCCAGCTGCATTTCGTC -ACGGAAATCCAGCTGCATTCTCTC -ACGGAAATCCAGCTGCATTGGATC -ACGGAAATCCAGCTGCATCACTTC -ACGGAAATCCAGCTGCATGTACTC -ACGGAAATCCAGCTGCATGATGTC -ACGGAAATCCAGCTGCATACAGTC -ACGGAAATCCAGCTGCATTTGCTG -ACGGAAATCCAGCTGCATTCCATG -ACGGAAATCCAGCTGCATTGTGTG -ACGGAAATCCAGCTGCATCTAGTG -ACGGAAATCCAGCTGCATCATCTG -ACGGAAATCCAGCTGCATGAGTTG -ACGGAAATCCAGCTGCATAGACTG -ACGGAAATCCAGCTGCATTCGGTA -ACGGAAATCCAGCTGCATTGCCTA -ACGGAAATCCAGCTGCATCCACTA -ACGGAAATCCAGCTGCATGGAGTA -ACGGAAATCCAGCTGCATTCGTCT -ACGGAAATCCAGCTGCATTGCACT -ACGGAAATCCAGCTGCATCTGACT -ACGGAAATCCAGCTGCATCAACCT -ACGGAAATCCAGCTGCATGCTACT -ACGGAAATCCAGCTGCATGGATCT -ACGGAAATCCAGCTGCATAAGGCT -ACGGAAATCCAGCTGCATTCAACC -ACGGAAATCCAGCTGCATTGTTCC -ACGGAAATCCAGCTGCATATTCCC -ACGGAAATCCAGCTGCATTTCTCG -ACGGAAATCCAGCTGCATTAGACG -ACGGAAATCCAGCTGCATGTAACG -ACGGAAATCCAGCTGCATACTTCG -ACGGAAATCCAGCTGCATTACGCA -ACGGAAATCCAGCTGCATCTTGCA -ACGGAAATCCAGCTGCATCGAACA -ACGGAAATCCAGCTGCATCAGTCA -ACGGAAATCCAGCTGCATGATCCA -ACGGAAATCCAGCTGCATACGACA -ACGGAAATCCAGCTGCATAGCTCA -ACGGAAATCCAGCTGCATTCACGT -ACGGAAATCCAGCTGCATCGTAGT -ACGGAAATCCAGCTGCATGTCAGT -ACGGAAATCCAGCTGCATGAAGGT -ACGGAAATCCAGCTGCATAACCGT -ACGGAAATCCAGCTGCATTTGTGC -ACGGAAATCCAGCTGCATCTAAGC -ACGGAAATCCAGCTGCATACTAGC -ACGGAAATCCAGCTGCATAGATGC -ACGGAAATCCAGCTGCATTGAAGG -ACGGAAATCCAGCTGCATCAATGG -ACGGAAATCCAGCTGCATATGAGG -ACGGAAATCCAGCTGCATAATGGG -ACGGAAATCCAGCTGCATTCCTGA -ACGGAAATCCAGCTGCATTAGCGA -ACGGAAATCCAGCTGCATCACAGA -ACGGAAATCCAGCTGCATGCAAGA -ACGGAAATCCAGCTGCATGGTTGA -ACGGAAATCCAGCTGCATTCCGAT -ACGGAAATCCAGCTGCATTGGCAT -ACGGAAATCCAGCTGCATCGAGAT -ACGGAAATCCAGCTGCATTACCAC -ACGGAAATCCAGCTGCATCAGAAC -ACGGAAATCCAGCTGCATGTCTAC -ACGGAAATCCAGCTGCATACGTAC -ACGGAAATCCAGCTGCATAGTGAC -ACGGAAATCCAGCTGCATCTGTAG -ACGGAAATCCAGCTGCATCCTAAG -ACGGAAATCCAGCTGCATGTTCAG -ACGGAAATCCAGCTGCATGCATAG -ACGGAAATCCAGCTGCATGACAAG -ACGGAAATCCAGCTGCATAAGCAG -ACGGAAATCCAGCTGCATCGTCAA -ACGGAAATCCAGCTGCATGCTGAA -ACGGAAATCCAGCTGCATAGTACG -ACGGAAATCCAGCTGCATATCCGA -ACGGAAATCCAGCTGCATATGGGA -ACGGAAATCCAGCTGCATGTGCAA -ACGGAAATCCAGCTGCATGAGGAA -ACGGAAATCCAGCTGCATCAGGTA -ACGGAAATCCAGCTGCATGACTCT -ACGGAAATCCAGCTGCATAGTCCT -ACGGAAATCCAGCTGCATTAAGCC -ACGGAAATCCAGCTGCATATAGCC -ACGGAAATCCAGCTGCATTAACCG -ACGGAAATCCAGCTGCATATGCCA -ACGGAAATCCAGTTGGAGGGAAAC -ACGGAAATCCAGTTGGAGAACACC -ACGGAAATCCAGTTGGAGATCGAG -ACGGAAATCCAGTTGGAGCTCCTT -ACGGAAATCCAGTTGGAGCCTGTT -ACGGAAATCCAGTTGGAGCGGTTT -ACGGAAATCCAGTTGGAGGTGGTT -ACGGAAATCCAGTTGGAGGCCTTT -ACGGAAATCCAGTTGGAGGGTCTT -ACGGAAATCCAGTTGGAGACGCTT -ACGGAAATCCAGTTGGAGAGCGTT -ACGGAAATCCAGTTGGAGTTCGTC -ACGGAAATCCAGTTGGAGTCTCTC -ACGGAAATCCAGTTGGAGTGGATC -ACGGAAATCCAGTTGGAGCACTTC -ACGGAAATCCAGTTGGAGGTACTC -ACGGAAATCCAGTTGGAGGATGTC -ACGGAAATCCAGTTGGAGACAGTC -ACGGAAATCCAGTTGGAGTTGCTG -ACGGAAATCCAGTTGGAGTCCATG -ACGGAAATCCAGTTGGAGTGTGTG -ACGGAAATCCAGTTGGAGCTAGTG -ACGGAAATCCAGTTGGAGCATCTG -ACGGAAATCCAGTTGGAGGAGTTG -ACGGAAATCCAGTTGGAGAGACTG -ACGGAAATCCAGTTGGAGTCGGTA -ACGGAAATCCAGTTGGAGTGCCTA -ACGGAAATCCAGTTGGAGCCACTA -ACGGAAATCCAGTTGGAGGGAGTA -ACGGAAATCCAGTTGGAGTCGTCT -ACGGAAATCCAGTTGGAGTGCACT -ACGGAAATCCAGTTGGAGCTGACT -ACGGAAATCCAGTTGGAGCAACCT -ACGGAAATCCAGTTGGAGGCTACT -ACGGAAATCCAGTTGGAGGGATCT -ACGGAAATCCAGTTGGAGAAGGCT -ACGGAAATCCAGTTGGAGTCAACC -ACGGAAATCCAGTTGGAGTGTTCC -ACGGAAATCCAGTTGGAGATTCCC -ACGGAAATCCAGTTGGAGTTCTCG -ACGGAAATCCAGTTGGAGTAGACG -ACGGAAATCCAGTTGGAGGTAACG -ACGGAAATCCAGTTGGAGACTTCG -ACGGAAATCCAGTTGGAGTACGCA -ACGGAAATCCAGTTGGAGCTTGCA -ACGGAAATCCAGTTGGAGCGAACA -ACGGAAATCCAGTTGGAGCAGTCA -ACGGAAATCCAGTTGGAGGATCCA -ACGGAAATCCAGTTGGAGACGACA -ACGGAAATCCAGTTGGAGAGCTCA -ACGGAAATCCAGTTGGAGTCACGT -ACGGAAATCCAGTTGGAGCGTAGT -ACGGAAATCCAGTTGGAGGTCAGT -ACGGAAATCCAGTTGGAGGAAGGT -ACGGAAATCCAGTTGGAGAACCGT -ACGGAAATCCAGTTGGAGTTGTGC -ACGGAAATCCAGTTGGAGCTAAGC -ACGGAAATCCAGTTGGAGACTAGC -ACGGAAATCCAGTTGGAGAGATGC -ACGGAAATCCAGTTGGAGTGAAGG -ACGGAAATCCAGTTGGAGCAATGG -ACGGAAATCCAGTTGGAGATGAGG -ACGGAAATCCAGTTGGAGAATGGG -ACGGAAATCCAGTTGGAGTCCTGA -ACGGAAATCCAGTTGGAGTAGCGA -ACGGAAATCCAGTTGGAGCACAGA -ACGGAAATCCAGTTGGAGGCAAGA -ACGGAAATCCAGTTGGAGGGTTGA -ACGGAAATCCAGTTGGAGTCCGAT -ACGGAAATCCAGTTGGAGTGGCAT -ACGGAAATCCAGTTGGAGCGAGAT -ACGGAAATCCAGTTGGAGTACCAC -ACGGAAATCCAGTTGGAGCAGAAC -ACGGAAATCCAGTTGGAGGTCTAC -ACGGAAATCCAGTTGGAGACGTAC -ACGGAAATCCAGTTGGAGAGTGAC -ACGGAAATCCAGTTGGAGCTGTAG -ACGGAAATCCAGTTGGAGCCTAAG -ACGGAAATCCAGTTGGAGGTTCAG -ACGGAAATCCAGTTGGAGGCATAG -ACGGAAATCCAGTTGGAGGACAAG -ACGGAAATCCAGTTGGAGAAGCAG -ACGGAAATCCAGTTGGAGCGTCAA -ACGGAAATCCAGTTGGAGGCTGAA -ACGGAAATCCAGTTGGAGAGTACG -ACGGAAATCCAGTTGGAGATCCGA -ACGGAAATCCAGTTGGAGATGGGA -ACGGAAATCCAGTTGGAGGTGCAA -ACGGAAATCCAGTTGGAGGAGGAA -ACGGAAATCCAGTTGGAGCAGGTA -ACGGAAATCCAGTTGGAGGACTCT -ACGGAAATCCAGTTGGAGAGTCCT -ACGGAAATCCAGTTGGAGTAAGCC -ACGGAAATCCAGTTGGAGATAGCC -ACGGAAATCCAGTTGGAGTAACCG -ACGGAAATCCAGTTGGAGATGCCA -ACGGAAATCCAGCTGAGAGGAAAC -ACGGAAATCCAGCTGAGAAACACC -ACGGAAATCCAGCTGAGAATCGAG -ACGGAAATCCAGCTGAGACTCCTT -ACGGAAATCCAGCTGAGACCTGTT -ACGGAAATCCAGCTGAGACGGTTT -ACGGAAATCCAGCTGAGAGTGGTT -ACGGAAATCCAGCTGAGAGCCTTT -ACGGAAATCCAGCTGAGAGGTCTT -ACGGAAATCCAGCTGAGAACGCTT -ACGGAAATCCAGCTGAGAAGCGTT -ACGGAAATCCAGCTGAGATTCGTC -ACGGAAATCCAGCTGAGATCTCTC -ACGGAAATCCAGCTGAGATGGATC -ACGGAAATCCAGCTGAGACACTTC -ACGGAAATCCAGCTGAGAGTACTC -ACGGAAATCCAGCTGAGAGATGTC -ACGGAAATCCAGCTGAGAACAGTC -ACGGAAATCCAGCTGAGATTGCTG -ACGGAAATCCAGCTGAGATCCATG -ACGGAAATCCAGCTGAGATGTGTG -ACGGAAATCCAGCTGAGACTAGTG -ACGGAAATCCAGCTGAGACATCTG -ACGGAAATCCAGCTGAGAGAGTTG -ACGGAAATCCAGCTGAGAAGACTG -ACGGAAATCCAGCTGAGATCGGTA -ACGGAAATCCAGCTGAGATGCCTA -ACGGAAATCCAGCTGAGACCACTA -ACGGAAATCCAGCTGAGAGGAGTA -ACGGAAATCCAGCTGAGATCGTCT -ACGGAAATCCAGCTGAGATGCACT -ACGGAAATCCAGCTGAGACTGACT -ACGGAAATCCAGCTGAGACAACCT -ACGGAAATCCAGCTGAGAGCTACT -ACGGAAATCCAGCTGAGAGGATCT -ACGGAAATCCAGCTGAGAAAGGCT -ACGGAAATCCAGCTGAGATCAACC -ACGGAAATCCAGCTGAGATGTTCC -ACGGAAATCCAGCTGAGAATTCCC -ACGGAAATCCAGCTGAGATTCTCG -ACGGAAATCCAGCTGAGATAGACG -ACGGAAATCCAGCTGAGAGTAACG -ACGGAAATCCAGCTGAGAACTTCG -ACGGAAATCCAGCTGAGATACGCA -ACGGAAATCCAGCTGAGACTTGCA -ACGGAAATCCAGCTGAGACGAACA -ACGGAAATCCAGCTGAGACAGTCA -ACGGAAATCCAGCTGAGAGATCCA -ACGGAAATCCAGCTGAGAACGACA -ACGGAAATCCAGCTGAGAAGCTCA -ACGGAAATCCAGCTGAGATCACGT -ACGGAAATCCAGCTGAGACGTAGT -ACGGAAATCCAGCTGAGAGTCAGT -ACGGAAATCCAGCTGAGAGAAGGT -ACGGAAATCCAGCTGAGAAACCGT -ACGGAAATCCAGCTGAGATTGTGC -ACGGAAATCCAGCTGAGACTAAGC -ACGGAAATCCAGCTGAGAACTAGC -ACGGAAATCCAGCTGAGAAGATGC -ACGGAAATCCAGCTGAGATGAAGG -ACGGAAATCCAGCTGAGACAATGG -ACGGAAATCCAGCTGAGAATGAGG -ACGGAAATCCAGCTGAGAAATGGG -ACGGAAATCCAGCTGAGATCCTGA -ACGGAAATCCAGCTGAGATAGCGA -ACGGAAATCCAGCTGAGACACAGA -ACGGAAATCCAGCTGAGAGCAAGA -ACGGAAATCCAGCTGAGAGGTTGA -ACGGAAATCCAGCTGAGATCCGAT -ACGGAAATCCAGCTGAGATGGCAT -ACGGAAATCCAGCTGAGACGAGAT -ACGGAAATCCAGCTGAGATACCAC -ACGGAAATCCAGCTGAGACAGAAC -ACGGAAATCCAGCTGAGAGTCTAC -ACGGAAATCCAGCTGAGAACGTAC -ACGGAAATCCAGCTGAGAAGTGAC -ACGGAAATCCAGCTGAGACTGTAG -ACGGAAATCCAGCTGAGACCTAAG -ACGGAAATCCAGCTGAGAGTTCAG -ACGGAAATCCAGCTGAGAGCATAG -ACGGAAATCCAGCTGAGAGACAAG -ACGGAAATCCAGCTGAGAAAGCAG -ACGGAAATCCAGCTGAGACGTCAA -ACGGAAATCCAGCTGAGAGCTGAA -ACGGAAATCCAGCTGAGAAGTACG -ACGGAAATCCAGCTGAGAATCCGA -ACGGAAATCCAGCTGAGAATGGGA -ACGGAAATCCAGCTGAGAGTGCAA -ACGGAAATCCAGCTGAGAGAGGAA -ACGGAAATCCAGCTGAGACAGGTA -ACGGAAATCCAGCTGAGAGACTCT -ACGGAAATCCAGCTGAGAAGTCCT -ACGGAAATCCAGCTGAGATAAGCC -ACGGAAATCCAGCTGAGAATAGCC -ACGGAAATCCAGCTGAGATAACCG -ACGGAAATCCAGCTGAGAATGCCA -ACGGAAATCCAGGTATCGGGAAAC -ACGGAAATCCAGGTATCGAACACC -ACGGAAATCCAGGTATCGATCGAG -ACGGAAATCCAGGTATCGCTCCTT -ACGGAAATCCAGGTATCGCCTGTT -ACGGAAATCCAGGTATCGCGGTTT -ACGGAAATCCAGGTATCGGTGGTT -ACGGAAATCCAGGTATCGGCCTTT -ACGGAAATCCAGGTATCGGGTCTT -ACGGAAATCCAGGTATCGACGCTT -ACGGAAATCCAGGTATCGAGCGTT -ACGGAAATCCAGGTATCGTTCGTC -ACGGAAATCCAGGTATCGTCTCTC -ACGGAAATCCAGGTATCGTGGATC -ACGGAAATCCAGGTATCGCACTTC -ACGGAAATCCAGGTATCGGTACTC -ACGGAAATCCAGGTATCGGATGTC -ACGGAAATCCAGGTATCGACAGTC -ACGGAAATCCAGGTATCGTTGCTG -ACGGAAATCCAGGTATCGTCCATG -ACGGAAATCCAGGTATCGTGTGTG -ACGGAAATCCAGGTATCGCTAGTG -ACGGAAATCCAGGTATCGCATCTG -ACGGAAATCCAGGTATCGGAGTTG -ACGGAAATCCAGGTATCGAGACTG -ACGGAAATCCAGGTATCGTCGGTA -ACGGAAATCCAGGTATCGTGCCTA -ACGGAAATCCAGGTATCGCCACTA -ACGGAAATCCAGGTATCGGGAGTA -ACGGAAATCCAGGTATCGTCGTCT -ACGGAAATCCAGGTATCGTGCACT -ACGGAAATCCAGGTATCGCTGACT -ACGGAAATCCAGGTATCGCAACCT -ACGGAAATCCAGGTATCGGCTACT -ACGGAAATCCAGGTATCGGGATCT -ACGGAAATCCAGGTATCGAAGGCT -ACGGAAATCCAGGTATCGTCAACC -ACGGAAATCCAGGTATCGTGTTCC -ACGGAAATCCAGGTATCGATTCCC -ACGGAAATCCAGGTATCGTTCTCG -ACGGAAATCCAGGTATCGTAGACG -ACGGAAATCCAGGTATCGGTAACG -ACGGAAATCCAGGTATCGACTTCG -ACGGAAATCCAGGTATCGTACGCA -ACGGAAATCCAGGTATCGCTTGCA -ACGGAAATCCAGGTATCGCGAACA -ACGGAAATCCAGGTATCGCAGTCA -ACGGAAATCCAGGTATCGGATCCA -ACGGAAATCCAGGTATCGACGACA -ACGGAAATCCAGGTATCGAGCTCA -ACGGAAATCCAGGTATCGTCACGT -ACGGAAATCCAGGTATCGCGTAGT -ACGGAAATCCAGGTATCGGTCAGT -ACGGAAATCCAGGTATCGGAAGGT -ACGGAAATCCAGGTATCGAACCGT -ACGGAAATCCAGGTATCGTTGTGC -ACGGAAATCCAGGTATCGCTAAGC -ACGGAAATCCAGGTATCGACTAGC -ACGGAAATCCAGGTATCGAGATGC -ACGGAAATCCAGGTATCGTGAAGG -ACGGAAATCCAGGTATCGCAATGG -ACGGAAATCCAGGTATCGATGAGG -ACGGAAATCCAGGTATCGAATGGG -ACGGAAATCCAGGTATCGTCCTGA -ACGGAAATCCAGGTATCGTAGCGA -ACGGAAATCCAGGTATCGCACAGA -ACGGAAATCCAGGTATCGGCAAGA -ACGGAAATCCAGGTATCGGGTTGA -ACGGAAATCCAGGTATCGTCCGAT -ACGGAAATCCAGGTATCGTGGCAT -ACGGAAATCCAGGTATCGCGAGAT -ACGGAAATCCAGGTATCGTACCAC -ACGGAAATCCAGGTATCGCAGAAC -ACGGAAATCCAGGTATCGGTCTAC -ACGGAAATCCAGGTATCGACGTAC -ACGGAAATCCAGGTATCGAGTGAC -ACGGAAATCCAGGTATCGCTGTAG -ACGGAAATCCAGGTATCGCCTAAG -ACGGAAATCCAGGTATCGGTTCAG -ACGGAAATCCAGGTATCGGCATAG -ACGGAAATCCAGGTATCGGACAAG -ACGGAAATCCAGGTATCGAAGCAG -ACGGAAATCCAGGTATCGCGTCAA -ACGGAAATCCAGGTATCGGCTGAA -ACGGAAATCCAGGTATCGAGTACG -ACGGAAATCCAGGTATCGATCCGA -ACGGAAATCCAGGTATCGATGGGA -ACGGAAATCCAGGTATCGGTGCAA -ACGGAAATCCAGGTATCGGAGGAA -ACGGAAATCCAGGTATCGCAGGTA -ACGGAAATCCAGGTATCGGACTCT -ACGGAAATCCAGGTATCGAGTCCT -ACGGAAATCCAGGTATCGTAAGCC -ACGGAAATCCAGGTATCGATAGCC -ACGGAAATCCAGGTATCGTAACCG -ACGGAAATCCAGGTATCGATGCCA -ACGGAAATCCAGCTATGCGGAAAC -ACGGAAATCCAGCTATGCAACACC -ACGGAAATCCAGCTATGCATCGAG -ACGGAAATCCAGCTATGCCTCCTT -ACGGAAATCCAGCTATGCCCTGTT -ACGGAAATCCAGCTATGCCGGTTT -ACGGAAATCCAGCTATGCGTGGTT -ACGGAAATCCAGCTATGCGCCTTT -ACGGAAATCCAGCTATGCGGTCTT -ACGGAAATCCAGCTATGCACGCTT -ACGGAAATCCAGCTATGCAGCGTT -ACGGAAATCCAGCTATGCTTCGTC -ACGGAAATCCAGCTATGCTCTCTC -ACGGAAATCCAGCTATGCTGGATC -ACGGAAATCCAGCTATGCCACTTC -ACGGAAATCCAGCTATGCGTACTC -ACGGAAATCCAGCTATGCGATGTC -ACGGAAATCCAGCTATGCACAGTC -ACGGAAATCCAGCTATGCTTGCTG -ACGGAAATCCAGCTATGCTCCATG -ACGGAAATCCAGCTATGCTGTGTG -ACGGAAATCCAGCTATGCCTAGTG -ACGGAAATCCAGCTATGCCATCTG -ACGGAAATCCAGCTATGCGAGTTG -ACGGAAATCCAGCTATGCAGACTG -ACGGAAATCCAGCTATGCTCGGTA -ACGGAAATCCAGCTATGCTGCCTA -ACGGAAATCCAGCTATGCCCACTA -ACGGAAATCCAGCTATGCGGAGTA -ACGGAAATCCAGCTATGCTCGTCT -ACGGAAATCCAGCTATGCTGCACT -ACGGAAATCCAGCTATGCCTGACT -ACGGAAATCCAGCTATGCCAACCT -ACGGAAATCCAGCTATGCGCTACT -ACGGAAATCCAGCTATGCGGATCT -ACGGAAATCCAGCTATGCAAGGCT -ACGGAAATCCAGCTATGCTCAACC -ACGGAAATCCAGCTATGCTGTTCC -ACGGAAATCCAGCTATGCATTCCC -ACGGAAATCCAGCTATGCTTCTCG -ACGGAAATCCAGCTATGCTAGACG -ACGGAAATCCAGCTATGCGTAACG -ACGGAAATCCAGCTATGCACTTCG -ACGGAAATCCAGCTATGCTACGCA -ACGGAAATCCAGCTATGCCTTGCA -ACGGAAATCCAGCTATGCCGAACA -ACGGAAATCCAGCTATGCCAGTCA -ACGGAAATCCAGCTATGCGATCCA -ACGGAAATCCAGCTATGCACGACA -ACGGAAATCCAGCTATGCAGCTCA -ACGGAAATCCAGCTATGCTCACGT -ACGGAAATCCAGCTATGCCGTAGT -ACGGAAATCCAGCTATGCGTCAGT -ACGGAAATCCAGCTATGCGAAGGT -ACGGAAATCCAGCTATGCAACCGT -ACGGAAATCCAGCTATGCTTGTGC -ACGGAAATCCAGCTATGCCTAAGC -ACGGAAATCCAGCTATGCACTAGC -ACGGAAATCCAGCTATGCAGATGC -ACGGAAATCCAGCTATGCTGAAGG -ACGGAAATCCAGCTATGCCAATGG -ACGGAAATCCAGCTATGCATGAGG -ACGGAAATCCAGCTATGCAATGGG -ACGGAAATCCAGCTATGCTCCTGA -ACGGAAATCCAGCTATGCTAGCGA -ACGGAAATCCAGCTATGCCACAGA -ACGGAAATCCAGCTATGCGCAAGA -ACGGAAATCCAGCTATGCGGTTGA -ACGGAAATCCAGCTATGCTCCGAT -ACGGAAATCCAGCTATGCTGGCAT -ACGGAAATCCAGCTATGCCGAGAT -ACGGAAATCCAGCTATGCTACCAC -ACGGAAATCCAGCTATGCCAGAAC -ACGGAAATCCAGCTATGCGTCTAC -ACGGAAATCCAGCTATGCACGTAC -ACGGAAATCCAGCTATGCAGTGAC -ACGGAAATCCAGCTATGCCTGTAG -ACGGAAATCCAGCTATGCCCTAAG -ACGGAAATCCAGCTATGCGTTCAG -ACGGAAATCCAGCTATGCGCATAG -ACGGAAATCCAGCTATGCGACAAG -ACGGAAATCCAGCTATGCAAGCAG -ACGGAAATCCAGCTATGCCGTCAA -ACGGAAATCCAGCTATGCGCTGAA -ACGGAAATCCAGCTATGCAGTACG -ACGGAAATCCAGCTATGCATCCGA -ACGGAAATCCAGCTATGCATGGGA -ACGGAAATCCAGCTATGCGTGCAA -ACGGAAATCCAGCTATGCGAGGAA -ACGGAAATCCAGCTATGCCAGGTA -ACGGAAATCCAGCTATGCGACTCT -ACGGAAATCCAGCTATGCAGTCCT -ACGGAAATCCAGCTATGCTAAGCC -ACGGAAATCCAGCTATGCATAGCC -ACGGAAATCCAGCTATGCTAACCG -ACGGAAATCCAGCTATGCATGCCA -ACGGAAATCCAGCTACCAGGAAAC -ACGGAAATCCAGCTACCAAACACC -ACGGAAATCCAGCTACCAATCGAG -ACGGAAATCCAGCTACCACTCCTT -ACGGAAATCCAGCTACCACCTGTT -ACGGAAATCCAGCTACCACGGTTT -ACGGAAATCCAGCTACCAGTGGTT -ACGGAAATCCAGCTACCAGCCTTT -ACGGAAATCCAGCTACCAGGTCTT -ACGGAAATCCAGCTACCAACGCTT -ACGGAAATCCAGCTACCAAGCGTT -ACGGAAATCCAGCTACCATTCGTC -ACGGAAATCCAGCTACCATCTCTC -ACGGAAATCCAGCTACCATGGATC -ACGGAAATCCAGCTACCACACTTC -ACGGAAATCCAGCTACCAGTACTC -ACGGAAATCCAGCTACCAGATGTC -ACGGAAATCCAGCTACCAACAGTC -ACGGAAATCCAGCTACCATTGCTG -ACGGAAATCCAGCTACCATCCATG -ACGGAAATCCAGCTACCATGTGTG -ACGGAAATCCAGCTACCACTAGTG -ACGGAAATCCAGCTACCACATCTG -ACGGAAATCCAGCTACCAGAGTTG -ACGGAAATCCAGCTACCAAGACTG -ACGGAAATCCAGCTACCATCGGTA -ACGGAAATCCAGCTACCATGCCTA -ACGGAAATCCAGCTACCACCACTA -ACGGAAATCCAGCTACCAGGAGTA -ACGGAAATCCAGCTACCATCGTCT -ACGGAAATCCAGCTACCATGCACT -ACGGAAATCCAGCTACCACTGACT -ACGGAAATCCAGCTACCACAACCT -ACGGAAATCCAGCTACCAGCTACT -ACGGAAATCCAGCTACCAGGATCT -ACGGAAATCCAGCTACCAAAGGCT -ACGGAAATCCAGCTACCATCAACC -ACGGAAATCCAGCTACCATGTTCC -ACGGAAATCCAGCTACCAATTCCC -ACGGAAATCCAGCTACCATTCTCG -ACGGAAATCCAGCTACCATAGACG -ACGGAAATCCAGCTACCAGTAACG -ACGGAAATCCAGCTACCAACTTCG -ACGGAAATCCAGCTACCATACGCA -ACGGAAATCCAGCTACCACTTGCA -ACGGAAATCCAGCTACCACGAACA -ACGGAAATCCAGCTACCACAGTCA -ACGGAAATCCAGCTACCAGATCCA -ACGGAAATCCAGCTACCAACGACA -ACGGAAATCCAGCTACCAAGCTCA -ACGGAAATCCAGCTACCATCACGT -ACGGAAATCCAGCTACCACGTAGT -ACGGAAATCCAGCTACCAGTCAGT -ACGGAAATCCAGCTACCAGAAGGT -ACGGAAATCCAGCTACCAAACCGT -ACGGAAATCCAGCTACCATTGTGC -ACGGAAATCCAGCTACCACTAAGC -ACGGAAATCCAGCTACCAACTAGC -ACGGAAATCCAGCTACCAAGATGC -ACGGAAATCCAGCTACCATGAAGG -ACGGAAATCCAGCTACCACAATGG -ACGGAAATCCAGCTACCAATGAGG -ACGGAAATCCAGCTACCAAATGGG -ACGGAAATCCAGCTACCATCCTGA -ACGGAAATCCAGCTACCATAGCGA -ACGGAAATCCAGCTACCACACAGA -ACGGAAATCCAGCTACCAGCAAGA -ACGGAAATCCAGCTACCAGGTTGA -ACGGAAATCCAGCTACCATCCGAT -ACGGAAATCCAGCTACCATGGCAT -ACGGAAATCCAGCTACCACGAGAT -ACGGAAATCCAGCTACCATACCAC -ACGGAAATCCAGCTACCACAGAAC -ACGGAAATCCAGCTACCAGTCTAC -ACGGAAATCCAGCTACCAACGTAC -ACGGAAATCCAGCTACCAAGTGAC -ACGGAAATCCAGCTACCACTGTAG -ACGGAAATCCAGCTACCACCTAAG -ACGGAAATCCAGCTACCAGTTCAG -ACGGAAATCCAGCTACCAGCATAG -ACGGAAATCCAGCTACCAGACAAG -ACGGAAATCCAGCTACCAAAGCAG -ACGGAAATCCAGCTACCACGTCAA -ACGGAAATCCAGCTACCAGCTGAA -ACGGAAATCCAGCTACCAAGTACG -ACGGAAATCCAGCTACCAATCCGA -ACGGAAATCCAGCTACCAATGGGA -ACGGAAATCCAGCTACCAGTGCAA -ACGGAAATCCAGCTACCAGAGGAA -ACGGAAATCCAGCTACCACAGGTA -ACGGAAATCCAGCTACCAGACTCT -ACGGAAATCCAGCTACCAAGTCCT -ACGGAAATCCAGCTACCATAAGCC -ACGGAAATCCAGCTACCAATAGCC -ACGGAAATCCAGCTACCATAACCG -ACGGAAATCCAGCTACCAATGCCA -ACGGAAATCCAGGTAGGAGGAAAC -ACGGAAATCCAGGTAGGAAACACC -ACGGAAATCCAGGTAGGAATCGAG -ACGGAAATCCAGGTAGGACTCCTT -ACGGAAATCCAGGTAGGACCTGTT -ACGGAAATCCAGGTAGGACGGTTT -ACGGAAATCCAGGTAGGAGTGGTT -ACGGAAATCCAGGTAGGAGCCTTT -ACGGAAATCCAGGTAGGAGGTCTT -ACGGAAATCCAGGTAGGAACGCTT -ACGGAAATCCAGGTAGGAAGCGTT -ACGGAAATCCAGGTAGGATTCGTC -ACGGAAATCCAGGTAGGATCTCTC -ACGGAAATCCAGGTAGGATGGATC -ACGGAAATCCAGGTAGGACACTTC -ACGGAAATCCAGGTAGGAGTACTC -ACGGAAATCCAGGTAGGAGATGTC -ACGGAAATCCAGGTAGGAACAGTC -ACGGAAATCCAGGTAGGATTGCTG -ACGGAAATCCAGGTAGGATCCATG -ACGGAAATCCAGGTAGGATGTGTG -ACGGAAATCCAGGTAGGACTAGTG -ACGGAAATCCAGGTAGGACATCTG -ACGGAAATCCAGGTAGGAGAGTTG -ACGGAAATCCAGGTAGGAAGACTG -ACGGAAATCCAGGTAGGATCGGTA -ACGGAAATCCAGGTAGGATGCCTA -ACGGAAATCCAGGTAGGACCACTA -ACGGAAATCCAGGTAGGAGGAGTA -ACGGAAATCCAGGTAGGATCGTCT -ACGGAAATCCAGGTAGGATGCACT -ACGGAAATCCAGGTAGGACTGACT -ACGGAAATCCAGGTAGGACAACCT -ACGGAAATCCAGGTAGGAGCTACT -ACGGAAATCCAGGTAGGAGGATCT -ACGGAAATCCAGGTAGGAAAGGCT -ACGGAAATCCAGGTAGGATCAACC -ACGGAAATCCAGGTAGGATGTTCC -ACGGAAATCCAGGTAGGAATTCCC -ACGGAAATCCAGGTAGGATTCTCG -ACGGAAATCCAGGTAGGATAGACG -ACGGAAATCCAGGTAGGAGTAACG -ACGGAAATCCAGGTAGGAACTTCG -ACGGAAATCCAGGTAGGATACGCA -ACGGAAATCCAGGTAGGACTTGCA -ACGGAAATCCAGGTAGGACGAACA -ACGGAAATCCAGGTAGGACAGTCA -ACGGAAATCCAGGTAGGAGATCCA -ACGGAAATCCAGGTAGGAACGACA -ACGGAAATCCAGGTAGGAAGCTCA -ACGGAAATCCAGGTAGGATCACGT -ACGGAAATCCAGGTAGGACGTAGT -ACGGAAATCCAGGTAGGAGTCAGT -ACGGAAATCCAGGTAGGAGAAGGT -ACGGAAATCCAGGTAGGAAACCGT -ACGGAAATCCAGGTAGGATTGTGC -ACGGAAATCCAGGTAGGACTAAGC -ACGGAAATCCAGGTAGGAACTAGC -ACGGAAATCCAGGTAGGAAGATGC -ACGGAAATCCAGGTAGGATGAAGG -ACGGAAATCCAGGTAGGACAATGG -ACGGAAATCCAGGTAGGAATGAGG -ACGGAAATCCAGGTAGGAAATGGG -ACGGAAATCCAGGTAGGATCCTGA -ACGGAAATCCAGGTAGGATAGCGA -ACGGAAATCCAGGTAGGACACAGA -ACGGAAATCCAGGTAGGAGCAAGA -ACGGAAATCCAGGTAGGAGGTTGA -ACGGAAATCCAGGTAGGATCCGAT -ACGGAAATCCAGGTAGGATGGCAT -ACGGAAATCCAGGTAGGACGAGAT -ACGGAAATCCAGGTAGGATACCAC -ACGGAAATCCAGGTAGGACAGAAC -ACGGAAATCCAGGTAGGAGTCTAC -ACGGAAATCCAGGTAGGAACGTAC -ACGGAAATCCAGGTAGGAAGTGAC -ACGGAAATCCAGGTAGGACTGTAG -ACGGAAATCCAGGTAGGACCTAAG -ACGGAAATCCAGGTAGGAGTTCAG -ACGGAAATCCAGGTAGGAGCATAG -ACGGAAATCCAGGTAGGAGACAAG -ACGGAAATCCAGGTAGGAAAGCAG -ACGGAAATCCAGGTAGGACGTCAA -ACGGAAATCCAGGTAGGAGCTGAA -ACGGAAATCCAGGTAGGAAGTACG -ACGGAAATCCAGGTAGGAATCCGA -ACGGAAATCCAGGTAGGAATGGGA -ACGGAAATCCAGGTAGGAGTGCAA -ACGGAAATCCAGGTAGGAGAGGAA -ACGGAAATCCAGGTAGGACAGGTA -ACGGAAATCCAGGTAGGAGACTCT -ACGGAAATCCAGGTAGGAAGTCCT -ACGGAAATCCAGGTAGGATAAGCC -ACGGAAATCCAGGTAGGAATAGCC -ACGGAAATCCAGGTAGGATAACCG -ACGGAAATCCAGGTAGGAATGCCA -ACGGAAATCCAGTCTTCGGGAAAC -ACGGAAATCCAGTCTTCGAACACC -ACGGAAATCCAGTCTTCGATCGAG -ACGGAAATCCAGTCTTCGCTCCTT -ACGGAAATCCAGTCTTCGCCTGTT -ACGGAAATCCAGTCTTCGCGGTTT -ACGGAAATCCAGTCTTCGGTGGTT -ACGGAAATCCAGTCTTCGGCCTTT -ACGGAAATCCAGTCTTCGGGTCTT -ACGGAAATCCAGTCTTCGACGCTT -ACGGAAATCCAGTCTTCGAGCGTT -ACGGAAATCCAGTCTTCGTTCGTC -ACGGAAATCCAGTCTTCGTCTCTC -ACGGAAATCCAGTCTTCGTGGATC -ACGGAAATCCAGTCTTCGCACTTC -ACGGAAATCCAGTCTTCGGTACTC -ACGGAAATCCAGTCTTCGGATGTC -ACGGAAATCCAGTCTTCGACAGTC -ACGGAAATCCAGTCTTCGTTGCTG -ACGGAAATCCAGTCTTCGTCCATG -ACGGAAATCCAGTCTTCGTGTGTG -ACGGAAATCCAGTCTTCGCTAGTG -ACGGAAATCCAGTCTTCGCATCTG -ACGGAAATCCAGTCTTCGGAGTTG -ACGGAAATCCAGTCTTCGAGACTG -ACGGAAATCCAGTCTTCGTCGGTA -ACGGAAATCCAGTCTTCGTGCCTA -ACGGAAATCCAGTCTTCGCCACTA -ACGGAAATCCAGTCTTCGGGAGTA -ACGGAAATCCAGTCTTCGTCGTCT -ACGGAAATCCAGTCTTCGTGCACT -ACGGAAATCCAGTCTTCGCTGACT -ACGGAAATCCAGTCTTCGCAACCT -ACGGAAATCCAGTCTTCGGCTACT -ACGGAAATCCAGTCTTCGGGATCT -ACGGAAATCCAGTCTTCGAAGGCT -ACGGAAATCCAGTCTTCGTCAACC -ACGGAAATCCAGTCTTCGTGTTCC -ACGGAAATCCAGTCTTCGATTCCC -ACGGAAATCCAGTCTTCGTTCTCG -ACGGAAATCCAGTCTTCGTAGACG -ACGGAAATCCAGTCTTCGGTAACG -ACGGAAATCCAGTCTTCGACTTCG -ACGGAAATCCAGTCTTCGTACGCA -ACGGAAATCCAGTCTTCGCTTGCA -ACGGAAATCCAGTCTTCGCGAACA -ACGGAAATCCAGTCTTCGCAGTCA -ACGGAAATCCAGTCTTCGGATCCA -ACGGAAATCCAGTCTTCGACGACA -ACGGAAATCCAGTCTTCGAGCTCA -ACGGAAATCCAGTCTTCGTCACGT -ACGGAAATCCAGTCTTCGCGTAGT -ACGGAAATCCAGTCTTCGGTCAGT -ACGGAAATCCAGTCTTCGGAAGGT -ACGGAAATCCAGTCTTCGAACCGT -ACGGAAATCCAGTCTTCGTTGTGC -ACGGAAATCCAGTCTTCGCTAAGC -ACGGAAATCCAGTCTTCGACTAGC -ACGGAAATCCAGTCTTCGAGATGC -ACGGAAATCCAGTCTTCGTGAAGG -ACGGAAATCCAGTCTTCGCAATGG -ACGGAAATCCAGTCTTCGATGAGG -ACGGAAATCCAGTCTTCGAATGGG -ACGGAAATCCAGTCTTCGTCCTGA -ACGGAAATCCAGTCTTCGTAGCGA -ACGGAAATCCAGTCTTCGCACAGA -ACGGAAATCCAGTCTTCGGCAAGA -ACGGAAATCCAGTCTTCGGGTTGA -ACGGAAATCCAGTCTTCGTCCGAT -ACGGAAATCCAGTCTTCGTGGCAT -ACGGAAATCCAGTCTTCGCGAGAT -ACGGAAATCCAGTCTTCGTACCAC -ACGGAAATCCAGTCTTCGCAGAAC -ACGGAAATCCAGTCTTCGGTCTAC -ACGGAAATCCAGTCTTCGACGTAC -ACGGAAATCCAGTCTTCGAGTGAC -ACGGAAATCCAGTCTTCGCTGTAG -ACGGAAATCCAGTCTTCGCCTAAG -ACGGAAATCCAGTCTTCGGTTCAG -ACGGAAATCCAGTCTTCGGCATAG -ACGGAAATCCAGTCTTCGGACAAG -ACGGAAATCCAGTCTTCGAAGCAG -ACGGAAATCCAGTCTTCGCGTCAA -ACGGAAATCCAGTCTTCGGCTGAA -ACGGAAATCCAGTCTTCGAGTACG -ACGGAAATCCAGTCTTCGATCCGA -ACGGAAATCCAGTCTTCGATGGGA -ACGGAAATCCAGTCTTCGGTGCAA -ACGGAAATCCAGTCTTCGGAGGAA -ACGGAAATCCAGTCTTCGCAGGTA -ACGGAAATCCAGTCTTCGGACTCT -ACGGAAATCCAGTCTTCGAGTCCT -ACGGAAATCCAGTCTTCGTAAGCC -ACGGAAATCCAGTCTTCGATAGCC -ACGGAAATCCAGTCTTCGTAACCG -ACGGAAATCCAGTCTTCGATGCCA -ACGGAAATCCAGACTTGCGGAAAC -ACGGAAATCCAGACTTGCAACACC -ACGGAAATCCAGACTTGCATCGAG -ACGGAAATCCAGACTTGCCTCCTT -ACGGAAATCCAGACTTGCCCTGTT -ACGGAAATCCAGACTTGCCGGTTT -ACGGAAATCCAGACTTGCGTGGTT -ACGGAAATCCAGACTTGCGCCTTT -ACGGAAATCCAGACTTGCGGTCTT -ACGGAAATCCAGACTTGCACGCTT -ACGGAAATCCAGACTTGCAGCGTT -ACGGAAATCCAGACTTGCTTCGTC -ACGGAAATCCAGACTTGCTCTCTC -ACGGAAATCCAGACTTGCTGGATC -ACGGAAATCCAGACTTGCCACTTC -ACGGAAATCCAGACTTGCGTACTC -ACGGAAATCCAGACTTGCGATGTC -ACGGAAATCCAGACTTGCACAGTC -ACGGAAATCCAGACTTGCTTGCTG -ACGGAAATCCAGACTTGCTCCATG -ACGGAAATCCAGACTTGCTGTGTG -ACGGAAATCCAGACTTGCCTAGTG -ACGGAAATCCAGACTTGCCATCTG -ACGGAAATCCAGACTTGCGAGTTG -ACGGAAATCCAGACTTGCAGACTG -ACGGAAATCCAGACTTGCTCGGTA -ACGGAAATCCAGACTTGCTGCCTA -ACGGAAATCCAGACTTGCCCACTA -ACGGAAATCCAGACTTGCGGAGTA -ACGGAAATCCAGACTTGCTCGTCT -ACGGAAATCCAGACTTGCTGCACT -ACGGAAATCCAGACTTGCCTGACT -ACGGAAATCCAGACTTGCCAACCT -ACGGAAATCCAGACTTGCGCTACT -ACGGAAATCCAGACTTGCGGATCT -ACGGAAATCCAGACTTGCAAGGCT -ACGGAAATCCAGACTTGCTCAACC -ACGGAAATCCAGACTTGCTGTTCC -ACGGAAATCCAGACTTGCATTCCC -ACGGAAATCCAGACTTGCTTCTCG -ACGGAAATCCAGACTTGCTAGACG -ACGGAAATCCAGACTTGCGTAACG -ACGGAAATCCAGACTTGCACTTCG -ACGGAAATCCAGACTTGCTACGCA -ACGGAAATCCAGACTTGCCTTGCA -ACGGAAATCCAGACTTGCCGAACA -ACGGAAATCCAGACTTGCCAGTCA -ACGGAAATCCAGACTTGCGATCCA -ACGGAAATCCAGACTTGCACGACA -ACGGAAATCCAGACTTGCAGCTCA -ACGGAAATCCAGACTTGCTCACGT -ACGGAAATCCAGACTTGCCGTAGT -ACGGAAATCCAGACTTGCGTCAGT -ACGGAAATCCAGACTTGCGAAGGT -ACGGAAATCCAGACTTGCAACCGT -ACGGAAATCCAGACTTGCTTGTGC -ACGGAAATCCAGACTTGCCTAAGC -ACGGAAATCCAGACTTGCACTAGC -ACGGAAATCCAGACTTGCAGATGC -ACGGAAATCCAGACTTGCTGAAGG -ACGGAAATCCAGACTTGCCAATGG -ACGGAAATCCAGACTTGCATGAGG -ACGGAAATCCAGACTTGCAATGGG -ACGGAAATCCAGACTTGCTCCTGA -ACGGAAATCCAGACTTGCTAGCGA -ACGGAAATCCAGACTTGCCACAGA -ACGGAAATCCAGACTTGCGCAAGA -ACGGAAATCCAGACTTGCGGTTGA -ACGGAAATCCAGACTTGCTCCGAT -ACGGAAATCCAGACTTGCTGGCAT -ACGGAAATCCAGACTTGCCGAGAT -ACGGAAATCCAGACTTGCTACCAC -ACGGAAATCCAGACTTGCCAGAAC -ACGGAAATCCAGACTTGCGTCTAC -ACGGAAATCCAGACTTGCACGTAC -ACGGAAATCCAGACTTGCAGTGAC -ACGGAAATCCAGACTTGCCTGTAG -ACGGAAATCCAGACTTGCCCTAAG -ACGGAAATCCAGACTTGCGTTCAG -ACGGAAATCCAGACTTGCGCATAG -ACGGAAATCCAGACTTGCGACAAG -ACGGAAATCCAGACTTGCAAGCAG -ACGGAAATCCAGACTTGCCGTCAA -ACGGAAATCCAGACTTGCGCTGAA -ACGGAAATCCAGACTTGCAGTACG -ACGGAAATCCAGACTTGCATCCGA -ACGGAAATCCAGACTTGCATGGGA -ACGGAAATCCAGACTTGCGTGCAA -ACGGAAATCCAGACTTGCGAGGAA -ACGGAAATCCAGACTTGCCAGGTA -ACGGAAATCCAGACTTGCGACTCT -ACGGAAATCCAGACTTGCAGTCCT -ACGGAAATCCAGACTTGCTAAGCC -ACGGAAATCCAGACTTGCATAGCC -ACGGAAATCCAGACTTGCTAACCG -ACGGAAATCCAGACTTGCATGCCA -ACGGAAATCCAGACTCTGGGAAAC -ACGGAAATCCAGACTCTGAACACC -ACGGAAATCCAGACTCTGATCGAG -ACGGAAATCCAGACTCTGCTCCTT -ACGGAAATCCAGACTCTGCCTGTT -ACGGAAATCCAGACTCTGCGGTTT -ACGGAAATCCAGACTCTGGTGGTT -ACGGAAATCCAGACTCTGGCCTTT -ACGGAAATCCAGACTCTGGGTCTT -ACGGAAATCCAGACTCTGACGCTT -ACGGAAATCCAGACTCTGAGCGTT -ACGGAAATCCAGACTCTGTTCGTC -ACGGAAATCCAGACTCTGTCTCTC -ACGGAAATCCAGACTCTGTGGATC -ACGGAAATCCAGACTCTGCACTTC -ACGGAAATCCAGACTCTGGTACTC -ACGGAAATCCAGACTCTGGATGTC -ACGGAAATCCAGACTCTGACAGTC -ACGGAAATCCAGACTCTGTTGCTG -ACGGAAATCCAGACTCTGTCCATG -ACGGAAATCCAGACTCTGTGTGTG -ACGGAAATCCAGACTCTGCTAGTG -ACGGAAATCCAGACTCTGCATCTG -ACGGAAATCCAGACTCTGGAGTTG -ACGGAAATCCAGACTCTGAGACTG -ACGGAAATCCAGACTCTGTCGGTA -ACGGAAATCCAGACTCTGTGCCTA -ACGGAAATCCAGACTCTGCCACTA -ACGGAAATCCAGACTCTGGGAGTA -ACGGAAATCCAGACTCTGTCGTCT -ACGGAAATCCAGACTCTGTGCACT -ACGGAAATCCAGACTCTGCTGACT -ACGGAAATCCAGACTCTGCAACCT -ACGGAAATCCAGACTCTGGCTACT -ACGGAAATCCAGACTCTGGGATCT -ACGGAAATCCAGACTCTGAAGGCT -ACGGAAATCCAGACTCTGTCAACC -ACGGAAATCCAGACTCTGTGTTCC -ACGGAAATCCAGACTCTGATTCCC -ACGGAAATCCAGACTCTGTTCTCG -ACGGAAATCCAGACTCTGTAGACG -ACGGAAATCCAGACTCTGGTAACG -ACGGAAATCCAGACTCTGACTTCG -ACGGAAATCCAGACTCTGTACGCA -ACGGAAATCCAGACTCTGCTTGCA -ACGGAAATCCAGACTCTGCGAACA -ACGGAAATCCAGACTCTGCAGTCA -ACGGAAATCCAGACTCTGGATCCA -ACGGAAATCCAGACTCTGACGACA -ACGGAAATCCAGACTCTGAGCTCA -ACGGAAATCCAGACTCTGTCACGT -ACGGAAATCCAGACTCTGCGTAGT -ACGGAAATCCAGACTCTGGTCAGT -ACGGAAATCCAGACTCTGGAAGGT -ACGGAAATCCAGACTCTGAACCGT -ACGGAAATCCAGACTCTGTTGTGC -ACGGAAATCCAGACTCTGCTAAGC -ACGGAAATCCAGACTCTGACTAGC -ACGGAAATCCAGACTCTGAGATGC -ACGGAAATCCAGACTCTGTGAAGG -ACGGAAATCCAGACTCTGCAATGG -ACGGAAATCCAGACTCTGATGAGG -ACGGAAATCCAGACTCTGAATGGG -ACGGAAATCCAGACTCTGTCCTGA -ACGGAAATCCAGACTCTGTAGCGA -ACGGAAATCCAGACTCTGCACAGA -ACGGAAATCCAGACTCTGGCAAGA -ACGGAAATCCAGACTCTGGGTTGA -ACGGAAATCCAGACTCTGTCCGAT -ACGGAAATCCAGACTCTGTGGCAT -ACGGAAATCCAGACTCTGCGAGAT -ACGGAAATCCAGACTCTGTACCAC -ACGGAAATCCAGACTCTGCAGAAC -ACGGAAATCCAGACTCTGGTCTAC -ACGGAAATCCAGACTCTGACGTAC -ACGGAAATCCAGACTCTGAGTGAC -ACGGAAATCCAGACTCTGCTGTAG -ACGGAAATCCAGACTCTGCCTAAG -ACGGAAATCCAGACTCTGGTTCAG -ACGGAAATCCAGACTCTGGCATAG -ACGGAAATCCAGACTCTGGACAAG -ACGGAAATCCAGACTCTGAAGCAG -ACGGAAATCCAGACTCTGCGTCAA -ACGGAAATCCAGACTCTGGCTGAA -ACGGAAATCCAGACTCTGAGTACG -ACGGAAATCCAGACTCTGATCCGA -ACGGAAATCCAGACTCTGATGGGA -ACGGAAATCCAGACTCTGGTGCAA -ACGGAAATCCAGACTCTGGAGGAA -ACGGAAATCCAGACTCTGCAGGTA -ACGGAAATCCAGACTCTGGACTCT -ACGGAAATCCAGACTCTGAGTCCT -ACGGAAATCCAGACTCTGTAAGCC -ACGGAAATCCAGACTCTGATAGCC -ACGGAAATCCAGACTCTGTAACCG -ACGGAAATCCAGACTCTGATGCCA -ACGGAAATCCAGCCTCAAGGAAAC -ACGGAAATCCAGCCTCAAAACACC -ACGGAAATCCAGCCTCAAATCGAG -ACGGAAATCCAGCCTCAACTCCTT -ACGGAAATCCAGCCTCAACCTGTT -ACGGAAATCCAGCCTCAACGGTTT -ACGGAAATCCAGCCTCAAGTGGTT -ACGGAAATCCAGCCTCAAGCCTTT -ACGGAAATCCAGCCTCAAGGTCTT -ACGGAAATCCAGCCTCAAACGCTT -ACGGAAATCCAGCCTCAAAGCGTT -ACGGAAATCCAGCCTCAATTCGTC -ACGGAAATCCAGCCTCAATCTCTC -ACGGAAATCCAGCCTCAATGGATC -ACGGAAATCCAGCCTCAACACTTC -ACGGAAATCCAGCCTCAAGTACTC -ACGGAAATCCAGCCTCAAGATGTC -ACGGAAATCCAGCCTCAAACAGTC -ACGGAAATCCAGCCTCAATTGCTG -ACGGAAATCCAGCCTCAATCCATG -ACGGAAATCCAGCCTCAATGTGTG -ACGGAAATCCAGCCTCAACTAGTG -ACGGAAATCCAGCCTCAACATCTG -ACGGAAATCCAGCCTCAAGAGTTG -ACGGAAATCCAGCCTCAAAGACTG -ACGGAAATCCAGCCTCAATCGGTA -ACGGAAATCCAGCCTCAATGCCTA -ACGGAAATCCAGCCTCAACCACTA -ACGGAAATCCAGCCTCAAGGAGTA -ACGGAAATCCAGCCTCAATCGTCT -ACGGAAATCCAGCCTCAATGCACT -ACGGAAATCCAGCCTCAACTGACT -ACGGAAATCCAGCCTCAACAACCT -ACGGAAATCCAGCCTCAAGCTACT -ACGGAAATCCAGCCTCAAGGATCT -ACGGAAATCCAGCCTCAAAAGGCT -ACGGAAATCCAGCCTCAATCAACC -ACGGAAATCCAGCCTCAATGTTCC -ACGGAAATCCAGCCTCAAATTCCC -ACGGAAATCCAGCCTCAATTCTCG -ACGGAAATCCAGCCTCAATAGACG -ACGGAAATCCAGCCTCAAGTAACG -ACGGAAATCCAGCCTCAAACTTCG -ACGGAAATCCAGCCTCAATACGCA -ACGGAAATCCAGCCTCAACTTGCA -ACGGAAATCCAGCCTCAACGAACA -ACGGAAATCCAGCCTCAACAGTCA -ACGGAAATCCAGCCTCAAGATCCA -ACGGAAATCCAGCCTCAAACGACA -ACGGAAATCCAGCCTCAAAGCTCA -ACGGAAATCCAGCCTCAATCACGT -ACGGAAATCCAGCCTCAACGTAGT -ACGGAAATCCAGCCTCAAGTCAGT -ACGGAAATCCAGCCTCAAGAAGGT -ACGGAAATCCAGCCTCAAAACCGT -ACGGAAATCCAGCCTCAATTGTGC -ACGGAAATCCAGCCTCAACTAAGC -ACGGAAATCCAGCCTCAAACTAGC -ACGGAAATCCAGCCTCAAAGATGC -ACGGAAATCCAGCCTCAATGAAGG -ACGGAAATCCAGCCTCAACAATGG -ACGGAAATCCAGCCTCAAATGAGG -ACGGAAATCCAGCCTCAAAATGGG -ACGGAAATCCAGCCTCAATCCTGA -ACGGAAATCCAGCCTCAATAGCGA -ACGGAAATCCAGCCTCAACACAGA -ACGGAAATCCAGCCTCAAGCAAGA -ACGGAAATCCAGCCTCAAGGTTGA -ACGGAAATCCAGCCTCAATCCGAT -ACGGAAATCCAGCCTCAATGGCAT -ACGGAAATCCAGCCTCAACGAGAT -ACGGAAATCCAGCCTCAATACCAC -ACGGAAATCCAGCCTCAACAGAAC -ACGGAAATCCAGCCTCAAGTCTAC -ACGGAAATCCAGCCTCAAACGTAC -ACGGAAATCCAGCCTCAAAGTGAC -ACGGAAATCCAGCCTCAACTGTAG -ACGGAAATCCAGCCTCAACCTAAG -ACGGAAATCCAGCCTCAAGTTCAG -ACGGAAATCCAGCCTCAAGCATAG -ACGGAAATCCAGCCTCAAGACAAG -ACGGAAATCCAGCCTCAAAAGCAG -ACGGAAATCCAGCCTCAACGTCAA -ACGGAAATCCAGCCTCAAGCTGAA -ACGGAAATCCAGCCTCAAAGTACG -ACGGAAATCCAGCCTCAAATCCGA -ACGGAAATCCAGCCTCAAATGGGA -ACGGAAATCCAGCCTCAAGTGCAA -ACGGAAATCCAGCCTCAAGAGGAA -ACGGAAATCCAGCCTCAACAGGTA -ACGGAAATCCAGCCTCAAGACTCT -ACGGAAATCCAGCCTCAAAGTCCT -ACGGAAATCCAGCCTCAATAAGCC -ACGGAAATCCAGCCTCAAATAGCC -ACGGAAATCCAGCCTCAATAACCG -ACGGAAATCCAGCCTCAAATGCCA -ACGGAAATCCAGACTGCTGGAAAC -ACGGAAATCCAGACTGCTAACACC -ACGGAAATCCAGACTGCTATCGAG -ACGGAAATCCAGACTGCTCTCCTT -ACGGAAATCCAGACTGCTCCTGTT -ACGGAAATCCAGACTGCTCGGTTT -ACGGAAATCCAGACTGCTGTGGTT -ACGGAAATCCAGACTGCTGCCTTT -ACGGAAATCCAGACTGCTGGTCTT -ACGGAAATCCAGACTGCTACGCTT -ACGGAAATCCAGACTGCTAGCGTT -ACGGAAATCCAGACTGCTTTCGTC -ACGGAAATCCAGACTGCTTCTCTC -ACGGAAATCCAGACTGCTTGGATC -ACGGAAATCCAGACTGCTCACTTC -ACGGAAATCCAGACTGCTGTACTC -ACGGAAATCCAGACTGCTGATGTC -ACGGAAATCCAGACTGCTACAGTC -ACGGAAATCCAGACTGCTTTGCTG -ACGGAAATCCAGACTGCTTCCATG -ACGGAAATCCAGACTGCTTGTGTG -ACGGAAATCCAGACTGCTCTAGTG -ACGGAAATCCAGACTGCTCATCTG -ACGGAAATCCAGACTGCTGAGTTG -ACGGAAATCCAGACTGCTAGACTG -ACGGAAATCCAGACTGCTTCGGTA -ACGGAAATCCAGACTGCTTGCCTA -ACGGAAATCCAGACTGCTCCACTA -ACGGAAATCCAGACTGCTGGAGTA -ACGGAAATCCAGACTGCTTCGTCT -ACGGAAATCCAGACTGCTTGCACT -ACGGAAATCCAGACTGCTCTGACT -ACGGAAATCCAGACTGCTCAACCT -ACGGAAATCCAGACTGCTGCTACT -ACGGAAATCCAGACTGCTGGATCT -ACGGAAATCCAGACTGCTAAGGCT -ACGGAAATCCAGACTGCTTCAACC -ACGGAAATCCAGACTGCTTGTTCC -ACGGAAATCCAGACTGCTATTCCC -ACGGAAATCCAGACTGCTTTCTCG -ACGGAAATCCAGACTGCTTAGACG -ACGGAAATCCAGACTGCTGTAACG -ACGGAAATCCAGACTGCTACTTCG -ACGGAAATCCAGACTGCTTACGCA -ACGGAAATCCAGACTGCTCTTGCA -ACGGAAATCCAGACTGCTCGAACA -ACGGAAATCCAGACTGCTCAGTCA -ACGGAAATCCAGACTGCTGATCCA -ACGGAAATCCAGACTGCTACGACA -ACGGAAATCCAGACTGCTAGCTCA -ACGGAAATCCAGACTGCTTCACGT -ACGGAAATCCAGACTGCTCGTAGT -ACGGAAATCCAGACTGCTGTCAGT -ACGGAAATCCAGACTGCTGAAGGT -ACGGAAATCCAGACTGCTAACCGT -ACGGAAATCCAGACTGCTTTGTGC -ACGGAAATCCAGACTGCTCTAAGC -ACGGAAATCCAGACTGCTACTAGC -ACGGAAATCCAGACTGCTAGATGC -ACGGAAATCCAGACTGCTTGAAGG -ACGGAAATCCAGACTGCTCAATGG -ACGGAAATCCAGACTGCTATGAGG -ACGGAAATCCAGACTGCTAATGGG -ACGGAAATCCAGACTGCTTCCTGA -ACGGAAATCCAGACTGCTTAGCGA -ACGGAAATCCAGACTGCTCACAGA -ACGGAAATCCAGACTGCTGCAAGA -ACGGAAATCCAGACTGCTGGTTGA -ACGGAAATCCAGACTGCTTCCGAT -ACGGAAATCCAGACTGCTTGGCAT -ACGGAAATCCAGACTGCTCGAGAT -ACGGAAATCCAGACTGCTTACCAC -ACGGAAATCCAGACTGCTCAGAAC -ACGGAAATCCAGACTGCTGTCTAC -ACGGAAATCCAGACTGCTACGTAC -ACGGAAATCCAGACTGCTAGTGAC -ACGGAAATCCAGACTGCTCTGTAG -ACGGAAATCCAGACTGCTCCTAAG -ACGGAAATCCAGACTGCTGTTCAG -ACGGAAATCCAGACTGCTGCATAG -ACGGAAATCCAGACTGCTGACAAG -ACGGAAATCCAGACTGCTAAGCAG -ACGGAAATCCAGACTGCTCGTCAA -ACGGAAATCCAGACTGCTGCTGAA -ACGGAAATCCAGACTGCTAGTACG -ACGGAAATCCAGACTGCTATCCGA -ACGGAAATCCAGACTGCTATGGGA -ACGGAAATCCAGACTGCTGTGCAA -ACGGAAATCCAGACTGCTGAGGAA -ACGGAAATCCAGACTGCTCAGGTA -ACGGAAATCCAGACTGCTGACTCT -ACGGAAATCCAGACTGCTAGTCCT -ACGGAAATCCAGACTGCTTAAGCC -ACGGAAATCCAGACTGCTATAGCC -ACGGAAATCCAGACTGCTTAACCG -ACGGAAATCCAGACTGCTATGCCA -ACGGAAATCCAGTCTGGAGGAAAC -ACGGAAATCCAGTCTGGAAACACC -ACGGAAATCCAGTCTGGAATCGAG -ACGGAAATCCAGTCTGGACTCCTT -ACGGAAATCCAGTCTGGACCTGTT -ACGGAAATCCAGTCTGGACGGTTT -ACGGAAATCCAGTCTGGAGTGGTT -ACGGAAATCCAGTCTGGAGCCTTT -ACGGAAATCCAGTCTGGAGGTCTT -ACGGAAATCCAGTCTGGAACGCTT -ACGGAAATCCAGTCTGGAAGCGTT -ACGGAAATCCAGTCTGGATTCGTC -ACGGAAATCCAGTCTGGATCTCTC -ACGGAAATCCAGTCTGGATGGATC -ACGGAAATCCAGTCTGGACACTTC -ACGGAAATCCAGTCTGGAGTACTC -ACGGAAATCCAGTCTGGAGATGTC -ACGGAAATCCAGTCTGGAACAGTC -ACGGAAATCCAGTCTGGATTGCTG -ACGGAAATCCAGTCTGGATCCATG -ACGGAAATCCAGTCTGGATGTGTG -ACGGAAATCCAGTCTGGACTAGTG -ACGGAAATCCAGTCTGGACATCTG -ACGGAAATCCAGTCTGGAGAGTTG -ACGGAAATCCAGTCTGGAAGACTG -ACGGAAATCCAGTCTGGATCGGTA -ACGGAAATCCAGTCTGGATGCCTA -ACGGAAATCCAGTCTGGACCACTA -ACGGAAATCCAGTCTGGAGGAGTA -ACGGAAATCCAGTCTGGATCGTCT -ACGGAAATCCAGTCTGGATGCACT -ACGGAAATCCAGTCTGGACTGACT -ACGGAAATCCAGTCTGGACAACCT -ACGGAAATCCAGTCTGGAGCTACT -ACGGAAATCCAGTCTGGAGGATCT -ACGGAAATCCAGTCTGGAAAGGCT -ACGGAAATCCAGTCTGGATCAACC -ACGGAAATCCAGTCTGGATGTTCC -ACGGAAATCCAGTCTGGAATTCCC -ACGGAAATCCAGTCTGGATTCTCG -ACGGAAATCCAGTCTGGATAGACG -ACGGAAATCCAGTCTGGAGTAACG -ACGGAAATCCAGTCTGGAACTTCG -ACGGAAATCCAGTCTGGATACGCA -ACGGAAATCCAGTCTGGACTTGCA -ACGGAAATCCAGTCTGGACGAACA -ACGGAAATCCAGTCTGGACAGTCA -ACGGAAATCCAGTCTGGAGATCCA -ACGGAAATCCAGTCTGGAACGACA -ACGGAAATCCAGTCTGGAAGCTCA -ACGGAAATCCAGTCTGGATCACGT -ACGGAAATCCAGTCTGGACGTAGT -ACGGAAATCCAGTCTGGAGTCAGT -ACGGAAATCCAGTCTGGAGAAGGT -ACGGAAATCCAGTCTGGAAACCGT -ACGGAAATCCAGTCTGGATTGTGC -ACGGAAATCCAGTCTGGACTAAGC -ACGGAAATCCAGTCTGGAACTAGC -ACGGAAATCCAGTCTGGAAGATGC -ACGGAAATCCAGTCTGGATGAAGG -ACGGAAATCCAGTCTGGACAATGG -ACGGAAATCCAGTCTGGAATGAGG -ACGGAAATCCAGTCTGGAAATGGG -ACGGAAATCCAGTCTGGATCCTGA -ACGGAAATCCAGTCTGGATAGCGA -ACGGAAATCCAGTCTGGACACAGA -ACGGAAATCCAGTCTGGAGCAAGA -ACGGAAATCCAGTCTGGAGGTTGA -ACGGAAATCCAGTCTGGATCCGAT -ACGGAAATCCAGTCTGGATGGCAT -ACGGAAATCCAGTCTGGACGAGAT -ACGGAAATCCAGTCTGGATACCAC -ACGGAAATCCAGTCTGGACAGAAC -ACGGAAATCCAGTCTGGAGTCTAC -ACGGAAATCCAGTCTGGAACGTAC -ACGGAAATCCAGTCTGGAAGTGAC -ACGGAAATCCAGTCTGGACTGTAG -ACGGAAATCCAGTCTGGACCTAAG -ACGGAAATCCAGTCTGGAGTTCAG -ACGGAAATCCAGTCTGGAGCATAG -ACGGAAATCCAGTCTGGAGACAAG -ACGGAAATCCAGTCTGGAAAGCAG -ACGGAAATCCAGTCTGGACGTCAA -ACGGAAATCCAGTCTGGAGCTGAA -ACGGAAATCCAGTCTGGAAGTACG -ACGGAAATCCAGTCTGGAATCCGA -ACGGAAATCCAGTCTGGAATGGGA -ACGGAAATCCAGTCTGGAGTGCAA -ACGGAAATCCAGTCTGGAGAGGAA -ACGGAAATCCAGTCTGGACAGGTA -ACGGAAATCCAGTCTGGAGACTCT -ACGGAAATCCAGTCTGGAAGTCCT -ACGGAAATCCAGTCTGGATAAGCC -ACGGAAATCCAGTCTGGAATAGCC -ACGGAAATCCAGTCTGGATAACCG -ACGGAAATCCAGTCTGGAATGCCA -ACGGAAATCCAGGCTAAGGGAAAC -ACGGAAATCCAGGCTAAGAACACC -ACGGAAATCCAGGCTAAGATCGAG -ACGGAAATCCAGGCTAAGCTCCTT -ACGGAAATCCAGGCTAAGCCTGTT -ACGGAAATCCAGGCTAAGCGGTTT -ACGGAAATCCAGGCTAAGGTGGTT -ACGGAAATCCAGGCTAAGGCCTTT -ACGGAAATCCAGGCTAAGGGTCTT -ACGGAAATCCAGGCTAAGACGCTT -ACGGAAATCCAGGCTAAGAGCGTT -ACGGAAATCCAGGCTAAGTTCGTC -ACGGAAATCCAGGCTAAGTCTCTC -ACGGAAATCCAGGCTAAGTGGATC -ACGGAAATCCAGGCTAAGCACTTC -ACGGAAATCCAGGCTAAGGTACTC -ACGGAAATCCAGGCTAAGGATGTC -ACGGAAATCCAGGCTAAGACAGTC -ACGGAAATCCAGGCTAAGTTGCTG -ACGGAAATCCAGGCTAAGTCCATG -ACGGAAATCCAGGCTAAGTGTGTG -ACGGAAATCCAGGCTAAGCTAGTG -ACGGAAATCCAGGCTAAGCATCTG -ACGGAAATCCAGGCTAAGGAGTTG -ACGGAAATCCAGGCTAAGAGACTG -ACGGAAATCCAGGCTAAGTCGGTA -ACGGAAATCCAGGCTAAGTGCCTA -ACGGAAATCCAGGCTAAGCCACTA -ACGGAAATCCAGGCTAAGGGAGTA -ACGGAAATCCAGGCTAAGTCGTCT -ACGGAAATCCAGGCTAAGTGCACT -ACGGAAATCCAGGCTAAGCTGACT -ACGGAAATCCAGGCTAAGCAACCT -ACGGAAATCCAGGCTAAGGCTACT -ACGGAAATCCAGGCTAAGGGATCT -ACGGAAATCCAGGCTAAGAAGGCT -ACGGAAATCCAGGCTAAGTCAACC -ACGGAAATCCAGGCTAAGTGTTCC -ACGGAAATCCAGGCTAAGATTCCC -ACGGAAATCCAGGCTAAGTTCTCG -ACGGAAATCCAGGCTAAGTAGACG -ACGGAAATCCAGGCTAAGGTAACG -ACGGAAATCCAGGCTAAGACTTCG -ACGGAAATCCAGGCTAAGTACGCA -ACGGAAATCCAGGCTAAGCTTGCA -ACGGAAATCCAGGCTAAGCGAACA -ACGGAAATCCAGGCTAAGCAGTCA -ACGGAAATCCAGGCTAAGGATCCA -ACGGAAATCCAGGCTAAGACGACA -ACGGAAATCCAGGCTAAGAGCTCA -ACGGAAATCCAGGCTAAGTCACGT -ACGGAAATCCAGGCTAAGCGTAGT -ACGGAAATCCAGGCTAAGGTCAGT -ACGGAAATCCAGGCTAAGGAAGGT -ACGGAAATCCAGGCTAAGAACCGT -ACGGAAATCCAGGCTAAGTTGTGC -ACGGAAATCCAGGCTAAGCTAAGC -ACGGAAATCCAGGCTAAGACTAGC -ACGGAAATCCAGGCTAAGAGATGC -ACGGAAATCCAGGCTAAGTGAAGG -ACGGAAATCCAGGCTAAGCAATGG -ACGGAAATCCAGGCTAAGATGAGG -ACGGAAATCCAGGCTAAGAATGGG -ACGGAAATCCAGGCTAAGTCCTGA -ACGGAAATCCAGGCTAAGTAGCGA -ACGGAAATCCAGGCTAAGCACAGA -ACGGAAATCCAGGCTAAGGCAAGA -ACGGAAATCCAGGCTAAGGGTTGA -ACGGAAATCCAGGCTAAGTCCGAT -ACGGAAATCCAGGCTAAGTGGCAT -ACGGAAATCCAGGCTAAGCGAGAT -ACGGAAATCCAGGCTAAGTACCAC -ACGGAAATCCAGGCTAAGCAGAAC -ACGGAAATCCAGGCTAAGGTCTAC -ACGGAAATCCAGGCTAAGACGTAC -ACGGAAATCCAGGCTAAGAGTGAC -ACGGAAATCCAGGCTAAGCTGTAG -ACGGAAATCCAGGCTAAGCCTAAG -ACGGAAATCCAGGCTAAGGTTCAG -ACGGAAATCCAGGCTAAGGCATAG -ACGGAAATCCAGGCTAAGGACAAG -ACGGAAATCCAGGCTAAGAAGCAG -ACGGAAATCCAGGCTAAGCGTCAA -ACGGAAATCCAGGCTAAGGCTGAA -ACGGAAATCCAGGCTAAGAGTACG -ACGGAAATCCAGGCTAAGATCCGA -ACGGAAATCCAGGCTAAGATGGGA -ACGGAAATCCAGGCTAAGGTGCAA -ACGGAAATCCAGGCTAAGGAGGAA -ACGGAAATCCAGGCTAAGCAGGTA -ACGGAAATCCAGGCTAAGGACTCT -ACGGAAATCCAGGCTAAGAGTCCT -ACGGAAATCCAGGCTAAGTAAGCC -ACGGAAATCCAGGCTAAGATAGCC -ACGGAAATCCAGGCTAAGTAACCG -ACGGAAATCCAGGCTAAGATGCCA -ACGGAAATCCAGACCTCAGGAAAC -ACGGAAATCCAGACCTCAAACACC -ACGGAAATCCAGACCTCAATCGAG -ACGGAAATCCAGACCTCACTCCTT -ACGGAAATCCAGACCTCACCTGTT -ACGGAAATCCAGACCTCACGGTTT -ACGGAAATCCAGACCTCAGTGGTT -ACGGAAATCCAGACCTCAGCCTTT -ACGGAAATCCAGACCTCAGGTCTT -ACGGAAATCCAGACCTCAACGCTT -ACGGAAATCCAGACCTCAAGCGTT -ACGGAAATCCAGACCTCATTCGTC -ACGGAAATCCAGACCTCATCTCTC -ACGGAAATCCAGACCTCATGGATC -ACGGAAATCCAGACCTCACACTTC -ACGGAAATCCAGACCTCAGTACTC -ACGGAAATCCAGACCTCAGATGTC -ACGGAAATCCAGACCTCAACAGTC -ACGGAAATCCAGACCTCATTGCTG -ACGGAAATCCAGACCTCATCCATG -ACGGAAATCCAGACCTCATGTGTG -ACGGAAATCCAGACCTCACTAGTG -ACGGAAATCCAGACCTCACATCTG -ACGGAAATCCAGACCTCAGAGTTG -ACGGAAATCCAGACCTCAAGACTG -ACGGAAATCCAGACCTCATCGGTA -ACGGAAATCCAGACCTCATGCCTA -ACGGAAATCCAGACCTCACCACTA -ACGGAAATCCAGACCTCAGGAGTA -ACGGAAATCCAGACCTCATCGTCT -ACGGAAATCCAGACCTCATGCACT -ACGGAAATCCAGACCTCACTGACT -ACGGAAATCCAGACCTCACAACCT -ACGGAAATCCAGACCTCAGCTACT -ACGGAAATCCAGACCTCAGGATCT -ACGGAAATCCAGACCTCAAAGGCT -ACGGAAATCCAGACCTCATCAACC -ACGGAAATCCAGACCTCATGTTCC -ACGGAAATCCAGACCTCAATTCCC -ACGGAAATCCAGACCTCATTCTCG -ACGGAAATCCAGACCTCATAGACG -ACGGAAATCCAGACCTCAGTAACG -ACGGAAATCCAGACCTCAACTTCG -ACGGAAATCCAGACCTCATACGCA -ACGGAAATCCAGACCTCACTTGCA -ACGGAAATCCAGACCTCACGAACA -ACGGAAATCCAGACCTCACAGTCA -ACGGAAATCCAGACCTCAGATCCA -ACGGAAATCCAGACCTCAACGACA -ACGGAAATCCAGACCTCAAGCTCA -ACGGAAATCCAGACCTCATCACGT -ACGGAAATCCAGACCTCACGTAGT -ACGGAAATCCAGACCTCAGTCAGT -ACGGAAATCCAGACCTCAGAAGGT -ACGGAAATCCAGACCTCAAACCGT -ACGGAAATCCAGACCTCATTGTGC -ACGGAAATCCAGACCTCACTAAGC -ACGGAAATCCAGACCTCAACTAGC -ACGGAAATCCAGACCTCAAGATGC -ACGGAAATCCAGACCTCATGAAGG -ACGGAAATCCAGACCTCACAATGG -ACGGAAATCCAGACCTCAATGAGG -ACGGAAATCCAGACCTCAAATGGG -ACGGAAATCCAGACCTCATCCTGA -ACGGAAATCCAGACCTCATAGCGA -ACGGAAATCCAGACCTCACACAGA -ACGGAAATCCAGACCTCAGCAAGA -ACGGAAATCCAGACCTCAGGTTGA -ACGGAAATCCAGACCTCATCCGAT -ACGGAAATCCAGACCTCATGGCAT -ACGGAAATCCAGACCTCACGAGAT -ACGGAAATCCAGACCTCATACCAC -ACGGAAATCCAGACCTCACAGAAC -ACGGAAATCCAGACCTCAGTCTAC -ACGGAAATCCAGACCTCAACGTAC -ACGGAAATCCAGACCTCAAGTGAC -ACGGAAATCCAGACCTCACTGTAG -ACGGAAATCCAGACCTCACCTAAG -ACGGAAATCCAGACCTCAGTTCAG -ACGGAAATCCAGACCTCAGCATAG -ACGGAAATCCAGACCTCAGACAAG -ACGGAAATCCAGACCTCAAAGCAG -ACGGAAATCCAGACCTCACGTCAA -ACGGAAATCCAGACCTCAGCTGAA -ACGGAAATCCAGACCTCAAGTACG -ACGGAAATCCAGACCTCAATCCGA -ACGGAAATCCAGACCTCAATGGGA -ACGGAAATCCAGACCTCAGTGCAA -ACGGAAATCCAGACCTCAGAGGAA -ACGGAAATCCAGACCTCACAGGTA -ACGGAAATCCAGACCTCAGACTCT -ACGGAAATCCAGACCTCAAGTCCT -ACGGAAATCCAGACCTCATAAGCC -ACGGAAATCCAGACCTCAATAGCC -ACGGAAATCCAGACCTCATAACCG -ACGGAAATCCAGACCTCAATGCCA -ACGGAAATCCAGTCCTGTGGAAAC -ACGGAAATCCAGTCCTGTAACACC -ACGGAAATCCAGTCCTGTATCGAG -ACGGAAATCCAGTCCTGTCTCCTT -ACGGAAATCCAGTCCTGTCCTGTT -ACGGAAATCCAGTCCTGTCGGTTT -ACGGAAATCCAGTCCTGTGTGGTT -ACGGAAATCCAGTCCTGTGCCTTT -ACGGAAATCCAGTCCTGTGGTCTT -ACGGAAATCCAGTCCTGTACGCTT -ACGGAAATCCAGTCCTGTAGCGTT -ACGGAAATCCAGTCCTGTTTCGTC -ACGGAAATCCAGTCCTGTTCTCTC -ACGGAAATCCAGTCCTGTTGGATC -ACGGAAATCCAGTCCTGTCACTTC -ACGGAAATCCAGTCCTGTGTACTC -ACGGAAATCCAGTCCTGTGATGTC -ACGGAAATCCAGTCCTGTACAGTC -ACGGAAATCCAGTCCTGTTTGCTG -ACGGAAATCCAGTCCTGTTCCATG -ACGGAAATCCAGTCCTGTTGTGTG -ACGGAAATCCAGTCCTGTCTAGTG -ACGGAAATCCAGTCCTGTCATCTG -ACGGAAATCCAGTCCTGTGAGTTG -ACGGAAATCCAGTCCTGTAGACTG -ACGGAAATCCAGTCCTGTTCGGTA -ACGGAAATCCAGTCCTGTTGCCTA -ACGGAAATCCAGTCCTGTCCACTA -ACGGAAATCCAGTCCTGTGGAGTA -ACGGAAATCCAGTCCTGTTCGTCT -ACGGAAATCCAGTCCTGTTGCACT -ACGGAAATCCAGTCCTGTCTGACT -ACGGAAATCCAGTCCTGTCAACCT -ACGGAAATCCAGTCCTGTGCTACT -ACGGAAATCCAGTCCTGTGGATCT -ACGGAAATCCAGTCCTGTAAGGCT -ACGGAAATCCAGTCCTGTTCAACC -ACGGAAATCCAGTCCTGTTGTTCC -ACGGAAATCCAGTCCTGTATTCCC -ACGGAAATCCAGTCCTGTTTCTCG -ACGGAAATCCAGTCCTGTTAGACG -ACGGAAATCCAGTCCTGTGTAACG -ACGGAAATCCAGTCCTGTACTTCG -ACGGAAATCCAGTCCTGTTACGCA -ACGGAAATCCAGTCCTGTCTTGCA -ACGGAAATCCAGTCCTGTCGAACA -ACGGAAATCCAGTCCTGTCAGTCA -ACGGAAATCCAGTCCTGTGATCCA -ACGGAAATCCAGTCCTGTACGACA -ACGGAAATCCAGTCCTGTAGCTCA -ACGGAAATCCAGTCCTGTTCACGT -ACGGAAATCCAGTCCTGTCGTAGT -ACGGAAATCCAGTCCTGTGTCAGT -ACGGAAATCCAGTCCTGTGAAGGT -ACGGAAATCCAGTCCTGTAACCGT -ACGGAAATCCAGTCCTGTTTGTGC -ACGGAAATCCAGTCCTGTCTAAGC -ACGGAAATCCAGTCCTGTACTAGC -ACGGAAATCCAGTCCTGTAGATGC -ACGGAAATCCAGTCCTGTTGAAGG -ACGGAAATCCAGTCCTGTCAATGG -ACGGAAATCCAGTCCTGTATGAGG -ACGGAAATCCAGTCCTGTAATGGG -ACGGAAATCCAGTCCTGTTCCTGA -ACGGAAATCCAGTCCTGTTAGCGA -ACGGAAATCCAGTCCTGTCACAGA -ACGGAAATCCAGTCCTGTGCAAGA -ACGGAAATCCAGTCCTGTGGTTGA -ACGGAAATCCAGTCCTGTTCCGAT -ACGGAAATCCAGTCCTGTTGGCAT -ACGGAAATCCAGTCCTGTCGAGAT -ACGGAAATCCAGTCCTGTTACCAC -ACGGAAATCCAGTCCTGTCAGAAC -ACGGAAATCCAGTCCTGTGTCTAC -ACGGAAATCCAGTCCTGTACGTAC -ACGGAAATCCAGTCCTGTAGTGAC -ACGGAAATCCAGTCCTGTCTGTAG -ACGGAAATCCAGTCCTGTCCTAAG -ACGGAAATCCAGTCCTGTGTTCAG -ACGGAAATCCAGTCCTGTGCATAG -ACGGAAATCCAGTCCTGTGACAAG -ACGGAAATCCAGTCCTGTAAGCAG -ACGGAAATCCAGTCCTGTCGTCAA -ACGGAAATCCAGTCCTGTGCTGAA -ACGGAAATCCAGTCCTGTAGTACG -ACGGAAATCCAGTCCTGTATCCGA -ACGGAAATCCAGTCCTGTATGGGA -ACGGAAATCCAGTCCTGTGTGCAA -ACGGAAATCCAGTCCTGTGAGGAA -ACGGAAATCCAGTCCTGTCAGGTA -ACGGAAATCCAGTCCTGTGACTCT -ACGGAAATCCAGTCCTGTAGTCCT -ACGGAAATCCAGTCCTGTTAAGCC -ACGGAAATCCAGTCCTGTATAGCC -ACGGAAATCCAGTCCTGTTAACCG -ACGGAAATCCAGTCCTGTATGCCA -ACGGAAATCCAGCCCATTGGAAAC -ACGGAAATCCAGCCCATTAACACC -ACGGAAATCCAGCCCATTATCGAG -ACGGAAATCCAGCCCATTCTCCTT -ACGGAAATCCAGCCCATTCCTGTT -ACGGAAATCCAGCCCATTCGGTTT -ACGGAAATCCAGCCCATTGTGGTT -ACGGAAATCCAGCCCATTGCCTTT -ACGGAAATCCAGCCCATTGGTCTT -ACGGAAATCCAGCCCATTACGCTT -ACGGAAATCCAGCCCATTAGCGTT -ACGGAAATCCAGCCCATTTTCGTC -ACGGAAATCCAGCCCATTTCTCTC -ACGGAAATCCAGCCCATTTGGATC -ACGGAAATCCAGCCCATTCACTTC -ACGGAAATCCAGCCCATTGTACTC -ACGGAAATCCAGCCCATTGATGTC -ACGGAAATCCAGCCCATTACAGTC -ACGGAAATCCAGCCCATTTTGCTG -ACGGAAATCCAGCCCATTTCCATG -ACGGAAATCCAGCCCATTTGTGTG -ACGGAAATCCAGCCCATTCTAGTG -ACGGAAATCCAGCCCATTCATCTG -ACGGAAATCCAGCCCATTGAGTTG -ACGGAAATCCAGCCCATTAGACTG -ACGGAAATCCAGCCCATTTCGGTA -ACGGAAATCCAGCCCATTTGCCTA -ACGGAAATCCAGCCCATTCCACTA -ACGGAAATCCAGCCCATTGGAGTA -ACGGAAATCCAGCCCATTTCGTCT -ACGGAAATCCAGCCCATTTGCACT -ACGGAAATCCAGCCCATTCTGACT -ACGGAAATCCAGCCCATTCAACCT -ACGGAAATCCAGCCCATTGCTACT -ACGGAAATCCAGCCCATTGGATCT -ACGGAAATCCAGCCCATTAAGGCT -ACGGAAATCCAGCCCATTTCAACC -ACGGAAATCCAGCCCATTTGTTCC -ACGGAAATCCAGCCCATTATTCCC -ACGGAAATCCAGCCCATTTTCTCG -ACGGAAATCCAGCCCATTTAGACG -ACGGAAATCCAGCCCATTGTAACG -ACGGAAATCCAGCCCATTACTTCG -ACGGAAATCCAGCCCATTTACGCA -ACGGAAATCCAGCCCATTCTTGCA -ACGGAAATCCAGCCCATTCGAACA -ACGGAAATCCAGCCCATTCAGTCA -ACGGAAATCCAGCCCATTGATCCA -ACGGAAATCCAGCCCATTACGACA -ACGGAAATCCAGCCCATTAGCTCA -ACGGAAATCCAGCCCATTTCACGT -ACGGAAATCCAGCCCATTCGTAGT -ACGGAAATCCAGCCCATTGTCAGT -ACGGAAATCCAGCCCATTGAAGGT -ACGGAAATCCAGCCCATTAACCGT -ACGGAAATCCAGCCCATTTTGTGC -ACGGAAATCCAGCCCATTCTAAGC -ACGGAAATCCAGCCCATTACTAGC -ACGGAAATCCAGCCCATTAGATGC -ACGGAAATCCAGCCCATTTGAAGG -ACGGAAATCCAGCCCATTCAATGG -ACGGAAATCCAGCCCATTATGAGG -ACGGAAATCCAGCCCATTAATGGG -ACGGAAATCCAGCCCATTTCCTGA -ACGGAAATCCAGCCCATTTAGCGA -ACGGAAATCCAGCCCATTCACAGA -ACGGAAATCCAGCCCATTGCAAGA -ACGGAAATCCAGCCCATTGGTTGA -ACGGAAATCCAGCCCATTTCCGAT -ACGGAAATCCAGCCCATTTGGCAT -ACGGAAATCCAGCCCATTCGAGAT -ACGGAAATCCAGCCCATTTACCAC -ACGGAAATCCAGCCCATTCAGAAC -ACGGAAATCCAGCCCATTGTCTAC -ACGGAAATCCAGCCCATTACGTAC -ACGGAAATCCAGCCCATTAGTGAC -ACGGAAATCCAGCCCATTCTGTAG -ACGGAAATCCAGCCCATTCCTAAG -ACGGAAATCCAGCCCATTGTTCAG -ACGGAAATCCAGCCCATTGCATAG -ACGGAAATCCAGCCCATTGACAAG -ACGGAAATCCAGCCCATTAAGCAG -ACGGAAATCCAGCCCATTCGTCAA -ACGGAAATCCAGCCCATTGCTGAA -ACGGAAATCCAGCCCATTAGTACG -ACGGAAATCCAGCCCATTATCCGA -ACGGAAATCCAGCCCATTATGGGA -ACGGAAATCCAGCCCATTGTGCAA -ACGGAAATCCAGCCCATTGAGGAA -ACGGAAATCCAGCCCATTCAGGTA -ACGGAAATCCAGCCCATTGACTCT -ACGGAAATCCAGCCCATTAGTCCT -ACGGAAATCCAGCCCATTTAAGCC -ACGGAAATCCAGCCCATTATAGCC -ACGGAAATCCAGCCCATTTAACCG -ACGGAAATCCAGCCCATTATGCCA -ACGGAAATCCAGTCGTTCGGAAAC -ACGGAAATCCAGTCGTTCAACACC -ACGGAAATCCAGTCGTTCATCGAG -ACGGAAATCCAGTCGTTCCTCCTT -ACGGAAATCCAGTCGTTCCCTGTT -ACGGAAATCCAGTCGTTCCGGTTT -ACGGAAATCCAGTCGTTCGTGGTT -ACGGAAATCCAGTCGTTCGCCTTT -ACGGAAATCCAGTCGTTCGGTCTT -ACGGAAATCCAGTCGTTCACGCTT -ACGGAAATCCAGTCGTTCAGCGTT -ACGGAAATCCAGTCGTTCTTCGTC -ACGGAAATCCAGTCGTTCTCTCTC -ACGGAAATCCAGTCGTTCTGGATC -ACGGAAATCCAGTCGTTCCACTTC -ACGGAAATCCAGTCGTTCGTACTC -ACGGAAATCCAGTCGTTCGATGTC -ACGGAAATCCAGTCGTTCACAGTC -ACGGAAATCCAGTCGTTCTTGCTG -ACGGAAATCCAGTCGTTCTCCATG -ACGGAAATCCAGTCGTTCTGTGTG -ACGGAAATCCAGTCGTTCCTAGTG -ACGGAAATCCAGTCGTTCCATCTG -ACGGAAATCCAGTCGTTCGAGTTG -ACGGAAATCCAGTCGTTCAGACTG -ACGGAAATCCAGTCGTTCTCGGTA -ACGGAAATCCAGTCGTTCTGCCTA -ACGGAAATCCAGTCGTTCCCACTA -ACGGAAATCCAGTCGTTCGGAGTA -ACGGAAATCCAGTCGTTCTCGTCT -ACGGAAATCCAGTCGTTCTGCACT -ACGGAAATCCAGTCGTTCCTGACT -ACGGAAATCCAGTCGTTCCAACCT -ACGGAAATCCAGTCGTTCGCTACT -ACGGAAATCCAGTCGTTCGGATCT -ACGGAAATCCAGTCGTTCAAGGCT -ACGGAAATCCAGTCGTTCTCAACC -ACGGAAATCCAGTCGTTCTGTTCC -ACGGAAATCCAGTCGTTCATTCCC -ACGGAAATCCAGTCGTTCTTCTCG -ACGGAAATCCAGTCGTTCTAGACG -ACGGAAATCCAGTCGTTCGTAACG -ACGGAAATCCAGTCGTTCACTTCG -ACGGAAATCCAGTCGTTCTACGCA -ACGGAAATCCAGTCGTTCCTTGCA -ACGGAAATCCAGTCGTTCCGAACA -ACGGAAATCCAGTCGTTCCAGTCA -ACGGAAATCCAGTCGTTCGATCCA -ACGGAAATCCAGTCGTTCACGACA -ACGGAAATCCAGTCGTTCAGCTCA -ACGGAAATCCAGTCGTTCTCACGT -ACGGAAATCCAGTCGTTCCGTAGT -ACGGAAATCCAGTCGTTCGTCAGT -ACGGAAATCCAGTCGTTCGAAGGT -ACGGAAATCCAGTCGTTCAACCGT -ACGGAAATCCAGTCGTTCTTGTGC -ACGGAAATCCAGTCGTTCCTAAGC -ACGGAAATCCAGTCGTTCACTAGC -ACGGAAATCCAGTCGTTCAGATGC -ACGGAAATCCAGTCGTTCTGAAGG -ACGGAAATCCAGTCGTTCCAATGG -ACGGAAATCCAGTCGTTCATGAGG -ACGGAAATCCAGTCGTTCAATGGG -ACGGAAATCCAGTCGTTCTCCTGA -ACGGAAATCCAGTCGTTCTAGCGA -ACGGAAATCCAGTCGTTCCACAGA -ACGGAAATCCAGTCGTTCGCAAGA -ACGGAAATCCAGTCGTTCGGTTGA -ACGGAAATCCAGTCGTTCTCCGAT -ACGGAAATCCAGTCGTTCTGGCAT -ACGGAAATCCAGTCGTTCCGAGAT -ACGGAAATCCAGTCGTTCTACCAC -ACGGAAATCCAGTCGTTCCAGAAC -ACGGAAATCCAGTCGTTCGTCTAC -ACGGAAATCCAGTCGTTCACGTAC -ACGGAAATCCAGTCGTTCAGTGAC -ACGGAAATCCAGTCGTTCCTGTAG -ACGGAAATCCAGTCGTTCCCTAAG -ACGGAAATCCAGTCGTTCGTTCAG -ACGGAAATCCAGTCGTTCGCATAG -ACGGAAATCCAGTCGTTCGACAAG -ACGGAAATCCAGTCGTTCAAGCAG -ACGGAAATCCAGTCGTTCCGTCAA -ACGGAAATCCAGTCGTTCGCTGAA -ACGGAAATCCAGTCGTTCAGTACG -ACGGAAATCCAGTCGTTCATCCGA -ACGGAAATCCAGTCGTTCATGGGA -ACGGAAATCCAGTCGTTCGTGCAA -ACGGAAATCCAGTCGTTCGAGGAA -ACGGAAATCCAGTCGTTCCAGGTA -ACGGAAATCCAGTCGTTCGACTCT -ACGGAAATCCAGTCGTTCAGTCCT -ACGGAAATCCAGTCGTTCTAAGCC -ACGGAAATCCAGTCGTTCATAGCC -ACGGAAATCCAGTCGTTCTAACCG -ACGGAAATCCAGTCGTTCATGCCA -ACGGAAATCCAGACGTAGGGAAAC -ACGGAAATCCAGACGTAGAACACC -ACGGAAATCCAGACGTAGATCGAG -ACGGAAATCCAGACGTAGCTCCTT -ACGGAAATCCAGACGTAGCCTGTT -ACGGAAATCCAGACGTAGCGGTTT -ACGGAAATCCAGACGTAGGTGGTT -ACGGAAATCCAGACGTAGGCCTTT -ACGGAAATCCAGACGTAGGGTCTT -ACGGAAATCCAGACGTAGACGCTT -ACGGAAATCCAGACGTAGAGCGTT -ACGGAAATCCAGACGTAGTTCGTC -ACGGAAATCCAGACGTAGTCTCTC -ACGGAAATCCAGACGTAGTGGATC -ACGGAAATCCAGACGTAGCACTTC -ACGGAAATCCAGACGTAGGTACTC -ACGGAAATCCAGACGTAGGATGTC -ACGGAAATCCAGACGTAGACAGTC -ACGGAAATCCAGACGTAGTTGCTG -ACGGAAATCCAGACGTAGTCCATG -ACGGAAATCCAGACGTAGTGTGTG -ACGGAAATCCAGACGTAGCTAGTG -ACGGAAATCCAGACGTAGCATCTG -ACGGAAATCCAGACGTAGGAGTTG -ACGGAAATCCAGACGTAGAGACTG -ACGGAAATCCAGACGTAGTCGGTA -ACGGAAATCCAGACGTAGTGCCTA -ACGGAAATCCAGACGTAGCCACTA -ACGGAAATCCAGACGTAGGGAGTA -ACGGAAATCCAGACGTAGTCGTCT -ACGGAAATCCAGACGTAGTGCACT -ACGGAAATCCAGACGTAGCTGACT -ACGGAAATCCAGACGTAGCAACCT -ACGGAAATCCAGACGTAGGCTACT -ACGGAAATCCAGACGTAGGGATCT -ACGGAAATCCAGACGTAGAAGGCT -ACGGAAATCCAGACGTAGTCAACC -ACGGAAATCCAGACGTAGTGTTCC -ACGGAAATCCAGACGTAGATTCCC -ACGGAAATCCAGACGTAGTTCTCG -ACGGAAATCCAGACGTAGTAGACG -ACGGAAATCCAGACGTAGGTAACG -ACGGAAATCCAGACGTAGACTTCG -ACGGAAATCCAGACGTAGTACGCA -ACGGAAATCCAGACGTAGCTTGCA -ACGGAAATCCAGACGTAGCGAACA -ACGGAAATCCAGACGTAGCAGTCA -ACGGAAATCCAGACGTAGGATCCA -ACGGAAATCCAGACGTAGACGACA -ACGGAAATCCAGACGTAGAGCTCA -ACGGAAATCCAGACGTAGTCACGT -ACGGAAATCCAGACGTAGCGTAGT -ACGGAAATCCAGACGTAGGTCAGT -ACGGAAATCCAGACGTAGGAAGGT -ACGGAAATCCAGACGTAGAACCGT -ACGGAAATCCAGACGTAGTTGTGC -ACGGAAATCCAGACGTAGCTAAGC -ACGGAAATCCAGACGTAGACTAGC -ACGGAAATCCAGACGTAGAGATGC -ACGGAAATCCAGACGTAGTGAAGG -ACGGAAATCCAGACGTAGCAATGG -ACGGAAATCCAGACGTAGATGAGG -ACGGAAATCCAGACGTAGAATGGG -ACGGAAATCCAGACGTAGTCCTGA -ACGGAAATCCAGACGTAGTAGCGA -ACGGAAATCCAGACGTAGCACAGA -ACGGAAATCCAGACGTAGGCAAGA -ACGGAAATCCAGACGTAGGGTTGA -ACGGAAATCCAGACGTAGTCCGAT -ACGGAAATCCAGACGTAGTGGCAT -ACGGAAATCCAGACGTAGCGAGAT -ACGGAAATCCAGACGTAGTACCAC -ACGGAAATCCAGACGTAGCAGAAC -ACGGAAATCCAGACGTAGGTCTAC -ACGGAAATCCAGACGTAGACGTAC -ACGGAAATCCAGACGTAGAGTGAC -ACGGAAATCCAGACGTAGCTGTAG -ACGGAAATCCAGACGTAGCCTAAG -ACGGAAATCCAGACGTAGGTTCAG -ACGGAAATCCAGACGTAGGCATAG -ACGGAAATCCAGACGTAGGACAAG -ACGGAAATCCAGACGTAGAAGCAG -ACGGAAATCCAGACGTAGCGTCAA -ACGGAAATCCAGACGTAGGCTGAA -ACGGAAATCCAGACGTAGAGTACG -ACGGAAATCCAGACGTAGATCCGA -ACGGAAATCCAGACGTAGATGGGA -ACGGAAATCCAGACGTAGGTGCAA -ACGGAAATCCAGACGTAGGAGGAA -ACGGAAATCCAGACGTAGCAGGTA -ACGGAAATCCAGACGTAGGACTCT -ACGGAAATCCAGACGTAGAGTCCT -ACGGAAATCCAGACGTAGTAAGCC -ACGGAAATCCAGACGTAGATAGCC -ACGGAAATCCAGACGTAGTAACCG -ACGGAAATCCAGACGTAGATGCCA -ACGGAAATCCAGACGGTAGGAAAC -ACGGAAATCCAGACGGTAAACACC -ACGGAAATCCAGACGGTAATCGAG -ACGGAAATCCAGACGGTACTCCTT -ACGGAAATCCAGACGGTACCTGTT -ACGGAAATCCAGACGGTACGGTTT -ACGGAAATCCAGACGGTAGTGGTT -ACGGAAATCCAGACGGTAGCCTTT -ACGGAAATCCAGACGGTAGGTCTT -ACGGAAATCCAGACGGTAACGCTT -ACGGAAATCCAGACGGTAAGCGTT -ACGGAAATCCAGACGGTATTCGTC -ACGGAAATCCAGACGGTATCTCTC -ACGGAAATCCAGACGGTATGGATC -ACGGAAATCCAGACGGTACACTTC -ACGGAAATCCAGACGGTAGTACTC -ACGGAAATCCAGACGGTAGATGTC -ACGGAAATCCAGACGGTAACAGTC -ACGGAAATCCAGACGGTATTGCTG -ACGGAAATCCAGACGGTATCCATG -ACGGAAATCCAGACGGTATGTGTG -ACGGAAATCCAGACGGTACTAGTG -ACGGAAATCCAGACGGTACATCTG -ACGGAAATCCAGACGGTAGAGTTG -ACGGAAATCCAGACGGTAAGACTG -ACGGAAATCCAGACGGTATCGGTA -ACGGAAATCCAGACGGTATGCCTA -ACGGAAATCCAGACGGTACCACTA -ACGGAAATCCAGACGGTAGGAGTA -ACGGAAATCCAGACGGTATCGTCT -ACGGAAATCCAGACGGTATGCACT -ACGGAAATCCAGACGGTACTGACT -ACGGAAATCCAGACGGTACAACCT -ACGGAAATCCAGACGGTAGCTACT -ACGGAAATCCAGACGGTAGGATCT -ACGGAAATCCAGACGGTAAAGGCT -ACGGAAATCCAGACGGTATCAACC -ACGGAAATCCAGACGGTATGTTCC -ACGGAAATCCAGACGGTAATTCCC -ACGGAAATCCAGACGGTATTCTCG -ACGGAAATCCAGACGGTATAGACG -ACGGAAATCCAGACGGTAGTAACG -ACGGAAATCCAGACGGTAACTTCG -ACGGAAATCCAGACGGTATACGCA -ACGGAAATCCAGACGGTACTTGCA -ACGGAAATCCAGACGGTACGAACA -ACGGAAATCCAGACGGTACAGTCA -ACGGAAATCCAGACGGTAGATCCA -ACGGAAATCCAGACGGTAACGACA -ACGGAAATCCAGACGGTAAGCTCA -ACGGAAATCCAGACGGTATCACGT -ACGGAAATCCAGACGGTACGTAGT -ACGGAAATCCAGACGGTAGTCAGT -ACGGAAATCCAGACGGTAGAAGGT -ACGGAAATCCAGACGGTAAACCGT -ACGGAAATCCAGACGGTATTGTGC -ACGGAAATCCAGACGGTACTAAGC -ACGGAAATCCAGACGGTAACTAGC -ACGGAAATCCAGACGGTAAGATGC -ACGGAAATCCAGACGGTATGAAGG -ACGGAAATCCAGACGGTACAATGG -ACGGAAATCCAGACGGTAATGAGG -ACGGAAATCCAGACGGTAAATGGG -ACGGAAATCCAGACGGTATCCTGA -ACGGAAATCCAGACGGTATAGCGA -ACGGAAATCCAGACGGTACACAGA -ACGGAAATCCAGACGGTAGCAAGA -ACGGAAATCCAGACGGTAGGTTGA -ACGGAAATCCAGACGGTATCCGAT -ACGGAAATCCAGACGGTATGGCAT -ACGGAAATCCAGACGGTACGAGAT -ACGGAAATCCAGACGGTATACCAC -ACGGAAATCCAGACGGTACAGAAC -ACGGAAATCCAGACGGTAGTCTAC -ACGGAAATCCAGACGGTAACGTAC -ACGGAAATCCAGACGGTAAGTGAC -ACGGAAATCCAGACGGTACTGTAG -ACGGAAATCCAGACGGTACCTAAG -ACGGAAATCCAGACGGTAGTTCAG -ACGGAAATCCAGACGGTAGCATAG -ACGGAAATCCAGACGGTAGACAAG -ACGGAAATCCAGACGGTAAAGCAG -ACGGAAATCCAGACGGTACGTCAA -ACGGAAATCCAGACGGTAGCTGAA -ACGGAAATCCAGACGGTAAGTACG -ACGGAAATCCAGACGGTAATCCGA -ACGGAAATCCAGACGGTAATGGGA -ACGGAAATCCAGACGGTAGTGCAA -ACGGAAATCCAGACGGTAGAGGAA -ACGGAAATCCAGACGGTACAGGTA -ACGGAAATCCAGACGGTAGACTCT -ACGGAAATCCAGACGGTAAGTCCT -ACGGAAATCCAGACGGTATAAGCC -ACGGAAATCCAGACGGTAATAGCC -ACGGAAATCCAGACGGTATAACCG -ACGGAAATCCAGACGGTAATGCCA -ACGGAAATCCAGTCGACTGGAAAC -ACGGAAATCCAGTCGACTAACACC -ACGGAAATCCAGTCGACTATCGAG -ACGGAAATCCAGTCGACTCTCCTT -ACGGAAATCCAGTCGACTCCTGTT -ACGGAAATCCAGTCGACTCGGTTT -ACGGAAATCCAGTCGACTGTGGTT -ACGGAAATCCAGTCGACTGCCTTT -ACGGAAATCCAGTCGACTGGTCTT -ACGGAAATCCAGTCGACTACGCTT -ACGGAAATCCAGTCGACTAGCGTT -ACGGAAATCCAGTCGACTTTCGTC -ACGGAAATCCAGTCGACTTCTCTC -ACGGAAATCCAGTCGACTTGGATC -ACGGAAATCCAGTCGACTCACTTC -ACGGAAATCCAGTCGACTGTACTC -ACGGAAATCCAGTCGACTGATGTC -ACGGAAATCCAGTCGACTACAGTC -ACGGAAATCCAGTCGACTTTGCTG -ACGGAAATCCAGTCGACTTCCATG -ACGGAAATCCAGTCGACTTGTGTG -ACGGAAATCCAGTCGACTCTAGTG -ACGGAAATCCAGTCGACTCATCTG -ACGGAAATCCAGTCGACTGAGTTG -ACGGAAATCCAGTCGACTAGACTG -ACGGAAATCCAGTCGACTTCGGTA -ACGGAAATCCAGTCGACTTGCCTA -ACGGAAATCCAGTCGACTCCACTA -ACGGAAATCCAGTCGACTGGAGTA -ACGGAAATCCAGTCGACTTCGTCT -ACGGAAATCCAGTCGACTTGCACT -ACGGAAATCCAGTCGACTCTGACT -ACGGAAATCCAGTCGACTCAACCT -ACGGAAATCCAGTCGACTGCTACT -ACGGAAATCCAGTCGACTGGATCT -ACGGAAATCCAGTCGACTAAGGCT -ACGGAAATCCAGTCGACTTCAACC -ACGGAAATCCAGTCGACTTGTTCC -ACGGAAATCCAGTCGACTATTCCC -ACGGAAATCCAGTCGACTTTCTCG -ACGGAAATCCAGTCGACTTAGACG -ACGGAAATCCAGTCGACTGTAACG -ACGGAAATCCAGTCGACTACTTCG -ACGGAAATCCAGTCGACTTACGCA -ACGGAAATCCAGTCGACTCTTGCA -ACGGAAATCCAGTCGACTCGAACA -ACGGAAATCCAGTCGACTCAGTCA -ACGGAAATCCAGTCGACTGATCCA -ACGGAAATCCAGTCGACTACGACA -ACGGAAATCCAGTCGACTAGCTCA -ACGGAAATCCAGTCGACTTCACGT -ACGGAAATCCAGTCGACTCGTAGT -ACGGAAATCCAGTCGACTGTCAGT -ACGGAAATCCAGTCGACTGAAGGT -ACGGAAATCCAGTCGACTAACCGT -ACGGAAATCCAGTCGACTTTGTGC -ACGGAAATCCAGTCGACTCTAAGC -ACGGAAATCCAGTCGACTACTAGC -ACGGAAATCCAGTCGACTAGATGC -ACGGAAATCCAGTCGACTTGAAGG -ACGGAAATCCAGTCGACTCAATGG -ACGGAAATCCAGTCGACTATGAGG -ACGGAAATCCAGTCGACTAATGGG -ACGGAAATCCAGTCGACTTCCTGA -ACGGAAATCCAGTCGACTTAGCGA -ACGGAAATCCAGTCGACTCACAGA -ACGGAAATCCAGTCGACTGCAAGA -ACGGAAATCCAGTCGACTGGTTGA -ACGGAAATCCAGTCGACTTCCGAT -ACGGAAATCCAGTCGACTTGGCAT -ACGGAAATCCAGTCGACTCGAGAT -ACGGAAATCCAGTCGACTTACCAC -ACGGAAATCCAGTCGACTCAGAAC -ACGGAAATCCAGTCGACTGTCTAC -ACGGAAATCCAGTCGACTACGTAC -ACGGAAATCCAGTCGACTAGTGAC -ACGGAAATCCAGTCGACTCTGTAG -ACGGAAATCCAGTCGACTCCTAAG -ACGGAAATCCAGTCGACTGTTCAG -ACGGAAATCCAGTCGACTGCATAG -ACGGAAATCCAGTCGACTGACAAG -ACGGAAATCCAGTCGACTAAGCAG -ACGGAAATCCAGTCGACTCGTCAA -ACGGAAATCCAGTCGACTGCTGAA -ACGGAAATCCAGTCGACTAGTACG -ACGGAAATCCAGTCGACTATCCGA -ACGGAAATCCAGTCGACTATGGGA -ACGGAAATCCAGTCGACTGTGCAA -ACGGAAATCCAGTCGACTGAGGAA -ACGGAAATCCAGTCGACTCAGGTA -ACGGAAATCCAGTCGACTGACTCT -ACGGAAATCCAGTCGACTAGTCCT -ACGGAAATCCAGTCGACTTAAGCC -ACGGAAATCCAGTCGACTATAGCC -ACGGAAATCCAGTCGACTTAACCG -ACGGAAATCCAGTCGACTATGCCA -ACGGAAATCCAGGCATACGGAAAC -ACGGAAATCCAGGCATACAACACC -ACGGAAATCCAGGCATACATCGAG -ACGGAAATCCAGGCATACCTCCTT -ACGGAAATCCAGGCATACCCTGTT -ACGGAAATCCAGGCATACCGGTTT -ACGGAAATCCAGGCATACGTGGTT -ACGGAAATCCAGGCATACGCCTTT -ACGGAAATCCAGGCATACGGTCTT -ACGGAAATCCAGGCATACACGCTT -ACGGAAATCCAGGCATACAGCGTT -ACGGAAATCCAGGCATACTTCGTC -ACGGAAATCCAGGCATACTCTCTC -ACGGAAATCCAGGCATACTGGATC -ACGGAAATCCAGGCATACCACTTC -ACGGAAATCCAGGCATACGTACTC -ACGGAAATCCAGGCATACGATGTC -ACGGAAATCCAGGCATACACAGTC -ACGGAAATCCAGGCATACTTGCTG -ACGGAAATCCAGGCATACTCCATG -ACGGAAATCCAGGCATACTGTGTG -ACGGAAATCCAGGCATACCTAGTG -ACGGAAATCCAGGCATACCATCTG -ACGGAAATCCAGGCATACGAGTTG -ACGGAAATCCAGGCATACAGACTG -ACGGAAATCCAGGCATACTCGGTA -ACGGAAATCCAGGCATACTGCCTA -ACGGAAATCCAGGCATACCCACTA -ACGGAAATCCAGGCATACGGAGTA -ACGGAAATCCAGGCATACTCGTCT -ACGGAAATCCAGGCATACTGCACT -ACGGAAATCCAGGCATACCTGACT -ACGGAAATCCAGGCATACCAACCT -ACGGAAATCCAGGCATACGCTACT -ACGGAAATCCAGGCATACGGATCT -ACGGAAATCCAGGCATACAAGGCT -ACGGAAATCCAGGCATACTCAACC -ACGGAAATCCAGGCATACTGTTCC -ACGGAAATCCAGGCATACATTCCC -ACGGAAATCCAGGCATACTTCTCG -ACGGAAATCCAGGCATACTAGACG -ACGGAAATCCAGGCATACGTAACG -ACGGAAATCCAGGCATACACTTCG -ACGGAAATCCAGGCATACTACGCA -ACGGAAATCCAGGCATACCTTGCA -ACGGAAATCCAGGCATACCGAACA -ACGGAAATCCAGGCATACCAGTCA -ACGGAAATCCAGGCATACGATCCA -ACGGAAATCCAGGCATACACGACA -ACGGAAATCCAGGCATACAGCTCA -ACGGAAATCCAGGCATACTCACGT -ACGGAAATCCAGGCATACCGTAGT -ACGGAAATCCAGGCATACGTCAGT -ACGGAAATCCAGGCATACGAAGGT -ACGGAAATCCAGGCATACAACCGT -ACGGAAATCCAGGCATACTTGTGC -ACGGAAATCCAGGCATACCTAAGC -ACGGAAATCCAGGCATACACTAGC -ACGGAAATCCAGGCATACAGATGC -ACGGAAATCCAGGCATACTGAAGG -ACGGAAATCCAGGCATACCAATGG -ACGGAAATCCAGGCATACATGAGG -ACGGAAATCCAGGCATACAATGGG -ACGGAAATCCAGGCATACTCCTGA -ACGGAAATCCAGGCATACTAGCGA -ACGGAAATCCAGGCATACCACAGA -ACGGAAATCCAGGCATACGCAAGA -ACGGAAATCCAGGCATACGGTTGA -ACGGAAATCCAGGCATACTCCGAT -ACGGAAATCCAGGCATACTGGCAT -ACGGAAATCCAGGCATACCGAGAT -ACGGAAATCCAGGCATACTACCAC -ACGGAAATCCAGGCATACCAGAAC -ACGGAAATCCAGGCATACGTCTAC -ACGGAAATCCAGGCATACACGTAC -ACGGAAATCCAGGCATACAGTGAC -ACGGAAATCCAGGCATACCTGTAG -ACGGAAATCCAGGCATACCCTAAG -ACGGAAATCCAGGCATACGTTCAG -ACGGAAATCCAGGCATACGCATAG -ACGGAAATCCAGGCATACGACAAG -ACGGAAATCCAGGCATACAAGCAG -ACGGAAATCCAGGCATACCGTCAA -ACGGAAATCCAGGCATACGCTGAA -ACGGAAATCCAGGCATACAGTACG -ACGGAAATCCAGGCATACATCCGA -ACGGAAATCCAGGCATACATGGGA -ACGGAAATCCAGGCATACGTGCAA -ACGGAAATCCAGGCATACGAGGAA -ACGGAAATCCAGGCATACCAGGTA -ACGGAAATCCAGGCATACGACTCT -ACGGAAATCCAGGCATACAGTCCT -ACGGAAATCCAGGCATACTAAGCC -ACGGAAATCCAGGCATACATAGCC -ACGGAAATCCAGGCATACTAACCG -ACGGAAATCCAGGCATACATGCCA -ACGGAAATCCAGGCACTTGGAAAC -ACGGAAATCCAGGCACTTAACACC -ACGGAAATCCAGGCACTTATCGAG -ACGGAAATCCAGGCACTTCTCCTT -ACGGAAATCCAGGCACTTCCTGTT -ACGGAAATCCAGGCACTTCGGTTT -ACGGAAATCCAGGCACTTGTGGTT -ACGGAAATCCAGGCACTTGCCTTT -ACGGAAATCCAGGCACTTGGTCTT -ACGGAAATCCAGGCACTTACGCTT -ACGGAAATCCAGGCACTTAGCGTT -ACGGAAATCCAGGCACTTTTCGTC -ACGGAAATCCAGGCACTTTCTCTC -ACGGAAATCCAGGCACTTTGGATC -ACGGAAATCCAGGCACTTCACTTC -ACGGAAATCCAGGCACTTGTACTC -ACGGAAATCCAGGCACTTGATGTC -ACGGAAATCCAGGCACTTACAGTC -ACGGAAATCCAGGCACTTTTGCTG -ACGGAAATCCAGGCACTTTCCATG -ACGGAAATCCAGGCACTTTGTGTG -ACGGAAATCCAGGCACTTCTAGTG -ACGGAAATCCAGGCACTTCATCTG -ACGGAAATCCAGGCACTTGAGTTG -ACGGAAATCCAGGCACTTAGACTG -ACGGAAATCCAGGCACTTTCGGTA -ACGGAAATCCAGGCACTTTGCCTA -ACGGAAATCCAGGCACTTCCACTA -ACGGAAATCCAGGCACTTGGAGTA -ACGGAAATCCAGGCACTTTCGTCT -ACGGAAATCCAGGCACTTTGCACT -ACGGAAATCCAGGCACTTCTGACT -ACGGAAATCCAGGCACTTCAACCT -ACGGAAATCCAGGCACTTGCTACT -ACGGAAATCCAGGCACTTGGATCT -ACGGAAATCCAGGCACTTAAGGCT -ACGGAAATCCAGGCACTTTCAACC -ACGGAAATCCAGGCACTTTGTTCC -ACGGAAATCCAGGCACTTATTCCC -ACGGAAATCCAGGCACTTTTCTCG -ACGGAAATCCAGGCACTTTAGACG -ACGGAAATCCAGGCACTTGTAACG -ACGGAAATCCAGGCACTTACTTCG -ACGGAAATCCAGGCACTTTACGCA -ACGGAAATCCAGGCACTTCTTGCA -ACGGAAATCCAGGCACTTCGAACA -ACGGAAATCCAGGCACTTCAGTCA -ACGGAAATCCAGGCACTTGATCCA -ACGGAAATCCAGGCACTTACGACA -ACGGAAATCCAGGCACTTAGCTCA -ACGGAAATCCAGGCACTTTCACGT -ACGGAAATCCAGGCACTTCGTAGT -ACGGAAATCCAGGCACTTGTCAGT -ACGGAAATCCAGGCACTTGAAGGT -ACGGAAATCCAGGCACTTAACCGT -ACGGAAATCCAGGCACTTTTGTGC -ACGGAAATCCAGGCACTTCTAAGC -ACGGAAATCCAGGCACTTACTAGC -ACGGAAATCCAGGCACTTAGATGC -ACGGAAATCCAGGCACTTTGAAGG -ACGGAAATCCAGGCACTTCAATGG -ACGGAAATCCAGGCACTTATGAGG -ACGGAAATCCAGGCACTTAATGGG -ACGGAAATCCAGGCACTTTCCTGA -ACGGAAATCCAGGCACTTTAGCGA -ACGGAAATCCAGGCACTTCACAGA -ACGGAAATCCAGGCACTTGCAAGA -ACGGAAATCCAGGCACTTGGTTGA -ACGGAAATCCAGGCACTTTCCGAT -ACGGAAATCCAGGCACTTTGGCAT -ACGGAAATCCAGGCACTTCGAGAT -ACGGAAATCCAGGCACTTTACCAC -ACGGAAATCCAGGCACTTCAGAAC -ACGGAAATCCAGGCACTTGTCTAC -ACGGAAATCCAGGCACTTACGTAC -ACGGAAATCCAGGCACTTAGTGAC -ACGGAAATCCAGGCACTTCTGTAG -ACGGAAATCCAGGCACTTCCTAAG -ACGGAAATCCAGGCACTTGTTCAG -ACGGAAATCCAGGCACTTGCATAG -ACGGAAATCCAGGCACTTGACAAG -ACGGAAATCCAGGCACTTAAGCAG -ACGGAAATCCAGGCACTTCGTCAA -ACGGAAATCCAGGCACTTGCTGAA -ACGGAAATCCAGGCACTTAGTACG -ACGGAAATCCAGGCACTTATCCGA -ACGGAAATCCAGGCACTTATGGGA -ACGGAAATCCAGGCACTTGTGCAA -ACGGAAATCCAGGCACTTGAGGAA -ACGGAAATCCAGGCACTTCAGGTA -ACGGAAATCCAGGCACTTGACTCT -ACGGAAATCCAGGCACTTAGTCCT -ACGGAAATCCAGGCACTTTAAGCC -ACGGAAATCCAGGCACTTATAGCC -ACGGAAATCCAGGCACTTTAACCG -ACGGAAATCCAGGCACTTATGCCA -ACGGAAATCCAGACACGAGGAAAC -ACGGAAATCCAGACACGAAACACC -ACGGAAATCCAGACACGAATCGAG -ACGGAAATCCAGACACGACTCCTT -ACGGAAATCCAGACACGACCTGTT -ACGGAAATCCAGACACGACGGTTT -ACGGAAATCCAGACACGAGTGGTT -ACGGAAATCCAGACACGAGCCTTT -ACGGAAATCCAGACACGAGGTCTT -ACGGAAATCCAGACACGAACGCTT -ACGGAAATCCAGACACGAAGCGTT -ACGGAAATCCAGACACGATTCGTC -ACGGAAATCCAGACACGATCTCTC -ACGGAAATCCAGACACGATGGATC -ACGGAAATCCAGACACGACACTTC -ACGGAAATCCAGACACGAGTACTC -ACGGAAATCCAGACACGAGATGTC -ACGGAAATCCAGACACGAACAGTC -ACGGAAATCCAGACACGATTGCTG -ACGGAAATCCAGACACGATCCATG -ACGGAAATCCAGACACGATGTGTG -ACGGAAATCCAGACACGACTAGTG -ACGGAAATCCAGACACGACATCTG -ACGGAAATCCAGACACGAGAGTTG -ACGGAAATCCAGACACGAAGACTG -ACGGAAATCCAGACACGATCGGTA -ACGGAAATCCAGACACGATGCCTA -ACGGAAATCCAGACACGACCACTA -ACGGAAATCCAGACACGAGGAGTA -ACGGAAATCCAGACACGATCGTCT -ACGGAAATCCAGACACGATGCACT -ACGGAAATCCAGACACGACTGACT -ACGGAAATCCAGACACGACAACCT -ACGGAAATCCAGACACGAGCTACT -ACGGAAATCCAGACACGAGGATCT -ACGGAAATCCAGACACGAAAGGCT -ACGGAAATCCAGACACGATCAACC -ACGGAAATCCAGACACGATGTTCC -ACGGAAATCCAGACACGAATTCCC -ACGGAAATCCAGACACGATTCTCG -ACGGAAATCCAGACACGATAGACG -ACGGAAATCCAGACACGAGTAACG -ACGGAAATCCAGACACGAACTTCG -ACGGAAATCCAGACACGATACGCA -ACGGAAATCCAGACACGACTTGCA -ACGGAAATCCAGACACGACGAACA -ACGGAAATCCAGACACGACAGTCA -ACGGAAATCCAGACACGAGATCCA -ACGGAAATCCAGACACGAACGACA -ACGGAAATCCAGACACGAAGCTCA -ACGGAAATCCAGACACGATCACGT -ACGGAAATCCAGACACGACGTAGT -ACGGAAATCCAGACACGAGTCAGT -ACGGAAATCCAGACACGAGAAGGT -ACGGAAATCCAGACACGAAACCGT -ACGGAAATCCAGACACGATTGTGC -ACGGAAATCCAGACACGACTAAGC -ACGGAAATCCAGACACGAACTAGC -ACGGAAATCCAGACACGAAGATGC -ACGGAAATCCAGACACGATGAAGG -ACGGAAATCCAGACACGACAATGG -ACGGAAATCCAGACACGAATGAGG -ACGGAAATCCAGACACGAAATGGG -ACGGAAATCCAGACACGATCCTGA -ACGGAAATCCAGACACGATAGCGA -ACGGAAATCCAGACACGACACAGA -ACGGAAATCCAGACACGAGCAAGA -ACGGAAATCCAGACACGAGGTTGA -ACGGAAATCCAGACACGATCCGAT -ACGGAAATCCAGACACGATGGCAT -ACGGAAATCCAGACACGACGAGAT -ACGGAAATCCAGACACGATACCAC -ACGGAAATCCAGACACGACAGAAC -ACGGAAATCCAGACACGAGTCTAC -ACGGAAATCCAGACACGAACGTAC -ACGGAAATCCAGACACGAAGTGAC -ACGGAAATCCAGACACGACTGTAG -ACGGAAATCCAGACACGACCTAAG -ACGGAAATCCAGACACGAGTTCAG -ACGGAAATCCAGACACGAGCATAG -ACGGAAATCCAGACACGAGACAAG -ACGGAAATCCAGACACGAAAGCAG -ACGGAAATCCAGACACGACGTCAA -ACGGAAATCCAGACACGAGCTGAA -ACGGAAATCCAGACACGAAGTACG -ACGGAAATCCAGACACGAATCCGA -ACGGAAATCCAGACACGAATGGGA -ACGGAAATCCAGACACGAGTGCAA -ACGGAAATCCAGACACGAGAGGAA -ACGGAAATCCAGACACGACAGGTA -ACGGAAATCCAGACACGAGACTCT -ACGGAAATCCAGACACGAAGTCCT -ACGGAAATCCAGACACGATAAGCC -ACGGAAATCCAGACACGAATAGCC -ACGGAAATCCAGACACGATAACCG -ACGGAAATCCAGACACGAATGCCA -ACGGAAATCCAGTCACAGGGAAAC -ACGGAAATCCAGTCACAGAACACC -ACGGAAATCCAGTCACAGATCGAG -ACGGAAATCCAGTCACAGCTCCTT -ACGGAAATCCAGTCACAGCCTGTT -ACGGAAATCCAGTCACAGCGGTTT -ACGGAAATCCAGTCACAGGTGGTT -ACGGAAATCCAGTCACAGGCCTTT -ACGGAAATCCAGTCACAGGGTCTT -ACGGAAATCCAGTCACAGACGCTT -ACGGAAATCCAGTCACAGAGCGTT -ACGGAAATCCAGTCACAGTTCGTC -ACGGAAATCCAGTCACAGTCTCTC -ACGGAAATCCAGTCACAGTGGATC -ACGGAAATCCAGTCACAGCACTTC -ACGGAAATCCAGTCACAGGTACTC -ACGGAAATCCAGTCACAGGATGTC -ACGGAAATCCAGTCACAGACAGTC -ACGGAAATCCAGTCACAGTTGCTG -ACGGAAATCCAGTCACAGTCCATG -ACGGAAATCCAGTCACAGTGTGTG -ACGGAAATCCAGTCACAGCTAGTG -ACGGAAATCCAGTCACAGCATCTG -ACGGAAATCCAGTCACAGGAGTTG -ACGGAAATCCAGTCACAGAGACTG -ACGGAAATCCAGTCACAGTCGGTA -ACGGAAATCCAGTCACAGTGCCTA -ACGGAAATCCAGTCACAGCCACTA -ACGGAAATCCAGTCACAGGGAGTA -ACGGAAATCCAGTCACAGTCGTCT -ACGGAAATCCAGTCACAGTGCACT -ACGGAAATCCAGTCACAGCTGACT -ACGGAAATCCAGTCACAGCAACCT -ACGGAAATCCAGTCACAGGCTACT -ACGGAAATCCAGTCACAGGGATCT -ACGGAAATCCAGTCACAGAAGGCT -ACGGAAATCCAGTCACAGTCAACC -ACGGAAATCCAGTCACAGTGTTCC -ACGGAAATCCAGTCACAGATTCCC -ACGGAAATCCAGTCACAGTTCTCG -ACGGAAATCCAGTCACAGTAGACG -ACGGAAATCCAGTCACAGGTAACG -ACGGAAATCCAGTCACAGACTTCG -ACGGAAATCCAGTCACAGTACGCA -ACGGAAATCCAGTCACAGCTTGCA -ACGGAAATCCAGTCACAGCGAACA -ACGGAAATCCAGTCACAGCAGTCA -ACGGAAATCCAGTCACAGGATCCA -ACGGAAATCCAGTCACAGACGACA -ACGGAAATCCAGTCACAGAGCTCA -ACGGAAATCCAGTCACAGTCACGT -ACGGAAATCCAGTCACAGCGTAGT -ACGGAAATCCAGTCACAGGTCAGT -ACGGAAATCCAGTCACAGGAAGGT -ACGGAAATCCAGTCACAGAACCGT -ACGGAAATCCAGTCACAGTTGTGC -ACGGAAATCCAGTCACAGCTAAGC -ACGGAAATCCAGTCACAGACTAGC -ACGGAAATCCAGTCACAGAGATGC -ACGGAAATCCAGTCACAGTGAAGG -ACGGAAATCCAGTCACAGCAATGG -ACGGAAATCCAGTCACAGATGAGG -ACGGAAATCCAGTCACAGAATGGG -ACGGAAATCCAGTCACAGTCCTGA -ACGGAAATCCAGTCACAGTAGCGA -ACGGAAATCCAGTCACAGCACAGA -ACGGAAATCCAGTCACAGGCAAGA -ACGGAAATCCAGTCACAGGGTTGA -ACGGAAATCCAGTCACAGTCCGAT -ACGGAAATCCAGTCACAGTGGCAT -ACGGAAATCCAGTCACAGCGAGAT -ACGGAAATCCAGTCACAGTACCAC -ACGGAAATCCAGTCACAGCAGAAC -ACGGAAATCCAGTCACAGGTCTAC -ACGGAAATCCAGTCACAGACGTAC -ACGGAAATCCAGTCACAGAGTGAC -ACGGAAATCCAGTCACAGCTGTAG -ACGGAAATCCAGTCACAGCCTAAG -ACGGAAATCCAGTCACAGGTTCAG -ACGGAAATCCAGTCACAGGCATAG -ACGGAAATCCAGTCACAGGACAAG -ACGGAAATCCAGTCACAGAAGCAG -ACGGAAATCCAGTCACAGCGTCAA -ACGGAAATCCAGTCACAGGCTGAA -ACGGAAATCCAGTCACAGAGTACG -ACGGAAATCCAGTCACAGATCCGA -ACGGAAATCCAGTCACAGATGGGA -ACGGAAATCCAGTCACAGGTGCAA -ACGGAAATCCAGTCACAGGAGGAA -ACGGAAATCCAGTCACAGCAGGTA -ACGGAAATCCAGTCACAGGACTCT -ACGGAAATCCAGTCACAGAGTCCT -ACGGAAATCCAGTCACAGTAAGCC -ACGGAAATCCAGTCACAGATAGCC -ACGGAAATCCAGTCACAGTAACCG -ACGGAAATCCAGTCACAGATGCCA -ACGGAAATCCAGCCAGATGGAAAC -ACGGAAATCCAGCCAGATAACACC -ACGGAAATCCAGCCAGATATCGAG -ACGGAAATCCAGCCAGATCTCCTT -ACGGAAATCCAGCCAGATCCTGTT -ACGGAAATCCAGCCAGATCGGTTT -ACGGAAATCCAGCCAGATGTGGTT -ACGGAAATCCAGCCAGATGCCTTT -ACGGAAATCCAGCCAGATGGTCTT -ACGGAAATCCAGCCAGATACGCTT -ACGGAAATCCAGCCAGATAGCGTT -ACGGAAATCCAGCCAGATTTCGTC -ACGGAAATCCAGCCAGATTCTCTC -ACGGAAATCCAGCCAGATTGGATC -ACGGAAATCCAGCCAGATCACTTC -ACGGAAATCCAGCCAGATGTACTC -ACGGAAATCCAGCCAGATGATGTC -ACGGAAATCCAGCCAGATACAGTC -ACGGAAATCCAGCCAGATTTGCTG -ACGGAAATCCAGCCAGATTCCATG -ACGGAAATCCAGCCAGATTGTGTG -ACGGAAATCCAGCCAGATCTAGTG -ACGGAAATCCAGCCAGATCATCTG -ACGGAAATCCAGCCAGATGAGTTG -ACGGAAATCCAGCCAGATAGACTG -ACGGAAATCCAGCCAGATTCGGTA -ACGGAAATCCAGCCAGATTGCCTA -ACGGAAATCCAGCCAGATCCACTA -ACGGAAATCCAGCCAGATGGAGTA -ACGGAAATCCAGCCAGATTCGTCT -ACGGAAATCCAGCCAGATTGCACT -ACGGAAATCCAGCCAGATCTGACT -ACGGAAATCCAGCCAGATCAACCT -ACGGAAATCCAGCCAGATGCTACT -ACGGAAATCCAGCCAGATGGATCT -ACGGAAATCCAGCCAGATAAGGCT -ACGGAAATCCAGCCAGATTCAACC -ACGGAAATCCAGCCAGATTGTTCC -ACGGAAATCCAGCCAGATATTCCC -ACGGAAATCCAGCCAGATTTCTCG -ACGGAAATCCAGCCAGATTAGACG -ACGGAAATCCAGCCAGATGTAACG -ACGGAAATCCAGCCAGATACTTCG -ACGGAAATCCAGCCAGATTACGCA -ACGGAAATCCAGCCAGATCTTGCA -ACGGAAATCCAGCCAGATCGAACA -ACGGAAATCCAGCCAGATCAGTCA -ACGGAAATCCAGCCAGATGATCCA -ACGGAAATCCAGCCAGATACGACA -ACGGAAATCCAGCCAGATAGCTCA -ACGGAAATCCAGCCAGATTCACGT -ACGGAAATCCAGCCAGATCGTAGT -ACGGAAATCCAGCCAGATGTCAGT -ACGGAAATCCAGCCAGATGAAGGT -ACGGAAATCCAGCCAGATAACCGT -ACGGAAATCCAGCCAGATTTGTGC -ACGGAAATCCAGCCAGATCTAAGC -ACGGAAATCCAGCCAGATACTAGC -ACGGAAATCCAGCCAGATAGATGC -ACGGAAATCCAGCCAGATTGAAGG -ACGGAAATCCAGCCAGATCAATGG -ACGGAAATCCAGCCAGATATGAGG -ACGGAAATCCAGCCAGATAATGGG -ACGGAAATCCAGCCAGATTCCTGA -ACGGAAATCCAGCCAGATTAGCGA -ACGGAAATCCAGCCAGATCACAGA -ACGGAAATCCAGCCAGATGCAAGA -ACGGAAATCCAGCCAGATGGTTGA -ACGGAAATCCAGCCAGATTCCGAT -ACGGAAATCCAGCCAGATTGGCAT -ACGGAAATCCAGCCAGATCGAGAT -ACGGAAATCCAGCCAGATTACCAC -ACGGAAATCCAGCCAGATCAGAAC -ACGGAAATCCAGCCAGATGTCTAC -ACGGAAATCCAGCCAGATACGTAC -ACGGAAATCCAGCCAGATAGTGAC -ACGGAAATCCAGCCAGATCTGTAG -ACGGAAATCCAGCCAGATCCTAAG -ACGGAAATCCAGCCAGATGTTCAG -ACGGAAATCCAGCCAGATGCATAG -ACGGAAATCCAGCCAGATGACAAG -ACGGAAATCCAGCCAGATAAGCAG -ACGGAAATCCAGCCAGATCGTCAA -ACGGAAATCCAGCCAGATGCTGAA -ACGGAAATCCAGCCAGATAGTACG -ACGGAAATCCAGCCAGATATCCGA -ACGGAAATCCAGCCAGATATGGGA -ACGGAAATCCAGCCAGATGTGCAA -ACGGAAATCCAGCCAGATGAGGAA -ACGGAAATCCAGCCAGATCAGGTA -ACGGAAATCCAGCCAGATGACTCT -ACGGAAATCCAGCCAGATAGTCCT -ACGGAAATCCAGCCAGATTAAGCC -ACGGAAATCCAGCCAGATATAGCC -ACGGAAATCCAGCCAGATTAACCG -ACGGAAATCCAGCCAGATATGCCA -ACGGAAATCCAGACAACGGGAAAC -ACGGAAATCCAGACAACGAACACC -ACGGAAATCCAGACAACGATCGAG -ACGGAAATCCAGACAACGCTCCTT -ACGGAAATCCAGACAACGCCTGTT -ACGGAAATCCAGACAACGCGGTTT -ACGGAAATCCAGACAACGGTGGTT -ACGGAAATCCAGACAACGGCCTTT -ACGGAAATCCAGACAACGGGTCTT -ACGGAAATCCAGACAACGACGCTT -ACGGAAATCCAGACAACGAGCGTT -ACGGAAATCCAGACAACGTTCGTC -ACGGAAATCCAGACAACGTCTCTC -ACGGAAATCCAGACAACGTGGATC -ACGGAAATCCAGACAACGCACTTC -ACGGAAATCCAGACAACGGTACTC -ACGGAAATCCAGACAACGGATGTC -ACGGAAATCCAGACAACGACAGTC -ACGGAAATCCAGACAACGTTGCTG -ACGGAAATCCAGACAACGTCCATG -ACGGAAATCCAGACAACGTGTGTG -ACGGAAATCCAGACAACGCTAGTG -ACGGAAATCCAGACAACGCATCTG -ACGGAAATCCAGACAACGGAGTTG -ACGGAAATCCAGACAACGAGACTG -ACGGAAATCCAGACAACGTCGGTA -ACGGAAATCCAGACAACGTGCCTA -ACGGAAATCCAGACAACGCCACTA -ACGGAAATCCAGACAACGGGAGTA -ACGGAAATCCAGACAACGTCGTCT -ACGGAAATCCAGACAACGTGCACT -ACGGAAATCCAGACAACGCTGACT -ACGGAAATCCAGACAACGCAACCT -ACGGAAATCCAGACAACGGCTACT -ACGGAAATCCAGACAACGGGATCT -ACGGAAATCCAGACAACGAAGGCT -ACGGAAATCCAGACAACGTCAACC -ACGGAAATCCAGACAACGTGTTCC -ACGGAAATCCAGACAACGATTCCC -ACGGAAATCCAGACAACGTTCTCG -ACGGAAATCCAGACAACGTAGACG -ACGGAAATCCAGACAACGGTAACG -ACGGAAATCCAGACAACGACTTCG -ACGGAAATCCAGACAACGTACGCA -ACGGAAATCCAGACAACGCTTGCA -ACGGAAATCCAGACAACGCGAACA -ACGGAAATCCAGACAACGCAGTCA -ACGGAAATCCAGACAACGGATCCA -ACGGAAATCCAGACAACGACGACA -ACGGAAATCCAGACAACGAGCTCA -ACGGAAATCCAGACAACGTCACGT -ACGGAAATCCAGACAACGCGTAGT -ACGGAAATCCAGACAACGGTCAGT -ACGGAAATCCAGACAACGGAAGGT -ACGGAAATCCAGACAACGAACCGT -ACGGAAATCCAGACAACGTTGTGC -ACGGAAATCCAGACAACGCTAAGC -ACGGAAATCCAGACAACGACTAGC -ACGGAAATCCAGACAACGAGATGC -ACGGAAATCCAGACAACGTGAAGG -ACGGAAATCCAGACAACGCAATGG -ACGGAAATCCAGACAACGATGAGG -ACGGAAATCCAGACAACGAATGGG -ACGGAAATCCAGACAACGTCCTGA -ACGGAAATCCAGACAACGTAGCGA -ACGGAAATCCAGACAACGCACAGA -ACGGAAATCCAGACAACGGCAAGA -ACGGAAATCCAGACAACGGGTTGA -ACGGAAATCCAGACAACGTCCGAT -ACGGAAATCCAGACAACGTGGCAT -ACGGAAATCCAGACAACGCGAGAT -ACGGAAATCCAGACAACGTACCAC -ACGGAAATCCAGACAACGCAGAAC -ACGGAAATCCAGACAACGGTCTAC -ACGGAAATCCAGACAACGACGTAC -ACGGAAATCCAGACAACGAGTGAC -ACGGAAATCCAGACAACGCTGTAG -ACGGAAATCCAGACAACGCCTAAG -ACGGAAATCCAGACAACGGTTCAG -ACGGAAATCCAGACAACGGCATAG -ACGGAAATCCAGACAACGGACAAG -ACGGAAATCCAGACAACGAAGCAG -ACGGAAATCCAGACAACGCGTCAA -ACGGAAATCCAGACAACGGCTGAA -ACGGAAATCCAGACAACGAGTACG -ACGGAAATCCAGACAACGATCCGA -ACGGAAATCCAGACAACGATGGGA -ACGGAAATCCAGACAACGGTGCAA -ACGGAAATCCAGACAACGGAGGAA -ACGGAAATCCAGACAACGCAGGTA -ACGGAAATCCAGACAACGGACTCT -ACGGAAATCCAGACAACGAGTCCT -ACGGAAATCCAGACAACGTAAGCC -ACGGAAATCCAGACAACGATAGCC -ACGGAAATCCAGACAACGTAACCG -ACGGAAATCCAGACAACGATGCCA -ACGGAAATCCAGTCAAGCGGAAAC -ACGGAAATCCAGTCAAGCAACACC -ACGGAAATCCAGTCAAGCATCGAG -ACGGAAATCCAGTCAAGCCTCCTT -ACGGAAATCCAGTCAAGCCCTGTT -ACGGAAATCCAGTCAAGCCGGTTT -ACGGAAATCCAGTCAAGCGTGGTT -ACGGAAATCCAGTCAAGCGCCTTT -ACGGAAATCCAGTCAAGCGGTCTT -ACGGAAATCCAGTCAAGCACGCTT -ACGGAAATCCAGTCAAGCAGCGTT -ACGGAAATCCAGTCAAGCTTCGTC -ACGGAAATCCAGTCAAGCTCTCTC -ACGGAAATCCAGTCAAGCTGGATC -ACGGAAATCCAGTCAAGCCACTTC -ACGGAAATCCAGTCAAGCGTACTC -ACGGAAATCCAGTCAAGCGATGTC -ACGGAAATCCAGTCAAGCACAGTC -ACGGAAATCCAGTCAAGCTTGCTG -ACGGAAATCCAGTCAAGCTCCATG -ACGGAAATCCAGTCAAGCTGTGTG -ACGGAAATCCAGTCAAGCCTAGTG -ACGGAAATCCAGTCAAGCCATCTG -ACGGAAATCCAGTCAAGCGAGTTG -ACGGAAATCCAGTCAAGCAGACTG -ACGGAAATCCAGTCAAGCTCGGTA -ACGGAAATCCAGTCAAGCTGCCTA -ACGGAAATCCAGTCAAGCCCACTA -ACGGAAATCCAGTCAAGCGGAGTA -ACGGAAATCCAGTCAAGCTCGTCT -ACGGAAATCCAGTCAAGCTGCACT -ACGGAAATCCAGTCAAGCCTGACT -ACGGAAATCCAGTCAAGCCAACCT -ACGGAAATCCAGTCAAGCGCTACT -ACGGAAATCCAGTCAAGCGGATCT -ACGGAAATCCAGTCAAGCAAGGCT -ACGGAAATCCAGTCAAGCTCAACC -ACGGAAATCCAGTCAAGCTGTTCC -ACGGAAATCCAGTCAAGCATTCCC -ACGGAAATCCAGTCAAGCTTCTCG -ACGGAAATCCAGTCAAGCTAGACG -ACGGAAATCCAGTCAAGCGTAACG -ACGGAAATCCAGTCAAGCACTTCG -ACGGAAATCCAGTCAAGCTACGCA -ACGGAAATCCAGTCAAGCCTTGCA -ACGGAAATCCAGTCAAGCCGAACA -ACGGAAATCCAGTCAAGCCAGTCA -ACGGAAATCCAGTCAAGCGATCCA -ACGGAAATCCAGTCAAGCACGACA -ACGGAAATCCAGTCAAGCAGCTCA -ACGGAAATCCAGTCAAGCTCACGT -ACGGAAATCCAGTCAAGCCGTAGT -ACGGAAATCCAGTCAAGCGTCAGT -ACGGAAATCCAGTCAAGCGAAGGT -ACGGAAATCCAGTCAAGCAACCGT -ACGGAAATCCAGTCAAGCTTGTGC -ACGGAAATCCAGTCAAGCCTAAGC -ACGGAAATCCAGTCAAGCACTAGC -ACGGAAATCCAGTCAAGCAGATGC -ACGGAAATCCAGTCAAGCTGAAGG -ACGGAAATCCAGTCAAGCCAATGG -ACGGAAATCCAGTCAAGCATGAGG -ACGGAAATCCAGTCAAGCAATGGG -ACGGAAATCCAGTCAAGCTCCTGA -ACGGAAATCCAGTCAAGCTAGCGA -ACGGAAATCCAGTCAAGCCACAGA -ACGGAAATCCAGTCAAGCGCAAGA -ACGGAAATCCAGTCAAGCGGTTGA -ACGGAAATCCAGTCAAGCTCCGAT -ACGGAAATCCAGTCAAGCTGGCAT -ACGGAAATCCAGTCAAGCCGAGAT -ACGGAAATCCAGTCAAGCTACCAC -ACGGAAATCCAGTCAAGCCAGAAC -ACGGAAATCCAGTCAAGCGTCTAC -ACGGAAATCCAGTCAAGCACGTAC -ACGGAAATCCAGTCAAGCAGTGAC -ACGGAAATCCAGTCAAGCCTGTAG -ACGGAAATCCAGTCAAGCCCTAAG -ACGGAAATCCAGTCAAGCGTTCAG -ACGGAAATCCAGTCAAGCGCATAG -ACGGAAATCCAGTCAAGCGACAAG -ACGGAAATCCAGTCAAGCAAGCAG -ACGGAAATCCAGTCAAGCCGTCAA -ACGGAAATCCAGTCAAGCGCTGAA -ACGGAAATCCAGTCAAGCAGTACG -ACGGAAATCCAGTCAAGCATCCGA -ACGGAAATCCAGTCAAGCATGGGA -ACGGAAATCCAGTCAAGCGTGCAA -ACGGAAATCCAGTCAAGCGAGGAA -ACGGAAATCCAGTCAAGCCAGGTA -ACGGAAATCCAGTCAAGCGACTCT -ACGGAAATCCAGTCAAGCAGTCCT -ACGGAAATCCAGTCAAGCTAAGCC -ACGGAAATCCAGTCAAGCATAGCC -ACGGAAATCCAGTCAAGCTAACCG -ACGGAAATCCAGTCAAGCATGCCA -ACGGAAATCCAGCGTTCAGGAAAC -ACGGAAATCCAGCGTTCAAACACC -ACGGAAATCCAGCGTTCAATCGAG -ACGGAAATCCAGCGTTCACTCCTT -ACGGAAATCCAGCGTTCACCTGTT -ACGGAAATCCAGCGTTCACGGTTT -ACGGAAATCCAGCGTTCAGTGGTT -ACGGAAATCCAGCGTTCAGCCTTT -ACGGAAATCCAGCGTTCAGGTCTT -ACGGAAATCCAGCGTTCAACGCTT -ACGGAAATCCAGCGTTCAAGCGTT -ACGGAAATCCAGCGTTCATTCGTC -ACGGAAATCCAGCGTTCATCTCTC -ACGGAAATCCAGCGTTCATGGATC -ACGGAAATCCAGCGTTCACACTTC -ACGGAAATCCAGCGTTCAGTACTC -ACGGAAATCCAGCGTTCAGATGTC -ACGGAAATCCAGCGTTCAACAGTC -ACGGAAATCCAGCGTTCATTGCTG -ACGGAAATCCAGCGTTCATCCATG -ACGGAAATCCAGCGTTCATGTGTG -ACGGAAATCCAGCGTTCACTAGTG -ACGGAAATCCAGCGTTCACATCTG -ACGGAAATCCAGCGTTCAGAGTTG -ACGGAAATCCAGCGTTCAAGACTG -ACGGAAATCCAGCGTTCATCGGTA -ACGGAAATCCAGCGTTCATGCCTA -ACGGAAATCCAGCGTTCACCACTA -ACGGAAATCCAGCGTTCAGGAGTA -ACGGAAATCCAGCGTTCATCGTCT -ACGGAAATCCAGCGTTCATGCACT -ACGGAAATCCAGCGTTCACTGACT -ACGGAAATCCAGCGTTCACAACCT -ACGGAAATCCAGCGTTCAGCTACT -ACGGAAATCCAGCGTTCAGGATCT -ACGGAAATCCAGCGTTCAAAGGCT -ACGGAAATCCAGCGTTCATCAACC -ACGGAAATCCAGCGTTCATGTTCC -ACGGAAATCCAGCGTTCAATTCCC -ACGGAAATCCAGCGTTCATTCTCG -ACGGAAATCCAGCGTTCATAGACG -ACGGAAATCCAGCGTTCAGTAACG -ACGGAAATCCAGCGTTCAACTTCG -ACGGAAATCCAGCGTTCATACGCA -ACGGAAATCCAGCGTTCACTTGCA -ACGGAAATCCAGCGTTCACGAACA -ACGGAAATCCAGCGTTCACAGTCA -ACGGAAATCCAGCGTTCAGATCCA -ACGGAAATCCAGCGTTCAACGACA -ACGGAAATCCAGCGTTCAAGCTCA -ACGGAAATCCAGCGTTCATCACGT -ACGGAAATCCAGCGTTCACGTAGT -ACGGAAATCCAGCGTTCAGTCAGT -ACGGAAATCCAGCGTTCAGAAGGT -ACGGAAATCCAGCGTTCAAACCGT -ACGGAAATCCAGCGTTCATTGTGC -ACGGAAATCCAGCGTTCACTAAGC -ACGGAAATCCAGCGTTCAACTAGC -ACGGAAATCCAGCGTTCAAGATGC -ACGGAAATCCAGCGTTCATGAAGG -ACGGAAATCCAGCGTTCACAATGG -ACGGAAATCCAGCGTTCAATGAGG -ACGGAAATCCAGCGTTCAAATGGG -ACGGAAATCCAGCGTTCATCCTGA -ACGGAAATCCAGCGTTCATAGCGA -ACGGAAATCCAGCGTTCACACAGA -ACGGAAATCCAGCGTTCAGCAAGA -ACGGAAATCCAGCGTTCAGGTTGA -ACGGAAATCCAGCGTTCATCCGAT -ACGGAAATCCAGCGTTCATGGCAT -ACGGAAATCCAGCGTTCACGAGAT -ACGGAAATCCAGCGTTCATACCAC -ACGGAAATCCAGCGTTCACAGAAC -ACGGAAATCCAGCGTTCAGTCTAC -ACGGAAATCCAGCGTTCAACGTAC -ACGGAAATCCAGCGTTCAAGTGAC -ACGGAAATCCAGCGTTCACTGTAG -ACGGAAATCCAGCGTTCACCTAAG -ACGGAAATCCAGCGTTCAGTTCAG -ACGGAAATCCAGCGTTCAGCATAG -ACGGAAATCCAGCGTTCAGACAAG -ACGGAAATCCAGCGTTCAAAGCAG -ACGGAAATCCAGCGTTCACGTCAA -ACGGAAATCCAGCGTTCAGCTGAA -ACGGAAATCCAGCGTTCAAGTACG -ACGGAAATCCAGCGTTCAATCCGA -ACGGAAATCCAGCGTTCAATGGGA -ACGGAAATCCAGCGTTCAGTGCAA -ACGGAAATCCAGCGTTCAGAGGAA -ACGGAAATCCAGCGTTCACAGGTA -ACGGAAATCCAGCGTTCAGACTCT -ACGGAAATCCAGCGTTCAAGTCCT -ACGGAAATCCAGCGTTCATAAGCC -ACGGAAATCCAGCGTTCAATAGCC -ACGGAAATCCAGCGTTCATAACCG -ACGGAAATCCAGCGTTCAATGCCA -ACGGAAATCCAGAGTCGTGGAAAC -ACGGAAATCCAGAGTCGTAACACC -ACGGAAATCCAGAGTCGTATCGAG -ACGGAAATCCAGAGTCGTCTCCTT -ACGGAAATCCAGAGTCGTCCTGTT -ACGGAAATCCAGAGTCGTCGGTTT -ACGGAAATCCAGAGTCGTGTGGTT -ACGGAAATCCAGAGTCGTGCCTTT -ACGGAAATCCAGAGTCGTGGTCTT -ACGGAAATCCAGAGTCGTACGCTT -ACGGAAATCCAGAGTCGTAGCGTT -ACGGAAATCCAGAGTCGTTTCGTC -ACGGAAATCCAGAGTCGTTCTCTC -ACGGAAATCCAGAGTCGTTGGATC -ACGGAAATCCAGAGTCGTCACTTC -ACGGAAATCCAGAGTCGTGTACTC -ACGGAAATCCAGAGTCGTGATGTC -ACGGAAATCCAGAGTCGTACAGTC -ACGGAAATCCAGAGTCGTTTGCTG -ACGGAAATCCAGAGTCGTTCCATG -ACGGAAATCCAGAGTCGTTGTGTG -ACGGAAATCCAGAGTCGTCTAGTG -ACGGAAATCCAGAGTCGTCATCTG -ACGGAAATCCAGAGTCGTGAGTTG -ACGGAAATCCAGAGTCGTAGACTG -ACGGAAATCCAGAGTCGTTCGGTA -ACGGAAATCCAGAGTCGTTGCCTA -ACGGAAATCCAGAGTCGTCCACTA -ACGGAAATCCAGAGTCGTGGAGTA -ACGGAAATCCAGAGTCGTTCGTCT -ACGGAAATCCAGAGTCGTTGCACT -ACGGAAATCCAGAGTCGTCTGACT -ACGGAAATCCAGAGTCGTCAACCT -ACGGAAATCCAGAGTCGTGCTACT -ACGGAAATCCAGAGTCGTGGATCT -ACGGAAATCCAGAGTCGTAAGGCT -ACGGAAATCCAGAGTCGTTCAACC -ACGGAAATCCAGAGTCGTTGTTCC -ACGGAAATCCAGAGTCGTATTCCC -ACGGAAATCCAGAGTCGTTTCTCG -ACGGAAATCCAGAGTCGTTAGACG -ACGGAAATCCAGAGTCGTGTAACG -ACGGAAATCCAGAGTCGTACTTCG -ACGGAAATCCAGAGTCGTTACGCA -ACGGAAATCCAGAGTCGTCTTGCA -ACGGAAATCCAGAGTCGTCGAACA -ACGGAAATCCAGAGTCGTCAGTCA -ACGGAAATCCAGAGTCGTGATCCA -ACGGAAATCCAGAGTCGTACGACA -ACGGAAATCCAGAGTCGTAGCTCA -ACGGAAATCCAGAGTCGTTCACGT -ACGGAAATCCAGAGTCGTCGTAGT -ACGGAAATCCAGAGTCGTGTCAGT -ACGGAAATCCAGAGTCGTGAAGGT -ACGGAAATCCAGAGTCGTAACCGT -ACGGAAATCCAGAGTCGTTTGTGC -ACGGAAATCCAGAGTCGTCTAAGC -ACGGAAATCCAGAGTCGTACTAGC -ACGGAAATCCAGAGTCGTAGATGC -ACGGAAATCCAGAGTCGTTGAAGG -ACGGAAATCCAGAGTCGTCAATGG -ACGGAAATCCAGAGTCGTATGAGG -ACGGAAATCCAGAGTCGTAATGGG -ACGGAAATCCAGAGTCGTTCCTGA -ACGGAAATCCAGAGTCGTTAGCGA -ACGGAAATCCAGAGTCGTCACAGA -ACGGAAATCCAGAGTCGTGCAAGA -ACGGAAATCCAGAGTCGTGGTTGA -ACGGAAATCCAGAGTCGTTCCGAT -ACGGAAATCCAGAGTCGTTGGCAT -ACGGAAATCCAGAGTCGTCGAGAT -ACGGAAATCCAGAGTCGTTACCAC -ACGGAAATCCAGAGTCGTCAGAAC -ACGGAAATCCAGAGTCGTGTCTAC -ACGGAAATCCAGAGTCGTACGTAC -ACGGAAATCCAGAGTCGTAGTGAC -ACGGAAATCCAGAGTCGTCTGTAG -ACGGAAATCCAGAGTCGTCCTAAG -ACGGAAATCCAGAGTCGTGTTCAG -ACGGAAATCCAGAGTCGTGCATAG -ACGGAAATCCAGAGTCGTGACAAG -ACGGAAATCCAGAGTCGTAAGCAG -ACGGAAATCCAGAGTCGTCGTCAA -ACGGAAATCCAGAGTCGTGCTGAA -ACGGAAATCCAGAGTCGTAGTACG -ACGGAAATCCAGAGTCGTATCCGA -ACGGAAATCCAGAGTCGTATGGGA -ACGGAAATCCAGAGTCGTGTGCAA -ACGGAAATCCAGAGTCGTGAGGAA -ACGGAAATCCAGAGTCGTCAGGTA -ACGGAAATCCAGAGTCGTGACTCT -ACGGAAATCCAGAGTCGTAGTCCT -ACGGAAATCCAGAGTCGTTAAGCC -ACGGAAATCCAGAGTCGTATAGCC -ACGGAAATCCAGAGTCGTTAACCG -ACGGAAATCCAGAGTCGTATGCCA -ACGGAAATCCAGAGTGTCGGAAAC -ACGGAAATCCAGAGTGTCAACACC -ACGGAAATCCAGAGTGTCATCGAG -ACGGAAATCCAGAGTGTCCTCCTT -ACGGAAATCCAGAGTGTCCCTGTT -ACGGAAATCCAGAGTGTCCGGTTT -ACGGAAATCCAGAGTGTCGTGGTT -ACGGAAATCCAGAGTGTCGCCTTT -ACGGAAATCCAGAGTGTCGGTCTT -ACGGAAATCCAGAGTGTCACGCTT -ACGGAAATCCAGAGTGTCAGCGTT -ACGGAAATCCAGAGTGTCTTCGTC -ACGGAAATCCAGAGTGTCTCTCTC -ACGGAAATCCAGAGTGTCTGGATC -ACGGAAATCCAGAGTGTCCACTTC -ACGGAAATCCAGAGTGTCGTACTC -ACGGAAATCCAGAGTGTCGATGTC -ACGGAAATCCAGAGTGTCACAGTC -ACGGAAATCCAGAGTGTCTTGCTG -ACGGAAATCCAGAGTGTCTCCATG -ACGGAAATCCAGAGTGTCTGTGTG -ACGGAAATCCAGAGTGTCCTAGTG -ACGGAAATCCAGAGTGTCCATCTG -ACGGAAATCCAGAGTGTCGAGTTG -ACGGAAATCCAGAGTGTCAGACTG -ACGGAAATCCAGAGTGTCTCGGTA -ACGGAAATCCAGAGTGTCTGCCTA -ACGGAAATCCAGAGTGTCCCACTA -ACGGAAATCCAGAGTGTCGGAGTA -ACGGAAATCCAGAGTGTCTCGTCT -ACGGAAATCCAGAGTGTCTGCACT -ACGGAAATCCAGAGTGTCCTGACT -ACGGAAATCCAGAGTGTCCAACCT -ACGGAAATCCAGAGTGTCGCTACT -ACGGAAATCCAGAGTGTCGGATCT -ACGGAAATCCAGAGTGTCAAGGCT -ACGGAAATCCAGAGTGTCTCAACC -ACGGAAATCCAGAGTGTCTGTTCC -ACGGAAATCCAGAGTGTCATTCCC -ACGGAAATCCAGAGTGTCTTCTCG -ACGGAAATCCAGAGTGTCTAGACG -ACGGAAATCCAGAGTGTCGTAACG -ACGGAAATCCAGAGTGTCACTTCG -ACGGAAATCCAGAGTGTCTACGCA -ACGGAAATCCAGAGTGTCCTTGCA -ACGGAAATCCAGAGTGTCCGAACA -ACGGAAATCCAGAGTGTCCAGTCA -ACGGAAATCCAGAGTGTCGATCCA -ACGGAAATCCAGAGTGTCACGACA -ACGGAAATCCAGAGTGTCAGCTCA -ACGGAAATCCAGAGTGTCTCACGT -ACGGAAATCCAGAGTGTCCGTAGT -ACGGAAATCCAGAGTGTCGTCAGT -ACGGAAATCCAGAGTGTCGAAGGT -ACGGAAATCCAGAGTGTCAACCGT -ACGGAAATCCAGAGTGTCTTGTGC -ACGGAAATCCAGAGTGTCCTAAGC -ACGGAAATCCAGAGTGTCACTAGC -ACGGAAATCCAGAGTGTCAGATGC -ACGGAAATCCAGAGTGTCTGAAGG -ACGGAAATCCAGAGTGTCCAATGG -ACGGAAATCCAGAGTGTCATGAGG -ACGGAAATCCAGAGTGTCAATGGG -ACGGAAATCCAGAGTGTCTCCTGA -ACGGAAATCCAGAGTGTCTAGCGA -ACGGAAATCCAGAGTGTCCACAGA -ACGGAAATCCAGAGTGTCGCAAGA -ACGGAAATCCAGAGTGTCGGTTGA -ACGGAAATCCAGAGTGTCTCCGAT -ACGGAAATCCAGAGTGTCTGGCAT -ACGGAAATCCAGAGTGTCCGAGAT -ACGGAAATCCAGAGTGTCTACCAC -ACGGAAATCCAGAGTGTCCAGAAC -ACGGAAATCCAGAGTGTCGTCTAC -ACGGAAATCCAGAGTGTCACGTAC -ACGGAAATCCAGAGTGTCAGTGAC -ACGGAAATCCAGAGTGTCCTGTAG -ACGGAAATCCAGAGTGTCCCTAAG -ACGGAAATCCAGAGTGTCGTTCAG -ACGGAAATCCAGAGTGTCGCATAG -ACGGAAATCCAGAGTGTCGACAAG -ACGGAAATCCAGAGTGTCAAGCAG -ACGGAAATCCAGAGTGTCCGTCAA -ACGGAAATCCAGAGTGTCGCTGAA -ACGGAAATCCAGAGTGTCAGTACG -ACGGAAATCCAGAGTGTCATCCGA -ACGGAAATCCAGAGTGTCATGGGA -ACGGAAATCCAGAGTGTCGTGCAA -ACGGAAATCCAGAGTGTCGAGGAA -ACGGAAATCCAGAGTGTCCAGGTA -ACGGAAATCCAGAGTGTCGACTCT -ACGGAAATCCAGAGTGTCAGTCCT -ACGGAAATCCAGAGTGTCTAAGCC -ACGGAAATCCAGAGTGTCATAGCC -ACGGAAATCCAGAGTGTCTAACCG -ACGGAAATCCAGAGTGTCATGCCA -ACGGAAATCCAGGGTGAAGGAAAC -ACGGAAATCCAGGGTGAAAACACC -ACGGAAATCCAGGGTGAAATCGAG -ACGGAAATCCAGGGTGAACTCCTT -ACGGAAATCCAGGGTGAACCTGTT -ACGGAAATCCAGGGTGAACGGTTT -ACGGAAATCCAGGGTGAAGTGGTT -ACGGAAATCCAGGGTGAAGCCTTT -ACGGAAATCCAGGGTGAAGGTCTT -ACGGAAATCCAGGGTGAAACGCTT -ACGGAAATCCAGGGTGAAAGCGTT -ACGGAAATCCAGGGTGAATTCGTC -ACGGAAATCCAGGGTGAATCTCTC -ACGGAAATCCAGGGTGAATGGATC -ACGGAAATCCAGGGTGAACACTTC -ACGGAAATCCAGGGTGAAGTACTC -ACGGAAATCCAGGGTGAAGATGTC -ACGGAAATCCAGGGTGAAACAGTC -ACGGAAATCCAGGGTGAATTGCTG -ACGGAAATCCAGGGTGAATCCATG -ACGGAAATCCAGGGTGAATGTGTG -ACGGAAATCCAGGGTGAACTAGTG -ACGGAAATCCAGGGTGAACATCTG -ACGGAAATCCAGGGTGAAGAGTTG -ACGGAAATCCAGGGTGAAAGACTG -ACGGAAATCCAGGGTGAATCGGTA -ACGGAAATCCAGGGTGAATGCCTA -ACGGAAATCCAGGGTGAACCACTA -ACGGAAATCCAGGGTGAAGGAGTA -ACGGAAATCCAGGGTGAATCGTCT -ACGGAAATCCAGGGTGAATGCACT -ACGGAAATCCAGGGTGAACTGACT -ACGGAAATCCAGGGTGAACAACCT -ACGGAAATCCAGGGTGAAGCTACT -ACGGAAATCCAGGGTGAAGGATCT -ACGGAAATCCAGGGTGAAAAGGCT -ACGGAAATCCAGGGTGAATCAACC -ACGGAAATCCAGGGTGAATGTTCC -ACGGAAATCCAGGGTGAAATTCCC -ACGGAAATCCAGGGTGAATTCTCG -ACGGAAATCCAGGGTGAATAGACG -ACGGAAATCCAGGGTGAAGTAACG -ACGGAAATCCAGGGTGAAACTTCG -ACGGAAATCCAGGGTGAATACGCA -ACGGAAATCCAGGGTGAACTTGCA -ACGGAAATCCAGGGTGAACGAACA -ACGGAAATCCAGGGTGAACAGTCA -ACGGAAATCCAGGGTGAAGATCCA -ACGGAAATCCAGGGTGAAACGACA -ACGGAAATCCAGGGTGAAAGCTCA -ACGGAAATCCAGGGTGAATCACGT -ACGGAAATCCAGGGTGAACGTAGT -ACGGAAATCCAGGGTGAAGTCAGT -ACGGAAATCCAGGGTGAAGAAGGT -ACGGAAATCCAGGGTGAAAACCGT -ACGGAAATCCAGGGTGAATTGTGC -ACGGAAATCCAGGGTGAACTAAGC -ACGGAAATCCAGGGTGAAACTAGC -ACGGAAATCCAGGGTGAAAGATGC -ACGGAAATCCAGGGTGAATGAAGG -ACGGAAATCCAGGGTGAACAATGG -ACGGAAATCCAGGGTGAAATGAGG -ACGGAAATCCAGGGTGAAAATGGG -ACGGAAATCCAGGGTGAATCCTGA -ACGGAAATCCAGGGTGAATAGCGA -ACGGAAATCCAGGGTGAACACAGA -ACGGAAATCCAGGGTGAAGCAAGA -ACGGAAATCCAGGGTGAAGGTTGA -ACGGAAATCCAGGGTGAATCCGAT -ACGGAAATCCAGGGTGAATGGCAT -ACGGAAATCCAGGGTGAACGAGAT -ACGGAAATCCAGGGTGAATACCAC -ACGGAAATCCAGGGTGAACAGAAC -ACGGAAATCCAGGGTGAAGTCTAC -ACGGAAATCCAGGGTGAAACGTAC -ACGGAAATCCAGGGTGAAAGTGAC -ACGGAAATCCAGGGTGAACTGTAG -ACGGAAATCCAGGGTGAACCTAAG -ACGGAAATCCAGGGTGAAGTTCAG -ACGGAAATCCAGGGTGAAGCATAG -ACGGAAATCCAGGGTGAAGACAAG -ACGGAAATCCAGGGTGAAAAGCAG -ACGGAAATCCAGGGTGAACGTCAA -ACGGAAATCCAGGGTGAAGCTGAA -ACGGAAATCCAGGGTGAAAGTACG -ACGGAAATCCAGGGTGAAATCCGA -ACGGAAATCCAGGGTGAAATGGGA -ACGGAAATCCAGGGTGAAGTGCAA -ACGGAAATCCAGGGTGAAGAGGAA -ACGGAAATCCAGGGTGAACAGGTA -ACGGAAATCCAGGGTGAAGACTCT -ACGGAAATCCAGGGTGAAAGTCCT -ACGGAAATCCAGGGTGAATAAGCC -ACGGAAATCCAGGGTGAAATAGCC -ACGGAAATCCAGGGTGAATAACCG -ACGGAAATCCAGGGTGAAATGCCA -ACGGAAATCCAGCGTAACGGAAAC -ACGGAAATCCAGCGTAACAACACC -ACGGAAATCCAGCGTAACATCGAG -ACGGAAATCCAGCGTAACCTCCTT -ACGGAAATCCAGCGTAACCCTGTT -ACGGAAATCCAGCGTAACCGGTTT -ACGGAAATCCAGCGTAACGTGGTT -ACGGAAATCCAGCGTAACGCCTTT -ACGGAAATCCAGCGTAACGGTCTT -ACGGAAATCCAGCGTAACACGCTT -ACGGAAATCCAGCGTAACAGCGTT -ACGGAAATCCAGCGTAACTTCGTC -ACGGAAATCCAGCGTAACTCTCTC -ACGGAAATCCAGCGTAACTGGATC -ACGGAAATCCAGCGTAACCACTTC -ACGGAAATCCAGCGTAACGTACTC -ACGGAAATCCAGCGTAACGATGTC -ACGGAAATCCAGCGTAACACAGTC -ACGGAAATCCAGCGTAACTTGCTG -ACGGAAATCCAGCGTAACTCCATG -ACGGAAATCCAGCGTAACTGTGTG -ACGGAAATCCAGCGTAACCTAGTG -ACGGAAATCCAGCGTAACCATCTG -ACGGAAATCCAGCGTAACGAGTTG -ACGGAAATCCAGCGTAACAGACTG -ACGGAAATCCAGCGTAACTCGGTA -ACGGAAATCCAGCGTAACTGCCTA -ACGGAAATCCAGCGTAACCCACTA -ACGGAAATCCAGCGTAACGGAGTA -ACGGAAATCCAGCGTAACTCGTCT -ACGGAAATCCAGCGTAACTGCACT -ACGGAAATCCAGCGTAACCTGACT -ACGGAAATCCAGCGTAACCAACCT -ACGGAAATCCAGCGTAACGCTACT -ACGGAAATCCAGCGTAACGGATCT -ACGGAAATCCAGCGTAACAAGGCT -ACGGAAATCCAGCGTAACTCAACC -ACGGAAATCCAGCGTAACTGTTCC -ACGGAAATCCAGCGTAACATTCCC -ACGGAAATCCAGCGTAACTTCTCG -ACGGAAATCCAGCGTAACTAGACG -ACGGAAATCCAGCGTAACGTAACG -ACGGAAATCCAGCGTAACACTTCG -ACGGAAATCCAGCGTAACTACGCA -ACGGAAATCCAGCGTAACCTTGCA -ACGGAAATCCAGCGTAACCGAACA -ACGGAAATCCAGCGTAACCAGTCA -ACGGAAATCCAGCGTAACGATCCA -ACGGAAATCCAGCGTAACACGACA -ACGGAAATCCAGCGTAACAGCTCA -ACGGAAATCCAGCGTAACTCACGT -ACGGAAATCCAGCGTAACCGTAGT -ACGGAAATCCAGCGTAACGTCAGT -ACGGAAATCCAGCGTAACGAAGGT -ACGGAAATCCAGCGTAACAACCGT -ACGGAAATCCAGCGTAACTTGTGC -ACGGAAATCCAGCGTAACCTAAGC -ACGGAAATCCAGCGTAACACTAGC -ACGGAAATCCAGCGTAACAGATGC -ACGGAAATCCAGCGTAACTGAAGG -ACGGAAATCCAGCGTAACCAATGG -ACGGAAATCCAGCGTAACATGAGG -ACGGAAATCCAGCGTAACAATGGG -ACGGAAATCCAGCGTAACTCCTGA -ACGGAAATCCAGCGTAACTAGCGA -ACGGAAATCCAGCGTAACCACAGA -ACGGAAATCCAGCGTAACGCAAGA -ACGGAAATCCAGCGTAACGGTTGA -ACGGAAATCCAGCGTAACTCCGAT -ACGGAAATCCAGCGTAACTGGCAT -ACGGAAATCCAGCGTAACCGAGAT -ACGGAAATCCAGCGTAACTACCAC -ACGGAAATCCAGCGTAACCAGAAC -ACGGAAATCCAGCGTAACGTCTAC -ACGGAAATCCAGCGTAACACGTAC -ACGGAAATCCAGCGTAACAGTGAC -ACGGAAATCCAGCGTAACCTGTAG -ACGGAAATCCAGCGTAACCCTAAG -ACGGAAATCCAGCGTAACGTTCAG -ACGGAAATCCAGCGTAACGCATAG -ACGGAAATCCAGCGTAACGACAAG -ACGGAAATCCAGCGTAACAAGCAG -ACGGAAATCCAGCGTAACCGTCAA -ACGGAAATCCAGCGTAACGCTGAA -ACGGAAATCCAGCGTAACAGTACG -ACGGAAATCCAGCGTAACATCCGA -ACGGAAATCCAGCGTAACATGGGA -ACGGAAATCCAGCGTAACGTGCAA -ACGGAAATCCAGCGTAACGAGGAA -ACGGAAATCCAGCGTAACCAGGTA -ACGGAAATCCAGCGTAACGACTCT -ACGGAAATCCAGCGTAACAGTCCT -ACGGAAATCCAGCGTAACTAAGCC -ACGGAAATCCAGCGTAACATAGCC -ACGGAAATCCAGCGTAACTAACCG -ACGGAAATCCAGCGTAACATGCCA -ACGGAAATCCAGTGCTTGGGAAAC -ACGGAAATCCAGTGCTTGAACACC -ACGGAAATCCAGTGCTTGATCGAG -ACGGAAATCCAGTGCTTGCTCCTT -ACGGAAATCCAGTGCTTGCCTGTT -ACGGAAATCCAGTGCTTGCGGTTT -ACGGAAATCCAGTGCTTGGTGGTT -ACGGAAATCCAGTGCTTGGCCTTT -ACGGAAATCCAGTGCTTGGGTCTT -ACGGAAATCCAGTGCTTGACGCTT -ACGGAAATCCAGTGCTTGAGCGTT -ACGGAAATCCAGTGCTTGTTCGTC -ACGGAAATCCAGTGCTTGTCTCTC -ACGGAAATCCAGTGCTTGTGGATC -ACGGAAATCCAGTGCTTGCACTTC -ACGGAAATCCAGTGCTTGGTACTC -ACGGAAATCCAGTGCTTGGATGTC -ACGGAAATCCAGTGCTTGACAGTC -ACGGAAATCCAGTGCTTGTTGCTG -ACGGAAATCCAGTGCTTGTCCATG -ACGGAAATCCAGTGCTTGTGTGTG -ACGGAAATCCAGTGCTTGCTAGTG -ACGGAAATCCAGTGCTTGCATCTG -ACGGAAATCCAGTGCTTGGAGTTG -ACGGAAATCCAGTGCTTGAGACTG -ACGGAAATCCAGTGCTTGTCGGTA -ACGGAAATCCAGTGCTTGTGCCTA -ACGGAAATCCAGTGCTTGCCACTA -ACGGAAATCCAGTGCTTGGGAGTA -ACGGAAATCCAGTGCTTGTCGTCT -ACGGAAATCCAGTGCTTGTGCACT -ACGGAAATCCAGTGCTTGCTGACT -ACGGAAATCCAGTGCTTGCAACCT -ACGGAAATCCAGTGCTTGGCTACT -ACGGAAATCCAGTGCTTGGGATCT -ACGGAAATCCAGTGCTTGAAGGCT -ACGGAAATCCAGTGCTTGTCAACC -ACGGAAATCCAGTGCTTGTGTTCC -ACGGAAATCCAGTGCTTGATTCCC -ACGGAAATCCAGTGCTTGTTCTCG -ACGGAAATCCAGTGCTTGTAGACG -ACGGAAATCCAGTGCTTGGTAACG -ACGGAAATCCAGTGCTTGACTTCG -ACGGAAATCCAGTGCTTGTACGCA -ACGGAAATCCAGTGCTTGCTTGCA -ACGGAAATCCAGTGCTTGCGAACA -ACGGAAATCCAGTGCTTGCAGTCA -ACGGAAATCCAGTGCTTGGATCCA -ACGGAAATCCAGTGCTTGACGACA -ACGGAAATCCAGTGCTTGAGCTCA -ACGGAAATCCAGTGCTTGTCACGT -ACGGAAATCCAGTGCTTGCGTAGT -ACGGAAATCCAGTGCTTGGTCAGT -ACGGAAATCCAGTGCTTGGAAGGT -ACGGAAATCCAGTGCTTGAACCGT -ACGGAAATCCAGTGCTTGTTGTGC -ACGGAAATCCAGTGCTTGCTAAGC -ACGGAAATCCAGTGCTTGACTAGC -ACGGAAATCCAGTGCTTGAGATGC -ACGGAAATCCAGTGCTTGTGAAGG -ACGGAAATCCAGTGCTTGCAATGG -ACGGAAATCCAGTGCTTGATGAGG -ACGGAAATCCAGTGCTTGAATGGG -ACGGAAATCCAGTGCTTGTCCTGA -ACGGAAATCCAGTGCTTGTAGCGA -ACGGAAATCCAGTGCTTGCACAGA -ACGGAAATCCAGTGCTTGGCAAGA -ACGGAAATCCAGTGCTTGGGTTGA -ACGGAAATCCAGTGCTTGTCCGAT -ACGGAAATCCAGTGCTTGTGGCAT -ACGGAAATCCAGTGCTTGCGAGAT -ACGGAAATCCAGTGCTTGTACCAC -ACGGAAATCCAGTGCTTGCAGAAC -ACGGAAATCCAGTGCTTGGTCTAC -ACGGAAATCCAGTGCTTGACGTAC -ACGGAAATCCAGTGCTTGAGTGAC -ACGGAAATCCAGTGCTTGCTGTAG -ACGGAAATCCAGTGCTTGCCTAAG -ACGGAAATCCAGTGCTTGGTTCAG -ACGGAAATCCAGTGCTTGGCATAG -ACGGAAATCCAGTGCTTGGACAAG -ACGGAAATCCAGTGCTTGAAGCAG -ACGGAAATCCAGTGCTTGCGTCAA -ACGGAAATCCAGTGCTTGGCTGAA -ACGGAAATCCAGTGCTTGAGTACG -ACGGAAATCCAGTGCTTGATCCGA -ACGGAAATCCAGTGCTTGATGGGA -ACGGAAATCCAGTGCTTGGTGCAA -ACGGAAATCCAGTGCTTGGAGGAA -ACGGAAATCCAGTGCTTGCAGGTA -ACGGAAATCCAGTGCTTGGACTCT -ACGGAAATCCAGTGCTTGAGTCCT -ACGGAAATCCAGTGCTTGTAAGCC -ACGGAAATCCAGTGCTTGATAGCC -ACGGAAATCCAGTGCTTGTAACCG -ACGGAAATCCAGTGCTTGATGCCA -ACGGAAATCCAGAGCCTAGGAAAC -ACGGAAATCCAGAGCCTAAACACC -ACGGAAATCCAGAGCCTAATCGAG -ACGGAAATCCAGAGCCTACTCCTT -ACGGAAATCCAGAGCCTACCTGTT -ACGGAAATCCAGAGCCTACGGTTT -ACGGAAATCCAGAGCCTAGTGGTT -ACGGAAATCCAGAGCCTAGCCTTT -ACGGAAATCCAGAGCCTAGGTCTT -ACGGAAATCCAGAGCCTAACGCTT -ACGGAAATCCAGAGCCTAAGCGTT -ACGGAAATCCAGAGCCTATTCGTC -ACGGAAATCCAGAGCCTATCTCTC -ACGGAAATCCAGAGCCTATGGATC -ACGGAAATCCAGAGCCTACACTTC -ACGGAAATCCAGAGCCTAGTACTC -ACGGAAATCCAGAGCCTAGATGTC -ACGGAAATCCAGAGCCTAACAGTC -ACGGAAATCCAGAGCCTATTGCTG -ACGGAAATCCAGAGCCTATCCATG -ACGGAAATCCAGAGCCTATGTGTG -ACGGAAATCCAGAGCCTACTAGTG -ACGGAAATCCAGAGCCTACATCTG -ACGGAAATCCAGAGCCTAGAGTTG -ACGGAAATCCAGAGCCTAAGACTG -ACGGAAATCCAGAGCCTATCGGTA -ACGGAAATCCAGAGCCTATGCCTA -ACGGAAATCCAGAGCCTACCACTA -ACGGAAATCCAGAGCCTAGGAGTA -ACGGAAATCCAGAGCCTATCGTCT -ACGGAAATCCAGAGCCTATGCACT -ACGGAAATCCAGAGCCTACTGACT -ACGGAAATCCAGAGCCTACAACCT -ACGGAAATCCAGAGCCTAGCTACT -ACGGAAATCCAGAGCCTAGGATCT -ACGGAAATCCAGAGCCTAAAGGCT -ACGGAAATCCAGAGCCTATCAACC -ACGGAAATCCAGAGCCTATGTTCC -ACGGAAATCCAGAGCCTAATTCCC -ACGGAAATCCAGAGCCTATTCTCG -ACGGAAATCCAGAGCCTATAGACG -ACGGAAATCCAGAGCCTAGTAACG -ACGGAAATCCAGAGCCTAACTTCG -ACGGAAATCCAGAGCCTATACGCA -ACGGAAATCCAGAGCCTACTTGCA -ACGGAAATCCAGAGCCTACGAACA -ACGGAAATCCAGAGCCTACAGTCA -ACGGAAATCCAGAGCCTAGATCCA -ACGGAAATCCAGAGCCTAACGACA -ACGGAAATCCAGAGCCTAAGCTCA -ACGGAAATCCAGAGCCTATCACGT -ACGGAAATCCAGAGCCTACGTAGT -ACGGAAATCCAGAGCCTAGTCAGT -ACGGAAATCCAGAGCCTAGAAGGT -ACGGAAATCCAGAGCCTAAACCGT -ACGGAAATCCAGAGCCTATTGTGC -ACGGAAATCCAGAGCCTACTAAGC -ACGGAAATCCAGAGCCTAACTAGC -ACGGAAATCCAGAGCCTAAGATGC -ACGGAAATCCAGAGCCTATGAAGG -ACGGAAATCCAGAGCCTACAATGG -ACGGAAATCCAGAGCCTAATGAGG -ACGGAAATCCAGAGCCTAAATGGG -ACGGAAATCCAGAGCCTATCCTGA -ACGGAAATCCAGAGCCTATAGCGA -ACGGAAATCCAGAGCCTACACAGA -ACGGAAATCCAGAGCCTAGCAAGA -ACGGAAATCCAGAGCCTAGGTTGA -ACGGAAATCCAGAGCCTATCCGAT -ACGGAAATCCAGAGCCTATGGCAT -ACGGAAATCCAGAGCCTACGAGAT -ACGGAAATCCAGAGCCTATACCAC -ACGGAAATCCAGAGCCTACAGAAC -ACGGAAATCCAGAGCCTAGTCTAC -ACGGAAATCCAGAGCCTAACGTAC -ACGGAAATCCAGAGCCTAAGTGAC -ACGGAAATCCAGAGCCTACTGTAG -ACGGAAATCCAGAGCCTACCTAAG -ACGGAAATCCAGAGCCTAGTTCAG -ACGGAAATCCAGAGCCTAGCATAG -ACGGAAATCCAGAGCCTAGACAAG -ACGGAAATCCAGAGCCTAAAGCAG -ACGGAAATCCAGAGCCTACGTCAA -ACGGAAATCCAGAGCCTAGCTGAA -ACGGAAATCCAGAGCCTAAGTACG -ACGGAAATCCAGAGCCTAATCCGA -ACGGAAATCCAGAGCCTAATGGGA -ACGGAAATCCAGAGCCTAGTGCAA -ACGGAAATCCAGAGCCTAGAGGAA -ACGGAAATCCAGAGCCTACAGGTA -ACGGAAATCCAGAGCCTAGACTCT -ACGGAAATCCAGAGCCTAAGTCCT -ACGGAAATCCAGAGCCTATAAGCC -ACGGAAATCCAGAGCCTAATAGCC -ACGGAAATCCAGAGCCTATAACCG -ACGGAAATCCAGAGCCTAATGCCA -ACGGAAATCCAGAGCACTGGAAAC -ACGGAAATCCAGAGCACTAACACC -ACGGAAATCCAGAGCACTATCGAG -ACGGAAATCCAGAGCACTCTCCTT -ACGGAAATCCAGAGCACTCCTGTT -ACGGAAATCCAGAGCACTCGGTTT -ACGGAAATCCAGAGCACTGTGGTT -ACGGAAATCCAGAGCACTGCCTTT -ACGGAAATCCAGAGCACTGGTCTT -ACGGAAATCCAGAGCACTACGCTT -ACGGAAATCCAGAGCACTAGCGTT -ACGGAAATCCAGAGCACTTTCGTC -ACGGAAATCCAGAGCACTTCTCTC -ACGGAAATCCAGAGCACTTGGATC -ACGGAAATCCAGAGCACTCACTTC -ACGGAAATCCAGAGCACTGTACTC -ACGGAAATCCAGAGCACTGATGTC -ACGGAAATCCAGAGCACTACAGTC -ACGGAAATCCAGAGCACTTTGCTG -ACGGAAATCCAGAGCACTTCCATG -ACGGAAATCCAGAGCACTTGTGTG -ACGGAAATCCAGAGCACTCTAGTG -ACGGAAATCCAGAGCACTCATCTG -ACGGAAATCCAGAGCACTGAGTTG -ACGGAAATCCAGAGCACTAGACTG -ACGGAAATCCAGAGCACTTCGGTA -ACGGAAATCCAGAGCACTTGCCTA -ACGGAAATCCAGAGCACTCCACTA -ACGGAAATCCAGAGCACTGGAGTA -ACGGAAATCCAGAGCACTTCGTCT -ACGGAAATCCAGAGCACTTGCACT -ACGGAAATCCAGAGCACTCTGACT -ACGGAAATCCAGAGCACTCAACCT -ACGGAAATCCAGAGCACTGCTACT -ACGGAAATCCAGAGCACTGGATCT -ACGGAAATCCAGAGCACTAAGGCT -ACGGAAATCCAGAGCACTTCAACC -ACGGAAATCCAGAGCACTTGTTCC -ACGGAAATCCAGAGCACTATTCCC -ACGGAAATCCAGAGCACTTTCTCG -ACGGAAATCCAGAGCACTTAGACG -ACGGAAATCCAGAGCACTGTAACG -ACGGAAATCCAGAGCACTACTTCG -ACGGAAATCCAGAGCACTTACGCA -ACGGAAATCCAGAGCACTCTTGCA -ACGGAAATCCAGAGCACTCGAACA -ACGGAAATCCAGAGCACTCAGTCA -ACGGAAATCCAGAGCACTGATCCA -ACGGAAATCCAGAGCACTACGACA -ACGGAAATCCAGAGCACTAGCTCA -ACGGAAATCCAGAGCACTTCACGT -ACGGAAATCCAGAGCACTCGTAGT -ACGGAAATCCAGAGCACTGTCAGT -ACGGAAATCCAGAGCACTGAAGGT -ACGGAAATCCAGAGCACTAACCGT -ACGGAAATCCAGAGCACTTTGTGC -ACGGAAATCCAGAGCACTCTAAGC -ACGGAAATCCAGAGCACTACTAGC -ACGGAAATCCAGAGCACTAGATGC -ACGGAAATCCAGAGCACTTGAAGG -ACGGAAATCCAGAGCACTCAATGG -ACGGAAATCCAGAGCACTATGAGG -ACGGAAATCCAGAGCACTAATGGG -ACGGAAATCCAGAGCACTTCCTGA -ACGGAAATCCAGAGCACTTAGCGA -ACGGAAATCCAGAGCACTCACAGA -ACGGAAATCCAGAGCACTGCAAGA -ACGGAAATCCAGAGCACTGGTTGA -ACGGAAATCCAGAGCACTTCCGAT -ACGGAAATCCAGAGCACTTGGCAT -ACGGAAATCCAGAGCACTCGAGAT -ACGGAAATCCAGAGCACTTACCAC -ACGGAAATCCAGAGCACTCAGAAC -ACGGAAATCCAGAGCACTGTCTAC -ACGGAAATCCAGAGCACTACGTAC -ACGGAAATCCAGAGCACTAGTGAC -ACGGAAATCCAGAGCACTCTGTAG -ACGGAAATCCAGAGCACTCCTAAG -ACGGAAATCCAGAGCACTGTTCAG -ACGGAAATCCAGAGCACTGCATAG -ACGGAAATCCAGAGCACTGACAAG -ACGGAAATCCAGAGCACTAAGCAG -ACGGAAATCCAGAGCACTCGTCAA -ACGGAAATCCAGAGCACTGCTGAA -ACGGAAATCCAGAGCACTAGTACG -ACGGAAATCCAGAGCACTATCCGA -ACGGAAATCCAGAGCACTATGGGA -ACGGAAATCCAGAGCACTGTGCAA -ACGGAAATCCAGAGCACTGAGGAA -ACGGAAATCCAGAGCACTCAGGTA -ACGGAAATCCAGAGCACTGACTCT -ACGGAAATCCAGAGCACTAGTCCT -ACGGAAATCCAGAGCACTTAAGCC -ACGGAAATCCAGAGCACTATAGCC -ACGGAAATCCAGAGCACTTAACCG -ACGGAAATCCAGAGCACTATGCCA -ACGGAAATCCAGTGCAGAGGAAAC -ACGGAAATCCAGTGCAGAAACACC -ACGGAAATCCAGTGCAGAATCGAG -ACGGAAATCCAGTGCAGACTCCTT -ACGGAAATCCAGTGCAGACCTGTT -ACGGAAATCCAGTGCAGACGGTTT -ACGGAAATCCAGTGCAGAGTGGTT -ACGGAAATCCAGTGCAGAGCCTTT -ACGGAAATCCAGTGCAGAGGTCTT -ACGGAAATCCAGTGCAGAACGCTT -ACGGAAATCCAGTGCAGAAGCGTT -ACGGAAATCCAGTGCAGATTCGTC -ACGGAAATCCAGTGCAGATCTCTC -ACGGAAATCCAGTGCAGATGGATC -ACGGAAATCCAGTGCAGACACTTC -ACGGAAATCCAGTGCAGAGTACTC -ACGGAAATCCAGTGCAGAGATGTC -ACGGAAATCCAGTGCAGAACAGTC -ACGGAAATCCAGTGCAGATTGCTG -ACGGAAATCCAGTGCAGATCCATG -ACGGAAATCCAGTGCAGATGTGTG -ACGGAAATCCAGTGCAGACTAGTG -ACGGAAATCCAGTGCAGACATCTG -ACGGAAATCCAGTGCAGAGAGTTG -ACGGAAATCCAGTGCAGAAGACTG -ACGGAAATCCAGTGCAGATCGGTA -ACGGAAATCCAGTGCAGATGCCTA -ACGGAAATCCAGTGCAGACCACTA -ACGGAAATCCAGTGCAGAGGAGTA -ACGGAAATCCAGTGCAGATCGTCT -ACGGAAATCCAGTGCAGATGCACT -ACGGAAATCCAGTGCAGACTGACT -ACGGAAATCCAGTGCAGACAACCT -ACGGAAATCCAGTGCAGAGCTACT -ACGGAAATCCAGTGCAGAGGATCT -ACGGAAATCCAGTGCAGAAAGGCT -ACGGAAATCCAGTGCAGATCAACC -ACGGAAATCCAGTGCAGATGTTCC -ACGGAAATCCAGTGCAGAATTCCC -ACGGAAATCCAGTGCAGATTCTCG -ACGGAAATCCAGTGCAGATAGACG -ACGGAAATCCAGTGCAGAGTAACG -ACGGAAATCCAGTGCAGAACTTCG -ACGGAAATCCAGTGCAGATACGCA -ACGGAAATCCAGTGCAGACTTGCA -ACGGAAATCCAGTGCAGACGAACA -ACGGAAATCCAGTGCAGACAGTCA -ACGGAAATCCAGTGCAGAGATCCA -ACGGAAATCCAGTGCAGAACGACA -ACGGAAATCCAGTGCAGAAGCTCA -ACGGAAATCCAGTGCAGATCACGT -ACGGAAATCCAGTGCAGACGTAGT -ACGGAAATCCAGTGCAGAGTCAGT -ACGGAAATCCAGTGCAGAGAAGGT -ACGGAAATCCAGTGCAGAAACCGT -ACGGAAATCCAGTGCAGATTGTGC -ACGGAAATCCAGTGCAGACTAAGC -ACGGAAATCCAGTGCAGAACTAGC -ACGGAAATCCAGTGCAGAAGATGC -ACGGAAATCCAGTGCAGATGAAGG -ACGGAAATCCAGTGCAGACAATGG -ACGGAAATCCAGTGCAGAATGAGG -ACGGAAATCCAGTGCAGAAATGGG -ACGGAAATCCAGTGCAGATCCTGA -ACGGAAATCCAGTGCAGATAGCGA -ACGGAAATCCAGTGCAGACACAGA -ACGGAAATCCAGTGCAGAGCAAGA -ACGGAAATCCAGTGCAGAGGTTGA -ACGGAAATCCAGTGCAGATCCGAT -ACGGAAATCCAGTGCAGATGGCAT -ACGGAAATCCAGTGCAGACGAGAT -ACGGAAATCCAGTGCAGATACCAC -ACGGAAATCCAGTGCAGACAGAAC -ACGGAAATCCAGTGCAGAGTCTAC -ACGGAAATCCAGTGCAGAACGTAC -ACGGAAATCCAGTGCAGAAGTGAC -ACGGAAATCCAGTGCAGACTGTAG -ACGGAAATCCAGTGCAGACCTAAG -ACGGAAATCCAGTGCAGAGTTCAG -ACGGAAATCCAGTGCAGAGCATAG -ACGGAAATCCAGTGCAGAGACAAG -ACGGAAATCCAGTGCAGAAAGCAG -ACGGAAATCCAGTGCAGACGTCAA -ACGGAAATCCAGTGCAGAGCTGAA -ACGGAAATCCAGTGCAGAAGTACG -ACGGAAATCCAGTGCAGAATCCGA -ACGGAAATCCAGTGCAGAATGGGA -ACGGAAATCCAGTGCAGAGTGCAA -ACGGAAATCCAGTGCAGAGAGGAA -ACGGAAATCCAGTGCAGACAGGTA -ACGGAAATCCAGTGCAGAGACTCT -ACGGAAATCCAGTGCAGAAGTCCT -ACGGAAATCCAGTGCAGATAAGCC -ACGGAAATCCAGTGCAGAATAGCC -ACGGAAATCCAGTGCAGATAACCG -ACGGAAATCCAGTGCAGAATGCCA -ACGGAAATCCAGAGGTGAGGAAAC -ACGGAAATCCAGAGGTGAAACACC -ACGGAAATCCAGAGGTGAATCGAG -ACGGAAATCCAGAGGTGACTCCTT -ACGGAAATCCAGAGGTGACCTGTT -ACGGAAATCCAGAGGTGACGGTTT -ACGGAAATCCAGAGGTGAGTGGTT -ACGGAAATCCAGAGGTGAGCCTTT -ACGGAAATCCAGAGGTGAGGTCTT -ACGGAAATCCAGAGGTGAACGCTT -ACGGAAATCCAGAGGTGAAGCGTT -ACGGAAATCCAGAGGTGATTCGTC -ACGGAAATCCAGAGGTGATCTCTC -ACGGAAATCCAGAGGTGATGGATC -ACGGAAATCCAGAGGTGACACTTC -ACGGAAATCCAGAGGTGAGTACTC -ACGGAAATCCAGAGGTGAGATGTC -ACGGAAATCCAGAGGTGAACAGTC -ACGGAAATCCAGAGGTGATTGCTG -ACGGAAATCCAGAGGTGATCCATG -ACGGAAATCCAGAGGTGATGTGTG -ACGGAAATCCAGAGGTGACTAGTG -ACGGAAATCCAGAGGTGACATCTG -ACGGAAATCCAGAGGTGAGAGTTG -ACGGAAATCCAGAGGTGAAGACTG -ACGGAAATCCAGAGGTGATCGGTA -ACGGAAATCCAGAGGTGATGCCTA -ACGGAAATCCAGAGGTGACCACTA -ACGGAAATCCAGAGGTGAGGAGTA -ACGGAAATCCAGAGGTGATCGTCT -ACGGAAATCCAGAGGTGATGCACT -ACGGAAATCCAGAGGTGACTGACT -ACGGAAATCCAGAGGTGACAACCT -ACGGAAATCCAGAGGTGAGCTACT -ACGGAAATCCAGAGGTGAGGATCT -ACGGAAATCCAGAGGTGAAAGGCT -ACGGAAATCCAGAGGTGATCAACC -ACGGAAATCCAGAGGTGATGTTCC -ACGGAAATCCAGAGGTGAATTCCC -ACGGAAATCCAGAGGTGATTCTCG -ACGGAAATCCAGAGGTGATAGACG -ACGGAAATCCAGAGGTGAGTAACG -ACGGAAATCCAGAGGTGAACTTCG -ACGGAAATCCAGAGGTGATACGCA -ACGGAAATCCAGAGGTGACTTGCA -ACGGAAATCCAGAGGTGACGAACA -ACGGAAATCCAGAGGTGACAGTCA -ACGGAAATCCAGAGGTGAGATCCA -ACGGAAATCCAGAGGTGAACGACA -ACGGAAATCCAGAGGTGAAGCTCA -ACGGAAATCCAGAGGTGATCACGT -ACGGAAATCCAGAGGTGACGTAGT -ACGGAAATCCAGAGGTGAGTCAGT -ACGGAAATCCAGAGGTGAGAAGGT -ACGGAAATCCAGAGGTGAAACCGT -ACGGAAATCCAGAGGTGATTGTGC -ACGGAAATCCAGAGGTGACTAAGC -ACGGAAATCCAGAGGTGAACTAGC -ACGGAAATCCAGAGGTGAAGATGC -ACGGAAATCCAGAGGTGATGAAGG -ACGGAAATCCAGAGGTGACAATGG -ACGGAAATCCAGAGGTGAATGAGG -ACGGAAATCCAGAGGTGAAATGGG -ACGGAAATCCAGAGGTGATCCTGA -ACGGAAATCCAGAGGTGATAGCGA -ACGGAAATCCAGAGGTGACACAGA -ACGGAAATCCAGAGGTGAGCAAGA -ACGGAAATCCAGAGGTGAGGTTGA -ACGGAAATCCAGAGGTGATCCGAT -ACGGAAATCCAGAGGTGATGGCAT -ACGGAAATCCAGAGGTGACGAGAT -ACGGAAATCCAGAGGTGATACCAC -ACGGAAATCCAGAGGTGACAGAAC -ACGGAAATCCAGAGGTGAGTCTAC -ACGGAAATCCAGAGGTGAACGTAC -ACGGAAATCCAGAGGTGAAGTGAC -ACGGAAATCCAGAGGTGACTGTAG -ACGGAAATCCAGAGGTGACCTAAG -ACGGAAATCCAGAGGTGAGTTCAG -ACGGAAATCCAGAGGTGAGCATAG -ACGGAAATCCAGAGGTGAGACAAG -ACGGAAATCCAGAGGTGAAAGCAG -ACGGAAATCCAGAGGTGACGTCAA -ACGGAAATCCAGAGGTGAGCTGAA -ACGGAAATCCAGAGGTGAAGTACG -ACGGAAATCCAGAGGTGAATCCGA -ACGGAAATCCAGAGGTGAATGGGA -ACGGAAATCCAGAGGTGAGTGCAA -ACGGAAATCCAGAGGTGAGAGGAA -ACGGAAATCCAGAGGTGACAGGTA -ACGGAAATCCAGAGGTGAGACTCT -ACGGAAATCCAGAGGTGAAGTCCT -ACGGAAATCCAGAGGTGATAAGCC -ACGGAAATCCAGAGGTGAATAGCC -ACGGAAATCCAGAGGTGATAACCG -ACGGAAATCCAGAGGTGAATGCCA -ACGGAAATCCAGTGGCAAGGAAAC -ACGGAAATCCAGTGGCAAAACACC -ACGGAAATCCAGTGGCAAATCGAG -ACGGAAATCCAGTGGCAACTCCTT -ACGGAAATCCAGTGGCAACCTGTT -ACGGAAATCCAGTGGCAACGGTTT -ACGGAAATCCAGTGGCAAGTGGTT -ACGGAAATCCAGTGGCAAGCCTTT -ACGGAAATCCAGTGGCAAGGTCTT -ACGGAAATCCAGTGGCAAACGCTT -ACGGAAATCCAGTGGCAAAGCGTT -ACGGAAATCCAGTGGCAATTCGTC -ACGGAAATCCAGTGGCAATCTCTC -ACGGAAATCCAGTGGCAATGGATC -ACGGAAATCCAGTGGCAACACTTC -ACGGAAATCCAGTGGCAAGTACTC -ACGGAAATCCAGTGGCAAGATGTC -ACGGAAATCCAGTGGCAAACAGTC -ACGGAAATCCAGTGGCAATTGCTG -ACGGAAATCCAGTGGCAATCCATG -ACGGAAATCCAGTGGCAATGTGTG -ACGGAAATCCAGTGGCAACTAGTG -ACGGAAATCCAGTGGCAACATCTG -ACGGAAATCCAGTGGCAAGAGTTG -ACGGAAATCCAGTGGCAAAGACTG -ACGGAAATCCAGTGGCAATCGGTA -ACGGAAATCCAGTGGCAATGCCTA -ACGGAAATCCAGTGGCAACCACTA -ACGGAAATCCAGTGGCAAGGAGTA -ACGGAAATCCAGTGGCAATCGTCT -ACGGAAATCCAGTGGCAATGCACT -ACGGAAATCCAGTGGCAACTGACT -ACGGAAATCCAGTGGCAACAACCT -ACGGAAATCCAGTGGCAAGCTACT -ACGGAAATCCAGTGGCAAGGATCT -ACGGAAATCCAGTGGCAAAAGGCT -ACGGAAATCCAGTGGCAATCAACC -ACGGAAATCCAGTGGCAATGTTCC -ACGGAAATCCAGTGGCAAATTCCC -ACGGAAATCCAGTGGCAATTCTCG -ACGGAAATCCAGTGGCAATAGACG -ACGGAAATCCAGTGGCAAGTAACG -ACGGAAATCCAGTGGCAAACTTCG -ACGGAAATCCAGTGGCAATACGCA -ACGGAAATCCAGTGGCAACTTGCA -ACGGAAATCCAGTGGCAACGAACA -ACGGAAATCCAGTGGCAACAGTCA -ACGGAAATCCAGTGGCAAGATCCA -ACGGAAATCCAGTGGCAAACGACA -ACGGAAATCCAGTGGCAAAGCTCA -ACGGAAATCCAGTGGCAATCACGT -ACGGAAATCCAGTGGCAACGTAGT -ACGGAAATCCAGTGGCAAGTCAGT -ACGGAAATCCAGTGGCAAGAAGGT -ACGGAAATCCAGTGGCAAAACCGT -ACGGAAATCCAGTGGCAATTGTGC -ACGGAAATCCAGTGGCAACTAAGC -ACGGAAATCCAGTGGCAAACTAGC -ACGGAAATCCAGTGGCAAAGATGC -ACGGAAATCCAGTGGCAATGAAGG -ACGGAAATCCAGTGGCAACAATGG -ACGGAAATCCAGTGGCAAATGAGG -ACGGAAATCCAGTGGCAAAATGGG -ACGGAAATCCAGTGGCAATCCTGA -ACGGAAATCCAGTGGCAATAGCGA -ACGGAAATCCAGTGGCAACACAGA -ACGGAAATCCAGTGGCAAGCAAGA -ACGGAAATCCAGTGGCAAGGTTGA -ACGGAAATCCAGTGGCAATCCGAT -ACGGAAATCCAGTGGCAATGGCAT -ACGGAAATCCAGTGGCAACGAGAT -ACGGAAATCCAGTGGCAATACCAC -ACGGAAATCCAGTGGCAACAGAAC -ACGGAAATCCAGTGGCAAGTCTAC -ACGGAAATCCAGTGGCAAACGTAC -ACGGAAATCCAGTGGCAAAGTGAC -ACGGAAATCCAGTGGCAACTGTAG -ACGGAAATCCAGTGGCAACCTAAG -ACGGAAATCCAGTGGCAAGTTCAG -ACGGAAATCCAGTGGCAAGCATAG -ACGGAAATCCAGTGGCAAGACAAG -ACGGAAATCCAGTGGCAAAAGCAG -ACGGAAATCCAGTGGCAACGTCAA -ACGGAAATCCAGTGGCAAGCTGAA -ACGGAAATCCAGTGGCAAAGTACG -ACGGAAATCCAGTGGCAAATCCGA -ACGGAAATCCAGTGGCAAATGGGA -ACGGAAATCCAGTGGCAAGTGCAA -ACGGAAATCCAGTGGCAAGAGGAA -ACGGAAATCCAGTGGCAACAGGTA -ACGGAAATCCAGTGGCAAGACTCT -ACGGAAATCCAGTGGCAAAGTCCT -ACGGAAATCCAGTGGCAATAAGCC -ACGGAAATCCAGTGGCAAATAGCC -ACGGAAATCCAGTGGCAATAACCG -ACGGAAATCCAGTGGCAAATGCCA -ACGGAAATCCAGAGGATGGGAAAC -ACGGAAATCCAGAGGATGAACACC -ACGGAAATCCAGAGGATGATCGAG -ACGGAAATCCAGAGGATGCTCCTT -ACGGAAATCCAGAGGATGCCTGTT -ACGGAAATCCAGAGGATGCGGTTT -ACGGAAATCCAGAGGATGGTGGTT -ACGGAAATCCAGAGGATGGCCTTT -ACGGAAATCCAGAGGATGGGTCTT -ACGGAAATCCAGAGGATGACGCTT -ACGGAAATCCAGAGGATGAGCGTT -ACGGAAATCCAGAGGATGTTCGTC -ACGGAAATCCAGAGGATGTCTCTC -ACGGAAATCCAGAGGATGTGGATC -ACGGAAATCCAGAGGATGCACTTC -ACGGAAATCCAGAGGATGGTACTC -ACGGAAATCCAGAGGATGGATGTC -ACGGAAATCCAGAGGATGACAGTC -ACGGAAATCCAGAGGATGTTGCTG -ACGGAAATCCAGAGGATGTCCATG -ACGGAAATCCAGAGGATGTGTGTG -ACGGAAATCCAGAGGATGCTAGTG -ACGGAAATCCAGAGGATGCATCTG -ACGGAAATCCAGAGGATGGAGTTG -ACGGAAATCCAGAGGATGAGACTG -ACGGAAATCCAGAGGATGTCGGTA -ACGGAAATCCAGAGGATGTGCCTA -ACGGAAATCCAGAGGATGCCACTA -ACGGAAATCCAGAGGATGGGAGTA -ACGGAAATCCAGAGGATGTCGTCT -ACGGAAATCCAGAGGATGTGCACT -ACGGAAATCCAGAGGATGCTGACT -ACGGAAATCCAGAGGATGCAACCT -ACGGAAATCCAGAGGATGGCTACT -ACGGAAATCCAGAGGATGGGATCT -ACGGAAATCCAGAGGATGAAGGCT -ACGGAAATCCAGAGGATGTCAACC -ACGGAAATCCAGAGGATGTGTTCC -ACGGAAATCCAGAGGATGATTCCC -ACGGAAATCCAGAGGATGTTCTCG -ACGGAAATCCAGAGGATGTAGACG -ACGGAAATCCAGAGGATGGTAACG -ACGGAAATCCAGAGGATGACTTCG -ACGGAAATCCAGAGGATGTACGCA -ACGGAAATCCAGAGGATGCTTGCA -ACGGAAATCCAGAGGATGCGAACA -ACGGAAATCCAGAGGATGCAGTCA -ACGGAAATCCAGAGGATGGATCCA -ACGGAAATCCAGAGGATGACGACA -ACGGAAATCCAGAGGATGAGCTCA -ACGGAAATCCAGAGGATGTCACGT -ACGGAAATCCAGAGGATGCGTAGT -ACGGAAATCCAGAGGATGGTCAGT -ACGGAAATCCAGAGGATGGAAGGT -ACGGAAATCCAGAGGATGAACCGT -ACGGAAATCCAGAGGATGTTGTGC -ACGGAAATCCAGAGGATGCTAAGC -ACGGAAATCCAGAGGATGACTAGC -ACGGAAATCCAGAGGATGAGATGC -ACGGAAATCCAGAGGATGTGAAGG -ACGGAAATCCAGAGGATGCAATGG -ACGGAAATCCAGAGGATGATGAGG -ACGGAAATCCAGAGGATGAATGGG -ACGGAAATCCAGAGGATGTCCTGA -ACGGAAATCCAGAGGATGTAGCGA -ACGGAAATCCAGAGGATGCACAGA -ACGGAAATCCAGAGGATGGCAAGA -ACGGAAATCCAGAGGATGGGTTGA -ACGGAAATCCAGAGGATGTCCGAT -ACGGAAATCCAGAGGATGTGGCAT -ACGGAAATCCAGAGGATGCGAGAT -ACGGAAATCCAGAGGATGTACCAC -ACGGAAATCCAGAGGATGCAGAAC -ACGGAAATCCAGAGGATGGTCTAC -ACGGAAATCCAGAGGATGACGTAC -ACGGAAATCCAGAGGATGAGTGAC -ACGGAAATCCAGAGGATGCTGTAG -ACGGAAATCCAGAGGATGCCTAAG -ACGGAAATCCAGAGGATGGTTCAG -ACGGAAATCCAGAGGATGGCATAG -ACGGAAATCCAGAGGATGGACAAG -ACGGAAATCCAGAGGATGAAGCAG -ACGGAAATCCAGAGGATGCGTCAA -ACGGAAATCCAGAGGATGGCTGAA -ACGGAAATCCAGAGGATGAGTACG -ACGGAAATCCAGAGGATGATCCGA -ACGGAAATCCAGAGGATGATGGGA -ACGGAAATCCAGAGGATGGTGCAA -ACGGAAATCCAGAGGATGGAGGAA -ACGGAAATCCAGAGGATGCAGGTA -ACGGAAATCCAGAGGATGGACTCT -ACGGAAATCCAGAGGATGAGTCCT -ACGGAAATCCAGAGGATGTAAGCC -ACGGAAATCCAGAGGATGATAGCC -ACGGAAATCCAGAGGATGTAACCG -ACGGAAATCCAGAGGATGATGCCA -ACGGAAATCCAGGGGAATGGAAAC -ACGGAAATCCAGGGGAATAACACC -ACGGAAATCCAGGGGAATATCGAG -ACGGAAATCCAGGGGAATCTCCTT -ACGGAAATCCAGGGGAATCCTGTT -ACGGAAATCCAGGGGAATCGGTTT -ACGGAAATCCAGGGGAATGTGGTT -ACGGAAATCCAGGGGAATGCCTTT -ACGGAAATCCAGGGGAATGGTCTT -ACGGAAATCCAGGGGAATACGCTT -ACGGAAATCCAGGGGAATAGCGTT -ACGGAAATCCAGGGGAATTTCGTC -ACGGAAATCCAGGGGAATTCTCTC -ACGGAAATCCAGGGGAATTGGATC -ACGGAAATCCAGGGGAATCACTTC -ACGGAAATCCAGGGGAATGTACTC -ACGGAAATCCAGGGGAATGATGTC -ACGGAAATCCAGGGGAATACAGTC -ACGGAAATCCAGGGGAATTTGCTG -ACGGAAATCCAGGGGAATTCCATG -ACGGAAATCCAGGGGAATTGTGTG -ACGGAAATCCAGGGGAATCTAGTG -ACGGAAATCCAGGGGAATCATCTG -ACGGAAATCCAGGGGAATGAGTTG -ACGGAAATCCAGGGGAATAGACTG -ACGGAAATCCAGGGGAATTCGGTA -ACGGAAATCCAGGGGAATTGCCTA -ACGGAAATCCAGGGGAATCCACTA -ACGGAAATCCAGGGGAATGGAGTA -ACGGAAATCCAGGGGAATTCGTCT -ACGGAAATCCAGGGGAATTGCACT -ACGGAAATCCAGGGGAATCTGACT -ACGGAAATCCAGGGGAATCAACCT -ACGGAAATCCAGGGGAATGCTACT -ACGGAAATCCAGGGGAATGGATCT -ACGGAAATCCAGGGGAATAAGGCT -ACGGAAATCCAGGGGAATTCAACC -ACGGAAATCCAGGGGAATTGTTCC -ACGGAAATCCAGGGGAATATTCCC -ACGGAAATCCAGGGGAATTTCTCG -ACGGAAATCCAGGGGAATTAGACG -ACGGAAATCCAGGGGAATGTAACG -ACGGAAATCCAGGGGAATACTTCG -ACGGAAATCCAGGGGAATTACGCA -ACGGAAATCCAGGGGAATCTTGCA -ACGGAAATCCAGGGGAATCGAACA -ACGGAAATCCAGGGGAATCAGTCA -ACGGAAATCCAGGGGAATGATCCA -ACGGAAATCCAGGGGAATACGACA -ACGGAAATCCAGGGGAATAGCTCA -ACGGAAATCCAGGGGAATTCACGT -ACGGAAATCCAGGGGAATCGTAGT -ACGGAAATCCAGGGGAATGTCAGT -ACGGAAATCCAGGGGAATGAAGGT -ACGGAAATCCAGGGGAATAACCGT -ACGGAAATCCAGGGGAATTTGTGC -ACGGAAATCCAGGGGAATCTAAGC -ACGGAAATCCAGGGGAATACTAGC -ACGGAAATCCAGGGGAATAGATGC -ACGGAAATCCAGGGGAATTGAAGG -ACGGAAATCCAGGGGAATCAATGG -ACGGAAATCCAGGGGAATATGAGG -ACGGAAATCCAGGGGAATAATGGG -ACGGAAATCCAGGGGAATTCCTGA -ACGGAAATCCAGGGGAATTAGCGA -ACGGAAATCCAGGGGAATCACAGA -ACGGAAATCCAGGGGAATGCAAGA -ACGGAAATCCAGGGGAATGGTTGA -ACGGAAATCCAGGGGAATTCCGAT -ACGGAAATCCAGGGGAATTGGCAT -ACGGAAATCCAGGGGAATCGAGAT -ACGGAAATCCAGGGGAATTACCAC -ACGGAAATCCAGGGGAATCAGAAC -ACGGAAATCCAGGGGAATGTCTAC -ACGGAAATCCAGGGGAATACGTAC -ACGGAAATCCAGGGGAATAGTGAC -ACGGAAATCCAGGGGAATCTGTAG -ACGGAAATCCAGGGGAATCCTAAG -ACGGAAATCCAGGGGAATGTTCAG -ACGGAAATCCAGGGGAATGCATAG -ACGGAAATCCAGGGGAATGACAAG -ACGGAAATCCAGGGGAATAAGCAG -ACGGAAATCCAGGGGAATCGTCAA -ACGGAAATCCAGGGGAATGCTGAA -ACGGAAATCCAGGGGAATAGTACG -ACGGAAATCCAGGGGAATATCCGA -ACGGAAATCCAGGGGAATATGGGA -ACGGAAATCCAGGGGAATGTGCAA -ACGGAAATCCAGGGGAATGAGGAA -ACGGAAATCCAGGGGAATCAGGTA -ACGGAAATCCAGGGGAATGACTCT -ACGGAAATCCAGGGGAATAGTCCT -ACGGAAATCCAGGGGAATTAAGCC -ACGGAAATCCAGGGGAATATAGCC -ACGGAAATCCAGGGGAATTAACCG -ACGGAAATCCAGGGGAATATGCCA -ACGGAAATCCAGTGATCCGGAAAC -ACGGAAATCCAGTGATCCAACACC -ACGGAAATCCAGTGATCCATCGAG -ACGGAAATCCAGTGATCCCTCCTT -ACGGAAATCCAGTGATCCCCTGTT -ACGGAAATCCAGTGATCCCGGTTT -ACGGAAATCCAGTGATCCGTGGTT -ACGGAAATCCAGTGATCCGCCTTT -ACGGAAATCCAGTGATCCGGTCTT -ACGGAAATCCAGTGATCCACGCTT -ACGGAAATCCAGTGATCCAGCGTT -ACGGAAATCCAGTGATCCTTCGTC -ACGGAAATCCAGTGATCCTCTCTC -ACGGAAATCCAGTGATCCTGGATC -ACGGAAATCCAGTGATCCCACTTC -ACGGAAATCCAGTGATCCGTACTC -ACGGAAATCCAGTGATCCGATGTC -ACGGAAATCCAGTGATCCACAGTC -ACGGAAATCCAGTGATCCTTGCTG -ACGGAAATCCAGTGATCCTCCATG -ACGGAAATCCAGTGATCCTGTGTG -ACGGAAATCCAGTGATCCCTAGTG -ACGGAAATCCAGTGATCCCATCTG -ACGGAAATCCAGTGATCCGAGTTG -ACGGAAATCCAGTGATCCAGACTG -ACGGAAATCCAGTGATCCTCGGTA -ACGGAAATCCAGTGATCCTGCCTA -ACGGAAATCCAGTGATCCCCACTA -ACGGAAATCCAGTGATCCGGAGTA -ACGGAAATCCAGTGATCCTCGTCT -ACGGAAATCCAGTGATCCTGCACT -ACGGAAATCCAGTGATCCCTGACT -ACGGAAATCCAGTGATCCCAACCT -ACGGAAATCCAGTGATCCGCTACT -ACGGAAATCCAGTGATCCGGATCT -ACGGAAATCCAGTGATCCAAGGCT -ACGGAAATCCAGTGATCCTCAACC -ACGGAAATCCAGTGATCCTGTTCC -ACGGAAATCCAGTGATCCATTCCC -ACGGAAATCCAGTGATCCTTCTCG -ACGGAAATCCAGTGATCCTAGACG -ACGGAAATCCAGTGATCCGTAACG -ACGGAAATCCAGTGATCCACTTCG -ACGGAAATCCAGTGATCCTACGCA -ACGGAAATCCAGTGATCCCTTGCA -ACGGAAATCCAGTGATCCCGAACA -ACGGAAATCCAGTGATCCCAGTCA -ACGGAAATCCAGTGATCCGATCCA -ACGGAAATCCAGTGATCCACGACA -ACGGAAATCCAGTGATCCAGCTCA -ACGGAAATCCAGTGATCCTCACGT -ACGGAAATCCAGTGATCCCGTAGT -ACGGAAATCCAGTGATCCGTCAGT -ACGGAAATCCAGTGATCCGAAGGT -ACGGAAATCCAGTGATCCAACCGT -ACGGAAATCCAGTGATCCTTGTGC -ACGGAAATCCAGTGATCCCTAAGC -ACGGAAATCCAGTGATCCACTAGC -ACGGAAATCCAGTGATCCAGATGC -ACGGAAATCCAGTGATCCTGAAGG -ACGGAAATCCAGTGATCCCAATGG -ACGGAAATCCAGTGATCCATGAGG -ACGGAAATCCAGTGATCCAATGGG -ACGGAAATCCAGTGATCCTCCTGA -ACGGAAATCCAGTGATCCTAGCGA -ACGGAAATCCAGTGATCCCACAGA -ACGGAAATCCAGTGATCCGCAAGA -ACGGAAATCCAGTGATCCGGTTGA -ACGGAAATCCAGTGATCCTCCGAT -ACGGAAATCCAGTGATCCTGGCAT -ACGGAAATCCAGTGATCCCGAGAT -ACGGAAATCCAGTGATCCTACCAC -ACGGAAATCCAGTGATCCCAGAAC -ACGGAAATCCAGTGATCCGTCTAC -ACGGAAATCCAGTGATCCACGTAC -ACGGAAATCCAGTGATCCAGTGAC -ACGGAAATCCAGTGATCCCTGTAG -ACGGAAATCCAGTGATCCCCTAAG -ACGGAAATCCAGTGATCCGTTCAG -ACGGAAATCCAGTGATCCGCATAG -ACGGAAATCCAGTGATCCGACAAG -ACGGAAATCCAGTGATCCAAGCAG -ACGGAAATCCAGTGATCCCGTCAA -ACGGAAATCCAGTGATCCGCTGAA -ACGGAAATCCAGTGATCCAGTACG -ACGGAAATCCAGTGATCCATCCGA -ACGGAAATCCAGTGATCCATGGGA -ACGGAAATCCAGTGATCCGTGCAA -ACGGAAATCCAGTGATCCGAGGAA -ACGGAAATCCAGTGATCCCAGGTA -ACGGAAATCCAGTGATCCGACTCT -ACGGAAATCCAGTGATCCAGTCCT -ACGGAAATCCAGTGATCCTAAGCC -ACGGAAATCCAGTGATCCATAGCC -ACGGAAATCCAGTGATCCTAACCG -ACGGAAATCCAGTGATCCATGCCA -ACGGAAATCCAGCGATAGGGAAAC -ACGGAAATCCAGCGATAGAACACC -ACGGAAATCCAGCGATAGATCGAG -ACGGAAATCCAGCGATAGCTCCTT -ACGGAAATCCAGCGATAGCCTGTT -ACGGAAATCCAGCGATAGCGGTTT -ACGGAAATCCAGCGATAGGTGGTT -ACGGAAATCCAGCGATAGGCCTTT -ACGGAAATCCAGCGATAGGGTCTT -ACGGAAATCCAGCGATAGACGCTT -ACGGAAATCCAGCGATAGAGCGTT -ACGGAAATCCAGCGATAGTTCGTC -ACGGAAATCCAGCGATAGTCTCTC -ACGGAAATCCAGCGATAGTGGATC -ACGGAAATCCAGCGATAGCACTTC -ACGGAAATCCAGCGATAGGTACTC -ACGGAAATCCAGCGATAGGATGTC -ACGGAAATCCAGCGATAGACAGTC -ACGGAAATCCAGCGATAGTTGCTG -ACGGAAATCCAGCGATAGTCCATG -ACGGAAATCCAGCGATAGTGTGTG -ACGGAAATCCAGCGATAGCTAGTG -ACGGAAATCCAGCGATAGCATCTG -ACGGAAATCCAGCGATAGGAGTTG -ACGGAAATCCAGCGATAGAGACTG -ACGGAAATCCAGCGATAGTCGGTA -ACGGAAATCCAGCGATAGTGCCTA -ACGGAAATCCAGCGATAGCCACTA -ACGGAAATCCAGCGATAGGGAGTA -ACGGAAATCCAGCGATAGTCGTCT -ACGGAAATCCAGCGATAGTGCACT -ACGGAAATCCAGCGATAGCTGACT -ACGGAAATCCAGCGATAGCAACCT -ACGGAAATCCAGCGATAGGCTACT -ACGGAAATCCAGCGATAGGGATCT -ACGGAAATCCAGCGATAGAAGGCT -ACGGAAATCCAGCGATAGTCAACC -ACGGAAATCCAGCGATAGTGTTCC -ACGGAAATCCAGCGATAGATTCCC -ACGGAAATCCAGCGATAGTTCTCG -ACGGAAATCCAGCGATAGTAGACG -ACGGAAATCCAGCGATAGGTAACG -ACGGAAATCCAGCGATAGACTTCG -ACGGAAATCCAGCGATAGTACGCA -ACGGAAATCCAGCGATAGCTTGCA -ACGGAAATCCAGCGATAGCGAACA -ACGGAAATCCAGCGATAGCAGTCA -ACGGAAATCCAGCGATAGGATCCA -ACGGAAATCCAGCGATAGACGACA -ACGGAAATCCAGCGATAGAGCTCA -ACGGAAATCCAGCGATAGTCACGT -ACGGAAATCCAGCGATAGCGTAGT -ACGGAAATCCAGCGATAGGTCAGT -ACGGAAATCCAGCGATAGGAAGGT -ACGGAAATCCAGCGATAGAACCGT -ACGGAAATCCAGCGATAGTTGTGC -ACGGAAATCCAGCGATAGCTAAGC -ACGGAAATCCAGCGATAGACTAGC -ACGGAAATCCAGCGATAGAGATGC -ACGGAAATCCAGCGATAGTGAAGG -ACGGAAATCCAGCGATAGCAATGG -ACGGAAATCCAGCGATAGATGAGG -ACGGAAATCCAGCGATAGAATGGG -ACGGAAATCCAGCGATAGTCCTGA -ACGGAAATCCAGCGATAGTAGCGA -ACGGAAATCCAGCGATAGCACAGA -ACGGAAATCCAGCGATAGGCAAGA -ACGGAAATCCAGCGATAGGGTTGA -ACGGAAATCCAGCGATAGTCCGAT -ACGGAAATCCAGCGATAGTGGCAT -ACGGAAATCCAGCGATAGCGAGAT -ACGGAAATCCAGCGATAGTACCAC -ACGGAAATCCAGCGATAGCAGAAC -ACGGAAATCCAGCGATAGGTCTAC -ACGGAAATCCAGCGATAGACGTAC -ACGGAAATCCAGCGATAGAGTGAC -ACGGAAATCCAGCGATAGCTGTAG -ACGGAAATCCAGCGATAGCCTAAG -ACGGAAATCCAGCGATAGGTTCAG -ACGGAAATCCAGCGATAGGCATAG -ACGGAAATCCAGCGATAGGACAAG -ACGGAAATCCAGCGATAGAAGCAG -ACGGAAATCCAGCGATAGCGTCAA -ACGGAAATCCAGCGATAGGCTGAA -ACGGAAATCCAGCGATAGAGTACG -ACGGAAATCCAGCGATAGATCCGA -ACGGAAATCCAGCGATAGATGGGA -ACGGAAATCCAGCGATAGGTGCAA -ACGGAAATCCAGCGATAGGAGGAA -ACGGAAATCCAGCGATAGCAGGTA -ACGGAAATCCAGCGATAGGACTCT -ACGGAAATCCAGCGATAGAGTCCT -ACGGAAATCCAGCGATAGTAAGCC -ACGGAAATCCAGCGATAGATAGCC -ACGGAAATCCAGCGATAGTAACCG -ACGGAAATCCAGCGATAGATGCCA -ACGGAAATCCAGAGACACGGAAAC -ACGGAAATCCAGAGACACAACACC -ACGGAAATCCAGAGACACATCGAG -ACGGAAATCCAGAGACACCTCCTT -ACGGAAATCCAGAGACACCCTGTT -ACGGAAATCCAGAGACACCGGTTT -ACGGAAATCCAGAGACACGTGGTT -ACGGAAATCCAGAGACACGCCTTT -ACGGAAATCCAGAGACACGGTCTT -ACGGAAATCCAGAGACACACGCTT -ACGGAAATCCAGAGACACAGCGTT -ACGGAAATCCAGAGACACTTCGTC -ACGGAAATCCAGAGACACTCTCTC -ACGGAAATCCAGAGACACTGGATC -ACGGAAATCCAGAGACACCACTTC -ACGGAAATCCAGAGACACGTACTC -ACGGAAATCCAGAGACACGATGTC -ACGGAAATCCAGAGACACACAGTC -ACGGAAATCCAGAGACACTTGCTG -ACGGAAATCCAGAGACACTCCATG -ACGGAAATCCAGAGACACTGTGTG -ACGGAAATCCAGAGACACCTAGTG -ACGGAAATCCAGAGACACCATCTG -ACGGAAATCCAGAGACACGAGTTG -ACGGAAATCCAGAGACACAGACTG -ACGGAAATCCAGAGACACTCGGTA -ACGGAAATCCAGAGACACTGCCTA -ACGGAAATCCAGAGACACCCACTA -ACGGAAATCCAGAGACACGGAGTA -ACGGAAATCCAGAGACACTCGTCT -ACGGAAATCCAGAGACACTGCACT -ACGGAAATCCAGAGACACCTGACT -ACGGAAATCCAGAGACACCAACCT -ACGGAAATCCAGAGACACGCTACT -ACGGAAATCCAGAGACACGGATCT -ACGGAAATCCAGAGACACAAGGCT -ACGGAAATCCAGAGACACTCAACC -ACGGAAATCCAGAGACACTGTTCC -ACGGAAATCCAGAGACACATTCCC -ACGGAAATCCAGAGACACTTCTCG -ACGGAAATCCAGAGACACTAGACG -ACGGAAATCCAGAGACACGTAACG -ACGGAAATCCAGAGACACACTTCG -ACGGAAATCCAGAGACACTACGCA -ACGGAAATCCAGAGACACCTTGCA -ACGGAAATCCAGAGACACCGAACA -ACGGAAATCCAGAGACACCAGTCA -ACGGAAATCCAGAGACACGATCCA -ACGGAAATCCAGAGACACACGACA -ACGGAAATCCAGAGACACAGCTCA -ACGGAAATCCAGAGACACTCACGT -ACGGAAATCCAGAGACACCGTAGT -ACGGAAATCCAGAGACACGTCAGT -ACGGAAATCCAGAGACACGAAGGT -ACGGAAATCCAGAGACACAACCGT -ACGGAAATCCAGAGACACTTGTGC -ACGGAAATCCAGAGACACCTAAGC -ACGGAAATCCAGAGACACACTAGC -ACGGAAATCCAGAGACACAGATGC -ACGGAAATCCAGAGACACTGAAGG -ACGGAAATCCAGAGACACCAATGG -ACGGAAATCCAGAGACACATGAGG -ACGGAAATCCAGAGACACAATGGG -ACGGAAATCCAGAGACACTCCTGA -ACGGAAATCCAGAGACACTAGCGA -ACGGAAATCCAGAGACACCACAGA -ACGGAAATCCAGAGACACGCAAGA -ACGGAAATCCAGAGACACGGTTGA -ACGGAAATCCAGAGACACTCCGAT -ACGGAAATCCAGAGACACTGGCAT -ACGGAAATCCAGAGACACCGAGAT -ACGGAAATCCAGAGACACTACCAC -ACGGAAATCCAGAGACACCAGAAC -ACGGAAATCCAGAGACACGTCTAC -ACGGAAATCCAGAGACACACGTAC -ACGGAAATCCAGAGACACAGTGAC -ACGGAAATCCAGAGACACCTGTAG -ACGGAAATCCAGAGACACCCTAAG -ACGGAAATCCAGAGACACGTTCAG -ACGGAAATCCAGAGACACGCATAG -ACGGAAATCCAGAGACACGACAAG -ACGGAAATCCAGAGACACAAGCAG -ACGGAAATCCAGAGACACCGTCAA -ACGGAAATCCAGAGACACGCTGAA -ACGGAAATCCAGAGACACAGTACG -ACGGAAATCCAGAGACACATCCGA -ACGGAAATCCAGAGACACATGGGA -ACGGAAATCCAGAGACACGTGCAA -ACGGAAATCCAGAGACACGAGGAA -ACGGAAATCCAGAGACACCAGGTA -ACGGAAATCCAGAGACACGACTCT -ACGGAAATCCAGAGACACAGTCCT -ACGGAAATCCAGAGACACTAAGCC -ACGGAAATCCAGAGACACATAGCC -ACGGAAATCCAGAGACACTAACCG -ACGGAAATCCAGAGACACATGCCA -ACGGAAATCCAGAGAGCAGGAAAC -ACGGAAATCCAGAGAGCAAACACC -ACGGAAATCCAGAGAGCAATCGAG -ACGGAAATCCAGAGAGCACTCCTT -ACGGAAATCCAGAGAGCACCTGTT -ACGGAAATCCAGAGAGCACGGTTT -ACGGAAATCCAGAGAGCAGTGGTT -ACGGAAATCCAGAGAGCAGCCTTT -ACGGAAATCCAGAGAGCAGGTCTT -ACGGAAATCCAGAGAGCAACGCTT -ACGGAAATCCAGAGAGCAAGCGTT -ACGGAAATCCAGAGAGCATTCGTC -ACGGAAATCCAGAGAGCATCTCTC -ACGGAAATCCAGAGAGCATGGATC -ACGGAAATCCAGAGAGCACACTTC -ACGGAAATCCAGAGAGCAGTACTC -ACGGAAATCCAGAGAGCAGATGTC -ACGGAAATCCAGAGAGCAACAGTC -ACGGAAATCCAGAGAGCATTGCTG -ACGGAAATCCAGAGAGCATCCATG -ACGGAAATCCAGAGAGCATGTGTG -ACGGAAATCCAGAGAGCACTAGTG -ACGGAAATCCAGAGAGCACATCTG -ACGGAAATCCAGAGAGCAGAGTTG -ACGGAAATCCAGAGAGCAAGACTG -ACGGAAATCCAGAGAGCATCGGTA -ACGGAAATCCAGAGAGCATGCCTA -ACGGAAATCCAGAGAGCACCACTA -ACGGAAATCCAGAGAGCAGGAGTA -ACGGAAATCCAGAGAGCATCGTCT -ACGGAAATCCAGAGAGCATGCACT -ACGGAAATCCAGAGAGCACTGACT -ACGGAAATCCAGAGAGCACAACCT -ACGGAAATCCAGAGAGCAGCTACT -ACGGAAATCCAGAGAGCAGGATCT -ACGGAAATCCAGAGAGCAAAGGCT -ACGGAAATCCAGAGAGCATCAACC -ACGGAAATCCAGAGAGCATGTTCC -ACGGAAATCCAGAGAGCAATTCCC -ACGGAAATCCAGAGAGCATTCTCG -ACGGAAATCCAGAGAGCATAGACG -ACGGAAATCCAGAGAGCAGTAACG -ACGGAAATCCAGAGAGCAACTTCG -ACGGAAATCCAGAGAGCATACGCA -ACGGAAATCCAGAGAGCACTTGCA -ACGGAAATCCAGAGAGCACGAACA -ACGGAAATCCAGAGAGCACAGTCA -ACGGAAATCCAGAGAGCAGATCCA -ACGGAAATCCAGAGAGCAACGACA -ACGGAAATCCAGAGAGCAAGCTCA -ACGGAAATCCAGAGAGCATCACGT -ACGGAAATCCAGAGAGCACGTAGT -ACGGAAATCCAGAGAGCAGTCAGT -ACGGAAATCCAGAGAGCAGAAGGT -ACGGAAATCCAGAGAGCAAACCGT -ACGGAAATCCAGAGAGCATTGTGC -ACGGAAATCCAGAGAGCACTAAGC -ACGGAAATCCAGAGAGCAACTAGC -ACGGAAATCCAGAGAGCAAGATGC -ACGGAAATCCAGAGAGCATGAAGG -ACGGAAATCCAGAGAGCACAATGG -ACGGAAATCCAGAGAGCAATGAGG -ACGGAAATCCAGAGAGCAAATGGG -ACGGAAATCCAGAGAGCATCCTGA -ACGGAAATCCAGAGAGCATAGCGA -ACGGAAATCCAGAGAGCACACAGA -ACGGAAATCCAGAGAGCAGCAAGA -ACGGAAATCCAGAGAGCAGGTTGA -ACGGAAATCCAGAGAGCATCCGAT -ACGGAAATCCAGAGAGCATGGCAT -ACGGAAATCCAGAGAGCACGAGAT -ACGGAAATCCAGAGAGCATACCAC -ACGGAAATCCAGAGAGCACAGAAC -ACGGAAATCCAGAGAGCAGTCTAC -ACGGAAATCCAGAGAGCAACGTAC -ACGGAAATCCAGAGAGCAAGTGAC -ACGGAAATCCAGAGAGCACTGTAG -ACGGAAATCCAGAGAGCACCTAAG -ACGGAAATCCAGAGAGCAGTTCAG -ACGGAAATCCAGAGAGCAGCATAG -ACGGAAATCCAGAGAGCAGACAAG -ACGGAAATCCAGAGAGCAAAGCAG -ACGGAAATCCAGAGAGCACGTCAA -ACGGAAATCCAGAGAGCAGCTGAA -ACGGAAATCCAGAGAGCAAGTACG -ACGGAAATCCAGAGAGCAATCCGA -ACGGAAATCCAGAGAGCAATGGGA -ACGGAAATCCAGAGAGCAGTGCAA -ACGGAAATCCAGAGAGCAGAGGAA -ACGGAAATCCAGAGAGCACAGGTA -ACGGAAATCCAGAGAGCAGACTCT -ACGGAAATCCAGAGAGCAAGTCCT -ACGGAAATCCAGAGAGCATAAGCC -ACGGAAATCCAGAGAGCAATAGCC -ACGGAAATCCAGAGAGCATAACCG -ACGGAAATCCAGAGAGCAATGCCA -ACGGAAATCCAGTGAGGTGGAAAC -ACGGAAATCCAGTGAGGTAACACC -ACGGAAATCCAGTGAGGTATCGAG -ACGGAAATCCAGTGAGGTCTCCTT -ACGGAAATCCAGTGAGGTCCTGTT -ACGGAAATCCAGTGAGGTCGGTTT -ACGGAAATCCAGTGAGGTGTGGTT -ACGGAAATCCAGTGAGGTGCCTTT -ACGGAAATCCAGTGAGGTGGTCTT -ACGGAAATCCAGTGAGGTACGCTT -ACGGAAATCCAGTGAGGTAGCGTT -ACGGAAATCCAGTGAGGTTTCGTC -ACGGAAATCCAGTGAGGTTCTCTC -ACGGAAATCCAGTGAGGTTGGATC -ACGGAAATCCAGTGAGGTCACTTC -ACGGAAATCCAGTGAGGTGTACTC -ACGGAAATCCAGTGAGGTGATGTC -ACGGAAATCCAGTGAGGTACAGTC -ACGGAAATCCAGTGAGGTTTGCTG -ACGGAAATCCAGTGAGGTTCCATG -ACGGAAATCCAGTGAGGTTGTGTG -ACGGAAATCCAGTGAGGTCTAGTG -ACGGAAATCCAGTGAGGTCATCTG -ACGGAAATCCAGTGAGGTGAGTTG -ACGGAAATCCAGTGAGGTAGACTG -ACGGAAATCCAGTGAGGTTCGGTA -ACGGAAATCCAGTGAGGTTGCCTA -ACGGAAATCCAGTGAGGTCCACTA -ACGGAAATCCAGTGAGGTGGAGTA -ACGGAAATCCAGTGAGGTTCGTCT -ACGGAAATCCAGTGAGGTTGCACT -ACGGAAATCCAGTGAGGTCTGACT -ACGGAAATCCAGTGAGGTCAACCT -ACGGAAATCCAGTGAGGTGCTACT -ACGGAAATCCAGTGAGGTGGATCT -ACGGAAATCCAGTGAGGTAAGGCT -ACGGAAATCCAGTGAGGTTCAACC -ACGGAAATCCAGTGAGGTTGTTCC -ACGGAAATCCAGTGAGGTATTCCC -ACGGAAATCCAGTGAGGTTTCTCG -ACGGAAATCCAGTGAGGTTAGACG -ACGGAAATCCAGTGAGGTGTAACG -ACGGAAATCCAGTGAGGTACTTCG -ACGGAAATCCAGTGAGGTTACGCA -ACGGAAATCCAGTGAGGTCTTGCA -ACGGAAATCCAGTGAGGTCGAACA -ACGGAAATCCAGTGAGGTCAGTCA -ACGGAAATCCAGTGAGGTGATCCA -ACGGAAATCCAGTGAGGTACGACA -ACGGAAATCCAGTGAGGTAGCTCA -ACGGAAATCCAGTGAGGTTCACGT -ACGGAAATCCAGTGAGGTCGTAGT -ACGGAAATCCAGTGAGGTGTCAGT -ACGGAAATCCAGTGAGGTGAAGGT -ACGGAAATCCAGTGAGGTAACCGT -ACGGAAATCCAGTGAGGTTTGTGC -ACGGAAATCCAGTGAGGTCTAAGC -ACGGAAATCCAGTGAGGTACTAGC -ACGGAAATCCAGTGAGGTAGATGC -ACGGAAATCCAGTGAGGTTGAAGG -ACGGAAATCCAGTGAGGTCAATGG -ACGGAAATCCAGTGAGGTATGAGG -ACGGAAATCCAGTGAGGTAATGGG -ACGGAAATCCAGTGAGGTTCCTGA -ACGGAAATCCAGTGAGGTTAGCGA -ACGGAAATCCAGTGAGGTCACAGA -ACGGAAATCCAGTGAGGTGCAAGA -ACGGAAATCCAGTGAGGTGGTTGA -ACGGAAATCCAGTGAGGTTCCGAT -ACGGAAATCCAGTGAGGTTGGCAT -ACGGAAATCCAGTGAGGTCGAGAT -ACGGAAATCCAGTGAGGTTACCAC -ACGGAAATCCAGTGAGGTCAGAAC -ACGGAAATCCAGTGAGGTGTCTAC -ACGGAAATCCAGTGAGGTACGTAC -ACGGAAATCCAGTGAGGTAGTGAC -ACGGAAATCCAGTGAGGTCTGTAG -ACGGAAATCCAGTGAGGTCCTAAG -ACGGAAATCCAGTGAGGTGTTCAG -ACGGAAATCCAGTGAGGTGCATAG -ACGGAAATCCAGTGAGGTGACAAG -ACGGAAATCCAGTGAGGTAAGCAG -ACGGAAATCCAGTGAGGTCGTCAA -ACGGAAATCCAGTGAGGTGCTGAA -ACGGAAATCCAGTGAGGTAGTACG -ACGGAAATCCAGTGAGGTATCCGA -ACGGAAATCCAGTGAGGTATGGGA -ACGGAAATCCAGTGAGGTGTGCAA -ACGGAAATCCAGTGAGGTGAGGAA -ACGGAAATCCAGTGAGGTCAGGTA -ACGGAAATCCAGTGAGGTGACTCT -ACGGAAATCCAGTGAGGTAGTCCT -ACGGAAATCCAGTGAGGTTAAGCC -ACGGAAATCCAGTGAGGTATAGCC -ACGGAAATCCAGTGAGGTTAACCG -ACGGAAATCCAGTGAGGTATGCCA -ACGGAAATCCAGGATTCCGGAAAC -ACGGAAATCCAGGATTCCAACACC -ACGGAAATCCAGGATTCCATCGAG -ACGGAAATCCAGGATTCCCTCCTT -ACGGAAATCCAGGATTCCCCTGTT -ACGGAAATCCAGGATTCCCGGTTT -ACGGAAATCCAGGATTCCGTGGTT -ACGGAAATCCAGGATTCCGCCTTT -ACGGAAATCCAGGATTCCGGTCTT -ACGGAAATCCAGGATTCCACGCTT -ACGGAAATCCAGGATTCCAGCGTT -ACGGAAATCCAGGATTCCTTCGTC -ACGGAAATCCAGGATTCCTCTCTC -ACGGAAATCCAGGATTCCTGGATC -ACGGAAATCCAGGATTCCCACTTC -ACGGAAATCCAGGATTCCGTACTC -ACGGAAATCCAGGATTCCGATGTC -ACGGAAATCCAGGATTCCACAGTC -ACGGAAATCCAGGATTCCTTGCTG -ACGGAAATCCAGGATTCCTCCATG -ACGGAAATCCAGGATTCCTGTGTG -ACGGAAATCCAGGATTCCCTAGTG -ACGGAAATCCAGGATTCCCATCTG -ACGGAAATCCAGGATTCCGAGTTG -ACGGAAATCCAGGATTCCAGACTG -ACGGAAATCCAGGATTCCTCGGTA -ACGGAAATCCAGGATTCCTGCCTA -ACGGAAATCCAGGATTCCCCACTA -ACGGAAATCCAGGATTCCGGAGTA -ACGGAAATCCAGGATTCCTCGTCT -ACGGAAATCCAGGATTCCTGCACT -ACGGAAATCCAGGATTCCCTGACT -ACGGAAATCCAGGATTCCCAACCT -ACGGAAATCCAGGATTCCGCTACT -ACGGAAATCCAGGATTCCGGATCT -ACGGAAATCCAGGATTCCAAGGCT -ACGGAAATCCAGGATTCCTCAACC -ACGGAAATCCAGGATTCCTGTTCC -ACGGAAATCCAGGATTCCATTCCC -ACGGAAATCCAGGATTCCTTCTCG -ACGGAAATCCAGGATTCCTAGACG -ACGGAAATCCAGGATTCCGTAACG -ACGGAAATCCAGGATTCCACTTCG -ACGGAAATCCAGGATTCCTACGCA -ACGGAAATCCAGGATTCCCTTGCA -ACGGAAATCCAGGATTCCCGAACA -ACGGAAATCCAGGATTCCCAGTCA -ACGGAAATCCAGGATTCCGATCCA -ACGGAAATCCAGGATTCCACGACA -ACGGAAATCCAGGATTCCAGCTCA -ACGGAAATCCAGGATTCCTCACGT -ACGGAAATCCAGGATTCCCGTAGT -ACGGAAATCCAGGATTCCGTCAGT -ACGGAAATCCAGGATTCCGAAGGT -ACGGAAATCCAGGATTCCAACCGT -ACGGAAATCCAGGATTCCTTGTGC -ACGGAAATCCAGGATTCCCTAAGC -ACGGAAATCCAGGATTCCACTAGC -ACGGAAATCCAGGATTCCAGATGC -ACGGAAATCCAGGATTCCTGAAGG -ACGGAAATCCAGGATTCCCAATGG -ACGGAAATCCAGGATTCCATGAGG -ACGGAAATCCAGGATTCCAATGGG -ACGGAAATCCAGGATTCCTCCTGA -ACGGAAATCCAGGATTCCTAGCGA -ACGGAAATCCAGGATTCCCACAGA -ACGGAAATCCAGGATTCCGCAAGA -ACGGAAATCCAGGATTCCGGTTGA -ACGGAAATCCAGGATTCCTCCGAT -ACGGAAATCCAGGATTCCTGGCAT -ACGGAAATCCAGGATTCCCGAGAT -ACGGAAATCCAGGATTCCTACCAC -ACGGAAATCCAGGATTCCCAGAAC -ACGGAAATCCAGGATTCCGTCTAC -ACGGAAATCCAGGATTCCACGTAC -ACGGAAATCCAGGATTCCAGTGAC -ACGGAAATCCAGGATTCCCTGTAG -ACGGAAATCCAGGATTCCCCTAAG -ACGGAAATCCAGGATTCCGTTCAG -ACGGAAATCCAGGATTCCGCATAG -ACGGAAATCCAGGATTCCGACAAG -ACGGAAATCCAGGATTCCAAGCAG -ACGGAAATCCAGGATTCCCGTCAA -ACGGAAATCCAGGATTCCGCTGAA -ACGGAAATCCAGGATTCCAGTACG -ACGGAAATCCAGGATTCCATCCGA -ACGGAAATCCAGGATTCCATGGGA -ACGGAAATCCAGGATTCCGTGCAA -ACGGAAATCCAGGATTCCGAGGAA -ACGGAAATCCAGGATTCCCAGGTA -ACGGAAATCCAGGATTCCGACTCT -ACGGAAATCCAGGATTCCAGTCCT -ACGGAAATCCAGGATTCCTAAGCC -ACGGAAATCCAGGATTCCATAGCC -ACGGAAATCCAGGATTCCTAACCG -ACGGAAATCCAGGATTCCATGCCA -ACGGAAATCCAGCATTGGGGAAAC -ACGGAAATCCAGCATTGGAACACC -ACGGAAATCCAGCATTGGATCGAG -ACGGAAATCCAGCATTGGCTCCTT -ACGGAAATCCAGCATTGGCCTGTT -ACGGAAATCCAGCATTGGCGGTTT -ACGGAAATCCAGCATTGGGTGGTT -ACGGAAATCCAGCATTGGGCCTTT -ACGGAAATCCAGCATTGGGGTCTT -ACGGAAATCCAGCATTGGACGCTT -ACGGAAATCCAGCATTGGAGCGTT -ACGGAAATCCAGCATTGGTTCGTC -ACGGAAATCCAGCATTGGTCTCTC -ACGGAAATCCAGCATTGGTGGATC -ACGGAAATCCAGCATTGGCACTTC -ACGGAAATCCAGCATTGGGTACTC -ACGGAAATCCAGCATTGGGATGTC -ACGGAAATCCAGCATTGGACAGTC -ACGGAAATCCAGCATTGGTTGCTG -ACGGAAATCCAGCATTGGTCCATG -ACGGAAATCCAGCATTGGTGTGTG -ACGGAAATCCAGCATTGGCTAGTG -ACGGAAATCCAGCATTGGCATCTG -ACGGAAATCCAGCATTGGGAGTTG -ACGGAAATCCAGCATTGGAGACTG -ACGGAAATCCAGCATTGGTCGGTA -ACGGAAATCCAGCATTGGTGCCTA -ACGGAAATCCAGCATTGGCCACTA -ACGGAAATCCAGCATTGGGGAGTA -ACGGAAATCCAGCATTGGTCGTCT -ACGGAAATCCAGCATTGGTGCACT -ACGGAAATCCAGCATTGGCTGACT -ACGGAAATCCAGCATTGGCAACCT -ACGGAAATCCAGCATTGGGCTACT -ACGGAAATCCAGCATTGGGGATCT -ACGGAAATCCAGCATTGGAAGGCT -ACGGAAATCCAGCATTGGTCAACC -ACGGAAATCCAGCATTGGTGTTCC -ACGGAAATCCAGCATTGGATTCCC -ACGGAAATCCAGCATTGGTTCTCG -ACGGAAATCCAGCATTGGTAGACG -ACGGAAATCCAGCATTGGGTAACG -ACGGAAATCCAGCATTGGACTTCG -ACGGAAATCCAGCATTGGTACGCA -ACGGAAATCCAGCATTGGCTTGCA -ACGGAAATCCAGCATTGGCGAACA -ACGGAAATCCAGCATTGGCAGTCA -ACGGAAATCCAGCATTGGGATCCA -ACGGAAATCCAGCATTGGACGACA -ACGGAAATCCAGCATTGGAGCTCA -ACGGAAATCCAGCATTGGTCACGT -ACGGAAATCCAGCATTGGCGTAGT -ACGGAAATCCAGCATTGGGTCAGT -ACGGAAATCCAGCATTGGGAAGGT -ACGGAAATCCAGCATTGGAACCGT -ACGGAAATCCAGCATTGGTTGTGC -ACGGAAATCCAGCATTGGCTAAGC -ACGGAAATCCAGCATTGGACTAGC -ACGGAAATCCAGCATTGGAGATGC -ACGGAAATCCAGCATTGGTGAAGG -ACGGAAATCCAGCATTGGCAATGG -ACGGAAATCCAGCATTGGATGAGG -ACGGAAATCCAGCATTGGAATGGG -ACGGAAATCCAGCATTGGTCCTGA -ACGGAAATCCAGCATTGGTAGCGA -ACGGAAATCCAGCATTGGCACAGA -ACGGAAATCCAGCATTGGGCAAGA -ACGGAAATCCAGCATTGGGGTTGA -ACGGAAATCCAGCATTGGTCCGAT -ACGGAAATCCAGCATTGGTGGCAT -ACGGAAATCCAGCATTGGCGAGAT -ACGGAAATCCAGCATTGGTACCAC -ACGGAAATCCAGCATTGGCAGAAC -ACGGAAATCCAGCATTGGGTCTAC -ACGGAAATCCAGCATTGGACGTAC -ACGGAAATCCAGCATTGGAGTGAC -ACGGAAATCCAGCATTGGCTGTAG -ACGGAAATCCAGCATTGGCCTAAG -ACGGAAATCCAGCATTGGGTTCAG -ACGGAAATCCAGCATTGGGCATAG -ACGGAAATCCAGCATTGGGACAAG -ACGGAAATCCAGCATTGGAAGCAG -ACGGAAATCCAGCATTGGCGTCAA -ACGGAAATCCAGCATTGGGCTGAA -ACGGAAATCCAGCATTGGAGTACG -ACGGAAATCCAGCATTGGATCCGA -ACGGAAATCCAGCATTGGATGGGA -ACGGAAATCCAGCATTGGGTGCAA -ACGGAAATCCAGCATTGGGAGGAA -ACGGAAATCCAGCATTGGCAGGTA -ACGGAAATCCAGCATTGGGACTCT -ACGGAAATCCAGCATTGGAGTCCT -ACGGAAATCCAGCATTGGTAAGCC -ACGGAAATCCAGCATTGGATAGCC -ACGGAAATCCAGCATTGGTAACCG -ACGGAAATCCAGCATTGGATGCCA -ACGGAAATCCAGGATCGAGGAAAC -ACGGAAATCCAGGATCGAAACACC -ACGGAAATCCAGGATCGAATCGAG -ACGGAAATCCAGGATCGACTCCTT -ACGGAAATCCAGGATCGACCTGTT -ACGGAAATCCAGGATCGACGGTTT -ACGGAAATCCAGGATCGAGTGGTT -ACGGAAATCCAGGATCGAGCCTTT -ACGGAAATCCAGGATCGAGGTCTT -ACGGAAATCCAGGATCGAACGCTT -ACGGAAATCCAGGATCGAAGCGTT -ACGGAAATCCAGGATCGATTCGTC -ACGGAAATCCAGGATCGATCTCTC -ACGGAAATCCAGGATCGATGGATC -ACGGAAATCCAGGATCGACACTTC -ACGGAAATCCAGGATCGAGTACTC -ACGGAAATCCAGGATCGAGATGTC -ACGGAAATCCAGGATCGAACAGTC -ACGGAAATCCAGGATCGATTGCTG -ACGGAAATCCAGGATCGATCCATG -ACGGAAATCCAGGATCGATGTGTG -ACGGAAATCCAGGATCGACTAGTG -ACGGAAATCCAGGATCGACATCTG -ACGGAAATCCAGGATCGAGAGTTG -ACGGAAATCCAGGATCGAAGACTG -ACGGAAATCCAGGATCGATCGGTA -ACGGAAATCCAGGATCGATGCCTA -ACGGAAATCCAGGATCGACCACTA -ACGGAAATCCAGGATCGAGGAGTA -ACGGAAATCCAGGATCGATCGTCT -ACGGAAATCCAGGATCGATGCACT -ACGGAAATCCAGGATCGACTGACT -ACGGAAATCCAGGATCGACAACCT -ACGGAAATCCAGGATCGAGCTACT -ACGGAAATCCAGGATCGAGGATCT -ACGGAAATCCAGGATCGAAAGGCT -ACGGAAATCCAGGATCGATCAACC -ACGGAAATCCAGGATCGATGTTCC -ACGGAAATCCAGGATCGAATTCCC -ACGGAAATCCAGGATCGATTCTCG -ACGGAAATCCAGGATCGATAGACG -ACGGAAATCCAGGATCGAGTAACG -ACGGAAATCCAGGATCGAACTTCG -ACGGAAATCCAGGATCGATACGCA -ACGGAAATCCAGGATCGACTTGCA -ACGGAAATCCAGGATCGACGAACA -ACGGAAATCCAGGATCGACAGTCA -ACGGAAATCCAGGATCGAGATCCA -ACGGAAATCCAGGATCGAACGACA -ACGGAAATCCAGGATCGAAGCTCA -ACGGAAATCCAGGATCGATCACGT -ACGGAAATCCAGGATCGACGTAGT -ACGGAAATCCAGGATCGAGTCAGT -ACGGAAATCCAGGATCGAGAAGGT -ACGGAAATCCAGGATCGAAACCGT -ACGGAAATCCAGGATCGATTGTGC -ACGGAAATCCAGGATCGACTAAGC -ACGGAAATCCAGGATCGAACTAGC -ACGGAAATCCAGGATCGAAGATGC -ACGGAAATCCAGGATCGATGAAGG -ACGGAAATCCAGGATCGACAATGG -ACGGAAATCCAGGATCGAATGAGG -ACGGAAATCCAGGATCGAAATGGG -ACGGAAATCCAGGATCGATCCTGA -ACGGAAATCCAGGATCGATAGCGA -ACGGAAATCCAGGATCGACACAGA -ACGGAAATCCAGGATCGAGCAAGA -ACGGAAATCCAGGATCGAGGTTGA -ACGGAAATCCAGGATCGATCCGAT -ACGGAAATCCAGGATCGATGGCAT -ACGGAAATCCAGGATCGACGAGAT -ACGGAAATCCAGGATCGATACCAC -ACGGAAATCCAGGATCGACAGAAC -ACGGAAATCCAGGATCGAGTCTAC -ACGGAAATCCAGGATCGAACGTAC -ACGGAAATCCAGGATCGAAGTGAC -ACGGAAATCCAGGATCGACTGTAG -ACGGAAATCCAGGATCGACCTAAG -ACGGAAATCCAGGATCGAGTTCAG -ACGGAAATCCAGGATCGAGCATAG -ACGGAAATCCAGGATCGAGACAAG -ACGGAAATCCAGGATCGAAAGCAG -ACGGAAATCCAGGATCGACGTCAA -ACGGAAATCCAGGATCGAGCTGAA -ACGGAAATCCAGGATCGAAGTACG -ACGGAAATCCAGGATCGAATCCGA -ACGGAAATCCAGGATCGAATGGGA -ACGGAAATCCAGGATCGAGTGCAA -ACGGAAATCCAGGATCGAGAGGAA -ACGGAAATCCAGGATCGACAGGTA -ACGGAAATCCAGGATCGAGACTCT -ACGGAAATCCAGGATCGAAGTCCT -ACGGAAATCCAGGATCGATAAGCC -ACGGAAATCCAGGATCGAATAGCC -ACGGAAATCCAGGATCGATAACCG -ACGGAAATCCAGGATCGAATGCCA -ACGGAAATCCAGCACTACGGAAAC -ACGGAAATCCAGCACTACAACACC -ACGGAAATCCAGCACTACATCGAG -ACGGAAATCCAGCACTACCTCCTT -ACGGAAATCCAGCACTACCCTGTT -ACGGAAATCCAGCACTACCGGTTT -ACGGAAATCCAGCACTACGTGGTT -ACGGAAATCCAGCACTACGCCTTT -ACGGAAATCCAGCACTACGGTCTT -ACGGAAATCCAGCACTACACGCTT -ACGGAAATCCAGCACTACAGCGTT -ACGGAAATCCAGCACTACTTCGTC -ACGGAAATCCAGCACTACTCTCTC -ACGGAAATCCAGCACTACTGGATC -ACGGAAATCCAGCACTACCACTTC -ACGGAAATCCAGCACTACGTACTC -ACGGAAATCCAGCACTACGATGTC -ACGGAAATCCAGCACTACACAGTC -ACGGAAATCCAGCACTACTTGCTG -ACGGAAATCCAGCACTACTCCATG -ACGGAAATCCAGCACTACTGTGTG -ACGGAAATCCAGCACTACCTAGTG -ACGGAAATCCAGCACTACCATCTG -ACGGAAATCCAGCACTACGAGTTG -ACGGAAATCCAGCACTACAGACTG -ACGGAAATCCAGCACTACTCGGTA -ACGGAAATCCAGCACTACTGCCTA -ACGGAAATCCAGCACTACCCACTA -ACGGAAATCCAGCACTACGGAGTA -ACGGAAATCCAGCACTACTCGTCT -ACGGAAATCCAGCACTACTGCACT -ACGGAAATCCAGCACTACCTGACT -ACGGAAATCCAGCACTACCAACCT -ACGGAAATCCAGCACTACGCTACT -ACGGAAATCCAGCACTACGGATCT -ACGGAAATCCAGCACTACAAGGCT -ACGGAAATCCAGCACTACTCAACC -ACGGAAATCCAGCACTACTGTTCC -ACGGAAATCCAGCACTACATTCCC -ACGGAAATCCAGCACTACTTCTCG -ACGGAAATCCAGCACTACTAGACG -ACGGAAATCCAGCACTACGTAACG -ACGGAAATCCAGCACTACACTTCG -ACGGAAATCCAGCACTACTACGCA -ACGGAAATCCAGCACTACCTTGCA -ACGGAAATCCAGCACTACCGAACA -ACGGAAATCCAGCACTACCAGTCA -ACGGAAATCCAGCACTACGATCCA -ACGGAAATCCAGCACTACACGACA -ACGGAAATCCAGCACTACAGCTCA -ACGGAAATCCAGCACTACTCACGT -ACGGAAATCCAGCACTACCGTAGT -ACGGAAATCCAGCACTACGTCAGT -ACGGAAATCCAGCACTACGAAGGT -ACGGAAATCCAGCACTACAACCGT -ACGGAAATCCAGCACTACTTGTGC -ACGGAAATCCAGCACTACCTAAGC -ACGGAAATCCAGCACTACACTAGC -ACGGAAATCCAGCACTACAGATGC -ACGGAAATCCAGCACTACTGAAGG -ACGGAAATCCAGCACTACCAATGG -ACGGAAATCCAGCACTACATGAGG -ACGGAAATCCAGCACTACAATGGG -ACGGAAATCCAGCACTACTCCTGA -ACGGAAATCCAGCACTACTAGCGA -ACGGAAATCCAGCACTACCACAGA -ACGGAAATCCAGCACTACGCAAGA -ACGGAAATCCAGCACTACGGTTGA -ACGGAAATCCAGCACTACTCCGAT -ACGGAAATCCAGCACTACTGGCAT -ACGGAAATCCAGCACTACCGAGAT -ACGGAAATCCAGCACTACTACCAC -ACGGAAATCCAGCACTACCAGAAC -ACGGAAATCCAGCACTACGTCTAC -ACGGAAATCCAGCACTACACGTAC -ACGGAAATCCAGCACTACAGTGAC -ACGGAAATCCAGCACTACCTGTAG -ACGGAAATCCAGCACTACCCTAAG -ACGGAAATCCAGCACTACGTTCAG -ACGGAAATCCAGCACTACGCATAG -ACGGAAATCCAGCACTACGACAAG -ACGGAAATCCAGCACTACAAGCAG -ACGGAAATCCAGCACTACCGTCAA -ACGGAAATCCAGCACTACGCTGAA -ACGGAAATCCAGCACTACAGTACG -ACGGAAATCCAGCACTACATCCGA -ACGGAAATCCAGCACTACATGGGA -ACGGAAATCCAGCACTACGTGCAA -ACGGAAATCCAGCACTACGAGGAA -ACGGAAATCCAGCACTACCAGGTA -ACGGAAATCCAGCACTACGACTCT -ACGGAAATCCAGCACTACAGTCCT -ACGGAAATCCAGCACTACTAAGCC -ACGGAAATCCAGCACTACATAGCC -ACGGAAATCCAGCACTACTAACCG -ACGGAAATCCAGCACTACATGCCA -ACGGAAATCCAGAACCAGGGAAAC -ACGGAAATCCAGAACCAGAACACC -ACGGAAATCCAGAACCAGATCGAG -ACGGAAATCCAGAACCAGCTCCTT -ACGGAAATCCAGAACCAGCCTGTT -ACGGAAATCCAGAACCAGCGGTTT -ACGGAAATCCAGAACCAGGTGGTT -ACGGAAATCCAGAACCAGGCCTTT -ACGGAAATCCAGAACCAGGGTCTT -ACGGAAATCCAGAACCAGACGCTT -ACGGAAATCCAGAACCAGAGCGTT -ACGGAAATCCAGAACCAGTTCGTC -ACGGAAATCCAGAACCAGTCTCTC -ACGGAAATCCAGAACCAGTGGATC -ACGGAAATCCAGAACCAGCACTTC -ACGGAAATCCAGAACCAGGTACTC -ACGGAAATCCAGAACCAGGATGTC -ACGGAAATCCAGAACCAGACAGTC -ACGGAAATCCAGAACCAGTTGCTG -ACGGAAATCCAGAACCAGTCCATG -ACGGAAATCCAGAACCAGTGTGTG -ACGGAAATCCAGAACCAGCTAGTG -ACGGAAATCCAGAACCAGCATCTG -ACGGAAATCCAGAACCAGGAGTTG -ACGGAAATCCAGAACCAGAGACTG -ACGGAAATCCAGAACCAGTCGGTA -ACGGAAATCCAGAACCAGTGCCTA -ACGGAAATCCAGAACCAGCCACTA -ACGGAAATCCAGAACCAGGGAGTA -ACGGAAATCCAGAACCAGTCGTCT -ACGGAAATCCAGAACCAGTGCACT -ACGGAAATCCAGAACCAGCTGACT -ACGGAAATCCAGAACCAGCAACCT -ACGGAAATCCAGAACCAGGCTACT -ACGGAAATCCAGAACCAGGGATCT -ACGGAAATCCAGAACCAGAAGGCT -ACGGAAATCCAGAACCAGTCAACC -ACGGAAATCCAGAACCAGTGTTCC -ACGGAAATCCAGAACCAGATTCCC -ACGGAAATCCAGAACCAGTTCTCG -ACGGAAATCCAGAACCAGTAGACG -ACGGAAATCCAGAACCAGGTAACG -ACGGAAATCCAGAACCAGACTTCG -ACGGAAATCCAGAACCAGTACGCA -ACGGAAATCCAGAACCAGCTTGCA -ACGGAAATCCAGAACCAGCGAACA -ACGGAAATCCAGAACCAGCAGTCA -ACGGAAATCCAGAACCAGGATCCA -ACGGAAATCCAGAACCAGACGACA -ACGGAAATCCAGAACCAGAGCTCA -ACGGAAATCCAGAACCAGTCACGT -ACGGAAATCCAGAACCAGCGTAGT -ACGGAAATCCAGAACCAGGTCAGT -ACGGAAATCCAGAACCAGGAAGGT -ACGGAAATCCAGAACCAGAACCGT -ACGGAAATCCAGAACCAGTTGTGC -ACGGAAATCCAGAACCAGCTAAGC -ACGGAAATCCAGAACCAGACTAGC -ACGGAAATCCAGAACCAGAGATGC -ACGGAAATCCAGAACCAGTGAAGG -ACGGAAATCCAGAACCAGCAATGG -ACGGAAATCCAGAACCAGATGAGG -ACGGAAATCCAGAACCAGAATGGG -ACGGAAATCCAGAACCAGTCCTGA -ACGGAAATCCAGAACCAGTAGCGA -ACGGAAATCCAGAACCAGCACAGA -ACGGAAATCCAGAACCAGGCAAGA -ACGGAAATCCAGAACCAGGGTTGA -ACGGAAATCCAGAACCAGTCCGAT -ACGGAAATCCAGAACCAGTGGCAT -ACGGAAATCCAGAACCAGCGAGAT -ACGGAAATCCAGAACCAGTACCAC -ACGGAAATCCAGAACCAGCAGAAC -ACGGAAATCCAGAACCAGGTCTAC -ACGGAAATCCAGAACCAGACGTAC -ACGGAAATCCAGAACCAGAGTGAC -ACGGAAATCCAGAACCAGCTGTAG -ACGGAAATCCAGAACCAGCCTAAG -ACGGAAATCCAGAACCAGGTTCAG -ACGGAAATCCAGAACCAGGCATAG -ACGGAAATCCAGAACCAGGACAAG -ACGGAAATCCAGAACCAGAAGCAG -ACGGAAATCCAGAACCAGCGTCAA -ACGGAAATCCAGAACCAGGCTGAA -ACGGAAATCCAGAACCAGAGTACG -ACGGAAATCCAGAACCAGATCCGA -ACGGAAATCCAGAACCAGATGGGA -ACGGAAATCCAGAACCAGGTGCAA -ACGGAAATCCAGAACCAGGAGGAA -ACGGAAATCCAGAACCAGCAGGTA -ACGGAAATCCAGAACCAGGACTCT -ACGGAAATCCAGAACCAGAGTCCT -ACGGAAATCCAGAACCAGTAAGCC -ACGGAAATCCAGAACCAGATAGCC -ACGGAAATCCAGAACCAGTAACCG -ACGGAAATCCAGAACCAGATGCCA -ACGGAAATCCAGTACGTCGGAAAC -ACGGAAATCCAGTACGTCAACACC -ACGGAAATCCAGTACGTCATCGAG -ACGGAAATCCAGTACGTCCTCCTT -ACGGAAATCCAGTACGTCCCTGTT -ACGGAAATCCAGTACGTCCGGTTT -ACGGAAATCCAGTACGTCGTGGTT -ACGGAAATCCAGTACGTCGCCTTT -ACGGAAATCCAGTACGTCGGTCTT -ACGGAAATCCAGTACGTCACGCTT -ACGGAAATCCAGTACGTCAGCGTT -ACGGAAATCCAGTACGTCTTCGTC -ACGGAAATCCAGTACGTCTCTCTC -ACGGAAATCCAGTACGTCTGGATC -ACGGAAATCCAGTACGTCCACTTC -ACGGAAATCCAGTACGTCGTACTC -ACGGAAATCCAGTACGTCGATGTC -ACGGAAATCCAGTACGTCACAGTC -ACGGAAATCCAGTACGTCTTGCTG -ACGGAAATCCAGTACGTCTCCATG -ACGGAAATCCAGTACGTCTGTGTG -ACGGAAATCCAGTACGTCCTAGTG -ACGGAAATCCAGTACGTCCATCTG -ACGGAAATCCAGTACGTCGAGTTG -ACGGAAATCCAGTACGTCAGACTG -ACGGAAATCCAGTACGTCTCGGTA -ACGGAAATCCAGTACGTCTGCCTA -ACGGAAATCCAGTACGTCCCACTA -ACGGAAATCCAGTACGTCGGAGTA -ACGGAAATCCAGTACGTCTCGTCT -ACGGAAATCCAGTACGTCTGCACT -ACGGAAATCCAGTACGTCCTGACT -ACGGAAATCCAGTACGTCCAACCT -ACGGAAATCCAGTACGTCGCTACT -ACGGAAATCCAGTACGTCGGATCT -ACGGAAATCCAGTACGTCAAGGCT -ACGGAAATCCAGTACGTCTCAACC -ACGGAAATCCAGTACGTCTGTTCC -ACGGAAATCCAGTACGTCATTCCC -ACGGAAATCCAGTACGTCTTCTCG -ACGGAAATCCAGTACGTCTAGACG -ACGGAAATCCAGTACGTCGTAACG -ACGGAAATCCAGTACGTCACTTCG -ACGGAAATCCAGTACGTCTACGCA -ACGGAAATCCAGTACGTCCTTGCA -ACGGAAATCCAGTACGTCCGAACA -ACGGAAATCCAGTACGTCCAGTCA -ACGGAAATCCAGTACGTCGATCCA -ACGGAAATCCAGTACGTCACGACA -ACGGAAATCCAGTACGTCAGCTCA -ACGGAAATCCAGTACGTCTCACGT -ACGGAAATCCAGTACGTCCGTAGT -ACGGAAATCCAGTACGTCGTCAGT -ACGGAAATCCAGTACGTCGAAGGT -ACGGAAATCCAGTACGTCAACCGT -ACGGAAATCCAGTACGTCTTGTGC -ACGGAAATCCAGTACGTCCTAAGC -ACGGAAATCCAGTACGTCACTAGC -ACGGAAATCCAGTACGTCAGATGC -ACGGAAATCCAGTACGTCTGAAGG -ACGGAAATCCAGTACGTCCAATGG -ACGGAAATCCAGTACGTCATGAGG -ACGGAAATCCAGTACGTCAATGGG -ACGGAAATCCAGTACGTCTCCTGA -ACGGAAATCCAGTACGTCTAGCGA -ACGGAAATCCAGTACGTCCACAGA -ACGGAAATCCAGTACGTCGCAAGA -ACGGAAATCCAGTACGTCGGTTGA -ACGGAAATCCAGTACGTCTCCGAT -ACGGAAATCCAGTACGTCTGGCAT -ACGGAAATCCAGTACGTCCGAGAT -ACGGAAATCCAGTACGTCTACCAC -ACGGAAATCCAGTACGTCCAGAAC -ACGGAAATCCAGTACGTCGTCTAC -ACGGAAATCCAGTACGTCACGTAC -ACGGAAATCCAGTACGTCAGTGAC -ACGGAAATCCAGTACGTCCTGTAG -ACGGAAATCCAGTACGTCCCTAAG -ACGGAAATCCAGTACGTCGTTCAG -ACGGAAATCCAGTACGTCGCATAG -ACGGAAATCCAGTACGTCGACAAG -ACGGAAATCCAGTACGTCAAGCAG -ACGGAAATCCAGTACGTCCGTCAA -ACGGAAATCCAGTACGTCGCTGAA -ACGGAAATCCAGTACGTCAGTACG -ACGGAAATCCAGTACGTCATCCGA -ACGGAAATCCAGTACGTCATGGGA -ACGGAAATCCAGTACGTCGTGCAA -ACGGAAATCCAGTACGTCGAGGAA -ACGGAAATCCAGTACGTCCAGGTA -ACGGAAATCCAGTACGTCGACTCT -ACGGAAATCCAGTACGTCAGTCCT -ACGGAAATCCAGTACGTCTAAGCC -ACGGAAATCCAGTACGTCATAGCC -ACGGAAATCCAGTACGTCTAACCG -ACGGAAATCCAGTACGTCATGCCA -ACGGAAATCCAGTACACGGGAAAC -ACGGAAATCCAGTACACGAACACC -ACGGAAATCCAGTACACGATCGAG -ACGGAAATCCAGTACACGCTCCTT -ACGGAAATCCAGTACACGCCTGTT -ACGGAAATCCAGTACACGCGGTTT -ACGGAAATCCAGTACACGGTGGTT -ACGGAAATCCAGTACACGGCCTTT -ACGGAAATCCAGTACACGGGTCTT -ACGGAAATCCAGTACACGACGCTT -ACGGAAATCCAGTACACGAGCGTT -ACGGAAATCCAGTACACGTTCGTC -ACGGAAATCCAGTACACGTCTCTC -ACGGAAATCCAGTACACGTGGATC -ACGGAAATCCAGTACACGCACTTC -ACGGAAATCCAGTACACGGTACTC -ACGGAAATCCAGTACACGGATGTC -ACGGAAATCCAGTACACGACAGTC -ACGGAAATCCAGTACACGTTGCTG -ACGGAAATCCAGTACACGTCCATG -ACGGAAATCCAGTACACGTGTGTG -ACGGAAATCCAGTACACGCTAGTG -ACGGAAATCCAGTACACGCATCTG -ACGGAAATCCAGTACACGGAGTTG -ACGGAAATCCAGTACACGAGACTG -ACGGAAATCCAGTACACGTCGGTA -ACGGAAATCCAGTACACGTGCCTA -ACGGAAATCCAGTACACGCCACTA -ACGGAAATCCAGTACACGGGAGTA -ACGGAAATCCAGTACACGTCGTCT -ACGGAAATCCAGTACACGTGCACT -ACGGAAATCCAGTACACGCTGACT -ACGGAAATCCAGTACACGCAACCT -ACGGAAATCCAGTACACGGCTACT -ACGGAAATCCAGTACACGGGATCT -ACGGAAATCCAGTACACGAAGGCT -ACGGAAATCCAGTACACGTCAACC -ACGGAAATCCAGTACACGTGTTCC -ACGGAAATCCAGTACACGATTCCC -ACGGAAATCCAGTACACGTTCTCG -ACGGAAATCCAGTACACGTAGACG -ACGGAAATCCAGTACACGGTAACG -ACGGAAATCCAGTACACGACTTCG -ACGGAAATCCAGTACACGTACGCA -ACGGAAATCCAGTACACGCTTGCA -ACGGAAATCCAGTACACGCGAACA -ACGGAAATCCAGTACACGCAGTCA -ACGGAAATCCAGTACACGGATCCA -ACGGAAATCCAGTACACGACGACA -ACGGAAATCCAGTACACGAGCTCA -ACGGAAATCCAGTACACGTCACGT -ACGGAAATCCAGTACACGCGTAGT -ACGGAAATCCAGTACACGGTCAGT -ACGGAAATCCAGTACACGGAAGGT -ACGGAAATCCAGTACACGAACCGT -ACGGAAATCCAGTACACGTTGTGC -ACGGAAATCCAGTACACGCTAAGC -ACGGAAATCCAGTACACGACTAGC -ACGGAAATCCAGTACACGAGATGC -ACGGAAATCCAGTACACGTGAAGG -ACGGAAATCCAGTACACGCAATGG -ACGGAAATCCAGTACACGATGAGG -ACGGAAATCCAGTACACGAATGGG -ACGGAAATCCAGTACACGTCCTGA -ACGGAAATCCAGTACACGTAGCGA -ACGGAAATCCAGTACACGCACAGA -ACGGAAATCCAGTACACGGCAAGA -ACGGAAATCCAGTACACGGGTTGA -ACGGAAATCCAGTACACGTCCGAT -ACGGAAATCCAGTACACGTGGCAT -ACGGAAATCCAGTACACGCGAGAT -ACGGAAATCCAGTACACGTACCAC -ACGGAAATCCAGTACACGCAGAAC -ACGGAAATCCAGTACACGGTCTAC -ACGGAAATCCAGTACACGACGTAC -ACGGAAATCCAGTACACGAGTGAC -ACGGAAATCCAGTACACGCTGTAG -ACGGAAATCCAGTACACGCCTAAG -ACGGAAATCCAGTACACGGTTCAG -ACGGAAATCCAGTACACGGCATAG -ACGGAAATCCAGTACACGGACAAG -ACGGAAATCCAGTACACGAAGCAG -ACGGAAATCCAGTACACGCGTCAA -ACGGAAATCCAGTACACGGCTGAA -ACGGAAATCCAGTACACGAGTACG -ACGGAAATCCAGTACACGATCCGA -ACGGAAATCCAGTACACGATGGGA -ACGGAAATCCAGTACACGGTGCAA -ACGGAAATCCAGTACACGGAGGAA -ACGGAAATCCAGTACACGCAGGTA -ACGGAAATCCAGTACACGGACTCT -ACGGAAATCCAGTACACGAGTCCT -ACGGAAATCCAGTACACGTAAGCC -ACGGAAATCCAGTACACGATAGCC -ACGGAAATCCAGTACACGTAACCG -ACGGAAATCCAGTACACGATGCCA -ACGGAAATCCAGGACAGTGGAAAC -ACGGAAATCCAGGACAGTAACACC -ACGGAAATCCAGGACAGTATCGAG -ACGGAAATCCAGGACAGTCTCCTT -ACGGAAATCCAGGACAGTCCTGTT -ACGGAAATCCAGGACAGTCGGTTT -ACGGAAATCCAGGACAGTGTGGTT -ACGGAAATCCAGGACAGTGCCTTT -ACGGAAATCCAGGACAGTGGTCTT -ACGGAAATCCAGGACAGTACGCTT -ACGGAAATCCAGGACAGTAGCGTT -ACGGAAATCCAGGACAGTTTCGTC -ACGGAAATCCAGGACAGTTCTCTC -ACGGAAATCCAGGACAGTTGGATC -ACGGAAATCCAGGACAGTCACTTC -ACGGAAATCCAGGACAGTGTACTC -ACGGAAATCCAGGACAGTGATGTC -ACGGAAATCCAGGACAGTACAGTC -ACGGAAATCCAGGACAGTTTGCTG -ACGGAAATCCAGGACAGTTCCATG -ACGGAAATCCAGGACAGTTGTGTG -ACGGAAATCCAGGACAGTCTAGTG -ACGGAAATCCAGGACAGTCATCTG -ACGGAAATCCAGGACAGTGAGTTG -ACGGAAATCCAGGACAGTAGACTG -ACGGAAATCCAGGACAGTTCGGTA -ACGGAAATCCAGGACAGTTGCCTA -ACGGAAATCCAGGACAGTCCACTA -ACGGAAATCCAGGACAGTGGAGTA -ACGGAAATCCAGGACAGTTCGTCT -ACGGAAATCCAGGACAGTTGCACT -ACGGAAATCCAGGACAGTCTGACT -ACGGAAATCCAGGACAGTCAACCT -ACGGAAATCCAGGACAGTGCTACT -ACGGAAATCCAGGACAGTGGATCT -ACGGAAATCCAGGACAGTAAGGCT -ACGGAAATCCAGGACAGTTCAACC -ACGGAAATCCAGGACAGTTGTTCC -ACGGAAATCCAGGACAGTATTCCC -ACGGAAATCCAGGACAGTTTCTCG -ACGGAAATCCAGGACAGTTAGACG -ACGGAAATCCAGGACAGTGTAACG -ACGGAAATCCAGGACAGTACTTCG -ACGGAAATCCAGGACAGTTACGCA -ACGGAAATCCAGGACAGTCTTGCA -ACGGAAATCCAGGACAGTCGAACA -ACGGAAATCCAGGACAGTCAGTCA -ACGGAAATCCAGGACAGTGATCCA -ACGGAAATCCAGGACAGTACGACA -ACGGAAATCCAGGACAGTAGCTCA -ACGGAAATCCAGGACAGTTCACGT -ACGGAAATCCAGGACAGTCGTAGT -ACGGAAATCCAGGACAGTGTCAGT -ACGGAAATCCAGGACAGTGAAGGT -ACGGAAATCCAGGACAGTAACCGT -ACGGAAATCCAGGACAGTTTGTGC -ACGGAAATCCAGGACAGTCTAAGC -ACGGAAATCCAGGACAGTACTAGC -ACGGAAATCCAGGACAGTAGATGC -ACGGAAATCCAGGACAGTTGAAGG -ACGGAAATCCAGGACAGTCAATGG -ACGGAAATCCAGGACAGTATGAGG -ACGGAAATCCAGGACAGTAATGGG -ACGGAAATCCAGGACAGTTCCTGA -ACGGAAATCCAGGACAGTTAGCGA -ACGGAAATCCAGGACAGTCACAGA -ACGGAAATCCAGGACAGTGCAAGA -ACGGAAATCCAGGACAGTGGTTGA -ACGGAAATCCAGGACAGTTCCGAT -ACGGAAATCCAGGACAGTTGGCAT -ACGGAAATCCAGGACAGTCGAGAT -ACGGAAATCCAGGACAGTTACCAC -ACGGAAATCCAGGACAGTCAGAAC -ACGGAAATCCAGGACAGTGTCTAC -ACGGAAATCCAGGACAGTACGTAC -ACGGAAATCCAGGACAGTAGTGAC -ACGGAAATCCAGGACAGTCTGTAG -ACGGAAATCCAGGACAGTCCTAAG -ACGGAAATCCAGGACAGTGTTCAG -ACGGAAATCCAGGACAGTGCATAG -ACGGAAATCCAGGACAGTGACAAG -ACGGAAATCCAGGACAGTAAGCAG -ACGGAAATCCAGGACAGTCGTCAA -ACGGAAATCCAGGACAGTGCTGAA -ACGGAAATCCAGGACAGTAGTACG -ACGGAAATCCAGGACAGTATCCGA -ACGGAAATCCAGGACAGTATGGGA -ACGGAAATCCAGGACAGTGTGCAA -ACGGAAATCCAGGACAGTGAGGAA -ACGGAAATCCAGGACAGTCAGGTA -ACGGAAATCCAGGACAGTGACTCT -ACGGAAATCCAGGACAGTAGTCCT -ACGGAAATCCAGGACAGTTAAGCC -ACGGAAATCCAGGACAGTATAGCC -ACGGAAATCCAGGACAGTTAACCG -ACGGAAATCCAGGACAGTATGCCA -ACGGAAATCCAGTAGCTGGGAAAC -ACGGAAATCCAGTAGCTGAACACC -ACGGAAATCCAGTAGCTGATCGAG -ACGGAAATCCAGTAGCTGCTCCTT -ACGGAAATCCAGTAGCTGCCTGTT -ACGGAAATCCAGTAGCTGCGGTTT -ACGGAAATCCAGTAGCTGGTGGTT -ACGGAAATCCAGTAGCTGGCCTTT -ACGGAAATCCAGTAGCTGGGTCTT -ACGGAAATCCAGTAGCTGACGCTT -ACGGAAATCCAGTAGCTGAGCGTT -ACGGAAATCCAGTAGCTGTTCGTC -ACGGAAATCCAGTAGCTGTCTCTC -ACGGAAATCCAGTAGCTGTGGATC -ACGGAAATCCAGTAGCTGCACTTC -ACGGAAATCCAGTAGCTGGTACTC -ACGGAAATCCAGTAGCTGGATGTC -ACGGAAATCCAGTAGCTGACAGTC -ACGGAAATCCAGTAGCTGTTGCTG -ACGGAAATCCAGTAGCTGTCCATG -ACGGAAATCCAGTAGCTGTGTGTG -ACGGAAATCCAGTAGCTGCTAGTG -ACGGAAATCCAGTAGCTGCATCTG -ACGGAAATCCAGTAGCTGGAGTTG -ACGGAAATCCAGTAGCTGAGACTG -ACGGAAATCCAGTAGCTGTCGGTA -ACGGAAATCCAGTAGCTGTGCCTA -ACGGAAATCCAGTAGCTGCCACTA -ACGGAAATCCAGTAGCTGGGAGTA -ACGGAAATCCAGTAGCTGTCGTCT -ACGGAAATCCAGTAGCTGTGCACT -ACGGAAATCCAGTAGCTGCTGACT -ACGGAAATCCAGTAGCTGCAACCT -ACGGAAATCCAGTAGCTGGCTACT -ACGGAAATCCAGTAGCTGGGATCT -ACGGAAATCCAGTAGCTGAAGGCT -ACGGAAATCCAGTAGCTGTCAACC -ACGGAAATCCAGTAGCTGTGTTCC -ACGGAAATCCAGTAGCTGATTCCC -ACGGAAATCCAGTAGCTGTTCTCG -ACGGAAATCCAGTAGCTGTAGACG -ACGGAAATCCAGTAGCTGGTAACG -ACGGAAATCCAGTAGCTGACTTCG -ACGGAAATCCAGTAGCTGTACGCA -ACGGAAATCCAGTAGCTGCTTGCA -ACGGAAATCCAGTAGCTGCGAACA -ACGGAAATCCAGTAGCTGCAGTCA -ACGGAAATCCAGTAGCTGGATCCA -ACGGAAATCCAGTAGCTGACGACA -ACGGAAATCCAGTAGCTGAGCTCA -ACGGAAATCCAGTAGCTGTCACGT -ACGGAAATCCAGTAGCTGCGTAGT -ACGGAAATCCAGTAGCTGGTCAGT -ACGGAAATCCAGTAGCTGGAAGGT -ACGGAAATCCAGTAGCTGAACCGT -ACGGAAATCCAGTAGCTGTTGTGC -ACGGAAATCCAGTAGCTGCTAAGC -ACGGAAATCCAGTAGCTGACTAGC -ACGGAAATCCAGTAGCTGAGATGC -ACGGAAATCCAGTAGCTGTGAAGG -ACGGAAATCCAGTAGCTGCAATGG -ACGGAAATCCAGTAGCTGATGAGG -ACGGAAATCCAGTAGCTGAATGGG -ACGGAAATCCAGTAGCTGTCCTGA -ACGGAAATCCAGTAGCTGTAGCGA -ACGGAAATCCAGTAGCTGCACAGA -ACGGAAATCCAGTAGCTGGCAAGA -ACGGAAATCCAGTAGCTGGGTTGA -ACGGAAATCCAGTAGCTGTCCGAT -ACGGAAATCCAGTAGCTGTGGCAT -ACGGAAATCCAGTAGCTGCGAGAT -ACGGAAATCCAGTAGCTGTACCAC -ACGGAAATCCAGTAGCTGCAGAAC -ACGGAAATCCAGTAGCTGGTCTAC -ACGGAAATCCAGTAGCTGACGTAC -ACGGAAATCCAGTAGCTGAGTGAC -ACGGAAATCCAGTAGCTGCTGTAG -ACGGAAATCCAGTAGCTGCCTAAG -ACGGAAATCCAGTAGCTGGTTCAG -ACGGAAATCCAGTAGCTGGCATAG -ACGGAAATCCAGTAGCTGGACAAG -ACGGAAATCCAGTAGCTGAAGCAG -ACGGAAATCCAGTAGCTGCGTCAA -ACGGAAATCCAGTAGCTGGCTGAA -ACGGAAATCCAGTAGCTGAGTACG -ACGGAAATCCAGTAGCTGATCCGA -ACGGAAATCCAGTAGCTGATGGGA -ACGGAAATCCAGTAGCTGGTGCAA -ACGGAAATCCAGTAGCTGGAGGAA -ACGGAAATCCAGTAGCTGCAGGTA -ACGGAAATCCAGTAGCTGGACTCT -ACGGAAATCCAGTAGCTGAGTCCT -ACGGAAATCCAGTAGCTGTAAGCC -ACGGAAATCCAGTAGCTGATAGCC -ACGGAAATCCAGTAGCTGTAACCG -ACGGAAATCCAGTAGCTGATGCCA -ACGGAAATCCAGAAGCCTGGAAAC -ACGGAAATCCAGAAGCCTAACACC -ACGGAAATCCAGAAGCCTATCGAG -ACGGAAATCCAGAAGCCTCTCCTT -ACGGAAATCCAGAAGCCTCCTGTT -ACGGAAATCCAGAAGCCTCGGTTT -ACGGAAATCCAGAAGCCTGTGGTT -ACGGAAATCCAGAAGCCTGCCTTT -ACGGAAATCCAGAAGCCTGGTCTT -ACGGAAATCCAGAAGCCTACGCTT -ACGGAAATCCAGAAGCCTAGCGTT -ACGGAAATCCAGAAGCCTTTCGTC -ACGGAAATCCAGAAGCCTTCTCTC -ACGGAAATCCAGAAGCCTTGGATC -ACGGAAATCCAGAAGCCTCACTTC -ACGGAAATCCAGAAGCCTGTACTC -ACGGAAATCCAGAAGCCTGATGTC -ACGGAAATCCAGAAGCCTACAGTC -ACGGAAATCCAGAAGCCTTTGCTG -ACGGAAATCCAGAAGCCTTCCATG -ACGGAAATCCAGAAGCCTTGTGTG -ACGGAAATCCAGAAGCCTCTAGTG -ACGGAAATCCAGAAGCCTCATCTG -ACGGAAATCCAGAAGCCTGAGTTG -ACGGAAATCCAGAAGCCTAGACTG -ACGGAAATCCAGAAGCCTTCGGTA -ACGGAAATCCAGAAGCCTTGCCTA -ACGGAAATCCAGAAGCCTCCACTA -ACGGAAATCCAGAAGCCTGGAGTA -ACGGAAATCCAGAAGCCTTCGTCT -ACGGAAATCCAGAAGCCTTGCACT -ACGGAAATCCAGAAGCCTCTGACT -ACGGAAATCCAGAAGCCTCAACCT -ACGGAAATCCAGAAGCCTGCTACT -ACGGAAATCCAGAAGCCTGGATCT -ACGGAAATCCAGAAGCCTAAGGCT -ACGGAAATCCAGAAGCCTTCAACC -ACGGAAATCCAGAAGCCTTGTTCC -ACGGAAATCCAGAAGCCTATTCCC -ACGGAAATCCAGAAGCCTTTCTCG -ACGGAAATCCAGAAGCCTTAGACG -ACGGAAATCCAGAAGCCTGTAACG -ACGGAAATCCAGAAGCCTACTTCG -ACGGAAATCCAGAAGCCTTACGCA -ACGGAAATCCAGAAGCCTCTTGCA -ACGGAAATCCAGAAGCCTCGAACA -ACGGAAATCCAGAAGCCTCAGTCA -ACGGAAATCCAGAAGCCTGATCCA -ACGGAAATCCAGAAGCCTACGACA -ACGGAAATCCAGAAGCCTAGCTCA -ACGGAAATCCAGAAGCCTTCACGT -ACGGAAATCCAGAAGCCTCGTAGT -ACGGAAATCCAGAAGCCTGTCAGT -ACGGAAATCCAGAAGCCTGAAGGT -ACGGAAATCCAGAAGCCTAACCGT -ACGGAAATCCAGAAGCCTTTGTGC -ACGGAAATCCAGAAGCCTCTAAGC -ACGGAAATCCAGAAGCCTACTAGC -ACGGAAATCCAGAAGCCTAGATGC -ACGGAAATCCAGAAGCCTTGAAGG -ACGGAAATCCAGAAGCCTCAATGG -ACGGAAATCCAGAAGCCTATGAGG -ACGGAAATCCAGAAGCCTAATGGG -ACGGAAATCCAGAAGCCTTCCTGA -ACGGAAATCCAGAAGCCTTAGCGA -ACGGAAATCCAGAAGCCTCACAGA -ACGGAAATCCAGAAGCCTGCAAGA -ACGGAAATCCAGAAGCCTGGTTGA -ACGGAAATCCAGAAGCCTTCCGAT -ACGGAAATCCAGAAGCCTTGGCAT -ACGGAAATCCAGAAGCCTCGAGAT -ACGGAAATCCAGAAGCCTTACCAC -ACGGAAATCCAGAAGCCTCAGAAC -ACGGAAATCCAGAAGCCTGTCTAC -ACGGAAATCCAGAAGCCTACGTAC -ACGGAAATCCAGAAGCCTAGTGAC -ACGGAAATCCAGAAGCCTCTGTAG -ACGGAAATCCAGAAGCCTCCTAAG -ACGGAAATCCAGAAGCCTGTTCAG -ACGGAAATCCAGAAGCCTGCATAG -ACGGAAATCCAGAAGCCTGACAAG -ACGGAAATCCAGAAGCCTAAGCAG -ACGGAAATCCAGAAGCCTCGTCAA -ACGGAAATCCAGAAGCCTGCTGAA -ACGGAAATCCAGAAGCCTAGTACG -ACGGAAATCCAGAAGCCTATCCGA -ACGGAAATCCAGAAGCCTATGGGA -ACGGAAATCCAGAAGCCTGTGCAA -ACGGAAATCCAGAAGCCTGAGGAA -ACGGAAATCCAGAAGCCTCAGGTA -ACGGAAATCCAGAAGCCTGACTCT -ACGGAAATCCAGAAGCCTAGTCCT -ACGGAAATCCAGAAGCCTTAAGCC -ACGGAAATCCAGAAGCCTATAGCC -ACGGAAATCCAGAAGCCTTAACCG -ACGGAAATCCAGAAGCCTATGCCA -ACGGAAATCCAGCAGGTTGGAAAC -ACGGAAATCCAGCAGGTTAACACC -ACGGAAATCCAGCAGGTTATCGAG -ACGGAAATCCAGCAGGTTCTCCTT -ACGGAAATCCAGCAGGTTCCTGTT -ACGGAAATCCAGCAGGTTCGGTTT -ACGGAAATCCAGCAGGTTGTGGTT -ACGGAAATCCAGCAGGTTGCCTTT -ACGGAAATCCAGCAGGTTGGTCTT -ACGGAAATCCAGCAGGTTACGCTT -ACGGAAATCCAGCAGGTTAGCGTT -ACGGAAATCCAGCAGGTTTTCGTC -ACGGAAATCCAGCAGGTTTCTCTC -ACGGAAATCCAGCAGGTTTGGATC -ACGGAAATCCAGCAGGTTCACTTC -ACGGAAATCCAGCAGGTTGTACTC -ACGGAAATCCAGCAGGTTGATGTC -ACGGAAATCCAGCAGGTTACAGTC -ACGGAAATCCAGCAGGTTTTGCTG -ACGGAAATCCAGCAGGTTTCCATG -ACGGAAATCCAGCAGGTTTGTGTG -ACGGAAATCCAGCAGGTTCTAGTG -ACGGAAATCCAGCAGGTTCATCTG -ACGGAAATCCAGCAGGTTGAGTTG -ACGGAAATCCAGCAGGTTAGACTG -ACGGAAATCCAGCAGGTTTCGGTA -ACGGAAATCCAGCAGGTTTGCCTA -ACGGAAATCCAGCAGGTTCCACTA -ACGGAAATCCAGCAGGTTGGAGTA -ACGGAAATCCAGCAGGTTTCGTCT -ACGGAAATCCAGCAGGTTTGCACT -ACGGAAATCCAGCAGGTTCTGACT -ACGGAAATCCAGCAGGTTCAACCT -ACGGAAATCCAGCAGGTTGCTACT -ACGGAAATCCAGCAGGTTGGATCT -ACGGAAATCCAGCAGGTTAAGGCT -ACGGAAATCCAGCAGGTTTCAACC -ACGGAAATCCAGCAGGTTTGTTCC -ACGGAAATCCAGCAGGTTATTCCC -ACGGAAATCCAGCAGGTTTTCTCG -ACGGAAATCCAGCAGGTTTAGACG -ACGGAAATCCAGCAGGTTGTAACG -ACGGAAATCCAGCAGGTTACTTCG -ACGGAAATCCAGCAGGTTTACGCA -ACGGAAATCCAGCAGGTTCTTGCA -ACGGAAATCCAGCAGGTTCGAACA -ACGGAAATCCAGCAGGTTCAGTCA -ACGGAAATCCAGCAGGTTGATCCA -ACGGAAATCCAGCAGGTTACGACA -ACGGAAATCCAGCAGGTTAGCTCA -ACGGAAATCCAGCAGGTTTCACGT -ACGGAAATCCAGCAGGTTCGTAGT -ACGGAAATCCAGCAGGTTGTCAGT -ACGGAAATCCAGCAGGTTGAAGGT -ACGGAAATCCAGCAGGTTAACCGT -ACGGAAATCCAGCAGGTTTTGTGC -ACGGAAATCCAGCAGGTTCTAAGC -ACGGAAATCCAGCAGGTTACTAGC -ACGGAAATCCAGCAGGTTAGATGC -ACGGAAATCCAGCAGGTTTGAAGG -ACGGAAATCCAGCAGGTTCAATGG -ACGGAAATCCAGCAGGTTATGAGG -ACGGAAATCCAGCAGGTTAATGGG -ACGGAAATCCAGCAGGTTTCCTGA -ACGGAAATCCAGCAGGTTTAGCGA -ACGGAAATCCAGCAGGTTCACAGA -ACGGAAATCCAGCAGGTTGCAAGA -ACGGAAATCCAGCAGGTTGGTTGA -ACGGAAATCCAGCAGGTTTCCGAT -ACGGAAATCCAGCAGGTTTGGCAT -ACGGAAATCCAGCAGGTTCGAGAT -ACGGAAATCCAGCAGGTTTACCAC -ACGGAAATCCAGCAGGTTCAGAAC -ACGGAAATCCAGCAGGTTGTCTAC -ACGGAAATCCAGCAGGTTACGTAC -ACGGAAATCCAGCAGGTTAGTGAC -ACGGAAATCCAGCAGGTTCTGTAG -ACGGAAATCCAGCAGGTTCCTAAG -ACGGAAATCCAGCAGGTTGTTCAG -ACGGAAATCCAGCAGGTTGCATAG -ACGGAAATCCAGCAGGTTGACAAG -ACGGAAATCCAGCAGGTTAAGCAG -ACGGAAATCCAGCAGGTTCGTCAA -ACGGAAATCCAGCAGGTTGCTGAA -ACGGAAATCCAGCAGGTTAGTACG -ACGGAAATCCAGCAGGTTATCCGA -ACGGAAATCCAGCAGGTTATGGGA -ACGGAAATCCAGCAGGTTGTGCAA -ACGGAAATCCAGCAGGTTGAGGAA -ACGGAAATCCAGCAGGTTCAGGTA -ACGGAAATCCAGCAGGTTGACTCT -ACGGAAATCCAGCAGGTTAGTCCT -ACGGAAATCCAGCAGGTTTAAGCC -ACGGAAATCCAGCAGGTTATAGCC -ACGGAAATCCAGCAGGTTTAACCG -ACGGAAATCCAGCAGGTTATGCCA -ACGGAAATCCAGTAGGCAGGAAAC -ACGGAAATCCAGTAGGCAAACACC -ACGGAAATCCAGTAGGCAATCGAG -ACGGAAATCCAGTAGGCACTCCTT -ACGGAAATCCAGTAGGCACCTGTT -ACGGAAATCCAGTAGGCACGGTTT -ACGGAAATCCAGTAGGCAGTGGTT -ACGGAAATCCAGTAGGCAGCCTTT -ACGGAAATCCAGTAGGCAGGTCTT -ACGGAAATCCAGTAGGCAACGCTT -ACGGAAATCCAGTAGGCAAGCGTT -ACGGAAATCCAGTAGGCATTCGTC -ACGGAAATCCAGTAGGCATCTCTC -ACGGAAATCCAGTAGGCATGGATC -ACGGAAATCCAGTAGGCACACTTC -ACGGAAATCCAGTAGGCAGTACTC -ACGGAAATCCAGTAGGCAGATGTC -ACGGAAATCCAGTAGGCAACAGTC -ACGGAAATCCAGTAGGCATTGCTG -ACGGAAATCCAGTAGGCATCCATG -ACGGAAATCCAGTAGGCATGTGTG -ACGGAAATCCAGTAGGCACTAGTG -ACGGAAATCCAGTAGGCACATCTG -ACGGAAATCCAGTAGGCAGAGTTG -ACGGAAATCCAGTAGGCAAGACTG -ACGGAAATCCAGTAGGCATCGGTA -ACGGAAATCCAGTAGGCATGCCTA -ACGGAAATCCAGTAGGCACCACTA -ACGGAAATCCAGTAGGCAGGAGTA -ACGGAAATCCAGTAGGCATCGTCT -ACGGAAATCCAGTAGGCATGCACT -ACGGAAATCCAGTAGGCACTGACT -ACGGAAATCCAGTAGGCACAACCT -ACGGAAATCCAGTAGGCAGCTACT -ACGGAAATCCAGTAGGCAGGATCT -ACGGAAATCCAGTAGGCAAAGGCT -ACGGAAATCCAGTAGGCATCAACC -ACGGAAATCCAGTAGGCATGTTCC -ACGGAAATCCAGTAGGCAATTCCC -ACGGAAATCCAGTAGGCATTCTCG -ACGGAAATCCAGTAGGCATAGACG -ACGGAAATCCAGTAGGCAGTAACG -ACGGAAATCCAGTAGGCAACTTCG -ACGGAAATCCAGTAGGCATACGCA -ACGGAAATCCAGTAGGCACTTGCA -ACGGAAATCCAGTAGGCACGAACA -ACGGAAATCCAGTAGGCACAGTCA -ACGGAAATCCAGTAGGCAGATCCA -ACGGAAATCCAGTAGGCAACGACA -ACGGAAATCCAGTAGGCAAGCTCA -ACGGAAATCCAGTAGGCATCACGT -ACGGAAATCCAGTAGGCACGTAGT -ACGGAAATCCAGTAGGCAGTCAGT -ACGGAAATCCAGTAGGCAGAAGGT -ACGGAAATCCAGTAGGCAAACCGT -ACGGAAATCCAGTAGGCATTGTGC -ACGGAAATCCAGTAGGCACTAAGC -ACGGAAATCCAGTAGGCAACTAGC -ACGGAAATCCAGTAGGCAAGATGC -ACGGAAATCCAGTAGGCATGAAGG -ACGGAAATCCAGTAGGCACAATGG -ACGGAAATCCAGTAGGCAATGAGG -ACGGAAATCCAGTAGGCAAATGGG -ACGGAAATCCAGTAGGCATCCTGA -ACGGAAATCCAGTAGGCATAGCGA -ACGGAAATCCAGTAGGCACACAGA -ACGGAAATCCAGTAGGCAGCAAGA -ACGGAAATCCAGTAGGCAGGTTGA -ACGGAAATCCAGTAGGCATCCGAT -ACGGAAATCCAGTAGGCATGGCAT -ACGGAAATCCAGTAGGCACGAGAT -ACGGAAATCCAGTAGGCATACCAC -ACGGAAATCCAGTAGGCACAGAAC -ACGGAAATCCAGTAGGCAGTCTAC -ACGGAAATCCAGTAGGCAACGTAC -ACGGAAATCCAGTAGGCAAGTGAC -ACGGAAATCCAGTAGGCACTGTAG -ACGGAAATCCAGTAGGCACCTAAG -ACGGAAATCCAGTAGGCAGTTCAG -ACGGAAATCCAGTAGGCAGCATAG -ACGGAAATCCAGTAGGCAGACAAG -ACGGAAATCCAGTAGGCAAAGCAG -ACGGAAATCCAGTAGGCACGTCAA -ACGGAAATCCAGTAGGCAGCTGAA -ACGGAAATCCAGTAGGCAAGTACG -ACGGAAATCCAGTAGGCAATCCGA -ACGGAAATCCAGTAGGCAATGGGA -ACGGAAATCCAGTAGGCAGTGCAA -ACGGAAATCCAGTAGGCAGAGGAA -ACGGAAATCCAGTAGGCACAGGTA -ACGGAAATCCAGTAGGCAGACTCT -ACGGAAATCCAGTAGGCAAGTCCT -ACGGAAATCCAGTAGGCATAAGCC -ACGGAAATCCAGTAGGCAATAGCC -ACGGAAATCCAGTAGGCATAACCG -ACGGAAATCCAGTAGGCAATGCCA -ACGGAAATCCAGAAGGACGGAAAC -ACGGAAATCCAGAAGGACAACACC -ACGGAAATCCAGAAGGACATCGAG -ACGGAAATCCAGAAGGACCTCCTT -ACGGAAATCCAGAAGGACCCTGTT -ACGGAAATCCAGAAGGACCGGTTT -ACGGAAATCCAGAAGGACGTGGTT -ACGGAAATCCAGAAGGACGCCTTT -ACGGAAATCCAGAAGGACGGTCTT -ACGGAAATCCAGAAGGACACGCTT -ACGGAAATCCAGAAGGACAGCGTT -ACGGAAATCCAGAAGGACTTCGTC -ACGGAAATCCAGAAGGACTCTCTC -ACGGAAATCCAGAAGGACTGGATC -ACGGAAATCCAGAAGGACCACTTC -ACGGAAATCCAGAAGGACGTACTC -ACGGAAATCCAGAAGGACGATGTC -ACGGAAATCCAGAAGGACACAGTC -ACGGAAATCCAGAAGGACTTGCTG -ACGGAAATCCAGAAGGACTCCATG -ACGGAAATCCAGAAGGACTGTGTG -ACGGAAATCCAGAAGGACCTAGTG -ACGGAAATCCAGAAGGACCATCTG -ACGGAAATCCAGAAGGACGAGTTG -ACGGAAATCCAGAAGGACAGACTG -ACGGAAATCCAGAAGGACTCGGTA -ACGGAAATCCAGAAGGACTGCCTA -ACGGAAATCCAGAAGGACCCACTA -ACGGAAATCCAGAAGGACGGAGTA -ACGGAAATCCAGAAGGACTCGTCT -ACGGAAATCCAGAAGGACTGCACT -ACGGAAATCCAGAAGGACCTGACT -ACGGAAATCCAGAAGGACCAACCT -ACGGAAATCCAGAAGGACGCTACT -ACGGAAATCCAGAAGGACGGATCT -ACGGAAATCCAGAAGGACAAGGCT -ACGGAAATCCAGAAGGACTCAACC -ACGGAAATCCAGAAGGACTGTTCC -ACGGAAATCCAGAAGGACATTCCC -ACGGAAATCCAGAAGGACTTCTCG -ACGGAAATCCAGAAGGACTAGACG -ACGGAAATCCAGAAGGACGTAACG -ACGGAAATCCAGAAGGACACTTCG -ACGGAAATCCAGAAGGACTACGCA -ACGGAAATCCAGAAGGACCTTGCA -ACGGAAATCCAGAAGGACCGAACA -ACGGAAATCCAGAAGGACCAGTCA -ACGGAAATCCAGAAGGACGATCCA -ACGGAAATCCAGAAGGACACGACA -ACGGAAATCCAGAAGGACAGCTCA -ACGGAAATCCAGAAGGACTCACGT -ACGGAAATCCAGAAGGACCGTAGT -ACGGAAATCCAGAAGGACGTCAGT -ACGGAAATCCAGAAGGACGAAGGT -ACGGAAATCCAGAAGGACAACCGT -ACGGAAATCCAGAAGGACTTGTGC -ACGGAAATCCAGAAGGACCTAAGC -ACGGAAATCCAGAAGGACACTAGC -ACGGAAATCCAGAAGGACAGATGC -ACGGAAATCCAGAAGGACTGAAGG -ACGGAAATCCAGAAGGACCAATGG -ACGGAAATCCAGAAGGACATGAGG -ACGGAAATCCAGAAGGACAATGGG -ACGGAAATCCAGAAGGACTCCTGA -ACGGAAATCCAGAAGGACTAGCGA -ACGGAAATCCAGAAGGACCACAGA -ACGGAAATCCAGAAGGACGCAAGA -ACGGAAATCCAGAAGGACGGTTGA -ACGGAAATCCAGAAGGACTCCGAT -ACGGAAATCCAGAAGGACTGGCAT -ACGGAAATCCAGAAGGACCGAGAT -ACGGAAATCCAGAAGGACTACCAC -ACGGAAATCCAGAAGGACCAGAAC -ACGGAAATCCAGAAGGACGTCTAC -ACGGAAATCCAGAAGGACACGTAC -ACGGAAATCCAGAAGGACAGTGAC -ACGGAAATCCAGAAGGACCTGTAG -ACGGAAATCCAGAAGGACCCTAAG -ACGGAAATCCAGAAGGACGTTCAG -ACGGAAATCCAGAAGGACGCATAG -ACGGAAATCCAGAAGGACGACAAG -ACGGAAATCCAGAAGGACAAGCAG -ACGGAAATCCAGAAGGACCGTCAA -ACGGAAATCCAGAAGGACGCTGAA -ACGGAAATCCAGAAGGACAGTACG -ACGGAAATCCAGAAGGACATCCGA -ACGGAAATCCAGAAGGACATGGGA -ACGGAAATCCAGAAGGACGTGCAA -ACGGAAATCCAGAAGGACGAGGAA -ACGGAAATCCAGAAGGACCAGGTA -ACGGAAATCCAGAAGGACGACTCT -ACGGAAATCCAGAAGGACAGTCCT -ACGGAAATCCAGAAGGACTAAGCC -ACGGAAATCCAGAAGGACATAGCC -ACGGAAATCCAGAAGGACTAACCG -ACGGAAATCCAGAAGGACATGCCA -ACGGAAATCCAGCAGAAGGGAAAC -ACGGAAATCCAGCAGAAGAACACC -ACGGAAATCCAGCAGAAGATCGAG -ACGGAAATCCAGCAGAAGCTCCTT -ACGGAAATCCAGCAGAAGCCTGTT -ACGGAAATCCAGCAGAAGCGGTTT -ACGGAAATCCAGCAGAAGGTGGTT -ACGGAAATCCAGCAGAAGGCCTTT -ACGGAAATCCAGCAGAAGGGTCTT -ACGGAAATCCAGCAGAAGACGCTT -ACGGAAATCCAGCAGAAGAGCGTT -ACGGAAATCCAGCAGAAGTTCGTC -ACGGAAATCCAGCAGAAGTCTCTC -ACGGAAATCCAGCAGAAGTGGATC -ACGGAAATCCAGCAGAAGCACTTC -ACGGAAATCCAGCAGAAGGTACTC -ACGGAAATCCAGCAGAAGGATGTC -ACGGAAATCCAGCAGAAGACAGTC -ACGGAAATCCAGCAGAAGTTGCTG -ACGGAAATCCAGCAGAAGTCCATG -ACGGAAATCCAGCAGAAGTGTGTG -ACGGAAATCCAGCAGAAGCTAGTG -ACGGAAATCCAGCAGAAGCATCTG -ACGGAAATCCAGCAGAAGGAGTTG -ACGGAAATCCAGCAGAAGAGACTG -ACGGAAATCCAGCAGAAGTCGGTA -ACGGAAATCCAGCAGAAGTGCCTA -ACGGAAATCCAGCAGAAGCCACTA -ACGGAAATCCAGCAGAAGGGAGTA -ACGGAAATCCAGCAGAAGTCGTCT -ACGGAAATCCAGCAGAAGTGCACT -ACGGAAATCCAGCAGAAGCTGACT -ACGGAAATCCAGCAGAAGCAACCT -ACGGAAATCCAGCAGAAGGCTACT -ACGGAAATCCAGCAGAAGGGATCT -ACGGAAATCCAGCAGAAGAAGGCT -ACGGAAATCCAGCAGAAGTCAACC -ACGGAAATCCAGCAGAAGTGTTCC -ACGGAAATCCAGCAGAAGATTCCC -ACGGAAATCCAGCAGAAGTTCTCG -ACGGAAATCCAGCAGAAGTAGACG -ACGGAAATCCAGCAGAAGGTAACG -ACGGAAATCCAGCAGAAGACTTCG -ACGGAAATCCAGCAGAAGTACGCA -ACGGAAATCCAGCAGAAGCTTGCA -ACGGAAATCCAGCAGAAGCGAACA -ACGGAAATCCAGCAGAAGCAGTCA -ACGGAAATCCAGCAGAAGGATCCA -ACGGAAATCCAGCAGAAGACGACA -ACGGAAATCCAGCAGAAGAGCTCA -ACGGAAATCCAGCAGAAGTCACGT -ACGGAAATCCAGCAGAAGCGTAGT -ACGGAAATCCAGCAGAAGGTCAGT -ACGGAAATCCAGCAGAAGGAAGGT -ACGGAAATCCAGCAGAAGAACCGT -ACGGAAATCCAGCAGAAGTTGTGC -ACGGAAATCCAGCAGAAGCTAAGC -ACGGAAATCCAGCAGAAGACTAGC -ACGGAAATCCAGCAGAAGAGATGC -ACGGAAATCCAGCAGAAGTGAAGG -ACGGAAATCCAGCAGAAGCAATGG -ACGGAAATCCAGCAGAAGATGAGG -ACGGAAATCCAGCAGAAGAATGGG -ACGGAAATCCAGCAGAAGTCCTGA -ACGGAAATCCAGCAGAAGTAGCGA -ACGGAAATCCAGCAGAAGCACAGA -ACGGAAATCCAGCAGAAGGCAAGA -ACGGAAATCCAGCAGAAGGGTTGA -ACGGAAATCCAGCAGAAGTCCGAT -ACGGAAATCCAGCAGAAGTGGCAT -ACGGAAATCCAGCAGAAGCGAGAT -ACGGAAATCCAGCAGAAGTACCAC -ACGGAAATCCAGCAGAAGCAGAAC -ACGGAAATCCAGCAGAAGGTCTAC -ACGGAAATCCAGCAGAAGACGTAC -ACGGAAATCCAGCAGAAGAGTGAC -ACGGAAATCCAGCAGAAGCTGTAG -ACGGAAATCCAGCAGAAGCCTAAG -ACGGAAATCCAGCAGAAGGTTCAG -ACGGAAATCCAGCAGAAGGCATAG -ACGGAAATCCAGCAGAAGGACAAG -ACGGAAATCCAGCAGAAGAAGCAG -ACGGAAATCCAGCAGAAGCGTCAA -ACGGAAATCCAGCAGAAGGCTGAA -ACGGAAATCCAGCAGAAGAGTACG -ACGGAAATCCAGCAGAAGATCCGA -ACGGAAATCCAGCAGAAGATGGGA -ACGGAAATCCAGCAGAAGGTGCAA -ACGGAAATCCAGCAGAAGGAGGAA -ACGGAAATCCAGCAGAAGCAGGTA -ACGGAAATCCAGCAGAAGGACTCT -ACGGAAATCCAGCAGAAGAGTCCT -ACGGAAATCCAGCAGAAGTAAGCC -ACGGAAATCCAGCAGAAGATAGCC -ACGGAAATCCAGCAGAAGTAACCG -ACGGAAATCCAGCAGAAGATGCCA -ACGGAAATCCAGCAACGTGGAAAC -ACGGAAATCCAGCAACGTAACACC -ACGGAAATCCAGCAACGTATCGAG -ACGGAAATCCAGCAACGTCTCCTT -ACGGAAATCCAGCAACGTCCTGTT -ACGGAAATCCAGCAACGTCGGTTT -ACGGAAATCCAGCAACGTGTGGTT -ACGGAAATCCAGCAACGTGCCTTT -ACGGAAATCCAGCAACGTGGTCTT -ACGGAAATCCAGCAACGTACGCTT -ACGGAAATCCAGCAACGTAGCGTT -ACGGAAATCCAGCAACGTTTCGTC -ACGGAAATCCAGCAACGTTCTCTC -ACGGAAATCCAGCAACGTTGGATC -ACGGAAATCCAGCAACGTCACTTC -ACGGAAATCCAGCAACGTGTACTC -ACGGAAATCCAGCAACGTGATGTC -ACGGAAATCCAGCAACGTACAGTC -ACGGAAATCCAGCAACGTTTGCTG -ACGGAAATCCAGCAACGTTCCATG -ACGGAAATCCAGCAACGTTGTGTG -ACGGAAATCCAGCAACGTCTAGTG -ACGGAAATCCAGCAACGTCATCTG -ACGGAAATCCAGCAACGTGAGTTG -ACGGAAATCCAGCAACGTAGACTG -ACGGAAATCCAGCAACGTTCGGTA -ACGGAAATCCAGCAACGTTGCCTA -ACGGAAATCCAGCAACGTCCACTA -ACGGAAATCCAGCAACGTGGAGTA -ACGGAAATCCAGCAACGTTCGTCT -ACGGAAATCCAGCAACGTTGCACT -ACGGAAATCCAGCAACGTCTGACT -ACGGAAATCCAGCAACGTCAACCT -ACGGAAATCCAGCAACGTGCTACT -ACGGAAATCCAGCAACGTGGATCT -ACGGAAATCCAGCAACGTAAGGCT -ACGGAAATCCAGCAACGTTCAACC -ACGGAAATCCAGCAACGTTGTTCC -ACGGAAATCCAGCAACGTATTCCC -ACGGAAATCCAGCAACGTTTCTCG -ACGGAAATCCAGCAACGTTAGACG -ACGGAAATCCAGCAACGTGTAACG -ACGGAAATCCAGCAACGTACTTCG -ACGGAAATCCAGCAACGTTACGCA -ACGGAAATCCAGCAACGTCTTGCA -ACGGAAATCCAGCAACGTCGAACA -ACGGAAATCCAGCAACGTCAGTCA -ACGGAAATCCAGCAACGTGATCCA -ACGGAAATCCAGCAACGTACGACA -ACGGAAATCCAGCAACGTAGCTCA -ACGGAAATCCAGCAACGTTCACGT -ACGGAAATCCAGCAACGTCGTAGT -ACGGAAATCCAGCAACGTGTCAGT -ACGGAAATCCAGCAACGTGAAGGT -ACGGAAATCCAGCAACGTAACCGT -ACGGAAATCCAGCAACGTTTGTGC -ACGGAAATCCAGCAACGTCTAAGC -ACGGAAATCCAGCAACGTACTAGC -ACGGAAATCCAGCAACGTAGATGC -ACGGAAATCCAGCAACGTTGAAGG -ACGGAAATCCAGCAACGTCAATGG -ACGGAAATCCAGCAACGTATGAGG -ACGGAAATCCAGCAACGTAATGGG -ACGGAAATCCAGCAACGTTCCTGA -ACGGAAATCCAGCAACGTTAGCGA -ACGGAAATCCAGCAACGTCACAGA -ACGGAAATCCAGCAACGTGCAAGA -ACGGAAATCCAGCAACGTGGTTGA -ACGGAAATCCAGCAACGTTCCGAT -ACGGAAATCCAGCAACGTTGGCAT -ACGGAAATCCAGCAACGTCGAGAT -ACGGAAATCCAGCAACGTTACCAC -ACGGAAATCCAGCAACGTCAGAAC -ACGGAAATCCAGCAACGTGTCTAC -ACGGAAATCCAGCAACGTACGTAC -ACGGAAATCCAGCAACGTAGTGAC -ACGGAAATCCAGCAACGTCTGTAG -ACGGAAATCCAGCAACGTCCTAAG -ACGGAAATCCAGCAACGTGTTCAG -ACGGAAATCCAGCAACGTGCATAG -ACGGAAATCCAGCAACGTGACAAG -ACGGAAATCCAGCAACGTAAGCAG -ACGGAAATCCAGCAACGTCGTCAA -ACGGAAATCCAGCAACGTGCTGAA -ACGGAAATCCAGCAACGTAGTACG -ACGGAAATCCAGCAACGTATCCGA -ACGGAAATCCAGCAACGTATGGGA -ACGGAAATCCAGCAACGTGTGCAA -ACGGAAATCCAGCAACGTGAGGAA -ACGGAAATCCAGCAACGTCAGGTA -ACGGAAATCCAGCAACGTGACTCT -ACGGAAATCCAGCAACGTAGTCCT -ACGGAAATCCAGCAACGTTAAGCC -ACGGAAATCCAGCAACGTATAGCC -ACGGAAATCCAGCAACGTTAACCG -ACGGAAATCCAGCAACGTATGCCA -ACGGAAATCCAGGAAGCTGGAAAC -ACGGAAATCCAGGAAGCTAACACC -ACGGAAATCCAGGAAGCTATCGAG -ACGGAAATCCAGGAAGCTCTCCTT -ACGGAAATCCAGGAAGCTCCTGTT -ACGGAAATCCAGGAAGCTCGGTTT -ACGGAAATCCAGGAAGCTGTGGTT -ACGGAAATCCAGGAAGCTGCCTTT -ACGGAAATCCAGGAAGCTGGTCTT -ACGGAAATCCAGGAAGCTACGCTT -ACGGAAATCCAGGAAGCTAGCGTT -ACGGAAATCCAGGAAGCTTTCGTC -ACGGAAATCCAGGAAGCTTCTCTC -ACGGAAATCCAGGAAGCTTGGATC -ACGGAAATCCAGGAAGCTCACTTC -ACGGAAATCCAGGAAGCTGTACTC -ACGGAAATCCAGGAAGCTGATGTC -ACGGAAATCCAGGAAGCTACAGTC -ACGGAAATCCAGGAAGCTTTGCTG -ACGGAAATCCAGGAAGCTTCCATG -ACGGAAATCCAGGAAGCTTGTGTG -ACGGAAATCCAGGAAGCTCTAGTG -ACGGAAATCCAGGAAGCTCATCTG -ACGGAAATCCAGGAAGCTGAGTTG -ACGGAAATCCAGGAAGCTAGACTG -ACGGAAATCCAGGAAGCTTCGGTA -ACGGAAATCCAGGAAGCTTGCCTA -ACGGAAATCCAGGAAGCTCCACTA -ACGGAAATCCAGGAAGCTGGAGTA -ACGGAAATCCAGGAAGCTTCGTCT -ACGGAAATCCAGGAAGCTTGCACT -ACGGAAATCCAGGAAGCTCTGACT -ACGGAAATCCAGGAAGCTCAACCT -ACGGAAATCCAGGAAGCTGCTACT -ACGGAAATCCAGGAAGCTGGATCT -ACGGAAATCCAGGAAGCTAAGGCT -ACGGAAATCCAGGAAGCTTCAACC -ACGGAAATCCAGGAAGCTTGTTCC -ACGGAAATCCAGGAAGCTATTCCC -ACGGAAATCCAGGAAGCTTTCTCG -ACGGAAATCCAGGAAGCTTAGACG -ACGGAAATCCAGGAAGCTGTAACG -ACGGAAATCCAGGAAGCTACTTCG -ACGGAAATCCAGGAAGCTTACGCA -ACGGAAATCCAGGAAGCTCTTGCA -ACGGAAATCCAGGAAGCTCGAACA -ACGGAAATCCAGGAAGCTCAGTCA -ACGGAAATCCAGGAAGCTGATCCA -ACGGAAATCCAGGAAGCTACGACA -ACGGAAATCCAGGAAGCTAGCTCA -ACGGAAATCCAGGAAGCTTCACGT -ACGGAAATCCAGGAAGCTCGTAGT -ACGGAAATCCAGGAAGCTGTCAGT -ACGGAAATCCAGGAAGCTGAAGGT -ACGGAAATCCAGGAAGCTAACCGT -ACGGAAATCCAGGAAGCTTTGTGC -ACGGAAATCCAGGAAGCTCTAAGC -ACGGAAATCCAGGAAGCTACTAGC -ACGGAAATCCAGGAAGCTAGATGC -ACGGAAATCCAGGAAGCTTGAAGG -ACGGAAATCCAGGAAGCTCAATGG -ACGGAAATCCAGGAAGCTATGAGG -ACGGAAATCCAGGAAGCTAATGGG -ACGGAAATCCAGGAAGCTTCCTGA -ACGGAAATCCAGGAAGCTTAGCGA -ACGGAAATCCAGGAAGCTCACAGA -ACGGAAATCCAGGAAGCTGCAAGA -ACGGAAATCCAGGAAGCTGGTTGA -ACGGAAATCCAGGAAGCTTCCGAT -ACGGAAATCCAGGAAGCTTGGCAT -ACGGAAATCCAGGAAGCTCGAGAT -ACGGAAATCCAGGAAGCTTACCAC -ACGGAAATCCAGGAAGCTCAGAAC -ACGGAAATCCAGGAAGCTGTCTAC -ACGGAAATCCAGGAAGCTACGTAC -ACGGAAATCCAGGAAGCTAGTGAC -ACGGAAATCCAGGAAGCTCTGTAG -ACGGAAATCCAGGAAGCTCCTAAG -ACGGAAATCCAGGAAGCTGTTCAG -ACGGAAATCCAGGAAGCTGCATAG -ACGGAAATCCAGGAAGCTGACAAG -ACGGAAATCCAGGAAGCTAAGCAG -ACGGAAATCCAGGAAGCTCGTCAA -ACGGAAATCCAGGAAGCTGCTGAA -ACGGAAATCCAGGAAGCTAGTACG -ACGGAAATCCAGGAAGCTATCCGA -ACGGAAATCCAGGAAGCTATGGGA -ACGGAAATCCAGGAAGCTGTGCAA -ACGGAAATCCAGGAAGCTGAGGAA -ACGGAAATCCAGGAAGCTCAGGTA -ACGGAAATCCAGGAAGCTGACTCT -ACGGAAATCCAGGAAGCTAGTCCT -ACGGAAATCCAGGAAGCTTAAGCC -ACGGAAATCCAGGAAGCTATAGCC -ACGGAAATCCAGGAAGCTTAACCG -ACGGAAATCCAGGAAGCTATGCCA -ACGGAAATCCAGACGAGTGGAAAC -ACGGAAATCCAGACGAGTAACACC -ACGGAAATCCAGACGAGTATCGAG -ACGGAAATCCAGACGAGTCTCCTT -ACGGAAATCCAGACGAGTCCTGTT -ACGGAAATCCAGACGAGTCGGTTT -ACGGAAATCCAGACGAGTGTGGTT -ACGGAAATCCAGACGAGTGCCTTT -ACGGAAATCCAGACGAGTGGTCTT -ACGGAAATCCAGACGAGTACGCTT -ACGGAAATCCAGACGAGTAGCGTT -ACGGAAATCCAGACGAGTTTCGTC -ACGGAAATCCAGACGAGTTCTCTC -ACGGAAATCCAGACGAGTTGGATC -ACGGAAATCCAGACGAGTCACTTC -ACGGAAATCCAGACGAGTGTACTC -ACGGAAATCCAGACGAGTGATGTC -ACGGAAATCCAGACGAGTACAGTC -ACGGAAATCCAGACGAGTTTGCTG -ACGGAAATCCAGACGAGTTCCATG -ACGGAAATCCAGACGAGTTGTGTG -ACGGAAATCCAGACGAGTCTAGTG -ACGGAAATCCAGACGAGTCATCTG -ACGGAAATCCAGACGAGTGAGTTG -ACGGAAATCCAGACGAGTAGACTG -ACGGAAATCCAGACGAGTTCGGTA -ACGGAAATCCAGACGAGTTGCCTA -ACGGAAATCCAGACGAGTCCACTA -ACGGAAATCCAGACGAGTGGAGTA -ACGGAAATCCAGACGAGTTCGTCT -ACGGAAATCCAGACGAGTTGCACT -ACGGAAATCCAGACGAGTCTGACT -ACGGAAATCCAGACGAGTCAACCT -ACGGAAATCCAGACGAGTGCTACT -ACGGAAATCCAGACGAGTGGATCT -ACGGAAATCCAGACGAGTAAGGCT -ACGGAAATCCAGACGAGTTCAACC -ACGGAAATCCAGACGAGTTGTTCC -ACGGAAATCCAGACGAGTATTCCC -ACGGAAATCCAGACGAGTTTCTCG -ACGGAAATCCAGACGAGTTAGACG -ACGGAAATCCAGACGAGTGTAACG -ACGGAAATCCAGACGAGTACTTCG -ACGGAAATCCAGACGAGTTACGCA -ACGGAAATCCAGACGAGTCTTGCA -ACGGAAATCCAGACGAGTCGAACA -ACGGAAATCCAGACGAGTCAGTCA -ACGGAAATCCAGACGAGTGATCCA -ACGGAAATCCAGACGAGTACGACA -ACGGAAATCCAGACGAGTAGCTCA -ACGGAAATCCAGACGAGTTCACGT -ACGGAAATCCAGACGAGTCGTAGT -ACGGAAATCCAGACGAGTGTCAGT -ACGGAAATCCAGACGAGTGAAGGT -ACGGAAATCCAGACGAGTAACCGT -ACGGAAATCCAGACGAGTTTGTGC -ACGGAAATCCAGACGAGTCTAAGC -ACGGAAATCCAGACGAGTACTAGC -ACGGAAATCCAGACGAGTAGATGC -ACGGAAATCCAGACGAGTTGAAGG -ACGGAAATCCAGACGAGTCAATGG -ACGGAAATCCAGACGAGTATGAGG -ACGGAAATCCAGACGAGTAATGGG -ACGGAAATCCAGACGAGTTCCTGA -ACGGAAATCCAGACGAGTTAGCGA -ACGGAAATCCAGACGAGTCACAGA -ACGGAAATCCAGACGAGTGCAAGA -ACGGAAATCCAGACGAGTGGTTGA -ACGGAAATCCAGACGAGTTCCGAT -ACGGAAATCCAGACGAGTTGGCAT -ACGGAAATCCAGACGAGTCGAGAT -ACGGAAATCCAGACGAGTTACCAC -ACGGAAATCCAGACGAGTCAGAAC -ACGGAAATCCAGACGAGTGTCTAC -ACGGAAATCCAGACGAGTACGTAC -ACGGAAATCCAGACGAGTAGTGAC -ACGGAAATCCAGACGAGTCTGTAG -ACGGAAATCCAGACGAGTCCTAAG -ACGGAAATCCAGACGAGTGTTCAG -ACGGAAATCCAGACGAGTGCATAG -ACGGAAATCCAGACGAGTGACAAG -ACGGAAATCCAGACGAGTAAGCAG -ACGGAAATCCAGACGAGTCGTCAA -ACGGAAATCCAGACGAGTGCTGAA -ACGGAAATCCAGACGAGTAGTACG -ACGGAAATCCAGACGAGTATCCGA -ACGGAAATCCAGACGAGTATGGGA -ACGGAAATCCAGACGAGTGTGCAA -ACGGAAATCCAGACGAGTGAGGAA -ACGGAAATCCAGACGAGTCAGGTA -ACGGAAATCCAGACGAGTGACTCT -ACGGAAATCCAGACGAGTAGTCCT -ACGGAAATCCAGACGAGTTAAGCC -ACGGAAATCCAGACGAGTATAGCC -ACGGAAATCCAGACGAGTTAACCG -ACGGAAATCCAGACGAGTATGCCA -ACGGAAATCCAGCGAATCGGAAAC -ACGGAAATCCAGCGAATCAACACC -ACGGAAATCCAGCGAATCATCGAG -ACGGAAATCCAGCGAATCCTCCTT -ACGGAAATCCAGCGAATCCCTGTT -ACGGAAATCCAGCGAATCCGGTTT -ACGGAAATCCAGCGAATCGTGGTT -ACGGAAATCCAGCGAATCGCCTTT -ACGGAAATCCAGCGAATCGGTCTT -ACGGAAATCCAGCGAATCACGCTT -ACGGAAATCCAGCGAATCAGCGTT -ACGGAAATCCAGCGAATCTTCGTC -ACGGAAATCCAGCGAATCTCTCTC -ACGGAAATCCAGCGAATCTGGATC -ACGGAAATCCAGCGAATCCACTTC -ACGGAAATCCAGCGAATCGTACTC -ACGGAAATCCAGCGAATCGATGTC -ACGGAAATCCAGCGAATCACAGTC -ACGGAAATCCAGCGAATCTTGCTG -ACGGAAATCCAGCGAATCTCCATG -ACGGAAATCCAGCGAATCTGTGTG -ACGGAAATCCAGCGAATCCTAGTG -ACGGAAATCCAGCGAATCCATCTG -ACGGAAATCCAGCGAATCGAGTTG -ACGGAAATCCAGCGAATCAGACTG -ACGGAAATCCAGCGAATCTCGGTA -ACGGAAATCCAGCGAATCTGCCTA -ACGGAAATCCAGCGAATCCCACTA -ACGGAAATCCAGCGAATCGGAGTA -ACGGAAATCCAGCGAATCTCGTCT -ACGGAAATCCAGCGAATCTGCACT -ACGGAAATCCAGCGAATCCTGACT -ACGGAAATCCAGCGAATCCAACCT -ACGGAAATCCAGCGAATCGCTACT -ACGGAAATCCAGCGAATCGGATCT -ACGGAAATCCAGCGAATCAAGGCT -ACGGAAATCCAGCGAATCTCAACC -ACGGAAATCCAGCGAATCTGTTCC -ACGGAAATCCAGCGAATCATTCCC -ACGGAAATCCAGCGAATCTTCTCG -ACGGAAATCCAGCGAATCTAGACG -ACGGAAATCCAGCGAATCGTAACG -ACGGAAATCCAGCGAATCACTTCG -ACGGAAATCCAGCGAATCTACGCA -ACGGAAATCCAGCGAATCCTTGCA -ACGGAAATCCAGCGAATCCGAACA -ACGGAAATCCAGCGAATCCAGTCA -ACGGAAATCCAGCGAATCGATCCA -ACGGAAATCCAGCGAATCACGACA -ACGGAAATCCAGCGAATCAGCTCA -ACGGAAATCCAGCGAATCTCACGT -ACGGAAATCCAGCGAATCCGTAGT -ACGGAAATCCAGCGAATCGTCAGT -ACGGAAATCCAGCGAATCGAAGGT -ACGGAAATCCAGCGAATCAACCGT -ACGGAAATCCAGCGAATCTTGTGC -ACGGAAATCCAGCGAATCCTAAGC -ACGGAAATCCAGCGAATCACTAGC -ACGGAAATCCAGCGAATCAGATGC -ACGGAAATCCAGCGAATCTGAAGG -ACGGAAATCCAGCGAATCCAATGG -ACGGAAATCCAGCGAATCATGAGG -ACGGAAATCCAGCGAATCAATGGG -ACGGAAATCCAGCGAATCTCCTGA -ACGGAAATCCAGCGAATCTAGCGA -ACGGAAATCCAGCGAATCCACAGA -ACGGAAATCCAGCGAATCGCAAGA -ACGGAAATCCAGCGAATCGGTTGA -ACGGAAATCCAGCGAATCTCCGAT -ACGGAAATCCAGCGAATCTGGCAT -ACGGAAATCCAGCGAATCCGAGAT -ACGGAAATCCAGCGAATCTACCAC -ACGGAAATCCAGCGAATCCAGAAC -ACGGAAATCCAGCGAATCGTCTAC -ACGGAAATCCAGCGAATCACGTAC -ACGGAAATCCAGCGAATCAGTGAC -ACGGAAATCCAGCGAATCCTGTAG -ACGGAAATCCAGCGAATCCCTAAG -ACGGAAATCCAGCGAATCGTTCAG -ACGGAAATCCAGCGAATCGCATAG -ACGGAAATCCAGCGAATCGACAAG -ACGGAAATCCAGCGAATCAAGCAG -ACGGAAATCCAGCGAATCCGTCAA -ACGGAAATCCAGCGAATCGCTGAA -ACGGAAATCCAGCGAATCAGTACG -ACGGAAATCCAGCGAATCATCCGA -ACGGAAATCCAGCGAATCATGGGA -ACGGAAATCCAGCGAATCGTGCAA -ACGGAAATCCAGCGAATCGAGGAA -ACGGAAATCCAGCGAATCCAGGTA -ACGGAAATCCAGCGAATCGACTCT -ACGGAAATCCAGCGAATCAGTCCT -ACGGAAATCCAGCGAATCTAAGCC -ACGGAAATCCAGCGAATCATAGCC -ACGGAAATCCAGCGAATCTAACCG -ACGGAAATCCAGCGAATCATGCCA -ACGGAAATCCAGGGAATGGGAAAC -ACGGAAATCCAGGGAATGAACACC -ACGGAAATCCAGGGAATGATCGAG -ACGGAAATCCAGGGAATGCTCCTT -ACGGAAATCCAGGGAATGCCTGTT -ACGGAAATCCAGGGAATGCGGTTT -ACGGAAATCCAGGGAATGGTGGTT -ACGGAAATCCAGGGAATGGCCTTT -ACGGAAATCCAGGGAATGGGTCTT -ACGGAAATCCAGGGAATGACGCTT -ACGGAAATCCAGGGAATGAGCGTT -ACGGAAATCCAGGGAATGTTCGTC -ACGGAAATCCAGGGAATGTCTCTC -ACGGAAATCCAGGGAATGTGGATC -ACGGAAATCCAGGGAATGCACTTC -ACGGAAATCCAGGGAATGGTACTC -ACGGAAATCCAGGGAATGGATGTC -ACGGAAATCCAGGGAATGACAGTC -ACGGAAATCCAGGGAATGTTGCTG -ACGGAAATCCAGGGAATGTCCATG -ACGGAAATCCAGGGAATGTGTGTG -ACGGAAATCCAGGGAATGCTAGTG -ACGGAAATCCAGGGAATGCATCTG -ACGGAAATCCAGGGAATGGAGTTG -ACGGAAATCCAGGGAATGAGACTG -ACGGAAATCCAGGGAATGTCGGTA -ACGGAAATCCAGGGAATGTGCCTA -ACGGAAATCCAGGGAATGCCACTA -ACGGAAATCCAGGGAATGGGAGTA -ACGGAAATCCAGGGAATGTCGTCT -ACGGAAATCCAGGGAATGTGCACT -ACGGAAATCCAGGGAATGCTGACT -ACGGAAATCCAGGGAATGCAACCT -ACGGAAATCCAGGGAATGGCTACT -ACGGAAATCCAGGGAATGGGATCT -ACGGAAATCCAGGGAATGAAGGCT -ACGGAAATCCAGGGAATGTCAACC -ACGGAAATCCAGGGAATGTGTTCC -ACGGAAATCCAGGGAATGATTCCC -ACGGAAATCCAGGGAATGTTCTCG -ACGGAAATCCAGGGAATGTAGACG -ACGGAAATCCAGGGAATGGTAACG -ACGGAAATCCAGGGAATGACTTCG -ACGGAAATCCAGGGAATGTACGCA -ACGGAAATCCAGGGAATGCTTGCA -ACGGAAATCCAGGGAATGCGAACA -ACGGAAATCCAGGGAATGCAGTCA -ACGGAAATCCAGGGAATGGATCCA -ACGGAAATCCAGGGAATGACGACA -ACGGAAATCCAGGGAATGAGCTCA -ACGGAAATCCAGGGAATGTCACGT -ACGGAAATCCAGGGAATGCGTAGT -ACGGAAATCCAGGGAATGGTCAGT -ACGGAAATCCAGGGAATGGAAGGT -ACGGAAATCCAGGGAATGAACCGT -ACGGAAATCCAGGGAATGTTGTGC -ACGGAAATCCAGGGAATGCTAAGC -ACGGAAATCCAGGGAATGACTAGC -ACGGAAATCCAGGGAATGAGATGC -ACGGAAATCCAGGGAATGTGAAGG -ACGGAAATCCAGGGAATGCAATGG -ACGGAAATCCAGGGAATGATGAGG -ACGGAAATCCAGGGAATGAATGGG -ACGGAAATCCAGGGAATGTCCTGA -ACGGAAATCCAGGGAATGTAGCGA -ACGGAAATCCAGGGAATGCACAGA -ACGGAAATCCAGGGAATGGCAAGA -ACGGAAATCCAGGGAATGGGTTGA -ACGGAAATCCAGGGAATGTCCGAT -ACGGAAATCCAGGGAATGTGGCAT -ACGGAAATCCAGGGAATGCGAGAT -ACGGAAATCCAGGGAATGTACCAC -ACGGAAATCCAGGGAATGCAGAAC -ACGGAAATCCAGGGAATGGTCTAC -ACGGAAATCCAGGGAATGACGTAC -ACGGAAATCCAGGGAATGAGTGAC -ACGGAAATCCAGGGAATGCTGTAG -ACGGAAATCCAGGGAATGCCTAAG -ACGGAAATCCAGGGAATGGTTCAG -ACGGAAATCCAGGGAATGGCATAG -ACGGAAATCCAGGGAATGGACAAG -ACGGAAATCCAGGGAATGAAGCAG -ACGGAAATCCAGGGAATGCGTCAA -ACGGAAATCCAGGGAATGGCTGAA -ACGGAAATCCAGGGAATGAGTACG -ACGGAAATCCAGGGAATGATCCGA -ACGGAAATCCAGGGAATGATGGGA -ACGGAAATCCAGGGAATGGTGCAA -ACGGAAATCCAGGGAATGGAGGAA -ACGGAAATCCAGGGAATGCAGGTA -ACGGAAATCCAGGGAATGGACTCT -ACGGAAATCCAGGGAATGAGTCCT -ACGGAAATCCAGGGAATGTAAGCC -ACGGAAATCCAGGGAATGATAGCC -ACGGAAATCCAGGGAATGTAACCG -ACGGAAATCCAGGGAATGATGCCA -ACGGAAATCCAGCAAGTGGGAAAC -ACGGAAATCCAGCAAGTGAACACC -ACGGAAATCCAGCAAGTGATCGAG -ACGGAAATCCAGCAAGTGCTCCTT -ACGGAAATCCAGCAAGTGCCTGTT -ACGGAAATCCAGCAAGTGCGGTTT -ACGGAAATCCAGCAAGTGGTGGTT -ACGGAAATCCAGCAAGTGGCCTTT -ACGGAAATCCAGCAAGTGGGTCTT -ACGGAAATCCAGCAAGTGACGCTT -ACGGAAATCCAGCAAGTGAGCGTT -ACGGAAATCCAGCAAGTGTTCGTC -ACGGAAATCCAGCAAGTGTCTCTC -ACGGAAATCCAGCAAGTGTGGATC -ACGGAAATCCAGCAAGTGCACTTC -ACGGAAATCCAGCAAGTGGTACTC -ACGGAAATCCAGCAAGTGGATGTC -ACGGAAATCCAGCAAGTGACAGTC -ACGGAAATCCAGCAAGTGTTGCTG -ACGGAAATCCAGCAAGTGTCCATG -ACGGAAATCCAGCAAGTGTGTGTG -ACGGAAATCCAGCAAGTGCTAGTG -ACGGAAATCCAGCAAGTGCATCTG -ACGGAAATCCAGCAAGTGGAGTTG -ACGGAAATCCAGCAAGTGAGACTG -ACGGAAATCCAGCAAGTGTCGGTA -ACGGAAATCCAGCAAGTGTGCCTA -ACGGAAATCCAGCAAGTGCCACTA -ACGGAAATCCAGCAAGTGGGAGTA -ACGGAAATCCAGCAAGTGTCGTCT -ACGGAAATCCAGCAAGTGTGCACT -ACGGAAATCCAGCAAGTGCTGACT -ACGGAAATCCAGCAAGTGCAACCT -ACGGAAATCCAGCAAGTGGCTACT -ACGGAAATCCAGCAAGTGGGATCT -ACGGAAATCCAGCAAGTGAAGGCT -ACGGAAATCCAGCAAGTGTCAACC -ACGGAAATCCAGCAAGTGTGTTCC -ACGGAAATCCAGCAAGTGATTCCC -ACGGAAATCCAGCAAGTGTTCTCG -ACGGAAATCCAGCAAGTGTAGACG -ACGGAAATCCAGCAAGTGGTAACG -ACGGAAATCCAGCAAGTGACTTCG -ACGGAAATCCAGCAAGTGTACGCA -ACGGAAATCCAGCAAGTGCTTGCA -ACGGAAATCCAGCAAGTGCGAACA -ACGGAAATCCAGCAAGTGCAGTCA -ACGGAAATCCAGCAAGTGGATCCA -ACGGAAATCCAGCAAGTGACGACA -ACGGAAATCCAGCAAGTGAGCTCA -ACGGAAATCCAGCAAGTGTCACGT -ACGGAAATCCAGCAAGTGCGTAGT -ACGGAAATCCAGCAAGTGGTCAGT -ACGGAAATCCAGCAAGTGGAAGGT -ACGGAAATCCAGCAAGTGAACCGT -ACGGAAATCCAGCAAGTGTTGTGC -ACGGAAATCCAGCAAGTGCTAAGC -ACGGAAATCCAGCAAGTGACTAGC -ACGGAAATCCAGCAAGTGAGATGC -ACGGAAATCCAGCAAGTGTGAAGG -ACGGAAATCCAGCAAGTGCAATGG -ACGGAAATCCAGCAAGTGATGAGG -ACGGAAATCCAGCAAGTGAATGGG -ACGGAAATCCAGCAAGTGTCCTGA -ACGGAAATCCAGCAAGTGTAGCGA -ACGGAAATCCAGCAAGTGCACAGA -ACGGAAATCCAGCAAGTGGCAAGA -ACGGAAATCCAGCAAGTGGGTTGA -ACGGAAATCCAGCAAGTGTCCGAT -ACGGAAATCCAGCAAGTGTGGCAT -ACGGAAATCCAGCAAGTGCGAGAT -ACGGAAATCCAGCAAGTGTACCAC -ACGGAAATCCAGCAAGTGCAGAAC -ACGGAAATCCAGCAAGTGGTCTAC -ACGGAAATCCAGCAAGTGACGTAC -ACGGAAATCCAGCAAGTGAGTGAC -ACGGAAATCCAGCAAGTGCTGTAG -ACGGAAATCCAGCAAGTGCCTAAG -ACGGAAATCCAGCAAGTGGTTCAG -ACGGAAATCCAGCAAGTGGCATAG -ACGGAAATCCAGCAAGTGGACAAG -ACGGAAATCCAGCAAGTGAAGCAG -ACGGAAATCCAGCAAGTGCGTCAA -ACGGAAATCCAGCAAGTGGCTGAA -ACGGAAATCCAGCAAGTGAGTACG -ACGGAAATCCAGCAAGTGATCCGA -ACGGAAATCCAGCAAGTGATGGGA -ACGGAAATCCAGCAAGTGGTGCAA -ACGGAAATCCAGCAAGTGGAGGAA -ACGGAAATCCAGCAAGTGCAGGTA -ACGGAAATCCAGCAAGTGGACTCT -ACGGAAATCCAGCAAGTGAGTCCT -ACGGAAATCCAGCAAGTGTAAGCC -ACGGAAATCCAGCAAGTGATAGCC -ACGGAAATCCAGCAAGTGTAACCG -ACGGAAATCCAGCAAGTGATGCCA -ACGGAAATCCAGGAAGAGGGAAAC -ACGGAAATCCAGGAAGAGAACACC -ACGGAAATCCAGGAAGAGATCGAG -ACGGAAATCCAGGAAGAGCTCCTT -ACGGAAATCCAGGAAGAGCCTGTT -ACGGAAATCCAGGAAGAGCGGTTT -ACGGAAATCCAGGAAGAGGTGGTT -ACGGAAATCCAGGAAGAGGCCTTT -ACGGAAATCCAGGAAGAGGGTCTT -ACGGAAATCCAGGAAGAGACGCTT -ACGGAAATCCAGGAAGAGAGCGTT -ACGGAAATCCAGGAAGAGTTCGTC -ACGGAAATCCAGGAAGAGTCTCTC -ACGGAAATCCAGGAAGAGTGGATC -ACGGAAATCCAGGAAGAGCACTTC -ACGGAAATCCAGGAAGAGGTACTC -ACGGAAATCCAGGAAGAGGATGTC -ACGGAAATCCAGGAAGAGACAGTC -ACGGAAATCCAGGAAGAGTTGCTG -ACGGAAATCCAGGAAGAGTCCATG -ACGGAAATCCAGGAAGAGTGTGTG -ACGGAAATCCAGGAAGAGCTAGTG -ACGGAAATCCAGGAAGAGCATCTG -ACGGAAATCCAGGAAGAGGAGTTG -ACGGAAATCCAGGAAGAGAGACTG -ACGGAAATCCAGGAAGAGTCGGTA -ACGGAAATCCAGGAAGAGTGCCTA -ACGGAAATCCAGGAAGAGCCACTA -ACGGAAATCCAGGAAGAGGGAGTA -ACGGAAATCCAGGAAGAGTCGTCT -ACGGAAATCCAGGAAGAGTGCACT -ACGGAAATCCAGGAAGAGCTGACT -ACGGAAATCCAGGAAGAGCAACCT -ACGGAAATCCAGGAAGAGGCTACT -ACGGAAATCCAGGAAGAGGGATCT -ACGGAAATCCAGGAAGAGAAGGCT -ACGGAAATCCAGGAAGAGTCAACC -ACGGAAATCCAGGAAGAGTGTTCC -ACGGAAATCCAGGAAGAGATTCCC -ACGGAAATCCAGGAAGAGTTCTCG -ACGGAAATCCAGGAAGAGTAGACG -ACGGAAATCCAGGAAGAGGTAACG -ACGGAAATCCAGGAAGAGACTTCG -ACGGAAATCCAGGAAGAGTACGCA -ACGGAAATCCAGGAAGAGCTTGCA -ACGGAAATCCAGGAAGAGCGAACA -ACGGAAATCCAGGAAGAGCAGTCA -ACGGAAATCCAGGAAGAGGATCCA -ACGGAAATCCAGGAAGAGACGACA -ACGGAAATCCAGGAAGAGAGCTCA -ACGGAAATCCAGGAAGAGTCACGT -ACGGAAATCCAGGAAGAGCGTAGT -ACGGAAATCCAGGAAGAGGTCAGT -ACGGAAATCCAGGAAGAGGAAGGT -ACGGAAATCCAGGAAGAGAACCGT -ACGGAAATCCAGGAAGAGTTGTGC -ACGGAAATCCAGGAAGAGCTAAGC -ACGGAAATCCAGGAAGAGACTAGC -ACGGAAATCCAGGAAGAGAGATGC -ACGGAAATCCAGGAAGAGTGAAGG -ACGGAAATCCAGGAAGAGCAATGG -ACGGAAATCCAGGAAGAGATGAGG -ACGGAAATCCAGGAAGAGAATGGG -ACGGAAATCCAGGAAGAGTCCTGA -ACGGAAATCCAGGAAGAGTAGCGA -ACGGAAATCCAGGAAGAGCACAGA -ACGGAAATCCAGGAAGAGGCAAGA -ACGGAAATCCAGGAAGAGGGTTGA -ACGGAAATCCAGGAAGAGTCCGAT -ACGGAAATCCAGGAAGAGTGGCAT -ACGGAAATCCAGGAAGAGCGAGAT -ACGGAAATCCAGGAAGAGTACCAC -ACGGAAATCCAGGAAGAGCAGAAC -ACGGAAATCCAGGAAGAGGTCTAC -ACGGAAATCCAGGAAGAGACGTAC -ACGGAAATCCAGGAAGAGAGTGAC -ACGGAAATCCAGGAAGAGCTGTAG -ACGGAAATCCAGGAAGAGCCTAAG -ACGGAAATCCAGGAAGAGGTTCAG -ACGGAAATCCAGGAAGAGGCATAG -ACGGAAATCCAGGAAGAGGACAAG -ACGGAAATCCAGGAAGAGAAGCAG -ACGGAAATCCAGGAAGAGCGTCAA -ACGGAAATCCAGGAAGAGGCTGAA -ACGGAAATCCAGGAAGAGAGTACG -ACGGAAATCCAGGAAGAGATCCGA -ACGGAAATCCAGGAAGAGATGGGA -ACGGAAATCCAGGAAGAGGTGCAA -ACGGAAATCCAGGAAGAGGAGGAA -ACGGAAATCCAGGAAGAGCAGGTA -ACGGAAATCCAGGAAGAGGACTCT -ACGGAAATCCAGGAAGAGAGTCCT -ACGGAAATCCAGGAAGAGTAAGCC -ACGGAAATCCAGGAAGAGATAGCC -ACGGAAATCCAGGAAGAGTAACCG -ACGGAAATCCAGGAAGAGATGCCA -ACGGAAATCCAGGTACAGGGAAAC -ACGGAAATCCAGGTACAGAACACC -ACGGAAATCCAGGTACAGATCGAG -ACGGAAATCCAGGTACAGCTCCTT -ACGGAAATCCAGGTACAGCCTGTT -ACGGAAATCCAGGTACAGCGGTTT -ACGGAAATCCAGGTACAGGTGGTT -ACGGAAATCCAGGTACAGGCCTTT -ACGGAAATCCAGGTACAGGGTCTT -ACGGAAATCCAGGTACAGACGCTT -ACGGAAATCCAGGTACAGAGCGTT -ACGGAAATCCAGGTACAGTTCGTC -ACGGAAATCCAGGTACAGTCTCTC -ACGGAAATCCAGGTACAGTGGATC -ACGGAAATCCAGGTACAGCACTTC -ACGGAAATCCAGGTACAGGTACTC -ACGGAAATCCAGGTACAGGATGTC -ACGGAAATCCAGGTACAGACAGTC -ACGGAAATCCAGGTACAGTTGCTG -ACGGAAATCCAGGTACAGTCCATG -ACGGAAATCCAGGTACAGTGTGTG -ACGGAAATCCAGGTACAGCTAGTG -ACGGAAATCCAGGTACAGCATCTG -ACGGAAATCCAGGTACAGGAGTTG -ACGGAAATCCAGGTACAGAGACTG -ACGGAAATCCAGGTACAGTCGGTA -ACGGAAATCCAGGTACAGTGCCTA -ACGGAAATCCAGGTACAGCCACTA -ACGGAAATCCAGGTACAGGGAGTA -ACGGAAATCCAGGTACAGTCGTCT -ACGGAAATCCAGGTACAGTGCACT -ACGGAAATCCAGGTACAGCTGACT -ACGGAAATCCAGGTACAGCAACCT -ACGGAAATCCAGGTACAGGCTACT -ACGGAAATCCAGGTACAGGGATCT -ACGGAAATCCAGGTACAGAAGGCT -ACGGAAATCCAGGTACAGTCAACC -ACGGAAATCCAGGTACAGTGTTCC -ACGGAAATCCAGGTACAGATTCCC -ACGGAAATCCAGGTACAGTTCTCG -ACGGAAATCCAGGTACAGTAGACG -ACGGAAATCCAGGTACAGGTAACG -ACGGAAATCCAGGTACAGACTTCG -ACGGAAATCCAGGTACAGTACGCA -ACGGAAATCCAGGTACAGCTTGCA -ACGGAAATCCAGGTACAGCGAACA -ACGGAAATCCAGGTACAGCAGTCA -ACGGAAATCCAGGTACAGGATCCA -ACGGAAATCCAGGTACAGACGACA -ACGGAAATCCAGGTACAGAGCTCA -ACGGAAATCCAGGTACAGTCACGT -ACGGAAATCCAGGTACAGCGTAGT -ACGGAAATCCAGGTACAGGTCAGT -ACGGAAATCCAGGTACAGGAAGGT -ACGGAAATCCAGGTACAGAACCGT -ACGGAAATCCAGGTACAGTTGTGC -ACGGAAATCCAGGTACAGCTAAGC -ACGGAAATCCAGGTACAGACTAGC -ACGGAAATCCAGGTACAGAGATGC -ACGGAAATCCAGGTACAGTGAAGG -ACGGAAATCCAGGTACAGCAATGG -ACGGAAATCCAGGTACAGATGAGG -ACGGAAATCCAGGTACAGAATGGG -ACGGAAATCCAGGTACAGTCCTGA -ACGGAAATCCAGGTACAGTAGCGA -ACGGAAATCCAGGTACAGCACAGA -ACGGAAATCCAGGTACAGGCAAGA -ACGGAAATCCAGGTACAGGGTTGA -ACGGAAATCCAGGTACAGTCCGAT -ACGGAAATCCAGGTACAGTGGCAT -ACGGAAATCCAGGTACAGCGAGAT -ACGGAAATCCAGGTACAGTACCAC -ACGGAAATCCAGGTACAGCAGAAC -ACGGAAATCCAGGTACAGGTCTAC -ACGGAAATCCAGGTACAGACGTAC -ACGGAAATCCAGGTACAGAGTGAC -ACGGAAATCCAGGTACAGCTGTAG -ACGGAAATCCAGGTACAGCCTAAG -ACGGAAATCCAGGTACAGGTTCAG -ACGGAAATCCAGGTACAGGCATAG -ACGGAAATCCAGGTACAGGACAAG -ACGGAAATCCAGGTACAGAAGCAG -ACGGAAATCCAGGTACAGCGTCAA -ACGGAAATCCAGGTACAGGCTGAA -ACGGAAATCCAGGTACAGAGTACG -ACGGAAATCCAGGTACAGATCCGA -ACGGAAATCCAGGTACAGATGGGA -ACGGAAATCCAGGTACAGGTGCAA -ACGGAAATCCAGGTACAGGAGGAA -ACGGAAATCCAGGTACAGCAGGTA -ACGGAAATCCAGGTACAGGACTCT -ACGGAAATCCAGGTACAGAGTCCT -ACGGAAATCCAGGTACAGTAAGCC -ACGGAAATCCAGGTACAGATAGCC -ACGGAAATCCAGGTACAGTAACCG -ACGGAAATCCAGGTACAGATGCCA -ACGGAAATCCAGTCTGACGGAAAC -ACGGAAATCCAGTCTGACAACACC -ACGGAAATCCAGTCTGACATCGAG -ACGGAAATCCAGTCTGACCTCCTT -ACGGAAATCCAGTCTGACCCTGTT -ACGGAAATCCAGTCTGACCGGTTT -ACGGAAATCCAGTCTGACGTGGTT -ACGGAAATCCAGTCTGACGCCTTT -ACGGAAATCCAGTCTGACGGTCTT -ACGGAAATCCAGTCTGACACGCTT -ACGGAAATCCAGTCTGACAGCGTT -ACGGAAATCCAGTCTGACTTCGTC -ACGGAAATCCAGTCTGACTCTCTC -ACGGAAATCCAGTCTGACTGGATC -ACGGAAATCCAGTCTGACCACTTC -ACGGAAATCCAGTCTGACGTACTC -ACGGAAATCCAGTCTGACGATGTC -ACGGAAATCCAGTCTGACACAGTC -ACGGAAATCCAGTCTGACTTGCTG -ACGGAAATCCAGTCTGACTCCATG -ACGGAAATCCAGTCTGACTGTGTG -ACGGAAATCCAGTCTGACCTAGTG -ACGGAAATCCAGTCTGACCATCTG -ACGGAAATCCAGTCTGACGAGTTG -ACGGAAATCCAGTCTGACAGACTG -ACGGAAATCCAGTCTGACTCGGTA -ACGGAAATCCAGTCTGACTGCCTA -ACGGAAATCCAGTCTGACCCACTA -ACGGAAATCCAGTCTGACGGAGTA -ACGGAAATCCAGTCTGACTCGTCT -ACGGAAATCCAGTCTGACTGCACT -ACGGAAATCCAGTCTGACCTGACT -ACGGAAATCCAGTCTGACCAACCT -ACGGAAATCCAGTCTGACGCTACT -ACGGAAATCCAGTCTGACGGATCT -ACGGAAATCCAGTCTGACAAGGCT -ACGGAAATCCAGTCTGACTCAACC -ACGGAAATCCAGTCTGACTGTTCC -ACGGAAATCCAGTCTGACATTCCC -ACGGAAATCCAGTCTGACTTCTCG -ACGGAAATCCAGTCTGACTAGACG -ACGGAAATCCAGTCTGACGTAACG -ACGGAAATCCAGTCTGACACTTCG -ACGGAAATCCAGTCTGACTACGCA -ACGGAAATCCAGTCTGACCTTGCA -ACGGAAATCCAGTCTGACCGAACA -ACGGAAATCCAGTCTGACCAGTCA -ACGGAAATCCAGTCTGACGATCCA -ACGGAAATCCAGTCTGACACGACA -ACGGAAATCCAGTCTGACAGCTCA -ACGGAAATCCAGTCTGACTCACGT -ACGGAAATCCAGTCTGACCGTAGT -ACGGAAATCCAGTCTGACGTCAGT -ACGGAAATCCAGTCTGACGAAGGT -ACGGAAATCCAGTCTGACAACCGT -ACGGAAATCCAGTCTGACTTGTGC -ACGGAAATCCAGTCTGACCTAAGC -ACGGAAATCCAGTCTGACACTAGC -ACGGAAATCCAGTCTGACAGATGC -ACGGAAATCCAGTCTGACTGAAGG -ACGGAAATCCAGTCTGACCAATGG -ACGGAAATCCAGTCTGACATGAGG -ACGGAAATCCAGTCTGACAATGGG -ACGGAAATCCAGTCTGACTCCTGA -ACGGAAATCCAGTCTGACTAGCGA -ACGGAAATCCAGTCTGACCACAGA -ACGGAAATCCAGTCTGACGCAAGA -ACGGAAATCCAGTCTGACGGTTGA -ACGGAAATCCAGTCTGACTCCGAT -ACGGAAATCCAGTCTGACTGGCAT -ACGGAAATCCAGTCTGACCGAGAT -ACGGAAATCCAGTCTGACTACCAC -ACGGAAATCCAGTCTGACCAGAAC -ACGGAAATCCAGTCTGACGTCTAC -ACGGAAATCCAGTCTGACACGTAC -ACGGAAATCCAGTCTGACAGTGAC -ACGGAAATCCAGTCTGACCTGTAG -ACGGAAATCCAGTCTGACCCTAAG -ACGGAAATCCAGTCTGACGTTCAG -ACGGAAATCCAGTCTGACGCATAG -ACGGAAATCCAGTCTGACGACAAG -ACGGAAATCCAGTCTGACAAGCAG -ACGGAAATCCAGTCTGACCGTCAA -ACGGAAATCCAGTCTGACGCTGAA -ACGGAAATCCAGTCTGACAGTACG -ACGGAAATCCAGTCTGACATCCGA -ACGGAAATCCAGTCTGACATGGGA -ACGGAAATCCAGTCTGACGTGCAA -ACGGAAATCCAGTCTGACGAGGAA -ACGGAAATCCAGTCTGACCAGGTA -ACGGAAATCCAGTCTGACGACTCT -ACGGAAATCCAGTCTGACAGTCCT -ACGGAAATCCAGTCTGACTAAGCC -ACGGAAATCCAGTCTGACATAGCC -ACGGAAATCCAGTCTGACTAACCG -ACGGAAATCCAGTCTGACATGCCA -ACGGAAATCCAGCCTAGTGGAAAC -ACGGAAATCCAGCCTAGTAACACC -ACGGAAATCCAGCCTAGTATCGAG -ACGGAAATCCAGCCTAGTCTCCTT -ACGGAAATCCAGCCTAGTCCTGTT -ACGGAAATCCAGCCTAGTCGGTTT -ACGGAAATCCAGCCTAGTGTGGTT -ACGGAAATCCAGCCTAGTGCCTTT -ACGGAAATCCAGCCTAGTGGTCTT -ACGGAAATCCAGCCTAGTACGCTT -ACGGAAATCCAGCCTAGTAGCGTT -ACGGAAATCCAGCCTAGTTTCGTC -ACGGAAATCCAGCCTAGTTCTCTC -ACGGAAATCCAGCCTAGTTGGATC -ACGGAAATCCAGCCTAGTCACTTC -ACGGAAATCCAGCCTAGTGTACTC -ACGGAAATCCAGCCTAGTGATGTC -ACGGAAATCCAGCCTAGTACAGTC -ACGGAAATCCAGCCTAGTTTGCTG -ACGGAAATCCAGCCTAGTTCCATG -ACGGAAATCCAGCCTAGTTGTGTG -ACGGAAATCCAGCCTAGTCTAGTG -ACGGAAATCCAGCCTAGTCATCTG -ACGGAAATCCAGCCTAGTGAGTTG -ACGGAAATCCAGCCTAGTAGACTG -ACGGAAATCCAGCCTAGTTCGGTA -ACGGAAATCCAGCCTAGTTGCCTA -ACGGAAATCCAGCCTAGTCCACTA -ACGGAAATCCAGCCTAGTGGAGTA -ACGGAAATCCAGCCTAGTTCGTCT -ACGGAAATCCAGCCTAGTTGCACT -ACGGAAATCCAGCCTAGTCTGACT -ACGGAAATCCAGCCTAGTCAACCT -ACGGAAATCCAGCCTAGTGCTACT -ACGGAAATCCAGCCTAGTGGATCT -ACGGAAATCCAGCCTAGTAAGGCT -ACGGAAATCCAGCCTAGTTCAACC -ACGGAAATCCAGCCTAGTTGTTCC -ACGGAAATCCAGCCTAGTATTCCC -ACGGAAATCCAGCCTAGTTTCTCG -ACGGAAATCCAGCCTAGTTAGACG -ACGGAAATCCAGCCTAGTGTAACG -ACGGAAATCCAGCCTAGTACTTCG -ACGGAAATCCAGCCTAGTTACGCA -ACGGAAATCCAGCCTAGTCTTGCA -ACGGAAATCCAGCCTAGTCGAACA -ACGGAAATCCAGCCTAGTCAGTCA -ACGGAAATCCAGCCTAGTGATCCA -ACGGAAATCCAGCCTAGTACGACA -ACGGAAATCCAGCCTAGTAGCTCA -ACGGAAATCCAGCCTAGTTCACGT -ACGGAAATCCAGCCTAGTCGTAGT -ACGGAAATCCAGCCTAGTGTCAGT -ACGGAAATCCAGCCTAGTGAAGGT -ACGGAAATCCAGCCTAGTAACCGT -ACGGAAATCCAGCCTAGTTTGTGC -ACGGAAATCCAGCCTAGTCTAAGC -ACGGAAATCCAGCCTAGTACTAGC -ACGGAAATCCAGCCTAGTAGATGC -ACGGAAATCCAGCCTAGTTGAAGG -ACGGAAATCCAGCCTAGTCAATGG -ACGGAAATCCAGCCTAGTATGAGG -ACGGAAATCCAGCCTAGTAATGGG -ACGGAAATCCAGCCTAGTTCCTGA -ACGGAAATCCAGCCTAGTTAGCGA -ACGGAAATCCAGCCTAGTCACAGA -ACGGAAATCCAGCCTAGTGCAAGA -ACGGAAATCCAGCCTAGTGGTTGA -ACGGAAATCCAGCCTAGTTCCGAT -ACGGAAATCCAGCCTAGTTGGCAT -ACGGAAATCCAGCCTAGTCGAGAT -ACGGAAATCCAGCCTAGTTACCAC -ACGGAAATCCAGCCTAGTCAGAAC -ACGGAAATCCAGCCTAGTGTCTAC -ACGGAAATCCAGCCTAGTACGTAC -ACGGAAATCCAGCCTAGTAGTGAC -ACGGAAATCCAGCCTAGTCTGTAG -ACGGAAATCCAGCCTAGTCCTAAG -ACGGAAATCCAGCCTAGTGTTCAG -ACGGAAATCCAGCCTAGTGCATAG -ACGGAAATCCAGCCTAGTGACAAG -ACGGAAATCCAGCCTAGTAAGCAG -ACGGAAATCCAGCCTAGTCGTCAA -ACGGAAATCCAGCCTAGTGCTGAA -ACGGAAATCCAGCCTAGTAGTACG -ACGGAAATCCAGCCTAGTATCCGA -ACGGAAATCCAGCCTAGTATGGGA -ACGGAAATCCAGCCTAGTGTGCAA -ACGGAAATCCAGCCTAGTGAGGAA -ACGGAAATCCAGCCTAGTCAGGTA -ACGGAAATCCAGCCTAGTGACTCT -ACGGAAATCCAGCCTAGTAGTCCT -ACGGAAATCCAGCCTAGTTAAGCC -ACGGAAATCCAGCCTAGTATAGCC -ACGGAAATCCAGCCTAGTTAACCG -ACGGAAATCCAGCCTAGTATGCCA -ACGGAAATCCAGGCCTAAGGAAAC -ACGGAAATCCAGGCCTAAAACACC -ACGGAAATCCAGGCCTAAATCGAG -ACGGAAATCCAGGCCTAACTCCTT -ACGGAAATCCAGGCCTAACCTGTT -ACGGAAATCCAGGCCTAACGGTTT -ACGGAAATCCAGGCCTAAGTGGTT -ACGGAAATCCAGGCCTAAGCCTTT -ACGGAAATCCAGGCCTAAGGTCTT -ACGGAAATCCAGGCCTAAACGCTT -ACGGAAATCCAGGCCTAAAGCGTT -ACGGAAATCCAGGCCTAATTCGTC -ACGGAAATCCAGGCCTAATCTCTC -ACGGAAATCCAGGCCTAATGGATC -ACGGAAATCCAGGCCTAACACTTC -ACGGAAATCCAGGCCTAAGTACTC -ACGGAAATCCAGGCCTAAGATGTC -ACGGAAATCCAGGCCTAAACAGTC -ACGGAAATCCAGGCCTAATTGCTG -ACGGAAATCCAGGCCTAATCCATG -ACGGAAATCCAGGCCTAATGTGTG -ACGGAAATCCAGGCCTAACTAGTG -ACGGAAATCCAGGCCTAACATCTG -ACGGAAATCCAGGCCTAAGAGTTG -ACGGAAATCCAGGCCTAAAGACTG -ACGGAAATCCAGGCCTAATCGGTA -ACGGAAATCCAGGCCTAATGCCTA -ACGGAAATCCAGGCCTAACCACTA -ACGGAAATCCAGGCCTAAGGAGTA -ACGGAAATCCAGGCCTAATCGTCT -ACGGAAATCCAGGCCTAATGCACT -ACGGAAATCCAGGCCTAACTGACT -ACGGAAATCCAGGCCTAACAACCT -ACGGAAATCCAGGCCTAAGCTACT -ACGGAAATCCAGGCCTAAGGATCT -ACGGAAATCCAGGCCTAAAAGGCT -ACGGAAATCCAGGCCTAATCAACC -ACGGAAATCCAGGCCTAATGTTCC -ACGGAAATCCAGGCCTAAATTCCC -ACGGAAATCCAGGCCTAATTCTCG -ACGGAAATCCAGGCCTAATAGACG -ACGGAAATCCAGGCCTAAGTAACG -ACGGAAATCCAGGCCTAAACTTCG -ACGGAAATCCAGGCCTAATACGCA -ACGGAAATCCAGGCCTAACTTGCA -ACGGAAATCCAGGCCTAACGAACA -ACGGAAATCCAGGCCTAACAGTCA -ACGGAAATCCAGGCCTAAGATCCA -ACGGAAATCCAGGCCTAAACGACA -ACGGAAATCCAGGCCTAAAGCTCA -ACGGAAATCCAGGCCTAATCACGT -ACGGAAATCCAGGCCTAACGTAGT -ACGGAAATCCAGGCCTAAGTCAGT -ACGGAAATCCAGGCCTAAGAAGGT -ACGGAAATCCAGGCCTAAAACCGT -ACGGAAATCCAGGCCTAATTGTGC -ACGGAAATCCAGGCCTAACTAAGC -ACGGAAATCCAGGCCTAAACTAGC -ACGGAAATCCAGGCCTAAAGATGC -ACGGAAATCCAGGCCTAATGAAGG -ACGGAAATCCAGGCCTAACAATGG -ACGGAAATCCAGGCCTAAATGAGG -ACGGAAATCCAGGCCTAAAATGGG -ACGGAAATCCAGGCCTAATCCTGA -ACGGAAATCCAGGCCTAATAGCGA -ACGGAAATCCAGGCCTAACACAGA -ACGGAAATCCAGGCCTAAGCAAGA -ACGGAAATCCAGGCCTAAGGTTGA -ACGGAAATCCAGGCCTAATCCGAT -ACGGAAATCCAGGCCTAATGGCAT -ACGGAAATCCAGGCCTAACGAGAT -ACGGAAATCCAGGCCTAATACCAC -ACGGAAATCCAGGCCTAACAGAAC -ACGGAAATCCAGGCCTAAGTCTAC -ACGGAAATCCAGGCCTAAACGTAC -ACGGAAATCCAGGCCTAAAGTGAC -ACGGAAATCCAGGCCTAACTGTAG -ACGGAAATCCAGGCCTAACCTAAG -ACGGAAATCCAGGCCTAAGTTCAG -ACGGAAATCCAGGCCTAAGCATAG -ACGGAAATCCAGGCCTAAGACAAG -ACGGAAATCCAGGCCTAAAAGCAG -ACGGAAATCCAGGCCTAACGTCAA -ACGGAAATCCAGGCCTAAGCTGAA -ACGGAAATCCAGGCCTAAAGTACG -ACGGAAATCCAGGCCTAAATCCGA -ACGGAAATCCAGGCCTAAATGGGA -ACGGAAATCCAGGCCTAAGTGCAA -ACGGAAATCCAGGCCTAAGAGGAA -ACGGAAATCCAGGCCTAACAGGTA -ACGGAAATCCAGGCCTAAGACTCT -ACGGAAATCCAGGCCTAAAGTCCT -ACGGAAATCCAGGCCTAATAAGCC -ACGGAAATCCAGGCCTAAATAGCC -ACGGAAATCCAGGCCTAATAACCG -ACGGAAATCCAGGCCTAAATGCCA -ACGGAAATCCAGGCCATAGGAAAC -ACGGAAATCCAGGCCATAAACACC -ACGGAAATCCAGGCCATAATCGAG -ACGGAAATCCAGGCCATACTCCTT -ACGGAAATCCAGGCCATACCTGTT -ACGGAAATCCAGGCCATACGGTTT -ACGGAAATCCAGGCCATAGTGGTT -ACGGAAATCCAGGCCATAGCCTTT -ACGGAAATCCAGGCCATAGGTCTT -ACGGAAATCCAGGCCATAACGCTT -ACGGAAATCCAGGCCATAAGCGTT -ACGGAAATCCAGGCCATATTCGTC -ACGGAAATCCAGGCCATATCTCTC -ACGGAAATCCAGGCCATATGGATC -ACGGAAATCCAGGCCATACACTTC -ACGGAAATCCAGGCCATAGTACTC -ACGGAAATCCAGGCCATAGATGTC -ACGGAAATCCAGGCCATAACAGTC -ACGGAAATCCAGGCCATATTGCTG -ACGGAAATCCAGGCCATATCCATG -ACGGAAATCCAGGCCATATGTGTG -ACGGAAATCCAGGCCATACTAGTG -ACGGAAATCCAGGCCATACATCTG -ACGGAAATCCAGGCCATAGAGTTG -ACGGAAATCCAGGCCATAAGACTG -ACGGAAATCCAGGCCATATCGGTA -ACGGAAATCCAGGCCATATGCCTA -ACGGAAATCCAGGCCATACCACTA -ACGGAAATCCAGGCCATAGGAGTA -ACGGAAATCCAGGCCATATCGTCT -ACGGAAATCCAGGCCATATGCACT -ACGGAAATCCAGGCCATACTGACT -ACGGAAATCCAGGCCATACAACCT -ACGGAAATCCAGGCCATAGCTACT -ACGGAAATCCAGGCCATAGGATCT -ACGGAAATCCAGGCCATAAAGGCT -ACGGAAATCCAGGCCATATCAACC -ACGGAAATCCAGGCCATATGTTCC -ACGGAAATCCAGGCCATAATTCCC -ACGGAAATCCAGGCCATATTCTCG -ACGGAAATCCAGGCCATATAGACG -ACGGAAATCCAGGCCATAGTAACG -ACGGAAATCCAGGCCATAACTTCG -ACGGAAATCCAGGCCATATACGCA -ACGGAAATCCAGGCCATACTTGCA -ACGGAAATCCAGGCCATACGAACA -ACGGAAATCCAGGCCATACAGTCA -ACGGAAATCCAGGCCATAGATCCA -ACGGAAATCCAGGCCATAACGACA -ACGGAAATCCAGGCCATAAGCTCA -ACGGAAATCCAGGCCATATCACGT -ACGGAAATCCAGGCCATACGTAGT -ACGGAAATCCAGGCCATAGTCAGT -ACGGAAATCCAGGCCATAGAAGGT -ACGGAAATCCAGGCCATAAACCGT -ACGGAAATCCAGGCCATATTGTGC -ACGGAAATCCAGGCCATACTAAGC -ACGGAAATCCAGGCCATAACTAGC -ACGGAAATCCAGGCCATAAGATGC -ACGGAAATCCAGGCCATATGAAGG -ACGGAAATCCAGGCCATACAATGG -ACGGAAATCCAGGCCATAATGAGG -ACGGAAATCCAGGCCATAAATGGG -ACGGAAATCCAGGCCATATCCTGA -ACGGAAATCCAGGCCATATAGCGA -ACGGAAATCCAGGCCATACACAGA -ACGGAAATCCAGGCCATAGCAAGA -ACGGAAATCCAGGCCATAGGTTGA -ACGGAAATCCAGGCCATATCCGAT -ACGGAAATCCAGGCCATATGGCAT -ACGGAAATCCAGGCCATACGAGAT -ACGGAAATCCAGGCCATATACCAC -ACGGAAATCCAGGCCATACAGAAC -ACGGAAATCCAGGCCATAGTCTAC -ACGGAAATCCAGGCCATAACGTAC -ACGGAAATCCAGGCCATAAGTGAC -ACGGAAATCCAGGCCATACTGTAG -ACGGAAATCCAGGCCATACCTAAG -ACGGAAATCCAGGCCATAGTTCAG -ACGGAAATCCAGGCCATAGCATAG -ACGGAAATCCAGGCCATAGACAAG -ACGGAAATCCAGGCCATAAAGCAG -ACGGAAATCCAGGCCATACGTCAA -ACGGAAATCCAGGCCATAGCTGAA -ACGGAAATCCAGGCCATAAGTACG -ACGGAAATCCAGGCCATAATCCGA -ACGGAAATCCAGGCCATAATGGGA -ACGGAAATCCAGGCCATAGTGCAA -ACGGAAATCCAGGCCATAGAGGAA -ACGGAAATCCAGGCCATACAGGTA -ACGGAAATCCAGGCCATAGACTCT -ACGGAAATCCAGGCCATAAGTCCT -ACGGAAATCCAGGCCATATAAGCC -ACGGAAATCCAGGCCATAATAGCC -ACGGAAATCCAGGCCATATAACCG -ACGGAAATCCAGGCCATAATGCCA -ACGGAAATCCAGCCGTAAGGAAAC -ACGGAAATCCAGCCGTAAAACACC -ACGGAAATCCAGCCGTAAATCGAG -ACGGAAATCCAGCCGTAACTCCTT -ACGGAAATCCAGCCGTAACCTGTT -ACGGAAATCCAGCCGTAACGGTTT -ACGGAAATCCAGCCGTAAGTGGTT -ACGGAAATCCAGCCGTAAGCCTTT -ACGGAAATCCAGCCGTAAGGTCTT -ACGGAAATCCAGCCGTAAACGCTT -ACGGAAATCCAGCCGTAAAGCGTT -ACGGAAATCCAGCCGTAATTCGTC -ACGGAAATCCAGCCGTAATCTCTC -ACGGAAATCCAGCCGTAATGGATC -ACGGAAATCCAGCCGTAACACTTC -ACGGAAATCCAGCCGTAAGTACTC -ACGGAAATCCAGCCGTAAGATGTC -ACGGAAATCCAGCCGTAAACAGTC -ACGGAAATCCAGCCGTAATTGCTG -ACGGAAATCCAGCCGTAATCCATG -ACGGAAATCCAGCCGTAATGTGTG -ACGGAAATCCAGCCGTAACTAGTG -ACGGAAATCCAGCCGTAACATCTG -ACGGAAATCCAGCCGTAAGAGTTG -ACGGAAATCCAGCCGTAAAGACTG -ACGGAAATCCAGCCGTAATCGGTA -ACGGAAATCCAGCCGTAATGCCTA -ACGGAAATCCAGCCGTAACCACTA -ACGGAAATCCAGCCGTAAGGAGTA -ACGGAAATCCAGCCGTAATCGTCT -ACGGAAATCCAGCCGTAATGCACT -ACGGAAATCCAGCCGTAACTGACT -ACGGAAATCCAGCCGTAACAACCT -ACGGAAATCCAGCCGTAAGCTACT -ACGGAAATCCAGCCGTAAGGATCT -ACGGAAATCCAGCCGTAAAAGGCT -ACGGAAATCCAGCCGTAATCAACC -ACGGAAATCCAGCCGTAATGTTCC -ACGGAAATCCAGCCGTAAATTCCC -ACGGAAATCCAGCCGTAATTCTCG -ACGGAAATCCAGCCGTAATAGACG -ACGGAAATCCAGCCGTAAGTAACG -ACGGAAATCCAGCCGTAAACTTCG -ACGGAAATCCAGCCGTAATACGCA -ACGGAAATCCAGCCGTAACTTGCA -ACGGAAATCCAGCCGTAACGAACA -ACGGAAATCCAGCCGTAACAGTCA -ACGGAAATCCAGCCGTAAGATCCA -ACGGAAATCCAGCCGTAAACGACA -ACGGAAATCCAGCCGTAAAGCTCA -ACGGAAATCCAGCCGTAATCACGT -ACGGAAATCCAGCCGTAACGTAGT -ACGGAAATCCAGCCGTAAGTCAGT -ACGGAAATCCAGCCGTAAGAAGGT -ACGGAAATCCAGCCGTAAAACCGT -ACGGAAATCCAGCCGTAATTGTGC -ACGGAAATCCAGCCGTAACTAAGC -ACGGAAATCCAGCCGTAAACTAGC -ACGGAAATCCAGCCGTAAAGATGC -ACGGAAATCCAGCCGTAATGAAGG -ACGGAAATCCAGCCGTAACAATGG -ACGGAAATCCAGCCGTAAATGAGG -ACGGAAATCCAGCCGTAAAATGGG -ACGGAAATCCAGCCGTAATCCTGA -ACGGAAATCCAGCCGTAATAGCGA -ACGGAAATCCAGCCGTAACACAGA -ACGGAAATCCAGCCGTAAGCAAGA -ACGGAAATCCAGCCGTAAGGTTGA -ACGGAAATCCAGCCGTAATCCGAT -ACGGAAATCCAGCCGTAATGGCAT -ACGGAAATCCAGCCGTAACGAGAT -ACGGAAATCCAGCCGTAATACCAC -ACGGAAATCCAGCCGTAACAGAAC -ACGGAAATCCAGCCGTAAGTCTAC -ACGGAAATCCAGCCGTAAACGTAC -ACGGAAATCCAGCCGTAAAGTGAC -ACGGAAATCCAGCCGTAACTGTAG -ACGGAAATCCAGCCGTAACCTAAG -ACGGAAATCCAGCCGTAAGTTCAG -ACGGAAATCCAGCCGTAAGCATAG -ACGGAAATCCAGCCGTAAGACAAG -ACGGAAATCCAGCCGTAAAAGCAG -ACGGAAATCCAGCCGTAACGTCAA -ACGGAAATCCAGCCGTAAGCTGAA -ACGGAAATCCAGCCGTAAAGTACG -ACGGAAATCCAGCCGTAAATCCGA -ACGGAAATCCAGCCGTAAATGGGA -ACGGAAATCCAGCCGTAAGTGCAA -ACGGAAATCCAGCCGTAAGAGGAA -ACGGAAATCCAGCCGTAACAGGTA -ACGGAAATCCAGCCGTAAGACTCT -ACGGAAATCCAGCCGTAAAGTCCT -ACGGAAATCCAGCCGTAATAAGCC -ACGGAAATCCAGCCGTAAATAGCC -ACGGAAATCCAGCCGTAATAACCG -ACGGAAATCCAGCCGTAAATGCCA -ACGGAAATCCAGCCAATGGGAAAC -ACGGAAATCCAGCCAATGAACACC -ACGGAAATCCAGCCAATGATCGAG -ACGGAAATCCAGCCAATGCTCCTT -ACGGAAATCCAGCCAATGCCTGTT -ACGGAAATCCAGCCAATGCGGTTT -ACGGAAATCCAGCCAATGGTGGTT -ACGGAAATCCAGCCAATGGCCTTT -ACGGAAATCCAGCCAATGGGTCTT -ACGGAAATCCAGCCAATGACGCTT -ACGGAAATCCAGCCAATGAGCGTT -ACGGAAATCCAGCCAATGTTCGTC -ACGGAAATCCAGCCAATGTCTCTC -ACGGAAATCCAGCCAATGTGGATC -ACGGAAATCCAGCCAATGCACTTC -ACGGAAATCCAGCCAATGGTACTC -ACGGAAATCCAGCCAATGGATGTC -ACGGAAATCCAGCCAATGACAGTC -ACGGAAATCCAGCCAATGTTGCTG -ACGGAAATCCAGCCAATGTCCATG -ACGGAAATCCAGCCAATGTGTGTG -ACGGAAATCCAGCCAATGCTAGTG -ACGGAAATCCAGCCAATGCATCTG -ACGGAAATCCAGCCAATGGAGTTG -ACGGAAATCCAGCCAATGAGACTG -ACGGAAATCCAGCCAATGTCGGTA -ACGGAAATCCAGCCAATGTGCCTA -ACGGAAATCCAGCCAATGCCACTA -ACGGAAATCCAGCCAATGGGAGTA -ACGGAAATCCAGCCAATGTCGTCT -ACGGAAATCCAGCCAATGTGCACT -ACGGAAATCCAGCCAATGCTGACT -ACGGAAATCCAGCCAATGCAACCT -ACGGAAATCCAGCCAATGGCTACT -ACGGAAATCCAGCCAATGGGATCT -ACGGAAATCCAGCCAATGAAGGCT -ACGGAAATCCAGCCAATGTCAACC -ACGGAAATCCAGCCAATGTGTTCC -ACGGAAATCCAGCCAATGATTCCC -ACGGAAATCCAGCCAATGTTCTCG -ACGGAAATCCAGCCAATGTAGACG -ACGGAAATCCAGCCAATGGTAACG -ACGGAAATCCAGCCAATGACTTCG -ACGGAAATCCAGCCAATGTACGCA -ACGGAAATCCAGCCAATGCTTGCA -ACGGAAATCCAGCCAATGCGAACA -ACGGAAATCCAGCCAATGCAGTCA -ACGGAAATCCAGCCAATGGATCCA -ACGGAAATCCAGCCAATGACGACA -ACGGAAATCCAGCCAATGAGCTCA -ACGGAAATCCAGCCAATGTCACGT -ACGGAAATCCAGCCAATGCGTAGT -ACGGAAATCCAGCCAATGGTCAGT -ACGGAAATCCAGCCAATGGAAGGT -ACGGAAATCCAGCCAATGAACCGT -ACGGAAATCCAGCCAATGTTGTGC -ACGGAAATCCAGCCAATGCTAAGC -ACGGAAATCCAGCCAATGACTAGC -ACGGAAATCCAGCCAATGAGATGC -ACGGAAATCCAGCCAATGTGAAGG -ACGGAAATCCAGCCAATGCAATGG -ACGGAAATCCAGCCAATGATGAGG -ACGGAAATCCAGCCAATGAATGGG -ACGGAAATCCAGCCAATGTCCTGA -ACGGAAATCCAGCCAATGTAGCGA -ACGGAAATCCAGCCAATGCACAGA -ACGGAAATCCAGCCAATGGCAAGA -ACGGAAATCCAGCCAATGGGTTGA -ACGGAAATCCAGCCAATGTCCGAT -ACGGAAATCCAGCCAATGTGGCAT -ACGGAAATCCAGCCAATGCGAGAT -ACGGAAATCCAGCCAATGTACCAC -ACGGAAATCCAGCCAATGCAGAAC -ACGGAAATCCAGCCAATGGTCTAC -ACGGAAATCCAGCCAATGACGTAC -ACGGAAATCCAGCCAATGAGTGAC -ACGGAAATCCAGCCAATGCTGTAG -ACGGAAATCCAGCCAATGCCTAAG -ACGGAAATCCAGCCAATGGTTCAG -ACGGAAATCCAGCCAATGGCATAG -ACGGAAATCCAGCCAATGGACAAG -ACGGAAATCCAGCCAATGAAGCAG -ACGGAAATCCAGCCAATGCGTCAA -ACGGAAATCCAGCCAATGGCTGAA -ACGGAAATCCAGCCAATGAGTACG -ACGGAAATCCAGCCAATGATCCGA -ACGGAAATCCAGCCAATGATGGGA -ACGGAAATCCAGCCAATGGTGCAA -ACGGAAATCCAGCCAATGGAGGAA -ACGGAAATCCAGCCAATGCAGGTA -ACGGAAATCCAGCCAATGGACTCT -ACGGAAATCCAGCCAATGAGTCCT -ACGGAAATCCAGCCAATGTAAGCC -ACGGAAATCCAGCCAATGATAGCC -ACGGAAATCCAGCCAATGTAACCG -ACGGAAATCCAGCCAATGATGCCA -ACGGAACGACAAAACGGAGGAAAC -ACGGAACGACAAAACGGAAACACC -ACGGAACGACAAAACGGAATCGAG -ACGGAACGACAAAACGGACTCCTT -ACGGAACGACAAAACGGACCTGTT -ACGGAACGACAAAACGGACGGTTT -ACGGAACGACAAAACGGAGTGGTT -ACGGAACGACAAAACGGAGCCTTT -ACGGAACGACAAAACGGAGGTCTT -ACGGAACGACAAAACGGAACGCTT -ACGGAACGACAAAACGGAAGCGTT -ACGGAACGACAAAACGGATTCGTC -ACGGAACGACAAAACGGATCTCTC -ACGGAACGACAAAACGGATGGATC -ACGGAACGACAAAACGGACACTTC -ACGGAACGACAAAACGGAGTACTC -ACGGAACGACAAAACGGAGATGTC -ACGGAACGACAAAACGGAACAGTC -ACGGAACGACAAAACGGATTGCTG -ACGGAACGACAAAACGGATCCATG -ACGGAACGACAAAACGGATGTGTG -ACGGAACGACAAAACGGACTAGTG -ACGGAACGACAAAACGGACATCTG -ACGGAACGACAAAACGGAGAGTTG -ACGGAACGACAAAACGGAAGACTG -ACGGAACGACAAAACGGATCGGTA -ACGGAACGACAAAACGGATGCCTA -ACGGAACGACAAAACGGACCACTA -ACGGAACGACAAAACGGAGGAGTA -ACGGAACGACAAAACGGATCGTCT -ACGGAACGACAAAACGGATGCACT -ACGGAACGACAAAACGGACTGACT -ACGGAACGACAAAACGGACAACCT -ACGGAACGACAAAACGGAGCTACT -ACGGAACGACAAAACGGAGGATCT -ACGGAACGACAAAACGGAAAGGCT -ACGGAACGACAAAACGGATCAACC -ACGGAACGACAAAACGGATGTTCC -ACGGAACGACAAAACGGAATTCCC -ACGGAACGACAAAACGGATTCTCG -ACGGAACGACAAAACGGATAGACG -ACGGAACGACAAAACGGAGTAACG -ACGGAACGACAAAACGGAACTTCG -ACGGAACGACAAAACGGATACGCA -ACGGAACGACAAAACGGACTTGCA -ACGGAACGACAAAACGGACGAACA -ACGGAACGACAAAACGGACAGTCA -ACGGAACGACAAAACGGAGATCCA -ACGGAACGACAAAACGGAACGACA -ACGGAACGACAAAACGGAAGCTCA -ACGGAACGACAAAACGGATCACGT -ACGGAACGACAAAACGGACGTAGT -ACGGAACGACAAAACGGAGTCAGT -ACGGAACGACAAAACGGAGAAGGT -ACGGAACGACAAAACGGAAACCGT -ACGGAACGACAAAACGGATTGTGC -ACGGAACGACAAAACGGACTAAGC -ACGGAACGACAAAACGGAACTAGC -ACGGAACGACAAAACGGAAGATGC -ACGGAACGACAAAACGGATGAAGG -ACGGAACGACAAAACGGACAATGG -ACGGAACGACAAAACGGAATGAGG -ACGGAACGACAAAACGGAAATGGG -ACGGAACGACAAAACGGATCCTGA -ACGGAACGACAAAACGGATAGCGA -ACGGAACGACAAAACGGACACAGA -ACGGAACGACAAAACGGAGCAAGA -ACGGAACGACAAAACGGAGGTTGA -ACGGAACGACAAAACGGATCCGAT -ACGGAACGACAAAACGGATGGCAT -ACGGAACGACAAAACGGACGAGAT -ACGGAACGACAAAACGGATACCAC -ACGGAACGACAAAACGGACAGAAC -ACGGAACGACAAAACGGAGTCTAC -ACGGAACGACAAAACGGAACGTAC -ACGGAACGACAAAACGGAAGTGAC -ACGGAACGACAAAACGGACTGTAG -ACGGAACGACAAAACGGACCTAAG -ACGGAACGACAAAACGGAGTTCAG -ACGGAACGACAAAACGGAGCATAG -ACGGAACGACAAAACGGAGACAAG -ACGGAACGACAAAACGGAAAGCAG -ACGGAACGACAAAACGGACGTCAA -ACGGAACGACAAAACGGAGCTGAA -ACGGAACGACAAAACGGAAGTACG -ACGGAACGACAAAACGGAATCCGA -ACGGAACGACAAAACGGAATGGGA -ACGGAACGACAAAACGGAGTGCAA -ACGGAACGACAAAACGGAGAGGAA -ACGGAACGACAAAACGGACAGGTA -ACGGAACGACAAAACGGAGACTCT -ACGGAACGACAAAACGGAAGTCCT -ACGGAACGACAAAACGGATAAGCC -ACGGAACGACAAAACGGAATAGCC -ACGGAACGACAAAACGGATAACCG -ACGGAACGACAAAACGGAATGCCA -ACGGAACGACAAACCAACGGAAAC -ACGGAACGACAAACCAACAACACC -ACGGAACGACAAACCAACATCGAG -ACGGAACGACAAACCAACCTCCTT -ACGGAACGACAAACCAACCCTGTT -ACGGAACGACAAACCAACCGGTTT -ACGGAACGACAAACCAACGTGGTT -ACGGAACGACAAACCAACGCCTTT -ACGGAACGACAAACCAACGGTCTT -ACGGAACGACAAACCAACACGCTT -ACGGAACGACAAACCAACAGCGTT -ACGGAACGACAAACCAACTTCGTC -ACGGAACGACAAACCAACTCTCTC -ACGGAACGACAAACCAACTGGATC -ACGGAACGACAAACCAACCACTTC -ACGGAACGACAAACCAACGTACTC -ACGGAACGACAAACCAACGATGTC -ACGGAACGACAAACCAACACAGTC -ACGGAACGACAAACCAACTTGCTG -ACGGAACGACAAACCAACTCCATG -ACGGAACGACAAACCAACTGTGTG -ACGGAACGACAAACCAACCTAGTG -ACGGAACGACAAACCAACCATCTG -ACGGAACGACAAACCAACGAGTTG -ACGGAACGACAAACCAACAGACTG -ACGGAACGACAAACCAACTCGGTA -ACGGAACGACAAACCAACTGCCTA -ACGGAACGACAAACCAACCCACTA -ACGGAACGACAAACCAACGGAGTA -ACGGAACGACAAACCAACTCGTCT -ACGGAACGACAAACCAACTGCACT -ACGGAACGACAAACCAACCTGACT -ACGGAACGACAAACCAACCAACCT -ACGGAACGACAAACCAACGCTACT -ACGGAACGACAAACCAACGGATCT -ACGGAACGACAAACCAACAAGGCT -ACGGAACGACAAACCAACTCAACC -ACGGAACGACAAACCAACTGTTCC -ACGGAACGACAAACCAACATTCCC -ACGGAACGACAAACCAACTTCTCG -ACGGAACGACAAACCAACTAGACG -ACGGAACGACAAACCAACGTAACG -ACGGAACGACAAACCAACACTTCG -ACGGAACGACAAACCAACTACGCA -ACGGAACGACAAACCAACCTTGCA -ACGGAACGACAAACCAACCGAACA -ACGGAACGACAAACCAACCAGTCA -ACGGAACGACAAACCAACGATCCA -ACGGAACGACAAACCAACACGACA -ACGGAACGACAAACCAACAGCTCA -ACGGAACGACAAACCAACTCACGT -ACGGAACGACAAACCAACCGTAGT -ACGGAACGACAAACCAACGTCAGT -ACGGAACGACAAACCAACGAAGGT -ACGGAACGACAAACCAACAACCGT -ACGGAACGACAAACCAACTTGTGC -ACGGAACGACAAACCAACCTAAGC -ACGGAACGACAAACCAACACTAGC -ACGGAACGACAAACCAACAGATGC -ACGGAACGACAAACCAACTGAAGG -ACGGAACGACAAACCAACCAATGG -ACGGAACGACAAACCAACATGAGG -ACGGAACGACAAACCAACAATGGG -ACGGAACGACAAACCAACTCCTGA -ACGGAACGACAAACCAACTAGCGA -ACGGAACGACAAACCAACCACAGA -ACGGAACGACAAACCAACGCAAGA -ACGGAACGACAAACCAACGGTTGA -ACGGAACGACAAACCAACTCCGAT -ACGGAACGACAAACCAACTGGCAT -ACGGAACGACAAACCAACCGAGAT -ACGGAACGACAAACCAACTACCAC -ACGGAACGACAAACCAACCAGAAC -ACGGAACGACAAACCAACGTCTAC -ACGGAACGACAAACCAACACGTAC -ACGGAACGACAAACCAACAGTGAC -ACGGAACGACAAACCAACCTGTAG -ACGGAACGACAAACCAACCCTAAG -ACGGAACGACAAACCAACGTTCAG -ACGGAACGACAAACCAACGCATAG -ACGGAACGACAAACCAACGACAAG -ACGGAACGACAAACCAACAAGCAG -ACGGAACGACAAACCAACCGTCAA -ACGGAACGACAAACCAACGCTGAA -ACGGAACGACAAACCAACAGTACG -ACGGAACGACAAACCAACATCCGA -ACGGAACGACAAACCAACATGGGA -ACGGAACGACAAACCAACGTGCAA -ACGGAACGACAAACCAACGAGGAA -ACGGAACGACAAACCAACCAGGTA -ACGGAACGACAAACCAACGACTCT -ACGGAACGACAAACCAACAGTCCT -ACGGAACGACAAACCAACTAAGCC -ACGGAACGACAAACCAACATAGCC -ACGGAACGACAAACCAACTAACCG -ACGGAACGACAAACCAACATGCCA -ACGGAACGACAAGAGATCGGAAAC -ACGGAACGACAAGAGATCAACACC -ACGGAACGACAAGAGATCATCGAG -ACGGAACGACAAGAGATCCTCCTT -ACGGAACGACAAGAGATCCCTGTT -ACGGAACGACAAGAGATCCGGTTT -ACGGAACGACAAGAGATCGTGGTT -ACGGAACGACAAGAGATCGCCTTT -ACGGAACGACAAGAGATCGGTCTT -ACGGAACGACAAGAGATCACGCTT -ACGGAACGACAAGAGATCAGCGTT -ACGGAACGACAAGAGATCTTCGTC -ACGGAACGACAAGAGATCTCTCTC -ACGGAACGACAAGAGATCTGGATC -ACGGAACGACAAGAGATCCACTTC -ACGGAACGACAAGAGATCGTACTC -ACGGAACGACAAGAGATCGATGTC -ACGGAACGACAAGAGATCACAGTC -ACGGAACGACAAGAGATCTTGCTG -ACGGAACGACAAGAGATCTCCATG -ACGGAACGACAAGAGATCTGTGTG -ACGGAACGACAAGAGATCCTAGTG -ACGGAACGACAAGAGATCCATCTG -ACGGAACGACAAGAGATCGAGTTG -ACGGAACGACAAGAGATCAGACTG -ACGGAACGACAAGAGATCTCGGTA -ACGGAACGACAAGAGATCTGCCTA -ACGGAACGACAAGAGATCCCACTA -ACGGAACGACAAGAGATCGGAGTA -ACGGAACGACAAGAGATCTCGTCT -ACGGAACGACAAGAGATCTGCACT -ACGGAACGACAAGAGATCCTGACT -ACGGAACGACAAGAGATCCAACCT -ACGGAACGACAAGAGATCGCTACT -ACGGAACGACAAGAGATCGGATCT -ACGGAACGACAAGAGATCAAGGCT -ACGGAACGACAAGAGATCTCAACC -ACGGAACGACAAGAGATCTGTTCC -ACGGAACGACAAGAGATCATTCCC -ACGGAACGACAAGAGATCTTCTCG -ACGGAACGACAAGAGATCTAGACG -ACGGAACGACAAGAGATCGTAACG -ACGGAACGACAAGAGATCACTTCG -ACGGAACGACAAGAGATCTACGCA -ACGGAACGACAAGAGATCCTTGCA -ACGGAACGACAAGAGATCCGAACA -ACGGAACGACAAGAGATCCAGTCA -ACGGAACGACAAGAGATCGATCCA -ACGGAACGACAAGAGATCACGACA -ACGGAACGACAAGAGATCAGCTCA -ACGGAACGACAAGAGATCTCACGT -ACGGAACGACAAGAGATCCGTAGT -ACGGAACGACAAGAGATCGTCAGT -ACGGAACGACAAGAGATCGAAGGT -ACGGAACGACAAGAGATCAACCGT -ACGGAACGACAAGAGATCTTGTGC -ACGGAACGACAAGAGATCCTAAGC -ACGGAACGACAAGAGATCACTAGC -ACGGAACGACAAGAGATCAGATGC -ACGGAACGACAAGAGATCTGAAGG -ACGGAACGACAAGAGATCCAATGG -ACGGAACGACAAGAGATCATGAGG -ACGGAACGACAAGAGATCAATGGG -ACGGAACGACAAGAGATCTCCTGA -ACGGAACGACAAGAGATCTAGCGA -ACGGAACGACAAGAGATCCACAGA -ACGGAACGACAAGAGATCGCAAGA -ACGGAACGACAAGAGATCGGTTGA -ACGGAACGACAAGAGATCTCCGAT -ACGGAACGACAAGAGATCTGGCAT -ACGGAACGACAAGAGATCCGAGAT -ACGGAACGACAAGAGATCTACCAC -ACGGAACGACAAGAGATCCAGAAC -ACGGAACGACAAGAGATCGTCTAC -ACGGAACGACAAGAGATCACGTAC -ACGGAACGACAAGAGATCAGTGAC -ACGGAACGACAAGAGATCCTGTAG -ACGGAACGACAAGAGATCCCTAAG -ACGGAACGACAAGAGATCGTTCAG -ACGGAACGACAAGAGATCGCATAG -ACGGAACGACAAGAGATCGACAAG -ACGGAACGACAAGAGATCAAGCAG -ACGGAACGACAAGAGATCCGTCAA -ACGGAACGACAAGAGATCGCTGAA -ACGGAACGACAAGAGATCAGTACG -ACGGAACGACAAGAGATCATCCGA -ACGGAACGACAAGAGATCATGGGA -ACGGAACGACAAGAGATCGTGCAA -ACGGAACGACAAGAGATCGAGGAA -ACGGAACGACAAGAGATCCAGGTA -ACGGAACGACAAGAGATCGACTCT -ACGGAACGACAAGAGATCAGTCCT -ACGGAACGACAAGAGATCTAAGCC -ACGGAACGACAAGAGATCATAGCC -ACGGAACGACAAGAGATCTAACCG -ACGGAACGACAAGAGATCATGCCA -ACGGAACGACAACTTCTCGGAAAC -ACGGAACGACAACTTCTCAACACC -ACGGAACGACAACTTCTCATCGAG -ACGGAACGACAACTTCTCCTCCTT -ACGGAACGACAACTTCTCCCTGTT -ACGGAACGACAACTTCTCCGGTTT -ACGGAACGACAACTTCTCGTGGTT -ACGGAACGACAACTTCTCGCCTTT -ACGGAACGACAACTTCTCGGTCTT -ACGGAACGACAACTTCTCACGCTT -ACGGAACGACAACTTCTCAGCGTT -ACGGAACGACAACTTCTCTTCGTC -ACGGAACGACAACTTCTCTCTCTC -ACGGAACGACAACTTCTCTGGATC -ACGGAACGACAACTTCTCCACTTC -ACGGAACGACAACTTCTCGTACTC -ACGGAACGACAACTTCTCGATGTC -ACGGAACGACAACTTCTCACAGTC -ACGGAACGACAACTTCTCTTGCTG -ACGGAACGACAACTTCTCTCCATG -ACGGAACGACAACTTCTCTGTGTG -ACGGAACGACAACTTCTCCTAGTG -ACGGAACGACAACTTCTCCATCTG -ACGGAACGACAACTTCTCGAGTTG -ACGGAACGACAACTTCTCAGACTG -ACGGAACGACAACTTCTCTCGGTA -ACGGAACGACAACTTCTCTGCCTA -ACGGAACGACAACTTCTCCCACTA -ACGGAACGACAACTTCTCGGAGTA -ACGGAACGACAACTTCTCTCGTCT -ACGGAACGACAACTTCTCTGCACT -ACGGAACGACAACTTCTCCTGACT -ACGGAACGACAACTTCTCCAACCT -ACGGAACGACAACTTCTCGCTACT -ACGGAACGACAACTTCTCGGATCT -ACGGAACGACAACTTCTCAAGGCT -ACGGAACGACAACTTCTCTCAACC -ACGGAACGACAACTTCTCTGTTCC -ACGGAACGACAACTTCTCATTCCC -ACGGAACGACAACTTCTCTTCTCG -ACGGAACGACAACTTCTCTAGACG -ACGGAACGACAACTTCTCGTAACG -ACGGAACGACAACTTCTCACTTCG -ACGGAACGACAACTTCTCTACGCA -ACGGAACGACAACTTCTCCTTGCA -ACGGAACGACAACTTCTCCGAACA -ACGGAACGACAACTTCTCCAGTCA -ACGGAACGACAACTTCTCGATCCA -ACGGAACGACAACTTCTCACGACA -ACGGAACGACAACTTCTCAGCTCA -ACGGAACGACAACTTCTCTCACGT -ACGGAACGACAACTTCTCCGTAGT -ACGGAACGACAACTTCTCGTCAGT -ACGGAACGACAACTTCTCGAAGGT -ACGGAACGACAACTTCTCAACCGT -ACGGAACGACAACTTCTCTTGTGC -ACGGAACGACAACTTCTCCTAAGC -ACGGAACGACAACTTCTCACTAGC -ACGGAACGACAACTTCTCAGATGC -ACGGAACGACAACTTCTCTGAAGG -ACGGAACGACAACTTCTCCAATGG -ACGGAACGACAACTTCTCATGAGG -ACGGAACGACAACTTCTCAATGGG -ACGGAACGACAACTTCTCTCCTGA -ACGGAACGACAACTTCTCTAGCGA -ACGGAACGACAACTTCTCCACAGA -ACGGAACGACAACTTCTCGCAAGA -ACGGAACGACAACTTCTCGGTTGA -ACGGAACGACAACTTCTCTCCGAT -ACGGAACGACAACTTCTCTGGCAT -ACGGAACGACAACTTCTCCGAGAT -ACGGAACGACAACTTCTCTACCAC -ACGGAACGACAACTTCTCCAGAAC -ACGGAACGACAACTTCTCGTCTAC -ACGGAACGACAACTTCTCACGTAC -ACGGAACGACAACTTCTCAGTGAC -ACGGAACGACAACTTCTCCTGTAG -ACGGAACGACAACTTCTCCCTAAG -ACGGAACGACAACTTCTCGTTCAG -ACGGAACGACAACTTCTCGCATAG -ACGGAACGACAACTTCTCGACAAG -ACGGAACGACAACTTCTCAAGCAG -ACGGAACGACAACTTCTCCGTCAA -ACGGAACGACAACTTCTCGCTGAA -ACGGAACGACAACTTCTCAGTACG -ACGGAACGACAACTTCTCATCCGA -ACGGAACGACAACTTCTCATGGGA -ACGGAACGACAACTTCTCGTGCAA -ACGGAACGACAACTTCTCGAGGAA -ACGGAACGACAACTTCTCCAGGTA -ACGGAACGACAACTTCTCGACTCT -ACGGAACGACAACTTCTCAGTCCT -ACGGAACGACAACTTCTCTAAGCC -ACGGAACGACAACTTCTCATAGCC -ACGGAACGACAACTTCTCTAACCG -ACGGAACGACAACTTCTCATGCCA -ACGGAACGACAAGTTCCTGGAAAC -ACGGAACGACAAGTTCCTAACACC -ACGGAACGACAAGTTCCTATCGAG -ACGGAACGACAAGTTCCTCTCCTT -ACGGAACGACAAGTTCCTCCTGTT -ACGGAACGACAAGTTCCTCGGTTT -ACGGAACGACAAGTTCCTGTGGTT -ACGGAACGACAAGTTCCTGCCTTT -ACGGAACGACAAGTTCCTGGTCTT -ACGGAACGACAAGTTCCTACGCTT -ACGGAACGACAAGTTCCTAGCGTT -ACGGAACGACAAGTTCCTTTCGTC -ACGGAACGACAAGTTCCTTCTCTC -ACGGAACGACAAGTTCCTTGGATC -ACGGAACGACAAGTTCCTCACTTC -ACGGAACGACAAGTTCCTGTACTC -ACGGAACGACAAGTTCCTGATGTC -ACGGAACGACAAGTTCCTACAGTC -ACGGAACGACAAGTTCCTTTGCTG -ACGGAACGACAAGTTCCTTCCATG -ACGGAACGACAAGTTCCTTGTGTG -ACGGAACGACAAGTTCCTCTAGTG -ACGGAACGACAAGTTCCTCATCTG -ACGGAACGACAAGTTCCTGAGTTG -ACGGAACGACAAGTTCCTAGACTG -ACGGAACGACAAGTTCCTTCGGTA -ACGGAACGACAAGTTCCTTGCCTA -ACGGAACGACAAGTTCCTCCACTA -ACGGAACGACAAGTTCCTGGAGTA -ACGGAACGACAAGTTCCTTCGTCT -ACGGAACGACAAGTTCCTTGCACT -ACGGAACGACAAGTTCCTCTGACT -ACGGAACGACAAGTTCCTCAACCT -ACGGAACGACAAGTTCCTGCTACT -ACGGAACGACAAGTTCCTGGATCT -ACGGAACGACAAGTTCCTAAGGCT -ACGGAACGACAAGTTCCTTCAACC -ACGGAACGACAAGTTCCTTGTTCC -ACGGAACGACAAGTTCCTATTCCC -ACGGAACGACAAGTTCCTTTCTCG -ACGGAACGACAAGTTCCTTAGACG -ACGGAACGACAAGTTCCTGTAACG -ACGGAACGACAAGTTCCTACTTCG -ACGGAACGACAAGTTCCTTACGCA -ACGGAACGACAAGTTCCTCTTGCA -ACGGAACGACAAGTTCCTCGAACA -ACGGAACGACAAGTTCCTCAGTCA -ACGGAACGACAAGTTCCTGATCCA -ACGGAACGACAAGTTCCTACGACA -ACGGAACGACAAGTTCCTAGCTCA -ACGGAACGACAAGTTCCTTCACGT -ACGGAACGACAAGTTCCTCGTAGT -ACGGAACGACAAGTTCCTGTCAGT -ACGGAACGACAAGTTCCTGAAGGT -ACGGAACGACAAGTTCCTAACCGT -ACGGAACGACAAGTTCCTTTGTGC -ACGGAACGACAAGTTCCTCTAAGC -ACGGAACGACAAGTTCCTACTAGC -ACGGAACGACAAGTTCCTAGATGC -ACGGAACGACAAGTTCCTTGAAGG -ACGGAACGACAAGTTCCTCAATGG -ACGGAACGACAAGTTCCTATGAGG -ACGGAACGACAAGTTCCTAATGGG -ACGGAACGACAAGTTCCTTCCTGA -ACGGAACGACAAGTTCCTTAGCGA -ACGGAACGACAAGTTCCTCACAGA -ACGGAACGACAAGTTCCTGCAAGA -ACGGAACGACAAGTTCCTGGTTGA -ACGGAACGACAAGTTCCTTCCGAT -ACGGAACGACAAGTTCCTTGGCAT -ACGGAACGACAAGTTCCTCGAGAT -ACGGAACGACAAGTTCCTTACCAC -ACGGAACGACAAGTTCCTCAGAAC -ACGGAACGACAAGTTCCTGTCTAC -ACGGAACGACAAGTTCCTACGTAC -ACGGAACGACAAGTTCCTAGTGAC -ACGGAACGACAAGTTCCTCTGTAG -ACGGAACGACAAGTTCCTCCTAAG -ACGGAACGACAAGTTCCTGTTCAG -ACGGAACGACAAGTTCCTGCATAG -ACGGAACGACAAGTTCCTGACAAG -ACGGAACGACAAGTTCCTAAGCAG -ACGGAACGACAAGTTCCTCGTCAA -ACGGAACGACAAGTTCCTGCTGAA -ACGGAACGACAAGTTCCTAGTACG -ACGGAACGACAAGTTCCTATCCGA -ACGGAACGACAAGTTCCTATGGGA -ACGGAACGACAAGTTCCTGTGCAA -ACGGAACGACAAGTTCCTGAGGAA -ACGGAACGACAAGTTCCTCAGGTA -ACGGAACGACAAGTTCCTGACTCT -ACGGAACGACAAGTTCCTAGTCCT -ACGGAACGACAAGTTCCTTAAGCC -ACGGAACGACAAGTTCCTATAGCC -ACGGAACGACAAGTTCCTTAACCG -ACGGAACGACAAGTTCCTATGCCA -ACGGAACGACAATTTCGGGGAAAC -ACGGAACGACAATTTCGGAACACC -ACGGAACGACAATTTCGGATCGAG -ACGGAACGACAATTTCGGCTCCTT -ACGGAACGACAATTTCGGCCTGTT -ACGGAACGACAATTTCGGCGGTTT -ACGGAACGACAATTTCGGGTGGTT -ACGGAACGACAATTTCGGGCCTTT -ACGGAACGACAATTTCGGGGTCTT -ACGGAACGACAATTTCGGACGCTT -ACGGAACGACAATTTCGGAGCGTT -ACGGAACGACAATTTCGGTTCGTC -ACGGAACGACAATTTCGGTCTCTC -ACGGAACGACAATTTCGGTGGATC -ACGGAACGACAATTTCGGCACTTC -ACGGAACGACAATTTCGGGTACTC -ACGGAACGACAATTTCGGGATGTC -ACGGAACGACAATTTCGGACAGTC -ACGGAACGACAATTTCGGTTGCTG -ACGGAACGACAATTTCGGTCCATG -ACGGAACGACAATTTCGGTGTGTG -ACGGAACGACAATTTCGGCTAGTG -ACGGAACGACAATTTCGGCATCTG -ACGGAACGACAATTTCGGGAGTTG -ACGGAACGACAATTTCGGAGACTG -ACGGAACGACAATTTCGGTCGGTA -ACGGAACGACAATTTCGGTGCCTA -ACGGAACGACAATTTCGGCCACTA -ACGGAACGACAATTTCGGGGAGTA -ACGGAACGACAATTTCGGTCGTCT -ACGGAACGACAATTTCGGTGCACT -ACGGAACGACAATTTCGGCTGACT -ACGGAACGACAATTTCGGCAACCT -ACGGAACGACAATTTCGGGCTACT -ACGGAACGACAATTTCGGGGATCT -ACGGAACGACAATTTCGGAAGGCT -ACGGAACGACAATTTCGGTCAACC -ACGGAACGACAATTTCGGTGTTCC -ACGGAACGACAATTTCGGATTCCC -ACGGAACGACAATTTCGGTTCTCG -ACGGAACGACAATTTCGGTAGACG -ACGGAACGACAATTTCGGGTAACG -ACGGAACGACAATTTCGGACTTCG -ACGGAACGACAATTTCGGTACGCA -ACGGAACGACAATTTCGGCTTGCA -ACGGAACGACAATTTCGGCGAACA -ACGGAACGACAATTTCGGCAGTCA -ACGGAACGACAATTTCGGGATCCA -ACGGAACGACAATTTCGGACGACA -ACGGAACGACAATTTCGGAGCTCA -ACGGAACGACAATTTCGGTCACGT -ACGGAACGACAATTTCGGCGTAGT -ACGGAACGACAATTTCGGGTCAGT -ACGGAACGACAATTTCGGGAAGGT -ACGGAACGACAATTTCGGAACCGT -ACGGAACGACAATTTCGGTTGTGC -ACGGAACGACAATTTCGGCTAAGC -ACGGAACGACAATTTCGGACTAGC -ACGGAACGACAATTTCGGAGATGC -ACGGAACGACAATTTCGGTGAAGG -ACGGAACGACAATTTCGGCAATGG -ACGGAACGACAATTTCGGATGAGG -ACGGAACGACAATTTCGGAATGGG -ACGGAACGACAATTTCGGTCCTGA -ACGGAACGACAATTTCGGTAGCGA -ACGGAACGACAATTTCGGCACAGA -ACGGAACGACAATTTCGGGCAAGA -ACGGAACGACAATTTCGGGGTTGA -ACGGAACGACAATTTCGGTCCGAT -ACGGAACGACAATTTCGGTGGCAT -ACGGAACGACAATTTCGGCGAGAT -ACGGAACGACAATTTCGGTACCAC -ACGGAACGACAATTTCGGCAGAAC -ACGGAACGACAATTTCGGGTCTAC -ACGGAACGACAATTTCGGACGTAC -ACGGAACGACAATTTCGGAGTGAC -ACGGAACGACAATTTCGGCTGTAG -ACGGAACGACAATTTCGGCCTAAG -ACGGAACGACAATTTCGGGTTCAG -ACGGAACGACAATTTCGGGCATAG -ACGGAACGACAATTTCGGGACAAG -ACGGAACGACAATTTCGGAAGCAG -ACGGAACGACAATTTCGGCGTCAA -ACGGAACGACAATTTCGGGCTGAA -ACGGAACGACAATTTCGGAGTACG -ACGGAACGACAATTTCGGATCCGA -ACGGAACGACAATTTCGGATGGGA -ACGGAACGACAATTTCGGGTGCAA -ACGGAACGACAATTTCGGGAGGAA -ACGGAACGACAATTTCGGCAGGTA -ACGGAACGACAATTTCGGGACTCT -ACGGAACGACAATTTCGGAGTCCT -ACGGAACGACAATTTCGGTAAGCC -ACGGAACGACAATTTCGGATAGCC -ACGGAACGACAATTTCGGTAACCG -ACGGAACGACAATTTCGGATGCCA -ACGGAACGACAAGTTGTGGGAAAC -ACGGAACGACAAGTTGTGAACACC -ACGGAACGACAAGTTGTGATCGAG -ACGGAACGACAAGTTGTGCTCCTT -ACGGAACGACAAGTTGTGCCTGTT -ACGGAACGACAAGTTGTGCGGTTT -ACGGAACGACAAGTTGTGGTGGTT -ACGGAACGACAAGTTGTGGCCTTT -ACGGAACGACAAGTTGTGGGTCTT -ACGGAACGACAAGTTGTGACGCTT -ACGGAACGACAAGTTGTGAGCGTT -ACGGAACGACAAGTTGTGTTCGTC -ACGGAACGACAAGTTGTGTCTCTC -ACGGAACGACAAGTTGTGTGGATC -ACGGAACGACAAGTTGTGCACTTC -ACGGAACGACAAGTTGTGGTACTC -ACGGAACGACAAGTTGTGGATGTC -ACGGAACGACAAGTTGTGACAGTC -ACGGAACGACAAGTTGTGTTGCTG -ACGGAACGACAAGTTGTGTCCATG -ACGGAACGACAAGTTGTGTGTGTG -ACGGAACGACAAGTTGTGCTAGTG -ACGGAACGACAAGTTGTGCATCTG -ACGGAACGACAAGTTGTGGAGTTG -ACGGAACGACAAGTTGTGAGACTG -ACGGAACGACAAGTTGTGTCGGTA -ACGGAACGACAAGTTGTGTGCCTA -ACGGAACGACAAGTTGTGCCACTA -ACGGAACGACAAGTTGTGGGAGTA -ACGGAACGACAAGTTGTGTCGTCT -ACGGAACGACAAGTTGTGTGCACT -ACGGAACGACAAGTTGTGCTGACT -ACGGAACGACAAGTTGTGCAACCT -ACGGAACGACAAGTTGTGGCTACT -ACGGAACGACAAGTTGTGGGATCT -ACGGAACGACAAGTTGTGAAGGCT -ACGGAACGACAAGTTGTGTCAACC -ACGGAACGACAAGTTGTGTGTTCC -ACGGAACGACAAGTTGTGATTCCC -ACGGAACGACAAGTTGTGTTCTCG -ACGGAACGACAAGTTGTGTAGACG -ACGGAACGACAAGTTGTGGTAACG -ACGGAACGACAAGTTGTGACTTCG -ACGGAACGACAAGTTGTGTACGCA -ACGGAACGACAAGTTGTGCTTGCA -ACGGAACGACAAGTTGTGCGAACA -ACGGAACGACAAGTTGTGCAGTCA -ACGGAACGACAAGTTGTGGATCCA -ACGGAACGACAAGTTGTGACGACA -ACGGAACGACAAGTTGTGAGCTCA -ACGGAACGACAAGTTGTGTCACGT -ACGGAACGACAAGTTGTGCGTAGT -ACGGAACGACAAGTTGTGGTCAGT -ACGGAACGACAAGTTGTGGAAGGT -ACGGAACGACAAGTTGTGAACCGT -ACGGAACGACAAGTTGTGTTGTGC -ACGGAACGACAAGTTGTGCTAAGC -ACGGAACGACAAGTTGTGACTAGC -ACGGAACGACAAGTTGTGAGATGC -ACGGAACGACAAGTTGTGTGAAGG -ACGGAACGACAAGTTGTGCAATGG -ACGGAACGACAAGTTGTGATGAGG -ACGGAACGACAAGTTGTGAATGGG -ACGGAACGACAAGTTGTGTCCTGA -ACGGAACGACAAGTTGTGTAGCGA -ACGGAACGACAAGTTGTGCACAGA -ACGGAACGACAAGTTGTGGCAAGA -ACGGAACGACAAGTTGTGGGTTGA -ACGGAACGACAAGTTGTGTCCGAT -ACGGAACGACAAGTTGTGTGGCAT -ACGGAACGACAAGTTGTGCGAGAT -ACGGAACGACAAGTTGTGTACCAC -ACGGAACGACAAGTTGTGCAGAAC -ACGGAACGACAAGTTGTGGTCTAC -ACGGAACGACAAGTTGTGACGTAC -ACGGAACGACAAGTTGTGAGTGAC -ACGGAACGACAAGTTGTGCTGTAG -ACGGAACGACAAGTTGTGCCTAAG -ACGGAACGACAAGTTGTGGTTCAG -ACGGAACGACAAGTTGTGGCATAG -ACGGAACGACAAGTTGTGGACAAG -ACGGAACGACAAGTTGTGAAGCAG -ACGGAACGACAAGTTGTGCGTCAA -ACGGAACGACAAGTTGTGGCTGAA -ACGGAACGACAAGTTGTGAGTACG -ACGGAACGACAAGTTGTGATCCGA -ACGGAACGACAAGTTGTGATGGGA -ACGGAACGACAAGTTGTGGTGCAA -ACGGAACGACAAGTTGTGGAGGAA -ACGGAACGACAAGTTGTGCAGGTA -ACGGAACGACAAGTTGTGGACTCT -ACGGAACGACAAGTTGTGAGTCCT -ACGGAACGACAAGTTGTGTAAGCC -ACGGAACGACAAGTTGTGATAGCC -ACGGAACGACAAGTTGTGTAACCG -ACGGAACGACAAGTTGTGATGCCA -ACGGAACGACAATTTGCCGGAAAC -ACGGAACGACAATTTGCCAACACC -ACGGAACGACAATTTGCCATCGAG -ACGGAACGACAATTTGCCCTCCTT -ACGGAACGACAATTTGCCCCTGTT -ACGGAACGACAATTTGCCCGGTTT -ACGGAACGACAATTTGCCGTGGTT -ACGGAACGACAATTTGCCGCCTTT -ACGGAACGACAATTTGCCGGTCTT -ACGGAACGACAATTTGCCACGCTT -ACGGAACGACAATTTGCCAGCGTT -ACGGAACGACAATTTGCCTTCGTC -ACGGAACGACAATTTGCCTCTCTC -ACGGAACGACAATTTGCCTGGATC -ACGGAACGACAATTTGCCCACTTC -ACGGAACGACAATTTGCCGTACTC -ACGGAACGACAATTTGCCGATGTC -ACGGAACGACAATTTGCCACAGTC -ACGGAACGACAATTTGCCTTGCTG -ACGGAACGACAATTTGCCTCCATG -ACGGAACGACAATTTGCCTGTGTG -ACGGAACGACAATTTGCCCTAGTG -ACGGAACGACAATTTGCCCATCTG -ACGGAACGACAATTTGCCGAGTTG -ACGGAACGACAATTTGCCAGACTG -ACGGAACGACAATTTGCCTCGGTA -ACGGAACGACAATTTGCCTGCCTA -ACGGAACGACAATTTGCCCCACTA -ACGGAACGACAATTTGCCGGAGTA -ACGGAACGACAATTTGCCTCGTCT -ACGGAACGACAATTTGCCTGCACT -ACGGAACGACAATTTGCCCTGACT -ACGGAACGACAATTTGCCCAACCT -ACGGAACGACAATTTGCCGCTACT -ACGGAACGACAATTTGCCGGATCT -ACGGAACGACAATTTGCCAAGGCT -ACGGAACGACAATTTGCCTCAACC -ACGGAACGACAATTTGCCTGTTCC -ACGGAACGACAATTTGCCATTCCC -ACGGAACGACAATTTGCCTTCTCG -ACGGAACGACAATTTGCCTAGACG -ACGGAACGACAATTTGCCGTAACG -ACGGAACGACAATTTGCCACTTCG -ACGGAACGACAATTTGCCTACGCA -ACGGAACGACAATTTGCCCTTGCA -ACGGAACGACAATTTGCCCGAACA -ACGGAACGACAATTTGCCCAGTCA -ACGGAACGACAATTTGCCGATCCA -ACGGAACGACAATTTGCCACGACA -ACGGAACGACAATTTGCCAGCTCA -ACGGAACGACAATTTGCCTCACGT -ACGGAACGACAATTTGCCCGTAGT -ACGGAACGACAATTTGCCGTCAGT -ACGGAACGACAATTTGCCGAAGGT -ACGGAACGACAATTTGCCAACCGT -ACGGAACGACAATTTGCCTTGTGC -ACGGAACGACAATTTGCCCTAAGC -ACGGAACGACAATTTGCCACTAGC -ACGGAACGACAATTTGCCAGATGC -ACGGAACGACAATTTGCCTGAAGG -ACGGAACGACAATTTGCCCAATGG -ACGGAACGACAATTTGCCATGAGG -ACGGAACGACAATTTGCCAATGGG -ACGGAACGACAATTTGCCTCCTGA -ACGGAACGACAATTTGCCTAGCGA -ACGGAACGACAATTTGCCCACAGA -ACGGAACGACAATTTGCCGCAAGA -ACGGAACGACAATTTGCCGGTTGA -ACGGAACGACAATTTGCCTCCGAT -ACGGAACGACAATTTGCCTGGCAT -ACGGAACGACAATTTGCCCGAGAT -ACGGAACGACAATTTGCCTACCAC -ACGGAACGACAATTTGCCCAGAAC -ACGGAACGACAATTTGCCGTCTAC -ACGGAACGACAATTTGCCACGTAC -ACGGAACGACAATTTGCCAGTGAC -ACGGAACGACAATTTGCCCTGTAG -ACGGAACGACAATTTGCCCCTAAG -ACGGAACGACAATTTGCCGTTCAG -ACGGAACGACAATTTGCCGCATAG -ACGGAACGACAATTTGCCGACAAG -ACGGAACGACAATTTGCCAAGCAG -ACGGAACGACAATTTGCCCGTCAA -ACGGAACGACAATTTGCCGCTGAA -ACGGAACGACAATTTGCCAGTACG -ACGGAACGACAATTTGCCATCCGA -ACGGAACGACAATTTGCCATGGGA -ACGGAACGACAATTTGCCGTGCAA -ACGGAACGACAATTTGCCGAGGAA -ACGGAACGACAATTTGCCCAGGTA -ACGGAACGACAATTTGCCGACTCT -ACGGAACGACAATTTGCCAGTCCT -ACGGAACGACAATTTGCCTAAGCC -ACGGAACGACAATTTGCCATAGCC -ACGGAACGACAATTTGCCTAACCG -ACGGAACGACAATTTGCCATGCCA -ACGGAACGACAACTTGGTGGAAAC -ACGGAACGACAACTTGGTAACACC -ACGGAACGACAACTTGGTATCGAG -ACGGAACGACAACTTGGTCTCCTT -ACGGAACGACAACTTGGTCCTGTT -ACGGAACGACAACTTGGTCGGTTT -ACGGAACGACAACTTGGTGTGGTT -ACGGAACGACAACTTGGTGCCTTT -ACGGAACGACAACTTGGTGGTCTT -ACGGAACGACAACTTGGTACGCTT -ACGGAACGACAACTTGGTAGCGTT -ACGGAACGACAACTTGGTTTCGTC -ACGGAACGACAACTTGGTTCTCTC -ACGGAACGACAACTTGGTTGGATC -ACGGAACGACAACTTGGTCACTTC -ACGGAACGACAACTTGGTGTACTC -ACGGAACGACAACTTGGTGATGTC -ACGGAACGACAACTTGGTACAGTC -ACGGAACGACAACTTGGTTTGCTG -ACGGAACGACAACTTGGTTCCATG -ACGGAACGACAACTTGGTTGTGTG -ACGGAACGACAACTTGGTCTAGTG -ACGGAACGACAACTTGGTCATCTG -ACGGAACGACAACTTGGTGAGTTG -ACGGAACGACAACTTGGTAGACTG -ACGGAACGACAACTTGGTTCGGTA -ACGGAACGACAACTTGGTTGCCTA -ACGGAACGACAACTTGGTCCACTA -ACGGAACGACAACTTGGTGGAGTA -ACGGAACGACAACTTGGTTCGTCT -ACGGAACGACAACTTGGTTGCACT -ACGGAACGACAACTTGGTCTGACT -ACGGAACGACAACTTGGTCAACCT -ACGGAACGACAACTTGGTGCTACT -ACGGAACGACAACTTGGTGGATCT -ACGGAACGACAACTTGGTAAGGCT -ACGGAACGACAACTTGGTTCAACC -ACGGAACGACAACTTGGTTGTTCC -ACGGAACGACAACTTGGTATTCCC -ACGGAACGACAACTTGGTTTCTCG -ACGGAACGACAACTTGGTTAGACG -ACGGAACGACAACTTGGTGTAACG -ACGGAACGACAACTTGGTACTTCG -ACGGAACGACAACTTGGTTACGCA -ACGGAACGACAACTTGGTCTTGCA -ACGGAACGACAACTTGGTCGAACA -ACGGAACGACAACTTGGTCAGTCA -ACGGAACGACAACTTGGTGATCCA -ACGGAACGACAACTTGGTACGACA -ACGGAACGACAACTTGGTAGCTCA -ACGGAACGACAACTTGGTTCACGT -ACGGAACGACAACTTGGTCGTAGT -ACGGAACGACAACTTGGTGTCAGT -ACGGAACGACAACTTGGTGAAGGT -ACGGAACGACAACTTGGTAACCGT -ACGGAACGACAACTTGGTTTGTGC -ACGGAACGACAACTTGGTCTAAGC -ACGGAACGACAACTTGGTACTAGC -ACGGAACGACAACTTGGTAGATGC -ACGGAACGACAACTTGGTTGAAGG -ACGGAACGACAACTTGGTCAATGG -ACGGAACGACAACTTGGTATGAGG -ACGGAACGACAACTTGGTAATGGG -ACGGAACGACAACTTGGTTCCTGA -ACGGAACGACAACTTGGTTAGCGA -ACGGAACGACAACTTGGTCACAGA -ACGGAACGACAACTTGGTGCAAGA -ACGGAACGACAACTTGGTGGTTGA -ACGGAACGACAACTTGGTTCCGAT -ACGGAACGACAACTTGGTTGGCAT -ACGGAACGACAACTTGGTCGAGAT -ACGGAACGACAACTTGGTTACCAC -ACGGAACGACAACTTGGTCAGAAC -ACGGAACGACAACTTGGTGTCTAC -ACGGAACGACAACTTGGTACGTAC -ACGGAACGACAACTTGGTAGTGAC -ACGGAACGACAACTTGGTCTGTAG -ACGGAACGACAACTTGGTCCTAAG -ACGGAACGACAACTTGGTGTTCAG -ACGGAACGACAACTTGGTGCATAG -ACGGAACGACAACTTGGTGACAAG -ACGGAACGACAACTTGGTAAGCAG -ACGGAACGACAACTTGGTCGTCAA -ACGGAACGACAACTTGGTGCTGAA -ACGGAACGACAACTTGGTAGTACG -ACGGAACGACAACTTGGTATCCGA -ACGGAACGACAACTTGGTATGGGA -ACGGAACGACAACTTGGTGTGCAA -ACGGAACGACAACTTGGTGAGGAA -ACGGAACGACAACTTGGTCAGGTA -ACGGAACGACAACTTGGTGACTCT -ACGGAACGACAACTTGGTAGTCCT -ACGGAACGACAACTTGGTTAAGCC -ACGGAACGACAACTTGGTATAGCC -ACGGAACGACAACTTGGTTAACCG -ACGGAACGACAACTTGGTATGCCA -ACGGAACGACAACTTACGGGAAAC -ACGGAACGACAACTTACGAACACC -ACGGAACGACAACTTACGATCGAG -ACGGAACGACAACTTACGCTCCTT -ACGGAACGACAACTTACGCCTGTT -ACGGAACGACAACTTACGCGGTTT -ACGGAACGACAACTTACGGTGGTT -ACGGAACGACAACTTACGGCCTTT -ACGGAACGACAACTTACGGGTCTT -ACGGAACGACAACTTACGACGCTT -ACGGAACGACAACTTACGAGCGTT -ACGGAACGACAACTTACGTTCGTC -ACGGAACGACAACTTACGTCTCTC -ACGGAACGACAACTTACGTGGATC -ACGGAACGACAACTTACGCACTTC -ACGGAACGACAACTTACGGTACTC -ACGGAACGACAACTTACGGATGTC -ACGGAACGACAACTTACGACAGTC -ACGGAACGACAACTTACGTTGCTG -ACGGAACGACAACTTACGTCCATG -ACGGAACGACAACTTACGTGTGTG -ACGGAACGACAACTTACGCTAGTG -ACGGAACGACAACTTACGCATCTG -ACGGAACGACAACTTACGGAGTTG -ACGGAACGACAACTTACGAGACTG -ACGGAACGACAACTTACGTCGGTA -ACGGAACGACAACTTACGTGCCTA -ACGGAACGACAACTTACGCCACTA -ACGGAACGACAACTTACGGGAGTA -ACGGAACGACAACTTACGTCGTCT -ACGGAACGACAACTTACGTGCACT -ACGGAACGACAACTTACGCTGACT -ACGGAACGACAACTTACGCAACCT -ACGGAACGACAACTTACGGCTACT -ACGGAACGACAACTTACGGGATCT -ACGGAACGACAACTTACGAAGGCT -ACGGAACGACAACTTACGTCAACC -ACGGAACGACAACTTACGTGTTCC -ACGGAACGACAACTTACGATTCCC -ACGGAACGACAACTTACGTTCTCG -ACGGAACGACAACTTACGTAGACG -ACGGAACGACAACTTACGGTAACG -ACGGAACGACAACTTACGACTTCG -ACGGAACGACAACTTACGTACGCA -ACGGAACGACAACTTACGCTTGCA -ACGGAACGACAACTTACGCGAACA -ACGGAACGACAACTTACGCAGTCA -ACGGAACGACAACTTACGGATCCA -ACGGAACGACAACTTACGACGACA -ACGGAACGACAACTTACGAGCTCA -ACGGAACGACAACTTACGTCACGT -ACGGAACGACAACTTACGCGTAGT -ACGGAACGACAACTTACGGTCAGT -ACGGAACGACAACTTACGGAAGGT -ACGGAACGACAACTTACGAACCGT -ACGGAACGACAACTTACGTTGTGC -ACGGAACGACAACTTACGCTAAGC -ACGGAACGACAACTTACGACTAGC -ACGGAACGACAACTTACGAGATGC -ACGGAACGACAACTTACGTGAAGG -ACGGAACGACAACTTACGCAATGG -ACGGAACGACAACTTACGATGAGG -ACGGAACGACAACTTACGAATGGG -ACGGAACGACAACTTACGTCCTGA -ACGGAACGACAACTTACGTAGCGA -ACGGAACGACAACTTACGCACAGA -ACGGAACGACAACTTACGGCAAGA -ACGGAACGACAACTTACGGGTTGA -ACGGAACGACAACTTACGTCCGAT -ACGGAACGACAACTTACGTGGCAT -ACGGAACGACAACTTACGCGAGAT -ACGGAACGACAACTTACGTACCAC -ACGGAACGACAACTTACGCAGAAC -ACGGAACGACAACTTACGGTCTAC -ACGGAACGACAACTTACGACGTAC -ACGGAACGACAACTTACGAGTGAC -ACGGAACGACAACTTACGCTGTAG -ACGGAACGACAACTTACGCCTAAG -ACGGAACGACAACTTACGGTTCAG -ACGGAACGACAACTTACGGCATAG -ACGGAACGACAACTTACGGACAAG -ACGGAACGACAACTTACGAAGCAG -ACGGAACGACAACTTACGCGTCAA -ACGGAACGACAACTTACGGCTGAA -ACGGAACGACAACTTACGAGTACG -ACGGAACGACAACTTACGATCCGA -ACGGAACGACAACTTACGATGGGA -ACGGAACGACAACTTACGGTGCAA -ACGGAACGACAACTTACGGAGGAA -ACGGAACGACAACTTACGCAGGTA -ACGGAACGACAACTTACGGACTCT -ACGGAACGACAACTTACGAGTCCT -ACGGAACGACAACTTACGTAAGCC -ACGGAACGACAACTTACGATAGCC -ACGGAACGACAACTTACGTAACCG -ACGGAACGACAACTTACGATGCCA -ACGGAACGACAAGTTAGCGGAAAC -ACGGAACGACAAGTTAGCAACACC -ACGGAACGACAAGTTAGCATCGAG -ACGGAACGACAAGTTAGCCTCCTT -ACGGAACGACAAGTTAGCCCTGTT -ACGGAACGACAAGTTAGCCGGTTT -ACGGAACGACAAGTTAGCGTGGTT -ACGGAACGACAAGTTAGCGCCTTT -ACGGAACGACAAGTTAGCGGTCTT -ACGGAACGACAAGTTAGCACGCTT -ACGGAACGACAAGTTAGCAGCGTT -ACGGAACGACAAGTTAGCTTCGTC -ACGGAACGACAAGTTAGCTCTCTC -ACGGAACGACAAGTTAGCTGGATC -ACGGAACGACAAGTTAGCCACTTC -ACGGAACGACAAGTTAGCGTACTC -ACGGAACGACAAGTTAGCGATGTC -ACGGAACGACAAGTTAGCACAGTC -ACGGAACGACAAGTTAGCTTGCTG -ACGGAACGACAAGTTAGCTCCATG -ACGGAACGACAAGTTAGCTGTGTG -ACGGAACGACAAGTTAGCCTAGTG -ACGGAACGACAAGTTAGCCATCTG -ACGGAACGACAAGTTAGCGAGTTG -ACGGAACGACAAGTTAGCAGACTG -ACGGAACGACAAGTTAGCTCGGTA -ACGGAACGACAAGTTAGCTGCCTA -ACGGAACGACAAGTTAGCCCACTA -ACGGAACGACAAGTTAGCGGAGTA -ACGGAACGACAAGTTAGCTCGTCT -ACGGAACGACAAGTTAGCTGCACT -ACGGAACGACAAGTTAGCCTGACT -ACGGAACGACAAGTTAGCCAACCT -ACGGAACGACAAGTTAGCGCTACT -ACGGAACGACAAGTTAGCGGATCT -ACGGAACGACAAGTTAGCAAGGCT -ACGGAACGACAAGTTAGCTCAACC -ACGGAACGACAAGTTAGCTGTTCC -ACGGAACGACAAGTTAGCATTCCC -ACGGAACGACAAGTTAGCTTCTCG -ACGGAACGACAAGTTAGCTAGACG -ACGGAACGACAAGTTAGCGTAACG -ACGGAACGACAAGTTAGCACTTCG -ACGGAACGACAAGTTAGCTACGCA -ACGGAACGACAAGTTAGCCTTGCA -ACGGAACGACAAGTTAGCCGAACA -ACGGAACGACAAGTTAGCCAGTCA -ACGGAACGACAAGTTAGCGATCCA -ACGGAACGACAAGTTAGCACGACA -ACGGAACGACAAGTTAGCAGCTCA -ACGGAACGACAAGTTAGCTCACGT -ACGGAACGACAAGTTAGCCGTAGT -ACGGAACGACAAGTTAGCGTCAGT -ACGGAACGACAAGTTAGCGAAGGT -ACGGAACGACAAGTTAGCAACCGT -ACGGAACGACAAGTTAGCTTGTGC -ACGGAACGACAAGTTAGCCTAAGC -ACGGAACGACAAGTTAGCACTAGC -ACGGAACGACAAGTTAGCAGATGC -ACGGAACGACAAGTTAGCTGAAGG -ACGGAACGACAAGTTAGCCAATGG -ACGGAACGACAAGTTAGCATGAGG -ACGGAACGACAAGTTAGCAATGGG -ACGGAACGACAAGTTAGCTCCTGA -ACGGAACGACAAGTTAGCTAGCGA -ACGGAACGACAAGTTAGCCACAGA -ACGGAACGACAAGTTAGCGCAAGA -ACGGAACGACAAGTTAGCGGTTGA -ACGGAACGACAAGTTAGCTCCGAT -ACGGAACGACAAGTTAGCTGGCAT -ACGGAACGACAAGTTAGCCGAGAT -ACGGAACGACAAGTTAGCTACCAC -ACGGAACGACAAGTTAGCCAGAAC -ACGGAACGACAAGTTAGCGTCTAC -ACGGAACGACAAGTTAGCACGTAC -ACGGAACGACAAGTTAGCAGTGAC -ACGGAACGACAAGTTAGCCTGTAG -ACGGAACGACAAGTTAGCCCTAAG -ACGGAACGACAAGTTAGCGTTCAG -ACGGAACGACAAGTTAGCGCATAG -ACGGAACGACAAGTTAGCGACAAG -ACGGAACGACAAGTTAGCAAGCAG -ACGGAACGACAAGTTAGCCGTCAA -ACGGAACGACAAGTTAGCGCTGAA -ACGGAACGACAAGTTAGCAGTACG -ACGGAACGACAAGTTAGCATCCGA -ACGGAACGACAAGTTAGCATGGGA -ACGGAACGACAAGTTAGCGTGCAA -ACGGAACGACAAGTTAGCGAGGAA -ACGGAACGACAAGTTAGCCAGGTA -ACGGAACGACAAGTTAGCGACTCT -ACGGAACGACAAGTTAGCAGTCCT -ACGGAACGACAAGTTAGCTAAGCC -ACGGAACGACAAGTTAGCATAGCC -ACGGAACGACAAGTTAGCTAACCG -ACGGAACGACAAGTTAGCATGCCA -ACGGAACGACAAGTCTTCGGAAAC -ACGGAACGACAAGTCTTCAACACC -ACGGAACGACAAGTCTTCATCGAG -ACGGAACGACAAGTCTTCCTCCTT -ACGGAACGACAAGTCTTCCCTGTT -ACGGAACGACAAGTCTTCCGGTTT -ACGGAACGACAAGTCTTCGTGGTT -ACGGAACGACAAGTCTTCGCCTTT -ACGGAACGACAAGTCTTCGGTCTT -ACGGAACGACAAGTCTTCACGCTT -ACGGAACGACAAGTCTTCAGCGTT -ACGGAACGACAAGTCTTCTTCGTC -ACGGAACGACAAGTCTTCTCTCTC -ACGGAACGACAAGTCTTCTGGATC -ACGGAACGACAAGTCTTCCACTTC -ACGGAACGACAAGTCTTCGTACTC -ACGGAACGACAAGTCTTCGATGTC -ACGGAACGACAAGTCTTCACAGTC -ACGGAACGACAAGTCTTCTTGCTG -ACGGAACGACAAGTCTTCTCCATG -ACGGAACGACAAGTCTTCTGTGTG -ACGGAACGACAAGTCTTCCTAGTG -ACGGAACGACAAGTCTTCCATCTG -ACGGAACGACAAGTCTTCGAGTTG -ACGGAACGACAAGTCTTCAGACTG -ACGGAACGACAAGTCTTCTCGGTA -ACGGAACGACAAGTCTTCTGCCTA -ACGGAACGACAAGTCTTCCCACTA -ACGGAACGACAAGTCTTCGGAGTA -ACGGAACGACAAGTCTTCTCGTCT -ACGGAACGACAAGTCTTCTGCACT -ACGGAACGACAAGTCTTCCTGACT -ACGGAACGACAAGTCTTCCAACCT -ACGGAACGACAAGTCTTCGCTACT -ACGGAACGACAAGTCTTCGGATCT -ACGGAACGACAAGTCTTCAAGGCT -ACGGAACGACAAGTCTTCTCAACC -ACGGAACGACAAGTCTTCTGTTCC -ACGGAACGACAAGTCTTCATTCCC -ACGGAACGACAAGTCTTCTTCTCG -ACGGAACGACAAGTCTTCTAGACG -ACGGAACGACAAGTCTTCGTAACG -ACGGAACGACAAGTCTTCACTTCG -ACGGAACGACAAGTCTTCTACGCA -ACGGAACGACAAGTCTTCCTTGCA -ACGGAACGACAAGTCTTCCGAACA -ACGGAACGACAAGTCTTCCAGTCA -ACGGAACGACAAGTCTTCGATCCA -ACGGAACGACAAGTCTTCACGACA -ACGGAACGACAAGTCTTCAGCTCA -ACGGAACGACAAGTCTTCTCACGT -ACGGAACGACAAGTCTTCCGTAGT -ACGGAACGACAAGTCTTCGTCAGT -ACGGAACGACAAGTCTTCGAAGGT -ACGGAACGACAAGTCTTCAACCGT -ACGGAACGACAAGTCTTCTTGTGC -ACGGAACGACAAGTCTTCCTAAGC -ACGGAACGACAAGTCTTCACTAGC -ACGGAACGACAAGTCTTCAGATGC -ACGGAACGACAAGTCTTCTGAAGG -ACGGAACGACAAGTCTTCCAATGG -ACGGAACGACAAGTCTTCATGAGG -ACGGAACGACAAGTCTTCAATGGG -ACGGAACGACAAGTCTTCTCCTGA -ACGGAACGACAAGTCTTCTAGCGA -ACGGAACGACAAGTCTTCCACAGA -ACGGAACGACAAGTCTTCGCAAGA -ACGGAACGACAAGTCTTCGGTTGA -ACGGAACGACAAGTCTTCTCCGAT -ACGGAACGACAAGTCTTCTGGCAT -ACGGAACGACAAGTCTTCCGAGAT -ACGGAACGACAAGTCTTCTACCAC -ACGGAACGACAAGTCTTCCAGAAC -ACGGAACGACAAGTCTTCGTCTAC -ACGGAACGACAAGTCTTCACGTAC -ACGGAACGACAAGTCTTCAGTGAC -ACGGAACGACAAGTCTTCCTGTAG -ACGGAACGACAAGTCTTCCCTAAG -ACGGAACGACAAGTCTTCGTTCAG -ACGGAACGACAAGTCTTCGCATAG -ACGGAACGACAAGTCTTCGACAAG -ACGGAACGACAAGTCTTCAAGCAG -ACGGAACGACAAGTCTTCCGTCAA -ACGGAACGACAAGTCTTCGCTGAA -ACGGAACGACAAGTCTTCAGTACG -ACGGAACGACAAGTCTTCATCCGA -ACGGAACGACAAGTCTTCATGGGA -ACGGAACGACAAGTCTTCGTGCAA -ACGGAACGACAAGTCTTCGAGGAA -ACGGAACGACAAGTCTTCCAGGTA -ACGGAACGACAAGTCTTCGACTCT -ACGGAACGACAAGTCTTCAGTCCT -ACGGAACGACAAGTCTTCTAAGCC -ACGGAACGACAAGTCTTCATAGCC -ACGGAACGACAAGTCTTCTAACCG -ACGGAACGACAAGTCTTCATGCCA -ACGGAACGACAACTCTCTGGAAAC -ACGGAACGACAACTCTCTAACACC -ACGGAACGACAACTCTCTATCGAG -ACGGAACGACAACTCTCTCTCCTT -ACGGAACGACAACTCTCTCCTGTT -ACGGAACGACAACTCTCTCGGTTT -ACGGAACGACAACTCTCTGTGGTT -ACGGAACGACAACTCTCTGCCTTT -ACGGAACGACAACTCTCTGGTCTT -ACGGAACGACAACTCTCTACGCTT -ACGGAACGACAACTCTCTAGCGTT -ACGGAACGACAACTCTCTTTCGTC -ACGGAACGACAACTCTCTTCTCTC -ACGGAACGACAACTCTCTTGGATC -ACGGAACGACAACTCTCTCACTTC -ACGGAACGACAACTCTCTGTACTC -ACGGAACGACAACTCTCTGATGTC -ACGGAACGACAACTCTCTACAGTC -ACGGAACGACAACTCTCTTTGCTG -ACGGAACGACAACTCTCTTCCATG -ACGGAACGACAACTCTCTTGTGTG -ACGGAACGACAACTCTCTCTAGTG -ACGGAACGACAACTCTCTCATCTG -ACGGAACGACAACTCTCTGAGTTG -ACGGAACGACAACTCTCTAGACTG -ACGGAACGACAACTCTCTTCGGTA -ACGGAACGACAACTCTCTTGCCTA -ACGGAACGACAACTCTCTCCACTA -ACGGAACGACAACTCTCTGGAGTA -ACGGAACGACAACTCTCTTCGTCT -ACGGAACGACAACTCTCTTGCACT -ACGGAACGACAACTCTCTCTGACT -ACGGAACGACAACTCTCTCAACCT -ACGGAACGACAACTCTCTGCTACT -ACGGAACGACAACTCTCTGGATCT -ACGGAACGACAACTCTCTAAGGCT -ACGGAACGACAACTCTCTTCAACC -ACGGAACGACAACTCTCTTGTTCC -ACGGAACGACAACTCTCTATTCCC -ACGGAACGACAACTCTCTTTCTCG -ACGGAACGACAACTCTCTTAGACG -ACGGAACGACAACTCTCTGTAACG -ACGGAACGACAACTCTCTACTTCG -ACGGAACGACAACTCTCTTACGCA -ACGGAACGACAACTCTCTCTTGCA -ACGGAACGACAACTCTCTCGAACA -ACGGAACGACAACTCTCTCAGTCA -ACGGAACGACAACTCTCTGATCCA -ACGGAACGACAACTCTCTACGACA -ACGGAACGACAACTCTCTAGCTCA -ACGGAACGACAACTCTCTTCACGT -ACGGAACGACAACTCTCTCGTAGT -ACGGAACGACAACTCTCTGTCAGT -ACGGAACGACAACTCTCTGAAGGT -ACGGAACGACAACTCTCTAACCGT -ACGGAACGACAACTCTCTTTGTGC -ACGGAACGACAACTCTCTCTAAGC -ACGGAACGACAACTCTCTACTAGC -ACGGAACGACAACTCTCTAGATGC -ACGGAACGACAACTCTCTTGAAGG -ACGGAACGACAACTCTCTCAATGG -ACGGAACGACAACTCTCTATGAGG -ACGGAACGACAACTCTCTAATGGG -ACGGAACGACAACTCTCTTCCTGA -ACGGAACGACAACTCTCTTAGCGA -ACGGAACGACAACTCTCTCACAGA -ACGGAACGACAACTCTCTGCAAGA -ACGGAACGACAACTCTCTGGTTGA -ACGGAACGACAACTCTCTTCCGAT -ACGGAACGACAACTCTCTTGGCAT -ACGGAACGACAACTCTCTCGAGAT -ACGGAACGACAACTCTCTTACCAC -ACGGAACGACAACTCTCTCAGAAC -ACGGAACGACAACTCTCTGTCTAC -ACGGAACGACAACTCTCTACGTAC -ACGGAACGACAACTCTCTAGTGAC -ACGGAACGACAACTCTCTCTGTAG -ACGGAACGACAACTCTCTCCTAAG -ACGGAACGACAACTCTCTGTTCAG -ACGGAACGACAACTCTCTGCATAG -ACGGAACGACAACTCTCTGACAAG -ACGGAACGACAACTCTCTAAGCAG -ACGGAACGACAACTCTCTCGTCAA -ACGGAACGACAACTCTCTGCTGAA -ACGGAACGACAACTCTCTAGTACG -ACGGAACGACAACTCTCTATCCGA -ACGGAACGACAACTCTCTATGGGA -ACGGAACGACAACTCTCTGTGCAA -ACGGAACGACAACTCTCTGAGGAA -ACGGAACGACAACTCTCTCAGGTA -ACGGAACGACAACTCTCTGACTCT -ACGGAACGACAACTCTCTAGTCCT -ACGGAACGACAACTCTCTTAAGCC -ACGGAACGACAACTCTCTATAGCC -ACGGAACGACAACTCTCTTAACCG -ACGGAACGACAACTCTCTATGCCA -ACGGAACGACAAATCTGGGGAAAC -ACGGAACGACAAATCTGGAACACC -ACGGAACGACAAATCTGGATCGAG -ACGGAACGACAAATCTGGCTCCTT -ACGGAACGACAAATCTGGCCTGTT -ACGGAACGACAAATCTGGCGGTTT -ACGGAACGACAAATCTGGGTGGTT -ACGGAACGACAAATCTGGGCCTTT -ACGGAACGACAAATCTGGGGTCTT -ACGGAACGACAAATCTGGACGCTT -ACGGAACGACAAATCTGGAGCGTT -ACGGAACGACAAATCTGGTTCGTC -ACGGAACGACAAATCTGGTCTCTC -ACGGAACGACAAATCTGGTGGATC -ACGGAACGACAAATCTGGCACTTC -ACGGAACGACAAATCTGGGTACTC -ACGGAACGACAAATCTGGGATGTC -ACGGAACGACAAATCTGGACAGTC -ACGGAACGACAAATCTGGTTGCTG -ACGGAACGACAAATCTGGTCCATG -ACGGAACGACAAATCTGGTGTGTG -ACGGAACGACAAATCTGGCTAGTG -ACGGAACGACAAATCTGGCATCTG -ACGGAACGACAAATCTGGGAGTTG -ACGGAACGACAAATCTGGAGACTG -ACGGAACGACAAATCTGGTCGGTA -ACGGAACGACAAATCTGGTGCCTA -ACGGAACGACAAATCTGGCCACTA -ACGGAACGACAAATCTGGGGAGTA -ACGGAACGACAAATCTGGTCGTCT -ACGGAACGACAAATCTGGTGCACT -ACGGAACGACAAATCTGGCTGACT -ACGGAACGACAAATCTGGCAACCT -ACGGAACGACAAATCTGGGCTACT -ACGGAACGACAAATCTGGGGATCT -ACGGAACGACAAATCTGGAAGGCT -ACGGAACGACAAATCTGGTCAACC -ACGGAACGACAAATCTGGTGTTCC -ACGGAACGACAAATCTGGATTCCC -ACGGAACGACAAATCTGGTTCTCG -ACGGAACGACAAATCTGGTAGACG -ACGGAACGACAAATCTGGGTAACG -ACGGAACGACAAATCTGGACTTCG -ACGGAACGACAAATCTGGTACGCA -ACGGAACGACAAATCTGGCTTGCA -ACGGAACGACAAATCTGGCGAACA -ACGGAACGACAAATCTGGCAGTCA -ACGGAACGACAAATCTGGGATCCA -ACGGAACGACAAATCTGGACGACA -ACGGAACGACAAATCTGGAGCTCA -ACGGAACGACAAATCTGGTCACGT -ACGGAACGACAAATCTGGCGTAGT -ACGGAACGACAAATCTGGGTCAGT -ACGGAACGACAAATCTGGGAAGGT -ACGGAACGACAAATCTGGAACCGT -ACGGAACGACAAATCTGGTTGTGC -ACGGAACGACAAATCTGGCTAAGC -ACGGAACGACAAATCTGGACTAGC -ACGGAACGACAAATCTGGAGATGC -ACGGAACGACAAATCTGGTGAAGG -ACGGAACGACAAATCTGGCAATGG -ACGGAACGACAAATCTGGATGAGG -ACGGAACGACAAATCTGGAATGGG -ACGGAACGACAAATCTGGTCCTGA -ACGGAACGACAAATCTGGTAGCGA -ACGGAACGACAAATCTGGCACAGA -ACGGAACGACAAATCTGGGCAAGA -ACGGAACGACAAATCTGGGGTTGA -ACGGAACGACAAATCTGGTCCGAT -ACGGAACGACAAATCTGGTGGCAT -ACGGAACGACAAATCTGGCGAGAT -ACGGAACGACAAATCTGGTACCAC -ACGGAACGACAAATCTGGCAGAAC -ACGGAACGACAAATCTGGGTCTAC -ACGGAACGACAAATCTGGACGTAC -ACGGAACGACAAATCTGGAGTGAC -ACGGAACGACAAATCTGGCTGTAG -ACGGAACGACAAATCTGGCCTAAG -ACGGAACGACAAATCTGGGTTCAG -ACGGAACGACAAATCTGGGCATAG -ACGGAACGACAAATCTGGGACAAG -ACGGAACGACAAATCTGGAAGCAG -ACGGAACGACAAATCTGGCGTCAA -ACGGAACGACAAATCTGGGCTGAA -ACGGAACGACAAATCTGGAGTACG -ACGGAACGACAAATCTGGATCCGA -ACGGAACGACAAATCTGGATGGGA -ACGGAACGACAAATCTGGGTGCAA -ACGGAACGACAAATCTGGGAGGAA -ACGGAACGACAAATCTGGCAGGTA -ACGGAACGACAAATCTGGGACTCT -ACGGAACGACAAATCTGGAGTCCT -ACGGAACGACAAATCTGGTAAGCC -ACGGAACGACAAATCTGGATAGCC -ACGGAACGACAAATCTGGTAACCG -ACGGAACGACAAATCTGGATGCCA -ACGGAACGACAATTCCACGGAAAC -ACGGAACGACAATTCCACAACACC -ACGGAACGACAATTCCACATCGAG -ACGGAACGACAATTCCACCTCCTT -ACGGAACGACAATTCCACCCTGTT -ACGGAACGACAATTCCACCGGTTT -ACGGAACGACAATTCCACGTGGTT -ACGGAACGACAATTCCACGCCTTT -ACGGAACGACAATTCCACGGTCTT -ACGGAACGACAATTCCACACGCTT -ACGGAACGACAATTCCACAGCGTT -ACGGAACGACAATTCCACTTCGTC -ACGGAACGACAATTCCACTCTCTC -ACGGAACGACAATTCCACTGGATC -ACGGAACGACAATTCCACCACTTC -ACGGAACGACAATTCCACGTACTC -ACGGAACGACAATTCCACGATGTC -ACGGAACGACAATTCCACACAGTC -ACGGAACGACAATTCCACTTGCTG -ACGGAACGACAATTCCACTCCATG -ACGGAACGACAATTCCACTGTGTG -ACGGAACGACAATTCCACCTAGTG -ACGGAACGACAATTCCACCATCTG -ACGGAACGACAATTCCACGAGTTG -ACGGAACGACAATTCCACAGACTG -ACGGAACGACAATTCCACTCGGTA -ACGGAACGACAATTCCACTGCCTA -ACGGAACGACAATTCCACCCACTA -ACGGAACGACAATTCCACGGAGTA -ACGGAACGACAATTCCACTCGTCT -ACGGAACGACAATTCCACTGCACT -ACGGAACGACAATTCCACCTGACT -ACGGAACGACAATTCCACCAACCT -ACGGAACGACAATTCCACGCTACT -ACGGAACGACAATTCCACGGATCT -ACGGAACGACAATTCCACAAGGCT -ACGGAACGACAATTCCACTCAACC -ACGGAACGACAATTCCACTGTTCC -ACGGAACGACAATTCCACATTCCC -ACGGAACGACAATTCCACTTCTCG -ACGGAACGACAATTCCACTAGACG -ACGGAACGACAATTCCACGTAACG -ACGGAACGACAATTCCACACTTCG -ACGGAACGACAATTCCACTACGCA -ACGGAACGACAATTCCACCTTGCA -ACGGAACGACAATTCCACCGAACA -ACGGAACGACAATTCCACCAGTCA -ACGGAACGACAATTCCACGATCCA -ACGGAACGACAATTCCACACGACA -ACGGAACGACAATTCCACAGCTCA -ACGGAACGACAATTCCACTCACGT -ACGGAACGACAATTCCACCGTAGT -ACGGAACGACAATTCCACGTCAGT -ACGGAACGACAATTCCACGAAGGT -ACGGAACGACAATTCCACAACCGT -ACGGAACGACAATTCCACTTGTGC -ACGGAACGACAATTCCACCTAAGC -ACGGAACGACAATTCCACACTAGC -ACGGAACGACAATTCCACAGATGC -ACGGAACGACAATTCCACTGAAGG -ACGGAACGACAATTCCACCAATGG -ACGGAACGACAATTCCACATGAGG -ACGGAACGACAATTCCACAATGGG -ACGGAACGACAATTCCACTCCTGA -ACGGAACGACAATTCCACTAGCGA -ACGGAACGACAATTCCACCACAGA -ACGGAACGACAATTCCACGCAAGA -ACGGAACGACAATTCCACGGTTGA -ACGGAACGACAATTCCACTCCGAT -ACGGAACGACAATTCCACTGGCAT -ACGGAACGACAATTCCACCGAGAT -ACGGAACGACAATTCCACTACCAC -ACGGAACGACAATTCCACCAGAAC -ACGGAACGACAATTCCACGTCTAC -ACGGAACGACAATTCCACACGTAC -ACGGAACGACAATTCCACAGTGAC -ACGGAACGACAATTCCACCTGTAG -ACGGAACGACAATTCCACCCTAAG -ACGGAACGACAATTCCACGTTCAG -ACGGAACGACAATTCCACGCATAG -ACGGAACGACAATTCCACGACAAG -ACGGAACGACAATTCCACAAGCAG -ACGGAACGACAATTCCACCGTCAA -ACGGAACGACAATTCCACGCTGAA -ACGGAACGACAATTCCACAGTACG -ACGGAACGACAATTCCACATCCGA -ACGGAACGACAATTCCACATGGGA -ACGGAACGACAATTCCACGTGCAA -ACGGAACGACAATTCCACGAGGAA -ACGGAACGACAATTCCACCAGGTA -ACGGAACGACAATTCCACGACTCT -ACGGAACGACAATTCCACAGTCCT -ACGGAACGACAATTCCACTAAGCC -ACGGAACGACAATTCCACATAGCC -ACGGAACGACAATTCCACTAACCG -ACGGAACGACAATTCCACATGCCA -ACGGAACGACAACTCGTAGGAAAC -ACGGAACGACAACTCGTAAACACC -ACGGAACGACAACTCGTAATCGAG -ACGGAACGACAACTCGTACTCCTT -ACGGAACGACAACTCGTACCTGTT -ACGGAACGACAACTCGTACGGTTT -ACGGAACGACAACTCGTAGTGGTT -ACGGAACGACAACTCGTAGCCTTT -ACGGAACGACAACTCGTAGGTCTT -ACGGAACGACAACTCGTAACGCTT -ACGGAACGACAACTCGTAAGCGTT -ACGGAACGACAACTCGTATTCGTC -ACGGAACGACAACTCGTATCTCTC -ACGGAACGACAACTCGTATGGATC -ACGGAACGACAACTCGTACACTTC -ACGGAACGACAACTCGTAGTACTC -ACGGAACGACAACTCGTAGATGTC -ACGGAACGACAACTCGTAACAGTC -ACGGAACGACAACTCGTATTGCTG -ACGGAACGACAACTCGTATCCATG -ACGGAACGACAACTCGTATGTGTG -ACGGAACGACAACTCGTACTAGTG -ACGGAACGACAACTCGTACATCTG -ACGGAACGACAACTCGTAGAGTTG -ACGGAACGACAACTCGTAAGACTG -ACGGAACGACAACTCGTATCGGTA -ACGGAACGACAACTCGTATGCCTA -ACGGAACGACAACTCGTACCACTA -ACGGAACGACAACTCGTAGGAGTA -ACGGAACGACAACTCGTATCGTCT -ACGGAACGACAACTCGTATGCACT -ACGGAACGACAACTCGTACTGACT -ACGGAACGACAACTCGTACAACCT -ACGGAACGACAACTCGTAGCTACT -ACGGAACGACAACTCGTAGGATCT -ACGGAACGACAACTCGTAAAGGCT -ACGGAACGACAACTCGTATCAACC -ACGGAACGACAACTCGTATGTTCC -ACGGAACGACAACTCGTAATTCCC -ACGGAACGACAACTCGTATTCTCG -ACGGAACGACAACTCGTATAGACG -ACGGAACGACAACTCGTAGTAACG -ACGGAACGACAACTCGTAACTTCG -ACGGAACGACAACTCGTATACGCA -ACGGAACGACAACTCGTACTTGCA -ACGGAACGACAACTCGTACGAACA -ACGGAACGACAACTCGTACAGTCA -ACGGAACGACAACTCGTAGATCCA -ACGGAACGACAACTCGTAACGACA -ACGGAACGACAACTCGTAAGCTCA -ACGGAACGACAACTCGTATCACGT -ACGGAACGACAACTCGTACGTAGT -ACGGAACGACAACTCGTAGTCAGT -ACGGAACGACAACTCGTAGAAGGT -ACGGAACGACAACTCGTAAACCGT -ACGGAACGACAACTCGTATTGTGC -ACGGAACGACAACTCGTACTAAGC -ACGGAACGACAACTCGTAACTAGC -ACGGAACGACAACTCGTAAGATGC -ACGGAACGACAACTCGTATGAAGG -ACGGAACGACAACTCGTACAATGG -ACGGAACGACAACTCGTAATGAGG -ACGGAACGACAACTCGTAAATGGG -ACGGAACGACAACTCGTATCCTGA -ACGGAACGACAACTCGTATAGCGA -ACGGAACGACAACTCGTACACAGA -ACGGAACGACAACTCGTAGCAAGA -ACGGAACGACAACTCGTAGGTTGA -ACGGAACGACAACTCGTATCCGAT -ACGGAACGACAACTCGTATGGCAT -ACGGAACGACAACTCGTACGAGAT -ACGGAACGACAACTCGTATACCAC -ACGGAACGACAACTCGTACAGAAC -ACGGAACGACAACTCGTAGTCTAC -ACGGAACGACAACTCGTAACGTAC -ACGGAACGACAACTCGTAAGTGAC -ACGGAACGACAACTCGTACTGTAG -ACGGAACGACAACTCGTACCTAAG -ACGGAACGACAACTCGTAGTTCAG -ACGGAACGACAACTCGTAGCATAG -ACGGAACGACAACTCGTAGACAAG -ACGGAACGACAACTCGTAAAGCAG -ACGGAACGACAACTCGTACGTCAA -ACGGAACGACAACTCGTAGCTGAA -ACGGAACGACAACTCGTAAGTACG -ACGGAACGACAACTCGTAATCCGA -ACGGAACGACAACTCGTAATGGGA -ACGGAACGACAACTCGTAGTGCAA -ACGGAACGACAACTCGTAGAGGAA -ACGGAACGACAACTCGTACAGGTA -ACGGAACGACAACTCGTAGACTCT -ACGGAACGACAACTCGTAAGTCCT -ACGGAACGACAACTCGTATAAGCC -ACGGAACGACAACTCGTAATAGCC -ACGGAACGACAACTCGTATAACCG -ACGGAACGACAACTCGTAATGCCA -ACGGAACGACAAGTCGATGGAAAC -ACGGAACGACAAGTCGATAACACC -ACGGAACGACAAGTCGATATCGAG -ACGGAACGACAAGTCGATCTCCTT -ACGGAACGACAAGTCGATCCTGTT -ACGGAACGACAAGTCGATCGGTTT -ACGGAACGACAAGTCGATGTGGTT -ACGGAACGACAAGTCGATGCCTTT -ACGGAACGACAAGTCGATGGTCTT -ACGGAACGACAAGTCGATACGCTT -ACGGAACGACAAGTCGATAGCGTT -ACGGAACGACAAGTCGATTTCGTC -ACGGAACGACAAGTCGATTCTCTC -ACGGAACGACAAGTCGATTGGATC -ACGGAACGACAAGTCGATCACTTC -ACGGAACGACAAGTCGATGTACTC -ACGGAACGACAAGTCGATGATGTC -ACGGAACGACAAGTCGATACAGTC -ACGGAACGACAAGTCGATTTGCTG -ACGGAACGACAAGTCGATTCCATG -ACGGAACGACAAGTCGATTGTGTG -ACGGAACGACAAGTCGATCTAGTG -ACGGAACGACAAGTCGATCATCTG -ACGGAACGACAAGTCGATGAGTTG -ACGGAACGACAAGTCGATAGACTG -ACGGAACGACAAGTCGATTCGGTA -ACGGAACGACAAGTCGATTGCCTA -ACGGAACGACAAGTCGATCCACTA -ACGGAACGACAAGTCGATGGAGTA -ACGGAACGACAAGTCGATTCGTCT -ACGGAACGACAAGTCGATTGCACT -ACGGAACGACAAGTCGATCTGACT -ACGGAACGACAAGTCGATCAACCT -ACGGAACGACAAGTCGATGCTACT -ACGGAACGACAAGTCGATGGATCT -ACGGAACGACAAGTCGATAAGGCT -ACGGAACGACAAGTCGATTCAACC -ACGGAACGACAAGTCGATTGTTCC -ACGGAACGACAAGTCGATATTCCC -ACGGAACGACAAGTCGATTTCTCG -ACGGAACGACAAGTCGATTAGACG -ACGGAACGACAAGTCGATGTAACG -ACGGAACGACAAGTCGATACTTCG -ACGGAACGACAAGTCGATTACGCA -ACGGAACGACAAGTCGATCTTGCA -ACGGAACGACAAGTCGATCGAACA -ACGGAACGACAAGTCGATCAGTCA -ACGGAACGACAAGTCGATGATCCA -ACGGAACGACAAGTCGATACGACA -ACGGAACGACAAGTCGATAGCTCA -ACGGAACGACAAGTCGATTCACGT -ACGGAACGACAAGTCGATCGTAGT -ACGGAACGACAAGTCGATGTCAGT -ACGGAACGACAAGTCGATGAAGGT -ACGGAACGACAAGTCGATAACCGT -ACGGAACGACAAGTCGATTTGTGC -ACGGAACGACAAGTCGATCTAAGC -ACGGAACGACAAGTCGATACTAGC -ACGGAACGACAAGTCGATAGATGC -ACGGAACGACAAGTCGATTGAAGG -ACGGAACGACAAGTCGATCAATGG -ACGGAACGACAAGTCGATATGAGG -ACGGAACGACAAGTCGATAATGGG -ACGGAACGACAAGTCGATTCCTGA -ACGGAACGACAAGTCGATTAGCGA -ACGGAACGACAAGTCGATCACAGA -ACGGAACGACAAGTCGATGCAAGA -ACGGAACGACAAGTCGATGGTTGA -ACGGAACGACAAGTCGATTCCGAT -ACGGAACGACAAGTCGATTGGCAT -ACGGAACGACAAGTCGATCGAGAT -ACGGAACGACAAGTCGATTACCAC -ACGGAACGACAAGTCGATCAGAAC -ACGGAACGACAAGTCGATGTCTAC -ACGGAACGACAAGTCGATACGTAC -ACGGAACGACAAGTCGATAGTGAC -ACGGAACGACAAGTCGATCTGTAG -ACGGAACGACAAGTCGATCCTAAG -ACGGAACGACAAGTCGATGTTCAG -ACGGAACGACAAGTCGATGCATAG -ACGGAACGACAAGTCGATGACAAG -ACGGAACGACAAGTCGATAAGCAG -ACGGAACGACAAGTCGATCGTCAA -ACGGAACGACAAGTCGATGCTGAA -ACGGAACGACAAGTCGATAGTACG -ACGGAACGACAAGTCGATATCCGA -ACGGAACGACAAGTCGATATGGGA -ACGGAACGACAAGTCGATGTGCAA -ACGGAACGACAAGTCGATGAGGAA -ACGGAACGACAAGTCGATCAGGTA -ACGGAACGACAAGTCGATGACTCT -ACGGAACGACAAGTCGATAGTCCT -ACGGAACGACAAGTCGATTAAGCC -ACGGAACGACAAGTCGATATAGCC -ACGGAACGACAAGTCGATTAACCG -ACGGAACGACAAGTCGATATGCCA -ACGGAACGACAAGTCACAGGAAAC -ACGGAACGACAAGTCACAAACACC -ACGGAACGACAAGTCACAATCGAG -ACGGAACGACAAGTCACACTCCTT -ACGGAACGACAAGTCACACCTGTT -ACGGAACGACAAGTCACACGGTTT -ACGGAACGACAAGTCACAGTGGTT -ACGGAACGACAAGTCACAGCCTTT -ACGGAACGACAAGTCACAGGTCTT -ACGGAACGACAAGTCACAACGCTT -ACGGAACGACAAGTCACAAGCGTT -ACGGAACGACAAGTCACATTCGTC -ACGGAACGACAAGTCACATCTCTC -ACGGAACGACAAGTCACATGGATC -ACGGAACGACAAGTCACACACTTC -ACGGAACGACAAGTCACAGTACTC -ACGGAACGACAAGTCACAGATGTC -ACGGAACGACAAGTCACAACAGTC -ACGGAACGACAAGTCACATTGCTG -ACGGAACGACAAGTCACATCCATG -ACGGAACGACAAGTCACATGTGTG -ACGGAACGACAAGTCACACTAGTG -ACGGAACGACAAGTCACACATCTG -ACGGAACGACAAGTCACAGAGTTG -ACGGAACGACAAGTCACAAGACTG -ACGGAACGACAAGTCACATCGGTA -ACGGAACGACAAGTCACATGCCTA -ACGGAACGACAAGTCACACCACTA -ACGGAACGACAAGTCACAGGAGTA -ACGGAACGACAAGTCACATCGTCT -ACGGAACGACAAGTCACATGCACT -ACGGAACGACAAGTCACACTGACT -ACGGAACGACAAGTCACACAACCT -ACGGAACGACAAGTCACAGCTACT -ACGGAACGACAAGTCACAGGATCT -ACGGAACGACAAGTCACAAAGGCT -ACGGAACGACAAGTCACATCAACC -ACGGAACGACAAGTCACATGTTCC -ACGGAACGACAAGTCACAATTCCC -ACGGAACGACAAGTCACATTCTCG -ACGGAACGACAAGTCACATAGACG -ACGGAACGACAAGTCACAGTAACG -ACGGAACGACAAGTCACAACTTCG -ACGGAACGACAAGTCACATACGCA -ACGGAACGACAAGTCACACTTGCA -ACGGAACGACAAGTCACACGAACA -ACGGAACGACAAGTCACACAGTCA -ACGGAACGACAAGTCACAGATCCA -ACGGAACGACAAGTCACAACGACA -ACGGAACGACAAGTCACAAGCTCA -ACGGAACGACAAGTCACATCACGT -ACGGAACGACAAGTCACACGTAGT -ACGGAACGACAAGTCACAGTCAGT -ACGGAACGACAAGTCACAGAAGGT -ACGGAACGACAAGTCACAAACCGT -ACGGAACGACAAGTCACATTGTGC -ACGGAACGACAAGTCACACTAAGC -ACGGAACGACAAGTCACAACTAGC -ACGGAACGACAAGTCACAAGATGC -ACGGAACGACAAGTCACATGAAGG -ACGGAACGACAAGTCACACAATGG -ACGGAACGACAAGTCACAATGAGG -ACGGAACGACAAGTCACAAATGGG -ACGGAACGACAAGTCACATCCTGA -ACGGAACGACAAGTCACATAGCGA -ACGGAACGACAAGTCACACACAGA -ACGGAACGACAAGTCACAGCAAGA -ACGGAACGACAAGTCACAGGTTGA -ACGGAACGACAAGTCACATCCGAT -ACGGAACGACAAGTCACATGGCAT -ACGGAACGACAAGTCACACGAGAT -ACGGAACGACAAGTCACATACCAC -ACGGAACGACAAGTCACACAGAAC -ACGGAACGACAAGTCACAGTCTAC -ACGGAACGACAAGTCACAACGTAC -ACGGAACGACAAGTCACAAGTGAC -ACGGAACGACAAGTCACACTGTAG -ACGGAACGACAAGTCACACCTAAG -ACGGAACGACAAGTCACAGTTCAG -ACGGAACGACAAGTCACAGCATAG -ACGGAACGACAAGTCACAGACAAG -ACGGAACGACAAGTCACAAAGCAG -ACGGAACGACAAGTCACACGTCAA -ACGGAACGACAAGTCACAGCTGAA -ACGGAACGACAAGTCACAAGTACG -ACGGAACGACAAGTCACAATCCGA -ACGGAACGACAAGTCACAATGGGA -ACGGAACGACAAGTCACAGTGCAA -ACGGAACGACAAGTCACAGAGGAA -ACGGAACGACAAGTCACACAGGTA -ACGGAACGACAAGTCACAGACTCT -ACGGAACGACAAGTCACAAGTCCT -ACGGAACGACAAGTCACATAAGCC -ACGGAACGACAAGTCACAATAGCC -ACGGAACGACAAGTCACATAACCG -ACGGAACGACAAGTCACAATGCCA -ACGGAACGACAACTGTTGGGAAAC -ACGGAACGACAACTGTTGAACACC -ACGGAACGACAACTGTTGATCGAG -ACGGAACGACAACTGTTGCTCCTT -ACGGAACGACAACTGTTGCCTGTT -ACGGAACGACAACTGTTGCGGTTT -ACGGAACGACAACTGTTGGTGGTT -ACGGAACGACAACTGTTGGCCTTT -ACGGAACGACAACTGTTGGGTCTT -ACGGAACGACAACTGTTGACGCTT -ACGGAACGACAACTGTTGAGCGTT -ACGGAACGACAACTGTTGTTCGTC -ACGGAACGACAACTGTTGTCTCTC -ACGGAACGACAACTGTTGTGGATC -ACGGAACGACAACTGTTGCACTTC -ACGGAACGACAACTGTTGGTACTC -ACGGAACGACAACTGTTGGATGTC -ACGGAACGACAACTGTTGACAGTC -ACGGAACGACAACTGTTGTTGCTG -ACGGAACGACAACTGTTGTCCATG -ACGGAACGACAACTGTTGTGTGTG -ACGGAACGACAACTGTTGCTAGTG -ACGGAACGACAACTGTTGCATCTG -ACGGAACGACAACTGTTGGAGTTG -ACGGAACGACAACTGTTGAGACTG -ACGGAACGACAACTGTTGTCGGTA -ACGGAACGACAACTGTTGTGCCTA -ACGGAACGACAACTGTTGCCACTA -ACGGAACGACAACTGTTGGGAGTA -ACGGAACGACAACTGTTGTCGTCT -ACGGAACGACAACTGTTGTGCACT -ACGGAACGACAACTGTTGCTGACT -ACGGAACGACAACTGTTGCAACCT -ACGGAACGACAACTGTTGGCTACT -ACGGAACGACAACTGTTGGGATCT -ACGGAACGACAACTGTTGAAGGCT -ACGGAACGACAACTGTTGTCAACC -ACGGAACGACAACTGTTGTGTTCC -ACGGAACGACAACTGTTGATTCCC -ACGGAACGACAACTGTTGTTCTCG -ACGGAACGACAACTGTTGTAGACG -ACGGAACGACAACTGTTGGTAACG -ACGGAACGACAACTGTTGACTTCG -ACGGAACGACAACTGTTGTACGCA -ACGGAACGACAACTGTTGCTTGCA -ACGGAACGACAACTGTTGCGAACA -ACGGAACGACAACTGTTGCAGTCA -ACGGAACGACAACTGTTGGATCCA -ACGGAACGACAACTGTTGACGACA -ACGGAACGACAACTGTTGAGCTCA -ACGGAACGACAACTGTTGTCACGT -ACGGAACGACAACTGTTGCGTAGT -ACGGAACGACAACTGTTGGTCAGT -ACGGAACGACAACTGTTGGAAGGT -ACGGAACGACAACTGTTGAACCGT -ACGGAACGACAACTGTTGTTGTGC -ACGGAACGACAACTGTTGCTAAGC -ACGGAACGACAACTGTTGACTAGC -ACGGAACGACAACTGTTGAGATGC -ACGGAACGACAACTGTTGTGAAGG -ACGGAACGACAACTGTTGCAATGG -ACGGAACGACAACTGTTGATGAGG -ACGGAACGACAACTGTTGAATGGG -ACGGAACGACAACTGTTGTCCTGA -ACGGAACGACAACTGTTGTAGCGA -ACGGAACGACAACTGTTGCACAGA -ACGGAACGACAACTGTTGGCAAGA -ACGGAACGACAACTGTTGGGTTGA -ACGGAACGACAACTGTTGTCCGAT -ACGGAACGACAACTGTTGTGGCAT -ACGGAACGACAACTGTTGCGAGAT -ACGGAACGACAACTGTTGTACCAC -ACGGAACGACAACTGTTGCAGAAC -ACGGAACGACAACTGTTGGTCTAC -ACGGAACGACAACTGTTGACGTAC -ACGGAACGACAACTGTTGAGTGAC -ACGGAACGACAACTGTTGCTGTAG -ACGGAACGACAACTGTTGCCTAAG -ACGGAACGACAACTGTTGGTTCAG -ACGGAACGACAACTGTTGGCATAG -ACGGAACGACAACTGTTGGACAAG -ACGGAACGACAACTGTTGAAGCAG -ACGGAACGACAACTGTTGCGTCAA -ACGGAACGACAACTGTTGGCTGAA -ACGGAACGACAACTGTTGAGTACG -ACGGAACGACAACTGTTGATCCGA -ACGGAACGACAACTGTTGATGGGA -ACGGAACGACAACTGTTGGTGCAA -ACGGAACGACAACTGTTGGAGGAA -ACGGAACGACAACTGTTGCAGGTA -ACGGAACGACAACTGTTGGACTCT -ACGGAACGACAACTGTTGAGTCCT -ACGGAACGACAACTGTTGTAAGCC -ACGGAACGACAACTGTTGATAGCC -ACGGAACGACAACTGTTGTAACCG -ACGGAACGACAACTGTTGATGCCA -ACGGAACGACAAATGTCCGGAAAC -ACGGAACGACAAATGTCCAACACC -ACGGAACGACAAATGTCCATCGAG -ACGGAACGACAAATGTCCCTCCTT -ACGGAACGACAAATGTCCCCTGTT -ACGGAACGACAAATGTCCCGGTTT -ACGGAACGACAAATGTCCGTGGTT -ACGGAACGACAAATGTCCGCCTTT -ACGGAACGACAAATGTCCGGTCTT -ACGGAACGACAAATGTCCACGCTT -ACGGAACGACAAATGTCCAGCGTT -ACGGAACGACAAATGTCCTTCGTC -ACGGAACGACAAATGTCCTCTCTC -ACGGAACGACAAATGTCCTGGATC -ACGGAACGACAAATGTCCCACTTC -ACGGAACGACAAATGTCCGTACTC -ACGGAACGACAAATGTCCGATGTC -ACGGAACGACAAATGTCCACAGTC -ACGGAACGACAAATGTCCTTGCTG -ACGGAACGACAAATGTCCTCCATG -ACGGAACGACAAATGTCCTGTGTG -ACGGAACGACAAATGTCCCTAGTG -ACGGAACGACAAATGTCCCATCTG -ACGGAACGACAAATGTCCGAGTTG -ACGGAACGACAAATGTCCAGACTG -ACGGAACGACAAATGTCCTCGGTA -ACGGAACGACAAATGTCCTGCCTA -ACGGAACGACAAATGTCCCCACTA -ACGGAACGACAAATGTCCGGAGTA -ACGGAACGACAAATGTCCTCGTCT -ACGGAACGACAAATGTCCTGCACT -ACGGAACGACAAATGTCCCTGACT -ACGGAACGACAAATGTCCCAACCT -ACGGAACGACAAATGTCCGCTACT -ACGGAACGACAAATGTCCGGATCT -ACGGAACGACAAATGTCCAAGGCT -ACGGAACGACAAATGTCCTCAACC -ACGGAACGACAAATGTCCTGTTCC -ACGGAACGACAAATGTCCATTCCC -ACGGAACGACAAATGTCCTTCTCG -ACGGAACGACAAATGTCCTAGACG -ACGGAACGACAAATGTCCGTAACG -ACGGAACGACAAATGTCCACTTCG -ACGGAACGACAAATGTCCTACGCA -ACGGAACGACAAATGTCCCTTGCA -ACGGAACGACAAATGTCCCGAACA -ACGGAACGACAAATGTCCCAGTCA -ACGGAACGACAAATGTCCGATCCA -ACGGAACGACAAATGTCCACGACA -ACGGAACGACAAATGTCCAGCTCA -ACGGAACGACAAATGTCCTCACGT -ACGGAACGACAAATGTCCCGTAGT -ACGGAACGACAAATGTCCGTCAGT -ACGGAACGACAAATGTCCGAAGGT -ACGGAACGACAAATGTCCAACCGT -ACGGAACGACAAATGTCCTTGTGC -ACGGAACGACAAATGTCCCTAAGC -ACGGAACGACAAATGTCCACTAGC -ACGGAACGACAAATGTCCAGATGC -ACGGAACGACAAATGTCCTGAAGG -ACGGAACGACAAATGTCCCAATGG -ACGGAACGACAAATGTCCATGAGG -ACGGAACGACAAATGTCCAATGGG -ACGGAACGACAAATGTCCTCCTGA -ACGGAACGACAAATGTCCTAGCGA -ACGGAACGACAAATGTCCCACAGA -ACGGAACGACAAATGTCCGCAAGA -ACGGAACGACAAATGTCCGGTTGA -ACGGAACGACAAATGTCCTCCGAT -ACGGAACGACAAATGTCCTGGCAT -ACGGAACGACAAATGTCCCGAGAT -ACGGAACGACAAATGTCCTACCAC -ACGGAACGACAAATGTCCCAGAAC -ACGGAACGACAAATGTCCGTCTAC -ACGGAACGACAAATGTCCACGTAC -ACGGAACGACAAATGTCCAGTGAC -ACGGAACGACAAATGTCCCTGTAG -ACGGAACGACAAATGTCCCCTAAG -ACGGAACGACAAATGTCCGTTCAG -ACGGAACGACAAATGTCCGCATAG -ACGGAACGACAAATGTCCGACAAG -ACGGAACGACAAATGTCCAAGCAG -ACGGAACGACAAATGTCCCGTCAA -ACGGAACGACAAATGTCCGCTGAA -ACGGAACGACAAATGTCCAGTACG -ACGGAACGACAAATGTCCATCCGA -ACGGAACGACAAATGTCCATGGGA -ACGGAACGACAAATGTCCGTGCAA -ACGGAACGACAAATGTCCGAGGAA -ACGGAACGACAAATGTCCCAGGTA -ACGGAACGACAAATGTCCGACTCT -ACGGAACGACAAATGTCCAGTCCT -ACGGAACGACAAATGTCCTAAGCC -ACGGAACGACAAATGTCCATAGCC -ACGGAACGACAAATGTCCTAACCG -ACGGAACGACAAATGTCCATGCCA -ACGGAACGACAAGTGTGTGGAAAC -ACGGAACGACAAGTGTGTAACACC -ACGGAACGACAAGTGTGTATCGAG -ACGGAACGACAAGTGTGTCTCCTT -ACGGAACGACAAGTGTGTCCTGTT -ACGGAACGACAAGTGTGTCGGTTT -ACGGAACGACAAGTGTGTGTGGTT -ACGGAACGACAAGTGTGTGCCTTT -ACGGAACGACAAGTGTGTGGTCTT -ACGGAACGACAAGTGTGTACGCTT -ACGGAACGACAAGTGTGTAGCGTT -ACGGAACGACAAGTGTGTTTCGTC -ACGGAACGACAAGTGTGTTCTCTC -ACGGAACGACAAGTGTGTTGGATC -ACGGAACGACAAGTGTGTCACTTC -ACGGAACGACAAGTGTGTGTACTC -ACGGAACGACAAGTGTGTGATGTC -ACGGAACGACAAGTGTGTACAGTC -ACGGAACGACAAGTGTGTTTGCTG -ACGGAACGACAAGTGTGTTCCATG -ACGGAACGACAAGTGTGTTGTGTG -ACGGAACGACAAGTGTGTCTAGTG -ACGGAACGACAAGTGTGTCATCTG -ACGGAACGACAAGTGTGTGAGTTG -ACGGAACGACAAGTGTGTAGACTG -ACGGAACGACAAGTGTGTTCGGTA -ACGGAACGACAAGTGTGTTGCCTA -ACGGAACGACAAGTGTGTCCACTA -ACGGAACGACAAGTGTGTGGAGTA -ACGGAACGACAAGTGTGTTCGTCT -ACGGAACGACAAGTGTGTTGCACT -ACGGAACGACAAGTGTGTCTGACT -ACGGAACGACAAGTGTGTCAACCT -ACGGAACGACAAGTGTGTGCTACT -ACGGAACGACAAGTGTGTGGATCT -ACGGAACGACAAGTGTGTAAGGCT -ACGGAACGACAAGTGTGTTCAACC -ACGGAACGACAAGTGTGTTGTTCC -ACGGAACGACAAGTGTGTATTCCC -ACGGAACGACAAGTGTGTTTCTCG -ACGGAACGACAAGTGTGTTAGACG -ACGGAACGACAAGTGTGTGTAACG -ACGGAACGACAAGTGTGTACTTCG -ACGGAACGACAAGTGTGTTACGCA -ACGGAACGACAAGTGTGTCTTGCA -ACGGAACGACAAGTGTGTCGAACA -ACGGAACGACAAGTGTGTCAGTCA -ACGGAACGACAAGTGTGTGATCCA -ACGGAACGACAAGTGTGTACGACA -ACGGAACGACAAGTGTGTAGCTCA -ACGGAACGACAAGTGTGTTCACGT -ACGGAACGACAAGTGTGTCGTAGT -ACGGAACGACAAGTGTGTGTCAGT -ACGGAACGACAAGTGTGTGAAGGT -ACGGAACGACAAGTGTGTAACCGT -ACGGAACGACAAGTGTGTTTGTGC -ACGGAACGACAAGTGTGTCTAAGC -ACGGAACGACAAGTGTGTACTAGC -ACGGAACGACAAGTGTGTAGATGC -ACGGAACGACAAGTGTGTTGAAGG -ACGGAACGACAAGTGTGTCAATGG -ACGGAACGACAAGTGTGTATGAGG -ACGGAACGACAAGTGTGTAATGGG -ACGGAACGACAAGTGTGTTCCTGA -ACGGAACGACAAGTGTGTTAGCGA -ACGGAACGACAAGTGTGTCACAGA -ACGGAACGACAAGTGTGTGCAAGA -ACGGAACGACAAGTGTGTGGTTGA -ACGGAACGACAAGTGTGTTCCGAT -ACGGAACGACAAGTGTGTTGGCAT -ACGGAACGACAAGTGTGTCGAGAT -ACGGAACGACAAGTGTGTTACCAC -ACGGAACGACAAGTGTGTCAGAAC -ACGGAACGACAAGTGTGTGTCTAC -ACGGAACGACAAGTGTGTACGTAC -ACGGAACGACAAGTGTGTAGTGAC -ACGGAACGACAAGTGTGTCTGTAG -ACGGAACGACAAGTGTGTCCTAAG -ACGGAACGACAAGTGTGTGTTCAG -ACGGAACGACAAGTGTGTGCATAG -ACGGAACGACAAGTGTGTGACAAG -ACGGAACGACAAGTGTGTAAGCAG -ACGGAACGACAAGTGTGTCGTCAA -ACGGAACGACAAGTGTGTGCTGAA -ACGGAACGACAAGTGTGTAGTACG -ACGGAACGACAAGTGTGTATCCGA -ACGGAACGACAAGTGTGTATGGGA -ACGGAACGACAAGTGTGTGTGCAA -ACGGAACGACAAGTGTGTGAGGAA -ACGGAACGACAAGTGTGTCAGGTA -ACGGAACGACAAGTGTGTGACTCT -ACGGAACGACAAGTGTGTAGTCCT -ACGGAACGACAAGTGTGTTAAGCC -ACGGAACGACAAGTGTGTATAGCC -ACGGAACGACAAGTGTGTTAACCG -ACGGAACGACAAGTGTGTATGCCA -ACGGAACGACAAGTGCTAGGAAAC -ACGGAACGACAAGTGCTAAACACC -ACGGAACGACAAGTGCTAATCGAG -ACGGAACGACAAGTGCTACTCCTT -ACGGAACGACAAGTGCTACCTGTT -ACGGAACGACAAGTGCTACGGTTT -ACGGAACGACAAGTGCTAGTGGTT -ACGGAACGACAAGTGCTAGCCTTT -ACGGAACGACAAGTGCTAGGTCTT -ACGGAACGACAAGTGCTAACGCTT -ACGGAACGACAAGTGCTAAGCGTT -ACGGAACGACAAGTGCTATTCGTC -ACGGAACGACAAGTGCTATCTCTC -ACGGAACGACAAGTGCTATGGATC -ACGGAACGACAAGTGCTACACTTC -ACGGAACGACAAGTGCTAGTACTC -ACGGAACGACAAGTGCTAGATGTC -ACGGAACGACAAGTGCTAACAGTC -ACGGAACGACAAGTGCTATTGCTG -ACGGAACGACAAGTGCTATCCATG -ACGGAACGACAAGTGCTATGTGTG -ACGGAACGACAAGTGCTACTAGTG -ACGGAACGACAAGTGCTACATCTG -ACGGAACGACAAGTGCTAGAGTTG -ACGGAACGACAAGTGCTAAGACTG -ACGGAACGACAAGTGCTATCGGTA -ACGGAACGACAAGTGCTATGCCTA -ACGGAACGACAAGTGCTACCACTA -ACGGAACGACAAGTGCTAGGAGTA -ACGGAACGACAAGTGCTATCGTCT -ACGGAACGACAAGTGCTATGCACT -ACGGAACGACAAGTGCTACTGACT -ACGGAACGACAAGTGCTACAACCT -ACGGAACGACAAGTGCTAGCTACT -ACGGAACGACAAGTGCTAGGATCT -ACGGAACGACAAGTGCTAAAGGCT -ACGGAACGACAAGTGCTATCAACC -ACGGAACGACAAGTGCTATGTTCC -ACGGAACGACAAGTGCTAATTCCC -ACGGAACGACAAGTGCTATTCTCG -ACGGAACGACAAGTGCTATAGACG -ACGGAACGACAAGTGCTAGTAACG -ACGGAACGACAAGTGCTAACTTCG -ACGGAACGACAAGTGCTATACGCA -ACGGAACGACAAGTGCTACTTGCA -ACGGAACGACAAGTGCTACGAACA -ACGGAACGACAAGTGCTACAGTCA -ACGGAACGACAAGTGCTAGATCCA -ACGGAACGACAAGTGCTAACGACA -ACGGAACGACAAGTGCTAAGCTCA -ACGGAACGACAAGTGCTATCACGT -ACGGAACGACAAGTGCTACGTAGT -ACGGAACGACAAGTGCTAGTCAGT -ACGGAACGACAAGTGCTAGAAGGT -ACGGAACGACAAGTGCTAAACCGT -ACGGAACGACAAGTGCTATTGTGC -ACGGAACGACAAGTGCTACTAAGC -ACGGAACGACAAGTGCTAACTAGC -ACGGAACGACAAGTGCTAAGATGC -ACGGAACGACAAGTGCTATGAAGG -ACGGAACGACAAGTGCTACAATGG -ACGGAACGACAAGTGCTAATGAGG -ACGGAACGACAAGTGCTAAATGGG -ACGGAACGACAAGTGCTATCCTGA -ACGGAACGACAAGTGCTATAGCGA -ACGGAACGACAAGTGCTACACAGA -ACGGAACGACAAGTGCTAGCAAGA -ACGGAACGACAAGTGCTAGGTTGA -ACGGAACGACAAGTGCTATCCGAT -ACGGAACGACAAGTGCTATGGCAT -ACGGAACGACAAGTGCTACGAGAT -ACGGAACGACAAGTGCTATACCAC -ACGGAACGACAAGTGCTACAGAAC -ACGGAACGACAAGTGCTAGTCTAC -ACGGAACGACAAGTGCTAACGTAC -ACGGAACGACAAGTGCTAAGTGAC -ACGGAACGACAAGTGCTACTGTAG -ACGGAACGACAAGTGCTACCTAAG -ACGGAACGACAAGTGCTAGTTCAG -ACGGAACGACAAGTGCTAGCATAG -ACGGAACGACAAGTGCTAGACAAG -ACGGAACGACAAGTGCTAAAGCAG -ACGGAACGACAAGTGCTACGTCAA -ACGGAACGACAAGTGCTAGCTGAA -ACGGAACGACAAGTGCTAAGTACG -ACGGAACGACAAGTGCTAATCCGA -ACGGAACGACAAGTGCTAATGGGA -ACGGAACGACAAGTGCTAGTGCAA -ACGGAACGACAAGTGCTAGAGGAA -ACGGAACGACAAGTGCTACAGGTA -ACGGAACGACAAGTGCTAGACTCT -ACGGAACGACAAGTGCTAAGTCCT -ACGGAACGACAAGTGCTATAAGCC -ACGGAACGACAAGTGCTAATAGCC -ACGGAACGACAAGTGCTATAACCG -ACGGAACGACAAGTGCTAATGCCA -ACGGAACGACAACTGCATGGAAAC -ACGGAACGACAACTGCATAACACC -ACGGAACGACAACTGCATATCGAG -ACGGAACGACAACTGCATCTCCTT -ACGGAACGACAACTGCATCCTGTT -ACGGAACGACAACTGCATCGGTTT -ACGGAACGACAACTGCATGTGGTT -ACGGAACGACAACTGCATGCCTTT -ACGGAACGACAACTGCATGGTCTT -ACGGAACGACAACTGCATACGCTT -ACGGAACGACAACTGCATAGCGTT -ACGGAACGACAACTGCATTTCGTC -ACGGAACGACAACTGCATTCTCTC -ACGGAACGACAACTGCATTGGATC -ACGGAACGACAACTGCATCACTTC -ACGGAACGACAACTGCATGTACTC -ACGGAACGACAACTGCATGATGTC -ACGGAACGACAACTGCATACAGTC -ACGGAACGACAACTGCATTTGCTG -ACGGAACGACAACTGCATTCCATG -ACGGAACGACAACTGCATTGTGTG -ACGGAACGACAACTGCATCTAGTG -ACGGAACGACAACTGCATCATCTG -ACGGAACGACAACTGCATGAGTTG -ACGGAACGACAACTGCATAGACTG -ACGGAACGACAACTGCATTCGGTA -ACGGAACGACAACTGCATTGCCTA -ACGGAACGACAACTGCATCCACTA -ACGGAACGACAACTGCATGGAGTA -ACGGAACGACAACTGCATTCGTCT -ACGGAACGACAACTGCATTGCACT -ACGGAACGACAACTGCATCTGACT -ACGGAACGACAACTGCATCAACCT -ACGGAACGACAACTGCATGCTACT -ACGGAACGACAACTGCATGGATCT -ACGGAACGACAACTGCATAAGGCT -ACGGAACGACAACTGCATTCAACC -ACGGAACGACAACTGCATTGTTCC -ACGGAACGACAACTGCATATTCCC -ACGGAACGACAACTGCATTTCTCG -ACGGAACGACAACTGCATTAGACG -ACGGAACGACAACTGCATGTAACG -ACGGAACGACAACTGCATACTTCG -ACGGAACGACAACTGCATTACGCA -ACGGAACGACAACTGCATCTTGCA -ACGGAACGACAACTGCATCGAACA -ACGGAACGACAACTGCATCAGTCA -ACGGAACGACAACTGCATGATCCA -ACGGAACGACAACTGCATACGACA -ACGGAACGACAACTGCATAGCTCA -ACGGAACGACAACTGCATTCACGT -ACGGAACGACAACTGCATCGTAGT -ACGGAACGACAACTGCATGTCAGT -ACGGAACGACAACTGCATGAAGGT -ACGGAACGACAACTGCATAACCGT -ACGGAACGACAACTGCATTTGTGC -ACGGAACGACAACTGCATCTAAGC -ACGGAACGACAACTGCATACTAGC -ACGGAACGACAACTGCATAGATGC -ACGGAACGACAACTGCATTGAAGG -ACGGAACGACAACTGCATCAATGG -ACGGAACGACAACTGCATATGAGG -ACGGAACGACAACTGCATAATGGG -ACGGAACGACAACTGCATTCCTGA -ACGGAACGACAACTGCATTAGCGA -ACGGAACGACAACTGCATCACAGA -ACGGAACGACAACTGCATGCAAGA -ACGGAACGACAACTGCATGGTTGA -ACGGAACGACAACTGCATTCCGAT -ACGGAACGACAACTGCATTGGCAT -ACGGAACGACAACTGCATCGAGAT -ACGGAACGACAACTGCATTACCAC -ACGGAACGACAACTGCATCAGAAC -ACGGAACGACAACTGCATGTCTAC -ACGGAACGACAACTGCATACGTAC -ACGGAACGACAACTGCATAGTGAC -ACGGAACGACAACTGCATCTGTAG -ACGGAACGACAACTGCATCCTAAG -ACGGAACGACAACTGCATGTTCAG -ACGGAACGACAACTGCATGCATAG -ACGGAACGACAACTGCATGACAAG -ACGGAACGACAACTGCATAAGCAG -ACGGAACGACAACTGCATCGTCAA -ACGGAACGACAACTGCATGCTGAA -ACGGAACGACAACTGCATAGTACG -ACGGAACGACAACTGCATATCCGA -ACGGAACGACAACTGCATATGGGA -ACGGAACGACAACTGCATGTGCAA -ACGGAACGACAACTGCATGAGGAA -ACGGAACGACAACTGCATCAGGTA -ACGGAACGACAACTGCATGACTCT -ACGGAACGACAACTGCATAGTCCT -ACGGAACGACAACTGCATTAAGCC -ACGGAACGACAACTGCATATAGCC -ACGGAACGACAACTGCATTAACCG -ACGGAACGACAACTGCATATGCCA -ACGGAACGACAATTGGAGGGAAAC -ACGGAACGACAATTGGAGAACACC -ACGGAACGACAATTGGAGATCGAG -ACGGAACGACAATTGGAGCTCCTT -ACGGAACGACAATTGGAGCCTGTT -ACGGAACGACAATTGGAGCGGTTT -ACGGAACGACAATTGGAGGTGGTT -ACGGAACGACAATTGGAGGCCTTT -ACGGAACGACAATTGGAGGGTCTT -ACGGAACGACAATTGGAGACGCTT -ACGGAACGACAATTGGAGAGCGTT -ACGGAACGACAATTGGAGTTCGTC -ACGGAACGACAATTGGAGTCTCTC -ACGGAACGACAATTGGAGTGGATC -ACGGAACGACAATTGGAGCACTTC -ACGGAACGACAATTGGAGGTACTC -ACGGAACGACAATTGGAGGATGTC -ACGGAACGACAATTGGAGACAGTC -ACGGAACGACAATTGGAGTTGCTG -ACGGAACGACAATTGGAGTCCATG -ACGGAACGACAATTGGAGTGTGTG -ACGGAACGACAATTGGAGCTAGTG -ACGGAACGACAATTGGAGCATCTG -ACGGAACGACAATTGGAGGAGTTG -ACGGAACGACAATTGGAGAGACTG -ACGGAACGACAATTGGAGTCGGTA -ACGGAACGACAATTGGAGTGCCTA -ACGGAACGACAATTGGAGCCACTA -ACGGAACGACAATTGGAGGGAGTA -ACGGAACGACAATTGGAGTCGTCT -ACGGAACGACAATTGGAGTGCACT -ACGGAACGACAATTGGAGCTGACT -ACGGAACGACAATTGGAGCAACCT -ACGGAACGACAATTGGAGGCTACT -ACGGAACGACAATTGGAGGGATCT -ACGGAACGACAATTGGAGAAGGCT -ACGGAACGACAATTGGAGTCAACC -ACGGAACGACAATTGGAGTGTTCC -ACGGAACGACAATTGGAGATTCCC -ACGGAACGACAATTGGAGTTCTCG -ACGGAACGACAATTGGAGTAGACG -ACGGAACGACAATTGGAGGTAACG -ACGGAACGACAATTGGAGACTTCG -ACGGAACGACAATTGGAGTACGCA -ACGGAACGACAATTGGAGCTTGCA -ACGGAACGACAATTGGAGCGAACA -ACGGAACGACAATTGGAGCAGTCA -ACGGAACGACAATTGGAGGATCCA -ACGGAACGACAATTGGAGACGACA -ACGGAACGACAATTGGAGAGCTCA -ACGGAACGACAATTGGAGTCACGT -ACGGAACGACAATTGGAGCGTAGT -ACGGAACGACAATTGGAGGTCAGT -ACGGAACGACAATTGGAGGAAGGT -ACGGAACGACAATTGGAGAACCGT -ACGGAACGACAATTGGAGTTGTGC -ACGGAACGACAATTGGAGCTAAGC -ACGGAACGACAATTGGAGACTAGC -ACGGAACGACAATTGGAGAGATGC -ACGGAACGACAATTGGAGTGAAGG -ACGGAACGACAATTGGAGCAATGG -ACGGAACGACAATTGGAGATGAGG -ACGGAACGACAATTGGAGAATGGG -ACGGAACGACAATTGGAGTCCTGA -ACGGAACGACAATTGGAGTAGCGA -ACGGAACGACAATTGGAGCACAGA -ACGGAACGACAATTGGAGGCAAGA -ACGGAACGACAATTGGAGGGTTGA -ACGGAACGACAATTGGAGTCCGAT -ACGGAACGACAATTGGAGTGGCAT -ACGGAACGACAATTGGAGCGAGAT -ACGGAACGACAATTGGAGTACCAC -ACGGAACGACAATTGGAGCAGAAC -ACGGAACGACAATTGGAGGTCTAC -ACGGAACGACAATTGGAGACGTAC -ACGGAACGACAATTGGAGAGTGAC -ACGGAACGACAATTGGAGCTGTAG -ACGGAACGACAATTGGAGCCTAAG -ACGGAACGACAATTGGAGGTTCAG -ACGGAACGACAATTGGAGGCATAG -ACGGAACGACAATTGGAGGACAAG -ACGGAACGACAATTGGAGAAGCAG -ACGGAACGACAATTGGAGCGTCAA -ACGGAACGACAATTGGAGGCTGAA -ACGGAACGACAATTGGAGAGTACG -ACGGAACGACAATTGGAGATCCGA -ACGGAACGACAATTGGAGATGGGA -ACGGAACGACAATTGGAGGTGCAA -ACGGAACGACAATTGGAGGAGGAA -ACGGAACGACAATTGGAGCAGGTA -ACGGAACGACAATTGGAGGACTCT -ACGGAACGACAATTGGAGAGTCCT -ACGGAACGACAATTGGAGTAAGCC -ACGGAACGACAATTGGAGATAGCC -ACGGAACGACAATTGGAGTAACCG -ACGGAACGACAATTGGAGATGCCA -ACGGAACGACAACTGAGAGGAAAC -ACGGAACGACAACTGAGAAACACC -ACGGAACGACAACTGAGAATCGAG -ACGGAACGACAACTGAGACTCCTT -ACGGAACGACAACTGAGACCTGTT -ACGGAACGACAACTGAGACGGTTT -ACGGAACGACAACTGAGAGTGGTT -ACGGAACGACAACTGAGAGCCTTT -ACGGAACGACAACTGAGAGGTCTT -ACGGAACGACAACTGAGAACGCTT -ACGGAACGACAACTGAGAAGCGTT -ACGGAACGACAACTGAGATTCGTC -ACGGAACGACAACTGAGATCTCTC -ACGGAACGACAACTGAGATGGATC -ACGGAACGACAACTGAGACACTTC -ACGGAACGACAACTGAGAGTACTC -ACGGAACGACAACTGAGAGATGTC -ACGGAACGACAACTGAGAACAGTC -ACGGAACGACAACTGAGATTGCTG -ACGGAACGACAACTGAGATCCATG -ACGGAACGACAACTGAGATGTGTG -ACGGAACGACAACTGAGACTAGTG -ACGGAACGACAACTGAGACATCTG -ACGGAACGACAACTGAGAGAGTTG -ACGGAACGACAACTGAGAAGACTG -ACGGAACGACAACTGAGATCGGTA -ACGGAACGACAACTGAGATGCCTA -ACGGAACGACAACTGAGACCACTA -ACGGAACGACAACTGAGAGGAGTA -ACGGAACGACAACTGAGATCGTCT -ACGGAACGACAACTGAGATGCACT -ACGGAACGACAACTGAGACTGACT -ACGGAACGACAACTGAGACAACCT -ACGGAACGACAACTGAGAGCTACT -ACGGAACGACAACTGAGAGGATCT -ACGGAACGACAACTGAGAAAGGCT -ACGGAACGACAACTGAGATCAACC -ACGGAACGACAACTGAGATGTTCC -ACGGAACGACAACTGAGAATTCCC -ACGGAACGACAACTGAGATTCTCG -ACGGAACGACAACTGAGATAGACG -ACGGAACGACAACTGAGAGTAACG -ACGGAACGACAACTGAGAACTTCG -ACGGAACGACAACTGAGATACGCA -ACGGAACGACAACTGAGACTTGCA -ACGGAACGACAACTGAGACGAACA -ACGGAACGACAACTGAGACAGTCA -ACGGAACGACAACTGAGAGATCCA -ACGGAACGACAACTGAGAACGACA -ACGGAACGACAACTGAGAAGCTCA -ACGGAACGACAACTGAGATCACGT -ACGGAACGACAACTGAGACGTAGT -ACGGAACGACAACTGAGAGTCAGT -ACGGAACGACAACTGAGAGAAGGT -ACGGAACGACAACTGAGAAACCGT -ACGGAACGACAACTGAGATTGTGC -ACGGAACGACAACTGAGACTAAGC -ACGGAACGACAACTGAGAACTAGC -ACGGAACGACAACTGAGAAGATGC -ACGGAACGACAACTGAGATGAAGG -ACGGAACGACAACTGAGACAATGG -ACGGAACGACAACTGAGAATGAGG -ACGGAACGACAACTGAGAAATGGG -ACGGAACGACAACTGAGATCCTGA -ACGGAACGACAACTGAGATAGCGA -ACGGAACGACAACTGAGACACAGA -ACGGAACGACAACTGAGAGCAAGA -ACGGAACGACAACTGAGAGGTTGA -ACGGAACGACAACTGAGATCCGAT -ACGGAACGACAACTGAGATGGCAT -ACGGAACGACAACTGAGACGAGAT -ACGGAACGACAACTGAGATACCAC -ACGGAACGACAACTGAGACAGAAC -ACGGAACGACAACTGAGAGTCTAC -ACGGAACGACAACTGAGAACGTAC -ACGGAACGACAACTGAGAAGTGAC -ACGGAACGACAACTGAGACTGTAG -ACGGAACGACAACTGAGACCTAAG -ACGGAACGACAACTGAGAGTTCAG -ACGGAACGACAACTGAGAGCATAG -ACGGAACGACAACTGAGAGACAAG -ACGGAACGACAACTGAGAAAGCAG -ACGGAACGACAACTGAGACGTCAA -ACGGAACGACAACTGAGAGCTGAA -ACGGAACGACAACTGAGAAGTACG -ACGGAACGACAACTGAGAATCCGA -ACGGAACGACAACTGAGAATGGGA -ACGGAACGACAACTGAGAGTGCAA -ACGGAACGACAACTGAGAGAGGAA -ACGGAACGACAACTGAGACAGGTA -ACGGAACGACAACTGAGAGACTCT -ACGGAACGACAACTGAGAAGTCCT -ACGGAACGACAACTGAGATAAGCC -ACGGAACGACAACTGAGAATAGCC -ACGGAACGACAACTGAGATAACCG -ACGGAACGACAACTGAGAATGCCA -ACGGAACGACAAGTATCGGGAAAC -ACGGAACGACAAGTATCGAACACC -ACGGAACGACAAGTATCGATCGAG -ACGGAACGACAAGTATCGCTCCTT -ACGGAACGACAAGTATCGCCTGTT -ACGGAACGACAAGTATCGCGGTTT -ACGGAACGACAAGTATCGGTGGTT -ACGGAACGACAAGTATCGGCCTTT -ACGGAACGACAAGTATCGGGTCTT -ACGGAACGACAAGTATCGACGCTT -ACGGAACGACAAGTATCGAGCGTT -ACGGAACGACAAGTATCGTTCGTC -ACGGAACGACAAGTATCGTCTCTC -ACGGAACGACAAGTATCGTGGATC -ACGGAACGACAAGTATCGCACTTC -ACGGAACGACAAGTATCGGTACTC -ACGGAACGACAAGTATCGGATGTC -ACGGAACGACAAGTATCGACAGTC -ACGGAACGACAAGTATCGTTGCTG -ACGGAACGACAAGTATCGTCCATG -ACGGAACGACAAGTATCGTGTGTG -ACGGAACGACAAGTATCGCTAGTG -ACGGAACGACAAGTATCGCATCTG -ACGGAACGACAAGTATCGGAGTTG -ACGGAACGACAAGTATCGAGACTG -ACGGAACGACAAGTATCGTCGGTA -ACGGAACGACAAGTATCGTGCCTA -ACGGAACGACAAGTATCGCCACTA -ACGGAACGACAAGTATCGGGAGTA -ACGGAACGACAAGTATCGTCGTCT -ACGGAACGACAAGTATCGTGCACT -ACGGAACGACAAGTATCGCTGACT -ACGGAACGACAAGTATCGCAACCT -ACGGAACGACAAGTATCGGCTACT -ACGGAACGACAAGTATCGGGATCT -ACGGAACGACAAGTATCGAAGGCT -ACGGAACGACAAGTATCGTCAACC -ACGGAACGACAAGTATCGTGTTCC -ACGGAACGACAAGTATCGATTCCC -ACGGAACGACAAGTATCGTTCTCG -ACGGAACGACAAGTATCGTAGACG -ACGGAACGACAAGTATCGGTAACG -ACGGAACGACAAGTATCGACTTCG -ACGGAACGACAAGTATCGTACGCA -ACGGAACGACAAGTATCGCTTGCA -ACGGAACGACAAGTATCGCGAACA -ACGGAACGACAAGTATCGCAGTCA -ACGGAACGACAAGTATCGGATCCA -ACGGAACGACAAGTATCGACGACA -ACGGAACGACAAGTATCGAGCTCA -ACGGAACGACAAGTATCGTCACGT -ACGGAACGACAAGTATCGCGTAGT -ACGGAACGACAAGTATCGGTCAGT -ACGGAACGACAAGTATCGGAAGGT -ACGGAACGACAAGTATCGAACCGT -ACGGAACGACAAGTATCGTTGTGC -ACGGAACGACAAGTATCGCTAAGC -ACGGAACGACAAGTATCGACTAGC -ACGGAACGACAAGTATCGAGATGC -ACGGAACGACAAGTATCGTGAAGG -ACGGAACGACAAGTATCGCAATGG -ACGGAACGACAAGTATCGATGAGG -ACGGAACGACAAGTATCGAATGGG -ACGGAACGACAAGTATCGTCCTGA -ACGGAACGACAAGTATCGTAGCGA -ACGGAACGACAAGTATCGCACAGA -ACGGAACGACAAGTATCGGCAAGA -ACGGAACGACAAGTATCGGGTTGA -ACGGAACGACAAGTATCGTCCGAT -ACGGAACGACAAGTATCGTGGCAT -ACGGAACGACAAGTATCGCGAGAT -ACGGAACGACAAGTATCGTACCAC -ACGGAACGACAAGTATCGCAGAAC -ACGGAACGACAAGTATCGGTCTAC -ACGGAACGACAAGTATCGACGTAC -ACGGAACGACAAGTATCGAGTGAC -ACGGAACGACAAGTATCGCTGTAG -ACGGAACGACAAGTATCGCCTAAG -ACGGAACGACAAGTATCGGTTCAG -ACGGAACGACAAGTATCGGCATAG -ACGGAACGACAAGTATCGGACAAG -ACGGAACGACAAGTATCGAAGCAG -ACGGAACGACAAGTATCGCGTCAA -ACGGAACGACAAGTATCGGCTGAA -ACGGAACGACAAGTATCGAGTACG -ACGGAACGACAAGTATCGATCCGA -ACGGAACGACAAGTATCGATGGGA -ACGGAACGACAAGTATCGGTGCAA -ACGGAACGACAAGTATCGGAGGAA -ACGGAACGACAAGTATCGCAGGTA -ACGGAACGACAAGTATCGGACTCT -ACGGAACGACAAGTATCGAGTCCT -ACGGAACGACAAGTATCGTAAGCC -ACGGAACGACAAGTATCGATAGCC -ACGGAACGACAAGTATCGTAACCG -ACGGAACGACAAGTATCGATGCCA -ACGGAACGACAACTATGCGGAAAC -ACGGAACGACAACTATGCAACACC -ACGGAACGACAACTATGCATCGAG -ACGGAACGACAACTATGCCTCCTT -ACGGAACGACAACTATGCCCTGTT -ACGGAACGACAACTATGCCGGTTT -ACGGAACGACAACTATGCGTGGTT -ACGGAACGACAACTATGCGCCTTT -ACGGAACGACAACTATGCGGTCTT -ACGGAACGACAACTATGCACGCTT -ACGGAACGACAACTATGCAGCGTT -ACGGAACGACAACTATGCTTCGTC -ACGGAACGACAACTATGCTCTCTC -ACGGAACGACAACTATGCTGGATC -ACGGAACGACAACTATGCCACTTC -ACGGAACGACAACTATGCGTACTC -ACGGAACGACAACTATGCGATGTC -ACGGAACGACAACTATGCACAGTC -ACGGAACGACAACTATGCTTGCTG -ACGGAACGACAACTATGCTCCATG -ACGGAACGACAACTATGCTGTGTG -ACGGAACGACAACTATGCCTAGTG -ACGGAACGACAACTATGCCATCTG -ACGGAACGACAACTATGCGAGTTG -ACGGAACGACAACTATGCAGACTG -ACGGAACGACAACTATGCTCGGTA -ACGGAACGACAACTATGCTGCCTA -ACGGAACGACAACTATGCCCACTA -ACGGAACGACAACTATGCGGAGTA -ACGGAACGACAACTATGCTCGTCT -ACGGAACGACAACTATGCTGCACT -ACGGAACGACAACTATGCCTGACT -ACGGAACGACAACTATGCCAACCT -ACGGAACGACAACTATGCGCTACT -ACGGAACGACAACTATGCGGATCT -ACGGAACGACAACTATGCAAGGCT -ACGGAACGACAACTATGCTCAACC -ACGGAACGACAACTATGCTGTTCC -ACGGAACGACAACTATGCATTCCC -ACGGAACGACAACTATGCTTCTCG -ACGGAACGACAACTATGCTAGACG -ACGGAACGACAACTATGCGTAACG -ACGGAACGACAACTATGCACTTCG -ACGGAACGACAACTATGCTACGCA -ACGGAACGACAACTATGCCTTGCA -ACGGAACGACAACTATGCCGAACA -ACGGAACGACAACTATGCCAGTCA -ACGGAACGACAACTATGCGATCCA -ACGGAACGACAACTATGCACGACA -ACGGAACGACAACTATGCAGCTCA -ACGGAACGACAACTATGCTCACGT -ACGGAACGACAACTATGCCGTAGT -ACGGAACGACAACTATGCGTCAGT -ACGGAACGACAACTATGCGAAGGT -ACGGAACGACAACTATGCAACCGT -ACGGAACGACAACTATGCTTGTGC -ACGGAACGACAACTATGCCTAAGC -ACGGAACGACAACTATGCACTAGC -ACGGAACGACAACTATGCAGATGC -ACGGAACGACAACTATGCTGAAGG -ACGGAACGACAACTATGCCAATGG -ACGGAACGACAACTATGCATGAGG -ACGGAACGACAACTATGCAATGGG -ACGGAACGACAACTATGCTCCTGA -ACGGAACGACAACTATGCTAGCGA -ACGGAACGACAACTATGCCACAGA -ACGGAACGACAACTATGCGCAAGA -ACGGAACGACAACTATGCGGTTGA -ACGGAACGACAACTATGCTCCGAT -ACGGAACGACAACTATGCTGGCAT -ACGGAACGACAACTATGCCGAGAT -ACGGAACGACAACTATGCTACCAC -ACGGAACGACAACTATGCCAGAAC -ACGGAACGACAACTATGCGTCTAC -ACGGAACGACAACTATGCACGTAC -ACGGAACGACAACTATGCAGTGAC -ACGGAACGACAACTATGCCTGTAG -ACGGAACGACAACTATGCCCTAAG -ACGGAACGACAACTATGCGTTCAG -ACGGAACGACAACTATGCGCATAG -ACGGAACGACAACTATGCGACAAG -ACGGAACGACAACTATGCAAGCAG -ACGGAACGACAACTATGCCGTCAA -ACGGAACGACAACTATGCGCTGAA -ACGGAACGACAACTATGCAGTACG -ACGGAACGACAACTATGCATCCGA -ACGGAACGACAACTATGCATGGGA -ACGGAACGACAACTATGCGTGCAA -ACGGAACGACAACTATGCGAGGAA -ACGGAACGACAACTATGCCAGGTA -ACGGAACGACAACTATGCGACTCT -ACGGAACGACAACTATGCAGTCCT -ACGGAACGACAACTATGCTAAGCC -ACGGAACGACAACTATGCATAGCC -ACGGAACGACAACTATGCTAACCG -ACGGAACGACAACTATGCATGCCA -ACGGAACGACAACTACCAGGAAAC -ACGGAACGACAACTACCAAACACC -ACGGAACGACAACTACCAATCGAG -ACGGAACGACAACTACCACTCCTT -ACGGAACGACAACTACCACCTGTT -ACGGAACGACAACTACCACGGTTT -ACGGAACGACAACTACCAGTGGTT -ACGGAACGACAACTACCAGCCTTT -ACGGAACGACAACTACCAGGTCTT -ACGGAACGACAACTACCAACGCTT -ACGGAACGACAACTACCAAGCGTT -ACGGAACGACAACTACCATTCGTC -ACGGAACGACAACTACCATCTCTC -ACGGAACGACAACTACCATGGATC -ACGGAACGACAACTACCACACTTC -ACGGAACGACAACTACCAGTACTC -ACGGAACGACAACTACCAGATGTC -ACGGAACGACAACTACCAACAGTC -ACGGAACGACAACTACCATTGCTG -ACGGAACGACAACTACCATCCATG -ACGGAACGACAACTACCATGTGTG -ACGGAACGACAACTACCACTAGTG -ACGGAACGACAACTACCACATCTG -ACGGAACGACAACTACCAGAGTTG -ACGGAACGACAACTACCAAGACTG -ACGGAACGACAACTACCATCGGTA -ACGGAACGACAACTACCATGCCTA -ACGGAACGACAACTACCACCACTA -ACGGAACGACAACTACCAGGAGTA -ACGGAACGACAACTACCATCGTCT -ACGGAACGACAACTACCATGCACT -ACGGAACGACAACTACCACTGACT -ACGGAACGACAACTACCACAACCT -ACGGAACGACAACTACCAGCTACT -ACGGAACGACAACTACCAGGATCT -ACGGAACGACAACTACCAAAGGCT -ACGGAACGACAACTACCATCAACC -ACGGAACGACAACTACCATGTTCC -ACGGAACGACAACTACCAATTCCC -ACGGAACGACAACTACCATTCTCG -ACGGAACGACAACTACCATAGACG -ACGGAACGACAACTACCAGTAACG -ACGGAACGACAACTACCAACTTCG -ACGGAACGACAACTACCATACGCA -ACGGAACGACAACTACCACTTGCA -ACGGAACGACAACTACCACGAACA -ACGGAACGACAACTACCACAGTCA -ACGGAACGACAACTACCAGATCCA -ACGGAACGACAACTACCAACGACA -ACGGAACGACAACTACCAAGCTCA -ACGGAACGACAACTACCATCACGT -ACGGAACGACAACTACCACGTAGT -ACGGAACGACAACTACCAGTCAGT -ACGGAACGACAACTACCAGAAGGT -ACGGAACGACAACTACCAAACCGT -ACGGAACGACAACTACCATTGTGC -ACGGAACGACAACTACCACTAAGC -ACGGAACGACAACTACCAACTAGC -ACGGAACGACAACTACCAAGATGC -ACGGAACGACAACTACCATGAAGG -ACGGAACGACAACTACCACAATGG -ACGGAACGACAACTACCAATGAGG -ACGGAACGACAACTACCAAATGGG -ACGGAACGACAACTACCATCCTGA -ACGGAACGACAACTACCATAGCGA -ACGGAACGACAACTACCACACAGA -ACGGAACGACAACTACCAGCAAGA -ACGGAACGACAACTACCAGGTTGA -ACGGAACGACAACTACCATCCGAT -ACGGAACGACAACTACCATGGCAT -ACGGAACGACAACTACCACGAGAT -ACGGAACGACAACTACCATACCAC -ACGGAACGACAACTACCACAGAAC -ACGGAACGACAACTACCAGTCTAC -ACGGAACGACAACTACCAACGTAC -ACGGAACGACAACTACCAAGTGAC -ACGGAACGACAACTACCACTGTAG -ACGGAACGACAACTACCACCTAAG -ACGGAACGACAACTACCAGTTCAG -ACGGAACGACAACTACCAGCATAG -ACGGAACGACAACTACCAGACAAG -ACGGAACGACAACTACCAAAGCAG -ACGGAACGACAACTACCACGTCAA -ACGGAACGACAACTACCAGCTGAA -ACGGAACGACAACTACCAAGTACG -ACGGAACGACAACTACCAATCCGA -ACGGAACGACAACTACCAATGGGA -ACGGAACGACAACTACCAGTGCAA -ACGGAACGACAACTACCAGAGGAA -ACGGAACGACAACTACCACAGGTA -ACGGAACGACAACTACCAGACTCT -ACGGAACGACAACTACCAAGTCCT -ACGGAACGACAACTACCATAAGCC -ACGGAACGACAACTACCAATAGCC -ACGGAACGACAACTACCATAACCG -ACGGAACGACAACTACCAATGCCA -ACGGAACGACAAGTAGGAGGAAAC -ACGGAACGACAAGTAGGAAACACC -ACGGAACGACAAGTAGGAATCGAG -ACGGAACGACAAGTAGGACTCCTT -ACGGAACGACAAGTAGGACCTGTT -ACGGAACGACAAGTAGGACGGTTT -ACGGAACGACAAGTAGGAGTGGTT -ACGGAACGACAAGTAGGAGCCTTT -ACGGAACGACAAGTAGGAGGTCTT -ACGGAACGACAAGTAGGAACGCTT -ACGGAACGACAAGTAGGAAGCGTT -ACGGAACGACAAGTAGGATTCGTC -ACGGAACGACAAGTAGGATCTCTC -ACGGAACGACAAGTAGGATGGATC -ACGGAACGACAAGTAGGACACTTC -ACGGAACGACAAGTAGGAGTACTC -ACGGAACGACAAGTAGGAGATGTC -ACGGAACGACAAGTAGGAACAGTC -ACGGAACGACAAGTAGGATTGCTG -ACGGAACGACAAGTAGGATCCATG -ACGGAACGACAAGTAGGATGTGTG -ACGGAACGACAAGTAGGACTAGTG -ACGGAACGACAAGTAGGACATCTG -ACGGAACGACAAGTAGGAGAGTTG -ACGGAACGACAAGTAGGAAGACTG -ACGGAACGACAAGTAGGATCGGTA -ACGGAACGACAAGTAGGATGCCTA -ACGGAACGACAAGTAGGACCACTA -ACGGAACGACAAGTAGGAGGAGTA -ACGGAACGACAAGTAGGATCGTCT -ACGGAACGACAAGTAGGATGCACT -ACGGAACGACAAGTAGGACTGACT -ACGGAACGACAAGTAGGACAACCT -ACGGAACGACAAGTAGGAGCTACT -ACGGAACGACAAGTAGGAGGATCT -ACGGAACGACAAGTAGGAAAGGCT -ACGGAACGACAAGTAGGATCAACC -ACGGAACGACAAGTAGGATGTTCC -ACGGAACGACAAGTAGGAATTCCC -ACGGAACGACAAGTAGGATTCTCG -ACGGAACGACAAGTAGGATAGACG -ACGGAACGACAAGTAGGAGTAACG -ACGGAACGACAAGTAGGAACTTCG -ACGGAACGACAAGTAGGATACGCA -ACGGAACGACAAGTAGGACTTGCA -ACGGAACGACAAGTAGGACGAACA -ACGGAACGACAAGTAGGACAGTCA -ACGGAACGACAAGTAGGAGATCCA -ACGGAACGACAAGTAGGAACGACA -ACGGAACGACAAGTAGGAAGCTCA -ACGGAACGACAAGTAGGATCACGT -ACGGAACGACAAGTAGGACGTAGT -ACGGAACGACAAGTAGGAGTCAGT -ACGGAACGACAAGTAGGAGAAGGT -ACGGAACGACAAGTAGGAAACCGT -ACGGAACGACAAGTAGGATTGTGC -ACGGAACGACAAGTAGGACTAAGC -ACGGAACGACAAGTAGGAACTAGC -ACGGAACGACAAGTAGGAAGATGC -ACGGAACGACAAGTAGGATGAAGG -ACGGAACGACAAGTAGGACAATGG -ACGGAACGACAAGTAGGAATGAGG -ACGGAACGACAAGTAGGAAATGGG -ACGGAACGACAAGTAGGATCCTGA -ACGGAACGACAAGTAGGATAGCGA -ACGGAACGACAAGTAGGACACAGA -ACGGAACGACAAGTAGGAGCAAGA -ACGGAACGACAAGTAGGAGGTTGA -ACGGAACGACAAGTAGGATCCGAT -ACGGAACGACAAGTAGGATGGCAT -ACGGAACGACAAGTAGGACGAGAT -ACGGAACGACAAGTAGGATACCAC -ACGGAACGACAAGTAGGACAGAAC -ACGGAACGACAAGTAGGAGTCTAC -ACGGAACGACAAGTAGGAACGTAC -ACGGAACGACAAGTAGGAAGTGAC -ACGGAACGACAAGTAGGACTGTAG -ACGGAACGACAAGTAGGACCTAAG -ACGGAACGACAAGTAGGAGTTCAG -ACGGAACGACAAGTAGGAGCATAG -ACGGAACGACAAGTAGGAGACAAG -ACGGAACGACAAGTAGGAAAGCAG -ACGGAACGACAAGTAGGACGTCAA -ACGGAACGACAAGTAGGAGCTGAA -ACGGAACGACAAGTAGGAAGTACG -ACGGAACGACAAGTAGGAATCCGA -ACGGAACGACAAGTAGGAATGGGA -ACGGAACGACAAGTAGGAGTGCAA -ACGGAACGACAAGTAGGAGAGGAA -ACGGAACGACAAGTAGGACAGGTA -ACGGAACGACAAGTAGGAGACTCT -ACGGAACGACAAGTAGGAAGTCCT -ACGGAACGACAAGTAGGATAAGCC -ACGGAACGACAAGTAGGAATAGCC -ACGGAACGACAAGTAGGATAACCG -ACGGAACGACAAGTAGGAATGCCA -ACGGAACGACAATCTTCGGGAAAC -ACGGAACGACAATCTTCGAACACC -ACGGAACGACAATCTTCGATCGAG -ACGGAACGACAATCTTCGCTCCTT -ACGGAACGACAATCTTCGCCTGTT -ACGGAACGACAATCTTCGCGGTTT -ACGGAACGACAATCTTCGGTGGTT -ACGGAACGACAATCTTCGGCCTTT -ACGGAACGACAATCTTCGGGTCTT -ACGGAACGACAATCTTCGACGCTT -ACGGAACGACAATCTTCGAGCGTT -ACGGAACGACAATCTTCGTTCGTC -ACGGAACGACAATCTTCGTCTCTC -ACGGAACGACAATCTTCGTGGATC -ACGGAACGACAATCTTCGCACTTC -ACGGAACGACAATCTTCGGTACTC -ACGGAACGACAATCTTCGGATGTC -ACGGAACGACAATCTTCGACAGTC -ACGGAACGACAATCTTCGTTGCTG -ACGGAACGACAATCTTCGTCCATG -ACGGAACGACAATCTTCGTGTGTG -ACGGAACGACAATCTTCGCTAGTG -ACGGAACGACAATCTTCGCATCTG -ACGGAACGACAATCTTCGGAGTTG -ACGGAACGACAATCTTCGAGACTG -ACGGAACGACAATCTTCGTCGGTA -ACGGAACGACAATCTTCGTGCCTA -ACGGAACGACAATCTTCGCCACTA -ACGGAACGACAATCTTCGGGAGTA -ACGGAACGACAATCTTCGTCGTCT -ACGGAACGACAATCTTCGTGCACT -ACGGAACGACAATCTTCGCTGACT -ACGGAACGACAATCTTCGCAACCT -ACGGAACGACAATCTTCGGCTACT -ACGGAACGACAATCTTCGGGATCT -ACGGAACGACAATCTTCGAAGGCT -ACGGAACGACAATCTTCGTCAACC -ACGGAACGACAATCTTCGTGTTCC -ACGGAACGACAATCTTCGATTCCC -ACGGAACGACAATCTTCGTTCTCG -ACGGAACGACAATCTTCGTAGACG -ACGGAACGACAATCTTCGGTAACG -ACGGAACGACAATCTTCGACTTCG -ACGGAACGACAATCTTCGTACGCA -ACGGAACGACAATCTTCGCTTGCA -ACGGAACGACAATCTTCGCGAACA -ACGGAACGACAATCTTCGCAGTCA -ACGGAACGACAATCTTCGGATCCA -ACGGAACGACAATCTTCGACGACA -ACGGAACGACAATCTTCGAGCTCA -ACGGAACGACAATCTTCGTCACGT -ACGGAACGACAATCTTCGCGTAGT -ACGGAACGACAATCTTCGGTCAGT -ACGGAACGACAATCTTCGGAAGGT -ACGGAACGACAATCTTCGAACCGT -ACGGAACGACAATCTTCGTTGTGC -ACGGAACGACAATCTTCGCTAAGC -ACGGAACGACAATCTTCGACTAGC -ACGGAACGACAATCTTCGAGATGC -ACGGAACGACAATCTTCGTGAAGG -ACGGAACGACAATCTTCGCAATGG -ACGGAACGACAATCTTCGATGAGG -ACGGAACGACAATCTTCGAATGGG -ACGGAACGACAATCTTCGTCCTGA -ACGGAACGACAATCTTCGTAGCGA -ACGGAACGACAATCTTCGCACAGA -ACGGAACGACAATCTTCGGCAAGA -ACGGAACGACAATCTTCGGGTTGA -ACGGAACGACAATCTTCGTCCGAT -ACGGAACGACAATCTTCGTGGCAT -ACGGAACGACAATCTTCGCGAGAT -ACGGAACGACAATCTTCGTACCAC -ACGGAACGACAATCTTCGCAGAAC -ACGGAACGACAATCTTCGGTCTAC -ACGGAACGACAATCTTCGACGTAC -ACGGAACGACAATCTTCGAGTGAC -ACGGAACGACAATCTTCGCTGTAG -ACGGAACGACAATCTTCGCCTAAG -ACGGAACGACAATCTTCGGTTCAG -ACGGAACGACAATCTTCGGCATAG -ACGGAACGACAATCTTCGGACAAG -ACGGAACGACAATCTTCGAAGCAG -ACGGAACGACAATCTTCGCGTCAA -ACGGAACGACAATCTTCGGCTGAA -ACGGAACGACAATCTTCGAGTACG -ACGGAACGACAATCTTCGATCCGA -ACGGAACGACAATCTTCGATGGGA -ACGGAACGACAATCTTCGGTGCAA -ACGGAACGACAATCTTCGGAGGAA -ACGGAACGACAATCTTCGCAGGTA -ACGGAACGACAATCTTCGGACTCT -ACGGAACGACAATCTTCGAGTCCT -ACGGAACGACAATCTTCGTAAGCC -ACGGAACGACAATCTTCGATAGCC -ACGGAACGACAATCTTCGTAACCG -ACGGAACGACAATCTTCGATGCCA -ACGGAACGACAAACTTGCGGAAAC -ACGGAACGACAAACTTGCAACACC -ACGGAACGACAAACTTGCATCGAG -ACGGAACGACAAACTTGCCTCCTT -ACGGAACGACAAACTTGCCCTGTT -ACGGAACGACAAACTTGCCGGTTT -ACGGAACGACAAACTTGCGTGGTT -ACGGAACGACAAACTTGCGCCTTT -ACGGAACGACAAACTTGCGGTCTT -ACGGAACGACAAACTTGCACGCTT -ACGGAACGACAAACTTGCAGCGTT -ACGGAACGACAAACTTGCTTCGTC -ACGGAACGACAAACTTGCTCTCTC -ACGGAACGACAAACTTGCTGGATC -ACGGAACGACAAACTTGCCACTTC -ACGGAACGACAAACTTGCGTACTC -ACGGAACGACAAACTTGCGATGTC -ACGGAACGACAAACTTGCACAGTC -ACGGAACGACAAACTTGCTTGCTG -ACGGAACGACAAACTTGCTCCATG -ACGGAACGACAAACTTGCTGTGTG -ACGGAACGACAAACTTGCCTAGTG -ACGGAACGACAAACTTGCCATCTG -ACGGAACGACAAACTTGCGAGTTG -ACGGAACGACAAACTTGCAGACTG -ACGGAACGACAAACTTGCTCGGTA -ACGGAACGACAAACTTGCTGCCTA -ACGGAACGACAAACTTGCCCACTA -ACGGAACGACAAACTTGCGGAGTA -ACGGAACGACAAACTTGCTCGTCT -ACGGAACGACAAACTTGCTGCACT -ACGGAACGACAAACTTGCCTGACT -ACGGAACGACAAACTTGCCAACCT -ACGGAACGACAAACTTGCGCTACT -ACGGAACGACAAACTTGCGGATCT -ACGGAACGACAAACTTGCAAGGCT -ACGGAACGACAAACTTGCTCAACC -ACGGAACGACAAACTTGCTGTTCC -ACGGAACGACAAACTTGCATTCCC -ACGGAACGACAAACTTGCTTCTCG -ACGGAACGACAAACTTGCTAGACG -ACGGAACGACAAACTTGCGTAACG -ACGGAACGACAAACTTGCACTTCG -ACGGAACGACAAACTTGCTACGCA -ACGGAACGACAAACTTGCCTTGCA -ACGGAACGACAAACTTGCCGAACA -ACGGAACGACAAACTTGCCAGTCA -ACGGAACGACAAACTTGCGATCCA -ACGGAACGACAAACTTGCACGACA -ACGGAACGACAAACTTGCAGCTCA -ACGGAACGACAAACTTGCTCACGT -ACGGAACGACAAACTTGCCGTAGT -ACGGAACGACAAACTTGCGTCAGT -ACGGAACGACAAACTTGCGAAGGT -ACGGAACGACAAACTTGCAACCGT -ACGGAACGACAAACTTGCTTGTGC -ACGGAACGACAAACTTGCCTAAGC -ACGGAACGACAAACTTGCACTAGC -ACGGAACGACAAACTTGCAGATGC -ACGGAACGACAAACTTGCTGAAGG -ACGGAACGACAAACTTGCCAATGG -ACGGAACGACAAACTTGCATGAGG -ACGGAACGACAAACTTGCAATGGG -ACGGAACGACAAACTTGCTCCTGA -ACGGAACGACAAACTTGCTAGCGA -ACGGAACGACAAACTTGCCACAGA -ACGGAACGACAAACTTGCGCAAGA -ACGGAACGACAAACTTGCGGTTGA -ACGGAACGACAAACTTGCTCCGAT -ACGGAACGACAAACTTGCTGGCAT -ACGGAACGACAAACTTGCCGAGAT -ACGGAACGACAAACTTGCTACCAC -ACGGAACGACAAACTTGCCAGAAC -ACGGAACGACAAACTTGCGTCTAC -ACGGAACGACAAACTTGCACGTAC -ACGGAACGACAAACTTGCAGTGAC -ACGGAACGACAAACTTGCCTGTAG -ACGGAACGACAAACTTGCCCTAAG -ACGGAACGACAAACTTGCGTTCAG -ACGGAACGACAAACTTGCGCATAG -ACGGAACGACAAACTTGCGACAAG -ACGGAACGACAAACTTGCAAGCAG -ACGGAACGACAAACTTGCCGTCAA -ACGGAACGACAAACTTGCGCTGAA -ACGGAACGACAAACTTGCAGTACG -ACGGAACGACAAACTTGCATCCGA -ACGGAACGACAAACTTGCATGGGA -ACGGAACGACAAACTTGCGTGCAA -ACGGAACGACAAACTTGCGAGGAA -ACGGAACGACAAACTTGCCAGGTA -ACGGAACGACAAACTTGCGACTCT -ACGGAACGACAAACTTGCAGTCCT -ACGGAACGACAAACTTGCTAAGCC -ACGGAACGACAAACTTGCATAGCC -ACGGAACGACAAACTTGCTAACCG -ACGGAACGACAAACTTGCATGCCA -ACGGAACGACAAACTCTGGGAAAC -ACGGAACGACAAACTCTGAACACC -ACGGAACGACAAACTCTGATCGAG -ACGGAACGACAAACTCTGCTCCTT -ACGGAACGACAAACTCTGCCTGTT -ACGGAACGACAAACTCTGCGGTTT -ACGGAACGACAAACTCTGGTGGTT -ACGGAACGACAAACTCTGGCCTTT -ACGGAACGACAAACTCTGGGTCTT -ACGGAACGACAAACTCTGACGCTT -ACGGAACGACAAACTCTGAGCGTT -ACGGAACGACAAACTCTGTTCGTC -ACGGAACGACAAACTCTGTCTCTC -ACGGAACGACAAACTCTGTGGATC -ACGGAACGACAAACTCTGCACTTC -ACGGAACGACAAACTCTGGTACTC -ACGGAACGACAAACTCTGGATGTC -ACGGAACGACAAACTCTGACAGTC -ACGGAACGACAAACTCTGTTGCTG -ACGGAACGACAAACTCTGTCCATG -ACGGAACGACAAACTCTGTGTGTG -ACGGAACGACAAACTCTGCTAGTG -ACGGAACGACAAACTCTGCATCTG -ACGGAACGACAAACTCTGGAGTTG -ACGGAACGACAAACTCTGAGACTG -ACGGAACGACAAACTCTGTCGGTA -ACGGAACGACAAACTCTGTGCCTA -ACGGAACGACAAACTCTGCCACTA -ACGGAACGACAAACTCTGGGAGTA -ACGGAACGACAAACTCTGTCGTCT -ACGGAACGACAAACTCTGTGCACT -ACGGAACGACAAACTCTGCTGACT -ACGGAACGACAAACTCTGCAACCT -ACGGAACGACAAACTCTGGCTACT -ACGGAACGACAAACTCTGGGATCT -ACGGAACGACAAACTCTGAAGGCT -ACGGAACGACAAACTCTGTCAACC -ACGGAACGACAAACTCTGTGTTCC -ACGGAACGACAAACTCTGATTCCC -ACGGAACGACAAACTCTGTTCTCG -ACGGAACGACAAACTCTGTAGACG -ACGGAACGACAAACTCTGGTAACG -ACGGAACGACAAACTCTGACTTCG -ACGGAACGACAAACTCTGTACGCA -ACGGAACGACAAACTCTGCTTGCA -ACGGAACGACAAACTCTGCGAACA -ACGGAACGACAAACTCTGCAGTCA -ACGGAACGACAAACTCTGGATCCA -ACGGAACGACAAACTCTGACGACA -ACGGAACGACAAACTCTGAGCTCA -ACGGAACGACAAACTCTGTCACGT -ACGGAACGACAAACTCTGCGTAGT -ACGGAACGACAAACTCTGGTCAGT -ACGGAACGACAAACTCTGGAAGGT -ACGGAACGACAAACTCTGAACCGT -ACGGAACGACAAACTCTGTTGTGC -ACGGAACGACAAACTCTGCTAAGC -ACGGAACGACAAACTCTGACTAGC -ACGGAACGACAAACTCTGAGATGC -ACGGAACGACAAACTCTGTGAAGG -ACGGAACGACAAACTCTGCAATGG -ACGGAACGACAAACTCTGATGAGG -ACGGAACGACAAACTCTGAATGGG -ACGGAACGACAAACTCTGTCCTGA -ACGGAACGACAAACTCTGTAGCGA -ACGGAACGACAAACTCTGCACAGA -ACGGAACGACAAACTCTGGCAAGA -ACGGAACGACAAACTCTGGGTTGA -ACGGAACGACAAACTCTGTCCGAT -ACGGAACGACAAACTCTGTGGCAT -ACGGAACGACAAACTCTGCGAGAT -ACGGAACGACAAACTCTGTACCAC -ACGGAACGACAAACTCTGCAGAAC -ACGGAACGACAAACTCTGGTCTAC -ACGGAACGACAAACTCTGACGTAC -ACGGAACGACAAACTCTGAGTGAC -ACGGAACGACAAACTCTGCTGTAG -ACGGAACGACAAACTCTGCCTAAG -ACGGAACGACAAACTCTGGTTCAG -ACGGAACGACAAACTCTGGCATAG -ACGGAACGACAAACTCTGGACAAG -ACGGAACGACAAACTCTGAAGCAG -ACGGAACGACAAACTCTGCGTCAA -ACGGAACGACAAACTCTGGCTGAA -ACGGAACGACAAACTCTGAGTACG -ACGGAACGACAAACTCTGATCCGA -ACGGAACGACAAACTCTGATGGGA -ACGGAACGACAAACTCTGGTGCAA -ACGGAACGACAAACTCTGGAGGAA -ACGGAACGACAAACTCTGCAGGTA -ACGGAACGACAAACTCTGGACTCT -ACGGAACGACAAACTCTGAGTCCT -ACGGAACGACAAACTCTGTAAGCC -ACGGAACGACAAACTCTGATAGCC -ACGGAACGACAAACTCTGTAACCG -ACGGAACGACAAACTCTGATGCCA -ACGGAACGACAACCTCAAGGAAAC -ACGGAACGACAACCTCAAAACACC -ACGGAACGACAACCTCAAATCGAG -ACGGAACGACAACCTCAACTCCTT -ACGGAACGACAACCTCAACCTGTT -ACGGAACGACAACCTCAACGGTTT -ACGGAACGACAACCTCAAGTGGTT -ACGGAACGACAACCTCAAGCCTTT -ACGGAACGACAACCTCAAGGTCTT -ACGGAACGACAACCTCAAACGCTT -ACGGAACGACAACCTCAAAGCGTT -ACGGAACGACAACCTCAATTCGTC -ACGGAACGACAACCTCAATCTCTC -ACGGAACGACAACCTCAATGGATC -ACGGAACGACAACCTCAACACTTC -ACGGAACGACAACCTCAAGTACTC -ACGGAACGACAACCTCAAGATGTC -ACGGAACGACAACCTCAAACAGTC -ACGGAACGACAACCTCAATTGCTG -ACGGAACGACAACCTCAATCCATG -ACGGAACGACAACCTCAATGTGTG -ACGGAACGACAACCTCAACTAGTG -ACGGAACGACAACCTCAACATCTG -ACGGAACGACAACCTCAAGAGTTG -ACGGAACGACAACCTCAAAGACTG -ACGGAACGACAACCTCAATCGGTA -ACGGAACGACAACCTCAATGCCTA -ACGGAACGACAACCTCAACCACTA -ACGGAACGACAACCTCAAGGAGTA -ACGGAACGACAACCTCAATCGTCT -ACGGAACGACAACCTCAATGCACT -ACGGAACGACAACCTCAACTGACT -ACGGAACGACAACCTCAACAACCT -ACGGAACGACAACCTCAAGCTACT -ACGGAACGACAACCTCAAGGATCT -ACGGAACGACAACCTCAAAAGGCT -ACGGAACGACAACCTCAATCAACC -ACGGAACGACAACCTCAATGTTCC -ACGGAACGACAACCTCAAATTCCC -ACGGAACGACAACCTCAATTCTCG -ACGGAACGACAACCTCAATAGACG -ACGGAACGACAACCTCAAGTAACG -ACGGAACGACAACCTCAAACTTCG -ACGGAACGACAACCTCAATACGCA -ACGGAACGACAACCTCAACTTGCA -ACGGAACGACAACCTCAACGAACA -ACGGAACGACAACCTCAACAGTCA -ACGGAACGACAACCTCAAGATCCA -ACGGAACGACAACCTCAAACGACA -ACGGAACGACAACCTCAAAGCTCA -ACGGAACGACAACCTCAATCACGT -ACGGAACGACAACCTCAACGTAGT -ACGGAACGACAACCTCAAGTCAGT -ACGGAACGACAACCTCAAGAAGGT -ACGGAACGACAACCTCAAAACCGT -ACGGAACGACAACCTCAATTGTGC -ACGGAACGACAACCTCAACTAAGC -ACGGAACGACAACCTCAAACTAGC -ACGGAACGACAACCTCAAAGATGC -ACGGAACGACAACCTCAATGAAGG -ACGGAACGACAACCTCAACAATGG -ACGGAACGACAACCTCAAATGAGG -ACGGAACGACAACCTCAAAATGGG -ACGGAACGACAACCTCAATCCTGA -ACGGAACGACAACCTCAATAGCGA -ACGGAACGACAACCTCAACACAGA -ACGGAACGACAACCTCAAGCAAGA -ACGGAACGACAACCTCAAGGTTGA -ACGGAACGACAACCTCAATCCGAT -ACGGAACGACAACCTCAATGGCAT -ACGGAACGACAACCTCAACGAGAT -ACGGAACGACAACCTCAATACCAC -ACGGAACGACAACCTCAACAGAAC -ACGGAACGACAACCTCAAGTCTAC -ACGGAACGACAACCTCAAACGTAC -ACGGAACGACAACCTCAAAGTGAC -ACGGAACGACAACCTCAACTGTAG -ACGGAACGACAACCTCAACCTAAG -ACGGAACGACAACCTCAAGTTCAG -ACGGAACGACAACCTCAAGCATAG -ACGGAACGACAACCTCAAGACAAG -ACGGAACGACAACCTCAAAAGCAG -ACGGAACGACAACCTCAACGTCAA -ACGGAACGACAACCTCAAGCTGAA -ACGGAACGACAACCTCAAAGTACG -ACGGAACGACAACCTCAAATCCGA -ACGGAACGACAACCTCAAATGGGA -ACGGAACGACAACCTCAAGTGCAA -ACGGAACGACAACCTCAAGAGGAA -ACGGAACGACAACCTCAACAGGTA -ACGGAACGACAACCTCAAGACTCT -ACGGAACGACAACCTCAAAGTCCT -ACGGAACGACAACCTCAATAAGCC -ACGGAACGACAACCTCAAATAGCC -ACGGAACGACAACCTCAATAACCG -ACGGAACGACAACCTCAAATGCCA -ACGGAACGACAAACTGCTGGAAAC -ACGGAACGACAAACTGCTAACACC -ACGGAACGACAAACTGCTATCGAG -ACGGAACGACAAACTGCTCTCCTT -ACGGAACGACAAACTGCTCCTGTT -ACGGAACGACAAACTGCTCGGTTT -ACGGAACGACAAACTGCTGTGGTT -ACGGAACGACAAACTGCTGCCTTT -ACGGAACGACAAACTGCTGGTCTT -ACGGAACGACAAACTGCTACGCTT -ACGGAACGACAAACTGCTAGCGTT -ACGGAACGACAAACTGCTTTCGTC -ACGGAACGACAAACTGCTTCTCTC -ACGGAACGACAAACTGCTTGGATC -ACGGAACGACAAACTGCTCACTTC -ACGGAACGACAAACTGCTGTACTC -ACGGAACGACAAACTGCTGATGTC -ACGGAACGACAAACTGCTACAGTC -ACGGAACGACAAACTGCTTTGCTG -ACGGAACGACAAACTGCTTCCATG -ACGGAACGACAAACTGCTTGTGTG -ACGGAACGACAAACTGCTCTAGTG -ACGGAACGACAAACTGCTCATCTG -ACGGAACGACAAACTGCTGAGTTG -ACGGAACGACAAACTGCTAGACTG -ACGGAACGACAAACTGCTTCGGTA -ACGGAACGACAAACTGCTTGCCTA -ACGGAACGACAAACTGCTCCACTA -ACGGAACGACAAACTGCTGGAGTA -ACGGAACGACAAACTGCTTCGTCT -ACGGAACGACAAACTGCTTGCACT -ACGGAACGACAAACTGCTCTGACT -ACGGAACGACAAACTGCTCAACCT -ACGGAACGACAAACTGCTGCTACT -ACGGAACGACAAACTGCTGGATCT -ACGGAACGACAAACTGCTAAGGCT -ACGGAACGACAAACTGCTTCAACC -ACGGAACGACAAACTGCTTGTTCC -ACGGAACGACAAACTGCTATTCCC -ACGGAACGACAAACTGCTTTCTCG -ACGGAACGACAAACTGCTTAGACG -ACGGAACGACAAACTGCTGTAACG -ACGGAACGACAAACTGCTACTTCG -ACGGAACGACAAACTGCTTACGCA -ACGGAACGACAAACTGCTCTTGCA -ACGGAACGACAAACTGCTCGAACA -ACGGAACGACAAACTGCTCAGTCA -ACGGAACGACAAACTGCTGATCCA -ACGGAACGACAAACTGCTACGACA -ACGGAACGACAAACTGCTAGCTCA -ACGGAACGACAAACTGCTTCACGT -ACGGAACGACAAACTGCTCGTAGT -ACGGAACGACAAACTGCTGTCAGT -ACGGAACGACAAACTGCTGAAGGT -ACGGAACGACAAACTGCTAACCGT -ACGGAACGACAAACTGCTTTGTGC -ACGGAACGACAAACTGCTCTAAGC -ACGGAACGACAAACTGCTACTAGC -ACGGAACGACAAACTGCTAGATGC -ACGGAACGACAAACTGCTTGAAGG -ACGGAACGACAAACTGCTCAATGG -ACGGAACGACAAACTGCTATGAGG -ACGGAACGACAAACTGCTAATGGG -ACGGAACGACAAACTGCTTCCTGA -ACGGAACGACAAACTGCTTAGCGA -ACGGAACGACAAACTGCTCACAGA -ACGGAACGACAAACTGCTGCAAGA -ACGGAACGACAAACTGCTGGTTGA -ACGGAACGACAAACTGCTTCCGAT -ACGGAACGACAAACTGCTTGGCAT -ACGGAACGACAAACTGCTCGAGAT -ACGGAACGACAAACTGCTTACCAC -ACGGAACGACAAACTGCTCAGAAC -ACGGAACGACAAACTGCTGTCTAC -ACGGAACGACAAACTGCTACGTAC -ACGGAACGACAAACTGCTAGTGAC -ACGGAACGACAAACTGCTCTGTAG -ACGGAACGACAAACTGCTCCTAAG -ACGGAACGACAAACTGCTGTTCAG -ACGGAACGACAAACTGCTGCATAG -ACGGAACGACAAACTGCTGACAAG -ACGGAACGACAAACTGCTAAGCAG -ACGGAACGACAAACTGCTCGTCAA -ACGGAACGACAAACTGCTGCTGAA -ACGGAACGACAAACTGCTAGTACG -ACGGAACGACAAACTGCTATCCGA -ACGGAACGACAAACTGCTATGGGA -ACGGAACGACAAACTGCTGTGCAA -ACGGAACGACAAACTGCTGAGGAA -ACGGAACGACAAACTGCTCAGGTA -ACGGAACGACAAACTGCTGACTCT -ACGGAACGACAAACTGCTAGTCCT -ACGGAACGACAAACTGCTTAAGCC -ACGGAACGACAAACTGCTATAGCC -ACGGAACGACAAACTGCTTAACCG -ACGGAACGACAAACTGCTATGCCA -ACGGAACGACAATCTGGAGGAAAC -ACGGAACGACAATCTGGAAACACC -ACGGAACGACAATCTGGAATCGAG -ACGGAACGACAATCTGGACTCCTT -ACGGAACGACAATCTGGACCTGTT -ACGGAACGACAATCTGGACGGTTT -ACGGAACGACAATCTGGAGTGGTT -ACGGAACGACAATCTGGAGCCTTT -ACGGAACGACAATCTGGAGGTCTT -ACGGAACGACAATCTGGAACGCTT -ACGGAACGACAATCTGGAAGCGTT -ACGGAACGACAATCTGGATTCGTC -ACGGAACGACAATCTGGATCTCTC -ACGGAACGACAATCTGGATGGATC -ACGGAACGACAATCTGGACACTTC -ACGGAACGACAATCTGGAGTACTC -ACGGAACGACAATCTGGAGATGTC -ACGGAACGACAATCTGGAACAGTC -ACGGAACGACAATCTGGATTGCTG -ACGGAACGACAATCTGGATCCATG -ACGGAACGACAATCTGGATGTGTG -ACGGAACGACAATCTGGACTAGTG -ACGGAACGACAATCTGGACATCTG -ACGGAACGACAATCTGGAGAGTTG -ACGGAACGACAATCTGGAAGACTG -ACGGAACGACAATCTGGATCGGTA -ACGGAACGACAATCTGGATGCCTA -ACGGAACGACAATCTGGACCACTA -ACGGAACGACAATCTGGAGGAGTA -ACGGAACGACAATCTGGATCGTCT -ACGGAACGACAATCTGGATGCACT -ACGGAACGACAATCTGGACTGACT -ACGGAACGACAATCTGGACAACCT -ACGGAACGACAATCTGGAGCTACT -ACGGAACGACAATCTGGAGGATCT -ACGGAACGACAATCTGGAAAGGCT -ACGGAACGACAATCTGGATCAACC -ACGGAACGACAATCTGGATGTTCC -ACGGAACGACAATCTGGAATTCCC -ACGGAACGACAATCTGGATTCTCG -ACGGAACGACAATCTGGATAGACG -ACGGAACGACAATCTGGAGTAACG -ACGGAACGACAATCTGGAACTTCG -ACGGAACGACAATCTGGATACGCA -ACGGAACGACAATCTGGACTTGCA -ACGGAACGACAATCTGGACGAACA -ACGGAACGACAATCTGGACAGTCA -ACGGAACGACAATCTGGAGATCCA -ACGGAACGACAATCTGGAACGACA -ACGGAACGACAATCTGGAAGCTCA -ACGGAACGACAATCTGGATCACGT -ACGGAACGACAATCTGGACGTAGT -ACGGAACGACAATCTGGAGTCAGT -ACGGAACGACAATCTGGAGAAGGT -ACGGAACGACAATCTGGAAACCGT -ACGGAACGACAATCTGGATTGTGC -ACGGAACGACAATCTGGACTAAGC -ACGGAACGACAATCTGGAACTAGC -ACGGAACGACAATCTGGAAGATGC -ACGGAACGACAATCTGGATGAAGG -ACGGAACGACAATCTGGACAATGG -ACGGAACGACAATCTGGAATGAGG -ACGGAACGACAATCTGGAAATGGG -ACGGAACGACAATCTGGATCCTGA -ACGGAACGACAATCTGGATAGCGA -ACGGAACGACAATCTGGACACAGA -ACGGAACGACAATCTGGAGCAAGA -ACGGAACGACAATCTGGAGGTTGA -ACGGAACGACAATCTGGATCCGAT -ACGGAACGACAATCTGGATGGCAT -ACGGAACGACAATCTGGACGAGAT -ACGGAACGACAATCTGGATACCAC -ACGGAACGACAATCTGGACAGAAC -ACGGAACGACAATCTGGAGTCTAC -ACGGAACGACAATCTGGAACGTAC -ACGGAACGACAATCTGGAAGTGAC -ACGGAACGACAATCTGGACTGTAG -ACGGAACGACAATCTGGACCTAAG -ACGGAACGACAATCTGGAGTTCAG -ACGGAACGACAATCTGGAGCATAG -ACGGAACGACAATCTGGAGACAAG -ACGGAACGACAATCTGGAAAGCAG -ACGGAACGACAATCTGGACGTCAA -ACGGAACGACAATCTGGAGCTGAA -ACGGAACGACAATCTGGAAGTACG -ACGGAACGACAATCTGGAATCCGA -ACGGAACGACAATCTGGAATGGGA -ACGGAACGACAATCTGGAGTGCAA -ACGGAACGACAATCTGGAGAGGAA -ACGGAACGACAATCTGGACAGGTA -ACGGAACGACAATCTGGAGACTCT -ACGGAACGACAATCTGGAAGTCCT -ACGGAACGACAATCTGGATAAGCC -ACGGAACGACAATCTGGAATAGCC -ACGGAACGACAATCTGGATAACCG -ACGGAACGACAATCTGGAATGCCA -ACGGAACGACAAGCTAAGGGAAAC -ACGGAACGACAAGCTAAGAACACC -ACGGAACGACAAGCTAAGATCGAG -ACGGAACGACAAGCTAAGCTCCTT -ACGGAACGACAAGCTAAGCCTGTT -ACGGAACGACAAGCTAAGCGGTTT -ACGGAACGACAAGCTAAGGTGGTT -ACGGAACGACAAGCTAAGGCCTTT -ACGGAACGACAAGCTAAGGGTCTT -ACGGAACGACAAGCTAAGACGCTT -ACGGAACGACAAGCTAAGAGCGTT -ACGGAACGACAAGCTAAGTTCGTC -ACGGAACGACAAGCTAAGTCTCTC -ACGGAACGACAAGCTAAGTGGATC -ACGGAACGACAAGCTAAGCACTTC -ACGGAACGACAAGCTAAGGTACTC -ACGGAACGACAAGCTAAGGATGTC -ACGGAACGACAAGCTAAGACAGTC -ACGGAACGACAAGCTAAGTTGCTG -ACGGAACGACAAGCTAAGTCCATG -ACGGAACGACAAGCTAAGTGTGTG -ACGGAACGACAAGCTAAGCTAGTG -ACGGAACGACAAGCTAAGCATCTG -ACGGAACGACAAGCTAAGGAGTTG -ACGGAACGACAAGCTAAGAGACTG -ACGGAACGACAAGCTAAGTCGGTA -ACGGAACGACAAGCTAAGTGCCTA -ACGGAACGACAAGCTAAGCCACTA -ACGGAACGACAAGCTAAGGGAGTA -ACGGAACGACAAGCTAAGTCGTCT -ACGGAACGACAAGCTAAGTGCACT -ACGGAACGACAAGCTAAGCTGACT -ACGGAACGACAAGCTAAGCAACCT -ACGGAACGACAAGCTAAGGCTACT -ACGGAACGACAAGCTAAGGGATCT -ACGGAACGACAAGCTAAGAAGGCT -ACGGAACGACAAGCTAAGTCAACC -ACGGAACGACAAGCTAAGTGTTCC -ACGGAACGACAAGCTAAGATTCCC -ACGGAACGACAAGCTAAGTTCTCG -ACGGAACGACAAGCTAAGTAGACG -ACGGAACGACAAGCTAAGGTAACG -ACGGAACGACAAGCTAAGACTTCG -ACGGAACGACAAGCTAAGTACGCA -ACGGAACGACAAGCTAAGCTTGCA -ACGGAACGACAAGCTAAGCGAACA -ACGGAACGACAAGCTAAGCAGTCA -ACGGAACGACAAGCTAAGGATCCA -ACGGAACGACAAGCTAAGACGACA -ACGGAACGACAAGCTAAGAGCTCA -ACGGAACGACAAGCTAAGTCACGT -ACGGAACGACAAGCTAAGCGTAGT -ACGGAACGACAAGCTAAGGTCAGT -ACGGAACGACAAGCTAAGGAAGGT -ACGGAACGACAAGCTAAGAACCGT -ACGGAACGACAAGCTAAGTTGTGC -ACGGAACGACAAGCTAAGCTAAGC -ACGGAACGACAAGCTAAGACTAGC -ACGGAACGACAAGCTAAGAGATGC -ACGGAACGACAAGCTAAGTGAAGG -ACGGAACGACAAGCTAAGCAATGG -ACGGAACGACAAGCTAAGATGAGG -ACGGAACGACAAGCTAAGAATGGG -ACGGAACGACAAGCTAAGTCCTGA -ACGGAACGACAAGCTAAGTAGCGA -ACGGAACGACAAGCTAAGCACAGA -ACGGAACGACAAGCTAAGGCAAGA -ACGGAACGACAAGCTAAGGGTTGA -ACGGAACGACAAGCTAAGTCCGAT -ACGGAACGACAAGCTAAGTGGCAT -ACGGAACGACAAGCTAAGCGAGAT -ACGGAACGACAAGCTAAGTACCAC -ACGGAACGACAAGCTAAGCAGAAC -ACGGAACGACAAGCTAAGGTCTAC -ACGGAACGACAAGCTAAGACGTAC -ACGGAACGACAAGCTAAGAGTGAC -ACGGAACGACAAGCTAAGCTGTAG -ACGGAACGACAAGCTAAGCCTAAG -ACGGAACGACAAGCTAAGGTTCAG -ACGGAACGACAAGCTAAGGCATAG -ACGGAACGACAAGCTAAGGACAAG -ACGGAACGACAAGCTAAGAAGCAG -ACGGAACGACAAGCTAAGCGTCAA -ACGGAACGACAAGCTAAGGCTGAA -ACGGAACGACAAGCTAAGAGTACG -ACGGAACGACAAGCTAAGATCCGA -ACGGAACGACAAGCTAAGATGGGA -ACGGAACGACAAGCTAAGGTGCAA -ACGGAACGACAAGCTAAGGAGGAA -ACGGAACGACAAGCTAAGCAGGTA -ACGGAACGACAAGCTAAGGACTCT -ACGGAACGACAAGCTAAGAGTCCT -ACGGAACGACAAGCTAAGTAAGCC -ACGGAACGACAAGCTAAGATAGCC -ACGGAACGACAAGCTAAGTAACCG -ACGGAACGACAAGCTAAGATGCCA -ACGGAACGACAAACCTCAGGAAAC -ACGGAACGACAAACCTCAAACACC -ACGGAACGACAAACCTCAATCGAG -ACGGAACGACAAACCTCACTCCTT -ACGGAACGACAAACCTCACCTGTT -ACGGAACGACAAACCTCACGGTTT -ACGGAACGACAAACCTCAGTGGTT -ACGGAACGACAAACCTCAGCCTTT -ACGGAACGACAAACCTCAGGTCTT -ACGGAACGACAAACCTCAACGCTT -ACGGAACGACAAACCTCAAGCGTT -ACGGAACGACAAACCTCATTCGTC -ACGGAACGACAAACCTCATCTCTC -ACGGAACGACAAACCTCATGGATC -ACGGAACGACAAACCTCACACTTC -ACGGAACGACAAACCTCAGTACTC -ACGGAACGACAAACCTCAGATGTC -ACGGAACGACAAACCTCAACAGTC -ACGGAACGACAAACCTCATTGCTG -ACGGAACGACAAACCTCATCCATG -ACGGAACGACAAACCTCATGTGTG -ACGGAACGACAAACCTCACTAGTG -ACGGAACGACAAACCTCACATCTG -ACGGAACGACAAACCTCAGAGTTG -ACGGAACGACAAACCTCAAGACTG -ACGGAACGACAAACCTCATCGGTA -ACGGAACGACAAACCTCATGCCTA -ACGGAACGACAAACCTCACCACTA -ACGGAACGACAAACCTCAGGAGTA -ACGGAACGACAAACCTCATCGTCT -ACGGAACGACAAACCTCATGCACT -ACGGAACGACAAACCTCACTGACT -ACGGAACGACAAACCTCACAACCT -ACGGAACGACAAACCTCAGCTACT -ACGGAACGACAAACCTCAGGATCT -ACGGAACGACAAACCTCAAAGGCT -ACGGAACGACAAACCTCATCAACC -ACGGAACGACAAACCTCATGTTCC -ACGGAACGACAAACCTCAATTCCC -ACGGAACGACAAACCTCATTCTCG -ACGGAACGACAAACCTCATAGACG -ACGGAACGACAAACCTCAGTAACG -ACGGAACGACAAACCTCAACTTCG -ACGGAACGACAAACCTCATACGCA -ACGGAACGACAAACCTCACTTGCA -ACGGAACGACAAACCTCACGAACA -ACGGAACGACAAACCTCACAGTCA -ACGGAACGACAAACCTCAGATCCA -ACGGAACGACAAACCTCAACGACA -ACGGAACGACAAACCTCAAGCTCA -ACGGAACGACAAACCTCATCACGT -ACGGAACGACAAACCTCACGTAGT -ACGGAACGACAAACCTCAGTCAGT -ACGGAACGACAAACCTCAGAAGGT -ACGGAACGACAAACCTCAAACCGT -ACGGAACGACAAACCTCATTGTGC -ACGGAACGACAAACCTCACTAAGC -ACGGAACGACAAACCTCAACTAGC -ACGGAACGACAAACCTCAAGATGC -ACGGAACGACAAACCTCATGAAGG -ACGGAACGACAAACCTCACAATGG -ACGGAACGACAAACCTCAATGAGG -ACGGAACGACAAACCTCAAATGGG -ACGGAACGACAAACCTCATCCTGA -ACGGAACGACAAACCTCATAGCGA -ACGGAACGACAAACCTCACACAGA -ACGGAACGACAAACCTCAGCAAGA -ACGGAACGACAAACCTCAGGTTGA -ACGGAACGACAAACCTCATCCGAT -ACGGAACGACAAACCTCATGGCAT -ACGGAACGACAAACCTCACGAGAT -ACGGAACGACAAACCTCATACCAC -ACGGAACGACAAACCTCACAGAAC -ACGGAACGACAAACCTCAGTCTAC -ACGGAACGACAAACCTCAACGTAC -ACGGAACGACAAACCTCAAGTGAC -ACGGAACGACAAACCTCACTGTAG -ACGGAACGACAAACCTCACCTAAG -ACGGAACGACAAACCTCAGTTCAG -ACGGAACGACAAACCTCAGCATAG -ACGGAACGACAAACCTCAGACAAG -ACGGAACGACAAACCTCAAAGCAG -ACGGAACGACAAACCTCACGTCAA -ACGGAACGACAAACCTCAGCTGAA -ACGGAACGACAAACCTCAAGTACG -ACGGAACGACAAACCTCAATCCGA -ACGGAACGACAAACCTCAATGGGA -ACGGAACGACAAACCTCAGTGCAA -ACGGAACGACAAACCTCAGAGGAA -ACGGAACGACAAACCTCACAGGTA -ACGGAACGACAAACCTCAGACTCT -ACGGAACGACAAACCTCAAGTCCT -ACGGAACGACAAACCTCATAAGCC -ACGGAACGACAAACCTCAATAGCC -ACGGAACGACAAACCTCATAACCG -ACGGAACGACAAACCTCAATGCCA -ACGGAACGACAATCCTGTGGAAAC -ACGGAACGACAATCCTGTAACACC -ACGGAACGACAATCCTGTATCGAG -ACGGAACGACAATCCTGTCTCCTT -ACGGAACGACAATCCTGTCCTGTT -ACGGAACGACAATCCTGTCGGTTT -ACGGAACGACAATCCTGTGTGGTT -ACGGAACGACAATCCTGTGCCTTT -ACGGAACGACAATCCTGTGGTCTT -ACGGAACGACAATCCTGTACGCTT -ACGGAACGACAATCCTGTAGCGTT -ACGGAACGACAATCCTGTTTCGTC -ACGGAACGACAATCCTGTTCTCTC -ACGGAACGACAATCCTGTTGGATC -ACGGAACGACAATCCTGTCACTTC -ACGGAACGACAATCCTGTGTACTC -ACGGAACGACAATCCTGTGATGTC -ACGGAACGACAATCCTGTACAGTC -ACGGAACGACAATCCTGTTTGCTG -ACGGAACGACAATCCTGTTCCATG -ACGGAACGACAATCCTGTTGTGTG -ACGGAACGACAATCCTGTCTAGTG -ACGGAACGACAATCCTGTCATCTG -ACGGAACGACAATCCTGTGAGTTG -ACGGAACGACAATCCTGTAGACTG -ACGGAACGACAATCCTGTTCGGTA -ACGGAACGACAATCCTGTTGCCTA -ACGGAACGACAATCCTGTCCACTA -ACGGAACGACAATCCTGTGGAGTA -ACGGAACGACAATCCTGTTCGTCT -ACGGAACGACAATCCTGTTGCACT -ACGGAACGACAATCCTGTCTGACT -ACGGAACGACAATCCTGTCAACCT -ACGGAACGACAATCCTGTGCTACT -ACGGAACGACAATCCTGTGGATCT -ACGGAACGACAATCCTGTAAGGCT -ACGGAACGACAATCCTGTTCAACC -ACGGAACGACAATCCTGTTGTTCC -ACGGAACGACAATCCTGTATTCCC -ACGGAACGACAATCCTGTTTCTCG -ACGGAACGACAATCCTGTTAGACG -ACGGAACGACAATCCTGTGTAACG -ACGGAACGACAATCCTGTACTTCG -ACGGAACGACAATCCTGTTACGCA -ACGGAACGACAATCCTGTCTTGCA -ACGGAACGACAATCCTGTCGAACA -ACGGAACGACAATCCTGTCAGTCA -ACGGAACGACAATCCTGTGATCCA -ACGGAACGACAATCCTGTACGACA -ACGGAACGACAATCCTGTAGCTCA -ACGGAACGACAATCCTGTTCACGT -ACGGAACGACAATCCTGTCGTAGT -ACGGAACGACAATCCTGTGTCAGT -ACGGAACGACAATCCTGTGAAGGT -ACGGAACGACAATCCTGTAACCGT -ACGGAACGACAATCCTGTTTGTGC -ACGGAACGACAATCCTGTCTAAGC -ACGGAACGACAATCCTGTACTAGC -ACGGAACGACAATCCTGTAGATGC -ACGGAACGACAATCCTGTTGAAGG -ACGGAACGACAATCCTGTCAATGG -ACGGAACGACAATCCTGTATGAGG -ACGGAACGACAATCCTGTAATGGG -ACGGAACGACAATCCTGTTCCTGA -ACGGAACGACAATCCTGTTAGCGA -ACGGAACGACAATCCTGTCACAGA -ACGGAACGACAATCCTGTGCAAGA -ACGGAACGACAATCCTGTGGTTGA -ACGGAACGACAATCCTGTTCCGAT -ACGGAACGACAATCCTGTTGGCAT -ACGGAACGACAATCCTGTCGAGAT -ACGGAACGACAATCCTGTTACCAC -ACGGAACGACAATCCTGTCAGAAC -ACGGAACGACAATCCTGTGTCTAC -ACGGAACGACAATCCTGTACGTAC -ACGGAACGACAATCCTGTAGTGAC -ACGGAACGACAATCCTGTCTGTAG -ACGGAACGACAATCCTGTCCTAAG -ACGGAACGACAATCCTGTGTTCAG -ACGGAACGACAATCCTGTGCATAG -ACGGAACGACAATCCTGTGACAAG -ACGGAACGACAATCCTGTAAGCAG -ACGGAACGACAATCCTGTCGTCAA -ACGGAACGACAATCCTGTGCTGAA -ACGGAACGACAATCCTGTAGTACG -ACGGAACGACAATCCTGTATCCGA -ACGGAACGACAATCCTGTATGGGA -ACGGAACGACAATCCTGTGTGCAA -ACGGAACGACAATCCTGTGAGGAA -ACGGAACGACAATCCTGTCAGGTA -ACGGAACGACAATCCTGTGACTCT -ACGGAACGACAATCCTGTAGTCCT -ACGGAACGACAATCCTGTTAAGCC -ACGGAACGACAATCCTGTATAGCC -ACGGAACGACAATCCTGTTAACCG -ACGGAACGACAATCCTGTATGCCA -ACGGAACGACAACCCATTGGAAAC -ACGGAACGACAACCCATTAACACC -ACGGAACGACAACCCATTATCGAG -ACGGAACGACAACCCATTCTCCTT -ACGGAACGACAACCCATTCCTGTT -ACGGAACGACAACCCATTCGGTTT -ACGGAACGACAACCCATTGTGGTT -ACGGAACGACAACCCATTGCCTTT -ACGGAACGACAACCCATTGGTCTT -ACGGAACGACAACCCATTACGCTT -ACGGAACGACAACCCATTAGCGTT -ACGGAACGACAACCCATTTTCGTC -ACGGAACGACAACCCATTTCTCTC -ACGGAACGACAACCCATTTGGATC -ACGGAACGACAACCCATTCACTTC -ACGGAACGACAACCCATTGTACTC -ACGGAACGACAACCCATTGATGTC -ACGGAACGACAACCCATTACAGTC -ACGGAACGACAACCCATTTTGCTG -ACGGAACGACAACCCATTTCCATG -ACGGAACGACAACCCATTTGTGTG -ACGGAACGACAACCCATTCTAGTG -ACGGAACGACAACCCATTCATCTG -ACGGAACGACAACCCATTGAGTTG -ACGGAACGACAACCCATTAGACTG -ACGGAACGACAACCCATTTCGGTA -ACGGAACGACAACCCATTTGCCTA -ACGGAACGACAACCCATTCCACTA -ACGGAACGACAACCCATTGGAGTA -ACGGAACGACAACCCATTTCGTCT -ACGGAACGACAACCCATTTGCACT -ACGGAACGACAACCCATTCTGACT -ACGGAACGACAACCCATTCAACCT -ACGGAACGACAACCCATTGCTACT -ACGGAACGACAACCCATTGGATCT -ACGGAACGACAACCCATTAAGGCT -ACGGAACGACAACCCATTTCAACC -ACGGAACGACAACCCATTTGTTCC -ACGGAACGACAACCCATTATTCCC -ACGGAACGACAACCCATTTTCTCG -ACGGAACGACAACCCATTTAGACG -ACGGAACGACAACCCATTGTAACG -ACGGAACGACAACCCATTACTTCG -ACGGAACGACAACCCATTTACGCA -ACGGAACGACAACCCATTCTTGCA -ACGGAACGACAACCCATTCGAACA -ACGGAACGACAACCCATTCAGTCA -ACGGAACGACAACCCATTGATCCA -ACGGAACGACAACCCATTACGACA -ACGGAACGACAACCCATTAGCTCA -ACGGAACGACAACCCATTTCACGT -ACGGAACGACAACCCATTCGTAGT -ACGGAACGACAACCCATTGTCAGT -ACGGAACGACAACCCATTGAAGGT -ACGGAACGACAACCCATTAACCGT -ACGGAACGACAACCCATTTTGTGC -ACGGAACGACAACCCATTCTAAGC -ACGGAACGACAACCCATTACTAGC -ACGGAACGACAACCCATTAGATGC -ACGGAACGACAACCCATTTGAAGG -ACGGAACGACAACCCATTCAATGG -ACGGAACGACAACCCATTATGAGG -ACGGAACGACAACCCATTAATGGG -ACGGAACGACAACCCATTTCCTGA -ACGGAACGACAACCCATTTAGCGA -ACGGAACGACAACCCATTCACAGA -ACGGAACGACAACCCATTGCAAGA -ACGGAACGACAACCCATTGGTTGA -ACGGAACGACAACCCATTTCCGAT -ACGGAACGACAACCCATTTGGCAT -ACGGAACGACAACCCATTCGAGAT -ACGGAACGACAACCCATTTACCAC -ACGGAACGACAACCCATTCAGAAC -ACGGAACGACAACCCATTGTCTAC -ACGGAACGACAACCCATTACGTAC -ACGGAACGACAACCCATTAGTGAC -ACGGAACGACAACCCATTCTGTAG -ACGGAACGACAACCCATTCCTAAG -ACGGAACGACAACCCATTGTTCAG -ACGGAACGACAACCCATTGCATAG -ACGGAACGACAACCCATTGACAAG -ACGGAACGACAACCCATTAAGCAG -ACGGAACGACAACCCATTCGTCAA -ACGGAACGACAACCCATTGCTGAA -ACGGAACGACAACCCATTAGTACG -ACGGAACGACAACCCATTATCCGA -ACGGAACGACAACCCATTATGGGA -ACGGAACGACAACCCATTGTGCAA -ACGGAACGACAACCCATTGAGGAA -ACGGAACGACAACCCATTCAGGTA -ACGGAACGACAACCCATTGACTCT -ACGGAACGACAACCCATTAGTCCT -ACGGAACGACAACCCATTTAAGCC -ACGGAACGACAACCCATTATAGCC -ACGGAACGACAACCCATTTAACCG -ACGGAACGACAACCCATTATGCCA -ACGGAACGACAATCGTTCGGAAAC -ACGGAACGACAATCGTTCAACACC -ACGGAACGACAATCGTTCATCGAG -ACGGAACGACAATCGTTCCTCCTT -ACGGAACGACAATCGTTCCCTGTT -ACGGAACGACAATCGTTCCGGTTT -ACGGAACGACAATCGTTCGTGGTT -ACGGAACGACAATCGTTCGCCTTT -ACGGAACGACAATCGTTCGGTCTT -ACGGAACGACAATCGTTCACGCTT -ACGGAACGACAATCGTTCAGCGTT -ACGGAACGACAATCGTTCTTCGTC -ACGGAACGACAATCGTTCTCTCTC -ACGGAACGACAATCGTTCTGGATC -ACGGAACGACAATCGTTCCACTTC -ACGGAACGACAATCGTTCGTACTC -ACGGAACGACAATCGTTCGATGTC -ACGGAACGACAATCGTTCACAGTC -ACGGAACGACAATCGTTCTTGCTG -ACGGAACGACAATCGTTCTCCATG -ACGGAACGACAATCGTTCTGTGTG -ACGGAACGACAATCGTTCCTAGTG -ACGGAACGACAATCGTTCCATCTG -ACGGAACGACAATCGTTCGAGTTG -ACGGAACGACAATCGTTCAGACTG -ACGGAACGACAATCGTTCTCGGTA -ACGGAACGACAATCGTTCTGCCTA -ACGGAACGACAATCGTTCCCACTA -ACGGAACGACAATCGTTCGGAGTA -ACGGAACGACAATCGTTCTCGTCT -ACGGAACGACAATCGTTCTGCACT -ACGGAACGACAATCGTTCCTGACT -ACGGAACGACAATCGTTCCAACCT -ACGGAACGACAATCGTTCGCTACT -ACGGAACGACAATCGTTCGGATCT -ACGGAACGACAATCGTTCAAGGCT -ACGGAACGACAATCGTTCTCAACC -ACGGAACGACAATCGTTCTGTTCC -ACGGAACGACAATCGTTCATTCCC -ACGGAACGACAATCGTTCTTCTCG -ACGGAACGACAATCGTTCTAGACG -ACGGAACGACAATCGTTCGTAACG -ACGGAACGACAATCGTTCACTTCG -ACGGAACGACAATCGTTCTACGCA -ACGGAACGACAATCGTTCCTTGCA -ACGGAACGACAATCGTTCCGAACA -ACGGAACGACAATCGTTCCAGTCA -ACGGAACGACAATCGTTCGATCCA -ACGGAACGACAATCGTTCACGACA -ACGGAACGACAATCGTTCAGCTCA -ACGGAACGACAATCGTTCTCACGT -ACGGAACGACAATCGTTCCGTAGT -ACGGAACGACAATCGTTCGTCAGT -ACGGAACGACAATCGTTCGAAGGT -ACGGAACGACAATCGTTCAACCGT -ACGGAACGACAATCGTTCTTGTGC -ACGGAACGACAATCGTTCCTAAGC -ACGGAACGACAATCGTTCACTAGC -ACGGAACGACAATCGTTCAGATGC -ACGGAACGACAATCGTTCTGAAGG -ACGGAACGACAATCGTTCCAATGG -ACGGAACGACAATCGTTCATGAGG -ACGGAACGACAATCGTTCAATGGG -ACGGAACGACAATCGTTCTCCTGA -ACGGAACGACAATCGTTCTAGCGA -ACGGAACGACAATCGTTCCACAGA -ACGGAACGACAATCGTTCGCAAGA -ACGGAACGACAATCGTTCGGTTGA -ACGGAACGACAATCGTTCTCCGAT -ACGGAACGACAATCGTTCTGGCAT -ACGGAACGACAATCGTTCCGAGAT -ACGGAACGACAATCGTTCTACCAC -ACGGAACGACAATCGTTCCAGAAC -ACGGAACGACAATCGTTCGTCTAC -ACGGAACGACAATCGTTCACGTAC -ACGGAACGACAATCGTTCAGTGAC -ACGGAACGACAATCGTTCCTGTAG -ACGGAACGACAATCGTTCCCTAAG -ACGGAACGACAATCGTTCGTTCAG -ACGGAACGACAATCGTTCGCATAG -ACGGAACGACAATCGTTCGACAAG -ACGGAACGACAATCGTTCAAGCAG -ACGGAACGACAATCGTTCCGTCAA -ACGGAACGACAATCGTTCGCTGAA -ACGGAACGACAATCGTTCAGTACG -ACGGAACGACAATCGTTCATCCGA -ACGGAACGACAATCGTTCATGGGA -ACGGAACGACAATCGTTCGTGCAA -ACGGAACGACAATCGTTCGAGGAA -ACGGAACGACAATCGTTCCAGGTA -ACGGAACGACAATCGTTCGACTCT -ACGGAACGACAATCGTTCAGTCCT -ACGGAACGACAATCGTTCTAAGCC -ACGGAACGACAATCGTTCATAGCC -ACGGAACGACAATCGTTCTAACCG -ACGGAACGACAATCGTTCATGCCA -ACGGAACGACAAACGTAGGGAAAC -ACGGAACGACAAACGTAGAACACC -ACGGAACGACAAACGTAGATCGAG -ACGGAACGACAAACGTAGCTCCTT -ACGGAACGACAAACGTAGCCTGTT -ACGGAACGACAAACGTAGCGGTTT -ACGGAACGACAAACGTAGGTGGTT -ACGGAACGACAAACGTAGGCCTTT -ACGGAACGACAAACGTAGGGTCTT -ACGGAACGACAAACGTAGACGCTT -ACGGAACGACAAACGTAGAGCGTT -ACGGAACGACAAACGTAGTTCGTC -ACGGAACGACAAACGTAGTCTCTC -ACGGAACGACAAACGTAGTGGATC -ACGGAACGACAAACGTAGCACTTC -ACGGAACGACAAACGTAGGTACTC -ACGGAACGACAAACGTAGGATGTC -ACGGAACGACAAACGTAGACAGTC -ACGGAACGACAAACGTAGTTGCTG -ACGGAACGACAAACGTAGTCCATG -ACGGAACGACAAACGTAGTGTGTG -ACGGAACGACAAACGTAGCTAGTG -ACGGAACGACAAACGTAGCATCTG -ACGGAACGACAAACGTAGGAGTTG -ACGGAACGACAAACGTAGAGACTG -ACGGAACGACAAACGTAGTCGGTA -ACGGAACGACAAACGTAGTGCCTA -ACGGAACGACAAACGTAGCCACTA -ACGGAACGACAAACGTAGGGAGTA -ACGGAACGACAAACGTAGTCGTCT -ACGGAACGACAAACGTAGTGCACT -ACGGAACGACAAACGTAGCTGACT -ACGGAACGACAAACGTAGCAACCT -ACGGAACGACAAACGTAGGCTACT -ACGGAACGACAAACGTAGGGATCT -ACGGAACGACAAACGTAGAAGGCT -ACGGAACGACAAACGTAGTCAACC -ACGGAACGACAAACGTAGTGTTCC -ACGGAACGACAAACGTAGATTCCC -ACGGAACGACAAACGTAGTTCTCG -ACGGAACGACAAACGTAGTAGACG -ACGGAACGACAAACGTAGGTAACG -ACGGAACGACAAACGTAGACTTCG -ACGGAACGACAAACGTAGTACGCA -ACGGAACGACAAACGTAGCTTGCA -ACGGAACGACAAACGTAGCGAACA -ACGGAACGACAAACGTAGCAGTCA -ACGGAACGACAAACGTAGGATCCA -ACGGAACGACAAACGTAGACGACA -ACGGAACGACAAACGTAGAGCTCA -ACGGAACGACAAACGTAGTCACGT -ACGGAACGACAAACGTAGCGTAGT -ACGGAACGACAAACGTAGGTCAGT -ACGGAACGACAAACGTAGGAAGGT -ACGGAACGACAAACGTAGAACCGT -ACGGAACGACAAACGTAGTTGTGC -ACGGAACGACAAACGTAGCTAAGC -ACGGAACGACAAACGTAGACTAGC -ACGGAACGACAAACGTAGAGATGC -ACGGAACGACAAACGTAGTGAAGG -ACGGAACGACAAACGTAGCAATGG -ACGGAACGACAAACGTAGATGAGG -ACGGAACGACAAACGTAGAATGGG -ACGGAACGACAAACGTAGTCCTGA -ACGGAACGACAAACGTAGTAGCGA -ACGGAACGACAAACGTAGCACAGA -ACGGAACGACAAACGTAGGCAAGA -ACGGAACGACAAACGTAGGGTTGA -ACGGAACGACAAACGTAGTCCGAT -ACGGAACGACAAACGTAGTGGCAT -ACGGAACGACAAACGTAGCGAGAT -ACGGAACGACAAACGTAGTACCAC -ACGGAACGACAAACGTAGCAGAAC -ACGGAACGACAAACGTAGGTCTAC -ACGGAACGACAAACGTAGACGTAC -ACGGAACGACAAACGTAGAGTGAC -ACGGAACGACAAACGTAGCTGTAG -ACGGAACGACAAACGTAGCCTAAG -ACGGAACGACAAACGTAGGTTCAG -ACGGAACGACAAACGTAGGCATAG -ACGGAACGACAAACGTAGGACAAG -ACGGAACGACAAACGTAGAAGCAG -ACGGAACGACAAACGTAGCGTCAA -ACGGAACGACAAACGTAGGCTGAA -ACGGAACGACAAACGTAGAGTACG -ACGGAACGACAAACGTAGATCCGA -ACGGAACGACAAACGTAGATGGGA -ACGGAACGACAAACGTAGGTGCAA -ACGGAACGACAAACGTAGGAGGAA -ACGGAACGACAAACGTAGCAGGTA -ACGGAACGACAAACGTAGGACTCT -ACGGAACGACAAACGTAGAGTCCT -ACGGAACGACAAACGTAGTAAGCC -ACGGAACGACAAACGTAGATAGCC -ACGGAACGACAAACGTAGTAACCG -ACGGAACGACAAACGTAGATGCCA -ACGGAACGACAAACGGTAGGAAAC -ACGGAACGACAAACGGTAAACACC -ACGGAACGACAAACGGTAATCGAG -ACGGAACGACAAACGGTACTCCTT -ACGGAACGACAAACGGTACCTGTT -ACGGAACGACAAACGGTACGGTTT -ACGGAACGACAAACGGTAGTGGTT -ACGGAACGACAAACGGTAGCCTTT -ACGGAACGACAAACGGTAGGTCTT -ACGGAACGACAAACGGTAACGCTT -ACGGAACGACAAACGGTAAGCGTT -ACGGAACGACAAACGGTATTCGTC -ACGGAACGACAAACGGTATCTCTC -ACGGAACGACAAACGGTATGGATC -ACGGAACGACAAACGGTACACTTC -ACGGAACGACAAACGGTAGTACTC -ACGGAACGACAAACGGTAGATGTC -ACGGAACGACAAACGGTAACAGTC -ACGGAACGACAAACGGTATTGCTG -ACGGAACGACAAACGGTATCCATG -ACGGAACGACAAACGGTATGTGTG -ACGGAACGACAAACGGTACTAGTG -ACGGAACGACAAACGGTACATCTG -ACGGAACGACAAACGGTAGAGTTG -ACGGAACGACAAACGGTAAGACTG -ACGGAACGACAAACGGTATCGGTA -ACGGAACGACAAACGGTATGCCTA -ACGGAACGACAAACGGTACCACTA -ACGGAACGACAAACGGTAGGAGTA -ACGGAACGACAAACGGTATCGTCT -ACGGAACGACAAACGGTATGCACT -ACGGAACGACAAACGGTACTGACT -ACGGAACGACAAACGGTACAACCT -ACGGAACGACAAACGGTAGCTACT -ACGGAACGACAAACGGTAGGATCT -ACGGAACGACAAACGGTAAAGGCT -ACGGAACGACAAACGGTATCAACC -ACGGAACGACAAACGGTATGTTCC -ACGGAACGACAAACGGTAATTCCC -ACGGAACGACAAACGGTATTCTCG -ACGGAACGACAAACGGTATAGACG -ACGGAACGACAAACGGTAGTAACG -ACGGAACGACAAACGGTAACTTCG -ACGGAACGACAAACGGTATACGCA -ACGGAACGACAAACGGTACTTGCA -ACGGAACGACAAACGGTACGAACA -ACGGAACGACAAACGGTACAGTCA -ACGGAACGACAAACGGTAGATCCA -ACGGAACGACAAACGGTAACGACA -ACGGAACGACAAACGGTAAGCTCA -ACGGAACGACAAACGGTATCACGT -ACGGAACGACAAACGGTACGTAGT -ACGGAACGACAAACGGTAGTCAGT -ACGGAACGACAAACGGTAGAAGGT -ACGGAACGACAAACGGTAAACCGT -ACGGAACGACAAACGGTATTGTGC -ACGGAACGACAAACGGTACTAAGC -ACGGAACGACAAACGGTAACTAGC -ACGGAACGACAAACGGTAAGATGC -ACGGAACGACAAACGGTATGAAGG -ACGGAACGACAAACGGTACAATGG -ACGGAACGACAAACGGTAATGAGG -ACGGAACGACAAACGGTAAATGGG -ACGGAACGACAAACGGTATCCTGA -ACGGAACGACAAACGGTATAGCGA -ACGGAACGACAAACGGTACACAGA -ACGGAACGACAAACGGTAGCAAGA -ACGGAACGACAAACGGTAGGTTGA -ACGGAACGACAAACGGTATCCGAT -ACGGAACGACAAACGGTATGGCAT -ACGGAACGACAAACGGTACGAGAT -ACGGAACGACAAACGGTATACCAC -ACGGAACGACAAACGGTACAGAAC -ACGGAACGACAAACGGTAGTCTAC -ACGGAACGACAAACGGTAACGTAC -ACGGAACGACAAACGGTAAGTGAC -ACGGAACGACAAACGGTACTGTAG -ACGGAACGACAAACGGTACCTAAG -ACGGAACGACAAACGGTAGTTCAG -ACGGAACGACAAACGGTAGCATAG -ACGGAACGACAAACGGTAGACAAG -ACGGAACGACAAACGGTAAAGCAG -ACGGAACGACAAACGGTACGTCAA -ACGGAACGACAAACGGTAGCTGAA -ACGGAACGACAAACGGTAAGTACG -ACGGAACGACAAACGGTAATCCGA -ACGGAACGACAAACGGTAATGGGA -ACGGAACGACAAACGGTAGTGCAA -ACGGAACGACAAACGGTAGAGGAA -ACGGAACGACAAACGGTACAGGTA -ACGGAACGACAAACGGTAGACTCT -ACGGAACGACAAACGGTAAGTCCT -ACGGAACGACAAACGGTATAAGCC -ACGGAACGACAAACGGTAATAGCC -ACGGAACGACAAACGGTATAACCG -ACGGAACGACAAACGGTAATGCCA -ACGGAACGACAATCGACTGGAAAC -ACGGAACGACAATCGACTAACACC -ACGGAACGACAATCGACTATCGAG -ACGGAACGACAATCGACTCTCCTT -ACGGAACGACAATCGACTCCTGTT -ACGGAACGACAATCGACTCGGTTT -ACGGAACGACAATCGACTGTGGTT -ACGGAACGACAATCGACTGCCTTT -ACGGAACGACAATCGACTGGTCTT -ACGGAACGACAATCGACTACGCTT -ACGGAACGACAATCGACTAGCGTT -ACGGAACGACAATCGACTTTCGTC -ACGGAACGACAATCGACTTCTCTC -ACGGAACGACAATCGACTTGGATC -ACGGAACGACAATCGACTCACTTC -ACGGAACGACAATCGACTGTACTC -ACGGAACGACAATCGACTGATGTC -ACGGAACGACAATCGACTACAGTC -ACGGAACGACAATCGACTTTGCTG -ACGGAACGACAATCGACTTCCATG -ACGGAACGACAATCGACTTGTGTG -ACGGAACGACAATCGACTCTAGTG -ACGGAACGACAATCGACTCATCTG -ACGGAACGACAATCGACTGAGTTG -ACGGAACGACAATCGACTAGACTG -ACGGAACGACAATCGACTTCGGTA -ACGGAACGACAATCGACTTGCCTA -ACGGAACGACAATCGACTCCACTA -ACGGAACGACAATCGACTGGAGTA -ACGGAACGACAATCGACTTCGTCT -ACGGAACGACAATCGACTTGCACT -ACGGAACGACAATCGACTCTGACT -ACGGAACGACAATCGACTCAACCT -ACGGAACGACAATCGACTGCTACT -ACGGAACGACAATCGACTGGATCT -ACGGAACGACAATCGACTAAGGCT -ACGGAACGACAATCGACTTCAACC -ACGGAACGACAATCGACTTGTTCC -ACGGAACGACAATCGACTATTCCC -ACGGAACGACAATCGACTTTCTCG -ACGGAACGACAATCGACTTAGACG -ACGGAACGACAATCGACTGTAACG -ACGGAACGACAATCGACTACTTCG -ACGGAACGACAATCGACTTACGCA -ACGGAACGACAATCGACTCTTGCA -ACGGAACGACAATCGACTCGAACA -ACGGAACGACAATCGACTCAGTCA -ACGGAACGACAATCGACTGATCCA -ACGGAACGACAATCGACTACGACA -ACGGAACGACAATCGACTAGCTCA -ACGGAACGACAATCGACTTCACGT -ACGGAACGACAATCGACTCGTAGT -ACGGAACGACAATCGACTGTCAGT -ACGGAACGACAATCGACTGAAGGT -ACGGAACGACAATCGACTAACCGT -ACGGAACGACAATCGACTTTGTGC -ACGGAACGACAATCGACTCTAAGC -ACGGAACGACAATCGACTACTAGC -ACGGAACGACAATCGACTAGATGC -ACGGAACGACAATCGACTTGAAGG -ACGGAACGACAATCGACTCAATGG -ACGGAACGACAATCGACTATGAGG -ACGGAACGACAATCGACTAATGGG -ACGGAACGACAATCGACTTCCTGA -ACGGAACGACAATCGACTTAGCGA -ACGGAACGACAATCGACTCACAGA -ACGGAACGACAATCGACTGCAAGA -ACGGAACGACAATCGACTGGTTGA -ACGGAACGACAATCGACTTCCGAT -ACGGAACGACAATCGACTTGGCAT -ACGGAACGACAATCGACTCGAGAT -ACGGAACGACAATCGACTTACCAC -ACGGAACGACAATCGACTCAGAAC -ACGGAACGACAATCGACTGTCTAC -ACGGAACGACAATCGACTACGTAC -ACGGAACGACAATCGACTAGTGAC -ACGGAACGACAATCGACTCTGTAG -ACGGAACGACAATCGACTCCTAAG -ACGGAACGACAATCGACTGTTCAG -ACGGAACGACAATCGACTGCATAG -ACGGAACGACAATCGACTGACAAG -ACGGAACGACAATCGACTAAGCAG -ACGGAACGACAATCGACTCGTCAA -ACGGAACGACAATCGACTGCTGAA -ACGGAACGACAATCGACTAGTACG -ACGGAACGACAATCGACTATCCGA -ACGGAACGACAATCGACTATGGGA -ACGGAACGACAATCGACTGTGCAA -ACGGAACGACAATCGACTGAGGAA -ACGGAACGACAATCGACTCAGGTA -ACGGAACGACAATCGACTGACTCT -ACGGAACGACAATCGACTAGTCCT -ACGGAACGACAATCGACTTAAGCC -ACGGAACGACAATCGACTATAGCC -ACGGAACGACAATCGACTTAACCG -ACGGAACGACAATCGACTATGCCA -ACGGAACGACAAGCATACGGAAAC -ACGGAACGACAAGCATACAACACC -ACGGAACGACAAGCATACATCGAG -ACGGAACGACAAGCATACCTCCTT -ACGGAACGACAAGCATACCCTGTT -ACGGAACGACAAGCATACCGGTTT -ACGGAACGACAAGCATACGTGGTT -ACGGAACGACAAGCATACGCCTTT -ACGGAACGACAAGCATACGGTCTT -ACGGAACGACAAGCATACACGCTT -ACGGAACGACAAGCATACAGCGTT -ACGGAACGACAAGCATACTTCGTC -ACGGAACGACAAGCATACTCTCTC -ACGGAACGACAAGCATACTGGATC -ACGGAACGACAAGCATACCACTTC -ACGGAACGACAAGCATACGTACTC -ACGGAACGACAAGCATACGATGTC -ACGGAACGACAAGCATACACAGTC -ACGGAACGACAAGCATACTTGCTG -ACGGAACGACAAGCATACTCCATG -ACGGAACGACAAGCATACTGTGTG -ACGGAACGACAAGCATACCTAGTG -ACGGAACGACAAGCATACCATCTG -ACGGAACGACAAGCATACGAGTTG -ACGGAACGACAAGCATACAGACTG -ACGGAACGACAAGCATACTCGGTA -ACGGAACGACAAGCATACTGCCTA -ACGGAACGACAAGCATACCCACTA -ACGGAACGACAAGCATACGGAGTA -ACGGAACGACAAGCATACTCGTCT -ACGGAACGACAAGCATACTGCACT -ACGGAACGACAAGCATACCTGACT -ACGGAACGACAAGCATACCAACCT -ACGGAACGACAAGCATACGCTACT -ACGGAACGACAAGCATACGGATCT -ACGGAACGACAAGCATACAAGGCT -ACGGAACGACAAGCATACTCAACC -ACGGAACGACAAGCATACTGTTCC -ACGGAACGACAAGCATACATTCCC -ACGGAACGACAAGCATACTTCTCG -ACGGAACGACAAGCATACTAGACG -ACGGAACGACAAGCATACGTAACG -ACGGAACGACAAGCATACACTTCG -ACGGAACGACAAGCATACTACGCA -ACGGAACGACAAGCATACCTTGCA -ACGGAACGACAAGCATACCGAACA -ACGGAACGACAAGCATACCAGTCA -ACGGAACGACAAGCATACGATCCA -ACGGAACGACAAGCATACACGACA -ACGGAACGACAAGCATACAGCTCA -ACGGAACGACAAGCATACTCACGT -ACGGAACGACAAGCATACCGTAGT -ACGGAACGACAAGCATACGTCAGT -ACGGAACGACAAGCATACGAAGGT -ACGGAACGACAAGCATACAACCGT -ACGGAACGACAAGCATACTTGTGC -ACGGAACGACAAGCATACCTAAGC -ACGGAACGACAAGCATACACTAGC -ACGGAACGACAAGCATACAGATGC -ACGGAACGACAAGCATACTGAAGG -ACGGAACGACAAGCATACCAATGG -ACGGAACGACAAGCATACATGAGG -ACGGAACGACAAGCATACAATGGG -ACGGAACGACAAGCATACTCCTGA -ACGGAACGACAAGCATACTAGCGA -ACGGAACGACAAGCATACCACAGA -ACGGAACGACAAGCATACGCAAGA -ACGGAACGACAAGCATACGGTTGA -ACGGAACGACAAGCATACTCCGAT -ACGGAACGACAAGCATACTGGCAT -ACGGAACGACAAGCATACCGAGAT -ACGGAACGACAAGCATACTACCAC -ACGGAACGACAAGCATACCAGAAC -ACGGAACGACAAGCATACGTCTAC -ACGGAACGACAAGCATACACGTAC -ACGGAACGACAAGCATACAGTGAC -ACGGAACGACAAGCATACCTGTAG -ACGGAACGACAAGCATACCCTAAG -ACGGAACGACAAGCATACGTTCAG -ACGGAACGACAAGCATACGCATAG -ACGGAACGACAAGCATACGACAAG -ACGGAACGACAAGCATACAAGCAG -ACGGAACGACAAGCATACCGTCAA -ACGGAACGACAAGCATACGCTGAA -ACGGAACGACAAGCATACAGTACG -ACGGAACGACAAGCATACATCCGA -ACGGAACGACAAGCATACATGGGA -ACGGAACGACAAGCATACGTGCAA -ACGGAACGACAAGCATACGAGGAA -ACGGAACGACAAGCATACCAGGTA -ACGGAACGACAAGCATACGACTCT -ACGGAACGACAAGCATACAGTCCT -ACGGAACGACAAGCATACTAAGCC -ACGGAACGACAAGCATACATAGCC -ACGGAACGACAAGCATACTAACCG -ACGGAACGACAAGCATACATGCCA -ACGGAACGACAAGCACTTGGAAAC -ACGGAACGACAAGCACTTAACACC -ACGGAACGACAAGCACTTATCGAG -ACGGAACGACAAGCACTTCTCCTT -ACGGAACGACAAGCACTTCCTGTT -ACGGAACGACAAGCACTTCGGTTT -ACGGAACGACAAGCACTTGTGGTT -ACGGAACGACAAGCACTTGCCTTT -ACGGAACGACAAGCACTTGGTCTT -ACGGAACGACAAGCACTTACGCTT -ACGGAACGACAAGCACTTAGCGTT -ACGGAACGACAAGCACTTTTCGTC -ACGGAACGACAAGCACTTTCTCTC -ACGGAACGACAAGCACTTTGGATC -ACGGAACGACAAGCACTTCACTTC -ACGGAACGACAAGCACTTGTACTC -ACGGAACGACAAGCACTTGATGTC -ACGGAACGACAAGCACTTACAGTC -ACGGAACGACAAGCACTTTTGCTG -ACGGAACGACAAGCACTTTCCATG -ACGGAACGACAAGCACTTTGTGTG -ACGGAACGACAAGCACTTCTAGTG -ACGGAACGACAAGCACTTCATCTG -ACGGAACGACAAGCACTTGAGTTG -ACGGAACGACAAGCACTTAGACTG -ACGGAACGACAAGCACTTTCGGTA -ACGGAACGACAAGCACTTTGCCTA -ACGGAACGACAAGCACTTCCACTA -ACGGAACGACAAGCACTTGGAGTA -ACGGAACGACAAGCACTTTCGTCT -ACGGAACGACAAGCACTTTGCACT -ACGGAACGACAAGCACTTCTGACT -ACGGAACGACAAGCACTTCAACCT -ACGGAACGACAAGCACTTGCTACT -ACGGAACGACAAGCACTTGGATCT -ACGGAACGACAAGCACTTAAGGCT -ACGGAACGACAAGCACTTTCAACC -ACGGAACGACAAGCACTTTGTTCC -ACGGAACGACAAGCACTTATTCCC -ACGGAACGACAAGCACTTTTCTCG -ACGGAACGACAAGCACTTTAGACG -ACGGAACGACAAGCACTTGTAACG -ACGGAACGACAAGCACTTACTTCG -ACGGAACGACAAGCACTTTACGCA -ACGGAACGACAAGCACTTCTTGCA -ACGGAACGACAAGCACTTCGAACA -ACGGAACGACAAGCACTTCAGTCA -ACGGAACGACAAGCACTTGATCCA -ACGGAACGACAAGCACTTACGACA -ACGGAACGACAAGCACTTAGCTCA -ACGGAACGACAAGCACTTTCACGT -ACGGAACGACAAGCACTTCGTAGT -ACGGAACGACAAGCACTTGTCAGT -ACGGAACGACAAGCACTTGAAGGT -ACGGAACGACAAGCACTTAACCGT -ACGGAACGACAAGCACTTTTGTGC -ACGGAACGACAAGCACTTCTAAGC -ACGGAACGACAAGCACTTACTAGC -ACGGAACGACAAGCACTTAGATGC -ACGGAACGACAAGCACTTTGAAGG -ACGGAACGACAAGCACTTCAATGG -ACGGAACGACAAGCACTTATGAGG -ACGGAACGACAAGCACTTAATGGG -ACGGAACGACAAGCACTTTCCTGA -ACGGAACGACAAGCACTTTAGCGA -ACGGAACGACAAGCACTTCACAGA -ACGGAACGACAAGCACTTGCAAGA -ACGGAACGACAAGCACTTGGTTGA -ACGGAACGACAAGCACTTTCCGAT -ACGGAACGACAAGCACTTTGGCAT -ACGGAACGACAAGCACTTCGAGAT -ACGGAACGACAAGCACTTTACCAC -ACGGAACGACAAGCACTTCAGAAC -ACGGAACGACAAGCACTTGTCTAC -ACGGAACGACAAGCACTTACGTAC -ACGGAACGACAAGCACTTAGTGAC -ACGGAACGACAAGCACTTCTGTAG -ACGGAACGACAAGCACTTCCTAAG -ACGGAACGACAAGCACTTGTTCAG -ACGGAACGACAAGCACTTGCATAG -ACGGAACGACAAGCACTTGACAAG -ACGGAACGACAAGCACTTAAGCAG -ACGGAACGACAAGCACTTCGTCAA -ACGGAACGACAAGCACTTGCTGAA -ACGGAACGACAAGCACTTAGTACG -ACGGAACGACAAGCACTTATCCGA -ACGGAACGACAAGCACTTATGGGA -ACGGAACGACAAGCACTTGTGCAA -ACGGAACGACAAGCACTTGAGGAA -ACGGAACGACAAGCACTTCAGGTA -ACGGAACGACAAGCACTTGACTCT -ACGGAACGACAAGCACTTAGTCCT -ACGGAACGACAAGCACTTTAAGCC -ACGGAACGACAAGCACTTATAGCC -ACGGAACGACAAGCACTTTAACCG -ACGGAACGACAAGCACTTATGCCA -ACGGAACGACAAACACGAGGAAAC -ACGGAACGACAAACACGAAACACC -ACGGAACGACAAACACGAATCGAG -ACGGAACGACAAACACGACTCCTT -ACGGAACGACAAACACGACCTGTT -ACGGAACGACAAACACGACGGTTT -ACGGAACGACAAACACGAGTGGTT -ACGGAACGACAAACACGAGCCTTT -ACGGAACGACAAACACGAGGTCTT -ACGGAACGACAAACACGAACGCTT -ACGGAACGACAAACACGAAGCGTT -ACGGAACGACAAACACGATTCGTC -ACGGAACGACAAACACGATCTCTC -ACGGAACGACAAACACGATGGATC -ACGGAACGACAAACACGACACTTC -ACGGAACGACAAACACGAGTACTC -ACGGAACGACAAACACGAGATGTC -ACGGAACGACAAACACGAACAGTC -ACGGAACGACAAACACGATTGCTG -ACGGAACGACAAACACGATCCATG -ACGGAACGACAAACACGATGTGTG -ACGGAACGACAAACACGACTAGTG -ACGGAACGACAAACACGACATCTG -ACGGAACGACAAACACGAGAGTTG -ACGGAACGACAAACACGAAGACTG -ACGGAACGACAAACACGATCGGTA -ACGGAACGACAAACACGATGCCTA -ACGGAACGACAAACACGACCACTA -ACGGAACGACAAACACGAGGAGTA -ACGGAACGACAAACACGATCGTCT -ACGGAACGACAAACACGATGCACT -ACGGAACGACAAACACGACTGACT -ACGGAACGACAAACACGACAACCT -ACGGAACGACAAACACGAGCTACT -ACGGAACGACAAACACGAGGATCT -ACGGAACGACAAACACGAAAGGCT -ACGGAACGACAAACACGATCAACC -ACGGAACGACAAACACGATGTTCC -ACGGAACGACAAACACGAATTCCC -ACGGAACGACAAACACGATTCTCG -ACGGAACGACAAACACGATAGACG -ACGGAACGACAAACACGAGTAACG -ACGGAACGACAAACACGAACTTCG -ACGGAACGACAAACACGATACGCA -ACGGAACGACAAACACGACTTGCA -ACGGAACGACAAACACGACGAACA -ACGGAACGACAAACACGACAGTCA -ACGGAACGACAAACACGAGATCCA -ACGGAACGACAAACACGAACGACA -ACGGAACGACAAACACGAAGCTCA -ACGGAACGACAAACACGATCACGT -ACGGAACGACAAACACGACGTAGT -ACGGAACGACAAACACGAGTCAGT -ACGGAACGACAAACACGAGAAGGT -ACGGAACGACAAACACGAAACCGT -ACGGAACGACAAACACGATTGTGC -ACGGAACGACAAACACGACTAAGC -ACGGAACGACAAACACGAACTAGC -ACGGAACGACAAACACGAAGATGC -ACGGAACGACAAACACGATGAAGG -ACGGAACGACAAACACGACAATGG -ACGGAACGACAAACACGAATGAGG -ACGGAACGACAAACACGAAATGGG -ACGGAACGACAAACACGATCCTGA -ACGGAACGACAAACACGATAGCGA -ACGGAACGACAAACACGACACAGA -ACGGAACGACAAACACGAGCAAGA -ACGGAACGACAAACACGAGGTTGA -ACGGAACGACAAACACGATCCGAT -ACGGAACGACAAACACGATGGCAT -ACGGAACGACAAACACGACGAGAT -ACGGAACGACAAACACGATACCAC -ACGGAACGACAAACACGACAGAAC -ACGGAACGACAAACACGAGTCTAC -ACGGAACGACAAACACGAACGTAC -ACGGAACGACAAACACGAAGTGAC -ACGGAACGACAAACACGACTGTAG -ACGGAACGACAAACACGACCTAAG -ACGGAACGACAAACACGAGTTCAG -ACGGAACGACAAACACGAGCATAG -ACGGAACGACAAACACGAGACAAG -ACGGAACGACAAACACGAAAGCAG -ACGGAACGACAAACACGACGTCAA -ACGGAACGACAAACACGAGCTGAA -ACGGAACGACAAACACGAAGTACG -ACGGAACGACAAACACGAATCCGA -ACGGAACGACAAACACGAATGGGA -ACGGAACGACAAACACGAGTGCAA -ACGGAACGACAAACACGAGAGGAA -ACGGAACGACAAACACGACAGGTA -ACGGAACGACAAACACGAGACTCT -ACGGAACGACAAACACGAAGTCCT -ACGGAACGACAAACACGATAAGCC -ACGGAACGACAAACACGAATAGCC -ACGGAACGACAAACACGATAACCG -ACGGAACGACAAACACGAATGCCA -ACGGAACGACAATCACAGGGAAAC -ACGGAACGACAATCACAGAACACC -ACGGAACGACAATCACAGATCGAG -ACGGAACGACAATCACAGCTCCTT -ACGGAACGACAATCACAGCCTGTT -ACGGAACGACAATCACAGCGGTTT -ACGGAACGACAATCACAGGTGGTT -ACGGAACGACAATCACAGGCCTTT -ACGGAACGACAATCACAGGGTCTT -ACGGAACGACAATCACAGACGCTT -ACGGAACGACAATCACAGAGCGTT -ACGGAACGACAATCACAGTTCGTC -ACGGAACGACAATCACAGTCTCTC -ACGGAACGACAATCACAGTGGATC -ACGGAACGACAATCACAGCACTTC -ACGGAACGACAATCACAGGTACTC -ACGGAACGACAATCACAGGATGTC -ACGGAACGACAATCACAGACAGTC -ACGGAACGACAATCACAGTTGCTG -ACGGAACGACAATCACAGTCCATG -ACGGAACGACAATCACAGTGTGTG -ACGGAACGACAATCACAGCTAGTG -ACGGAACGACAATCACAGCATCTG -ACGGAACGACAATCACAGGAGTTG -ACGGAACGACAATCACAGAGACTG -ACGGAACGACAATCACAGTCGGTA -ACGGAACGACAATCACAGTGCCTA -ACGGAACGACAATCACAGCCACTA -ACGGAACGACAATCACAGGGAGTA -ACGGAACGACAATCACAGTCGTCT -ACGGAACGACAATCACAGTGCACT -ACGGAACGACAATCACAGCTGACT -ACGGAACGACAATCACAGCAACCT -ACGGAACGACAATCACAGGCTACT -ACGGAACGACAATCACAGGGATCT -ACGGAACGACAATCACAGAAGGCT -ACGGAACGACAATCACAGTCAACC -ACGGAACGACAATCACAGTGTTCC -ACGGAACGACAATCACAGATTCCC -ACGGAACGACAATCACAGTTCTCG -ACGGAACGACAATCACAGTAGACG -ACGGAACGACAATCACAGGTAACG -ACGGAACGACAATCACAGACTTCG -ACGGAACGACAATCACAGTACGCA -ACGGAACGACAATCACAGCTTGCA -ACGGAACGACAATCACAGCGAACA -ACGGAACGACAATCACAGCAGTCA -ACGGAACGACAATCACAGGATCCA -ACGGAACGACAATCACAGACGACA -ACGGAACGACAATCACAGAGCTCA -ACGGAACGACAATCACAGTCACGT -ACGGAACGACAATCACAGCGTAGT -ACGGAACGACAATCACAGGTCAGT -ACGGAACGACAATCACAGGAAGGT -ACGGAACGACAATCACAGAACCGT -ACGGAACGACAATCACAGTTGTGC -ACGGAACGACAATCACAGCTAAGC -ACGGAACGACAATCACAGACTAGC -ACGGAACGACAATCACAGAGATGC -ACGGAACGACAATCACAGTGAAGG -ACGGAACGACAATCACAGCAATGG -ACGGAACGACAATCACAGATGAGG -ACGGAACGACAATCACAGAATGGG -ACGGAACGACAATCACAGTCCTGA -ACGGAACGACAATCACAGTAGCGA -ACGGAACGACAATCACAGCACAGA -ACGGAACGACAATCACAGGCAAGA -ACGGAACGACAATCACAGGGTTGA -ACGGAACGACAATCACAGTCCGAT -ACGGAACGACAATCACAGTGGCAT -ACGGAACGACAATCACAGCGAGAT -ACGGAACGACAATCACAGTACCAC -ACGGAACGACAATCACAGCAGAAC -ACGGAACGACAATCACAGGTCTAC -ACGGAACGACAATCACAGACGTAC -ACGGAACGACAATCACAGAGTGAC -ACGGAACGACAATCACAGCTGTAG -ACGGAACGACAATCACAGCCTAAG -ACGGAACGACAATCACAGGTTCAG -ACGGAACGACAATCACAGGCATAG -ACGGAACGACAATCACAGGACAAG -ACGGAACGACAATCACAGAAGCAG -ACGGAACGACAATCACAGCGTCAA -ACGGAACGACAATCACAGGCTGAA -ACGGAACGACAATCACAGAGTACG -ACGGAACGACAATCACAGATCCGA -ACGGAACGACAATCACAGATGGGA -ACGGAACGACAATCACAGGTGCAA -ACGGAACGACAATCACAGGAGGAA -ACGGAACGACAATCACAGCAGGTA -ACGGAACGACAATCACAGGACTCT -ACGGAACGACAATCACAGAGTCCT -ACGGAACGACAATCACAGTAAGCC -ACGGAACGACAATCACAGATAGCC -ACGGAACGACAATCACAGTAACCG -ACGGAACGACAATCACAGATGCCA -ACGGAACGACAACCAGATGGAAAC -ACGGAACGACAACCAGATAACACC -ACGGAACGACAACCAGATATCGAG -ACGGAACGACAACCAGATCTCCTT -ACGGAACGACAACCAGATCCTGTT -ACGGAACGACAACCAGATCGGTTT -ACGGAACGACAACCAGATGTGGTT -ACGGAACGACAACCAGATGCCTTT -ACGGAACGACAACCAGATGGTCTT -ACGGAACGACAACCAGATACGCTT -ACGGAACGACAACCAGATAGCGTT -ACGGAACGACAACCAGATTTCGTC -ACGGAACGACAACCAGATTCTCTC -ACGGAACGACAACCAGATTGGATC -ACGGAACGACAACCAGATCACTTC -ACGGAACGACAACCAGATGTACTC -ACGGAACGACAACCAGATGATGTC -ACGGAACGACAACCAGATACAGTC -ACGGAACGACAACCAGATTTGCTG -ACGGAACGACAACCAGATTCCATG -ACGGAACGACAACCAGATTGTGTG -ACGGAACGACAACCAGATCTAGTG -ACGGAACGACAACCAGATCATCTG -ACGGAACGACAACCAGATGAGTTG -ACGGAACGACAACCAGATAGACTG -ACGGAACGACAACCAGATTCGGTA -ACGGAACGACAACCAGATTGCCTA -ACGGAACGACAACCAGATCCACTA -ACGGAACGACAACCAGATGGAGTA -ACGGAACGACAACCAGATTCGTCT -ACGGAACGACAACCAGATTGCACT -ACGGAACGACAACCAGATCTGACT -ACGGAACGACAACCAGATCAACCT -ACGGAACGACAACCAGATGCTACT -ACGGAACGACAACCAGATGGATCT -ACGGAACGACAACCAGATAAGGCT -ACGGAACGACAACCAGATTCAACC -ACGGAACGACAACCAGATTGTTCC -ACGGAACGACAACCAGATATTCCC -ACGGAACGACAACCAGATTTCTCG -ACGGAACGACAACCAGATTAGACG -ACGGAACGACAACCAGATGTAACG -ACGGAACGACAACCAGATACTTCG -ACGGAACGACAACCAGATTACGCA -ACGGAACGACAACCAGATCTTGCA -ACGGAACGACAACCAGATCGAACA -ACGGAACGACAACCAGATCAGTCA -ACGGAACGACAACCAGATGATCCA -ACGGAACGACAACCAGATACGACA -ACGGAACGACAACCAGATAGCTCA -ACGGAACGACAACCAGATTCACGT -ACGGAACGACAACCAGATCGTAGT -ACGGAACGACAACCAGATGTCAGT -ACGGAACGACAACCAGATGAAGGT -ACGGAACGACAACCAGATAACCGT -ACGGAACGACAACCAGATTTGTGC -ACGGAACGACAACCAGATCTAAGC -ACGGAACGACAACCAGATACTAGC -ACGGAACGACAACCAGATAGATGC -ACGGAACGACAACCAGATTGAAGG -ACGGAACGACAACCAGATCAATGG -ACGGAACGACAACCAGATATGAGG -ACGGAACGACAACCAGATAATGGG -ACGGAACGACAACCAGATTCCTGA -ACGGAACGACAACCAGATTAGCGA -ACGGAACGACAACCAGATCACAGA -ACGGAACGACAACCAGATGCAAGA -ACGGAACGACAACCAGATGGTTGA -ACGGAACGACAACCAGATTCCGAT -ACGGAACGACAACCAGATTGGCAT -ACGGAACGACAACCAGATCGAGAT -ACGGAACGACAACCAGATTACCAC -ACGGAACGACAACCAGATCAGAAC -ACGGAACGACAACCAGATGTCTAC -ACGGAACGACAACCAGATACGTAC -ACGGAACGACAACCAGATAGTGAC -ACGGAACGACAACCAGATCTGTAG -ACGGAACGACAACCAGATCCTAAG -ACGGAACGACAACCAGATGTTCAG -ACGGAACGACAACCAGATGCATAG -ACGGAACGACAACCAGATGACAAG -ACGGAACGACAACCAGATAAGCAG -ACGGAACGACAACCAGATCGTCAA -ACGGAACGACAACCAGATGCTGAA -ACGGAACGACAACCAGATAGTACG -ACGGAACGACAACCAGATATCCGA -ACGGAACGACAACCAGATATGGGA -ACGGAACGACAACCAGATGTGCAA -ACGGAACGACAACCAGATGAGGAA -ACGGAACGACAACCAGATCAGGTA -ACGGAACGACAACCAGATGACTCT -ACGGAACGACAACCAGATAGTCCT -ACGGAACGACAACCAGATTAAGCC -ACGGAACGACAACCAGATATAGCC -ACGGAACGACAACCAGATTAACCG -ACGGAACGACAACCAGATATGCCA -ACGGAACGACAAACAACGGGAAAC -ACGGAACGACAAACAACGAACACC -ACGGAACGACAAACAACGATCGAG -ACGGAACGACAAACAACGCTCCTT -ACGGAACGACAAACAACGCCTGTT -ACGGAACGACAAACAACGCGGTTT -ACGGAACGACAAACAACGGTGGTT -ACGGAACGACAAACAACGGCCTTT -ACGGAACGACAAACAACGGGTCTT -ACGGAACGACAAACAACGACGCTT -ACGGAACGACAAACAACGAGCGTT -ACGGAACGACAAACAACGTTCGTC -ACGGAACGACAAACAACGTCTCTC -ACGGAACGACAAACAACGTGGATC -ACGGAACGACAAACAACGCACTTC -ACGGAACGACAAACAACGGTACTC -ACGGAACGACAAACAACGGATGTC -ACGGAACGACAAACAACGACAGTC -ACGGAACGACAAACAACGTTGCTG -ACGGAACGACAAACAACGTCCATG -ACGGAACGACAAACAACGTGTGTG -ACGGAACGACAAACAACGCTAGTG -ACGGAACGACAAACAACGCATCTG -ACGGAACGACAAACAACGGAGTTG -ACGGAACGACAAACAACGAGACTG -ACGGAACGACAAACAACGTCGGTA -ACGGAACGACAAACAACGTGCCTA -ACGGAACGACAAACAACGCCACTA -ACGGAACGACAAACAACGGGAGTA -ACGGAACGACAAACAACGTCGTCT -ACGGAACGACAAACAACGTGCACT -ACGGAACGACAAACAACGCTGACT -ACGGAACGACAAACAACGCAACCT -ACGGAACGACAAACAACGGCTACT -ACGGAACGACAAACAACGGGATCT -ACGGAACGACAAACAACGAAGGCT -ACGGAACGACAAACAACGTCAACC -ACGGAACGACAAACAACGTGTTCC -ACGGAACGACAAACAACGATTCCC -ACGGAACGACAAACAACGTTCTCG -ACGGAACGACAAACAACGTAGACG -ACGGAACGACAAACAACGGTAACG -ACGGAACGACAAACAACGACTTCG -ACGGAACGACAAACAACGTACGCA -ACGGAACGACAAACAACGCTTGCA -ACGGAACGACAAACAACGCGAACA -ACGGAACGACAAACAACGCAGTCA -ACGGAACGACAAACAACGGATCCA -ACGGAACGACAAACAACGACGACA -ACGGAACGACAAACAACGAGCTCA -ACGGAACGACAAACAACGTCACGT -ACGGAACGACAAACAACGCGTAGT -ACGGAACGACAAACAACGGTCAGT -ACGGAACGACAAACAACGGAAGGT -ACGGAACGACAAACAACGAACCGT -ACGGAACGACAAACAACGTTGTGC -ACGGAACGACAAACAACGCTAAGC -ACGGAACGACAAACAACGACTAGC -ACGGAACGACAAACAACGAGATGC -ACGGAACGACAAACAACGTGAAGG -ACGGAACGACAAACAACGCAATGG -ACGGAACGACAAACAACGATGAGG -ACGGAACGACAAACAACGAATGGG -ACGGAACGACAAACAACGTCCTGA -ACGGAACGACAAACAACGTAGCGA -ACGGAACGACAAACAACGCACAGA -ACGGAACGACAAACAACGGCAAGA -ACGGAACGACAAACAACGGGTTGA -ACGGAACGACAAACAACGTCCGAT -ACGGAACGACAAACAACGTGGCAT -ACGGAACGACAAACAACGCGAGAT -ACGGAACGACAAACAACGTACCAC -ACGGAACGACAAACAACGCAGAAC -ACGGAACGACAAACAACGGTCTAC -ACGGAACGACAAACAACGACGTAC -ACGGAACGACAAACAACGAGTGAC -ACGGAACGACAAACAACGCTGTAG -ACGGAACGACAAACAACGCCTAAG -ACGGAACGACAAACAACGGTTCAG -ACGGAACGACAAACAACGGCATAG -ACGGAACGACAAACAACGGACAAG -ACGGAACGACAAACAACGAAGCAG -ACGGAACGACAAACAACGCGTCAA -ACGGAACGACAAACAACGGCTGAA -ACGGAACGACAAACAACGAGTACG -ACGGAACGACAAACAACGATCCGA -ACGGAACGACAAACAACGATGGGA -ACGGAACGACAAACAACGGTGCAA -ACGGAACGACAAACAACGGAGGAA -ACGGAACGACAAACAACGCAGGTA -ACGGAACGACAAACAACGGACTCT -ACGGAACGACAAACAACGAGTCCT -ACGGAACGACAAACAACGTAAGCC -ACGGAACGACAAACAACGATAGCC -ACGGAACGACAAACAACGTAACCG -ACGGAACGACAAACAACGATGCCA -ACGGAACGACAATCAAGCGGAAAC -ACGGAACGACAATCAAGCAACACC -ACGGAACGACAATCAAGCATCGAG -ACGGAACGACAATCAAGCCTCCTT -ACGGAACGACAATCAAGCCCTGTT -ACGGAACGACAATCAAGCCGGTTT -ACGGAACGACAATCAAGCGTGGTT -ACGGAACGACAATCAAGCGCCTTT -ACGGAACGACAATCAAGCGGTCTT -ACGGAACGACAATCAAGCACGCTT -ACGGAACGACAATCAAGCAGCGTT -ACGGAACGACAATCAAGCTTCGTC -ACGGAACGACAATCAAGCTCTCTC -ACGGAACGACAATCAAGCTGGATC -ACGGAACGACAATCAAGCCACTTC -ACGGAACGACAATCAAGCGTACTC -ACGGAACGACAATCAAGCGATGTC -ACGGAACGACAATCAAGCACAGTC -ACGGAACGACAATCAAGCTTGCTG -ACGGAACGACAATCAAGCTCCATG -ACGGAACGACAATCAAGCTGTGTG -ACGGAACGACAATCAAGCCTAGTG -ACGGAACGACAATCAAGCCATCTG -ACGGAACGACAATCAAGCGAGTTG -ACGGAACGACAATCAAGCAGACTG -ACGGAACGACAATCAAGCTCGGTA -ACGGAACGACAATCAAGCTGCCTA -ACGGAACGACAATCAAGCCCACTA -ACGGAACGACAATCAAGCGGAGTA -ACGGAACGACAATCAAGCTCGTCT -ACGGAACGACAATCAAGCTGCACT -ACGGAACGACAATCAAGCCTGACT -ACGGAACGACAATCAAGCCAACCT -ACGGAACGACAATCAAGCGCTACT -ACGGAACGACAATCAAGCGGATCT -ACGGAACGACAATCAAGCAAGGCT -ACGGAACGACAATCAAGCTCAACC -ACGGAACGACAATCAAGCTGTTCC -ACGGAACGACAATCAAGCATTCCC -ACGGAACGACAATCAAGCTTCTCG -ACGGAACGACAATCAAGCTAGACG -ACGGAACGACAATCAAGCGTAACG -ACGGAACGACAATCAAGCACTTCG -ACGGAACGACAATCAAGCTACGCA -ACGGAACGACAATCAAGCCTTGCA -ACGGAACGACAATCAAGCCGAACA -ACGGAACGACAATCAAGCCAGTCA -ACGGAACGACAATCAAGCGATCCA -ACGGAACGACAATCAAGCACGACA -ACGGAACGACAATCAAGCAGCTCA -ACGGAACGACAATCAAGCTCACGT -ACGGAACGACAATCAAGCCGTAGT -ACGGAACGACAATCAAGCGTCAGT -ACGGAACGACAATCAAGCGAAGGT -ACGGAACGACAATCAAGCAACCGT -ACGGAACGACAATCAAGCTTGTGC -ACGGAACGACAATCAAGCCTAAGC -ACGGAACGACAATCAAGCACTAGC -ACGGAACGACAATCAAGCAGATGC -ACGGAACGACAATCAAGCTGAAGG -ACGGAACGACAATCAAGCCAATGG -ACGGAACGACAATCAAGCATGAGG -ACGGAACGACAATCAAGCAATGGG -ACGGAACGACAATCAAGCTCCTGA -ACGGAACGACAATCAAGCTAGCGA -ACGGAACGACAATCAAGCCACAGA -ACGGAACGACAATCAAGCGCAAGA -ACGGAACGACAATCAAGCGGTTGA -ACGGAACGACAATCAAGCTCCGAT -ACGGAACGACAATCAAGCTGGCAT -ACGGAACGACAATCAAGCCGAGAT -ACGGAACGACAATCAAGCTACCAC -ACGGAACGACAATCAAGCCAGAAC -ACGGAACGACAATCAAGCGTCTAC -ACGGAACGACAATCAAGCACGTAC -ACGGAACGACAATCAAGCAGTGAC -ACGGAACGACAATCAAGCCTGTAG -ACGGAACGACAATCAAGCCCTAAG -ACGGAACGACAATCAAGCGTTCAG -ACGGAACGACAATCAAGCGCATAG -ACGGAACGACAATCAAGCGACAAG -ACGGAACGACAATCAAGCAAGCAG -ACGGAACGACAATCAAGCCGTCAA -ACGGAACGACAATCAAGCGCTGAA -ACGGAACGACAATCAAGCAGTACG -ACGGAACGACAATCAAGCATCCGA -ACGGAACGACAATCAAGCATGGGA -ACGGAACGACAATCAAGCGTGCAA -ACGGAACGACAATCAAGCGAGGAA -ACGGAACGACAATCAAGCCAGGTA -ACGGAACGACAATCAAGCGACTCT -ACGGAACGACAATCAAGCAGTCCT -ACGGAACGACAATCAAGCTAAGCC -ACGGAACGACAATCAAGCATAGCC -ACGGAACGACAATCAAGCTAACCG -ACGGAACGACAATCAAGCATGCCA -ACGGAACGACAACGTTCAGGAAAC -ACGGAACGACAACGTTCAAACACC -ACGGAACGACAACGTTCAATCGAG -ACGGAACGACAACGTTCACTCCTT -ACGGAACGACAACGTTCACCTGTT -ACGGAACGACAACGTTCACGGTTT -ACGGAACGACAACGTTCAGTGGTT -ACGGAACGACAACGTTCAGCCTTT -ACGGAACGACAACGTTCAGGTCTT -ACGGAACGACAACGTTCAACGCTT -ACGGAACGACAACGTTCAAGCGTT -ACGGAACGACAACGTTCATTCGTC -ACGGAACGACAACGTTCATCTCTC -ACGGAACGACAACGTTCATGGATC -ACGGAACGACAACGTTCACACTTC -ACGGAACGACAACGTTCAGTACTC -ACGGAACGACAACGTTCAGATGTC -ACGGAACGACAACGTTCAACAGTC -ACGGAACGACAACGTTCATTGCTG -ACGGAACGACAACGTTCATCCATG -ACGGAACGACAACGTTCATGTGTG -ACGGAACGACAACGTTCACTAGTG -ACGGAACGACAACGTTCACATCTG -ACGGAACGACAACGTTCAGAGTTG -ACGGAACGACAACGTTCAAGACTG -ACGGAACGACAACGTTCATCGGTA -ACGGAACGACAACGTTCATGCCTA -ACGGAACGACAACGTTCACCACTA -ACGGAACGACAACGTTCAGGAGTA -ACGGAACGACAACGTTCATCGTCT -ACGGAACGACAACGTTCATGCACT -ACGGAACGACAACGTTCACTGACT -ACGGAACGACAACGTTCACAACCT -ACGGAACGACAACGTTCAGCTACT -ACGGAACGACAACGTTCAGGATCT -ACGGAACGACAACGTTCAAAGGCT -ACGGAACGACAACGTTCATCAACC -ACGGAACGACAACGTTCATGTTCC -ACGGAACGACAACGTTCAATTCCC -ACGGAACGACAACGTTCATTCTCG -ACGGAACGACAACGTTCATAGACG -ACGGAACGACAACGTTCAGTAACG -ACGGAACGACAACGTTCAACTTCG -ACGGAACGACAACGTTCATACGCA -ACGGAACGACAACGTTCACTTGCA -ACGGAACGACAACGTTCACGAACA -ACGGAACGACAACGTTCACAGTCA -ACGGAACGACAACGTTCAGATCCA -ACGGAACGACAACGTTCAACGACA -ACGGAACGACAACGTTCAAGCTCA -ACGGAACGACAACGTTCATCACGT -ACGGAACGACAACGTTCACGTAGT -ACGGAACGACAACGTTCAGTCAGT -ACGGAACGACAACGTTCAGAAGGT -ACGGAACGACAACGTTCAAACCGT -ACGGAACGACAACGTTCATTGTGC -ACGGAACGACAACGTTCACTAAGC -ACGGAACGACAACGTTCAACTAGC -ACGGAACGACAACGTTCAAGATGC -ACGGAACGACAACGTTCATGAAGG -ACGGAACGACAACGTTCACAATGG -ACGGAACGACAACGTTCAATGAGG -ACGGAACGACAACGTTCAAATGGG -ACGGAACGACAACGTTCATCCTGA -ACGGAACGACAACGTTCATAGCGA -ACGGAACGACAACGTTCACACAGA -ACGGAACGACAACGTTCAGCAAGA -ACGGAACGACAACGTTCAGGTTGA -ACGGAACGACAACGTTCATCCGAT -ACGGAACGACAACGTTCATGGCAT -ACGGAACGACAACGTTCACGAGAT -ACGGAACGACAACGTTCATACCAC -ACGGAACGACAACGTTCACAGAAC -ACGGAACGACAACGTTCAGTCTAC -ACGGAACGACAACGTTCAACGTAC -ACGGAACGACAACGTTCAAGTGAC -ACGGAACGACAACGTTCACTGTAG -ACGGAACGACAACGTTCACCTAAG -ACGGAACGACAACGTTCAGTTCAG -ACGGAACGACAACGTTCAGCATAG -ACGGAACGACAACGTTCAGACAAG -ACGGAACGACAACGTTCAAAGCAG -ACGGAACGACAACGTTCACGTCAA -ACGGAACGACAACGTTCAGCTGAA -ACGGAACGACAACGTTCAAGTACG -ACGGAACGACAACGTTCAATCCGA -ACGGAACGACAACGTTCAATGGGA -ACGGAACGACAACGTTCAGTGCAA -ACGGAACGACAACGTTCAGAGGAA -ACGGAACGACAACGTTCACAGGTA -ACGGAACGACAACGTTCAGACTCT -ACGGAACGACAACGTTCAAGTCCT -ACGGAACGACAACGTTCATAAGCC -ACGGAACGACAACGTTCAATAGCC -ACGGAACGACAACGTTCATAACCG -ACGGAACGACAACGTTCAATGCCA -ACGGAACGACAAAGTCGTGGAAAC -ACGGAACGACAAAGTCGTAACACC -ACGGAACGACAAAGTCGTATCGAG -ACGGAACGACAAAGTCGTCTCCTT -ACGGAACGACAAAGTCGTCCTGTT -ACGGAACGACAAAGTCGTCGGTTT -ACGGAACGACAAAGTCGTGTGGTT -ACGGAACGACAAAGTCGTGCCTTT -ACGGAACGACAAAGTCGTGGTCTT -ACGGAACGACAAAGTCGTACGCTT -ACGGAACGACAAAGTCGTAGCGTT -ACGGAACGACAAAGTCGTTTCGTC -ACGGAACGACAAAGTCGTTCTCTC -ACGGAACGACAAAGTCGTTGGATC -ACGGAACGACAAAGTCGTCACTTC -ACGGAACGACAAAGTCGTGTACTC -ACGGAACGACAAAGTCGTGATGTC -ACGGAACGACAAAGTCGTACAGTC -ACGGAACGACAAAGTCGTTTGCTG -ACGGAACGACAAAGTCGTTCCATG -ACGGAACGACAAAGTCGTTGTGTG -ACGGAACGACAAAGTCGTCTAGTG -ACGGAACGACAAAGTCGTCATCTG -ACGGAACGACAAAGTCGTGAGTTG -ACGGAACGACAAAGTCGTAGACTG -ACGGAACGACAAAGTCGTTCGGTA -ACGGAACGACAAAGTCGTTGCCTA -ACGGAACGACAAAGTCGTCCACTA -ACGGAACGACAAAGTCGTGGAGTA -ACGGAACGACAAAGTCGTTCGTCT -ACGGAACGACAAAGTCGTTGCACT -ACGGAACGACAAAGTCGTCTGACT -ACGGAACGACAAAGTCGTCAACCT -ACGGAACGACAAAGTCGTGCTACT -ACGGAACGACAAAGTCGTGGATCT -ACGGAACGACAAAGTCGTAAGGCT -ACGGAACGACAAAGTCGTTCAACC -ACGGAACGACAAAGTCGTTGTTCC -ACGGAACGACAAAGTCGTATTCCC -ACGGAACGACAAAGTCGTTTCTCG -ACGGAACGACAAAGTCGTTAGACG -ACGGAACGACAAAGTCGTGTAACG -ACGGAACGACAAAGTCGTACTTCG -ACGGAACGACAAAGTCGTTACGCA -ACGGAACGACAAAGTCGTCTTGCA -ACGGAACGACAAAGTCGTCGAACA -ACGGAACGACAAAGTCGTCAGTCA -ACGGAACGACAAAGTCGTGATCCA -ACGGAACGACAAAGTCGTACGACA -ACGGAACGACAAAGTCGTAGCTCA -ACGGAACGACAAAGTCGTTCACGT -ACGGAACGACAAAGTCGTCGTAGT -ACGGAACGACAAAGTCGTGTCAGT -ACGGAACGACAAAGTCGTGAAGGT -ACGGAACGACAAAGTCGTAACCGT -ACGGAACGACAAAGTCGTTTGTGC -ACGGAACGACAAAGTCGTCTAAGC -ACGGAACGACAAAGTCGTACTAGC -ACGGAACGACAAAGTCGTAGATGC -ACGGAACGACAAAGTCGTTGAAGG -ACGGAACGACAAAGTCGTCAATGG -ACGGAACGACAAAGTCGTATGAGG -ACGGAACGACAAAGTCGTAATGGG -ACGGAACGACAAAGTCGTTCCTGA -ACGGAACGACAAAGTCGTTAGCGA -ACGGAACGACAAAGTCGTCACAGA -ACGGAACGACAAAGTCGTGCAAGA -ACGGAACGACAAAGTCGTGGTTGA -ACGGAACGACAAAGTCGTTCCGAT -ACGGAACGACAAAGTCGTTGGCAT -ACGGAACGACAAAGTCGTCGAGAT -ACGGAACGACAAAGTCGTTACCAC -ACGGAACGACAAAGTCGTCAGAAC -ACGGAACGACAAAGTCGTGTCTAC -ACGGAACGACAAAGTCGTACGTAC -ACGGAACGACAAAGTCGTAGTGAC -ACGGAACGACAAAGTCGTCTGTAG -ACGGAACGACAAAGTCGTCCTAAG -ACGGAACGACAAAGTCGTGTTCAG -ACGGAACGACAAAGTCGTGCATAG -ACGGAACGACAAAGTCGTGACAAG -ACGGAACGACAAAGTCGTAAGCAG -ACGGAACGACAAAGTCGTCGTCAA -ACGGAACGACAAAGTCGTGCTGAA -ACGGAACGACAAAGTCGTAGTACG -ACGGAACGACAAAGTCGTATCCGA -ACGGAACGACAAAGTCGTATGGGA -ACGGAACGACAAAGTCGTGTGCAA -ACGGAACGACAAAGTCGTGAGGAA -ACGGAACGACAAAGTCGTCAGGTA -ACGGAACGACAAAGTCGTGACTCT -ACGGAACGACAAAGTCGTAGTCCT -ACGGAACGACAAAGTCGTTAAGCC -ACGGAACGACAAAGTCGTATAGCC -ACGGAACGACAAAGTCGTTAACCG -ACGGAACGACAAAGTCGTATGCCA -ACGGAACGACAAAGTGTCGGAAAC -ACGGAACGACAAAGTGTCAACACC -ACGGAACGACAAAGTGTCATCGAG -ACGGAACGACAAAGTGTCCTCCTT -ACGGAACGACAAAGTGTCCCTGTT -ACGGAACGACAAAGTGTCCGGTTT -ACGGAACGACAAAGTGTCGTGGTT -ACGGAACGACAAAGTGTCGCCTTT -ACGGAACGACAAAGTGTCGGTCTT -ACGGAACGACAAAGTGTCACGCTT -ACGGAACGACAAAGTGTCAGCGTT -ACGGAACGACAAAGTGTCTTCGTC -ACGGAACGACAAAGTGTCTCTCTC -ACGGAACGACAAAGTGTCTGGATC -ACGGAACGACAAAGTGTCCACTTC -ACGGAACGACAAAGTGTCGTACTC -ACGGAACGACAAAGTGTCGATGTC -ACGGAACGACAAAGTGTCACAGTC -ACGGAACGACAAAGTGTCTTGCTG -ACGGAACGACAAAGTGTCTCCATG -ACGGAACGACAAAGTGTCTGTGTG -ACGGAACGACAAAGTGTCCTAGTG -ACGGAACGACAAAGTGTCCATCTG -ACGGAACGACAAAGTGTCGAGTTG -ACGGAACGACAAAGTGTCAGACTG -ACGGAACGACAAAGTGTCTCGGTA -ACGGAACGACAAAGTGTCTGCCTA -ACGGAACGACAAAGTGTCCCACTA -ACGGAACGACAAAGTGTCGGAGTA -ACGGAACGACAAAGTGTCTCGTCT -ACGGAACGACAAAGTGTCTGCACT -ACGGAACGACAAAGTGTCCTGACT -ACGGAACGACAAAGTGTCCAACCT -ACGGAACGACAAAGTGTCGCTACT -ACGGAACGACAAAGTGTCGGATCT -ACGGAACGACAAAGTGTCAAGGCT -ACGGAACGACAAAGTGTCTCAACC -ACGGAACGACAAAGTGTCTGTTCC -ACGGAACGACAAAGTGTCATTCCC -ACGGAACGACAAAGTGTCTTCTCG -ACGGAACGACAAAGTGTCTAGACG -ACGGAACGACAAAGTGTCGTAACG -ACGGAACGACAAAGTGTCACTTCG -ACGGAACGACAAAGTGTCTACGCA -ACGGAACGACAAAGTGTCCTTGCA -ACGGAACGACAAAGTGTCCGAACA -ACGGAACGACAAAGTGTCCAGTCA -ACGGAACGACAAAGTGTCGATCCA -ACGGAACGACAAAGTGTCACGACA -ACGGAACGACAAAGTGTCAGCTCA -ACGGAACGACAAAGTGTCTCACGT -ACGGAACGACAAAGTGTCCGTAGT -ACGGAACGACAAAGTGTCGTCAGT -ACGGAACGACAAAGTGTCGAAGGT -ACGGAACGACAAAGTGTCAACCGT -ACGGAACGACAAAGTGTCTTGTGC -ACGGAACGACAAAGTGTCCTAAGC -ACGGAACGACAAAGTGTCACTAGC -ACGGAACGACAAAGTGTCAGATGC -ACGGAACGACAAAGTGTCTGAAGG -ACGGAACGACAAAGTGTCCAATGG -ACGGAACGACAAAGTGTCATGAGG -ACGGAACGACAAAGTGTCAATGGG -ACGGAACGACAAAGTGTCTCCTGA -ACGGAACGACAAAGTGTCTAGCGA -ACGGAACGACAAAGTGTCCACAGA -ACGGAACGACAAAGTGTCGCAAGA -ACGGAACGACAAAGTGTCGGTTGA -ACGGAACGACAAAGTGTCTCCGAT -ACGGAACGACAAAGTGTCTGGCAT -ACGGAACGACAAAGTGTCCGAGAT -ACGGAACGACAAAGTGTCTACCAC -ACGGAACGACAAAGTGTCCAGAAC -ACGGAACGACAAAGTGTCGTCTAC -ACGGAACGACAAAGTGTCACGTAC -ACGGAACGACAAAGTGTCAGTGAC -ACGGAACGACAAAGTGTCCTGTAG -ACGGAACGACAAAGTGTCCCTAAG -ACGGAACGACAAAGTGTCGTTCAG -ACGGAACGACAAAGTGTCGCATAG -ACGGAACGACAAAGTGTCGACAAG -ACGGAACGACAAAGTGTCAAGCAG -ACGGAACGACAAAGTGTCCGTCAA -ACGGAACGACAAAGTGTCGCTGAA -ACGGAACGACAAAGTGTCAGTACG -ACGGAACGACAAAGTGTCATCCGA -ACGGAACGACAAAGTGTCATGGGA -ACGGAACGACAAAGTGTCGTGCAA -ACGGAACGACAAAGTGTCGAGGAA -ACGGAACGACAAAGTGTCCAGGTA -ACGGAACGACAAAGTGTCGACTCT -ACGGAACGACAAAGTGTCAGTCCT -ACGGAACGACAAAGTGTCTAAGCC -ACGGAACGACAAAGTGTCATAGCC -ACGGAACGACAAAGTGTCTAACCG -ACGGAACGACAAAGTGTCATGCCA -ACGGAACGACAAGGTGAAGGAAAC -ACGGAACGACAAGGTGAAAACACC -ACGGAACGACAAGGTGAAATCGAG -ACGGAACGACAAGGTGAACTCCTT -ACGGAACGACAAGGTGAACCTGTT -ACGGAACGACAAGGTGAACGGTTT -ACGGAACGACAAGGTGAAGTGGTT -ACGGAACGACAAGGTGAAGCCTTT -ACGGAACGACAAGGTGAAGGTCTT -ACGGAACGACAAGGTGAAACGCTT -ACGGAACGACAAGGTGAAAGCGTT -ACGGAACGACAAGGTGAATTCGTC -ACGGAACGACAAGGTGAATCTCTC -ACGGAACGACAAGGTGAATGGATC -ACGGAACGACAAGGTGAACACTTC -ACGGAACGACAAGGTGAAGTACTC -ACGGAACGACAAGGTGAAGATGTC -ACGGAACGACAAGGTGAAACAGTC -ACGGAACGACAAGGTGAATTGCTG -ACGGAACGACAAGGTGAATCCATG -ACGGAACGACAAGGTGAATGTGTG -ACGGAACGACAAGGTGAACTAGTG -ACGGAACGACAAGGTGAACATCTG -ACGGAACGACAAGGTGAAGAGTTG -ACGGAACGACAAGGTGAAAGACTG -ACGGAACGACAAGGTGAATCGGTA -ACGGAACGACAAGGTGAATGCCTA -ACGGAACGACAAGGTGAACCACTA -ACGGAACGACAAGGTGAAGGAGTA -ACGGAACGACAAGGTGAATCGTCT -ACGGAACGACAAGGTGAATGCACT -ACGGAACGACAAGGTGAACTGACT -ACGGAACGACAAGGTGAACAACCT -ACGGAACGACAAGGTGAAGCTACT -ACGGAACGACAAGGTGAAGGATCT -ACGGAACGACAAGGTGAAAAGGCT -ACGGAACGACAAGGTGAATCAACC -ACGGAACGACAAGGTGAATGTTCC -ACGGAACGACAAGGTGAAATTCCC -ACGGAACGACAAGGTGAATTCTCG -ACGGAACGACAAGGTGAATAGACG -ACGGAACGACAAGGTGAAGTAACG -ACGGAACGACAAGGTGAAACTTCG -ACGGAACGACAAGGTGAATACGCA -ACGGAACGACAAGGTGAACTTGCA -ACGGAACGACAAGGTGAACGAACA -ACGGAACGACAAGGTGAACAGTCA -ACGGAACGACAAGGTGAAGATCCA -ACGGAACGACAAGGTGAAACGACA -ACGGAACGACAAGGTGAAAGCTCA -ACGGAACGACAAGGTGAATCACGT -ACGGAACGACAAGGTGAACGTAGT -ACGGAACGACAAGGTGAAGTCAGT -ACGGAACGACAAGGTGAAGAAGGT -ACGGAACGACAAGGTGAAAACCGT -ACGGAACGACAAGGTGAATTGTGC -ACGGAACGACAAGGTGAACTAAGC -ACGGAACGACAAGGTGAAACTAGC -ACGGAACGACAAGGTGAAAGATGC -ACGGAACGACAAGGTGAATGAAGG -ACGGAACGACAAGGTGAACAATGG -ACGGAACGACAAGGTGAAATGAGG -ACGGAACGACAAGGTGAAAATGGG -ACGGAACGACAAGGTGAATCCTGA -ACGGAACGACAAGGTGAATAGCGA -ACGGAACGACAAGGTGAACACAGA -ACGGAACGACAAGGTGAAGCAAGA -ACGGAACGACAAGGTGAAGGTTGA -ACGGAACGACAAGGTGAATCCGAT -ACGGAACGACAAGGTGAATGGCAT -ACGGAACGACAAGGTGAACGAGAT -ACGGAACGACAAGGTGAATACCAC -ACGGAACGACAAGGTGAACAGAAC -ACGGAACGACAAGGTGAAGTCTAC -ACGGAACGACAAGGTGAAACGTAC -ACGGAACGACAAGGTGAAAGTGAC -ACGGAACGACAAGGTGAACTGTAG -ACGGAACGACAAGGTGAACCTAAG -ACGGAACGACAAGGTGAAGTTCAG -ACGGAACGACAAGGTGAAGCATAG -ACGGAACGACAAGGTGAAGACAAG -ACGGAACGACAAGGTGAAAAGCAG -ACGGAACGACAAGGTGAACGTCAA -ACGGAACGACAAGGTGAAGCTGAA -ACGGAACGACAAGGTGAAAGTACG -ACGGAACGACAAGGTGAAATCCGA -ACGGAACGACAAGGTGAAATGGGA -ACGGAACGACAAGGTGAAGTGCAA -ACGGAACGACAAGGTGAAGAGGAA -ACGGAACGACAAGGTGAACAGGTA -ACGGAACGACAAGGTGAAGACTCT -ACGGAACGACAAGGTGAAAGTCCT -ACGGAACGACAAGGTGAATAAGCC -ACGGAACGACAAGGTGAAATAGCC -ACGGAACGACAAGGTGAATAACCG -ACGGAACGACAAGGTGAAATGCCA -ACGGAACGACAACGTAACGGAAAC -ACGGAACGACAACGTAACAACACC -ACGGAACGACAACGTAACATCGAG -ACGGAACGACAACGTAACCTCCTT -ACGGAACGACAACGTAACCCTGTT -ACGGAACGACAACGTAACCGGTTT -ACGGAACGACAACGTAACGTGGTT -ACGGAACGACAACGTAACGCCTTT -ACGGAACGACAACGTAACGGTCTT -ACGGAACGACAACGTAACACGCTT -ACGGAACGACAACGTAACAGCGTT -ACGGAACGACAACGTAACTTCGTC -ACGGAACGACAACGTAACTCTCTC -ACGGAACGACAACGTAACTGGATC -ACGGAACGACAACGTAACCACTTC -ACGGAACGACAACGTAACGTACTC -ACGGAACGACAACGTAACGATGTC -ACGGAACGACAACGTAACACAGTC -ACGGAACGACAACGTAACTTGCTG -ACGGAACGACAACGTAACTCCATG -ACGGAACGACAACGTAACTGTGTG -ACGGAACGACAACGTAACCTAGTG -ACGGAACGACAACGTAACCATCTG -ACGGAACGACAACGTAACGAGTTG -ACGGAACGACAACGTAACAGACTG -ACGGAACGACAACGTAACTCGGTA -ACGGAACGACAACGTAACTGCCTA -ACGGAACGACAACGTAACCCACTA -ACGGAACGACAACGTAACGGAGTA -ACGGAACGACAACGTAACTCGTCT -ACGGAACGACAACGTAACTGCACT -ACGGAACGACAACGTAACCTGACT -ACGGAACGACAACGTAACCAACCT -ACGGAACGACAACGTAACGCTACT -ACGGAACGACAACGTAACGGATCT -ACGGAACGACAACGTAACAAGGCT -ACGGAACGACAACGTAACTCAACC -ACGGAACGACAACGTAACTGTTCC -ACGGAACGACAACGTAACATTCCC -ACGGAACGACAACGTAACTTCTCG -ACGGAACGACAACGTAACTAGACG -ACGGAACGACAACGTAACGTAACG -ACGGAACGACAACGTAACACTTCG -ACGGAACGACAACGTAACTACGCA -ACGGAACGACAACGTAACCTTGCA -ACGGAACGACAACGTAACCGAACA -ACGGAACGACAACGTAACCAGTCA -ACGGAACGACAACGTAACGATCCA -ACGGAACGACAACGTAACACGACA -ACGGAACGACAACGTAACAGCTCA -ACGGAACGACAACGTAACTCACGT -ACGGAACGACAACGTAACCGTAGT -ACGGAACGACAACGTAACGTCAGT -ACGGAACGACAACGTAACGAAGGT -ACGGAACGACAACGTAACAACCGT -ACGGAACGACAACGTAACTTGTGC -ACGGAACGACAACGTAACCTAAGC -ACGGAACGACAACGTAACACTAGC -ACGGAACGACAACGTAACAGATGC -ACGGAACGACAACGTAACTGAAGG -ACGGAACGACAACGTAACCAATGG -ACGGAACGACAACGTAACATGAGG -ACGGAACGACAACGTAACAATGGG -ACGGAACGACAACGTAACTCCTGA -ACGGAACGACAACGTAACTAGCGA -ACGGAACGACAACGTAACCACAGA -ACGGAACGACAACGTAACGCAAGA -ACGGAACGACAACGTAACGGTTGA -ACGGAACGACAACGTAACTCCGAT -ACGGAACGACAACGTAACTGGCAT -ACGGAACGACAACGTAACCGAGAT -ACGGAACGACAACGTAACTACCAC -ACGGAACGACAACGTAACCAGAAC -ACGGAACGACAACGTAACGTCTAC -ACGGAACGACAACGTAACACGTAC -ACGGAACGACAACGTAACAGTGAC -ACGGAACGACAACGTAACCTGTAG -ACGGAACGACAACGTAACCCTAAG -ACGGAACGACAACGTAACGTTCAG -ACGGAACGACAACGTAACGCATAG -ACGGAACGACAACGTAACGACAAG -ACGGAACGACAACGTAACAAGCAG -ACGGAACGACAACGTAACCGTCAA -ACGGAACGACAACGTAACGCTGAA -ACGGAACGACAACGTAACAGTACG -ACGGAACGACAACGTAACATCCGA -ACGGAACGACAACGTAACATGGGA -ACGGAACGACAACGTAACGTGCAA -ACGGAACGACAACGTAACGAGGAA -ACGGAACGACAACGTAACCAGGTA -ACGGAACGACAACGTAACGACTCT -ACGGAACGACAACGTAACAGTCCT -ACGGAACGACAACGTAACTAAGCC -ACGGAACGACAACGTAACATAGCC -ACGGAACGACAACGTAACTAACCG -ACGGAACGACAACGTAACATGCCA -ACGGAACGACAATGCTTGGGAAAC -ACGGAACGACAATGCTTGAACACC -ACGGAACGACAATGCTTGATCGAG -ACGGAACGACAATGCTTGCTCCTT -ACGGAACGACAATGCTTGCCTGTT -ACGGAACGACAATGCTTGCGGTTT -ACGGAACGACAATGCTTGGTGGTT -ACGGAACGACAATGCTTGGCCTTT -ACGGAACGACAATGCTTGGGTCTT -ACGGAACGACAATGCTTGACGCTT -ACGGAACGACAATGCTTGAGCGTT -ACGGAACGACAATGCTTGTTCGTC -ACGGAACGACAATGCTTGTCTCTC -ACGGAACGACAATGCTTGTGGATC -ACGGAACGACAATGCTTGCACTTC -ACGGAACGACAATGCTTGGTACTC -ACGGAACGACAATGCTTGGATGTC -ACGGAACGACAATGCTTGACAGTC -ACGGAACGACAATGCTTGTTGCTG -ACGGAACGACAATGCTTGTCCATG -ACGGAACGACAATGCTTGTGTGTG -ACGGAACGACAATGCTTGCTAGTG -ACGGAACGACAATGCTTGCATCTG -ACGGAACGACAATGCTTGGAGTTG -ACGGAACGACAATGCTTGAGACTG -ACGGAACGACAATGCTTGTCGGTA -ACGGAACGACAATGCTTGTGCCTA -ACGGAACGACAATGCTTGCCACTA -ACGGAACGACAATGCTTGGGAGTA -ACGGAACGACAATGCTTGTCGTCT -ACGGAACGACAATGCTTGTGCACT -ACGGAACGACAATGCTTGCTGACT -ACGGAACGACAATGCTTGCAACCT -ACGGAACGACAATGCTTGGCTACT -ACGGAACGACAATGCTTGGGATCT -ACGGAACGACAATGCTTGAAGGCT -ACGGAACGACAATGCTTGTCAACC -ACGGAACGACAATGCTTGTGTTCC -ACGGAACGACAATGCTTGATTCCC -ACGGAACGACAATGCTTGTTCTCG -ACGGAACGACAATGCTTGTAGACG -ACGGAACGACAATGCTTGGTAACG -ACGGAACGACAATGCTTGACTTCG -ACGGAACGACAATGCTTGTACGCA -ACGGAACGACAATGCTTGCTTGCA -ACGGAACGACAATGCTTGCGAACA -ACGGAACGACAATGCTTGCAGTCA -ACGGAACGACAATGCTTGGATCCA -ACGGAACGACAATGCTTGACGACA -ACGGAACGACAATGCTTGAGCTCA -ACGGAACGACAATGCTTGTCACGT -ACGGAACGACAATGCTTGCGTAGT -ACGGAACGACAATGCTTGGTCAGT -ACGGAACGACAATGCTTGGAAGGT -ACGGAACGACAATGCTTGAACCGT -ACGGAACGACAATGCTTGTTGTGC -ACGGAACGACAATGCTTGCTAAGC -ACGGAACGACAATGCTTGACTAGC -ACGGAACGACAATGCTTGAGATGC -ACGGAACGACAATGCTTGTGAAGG -ACGGAACGACAATGCTTGCAATGG -ACGGAACGACAATGCTTGATGAGG -ACGGAACGACAATGCTTGAATGGG -ACGGAACGACAATGCTTGTCCTGA -ACGGAACGACAATGCTTGTAGCGA -ACGGAACGACAATGCTTGCACAGA -ACGGAACGACAATGCTTGGCAAGA -ACGGAACGACAATGCTTGGGTTGA -ACGGAACGACAATGCTTGTCCGAT -ACGGAACGACAATGCTTGTGGCAT -ACGGAACGACAATGCTTGCGAGAT -ACGGAACGACAATGCTTGTACCAC -ACGGAACGACAATGCTTGCAGAAC -ACGGAACGACAATGCTTGGTCTAC -ACGGAACGACAATGCTTGACGTAC -ACGGAACGACAATGCTTGAGTGAC -ACGGAACGACAATGCTTGCTGTAG -ACGGAACGACAATGCTTGCCTAAG -ACGGAACGACAATGCTTGGTTCAG -ACGGAACGACAATGCTTGGCATAG -ACGGAACGACAATGCTTGGACAAG -ACGGAACGACAATGCTTGAAGCAG -ACGGAACGACAATGCTTGCGTCAA -ACGGAACGACAATGCTTGGCTGAA -ACGGAACGACAATGCTTGAGTACG -ACGGAACGACAATGCTTGATCCGA -ACGGAACGACAATGCTTGATGGGA -ACGGAACGACAATGCTTGGTGCAA -ACGGAACGACAATGCTTGGAGGAA -ACGGAACGACAATGCTTGCAGGTA -ACGGAACGACAATGCTTGGACTCT -ACGGAACGACAATGCTTGAGTCCT -ACGGAACGACAATGCTTGTAAGCC -ACGGAACGACAATGCTTGATAGCC -ACGGAACGACAATGCTTGTAACCG -ACGGAACGACAATGCTTGATGCCA -ACGGAACGACAAAGCCTAGGAAAC -ACGGAACGACAAAGCCTAAACACC -ACGGAACGACAAAGCCTAATCGAG -ACGGAACGACAAAGCCTACTCCTT -ACGGAACGACAAAGCCTACCTGTT -ACGGAACGACAAAGCCTACGGTTT -ACGGAACGACAAAGCCTAGTGGTT -ACGGAACGACAAAGCCTAGCCTTT -ACGGAACGACAAAGCCTAGGTCTT -ACGGAACGACAAAGCCTAACGCTT -ACGGAACGACAAAGCCTAAGCGTT -ACGGAACGACAAAGCCTATTCGTC -ACGGAACGACAAAGCCTATCTCTC -ACGGAACGACAAAGCCTATGGATC -ACGGAACGACAAAGCCTACACTTC -ACGGAACGACAAAGCCTAGTACTC -ACGGAACGACAAAGCCTAGATGTC -ACGGAACGACAAAGCCTAACAGTC -ACGGAACGACAAAGCCTATTGCTG -ACGGAACGACAAAGCCTATCCATG -ACGGAACGACAAAGCCTATGTGTG -ACGGAACGACAAAGCCTACTAGTG -ACGGAACGACAAAGCCTACATCTG -ACGGAACGACAAAGCCTAGAGTTG -ACGGAACGACAAAGCCTAAGACTG -ACGGAACGACAAAGCCTATCGGTA -ACGGAACGACAAAGCCTATGCCTA -ACGGAACGACAAAGCCTACCACTA -ACGGAACGACAAAGCCTAGGAGTA -ACGGAACGACAAAGCCTATCGTCT -ACGGAACGACAAAGCCTATGCACT -ACGGAACGACAAAGCCTACTGACT -ACGGAACGACAAAGCCTACAACCT -ACGGAACGACAAAGCCTAGCTACT -ACGGAACGACAAAGCCTAGGATCT -ACGGAACGACAAAGCCTAAAGGCT -ACGGAACGACAAAGCCTATCAACC -ACGGAACGACAAAGCCTATGTTCC -ACGGAACGACAAAGCCTAATTCCC -ACGGAACGACAAAGCCTATTCTCG -ACGGAACGACAAAGCCTATAGACG -ACGGAACGACAAAGCCTAGTAACG -ACGGAACGACAAAGCCTAACTTCG -ACGGAACGACAAAGCCTATACGCA -ACGGAACGACAAAGCCTACTTGCA -ACGGAACGACAAAGCCTACGAACA -ACGGAACGACAAAGCCTACAGTCA -ACGGAACGACAAAGCCTAGATCCA -ACGGAACGACAAAGCCTAACGACA -ACGGAACGACAAAGCCTAAGCTCA -ACGGAACGACAAAGCCTATCACGT -ACGGAACGACAAAGCCTACGTAGT -ACGGAACGACAAAGCCTAGTCAGT -ACGGAACGACAAAGCCTAGAAGGT -ACGGAACGACAAAGCCTAAACCGT -ACGGAACGACAAAGCCTATTGTGC -ACGGAACGACAAAGCCTACTAAGC -ACGGAACGACAAAGCCTAACTAGC -ACGGAACGACAAAGCCTAAGATGC -ACGGAACGACAAAGCCTATGAAGG -ACGGAACGACAAAGCCTACAATGG -ACGGAACGACAAAGCCTAATGAGG -ACGGAACGACAAAGCCTAAATGGG -ACGGAACGACAAAGCCTATCCTGA -ACGGAACGACAAAGCCTATAGCGA -ACGGAACGACAAAGCCTACACAGA -ACGGAACGACAAAGCCTAGCAAGA -ACGGAACGACAAAGCCTAGGTTGA -ACGGAACGACAAAGCCTATCCGAT -ACGGAACGACAAAGCCTATGGCAT -ACGGAACGACAAAGCCTACGAGAT -ACGGAACGACAAAGCCTATACCAC -ACGGAACGACAAAGCCTACAGAAC -ACGGAACGACAAAGCCTAGTCTAC -ACGGAACGACAAAGCCTAACGTAC -ACGGAACGACAAAGCCTAAGTGAC -ACGGAACGACAAAGCCTACTGTAG -ACGGAACGACAAAGCCTACCTAAG -ACGGAACGACAAAGCCTAGTTCAG -ACGGAACGACAAAGCCTAGCATAG -ACGGAACGACAAAGCCTAGACAAG -ACGGAACGACAAAGCCTAAAGCAG -ACGGAACGACAAAGCCTACGTCAA -ACGGAACGACAAAGCCTAGCTGAA -ACGGAACGACAAAGCCTAAGTACG -ACGGAACGACAAAGCCTAATCCGA -ACGGAACGACAAAGCCTAATGGGA -ACGGAACGACAAAGCCTAGTGCAA -ACGGAACGACAAAGCCTAGAGGAA -ACGGAACGACAAAGCCTACAGGTA -ACGGAACGACAAAGCCTAGACTCT -ACGGAACGACAAAGCCTAAGTCCT -ACGGAACGACAAAGCCTATAAGCC -ACGGAACGACAAAGCCTAATAGCC -ACGGAACGACAAAGCCTATAACCG -ACGGAACGACAAAGCCTAATGCCA -ACGGAACGACAAAGCACTGGAAAC -ACGGAACGACAAAGCACTAACACC -ACGGAACGACAAAGCACTATCGAG -ACGGAACGACAAAGCACTCTCCTT -ACGGAACGACAAAGCACTCCTGTT -ACGGAACGACAAAGCACTCGGTTT -ACGGAACGACAAAGCACTGTGGTT -ACGGAACGACAAAGCACTGCCTTT -ACGGAACGACAAAGCACTGGTCTT -ACGGAACGACAAAGCACTACGCTT -ACGGAACGACAAAGCACTAGCGTT -ACGGAACGACAAAGCACTTTCGTC -ACGGAACGACAAAGCACTTCTCTC -ACGGAACGACAAAGCACTTGGATC -ACGGAACGACAAAGCACTCACTTC -ACGGAACGACAAAGCACTGTACTC -ACGGAACGACAAAGCACTGATGTC -ACGGAACGACAAAGCACTACAGTC -ACGGAACGACAAAGCACTTTGCTG -ACGGAACGACAAAGCACTTCCATG -ACGGAACGACAAAGCACTTGTGTG -ACGGAACGACAAAGCACTCTAGTG -ACGGAACGACAAAGCACTCATCTG -ACGGAACGACAAAGCACTGAGTTG -ACGGAACGACAAAGCACTAGACTG -ACGGAACGACAAAGCACTTCGGTA -ACGGAACGACAAAGCACTTGCCTA -ACGGAACGACAAAGCACTCCACTA -ACGGAACGACAAAGCACTGGAGTA -ACGGAACGACAAAGCACTTCGTCT -ACGGAACGACAAAGCACTTGCACT -ACGGAACGACAAAGCACTCTGACT -ACGGAACGACAAAGCACTCAACCT -ACGGAACGACAAAGCACTGCTACT -ACGGAACGACAAAGCACTGGATCT -ACGGAACGACAAAGCACTAAGGCT -ACGGAACGACAAAGCACTTCAACC -ACGGAACGACAAAGCACTTGTTCC -ACGGAACGACAAAGCACTATTCCC -ACGGAACGACAAAGCACTTTCTCG -ACGGAACGACAAAGCACTTAGACG -ACGGAACGACAAAGCACTGTAACG -ACGGAACGACAAAGCACTACTTCG -ACGGAACGACAAAGCACTTACGCA -ACGGAACGACAAAGCACTCTTGCA -ACGGAACGACAAAGCACTCGAACA -ACGGAACGACAAAGCACTCAGTCA -ACGGAACGACAAAGCACTGATCCA -ACGGAACGACAAAGCACTACGACA -ACGGAACGACAAAGCACTAGCTCA -ACGGAACGACAAAGCACTTCACGT -ACGGAACGACAAAGCACTCGTAGT -ACGGAACGACAAAGCACTGTCAGT -ACGGAACGACAAAGCACTGAAGGT -ACGGAACGACAAAGCACTAACCGT -ACGGAACGACAAAGCACTTTGTGC -ACGGAACGACAAAGCACTCTAAGC -ACGGAACGACAAAGCACTACTAGC -ACGGAACGACAAAGCACTAGATGC -ACGGAACGACAAAGCACTTGAAGG -ACGGAACGACAAAGCACTCAATGG -ACGGAACGACAAAGCACTATGAGG -ACGGAACGACAAAGCACTAATGGG -ACGGAACGACAAAGCACTTCCTGA -ACGGAACGACAAAGCACTTAGCGA -ACGGAACGACAAAGCACTCACAGA -ACGGAACGACAAAGCACTGCAAGA -ACGGAACGACAAAGCACTGGTTGA -ACGGAACGACAAAGCACTTCCGAT -ACGGAACGACAAAGCACTTGGCAT -ACGGAACGACAAAGCACTCGAGAT -ACGGAACGACAAAGCACTTACCAC -ACGGAACGACAAAGCACTCAGAAC -ACGGAACGACAAAGCACTGTCTAC -ACGGAACGACAAAGCACTACGTAC -ACGGAACGACAAAGCACTAGTGAC -ACGGAACGACAAAGCACTCTGTAG -ACGGAACGACAAAGCACTCCTAAG -ACGGAACGACAAAGCACTGTTCAG -ACGGAACGACAAAGCACTGCATAG -ACGGAACGACAAAGCACTGACAAG -ACGGAACGACAAAGCACTAAGCAG -ACGGAACGACAAAGCACTCGTCAA -ACGGAACGACAAAGCACTGCTGAA -ACGGAACGACAAAGCACTAGTACG -ACGGAACGACAAAGCACTATCCGA -ACGGAACGACAAAGCACTATGGGA -ACGGAACGACAAAGCACTGTGCAA -ACGGAACGACAAAGCACTGAGGAA -ACGGAACGACAAAGCACTCAGGTA -ACGGAACGACAAAGCACTGACTCT -ACGGAACGACAAAGCACTAGTCCT -ACGGAACGACAAAGCACTTAAGCC -ACGGAACGACAAAGCACTATAGCC -ACGGAACGACAAAGCACTTAACCG -ACGGAACGACAAAGCACTATGCCA -ACGGAACGACAATGCAGAGGAAAC -ACGGAACGACAATGCAGAAACACC -ACGGAACGACAATGCAGAATCGAG -ACGGAACGACAATGCAGACTCCTT -ACGGAACGACAATGCAGACCTGTT -ACGGAACGACAATGCAGACGGTTT -ACGGAACGACAATGCAGAGTGGTT -ACGGAACGACAATGCAGAGCCTTT -ACGGAACGACAATGCAGAGGTCTT -ACGGAACGACAATGCAGAACGCTT -ACGGAACGACAATGCAGAAGCGTT -ACGGAACGACAATGCAGATTCGTC -ACGGAACGACAATGCAGATCTCTC -ACGGAACGACAATGCAGATGGATC -ACGGAACGACAATGCAGACACTTC -ACGGAACGACAATGCAGAGTACTC -ACGGAACGACAATGCAGAGATGTC -ACGGAACGACAATGCAGAACAGTC -ACGGAACGACAATGCAGATTGCTG -ACGGAACGACAATGCAGATCCATG -ACGGAACGACAATGCAGATGTGTG -ACGGAACGACAATGCAGACTAGTG -ACGGAACGACAATGCAGACATCTG -ACGGAACGACAATGCAGAGAGTTG -ACGGAACGACAATGCAGAAGACTG -ACGGAACGACAATGCAGATCGGTA -ACGGAACGACAATGCAGATGCCTA -ACGGAACGACAATGCAGACCACTA -ACGGAACGACAATGCAGAGGAGTA -ACGGAACGACAATGCAGATCGTCT -ACGGAACGACAATGCAGATGCACT -ACGGAACGACAATGCAGACTGACT -ACGGAACGACAATGCAGACAACCT -ACGGAACGACAATGCAGAGCTACT -ACGGAACGACAATGCAGAGGATCT -ACGGAACGACAATGCAGAAAGGCT -ACGGAACGACAATGCAGATCAACC -ACGGAACGACAATGCAGATGTTCC -ACGGAACGACAATGCAGAATTCCC -ACGGAACGACAATGCAGATTCTCG -ACGGAACGACAATGCAGATAGACG -ACGGAACGACAATGCAGAGTAACG -ACGGAACGACAATGCAGAACTTCG -ACGGAACGACAATGCAGATACGCA -ACGGAACGACAATGCAGACTTGCA -ACGGAACGACAATGCAGACGAACA -ACGGAACGACAATGCAGACAGTCA -ACGGAACGACAATGCAGAGATCCA -ACGGAACGACAATGCAGAACGACA -ACGGAACGACAATGCAGAAGCTCA -ACGGAACGACAATGCAGATCACGT -ACGGAACGACAATGCAGACGTAGT -ACGGAACGACAATGCAGAGTCAGT -ACGGAACGACAATGCAGAGAAGGT -ACGGAACGACAATGCAGAAACCGT -ACGGAACGACAATGCAGATTGTGC -ACGGAACGACAATGCAGACTAAGC -ACGGAACGACAATGCAGAACTAGC -ACGGAACGACAATGCAGAAGATGC -ACGGAACGACAATGCAGATGAAGG -ACGGAACGACAATGCAGACAATGG -ACGGAACGACAATGCAGAATGAGG -ACGGAACGACAATGCAGAAATGGG -ACGGAACGACAATGCAGATCCTGA -ACGGAACGACAATGCAGATAGCGA -ACGGAACGACAATGCAGACACAGA -ACGGAACGACAATGCAGAGCAAGA -ACGGAACGACAATGCAGAGGTTGA -ACGGAACGACAATGCAGATCCGAT -ACGGAACGACAATGCAGATGGCAT -ACGGAACGACAATGCAGACGAGAT -ACGGAACGACAATGCAGATACCAC -ACGGAACGACAATGCAGACAGAAC -ACGGAACGACAATGCAGAGTCTAC -ACGGAACGACAATGCAGAACGTAC -ACGGAACGACAATGCAGAAGTGAC -ACGGAACGACAATGCAGACTGTAG -ACGGAACGACAATGCAGACCTAAG -ACGGAACGACAATGCAGAGTTCAG -ACGGAACGACAATGCAGAGCATAG -ACGGAACGACAATGCAGAGACAAG -ACGGAACGACAATGCAGAAAGCAG -ACGGAACGACAATGCAGACGTCAA -ACGGAACGACAATGCAGAGCTGAA -ACGGAACGACAATGCAGAAGTACG -ACGGAACGACAATGCAGAATCCGA -ACGGAACGACAATGCAGAATGGGA -ACGGAACGACAATGCAGAGTGCAA -ACGGAACGACAATGCAGAGAGGAA -ACGGAACGACAATGCAGACAGGTA -ACGGAACGACAATGCAGAGACTCT -ACGGAACGACAATGCAGAAGTCCT -ACGGAACGACAATGCAGATAAGCC -ACGGAACGACAATGCAGAATAGCC -ACGGAACGACAATGCAGATAACCG -ACGGAACGACAATGCAGAATGCCA -ACGGAACGACAAAGGTGAGGAAAC -ACGGAACGACAAAGGTGAAACACC -ACGGAACGACAAAGGTGAATCGAG -ACGGAACGACAAAGGTGACTCCTT -ACGGAACGACAAAGGTGACCTGTT -ACGGAACGACAAAGGTGACGGTTT -ACGGAACGACAAAGGTGAGTGGTT -ACGGAACGACAAAGGTGAGCCTTT -ACGGAACGACAAAGGTGAGGTCTT -ACGGAACGACAAAGGTGAACGCTT -ACGGAACGACAAAGGTGAAGCGTT -ACGGAACGACAAAGGTGATTCGTC -ACGGAACGACAAAGGTGATCTCTC -ACGGAACGACAAAGGTGATGGATC -ACGGAACGACAAAGGTGACACTTC -ACGGAACGACAAAGGTGAGTACTC -ACGGAACGACAAAGGTGAGATGTC -ACGGAACGACAAAGGTGAACAGTC -ACGGAACGACAAAGGTGATTGCTG -ACGGAACGACAAAGGTGATCCATG -ACGGAACGACAAAGGTGATGTGTG -ACGGAACGACAAAGGTGACTAGTG -ACGGAACGACAAAGGTGACATCTG -ACGGAACGACAAAGGTGAGAGTTG -ACGGAACGACAAAGGTGAAGACTG -ACGGAACGACAAAGGTGATCGGTA -ACGGAACGACAAAGGTGATGCCTA -ACGGAACGACAAAGGTGACCACTA -ACGGAACGACAAAGGTGAGGAGTA -ACGGAACGACAAAGGTGATCGTCT -ACGGAACGACAAAGGTGATGCACT -ACGGAACGACAAAGGTGACTGACT -ACGGAACGACAAAGGTGACAACCT -ACGGAACGACAAAGGTGAGCTACT -ACGGAACGACAAAGGTGAGGATCT -ACGGAACGACAAAGGTGAAAGGCT -ACGGAACGACAAAGGTGATCAACC -ACGGAACGACAAAGGTGATGTTCC -ACGGAACGACAAAGGTGAATTCCC -ACGGAACGACAAAGGTGATTCTCG -ACGGAACGACAAAGGTGATAGACG -ACGGAACGACAAAGGTGAGTAACG -ACGGAACGACAAAGGTGAACTTCG -ACGGAACGACAAAGGTGATACGCA -ACGGAACGACAAAGGTGACTTGCA -ACGGAACGACAAAGGTGACGAACA -ACGGAACGACAAAGGTGACAGTCA -ACGGAACGACAAAGGTGAGATCCA -ACGGAACGACAAAGGTGAACGACA -ACGGAACGACAAAGGTGAAGCTCA -ACGGAACGACAAAGGTGATCACGT -ACGGAACGACAAAGGTGACGTAGT -ACGGAACGACAAAGGTGAGTCAGT -ACGGAACGACAAAGGTGAGAAGGT -ACGGAACGACAAAGGTGAAACCGT -ACGGAACGACAAAGGTGATTGTGC -ACGGAACGACAAAGGTGACTAAGC -ACGGAACGACAAAGGTGAACTAGC -ACGGAACGACAAAGGTGAAGATGC -ACGGAACGACAAAGGTGATGAAGG -ACGGAACGACAAAGGTGACAATGG -ACGGAACGACAAAGGTGAATGAGG -ACGGAACGACAAAGGTGAAATGGG -ACGGAACGACAAAGGTGATCCTGA -ACGGAACGACAAAGGTGATAGCGA -ACGGAACGACAAAGGTGACACAGA -ACGGAACGACAAAGGTGAGCAAGA -ACGGAACGACAAAGGTGAGGTTGA -ACGGAACGACAAAGGTGATCCGAT -ACGGAACGACAAAGGTGATGGCAT -ACGGAACGACAAAGGTGACGAGAT -ACGGAACGACAAAGGTGATACCAC -ACGGAACGACAAAGGTGACAGAAC -ACGGAACGACAAAGGTGAGTCTAC -ACGGAACGACAAAGGTGAACGTAC -ACGGAACGACAAAGGTGAAGTGAC -ACGGAACGACAAAGGTGACTGTAG -ACGGAACGACAAAGGTGACCTAAG -ACGGAACGACAAAGGTGAGTTCAG -ACGGAACGACAAAGGTGAGCATAG -ACGGAACGACAAAGGTGAGACAAG -ACGGAACGACAAAGGTGAAAGCAG -ACGGAACGACAAAGGTGACGTCAA -ACGGAACGACAAAGGTGAGCTGAA -ACGGAACGACAAAGGTGAAGTACG -ACGGAACGACAAAGGTGAATCCGA -ACGGAACGACAAAGGTGAATGGGA -ACGGAACGACAAAGGTGAGTGCAA -ACGGAACGACAAAGGTGAGAGGAA -ACGGAACGACAAAGGTGACAGGTA -ACGGAACGACAAAGGTGAGACTCT -ACGGAACGACAAAGGTGAAGTCCT -ACGGAACGACAAAGGTGATAAGCC -ACGGAACGACAAAGGTGAATAGCC -ACGGAACGACAAAGGTGATAACCG -ACGGAACGACAAAGGTGAATGCCA -ACGGAACGACAATGGCAAGGAAAC -ACGGAACGACAATGGCAAAACACC -ACGGAACGACAATGGCAAATCGAG -ACGGAACGACAATGGCAACTCCTT -ACGGAACGACAATGGCAACCTGTT -ACGGAACGACAATGGCAACGGTTT -ACGGAACGACAATGGCAAGTGGTT -ACGGAACGACAATGGCAAGCCTTT -ACGGAACGACAATGGCAAGGTCTT -ACGGAACGACAATGGCAAACGCTT -ACGGAACGACAATGGCAAAGCGTT -ACGGAACGACAATGGCAATTCGTC -ACGGAACGACAATGGCAATCTCTC -ACGGAACGACAATGGCAATGGATC -ACGGAACGACAATGGCAACACTTC -ACGGAACGACAATGGCAAGTACTC -ACGGAACGACAATGGCAAGATGTC -ACGGAACGACAATGGCAAACAGTC -ACGGAACGACAATGGCAATTGCTG -ACGGAACGACAATGGCAATCCATG -ACGGAACGACAATGGCAATGTGTG -ACGGAACGACAATGGCAACTAGTG -ACGGAACGACAATGGCAACATCTG -ACGGAACGACAATGGCAAGAGTTG -ACGGAACGACAATGGCAAAGACTG -ACGGAACGACAATGGCAATCGGTA -ACGGAACGACAATGGCAATGCCTA -ACGGAACGACAATGGCAACCACTA -ACGGAACGACAATGGCAAGGAGTA -ACGGAACGACAATGGCAATCGTCT -ACGGAACGACAATGGCAATGCACT -ACGGAACGACAATGGCAACTGACT -ACGGAACGACAATGGCAACAACCT -ACGGAACGACAATGGCAAGCTACT -ACGGAACGACAATGGCAAGGATCT -ACGGAACGACAATGGCAAAAGGCT -ACGGAACGACAATGGCAATCAACC -ACGGAACGACAATGGCAATGTTCC -ACGGAACGACAATGGCAAATTCCC -ACGGAACGACAATGGCAATTCTCG -ACGGAACGACAATGGCAATAGACG -ACGGAACGACAATGGCAAGTAACG -ACGGAACGACAATGGCAAACTTCG -ACGGAACGACAATGGCAATACGCA -ACGGAACGACAATGGCAACTTGCA -ACGGAACGACAATGGCAACGAACA -ACGGAACGACAATGGCAACAGTCA -ACGGAACGACAATGGCAAGATCCA -ACGGAACGACAATGGCAAACGACA -ACGGAACGACAATGGCAAAGCTCA -ACGGAACGACAATGGCAATCACGT -ACGGAACGACAATGGCAACGTAGT -ACGGAACGACAATGGCAAGTCAGT -ACGGAACGACAATGGCAAGAAGGT -ACGGAACGACAATGGCAAAACCGT -ACGGAACGACAATGGCAATTGTGC -ACGGAACGACAATGGCAACTAAGC -ACGGAACGACAATGGCAAACTAGC -ACGGAACGACAATGGCAAAGATGC -ACGGAACGACAATGGCAATGAAGG -ACGGAACGACAATGGCAACAATGG -ACGGAACGACAATGGCAAATGAGG -ACGGAACGACAATGGCAAAATGGG -ACGGAACGACAATGGCAATCCTGA -ACGGAACGACAATGGCAATAGCGA -ACGGAACGACAATGGCAACACAGA -ACGGAACGACAATGGCAAGCAAGA -ACGGAACGACAATGGCAAGGTTGA -ACGGAACGACAATGGCAATCCGAT -ACGGAACGACAATGGCAATGGCAT -ACGGAACGACAATGGCAACGAGAT -ACGGAACGACAATGGCAATACCAC -ACGGAACGACAATGGCAACAGAAC -ACGGAACGACAATGGCAAGTCTAC -ACGGAACGACAATGGCAAACGTAC -ACGGAACGACAATGGCAAAGTGAC -ACGGAACGACAATGGCAACTGTAG -ACGGAACGACAATGGCAACCTAAG -ACGGAACGACAATGGCAAGTTCAG -ACGGAACGACAATGGCAAGCATAG -ACGGAACGACAATGGCAAGACAAG -ACGGAACGACAATGGCAAAAGCAG -ACGGAACGACAATGGCAACGTCAA -ACGGAACGACAATGGCAAGCTGAA -ACGGAACGACAATGGCAAAGTACG -ACGGAACGACAATGGCAAATCCGA -ACGGAACGACAATGGCAAATGGGA -ACGGAACGACAATGGCAAGTGCAA -ACGGAACGACAATGGCAAGAGGAA -ACGGAACGACAATGGCAACAGGTA -ACGGAACGACAATGGCAAGACTCT -ACGGAACGACAATGGCAAAGTCCT -ACGGAACGACAATGGCAATAAGCC -ACGGAACGACAATGGCAAATAGCC -ACGGAACGACAATGGCAATAACCG -ACGGAACGACAATGGCAAATGCCA -ACGGAACGACAAAGGATGGGAAAC -ACGGAACGACAAAGGATGAACACC -ACGGAACGACAAAGGATGATCGAG -ACGGAACGACAAAGGATGCTCCTT -ACGGAACGACAAAGGATGCCTGTT -ACGGAACGACAAAGGATGCGGTTT -ACGGAACGACAAAGGATGGTGGTT -ACGGAACGACAAAGGATGGCCTTT -ACGGAACGACAAAGGATGGGTCTT -ACGGAACGACAAAGGATGACGCTT -ACGGAACGACAAAGGATGAGCGTT -ACGGAACGACAAAGGATGTTCGTC -ACGGAACGACAAAGGATGTCTCTC -ACGGAACGACAAAGGATGTGGATC -ACGGAACGACAAAGGATGCACTTC -ACGGAACGACAAAGGATGGTACTC -ACGGAACGACAAAGGATGGATGTC -ACGGAACGACAAAGGATGACAGTC -ACGGAACGACAAAGGATGTTGCTG -ACGGAACGACAAAGGATGTCCATG -ACGGAACGACAAAGGATGTGTGTG -ACGGAACGACAAAGGATGCTAGTG -ACGGAACGACAAAGGATGCATCTG -ACGGAACGACAAAGGATGGAGTTG -ACGGAACGACAAAGGATGAGACTG -ACGGAACGACAAAGGATGTCGGTA -ACGGAACGACAAAGGATGTGCCTA -ACGGAACGACAAAGGATGCCACTA -ACGGAACGACAAAGGATGGGAGTA -ACGGAACGACAAAGGATGTCGTCT -ACGGAACGACAAAGGATGTGCACT -ACGGAACGACAAAGGATGCTGACT -ACGGAACGACAAAGGATGCAACCT -ACGGAACGACAAAGGATGGCTACT -ACGGAACGACAAAGGATGGGATCT -ACGGAACGACAAAGGATGAAGGCT -ACGGAACGACAAAGGATGTCAACC -ACGGAACGACAAAGGATGTGTTCC -ACGGAACGACAAAGGATGATTCCC -ACGGAACGACAAAGGATGTTCTCG -ACGGAACGACAAAGGATGTAGACG -ACGGAACGACAAAGGATGGTAACG -ACGGAACGACAAAGGATGACTTCG -ACGGAACGACAAAGGATGTACGCA -ACGGAACGACAAAGGATGCTTGCA -ACGGAACGACAAAGGATGCGAACA -ACGGAACGACAAAGGATGCAGTCA -ACGGAACGACAAAGGATGGATCCA -ACGGAACGACAAAGGATGACGACA -ACGGAACGACAAAGGATGAGCTCA -ACGGAACGACAAAGGATGTCACGT -ACGGAACGACAAAGGATGCGTAGT -ACGGAACGACAAAGGATGGTCAGT -ACGGAACGACAAAGGATGGAAGGT -ACGGAACGACAAAGGATGAACCGT -ACGGAACGACAAAGGATGTTGTGC -ACGGAACGACAAAGGATGCTAAGC -ACGGAACGACAAAGGATGACTAGC -ACGGAACGACAAAGGATGAGATGC -ACGGAACGACAAAGGATGTGAAGG -ACGGAACGACAAAGGATGCAATGG -ACGGAACGACAAAGGATGATGAGG -ACGGAACGACAAAGGATGAATGGG -ACGGAACGACAAAGGATGTCCTGA -ACGGAACGACAAAGGATGTAGCGA -ACGGAACGACAAAGGATGCACAGA -ACGGAACGACAAAGGATGGCAAGA -ACGGAACGACAAAGGATGGGTTGA -ACGGAACGACAAAGGATGTCCGAT -ACGGAACGACAAAGGATGTGGCAT -ACGGAACGACAAAGGATGCGAGAT -ACGGAACGACAAAGGATGTACCAC -ACGGAACGACAAAGGATGCAGAAC -ACGGAACGACAAAGGATGGTCTAC -ACGGAACGACAAAGGATGACGTAC -ACGGAACGACAAAGGATGAGTGAC -ACGGAACGACAAAGGATGCTGTAG -ACGGAACGACAAAGGATGCCTAAG -ACGGAACGACAAAGGATGGTTCAG -ACGGAACGACAAAGGATGGCATAG -ACGGAACGACAAAGGATGGACAAG -ACGGAACGACAAAGGATGAAGCAG -ACGGAACGACAAAGGATGCGTCAA -ACGGAACGACAAAGGATGGCTGAA -ACGGAACGACAAAGGATGAGTACG -ACGGAACGACAAAGGATGATCCGA -ACGGAACGACAAAGGATGATGGGA -ACGGAACGACAAAGGATGGTGCAA -ACGGAACGACAAAGGATGGAGGAA -ACGGAACGACAAAGGATGCAGGTA -ACGGAACGACAAAGGATGGACTCT -ACGGAACGACAAAGGATGAGTCCT -ACGGAACGACAAAGGATGTAAGCC -ACGGAACGACAAAGGATGATAGCC -ACGGAACGACAAAGGATGTAACCG -ACGGAACGACAAAGGATGATGCCA -ACGGAACGACAAGGGAATGGAAAC -ACGGAACGACAAGGGAATAACACC -ACGGAACGACAAGGGAATATCGAG -ACGGAACGACAAGGGAATCTCCTT -ACGGAACGACAAGGGAATCCTGTT -ACGGAACGACAAGGGAATCGGTTT -ACGGAACGACAAGGGAATGTGGTT -ACGGAACGACAAGGGAATGCCTTT -ACGGAACGACAAGGGAATGGTCTT -ACGGAACGACAAGGGAATACGCTT -ACGGAACGACAAGGGAATAGCGTT -ACGGAACGACAAGGGAATTTCGTC -ACGGAACGACAAGGGAATTCTCTC -ACGGAACGACAAGGGAATTGGATC -ACGGAACGACAAGGGAATCACTTC -ACGGAACGACAAGGGAATGTACTC -ACGGAACGACAAGGGAATGATGTC -ACGGAACGACAAGGGAATACAGTC -ACGGAACGACAAGGGAATTTGCTG -ACGGAACGACAAGGGAATTCCATG -ACGGAACGACAAGGGAATTGTGTG -ACGGAACGACAAGGGAATCTAGTG -ACGGAACGACAAGGGAATCATCTG -ACGGAACGACAAGGGAATGAGTTG -ACGGAACGACAAGGGAATAGACTG -ACGGAACGACAAGGGAATTCGGTA -ACGGAACGACAAGGGAATTGCCTA -ACGGAACGACAAGGGAATCCACTA -ACGGAACGACAAGGGAATGGAGTA -ACGGAACGACAAGGGAATTCGTCT -ACGGAACGACAAGGGAATTGCACT -ACGGAACGACAAGGGAATCTGACT -ACGGAACGACAAGGGAATCAACCT -ACGGAACGACAAGGGAATGCTACT -ACGGAACGACAAGGGAATGGATCT -ACGGAACGACAAGGGAATAAGGCT -ACGGAACGACAAGGGAATTCAACC -ACGGAACGACAAGGGAATTGTTCC -ACGGAACGACAAGGGAATATTCCC -ACGGAACGACAAGGGAATTTCTCG -ACGGAACGACAAGGGAATTAGACG -ACGGAACGACAAGGGAATGTAACG -ACGGAACGACAAGGGAATACTTCG -ACGGAACGACAAGGGAATTACGCA -ACGGAACGACAAGGGAATCTTGCA -ACGGAACGACAAGGGAATCGAACA -ACGGAACGACAAGGGAATCAGTCA -ACGGAACGACAAGGGAATGATCCA -ACGGAACGACAAGGGAATACGACA -ACGGAACGACAAGGGAATAGCTCA -ACGGAACGACAAGGGAATTCACGT -ACGGAACGACAAGGGAATCGTAGT -ACGGAACGACAAGGGAATGTCAGT -ACGGAACGACAAGGGAATGAAGGT -ACGGAACGACAAGGGAATAACCGT -ACGGAACGACAAGGGAATTTGTGC -ACGGAACGACAAGGGAATCTAAGC -ACGGAACGACAAGGGAATACTAGC -ACGGAACGACAAGGGAATAGATGC -ACGGAACGACAAGGGAATTGAAGG -ACGGAACGACAAGGGAATCAATGG -ACGGAACGACAAGGGAATATGAGG -ACGGAACGACAAGGGAATAATGGG -ACGGAACGACAAGGGAATTCCTGA -ACGGAACGACAAGGGAATTAGCGA -ACGGAACGACAAGGGAATCACAGA -ACGGAACGACAAGGGAATGCAAGA -ACGGAACGACAAGGGAATGGTTGA -ACGGAACGACAAGGGAATTCCGAT -ACGGAACGACAAGGGAATTGGCAT -ACGGAACGACAAGGGAATCGAGAT -ACGGAACGACAAGGGAATTACCAC -ACGGAACGACAAGGGAATCAGAAC -ACGGAACGACAAGGGAATGTCTAC -ACGGAACGACAAGGGAATACGTAC -ACGGAACGACAAGGGAATAGTGAC -ACGGAACGACAAGGGAATCTGTAG -ACGGAACGACAAGGGAATCCTAAG -ACGGAACGACAAGGGAATGTTCAG -ACGGAACGACAAGGGAATGCATAG -ACGGAACGACAAGGGAATGACAAG -ACGGAACGACAAGGGAATAAGCAG -ACGGAACGACAAGGGAATCGTCAA -ACGGAACGACAAGGGAATGCTGAA -ACGGAACGACAAGGGAATAGTACG -ACGGAACGACAAGGGAATATCCGA -ACGGAACGACAAGGGAATATGGGA -ACGGAACGACAAGGGAATGTGCAA -ACGGAACGACAAGGGAATGAGGAA -ACGGAACGACAAGGGAATCAGGTA -ACGGAACGACAAGGGAATGACTCT -ACGGAACGACAAGGGAATAGTCCT -ACGGAACGACAAGGGAATTAAGCC -ACGGAACGACAAGGGAATATAGCC -ACGGAACGACAAGGGAATTAACCG -ACGGAACGACAAGGGAATATGCCA -ACGGAACGACAATGATCCGGAAAC -ACGGAACGACAATGATCCAACACC -ACGGAACGACAATGATCCATCGAG -ACGGAACGACAATGATCCCTCCTT -ACGGAACGACAATGATCCCCTGTT -ACGGAACGACAATGATCCCGGTTT -ACGGAACGACAATGATCCGTGGTT -ACGGAACGACAATGATCCGCCTTT -ACGGAACGACAATGATCCGGTCTT -ACGGAACGACAATGATCCACGCTT -ACGGAACGACAATGATCCAGCGTT -ACGGAACGACAATGATCCTTCGTC -ACGGAACGACAATGATCCTCTCTC -ACGGAACGACAATGATCCTGGATC -ACGGAACGACAATGATCCCACTTC -ACGGAACGACAATGATCCGTACTC -ACGGAACGACAATGATCCGATGTC -ACGGAACGACAATGATCCACAGTC -ACGGAACGACAATGATCCTTGCTG -ACGGAACGACAATGATCCTCCATG -ACGGAACGACAATGATCCTGTGTG -ACGGAACGACAATGATCCCTAGTG -ACGGAACGACAATGATCCCATCTG -ACGGAACGACAATGATCCGAGTTG -ACGGAACGACAATGATCCAGACTG -ACGGAACGACAATGATCCTCGGTA -ACGGAACGACAATGATCCTGCCTA -ACGGAACGACAATGATCCCCACTA -ACGGAACGACAATGATCCGGAGTA -ACGGAACGACAATGATCCTCGTCT -ACGGAACGACAATGATCCTGCACT -ACGGAACGACAATGATCCCTGACT -ACGGAACGACAATGATCCCAACCT -ACGGAACGACAATGATCCGCTACT -ACGGAACGACAATGATCCGGATCT -ACGGAACGACAATGATCCAAGGCT -ACGGAACGACAATGATCCTCAACC -ACGGAACGACAATGATCCTGTTCC -ACGGAACGACAATGATCCATTCCC -ACGGAACGACAATGATCCTTCTCG -ACGGAACGACAATGATCCTAGACG -ACGGAACGACAATGATCCGTAACG -ACGGAACGACAATGATCCACTTCG -ACGGAACGACAATGATCCTACGCA -ACGGAACGACAATGATCCCTTGCA -ACGGAACGACAATGATCCCGAACA -ACGGAACGACAATGATCCCAGTCA -ACGGAACGACAATGATCCGATCCA -ACGGAACGACAATGATCCACGACA -ACGGAACGACAATGATCCAGCTCA -ACGGAACGACAATGATCCTCACGT -ACGGAACGACAATGATCCCGTAGT -ACGGAACGACAATGATCCGTCAGT -ACGGAACGACAATGATCCGAAGGT -ACGGAACGACAATGATCCAACCGT -ACGGAACGACAATGATCCTTGTGC -ACGGAACGACAATGATCCCTAAGC -ACGGAACGACAATGATCCACTAGC -ACGGAACGACAATGATCCAGATGC -ACGGAACGACAATGATCCTGAAGG -ACGGAACGACAATGATCCCAATGG -ACGGAACGACAATGATCCATGAGG -ACGGAACGACAATGATCCAATGGG -ACGGAACGACAATGATCCTCCTGA -ACGGAACGACAATGATCCTAGCGA -ACGGAACGACAATGATCCCACAGA -ACGGAACGACAATGATCCGCAAGA -ACGGAACGACAATGATCCGGTTGA -ACGGAACGACAATGATCCTCCGAT -ACGGAACGACAATGATCCTGGCAT -ACGGAACGACAATGATCCCGAGAT -ACGGAACGACAATGATCCTACCAC -ACGGAACGACAATGATCCCAGAAC -ACGGAACGACAATGATCCGTCTAC -ACGGAACGACAATGATCCACGTAC -ACGGAACGACAATGATCCAGTGAC -ACGGAACGACAATGATCCCTGTAG -ACGGAACGACAATGATCCCCTAAG -ACGGAACGACAATGATCCGTTCAG -ACGGAACGACAATGATCCGCATAG -ACGGAACGACAATGATCCGACAAG -ACGGAACGACAATGATCCAAGCAG -ACGGAACGACAATGATCCCGTCAA -ACGGAACGACAATGATCCGCTGAA -ACGGAACGACAATGATCCAGTACG -ACGGAACGACAATGATCCATCCGA -ACGGAACGACAATGATCCATGGGA -ACGGAACGACAATGATCCGTGCAA -ACGGAACGACAATGATCCGAGGAA -ACGGAACGACAATGATCCCAGGTA -ACGGAACGACAATGATCCGACTCT -ACGGAACGACAATGATCCAGTCCT -ACGGAACGACAATGATCCTAAGCC -ACGGAACGACAATGATCCATAGCC -ACGGAACGACAATGATCCTAACCG -ACGGAACGACAATGATCCATGCCA -ACGGAACGACAACGATAGGGAAAC -ACGGAACGACAACGATAGAACACC -ACGGAACGACAACGATAGATCGAG -ACGGAACGACAACGATAGCTCCTT -ACGGAACGACAACGATAGCCTGTT -ACGGAACGACAACGATAGCGGTTT -ACGGAACGACAACGATAGGTGGTT -ACGGAACGACAACGATAGGCCTTT -ACGGAACGACAACGATAGGGTCTT -ACGGAACGACAACGATAGACGCTT -ACGGAACGACAACGATAGAGCGTT -ACGGAACGACAACGATAGTTCGTC -ACGGAACGACAACGATAGTCTCTC -ACGGAACGACAACGATAGTGGATC -ACGGAACGACAACGATAGCACTTC -ACGGAACGACAACGATAGGTACTC -ACGGAACGACAACGATAGGATGTC -ACGGAACGACAACGATAGACAGTC -ACGGAACGACAACGATAGTTGCTG -ACGGAACGACAACGATAGTCCATG -ACGGAACGACAACGATAGTGTGTG -ACGGAACGACAACGATAGCTAGTG -ACGGAACGACAACGATAGCATCTG -ACGGAACGACAACGATAGGAGTTG -ACGGAACGACAACGATAGAGACTG -ACGGAACGACAACGATAGTCGGTA -ACGGAACGACAACGATAGTGCCTA -ACGGAACGACAACGATAGCCACTA -ACGGAACGACAACGATAGGGAGTA -ACGGAACGACAACGATAGTCGTCT -ACGGAACGACAACGATAGTGCACT -ACGGAACGACAACGATAGCTGACT -ACGGAACGACAACGATAGCAACCT -ACGGAACGACAACGATAGGCTACT -ACGGAACGACAACGATAGGGATCT -ACGGAACGACAACGATAGAAGGCT -ACGGAACGACAACGATAGTCAACC -ACGGAACGACAACGATAGTGTTCC -ACGGAACGACAACGATAGATTCCC -ACGGAACGACAACGATAGTTCTCG -ACGGAACGACAACGATAGTAGACG -ACGGAACGACAACGATAGGTAACG -ACGGAACGACAACGATAGACTTCG -ACGGAACGACAACGATAGTACGCA -ACGGAACGACAACGATAGCTTGCA -ACGGAACGACAACGATAGCGAACA -ACGGAACGACAACGATAGCAGTCA -ACGGAACGACAACGATAGGATCCA -ACGGAACGACAACGATAGACGACA -ACGGAACGACAACGATAGAGCTCA -ACGGAACGACAACGATAGTCACGT -ACGGAACGACAACGATAGCGTAGT -ACGGAACGACAACGATAGGTCAGT -ACGGAACGACAACGATAGGAAGGT -ACGGAACGACAACGATAGAACCGT -ACGGAACGACAACGATAGTTGTGC -ACGGAACGACAACGATAGCTAAGC -ACGGAACGACAACGATAGACTAGC -ACGGAACGACAACGATAGAGATGC -ACGGAACGACAACGATAGTGAAGG -ACGGAACGACAACGATAGCAATGG -ACGGAACGACAACGATAGATGAGG -ACGGAACGACAACGATAGAATGGG -ACGGAACGACAACGATAGTCCTGA -ACGGAACGACAACGATAGTAGCGA -ACGGAACGACAACGATAGCACAGA -ACGGAACGACAACGATAGGCAAGA -ACGGAACGACAACGATAGGGTTGA -ACGGAACGACAACGATAGTCCGAT -ACGGAACGACAACGATAGTGGCAT -ACGGAACGACAACGATAGCGAGAT -ACGGAACGACAACGATAGTACCAC -ACGGAACGACAACGATAGCAGAAC -ACGGAACGACAACGATAGGTCTAC -ACGGAACGACAACGATAGACGTAC -ACGGAACGACAACGATAGAGTGAC -ACGGAACGACAACGATAGCTGTAG -ACGGAACGACAACGATAGCCTAAG -ACGGAACGACAACGATAGGTTCAG -ACGGAACGACAACGATAGGCATAG -ACGGAACGACAACGATAGGACAAG -ACGGAACGACAACGATAGAAGCAG -ACGGAACGACAACGATAGCGTCAA -ACGGAACGACAACGATAGGCTGAA -ACGGAACGACAACGATAGAGTACG -ACGGAACGACAACGATAGATCCGA -ACGGAACGACAACGATAGATGGGA -ACGGAACGACAACGATAGGTGCAA -ACGGAACGACAACGATAGGAGGAA -ACGGAACGACAACGATAGCAGGTA -ACGGAACGACAACGATAGGACTCT -ACGGAACGACAACGATAGAGTCCT -ACGGAACGACAACGATAGTAAGCC -ACGGAACGACAACGATAGATAGCC -ACGGAACGACAACGATAGTAACCG -ACGGAACGACAACGATAGATGCCA -ACGGAACGACAAAGACACGGAAAC -ACGGAACGACAAAGACACAACACC -ACGGAACGACAAAGACACATCGAG -ACGGAACGACAAAGACACCTCCTT -ACGGAACGACAAAGACACCCTGTT -ACGGAACGACAAAGACACCGGTTT -ACGGAACGACAAAGACACGTGGTT -ACGGAACGACAAAGACACGCCTTT -ACGGAACGACAAAGACACGGTCTT -ACGGAACGACAAAGACACACGCTT -ACGGAACGACAAAGACACAGCGTT -ACGGAACGACAAAGACACTTCGTC -ACGGAACGACAAAGACACTCTCTC -ACGGAACGACAAAGACACTGGATC -ACGGAACGACAAAGACACCACTTC -ACGGAACGACAAAGACACGTACTC -ACGGAACGACAAAGACACGATGTC -ACGGAACGACAAAGACACACAGTC -ACGGAACGACAAAGACACTTGCTG -ACGGAACGACAAAGACACTCCATG -ACGGAACGACAAAGACACTGTGTG -ACGGAACGACAAAGACACCTAGTG -ACGGAACGACAAAGACACCATCTG -ACGGAACGACAAAGACACGAGTTG -ACGGAACGACAAAGACACAGACTG -ACGGAACGACAAAGACACTCGGTA -ACGGAACGACAAAGACACTGCCTA -ACGGAACGACAAAGACACCCACTA -ACGGAACGACAAAGACACGGAGTA -ACGGAACGACAAAGACACTCGTCT -ACGGAACGACAAAGACACTGCACT -ACGGAACGACAAAGACACCTGACT -ACGGAACGACAAAGACACCAACCT -ACGGAACGACAAAGACACGCTACT -ACGGAACGACAAAGACACGGATCT -ACGGAACGACAAAGACACAAGGCT -ACGGAACGACAAAGACACTCAACC -ACGGAACGACAAAGACACTGTTCC -ACGGAACGACAAAGACACATTCCC -ACGGAACGACAAAGACACTTCTCG -ACGGAACGACAAAGACACTAGACG -ACGGAACGACAAAGACACGTAACG -ACGGAACGACAAAGACACACTTCG -ACGGAACGACAAAGACACTACGCA -ACGGAACGACAAAGACACCTTGCA -ACGGAACGACAAAGACACCGAACA -ACGGAACGACAAAGACACCAGTCA -ACGGAACGACAAAGACACGATCCA -ACGGAACGACAAAGACACACGACA -ACGGAACGACAAAGACACAGCTCA -ACGGAACGACAAAGACACTCACGT -ACGGAACGACAAAGACACCGTAGT -ACGGAACGACAAAGACACGTCAGT -ACGGAACGACAAAGACACGAAGGT -ACGGAACGACAAAGACACAACCGT -ACGGAACGACAAAGACACTTGTGC -ACGGAACGACAAAGACACCTAAGC -ACGGAACGACAAAGACACACTAGC -ACGGAACGACAAAGACACAGATGC -ACGGAACGACAAAGACACTGAAGG -ACGGAACGACAAAGACACCAATGG -ACGGAACGACAAAGACACATGAGG -ACGGAACGACAAAGACACAATGGG -ACGGAACGACAAAGACACTCCTGA -ACGGAACGACAAAGACACTAGCGA -ACGGAACGACAAAGACACCACAGA -ACGGAACGACAAAGACACGCAAGA -ACGGAACGACAAAGACACGGTTGA -ACGGAACGACAAAGACACTCCGAT -ACGGAACGACAAAGACACTGGCAT -ACGGAACGACAAAGACACCGAGAT -ACGGAACGACAAAGACACTACCAC -ACGGAACGACAAAGACACCAGAAC -ACGGAACGACAAAGACACGTCTAC -ACGGAACGACAAAGACACACGTAC -ACGGAACGACAAAGACACAGTGAC -ACGGAACGACAAAGACACCTGTAG -ACGGAACGACAAAGACACCCTAAG -ACGGAACGACAAAGACACGTTCAG -ACGGAACGACAAAGACACGCATAG -ACGGAACGACAAAGACACGACAAG -ACGGAACGACAAAGACACAAGCAG -ACGGAACGACAAAGACACCGTCAA -ACGGAACGACAAAGACACGCTGAA -ACGGAACGACAAAGACACAGTACG -ACGGAACGACAAAGACACATCCGA -ACGGAACGACAAAGACACATGGGA -ACGGAACGACAAAGACACGTGCAA -ACGGAACGACAAAGACACGAGGAA -ACGGAACGACAAAGACACCAGGTA -ACGGAACGACAAAGACACGACTCT -ACGGAACGACAAAGACACAGTCCT -ACGGAACGACAAAGACACTAAGCC -ACGGAACGACAAAGACACATAGCC -ACGGAACGACAAAGACACTAACCG -ACGGAACGACAAAGACACATGCCA -ACGGAACGACAAAGAGCAGGAAAC -ACGGAACGACAAAGAGCAAACACC -ACGGAACGACAAAGAGCAATCGAG -ACGGAACGACAAAGAGCACTCCTT -ACGGAACGACAAAGAGCACCTGTT -ACGGAACGACAAAGAGCACGGTTT -ACGGAACGACAAAGAGCAGTGGTT -ACGGAACGACAAAGAGCAGCCTTT -ACGGAACGACAAAGAGCAGGTCTT -ACGGAACGACAAAGAGCAACGCTT -ACGGAACGACAAAGAGCAAGCGTT -ACGGAACGACAAAGAGCATTCGTC -ACGGAACGACAAAGAGCATCTCTC -ACGGAACGACAAAGAGCATGGATC -ACGGAACGACAAAGAGCACACTTC -ACGGAACGACAAAGAGCAGTACTC -ACGGAACGACAAAGAGCAGATGTC -ACGGAACGACAAAGAGCAACAGTC -ACGGAACGACAAAGAGCATTGCTG -ACGGAACGACAAAGAGCATCCATG -ACGGAACGACAAAGAGCATGTGTG -ACGGAACGACAAAGAGCACTAGTG -ACGGAACGACAAAGAGCACATCTG -ACGGAACGACAAAGAGCAGAGTTG -ACGGAACGACAAAGAGCAAGACTG -ACGGAACGACAAAGAGCATCGGTA -ACGGAACGACAAAGAGCATGCCTA -ACGGAACGACAAAGAGCACCACTA -ACGGAACGACAAAGAGCAGGAGTA -ACGGAACGACAAAGAGCATCGTCT -ACGGAACGACAAAGAGCATGCACT -ACGGAACGACAAAGAGCACTGACT -ACGGAACGACAAAGAGCACAACCT -ACGGAACGACAAAGAGCAGCTACT -ACGGAACGACAAAGAGCAGGATCT -ACGGAACGACAAAGAGCAAAGGCT -ACGGAACGACAAAGAGCATCAACC -ACGGAACGACAAAGAGCATGTTCC -ACGGAACGACAAAGAGCAATTCCC -ACGGAACGACAAAGAGCATTCTCG -ACGGAACGACAAAGAGCATAGACG -ACGGAACGACAAAGAGCAGTAACG -ACGGAACGACAAAGAGCAACTTCG -ACGGAACGACAAAGAGCATACGCA -ACGGAACGACAAAGAGCACTTGCA -ACGGAACGACAAAGAGCACGAACA -ACGGAACGACAAAGAGCACAGTCA -ACGGAACGACAAAGAGCAGATCCA -ACGGAACGACAAAGAGCAACGACA -ACGGAACGACAAAGAGCAAGCTCA -ACGGAACGACAAAGAGCATCACGT -ACGGAACGACAAAGAGCACGTAGT -ACGGAACGACAAAGAGCAGTCAGT -ACGGAACGACAAAGAGCAGAAGGT -ACGGAACGACAAAGAGCAAACCGT -ACGGAACGACAAAGAGCATTGTGC -ACGGAACGACAAAGAGCACTAAGC -ACGGAACGACAAAGAGCAACTAGC -ACGGAACGACAAAGAGCAAGATGC -ACGGAACGACAAAGAGCATGAAGG -ACGGAACGACAAAGAGCACAATGG -ACGGAACGACAAAGAGCAATGAGG -ACGGAACGACAAAGAGCAAATGGG -ACGGAACGACAAAGAGCATCCTGA -ACGGAACGACAAAGAGCATAGCGA -ACGGAACGACAAAGAGCACACAGA -ACGGAACGACAAAGAGCAGCAAGA -ACGGAACGACAAAGAGCAGGTTGA -ACGGAACGACAAAGAGCATCCGAT -ACGGAACGACAAAGAGCATGGCAT -ACGGAACGACAAAGAGCACGAGAT -ACGGAACGACAAAGAGCATACCAC -ACGGAACGACAAAGAGCACAGAAC -ACGGAACGACAAAGAGCAGTCTAC -ACGGAACGACAAAGAGCAACGTAC -ACGGAACGACAAAGAGCAAGTGAC -ACGGAACGACAAAGAGCACTGTAG -ACGGAACGACAAAGAGCACCTAAG -ACGGAACGACAAAGAGCAGTTCAG -ACGGAACGACAAAGAGCAGCATAG -ACGGAACGACAAAGAGCAGACAAG -ACGGAACGACAAAGAGCAAAGCAG -ACGGAACGACAAAGAGCACGTCAA -ACGGAACGACAAAGAGCAGCTGAA -ACGGAACGACAAAGAGCAAGTACG -ACGGAACGACAAAGAGCAATCCGA -ACGGAACGACAAAGAGCAATGGGA -ACGGAACGACAAAGAGCAGTGCAA -ACGGAACGACAAAGAGCAGAGGAA -ACGGAACGACAAAGAGCACAGGTA -ACGGAACGACAAAGAGCAGACTCT -ACGGAACGACAAAGAGCAAGTCCT -ACGGAACGACAAAGAGCATAAGCC -ACGGAACGACAAAGAGCAATAGCC -ACGGAACGACAAAGAGCATAACCG -ACGGAACGACAAAGAGCAATGCCA -ACGGAACGACAATGAGGTGGAAAC -ACGGAACGACAATGAGGTAACACC -ACGGAACGACAATGAGGTATCGAG -ACGGAACGACAATGAGGTCTCCTT -ACGGAACGACAATGAGGTCCTGTT -ACGGAACGACAATGAGGTCGGTTT -ACGGAACGACAATGAGGTGTGGTT -ACGGAACGACAATGAGGTGCCTTT -ACGGAACGACAATGAGGTGGTCTT -ACGGAACGACAATGAGGTACGCTT -ACGGAACGACAATGAGGTAGCGTT -ACGGAACGACAATGAGGTTTCGTC -ACGGAACGACAATGAGGTTCTCTC -ACGGAACGACAATGAGGTTGGATC -ACGGAACGACAATGAGGTCACTTC -ACGGAACGACAATGAGGTGTACTC -ACGGAACGACAATGAGGTGATGTC -ACGGAACGACAATGAGGTACAGTC -ACGGAACGACAATGAGGTTTGCTG -ACGGAACGACAATGAGGTTCCATG -ACGGAACGACAATGAGGTTGTGTG -ACGGAACGACAATGAGGTCTAGTG -ACGGAACGACAATGAGGTCATCTG -ACGGAACGACAATGAGGTGAGTTG -ACGGAACGACAATGAGGTAGACTG -ACGGAACGACAATGAGGTTCGGTA -ACGGAACGACAATGAGGTTGCCTA -ACGGAACGACAATGAGGTCCACTA -ACGGAACGACAATGAGGTGGAGTA -ACGGAACGACAATGAGGTTCGTCT -ACGGAACGACAATGAGGTTGCACT -ACGGAACGACAATGAGGTCTGACT -ACGGAACGACAATGAGGTCAACCT -ACGGAACGACAATGAGGTGCTACT -ACGGAACGACAATGAGGTGGATCT -ACGGAACGACAATGAGGTAAGGCT -ACGGAACGACAATGAGGTTCAACC -ACGGAACGACAATGAGGTTGTTCC -ACGGAACGACAATGAGGTATTCCC -ACGGAACGACAATGAGGTTTCTCG -ACGGAACGACAATGAGGTTAGACG -ACGGAACGACAATGAGGTGTAACG -ACGGAACGACAATGAGGTACTTCG -ACGGAACGACAATGAGGTTACGCA -ACGGAACGACAATGAGGTCTTGCA -ACGGAACGACAATGAGGTCGAACA -ACGGAACGACAATGAGGTCAGTCA -ACGGAACGACAATGAGGTGATCCA -ACGGAACGACAATGAGGTACGACA -ACGGAACGACAATGAGGTAGCTCA -ACGGAACGACAATGAGGTTCACGT -ACGGAACGACAATGAGGTCGTAGT -ACGGAACGACAATGAGGTGTCAGT -ACGGAACGACAATGAGGTGAAGGT -ACGGAACGACAATGAGGTAACCGT -ACGGAACGACAATGAGGTTTGTGC -ACGGAACGACAATGAGGTCTAAGC -ACGGAACGACAATGAGGTACTAGC -ACGGAACGACAATGAGGTAGATGC -ACGGAACGACAATGAGGTTGAAGG -ACGGAACGACAATGAGGTCAATGG -ACGGAACGACAATGAGGTATGAGG -ACGGAACGACAATGAGGTAATGGG -ACGGAACGACAATGAGGTTCCTGA -ACGGAACGACAATGAGGTTAGCGA -ACGGAACGACAATGAGGTCACAGA -ACGGAACGACAATGAGGTGCAAGA -ACGGAACGACAATGAGGTGGTTGA -ACGGAACGACAATGAGGTTCCGAT -ACGGAACGACAATGAGGTTGGCAT -ACGGAACGACAATGAGGTCGAGAT -ACGGAACGACAATGAGGTTACCAC -ACGGAACGACAATGAGGTCAGAAC -ACGGAACGACAATGAGGTGTCTAC -ACGGAACGACAATGAGGTACGTAC -ACGGAACGACAATGAGGTAGTGAC -ACGGAACGACAATGAGGTCTGTAG -ACGGAACGACAATGAGGTCCTAAG -ACGGAACGACAATGAGGTGTTCAG -ACGGAACGACAATGAGGTGCATAG -ACGGAACGACAATGAGGTGACAAG -ACGGAACGACAATGAGGTAAGCAG -ACGGAACGACAATGAGGTCGTCAA -ACGGAACGACAATGAGGTGCTGAA -ACGGAACGACAATGAGGTAGTACG -ACGGAACGACAATGAGGTATCCGA -ACGGAACGACAATGAGGTATGGGA -ACGGAACGACAATGAGGTGTGCAA -ACGGAACGACAATGAGGTGAGGAA -ACGGAACGACAATGAGGTCAGGTA -ACGGAACGACAATGAGGTGACTCT -ACGGAACGACAATGAGGTAGTCCT -ACGGAACGACAATGAGGTTAAGCC -ACGGAACGACAATGAGGTATAGCC -ACGGAACGACAATGAGGTTAACCG -ACGGAACGACAATGAGGTATGCCA -ACGGAACGACAAGATTCCGGAAAC -ACGGAACGACAAGATTCCAACACC -ACGGAACGACAAGATTCCATCGAG -ACGGAACGACAAGATTCCCTCCTT -ACGGAACGACAAGATTCCCCTGTT -ACGGAACGACAAGATTCCCGGTTT -ACGGAACGACAAGATTCCGTGGTT -ACGGAACGACAAGATTCCGCCTTT -ACGGAACGACAAGATTCCGGTCTT -ACGGAACGACAAGATTCCACGCTT -ACGGAACGACAAGATTCCAGCGTT -ACGGAACGACAAGATTCCTTCGTC -ACGGAACGACAAGATTCCTCTCTC -ACGGAACGACAAGATTCCTGGATC -ACGGAACGACAAGATTCCCACTTC -ACGGAACGACAAGATTCCGTACTC -ACGGAACGACAAGATTCCGATGTC -ACGGAACGACAAGATTCCACAGTC -ACGGAACGACAAGATTCCTTGCTG -ACGGAACGACAAGATTCCTCCATG -ACGGAACGACAAGATTCCTGTGTG -ACGGAACGACAAGATTCCCTAGTG -ACGGAACGACAAGATTCCCATCTG -ACGGAACGACAAGATTCCGAGTTG -ACGGAACGACAAGATTCCAGACTG -ACGGAACGACAAGATTCCTCGGTA -ACGGAACGACAAGATTCCTGCCTA -ACGGAACGACAAGATTCCCCACTA -ACGGAACGACAAGATTCCGGAGTA -ACGGAACGACAAGATTCCTCGTCT -ACGGAACGACAAGATTCCTGCACT -ACGGAACGACAAGATTCCCTGACT -ACGGAACGACAAGATTCCCAACCT -ACGGAACGACAAGATTCCGCTACT -ACGGAACGACAAGATTCCGGATCT -ACGGAACGACAAGATTCCAAGGCT -ACGGAACGACAAGATTCCTCAACC -ACGGAACGACAAGATTCCTGTTCC -ACGGAACGACAAGATTCCATTCCC -ACGGAACGACAAGATTCCTTCTCG -ACGGAACGACAAGATTCCTAGACG -ACGGAACGACAAGATTCCGTAACG -ACGGAACGACAAGATTCCACTTCG -ACGGAACGACAAGATTCCTACGCA -ACGGAACGACAAGATTCCCTTGCA -ACGGAACGACAAGATTCCCGAACA -ACGGAACGACAAGATTCCCAGTCA -ACGGAACGACAAGATTCCGATCCA -ACGGAACGACAAGATTCCACGACA -ACGGAACGACAAGATTCCAGCTCA -ACGGAACGACAAGATTCCTCACGT -ACGGAACGACAAGATTCCCGTAGT -ACGGAACGACAAGATTCCGTCAGT -ACGGAACGACAAGATTCCGAAGGT -ACGGAACGACAAGATTCCAACCGT -ACGGAACGACAAGATTCCTTGTGC -ACGGAACGACAAGATTCCCTAAGC -ACGGAACGACAAGATTCCACTAGC -ACGGAACGACAAGATTCCAGATGC -ACGGAACGACAAGATTCCTGAAGG -ACGGAACGACAAGATTCCCAATGG -ACGGAACGACAAGATTCCATGAGG -ACGGAACGACAAGATTCCAATGGG -ACGGAACGACAAGATTCCTCCTGA -ACGGAACGACAAGATTCCTAGCGA -ACGGAACGACAAGATTCCCACAGA -ACGGAACGACAAGATTCCGCAAGA -ACGGAACGACAAGATTCCGGTTGA -ACGGAACGACAAGATTCCTCCGAT -ACGGAACGACAAGATTCCTGGCAT -ACGGAACGACAAGATTCCCGAGAT -ACGGAACGACAAGATTCCTACCAC -ACGGAACGACAAGATTCCCAGAAC -ACGGAACGACAAGATTCCGTCTAC -ACGGAACGACAAGATTCCACGTAC -ACGGAACGACAAGATTCCAGTGAC -ACGGAACGACAAGATTCCCTGTAG -ACGGAACGACAAGATTCCCCTAAG -ACGGAACGACAAGATTCCGTTCAG -ACGGAACGACAAGATTCCGCATAG -ACGGAACGACAAGATTCCGACAAG -ACGGAACGACAAGATTCCAAGCAG -ACGGAACGACAAGATTCCCGTCAA -ACGGAACGACAAGATTCCGCTGAA -ACGGAACGACAAGATTCCAGTACG -ACGGAACGACAAGATTCCATCCGA -ACGGAACGACAAGATTCCATGGGA -ACGGAACGACAAGATTCCGTGCAA -ACGGAACGACAAGATTCCGAGGAA -ACGGAACGACAAGATTCCCAGGTA -ACGGAACGACAAGATTCCGACTCT -ACGGAACGACAAGATTCCAGTCCT -ACGGAACGACAAGATTCCTAAGCC -ACGGAACGACAAGATTCCATAGCC -ACGGAACGACAAGATTCCTAACCG -ACGGAACGACAAGATTCCATGCCA -ACGGAACGACAACATTGGGGAAAC -ACGGAACGACAACATTGGAACACC -ACGGAACGACAACATTGGATCGAG -ACGGAACGACAACATTGGCTCCTT -ACGGAACGACAACATTGGCCTGTT -ACGGAACGACAACATTGGCGGTTT -ACGGAACGACAACATTGGGTGGTT -ACGGAACGACAACATTGGGCCTTT -ACGGAACGACAACATTGGGGTCTT -ACGGAACGACAACATTGGACGCTT -ACGGAACGACAACATTGGAGCGTT -ACGGAACGACAACATTGGTTCGTC -ACGGAACGACAACATTGGTCTCTC -ACGGAACGACAACATTGGTGGATC -ACGGAACGACAACATTGGCACTTC -ACGGAACGACAACATTGGGTACTC -ACGGAACGACAACATTGGGATGTC -ACGGAACGACAACATTGGACAGTC -ACGGAACGACAACATTGGTTGCTG -ACGGAACGACAACATTGGTCCATG -ACGGAACGACAACATTGGTGTGTG -ACGGAACGACAACATTGGCTAGTG -ACGGAACGACAACATTGGCATCTG -ACGGAACGACAACATTGGGAGTTG -ACGGAACGACAACATTGGAGACTG -ACGGAACGACAACATTGGTCGGTA -ACGGAACGACAACATTGGTGCCTA -ACGGAACGACAACATTGGCCACTA -ACGGAACGACAACATTGGGGAGTA -ACGGAACGACAACATTGGTCGTCT -ACGGAACGACAACATTGGTGCACT -ACGGAACGACAACATTGGCTGACT -ACGGAACGACAACATTGGCAACCT -ACGGAACGACAACATTGGGCTACT -ACGGAACGACAACATTGGGGATCT -ACGGAACGACAACATTGGAAGGCT -ACGGAACGACAACATTGGTCAACC -ACGGAACGACAACATTGGTGTTCC -ACGGAACGACAACATTGGATTCCC -ACGGAACGACAACATTGGTTCTCG -ACGGAACGACAACATTGGTAGACG -ACGGAACGACAACATTGGGTAACG -ACGGAACGACAACATTGGACTTCG -ACGGAACGACAACATTGGTACGCA -ACGGAACGACAACATTGGCTTGCA -ACGGAACGACAACATTGGCGAACA -ACGGAACGACAACATTGGCAGTCA -ACGGAACGACAACATTGGGATCCA -ACGGAACGACAACATTGGACGACA -ACGGAACGACAACATTGGAGCTCA -ACGGAACGACAACATTGGTCACGT -ACGGAACGACAACATTGGCGTAGT -ACGGAACGACAACATTGGGTCAGT -ACGGAACGACAACATTGGGAAGGT -ACGGAACGACAACATTGGAACCGT -ACGGAACGACAACATTGGTTGTGC -ACGGAACGACAACATTGGCTAAGC -ACGGAACGACAACATTGGACTAGC -ACGGAACGACAACATTGGAGATGC -ACGGAACGACAACATTGGTGAAGG -ACGGAACGACAACATTGGCAATGG -ACGGAACGACAACATTGGATGAGG -ACGGAACGACAACATTGGAATGGG -ACGGAACGACAACATTGGTCCTGA -ACGGAACGACAACATTGGTAGCGA -ACGGAACGACAACATTGGCACAGA -ACGGAACGACAACATTGGGCAAGA -ACGGAACGACAACATTGGGGTTGA -ACGGAACGACAACATTGGTCCGAT -ACGGAACGACAACATTGGTGGCAT -ACGGAACGACAACATTGGCGAGAT -ACGGAACGACAACATTGGTACCAC -ACGGAACGACAACATTGGCAGAAC -ACGGAACGACAACATTGGGTCTAC -ACGGAACGACAACATTGGACGTAC -ACGGAACGACAACATTGGAGTGAC -ACGGAACGACAACATTGGCTGTAG -ACGGAACGACAACATTGGCCTAAG -ACGGAACGACAACATTGGGTTCAG -ACGGAACGACAACATTGGGCATAG -ACGGAACGACAACATTGGGACAAG -ACGGAACGACAACATTGGAAGCAG -ACGGAACGACAACATTGGCGTCAA -ACGGAACGACAACATTGGGCTGAA -ACGGAACGACAACATTGGAGTACG -ACGGAACGACAACATTGGATCCGA -ACGGAACGACAACATTGGATGGGA -ACGGAACGACAACATTGGGTGCAA -ACGGAACGACAACATTGGGAGGAA -ACGGAACGACAACATTGGCAGGTA -ACGGAACGACAACATTGGGACTCT -ACGGAACGACAACATTGGAGTCCT -ACGGAACGACAACATTGGTAAGCC -ACGGAACGACAACATTGGATAGCC -ACGGAACGACAACATTGGTAACCG -ACGGAACGACAACATTGGATGCCA -ACGGAACGACAAGATCGAGGAAAC -ACGGAACGACAAGATCGAAACACC -ACGGAACGACAAGATCGAATCGAG -ACGGAACGACAAGATCGACTCCTT -ACGGAACGACAAGATCGACCTGTT -ACGGAACGACAAGATCGACGGTTT -ACGGAACGACAAGATCGAGTGGTT -ACGGAACGACAAGATCGAGCCTTT -ACGGAACGACAAGATCGAGGTCTT -ACGGAACGACAAGATCGAACGCTT -ACGGAACGACAAGATCGAAGCGTT -ACGGAACGACAAGATCGATTCGTC -ACGGAACGACAAGATCGATCTCTC -ACGGAACGACAAGATCGATGGATC -ACGGAACGACAAGATCGACACTTC -ACGGAACGACAAGATCGAGTACTC -ACGGAACGACAAGATCGAGATGTC -ACGGAACGACAAGATCGAACAGTC -ACGGAACGACAAGATCGATTGCTG -ACGGAACGACAAGATCGATCCATG -ACGGAACGACAAGATCGATGTGTG -ACGGAACGACAAGATCGACTAGTG -ACGGAACGACAAGATCGACATCTG -ACGGAACGACAAGATCGAGAGTTG -ACGGAACGACAAGATCGAAGACTG -ACGGAACGACAAGATCGATCGGTA -ACGGAACGACAAGATCGATGCCTA -ACGGAACGACAAGATCGACCACTA -ACGGAACGACAAGATCGAGGAGTA -ACGGAACGACAAGATCGATCGTCT -ACGGAACGACAAGATCGATGCACT -ACGGAACGACAAGATCGACTGACT -ACGGAACGACAAGATCGACAACCT -ACGGAACGACAAGATCGAGCTACT -ACGGAACGACAAGATCGAGGATCT -ACGGAACGACAAGATCGAAAGGCT -ACGGAACGACAAGATCGATCAACC -ACGGAACGACAAGATCGATGTTCC -ACGGAACGACAAGATCGAATTCCC -ACGGAACGACAAGATCGATTCTCG -ACGGAACGACAAGATCGATAGACG -ACGGAACGACAAGATCGAGTAACG -ACGGAACGACAAGATCGAACTTCG -ACGGAACGACAAGATCGATACGCA -ACGGAACGACAAGATCGACTTGCA -ACGGAACGACAAGATCGACGAACA -ACGGAACGACAAGATCGACAGTCA -ACGGAACGACAAGATCGAGATCCA -ACGGAACGACAAGATCGAACGACA -ACGGAACGACAAGATCGAAGCTCA -ACGGAACGACAAGATCGATCACGT -ACGGAACGACAAGATCGACGTAGT -ACGGAACGACAAGATCGAGTCAGT -ACGGAACGACAAGATCGAGAAGGT -ACGGAACGACAAGATCGAAACCGT -ACGGAACGACAAGATCGATTGTGC -ACGGAACGACAAGATCGACTAAGC -ACGGAACGACAAGATCGAACTAGC -ACGGAACGACAAGATCGAAGATGC -ACGGAACGACAAGATCGATGAAGG -ACGGAACGACAAGATCGACAATGG -ACGGAACGACAAGATCGAATGAGG -ACGGAACGACAAGATCGAAATGGG -ACGGAACGACAAGATCGATCCTGA -ACGGAACGACAAGATCGATAGCGA -ACGGAACGACAAGATCGACACAGA -ACGGAACGACAAGATCGAGCAAGA -ACGGAACGACAAGATCGAGGTTGA -ACGGAACGACAAGATCGATCCGAT -ACGGAACGACAAGATCGATGGCAT -ACGGAACGACAAGATCGACGAGAT -ACGGAACGACAAGATCGATACCAC -ACGGAACGACAAGATCGACAGAAC -ACGGAACGACAAGATCGAGTCTAC -ACGGAACGACAAGATCGAACGTAC -ACGGAACGACAAGATCGAAGTGAC -ACGGAACGACAAGATCGACTGTAG -ACGGAACGACAAGATCGACCTAAG -ACGGAACGACAAGATCGAGTTCAG -ACGGAACGACAAGATCGAGCATAG -ACGGAACGACAAGATCGAGACAAG -ACGGAACGACAAGATCGAAAGCAG -ACGGAACGACAAGATCGACGTCAA -ACGGAACGACAAGATCGAGCTGAA -ACGGAACGACAAGATCGAAGTACG -ACGGAACGACAAGATCGAATCCGA -ACGGAACGACAAGATCGAATGGGA -ACGGAACGACAAGATCGAGTGCAA -ACGGAACGACAAGATCGAGAGGAA -ACGGAACGACAAGATCGACAGGTA -ACGGAACGACAAGATCGAGACTCT -ACGGAACGACAAGATCGAAGTCCT -ACGGAACGACAAGATCGATAAGCC -ACGGAACGACAAGATCGAATAGCC -ACGGAACGACAAGATCGATAACCG -ACGGAACGACAAGATCGAATGCCA -ACGGAACGACAACACTACGGAAAC -ACGGAACGACAACACTACAACACC -ACGGAACGACAACACTACATCGAG -ACGGAACGACAACACTACCTCCTT -ACGGAACGACAACACTACCCTGTT -ACGGAACGACAACACTACCGGTTT -ACGGAACGACAACACTACGTGGTT -ACGGAACGACAACACTACGCCTTT -ACGGAACGACAACACTACGGTCTT -ACGGAACGACAACACTACACGCTT -ACGGAACGACAACACTACAGCGTT -ACGGAACGACAACACTACTTCGTC -ACGGAACGACAACACTACTCTCTC -ACGGAACGACAACACTACTGGATC -ACGGAACGACAACACTACCACTTC -ACGGAACGACAACACTACGTACTC -ACGGAACGACAACACTACGATGTC -ACGGAACGACAACACTACACAGTC -ACGGAACGACAACACTACTTGCTG -ACGGAACGACAACACTACTCCATG -ACGGAACGACAACACTACTGTGTG -ACGGAACGACAACACTACCTAGTG -ACGGAACGACAACACTACCATCTG -ACGGAACGACAACACTACGAGTTG -ACGGAACGACAACACTACAGACTG -ACGGAACGACAACACTACTCGGTA -ACGGAACGACAACACTACTGCCTA -ACGGAACGACAACACTACCCACTA -ACGGAACGACAACACTACGGAGTA -ACGGAACGACAACACTACTCGTCT -ACGGAACGACAACACTACTGCACT -ACGGAACGACAACACTACCTGACT -ACGGAACGACAACACTACCAACCT -ACGGAACGACAACACTACGCTACT -ACGGAACGACAACACTACGGATCT -ACGGAACGACAACACTACAAGGCT -ACGGAACGACAACACTACTCAACC -ACGGAACGACAACACTACTGTTCC -ACGGAACGACAACACTACATTCCC -ACGGAACGACAACACTACTTCTCG -ACGGAACGACAACACTACTAGACG -ACGGAACGACAACACTACGTAACG -ACGGAACGACAACACTACACTTCG -ACGGAACGACAACACTACTACGCA -ACGGAACGACAACACTACCTTGCA -ACGGAACGACAACACTACCGAACA -ACGGAACGACAACACTACCAGTCA -ACGGAACGACAACACTACGATCCA -ACGGAACGACAACACTACACGACA -ACGGAACGACAACACTACAGCTCA -ACGGAACGACAACACTACTCACGT -ACGGAACGACAACACTACCGTAGT -ACGGAACGACAACACTACGTCAGT -ACGGAACGACAACACTACGAAGGT -ACGGAACGACAACACTACAACCGT -ACGGAACGACAACACTACTTGTGC -ACGGAACGACAACACTACCTAAGC -ACGGAACGACAACACTACACTAGC -ACGGAACGACAACACTACAGATGC -ACGGAACGACAACACTACTGAAGG -ACGGAACGACAACACTACCAATGG -ACGGAACGACAACACTACATGAGG -ACGGAACGACAACACTACAATGGG -ACGGAACGACAACACTACTCCTGA -ACGGAACGACAACACTACTAGCGA -ACGGAACGACAACACTACCACAGA -ACGGAACGACAACACTACGCAAGA -ACGGAACGACAACACTACGGTTGA -ACGGAACGACAACACTACTCCGAT -ACGGAACGACAACACTACTGGCAT -ACGGAACGACAACACTACCGAGAT -ACGGAACGACAACACTACTACCAC -ACGGAACGACAACACTACCAGAAC -ACGGAACGACAACACTACGTCTAC -ACGGAACGACAACACTACACGTAC -ACGGAACGACAACACTACAGTGAC -ACGGAACGACAACACTACCTGTAG -ACGGAACGACAACACTACCCTAAG -ACGGAACGACAACACTACGTTCAG -ACGGAACGACAACACTACGCATAG -ACGGAACGACAACACTACGACAAG -ACGGAACGACAACACTACAAGCAG -ACGGAACGACAACACTACCGTCAA -ACGGAACGACAACACTACGCTGAA -ACGGAACGACAACACTACAGTACG -ACGGAACGACAACACTACATCCGA -ACGGAACGACAACACTACATGGGA -ACGGAACGACAACACTACGTGCAA -ACGGAACGACAACACTACGAGGAA -ACGGAACGACAACACTACCAGGTA -ACGGAACGACAACACTACGACTCT -ACGGAACGACAACACTACAGTCCT -ACGGAACGACAACACTACTAAGCC -ACGGAACGACAACACTACATAGCC -ACGGAACGACAACACTACTAACCG -ACGGAACGACAACACTACATGCCA -ACGGAACGACAAAACCAGGGAAAC -ACGGAACGACAAAACCAGAACACC -ACGGAACGACAAAACCAGATCGAG -ACGGAACGACAAAACCAGCTCCTT -ACGGAACGACAAAACCAGCCTGTT -ACGGAACGACAAAACCAGCGGTTT -ACGGAACGACAAAACCAGGTGGTT -ACGGAACGACAAAACCAGGCCTTT -ACGGAACGACAAAACCAGGGTCTT -ACGGAACGACAAAACCAGACGCTT -ACGGAACGACAAAACCAGAGCGTT -ACGGAACGACAAAACCAGTTCGTC -ACGGAACGACAAAACCAGTCTCTC -ACGGAACGACAAAACCAGTGGATC -ACGGAACGACAAAACCAGCACTTC -ACGGAACGACAAAACCAGGTACTC -ACGGAACGACAAAACCAGGATGTC -ACGGAACGACAAAACCAGACAGTC -ACGGAACGACAAAACCAGTTGCTG -ACGGAACGACAAAACCAGTCCATG -ACGGAACGACAAAACCAGTGTGTG -ACGGAACGACAAAACCAGCTAGTG -ACGGAACGACAAAACCAGCATCTG -ACGGAACGACAAAACCAGGAGTTG -ACGGAACGACAAAACCAGAGACTG -ACGGAACGACAAAACCAGTCGGTA -ACGGAACGACAAAACCAGTGCCTA -ACGGAACGACAAAACCAGCCACTA -ACGGAACGACAAAACCAGGGAGTA -ACGGAACGACAAAACCAGTCGTCT -ACGGAACGACAAAACCAGTGCACT -ACGGAACGACAAAACCAGCTGACT -ACGGAACGACAAAACCAGCAACCT -ACGGAACGACAAAACCAGGCTACT -ACGGAACGACAAAACCAGGGATCT -ACGGAACGACAAAACCAGAAGGCT -ACGGAACGACAAAACCAGTCAACC -ACGGAACGACAAAACCAGTGTTCC -ACGGAACGACAAAACCAGATTCCC -ACGGAACGACAAAACCAGTTCTCG -ACGGAACGACAAAACCAGTAGACG -ACGGAACGACAAAACCAGGTAACG -ACGGAACGACAAAACCAGACTTCG -ACGGAACGACAAAACCAGTACGCA -ACGGAACGACAAAACCAGCTTGCA -ACGGAACGACAAAACCAGCGAACA -ACGGAACGACAAAACCAGCAGTCA -ACGGAACGACAAAACCAGGATCCA -ACGGAACGACAAAACCAGACGACA -ACGGAACGACAAAACCAGAGCTCA -ACGGAACGACAAAACCAGTCACGT -ACGGAACGACAAAACCAGCGTAGT -ACGGAACGACAAAACCAGGTCAGT -ACGGAACGACAAAACCAGGAAGGT -ACGGAACGACAAAACCAGAACCGT -ACGGAACGACAAAACCAGTTGTGC -ACGGAACGACAAAACCAGCTAAGC -ACGGAACGACAAAACCAGACTAGC -ACGGAACGACAAAACCAGAGATGC -ACGGAACGACAAAACCAGTGAAGG -ACGGAACGACAAAACCAGCAATGG -ACGGAACGACAAAACCAGATGAGG -ACGGAACGACAAAACCAGAATGGG -ACGGAACGACAAAACCAGTCCTGA -ACGGAACGACAAAACCAGTAGCGA -ACGGAACGACAAAACCAGCACAGA -ACGGAACGACAAAACCAGGCAAGA -ACGGAACGACAAAACCAGGGTTGA -ACGGAACGACAAAACCAGTCCGAT -ACGGAACGACAAAACCAGTGGCAT -ACGGAACGACAAAACCAGCGAGAT -ACGGAACGACAAAACCAGTACCAC -ACGGAACGACAAAACCAGCAGAAC -ACGGAACGACAAAACCAGGTCTAC -ACGGAACGACAAAACCAGACGTAC -ACGGAACGACAAAACCAGAGTGAC -ACGGAACGACAAAACCAGCTGTAG -ACGGAACGACAAAACCAGCCTAAG -ACGGAACGACAAAACCAGGTTCAG -ACGGAACGACAAAACCAGGCATAG -ACGGAACGACAAAACCAGGACAAG -ACGGAACGACAAAACCAGAAGCAG -ACGGAACGACAAAACCAGCGTCAA -ACGGAACGACAAAACCAGGCTGAA -ACGGAACGACAAAACCAGAGTACG -ACGGAACGACAAAACCAGATCCGA -ACGGAACGACAAAACCAGATGGGA -ACGGAACGACAAAACCAGGTGCAA -ACGGAACGACAAAACCAGGAGGAA -ACGGAACGACAAAACCAGCAGGTA -ACGGAACGACAAAACCAGGACTCT -ACGGAACGACAAAACCAGAGTCCT -ACGGAACGACAAAACCAGTAAGCC -ACGGAACGACAAAACCAGATAGCC -ACGGAACGACAAAACCAGTAACCG -ACGGAACGACAAAACCAGATGCCA -ACGGAACGACAATACGTCGGAAAC -ACGGAACGACAATACGTCAACACC -ACGGAACGACAATACGTCATCGAG -ACGGAACGACAATACGTCCTCCTT -ACGGAACGACAATACGTCCCTGTT -ACGGAACGACAATACGTCCGGTTT -ACGGAACGACAATACGTCGTGGTT -ACGGAACGACAATACGTCGCCTTT -ACGGAACGACAATACGTCGGTCTT -ACGGAACGACAATACGTCACGCTT -ACGGAACGACAATACGTCAGCGTT -ACGGAACGACAATACGTCTTCGTC -ACGGAACGACAATACGTCTCTCTC -ACGGAACGACAATACGTCTGGATC -ACGGAACGACAATACGTCCACTTC -ACGGAACGACAATACGTCGTACTC -ACGGAACGACAATACGTCGATGTC -ACGGAACGACAATACGTCACAGTC -ACGGAACGACAATACGTCTTGCTG -ACGGAACGACAATACGTCTCCATG -ACGGAACGACAATACGTCTGTGTG -ACGGAACGACAATACGTCCTAGTG -ACGGAACGACAATACGTCCATCTG -ACGGAACGACAATACGTCGAGTTG -ACGGAACGACAATACGTCAGACTG -ACGGAACGACAATACGTCTCGGTA -ACGGAACGACAATACGTCTGCCTA -ACGGAACGACAATACGTCCCACTA -ACGGAACGACAATACGTCGGAGTA -ACGGAACGACAATACGTCTCGTCT -ACGGAACGACAATACGTCTGCACT -ACGGAACGACAATACGTCCTGACT -ACGGAACGACAATACGTCCAACCT -ACGGAACGACAATACGTCGCTACT -ACGGAACGACAATACGTCGGATCT -ACGGAACGACAATACGTCAAGGCT -ACGGAACGACAATACGTCTCAACC -ACGGAACGACAATACGTCTGTTCC -ACGGAACGACAATACGTCATTCCC -ACGGAACGACAATACGTCTTCTCG -ACGGAACGACAATACGTCTAGACG -ACGGAACGACAATACGTCGTAACG -ACGGAACGACAATACGTCACTTCG -ACGGAACGACAATACGTCTACGCA -ACGGAACGACAATACGTCCTTGCA -ACGGAACGACAATACGTCCGAACA -ACGGAACGACAATACGTCCAGTCA -ACGGAACGACAATACGTCGATCCA -ACGGAACGACAATACGTCACGACA -ACGGAACGACAATACGTCAGCTCA -ACGGAACGACAATACGTCTCACGT -ACGGAACGACAATACGTCCGTAGT -ACGGAACGACAATACGTCGTCAGT -ACGGAACGACAATACGTCGAAGGT -ACGGAACGACAATACGTCAACCGT -ACGGAACGACAATACGTCTTGTGC -ACGGAACGACAATACGTCCTAAGC -ACGGAACGACAATACGTCACTAGC -ACGGAACGACAATACGTCAGATGC -ACGGAACGACAATACGTCTGAAGG -ACGGAACGACAATACGTCCAATGG -ACGGAACGACAATACGTCATGAGG -ACGGAACGACAATACGTCAATGGG -ACGGAACGACAATACGTCTCCTGA -ACGGAACGACAATACGTCTAGCGA -ACGGAACGACAATACGTCCACAGA -ACGGAACGACAATACGTCGCAAGA -ACGGAACGACAATACGTCGGTTGA -ACGGAACGACAATACGTCTCCGAT -ACGGAACGACAATACGTCTGGCAT -ACGGAACGACAATACGTCCGAGAT -ACGGAACGACAATACGTCTACCAC -ACGGAACGACAATACGTCCAGAAC -ACGGAACGACAATACGTCGTCTAC -ACGGAACGACAATACGTCACGTAC -ACGGAACGACAATACGTCAGTGAC -ACGGAACGACAATACGTCCTGTAG -ACGGAACGACAATACGTCCCTAAG -ACGGAACGACAATACGTCGTTCAG -ACGGAACGACAATACGTCGCATAG -ACGGAACGACAATACGTCGACAAG -ACGGAACGACAATACGTCAAGCAG -ACGGAACGACAATACGTCCGTCAA -ACGGAACGACAATACGTCGCTGAA -ACGGAACGACAATACGTCAGTACG -ACGGAACGACAATACGTCATCCGA -ACGGAACGACAATACGTCATGGGA -ACGGAACGACAATACGTCGTGCAA -ACGGAACGACAATACGTCGAGGAA -ACGGAACGACAATACGTCCAGGTA -ACGGAACGACAATACGTCGACTCT -ACGGAACGACAATACGTCAGTCCT -ACGGAACGACAATACGTCTAAGCC -ACGGAACGACAATACGTCATAGCC -ACGGAACGACAATACGTCTAACCG -ACGGAACGACAATACGTCATGCCA -ACGGAACGACAATACACGGGAAAC -ACGGAACGACAATACACGAACACC -ACGGAACGACAATACACGATCGAG -ACGGAACGACAATACACGCTCCTT -ACGGAACGACAATACACGCCTGTT -ACGGAACGACAATACACGCGGTTT -ACGGAACGACAATACACGGTGGTT -ACGGAACGACAATACACGGCCTTT -ACGGAACGACAATACACGGGTCTT -ACGGAACGACAATACACGACGCTT -ACGGAACGACAATACACGAGCGTT -ACGGAACGACAATACACGTTCGTC -ACGGAACGACAATACACGTCTCTC -ACGGAACGACAATACACGTGGATC -ACGGAACGACAATACACGCACTTC -ACGGAACGACAATACACGGTACTC -ACGGAACGACAATACACGGATGTC -ACGGAACGACAATACACGACAGTC -ACGGAACGACAATACACGTTGCTG -ACGGAACGACAATACACGTCCATG -ACGGAACGACAATACACGTGTGTG -ACGGAACGACAATACACGCTAGTG -ACGGAACGACAATACACGCATCTG -ACGGAACGACAATACACGGAGTTG -ACGGAACGACAATACACGAGACTG -ACGGAACGACAATACACGTCGGTA -ACGGAACGACAATACACGTGCCTA -ACGGAACGACAATACACGCCACTA -ACGGAACGACAATACACGGGAGTA -ACGGAACGACAATACACGTCGTCT -ACGGAACGACAATACACGTGCACT -ACGGAACGACAATACACGCTGACT -ACGGAACGACAATACACGCAACCT -ACGGAACGACAATACACGGCTACT -ACGGAACGACAATACACGGGATCT -ACGGAACGACAATACACGAAGGCT -ACGGAACGACAATACACGTCAACC -ACGGAACGACAATACACGTGTTCC -ACGGAACGACAATACACGATTCCC -ACGGAACGACAATACACGTTCTCG -ACGGAACGACAATACACGTAGACG -ACGGAACGACAATACACGGTAACG -ACGGAACGACAATACACGACTTCG -ACGGAACGACAATACACGTACGCA -ACGGAACGACAATACACGCTTGCA -ACGGAACGACAATACACGCGAACA -ACGGAACGACAATACACGCAGTCA -ACGGAACGACAATACACGGATCCA -ACGGAACGACAATACACGACGACA -ACGGAACGACAATACACGAGCTCA -ACGGAACGACAATACACGTCACGT -ACGGAACGACAATACACGCGTAGT -ACGGAACGACAATACACGGTCAGT -ACGGAACGACAATACACGGAAGGT -ACGGAACGACAATACACGAACCGT -ACGGAACGACAATACACGTTGTGC -ACGGAACGACAATACACGCTAAGC -ACGGAACGACAATACACGACTAGC -ACGGAACGACAATACACGAGATGC -ACGGAACGACAATACACGTGAAGG -ACGGAACGACAATACACGCAATGG -ACGGAACGACAATACACGATGAGG -ACGGAACGACAATACACGAATGGG -ACGGAACGACAATACACGTCCTGA -ACGGAACGACAATACACGTAGCGA -ACGGAACGACAATACACGCACAGA -ACGGAACGACAATACACGGCAAGA -ACGGAACGACAATACACGGGTTGA -ACGGAACGACAATACACGTCCGAT -ACGGAACGACAATACACGTGGCAT -ACGGAACGACAATACACGCGAGAT -ACGGAACGACAATACACGTACCAC -ACGGAACGACAATACACGCAGAAC -ACGGAACGACAATACACGGTCTAC -ACGGAACGACAATACACGACGTAC -ACGGAACGACAATACACGAGTGAC -ACGGAACGACAATACACGCTGTAG -ACGGAACGACAATACACGCCTAAG -ACGGAACGACAATACACGGTTCAG -ACGGAACGACAATACACGGCATAG -ACGGAACGACAATACACGGACAAG -ACGGAACGACAATACACGAAGCAG -ACGGAACGACAATACACGCGTCAA -ACGGAACGACAATACACGGCTGAA -ACGGAACGACAATACACGAGTACG -ACGGAACGACAATACACGATCCGA -ACGGAACGACAATACACGATGGGA -ACGGAACGACAATACACGGTGCAA -ACGGAACGACAATACACGGAGGAA -ACGGAACGACAATACACGCAGGTA -ACGGAACGACAATACACGGACTCT -ACGGAACGACAATACACGAGTCCT -ACGGAACGACAATACACGTAAGCC -ACGGAACGACAATACACGATAGCC -ACGGAACGACAATACACGTAACCG -ACGGAACGACAATACACGATGCCA -ACGGAACGACAAGACAGTGGAAAC -ACGGAACGACAAGACAGTAACACC -ACGGAACGACAAGACAGTATCGAG -ACGGAACGACAAGACAGTCTCCTT -ACGGAACGACAAGACAGTCCTGTT -ACGGAACGACAAGACAGTCGGTTT -ACGGAACGACAAGACAGTGTGGTT -ACGGAACGACAAGACAGTGCCTTT -ACGGAACGACAAGACAGTGGTCTT -ACGGAACGACAAGACAGTACGCTT -ACGGAACGACAAGACAGTAGCGTT -ACGGAACGACAAGACAGTTTCGTC -ACGGAACGACAAGACAGTTCTCTC -ACGGAACGACAAGACAGTTGGATC -ACGGAACGACAAGACAGTCACTTC -ACGGAACGACAAGACAGTGTACTC -ACGGAACGACAAGACAGTGATGTC -ACGGAACGACAAGACAGTACAGTC -ACGGAACGACAAGACAGTTTGCTG -ACGGAACGACAAGACAGTTCCATG -ACGGAACGACAAGACAGTTGTGTG -ACGGAACGACAAGACAGTCTAGTG -ACGGAACGACAAGACAGTCATCTG -ACGGAACGACAAGACAGTGAGTTG -ACGGAACGACAAGACAGTAGACTG -ACGGAACGACAAGACAGTTCGGTA -ACGGAACGACAAGACAGTTGCCTA -ACGGAACGACAAGACAGTCCACTA -ACGGAACGACAAGACAGTGGAGTA -ACGGAACGACAAGACAGTTCGTCT -ACGGAACGACAAGACAGTTGCACT -ACGGAACGACAAGACAGTCTGACT -ACGGAACGACAAGACAGTCAACCT -ACGGAACGACAAGACAGTGCTACT -ACGGAACGACAAGACAGTGGATCT -ACGGAACGACAAGACAGTAAGGCT -ACGGAACGACAAGACAGTTCAACC -ACGGAACGACAAGACAGTTGTTCC -ACGGAACGACAAGACAGTATTCCC -ACGGAACGACAAGACAGTTTCTCG -ACGGAACGACAAGACAGTTAGACG -ACGGAACGACAAGACAGTGTAACG -ACGGAACGACAAGACAGTACTTCG -ACGGAACGACAAGACAGTTACGCA -ACGGAACGACAAGACAGTCTTGCA -ACGGAACGACAAGACAGTCGAACA -ACGGAACGACAAGACAGTCAGTCA -ACGGAACGACAAGACAGTGATCCA -ACGGAACGACAAGACAGTACGACA -ACGGAACGACAAGACAGTAGCTCA -ACGGAACGACAAGACAGTTCACGT -ACGGAACGACAAGACAGTCGTAGT -ACGGAACGACAAGACAGTGTCAGT -ACGGAACGACAAGACAGTGAAGGT -ACGGAACGACAAGACAGTAACCGT -ACGGAACGACAAGACAGTTTGTGC -ACGGAACGACAAGACAGTCTAAGC -ACGGAACGACAAGACAGTACTAGC -ACGGAACGACAAGACAGTAGATGC -ACGGAACGACAAGACAGTTGAAGG -ACGGAACGACAAGACAGTCAATGG -ACGGAACGACAAGACAGTATGAGG -ACGGAACGACAAGACAGTAATGGG -ACGGAACGACAAGACAGTTCCTGA -ACGGAACGACAAGACAGTTAGCGA -ACGGAACGACAAGACAGTCACAGA -ACGGAACGACAAGACAGTGCAAGA -ACGGAACGACAAGACAGTGGTTGA -ACGGAACGACAAGACAGTTCCGAT -ACGGAACGACAAGACAGTTGGCAT -ACGGAACGACAAGACAGTCGAGAT -ACGGAACGACAAGACAGTTACCAC -ACGGAACGACAAGACAGTCAGAAC -ACGGAACGACAAGACAGTGTCTAC -ACGGAACGACAAGACAGTACGTAC -ACGGAACGACAAGACAGTAGTGAC -ACGGAACGACAAGACAGTCTGTAG -ACGGAACGACAAGACAGTCCTAAG -ACGGAACGACAAGACAGTGTTCAG -ACGGAACGACAAGACAGTGCATAG -ACGGAACGACAAGACAGTGACAAG -ACGGAACGACAAGACAGTAAGCAG -ACGGAACGACAAGACAGTCGTCAA -ACGGAACGACAAGACAGTGCTGAA -ACGGAACGACAAGACAGTAGTACG -ACGGAACGACAAGACAGTATCCGA -ACGGAACGACAAGACAGTATGGGA -ACGGAACGACAAGACAGTGTGCAA -ACGGAACGACAAGACAGTGAGGAA -ACGGAACGACAAGACAGTCAGGTA -ACGGAACGACAAGACAGTGACTCT -ACGGAACGACAAGACAGTAGTCCT -ACGGAACGACAAGACAGTTAAGCC -ACGGAACGACAAGACAGTATAGCC -ACGGAACGACAAGACAGTTAACCG -ACGGAACGACAAGACAGTATGCCA -ACGGAACGACAATAGCTGGGAAAC -ACGGAACGACAATAGCTGAACACC -ACGGAACGACAATAGCTGATCGAG -ACGGAACGACAATAGCTGCTCCTT -ACGGAACGACAATAGCTGCCTGTT -ACGGAACGACAATAGCTGCGGTTT -ACGGAACGACAATAGCTGGTGGTT -ACGGAACGACAATAGCTGGCCTTT -ACGGAACGACAATAGCTGGGTCTT -ACGGAACGACAATAGCTGACGCTT -ACGGAACGACAATAGCTGAGCGTT -ACGGAACGACAATAGCTGTTCGTC -ACGGAACGACAATAGCTGTCTCTC -ACGGAACGACAATAGCTGTGGATC -ACGGAACGACAATAGCTGCACTTC -ACGGAACGACAATAGCTGGTACTC -ACGGAACGACAATAGCTGGATGTC -ACGGAACGACAATAGCTGACAGTC -ACGGAACGACAATAGCTGTTGCTG -ACGGAACGACAATAGCTGTCCATG -ACGGAACGACAATAGCTGTGTGTG -ACGGAACGACAATAGCTGCTAGTG -ACGGAACGACAATAGCTGCATCTG -ACGGAACGACAATAGCTGGAGTTG -ACGGAACGACAATAGCTGAGACTG -ACGGAACGACAATAGCTGTCGGTA -ACGGAACGACAATAGCTGTGCCTA -ACGGAACGACAATAGCTGCCACTA -ACGGAACGACAATAGCTGGGAGTA -ACGGAACGACAATAGCTGTCGTCT -ACGGAACGACAATAGCTGTGCACT -ACGGAACGACAATAGCTGCTGACT -ACGGAACGACAATAGCTGCAACCT -ACGGAACGACAATAGCTGGCTACT -ACGGAACGACAATAGCTGGGATCT -ACGGAACGACAATAGCTGAAGGCT -ACGGAACGACAATAGCTGTCAACC -ACGGAACGACAATAGCTGTGTTCC -ACGGAACGACAATAGCTGATTCCC -ACGGAACGACAATAGCTGTTCTCG -ACGGAACGACAATAGCTGTAGACG -ACGGAACGACAATAGCTGGTAACG -ACGGAACGACAATAGCTGACTTCG -ACGGAACGACAATAGCTGTACGCA -ACGGAACGACAATAGCTGCTTGCA -ACGGAACGACAATAGCTGCGAACA -ACGGAACGACAATAGCTGCAGTCA -ACGGAACGACAATAGCTGGATCCA -ACGGAACGACAATAGCTGACGACA -ACGGAACGACAATAGCTGAGCTCA -ACGGAACGACAATAGCTGTCACGT -ACGGAACGACAATAGCTGCGTAGT -ACGGAACGACAATAGCTGGTCAGT -ACGGAACGACAATAGCTGGAAGGT -ACGGAACGACAATAGCTGAACCGT -ACGGAACGACAATAGCTGTTGTGC -ACGGAACGACAATAGCTGCTAAGC -ACGGAACGACAATAGCTGACTAGC -ACGGAACGACAATAGCTGAGATGC -ACGGAACGACAATAGCTGTGAAGG -ACGGAACGACAATAGCTGCAATGG -ACGGAACGACAATAGCTGATGAGG -ACGGAACGACAATAGCTGAATGGG -ACGGAACGACAATAGCTGTCCTGA -ACGGAACGACAATAGCTGTAGCGA -ACGGAACGACAATAGCTGCACAGA -ACGGAACGACAATAGCTGGCAAGA -ACGGAACGACAATAGCTGGGTTGA -ACGGAACGACAATAGCTGTCCGAT -ACGGAACGACAATAGCTGTGGCAT -ACGGAACGACAATAGCTGCGAGAT -ACGGAACGACAATAGCTGTACCAC -ACGGAACGACAATAGCTGCAGAAC -ACGGAACGACAATAGCTGGTCTAC -ACGGAACGACAATAGCTGACGTAC -ACGGAACGACAATAGCTGAGTGAC -ACGGAACGACAATAGCTGCTGTAG -ACGGAACGACAATAGCTGCCTAAG -ACGGAACGACAATAGCTGGTTCAG -ACGGAACGACAATAGCTGGCATAG -ACGGAACGACAATAGCTGGACAAG -ACGGAACGACAATAGCTGAAGCAG -ACGGAACGACAATAGCTGCGTCAA -ACGGAACGACAATAGCTGGCTGAA -ACGGAACGACAATAGCTGAGTACG -ACGGAACGACAATAGCTGATCCGA -ACGGAACGACAATAGCTGATGGGA -ACGGAACGACAATAGCTGGTGCAA -ACGGAACGACAATAGCTGGAGGAA -ACGGAACGACAATAGCTGCAGGTA -ACGGAACGACAATAGCTGGACTCT -ACGGAACGACAATAGCTGAGTCCT -ACGGAACGACAATAGCTGTAAGCC -ACGGAACGACAATAGCTGATAGCC -ACGGAACGACAATAGCTGTAACCG -ACGGAACGACAATAGCTGATGCCA -ACGGAACGACAAAAGCCTGGAAAC -ACGGAACGACAAAAGCCTAACACC -ACGGAACGACAAAAGCCTATCGAG -ACGGAACGACAAAAGCCTCTCCTT -ACGGAACGACAAAAGCCTCCTGTT -ACGGAACGACAAAAGCCTCGGTTT -ACGGAACGACAAAAGCCTGTGGTT -ACGGAACGACAAAAGCCTGCCTTT -ACGGAACGACAAAAGCCTGGTCTT -ACGGAACGACAAAAGCCTACGCTT -ACGGAACGACAAAAGCCTAGCGTT -ACGGAACGACAAAAGCCTTTCGTC -ACGGAACGACAAAAGCCTTCTCTC -ACGGAACGACAAAAGCCTTGGATC -ACGGAACGACAAAAGCCTCACTTC -ACGGAACGACAAAAGCCTGTACTC -ACGGAACGACAAAAGCCTGATGTC -ACGGAACGACAAAAGCCTACAGTC -ACGGAACGACAAAAGCCTTTGCTG -ACGGAACGACAAAAGCCTTCCATG -ACGGAACGACAAAAGCCTTGTGTG -ACGGAACGACAAAAGCCTCTAGTG -ACGGAACGACAAAAGCCTCATCTG -ACGGAACGACAAAAGCCTGAGTTG -ACGGAACGACAAAAGCCTAGACTG -ACGGAACGACAAAAGCCTTCGGTA -ACGGAACGACAAAAGCCTTGCCTA -ACGGAACGACAAAAGCCTCCACTA -ACGGAACGACAAAAGCCTGGAGTA -ACGGAACGACAAAAGCCTTCGTCT -ACGGAACGACAAAAGCCTTGCACT -ACGGAACGACAAAAGCCTCTGACT -ACGGAACGACAAAAGCCTCAACCT -ACGGAACGACAAAAGCCTGCTACT -ACGGAACGACAAAAGCCTGGATCT -ACGGAACGACAAAAGCCTAAGGCT -ACGGAACGACAAAAGCCTTCAACC -ACGGAACGACAAAAGCCTTGTTCC -ACGGAACGACAAAAGCCTATTCCC -ACGGAACGACAAAAGCCTTTCTCG -ACGGAACGACAAAAGCCTTAGACG -ACGGAACGACAAAAGCCTGTAACG -ACGGAACGACAAAAGCCTACTTCG -ACGGAACGACAAAAGCCTTACGCA -ACGGAACGACAAAAGCCTCTTGCA -ACGGAACGACAAAAGCCTCGAACA -ACGGAACGACAAAAGCCTCAGTCA -ACGGAACGACAAAAGCCTGATCCA -ACGGAACGACAAAAGCCTACGACA -ACGGAACGACAAAAGCCTAGCTCA -ACGGAACGACAAAAGCCTTCACGT -ACGGAACGACAAAAGCCTCGTAGT -ACGGAACGACAAAAGCCTGTCAGT -ACGGAACGACAAAAGCCTGAAGGT -ACGGAACGACAAAAGCCTAACCGT -ACGGAACGACAAAAGCCTTTGTGC -ACGGAACGACAAAAGCCTCTAAGC -ACGGAACGACAAAAGCCTACTAGC -ACGGAACGACAAAAGCCTAGATGC -ACGGAACGACAAAAGCCTTGAAGG -ACGGAACGACAAAAGCCTCAATGG -ACGGAACGACAAAAGCCTATGAGG -ACGGAACGACAAAAGCCTAATGGG -ACGGAACGACAAAAGCCTTCCTGA -ACGGAACGACAAAAGCCTTAGCGA -ACGGAACGACAAAAGCCTCACAGA -ACGGAACGACAAAAGCCTGCAAGA -ACGGAACGACAAAAGCCTGGTTGA -ACGGAACGACAAAAGCCTTCCGAT -ACGGAACGACAAAAGCCTTGGCAT -ACGGAACGACAAAAGCCTCGAGAT -ACGGAACGACAAAAGCCTTACCAC -ACGGAACGACAAAAGCCTCAGAAC -ACGGAACGACAAAAGCCTGTCTAC -ACGGAACGACAAAAGCCTACGTAC -ACGGAACGACAAAAGCCTAGTGAC -ACGGAACGACAAAAGCCTCTGTAG -ACGGAACGACAAAAGCCTCCTAAG -ACGGAACGACAAAAGCCTGTTCAG -ACGGAACGACAAAAGCCTGCATAG -ACGGAACGACAAAAGCCTGACAAG -ACGGAACGACAAAAGCCTAAGCAG -ACGGAACGACAAAAGCCTCGTCAA -ACGGAACGACAAAAGCCTGCTGAA -ACGGAACGACAAAAGCCTAGTACG -ACGGAACGACAAAAGCCTATCCGA -ACGGAACGACAAAAGCCTATGGGA -ACGGAACGACAAAAGCCTGTGCAA -ACGGAACGACAAAAGCCTGAGGAA -ACGGAACGACAAAAGCCTCAGGTA -ACGGAACGACAAAAGCCTGACTCT -ACGGAACGACAAAAGCCTAGTCCT -ACGGAACGACAAAAGCCTTAAGCC -ACGGAACGACAAAAGCCTATAGCC -ACGGAACGACAAAAGCCTTAACCG -ACGGAACGACAAAAGCCTATGCCA -ACGGAACGACAACAGGTTGGAAAC -ACGGAACGACAACAGGTTAACACC -ACGGAACGACAACAGGTTATCGAG -ACGGAACGACAACAGGTTCTCCTT -ACGGAACGACAACAGGTTCCTGTT -ACGGAACGACAACAGGTTCGGTTT -ACGGAACGACAACAGGTTGTGGTT -ACGGAACGACAACAGGTTGCCTTT -ACGGAACGACAACAGGTTGGTCTT -ACGGAACGACAACAGGTTACGCTT -ACGGAACGACAACAGGTTAGCGTT -ACGGAACGACAACAGGTTTTCGTC -ACGGAACGACAACAGGTTTCTCTC -ACGGAACGACAACAGGTTTGGATC -ACGGAACGACAACAGGTTCACTTC -ACGGAACGACAACAGGTTGTACTC -ACGGAACGACAACAGGTTGATGTC -ACGGAACGACAACAGGTTACAGTC -ACGGAACGACAACAGGTTTTGCTG -ACGGAACGACAACAGGTTTCCATG -ACGGAACGACAACAGGTTTGTGTG -ACGGAACGACAACAGGTTCTAGTG -ACGGAACGACAACAGGTTCATCTG -ACGGAACGACAACAGGTTGAGTTG -ACGGAACGACAACAGGTTAGACTG -ACGGAACGACAACAGGTTTCGGTA -ACGGAACGACAACAGGTTTGCCTA -ACGGAACGACAACAGGTTCCACTA -ACGGAACGACAACAGGTTGGAGTA -ACGGAACGACAACAGGTTTCGTCT -ACGGAACGACAACAGGTTTGCACT -ACGGAACGACAACAGGTTCTGACT -ACGGAACGACAACAGGTTCAACCT -ACGGAACGACAACAGGTTGCTACT -ACGGAACGACAACAGGTTGGATCT -ACGGAACGACAACAGGTTAAGGCT -ACGGAACGACAACAGGTTTCAACC -ACGGAACGACAACAGGTTTGTTCC -ACGGAACGACAACAGGTTATTCCC -ACGGAACGACAACAGGTTTTCTCG -ACGGAACGACAACAGGTTTAGACG -ACGGAACGACAACAGGTTGTAACG -ACGGAACGACAACAGGTTACTTCG -ACGGAACGACAACAGGTTTACGCA -ACGGAACGACAACAGGTTCTTGCA -ACGGAACGACAACAGGTTCGAACA -ACGGAACGACAACAGGTTCAGTCA -ACGGAACGACAACAGGTTGATCCA -ACGGAACGACAACAGGTTACGACA -ACGGAACGACAACAGGTTAGCTCA -ACGGAACGACAACAGGTTTCACGT -ACGGAACGACAACAGGTTCGTAGT -ACGGAACGACAACAGGTTGTCAGT -ACGGAACGACAACAGGTTGAAGGT -ACGGAACGACAACAGGTTAACCGT -ACGGAACGACAACAGGTTTTGTGC -ACGGAACGACAACAGGTTCTAAGC -ACGGAACGACAACAGGTTACTAGC -ACGGAACGACAACAGGTTAGATGC -ACGGAACGACAACAGGTTTGAAGG -ACGGAACGACAACAGGTTCAATGG -ACGGAACGACAACAGGTTATGAGG -ACGGAACGACAACAGGTTAATGGG -ACGGAACGACAACAGGTTTCCTGA -ACGGAACGACAACAGGTTTAGCGA -ACGGAACGACAACAGGTTCACAGA -ACGGAACGACAACAGGTTGCAAGA -ACGGAACGACAACAGGTTGGTTGA -ACGGAACGACAACAGGTTTCCGAT -ACGGAACGACAACAGGTTTGGCAT -ACGGAACGACAACAGGTTCGAGAT -ACGGAACGACAACAGGTTTACCAC -ACGGAACGACAACAGGTTCAGAAC -ACGGAACGACAACAGGTTGTCTAC -ACGGAACGACAACAGGTTACGTAC -ACGGAACGACAACAGGTTAGTGAC -ACGGAACGACAACAGGTTCTGTAG -ACGGAACGACAACAGGTTCCTAAG -ACGGAACGACAACAGGTTGTTCAG -ACGGAACGACAACAGGTTGCATAG -ACGGAACGACAACAGGTTGACAAG -ACGGAACGACAACAGGTTAAGCAG -ACGGAACGACAACAGGTTCGTCAA -ACGGAACGACAACAGGTTGCTGAA -ACGGAACGACAACAGGTTAGTACG -ACGGAACGACAACAGGTTATCCGA -ACGGAACGACAACAGGTTATGGGA -ACGGAACGACAACAGGTTGTGCAA -ACGGAACGACAACAGGTTGAGGAA -ACGGAACGACAACAGGTTCAGGTA -ACGGAACGACAACAGGTTGACTCT -ACGGAACGACAACAGGTTAGTCCT -ACGGAACGACAACAGGTTTAAGCC -ACGGAACGACAACAGGTTATAGCC -ACGGAACGACAACAGGTTTAACCG -ACGGAACGACAACAGGTTATGCCA -ACGGAACGACAATAGGCAGGAAAC -ACGGAACGACAATAGGCAAACACC -ACGGAACGACAATAGGCAATCGAG -ACGGAACGACAATAGGCACTCCTT -ACGGAACGACAATAGGCACCTGTT -ACGGAACGACAATAGGCACGGTTT -ACGGAACGACAATAGGCAGTGGTT -ACGGAACGACAATAGGCAGCCTTT -ACGGAACGACAATAGGCAGGTCTT -ACGGAACGACAATAGGCAACGCTT -ACGGAACGACAATAGGCAAGCGTT -ACGGAACGACAATAGGCATTCGTC -ACGGAACGACAATAGGCATCTCTC -ACGGAACGACAATAGGCATGGATC -ACGGAACGACAATAGGCACACTTC -ACGGAACGACAATAGGCAGTACTC -ACGGAACGACAATAGGCAGATGTC -ACGGAACGACAATAGGCAACAGTC -ACGGAACGACAATAGGCATTGCTG -ACGGAACGACAATAGGCATCCATG -ACGGAACGACAATAGGCATGTGTG -ACGGAACGACAATAGGCACTAGTG -ACGGAACGACAATAGGCACATCTG -ACGGAACGACAATAGGCAGAGTTG -ACGGAACGACAATAGGCAAGACTG -ACGGAACGACAATAGGCATCGGTA -ACGGAACGACAATAGGCATGCCTA -ACGGAACGACAATAGGCACCACTA -ACGGAACGACAATAGGCAGGAGTA -ACGGAACGACAATAGGCATCGTCT -ACGGAACGACAATAGGCATGCACT -ACGGAACGACAATAGGCACTGACT -ACGGAACGACAATAGGCACAACCT -ACGGAACGACAATAGGCAGCTACT -ACGGAACGACAATAGGCAGGATCT -ACGGAACGACAATAGGCAAAGGCT -ACGGAACGACAATAGGCATCAACC -ACGGAACGACAATAGGCATGTTCC -ACGGAACGACAATAGGCAATTCCC -ACGGAACGACAATAGGCATTCTCG -ACGGAACGACAATAGGCATAGACG -ACGGAACGACAATAGGCAGTAACG -ACGGAACGACAATAGGCAACTTCG -ACGGAACGACAATAGGCATACGCA -ACGGAACGACAATAGGCACTTGCA -ACGGAACGACAATAGGCACGAACA -ACGGAACGACAATAGGCACAGTCA -ACGGAACGACAATAGGCAGATCCA -ACGGAACGACAATAGGCAACGACA -ACGGAACGACAATAGGCAAGCTCA -ACGGAACGACAATAGGCATCACGT -ACGGAACGACAATAGGCACGTAGT -ACGGAACGACAATAGGCAGTCAGT -ACGGAACGACAATAGGCAGAAGGT -ACGGAACGACAATAGGCAAACCGT -ACGGAACGACAATAGGCATTGTGC -ACGGAACGACAATAGGCACTAAGC -ACGGAACGACAATAGGCAACTAGC -ACGGAACGACAATAGGCAAGATGC -ACGGAACGACAATAGGCATGAAGG -ACGGAACGACAATAGGCACAATGG -ACGGAACGACAATAGGCAATGAGG -ACGGAACGACAATAGGCAAATGGG -ACGGAACGACAATAGGCATCCTGA -ACGGAACGACAATAGGCATAGCGA -ACGGAACGACAATAGGCACACAGA -ACGGAACGACAATAGGCAGCAAGA -ACGGAACGACAATAGGCAGGTTGA -ACGGAACGACAATAGGCATCCGAT -ACGGAACGACAATAGGCATGGCAT -ACGGAACGACAATAGGCACGAGAT -ACGGAACGACAATAGGCATACCAC -ACGGAACGACAATAGGCACAGAAC -ACGGAACGACAATAGGCAGTCTAC -ACGGAACGACAATAGGCAACGTAC -ACGGAACGACAATAGGCAAGTGAC -ACGGAACGACAATAGGCACTGTAG -ACGGAACGACAATAGGCACCTAAG -ACGGAACGACAATAGGCAGTTCAG -ACGGAACGACAATAGGCAGCATAG -ACGGAACGACAATAGGCAGACAAG -ACGGAACGACAATAGGCAAAGCAG -ACGGAACGACAATAGGCACGTCAA -ACGGAACGACAATAGGCAGCTGAA -ACGGAACGACAATAGGCAAGTACG -ACGGAACGACAATAGGCAATCCGA -ACGGAACGACAATAGGCAATGGGA -ACGGAACGACAATAGGCAGTGCAA -ACGGAACGACAATAGGCAGAGGAA -ACGGAACGACAATAGGCACAGGTA -ACGGAACGACAATAGGCAGACTCT -ACGGAACGACAATAGGCAAGTCCT -ACGGAACGACAATAGGCATAAGCC -ACGGAACGACAATAGGCAATAGCC -ACGGAACGACAATAGGCATAACCG -ACGGAACGACAATAGGCAATGCCA -ACGGAACGACAAAAGGACGGAAAC -ACGGAACGACAAAAGGACAACACC -ACGGAACGACAAAAGGACATCGAG -ACGGAACGACAAAAGGACCTCCTT -ACGGAACGACAAAAGGACCCTGTT -ACGGAACGACAAAAGGACCGGTTT -ACGGAACGACAAAAGGACGTGGTT -ACGGAACGACAAAAGGACGCCTTT -ACGGAACGACAAAAGGACGGTCTT -ACGGAACGACAAAAGGACACGCTT -ACGGAACGACAAAAGGACAGCGTT -ACGGAACGACAAAAGGACTTCGTC -ACGGAACGACAAAAGGACTCTCTC -ACGGAACGACAAAAGGACTGGATC -ACGGAACGACAAAAGGACCACTTC -ACGGAACGACAAAAGGACGTACTC -ACGGAACGACAAAAGGACGATGTC -ACGGAACGACAAAAGGACACAGTC -ACGGAACGACAAAAGGACTTGCTG -ACGGAACGACAAAAGGACTCCATG -ACGGAACGACAAAAGGACTGTGTG -ACGGAACGACAAAAGGACCTAGTG -ACGGAACGACAAAAGGACCATCTG -ACGGAACGACAAAAGGACGAGTTG -ACGGAACGACAAAAGGACAGACTG -ACGGAACGACAAAAGGACTCGGTA -ACGGAACGACAAAAGGACTGCCTA -ACGGAACGACAAAAGGACCCACTA -ACGGAACGACAAAAGGACGGAGTA -ACGGAACGACAAAAGGACTCGTCT -ACGGAACGACAAAAGGACTGCACT -ACGGAACGACAAAAGGACCTGACT -ACGGAACGACAAAAGGACCAACCT -ACGGAACGACAAAAGGACGCTACT -ACGGAACGACAAAAGGACGGATCT -ACGGAACGACAAAAGGACAAGGCT -ACGGAACGACAAAAGGACTCAACC -ACGGAACGACAAAAGGACTGTTCC -ACGGAACGACAAAAGGACATTCCC -ACGGAACGACAAAAGGACTTCTCG -ACGGAACGACAAAAGGACTAGACG -ACGGAACGACAAAAGGACGTAACG -ACGGAACGACAAAAGGACACTTCG -ACGGAACGACAAAAGGACTACGCA -ACGGAACGACAAAAGGACCTTGCA -ACGGAACGACAAAAGGACCGAACA -ACGGAACGACAAAAGGACCAGTCA -ACGGAACGACAAAAGGACGATCCA -ACGGAACGACAAAAGGACACGACA -ACGGAACGACAAAAGGACAGCTCA -ACGGAACGACAAAAGGACTCACGT -ACGGAACGACAAAAGGACCGTAGT -ACGGAACGACAAAAGGACGTCAGT -ACGGAACGACAAAAGGACGAAGGT -ACGGAACGACAAAAGGACAACCGT -ACGGAACGACAAAAGGACTTGTGC -ACGGAACGACAAAAGGACCTAAGC -ACGGAACGACAAAAGGACACTAGC -ACGGAACGACAAAAGGACAGATGC -ACGGAACGACAAAAGGACTGAAGG -ACGGAACGACAAAAGGACCAATGG -ACGGAACGACAAAAGGACATGAGG -ACGGAACGACAAAAGGACAATGGG -ACGGAACGACAAAAGGACTCCTGA -ACGGAACGACAAAAGGACTAGCGA -ACGGAACGACAAAAGGACCACAGA -ACGGAACGACAAAAGGACGCAAGA -ACGGAACGACAAAAGGACGGTTGA -ACGGAACGACAAAAGGACTCCGAT -ACGGAACGACAAAAGGACTGGCAT -ACGGAACGACAAAAGGACCGAGAT -ACGGAACGACAAAAGGACTACCAC -ACGGAACGACAAAAGGACCAGAAC -ACGGAACGACAAAAGGACGTCTAC -ACGGAACGACAAAAGGACACGTAC -ACGGAACGACAAAAGGACAGTGAC -ACGGAACGACAAAAGGACCTGTAG -ACGGAACGACAAAAGGACCCTAAG -ACGGAACGACAAAAGGACGTTCAG -ACGGAACGACAAAAGGACGCATAG -ACGGAACGACAAAAGGACGACAAG -ACGGAACGACAAAAGGACAAGCAG -ACGGAACGACAAAAGGACCGTCAA -ACGGAACGACAAAAGGACGCTGAA -ACGGAACGACAAAAGGACAGTACG -ACGGAACGACAAAAGGACATCCGA -ACGGAACGACAAAAGGACATGGGA -ACGGAACGACAAAAGGACGTGCAA -ACGGAACGACAAAAGGACGAGGAA -ACGGAACGACAAAAGGACCAGGTA -ACGGAACGACAAAAGGACGACTCT -ACGGAACGACAAAAGGACAGTCCT -ACGGAACGACAAAAGGACTAAGCC -ACGGAACGACAAAAGGACATAGCC -ACGGAACGACAAAAGGACTAACCG -ACGGAACGACAAAAGGACATGCCA -ACGGAACGACAACAGAAGGGAAAC -ACGGAACGACAACAGAAGAACACC -ACGGAACGACAACAGAAGATCGAG -ACGGAACGACAACAGAAGCTCCTT -ACGGAACGACAACAGAAGCCTGTT -ACGGAACGACAACAGAAGCGGTTT -ACGGAACGACAACAGAAGGTGGTT -ACGGAACGACAACAGAAGGCCTTT -ACGGAACGACAACAGAAGGGTCTT -ACGGAACGACAACAGAAGACGCTT -ACGGAACGACAACAGAAGAGCGTT -ACGGAACGACAACAGAAGTTCGTC -ACGGAACGACAACAGAAGTCTCTC -ACGGAACGACAACAGAAGTGGATC -ACGGAACGACAACAGAAGCACTTC -ACGGAACGACAACAGAAGGTACTC -ACGGAACGACAACAGAAGGATGTC -ACGGAACGACAACAGAAGACAGTC -ACGGAACGACAACAGAAGTTGCTG -ACGGAACGACAACAGAAGTCCATG -ACGGAACGACAACAGAAGTGTGTG -ACGGAACGACAACAGAAGCTAGTG -ACGGAACGACAACAGAAGCATCTG -ACGGAACGACAACAGAAGGAGTTG -ACGGAACGACAACAGAAGAGACTG -ACGGAACGACAACAGAAGTCGGTA -ACGGAACGACAACAGAAGTGCCTA -ACGGAACGACAACAGAAGCCACTA -ACGGAACGACAACAGAAGGGAGTA -ACGGAACGACAACAGAAGTCGTCT -ACGGAACGACAACAGAAGTGCACT -ACGGAACGACAACAGAAGCTGACT -ACGGAACGACAACAGAAGCAACCT -ACGGAACGACAACAGAAGGCTACT -ACGGAACGACAACAGAAGGGATCT -ACGGAACGACAACAGAAGAAGGCT -ACGGAACGACAACAGAAGTCAACC -ACGGAACGACAACAGAAGTGTTCC -ACGGAACGACAACAGAAGATTCCC -ACGGAACGACAACAGAAGTTCTCG -ACGGAACGACAACAGAAGTAGACG -ACGGAACGACAACAGAAGGTAACG -ACGGAACGACAACAGAAGACTTCG -ACGGAACGACAACAGAAGTACGCA -ACGGAACGACAACAGAAGCTTGCA -ACGGAACGACAACAGAAGCGAACA -ACGGAACGACAACAGAAGCAGTCA -ACGGAACGACAACAGAAGGATCCA -ACGGAACGACAACAGAAGACGACA -ACGGAACGACAACAGAAGAGCTCA -ACGGAACGACAACAGAAGTCACGT -ACGGAACGACAACAGAAGCGTAGT -ACGGAACGACAACAGAAGGTCAGT -ACGGAACGACAACAGAAGGAAGGT -ACGGAACGACAACAGAAGAACCGT -ACGGAACGACAACAGAAGTTGTGC -ACGGAACGACAACAGAAGCTAAGC -ACGGAACGACAACAGAAGACTAGC -ACGGAACGACAACAGAAGAGATGC -ACGGAACGACAACAGAAGTGAAGG -ACGGAACGACAACAGAAGCAATGG -ACGGAACGACAACAGAAGATGAGG -ACGGAACGACAACAGAAGAATGGG -ACGGAACGACAACAGAAGTCCTGA -ACGGAACGACAACAGAAGTAGCGA -ACGGAACGACAACAGAAGCACAGA -ACGGAACGACAACAGAAGGCAAGA -ACGGAACGACAACAGAAGGGTTGA -ACGGAACGACAACAGAAGTCCGAT -ACGGAACGACAACAGAAGTGGCAT -ACGGAACGACAACAGAAGCGAGAT -ACGGAACGACAACAGAAGTACCAC -ACGGAACGACAACAGAAGCAGAAC -ACGGAACGACAACAGAAGGTCTAC -ACGGAACGACAACAGAAGACGTAC -ACGGAACGACAACAGAAGAGTGAC -ACGGAACGACAACAGAAGCTGTAG -ACGGAACGACAACAGAAGCCTAAG -ACGGAACGACAACAGAAGGTTCAG -ACGGAACGACAACAGAAGGCATAG -ACGGAACGACAACAGAAGGACAAG -ACGGAACGACAACAGAAGAAGCAG -ACGGAACGACAACAGAAGCGTCAA -ACGGAACGACAACAGAAGGCTGAA -ACGGAACGACAACAGAAGAGTACG -ACGGAACGACAACAGAAGATCCGA -ACGGAACGACAACAGAAGATGGGA -ACGGAACGACAACAGAAGGTGCAA -ACGGAACGACAACAGAAGGAGGAA -ACGGAACGACAACAGAAGCAGGTA -ACGGAACGACAACAGAAGGACTCT -ACGGAACGACAACAGAAGAGTCCT -ACGGAACGACAACAGAAGTAAGCC -ACGGAACGACAACAGAAGATAGCC -ACGGAACGACAACAGAAGTAACCG -ACGGAACGACAACAGAAGATGCCA -ACGGAACGACAACAACGTGGAAAC -ACGGAACGACAACAACGTAACACC -ACGGAACGACAACAACGTATCGAG -ACGGAACGACAACAACGTCTCCTT -ACGGAACGACAACAACGTCCTGTT -ACGGAACGACAACAACGTCGGTTT -ACGGAACGACAACAACGTGTGGTT -ACGGAACGACAACAACGTGCCTTT -ACGGAACGACAACAACGTGGTCTT -ACGGAACGACAACAACGTACGCTT -ACGGAACGACAACAACGTAGCGTT -ACGGAACGACAACAACGTTTCGTC -ACGGAACGACAACAACGTTCTCTC -ACGGAACGACAACAACGTTGGATC -ACGGAACGACAACAACGTCACTTC -ACGGAACGACAACAACGTGTACTC -ACGGAACGACAACAACGTGATGTC -ACGGAACGACAACAACGTACAGTC -ACGGAACGACAACAACGTTTGCTG -ACGGAACGACAACAACGTTCCATG -ACGGAACGACAACAACGTTGTGTG -ACGGAACGACAACAACGTCTAGTG -ACGGAACGACAACAACGTCATCTG -ACGGAACGACAACAACGTGAGTTG -ACGGAACGACAACAACGTAGACTG -ACGGAACGACAACAACGTTCGGTA -ACGGAACGACAACAACGTTGCCTA -ACGGAACGACAACAACGTCCACTA -ACGGAACGACAACAACGTGGAGTA -ACGGAACGACAACAACGTTCGTCT -ACGGAACGACAACAACGTTGCACT -ACGGAACGACAACAACGTCTGACT -ACGGAACGACAACAACGTCAACCT -ACGGAACGACAACAACGTGCTACT -ACGGAACGACAACAACGTGGATCT -ACGGAACGACAACAACGTAAGGCT -ACGGAACGACAACAACGTTCAACC -ACGGAACGACAACAACGTTGTTCC -ACGGAACGACAACAACGTATTCCC -ACGGAACGACAACAACGTTTCTCG -ACGGAACGACAACAACGTTAGACG -ACGGAACGACAACAACGTGTAACG -ACGGAACGACAACAACGTACTTCG -ACGGAACGACAACAACGTTACGCA -ACGGAACGACAACAACGTCTTGCA -ACGGAACGACAACAACGTCGAACA -ACGGAACGACAACAACGTCAGTCA -ACGGAACGACAACAACGTGATCCA -ACGGAACGACAACAACGTACGACA -ACGGAACGACAACAACGTAGCTCA -ACGGAACGACAACAACGTTCACGT -ACGGAACGACAACAACGTCGTAGT -ACGGAACGACAACAACGTGTCAGT -ACGGAACGACAACAACGTGAAGGT -ACGGAACGACAACAACGTAACCGT -ACGGAACGACAACAACGTTTGTGC -ACGGAACGACAACAACGTCTAAGC -ACGGAACGACAACAACGTACTAGC -ACGGAACGACAACAACGTAGATGC -ACGGAACGACAACAACGTTGAAGG -ACGGAACGACAACAACGTCAATGG -ACGGAACGACAACAACGTATGAGG -ACGGAACGACAACAACGTAATGGG -ACGGAACGACAACAACGTTCCTGA -ACGGAACGACAACAACGTTAGCGA -ACGGAACGACAACAACGTCACAGA -ACGGAACGACAACAACGTGCAAGA -ACGGAACGACAACAACGTGGTTGA -ACGGAACGACAACAACGTTCCGAT -ACGGAACGACAACAACGTTGGCAT -ACGGAACGACAACAACGTCGAGAT -ACGGAACGACAACAACGTTACCAC -ACGGAACGACAACAACGTCAGAAC -ACGGAACGACAACAACGTGTCTAC -ACGGAACGACAACAACGTACGTAC -ACGGAACGACAACAACGTAGTGAC -ACGGAACGACAACAACGTCTGTAG -ACGGAACGACAACAACGTCCTAAG -ACGGAACGACAACAACGTGTTCAG -ACGGAACGACAACAACGTGCATAG -ACGGAACGACAACAACGTGACAAG -ACGGAACGACAACAACGTAAGCAG -ACGGAACGACAACAACGTCGTCAA -ACGGAACGACAACAACGTGCTGAA -ACGGAACGACAACAACGTAGTACG -ACGGAACGACAACAACGTATCCGA -ACGGAACGACAACAACGTATGGGA -ACGGAACGACAACAACGTGTGCAA -ACGGAACGACAACAACGTGAGGAA -ACGGAACGACAACAACGTCAGGTA -ACGGAACGACAACAACGTGACTCT -ACGGAACGACAACAACGTAGTCCT -ACGGAACGACAACAACGTTAAGCC -ACGGAACGACAACAACGTATAGCC -ACGGAACGACAACAACGTTAACCG -ACGGAACGACAACAACGTATGCCA -ACGGAACGACAAGAAGCTGGAAAC -ACGGAACGACAAGAAGCTAACACC -ACGGAACGACAAGAAGCTATCGAG -ACGGAACGACAAGAAGCTCTCCTT -ACGGAACGACAAGAAGCTCCTGTT -ACGGAACGACAAGAAGCTCGGTTT -ACGGAACGACAAGAAGCTGTGGTT -ACGGAACGACAAGAAGCTGCCTTT -ACGGAACGACAAGAAGCTGGTCTT -ACGGAACGACAAGAAGCTACGCTT -ACGGAACGACAAGAAGCTAGCGTT -ACGGAACGACAAGAAGCTTTCGTC -ACGGAACGACAAGAAGCTTCTCTC -ACGGAACGACAAGAAGCTTGGATC -ACGGAACGACAAGAAGCTCACTTC -ACGGAACGACAAGAAGCTGTACTC -ACGGAACGACAAGAAGCTGATGTC -ACGGAACGACAAGAAGCTACAGTC -ACGGAACGACAAGAAGCTTTGCTG -ACGGAACGACAAGAAGCTTCCATG -ACGGAACGACAAGAAGCTTGTGTG -ACGGAACGACAAGAAGCTCTAGTG -ACGGAACGACAAGAAGCTCATCTG -ACGGAACGACAAGAAGCTGAGTTG -ACGGAACGACAAGAAGCTAGACTG -ACGGAACGACAAGAAGCTTCGGTA -ACGGAACGACAAGAAGCTTGCCTA -ACGGAACGACAAGAAGCTCCACTA -ACGGAACGACAAGAAGCTGGAGTA -ACGGAACGACAAGAAGCTTCGTCT -ACGGAACGACAAGAAGCTTGCACT -ACGGAACGACAAGAAGCTCTGACT -ACGGAACGACAAGAAGCTCAACCT -ACGGAACGACAAGAAGCTGCTACT -ACGGAACGACAAGAAGCTGGATCT -ACGGAACGACAAGAAGCTAAGGCT -ACGGAACGACAAGAAGCTTCAACC -ACGGAACGACAAGAAGCTTGTTCC -ACGGAACGACAAGAAGCTATTCCC -ACGGAACGACAAGAAGCTTTCTCG -ACGGAACGACAAGAAGCTTAGACG -ACGGAACGACAAGAAGCTGTAACG -ACGGAACGACAAGAAGCTACTTCG -ACGGAACGACAAGAAGCTTACGCA -ACGGAACGACAAGAAGCTCTTGCA -ACGGAACGACAAGAAGCTCGAACA -ACGGAACGACAAGAAGCTCAGTCA -ACGGAACGACAAGAAGCTGATCCA -ACGGAACGACAAGAAGCTACGACA -ACGGAACGACAAGAAGCTAGCTCA -ACGGAACGACAAGAAGCTTCACGT -ACGGAACGACAAGAAGCTCGTAGT -ACGGAACGACAAGAAGCTGTCAGT -ACGGAACGACAAGAAGCTGAAGGT -ACGGAACGACAAGAAGCTAACCGT -ACGGAACGACAAGAAGCTTTGTGC -ACGGAACGACAAGAAGCTCTAAGC -ACGGAACGACAAGAAGCTACTAGC -ACGGAACGACAAGAAGCTAGATGC -ACGGAACGACAAGAAGCTTGAAGG -ACGGAACGACAAGAAGCTCAATGG -ACGGAACGACAAGAAGCTATGAGG -ACGGAACGACAAGAAGCTAATGGG -ACGGAACGACAAGAAGCTTCCTGA -ACGGAACGACAAGAAGCTTAGCGA -ACGGAACGACAAGAAGCTCACAGA -ACGGAACGACAAGAAGCTGCAAGA -ACGGAACGACAAGAAGCTGGTTGA -ACGGAACGACAAGAAGCTTCCGAT -ACGGAACGACAAGAAGCTTGGCAT -ACGGAACGACAAGAAGCTCGAGAT -ACGGAACGACAAGAAGCTTACCAC -ACGGAACGACAAGAAGCTCAGAAC -ACGGAACGACAAGAAGCTGTCTAC -ACGGAACGACAAGAAGCTACGTAC -ACGGAACGACAAGAAGCTAGTGAC -ACGGAACGACAAGAAGCTCTGTAG -ACGGAACGACAAGAAGCTCCTAAG -ACGGAACGACAAGAAGCTGTTCAG -ACGGAACGACAAGAAGCTGCATAG -ACGGAACGACAAGAAGCTGACAAG -ACGGAACGACAAGAAGCTAAGCAG -ACGGAACGACAAGAAGCTCGTCAA -ACGGAACGACAAGAAGCTGCTGAA -ACGGAACGACAAGAAGCTAGTACG -ACGGAACGACAAGAAGCTATCCGA -ACGGAACGACAAGAAGCTATGGGA -ACGGAACGACAAGAAGCTGTGCAA -ACGGAACGACAAGAAGCTGAGGAA -ACGGAACGACAAGAAGCTCAGGTA -ACGGAACGACAAGAAGCTGACTCT -ACGGAACGACAAGAAGCTAGTCCT -ACGGAACGACAAGAAGCTTAAGCC -ACGGAACGACAAGAAGCTATAGCC -ACGGAACGACAAGAAGCTTAACCG -ACGGAACGACAAGAAGCTATGCCA -ACGGAACGACAAACGAGTGGAAAC -ACGGAACGACAAACGAGTAACACC -ACGGAACGACAAACGAGTATCGAG -ACGGAACGACAAACGAGTCTCCTT -ACGGAACGACAAACGAGTCCTGTT -ACGGAACGACAAACGAGTCGGTTT -ACGGAACGACAAACGAGTGTGGTT -ACGGAACGACAAACGAGTGCCTTT -ACGGAACGACAAACGAGTGGTCTT -ACGGAACGACAAACGAGTACGCTT -ACGGAACGACAAACGAGTAGCGTT -ACGGAACGACAAACGAGTTTCGTC -ACGGAACGACAAACGAGTTCTCTC -ACGGAACGACAAACGAGTTGGATC -ACGGAACGACAAACGAGTCACTTC -ACGGAACGACAAACGAGTGTACTC -ACGGAACGACAAACGAGTGATGTC -ACGGAACGACAAACGAGTACAGTC -ACGGAACGACAAACGAGTTTGCTG -ACGGAACGACAAACGAGTTCCATG -ACGGAACGACAAACGAGTTGTGTG -ACGGAACGACAAACGAGTCTAGTG -ACGGAACGACAAACGAGTCATCTG -ACGGAACGACAAACGAGTGAGTTG -ACGGAACGACAAACGAGTAGACTG -ACGGAACGACAAACGAGTTCGGTA -ACGGAACGACAAACGAGTTGCCTA -ACGGAACGACAAACGAGTCCACTA -ACGGAACGACAAACGAGTGGAGTA -ACGGAACGACAAACGAGTTCGTCT -ACGGAACGACAAACGAGTTGCACT -ACGGAACGACAAACGAGTCTGACT -ACGGAACGACAAACGAGTCAACCT -ACGGAACGACAAACGAGTGCTACT -ACGGAACGACAAACGAGTGGATCT -ACGGAACGACAAACGAGTAAGGCT -ACGGAACGACAAACGAGTTCAACC -ACGGAACGACAAACGAGTTGTTCC -ACGGAACGACAAACGAGTATTCCC -ACGGAACGACAAACGAGTTTCTCG -ACGGAACGACAAACGAGTTAGACG -ACGGAACGACAAACGAGTGTAACG -ACGGAACGACAAACGAGTACTTCG -ACGGAACGACAAACGAGTTACGCA -ACGGAACGACAAACGAGTCTTGCA -ACGGAACGACAAACGAGTCGAACA -ACGGAACGACAAACGAGTCAGTCA -ACGGAACGACAAACGAGTGATCCA -ACGGAACGACAAACGAGTACGACA -ACGGAACGACAAACGAGTAGCTCA -ACGGAACGACAAACGAGTTCACGT -ACGGAACGACAAACGAGTCGTAGT -ACGGAACGACAAACGAGTGTCAGT -ACGGAACGACAAACGAGTGAAGGT -ACGGAACGACAAACGAGTAACCGT -ACGGAACGACAAACGAGTTTGTGC -ACGGAACGACAAACGAGTCTAAGC -ACGGAACGACAAACGAGTACTAGC -ACGGAACGACAAACGAGTAGATGC -ACGGAACGACAAACGAGTTGAAGG -ACGGAACGACAAACGAGTCAATGG -ACGGAACGACAAACGAGTATGAGG -ACGGAACGACAAACGAGTAATGGG -ACGGAACGACAAACGAGTTCCTGA -ACGGAACGACAAACGAGTTAGCGA -ACGGAACGACAAACGAGTCACAGA -ACGGAACGACAAACGAGTGCAAGA -ACGGAACGACAAACGAGTGGTTGA -ACGGAACGACAAACGAGTTCCGAT -ACGGAACGACAAACGAGTTGGCAT -ACGGAACGACAAACGAGTCGAGAT -ACGGAACGACAAACGAGTTACCAC -ACGGAACGACAAACGAGTCAGAAC -ACGGAACGACAAACGAGTGTCTAC -ACGGAACGACAAACGAGTACGTAC -ACGGAACGACAAACGAGTAGTGAC -ACGGAACGACAAACGAGTCTGTAG -ACGGAACGACAAACGAGTCCTAAG -ACGGAACGACAAACGAGTGTTCAG -ACGGAACGACAAACGAGTGCATAG -ACGGAACGACAAACGAGTGACAAG -ACGGAACGACAAACGAGTAAGCAG -ACGGAACGACAAACGAGTCGTCAA -ACGGAACGACAAACGAGTGCTGAA -ACGGAACGACAAACGAGTAGTACG -ACGGAACGACAAACGAGTATCCGA -ACGGAACGACAAACGAGTATGGGA -ACGGAACGACAAACGAGTGTGCAA -ACGGAACGACAAACGAGTGAGGAA -ACGGAACGACAAACGAGTCAGGTA -ACGGAACGACAAACGAGTGACTCT -ACGGAACGACAAACGAGTAGTCCT -ACGGAACGACAAACGAGTTAAGCC -ACGGAACGACAAACGAGTATAGCC -ACGGAACGACAAACGAGTTAACCG -ACGGAACGACAAACGAGTATGCCA -ACGGAACGACAACGAATCGGAAAC -ACGGAACGACAACGAATCAACACC -ACGGAACGACAACGAATCATCGAG -ACGGAACGACAACGAATCCTCCTT -ACGGAACGACAACGAATCCCTGTT -ACGGAACGACAACGAATCCGGTTT -ACGGAACGACAACGAATCGTGGTT -ACGGAACGACAACGAATCGCCTTT -ACGGAACGACAACGAATCGGTCTT -ACGGAACGACAACGAATCACGCTT -ACGGAACGACAACGAATCAGCGTT -ACGGAACGACAACGAATCTTCGTC -ACGGAACGACAACGAATCTCTCTC -ACGGAACGACAACGAATCTGGATC -ACGGAACGACAACGAATCCACTTC -ACGGAACGACAACGAATCGTACTC -ACGGAACGACAACGAATCGATGTC -ACGGAACGACAACGAATCACAGTC -ACGGAACGACAACGAATCTTGCTG -ACGGAACGACAACGAATCTCCATG -ACGGAACGACAACGAATCTGTGTG -ACGGAACGACAACGAATCCTAGTG -ACGGAACGACAACGAATCCATCTG -ACGGAACGACAACGAATCGAGTTG -ACGGAACGACAACGAATCAGACTG -ACGGAACGACAACGAATCTCGGTA -ACGGAACGACAACGAATCTGCCTA -ACGGAACGACAACGAATCCCACTA -ACGGAACGACAACGAATCGGAGTA -ACGGAACGACAACGAATCTCGTCT -ACGGAACGACAACGAATCTGCACT -ACGGAACGACAACGAATCCTGACT -ACGGAACGACAACGAATCCAACCT -ACGGAACGACAACGAATCGCTACT -ACGGAACGACAACGAATCGGATCT -ACGGAACGACAACGAATCAAGGCT -ACGGAACGACAACGAATCTCAACC -ACGGAACGACAACGAATCTGTTCC -ACGGAACGACAACGAATCATTCCC -ACGGAACGACAACGAATCTTCTCG -ACGGAACGACAACGAATCTAGACG -ACGGAACGACAACGAATCGTAACG -ACGGAACGACAACGAATCACTTCG -ACGGAACGACAACGAATCTACGCA -ACGGAACGACAACGAATCCTTGCA -ACGGAACGACAACGAATCCGAACA -ACGGAACGACAACGAATCCAGTCA -ACGGAACGACAACGAATCGATCCA -ACGGAACGACAACGAATCACGACA -ACGGAACGACAACGAATCAGCTCA -ACGGAACGACAACGAATCTCACGT -ACGGAACGACAACGAATCCGTAGT -ACGGAACGACAACGAATCGTCAGT -ACGGAACGACAACGAATCGAAGGT -ACGGAACGACAACGAATCAACCGT -ACGGAACGACAACGAATCTTGTGC -ACGGAACGACAACGAATCCTAAGC -ACGGAACGACAACGAATCACTAGC -ACGGAACGACAACGAATCAGATGC -ACGGAACGACAACGAATCTGAAGG -ACGGAACGACAACGAATCCAATGG -ACGGAACGACAACGAATCATGAGG -ACGGAACGACAACGAATCAATGGG -ACGGAACGACAACGAATCTCCTGA -ACGGAACGACAACGAATCTAGCGA -ACGGAACGACAACGAATCCACAGA -ACGGAACGACAACGAATCGCAAGA -ACGGAACGACAACGAATCGGTTGA -ACGGAACGACAACGAATCTCCGAT -ACGGAACGACAACGAATCTGGCAT -ACGGAACGACAACGAATCCGAGAT -ACGGAACGACAACGAATCTACCAC -ACGGAACGACAACGAATCCAGAAC -ACGGAACGACAACGAATCGTCTAC -ACGGAACGACAACGAATCACGTAC -ACGGAACGACAACGAATCAGTGAC -ACGGAACGACAACGAATCCTGTAG -ACGGAACGACAACGAATCCCTAAG -ACGGAACGACAACGAATCGTTCAG -ACGGAACGACAACGAATCGCATAG -ACGGAACGACAACGAATCGACAAG -ACGGAACGACAACGAATCAAGCAG -ACGGAACGACAACGAATCCGTCAA -ACGGAACGACAACGAATCGCTGAA -ACGGAACGACAACGAATCAGTACG -ACGGAACGACAACGAATCATCCGA -ACGGAACGACAACGAATCATGGGA -ACGGAACGACAACGAATCGTGCAA -ACGGAACGACAACGAATCGAGGAA -ACGGAACGACAACGAATCCAGGTA -ACGGAACGACAACGAATCGACTCT -ACGGAACGACAACGAATCAGTCCT -ACGGAACGACAACGAATCTAAGCC -ACGGAACGACAACGAATCATAGCC -ACGGAACGACAACGAATCTAACCG -ACGGAACGACAACGAATCATGCCA -ACGGAACGACAAGGAATGGGAAAC -ACGGAACGACAAGGAATGAACACC -ACGGAACGACAAGGAATGATCGAG -ACGGAACGACAAGGAATGCTCCTT -ACGGAACGACAAGGAATGCCTGTT -ACGGAACGACAAGGAATGCGGTTT -ACGGAACGACAAGGAATGGTGGTT -ACGGAACGACAAGGAATGGCCTTT -ACGGAACGACAAGGAATGGGTCTT -ACGGAACGACAAGGAATGACGCTT -ACGGAACGACAAGGAATGAGCGTT -ACGGAACGACAAGGAATGTTCGTC -ACGGAACGACAAGGAATGTCTCTC -ACGGAACGACAAGGAATGTGGATC -ACGGAACGACAAGGAATGCACTTC -ACGGAACGACAAGGAATGGTACTC -ACGGAACGACAAGGAATGGATGTC -ACGGAACGACAAGGAATGACAGTC -ACGGAACGACAAGGAATGTTGCTG -ACGGAACGACAAGGAATGTCCATG -ACGGAACGACAAGGAATGTGTGTG -ACGGAACGACAAGGAATGCTAGTG -ACGGAACGACAAGGAATGCATCTG -ACGGAACGACAAGGAATGGAGTTG -ACGGAACGACAAGGAATGAGACTG -ACGGAACGACAAGGAATGTCGGTA -ACGGAACGACAAGGAATGTGCCTA -ACGGAACGACAAGGAATGCCACTA -ACGGAACGACAAGGAATGGGAGTA -ACGGAACGACAAGGAATGTCGTCT -ACGGAACGACAAGGAATGTGCACT -ACGGAACGACAAGGAATGCTGACT -ACGGAACGACAAGGAATGCAACCT -ACGGAACGACAAGGAATGGCTACT -ACGGAACGACAAGGAATGGGATCT -ACGGAACGACAAGGAATGAAGGCT -ACGGAACGACAAGGAATGTCAACC -ACGGAACGACAAGGAATGTGTTCC -ACGGAACGACAAGGAATGATTCCC -ACGGAACGACAAGGAATGTTCTCG -ACGGAACGACAAGGAATGTAGACG -ACGGAACGACAAGGAATGGTAACG -ACGGAACGACAAGGAATGACTTCG -ACGGAACGACAAGGAATGTACGCA -ACGGAACGACAAGGAATGCTTGCA -ACGGAACGACAAGGAATGCGAACA -ACGGAACGACAAGGAATGCAGTCA -ACGGAACGACAAGGAATGGATCCA -ACGGAACGACAAGGAATGACGACA -ACGGAACGACAAGGAATGAGCTCA -ACGGAACGACAAGGAATGTCACGT -ACGGAACGACAAGGAATGCGTAGT -ACGGAACGACAAGGAATGGTCAGT -ACGGAACGACAAGGAATGGAAGGT -ACGGAACGACAAGGAATGAACCGT -ACGGAACGACAAGGAATGTTGTGC -ACGGAACGACAAGGAATGCTAAGC -ACGGAACGACAAGGAATGACTAGC -ACGGAACGACAAGGAATGAGATGC -ACGGAACGACAAGGAATGTGAAGG -ACGGAACGACAAGGAATGCAATGG -ACGGAACGACAAGGAATGATGAGG -ACGGAACGACAAGGAATGAATGGG -ACGGAACGACAAGGAATGTCCTGA -ACGGAACGACAAGGAATGTAGCGA -ACGGAACGACAAGGAATGCACAGA -ACGGAACGACAAGGAATGGCAAGA -ACGGAACGACAAGGAATGGGTTGA -ACGGAACGACAAGGAATGTCCGAT -ACGGAACGACAAGGAATGTGGCAT -ACGGAACGACAAGGAATGCGAGAT -ACGGAACGACAAGGAATGTACCAC -ACGGAACGACAAGGAATGCAGAAC -ACGGAACGACAAGGAATGGTCTAC -ACGGAACGACAAGGAATGACGTAC -ACGGAACGACAAGGAATGAGTGAC -ACGGAACGACAAGGAATGCTGTAG -ACGGAACGACAAGGAATGCCTAAG -ACGGAACGACAAGGAATGGTTCAG -ACGGAACGACAAGGAATGGCATAG -ACGGAACGACAAGGAATGGACAAG -ACGGAACGACAAGGAATGAAGCAG -ACGGAACGACAAGGAATGCGTCAA -ACGGAACGACAAGGAATGGCTGAA -ACGGAACGACAAGGAATGAGTACG -ACGGAACGACAAGGAATGATCCGA -ACGGAACGACAAGGAATGATGGGA -ACGGAACGACAAGGAATGGTGCAA -ACGGAACGACAAGGAATGGAGGAA -ACGGAACGACAAGGAATGCAGGTA -ACGGAACGACAAGGAATGGACTCT -ACGGAACGACAAGGAATGAGTCCT -ACGGAACGACAAGGAATGTAAGCC -ACGGAACGACAAGGAATGATAGCC -ACGGAACGACAAGGAATGTAACCG -ACGGAACGACAAGGAATGATGCCA -ACGGAACGACAACAAGTGGGAAAC -ACGGAACGACAACAAGTGAACACC -ACGGAACGACAACAAGTGATCGAG -ACGGAACGACAACAAGTGCTCCTT -ACGGAACGACAACAAGTGCCTGTT -ACGGAACGACAACAAGTGCGGTTT -ACGGAACGACAACAAGTGGTGGTT -ACGGAACGACAACAAGTGGCCTTT -ACGGAACGACAACAAGTGGGTCTT -ACGGAACGACAACAAGTGACGCTT -ACGGAACGACAACAAGTGAGCGTT -ACGGAACGACAACAAGTGTTCGTC -ACGGAACGACAACAAGTGTCTCTC -ACGGAACGACAACAAGTGTGGATC -ACGGAACGACAACAAGTGCACTTC -ACGGAACGACAACAAGTGGTACTC -ACGGAACGACAACAAGTGGATGTC -ACGGAACGACAACAAGTGACAGTC -ACGGAACGACAACAAGTGTTGCTG -ACGGAACGACAACAAGTGTCCATG -ACGGAACGACAACAAGTGTGTGTG -ACGGAACGACAACAAGTGCTAGTG -ACGGAACGACAACAAGTGCATCTG -ACGGAACGACAACAAGTGGAGTTG -ACGGAACGACAACAAGTGAGACTG -ACGGAACGACAACAAGTGTCGGTA -ACGGAACGACAACAAGTGTGCCTA -ACGGAACGACAACAAGTGCCACTA -ACGGAACGACAACAAGTGGGAGTA -ACGGAACGACAACAAGTGTCGTCT -ACGGAACGACAACAAGTGTGCACT -ACGGAACGACAACAAGTGCTGACT -ACGGAACGACAACAAGTGCAACCT -ACGGAACGACAACAAGTGGCTACT -ACGGAACGACAACAAGTGGGATCT -ACGGAACGACAACAAGTGAAGGCT -ACGGAACGACAACAAGTGTCAACC -ACGGAACGACAACAAGTGTGTTCC -ACGGAACGACAACAAGTGATTCCC -ACGGAACGACAACAAGTGTTCTCG -ACGGAACGACAACAAGTGTAGACG -ACGGAACGACAACAAGTGGTAACG -ACGGAACGACAACAAGTGACTTCG -ACGGAACGACAACAAGTGTACGCA -ACGGAACGACAACAAGTGCTTGCA -ACGGAACGACAACAAGTGCGAACA -ACGGAACGACAACAAGTGCAGTCA -ACGGAACGACAACAAGTGGATCCA -ACGGAACGACAACAAGTGACGACA -ACGGAACGACAACAAGTGAGCTCA -ACGGAACGACAACAAGTGTCACGT -ACGGAACGACAACAAGTGCGTAGT -ACGGAACGACAACAAGTGGTCAGT -ACGGAACGACAACAAGTGGAAGGT -ACGGAACGACAACAAGTGAACCGT -ACGGAACGACAACAAGTGTTGTGC -ACGGAACGACAACAAGTGCTAAGC -ACGGAACGACAACAAGTGACTAGC -ACGGAACGACAACAAGTGAGATGC -ACGGAACGACAACAAGTGTGAAGG -ACGGAACGACAACAAGTGCAATGG -ACGGAACGACAACAAGTGATGAGG -ACGGAACGACAACAAGTGAATGGG -ACGGAACGACAACAAGTGTCCTGA -ACGGAACGACAACAAGTGTAGCGA -ACGGAACGACAACAAGTGCACAGA -ACGGAACGACAACAAGTGGCAAGA -ACGGAACGACAACAAGTGGGTTGA -ACGGAACGACAACAAGTGTCCGAT -ACGGAACGACAACAAGTGTGGCAT -ACGGAACGACAACAAGTGCGAGAT -ACGGAACGACAACAAGTGTACCAC -ACGGAACGACAACAAGTGCAGAAC -ACGGAACGACAACAAGTGGTCTAC -ACGGAACGACAACAAGTGACGTAC -ACGGAACGACAACAAGTGAGTGAC -ACGGAACGACAACAAGTGCTGTAG -ACGGAACGACAACAAGTGCCTAAG -ACGGAACGACAACAAGTGGTTCAG -ACGGAACGACAACAAGTGGCATAG -ACGGAACGACAACAAGTGGACAAG -ACGGAACGACAACAAGTGAAGCAG -ACGGAACGACAACAAGTGCGTCAA -ACGGAACGACAACAAGTGGCTGAA -ACGGAACGACAACAAGTGAGTACG -ACGGAACGACAACAAGTGATCCGA -ACGGAACGACAACAAGTGATGGGA -ACGGAACGACAACAAGTGGTGCAA -ACGGAACGACAACAAGTGGAGGAA -ACGGAACGACAACAAGTGCAGGTA -ACGGAACGACAACAAGTGGACTCT -ACGGAACGACAACAAGTGAGTCCT -ACGGAACGACAACAAGTGTAAGCC -ACGGAACGACAACAAGTGATAGCC -ACGGAACGACAACAAGTGTAACCG -ACGGAACGACAACAAGTGATGCCA -ACGGAACGACAAGAAGAGGGAAAC -ACGGAACGACAAGAAGAGAACACC -ACGGAACGACAAGAAGAGATCGAG -ACGGAACGACAAGAAGAGCTCCTT -ACGGAACGACAAGAAGAGCCTGTT -ACGGAACGACAAGAAGAGCGGTTT -ACGGAACGACAAGAAGAGGTGGTT -ACGGAACGACAAGAAGAGGCCTTT -ACGGAACGACAAGAAGAGGGTCTT -ACGGAACGACAAGAAGAGACGCTT -ACGGAACGACAAGAAGAGAGCGTT -ACGGAACGACAAGAAGAGTTCGTC -ACGGAACGACAAGAAGAGTCTCTC -ACGGAACGACAAGAAGAGTGGATC -ACGGAACGACAAGAAGAGCACTTC -ACGGAACGACAAGAAGAGGTACTC -ACGGAACGACAAGAAGAGGATGTC -ACGGAACGACAAGAAGAGACAGTC -ACGGAACGACAAGAAGAGTTGCTG -ACGGAACGACAAGAAGAGTCCATG -ACGGAACGACAAGAAGAGTGTGTG -ACGGAACGACAAGAAGAGCTAGTG -ACGGAACGACAAGAAGAGCATCTG -ACGGAACGACAAGAAGAGGAGTTG -ACGGAACGACAAGAAGAGAGACTG -ACGGAACGACAAGAAGAGTCGGTA -ACGGAACGACAAGAAGAGTGCCTA -ACGGAACGACAAGAAGAGCCACTA -ACGGAACGACAAGAAGAGGGAGTA -ACGGAACGACAAGAAGAGTCGTCT -ACGGAACGACAAGAAGAGTGCACT -ACGGAACGACAAGAAGAGCTGACT -ACGGAACGACAAGAAGAGCAACCT -ACGGAACGACAAGAAGAGGCTACT -ACGGAACGACAAGAAGAGGGATCT -ACGGAACGACAAGAAGAGAAGGCT -ACGGAACGACAAGAAGAGTCAACC -ACGGAACGACAAGAAGAGTGTTCC -ACGGAACGACAAGAAGAGATTCCC -ACGGAACGACAAGAAGAGTTCTCG -ACGGAACGACAAGAAGAGTAGACG -ACGGAACGACAAGAAGAGGTAACG -ACGGAACGACAAGAAGAGACTTCG -ACGGAACGACAAGAAGAGTACGCA -ACGGAACGACAAGAAGAGCTTGCA -ACGGAACGACAAGAAGAGCGAACA -ACGGAACGACAAGAAGAGCAGTCA -ACGGAACGACAAGAAGAGGATCCA -ACGGAACGACAAGAAGAGACGACA -ACGGAACGACAAGAAGAGAGCTCA -ACGGAACGACAAGAAGAGTCACGT -ACGGAACGACAAGAAGAGCGTAGT -ACGGAACGACAAGAAGAGGTCAGT -ACGGAACGACAAGAAGAGGAAGGT -ACGGAACGACAAGAAGAGAACCGT -ACGGAACGACAAGAAGAGTTGTGC -ACGGAACGACAAGAAGAGCTAAGC -ACGGAACGACAAGAAGAGACTAGC -ACGGAACGACAAGAAGAGAGATGC -ACGGAACGACAAGAAGAGTGAAGG -ACGGAACGACAAGAAGAGCAATGG -ACGGAACGACAAGAAGAGATGAGG -ACGGAACGACAAGAAGAGAATGGG -ACGGAACGACAAGAAGAGTCCTGA -ACGGAACGACAAGAAGAGTAGCGA -ACGGAACGACAAGAAGAGCACAGA -ACGGAACGACAAGAAGAGGCAAGA -ACGGAACGACAAGAAGAGGGTTGA -ACGGAACGACAAGAAGAGTCCGAT -ACGGAACGACAAGAAGAGTGGCAT -ACGGAACGACAAGAAGAGCGAGAT -ACGGAACGACAAGAAGAGTACCAC -ACGGAACGACAAGAAGAGCAGAAC -ACGGAACGACAAGAAGAGGTCTAC -ACGGAACGACAAGAAGAGACGTAC -ACGGAACGACAAGAAGAGAGTGAC -ACGGAACGACAAGAAGAGCTGTAG -ACGGAACGACAAGAAGAGCCTAAG -ACGGAACGACAAGAAGAGGTTCAG -ACGGAACGACAAGAAGAGGCATAG -ACGGAACGACAAGAAGAGGACAAG -ACGGAACGACAAGAAGAGAAGCAG -ACGGAACGACAAGAAGAGCGTCAA -ACGGAACGACAAGAAGAGGCTGAA -ACGGAACGACAAGAAGAGAGTACG -ACGGAACGACAAGAAGAGATCCGA -ACGGAACGACAAGAAGAGATGGGA -ACGGAACGACAAGAAGAGGTGCAA -ACGGAACGACAAGAAGAGGAGGAA -ACGGAACGACAAGAAGAGCAGGTA -ACGGAACGACAAGAAGAGGACTCT -ACGGAACGACAAGAAGAGAGTCCT -ACGGAACGACAAGAAGAGTAAGCC -ACGGAACGACAAGAAGAGATAGCC -ACGGAACGACAAGAAGAGTAACCG -ACGGAACGACAAGAAGAGATGCCA -ACGGAACGACAAGTACAGGGAAAC -ACGGAACGACAAGTACAGAACACC -ACGGAACGACAAGTACAGATCGAG -ACGGAACGACAAGTACAGCTCCTT -ACGGAACGACAAGTACAGCCTGTT -ACGGAACGACAAGTACAGCGGTTT -ACGGAACGACAAGTACAGGTGGTT -ACGGAACGACAAGTACAGGCCTTT -ACGGAACGACAAGTACAGGGTCTT -ACGGAACGACAAGTACAGACGCTT -ACGGAACGACAAGTACAGAGCGTT -ACGGAACGACAAGTACAGTTCGTC -ACGGAACGACAAGTACAGTCTCTC -ACGGAACGACAAGTACAGTGGATC -ACGGAACGACAAGTACAGCACTTC -ACGGAACGACAAGTACAGGTACTC -ACGGAACGACAAGTACAGGATGTC -ACGGAACGACAAGTACAGACAGTC -ACGGAACGACAAGTACAGTTGCTG -ACGGAACGACAAGTACAGTCCATG -ACGGAACGACAAGTACAGTGTGTG -ACGGAACGACAAGTACAGCTAGTG -ACGGAACGACAAGTACAGCATCTG -ACGGAACGACAAGTACAGGAGTTG -ACGGAACGACAAGTACAGAGACTG -ACGGAACGACAAGTACAGTCGGTA -ACGGAACGACAAGTACAGTGCCTA -ACGGAACGACAAGTACAGCCACTA -ACGGAACGACAAGTACAGGGAGTA -ACGGAACGACAAGTACAGTCGTCT -ACGGAACGACAAGTACAGTGCACT -ACGGAACGACAAGTACAGCTGACT -ACGGAACGACAAGTACAGCAACCT -ACGGAACGACAAGTACAGGCTACT -ACGGAACGACAAGTACAGGGATCT -ACGGAACGACAAGTACAGAAGGCT -ACGGAACGACAAGTACAGTCAACC -ACGGAACGACAAGTACAGTGTTCC -ACGGAACGACAAGTACAGATTCCC -ACGGAACGACAAGTACAGTTCTCG -ACGGAACGACAAGTACAGTAGACG -ACGGAACGACAAGTACAGGTAACG -ACGGAACGACAAGTACAGACTTCG -ACGGAACGACAAGTACAGTACGCA -ACGGAACGACAAGTACAGCTTGCA -ACGGAACGACAAGTACAGCGAACA -ACGGAACGACAAGTACAGCAGTCA -ACGGAACGACAAGTACAGGATCCA -ACGGAACGACAAGTACAGACGACA -ACGGAACGACAAGTACAGAGCTCA -ACGGAACGACAAGTACAGTCACGT -ACGGAACGACAAGTACAGCGTAGT -ACGGAACGACAAGTACAGGTCAGT -ACGGAACGACAAGTACAGGAAGGT -ACGGAACGACAAGTACAGAACCGT -ACGGAACGACAAGTACAGTTGTGC -ACGGAACGACAAGTACAGCTAAGC -ACGGAACGACAAGTACAGACTAGC -ACGGAACGACAAGTACAGAGATGC -ACGGAACGACAAGTACAGTGAAGG -ACGGAACGACAAGTACAGCAATGG -ACGGAACGACAAGTACAGATGAGG -ACGGAACGACAAGTACAGAATGGG -ACGGAACGACAAGTACAGTCCTGA -ACGGAACGACAAGTACAGTAGCGA -ACGGAACGACAAGTACAGCACAGA -ACGGAACGACAAGTACAGGCAAGA -ACGGAACGACAAGTACAGGGTTGA -ACGGAACGACAAGTACAGTCCGAT -ACGGAACGACAAGTACAGTGGCAT -ACGGAACGACAAGTACAGCGAGAT -ACGGAACGACAAGTACAGTACCAC -ACGGAACGACAAGTACAGCAGAAC -ACGGAACGACAAGTACAGGTCTAC -ACGGAACGACAAGTACAGACGTAC -ACGGAACGACAAGTACAGAGTGAC -ACGGAACGACAAGTACAGCTGTAG -ACGGAACGACAAGTACAGCCTAAG -ACGGAACGACAAGTACAGGTTCAG -ACGGAACGACAAGTACAGGCATAG -ACGGAACGACAAGTACAGGACAAG -ACGGAACGACAAGTACAGAAGCAG -ACGGAACGACAAGTACAGCGTCAA -ACGGAACGACAAGTACAGGCTGAA -ACGGAACGACAAGTACAGAGTACG -ACGGAACGACAAGTACAGATCCGA -ACGGAACGACAAGTACAGATGGGA -ACGGAACGACAAGTACAGGTGCAA -ACGGAACGACAAGTACAGGAGGAA -ACGGAACGACAAGTACAGCAGGTA -ACGGAACGACAAGTACAGGACTCT -ACGGAACGACAAGTACAGAGTCCT -ACGGAACGACAAGTACAGTAAGCC -ACGGAACGACAAGTACAGATAGCC -ACGGAACGACAAGTACAGTAACCG -ACGGAACGACAAGTACAGATGCCA -ACGGAACGACAATCTGACGGAAAC -ACGGAACGACAATCTGACAACACC -ACGGAACGACAATCTGACATCGAG -ACGGAACGACAATCTGACCTCCTT -ACGGAACGACAATCTGACCCTGTT -ACGGAACGACAATCTGACCGGTTT -ACGGAACGACAATCTGACGTGGTT -ACGGAACGACAATCTGACGCCTTT -ACGGAACGACAATCTGACGGTCTT -ACGGAACGACAATCTGACACGCTT -ACGGAACGACAATCTGACAGCGTT -ACGGAACGACAATCTGACTTCGTC -ACGGAACGACAATCTGACTCTCTC -ACGGAACGACAATCTGACTGGATC -ACGGAACGACAATCTGACCACTTC -ACGGAACGACAATCTGACGTACTC -ACGGAACGACAATCTGACGATGTC -ACGGAACGACAATCTGACACAGTC -ACGGAACGACAATCTGACTTGCTG -ACGGAACGACAATCTGACTCCATG -ACGGAACGACAATCTGACTGTGTG -ACGGAACGACAATCTGACCTAGTG -ACGGAACGACAATCTGACCATCTG -ACGGAACGACAATCTGACGAGTTG -ACGGAACGACAATCTGACAGACTG -ACGGAACGACAATCTGACTCGGTA -ACGGAACGACAATCTGACTGCCTA -ACGGAACGACAATCTGACCCACTA -ACGGAACGACAATCTGACGGAGTA -ACGGAACGACAATCTGACTCGTCT -ACGGAACGACAATCTGACTGCACT -ACGGAACGACAATCTGACCTGACT -ACGGAACGACAATCTGACCAACCT -ACGGAACGACAATCTGACGCTACT -ACGGAACGACAATCTGACGGATCT -ACGGAACGACAATCTGACAAGGCT -ACGGAACGACAATCTGACTCAACC -ACGGAACGACAATCTGACTGTTCC -ACGGAACGACAATCTGACATTCCC -ACGGAACGACAATCTGACTTCTCG -ACGGAACGACAATCTGACTAGACG -ACGGAACGACAATCTGACGTAACG -ACGGAACGACAATCTGACACTTCG -ACGGAACGACAATCTGACTACGCA -ACGGAACGACAATCTGACCTTGCA -ACGGAACGACAATCTGACCGAACA -ACGGAACGACAATCTGACCAGTCA -ACGGAACGACAATCTGACGATCCA -ACGGAACGACAATCTGACACGACA -ACGGAACGACAATCTGACAGCTCA -ACGGAACGACAATCTGACTCACGT -ACGGAACGACAATCTGACCGTAGT -ACGGAACGACAATCTGACGTCAGT -ACGGAACGACAATCTGACGAAGGT -ACGGAACGACAATCTGACAACCGT -ACGGAACGACAATCTGACTTGTGC -ACGGAACGACAATCTGACCTAAGC -ACGGAACGACAATCTGACACTAGC -ACGGAACGACAATCTGACAGATGC -ACGGAACGACAATCTGACTGAAGG -ACGGAACGACAATCTGACCAATGG -ACGGAACGACAATCTGACATGAGG -ACGGAACGACAATCTGACAATGGG -ACGGAACGACAATCTGACTCCTGA -ACGGAACGACAATCTGACTAGCGA -ACGGAACGACAATCTGACCACAGA -ACGGAACGACAATCTGACGCAAGA -ACGGAACGACAATCTGACGGTTGA -ACGGAACGACAATCTGACTCCGAT -ACGGAACGACAATCTGACTGGCAT -ACGGAACGACAATCTGACCGAGAT -ACGGAACGACAATCTGACTACCAC -ACGGAACGACAATCTGACCAGAAC -ACGGAACGACAATCTGACGTCTAC -ACGGAACGACAATCTGACACGTAC -ACGGAACGACAATCTGACAGTGAC -ACGGAACGACAATCTGACCTGTAG -ACGGAACGACAATCTGACCCTAAG -ACGGAACGACAATCTGACGTTCAG -ACGGAACGACAATCTGACGCATAG -ACGGAACGACAATCTGACGACAAG -ACGGAACGACAATCTGACAAGCAG -ACGGAACGACAATCTGACCGTCAA -ACGGAACGACAATCTGACGCTGAA -ACGGAACGACAATCTGACAGTACG -ACGGAACGACAATCTGACATCCGA -ACGGAACGACAATCTGACATGGGA -ACGGAACGACAATCTGACGTGCAA -ACGGAACGACAATCTGACGAGGAA -ACGGAACGACAATCTGACCAGGTA -ACGGAACGACAATCTGACGACTCT -ACGGAACGACAATCTGACAGTCCT -ACGGAACGACAATCTGACTAAGCC -ACGGAACGACAATCTGACATAGCC -ACGGAACGACAATCTGACTAACCG -ACGGAACGACAATCTGACATGCCA -ACGGAACGACAACCTAGTGGAAAC -ACGGAACGACAACCTAGTAACACC -ACGGAACGACAACCTAGTATCGAG -ACGGAACGACAACCTAGTCTCCTT -ACGGAACGACAACCTAGTCCTGTT -ACGGAACGACAACCTAGTCGGTTT -ACGGAACGACAACCTAGTGTGGTT -ACGGAACGACAACCTAGTGCCTTT -ACGGAACGACAACCTAGTGGTCTT -ACGGAACGACAACCTAGTACGCTT -ACGGAACGACAACCTAGTAGCGTT -ACGGAACGACAACCTAGTTTCGTC -ACGGAACGACAACCTAGTTCTCTC -ACGGAACGACAACCTAGTTGGATC -ACGGAACGACAACCTAGTCACTTC -ACGGAACGACAACCTAGTGTACTC -ACGGAACGACAACCTAGTGATGTC -ACGGAACGACAACCTAGTACAGTC -ACGGAACGACAACCTAGTTTGCTG -ACGGAACGACAACCTAGTTCCATG -ACGGAACGACAACCTAGTTGTGTG -ACGGAACGACAACCTAGTCTAGTG -ACGGAACGACAACCTAGTCATCTG -ACGGAACGACAACCTAGTGAGTTG -ACGGAACGACAACCTAGTAGACTG -ACGGAACGACAACCTAGTTCGGTA -ACGGAACGACAACCTAGTTGCCTA -ACGGAACGACAACCTAGTCCACTA -ACGGAACGACAACCTAGTGGAGTA -ACGGAACGACAACCTAGTTCGTCT -ACGGAACGACAACCTAGTTGCACT -ACGGAACGACAACCTAGTCTGACT -ACGGAACGACAACCTAGTCAACCT -ACGGAACGACAACCTAGTGCTACT -ACGGAACGACAACCTAGTGGATCT -ACGGAACGACAACCTAGTAAGGCT -ACGGAACGACAACCTAGTTCAACC -ACGGAACGACAACCTAGTTGTTCC -ACGGAACGACAACCTAGTATTCCC -ACGGAACGACAACCTAGTTTCTCG -ACGGAACGACAACCTAGTTAGACG -ACGGAACGACAACCTAGTGTAACG -ACGGAACGACAACCTAGTACTTCG -ACGGAACGACAACCTAGTTACGCA -ACGGAACGACAACCTAGTCTTGCA -ACGGAACGACAACCTAGTCGAACA -ACGGAACGACAACCTAGTCAGTCA -ACGGAACGACAACCTAGTGATCCA -ACGGAACGACAACCTAGTACGACA -ACGGAACGACAACCTAGTAGCTCA -ACGGAACGACAACCTAGTTCACGT -ACGGAACGACAACCTAGTCGTAGT -ACGGAACGACAACCTAGTGTCAGT -ACGGAACGACAACCTAGTGAAGGT -ACGGAACGACAACCTAGTAACCGT -ACGGAACGACAACCTAGTTTGTGC -ACGGAACGACAACCTAGTCTAAGC -ACGGAACGACAACCTAGTACTAGC -ACGGAACGACAACCTAGTAGATGC -ACGGAACGACAACCTAGTTGAAGG -ACGGAACGACAACCTAGTCAATGG -ACGGAACGACAACCTAGTATGAGG -ACGGAACGACAACCTAGTAATGGG -ACGGAACGACAACCTAGTTCCTGA -ACGGAACGACAACCTAGTTAGCGA -ACGGAACGACAACCTAGTCACAGA -ACGGAACGACAACCTAGTGCAAGA -ACGGAACGACAACCTAGTGGTTGA -ACGGAACGACAACCTAGTTCCGAT -ACGGAACGACAACCTAGTTGGCAT -ACGGAACGACAACCTAGTCGAGAT -ACGGAACGACAACCTAGTTACCAC -ACGGAACGACAACCTAGTCAGAAC -ACGGAACGACAACCTAGTGTCTAC -ACGGAACGACAACCTAGTACGTAC -ACGGAACGACAACCTAGTAGTGAC -ACGGAACGACAACCTAGTCTGTAG -ACGGAACGACAACCTAGTCCTAAG -ACGGAACGACAACCTAGTGTTCAG -ACGGAACGACAACCTAGTGCATAG -ACGGAACGACAACCTAGTGACAAG -ACGGAACGACAACCTAGTAAGCAG -ACGGAACGACAACCTAGTCGTCAA -ACGGAACGACAACCTAGTGCTGAA -ACGGAACGACAACCTAGTAGTACG -ACGGAACGACAACCTAGTATCCGA -ACGGAACGACAACCTAGTATGGGA -ACGGAACGACAACCTAGTGTGCAA -ACGGAACGACAACCTAGTGAGGAA -ACGGAACGACAACCTAGTCAGGTA -ACGGAACGACAACCTAGTGACTCT -ACGGAACGACAACCTAGTAGTCCT -ACGGAACGACAACCTAGTTAAGCC -ACGGAACGACAACCTAGTATAGCC -ACGGAACGACAACCTAGTTAACCG -ACGGAACGACAACCTAGTATGCCA -ACGGAACGACAAGCCTAAGGAAAC -ACGGAACGACAAGCCTAAAACACC -ACGGAACGACAAGCCTAAATCGAG -ACGGAACGACAAGCCTAACTCCTT -ACGGAACGACAAGCCTAACCTGTT -ACGGAACGACAAGCCTAACGGTTT -ACGGAACGACAAGCCTAAGTGGTT -ACGGAACGACAAGCCTAAGCCTTT -ACGGAACGACAAGCCTAAGGTCTT -ACGGAACGACAAGCCTAAACGCTT -ACGGAACGACAAGCCTAAAGCGTT -ACGGAACGACAAGCCTAATTCGTC -ACGGAACGACAAGCCTAATCTCTC -ACGGAACGACAAGCCTAATGGATC -ACGGAACGACAAGCCTAACACTTC -ACGGAACGACAAGCCTAAGTACTC -ACGGAACGACAAGCCTAAGATGTC -ACGGAACGACAAGCCTAAACAGTC -ACGGAACGACAAGCCTAATTGCTG -ACGGAACGACAAGCCTAATCCATG -ACGGAACGACAAGCCTAATGTGTG -ACGGAACGACAAGCCTAACTAGTG -ACGGAACGACAAGCCTAACATCTG -ACGGAACGACAAGCCTAAGAGTTG -ACGGAACGACAAGCCTAAAGACTG -ACGGAACGACAAGCCTAATCGGTA -ACGGAACGACAAGCCTAATGCCTA -ACGGAACGACAAGCCTAACCACTA -ACGGAACGACAAGCCTAAGGAGTA -ACGGAACGACAAGCCTAATCGTCT -ACGGAACGACAAGCCTAATGCACT -ACGGAACGACAAGCCTAACTGACT -ACGGAACGACAAGCCTAACAACCT -ACGGAACGACAAGCCTAAGCTACT -ACGGAACGACAAGCCTAAGGATCT -ACGGAACGACAAGCCTAAAAGGCT -ACGGAACGACAAGCCTAATCAACC -ACGGAACGACAAGCCTAATGTTCC -ACGGAACGACAAGCCTAAATTCCC -ACGGAACGACAAGCCTAATTCTCG -ACGGAACGACAAGCCTAATAGACG -ACGGAACGACAAGCCTAAGTAACG -ACGGAACGACAAGCCTAAACTTCG -ACGGAACGACAAGCCTAATACGCA -ACGGAACGACAAGCCTAACTTGCA -ACGGAACGACAAGCCTAACGAACA -ACGGAACGACAAGCCTAACAGTCA -ACGGAACGACAAGCCTAAGATCCA -ACGGAACGACAAGCCTAAACGACA -ACGGAACGACAAGCCTAAAGCTCA -ACGGAACGACAAGCCTAATCACGT -ACGGAACGACAAGCCTAACGTAGT -ACGGAACGACAAGCCTAAGTCAGT -ACGGAACGACAAGCCTAAGAAGGT -ACGGAACGACAAGCCTAAAACCGT -ACGGAACGACAAGCCTAATTGTGC -ACGGAACGACAAGCCTAACTAAGC -ACGGAACGACAAGCCTAAACTAGC -ACGGAACGACAAGCCTAAAGATGC -ACGGAACGACAAGCCTAATGAAGG -ACGGAACGACAAGCCTAACAATGG -ACGGAACGACAAGCCTAAATGAGG -ACGGAACGACAAGCCTAAAATGGG -ACGGAACGACAAGCCTAATCCTGA -ACGGAACGACAAGCCTAATAGCGA -ACGGAACGACAAGCCTAACACAGA -ACGGAACGACAAGCCTAAGCAAGA -ACGGAACGACAAGCCTAAGGTTGA -ACGGAACGACAAGCCTAATCCGAT -ACGGAACGACAAGCCTAATGGCAT -ACGGAACGACAAGCCTAACGAGAT -ACGGAACGACAAGCCTAATACCAC -ACGGAACGACAAGCCTAACAGAAC -ACGGAACGACAAGCCTAAGTCTAC -ACGGAACGACAAGCCTAAACGTAC -ACGGAACGACAAGCCTAAAGTGAC -ACGGAACGACAAGCCTAACTGTAG -ACGGAACGACAAGCCTAACCTAAG -ACGGAACGACAAGCCTAAGTTCAG -ACGGAACGACAAGCCTAAGCATAG -ACGGAACGACAAGCCTAAGACAAG -ACGGAACGACAAGCCTAAAAGCAG -ACGGAACGACAAGCCTAACGTCAA -ACGGAACGACAAGCCTAAGCTGAA -ACGGAACGACAAGCCTAAAGTACG -ACGGAACGACAAGCCTAAATCCGA -ACGGAACGACAAGCCTAAATGGGA -ACGGAACGACAAGCCTAAGTGCAA -ACGGAACGACAAGCCTAAGAGGAA -ACGGAACGACAAGCCTAACAGGTA -ACGGAACGACAAGCCTAAGACTCT -ACGGAACGACAAGCCTAAAGTCCT -ACGGAACGACAAGCCTAATAAGCC -ACGGAACGACAAGCCTAAATAGCC -ACGGAACGACAAGCCTAATAACCG -ACGGAACGACAAGCCTAAATGCCA -ACGGAACGACAAGCCATAGGAAAC -ACGGAACGACAAGCCATAAACACC -ACGGAACGACAAGCCATAATCGAG -ACGGAACGACAAGCCATACTCCTT -ACGGAACGACAAGCCATACCTGTT -ACGGAACGACAAGCCATACGGTTT -ACGGAACGACAAGCCATAGTGGTT -ACGGAACGACAAGCCATAGCCTTT -ACGGAACGACAAGCCATAGGTCTT -ACGGAACGACAAGCCATAACGCTT -ACGGAACGACAAGCCATAAGCGTT -ACGGAACGACAAGCCATATTCGTC -ACGGAACGACAAGCCATATCTCTC -ACGGAACGACAAGCCATATGGATC -ACGGAACGACAAGCCATACACTTC -ACGGAACGACAAGCCATAGTACTC -ACGGAACGACAAGCCATAGATGTC -ACGGAACGACAAGCCATAACAGTC -ACGGAACGACAAGCCATATTGCTG -ACGGAACGACAAGCCATATCCATG -ACGGAACGACAAGCCATATGTGTG -ACGGAACGACAAGCCATACTAGTG -ACGGAACGACAAGCCATACATCTG -ACGGAACGACAAGCCATAGAGTTG -ACGGAACGACAAGCCATAAGACTG -ACGGAACGACAAGCCATATCGGTA -ACGGAACGACAAGCCATATGCCTA -ACGGAACGACAAGCCATACCACTA -ACGGAACGACAAGCCATAGGAGTA -ACGGAACGACAAGCCATATCGTCT -ACGGAACGACAAGCCATATGCACT -ACGGAACGACAAGCCATACTGACT -ACGGAACGACAAGCCATACAACCT -ACGGAACGACAAGCCATAGCTACT -ACGGAACGACAAGCCATAGGATCT -ACGGAACGACAAGCCATAAAGGCT -ACGGAACGACAAGCCATATCAACC -ACGGAACGACAAGCCATATGTTCC -ACGGAACGACAAGCCATAATTCCC -ACGGAACGACAAGCCATATTCTCG -ACGGAACGACAAGCCATATAGACG -ACGGAACGACAAGCCATAGTAACG -ACGGAACGACAAGCCATAACTTCG -ACGGAACGACAAGCCATATACGCA -ACGGAACGACAAGCCATACTTGCA -ACGGAACGACAAGCCATACGAACA -ACGGAACGACAAGCCATACAGTCA -ACGGAACGACAAGCCATAGATCCA -ACGGAACGACAAGCCATAACGACA -ACGGAACGACAAGCCATAAGCTCA -ACGGAACGACAAGCCATATCACGT -ACGGAACGACAAGCCATACGTAGT -ACGGAACGACAAGCCATAGTCAGT -ACGGAACGACAAGCCATAGAAGGT -ACGGAACGACAAGCCATAAACCGT -ACGGAACGACAAGCCATATTGTGC -ACGGAACGACAAGCCATACTAAGC -ACGGAACGACAAGCCATAACTAGC -ACGGAACGACAAGCCATAAGATGC -ACGGAACGACAAGCCATATGAAGG -ACGGAACGACAAGCCATACAATGG -ACGGAACGACAAGCCATAATGAGG -ACGGAACGACAAGCCATAAATGGG -ACGGAACGACAAGCCATATCCTGA -ACGGAACGACAAGCCATATAGCGA -ACGGAACGACAAGCCATACACAGA -ACGGAACGACAAGCCATAGCAAGA -ACGGAACGACAAGCCATAGGTTGA -ACGGAACGACAAGCCATATCCGAT -ACGGAACGACAAGCCATATGGCAT -ACGGAACGACAAGCCATACGAGAT -ACGGAACGACAAGCCATATACCAC -ACGGAACGACAAGCCATACAGAAC -ACGGAACGACAAGCCATAGTCTAC -ACGGAACGACAAGCCATAACGTAC -ACGGAACGACAAGCCATAAGTGAC -ACGGAACGACAAGCCATACTGTAG -ACGGAACGACAAGCCATACCTAAG -ACGGAACGACAAGCCATAGTTCAG -ACGGAACGACAAGCCATAGCATAG -ACGGAACGACAAGCCATAGACAAG -ACGGAACGACAAGCCATAAAGCAG -ACGGAACGACAAGCCATACGTCAA -ACGGAACGACAAGCCATAGCTGAA -ACGGAACGACAAGCCATAAGTACG -ACGGAACGACAAGCCATAATCCGA -ACGGAACGACAAGCCATAATGGGA -ACGGAACGACAAGCCATAGTGCAA -ACGGAACGACAAGCCATAGAGGAA -ACGGAACGACAAGCCATACAGGTA -ACGGAACGACAAGCCATAGACTCT -ACGGAACGACAAGCCATAAGTCCT -ACGGAACGACAAGCCATATAAGCC -ACGGAACGACAAGCCATAATAGCC -ACGGAACGACAAGCCATATAACCG -ACGGAACGACAAGCCATAATGCCA -ACGGAACGACAACCGTAAGGAAAC -ACGGAACGACAACCGTAAAACACC -ACGGAACGACAACCGTAAATCGAG -ACGGAACGACAACCGTAACTCCTT -ACGGAACGACAACCGTAACCTGTT -ACGGAACGACAACCGTAACGGTTT -ACGGAACGACAACCGTAAGTGGTT -ACGGAACGACAACCGTAAGCCTTT -ACGGAACGACAACCGTAAGGTCTT -ACGGAACGACAACCGTAAACGCTT -ACGGAACGACAACCGTAAAGCGTT -ACGGAACGACAACCGTAATTCGTC -ACGGAACGACAACCGTAATCTCTC -ACGGAACGACAACCGTAATGGATC -ACGGAACGACAACCGTAACACTTC -ACGGAACGACAACCGTAAGTACTC -ACGGAACGACAACCGTAAGATGTC -ACGGAACGACAACCGTAAACAGTC -ACGGAACGACAACCGTAATTGCTG -ACGGAACGACAACCGTAATCCATG -ACGGAACGACAACCGTAATGTGTG -ACGGAACGACAACCGTAACTAGTG -ACGGAACGACAACCGTAACATCTG -ACGGAACGACAACCGTAAGAGTTG -ACGGAACGACAACCGTAAAGACTG -ACGGAACGACAACCGTAATCGGTA -ACGGAACGACAACCGTAATGCCTA -ACGGAACGACAACCGTAACCACTA -ACGGAACGACAACCGTAAGGAGTA -ACGGAACGACAACCGTAATCGTCT -ACGGAACGACAACCGTAATGCACT -ACGGAACGACAACCGTAACTGACT -ACGGAACGACAACCGTAACAACCT -ACGGAACGACAACCGTAAGCTACT -ACGGAACGACAACCGTAAGGATCT -ACGGAACGACAACCGTAAAAGGCT -ACGGAACGACAACCGTAATCAACC -ACGGAACGACAACCGTAATGTTCC -ACGGAACGACAACCGTAAATTCCC -ACGGAACGACAACCGTAATTCTCG -ACGGAACGACAACCGTAATAGACG -ACGGAACGACAACCGTAAGTAACG -ACGGAACGACAACCGTAAACTTCG -ACGGAACGACAACCGTAATACGCA -ACGGAACGACAACCGTAACTTGCA -ACGGAACGACAACCGTAACGAACA -ACGGAACGACAACCGTAACAGTCA -ACGGAACGACAACCGTAAGATCCA -ACGGAACGACAACCGTAAACGACA -ACGGAACGACAACCGTAAAGCTCA -ACGGAACGACAACCGTAATCACGT -ACGGAACGACAACCGTAACGTAGT -ACGGAACGACAACCGTAAGTCAGT -ACGGAACGACAACCGTAAGAAGGT -ACGGAACGACAACCGTAAAACCGT -ACGGAACGACAACCGTAATTGTGC -ACGGAACGACAACCGTAACTAAGC -ACGGAACGACAACCGTAAACTAGC -ACGGAACGACAACCGTAAAGATGC -ACGGAACGACAACCGTAATGAAGG -ACGGAACGACAACCGTAACAATGG -ACGGAACGACAACCGTAAATGAGG -ACGGAACGACAACCGTAAAATGGG -ACGGAACGACAACCGTAATCCTGA -ACGGAACGACAACCGTAATAGCGA -ACGGAACGACAACCGTAACACAGA -ACGGAACGACAACCGTAAGCAAGA -ACGGAACGACAACCGTAAGGTTGA -ACGGAACGACAACCGTAATCCGAT -ACGGAACGACAACCGTAATGGCAT -ACGGAACGACAACCGTAACGAGAT -ACGGAACGACAACCGTAATACCAC -ACGGAACGACAACCGTAACAGAAC -ACGGAACGACAACCGTAAGTCTAC -ACGGAACGACAACCGTAAACGTAC -ACGGAACGACAACCGTAAAGTGAC -ACGGAACGACAACCGTAACTGTAG -ACGGAACGACAACCGTAACCTAAG -ACGGAACGACAACCGTAAGTTCAG -ACGGAACGACAACCGTAAGCATAG -ACGGAACGACAACCGTAAGACAAG -ACGGAACGACAACCGTAAAAGCAG -ACGGAACGACAACCGTAACGTCAA -ACGGAACGACAACCGTAAGCTGAA -ACGGAACGACAACCGTAAAGTACG -ACGGAACGACAACCGTAAATCCGA -ACGGAACGACAACCGTAAATGGGA -ACGGAACGACAACCGTAAGTGCAA -ACGGAACGACAACCGTAAGAGGAA -ACGGAACGACAACCGTAACAGGTA -ACGGAACGACAACCGTAAGACTCT -ACGGAACGACAACCGTAAAGTCCT -ACGGAACGACAACCGTAATAAGCC -ACGGAACGACAACCGTAAATAGCC -ACGGAACGACAACCGTAATAACCG -ACGGAACGACAACCGTAAATGCCA -ACGGAACGACAACCAATGGGAAAC -ACGGAACGACAACCAATGAACACC -ACGGAACGACAACCAATGATCGAG -ACGGAACGACAACCAATGCTCCTT -ACGGAACGACAACCAATGCCTGTT -ACGGAACGACAACCAATGCGGTTT -ACGGAACGACAACCAATGGTGGTT -ACGGAACGACAACCAATGGCCTTT -ACGGAACGACAACCAATGGGTCTT -ACGGAACGACAACCAATGACGCTT -ACGGAACGACAACCAATGAGCGTT -ACGGAACGACAACCAATGTTCGTC -ACGGAACGACAACCAATGTCTCTC -ACGGAACGACAACCAATGTGGATC -ACGGAACGACAACCAATGCACTTC -ACGGAACGACAACCAATGGTACTC -ACGGAACGACAACCAATGGATGTC -ACGGAACGACAACCAATGACAGTC -ACGGAACGACAACCAATGTTGCTG -ACGGAACGACAACCAATGTCCATG -ACGGAACGACAACCAATGTGTGTG -ACGGAACGACAACCAATGCTAGTG -ACGGAACGACAACCAATGCATCTG -ACGGAACGACAACCAATGGAGTTG -ACGGAACGACAACCAATGAGACTG -ACGGAACGACAACCAATGTCGGTA -ACGGAACGACAACCAATGTGCCTA -ACGGAACGACAACCAATGCCACTA -ACGGAACGACAACCAATGGGAGTA -ACGGAACGACAACCAATGTCGTCT -ACGGAACGACAACCAATGTGCACT -ACGGAACGACAACCAATGCTGACT -ACGGAACGACAACCAATGCAACCT -ACGGAACGACAACCAATGGCTACT -ACGGAACGACAACCAATGGGATCT -ACGGAACGACAACCAATGAAGGCT -ACGGAACGACAACCAATGTCAACC -ACGGAACGACAACCAATGTGTTCC -ACGGAACGACAACCAATGATTCCC -ACGGAACGACAACCAATGTTCTCG -ACGGAACGACAACCAATGTAGACG -ACGGAACGACAACCAATGGTAACG -ACGGAACGACAACCAATGACTTCG -ACGGAACGACAACCAATGTACGCA -ACGGAACGACAACCAATGCTTGCA -ACGGAACGACAACCAATGCGAACA -ACGGAACGACAACCAATGCAGTCA -ACGGAACGACAACCAATGGATCCA -ACGGAACGACAACCAATGACGACA -ACGGAACGACAACCAATGAGCTCA -ACGGAACGACAACCAATGTCACGT -ACGGAACGACAACCAATGCGTAGT -ACGGAACGACAACCAATGGTCAGT -ACGGAACGACAACCAATGGAAGGT -ACGGAACGACAACCAATGAACCGT -ACGGAACGACAACCAATGTTGTGC -ACGGAACGACAACCAATGCTAAGC -ACGGAACGACAACCAATGACTAGC -ACGGAACGACAACCAATGAGATGC -ACGGAACGACAACCAATGTGAAGG -ACGGAACGACAACCAATGCAATGG -ACGGAACGACAACCAATGATGAGG -ACGGAACGACAACCAATGAATGGG -ACGGAACGACAACCAATGTCCTGA -ACGGAACGACAACCAATGTAGCGA -ACGGAACGACAACCAATGCACAGA -ACGGAACGACAACCAATGGCAAGA -ACGGAACGACAACCAATGGGTTGA -ACGGAACGACAACCAATGTCCGAT -ACGGAACGACAACCAATGTGGCAT -ACGGAACGACAACCAATGCGAGAT -ACGGAACGACAACCAATGTACCAC -ACGGAACGACAACCAATGCAGAAC -ACGGAACGACAACCAATGGTCTAC -ACGGAACGACAACCAATGACGTAC -ACGGAACGACAACCAATGAGTGAC -ACGGAACGACAACCAATGCTGTAG -ACGGAACGACAACCAATGCCTAAG -ACGGAACGACAACCAATGGTTCAG -ACGGAACGACAACCAATGGCATAG -ACGGAACGACAACCAATGGACAAG -ACGGAACGACAACCAATGAAGCAG -ACGGAACGACAACCAATGCGTCAA -ACGGAACGACAACCAATGGCTGAA -ACGGAACGACAACCAATGAGTACG -ACGGAACGACAACCAATGATCCGA -ACGGAACGACAACCAATGATGGGA -ACGGAACGACAACCAATGGTGCAA -ACGGAACGACAACCAATGGAGGAA -ACGGAACGACAACCAATGCAGGTA -ACGGAACGACAACCAATGGACTCT -ACGGAACGACAACCAATGAGTCCT -ACGGAACGACAACCAATGTAAGCC -ACGGAACGACAACCAATGATAGCC -ACGGAACGACAACCAATGTAACCG -ACGGAACGACAACCAATGATGCCA -ACGGAAGCTCAAAACGGAGGAAAC -ACGGAAGCTCAAAACGGAAACACC -ACGGAAGCTCAAAACGGAATCGAG -ACGGAAGCTCAAAACGGACTCCTT -ACGGAAGCTCAAAACGGACCTGTT -ACGGAAGCTCAAAACGGACGGTTT -ACGGAAGCTCAAAACGGAGTGGTT -ACGGAAGCTCAAAACGGAGCCTTT -ACGGAAGCTCAAAACGGAGGTCTT -ACGGAAGCTCAAAACGGAACGCTT -ACGGAAGCTCAAAACGGAAGCGTT -ACGGAAGCTCAAAACGGATTCGTC -ACGGAAGCTCAAAACGGATCTCTC -ACGGAAGCTCAAAACGGATGGATC -ACGGAAGCTCAAAACGGACACTTC -ACGGAAGCTCAAAACGGAGTACTC -ACGGAAGCTCAAAACGGAGATGTC -ACGGAAGCTCAAAACGGAACAGTC -ACGGAAGCTCAAAACGGATTGCTG -ACGGAAGCTCAAAACGGATCCATG -ACGGAAGCTCAAAACGGATGTGTG -ACGGAAGCTCAAAACGGACTAGTG -ACGGAAGCTCAAAACGGACATCTG -ACGGAAGCTCAAAACGGAGAGTTG -ACGGAAGCTCAAAACGGAAGACTG -ACGGAAGCTCAAAACGGATCGGTA -ACGGAAGCTCAAAACGGATGCCTA -ACGGAAGCTCAAAACGGACCACTA -ACGGAAGCTCAAAACGGAGGAGTA -ACGGAAGCTCAAAACGGATCGTCT -ACGGAAGCTCAAAACGGATGCACT -ACGGAAGCTCAAAACGGACTGACT -ACGGAAGCTCAAAACGGACAACCT -ACGGAAGCTCAAAACGGAGCTACT -ACGGAAGCTCAAAACGGAGGATCT -ACGGAAGCTCAAAACGGAAAGGCT -ACGGAAGCTCAAAACGGATCAACC -ACGGAAGCTCAAAACGGATGTTCC -ACGGAAGCTCAAAACGGAATTCCC -ACGGAAGCTCAAAACGGATTCTCG -ACGGAAGCTCAAAACGGATAGACG -ACGGAAGCTCAAAACGGAGTAACG -ACGGAAGCTCAAAACGGAACTTCG -ACGGAAGCTCAAAACGGATACGCA -ACGGAAGCTCAAAACGGACTTGCA -ACGGAAGCTCAAAACGGACGAACA -ACGGAAGCTCAAAACGGACAGTCA -ACGGAAGCTCAAAACGGAGATCCA -ACGGAAGCTCAAAACGGAACGACA -ACGGAAGCTCAAAACGGAAGCTCA -ACGGAAGCTCAAAACGGATCACGT -ACGGAAGCTCAAAACGGACGTAGT -ACGGAAGCTCAAAACGGAGTCAGT -ACGGAAGCTCAAAACGGAGAAGGT -ACGGAAGCTCAAAACGGAAACCGT -ACGGAAGCTCAAAACGGATTGTGC -ACGGAAGCTCAAAACGGACTAAGC -ACGGAAGCTCAAAACGGAACTAGC -ACGGAAGCTCAAAACGGAAGATGC -ACGGAAGCTCAAAACGGATGAAGG -ACGGAAGCTCAAAACGGACAATGG -ACGGAAGCTCAAAACGGAATGAGG -ACGGAAGCTCAAAACGGAAATGGG -ACGGAAGCTCAAAACGGATCCTGA -ACGGAAGCTCAAAACGGATAGCGA -ACGGAAGCTCAAAACGGACACAGA -ACGGAAGCTCAAAACGGAGCAAGA -ACGGAAGCTCAAAACGGAGGTTGA -ACGGAAGCTCAAAACGGATCCGAT -ACGGAAGCTCAAAACGGATGGCAT -ACGGAAGCTCAAAACGGACGAGAT -ACGGAAGCTCAAAACGGATACCAC -ACGGAAGCTCAAAACGGACAGAAC -ACGGAAGCTCAAAACGGAGTCTAC -ACGGAAGCTCAAAACGGAACGTAC -ACGGAAGCTCAAAACGGAAGTGAC -ACGGAAGCTCAAAACGGACTGTAG -ACGGAAGCTCAAAACGGACCTAAG -ACGGAAGCTCAAAACGGAGTTCAG -ACGGAAGCTCAAAACGGAGCATAG -ACGGAAGCTCAAAACGGAGACAAG -ACGGAAGCTCAAAACGGAAAGCAG -ACGGAAGCTCAAAACGGACGTCAA -ACGGAAGCTCAAAACGGAGCTGAA -ACGGAAGCTCAAAACGGAAGTACG -ACGGAAGCTCAAAACGGAATCCGA -ACGGAAGCTCAAAACGGAATGGGA -ACGGAAGCTCAAAACGGAGTGCAA -ACGGAAGCTCAAAACGGAGAGGAA -ACGGAAGCTCAAAACGGACAGGTA -ACGGAAGCTCAAAACGGAGACTCT -ACGGAAGCTCAAAACGGAAGTCCT -ACGGAAGCTCAAAACGGATAAGCC -ACGGAAGCTCAAAACGGAATAGCC -ACGGAAGCTCAAAACGGATAACCG -ACGGAAGCTCAAAACGGAATGCCA -ACGGAAGCTCAAACCAACGGAAAC -ACGGAAGCTCAAACCAACAACACC -ACGGAAGCTCAAACCAACATCGAG -ACGGAAGCTCAAACCAACCTCCTT -ACGGAAGCTCAAACCAACCCTGTT -ACGGAAGCTCAAACCAACCGGTTT -ACGGAAGCTCAAACCAACGTGGTT -ACGGAAGCTCAAACCAACGCCTTT -ACGGAAGCTCAAACCAACGGTCTT -ACGGAAGCTCAAACCAACACGCTT -ACGGAAGCTCAAACCAACAGCGTT -ACGGAAGCTCAAACCAACTTCGTC -ACGGAAGCTCAAACCAACTCTCTC -ACGGAAGCTCAAACCAACTGGATC -ACGGAAGCTCAAACCAACCACTTC -ACGGAAGCTCAAACCAACGTACTC -ACGGAAGCTCAAACCAACGATGTC -ACGGAAGCTCAAACCAACACAGTC -ACGGAAGCTCAAACCAACTTGCTG -ACGGAAGCTCAAACCAACTCCATG -ACGGAAGCTCAAACCAACTGTGTG -ACGGAAGCTCAAACCAACCTAGTG -ACGGAAGCTCAAACCAACCATCTG -ACGGAAGCTCAAACCAACGAGTTG -ACGGAAGCTCAAACCAACAGACTG -ACGGAAGCTCAAACCAACTCGGTA -ACGGAAGCTCAAACCAACTGCCTA -ACGGAAGCTCAAACCAACCCACTA -ACGGAAGCTCAAACCAACGGAGTA -ACGGAAGCTCAAACCAACTCGTCT -ACGGAAGCTCAAACCAACTGCACT -ACGGAAGCTCAAACCAACCTGACT -ACGGAAGCTCAAACCAACCAACCT -ACGGAAGCTCAAACCAACGCTACT -ACGGAAGCTCAAACCAACGGATCT -ACGGAAGCTCAAACCAACAAGGCT -ACGGAAGCTCAAACCAACTCAACC -ACGGAAGCTCAAACCAACTGTTCC -ACGGAAGCTCAAACCAACATTCCC -ACGGAAGCTCAAACCAACTTCTCG -ACGGAAGCTCAAACCAACTAGACG -ACGGAAGCTCAAACCAACGTAACG -ACGGAAGCTCAAACCAACACTTCG -ACGGAAGCTCAAACCAACTACGCA -ACGGAAGCTCAAACCAACCTTGCA -ACGGAAGCTCAAACCAACCGAACA -ACGGAAGCTCAAACCAACCAGTCA -ACGGAAGCTCAAACCAACGATCCA -ACGGAAGCTCAAACCAACACGACA -ACGGAAGCTCAAACCAACAGCTCA -ACGGAAGCTCAAACCAACTCACGT -ACGGAAGCTCAAACCAACCGTAGT -ACGGAAGCTCAAACCAACGTCAGT -ACGGAAGCTCAAACCAACGAAGGT -ACGGAAGCTCAAACCAACAACCGT -ACGGAAGCTCAAACCAACTTGTGC -ACGGAAGCTCAAACCAACCTAAGC -ACGGAAGCTCAAACCAACACTAGC -ACGGAAGCTCAAACCAACAGATGC -ACGGAAGCTCAAACCAACTGAAGG -ACGGAAGCTCAAACCAACCAATGG -ACGGAAGCTCAAACCAACATGAGG -ACGGAAGCTCAAACCAACAATGGG -ACGGAAGCTCAAACCAACTCCTGA -ACGGAAGCTCAAACCAACTAGCGA -ACGGAAGCTCAAACCAACCACAGA -ACGGAAGCTCAAACCAACGCAAGA -ACGGAAGCTCAAACCAACGGTTGA -ACGGAAGCTCAAACCAACTCCGAT -ACGGAAGCTCAAACCAACTGGCAT -ACGGAAGCTCAAACCAACCGAGAT -ACGGAAGCTCAAACCAACTACCAC -ACGGAAGCTCAAACCAACCAGAAC -ACGGAAGCTCAAACCAACGTCTAC -ACGGAAGCTCAAACCAACACGTAC -ACGGAAGCTCAAACCAACAGTGAC -ACGGAAGCTCAAACCAACCTGTAG -ACGGAAGCTCAAACCAACCCTAAG -ACGGAAGCTCAAACCAACGTTCAG -ACGGAAGCTCAAACCAACGCATAG -ACGGAAGCTCAAACCAACGACAAG -ACGGAAGCTCAAACCAACAAGCAG -ACGGAAGCTCAAACCAACCGTCAA -ACGGAAGCTCAAACCAACGCTGAA -ACGGAAGCTCAAACCAACAGTACG -ACGGAAGCTCAAACCAACATCCGA -ACGGAAGCTCAAACCAACATGGGA -ACGGAAGCTCAAACCAACGTGCAA -ACGGAAGCTCAAACCAACGAGGAA -ACGGAAGCTCAAACCAACCAGGTA -ACGGAAGCTCAAACCAACGACTCT -ACGGAAGCTCAAACCAACAGTCCT -ACGGAAGCTCAAACCAACTAAGCC -ACGGAAGCTCAAACCAACATAGCC -ACGGAAGCTCAAACCAACTAACCG -ACGGAAGCTCAAACCAACATGCCA -ACGGAAGCTCAAGAGATCGGAAAC -ACGGAAGCTCAAGAGATCAACACC -ACGGAAGCTCAAGAGATCATCGAG -ACGGAAGCTCAAGAGATCCTCCTT -ACGGAAGCTCAAGAGATCCCTGTT -ACGGAAGCTCAAGAGATCCGGTTT -ACGGAAGCTCAAGAGATCGTGGTT -ACGGAAGCTCAAGAGATCGCCTTT -ACGGAAGCTCAAGAGATCGGTCTT -ACGGAAGCTCAAGAGATCACGCTT -ACGGAAGCTCAAGAGATCAGCGTT -ACGGAAGCTCAAGAGATCTTCGTC -ACGGAAGCTCAAGAGATCTCTCTC -ACGGAAGCTCAAGAGATCTGGATC -ACGGAAGCTCAAGAGATCCACTTC -ACGGAAGCTCAAGAGATCGTACTC -ACGGAAGCTCAAGAGATCGATGTC -ACGGAAGCTCAAGAGATCACAGTC -ACGGAAGCTCAAGAGATCTTGCTG -ACGGAAGCTCAAGAGATCTCCATG -ACGGAAGCTCAAGAGATCTGTGTG -ACGGAAGCTCAAGAGATCCTAGTG -ACGGAAGCTCAAGAGATCCATCTG -ACGGAAGCTCAAGAGATCGAGTTG -ACGGAAGCTCAAGAGATCAGACTG -ACGGAAGCTCAAGAGATCTCGGTA -ACGGAAGCTCAAGAGATCTGCCTA -ACGGAAGCTCAAGAGATCCCACTA -ACGGAAGCTCAAGAGATCGGAGTA -ACGGAAGCTCAAGAGATCTCGTCT -ACGGAAGCTCAAGAGATCTGCACT -ACGGAAGCTCAAGAGATCCTGACT -ACGGAAGCTCAAGAGATCCAACCT -ACGGAAGCTCAAGAGATCGCTACT -ACGGAAGCTCAAGAGATCGGATCT -ACGGAAGCTCAAGAGATCAAGGCT -ACGGAAGCTCAAGAGATCTCAACC -ACGGAAGCTCAAGAGATCTGTTCC -ACGGAAGCTCAAGAGATCATTCCC -ACGGAAGCTCAAGAGATCTTCTCG -ACGGAAGCTCAAGAGATCTAGACG -ACGGAAGCTCAAGAGATCGTAACG -ACGGAAGCTCAAGAGATCACTTCG -ACGGAAGCTCAAGAGATCTACGCA -ACGGAAGCTCAAGAGATCCTTGCA -ACGGAAGCTCAAGAGATCCGAACA -ACGGAAGCTCAAGAGATCCAGTCA -ACGGAAGCTCAAGAGATCGATCCA -ACGGAAGCTCAAGAGATCACGACA -ACGGAAGCTCAAGAGATCAGCTCA -ACGGAAGCTCAAGAGATCTCACGT -ACGGAAGCTCAAGAGATCCGTAGT -ACGGAAGCTCAAGAGATCGTCAGT -ACGGAAGCTCAAGAGATCGAAGGT -ACGGAAGCTCAAGAGATCAACCGT -ACGGAAGCTCAAGAGATCTTGTGC -ACGGAAGCTCAAGAGATCCTAAGC -ACGGAAGCTCAAGAGATCACTAGC -ACGGAAGCTCAAGAGATCAGATGC -ACGGAAGCTCAAGAGATCTGAAGG -ACGGAAGCTCAAGAGATCCAATGG -ACGGAAGCTCAAGAGATCATGAGG -ACGGAAGCTCAAGAGATCAATGGG -ACGGAAGCTCAAGAGATCTCCTGA -ACGGAAGCTCAAGAGATCTAGCGA -ACGGAAGCTCAAGAGATCCACAGA -ACGGAAGCTCAAGAGATCGCAAGA -ACGGAAGCTCAAGAGATCGGTTGA -ACGGAAGCTCAAGAGATCTCCGAT -ACGGAAGCTCAAGAGATCTGGCAT -ACGGAAGCTCAAGAGATCCGAGAT -ACGGAAGCTCAAGAGATCTACCAC -ACGGAAGCTCAAGAGATCCAGAAC -ACGGAAGCTCAAGAGATCGTCTAC -ACGGAAGCTCAAGAGATCACGTAC -ACGGAAGCTCAAGAGATCAGTGAC -ACGGAAGCTCAAGAGATCCTGTAG -ACGGAAGCTCAAGAGATCCCTAAG -ACGGAAGCTCAAGAGATCGTTCAG -ACGGAAGCTCAAGAGATCGCATAG -ACGGAAGCTCAAGAGATCGACAAG -ACGGAAGCTCAAGAGATCAAGCAG -ACGGAAGCTCAAGAGATCCGTCAA -ACGGAAGCTCAAGAGATCGCTGAA -ACGGAAGCTCAAGAGATCAGTACG -ACGGAAGCTCAAGAGATCATCCGA -ACGGAAGCTCAAGAGATCATGGGA -ACGGAAGCTCAAGAGATCGTGCAA -ACGGAAGCTCAAGAGATCGAGGAA -ACGGAAGCTCAAGAGATCCAGGTA -ACGGAAGCTCAAGAGATCGACTCT -ACGGAAGCTCAAGAGATCAGTCCT -ACGGAAGCTCAAGAGATCTAAGCC -ACGGAAGCTCAAGAGATCATAGCC -ACGGAAGCTCAAGAGATCTAACCG -ACGGAAGCTCAAGAGATCATGCCA -ACGGAAGCTCAACTTCTCGGAAAC -ACGGAAGCTCAACTTCTCAACACC -ACGGAAGCTCAACTTCTCATCGAG -ACGGAAGCTCAACTTCTCCTCCTT -ACGGAAGCTCAACTTCTCCCTGTT -ACGGAAGCTCAACTTCTCCGGTTT -ACGGAAGCTCAACTTCTCGTGGTT -ACGGAAGCTCAACTTCTCGCCTTT -ACGGAAGCTCAACTTCTCGGTCTT -ACGGAAGCTCAACTTCTCACGCTT -ACGGAAGCTCAACTTCTCAGCGTT -ACGGAAGCTCAACTTCTCTTCGTC -ACGGAAGCTCAACTTCTCTCTCTC -ACGGAAGCTCAACTTCTCTGGATC -ACGGAAGCTCAACTTCTCCACTTC -ACGGAAGCTCAACTTCTCGTACTC -ACGGAAGCTCAACTTCTCGATGTC -ACGGAAGCTCAACTTCTCACAGTC -ACGGAAGCTCAACTTCTCTTGCTG -ACGGAAGCTCAACTTCTCTCCATG -ACGGAAGCTCAACTTCTCTGTGTG -ACGGAAGCTCAACTTCTCCTAGTG -ACGGAAGCTCAACTTCTCCATCTG -ACGGAAGCTCAACTTCTCGAGTTG -ACGGAAGCTCAACTTCTCAGACTG -ACGGAAGCTCAACTTCTCTCGGTA -ACGGAAGCTCAACTTCTCTGCCTA -ACGGAAGCTCAACTTCTCCCACTA -ACGGAAGCTCAACTTCTCGGAGTA -ACGGAAGCTCAACTTCTCTCGTCT -ACGGAAGCTCAACTTCTCTGCACT -ACGGAAGCTCAACTTCTCCTGACT -ACGGAAGCTCAACTTCTCCAACCT -ACGGAAGCTCAACTTCTCGCTACT -ACGGAAGCTCAACTTCTCGGATCT -ACGGAAGCTCAACTTCTCAAGGCT -ACGGAAGCTCAACTTCTCTCAACC -ACGGAAGCTCAACTTCTCTGTTCC -ACGGAAGCTCAACTTCTCATTCCC -ACGGAAGCTCAACTTCTCTTCTCG -ACGGAAGCTCAACTTCTCTAGACG -ACGGAAGCTCAACTTCTCGTAACG -ACGGAAGCTCAACTTCTCACTTCG -ACGGAAGCTCAACTTCTCTACGCA -ACGGAAGCTCAACTTCTCCTTGCA -ACGGAAGCTCAACTTCTCCGAACA -ACGGAAGCTCAACTTCTCCAGTCA -ACGGAAGCTCAACTTCTCGATCCA -ACGGAAGCTCAACTTCTCACGACA -ACGGAAGCTCAACTTCTCAGCTCA -ACGGAAGCTCAACTTCTCTCACGT -ACGGAAGCTCAACTTCTCCGTAGT -ACGGAAGCTCAACTTCTCGTCAGT -ACGGAAGCTCAACTTCTCGAAGGT -ACGGAAGCTCAACTTCTCAACCGT -ACGGAAGCTCAACTTCTCTTGTGC -ACGGAAGCTCAACTTCTCCTAAGC -ACGGAAGCTCAACTTCTCACTAGC -ACGGAAGCTCAACTTCTCAGATGC -ACGGAAGCTCAACTTCTCTGAAGG -ACGGAAGCTCAACTTCTCCAATGG -ACGGAAGCTCAACTTCTCATGAGG -ACGGAAGCTCAACTTCTCAATGGG -ACGGAAGCTCAACTTCTCTCCTGA -ACGGAAGCTCAACTTCTCTAGCGA -ACGGAAGCTCAACTTCTCCACAGA -ACGGAAGCTCAACTTCTCGCAAGA -ACGGAAGCTCAACTTCTCGGTTGA -ACGGAAGCTCAACTTCTCTCCGAT -ACGGAAGCTCAACTTCTCTGGCAT -ACGGAAGCTCAACTTCTCCGAGAT -ACGGAAGCTCAACTTCTCTACCAC -ACGGAAGCTCAACTTCTCCAGAAC -ACGGAAGCTCAACTTCTCGTCTAC -ACGGAAGCTCAACTTCTCACGTAC -ACGGAAGCTCAACTTCTCAGTGAC -ACGGAAGCTCAACTTCTCCTGTAG -ACGGAAGCTCAACTTCTCCCTAAG -ACGGAAGCTCAACTTCTCGTTCAG -ACGGAAGCTCAACTTCTCGCATAG -ACGGAAGCTCAACTTCTCGACAAG -ACGGAAGCTCAACTTCTCAAGCAG -ACGGAAGCTCAACTTCTCCGTCAA -ACGGAAGCTCAACTTCTCGCTGAA -ACGGAAGCTCAACTTCTCAGTACG -ACGGAAGCTCAACTTCTCATCCGA -ACGGAAGCTCAACTTCTCATGGGA -ACGGAAGCTCAACTTCTCGTGCAA -ACGGAAGCTCAACTTCTCGAGGAA -ACGGAAGCTCAACTTCTCCAGGTA -ACGGAAGCTCAACTTCTCGACTCT -ACGGAAGCTCAACTTCTCAGTCCT -ACGGAAGCTCAACTTCTCTAAGCC -ACGGAAGCTCAACTTCTCATAGCC -ACGGAAGCTCAACTTCTCTAACCG -ACGGAAGCTCAACTTCTCATGCCA -ACGGAAGCTCAAGTTCCTGGAAAC -ACGGAAGCTCAAGTTCCTAACACC -ACGGAAGCTCAAGTTCCTATCGAG -ACGGAAGCTCAAGTTCCTCTCCTT -ACGGAAGCTCAAGTTCCTCCTGTT -ACGGAAGCTCAAGTTCCTCGGTTT -ACGGAAGCTCAAGTTCCTGTGGTT -ACGGAAGCTCAAGTTCCTGCCTTT -ACGGAAGCTCAAGTTCCTGGTCTT -ACGGAAGCTCAAGTTCCTACGCTT -ACGGAAGCTCAAGTTCCTAGCGTT -ACGGAAGCTCAAGTTCCTTTCGTC -ACGGAAGCTCAAGTTCCTTCTCTC -ACGGAAGCTCAAGTTCCTTGGATC -ACGGAAGCTCAAGTTCCTCACTTC -ACGGAAGCTCAAGTTCCTGTACTC -ACGGAAGCTCAAGTTCCTGATGTC -ACGGAAGCTCAAGTTCCTACAGTC -ACGGAAGCTCAAGTTCCTTTGCTG -ACGGAAGCTCAAGTTCCTTCCATG -ACGGAAGCTCAAGTTCCTTGTGTG -ACGGAAGCTCAAGTTCCTCTAGTG -ACGGAAGCTCAAGTTCCTCATCTG -ACGGAAGCTCAAGTTCCTGAGTTG -ACGGAAGCTCAAGTTCCTAGACTG -ACGGAAGCTCAAGTTCCTTCGGTA -ACGGAAGCTCAAGTTCCTTGCCTA -ACGGAAGCTCAAGTTCCTCCACTA -ACGGAAGCTCAAGTTCCTGGAGTA -ACGGAAGCTCAAGTTCCTTCGTCT -ACGGAAGCTCAAGTTCCTTGCACT -ACGGAAGCTCAAGTTCCTCTGACT -ACGGAAGCTCAAGTTCCTCAACCT -ACGGAAGCTCAAGTTCCTGCTACT -ACGGAAGCTCAAGTTCCTGGATCT -ACGGAAGCTCAAGTTCCTAAGGCT -ACGGAAGCTCAAGTTCCTTCAACC -ACGGAAGCTCAAGTTCCTTGTTCC -ACGGAAGCTCAAGTTCCTATTCCC -ACGGAAGCTCAAGTTCCTTTCTCG -ACGGAAGCTCAAGTTCCTTAGACG -ACGGAAGCTCAAGTTCCTGTAACG -ACGGAAGCTCAAGTTCCTACTTCG -ACGGAAGCTCAAGTTCCTTACGCA -ACGGAAGCTCAAGTTCCTCTTGCA -ACGGAAGCTCAAGTTCCTCGAACA -ACGGAAGCTCAAGTTCCTCAGTCA -ACGGAAGCTCAAGTTCCTGATCCA -ACGGAAGCTCAAGTTCCTACGACA -ACGGAAGCTCAAGTTCCTAGCTCA -ACGGAAGCTCAAGTTCCTTCACGT -ACGGAAGCTCAAGTTCCTCGTAGT -ACGGAAGCTCAAGTTCCTGTCAGT -ACGGAAGCTCAAGTTCCTGAAGGT -ACGGAAGCTCAAGTTCCTAACCGT -ACGGAAGCTCAAGTTCCTTTGTGC -ACGGAAGCTCAAGTTCCTCTAAGC -ACGGAAGCTCAAGTTCCTACTAGC -ACGGAAGCTCAAGTTCCTAGATGC -ACGGAAGCTCAAGTTCCTTGAAGG -ACGGAAGCTCAAGTTCCTCAATGG -ACGGAAGCTCAAGTTCCTATGAGG -ACGGAAGCTCAAGTTCCTAATGGG -ACGGAAGCTCAAGTTCCTTCCTGA -ACGGAAGCTCAAGTTCCTTAGCGA -ACGGAAGCTCAAGTTCCTCACAGA -ACGGAAGCTCAAGTTCCTGCAAGA -ACGGAAGCTCAAGTTCCTGGTTGA -ACGGAAGCTCAAGTTCCTTCCGAT -ACGGAAGCTCAAGTTCCTTGGCAT -ACGGAAGCTCAAGTTCCTCGAGAT -ACGGAAGCTCAAGTTCCTTACCAC -ACGGAAGCTCAAGTTCCTCAGAAC -ACGGAAGCTCAAGTTCCTGTCTAC -ACGGAAGCTCAAGTTCCTACGTAC -ACGGAAGCTCAAGTTCCTAGTGAC -ACGGAAGCTCAAGTTCCTCTGTAG -ACGGAAGCTCAAGTTCCTCCTAAG -ACGGAAGCTCAAGTTCCTGTTCAG -ACGGAAGCTCAAGTTCCTGCATAG -ACGGAAGCTCAAGTTCCTGACAAG -ACGGAAGCTCAAGTTCCTAAGCAG -ACGGAAGCTCAAGTTCCTCGTCAA -ACGGAAGCTCAAGTTCCTGCTGAA -ACGGAAGCTCAAGTTCCTAGTACG -ACGGAAGCTCAAGTTCCTATCCGA -ACGGAAGCTCAAGTTCCTATGGGA -ACGGAAGCTCAAGTTCCTGTGCAA -ACGGAAGCTCAAGTTCCTGAGGAA -ACGGAAGCTCAAGTTCCTCAGGTA -ACGGAAGCTCAAGTTCCTGACTCT -ACGGAAGCTCAAGTTCCTAGTCCT -ACGGAAGCTCAAGTTCCTTAAGCC -ACGGAAGCTCAAGTTCCTATAGCC -ACGGAAGCTCAAGTTCCTTAACCG -ACGGAAGCTCAAGTTCCTATGCCA -ACGGAAGCTCAATTTCGGGGAAAC -ACGGAAGCTCAATTTCGGAACACC -ACGGAAGCTCAATTTCGGATCGAG -ACGGAAGCTCAATTTCGGCTCCTT -ACGGAAGCTCAATTTCGGCCTGTT -ACGGAAGCTCAATTTCGGCGGTTT -ACGGAAGCTCAATTTCGGGTGGTT -ACGGAAGCTCAATTTCGGGCCTTT -ACGGAAGCTCAATTTCGGGGTCTT -ACGGAAGCTCAATTTCGGACGCTT -ACGGAAGCTCAATTTCGGAGCGTT -ACGGAAGCTCAATTTCGGTTCGTC -ACGGAAGCTCAATTTCGGTCTCTC -ACGGAAGCTCAATTTCGGTGGATC -ACGGAAGCTCAATTTCGGCACTTC -ACGGAAGCTCAATTTCGGGTACTC -ACGGAAGCTCAATTTCGGGATGTC -ACGGAAGCTCAATTTCGGACAGTC -ACGGAAGCTCAATTTCGGTTGCTG -ACGGAAGCTCAATTTCGGTCCATG -ACGGAAGCTCAATTTCGGTGTGTG -ACGGAAGCTCAATTTCGGCTAGTG -ACGGAAGCTCAATTTCGGCATCTG -ACGGAAGCTCAATTTCGGGAGTTG -ACGGAAGCTCAATTTCGGAGACTG -ACGGAAGCTCAATTTCGGTCGGTA -ACGGAAGCTCAATTTCGGTGCCTA -ACGGAAGCTCAATTTCGGCCACTA -ACGGAAGCTCAATTTCGGGGAGTA -ACGGAAGCTCAATTTCGGTCGTCT -ACGGAAGCTCAATTTCGGTGCACT -ACGGAAGCTCAATTTCGGCTGACT -ACGGAAGCTCAATTTCGGCAACCT -ACGGAAGCTCAATTTCGGGCTACT -ACGGAAGCTCAATTTCGGGGATCT -ACGGAAGCTCAATTTCGGAAGGCT -ACGGAAGCTCAATTTCGGTCAACC -ACGGAAGCTCAATTTCGGTGTTCC -ACGGAAGCTCAATTTCGGATTCCC -ACGGAAGCTCAATTTCGGTTCTCG -ACGGAAGCTCAATTTCGGTAGACG -ACGGAAGCTCAATTTCGGGTAACG -ACGGAAGCTCAATTTCGGACTTCG -ACGGAAGCTCAATTTCGGTACGCA -ACGGAAGCTCAATTTCGGCTTGCA -ACGGAAGCTCAATTTCGGCGAACA -ACGGAAGCTCAATTTCGGCAGTCA -ACGGAAGCTCAATTTCGGGATCCA -ACGGAAGCTCAATTTCGGACGACA -ACGGAAGCTCAATTTCGGAGCTCA -ACGGAAGCTCAATTTCGGTCACGT -ACGGAAGCTCAATTTCGGCGTAGT -ACGGAAGCTCAATTTCGGGTCAGT -ACGGAAGCTCAATTTCGGGAAGGT -ACGGAAGCTCAATTTCGGAACCGT -ACGGAAGCTCAATTTCGGTTGTGC -ACGGAAGCTCAATTTCGGCTAAGC -ACGGAAGCTCAATTTCGGACTAGC -ACGGAAGCTCAATTTCGGAGATGC -ACGGAAGCTCAATTTCGGTGAAGG -ACGGAAGCTCAATTTCGGCAATGG -ACGGAAGCTCAATTTCGGATGAGG -ACGGAAGCTCAATTTCGGAATGGG -ACGGAAGCTCAATTTCGGTCCTGA -ACGGAAGCTCAATTTCGGTAGCGA -ACGGAAGCTCAATTTCGGCACAGA -ACGGAAGCTCAATTTCGGGCAAGA -ACGGAAGCTCAATTTCGGGGTTGA -ACGGAAGCTCAATTTCGGTCCGAT -ACGGAAGCTCAATTTCGGTGGCAT -ACGGAAGCTCAATTTCGGCGAGAT -ACGGAAGCTCAATTTCGGTACCAC -ACGGAAGCTCAATTTCGGCAGAAC -ACGGAAGCTCAATTTCGGGTCTAC -ACGGAAGCTCAATTTCGGACGTAC -ACGGAAGCTCAATTTCGGAGTGAC -ACGGAAGCTCAATTTCGGCTGTAG -ACGGAAGCTCAATTTCGGCCTAAG -ACGGAAGCTCAATTTCGGGTTCAG -ACGGAAGCTCAATTTCGGGCATAG -ACGGAAGCTCAATTTCGGGACAAG -ACGGAAGCTCAATTTCGGAAGCAG -ACGGAAGCTCAATTTCGGCGTCAA -ACGGAAGCTCAATTTCGGGCTGAA -ACGGAAGCTCAATTTCGGAGTACG -ACGGAAGCTCAATTTCGGATCCGA -ACGGAAGCTCAATTTCGGATGGGA -ACGGAAGCTCAATTTCGGGTGCAA -ACGGAAGCTCAATTTCGGGAGGAA -ACGGAAGCTCAATTTCGGCAGGTA -ACGGAAGCTCAATTTCGGGACTCT -ACGGAAGCTCAATTTCGGAGTCCT -ACGGAAGCTCAATTTCGGTAAGCC -ACGGAAGCTCAATTTCGGATAGCC -ACGGAAGCTCAATTTCGGTAACCG -ACGGAAGCTCAATTTCGGATGCCA -ACGGAAGCTCAAGTTGTGGGAAAC -ACGGAAGCTCAAGTTGTGAACACC -ACGGAAGCTCAAGTTGTGATCGAG -ACGGAAGCTCAAGTTGTGCTCCTT -ACGGAAGCTCAAGTTGTGCCTGTT -ACGGAAGCTCAAGTTGTGCGGTTT -ACGGAAGCTCAAGTTGTGGTGGTT -ACGGAAGCTCAAGTTGTGGCCTTT -ACGGAAGCTCAAGTTGTGGGTCTT -ACGGAAGCTCAAGTTGTGACGCTT -ACGGAAGCTCAAGTTGTGAGCGTT -ACGGAAGCTCAAGTTGTGTTCGTC -ACGGAAGCTCAAGTTGTGTCTCTC -ACGGAAGCTCAAGTTGTGTGGATC -ACGGAAGCTCAAGTTGTGCACTTC -ACGGAAGCTCAAGTTGTGGTACTC -ACGGAAGCTCAAGTTGTGGATGTC -ACGGAAGCTCAAGTTGTGACAGTC -ACGGAAGCTCAAGTTGTGTTGCTG -ACGGAAGCTCAAGTTGTGTCCATG -ACGGAAGCTCAAGTTGTGTGTGTG -ACGGAAGCTCAAGTTGTGCTAGTG -ACGGAAGCTCAAGTTGTGCATCTG -ACGGAAGCTCAAGTTGTGGAGTTG -ACGGAAGCTCAAGTTGTGAGACTG -ACGGAAGCTCAAGTTGTGTCGGTA -ACGGAAGCTCAAGTTGTGTGCCTA -ACGGAAGCTCAAGTTGTGCCACTA -ACGGAAGCTCAAGTTGTGGGAGTA -ACGGAAGCTCAAGTTGTGTCGTCT -ACGGAAGCTCAAGTTGTGTGCACT -ACGGAAGCTCAAGTTGTGCTGACT -ACGGAAGCTCAAGTTGTGCAACCT -ACGGAAGCTCAAGTTGTGGCTACT -ACGGAAGCTCAAGTTGTGGGATCT -ACGGAAGCTCAAGTTGTGAAGGCT -ACGGAAGCTCAAGTTGTGTCAACC -ACGGAAGCTCAAGTTGTGTGTTCC -ACGGAAGCTCAAGTTGTGATTCCC -ACGGAAGCTCAAGTTGTGTTCTCG -ACGGAAGCTCAAGTTGTGTAGACG -ACGGAAGCTCAAGTTGTGGTAACG -ACGGAAGCTCAAGTTGTGACTTCG -ACGGAAGCTCAAGTTGTGTACGCA -ACGGAAGCTCAAGTTGTGCTTGCA -ACGGAAGCTCAAGTTGTGCGAACA -ACGGAAGCTCAAGTTGTGCAGTCA -ACGGAAGCTCAAGTTGTGGATCCA -ACGGAAGCTCAAGTTGTGACGACA -ACGGAAGCTCAAGTTGTGAGCTCA -ACGGAAGCTCAAGTTGTGTCACGT -ACGGAAGCTCAAGTTGTGCGTAGT -ACGGAAGCTCAAGTTGTGGTCAGT -ACGGAAGCTCAAGTTGTGGAAGGT -ACGGAAGCTCAAGTTGTGAACCGT -ACGGAAGCTCAAGTTGTGTTGTGC -ACGGAAGCTCAAGTTGTGCTAAGC -ACGGAAGCTCAAGTTGTGACTAGC -ACGGAAGCTCAAGTTGTGAGATGC -ACGGAAGCTCAAGTTGTGTGAAGG -ACGGAAGCTCAAGTTGTGCAATGG -ACGGAAGCTCAAGTTGTGATGAGG -ACGGAAGCTCAAGTTGTGAATGGG -ACGGAAGCTCAAGTTGTGTCCTGA -ACGGAAGCTCAAGTTGTGTAGCGA -ACGGAAGCTCAAGTTGTGCACAGA -ACGGAAGCTCAAGTTGTGGCAAGA -ACGGAAGCTCAAGTTGTGGGTTGA -ACGGAAGCTCAAGTTGTGTCCGAT -ACGGAAGCTCAAGTTGTGTGGCAT -ACGGAAGCTCAAGTTGTGCGAGAT -ACGGAAGCTCAAGTTGTGTACCAC -ACGGAAGCTCAAGTTGTGCAGAAC -ACGGAAGCTCAAGTTGTGGTCTAC -ACGGAAGCTCAAGTTGTGACGTAC -ACGGAAGCTCAAGTTGTGAGTGAC -ACGGAAGCTCAAGTTGTGCTGTAG -ACGGAAGCTCAAGTTGTGCCTAAG -ACGGAAGCTCAAGTTGTGGTTCAG -ACGGAAGCTCAAGTTGTGGCATAG -ACGGAAGCTCAAGTTGTGGACAAG -ACGGAAGCTCAAGTTGTGAAGCAG -ACGGAAGCTCAAGTTGTGCGTCAA -ACGGAAGCTCAAGTTGTGGCTGAA -ACGGAAGCTCAAGTTGTGAGTACG -ACGGAAGCTCAAGTTGTGATCCGA -ACGGAAGCTCAAGTTGTGATGGGA -ACGGAAGCTCAAGTTGTGGTGCAA -ACGGAAGCTCAAGTTGTGGAGGAA -ACGGAAGCTCAAGTTGTGCAGGTA -ACGGAAGCTCAAGTTGTGGACTCT -ACGGAAGCTCAAGTTGTGAGTCCT -ACGGAAGCTCAAGTTGTGTAAGCC -ACGGAAGCTCAAGTTGTGATAGCC -ACGGAAGCTCAAGTTGTGTAACCG -ACGGAAGCTCAAGTTGTGATGCCA -ACGGAAGCTCAATTTGCCGGAAAC -ACGGAAGCTCAATTTGCCAACACC -ACGGAAGCTCAATTTGCCATCGAG -ACGGAAGCTCAATTTGCCCTCCTT -ACGGAAGCTCAATTTGCCCCTGTT -ACGGAAGCTCAATTTGCCCGGTTT -ACGGAAGCTCAATTTGCCGTGGTT -ACGGAAGCTCAATTTGCCGCCTTT -ACGGAAGCTCAATTTGCCGGTCTT -ACGGAAGCTCAATTTGCCACGCTT -ACGGAAGCTCAATTTGCCAGCGTT -ACGGAAGCTCAATTTGCCTTCGTC -ACGGAAGCTCAATTTGCCTCTCTC -ACGGAAGCTCAATTTGCCTGGATC -ACGGAAGCTCAATTTGCCCACTTC -ACGGAAGCTCAATTTGCCGTACTC -ACGGAAGCTCAATTTGCCGATGTC -ACGGAAGCTCAATTTGCCACAGTC -ACGGAAGCTCAATTTGCCTTGCTG -ACGGAAGCTCAATTTGCCTCCATG -ACGGAAGCTCAATTTGCCTGTGTG -ACGGAAGCTCAATTTGCCCTAGTG -ACGGAAGCTCAATTTGCCCATCTG -ACGGAAGCTCAATTTGCCGAGTTG -ACGGAAGCTCAATTTGCCAGACTG -ACGGAAGCTCAATTTGCCTCGGTA -ACGGAAGCTCAATTTGCCTGCCTA -ACGGAAGCTCAATTTGCCCCACTA -ACGGAAGCTCAATTTGCCGGAGTA -ACGGAAGCTCAATTTGCCTCGTCT -ACGGAAGCTCAATTTGCCTGCACT -ACGGAAGCTCAATTTGCCCTGACT -ACGGAAGCTCAATTTGCCCAACCT -ACGGAAGCTCAATTTGCCGCTACT -ACGGAAGCTCAATTTGCCGGATCT -ACGGAAGCTCAATTTGCCAAGGCT -ACGGAAGCTCAATTTGCCTCAACC -ACGGAAGCTCAATTTGCCTGTTCC -ACGGAAGCTCAATTTGCCATTCCC -ACGGAAGCTCAATTTGCCTTCTCG -ACGGAAGCTCAATTTGCCTAGACG -ACGGAAGCTCAATTTGCCGTAACG -ACGGAAGCTCAATTTGCCACTTCG -ACGGAAGCTCAATTTGCCTACGCA -ACGGAAGCTCAATTTGCCCTTGCA -ACGGAAGCTCAATTTGCCCGAACA -ACGGAAGCTCAATTTGCCCAGTCA -ACGGAAGCTCAATTTGCCGATCCA -ACGGAAGCTCAATTTGCCACGACA -ACGGAAGCTCAATTTGCCAGCTCA -ACGGAAGCTCAATTTGCCTCACGT -ACGGAAGCTCAATTTGCCCGTAGT -ACGGAAGCTCAATTTGCCGTCAGT -ACGGAAGCTCAATTTGCCGAAGGT -ACGGAAGCTCAATTTGCCAACCGT -ACGGAAGCTCAATTTGCCTTGTGC -ACGGAAGCTCAATTTGCCCTAAGC -ACGGAAGCTCAATTTGCCACTAGC -ACGGAAGCTCAATTTGCCAGATGC -ACGGAAGCTCAATTTGCCTGAAGG -ACGGAAGCTCAATTTGCCCAATGG -ACGGAAGCTCAATTTGCCATGAGG -ACGGAAGCTCAATTTGCCAATGGG -ACGGAAGCTCAATTTGCCTCCTGA -ACGGAAGCTCAATTTGCCTAGCGA -ACGGAAGCTCAATTTGCCCACAGA -ACGGAAGCTCAATTTGCCGCAAGA -ACGGAAGCTCAATTTGCCGGTTGA -ACGGAAGCTCAATTTGCCTCCGAT -ACGGAAGCTCAATTTGCCTGGCAT -ACGGAAGCTCAATTTGCCCGAGAT -ACGGAAGCTCAATTTGCCTACCAC -ACGGAAGCTCAATTTGCCCAGAAC -ACGGAAGCTCAATTTGCCGTCTAC -ACGGAAGCTCAATTTGCCACGTAC -ACGGAAGCTCAATTTGCCAGTGAC -ACGGAAGCTCAATTTGCCCTGTAG -ACGGAAGCTCAATTTGCCCCTAAG -ACGGAAGCTCAATTTGCCGTTCAG -ACGGAAGCTCAATTTGCCGCATAG -ACGGAAGCTCAATTTGCCGACAAG -ACGGAAGCTCAATTTGCCAAGCAG -ACGGAAGCTCAATTTGCCCGTCAA -ACGGAAGCTCAATTTGCCGCTGAA -ACGGAAGCTCAATTTGCCAGTACG -ACGGAAGCTCAATTTGCCATCCGA -ACGGAAGCTCAATTTGCCATGGGA -ACGGAAGCTCAATTTGCCGTGCAA -ACGGAAGCTCAATTTGCCGAGGAA -ACGGAAGCTCAATTTGCCCAGGTA -ACGGAAGCTCAATTTGCCGACTCT -ACGGAAGCTCAATTTGCCAGTCCT -ACGGAAGCTCAATTTGCCTAAGCC -ACGGAAGCTCAATTTGCCATAGCC -ACGGAAGCTCAATTTGCCTAACCG -ACGGAAGCTCAATTTGCCATGCCA -ACGGAAGCTCAACTTGGTGGAAAC -ACGGAAGCTCAACTTGGTAACACC -ACGGAAGCTCAACTTGGTATCGAG -ACGGAAGCTCAACTTGGTCTCCTT -ACGGAAGCTCAACTTGGTCCTGTT -ACGGAAGCTCAACTTGGTCGGTTT -ACGGAAGCTCAACTTGGTGTGGTT -ACGGAAGCTCAACTTGGTGCCTTT -ACGGAAGCTCAACTTGGTGGTCTT -ACGGAAGCTCAACTTGGTACGCTT -ACGGAAGCTCAACTTGGTAGCGTT -ACGGAAGCTCAACTTGGTTTCGTC -ACGGAAGCTCAACTTGGTTCTCTC -ACGGAAGCTCAACTTGGTTGGATC -ACGGAAGCTCAACTTGGTCACTTC -ACGGAAGCTCAACTTGGTGTACTC -ACGGAAGCTCAACTTGGTGATGTC -ACGGAAGCTCAACTTGGTACAGTC -ACGGAAGCTCAACTTGGTTTGCTG -ACGGAAGCTCAACTTGGTTCCATG -ACGGAAGCTCAACTTGGTTGTGTG -ACGGAAGCTCAACTTGGTCTAGTG -ACGGAAGCTCAACTTGGTCATCTG -ACGGAAGCTCAACTTGGTGAGTTG -ACGGAAGCTCAACTTGGTAGACTG -ACGGAAGCTCAACTTGGTTCGGTA -ACGGAAGCTCAACTTGGTTGCCTA -ACGGAAGCTCAACTTGGTCCACTA -ACGGAAGCTCAACTTGGTGGAGTA -ACGGAAGCTCAACTTGGTTCGTCT -ACGGAAGCTCAACTTGGTTGCACT -ACGGAAGCTCAACTTGGTCTGACT -ACGGAAGCTCAACTTGGTCAACCT -ACGGAAGCTCAACTTGGTGCTACT -ACGGAAGCTCAACTTGGTGGATCT -ACGGAAGCTCAACTTGGTAAGGCT -ACGGAAGCTCAACTTGGTTCAACC -ACGGAAGCTCAACTTGGTTGTTCC -ACGGAAGCTCAACTTGGTATTCCC -ACGGAAGCTCAACTTGGTTTCTCG -ACGGAAGCTCAACTTGGTTAGACG -ACGGAAGCTCAACTTGGTGTAACG -ACGGAAGCTCAACTTGGTACTTCG -ACGGAAGCTCAACTTGGTTACGCA -ACGGAAGCTCAACTTGGTCTTGCA -ACGGAAGCTCAACTTGGTCGAACA -ACGGAAGCTCAACTTGGTCAGTCA -ACGGAAGCTCAACTTGGTGATCCA -ACGGAAGCTCAACTTGGTACGACA -ACGGAAGCTCAACTTGGTAGCTCA -ACGGAAGCTCAACTTGGTTCACGT -ACGGAAGCTCAACTTGGTCGTAGT -ACGGAAGCTCAACTTGGTGTCAGT -ACGGAAGCTCAACTTGGTGAAGGT -ACGGAAGCTCAACTTGGTAACCGT -ACGGAAGCTCAACTTGGTTTGTGC -ACGGAAGCTCAACTTGGTCTAAGC -ACGGAAGCTCAACTTGGTACTAGC -ACGGAAGCTCAACTTGGTAGATGC -ACGGAAGCTCAACTTGGTTGAAGG -ACGGAAGCTCAACTTGGTCAATGG -ACGGAAGCTCAACTTGGTATGAGG -ACGGAAGCTCAACTTGGTAATGGG -ACGGAAGCTCAACTTGGTTCCTGA -ACGGAAGCTCAACTTGGTTAGCGA -ACGGAAGCTCAACTTGGTCACAGA -ACGGAAGCTCAACTTGGTGCAAGA -ACGGAAGCTCAACTTGGTGGTTGA -ACGGAAGCTCAACTTGGTTCCGAT -ACGGAAGCTCAACTTGGTTGGCAT -ACGGAAGCTCAACTTGGTCGAGAT -ACGGAAGCTCAACTTGGTTACCAC -ACGGAAGCTCAACTTGGTCAGAAC -ACGGAAGCTCAACTTGGTGTCTAC -ACGGAAGCTCAACTTGGTACGTAC -ACGGAAGCTCAACTTGGTAGTGAC -ACGGAAGCTCAACTTGGTCTGTAG -ACGGAAGCTCAACTTGGTCCTAAG -ACGGAAGCTCAACTTGGTGTTCAG -ACGGAAGCTCAACTTGGTGCATAG -ACGGAAGCTCAACTTGGTGACAAG -ACGGAAGCTCAACTTGGTAAGCAG -ACGGAAGCTCAACTTGGTCGTCAA -ACGGAAGCTCAACTTGGTGCTGAA -ACGGAAGCTCAACTTGGTAGTACG -ACGGAAGCTCAACTTGGTATCCGA -ACGGAAGCTCAACTTGGTATGGGA -ACGGAAGCTCAACTTGGTGTGCAA -ACGGAAGCTCAACTTGGTGAGGAA -ACGGAAGCTCAACTTGGTCAGGTA -ACGGAAGCTCAACTTGGTGACTCT -ACGGAAGCTCAACTTGGTAGTCCT -ACGGAAGCTCAACTTGGTTAAGCC -ACGGAAGCTCAACTTGGTATAGCC -ACGGAAGCTCAACTTGGTTAACCG -ACGGAAGCTCAACTTGGTATGCCA -ACGGAAGCTCAACTTACGGGAAAC -ACGGAAGCTCAACTTACGAACACC -ACGGAAGCTCAACTTACGATCGAG -ACGGAAGCTCAACTTACGCTCCTT -ACGGAAGCTCAACTTACGCCTGTT -ACGGAAGCTCAACTTACGCGGTTT -ACGGAAGCTCAACTTACGGTGGTT -ACGGAAGCTCAACTTACGGCCTTT -ACGGAAGCTCAACTTACGGGTCTT -ACGGAAGCTCAACTTACGACGCTT -ACGGAAGCTCAACTTACGAGCGTT -ACGGAAGCTCAACTTACGTTCGTC -ACGGAAGCTCAACTTACGTCTCTC -ACGGAAGCTCAACTTACGTGGATC -ACGGAAGCTCAACTTACGCACTTC -ACGGAAGCTCAACTTACGGTACTC -ACGGAAGCTCAACTTACGGATGTC -ACGGAAGCTCAACTTACGACAGTC -ACGGAAGCTCAACTTACGTTGCTG -ACGGAAGCTCAACTTACGTCCATG -ACGGAAGCTCAACTTACGTGTGTG -ACGGAAGCTCAACTTACGCTAGTG -ACGGAAGCTCAACTTACGCATCTG -ACGGAAGCTCAACTTACGGAGTTG -ACGGAAGCTCAACTTACGAGACTG -ACGGAAGCTCAACTTACGTCGGTA -ACGGAAGCTCAACTTACGTGCCTA -ACGGAAGCTCAACTTACGCCACTA -ACGGAAGCTCAACTTACGGGAGTA -ACGGAAGCTCAACTTACGTCGTCT -ACGGAAGCTCAACTTACGTGCACT -ACGGAAGCTCAACTTACGCTGACT -ACGGAAGCTCAACTTACGCAACCT -ACGGAAGCTCAACTTACGGCTACT -ACGGAAGCTCAACTTACGGGATCT -ACGGAAGCTCAACTTACGAAGGCT -ACGGAAGCTCAACTTACGTCAACC -ACGGAAGCTCAACTTACGTGTTCC -ACGGAAGCTCAACTTACGATTCCC -ACGGAAGCTCAACTTACGTTCTCG -ACGGAAGCTCAACTTACGTAGACG -ACGGAAGCTCAACTTACGGTAACG -ACGGAAGCTCAACTTACGACTTCG -ACGGAAGCTCAACTTACGTACGCA -ACGGAAGCTCAACTTACGCTTGCA -ACGGAAGCTCAACTTACGCGAACA -ACGGAAGCTCAACTTACGCAGTCA -ACGGAAGCTCAACTTACGGATCCA -ACGGAAGCTCAACTTACGACGACA -ACGGAAGCTCAACTTACGAGCTCA -ACGGAAGCTCAACTTACGTCACGT -ACGGAAGCTCAACTTACGCGTAGT -ACGGAAGCTCAACTTACGGTCAGT -ACGGAAGCTCAACTTACGGAAGGT -ACGGAAGCTCAACTTACGAACCGT -ACGGAAGCTCAACTTACGTTGTGC -ACGGAAGCTCAACTTACGCTAAGC -ACGGAAGCTCAACTTACGACTAGC -ACGGAAGCTCAACTTACGAGATGC -ACGGAAGCTCAACTTACGTGAAGG -ACGGAAGCTCAACTTACGCAATGG -ACGGAAGCTCAACTTACGATGAGG -ACGGAAGCTCAACTTACGAATGGG -ACGGAAGCTCAACTTACGTCCTGA -ACGGAAGCTCAACTTACGTAGCGA -ACGGAAGCTCAACTTACGCACAGA -ACGGAAGCTCAACTTACGGCAAGA -ACGGAAGCTCAACTTACGGGTTGA -ACGGAAGCTCAACTTACGTCCGAT -ACGGAAGCTCAACTTACGTGGCAT -ACGGAAGCTCAACTTACGCGAGAT -ACGGAAGCTCAACTTACGTACCAC -ACGGAAGCTCAACTTACGCAGAAC -ACGGAAGCTCAACTTACGGTCTAC -ACGGAAGCTCAACTTACGACGTAC -ACGGAAGCTCAACTTACGAGTGAC -ACGGAAGCTCAACTTACGCTGTAG -ACGGAAGCTCAACTTACGCCTAAG -ACGGAAGCTCAACTTACGGTTCAG -ACGGAAGCTCAACTTACGGCATAG -ACGGAAGCTCAACTTACGGACAAG -ACGGAAGCTCAACTTACGAAGCAG -ACGGAAGCTCAACTTACGCGTCAA -ACGGAAGCTCAACTTACGGCTGAA -ACGGAAGCTCAACTTACGAGTACG -ACGGAAGCTCAACTTACGATCCGA -ACGGAAGCTCAACTTACGATGGGA -ACGGAAGCTCAACTTACGGTGCAA -ACGGAAGCTCAACTTACGGAGGAA -ACGGAAGCTCAACTTACGCAGGTA -ACGGAAGCTCAACTTACGGACTCT -ACGGAAGCTCAACTTACGAGTCCT -ACGGAAGCTCAACTTACGTAAGCC -ACGGAAGCTCAACTTACGATAGCC -ACGGAAGCTCAACTTACGTAACCG -ACGGAAGCTCAACTTACGATGCCA -ACGGAAGCTCAAGTTAGCGGAAAC -ACGGAAGCTCAAGTTAGCAACACC -ACGGAAGCTCAAGTTAGCATCGAG -ACGGAAGCTCAAGTTAGCCTCCTT -ACGGAAGCTCAAGTTAGCCCTGTT -ACGGAAGCTCAAGTTAGCCGGTTT -ACGGAAGCTCAAGTTAGCGTGGTT -ACGGAAGCTCAAGTTAGCGCCTTT -ACGGAAGCTCAAGTTAGCGGTCTT -ACGGAAGCTCAAGTTAGCACGCTT -ACGGAAGCTCAAGTTAGCAGCGTT -ACGGAAGCTCAAGTTAGCTTCGTC -ACGGAAGCTCAAGTTAGCTCTCTC -ACGGAAGCTCAAGTTAGCTGGATC -ACGGAAGCTCAAGTTAGCCACTTC -ACGGAAGCTCAAGTTAGCGTACTC -ACGGAAGCTCAAGTTAGCGATGTC -ACGGAAGCTCAAGTTAGCACAGTC -ACGGAAGCTCAAGTTAGCTTGCTG -ACGGAAGCTCAAGTTAGCTCCATG -ACGGAAGCTCAAGTTAGCTGTGTG -ACGGAAGCTCAAGTTAGCCTAGTG -ACGGAAGCTCAAGTTAGCCATCTG -ACGGAAGCTCAAGTTAGCGAGTTG -ACGGAAGCTCAAGTTAGCAGACTG -ACGGAAGCTCAAGTTAGCTCGGTA -ACGGAAGCTCAAGTTAGCTGCCTA -ACGGAAGCTCAAGTTAGCCCACTA -ACGGAAGCTCAAGTTAGCGGAGTA -ACGGAAGCTCAAGTTAGCTCGTCT -ACGGAAGCTCAAGTTAGCTGCACT -ACGGAAGCTCAAGTTAGCCTGACT -ACGGAAGCTCAAGTTAGCCAACCT -ACGGAAGCTCAAGTTAGCGCTACT -ACGGAAGCTCAAGTTAGCGGATCT -ACGGAAGCTCAAGTTAGCAAGGCT -ACGGAAGCTCAAGTTAGCTCAACC -ACGGAAGCTCAAGTTAGCTGTTCC -ACGGAAGCTCAAGTTAGCATTCCC -ACGGAAGCTCAAGTTAGCTTCTCG -ACGGAAGCTCAAGTTAGCTAGACG -ACGGAAGCTCAAGTTAGCGTAACG -ACGGAAGCTCAAGTTAGCACTTCG -ACGGAAGCTCAAGTTAGCTACGCA -ACGGAAGCTCAAGTTAGCCTTGCA -ACGGAAGCTCAAGTTAGCCGAACA -ACGGAAGCTCAAGTTAGCCAGTCA -ACGGAAGCTCAAGTTAGCGATCCA -ACGGAAGCTCAAGTTAGCACGACA -ACGGAAGCTCAAGTTAGCAGCTCA -ACGGAAGCTCAAGTTAGCTCACGT -ACGGAAGCTCAAGTTAGCCGTAGT -ACGGAAGCTCAAGTTAGCGTCAGT -ACGGAAGCTCAAGTTAGCGAAGGT -ACGGAAGCTCAAGTTAGCAACCGT -ACGGAAGCTCAAGTTAGCTTGTGC -ACGGAAGCTCAAGTTAGCCTAAGC -ACGGAAGCTCAAGTTAGCACTAGC -ACGGAAGCTCAAGTTAGCAGATGC -ACGGAAGCTCAAGTTAGCTGAAGG -ACGGAAGCTCAAGTTAGCCAATGG -ACGGAAGCTCAAGTTAGCATGAGG -ACGGAAGCTCAAGTTAGCAATGGG -ACGGAAGCTCAAGTTAGCTCCTGA -ACGGAAGCTCAAGTTAGCTAGCGA -ACGGAAGCTCAAGTTAGCCACAGA -ACGGAAGCTCAAGTTAGCGCAAGA -ACGGAAGCTCAAGTTAGCGGTTGA -ACGGAAGCTCAAGTTAGCTCCGAT -ACGGAAGCTCAAGTTAGCTGGCAT -ACGGAAGCTCAAGTTAGCCGAGAT -ACGGAAGCTCAAGTTAGCTACCAC -ACGGAAGCTCAAGTTAGCCAGAAC -ACGGAAGCTCAAGTTAGCGTCTAC -ACGGAAGCTCAAGTTAGCACGTAC -ACGGAAGCTCAAGTTAGCAGTGAC -ACGGAAGCTCAAGTTAGCCTGTAG -ACGGAAGCTCAAGTTAGCCCTAAG -ACGGAAGCTCAAGTTAGCGTTCAG -ACGGAAGCTCAAGTTAGCGCATAG -ACGGAAGCTCAAGTTAGCGACAAG -ACGGAAGCTCAAGTTAGCAAGCAG -ACGGAAGCTCAAGTTAGCCGTCAA -ACGGAAGCTCAAGTTAGCGCTGAA -ACGGAAGCTCAAGTTAGCAGTACG -ACGGAAGCTCAAGTTAGCATCCGA -ACGGAAGCTCAAGTTAGCATGGGA -ACGGAAGCTCAAGTTAGCGTGCAA -ACGGAAGCTCAAGTTAGCGAGGAA -ACGGAAGCTCAAGTTAGCCAGGTA -ACGGAAGCTCAAGTTAGCGACTCT -ACGGAAGCTCAAGTTAGCAGTCCT -ACGGAAGCTCAAGTTAGCTAAGCC -ACGGAAGCTCAAGTTAGCATAGCC -ACGGAAGCTCAAGTTAGCTAACCG -ACGGAAGCTCAAGTTAGCATGCCA -ACGGAAGCTCAAGTCTTCGGAAAC -ACGGAAGCTCAAGTCTTCAACACC -ACGGAAGCTCAAGTCTTCATCGAG -ACGGAAGCTCAAGTCTTCCTCCTT -ACGGAAGCTCAAGTCTTCCCTGTT -ACGGAAGCTCAAGTCTTCCGGTTT -ACGGAAGCTCAAGTCTTCGTGGTT -ACGGAAGCTCAAGTCTTCGCCTTT -ACGGAAGCTCAAGTCTTCGGTCTT -ACGGAAGCTCAAGTCTTCACGCTT -ACGGAAGCTCAAGTCTTCAGCGTT -ACGGAAGCTCAAGTCTTCTTCGTC -ACGGAAGCTCAAGTCTTCTCTCTC -ACGGAAGCTCAAGTCTTCTGGATC -ACGGAAGCTCAAGTCTTCCACTTC -ACGGAAGCTCAAGTCTTCGTACTC -ACGGAAGCTCAAGTCTTCGATGTC -ACGGAAGCTCAAGTCTTCACAGTC -ACGGAAGCTCAAGTCTTCTTGCTG -ACGGAAGCTCAAGTCTTCTCCATG -ACGGAAGCTCAAGTCTTCTGTGTG -ACGGAAGCTCAAGTCTTCCTAGTG -ACGGAAGCTCAAGTCTTCCATCTG -ACGGAAGCTCAAGTCTTCGAGTTG -ACGGAAGCTCAAGTCTTCAGACTG -ACGGAAGCTCAAGTCTTCTCGGTA -ACGGAAGCTCAAGTCTTCTGCCTA -ACGGAAGCTCAAGTCTTCCCACTA -ACGGAAGCTCAAGTCTTCGGAGTA -ACGGAAGCTCAAGTCTTCTCGTCT -ACGGAAGCTCAAGTCTTCTGCACT -ACGGAAGCTCAAGTCTTCCTGACT -ACGGAAGCTCAAGTCTTCCAACCT -ACGGAAGCTCAAGTCTTCGCTACT -ACGGAAGCTCAAGTCTTCGGATCT -ACGGAAGCTCAAGTCTTCAAGGCT -ACGGAAGCTCAAGTCTTCTCAACC -ACGGAAGCTCAAGTCTTCTGTTCC -ACGGAAGCTCAAGTCTTCATTCCC -ACGGAAGCTCAAGTCTTCTTCTCG -ACGGAAGCTCAAGTCTTCTAGACG -ACGGAAGCTCAAGTCTTCGTAACG -ACGGAAGCTCAAGTCTTCACTTCG -ACGGAAGCTCAAGTCTTCTACGCA -ACGGAAGCTCAAGTCTTCCTTGCA -ACGGAAGCTCAAGTCTTCCGAACA -ACGGAAGCTCAAGTCTTCCAGTCA -ACGGAAGCTCAAGTCTTCGATCCA -ACGGAAGCTCAAGTCTTCACGACA -ACGGAAGCTCAAGTCTTCAGCTCA -ACGGAAGCTCAAGTCTTCTCACGT -ACGGAAGCTCAAGTCTTCCGTAGT -ACGGAAGCTCAAGTCTTCGTCAGT -ACGGAAGCTCAAGTCTTCGAAGGT -ACGGAAGCTCAAGTCTTCAACCGT -ACGGAAGCTCAAGTCTTCTTGTGC -ACGGAAGCTCAAGTCTTCCTAAGC -ACGGAAGCTCAAGTCTTCACTAGC -ACGGAAGCTCAAGTCTTCAGATGC -ACGGAAGCTCAAGTCTTCTGAAGG -ACGGAAGCTCAAGTCTTCCAATGG -ACGGAAGCTCAAGTCTTCATGAGG -ACGGAAGCTCAAGTCTTCAATGGG -ACGGAAGCTCAAGTCTTCTCCTGA -ACGGAAGCTCAAGTCTTCTAGCGA -ACGGAAGCTCAAGTCTTCCACAGA -ACGGAAGCTCAAGTCTTCGCAAGA -ACGGAAGCTCAAGTCTTCGGTTGA -ACGGAAGCTCAAGTCTTCTCCGAT -ACGGAAGCTCAAGTCTTCTGGCAT -ACGGAAGCTCAAGTCTTCCGAGAT -ACGGAAGCTCAAGTCTTCTACCAC -ACGGAAGCTCAAGTCTTCCAGAAC -ACGGAAGCTCAAGTCTTCGTCTAC -ACGGAAGCTCAAGTCTTCACGTAC -ACGGAAGCTCAAGTCTTCAGTGAC -ACGGAAGCTCAAGTCTTCCTGTAG -ACGGAAGCTCAAGTCTTCCCTAAG -ACGGAAGCTCAAGTCTTCGTTCAG -ACGGAAGCTCAAGTCTTCGCATAG -ACGGAAGCTCAAGTCTTCGACAAG -ACGGAAGCTCAAGTCTTCAAGCAG -ACGGAAGCTCAAGTCTTCCGTCAA -ACGGAAGCTCAAGTCTTCGCTGAA -ACGGAAGCTCAAGTCTTCAGTACG -ACGGAAGCTCAAGTCTTCATCCGA -ACGGAAGCTCAAGTCTTCATGGGA -ACGGAAGCTCAAGTCTTCGTGCAA -ACGGAAGCTCAAGTCTTCGAGGAA -ACGGAAGCTCAAGTCTTCCAGGTA -ACGGAAGCTCAAGTCTTCGACTCT -ACGGAAGCTCAAGTCTTCAGTCCT -ACGGAAGCTCAAGTCTTCTAAGCC -ACGGAAGCTCAAGTCTTCATAGCC -ACGGAAGCTCAAGTCTTCTAACCG -ACGGAAGCTCAAGTCTTCATGCCA -ACGGAAGCTCAACTCTCTGGAAAC -ACGGAAGCTCAACTCTCTAACACC -ACGGAAGCTCAACTCTCTATCGAG -ACGGAAGCTCAACTCTCTCTCCTT -ACGGAAGCTCAACTCTCTCCTGTT -ACGGAAGCTCAACTCTCTCGGTTT -ACGGAAGCTCAACTCTCTGTGGTT -ACGGAAGCTCAACTCTCTGCCTTT -ACGGAAGCTCAACTCTCTGGTCTT -ACGGAAGCTCAACTCTCTACGCTT -ACGGAAGCTCAACTCTCTAGCGTT -ACGGAAGCTCAACTCTCTTTCGTC -ACGGAAGCTCAACTCTCTTCTCTC -ACGGAAGCTCAACTCTCTTGGATC -ACGGAAGCTCAACTCTCTCACTTC -ACGGAAGCTCAACTCTCTGTACTC -ACGGAAGCTCAACTCTCTGATGTC -ACGGAAGCTCAACTCTCTACAGTC -ACGGAAGCTCAACTCTCTTTGCTG -ACGGAAGCTCAACTCTCTTCCATG -ACGGAAGCTCAACTCTCTTGTGTG -ACGGAAGCTCAACTCTCTCTAGTG -ACGGAAGCTCAACTCTCTCATCTG -ACGGAAGCTCAACTCTCTGAGTTG -ACGGAAGCTCAACTCTCTAGACTG -ACGGAAGCTCAACTCTCTTCGGTA -ACGGAAGCTCAACTCTCTTGCCTA -ACGGAAGCTCAACTCTCTCCACTA -ACGGAAGCTCAACTCTCTGGAGTA -ACGGAAGCTCAACTCTCTTCGTCT -ACGGAAGCTCAACTCTCTTGCACT -ACGGAAGCTCAACTCTCTCTGACT -ACGGAAGCTCAACTCTCTCAACCT -ACGGAAGCTCAACTCTCTGCTACT -ACGGAAGCTCAACTCTCTGGATCT -ACGGAAGCTCAACTCTCTAAGGCT -ACGGAAGCTCAACTCTCTTCAACC -ACGGAAGCTCAACTCTCTTGTTCC -ACGGAAGCTCAACTCTCTATTCCC -ACGGAAGCTCAACTCTCTTTCTCG -ACGGAAGCTCAACTCTCTTAGACG -ACGGAAGCTCAACTCTCTGTAACG -ACGGAAGCTCAACTCTCTACTTCG -ACGGAAGCTCAACTCTCTTACGCA -ACGGAAGCTCAACTCTCTCTTGCA -ACGGAAGCTCAACTCTCTCGAACA -ACGGAAGCTCAACTCTCTCAGTCA -ACGGAAGCTCAACTCTCTGATCCA -ACGGAAGCTCAACTCTCTACGACA -ACGGAAGCTCAACTCTCTAGCTCA -ACGGAAGCTCAACTCTCTTCACGT -ACGGAAGCTCAACTCTCTCGTAGT -ACGGAAGCTCAACTCTCTGTCAGT -ACGGAAGCTCAACTCTCTGAAGGT -ACGGAAGCTCAACTCTCTAACCGT -ACGGAAGCTCAACTCTCTTTGTGC -ACGGAAGCTCAACTCTCTCTAAGC -ACGGAAGCTCAACTCTCTACTAGC -ACGGAAGCTCAACTCTCTAGATGC -ACGGAAGCTCAACTCTCTTGAAGG -ACGGAAGCTCAACTCTCTCAATGG -ACGGAAGCTCAACTCTCTATGAGG -ACGGAAGCTCAACTCTCTAATGGG -ACGGAAGCTCAACTCTCTTCCTGA -ACGGAAGCTCAACTCTCTTAGCGA -ACGGAAGCTCAACTCTCTCACAGA -ACGGAAGCTCAACTCTCTGCAAGA -ACGGAAGCTCAACTCTCTGGTTGA -ACGGAAGCTCAACTCTCTTCCGAT -ACGGAAGCTCAACTCTCTTGGCAT -ACGGAAGCTCAACTCTCTCGAGAT -ACGGAAGCTCAACTCTCTTACCAC -ACGGAAGCTCAACTCTCTCAGAAC -ACGGAAGCTCAACTCTCTGTCTAC -ACGGAAGCTCAACTCTCTACGTAC -ACGGAAGCTCAACTCTCTAGTGAC -ACGGAAGCTCAACTCTCTCTGTAG -ACGGAAGCTCAACTCTCTCCTAAG -ACGGAAGCTCAACTCTCTGTTCAG -ACGGAAGCTCAACTCTCTGCATAG -ACGGAAGCTCAACTCTCTGACAAG -ACGGAAGCTCAACTCTCTAAGCAG -ACGGAAGCTCAACTCTCTCGTCAA -ACGGAAGCTCAACTCTCTGCTGAA -ACGGAAGCTCAACTCTCTAGTACG -ACGGAAGCTCAACTCTCTATCCGA -ACGGAAGCTCAACTCTCTATGGGA -ACGGAAGCTCAACTCTCTGTGCAA -ACGGAAGCTCAACTCTCTGAGGAA -ACGGAAGCTCAACTCTCTCAGGTA -ACGGAAGCTCAACTCTCTGACTCT -ACGGAAGCTCAACTCTCTAGTCCT -ACGGAAGCTCAACTCTCTTAAGCC -ACGGAAGCTCAACTCTCTATAGCC -ACGGAAGCTCAACTCTCTTAACCG -ACGGAAGCTCAACTCTCTATGCCA -ACGGAAGCTCAAATCTGGGGAAAC -ACGGAAGCTCAAATCTGGAACACC -ACGGAAGCTCAAATCTGGATCGAG -ACGGAAGCTCAAATCTGGCTCCTT -ACGGAAGCTCAAATCTGGCCTGTT -ACGGAAGCTCAAATCTGGCGGTTT -ACGGAAGCTCAAATCTGGGTGGTT -ACGGAAGCTCAAATCTGGGCCTTT -ACGGAAGCTCAAATCTGGGGTCTT -ACGGAAGCTCAAATCTGGACGCTT -ACGGAAGCTCAAATCTGGAGCGTT -ACGGAAGCTCAAATCTGGTTCGTC -ACGGAAGCTCAAATCTGGTCTCTC -ACGGAAGCTCAAATCTGGTGGATC -ACGGAAGCTCAAATCTGGCACTTC -ACGGAAGCTCAAATCTGGGTACTC -ACGGAAGCTCAAATCTGGGATGTC -ACGGAAGCTCAAATCTGGACAGTC -ACGGAAGCTCAAATCTGGTTGCTG -ACGGAAGCTCAAATCTGGTCCATG -ACGGAAGCTCAAATCTGGTGTGTG -ACGGAAGCTCAAATCTGGCTAGTG -ACGGAAGCTCAAATCTGGCATCTG -ACGGAAGCTCAAATCTGGGAGTTG -ACGGAAGCTCAAATCTGGAGACTG -ACGGAAGCTCAAATCTGGTCGGTA -ACGGAAGCTCAAATCTGGTGCCTA -ACGGAAGCTCAAATCTGGCCACTA -ACGGAAGCTCAAATCTGGGGAGTA -ACGGAAGCTCAAATCTGGTCGTCT -ACGGAAGCTCAAATCTGGTGCACT -ACGGAAGCTCAAATCTGGCTGACT -ACGGAAGCTCAAATCTGGCAACCT -ACGGAAGCTCAAATCTGGGCTACT -ACGGAAGCTCAAATCTGGGGATCT -ACGGAAGCTCAAATCTGGAAGGCT -ACGGAAGCTCAAATCTGGTCAACC -ACGGAAGCTCAAATCTGGTGTTCC -ACGGAAGCTCAAATCTGGATTCCC -ACGGAAGCTCAAATCTGGTTCTCG -ACGGAAGCTCAAATCTGGTAGACG -ACGGAAGCTCAAATCTGGGTAACG -ACGGAAGCTCAAATCTGGACTTCG -ACGGAAGCTCAAATCTGGTACGCA -ACGGAAGCTCAAATCTGGCTTGCA -ACGGAAGCTCAAATCTGGCGAACA -ACGGAAGCTCAAATCTGGCAGTCA -ACGGAAGCTCAAATCTGGGATCCA -ACGGAAGCTCAAATCTGGACGACA -ACGGAAGCTCAAATCTGGAGCTCA -ACGGAAGCTCAAATCTGGTCACGT -ACGGAAGCTCAAATCTGGCGTAGT -ACGGAAGCTCAAATCTGGGTCAGT -ACGGAAGCTCAAATCTGGGAAGGT -ACGGAAGCTCAAATCTGGAACCGT -ACGGAAGCTCAAATCTGGTTGTGC -ACGGAAGCTCAAATCTGGCTAAGC -ACGGAAGCTCAAATCTGGACTAGC -ACGGAAGCTCAAATCTGGAGATGC -ACGGAAGCTCAAATCTGGTGAAGG -ACGGAAGCTCAAATCTGGCAATGG -ACGGAAGCTCAAATCTGGATGAGG -ACGGAAGCTCAAATCTGGAATGGG -ACGGAAGCTCAAATCTGGTCCTGA -ACGGAAGCTCAAATCTGGTAGCGA -ACGGAAGCTCAAATCTGGCACAGA -ACGGAAGCTCAAATCTGGGCAAGA -ACGGAAGCTCAAATCTGGGGTTGA -ACGGAAGCTCAAATCTGGTCCGAT -ACGGAAGCTCAAATCTGGTGGCAT -ACGGAAGCTCAAATCTGGCGAGAT -ACGGAAGCTCAAATCTGGTACCAC -ACGGAAGCTCAAATCTGGCAGAAC -ACGGAAGCTCAAATCTGGGTCTAC -ACGGAAGCTCAAATCTGGACGTAC -ACGGAAGCTCAAATCTGGAGTGAC -ACGGAAGCTCAAATCTGGCTGTAG -ACGGAAGCTCAAATCTGGCCTAAG -ACGGAAGCTCAAATCTGGGTTCAG -ACGGAAGCTCAAATCTGGGCATAG -ACGGAAGCTCAAATCTGGGACAAG -ACGGAAGCTCAAATCTGGAAGCAG -ACGGAAGCTCAAATCTGGCGTCAA -ACGGAAGCTCAAATCTGGGCTGAA -ACGGAAGCTCAAATCTGGAGTACG -ACGGAAGCTCAAATCTGGATCCGA -ACGGAAGCTCAAATCTGGATGGGA -ACGGAAGCTCAAATCTGGGTGCAA -ACGGAAGCTCAAATCTGGGAGGAA -ACGGAAGCTCAAATCTGGCAGGTA -ACGGAAGCTCAAATCTGGGACTCT -ACGGAAGCTCAAATCTGGAGTCCT -ACGGAAGCTCAAATCTGGTAAGCC -ACGGAAGCTCAAATCTGGATAGCC -ACGGAAGCTCAAATCTGGTAACCG -ACGGAAGCTCAAATCTGGATGCCA -ACGGAAGCTCAATTCCACGGAAAC -ACGGAAGCTCAATTCCACAACACC -ACGGAAGCTCAATTCCACATCGAG -ACGGAAGCTCAATTCCACCTCCTT -ACGGAAGCTCAATTCCACCCTGTT -ACGGAAGCTCAATTCCACCGGTTT -ACGGAAGCTCAATTCCACGTGGTT -ACGGAAGCTCAATTCCACGCCTTT -ACGGAAGCTCAATTCCACGGTCTT -ACGGAAGCTCAATTCCACACGCTT -ACGGAAGCTCAATTCCACAGCGTT -ACGGAAGCTCAATTCCACTTCGTC -ACGGAAGCTCAATTCCACTCTCTC -ACGGAAGCTCAATTCCACTGGATC -ACGGAAGCTCAATTCCACCACTTC -ACGGAAGCTCAATTCCACGTACTC -ACGGAAGCTCAATTCCACGATGTC -ACGGAAGCTCAATTCCACACAGTC -ACGGAAGCTCAATTCCACTTGCTG -ACGGAAGCTCAATTCCACTCCATG -ACGGAAGCTCAATTCCACTGTGTG -ACGGAAGCTCAATTCCACCTAGTG -ACGGAAGCTCAATTCCACCATCTG -ACGGAAGCTCAATTCCACGAGTTG -ACGGAAGCTCAATTCCACAGACTG -ACGGAAGCTCAATTCCACTCGGTA -ACGGAAGCTCAATTCCACTGCCTA -ACGGAAGCTCAATTCCACCCACTA -ACGGAAGCTCAATTCCACGGAGTA -ACGGAAGCTCAATTCCACTCGTCT -ACGGAAGCTCAATTCCACTGCACT -ACGGAAGCTCAATTCCACCTGACT -ACGGAAGCTCAATTCCACCAACCT -ACGGAAGCTCAATTCCACGCTACT -ACGGAAGCTCAATTCCACGGATCT -ACGGAAGCTCAATTCCACAAGGCT -ACGGAAGCTCAATTCCACTCAACC -ACGGAAGCTCAATTCCACTGTTCC -ACGGAAGCTCAATTCCACATTCCC -ACGGAAGCTCAATTCCACTTCTCG -ACGGAAGCTCAATTCCACTAGACG -ACGGAAGCTCAATTCCACGTAACG -ACGGAAGCTCAATTCCACACTTCG -ACGGAAGCTCAATTCCACTACGCA -ACGGAAGCTCAATTCCACCTTGCA -ACGGAAGCTCAATTCCACCGAACA -ACGGAAGCTCAATTCCACCAGTCA -ACGGAAGCTCAATTCCACGATCCA -ACGGAAGCTCAATTCCACACGACA -ACGGAAGCTCAATTCCACAGCTCA -ACGGAAGCTCAATTCCACTCACGT -ACGGAAGCTCAATTCCACCGTAGT -ACGGAAGCTCAATTCCACGTCAGT -ACGGAAGCTCAATTCCACGAAGGT -ACGGAAGCTCAATTCCACAACCGT -ACGGAAGCTCAATTCCACTTGTGC -ACGGAAGCTCAATTCCACCTAAGC -ACGGAAGCTCAATTCCACACTAGC -ACGGAAGCTCAATTCCACAGATGC -ACGGAAGCTCAATTCCACTGAAGG -ACGGAAGCTCAATTCCACCAATGG -ACGGAAGCTCAATTCCACATGAGG -ACGGAAGCTCAATTCCACAATGGG -ACGGAAGCTCAATTCCACTCCTGA -ACGGAAGCTCAATTCCACTAGCGA -ACGGAAGCTCAATTCCACCACAGA -ACGGAAGCTCAATTCCACGCAAGA -ACGGAAGCTCAATTCCACGGTTGA -ACGGAAGCTCAATTCCACTCCGAT -ACGGAAGCTCAATTCCACTGGCAT -ACGGAAGCTCAATTCCACCGAGAT -ACGGAAGCTCAATTCCACTACCAC -ACGGAAGCTCAATTCCACCAGAAC -ACGGAAGCTCAATTCCACGTCTAC -ACGGAAGCTCAATTCCACACGTAC -ACGGAAGCTCAATTCCACAGTGAC -ACGGAAGCTCAATTCCACCTGTAG -ACGGAAGCTCAATTCCACCCTAAG -ACGGAAGCTCAATTCCACGTTCAG -ACGGAAGCTCAATTCCACGCATAG -ACGGAAGCTCAATTCCACGACAAG -ACGGAAGCTCAATTCCACAAGCAG -ACGGAAGCTCAATTCCACCGTCAA -ACGGAAGCTCAATTCCACGCTGAA -ACGGAAGCTCAATTCCACAGTACG -ACGGAAGCTCAATTCCACATCCGA -ACGGAAGCTCAATTCCACATGGGA -ACGGAAGCTCAATTCCACGTGCAA -ACGGAAGCTCAATTCCACGAGGAA -ACGGAAGCTCAATTCCACCAGGTA -ACGGAAGCTCAATTCCACGACTCT -ACGGAAGCTCAATTCCACAGTCCT -ACGGAAGCTCAATTCCACTAAGCC -ACGGAAGCTCAATTCCACATAGCC -ACGGAAGCTCAATTCCACTAACCG -ACGGAAGCTCAATTCCACATGCCA -ACGGAAGCTCAACTCGTAGGAAAC -ACGGAAGCTCAACTCGTAAACACC -ACGGAAGCTCAACTCGTAATCGAG -ACGGAAGCTCAACTCGTACTCCTT -ACGGAAGCTCAACTCGTACCTGTT -ACGGAAGCTCAACTCGTACGGTTT -ACGGAAGCTCAACTCGTAGTGGTT -ACGGAAGCTCAACTCGTAGCCTTT -ACGGAAGCTCAACTCGTAGGTCTT -ACGGAAGCTCAACTCGTAACGCTT -ACGGAAGCTCAACTCGTAAGCGTT -ACGGAAGCTCAACTCGTATTCGTC -ACGGAAGCTCAACTCGTATCTCTC -ACGGAAGCTCAACTCGTATGGATC -ACGGAAGCTCAACTCGTACACTTC -ACGGAAGCTCAACTCGTAGTACTC -ACGGAAGCTCAACTCGTAGATGTC -ACGGAAGCTCAACTCGTAACAGTC -ACGGAAGCTCAACTCGTATTGCTG -ACGGAAGCTCAACTCGTATCCATG -ACGGAAGCTCAACTCGTATGTGTG -ACGGAAGCTCAACTCGTACTAGTG -ACGGAAGCTCAACTCGTACATCTG -ACGGAAGCTCAACTCGTAGAGTTG -ACGGAAGCTCAACTCGTAAGACTG -ACGGAAGCTCAACTCGTATCGGTA -ACGGAAGCTCAACTCGTATGCCTA -ACGGAAGCTCAACTCGTACCACTA -ACGGAAGCTCAACTCGTAGGAGTA -ACGGAAGCTCAACTCGTATCGTCT -ACGGAAGCTCAACTCGTATGCACT -ACGGAAGCTCAACTCGTACTGACT -ACGGAAGCTCAACTCGTACAACCT -ACGGAAGCTCAACTCGTAGCTACT -ACGGAAGCTCAACTCGTAGGATCT -ACGGAAGCTCAACTCGTAAAGGCT -ACGGAAGCTCAACTCGTATCAACC -ACGGAAGCTCAACTCGTATGTTCC -ACGGAAGCTCAACTCGTAATTCCC -ACGGAAGCTCAACTCGTATTCTCG -ACGGAAGCTCAACTCGTATAGACG -ACGGAAGCTCAACTCGTAGTAACG -ACGGAAGCTCAACTCGTAACTTCG -ACGGAAGCTCAACTCGTATACGCA -ACGGAAGCTCAACTCGTACTTGCA -ACGGAAGCTCAACTCGTACGAACA -ACGGAAGCTCAACTCGTACAGTCA -ACGGAAGCTCAACTCGTAGATCCA -ACGGAAGCTCAACTCGTAACGACA -ACGGAAGCTCAACTCGTAAGCTCA -ACGGAAGCTCAACTCGTATCACGT -ACGGAAGCTCAACTCGTACGTAGT -ACGGAAGCTCAACTCGTAGTCAGT -ACGGAAGCTCAACTCGTAGAAGGT -ACGGAAGCTCAACTCGTAAACCGT -ACGGAAGCTCAACTCGTATTGTGC -ACGGAAGCTCAACTCGTACTAAGC -ACGGAAGCTCAACTCGTAACTAGC -ACGGAAGCTCAACTCGTAAGATGC -ACGGAAGCTCAACTCGTATGAAGG -ACGGAAGCTCAACTCGTACAATGG -ACGGAAGCTCAACTCGTAATGAGG -ACGGAAGCTCAACTCGTAAATGGG -ACGGAAGCTCAACTCGTATCCTGA -ACGGAAGCTCAACTCGTATAGCGA -ACGGAAGCTCAACTCGTACACAGA -ACGGAAGCTCAACTCGTAGCAAGA -ACGGAAGCTCAACTCGTAGGTTGA -ACGGAAGCTCAACTCGTATCCGAT -ACGGAAGCTCAACTCGTATGGCAT -ACGGAAGCTCAACTCGTACGAGAT -ACGGAAGCTCAACTCGTATACCAC -ACGGAAGCTCAACTCGTACAGAAC -ACGGAAGCTCAACTCGTAGTCTAC -ACGGAAGCTCAACTCGTAACGTAC -ACGGAAGCTCAACTCGTAAGTGAC -ACGGAAGCTCAACTCGTACTGTAG -ACGGAAGCTCAACTCGTACCTAAG -ACGGAAGCTCAACTCGTAGTTCAG -ACGGAAGCTCAACTCGTAGCATAG -ACGGAAGCTCAACTCGTAGACAAG -ACGGAAGCTCAACTCGTAAAGCAG -ACGGAAGCTCAACTCGTACGTCAA -ACGGAAGCTCAACTCGTAGCTGAA -ACGGAAGCTCAACTCGTAAGTACG -ACGGAAGCTCAACTCGTAATCCGA -ACGGAAGCTCAACTCGTAATGGGA -ACGGAAGCTCAACTCGTAGTGCAA -ACGGAAGCTCAACTCGTAGAGGAA -ACGGAAGCTCAACTCGTACAGGTA -ACGGAAGCTCAACTCGTAGACTCT -ACGGAAGCTCAACTCGTAAGTCCT -ACGGAAGCTCAACTCGTATAAGCC -ACGGAAGCTCAACTCGTAATAGCC -ACGGAAGCTCAACTCGTATAACCG -ACGGAAGCTCAACTCGTAATGCCA -ACGGAAGCTCAAGTCGATGGAAAC -ACGGAAGCTCAAGTCGATAACACC -ACGGAAGCTCAAGTCGATATCGAG -ACGGAAGCTCAAGTCGATCTCCTT -ACGGAAGCTCAAGTCGATCCTGTT -ACGGAAGCTCAAGTCGATCGGTTT -ACGGAAGCTCAAGTCGATGTGGTT -ACGGAAGCTCAAGTCGATGCCTTT -ACGGAAGCTCAAGTCGATGGTCTT -ACGGAAGCTCAAGTCGATACGCTT -ACGGAAGCTCAAGTCGATAGCGTT -ACGGAAGCTCAAGTCGATTTCGTC -ACGGAAGCTCAAGTCGATTCTCTC -ACGGAAGCTCAAGTCGATTGGATC -ACGGAAGCTCAAGTCGATCACTTC -ACGGAAGCTCAAGTCGATGTACTC -ACGGAAGCTCAAGTCGATGATGTC -ACGGAAGCTCAAGTCGATACAGTC -ACGGAAGCTCAAGTCGATTTGCTG -ACGGAAGCTCAAGTCGATTCCATG -ACGGAAGCTCAAGTCGATTGTGTG -ACGGAAGCTCAAGTCGATCTAGTG -ACGGAAGCTCAAGTCGATCATCTG -ACGGAAGCTCAAGTCGATGAGTTG -ACGGAAGCTCAAGTCGATAGACTG -ACGGAAGCTCAAGTCGATTCGGTA -ACGGAAGCTCAAGTCGATTGCCTA -ACGGAAGCTCAAGTCGATCCACTA -ACGGAAGCTCAAGTCGATGGAGTA -ACGGAAGCTCAAGTCGATTCGTCT -ACGGAAGCTCAAGTCGATTGCACT -ACGGAAGCTCAAGTCGATCTGACT -ACGGAAGCTCAAGTCGATCAACCT -ACGGAAGCTCAAGTCGATGCTACT -ACGGAAGCTCAAGTCGATGGATCT -ACGGAAGCTCAAGTCGATAAGGCT -ACGGAAGCTCAAGTCGATTCAACC -ACGGAAGCTCAAGTCGATTGTTCC -ACGGAAGCTCAAGTCGATATTCCC -ACGGAAGCTCAAGTCGATTTCTCG -ACGGAAGCTCAAGTCGATTAGACG -ACGGAAGCTCAAGTCGATGTAACG -ACGGAAGCTCAAGTCGATACTTCG -ACGGAAGCTCAAGTCGATTACGCA -ACGGAAGCTCAAGTCGATCTTGCA -ACGGAAGCTCAAGTCGATCGAACA -ACGGAAGCTCAAGTCGATCAGTCA -ACGGAAGCTCAAGTCGATGATCCA -ACGGAAGCTCAAGTCGATACGACA -ACGGAAGCTCAAGTCGATAGCTCA -ACGGAAGCTCAAGTCGATTCACGT -ACGGAAGCTCAAGTCGATCGTAGT -ACGGAAGCTCAAGTCGATGTCAGT -ACGGAAGCTCAAGTCGATGAAGGT -ACGGAAGCTCAAGTCGATAACCGT -ACGGAAGCTCAAGTCGATTTGTGC -ACGGAAGCTCAAGTCGATCTAAGC -ACGGAAGCTCAAGTCGATACTAGC -ACGGAAGCTCAAGTCGATAGATGC -ACGGAAGCTCAAGTCGATTGAAGG -ACGGAAGCTCAAGTCGATCAATGG -ACGGAAGCTCAAGTCGATATGAGG -ACGGAAGCTCAAGTCGATAATGGG -ACGGAAGCTCAAGTCGATTCCTGA -ACGGAAGCTCAAGTCGATTAGCGA -ACGGAAGCTCAAGTCGATCACAGA -ACGGAAGCTCAAGTCGATGCAAGA -ACGGAAGCTCAAGTCGATGGTTGA -ACGGAAGCTCAAGTCGATTCCGAT -ACGGAAGCTCAAGTCGATTGGCAT -ACGGAAGCTCAAGTCGATCGAGAT -ACGGAAGCTCAAGTCGATTACCAC -ACGGAAGCTCAAGTCGATCAGAAC -ACGGAAGCTCAAGTCGATGTCTAC -ACGGAAGCTCAAGTCGATACGTAC -ACGGAAGCTCAAGTCGATAGTGAC -ACGGAAGCTCAAGTCGATCTGTAG -ACGGAAGCTCAAGTCGATCCTAAG -ACGGAAGCTCAAGTCGATGTTCAG -ACGGAAGCTCAAGTCGATGCATAG -ACGGAAGCTCAAGTCGATGACAAG -ACGGAAGCTCAAGTCGATAAGCAG -ACGGAAGCTCAAGTCGATCGTCAA -ACGGAAGCTCAAGTCGATGCTGAA -ACGGAAGCTCAAGTCGATAGTACG -ACGGAAGCTCAAGTCGATATCCGA -ACGGAAGCTCAAGTCGATATGGGA -ACGGAAGCTCAAGTCGATGTGCAA -ACGGAAGCTCAAGTCGATGAGGAA -ACGGAAGCTCAAGTCGATCAGGTA -ACGGAAGCTCAAGTCGATGACTCT -ACGGAAGCTCAAGTCGATAGTCCT -ACGGAAGCTCAAGTCGATTAAGCC -ACGGAAGCTCAAGTCGATATAGCC -ACGGAAGCTCAAGTCGATTAACCG -ACGGAAGCTCAAGTCGATATGCCA -ACGGAAGCTCAAGTCACAGGAAAC -ACGGAAGCTCAAGTCACAAACACC -ACGGAAGCTCAAGTCACAATCGAG -ACGGAAGCTCAAGTCACACTCCTT -ACGGAAGCTCAAGTCACACCTGTT -ACGGAAGCTCAAGTCACACGGTTT -ACGGAAGCTCAAGTCACAGTGGTT -ACGGAAGCTCAAGTCACAGCCTTT -ACGGAAGCTCAAGTCACAGGTCTT -ACGGAAGCTCAAGTCACAACGCTT -ACGGAAGCTCAAGTCACAAGCGTT -ACGGAAGCTCAAGTCACATTCGTC -ACGGAAGCTCAAGTCACATCTCTC -ACGGAAGCTCAAGTCACATGGATC -ACGGAAGCTCAAGTCACACACTTC -ACGGAAGCTCAAGTCACAGTACTC -ACGGAAGCTCAAGTCACAGATGTC -ACGGAAGCTCAAGTCACAACAGTC -ACGGAAGCTCAAGTCACATTGCTG -ACGGAAGCTCAAGTCACATCCATG -ACGGAAGCTCAAGTCACATGTGTG -ACGGAAGCTCAAGTCACACTAGTG -ACGGAAGCTCAAGTCACACATCTG -ACGGAAGCTCAAGTCACAGAGTTG -ACGGAAGCTCAAGTCACAAGACTG -ACGGAAGCTCAAGTCACATCGGTA -ACGGAAGCTCAAGTCACATGCCTA -ACGGAAGCTCAAGTCACACCACTA -ACGGAAGCTCAAGTCACAGGAGTA -ACGGAAGCTCAAGTCACATCGTCT -ACGGAAGCTCAAGTCACATGCACT -ACGGAAGCTCAAGTCACACTGACT -ACGGAAGCTCAAGTCACACAACCT -ACGGAAGCTCAAGTCACAGCTACT -ACGGAAGCTCAAGTCACAGGATCT -ACGGAAGCTCAAGTCACAAAGGCT -ACGGAAGCTCAAGTCACATCAACC -ACGGAAGCTCAAGTCACATGTTCC -ACGGAAGCTCAAGTCACAATTCCC -ACGGAAGCTCAAGTCACATTCTCG -ACGGAAGCTCAAGTCACATAGACG -ACGGAAGCTCAAGTCACAGTAACG -ACGGAAGCTCAAGTCACAACTTCG -ACGGAAGCTCAAGTCACATACGCA -ACGGAAGCTCAAGTCACACTTGCA -ACGGAAGCTCAAGTCACACGAACA -ACGGAAGCTCAAGTCACACAGTCA -ACGGAAGCTCAAGTCACAGATCCA -ACGGAAGCTCAAGTCACAACGACA -ACGGAAGCTCAAGTCACAAGCTCA -ACGGAAGCTCAAGTCACATCACGT -ACGGAAGCTCAAGTCACACGTAGT -ACGGAAGCTCAAGTCACAGTCAGT -ACGGAAGCTCAAGTCACAGAAGGT -ACGGAAGCTCAAGTCACAAACCGT -ACGGAAGCTCAAGTCACATTGTGC -ACGGAAGCTCAAGTCACACTAAGC -ACGGAAGCTCAAGTCACAACTAGC -ACGGAAGCTCAAGTCACAAGATGC -ACGGAAGCTCAAGTCACATGAAGG -ACGGAAGCTCAAGTCACACAATGG -ACGGAAGCTCAAGTCACAATGAGG -ACGGAAGCTCAAGTCACAAATGGG -ACGGAAGCTCAAGTCACATCCTGA -ACGGAAGCTCAAGTCACATAGCGA -ACGGAAGCTCAAGTCACACACAGA -ACGGAAGCTCAAGTCACAGCAAGA -ACGGAAGCTCAAGTCACAGGTTGA -ACGGAAGCTCAAGTCACATCCGAT -ACGGAAGCTCAAGTCACATGGCAT -ACGGAAGCTCAAGTCACACGAGAT -ACGGAAGCTCAAGTCACATACCAC -ACGGAAGCTCAAGTCACACAGAAC -ACGGAAGCTCAAGTCACAGTCTAC -ACGGAAGCTCAAGTCACAACGTAC -ACGGAAGCTCAAGTCACAAGTGAC -ACGGAAGCTCAAGTCACACTGTAG -ACGGAAGCTCAAGTCACACCTAAG -ACGGAAGCTCAAGTCACAGTTCAG -ACGGAAGCTCAAGTCACAGCATAG -ACGGAAGCTCAAGTCACAGACAAG -ACGGAAGCTCAAGTCACAAAGCAG -ACGGAAGCTCAAGTCACACGTCAA -ACGGAAGCTCAAGTCACAGCTGAA -ACGGAAGCTCAAGTCACAAGTACG -ACGGAAGCTCAAGTCACAATCCGA -ACGGAAGCTCAAGTCACAATGGGA -ACGGAAGCTCAAGTCACAGTGCAA -ACGGAAGCTCAAGTCACAGAGGAA -ACGGAAGCTCAAGTCACACAGGTA -ACGGAAGCTCAAGTCACAGACTCT -ACGGAAGCTCAAGTCACAAGTCCT -ACGGAAGCTCAAGTCACATAAGCC -ACGGAAGCTCAAGTCACAATAGCC -ACGGAAGCTCAAGTCACATAACCG -ACGGAAGCTCAAGTCACAATGCCA -ACGGAAGCTCAACTGTTGGGAAAC -ACGGAAGCTCAACTGTTGAACACC -ACGGAAGCTCAACTGTTGATCGAG -ACGGAAGCTCAACTGTTGCTCCTT -ACGGAAGCTCAACTGTTGCCTGTT -ACGGAAGCTCAACTGTTGCGGTTT -ACGGAAGCTCAACTGTTGGTGGTT -ACGGAAGCTCAACTGTTGGCCTTT -ACGGAAGCTCAACTGTTGGGTCTT -ACGGAAGCTCAACTGTTGACGCTT -ACGGAAGCTCAACTGTTGAGCGTT -ACGGAAGCTCAACTGTTGTTCGTC -ACGGAAGCTCAACTGTTGTCTCTC -ACGGAAGCTCAACTGTTGTGGATC -ACGGAAGCTCAACTGTTGCACTTC -ACGGAAGCTCAACTGTTGGTACTC -ACGGAAGCTCAACTGTTGGATGTC -ACGGAAGCTCAACTGTTGACAGTC -ACGGAAGCTCAACTGTTGTTGCTG -ACGGAAGCTCAACTGTTGTCCATG -ACGGAAGCTCAACTGTTGTGTGTG -ACGGAAGCTCAACTGTTGCTAGTG -ACGGAAGCTCAACTGTTGCATCTG -ACGGAAGCTCAACTGTTGGAGTTG -ACGGAAGCTCAACTGTTGAGACTG -ACGGAAGCTCAACTGTTGTCGGTA -ACGGAAGCTCAACTGTTGTGCCTA -ACGGAAGCTCAACTGTTGCCACTA -ACGGAAGCTCAACTGTTGGGAGTA -ACGGAAGCTCAACTGTTGTCGTCT -ACGGAAGCTCAACTGTTGTGCACT -ACGGAAGCTCAACTGTTGCTGACT -ACGGAAGCTCAACTGTTGCAACCT -ACGGAAGCTCAACTGTTGGCTACT -ACGGAAGCTCAACTGTTGGGATCT -ACGGAAGCTCAACTGTTGAAGGCT -ACGGAAGCTCAACTGTTGTCAACC -ACGGAAGCTCAACTGTTGTGTTCC -ACGGAAGCTCAACTGTTGATTCCC -ACGGAAGCTCAACTGTTGTTCTCG -ACGGAAGCTCAACTGTTGTAGACG -ACGGAAGCTCAACTGTTGGTAACG -ACGGAAGCTCAACTGTTGACTTCG -ACGGAAGCTCAACTGTTGTACGCA -ACGGAAGCTCAACTGTTGCTTGCA -ACGGAAGCTCAACTGTTGCGAACA -ACGGAAGCTCAACTGTTGCAGTCA -ACGGAAGCTCAACTGTTGGATCCA -ACGGAAGCTCAACTGTTGACGACA -ACGGAAGCTCAACTGTTGAGCTCA -ACGGAAGCTCAACTGTTGTCACGT -ACGGAAGCTCAACTGTTGCGTAGT -ACGGAAGCTCAACTGTTGGTCAGT -ACGGAAGCTCAACTGTTGGAAGGT -ACGGAAGCTCAACTGTTGAACCGT -ACGGAAGCTCAACTGTTGTTGTGC -ACGGAAGCTCAACTGTTGCTAAGC -ACGGAAGCTCAACTGTTGACTAGC -ACGGAAGCTCAACTGTTGAGATGC -ACGGAAGCTCAACTGTTGTGAAGG -ACGGAAGCTCAACTGTTGCAATGG -ACGGAAGCTCAACTGTTGATGAGG -ACGGAAGCTCAACTGTTGAATGGG -ACGGAAGCTCAACTGTTGTCCTGA -ACGGAAGCTCAACTGTTGTAGCGA -ACGGAAGCTCAACTGTTGCACAGA -ACGGAAGCTCAACTGTTGGCAAGA -ACGGAAGCTCAACTGTTGGGTTGA -ACGGAAGCTCAACTGTTGTCCGAT -ACGGAAGCTCAACTGTTGTGGCAT -ACGGAAGCTCAACTGTTGCGAGAT -ACGGAAGCTCAACTGTTGTACCAC -ACGGAAGCTCAACTGTTGCAGAAC -ACGGAAGCTCAACTGTTGGTCTAC -ACGGAAGCTCAACTGTTGACGTAC -ACGGAAGCTCAACTGTTGAGTGAC -ACGGAAGCTCAACTGTTGCTGTAG -ACGGAAGCTCAACTGTTGCCTAAG -ACGGAAGCTCAACTGTTGGTTCAG -ACGGAAGCTCAACTGTTGGCATAG -ACGGAAGCTCAACTGTTGGACAAG -ACGGAAGCTCAACTGTTGAAGCAG -ACGGAAGCTCAACTGTTGCGTCAA -ACGGAAGCTCAACTGTTGGCTGAA -ACGGAAGCTCAACTGTTGAGTACG -ACGGAAGCTCAACTGTTGATCCGA -ACGGAAGCTCAACTGTTGATGGGA -ACGGAAGCTCAACTGTTGGTGCAA -ACGGAAGCTCAACTGTTGGAGGAA -ACGGAAGCTCAACTGTTGCAGGTA -ACGGAAGCTCAACTGTTGGACTCT -ACGGAAGCTCAACTGTTGAGTCCT -ACGGAAGCTCAACTGTTGTAAGCC -ACGGAAGCTCAACTGTTGATAGCC -ACGGAAGCTCAACTGTTGTAACCG -ACGGAAGCTCAACTGTTGATGCCA -ACGGAAGCTCAAATGTCCGGAAAC -ACGGAAGCTCAAATGTCCAACACC -ACGGAAGCTCAAATGTCCATCGAG -ACGGAAGCTCAAATGTCCCTCCTT -ACGGAAGCTCAAATGTCCCCTGTT -ACGGAAGCTCAAATGTCCCGGTTT -ACGGAAGCTCAAATGTCCGTGGTT -ACGGAAGCTCAAATGTCCGCCTTT -ACGGAAGCTCAAATGTCCGGTCTT -ACGGAAGCTCAAATGTCCACGCTT -ACGGAAGCTCAAATGTCCAGCGTT -ACGGAAGCTCAAATGTCCTTCGTC -ACGGAAGCTCAAATGTCCTCTCTC -ACGGAAGCTCAAATGTCCTGGATC -ACGGAAGCTCAAATGTCCCACTTC -ACGGAAGCTCAAATGTCCGTACTC -ACGGAAGCTCAAATGTCCGATGTC -ACGGAAGCTCAAATGTCCACAGTC -ACGGAAGCTCAAATGTCCTTGCTG -ACGGAAGCTCAAATGTCCTCCATG -ACGGAAGCTCAAATGTCCTGTGTG -ACGGAAGCTCAAATGTCCCTAGTG -ACGGAAGCTCAAATGTCCCATCTG -ACGGAAGCTCAAATGTCCGAGTTG -ACGGAAGCTCAAATGTCCAGACTG -ACGGAAGCTCAAATGTCCTCGGTA -ACGGAAGCTCAAATGTCCTGCCTA -ACGGAAGCTCAAATGTCCCCACTA -ACGGAAGCTCAAATGTCCGGAGTA -ACGGAAGCTCAAATGTCCTCGTCT -ACGGAAGCTCAAATGTCCTGCACT -ACGGAAGCTCAAATGTCCCTGACT -ACGGAAGCTCAAATGTCCCAACCT -ACGGAAGCTCAAATGTCCGCTACT -ACGGAAGCTCAAATGTCCGGATCT -ACGGAAGCTCAAATGTCCAAGGCT -ACGGAAGCTCAAATGTCCTCAACC -ACGGAAGCTCAAATGTCCTGTTCC -ACGGAAGCTCAAATGTCCATTCCC -ACGGAAGCTCAAATGTCCTTCTCG -ACGGAAGCTCAAATGTCCTAGACG -ACGGAAGCTCAAATGTCCGTAACG -ACGGAAGCTCAAATGTCCACTTCG -ACGGAAGCTCAAATGTCCTACGCA -ACGGAAGCTCAAATGTCCCTTGCA -ACGGAAGCTCAAATGTCCCGAACA -ACGGAAGCTCAAATGTCCCAGTCA -ACGGAAGCTCAAATGTCCGATCCA -ACGGAAGCTCAAATGTCCACGACA -ACGGAAGCTCAAATGTCCAGCTCA -ACGGAAGCTCAAATGTCCTCACGT -ACGGAAGCTCAAATGTCCCGTAGT -ACGGAAGCTCAAATGTCCGTCAGT -ACGGAAGCTCAAATGTCCGAAGGT -ACGGAAGCTCAAATGTCCAACCGT -ACGGAAGCTCAAATGTCCTTGTGC -ACGGAAGCTCAAATGTCCCTAAGC -ACGGAAGCTCAAATGTCCACTAGC -ACGGAAGCTCAAATGTCCAGATGC -ACGGAAGCTCAAATGTCCTGAAGG -ACGGAAGCTCAAATGTCCCAATGG -ACGGAAGCTCAAATGTCCATGAGG -ACGGAAGCTCAAATGTCCAATGGG -ACGGAAGCTCAAATGTCCTCCTGA -ACGGAAGCTCAAATGTCCTAGCGA -ACGGAAGCTCAAATGTCCCACAGA -ACGGAAGCTCAAATGTCCGCAAGA -ACGGAAGCTCAAATGTCCGGTTGA -ACGGAAGCTCAAATGTCCTCCGAT -ACGGAAGCTCAAATGTCCTGGCAT -ACGGAAGCTCAAATGTCCCGAGAT -ACGGAAGCTCAAATGTCCTACCAC -ACGGAAGCTCAAATGTCCCAGAAC -ACGGAAGCTCAAATGTCCGTCTAC -ACGGAAGCTCAAATGTCCACGTAC -ACGGAAGCTCAAATGTCCAGTGAC -ACGGAAGCTCAAATGTCCCTGTAG -ACGGAAGCTCAAATGTCCCCTAAG -ACGGAAGCTCAAATGTCCGTTCAG -ACGGAAGCTCAAATGTCCGCATAG -ACGGAAGCTCAAATGTCCGACAAG -ACGGAAGCTCAAATGTCCAAGCAG -ACGGAAGCTCAAATGTCCCGTCAA -ACGGAAGCTCAAATGTCCGCTGAA -ACGGAAGCTCAAATGTCCAGTACG -ACGGAAGCTCAAATGTCCATCCGA -ACGGAAGCTCAAATGTCCATGGGA -ACGGAAGCTCAAATGTCCGTGCAA -ACGGAAGCTCAAATGTCCGAGGAA -ACGGAAGCTCAAATGTCCCAGGTA -ACGGAAGCTCAAATGTCCGACTCT -ACGGAAGCTCAAATGTCCAGTCCT -ACGGAAGCTCAAATGTCCTAAGCC -ACGGAAGCTCAAATGTCCATAGCC -ACGGAAGCTCAAATGTCCTAACCG -ACGGAAGCTCAAATGTCCATGCCA -ACGGAAGCTCAAGTGTGTGGAAAC -ACGGAAGCTCAAGTGTGTAACACC -ACGGAAGCTCAAGTGTGTATCGAG -ACGGAAGCTCAAGTGTGTCTCCTT -ACGGAAGCTCAAGTGTGTCCTGTT -ACGGAAGCTCAAGTGTGTCGGTTT -ACGGAAGCTCAAGTGTGTGTGGTT -ACGGAAGCTCAAGTGTGTGCCTTT -ACGGAAGCTCAAGTGTGTGGTCTT -ACGGAAGCTCAAGTGTGTACGCTT -ACGGAAGCTCAAGTGTGTAGCGTT -ACGGAAGCTCAAGTGTGTTTCGTC -ACGGAAGCTCAAGTGTGTTCTCTC -ACGGAAGCTCAAGTGTGTTGGATC -ACGGAAGCTCAAGTGTGTCACTTC -ACGGAAGCTCAAGTGTGTGTACTC -ACGGAAGCTCAAGTGTGTGATGTC -ACGGAAGCTCAAGTGTGTACAGTC -ACGGAAGCTCAAGTGTGTTTGCTG -ACGGAAGCTCAAGTGTGTTCCATG -ACGGAAGCTCAAGTGTGTTGTGTG -ACGGAAGCTCAAGTGTGTCTAGTG -ACGGAAGCTCAAGTGTGTCATCTG -ACGGAAGCTCAAGTGTGTGAGTTG -ACGGAAGCTCAAGTGTGTAGACTG -ACGGAAGCTCAAGTGTGTTCGGTA -ACGGAAGCTCAAGTGTGTTGCCTA -ACGGAAGCTCAAGTGTGTCCACTA -ACGGAAGCTCAAGTGTGTGGAGTA -ACGGAAGCTCAAGTGTGTTCGTCT -ACGGAAGCTCAAGTGTGTTGCACT -ACGGAAGCTCAAGTGTGTCTGACT -ACGGAAGCTCAAGTGTGTCAACCT -ACGGAAGCTCAAGTGTGTGCTACT -ACGGAAGCTCAAGTGTGTGGATCT -ACGGAAGCTCAAGTGTGTAAGGCT -ACGGAAGCTCAAGTGTGTTCAACC -ACGGAAGCTCAAGTGTGTTGTTCC -ACGGAAGCTCAAGTGTGTATTCCC -ACGGAAGCTCAAGTGTGTTTCTCG -ACGGAAGCTCAAGTGTGTTAGACG -ACGGAAGCTCAAGTGTGTGTAACG -ACGGAAGCTCAAGTGTGTACTTCG -ACGGAAGCTCAAGTGTGTTACGCA -ACGGAAGCTCAAGTGTGTCTTGCA -ACGGAAGCTCAAGTGTGTCGAACA -ACGGAAGCTCAAGTGTGTCAGTCA -ACGGAAGCTCAAGTGTGTGATCCA -ACGGAAGCTCAAGTGTGTACGACA -ACGGAAGCTCAAGTGTGTAGCTCA -ACGGAAGCTCAAGTGTGTTCACGT -ACGGAAGCTCAAGTGTGTCGTAGT -ACGGAAGCTCAAGTGTGTGTCAGT -ACGGAAGCTCAAGTGTGTGAAGGT -ACGGAAGCTCAAGTGTGTAACCGT -ACGGAAGCTCAAGTGTGTTTGTGC -ACGGAAGCTCAAGTGTGTCTAAGC -ACGGAAGCTCAAGTGTGTACTAGC -ACGGAAGCTCAAGTGTGTAGATGC -ACGGAAGCTCAAGTGTGTTGAAGG -ACGGAAGCTCAAGTGTGTCAATGG -ACGGAAGCTCAAGTGTGTATGAGG -ACGGAAGCTCAAGTGTGTAATGGG -ACGGAAGCTCAAGTGTGTTCCTGA -ACGGAAGCTCAAGTGTGTTAGCGA -ACGGAAGCTCAAGTGTGTCACAGA -ACGGAAGCTCAAGTGTGTGCAAGA -ACGGAAGCTCAAGTGTGTGGTTGA -ACGGAAGCTCAAGTGTGTTCCGAT -ACGGAAGCTCAAGTGTGTTGGCAT -ACGGAAGCTCAAGTGTGTCGAGAT -ACGGAAGCTCAAGTGTGTTACCAC -ACGGAAGCTCAAGTGTGTCAGAAC -ACGGAAGCTCAAGTGTGTGTCTAC -ACGGAAGCTCAAGTGTGTACGTAC -ACGGAAGCTCAAGTGTGTAGTGAC -ACGGAAGCTCAAGTGTGTCTGTAG -ACGGAAGCTCAAGTGTGTCCTAAG -ACGGAAGCTCAAGTGTGTGTTCAG -ACGGAAGCTCAAGTGTGTGCATAG -ACGGAAGCTCAAGTGTGTGACAAG -ACGGAAGCTCAAGTGTGTAAGCAG -ACGGAAGCTCAAGTGTGTCGTCAA -ACGGAAGCTCAAGTGTGTGCTGAA -ACGGAAGCTCAAGTGTGTAGTACG -ACGGAAGCTCAAGTGTGTATCCGA -ACGGAAGCTCAAGTGTGTATGGGA -ACGGAAGCTCAAGTGTGTGTGCAA -ACGGAAGCTCAAGTGTGTGAGGAA -ACGGAAGCTCAAGTGTGTCAGGTA -ACGGAAGCTCAAGTGTGTGACTCT -ACGGAAGCTCAAGTGTGTAGTCCT -ACGGAAGCTCAAGTGTGTTAAGCC -ACGGAAGCTCAAGTGTGTATAGCC -ACGGAAGCTCAAGTGTGTTAACCG -ACGGAAGCTCAAGTGTGTATGCCA -ACGGAAGCTCAAGTGCTAGGAAAC -ACGGAAGCTCAAGTGCTAAACACC -ACGGAAGCTCAAGTGCTAATCGAG -ACGGAAGCTCAAGTGCTACTCCTT -ACGGAAGCTCAAGTGCTACCTGTT -ACGGAAGCTCAAGTGCTACGGTTT -ACGGAAGCTCAAGTGCTAGTGGTT -ACGGAAGCTCAAGTGCTAGCCTTT -ACGGAAGCTCAAGTGCTAGGTCTT -ACGGAAGCTCAAGTGCTAACGCTT -ACGGAAGCTCAAGTGCTAAGCGTT -ACGGAAGCTCAAGTGCTATTCGTC -ACGGAAGCTCAAGTGCTATCTCTC -ACGGAAGCTCAAGTGCTATGGATC -ACGGAAGCTCAAGTGCTACACTTC -ACGGAAGCTCAAGTGCTAGTACTC -ACGGAAGCTCAAGTGCTAGATGTC -ACGGAAGCTCAAGTGCTAACAGTC -ACGGAAGCTCAAGTGCTATTGCTG -ACGGAAGCTCAAGTGCTATCCATG -ACGGAAGCTCAAGTGCTATGTGTG -ACGGAAGCTCAAGTGCTACTAGTG -ACGGAAGCTCAAGTGCTACATCTG -ACGGAAGCTCAAGTGCTAGAGTTG -ACGGAAGCTCAAGTGCTAAGACTG -ACGGAAGCTCAAGTGCTATCGGTA -ACGGAAGCTCAAGTGCTATGCCTA -ACGGAAGCTCAAGTGCTACCACTA -ACGGAAGCTCAAGTGCTAGGAGTA -ACGGAAGCTCAAGTGCTATCGTCT -ACGGAAGCTCAAGTGCTATGCACT -ACGGAAGCTCAAGTGCTACTGACT -ACGGAAGCTCAAGTGCTACAACCT -ACGGAAGCTCAAGTGCTAGCTACT -ACGGAAGCTCAAGTGCTAGGATCT -ACGGAAGCTCAAGTGCTAAAGGCT -ACGGAAGCTCAAGTGCTATCAACC -ACGGAAGCTCAAGTGCTATGTTCC -ACGGAAGCTCAAGTGCTAATTCCC -ACGGAAGCTCAAGTGCTATTCTCG -ACGGAAGCTCAAGTGCTATAGACG -ACGGAAGCTCAAGTGCTAGTAACG -ACGGAAGCTCAAGTGCTAACTTCG -ACGGAAGCTCAAGTGCTATACGCA -ACGGAAGCTCAAGTGCTACTTGCA -ACGGAAGCTCAAGTGCTACGAACA -ACGGAAGCTCAAGTGCTACAGTCA -ACGGAAGCTCAAGTGCTAGATCCA -ACGGAAGCTCAAGTGCTAACGACA -ACGGAAGCTCAAGTGCTAAGCTCA -ACGGAAGCTCAAGTGCTATCACGT -ACGGAAGCTCAAGTGCTACGTAGT -ACGGAAGCTCAAGTGCTAGTCAGT -ACGGAAGCTCAAGTGCTAGAAGGT -ACGGAAGCTCAAGTGCTAAACCGT -ACGGAAGCTCAAGTGCTATTGTGC -ACGGAAGCTCAAGTGCTACTAAGC -ACGGAAGCTCAAGTGCTAACTAGC -ACGGAAGCTCAAGTGCTAAGATGC -ACGGAAGCTCAAGTGCTATGAAGG -ACGGAAGCTCAAGTGCTACAATGG -ACGGAAGCTCAAGTGCTAATGAGG -ACGGAAGCTCAAGTGCTAAATGGG -ACGGAAGCTCAAGTGCTATCCTGA -ACGGAAGCTCAAGTGCTATAGCGA -ACGGAAGCTCAAGTGCTACACAGA -ACGGAAGCTCAAGTGCTAGCAAGA -ACGGAAGCTCAAGTGCTAGGTTGA -ACGGAAGCTCAAGTGCTATCCGAT -ACGGAAGCTCAAGTGCTATGGCAT -ACGGAAGCTCAAGTGCTACGAGAT -ACGGAAGCTCAAGTGCTATACCAC -ACGGAAGCTCAAGTGCTACAGAAC -ACGGAAGCTCAAGTGCTAGTCTAC -ACGGAAGCTCAAGTGCTAACGTAC -ACGGAAGCTCAAGTGCTAAGTGAC -ACGGAAGCTCAAGTGCTACTGTAG -ACGGAAGCTCAAGTGCTACCTAAG -ACGGAAGCTCAAGTGCTAGTTCAG -ACGGAAGCTCAAGTGCTAGCATAG -ACGGAAGCTCAAGTGCTAGACAAG -ACGGAAGCTCAAGTGCTAAAGCAG -ACGGAAGCTCAAGTGCTACGTCAA -ACGGAAGCTCAAGTGCTAGCTGAA -ACGGAAGCTCAAGTGCTAAGTACG -ACGGAAGCTCAAGTGCTAATCCGA -ACGGAAGCTCAAGTGCTAATGGGA -ACGGAAGCTCAAGTGCTAGTGCAA -ACGGAAGCTCAAGTGCTAGAGGAA -ACGGAAGCTCAAGTGCTACAGGTA -ACGGAAGCTCAAGTGCTAGACTCT -ACGGAAGCTCAAGTGCTAAGTCCT -ACGGAAGCTCAAGTGCTATAAGCC -ACGGAAGCTCAAGTGCTAATAGCC -ACGGAAGCTCAAGTGCTATAACCG -ACGGAAGCTCAAGTGCTAATGCCA -ACGGAAGCTCAACTGCATGGAAAC -ACGGAAGCTCAACTGCATAACACC -ACGGAAGCTCAACTGCATATCGAG -ACGGAAGCTCAACTGCATCTCCTT -ACGGAAGCTCAACTGCATCCTGTT -ACGGAAGCTCAACTGCATCGGTTT -ACGGAAGCTCAACTGCATGTGGTT -ACGGAAGCTCAACTGCATGCCTTT -ACGGAAGCTCAACTGCATGGTCTT -ACGGAAGCTCAACTGCATACGCTT -ACGGAAGCTCAACTGCATAGCGTT -ACGGAAGCTCAACTGCATTTCGTC -ACGGAAGCTCAACTGCATTCTCTC -ACGGAAGCTCAACTGCATTGGATC -ACGGAAGCTCAACTGCATCACTTC -ACGGAAGCTCAACTGCATGTACTC -ACGGAAGCTCAACTGCATGATGTC -ACGGAAGCTCAACTGCATACAGTC -ACGGAAGCTCAACTGCATTTGCTG -ACGGAAGCTCAACTGCATTCCATG -ACGGAAGCTCAACTGCATTGTGTG -ACGGAAGCTCAACTGCATCTAGTG -ACGGAAGCTCAACTGCATCATCTG -ACGGAAGCTCAACTGCATGAGTTG -ACGGAAGCTCAACTGCATAGACTG -ACGGAAGCTCAACTGCATTCGGTA -ACGGAAGCTCAACTGCATTGCCTA -ACGGAAGCTCAACTGCATCCACTA -ACGGAAGCTCAACTGCATGGAGTA -ACGGAAGCTCAACTGCATTCGTCT -ACGGAAGCTCAACTGCATTGCACT -ACGGAAGCTCAACTGCATCTGACT -ACGGAAGCTCAACTGCATCAACCT -ACGGAAGCTCAACTGCATGCTACT -ACGGAAGCTCAACTGCATGGATCT -ACGGAAGCTCAACTGCATAAGGCT -ACGGAAGCTCAACTGCATTCAACC -ACGGAAGCTCAACTGCATTGTTCC -ACGGAAGCTCAACTGCATATTCCC -ACGGAAGCTCAACTGCATTTCTCG -ACGGAAGCTCAACTGCATTAGACG -ACGGAAGCTCAACTGCATGTAACG -ACGGAAGCTCAACTGCATACTTCG -ACGGAAGCTCAACTGCATTACGCA -ACGGAAGCTCAACTGCATCTTGCA -ACGGAAGCTCAACTGCATCGAACA -ACGGAAGCTCAACTGCATCAGTCA -ACGGAAGCTCAACTGCATGATCCA -ACGGAAGCTCAACTGCATACGACA -ACGGAAGCTCAACTGCATAGCTCA -ACGGAAGCTCAACTGCATTCACGT -ACGGAAGCTCAACTGCATCGTAGT -ACGGAAGCTCAACTGCATGTCAGT -ACGGAAGCTCAACTGCATGAAGGT -ACGGAAGCTCAACTGCATAACCGT -ACGGAAGCTCAACTGCATTTGTGC -ACGGAAGCTCAACTGCATCTAAGC -ACGGAAGCTCAACTGCATACTAGC -ACGGAAGCTCAACTGCATAGATGC -ACGGAAGCTCAACTGCATTGAAGG -ACGGAAGCTCAACTGCATCAATGG -ACGGAAGCTCAACTGCATATGAGG -ACGGAAGCTCAACTGCATAATGGG -ACGGAAGCTCAACTGCATTCCTGA -ACGGAAGCTCAACTGCATTAGCGA -ACGGAAGCTCAACTGCATCACAGA -ACGGAAGCTCAACTGCATGCAAGA -ACGGAAGCTCAACTGCATGGTTGA -ACGGAAGCTCAACTGCATTCCGAT -ACGGAAGCTCAACTGCATTGGCAT -ACGGAAGCTCAACTGCATCGAGAT -ACGGAAGCTCAACTGCATTACCAC -ACGGAAGCTCAACTGCATCAGAAC -ACGGAAGCTCAACTGCATGTCTAC -ACGGAAGCTCAACTGCATACGTAC -ACGGAAGCTCAACTGCATAGTGAC -ACGGAAGCTCAACTGCATCTGTAG -ACGGAAGCTCAACTGCATCCTAAG -ACGGAAGCTCAACTGCATGTTCAG -ACGGAAGCTCAACTGCATGCATAG -ACGGAAGCTCAACTGCATGACAAG -ACGGAAGCTCAACTGCATAAGCAG -ACGGAAGCTCAACTGCATCGTCAA -ACGGAAGCTCAACTGCATGCTGAA -ACGGAAGCTCAACTGCATAGTACG -ACGGAAGCTCAACTGCATATCCGA -ACGGAAGCTCAACTGCATATGGGA -ACGGAAGCTCAACTGCATGTGCAA -ACGGAAGCTCAACTGCATGAGGAA -ACGGAAGCTCAACTGCATCAGGTA -ACGGAAGCTCAACTGCATGACTCT -ACGGAAGCTCAACTGCATAGTCCT -ACGGAAGCTCAACTGCATTAAGCC -ACGGAAGCTCAACTGCATATAGCC -ACGGAAGCTCAACTGCATTAACCG -ACGGAAGCTCAACTGCATATGCCA -ACGGAAGCTCAATTGGAGGGAAAC -ACGGAAGCTCAATTGGAGAACACC -ACGGAAGCTCAATTGGAGATCGAG -ACGGAAGCTCAATTGGAGCTCCTT -ACGGAAGCTCAATTGGAGCCTGTT -ACGGAAGCTCAATTGGAGCGGTTT -ACGGAAGCTCAATTGGAGGTGGTT -ACGGAAGCTCAATTGGAGGCCTTT -ACGGAAGCTCAATTGGAGGGTCTT -ACGGAAGCTCAATTGGAGACGCTT -ACGGAAGCTCAATTGGAGAGCGTT -ACGGAAGCTCAATTGGAGTTCGTC -ACGGAAGCTCAATTGGAGTCTCTC -ACGGAAGCTCAATTGGAGTGGATC -ACGGAAGCTCAATTGGAGCACTTC -ACGGAAGCTCAATTGGAGGTACTC -ACGGAAGCTCAATTGGAGGATGTC -ACGGAAGCTCAATTGGAGACAGTC -ACGGAAGCTCAATTGGAGTTGCTG -ACGGAAGCTCAATTGGAGTCCATG -ACGGAAGCTCAATTGGAGTGTGTG -ACGGAAGCTCAATTGGAGCTAGTG -ACGGAAGCTCAATTGGAGCATCTG -ACGGAAGCTCAATTGGAGGAGTTG -ACGGAAGCTCAATTGGAGAGACTG -ACGGAAGCTCAATTGGAGTCGGTA -ACGGAAGCTCAATTGGAGTGCCTA -ACGGAAGCTCAATTGGAGCCACTA -ACGGAAGCTCAATTGGAGGGAGTA -ACGGAAGCTCAATTGGAGTCGTCT -ACGGAAGCTCAATTGGAGTGCACT -ACGGAAGCTCAATTGGAGCTGACT -ACGGAAGCTCAATTGGAGCAACCT -ACGGAAGCTCAATTGGAGGCTACT -ACGGAAGCTCAATTGGAGGGATCT -ACGGAAGCTCAATTGGAGAAGGCT -ACGGAAGCTCAATTGGAGTCAACC -ACGGAAGCTCAATTGGAGTGTTCC -ACGGAAGCTCAATTGGAGATTCCC -ACGGAAGCTCAATTGGAGTTCTCG -ACGGAAGCTCAATTGGAGTAGACG -ACGGAAGCTCAATTGGAGGTAACG -ACGGAAGCTCAATTGGAGACTTCG -ACGGAAGCTCAATTGGAGTACGCA -ACGGAAGCTCAATTGGAGCTTGCA -ACGGAAGCTCAATTGGAGCGAACA -ACGGAAGCTCAATTGGAGCAGTCA -ACGGAAGCTCAATTGGAGGATCCA -ACGGAAGCTCAATTGGAGACGACA -ACGGAAGCTCAATTGGAGAGCTCA -ACGGAAGCTCAATTGGAGTCACGT -ACGGAAGCTCAATTGGAGCGTAGT -ACGGAAGCTCAATTGGAGGTCAGT -ACGGAAGCTCAATTGGAGGAAGGT -ACGGAAGCTCAATTGGAGAACCGT -ACGGAAGCTCAATTGGAGTTGTGC -ACGGAAGCTCAATTGGAGCTAAGC -ACGGAAGCTCAATTGGAGACTAGC -ACGGAAGCTCAATTGGAGAGATGC -ACGGAAGCTCAATTGGAGTGAAGG -ACGGAAGCTCAATTGGAGCAATGG -ACGGAAGCTCAATTGGAGATGAGG -ACGGAAGCTCAATTGGAGAATGGG -ACGGAAGCTCAATTGGAGTCCTGA -ACGGAAGCTCAATTGGAGTAGCGA -ACGGAAGCTCAATTGGAGCACAGA -ACGGAAGCTCAATTGGAGGCAAGA -ACGGAAGCTCAATTGGAGGGTTGA -ACGGAAGCTCAATTGGAGTCCGAT -ACGGAAGCTCAATTGGAGTGGCAT -ACGGAAGCTCAATTGGAGCGAGAT -ACGGAAGCTCAATTGGAGTACCAC -ACGGAAGCTCAATTGGAGCAGAAC -ACGGAAGCTCAATTGGAGGTCTAC -ACGGAAGCTCAATTGGAGACGTAC -ACGGAAGCTCAATTGGAGAGTGAC -ACGGAAGCTCAATTGGAGCTGTAG -ACGGAAGCTCAATTGGAGCCTAAG -ACGGAAGCTCAATTGGAGGTTCAG -ACGGAAGCTCAATTGGAGGCATAG -ACGGAAGCTCAATTGGAGGACAAG -ACGGAAGCTCAATTGGAGAAGCAG -ACGGAAGCTCAATTGGAGCGTCAA -ACGGAAGCTCAATTGGAGGCTGAA -ACGGAAGCTCAATTGGAGAGTACG -ACGGAAGCTCAATTGGAGATCCGA -ACGGAAGCTCAATTGGAGATGGGA -ACGGAAGCTCAATTGGAGGTGCAA -ACGGAAGCTCAATTGGAGGAGGAA -ACGGAAGCTCAATTGGAGCAGGTA -ACGGAAGCTCAATTGGAGGACTCT -ACGGAAGCTCAATTGGAGAGTCCT -ACGGAAGCTCAATTGGAGTAAGCC -ACGGAAGCTCAATTGGAGATAGCC -ACGGAAGCTCAATTGGAGTAACCG -ACGGAAGCTCAATTGGAGATGCCA -ACGGAAGCTCAACTGAGAGGAAAC -ACGGAAGCTCAACTGAGAAACACC -ACGGAAGCTCAACTGAGAATCGAG -ACGGAAGCTCAACTGAGACTCCTT -ACGGAAGCTCAACTGAGACCTGTT -ACGGAAGCTCAACTGAGACGGTTT -ACGGAAGCTCAACTGAGAGTGGTT -ACGGAAGCTCAACTGAGAGCCTTT -ACGGAAGCTCAACTGAGAGGTCTT -ACGGAAGCTCAACTGAGAACGCTT -ACGGAAGCTCAACTGAGAAGCGTT -ACGGAAGCTCAACTGAGATTCGTC -ACGGAAGCTCAACTGAGATCTCTC -ACGGAAGCTCAACTGAGATGGATC -ACGGAAGCTCAACTGAGACACTTC -ACGGAAGCTCAACTGAGAGTACTC -ACGGAAGCTCAACTGAGAGATGTC -ACGGAAGCTCAACTGAGAACAGTC -ACGGAAGCTCAACTGAGATTGCTG -ACGGAAGCTCAACTGAGATCCATG -ACGGAAGCTCAACTGAGATGTGTG -ACGGAAGCTCAACTGAGACTAGTG -ACGGAAGCTCAACTGAGACATCTG -ACGGAAGCTCAACTGAGAGAGTTG -ACGGAAGCTCAACTGAGAAGACTG -ACGGAAGCTCAACTGAGATCGGTA -ACGGAAGCTCAACTGAGATGCCTA -ACGGAAGCTCAACTGAGACCACTA -ACGGAAGCTCAACTGAGAGGAGTA -ACGGAAGCTCAACTGAGATCGTCT -ACGGAAGCTCAACTGAGATGCACT -ACGGAAGCTCAACTGAGACTGACT -ACGGAAGCTCAACTGAGACAACCT -ACGGAAGCTCAACTGAGAGCTACT -ACGGAAGCTCAACTGAGAGGATCT -ACGGAAGCTCAACTGAGAAAGGCT -ACGGAAGCTCAACTGAGATCAACC -ACGGAAGCTCAACTGAGATGTTCC -ACGGAAGCTCAACTGAGAATTCCC -ACGGAAGCTCAACTGAGATTCTCG -ACGGAAGCTCAACTGAGATAGACG -ACGGAAGCTCAACTGAGAGTAACG -ACGGAAGCTCAACTGAGAACTTCG -ACGGAAGCTCAACTGAGATACGCA -ACGGAAGCTCAACTGAGACTTGCA -ACGGAAGCTCAACTGAGACGAACA -ACGGAAGCTCAACTGAGACAGTCA -ACGGAAGCTCAACTGAGAGATCCA -ACGGAAGCTCAACTGAGAACGACA -ACGGAAGCTCAACTGAGAAGCTCA -ACGGAAGCTCAACTGAGATCACGT -ACGGAAGCTCAACTGAGACGTAGT -ACGGAAGCTCAACTGAGAGTCAGT -ACGGAAGCTCAACTGAGAGAAGGT -ACGGAAGCTCAACTGAGAAACCGT -ACGGAAGCTCAACTGAGATTGTGC -ACGGAAGCTCAACTGAGACTAAGC -ACGGAAGCTCAACTGAGAACTAGC -ACGGAAGCTCAACTGAGAAGATGC -ACGGAAGCTCAACTGAGATGAAGG -ACGGAAGCTCAACTGAGACAATGG -ACGGAAGCTCAACTGAGAATGAGG -ACGGAAGCTCAACTGAGAAATGGG -ACGGAAGCTCAACTGAGATCCTGA -ACGGAAGCTCAACTGAGATAGCGA -ACGGAAGCTCAACTGAGACACAGA -ACGGAAGCTCAACTGAGAGCAAGA -ACGGAAGCTCAACTGAGAGGTTGA -ACGGAAGCTCAACTGAGATCCGAT -ACGGAAGCTCAACTGAGATGGCAT -ACGGAAGCTCAACTGAGACGAGAT -ACGGAAGCTCAACTGAGATACCAC -ACGGAAGCTCAACTGAGACAGAAC -ACGGAAGCTCAACTGAGAGTCTAC -ACGGAAGCTCAACTGAGAACGTAC -ACGGAAGCTCAACTGAGAAGTGAC -ACGGAAGCTCAACTGAGACTGTAG -ACGGAAGCTCAACTGAGACCTAAG -ACGGAAGCTCAACTGAGAGTTCAG -ACGGAAGCTCAACTGAGAGCATAG -ACGGAAGCTCAACTGAGAGACAAG -ACGGAAGCTCAACTGAGAAAGCAG -ACGGAAGCTCAACTGAGACGTCAA -ACGGAAGCTCAACTGAGAGCTGAA -ACGGAAGCTCAACTGAGAAGTACG -ACGGAAGCTCAACTGAGAATCCGA -ACGGAAGCTCAACTGAGAATGGGA -ACGGAAGCTCAACTGAGAGTGCAA -ACGGAAGCTCAACTGAGAGAGGAA -ACGGAAGCTCAACTGAGACAGGTA -ACGGAAGCTCAACTGAGAGACTCT -ACGGAAGCTCAACTGAGAAGTCCT -ACGGAAGCTCAACTGAGATAAGCC -ACGGAAGCTCAACTGAGAATAGCC -ACGGAAGCTCAACTGAGATAACCG -ACGGAAGCTCAACTGAGAATGCCA -ACGGAAGCTCAAGTATCGGGAAAC -ACGGAAGCTCAAGTATCGAACACC -ACGGAAGCTCAAGTATCGATCGAG -ACGGAAGCTCAAGTATCGCTCCTT -ACGGAAGCTCAAGTATCGCCTGTT -ACGGAAGCTCAAGTATCGCGGTTT -ACGGAAGCTCAAGTATCGGTGGTT -ACGGAAGCTCAAGTATCGGCCTTT -ACGGAAGCTCAAGTATCGGGTCTT -ACGGAAGCTCAAGTATCGACGCTT -ACGGAAGCTCAAGTATCGAGCGTT -ACGGAAGCTCAAGTATCGTTCGTC -ACGGAAGCTCAAGTATCGTCTCTC -ACGGAAGCTCAAGTATCGTGGATC -ACGGAAGCTCAAGTATCGCACTTC -ACGGAAGCTCAAGTATCGGTACTC -ACGGAAGCTCAAGTATCGGATGTC -ACGGAAGCTCAAGTATCGACAGTC -ACGGAAGCTCAAGTATCGTTGCTG -ACGGAAGCTCAAGTATCGTCCATG -ACGGAAGCTCAAGTATCGTGTGTG -ACGGAAGCTCAAGTATCGCTAGTG -ACGGAAGCTCAAGTATCGCATCTG -ACGGAAGCTCAAGTATCGGAGTTG -ACGGAAGCTCAAGTATCGAGACTG -ACGGAAGCTCAAGTATCGTCGGTA -ACGGAAGCTCAAGTATCGTGCCTA -ACGGAAGCTCAAGTATCGCCACTA -ACGGAAGCTCAAGTATCGGGAGTA -ACGGAAGCTCAAGTATCGTCGTCT -ACGGAAGCTCAAGTATCGTGCACT -ACGGAAGCTCAAGTATCGCTGACT -ACGGAAGCTCAAGTATCGCAACCT -ACGGAAGCTCAAGTATCGGCTACT -ACGGAAGCTCAAGTATCGGGATCT -ACGGAAGCTCAAGTATCGAAGGCT -ACGGAAGCTCAAGTATCGTCAACC -ACGGAAGCTCAAGTATCGTGTTCC -ACGGAAGCTCAAGTATCGATTCCC -ACGGAAGCTCAAGTATCGTTCTCG -ACGGAAGCTCAAGTATCGTAGACG -ACGGAAGCTCAAGTATCGGTAACG -ACGGAAGCTCAAGTATCGACTTCG -ACGGAAGCTCAAGTATCGTACGCA -ACGGAAGCTCAAGTATCGCTTGCA -ACGGAAGCTCAAGTATCGCGAACA -ACGGAAGCTCAAGTATCGCAGTCA -ACGGAAGCTCAAGTATCGGATCCA -ACGGAAGCTCAAGTATCGACGACA -ACGGAAGCTCAAGTATCGAGCTCA -ACGGAAGCTCAAGTATCGTCACGT -ACGGAAGCTCAAGTATCGCGTAGT -ACGGAAGCTCAAGTATCGGTCAGT -ACGGAAGCTCAAGTATCGGAAGGT -ACGGAAGCTCAAGTATCGAACCGT -ACGGAAGCTCAAGTATCGTTGTGC -ACGGAAGCTCAAGTATCGCTAAGC -ACGGAAGCTCAAGTATCGACTAGC -ACGGAAGCTCAAGTATCGAGATGC -ACGGAAGCTCAAGTATCGTGAAGG -ACGGAAGCTCAAGTATCGCAATGG -ACGGAAGCTCAAGTATCGATGAGG -ACGGAAGCTCAAGTATCGAATGGG -ACGGAAGCTCAAGTATCGTCCTGA -ACGGAAGCTCAAGTATCGTAGCGA -ACGGAAGCTCAAGTATCGCACAGA -ACGGAAGCTCAAGTATCGGCAAGA -ACGGAAGCTCAAGTATCGGGTTGA -ACGGAAGCTCAAGTATCGTCCGAT -ACGGAAGCTCAAGTATCGTGGCAT -ACGGAAGCTCAAGTATCGCGAGAT -ACGGAAGCTCAAGTATCGTACCAC -ACGGAAGCTCAAGTATCGCAGAAC -ACGGAAGCTCAAGTATCGGTCTAC -ACGGAAGCTCAAGTATCGACGTAC -ACGGAAGCTCAAGTATCGAGTGAC -ACGGAAGCTCAAGTATCGCTGTAG -ACGGAAGCTCAAGTATCGCCTAAG -ACGGAAGCTCAAGTATCGGTTCAG -ACGGAAGCTCAAGTATCGGCATAG -ACGGAAGCTCAAGTATCGGACAAG -ACGGAAGCTCAAGTATCGAAGCAG -ACGGAAGCTCAAGTATCGCGTCAA -ACGGAAGCTCAAGTATCGGCTGAA -ACGGAAGCTCAAGTATCGAGTACG -ACGGAAGCTCAAGTATCGATCCGA -ACGGAAGCTCAAGTATCGATGGGA -ACGGAAGCTCAAGTATCGGTGCAA -ACGGAAGCTCAAGTATCGGAGGAA -ACGGAAGCTCAAGTATCGCAGGTA -ACGGAAGCTCAAGTATCGGACTCT -ACGGAAGCTCAAGTATCGAGTCCT -ACGGAAGCTCAAGTATCGTAAGCC -ACGGAAGCTCAAGTATCGATAGCC -ACGGAAGCTCAAGTATCGTAACCG -ACGGAAGCTCAAGTATCGATGCCA -ACGGAAGCTCAACTATGCGGAAAC -ACGGAAGCTCAACTATGCAACACC -ACGGAAGCTCAACTATGCATCGAG -ACGGAAGCTCAACTATGCCTCCTT -ACGGAAGCTCAACTATGCCCTGTT -ACGGAAGCTCAACTATGCCGGTTT -ACGGAAGCTCAACTATGCGTGGTT -ACGGAAGCTCAACTATGCGCCTTT -ACGGAAGCTCAACTATGCGGTCTT -ACGGAAGCTCAACTATGCACGCTT -ACGGAAGCTCAACTATGCAGCGTT -ACGGAAGCTCAACTATGCTTCGTC -ACGGAAGCTCAACTATGCTCTCTC -ACGGAAGCTCAACTATGCTGGATC -ACGGAAGCTCAACTATGCCACTTC -ACGGAAGCTCAACTATGCGTACTC -ACGGAAGCTCAACTATGCGATGTC -ACGGAAGCTCAACTATGCACAGTC -ACGGAAGCTCAACTATGCTTGCTG -ACGGAAGCTCAACTATGCTCCATG -ACGGAAGCTCAACTATGCTGTGTG -ACGGAAGCTCAACTATGCCTAGTG -ACGGAAGCTCAACTATGCCATCTG -ACGGAAGCTCAACTATGCGAGTTG -ACGGAAGCTCAACTATGCAGACTG -ACGGAAGCTCAACTATGCTCGGTA -ACGGAAGCTCAACTATGCTGCCTA -ACGGAAGCTCAACTATGCCCACTA -ACGGAAGCTCAACTATGCGGAGTA -ACGGAAGCTCAACTATGCTCGTCT -ACGGAAGCTCAACTATGCTGCACT -ACGGAAGCTCAACTATGCCTGACT -ACGGAAGCTCAACTATGCCAACCT -ACGGAAGCTCAACTATGCGCTACT -ACGGAAGCTCAACTATGCGGATCT -ACGGAAGCTCAACTATGCAAGGCT -ACGGAAGCTCAACTATGCTCAACC -ACGGAAGCTCAACTATGCTGTTCC -ACGGAAGCTCAACTATGCATTCCC -ACGGAAGCTCAACTATGCTTCTCG -ACGGAAGCTCAACTATGCTAGACG -ACGGAAGCTCAACTATGCGTAACG -ACGGAAGCTCAACTATGCACTTCG -ACGGAAGCTCAACTATGCTACGCA -ACGGAAGCTCAACTATGCCTTGCA -ACGGAAGCTCAACTATGCCGAACA -ACGGAAGCTCAACTATGCCAGTCA -ACGGAAGCTCAACTATGCGATCCA -ACGGAAGCTCAACTATGCACGACA -ACGGAAGCTCAACTATGCAGCTCA -ACGGAAGCTCAACTATGCTCACGT -ACGGAAGCTCAACTATGCCGTAGT -ACGGAAGCTCAACTATGCGTCAGT -ACGGAAGCTCAACTATGCGAAGGT -ACGGAAGCTCAACTATGCAACCGT -ACGGAAGCTCAACTATGCTTGTGC -ACGGAAGCTCAACTATGCCTAAGC -ACGGAAGCTCAACTATGCACTAGC -ACGGAAGCTCAACTATGCAGATGC -ACGGAAGCTCAACTATGCTGAAGG -ACGGAAGCTCAACTATGCCAATGG -ACGGAAGCTCAACTATGCATGAGG -ACGGAAGCTCAACTATGCAATGGG -ACGGAAGCTCAACTATGCTCCTGA -ACGGAAGCTCAACTATGCTAGCGA -ACGGAAGCTCAACTATGCCACAGA -ACGGAAGCTCAACTATGCGCAAGA -ACGGAAGCTCAACTATGCGGTTGA -ACGGAAGCTCAACTATGCTCCGAT -ACGGAAGCTCAACTATGCTGGCAT -ACGGAAGCTCAACTATGCCGAGAT -ACGGAAGCTCAACTATGCTACCAC -ACGGAAGCTCAACTATGCCAGAAC -ACGGAAGCTCAACTATGCGTCTAC -ACGGAAGCTCAACTATGCACGTAC -ACGGAAGCTCAACTATGCAGTGAC -ACGGAAGCTCAACTATGCCTGTAG -ACGGAAGCTCAACTATGCCCTAAG -ACGGAAGCTCAACTATGCGTTCAG -ACGGAAGCTCAACTATGCGCATAG -ACGGAAGCTCAACTATGCGACAAG -ACGGAAGCTCAACTATGCAAGCAG -ACGGAAGCTCAACTATGCCGTCAA -ACGGAAGCTCAACTATGCGCTGAA -ACGGAAGCTCAACTATGCAGTACG -ACGGAAGCTCAACTATGCATCCGA -ACGGAAGCTCAACTATGCATGGGA -ACGGAAGCTCAACTATGCGTGCAA -ACGGAAGCTCAACTATGCGAGGAA -ACGGAAGCTCAACTATGCCAGGTA -ACGGAAGCTCAACTATGCGACTCT -ACGGAAGCTCAACTATGCAGTCCT -ACGGAAGCTCAACTATGCTAAGCC -ACGGAAGCTCAACTATGCATAGCC -ACGGAAGCTCAACTATGCTAACCG -ACGGAAGCTCAACTATGCATGCCA -ACGGAAGCTCAACTACCAGGAAAC -ACGGAAGCTCAACTACCAAACACC -ACGGAAGCTCAACTACCAATCGAG -ACGGAAGCTCAACTACCACTCCTT -ACGGAAGCTCAACTACCACCTGTT -ACGGAAGCTCAACTACCACGGTTT -ACGGAAGCTCAACTACCAGTGGTT -ACGGAAGCTCAACTACCAGCCTTT -ACGGAAGCTCAACTACCAGGTCTT -ACGGAAGCTCAACTACCAACGCTT -ACGGAAGCTCAACTACCAAGCGTT -ACGGAAGCTCAACTACCATTCGTC -ACGGAAGCTCAACTACCATCTCTC -ACGGAAGCTCAACTACCATGGATC -ACGGAAGCTCAACTACCACACTTC -ACGGAAGCTCAACTACCAGTACTC -ACGGAAGCTCAACTACCAGATGTC -ACGGAAGCTCAACTACCAACAGTC -ACGGAAGCTCAACTACCATTGCTG -ACGGAAGCTCAACTACCATCCATG -ACGGAAGCTCAACTACCATGTGTG -ACGGAAGCTCAACTACCACTAGTG -ACGGAAGCTCAACTACCACATCTG -ACGGAAGCTCAACTACCAGAGTTG -ACGGAAGCTCAACTACCAAGACTG -ACGGAAGCTCAACTACCATCGGTA -ACGGAAGCTCAACTACCATGCCTA -ACGGAAGCTCAACTACCACCACTA -ACGGAAGCTCAACTACCAGGAGTA -ACGGAAGCTCAACTACCATCGTCT -ACGGAAGCTCAACTACCATGCACT -ACGGAAGCTCAACTACCACTGACT -ACGGAAGCTCAACTACCACAACCT -ACGGAAGCTCAACTACCAGCTACT -ACGGAAGCTCAACTACCAGGATCT -ACGGAAGCTCAACTACCAAAGGCT -ACGGAAGCTCAACTACCATCAACC -ACGGAAGCTCAACTACCATGTTCC -ACGGAAGCTCAACTACCAATTCCC -ACGGAAGCTCAACTACCATTCTCG -ACGGAAGCTCAACTACCATAGACG -ACGGAAGCTCAACTACCAGTAACG -ACGGAAGCTCAACTACCAACTTCG -ACGGAAGCTCAACTACCATACGCA -ACGGAAGCTCAACTACCACTTGCA -ACGGAAGCTCAACTACCACGAACA -ACGGAAGCTCAACTACCACAGTCA -ACGGAAGCTCAACTACCAGATCCA -ACGGAAGCTCAACTACCAACGACA -ACGGAAGCTCAACTACCAAGCTCA -ACGGAAGCTCAACTACCATCACGT -ACGGAAGCTCAACTACCACGTAGT -ACGGAAGCTCAACTACCAGTCAGT -ACGGAAGCTCAACTACCAGAAGGT -ACGGAAGCTCAACTACCAAACCGT -ACGGAAGCTCAACTACCATTGTGC -ACGGAAGCTCAACTACCACTAAGC -ACGGAAGCTCAACTACCAACTAGC -ACGGAAGCTCAACTACCAAGATGC -ACGGAAGCTCAACTACCATGAAGG -ACGGAAGCTCAACTACCACAATGG -ACGGAAGCTCAACTACCAATGAGG -ACGGAAGCTCAACTACCAAATGGG -ACGGAAGCTCAACTACCATCCTGA -ACGGAAGCTCAACTACCATAGCGA -ACGGAAGCTCAACTACCACACAGA -ACGGAAGCTCAACTACCAGCAAGA -ACGGAAGCTCAACTACCAGGTTGA -ACGGAAGCTCAACTACCATCCGAT -ACGGAAGCTCAACTACCATGGCAT -ACGGAAGCTCAACTACCACGAGAT -ACGGAAGCTCAACTACCATACCAC -ACGGAAGCTCAACTACCACAGAAC -ACGGAAGCTCAACTACCAGTCTAC -ACGGAAGCTCAACTACCAACGTAC -ACGGAAGCTCAACTACCAAGTGAC -ACGGAAGCTCAACTACCACTGTAG -ACGGAAGCTCAACTACCACCTAAG -ACGGAAGCTCAACTACCAGTTCAG -ACGGAAGCTCAACTACCAGCATAG -ACGGAAGCTCAACTACCAGACAAG -ACGGAAGCTCAACTACCAAAGCAG -ACGGAAGCTCAACTACCACGTCAA -ACGGAAGCTCAACTACCAGCTGAA -ACGGAAGCTCAACTACCAAGTACG -ACGGAAGCTCAACTACCAATCCGA -ACGGAAGCTCAACTACCAATGGGA -ACGGAAGCTCAACTACCAGTGCAA -ACGGAAGCTCAACTACCAGAGGAA -ACGGAAGCTCAACTACCACAGGTA -ACGGAAGCTCAACTACCAGACTCT -ACGGAAGCTCAACTACCAAGTCCT -ACGGAAGCTCAACTACCATAAGCC -ACGGAAGCTCAACTACCAATAGCC -ACGGAAGCTCAACTACCATAACCG -ACGGAAGCTCAACTACCAATGCCA -ACGGAAGCTCAAGTAGGAGGAAAC -ACGGAAGCTCAAGTAGGAAACACC -ACGGAAGCTCAAGTAGGAATCGAG -ACGGAAGCTCAAGTAGGACTCCTT -ACGGAAGCTCAAGTAGGACCTGTT -ACGGAAGCTCAAGTAGGACGGTTT -ACGGAAGCTCAAGTAGGAGTGGTT -ACGGAAGCTCAAGTAGGAGCCTTT -ACGGAAGCTCAAGTAGGAGGTCTT -ACGGAAGCTCAAGTAGGAACGCTT -ACGGAAGCTCAAGTAGGAAGCGTT -ACGGAAGCTCAAGTAGGATTCGTC -ACGGAAGCTCAAGTAGGATCTCTC -ACGGAAGCTCAAGTAGGATGGATC -ACGGAAGCTCAAGTAGGACACTTC -ACGGAAGCTCAAGTAGGAGTACTC -ACGGAAGCTCAAGTAGGAGATGTC -ACGGAAGCTCAAGTAGGAACAGTC -ACGGAAGCTCAAGTAGGATTGCTG -ACGGAAGCTCAAGTAGGATCCATG -ACGGAAGCTCAAGTAGGATGTGTG -ACGGAAGCTCAAGTAGGACTAGTG -ACGGAAGCTCAAGTAGGACATCTG -ACGGAAGCTCAAGTAGGAGAGTTG -ACGGAAGCTCAAGTAGGAAGACTG -ACGGAAGCTCAAGTAGGATCGGTA -ACGGAAGCTCAAGTAGGATGCCTA -ACGGAAGCTCAAGTAGGACCACTA -ACGGAAGCTCAAGTAGGAGGAGTA -ACGGAAGCTCAAGTAGGATCGTCT -ACGGAAGCTCAAGTAGGATGCACT -ACGGAAGCTCAAGTAGGACTGACT -ACGGAAGCTCAAGTAGGACAACCT -ACGGAAGCTCAAGTAGGAGCTACT -ACGGAAGCTCAAGTAGGAGGATCT -ACGGAAGCTCAAGTAGGAAAGGCT -ACGGAAGCTCAAGTAGGATCAACC -ACGGAAGCTCAAGTAGGATGTTCC -ACGGAAGCTCAAGTAGGAATTCCC -ACGGAAGCTCAAGTAGGATTCTCG -ACGGAAGCTCAAGTAGGATAGACG -ACGGAAGCTCAAGTAGGAGTAACG -ACGGAAGCTCAAGTAGGAACTTCG -ACGGAAGCTCAAGTAGGATACGCA -ACGGAAGCTCAAGTAGGACTTGCA -ACGGAAGCTCAAGTAGGACGAACA -ACGGAAGCTCAAGTAGGACAGTCA -ACGGAAGCTCAAGTAGGAGATCCA -ACGGAAGCTCAAGTAGGAACGACA -ACGGAAGCTCAAGTAGGAAGCTCA -ACGGAAGCTCAAGTAGGATCACGT -ACGGAAGCTCAAGTAGGACGTAGT -ACGGAAGCTCAAGTAGGAGTCAGT -ACGGAAGCTCAAGTAGGAGAAGGT -ACGGAAGCTCAAGTAGGAAACCGT -ACGGAAGCTCAAGTAGGATTGTGC -ACGGAAGCTCAAGTAGGACTAAGC -ACGGAAGCTCAAGTAGGAACTAGC -ACGGAAGCTCAAGTAGGAAGATGC -ACGGAAGCTCAAGTAGGATGAAGG -ACGGAAGCTCAAGTAGGACAATGG -ACGGAAGCTCAAGTAGGAATGAGG -ACGGAAGCTCAAGTAGGAAATGGG -ACGGAAGCTCAAGTAGGATCCTGA -ACGGAAGCTCAAGTAGGATAGCGA -ACGGAAGCTCAAGTAGGACACAGA -ACGGAAGCTCAAGTAGGAGCAAGA -ACGGAAGCTCAAGTAGGAGGTTGA -ACGGAAGCTCAAGTAGGATCCGAT -ACGGAAGCTCAAGTAGGATGGCAT -ACGGAAGCTCAAGTAGGACGAGAT -ACGGAAGCTCAAGTAGGATACCAC -ACGGAAGCTCAAGTAGGACAGAAC -ACGGAAGCTCAAGTAGGAGTCTAC -ACGGAAGCTCAAGTAGGAACGTAC -ACGGAAGCTCAAGTAGGAAGTGAC -ACGGAAGCTCAAGTAGGACTGTAG -ACGGAAGCTCAAGTAGGACCTAAG -ACGGAAGCTCAAGTAGGAGTTCAG -ACGGAAGCTCAAGTAGGAGCATAG -ACGGAAGCTCAAGTAGGAGACAAG -ACGGAAGCTCAAGTAGGAAAGCAG -ACGGAAGCTCAAGTAGGACGTCAA -ACGGAAGCTCAAGTAGGAGCTGAA -ACGGAAGCTCAAGTAGGAAGTACG -ACGGAAGCTCAAGTAGGAATCCGA -ACGGAAGCTCAAGTAGGAATGGGA -ACGGAAGCTCAAGTAGGAGTGCAA -ACGGAAGCTCAAGTAGGAGAGGAA -ACGGAAGCTCAAGTAGGACAGGTA -ACGGAAGCTCAAGTAGGAGACTCT -ACGGAAGCTCAAGTAGGAAGTCCT -ACGGAAGCTCAAGTAGGATAAGCC -ACGGAAGCTCAAGTAGGAATAGCC -ACGGAAGCTCAAGTAGGATAACCG -ACGGAAGCTCAAGTAGGAATGCCA -ACGGAAGCTCAATCTTCGGGAAAC -ACGGAAGCTCAATCTTCGAACACC -ACGGAAGCTCAATCTTCGATCGAG -ACGGAAGCTCAATCTTCGCTCCTT -ACGGAAGCTCAATCTTCGCCTGTT -ACGGAAGCTCAATCTTCGCGGTTT -ACGGAAGCTCAATCTTCGGTGGTT -ACGGAAGCTCAATCTTCGGCCTTT -ACGGAAGCTCAATCTTCGGGTCTT -ACGGAAGCTCAATCTTCGACGCTT -ACGGAAGCTCAATCTTCGAGCGTT -ACGGAAGCTCAATCTTCGTTCGTC -ACGGAAGCTCAATCTTCGTCTCTC -ACGGAAGCTCAATCTTCGTGGATC -ACGGAAGCTCAATCTTCGCACTTC -ACGGAAGCTCAATCTTCGGTACTC -ACGGAAGCTCAATCTTCGGATGTC -ACGGAAGCTCAATCTTCGACAGTC -ACGGAAGCTCAATCTTCGTTGCTG -ACGGAAGCTCAATCTTCGTCCATG -ACGGAAGCTCAATCTTCGTGTGTG -ACGGAAGCTCAATCTTCGCTAGTG -ACGGAAGCTCAATCTTCGCATCTG -ACGGAAGCTCAATCTTCGGAGTTG -ACGGAAGCTCAATCTTCGAGACTG -ACGGAAGCTCAATCTTCGTCGGTA -ACGGAAGCTCAATCTTCGTGCCTA -ACGGAAGCTCAATCTTCGCCACTA -ACGGAAGCTCAATCTTCGGGAGTA -ACGGAAGCTCAATCTTCGTCGTCT -ACGGAAGCTCAATCTTCGTGCACT -ACGGAAGCTCAATCTTCGCTGACT -ACGGAAGCTCAATCTTCGCAACCT -ACGGAAGCTCAATCTTCGGCTACT -ACGGAAGCTCAATCTTCGGGATCT -ACGGAAGCTCAATCTTCGAAGGCT -ACGGAAGCTCAATCTTCGTCAACC -ACGGAAGCTCAATCTTCGTGTTCC -ACGGAAGCTCAATCTTCGATTCCC -ACGGAAGCTCAATCTTCGTTCTCG -ACGGAAGCTCAATCTTCGTAGACG -ACGGAAGCTCAATCTTCGGTAACG -ACGGAAGCTCAATCTTCGACTTCG -ACGGAAGCTCAATCTTCGTACGCA -ACGGAAGCTCAATCTTCGCTTGCA -ACGGAAGCTCAATCTTCGCGAACA -ACGGAAGCTCAATCTTCGCAGTCA -ACGGAAGCTCAATCTTCGGATCCA -ACGGAAGCTCAATCTTCGACGACA -ACGGAAGCTCAATCTTCGAGCTCA -ACGGAAGCTCAATCTTCGTCACGT -ACGGAAGCTCAATCTTCGCGTAGT -ACGGAAGCTCAATCTTCGGTCAGT -ACGGAAGCTCAATCTTCGGAAGGT -ACGGAAGCTCAATCTTCGAACCGT -ACGGAAGCTCAATCTTCGTTGTGC -ACGGAAGCTCAATCTTCGCTAAGC -ACGGAAGCTCAATCTTCGACTAGC -ACGGAAGCTCAATCTTCGAGATGC -ACGGAAGCTCAATCTTCGTGAAGG -ACGGAAGCTCAATCTTCGCAATGG -ACGGAAGCTCAATCTTCGATGAGG -ACGGAAGCTCAATCTTCGAATGGG -ACGGAAGCTCAATCTTCGTCCTGA -ACGGAAGCTCAATCTTCGTAGCGA -ACGGAAGCTCAATCTTCGCACAGA -ACGGAAGCTCAATCTTCGGCAAGA -ACGGAAGCTCAATCTTCGGGTTGA -ACGGAAGCTCAATCTTCGTCCGAT -ACGGAAGCTCAATCTTCGTGGCAT -ACGGAAGCTCAATCTTCGCGAGAT -ACGGAAGCTCAATCTTCGTACCAC -ACGGAAGCTCAATCTTCGCAGAAC -ACGGAAGCTCAATCTTCGGTCTAC -ACGGAAGCTCAATCTTCGACGTAC -ACGGAAGCTCAATCTTCGAGTGAC -ACGGAAGCTCAATCTTCGCTGTAG -ACGGAAGCTCAATCTTCGCCTAAG -ACGGAAGCTCAATCTTCGGTTCAG -ACGGAAGCTCAATCTTCGGCATAG -ACGGAAGCTCAATCTTCGGACAAG -ACGGAAGCTCAATCTTCGAAGCAG -ACGGAAGCTCAATCTTCGCGTCAA -ACGGAAGCTCAATCTTCGGCTGAA -ACGGAAGCTCAATCTTCGAGTACG -ACGGAAGCTCAATCTTCGATCCGA -ACGGAAGCTCAATCTTCGATGGGA -ACGGAAGCTCAATCTTCGGTGCAA -ACGGAAGCTCAATCTTCGGAGGAA -ACGGAAGCTCAATCTTCGCAGGTA -ACGGAAGCTCAATCTTCGGACTCT -ACGGAAGCTCAATCTTCGAGTCCT -ACGGAAGCTCAATCTTCGTAAGCC -ACGGAAGCTCAATCTTCGATAGCC -ACGGAAGCTCAATCTTCGTAACCG -ACGGAAGCTCAATCTTCGATGCCA -ACGGAAGCTCAAACTTGCGGAAAC -ACGGAAGCTCAAACTTGCAACACC -ACGGAAGCTCAAACTTGCATCGAG -ACGGAAGCTCAAACTTGCCTCCTT -ACGGAAGCTCAAACTTGCCCTGTT -ACGGAAGCTCAAACTTGCCGGTTT -ACGGAAGCTCAAACTTGCGTGGTT -ACGGAAGCTCAAACTTGCGCCTTT -ACGGAAGCTCAAACTTGCGGTCTT -ACGGAAGCTCAAACTTGCACGCTT -ACGGAAGCTCAAACTTGCAGCGTT -ACGGAAGCTCAAACTTGCTTCGTC -ACGGAAGCTCAAACTTGCTCTCTC -ACGGAAGCTCAAACTTGCTGGATC -ACGGAAGCTCAAACTTGCCACTTC -ACGGAAGCTCAAACTTGCGTACTC -ACGGAAGCTCAAACTTGCGATGTC -ACGGAAGCTCAAACTTGCACAGTC -ACGGAAGCTCAAACTTGCTTGCTG -ACGGAAGCTCAAACTTGCTCCATG -ACGGAAGCTCAAACTTGCTGTGTG -ACGGAAGCTCAAACTTGCCTAGTG -ACGGAAGCTCAAACTTGCCATCTG -ACGGAAGCTCAAACTTGCGAGTTG -ACGGAAGCTCAAACTTGCAGACTG -ACGGAAGCTCAAACTTGCTCGGTA -ACGGAAGCTCAAACTTGCTGCCTA -ACGGAAGCTCAAACTTGCCCACTA -ACGGAAGCTCAAACTTGCGGAGTA -ACGGAAGCTCAAACTTGCTCGTCT -ACGGAAGCTCAAACTTGCTGCACT -ACGGAAGCTCAAACTTGCCTGACT -ACGGAAGCTCAAACTTGCCAACCT -ACGGAAGCTCAAACTTGCGCTACT -ACGGAAGCTCAAACTTGCGGATCT -ACGGAAGCTCAAACTTGCAAGGCT -ACGGAAGCTCAAACTTGCTCAACC -ACGGAAGCTCAAACTTGCTGTTCC -ACGGAAGCTCAAACTTGCATTCCC -ACGGAAGCTCAAACTTGCTTCTCG -ACGGAAGCTCAAACTTGCTAGACG -ACGGAAGCTCAAACTTGCGTAACG -ACGGAAGCTCAAACTTGCACTTCG -ACGGAAGCTCAAACTTGCTACGCA -ACGGAAGCTCAAACTTGCCTTGCA -ACGGAAGCTCAAACTTGCCGAACA -ACGGAAGCTCAAACTTGCCAGTCA -ACGGAAGCTCAAACTTGCGATCCA -ACGGAAGCTCAAACTTGCACGACA -ACGGAAGCTCAAACTTGCAGCTCA -ACGGAAGCTCAAACTTGCTCACGT -ACGGAAGCTCAAACTTGCCGTAGT -ACGGAAGCTCAAACTTGCGTCAGT -ACGGAAGCTCAAACTTGCGAAGGT -ACGGAAGCTCAAACTTGCAACCGT -ACGGAAGCTCAAACTTGCTTGTGC -ACGGAAGCTCAAACTTGCCTAAGC -ACGGAAGCTCAAACTTGCACTAGC -ACGGAAGCTCAAACTTGCAGATGC -ACGGAAGCTCAAACTTGCTGAAGG -ACGGAAGCTCAAACTTGCCAATGG -ACGGAAGCTCAAACTTGCATGAGG -ACGGAAGCTCAAACTTGCAATGGG -ACGGAAGCTCAAACTTGCTCCTGA -ACGGAAGCTCAAACTTGCTAGCGA -ACGGAAGCTCAAACTTGCCACAGA -ACGGAAGCTCAAACTTGCGCAAGA -ACGGAAGCTCAAACTTGCGGTTGA -ACGGAAGCTCAAACTTGCTCCGAT -ACGGAAGCTCAAACTTGCTGGCAT -ACGGAAGCTCAAACTTGCCGAGAT -ACGGAAGCTCAAACTTGCTACCAC -ACGGAAGCTCAAACTTGCCAGAAC -ACGGAAGCTCAAACTTGCGTCTAC -ACGGAAGCTCAAACTTGCACGTAC -ACGGAAGCTCAAACTTGCAGTGAC -ACGGAAGCTCAAACTTGCCTGTAG -ACGGAAGCTCAAACTTGCCCTAAG -ACGGAAGCTCAAACTTGCGTTCAG -ACGGAAGCTCAAACTTGCGCATAG -ACGGAAGCTCAAACTTGCGACAAG -ACGGAAGCTCAAACTTGCAAGCAG -ACGGAAGCTCAAACTTGCCGTCAA -ACGGAAGCTCAAACTTGCGCTGAA -ACGGAAGCTCAAACTTGCAGTACG -ACGGAAGCTCAAACTTGCATCCGA -ACGGAAGCTCAAACTTGCATGGGA -ACGGAAGCTCAAACTTGCGTGCAA -ACGGAAGCTCAAACTTGCGAGGAA -ACGGAAGCTCAAACTTGCCAGGTA -ACGGAAGCTCAAACTTGCGACTCT -ACGGAAGCTCAAACTTGCAGTCCT -ACGGAAGCTCAAACTTGCTAAGCC -ACGGAAGCTCAAACTTGCATAGCC -ACGGAAGCTCAAACTTGCTAACCG -ACGGAAGCTCAAACTTGCATGCCA -ACGGAAGCTCAAACTCTGGGAAAC -ACGGAAGCTCAAACTCTGAACACC -ACGGAAGCTCAAACTCTGATCGAG -ACGGAAGCTCAAACTCTGCTCCTT -ACGGAAGCTCAAACTCTGCCTGTT -ACGGAAGCTCAAACTCTGCGGTTT -ACGGAAGCTCAAACTCTGGTGGTT -ACGGAAGCTCAAACTCTGGCCTTT -ACGGAAGCTCAAACTCTGGGTCTT -ACGGAAGCTCAAACTCTGACGCTT -ACGGAAGCTCAAACTCTGAGCGTT -ACGGAAGCTCAAACTCTGTTCGTC -ACGGAAGCTCAAACTCTGTCTCTC -ACGGAAGCTCAAACTCTGTGGATC -ACGGAAGCTCAAACTCTGCACTTC -ACGGAAGCTCAAACTCTGGTACTC -ACGGAAGCTCAAACTCTGGATGTC -ACGGAAGCTCAAACTCTGACAGTC -ACGGAAGCTCAAACTCTGTTGCTG -ACGGAAGCTCAAACTCTGTCCATG -ACGGAAGCTCAAACTCTGTGTGTG -ACGGAAGCTCAAACTCTGCTAGTG -ACGGAAGCTCAAACTCTGCATCTG -ACGGAAGCTCAAACTCTGGAGTTG -ACGGAAGCTCAAACTCTGAGACTG -ACGGAAGCTCAAACTCTGTCGGTA -ACGGAAGCTCAAACTCTGTGCCTA -ACGGAAGCTCAAACTCTGCCACTA -ACGGAAGCTCAAACTCTGGGAGTA -ACGGAAGCTCAAACTCTGTCGTCT -ACGGAAGCTCAAACTCTGTGCACT -ACGGAAGCTCAAACTCTGCTGACT -ACGGAAGCTCAAACTCTGCAACCT -ACGGAAGCTCAAACTCTGGCTACT -ACGGAAGCTCAAACTCTGGGATCT -ACGGAAGCTCAAACTCTGAAGGCT -ACGGAAGCTCAAACTCTGTCAACC -ACGGAAGCTCAAACTCTGTGTTCC -ACGGAAGCTCAAACTCTGATTCCC -ACGGAAGCTCAAACTCTGTTCTCG -ACGGAAGCTCAAACTCTGTAGACG -ACGGAAGCTCAAACTCTGGTAACG -ACGGAAGCTCAAACTCTGACTTCG -ACGGAAGCTCAAACTCTGTACGCA -ACGGAAGCTCAAACTCTGCTTGCA -ACGGAAGCTCAAACTCTGCGAACA -ACGGAAGCTCAAACTCTGCAGTCA -ACGGAAGCTCAAACTCTGGATCCA -ACGGAAGCTCAAACTCTGACGACA -ACGGAAGCTCAAACTCTGAGCTCA -ACGGAAGCTCAAACTCTGTCACGT -ACGGAAGCTCAAACTCTGCGTAGT -ACGGAAGCTCAAACTCTGGTCAGT -ACGGAAGCTCAAACTCTGGAAGGT -ACGGAAGCTCAAACTCTGAACCGT -ACGGAAGCTCAAACTCTGTTGTGC -ACGGAAGCTCAAACTCTGCTAAGC -ACGGAAGCTCAAACTCTGACTAGC -ACGGAAGCTCAAACTCTGAGATGC -ACGGAAGCTCAAACTCTGTGAAGG -ACGGAAGCTCAAACTCTGCAATGG -ACGGAAGCTCAAACTCTGATGAGG -ACGGAAGCTCAAACTCTGAATGGG -ACGGAAGCTCAAACTCTGTCCTGA -ACGGAAGCTCAAACTCTGTAGCGA -ACGGAAGCTCAAACTCTGCACAGA -ACGGAAGCTCAAACTCTGGCAAGA -ACGGAAGCTCAAACTCTGGGTTGA -ACGGAAGCTCAAACTCTGTCCGAT -ACGGAAGCTCAAACTCTGTGGCAT -ACGGAAGCTCAAACTCTGCGAGAT -ACGGAAGCTCAAACTCTGTACCAC -ACGGAAGCTCAAACTCTGCAGAAC -ACGGAAGCTCAAACTCTGGTCTAC -ACGGAAGCTCAAACTCTGACGTAC -ACGGAAGCTCAAACTCTGAGTGAC -ACGGAAGCTCAAACTCTGCTGTAG -ACGGAAGCTCAAACTCTGCCTAAG -ACGGAAGCTCAAACTCTGGTTCAG -ACGGAAGCTCAAACTCTGGCATAG -ACGGAAGCTCAAACTCTGGACAAG -ACGGAAGCTCAAACTCTGAAGCAG -ACGGAAGCTCAAACTCTGCGTCAA -ACGGAAGCTCAAACTCTGGCTGAA -ACGGAAGCTCAAACTCTGAGTACG -ACGGAAGCTCAAACTCTGATCCGA -ACGGAAGCTCAAACTCTGATGGGA -ACGGAAGCTCAAACTCTGGTGCAA -ACGGAAGCTCAAACTCTGGAGGAA -ACGGAAGCTCAAACTCTGCAGGTA -ACGGAAGCTCAAACTCTGGACTCT -ACGGAAGCTCAAACTCTGAGTCCT -ACGGAAGCTCAAACTCTGTAAGCC -ACGGAAGCTCAAACTCTGATAGCC -ACGGAAGCTCAAACTCTGTAACCG -ACGGAAGCTCAAACTCTGATGCCA -ACGGAAGCTCAACCTCAAGGAAAC -ACGGAAGCTCAACCTCAAAACACC -ACGGAAGCTCAACCTCAAATCGAG -ACGGAAGCTCAACCTCAACTCCTT -ACGGAAGCTCAACCTCAACCTGTT -ACGGAAGCTCAACCTCAACGGTTT -ACGGAAGCTCAACCTCAAGTGGTT -ACGGAAGCTCAACCTCAAGCCTTT -ACGGAAGCTCAACCTCAAGGTCTT -ACGGAAGCTCAACCTCAAACGCTT -ACGGAAGCTCAACCTCAAAGCGTT -ACGGAAGCTCAACCTCAATTCGTC -ACGGAAGCTCAACCTCAATCTCTC -ACGGAAGCTCAACCTCAATGGATC -ACGGAAGCTCAACCTCAACACTTC -ACGGAAGCTCAACCTCAAGTACTC -ACGGAAGCTCAACCTCAAGATGTC -ACGGAAGCTCAACCTCAAACAGTC -ACGGAAGCTCAACCTCAATTGCTG -ACGGAAGCTCAACCTCAATCCATG -ACGGAAGCTCAACCTCAATGTGTG -ACGGAAGCTCAACCTCAACTAGTG -ACGGAAGCTCAACCTCAACATCTG -ACGGAAGCTCAACCTCAAGAGTTG -ACGGAAGCTCAACCTCAAAGACTG -ACGGAAGCTCAACCTCAATCGGTA -ACGGAAGCTCAACCTCAATGCCTA -ACGGAAGCTCAACCTCAACCACTA -ACGGAAGCTCAACCTCAAGGAGTA -ACGGAAGCTCAACCTCAATCGTCT -ACGGAAGCTCAACCTCAATGCACT -ACGGAAGCTCAACCTCAACTGACT -ACGGAAGCTCAACCTCAACAACCT -ACGGAAGCTCAACCTCAAGCTACT -ACGGAAGCTCAACCTCAAGGATCT -ACGGAAGCTCAACCTCAAAAGGCT -ACGGAAGCTCAACCTCAATCAACC -ACGGAAGCTCAACCTCAATGTTCC -ACGGAAGCTCAACCTCAAATTCCC -ACGGAAGCTCAACCTCAATTCTCG -ACGGAAGCTCAACCTCAATAGACG -ACGGAAGCTCAACCTCAAGTAACG -ACGGAAGCTCAACCTCAAACTTCG -ACGGAAGCTCAACCTCAATACGCA -ACGGAAGCTCAACCTCAACTTGCA -ACGGAAGCTCAACCTCAACGAACA -ACGGAAGCTCAACCTCAACAGTCA -ACGGAAGCTCAACCTCAAGATCCA -ACGGAAGCTCAACCTCAAACGACA -ACGGAAGCTCAACCTCAAAGCTCA -ACGGAAGCTCAACCTCAATCACGT -ACGGAAGCTCAACCTCAACGTAGT -ACGGAAGCTCAACCTCAAGTCAGT -ACGGAAGCTCAACCTCAAGAAGGT -ACGGAAGCTCAACCTCAAAACCGT -ACGGAAGCTCAACCTCAATTGTGC -ACGGAAGCTCAACCTCAACTAAGC -ACGGAAGCTCAACCTCAAACTAGC -ACGGAAGCTCAACCTCAAAGATGC -ACGGAAGCTCAACCTCAATGAAGG -ACGGAAGCTCAACCTCAACAATGG -ACGGAAGCTCAACCTCAAATGAGG -ACGGAAGCTCAACCTCAAAATGGG -ACGGAAGCTCAACCTCAATCCTGA -ACGGAAGCTCAACCTCAATAGCGA -ACGGAAGCTCAACCTCAACACAGA -ACGGAAGCTCAACCTCAAGCAAGA -ACGGAAGCTCAACCTCAAGGTTGA -ACGGAAGCTCAACCTCAATCCGAT -ACGGAAGCTCAACCTCAATGGCAT -ACGGAAGCTCAACCTCAACGAGAT -ACGGAAGCTCAACCTCAATACCAC -ACGGAAGCTCAACCTCAACAGAAC -ACGGAAGCTCAACCTCAAGTCTAC -ACGGAAGCTCAACCTCAAACGTAC -ACGGAAGCTCAACCTCAAAGTGAC -ACGGAAGCTCAACCTCAACTGTAG -ACGGAAGCTCAACCTCAACCTAAG -ACGGAAGCTCAACCTCAAGTTCAG -ACGGAAGCTCAACCTCAAGCATAG -ACGGAAGCTCAACCTCAAGACAAG -ACGGAAGCTCAACCTCAAAAGCAG -ACGGAAGCTCAACCTCAACGTCAA -ACGGAAGCTCAACCTCAAGCTGAA -ACGGAAGCTCAACCTCAAAGTACG -ACGGAAGCTCAACCTCAAATCCGA -ACGGAAGCTCAACCTCAAATGGGA -ACGGAAGCTCAACCTCAAGTGCAA -ACGGAAGCTCAACCTCAAGAGGAA -ACGGAAGCTCAACCTCAACAGGTA -ACGGAAGCTCAACCTCAAGACTCT -ACGGAAGCTCAACCTCAAAGTCCT -ACGGAAGCTCAACCTCAATAAGCC -ACGGAAGCTCAACCTCAAATAGCC -ACGGAAGCTCAACCTCAATAACCG -ACGGAAGCTCAACCTCAAATGCCA -ACGGAAGCTCAAACTGCTGGAAAC -ACGGAAGCTCAAACTGCTAACACC -ACGGAAGCTCAAACTGCTATCGAG -ACGGAAGCTCAAACTGCTCTCCTT -ACGGAAGCTCAAACTGCTCCTGTT -ACGGAAGCTCAAACTGCTCGGTTT -ACGGAAGCTCAAACTGCTGTGGTT -ACGGAAGCTCAAACTGCTGCCTTT -ACGGAAGCTCAAACTGCTGGTCTT -ACGGAAGCTCAAACTGCTACGCTT -ACGGAAGCTCAAACTGCTAGCGTT -ACGGAAGCTCAAACTGCTTTCGTC -ACGGAAGCTCAAACTGCTTCTCTC -ACGGAAGCTCAAACTGCTTGGATC -ACGGAAGCTCAAACTGCTCACTTC -ACGGAAGCTCAAACTGCTGTACTC -ACGGAAGCTCAAACTGCTGATGTC -ACGGAAGCTCAAACTGCTACAGTC -ACGGAAGCTCAAACTGCTTTGCTG -ACGGAAGCTCAAACTGCTTCCATG -ACGGAAGCTCAAACTGCTTGTGTG -ACGGAAGCTCAAACTGCTCTAGTG -ACGGAAGCTCAAACTGCTCATCTG -ACGGAAGCTCAAACTGCTGAGTTG -ACGGAAGCTCAAACTGCTAGACTG -ACGGAAGCTCAAACTGCTTCGGTA -ACGGAAGCTCAAACTGCTTGCCTA -ACGGAAGCTCAAACTGCTCCACTA -ACGGAAGCTCAAACTGCTGGAGTA -ACGGAAGCTCAAACTGCTTCGTCT -ACGGAAGCTCAAACTGCTTGCACT -ACGGAAGCTCAAACTGCTCTGACT -ACGGAAGCTCAAACTGCTCAACCT -ACGGAAGCTCAAACTGCTGCTACT -ACGGAAGCTCAAACTGCTGGATCT -ACGGAAGCTCAAACTGCTAAGGCT -ACGGAAGCTCAAACTGCTTCAACC -ACGGAAGCTCAAACTGCTTGTTCC -ACGGAAGCTCAAACTGCTATTCCC -ACGGAAGCTCAAACTGCTTTCTCG -ACGGAAGCTCAAACTGCTTAGACG -ACGGAAGCTCAAACTGCTGTAACG -ACGGAAGCTCAAACTGCTACTTCG -ACGGAAGCTCAAACTGCTTACGCA -ACGGAAGCTCAAACTGCTCTTGCA -ACGGAAGCTCAAACTGCTCGAACA -ACGGAAGCTCAAACTGCTCAGTCA -ACGGAAGCTCAAACTGCTGATCCA -ACGGAAGCTCAAACTGCTACGACA -ACGGAAGCTCAAACTGCTAGCTCA -ACGGAAGCTCAAACTGCTTCACGT -ACGGAAGCTCAAACTGCTCGTAGT -ACGGAAGCTCAAACTGCTGTCAGT -ACGGAAGCTCAAACTGCTGAAGGT -ACGGAAGCTCAAACTGCTAACCGT -ACGGAAGCTCAAACTGCTTTGTGC -ACGGAAGCTCAAACTGCTCTAAGC -ACGGAAGCTCAAACTGCTACTAGC -ACGGAAGCTCAAACTGCTAGATGC -ACGGAAGCTCAAACTGCTTGAAGG -ACGGAAGCTCAAACTGCTCAATGG -ACGGAAGCTCAAACTGCTATGAGG -ACGGAAGCTCAAACTGCTAATGGG -ACGGAAGCTCAAACTGCTTCCTGA -ACGGAAGCTCAAACTGCTTAGCGA -ACGGAAGCTCAAACTGCTCACAGA -ACGGAAGCTCAAACTGCTGCAAGA -ACGGAAGCTCAAACTGCTGGTTGA -ACGGAAGCTCAAACTGCTTCCGAT -ACGGAAGCTCAAACTGCTTGGCAT -ACGGAAGCTCAAACTGCTCGAGAT -ACGGAAGCTCAAACTGCTTACCAC -ACGGAAGCTCAAACTGCTCAGAAC -ACGGAAGCTCAAACTGCTGTCTAC -ACGGAAGCTCAAACTGCTACGTAC -ACGGAAGCTCAAACTGCTAGTGAC -ACGGAAGCTCAAACTGCTCTGTAG -ACGGAAGCTCAAACTGCTCCTAAG -ACGGAAGCTCAAACTGCTGTTCAG -ACGGAAGCTCAAACTGCTGCATAG -ACGGAAGCTCAAACTGCTGACAAG -ACGGAAGCTCAAACTGCTAAGCAG -ACGGAAGCTCAAACTGCTCGTCAA -ACGGAAGCTCAAACTGCTGCTGAA -ACGGAAGCTCAAACTGCTAGTACG -ACGGAAGCTCAAACTGCTATCCGA -ACGGAAGCTCAAACTGCTATGGGA -ACGGAAGCTCAAACTGCTGTGCAA -ACGGAAGCTCAAACTGCTGAGGAA -ACGGAAGCTCAAACTGCTCAGGTA -ACGGAAGCTCAAACTGCTGACTCT -ACGGAAGCTCAAACTGCTAGTCCT -ACGGAAGCTCAAACTGCTTAAGCC -ACGGAAGCTCAAACTGCTATAGCC -ACGGAAGCTCAAACTGCTTAACCG -ACGGAAGCTCAAACTGCTATGCCA -ACGGAAGCTCAATCTGGAGGAAAC -ACGGAAGCTCAATCTGGAAACACC -ACGGAAGCTCAATCTGGAATCGAG -ACGGAAGCTCAATCTGGACTCCTT -ACGGAAGCTCAATCTGGACCTGTT -ACGGAAGCTCAATCTGGACGGTTT -ACGGAAGCTCAATCTGGAGTGGTT -ACGGAAGCTCAATCTGGAGCCTTT -ACGGAAGCTCAATCTGGAGGTCTT -ACGGAAGCTCAATCTGGAACGCTT -ACGGAAGCTCAATCTGGAAGCGTT -ACGGAAGCTCAATCTGGATTCGTC -ACGGAAGCTCAATCTGGATCTCTC -ACGGAAGCTCAATCTGGATGGATC -ACGGAAGCTCAATCTGGACACTTC -ACGGAAGCTCAATCTGGAGTACTC -ACGGAAGCTCAATCTGGAGATGTC -ACGGAAGCTCAATCTGGAACAGTC -ACGGAAGCTCAATCTGGATTGCTG -ACGGAAGCTCAATCTGGATCCATG -ACGGAAGCTCAATCTGGATGTGTG -ACGGAAGCTCAATCTGGACTAGTG -ACGGAAGCTCAATCTGGACATCTG -ACGGAAGCTCAATCTGGAGAGTTG -ACGGAAGCTCAATCTGGAAGACTG -ACGGAAGCTCAATCTGGATCGGTA -ACGGAAGCTCAATCTGGATGCCTA -ACGGAAGCTCAATCTGGACCACTA -ACGGAAGCTCAATCTGGAGGAGTA -ACGGAAGCTCAATCTGGATCGTCT -ACGGAAGCTCAATCTGGATGCACT -ACGGAAGCTCAATCTGGACTGACT -ACGGAAGCTCAATCTGGACAACCT -ACGGAAGCTCAATCTGGAGCTACT -ACGGAAGCTCAATCTGGAGGATCT -ACGGAAGCTCAATCTGGAAAGGCT -ACGGAAGCTCAATCTGGATCAACC -ACGGAAGCTCAATCTGGATGTTCC -ACGGAAGCTCAATCTGGAATTCCC -ACGGAAGCTCAATCTGGATTCTCG -ACGGAAGCTCAATCTGGATAGACG -ACGGAAGCTCAATCTGGAGTAACG -ACGGAAGCTCAATCTGGAACTTCG -ACGGAAGCTCAATCTGGATACGCA -ACGGAAGCTCAATCTGGACTTGCA -ACGGAAGCTCAATCTGGACGAACA -ACGGAAGCTCAATCTGGACAGTCA -ACGGAAGCTCAATCTGGAGATCCA -ACGGAAGCTCAATCTGGAACGACA -ACGGAAGCTCAATCTGGAAGCTCA -ACGGAAGCTCAATCTGGATCACGT -ACGGAAGCTCAATCTGGACGTAGT -ACGGAAGCTCAATCTGGAGTCAGT -ACGGAAGCTCAATCTGGAGAAGGT -ACGGAAGCTCAATCTGGAAACCGT -ACGGAAGCTCAATCTGGATTGTGC -ACGGAAGCTCAATCTGGACTAAGC -ACGGAAGCTCAATCTGGAACTAGC -ACGGAAGCTCAATCTGGAAGATGC -ACGGAAGCTCAATCTGGATGAAGG -ACGGAAGCTCAATCTGGACAATGG -ACGGAAGCTCAATCTGGAATGAGG -ACGGAAGCTCAATCTGGAAATGGG -ACGGAAGCTCAATCTGGATCCTGA -ACGGAAGCTCAATCTGGATAGCGA -ACGGAAGCTCAATCTGGACACAGA -ACGGAAGCTCAATCTGGAGCAAGA -ACGGAAGCTCAATCTGGAGGTTGA -ACGGAAGCTCAATCTGGATCCGAT -ACGGAAGCTCAATCTGGATGGCAT -ACGGAAGCTCAATCTGGACGAGAT -ACGGAAGCTCAATCTGGATACCAC -ACGGAAGCTCAATCTGGACAGAAC -ACGGAAGCTCAATCTGGAGTCTAC -ACGGAAGCTCAATCTGGAACGTAC -ACGGAAGCTCAATCTGGAAGTGAC -ACGGAAGCTCAATCTGGACTGTAG -ACGGAAGCTCAATCTGGACCTAAG -ACGGAAGCTCAATCTGGAGTTCAG -ACGGAAGCTCAATCTGGAGCATAG -ACGGAAGCTCAATCTGGAGACAAG -ACGGAAGCTCAATCTGGAAAGCAG -ACGGAAGCTCAATCTGGACGTCAA -ACGGAAGCTCAATCTGGAGCTGAA -ACGGAAGCTCAATCTGGAAGTACG -ACGGAAGCTCAATCTGGAATCCGA -ACGGAAGCTCAATCTGGAATGGGA -ACGGAAGCTCAATCTGGAGTGCAA -ACGGAAGCTCAATCTGGAGAGGAA -ACGGAAGCTCAATCTGGACAGGTA -ACGGAAGCTCAATCTGGAGACTCT -ACGGAAGCTCAATCTGGAAGTCCT -ACGGAAGCTCAATCTGGATAAGCC -ACGGAAGCTCAATCTGGAATAGCC -ACGGAAGCTCAATCTGGATAACCG -ACGGAAGCTCAATCTGGAATGCCA -ACGGAAGCTCAAGCTAAGGGAAAC -ACGGAAGCTCAAGCTAAGAACACC -ACGGAAGCTCAAGCTAAGATCGAG -ACGGAAGCTCAAGCTAAGCTCCTT -ACGGAAGCTCAAGCTAAGCCTGTT -ACGGAAGCTCAAGCTAAGCGGTTT -ACGGAAGCTCAAGCTAAGGTGGTT -ACGGAAGCTCAAGCTAAGGCCTTT -ACGGAAGCTCAAGCTAAGGGTCTT -ACGGAAGCTCAAGCTAAGACGCTT -ACGGAAGCTCAAGCTAAGAGCGTT -ACGGAAGCTCAAGCTAAGTTCGTC -ACGGAAGCTCAAGCTAAGTCTCTC -ACGGAAGCTCAAGCTAAGTGGATC -ACGGAAGCTCAAGCTAAGCACTTC -ACGGAAGCTCAAGCTAAGGTACTC -ACGGAAGCTCAAGCTAAGGATGTC -ACGGAAGCTCAAGCTAAGACAGTC -ACGGAAGCTCAAGCTAAGTTGCTG -ACGGAAGCTCAAGCTAAGTCCATG -ACGGAAGCTCAAGCTAAGTGTGTG -ACGGAAGCTCAAGCTAAGCTAGTG -ACGGAAGCTCAAGCTAAGCATCTG -ACGGAAGCTCAAGCTAAGGAGTTG -ACGGAAGCTCAAGCTAAGAGACTG -ACGGAAGCTCAAGCTAAGTCGGTA -ACGGAAGCTCAAGCTAAGTGCCTA -ACGGAAGCTCAAGCTAAGCCACTA -ACGGAAGCTCAAGCTAAGGGAGTA -ACGGAAGCTCAAGCTAAGTCGTCT -ACGGAAGCTCAAGCTAAGTGCACT -ACGGAAGCTCAAGCTAAGCTGACT -ACGGAAGCTCAAGCTAAGCAACCT -ACGGAAGCTCAAGCTAAGGCTACT -ACGGAAGCTCAAGCTAAGGGATCT -ACGGAAGCTCAAGCTAAGAAGGCT -ACGGAAGCTCAAGCTAAGTCAACC -ACGGAAGCTCAAGCTAAGTGTTCC -ACGGAAGCTCAAGCTAAGATTCCC -ACGGAAGCTCAAGCTAAGTTCTCG -ACGGAAGCTCAAGCTAAGTAGACG -ACGGAAGCTCAAGCTAAGGTAACG -ACGGAAGCTCAAGCTAAGACTTCG -ACGGAAGCTCAAGCTAAGTACGCA -ACGGAAGCTCAAGCTAAGCTTGCA -ACGGAAGCTCAAGCTAAGCGAACA -ACGGAAGCTCAAGCTAAGCAGTCA -ACGGAAGCTCAAGCTAAGGATCCA -ACGGAAGCTCAAGCTAAGACGACA -ACGGAAGCTCAAGCTAAGAGCTCA -ACGGAAGCTCAAGCTAAGTCACGT -ACGGAAGCTCAAGCTAAGCGTAGT -ACGGAAGCTCAAGCTAAGGTCAGT -ACGGAAGCTCAAGCTAAGGAAGGT -ACGGAAGCTCAAGCTAAGAACCGT -ACGGAAGCTCAAGCTAAGTTGTGC -ACGGAAGCTCAAGCTAAGCTAAGC -ACGGAAGCTCAAGCTAAGACTAGC -ACGGAAGCTCAAGCTAAGAGATGC -ACGGAAGCTCAAGCTAAGTGAAGG -ACGGAAGCTCAAGCTAAGCAATGG -ACGGAAGCTCAAGCTAAGATGAGG -ACGGAAGCTCAAGCTAAGAATGGG -ACGGAAGCTCAAGCTAAGTCCTGA -ACGGAAGCTCAAGCTAAGTAGCGA -ACGGAAGCTCAAGCTAAGCACAGA -ACGGAAGCTCAAGCTAAGGCAAGA -ACGGAAGCTCAAGCTAAGGGTTGA -ACGGAAGCTCAAGCTAAGTCCGAT -ACGGAAGCTCAAGCTAAGTGGCAT -ACGGAAGCTCAAGCTAAGCGAGAT -ACGGAAGCTCAAGCTAAGTACCAC -ACGGAAGCTCAAGCTAAGCAGAAC -ACGGAAGCTCAAGCTAAGGTCTAC -ACGGAAGCTCAAGCTAAGACGTAC -ACGGAAGCTCAAGCTAAGAGTGAC -ACGGAAGCTCAAGCTAAGCTGTAG -ACGGAAGCTCAAGCTAAGCCTAAG -ACGGAAGCTCAAGCTAAGGTTCAG -ACGGAAGCTCAAGCTAAGGCATAG -ACGGAAGCTCAAGCTAAGGACAAG -ACGGAAGCTCAAGCTAAGAAGCAG -ACGGAAGCTCAAGCTAAGCGTCAA -ACGGAAGCTCAAGCTAAGGCTGAA -ACGGAAGCTCAAGCTAAGAGTACG -ACGGAAGCTCAAGCTAAGATCCGA -ACGGAAGCTCAAGCTAAGATGGGA -ACGGAAGCTCAAGCTAAGGTGCAA -ACGGAAGCTCAAGCTAAGGAGGAA -ACGGAAGCTCAAGCTAAGCAGGTA -ACGGAAGCTCAAGCTAAGGACTCT -ACGGAAGCTCAAGCTAAGAGTCCT -ACGGAAGCTCAAGCTAAGTAAGCC -ACGGAAGCTCAAGCTAAGATAGCC -ACGGAAGCTCAAGCTAAGTAACCG -ACGGAAGCTCAAGCTAAGATGCCA -ACGGAAGCTCAAACCTCAGGAAAC -ACGGAAGCTCAAACCTCAAACACC -ACGGAAGCTCAAACCTCAATCGAG -ACGGAAGCTCAAACCTCACTCCTT -ACGGAAGCTCAAACCTCACCTGTT -ACGGAAGCTCAAACCTCACGGTTT -ACGGAAGCTCAAACCTCAGTGGTT -ACGGAAGCTCAAACCTCAGCCTTT -ACGGAAGCTCAAACCTCAGGTCTT -ACGGAAGCTCAAACCTCAACGCTT -ACGGAAGCTCAAACCTCAAGCGTT -ACGGAAGCTCAAACCTCATTCGTC -ACGGAAGCTCAAACCTCATCTCTC -ACGGAAGCTCAAACCTCATGGATC -ACGGAAGCTCAAACCTCACACTTC -ACGGAAGCTCAAACCTCAGTACTC -ACGGAAGCTCAAACCTCAGATGTC -ACGGAAGCTCAAACCTCAACAGTC -ACGGAAGCTCAAACCTCATTGCTG -ACGGAAGCTCAAACCTCATCCATG -ACGGAAGCTCAAACCTCATGTGTG -ACGGAAGCTCAAACCTCACTAGTG -ACGGAAGCTCAAACCTCACATCTG -ACGGAAGCTCAAACCTCAGAGTTG -ACGGAAGCTCAAACCTCAAGACTG -ACGGAAGCTCAAACCTCATCGGTA -ACGGAAGCTCAAACCTCATGCCTA -ACGGAAGCTCAAACCTCACCACTA -ACGGAAGCTCAAACCTCAGGAGTA -ACGGAAGCTCAAACCTCATCGTCT -ACGGAAGCTCAAACCTCATGCACT -ACGGAAGCTCAAACCTCACTGACT -ACGGAAGCTCAAACCTCACAACCT -ACGGAAGCTCAAACCTCAGCTACT -ACGGAAGCTCAAACCTCAGGATCT -ACGGAAGCTCAAACCTCAAAGGCT -ACGGAAGCTCAAACCTCATCAACC -ACGGAAGCTCAAACCTCATGTTCC -ACGGAAGCTCAAACCTCAATTCCC -ACGGAAGCTCAAACCTCATTCTCG -ACGGAAGCTCAAACCTCATAGACG -ACGGAAGCTCAAACCTCAGTAACG -ACGGAAGCTCAAACCTCAACTTCG -ACGGAAGCTCAAACCTCATACGCA -ACGGAAGCTCAAACCTCACTTGCA -ACGGAAGCTCAAACCTCACGAACA -ACGGAAGCTCAAACCTCACAGTCA -ACGGAAGCTCAAACCTCAGATCCA -ACGGAAGCTCAAACCTCAACGACA -ACGGAAGCTCAAACCTCAAGCTCA -ACGGAAGCTCAAACCTCATCACGT -ACGGAAGCTCAAACCTCACGTAGT -ACGGAAGCTCAAACCTCAGTCAGT -ACGGAAGCTCAAACCTCAGAAGGT -ACGGAAGCTCAAACCTCAAACCGT -ACGGAAGCTCAAACCTCATTGTGC -ACGGAAGCTCAAACCTCACTAAGC -ACGGAAGCTCAAACCTCAACTAGC -ACGGAAGCTCAAACCTCAAGATGC -ACGGAAGCTCAAACCTCATGAAGG -ACGGAAGCTCAAACCTCACAATGG -ACGGAAGCTCAAACCTCAATGAGG -ACGGAAGCTCAAACCTCAAATGGG -ACGGAAGCTCAAACCTCATCCTGA -ACGGAAGCTCAAACCTCATAGCGA -ACGGAAGCTCAAACCTCACACAGA -ACGGAAGCTCAAACCTCAGCAAGA -ACGGAAGCTCAAACCTCAGGTTGA -ACGGAAGCTCAAACCTCATCCGAT -ACGGAAGCTCAAACCTCATGGCAT -ACGGAAGCTCAAACCTCACGAGAT -ACGGAAGCTCAAACCTCATACCAC -ACGGAAGCTCAAACCTCACAGAAC -ACGGAAGCTCAAACCTCAGTCTAC -ACGGAAGCTCAAACCTCAACGTAC -ACGGAAGCTCAAACCTCAAGTGAC -ACGGAAGCTCAAACCTCACTGTAG -ACGGAAGCTCAAACCTCACCTAAG -ACGGAAGCTCAAACCTCAGTTCAG -ACGGAAGCTCAAACCTCAGCATAG -ACGGAAGCTCAAACCTCAGACAAG -ACGGAAGCTCAAACCTCAAAGCAG -ACGGAAGCTCAAACCTCACGTCAA -ACGGAAGCTCAAACCTCAGCTGAA -ACGGAAGCTCAAACCTCAAGTACG -ACGGAAGCTCAAACCTCAATCCGA -ACGGAAGCTCAAACCTCAATGGGA -ACGGAAGCTCAAACCTCAGTGCAA -ACGGAAGCTCAAACCTCAGAGGAA -ACGGAAGCTCAAACCTCACAGGTA -ACGGAAGCTCAAACCTCAGACTCT -ACGGAAGCTCAAACCTCAAGTCCT -ACGGAAGCTCAAACCTCATAAGCC -ACGGAAGCTCAAACCTCAATAGCC -ACGGAAGCTCAAACCTCATAACCG -ACGGAAGCTCAAACCTCAATGCCA -ACGGAAGCTCAATCCTGTGGAAAC -ACGGAAGCTCAATCCTGTAACACC -ACGGAAGCTCAATCCTGTATCGAG -ACGGAAGCTCAATCCTGTCTCCTT -ACGGAAGCTCAATCCTGTCCTGTT -ACGGAAGCTCAATCCTGTCGGTTT -ACGGAAGCTCAATCCTGTGTGGTT -ACGGAAGCTCAATCCTGTGCCTTT -ACGGAAGCTCAATCCTGTGGTCTT -ACGGAAGCTCAATCCTGTACGCTT -ACGGAAGCTCAATCCTGTAGCGTT -ACGGAAGCTCAATCCTGTTTCGTC -ACGGAAGCTCAATCCTGTTCTCTC -ACGGAAGCTCAATCCTGTTGGATC -ACGGAAGCTCAATCCTGTCACTTC -ACGGAAGCTCAATCCTGTGTACTC -ACGGAAGCTCAATCCTGTGATGTC -ACGGAAGCTCAATCCTGTACAGTC -ACGGAAGCTCAATCCTGTTTGCTG -ACGGAAGCTCAATCCTGTTCCATG -ACGGAAGCTCAATCCTGTTGTGTG -ACGGAAGCTCAATCCTGTCTAGTG -ACGGAAGCTCAATCCTGTCATCTG -ACGGAAGCTCAATCCTGTGAGTTG -ACGGAAGCTCAATCCTGTAGACTG -ACGGAAGCTCAATCCTGTTCGGTA -ACGGAAGCTCAATCCTGTTGCCTA -ACGGAAGCTCAATCCTGTCCACTA -ACGGAAGCTCAATCCTGTGGAGTA -ACGGAAGCTCAATCCTGTTCGTCT -ACGGAAGCTCAATCCTGTTGCACT -ACGGAAGCTCAATCCTGTCTGACT -ACGGAAGCTCAATCCTGTCAACCT -ACGGAAGCTCAATCCTGTGCTACT -ACGGAAGCTCAATCCTGTGGATCT -ACGGAAGCTCAATCCTGTAAGGCT -ACGGAAGCTCAATCCTGTTCAACC -ACGGAAGCTCAATCCTGTTGTTCC -ACGGAAGCTCAATCCTGTATTCCC -ACGGAAGCTCAATCCTGTTTCTCG -ACGGAAGCTCAATCCTGTTAGACG -ACGGAAGCTCAATCCTGTGTAACG -ACGGAAGCTCAATCCTGTACTTCG -ACGGAAGCTCAATCCTGTTACGCA -ACGGAAGCTCAATCCTGTCTTGCA -ACGGAAGCTCAATCCTGTCGAACA -ACGGAAGCTCAATCCTGTCAGTCA -ACGGAAGCTCAATCCTGTGATCCA -ACGGAAGCTCAATCCTGTACGACA -ACGGAAGCTCAATCCTGTAGCTCA -ACGGAAGCTCAATCCTGTTCACGT -ACGGAAGCTCAATCCTGTCGTAGT -ACGGAAGCTCAATCCTGTGTCAGT -ACGGAAGCTCAATCCTGTGAAGGT -ACGGAAGCTCAATCCTGTAACCGT -ACGGAAGCTCAATCCTGTTTGTGC -ACGGAAGCTCAATCCTGTCTAAGC -ACGGAAGCTCAATCCTGTACTAGC -ACGGAAGCTCAATCCTGTAGATGC -ACGGAAGCTCAATCCTGTTGAAGG -ACGGAAGCTCAATCCTGTCAATGG -ACGGAAGCTCAATCCTGTATGAGG -ACGGAAGCTCAATCCTGTAATGGG -ACGGAAGCTCAATCCTGTTCCTGA -ACGGAAGCTCAATCCTGTTAGCGA -ACGGAAGCTCAATCCTGTCACAGA -ACGGAAGCTCAATCCTGTGCAAGA -ACGGAAGCTCAATCCTGTGGTTGA -ACGGAAGCTCAATCCTGTTCCGAT -ACGGAAGCTCAATCCTGTTGGCAT -ACGGAAGCTCAATCCTGTCGAGAT -ACGGAAGCTCAATCCTGTTACCAC -ACGGAAGCTCAATCCTGTCAGAAC -ACGGAAGCTCAATCCTGTGTCTAC -ACGGAAGCTCAATCCTGTACGTAC -ACGGAAGCTCAATCCTGTAGTGAC -ACGGAAGCTCAATCCTGTCTGTAG -ACGGAAGCTCAATCCTGTCCTAAG -ACGGAAGCTCAATCCTGTGTTCAG -ACGGAAGCTCAATCCTGTGCATAG -ACGGAAGCTCAATCCTGTGACAAG -ACGGAAGCTCAATCCTGTAAGCAG -ACGGAAGCTCAATCCTGTCGTCAA -ACGGAAGCTCAATCCTGTGCTGAA -ACGGAAGCTCAATCCTGTAGTACG -ACGGAAGCTCAATCCTGTATCCGA -ACGGAAGCTCAATCCTGTATGGGA -ACGGAAGCTCAATCCTGTGTGCAA -ACGGAAGCTCAATCCTGTGAGGAA -ACGGAAGCTCAATCCTGTCAGGTA -ACGGAAGCTCAATCCTGTGACTCT -ACGGAAGCTCAATCCTGTAGTCCT -ACGGAAGCTCAATCCTGTTAAGCC -ACGGAAGCTCAATCCTGTATAGCC -ACGGAAGCTCAATCCTGTTAACCG -ACGGAAGCTCAATCCTGTATGCCA -ACGGAAGCTCAACCCATTGGAAAC -ACGGAAGCTCAACCCATTAACACC -ACGGAAGCTCAACCCATTATCGAG -ACGGAAGCTCAACCCATTCTCCTT -ACGGAAGCTCAACCCATTCCTGTT -ACGGAAGCTCAACCCATTCGGTTT -ACGGAAGCTCAACCCATTGTGGTT -ACGGAAGCTCAACCCATTGCCTTT -ACGGAAGCTCAACCCATTGGTCTT -ACGGAAGCTCAACCCATTACGCTT -ACGGAAGCTCAACCCATTAGCGTT -ACGGAAGCTCAACCCATTTTCGTC -ACGGAAGCTCAACCCATTTCTCTC -ACGGAAGCTCAACCCATTTGGATC -ACGGAAGCTCAACCCATTCACTTC -ACGGAAGCTCAACCCATTGTACTC -ACGGAAGCTCAACCCATTGATGTC -ACGGAAGCTCAACCCATTACAGTC -ACGGAAGCTCAACCCATTTTGCTG -ACGGAAGCTCAACCCATTTCCATG -ACGGAAGCTCAACCCATTTGTGTG -ACGGAAGCTCAACCCATTCTAGTG -ACGGAAGCTCAACCCATTCATCTG -ACGGAAGCTCAACCCATTGAGTTG -ACGGAAGCTCAACCCATTAGACTG -ACGGAAGCTCAACCCATTTCGGTA -ACGGAAGCTCAACCCATTTGCCTA -ACGGAAGCTCAACCCATTCCACTA -ACGGAAGCTCAACCCATTGGAGTA -ACGGAAGCTCAACCCATTTCGTCT -ACGGAAGCTCAACCCATTTGCACT -ACGGAAGCTCAACCCATTCTGACT -ACGGAAGCTCAACCCATTCAACCT -ACGGAAGCTCAACCCATTGCTACT -ACGGAAGCTCAACCCATTGGATCT -ACGGAAGCTCAACCCATTAAGGCT -ACGGAAGCTCAACCCATTTCAACC -ACGGAAGCTCAACCCATTTGTTCC -ACGGAAGCTCAACCCATTATTCCC -ACGGAAGCTCAACCCATTTTCTCG -ACGGAAGCTCAACCCATTTAGACG -ACGGAAGCTCAACCCATTGTAACG -ACGGAAGCTCAACCCATTACTTCG -ACGGAAGCTCAACCCATTTACGCA -ACGGAAGCTCAACCCATTCTTGCA -ACGGAAGCTCAACCCATTCGAACA -ACGGAAGCTCAACCCATTCAGTCA -ACGGAAGCTCAACCCATTGATCCA -ACGGAAGCTCAACCCATTACGACA -ACGGAAGCTCAACCCATTAGCTCA -ACGGAAGCTCAACCCATTTCACGT -ACGGAAGCTCAACCCATTCGTAGT -ACGGAAGCTCAACCCATTGTCAGT -ACGGAAGCTCAACCCATTGAAGGT -ACGGAAGCTCAACCCATTAACCGT -ACGGAAGCTCAACCCATTTTGTGC -ACGGAAGCTCAACCCATTCTAAGC -ACGGAAGCTCAACCCATTACTAGC -ACGGAAGCTCAACCCATTAGATGC -ACGGAAGCTCAACCCATTTGAAGG -ACGGAAGCTCAACCCATTCAATGG -ACGGAAGCTCAACCCATTATGAGG -ACGGAAGCTCAACCCATTAATGGG -ACGGAAGCTCAACCCATTTCCTGA -ACGGAAGCTCAACCCATTTAGCGA -ACGGAAGCTCAACCCATTCACAGA -ACGGAAGCTCAACCCATTGCAAGA -ACGGAAGCTCAACCCATTGGTTGA -ACGGAAGCTCAACCCATTTCCGAT -ACGGAAGCTCAACCCATTTGGCAT -ACGGAAGCTCAACCCATTCGAGAT -ACGGAAGCTCAACCCATTTACCAC -ACGGAAGCTCAACCCATTCAGAAC -ACGGAAGCTCAACCCATTGTCTAC -ACGGAAGCTCAACCCATTACGTAC -ACGGAAGCTCAACCCATTAGTGAC -ACGGAAGCTCAACCCATTCTGTAG -ACGGAAGCTCAACCCATTCCTAAG -ACGGAAGCTCAACCCATTGTTCAG -ACGGAAGCTCAACCCATTGCATAG -ACGGAAGCTCAACCCATTGACAAG -ACGGAAGCTCAACCCATTAAGCAG -ACGGAAGCTCAACCCATTCGTCAA -ACGGAAGCTCAACCCATTGCTGAA -ACGGAAGCTCAACCCATTAGTACG -ACGGAAGCTCAACCCATTATCCGA -ACGGAAGCTCAACCCATTATGGGA -ACGGAAGCTCAACCCATTGTGCAA -ACGGAAGCTCAACCCATTGAGGAA -ACGGAAGCTCAACCCATTCAGGTA -ACGGAAGCTCAACCCATTGACTCT -ACGGAAGCTCAACCCATTAGTCCT -ACGGAAGCTCAACCCATTTAAGCC -ACGGAAGCTCAACCCATTATAGCC -ACGGAAGCTCAACCCATTTAACCG -ACGGAAGCTCAACCCATTATGCCA -ACGGAAGCTCAATCGTTCGGAAAC -ACGGAAGCTCAATCGTTCAACACC -ACGGAAGCTCAATCGTTCATCGAG -ACGGAAGCTCAATCGTTCCTCCTT -ACGGAAGCTCAATCGTTCCCTGTT -ACGGAAGCTCAATCGTTCCGGTTT -ACGGAAGCTCAATCGTTCGTGGTT -ACGGAAGCTCAATCGTTCGCCTTT -ACGGAAGCTCAATCGTTCGGTCTT -ACGGAAGCTCAATCGTTCACGCTT -ACGGAAGCTCAATCGTTCAGCGTT -ACGGAAGCTCAATCGTTCTTCGTC -ACGGAAGCTCAATCGTTCTCTCTC -ACGGAAGCTCAATCGTTCTGGATC -ACGGAAGCTCAATCGTTCCACTTC -ACGGAAGCTCAATCGTTCGTACTC -ACGGAAGCTCAATCGTTCGATGTC -ACGGAAGCTCAATCGTTCACAGTC -ACGGAAGCTCAATCGTTCTTGCTG -ACGGAAGCTCAATCGTTCTCCATG -ACGGAAGCTCAATCGTTCTGTGTG -ACGGAAGCTCAATCGTTCCTAGTG -ACGGAAGCTCAATCGTTCCATCTG -ACGGAAGCTCAATCGTTCGAGTTG -ACGGAAGCTCAATCGTTCAGACTG -ACGGAAGCTCAATCGTTCTCGGTA -ACGGAAGCTCAATCGTTCTGCCTA -ACGGAAGCTCAATCGTTCCCACTA -ACGGAAGCTCAATCGTTCGGAGTA -ACGGAAGCTCAATCGTTCTCGTCT -ACGGAAGCTCAATCGTTCTGCACT -ACGGAAGCTCAATCGTTCCTGACT -ACGGAAGCTCAATCGTTCCAACCT -ACGGAAGCTCAATCGTTCGCTACT -ACGGAAGCTCAATCGTTCGGATCT -ACGGAAGCTCAATCGTTCAAGGCT -ACGGAAGCTCAATCGTTCTCAACC -ACGGAAGCTCAATCGTTCTGTTCC -ACGGAAGCTCAATCGTTCATTCCC -ACGGAAGCTCAATCGTTCTTCTCG -ACGGAAGCTCAATCGTTCTAGACG -ACGGAAGCTCAATCGTTCGTAACG -ACGGAAGCTCAATCGTTCACTTCG -ACGGAAGCTCAATCGTTCTACGCA -ACGGAAGCTCAATCGTTCCTTGCA -ACGGAAGCTCAATCGTTCCGAACA -ACGGAAGCTCAATCGTTCCAGTCA -ACGGAAGCTCAATCGTTCGATCCA -ACGGAAGCTCAATCGTTCACGACA -ACGGAAGCTCAATCGTTCAGCTCA -ACGGAAGCTCAATCGTTCTCACGT -ACGGAAGCTCAATCGTTCCGTAGT -ACGGAAGCTCAATCGTTCGTCAGT -ACGGAAGCTCAATCGTTCGAAGGT -ACGGAAGCTCAATCGTTCAACCGT -ACGGAAGCTCAATCGTTCTTGTGC -ACGGAAGCTCAATCGTTCCTAAGC -ACGGAAGCTCAATCGTTCACTAGC -ACGGAAGCTCAATCGTTCAGATGC -ACGGAAGCTCAATCGTTCTGAAGG -ACGGAAGCTCAATCGTTCCAATGG -ACGGAAGCTCAATCGTTCATGAGG -ACGGAAGCTCAATCGTTCAATGGG -ACGGAAGCTCAATCGTTCTCCTGA -ACGGAAGCTCAATCGTTCTAGCGA -ACGGAAGCTCAATCGTTCCACAGA -ACGGAAGCTCAATCGTTCGCAAGA -ACGGAAGCTCAATCGTTCGGTTGA -ACGGAAGCTCAATCGTTCTCCGAT -ACGGAAGCTCAATCGTTCTGGCAT -ACGGAAGCTCAATCGTTCCGAGAT -ACGGAAGCTCAATCGTTCTACCAC -ACGGAAGCTCAATCGTTCCAGAAC -ACGGAAGCTCAATCGTTCGTCTAC -ACGGAAGCTCAATCGTTCACGTAC -ACGGAAGCTCAATCGTTCAGTGAC -ACGGAAGCTCAATCGTTCCTGTAG -ACGGAAGCTCAATCGTTCCCTAAG -ACGGAAGCTCAATCGTTCGTTCAG -ACGGAAGCTCAATCGTTCGCATAG -ACGGAAGCTCAATCGTTCGACAAG -ACGGAAGCTCAATCGTTCAAGCAG -ACGGAAGCTCAATCGTTCCGTCAA -ACGGAAGCTCAATCGTTCGCTGAA -ACGGAAGCTCAATCGTTCAGTACG -ACGGAAGCTCAATCGTTCATCCGA -ACGGAAGCTCAATCGTTCATGGGA -ACGGAAGCTCAATCGTTCGTGCAA -ACGGAAGCTCAATCGTTCGAGGAA -ACGGAAGCTCAATCGTTCCAGGTA -ACGGAAGCTCAATCGTTCGACTCT -ACGGAAGCTCAATCGTTCAGTCCT -ACGGAAGCTCAATCGTTCTAAGCC -ACGGAAGCTCAATCGTTCATAGCC -ACGGAAGCTCAATCGTTCTAACCG -ACGGAAGCTCAATCGTTCATGCCA -ACGGAAGCTCAAACGTAGGGAAAC -ACGGAAGCTCAAACGTAGAACACC -ACGGAAGCTCAAACGTAGATCGAG -ACGGAAGCTCAAACGTAGCTCCTT -ACGGAAGCTCAAACGTAGCCTGTT -ACGGAAGCTCAAACGTAGCGGTTT -ACGGAAGCTCAAACGTAGGTGGTT -ACGGAAGCTCAAACGTAGGCCTTT -ACGGAAGCTCAAACGTAGGGTCTT -ACGGAAGCTCAAACGTAGACGCTT -ACGGAAGCTCAAACGTAGAGCGTT -ACGGAAGCTCAAACGTAGTTCGTC -ACGGAAGCTCAAACGTAGTCTCTC -ACGGAAGCTCAAACGTAGTGGATC -ACGGAAGCTCAAACGTAGCACTTC -ACGGAAGCTCAAACGTAGGTACTC -ACGGAAGCTCAAACGTAGGATGTC -ACGGAAGCTCAAACGTAGACAGTC -ACGGAAGCTCAAACGTAGTTGCTG -ACGGAAGCTCAAACGTAGTCCATG -ACGGAAGCTCAAACGTAGTGTGTG -ACGGAAGCTCAAACGTAGCTAGTG -ACGGAAGCTCAAACGTAGCATCTG -ACGGAAGCTCAAACGTAGGAGTTG -ACGGAAGCTCAAACGTAGAGACTG -ACGGAAGCTCAAACGTAGTCGGTA -ACGGAAGCTCAAACGTAGTGCCTA -ACGGAAGCTCAAACGTAGCCACTA -ACGGAAGCTCAAACGTAGGGAGTA -ACGGAAGCTCAAACGTAGTCGTCT -ACGGAAGCTCAAACGTAGTGCACT -ACGGAAGCTCAAACGTAGCTGACT -ACGGAAGCTCAAACGTAGCAACCT -ACGGAAGCTCAAACGTAGGCTACT -ACGGAAGCTCAAACGTAGGGATCT -ACGGAAGCTCAAACGTAGAAGGCT -ACGGAAGCTCAAACGTAGTCAACC -ACGGAAGCTCAAACGTAGTGTTCC -ACGGAAGCTCAAACGTAGATTCCC -ACGGAAGCTCAAACGTAGTTCTCG -ACGGAAGCTCAAACGTAGTAGACG -ACGGAAGCTCAAACGTAGGTAACG -ACGGAAGCTCAAACGTAGACTTCG -ACGGAAGCTCAAACGTAGTACGCA -ACGGAAGCTCAAACGTAGCTTGCA -ACGGAAGCTCAAACGTAGCGAACA -ACGGAAGCTCAAACGTAGCAGTCA -ACGGAAGCTCAAACGTAGGATCCA -ACGGAAGCTCAAACGTAGACGACA -ACGGAAGCTCAAACGTAGAGCTCA -ACGGAAGCTCAAACGTAGTCACGT -ACGGAAGCTCAAACGTAGCGTAGT -ACGGAAGCTCAAACGTAGGTCAGT -ACGGAAGCTCAAACGTAGGAAGGT -ACGGAAGCTCAAACGTAGAACCGT -ACGGAAGCTCAAACGTAGTTGTGC -ACGGAAGCTCAAACGTAGCTAAGC -ACGGAAGCTCAAACGTAGACTAGC -ACGGAAGCTCAAACGTAGAGATGC -ACGGAAGCTCAAACGTAGTGAAGG -ACGGAAGCTCAAACGTAGCAATGG -ACGGAAGCTCAAACGTAGATGAGG -ACGGAAGCTCAAACGTAGAATGGG -ACGGAAGCTCAAACGTAGTCCTGA -ACGGAAGCTCAAACGTAGTAGCGA -ACGGAAGCTCAAACGTAGCACAGA -ACGGAAGCTCAAACGTAGGCAAGA -ACGGAAGCTCAAACGTAGGGTTGA -ACGGAAGCTCAAACGTAGTCCGAT -ACGGAAGCTCAAACGTAGTGGCAT -ACGGAAGCTCAAACGTAGCGAGAT -ACGGAAGCTCAAACGTAGTACCAC -ACGGAAGCTCAAACGTAGCAGAAC -ACGGAAGCTCAAACGTAGGTCTAC -ACGGAAGCTCAAACGTAGACGTAC -ACGGAAGCTCAAACGTAGAGTGAC -ACGGAAGCTCAAACGTAGCTGTAG -ACGGAAGCTCAAACGTAGCCTAAG -ACGGAAGCTCAAACGTAGGTTCAG -ACGGAAGCTCAAACGTAGGCATAG -ACGGAAGCTCAAACGTAGGACAAG -ACGGAAGCTCAAACGTAGAAGCAG -ACGGAAGCTCAAACGTAGCGTCAA -ACGGAAGCTCAAACGTAGGCTGAA -ACGGAAGCTCAAACGTAGAGTACG -ACGGAAGCTCAAACGTAGATCCGA -ACGGAAGCTCAAACGTAGATGGGA -ACGGAAGCTCAAACGTAGGTGCAA -ACGGAAGCTCAAACGTAGGAGGAA -ACGGAAGCTCAAACGTAGCAGGTA -ACGGAAGCTCAAACGTAGGACTCT -ACGGAAGCTCAAACGTAGAGTCCT -ACGGAAGCTCAAACGTAGTAAGCC -ACGGAAGCTCAAACGTAGATAGCC -ACGGAAGCTCAAACGTAGTAACCG -ACGGAAGCTCAAACGTAGATGCCA -ACGGAAGCTCAAACGGTAGGAAAC -ACGGAAGCTCAAACGGTAAACACC -ACGGAAGCTCAAACGGTAATCGAG -ACGGAAGCTCAAACGGTACTCCTT -ACGGAAGCTCAAACGGTACCTGTT -ACGGAAGCTCAAACGGTACGGTTT -ACGGAAGCTCAAACGGTAGTGGTT -ACGGAAGCTCAAACGGTAGCCTTT -ACGGAAGCTCAAACGGTAGGTCTT -ACGGAAGCTCAAACGGTAACGCTT -ACGGAAGCTCAAACGGTAAGCGTT -ACGGAAGCTCAAACGGTATTCGTC -ACGGAAGCTCAAACGGTATCTCTC -ACGGAAGCTCAAACGGTATGGATC -ACGGAAGCTCAAACGGTACACTTC -ACGGAAGCTCAAACGGTAGTACTC -ACGGAAGCTCAAACGGTAGATGTC -ACGGAAGCTCAAACGGTAACAGTC -ACGGAAGCTCAAACGGTATTGCTG -ACGGAAGCTCAAACGGTATCCATG -ACGGAAGCTCAAACGGTATGTGTG -ACGGAAGCTCAAACGGTACTAGTG -ACGGAAGCTCAAACGGTACATCTG -ACGGAAGCTCAAACGGTAGAGTTG -ACGGAAGCTCAAACGGTAAGACTG -ACGGAAGCTCAAACGGTATCGGTA -ACGGAAGCTCAAACGGTATGCCTA -ACGGAAGCTCAAACGGTACCACTA -ACGGAAGCTCAAACGGTAGGAGTA -ACGGAAGCTCAAACGGTATCGTCT -ACGGAAGCTCAAACGGTATGCACT -ACGGAAGCTCAAACGGTACTGACT -ACGGAAGCTCAAACGGTACAACCT -ACGGAAGCTCAAACGGTAGCTACT -ACGGAAGCTCAAACGGTAGGATCT -ACGGAAGCTCAAACGGTAAAGGCT -ACGGAAGCTCAAACGGTATCAACC -ACGGAAGCTCAAACGGTATGTTCC -ACGGAAGCTCAAACGGTAATTCCC -ACGGAAGCTCAAACGGTATTCTCG -ACGGAAGCTCAAACGGTATAGACG -ACGGAAGCTCAAACGGTAGTAACG -ACGGAAGCTCAAACGGTAACTTCG -ACGGAAGCTCAAACGGTATACGCA -ACGGAAGCTCAAACGGTACTTGCA -ACGGAAGCTCAAACGGTACGAACA -ACGGAAGCTCAAACGGTACAGTCA -ACGGAAGCTCAAACGGTAGATCCA -ACGGAAGCTCAAACGGTAACGACA -ACGGAAGCTCAAACGGTAAGCTCA -ACGGAAGCTCAAACGGTATCACGT -ACGGAAGCTCAAACGGTACGTAGT -ACGGAAGCTCAAACGGTAGTCAGT -ACGGAAGCTCAAACGGTAGAAGGT -ACGGAAGCTCAAACGGTAAACCGT -ACGGAAGCTCAAACGGTATTGTGC -ACGGAAGCTCAAACGGTACTAAGC -ACGGAAGCTCAAACGGTAACTAGC -ACGGAAGCTCAAACGGTAAGATGC -ACGGAAGCTCAAACGGTATGAAGG -ACGGAAGCTCAAACGGTACAATGG -ACGGAAGCTCAAACGGTAATGAGG -ACGGAAGCTCAAACGGTAAATGGG -ACGGAAGCTCAAACGGTATCCTGA -ACGGAAGCTCAAACGGTATAGCGA -ACGGAAGCTCAAACGGTACACAGA -ACGGAAGCTCAAACGGTAGCAAGA -ACGGAAGCTCAAACGGTAGGTTGA -ACGGAAGCTCAAACGGTATCCGAT -ACGGAAGCTCAAACGGTATGGCAT -ACGGAAGCTCAAACGGTACGAGAT -ACGGAAGCTCAAACGGTATACCAC -ACGGAAGCTCAAACGGTACAGAAC -ACGGAAGCTCAAACGGTAGTCTAC -ACGGAAGCTCAAACGGTAACGTAC -ACGGAAGCTCAAACGGTAAGTGAC -ACGGAAGCTCAAACGGTACTGTAG -ACGGAAGCTCAAACGGTACCTAAG -ACGGAAGCTCAAACGGTAGTTCAG -ACGGAAGCTCAAACGGTAGCATAG -ACGGAAGCTCAAACGGTAGACAAG -ACGGAAGCTCAAACGGTAAAGCAG -ACGGAAGCTCAAACGGTACGTCAA -ACGGAAGCTCAAACGGTAGCTGAA -ACGGAAGCTCAAACGGTAAGTACG -ACGGAAGCTCAAACGGTAATCCGA -ACGGAAGCTCAAACGGTAATGGGA -ACGGAAGCTCAAACGGTAGTGCAA -ACGGAAGCTCAAACGGTAGAGGAA -ACGGAAGCTCAAACGGTACAGGTA -ACGGAAGCTCAAACGGTAGACTCT -ACGGAAGCTCAAACGGTAAGTCCT -ACGGAAGCTCAAACGGTATAAGCC -ACGGAAGCTCAAACGGTAATAGCC -ACGGAAGCTCAAACGGTATAACCG -ACGGAAGCTCAAACGGTAATGCCA -ACGGAAGCTCAATCGACTGGAAAC -ACGGAAGCTCAATCGACTAACACC -ACGGAAGCTCAATCGACTATCGAG -ACGGAAGCTCAATCGACTCTCCTT -ACGGAAGCTCAATCGACTCCTGTT -ACGGAAGCTCAATCGACTCGGTTT -ACGGAAGCTCAATCGACTGTGGTT -ACGGAAGCTCAATCGACTGCCTTT -ACGGAAGCTCAATCGACTGGTCTT -ACGGAAGCTCAATCGACTACGCTT -ACGGAAGCTCAATCGACTAGCGTT -ACGGAAGCTCAATCGACTTTCGTC -ACGGAAGCTCAATCGACTTCTCTC -ACGGAAGCTCAATCGACTTGGATC -ACGGAAGCTCAATCGACTCACTTC -ACGGAAGCTCAATCGACTGTACTC -ACGGAAGCTCAATCGACTGATGTC -ACGGAAGCTCAATCGACTACAGTC -ACGGAAGCTCAATCGACTTTGCTG -ACGGAAGCTCAATCGACTTCCATG -ACGGAAGCTCAATCGACTTGTGTG -ACGGAAGCTCAATCGACTCTAGTG -ACGGAAGCTCAATCGACTCATCTG -ACGGAAGCTCAATCGACTGAGTTG -ACGGAAGCTCAATCGACTAGACTG -ACGGAAGCTCAATCGACTTCGGTA -ACGGAAGCTCAATCGACTTGCCTA -ACGGAAGCTCAATCGACTCCACTA -ACGGAAGCTCAATCGACTGGAGTA -ACGGAAGCTCAATCGACTTCGTCT -ACGGAAGCTCAATCGACTTGCACT -ACGGAAGCTCAATCGACTCTGACT -ACGGAAGCTCAATCGACTCAACCT -ACGGAAGCTCAATCGACTGCTACT -ACGGAAGCTCAATCGACTGGATCT -ACGGAAGCTCAATCGACTAAGGCT -ACGGAAGCTCAATCGACTTCAACC -ACGGAAGCTCAATCGACTTGTTCC -ACGGAAGCTCAATCGACTATTCCC -ACGGAAGCTCAATCGACTTTCTCG -ACGGAAGCTCAATCGACTTAGACG -ACGGAAGCTCAATCGACTGTAACG -ACGGAAGCTCAATCGACTACTTCG -ACGGAAGCTCAATCGACTTACGCA -ACGGAAGCTCAATCGACTCTTGCA -ACGGAAGCTCAATCGACTCGAACA -ACGGAAGCTCAATCGACTCAGTCA -ACGGAAGCTCAATCGACTGATCCA -ACGGAAGCTCAATCGACTACGACA -ACGGAAGCTCAATCGACTAGCTCA -ACGGAAGCTCAATCGACTTCACGT -ACGGAAGCTCAATCGACTCGTAGT -ACGGAAGCTCAATCGACTGTCAGT -ACGGAAGCTCAATCGACTGAAGGT -ACGGAAGCTCAATCGACTAACCGT -ACGGAAGCTCAATCGACTTTGTGC -ACGGAAGCTCAATCGACTCTAAGC -ACGGAAGCTCAATCGACTACTAGC -ACGGAAGCTCAATCGACTAGATGC -ACGGAAGCTCAATCGACTTGAAGG -ACGGAAGCTCAATCGACTCAATGG -ACGGAAGCTCAATCGACTATGAGG -ACGGAAGCTCAATCGACTAATGGG -ACGGAAGCTCAATCGACTTCCTGA -ACGGAAGCTCAATCGACTTAGCGA -ACGGAAGCTCAATCGACTCACAGA -ACGGAAGCTCAATCGACTGCAAGA -ACGGAAGCTCAATCGACTGGTTGA -ACGGAAGCTCAATCGACTTCCGAT -ACGGAAGCTCAATCGACTTGGCAT -ACGGAAGCTCAATCGACTCGAGAT -ACGGAAGCTCAATCGACTTACCAC -ACGGAAGCTCAATCGACTCAGAAC -ACGGAAGCTCAATCGACTGTCTAC -ACGGAAGCTCAATCGACTACGTAC -ACGGAAGCTCAATCGACTAGTGAC -ACGGAAGCTCAATCGACTCTGTAG -ACGGAAGCTCAATCGACTCCTAAG -ACGGAAGCTCAATCGACTGTTCAG -ACGGAAGCTCAATCGACTGCATAG -ACGGAAGCTCAATCGACTGACAAG -ACGGAAGCTCAATCGACTAAGCAG -ACGGAAGCTCAATCGACTCGTCAA -ACGGAAGCTCAATCGACTGCTGAA -ACGGAAGCTCAATCGACTAGTACG -ACGGAAGCTCAATCGACTATCCGA -ACGGAAGCTCAATCGACTATGGGA -ACGGAAGCTCAATCGACTGTGCAA -ACGGAAGCTCAATCGACTGAGGAA -ACGGAAGCTCAATCGACTCAGGTA -ACGGAAGCTCAATCGACTGACTCT -ACGGAAGCTCAATCGACTAGTCCT -ACGGAAGCTCAATCGACTTAAGCC -ACGGAAGCTCAATCGACTATAGCC -ACGGAAGCTCAATCGACTTAACCG -ACGGAAGCTCAATCGACTATGCCA -ACGGAAGCTCAAGCATACGGAAAC -ACGGAAGCTCAAGCATACAACACC -ACGGAAGCTCAAGCATACATCGAG -ACGGAAGCTCAAGCATACCTCCTT -ACGGAAGCTCAAGCATACCCTGTT -ACGGAAGCTCAAGCATACCGGTTT -ACGGAAGCTCAAGCATACGTGGTT -ACGGAAGCTCAAGCATACGCCTTT -ACGGAAGCTCAAGCATACGGTCTT -ACGGAAGCTCAAGCATACACGCTT -ACGGAAGCTCAAGCATACAGCGTT -ACGGAAGCTCAAGCATACTTCGTC -ACGGAAGCTCAAGCATACTCTCTC -ACGGAAGCTCAAGCATACTGGATC -ACGGAAGCTCAAGCATACCACTTC -ACGGAAGCTCAAGCATACGTACTC -ACGGAAGCTCAAGCATACGATGTC -ACGGAAGCTCAAGCATACACAGTC -ACGGAAGCTCAAGCATACTTGCTG -ACGGAAGCTCAAGCATACTCCATG -ACGGAAGCTCAAGCATACTGTGTG -ACGGAAGCTCAAGCATACCTAGTG -ACGGAAGCTCAAGCATACCATCTG -ACGGAAGCTCAAGCATACGAGTTG -ACGGAAGCTCAAGCATACAGACTG -ACGGAAGCTCAAGCATACTCGGTA -ACGGAAGCTCAAGCATACTGCCTA -ACGGAAGCTCAAGCATACCCACTA -ACGGAAGCTCAAGCATACGGAGTA -ACGGAAGCTCAAGCATACTCGTCT -ACGGAAGCTCAAGCATACTGCACT -ACGGAAGCTCAAGCATACCTGACT -ACGGAAGCTCAAGCATACCAACCT -ACGGAAGCTCAAGCATACGCTACT -ACGGAAGCTCAAGCATACGGATCT -ACGGAAGCTCAAGCATACAAGGCT -ACGGAAGCTCAAGCATACTCAACC -ACGGAAGCTCAAGCATACTGTTCC -ACGGAAGCTCAAGCATACATTCCC -ACGGAAGCTCAAGCATACTTCTCG -ACGGAAGCTCAAGCATACTAGACG -ACGGAAGCTCAAGCATACGTAACG -ACGGAAGCTCAAGCATACACTTCG -ACGGAAGCTCAAGCATACTACGCA -ACGGAAGCTCAAGCATACCTTGCA -ACGGAAGCTCAAGCATACCGAACA -ACGGAAGCTCAAGCATACCAGTCA -ACGGAAGCTCAAGCATACGATCCA -ACGGAAGCTCAAGCATACACGACA -ACGGAAGCTCAAGCATACAGCTCA -ACGGAAGCTCAAGCATACTCACGT -ACGGAAGCTCAAGCATACCGTAGT -ACGGAAGCTCAAGCATACGTCAGT -ACGGAAGCTCAAGCATACGAAGGT -ACGGAAGCTCAAGCATACAACCGT -ACGGAAGCTCAAGCATACTTGTGC -ACGGAAGCTCAAGCATACCTAAGC -ACGGAAGCTCAAGCATACACTAGC -ACGGAAGCTCAAGCATACAGATGC -ACGGAAGCTCAAGCATACTGAAGG -ACGGAAGCTCAAGCATACCAATGG -ACGGAAGCTCAAGCATACATGAGG -ACGGAAGCTCAAGCATACAATGGG -ACGGAAGCTCAAGCATACTCCTGA -ACGGAAGCTCAAGCATACTAGCGA -ACGGAAGCTCAAGCATACCACAGA -ACGGAAGCTCAAGCATACGCAAGA -ACGGAAGCTCAAGCATACGGTTGA -ACGGAAGCTCAAGCATACTCCGAT -ACGGAAGCTCAAGCATACTGGCAT -ACGGAAGCTCAAGCATACCGAGAT -ACGGAAGCTCAAGCATACTACCAC -ACGGAAGCTCAAGCATACCAGAAC -ACGGAAGCTCAAGCATACGTCTAC -ACGGAAGCTCAAGCATACACGTAC -ACGGAAGCTCAAGCATACAGTGAC -ACGGAAGCTCAAGCATACCTGTAG -ACGGAAGCTCAAGCATACCCTAAG -ACGGAAGCTCAAGCATACGTTCAG -ACGGAAGCTCAAGCATACGCATAG -ACGGAAGCTCAAGCATACGACAAG -ACGGAAGCTCAAGCATACAAGCAG -ACGGAAGCTCAAGCATACCGTCAA -ACGGAAGCTCAAGCATACGCTGAA -ACGGAAGCTCAAGCATACAGTACG -ACGGAAGCTCAAGCATACATCCGA -ACGGAAGCTCAAGCATACATGGGA -ACGGAAGCTCAAGCATACGTGCAA -ACGGAAGCTCAAGCATACGAGGAA -ACGGAAGCTCAAGCATACCAGGTA -ACGGAAGCTCAAGCATACGACTCT -ACGGAAGCTCAAGCATACAGTCCT -ACGGAAGCTCAAGCATACTAAGCC -ACGGAAGCTCAAGCATACATAGCC -ACGGAAGCTCAAGCATACTAACCG -ACGGAAGCTCAAGCATACATGCCA -ACGGAAGCTCAAGCACTTGGAAAC -ACGGAAGCTCAAGCACTTAACACC -ACGGAAGCTCAAGCACTTATCGAG -ACGGAAGCTCAAGCACTTCTCCTT -ACGGAAGCTCAAGCACTTCCTGTT -ACGGAAGCTCAAGCACTTCGGTTT -ACGGAAGCTCAAGCACTTGTGGTT -ACGGAAGCTCAAGCACTTGCCTTT -ACGGAAGCTCAAGCACTTGGTCTT -ACGGAAGCTCAAGCACTTACGCTT -ACGGAAGCTCAAGCACTTAGCGTT -ACGGAAGCTCAAGCACTTTTCGTC -ACGGAAGCTCAAGCACTTTCTCTC -ACGGAAGCTCAAGCACTTTGGATC -ACGGAAGCTCAAGCACTTCACTTC -ACGGAAGCTCAAGCACTTGTACTC -ACGGAAGCTCAAGCACTTGATGTC -ACGGAAGCTCAAGCACTTACAGTC -ACGGAAGCTCAAGCACTTTTGCTG -ACGGAAGCTCAAGCACTTTCCATG -ACGGAAGCTCAAGCACTTTGTGTG -ACGGAAGCTCAAGCACTTCTAGTG -ACGGAAGCTCAAGCACTTCATCTG -ACGGAAGCTCAAGCACTTGAGTTG -ACGGAAGCTCAAGCACTTAGACTG -ACGGAAGCTCAAGCACTTTCGGTA -ACGGAAGCTCAAGCACTTTGCCTA -ACGGAAGCTCAAGCACTTCCACTA -ACGGAAGCTCAAGCACTTGGAGTA -ACGGAAGCTCAAGCACTTTCGTCT -ACGGAAGCTCAAGCACTTTGCACT -ACGGAAGCTCAAGCACTTCTGACT -ACGGAAGCTCAAGCACTTCAACCT -ACGGAAGCTCAAGCACTTGCTACT -ACGGAAGCTCAAGCACTTGGATCT -ACGGAAGCTCAAGCACTTAAGGCT -ACGGAAGCTCAAGCACTTTCAACC -ACGGAAGCTCAAGCACTTTGTTCC -ACGGAAGCTCAAGCACTTATTCCC -ACGGAAGCTCAAGCACTTTTCTCG -ACGGAAGCTCAAGCACTTTAGACG -ACGGAAGCTCAAGCACTTGTAACG -ACGGAAGCTCAAGCACTTACTTCG -ACGGAAGCTCAAGCACTTTACGCA -ACGGAAGCTCAAGCACTTCTTGCA -ACGGAAGCTCAAGCACTTCGAACA -ACGGAAGCTCAAGCACTTCAGTCA -ACGGAAGCTCAAGCACTTGATCCA -ACGGAAGCTCAAGCACTTACGACA -ACGGAAGCTCAAGCACTTAGCTCA -ACGGAAGCTCAAGCACTTTCACGT -ACGGAAGCTCAAGCACTTCGTAGT -ACGGAAGCTCAAGCACTTGTCAGT -ACGGAAGCTCAAGCACTTGAAGGT -ACGGAAGCTCAAGCACTTAACCGT -ACGGAAGCTCAAGCACTTTTGTGC -ACGGAAGCTCAAGCACTTCTAAGC -ACGGAAGCTCAAGCACTTACTAGC -ACGGAAGCTCAAGCACTTAGATGC -ACGGAAGCTCAAGCACTTTGAAGG -ACGGAAGCTCAAGCACTTCAATGG -ACGGAAGCTCAAGCACTTATGAGG -ACGGAAGCTCAAGCACTTAATGGG -ACGGAAGCTCAAGCACTTTCCTGA -ACGGAAGCTCAAGCACTTTAGCGA -ACGGAAGCTCAAGCACTTCACAGA -ACGGAAGCTCAAGCACTTGCAAGA -ACGGAAGCTCAAGCACTTGGTTGA -ACGGAAGCTCAAGCACTTTCCGAT -ACGGAAGCTCAAGCACTTTGGCAT -ACGGAAGCTCAAGCACTTCGAGAT -ACGGAAGCTCAAGCACTTTACCAC -ACGGAAGCTCAAGCACTTCAGAAC -ACGGAAGCTCAAGCACTTGTCTAC -ACGGAAGCTCAAGCACTTACGTAC -ACGGAAGCTCAAGCACTTAGTGAC -ACGGAAGCTCAAGCACTTCTGTAG -ACGGAAGCTCAAGCACTTCCTAAG -ACGGAAGCTCAAGCACTTGTTCAG -ACGGAAGCTCAAGCACTTGCATAG -ACGGAAGCTCAAGCACTTGACAAG -ACGGAAGCTCAAGCACTTAAGCAG -ACGGAAGCTCAAGCACTTCGTCAA -ACGGAAGCTCAAGCACTTGCTGAA -ACGGAAGCTCAAGCACTTAGTACG -ACGGAAGCTCAAGCACTTATCCGA -ACGGAAGCTCAAGCACTTATGGGA -ACGGAAGCTCAAGCACTTGTGCAA -ACGGAAGCTCAAGCACTTGAGGAA -ACGGAAGCTCAAGCACTTCAGGTA -ACGGAAGCTCAAGCACTTGACTCT -ACGGAAGCTCAAGCACTTAGTCCT -ACGGAAGCTCAAGCACTTTAAGCC -ACGGAAGCTCAAGCACTTATAGCC -ACGGAAGCTCAAGCACTTTAACCG -ACGGAAGCTCAAGCACTTATGCCA -ACGGAAGCTCAAACACGAGGAAAC -ACGGAAGCTCAAACACGAAACACC -ACGGAAGCTCAAACACGAATCGAG -ACGGAAGCTCAAACACGACTCCTT -ACGGAAGCTCAAACACGACCTGTT -ACGGAAGCTCAAACACGACGGTTT -ACGGAAGCTCAAACACGAGTGGTT -ACGGAAGCTCAAACACGAGCCTTT -ACGGAAGCTCAAACACGAGGTCTT -ACGGAAGCTCAAACACGAACGCTT -ACGGAAGCTCAAACACGAAGCGTT -ACGGAAGCTCAAACACGATTCGTC -ACGGAAGCTCAAACACGATCTCTC -ACGGAAGCTCAAACACGATGGATC -ACGGAAGCTCAAACACGACACTTC -ACGGAAGCTCAAACACGAGTACTC -ACGGAAGCTCAAACACGAGATGTC -ACGGAAGCTCAAACACGAACAGTC -ACGGAAGCTCAAACACGATTGCTG -ACGGAAGCTCAAACACGATCCATG -ACGGAAGCTCAAACACGATGTGTG -ACGGAAGCTCAAACACGACTAGTG -ACGGAAGCTCAAACACGACATCTG -ACGGAAGCTCAAACACGAGAGTTG -ACGGAAGCTCAAACACGAAGACTG -ACGGAAGCTCAAACACGATCGGTA -ACGGAAGCTCAAACACGATGCCTA -ACGGAAGCTCAAACACGACCACTA -ACGGAAGCTCAAACACGAGGAGTA -ACGGAAGCTCAAACACGATCGTCT -ACGGAAGCTCAAACACGATGCACT -ACGGAAGCTCAAACACGACTGACT -ACGGAAGCTCAAACACGACAACCT -ACGGAAGCTCAAACACGAGCTACT -ACGGAAGCTCAAACACGAGGATCT -ACGGAAGCTCAAACACGAAAGGCT -ACGGAAGCTCAAACACGATCAACC -ACGGAAGCTCAAACACGATGTTCC -ACGGAAGCTCAAACACGAATTCCC -ACGGAAGCTCAAACACGATTCTCG -ACGGAAGCTCAAACACGATAGACG -ACGGAAGCTCAAACACGAGTAACG -ACGGAAGCTCAAACACGAACTTCG -ACGGAAGCTCAAACACGATACGCA -ACGGAAGCTCAAACACGACTTGCA -ACGGAAGCTCAAACACGACGAACA -ACGGAAGCTCAAACACGACAGTCA -ACGGAAGCTCAAACACGAGATCCA -ACGGAAGCTCAAACACGAACGACA -ACGGAAGCTCAAACACGAAGCTCA -ACGGAAGCTCAAACACGATCACGT -ACGGAAGCTCAAACACGACGTAGT -ACGGAAGCTCAAACACGAGTCAGT -ACGGAAGCTCAAACACGAGAAGGT -ACGGAAGCTCAAACACGAAACCGT -ACGGAAGCTCAAACACGATTGTGC -ACGGAAGCTCAAACACGACTAAGC -ACGGAAGCTCAAACACGAACTAGC -ACGGAAGCTCAAACACGAAGATGC -ACGGAAGCTCAAACACGATGAAGG -ACGGAAGCTCAAACACGACAATGG -ACGGAAGCTCAAACACGAATGAGG -ACGGAAGCTCAAACACGAAATGGG -ACGGAAGCTCAAACACGATCCTGA -ACGGAAGCTCAAACACGATAGCGA -ACGGAAGCTCAAACACGACACAGA -ACGGAAGCTCAAACACGAGCAAGA -ACGGAAGCTCAAACACGAGGTTGA -ACGGAAGCTCAAACACGATCCGAT -ACGGAAGCTCAAACACGATGGCAT -ACGGAAGCTCAAACACGACGAGAT -ACGGAAGCTCAAACACGATACCAC -ACGGAAGCTCAAACACGACAGAAC -ACGGAAGCTCAAACACGAGTCTAC -ACGGAAGCTCAAACACGAACGTAC -ACGGAAGCTCAAACACGAAGTGAC -ACGGAAGCTCAAACACGACTGTAG -ACGGAAGCTCAAACACGACCTAAG -ACGGAAGCTCAAACACGAGTTCAG -ACGGAAGCTCAAACACGAGCATAG -ACGGAAGCTCAAACACGAGACAAG -ACGGAAGCTCAAACACGAAAGCAG -ACGGAAGCTCAAACACGACGTCAA -ACGGAAGCTCAAACACGAGCTGAA -ACGGAAGCTCAAACACGAAGTACG -ACGGAAGCTCAAACACGAATCCGA -ACGGAAGCTCAAACACGAATGGGA -ACGGAAGCTCAAACACGAGTGCAA -ACGGAAGCTCAAACACGAGAGGAA -ACGGAAGCTCAAACACGACAGGTA -ACGGAAGCTCAAACACGAGACTCT -ACGGAAGCTCAAACACGAAGTCCT -ACGGAAGCTCAAACACGATAAGCC -ACGGAAGCTCAAACACGAATAGCC -ACGGAAGCTCAAACACGATAACCG -ACGGAAGCTCAAACACGAATGCCA -ACGGAAGCTCAATCACAGGGAAAC -ACGGAAGCTCAATCACAGAACACC -ACGGAAGCTCAATCACAGATCGAG -ACGGAAGCTCAATCACAGCTCCTT -ACGGAAGCTCAATCACAGCCTGTT -ACGGAAGCTCAATCACAGCGGTTT -ACGGAAGCTCAATCACAGGTGGTT -ACGGAAGCTCAATCACAGGCCTTT -ACGGAAGCTCAATCACAGGGTCTT -ACGGAAGCTCAATCACAGACGCTT -ACGGAAGCTCAATCACAGAGCGTT -ACGGAAGCTCAATCACAGTTCGTC -ACGGAAGCTCAATCACAGTCTCTC -ACGGAAGCTCAATCACAGTGGATC -ACGGAAGCTCAATCACAGCACTTC -ACGGAAGCTCAATCACAGGTACTC -ACGGAAGCTCAATCACAGGATGTC -ACGGAAGCTCAATCACAGACAGTC -ACGGAAGCTCAATCACAGTTGCTG -ACGGAAGCTCAATCACAGTCCATG -ACGGAAGCTCAATCACAGTGTGTG -ACGGAAGCTCAATCACAGCTAGTG -ACGGAAGCTCAATCACAGCATCTG -ACGGAAGCTCAATCACAGGAGTTG -ACGGAAGCTCAATCACAGAGACTG -ACGGAAGCTCAATCACAGTCGGTA -ACGGAAGCTCAATCACAGTGCCTA -ACGGAAGCTCAATCACAGCCACTA -ACGGAAGCTCAATCACAGGGAGTA -ACGGAAGCTCAATCACAGTCGTCT -ACGGAAGCTCAATCACAGTGCACT -ACGGAAGCTCAATCACAGCTGACT -ACGGAAGCTCAATCACAGCAACCT -ACGGAAGCTCAATCACAGGCTACT -ACGGAAGCTCAATCACAGGGATCT -ACGGAAGCTCAATCACAGAAGGCT -ACGGAAGCTCAATCACAGTCAACC -ACGGAAGCTCAATCACAGTGTTCC -ACGGAAGCTCAATCACAGATTCCC -ACGGAAGCTCAATCACAGTTCTCG -ACGGAAGCTCAATCACAGTAGACG -ACGGAAGCTCAATCACAGGTAACG -ACGGAAGCTCAATCACAGACTTCG -ACGGAAGCTCAATCACAGTACGCA -ACGGAAGCTCAATCACAGCTTGCA -ACGGAAGCTCAATCACAGCGAACA -ACGGAAGCTCAATCACAGCAGTCA -ACGGAAGCTCAATCACAGGATCCA -ACGGAAGCTCAATCACAGACGACA -ACGGAAGCTCAATCACAGAGCTCA -ACGGAAGCTCAATCACAGTCACGT -ACGGAAGCTCAATCACAGCGTAGT -ACGGAAGCTCAATCACAGGTCAGT -ACGGAAGCTCAATCACAGGAAGGT -ACGGAAGCTCAATCACAGAACCGT -ACGGAAGCTCAATCACAGTTGTGC -ACGGAAGCTCAATCACAGCTAAGC -ACGGAAGCTCAATCACAGACTAGC -ACGGAAGCTCAATCACAGAGATGC -ACGGAAGCTCAATCACAGTGAAGG -ACGGAAGCTCAATCACAGCAATGG -ACGGAAGCTCAATCACAGATGAGG -ACGGAAGCTCAATCACAGAATGGG -ACGGAAGCTCAATCACAGTCCTGA -ACGGAAGCTCAATCACAGTAGCGA -ACGGAAGCTCAATCACAGCACAGA -ACGGAAGCTCAATCACAGGCAAGA -ACGGAAGCTCAATCACAGGGTTGA -ACGGAAGCTCAATCACAGTCCGAT -ACGGAAGCTCAATCACAGTGGCAT -ACGGAAGCTCAATCACAGCGAGAT -ACGGAAGCTCAATCACAGTACCAC -ACGGAAGCTCAATCACAGCAGAAC -ACGGAAGCTCAATCACAGGTCTAC -ACGGAAGCTCAATCACAGACGTAC -ACGGAAGCTCAATCACAGAGTGAC -ACGGAAGCTCAATCACAGCTGTAG -ACGGAAGCTCAATCACAGCCTAAG -ACGGAAGCTCAATCACAGGTTCAG -ACGGAAGCTCAATCACAGGCATAG -ACGGAAGCTCAATCACAGGACAAG -ACGGAAGCTCAATCACAGAAGCAG -ACGGAAGCTCAATCACAGCGTCAA -ACGGAAGCTCAATCACAGGCTGAA -ACGGAAGCTCAATCACAGAGTACG -ACGGAAGCTCAATCACAGATCCGA -ACGGAAGCTCAATCACAGATGGGA -ACGGAAGCTCAATCACAGGTGCAA -ACGGAAGCTCAATCACAGGAGGAA -ACGGAAGCTCAATCACAGCAGGTA -ACGGAAGCTCAATCACAGGACTCT -ACGGAAGCTCAATCACAGAGTCCT -ACGGAAGCTCAATCACAGTAAGCC -ACGGAAGCTCAATCACAGATAGCC -ACGGAAGCTCAATCACAGTAACCG -ACGGAAGCTCAATCACAGATGCCA -ACGGAAGCTCAACCAGATGGAAAC -ACGGAAGCTCAACCAGATAACACC -ACGGAAGCTCAACCAGATATCGAG -ACGGAAGCTCAACCAGATCTCCTT -ACGGAAGCTCAACCAGATCCTGTT -ACGGAAGCTCAACCAGATCGGTTT -ACGGAAGCTCAACCAGATGTGGTT -ACGGAAGCTCAACCAGATGCCTTT -ACGGAAGCTCAACCAGATGGTCTT -ACGGAAGCTCAACCAGATACGCTT -ACGGAAGCTCAACCAGATAGCGTT -ACGGAAGCTCAACCAGATTTCGTC -ACGGAAGCTCAACCAGATTCTCTC -ACGGAAGCTCAACCAGATTGGATC -ACGGAAGCTCAACCAGATCACTTC -ACGGAAGCTCAACCAGATGTACTC -ACGGAAGCTCAACCAGATGATGTC -ACGGAAGCTCAACCAGATACAGTC -ACGGAAGCTCAACCAGATTTGCTG -ACGGAAGCTCAACCAGATTCCATG -ACGGAAGCTCAACCAGATTGTGTG -ACGGAAGCTCAACCAGATCTAGTG -ACGGAAGCTCAACCAGATCATCTG -ACGGAAGCTCAACCAGATGAGTTG -ACGGAAGCTCAACCAGATAGACTG -ACGGAAGCTCAACCAGATTCGGTA -ACGGAAGCTCAACCAGATTGCCTA -ACGGAAGCTCAACCAGATCCACTA -ACGGAAGCTCAACCAGATGGAGTA -ACGGAAGCTCAACCAGATTCGTCT -ACGGAAGCTCAACCAGATTGCACT -ACGGAAGCTCAACCAGATCTGACT -ACGGAAGCTCAACCAGATCAACCT -ACGGAAGCTCAACCAGATGCTACT -ACGGAAGCTCAACCAGATGGATCT -ACGGAAGCTCAACCAGATAAGGCT -ACGGAAGCTCAACCAGATTCAACC -ACGGAAGCTCAACCAGATTGTTCC -ACGGAAGCTCAACCAGATATTCCC -ACGGAAGCTCAACCAGATTTCTCG -ACGGAAGCTCAACCAGATTAGACG -ACGGAAGCTCAACCAGATGTAACG -ACGGAAGCTCAACCAGATACTTCG -ACGGAAGCTCAACCAGATTACGCA -ACGGAAGCTCAACCAGATCTTGCA -ACGGAAGCTCAACCAGATCGAACA -ACGGAAGCTCAACCAGATCAGTCA -ACGGAAGCTCAACCAGATGATCCA -ACGGAAGCTCAACCAGATACGACA -ACGGAAGCTCAACCAGATAGCTCA -ACGGAAGCTCAACCAGATTCACGT -ACGGAAGCTCAACCAGATCGTAGT -ACGGAAGCTCAACCAGATGTCAGT -ACGGAAGCTCAACCAGATGAAGGT -ACGGAAGCTCAACCAGATAACCGT -ACGGAAGCTCAACCAGATTTGTGC -ACGGAAGCTCAACCAGATCTAAGC -ACGGAAGCTCAACCAGATACTAGC -ACGGAAGCTCAACCAGATAGATGC -ACGGAAGCTCAACCAGATTGAAGG -ACGGAAGCTCAACCAGATCAATGG -ACGGAAGCTCAACCAGATATGAGG -ACGGAAGCTCAACCAGATAATGGG -ACGGAAGCTCAACCAGATTCCTGA -ACGGAAGCTCAACCAGATTAGCGA -ACGGAAGCTCAACCAGATCACAGA -ACGGAAGCTCAACCAGATGCAAGA -ACGGAAGCTCAACCAGATGGTTGA -ACGGAAGCTCAACCAGATTCCGAT -ACGGAAGCTCAACCAGATTGGCAT -ACGGAAGCTCAACCAGATCGAGAT -ACGGAAGCTCAACCAGATTACCAC -ACGGAAGCTCAACCAGATCAGAAC -ACGGAAGCTCAACCAGATGTCTAC -ACGGAAGCTCAACCAGATACGTAC -ACGGAAGCTCAACCAGATAGTGAC -ACGGAAGCTCAACCAGATCTGTAG -ACGGAAGCTCAACCAGATCCTAAG -ACGGAAGCTCAACCAGATGTTCAG -ACGGAAGCTCAACCAGATGCATAG -ACGGAAGCTCAACCAGATGACAAG -ACGGAAGCTCAACCAGATAAGCAG -ACGGAAGCTCAACCAGATCGTCAA -ACGGAAGCTCAACCAGATGCTGAA -ACGGAAGCTCAACCAGATAGTACG -ACGGAAGCTCAACCAGATATCCGA -ACGGAAGCTCAACCAGATATGGGA -ACGGAAGCTCAACCAGATGTGCAA -ACGGAAGCTCAACCAGATGAGGAA -ACGGAAGCTCAACCAGATCAGGTA -ACGGAAGCTCAACCAGATGACTCT -ACGGAAGCTCAACCAGATAGTCCT -ACGGAAGCTCAACCAGATTAAGCC -ACGGAAGCTCAACCAGATATAGCC -ACGGAAGCTCAACCAGATTAACCG -ACGGAAGCTCAACCAGATATGCCA -ACGGAAGCTCAAACAACGGGAAAC -ACGGAAGCTCAAACAACGAACACC -ACGGAAGCTCAAACAACGATCGAG -ACGGAAGCTCAAACAACGCTCCTT -ACGGAAGCTCAAACAACGCCTGTT -ACGGAAGCTCAAACAACGCGGTTT -ACGGAAGCTCAAACAACGGTGGTT -ACGGAAGCTCAAACAACGGCCTTT -ACGGAAGCTCAAACAACGGGTCTT -ACGGAAGCTCAAACAACGACGCTT -ACGGAAGCTCAAACAACGAGCGTT -ACGGAAGCTCAAACAACGTTCGTC -ACGGAAGCTCAAACAACGTCTCTC -ACGGAAGCTCAAACAACGTGGATC -ACGGAAGCTCAAACAACGCACTTC -ACGGAAGCTCAAACAACGGTACTC -ACGGAAGCTCAAACAACGGATGTC -ACGGAAGCTCAAACAACGACAGTC -ACGGAAGCTCAAACAACGTTGCTG -ACGGAAGCTCAAACAACGTCCATG -ACGGAAGCTCAAACAACGTGTGTG -ACGGAAGCTCAAACAACGCTAGTG -ACGGAAGCTCAAACAACGCATCTG -ACGGAAGCTCAAACAACGGAGTTG -ACGGAAGCTCAAACAACGAGACTG -ACGGAAGCTCAAACAACGTCGGTA -ACGGAAGCTCAAACAACGTGCCTA -ACGGAAGCTCAAACAACGCCACTA -ACGGAAGCTCAAACAACGGGAGTA -ACGGAAGCTCAAACAACGTCGTCT -ACGGAAGCTCAAACAACGTGCACT -ACGGAAGCTCAAACAACGCTGACT -ACGGAAGCTCAAACAACGCAACCT -ACGGAAGCTCAAACAACGGCTACT -ACGGAAGCTCAAACAACGGGATCT -ACGGAAGCTCAAACAACGAAGGCT -ACGGAAGCTCAAACAACGTCAACC -ACGGAAGCTCAAACAACGTGTTCC -ACGGAAGCTCAAACAACGATTCCC -ACGGAAGCTCAAACAACGTTCTCG -ACGGAAGCTCAAACAACGTAGACG -ACGGAAGCTCAAACAACGGTAACG -ACGGAAGCTCAAACAACGACTTCG -ACGGAAGCTCAAACAACGTACGCA -ACGGAAGCTCAAACAACGCTTGCA -ACGGAAGCTCAAACAACGCGAACA -ACGGAAGCTCAAACAACGCAGTCA -ACGGAAGCTCAAACAACGGATCCA -ACGGAAGCTCAAACAACGACGACA -ACGGAAGCTCAAACAACGAGCTCA -ACGGAAGCTCAAACAACGTCACGT -ACGGAAGCTCAAACAACGCGTAGT -ACGGAAGCTCAAACAACGGTCAGT -ACGGAAGCTCAAACAACGGAAGGT -ACGGAAGCTCAAACAACGAACCGT -ACGGAAGCTCAAACAACGTTGTGC -ACGGAAGCTCAAACAACGCTAAGC -ACGGAAGCTCAAACAACGACTAGC -ACGGAAGCTCAAACAACGAGATGC -ACGGAAGCTCAAACAACGTGAAGG -ACGGAAGCTCAAACAACGCAATGG -ACGGAAGCTCAAACAACGATGAGG -ACGGAAGCTCAAACAACGAATGGG -ACGGAAGCTCAAACAACGTCCTGA -ACGGAAGCTCAAACAACGTAGCGA -ACGGAAGCTCAAACAACGCACAGA -ACGGAAGCTCAAACAACGGCAAGA -ACGGAAGCTCAAACAACGGGTTGA -ACGGAAGCTCAAACAACGTCCGAT -ACGGAAGCTCAAACAACGTGGCAT -ACGGAAGCTCAAACAACGCGAGAT -ACGGAAGCTCAAACAACGTACCAC -ACGGAAGCTCAAACAACGCAGAAC -ACGGAAGCTCAAACAACGGTCTAC -ACGGAAGCTCAAACAACGACGTAC -ACGGAAGCTCAAACAACGAGTGAC -ACGGAAGCTCAAACAACGCTGTAG -ACGGAAGCTCAAACAACGCCTAAG -ACGGAAGCTCAAACAACGGTTCAG -ACGGAAGCTCAAACAACGGCATAG -ACGGAAGCTCAAACAACGGACAAG -ACGGAAGCTCAAACAACGAAGCAG -ACGGAAGCTCAAACAACGCGTCAA -ACGGAAGCTCAAACAACGGCTGAA -ACGGAAGCTCAAACAACGAGTACG -ACGGAAGCTCAAACAACGATCCGA -ACGGAAGCTCAAACAACGATGGGA -ACGGAAGCTCAAACAACGGTGCAA -ACGGAAGCTCAAACAACGGAGGAA -ACGGAAGCTCAAACAACGCAGGTA -ACGGAAGCTCAAACAACGGACTCT -ACGGAAGCTCAAACAACGAGTCCT -ACGGAAGCTCAAACAACGTAAGCC -ACGGAAGCTCAAACAACGATAGCC -ACGGAAGCTCAAACAACGTAACCG -ACGGAAGCTCAAACAACGATGCCA -ACGGAAGCTCAATCAAGCGGAAAC -ACGGAAGCTCAATCAAGCAACACC -ACGGAAGCTCAATCAAGCATCGAG -ACGGAAGCTCAATCAAGCCTCCTT -ACGGAAGCTCAATCAAGCCCTGTT -ACGGAAGCTCAATCAAGCCGGTTT -ACGGAAGCTCAATCAAGCGTGGTT -ACGGAAGCTCAATCAAGCGCCTTT -ACGGAAGCTCAATCAAGCGGTCTT -ACGGAAGCTCAATCAAGCACGCTT -ACGGAAGCTCAATCAAGCAGCGTT -ACGGAAGCTCAATCAAGCTTCGTC -ACGGAAGCTCAATCAAGCTCTCTC -ACGGAAGCTCAATCAAGCTGGATC -ACGGAAGCTCAATCAAGCCACTTC -ACGGAAGCTCAATCAAGCGTACTC -ACGGAAGCTCAATCAAGCGATGTC -ACGGAAGCTCAATCAAGCACAGTC -ACGGAAGCTCAATCAAGCTTGCTG -ACGGAAGCTCAATCAAGCTCCATG -ACGGAAGCTCAATCAAGCTGTGTG -ACGGAAGCTCAATCAAGCCTAGTG -ACGGAAGCTCAATCAAGCCATCTG -ACGGAAGCTCAATCAAGCGAGTTG -ACGGAAGCTCAATCAAGCAGACTG -ACGGAAGCTCAATCAAGCTCGGTA -ACGGAAGCTCAATCAAGCTGCCTA -ACGGAAGCTCAATCAAGCCCACTA -ACGGAAGCTCAATCAAGCGGAGTA -ACGGAAGCTCAATCAAGCTCGTCT -ACGGAAGCTCAATCAAGCTGCACT -ACGGAAGCTCAATCAAGCCTGACT -ACGGAAGCTCAATCAAGCCAACCT -ACGGAAGCTCAATCAAGCGCTACT -ACGGAAGCTCAATCAAGCGGATCT -ACGGAAGCTCAATCAAGCAAGGCT -ACGGAAGCTCAATCAAGCTCAACC -ACGGAAGCTCAATCAAGCTGTTCC -ACGGAAGCTCAATCAAGCATTCCC -ACGGAAGCTCAATCAAGCTTCTCG -ACGGAAGCTCAATCAAGCTAGACG -ACGGAAGCTCAATCAAGCGTAACG -ACGGAAGCTCAATCAAGCACTTCG -ACGGAAGCTCAATCAAGCTACGCA -ACGGAAGCTCAATCAAGCCTTGCA -ACGGAAGCTCAATCAAGCCGAACA -ACGGAAGCTCAATCAAGCCAGTCA -ACGGAAGCTCAATCAAGCGATCCA -ACGGAAGCTCAATCAAGCACGACA -ACGGAAGCTCAATCAAGCAGCTCA -ACGGAAGCTCAATCAAGCTCACGT -ACGGAAGCTCAATCAAGCCGTAGT -ACGGAAGCTCAATCAAGCGTCAGT -ACGGAAGCTCAATCAAGCGAAGGT -ACGGAAGCTCAATCAAGCAACCGT -ACGGAAGCTCAATCAAGCTTGTGC -ACGGAAGCTCAATCAAGCCTAAGC -ACGGAAGCTCAATCAAGCACTAGC -ACGGAAGCTCAATCAAGCAGATGC -ACGGAAGCTCAATCAAGCTGAAGG -ACGGAAGCTCAATCAAGCCAATGG -ACGGAAGCTCAATCAAGCATGAGG -ACGGAAGCTCAATCAAGCAATGGG -ACGGAAGCTCAATCAAGCTCCTGA -ACGGAAGCTCAATCAAGCTAGCGA -ACGGAAGCTCAATCAAGCCACAGA -ACGGAAGCTCAATCAAGCGCAAGA -ACGGAAGCTCAATCAAGCGGTTGA -ACGGAAGCTCAATCAAGCTCCGAT -ACGGAAGCTCAATCAAGCTGGCAT -ACGGAAGCTCAATCAAGCCGAGAT -ACGGAAGCTCAATCAAGCTACCAC -ACGGAAGCTCAATCAAGCCAGAAC -ACGGAAGCTCAATCAAGCGTCTAC -ACGGAAGCTCAATCAAGCACGTAC -ACGGAAGCTCAATCAAGCAGTGAC -ACGGAAGCTCAATCAAGCCTGTAG -ACGGAAGCTCAATCAAGCCCTAAG -ACGGAAGCTCAATCAAGCGTTCAG -ACGGAAGCTCAATCAAGCGCATAG -ACGGAAGCTCAATCAAGCGACAAG -ACGGAAGCTCAATCAAGCAAGCAG -ACGGAAGCTCAATCAAGCCGTCAA -ACGGAAGCTCAATCAAGCGCTGAA -ACGGAAGCTCAATCAAGCAGTACG -ACGGAAGCTCAATCAAGCATCCGA -ACGGAAGCTCAATCAAGCATGGGA -ACGGAAGCTCAATCAAGCGTGCAA -ACGGAAGCTCAATCAAGCGAGGAA -ACGGAAGCTCAATCAAGCCAGGTA -ACGGAAGCTCAATCAAGCGACTCT -ACGGAAGCTCAATCAAGCAGTCCT -ACGGAAGCTCAATCAAGCTAAGCC -ACGGAAGCTCAATCAAGCATAGCC -ACGGAAGCTCAATCAAGCTAACCG -ACGGAAGCTCAATCAAGCATGCCA -ACGGAAGCTCAACGTTCAGGAAAC -ACGGAAGCTCAACGTTCAAACACC -ACGGAAGCTCAACGTTCAATCGAG -ACGGAAGCTCAACGTTCACTCCTT -ACGGAAGCTCAACGTTCACCTGTT -ACGGAAGCTCAACGTTCACGGTTT -ACGGAAGCTCAACGTTCAGTGGTT -ACGGAAGCTCAACGTTCAGCCTTT -ACGGAAGCTCAACGTTCAGGTCTT -ACGGAAGCTCAACGTTCAACGCTT -ACGGAAGCTCAACGTTCAAGCGTT -ACGGAAGCTCAACGTTCATTCGTC -ACGGAAGCTCAACGTTCATCTCTC -ACGGAAGCTCAACGTTCATGGATC -ACGGAAGCTCAACGTTCACACTTC -ACGGAAGCTCAACGTTCAGTACTC -ACGGAAGCTCAACGTTCAGATGTC -ACGGAAGCTCAACGTTCAACAGTC -ACGGAAGCTCAACGTTCATTGCTG -ACGGAAGCTCAACGTTCATCCATG -ACGGAAGCTCAACGTTCATGTGTG -ACGGAAGCTCAACGTTCACTAGTG -ACGGAAGCTCAACGTTCACATCTG -ACGGAAGCTCAACGTTCAGAGTTG -ACGGAAGCTCAACGTTCAAGACTG -ACGGAAGCTCAACGTTCATCGGTA -ACGGAAGCTCAACGTTCATGCCTA -ACGGAAGCTCAACGTTCACCACTA -ACGGAAGCTCAACGTTCAGGAGTA -ACGGAAGCTCAACGTTCATCGTCT -ACGGAAGCTCAACGTTCATGCACT -ACGGAAGCTCAACGTTCACTGACT -ACGGAAGCTCAACGTTCACAACCT -ACGGAAGCTCAACGTTCAGCTACT -ACGGAAGCTCAACGTTCAGGATCT -ACGGAAGCTCAACGTTCAAAGGCT -ACGGAAGCTCAACGTTCATCAACC -ACGGAAGCTCAACGTTCATGTTCC -ACGGAAGCTCAACGTTCAATTCCC -ACGGAAGCTCAACGTTCATTCTCG -ACGGAAGCTCAACGTTCATAGACG -ACGGAAGCTCAACGTTCAGTAACG -ACGGAAGCTCAACGTTCAACTTCG -ACGGAAGCTCAACGTTCATACGCA -ACGGAAGCTCAACGTTCACTTGCA -ACGGAAGCTCAACGTTCACGAACA -ACGGAAGCTCAACGTTCACAGTCA -ACGGAAGCTCAACGTTCAGATCCA -ACGGAAGCTCAACGTTCAACGACA -ACGGAAGCTCAACGTTCAAGCTCA -ACGGAAGCTCAACGTTCATCACGT -ACGGAAGCTCAACGTTCACGTAGT -ACGGAAGCTCAACGTTCAGTCAGT -ACGGAAGCTCAACGTTCAGAAGGT -ACGGAAGCTCAACGTTCAAACCGT -ACGGAAGCTCAACGTTCATTGTGC -ACGGAAGCTCAACGTTCACTAAGC -ACGGAAGCTCAACGTTCAACTAGC -ACGGAAGCTCAACGTTCAAGATGC -ACGGAAGCTCAACGTTCATGAAGG -ACGGAAGCTCAACGTTCACAATGG -ACGGAAGCTCAACGTTCAATGAGG -ACGGAAGCTCAACGTTCAAATGGG -ACGGAAGCTCAACGTTCATCCTGA -ACGGAAGCTCAACGTTCATAGCGA -ACGGAAGCTCAACGTTCACACAGA -ACGGAAGCTCAACGTTCAGCAAGA -ACGGAAGCTCAACGTTCAGGTTGA -ACGGAAGCTCAACGTTCATCCGAT -ACGGAAGCTCAACGTTCATGGCAT -ACGGAAGCTCAACGTTCACGAGAT -ACGGAAGCTCAACGTTCATACCAC -ACGGAAGCTCAACGTTCACAGAAC -ACGGAAGCTCAACGTTCAGTCTAC -ACGGAAGCTCAACGTTCAACGTAC -ACGGAAGCTCAACGTTCAAGTGAC -ACGGAAGCTCAACGTTCACTGTAG -ACGGAAGCTCAACGTTCACCTAAG -ACGGAAGCTCAACGTTCAGTTCAG -ACGGAAGCTCAACGTTCAGCATAG -ACGGAAGCTCAACGTTCAGACAAG -ACGGAAGCTCAACGTTCAAAGCAG -ACGGAAGCTCAACGTTCACGTCAA -ACGGAAGCTCAACGTTCAGCTGAA -ACGGAAGCTCAACGTTCAAGTACG -ACGGAAGCTCAACGTTCAATCCGA -ACGGAAGCTCAACGTTCAATGGGA -ACGGAAGCTCAACGTTCAGTGCAA -ACGGAAGCTCAACGTTCAGAGGAA -ACGGAAGCTCAACGTTCACAGGTA -ACGGAAGCTCAACGTTCAGACTCT -ACGGAAGCTCAACGTTCAAGTCCT -ACGGAAGCTCAACGTTCATAAGCC -ACGGAAGCTCAACGTTCAATAGCC -ACGGAAGCTCAACGTTCATAACCG -ACGGAAGCTCAACGTTCAATGCCA -ACGGAAGCTCAAAGTCGTGGAAAC -ACGGAAGCTCAAAGTCGTAACACC -ACGGAAGCTCAAAGTCGTATCGAG -ACGGAAGCTCAAAGTCGTCTCCTT -ACGGAAGCTCAAAGTCGTCCTGTT -ACGGAAGCTCAAAGTCGTCGGTTT -ACGGAAGCTCAAAGTCGTGTGGTT -ACGGAAGCTCAAAGTCGTGCCTTT -ACGGAAGCTCAAAGTCGTGGTCTT -ACGGAAGCTCAAAGTCGTACGCTT -ACGGAAGCTCAAAGTCGTAGCGTT -ACGGAAGCTCAAAGTCGTTTCGTC -ACGGAAGCTCAAAGTCGTTCTCTC -ACGGAAGCTCAAAGTCGTTGGATC -ACGGAAGCTCAAAGTCGTCACTTC -ACGGAAGCTCAAAGTCGTGTACTC -ACGGAAGCTCAAAGTCGTGATGTC -ACGGAAGCTCAAAGTCGTACAGTC -ACGGAAGCTCAAAGTCGTTTGCTG -ACGGAAGCTCAAAGTCGTTCCATG -ACGGAAGCTCAAAGTCGTTGTGTG -ACGGAAGCTCAAAGTCGTCTAGTG -ACGGAAGCTCAAAGTCGTCATCTG -ACGGAAGCTCAAAGTCGTGAGTTG -ACGGAAGCTCAAAGTCGTAGACTG -ACGGAAGCTCAAAGTCGTTCGGTA -ACGGAAGCTCAAAGTCGTTGCCTA -ACGGAAGCTCAAAGTCGTCCACTA -ACGGAAGCTCAAAGTCGTGGAGTA -ACGGAAGCTCAAAGTCGTTCGTCT -ACGGAAGCTCAAAGTCGTTGCACT -ACGGAAGCTCAAAGTCGTCTGACT -ACGGAAGCTCAAAGTCGTCAACCT -ACGGAAGCTCAAAGTCGTGCTACT -ACGGAAGCTCAAAGTCGTGGATCT -ACGGAAGCTCAAAGTCGTAAGGCT -ACGGAAGCTCAAAGTCGTTCAACC -ACGGAAGCTCAAAGTCGTTGTTCC -ACGGAAGCTCAAAGTCGTATTCCC -ACGGAAGCTCAAAGTCGTTTCTCG -ACGGAAGCTCAAAGTCGTTAGACG -ACGGAAGCTCAAAGTCGTGTAACG -ACGGAAGCTCAAAGTCGTACTTCG -ACGGAAGCTCAAAGTCGTTACGCA -ACGGAAGCTCAAAGTCGTCTTGCA -ACGGAAGCTCAAAGTCGTCGAACA -ACGGAAGCTCAAAGTCGTCAGTCA -ACGGAAGCTCAAAGTCGTGATCCA -ACGGAAGCTCAAAGTCGTACGACA -ACGGAAGCTCAAAGTCGTAGCTCA -ACGGAAGCTCAAAGTCGTTCACGT -ACGGAAGCTCAAAGTCGTCGTAGT -ACGGAAGCTCAAAGTCGTGTCAGT -ACGGAAGCTCAAAGTCGTGAAGGT -ACGGAAGCTCAAAGTCGTAACCGT -ACGGAAGCTCAAAGTCGTTTGTGC -ACGGAAGCTCAAAGTCGTCTAAGC -ACGGAAGCTCAAAGTCGTACTAGC -ACGGAAGCTCAAAGTCGTAGATGC -ACGGAAGCTCAAAGTCGTTGAAGG -ACGGAAGCTCAAAGTCGTCAATGG -ACGGAAGCTCAAAGTCGTATGAGG -ACGGAAGCTCAAAGTCGTAATGGG -ACGGAAGCTCAAAGTCGTTCCTGA -ACGGAAGCTCAAAGTCGTTAGCGA -ACGGAAGCTCAAAGTCGTCACAGA -ACGGAAGCTCAAAGTCGTGCAAGA -ACGGAAGCTCAAAGTCGTGGTTGA -ACGGAAGCTCAAAGTCGTTCCGAT -ACGGAAGCTCAAAGTCGTTGGCAT -ACGGAAGCTCAAAGTCGTCGAGAT -ACGGAAGCTCAAAGTCGTTACCAC -ACGGAAGCTCAAAGTCGTCAGAAC -ACGGAAGCTCAAAGTCGTGTCTAC -ACGGAAGCTCAAAGTCGTACGTAC -ACGGAAGCTCAAAGTCGTAGTGAC -ACGGAAGCTCAAAGTCGTCTGTAG -ACGGAAGCTCAAAGTCGTCCTAAG -ACGGAAGCTCAAAGTCGTGTTCAG -ACGGAAGCTCAAAGTCGTGCATAG -ACGGAAGCTCAAAGTCGTGACAAG -ACGGAAGCTCAAAGTCGTAAGCAG -ACGGAAGCTCAAAGTCGTCGTCAA -ACGGAAGCTCAAAGTCGTGCTGAA -ACGGAAGCTCAAAGTCGTAGTACG -ACGGAAGCTCAAAGTCGTATCCGA -ACGGAAGCTCAAAGTCGTATGGGA -ACGGAAGCTCAAAGTCGTGTGCAA -ACGGAAGCTCAAAGTCGTGAGGAA -ACGGAAGCTCAAAGTCGTCAGGTA -ACGGAAGCTCAAAGTCGTGACTCT -ACGGAAGCTCAAAGTCGTAGTCCT -ACGGAAGCTCAAAGTCGTTAAGCC -ACGGAAGCTCAAAGTCGTATAGCC -ACGGAAGCTCAAAGTCGTTAACCG -ACGGAAGCTCAAAGTCGTATGCCA -ACGGAAGCTCAAAGTGTCGGAAAC -ACGGAAGCTCAAAGTGTCAACACC -ACGGAAGCTCAAAGTGTCATCGAG -ACGGAAGCTCAAAGTGTCCTCCTT -ACGGAAGCTCAAAGTGTCCCTGTT -ACGGAAGCTCAAAGTGTCCGGTTT -ACGGAAGCTCAAAGTGTCGTGGTT -ACGGAAGCTCAAAGTGTCGCCTTT -ACGGAAGCTCAAAGTGTCGGTCTT -ACGGAAGCTCAAAGTGTCACGCTT -ACGGAAGCTCAAAGTGTCAGCGTT -ACGGAAGCTCAAAGTGTCTTCGTC -ACGGAAGCTCAAAGTGTCTCTCTC -ACGGAAGCTCAAAGTGTCTGGATC -ACGGAAGCTCAAAGTGTCCACTTC -ACGGAAGCTCAAAGTGTCGTACTC -ACGGAAGCTCAAAGTGTCGATGTC -ACGGAAGCTCAAAGTGTCACAGTC -ACGGAAGCTCAAAGTGTCTTGCTG -ACGGAAGCTCAAAGTGTCTCCATG -ACGGAAGCTCAAAGTGTCTGTGTG -ACGGAAGCTCAAAGTGTCCTAGTG -ACGGAAGCTCAAAGTGTCCATCTG -ACGGAAGCTCAAAGTGTCGAGTTG -ACGGAAGCTCAAAGTGTCAGACTG -ACGGAAGCTCAAAGTGTCTCGGTA -ACGGAAGCTCAAAGTGTCTGCCTA -ACGGAAGCTCAAAGTGTCCCACTA -ACGGAAGCTCAAAGTGTCGGAGTA -ACGGAAGCTCAAAGTGTCTCGTCT -ACGGAAGCTCAAAGTGTCTGCACT -ACGGAAGCTCAAAGTGTCCTGACT -ACGGAAGCTCAAAGTGTCCAACCT -ACGGAAGCTCAAAGTGTCGCTACT -ACGGAAGCTCAAAGTGTCGGATCT -ACGGAAGCTCAAAGTGTCAAGGCT -ACGGAAGCTCAAAGTGTCTCAACC -ACGGAAGCTCAAAGTGTCTGTTCC -ACGGAAGCTCAAAGTGTCATTCCC -ACGGAAGCTCAAAGTGTCTTCTCG -ACGGAAGCTCAAAGTGTCTAGACG -ACGGAAGCTCAAAGTGTCGTAACG -ACGGAAGCTCAAAGTGTCACTTCG -ACGGAAGCTCAAAGTGTCTACGCA -ACGGAAGCTCAAAGTGTCCTTGCA -ACGGAAGCTCAAAGTGTCCGAACA -ACGGAAGCTCAAAGTGTCCAGTCA -ACGGAAGCTCAAAGTGTCGATCCA -ACGGAAGCTCAAAGTGTCACGACA -ACGGAAGCTCAAAGTGTCAGCTCA -ACGGAAGCTCAAAGTGTCTCACGT -ACGGAAGCTCAAAGTGTCCGTAGT -ACGGAAGCTCAAAGTGTCGTCAGT -ACGGAAGCTCAAAGTGTCGAAGGT -ACGGAAGCTCAAAGTGTCAACCGT -ACGGAAGCTCAAAGTGTCTTGTGC -ACGGAAGCTCAAAGTGTCCTAAGC -ACGGAAGCTCAAAGTGTCACTAGC -ACGGAAGCTCAAAGTGTCAGATGC -ACGGAAGCTCAAAGTGTCTGAAGG -ACGGAAGCTCAAAGTGTCCAATGG -ACGGAAGCTCAAAGTGTCATGAGG -ACGGAAGCTCAAAGTGTCAATGGG -ACGGAAGCTCAAAGTGTCTCCTGA -ACGGAAGCTCAAAGTGTCTAGCGA -ACGGAAGCTCAAAGTGTCCACAGA -ACGGAAGCTCAAAGTGTCGCAAGA -ACGGAAGCTCAAAGTGTCGGTTGA -ACGGAAGCTCAAAGTGTCTCCGAT -ACGGAAGCTCAAAGTGTCTGGCAT -ACGGAAGCTCAAAGTGTCCGAGAT -ACGGAAGCTCAAAGTGTCTACCAC -ACGGAAGCTCAAAGTGTCCAGAAC -ACGGAAGCTCAAAGTGTCGTCTAC -ACGGAAGCTCAAAGTGTCACGTAC -ACGGAAGCTCAAAGTGTCAGTGAC -ACGGAAGCTCAAAGTGTCCTGTAG -ACGGAAGCTCAAAGTGTCCCTAAG -ACGGAAGCTCAAAGTGTCGTTCAG -ACGGAAGCTCAAAGTGTCGCATAG -ACGGAAGCTCAAAGTGTCGACAAG -ACGGAAGCTCAAAGTGTCAAGCAG -ACGGAAGCTCAAAGTGTCCGTCAA -ACGGAAGCTCAAAGTGTCGCTGAA -ACGGAAGCTCAAAGTGTCAGTACG -ACGGAAGCTCAAAGTGTCATCCGA -ACGGAAGCTCAAAGTGTCATGGGA -ACGGAAGCTCAAAGTGTCGTGCAA -ACGGAAGCTCAAAGTGTCGAGGAA -ACGGAAGCTCAAAGTGTCCAGGTA -ACGGAAGCTCAAAGTGTCGACTCT -ACGGAAGCTCAAAGTGTCAGTCCT -ACGGAAGCTCAAAGTGTCTAAGCC -ACGGAAGCTCAAAGTGTCATAGCC -ACGGAAGCTCAAAGTGTCTAACCG -ACGGAAGCTCAAAGTGTCATGCCA -ACGGAAGCTCAAGGTGAAGGAAAC -ACGGAAGCTCAAGGTGAAAACACC -ACGGAAGCTCAAGGTGAAATCGAG -ACGGAAGCTCAAGGTGAACTCCTT -ACGGAAGCTCAAGGTGAACCTGTT -ACGGAAGCTCAAGGTGAACGGTTT -ACGGAAGCTCAAGGTGAAGTGGTT -ACGGAAGCTCAAGGTGAAGCCTTT -ACGGAAGCTCAAGGTGAAGGTCTT -ACGGAAGCTCAAGGTGAAACGCTT -ACGGAAGCTCAAGGTGAAAGCGTT -ACGGAAGCTCAAGGTGAATTCGTC -ACGGAAGCTCAAGGTGAATCTCTC -ACGGAAGCTCAAGGTGAATGGATC -ACGGAAGCTCAAGGTGAACACTTC -ACGGAAGCTCAAGGTGAAGTACTC -ACGGAAGCTCAAGGTGAAGATGTC -ACGGAAGCTCAAGGTGAAACAGTC -ACGGAAGCTCAAGGTGAATTGCTG -ACGGAAGCTCAAGGTGAATCCATG -ACGGAAGCTCAAGGTGAATGTGTG -ACGGAAGCTCAAGGTGAACTAGTG -ACGGAAGCTCAAGGTGAACATCTG -ACGGAAGCTCAAGGTGAAGAGTTG -ACGGAAGCTCAAGGTGAAAGACTG -ACGGAAGCTCAAGGTGAATCGGTA -ACGGAAGCTCAAGGTGAATGCCTA -ACGGAAGCTCAAGGTGAACCACTA -ACGGAAGCTCAAGGTGAAGGAGTA -ACGGAAGCTCAAGGTGAATCGTCT -ACGGAAGCTCAAGGTGAATGCACT -ACGGAAGCTCAAGGTGAACTGACT -ACGGAAGCTCAAGGTGAACAACCT -ACGGAAGCTCAAGGTGAAGCTACT -ACGGAAGCTCAAGGTGAAGGATCT -ACGGAAGCTCAAGGTGAAAAGGCT -ACGGAAGCTCAAGGTGAATCAACC -ACGGAAGCTCAAGGTGAATGTTCC -ACGGAAGCTCAAGGTGAAATTCCC -ACGGAAGCTCAAGGTGAATTCTCG -ACGGAAGCTCAAGGTGAATAGACG -ACGGAAGCTCAAGGTGAAGTAACG -ACGGAAGCTCAAGGTGAAACTTCG -ACGGAAGCTCAAGGTGAATACGCA -ACGGAAGCTCAAGGTGAACTTGCA -ACGGAAGCTCAAGGTGAACGAACA -ACGGAAGCTCAAGGTGAACAGTCA -ACGGAAGCTCAAGGTGAAGATCCA -ACGGAAGCTCAAGGTGAAACGACA -ACGGAAGCTCAAGGTGAAAGCTCA -ACGGAAGCTCAAGGTGAATCACGT -ACGGAAGCTCAAGGTGAACGTAGT -ACGGAAGCTCAAGGTGAAGTCAGT -ACGGAAGCTCAAGGTGAAGAAGGT -ACGGAAGCTCAAGGTGAAAACCGT -ACGGAAGCTCAAGGTGAATTGTGC -ACGGAAGCTCAAGGTGAACTAAGC -ACGGAAGCTCAAGGTGAAACTAGC -ACGGAAGCTCAAGGTGAAAGATGC -ACGGAAGCTCAAGGTGAATGAAGG -ACGGAAGCTCAAGGTGAACAATGG -ACGGAAGCTCAAGGTGAAATGAGG -ACGGAAGCTCAAGGTGAAAATGGG -ACGGAAGCTCAAGGTGAATCCTGA -ACGGAAGCTCAAGGTGAATAGCGA -ACGGAAGCTCAAGGTGAACACAGA -ACGGAAGCTCAAGGTGAAGCAAGA -ACGGAAGCTCAAGGTGAAGGTTGA -ACGGAAGCTCAAGGTGAATCCGAT -ACGGAAGCTCAAGGTGAATGGCAT -ACGGAAGCTCAAGGTGAACGAGAT -ACGGAAGCTCAAGGTGAATACCAC -ACGGAAGCTCAAGGTGAACAGAAC -ACGGAAGCTCAAGGTGAAGTCTAC -ACGGAAGCTCAAGGTGAAACGTAC -ACGGAAGCTCAAGGTGAAAGTGAC -ACGGAAGCTCAAGGTGAACTGTAG -ACGGAAGCTCAAGGTGAACCTAAG -ACGGAAGCTCAAGGTGAAGTTCAG -ACGGAAGCTCAAGGTGAAGCATAG -ACGGAAGCTCAAGGTGAAGACAAG -ACGGAAGCTCAAGGTGAAAAGCAG -ACGGAAGCTCAAGGTGAACGTCAA -ACGGAAGCTCAAGGTGAAGCTGAA -ACGGAAGCTCAAGGTGAAAGTACG -ACGGAAGCTCAAGGTGAAATCCGA -ACGGAAGCTCAAGGTGAAATGGGA -ACGGAAGCTCAAGGTGAAGTGCAA -ACGGAAGCTCAAGGTGAAGAGGAA -ACGGAAGCTCAAGGTGAACAGGTA -ACGGAAGCTCAAGGTGAAGACTCT -ACGGAAGCTCAAGGTGAAAGTCCT -ACGGAAGCTCAAGGTGAATAAGCC -ACGGAAGCTCAAGGTGAAATAGCC -ACGGAAGCTCAAGGTGAATAACCG -ACGGAAGCTCAAGGTGAAATGCCA -ACGGAAGCTCAACGTAACGGAAAC -ACGGAAGCTCAACGTAACAACACC -ACGGAAGCTCAACGTAACATCGAG -ACGGAAGCTCAACGTAACCTCCTT -ACGGAAGCTCAACGTAACCCTGTT -ACGGAAGCTCAACGTAACCGGTTT -ACGGAAGCTCAACGTAACGTGGTT -ACGGAAGCTCAACGTAACGCCTTT -ACGGAAGCTCAACGTAACGGTCTT -ACGGAAGCTCAACGTAACACGCTT -ACGGAAGCTCAACGTAACAGCGTT -ACGGAAGCTCAACGTAACTTCGTC -ACGGAAGCTCAACGTAACTCTCTC -ACGGAAGCTCAACGTAACTGGATC -ACGGAAGCTCAACGTAACCACTTC -ACGGAAGCTCAACGTAACGTACTC -ACGGAAGCTCAACGTAACGATGTC -ACGGAAGCTCAACGTAACACAGTC -ACGGAAGCTCAACGTAACTTGCTG -ACGGAAGCTCAACGTAACTCCATG -ACGGAAGCTCAACGTAACTGTGTG -ACGGAAGCTCAACGTAACCTAGTG -ACGGAAGCTCAACGTAACCATCTG -ACGGAAGCTCAACGTAACGAGTTG -ACGGAAGCTCAACGTAACAGACTG -ACGGAAGCTCAACGTAACTCGGTA -ACGGAAGCTCAACGTAACTGCCTA -ACGGAAGCTCAACGTAACCCACTA -ACGGAAGCTCAACGTAACGGAGTA -ACGGAAGCTCAACGTAACTCGTCT -ACGGAAGCTCAACGTAACTGCACT -ACGGAAGCTCAACGTAACCTGACT -ACGGAAGCTCAACGTAACCAACCT -ACGGAAGCTCAACGTAACGCTACT -ACGGAAGCTCAACGTAACGGATCT -ACGGAAGCTCAACGTAACAAGGCT -ACGGAAGCTCAACGTAACTCAACC -ACGGAAGCTCAACGTAACTGTTCC -ACGGAAGCTCAACGTAACATTCCC -ACGGAAGCTCAACGTAACTTCTCG -ACGGAAGCTCAACGTAACTAGACG -ACGGAAGCTCAACGTAACGTAACG -ACGGAAGCTCAACGTAACACTTCG -ACGGAAGCTCAACGTAACTACGCA -ACGGAAGCTCAACGTAACCTTGCA -ACGGAAGCTCAACGTAACCGAACA -ACGGAAGCTCAACGTAACCAGTCA -ACGGAAGCTCAACGTAACGATCCA -ACGGAAGCTCAACGTAACACGACA -ACGGAAGCTCAACGTAACAGCTCA -ACGGAAGCTCAACGTAACTCACGT -ACGGAAGCTCAACGTAACCGTAGT -ACGGAAGCTCAACGTAACGTCAGT -ACGGAAGCTCAACGTAACGAAGGT -ACGGAAGCTCAACGTAACAACCGT -ACGGAAGCTCAACGTAACTTGTGC -ACGGAAGCTCAACGTAACCTAAGC -ACGGAAGCTCAACGTAACACTAGC -ACGGAAGCTCAACGTAACAGATGC -ACGGAAGCTCAACGTAACTGAAGG -ACGGAAGCTCAACGTAACCAATGG -ACGGAAGCTCAACGTAACATGAGG -ACGGAAGCTCAACGTAACAATGGG -ACGGAAGCTCAACGTAACTCCTGA -ACGGAAGCTCAACGTAACTAGCGA -ACGGAAGCTCAACGTAACCACAGA -ACGGAAGCTCAACGTAACGCAAGA -ACGGAAGCTCAACGTAACGGTTGA -ACGGAAGCTCAACGTAACTCCGAT -ACGGAAGCTCAACGTAACTGGCAT -ACGGAAGCTCAACGTAACCGAGAT -ACGGAAGCTCAACGTAACTACCAC -ACGGAAGCTCAACGTAACCAGAAC -ACGGAAGCTCAACGTAACGTCTAC -ACGGAAGCTCAACGTAACACGTAC -ACGGAAGCTCAACGTAACAGTGAC -ACGGAAGCTCAACGTAACCTGTAG -ACGGAAGCTCAACGTAACCCTAAG -ACGGAAGCTCAACGTAACGTTCAG -ACGGAAGCTCAACGTAACGCATAG -ACGGAAGCTCAACGTAACGACAAG -ACGGAAGCTCAACGTAACAAGCAG -ACGGAAGCTCAACGTAACCGTCAA -ACGGAAGCTCAACGTAACGCTGAA -ACGGAAGCTCAACGTAACAGTACG -ACGGAAGCTCAACGTAACATCCGA -ACGGAAGCTCAACGTAACATGGGA -ACGGAAGCTCAACGTAACGTGCAA -ACGGAAGCTCAACGTAACGAGGAA -ACGGAAGCTCAACGTAACCAGGTA -ACGGAAGCTCAACGTAACGACTCT -ACGGAAGCTCAACGTAACAGTCCT -ACGGAAGCTCAACGTAACTAAGCC -ACGGAAGCTCAACGTAACATAGCC -ACGGAAGCTCAACGTAACTAACCG -ACGGAAGCTCAACGTAACATGCCA -ACGGAAGCTCAATGCTTGGGAAAC -ACGGAAGCTCAATGCTTGAACACC -ACGGAAGCTCAATGCTTGATCGAG -ACGGAAGCTCAATGCTTGCTCCTT -ACGGAAGCTCAATGCTTGCCTGTT -ACGGAAGCTCAATGCTTGCGGTTT -ACGGAAGCTCAATGCTTGGTGGTT -ACGGAAGCTCAATGCTTGGCCTTT -ACGGAAGCTCAATGCTTGGGTCTT -ACGGAAGCTCAATGCTTGACGCTT -ACGGAAGCTCAATGCTTGAGCGTT -ACGGAAGCTCAATGCTTGTTCGTC -ACGGAAGCTCAATGCTTGTCTCTC -ACGGAAGCTCAATGCTTGTGGATC -ACGGAAGCTCAATGCTTGCACTTC -ACGGAAGCTCAATGCTTGGTACTC -ACGGAAGCTCAATGCTTGGATGTC -ACGGAAGCTCAATGCTTGACAGTC -ACGGAAGCTCAATGCTTGTTGCTG -ACGGAAGCTCAATGCTTGTCCATG -ACGGAAGCTCAATGCTTGTGTGTG -ACGGAAGCTCAATGCTTGCTAGTG -ACGGAAGCTCAATGCTTGCATCTG -ACGGAAGCTCAATGCTTGGAGTTG -ACGGAAGCTCAATGCTTGAGACTG -ACGGAAGCTCAATGCTTGTCGGTA -ACGGAAGCTCAATGCTTGTGCCTA -ACGGAAGCTCAATGCTTGCCACTA -ACGGAAGCTCAATGCTTGGGAGTA -ACGGAAGCTCAATGCTTGTCGTCT -ACGGAAGCTCAATGCTTGTGCACT -ACGGAAGCTCAATGCTTGCTGACT -ACGGAAGCTCAATGCTTGCAACCT -ACGGAAGCTCAATGCTTGGCTACT -ACGGAAGCTCAATGCTTGGGATCT -ACGGAAGCTCAATGCTTGAAGGCT -ACGGAAGCTCAATGCTTGTCAACC -ACGGAAGCTCAATGCTTGTGTTCC -ACGGAAGCTCAATGCTTGATTCCC -ACGGAAGCTCAATGCTTGTTCTCG -ACGGAAGCTCAATGCTTGTAGACG -ACGGAAGCTCAATGCTTGGTAACG -ACGGAAGCTCAATGCTTGACTTCG -ACGGAAGCTCAATGCTTGTACGCA -ACGGAAGCTCAATGCTTGCTTGCA -ACGGAAGCTCAATGCTTGCGAACA -ACGGAAGCTCAATGCTTGCAGTCA -ACGGAAGCTCAATGCTTGGATCCA -ACGGAAGCTCAATGCTTGACGACA -ACGGAAGCTCAATGCTTGAGCTCA -ACGGAAGCTCAATGCTTGTCACGT -ACGGAAGCTCAATGCTTGCGTAGT -ACGGAAGCTCAATGCTTGGTCAGT -ACGGAAGCTCAATGCTTGGAAGGT -ACGGAAGCTCAATGCTTGAACCGT -ACGGAAGCTCAATGCTTGTTGTGC -ACGGAAGCTCAATGCTTGCTAAGC -ACGGAAGCTCAATGCTTGACTAGC -ACGGAAGCTCAATGCTTGAGATGC -ACGGAAGCTCAATGCTTGTGAAGG -ACGGAAGCTCAATGCTTGCAATGG -ACGGAAGCTCAATGCTTGATGAGG -ACGGAAGCTCAATGCTTGAATGGG -ACGGAAGCTCAATGCTTGTCCTGA -ACGGAAGCTCAATGCTTGTAGCGA -ACGGAAGCTCAATGCTTGCACAGA -ACGGAAGCTCAATGCTTGGCAAGA -ACGGAAGCTCAATGCTTGGGTTGA -ACGGAAGCTCAATGCTTGTCCGAT -ACGGAAGCTCAATGCTTGTGGCAT -ACGGAAGCTCAATGCTTGCGAGAT -ACGGAAGCTCAATGCTTGTACCAC -ACGGAAGCTCAATGCTTGCAGAAC -ACGGAAGCTCAATGCTTGGTCTAC -ACGGAAGCTCAATGCTTGACGTAC -ACGGAAGCTCAATGCTTGAGTGAC -ACGGAAGCTCAATGCTTGCTGTAG -ACGGAAGCTCAATGCTTGCCTAAG -ACGGAAGCTCAATGCTTGGTTCAG -ACGGAAGCTCAATGCTTGGCATAG -ACGGAAGCTCAATGCTTGGACAAG -ACGGAAGCTCAATGCTTGAAGCAG -ACGGAAGCTCAATGCTTGCGTCAA -ACGGAAGCTCAATGCTTGGCTGAA -ACGGAAGCTCAATGCTTGAGTACG -ACGGAAGCTCAATGCTTGATCCGA -ACGGAAGCTCAATGCTTGATGGGA -ACGGAAGCTCAATGCTTGGTGCAA -ACGGAAGCTCAATGCTTGGAGGAA -ACGGAAGCTCAATGCTTGCAGGTA -ACGGAAGCTCAATGCTTGGACTCT -ACGGAAGCTCAATGCTTGAGTCCT -ACGGAAGCTCAATGCTTGTAAGCC -ACGGAAGCTCAATGCTTGATAGCC -ACGGAAGCTCAATGCTTGTAACCG -ACGGAAGCTCAATGCTTGATGCCA -ACGGAAGCTCAAAGCCTAGGAAAC -ACGGAAGCTCAAAGCCTAAACACC -ACGGAAGCTCAAAGCCTAATCGAG -ACGGAAGCTCAAAGCCTACTCCTT -ACGGAAGCTCAAAGCCTACCTGTT -ACGGAAGCTCAAAGCCTACGGTTT -ACGGAAGCTCAAAGCCTAGTGGTT -ACGGAAGCTCAAAGCCTAGCCTTT -ACGGAAGCTCAAAGCCTAGGTCTT -ACGGAAGCTCAAAGCCTAACGCTT -ACGGAAGCTCAAAGCCTAAGCGTT -ACGGAAGCTCAAAGCCTATTCGTC -ACGGAAGCTCAAAGCCTATCTCTC -ACGGAAGCTCAAAGCCTATGGATC -ACGGAAGCTCAAAGCCTACACTTC -ACGGAAGCTCAAAGCCTAGTACTC -ACGGAAGCTCAAAGCCTAGATGTC -ACGGAAGCTCAAAGCCTAACAGTC -ACGGAAGCTCAAAGCCTATTGCTG -ACGGAAGCTCAAAGCCTATCCATG -ACGGAAGCTCAAAGCCTATGTGTG -ACGGAAGCTCAAAGCCTACTAGTG -ACGGAAGCTCAAAGCCTACATCTG -ACGGAAGCTCAAAGCCTAGAGTTG -ACGGAAGCTCAAAGCCTAAGACTG -ACGGAAGCTCAAAGCCTATCGGTA -ACGGAAGCTCAAAGCCTATGCCTA -ACGGAAGCTCAAAGCCTACCACTA -ACGGAAGCTCAAAGCCTAGGAGTA -ACGGAAGCTCAAAGCCTATCGTCT -ACGGAAGCTCAAAGCCTATGCACT -ACGGAAGCTCAAAGCCTACTGACT -ACGGAAGCTCAAAGCCTACAACCT -ACGGAAGCTCAAAGCCTAGCTACT -ACGGAAGCTCAAAGCCTAGGATCT -ACGGAAGCTCAAAGCCTAAAGGCT -ACGGAAGCTCAAAGCCTATCAACC -ACGGAAGCTCAAAGCCTATGTTCC -ACGGAAGCTCAAAGCCTAATTCCC -ACGGAAGCTCAAAGCCTATTCTCG -ACGGAAGCTCAAAGCCTATAGACG -ACGGAAGCTCAAAGCCTAGTAACG -ACGGAAGCTCAAAGCCTAACTTCG -ACGGAAGCTCAAAGCCTATACGCA -ACGGAAGCTCAAAGCCTACTTGCA -ACGGAAGCTCAAAGCCTACGAACA -ACGGAAGCTCAAAGCCTACAGTCA -ACGGAAGCTCAAAGCCTAGATCCA -ACGGAAGCTCAAAGCCTAACGACA -ACGGAAGCTCAAAGCCTAAGCTCA -ACGGAAGCTCAAAGCCTATCACGT -ACGGAAGCTCAAAGCCTACGTAGT -ACGGAAGCTCAAAGCCTAGTCAGT -ACGGAAGCTCAAAGCCTAGAAGGT -ACGGAAGCTCAAAGCCTAAACCGT -ACGGAAGCTCAAAGCCTATTGTGC -ACGGAAGCTCAAAGCCTACTAAGC -ACGGAAGCTCAAAGCCTAACTAGC -ACGGAAGCTCAAAGCCTAAGATGC -ACGGAAGCTCAAAGCCTATGAAGG -ACGGAAGCTCAAAGCCTACAATGG -ACGGAAGCTCAAAGCCTAATGAGG -ACGGAAGCTCAAAGCCTAAATGGG -ACGGAAGCTCAAAGCCTATCCTGA -ACGGAAGCTCAAAGCCTATAGCGA -ACGGAAGCTCAAAGCCTACACAGA -ACGGAAGCTCAAAGCCTAGCAAGA -ACGGAAGCTCAAAGCCTAGGTTGA -ACGGAAGCTCAAAGCCTATCCGAT -ACGGAAGCTCAAAGCCTATGGCAT -ACGGAAGCTCAAAGCCTACGAGAT -ACGGAAGCTCAAAGCCTATACCAC -ACGGAAGCTCAAAGCCTACAGAAC -ACGGAAGCTCAAAGCCTAGTCTAC -ACGGAAGCTCAAAGCCTAACGTAC -ACGGAAGCTCAAAGCCTAAGTGAC -ACGGAAGCTCAAAGCCTACTGTAG -ACGGAAGCTCAAAGCCTACCTAAG -ACGGAAGCTCAAAGCCTAGTTCAG -ACGGAAGCTCAAAGCCTAGCATAG -ACGGAAGCTCAAAGCCTAGACAAG -ACGGAAGCTCAAAGCCTAAAGCAG -ACGGAAGCTCAAAGCCTACGTCAA -ACGGAAGCTCAAAGCCTAGCTGAA -ACGGAAGCTCAAAGCCTAAGTACG -ACGGAAGCTCAAAGCCTAATCCGA -ACGGAAGCTCAAAGCCTAATGGGA -ACGGAAGCTCAAAGCCTAGTGCAA -ACGGAAGCTCAAAGCCTAGAGGAA -ACGGAAGCTCAAAGCCTACAGGTA -ACGGAAGCTCAAAGCCTAGACTCT -ACGGAAGCTCAAAGCCTAAGTCCT -ACGGAAGCTCAAAGCCTATAAGCC -ACGGAAGCTCAAAGCCTAATAGCC -ACGGAAGCTCAAAGCCTATAACCG -ACGGAAGCTCAAAGCCTAATGCCA -ACGGAAGCTCAAAGCACTGGAAAC -ACGGAAGCTCAAAGCACTAACACC -ACGGAAGCTCAAAGCACTATCGAG -ACGGAAGCTCAAAGCACTCTCCTT -ACGGAAGCTCAAAGCACTCCTGTT -ACGGAAGCTCAAAGCACTCGGTTT -ACGGAAGCTCAAAGCACTGTGGTT -ACGGAAGCTCAAAGCACTGCCTTT -ACGGAAGCTCAAAGCACTGGTCTT -ACGGAAGCTCAAAGCACTACGCTT -ACGGAAGCTCAAAGCACTAGCGTT -ACGGAAGCTCAAAGCACTTTCGTC -ACGGAAGCTCAAAGCACTTCTCTC -ACGGAAGCTCAAAGCACTTGGATC -ACGGAAGCTCAAAGCACTCACTTC -ACGGAAGCTCAAAGCACTGTACTC -ACGGAAGCTCAAAGCACTGATGTC -ACGGAAGCTCAAAGCACTACAGTC -ACGGAAGCTCAAAGCACTTTGCTG -ACGGAAGCTCAAAGCACTTCCATG -ACGGAAGCTCAAAGCACTTGTGTG -ACGGAAGCTCAAAGCACTCTAGTG -ACGGAAGCTCAAAGCACTCATCTG -ACGGAAGCTCAAAGCACTGAGTTG -ACGGAAGCTCAAAGCACTAGACTG -ACGGAAGCTCAAAGCACTTCGGTA -ACGGAAGCTCAAAGCACTTGCCTA -ACGGAAGCTCAAAGCACTCCACTA -ACGGAAGCTCAAAGCACTGGAGTA -ACGGAAGCTCAAAGCACTTCGTCT -ACGGAAGCTCAAAGCACTTGCACT -ACGGAAGCTCAAAGCACTCTGACT -ACGGAAGCTCAAAGCACTCAACCT -ACGGAAGCTCAAAGCACTGCTACT -ACGGAAGCTCAAAGCACTGGATCT -ACGGAAGCTCAAAGCACTAAGGCT -ACGGAAGCTCAAAGCACTTCAACC -ACGGAAGCTCAAAGCACTTGTTCC -ACGGAAGCTCAAAGCACTATTCCC -ACGGAAGCTCAAAGCACTTTCTCG -ACGGAAGCTCAAAGCACTTAGACG -ACGGAAGCTCAAAGCACTGTAACG -ACGGAAGCTCAAAGCACTACTTCG -ACGGAAGCTCAAAGCACTTACGCA -ACGGAAGCTCAAAGCACTCTTGCA -ACGGAAGCTCAAAGCACTCGAACA -ACGGAAGCTCAAAGCACTCAGTCA -ACGGAAGCTCAAAGCACTGATCCA -ACGGAAGCTCAAAGCACTACGACA -ACGGAAGCTCAAAGCACTAGCTCA -ACGGAAGCTCAAAGCACTTCACGT -ACGGAAGCTCAAAGCACTCGTAGT -ACGGAAGCTCAAAGCACTGTCAGT -ACGGAAGCTCAAAGCACTGAAGGT -ACGGAAGCTCAAAGCACTAACCGT -ACGGAAGCTCAAAGCACTTTGTGC -ACGGAAGCTCAAAGCACTCTAAGC -ACGGAAGCTCAAAGCACTACTAGC -ACGGAAGCTCAAAGCACTAGATGC -ACGGAAGCTCAAAGCACTTGAAGG -ACGGAAGCTCAAAGCACTCAATGG -ACGGAAGCTCAAAGCACTATGAGG -ACGGAAGCTCAAAGCACTAATGGG -ACGGAAGCTCAAAGCACTTCCTGA -ACGGAAGCTCAAAGCACTTAGCGA -ACGGAAGCTCAAAGCACTCACAGA -ACGGAAGCTCAAAGCACTGCAAGA -ACGGAAGCTCAAAGCACTGGTTGA -ACGGAAGCTCAAAGCACTTCCGAT -ACGGAAGCTCAAAGCACTTGGCAT -ACGGAAGCTCAAAGCACTCGAGAT -ACGGAAGCTCAAAGCACTTACCAC -ACGGAAGCTCAAAGCACTCAGAAC -ACGGAAGCTCAAAGCACTGTCTAC -ACGGAAGCTCAAAGCACTACGTAC -ACGGAAGCTCAAAGCACTAGTGAC -ACGGAAGCTCAAAGCACTCTGTAG -ACGGAAGCTCAAAGCACTCCTAAG -ACGGAAGCTCAAAGCACTGTTCAG -ACGGAAGCTCAAAGCACTGCATAG -ACGGAAGCTCAAAGCACTGACAAG -ACGGAAGCTCAAAGCACTAAGCAG -ACGGAAGCTCAAAGCACTCGTCAA -ACGGAAGCTCAAAGCACTGCTGAA -ACGGAAGCTCAAAGCACTAGTACG -ACGGAAGCTCAAAGCACTATCCGA -ACGGAAGCTCAAAGCACTATGGGA -ACGGAAGCTCAAAGCACTGTGCAA -ACGGAAGCTCAAAGCACTGAGGAA -ACGGAAGCTCAAAGCACTCAGGTA -ACGGAAGCTCAAAGCACTGACTCT -ACGGAAGCTCAAAGCACTAGTCCT -ACGGAAGCTCAAAGCACTTAAGCC -ACGGAAGCTCAAAGCACTATAGCC -ACGGAAGCTCAAAGCACTTAACCG -ACGGAAGCTCAAAGCACTATGCCA -ACGGAAGCTCAATGCAGAGGAAAC -ACGGAAGCTCAATGCAGAAACACC -ACGGAAGCTCAATGCAGAATCGAG -ACGGAAGCTCAATGCAGACTCCTT -ACGGAAGCTCAATGCAGACCTGTT -ACGGAAGCTCAATGCAGACGGTTT -ACGGAAGCTCAATGCAGAGTGGTT -ACGGAAGCTCAATGCAGAGCCTTT -ACGGAAGCTCAATGCAGAGGTCTT -ACGGAAGCTCAATGCAGAACGCTT -ACGGAAGCTCAATGCAGAAGCGTT -ACGGAAGCTCAATGCAGATTCGTC -ACGGAAGCTCAATGCAGATCTCTC -ACGGAAGCTCAATGCAGATGGATC -ACGGAAGCTCAATGCAGACACTTC -ACGGAAGCTCAATGCAGAGTACTC -ACGGAAGCTCAATGCAGAGATGTC -ACGGAAGCTCAATGCAGAACAGTC -ACGGAAGCTCAATGCAGATTGCTG -ACGGAAGCTCAATGCAGATCCATG -ACGGAAGCTCAATGCAGATGTGTG -ACGGAAGCTCAATGCAGACTAGTG -ACGGAAGCTCAATGCAGACATCTG -ACGGAAGCTCAATGCAGAGAGTTG -ACGGAAGCTCAATGCAGAAGACTG -ACGGAAGCTCAATGCAGATCGGTA -ACGGAAGCTCAATGCAGATGCCTA -ACGGAAGCTCAATGCAGACCACTA -ACGGAAGCTCAATGCAGAGGAGTA -ACGGAAGCTCAATGCAGATCGTCT -ACGGAAGCTCAATGCAGATGCACT -ACGGAAGCTCAATGCAGACTGACT -ACGGAAGCTCAATGCAGACAACCT -ACGGAAGCTCAATGCAGAGCTACT -ACGGAAGCTCAATGCAGAGGATCT -ACGGAAGCTCAATGCAGAAAGGCT -ACGGAAGCTCAATGCAGATCAACC -ACGGAAGCTCAATGCAGATGTTCC -ACGGAAGCTCAATGCAGAATTCCC -ACGGAAGCTCAATGCAGATTCTCG -ACGGAAGCTCAATGCAGATAGACG -ACGGAAGCTCAATGCAGAGTAACG -ACGGAAGCTCAATGCAGAACTTCG -ACGGAAGCTCAATGCAGATACGCA -ACGGAAGCTCAATGCAGACTTGCA -ACGGAAGCTCAATGCAGACGAACA -ACGGAAGCTCAATGCAGACAGTCA -ACGGAAGCTCAATGCAGAGATCCA -ACGGAAGCTCAATGCAGAACGACA -ACGGAAGCTCAATGCAGAAGCTCA -ACGGAAGCTCAATGCAGATCACGT -ACGGAAGCTCAATGCAGACGTAGT -ACGGAAGCTCAATGCAGAGTCAGT -ACGGAAGCTCAATGCAGAGAAGGT -ACGGAAGCTCAATGCAGAAACCGT -ACGGAAGCTCAATGCAGATTGTGC -ACGGAAGCTCAATGCAGACTAAGC -ACGGAAGCTCAATGCAGAACTAGC -ACGGAAGCTCAATGCAGAAGATGC -ACGGAAGCTCAATGCAGATGAAGG -ACGGAAGCTCAATGCAGACAATGG -ACGGAAGCTCAATGCAGAATGAGG -ACGGAAGCTCAATGCAGAAATGGG -ACGGAAGCTCAATGCAGATCCTGA -ACGGAAGCTCAATGCAGATAGCGA -ACGGAAGCTCAATGCAGACACAGA -ACGGAAGCTCAATGCAGAGCAAGA -ACGGAAGCTCAATGCAGAGGTTGA -ACGGAAGCTCAATGCAGATCCGAT -ACGGAAGCTCAATGCAGATGGCAT -ACGGAAGCTCAATGCAGACGAGAT -ACGGAAGCTCAATGCAGATACCAC -ACGGAAGCTCAATGCAGACAGAAC -ACGGAAGCTCAATGCAGAGTCTAC -ACGGAAGCTCAATGCAGAACGTAC -ACGGAAGCTCAATGCAGAAGTGAC -ACGGAAGCTCAATGCAGACTGTAG -ACGGAAGCTCAATGCAGACCTAAG -ACGGAAGCTCAATGCAGAGTTCAG -ACGGAAGCTCAATGCAGAGCATAG -ACGGAAGCTCAATGCAGAGACAAG -ACGGAAGCTCAATGCAGAAAGCAG -ACGGAAGCTCAATGCAGACGTCAA -ACGGAAGCTCAATGCAGAGCTGAA -ACGGAAGCTCAATGCAGAAGTACG -ACGGAAGCTCAATGCAGAATCCGA -ACGGAAGCTCAATGCAGAATGGGA -ACGGAAGCTCAATGCAGAGTGCAA -ACGGAAGCTCAATGCAGAGAGGAA -ACGGAAGCTCAATGCAGACAGGTA -ACGGAAGCTCAATGCAGAGACTCT -ACGGAAGCTCAATGCAGAAGTCCT -ACGGAAGCTCAATGCAGATAAGCC -ACGGAAGCTCAATGCAGAATAGCC -ACGGAAGCTCAATGCAGATAACCG -ACGGAAGCTCAATGCAGAATGCCA -ACGGAAGCTCAAAGGTGAGGAAAC -ACGGAAGCTCAAAGGTGAAACACC -ACGGAAGCTCAAAGGTGAATCGAG -ACGGAAGCTCAAAGGTGACTCCTT -ACGGAAGCTCAAAGGTGACCTGTT -ACGGAAGCTCAAAGGTGACGGTTT -ACGGAAGCTCAAAGGTGAGTGGTT -ACGGAAGCTCAAAGGTGAGCCTTT -ACGGAAGCTCAAAGGTGAGGTCTT -ACGGAAGCTCAAAGGTGAACGCTT -ACGGAAGCTCAAAGGTGAAGCGTT -ACGGAAGCTCAAAGGTGATTCGTC -ACGGAAGCTCAAAGGTGATCTCTC -ACGGAAGCTCAAAGGTGATGGATC -ACGGAAGCTCAAAGGTGACACTTC -ACGGAAGCTCAAAGGTGAGTACTC -ACGGAAGCTCAAAGGTGAGATGTC -ACGGAAGCTCAAAGGTGAACAGTC -ACGGAAGCTCAAAGGTGATTGCTG -ACGGAAGCTCAAAGGTGATCCATG -ACGGAAGCTCAAAGGTGATGTGTG -ACGGAAGCTCAAAGGTGACTAGTG -ACGGAAGCTCAAAGGTGACATCTG -ACGGAAGCTCAAAGGTGAGAGTTG -ACGGAAGCTCAAAGGTGAAGACTG -ACGGAAGCTCAAAGGTGATCGGTA -ACGGAAGCTCAAAGGTGATGCCTA -ACGGAAGCTCAAAGGTGACCACTA -ACGGAAGCTCAAAGGTGAGGAGTA -ACGGAAGCTCAAAGGTGATCGTCT -ACGGAAGCTCAAAGGTGATGCACT -ACGGAAGCTCAAAGGTGACTGACT -ACGGAAGCTCAAAGGTGACAACCT -ACGGAAGCTCAAAGGTGAGCTACT -ACGGAAGCTCAAAGGTGAGGATCT -ACGGAAGCTCAAAGGTGAAAGGCT -ACGGAAGCTCAAAGGTGATCAACC -ACGGAAGCTCAAAGGTGATGTTCC -ACGGAAGCTCAAAGGTGAATTCCC -ACGGAAGCTCAAAGGTGATTCTCG -ACGGAAGCTCAAAGGTGATAGACG -ACGGAAGCTCAAAGGTGAGTAACG -ACGGAAGCTCAAAGGTGAACTTCG -ACGGAAGCTCAAAGGTGATACGCA -ACGGAAGCTCAAAGGTGACTTGCA -ACGGAAGCTCAAAGGTGACGAACA -ACGGAAGCTCAAAGGTGACAGTCA -ACGGAAGCTCAAAGGTGAGATCCA -ACGGAAGCTCAAAGGTGAACGACA -ACGGAAGCTCAAAGGTGAAGCTCA -ACGGAAGCTCAAAGGTGATCACGT -ACGGAAGCTCAAAGGTGACGTAGT -ACGGAAGCTCAAAGGTGAGTCAGT -ACGGAAGCTCAAAGGTGAGAAGGT -ACGGAAGCTCAAAGGTGAAACCGT -ACGGAAGCTCAAAGGTGATTGTGC -ACGGAAGCTCAAAGGTGACTAAGC -ACGGAAGCTCAAAGGTGAACTAGC -ACGGAAGCTCAAAGGTGAAGATGC -ACGGAAGCTCAAAGGTGATGAAGG -ACGGAAGCTCAAAGGTGACAATGG -ACGGAAGCTCAAAGGTGAATGAGG -ACGGAAGCTCAAAGGTGAAATGGG -ACGGAAGCTCAAAGGTGATCCTGA -ACGGAAGCTCAAAGGTGATAGCGA -ACGGAAGCTCAAAGGTGACACAGA -ACGGAAGCTCAAAGGTGAGCAAGA -ACGGAAGCTCAAAGGTGAGGTTGA -ACGGAAGCTCAAAGGTGATCCGAT -ACGGAAGCTCAAAGGTGATGGCAT -ACGGAAGCTCAAAGGTGACGAGAT -ACGGAAGCTCAAAGGTGATACCAC -ACGGAAGCTCAAAGGTGACAGAAC -ACGGAAGCTCAAAGGTGAGTCTAC -ACGGAAGCTCAAAGGTGAACGTAC -ACGGAAGCTCAAAGGTGAAGTGAC -ACGGAAGCTCAAAGGTGACTGTAG -ACGGAAGCTCAAAGGTGACCTAAG -ACGGAAGCTCAAAGGTGAGTTCAG -ACGGAAGCTCAAAGGTGAGCATAG -ACGGAAGCTCAAAGGTGAGACAAG -ACGGAAGCTCAAAGGTGAAAGCAG -ACGGAAGCTCAAAGGTGACGTCAA -ACGGAAGCTCAAAGGTGAGCTGAA -ACGGAAGCTCAAAGGTGAAGTACG -ACGGAAGCTCAAAGGTGAATCCGA -ACGGAAGCTCAAAGGTGAATGGGA -ACGGAAGCTCAAAGGTGAGTGCAA -ACGGAAGCTCAAAGGTGAGAGGAA -ACGGAAGCTCAAAGGTGACAGGTA -ACGGAAGCTCAAAGGTGAGACTCT -ACGGAAGCTCAAAGGTGAAGTCCT -ACGGAAGCTCAAAGGTGATAAGCC -ACGGAAGCTCAAAGGTGAATAGCC -ACGGAAGCTCAAAGGTGATAACCG -ACGGAAGCTCAAAGGTGAATGCCA -ACGGAAGCTCAATGGCAAGGAAAC -ACGGAAGCTCAATGGCAAAACACC -ACGGAAGCTCAATGGCAAATCGAG -ACGGAAGCTCAATGGCAACTCCTT -ACGGAAGCTCAATGGCAACCTGTT -ACGGAAGCTCAATGGCAACGGTTT -ACGGAAGCTCAATGGCAAGTGGTT -ACGGAAGCTCAATGGCAAGCCTTT -ACGGAAGCTCAATGGCAAGGTCTT -ACGGAAGCTCAATGGCAAACGCTT -ACGGAAGCTCAATGGCAAAGCGTT -ACGGAAGCTCAATGGCAATTCGTC -ACGGAAGCTCAATGGCAATCTCTC -ACGGAAGCTCAATGGCAATGGATC -ACGGAAGCTCAATGGCAACACTTC -ACGGAAGCTCAATGGCAAGTACTC -ACGGAAGCTCAATGGCAAGATGTC -ACGGAAGCTCAATGGCAAACAGTC -ACGGAAGCTCAATGGCAATTGCTG -ACGGAAGCTCAATGGCAATCCATG -ACGGAAGCTCAATGGCAATGTGTG -ACGGAAGCTCAATGGCAACTAGTG -ACGGAAGCTCAATGGCAACATCTG -ACGGAAGCTCAATGGCAAGAGTTG -ACGGAAGCTCAATGGCAAAGACTG -ACGGAAGCTCAATGGCAATCGGTA -ACGGAAGCTCAATGGCAATGCCTA -ACGGAAGCTCAATGGCAACCACTA -ACGGAAGCTCAATGGCAAGGAGTA -ACGGAAGCTCAATGGCAATCGTCT -ACGGAAGCTCAATGGCAATGCACT -ACGGAAGCTCAATGGCAACTGACT -ACGGAAGCTCAATGGCAACAACCT -ACGGAAGCTCAATGGCAAGCTACT -ACGGAAGCTCAATGGCAAGGATCT -ACGGAAGCTCAATGGCAAAAGGCT -ACGGAAGCTCAATGGCAATCAACC -ACGGAAGCTCAATGGCAATGTTCC -ACGGAAGCTCAATGGCAAATTCCC -ACGGAAGCTCAATGGCAATTCTCG -ACGGAAGCTCAATGGCAATAGACG -ACGGAAGCTCAATGGCAAGTAACG -ACGGAAGCTCAATGGCAAACTTCG -ACGGAAGCTCAATGGCAATACGCA -ACGGAAGCTCAATGGCAACTTGCA -ACGGAAGCTCAATGGCAACGAACA -ACGGAAGCTCAATGGCAACAGTCA -ACGGAAGCTCAATGGCAAGATCCA -ACGGAAGCTCAATGGCAAACGACA -ACGGAAGCTCAATGGCAAAGCTCA -ACGGAAGCTCAATGGCAATCACGT -ACGGAAGCTCAATGGCAACGTAGT -ACGGAAGCTCAATGGCAAGTCAGT -ACGGAAGCTCAATGGCAAGAAGGT -ACGGAAGCTCAATGGCAAAACCGT -ACGGAAGCTCAATGGCAATTGTGC -ACGGAAGCTCAATGGCAACTAAGC -ACGGAAGCTCAATGGCAAACTAGC -ACGGAAGCTCAATGGCAAAGATGC -ACGGAAGCTCAATGGCAATGAAGG -ACGGAAGCTCAATGGCAACAATGG -ACGGAAGCTCAATGGCAAATGAGG -ACGGAAGCTCAATGGCAAAATGGG -ACGGAAGCTCAATGGCAATCCTGA -ACGGAAGCTCAATGGCAATAGCGA -ACGGAAGCTCAATGGCAACACAGA -ACGGAAGCTCAATGGCAAGCAAGA -ACGGAAGCTCAATGGCAAGGTTGA -ACGGAAGCTCAATGGCAATCCGAT -ACGGAAGCTCAATGGCAATGGCAT -ACGGAAGCTCAATGGCAACGAGAT -ACGGAAGCTCAATGGCAATACCAC -ACGGAAGCTCAATGGCAACAGAAC -ACGGAAGCTCAATGGCAAGTCTAC -ACGGAAGCTCAATGGCAAACGTAC -ACGGAAGCTCAATGGCAAAGTGAC -ACGGAAGCTCAATGGCAACTGTAG -ACGGAAGCTCAATGGCAACCTAAG -ACGGAAGCTCAATGGCAAGTTCAG -ACGGAAGCTCAATGGCAAGCATAG -ACGGAAGCTCAATGGCAAGACAAG -ACGGAAGCTCAATGGCAAAAGCAG -ACGGAAGCTCAATGGCAACGTCAA -ACGGAAGCTCAATGGCAAGCTGAA -ACGGAAGCTCAATGGCAAAGTACG -ACGGAAGCTCAATGGCAAATCCGA -ACGGAAGCTCAATGGCAAATGGGA -ACGGAAGCTCAATGGCAAGTGCAA -ACGGAAGCTCAATGGCAAGAGGAA -ACGGAAGCTCAATGGCAACAGGTA -ACGGAAGCTCAATGGCAAGACTCT -ACGGAAGCTCAATGGCAAAGTCCT -ACGGAAGCTCAATGGCAATAAGCC -ACGGAAGCTCAATGGCAAATAGCC -ACGGAAGCTCAATGGCAATAACCG -ACGGAAGCTCAATGGCAAATGCCA -ACGGAAGCTCAAAGGATGGGAAAC -ACGGAAGCTCAAAGGATGAACACC -ACGGAAGCTCAAAGGATGATCGAG -ACGGAAGCTCAAAGGATGCTCCTT -ACGGAAGCTCAAAGGATGCCTGTT -ACGGAAGCTCAAAGGATGCGGTTT -ACGGAAGCTCAAAGGATGGTGGTT -ACGGAAGCTCAAAGGATGGCCTTT -ACGGAAGCTCAAAGGATGGGTCTT -ACGGAAGCTCAAAGGATGACGCTT -ACGGAAGCTCAAAGGATGAGCGTT -ACGGAAGCTCAAAGGATGTTCGTC -ACGGAAGCTCAAAGGATGTCTCTC -ACGGAAGCTCAAAGGATGTGGATC -ACGGAAGCTCAAAGGATGCACTTC -ACGGAAGCTCAAAGGATGGTACTC -ACGGAAGCTCAAAGGATGGATGTC -ACGGAAGCTCAAAGGATGACAGTC -ACGGAAGCTCAAAGGATGTTGCTG -ACGGAAGCTCAAAGGATGTCCATG -ACGGAAGCTCAAAGGATGTGTGTG -ACGGAAGCTCAAAGGATGCTAGTG -ACGGAAGCTCAAAGGATGCATCTG -ACGGAAGCTCAAAGGATGGAGTTG -ACGGAAGCTCAAAGGATGAGACTG -ACGGAAGCTCAAAGGATGTCGGTA -ACGGAAGCTCAAAGGATGTGCCTA -ACGGAAGCTCAAAGGATGCCACTA -ACGGAAGCTCAAAGGATGGGAGTA -ACGGAAGCTCAAAGGATGTCGTCT -ACGGAAGCTCAAAGGATGTGCACT -ACGGAAGCTCAAAGGATGCTGACT -ACGGAAGCTCAAAGGATGCAACCT -ACGGAAGCTCAAAGGATGGCTACT -ACGGAAGCTCAAAGGATGGGATCT -ACGGAAGCTCAAAGGATGAAGGCT -ACGGAAGCTCAAAGGATGTCAACC -ACGGAAGCTCAAAGGATGTGTTCC -ACGGAAGCTCAAAGGATGATTCCC -ACGGAAGCTCAAAGGATGTTCTCG -ACGGAAGCTCAAAGGATGTAGACG -ACGGAAGCTCAAAGGATGGTAACG -ACGGAAGCTCAAAGGATGACTTCG -ACGGAAGCTCAAAGGATGTACGCA -ACGGAAGCTCAAAGGATGCTTGCA -ACGGAAGCTCAAAGGATGCGAACA -ACGGAAGCTCAAAGGATGCAGTCA -ACGGAAGCTCAAAGGATGGATCCA -ACGGAAGCTCAAAGGATGACGACA -ACGGAAGCTCAAAGGATGAGCTCA -ACGGAAGCTCAAAGGATGTCACGT -ACGGAAGCTCAAAGGATGCGTAGT -ACGGAAGCTCAAAGGATGGTCAGT -ACGGAAGCTCAAAGGATGGAAGGT -ACGGAAGCTCAAAGGATGAACCGT -ACGGAAGCTCAAAGGATGTTGTGC -ACGGAAGCTCAAAGGATGCTAAGC -ACGGAAGCTCAAAGGATGACTAGC -ACGGAAGCTCAAAGGATGAGATGC -ACGGAAGCTCAAAGGATGTGAAGG -ACGGAAGCTCAAAGGATGCAATGG -ACGGAAGCTCAAAGGATGATGAGG -ACGGAAGCTCAAAGGATGAATGGG -ACGGAAGCTCAAAGGATGTCCTGA -ACGGAAGCTCAAAGGATGTAGCGA -ACGGAAGCTCAAAGGATGCACAGA -ACGGAAGCTCAAAGGATGGCAAGA -ACGGAAGCTCAAAGGATGGGTTGA -ACGGAAGCTCAAAGGATGTCCGAT -ACGGAAGCTCAAAGGATGTGGCAT -ACGGAAGCTCAAAGGATGCGAGAT -ACGGAAGCTCAAAGGATGTACCAC -ACGGAAGCTCAAAGGATGCAGAAC -ACGGAAGCTCAAAGGATGGTCTAC -ACGGAAGCTCAAAGGATGACGTAC -ACGGAAGCTCAAAGGATGAGTGAC -ACGGAAGCTCAAAGGATGCTGTAG -ACGGAAGCTCAAAGGATGCCTAAG -ACGGAAGCTCAAAGGATGGTTCAG -ACGGAAGCTCAAAGGATGGCATAG -ACGGAAGCTCAAAGGATGGACAAG -ACGGAAGCTCAAAGGATGAAGCAG -ACGGAAGCTCAAAGGATGCGTCAA -ACGGAAGCTCAAAGGATGGCTGAA -ACGGAAGCTCAAAGGATGAGTACG -ACGGAAGCTCAAAGGATGATCCGA -ACGGAAGCTCAAAGGATGATGGGA -ACGGAAGCTCAAAGGATGGTGCAA -ACGGAAGCTCAAAGGATGGAGGAA -ACGGAAGCTCAAAGGATGCAGGTA -ACGGAAGCTCAAAGGATGGACTCT -ACGGAAGCTCAAAGGATGAGTCCT -ACGGAAGCTCAAAGGATGTAAGCC -ACGGAAGCTCAAAGGATGATAGCC -ACGGAAGCTCAAAGGATGTAACCG -ACGGAAGCTCAAAGGATGATGCCA -ACGGAAGCTCAAGGGAATGGAAAC -ACGGAAGCTCAAGGGAATAACACC -ACGGAAGCTCAAGGGAATATCGAG -ACGGAAGCTCAAGGGAATCTCCTT -ACGGAAGCTCAAGGGAATCCTGTT -ACGGAAGCTCAAGGGAATCGGTTT -ACGGAAGCTCAAGGGAATGTGGTT -ACGGAAGCTCAAGGGAATGCCTTT -ACGGAAGCTCAAGGGAATGGTCTT -ACGGAAGCTCAAGGGAATACGCTT -ACGGAAGCTCAAGGGAATAGCGTT -ACGGAAGCTCAAGGGAATTTCGTC -ACGGAAGCTCAAGGGAATTCTCTC -ACGGAAGCTCAAGGGAATTGGATC -ACGGAAGCTCAAGGGAATCACTTC -ACGGAAGCTCAAGGGAATGTACTC -ACGGAAGCTCAAGGGAATGATGTC -ACGGAAGCTCAAGGGAATACAGTC -ACGGAAGCTCAAGGGAATTTGCTG -ACGGAAGCTCAAGGGAATTCCATG -ACGGAAGCTCAAGGGAATTGTGTG -ACGGAAGCTCAAGGGAATCTAGTG -ACGGAAGCTCAAGGGAATCATCTG -ACGGAAGCTCAAGGGAATGAGTTG -ACGGAAGCTCAAGGGAATAGACTG -ACGGAAGCTCAAGGGAATTCGGTA -ACGGAAGCTCAAGGGAATTGCCTA -ACGGAAGCTCAAGGGAATCCACTA -ACGGAAGCTCAAGGGAATGGAGTA -ACGGAAGCTCAAGGGAATTCGTCT -ACGGAAGCTCAAGGGAATTGCACT -ACGGAAGCTCAAGGGAATCTGACT -ACGGAAGCTCAAGGGAATCAACCT -ACGGAAGCTCAAGGGAATGCTACT -ACGGAAGCTCAAGGGAATGGATCT -ACGGAAGCTCAAGGGAATAAGGCT -ACGGAAGCTCAAGGGAATTCAACC -ACGGAAGCTCAAGGGAATTGTTCC -ACGGAAGCTCAAGGGAATATTCCC -ACGGAAGCTCAAGGGAATTTCTCG -ACGGAAGCTCAAGGGAATTAGACG -ACGGAAGCTCAAGGGAATGTAACG -ACGGAAGCTCAAGGGAATACTTCG -ACGGAAGCTCAAGGGAATTACGCA -ACGGAAGCTCAAGGGAATCTTGCA -ACGGAAGCTCAAGGGAATCGAACA -ACGGAAGCTCAAGGGAATCAGTCA -ACGGAAGCTCAAGGGAATGATCCA -ACGGAAGCTCAAGGGAATACGACA -ACGGAAGCTCAAGGGAATAGCTCA -ACGGAAGCTCAAGGGAATTCACGT -ACGGAAGCTCAAGGGAATCGTAGT -ACGGAAGCTCAAGGGAATGTCAGT -ACGGAAGCTCAAGGGAATGAAGGT -ACGGAAGCTCAAGGGAATAACCGT -ACGGAAGCTCAAGGGAATTTGTGC -ACGGAAGCTCAAGGGAATCTAAGC -ACGGAAGCTCAAGGGAATACTAGC -ACGGAAGCTCAAGGGAATAGATGC -ACGGAAGCTCAAGGGAATTGAAGG -ACGGAAGCTCAAGGGAATCAATGG -ACGGAAGCTCAAGGGAATATGAGG -ACGGAAGCTCAAGGGAATAATGGG -ACGGAAGCTCAAGGGAATTCCTGA -ACGGAAGCTCAAGGGAATTAGCGA -ACGGAAGCTCAAGGGAATCACAGA -ACGGAAGCTCAAGGGAATGCAAGA -ACGGAAGCTCAAGGGAATGGTTGA -ACGGAAGCTCAAGGGAATTCCGAT -ACGGAAGCTCAAGGGAATTGGCAT -ACGGAAGCTCAAGGGAATCGAGAT -ACGGAAGCTCAAGGGAATTACCAC -ACGGAAGCTCAAGGGAATCAGAAC -ACGGAAGCTCAAGGGAATGTCTAC -ACGGAAGCTCAAGGGAATACGTAC -ACGGAAGCTCAAGGGAATAGTGAC -ACGGAAGCTCAAGGGAATCTGTAG -ACGGAAGCTCAAGGGAATCCTAAG -ACGGAAGCTCAAGGGAATGTTCAG -ACGGAAGCTCAAGGGAATGCATAG -ACGGAAGCTCAAGGGAATGACAAG -ACGGAAGCTCAAGGGAATAAGCAG -ACGGAAGCTCAAGGGAATCGTCAA -ACGGAAGCTCAAGGGAATGCTGAA -ACGGAAGCTCAAGGGAATAGTACG -ACGGAAGCTCAAGGGAATATCCGA -ACGGAAGCTCAAGGGAATATGGGA -ACGGAAGCTCAAGGGAATGTGCAA -ACGGAAGCTCAAGGGAATGAGGAA -ACGGAAGCTCAAGGGAATCAGGTA -ACGGAAGCTCAAGGGAATGACTCT -ACGGAAGCTCAAGGGAATAGTCCT -ACGGAAGCTCAAGGGAATTAAGCC -ACGGAAGCTCAAGGGAATATAGCC -ACGGAAGCTCAAGGGAATTAACCG -ACGGAAGCTCAAGGGAATATGCCA -ACGGAAGCTCAATGATCCGGAAAC -ACGGAAGCTCAATGATCCAACACC -ACGGAAGCTCAATGATCCATCGAG -ACGGAAGCTCAATGATCCCTCCTT -ACGGAAGCTCAATGATCCCCTGTT -ACGGAAGCTCAATGATCCCGGTTT -ACGGAAGCTCAATGATCCGTGGTT -ACGGAAGCTCAATGATCCGCCTTT -ACGGAAGCTCAATGATCCGGTCTT -ACGGAAGCTCAATGATCCACGCTT -ACGGAAGCTCAATGATCCAGCGTT -ACGGAAGCTCAATGATCCTTCGTC -ACGGAAGCTCAATGATCCTCTCTC -ACGGAAGCTCAATGATCCTGGATC -ACGGAAGCTCAATGATCCCACTTC -ACGGAAGCTCAATGATCCGTACTC -ACGGAAGCTCAATGATCCGATGTC -ACGGAAGCTCAATGATCCACAGTC -ACGGAAGCTCAATGATCCTTGCTG -ACGGAAGCTCAATGATCCTCCATG -ACGGAAGCTCAATGATCCTGTGTG -ACGGAAGCTCAATGATCCCTAGTG -ACGGAAGCTCAATGATCCCATCTG -ACGGAAGCTCAATGATCCGAGTTG -ACGGAAGCTCAATGATCCAGACTG -ACGGAAGCTCAATGATCCTCGGTA -ACGGAAGCTCAATGATCCTGCCTA -ACGGAAGCTCAATGATCCCCACTA -ACGGAAGCTCAATGATCCGGAGTA -ACGGAAGCTCAATGATCCTCGTCT -ACGGAAGCTCAATGATCCTGCACT -ACGGAAGCTCAATGATCCCTGACT -ACGGAAGCTCAATGATCCCAACCT -ACGGAAGCTCAATGATCCGCTACT -ACGGAAGCTCAATGATCCGGATCT -ACGGAAGCTCAATGATCCAAGGCT -ACGGAAGCTCAATGATCCTCAACC -ACGGAAGCTCAATGATCCTGTTCC -ACGGAAGCTCAATGATCCATTCCC -ACGGAAGCTCAATGATCCTTCTCG -ACGGAAGCTCAATGATCCTAGACG -ACGGAAGCTCAATGATCCGTAACG -ACGGAAGCTCAATGATCCACTTCG -ACGGAAGCTCAATGATCCTACGCA -ACGGAAGCTCAATGATCCCTTGCA -ACGGAAGCTCAATGATCCCGAACA -ACGGAAGCTCAATGATCCCAGTCA -ACGGAAGCTCAATGATCCGATCCA -ACGGAAGCTCAATGATCCACGACA -ACGGAAGCTCAATGATCCAGCTCA -ACGGAAGCTCAATGATCCTCACGT -ACGGAAGCTCAATGATCCCGTAGT -ACGGAAGCTCAATGATCCGTCAGT -ACGGAAGCTCAATGATCCGAAGGT -ACGGAAGCTCAATGATCCAACCGT -ACGGAAGCTCAATGATCCTTGTGC -ACGGAAGCTCAATGATCCCTAAGC -ACGGAAGCTCAATGATCCACTAGC -ACGGAAGCTCAATGATCCAGATGC -ACGGAAGCTCAATGATCCTGAAGG -ACGGAAGCTCAATGATCCCAATGG -ACGGAAGCTCAATGATCCATGAGG -ACGGAAGCTCAATGATCCAATGGG -ACGGAAGCTCAATGATCCTCCTGA -ACGGAAGCTCAATGATCCTAGCGA -ACGGAAGCTCAATGATCCCACAGA -ACGGAAGCTCAATGATCCGCAAGA -ACGGAAGCTCAATGATCCGGTTGA -ACGGAAGCTCAATGATCCTCCGAT -ACGGAAGCTCAATGATCCTGGCAT -ACGGAAGCTCAATGATCCCGAGAT -ACGGAAGCTCAATGATCCTACCAC -ACGGAAGCTCAATGATCCCAGAAC -ACGGAAGCTCAATGATCCGTCTAC -ACGGAAGCTCAATGATCCACGTAC -ACGGAAGCTCAATGATCCAGTGAC -ACGGAAGCTCAATGATCCCTGTAG -ACGGAAGCTCAATGATCCCCTAAG -ACGGAAGCTCAATGATCCGTTCAG -ACGGAAGCTCAATGATCCGCATAG -ACGGAAGCTCAATGATCCGACAAG -ACGGAAGCTCAATGATCCAAGCAG -ACGGAAGCTCAATGATCCCGTCAA -ACGGAAGCTCAATGATCCGCTGAA -ACGGAAGCTCAATGATCCAGTACG -ACGGAAGCTCAATGATCCATCCGA -ACGGAAGCTCAATGATCCATGGGA -ACGGAAGCTCAATGATCCGTGCAA -ACGGAAGCTCAATGATCCGAGGAA -ACGGAAGCTCAATGATCCCAGGTA -ACGGAAGCTCAATGATCCGACTCT -ACGGAAGCTCAATGATCCAGTCCT -ACGGAAGCTCAATGATCCTAAGCC -ACGGAAGCTCAATGATCCATAGCC -ACGGAAGCTCAATGATCCTAACCG -ACGGAAGCTCAATGATCCATGCCA -ACGGAAGCTCAACGATAGGGAAAC -ACGGAAGCTCAACGATAGAACACC -ACGGAAGCTCAACGATAGATCGAG -ACGGAAGCTCAACGATAGCTCCTT -ACGGAAGCTCAACGATAGCCTGTT -ACGGAAGCTCAACGATAGCGGTTT -ACGGAAGCTCAACGATAGGTGGTT -ACGGAAGCTCAACGATAGGCCTTT -ACGGAAGCTCAACGATAGGGTCTT -ACGGAAGCTCAACGATAGACGCTT -ACGGAAGCTCAACGATAGAGCGTT -ACGGAAGCTCAACGATAGTTCGTC -ACGGAAGCTCAACGATAGTCTCTC -ACGGAAGCTCAACGATAGTGGATC -ACGGAAGCTCAACGATAGCACTTC -ACGGAAGCTCAACGATAGGTACTC -ACGGAAGCTCAACGATAGGATGTC -ACGGAAGCTCAACGATAGACAGTC -ACGGAAGCTCAACGATAGTTGCTG -ACGGAAGCTCAACGATAGTCCATG -ACGGAAGCTCAACGATAGTGTGTG -ACGGAAGCTCAACGATAGCTAGTG -ACGGAAGCTCAACGATAGCATCTG -ACGGAAGCTCAACGATAGGAGTTG -ACGGAAGCTCAACGATAGAGACTG -ACGGAAGCTCAACGATAGTCGGTA -ACGGAAGCTCAACGATAGTGCCTA -ACGGAAGCTCAACGATAGCCACTA -ACGGAAGCTCAACGATAGGGAGTA -ACGGAAGCTCAACGATAGTCGTCT -ACGGAAGCTCAACGATAGTGCACT -ACGGAAGCTCAACGATAGCTGACT -ACGGAAGCTCAACGATAGCAACCT -ACGGAAGCTCAACGATAGGCTACT -ACGGAAGCTCAACGATAGGGATCT -ACGGAAGCTCAACGATAGAAGGCT -ACGGAAGCTCAACGATAGTCAACC -ACGGAAGCTCAACGATAGTGTTCC -ACGGAAGCTCAACGATAGATTCCC -ACGGAAGCTCAACGATAGTTCTCG -ACGGAAGCTCAACGATAGTAGACG -ACGGAAGCTCAACGATAGGTAACG -ACGGAAGCTCAACGATAGACTTCG -ACGGAAGCTCAACGATAGTACGCA -ACGGAAGCTCAACGATAGCTTGCA -ACGGAAGCTCAACGATAGCGAACA -ACGGAAGCTCAACGATAGCAGTCA -ACGGAAGCTCAACGATAGGATCCA -ACGGAAGCTCAACGATAGACGACA -ACGGAAGCTCAACGATAGAGCTCA -ACGGAAGCTCAACGATAGTCACGT -ACGGAAGCTCAACGATAGCGTAGT -ACGGAAGCTCAACGATAGGTCAGT -ACGGAAGCTCAACGATAGGAAGGT -ACGGAAGCTCAACGATAGAACCGT -ACGGAAGCTCAACGATAGTTGTGC -ACGGAAGCTCAACGATAGCTAAGC -ACGGAAGCTCAACGATAGACTAGC -ACGGAAGCTCAACGATAGAGATGC -ACGGAAGCTCAACGATAGTGAAGG -ACGGAAGCTCAACGATAGCAATGG -ACGGAAGCTCAACGATAGATGAGG -ACGGAAGCTCAACGATAGAATGGG -ACGGAAGCTCAACGATAGTCCTGA -ACGGAAGCTCAACGATAGTAGCGA -ACGGAAGCTCAACGATAGCACAGA -ACGGAAGCTCAACGATAGGCAAGA -ACGGAAGCTCAACGATAGGGTTGA -ACGGAAGCTCAACGATAGTCCGAT -ACGGAAGCTCAACGATAGTGGCAT -ACGGAAGCTCAACGATAGCGAGAT -ACGGAAGCTCAACGATAGTACCAC -ACGGAAGCTCAACGATAGCAGAAC -ACGGAAGCTCAACGATAGGTCTAC -ACGGAAGCTCAACGATAGACGTAC -ACGGAAGCTCAACGATAGAGTGAC -ACGGAAGCTCAACGATAGCTGTAG -ACGGAAGCTCAACGATAGCCTAAG -ACGGAAGCTCAACGATAGGTTCAG -ACGGAAGCTCAACGATAGGCATAG -ACGGAAGCTCAACGATAGGACAAG -ACGGAAGCTCAACGATAGAAGCAG -ACGGAAGCTCAACGATAGCGTCAA -ACGGAAGCTCAACGATAGGCTGAA -ACGGAAGCTCAACGATAGAGTACG -ACGGAAGCTCAACGATAGATCCGA -ACGGAAGCTCAACGATAGATGGGA -ACGGAAGCTCAACGATAGGTGCAA -ACGGAAGCTCAACGATAGGAGGAA -ACGGAAGCTCAACGATAGCAGGTA -ACGGAAGCTCAACGATAGGACTCT -ACGGAAGCTCAACGATAGAGTCCT -ACGGAAGCTCAACGATAGTAAGCC -ACGGAAGCTCAACGATAGATAGCC -ACGGAAGCTCAACGATAGTAACCG -ACGGAAGCTCAACGATAGATGCCA -ACGGAAGCTCAAAGACACGGAAAC -ACGGAAGCTCAAAGACACAACACC -ACGGAAGCTCAAAGACACATCGAG -ACGGAAGCTCAAAGACACCTCCTT -ACGGAAGCTCAAAGACACCCTGTT -ACGGAAGCTCAAAGACACCGGTTT -ACGGAAGCTCAAAGACACGTGGTT -ACGGAAGCTCAAAGACACGCCTTT -ACGGAAGCTCAAAGACACGGTCTT -ACGGAAGCTCAAAGACACACGCTT -ACGGAAGCTCAAAGACACAGCGTT -ACGGAAGCTCAAAGACACTTCGTC -ACGGAAGCTCAAAGACACTCTCTC -ACGGAAGCTCAAAGACACTGGATC -ACGGAAGCTCAAAGACACCACTTC -ACGGAAGCTCAAAGACACGTACTC -ACGGAAGCTCAAAGACACGATGTC -ACGGAAGCTCAAAGACACACAGTC -ACGGAAGCTCAAAGACACTTGCTG -ACGGAAGCTCAAAGACACTCCATG -ACGGAAGCTCAAAGACACTGTGTG -ACGGAAGCTCAAAGACACCTAGTG -ACGGAAGCTCAAAGACACCATCTG -ACGGAAGCTCAAAGACACGAGTTG -ACGGAAGCTCAAAGACACAGACTG -ACGGAAGCTCAAAGACACTCGGTA -ACGGAAGCTCAAAGACACTGCCTA -ACGGAAGCTCAAAGACACCCACTA -ACGGAAGCTCAAAGACACGGAGTA -ACGGAAGCTCAAAGACACTCGTCT -ACGGAAGCTCAAAGACACTGCACT -ACGGAAGCTCAAAGACACCTGACT -ACGGAAGCTCAAAGACACCAACCT -ACGGAAGCTCAAAGACACGCTACT -ACGGAAGCTCAAAGACACGGATCT -ACGGAAGCTCAAAGACACAAGGCT -ACGGAAGCTCAAAGACACTCAACC -ACGGAAGCTCAAAGACACTGTTCC -ACGGAAGCTCAAAGACACATTCCC -ACGGAAGCTCAAAGACACTTCTCG -ACGGAAGCTCAAAGACACTAGACG -ACGGAAGCTCAAAGACACGTAACG -ACGGAAGCTCAAAGACACACTTCG -ACGGAAGCTCAAAGACACTACGCA -ACGGAAGCTCAAAGACACCTTGCA -ACGGAAGCTCAAAGACACCGAACA -ACGGAAGCTCAAAGACACCAGTCA -ACGGAAGCTCAAAGACACGATCCA -ACGGAAGCTCAAAGACACACGACA -ACGGAAGCTCAAAGACACAGCTCA -ACGGAAGCTCAAAGACACTCACGT -ACGGAAGCTCAAAGACACCGTAGT -ACGGAAGCTCAAAGACACGTCAGT -ACGGAAGCTCAAAGACACGAAGGT -ACGGAAGCTCAAAGACACAACCGT -ACGGAAGCTCAAAGACACTTGTGC -ACGGAAGCTCAAAGACACCTAAGC -ACGGAAGCTCAAAGACACACTAGC -ACGGAAGCTCAAAGACACAGATGC -ACGGAAGCTCAAAGACACTGAAGG -ACGGAAGCTCAAAGACACCAATGG -ACGGAAGCTCAAAGACACATGAGG -ACGGAAGCTCAAAGACACAATGGG -ACGGAAGCTCAAAGACACTCCTGA -ACGGAAGCTCAAAGACACTAGCGA -ACGGAAGCTCAAAGACACCACAGA -ACGGAAGCTCAAAGACACGCAAGA -ACGGAAGCTCAAAGACACGGTTGA -ACGGAAGCTCAAAGACACTCCGAT -ACGGAAGCTCAAAGACACTGGCAT -ACGGAAGCTCAAAGACACCGAGAT -ACGGAAGCTCAAAGACACTACCAC -ACGGAAGCTCAAAGACACCAGAAC -ACGGAAGCTCAAAGACACGTCTAC -ACGGAAGCTCAAAGACACACGTAC -ACGGAAGCTCAAAGACACAGTGAC -ACGGAAGCTCAAAGACACCTGTAG -ACGGAAGCTCAAAGACACCCTAAG -ACGGAAGCTCAAAGACACGTTCAG -ACGGAAGCTCAAAGACACGCATAG -ACGGAAGCTCAAAGACACGACAAG -ACGGAAGCTCAAAGACACAAGCAG -ACGGAAGCTCAAAGACACCGTCAA -ACGGAAGCTCAAAGACACGCTGAA -ACGGAAGCTCAAAGACACAGTACG -ACGGAAGCTCAAAGACACATCCGA -ACGGAAGCTCAAAGACACATGGGA -ACGGAAGCTCAAAGACACGTGCAA -ACGGAAGCTCAAAGACACGAGGAA -ACGGAAGCTCAAAGACACCAGGTA -ACGGAAGCTCAAAGACACGACTCT -ACGGAAGCTCAAAGACACAGTCCT -ACGGAAGCTCAAAGACACTAAGCC -ACGGAAGCTCAAAGACACATAGCC -ACGGAAGCTCAAAGACACTAACCG -ACGGAAGCTCAAAGACACATGCCA -ACGGAAGCTCAAAGAGCAGGAAAC -ACGGAAGCTCAAAGAGCAAACACC -ACGGAAGCTCAAAGAGCAATCGAG -ACGGAAGCTCAAAGAGCACTCCTT -ACGGAAGCTCAAAGAGCACCTGTT -ACGGAAGCTCAAAGAGCACGGTTT -ACGGAAGCTCAAAGAGCAGTGGTT -ACGGAAGCTCAAAGAGCAGCCTTT -ACGGAAGCTCAAAGAGCAGGTCTT -ACGGAAGCTCAAAGAGCAACGCTT -ACGGAAGCTCAAAGAGCAAGCGTT -ACGGAAGCTCAAAGAGCATTCGTC -ACGGAAGCTCAAAGAGCATCTCTC -ACGGAAGCTCAAAGAGCATGGATC -ACGGAAGCTCAAAGAGCACACTTC -ACGGAAGCTCAAAGAGCAGTACTC -ACGGAAGCTCAAAGAGCAGATGTC -ACGGAAGCTCAAAGAGCAACAGTC -ACGGAAGCTCAAAGAGCATTGCTG -ACGGAAGCTCAAAGAGCATCCATG -ACGGAAGCTCAAAGAGCATGTGTG -ACGGAAGCTCAAAGAGCACTAGTG -ACGGAAGCTCAAAGAGCACATCTG -ACGGAAGCTCAAAGAGCAGAGTTG -ACGGAAGCTCAAAGAGCAAGACTG -ACGGAAGCTCAAAGAGCATCGGTA -ACGGAAGCTCAAAGAGCATGCCTA -ACGGAAGCTCAAAGAGCACCACTA -ACGGAAGCTCAAAGAGCAGGAGTA -ACGGAAGCTCAAAGAGCATCGTCT -ACGGAAGCTCAAAGAGCATGCACT -ACGGAAGCTCAAAGAGCACTGACT -ACGGAAGCTCAAAGAGCACAACCT -ACGGAAGCTCAAAGAGCAGCTACT -ACGGAAGCTCAAAGAGCAGGATCT -ACGGAAGCTCAAAGAGCAAAGGCT -ACGGAAGCTCAAAGAGCATCAACC -ACGGAAGCTCAAAGAGCATGTTCC -ACGGAAGCTCAAAGAGCAATTCCC -ACGGAAGCTCAAAGAGCATTCTCG -ACGGAAGCTCAAAGAGCATAGACG -ACGGAAGCTCAAAGAGCAGTAACG -ACGGAAGCTCAAAGAGCAACTTCG -ACGGAAGCTCAAAGAGCATACGCA -ACGGAAGCTCAAAGAGCACTTGCA -ACGGAAGCTCAAAGAGCACGAACA -ACGGAAGCTCAAAGAGCACAGTCA -ACGGAAGCTCAAAGAGCAGATCCA -ACGGAAGCTCAAAGAGCAACGACA -ACGGAAGCTCAAAGAGCAAGCTCA -ACGGAAGCTCAAAGAGCATCACGT -ACGGAAGCTCAAAGAGCACGTAGT -ACGGAAGCTCAAAGAGCAGTCAGT -ACGGAAGCTCAAAGAGCAGAAGGT -ACGGAAGCTCAAAGAGCAAACCGT -ACGGAAGCTCAAAGAGCATTGTGC -ACGGAAGCTCAAAGAGCACTAAGC -ACGGAAGCTCAAAGAGCAACTAGC -ACGGAAGCTCAAAGAGCAAGATGC -ACGGAAGCTCAAAGAGCATGAAGG -ACGGAAGCTCAAAGAGCACAATGG -ACGGAAGCTCAAAGAGCAATGAGG -ACGGAAGCTCAAAGAGCAAATGGG -ACGGAAGCTCAAAGAGCATCCTGA -ACGGAAGCTCAAAGAGCATAGCGA -ACGGAAGCTCAAAGAGCACACAGA -ACGGAAGCTCAAAGAGCAGCAAGA -ACGGAAGCTCAAAGAGCAGGTTGA -ACGGAAGCTCAAAGAGCATCCGAT -ACGGAAGCTCAAAGAGCATGGCAT -ACGGAAGCTCAAAGAGCACGAGAT -ACGGAAGCTCAAAGAGCATACCAC -ACGGAAGCTCAAAGAGCACAGAAC -ACGGAAGCTCAAAGAGCAGTCTAC -ACGGAAGCTCAAAGAGCAACGTAC -ACGGAAGCTCAAAGAGCAAGTGAC -ACGGAAGCTCAAAGAGCACTGTAG -ACGGAAGCTCAAAGAGCACCTAAG -ACGGAAGCTCAAAGAGCAGTTCAG -ACGGAAGCTCAAAGAGCAGCATAG -ACGGAAGCTCAAAGAGCAGACAAG -ACGGAAGCTCAAAGAGCAAAGCAG -ACGGAAGCTCAAAGAGCACGTCAA -ACGGAAGCTCAAAGAGCAGCTGAA -ACGGAAGCTCAAAGAGCAAGTACG -ACGGAAGCTCAAAGAGCAATCCGA -ACGGAAGCTCAAAGAGCAATGGGA -ACGGAAGCTCAAAGAGCAGTGCAA -ACGGAAGCTCAAAGAGCAGAGGAA -ACGGAAGCTCAAAGAGCACAGGTA -ACGGAAGCTCAAAGAGCAGACTCT -ACGGAAGCTCAAAGAGCAAGTCCT -ACGGAAGCTCAAAGAGCATAAGCC -ACGGAAGCTCAAAGAGCAATAGCC -ACGGAAGCTCAAAGAGCATAACCG -ACGGAAGCTCAAAGAGCAATGCCA -ACGGAAGCTCAATGAGGTGGAAAC -ACGGAAGCTCAATGAGGTAACACC -ACGGAAGCTCAATGAGGTATCGAG -ACGGAAGCTCAATGAGGTCTCCTT -ACGGAAGCTCAATGAGGTCCTGTT -ACGGAAGCTCAATGAGGTCGGTTT -ACGGAAGCTCAATGAGGTGTGGTT -ACGGAAGCTCAATGAGGTGCCTTT -ACGGAAGCTCAATGAGGTGGTCTT -ACGGAAGCTCAATGAGGTACGCTT -ACGGAAGCTCAATGAGGTAGCGTT -ACGGAAGCTCAATGAGGTTTCGTC -ACGGAAGCTCAATGAGGTTCTCTC -ACGGAAGCTCAATGAGGTTGGATC -ACGGAAGCTCAATGAGGTCACTTC -ACGGAAGCTCAATGAGGTGTACTC -ACGGAAGCTCAATGAGGTGATGTC -ACGGAAGCTCAATGAGGTACAGTC -ACGGAAGCTCAATGAGGTTTGCTG -ACGGAAGCTCAATGAGGTTCCATG -ACGGAAGCTCAATGAGGTTGTGTG -ACGGAAGCTCAATGAGGTCTAGTG -ACGGAAGCTCAATGAGGTCATCTG -ACGGAAGCTCAATGAGGTGAGTTG -ACGGAAGCTCAATGAGGTAGACTG -ACGGAAGCTCAATGAGGTTCGGTA -ACGGAAGCTCAATGAGGTTGCCTA -ACGGAAGCTCAATGAGGTCCACTA -ACGGAAGCTCAATGAGGTGGAGTA -ACGGAAGCTCAATGAGGTTCGTCT -ACGGAAGCTCAATGAGGTTGCACT -ACGGAAGCTCAATGAGGTCTGACT -ACGGAAGCTCAATGAGGTCAACCT -ACGGAAGCTCAATGAGGTGCTACT -ACGGAAGCTCAATGAGGTGGATCT -ACGGAAGCTCAATGAGGTAAGGCT -ACGGAAGCTCAATGAGGTTCAACC -ACGGAAGCTCAATGAGGTTGTTCC -ACGGAAGCTCAATGAGGTATTCCC -ACGGAAGCTCAATGAGGTTTCTCG -ACGGAAGCTCAATGAGGTTAGACG -ACGGAAGCTCAATGAGGTGTAACG -ACGGAAGCTCAATGAGGTACTTCG -ACGGAAGCTCAATGAGGTTACGCA -ACGGAAGCTCAATGAGGTCTTGCA -ACGGAAGCTCAATGAGGTCGAACA -ACGGAAGCTCAATGAGGTCAGTCA -ACGGAAGCTCAATGAGGTGATCCA -ACGGAAGCTCAATGAGGTACGACA -ACGGAAGCTCAATGAGGTAGCTCA -ACGGAAGCTCAATGAGGTTCACGT -ACGGAAGCTCAATGAGGTCGTAGT -ACGGAAGCTCAATGAGGTGTCAGT -ACGGAAGCTCAATGAGGTGAAGGT -ACGGAAGCTCAATGAGGTAACCGT -ACGGAAGCTCAATGAGGTTTGTGC -ACGGAAGCTCAATGAGGTCTAAGC -ACGGAAGCTCAATGAGGTACTAGC -ACGGAAGCTCAATGAGGTAGATGC -ACGGAAGCTCAATGAGGTTGAAGG -ACGGAAGCTCAATGAGGTCAATGG -ACGGAAGCTCAATGAGGTATGAGG -ACGGAAGCTCAATGAGGTAATGGG -ACGGAAGCTCAATGAGGTTCCTGA -ACGGAAGCTCAATGAGGTTAGCGA -ACGGAAGCTCAATGAGGTCACAGA -ACGGAAGCTCAATGAGGTGCAAGA -ACGGAAGCTCAATGAGGTGGTTGA -ACGGAAGCTCAATGAGGTTCCGAT -ACGGAAGCTCAATGAGGTTGGCAT -ACGGAAGCTCAATGAGGTCGAGAT -ACGGAAGCTCAATGAGGTTACCAC -ACGGAAGCTCAATGAGGTCAGAAC -ACGGAAGCTCAATGAGGTGTCTAC -ACGGAAGCTCAATGAGGTACGTAC -ACGGAAGCTCAATGAGGTAGTGAC -ACGGAAGCTCAATGAGGTCTGTAG -ACGGAAGCTCAATGAGGTCCTAAG -ACGGAAGCTCAATGAGGTGTTCAG -ACGGAAGCTCAATGAGGTGCATAG -ACGGAAGCTCAATGAGGTGACAAG -ACGGAAGCTCAATGAGGTAAGCAG -ACGGAAGCTCAATGAGGTCGTCAA -ACGGAAGCTCAATGAGGTGCTGAA -ACGGAAGCTCAATGAGGTAGTACG -ACGGAAGCTCAATGAGGTATCCGA -ACGGAAGCTCAATGAGGTATGGGA -ACGGAAGCTCAATGAGGTGTGCAA -ACGGAAGCTCAATGAGGTGAGGAA -ACGGAAGCTCAATGAGGTCAGGTA -ACGGAAGCTCAATGAGGTGACTCT -ACGGAAGCTCAATGAGGTAGTCCT -ACGGAAGCTCAATGAGGTTAAGCC -ACGGAAGCTCAATGAGGTATAGCC -ACGGAAGCTCAATGAGGTTAACCG -ACGGAAGCTCAATGAGGTATGCCA -ACGGAAGCTCAAGATTCCGGAAAC -ACGGAAGCTCAAGATTCCAACACC -ACGGAAGCTCAAGATTCCATCGAG -ACGGAAGCTCAAGATTCCCTCCTT -ACGGAAGCTCAAGATTCCCCTGTT -ACGGAAGCTCAAGATTCCCGGTTT -ACGGAAGCTCAAGATTCCGTGGTT -ACGGAAGCTCAAGATTCCGCCTTT -ACGGAAGCTCAAGATTCCGGTCTT -ACGGAAGCTCAAGATTCCACGCTT -ACGGAAGCTCAAGATTCCAGCGTT -ACGGAAGCTCAAGATTCCTTCGTC -ACGGAAGCTCAAGATTCCTCTCTC -ACGGAAGCTCAAGATTCCTGGATC -ACGGAAGCTCAAGATTCCCACTTC -ACGGAAGCTCAAGATTCCGTACTC -ACGGAAGCTCAAGATTCCGATGTC -ACGGAAGCTCAAGATTCCACAGTC -ACGGAAGCTCAAGATTCCTTGCTG -ACGGAAGCTCAAGATTCCTCCATG -ACGGAAGCTCAAGATTCCTGTGTG -ACGGAAGCTCAAGATTCCCTAGTG -ACGGAAGCTCAAGATTCCCATCTG -ACGGAAGCTCAAGATTCCGAGTTG -ACGGAAGCTCAAGATTCCAGACTG -ACGGAAGCTCAAGATTCCTCGGTA -ACGGAAGCTCAAGATTCCTGCCTA -ACGGAAGCTCAAGATTCCCCACTA -ACGGAAGCTCAAGATTCCGGAGTA -ACGGAAGCTCAAGATTCCTCGTCT -ACGGAAGCTCAAGATTCCTGCACT -ACGGAAGCTCAAGATTCCCTGACT -ACGGAAGCTCAAGATTCCCAACCT -ACGGAAGCTCAAGATTCCGCTACT -ACGGAAGCTCAAGATTCCGGATCT -ACGGAAGCTCAAGATTCCAAGGCT -ACGGAAGCTCAAGATTCCTCAACC -ACGGAAGCTCAAGATTCCTGTTCC -ACGGAAGCTCAAGATTCCATTCCC -ACGGAAGCTCAAGATTCCTTCTCG -ACGGAAGCTCAAGATTCCTAGACG -ACGGAAGCTCAAGATTCCGTAACG -ACGGAAGCTCAAGATTCCACTTCG -ACGGAAGCTCAAGATTCCTACGCA -ACGGAAGCTCAAGATTCCCTTGCA -ACGGAAGCTCAAGATTCCCGAACA -ACGGAAGCTCAAGATTCCCAGTCA -ACGGAAGCTCAAGATTCCGATCCA -ACGGAAGCTCAAGATTCCACGACA -ACGGAAGCTCAAGATTCCAGCTCA -ACGGAAGCTCAAGATTCCTCACGT -ACGGAAGCTCAAGATTCCCGTAGT -ACGGAAGCTCAAGATTCCGTCAGT -ACGGAAGCTCAAGATTCCGAAGGT -ACGGAAGCTCAAGATTCCAACCGT -ACGGAAGCTCAAGATTCCTTGTGC -ACGGAAGCTCAAGATTCCCTAAGC -ACGGAAGCTCAAGATTCCACTAGC -ACGGAAGCTCAAGATTCCAGATGC -ACGGAAGCTCAAGATTCCTGAAGG -ACGGAAGCTCAAGATTCCCAATGG -ACGGAAGCTCAAGATTCCATGAGG -ACGGAAGCTCAAGATTCCAATGGG -ACGGAAGCTCAAGATTCCTCCTGA -ACGGAAGCTCAAGATTCCTAGCGA -ACGGAAGCTCAAGATTCCCACAGA -ACGGAAGCTCAAGATTCCGCAAGA -ACGGAAGCTCAAGATTCCGGTTGA -ACGGAAGCTCAAGATTCCTCCGAT -ACGGAAGCTCAAGATTCCTGGCAT -ACGGAAGCTCAAGATTCCCGAGAT -ACGGAAGCTCAAGATTCCTACCAC -ACGGAAGCTCAAGATTCCCAGAAC -ACGGAAGCTCAAGATTCCGTCTAC -ACGGAAGCTCAAGATTCCACGTAC -ACGGAAGCTCAAGATTCCAGTGAC -ACGGAAGCTCAAGATTCCCTGTAG -ACGGAAGCTCAAGATTCCCCTAAG -ACGGAAGCTCAAGATTCCGTTCAG -ACGGAAGCTCAAGATTCCGCATAG -ACGGAAGCTCAAGATTCCGACAAG -ACGGAAGCTCAAGATTCCAAGCAG -ACGGAAGCTCAAGATTCCCGTCAA -ACGGAAGCTCAAGATTCCGCTGAA -ACGGAAGCTCAAGATTCCAGTACG -ACGGAAGCTCAAGATTCCATCCGA -ACGGAAGCTCAAGATTCCATGGGA -ACGGAAGCTCAAGATTCCGTGCAA -ACGGAAGCTCAAGATTCCGAGGAA -ACGGAAGCTCAAGATTCCCAGGTA -ACGGAAGCTCAAGATTCCGACTCT -ACGGAAGCTCAAGATTCCAGTCCT -ACGGAAGCTCAAGATTCCTAAGCC -ACGGAAGCTCAAGATTCCATAGCC -ACGGAAGCTCAAGATTCCTAACCG -ACGGAAGCTCAAGATTCCATGCCA -ACGGAAGCTCAACATTGGGGAAAC -ACGGAAGCTCAACATTGGAACACC -ACGGAAGCTCAACATTGGATCGAG -ACGGAAGCTCAACATTGGCTCCTT -ACGGAAGCTCAACATTGGCCTGTT -ACGGAAGCTCAACATTGGCGGTTT -ACGGAAGCTCAACATTGGGTGGTT -ACGGAAGCTCAACATTGGGCCTTT -ACGGAAGCTCAACATTGGGGTCTT -ACGGAAGCTCAACATTGGACGCTT -ACGGAAGCTCAACATTGGAGCGTT -ACGGAAGCTCAACATTGGTTCGTC -ACGGAAGCTCAACATTGGTCTCTC -ACGGAAGCTCAACATTGGTGGATC -ACGGAAGCTCAACATTGGCACTTC -ACGGAAGCTCAACATTGGGTACTC -ACGGAAGCTCAACATTGGGATGTC -ACGGAAGCTCAACATTGGACAGTC -ACGGAAGCTCAACATTGGTTGCTG -ACGGAAGCTCAACATTGGTCCATG -ACGGAAGCTCAACATTGGTGTGTG -ACGGAAGCTCAACATTGGCTAGTG -ACGGAAGCTCAACATTGGCATCTG -ACGGAAGCTCAACATTGGGAGTTG -ACGGAAGCTCAACATTGGAGACTG -ACGGAAGCTCAACATTGGTCGGTA -ACGGAAGCTCAACATTGGTGCCTA -ACGGAAGCTCAACATTGGCCACTA -ACGGAAGCTCAACATTGGGGAGTA -ACGGAAGCTCAACATTGGTCGTCT -ACGGAAGCTCAACATTGGTGCACT -ACGGAAGCTCAACATTGGCTGACT -ACGGAAGCTCAACATTGGCAACCT -ACGGAAGCTCAACATTGGGCTACT -ACGGAAGCTCAACATTGGGGATCT -ACGGAAGCTCAACATTGGAAGGCT -ACGGAAGCTCAACATTGGTCAACC -ACGGAAGCTCAACATTGGTGTTCC -ACGGAAGCTCAACATTGGATTCCC -ACGGAAGCTCAACATTGGTTCTCG -ACGGAAGCTCAACATTGGTAGACG -ACGGAAGCTCAACATTGGGTAACG -ACGGAAGCTCAACATTGGACTTCG -ACGGAAGCTCAACATTGGTACGCA -ACGGAAGCTCAACATTGGCTTGCA -ACGGAAGCTCAACATTGGCGAACA -ACGGAAGCTCAACATTGGCAGTCA -ACGGAAGCTCAACATTGGGATCCA -ACGGAAGCTCAACATTGGACGACA -ACGGAAGCTCAACATTGGAGCTCA -ACGGAAGCTCAACATTGGTCACGT -ACGGAAGCTCAACATTGGCGTAGT -ACGGAAGCTCAACATTGGGTCAGT -ACGGAAGCTCAACATTGGGAAGGT -ACGGAAGCTCAACATTGGAACCGT -ACGGAAGCTCAACATTGGTTGTGC -ACGGAAGCTCAACATTGGCTAAGC -ACGGAAGCTCAACATTGGACTAGC -ACGGAAGCTCAACATTGGAGATGC -ACGGAAGCTCAACATTGGTGAAGG -ACGGAAGCTCAACATTGGCAATGG -ACGGAAGCTCAACATTGGATGAGG -ACGGAAGCTCAACATTGGAATGGG -ACGGAAGCTCAACATTGGTCCTGA -ACGGAAGCTCAACATTGGTAGCGA -ACGGAAGCTCAACATTGGCACAGA -ACGGAAGCTCAACATTGGGCAAGA -ACGGAAGCTCAACATTGGGGTTGA -ACGGAAGCTCAACATTGGTCCGAT -ACGGAAGCTCAACATTGGTGGCAT -ACGGAAGCTCAACATTGGCGAGAT -ACGGAAGCTCAACATTGGTACCAC -ACGGAAGCTCAACATTGGCAGAAC -ACGGAAGCTCAACATTGGGTCTAC -ACGGAAGCTCAACATTGGACGTAC -ACGGAAGCTCAACATTGGAGTGAC -ACGGAAGCTCAACATTGGCTGTAG -ACGGAAGCTCAACATTGGCCTAAG -ACGGAAGCTCAACATTGGGTTCAG -ACGGAAGCTCAACATTGGGCATAG -ACGGAAGCTCAACATTGGGACAAG -ACGGAAGCTCAACATTGGAAGCAG -ACGGAAGCTCAACATTGGCGTCAA -ACGGAAGCTCAACATTGGGCTGAA -ACGGAAGCTCAACATTGGAGTACG -ACGGAAGCTCAACATTGGATCCGA -ACGGAAGCTCAACATTGGATGGGA -ACGGAAGCTCAACATTGGGTGCAA -ACGGAAGCTCAACATTGGGAGGAA -ACGGAAGCTCAACATTGGCAGGTA -ACGGAAGCTCAACATTGGGACTCT -ACGGAAGCTCAACATTGGAGTCCT -ACGGAAGCTCAACATTGGTAAGCC -ACGGAAGCTCAACATTGGATAGCC -ACGGAAGCTCAACATTGGTAACCG -ACGGAAGCTCAACATTGGATGCCA -ACGGAAGCTCAAGATCGAGGAAAC -ACGGAAGCTCAAGATCGAAACACC -ACGGAAGCTCAAGATCGAATCGAG -ACGGAAGCTCAAGATCGACTCCTT -ACGGAAGCTCAAGATCGACCTGTT -ACGGAAGCTCAAGATCGACGGTTT -ACGGAAGCTCAAGATCGAGTGGTT -ACGGAAGCTCAAGATCGAGCCTTT -ACGGAAGCTCAAGATCGAGGTCTT -ACGGAAGCTCAAGATCGAACGCTT -ACGGAAGCTCAAGATCGAAGCGTT -ACGGAAGCTCAAGATCGATTCGTC -ACGGAAGCTCAAGATCGATCTCTC -ACGGAAGCTCAAGATCGATGGATC -ACGGAAGCTCAAGATCGACACTTC -ACGGAAGCTCAAGATCGAGTACTC -ACGGAAGCTCAAGATCGAGATGTC -ACGGAAGCTCAAGATCGAACAGTC -ACGGAAGCTCAAGATCGATTGCTG -ACGGAAGCTCAAGATCGATCCATG -ACGGAAGCTCAAGATCGATGTGTG -ACGGAAGCTCAAGATCGACTAGTG -ACGGAAGCTCAAGATCGACATCTG -ACGGAAGCTCAAGATCGAGAGTTG -ACGGAAGCTCAAGATCGAAGACTG -ACGGAAGCTCAAGATCGATCGGTA -ACGGAAGCTCAAGATCGATGCCTA -ACGGAAGCTCAAGATCGACCACTA -ACGGAAGCTCAAGATCGAGGAGTA -ACGGAAGCTCAAGATCGATCGTCT -ACGGAAGCTCAAGATCGATGCACT -ACGGAAGCTCAAGATCGACTGACT -ACGGAAGCTCAAGATCGACAACCT -ACGGAAGCTCAAGATCGAGCTACT -ACGGAAGCTCAAGATCGAGGATCT -ACGGAAGCTCAAGATCGAAAGGCT -ACGGAAGCTCAAGATCGATCAACC -ACGGAAGCTCAAGATCGATGTTCC -ACGGAAGCTCAAGATCGAATTCCC -ACGGAAGCTCAAGATCGATTCTCG -ACGGAAGCTCAAGATCGATAGACG -ACGGAAGCTCAAGATCGAGTAACG -ACGGAAGCTCAAGATCGAACTTCG -ACGGAAGCTCAAGATCGATACGCA -ACGGAAGCTCAAGATCGACTTGCA -ACGGAAGCTCAAGATCGACGAACA -ACGGAAGCTCAAGATCGACAGTCA -ACGGAAGCTCAAGATCGAGATCCA -ACGGAAGCTCAAGATCGAACGACA -ACGGAAGCTCAAGATCGAAGCTCA -ACGGAAGCTCAAGATCGATCACGT -ACGGAAGCTCAAGATCGACGTAGT -ACGGAAGCTCAAGATCGAGTCAGT -ACGGAAGCTCAAGATCGAGAAGGT -ACGGAAGCTCAAGATCGAAACCGT -ACGGAAGCTCAAGATCGATTGTGC -ACGGAAGCTCAAGATCGACTAAGC -ACGGAAGCTCAAGATCGAACTAGC -ACGGAAGCTCAAGATCGAAGATGC -ACGGAAGCTCAAGATCGATGAAGG -ACGGAAGCTCAAGATCGACAATGG -ACGGAAGCTCAAGATCGAATGAGG -ACGGAAGCTCAAGATCGAAATGGG -ACGGAAGCTCAAGATCGATCCTGA -ACGGAAGCTCAAGATCGATAGCGA -ACGGAAGCTCAAGATCGACACAGA -ACGGAAGCTCAAGATCGAGCAAGA -ACGGAAGCTCAAGATCGAGGTTGA -ACGGAAGCTCAAGATCGATCCGAT -ACGGAAGCTCAAGATCGATGGCAT -ACGGAAGCTCAAGATCGACGAGAT -ACGGAAGCTCAAGATCGATACCAC -ACGGAAGCTCAAGATCGACAGAAC -ACGGAAGCTCAAGATCGAGTCTAC -ACGGAAGCTCAAGATCGAACGTAC -ACGGAAGCTCAAGATCGAAGTGAC -ACGGAAGCTCAAGATCGACTGTAG -ACGGAAGCTCAAGATCGACCTAAG -ACGGAAGCTCAAGATCGAGTTCAG -ACGGAAGCTCAAGATCGAGCATAG -ACGGAAGCTCAAGATCGAGACAAG -ACGGAAGCTCAAGATCGAAAGCAG -ACGGAAGCTCAAGATCGACGTCAA -ACGGAAGCTCAAGATCGAGCTGAA -ACGGAAGCTCAAGATCGAAGTACG -ACGGAAGCTCAAGATCGAATCCGA -ACGGAAGCTCAAGATCGAATGGGA -ACGGAAGCTCAAGATCGAGTGCAA -ACGGAAGCTCAAGATCGAGAGGAA -ACGGAAGCTCAAGATCGACAGGTA -ACGGAAGCTCAAGATCGAGACTCT -ACGGAAGCTCAAGATCGAAGTCCT -ACGGAAGCTCAAGATCGATAAGCC -ACGGAAGCTCAAGATCGAATAGCC -ACGGAAGCTCAAGATCGATAACCG -ACGGAAGCTCAAGATCGAATGCCA -ACGGAAGCTCAACACTACGGAAAC -ACGGAAGCTCAACACTACAACACC -ACGGAAGCTCAACACTACATCGAG -ACGGAAGCTCAACACTACCTCCTT -ACGGAAGCTCAACACTACCCTGTT -ACGGAAGCTCAACACTACCGGTTT -ACGGAAGCTCAACACTACGTGGTT -ACGGAAGCTCAACACTACGCCTTT -ACGGAAGCTCAACACTACGGTCTT -ACGGAAGCTCAACACTACACGCTT -ACGGAAGCTCAACACTACAGCGTT -ACGGAAGCTCAACACTACTTCGTC -ACGGAAGCTCAACACTACTCTCTC -ACGGAAGCTCAACACTACTGGATC -ACGGAAGCTCAACACTACCACTTC -ACGGAAGCTCAACACTACGTACTC -ACGGAAGCTCAACACTACGATGTC -ACGGAAGCTCAACACTACACAGTC -ACGGAAGCTCAACACTACTTGCTG -ACGGAAGCTCAACACTACTCCATG -ACGGAAGCTCAACACTACTGTGTG -ACGGAAGCTCAACACTACCTAGTG -ACGGAAGCTCAACACTACCATCTG -ACGGAAGCTCAACACTACGAGTTG -ACGGAAGCTCAACACTACAGACTG -ACGGAAGCTCAACACTACTCGGTA -ACGGAAGCTCAACACTACTGCCTA -ACGGAAGCTCAACACTACCCACTA -ACGGAAGCTCAACACTACGGAGTA -ACGGAAGCTCAACACTACTCGTCT -ACGGAAGCTCAACACTACTGCACT -ACGGAAGCTCAACACTACCTGACT -ACGGAAGCTCAACACTACCAACCT -ACGGAAGCTCAACACTACGCTACT -ACGGAAGCTCAACACTACGGATCT -ACGGAAGCTCAACACTACAAGGCT -ACGGAAGCTCAACACTACTCAACC -ACGGAAGCTCAACACTACTGTTCC -ACGGAAGCTCAACACTACATTCCC -ACGGAAGCTCAACACTACTTCTCG -ACGGAAGCTCAACACTACTAGACG -ACGGAAGCTCAACACTACGTAACG -ACGGAAGCTCAACACTACACTTCG -ACGGAAGCTCAACACTACTACGCA -ACGGAAGCTCAACACTACCTTGCA -ACGGAAGCTCAACACTACCGAACA -ACGGAAGCTCAACACTACCAGTCA -ACGGAAGCTCAACACTACGATCCA -ACGGAAGCTCAACACTACACGACA -ACGGAAGCTCAACACTACAGCTCA -ACGGAAGCTCAACACTACTCACGT -ACGGAAGCTCAACACTACCGTAGT -ACGGAAGCTCAACACTACGTCAGT -ACGGAAGCTCAACACTACGAAGGT -ACGGAAGCTCAACACTACAACCGT -ACGGAAGCTCAACACTACTTGTGC -ACGGAAGCTCAACACTACCTAAGC -ACGGAAGCTCAACACTACACTAGC -ACGGAAGCTCAACACTACAGATGC -ACGGAAGCTCAACACTACTGAAGG -ACGGAAGCTCAACACTACCAATGG -ACGGAAGCTCAACACTACATGAGG -ACGGAAGCTCAACACTACAATGGG -ACGGAAGCTCAACACTACTCCTGA -ACGGAAGCTCAACACTACTAGCGA -ACGGAAGCTCAACACTACCACAGA -ACGGAAGCTCAACACTACGCAAGA -ACGGAAGCTCAACACTACGGTTGA -ACGGAAGCTCAACACTACTCCGAT -ACGGAAGCTCAACACTACTGGCAT -ACGGAAGCTCAACACTACCGAGAT -ACGGAAGCTCAACACTACTACCAC -ACGGAAGCTCAACACTACCAGAAC -ACGGAAGCTCAACACTACGTCTAC -ACGGAAGCTCAACACTACACGTAC -ACGGAAGCTCAACACTACAGTGAC -ACGGAAGCTCAACACTACCTGTAG -ACGGAAGCTCAACACTACCCTAAG -ACGGAAGCTCAACACTACGTTCAG -ACGGAAGCTCAACACTACGCATAG -ACGGAAGCTCAACACTACGACAAG -ACGGAAGCTCAACACTACAAGCAG -ACGGAAGCTCAACACTACCGTCAA -ACGGAAGCTCAACACTACGCTGAA -ACGGAAGCTCAACACTACAGTACG -ACGGAAGCTCAACACTACATCCGA -ACGGAAGCTCAACACTACATGGGA -ACGGAAGCTCAACACTACGTGCAA -ACGGAAGCTCAACACTACGAGGAA -ACGGAAGCTCAACACTACCAGGTA -ACGGAAGCTCAACACTACGACTCT -ACGGAAGCTCAACACTACAGTCCT -ACGGAAGCTCAACACTACTAAGCC -ACGGAAGCTCAACACTACATAGCC -ACGGAAGCTCAACACTACTAACCG -ACGGAAGCTCAACACTACATGCCA -ACGGAAGCTCAAAACCAGGGAAAC -ACGGAAGCTCAAAACCAGAACACC -ACGGAAGCTCAAAACCAGATCGAG -ACGGAAGCTCAAAACCAGCTCCTT -ACGGAAGCTCAAAACCAGCCTGTT -ACGGAAGCTCAAAACCAGCGGTTT -ACGGAAGCTCAAAACCAGGTGGTT -ACGGAAGCTCAAAACCAGGCCTTT -ACGGAAGCTCAAAACCAGGGTCTT -ACGGAAGCTCAAAACCAGACGCTT -ACGGAAGCTCAAAACCAGAGCGTT -ACGGAAGCTCAAAACCAGTTCGTC -ACGGAAGCTCAAAACCAGTCTCTC -ACGGAAGCTCAAAACCAGTGGATC -ACGGAAGCTCAAAACCAGCACTTC -ACGGAAGCTCAAAACCAGGTACTC -ACGGAAGCTCAAAACCAGGATGTC -ACGGAAGCTCAAAACCAGACAGTC -ACGGAAGCTCAAAACCAGTTGCTG -ACGGAAGCTCAAAACCAGTCCATG -ACGGAAGCTCAAAACCAGTGTGTG -ACGGAAGCTCAAAACCAGCTAGTG -ACGGAAGCTCAAAACCAGCATCTG -ACGGAAGCTCAAAACCAGGAGTTG -ACGGAAGCTCAAAACCAGAGACTG -ACGGAAGCTCAAAACCAGTCGGTA -ACGGAAGCTCAAAACCAGTGCCTA -ACGGAAGCTCAAAACCAGCCACTA -ACGGAAGCTCAAAACCAGGGAGTA -ACGGAAGCTCAAAACCAGTCGTCT -ACGGAAGCTCAAAACCAGTGCACT -ACGGAAGCTCAAAACCAGCTGACT -ACGGAAGCTCAAAACCAGCAACCT -ACGGAAGCTCAAAACCAGGCTACT -ACGGAAGCTCAAAACCAGGGATCT -ACGGAAGCTCAAAACCAGAAGGCT -ACGGAAGCTCAAAACCAGTCAACC -ACGGAAGCTCAAAACCAGTGTTCC -ACGGAAGCTCAAAACCAGATTCCC -ACGGAAGCTCAAAACCAGTTCTCG -ACGGAAGCTCAAAACCAGTAGACG -ACGGAAGCTCAAAACCAGGTAACG -ACGGAAGCTCAAAACCAGACTTCG -ACGGAAGCTCAAAACCAGTACGCA -ACGGAAGCTCAAAACCAGCTTGCA -ACGGAAGCTCAAAACCAGCGAACA -ACGGAAGCTCAAAACCAGCAGTCA -ACGGAAGCTCAAAACCAGGATCCA -ACGGAAGCTCAAAACCAGACGACA -ACGGAAGCTCAAAACCAGAGCTCA -ACGGAAGCTCAAAACCAGTCACGT -ACGGAAGCTCAAAACCAGCGTAGT -ACGGAAGCTCAAAACCAGGTCAGT -ACGGAAGCTCAAAACCAGGAAGGT -ACGGAAGCTCAAAACCAGAACCGT -ACGGAAGCTCAAAACCAGTTGTGC -ACGGAAGCTCAAAACCAGCTAAGC -ACGGAAGCTCAAAACCAGACTAGC -ACGGAAGCTCAAAACCAGAGATGC -ACGGAAGCTCAAAACCAGTGAAGG -ACGGAAGCTCAAAACCAGCAATGG -ACGGAAGCTCAAAACCAGATGAGG -ACGGAAGCTCAAAACCAGAATGGG -ACGGAAGCTCAAAACCAGTCCTGA -ACGGAAGCTCAAAACCAGTAGCGA -ACGGAAGCTCAAAACCAGCACAGA -ACGGAAGCTCAAAACCAGGCAAGA -ACGGAAGCTCAAAACCAGGGTTGA -ACGGAAGCTCAAAACCAGTCCGAT -ACGGAAGCTCAAAACCAGTGGCAT -ACGGAAGCTCAAAACCAGCGAGAT -ACGGAAGCTCAAAACCAGTACCAC -ACGGAAGCTCAAAACCAGCAGAAC -ACGGAAGCTCAAAACCAGGTCTAC -ACGGAAGCTCAAAACCAGACGTAC -ACGGAAGCTCAAAACCAGAGTGAC -ACGGAAGCTCAAAACCAGCTGTAG -ACGGAAGCTCAAAACCAGCCTAAG -ACGGAAGCTCAAAACCAGGTTCAG -ACGGAAGCTCAAAACCAGGCATAG -ACGGAAGCTCAAAACCAGGACAAG -ACGGAAGCTCAAAACCAGAAGCAG -ACGGAAGCTCAAAACCAGCGTCAA -ACGGAAGCTCAAAACCAGGCTGAA -ACGGAAGCTCAAAACCAGAGTACG -ACGGAAGCTCAAAACCAGATCCGA -ACGGAAGCTCAAAACCAGATGGGA -ACGGAAGCTCAAAACCAGGTGCAA -ACGGAAGCTCAAAACCAGGAGGAA -ACGGAAGCTCAAAACCAGCAGGTA -ACGGAAGCTCAAAACCAGGACTCT -ACGGAAGCTCAAAACCAGAGTCCT -ACGGAAGCTCAAAACCAGTAAGCC -ACGGAAGCTCAAAACCAGATAGCC -ACGGAAGCTCAAAACCAGTAACCG -ACGGAAGCTCAAAACCAGATGCCA -ACGGAAGCTCAATACGTCGGAAAC -ACGGAAGCTCAATACGTCAACACC -ACGGAAGCTCAATACGTCATCGAG -ACGGAAGCTCAATACGTCCTCCTT -ACGGAAGCTCAATACGTCCCTGTT -ACGGAAGCTCAATACGTCCGGTTT -ACGGAAGCTCAATACGTCGTGGTT -ACGGAAGCTCAATACGTCGCCTTT -ACGGAAGCTCAATACGTCGGTCTT -ACGGAAGCTCAATACGTCACGCTT -ACGGAAGCTCAATACGTCAGCGTT -ACGGAAGCTCAATACGTCTTCGTC -ACGGAAGCTCAATACGTCTCTCTC -ACGGAAGCTCAATACGTCTGGATC -ACGGAAGCTCAATACGTCCACTTC -ACGGAAGCTCAATACGTCGTACTC -ACGGAAGCTCAATACGTCGATGTC -ACGGAAGCTCAATACGTCACAGTC -ACGGAAGCTCAATACGTCTTGCTG -ACGGAAGCTCAATACGTCTCCATG -ACGGAAGCTCAATACGTCTGTGTG -ACGGAAGCTCAATACGTCCTAGTG -ACGGAAGCTCAATACGTCCATCTG -ACGGAAGCTCAATACGTCGAGTTG -ACGGAAGCTCAATACGTCAGACTG -ACGGAAGCTCAATACGTCTCGGTA -ACGGAAGCTCAATACGTCTGCCTA -ACGGAAGCTCAATACGTCCCACTA -ACGGAAGCTCAATACGTCGGAGTA -ACGGAAGCTCAATACGTCTCGTCT -ACGGAAGCTCAATACGTCTGCACT -ACGGAAGCTCAATACGTCCTGACT -ACGGAAGCTCAATACGTCCAACCT -ACGGAAGCTCAATACGTCGCTACT -ACGGAAGCTCAATACGTCGGATCT -ACGGAAGCTCAATACGTCAAGGCT -ACGGAAGCTCAATACGTCTCAACC -ACGGAAGCTCAATACGTCTGTTCC -ACGGAAGCTCAATACGTCATTCCC -ACGGAAGCTCAATACGTCTTCTCG -ACGGAAGCTCAATACGTCTAGACG -ACGGAAGCTCAATACGTCGTAACG -ACGGAAGCTCAATACGTCACTTCG -ACGGAAGCTCAATACGTCTACGCA -ACGGAAGCTCAATACGTCCTTGCA -ACGGAAGCTCAATACGTCCGAACA -ACGGAAGCTCAATACGTCCAGTCA -ACGGAAGCTCAATACGTCGATCCA -ACGGAAGCTCAATACGTCACGACA -ACGGAAGCTCAATACGTCAGCTCA -ACGGAAGCTCAATACGTCTCACGT -ACGGAAGCTCAATACGTCCGTAGT -ACGGAAGCTCAATACGTCGTCAGT -ACGGAAGCTCAATACGTCGAAGGT -ACGGAAGCTCAATACGTCAACCGT -ACGGAAGCTCAATACGTCTTGTGC -ACGGAAGCTCAATACGTCCTAAGC -ACGGAAGCTCAATACGTCACTAGC -ACGGAAGCTCAATACGTCAGATGC -ACGGAAGCTCAATACGTCTGAAGG -ACGGAAGCTCAATACGTCCAATGG -ACGGAAGCTCAATACGTCATGAGG -ACGGAAGCTCAATACGTCAATGGG -ACGGAAGCTCAATACGTCTCCTGA -ACGGAAGCTCAATACGTCTAGCGA -ACGGAAGCTCAATACGTCCACAGA -ACGGAAGCTCAATACGTCGCAAGA -ACGGAAGCTCAATACGTCGGTTGA -ACGGAAGCTCAATACGTCTCCGAT -ACGGAAGCTCAATACGTCTGGCAT -ACGGAAGCTCAATACGTCCGAGAT -ACGGAAGCTCAATACGTCTACCAC -ACGGAAGCTCAATACGTCCAGAAC -ACGGAAGCTCAATACGTCGTCTAC -ACGGAAGCTCAATACGTCACGTAC -ACGGAAGCTCAATACGTCAGTGAC -ACGGAAGCTCAATACGTCCTGTAG -ACGGAAGCTCAATACGTCCCTAAG -ACGGAAGCTCAATACGTCGTTCAG -ACGGAAGCTCAATACGTCGCATAG -ACGGAAGCTCAATACGTCGACAAG -ACGGAAGCTCAATACGTCAAGCAG -ACGGAAGCTCAATACGTCCGTCAA -ACGGAAGCTCAATACGTCGCTGAA -ACGGAAGCTCAATACGTCAGTACG -ACGGAAGCTCAATACGTCATCCGA -ACGGAAGCTCAATACGTCATGGGA -ACGGAAGCTCAATACGTCGTGCAA -ACGGAAGCTCAATACGTCGAGGAA -ACGGAAGCTCAATACGTCCAGGTA -ACGGAAGCTCAATACGTCGACTCT -ACGGAAGCTCAATACGTCAGTCCT -ACGGAAGCTCAATACGTCTAAGCC -ACGGAAGCTCAATACGTCATAGCC -ACGGAAGCTCAATACGTCTAACCG -ACGGAAGCTCAATACGTCATGCCA -ACGGAAGCTCAATACACGGGAAAC -ACGGAAGCTCAATACACGAACACC -ACGGAAGCTCAATACACGATCGAG -ACGGAAGCTCAATACACGCTCCTT -ACGGAAGCTCAATACACGCCTGTT -ACGGAAGCTCAATACACGCGGTTT -ACGGAAGCTCAATACACGGTGGTT -ACGGAAGCTCAATACACGGCCTTT -ACGGAAGCTCAATACACGGGTCTT -ACGGAAGCTCAATACACGACGCTT -ACGGAAGCTCAATACACGAGCGTT -ACGGAAGCTCAATACACGTTCGTC -ACGGAAGCTCAATACACGTCTCTC -ACGGAAGCTCAATACACGTGGATC -ACGGAAGCTCAATACACGCACTTC -ACGGAAGCTCAATACACGGTACTC -ACGGAAGCTCAATACACGGATGTC -ACGGAAGCTCAATACACGACAGTC -ACGGAAGCTCAATACACGTTGCTG -ACGGAAGCTCAATACACGTCCATG -ACGGAAGCTCAATACACGTGTGTG -ACGGAAGCTCAATACACGCTAGTG -ACGGAAGCTCAATACACGCATCTG -ACGGAAGCTCAATACACGGAGTTG -ACGGAAGCTCAATACACGAGACTG -ACGGAAGCTCAATACACGTCGGTA -ACGGAAGCTCAATACACGTGCCTA -ACGGAAGCTCAATACACGCCACTA -ACGGAAGCTCAATACACGGGAGTA -ACGGAAGCTCAATACACGTCGTCT -ACGGAAGCTCAATACACGTGCACT -ACGGAAGCTCAATACACGCTGACT -ACGGAAGCTCAATACACGCAACCT -ACGGAAGCTCAATACACGGCTACT -ACGGAAGCTCAATACACGGGATCT -ACGGAAGCTCAATACACGAAGGCT -ACGGAAGCTCAATACACGTCAACC -ACGGAAGCTCAATACACGTGTTCC -ACGGAAGCTCAATACACGATTCCC -ACGGAAGCTCAATACACGTTCTCG -ACGGAAGCTCAATACACGTAGACG -ACGGAAGCTCAATACACGGTAACG -ACGGAAGCTCAATACACGACTTCG -ACGGAAGCTCAATACACGTACGCA -ACGGAAGCTCAATACACGCTTGCA -ACGGAAGCTCAATACACGCGAACA -ACGGAAGCTCAATACACGCAGTCA -ACGGAAGCTCAATACACGGATCCA -ACGGAAGCTCAATACACGACGACA -ACGGAAGCTCAATACACGAGCTCA -ACGGAAGCTCAATACACGTCACGT -ACGGAAGCTCAATACACGCGTAGT -ACGGAAGCTCAATACACGGTCAGT -ACGGAAGCTCAATACACGGAAGGT -ACGGAAGCTCAATACACGAACCGT -ACGGAAGCTCAATACACGTTGTGC -ACGGAAGCTCAATACACGCTAAGC -ACGGAAGCTCAATACACGACTAGC -ACGGAAGCTCAATACACGAGATGC -ACGGAAGCTCAATACACGTGAAGG -ACGGAAGCTCAATACACGCAATGG -ACGGAAGCTCAATACACGATGAGG -ACGGAAGCTCAATACACGAATGGG -ACGGAAGCTCAATACACGTCCTGA -ACGGAAGCTCAATACACGTAGCGA -ACGGAAGCTCAATACACGCACAGA -ACGGAAGCTCAATACACGGCAAGA -ACGGAAGCTCAATACACGGGTTGA -ACGGAAGCTCAATACACGTCCGAT -ACGGAAGCTCAATACACGTGGCAT -ACGGAAGCTCAATACACGCGAGAT -ACGGAAGCTCAATACACGTACCAC -ACGGAAGCTCAATACACGCAGAAC -ACGGAAGCTCAATACACGGTCTAC -ACGGAAGCTCAATACACGACGTAC -ACGGAAGCTCAATACACGAGTGAC -ACGGAAGCTCAATACACGCTGTAG -ACGGAAGCTCAATACACGCCTAAG -ACGGAAGCTCAATACACGGTTCAG -ACGGAAGCTCAATACACGGCATAG -ACGGAAGCTCAATACACGGACAAG -ACGGAAGCTCAATACACGAAGCAG -ACGGAAGCTCAATACACGCGTCAA -ACGGAAGCTCAATACACGGCTGAA -ACGGAAGCTCAATACACGAGTACG -ACGGAAGCTCAATACACGATCCGA -ACGGAAGCTCAATACACGATGGGA -ACGGAAGCTCAATACACGGTGCAA -ACGGAAGCTCAATACACGGAGGAA -ACGGAAGCTCAATACACGCAGGTA -ACGGAAGCTCAATACACGGACTCT -ACGGAAGCTCAATACACGAGTCCT -ACGGAAGCTCAATACACGTAAGCC -ACGGAAGCTCAATACACGATAGCC -ACGGAAGCTCAATACACGTAACCG -ACGGAAGCTCAATACACGATGCCA -ACGGAAGCTCAAGACAGTGGAAAC -ACGGAAGCTCAAGACAGTAACACC -ACGGAAGCTCAAGACAGTATCGAG -ACGGAAGCTCAAGACAGTCTCCTT -ACGGAAGCTCAAGACAGTCCTGTT -ACGGAAGCTCAAGACAGTCGGTTT -ACGGAAGCTCAAGACAGTGTGGTT -ACGGAAGCTCAAGACAGTGCCTTT -ACGGAAGCTCAAGACAGTGGTCTT -ACGGAAGCTCAAGACAGTACGCTT -ACGGAAGCTCAAGACAGTAGCGTT -ACGGAAGCTCAAGACAGTTTCGTC -ACGGAAGCTCAAGACAGTTCTCTC -ACGGAAGCTCAAGACAGTTGGATC -ACGGAAGCTCAAGACAGTCACTTC -ACGGAAGCTCAAGACAGTGTACTC -ACGGAAGCTCAAGACAGTGATGTC -ACGGAAGCTCAAGACAGTACAGTC -ACGGAAGCTCAAGACAGTTTGCTG -ACGGAAGCTCAAGACAGTTCCATG -ACGGAAGCTCAAGACAGTTGTGTG -ACGGAAGCTCAAGACAGTCTAGTG -ACGGAAGCTCAAGACAGTCATCTG -ACGGAAGCTCAAGACAGTGAGTTG -ACGGAAGCTCAAGACAGTAGACTG -ACGGAAGCTCAAGACAGTTCGGTA -ACGGAAGCTCAAGACAGTTGCCTA -ACGGAAGCTCAAGACAGTCCACTA -ACGGAAGCTCAAGACAGTGGAGTA -ACGGAAGCTCAAGACAGTTCGTCT -ACGGAAGCTCAAGACAGTTGCACT -ACGGAAGCTCAAGACAGTCTGACT -ACGGAAGCTCAAGACAGTCAACCT -ACGGAAGCTCAAGACAGTGCTACT -ACGGAAGCTCAAGACAGTGGATCT -ACGGAAGCTCAAGACAGTAAGGCT -ACGGAAGCTCAAGACAGTTCAACC -ACGGAAGCTCAAGACAGTTGTTCC -ACGGAAGCTCAAGACAGTATTCCC -ACGGAAGCTCAAGACAGTTTCTCG -ACGGAAGCTCAAGACAGTTAGACG -ACGGAAGCTCAAGACAGTGTAACG -ACGGAAGCTCAAGACAGTACTTCG -ACGGAAGCTCAAGACAGTTACGCA -ACGGAAGCTCAAGACAGTCTTGCA -ACGGAAGCTCAAGACAGTCGAACA -ACGGAAGCTCAAGACAGTCAGTCA -ACGGAAGCTCAAGACAGTGATCCA -ACGGAAGCTCAAGACAGTACGACA -ACGGAAGCTCAAGACAGTAGCTCA -ACGGAAGCTCAAGACAGTTCACGT -ACGGAAGCTCAAGACAGTCGTAGT -ACGGAAGCTCAAGACAGTGTCAGT -ACGGAAGCTCAAGACAGTGAAGGT -ACGGAAGCTCAAGACAGTAACCGT -ACGGAAGCTCAAGACAGTTTGTGC -ACGGAAGCTCAAGACAGTCTAAGC -ACGGAAGCTCAAGACAGTACTAGC -ACGGAAGCTCAAGACAGTAGATGC -ACGGAAGCTCAAGACAGTTGAAGG -ACGGAAGCTCAAGACAGTCAATGG -ACGGAAGCTCAAGACAGTATGAGG -ACGGAAGCTCAAGACAGTAATGGG -ACGGAAGCTCAAGACAGTTCCTGA -ACGGAAGCTCAAGACAGTTAGCGA -ACGGAAGCTCAAGACAGTCACAGA -ACGGAAGCTCAAGACAGTGCAAGA -ACGGAAGCTCAAGACAGTGGTTGA -ACGGAAGCTCAAGACAGTTCCGAT -ACGGAAGCTCAAGACAGTTGGCAT -ACGGAAGCTCAAGACAGTCGAGAT -ACGGAAGCTCAAGACAGTTACCAC -ACGGAAGCTCAAGACAGTCAGAAC -ACGGAAGCTCAAGACAGTGTCTAC -ACGGAAGCTCAAGACAGTACGTAC -ACGGAAGCTCAAGACAGTAGTGAC -ACGGAAGCTCAAGACAGTCTGTAG -ACGGAAGCTCAAGACAGTCCTAAG -ACGGAAGCTCAAGACAGTGTTCAG -ACGGAAGCTCAAGACAGTGCATAG -ACGGAAGCTCAAGACAGTGACAAG -ACGGAAGCTCAAGACAGTAAGCAG -ACGGAAGCTCAAGACAGTCGTCAA -ACGGAAGCTCAAGACAGTGCTGAA -ACGGAAGCTCAAGACAGTAGTACG -ACGGAAGCTCAAGACAGTATCCGA -ACGGAAGCTCAAGACAGTATGGGA -ACGGAAGCTCAAGACAGTGTGCAA -ACGGAAGCTCAAGACAGTGAGGAA -ACGGAAGCTCAAGACAGTCAGGTA -ACGGAAGCTCAAGACAGTGACTCT -ACGGAAGCTCAAGACAGTAGTCCT -ACGGAAGCTCAAGACAGTTAAGCC -ACGGAAGCTCAAGACAGTATAGCC -ACGGAAGCTCAAGACAGTTAACCG -ACGGAAGCTCAAGACAGTATGCCA -ACGGAAGCTCAATAGCTGGGAAAC -ACGGAAGCTCAATAGCTGAACACC -ACGGAAGCTCAATAGCTGATCGAG -ACGGAAGCTCAATAGCTGCTCCTT -ACGGAAGCTCAATAGCTGCCTGTT -ACGGAAGCTCAATAGCTGCGGTTT -ACGGAAGCTCAATAGCTGGTGGTT -ACGGAAGCTCAATAGCTGGCCTTT -ACGGAAGCTCAATAGCTGGGTCTT -ACGGAAGCTCAATAGCTGACGCTT -ACGGAAGCTCAATAGCTGAGCGTT -ACGGAAGCTCAATAGCTGTTCGTC -ACGGAAGCTCAATAGCTGTCTCTC -ACGGAAGCTCAATAGCTGTGGATC -ACGGAAGCTCAATAGCTGCACTTC -ACGGAAGCTCAATAGCTGGTACTC -ACGGAAGCTCAATAGCTGGATGTC -ACGGAAGCTCAATAGCTGACAGTC -ACGGAAGCTCAATAGCTGTTGCTG -ACGGAAGCTCAATAGCTGTCCATG -ACGGAAGCTCAATAGCTGTGTGTG -ACGGAAGCTCAATAGCTGCTAGTG -ACGGAAGCTCAATAGCTGCATCTG -ACGGAAGCTCAATAGCTGGAGTTG -ACGGAAGCTCAATAGCTGAGACTG -ACGGAAGCTCAATAGCTGTCGGTA -ACGGAAGCTCAATAGCTGTGCCTA -ACGGAAGCTCAATAGCTGCCACTA -ACGGAAGCTCAATAGCTGGGAGTA -ACGGAAGCTCAATAGCTGTCGTCT -ACGGAAGCTCAATAGCTGTGCACT -ACGGAAGCTCAATAGCTGCTGACT -ACGGAAGCTCAATAGCTGCAACCT -ACGGAAGCTCAATAGCTGGCTACT -ACGGAAGCTCAATAGCTGGGATCT -ACGGAAGCTCAATAGCTGAAGGCT -ACGGAAGCTCAATAGCTGTCAACC -ACGGAAGCTCAATAGCTGTGTTCC -ACGGAAGCTCAATAGCTGATTCCC -ACGGAAGCTCAATAGCTGTTCTCG -ACGGAAGCTCAATAGCTGTAGACG -ACGGAAGCTCAATAGCTGGTAACG -ACGGAAGCTCAATAGCTGACTTCG -ACGGAAGCTCAATAGCTGTACGCA -ACGGAAGCTCAATAGCTGCTTGCA -ACGGAAGCTCAATAGCTGCGAACA -ACGGAAGCTCAATAGCTGCAGTCA -ACGGAAGCTCAATAGCTGGATCCA -ACGGAAGCTCAATAGCTGACGACA -ACGGAAGCTCAATAGCTGAGCTCA -ACGGAAGCTCAATAGCTGTCACGT -ACGGAAGCTCAATAGCTGCGTAGT -ACGGAAGCTCAATAGCTGGTCAGT -ACGGAAGCTCAATAGCTGGAAGGT -ACGGAAGCTCAATAGCTGAACCGT -ACGGAAGCTCAATAGCTGTTGTGC -ACGGAAGCTCAATAGCTGCTAAGC -ACGGAAGCTCAATAGCTGACTAGC -ACGGAAGCTCAATAGCTGAGATGC -ACGGAAGCTCAATAGCTGTGAAGG -ACGGAAGCTCAATAGCTGCAATGG -ACGGAAGCTCAATAGCTGATGAGG -ACGGAAGCTCAATAGCTGAATGGG -ACGGAAGCTCAATAGCTGTCCTGA -ACGGAAGCTCAATAGCTGTAGCGA -ACGGAAGCTCAATAGCTGCACAGA -ACGGAAGCTCAATAGCTGGCAAGA -ACGGAAGCTCAATAGCTGGGTTGA -ACGGAAGCTCAATAGCTGTCCGAT -ACGGAAGCTCAATAGCTGTGGCAT -ACGGAAGCTCAATAGCTGCGAGAT -ACGGAAGCTCAATAGCTGTACCAC -ACGGAAGCTCAATAGCTGCAGAAC -ACGGAAGCTCAATAGCTGGTCTAC -ACGGAAGCTCAATAGCTGACGTAC -ACGGAAGCTCAATAGCTGAGTGAC -ACGGAAGCTCAATAGCTGCTGTAG -ACGGAAGCTCAATAGCTGCCTAAG -ACGGAAGCTCAATAGCTGGTTCAG -ACGGAAGCTCAATAGCTGGCATAG -ACGGAAGCTCAATAGCTGGACAAG -ACGGAAGCTCAATAGCTGAAGCAG -ACGGAAGCTCAATAGCTGCGTCAA -ACGGAAGCTCAATAGCTGGCTGAA -ACGGAAGCTCAATAGCTGAGTACG -ACGGAAGCTCAATAGCTGATCCGA -ACGGAAGCTCAATAGCTGATGGGA -ACGGAAGCTCAATAGCTGGTGCAA -ACGGAAGCTCAATAGCTGGAGGAA -ACGGAAGCTCAATAGCTGCAGGTA -ACGGAAGCTCAATAGCTGGACTCT -ACGGAAGCTCAATAGCTGAGTCCT -ACGGAAGCTCAATAGCTGTAAGCC -ACGGAAGCTCAATAGCTGATAGCC -ACGGAAGCTCAATAGCTGTAACCG -ACGGAAGCTCAATAGCTGATGCCA -ACGGAAGCTCAAAAGCCTGGAAAC -ACGGAAGCTCAAAAGCCTAACACC -ACGGAAGCTCAAAAGCCTATCGAG -ACGGAAGCTCAAAAGCCTCTCCTT -ACGGAAGCTCAAAAGCCTCCTGTT -ACGGAAGCTCAAAAGCCTCGGTTT -ACGGAAGCTCAAAAGCCTGTGGTT -ACGGAAGCTCAAAAGCCTGCCTTT -ACGGAAGCTCAAAAGCCTGGTCTT -ACGGAAGCTCAAAAGCCTACGCTT -ACGGAAGCTCAAAAGCCTAGCGTT -ACGGAAGCTCAAAAGCCTTTCGTC -ACGGAAGCTCAAAAGCCTTCTCTC -ACGGAAGCTCAAAAGCCTTGGATC -ACGGAAGCTCAAAAGCCTCACTTC -ACGGAAGCTCAAAAGCCTGTACTC -ACGGAAGCTCAAAAGCCTGATGTC -ACGGAAGCTCAAAAGCCTACAGTC -ACGGAAGCTCAAAAGCCTTTGCTG -ACGGAAGCTCAAAAGCCTTCCATG -ACGGAAGCTCAAAAGCCTTGTGTG -ACGGAAGCTCAAAAGCCTCTAGTG -ACGGAAGCTCAAAAGCCTCATCTG -ACGGAAGCTCAAAAGCCTGAGTTG -ACGGAAGCTCAAAAGCCTAGACTG -ACGGAAGCTCAAAAGCCTTCGGTA -ACGGAAGCTCAAAAGCCTTGCCTA -ACGGAAGCTCAAAAGCCTCCACTA -ACGGAAGCTCAAAAGCCTGGAGTA -ACGGAAGCTCAAAAGCCTTCGTCT -ACGGAAGCTCAAAAGCCTTGCACT -ACGGAAGCTCAAAAGCCTCTGACT -ACGGAAGCTCAAAAGCCTCAACCT -ACGGAAGCTCAAAAGCCTGCTACT -ACGGAAGCTCAAAAGCCTGGATCT -ACGGAAGCTCAAAAGCCTAAGGCT -ACGGAAGCTCAAAAGCCTTCAACC -ACGGAAGCTCAAAAGCCTTGTTCC -ACGGAAGCTCAAAAGCCTATTCCC -ACGGAAGCTCAAAAGCCTTTCTCG -ACGGAAGCTCAAAAGCCTTAGACG -ACGGAAGCTCAAAAGCCTGTAACG -ACGGAAGCTCAAAAGCCTACTTCG -ACGGAAGCTCAAAAGCCTTACGCA -ACGGAAGCTCAAAAGCCTCTTGCA -ACGGAAGCTCAAAAGCCTCGAACA -ACGGAAGCTCAAAAGCCTCAGTCA -ACGGAAGCTCAAAAGCCTGATCCA -ACGGAAGCTCAAAAGCCTACGACA -ACGGAAGCTCAAAAGCCTAGCTCA -ACGGAAGCTCAAAAGCCTTCACGT -ACGGAAGCTCAAAAGCCTCGTAGT -ACGGAAGCTCAAAAGCCTGTCAGT -ACGGAAGCTCAAAAGCCTGAAGGT -ACGGAAGCTCAAAAGCCTAACCGT -ACGGAAGCTCAAAAGCCTTTGTGC -ACGGAAGCTCAAAAGCCTCTAAGC -ACGGAAGCTCAAAAGCCTACTAGC -ACGGAAGCTCAAAAGCCTAGATGC -ACGGAAGCTCAAAAGCCTTGAAGG -ACGGAAGCTCAAAAGCCTCAATGG -ACGGAAGCTCAAAAGCCTATGAGG -ACGGAAGCTCAAAAGCCTAATGGG -ACGGAAGCTCAAAAGCCTTCCTGA -ACGGAAGCTCAAAAGCCTTAGCGA -ACGGAAGCTCAAAAGCCTCACAGA -ACGGAAGCTCAAAAGCCTGCAAGA -ACGGAAGCTCAAAAGCCTGGTTGA -ACGGAAGCTCAAAAGCCTTCCGAT -ACGGAAGCTCAAAAGCCTTGGCAT -ACGGAAGCTCAAAAGCCTCGAGAT -ACGGAAGCTCAAAAGCCTTACCAC -ACGGAAGCTCAAAAGCCTCAGAAC -ACGGAAGCTCAAAAGCCTGTCTAC -ACGGAAGCTCAAAAGCCTACGTAC -ACGGAAGCTCAAAAGCCTAGTGAC -ACGGAAGCTCAAAAGCCTCTGTAG -ACGGAAGCTCAAAAGCCTCCTAAG -ACGGAAGCTCAAAAGCCTGTTCAG -ACGGAAGCTCAAAAGCCTGCATAG -ACGGAAGCTCAAAAGCCTGACAAG -ACGGAAGCTCAAAAGCCTAAGCAG -ACGGAAGCTCAAAAGCCTCGTCAA -ACGGAAGCTCAAAAGCCTGCTGAA -ACGGAAGCTCAAAAGCCTAGTACG -ACGGAAGCTCAAAAGCCTATCCGA -ACGGAAGCTCAAAAGCCTATGGGA -ACGGAAGCTCAAAAGCCTGTGCAA -ACGGAAGCTCAAAAGCCTGAGGAA -ACGGAAGCTCAAAAGCCTCAGGTA -ACGGAAGCTCAAAAGCCTGACTCT -ACGGAAGCTCAAAAGCCTAGTCCT -ACGGAAGCTCAAAAGCCTTAAGCC -ACGGAAGCTCAAAAGCCTATAGCC -ACGGAAGCTCAAAAGCCTTAACCG -ACGGAAGCTCAAAAGCCTATGCCA -ACGGAAGCTCAACAGGTTGGAAAC -ACGGAAGCTCAACAGGTTAACACC -ACGGAAGCTCAACAGGTTATCGAG -ACGGAAGCTCAACAGGTTCTCCTT -ACGGAAGCTCAACAGGTTCCTGTT -ACGGAAGCTCAACAGGTTCGGTTT -ACGGAAGCTCAACAGGTTGTGGTT -ACGGAAGCTCAACAGGTTGCCTTT -ACGGAAGCTCAACAGGTTGGTCTT -ACGGAAGCTCAACAGGTTACGCTT -ACGGAAGCTCAACAGGTTAGCGTT -ACGGAAGCTCAACAGGTTTTCGTC -ACGGAAGCTCAACAGGTTTCTCTC -ACGGAAGCTCAACAGGTTTGGATC -ACGGAAGCTCAACAGGTTCACTTC -ACGGAAGCTCAACAGGTTGTACTC -ACGGAAGCTCAACAGGTTGATGTC -ACGGAAGCTCAACAGGTTACAGTC -ACGGAAGCTCAACAGGTTTTGCTG -ACGGAAGCTCAACAGGTTTCCATG -ACGGAAGCTCAACAGGTTTGTGTG -ACGGAAGCTCAACAGGTTCTAGTG -ACGGAAGCTCAACAGGTTCATCTG -ACGGAAGCTCAACAGGTTGAGTTG -ACGGAAGCTCAACAGGTTAGACTG -ACGGAAGCTCAACAGGTTTCGGTA -ACGGAAGCTCAACAGGTTTGCCTA -ACGGAAGCTCAACAGGTTCCACTA -ACGGAAGCTCAACAGGTTGGAGTA -ACGGAAGCTCAACAGGTTTCGTCT -ACGGAAGCTCAACAGGTTTGCACT -ACGGAAGCTCAACAGGTTCTGACT -ACGGAAGCTCAACAGGTTCAACCT -ACGGAAGCTCAACAGGTTGCTACT -ACGGAAGCTCAACAGGTTGGATCT -ACGGAAGCTCAACAGGTTAAGGCT -ACGGAAGCTCAACAGGTTTCAACC -ACGGAAGCTCAACAGGTTTGTTCC -ACGGAAGCTCAACAGGTTATTCCC -ACGGAAGCTCAACAGGTTTTCTCG -ACGGAAGCTCAACAGGTTTAGACG -ACGGAAGCTCAACAGGTTGTAACG -ACGGAAGCTCAACAGGTTACTTCG -ACGGAAGCTCAACAGGTTTACGCA -ACGGAAGCTCAACAGGTTCTTGCA -ACGGAAGCTCAACAGGTTCGAACA -ACGGAAGCTCAACAGGTTCAGTCA -ACGGAAGCTCAACAGGTTGATCCA -ACGGAAGCTCAACAGGTTACGACA -ACGGAAGCTCAACAGGTTAGCTCA -ACGGAAGCTCAACAGGTTTCACGT -ACGGAAGCTCAACAGGTTCGTAGT -ACGGAAGCTCAACAGGTTGTCAGT -ACGGAAGCTCAACAGGTTGAAGGT -ACGGAAGCTCAACAGGTTAACCGT -ACGGAAGCTCAACAGGTTTTGTGC -ACGGAAGCTCAACAGGTTCTAAGC -ACGGAAGCTCAACAGGTTACTAGC -ACGGAAGCTCAACAGGTTAGATGC -ACGGAAGCTCAACAGGTTTGAAGG -ACGGAAGCTCAACAGGTTCAATGG -ACGGAAGCTCAACAGGTTATGAGG -ACGGAAGCTCAACAGGTTAATGGG -ACGGAAGCTCAACAGGTTTCCTGA -ACGGAAGCTCAACAGGTTTAGCGA -ACGGAAGCTCAACAGGTTCACAGA -ACGGAAGCTCAACAGGTTGCAAGA -ACGGAAGCTCAACAGGTTGGTTGA -ACGGAAGCTCAACAGGTTTCCGAT -ACGGAAGCTCAACAGGTTTGGCAT -ACGGAAGCTCAACAGGTTCGAGAT -ACGGAAGCTCAACAGGTTTACCAC -ACGGAAGCTCAACAGGTTCAGAAC -ACGGAAGCTCAACAGGTTGTCTAC -ACGGAAGCTCAACAGGTTACGTAC -ACGGAAGCTCAACAGGTTAGTGAC -ACGGAAGCTCAACAGGTTCTGTAG -ACGGAAGCTCAACAGGTTCCTAAG -ACGGAAGCTCAACAGGTTGTTCAG -ACGGAAGCTCAACAGGTTGCATAG -ACGGAAGCTCAACAGGTTGACAAG -ACGGAAGCTCAACAGGTTAAGCAG -ACGGAAGCTCAACAGGTTCGTCAA -ACGGAAGCTCAACAGGTTGCTGAA -ACGGAAGCTCAACAGGTTAGTACG -ACGGAAGCTCAACAGGTTATCCGA -ACGGAAGCTCAACAGGTTATGGGA -ACGGAAGCTCAACAGGTTGTGCAA -ACGGAAGCTCAACAGGTTGAGGAA -ACGGAAGCTCAACAGGTTCAGGTA -ACGGAAGCTCAACAGGTTGACTCT -ACGGAAGCTCAACAGGTTAGTCCT -ACGGAAGCTCAACAGGTTTAAGCC -ACGGAAGCTCAACAGGTTATAGCC -ACGGAAGCTCAACAGGTTTAACCG -ACGGAAGCTCAACAGGTTATGCCA -ACGGAAGCTCAATAGGCAGGAAAC -ACGGAAGCTCAATAGGCAAACACC -ACGGAAGCTCAATAGGCAATCGAG -ACGGAAGCTCAATAGGCACTCCTT -ACGGAAGCTCAATAGGCACCTGTT -ACGGAAGCTCAATAGGCACGGTTT -ACGGAAGCTCAATAGGCAGTGGTT -ACGGAAGCTCAATAGGCAGCCTTT -ACGGAAGCTCAATAGGCAGGTCTT -ACGGAAGCTCAATAGGCAACGCTT -ACGGAAGCTCAATAGGCAAGCGTT -ACGGAAGCTCAATAGGCATTCGTC -ACGGAAGCTCAATAGGCATCTCTC -ACGGAAGCTCAATAGGCATGGATC -ACGGAAGCTCAATAGGCACACTTC -ACGGAAGCTCAATAGGCAGTACTC -ACGGAAGCTCAATAGGCAGATGTC -ACGGAAGCTCAATAGGCAACAGTC -ACGGAAGCTCAATAGGCATTGCTG -ACGGAAGCTCAATAGGCATCCATG -ACGGAAGCTCAATAGGCATGTGTG -ACGGAAGCTCAATAGGCACTAGTG -ACGGAAGCTCAATAGGCACATCTG -ACGGAAGCTCAATAGGCAGAGTTG -ACGGAAGCTCAATAGGCAAGACTG -ACGGAAGCTCAATAGGCATCGGTA -ACGGAAGCTCAATAGGCATGCCTA -ACGGAAGCTCAATAGGCACCACTA -ACGGAAGCTCAATAGGCAGGAGTA -ACGGAAGCTCAATAGGCATCGTCT -ACGGAAGCTCAATAGGCATGCACT -ACGGAAGCTCAATAGGCACTGACT -ACGGAAGCTCAATAGGCACAACCT -ACGGAAGCTCAATAGGCAGCTACT -ACGGAAGCTCAATAGGCAGGATCT -ACGGAAGCTCAATAGGCAAAGGCT -ACGGAAGCTCAATAGGCATCAACC -ACGGAAGCTCAATAGGCATGTTCC -ACGGAAGCTCAATAGGCAATTCCC -ACGGAAGCTCAATAGGCATTCTCG -ACGGAAGCTCAATAGGCATAGACG -ACGGAAGCTCAATAGGCAGTAACG -ACGGAAGCTCAATAGGCAACTTCG -ACGGAAGCTCAATAGGCATACGCA -ACGGAAGCTCAATAGGCACTTGCA -ACGGAAGCTCAATAGGCACGAACA -ACGGAAGCTCAATAGGCACAGTCA -ACGGAAGCTCAATAGGCAGATCCA -ACGGAAGCTCAATAGGCAACGACA -ACGGAAGCTCAATAGGCAAGCTCA -ACGGAAGCTCAATAGGCATCACGT -ACGGAAGCTCAATAGGCACGTAGT -ACGGAAGCTCAATAGGCAGTCAGT -ACGGAAGCTCAATAGGCAGAAGGT -ACGGAAGCTCAATAGGCAAACCGT -ACGGAAGCTCAATAGGCATTGTGC -ACGGAAGCTCAATAGGCACTAAGC -ACGGAAGCTCAATAGGCAACTAGC -ACGGAAGCTCAATAGGCAAGATGC -ACGGAAGCTCAATAGGCATGAAGG -ACGGAAGCTCAATAGGCACAATGG -ACGGAAGCTCAATAGGCAATGAGG -ACGGAAGCTCAATAGGCAAATGGG -ACGGAAGCTCAATAGGCATCCTGA -ACGGAAGCTCAATAGGCATAGCGA -ACGGAAGCTCAATAGGCACACAGA -ACGGAAGCTCAATAGGCAGCAAGA -ACGGAAGCTCAATAGGCAGGTTGA -ACGGAAGCTCAATAGGCATCCGAT -ACGGAAGCTCAATAGGCATGGCAT -ACGGAAGCTCAATAGGCACGAGAT -ACGGAAGCTCAATAGGCATACCAC -ACGGAAGCTCAATAGGCACAGAAC -ACGGAAGCTCAATAGGCAGTCTAC -ACGGAAGCTCAATAGGCAACGTAC -ACGGAAGCTCAATAGGCAAGTGAC -ACGGAAGCTCAATAGGCACTGTAG -ACGGAAGCTCAATAGGCACCTAAG -ACGGAAGCTCAATAGGCAGTTCAG -ACGGAAGCTCAATAGGCAGCATAG -ACGGAAGCTCAATAGGCAGACAAG -ACGGAAGCTCAATAGGCAAAGCAG -ACGGAAGCTCAATAGGCACGTCAA -ACGGAAGCTCAATAGGCAGCTGAA -ACGGAAGCTCAATAGGCAAGTACG -ACGGAAGCTCAATAGGCAATCCGA -ACGGAAGCTCAATAGGCAATGGGA -ACGGAAGCTCAATAGGCAGTGCAA -ACGGAAGCTCAATAGGCAGAGGAA -ACGGAAGCTCAATAGGCACAGGTA -ACGGAAGCTCAATAGGCAGACTCT -ACGGAAGCTCAATAGGCAAGTCCT -ACGGAAGCTCAATAGGCATAAGCC -ACGGAAGCTCAATAGGCAATAGCC -ACGGAAGCTCAATAGGCATAACCG -ACGGAAGCTCAATAGGCAATGCCA -ACGGAAGCTCAAAAGGACGGAAAC -ACGGAAGCTCAAAAGGACAACACC -ACGGAAGCTCAAAAGGACATCGAG -ACGGAAGCTCAAAAGGACCTCCTT -ACGGAAGCTCAAAAGGACCCTGTT -ACGGAAGCTCAAAAGGACCGGTTT -ACGGAAGCTCAAAAGGACGTGGTT -ACGGAAGCTCAAAAGGACGCCTTT -ACGGAAGCTCAAAAGGACGGTCTT -ACGGAAGCTCAAAAGGACACGCTT -ACGGAAGCTCAAAAGGACAGCGTT -ACGGAAGCTCAAAAGGACTTCGTC -ACGGAAGCTCAAAAGGACTCTCTC -ACGGAAGCTCAAAAGGACTGGATC -ACGGAAGCTCAAAAGGACCACTTC -ACGGAAGCTCAAAAGGACGTACTC -ACGGAAGCTCAAAAGGACGATGTC -ACGGAAGCTCAAAAGGACACAGTC -ACGGAAGCTCAAAAGGACTTGCTG -ACGGAAGCTCAAAAGGACTCCATG -ACGGAAGCTCAAAAGGACTGTGTG -ACGGAAGCTCAAAAGGACCTAGTG -ACGGAAGCTCAAAAGGACCATCTG -ACGGAAGCTCAAAAGGACGAGTTG -ACGGAAGCTCAAAAGGACAGACTG -ACGGAAGCTCAAAAGGACTCGGTA -ACGGAAGCTCAAAAGGACTGCCTA -ACGGAAGCTCAAAAGGACCCACTA -ACGGAAGCTCAAAAGGACGGAGTA -ACGGAAGCTCAAAAGGACTCGTCT -ACGGAAGCTCAAAAGGACTGCACT -ACGGAAGCTCAAAAGGACCTGACT -ACGGAAGCTCAAAAGGACCAACCT -ACGGAAGCTCAAAAGGACGCTACT -ACGGAAGCTCAAAAGGACGGATCT -ACGGAAGCTCAAAAGGACAAGGCT -ACGGAAGCTCAAAAGGACTCAACC -ACGGAAGCTCAAAAGGACTGTTCC -ACGGAAGCTCAAAAGGACATTCCC -ACGGAAGCTCAAAAGGACTTCTCG -ACGGAAGCTCAAAAGGACTAGACG -ACGGAAGCTCAAAAGGACGTAACG -ACGGAAGCTCAAAAGGACACTTCG -ACGGAAGCTCAAAAGGACTACGCA -ACGGAAGCTCAAAAGGACCTTGCA -ACGGAAGCTCAAAAGGACCGAACA -ACGGAAGCTCAAAAGGACCAGTCA -ACGGAAGCTCAAAAGGACGATCCA -ACGGAAGCTCAAAAGGACACGACA -ACGGAAGCTCAAAAGGACAGCTCA -ACGGAAGCTCAAAAGGACTCACGT -ACGGAAGCTCAAAAGGACCGTAGT -ACGGAAGCTCAAAAGGACGTCAGT -ACGGAAGCTCAAAAGGACGAAGGT -ACGGAAGCTCAAAAGGACAACCGT -ACGGAAGCTCAAAAGGACTTGTGC -ACGGAAGCTCAAAAGGACCTAAGC -ACGGAAGCTCAAAAGGACACTAGC -ACGGAAGCTCAAAAGGACAGATGC -ACGGAAGCTCAAAAGGACTGAAGG -ACGGAAGCTCAAAAGGACCAATGG -ACGGAAGCTCAAAAGGACATGAGG -ACGGAAGCTCAAAAGGACAATGGG -ACGGAAGCTCAAAAGGACTCCTGA -ACGGAAGCTCAAAAGGACTAGCGA -ACGGAAGCTCAAAAGGACCACAGA -ACGGAAGCTCAAAAGGACGCAAGA -ACGGAAGCTCAAAAGGACGGTTGA -ACGGAAGCTCAAAAGGACTCCGAT -ACGGAAGCTCAAAAGGACTGGCAT -ACGGAAGCTCAAAAGGACCGAGAT -ACGGAAGCTCAAAAGGACTACCAC -ACGGAAGCTCAAAAGGACCAGAAC -ACGGAAGCTCAAAAGGACGTCTAC -ACGGAAGCTCAAAAGGACACGTAC -ACGGAAGCTCAAAAGGACAGTGAC -ACGGAAGCTCAAAAGGACCTGTAG -ACGGAAGCTCAAAAGGACCCTAAG -ACGGAAGCTCAAAAGGACGTTCAG -ACGGAAGCTCAAAAGGACGCATAG -ACGGAAGCTCAAAAGGACGACAAG -ACGGAAGCTCAAAAGGACAAGCAG -ACGGAAGCTCAAAAGGACCGTCAA -ACGGAAGCTCAAAAGGACGCTGAA -ACGGAAGCTCAAAAGGACAGTACG -ACGGAAGCTCAAAAGGACATCCGA -ACGGAAGCTCAAAAGGACATGGGA -ACGGAAGCTCAAAAGGACGTGCAA -ACGGAAGCTCAAAAGGACGAGGAA -ACGGAAGCTCAAAAGGACCAGGTA -ACGGAAGCTCAAAAGGACGACTCT -ACGGAAGCTCAAAAGGACAGTCCT -ACGGAAGCTCAAAAGGACTAAGCC -ACGGAAGCTCAAAAGGACATAGCC -ACGGAAGCTCAAAAGGACTAACCG -ACGGAAGCTCAAAAGGACATGCCA -ACGGAAGCTCAACAGAAGGGAAAC -ACGGAAGCTCAACAGAAGAACACC -ACGGAAGCTCAACAGAAGATCGAG -ACGGAAGCTCAACAGAAGCTCCTT -ACGGAAGCTCAACAGAAGCCTGTT -ACGGAAGCTCAACAGAAGCGGTTT -ACGGAAGCTCAACAGAAGGTGGTT -ACGGAAGCTCAACAGAAGGCCTTT -ACGGAAGCTCAACAGAAGGGTCTT -ACGGAAGCTCAACAGAAGACGCTT -ACGGAAGCTCAACAGAAGAGCGTT -ACGGAAGCTCAACAGAAGTTCGTC -ACGGAAGCTCAACAGAAGTCTCTC -ACGGAAGCTCAACAGAAGTGGATC -ACGGAAGCTCAACAGAAGCACTTC -ACGGAAGCTCAACAGAAGGTACTC -ACGGAAGCTCAACAGAAGGATGTC -ACGGAAGCTCAACAGAAGACAGTC -ACGGAAGCTCAACAGAAGTTGCTG -ACGGAAGCTCAACAGAAGTCCATG -ACGGAAGCTCAACAGAAGTGTGTG -ACGGAAGCTCAACAGAAGCTAGTG -ACGGAAGCTCAACAGAAGCATCTG -ACGGAAGCTCAACAGAAGGAGTTG -ACGGAAGCTCAACAGAAGAGACTG -ACGGAAGCTCAACAGAAGTCGGTA -ACGGAAGCTCAACAGAAGTGCCTA -ACGGAAGCTCAACAGAAGCCACTA -ACGGAAGCTCAACAGAAGGGAGTA -ACGGAAGCTCAACAGAAGTCGTCT -ACGGAAGCTCAACAGAAGTGCACT -ACGGAAGCTCAACAGAAGCTGACT -ACGGAAGCTCAACAGAAGCAACCT -ACGGAAGCTCAACAGAAGGCTACT -ACGGAAGCTCAACAGAAGGGATCT -ACGGAAGCTCAACAGAAGAAGGCT -ACGGAAGCTCAACAGAAGTCAACC -ACGGAAGCTCAACAGAAGTGTTCC -ACGGAAGCTCAACAGAAGATTCCC -ACGGAAGCTCAACAGAAGTTCTCG -ACGGAAGCTCAACAGAAGTAGACG -ACGGAAGCTCAACAGAAGGTAACG -ACGGAAGCTCAACAGAAGACTTCG -ACGGAAGCTCAACAGAAGTACGCA -ACGGAAGCTCAACAGAAGCTTGCA -ACGGAAGCTCAACAGAAGCGAACA -ACGGAAGCTCAACAGAAGCAGTCA -ACGGAAGCTCAACAGAAGGATCCA -ACGGAAGCTCAACAGAAGACGACA -ACGGAAGCTCAACAGAAGAGCTCA -ACGGAAGCTCAACAGAAGTCACGT -ACGGAAGCTCAACAGAAGCGTAGT -ACGGAAGCTCAACAGAAGGTCAGT -ACGGAAGCTCAACAGAAGGAAGGT -ACGGAAGCTCAACAGAAGAACCGT -ACGGAAGCTCAACAGAAGTTGTGC -ACGGAAGCTCAACAGAAGCTAAGC -ACGGAAGCTCAACAGAAGACTAGC -ACGGAAGCTCAACAGAAGAGATGC -ACGGAAGCTCAACAGAAGTGAAGG -ACGGAAGCTCAACAGAAGCAATGG -ACGGAAGCTCAACAGAAGATGAGG -ACGGAAGCTCAACAGAAGAATGGG -ACGGAAGCTCAACAGAAGTCCTGA -ACGGAAGCTCAACAGAAGTAGCGA -ACGGAAGCTCAACAGAAGCACAGA -ACGGAAGCTCAACAGAAGGCAAGA -ACGGAAGCTCAACAGAAGGGTTGA -ACGGAAGCTCAACAGAAGTCCGAT -ACGGAAGCTCAACAGAAGTGGCAT -ACGGAAGCTCAACAGAAGCGAGAT -ACGGAAGCTCAACAGAAGTACCAC -ACGGAAGCTCAACAGAAGCAGAAC -ACGGAAGCTCAACAGAAGGTCTAC -ACGGAAGCTCAACAGAAGACGTAC -ACGGAAGCTCAACAGAAGAGTGAC -ACGGAAGCTCAACAGAAGCTGTAG -ACGGAAGCTCAACAGAAGCCTAAG -ACGGAAGCTCAACAGAAGGTTCAG -ACGGAAGCTCAACAGAAGGCATAG -ACGGAAGCTCAACAGAAGGACAAG -ACGGAAGCTCAACAGAAGAAGCAG -ACGGAAGCTCAACAGAAGCGTCAA -ACGGAAGCTCAACAGAAGGCTGAA -ACGGAAGCTCAACAGAAGAGTACG -ACGGAAGCTCAACAGAAGATCCGA -ACGGAAGCTCAACAGAAGATGGGA -ACGGAAGCTCAACAGAAGGTGCAA -ACGGAAGCTCAACAGAAGGAGGAA -ACGGAAGCTCAACAGAAGCAGGTA -ACGGAAGCTCAACAGAAGGACTCT -ACGGAAGCTCAACAGAAGAGTCCT -ACGGAAGCTCAACAGAAGTAAGCC -ACGGAAGCTCAACAGAAGATAGCC -ACGGAAGCTCAACAGAAGTAACCG -ACGGAAGCTCAACAGAAGATGCCA -ACGGAAGCTCAACAACGTGGAAAC -ACGGAAGCTCAACAACGTAACACC -ACGGAAGCTCAACAACGTATCGAG -ACGGAAGCTCAACAACGTCTCCTT -ACGGAAGCTCAACAACGTCCTGTT -ACGGAAGCTCAACAACGTCGGTTT -ACGGAAGCTCAACAACGTGTGGTT -ACGGAAGCTCAACAACGTGCCTTT -ACGGAAGCTCAACAACGTGGTCTT -ACGGAAGCTCAACAACGTACGCTT -ACGGAAGCTCAACAACGTAGCGTT -ACGGAAGCTCAACAACGTTTCGTC -ACGGAAGCTCAACAACGTTCTCTC -ACGGAAGCTCAACAACGTTGGATC -ACGGAAGCTCAACAACGTCACTTC -ACGGAAGCTCAACAACGTGTACTC -ACGGAAGCTCAACAACGTGATGTC -ACGGAAGCTCAACAACGTACAGTC -ACGGAAGCTCAACAACGTTTGCTG -ACGGAAGCTCAACAACGTTCCATG -ACGGAAGCTCAACAACGTTGTGTG -ACGGAAGCTCAACAACGTCTAGTG -ACGGAAGCTCAACAACGTCATCTG -ACGGAAGCTCAACAACGTGAGTTG -ACGGAAGCTCAACAACGTAGACTG -ACGGAAGCTCAACAACGTTCGGTA -ACGGAAGCTCAACAACGTTGCCTA -ACGGAAGCTCAACAACGTCCACTA -ACGGAAGCTCAACAACGTGGAGTA -ACGGAAGCTCAACAACGTTCGTCT -ACGGAAGCTCAACAACGTTGCACT -ACGGAAGCTCAACAACGTCTGACT -ACGGAAGCTCAACAACGTCAACCT -ACGGAAGCTCAACAACGTGCTACT -ACGGAAGCTCAACAACGTGGATCT -ACGGAAGCTCAACAACGTAAGGCT -ACGGAAGCTCAACAACGTTCAACC -ACGGAAGCTCAACAACGTTGTTCC -ACGGAAGCTCAACAACGTATTCCC -ACGGAAGCTCAACAACGTTTCTCG -ACGGAAGCTCAACAACGTTAGACG -ACGGAAGCTCAACAACGTGTAACG -ACGGAAGCTCAACAACGTACTTCG -ACGGAAGCTCAACAACGTTACGCA -ACGGAAGCTCAACAACGTCTTGCA -ACGGAAGCTCAACAACGTCGAACA -ACGGAAGCTCAACAACGTCAGTCA -ACGGAAGCTCAACAACGTGATCCA -ACGGAAGCTCAACAACGTACGACA -ACGGAAGCTCAACAACGTAGCTCA -ACGGAAGCTCAACAACGTTCACGT -ACGGAAGCTCAACAACGTCGTAGT -ACGGAAGCTCAACAACGTGTCAGT -ACGGAAGCTCAACAACGTGAAGGT -ACGGAAGCTCAACAACGTAACCGT -ACGGAAGCTCAACAACGTTTGTGC -ACGGAAGCTCAACAACGTCTAAGC -ACGGAAGCTCAACAACGTACTAGC -ACGGAAGCTCAACAACGTAGATGC -ACGGAAGCTCAACAACGTTGAAGG -ACGGAAGCTCAACAACGTCAATGG -ACGGAAGCTCAACAACGTATGAGG -ACGGAAGCTCAACAACGTAATGGG -ACGGAAGCTCAACAACGTTCCTGA -ACGGAAGCTCAACAACGTTAGCGA -ACGGAAGCTCAACAACGTCACAGA -ACGGAAGCTCAACAACGTGCAAGA -ACGGAAGCTCAACAACGTGGTTGA -ACGGAAGCTCAACAACGTTCCGAT -ACGGAAGCTCAACAACGTTGGCAT -ACGGAAGCTCAACAACGTCGAGAT -ACGGAAGCTCAACAACGTTACCAC -ACGGAAGCTCAACAACGTCAGAAC -ACGGAAGCTCAACAACGTGTCTAC -ACGGAAGCTCAACAACGTACGTAC -ACGGAAGCTCAACAACGTAGTGAC -ACGGAAGCTCAACAACGTCTGTAG -ACGGAAGCTCAACAACGTCCTAAG -ACGGAAGCTCAACAACGTGTTCAG -ACGGAAGCTCAACAACGTGCATAG -ACGGAAGCTCAACAACGTGACAAG -ACGGAAGCTCAACAACGTAAGCAG -ACGGAAGCTCAACAACGTCGTCAA -ACGGAAGCTCAACAACGTGCTGAA -ACGGAAGCTCAACAACGTAGTACG -ACGGAAGCTCAACAACGTATCCGA -ACGGAAGCTCAACAACGTATGGGA -ACGGAAGCTCAACAACGTGTGCAA -ACGGAAGCTCAACAACGTGAGGAA -ACGGAAGCTCAACAACGTCAGGTA -ACGGAAGCTCAACAACGTGACTCT -ACGGAAGCTCAACAACGTAGTCCT -ACGGAAGCTCAACAACGTTAAGCC -ACGGAAGCTCAACAACGTATAGCC -ACGGAAGCTCAACAACGTTAACCG -ACGGAAGCTCAACAACGTATGCCA -ACGGAAGCTCAAGAAGCTGGAAAC -ACGGAAGCTCAAGAAGCTAACACC -ACGGAAGCTCAAGAAGCTATCGAG -ACGGAAGCTCAAGAAGCTCTCCTT -ACGGAAGCTCAAGAAGCTCCTGTT -ACGGAAGCTCAAGAAGCTCGGTTT -ACGGAAGCTCAAGAAGCTGTGGTT -ACGGAAGCTCAAGAAGCTGCCTTT -ACGGAAGCTCAAGAAGCTGGTCTT -ACGGAAGCTCAAGAAGCTACGCTT -ACGGAAGCTCAAGAAGCTAGCGTT -ACGGAAGCTCAAGAAGCTTTCGTC -ACGGAAGCTCAAGAAGCTTCTCTC -ACGGAAGCTCAAGAAGCTTGGATC -ACGGAAGCTCAAGAAGCTCACTTC -ACGGAAGCTCAAGAAGCTGTACTC -ACGGAAGCTCAAGAAGCTGATGTC -ACGGAAGCTCAAGAAGCTACAGTC -ACGGAAGCTCAAGAAGCTTTGCTG -ACGGAAGCTCAAGAAGCTTCCATG -ACGGAAGCTCAAGAAGCTTGTGTG -ACGGAAGCTCAAGAAGCTCTAGTG -ACGGAAGCTCAAGAAGCTCATCTG -ACGGAAGCTCAAGAAGCTGAGTTG -ACGGAAGCTCAAGAAGCTAGACTG -ACGGAAGCTCAAGAAGCTTCGGTA -ACGGAAGCTCAAGAAGCTTGCCTA -ACGGAAGCTCAAGAAGCTCCACTA -ACGGAAGCTCAAGAAGCTGGAGTA -ACGGAAGCTCAAGAAGCTTCGTCT -ACGGAAGCTCAAGAAGCTTGCACT -ACGGAAGCTCAAGAAGCTCTGACT -ACGGAAGCTCAAGAAGCTCAACCT -ACGGAAGCTCAAGAAGCTGCTACT -ACGGAAGCTCAAGAAGCTGGATCT -ACGGAAGCTCAAGAAGCTAAGGCT -ACGGAAGCTCAAGAAGCTTCAACC -ACGGAAGCTCAAGAAGCTTGTTCC -ACGGAAGCTCAAGAAGCTATTCCC -ACGGAAGCTCAAGAAGCTTTCTCG -ACGGAAGCTCAAGAAGCTTAGACG -ACGGAAGCTCAAGAAGCTGTAACG -ACGGAAGCTCAAGAAGCTACTTCG -ACGGAAGCTCAAGAAGCTTACGCA -ACGGAAGCTCAAGAAGCTCTTGCA -ACGGAAGCTCAAGAAGCTCGAACA -ACGGAAGCTCAAGAAGCTCAGTCA -ACGGAAGCTCAAGAAGCTGATCCA -ACGGAAGCTCAAGAAGCTACGACA -ACGGAAGCTCAAGAAGCTAGCTCA -ACGGAAGCTCAAGAAGCTTCACGT -ACGGAAGCTCAAGAAGCTCGTAGT -ACGGAAGCTCAAGAAGCTGTCAGT -ACGGAAGCTCAAGAAGCTGAAGGT -ACGGAAGCTCAAGAAGCTAACCGT -ACGGAAGCTCAAGAAGCTTTGTGC -ACGGAAGCTCAAGAAGCTCTAAGC -ACGGAAGCTCAAGAAGCTACTAGC -ACGGAAGCTCAAGAAGCTAGATGC -ACGGAAGCTCAAGAAGCTTGAAGG -ACGGAAGCTCAAGAAGCTCAATGG -ACGGAAGCTCAAGAAGCTATGAGG -ACGGAAGCTCAAGAAGCTAATGGG -ACGGAAGCTCAAGAAGCTTCCTGA -ACGGAAGCTCAAGAAGCTTAGCGA -ACGGAAGCTCAAGAAGCTCACAGA -ACGGAAGCTCAAGAAGCTGCAAGA -ACGGAAGCTCAAGAAGCTGGTTGA -ACGGAAGCTCAAGAAGCTTCCGAT -ACGGAAGCTCAAGAAGCTTGGCAT -ACGGAAGCTCAAGAAGCTCGAGAT -ACGGAAGCTCAAGAAGCTTACCAC -ACGGAAGCTCAAGAAGCTCAGAAC -ACGGAAGCTCAAGAAGCTGTCTAC -ACGGAAGCTCAAGAAGCTACGTAC -ACGGAAGCTCAAGAAGCTAGTGAC -ACGGAAGCTCAAGAAGCTCTGTAG -ACGGAAGCTCAAGAAGCTCCTAAG -ACGGAAGCTCAAGAAGCTGTTCAG -ACGGAAGCTCAAGAAGCTGCATAG -ACGGAAGCTCAAGAAGCTGACAAG -ACGGAAGCTCAAGAAGCTAAGCAG -ACGGAAGCTCAAGAAGCTCGTCAA -ACGGAAGCTCAAGAAGCTGCTGAA -ACGGAAGCTCAAGAAGCTAGTACG -ACGGAAGCTCAAGAAGCTATCCGA -ACGGAAGCTCAAGAAGCTATGGGA -ACGGAAGCTCAAGAAGCTGTGCAA -ACGGAAGCTCAAGAAGCTGAGGAA -ACGGAAGCTCAAGAAGCTCAGGTA -ACGGAAGCTCAAGAAGCTGACTCT -ACGGAAGCTCAAGAAGCTAGTCCT -ACGGAAGCTCAAGAAGCTTAAGCC -ACGGAAGCTCAAGAAGCTATAGCC -ACGGAAGCTCAAGAAGCTTAACCG -ACGGAAGCTCAAGAAGCTATGCCA -ACGGAAGCTCAAACGAGTGGAAAC -ACGGAAGCTCAAACGAGTAACACC -ACGGAAGCTCAAACGAGTATCGAG -ACGGAAGCTCAAACGAGTCTCCTT -ACGGAAGCTCAAACGAGTCCTGTT -ACGGAAGCTCAAACGAGTCGGTTT -ACGGAAGCTCAAACGAGTGTGGTT -ACGGAAGCTCAAACGAGTGCCTTT -ACGGAAGCTCAAACGAGTGGTCTT -ACGGAAGCTCAAACGAGTACGCTT -ACGGAAGCTCAAACGAGTAGCGTT -ACGGAAGCTCAAACGAGTTTCGTC -ACGGAAGCTCAAACGAGTTCTCTC -ACGGAAGCTCAAACGAGTTGGATC -ACGGAAGCTCAAACGAGTCACTTC -ACGGAAGCTCAAACGAGTGTACTC -ACGGAAGCTCAAACGAGTGATGTC -ACGGAAGCTCAAACGAGTACAGTC -ACGGAAGCTCAAACGAGTTTGCTG -ACGGAAGCTCAAACGAGTTCCATG -ACGGAAGCTCAAACGAGTTGTGTG -ACGGAAGCTCAAACGAGTCTAGTG -ACGGAAGCTCAAACGAGTCATCTG -ACGGAAGCTCAAACGAGTGAGTTG -ACGGAAGCTCAAACGAGTAGACTG -ACGGAAGCTCAAACGAGTTCGGTA -ACGGAAGCTCAAACGAGTTGCCTA -ACGGAAGCTCAAACGAGTCCACTA -ACGGAAGCTCAAACGAGTGGAGTA -ACGGAAGCTCAAACGAGTTCGTCT -ACGGAAGCTCAAACGAGTTGCACT -ACGGAAGCTCAAACGAGTCTGACT -ACGGAAGCTCAAACGAGTCAACCT -ACGGAAGCTCAAACGAGTGCTACT -ACGGAAGCTCAAACGAGTGGATCT -ACGGAAGCTCAAACGAGTAAGGCT -ACGGAAGCTCAAACGAGTTCAACC -ACGGAAGCTCAAACGAGTTGTTCC -ACGGAAGCTCAAACGAGTATTCCC -ACGGAAGCTCAAACGAGTTTCTCG -ACGGAAGCTCAAACGAGTTAGACG -ACGGAAGCTCAAACGAGTGTAACG -ACGGAAGCTCAAACGAGTACTTCG -ACGGAAGCTCAAACGAGTTACGCA -ACGGAAGCTCAAACGAGTCTTGCA -ACGGAAGCTCAAACGAGTCGAACA -ACGGAAGCTCAAACGAGTCAGTCA -ACGGAAGCTCAAACGAGTGATCCA -ACGGAAGCTCAAACGAGTACGACA -ACGGAAGCTCAAACGAGTAGCTCA -ACGGAAGCTCAAACGAGTTCACGT -ACGGAAGCTCAAACGAGTCGTAGT -ACGGAAGCTCAAACGAGTGTCAGT -ACGGAAGCTCAAACGAGTGAAGGT -ACGGAAGCTCAAACGAGTAACCGT -ACGGAAGCTCAAACGAGTTTGTGC -ACGGAAGCTCAAACGAGTCTAAGC -ACGGAAGCTCAAACGAGTACTAGC -ACGGAAGCTCAAACGAGTAGATGC -ACGGAAGCTCAAACGAGTTGAAGG -ACGGAAGCTCAAACGAGTCAATGG -ACGGAAGCTCAAACGAGTATGAGG -ACGGAAGCTCAAACGAGTAATGGG -ACGGAAGCTCAAACGAGTTCCTGA -ACGGAAGCTCAAACGAGTTAGCGA -ACGGAAGCTCAAACGAGTCACAGA -ACGGAAGCTCAAACGAGTGCAAGA -ACGGAAGCTCAAACGAGTGGTTGA -ACGGAAGCTCAAACGAGTTCCGAT -ACGGAAGCTCAAACGAGTTGGCAT -ACGGAAGCTCAAACGAGTCGAGAT -ACGGAAGCTCAAACGAGTTACCAC -ACGGAAGCTCAAACGAGTCAGAAC -ACGGAAGCTCAAACGAGTGTCTAC -ACGGAAGCTCAAACGAGTACGTAC -ACGGAAGCTCAAACGAGTAGTGAC -ACGGAAGCTCAAACGAGTCTGTAG -ACGGAAGCTCAAACGAGTCCTAAG -ACGGAAGCTCAAACGAGTGTTCAG -ACGGAAGCTCAAACGAGTGCATAG -ACGGAAGCTCAAACGAGTGACAAG -ACGGAAGCTCAAACGAGTAAGCAG -ACGGAAGCTCAAACGAGTCGTCAA -ACGGAAGCTCAAACGAGTGCTGAA -ACGGAAGCTCAAACGAGTAGTACG -ACGGAAGCTCAAACGAGTATCCGA -ACGGAAGCTCAAACGAGTATGGGA -ACGGAAGCTCAAACGAGTGTGCAA -ACGGAAGCTCAAACGAGTGAGGAA -ACGGAAGCTCAAACGAGTCAGGTA -ACGGAAGCTCAAACGAGTGACTCT -ACGGAAGCTCAAACGAGTAGTCCT -ACGGAAGCTCAAACGAGTTAAGCC -ACGGAAGCTCAAACGAGTATAGCC -ACGGAAGCTCAAACGAGTTAACCG -ACGGAAGCTCAAACGAGTATGCCA -ACGGAAGCTCAACGAATCGGAAAC -ACGGAAGCTCAACGAATCAACACC -ACGGAAGCTCAACGAATCATCGAG -ACGGAAGCTCAACGAATCCTCCTT -ACGGAAGCTCAACGAATCCCTGTT -ACGGAAGCTCAACGAATCCGGTTT -ACGGAAGCTCAACGAATCGTGGTT -ACGGAAGCTCAACGAATCGCCTTT -ACGGAAGCTCAACGAATCGGTCTT -ACGGAAGCTCAACGAATCACGCTT -ACGGAAGCTCAACGAATCAGCGTT -ACGGAAGCTCAACGAATCTTCGTC -ACGGAAGCTCAACGAATCTCTCTC -ACGGAAGCTCAACGAATCTGGATC -ACGGAAGCTCAACGAATCCACTTC -ACGGAAGCTCAACGAATCGTACTC -ACGGAAGCTCAACGAATCGATGTC -ACGGAAGCTCAACGAATCACAGTC -ACGGAAGCTCAACGAATCTTGCTG -ACGGAAGCTCAACGAATCTCCATG -ACGGAAGCTCAACGAATCTGTGTG -ACGGAAGCTCAACGAATCCTAGTG -ACGGAAGCTCAACGAATCCATCTG -ACGGAAGCTCAACGAATCGAGTTG -ACGGAAGCTCAACGAATCAGACTG -ACGGAAGCTCAACGAATCTCGGTA -ACGGAAGCTCAACGAATCTGCCTA -ACGGAAGCTCAACGAATCCCACTA -ACGGAAGCTCAACGAATCGGAGTA -ACGGAAGCTCAACGAATCTCGTCT -ACGGAAGCTCAACGAATCTGCACT -ACGGAAGCTCAACGAATCCTGACT -ACGGAAGCTCAACGAATCCAACCT -ACGGAAGCTCAACGAATCGCTACT -ACGGAAGCTCAACGAATCGGATCT -ACGGAAGCTCAACGAATCAAGGCT -ACGGAAGCTCAACGAATCTCAACC -ACGGAAGCTCAACGAATCTGTTCC -ACGGAAGCTCAACGAATCATTCCC -ACGGAAGCTCAACGAATCTTCTCG -ACGGAAGCTCAACGAATCTAGACG -ACGGAAGCTCAACGAATCGTAACG -ACGGAAGCTCAACGAATCACTTCG -ACGGAAGCTCAACGAATCTACGCA -ACGGAAGCTCAACGAATCCTTGCA -ACGGAAGCTCAACGAATCCGAACA -ACGGAAGCTCAACGAATCCAGTCA -ACGGAAGCTCAACGAATCGATCCA -ACGGAAGCTCAACGAATCACGACA -ACGGAAGCTCAACGAATCAGCTCA -ACGGAAGCTCAACGAATCTCACGT -ACGGAAGCTCAACGAATCCGTAGT -ACGGAAGCTCAACGAATCGTCAGT -ACGGAAGCTCAACGAATCGAAGGT -ACGGAAGCTCAACGAATCAACCGT -ACGGAAGCTCAACGAATCTTGTGC -ACGGAAGCTCAACGAATCCTAAGC -ACGGAAGCTCAACGAATCACTAGC -ACGGAAGCTCAACGAATCAGATGC -ACGGAAGCTCAACGAATCTGAAGG -ACGGAAGCTCAACGAATCCAATGG -ACGGAAGCTCAACGAATCATGAGG -ACGGAAGCTCAACGAATCAATGGG -ACGGAAGCTCAACGAATCTCCTGA -ACGGAAGCTCAACGAATCTAGCGA -ACGGAAGCTCAACGAATCCACAGA -ACGGAAGCTCAACGAATCGCAAGA -ACGGAAGCTCAACGAATCGGTTGA -ACGGAAGCTCAACGAATCTCCGAT -ACGGAAGCTCAACGAATCTGGCAT -ACGGAAGCTCAACGAATCCGAGAT -ACGGAAGCTCAACGAATCTACCAC -ACGGAAGCTCAACGAATCCAGAAC -ACGGAAGCTCAACGAATCGTCTAC -ACGGAAGCTCAACGAATCACGTAC -ACGGAAGCTCAACGAATCAGTGAC -ACGGAAGCTCAACGAATCCTGTAG -ACGGAAGCTCAACGAATCCCTAAG -ACGGAAGCTCAACGAATCGTTCAG -ACGGAAGCTCAACGAATCGCATAG -ACGGAAGCTCAACGAATCGACAAG -ACGGAAGCTCAACGAATCAAGCAG -ACGGAAGCTCAACGAATCCGTCAA -ACGGAAGCTCAACGAATCGCTGAA -ACGGAAGCTCAACGAATCAGTACG -ACGGAAGCTCAACGAATCATCCGA -ACGGAAGCTCAACGAATCATGGGA -ACGGAAGCTCAACGAATCGTGCAA -ACGGAAGCTCAACGAATCGAGGAA -ACGGAAGCTCAACGAATCCAGGTA -ACGGAAGCTCAACGAATCGACTCT -ACGGAAGCTCAACGAATCAGTCCT -ACGGAAGCTCAACGAATCTAAGCC -ACGGAAGCTCAACGAATCATAGCC -ACGGAAGCTCAACGAATCTAACCG -ACGGAAGCTCAACGAATCATGCCA -ACGGAAGCTCAAGGAATGGGAAAC -ACGGAAGCTCAAGGAATGAACACC -ACGGAAGCTCAAGGAATGATCGAG -ACGGAAGCTCAAGGAATGCTCCTT -ACGGAAGCTCAAGGAATGCCTGTT -ACGGAAGCTCAAGGAATGCGGTTT -ACGGAAGCTCAAGGAATGGTGGTT -ACGGAAGCTCAAGGAATGGCCTTT -ACGGAAGCTCAAGGAATGGGTCTT -ACGGAAGCTCAAGGAATGACGCTT -ACGGAAGCTCAAGGAATGAGCGTT -ACGGAAGCTCAAGGAATGTTCGTC -ACGGAAGCTCAAGGAATGTCTCTC -ACGGAAGCTCAAGGAATGTGGATC -ACGGAAGCTCAAGGAATGCACTTC -ACGGAAGCTCAAGGAATGGTACTC -ACGGAAGCTCAAGGAATGGATGTC -ACGGAAGCTCAAGGAATGACAGTC -ACGGAAGCTCAAGGAATGTTGCTG -ACGGAAGCTCAAGGAATGTCCATG -ACGGAAGCTCAAGGAATGTGTGTG -ACGGAAGCTCAAGGAATGCTAGTG -ACGGAAGCTCAAGGAATGCATCTG -ACGGAAGCTCAAGGAATGGAGTTG -ACGGAAGCTCAAGGAATGAGACTG -ACGGAAGCTCAAGGAATGTCGGTA -ACGGAAGCTCAAGGAATGTGCCTA -ACGGAAGCTCAAGGAATGCCACTA -ACGGAAGCTCAAGGAATGGGAGTA -ACGGAAGCTCAAGGAATGTCGTCT -ACGGAAGCTCAAGGAATGTGCACT -ACGGAAGCTCAAGGAATGCTGACT -ACGGAAGCTCAAGGAATGCAACCT -ACGGAAGCTCAAGGAATGGCTACT -ACGGAAGCTCAAGGAATGGGATCT -ACGGAAGCTCAAGGAATGAAGGCT -ACGGAAGCTCAAGGAATGTCAACC -ACGGAAGCTCAAGGAATGTGTTCC -ACGGAAGCTCAAGGAATGATTCCC -ACGGAAGCTCAAGGAATGTTCTCG -ACGGAAGCTCAAGGAATGTAGACG -ACGGAAGCTCAAGGAATGGTAACG -ACGGAAGCTCAAGGAATGACTTCG -ACGGAAGCTCAAGGAATGTACGCA -ACGGAAGCTCAAGGAATGCTTGCA -ACGGAAGCTCAAGGAATGCGAACA -ACGGAAGCTCAAGGAATGCAGTCA -ACGGAAGCTCAAGGAATGGATCCA -ACGGAAGCTCAAGGAATGACGACA -ACGGAAGCTCAAGGAATGAGCTCA -ACGGAAGCTCAAGGAATGTCACGT -ACGGAAGCTCAAGGAATGCGTAGT -ACGGAAGCTCAAGGAATGGTCAGT -ACGGAAGCTCAAGGAATGGAAGGT -ACGGAAGCTCAAGGAATGAACCGT -ACGGAAGCTCAAGGAATGTTGTGC -ACGGAAGCTCAAGGAATGCTAAGC -ACGGAAGCTCAAGGAATGACTAGC -ACGGAAGCTCAAGGAATGAGATGC -ACGGAAGCTCAAGGAATGTGAAGG -ACGGAAGCTCAAGGAATGCAATGG -ACGGAAGCTCAAGGAATGATGAGG -ACGGAAGCTCAAGGAATGAATGGG -ACGGAAGCTCAAGGAATGTCCTGA -ACGGAAGCTCAAGGAATGTAGCGA -ACGGAAGCTCAAGGAATGCACAGA -ACGGAAGCTCAAGGAATGGCAAGA -ACGGAAGCTCAAGGAATGGGTTGA -ACGGAAGCTCAAGGAATGTCCGAT -ACGGAAGCTCAAGGAATGTGGCAT -ACGGAAGCTCAAGGAATGCGAGAT -ACGGAAGCTCAAGGAATGTACCAC -ACGGAAGCTCAAGGAATGCAGAAC -ACGGAAGCTCAAGGAATGGTCTAC -ACGGAAGCTCAAGGAATGACGTAC -ACGGAAGCTCAAGGAATGAGTGAC -ACGGAAGCTCAAGGAATGCTGTAG -ACGGAAGCTCAAGGAATGCCTAAG -ACGGAAGCTCAAGGAATGGTTCAG -ACGGAAGCTCAAGGAATGGCATAG -ACGGAAGCTCAAGGAATGGACAAG -ACGGAAGCTCAAGGAATGAAGCAG -ACGGAAGCTCAAGGAATGCGTCAA -ACGGAAGCTCAAGGAATGGCTGAA -ACGGAAGCTCAAGGAATGAGTACG -ACGGAAGCTCAAGGAATGATCCGA -ACGGAAGCTCAAGGAATGATGGGA -ACGGAAGCTCAAGGAATGGTGCAA -ACGGAAGCTCAAGGAATGGAGGAA -ACGGAAGCTCAAGGAATGCAGGTA -ACGGAAGCTCAAGGAATGGACTCT -ACGGAAGCTCAAGGAATGAGTCCT -ACGGAAGCTCAAGGAATGTAAGCC -ACGGAAGCTCAAGGAATGATAGCC -ACGGAAGCTCAAGGAATGTAACCG -ACGGAAGCTCAAGGAATGATGCCA -ACGGAAGCTCAACAAGTGGGAAAC -ACGGAAGCTCAACAAGTGAACACC -ACGGAAGCTCAACAAGTGATCGAG -ACGGAAGCTCAACAAGTGCTCCTT -ACGGAAGCTCAACAAGTGCCTGTT -ACGGAAGCTCAACAAGTGCGGTTT -ACGGAAGCTCAACAAGTGGTGGTT -ACGGAAGCTCAACAAGTGGCCTTT -ACGGAAGCTCAACAAGTGGGTCTT -ACGGAAGCTCAACAAGTGACGCTT -ACGGAAGCTCAACAAGTGAGCGTT -ACGGAAGCTCAACAAGTGTTCGTC -ACGGAAGCTCAACAAGTGTCTCTC -ACGGAAGCTCAACAAGTGTGGATC -ACGGAAGCTCAACAAGTGCACTTC -ACGGAAGCTCAACAAGTGGTACTC -ACGGAAGCTCAACAAGTGGATGTC -ACGGAAGCTCAACAAGTGACAGTC -ACGGAAGCTCAACAAGTGTTGCTG -ACGGAAGCTCAACAAGTGTCCATG -ACGGAAGCTCAACAAGTGTGTGTG -ACGGAAGCTCAACAAGTGCTAGTG -ACGGAAGCTCAACAAGTGCATCTG -ACGGAAGCTCAACAAGTGGAGTTG -ACGGAAGCTCAACAAGTGAGACTG -ACGGAAGCTCAACAAGTGTCGGTA -ACGGAAGCTCAACAAGTGTGCCTA -ACGGAAGCTCAACAAGTGCCACTA -ACGGAAGCTCAACAAGTGGGAGTA -ACGGAAGCTCAACAAGTGTCGTCT -ACGGAAGCTCAACAAGTGTGCACT -ACGGAAGCTCAACAAGTGCTGACT -ACGGAAGCTCAACAAGTGCAACCT -ACGGAAGCTCAACAAGTGGCTACT -ACGGAAGCTCAACAAGTGGGATCT -ACGGAAGCTCAACAAGTGAAGGCT -ACGGAAGCTCAACAAGTGTCAACC -ACGGAAGCTCAACAAGTGTGTTCC -ACGGAAGCTCAACAAGTGATTCCC -ACGGAAGCTCAACAAGTGTTCTCG -ACGGAAGCTCAACAAGTGTAGACG -ACGGAAGCTCAACAAGTGGTAACG -ACGGAAGCTCAACAAGTGACTTCG -ACGGAAGCTCAACAAGTGTACGCA -ACGGAAGCTCAACAAGTGCTTGCA -ACGGAAGCTCAACAAGTGCGAACA -ACGGAAGCTCAACAAGTGCAGTCA -ACGGAAGCTCAACAAGTGGATCCA -ACGGAAGCTCAACAAGTGACGACA -ACGGAAGCTCAACAAGTGAGCTCA -ACGGAAGCTCAACAAGTGTCACGT -ACGGAAGCTCAACAAGTGCGTAGT -ACGGAAGCTCAACAAGTGGTCAGT -ACGGAAGCTCAACAAGTGGAAGGT -ACGGAAGCTCAACAAGTGAACCGT -ACGGAAGCTCAACAAGTGTTGTGC -ACGGAAGCTCAACAAGTGCTAAGC -ACGGAAGCTCAACAAGTGACTAGC -ACGGAAGCTCAACAAGTGAGATGC -ACGGAAGCTCAACAAGTGTGAAGG -ACGGAAGCTCAACAAGTGCAATGG -ACGGAAGCTCAACAAGTGATGAGG -ACGGAAGCTCAACAAGTGAATGGG -ACGGAAGCTCAACAAGTGTCCTGA -ACGGAAGCTCAACAAGTGTAGCGA -ACGGAAGCTCAACAAGTGCACAGA -ACGGAAGCTCAACAAGTGGCAAGA -ACGGAAGCTCAACAAGTGGGTTGA -ACGGAAGCTCAACAAGTGTCCGAT -ACGGAAGCTCAACAAGTGTGGCAT -ACGGAAGCTCAACAAGTGCGAGAT -ACGGAAGCTCAACAAGTGTACCAC -ACGGAAGCTCAACAAGTGCAGAAC -ACGGAAGCTCAACAAGTGGTCTAC -ACGGAAGCTCAACAAGTGACGTAC -ACGGAAGCTCAACAAGTGAGTGAC -ACGGAAGCTCAACAAGTGCTGTAG -ACGGAAGCTCAACAAGTGCCTAAG -ACGGAAGCTCAACAAGTGGTTCAG -ACGGAAGCTCAACAAGTGGCATAG -ACGGAAGCTCAACAAGTGGACAAG -ACGGAAGCTCAACAAGTGAAGCAG -ACGGAAGCTCAACAAGTGCGTCAA -ACGGAAGCTCAACAAGTGGCTGAA -ACGGAAGCTCAACAAGTGAGTACG -ACGGAAGCTCAACAAGTGATCCGA -ACGGAAGCTCAACAAGTGATGGGA -ACGGAAGCTCAACAAGTGGTGCAA -ACGGAAGCTCAACAAGTGGAGGAA -ACGGAAGCTCAACAAGTGCAGGTA -ACGGAAGCTCAACAAGTGGACTCT -ACGGAAGCTCAACAAGTGAGTCCT -ACGGAAGCTCAACAAGTGTAAGCC -ACGGAAGCTCAACAAGTGATAGCC -ACGGAAGCTCAACAAGTGTAACCG -ACGGAAGCTCAACAAGTGATGCCA -ACGGAAGCTCAAGAAGAGGGAAAC -ACGGAAGCTCAAGAAGAGAACACC -ACGGAAGCTCAAGAAGAGATCGAG -ACGGAAGCTCAAGAAGAGCTCCTT -ACGGAAGCTCAAGAAGAGCCTGTT -ACGGAAGCTCAAGAAGAGCGGTTT -ACGGAAGCTCAAGAAGAGGTGGTT -ACGGAAGCTCAAGAAGAGGCCTTT -ACGGAAGCTCAAGAAGAGGGTCTT -ACGGAAGCTCAAGAAGAGACGCTT -ACGGAAGCTCAAGAAGAGAGCGTT -ACGGAAGCTCAAGAAGAGTTCGTC -ACGGAAGCTCAAGAAGAGTCTCTC -ACGGAAGCTCAAGAAGAGTGGATC -ACGGAAGCTCAAGAAGAGCACTTC -ACGGAAGCTCAAGAAGAGGTACTC -ACGGAAGCTCAAGAAGAGGATGTC -ACGGAAGCTCAAGAAGAGACAGTC -ACGGAAGCTCAAGAAGAGTTGCTG -ACGGAAGCTCAAGAAGAGTCCATG -ACGGAAGCTCAAGAAGAGTGTGTG -ACGGAAGCTCAAGAAGAGCTAGTG -ACGGAAGCTCAAGAAGAGCATCTG -ACGGAAGCTCAAGAAGAGGAGTTG -ACGGAAGCTCAAGAAGAGAGACTG -ACGGAAGCTCAAGAAGAGTCGGTA -ACGGAAGCTCAAGAAGAGTGCCTA -ACGGAAGCTCAAGAAGAGCCACTA -ACGGAAGCTCAAGAAGAGGGAGTA -ACGGAAGCTCAAGAAGAGTCGTCT -ACGGAAGCTCAAGAAGAGTGCACT -ACGGAAGCTCAAGAAGAGCTGACT -ACGGAAGCTCAAGAAGAGCAACCT -ACGGAAGCTCAAGAAGAGGCTACT -ACGGAAGCTCAAGAAGAGGGATCT -ACGGAAGCTCAAGAAGAGAAGGCT -ACGGAAGCTCAAGAAGAGTCAACC -ACGGAAGCTCAAGAAGAGTGTTCC -ACGGAAGCTCAAGAAGAGATTCCC -ACGGAAGCTCAAGAAGAGTTCTCG -ACGGAAGCTCAAGAAGAGTAGACG -ACGGAAGCTCAAGAAGAGGTAACG -ACGGAAGCTCAAGAAGAGACTTCG -ACGGAAGCTCAAGAAGAGTACGCA -ACGGAAGCTCAAGAAGAGCTTGCA -ACGGAAGCTCAAGAAGAGCGAACA -ACGGAAGCTCAAGAAGAGCAGTCA -ACGGAAGCTCAAGAAGAGGATCCA -ACGGAAGCTCAAGAAGAGACGACA -ACGGAAGCTCAAGAAGAGAGCTCA -ACGGAAGCTCAAGAAGAGTCACGT -ACGGAAGCTCAAGAAGAGCGTAGT -ACGGAAGCTCAAGAAGAGGTCAGT -ACGGAAGCTCAAGAAGAGGAAGGT -ACGGAAGCTCAAGAAGAGAACCGT -ACGGAAGCTCAAGAAGAGTTGTGC -ACGGAAGCTCAAGAAGAGCTAAGC -ACGGAAGCTCAAGAAGAGACTAGC -ACGGAAGCTCAAGAAGAGAGATGC -ACGGAAGCTCAAGAAGAGTGAAGG -ACGGAAGCTCAAGAAGAGCAATGG -ACGGAAGCTCAAGAAGAGATGAGG -ACGGAAGCTCAAGAAGAGAATGGG -ACGGAAGCTCAAGAAGAGTCCTGA -ACGGAAGCTCAAGAAGAGTAGCGA -ACGGAAGCTCAAGAAGAGCACAGA -ACGGAAGCTCAAGAAGAGGCAAGA -ACGGAAGCTCAAGAAGAGGGTTGA -ACGGAAGCTCAAGAAGAGTCCGAT -ACGGAAGCTCAAGAAGAGTGGCAT -ACGGAAGCTCAAGAAGAGCGAGAT -ACGGAAGCTCAAGAAGAGTACCAC -ACGGAAGCTCAAGAAGAGCAGAAC -ACGGAAGCTCAAGAAGAGGTCTAC -ACGGAAGCTCAAGAAGAGACGTAC -ACGGAAGCTCAAGAAGAGAGTGAC -ACGGAAGCTCAAGAAGAGCTGTAG -ACGGAAGCTCAAGAAGAGCCTAAG -ACGGAAGCTCAAGAAGAGGTTCAG -ACGGAAGCTCAAGAAGAGGCATAG -ACGGAAGCTCAAGAAGAGGACAAG -ACGGAAGCTCAAGAAGAGAAGCAG -ACGGAAGCTCAAGAAGAGCGTCAA -ACGGAAGCTCAAGAAGAGGCTGAA -ACGGAAGCTCAAGAAGAGAGTACG -ACGGAAGCTCAAGAAGAGATCCGA -ACGGAAGCTCAAGAAGAGATGGGA -ACGGAAGCTCAAGAAGAGGTGCAA -ACGGAAGCTCAAGAAGAGGAGGAA -ACGGAAGCTCAAGAAGAGCAGGTA -ACGGAAGCTCAAGAAGAGGACTCT -ACGGAAGCTCAAGAAGAGAGTCCT -ACGGAAGCTCAAGAAGAGTAAGCC -ACGGAAGCTCAAGAAGAGATAGCC -ACGGAAGCTCAAGAAGAGTAACCG -ACGGAAGCTCAAGAAGAGATGCCA -ACGGAAGCTCAAGTACAGGGAAAC -ACGGAAGCTCAAGTACAGAACACC -ACGGAAGCTCAAGTACAGATCGAG -ACGGAAGCTCAAGTACAGCTCCTT -ACGGAAGCTCAAGTACAGCCTGTT -ACGGAAGCTCAAGTACAGCGGTTT -ACGGAAGCTCAAGTACAGGTGGTT -ACGGAAGCTCAAGTACAGGCCTTT -ACGGAAGCTCAAGTACAGGGTCTT -ACGGAAGCTCAAGTACAGACGCTT -ACGGAAGCTCAAGTACAGAGCGTT -ACGGAAGCTCAAGTACAGTTCGTC -ACGGAAGCTCAAGTACAGTCTCTC -ACGGAAGCTCAAGTACAGTGGATC -ACGGAAGCTCAAGTACAGCACTTC -ACGGAAGCTCAAGTACAGGTACTC -ACGGAAGCTCAAGTACAGGATGTC -ACGGAAGCTCAAGTACAGACAGTC -ACGGAAGCTCAAGTACAGTTGCTG -ACGGAAGCTCAAGTACAGTCCATG -ACGGAAGCTCAAGTACAGTGTGTG -ACGGAAGCTCAAGTACAGCTAGTG -ACGGAAGCTCAAGTACAGCATCTG -ACGGAAGCTCAAGTACAGGAGTTG -ACGGAAGCTCAAGTACAGAGACTG -ACGGAAGCTCAAGTACAGTCGGTA -ACGGAAGCTCAAGTACAGTGCCTA -ACGGAAGCTCAAGTACAGCCACTA -ACGGAAGCTCAAGTACAGGGAGTA -ACGGAAGCTCAAGTACAGTCGTCT -ACGGAAGCTCAAGTACAGTGCACT -ACGGAAGCTCAAGTACAGCTGACT -ACGGAAGCTCAAGTACAGCAACCT -ACGGAAGCTCAAGTACAGGCTACT -ACGGAAGCTCAAGTACAGGGATCT -ACGGAAGCTCAAGTACAGAAGGCT -ACGGAAGCTCAAGTACAGTCAACC -ACGGAAGCTCAAGTACAGTGTTCC -ACGGAAGCTCAAGTACAGATTCCC -ACGGAAGCTCAAGTACAGTTCTCG -ACGGAAGCTCAAGTACAGTAGACG -ACGGAAGCTCAAGTACAGGTAACG -ACGGAAGCTCAAGTACAGACTTCG -ACGGAAGCTCAAGTACAGTACGCA -ACGGAAGCTCAAGTACAGCTTGCA -ACGGAAGCTCAAGTACAGCGAACA -ACGGAAGCTCAAGTACAGCAGTCA -ACGGAAGCTCAAGTACAGGATCCA -ACGGAAGCTCAAGTACAGACGACA -ACGGAAGCTCAAGTACAGAGCTCA -ACGGAAGCTCAAGTACAGTCACGT -ACGGAAGCTCAAGTACAGCGTAGT -ACGGAAGCTCAAGTACAGGTCAGT -ACGGAAGCTCAAGTACAGGAAGGT -ACGGAAGCTCAAGTACAGAACCGT -ACGGAAGCTCAAGTACAGTTGTGC -ACGGAAGCTCAAGTACAGCTAAGC -ACGGAAGCTCAAGTACAGACTAGC -ACGGAAGCTCAAGTACAGAGATGC -ACGGAAGCTCAAGTACAGTGAAGG -ACGGAAGCTCAAGTACAGCAATGG -ACGGAAGCTCAAGTACAGATGAGG -ACGGAAGCTCAAGTACAGAATGGG -ACGGAAGCTCAAGTACAGTCCTGA -ACGGAAGCTCAAGTACAGTAGCGA -ACGGAAGCTCAAGTACAGCACAGA -ACGGAAGCTCAAGTACAGGCAAGA -ACGGAAGCTCAAGTACAGGGTTGA -ACGGAAGCTCAAGTACAGTCCGAT -ACGGAAGCTCAAGTACAGTGGCAT -ACGGAAGCTCAAGTACAGCGAGAT -ACGGAAGCTCAAGTACAGTACCAC -ACGGAAGCTCAAGTACAGCAGAAC -ACGGAAGCTCAAGTACAGGTCTAC -ACGGAAGCTCAAGTACAGACGTAC -ACGGAAGCTCAAGTACAGAGTGAC -ACGGAAGCTCAAGTACAGCTGTAG -ACGGAAGCTCAAGTACAGCCTAAG -ACGGAAGCTCAAGTACAGGTTCAG -ACGGAAGCTCAAGTACAGGCATAG -ACGGAAGCTCAAGTACAGGACAAG -ACGGAAGCTCAAGTACAGAAGCAG -ACGGAAGCTCAAGTACAGCGTCAA -ACGGAAGCTCAAGTACAGGCTGAA -ACGGAAGCTCAAGTACAGAGTACG -ACGGAAGCTCAAGTACAGATCCGA -ACGGAAGCTCAAGTACAGATGGGA -ACGGAAGCTCAAGTACAGGTGCAA -ACGGAAGCTCAAGTACAGGAGGAA -ACGGAAGCTCAAGTACAGCAGGTA -ACGGAAGCTCAAGTACAGGACTCT -ACGGAAGCTCAAGTACAGAGTCCT -ACGGAAGCTCAAGTACAGTAAGCC -ACGGAAGCTCAAGTACAGATAGCC -ACGGAAGCTCAAGTACAGTAACCG -ACGGAAGCTCAAGTACAGATGCCA -ACGGAAGCTCAATCTGACGGAAAC -ACGGAAGCTCAATCTGACAACACC -ACGGAAGCTCAATCTGACATCGAG -ACGGAAGCTCAATCTGACCTCCTT -ACGGAAGCTCAATCTGACCCTGTT -ACGGAAGCTCAATCTGACCGGTTT -ACGGAAGCTCAATCTGACGTGGTT -ACGGAAGCTCAATCTGACGCCTTT -ACGGAAGCTCAATCTGACGGTCTT -ACGGAAGCTCAATCTGACACGCTT -ACGGAAGCTCAATCTGACAGCGTT -ACGGAAGCTCAATCTGACTTCGTC -ACGGAAGCTCAATCTGACTCTCTC -ACGGAAGCTCAATCTGACTGGATC -ACGGAAGCTCAATCTGACCACTTC -ACGGAAGCTCAATCTGACGTACTC -ACGGAAGCTCAATCTGACGATGTC -ACGGAAGCTCAATCTGACACAGTC -ACGGAAGCTCAATCTGACTTGCTG -ACGGAAGCTCAATCTGACTCCATG -ACGGAAGCTCAATCTGACTGTGTG -ACGGAAGCTCAATCTGACCTAGTG -ACGGAAGCTCAATCTGACCATCTG -ACGGAAGCTCAATCTGACGAGTTG -ACGGAAGCTCAATCTGACAGACTG -ACGGAAGCTCAATCTGACTCGGTA -ACGGAAGCTCAATCTGACTGCCTA -ACGGAAGCTCAATCTGACCCACTA -ACGGAAGCTCAATCTGACGGAGTA -ACGGAAGCTCAATCTGACTCGTCT -ACGGAAGCTCAATCTGACTGCACT -ACGGAAGCTCAATCTGACCTGACT -ACGGAAGCTCAATCTGACCAACCT -ACGGAAGCTCAATCTGACGCTACT -ACGGAAGCTCAATCTGACGGATCT -ACGGAAGCTCAATCTGACAAGGCT -ACGGAAGCTCAATCTGACTCAACC -ACGGAAGCTCAATCTGACTGTTCC -ACGGAAGCTCAATCTGACATTCCC -ACGGAAGCTCAATCTGACTTCTCG -ACGGAAGCTCAATCTGACTAGACG -ACGGAAGCTCAATCTGACGTAACG -ACGGAAGCTCAATCTGACACTTCG -ACGGAAGCTCAATCTGACTACGCA -ACGGAAGCTCAATCTGACCTTGCA -ACGGAAGCTCAATCTGACCGAACA -ACGGAAGCTCAATCTGACCAGTCA -ACGGAAGCTCAATCTGACGATCCA -ACGGAAGCTCAATCTGACACGACA -ACGGAAGCTCAATCTGACAGCTCA -ACGGAAGCTCAATCTGACTCACGT -ACGGAAGCTCAATCTGACCGTAGT -ACGGAAGCTCAATCTGACGTCAGT -ACGGAAGCTCAATCTGACGAAGGT -ACGGAAGCTCAATCTGACAACCGT -ACGGAAGCTCAATCTGACTTGTGC -ACGGAAGCTCAATCTGACCTAAGC -ACGGAAGCTCAATCTGACACTAGC -ACGGAAGCTCAATCTGACAGATGC -ACGGAAGCTCAATCTGACTGAAGG -ACGGAAGCTCAATCTGACCAATGG -ACGGAAGCTCAATCTGACATGAGG -ACGGAAGCTCAATCTGACAATGGG -ACGGAAGCTCAATCTGACTCCTGA -ACGGAAGCTCAATCTGACTAGCGA -ACGGAAGCTCAATCTGACCACAGA -ACGGAAGCTCAATCTGACGCAAGA -ACGGAAGCTCAATCTGACGGTTGA -ACGGAAGCTCAATCTGACTCCGAT -ACGGAAGCTCAATCTGACTGGCAT -ACGGAAGCTCAATCTGACCGAGAT -ACGGAAGCTCAATCTGACTACCAC -ACGGAAGCTCAATCTGACCAGAAC -ACGGAAGCTCAATCTGACGTCTAC -ACGGAAGCTCAATCTGACACGTAC -ACGGAAGCTCAATCTGACAGTGAC -ACGGAAGCTCAATCTGACCTGTAG -ACGGAAGCTCAATCTGACCCTAAG -ACGGAAGCTCAATCTGACGTTCAG -ACGGAAGCTCAATCTGACGCATAG -ACGGAAGCTCAATCTGACGACAAG -ACGGAAGCTCAATCTGACAAGCAG -ACGGAAGCTCAATCTGACCGTCAA -ACGGAAGCTCAATCTGACGCTGAA -ACGGAAGCTCAATCTGACAGTACG -ACGGAAGCTCAATCTGACATCCGA -ACGGAAGCTCAATCTGACATGGGA -ACGGAAGCTCAATCTGACGTGCAA -ACGGAAGCTCAATCTGACGAGGAA -ACGGAAGCTCAATCTGACCAGGTA -ACGGAAGCTCAATCTGACGACTCT -ACGGAAGCTCAATCTGACAGTCCT -ACGGAAGCTCAATCTGACTAAGCC -ACGGAAGCTCAATCTGACATAGCC -ACGGAAGCTCAATCTGACTAACCG -ACGGAAGCTCAATCTGACATGCCA -ACGGAAGCTCAACCTAGTGGAAAC -ACGGAAGCTCAACCTAGTAACACC -ACGGAAGCTCAACCTAGTATCGAG -ACGGAAGCTCAACCTAGTCTCCTT -ACGGAAGCTCAACCTAGTCCTGTT -ACGGAAGCTCAACCTAGTCGGTTT -ACGGAAGCTCAACCTAGTGTGGTT -ACGGAAGCTCAACCTAGTGCCTTT -ACGGAAGCTCAACCTAGTGGTCTT -ACGGAAGCTCAACCTAGTACGCTT -ACGGAAGCTCAACCTAGTAGCGTT -ACGGAAGCTCAACCTAGTTTCGTC -ACGGAAGCTCAACCTAGTTCTCTC -ACGGAAGCTCAACCTAGTTGGATC -ACGGAAGCTCAACCTAGTCACTTC -ACGGAAGCTCAACCTAGTGTACTC -ACGGAAGCTCAACCTAGTGATGTC -ACGGAAGCTCAACCTAGTACAGTC -ACGGAAGCTCAACCTAGTTTGCTG -ACGGAAGCTCAACCTAGTTCCATG -ACGGAAGCTCAACCTAGTTGTGTG -ACGGAAGCTCAACCTAGTCTAGTG -ACGGAAGCTCAACCTAGTCATCTG -ACGGAAGCTCAACCTAGTGAGTTG -ACGGAAGCTCAACCTAGTAGACTG -ACGGAAGCTCAACCTAGTTCGGTA -ACGGAAGCTCAACCTAGTTGCCTA -ACGGAAGCTCAACCTAGTCCACTA -ACGGAAGCTCAACCTAGTGGAGTA -ACGGAAGCTCAACCTAGTTCGTCT -ACGGAAGCTCAACCTAGTTGCACT -ACGGAAGCTCAACCTAGTCTGACT -ACGGAAGCTCAACCTAGTCAACCT -ACGGAAGCTCAACCTAGTGCTACT -ACGGAAGCTCAACCTAGTGGATCT -ACGGAAGCTCAACCTAGTAAGGCT -ACGGAAGCTCAACCTAGTTCAACC -ACGGAAGCTCAACCTAGTTGTTCC -ACGGAAGCTCAACCTAGTATTCCC -ACGGAAGCTCAACCTAGTTTCTCG -ACGGAAGCTCAACCTAGTTAGACG -ACGGAAGCTCAACCTAGTGTAACG -ACGGAAGCTCAACCTAGTACTTCG -ACGGAAGCTCAACCTAGTTACGCA -ACGGAAGCTCAACCTAGTCTTGCA -ACGGAAGCTCAACCTAGTCGAACA -ACGGAAGCTCAACCTAGTCAGTCA -ACGGAAGCTCAACCTAGTGATCCA -ACGGAAGCTCAACCTAGTACGACA -ACGGAAGCTCAACCTAGTAGCTCA -ACGGAAGCTCAACCTAGTTCACGT -ACGGAAGCTCAACCTAGTCGTAGT -ACGGAAGCTCAACCTAGTGTCAGT -ACGGAAGCTCAACCTAGTGAAGGT -ACGGAAGCTCAACCTAGTAACCGT -ACGGAAGCTCAACCTAGTTTGTGC -ACGGAAGCTCAACCTAGTCTAAGC -ACGGAAGCTCAACCTAGTACTAGC -ACGGAAGCTCAACCTAGTAGATGC -ACGGAAGCTCAACCTAGTTGAAGG -ACGGAAGCTCAACCTAGTCAATGG -ACGGAAGCTCAACCTAGTATGAGG -ACGGAAGCTCAACCTAGTAATGGG -ACGGAAGCTCAACCTAGTTCCTGA -ACGGAAGCTCAACCTAGTTAGCGA -ACGGAAGCTCAACCTAGTCACAGA -ACGGAAGCTCAACCTAGTGCAAGA -ACGGAAGCTCAACCTAGTGGTTGA -ACGGAAGCTCAACCTAGTTCCGAT -ACGGAAGCTCAACCTAGTTGGCAT -ACGGAAGCTCAACCTAGTCGAGAT -ACGGAAGCTCAACCTAGTTACCAC -ACGGAAGCTCAACCTAGTCAGAAC -ACGGAAGCTCAACCTAGTGTCTAC -ACGGAAGCTCAACCTAGTACGTAC -ACGGAAGCTCAACCTAGTAGTGAC -ACGGAAGCTCAACCTAGTCTGTAG -ACGGAAGCTCAACCTAGTCCTAAG -ACGGAAGCTCAACCTAGTGTTCAG -ACGGAAGCTCAACCTAGTGCATAG -ACGGAAGCTCAACCTAGTGACAAG -ACGGAAGCTCAACCTAGTAAGCAG -ACGGAAGCTCAACCTAGTCGTCAA -ACGGAAGCTCAACCTAGTGCTGAA -ACGGAAGCTCAACCTAGTAGTACG -ACGGAAGCTCAACCTAGTATCCGA -ACGGAAGCTCAACCTAGTATGGGA -ACGGAAGCTCAACCTAGTGTGCAA -ACGGAAGCTCAACCTAGTGAGGAA -ACGGAAGCTCAACCTAGTCAGGTA -ACGGAAGCTCAACCTAGTGACTCT -ACGGAAGCTCAACCTAGTAGTCCT -ACGGAAGCTCAACCTAGTTAAGCC -ACGGAAGCTCAACCTAGTATAGCC -ACGGAAGCTCAACCTAGTTAACCG -ACGGAAGCTCAACCTAGTATGCCA -ACGGAAGCTCAAGCCTAAGGAAAC -ACGGAAGCTCAAGCCTAAAACACC -ACGGAAGCTCAAGCCTAAATCGAG -ACGGAAGCTCAAGCCTAACTCCTT -ACGGAAGCTCAAGCCTAACCTGTT -ACGGAAGCTCAAGCCTAACGGTTT -ACGGAAGCTCAAGCCTAAGTGGTT -ACGGAAGCTCAAGCCTAAGCCTTT -ACGGAAGCTCAAGCCTAAGGTCTT -ACGGAAGCTCAAGCCTAAACGCTT -ACGGAAGCTCAAGCCTAAAGCGTT -ACGGAAGCTCAAGCCTAATTCGTC -ACGGAAGCTCAAGCCTAATCTCTC -ACGGAAGCTCAAGCCTAATGGATC -ACGGAAGCTCAAGCCTAACACTTC -ACGGAAGCTCAAGCCTAAGTACTC -ACGGAAGCTCAAGCCTAAGATGTC -ACGGAAGCTCAAGCCTAAACAGTC -ACGGAAGCTCAAGCCTAATTGCTG -ACGGAAGCTCAAGCCTAATCCATG -ACGGAAGCTCAAGCCTAATGTGTG -ACGGAAGCTCAAGCCTAACTAGTG -ACGGAAGCTCAAGCCTAACATCTG -ACGGAAGCTCAAGCCTAAGAGTTG -ACGGAAGCTCAAGCCTAAAGACTG -ACGGAAGCTCAAGCCTAATCGGTA -ACGGAAGCTCAAGCCTAATGCCTA -ACGGAAGCTCAAGCCTAACCACTA -ACGGAAGCTCAAGCCTAAGGAGTA -ACGGAAGCTCAAGCCTAATCGTCT -ACGGAAGCTCAAGCCTAATGCACT -ACGGAAGCTCAAGCCTAACTGACT -ACGGAAGCTCAAGCCTAACAACCT -ACGGAAGCTCAAGCCTAAGCTACT -ACGGAAGCTCAAGCCTAAGGATCT -ACGGAAGCTCAAGCCTAAAAGGCT -ACGGAAGCTCAAGCCTAATCAACC -ACGGAAGCTCAAGCCTAATGTTCC -ACGGAAGCTCAAGCCTAAATTCCC -ACGGAAGCTCAAGCCTAATTCTCG -ACGGAAGCTCAAGCCTAATAGACG -ACGGAAGCTCAAGCCTAAGTAACG -ACGGAAGCTCAAGCCTAAACTTCG -ACGGAAGCTCAAGCCTAATACGCA -ACGGAAGCTCAAGCCTAACTTGCA -ACGGAAGCTCAAGCCTAACGAACA -ACGGAAGCTCAAGCCTAACAGTCA -ACGGAAGCTCAAGCCTAAGATCCA -ACGGAAGCTCAAGCCTAAACGACA -ACGGAAGCTCAAGCCTAAAGCTCA -ACGGAAGCTCAAGCCTAATCACGT -ACGGAAGCTCAAGCCTAACGTAGT -ACGGAAGCTCAAGCCTAAGTCAGT -ACGGAAGCTCAAGCCTAAGAAGGT -ACGGAAGCTCAAGCCTAAAACCGT -ACGGAAGCTCAAGCCTAATTGTGC -ACGGAAGCTCAAGCCTAACTAAGC -ACGGAAGCTCAAGCCTAAACTAGC -ACGGAAGCTCAAGCCTAAAGATGC -ACGGAAGCTCAAGCCTAATGAAGG -ACGGAAGCTCAAGCCTAACAATGG -ACGGAAGCTCAAGCCTAAATGAGG -ACGGAAGCTCAAGCCTAAAATGGG -ACGGAAGCTCAAGCCTAATCCTGA -ACGGAAGCTCAAGCCTAATAGCGA -ACGGAAGCTCAAGCCTAACACAGA -ACGGAAGCTCAAGCCTAAGCAAGA -ACGGAAGCTCAAGCCTAAGGTTGA -ACGGAAGCTCAAGCCTAATCCGAT -ACGGAAGCTCAAGCCTAATGGCAT -ACGGAAGCTCAAGCCTAACGAGAT -ACGGAAGCTCAAGCCTAATACCAC -ACGGAAGCTCAAGCCTAACAGAAC -ACGGAAGCTCAAGCCTAAGTCTAC -ACGGAAGCTCAAGCCTAAACGTAC -ACGGAAGCTCAAGCCTAAAGTGAC -ACGGAAGCTCAAGCCTAACTGTAG -ACGGAAGCTCAAGCCTAACCTAAG -ACGGAAGCTCAAGCCTAAGTTCAG -ACGGAAGCTCAAGCCTAAGCATAG -ACGGAAGCTCAAGCCTAAGACAAG -ACGGAAGCTCAAGCCTAAAAGCAG -ACGGAAGCTCAAGCCTAACGTCAA -ACGGAAGCTCAAGCCTAAGCTGAA -ACGGAAGCTCAAGCCTAAAGTACG -ACGGAAGCTCAAGCCTAAATCCGA -ACGGAAGCTCAAGCCTAAATGGGA -ACGGAAGCTCAAGCCTAAGTGCAA -ACGGAAGCTCAAGCCTAAGAGGAA -ACGGAAGCTCAAGCCTAACAGGTA -ACGGAAGCTCAAGCCTAAGACTCT -ACGGAAGCTCAAGCCTAAAGTCCT -ACGGAAGCTCAAGCCTAATAAGCC -ACGGAAGCTCAAGCCTAAATAGCC -ACGGAAGCTCAAGCCTAATAACCG -ACGGAAGCTCAAGCCTAAATGCCA -ACGGAAGCTCAAGCCATAGGAAAC -ACGGAAGCTCAAGCCATAAACACC -ACGGAAGCTCAAGCCATAATCGAG -ACGGAAGCTCAAGCCATACTCCTT -ACGGAAGCTCAAGCCATACCTGTT -ACGGAAGCTCAAGCCATACGGTTT -ACGGAAGCTCAAGCCATAGTGGTT -ACGGAAGCTCAAGCCATAGCCTTT -ACGGAAGCTCAAGCCATAGGTCTT -ACGGAAGCTCAAGCCATAACGCTT -ACGGAAGCTCAAGCCATAAGCGTT -ACGGAAGCTCAAGCCATATTCGTC -ACGGAAGCTCAAGCCATATCTCTC -ACGGAAGCTCAAGCCATATGGATC -ACGGAAGCTCAAGCCATACACTTC -ACGGAAGCTCAAGCCATAGTACTC -ACGGAAGCTCAAGCCATAGATGTC -ACGGAAGCTCAAGCCATAACAGTC -ACGGAAGCTCAAGCCATATTGCTG -ACGGAAGCTCAAGCCATATCCATG -ACGGAAGCTCAAGCCATATGTGTG -ACGGAAGCTCAAGCCATACTAGTG -ACGGAAGCTCAAGCCATACATCTG -ACGGAAGCTCAAGCCATAGAGTTG -ACGGAAGCTCAAGCCATAAGACTG -ACGGAAGCTCAAGCCATATCGGTA -ACGGAAGCTCAAGCCATATGCCTA -ACGGAAGCTCAAGCCATACCACTA -ACGGAAGCTCAAGCCATAGGAGTA -ACGGAAGCTCAAGCCATATCGTCT -ACGGAAGCTCAAGCCATATGCACT -ACGGAAGCTCAAGCCATACTGACT -ACGGAAGCTCAAGCCATACAACCT -ACGGAAGCTCAAGCCATAGCTACT -ACGGAAGCTCAAGCCATAGGATCT -ACGGAAGCTCAAGCCATAAAGGCT -ACGGAAGCTCAAGCCATATCAACC -ACGGAAGCTCAAGCCATATGTTCC -ACGGAAGCTCAAGCCATAATTCCC -ACGGAAGCTCAAGCCATATTCTCG -ACGGAAGCTCAAGCCATATAGACG -ACGGAAGCTCAAGCCATAGTAACG -ACGGAAGCTCAAGCCATAACTTCG -ACGGAAGCTCAAGCCATATACGCA -ACGGAAGCTCAAGCCATACTTGCA -ACGGAAGCTCAAGCCATACGAACA -ACGGAAGCTCAAGCCATACAGTCA -ACGGAAGCTCAAGCCATAGATCCA -ACGGAAGCTCAAGCCATAACGACA -ACGGAAGCTCAAGCCATAAGCTCA -ACGGAAGCTCAAGCCATATCACGT -ACGGAAGCTCAAGCCATACGTAGT -ACGGAAGCTCAAGCCATAGTCAGT -ACGGAAGCTCAAGCCATAGAAGGT -ACGGAAGCTCAAGCCATAAACCGT -ACGGAAGCTCAAGCCATATTGTGC -ACGGAAGCTCAAGCCATACTAAGC -ACGGAAGCTCAAGCCATAACTAGC -ACGGAAGCTCAAGCCATAAGATGC -ACGGAAGCTCAAGCCATATGAAGG -ACGGAAGCTCAAGCCATACAATGG -ACGGAAGCTCAAGCCATAATGAGG -ACGGAAGCTCAAGCCATAAATGGG -ACGGAAGCTCAAGCCATATCCTGA -ACGGAAGCTCAAGCCATATAGCGA -ACGGAAGCTCAAGCCATACACAGA -ACGGAAGCTCAAGCCATAGCAAGA -ACGGAAGCTCAAGCCATAGGTTGA -ACGGAAGCTCAAGCCATATCCGAT -ACGGAAGCTCAAGCCATATGGCAT -ACGGAAGCTCAAGCCATACGAGAT -ACGGAAGCTCAAGCCATATACCAC -ACGGAAGCTCAAGCCATACAGAAC -ACGGAAGCTCAAGCCATAGTCTAC -ACGGAAGCTCAAGCCATAACGTAC -ACGGAAGCTCAAGCCATAAGTGAC -ACGGAAGCTCAAGCCATACTGTAG -ACGGAAGCTCAAGCCATACCTAAG -ACGGAAGCTCAAGCCATAGTTCAG -ACGGAAGCTCAAGCCATAGCATAG -ACGGAAGCTCAAGCCATAGACAAG -ACGGAAGCTCAAGCCATAAAGCAG -ACGGAAGCTCAAGCCATACGTCAA -ACGGAAGCTCAAGCCATAGCTGAA -ACGGAAGCTCAAGCCATAAGTACG -ACGGAAGCTCAAGCCATAATCCGA -ACGGAAGCTCAAGCCATAATGGGA -ACGGAAGCTCAAGCCATAGTGCAA -ACGGAAGCTCAAGCCATAGAGGAA -ACGGAAGCTCAAGCCATACAGGTA -ACGGAAGCTCAAGCCATAGACTCT -ACGGAAGCTCAAGCCATAAGTCCT -ACGGAAGCTCAAGCCATATAAGCC -ACGGAAGCTCAAGCCATAATAGCC -ACGGAAGCTCAAGCCATATAACCG -ACGGAAGCTCAAGCCATAATGCCA -ACGGAAGCTCAACCGTAAGGAAAC -ACGGAAGCTCAACCGTAAAACACC -ACGGAAGCTCAACCGTAAATCGAG -ACGGAAGCTCAACCGTAACTCCTT -ACGGAAGCTCAACCGTAACCTGTT -ACGGAAGCTCAACCGTAACGGTTT -ACGGAAGCTCAACCGTAAGTGGTT -ACGGAAGCTCAACCGTAAGCCTTT -ACGGAAGCTCAACCGTAAGGTCTT -ACGGAAGCTCAACCGTAAACGCTT -ACGGAAGCTCAACCGTAAAGCGTT -ACGGAAGCTCAACCGTAATTCGTC -ACGGAAGCTCAACCGTAATCTCTC -ACGGAAGCTCAACCGTAATGGATC -ACGGAAGCTCAACCGTAACACTTC -ACGGAAGCTCAACCGTAAGTACTC -ACGGAAGCTCAACCGTAAGATGTC -ACGGAAGCTCAACCGTAAACAGTC -ACGGAAGCTCAACCGTAATTGCTG -ACGGAAGCTCAACCGTAATCCATG -ACGGAAGCTCAACCGTAATGTGTG -ACGGAAGCTCAACCGTAACTAGTG -ACGGAAGCTCAACCGTAACATCTG -ACGGAAGCTCAACCGTAAGAGTTG -ACGGAAGCTCAACCGTAAAGACTG -ACGGAAGCTCAACCGTAATCGGTA -ACGGAAGCTCAACCGTAATGCCTA -ACGGAAGCTCAACCGTAACCACTA -ACGGAAGCTCAACCGTAAGGAGTA -ACGGAAGCTCAACCGTAATCGTCT -ACGGAAGCTCAACCGTAATGCACT -ACGGAAGCTCAACCGTAACTGACT -ACGGAAGCTCAACCGTAACAACCT -ACGGAAGCTCAACCGTAAGCTACT -ACGGAAGCTCAACCGTAAGGATCT -ACGGAAGCTCAACCGTAAAAGGCT -ACGGAAGCTCAACCGTAATCAACC -ACGGAAGCTCAACCGTAATGTTCC -ACGGAAGCTCAACCGTAAATTCCC -ACGGAAGCTCAACCGTAATTCTCG -ACGGAAGCTCAACCGTAATAGACG -ACGGAAGCTCAACCGTAAGTAACG -ACGGAAGCTCAACCGTAAACTTCG -ACGGAAGCTCAACCGTAATACGCA -ACGGAAGCTCAACCGTAACTTGCA -ACGGAAGCTCAACCGTAACGAACA -ACGGAAGCTCAACCGTAACAGTCA -ACGGAAGCTCAACCGTAAGATCCA -ACGGAAGCTCAACCGTAAACGACA -ACGGAAGCTCAACCGTAAAGCTCA -ACGGAAGCTCAACCGTAATCACGT -ACGGAAGCTCAACCGTAACGTAGT -ACGGAAGCTCAACCGTAAGTCAGT -ACGGAAGCTCAACCGTAAGAAGGT -ACGGAAGCTCAACCGTAAAACCGT -ACGGAAGCTCAACCGTAATTGTGC -ACGGAAGCTCAACCGTAACTAAGC -ACGGAAGCTCAACCGTAAACTAGC -ACGGAAGCTCAACCGTAAAGATGC -ACGGAAGCTCAACCGTAATGAAGG -ACGGAAGCTCAACCGTAACAATGG -ACGGAAGCTCAACCGTAAATGAGG -ACGGAAGCTCAACCGTAAAATGGG -ACGGAAGCTCAACCGTAATCCTGA -ACGGAAGCTCAACCGTAATAGCGA -ACGGAAGCTCAACCGTAACACAGA -ACGGAAGCTCAACCGTAAGCAAGA -ACGGAAGCTCAACCGTAAGGTTGA -ACGGAAGCTCAACCGTAATCCGAT -ACGGAAGCTCAACCGTAATGGCAT -ACGGAAGCTCAACCGTAACGAGAT -ACGGAAGCTCAACCGTAATACCAC -ACGGAAGCTCAACCGTAACAGAAC -ACGGAAGCTCAACCGTAAGTCTAC -ACGGAAGCTCAACCGTAAACGTAC -ACGGAAGCTCAACCGTAAAGTGAC -ACGGAAGCTCAACCGTAACTGTAG -ACGGAAGCTCAACCGTAACCTAAG -ACGGAAGCTCAACCGTAAGTTCAG -ACGGAAGCTCAACCGTAAGCATAG -ACGGAAGCTCAACCGTAAGACAAG -ACGGAAGCTCAACCGTAAAAGCAG -ACGGAAGCTCAACCGTAACGTCAA -ACGGAAGCTCAACCGTAAGCTGAA -ACGGAAGCTCAACCGTAAAGTACG -ACGGAAGCTCAACCGTAAATCCGA -ACGGAAGCTCAACCGTAAATGGGA -ACGGAAGCTCAACCGTAAGTGCAA -ACGGAAGCTCAACCGTAAGAGGAA -ACGGAAGCTCAACCGTAACAGGTA -ACGGAAGCTCAACCGTAAGACTCT -ACGGAAGCTCAACCGTAAAGTCCT -ACGGAAGCTCAACCGTAATAAGCC -ACGGAAGCTCAACCGTAAATAGCC -ACGGAAGCTCAACCGTAATAACCG -ACGGAAGCTCAACCGTAAATGCCA -ACGGAAGCTCAACCAATGGGAAAC -ACGGAAGCTCAACCAATGAACACC -ACGGAAGCTCAACCAATGATCGAG -ACGGAAGCTCAACCAATGCTCCTT -ACGGAAGCTCAACCAATGCCTGTT -ACGGAAGCTCAACCAATGCGGTTT -ACGGAAGCTCAACCAATGGTGGTT -ACGGAAGCTCAACCAATGGCCTTT -ACGGAAGCTCAACCAATGGGTCTT -ACGGAAGCTCAACCAATGACGCTT -ACGGAAGCTCAACCAATGAGCGTT -ACGGAAGCTCAACCAATGTTCGTC -ACGGAAGCTCAACCAATGTCTCTC -ACGGAAGCTCAACCAATGTGGATC -ACGGAAGCTCAACCAATGCACTTC -ACGGAAGCTCAACCAATGGTACTC -ACGGAAGCTCAACCAATGGATGTC -ACGGAAGCTCAACCAATGACAGTC -ACGGAAGCTCAACCAATGTTGCTG -ACGGAAGCTCAACCAATGTCCATG -ACGGAAGCTCAACCAATGTGTGTG -ACGGAAGCTCAACCAATGCTAGTG -ACGGAAGCTCAACCAATGCATCTG -ACGGAAGCTCAACCAATGGAGTTG -ACGGAAGCTCAACCAATGAGACTG -ACGGAAGCTCAACCAATGTCGGTA -ACGGAAGCTCAACCAATGTGCCTA -ACGGAAGCTCAACCAATGCCACTA -ACGGAAGCTCAACCAATGGGAGTA -ACGGAAGCTCAACCAATGTCGTCT -ACGGAAGCTCAACCAATGTGCACT -ACGGAAGCTCAACCAATGCTGACT -ACGGAAGCTCAACCAATGCAACCT -ACGGAAGCTCAACCAATGGCTACT -ACGGAAGCTCAACCAATGGGATCT -ACGGAAGCTCAACCAATGAAGGCT -ACGGAAGCTCAACCAATGTCAACC -ACGGAAGCTCAACCAATGTGTTCC -ACGGAAGCTCAACCAATGATTCCC -ACGGAAGCTCAACCAATGTTCTCG -ACGGAAGCTCAACCAATGTAGACG -ACGGAAGCTCAACCAATGGTAACG -ACGGAAGCTCAACCAATGACTTCG -ACGGAAGCTCAACCAATGTACGCA -ACGGAAGCTCAACCAATGCTTGCA -ACGGAAGCTCAACCAATGCGAACA -ACGGAAGCTCAACCAATGCAGTCA -ACGGAAGCTCAACCAATGGATCCA -ACGGAAGCTCAACCAATGACGACA -ACGGAAGCTCAACCAATGAGCTCA -ACGGAAGCTCAACCAATGTCACGT -ACGGAAGCTCAACCAATGCGTAGT -ACGGAAGCTCAACCAATGGTCAGT -ACGGAAGCTCAACCAATGGAAGGT -ACGGAAGCTCAACCAATGAACCGT -ACGGAAGCTCAACCAATGTTGTGC -ACGGAAGCTCAACCAATGCTAAGC -ACGGAAGCTCAACCAATGACTAGC -ACGGAAGCTCAACCAATGAGATGC -ACGGAAGCTCAACCAATGTGAAGG -ACGGAAGCTCAACCAATGCAATGG -ACGGAAGCTCAACCAATGATGAGG -ACGGAAGCTCAACCAATGAATGGG -ACGGAAGCTCAACCAATGTCCTGA -ACGGAAGCTCAACCAATGTAGCGA -ACGGAAGCTCAACCAATGCACAGA -ACGGAAGCTCAACCAATGGCAAGA -ACGGAAGCTCAACCAATGGGTTGA -ACGGAAGCTCAACCAATGTCCGAT -ACGGAAGCTCAACCAATGTGGCAT -ACGGAAGCTCAACCAATGCGAGAT -ACGGAAGCTCAACCAATGTACCAC -ACGGAAGCTCAACCAATGCAGAAC -ACGGAAGCTCAACCAATGGTCTAC -ACGGAAGCTCAACCAATGACGTAC -ACGGAAGCTCAACCAATGAGTGAC -ACGGAAGCTCAACCAATGCTGTAG -ACGGAAGCTCAACCAATGCCTAAG -ACGGAAGCTCAACCAATGGTTCAG -ACGGAAGCTCAACCAATGGCATAG -ACGGAAGCTCAACCAATGGACAAG -ACGGAAGCTCAACCAATGAAGCAG -ACGGAAGCTCAACCAATGCGTCAA -ACGGAAGCTCAACCAATGGCTGAA -ACGGAAGCTCAACCAATGAGTACG -ACGGAAGCTCAACCAATGATCCGA -ACGGAAGCTCAACCAATGATGGGA -ACGGAAGCTCAACCAATGGTGCAA -ACGGAAGCTCAACCAATGGAGGAA -ACGGAAGCTCAACCAATGCAGGTA -ACGGAAGCTCAACCAATGGACTCT -ACGGAAGCTCAACCAATGAGTCCT -ACGGAAGCTCAACCAATGTAAGCC -ACGGAAGCTCAACCAATGATAGCC -ACGGAAGCTCAACCAATGTAACCG -ACGGAAGCTCAACCAATGATGCCA -ACGGAACACGTTAACGGAGGAAAC -ACGGAACACGTTAACGGAAACACC -ACGGAACACGTTAACGGAATCGAG -ACGGAACACGTTAACGGACTCCTT -ACGGAACACGTTAACGGACCTGTT -ACGGAACACGTTAACGGACGGTTT -ACGGAACACGTTAACGGAGTGGTT -ACGGAACACGTTAACGGAGCCTTT -ACGGAACACGTTAACGGAGGTCTT -ACGGAACACGTTAACGGAACGCTT -ACGGAACACGTTAACGGAAGCGTT -ACGGAACACGTTAACGGATTCGTC -ACGGAACACGTTAACGGATCTCTC -ACGGAACACGTTAACGGATGGATC -ACGGAACACGTTAACGGACACTTC -ACGGAACACGTTAACGGAGTACTC -ACGGAACACGTTAACGGAGATGTC -ACGGAACACGTTAACGGAACAGTC -ACGGAACACGTTAACGGATTGCTG -ACGGAACACGTTAACGGATCCATG -ACGGAACACGTTAACGGATGTGTG -ACGGAACACGTTAACGGACTAGTG -ACGGAACACGTTAACGGACATCTG -ACGGAACACGTTAACGGAGAGTTG -ACGGAACACGTTAACGGAAGACTG -ACGGAACACGTTAACGGATCGGTA -ACGGAACACGTTAACGGATGCCTA -ACGGAACACGTTAACGGACCACTA -ACGGAACACGTTAACGGAGGAGTA -ACGGAACACGTTAACGGATCGTCT -ACGGAACACGTTAACGGATGCACT -ACGGAACACGTTAACGGACTGACT -ACGGAACACGTTAACGGACAACCT -ACGGAACACGTTAACGGAGCTACT -ACGGAACACGTTAACGGAGGATCT -ACGGAACACGTTAACGGAAAGGCT -ACGGAACACGTTAACGGATCAACC -ACGGAACACGTTAACGGATGTTCC -ACGGAACACGTTAACGGAATTCCC -ACGGAACACGTTAACGGATTCTCG -ACGGAACACGTTAACGGATAGACG -ACGGAACACGTTAACGGAGTAACG -ACGGAACACGTTAACGGAACTTCG -ACGGAACACGTTAACGGATACGCA -ACGGAACACGTTAACGGACTTGCA -ACGGAACACGTTAACGGACGAACA -ACGGAACACGTTAACGGACAGTCA -ACGGAACACGTTAACGGAGATCCA -ACGGAACACGTTAACGGAACGACA -ACGGAACACGTTAACGGAAGCTCA -ACGGAACACGTTAACGGATCACGT -ACGGAACACGTTAACGGACGTAGT -ACGGAACACGTTAACGGAGTCAGT -ACGGAACACGTTAACGGAGAAGGT -ACGGAACACGTTAACGGAAACCGT -ACGGAACACGTTAACGGATTGTGC -ACGGAACACGTTAACGGACTAAGC -ACGGAACACGTTAACGGAACTAGC -ACGGAACACGTTAACGGAAGATGC -ACGGAACACGTTAACGGATGAAGG -ACGGAACACGTTAACGGACAATGG -ACGGAACACGTTAACGGAATGAGG -ACGGAACACGTTAACGGAAATGGG -ACGGAACACGTTAACGGATCCTGA -ACGGAACACGTTAACGGATAGCGA -ACGGAACACGTTAACGGACACAGA -ACGGAACACGTTAACGGAGCAAGA -ACGGAACACGTTAACGGAGGTTGA -ACGGAACACGTTAACGGATCCGAT -ACGGAACACGTTAACGGATGGCAT -ACGGAACACGTTAACGGACGAGAT -ACGGAACACGTTAACGGATACCAC -ACGGAACACGTTAACGGACAGAAC -ACGGAACACGTTAACGGAGTCTAC -ACGGAACACGTTAACGGAACGTAC -ACGGAACACGTTAACGGAAGTGAC -ACGGAACACGTTAACGGACTGTAG -ACGGAACACGTTAACGGACCTAAG -ACGGAACACGTTAACGGAGTTCAG -ACGGAACACGTTAACGGAGCATAG -ACGGAACACGTTAACGGAGACAAG -ACGGAACACGTTAACGGAAAGCAG -ACGGAACACGTTAACGGACGTCAA -ACGGAACACGTTAACGGAGCTGAA -ACGGAACACGTTAACGGAAGTACG -ACGGAACACGTTAACGGAATCCGA -ACGGAACACGTTAACGGAATGGGA -ACGGAACACGTTAACGGAGTGCAA -ACGGAACACGTTAACGGAGAGGAA -ACGGAACACGTTAACGGACAGGTA -ACGGAACACGTTAACGGAGACTCT -ACGGAACACGTTAACGGAAGTCCT -ACGGAACACGTTAACGGATAAGCC -ACGGAACACGTTAACGGAATAGCC -ACGGAACACGTTAACGGATAACCG -ACGGAACACGTTAACGGAATGCCA -ACGGAACACGTTACCAACGGAAAC -ACGGAACACGTTACCAACAACACC -ACGGAACACGTTACCAACATCGAG -ACGGAACACGTTACCAACCTCCTT -ACGGAACACGTTACCAACCCTGTT -ACGGAACACGTTACCAACCGGTTT -ACGGAACACGTTACCAACGTGGTT -ACGGAACACGTTACCAACGCCTTT -ACGGAACACGTTACCAACGGTCTT -ACGGAACACGTTACCAACACGCTT -ACGGAACACGTTACCAACAGCGTT -ACGGAACACGTTACCAACTTCGTC -ACGGAACACGTTACCAACTCTCTC -ACGGAACACGTTACCAACTGGATC -ACGGAACACGTTACCAACCACTTC -ACGGAACACGTTACCAACGTACTC -ACGGAACACGTTACCAACGATGTC -ACGGAACACGTTACCAACACAGTC -ACGGAACACGTTACCAACTTGCTG -ACGGAACACGTTACCAACTCCATG -ACGGAACACGTTACCAACTGTGTG -ACGGAACACGTTACCAACCTAGTG -ACGGAACACGTTACCAACCATCTG -ACGGAACACGTTACCAACGAGTTG -ACGGAACACGTTACCAACAGACTG -ACGGAACACGTTACCAACTCGGTA -ACGGAACACGTTACCAACTGCCTA -ACGGAACACGTTACCAACCCACTA -ACGGAACACGTTACCAACGGAGTA -ACGGAACACGTTACCAACTCGTCT -ACGGAACACGTTACCAACTGCACT -ACGGAACACGTTACCAACCTGACT -ACGGAACACGTTACCAACCAACCT -ACGGAACACGTTACCAACGCTACT -ACGGAACACGTTACCAACGGATCT -ACGGAACACGTTACCAACAAGGCT -ACGGAACACGTTACCAACTCAACC -ACGGAACACGTTACCAACTGTTCC -ACGGAACACGTTACCAACATTCCC -ACGGAACACGTTACCAACTTCTCG -ACGGAACACGTTACCAACTAGACG -ACGGAACACGTTACCAACGTAACG -ACGGAACACGTTACCAACACTTCG -ACGGAACACGTTACCAACTACGCA -ACGGAACACGTTACCAACCTTGCA -ACGGAACACGTTACCAACCGAACA -ACGGAACACGTTACCAACCAGTCA -ACGGAACACGTTACCAACGATCCA -ACGGAACACGTTACCAACACGACA -ACGGAACACGTTACCAACAGCTCA -ACGGAACACGTTACCAACTCACGT -ACGGAACACGTTACCAACCGTAGT -ACGGAACACGTTACCAACGTCAGT -ACGGAACACGTTACCAACGAAGGT -ACGGAACACGTTACCAACAACCGT -ACGGAACACGTTACCAACTTGTGC -ACGGAACACGTTACCAACCTAAGC -ACGGAACACGTTACCAACACTAGC -ACGGAACACGTTACCAACAGATGC -ACGGAACACGTTACCAACTGAAGG -ACGGAACACGTTACCAACCAATGG -ACGGAACACGTTACCAACATGAGG -ACGGAACACGTTACCAACAATGGG -ACGGAACACGTTACCAACTCCTGA -ACGGAACACGTTACCAACTAGCGA -ACGGAACACGTTACCAACCACAGA -ACGGAACACGTTACCAACGCAAGA -ACGGAACACGTTACCAACGGTTGA -ACGGAACACGTTACCAACTCCGAT -ACGGAACACGTTACCAACTGGCAT -ACGGAACACGTTACCAACCGAGAT -ACGGAACACGTTACCAACTACCAC -ACGGAACACGTTACCAACCAGAAC -ACGGAACACGTTACCAACGTCTAC -ACGGAACACGTTACCAACACGTAC -ACGGAACACGTTACCAACAGTGAC -ACGGAACACGTTACCAACCTGTAG -ACGGAACACGTTACCAACCCTAAG -ACGGAACACGTTACCAACGTTCAG -ACGGAACACGTTACCAACGCATAG -ACGGAACACGTTACCAACGACAAG -ACGGAACACGTTACCAACAAGCAG -ACGGAACACGTTACCAACCGTCAA -ACGGAACACGTTACCAACGCTGAA -ACGGAACACGTTACCAACAGTACG -ACGGAACACGTTACCAACATCCGA -ACGGAACACGTTACCAACATGGGA -ACGGAACACGTTACCAACGTGCAA -ACGGAACACGTTACCAACGAGGAA -ACGGAACACGTTACCAACCAGGTA -ACGGAACACGTTACCAACGACTCT -ACGGAACACGTTACCAACAGTCCT -ACGGAACACGTTACCAACTAAGCC -ACGGAACACGTTACCAACATAGCC -ACGGAACACGTTACCAACTAACCG -ACGGAACACGTTACCAACATGCCA -ACGGAACACGTTGAGATCGGAAAC -ACGGAACACGTTGAGATCAACACC -ACGGAACACGTTGAGATCATCGAG -ACGGAACACGTTGAGATCCTCCTT -ACGGAACACGTTGAGATCCCTGTT -ACGGAACACGTTGAGATCCGGTTT -ACGGAACACGTTGAGATCGTGGTT -ACGGAACACGTTGAGATCGCCTTT -ACGGAACACGTTGAGATCGGTCTT -ACGGAACACGTTGAGATCACGCTT -ACGGAACACGTTGAGATCAGCGTT -ACGGAACACGTTGAGATCTTCGTC -ACGGAACACGTTGAGATCTCTCTC -ACGGAACACGTTGAGATCTGGATC -ACGGAACACGTTGAGATCCACTTC -ACGGAACACGTTGAGATCGTACTC -ACGGAACACGTTGAGATCGATGTC -ACGGAACACGTTGAGATCACAGTC -ACGGAACACGTTGAGATCTTGCTG -ACGGAACACGTTGAGATCTCCATG -ACGGAACACGTTGAGATCTGTGTG -ACGGAACACGTTGAGATCCTAGTG -ACGGAACACGTTGAGATCCATCTG -ACGGAACACGTTGAGATCGAGTTG -ACGGAACACGTTGAGATCAGACTG -ACGGAACACGTTGAGATCTCGGTA -ACGGAACACGTTGAGATCTGCCTA -ACGGAACACGTTGAGATCCCACTA -ACGGAACACGTTGAGATCGGAGTA -ACGGAACACGTTGAGATCTCGTCT -ACGGAACACGTTGAGATCTGCACT -ACGGAACACGTTGAGATCCTGACT -ACGGAACACGTTGAGATCCAACCT -ACGGAACACGTTGAGATCGCTACT -ACGGAACACGTTGAGATCGGATCT -ACGGAACACGTTGAGATCAAGGCT -ACGGAACACGTTGAGATCTCAACC -ACGGAACACGTTGAGATCTGTTCC -ACGGAACACGTTGAGATCATTCCC -ACGGAACACGTTGAGATCTTCTCG -ACGGAACACGTTGAGATCTAGACG -ACGGAACACGTTGAGATCGTAACG -ACGGAACACGTTGAGATCACTTCG -ACGGAACACGTTGAGATCTACGCA -ACGGAACACGTTGAGATCCTTGCA -ACGGAACACGTTGAGATCCGAACA -ACGGAACACGTTGAGATCCAGTCA -ACGGAACACGTTGAGATCGATCCA -ACGGAACACGTTGAGATCACGACA -ACGGAACACGTTGAGATCAGCTCA -ACGGAACACGTTGAGATCTCACGT -ACGGAACACGTTGAGATCCGTAGT -ACGGAACACGTTGAGATCGTCAGT -ACGGAACACGTTGAGATCGAAGGT -ACGGAACACGTTGAGATCAACCGT -ACGGAACACGTTGAGATCTTGTGC -ACGGAACACGTTGAGATCCTAAGC -ACGGAACACGTTGAGATCACTAGC -ACGGAACACGTTGAGATCAGATGC -ACGGAACACGTTGAGATCTGAAGG -ACGGAACACGTTGAGATCCAATGG -ACGGAACACGTTGAGATCATGAGG -ACGGAACACGTTGAGATCAATGGG -ACGGAACACGTTGAGATCTCCTGA -ACGGAACACGTTGAGATCTAGCGA -ACGGAACACGTTGAGATCCACAGA -ACGGAACACGTTGAGATCGCAAGA -ACGGAACACGTTGAGATCGGTTGA -ACGGAACACGTTGAGATCTCCGAT -ACGGAACACGTTGAGATCTGGCAT -ACGGAACACGTTGAGATCCGAGAT -ACGGAACACGTTGAGATCTACCAC -ACGGAACACGTTGAGATCCAGAAC -ACGGAACACGTTGAGATCGTCTAC -ACGGAACACGTTGAGATCACGTAC -ACGGAACACGTTGAGATCAGTGAC -ACGGAACACGTTGAGATCCTGTAG -ACGGAACACGTTGAGATCCCTAAG -ACGGAACACGTTGAGATCGTTCAG -ACGGAACACGTTGAGATCGCATAG -ACGGAACACGTTGAGATCGACAAG -ACGGAACACGTTGAGATCAAGCAG -ACGGAACACGTTGAGATCCGTCAA -ACGGAACACGTTGAGATCGCTGAA -ACGGAACACGTTGAGATCAGTACG -ACGGAACACGTTGAGATCATCCGA -ACGGAACACGTTGAGATCATGGGA -ACGGAACACGTTGAGATCGTGCAA -ACGGAACACGTTGAGATCGAGGAA -ACGGAACACGTTGAGATCCAGGTA -ACGGAACACGTTGAGATCGACTCT -ACGGAACACGTTGAGATCAGTCCT -ACGGAACACGTTGAGATCTAAGCC -ACGGAACACGTTGAGATCATAGCC -ACGGAACACGTTGAGATCTAACCG -ACGGAACACGTTGAGATCATGCCA -ACGGAACACGTTCTTCTCGGAAAC -ACGGAACACGTTCTTCTCAACACC -ACGGAACACGTTCTTCTCATCGAG -ACGGAACACGTTCTTCTCCTCCTT -ACGGAACACGTTCTTCTCCCTGTT -ACGGAACACGTTCTTCTCCGGTTT -ACGGAACACGTTCTTCTCGTGGTT -ACGGAACACGTTCTTCTCGCCTTT -ACGGAACACGTTCTTCTCGGTCTT -ACGGAACACGTTCTTCTCACGCTT -ACGGAACACGTTCTTCTCAGCGTT -ACGGAACACGTTCTTCTCTTCGTC -ACGGAACACGTTCTTCTCTCTCTC -ACGGAACACGTTCTTCTCTGGATC -ACGGAACACGTTCTTCTCCACTTC -ACGGAACACGTTCTTCTCGTACTC -ACGGAACACGTTCTTCTCGATGTC -ACGGAACACGTTCTTCTCACAGTC -ACGGAACACGTTCTTCTCTTGCTG -ACGGAACACGTTCTTCTCTCCATG -ACGGAACACGTTCTTCTCTGTGTG -ACGGAACACGTTCTTCTCCTAGTG -ACGGAACACGTTCTTCTCCATCTG -ACGGAACACGTTCTTCTCGAGTTG -ACGGAACACGTTCTTCTCAGACTG -ACGGAACACGTTCTTCTCTCGGTA -ACGGAACACGTTCTTCTCTGCCTA -ACGGAACACGTTCTTCTCCCACTA -ACGGAACACGTTCTTCTCGGAGTA -ACGGAACACGTTCTTCTCTCGTCT -ACGGAACACGTTCTTCTCTGCACT -ACGGAACACGTTCTTCTCCTGACT -ACGGAACACGTTCTTCTCCAACCT -ACGGAACACGTTCTTCTCGCTACT -ACGGAACACGTTCTTCTCGGATCT -ACGGAACACGTTCTTCTCAAGGCT -ACGGAACACGTTCTTCTCTCAACC -ACGGAACACGTTCTTCTCTGTTCC -ACGGAACACGTTCTTCTCATTCCC -ACGGAACACGTTCTTCTCTTCTCG -ACGGAACACGTTCTTCTCTAGACG -ACGGAACACGTTCTTCTCGTAACG -ACGGAACACGTTCTTCTCACTTCG -ACGGAACACGTTCTTCTCTACGCA -ACGGAACACGTTCTTCTCCTTGCA -ACGGAACACGTTCTTCTCCGAACA -ACGGAACACGTTCTTCTCCAGTCA -ACGGAACACGTTCTTCTCGATCCA -ACGGAACACGTTCTTCTCACGACA -ACGGAACACGTTCTTCTCAGCTCA -ACGGAACACGTTCTTCTCTCACGT -ACGGAACACGTTCTTCTCCGTAGT -ACGGAACACGTTCTTCTCGTCAGT -ACGGAACACGTTCTTCTCGAAGGT -ACGGAACACGTTCTTCTCAACCGT -ACGGAACACGTTCTTCTCTTGTGC -ACGGAACACGTTCTTCTCCTAAGC -ACGGAACACGTTCTTCTCACTAGC -ACGGAACACGTTCTTCTCAGATGC -ACGGAACACGTTCTTCTCTGAAGG -ACGGAACACGTTCTTCTCCAATGG -ACGGAACACGTTCTTCTCATGAGG -ACGGAACACGTTCTTCTCAATGGG -ACGGAACACGTTCTTCTCTCCTGA -ACGGAACACGTTCTTCTCTAGCGA -ACGGAACACGTTCTTCTCCACAGA -ACGGAACACGTTCTTCTCGCAAGA -ACGGAACACGTTCTTCTCGGTTGA -ACGGAACACGTTCTTCTCTCCGAT -ACGGAACACGTTCTTCTCTGGCAT -ACGGAACACGTTCTTCTCCGAGAT -ACGGAACACGTTCTTCTCTACCAC -ACGGAACACGTTCTTCTCCAGAAC -ACGGAACACGTTCTTCTCGTCTAC -ACGGAACACGTTCTTCTCACGTAC -ACGGAACACGTTCTTCTCAGTGAC -ACGGAACACGTTCTTCTCCTGTAG -ACGGAACACGTTCTTCTCCCTAAG -ACGGAACACGTTCTTCTCGTTCAG -ACGGAACACGTTCTTCTCGCATAG -ACGGAACACGTTCTTCTCGACAAG -ACGGAACACGTTCTTCTCAAGCAG -ACGGAACACGTTCTTCTCCGTCAA -ACGGAACACGTTCTTCTCGCTGAA -ACGGAACACGTTCTTCTCAGTACG -ACGGAACACGTTCTTCTCATCCGA -ACGGAACACGTTCTTCTCATGGGA -ACGGAACACGTTCTTCTCGTGCAA -ACGGAACACGTTCTTCTCGAGGAA -ACGGAACACGTTCTTCTCCAGGTA -ACGGAACACGTTCTTCTCGACTCT -ACGGAACACGTTCTTCTCAGTCCT -ACGGAACACGTTCTTCTCTAAGCC -ACGGAACACGTTCTTCTCATAGCC -ACGGAACACGTTCTTCTCTAACCG -ACGGAACACGTTCTTCTCATGCCA -ACGGAACACGTTGTTCCTGGAAAC -ACGGAACACGTTGTTCCTAACACC -ACGGAACACGTTGTTCCTATCGAG -ACGGAACACGTTGTTCCTCTCCTT -ACGGAACACGTTGTTCCTCCTGTT -ACGGAACACGTTGTTCCTCGGTTT -ACGGAACACGTTGTTCCTGTGGTT -ACGGAACACGTTGTTCCTGCCTTT -ACGGAACACGTTGTTCCTGGTCTT -ACGGAACACGTTGTTCCTACGCTT -ACGGAACACGTTGTTCCTAGCGTT -ACGGAACACGTTGTTCCTTTCGTC -ACGGAACACGTTGTTCCTTCTCTC -ACGGAACACGTTGTTCCTTGGATC -ACGGAACACGTTGTTCCTCACTTC -ACGGAACACGTTGTTCCTGTACTC -ACGGAACACGTTGTTCCTGATGTC -ACGGAACACGTTGTTCCTACAGTC -ACGGAACACGTTGTTCCTTTGCTG -ACGGAACACGTTGTTCCTTCCATG -ACGGAACACGTTGTTCCTTGTGTG -ACGGAACACGTTGTTCCTCTAGTG -ACGGAACACGTTGTTCCTCATCTG -ACGGAACACGTTGTTCCTGAGTTG -ACGGAACACGTTGTTCCTAGACTG -ACGGAACACGTTGTTCCTTCGGTA -ACGGAACACGTTGTTCCTTGCCTA -ACGGAACACGTTGTTCCTCCACTA -ACGGAACACGTTGTTCCTGGAGTA -ACGGAACACGTTGTTCCTTCGTCT -ACGGAACACGTTGTTCCTTGCACT -ACGGAACACGTTGTTCCTCTGACT -ACGGAACACGTTGTTCCTCAACCT -ACGGAACACGTTGTTCCTGCTACT -ACGGAACACGTTGTTCCTGGATCT -ACGGAACACGTTGTTCCTAAGGCT -ACGGAACACGTTGTTCCTTCAACC -ACGGAACACGTTGTTCCTTGTTCC -ACGGAACACGTTGTTCCTATTCCC -ACGGAACACGTTGTTCCTTTCTCG -ACGGAACACGTTGTTCCTTAGACG -ACGGAACACGTTGTTCCTGTAACG -ACGGAACACGTTGTTCCTACTTCG -ACGGAACACGTTGTTCCTTACGCA -ACGGAACACGTTGTTCCTCTTGCA -ACGGAACACGTTGTTCCTCGAACA -ACGGAACACGTTGTTCCTCAGTCA -ACGGAACACGTTGTTCCTGATCCA -ACGGAACACGTTGTTCCTACGACA -ACGGAACACGTTGTTCCTAGCTCA -ACGGAACACGTTGTTCCTTCACGT -ACGGAACACGTTGTTCCTCGTAGT -ACGGAACACGTTGTTCCTGTCAGT -ACGGAACACGTTGTTCCTGAAGGT -ACGGAACACGTTGTTCCTAACCGT -ACGGAACACGTTGTTCCTTTGTGC -ACGGAACACGTTGTTCCTCTAAGC -ACGGAACACGTTGTTCCTACTAGC -ACGGAACACGTTGTTCCTAGATGC -ACGGAACACGTTGTTCCTTGAAGG -ACGGAACACGTTGTTCCTCAATGG -ACGGAACACGTTGTTCCTATGAGG -ACGGAACACGTTGTTCCTAATGGG -ACGGAACACGTTGTTCCTTCCTGA -ACGGAACACGTTGTTCCTTAGCGA -ACGGAACACGTTGTTCCTCACAGA -ACGGAACACGTTGTTCCTGCAAGA -ACGGAACACGTTGTTCCTGGTTGA -ACGGAACACGTTGTTCCTTCCGAT -ACGGAACACGTTGTTCCTTGGCAT -ACGGAACACGTTGTTCCTCGAGAT -ACGGAACACGTTGTTCCTTACCAC -ACGGAACACGTTGTTCCTCAGAAC -ACGGAACACGTTGTTCCTGTCTAC -ACGGAACACGTTGTTCCTACGTAC -ACGGAACACGTTGTTCCTAGTGAC -ACGGAACACGTTGTTCCTCTGTAG -ACGGAACACGTTGTTCCTCCTAAG -ACGGAACACGTTGTTCCTGTTCAG -ACGGAACACGTTGTTCCTGCATAG -ACGGAACACGTTGTTCCTGACAAG -ACGGAACACGTTGTTCCTAAGCAG -ACGGAACACGTTGTTCCTCGTCAA -ACGGAACACGTTGTTCCTGCTGAA -ACGGAACACGTTGTTCCTAGTACG -ACGGAACACGTTGTTCCTATCCGA -ACGGAACACGTTGTTCCTATGGGA -ACGGAACACGTTGTTCCTGTGCAA -ACGGAACACGTTGTTCCTGAGGAA -ACGGAACACGTTGTTCCTCAGGTA -ACGGAACACGTTGTTCCTGACTCT -ACGGAACACGTTGTTCCTAGTCCT -ACGGAACACGTTGTTCCTTAAGCC -ACGGAACACGTTGTTCCTATAGCC -ACGGAACACGTTGTTCCTTAACCG -ACGGAACACGTTGTTCCTATGCCA -ACGGAACACGTTTTTCGGGGAAAC -ACGGAACACGTTTTTCGGAACACC -ACGGAACACGTTTTTCGGATCGAG -ACGGAACACGTTTTTCGGCTCCTT -ACGGAACACGTTTTTCGGCCTGTT -ACGGAACACGTTTTTCGGCGGTTT -ACGGAACACGTTTTTCGGGTGGTT -ACGGAACACGTTTTTCGGGCCTTT -ACGGAACACGTTTTTCGGGGTCTT -ACGGAACACGTTTTTCGGACGCTT -ACGGAACACGTTTTTCGGAGCGTT -ACGGAACACGTTTTTCGGTTCGTC -ACGGAACACGTTTTTCGGTCTCTC -ACGGAACACGTTTTTCGGTGGATC -ACGGAACACGTTTTTCGGCACTTC -ACGGAACACGTTTTTCGGGTACTC -ACGGAACACGTTTTTCGGGATGTC -ACGGAACACGTTTTTCGGACAGTC -ACGGAACACGTTTTTCGGTTGCTG -ACGGAACACGTTTTTCGGTCCATG -ACGGAACACGTTTTTCGGTGTGTG -ACGGAACACGTTTTTCGGCTAGTG -ACGGAACACGTTTTTCGGCATCTG -ACGGAACACGTTTTTCGGGAGTTG -ACGGAACACGTTTTTCGGAGACTG -ACGGAACACGTTTTTCGGTCGGTA -ACGGAACACGTTTTTCGGTGCCTA -ACGGAACACGTTTTTCGGCCACTA -ACGGAACACGTTTTTCGGGGAGTA -ACGGAACACGTTTTTCGGTCGTCT -ACGGAACACGTTTTTCGGTGCACT -ACGGAACACGTTTTTCGGCTGACT -ACGGAACACGTTTTTCGGCAACCT -ACGGAACACGTTTTTCGGGCTACT -ACGGAACACGTTTTTCGGGGATCT -ACGGAACACGTTTTTCGGAAGGCT -ACGGAACACGTTTTTCGGTCAACC -ACGGAACACGTTTTTCGGTGTTCC -ACGGAACACGTTTTTCGGATTCCC -ACGGAACACGTTTTTCGGTTCTCG -ACGGAACACGTTTTTCGGTAGACG -ACGGAACACGTTTTTCGGGTAACG -ACGGAACACGTTTTTCGGACTTCG -ACGGAACACGTTTTTCGGTACGCA -ACGGAACACGTTTTTCGGCTTGCA -ACGGAACACGTTTTTCGGCGAACA -ACGGAACACGTTTTTCGGCAGTCA -ACGGAACACGTTTTTCGGGATCCA -ACGGAACACGTTTTTCGGACGACA -ACGGAACACGTTTTTCGGAGCTCA -ACGGAACACGTTTTTCGGTCACGT -ACGGAACACGTTTTTCGGCGTAGT -ACGGAACACGTTTTTCGGGTCAGT -ACGGAACACGTTTTTCGGGAAGGT -ACGGAACACGTTTTTCGGAACCGT -ACGGAACACGTTTTTCGGTTGTGC -ACGGAACACGTTTTTCGGCTAAGC -ACGGAACACGTTTTTCGGACTAGC -ACGGAACACGTTTTTCGGAGATGC -ACGGAACACGTTTTTCGGTGAAGG -ACGGAACACGTTTTTCGGCAATGG -ACGGAACACGTTTTTCGGATGAGG -ACGGAACACGTTTTTCGGAATGGG -ACGGAACACGTTTTTCGGTCCTGA -ACGGAACACGTTTTTCGGTAGCGA -ACGGAACACGTTTTTCGGCACAGA -ACGGAACACGTTTTTCGGGCAAGA -ACGGAACACGTTTTTCGGGGTTGA -ACGGAACACGTTTTTCGGTCCGAT -ACGGAACACGTTTTTCGGTGGCAT -ACGGAACACGTTTTTCGGCGAGAT -ACGGAACACGTTTTTCGGTACCAC -ACGGAACACGTTTTTCGGCAGAAC -ACGGAACACGTTTTTCGGGTCTAC -ACGGAACACGTTTTTCGGACGTAC -ACGGAACACGTTTTTCGGAGTGAC -ACGGAACACGTTTTTCGGCTGTAG -ACGGAACACGTTTTTCGGCCTAAG -ACGGAACACGTTTTTCGGGTTCAG -ACGGAACACGTTTTTCGGGCATAG -ACGGAACACGTTTTTCGGGACAAG -ACGGAACACGTTTTTCGGAAGCAG -ACGGAACACGTTTTTCGGCGTCAA -ACGGAACACGTTTTTCGGGCTGAA -ACGGAACACGTTTTTCGGAGTACG -ACGGAACACGTTTTTCGGATCCGA -ACGGAACACGTTTTTCGGATGGGA -ACGGAACACGTTTTTCGGGTGCAA -ACGGAACACGTTTTTCGGGAGGAA -ACGGAACACGTTTTTCGGCAGGTA -ACGGAACACGTTTTTCGGGACTCT -ACGGAACACGTTTTTCGGAGTCCT -ACGGAACACGTTTTTCGGTAAGCC -ACGGAACACGTTTTTCGGATAGCC -ACGGAACACGTTTTTCGGTAACCG -ACGGAACACGTTTTTCGGATGCCA -ACGGAACACGTTGTTGTGGGAAAC -ACGGAACACGTTGTTGTGAACACC -ACGGAACACGTTGTTGTGATCGAG -ACGGAACACGTTGTTGTGCTCCTT -ACGGAACACGTTGTTGTGCCTGTT -ACGGAACACGTTGTTGTGCGGTTT -ACGGAACACGTTGTTGTGGTGGTT -ACGGAACACGTTGTTGTGGCCTTT -ACGGAACACGTTGTTGTGGGTCTT -ACGGAACACGTTGTTGTGACGCTT -ACGGAACACGTTGTTGTGAGCGTT -ACGGAACACGTTGTTGTGTTCGTC -ACGGAACACGTTGTTGTGTCTCTC -ACGGAACACGTTGTTGTGTGGATC -ACGGAACACGTTGTTGTGCACTTC -ACGGAACACGTTGTTGTGGTACTC -ACGGAACACGTTGTTGTGGATGTC -ACGGAACACGTTGTTGTGACAGTC -ACGGAACACGTTGTTGTGTTGCTG -ACGGAACACGTTGTTGTGTCCATG -ACGGAACACGTTGTTGTGTGTGTG -ACGGAACACGTTGTTGTGCTAGTG -ACGGAACACGTTGTTGTGCATCTG -ACGGAACACGTTGTTGTGGAGTTG -ACGGAACACGTTGTTGTGAGACTG -ACGGAACACGTTGTTGTGTCGGTA -ACGGAACACGTTGTTGTGTGCCTA -ACGGAACACGTTGTTGTGCCACTA -ACGGAACACGTTGTTGTGGGAGTA -ACGGAACACGTTGTTGTGTCGTCT -ACGGAACACGTTGTTGTGTGCACT -ACGGAACACGTTGTTGTGCTGACT -ACGGAACACGTTGTTGTGCAACCT -ACGGAACACGTTGTTGTGGCTACT -ACGGAACACGTTGTTGTGGGATCT -ACGGAACACGTTGTTGTGAAGGCT -ACGGAACACGTTGTTGTGTCAACC -ACGGAACACGTTGTTGTGTGTTCC -ACGGAACACGTTGTTGTGATTCCC -ACGGAACACGTTGTTGTGTTCTCG -ACGGAACACGTTGTTGTGTAGACG -ACGGAACACGTTGTTGTGGTAACG -ACGGAACACGTTGTTGTGACTTCG -ACGGAACACGTTGTTGTGTACGCA -ACGGAACACGTTGTTGTGCTTGCA -ACGGAACACGTTGTTGTGCGAACA -ACGGAACACGTTGTTGTGCAGTCA -ACGGAACACGTTGTTGTGGATCCA -ACGGAACACGTTGTTGTGACGACA -ACGGAACACGTTGTTGTGAGCTCA -ACGGAACACGTTGTTGTGTCACGT -ACGGAACACGTTGTTGTGCGTAGT -ACGGAACACGTTGTTGTGGTCAGT -ACGGAACACGTTGTTGTGGAAGGT -ACGGAACACGTTGTTGTGAACCGT -ACGGAACACGTTGTTGTGTTGTGC -ACGGAACACGTTGTTGTGCTAAGC -ACGGAACACGTTGTTGTGACTAGC -ACGGAACACGTTGTTGTGAGATGC -ACGGAACACGTTGTTGTGTGAAGG -ACGGAACACGTTGTTGTGCAATGG -ACGGAACACGTTGTTGTGATGAGG -ACGGAACACGTTGTTGTGAATGGG -ACGGAACACGTTGTTGTGTCCTGA -ACGGAACACGTTGTTGTGTAGCGA -ACGGAACACGTTGTTGTGCACAGA -ACGGAACACGTTGTTGTGGCAAGA -ACGGAACACGTTGTTGTGGGTTGA -ACGGAACACGTTGTTGTGTCCGAT -ACGGAACACGTTGTTGTGTGGCAT -ACGGAACACGTTGTTGTGCGAGAT -ACGGAACACGTTGTTGTGTACCAC -ACGGAACACGTTGTTGTGCAGAAC -ACGGAACACGTTGTTGTGGTCTAC -ACGGAACACGTTGTTGTGACGTAC -ACGGAACACGTTGTTGTGAGTGAC -ACGGAACACGTTGTTGTGCTGTAG -ACGGAACACGTTGTTGTGCCTAAG -ACGGAACACGTTGTTGTGGTTCAG -ACGGAACACGTTGTTGTGGCATAG -ACGGAACACGTTGTTGTGGACAAG -ACGGAACACGTTGTTGTGAAGCAG -ACGGAACACGTTGTTGTGCGTCAA -ACGGAACACGTTGTTGTGGCTGAA -ACGGAACACGTTGTTGTGAGTACG -ACGGAACACGTTGTTGTGATCCGA -ACGGAACACGTTGTTGTGATGGGA -ACGGAACACGTTGTTGTGGTGCAA -ACGGAACACGTTGTTGTGGAGGAA -ACGGAACACGTTGTTGTGCAGGTA -ACGGAACACGTTGTTGTGGACTCT -ACGGAACACGTTGTTGTGAGTCCT -ACGGAACACGTTGTTGTGTAAGCC -ACGGAACACGTTGTTGTGATAGCC -ACGGAACACGTTGTTGTGTAACCG -ACGGAACACGTTGTTGTGATGCCA -ACGGAACACGTTTTTGCCGGAAAC -ACGGAACACGTTTTTGCCAACACC -ACGGAACACGTTTTTGCCATCGAG -ACGGAACACGTTTTTGCCCTCCTT -ACGGAACACGTTTTTGCCCCTGTT -ACGGAACACGTTTTTGCCCGGTTT -ACGGAACACGTTTTTGCCGTGGTT -ACGGAACACGTTTTTGCCGCCTTT -ACGGAACACGTTTTTGCCGGTCTT -ACGGAACACGTTTTTGCCACGCTT -ACGGAACACGTTTTTGCCAGCGTT -ACGGAACACGTTTTTGCCTTCGTC -ACGGAACACGTTTTTGCCTCTCTC -ACGGAACACGTTTTTGCCTGGATC -ACGGAACACGTTTTTGCCCACTTC -ACGGAACACGTTTTTGCCGTACTC -ACGGAACACGTTTTTGCCGATGTC -ACGGAACACGTTTTTGCCACAGTC -ACGGAACACGTTTTTGCCTTGCTG -ACGGAACACGTTTTTGCCTCCATG -ACGGAACACGTTTTTGCCTGTGTG -ACGGAACACGTTTTTGCCCTAGTG -ACGGAACACGTTTTTGCCCATCTG -ACGGAACACGTTTTTGCCGAGTTG -ACGGAACACGTTTTTGCCAGACTG -ACGGAACACGTTTTTGCCTCGGTA -ACGGAACACGTTTTTGCCTGCCTA -ACGGAACACGTTTTTGCCCCACTA -ACGGAACACGTTTTTGCCGGAGTA -ACGGAACACGTTTTTGCCTCGTCT -ACGGAACACGTTTTTGCCTGCACT -ACGGAACACGTTTTTGCCCTGACT -ACGGAACACGTTTTTGCCCAACCT -ACGGAACACGTTTTTGCCGCTACT -ACGGAACACGTTTTTGCCGGATCT -ACGGAACACGTTTTTGCCAAGGCT -ACGGAACACGTTTTTGCCTCAACC -ACGGAACACGTTTTTGCCTGTTCC -ACGGAACACGTTTTTGCCATTCCC -ACGGAACACGTTTTTGCCTTCTCG -ACGGAACACGTTTTTGCCTAGACG -ACGGAACACGTTTTTGCCGTAACG -ACGGAACACGTTTTTGCCACTTCG -ACGGAACACGTTTTTGCCTACGCA -ACGGAACACGTTTTTGCCCTTGCA -ACGGAACACGTTTTTGCCCGAACA -ACGGAACACGTTTTTGCCCAGTCA -ACGGAACACGTTTTTGCCGATCCA -ACGGAACACGTTTTTGCCACGACA -ACGGAACACGTTTTTGCCAGCTCA -ACGGAACACGTTTTTGCCTCACGT -ACGGAACACGTTTTTGCCCGTAGT -ACGGAACACGTTTTTGCCGTCAGT -ACGGAACACGTTTTTGCCGAAGGT -ACGGAACACGTTTTTGCCAACCGT -ACGGAACACGTTTTTGCCTTGTGC -ACGGAACACGTTTTTGCCCTAAGC -ACGGAACACGTTTTTGCCACTAGC -ACGGAACACGTTTTTGCCAGATGC -ACGGAACACGTTTTTGCCTGAAGG -ACGGAACACGTTTTTGCCCAATGG -ACGGAACACGTTTTTGCCATGAGG -ACGGAACACGTTTTTGCCAATGGG -ACGGAACACGTTTTTGCCTCCTGA -ACGGAACACGTTTTTGCCTAGCGA -ACGGAACACGTTTTTGCCCACAGA -ACGGAACACGTTTTTGCCGCAAGA -ACGGAACACGTTTTTGCCGGTTGA -ACGGAACACGTTTTTGCCTCCGAT -ACGGAACACGTTTTTGCCTGGCAT -ACGGAACACGTTTTTGCCCGAGAT -ACGGAACACGTTTTTGCCTACCAC -ACGGAACACGTTTTTGCCCAGAAC -ACGGAACACGTTTTTGCCGTCTAC -ACGGAACACGTTTTTGCCACGTAC -ACGGAACACGTTTTTGCCAGTGAC -ACGGAACACGTTTTTGCCCTGTAG -ACGGAACACGTTTTTGCCCCTAAG -ACGGAACACGTTTTTGCCGTTCAG -ACGGAACACGTTTTTGCCGCATAG -ACGGAACACGTTTTTGCCGACAAG -ACGGAACACGTTTTTGCCAAGCAG -ACGGAACACGTTTTTGCCCGTCAA -ACGGAACACGTTTTTGCCGCTGAA -ACGGAACACGTTTTTGCCAGTACG -ACGGAACACGTTTTTGCCATCCGA -ACGGAACACGTTTTTGCCATGGGA -ACGGAACACGTTTTTGCCGTGCAA -ACGGAACACGTTTTTGCCGAGGAA -ACGGAACACGTTTTTGCCCAGGTA -ACGGAACACGTTTTTGCCGACTCT -ACGGAACACGTTTTTGCCAGTCCT -ACGGAACACGTTTTTGCCTAAGCC -ACGGAACACGTTTTTGCCATAGCC -ACGGAACACGTTTTTGCCTAACCG -ACGGAACACGTTTTTGCCATGCCA -ACGGAACACGTTCTTGGTGGAAAC -ACGGAACACGTTCTTGGTAACACC -ACGGAACACGTTCTTGGTATCGAG -ACGGAACACGTTCTTGGTCTCCTT -ACGGAACACGTTCTTGGTCCTGTT -ACGGAACACGTTCTTGGTCGGTTT -ACGGAACACGTTCTTGGTGTGGTT -ACGGAACACGTTCTTGGTGCCTTT -ACGGAACACGTTCTTGGTGGTCTT -ACGGAACACGTTCTTGGTACGCTT -ACGGAACACGTTCTTGGTAGCGTT -ACGGAACACGTTCTTGGTTTCGTC -ACGGAACACGTTCTTGGTTCTCTC -ACGGAACACGTTCTTGGTTGGATC -ACGGAACACGTTCTTGGTCACTTC -ACGGAACACGTTCTTGGTGTACTC -ACGGAACACGTTCTTGGTGATGTC -ACGGAACACGTTCTTGGTACAGTC -ACGGAACACGTTCTTGGTTTGCTG -ACGGAACACGTTCTTGGTTCCATG -ACGGAACACGTTCTTGGTTGTGTG -ACGGAACACGTTCTTGGTCTAGTG -ACGGAACACGTTCTTGGTCATCTG -ACGGAACACGTTCTTGGTGAGTTG -ACGGAACACGTTCTTGGTAGACTG -ACGGAACACGTTCTTGGTTCGGTA -ACGGAACACGTTCTTGGTTGCCTA -ACGGAACACGTTCTTGGTCCACTA -ACGGAACACGTTCTTGGTGGAGTA -ACGGAACACGTTCTTGGTTCGTCT -ACGGAACACGTTCTTGGTTGCACT -ACGGAACACGTTCTTGGTCTGACT -ACGGAACACGTTCTTGGTCAACCT -ACGGAACACGTTCTTGGTGCTACT -ACGGAACACGTTCTTGGTGGATCT -ACGGAACACGTTCTTGGTAAGGCT -ACGGAACACGTTCTTGGTTCAACC -ACGGAACACGTTCTTGGTTGTTCC -ACGGAACACGTTCTTGGTATTCCC -ACGGAACACGTTCTTGGTTTCTCG -ACGGAACACGTTCTTGGTTAGACG -ACGGAACACGTTCTTGGTGTAACG -ACGGAACACGTTCTTGGTACTTCG -ACGGAACACGTTCTTGGTTACGCA -ACGGAACACGTTCTTGGTCTTGCA -ACGGAACACGTTCTTGGTCGAACA -ACGGAACACGTTCTTGGTCAGTCA -ACGGAACACGTTCTTGGTGATCCA -ACGGAACACGTTCTTGGTACGACA -ACGGAACACGTTCTTGGTAGCTCA -ACGGAACACGTTCTTGGTTCACGT -ACGGAACACGTTCTTGGTCGTAGT -ACGGAACACGTTCTTGGTGTCAGT -ACGGAACACGTTCTTGGTGAAGGT -ACGGAACACGTTCTTGGTAACCGT -ACGGAACACGTTCTTGGTTTGTGC -ACGGAACACGTTCTTGGTCTAAGC -ACGGAACACGTTCTTGGTACTAGC -ACGGAACACGTTCTTGGTAGATGC -ACGGAACACGTTCTTGGTTGAAGG -ACGGAACACGTTCTTGGTCAATGG -ACGGAACACGTTCTTGGTATGAGG -ACGGAACACGTTCTTGGTAATGGG -ACGGAACACGTTCTTGGTTCCTGA -ACGGAACACGTTCTTGGTTAGCGA -ACGGAACACGTTCTTGGTCACAGA -ACGGAACACGTTCTTGGTGCAAGA -ACGGAACACGTTCTTGGTGGTTGA -ACGGAACACGTTCTTGGTTCCGAT -ACGGAACACGTTCTTGGTTGGCAT -ACGGAACACGTTCTTGGTCGAGAT -ACGGAACACGTTCTTGGTTACCAC -ACGGAACACGTTCTTGGTCAGAAC -ACGGAACACGTTCTTGGTGTCTAC -ACGGAACACGTTCTTGGTACGTAC -ACGGAACACGTTCTTGGTAGTGAC -ACGGAACACGTTCTTGGTCTGTAG -ACGGAACACGTTCTTGGTCCTAAG -ACGGAACACGTTCTTGGTGTTCAG -ACGGAACACGTTCTTGGTGCATAG -ACGGAACACGTTCTTGGTGACAAG -ACGGAACACGTTCTTGGTAAGCAG -ACGGAACACGTTCTTGGTCGTCAA -ACGGAACACGTTCTTGGTGCTGAA -ACGGAACACGTTCTTGGTAGTACG -ACGGAACACGTTCTTGGTATCCGA -ACGGAACACGTTCTTGGTATGGGA -ACGGAACACGTTCTTGGTGTGCAA -ACGGAACACGTTCTTGGTGAGGAA -ACGGAACACGTTCTTGGTCAGGTA -ACGGAACACGTTCTTGGTGACTCT -ACGGAACACGTTCTTGGTAGTCCT -ACGGAACACGTTCTTGGTTAAGCC -ACGGAACACGTTCTTGGTATAGCC -ACGGAACACGTTCTTGGTTAACCG -ACGGAACACGTTCTTGGTATGCCA -ACGGAACACGTTCTTACGGGAAAC -ACGGAACACGTTCTTACGAACACC -ACGGAACACGTTCTTACGATCGAG -ACGGAACACGTTCTTACGCTCCTT -ACGGAACACGTTCTTACGCCTGTT -ACGGAACACGTTCTTACGCGGTTT -ACGGAACACGTTCTTACGGTGGTT -ACGGAACACGTTCTTACGGCCTTT -ACGGAACACGTTCTTACGGGTCTT -ACGGAACACGTTCTTACGACGCTT -ACGGAACACGTTCTTACGAGCGTT -ACGGAACACGTTCTTACGTTCGTC -ACGGAACACGTTCTTACGTCTCTC -ACGGAACACGTTCTTACGTGGATC -ACGGAACACGTTCTTACGCACTTC -ACGGAACACGTTCTTACGGTACTC -ACGGAACACGTTCTTACGGATGTC -ACGGAACACGTTCTTACGACAGTC -ACGGAACACGTTCTTACGTTGCTG -ACGGAACACGTTCTTACGTCCATG -ACGGAACACGTTCTTACGTGTGTG -ACGGAACACGTTCTTACGCTAGTG -ACGGAACACGTTCTTACGCATCTG -ACGGAACACGTTCTTACGGAGTTG -ACGGAACACGTTCTTACGAGACTG -ACGGAACACGTTCTTACGTCGGTA -ACGGAACACGTTCTTACGTGCCTA -ACGGAACACGTTCTTACGCCACTA -ACGGAACACGTTCTTACGGGAGTA -ACGGAACACGTTCTTACGTCGTCT -ACGGAACACGTTCTTACGTGCACT -ACGGAACACGTTCTTACGCTGACT -ACGGAACACGTTCTTACGCAACCT -ACGGAACACGTTCTTACGGCTACT -ACGGAACACGTTCTTACGGGATCT -ACGGAACACGTTCTTACGAAGGCT -ACGGAACACGTTCTTACGTCAACC -ACGGAACACGTTCTTACGTGTTCC -ACGGAACACGTTCTTACGATTCCC -ACGGAACACGTTCTTACGTTCTCG -ACGGAACACGTTCTTACGTAGACG -ACGGAACACGTTCTTACGGTAACG -ACGGAACACGTTCTTACGACTTCG -ACGGAACACGTTCTTACGTACGCA -ACGGAACACGTTCTTACGCTTGCA -ACGGAACACGTTCTTACGCGAACA -ACGGAACACGTTCTTACGCAGTCA -ACGGAACACGTTCTTACGGATCCA -ACGGAACACGTTCTTACGACGACA -ACGGAACACGTTCTTACGAGCTCA -ACGGAACACGTTCTTACGTCACGT -ACGGAACACGTTCTTACGCGTAGT -ACGGAACACGTTCTTACGGTCAGT -ACGGAACACGTTCTTACGGAAGGT -ACGGAACACGTTCTTACGAACCGT -ACGGAACACGTTCTTACGTTGTGC -ACGGAACACGTTCTTACGCTAAGC -ACGGAACACGTTCTTACGACTAGC -ACGGAACACGTTCTTACGAGATGC -ACGGAACACGTTCTTACGTGAAGG -ACGGAACACGTTCTTACGCAATGG -ACGGAACACGTTCTTACGATGAGG -ACGGAACACGTTCTTACGAATGGG -ACGGAACACGTTCTTACGTCCTGA -ACGGAACACGTTCTTACGTAGCGA -ACGGAACACGTTCTTACGCACAGA -ACGGAACACGTTCTTACGGCAAGA -ACGGAACACGTTCTTACGGGTTGA -ACGGAACACGTTCTTACGTCCGAT -ACGGAACACGTTCTTACGTGGCAT -ACGGAACACGTTCTTACGCGAGAT -ACGGAACACGTTCTTACGTACCAC -ACGGAACACGTTCTTACGCAGAAC -ACGGAACACGTTCTTACGGTCTAC -ACGGAACACGTTCTTACGACGTAC -ACGGAACACGTTCTTACGAGTGAC -ACGGAACACGTTCTTACGCTGTAG -ACGGAACACGTTCTTACGCCTAAG -ACGGAACACGTTCTTACGGTTCAG -ACGGAACACGTTCTTACGGCATAG -ACGGAACACGTTCTTACGGACAAG -ACGGAACACGTTCTTACGAAGCAG -ACGGAACACGTTCTTACGCGTCAA -ACGGAACACGTTCTTACGGCTGAA -ACGGAACACGTTCTTACGAGTACG -ACGGAACACGTTCTTACGATCCGA -ACGGAACACGTTCTTACGATGGGA -ACGGAACACGTTCTTACGGTGCAA -ACGGAACACGTTCTTACGGAGGAA -ACGGAACACGTTCTTACGCAGGTA -ACGGAACACGTTCTTACGGACTCT -ACGGAACACGTTCTTACGAGTCCT -ACGGAACACGTTCTTACGTAAGCC -ACGGAACACGTTCTTACGATAGCC -ACGGAACACGTTCTTACGTAACCG -ACGGAACACGTTCTTACGATGCCA -ACGGAACACGTTGTTAGCGGAAAC -ACGGAACACGTTGTTAGCAACACC -ACGGAACACGTTGTTAGCATCGAG -ACGGAACACGTTGTTAGCCTCCTT -ACGGAACACGTTGTTAGCCCTGTT -ACGGAACACGTTGTTAGCCGGTTT -ACGGAACACGTTGTTAGCGTGGTT -ACGGAACACGTTGTTAGCGCCTTT -ACGGAACACGTTGTTAGCGGTCTT -ACGGAACACGTTGTTAGCACGCTT -ACGGAACACGTTGTTAGCAGCGTT -ACGGAACACGTTGTTAGCTTCGTC -ACGGAACACGTTGTTAGCTCTCTC -ACGGAACACGTTGTTAGCTGGATC -ACGGAACACGTTGTTAGCCACTTC -ACGGAACACGTTGTTAGCGTACTC -ACGGAACACGTTGTTAGCGATGTC -ACGGAACACGTTGTTAGCACAGTC -ACGGAACACGTTGTTAGCTTGCTG -ACGGAACACGTTGTTAGCTCCATG -ACGGAACACGTTGTTAGCTGTGTG -ACGGAACACGTTGTTAGCCTAGTG -ACGGAACACGTTGTTAGCCATCTG -ACGGAACACGTTGTTAGCGAGTTG -ACGGAACACGTTGTTAGCAGACTG -ACGGAACACGTTGTTAGCTCGGTA -ACGGAACACGTTGTTAGCTGCCTA -ACGGAACACGTTGTTAGCCCACTA -ACGGAACACGTTGTTAGCGGAGTA -ACGGAACACGTTGTTAGCTCGTCT -ACGGAACACGTTGTTAGCTGCACT -ACGGAACACGTTGTTAGCCTGACT -ACGGAACACGTTGTTAGCCAACCT -ACGGAACACGTTGTTAGCGCTACT -ACGGAACACGTTGTTAGCGGATCT -ACGGAACACGTTGTTAGCAAGGCT -ACGGAACACGTTGTTAGCTCAACC -ACGGAACACGTTGTTAGCTGTTCC -ACGGAACACGTTGTTAGCATTCCC -ACGGAACACGTTGTTAGCTTCTCG -ACGGAACACGTTGTTAGCTAGACG -ACGGAACACGTTGTTAGCGTAACG -ACGGAACACGTTGTTAGCACTTCG -ACGGAACACGTTGTTAGCTACGCA -ACGGAACACGTTGTTAGCCTTGCA -ACGGAACACGTTGTTAGCCGAACA -ACGGAACACGTTGTTAGCCAGTCA -ACGGAACACGTTGTTAGCGATCCA -ACGGAACACGTTGTTAGCACGACA -ACGGAACACGTTGTTAGCAGCTCA -ACGGAACACGTTGTTAGCTCACGT -ACGGAACACGTTGTTAGCCGTAGT -ACGGAACACGTTGTTAGCGTCAGT -ACGGAACACGTTGTTAGCGAAGGT -ACGGAACACGTTGTTAGCAACCGT -ACGGAACACGTTGTTAGCTTGTGC -ACGGAACACGTTGTTAGCCTAAGC -ACGGAACACGTTGTTAGCACTAGC -ACGGAACACGTTGTTAGCAGATGC -ACGGAACACGTTGTTAGCTGAAGG -ACGGAACACGTTGTTAGCCAATGG -ACGGAACACGTTGTTAGCATGAGG -ACGGAACACGTTGTTAGCAATGGG -ACGGAACACGTTGTTAGCTCCTGA -ACGGAACACGTTGTTAGCTAGCGA -ACGGAACACGTTGTTAGCCACAGA -ACGGAACACGTTGTTAGCGCAAGA -ACGGAACACGTTGTTAGCGGTTGA -ACGGAACACGTTGTTAGCTCCGAT -ACGGAACACGTTGTTAGCTGGCAT -ACGGAACACGTTGTTAGCCGAGAT -ACGGAACACGTTGTTAGCTACCAC -ACGGAACACGTTGTTAGCCAGAAC -ACGGAACACGTTGTTAGCGTCTAC -ACGGAACACGTTGTTAGCACGTAC -ACGGAACACGTTGTTAGCAGTGAC -ACGGAACACGTTGTTAGCCTGTAG -ACGGAACACGTTGTTAGCCCTAAG -ACGGAACACGTTGTTAGCGTTCAG -ACGGAACACGTTGTTAGCGCATAG -ACGGAACACGTTGTTAGCGACAAG -ACGGAACACGTTGTTAGCAAGCAG -ACGGAACACGTTGTTAGCCGTCAA -ACGGAACACGTTGTTAGCGCTGAA -ACGGAACACGTTGTTAGCAGTACG -ACGGAACACGTTGTTAGCATCCGA -ACGGAACACGTTGTTAGCATGGGA -ACGGAACACGTTGTTAGCGTGCAA -ACGGAACACGTTGTTAGCGAGGAA -ACGGAACACGTTGTTAGCCAGGTA -ACGGAACACGTTGTTAGCGACTCT -ACGGAACACGTTGTTAGCAGTCCT -ACGGAACACGTTGTTAGCTAAGCC -ACGGAACACGTTGTTAGCATAGCC -ACGGAACACGTTGTTAGCTAACCG -ACGGAACACGTTGTTAGCATGCCA -ACGGAACACGTTGTCTTCGGAAAC -ACGGAACACGTTGTCTTCAACACC -ACGGAACACGTTGTCTTCATCGAG -ACGGAACACGTTGTCTTCCTCCTT -ACGGAACACGTTGTCTTCCCTGTT -ACGGAACACGTTGTCTTCCGGTTT -ACGGAACACGTTGTCTTCGTGGTT -ACGGAACACGTTGTCTTCGCCTTT -ACGGAACACGTTGTCTTCGGTCTT -ACGGAACACGTTGTCTTCACGCTT -ACGGAACACGTTGTCTTCAGCGTT -ACGGAACACGTTGTCTTCTTCGTC -ACGGAACACGTTGTCTTCTCTCTC -ACGGAACACGTTGTCTTCTGGATC -ACGGAACACGTTGTCTTCCACTTC -ACGGAACACGTTGTCTTCGTACTC -ACGGAACACGTTGTCTTCGATGTC -ACGGAACACGTTGTCTTCACAGTC -ACGGAACACGTTGTCTTCTTGCTG -ACGGAACACGTTGTCTTCTCCATG -ACGGAACACGTTGTCTTCTGTGTG -ACGGAACACGTTGTCTTCCTAGTG -ACGGAACACGTTGTCTTCCATCTG -ACGGAACACGTTGTCTTCGAGTTG -ACGGAACACGTTGTCTTCAGACTG -ACGGAACACGTTGTCTTCTCGGTA -ACGGAACACGTTGTCTTCTGCCTA -ACGGAACACGTTGTCTTCCCACTA -ACGGAACACGTTGTCTTCGGAGTA -ACGGAACACGTTGTCTTCTCGTCT -ACGGAACACGTTGTCTTCTGCACT -ACGGAACACGTTGTCTTCCTGACT -ACGGAACACGTTGTCTTCCAACCT -ACGGAACACGTTGTCTTCGCTACT -ACGGAACACGTTGTCTTCGGATCT -ACGGAACACGTTGTCTTCAAGGCT -ACGGAACACGTTGTCTTCTCAACC -ACGGAACACGTTGTCTTCTGTTCC -ACGGAACACGTTGTCTTCATTCCC -ACGGAACACGTTGTCTTCTTCTCG -ACGGAACACGTTGTCTTCTAGACG -ACGGAACACGTTGTCTTCGTAACG -ACGGAACACGTTGTCTTCACTTCG -ACGGAACACGTTGTCTTCTACGCA -ACGGAACACGTTGTCTTCCTTGCA -ACGGAACACGTTGTCTTCCGAACA -ACGGAACACGTTGTCTTCCAGTCA -ACGGAACACGTTGTCTTCGATCCA -ACGGAACACGTTGTCTTCACGACA -ACGGAACACGTTGTCTTCAGCTCA -ACGGAACACGTTGTCTTCTCACGT -ACGGAACACGTTGTCTTCCGTAGT -ACGGAACACGTTGTCTTCGTCAGT -ACGGAACACGTTGTCTTCGAAGGT -ACGGAACACGTTGTCTTCAACCGT -ACGGAACACGTTGTCTTCTTGTGC -ACGGAACACGTTGTCTTCCTAAGC -ACGGAACACGTTGTCTTCACTAGC -ACGGAACACGTTGTCTTCAGATGC -ACGGAACACGTTGTCTTCTGAAGG -ACGGAACACGTTGTCTTCCAATGG -ACGGAACACGTTGTCTTCATGAGG -ACGGAACACGTTGTCTTCAATGGG -ACGGAACACGTTGTCTTCTCCTGA -ACGGAACACGTTGTCTTCTAGCGA -ACGGAACACGTTGTCTTCCACAGA -ACGGAACACGTTGTCTTCGCAAGA -ACGGAACACGTTGTCTTCGGTTGA -ACGGAACACGTTGTCTTCTCCGAT -ACGGAACACGTTGTCTTCTGGCAT -ACGGAACACGTTGTCTTCCGAGAT -ACGGAACACGTTGTCTTCTACCAC -ACGGAACACGTTGTCTTCCAGAAC -ACGGAACACGTTGTCTTCGTCTAC -ACGGAACACGTTGTCTTCACGTAC -ACGGAACACGTTGTCTTCAGTGAC -ACGGAACACGTTGTCTTCCTGTAG -ACGGAACACGTTGTCTTCCCTAAG -ACGGAACACGTTGTCTTCGTTCAG -ACGGAACACGTTGTCTTCGCATAG -ACGGAACACGTTGTCTTCGACAAG -ACGGAACACGTTGTCTTCAAGCAG -ACGGAACACGTTGTCTTCCGTCAA -ACGGAACACGTTGTCTTCGCTGAA -ACGGAACACGTTGTCTTCAGTACG -ACGGAACACGTTGTCTTCATCCGA -ACGGAACACGTTGTCTTCATGGGA -ACGGAACACGTTGTCTTCGTGCAA -ACGGAACACGTTGTCTTCGAGGAA -ACGGAACACGTTGTCTTCCAGGTA -ACGGAACACGTTGTCTTCGACTCT -ACGGAACACGTTGTCTTCAGTCCT -ACGGAACACGTTGTCTTCTAAGCC -ACGGAACACGTTGTCTTCATAGCC -ACGGAACACGTTGTCTTCTAACCG -ACGGAACACGTTGTCTTCATGCCA -ACGGAACACGTTCTCTCTGGAAAC -ACGGAACACGTTCTCTCTAACACC -ACGGAACACGTTCTCTCTATCGAG -ACGGAACACGTTCTCTCTCTCCTT -ACGGAACACGTTCTCTCTCCTGTT -ACGGAACACGTTCTCTCTCGGTTT -ACGGAACACGTTCTCTCTGTGGTT -ACGGAACACGTTCTCTCTGCCTTT -ACGGAACACGTTCTCTCTGGTCTT -ACGGAACACGTTCTCTCTACGCTT -ACGGAACACGTTCTCTCTAGCGTT -ACGGAACACGTTCTCTCTTTCGTC -ACGGAACACGTTCTCTCTTCTCTC -ACGGAACACGTTCTCTCTTGGATC -ACGGAACACGTTCTCTCTCACTTC -ACGGAACACGTTCTCTCTGTACTC -ACGGAACACGTTCTCTCTGATGTC -ACGGAACACGTTCTCTCTACAGTC -ACGGAACACGTTCTCTCTTTGCTG -ACGGAACACGTTCTCTCTTCCATG -ACGGAACACGTTCTCTCTTGTGTG -ACGGAACACGTTCTCTCTCTAGTG -ACGGAACACGTTCTCTCTCATCTG -ACGGAACACGTTCTCTCTGAGTTG -ACGGAACACGTTCTCTCTAGACTG -ACGGAACACGTTCTCTCTTCGGTA -ACGGAACACGTTCTCTCTTGCCTA -ACGGAACACGTTCTCTCTCCACTA -ACGGAACACGTTCTCTCTGGAGTA -ACGGAACACGTTCTCTCTTCGTCT -ACGGAACACGTTCTCTCTTGCACT -ACGGAACACGTTCTCTCTCTGACT -ACGGAACACGTTCTCTCTCAACCT -ACGGAACACGTTCTCTCTGCTACT -ACGGAACACGTTCTCTCTGGATCT -ACGGAACACGTTCTCTCTAAGGCT -ACGGAACACGTTCTCTCTTCAACC -ACGGAACACGTTCTCTCTTGTTCC -ACGGAACACGTTCTCTCTATTCCC -ACGGAACACGTTCTCTCTTTCTCG -ACGGAACACGTTCTCTCTTAGACG -ACGGAACACGTTCTCTCTGTAACG -ACGGAACACGTTCTCTCTACTTCG -ACGGAACACGTTCTCTCTTACGCA -ACGGAACACGTTCTCTCTCTTGCA -ACGGAACACGTTCTCTCTCGAACA -ACGGAACACGTTCTCTCTCAGTCA -ACGGAACACGTTCTCTCTGATCCA -ACGGAACACGTTCTCTCTACGACA -ACGGAACACGTTCTCTCTAGCTCA -ACGGAACACGTTCTCTCTTCACGT -ACGGAACACGTTCTCTCTCGTAGT -ACGGAACACGTTCTCTCTGTCAGT -ACGGAACACGTTCTCTCTGAAGGT -ACGGAACACGTTCTCTCTAACCGT -ACGGAACACGTTCTCTCTTTGTGC -ACGGAACACGTTCTCTCTCTAAGC -ACGGAACACGTTCTCTCTACTAGC -ACGGAACACGTTCTCTCTAGATGC -ACGGAACACGTTCTCTCTTGAAGG -ACGGAACACGTTCTCTCTCAATGG -ACGGAACACGTTCTCTCTATGAGG -ACGGAACACGTTCTCTCTAATGGG -ACGGAACACGTTCTCTCTTCCTGA -ACGGAACACGTTCTCTCTTAGCGA -ACGGAACACGTTCTCTCTCACAGA -ACGGAACACGTTCTCTCTGCAAGA -ACGGAACACGTTCTCTCTGGTTGA -ACGGAACACGTTCTCTCTTCCGAT -ACGGAACACGTTCTCTCTTGGCAT -ACGGAACACGTTCTCTCTCGAGAT -ACGGAACACGTTCTCTCTTACCAC -ACGGAACACGTTCTCTCTCAGAAC -ACGGAACACGTTCTCTCTGTCTAC -ACGGAACACGTTCTCTCTACGTAC -ACGGAACACGTTCTCTCTAGTGAC -ACGGAACACGTTCTCTCTCTGTAG -ACGGAACACGTTCTCTCTCCTAAG -ACGGAACACGTTCTCTCTGTTCAG -ACGGAACACGTTCTCTCTGCATAG -ACGGAACACGTTCTCTCTGACAAG -ACGGAACACGTTCTCTCTAAGCAG -ACGGAACACGTTCTCTCTCGTCAA -ACGGAACACGTTCTCTCTGCTGAA -ACGGAACACGTTCTCTCTAGTACG -ACGGAACACGTTCTCTCTATCCGA -ACGGAACACGTTCTCTCTATGGGA -ACGGAACACGTTCTCTCTGTGCAA -ACGGAACACGTTCTCTCTGAGGAA -ACGGAACACGTTCTCTCTCAGGTA -ACGGAACACGTTCTCTCTGACTCT -ACGGAACACGTTCTCTCTAGTCCT -ACGGAACACGTTCTCTCTTAAGCC -ACGGAACACGTTCTCTCTATAGCC -ACGGAACACGTTCTCTCTTAACCG -ACGGAACACGTTCTCTCTATGCCA -ACGGAACACGTTATCTGGGGAAAC -ACGGAACACGTTATCTGGAACACC -ACGGAACACGTTATCTGGATCGAG -ACGGAACACGTTATCTGGCTCCTT -ACGGAACACGTTATCTGGCCTGTT -ACGGAACACGTTATCTGGCGGTTT -ACGGAACACGTTATCTGGGTGGTT -ACGGAACACGTTATCTGGGCCTTT -ACGGAACACGTTATCTGGGGTCTT -ACGGAACACGTTATCTGGACGCTT -ACGGAACACGTTATCTGGAGCGTT -ACGGAACACGTTATCTGGTTCGTC -ACGGAACACGTTATCTGGTCTCTC -ACGGAACACGTTATCTGGTGGATC -ACGGAACACGTTATCTGGCACTTC -ACGGAACACGTTATCTGGGTACTC -ACGGAACACGTTATCTGGGATGTC -ACGGAACACGTTATCTGGACAGTC -ACGGAACACGTTATCTGGTTGCTG -ACGGAACACGTTATCTGGTCCATG -ACGGAACACGTTATCTGGTGTGTG -ACGGAACACGTTATCTGGCTAGTG -ACGGAACACGTTATCTGGCATCTG -ACGGAACACGTTATCTGGGAGTTG -ACGGAACACGTTATCTGGAGACTG -ACGGAACACGTTATCTGGTCGGTA -ACGGAACACGTTATCTGGTGCCTA -ACGGAACACGTTATCTGGCCACTA -ACGGAACACGTTATCTGGGGAGTA -ACGGAACACGTTATCTGGTCGTCT -ACGGAACACGTTATCTGGTGCACT -ACGGAACACGTTATCTGGCTGACT -ACGGAACACGTTATCTGGCAACCT -ACGGAACACGTTATCTGGGCTACT -ACGGAACACGTTATCTGGGGATCT -ACGGAACACGTTATCTGGAAGGCT -ACGGAACACGTTATCTGGTCAACC -ACGGAACACGTTATCTGGTGTTCC -ACGGAACACGTTATCTGGATTCCC -ACGGAACACGTTATCTGGTTCTCG -ACGGAACACGTTATCTGGTAGACG -ACGGAACACGTTATCTGGGTAACG -ACGGAACACGTTATCTGGACTTCG -ACGGAACACGTTATCTGGTACGCA -ACGGAACACGTTATCTGGCTTGCA -ACGGAACACGTTATCTGGCGAACA -ACGGAACACGTTATCTGGCAGTCA -ACGGAACACGTTATCTGGGATCCA -ACGGAACACGTTATCTGGACGACA -ACGGAACACGTTATCTGGAGCTCA -ACGGAACACGTTATCTGGTCACGT -ACGGAACACGTTATCTGGCGTAGT -ACGGAACACGTTATCTGGGTCAGT -ACGGAACACGTTATCTGGGAAGGT -ACGGAACACGTTATCTGGAACCGT -ACGGAACACGTTATCTGGTTGTGC -ACGGAACACGTTATCTGGCTAAGC -ACGGAACACGTTATCTGGACTAGC -ACGGAACACGTTATCTGGAGATGC -ACGGAACACGTTATCTGGTGAAGG -ACGGAACACGTTATCTGGCAATGG -ACGGAACACGTTATCTGGATGAGG -ACGGAACACGTTATCTGGAATGGG -ACGGAACACGTTATCTGGTCCTGA -ACGGAACACGTTATCTGGTAGCGA -ACGGAACACGTTATCTGGCACAGA -ACGGAACACGTTATCTGGGCAAGA -ACGGAACACGTTATCTGGGGTTGA -ACGGAACACGTTATCTGGTCCGAT -ACGGAACACGTTATCTGGTGGCAT -ACGGAACACGTTATCTGGCGAGAT -ACGGAACACGTTATCTGGTACCAC -ACGGAACACGTTATCTGGCAGAAC -ACGGAACACGTTATCTGGGTCTAC -ACGGAACACGTTATCTGGACGTAC -ACGGAACACGTTATCTGGAGTGAC -ACGGAACACGTTATCTGGCTGTAG -ACGGAACACGTTATCTGGCCTAAG -ACGGAACACGTTATCTGGGTTCAG -ACGGAACACGTTATCTGGGCATAG -ACGGAACACGTTATCTGGGACAAG -ACGGAACACGTTATCTGGAAGCAG -ACGGAACACGTTATCTGGCGTCAA -ACGGAACACGTTATCTGGGCTGAA -ACGGAACACGTTATCTGGAGTACG -ACGGAACACGTTATCTGGATCCGA -ACGGAACACGTTATCTGGATGGGA -ACGGAACACGTTATCTGGGTGCAA -ACGGAACACGTTATCTGGGAGGAA -ACGGAACACGTTATCTGGCAGGTA -ACGGAACACGTTATCTGGGACTCT -ACGGAACACGTTATCTGGAGTCCT -ACGGAACACGTTATCTGGTAAGCC -ACGGAACACGTTATCTGGATAGCC -ACGGAACACGTTATCTGGTAACCG -ACGGAACACGTTATCTGGATGCCA -ACGGAACACGTTTTCCACGGAAAC -ACGGAACACGTTTTCCACAACACC -ACGGAACACGTTTTCCACATCGAG -ACGGAACACGTTTTCCACCTCCTT -ACGGAACACGTTTTCCACCCTGTT -ACGGAACACGTTTTCCACCGGTTT -ACGGAACACGTTTTCCACGTGGTT -ACGGAACACGTTTTCCACGCCTTT -ACGGAACACGTTTTCCACGGTCTT -ACGGAACACGTTTTCCACACGCTT -ACGGAACACGTTTTCCACAGCGTT -ACGGAACACGTTTTCCACTTCGTC -ACGGAACACGTTTTCCACTCTCTC -ACGGAACACGTTTTCCACTGGATC -ACGGAACACGTTTTCCACCACTTC -ACGGAACACGTTTTCCACGTACTC -ACGGAACACGTTTTCCACGATGTC -ACGGAACACGTTTTCCACACAGTC -ACGGAACACGTTTTCCACTTGCTG -ACGGAACACGTTTTCCACTCCATG -ACGGAACACGTTTTCCACTGTGTG -ACGGAACACGTTTTCCACCTAGTG -ACGGAACACGTTTTCCACCATCTG -ACGGAACACGTTTTCCACGAGTTG -ACGGAACACGTTTTCCACAGACTG -ACGGAACACGTTTTCCACTCGGTA -ACGGAACACGTTTTCCACTGCCTA -ACGGAACACGTTTTCCACCCACTA -ACGGAACACGTTTTCCACGGAGTA -ACGGAACACGTTTTCCACTCGTCT -ACGGAACACGTTTTCCACTGCACT -ACGGAACACGTTTTCCACCTGACT -ACGGAACACGTTTTCCACCAACCT -ACGGAACACGTTTTCCACGCTACT -ACGGAACACGTTTTCCACGGATCT -ACGGAACACGTTTTCCACAAGGCT -ACGGAACACGTTTTCCACTCAACC -ACGGAACACGTTTTCCACTGTTCC -ACGGAACACGTTTTCCACATTCCC -ACGGAACACGTTTTCCACTTCTCG -ACGGAACACGTTTTCCACTAGACG -ACGGAACACGTTTTCCACGTAACG -ACGGAACACGTTTTCCACACTTCG -ACGGAACACGTTTTCCACTACGCA -ACGGAACACGTTTTCCACCTTGCA -ACGGAACACGTTTTCCACCGAACA -ACGGAACACGTTTTCCACCAGTCA -ACGGAACACGTTTTCCACGATCCA -ACGGAACACGTTTTCCACACGACA -ACGGAACACGTTTTCCACAGCTCA -ACGGAACACGTTTTCCACTCACGT -ACGGAACACGTTTTCCACCGTAGT -ACGGAACACGTTTTCCACGTCAGT -ACGGAACACGTTTTCCACGAAGGT -ACGGAACACGTTTTCCACAACCGT -ACGGAACACGTTTTCCACTTGTGC -ACGGAACACGTTTTCCACCTAAGC -ACGGAACACGTTTTCCACACTAGC -ACGGAACACGTTTTCCACAGATGC -ACGGAACACGTTTTCCACTGAAGG -ACGGAACACGTTTTCCACCAATGG -ACGGAACACGTTTTCCACATGAGG -ACGGAACACGTTTTCCACAATGGG -ACGGAACACGTTTTCCACTCCTGA -ACGGAACACGTTTTCCACTAGCGA -ACGGAACACGTTTTCCACCACAGA -ACGGAACACGTTTTCCACGCAAGA -ACGGAACACGTTTTCCACGGTTGA -ACGGAACACGTTTTCCACTCCGAT -ACGGAACACGTTTTCCACTGGCAT -ACGGAACACGTTTTCCACCGAGAT -ACGGAACACGTTTTCCACTACCAC -ACGGAACACGTTTTCCACCAGAAC -ACGGAACACGTTTTCCACGTCTAC -ACGGAACACGTTTTCCACACGTAC -ACGGAACACGTTTTCCACAGTGAC -ACGGAACACGTTTTCCACCTGTAG -ACGGAACACGTTTTCCACCCTAAG -ACGGAACACGTTTTCCACGTTCAG -ACGGAACACGTTTTCCACGCATAG -ACGGAACACGTTTTCCACGACAAG -ACGGAACACGTTTTCCACAAGCAG -ACGGAACACGTTTTCCACCGTCAA -ACGGAACACGTTTTCCACGCTGAA -ACGGAACACGTTTTCCACAGTACG -ACGGAACACGTTTTCCACATCCGA -ACGGAACACGTTTTCCACATGGGA -ACGGAACACGTTTTCCACGTGCAA -ACGGAACACGTTTTCCACGAGGAA -ACGGAACACGTTTTCCACCAGGTA -ACGGAACACGTTTTCCACGACTCT -ACGGAACACGTTTTCCACAGTCCT -ACGGAACACGTTTTCCACTAAGCC -ACGGAACACGTTTTCCACATAGCC -ACGGAACACGTTTTCCACTAACCG -ACGGAACACGTTTTCCACATGCCA -ACGGAACACGTTCTCGTAGGAAAC -ACGGAACACGTTCTCGTAAACACC -ACGGAACACGTTCTCGTAATCGAG -ACGGAACACGTTCTCGTACTCCTT -ACGGAACACGTTCTCGTACCTGTT -ACGGAACACGTTCTCGTACGGTTT -ACGGAACACGTTCTCGTAGTGGTT -ACGGAACACGTTCTCGTAGCCTTT -ACGGAACACGTTCTCGTAGGTCTT -ACGGAACACGTTCTCGTAACGCTT -ACGGAACACGTTCTCGTAAGCGTT -ACGGAACACGTTCTCGTATTCGTC -ACGGAACACGTTCTCGTATCTCTC -ACGGAACACGTTCTCGTATGGATC -ACGGAACACGTTCTCGTACACTTC -ACGGAACACGTTCTCGTAGTACTC -ACGGAACACGTTCTCGTAGATGTC -ACGGAACACGTTCTCGTAACAGTC -ACGGAACACGTTCTCGTATTGCTG -ACGGAACACGTTCTCGTATCCATG -ACGGAACACGTTCTCGTATGTGTG -ACGGAACACGTTCTCGTACTAGTG -ACGGAACACGTTCTCGTACATCTG -ACGGAACACGTTCTCGTAGAGTTG -ACGGAACACGTTCTCGTAAGACTG -ACGGAACACGTTCTCGTATCGGTA -ACGGAACACGTTCTCGTATGCCTA -ACGGAACACGTTCTCGTACCACTA -ACGGAACACGTTCTCGTAGGAGTA -ACGGAACACGTTCTCGTATCGTCT -ACGGAACACGTTCTCGTATGCACT -ACGGAACACGTTCTCGTACTGACT -ACGGAACACGTTCTCGTACAACCT -ACGGAACACGTTCTCGTAGCTACT -ACGGAACACGTTCTCGTAGGATCT -ACGGAACACGTTCTCGTAAAGGCT -ACGGAACACGTTCTCGTATCAACC -ACGGAACACGTTCTCGTATGTTCC -ACGGAACACGTTCTCGTAATTCCC -ACGGAACACGTTCTCGTATTCTCG -ACGGAACACGTTCTCGTATAGACG -ACGGAACACGTTCTCGTAGTAACG -ACGGAACACGTTCTCGTAACTTCG -ACGGAACACGTTCTCGTATACGCA -ACGGAACACGTTCTCGTACTTGCA -ACGGAACACGTTCTCGTACGAACA -ACGGAACACGTTCTCGTACAGTCA -ACGGAACACGTTCTCGTAGATCCA -ACGGAACACGTTCTCGTAACGACA -ACGGAACACGTTCTCGTAAGCTCA -ACGGAACACGTTCTCGTATCACGT -ACGGAACACGTTCTCGTACGTAGT -ACGGAACACGTTCTCGTAGTCAGT -ACGGAACACGTTCTCGTAGAAGGT -ACGGAACACGTTCTCGTAAACCGT -ACGGAACACGTTCTCGTATTGTGC -ACGGAACACGTTCTCGTACTAAGC -ACGGAACACGTTCTCGTAACTAGC -ACGGAACACGTTCTCGTAAGATGC -ACGGAACACGTTCTCGTATGAAGG -ACGGAACACGTTCTCGTACAATGG -ACGGAACACGTTCTCGTAATGAGG -ACGGAACACGTTCTCGTAAATGGG -ACGGAACACGTTCTCGTATCCTGA -ACGGAACACGTTCTCGTATAGCGA -ACGGAACACGTTCTCGTACACAGA -ACGGAACACGTTCTCGTAGCAAGA -ACGGAACACGTTCTCGTAGGTTGA -ACGGAACACGTTCTCGTATCCGAT -ACGGAACACGTTCTCGTATGGCAT -ACGGAACACGTTCTCGTACGAGAT -ACGGAACACGTTCTCGTATACCAC -ACGGAACACGTTCTCGTACAGAAC -ACGGAACACGTTCTCGTAGTCTAC -ACGGAACACGTTCTCGTAACGTAC -ACGGAACACGTTCTCGTAAGTGAC -ACGGAACACGTTCTCGTACTGTAG -ACGGAACACGTTCTCGTACCTAAG -ACGGAACACGTTCTCGTAGTTCAG -ACGGAACACGTTCTCGTAGCATAG -ACGGAACACGTTCTCGTAGACAAG -ACGGAACACGTTCTCGTAAAGCAG -ACGGAACACGTTCTCGTACGTCAA -ACGGAACACGTTCTCGTAGCTGAA -ACGGAACACGTTCTCGTAAGTACG -ACGGAACACGTTCTCGTAATCCGA -ACGGAACACGTTCTCGTAATGGGA -ACGGAACACGTTCTCGTAGTGCAA -ACGGAACACGTTCTCGTAGAGGAA -ACGGAACACGTTCTCGTACAGGTA -ACGGAACACGTTCTCGTAGACTCT -ACGGAACACGTTCTCGTAAGTCCT -ACGGAACACGTTCTCGTATAAGCC -ACGGAACACGTTCTCGTAATAGCC -ACGGAACACGTTCTCGTATAACCG -ACGGAACACGTTCTCGTAATGCCA -ACGGAACACGTTGTCGATGGAAAC -ACGGAACACGTTGTCGATAACACC -ACGGAACACGTTGTCGATATCGAG -ACGGAACACGTTGTCGATCTCCTT -ACGGAACACGTTGTCGATCCTGTT -ACGGAACACGTTGTCGATCGGTTT -ACGGAACACGTTGTCGATGTGGTT -ACGGAACACGTTGTCGATGCCTTT -ACGGAACACGTTGTCGATGGTCTT -ACGGAACACGTTGTCGATACGCTT -ACGGAACACGTTGTCGATAGCGTT -ACGGAACACGTTGTCGATTTCGTC -ACGGAACACGTTGTCGATTCTCTC -ACGGAACACGTTGTCGATTGGATC -ACGGAACACGTTGTCGATCACTTC -ACGGAACACGTTGTCGATGTACTC -ACGGAACACGTTGTCGATGATGTC -ACGGAACACGTTGTCGATACAGTC -ACGGAACACGTTGTCGATTTGCTG -ACGGAACACGTTGTCGATTCCATG -ACGGAACACGTTGTCGATTGTGTG -ACGGAACACGTTGTCGATCTAGTG -ACGGAACACGTTGTCGATCATCTG -ACGGAACACGTTGTCGATGAGTTG -ACGGAACACGTTGTCGATAGACTG -ACGGAACACGTTGTCGATTCGGTA -ACGGAACACGTTGTCGATTGCCTA -ACGGAACACGTTGTCGATCCACTA -ACGGAACACGTTGTCGATGGAGTA -ACGGAACACGTTGTCGATTCGTCT -ACGGAACACGTTGTCGATTGCACT -ACGGAACACGTTGTCGATCTGACT -ACGGAACACGTTGTCGATCAACCT -ACGGAACACGTTGTCGATGCTACT -ACGGAACACGTTGTCGATGGATCT -ACGGAACACGTTGTCGATAAGGCT -ACGGAACACGTTGTCGATTCAACC -ACGGAACACGTTGTCGATTGTTCC -ACGGAACACGTTGTCGATATTCCC -ACGGAACACGTTGTCGATTTCTCG -ACGGAACACGTTGTCGATTAGACG -ACGGAACACGTTGTCGATGTAACG -ACGGAACACGTTGTCGATACTTCG -ACGGAACACGTTGTCGATTACGCA -ACGGAACACGTTGTCGATCTTGCA -ACGGAACACGTTGTCGATCGAACA -ACGGAACACGTTGTCGATCAGTCA -ACGGAACACGTTGTCGATGATCCA -ACGGAACACGTTGTCGATACGACA -ACGGAACACGTTGTCGATAGCTCA -ACGGAACACGTTGTCGATTCACGT -ACGGAACACGTTGTCGATCGTAGT -ACGGAACACGTTGTCGATGTCAGT -ACGGAACACGTTGTCGATGAAGGT -ACGGAACACGTTGTCGATAACCGT -ACGGAACACGTTGTCGATTTGTGC -ACGGAACACGTTGTCGATCTAAGC -ACGGAACACGTTGTCGATACTAGC -ACGGAACACGTTGTCGATAGATGC -ACGGAACACGTTGTCGATTGAAGG -ACGGAACACGTTGTCGATCAATGG -ACGGAACACGTTGTCGATATGAGG -ACGGAACACGTTGTCGATAATGGG -ACGGAACACGTTGTCGATTCCTGA -ACGGAACACGTTGTCGATTAGCGA -ACGGAACACGTTGTCGATCACAGA -ACGGAACACGTTGTCGATGCAAGA -ACGGAACACGTTGTCGATGGTTGA -ACGGAACACGTTGTCGATTCCGAT -ACGGAACACGTTGTCGATTGGCAT -ACGGAACACGTTGTCGATCGAGAT -ACGGAACACGTTGTCGATTACCAC -ACGGAACACGTTGTCGATCAGAAC -ACGGAACACGTTGTCGATGTCTAC -ACGGAACACGTTGTCGATACGTAC -ACGGAACACGTTGTCGATAGTGAC -ACGGAACACGTTGTCGATCTGTAG -ACGGAACACGTTGTCGATCCTAAG -ACGGAACACGTTGTCGATGTTCAG -ACGGAACACGTTGTCGATGCATAG -ACGGAACACGTTGTCGATGACAAG -ACGGAACACGTTGTCGATAAGCAG -ACGGAACACGTTGTCGATCGTCAA -ACGGAACACGTTGTCGATGCTGAA -ACGGAACACGTTGTCGATAGTACG -ACGGAACACGTTGTCGATATCCGA -ACGGAACACGTTGTCGATATGGGA -ACGGAACACGTTGTCGATGTGCAA -ACGGAACACGTTGTCGATGAGGAA -ACGGAACACGTTGTCGATCAGGTA -ACGGAACACGTTGTCGATGACTCT -ACGGAACACGTTGTCGATAGTCCT -ACGGAACACGTTGTCGATTAAGCC -ACGGAACACGTTGTCGATATAGCC -ACGGAACACGTTGTCGATTAACCG -ACGGAACACGTTGTCGATATGCCA -ACGGAACACGTTGTCACAGGAAAC -ACGGAACACGTTGTCACAAACACC -ACGGAACACGTTGTCACAATCGAG -ACGGAACACGTTGTCACACTCCTT -ACGGAACACGTTGTCACACCTGTT -ACGGAACACGTTGTCACACGGTTT -ACGGAACACGTTGTCACAGTGGTT -ACGGAACACGTTGTCACAGCCTTT -ACGGAACACGTTGTCACAGGTCTT -ACGGAACACGTTGTCACAACGCTT -ACGGAACACGTTGTCACAAGCGTT -ACGGAACACGTTGTCACATTCGTC -ACGGAACACGTTGTCACATCTCTC -ACGGAACACGTTGTCACATGGATC -ACGGAACACGTTGTCACACACTTC -ACGGAACACGTTGTCACAGTACTC -ACGGAACACGTTGTCACAGATGTC -ACGGAACACGTTGTCACAACAGTC -ACGGAACACGTTGTCACATTGCTG -ACGGAACACGTTGTCACATCCATG -ACGGAACACGTTGTCACATGTGTG -ACGGAACACGTTGTCACACTAGTG -ACGGAACACGTTGTCACACATCTG -ACGGAACACGTTGTCACAGAGTTG -ACGGAACACGTTGTCACAAGACTG -ACGGAACACGTTGTCACATCGGTA -ACGGAACACGTTGTCACATGCCTA -ACGGAACACGTTGTCACACCACTA -ACGGAACACGTTGTCACAGGAGTA -ACGGAACACGTTGTCACATCGTCT -ACGGAACACGTTGTCACATGCACT -ACGGAACACGTTGTCACACTGACT -ACGGAACACGTTGTCACACAACCT -ACGGAACACGTTGTCACAGCTACT -ACGGAACACGTTGTCACAGGATCT -ACGGAACACGTTGTCACAAAGGCT -ACGGAACACGTTGTCACATCAACC -ACGGAACACGTTGTCACATGTTCC -ACGGAACACGTTGTCACAATTCCC -ACGGAACACGTTGTCACATTCTCG -ACGGAACACGTTGTCACATAGACG -ACGGAACACGTTGTCACAGTAACG -ACGGAACACGTTGTCACAACTTCG -ACGGAACACGTTGTCACATACGCA -ACGGAACACGTTGTCACACTTGCA -ACGGAACACGTTGTCACACGAACA -ACGGAACACGTTGTCACACAGTCA -ACGGAACACGTTGTCACAGATCCA -ACGGAACACGTTGTCACAACGACA -ACGGAACACGTTGTCACAAGCTCA -ACGGAACACGTTGTCACATCACGT -ACGGAACACGTTGTCACACGTAGT -ACGGAACACGTTGTCACAGTCAGT -ACGGAACACGTTGTCACAGAAGGT -ACGGAACACGTTGTCACAAACCGT -ACGGAACACGTTGTCACATTGTGC -ACGGAACACGTTGTCACACTAAGC -ACGGAACACGTTGTCACAACTAGC -ACGGAACACGTTGTCACAAGATGC -ACGGAACACGTTGTCACATGAAGG -ACGGAACACGTTGTCACACAATGG -ACGGAACACGTTGTCACAATGAGG -ACGGAACACGTTGTCACAAATGGG -ACGGAACACGTTGTCACATCCTGA -ACGGAACACGTTGTCACATAGCGA -ACGGAACACGTTGTCACACACAGA -ACGGAACACGTTGTCACAGCAAGA -ACGGAACACGTTGTCACAGGTTGA -ACGGAACACGTTGTCACATCCGAT -ACGGAACACGTTGTCACATGGCAT -ACGGAACACGTTGTCACACGAGAT -ACGGAACACGTTGTCACATACCAC -ACGGAACACGTTGTCACACAGAAC -ACGGAACACGTTGTCACAGTCTAC -ACGGAACACGTTGTCACAACGTAC -ACGGAACACGTTGTCACAAGTGAC -ACGGAACACGTTGTCACACTGTAG -ACGGAACACGTTGTCACACCTAAG -ACGGAACACGTTGTCACAGTTCAG -ACGGAACACGTTGTCACAGCATAG -ACGGAACACGTTGTCACAGACAAG -ACGGAACACGTTGTCACAAAGCAG -ACGGAACACGTTGTCACACGTCAA -ACGGAACACGTTGTCACAGCTGAA -ACGGAACACGTTGTCACAAGTACG -ACGGAACACGTTGTCACAATCCGA -ACGGAACACGTTGTCACAATGGGA -ACGGAACACGTTGTCACAGTGCAA -ACGGAACACGTTGTCACAGAGGAA -ACGGAACACGTTGTCACACAGGTA -ACGGAACACGTTGTCACAGACTCT -ACGGAACACGTTGTCACAAGTCCT -ACGGAACACGTTGTCACATAAGCC -ACGGAACACGTTGTCACAATAGCC -ACGGAACACGTTGTCACATAACCG -ACGGAACACGTTGTCACAATGCCA -ACGGAACACGTTCTGTTGGGAAAC -ACGGAACACGTTCTGTTGAACACC -ACGGAACACGTTCTGTTGATCGAG -ACGGAACACGTTCTGTTGCTCCTT -ACGGAACACGTTCTGTTGCCTGTT -ACGGAACACGTTCTGTTGCGGTTT -ACGGAACACGTTCTGTTGGTGGTT -ACGGAACACGTTCTGTTGGCCTTT -ACGGAACACGTTCTGTTGGGTCTT -ACGGAACACGTTCTGTTGACGCTT -ACGGAACACGTTCTGTTGAGCGTT -ACGGAACACGTTCTGTTGTTCGTC -ACGGAACACGTTCTGTTGTCTCTC -ACGGAACACGTTCTGTTGTGGATC -ACGGAACACGTTCTGTTGCACTTC -ACGGAACACGTTCTGTTGGTACTC -ACGGAACACGTTCTGTTGGATGTC -ACGGAACACGTTCTGTTGACAGTC -ACGGAACACGTTCTGTTGTTGCTG -ACGGAACACGTTCTGTTGTCCATG -ACGGAACACGTTCTGTTGTGTGTG -ACGGAACACGTTCTGTTGCTAGTG -ACGGAACACGTTCTGTTGCATCTG -ACGGAACACGTTCTGTTGGAGTTG -ACGGAACACGTTCTGTTGAGACTG -ACGGAACACGTTCTGTTGTCGGTA -ACGGAACACGTTCTGTTGTGCCTA -ACGGAACACGTTCTGTTGCCACTA -ACGGAACACGTTCTGTTGGGAGTA -ACGGAACACGTTCTGTTGTCGTCT -ACGGAACACGTTCTGTTGTGCACT -ACGGAACACGTTCTGTTGCTGACT -ACGGAACACGTTCTGTTGCAACCT -ACGGAACACGTTCTGTTGGCTACT -ACGGAACACGTTCTGTTGGGATCT -ACGGAACACGTTCTGTTGAAGGCT -ACGGAACACGTTCTGTTGTCAACC -ACGGAACACGTTCTGTTGTGTTCC -ACGGAACACGTTCTGTTGATTCCC -ACGGAACACGTTCTGTTGTTCTCG -ACGGAACACGTTCTGTTGTAGACG -ACGGAACACGTTCTGTTGGTAACG -ACGGAACACGTTCTGTTGACTTCG -ACGGAACACGTTCTGTTGTACGCA -ACGGAACACGTTCTGTTGCTTGCA -ACGGAACACGTTCTGTTGCGAACA -ACGGAACACGTTCTGTTGCAGTCA -ACGGAACACGTTCTGTTGGATCCA -ACGGAACACGTTCTGTTGACGACA -ACGGAACACGTTCTGTTGAGCTCA -ACGGAACACGTTCTGTTGTCACGT -ACGGAACACGTTCTGTTGCGTAGT -ACGGAACACGTTCTGTTGGTCAGT -ACGGAACACGTTCTGTTGGAAGGT -ACGGAACACGTTCTGTTGAACCGT -ACGGAACACGTTCTGTTGTTGTGC -ACGGAACACGTTCTGTTGCTAAGC -ACGGAACACGTTCTGTTGACTAGC -ACGGAACACGTTCTGTTGAGATGC -ACGGAACACGTTCTGTTGTGAAGG -ACGGAACACGTTCTGTTGCAATGG -ACGGAACACGTTCTGTTGATGAGG -ACGGAACACGTTCTGTTGAATGGG -ACGGAACACGTTCTGTTGTCCTGA -ACGGAACACGTTCTGTTGTAGCGA -ACGGAACACGTTCTGTTGCACAGA -ACGGAACACGTTCTGTTGGCAAGA -ACGGAACACGTTCTGTTGGGTTGA -ACGGAACACGTTCTGTTGTCCGAT -ACGGAACACGTTCTGTTGTGGCAT -ACGGAACACGTTCTGTTGCGAGAT -ACGGAACACGTTCTGTTGTACCAC -ACGGAACACGTTCTGTTGCAGAAC -ACGGAACACGTTCTGTTGGTCTAC -ACGGAACACGTTCTGTTGACGTAC -ACGGAACACGTTCTGTTGAGTGAC -ACGGAACACGTTCTGTTGCTGTAG -ACGGAACACGTTCTGTTGCCTAAG -ACGGAACACGTTCTGTTGGTTCAG -ACGGAACACGTTCTGTTGGCATAG -ACGGAACACGTTCTGTTGGACAAG -ACGGAACACGTTCTGTTGAAGCAG -ACGGAACACGTTCTGTTGCGTCAA -ACGGAACACGTTCTGTTGGCTGAA -ACGGAACACGTTCTGTTGAGTACG -ACGGAACACGTTCTGTTGATCCGA -ACGGAACACGTTCTGTTGATGGGA -ACGGAACACGTTCTGTTGGTGCAA -ACGGAACACGTTCTGTTGGAGGAA -ACGGAACACGTTCTGTTGCAGGTA -ACGGAACACGTTCTGTTGGACTCT -ACGGAACACGTTCTGTTGAGTCCT -ACGGAACACGTTCTGTTGTAAGCC -ACGGAACACGTTCTGTTGATAGCC -ACGGAACACGTTCTGTTGTAACCG -ACGGAACACGTTCTGTTGATGCCA -ACGGAACACGTTATGTCCGGAAAC -ACGGAACACGTTATGTCCAACACC -ACGGAACACGTTATGTCCATCGAG -ACGGAACACGTTATGTCCCTCCTT -ACGGAACACGTTATGTCCCCTGTT -ACGGAACACGTTATGTCCCGGTTT -ACGGAACACGTTATGTCCGTGGTT -ACGGAACACGTTATGTCCGCCTTT -ACGGAACACGTTATGTCCGGTCTT -ACGGAACACGTTATGTCCACGCTT -ACGGAACACGTTATGTCCAGCGTT -ACGGAACACGTTATGTCCTTCGTC -ACGGAACACGTTATGTCCTCTCTC -ACGGAACACGTTATGTCCTGGATC -ACGGAACACGTTATGTCCCACTTC -ACGGAACACGTTATGTCCGTACTC -ACGGAACACGTTATGTCCGATGTC -ACGGAACACGTTATGTCCACAGTC -ACGGAACACGTTATGTCCTTGCTG -ACGGAACACGTTATGTCCTCCATG -ACGGAACACGTTATGTCCTGTGTG -ACGGAACACGTTATGTCCCTAGTG -ACGGAACACGTTATGTCCCATCTG -ACGGAACACGTTATGTCCGAGTTG -ACGGAACACGTTATGTCCAGACTG -ACGGAACACGTTATGTCCTCGGTA -ACGGAACACGTTATGTCCTGCCTA -ACGGAACACGTTATGTCCCCACTA -ACGGAACACGTTATGTCCGGAGTA -ACGGAACACGTTATGTCCTCGTCT -ACGGAACACGTTATGTCCTGCACT -ACGGAACACGTTATGTCCCTGACT -ACGGAACACGTTATGTCCCAACCT -ACGGAACACGTTATGTCCGCTACT -ACGGAACACGTTATGTCCGGATCT -ACGGAACACGTTATGTCCAAGGCT -ACGGAACACGTTATGTCCTCAACC -ACGGAACACGTTATGTCCTGTTCC -ACGGAACACGTTATGTCCATTCCC -ACGGAACACGTTATGTCCTTCTCG -ACGGAACACGTTATGTCCTAGACG -ACGGAACACGTTATGTCCGTAACG -ACGGAACACGTTATGTCCACTTCG -ACGGAACACGTTATGTCCTACGCA -ACGGAACACGTTATGTCCCTTGCA -ACGGAACACGTTATGTCCCGAACA -ACGGAACACGTTATGTCCCAGTCA -ACGGAACACGTTATGTCCGATCCA -ACGGAACACGTTATGTCCACGACA -ACGGAACACGTTATGTCCAGCTCA -ACGGAACACGTTATGTCCTCACGT -ACGGAACACGTTATGTCCCGTAGT -ACGGAACACGTTATGTCCGTCAGT -ACGGAACACGTTATGTCCGAAGGT -ACGGAACACGTTATGTCCAACCGT -ACGGAACACGTTATGTCCTTGTGC -ACGGAACACGTTATGTCCCTAAGC -ACGGAACACGTTATGTCCACTAGC -ACGGAACACGTTATGTCCAGATGC -ACGGAACACGTTATGTCCTGAAGG -ACGGAACACGTTATGTCCCAATGG -ACGGAACACGTTATGTCCATGAGG -ACGGAACACGTTATGTCCAATGGG -ACGGAACACGTTATGTCCTCCTGA -ACGGAACACGTTATGTCCTAGCGA -ACGGAACACGTTATGTCCCACAGA -ACGGAACACGTTATGTCCGCAAGA -ACGGAACACGTTATGTCCGGTTGA -ACGGAACACGTTATGTCCTCCGAT -ACGGAACACGTTATGTCCTGGCAT -ACGGAACACGTTATGTCCCGAGAT -ACGGAACACGTTATGTCCTACCAC -ACGGAACACGTTATGTCCCAGAAC -ACGGAACACGTTATGTCCGTCTAC -ACGGAACACGTTATGTCCACGTAC -ACGGAACACGTTATGTCCAGTGAC -ACGGAACACGTTATGTCCCTGTAG -ACGGAACACGTTATGTCCCCTAAG -ACGGAACACGTTATGTCCGTTCAG -ACGGAACACGTTATGTCCGCATAG -ACGGAACACGTTATGTCCGACAAG -ACGGAACACGTTATGTCCAAGCAG -ACGGAACACGTTATGTCCCGTCAA -ACGGAACACGTTATGTCCGCTGAA -ACGGAACACGTTATGTCCAGTACG -ACGGAACACGTTATGTCCATCCGA -ACGGAACACGTTATGTCCATGGGA -ACGGAACACGTTATGTCCGTGCAA -ACGGAACACGTTATGTCCGAGGAA -ACGGAACACGTTATGTCCCAGGTA -ACGGAACACGTTATGTCCGACTCT -ACGGAACACGTTATGTCCAGTCCT -ACGGAACACGTTATGTCCTAAGCC -ACGGAACACGTTATGTCCATAGCC -ACGGAACACGTTATGTCCTAACCG -ACGGAACACGTTATGTCCATGCCA -ACGGAACACGTTGTGTGTGGAAAC -ACGGAACACGTTGTGTGTAACACC -ACGGAACACGTTGTGTGTATCGAG -ACGGAACACGTTGTGTGTCTCCTT -ACGGAACACGTTGTGTGTCCTGTT -ACGGAACACGTTGTGTGTCGGTTT -ACGGAACACGTTGTGTGTGTGGTT -ACGGAACACGTTGTGTGTGCCTTT -ACGGAACACGTTGTGTGTGGTCTT -ACGGAACACGTTGTGTGTACGCTT -ACGGAACACGTTGTGTGTAGCGTT -ACGGAACACGTTGTGTGTTTCGTC -ACGGAACACGTTGTGTGTTCTCTC -ACGGAACACGTTGTGTGTTGGATC -ACGGAACACGTTGTGTGTCACTTC -ACGGAACACGTTGTGTGTGTACTC -ACGGAACACGTTGTGTGTGATGTC -ACGGAACACGTTGTGTGTACAGTC -ACGGAACACGTTGTGTGTTTGCTG -ACGGAACACGTTGTGTGTTCCATG -ACGGAACACGTTGTGTGTTGTGTG -ACGGAACACGTTGTGTGTCTAGTG -ACGGAACACGTTGTGTGTCATCTG -ACGGAACACGTTGTGTGTGAGTTG -ACGGAACACGTTGTGTGTAGACTG -ACGGAACACGTTGTGTGTTCGGTA -ACGGAACACGTTGTGTGTTGCCTA -ACGGAACACGTTGTGTGTCCACTA -ACGGAACACGTTGTGTGTGGAGTA -ACGGAACACGTTGTGTGTTCGTCT -ACGGAACACGTTGTGTGTTGCACT -ACGGAACACGTTGTGTGTCTGACT -ACGGAACACGTTGTGTGTCAACCT -ACGGAACACGTTGTGTGTGCTACT -ACGGAACACGTTGTGTGTGGATCT -ACGGAACACGTTGTGTGTAAGGCT -ACGGAACACGTTGTGTGTTCAACC -ACGGAACACGTTGTGTGTTGTTCC -ACGGAACACGTTGTGTGTATTCCC -ACGGAACACGTTGTGTGTTTCTCG -ACGGAACACGTTGTGTGTTAGACG -ACGGAACACGTTGTGTGTGTAACG -ACGGAACACGTTGTGTGTACTTCG -ACGGAACACGTTGTGTGTTACGCA -ACGGAACACGTTGTGTGTCTTGCA -ACGGAACACGTTGTGTGTCGAACA -ACGGAACACGTTGTGTGTCAGTCA -ACGGAACACGTTGTGTGTGATCCA -ACGGAACACGTTGTGTGTACGACA -ACGGAACACGTTGTGTGTAGCTCA -ACGGAACACGTTGTGTGTTCACGT -ACGGAACACGTTGTGTGTCGTAGT -ACGGAACACGTTGTGTGTGTCAGT -ACGGAACACGTTGTGTGTGAAGGT -ACGGAACACGTTGTGTGTAACCGT -ACGGAACACGTTGTGTGTTTGTGC -ACGGAACACGTTGTGTGTCTAAGC -ACGGAACACGTTGTGTGTACTAGC -ACGGAACACGTTGTGTGTAGATGC -ACGGAACACGTTGTGTGTTGAAGG -ACGGAACACGTTGTGTGTCAATGG -ACGGAACACGTTGTGTGTATGAGG -ACGGAACACGTTGTGTGTAATGGG -ACGGAACACGTTGTGTGTTCCTGA -ACGGAACACGTTGTGTGTTAGCGA -ACGGAACACGTTGTGTGTCACAGA -ACGGAACACGTTGTGTGTGCAAGA -ACGGAACACGTTGTGTGTGGTTGA -ACGGAACACGTTGTGTGTTCCGAT -ACGGAACACGTTGTGTGTTGGCAT -ACGGAACACGTTGTGTGTCGAGAT -ACGGAACACGTTGTGTGTTACCAC -ACGGAACACGTTGTGTGTCAGAAC -ACGGAACACGTTGTGTGTGTCTAC -ACGGAACACGTTGTGTGTACGTAC -ACGGAACACGTTGTGTGTAGTGAC -ACGGAACACGTTGTGTGTCTGTAG -ACGGAACACGTTGTGTGTCCTAAG -ACGGAACACGTTGTGTGTGTTCAG -ACGGAACACGTTGTGTGTGCATAG -ACGGAACACGTTGTGTGTGACAAG -ACGGAACACGTTGTGTGTAAGCAG -ACGGAACACGTTGTGTGTCGTCAA -ACGGAACACGTTGTGTGTGCTGAA -ACGGAACACGTTGTGTGTAGTACG -ACGGAACACGTTGTGTGTATCCGA -ACGGAACACGTTGTGTGTATGGGA -ACGGAACACGTTGTGTGTGTGCAA -ACGGAACACGTTGTGTGTGAGGAA -ACGGAACACGTTGTGTGTCAGGTA -ACGGAACACGTTGTGTGTGACTCT -ACGGAACACGTTGTGTGTAGTCCT -ACGGAACACGTTGTGTGTTAAGCC -ACGGAACACGTTGTGTGTATAGCC -ACGGAACACGTTGTGTGTTAACCG -ACGGAACACGTTGTGTGTATGCCA -ACGGAACACGTTGTGCTAGGAAAC -ACGGAACACGTTGTGCTAAACACC -ACGGAACACGTTGTGCTAATCGAG -ACGGAACACGTTGTGCTACTCCTT -ACGGAACACGTTGTGCTACCTGTT -ACGGAACACGTTGTGCTACGGTTT -ACGGAACACGTTGTGCTAGTGGTT -ACGGAACACGTTGTGCTAGCCTTT -ACGGAACACGTTGTGCTAGGTCTT -ACGGAACACGTTGTGCTAACGCTT -ACGGAACACGTTGTGCTAAGCGTT -ACGGAACACGTTGTGCTATTCGTC -ACGGAACACGTTGTGCTATCTCTC -ACGGAACACGTTGTGCTATGGATC -ACGGAACACGTTGTGCTACACTTC -ACGGAACACGTTGTGCTAGTACTC -ACGGAACACGTTGTGCTAGATGTC -ACGGAACACGTTGTGCTAACAGTC -ACGGAACACGTTGTGCTATTGCTG -ACGGAACACGTTGTGCTATCCATG -ACGGAACACGTTGTGCTATGTGTG -ACGGAACACGTTGTGCTACTAGTG -ACGGAACACGTTGTGCTACATCTG -ACGGAACACGTTGTGCTAGAGTTG -ACGGAACACGTTGTGCTAAGACTG -ACGGAACACGTTGTGCTATCGGTA -ACGGAACACGTTGTGCTATGCCTA -ACGGAACACGTTGTGCTACCACTA -ACGGAACACGTTGTGCTAGGAGTA -ACGGAACACGTTGTGCTATCGTCT -ACGGAACACGTTGTGCTATGCACT -ACGGAACACGTTGTGCTACTGACT -ACGGAACACGTTGTGCTACAACCT -ACGGAACACGTTGTGCTAGCTACT -ACGGAACACGTTGTGCTAGGATCT -ACGGAACACGTTGTGCTAAAGGCT -ACGGAACACGTTGTGCTATCAACC -ACGGAACACGTTGTGCTATGTTCC -ACGGAACACGTTGTGCTAATTCCC -ACGGAACACGTTGTGCTATTCTCG -ACGGAACACGTTGTGCTATAGACG -ACGGAACACGTTGTGCTAGTAACG -ACGGAACACGTTGTGCTAACTTCG -ACGGAACACGTTGTGCTATACGCA -ACGGAACACGTTGTGCTACTTGCA -ACGGAACACGTTGTGCTACGAACA -ACGGAACACGTTGTGCTACAGTCA -ACGGAACACGTTGTGCTAGATCCA -ACGGAACACGTTGTGCTAACGACA -ACGGAACACGTTGTGCTAAGCTCA -ACGGAACACGTTGTGCTATCACGT -ACGGAACACGTTGTGCTACGTAGT -ACGGAACACGTTGTGCTAGTCAGT -ACGGAACACGTTGTGCTAGAAGGT -ACGGAACACGTTGTGCTAAACCGT -ACGGAACACGTTGTGCTATTGTGC -ACGGAACACGTTGTGCTACTAAGC -ACGGAACACGTTGTGCTAACTAGC -ACGGAACACGTTGTGCTAAGATGC -ACGGAACACGTTGTGCTATGAAGG -ACGGAACACGTTGTGCTACAATGG -ACGGAACACGTTGTGCTAATGAGG -ACGGAACACGTTGTGCTAAATGGG -ACGGAACACGTTGTGCTATCCTGA -ACGGAACACGTTGTGCTATAGCGA -ACGGAACACGTTGTGCTACACAGA -ACGGAACACGTTGTGCTAGCAAGA -ACGGAACACGTTGTGCTAGGTTGA -ACGGAACACGTTGTGCTATCCGAT -ACGGAACACGTTGTGCTATGGCAT -ACGGAACACGTTGTGCTACGAGAT -ACGGAACACGTTGTGCTATACCAC -ACGGAACACGTTGTGCTACAGAAC -ACGGAACACGTTGTGCTAGTCTAC -ACGGAACACGTTGTGCTAACGTAC -ACGGAACACGTTGTGCTAAGTGAC -ACGGAACACGTTGTGCTACTGTAG -ACGGAACACGTTGTGCTACCTAAG -ACGGAACACGTTGTGCTAGTTCAG -ACGGAACACGTTGTGCTAGCATAG -ACGGAACACGTTGTGCTAGACAAG -ACGGAACACGTTGTGCTAAAGCAG -ACGGAACACGTTGTGCTACGTCAA -ACGGAACACGTTGTGCTAGCTGAA -ACGGAACACGTTGTGCTAAGTACG -ACGGAACACGTTGTGCTAATCCGA -ACGGAACACGTTGTGCTAATGGGA -ACGGAACACGTTGTGCTAGTGCAA -ACGGAACACGTTGTGCTAGAGGAA -ACGGAACACGTTGTGCTACAGGTA -ACGGAACACGTTGTGCTAGACTCT -ACGGAACACGTTGTGCTAAGTCCT -ACGGAACACGTTGTGCTATAAGCC -ACGGAACACGTTGTGCTAATAGCC -ACGGAACACGTTGTGCTATAACCG -ACGGAACACGTTGTGCTAATGCCA -ACGGAACACGTTCTGCATGGAAAC -ACGGAACACGTTCTGCATAACACC -ACGGAACACGTTCTGCATATCGAG -ACGGAACACGTTCTGCATCTCCTT -ACGGAACACGTTCTGCATCCTGTT -ACGGAACACGTTCTGCATCGGTTT -ACGGAACACGTTCTGCATGTGGTT -ACGGAACACGTTCTGCATGCCTTT -ACGGAACACGTTCTGCATGGTCTT -ACGGAACACGTTCTGCATACGCTT -ACGGAACACGTTCTGCATAGCGTT -ACGGAACACGTTCTGCATTTCGTC -ACGGAACACGTTCTGCATTCTCTC -ACGGAACACGTTCTGCATTGGATC -ACGGAACACGTTCTGCATCACTTC -ACGGAACACGTTCTGCATGTACTC -ACGGAACACGTTCTGCATGATGTC -ACGGAACACGTTCTGCATACAGTC -ACGGAACACGTTCTGCATTTGCTG -ACGGAACACGTTCTGCATTCCATG -ACGGAACACGTTCTGCATTGTGTG -ACGGAACACGTTCTGCATCTAGTG -ACGGAACACGTTCTGCATCATCTG -ACGGAACACGTTCTGCATGAGTTG -ACGGAACACGTTCTGCATAGACTG -ACGGAACACGTTCTGCATTCGGTA -ACGGAACACGTTCTGCATTGCCTA -ACGGAACACGTTCTGCATCCACTA -ACGGAACACGTTCTGCATGGAGTA -ACGGAACACGTTCTGCATTCGTCT -ACGGAACACGTTCTGCATTGCACT -ACGGAACACGTTCTGCATCTGACT -ACGGAACACGTTCTGCATCAACCT -ACGGAACACGTTCTGCATGCTACT -ACGGAACACGTTCTGCATGGATCT -ACGGAACACGTTCTGCATAAGGCT -ACGGAACACGTTCTGCATTCAACC -ACGGAACACGTTCTGCATTGTTCC -ACGGAACACGTTCTGCATATTCCC -ACGGAACACGTTCTGCATTTCTCG -ACGGAACACGTTCTGCATTAGACG -ACGGAACACGTTCTGCATGTAACG -ACGGAACACGTTCTGCATACTTCG -ACGGAACACGTTCTGCATTACGCA -ACGGAACACGTTCTGCATCTTGCA -ACGGAACACGTTCTGCATCGAACA -ACGGAACACGTTCTGCATCAGTCA -ACGGAACACGTTCTGCATGATCCA -ACGGAACACGTTCTGCATACGACA -ACGGAACACGTTCTGCATAGCTCA -ACGGAACACGTTCTGCATTCACGT -ACGGAACACGTTCTGCATCGTAGT -ACGGAACACGTTCTGCATGTCAGT -ACGGAACACGTTCTGCATGAAGGT -ACGGAACACGTTCTGCATAACCGT -ACGGAACACGTTCTGCATTTGTGC -ACGGAACACGTTCTGCATCTAAGC -ACGGAACACGTTCTGCATACTAGC -ACGGAACACGTTCTGCATAGATGC -ACGGAACACGTTCTGCATTGAAGG -ACGGAACACGTTCTGCATCAATGG -ACGGAACACGTTCTGCATATGAGG -ACGGAACACGTTCTGCATAATGGG -ACGGAACACGTTCTGCATTCCTGA -ACGGAACACGTTCTGCATTAGCGA -ACGGAACACGTTCTGCATCACAGA -ACGGAACACGTTCTGCATGCAAGA -ACGGAACACGTTCTGCATGGTTGA -ACGGAACACGTTCTGCATTCCGAT -ACGGAACACGTTCTGCATTGGCAT -ACGGAACACGTTCTGCATCGAGAT -ACGGAACACGTTCTGCATTACCAC -ACGGAACACGTTCTGCATCAGAAC -ACGGAACACGTTCTGCATGTCTAC -ACGGAACACGTTCTGCATACGTAC -ACGGAACACGTTCTGCATAGTGAC -ACGGAACACGTTCTGCATCTGTAG -ACGGAACACGTTCTGCATCCTAAG -ACGGAACACGTTCTGCATGTTCAG -ACGGAACACGTTCTGCATGCATAG -ACGGAACACGTTCTGCATGACAAG -ACGGAACACGTTCTGCATAAGCAG -ACGGAACACGTTCTGCATCGTCAA -ACGGAACACGTTCTGCATGCTGAA -ACGGAACACGTTCTGCATAGTACG -ACGGAACACGTTCTGCATATCCGA -ACGGAACACGTTCTGCATATGGGA -ACGGAACACGTTCTGCATGTGCAA -ACGGAACACGTTCTGCATGAGGAA -ACGGAACACGTTCTGCATCAGGTA -ACGGAACACGTTCTGCATGACTCT -ACGGAACACGTTCTGCATAGTCCT -ACGGAACACGTTCTGCATTAAGCC -ACGGAACACGTTCTGCATATAGCC -ACGGAACACGTTCTGCATTAACCG -ACGGAACACGTTCTGCATATGCCA -ACGGAACACGTTTTGGAGGGAAAC -ACGGAACACGTTTTGGAGAACACC -ACGGAACACGTTTTGGAGATCGAG -ACGGAACACGTTTTGGAGCTCCTT -ACGGAACACGTTTTGGAGCCTGTT -ACGGAACACGTTTTGGAGCGGTTT -ACGGAACACGTTTTGGAGGTGGTT -ACGGAACACGTTTTGGAGGCCTTT -ACGGAACACGTTTTGGAGGGTCTT -ACGGAACACGTTTTGGAGACGCTT -ACGGAACACGTTTTGGAGAGCGTT -ACGGAACACGTTTTGGAGTTCGTC -ACGGAACACGTTTTGGAGTCTCTC -ACGGAACACGTTTTGGAGTGGATC -ACGGAACACGTTTTGGAGCACTTC -ACGGAACACGTTTTGGAGGTACTC -ACGGAACACGTTTTGGAGGATGTC -ACGGAACACGTTTTGGAGACAGTC -ACGGAACACGTTTTGGAGTTGCTG -ACGGAACACGTTTTGGAGTCCATG -ACGGAACACGTTTTGGAGTGTGTG -ACGGAACACGTTTTGGAGCTAGTG -ACGGAACACGTTTTGGAGCATCTG -ACGGAACACGTTTTGGAGGAGTTG -ACGGAACACGTTTTGGAGAGACTG -ACGGAACACGTTTTGGAGTCGGTA -ACGGAACACGTTTTGGAGTGCCTA -ACGGAACACGTTTTGGAGCCACTA -ACGGAACACGTTTTGGAGGGAGTA -ACGGAACACGTTTTGGAGTCGTCT -ACGGAACACGTTTTGGAGTGCACT -ACGGAACACGTTTTGGAGCTGACT -ACGGAACACGTTTTGGAGCAACCT -ACGGAACACGTTTTGGAGGCTACT -ACGGAACACGTTTTGGAGGGATCT -ACGGAACACGTTTTGGAGAAGGCT -ACGGAACACGTTTTGGAGTCAACC -ACGGAACACGTTTTGGAGTGTTCC -ACGGAACACGTTTTGGAGATTCCC -ACGGAACACGTTTTGGAGTTCTCG -ACGGAACACGTTTTGGAGTAGACG -ACGGAACACGTTTTGGAGGTAACG -ACGGAACACGTTTTGGAGACTTCG -ACGGAACACGTTTTGGAGTACGCA -ACGGAACACGTTTTGGAGCTTGCA -ACGGAACACGTTTTGGAGCGAACA -ACGGAACACGTTTTGGAGCAGTCA -ACGGAACACGTTTTGGAGGATCCA -ACGGAACACGTTTTGGAGACGACA -ACGGAACACGTTTTGGAGAGCTCA -ACGGAACACGTTTTGGAGTCACGT -ACGGAACACGTTTTGGAGCGTAGT -ACGGAACACGTTTTGGAGGTCAGT -ACGGAACACGTTTTGGAGGAAGGT -ACGGAACACGTTTTGGAGAACCGT -ACGGAACACGTTTTGGAGTTGTGC -ACGGAACACGTTTTGGAGCTAAGC -ACGGAACACGTTTTGGAGACTAGC -ACGGAACACGTTTTGGAGAGATGC -ACGGAACACGTTTTGGAGTGAAGG -ACGGAACACGTTTTGGAGCAATGG -ACGGAACACGTTTTGGAGATGAGG -ACGGAACACGTTTTGGAGAATGGG -ACGGAACACGTTTTGGAGTCCTGA -ACGGAACACGTTTTGGAGTAGCGA -ACGGAACACGTTTTGGAGCACAGA -ACGGAACACGTTTTGGAGGCAAGA -ACGGAACACGTTTTGGAGGGTTGA -ACGGAACACGTTTTGGAGTCCGAT -ACGGAACACGTTTTGGAGTGGCAT -ACGGAACACGTTTTGGAGCGAGAT -ACGGAACACGTTTTGGAGTACCAC -ACGGAACACGTTTTGGAGCAGAAC -ACGGAACACGTTTTGGAGGTCTAC -ACGGAACACGTTTTGGAGACGTAC -ACGGAACACGTTTTGGAGAGTGAC -ACGGAACACGTTTTGGAGCTGTAG -ACGGAACACGTTTTGGAGCCTAAG -ACGGAACACGTTTTGGAGGTTCAG -ACGGAACACGTTTTGGAGGCATAG -ACGGAACACGTTTTGGAGGACAAG -ACGGAACACGTTTTGGAGAAGCAG -ACGGAACACGTTTTGGAGCGTCAA -ACGGAACACGTTTTGGAGGCTGAA -ACGGAACACGTTTTGGAGAGTACG -ACGGAACACGTTTTGGAGATCCGA -ACGGAACACGTTTTGGAGATGGGA -ACGGAACACGTTTTGGAGGTGCAA -ACGGAACACGTTTTGGAGGAGGAA -ACGGAACACGTTTTGGAGCAGGTA -ACGGAACACGTTTTGGAGGACTCT -ACGGAACACGTTTTGGAGAGTCCT -ACGGAACACGTTTTGGAGTAAGCC -ACGGAACACGTTTTGGAGATAGCC -ACGGAACACGTTTTGGAGTAACCG -ACGGAACACGTTTTGGAGATGCCA -ACGGAACACGTTCTGAGAGGAAAC -ACGGAACACGTTCTGAGAAACACC -ACGGAACACGTTCTGAGAATCGAG -ACGGAACACGTTCTGAGACTCCTT -ACGGAACACGTTCTGAGACCTGTT -ACGGAACACGTTCTGAGACGGTTT -ACGGAACACGTTCTGAGAGTGGTT -ACGGAACACGTTCTGAGAGCCTTT -ACGGAACACGTTCTGAGAGGTCTT -ACGGAACACGTTCTGAGAACGCTT -ACGGAACACGTTCTGAGAAGCGTT -ACGGAACACGTTCTGAGATTCGTC -ACGGAACACGTTCTGAGATCTCTC -ACGGAACACGTTCTGAGATGGATC -ACGGAACACGTTCTGAGACACTTC -ACGGAACACGTTCTGAGAGTACTC -ACGGAACACGTTCTGAGAGATGTC -ACGGAACACGTTCTGAGAACAGTC -ACGGAACACGTTCTGAGATTGCTG -ACGGAACACGTTCTGAGATCCATG -ACGGAACACGTTCTGAGATGTGTG -ACGGAACACGTTCTGAGACTAGTG -ACGGAACACGTTCTGAGACATCTG -ACGGAACACGTTCTGAGAGAGTTG -ACGGAACACGTTCTGAGAAGACTG -ACGGAACACGTTCTGAGATCGGTA -ACGGAACACGTTCTGAGATGCCTA -ACGGAACACGTTCTGAGACCACTA -ACGGAACACGTTCTGAGAGGAGTA -ACGGAACACGTTCTGAGATCGTCT -ACGGAACACGTTCTGAGATGCACT -ACGGAACACGTTCTGAGACTGACT -ACGGAACACGTTCTGAGACAACCT -ACGGAACACGTTCTGAGAGCTACT -ACGGAACACGTTCTGAGAGGATCT -ACGGAACACGTTCTGAGAAAGGCT -ACGGAACACGTTCTGAGATCAACC -ACGGAACACGTTCTGAGATGTTCC -ACGGAACACGTTCTGAGAATTCCC -ACGGAACACGTTCTGAGATTCTCG -ACGGAACACGTTCTGAGATAGACG -ACGGAACACGTTCTGAGAGTAACG -ACGGAACACGTTCTGAGAACTTCG -ACGGAACACGTTCTGAGATACGCA -ACGGAACACGTTCTGAGACTTGCA -ACGGAACACGTTCTGAGACGAACA -ACGGAACACGTTCTGAGACAGTCA -ACGGAACACGTTCTGAGAGATCCA -ACGGAACACGTTCTGAGAACGACA -ACGGAACACGTTCTGAGAAGCTCA -ACGGAACACGTTCTGAGATCACGT -ACGGAACACGTTCTGAGACGTAGT -ACGGAACACGTTCTGAGAGTCAGT -ACGGAACACGTTCTGAGAGAAGGT -ACGGAACACGTTCTGAGAAACCGT -ACGGAACACGTTCTGAGATTGTGC -ACGGAACACGTTCTGAGACTAAGC -ACGGAACACGTTCTGAGAACTAGC -ACGGAACACGTTCTGAGAAGATGC -ACGGAACACGTTCTGAGATGAAGG -ACGGAACACGTTCTGAGACAATGG -ACGGAACACGTTCTGAGAATGAGG -ACGGAACACGTTCTGAGAAATGGG -ACGGAACACGTTCTGAGATCCTGA -ACGGAACACGTTCTGAGATAGCGA -ACGGAACACGTTCTGAGACACAGA -ACGGAACACGTTCTGAGAGCAAGA -ACGGAACACGTTCTGAGAGGTTGA -ACGGAACACGTTCTGAGATCCGAT -ACGGAACACGTTCTGAGATGGCAT -ACGGAACACGTTCTGAGACGAGAT -ACGGAACACGTTCTGAGATACCAC -ACGGAACACGTTCTGAGACAGAAC -ACGGAACACGTTCTGAGAGTCTAC -ACGGAACACGTTCTGAGAACGTAC -ACGGAACACGTTCTGAGAAGTGAC -ACGGAACACGTTCTGAGACTGTAG -ACGGAACACGTTCTGAGACCTAAG -ACGGAACACGTTCTGAGAGTTCAG -ACGGAACACGTTCTGAGAGCATAG -ACGGAACACGTTCTGAGAGACAAG -ACGGAACACGTTCTGAGAAAGCAG -ACGGAACACGTTCTGAGACGTCAA -ACGGAACACGTTCTGAGAGCTGAA -ACGGAACACGTTCTGAGAAGTACG -ACGGAACACGTTCTGAGAATCCGA -ACGGAACACGTTCTGAGAATGGGA -ACGGAACACGTTCTGAGAGTGCAA -ACGGAACACGTTCTGAGAGAGGAA -ACGGAACACGTTCTGAGACAGGTA -ACGGAACACGTTCTGAGAGACTCT -ACGGAACACGTTCTGAGAAGTCCT -ACGGAACACGTTCTGAGATAAGCC -ACGGAACACGTTCTGAGAATAGCC -ACGGAACACGTTCTGAGATAACCG -ACGGAACACGTTCTGAGAATGCCA -ACGGAACACGTTGTATCGGGAAAC -ACGGAACACGTTGTATCGAACACC -ACGGAACACGTTGTATCGATCGAG -ACGGAACACGTTGTATCGCTCCTT -ACGGAACACGTTGTATCGCCTGTT -ACGGAACACGTTGTATCGCGGTTT -ACGGAACACGTTGTATCGGTGGTT -ACGGAACACGTTGTATCGGCCTTT -ACGGAACACGTTGTATCGGGTCTT -ACGGAACACGTTGTATCGACGCTT -ACGGAACACGTTGTATCGAGCGTT -ACGGAACACGTTGTATCGTTCGTC -ACGGAACACGTTGTATCGTCTCTC -ACGGAACACGTTGTATCGTGGATC -ACGGAACACGTTGTATCGCACTTC -ACGGAACACGTTGTATCGGTACTC -ACGGAACACGTTGTATCGGATGTC -ACGGAACACGTTGTATCGACAGTC -ACGGAACACGTTGTATCGTTGCTG -ACGGAACACGTTGTATCGTCCATG -ACGGAACACGTTGTATCGTGTGTG -ACGGAACACGTTGTATCGCTAGTG -ACGGAACACGTTGTATCGCATCTG -ACGGAACACGTTGTATCGGAGTTG -ACGGAACACGTTGTATCGAGACTG -ACGGAACACGTTGTATCGTCGGTA -ACGGAACACGTTGTATCGTGCCTA -ACGGAACACGTTGTATCGCCACTA -ACGGAACACGTTGTATCGGGAGTA -ACGGAACACGTTGTATCGTCGTCT -ACGGAACACGTTGTATCGTGCACT -ACGGAACACGTTGTATCGCTGACT -ACGGAACACGTTGTATCGCAACCT -ACGGAACACGTTGTATCGGCTACT -ACGGAACACGTTGTATCGGGATCT -ACGGAACACGTTGTATCGAAGGCT -ACGGAACACGTTGTATCGTCAACC -ACGGAACACGTTGTATCGTGTTCC -ACGGAACACGTTGTATCGATTCCC -ACGGAACACGTTGTATCGTTCTCG -ACGGAACACGTTGTATCGTAGACG -ACGGAACACGTTGTATCGGTAACG -ACGGAACACGTTGTATCGACTTCG -ACGGAACACGTTGTATCGTACGCA -ACGGAACACGTTGTATCGCTTGCA -ACGGAACACGTTGTATCGCGAACA -ACGGAACACGTTGTATCGCAGTCA -ACGGAACACGTTGTATCGGATCCA -ACGGAACACGTTGTATCGACGACA -ACGGAACACGTTGTATCGAGCTCA -ACGGAACACGTTGTATCGTCACGT -ACGGAACACGTTGTATCGCGTAGT -ACGGAACACGTTGTATCGGTCAGT -ACGGAACACGTTGTATCGGAAGGT -ACGGAACACGTTGTATCGAACCGT -ACGGAACACGTTGTATCGTTGTGC -ACGGAACACGTTGTATCGCTAAGC -ACGGAACACGTTGTATCGACTAGC -ACGGAACACGTTGTATCGAGATGC -ACGGAACACGTTGTATCGTGAAGG -ACGGAACACGTTGTATCGCAATGG -ACGGAACACGTTGTATCGATGAGG -ACGGAACACGTTGTATCGAATGGG -ACGGAACACGTTGTATCGTCCTGA -ACGGAACACGTTGTATCGTAGCGA -ACGGAACACGTTGTATCGCACAGA -ACGGAACACGTTGTATCGGCAAGA -ACGGAACACGTTGTATCGGGTTGA -ACGGAACACGTTGTATCGTCCGAT -ACGGAACACGTTGTATCGTGGCAT -ACGGAACACGTTGTATCGCGAGAT -ACGGAACACGTTGTATCGTACCAC -ACGGAACACGTTGTATCGCAGAAC -ACGGAACACGTTGTATCGGTCTAC -ACGGAACACGTTGTATCGACGTAC -ACGGAACACGTTGTATCGAGTGAC -ACGGAACACGTTGTATCGCTGTAG -ACGGAACACGTTGTATCGCCTAAG -ACGGAACACGTTGTATCGGTTCAG -ACGGAACACGTTGTATCGGCATAG -ACGGAACACGTTGTATCGGACAAG -ACGGAACACGTTGTATCGAAGCAG -ACGGAACACGTTGTATCGCGTCAA -ACGGAACACGTTGTATCGGCTGAA -ACGGAACACGTTGTATCGAGTACG -ACGGAACACGTTGTATCGATCCGA -ACGGAACACGTTGTATCGATGGGA -ACGGAACACGTTGTATCGGTGCAA -ACGGAACACGTTGTATCGGAGGAA -ACGGAACACGTTGTATCGCAGGTA -ACGGAACACGTTGTATCGGACTCT -ACGGAACACGTTGTATCGAGTCCT -ACGGAACACGTTGTATCGTAAGCC -ACGGAACACGTTGTATCGATAGCC -ACGGAACACGTTGTATCGTAACCG -ACGGAACACGTTGTATCGATGCCA -ACGGAACACGTTCTATGCGGAAAC -ACGGAACACGTTCTATGCAACACC -ACGGAACACGTTCTATGCATCGAG -ACGGAACACGTTCTATGCCTCCTT -ACGGAACACGTTCTATGCCCTGTT -ACGGAACACGTTCTATGCCGGTTT -ACGGAACACGTTCTATGCGTGGTT -ACGGAACACGTTCTATGCGCCTTT -ACGGAACACGTTCTATGCGGTCTT -ACGGAACACGTTCTATGCACGCTT -ACGGAACACGTTCTATGCAGCGTT -ACGGAACACGTTCTATGCTTCGTC -ACGGAACACGTTCTATGCTCTCTC -ACGGAACACGTTCTATGCTGGATC -ACGGAACACGTTCTATGCCACTTC -ACGGAACACGTTCTATGCGTACTC -ACGGAACACGTTCTATGCGATGTC -ACGGAACACGTTCTATGCACAGTC -ACGGAACACGTTCTATGCTTGCTG -ACGGAACACGTTCTATGCTCCATG -ACGGAACACGTTCTATGCTGTGTG -ACGGAACACGTTCTATGCCTAGTG -ACGGAACACGTTCTATGCCATCTG -ACGGAACACGTTCTATGCGAGTTG -ACGGAACACGTTCTATGCAGACTG -ACGGAACACGTTCTATGCTCGGTA -ACGGAACACGTTCTATGCTGCCTA -ACGGAACACGTTCTATGCCCACTA -ACGGAACACGTTCTATGCGGAGTA -ACGGAACACGTTCTATGCTCGTCT -ACGGAACACGTTCTATGCTGCACT -ACGGAACACGTTCTATGCCTGACT -ACGGAACACGTTCTATGCCAACCT -ACGGAACACGTTCTATGCGCTACT -ACGGAACACGTTCTATGCGGATCT -ACGGAACACGTTCTATGCAAGGCT -ACGGAACACGTTCTATGCTCAACC -ACGGAACACGTTCTATGCTGTTCC -ACGGAACACGTTCTATGCATTCCC -ACGGAACACGTTCTATGCTTCTCG -ACGGAACACGTTCTATGCTAGACG -ACGGAACACGTTCTATGCGTAACG -ACGGAACACGTTCTATGCACTTCG -ACGGAACACGTTCTATGCTACGCA -ACGGAACACGTTCTATGCCTTGCA -ACGGAACACGTTCTATGCCGAACA -ACGGAACACGTTCTATGCCAGTCA -ACGGAACACGTTCTATGCGATCCA -ACGGAACACGTTCTATGCACGACA -ACGGAACACGTTCTATGCAGCTCA -ACGGAACACGTTCTATGCTCACGT -ACGGAACACGTTCTATGCCGTAGT -ACGGAACACGTTCTATGCGTCAGT -ACGGAACACGTTCTATGCGAAGGT -ACGGAACACGTTCTATGCAACCGT -ACGGAACACGTTCTATGCTTGTGC -ACGGAACACGTTCTATGCCTAAGC -ACGGAACACGTTCTATGCACTAGC -ACGGAACACGTTCTATGCAGATGC -ACGGAACACGTTCTATGCTGAAGG -ACGGAACACGTTCTATGCCAATGG -ACGGAACACGTTCTATGCATGAGG -ACGGAACACGTTCTATGCAATGGG -ACGGAACACGTTCTATGCTCCTGA -ACGGAACACGTTCTATGCTAGCGA -ACGGAACACGTTCTATGCCACAGA -ACGGAACACGTTCTATGCGCAAGA -ACGGAACACGTTCTATGCGGTTGA -ACGGAACACGTTCTATGCTCCGAT -ACGGAACACGTTCTATGCTGGCAT -ACGGAACACGTTCTATGCCGAGAT -ACGGAACACGTTCTATGCTACCAC -ACGGAACACGTTCTATGCCAGAAC -ACGGAACACGTTCTATGCGTCTAC -ACGGAACACGTTCTATGCACGTAC -ACGGAACACGTTCTATGCAGTGAC -ACGGAACACGTTCTATGCCTGTAG -ACGGAACACGTTCTATGCCCTAAG -ACGGAACACGTTCTATGCGTTCAG -ACGGAACACGTTCTATGCGCATAG -ACGGAACACGTTCTATGCGACAAG -ACGGAACACGTTCTATGCAAGCAG -ACGGAACACGTTCTATGCCGTCAA -ACGGAACACGTTCTATGCGCTGAA -ACGGAACACGTTCTATGCAGTACG -ACGGAACACGTTCTATGCATCCGA -ACGGAACACGTTCTATGCATGGGA -ACGGAACACGTTCTATGCGTGCAA -ACGGAACACGTTCTATGCGAGGAA -ACGGAACACGTTCTATGCCAGGTA -ACGGAACACGTTCTATGCGACTCT -ACGGAACACGTTCTATGCAGTCCT -ACGGAACACGTTCTATGCTAAGCC -ACGGAACACGTTCTATGCATAGCC -ACGGAACACGTTCTATGCTAACCG -ACGGAACACGTTCTATGCATGCCA -ACGGAACACGTTCTACCAGGAAAC -ACGGAACACGTTCTACCAAACACC -ACGGAACACGTTCTACCAATCGAG -ACGGAACACGTTCTACCACTCCTT -ACGGAACACGTTCTACCACCTGTT -ACGGAACACGTTCTACCACGGTTT -ACGGAACACGTTCTACCAGTGGTT -ACGGAACACGTTCTACCAGCCTTT -ACGGAACACGTTCTACCAGGTCTT -ACGGAACACGTTCTACCAACGCTT -ACGGAACACGTTCTACCAAGCGTT -ACGGAACACGTTCTACCATTCGTC -ACGGAACACGTTCTACCATCTCTC -ACGGAACACGTTCTACCATGGATC -ACGGAACACGTTCTACCACACTTC -ACGGAACACGTTCTACCAGTACTC -ACGGAACACGTTCTACCAGATGTC -ACGGAACACGTTCTACCAACAGTC -ACGGAACACGTTCTACCATTGCTG -ACGGAACACGTTCTACCATCCATG -ACGGAACACGTTCTACCATGTGTG -ACGGAACACGTTCTACCACTAGTG -ACGGAACACGTTCTACCACATCTG -ACGGAACACGTTCTACCAGAGTTG -ACGGAACACGTTCTACCAAGACTG -ACGGAACACGTTCTACCATCGGTA -ACGGAACACGTTCTACCATGCCTA -ACGGAACACGTTCTACCACCACTA -ACGGAACACGTTCTACCAGGAGTA -ACGGAACACGTTCTACCATCGTCT -ACGGAACACGTTCTACCATGCACT -ACGGAACACGTTCTACCACTGACT -ACGGAACACGTTCTACCACAACCT -ACGGAACACGTTCTACCAGCTACT -ACGGAACACGTTCTACCAGGATCT -ACGGAACACGTTCTACCAAAGGCT -ACGGAACACGTTCTACCATCAACC -ACGGAACACGTTCTACCATGTTCC -ACGGAACACGTTCTACCAATTCCC -ACGGAACACGTTCTACCATTCTCG -ACGGAACACGTTCTACCATAGACG -ACGGAACACGTTCTACCAGTAACG -ACGGAACACGTTCTACCAACTTCG -ACGGAACACGTTCTACCATACGCA -ACGGAACACGTTCTACCACTTGCA -ACGGAACACGTTCTACCACGAACA -ACGGAACACGTTCTACCACAGTCA -ACGGAACACGTTCTACCAGATCCA -ACGGAACACGTTCTACCAACGACA -ACGGAACACGTTCTACCAAGCTCA -ACGGAACACGTTCTACCATCACGT -ACGGAACACGTTCTACCACGTAGT -ACGGAACACGTTCTACCAGTCAGT -ACGGAACACGTTCTACCAGAAGGT -ACGGAACACGTTCTACCAAACCGT -ACGGAACACGTTCTACCATTGTGC -ACGGAACACGTTCTACCACTAAGC -ACGGAACACGTTCTACCAACTAGC -ACGGAACACGTTCTACCAAGATGC -ACGGAACACGTTCTACCATGAAGG -ACGGAACACGTTCTACCACAATGG -ACGGAACACGTTCTACCAATGAGG -ACGGAACACGTTCTACCAAATGGG -ACGGAACACGTTCTACCATCCTGA -ACGGAACACGTTCTACCATAGCGA -ACGGAACACGTTCTACCACACAGA -ACGGAACACGTTCTACCAGCAAGA -ACGGAACACGTTCTACCAGGTTGA -ACGGAACACGTTCTACCATCCGAT -ACGGAACACGTTCTACCATGGCAT -ACGGAACACGTTCTACCACGAGAT -ACGGAACACGTTCTACCATACCAC -ACGGAACACGTTCTACCACAGAAC -ACGGAACACGTTCTACCAGTCTAC -ACGGAACACGTTCTACCAACGTAC -ACGGAACACGTTCTACCAAGTGAC -ACGGAACACGTTCTACCACTGTAG -ACGGAACACGTTCTACCACCTAAG -ACGGAACACGTTCTACCAGTTCAG -ACGGAACACGTTCTACCAGCATAG -ACGGAACACGTTCTACCAGACAAG -ACGGAACACGTTCTACCAAAGCAG -ACGGAACACGTTCTACCACGTCAA -ACGGAACACGTTCTACCAGCTGAA -ACGGAACACGTTCTACCAAGTACG -ACGGAACACGTTCTACCAATCCGA -ACGGAACACGTTCTACCAATGGGA -ACGGAACACGTTCTACCAGTGCAA -ACGGAACACGTTCTACCAGAGGAA -ACGGAACACGTTCTACCACAGGTA -ACGGAACACGTTCTACCAGACTCT -ACGGAACACGTTCTACCAAGTCCT -ACGGAACACGTTCTACCATAAGCC -ACGGAACACGTTCTACCAATAGCC -ACGGAACACGTTCTACCATAACCG -ACGGAACACGTTCTACCAATGCCA -ACGGAACACGTTGTAGGAGGAAAC -ACGGAACACGTTGTAGGAAACACC -ACGGAACACGTTGTAGGAATCGAG -ACGGAACACGTTGTAGGACTCCTT -ACGGAACACGTTGTAGGACCTGTT -ACGGAACACGTTGTAGGACGGTTT -ACGGAACACGTTGTAGGAGTGGTT -ACGGAACACGTTGTAGGAGCCTTT -ACGGAACACGTTGTAGGAGGTCTT -ACGGAACACGTTGTAGGAACGCTT -ACGGAACACGTTGTAGGAAGCGTT -ACGGAACACGTTGTAGGATTCGTC -ACGGAACACGTTGTAGGATCTCTC -ACGGAACACGTTGTAGGATGGATC -ACGGAACACGTTGTAGGACACTTC -ACGGAACACGTTGTAGGAGTACTC -ACGGAACACGTTGTAGGAGATGTC -ACGGAACACGTTGTAGGAACAGTC -ACGGAACACGTTGTAGGATTGCTG -ACGGAACACGTTGTAGGATCCATG -ACGGAACACGTTGTAGGATGTGTG -ACGGAACACGTTGTAGGACTAGTG -ACGGAACACGTTGTAGGACATCTG -ACGGAACACGTTGTAGGAGAGTTG -ACGGAACACGTTGTAGGAAGACTG -ACGGAACACGTTGTAGGATCGGTA -ACGGAACACGTTGTAGGATGCCTA -ACGGAACACGTTGTAGGACCACTA -ACGGAACACGTTGTAGGAGGAGTA -ACGGAACACGTTGTAGGATCGTCT -ACGGAACACGTTGTAGGATGCACT -ACGGAACACGTTGTAGGACTGACT -ACGGAACACGTTGTAGGACAACCT -ACGGAACACGTTGTAGGAGCTACT -ACGGAACACGTTGTAGGAGGATCT -ACGGAACACGTTGTAGGAAAGGCT -ACGGAACACGTTGTAGGATCAACC -ACGGAACACGTTGTAGGATGTTCC -ACGGAACACGTTGTAGGAATTCCC -ACGGAACACGTTGTAGGATTCTCG -ACGGAACACGTTGTAGGATAGACG -ACGGAACACGTTGTAGGAGTAACG -ACGGAACACGTTGTAGGAACTTCG -ACGGAACACGTTGTAGGATACGCA -ACGGAACACGTTGTAGGACTTGCA -ACGGAACACGTTGTAGGACGAACA -ACGGAACACGTTGTAGGACAGTCA -ACGGAACACGTTGTAGGAGATCCA -ACGGAACACGTTGTAGGAACGACA -ACGGAACACGTTGTAGGAAGCTCA -ACGGAACACGTTGTAGGATCACGT -ACGGAACACGTTGTAGGACGTAGT -ACGGAACACGTTGTAGGAGTCAGT -ACGGAACACGTTGTAGGAGAAGGT -ACGGAACACGTTGTAGGAAACCGT -ACGGAACACGTTGTAGGATTGTGC -ACGGAACACGTTGTAGGACTAAGC -ACGGAACACGTTGTAGGAACTAGC -ACGGAACACGTTGTAGGAAGATGC -ACGGAACACGTTGTAGGATGAAGG -ACGGAACACGTTGTAGGACAATGG -ACGGAACACGTTGTAGGAATGAGG -ACGGAACACGTTGTAGGAAATGGG -ACGGAACACGTTGTAGGATCCTGA -ACGGAACACGTTGTAGGATAGCGA -ACGGAACACGTTGTAGGACACAGA -ACGGAACACGTTGTAGGAGCAAGA -ACGGAACACGTTGTAGGAGGTTGA -ACGGAACACGTTGTAGGATCCGAT -ACGGAACACGTTGTAGGATGGCAT -ACGGAACACGTTGTAGGACGAGAT -ACGGAACACGTTGTAGGATACCAC -ACGGAACACGTTGTAGGACAGAAC -ACGGAACACGTTGTAGGAGTCTAC -ACGGAACACGTTGTAGGAACGTAC -ACGGAACACGTTGTAGGAAGTGAC -ACGGAACACGTTGTAGGACTGTAG -ACGGAACACGTTGTAGGACCTAAG -ACGGAACACGTTGTAGGAGTTCAG -ACGGAACACGTTGTAGGAGCATAG -ACGGAACACGTTGTAGGAGACAAG -ACGGAACACGTTGTAGGAAAGCAG -ACGGAACACGTTGTAGGACGTCAA -ACGGAACACGTTGTAGGAGCTGAA -ACGGAACACGTTGTAGGAAGTACG -ACGGAACACGTTGTAGGAATCCGA -ACGGAACACGTTGTAGGAATGGGA -ACGGAACACGTTGTAGGAGTGCAA -ACGGAACACGTTGTAGGAGAGGAA -ACGGAACACGTTGTAGGACAGGTA -ACGGAACACGTTGTAGGAGACTCT -ACGGAACACGTTGTAGGAAGTCCT -ACGGAACACGTTGTAGGATAAGCC -ACGGAACACGTTGTAGGAATAGCC -ACGGAACACGTTGTAGGATAACCG -ACGGAACACGTTGTAGGAATGCCA -ACGGAACACGTTTCTTCGGGAAAC -ACGGAACACGTTTCTTCGAACACC -ACGGAACACGTTTCTTCGATCGAG -ACGGAACACGTTTCTTCGCTCCTT -ACGGAACACGTTTCTTCGCCTGTT -ACGGAACACGTTTCTTCGCGGTTT -ACGGAACACGTTTCTTCGGTGGTT -ACGGAACACGTTTCTTCGGCCTTT -ACGGAACACGTTTCTTCGGGTCTT -ACGGAACACGTTTCTTCGACGCTT -ACGGAACACGTTTCTTCGAGCGTT -ACGGAACACGTTTCTTCGTTCGTC -ACGGAACACGTTTCTTCGTCTCTC -ACGGAACACGTTTCTTCGTGGATC -ACGGAACACGTTTCTTCGCACTTC -ACGGAACACGTTTCTTCGGTACTC -ACGGAACACGTTTCTTCGGATGTC -ACGGAACACGTTTCTTCGACAGTC -ACGGAACACGTTTCTTCGTTGCTG -ACGGAACACGTTTCTTCGTCCATG -ACGGAACACGTTTCTTCGTGTGTG -ACGGAACACGTTTCTTCGCTAGTG -ACGGAACACGTTTCTTCGCATCTG -ACGGAACACGTTTCTTCGGAGTTG -ACGGAACACGTTTCTTCGAGACTG -ACGGAACACGTTTCTTCGTCGGTA -ACGGAACACGTTTCTTCGTGCCTA -ACGGAACACGTTTCTTCGCCACTA -ACGGAACACGTTTCTTCGGGAGTA -ACGGAACACGTTTCTTCGTCGTCT -ACGGAACACGTTTCTTCGTGCACT -ACGGAACACGTTTCTTCGCTGACT -ACGGAACACGTTTCTTCGCAACCT -ACGGAACACGTTTCTTCGGCTACT -ACGGAACACGTTTCTTCGGGATCT -ACGGAACACGTTTCTTCGAAGGCT -ACGGAACACGTTTCTTCGTCAACC -ACGGAACACGTTTCTTCGTGTTCC -ACGGAACACGTTTCTTCGATTCCC -ACGGAACACGTTTCTTCGTTCTCG -ACGGAACACGTTTCTTCGTAGACG -ACGGAACACGTTTCTTCGGTAACG -ACGGAACACGTTTCTTCGACTTCG -ACGGAACACGTTTCTTCGTACGCA -ACGGAACACGTTTCTTCGCTTGCA -ACGGAACACGTTTCTTCGCGAACA -ACGGAACACGTTTCTTCGCAGTCA -ACGGAACACGTTTCTTCGGATCCA -ACGGAACACGTTTCTTCGACGACA -ACGGAACACGTTTCTTCGAGCTCA -ACGGAACACGTTTCTTCGTCACGT -ACGGAACACGTTTCTTCGCGTAGT -ACGGAACACGTTTCTTCGGTCAGT -ACGGAACACGTTTCTTCGGAAGGT -ACGGAACACGTTTCTTCGAACCGT -ACGGAACACGTTTCTTCGTTGTGC -ACGGAACACGTTTCTTCGCTAAGC -ACGGAACACGTTTCTTCGACTAGC -ACGGAACACGTTTCTTCGAGATGC -ACGGAACACGTTTCTTCGTGAAGG -ACGGAACACGTTTCTTCGCAATGG -ACGGAACACGTTTCTTCGATGAGG -ACGGAACACGTTTCTTCGAATGGG -ACGGAACACGTTTCTTCGTCCTGA -ACGGAACACGTTTCTTCGTAGCGA -ACGGAACACGTTTCTTCGCACAGA -ACGGAACACGTTTCTTCGGCAAGA -ACGGAACACGTTTCTTCGGGTTGA -ACGGAACACGTTTCTTCGTCCGAT -ACGGAACACGTTTCTTCGTGGCAT -ACGGAACACGTTTCTTCGCGAGAT -ACGGAACACGTTTCTTCGTACCAC -ACGGAACACGTTTCTTCGCAGAAC -ACGGAACACGTTTCTTCGGTCTAC -ACGGAACACGTTTCTTCGACGTAC -ACGGAACACGTTTCTTCGAGTGAC -ACGGAACACGTTTCTTCGCTGTAG -ACGGAACACGTTTCTTCGCCTAAG -ACGGAACACGTTTCTTCGGTTCAG -ACGGAACACGTTTCTTCGGCATAG -ACGGAACACGTTTCTTCGGACAAG -ACGGAACACGTTTCTTCGAAGCAG -ACGGAACACGTTTCTTCGCGTCAA -ACGGAACACGTTTCTTCGGCTGAA -ACGGAACACGTTTCTTCGAGTACG -ACGGAACACGTTTCTTCGATCCGA -ACGGAACACGTTTCTTCGATGGGA -ACGGAACACGTTTCTTCGGTGCAA -ACGGAACACGTTTCTTCGGAGGAA -ACGGAACACGTTTCTTCGCAGGTA -ACGGAACACGTTTCTTCGGACTCT -ACGGAACACGTTTCTTCGAGTCCT -ACGGAACACGTTTCTTCGTAAGCC -ACGGAACACGTTTCTTCGATAGCC -ACGGAACACGTTTCTTCGTAACCG -ACGGAACACGTTTCTTCGATGCCA -ACGGAACACGTTACTTGCGGAAAC -ACGGAACACGTTACTTGCAACACC -ACGGAACACGTTACTTGCATCGAG -ACGGAACACGTTACTTGCCTCCTT -ACGGAACACGTTACTTGCCCTGTT -ACGGAACACGTTACTTGCCGGTTT -ACGGAACACGTTACTTGCGTGGTT -ACGGAACACGTTACTTGCGCCTTT -ACGGAACACGTTACTTGCGGTCTT -ACGGAACACGTTACTTGCACGCTT -ACGGAACACGTTACTTGCAGCGTT -ACGGAACACGTTACTTGCTTCGTC -ACGGAACACGTTACTTGCTCTCTC -ACGGAACACGTTACTTGCTGGATC -ACGGAACACGTTACTTGCCACTTC -ACGGAACACGTTACTTGCGTACTC -ACGGAACACGTTACTTGCGATGTC -ACGGAACACGTTACTTGCACAGTC -ACGGAACACGTTACTTGCTTGCTG -ACGGAACACGTTACTTGCTCCATG -ACGGAACACGTTACTTGCTGTGTG -ACGGAACACGTTACTTGCCTAGTG -ACGGAACACGTTACTTGCCATCTG -ACGGAACACGTTACTTGCGAGTTG -ACGGAACACGTTACTTGCAGACTG -ACGGAACACGTTACTTGCTCGGTA -ACGGAACACGTTACTTGCTGCCTA -ACGGAACACGTTACTTGCCCACTA -ACGGAACACGTTACTTGCGGAGTA -ACGGAACACGTTACTTGCTCGTCT -ACGGAACACGTTACTTGCTGCACT -ACGGAACACGTTACTTGCCTGACT -ACGGAACACGTTACTTGCCAACCT -ACGGAACACGTTACTTGCGCTACT -ACGGAACACGTTACTTGCGGATCT -ACGGAACACGTTACTTGCAAGGCT -ACGGAACACGTTACTTGCTCAACC -ACGGAACACGTTACTTGCTGTTCC -ACGGAACACGTTACTTGCATTCCC -ACGGAACACGTTACTTGCTTCTCG -ACGGAACACGTTACTTGCTAGACG -ACGGAACACGTTACTTGCGTAACG -ACGGAACACGTTACTTGCACTTCG -ACGGAACACGTTACTTGCTACGCA -ACGGAACACGTTACTTGCCTTGCA -ACGGAACACGTTACTTGCCGAACA -ACGGAACACGTTACTTGCCAGTCA -ACGGAACACGTTACTTGCGATCCA -ACGGAACACGTTACTTGCACGACA -ACGGAACACGTTACTTGCAGCTCA -ACGGAACACGTTACTTGCTCACGT -ACGGAACACGTTACTTGCCGTAGT -ACGGAACACGTTACTTGCGTCAGT -ACGGAACACGTTACTTGCGAAGGT -ACGGAACACGTTACTTGCAACCGT -ACGGAACACGTTACTTGCTTGTGC -ACGGAACACGTTACTTGCCTAAGC -ACGGAACACGTTACTTGCACTAGC -ACGGAACACGTTACTTGCAGATGC -ACGGAACACGTTACTTGCTGAAGG -ACGGAACACGTTACTTGCCAATGG -ACGGAACACGTTACTTGCATGAGG -ACGGAACACGTTACTTGCAATGGG -ACGGAACACGTTACTTGCTCCTGA -ACGGAACACGTTACTTGCTAGCGA -ACGGAACACGTTACTTGCCACAGA -ACGGAACACGTTACTTGCGCAAGA -ACGGAACACGTTACTTGCGGTTGA -ACGGAACACGTTACTTGCTCCGAT -ACGGAACACGTTACTTGCTGGCAT -ACGGAACACGTTACTTGCCGAGAT -ACGGAACACGTTACTTGCTACCAC -ACGGAACACGTTACTTGCCAGAAC -ACGGAACACGTTACTTGCGTCTAC -ACGGAACACGTTACTTGCACGTAC -ACGGAACACGTTACTTGCAGTGAC -ACGGAACACGTTACTTGCCTGTAG -ACGGAACACGTTACTTGCCCTAAG -ACGGAACACGTTACTTGCGTTCAG -ACGGAACACGTTACTTGCGCATAG -ACGGAACACGTTACTTGCGACAAG -ACGGAACACGTTACTTGCAAGCAG -ACGGAACACGTTACTTGCCGTCAA -ACGGAACACGTTACTTGCGCTGAA -ACGGAACACGTTACTTGCAGTACG -ACGGAACACGTTACTTGCATCCGA -ACGGAACACGTTACTTGCATGGGA -ACGGAACACGTTACTTGCGTGCAA -ACGGAACACGTTACTTGCGAGGAA -ACGGAACACGTTACTTGCCAGGTA -ACGGAACACGTTACTTGCGACTCT -ACGGAACACGTTACTTGCAGTCCT -ACGGAACACGTTACTTGCTAAGCC -ACGGAACACGTTACTTGCATAGCC -ACGGAACACGTTACTTGCTAACCG -ACGGAACACGTTACTTGCATGCCA -ACGGAACACGTTACTCTGGGAAAC -ACGGAACACGTTACTCTGAACACC -ACGGAACACGTTACTCTGATCGAG -ACGGAACACGTTACTCTGCTCCTT -ACGGAACACGTTACTCTGCCTGTT -ACGGAACACGTTACTCTGCGGTTT -ACGGAACACGTTACTCTGGTGGTT -ACGGAACACGTTACTCTGGCCTTT -ACGGAACACGTTACTCTGGGTCTT -ACGGAACACGTTACTCTGACGCTT -ACGGAACACGTTACTCTGAGCGTT -ACGGAACACGTTACTCTGTTCGTC -ACGGAACACGTTACTCTGTCTCTC -ACGGAACACGTTACTCTGTGGATC -ACGGAACACGTTACTCTGCACTTC -ACGGAACACGTTACTCTGGTACTC -ACGGAACACGTTACTCTGGATGTC -ACGGAACACGTTACTCTGACAGTC -ACGGAACACGTTACTCTGTTGCTG -ACGGAACACGTTACTCTGTCCATG -ACGGAACACGTTACTCTGTGTGTG -ACGGAACACGTTACTCTGCTAGTG -ACGGAACACGTTACTCTGCATCTG -ACGGAACACGTTACTCTGGAGTTG -ACGGAACACGTTACTCTGAGACTG -ACGGAACACGTTACTCTGTCGGTA -ACGGAACACGTTACTCTGTGCCTA -ACGGAACACGTTACTCTGCCACTA -ACGGAACACGTTACTCTGGGAGTA -ACGGAACACGTTACTCTGTCGTCT -ACGGAACACGTTACTCTGTGCACT -ACGGAACACGTTACTCTGCTGACT -ACGGAACACGTTACTCTGCAACCT -ACGGAACACGTTACTCTGGCTACT -ACGGAACACGTTACTCTGGGATCT -ACGGAACACGTTACTCTGAAGGCT -ACGGAACACGTTACTCTGTCAACC -ACGGAACACGTTACTCTGTGTTCC -ACGGAACACGTTACTCTGATTCCC -ACGGAACACGTTACTCTGTTCTCG -ACGGAACACGTTACTCTGTAGACG -ACGGAACACGTTACTCTGGTAACG -ACGGAACACGTTACTCTGACTTCG -ACGGAACACGTTACTCTGTACGCA -ACGGAACACGTTACTCTGCTTGCA -ACGGAACACGTTACTCTGCGAACA -ACGGAACACGTTACTCTGCAGTCA -ACGGAACACGTTACTCTGGATCCA -ACGGAACACGTTACTCTGACGACA -ACGGAACACGTTACTCTGAGCTCA -ACGGAACACGTTACTCTGTCACGT -ACGGAACACGTTACTCTGCGTAGT -ACGGAACACGTTACTCTGGTCAGT -ACGGAACACGTTACTCTGGAAGGT -ACGGAACACGTTACTCTGAACCGT -ACGGAACACGTTACTCTGTTGTGC -ACGGAACACGTTACTCTGCTAAGC -ACGGAACACGTTACTCTGACTAGC -ACGGAACACGTTACTCTGAGATGC -ACGGAACACGTTACTCTGTGAAGG -ACGGAACACGTTACTCTGCAATGG -ACGGAACACGTTACTCTGATGAGG -ACGGAACACGTTACTCTGAATGGG -ACGGAACACGTTACTCTGTCCTGA -ACGGAACACGTTACTCTGTAGCGA -ACGGAACACGTTACTCTGCACAGA -ACGGAACACGTTACTCTGGCAAGA -ACGGAACACGTTACTCTGGGTTGA -ACGGAACACGTTACTCTGTCCGAT -ACGGAACACGTTACTCTGTGGCAT -ACGGAACACGTTACTCTGCGAGAT -ACGGAACACGTTACTCTGTACCAC -ACGGAACACGTTACTCTGCAGAAC -ACGGAACACGTTACTCTGGTCTAC -ACGGAACACGTTACTCTGACGTAC -ACGGAACACGTTACTCTGAGTGAC -ACGGAACACGTTACTCTGCTGTAG -ACGGAACACGTTACTCTGCCTAAG -ACGGAACACGTTACTCTGGTTCAG -ACGGAACACGTTACTCTGGCATAG -ACGGAACACGTTACTCTGGACAAG -ACGGAACACGTTACTCTGAAGCAG -ACGGAACACGTTACTCTGCGTCAA -ACGGAACACGTTACTCTGGCTGAA -ACGGAACACGTTACTCTGAGTACG -ACGGAACACGTTACTCTGATCCGA -ACGGAACACGTTACTCTGATGGGA -ACGGAACACGTTACTCTGGTGCAA -ACGGAACACGTTACTCTGGAGGAA -ACGGAACACGTTACTCTGCAGGTA -ACGGAACACGTTACTCTGGACTCT -ACGGAACACGTTACTCTGAGTCCT -ACGGAACACGTTACTCTGTAAGCC -ACGGAACACGTTACTCTGATAGCC -ACGGAACACGTTACTCTGTAACCG -ACGGAACACGTTACTCTGATGCCA -ACGGAACACGTTCCTCAAGGAAAC -ACGGAACACGTTCCTCAAAACACC -ACGGAACACGTTCCTCAAATCGAG -ACGGAACACGTTCCTCAACTCCTT -ACGGAACACGTTCCTCAACCTGTT -ACGGAACACGTTCCTCAACGGTTT -ACGGAACACGTTCCTCAAGTGGTT -ACGGAACACGTTCCTCAAGCCTTT -ACGGAACACGTTCCTCAAGGTCTT -ACGGAACACGTTCCTCAAACGCTT -ACGGAACACGTTCCTCAAAGCGTT -ACGGAACACGTTCCTCAATTCGTC -ACGGAACACGTTCCTCAATCTCTC -ACGGAACACGTTCCTCAATGGATC -ACGGAACACGTTCCTCAACACTTC -ACGGAACACGTTCCTCAAGTACTC -ACGGAACACGTTCCTCAAGATGTC -ACGGAACACGTTCCTCAAACAGTC -ACGGAACACGTTCCTCAATTGCTG -ACGGAACACGTTCCTCAATCCATG -ACGGAACACGTTCCTCAATGTGTG -ACGGAACACGTTCCTCAACTAGTG -ACGGAACACGTTCCTCAACATCTG -ACGGAACACGTTCCTCAAGAGTTG -ACGGAACACGTTCCTCAAAGACTG -ACGGAACACGTTCCTCAATCGGTA -ACGGAACACGTTCCTCAATGCCTA -ACGGAACACGTTCCTCAACCACTA -ACGGAACACGTTCCTCAAGGAGTA -ACGGAACACGTTCCTCAATCGTCT -ACGGAACACGTTCCTCAATGCACT -ACGGAACACGTTCCTCAACTGACT -ACGGAACACGTTCCTCAACAACCT -ACGGAACACGTTCCTCAAGCTACT -ACGGAACACGTTCCTCAAGGATCT -ACGGAACACGTTCCTCAAAAGGCT -ACGGAACACGTTCCTCAATCAACC -ACGGAACACGTTCCTCAATGTTCC -ACGGAACACGTTCCTCAAATTCCC -ACGGAACACGTTCCTCAATTCTCG -ACGGAACACGTTCCTCAATAGACG -ACGGAACACGTTCCTCAAGTAACG -ACGGAACACGTTCCTCAAACTTCG -ACGGAACACGTTCCTCAATACGCA -ACGGAACACGTTCCTCAACTTGCA -ACGGAACACGTTCCTCAACGAACA -ACGGAACACGTTCCTCAACAGTCA -ACGGAACACGTTCCTCAAGATCCA -ACGGAACACGTTCCTCAAACGACA -ACGGAACACGTTCCTCAAAGCTCA -ACGGAACACGTTCCTCAATCACGT -ACGGAACACGTTCCTCAACGTAGT -ACGGAACACGTTCCTCAAGTCAGT -ACGGAACACGTTCCTCAAGAAGGT -ACGGAACACGTTCCTCAAAACCGT -ACGGAACACGTTCCTCAATTGTGC -ACGGAACACGTTCCTCAACTAAGC -ACGGAACACGTTCCTCAAACTAGC -ACGGAACACGTTCCTCAAAGATGC -ACGGAACACGTTCCTCAATGAAGG -ACGGAACACGTTCCTCAACAATGG -ACGGAACACGTTCCTCAAATGAGG -ACGGAACACGTTCCTCAAAATGGG -ACGGAACACGTTCCTCAATCCTGA -ACGGAACACGTTCCTCAATAGCGA -ACGGAACACGTTCCTCAACACAGA -ACGGAACACGTTCCTCAAGCAAGA -ACGGAACACGTTCCTCAAGGTTGA -ACGGAACACGTTCCTCAATCCGAT -ACGGAACACGTTCCTCAATGGCAT -ACGGAACACGTTCCTCAACGAGAT -ACGGAACACGTTCCTCAATACCAC -ACGGAACACGTTCCTCAACAGAAC -ACGGAACACGTTCCTCAAGTCTAC -ACGGAACACGTTCCTCAAACGTAC -ACGGAACACGTTCCTCAAAGTGAC -ACGGAACACGTTCCTCAACTGTAG -ACGGAACACGTTCCTCAACCTAAG -ACGGAACACGTTCCTCAAGTTCAG -ACGGAACACGTTCCTCAAGCATAG -ACGGAACACGTTCCTCAAGACAAG -ACGGAACACGTTCCTCAAAAGCAG -ACGGAACACGTTCCTCAACGTCAA -ACGGAACACGTTCCTCAAGCTGAA -ACGGAACACGTTCCTCAAAGTACG -ACGGAACACGTTCCTCAAATCCGA -ACGGAACACGTTCCTCAAATGGGA -ACGGAACACGTTCCTCAAGTGCAA -ACGGAACACGTTCCTCAAGAGGAA -ACGGAACACGTTCCTCAACAGGTA -ACGGAACACGTTCCTCAAGACTCT -ACGGAACACGTTCCTCAAAGTCCT -ACGGAACACGTTCCTCAATAAGCC -ACGGAACACGTTCCTCAAATAGCC -ACGGAACACGTTCCTCAATAACCG -ACGGAACACGTTCCTCAAATGCCA -ACGGAACACGTTACTGCTGGAAAC -ACGGAACACGTTACTGCTAACACC -ACGGAACACGTTACTGCTATCGAG -ACGGAACACGTTACTGCTCTCCTT -ACGGAACACGTTACTGCTCCTGTT -ACGGAACACGTTACTGCTCGGTTT -ACGGAACACGTTACTGCTGTGGTT -ACGGAACACGTTACTGCTGCCTTT -ACGGAACACGTTACTGCTGGTCTT -ACGGAACACGTTACTGCTACGCTT -ACGGAACACGTTACTGCTAGCGTT -ACGGAACACGTTACTGCTTTCGTC -ACGGAACACGTTACTGCTTCTCTC -ACGGAACACGTTACTGCTTGGATC -ACGGAACACGTTACTGCTCACTTC -ACGGAACACGTTACTGCTGTACTC -ACGGAACACGTTACTGCTGATGTC -ACGGAACACGTTACTGCTACAGTC -ACGGAACACGTTACTGCTTTGCTG -ACGGAACACGTTACTGCTTCCATG -ACGGAACACGTTACTGCTTGTGTG -ACGGAACACGTTACTGCTCTAGTG -ACGGAACACGTTACTGCTCATCTG -ACGGAACACGTTACTGCTGAGTTG -ACGGAACACGTTACTGCTAGACTG -ACGGAACACGTTACTGCTTCGGTA -ACGGAACACGTTACTGCTTGCCTA -ACGGAACACGTTACTGCTCCACTA -ACGGAACACGTTACTGCTGGAGTA -ACGGAACACGTTACTGCTTCGTCT -ACGGAACACGTTACTGCTTGCACT -ACGGAACACGTTACTGCTCTGACT -ACGGAACACGTTACTGCTCAACCT -ACGGAACACGTTACTGCTGCTACT -ACGGAACACGTTACTGCTGGATCT -ACGGAACACGTTACTGCTAAGGCT -ACGGAACACGTTACTGCTTCAACC -ACGGAACACGTTACTGCTTGTTCC -ACGGAACACGTTACTGCTATTCCC -ACGGAACACGTTACTGCTTTCTCG -ACGGAACACGTTACTGCTTAGACG -ACGGAACACGTTACTGCTGTAACG -ACGGAACACGTTACTGCTACTTCG -ACGGAACACGTTACTGCTTACGCA -ACGGAACACGTTACTGCTCTTGCA -ACGGAACACGTTACTGCTCGAACA -ACGGAACACGTTACTGCTCAGTCA -ACGGAACACGTTACTGCTGATCCA -ACGGAACACGTTACTGCTACGACA -ACGGAACACGTTACTGCTAGCTCA -ACGGAACACGTTACTGCTTCACGT -ACGGAACACGTTACTGCTCGTAGT -ACGGAACACGTTACTGCTGTCAGT -ACGGAACACGTTACTGCTGAAGGT -ACGGAACACGTTACTGCTAACCGT -ACGGAACACGTTACTGCTTTGTGC -ACGGAACACGTTACTGCTCTAAGC -ACGGAACACGTTACTGCTACTAGC -ACGGAACACGTTACTGCTAGATGC -ACGGAACACGTTACTGCTTGAAGG -ACGGAACACGTTACTGCTCAATGG -ACGGAACACGTTACTGCTATGAGG -ACGGAACACGTTACTGCTAATGGG -ACGGAACACGTTACTGCTTCCTGA -ACGGAACACGTTACTGCTTAGCGA -ACGGAACACGTTACTGCTCACAGA -ACGGAACACGTTACTGCTGCAAGA -ACGGAACACGTTACTGCTGGTTGA -ACGGAACACGTTACTGCTTCCGAT -ACGGAACACGTTACTGCTTGGCAT -ACGGAACACGTTACTGCTCGAGAT -ACGGAACACGTTACTGCTTACCAC -ACGGAACACGTTACTGCTCAGAAC -ACGGAACACGTTACTGCTGTCTAC -ACGGAACACGTTACTGCTACGTAC -ACGGAACACGTTACTGCTAGTGAC -ACGGAACACGTTACTGCTCTGTAG -ACGGAACACGTTACTGCTCCTAAG -ACGGAACACGTTACTGCTGTTCAG -ACGGAACACGTTACTGCTGCATAG -ACGGAACACGTTACTGCTGACAAG -ACGGAACACGTTACTGCTAAGCAG -ACGGAACACGTTACTGCTCGTCAA -ACGGAACACGTTACTGCTGCTGAA -ACGGAACACGTTACTGCTAGTACG -ACGGAACACGTTACTGCTATCCGA -ACGGAACACGTTACTGCTATGGGA -ACGGAACACGTTACTGCTGTGCAA -ACGGAACACGTTACTGCTGAGGAA -ACGGAACACGTTACTGCTCAGGTA -ACGGAACACGTTACTGCTGACTCT -ACGGAACACGTTACTGCTAGTCCT -ACGGAACACGTTACTGCTTAAGCC -ACGGAACACGTTACTGCTATAGCC -ACGGAACACGTTACTGCTTAACCG -ACGGAACACGTTACTGCTATGCCA -ACGGAACACGTTTCTGGAGGAAAC -ACGGAACACGTTTCTGGAAACACC -ACGGAACACGTTTCTGGAATCGAG -ACGGAACACGTTTCTGGACTCCTT -ACGGAACACGTTTCTGGACCTGTT -ACGGAACACGTTTCTGGACGGTTT -ACGGAACACGTTTCTGGAGTGGTT -ACGGAACACGTTTCTGGAGCCTTT -ACGGAACACGTTTCTGGAGGTCTT -ACGGAACACGTTTCTGGAACGCTT -ACGGAACACGTTTCTGGAAGCGTT -ACGGAACACGTTTCTGGATTCGTC -ACGGAACACGTTTCTGGATCTCTC -ACGGAACACGTTTCTGGATGGATC -ACGGAACACGTTTCTGGACACTTC -ACGGAACACGTTTCTGGAGTACTC -ACGGAACACGTTTCTGGAGATGTC -ACGGAACACGTTTCTGGAACAGTC -ACGGAACACGTTTCTGGATTGCTG -ACGGAACACGTTTCTGGATCCATG -ACGGAACACGTTTCTGGATGTGTG -ACGGAACACGTTTCTGGACTAGTG -ACGGAACACGTTTCTGGACATCTG -ACGGAACACGTTTCTGGAGAGTTG -ACGGAACACGTTTCTGGAAGACTG -ACGGAACACGTTTCTGGATCGGTA -ACGGAACACGTTTCTGGATGCCTA -ACGGAACACGTTTCTGGACCACTA -ACGGAACACGTTTCTGGAGGAGTA -ACGGAACACGTTTCTGGATCGTCT -ACGGAACACGTTTCTGGATGCACT -ACGGAACACGTTTCTGGACTGACT -ACGGAACACGTTTCTGGACAACCT -ACGGAACACGTTTCTGGAGCTACT -ACGGAACACGTTTCTGGAGGATCT -ACGGAACACGTTTCTGGAAAGGCT -ACGGAACACGTTTCTGGATCAACC -ACGGAACACGTTTCTGGATGTTCC -ACGGAACACGTTTCTGGAATTCCC -ACGGAACACGTTTCTGGATTCTCG -ACGGAACACGTTTCTGGATAGACG -ACGGAACACGTTTCTGGAGTAACG -ACGGAACACGTTTCTGGAACTTCG -ACGGAACACGTTTCTGGATACGCA -ACGGAACACGTTTCTGGACTTGCA -ACGGAACACGTTTCTGGACGAACA -ACGGAACACGTTTCTGGACAGTCA -ACGGAACACGTTTCTGGAGATCCA -ACGGAACACGTTTCTGGAACGACA -ACGGAACACGTTTCTGGAAGCTCA -ACGGAACACGTTTCTGGATCACGT -ACGGAACACGTTTCTGGACGTAGT -ACGGAACACGTTTCTGGAGTCAGT -ACGGAACACGTTTCTGGAGAAGGT -ACGGAACACGTTTCTGGAAACCGT -ACGGAACACGTTTCTGGATTGTGC -ACGGAACACGTTTCTGGACTAAGC -ACGGAACACGTTTCTGGAACTAGC -ACGGAACACGTTTCTGGAAGATGC -ACGGAACACGTTTCTGGATGAAGG -ACGGAACACGTTTCTGGACAATGG -ACGGAACACGTTTCTGGAATGAGG -ACGGAACACGTTTCTGGAAATGGG -ACGGAACACGTTTCTGGATCCTGA -ACGGAACACGTTTCTGGATAGCGA -ACGGAACACGTTTCTGGACACAGA -ACGGAACACGTTTCTGGAGCAAGA -ACGGAACACGTTTCTGGAGGTTGA -ACGGAACACGTTTCTGGATCCGAT -ACGGAACACGTTTCTGGATGGCAT -ACGGAACACGTTTCTGGACGAGAT -ACGGAACACGTTTCTGGATACCAC -ACGGAACACGTTTCTGGACAGAAC -ACGGAACACGTTTCTGGAGTCTAC -ACGGAACACGTTTCTGGAACGTAC -ACGGAACACGTTTCTGGAAGTGAC -ACGGAACACGTTTCTGGACTGTAG -ACGGAACACGTTTCTGGACCTAAG -ACGGAACACGTTTCTGGAGTTCAG -ACGGAACACGTTTCTGGAGCATAG -ACGGAACACGTTTCTGGAGACAAG -ACGGAACACGTTTCTGGAAAGCAG -ACGGAACACGTTTCTGGACGTCAA -ACGGAACACGTTTCTGGAGCTGAA -ACGGAACACGTTTCTGGAAGTACG -ACGGAACACGTTTCTGGAATCCGA -ACGGAACACGTTTCTGGAATGGGA -ACGGAACACGTTTCTGGAGTGCAA -ACGGAACACGTTTCTGGAGAGGAA -ACGGAACACGTTTCTGGACAGGTA -ACGGAACACGTTTCTGGAGACTCT -ACGGAACACGTTTCTGGAAGTCCT -ACGGAACACGTTTCTGGATAAGCC -ACGGAACACGTTTCTGGAATAGCC -ACGGAACACGTTTCTGGATAACCG -ACGGAACACGTTTCTGGAATGCCA -ACGGAACACGTTGCTAAGGGAAAC -ACGGAACACGTTGCTAAGAACACC -ACGGAACACGTTGCTAAGATCGAG -ACGGAACACGTTGCTAAGCTCCTT -ACGGAACACGTTGCTAAGCCTGTT -ACGGAACACGTTGCTAAGCGGTTT -ACGGAACACGTTGCTAAGGTGGTT -ACGGAACACGTTGCTAAGGCCTTT -ACGGAACACGTTGCTAAGGGTCTT -ACGGAACACGTTGCTAAGACGCTT -ACGGAACACGTTGCTAAGAGCGTT -ACGGAACACGTTGCTAAGTTCGTC -ACGGAACACGTTGCTAAGTCTCTC -ACGGAACACGTTGCTAAGTGGATC -ACGGAACACGTTGCTAAGCACTTC -ACGGAACACGTTGCTAAGGTACTC -ACGGAACACGTTGCTAAGGATGTC -ACGGAACACGTTGCTAAGACAGTC -ACGGAACACGTTGCTAAGTTGCTG -ACGGAACACGTTGCTAAGTCCATG -ACGGAACACGTTGCTAAGTGTGTG -ACGGAACACGTTGCTAAGCTAGTG -ACGGAACACGTTGCTAAGCATCTG -ACGGAACACGTTGCTAAGGAGTTG -ACGGAACACGTTGCTAAGAGACTG -ACGGAACACGTTGCTAAGTCGGTA -ACGGAACACGTTGCTAAGTGCCTA -ACGGAACACGTTGCTAAGCCACTA -ACGGAACACGTTGCTAAGGGAGTA -ACGGAACACGTTGCTAAGTCGTCT -ACGGAACACGTTGCTAAGTGCACT -ACGGAACACGTTGCTAAGCTGACT -ACGGAACACGTTGCTAAGCAACCT -ACGGAACACGTTGCTAAGGCTACT -ACGGAACACGTTGCTAAGGGATCT -ACGGAACACGTTGCTAAGAAGGCT -ACGGAACACGTTGCTAAGTCAACC -ACGGAACACGTTGCTAAGTGTTCC -ACGGAACACGTTGCTAAGATTCCC -ACGGAACACGTTGCTAAGTTCTCG -ACGGAACACGTTGCTAAGTAGACG -ACGGAACACGTTGCTAAGGTAACG -ACGGAACACGTTGCTAAGACTTCG -ACGGAACACGTTGCTAAGTACGCA -ACGGAACACGTTGCTAAGCTTGCA -ACGGAACACGTTGCTAAGCGAACA -ACGGAACACGTTGCTAAGCAGTCA -ACGGAACACGTTGCTAAGGATCCA -ACGGAACACGTTGCTAAGACGACA -ACGGAACACGTTGCTAAGAGCTCA -ACGGAACACGTTGCTAAGTCACGT -ACGGAACACGTTGCTAAGCGTAGT -ACGGAACACGTTGCTAAGGTCAGT -ACGGAACACGTTGCTAAGGAAGGT -ACGGAACACGTTGCTAAGAACCGT -ACGGAACACGTTGCTAAGTTGTGC -ACGGAACACGTTGCTAAGCTAAGC -ACGGAACACGTTGCTAAGACTAGC -ACGGAACACGTTGCTAAGAGATGC -ACGGAACACGTTGCTAAGTGAAGG -ACGGAACACGTTGCTAAGCAATGG -ACGGAACACGTTGCTAAGATGAGG -ACGGAACACGTTGCTAAGAATGGG -ACGGAACACGTTGCTAAGTCCTGA -ACGGAACACGTTGCTAAGTAGCGA -ACGGAACACGTTGCTAAGCACAGA -ACGGAACACGTTGCTAAGGCAAGA -ACGGAACACGTTGCTAAGGGTTGA -ACGGAACACGTTGCTAAGTCCGAT -ACGGAACACGTTGCTAAGTGGCAT -ACGGAACACGTTGCTAAGCGAGAT -ACGGAACACGTTGCTAAGTACCAC -ACGGAACACGTTGCTAAGCAGAAC -ACGGAACACGTTGCTAAGGTCTAC -ACGGAACACGTTGCTAAGACGTAC -ACGGAACACGTTGCTAAGAGTGAC -ACGGAACACGTTGCTAAGCTGTAG -ACGGAACACGTTGCTAAGCCTAAG -ACGGAACACGTTGCTAAGGTTCAG -ACGGAACACGTTGCTAAGGCATAG -ACGGAACACGTTGCTAAGGACAAG -ACGGAACACGTTGCTAAGAAGCAG -ACGGAACACGTTGCTAAGCGTCAA -ACGGAACACGTTGCTAAGGCTGAA -ACGGAACACGTTGCTAAGAGTACG -ACGGAACACGTTGCTAAGATCCGA -ACGGAACACGTTGCTAAGATGGGA -ACGGAACACGTTGCTAAGGTGCAA -ACGGAACACGTTGCTAAGGAGGAA -ACGGAACACGTTGCTAAGCAGGTA -ACGGAACACGTTGCTAAGGACTCT -ACGGAACACGTTGCTAAGAGTCCT -ACGGAACACGTTGCTAAGTAAGCC -ACGGAACACGTTGCTAAGATAGCC -ACGGAACACGTTGCTAAGTAACCG -ACGGAACACGTTGCTAAGATGCCA -ACGGAACACGTTACCTCAGGAAAC -ACGGAACACGTTACCTCAAACACC -ACGGAACACGTTACCTCAATCGAG -ACGGAACACGTTACCTCACTCCTT -ACGGAACACGTTACCTCACCTGTT -ACGGAACACGTTACCTCACGGTTT -ACGGAACACGTTACCTCAGTGGTT -ACGGAACACGTTACCTCAGCCTTT -ACGGAACACGTTACCTCAGGTCTT -ACGGAACACGTTACCTCAACGCTT -ACGGAACACGTTACCTCAAGCGTT -ACGGAACACGTTACCTCATTCGTC -ACGGAACACGTTACCTCATCTCTC -ACGGAACACGTTACCTCATGGATC -ACGGAACACGTTACCTCACACTTC -ACGGAACACGTTACCTCAGTACTC -ACGGAACACGTTACCTCAGATGTC -ACGGAACACGTTACCTCAACAGTC -ACGGAACACGTTACCTCATTGCTG -ACGGAACACGTTACCTCATCCATG -ACGGAACACGTTACCTCATGTGTG -ACGGAACACGTTACCTCACTAGTG -ACGGAACACGTTACCTCACATCTG -ACGGAACACGTTACCTCAGAGTTG -ACGGAACACGTTACCTCAAGACTG -ACGGAACACGTTACCTCATCGGTA -ACGGAACACGTTACCTCATGCCTA -ACGGAACACGTTACCTCACCACTA -ACGGAACACGTTACCTCAGGAGTA -ACGGAACACGTTACCTCATCGTCT -ACGGAACACGTTACCTCATGCACT -ACGGAACACGTTACCTCACTGACT -ACGGAACACGTTACCTCACAACCT -ACGGAACACGTTACCTCAGCTACT -ACGGAACACGTTACCTCAGGATCT -ACGGAACACGTTACCTCAAAGGCT -ACGGAACACGTTACCTCATCAACC -ACGGAACACGTTACCTCATGTTCC -ACGGAACACGTTACCTCAATTCCC -ACGGAACACGTTACCTCATTCTCG -ACGGAACACGTTACCTCATAGACG -ACGGAACACGTTACCTCAGTAACG -ACGGAACACGTTACCTCAACTTCG -ACGGAACACGTTACCTCATACGCA -ACGGAACACGTTACCTCACTTGCA -ACGGAACACGTTACCTCACGAACA -ACGGAACACGTTACCTCACAGTCA -ACGGAACACGTTACCTCAGATCCA -ACGGAACACGTTACCTCAACGACA -ACGGAACACGTTACCTCAAGCTCA -ACGGAACACGTTACCTCATCACGT -ACGGAACACGTTACCTCACGTAGT -ACGGAACACGTTACCTCAGTCAGT -ACGGAACACGTTACCTCAGAAGGT -ACGGAACACGTTACCTCAAACCGT -ACGGAACACGTTACCTCATTGTGC -ACGGAACACGTTACCTCACTAAGC -ACGGAACACGTTACCTCAACTAGC -ACGGAACACGTTACCTCAAGATGC -ACGGAACACGTTACCTCATGAAGG -ACGGAACACGTTACCTCACAATGG -ACGGAACACGTTACCTCAATGAGG -ACGGAACACGTTACCTCAAATGGG -ACGGAACACGTTACCTCATCCTGA -ACGGAACACGTTACCTCATAGCGA -ACGGAACACGTTACCTCACACAGA -ACGGAACACGTTACCTCAGCAAGA -ACGGAACACGTTACCTCAGGTTGA -ACGGAACACGTTACCTCATCCGAT -ACGGAACACGTTACCTCATGGCAT -ACGGAACACGTTACCTCACGAGAT -ACGGAACACGTTACCTCATACCAC -ACGGAACACGTTACCTCACAGAAC -ACGGAACACGTTACCTCAGTCTAC -ACGGAACACGTTACCTCAACGTAC -ACGGAACACGTTACCTCAAGTGAC -ACGGAACACGTTACCTCACTGTAG -ACGGAACACGTTACCTCACCTAAG -ACGGAACACGTTACCTCAGTTCAG -ACGGAACACGTTACCTCAGCATAG -ACGGAACACGTTACCTCAGACAAG -ACGGAACACGTTACCTCAAAGCAG -ACGGAACACGTTACCTCACGTCAA -ACGGAACACGTTACCTCAGCTGAA -ACGGAACACGTTACCTCAAGTACG -ACGGAACACGTTACCTCAATCCGA -ACGGAACACGTTACCTCAATGGGA -ACGGAACACGTTACCTCAGTGCAA -ACGGAACACGTTACCTCAGAGGAA -ACGGAACACGTTACCTCACAGGTA -ACGGAACACGTTACCTCAGACTCT -ACGGAACACGTTACCTCAAGTCCT -ACGGAACACGTTACCTCATAAGCC -ACGGAACACGTTACCTCAATAGCC -ACGGAACACGTTACCTCATAACCG -ACGGAACACGTTACCTCAATGCCA -ACGGAACACGTTTCCTGTGGAAAC -ACGGAACACGTTTCCTGTAACACC -ACGGAACACGTTTCCTGTATCGAG -ACGGAACACGTTTCCTGTCTCCTT -ACGGAACACGTTTCCTGTCCTGTT -ACGGAACACGTTTCCTGTCGGTTT -ACGGAACACGTTTCCTGTGTGGTT -ACGGAACACGTTTCCTGTGCCTTT -ACGGAACACGTTTCCTGTGGTCTT -ACGGAACACGTTTCCTGTACGCTT -ACGGAACACGTTTCCTGTAGCGTT -ACGGAACACGTTTCCTGTTTCGTC -ACGGAACACGTTTCCTGTTCTCTC -ACGGAACACGTTTCCTGTTGGATC -ACGGAACACGTTTCCTGTCACTTC -ACGGAACACGTTTCCTGTGTACTC -ACGGAACACGTTTCCTGTGATGTC -ACGGAACACGTTTCCTGTACAGTC -ACGGAACACGTTTCCTGTTTGCTG -ACGGAACACGTTTCCTGTTCCATG -ACGGAACACGTTTCCTGTTGTGTG -ACGGAACACGTTTCCTGTCTAGTG -ACGGAACACGTTTCCTGTCATCTG -ACGGAACACGTTTCCTGTGAGTTG -ACGGAACACGTTTCCTGTAGACTG -ACGGAACACGTTTCCTGTTCGGTA -ACGGAACACGTTTCCTGTTGCCTA -ACGGAACACGTTTCCTGTCCACTA -ACGGAACACGTTTCCTGTGGAGTA -ACGGAACACGTTTCCTGTTCGTCT -ACGGAACACGTTTCCTGTTGCACT -ACGGAACACGTTTCCTGTCTGACT -ACGGAACACGTTTCCTGTCAACCT -ACGGAACACGTTTCCTGTGCTACT -ACGGAACACGTTTCCTGTGGATCT -ACGGAACACGTTTCCTGTAAGGCT -ACGGAACACGTTTCCTGTTCAACC -ACGGAACACGTTTCCTGTTGTTCC -ACGGAACACGTTTCCTGTATTCCC -ACGGAACACGTTTCCTGTTTCTCG -ACGGAACACGTTTCCTGTTAGACG -ACGGAACACGTTTCCTGTGTAACG -ACGGAACACGTTTCCTGTACTTCG -ACGGAACACGTTTCCTGTTACGCA -ACGGAACACGTTTCCTGTCTTGCA -ACGGAACACGTTTCCTGTCGAACA -ACGGAACACGTTTCCTGTCAGTCA -ACGGAACACGTTTCCTGTGATCCA -ACGGAACACGTTTCCTGTACGACA -ACGGAACACGTTTCCTGTAGCTCA -ACGGAACACGTTTCCTGTTCACGT -ACGGAACACGTTTCCTGTCGTAGT -ACGGAACACGTTTCCTGTGTCAGT -ACGGAACACGTTTCCTGTGAAGGT -ACGGAACACGTTTCCTGTAACCGT -ACGGAACACGTTTCCTGTTTGTGC -ACGGAACACGTTTCCTGTCTAAGC -ACGGAACACGTTTCCTGTACTAGC -ACGGAACACGTTTCCTGTAGATGC -ACGGAACACGTTTCCTGTTGAAGG -ACGGAACACGTTTCCTGTCAATGG -ACGGAACACGTTTCCTGTATGAGG -ACGGAACACGTTTCCTGTAATGGG -ACGGAACACGTTTCCTGTTCCTGA -ACGGAACACGTTTCCTGTTAGCGA -ACGGAACACGTTTCCTGTCACAGA -ACGGAACACGTTTCCTGTGCAAGA -ACGGAACACGTTTCCTGTGGTTGA -ACGGAACACGTTTCCTGTTCCGAT -ACGGAACACGTTTCCTGTTGGCAT -ACGGAACACGTTTCCTGTCGAGAT -ACGGAACACGTTTCCTGTTACCAC -ACGGAACACGTTTCCTGTCAGAAC -ACGGAACACGTTTCCTGTGTCTAC -ACGGAACACGTTTCCTGTACGTAC -ACGGAACACGTTTCCTGTAGTGAC -ACGGAACACGTTTCCTGTCTGTAG -ACGGAACACGTTTCCTGTCCTAAG -ACGGAACACGTTTCCTGTGTTCAG -ACGGAACACGTTTCCTGTGCATAG -ACGGAACACGTTTCCTGTGACAAG -ACGGAACACGTTTCCTGTAAGCAG -ACGGAACACGTTTCCTGTCGTCAA -ACGGAACACGTTTCCTGTGCTGAA -ACGGAACACGTTTCCTGTAGTACG -ACGGAACACGTTTCCTGTATCCGA -ACGGAACACGTTTCCTGTATGGGA -ACGGAACACGTTTCCTGTGTGCAA -ACGGAACACGTTTCCTGTGAGGAA -ACGGAACACGTTTCCTGTCAGGTA -ACGGAACACGTTTCCTGTGACTCT -ACGGAACACGTTTCCTGTAGTCCT -ACGGAACACGTTTCCTGTTAAGCC -ACGGAACACGTTTCCTGTATAGCC -ACGGAACACGTTTCCTGTTAACCG -ACGGAACACGTTTCCTGTATGCCA -ACGGAACACGTTCCCATTGGAAAC -ACGGAACACGTTCCCATTAACACC -ACGGAACACGTTCCCATTATCGAG -ACGGAACACGTTCCCATTCTCCTT -ACGGAACACGTTCCCATTCCTGTT -ACGGAACACGTTCCCATTCGGTTT -ACGGAACACGTTCCCATTGTGGTT -ACGGAACACGTTCCCATTGCCTTT -ACGGAACACGTTCCCATTGGTCTT -ACGGAACACGTTCCCATTACGCTT -ACGGAACACGTTCCCATTAGCGTT -ACGGAACACGTTCCCATTTTCGTC -ACGGAACACGTTCCCATTTCTCTC -ACGGAACACGTTCCCATTTGGATC -ACGGAACACGTTCCCATTCACTTC -ACGGAACACGTTCCCATTGTACTC -ACGGAACACGTTCCCATTGATGTC -ACGGAACACGTTCCCATTACAGTC -ACGGAACACGTTCCCATTTTGCTG -ACGGAACACGTTCCCATTTCCATG -ACGGAACACGTTCCCATTTGTGTG -ACGGAACACGTTCCCATTCTAGTG -ACGGAACACGTTCCCATTCATCTG -ACGGAACACGTTCCCATTGAGTTG -ACGGAACACGTTCCCATTAGACTG -ACGGAACACGTTCCCATTTCGGTA -ACGGAACACGTTCCCATTTGCCTA -ACGGAACACGTTCCCATTCCACTA -ACGGAACACGTTCCCATTGGAGTA -ACGGAACACGTTCCCATTTCGTCT -ACGGAACACGTTCCCATTTGCACT -ACGGAACACGTTCCCATTCTGACT -ACGGAACACGTTCCCATTCAACCT -ACGGAACACGTTCCCATTGCTACT -ACGGAACACGTTCCCATTGGATCT -ACGGAACACGTTCCCATTAAGGCT -ACGGAACACGTTCCCATTTCAACC -ACGGAACACGTTCCCATTTGTTCC -ACGGAACACGTTCCCATTATTCCC -ACGGAACACGTTCCCATTTTCTCG -ACGGAACACGTTCCCATTTAGACG -ACGGAACACGTTCCCATTGTAACG -ACGGAACACGTTCCCATTACTTCG -ACGGAACACGTTCCCATTTACGCA -ACGGAACACGTTCCCATTCTTGCA -ACGGAACACGTTCCCATTCGAACA -ACGGAACACGTTCCCATTCAGTCA -ACGGAACACGTTCCCATTGATCCA -ACGGAACACGTTCCCATTACGACA -ACGGAACACGTTCCCATTAGCTCA -ACGGAACACGTTCCCATTTCACGT -ACGGAACACGTTCCCATTCGTAGT -ACGGAACACGTTCCCATTGTCAGT -ACGGAACACGTTCCCATTGAAGGT -ACGGAACACGTTCCCATTAACCGT -ACGGAACACGTTCCCATTTTGTGC -ACGGAACACGTTCCCATTCTAAGC -ACGGAACACGTTCCCATTACTAGC -ACGGAACACGTTCCCATTAGATGC -ACGGAACACGTTCCCATTTGAAGG -ACGGAACACGTTCCCATTCAATGG -ACGGAACACGTTCCCATTATGAGG -ACGGAACACGTTCCCATTAATGGG -ACGGAACACGTTCCCATTTCCTGA -ACGGAACACGTTCCCATTTAGCGA -ACGGAACACGTTCCCATTCACAGA -ACGGAACACGTTCCCATTGCAAGA -ACGGAACACGTTCCCATTGGTTGA -ACGGAACACGTTCCCATTTCCGAT -ACGGAACACGTTCCCATTTGGCAT -ACGGAACACGTTCCCATTCGAGAT -ACGGAACACGTTCCCATTTACCAC -ACGGAACACGTTCCCATTCAGAAC -ACGGAACACGTTCCCATTGTCTAC -ACGGAACACGTTCCCATTACGTAC -ACGGAACACGTTCCCATTAGTGAC -ACGGAACACGTTCCCATTCTGTAG -ACGGAACACGTTCCCATTCCTAAG -ACGGAACACGTTCCCATTGTTCAG -ACGGAACACGTTCCCATTGCATAG -ACGGAACACGTTCCCATTGACAAG -ACGGAACACGTTCCCATTAAGCAG -ACGGAACACGTTCCCATTCGTCAA -ACGGAACACGTTCCCATTGCTGAA -ACGGAACACGTTCCCATTAGTACG -ACGGAACACGTTCCCATTATCCGA -ACGGAACACGTTCCCATTATGGGA -ACGGAACACGTTCCCATTGTGCAA -ACGGAACACGTTCCCATTGAGGAA -ACGGAACACGTTCCCATTCAGGTA -ACGGAACACGTTCCCATTGACTCT -ACGGAACACGTTCCCATTAGTCCT -ACGGAACACGTTCCCATTTAAGCC -ACGGAACACGTTCCCATTATAGCC -ACGGAACACGTTCCCATTTAACCG -ACGGAACACGTTCCCATTATGCCA -ACGGAACACGTTTCGTTCGGAAAC -ACGGAACACGTTTCGTTCAACACC -ACGGAACACGTTTCGTTCATCGAG -ACGGAACACGTTTCGTTCCTCCTT -ACGGAACACGTTTCGTTCCCTGTT -ACGGAACACGTTTCGTTCCGGTTT -ACGGAACACGTTTCGTTCGTGGTT -ACGGAACACGTTTCGTTCGCCTTT -ACGGAACACGTTTCGTTCGGTCTT -ACGGAACACGTTTCGTTCACGCTT -ACGGAACACGTTTCGTTCAGCGTT -ACGGAACACGTTTCGTTCTTCGTC -ACGGAACACGTTTCGTTCTCTCTC -ACGGAACACGTTTCGTTCTGGATC -ACGGAACACGTTTCGTTCCACTTC -ACGGAACACGTTTCGTTCGTACTC -ACGGAACACGTTTCGTTCGATGTC -ACGGAACACGTTTCGTTCACAGTC -ACGGAACACGTTTCGTTCTTGCTG -ACGGAACACGTTTCGTTCTCCATG -ACGGAACACGTTTCGTTCTGTGTG -ACGGAACACGTTTCGTTCCTAGTG -ACGGAACACGTTTCGTTCCATCTG -ACGGAACACGTTTCGTTCGAGTTG -ACGGAACACGTTTCGTTCAGACTG -ACGGAACACGTTTCGTTCTCGGTA -ACGGAACACGTTTCGTTCTGCCTA -ACGGAACACGTTTCGTTCCCACTA -ACGGAACACGTTTCGTTCGGAGTA -ACGGAACACGTTTCGTTCTCGTCT -ACGGAACACGTTTCGTTCTGCACT -ACGGAACACGTTTCGTTCCTGACT -ACGGAACACGTTTCGTTCCAACCT -ACGGAACACGTTTCGTTCGCTACT -ACGGAACACGTTTCGTTCGGATCT -ACGGAACACGTTTCGTTCAAGGCT -ACGGAACACGTTTCGTTCTCAACC -ACGGAACACGTTTCGTTCTGTTCC -ACGGAACACGTTTCGTTCATTCCC -ACGGAACACGTTTCGTTCTTCTCG -ACGGAACACGTTTCGTTCTAGACG -ACGGAACACGTTTCGTTCGTAACG -ACGGAACACGTTTCGTTCACTTCG -ACGGAACACGTTTCGTTCTACGCA -ACGGAACACGTTTCGTTCCTTGCA -ACGGAACACGTTTCGTTCCGAACA -ACGGAACACGTTTCGTTCCAGTCA -ACGGAACACGTTTCGTTCGATCCA -ACGGAACACGTTTCGTTCACGACA -ACGGAACACGTTTCGTTCAGCTCA -ACGGAACACGTTTCGTTCTCACGT -ACGGAACACGTTTCGTTCCGTAGT -ACGGAACACGTTTCGTTCGTCAGT -ACGGAACACGTTTCGTTCGAAGGT -ACGGAACACGTTTCGTTCAACCGT -ACGGAACACGTTTCGTTCTTGTGC -ACGGAACACGTTTCGTTCCTAAGC -ACGGAACACGTTTCGTTCACTAGC -ACGGAACACGTTTCGTTCAGATGC -ACGGAACACGTTTCGTTCTGAAGG -ACGGAACACGTTTCGTTCCAATGG -ACGGAACACGTTTCGTTCATGAGG -ACGGAACACGTTTCGTTCAATGGG -ACGGAACACGTTTCGTTCTCCTGA -ACGGAACACGTTTCGTTCTAGCGA -ACGGAACACGTTTCGTTCCACAGA -ACGGAACACGTTTCGTTCGCAAGA -ACGGAACACGTTTCGTTCGGTTGA -ACGGAACACGTTTCGTTCTCCGAT -ACGGAACACGTTTCGTTCTGGCAT -ACGGAACACGTTTCGTTCCGAGAT -ACGGAACACGTTTCGTTCTACCAC -ACGGAACACGTTTCGTTCCAGAAC -ACGGAACACGTTTCGTTCGTCTAC -ACGGAACACGTTTCGTTCACGTAC -ACGGAACACGTTTCGTTCAGTGAC -ACGGAACACGTTTCGTTCCTGTAG -ACGGAACACGTTTCGTTCCCTAAG -ACGGAACACGTTTCGTTCGTTCAG -ACGGAACACGTTTCGTTCGCATAG -ACGGAACACGTTTCGTTCGACAAG -ACGGAACACGTTTCGTTCAAGCAG -ACGGAACACGTTTCGTTCCGTCAA -ACGGAACACGTTTCGTTCGCTGAA -ACGGAACACGTTTCGTTCAGTACG -ACGGAACACGTTTCGTTCATCCGA -ACGGAACACGTTTCGTTCATGGGA -ACGGAACACGTTTCGTTCGTGCAA -ACGGAACACGTTTCGTTCGAGGAA -ACGGAACACGTTTCGTTCCAGGTA -ACGGAACACGTTTCGTTCGACTCT -ACGGAACACGTTTCGTTCAGTCCT -ACGGAACACGTTTCGTTCTAAGCC -ACGGAACACGTTTCGTTCATAGCC -ACGGAACACGTTTCGTTCTAACCG -ACGGAACACGTTTCGTTCATGCCA -ACGGAACACGTTACGTAGGGAAAC -ACGGAACACGTTACGTAGAACACC -ACGGAACACGTTACGTAGATCGAG -ACGGAACACGTTACGTAGCTCCTT -ACGGAACACGTTACGTAGCCTGTT -ACGGAACACGTTACGTAGCGGTTT -ACGGAACACGTTACGTAGGTGGTT -ACGGAACACGTTACGTAGGCCTTT -ACGGAACACGTTACGTAGGGTCTT -ACGGAACACGTTACGTAGACGCTT -ACGGAACACGTTACGTAGAGCGTT -ACGGAACACGTTACGTAGTTCGTC -ACGGAACACGTTACGTAGTCTCTC -ACGGAACACGTTACGTAGTGGATC -ACGGAACACGTTACGTAGCACTTC -ACGGAACACGTTACGTAGGTACTC -ACGGAACACGTTACGTAGGATGTC -ACGGAACACGTTACGTAGACAGTC -ACGGAACACGTTACGTAGTTGCTG -ACGGAACACGTTACGTAGTCCATG -ACGGAACACGTTACGTAGTGTGTG -ACGGAACACGTTACGTAGCTAGTG -ACGGAACACGTTACGTAGCATCTG -ACGGAACACGTTACGTAGGAGTTG -ACGGAACACGTTACGTAGAGACTG -ACGGAACACGTTACGTAGTCGGTA -ACGGAACACGTTACGTAGTGCCTA -ACGGAACACGTTACGTAGCCACTA -ACGGAACACGTTACGTAGGGAGTA -ACGGAACACGTTACGTAGTCGTCT -ACGGAACACGTTACGTAGTGCACT -ACGGAACACGTTACGTAGCTGACT -ACGGAACACGTTACGTAGCAACCT -ACGGAACACGTTACGTAGGCTACT -ACGGAACACGTTACGTAGGGATCT -ACGGAACACGTTACGTAGAAGGCT -ACGGAACACGTTACGTAGTCAACC -ACGGAACACGTTACGTAGTGTTCC -ACGGAACACGTTACGTAGATTCCC -ACGGAACACGTTACGTAGTTCTCG -ACGGAACACGTTACGTAGTAGACG -ACGGAACACGTTACGTAGGTAACG -ACGGAACACGTTACGTAGACTTCG -ACGGAACACGTTACGTAGTACGCA -ACGGAACACGTTACGTAGCTTGCA -ACGGAACACGTTACGTAGCGAACA -ACGGAACACGTTACGTAGCAGTCA -ACGGAACACGTTACGTAGGATCCA -ACGGAACACGTTACGTAGACGACA -ACGGAACACGTTACGTAGAGCTCA -ACGGAACACGTTACGTAGTCACGT -ACGGAACACGTTACGTAGCGTAGT -ACGGAACACGTTACGTAGGTCAGT -ACGGAACACGTTACGTAGGAAGGT -ACGGAACACGTTACGTAGAACCGT -ACGGAACACGTTACGTAGTTGTGC -ACGGAACACGTTACGTAGCTAAGC -ACGGAACACGTTACGTAGACTAGC -ACGGAACACGTTACGTAGAGATGC -ACGGAACACGTTACGTAGTGAAGG -ACGGAACACGTTACGTAGCAATGG -ACGGAACACGTTACGTAGATGAGG -ACGGAACACGTTACGTAGAATGGG -ACGGAACACGTTACGTAGTCCTGA -ACGGAACACGTTACGTAGTAGCGA -ACGGAACACGTTACGTAGCACAGA -ACGGAACACGTTACGTAGGCAAGA -ACGGAACACGTTACGTAGGGTTGA -ACGGAACACGTTACGTAGTCCGAT -ACGGAACACGTTACGTAGTGGCAT -ACGGAACACGTTACGTAGCGAGAT -ACGGAACACGTTACGTAGTACCAC -ACGGAACACGTTACGTAGCAGAAC -ACGGAACACGTTACGTAGGTCTAC -ACGGAACACGTTACGTAGACGTAC -ACGGAACACGTTACGTAGAGTGAC -ACGGAACACGTTACGTAGCTGTAG -ACGGAACACGTTACGTAGCCTAAG -ACGGAACACGTTACGTAGGTTCAG -ACGGAACACGTTACGTAGGCATAG -ACGGAACACGTTACGTAGGACAAG -ACGGAACACGTTACGTAGAAGCAG -ACGGAACACGTTACGTAGCGTCAA -ACGGAACACGTTACGTAGGCTGAA -ACGGAACACGTTACGTAGAGTACG -ACGGAACACGTTACGTAGATCCGA -ACGGAACACGTTACGTAGATGGGA -ACGGAACACGTTACGTAGGTGCAA -ACGGAACACGTTACGTAGGAGGAA -ACGGAACACGTTACGTAGCAGGTA -ACGGAACACGTTACGTAGGACTCT -ACGGAACACGTTACGTAGAGTCCT -ACGGAACACGTTACGTAGTAAGCC -ACGGAACACGTTACGTAGATAGCC -ACGGAACACGTTACGTAGTAACCG -ACGGAACACGTTACGTAGATGCCA -ACGGAACACGTTACGGTAGGAAAC -ACGGAACACGTTACGGTAAACACC -ACGGAACACGTTACGGTAATCGAG -ACGGAACACGTTACGGTACTCCTT -ACGGAACACGTTACGGTACCTGTT -ACGGAACACGTTACGGTACGGTTT -ACGGAACACGTTACGGTAGTGGTT -ACGGAACACGTTACGGTAGCCTTT -ACGGAACACGTTACGGTAGGTCTT -ACGGAACACGTTACGGTAACGCTT -ACGGAACACGTTACGGTAAGCGTT -ACGGAACACGTTACGGTATTCGTC -ACGGAACACGTTACGGTATCTCTC -ACGGAACACGTTACGGTATGGATC -ACGGAACACGTTACGGTACACTTC -ACGGAACACGTTACGGTAGTACTC -ACGGAACACGTTACGGTAGATGTC -ACGGAACACGTTACGGTAACAGTC -ACGGAACACGTTACGGTATTGCTG -ACGGAACACGTTACGGTATCCATG -ACGGAACACGTTACGGTATGTGTG -ACGGAACACGTTACGGTACTAGTG -ACGGAACACGTTACGGTACATCTG -ACGGAACACGTTACGGTAGAGTTG -ACGGAACACGTTACGGTAAGACTG -ACGGAACACGTTACGGTATCGGTA -ACGGAACACGTTACGGTATGCCTA -ACGGAACACGTTACGGTACCACTA -ACGGAACACGTTACGGTAGGAGTA -ACGGAACACGTTACGGTATCGTCT -ACGGAACACGTTACGGTATGCACT -ACGGAACACGTTACGGTACTGACT -ACGGAACACGTTACGGTACAACCT -ACGGAACACGTTACGGTAGCTACT -ACGGAACACGTTACGGTAGGATCT -ACGGAACACGTTACGGTAAAGGCT -ACGGAACACGTTACGGTATCAACC -ACGGAACACGTTACGGTATGTTCC -ACGGAACACGTTACGGTAATTCCC -ACGGAACACGTTACGGTATTCTCG -ACGGAACACGTTACGGTATAGACG -ACGGAACACGTTACGGTAGTAACG -ACGGAACACGTTACGGTAACTTCG -ACGGAACACGTTACGGTATACGCA -ACGGAACACGTTACGGTACTTGCA -ACGGAACACGTTACGGTACGAACA -ACGGAACACGTTACGGTACAGTCA -ACGGAACACGTTACGGTAGATCCA -ACGGAACACGTTACGGTAACGACA -ACGGAACACGTTACGGTAAGCTCA -ACGGAACACGTTACGGTATCACGT -ACGGAACACGTTACGGTACGTAGT -ACGGAACACGTTACGGTAGTCAGT -ACGGAACACGTTACGGTAGAAGGT -ACGGAACACGTTACGGTAAACCGT -ACGGAACACGTTACGGTATTGTGC -ACGGAACACGTTACGGTACTAAGC -ACGGAACACGTTACGGTAACTAGC -ACGGAACACGTTACGGTAAGATGC -ACGGAACACGTTACGGTATGAAGG -ACGGAACACGTTACGGTACAATGG -ACGGAACACGTTACGGTAATGAGG -ACGGAACACGTTACGGTAAATGGG -ACGGAACACGTTACGGTATCCTGA -ACGGAACACGTTACGGTATAGCGA -ACGGAACACGTTACGGTACACAGA -ACGGAACACGTTACGGTAGCAAGA -ACGGAACACGTTACGGTAGGTTGA -ACGGAACACGTTACGGTATCCGAT -ACGGAACACGTTACGGTATGGCAT -ACGGAACACGTTACGGTACGAGAT -ACGGAACACGTTACGGTATACCAC -ACGGAACACGTTACGGTACAGAAC -ACGGAACACGTTACGGTAGTCTAC -ACGGAACACGTTACGGTAACGTAC -ACGGAACACGTTACGGTAAGTGAC -ACGGAACACGTTACGGTACTGTAG -ACGGAACACGTTACGGTACCTAAG -ACGGAACACGTTACGGTAGTTCAG -ACGGAACACGTTACGGTAGCATAG -ACGGAACACGTTACGGTAGACAAG -ACGGAACACGTTACGGTAAAGCAG -ACGGAACACGTTACGGTACGTCAA -ACGGAACACGTTACGGTAGCTGAA -ACGGAACACGTTACGGTAAGTACG -ACGGAACACGTTACGGTAATCCGA -ACGGAACACGTTACGGTAATGGGA -ACGGAACACGTTACGGTAGTGCAA -ACGGAACACGTTACGGTAGAGGAA -ACGGAACACGTTACGGTACAGGTA -ACGGAACACGTTACGGTAGACTCT -ACGGAACACGTTACGGTAAGTCCT -ACGGAACACGTTACGGTATAAGCC -ACGGAACACGTTACGGTAATAGCC -ACGGAACACGTTACGGTATAACCG -ACGGAACACGTTACGGTAATGCCA -ACGGAACACGTTTCGACTGGAAAC -ACGGAACACGTTTCGACTAACACC -ACGGAACACGTTTCGACTATCGAG -ACGGAACACGTTTCGACTCTCCTT -ACGGAACACGTTTCGACTCCTGTT -ACGGAACACGTTTCGACTCGGTTT -ACGGAACACGTTTCGACTGTGGTT -ACGGAACACGTTTCGACTGCCTTT -ACGGAACACGTTTCGACTGGTCTT -ACGGAACACGTTTCGACTACGCTT -ACGGAACACGTTTCGACTAGCGTT -ACGGAACACGTTTCGACTTTCGTC -ACGGAACACGTTTCGACTTCTCTC -ACGGAACACGTTTCGACTTGGATC -ACGGAACACGTTTCGACTCACTTC -ACGGAACACGTTTCGACTGTACTC -ACGGAACACGTTTCGACTGATGTC -ACGGAACACGTTTCGACTACAGTC -ACGGAACACGTTTCGACTTTGCTG -ACGGAACACGTTTCGACTTCCATG -ACGGAACACGTTTCGACTTGTGTG -ACGGAACACGTTTCGACTCTAGTG -ACGGAACACGTTTCGACTCATCTG -ACGGAACACGTTTCGACTGAGTTG -ACGGAACACGTTTCGACTAGACTG -ACGGAACACGTTTCGACTTCGGTA -ACGGAACACGTTTCGACTTGCCTA -ACGGAACACGTTTCGACTCCACTA -ACGGAACACGTTTCGACTGGAGTA -ACGGAACACGTTTCGACTTCGTCT -ACGGAACACGTTTCGACTTGCACT -ACGGAACACGTTTCGACTCTGACT -ACGGAACACGTTTCGACTCAACCT -ACGGAACACGTTTCGACTGCTACT -ACGGAACACGTTTCGACTGGATCT -ACGGAACACGTTTCGACTAAGGCT -ACGGAACACGTTTCGACTTCAACC -ACGGAACACGTTTCGACTTGTTCC -ACGGAACACGTTTCGACTATTCCC -ACGGAACACGTTTCGACTTTCTCG -ACGGAACACGTTTCGACTTAGACG -ACGGAACACGTTTCGACTGTAACG -ACGGAACACGTTTCGACTACTTCG -ACGGAACACGTTTCGACTTACGCA -ACGGAACACGTTTCGACTCTTGCA -ACGGAACACGTTTCGACTCGAACA -ACGGAACACGTTTCGACTCAGTCA -ACGGAACACGTTTCGACTGATCCA -ACGGAACACGTTTCGACTACGACA -ACGGAACACGTTTCGACTAGCTCA -ACGGAACACGTTTCGACTTCACGT -ACGGAACACGTTTCGACTCGTAGT -ACGGAACACGTTTCGACTGTCAGT -ACGGAACACGTTTCGACTGAAGGT -ACGGAACACGTTTCGACTAACCGT -ACGGAACACGTTTCGACTTTGTGC -ACGGAACACGTTTCGACTCTAAGC -ACGGAACACGTTTCGACTACTAGC -ACGGAACACGTTTCGACTAGATGC -ACGGAACACGTTTCGACTTGAAGG -ACGGAACACGTTTCGACTCAATGG -ACGGAACACGTTTCGACTATGAGG -ACGGAACACGTTTCGACTAATGGG -ACGGAACACGTTTCGACTTCCTGA -ACGGAACACGTTTCGACTTAGCGA -ACGGAACACGTTTCGACTCACAGA -ACGGAACACGTTTCGACTGCAAGA -ACGGAACACGTTTCGACTGGTTGA -ACGGAACACGTTTCGACTTCCGAT -ACGGAACACGTTTCGACTTGGCAT -ACGGAACACGTTTCGACTCGAGAT -ACGGAACACGTTTCGACTTACCAC -ACGGAACACGTTTCGACTCAGAAC -ACGGAACACGTTTCGACTGTCTAC -ACGGAACACGTTTCGACTACGTAC -ACGGAACACGTTTCGACTAGTGAC -ACGGAACACGTTTCGACTCTGTAG -ACGGAACACGTTTCGACTCCTAAG -ACGGAACACGTTTCGACTGTTCAG -ACGGAACACGTTTCGACTGCATAG -ACGGAACACGTTTCGACTGACAAG -ACGGAACACGTTTCGACTAAGCAG -ACGGAACACGTTTCGACTCGTCAA -ACGGAACACGTTTCGACTGCTGAA -ACGGAACACGTTTCGACTAGTACG -ACGGAACACGTTTCGACTATCCGA -ACGGAACACGTTTCGACTATGGGA -ACGGAACACGTTTCGACTGTGCAA -ACGGAACACGTTTCGACTGAGGAA -ACGGAACACGTTTCGACTCAGGTA -ACGGAACACGTTTCGACTGACTCT -ACGGAACACGTTTCGACTAGTCCT -ACGGAACACGTTTCGACTTAAGCC -ACGGAACACGTTTCGACTATAGCC -ACGGAACACGTTTCGACTTAACCG -ACGGAACACGTTTCGACTATGCCA -ACGGAACACGTTGCATACGGAAAC -ACGGAACACGTTGCATACAACACC -ACGGAACACGTTGCATACATCGAG -ACGGAACACGTTGCATACCTCCTT -ACGGAACACGTTGCATACCCTGTT -ACGGAACACGTTGCATACCGGTTT -ACGGAACACGTTGCATACGTGGTT -ACGGAACACGTTGCATACGCCTTT -ACGGAACACGTTGCATACGGTCTT -ACGGAACACGTTGCATACACGCTT -ACGGAACACGTTGCATACAGCGTT -ACGGAACACGTTGCATACTTCGTC -ACGGAACACGTTGCATACTCTCTC -ACGGAACACGTTGCATACTGGATC -ACGGAACACGTTGCATACCACTTC -ACGGAACACGTTGCATACGTACTC -ACGGAACACGTTGCATACGATGTC -ACGGAACACGTTGCATACACAGTC -ACGGAACACGTTGCATACTTGCTG -ACGGAACACGTTGCATACTCCATG -ACGGAACACGTTGCATACTGTGTG -ACGGAACACGTTGCATACCTAGTG -ACGGAACACGTTGCATACCATCTG -ACGGAACACGTTGCATACGAGTTG -ACGGAACACGTTGCATACAGACTG -ACGGAACACGTTGCATACTCGGTA -ACGGAACACGTTGCATACTGCCTA -ACGGAACACGTTGCATACCCACTA -ACGGAACACGTTGCATACGGAGTA -ACGGAACACGTTGCATACTCGTCT -ACGGAACACGTTGCATACTGCACT -ACGGAACACGTTGCATACCTGACT -ACGGAACACGTTGCATACCAACCT -ACGGAACACGTTGCATACGCTACT -ACGGAACACGTTGCATACGGATCT -ACGGAACACGTTGCATACAAGGCT -ACGGAACACGTTGCATACTCAACC -ACGGAACACGTTGCATACTGTTCC -ACGGAACACGTTGCATACATTCCC -ACGGAACACGTTGCATACTTCTCG -ACGGAACACGTTGCATACTAGACG -ACGGAACACGTTGCATACGTAACG -ACGGAACACGTTGCATACACTTCG -ACGGAACACGTTGCATACTACGCA -ACGGAACACGTTGCATACCTTGCA -ACGGAACACGTTGCATACCGAACA -ACGGAACACGTTGCATACCAGTCA -ACGGAACACGTTGCATACGATCCA -ACGGAACACGTTGCATACACGACA -ACGGAACACGTTGCATACAGCTCA -ACGGAACACGTTGCATACTCACGT -ACGGAACACGTTGCATACCGTAGT -ACGGAACACGTTGCATACGTCAGT -ACGGAACACGTTGCATACGAAGGT -ACGGAACACGTTGCATACAACCGT -ACGGAACACGTTGCATACTTGTGC -ACGGAACACGTTGCATACCTAAGC -ACGGAACACGTTGCATACACTAGC -ACGGAACACGTTGCATACAGATGC -ACGGAACACGTTGCATACTGAAGG -ACGGAACACGTTGCATACCAATGG -ACGGAACACGTTGCATACATGAGG -ACGGAACACGTTGCATACAATGGG -ACGGAACACGTTGCATACTCCTGA -ACGGAACACGTTGCATACTAGCGA -ACGGAACACGTTGCATACCACAGA -ACGGAACACGTTGCATACGCAAGA -ACGGAACACGTTGCATACGGTTGA -ACGGAACACGTTGCATACTCCGAT -ACGGAACACGTTGCATACTGGCAT -ACGGAACACGTTGCATACCGAGAT -ACGGAACACGTTGCATACTACCAC -ACGGAACACGTTGCATACCAGAAC -ACGGAACACGTTGCATACGTCTAC -ACGGAACACGTTGCATACACGTAC -ACGGAACACGTTGCATACAGTGAC -ACGGAACACGTTGCATACCTGTAG -ACGGAACACGTTGCATACCCTAAG -ACGGAACACGTTGCATACGTTCAG -ACGGAACACGTTGCATACGCATAG -ACGGAACACGTTGCATACGACAAG -ACGGAACACGTTGCATACAAGCAG -ACGGAACACGTTGCATACCGTCAA -ACGGAACACGTTGCATACGCTGAA -ACGGAACACGTTGCATACAGTACG -ACGGAACACGTTGCATACATCCGA -ACGGAACACGTTGCATACATGGGA -ACGGAACACGTTGCATACGTGCAA -ACGGAACACGTTGCATACGAGGAA -ACGGAACACGTTGCATACCAGGTA -ACGGAACACGTTGCATACGACTCT -ACGGAACACGTTGCATACAGTCCT -ACGGAACACGTTGCATACTAAGCC -ACGGAACACGTTGCATACATAGCC -ACGGAACACGTTGCATACTAACCG -ACGGAACACGTTGCATACATGCCA -ACGGAACACGTTGCACTTGGAAAC -ACGGAACACGTTGCACTTAACACC -ACGGAACACGTTGCACTTATCGAG -ACGGAACACGTTGCACTTCTCCTT -ACGGAACACGTTGCACTTCCTGTT -ACGGAACACGTTGCACTTCGGTTT -ACGGAACACGTTGCACTTGTGGTT -ACGGAACACGTTGCACTTGCCTTT -ACGGAACACGTTGCACTTGGTCTT -ACGGAACACGTTGCACTTACGCTT -ACGGAACACGTTGCACTTAGCGTT -ACGGAACACGTTGCACTTTTCGTC -ACGGAACACGTTGCACTTTCTCTC -ACGGAACACGTTGCACTTTGGATC -ACGGAACACGTTGCACTTCACTTC -ACGGAACACGTTGCACTTGTACTC -ACGGAACACGTTGCACTTGATGTC -ACGGAACACGTTGCACTTACAGTC -ACGGAACACGTTGCACTTTTGCTG -ACGGAACACGTTGCACTTTCCATG -ACGGAACACGTTGCACTTTGTGTG -ACGGAACACGTTGCACTTCTAGTG -ACGGAACACGTTGCACTTCATCTG -ACGGAACACGTTGCACTTGAGTTG -ACGGAACACGTTGCACTTAGACTG -ACGGAACACGTTGCACTTTCGGTA -ACGGAACACGTTGCACTTTGCCTA -ACGGAACACGTTGCACTTCCACTA -ACGGAACACGTTGCACTTGGAGTA -ACGGAACACGTTGCACTTTCGTCT -ACGGAACACGTTGCACTTTGCACT -ACGGAACACGTTGCACTTCTGACT -ACGGAACACGTTGCACTTCAACCT -ACGGAACACGTTGCACTTGCTACT -ACGGAACACGTTGCACTTGGATCT -ACGGAACACGTTGCACTTAAGGCT -ACGGAACACGTTGCACTTTCAACC -ACGGAACACGTTGCACTTTGTTCC -ACGGAACACGTTGCACTTATTCCC -ACGGAACACGTTGCACTTTTCTCG -ACGGAACACGTTGCACTTTAGACG -ACGGAACACGTTGCACTTGTAACG -ACGGAACACGTTGCACTTACTTCG -ACGGAACACGTTGCACTTTACGCA -ACGGAACACGTTGCACTTCTTGCA -ACGGAACACGTTGCACTTCGAACA -ACGGAACACGTTGCACTTCAGTCA -ACGGAACACGTTGCACTTGATCCA -ACGGAACACGTTGCACTTACGACA -ACGGAACACGTTGCACTTAGCTCA -ACGGAACACGTTGCACTTTCACGT -ACGGAACACGTTGCACTTCGTAGT -ACGGAACACGTTGCACTTGTCAGT -ACGGAACACGTTGCACTTGAAGGT -ACGGAACACGTTGCACTTAACCGT -ACGGAACACGTTGCACTTTTGTGC -ACGGAACACGTTGCACTTCTAAGC -ACGGAACACGTTGCACTTACTAGC -ACGGAACACGTTGCACTTAGATGC -ACGGAACACGTTGCACTTTGAAGG -ACGGAACACGTTGCACTTCAATGG -ACGGAACACGTTGCACTTATGAGG -ACGGAACACGTTGCACTTAATGGG -ACGGAACACGTTGCACTTTCCTGA -ACGGAACACGTTGCACTTTAGCGA -ACGGAACACGTTGCACTTCACAGA -ACGGAACACGTTGCACTTGCAAGA -ACGGAACACGTTGCACTTGGTTGA -ACGGAACACGTTGCACTTTCCGAT -ACGGAACACGTTGCACTTTGGCAT -ACGGAACACGTTGCACTTCGAGAT -ACGGAACACGTTGCACTTTACCAC -ACGGAACACGTTGCACTTCAGAAC -ACGGAACACGTTGCACTTGTCTAC -ACGGAACACGTTGCACTTACGTAC -ACGGAACACGTTGCACTTAGTGAC -ACGGAACACGTTGCACTTCTGTAG -ACGGAACACGTTGCACTTCCTAAG -ACGGAACACGTTGCACTTGTTCAG -ACGGAACACGTTGCACTTGCATAG -ACGGAACACGTTGCACTTGACAAG -ACGGAACACGTTGCACTTAAGCAG -ACGGAACACGTTGCACTTCGTCAA -ACGGAACACGTTGCACTTGCTGAA -ACGGAACACGTTGCACTTAGTACG -ACGGAACACGTTGCACTTATCCGA -ACGGAACACGTTGCACTTATGGGA -ACGGAACACGTTGCACTTGTGCAA -ACGGAACACGTTGCACTTGAGGAA -ACGGAACACGTTGCACTTCAGGTA -ACGGAACACGTTGCACTTGACTCT -ACGGAACACGTTGCACTTAGTCCT -ACGGAACACGTTGCACTTTAAGCC -ACGGAACACGTTGCACTTATAGCC -ACGGAACACGTTGCACTTTAACCG -ACGGAACACGTTGCACTTATGCCA -ACGGAACACGTTACACGAGGAAAC -ACGGAACACGTTACACGAAACACC -ACGGAACACGTTACACGAATCGAG -ACGGAACACGTTACACGACTCCTT -ACGGAACACGTTACACGACCTGTT -ACGGAACACGTTACACGACGGTTT -ACGGAACACGTTACACGAGTGGTT -ACGGAACACGTTACACGAGCCTTT -ACGGAACACGTTACACGAGGTCTT -ACGGAACACGTTACACGAACGCTT -ACGGAACACGTTACACGAAGCGTT -ACGGAACACGTTACACGATTCGTC -ACGGAACACGTTACACGATCTCTC -ACGGAACACGTTACACGATGGATC -ACGGAACACGTTACACGACACTTC -ACGGAACACGTTACACGAGTACTC -ACGGAACACGTTACACGAGATGTC -ACGGAACACGTTACACGAACAGTC -ACGGAACACGTTACACGATTGCTG -ACGGAACACGTTACACGATCCATG -ACGGAACACGTTACACGATGTGTG -ACGGAACACGTTACACGACTAGTG -ACGGAACACGTTACACGACATCTG -ACGGAACACGTTACACGAGAGTTG -ACGGAACACGTTACACGAAGACTG -ACGGAACACGTTACACGATCGGTA -ACGGAACACGTTACACGATGCCTA -ACGGAACACGTTACACGACCACTA -ACGGAACACGTTACACGAGGAGTA -ACGGAACACGTTACACGATCGTCT -ACGGAACACGTTACACGATGCACT -ACGGAACACGTTACACGACTGACT -ACGGAACACGTTACACGACAACCT -ACGGAACACGTTACACGAGCTACT -ACGGAACACGTTACACGAGGATCT -ACGGAACACGTTACACGAAAGGCT -ACGGAACACGTTACACGATCAACC -ACGGAACACGTTACACGATGTTCC -ACGGAACACGTTACACGAATTCCC -ACGGAACACGTTACACGATTCTCG -ACGGAACACGTTACACGATAGACG -ACGGAACACGTTACACGAGTAACG -ACGGAACACGTTACACGAACTTCG -ACGGAACACGTTACACGATACGCA -ACGGAACACGTTACACGACTTGCA -ACGGAACACGTTACACGACGAACA -ACGGAACACGTTACACGACAGTCA -ACGGAACACGTTACACGAGATCCA -ACGGAACACGTTACACGAACGACA -ACGGAACACGTTACACGAAGCTCA -ACGGAACACGTTACACGATCACGT -ACGGAACACGTTACACGACGTAGT -ACGGAACACGTTACACGAGTCAGT -ACGGAACACGTTACACGAGAAGGT -ACGGAACACGTTACACGAAACCGT -ACGGAACACGTTACACGATTGTGC -ACGGAACACGTTACACGACTAAGC -ACGGAACACGTTACACGAACTAGC -ACGGAACACGTTACACGAAGATGC -ACGGAACACGTTACACGATGAAGG -ACGGAACACGTTACACGACAATGG -ACGGAACACGTTACACGAATGAGG -ACGGAACACGTTACACGAAATGGG -ACGGAACACGTTACACGATCCTGA -ACGGAACACGTTACACGATAGCGA -ACGGAACACGTTACACGACACAGA -ACGGAACACGTTACACGAGCAAGA -ACGGAACACGTTACACGAGGTTGA -ACGGAACACGTTACACGATCCGAT -ACGGAACACGTTACACGATGGCAT -ACGGAACACGTTACACGACGAGAT -ACGGAACACGTTACACGATACCAC -ACGGAACACGTTACACGACAGAAC -ACGGAACACGTTACACGAGTCTAC -ACGGAACACGTTACACGAACGTAC -ACGGAACACGTTACACGAAGTGAC -ACGGAACACGTTACACGACTGTAG -ACGGAACACGTTACACGACCTAAG -ACGGAACACGTTACACGAGTTCAG -ACGGAACACGTTACACGAGCATAG -ACGGAACACGTTACACGAGACAAG -ACGGAACACGTTACACGAAAGCAG -ACGGAACACGTTACACGACGTCAA -ACGGAACACGTTACACGAGCTGAA -ACGGAACACGTTACACGAAGTACG -ACGGAACACGTTACACGAATCCGA -ACGGAACACGTTACACGAATGGGA -ACGGAACACGTTACACGAGTGCAA -ACGGAACACGTTACACGAGAGGAA -ACGGAACACGTTACACGACAGGTA -ACGGAACACGTTACACGAGACTCT -ACGGAACACGTTACACGAAGTCCT -ACGGAACACGTTACACGATAAGCC -ACGGAACACGTTACACGAATAGCC -ACGGAACACGTTACACGATAACCG -ACGGAACACGTTACACGAATGCCA -ACGGAACACGTTTCACAGGGAAAC -ACGGAACACGTTTCACAGAACACC -ACGGAACACGTTTCACAGATCGAG -ACGGAACACGTTTCACAGCTCCTT -ACGGAACACGTTTCACAGCCTGTT -ACGGAACACGTTTCACAGCGGTTT -ACGGAACACGTTTCACAGGTGGTT -ACGGAACACGTTTCACAGGCCTTT -ACGGAACACGTTTCACAGGGTCTT -ACGGAACACGTTTCACAGACGCTT -ACGGAACACGTTTCACAGAGCGTT -ACGGAACACGTTTCACAGTTCGTC -ACGGAACACGTTTCACAGTCTCTC -ACGGAACACGTTTCACAGTGGATC -ACGGAACACGTTTCACAGCACTTC -ACGGAACACGTTTCACAGGTACTC -ACGGAACACGTTTCACAGGATGTC -ACGGAACACGTTTCACAGACAGTC -ACGGAACACGTTTCACAGTTGCTG -ACGGAACACGTTTCACAGTCCATG -ACGGAACACGTTTCACAGTGTGTG -ACGGAACACGTTTCACAGCTAGTG -ACGGAACACGTTTCACAGCATCTG -ACGGAACACGTTTCACAGGAGTTG -ACGGAACACGTTTCACAGAGACTG -ACGGAACACGTTTCACAGTCGGTA -ACGGAACACGTTTCACAGTGCCTA -ACGGAACACGTTTCACAGCCACTA -ACGGAACACGTTTCACAGGGAGTA -ACGGAACACGTTTCACAGTCGTCT -ACGGAACACGTTTCACAGTGCACT -ACGGAACACGTTTCACAGCTGACT -ACGGAACACGTTTCACAGCAACCT -ACGGAACACGTTTCACAGGCTACT -ACGGAACACGTTTCACAGGGATCT -ACGGAACACGTTTCACAGAAGGCT -ACGGAACACGTTTCACAGTCAACC -ACGGAACACGTTTCACAGTGTTCC -ACGGAACACGTTTCACAGATTCCC -ACGGAACACGTTTCACAGTTCTCG -ACGGAACACGTTTCACAGTAGACG -ACGGAACACGTTTCACAGGTAACG -ACGGAACACGTTTCACAGACTTCG -ACGGAACACGTTTCACAGTACGCA -ACGGAACACGTTTCACAGCTTGCA -ACGGAACACGTTTCACAGCGAACA -ACGGAACACGTTTCACAGCAGTCA -ACGGAACACGTTTCACAGGATCCA -ACGGAACACGTTTCACAGACGACA -ACGGAACACGTTTCACAGAGCTCA -ACGGAACACGTTTCACAGTCACGT -ACGGAACACGTTTCACAGCGTAGT -ACGGAACACGTTTCACAGGTCAGT -ACGGAACACGTTTCACAGGAAGGT -ACGGAACACGTTTCACAGAACCGT -ACGGAACACGTTTCACAGTTGTGC -ACGGAACACGTTTCACAGCTAAGC -ACGGAACACGTTTCACAGACTAGC -ACGGAACACGTTTCACAGAGATGC -ACGGAACACGTTTCACAGTGAAGG -ACGGAACACGTTTCACAGCAATGG -ACGGAACACGTTTCACAGATGAGG -ACGGAACACGTTTCACAGAATGGG -ACGGAACACGTTTCACAGTCCTGA -ACGGAACACGTTTCACAGTAGCGA -ACGGAACACGTTTCACAGCACAGA -ACGGAACACGTTTCACAGGCAAGA -ACGGAACACGTTTCACAGGGTTGA -ACGGAACACGTTTCACAGTCCGAT -ACGGAACACGTTTCACAGTGGCAT -ACGGAACACGTTTCACAGCGAGAT -ACGGAACACGTTTCACAGTACCAC -ACGGAACACGTTTCACAGCAGAAC -ACGGAACACGTTTCACAGGTCTAC -ACGGAACACGTTTCACAGACGTAC -ACGGAACACGTTTCACAGAGTGAC -ACGGAACACGTTTCACAGCTGTAG -ACGGAACACGTTTCACAGCCTAAG -ACGGAACACGTTTCACAGGTTCAG -ACGGAACACGTTTCACAGGCATAG -ACGGAACACGTTTCACAGGACAAG -ACGGAACACGTTTCACAGAAGCAG -ACGGAACACGTTTCACAGCGTCAA -ACGGAACACGTTTCACAGGCTGAA -ACGGAACACGTTTCACAGAGTACG -ACGGAACACGTTTCACAGATCCGA -ACGGAACACGTTTCACAGATGGGA -ACGGAACACGTTTCACAGGTGCAA -ACGGAACACGTTTCACAGGAGGAA -ACGGAACACGTTTCACAGCAGGTA -ACGGAACACGTTTCACAGGACTCT -ACGGAACACGTTTCACAGAGTCCT -ACGGAACACGTTTCACAGTAAGCC -ACGGAACACGTTTCACAGATAGCC -ACGGAACACGTTTCACAGTAACCG -ACGGAACACGTTTCACAGATGCCA -ACGGAACACGTTCCAGATGGAAAC -ACGGAACACGTTCCAGATAACACC -ACGGAACACGTTCCAGATATCGAG -ACGGAACACGTTCCAGATCTCCTT -ACGGAACACGTTCCAGATCCTGTT -ACGGAACACGTTCCAGATCGGTTT -ACGGAACACGTTCCAGATGTGGTT -ACGGAACACGTTCCAGATGCCTTT -ACGGAACACGTTCCAGATGGTCTT -ACGGAACACGTTCCAGATACGCTT -ACGGAACACGTTCCAGATAGCGTT -ACGGAACACGTTCCAGATTTCGTC -ACGGAACACGTTCCAGATTCTCTC -ACGGAACACGTTCCAGATTGGATC -ACGGAACACGTTCCAGATCACTTC -ACGGAACACGTTCCAGATGTACTC -ACGGAACACGTTCCAGATGATGTC -ACGGAACACGTTCCAGATACAGTC -ACGGAACACGTTCCAGATTTGCTG -ACGGAACACGTTCCAGATTCCATG -ACGGAACACGTTCCAGATTGTGTG -ACGGAACACGTTCCAGATCTAGTG -ACGGAACACGTTCCAGATCATCTG -ACGGAACACGTTCCAGATGAGTTG -ACGGAACACGTTCCAGATAGACTG -ACGGAACACGTTCCAGATTCGGTA -ACGGAACACGTTCCAGATTGCCTA -ACGGAACACGTTCCAGATCCACTA -ACGGAACACGTTCCAGATGGAGTA -ACGGAACACGTTCCAGATTCGTCT -ACGGAACACGTTCCAGATTGCACT -ACGGAACACGTTCCAGATCTGACT -ACGGAACACGTTCCAGATCAACCT -ACGGAACACGTTCCAGATGCTACT -ACGGAACACGTTCCAGATGGATCT -ACGGAACACGTTCCAGATAAGGCT -ACGGAACACGTTCCAGATTCAACC -ACGGAACACGTTCCAGATTGTTCC -ACGGAACACGTTCCAGATATTCCC -ACGGAACACGTTCCAGATTTCTCG -ACGGAACACGTTCCAGATTAGACG -ACGGAACACGTTCCAGATGTAACG -ACGGAACACGTTCCAGATACTTCG -ACGGAACACGTTCCAGATTACGCA -ACGGAACACGTTCCAGATCTTGCA -ACGGAACACGTTCCAGATCGAACA -ACGGAACACGTTCCAGATCAGTCA -ACGGAACACGTTCCAGATGATCCA -ACGGAACACGTTCCAGATACGACA -ACGGAACACGTTCCAGATAGCTCA -ACGGAACACGTTCCAGATTCACGT -ACGGAACACGTTCCAGATCGTAGT -ACGGAACACGTTCCAGATGTCAGT -ACGGAACACGTTCCAGATGAAGGT -ACGGAACACGTTCCAGATAACCGT -ACGGAACACGTTCCAGATTTGTGC -ACGGAACACGTTCCAGATCTAAGC -ACGGAACACGTTCCAGATACTAGC -ACGGAACACGTTCCAGATAGATGC -ACGGAACACGTTCCAGATTGAAGG -ACGGAACACGTTCCAGATCAATGG -ACGGAACACGTTCCAGATATGAGG -ACGGAACACGTTCCAGATAATGGG -ACGGAACACGTTCCAGATTCCTGA -ACGGAACACGTTCCAGATTAGCGA -ACGGAACACGTTCCAGATCACAGA -ACGGAACACGTTCCAGATGCAAGA -ACGGAACACGTTCCAGATGGTTGA -ACGGAACACGTTCCAGATTCCGAT -ACGGAACACGTTCCAGATTGGCAT -ACGGAACACGTTCCAGATCGAGAT -ACGGAACACGTTCCAGATTACCAC -ACGGAACACGTTCCAGATCAGAAC -ACGGAACACGTTCCAGATGTCTAC -ACGGAACACGTTCCAGATACGTAC -ACGGAACACGTTCCAGATAGTGAC -ACGGAACACGTTCCAGATCTGTAG -ACGGAACACGTTCCAGATCCTAAG -ACGGAACACGTTCCAGATGTTCAG -ACGGAACACGTTCCAGATGCATAG -ACGGAACACGTTCCAGATGACAAG -ACGGAACACGTTCCAGATAAGCAG -ACGGAACACGTTCCAGATCGTCAA -ACGGAACACGTTCCAGATGCTGAA -ACGGAACACGTTCCAGATAGTACG -ACGGAACACGTTCCAGATATCCGA -ACGGAACACGTTCCAGATATGGGA -ACGGAACACGTTCCAGATGTGCAA -ACGGAACACGTTCCAGATGAGGAA -ACGGAACACGTTCCAGATCAGGTA -ACGGAACACGTTCCAGATGACTCT -ACGGAACACGTTCCAGATAGTCCT -ACGGAACACGTTCCAGATTAAGCC -ACGGAACACGTTCCAGATATAGCC -ACGGAACACGTTCCAGATTAACCG -ACGGAACACGTTCCAGATATGCCA -ACGGAACACGTTACAACGGGAAAC -ACGGAACACGTTACAACGAACACC -ACGGAACACGTTACAACGATCGAG -ACGGAACACGTTACAACGCTCCTT -ACGGAACACGTTACAACGCCTGTT -ACGGAACACGTTACAACGCGGTTT -ACGGAACACGTTACAACGGTGGTT -ACGGAACACGTTACAACGGCCTTT -ACGGAACACGTTACAACGGGTCTT -ACGGAACACGTTACAACGACGCTT -ACGGAACACGTTACAACGAGCGTT -ACGGAACACGTTACAACGTTCGTC -ACGGAACACGTTACAACGTCTCTC -ACGGAACACGTTACAACGTGGATC -ACGGAACACGTTACAACGCACTTC -ACGGAACACGTTACAACGGTACTC -ACGGAACACGTTACAACGGATGTC -ACGGAACACGTTACAACGACAGTC -ACGGAACACGTTACAACGTTGCTG -ACGGAACACGTTACAACGTCCATG -ACGGAACACGTTACAACGTGTGTG -ACGGAACACGTTACAACGCTAGTG -ACGGAACACGTTACAACGCATCTG -ACGGAACACGTTACAACGGAGTTG -ACGGAACACGTTACAACGAGACTG -ACGGAACACGTTACAACGTCGGTA -ACGGAACACGTTACAACGTGCCTA -ACGGAACACGTTACAACGCCACTA -ACGGAACACGTTACAACGGGAGTA -ACGGAACACGTTACAACGTCGTCT -ACGGAACACGTTACAACGTGCACT -ACGGAACACGTTACAACGCTGACT -ACGGAACACGTTACAACGCAACCT -ACGGAACACGTTACAACGGCTACT -ACGGAACACGTTACAACGGGATCT -ACGGAACACGTTACAACGAAGGCT -ACGGAACACGTTACAACGTCAACC -ACGGAACACGTTACAACGTGTTCC -ACGGAACACGTTACAACGATTCCC -ACGGAACACGTTACAACGTTCTCG -ACGGAACACGTTACAACGTAGACG -ACGGAACACGTTACAACGGTAACG -ACGGAACACGTTACAACGACTTCG -ACGGAACACGTTACAACGTACGCA -ACGGAACACGTTACAACGCTTGCA -ACGGAACACGTTACAACGCGAACA -ACGGAACACGTTACAACGCAGTCA -ACGGAACACGTTACAACGGATCCA -ACGGAACACGTTACAACGACGACA -ACGGAACACGTTACAACGAGCTCA -ACGGAACACGTTACAACGTCACGT -ACGGAACACGTTACAACGCGTAGT -ACGGAACACGTTACAACGGTCAGT -ACGGAACACGTTACAACGGAAGGT -ACGGAACACGTTACAACGAACCGT -ACGGAACACGTTACAACGTTGTGC -ACGGAACACGTTACAACGCTAAGC -ACGGAACACGTTACAACGACTAGC -ACGGAACACGTTACAACGAGATGC -ACGGAACACGTTACAACGTGAAGG -ACGGAACACGTTACAACGCAATGG -ACGGAACACGTTACAACGATGAGG -ACGGAACACGTTACAACGAATGGG -ACGGAACACGTTACAACGTCCTGA -ACGGAACACGTTACAACGTAGCGA -ACGGAACACGTTACAACGCACAGA -ACGGAACACGTTACAACGGCAAGA -ACGGAACACGTTACAACGGGTTGA -ACGGAACACGTTACAACGTCCGAT -ACGGAACACGTTACAACGTGGCAT -ACGGAACACGTTACAACGCGAGAT -ACGGAACACGTTACAACGTACCAC -ACGGAACACGTTACAACGCAGAAC -ACGGAACACGTTACAACGGTCTAC -ACGGAACACGTTACAACGACGTAC -ACGGAACACGTTACAACGAGTGAC -ACGGAACACGTTACAACGCTGTAG -ACGGAACACGTTACAACGCCTAAG -ACGGAACACGTTACAACGGTTCAG -ACGGAACACGTTACAACGGCATAG -ACGGAACACGTTACAACGGACAAG -ACGGAACACGTTACAACGAAGCAG -ACGGAACACGTTACAACGCGTCAA -ACGGAACACGTTACAACGGCTGAA -ACGGAACACGTTACAACGAGTACG -ACGGAACACGTTACAACGATCCGA -ACGGAACACGTTACAACGATGGGA -ACGGAACACGTTACAACGGTGCAA -ACGGAACACGTTACAACGGAGGAA -ACGGAACACGTTACAACGCAGGTA -ACGGAACACGTTACAACGGACTCT -ACGGAACACGTTACAACGAGTCCT -ACGGAACACGTTACAACGTAAGCC -ACGGAACACGTTACAACGATAGCC -ACGGAACACGTTACAACGTAACCG -ACGGAACACGTTACAACGATGCCA -ACGGAACACGTTTCAAGCGGAAAC -ACGGAACACGTTTCAAGCAACACC -ACGGAACACGTTTCAAGCATCGAG -ACGGAACACGTTTCAAGCCTCCTT -ACGGAACACGTTTCAAGCCCTGTT -ACGGAACACGTTTCAAGCCGGTTT -ACGGAACACGTTTCAAGCGTGGTT -ACGGAACACGTTTCAAGCGCCTTT -ACGGAACACGTTTCAAGCGGTCTT -ACGGAACACGTTTCAAGCACGCTT -ACGGAACACGTTTCAAGCAGCGTT -ACGGAACACGTTTCAAGCTTCGTC -ACGGAACACGTTTCAAGCTCTCTC -ACGGAACACGTTTCAAGCTGGATC -ACGGAACACGTTTCAAGCCACTTC -ACGGAACACGTTTCAAGCGTACTC -ACGGAACACGTTTCAAGCGATGTC -ACGGAACACGTTTCAAGCACAGTC -ACGGAACACGTTTCAAGCTTGCTG -ACGGAACACGTTTCAAGCTCCATG -ACGGAACACGTTTCAAGCTGTGTG -ACGGAACACGTTTCAAGCCTAGTG -ACGGAACACGTTTCAAGCCATCTG -ACGGAACACGTTTCAAGCGAGTTG -ACGGAACACGTTTCAAGCAGACTG -ACGGAACACGTTTCAAGCTCGGTA -ACGGAACACGTTTCAAGCTGCCTA -ACGGAACACGTTTCAAGCCCACTA -ACGGAACACGTTTCAAGCGGAGTA -ACGGAACACGTTTCAAGCTCGTCT -ACGGAACACGTTTCAAGCTGCACT -ACGGAACACGTTTCAAGCCTGACT -ACGGAACACGTTTCAAGCCAACCT -ACGGAACACGTTTCAAGCGCTACT -ACGGAACACGTTTCAAGCGGATCT -ACGGAACACGTTTCAAGCAAGGCT -ACGGAACACGTTTCAAGCTCAACC -ACGGAACACGTTTCAAGCTGTTCC -ACGGAACACGTTTCAAGCATTCCC -ACGGAACACGTTTCAAGCTTCTCG -ACGGAACACGTTTCAAGCTAGACG -ACGGAACACGTTTCAAGCGTAACG -ACGGAACACGTTTCAAGCACTTCG -ACGGAACACGTTTCAAGCTACGCA -ACGGAACACGTTTCAAGCCTTGCA -ACGGAACACGTTTCAAGCCGAACA -ACGGAACACGTTTCAAGCCAGTCA -ACGGAACACGTTTCAAGCGATCCA -ACGGAACACGTTTCAAGCACGACA -ACGGAACACGTTTCAAGCAGCTCA -ACGGAACACGTTTCAAGCTCACGT -ACGGAACACGTTTCAAGCCGTAGT -ACGGAACACGTTTCAAGCGTCAGT -ACGGAACACGTTTCAAGCGAAGGT -ACGGAACACGTTTCAAGCAACCGT -ACGGAACACGTTTCAAGCTTGTGC -ACGGAACACGTTTCAAGCCTAAGC -ACGGAACACGTTTCAAGCACTAGC -ACGGAACACGTTTCAAGCAGATGC -ACGGAACACGTTTCAAGCTGAAGG -ACGGAACACGTTTCAAGCCAATGG -ACGGAACACGTTTCAAGCATGAGG -ACGGAACACGTTTCAAGCAATGGG -ACGGAACACGTTTCAAGCTCCTGA -ACGGAACACGTTTCAAGCTAGCGA -ACGGAACACGTTTCAAGCCACAGA -ACGGAACACGTTTCAAGCGCAAGA -ACGGAACACGTTTCAAGCGGTTGA -ACGGAACACGTTTCAAGCTCCGAT -ACGGAACACGTTTCAAGCTGGCAT -ACGGAACACGTTTCAAGCCGAGAT -ACGGAACACGTTTCAAGCTACCAC -ACGGAACACGTTTCAAGCCAGAAC -ACGGAACACGTTTCAAGCGTCTAC -ACGGAACACGTTTCAAGCACGTAC -ACGGAACACGTTTCAAGCAGTGAC -ACGGAACACGTTTCAAGCCTGTAG -ACGGAACACGTTTCAAGCCCTAAG -ACGGAACACGTTTCAAGCGTTCAG -ACGGAACACGTTTCAAGCGCATAG -ACGGAACACGTTTCAAGCGACAAG -ACGGAACACGTTTCAAGCAAGCAG -ACGGAACACGTTTCAAGCCGTCAA -ACGGAACACGTTTCAAGCGCTGAA -ACGGAACACGTTTCAAGCAGTACG -ACGGAACACGTTTCAAGCATCCGA -ACGGAACACGTTTCAAGCATGGGA -ACGGAACACGTTTCAAGCGTGCAA -ACGGAACACGTTTCAAGCGAGGAA -ACGGAACACGTTTCAAGCCAGGTA -ACGGAACACGTTTCAAGCGACTCT -ACGGAACACGTTTCAAGCAGTCCT -ACGGAACACGTTTCAAGCTAAGCC -ACGGAACACGTTTCAAGCATAGCC -ACGGAACACGTTTCAAGCTAACCG -ACGGAACACGTTTCAAGCATGCCA -ACGGAACACGTTCGTTCAGGAAAC -ACGGAACACGTTCGTTCAAACACC -ACGGAACACGTTCGTTCAATCGAG -ACGGAACACGTTCGTTCACTCCTT -ACGGAACACGTTCGTTCACCTGTT -ACGGAACACGTTCGTTCACGGTTT -ACGGAACACGTTCGTTCAGTGGTT -ACGGAACACGTTCGTTCAGCCTTT -ACGGAACACGTTCGTTCAGGTCTT -ACGGAACACGTTCGTTCAACGCTT -ACGGAACACGTTCGTTCAAGCGTT -ACGGAACACGTTCGTTCATTCGTC -ACGGAACACGTTCGTTCATCTCTC -ACGGAACACGTTCGTTCATGGATC -ACGGAACACGTTCGTTCACACTTC -ACGGAACACGTTCGTTCAGTACTC -ACGGAACACGTTCGTTCAGATGTC -ACGGAACACGTTCGTTCAACAGTC -ACGGAACACGTTCGTTCATTGCTG -ACGGAACACGTTCGTTCATCCATG -ACGGAACACGTTCGTTCATGTGTG -ACGGAACACGTTCGTTCACTAGTG -ACGGAACACGTTCGTTCACATCTG -ACGGAACACGTTCGTTCAGAGTTG -ACGGAACACGTTCGTTCAAGACTG -ACGGAACACGTTCGTTCATCGGTA -ACGGAACACGTTCGTTCATGCCTA -ACGGAACACGTTCGTTCACCACTA -ACGGAACACGTTCGTTCAGGAGTA -ACGGAACACGTTCGTTCATCGTCT -ACGGAACACGTTCGTTCATGCACT -ACGGAACACGTTCGTTCACTGACT -ACGGAACACGTTCGTTCACAACCT -ACGGAACACGTTCGTTCAGCTACT -ACGGAACACGTTCGTTCAGGATCT -ACGGAACACGTTCGTTCAAAGGCT -ACGGAACACGTTCGTTCATCAACC -ACGGAACACGTTCGTTCATGTTCC -ACGGAACACGTTCGTTCAATTCCC -ACGGAACACGTTCGTTCATTCTCG -ACGGAACACGTTCGTTCATAGACG -ACGGAACACGTTCGTTCAGTAACG -ACGGAACACGTTCGTTCAACTTCG -ACGGAACACGTTCGTTCATACGCA -ACGGAACACGTTCGTTCACTTGCA -ACGGAACACGTTCGTTCACGAACA -ACGGAACACGTTCGTTCACAGTCA -ACGGAACACGTTCGTTCAGATCCA -ACGGAACACGTTCGTTCAACGACA -ACGGAACACGTTCGTTCAAGCTCA -ACGGAACACGTTCGTTCATCACGT -ACGGAACACGTTCGTTCACGTAGT -ACGGAACACGTTCGTTCAGTCAGT -ACGGAACACGTTCGTTCAGAAGGT -ACGGAACACGTTCGTTCAAACCGT -ACGGAACACGTTCGTTCATTGTGC -ACGGAACACGTTCGTTCACTAAGC -ACGGAACACGTTCGTTCAACTAGC -ACGGAACACGTTCGTTCAAGATGC -ACGGAACACGTTCGTTCATGAAGG -ACGGAACACGTTCGTTCACAATGG -ACGGAACACGTTCGTTCAATGAGG -ACGGAACACGTTCGTTCAAATGGG -ACGGAACACGTTCGTTCATCCTGA -ACGGAACACGTTCGTTCATAGCGA -ACGGAACACGTTCGTTCACACAGA -ACGGAACACGTTCGTTCAGCAAGA -ACGGAACACGTTCGTTCAGGTTGA -ACGGAACACGTTCGTTCATCCGAT -ACGGAACACGTTCGTTCATGGCAT -ACGGAACACGTTCGTTCACGAGAT -ACGGAACACGTTCGTTCATACCAC -ACGGAACACGTTCGTTCACAGAAC -ACGGAACACGTTCGTTCAGTCTAC -ACGGAACACGTTCGTTCAACGTAC -ACGGAACACGTTCGTTCAAGTGAC -ACGGAACACGTTCGTTCACTGTAG -ACGGAACACGTTCGTTCACCTAAG -ACGGAACACGTTCGTTCAGTTCAG -ACGGAACACGTTCGTTCAGCATAG -ACGGAACACGTTCGTTCAGACAAG -ACGGAACACGTTCGTTCAAAGCAG -ACGGAACACGTTCGTTCACGTCAA -ACGGAACACGTTCGTTCAGCTGAA -ACGGAACACGTTCGTTCAAGTACG -ACGGAACACGTTCGTTCAATCCGA -ACGGAACACGTTCGTTCAATGGGA -ACGGAACACGTTCGTTCAGTGCAA -ACGGAACACGTTCGTTCAGAGGAA -ACGGAACACGTTCGTTCACAGGTA -ACGGAACACGTTCGTTCAGACTCT -ACGGAACACGTTCGTTCAAGTCCT -ACGGAACACGTTCGTTCATAAGCC -ACGGAACACGTTCGTTCAATAGCC -ACGGAACACGTTCGTTCATAACCG -ACGGAACACGTTCGTTCAATGCCA -ACGGAACACGTTAGTCGTGGAAAC -ACGGAACACGTTAGTCGTAACACC -ACGGAACACGTTAGTCGTATCGAG -ACGGAACACGTTAGTCGTCTCCTT -ACGGAACACGTTAGTCGTCCTGTT -ACGGAACACGTTAGTCGTCGGTTT -ACGGAACACGTTAGTCGTGTGGTT -ACGGAACACGTTAGTCGTGCCTTT -ACGGAACACGTTAGTCGTGGTCTT -ACGGAACACGTTAGTCGTACGCTT -ACGGAACACGTTAGTCGTAGCGTT -ACGGAACACGTTAGTCGTTTCGTC -ACGGAACACGTTAGTCGTTCTCTC -ACGGAACACGTTAGTCGTTGGATC -ACGGAACACGTTAGTCGTCACTTC -ACGGAACACGTTAGTCGTGTACTC -ACGGAACACGTTAGTCGTGATGTC -ACGGAACACGTTAGTCGTACAGTC -ACGGAACACGTTAGTCGTTTGCTG -ACGGAACACGTTAGTCGTTCCATG -ACGGAACACGTTAGTCGTTGTGTG -ACGGAACACGTTAGTCGTCTAGTG -ACGGAACACGTTAGTCGTCATCTG -ACGGAACACGTTAGTCGTGAGTTG -ACGGAACACGTTAGTCGTAGACTG -ACGGAACACGTTAGTCGTTCGGTA -ACGGAACACGTTAGTCGTTGCCTA -ACGGAACACGTTAGTCGTCCACTA -ACGGAACACGTTAGTCGTGGAGTA -ACGGAACACGTTAGTCGTTCGTCT -ACGGAACACGTTAGTCGTTGCACT -ACGGAACACGTTAGTCGTCTGACT -ACGGAACACGTTAGTCGTCAACCT -ACGGAACACGTTAGTCGTGCTACT -ACGGAACACGTTAGTCGTGGATCT -ACGGAACACGTTAGTCGTAAGGCT -ACGGAACACGTTAGTCGTTCAACC -ACGGAACACGTTAGTCGTTGTTCC -ACGGAACACGTTAGTCGTATTCCC -ACGGAACACGTTAGTCGTTTCTCG -ACGGAACACGTTAGTCGTTAGACG -ACGGAACACGTTAGTCGTGTAACG -ACGGAACACGTTAGTCGTACTTCG -ACGGAACACGTTAGTCGTTACGCA -ACGGAACACGTTAGTCGTCTTGCA -ACGGAACACGTTAGTCGTCGAACA -ACGGAACACGTTAGTCGTCAGTCA -ACGGAACACGTTAGTCGTGATCCA -ACGGAACACGTTAGTCGTACGACA -ACGGAACACGTTAGTCGTAGCTCA -ACGGAACACGTTAGTCGTTCACGT -ACGGAACACGTTAGTCGTCGTAGT -ACGGAACACGTTAGTCGTGTCAGT -ACGGAACACGTTAGTCGTGAAGGT -ACGGAACACGTTAGTCGTAACCGT -ACGGAACACGTTAGTCGTTTGTGC -ACGGAACACGTTAGTCGTCTAAGC -ACGGAACACGTTAGTCGTACTAGC -ACGGAACACGTTAGTCGTAGATGC -ACGGAACACGTTAGTCGTTGAAGG -ACGGAACACGTTAGTCGTCAATGG -ACGGAACACGTTAGTCGTATGAGG -ACGGAACACGTTAGTCGTAATGGG -ACGGAACACGTTAGTCGTTCCTGA -ACGGAACACGTTAGTCGTTAGCGA -ACGGAACACGTTAGTCGTCACAGA -ACGGAACACGTTAGTCGTGCAAGA -ACGGAACACGTTAGTCGTGGTTGA -ACGGAACACGTTAGTCGTTCCGAT -ACGGAACACGTTAGTCGTTGGCAT -ACGGAACACGTTAGTCGTCGAGAT -ACGGAACACGTTAGTCGTTACCAC -ACGGAACACGTTAGTCGTCAGAAC -ACGGAACACGTTAGTCGTGTCTAC -ACGGAACACGTTAGTCGTACGTAC -ACGGAACACGTTAGTCGTAGTGAC -ACGGAACACGTTAGTCGTCTGTAG -ACGGAACACGTTAGTCGTCCTAAG -ACGGAACACGTTAGTCGTGTTCAG -ACGGAACACGTTAGTCGTGCATAG -ACGGAACACGTTAGTCGTGACAAG -ACGGAACACGTTAGTCGTAAGCAG -ACGGAACACGTTAGTCGTCGTCAA -ACGGAACACGTTAGTCGTGCTGAA -ACGGAACACGTTAGTCGTAGTACG -ACGGAACACGTTAGTCGTATCCGA -ACGGAACACGTTAGTCGTATGGGA -ACGGAACACGTTAGTCGTGTGCAA -ACGGAACACGTTAGTCGTGAGGAA -ACGGAACACGTTAGTCGTCAGGTA -ACGGAACACGTTAGTCGTGACTCT -ACGGAACACGTTAGTCGTAGTCCT -ACGGAACACGTTAGTCGTTAAGCC -ACGGAACACGTTAGTCGTATAGCC -ACGGAACACGTTAGTCGTTAACCG -ACGGAACACGTTAGTCGTATGCCA -ACGGAACACGTTAGTGTCGGAAAC -ACGGAACACGTTAGTGTCAACACC -ACGGAACACGTTAGTGTCATCGAG -ACGGAACACGTTAGTGTCCTCCTT -ACGGAACACGTTAGTGTCCCTGTT -ACGGAACACGTTAGTGTCCGGTTT -ACGGAACACGTTAGTGTCGTGGTT -ACGGAACACGTTAGTGTCGCCTTT -ACGGAACACGTTAGTGTCGGTCTT -ACGGAACACGTTAGTGTCACGCTT -ACGGAACACGTTAGTGTCAGCGTT -ACGGAACACGTTAGTGTCTTCGTC -ACGGAACACGTTAGTGTCTCTCTC -ACGGAACACGTTAGTGTCTGGATC -ACGGAACACGTTAGTGTCCACTTC -ACGGAACACGTTAGTGTCGTACTC -ACGGAACACGTTAGTGTCGATGTC -ACGGAACACGTTAGTGTCACAGTC -ACGGAACACGTTAGTGTCTTGCTG -ACGGAACACGTTAGTGTCTCCATG -ACGGAACACGTTAGTGTCTGTGTG -ACGGAACACGTTAGTGTCCTAGTG -ACGGAACACGTTAGTGTCCATCTG -ACGGAACACGTTAGTGTCGAGTTG -ACGGAACACGTTAGTGTCAGACTG -ACGGAACACGTTAGTGTCTCGGTA -ACGGAACACGTTAGTGTCTGCCTA -ACGGAACACGTTAGTGTCCCACTA -ACGGAACACGTTAGTGTCGGAGTA -ACGGAACACGTTAGTGTCTCGTCT -ACGGAACACGTTAGTGTCTGCACT -ACGGAACACGTTAGTGTCCTGACT -ACGGAACACGTTAGTGTCCAACCT -ACGGAACACGTTAGTGTCGCTACT -ACGGAACACGTTAGTGTCGGATCT -ACGGAACACGTTAGTGTCAAGGCT -ACGGAACACGTTAGTGTCTCAACC -ACGGAACACGTTAGTGTCTGTTCC -ACGGAACACGTTAGTGTCATTCCC -ACGGAACACGTTAGTGTCTTCTCG -ACGGAACACGTTAGTGTCTAGACG -ACGGAACACGTTAGTGTCGTAACG -ACGGAACACGTTAGTGTCACTTCG -ACGGAACACGTTAGTGTCTACGCA -ACGGAACACGTTAGTGTCCTTGCA -ACGGAACACGTTAGTGTCCGAACA -ACGGAACACGTTAGTGTCCAGTCA -ACGGAACACGTTAGTGTCGATCCA -ACGGAACACGTTAGTGTCACGACA -ACGGAACACGTTAGTGTCAGCTCA -ACGGAACACGTTAGTGTCTCACGT -ACGGAACACGTTAGTGTCCGTAGT -ACGGAACACGTTAGTGTCGTCAGT -ACGGAACACGTTAGTGTCGAAGGT -ACGGAACACGTTAGTGTCAACCGT -ACGGAACACGTTAGTGTCTTGTGC -ACGGAACACGTTAGTGTCCTAAGC -ACGGAACACGTTAGTGTCACTAGC -ACGGAACACGTTAGTGTCAGATGC -ACGGAACACGTTAGTGTCTGAAGG -ACGGAACACGTTAGTGTCCAATGG -ACGGAACACGTTAGTGTCATGAGG -ACGGAACACGTTAGTGTCAATGGG -ACGGAACACGTTAGTGTCTCCTGA -ACGGAACACGTTAGTGTCTAGCGA -ACGGAACACGTTAGTGTCCACAGA -ACGGAACACGTTAGTGTCGCAAGA -ACGGAACACGTTAGTGTCGGTTGA -ACGGAACACGTTAGTGTCTCCGAT -ACGGAACACGTTAGTGTCTGGCAT -ACGGAACACGTTAGTGTCCGAGAT -ACGGAACACGTTAGTGTCTACCAC -ACGGAACACGTTAGTGTCCAGAAC -ACGGAACACGTTAGTGTCGTCTAC -ACGGAACACGTTAGTGTCACGTAC -ACGGAACACGTTAGTGTCAGTGAC -ACGGAACACGTTAGTGTCCTGTAG -ACGGAACACGTTAGTGTCCCTAAG -ACGGAACACGTTAGTGTCGTTCAG -ACGGAACACGTTAGTGTCGCATAG -ACGGAACACGTTAGTGTCGACAAG -ACGGAACACGTTAGTGTCAAGCAG -ACGGAACACGTTAGTGTCCGTCAA -ACGGAACACGTTAGTGTCGCTGAA -ACGGAACACGTTAGTGTCAGTACG -ACGGAACACGTTAGTGTCATCCGA -ACGGAACACGTTAGTGTCATGGGA -ACGGAACACGTTAGTGTCGTGCAA -ACGGAACACGTTAGTGTCGAGGAA -ACGGAACACGTTAGTGTCCAGGTA -ACGGAACACGTTAGTGTCGACTCT -ACGGAACACGTTAGTGTCAGTCCT -ACGGAACACGTTAGTGTCTAAGCC -ACGGAACACGTTAGTGTCATAGCC -ACGGAACACGTTAGTGTCTAACCG -ACGGAACACGTTAGTGTCATGCCA -ACGGAACACGTTGGTGAAGGAAAC -ACGGAACACGTTGGTGAAAACACC -ACGGAACACGTTGGTGAAATCGAG -ACGGAACACGTTGGTGAACTCCTT -ACGGAACACGTTGGTGAACCTGTT -ACGGAACACGTTGGTGAACGGTTT -ACGGAACACGTTGGTGAAGTGGTT -ACGGAACACGTTGGTGAAGCCTTT -ACGGAACACGTTGGTGAAGGTCTT -ACGGAACACGTTGGTGAAACGCTT -ACGGAACACGTTGGTGAAAGCGTT -ACGGAACACGTTGGTGAATTCGTC -ACGGAACACGTTGGTGAATCTCTC -ACGGAACACGTTGGTGAATGGATC -ACGGAACACGTTGGTGAACACTTC -ACGGAACACGTTGGTGAAGTACTC -ACGGAACACGTTGGTGAAGATGTC -ACGGAACACGTTGGTGAAACAGTC -ACGGAACACGTTGGTGAATTGCTG -ACGGAACACGTTGGTGAATCCATG -ACGGAACACGTTGGTGAATGTGTG -ACGGAACACGTTGGTGAACTAGTG -ACGGAACACGTTGGTGAACATCTG -ACGGAACACGTTGGTGAAGAGTTG -ACGGAACACGTTGGTGAAAGACTG -ACGGAACACGTTGGTGAATCGGTA -ACGGAACACGTTGGTGAATGCCTA -ACGGAACACGTTGGTGAACCACTA -ACGGAACACGTTGGTGAAGGAGTA -ACGGAACACGTTGGTGAATCGTCT -ACGGAACACGTTGGTGAATGCACT -ACGGAACACGTTGGTGAACTGACT -ACGGAACACGTTGGTGAACAACCT -ACGGAACACGTTGGTGAAGCTACT -ACGGAACACGTTGGTGAAGGATCT -ACGGAACACGTTGGTGAAAAGGCT -ACGGAACACGTTGGTGAATCAACC -ACGGAACACGTTGGTGAATGTTCC -ACGGAACACGTTGGTGAAATTCCC -ACGGAACACGTTGGTGAATTCTCG -ACGGAACACGTTGGTGAATAGACG -ACGGAACACGTTGGTGAAGTAACG -ACGGAACACGTTGGTGAAACTTCG -ACGGAACACGTTGGTGAATACGCA -ACGGAACACGTTGGTGAACTTGCA -ACGGAACACGTTGGTGAACGAACA -ACGGAACACGTTGGTGAACAGTCA -ACGGAACACGTTGGTGAAGATCCA -ACGGAACACGTTGGTGAAACGACA -ACGGAACACGTTGGTGAAAGCTCA -ACGGAACACGTTGGTGAATCACGT -ACGGAACACGTTGGTGAACGTAGT -ACGGAACACGTTGGTGAAGTCAGT -ACGGAACACGTTGGTGAAGAAGGT -ACGGAACACGTTGGTGAAAACCGT -ACGGAACACGTTGGTGAATTGTGC -ACGGAACACGTTGGTGAACTAAGC -ACGGAACACGTTGGTGAAACTAGC -ACGGAACACGTTGGTGAAAGATGC -ACGGAACACGTTGGTGAATGAAGG -ACGGAACACGTTGGTGAACAATGG -ACGGAACACGTTGGTGAAATGAGG -ACGGAACACGTTGGTGAAAATGGG -ACGGAACACGTTGGTGAATCCTGA -ACGGAACACGTTGGTGAATAGCGA -ACGGAACACGTTGGTGAACACAGA -ACGGAACACGTTGGTGAAGCAAGA -ACGGAACACGTTGGTGAAGGTTGA -ACGGAACACGTTGGTGAATCCGAT -ACGGAACACGTTGGTGAATGGCAT -ACGGAACACGTTGGTGAACGAGAT -ACGGAACACGTTGGTGAATACCAC -ACGGAACACGTTGGTGAACAGAAC -ACGGAACACGTTGGTGAAGTCTAC -ACGGAACACGTTGGTGAAACGTAC -ACGGAACACGTTGGTGAAAGTGAC -ACGGAACACGTTGGTGAACTGTAG -ACGGAACACGTTGGTGAACCTAAG -ACGGAACACGTTGGTGAAGTTCAG -ACGGAACACGTTGGTGAAGCATAG -ACGGAACACGTTGGTGAAGACAAG -ACGGAACACGTTGGTGAAAAGCAG -ACGGAACACGTTGGTGAACGTCAA -ACGGAACACGTTGGTGAAGCTGAA -ACGGAACACGTTGGTGAAAGTACG -ACGGAACACGTTGGTGAAATCCGA -ACGGAACACGTTGGTGAAATGGGA -ACGGAACACGTTGGTGAAGTGCAA -ACGGAACACGTTGGTGAAGAGGAA -ACGGAACACGTTGGTGAACAGGTA -ACGGAACACGTTGGTGAAGACTCT -ACGGAACACGTTGGTGAAAGTCCT -ACGGAACACGTTGGTGAATAAGCC -ACGGAACACGTTGGTGAAATAGCC -ACGGAACACGTTGGTGAATAACCG -ACGGAACACGTTGGTGAAATGCCA -ACGGAACACGTTCGTAACGGAAAC -ACGGAACACGTTCGTAACAACACC -ACGGAACACGTTCGTAACATCGAG -ACGGAACACGTTCGTAACCTCCTT -ACGGAACACGTTCGTAACCCTGTT -ACGGAACACGTTCGTAACCGGTTT -ACGGAACACGTTCGTAACGTGGTT -ACGGAACACGTTCGTAACGCCTTT -ACGGAACACGTTCGTAACGGTCTT -ACGGAACACGTTCGTAACACGCTT -ACGGAACACGTTCGTAACAGCGTT -ACGGAACACGTTCGTAACTTCGTC -ACGGAACACGTTCGTAACTCTCTC -ACGGAACACGTTCGTAACTGGATC -ACGGAACACGTTCGTAACCACTTC -ACGGAACACGTTCGTAACGTACTC -ACGGAACACGTTCGTAACGATGTC -ACGGAACACGTTCGTAACACAGTC -ACGGAACACGTTCGTAACTTGCTG -ACGGAACACGTTCGTAACTCCATG -ACGGAACACGTTCGTAACTGTGTG -ACGGAACACGTTCGTAACCTAGTG -ACGGAACACGTTCGTAACCATCTG -ACGGAACACGTTCGTAACGAGTTG -ACGGAACACGTTCGTAACAGACTG -ACGGAACACGTTCGTAACTCGGTA -ACGGAACACGTTCGTAACTGCCTA -ACGGAACACGTTCGTAACCCACTA -ACGGAACACGTTCGTAACGGAGTA -ACGGAACACGTTCGTAACTCGTCT -ACGGAACACGTTCGTAACTGCACT -ACGGAACACGTTCGTAACCTGACT -ACGGAACACGTTCGTAACCAACCT -ACGGAACACGTTCGTAACGCTACT -ACGGAACACGTTCGTAACGGATCT -ACGGAACACGTTCGTAACAAGGCT -ACGGAACACGTTCGTAACTCAACC -ACGGAACACGTTCGTAACTGTTCC -ACGGAACACGTTCGTAACATTCCC -ACGGAACACGTTCGTAACTTCTCG -ACGGAACACGTTCGTAACTAGACG -ACGGAACACGTTCGTAACGTAACG -ACGGAACACGTTCGTAACACTTCG -ACGGAACACGTTCGTAACTACGCA -ACGGAACACGTTCGTAACCTTGCA -ACGGAACACGTTCGTAACCGAACA -ACGGAACACGTTCGTAACCAGTCA -ACGGAACACGTTCGTAACGATCCA -ACGGAACACGTTCGTAACACGACA -ACGGAACACGTTCGTAACAGCTCA -ACGGAACACGTTCGTAACTCACGT -ACGGAACACGTTCGTAACCGTAGT -ACGGAACACGTTCGTAACGTCAGT -ACGGAACACGTTCGTAACGAAGGT -ACGGAACACGTTCGTAACAACCGT -ACGGAACACGTTCGTAACTTGTGC -ACGGAACACGTTCGTAACCTAAGC -ACGGAACACGTTCGTAACACTAGC -ACGGAACACGTTCGTAACAGATGC -ACGGAACACGTTCGTAACTGAAGG -ACGGAACACGTTCGTAACCAATGG -ACGGAACACGTTCGTAACATGAGG -ACGGAACACGTTCGTAACAATGGG -ACGGAACACGTTCGTAACTCCTGA -ACGGAACACGTTCGTAACTAGCGA -ACGGAACACGTTCGTAACCACAGA -ACGGAACACGTTCGTAACGCAAGA -ACGGAACACGTTCGTAACGGTTGA -ACGGAACACGTTCGTAACTCCGAT -ACGGAACACGTTCGTAACTGGCAT -ACGGAACACGTTCGTAACCGAGAT -ACGGAACACGTTCGTAACTACCAC -ACGGAACACGTTCGTAACCAGAAC -ACGGAACACGTTCGTAACGTCTAC -ACGGAACACGTTCGTAACACGTAC -ACGGAACACGTTCGTAACAGTGAC -ACGGAACACGTTCGTAACCTGTAG -ACGGAACACGTTCGTAACCCTAAG -ACGGAACACGTTCGTAACGTTCAG -ACGGAACACGTTCGTAACGCATAG -ACGGAACACGTTCGTAACGACAAG -ACGGAACACGTTCGTAACAAGCAG -ACGGAACACGTTCGTAACCGTCAA -ACGGAACACGTTCGTAACGCTGAA -ACGGAACACGTTCGTAACAGTACG -ACGGAACACGTTCGTAACATCCGA -ACGGAACACGTTCGTAACATGGGA -ACGGAACACGTTCGTAACGTGCAA -ACGGAACACGTTCGTAACGAGGAA -ACGGAACACGTTCGTAACCAGGTA -ACGGAACACGTTCGTAACGACTCT -ACGGAACACGTTCGTAACAGTCCT -ACGGAACACGTTCGTAACTAAGCC -ACGGAACACGTTCGTAACATAGCC -ACGGAACACGTTCGTAACTAACCG -ACGGAACACGTTCGTAACATGCCA -ACGGAACACGTTTGCTTGGGAAAC -ACGGAACACGTTTGCTTGAACACC -ACGGAACACGTTTGCTTGATCGAG -ACGGAACACGTTTGCTTGCTCCTT -ACGGAACACGTTTGCTTGCCTGTT -ACGGAACACGTTTGCTTGCGGTTT -ACGGAACACGTTTGCTTGGTGGTT -ACGGAACACGTTTGCTTGGCCTTT -ACGGAACACGTTTGCTTGGGTCTT -ACGGAACACGTTTGCTTGACGCTT -ACGGAACACGTTTGCTTGAGCGTT -ACGGAACACGTTTGCTTGTTCGTC -ACGGAACACGTTTGCTTGTCTCTC -ACGGAACACGTTTGCTTGTGGATC -ACGGAACACGTTTGCTTGCACTTC -ACGGAACACGTTTGCTTGGTACTC -ACGGAACACGTTTGCTTGGATGTC -ACGGAACACGTTTGCTTGACAGTC -ACGGAACACGTTTGCTTGTTGCTG -ACGGAACACGTTTGCTTGTCCATG -ACGGAACACGTTTGCTTGTGTGTG -ACGGAACACGTTTGCTTGCTAGTG -ACGGAACACGTTTGCTTGCATCTG -ACGGAACACGTTTGCTTGGAGTTG -ACGGAACACGTTTGCTTGAGACTG -ACGGAACACGTTTGCTTGTCGGTA -ACGGAACACGTTTGCTTGTGCCTA -ACGGAACACGTTTGCTTGCCACTA -ACGGAACACGTTTGCTTGGGAGTA -ACGGAACACGTTTGCTTGTCGTCT -ACGGAACACGTTTGCTTGTGCACT -ACGGAACACGTTTGCTTGCTGACT -ACGGAACACGTTTGCTTGCAACCT -ACGGAACACGTTTGCTTGGCTACT -ACGGAACACGTTTGCTTGGGATCT -ACGGAACACGTTTGCTTGAAGGCT -ACGGAACACGTTTGCTTGTCAACC -ACGGAACACGTTTGCTTGTGTTCC -ACGGAACACGTTTGCTTGATTCCC -ACGGAACACGTTTGCTTGTTCTCG -ACGGAACACGTTTGCTTGTAGACG -ACGGAACACGTTTGCTTGGTAACG -ACGGAACACGTTTGCTTGACTTCG -ACGGAACACGTTTGCTTGTACGCA -ACGGAACACGTTTGCTTGCTTGCA -ACGGAACACGTTTGCTTGCGAACA -ACGGAACACGTTTGCTTGCAGTCA -ACGGAACACGTTTGCTTGGATCCA -ACGGAACACGTTTGCTTGACGACA -ACGGAACACGTTTGCTTGAGCTCA -ACGGAACACGTTTGCTTGTCACGT -ACGGAACACGTTTGCTTGCGTAGT -ACGGAACACGTTTGCTTGGTCAGT -ACGGAACACGTTTGCTTGGAAGGT -ACGGAACACGTTTGCTTGAACCGT -ACGGAACACGTTTGCTTGTTGTGC -ACGGAACACGTTTGCTTGCTAAGC -ACGGAACACGTTTGCTTGACTAGC -ACGGAACACGTTTGCTTGAGATGC -ACGGAACACGTTTGCTTGTGAAGG -ACGGAACACGTTTGCTTGCAATGG -ACGGAACACGTTTGCTTGATGAGG -ACGGAACACGTTTGCTTGAATGGG -ACGGAACACGTTTGCTTGTCCTGA -ACGGAACACGTTTGCTTGTAGCGA -ACGGAACACGTTTGCTTGCACAGA -ACGGAACACGTTTGCTTGGCAAGA -ACGGAACACGTTTGCTTGGGTTGA -ACGGAACACGTTTGCTTGTCCGAT -ACGGAACACGTTTGCTTGTGGCAT -ACGGAACACGTTTGCTTGCGAGAT -ACGGAACACGTTTGCTTGTACCAC -ACGGAACACGTTTGCTTGCAGAAC -ACGGAACACGTTTGCTTGGTCTAC -ACGGAACACGTTTGCTTGACGTAC -ACGGAACACGTTTGCTTGAGTGAC -ACGGAACACGTTTGCTTGCTGTAG -ACGGAACACGTTTGCTTGCCTAAG -ACGGAACACGTTTGCTTGGTTCAG -ACGGAACACGTTTGCTTGGCATAG -ACGGAACACGTTTGCTTGGACAAG -ACGGAACACGTTTGCTTGAAGCAG -ACGGAACACGTTTGCTTGCGTCAA -ACGGAACACGTTTGCTTGGCTGAA -ACGGAACACGTTTGCTTGAGTACG -ACGGAACACGTTTGCTTGATCCGA -ACGGAACACGTTTGCTTGATGGGA -ACGGAACACGTTTGCTTGGTGCAA -ACGGAACACGTTTGCTTGGAGGAA -ACGGAACACGTTTGCTTGCAGGTA -ACGGAACACGTTTGCTTGGACTCT -ACGGAACACGTTTGCTTGAGTCCT -ACGGAACACGTTTGCTTGTAAGCC -ACGGAACACGTTTGCTTGATAGCC -ACGGAACACGTTTGCTTGTAACCG -ACGGAACACGTTTGCTTGATGCCA -ACGGAACACGTTAGCCTAGGAAAC -ACGGAACACGTTAGCCTAAACACC -ACGGAACACGTTAGCCTAATCGAG -ACGGAACACGTTAGCCTACTCCTT -ACGGAACACGTTAGCCTACCTGTT -ACGGAACACGTTAGCCTACGGTTT -ACGGAACACGTTAGCCTAGTGGTT -ACGGAACACGTTAGCCTAGCCTTT -ACGGAACACGTTAGCCTAGGTCTT -ACGGAACACGTTAGCCTAACGCTT -ACGGAACACGTTAGCCTAAGCGTT -ACGGAACACGTTAGCCTATTCGTC -ACGGAACACGTTAGCCTATCTCTC -ACGGAACACGTTAGCCTATGGATC -ACGGAACACGTTAGCCTACACTTC -ACGGAACACGTTAGCCTAGTACTC -ACGGAACACGTTAGCCTAGATGTC -ACGGAACACGTTAGCCTAACAGTC -ACGGAACACGTTAGCCTATTGCTG -ACGGAACACGTTAGCCTATCCATG -ACGGAACACGTTAGCCTATGTGTG -ACGGAACACGTTAGCCTACTAGTG -ACGGAACACGTTAGCCTACATCTG -ACGGAACACGTTAGCCTAGAGTTG -ACGGAACACGTTAGCCTAAGACTG -ACGGAACACGTTAGCCTATCGGTA -ACGGAACACGTTAGCCTATGCCTA -ACGGAACACGTTAGCCTACCACTA -ACGGAACACGTTAGCCTAGGAGTA -ACGGAACACGTTAGCCTATCGTCT -ACGGAACACGTTAGCCTATGCACT -ACGGAACACGTTAGCCTACTGACT -ACGGAACACGTTAGCCTACAACCT -ACGGAACACGTTAGCCTAGCTACT -ACGGAACACGTTAGCCTAGGATCT -ACGGAACACGTTAGCCTAAAGGCT -ACGGAACACGTTAGCCTATCAACC -ACGGAACACGTTAGCCTATGTTCC -ACGGAACACGTTAGCCTAATTCCC -ACGGAACACGTTAGCCTATTCTCG -ACGGAACACGTTAGCCTATAGACG -ACGGAACACGTTAGCCTAGTAACG -ACGGAACACGTTAGCCTAACTTCG -ACGGAACACGTTAGCCTATACGCA -ACGGAACACGTTAGCCTACTTGCA -ACGGAACACGTTAGCCTACGAACA -ACGGAACACGTTAGCCTACAGTCA -ACGGAACACGTTAGCCTAGATCCA -ACGGAACACGTTAGCCTAACGACA -ACGGAACACGTTAGCCTAAGCTCA -ACGGAACACGTTAGCCTATCACGT -ACGGAACACGTTAGCCTACGTAGT -ACGGAACACGTTAGCCTAGTCAGT -ACGGAACACGTTAGCCTAGAAGGT -ACGGAACACGTTAGCCTAAACCGT -ACGGAACACGTTAGCCTATTGTGC -ACGGAACACGTTAGCCTACTAAGC -ACGGAACACGTTAGCCTAACTAGC -ACGGAACACGTTAGCCTAAGATGC -ACGGAACACGTTAGCCTATGAAGG -ACGGAACACGTTAGCCTACAATGG -ACGGAACACGTTAGCCTAATGAGG -ACGGAACACGTTAGCCTAAATGGG -ACGGAACACGTTAGCCTATCCTGA -ACGGAACACGTTAGCCTATAGCGA -ACGGAACACGTTAGCCTACACAGA -ACGGAACACGTTAGCCTAGCAAGA -ACGGAACACGTTAGCCTAGGTTGA -ACGGAACACGTTAGCCTATCCGAT -ACGGAACACGTTAGCCTATGGCAT -ACGGAACACGTTAGCCTACGAGAT -ACGGAACACGTTAGCCTATACCAC -ACGGAACACGTTAGCCTACAGAAC -ACGGAACACGTTAGCCTAGTCTAC -ACGGAACACGTTAGCCTAACGTAC -ACGGAACACGTTAGCCTAAGTGAC -ACGGAACACGTTAGCCTACTGTAG -ACGGAACACGTTAGCCTACCTAAG -ACGGAACACGTTAGCCTAGTTCAG -ACGGAACACGTTAGCCTAGCATAG -ACGGAACACGTTAGCCTAGACAAG -ACGGAACACGTTAGCCTAAAGCAG -ACGGAACACGTTAGCCTACGTCAA -ACGGAACACGTTAGCCTAGCTGAA -ACGGAACACGTTAGCCTAAGTACG -ACGGAACACGTTAGCCTAATCCGA -ACGGAACACGTTAGCCTAATGGGA -ACGGAACACGTTAGCCTAGTGCAA -ACGGAACACGTTAGCCTAGAGGAA -ACGGAACACGTTAGCCTACAGGTA -ACGGAACACGTTAGCCTAGACTCT -ACGGAACACGTTAGCCTAAGTCCT -ACGGAACACGTTAGCCTATAAGCC -ACGGAACACGTTAGCCTAATAGCC -ACGGAACACGTTAGCCTATAACCG -ACGGAACACGTTAGCCTAATGCCA -ACGGAACACGTTAGCACTGGAAAC -ACGGAACACGTTAGCACTAACACC -ACGGAACACGTTAGCACTATCGAG -ACGGAACACGTTAGCACTCTCCTT -ACGGAACACGTTAGCACTCCTGTT -ACGGAACACGTTAGCACTCGGTTT -ACGGAACACGTTAGCACTGTGGTT -ACGGAACACGTTAGCACTGCCTTT -ACGGAACACGTTAGCACTGGTCTT -ACGGAACACGTTAGCACTACGCTT -ACGGAACACGTTAGCACTAGCGTT -ACGGAACACGTTAGCACTTTCGTC -ACGGAACACGTTAGCACTTCTCTC -ACGGAACACGTTAGCACTTGGATC -ACGGAACACGTTAGCACTCACTTC -ACGGAACACGTTAGCACTGTACTC -ACGGAACACGTTAGCACTGATGTC -ACGGAACACGTTAGCACTACAGTC -ACGGAACACGTTAGCACTTTGCTG -ACGGAACACGTTAGCACTTCCATG -ACGGAACACGTTAGCACTTGTGTG -ACGGAACACGTTAGCACTCTAGTG -ACGGAACACGTTAGCACTCATCTG -ACGGAACACGTTAGCACTGAGTTG -ACGGAACACGTTAGCACTAGACTG -ACGGAACACGTTAGCACTTCGGTA -ACGGAACACGTTAGCACTTGCCTA -ACGGAACACGTTAGCACTCCACTA -ACGGAACACGTTAGCACTGGAGTA -ACGGAACACGTTAGCACTTCGTCT -ACGGAACACGTTAGCACTTGCACT -ACGGAACACGTTAGCACTCTGACT -ACGGAACACGTTAGCACTCAACCT -ACGGAACACGTTAGCACTGCTACT -ACGGAACACGTTAGCACTGGATCT -ACGGAACACGTTAGCACTAAGGCT -ACGGAACACGTTAGCACTTCAACC -ACGGAACACGTTAGCACTTGTTCC -ACGGAACACGTTAGCACTATTCCC -ACGGAACACGTTAGCACTTTCTCG -ACGGAACACGTTAGCACTTAGACG -ACGGAACACGTTAGCACTGTAACG -ACGGAACACGTTAGCACTACTTCG -ACGGAACACGTTAGCACTTACGCA -ACGGAACACGTTAGCACTCTTGCA -ACGGAACACGTTAGCACTCGAACA -ACGGAACACGTTAGCACTCAGTCA -ACGGAACACGTTAGCACTGATCCA -ACGGAACACGTTAGCACTACGACA -ACGGAACACGTTAGCACTAGCTCA -ACGGAACACGTTAGCACTTCACGT -ACGGAACACGTTAGCACTCGTAGT -ACGGAACACGTTAGCACTGTCAGT -ACGGAACACGTTAGCACTGAAGGT -ACGGAACACGTTAGCACTAACCGT -ACGGAACACGTTAGCACTTTGTGC -ACGGAACACGTTAGCACTCTAAGC -ACGGAACACGTTAGCACTACTAGC -ACGGAACACGTTAGCACTAGATGC -ACGGAACACGTTAGCACTTGAAGG -ACGGAACACGTTAGCACTCAATGG -ACGGAACACGTTAGCACTATGAGG -ACGGAACACGTTAGCACTAATGGG -ACGGAACACGTTAGCACTTCCTGA -ACGGAACACGTTAGCACTTAGCGA -ACGGAACACGTTAGCACTCACAGA -ACGGAACACGTTAGCACTGCAAGA -ACGGAACACGTTAGCACTGGTTGA -ACGGAACACGTTAGCACTTCCGAT -ACGGAACACGTTAGCACTTGGCAT -ACGGAACACGTTAGCACTCGAGAT -ACGGAACACGTTAGCACTTACCAC -ACGGAACACGTTAGCACTCAGAAC -ACGGAACACGTTAGCACTGTCTAC -ACGGAACACGTTAGCACTACGTAC -ACGGAACACGTTAGCACTAGTGAC -ACGGAACACGTTAGCACTCTGTAG -ACGGAACACGTTAGCACTCCTAAG -ACGGAACACGTTAGCACTGTTCAG -ACGGAACACGTTAGCACTGCATAG -ACGGAACACGTTAGCACTGACAAG -ACGGAACACGTTAGCACTAAGCAG -ACGGAACACGTTAGCACTCGTCAA -ACGGAACACGTTAGCACTGCTGAA -ACGGAACACGTTAGCACTAGTACG -ACGGAACACGTTAGCACTATCCGA -ACGGAACACGTTAGCACTATGGGA -ACGGAACACGTTAGCACTGTGCAA -ACGGAACACGTTAGCACTGAGGAA -ACGGAACACGTTAGCACTCAGGTA -ACGGAACACGTTAGCACTGACTCT -ACGGAACACGTTAGCACTAGTCCT -ACGGAACACGTTAGCACTTAAGCC -ACGGAACACGTTAGCACTATAGCC -ACGGAACACGTTAGCACTTAACCG -ACGGAACACGTTAGCACTATGCCA -ACGGAACACGTTTGCAGAGGAAAC -ACGGAACACGTTTGCAGAAACACC -ACGGAACACGTTTGCAGAATCGAG -ACGGAACACGTTTGCAGACTCCTT -ACGGAACACGTTTGCAGACCTGTT -ACGGAACACGTTTGCAGACGGTTT -ACGGAACACGTTTGCAGAGTGGTT -ACGGAACACGTTTGCAGAGCCTTT -ACGGAACACGTTTGCAGAGGTCTT -ACGGAACACGTTTGCAGAACGCTT -ACGGAACACGTTTGCAGAAGCGTT -ACGGAACACGTTTGCAGATTCGTC -ACGGAACACGTTTGCAGATCTCTC -ACGGAACACGTTTGCAGATGGATC -ACGGAACACGTTTGCAGACACTTC -ACGGAACACGTTTGCAGAGTACTC -ACGGAACACGTTTGCAGAGATGTC -ACGGAACACGTTTGCAGAACAGTC -ACGGAACACGTTTGCAGATTGCTG -ACGGAACACGTTTGCAGATCCATG -ACGGAACACGTTTGCAGATGTGTG -ACGGAACACGTTTGCAGACTAGTG -ACGGAACACGTTTGCAGACATCTG -ACGGAACACGTTTGCAGAGAGTTG -ACGGAACACGTTTGCAGAAGACTG -ACGGAACACGTTTGCAGATCGGTA -ACGGAACACGTTTGCAGATGCCTA -ACGGAACACGTTTGCAGACCACTA -ACGGAACACGTTTGCAGAGGAGTA -ACGGAACACGTTTGCAGATCGTCT -ACGGAACACGTTTGCAGATGCACT -ACGGAACACGTTTGCAGACTGACT -ACGGAACACGTTTGCAGACAACCT -ACGGAACACGTTTGCAGAGCTACT -ACGGAACACGTTTGCAGAGGATCT -ACGGAACACGTTTGCAGAAAGGCT -ACGGAACACGTTTGCAGATCAACC -ACGGAACACGTTTGCAGATGTTCC -ACGGAACACGTTTGCAGAATTCCC -ACGGAACACGTTTGCAGATTCTCG -ACGGAACACGTTTGCAGATAGACG -ACGGAACACGTTTGCAGAGTAACG -ACGGAACACGTTTGCAGAACTTCG -ACGGAACACGTTTGCAGATACGCA -ACGGAACACGTTTGCAGACTTGCA -ACGGAACACGTTTGCAGACGAACA -ACGGAACACGTTTGCAGACAGTCA -ACGGAACACGTTTGCAGAGATCCA -ACGGAACACGTTTGCAGAACGACA -ACGGAACACGTTTGCAGAAGCTCA -ACGGAACACGTTTGCAGATCACGT -ACGGAACACGTTTGCAGACGTAGT -ACGGAACACGTTTGCAGAGTCAGT -ACGGAACACGTTTGCAGAGAAGGT -ACGGAACACGTTTGCAGAAACCGT -ACGGAACACGTTTGCAGATTGTGC -ACGGAACACGTTTGCAGACTAAGC -ACGGAACACGTTTGCAGAACTAGC -ACGGAACACGTTTGCAGAAGATGC -ACGGAACACGTTTGCAGATGAAGG -ACGGAACACGTTTGCAGACAATGG -ACGGAACACGTTTGCAGAATGAGG -ACGGAACACGTTTGCAGAAATGGG -ACGGAACACGTTTGCAGATCCTGA -ACGGAACACGTTTGCAGATAGCGA -ACGGAACACGTTTGCAGACACAGA -ACGGAACACGTTTGCAGAGCAAGA -ACGGAACACGTTTGCAGAGGTTGA -ACGGAACACGTTTGCAGATCCGAT -ACGGAACACGTTTGCAGATGGCAT -ACGGAACACGTTTGCAGACGAGAT -ACGGAACACGTTTGCAGATACCAC -ACGGAACACGTTTGCAGACAGAAC -ACGGAACACGTTTGCAGAGTCTAC -ACGGAACACGTTTGCAGAACGTAC -ACGGAACACGTTTGCAGAAGTGAC -ACGGAACACGTTTGCAGACTGTAG -ACGGAACACGTTTGCAGACCTAAG -ACGGAACACGTTTGCAGAGTTCAG -ACGGAACACGTTTGCAGAGCATAG -ACGGAACACGTTTGCAGAGACAAG -ACGGAACACGTTTGCAGAAAGCAG -ACGGAACACGTTTGCAGACGTCAA -ACGGAACACGTTTGCAGAGCTGAA -ACGGAACACGTTTGCAGAAGTACG -ACGGAACACGTTTGCAGAATCCGA -ACGGAACACGTTTGCAGAATGGGA -ACGGAACACGTTTGCAGAGTGCAA -ACGGAACACGTTTGCAGAGAGGAA -ACGGAACACGTTTGCAGACAGGTA -ACGGAACACGTTTGCAGAGACTCT -ACGGAACACGTTTGCAGAAGTCCT -ACGGAACACGTTTGCAGATAAGCC -ACGGAACACGTTTGCAGAATAGCC -ACGGAACACGTTTGCAGATAACCG -ACGGAACACGTTTGCAGAATGCCA -ACGGAACACGTTAGGTGAGGAAAC -ACGGAACACGTTAGGTGAAACACC -ACGGAACACGTTAGGTGAATCGAG -ACGGAACACGTTAGGTGACTCCTT -ACGGAACACGTTAGGTGACCTGTT -ACGGAACACGTTAGGTGACGGTTT -ACGGAACACGTTAGGTGAGTGGTT -ACGGAACACGTTAGGTGAGCCTTT -ACGGAACACGTTAGGTGAGGTCTT -ACGGAACACGTTAGGTGAACGCTT -ACGGAACACGTTAGGTGAAGCGTT -ACGGAACACGTTAGGTGATTCGTC -ACGGAACACGTTAGGTGATCTCTC -ACGGAACACGTTAGGTGATGGATC -ACGGAACACGTTAGGTGACACTTC -ACGGAACACGTTAGGTGAGTACTC -ACGGAACACGTTAGGTGAGATGTC -ACGGAACACGTTAGGTGAACAGTC -ACGGAACACGTTAGGTGATTGCTG -ACGGAACACGTTAGGTGATCCATG -ACGGAACACGTTAGGTGATGTGTG -ACGGAACACGTTAGGTGACTAGTG -ACGGAACACGTTAGGTGACATCTG -ACGGAACACGTTAGGTGAGAGTTG -ACGGAACACGTTAGGTGAAGACTG -ACGGAACACGTTAGGTGATCGGTA -ACGGAACACGTTAGGTGATGCCTA -ACGGAACACGTTAGGTGACCACTA -ACGGAACACGTTAGGTGAGGAGTA -ACGGAACACGTTAGGTGATCGTCT -ACGGAACACGTTAGGTGATGCACT -ACGGAACACGTTAGGTGACTGACT -ACGGAACACGTTAGGTGACAACCT -ACGGAACACGTTAGGTGAGCTACT -ACGGAACACGTTAGGTGAGGATCT -ACGGAACACGTTAGGTGAAAGGCT -ACGGAACACGTTAGGTGATCAACC -ACGGAACACGTTAGGTGATGTTCC -ACGGAACACGTTAGGTGAATTCCC -ACGGAACACGTTAGGTGATTCTCG -ACGGAACACGTTAGGTGATAGACG -ACGGAACACGTTAGGTGAGTAACG -ACGGAACACGTTAGGTGAACTTCG -ACGGAACACGTTAGGTGATACGCA -ACGGAACACGTTAGGTGACTTGCA -ACGGAACACGTTAGGTGACGAACA -ACGGAACACGTTAGGTGACAGTCA -ACGGAACACGTTAGGTGAGATCCA -ACGGAACACGTTAGGTGAACGACA -ACGGAACACGTTAGGTGAAGCTCA -ACGGAACACGTTAGGTGATCACGT -ACGGAACACGTTAGGTGACGTAGT -ACGGAACACGTTAGGTGAGTCAGT -ACGGAACACGTTAGGTGAGAAGGT -ACGGAACACGTTAGGTGAAACCGT -ACGGAACACGTTAGGTGATTGTGC -ACGGAACACGTTAGGTGACTAAGC -ACGGAACACGTTAGGTGAACTAGC -ACGGAACACGTTAGGTGAAGATGC -ACGGAACACGTTAGGTGATGAAGG -ACGGAACACGTTAGGTGACAATGG -ACGGAACACGTTAGGTGAATGAGG -ACGGAACACGTTAGGTGAAATGGG -ACGGAACACGTTAGGTGATCCTGA -ACGGAACACGTTAGGTGATAGCGA -ACGGAACACGTTAGGTGACACAGA -ACGGAACACGTTAGGTGAGCAAGA -ACGGAACACGTTAGGTGAGGTTGA -ACGGAACACGTTAGGTGATCCGAT -ACGGAACACGTTAGGTGATGGCAT -ACGGAACACGTTAGGTGACGAGAT -ACGGAACACGTTAGGTGATACCAC -ACGGAACACGTTAGGTGACAGAAC -ACGGAACACGTTAGGTGAGTCTAC -ACGGAACACGTTAGGTGAACGTAC -ACGGAACACGTTAGGTGAAGTGAC -ACGGAACACGTTAGGTGACTGTAG -ACGGAACACGTTAGGTGACCTAAG -ACGGAACACGTTAGGTGAGTTCAG -ACGGAACACGTTAGGTGAGCATAG -ACGGAACACGTTAGGTGAGACAAG -ACGGAACACGTTAGGTGAAAGCAG -ACGGAACACGTTAGGTGACGTCAA -ACGGAACACGTTAGGTGAGCTGAA -ACGGAACACGTTAGGTGAAGTACG -ACGGAACACGTTAGGTGAATCCGA -ACGGAACACGTTAGGTGAATGGGA -ACGGAACACGTTAGGTGAGTGCAA -ACGGAACACGTTAGGTGAGAGGAA -ACGGAACACGTTAGGTGACAGGTA -ACGGAACACGTTAGGTGAGACTCT -ACGGAACACGTTAGGTGAAGTCCT -ACGGAACACGTTAGGTGATAAGCC -ACGGAACACGTTAGGTGAATAGCC -ACGGAACACGTTAGGTGATAACCG -ACGGAACACGTTAGGTGAATGCCA -ACGGAACACGTTTGGCAAGGAAAC -ACGGAACACGTTTGGCAAAACACC -ACGGAACACGTTTGGCAAATCGAG -ACGGAACACGTTTGGCAACTCCTT -ACGGAACACGTTTGGCAACCTGTT -ACGGAACACGTTTGGCAACGGTTT -ACGGAACACGTTTGGCAAGTGGTT -ACGGAACACGTTTGGCAAGCCTTT -ACGGAACACGTTTGGCAAGGTCTT -ACGGAACACGTTTGGCAAACGCTT -ACGGAACACGTTTGGCAAAGCGTT -ACGGAACACGTTTGGCAATTCGTC -ACGGAACACGTTTGGCAATCTCTC -ACGGAACACGTTTGGCAATGGATC -ACGGAACACGTTTGGCAACACTTC -ACGGAACACGTTTGGCAAGTACTC -ACGGAACACGTTTGGCAAGATGTC -ACGGAACACGTTTGGCAAACAGTC -ACGGAACACGTTTGGCAATTGCTG -ACGGAACACGTTTGGCAATCCATG -ACGGAACACGTTTGGCAATGTGTG -ACGGAACACGTTTGGCAACTAGTG -ACGGAACACGTTTGGCAACATCTG -ACGGAACACGTTTGGCAAGAGTTG -ACGGAACACGTTTGGCAAAGACTG -ACGGAACACGTTTGGCAATCGGTA -ACGGAACACGTTTGGCAATGCCTA -ACGGAACACGTTTGGCAACCACTA -ACGGAACACGTTTGGCAAGGAGTA -ACGGAACACGTTTGGCAATCGTCT -ACGGAACACGTTTGGCAATGCACT -ACGGAACACGTTTGGCAACTGACT -ACGGAACACGTTTGGCAACAACCT -ACGGAACACGTTTGGCAAGCTACT -ACGGAACACGTTTGGCAAGGATCT -ACGGAACACGTTTGGCAAAAGGCT -ACGGAACACGTTTGGCAATCAACC -ACGGAACACGTTTGGCAATGTTCC -ACGGAACACGTTTGGCAAATTCCC -ACGGAACACGTTTGGCAATTCTCG -ACGGAACACGTTTGGCAATAGACG -ACGGAACACGTTTGGCAAGTAACG -ACGGAACACGTTTGGCAAACTTCG -ACGGAACACGTTTGGCAATACGCA -ACGGAACACGTTTGGCAACTTGCA -ACGGAACACGTTTGGCAACGAACA -ACGGAACACGTTTGGCAACAGTCA -ACGGAACACGTTTGGCAAGATCCA -ACGGAACACGTTTGGCAAACGACA -ACGGAACACGTTTGGCAAAGCTCA -ACGGAACACGTTTGGCAATCACGT -ACGGAACACGTTTGGCAACGTAGT -ACGGAACACGTTTGGCAAGTCAGT -ACGGAACACGTTTGGCAAGAAGGT -ACGGAACACGTTTGGCAAAACCGT -ACGGAACACGTTTGGCAATTGTGC -ACGGAACACGTTTGGCAACTAAGC -ACGGAACACGTTTGGCAAACTAGC -ACGGAACACGTTTGGCAAAGATGC -ACGGAACACGTTTGGCAATGAAGG -ACGGAACACGTTTGGCAACAATGG -ACGGAACACGTTTGGCAAATGAGG -ACGGAACACGTTTGGCAAAATGGG -ACGGAACACGTTTGGCAATCCTGA -ACGGAACACGTTTGGCAATAGCGA -ACGGAACACGTTTGGCAACACAGA -ACGGAACACGTTTGGCAAGCAAGA -ACGGAACACGTTTGGCAAGGTTGA -ACGGAACACGTTTGGCAATCCGAT -ACGGAACACGTTTGGCAATGGCAT -ACGGAACACGTTTGGCAACGAGAT -ACGGAACACGTTTGGCAATACCAC -ACGGAACACGTTTGGCAACAGAAC -ACGGAACACGTTTGGCAAGTCTAC -ACGGAACACGTTTGGCAAACGTAC -ACGGAACACGTTTGGCAAAGTGAC -ACGGAACACGTTTGGCAACTGTAG -ACGGAACACGTTTGGCAACCTAAG -ACGGAACACGTTTGGCAAGTTCAG -ACGGAACACGTTTGGCAAGCATAG -ACGGAACACGTTTGGCAAGACAAG -ACGGAACACGTTTGGCAAAAGCAG -ACGGAACACGTTTGGCAACGTCAA -ACGGAACACGTTTGGCAAGCTGAA -ACGGAACACGTTTGGCAAAGTACG -ACGGAACACGTTTGGCAAATCCGA -ACGGAACACGTTTGGCAAATGGGA -ACGGAACACGTTTGGCAAGTGCAA -ACGGAACACGTTTGGCAAGAGGAA -ACGGAACACGTTTGGCAACAGGTA -ACGGAACACGTTTGGCAAGACTCT -ACGGAACACGTTTGGCAAAGTCCT -ACGGAACACGTTTGGCAATAAGCC -ACGGAACACGTTTGGCAAATAGCC -ACGGAACACGTTTGGCAATAACCG -ACGGAACACGTTTGGCAAATGCCA -ACGGAACACGTTAGGATGGGAAAC -ACGGAACACGTTAGGATGAACACC -ACGGAACACGTTAGGATGATCGAG -ACGGAACACGTTAGGATGCTCCTT -ACGGAACACGTTAGGATGCCTGTT -ACGGAACACGTTAGGATGCGGTTT -ACGGAACACGTTAGGATGGTGGTT -ACGGAACACGTTAGGATGGCCTTT -ACGGAACACGTTAGGATGGGTCTT -ACGGAACACGTTAGGATGACGCTT -ACGGAACACGTTAGGATGAGCGTT -ACGGAACACGTTAGGATGTTCGTC -ACGGAACACGTTAGGATGTCTCTC -ACGGAACACGTTAGGATGTGGATC -ACGGAACACGTTAGGATGCACTTC -ACGGAACACGTTAGGATGGTACTC -ACGGAACACGTTAGGATGGATGTC -ACGGAACACGTTAGGATGACAGTC -ACGGAACACGTTAGGATGTTGCTG -ACGGAACACGTTAGGATGTCCATG -ACGGAACACGTTAGGATGTGTGTG -ACGGAACACGTTAGGATGCTAGTG -ACGGAACACGTTAGGATGCATCTG -ACGGAACACGTTAGGATGGAGTTG -ACGGAACACGTTAGGATGAGACTG -ACGGAACACGTTAGGATGTCGGTA -ACGGAACACGTTAGGATGTGCCTA -ACGGAACACGTTAGGATGCCACTA -ACGGAACACGTTAGGATGGGAGTA -ACGGAACACGTTAGGATGTCGTCT -ACGGAACACGTTAGGATGTGCACT -ACGGAACACGTTAGGATGCTGACT -ACGGAACACGTTAGGATGCAACCT -ACGGAACACGTTAGGATGGCTACT -ACGGAACACGTTAGGATGGGATCT -ACGGAACACGTTAGGATGAAGGCT -ACGGAACACGTTAGGATGTCAACC -ACGGAACACGTTAGGATGTGTTCC -ACGGAACACGTTAGGATGATTCCC -ACGGAACACGTTAGGATGTTCTCG -ACGGAACACGTTAGGATGTAGACG -ACGGAACACGTTAGGATGGTAACG -ACGGAACACGTTAGGATGACTTCG -ACGGAACACGTTAGGATGTACGCA -ACGGAACACGTTAGGATGCTTGCA -ACGGAACACGTTAGGATGCGAACA -ACGGAACACGTTAGGATGCAGTCA -ACGGAACACGTTAGGATGGATCCA -ACGGAACACGTTAGGATGACGACA -ACGGAACACGTTAGGATGAGCTCA -ACGGAACACGTTAGGATGTCACGT -ACGGAACACGTTAGGATGCGTAGT -ACGGAACACGTTAGGATGGTCAGT -ACGGAACACGTTAGGATGGAAGGT -ACGGAACACGTTAGGATGAACCGT -ACGGAACACGTTAGGATGTTGTGC -ACGGAACACGTTAGGATGCTAAGC -ACGGAACACGTTAGGATGACTAGC -ACGGAACACGTTAGGATGAGATGC -ACGGAACACGTTAGGATGTGAAGG -ACGGAACACGTTAGGATGCAATGG -ACGGAACACGTTAGGATGATGAGG -ACGGAACACGTTAGGATGAATGGG -ACGGAACACGTTAGGATGTCCTGA -ACGGAACACGTTAGGATGTAGCGA -ACGGAACACGTTAGGATGCACAGA -ACGGAACACGTTAGGATGGCAAGA -ACGGAACACGTTAGGATGGGTTGA -ACGGAACACGTTAGGATGTCCGAT -ACGGAACACGTTAGGATGTGGCAT -ACGGAACACGTTAGGATGCGAGAT -ACGGAACACGTTAGGATGTACCAC -ACGGAACACGTTAGGATGCAGAAC -ACGGAACACGTTAGGATGGTCTAC -ACGGAACACGTTAGGATGACGTAC -ACGGAACACGTTAGGATGAGTGAC -ACGGAACACGTTAGGATGCTGTAG -ACGGAACACGTTAGGATGCCTAAG -ACGGAACACGTTAGGATGGTTCAG -ACGGAACACGTTAGGATGGCATAG -ACGGAACACGTTAGGATGGACAAG -ACGGAACACGTTAGGATGAAGCAG -ACGGAACACGTTAGGATGCGTCAA -ACGGAACACGTTAGGATGGCTGAA -ACGGAACACGTTAGGATGAGTACG -ACGGAACACGTTAGGATGATCCGA -ACGGAACACGTTAGGATGATGGGA -ACGGAACACGTTAGGATGGTGCAA -ACGGAACACGTTAGGATGGAGGAA -ACGGAACACGTTAGGATGCAGGTA -ACGGAACACGTTAGGATGGACTCT -ACGGAACACGTTAGGATGAGTCCT -ACGGAACACGTTAGGATGTAAGCC -ACGGAACACGTTAGGATGATAGCC -ACGGAACACGTTAGGATGTAACCG -ACGGAACACGTTAGGATGATGCCA -ACGGAACACGTTGGGAATGGAAAC -ACGGAACACGTTGGGAATAACACC -ACGGAACACGTTGGGAATATCGAG -ACGGAACACGTTGGGAATCTCCTT -ACGGAACACGTTGGGAATCCTGTT -ACGGAACACGTTGGGAATCGGTTT -ACGGAACACGTTGGGAATGTGGTT -ACGGAACACGTTGGGAATGCCTTT -ACGGAACACGTTGGGAATGGTCTT -ACGGAACACGTTGGGAATACGCTT -ACGGAACACGTTGGGAATAGCGTT -ACGGAACACGTTGGGAATTTCGTC -ACGGAACACGTTGGGAATTCTCTC -ACGGAACACGTTGGGAATTGGATC -ACGGAACACGTTGGGAATCACTTC -ACGGAACACGTTGGGAATGTACTC -ACGGAACACGTTGGGAATGATGTC -ACGGAACACGTTGGGAATACAGTC -ACGGAACACGTTGGGAATTTGCTG -ACGGAACACGTTGGGAATTCCATG -ACGGAACACGTTGGGAATTGTGTG -ACGGAACACGTTGGGAATCTAGTG -ACGGAACACGTTGGGAATCATCTG -ACGGAACACGTTGGGAATGAGTTG -ACGGAACACGTTGGGAATAGACTG -ACGGAACACGTTGGGAATTCGGTA -ACGGAACACGTTGGGAATTGCCTA -ACGGAACACGTTGGGAATCCACTA -ACGGAACACGTTGGGAATGGAGTA -ACGGAACACGTTGGGAATTCGTCT -ACGGAACACGTTGGGAATTGCACT -ACGGAACACGTTGGGAATCTGACT -ACGGAACACGTTGGGAATCAACCT -ACGGAACACGTTGGGAATGCTACT -ACGGAACACGTTGGGAATGGATCT -ACGGAACACGTTGGGAATAAGGCT -ACGGAACACGTTGGGAATTCAACC -ACGGAACACGTTGGGAATTGTTCC -ACGGAACACGTTGGGAATATTCCC -ACGGAACACGTTGGGAATTTCTCG -ACGGAACACGTTGGGAATTAGACG -ACGGAACACGTTGGGAATGTAACG -ACGGAACACGTTGGGAATACTTCG -ACGGAACACGTTGGGAATTACGCA -ACGGAACACGTTGGGAATCTTGCA -ACGGAACACGTTGGGAATCGAACA -ACGGAACACGTTGGGAATCAGTCA -ACGGAACACGTTGGGAATGATCCA -ACGGAACACGTTGGGAATACGACA -ACGGAACACGTTGGGAATAGCTCA -ACGGAACACGTTGGGAATTCACGT -ACGGAACACGTTGGGAATCGTAGT -ACGGAACACGTTGGGAATGTCAGT -ACGGAACACGTTGGGAATGAAGGT -ACGGAACACGTTGGGAATAACCGT -ACGGAACACGTTGGGAATTTGTGC -ACGGAACACGTTGGGAATCTAAGC -ACGGAACACGTTGGGAATACTAGC -ACGGAACACGTTGGGAATAGATGC -ACGGAACACGTTGGGAATTGAAGG -ACGGAACACGTTGGGAATCAATGG -ACGGAACACGTTGGGAATATGAGG -ACGGAACACGTTGGGAATAATGGG -ACGGAACACGTTGGGAATTCCTGA -ACGGAACACGTTGGGAATTAGCGA -ACGGAACACGTTGGGAATCACAGA -ACGGAACACGTTGGGAATGCAAGA -ACGGAACACGTTGGGAATGGTTGA -ACGGAACACGTTGGGAATTCCGAT -ACGGAACACGTTGGGAATTGGCAT -ACGGAACACGTTGGGAATCGAGAT -ACGGAACACGTTGGGAATTACCAC -ACGGAACACGTTGGGAATCAGAAC -ACGGAACACGTTGGGAATGTCTAC -ACGGAACACGTTGGGAATACGTAC -ACGGAACACGTTGGGAATAGTGAC -ACGGAACACGTTGGGAATCTGTAG -ACGGAACACGTTGGGAATCCTAAG -ACGGAACACGTTGGGAATGTTCAG -ACGGAACACGTTGGGAATGCATAG -ACGGAACACGTTGGGAATGACAAG -ACGGAACACGTTGGGAATAAGCAG -ACGGAACACGTTGGGAATCGTCAA -ACGGAACACGTTGGGAATGCTGAA -ACGGAACACGTTGGGAATAGTACG -ACGGAACACGTTGGGAATATCCGA -ACGGAACACGTTGGGAATATGGGA -ACGGAACACGTTGGGAATGTGCAA -ACGGAACACGTTGGGAATGAGGAA -ACGGAACACGTTGGGAATCAGGTA -ACGGAACACGTTGGGAATGACTCT -ACGGAACACGTTGGGAATAGTCCT -ACGGAACACGTTGGGAATTAAGCC -ACGGAACACGTTGGGAATATAGCC -ACGGAACACGTTGGGAATTAACCG -ACGGAACACGTTGGGAATATGCCA -ACGGAACACGTTTGATCCGGAAAC -ACGGAACACGTTTGATCCAACACC -ACGGAACACGTTTGATCCATCGAG -ACGGAACACGTTTGATCCCTCCTT -ACGGAACACGTTTGATCCCCTGTT -ACGGAACACGTTTGATCCCGGTTT -ACGGAACACGTTTGATCCGTGGTT -ACGGAACACGTTTGATCCGCCTTT -ACGGAACACGTTTGATCCGGTCTT -ACGGAACACGTTTGATCCACGCTT -ACGGAACACGTTTGATCCAGCGTT -ACGGAACACGTTTGATCCTTCGTC -ACGGAACACGTTTGATCCTCTCTC -ACGGAACACGTTTGATCCTGGATC -ACGGAACACGTTTGATCCCACTTC -ACGGAACACGTTTGATCCGTACTC -ACGGAACACGTTTGATCCGATGTC -ACGGAACACGTTTGATCCACAGTC -ACGGAACACGTTTGATCCTTGCTG -ACGGAACACGTTTGATCCTCCATG -ACGGAACACGTTTGATCCTGTGTG -ACGGAACACGTTTGATCCCTAGTG -ACGGAACACGTTTGATCCCATCTG -ACGGAACACGTTTGATCCGAGTTG -ACGGAACACGTTTGATCCAGACTG -ACGGAACACGTTTGATCCTCGGTA -ACGGAACACGTTTGATCCTGCCTA -ACGGAACACGTTTGATCCCCACTA -ACGGAACACGTTTGATCCGGAGTA -ACGGAACACGTTTGATCCTCGTCT -ACGGAACACGTTTGATCCTGCACT -ACGGAACACGTTTGATCCCTGACT -ACGGAACACGTTTGATCCCAACCT -ACGGAACACGTTTGATCCGCTACT -ACGGAACACGTTTGATCCGGATCT -ACGGAACACGTTTGATCCAAGGCT -ACGGAACACGTTTGATCCTCAACC -ACGGAACACGTTTGATCCTGTTCC -ACGGAACACGTTTGATCCATTCCC -ACGGAACACGTTTGATCCTTCTCG -ACGGAACACGTTTGATCCTAGACG -ACGGAACACGTTTGATCCGTAACG -ACGGAACACGTTTGATCCACTTCG -ACGGAACACGTTTGATCCTACGCA -ACGGAACACGTTTGATCCCTTGCA -ACGGAACACGTTTGATCCCGAACA -ACGGAACACGTTTGATCCCAGTCA -ACGGAACACGTTTGATCCGATCCA -ACGGAACACGTTTGATCCACGACA -ACGGAACACGTTTGATCCAGCTCA -ACGGAACACGTTTGATCCTCACGT -ACGGAACACGTTTGATCCCGTAGT -ACGGAACACGTTTGATCCGTCAGT -ACGGAACACGTTTGATCCGAAGGT -ACGGAACACGTTTGATCCAACCGT -ACGGAACACGTTTGATCCTTGTGC -ACGGAACACGTTTGATCCCTAAGC -ACGGAACACGTTTGATCCACTAGC -ACGGAACACGTTTGATCCAGATGC -ACGGAACACGTTTGATCCTGAAGG -ACGGAACACGTTTGATCCCAATGG -ACGGAACACGTTTGATCCATGAGG -ACGGAACACGTTTGATCCAATGGG -ACGGAACACGTTTGATCCTCCTGA -ACGGAACACGTTTGATCCTAGCGA -ACGGAACACGTTTGATCCCACAGA -ACGGAACACGTTTGATCCGCAAGA -ACGGAACACGTTTGATCCGGTTGA -ACGGAACACGTTTGATCCTCCGAT -ACGGAACACGTTTGATCCTGGCAT -ACGGAACACGTTTGATCCCGAGAT -ACGGAACACGTTTGATCCTACCAC -ACGGAACACGTTTGATCCCAGAAC -ACGGAACACGTTTGATCCGTCTAC -ACGGAACACGTTTGATCCACGTAC -ACGGAACACGTTTGATCCAGTGAC -ACGGAACACGTTTGATCCCTGTAG -ACGGAACACGTTTGATCCCCTAAG -ACGGAACACGTTTGATCCGTTCAG -ACGGAACACGTTTGATCCGCATAG -ACGGAACACGTTTGATCCGACAAG -ACGGAACACGTTTGATCCAAGCAG -ACGGAACACGTTTGATCCCGTCAA -ACGGAACACGTTTGATCCGCTGAA -ACGGAACACGTTTGATCCAGTACG -ACGGAACACGTTTGATCCATCCGA -ACGGAACACGTTTGATCCATGGGA -ACGGAACACGTTTGATCCGTGCAA -ACGGAACACGTTTGATCCGAGGAA -ACGGAACACGTTTGATCCCAGGTA -ACGGAACACGTTTGATCCGACTCT -ACGGAACACGTTTGATCCAGTCCT -ACGGAACACGTTTGATCCTAAGCC -ACGGAACACGTTTGATCCATAGCC -ACGGAACACGTTTGATCCTAACCG -ACGGAACACGTTTGATCCATGCCA -ACGGAACACGTTCGATAGGGAAAC -ACGGAACACGTTCGATAGAACACC -ACGGAACACGTTCGATAGATCGAG -ACGGAACACGTTCGATAGCTCCTT -ACGGAACACGTTCGATAGCCTGTT -ACGGAACACGTTCGATAGCGGTTT -ACGGAACACGTTCGATAGGTGGTT -ACGGAACACGTTCGATAGGCCTTT -ACGGAACACGTTCGATAGGGTCTT -ACGGAACACGTTCGATAGACGCTT -ACGGAACACGTTCGATAGAGCGTT -ACGGAACACGTTCGATAGTTCGTC -ACGGAACACGTTCGATAGTCTCTC -ACGGAACACGTTCGATAGTGGATC -ACGGAACACGTTCGATAGCACTTC -ACGGAACACGTTCGATAGGTACTC -ACGGAACACGTTCGATAGGATGTC -ACGGAACACGTTCGATAGACAGTC -ACGGAACACGTTCGATAGTTGCTG -ACGGAACACGTTCGATAGTCCATG -ACGGAACACGTTCGATAGTGTGTG -ACGGAACACGTTCGATAGCTAGTG -ACGGAACACGTTCGATAGCATCTG -ACGGAACACGTTCGATAGGAGTTG -ACGGAACACGTTCGATAGAGACTG -ACGGAACACGTTCGATAGTCGGTA -ACGGAACACGTTCGATAGTGCCTA -ACGGAACACGTTCGATAGCCACTA -ACGGAACACGTTCGATAGGGAGTA -ACGGAACACGTTCGATAGTCGTCT -ACGGAACACGTTCGATAGTGCACT -ACGGAACACGTTCGATAGCTGACT -ACGGAACACGTTCGATAGCAACCT -ACGGAACACGTTCGATAGGCTACT -ACGGAACACGTTCGATAGGGATCT -ACGGAACACGTTCGATAGAAGGCT -ACGGAACACGTTCGATAGTCAACC -ACGGAACACGTTCGATAGTGTTCC -ACGGAACACGTTCGATAGATTCCC -ACGGAACACGTTCGATAGTTCTCG -ACGGAACACGTTCGATAGTAGACG -ACGGAACACGTTCGATAGGTAACG -ACGGAACACGTTCGATAGACTTCG -ACGGAACACGTTCGATAGTACGCA -ACGGAACACGTTCGATAGCTTGCA -ACGGAACACGTTCGATAGCGAACA -ACGGAACACGTTCGATAGCAGTCA -ACGGAACACGTTCGATAGGATCCA -ACGGAACACGTTCGATAGACGACA -ACGGAACACGTTCGATAGAGCTCA -ACGGAACACGTTCGATAGTCACGT -ACGGAACACGTTCGATAGCGTAGT -ACGGAACACGTTCGATAGGTCAGT -ACGGAACACGTTCGATAGGAAGGT -ACGGAACACGTTCGATAGAACCGT -ACGGAACACGTTCGATAGTTGTGC -ACGGAACACGTTCGATAGCTAAGC -ACGGAACACGTTCGATAGACTAGC -ACGGAACACGTTCGATAGAGATGC -ACGGAACACGTTCGATAGTGAAGG -ACGGAACACGTTCGATAGCAATGG -ACGGAACACGTTCGATAGATGAGG -ACGGAACACGTTCGATAGAATGGG -ACGGAACACGTTCGATAGTCCTGA -ACGGAACACGTTCGATAGTAGCGA -ACGGAACACGTTCGATAGCACAGA -ACGGAACACGTTCGATAGGCAAGA -ACGGAACACGTTCGATAGGGTTGA -ACGGAACACGTTCGATAGTCCGAT -ACGGAACACGTTCGATAGTGGCAT -ACGGAACACGTTCGATAGCGAGAT -ACGGAACACGTTCGATAGTACCAC -ACGGAACACGTTCGATAGCAGAAC -ACGGAACACGTTCGATAGGTCTAC -ACGGAACACGTTCGATAGACGTAC -ACGGAACACGTTCGATAGAGTGAC -ACGGAACACGTTCGATAGCTGTAG -ACGGAACACGTTCGATAGCCTAAG -ACGGAACACGTTCGATAGGTTCAG -ACGGAACACGTTCGATAGGCATAG -ACGGAACACGTTCGATAGGACAAG -ACGGAACACGTTCGATAGAAGCAG -ACGGAACACGTTCGATAGCGTCAA -ACGGAACACGTTCGATAGGCTGAA -ACGGAACACGTTCGATAGAGTACG -ACGGAACACGTTCGATAGATCCGA -ACGGAACACGTTCGATAGATGGGA -ACGGAACACGTTCGATAGGTGCAA -ACGGAACACGTTCGATAGGAGGAA -ACGGAACACGTTCGATAGCAGGTA -ACGGAACACGTTCGATAGGACTCT -ACGGAACACGTTCGATAGAGTCCT -ACGGAACACGTTCGATAGTAAGCC -ACGGAACACGTTCGATAGATAGCC -ACGGAACACGTTCGATAGTAACCG -ACGGAACACGTTCGATAGATGCCA -ACGGAACACGTTAGACACGGAAAC -ACGGAACACGTTAGACACAACACC -ACGGAACACGTTAGACACATCGAG -ACGGAACACGTTAGACACCTCCTT -ACGGAACACGTTAGACACCCTGTT -ACGGAACACGTTAGACACCGGTTT -ACGGAACACGTTAGACACGTGGTT -ACGGAACACGTTAGACACGCCTTT -ACGGAACACGTTAGACACGGTCTT -ACGGAACACGTTAGACACACGCTT -ACGGAACACGTTAGACACAGCGTT -ACGGAACACGTTAGACACTTCGTC -ACGGAACACGTTAGACACTCTCTC -ACGGAACACGTTAGACACTGGATC -ACGGAACACGTTAGACACCACTTC -ACGGAACACGTTAGACACGTACTC -ACGGAACACGTTAGACACGATGTC -ACGGAACACGTTAGACACACAGTC -ACGGAACACGTTAGACACTTGCTG -ACGGAACACGTTAGACACTCCATG -ACGGAACACGTTAGACACTGTGTG -ACGGAACACGTTAGACACCTAGTG -ACGGAACACGTTAGACACCATCTG -ACGGAACACGTTAGACACGAGTTG -ACGGAACACGTTAGACACAGACTG -ACGGAACACGTTAGACACTCGGTA -ACGGAACACGTTAGACACTGCCTA -ACGGAACACGTTAGACACCCACTA -ACGGAACACGTTAGACACGGAGTA -ACGGAACACGTTAGACACTCGTCT -ACGGAACACGTTAGACACTGCACT -ACGGAACACGTTAGACACCTGACT -ACGGAACACGTTAGACACCAACCT -ACGGAACACGTTAGACACGCTACT -ACGGAACACGTTAGACACGGATCT -ACGGAACACGTTAGACACAAGGCT -ACGGAACACGTTAGACACTCAACC -ACGGAACACGTTAGACACTGTTCC -ACGGAACACGTTAGACACATTCCC -ACGGAACACGTTAGACACTTCTCG -ACGGAACACGTTAGACACTAGACG -ACGGAACACGTTAGACACGTAACG -ACGGAACACGTTAGACACACTTCG -ACGGAACACGTTAGACACTACGCA -ACGGAACACGTTAGACACCTTGCA -ACGGAACACGTTAGACACCGAACA -ACGGAACACGTTAGACACCAGTCA -ACGGAACACGTTAGACACGATCCA -ACGGAACACGTTAGACACACGACA -ACGGAACACGTTAGACACAGCTCA -ACGGAACACGTTAGACACTCACGT -ACGGAACACGTTAGACACCGTAGT -ACGGAACACGTTAGACACGTCAGT -ACGGAACACGTTAGACACGAAGGT -ACGGAACACGTTAGACACAACCGT -ACGGAACACGTTAGACACTTGTGC -ACGGAACACGTTAGACACCTAAGC -ACGGAACACGTTAGACACACTAGC -ACGGAACACGTTAGACACAGATGC -ACGGAACACGTTAGACACTGAAGG -ACGGAACACGTTAGACACCAATGG -ACGGAACACGTTAGACACATGAGG -ACGGAACACGTTAGACACAATGGG -ACGGAACACGTTAGACACTCCTGA -ACGGAACACGTTAGACACTAGCGA -ACGGAACACGTTAGACACCACAGA -ACGGAACACGTTAGACACGCAAGA -ACGGAACACGTTAGACACGGTTGA -ACGGAACACGTTAGACACTCCGAT -ACGGAACACGTTAGACACTGGCAT -ACGGAACACGTTAGACACCGAGAT -ACGGAACACGTTAGACACTACCAC -ACGGAACACGTTAGACACCAGAAC -ACGGAACACGTTAGACACGTCTAC -ACGGAACACGTTAGACACACGTAC -ACGGAACACGTTAGACACAGTGAC -ACGGAACACGTTAGACACCTGTAG -ACGGAACACGTTAGACACCCTAAG -ACGGAACACGTTAGACACGTTCAG -ACGGAACACGTTAGACACGCATAG -ACGGAACACGTTAGACACGACAAG -ACGGAACACGTTAGACACAAGCAG -ACGGAACACGTTAGACACCGTCAA -ACGGAACACGTTAGACACGCTGAA -ACGGAACACGTTAGACACAGTACG -ACGGAACACGTTAGACACATCCGA -ACGGAACACGTTAGACACATGGGA -ACGGAACACGTTAGACACGTGCAA -ACGGAACACGTTAGACACGAGGAA -ACGGAACACGTTAGACACCAGGTA -ACGGAACACGTTAGACACGACTCT -ACGGAACACGTTAGACACAGTCCT -ACGGAACACGTTAGACACTAAGCC -ACGGAACACGTTAGACACATAGCC -ACGGAACACGTTAGACACTAACCG -ACGGAACACGTTAGACACATGCCA -ACGGAACACGTTAGAGCAGGAAAC -ACGGAACACGTTAGAGCAAACACC -ACGGAACACGTTAGAGCAATCGAG -ACGGAACACGTTAGAGCACTCCTT -ACGGAACACGTTAGAGCACCTGTT -ACGGAACACGTTAGAGCACGGTTT -ACGGAACACGTTAGAGCAGTGGTT -ACGGAACACGTTAGAGCAGCCTTT -ACGGAACACGTTAGAGCAGGTCTT -ACGGAACACGTTAGAGCAACGCTT -ACGGAACACGTTAGAGCAAGCGTT -ACGGAACACGTTAGAGCATTCGTC -ACGGAACACGTTAGAGCATCTCTC -ACGGAACACGTTAGAGCATGGATC -ACGGAACACGTTAGAGCACACTTC -ACGGAACACGTTAGAGCAGTACTC -ACGGAACACGTTAGAGCAGATGTC -ACGGAACACGTTAGAGCAACAGTC -ACGGAACACGTTAGAGCATTGCTG -ACGGAACACGTTAGAGCATCCATG -ACGGAACACGTTAGAGCATGTGTG -ACGGAACACGTTAGAGCACTAGTG -ACGGAACACGTTAGAGCACATCTG -ACGGAACACGTTAGAGCAGAGTTG -ACGGAACACGTTAGAGCAAGACTG -ACGGAACACGTTAGAGCATCGGTA -ACGGAACACGTTAGAGCATGCCTA -ACGGAACACGTTAGAGCACCACTA -ACGGAACACGTTAGAGCAGGAGTA -ACGGAACACGTTAGAGCATCGTCT -ACGGAACACGTTAGAGCATGCACT -ACGGAACACGTTAGAGCACTGACT -ACGGAACACGTTAGAGCACAACCT -ACGGAACACGTTAGAGCAGCTACT -ACGGAACACGTTAGAGCAGGATCT -ACGGAACACGTTAGAGCAAAGGCT -ACGGAACACGTTAGAGCATCAACC -ACGGAACACGTTAGAGCATGTTCC -ACGGAACACGTTAGAGCAATTCCC -ACGGAACACGTTAGAGCATTCTCG -ACGGAACACGTTAGAGCATAGACG -ACGGAACACGTTAGAGCAGTAACG -ACGGAACACGTTAGAGCAACTTCG -ACGGAACACGTTAGAGCATACGCA -ACGGAACACGTTAGAGCACTTGCA -ACGGAACACGTTAGAGCACGAACA -ACGGAACACGTTAGAGCACAGTCA -ACGGAACACGTTAGAGCAGATCCA -ACGGAACACGTTAGAGCAACGACA -ACGGAACACGTTAGAGCAAGCTCA -ACGGAACACGTTAGAGCATCACGT -ACGGAACACGTTAGAGCACGTAGT -ACGGAACACGTTAGAGCAGTCAGT -ACGGAACACGTTAGAGCAGAAGGT -ACGGAACACGTTAGAGCAAACCGT -ACGGAACACGTTAGAGCATTGTGC -ACGGAACACGTTAGAGCACTAAGC -ACGGAACACGTTAGAGCAACTAGC -ACGGAACACGTTAGAGCAAGATGC -ACGGAACACGTTAGAGCATGAAGG -ACGGAACACGTTAGAGCACAATGG -ACGGAACACGTTAGAGCAATGAGG -ACGGAACACGTTAGAGCAAATGGG -ACGGAACACGTTAGAGCATCCTGA -ACGGAACACGTTAGAGCATAGCGA -ACGGAACACGTTAGAGCACACAGA -ACGGAACACGTTAGAGCAGCAAGA -ACGGAACACGTTAGAGCAGGTTGA -ACGGAACACGTTAGAGCATCCGAT -ACGGAACACGTTAGAGCATGGCAT -ACGGAACACGTTAGAGCACGAGAT -ACGGAACACGTTAGAGCATACCAC -ACGGAACACGTTAGAGCACAGAAC -ACGGAACACGTTAGAGCAGTCTAC -ACGGAACACGTTAGAGCAACGTAC -ACGGAACACGTTAGAGCAAGTGAC -ACGGAACACGTTAGAGCACTGTAG -ACGGAACACGTTAGAGCACCTAAG -ACGGAACACGTTAGAGCAGTTCAG -ACGGAACACGTTAGAGCAGCATAG -ACGGAACACGTTAGAGCAGACAAG -ACGGAACACGTTAGAGCAAAGCAG -ACGGAACACGTTAGAGCACGTCAA -ACGGAACACGTTAGAGCAGCTGAA -ACGGAACACGTTAGAGCAAGTACG -ACGGAACACGTTAGAGCAATCCGA -ACGGAACACGTTAGAGCAATGGGA -ACGGAACACGTTAGAGCAGTGCAA -ACGGAACACGTTAGAGCAGAGGAA -ACGGAACACGTTAGAGCACAGGTA -ACGGAACACGTTAGAGCAGACTCT -ACGGAACACGTTAGAGCAAGTCCT -ACGGAACACGTTAGAGCATAAGCC -ACGGAACACGTTAGAGCAATAGCC -ACGGAACACGTTAGAGCATAACCG -ACGGAACACGTTAGAGCAATGCCA -ACGGAACACGTTTGAGGTGGAAAC -ACGGAACACGTTTGAGGTAACACC -ACGGAACACGTTTGAGGTATCGAG -ACGGAACACGTTTGAGGTCTCCTT -ACGGAACACGTTTGAGGTCCTGTT -ACGGAACACGTTTGAGGTCGGTTT -ACGGAACACGTTTGAGGTGTGGTT -ACGGAACACGTTTGAGGTGCCTTT -ACGGAACACGTTTGAGGTGGTCTT -ACGGAACACGTTTGAGGTACGCTT -ACGGAACACGTTTGAGGTAGCGTT -ACGGAACACGTTTGAGGTTTCGTC -ACGGAACACGTTTGAGGTTCTCTC -ACGGAACACGTTTGAGGTTGGATC -ACGGAACACGTTTGAGGTCACTTC -ACGGAACACGTTTGAGGTGTACTC -ACGGAACACGTTTGAGGTGATGTC -ACGGAACACGTTTGAGGTACAGTC -ACGGAACACGTTTGAGGTTTGCTG -ACGGAACACGTTTGAGGTTCCATG -ACGGAACACGTTTGAGGTTGTGTG -ACGGAACACGTTTGAGGTCTAGTG -ACGGAACACGTTTGAGGTCATCTG -ACGGAACACGTTTGAGGTGAGTTG -ACGGAACACGTTTGAGGTAGACTG -ACGGAACACGTTTGAGGTTCGGTA -ACGGAACACGTTTGAGGTTGCCTA -ACGGAACACGTTTGAGGTCCACTA -ACGGAACACGTTTGAGGTGGAGTA -ACGGAACACGTTTGAGGTTCGTCT -ACGGAACACGTTTGAGGTTGCACT -ACGGAACACGTTTGAGGTCTGACT -ACGGAACACGTTTGAGGTCAACCT -ACGGAACACGTTTGAGGTGCTACT -ACGGAACACGTTTGAGGTGGATCT -ACGGAACACGTTTGAGGTAAGGCT -ACGGAACACGTTTGAGGTTCAACC -ACGGAACACGTTTGAGGTTGTTCC -ACGGAACACGTTTGAGGTATTCCC -ACGGAACACGTTTGAGGTTTCTCG -ACGGAACACGTTTGAGGTTAGACG -ACGGAACACGTTTGAGGTGTAACG -ACGGAACACGTTTGAGGTACTTCG -ACGGAACACGTTTGAGGTTACGCA -ACGGAACACGTTTGAGGTCTTGCA -ACGGAACACGTTTGAGGTCGAACA -ACGGAACACGTTTGAGGTCAGTCA -ACGGAACACGTTTGAGGTGATCCA -ACGGAACACGTTTGAGGTACGACA -ACGGAACACGTTTGAGGTAGCTCA -ACGGAACACGTTTGAGGTTCACGT -ACGGAACACGTTTGAGGTCGTAGT -ACGGAACACGTTTGAGGTGTCAGT -ACGGAACACGTTTGAGGTGAAGGT -ACGGAACACGTTTGAGGTAACCGT -ACGGAACACGTTTGAGGTTTGTGC -ACGGAACACGTTTGAGGTCTAAGC -ACGGAACACGTTTGAGGTACTAGC -ACGGAACACGTTTGAGGTAGATGC -ACGGAACACGTTTGAGGTTGAAGG -ACGGAACACGTTTGAGGTCAATGG -ACGGAACACGTTTGAGGTATGAGG -ACGGAACACGTTTGAGGTAATGGG -ACGGAACACGTTTGAGGTTCCTGA -ACGGAACACGTTTGAGGTTAGCGA -ACGGAACACGTTTGAGGTCACAGA -ACGGAACACGTTTGAGGTGCAAGA -ACGGAACACGTTTGAGGTGGTTGA -ACGGAACACGTTTGAGGTTCCGAT -ACGGAACACGTTTGAGGTTGGCAT -ACGGAACACGTTTGAGGTCGAGAT -ACGGAACACGTTTGAGGTTACCAC -ACGGAACACGTTTGAGGTCAGAAC -ACGGAACACGTTTGAGGTGTCTAC -ACGGAACACGTTTGAGGTACGTAC -ACGGAACACGTTTGAGGTAGTGAC -ACGGAACACGTTTGAGGTCTGTAG -ACGGAACACGTTTGAGGTCCTAAG -ACGGAACACGTTTGAGGTGTTCAG -ACGGAACACGTTTGAGGTGCATAG -ACGGAACACGTTTGAGGTGACAAG -ACGGAACACGTTTGAGGTAAGCAG -ACGGAACACGTTTGAGGTCGTCAA -ACGGAACACGTTTGAGGTGCTGAA -ACGGAACACGTTTGAGGTAGTACG -ACGGAACACGTTTGAGGTATCCGA -ACGGAACACGTTTGAGGTATGGGA -ACGGAACACGTTTGAGGTGTGCAA -ACGGAACACGTTTGAGGTGAGGAA -ACGGAACACGTTTGAGGTCAGGTA -ACGGAACACGTTTGAGGTGACTCT -ACGGAACACGTTTGAGGTAGTCCT -ACGGAACACGTTTGAGGTTAAGCC -ACGGAACACGTTTGAGGTATAGCC -ACGGAACACGTTTGAGGTTAACCG -ACGGAACACGTTTGAGGTATGCCA -ACGGAACACGTTGATTCCGGAAAC -ACGGAACACGTTGATTCCAACACC -ACGGAACACGTTGATTCCATCGAG -ACGGAACACGTTGATTCCCTCCTT -ACGGAACACGTTGATTCCCCTGTT -ACGGAACACGTTGATTCCCGGTTT -ACGGAACACGTTGATTCCGTGGTT -ACGGAACACGTTGATTCCGCCTTT -ACGGAACACGTTGATTCCGGTCTT -ACGGAACACGTTGATTCCACGCTT -ACGGAACACGTTGATTCCAGCGTT -ACGGAACACGTTGATTCCTTCGTC -ACGGAACACGTTGATTCCTCTCTC -ACGGAACACGTTGATTCCTGGATC -ACGGAACACGTTGATTCCCACTTC -ACGGAACACGTTGATTCCGTACTC -ACGGAACACGTTGATTCCGATGTC -ACGGAACACGTTGATTCCACAGTC -ACGGAACACGTTGATTCCTTGCTG -ACGGAACACGTTGATTCCTCCATG -ACGGAACACGTTGATTCCTGTGTG -ACGGAACACGTTGATTCCCTAGTG -ACGGAACACGTTGATTCCCATCTG -ACGGAACACGTTGATTCCGAGTTG -ACGGAACACGTTGATTCCAGACTG -ACGGAACACGTTGATTCCTCGGTA -ACGGAACACGTTGATTCCTGCCTA -ACGGAACACGTTGATTCCCCACTA -ACGGAACACGTTGATTCCGGAGTA -ACGGAACACGTTGATTCCTCGTCT -ACGGAACACGTTGATTCCTGCACT -ACGGAACACGTTGATTCCCTGACT -ACGGAACACGTTGATTCCCAACCT -ACGGAACACGTTGATTCCGCTACT -ACGGAACACGTTGATTCCGGATCT -ACGGAACACGTTGATTCCAAGGCT -ACGGAACACGTTGATTCCTCAACC -ACGGAACACGTTGATTCCTGTTCC -ACGGAACACGTTGATTCCATTCCC -ACGGAACACGTTGATTCCTTCTCG -ACGGAACACGTTGATTCCTAGACG -ACGGAACACGTTGATTCCGTAACG -ACGGAACACGTTGATTCCACTTCG -ACGGAACACGTTGATTCCTACGCA -ACGGAACACGTTGATTCCCTTGCA -ACGGAACACGTTGATTCCCGAACA -ACGGAACACGTTGATTCCCAGTCA -ACGGAACACGTTGATTCCGATCCA -ACGGAACACGTTGATTCCACGACA -ACGGAACACGTTGATTCCAGCTCA -ACGGAACACGTTGATTCCTCACGT -ACGGAACACGTTGATTCCCGTAGT -ACGGAACACGTTGATTCCGTCAGT -ACGGAACACGTTGATTCCGAAGGT -ACGGAACACGTTGATTCCAACCGT -ACGGAACACGTTGATTCCTTGTGC -ACGGAACACGTTGATTCCCTAAGC -ACGGAACACGTTGATTCCACTAGC -ACGGAACACGTTGATTCCAGATGC -ACGGAACACGTTGATTCCTGAAGG -ACGGAACACGTTGATTCCCAATGG -ACGGAACACGTTGATTCCATGAGG -ACGGAACACGTTGATTCCAATGGG -ACGGAACACGTTGATTCCTCCTGA -ACGGAACACGTTGATTCCTAGCGA -ACGGAACACGTTGATTCCCACAGA -ACGGAACACGTTGATTCCGCAAGA -ACGGAACACGTTGATTCCGGTTGA -ACGGAACACGTTGATTCCTCCGAT -ACGGAACACGTTGATTCCTGGCAT -ACGGAACACGTTGATTCCCGAGAT -ACGGAACACGTTGATTCCTACCAC -ACGGAACACGTTGATTCCCAGAAC -ACGGAACACGTTGATTCCGTCTAC -ACGGAACACGTTGATTCCACGTAC -ACGGAACACGTTGATTCCAGTGAC -ACGGAACACGTTGATTCCCTGTAG -ACGGAACACGTTGATTCCCCTAAG -ACGGAACACGTTGATTCCGTTCAG -ACGGAACACGTTGATTCCGCATAG -ACGGAACACGTTGATTCCGACAAG -ACGGAACACGTTGATTCCAAGCAG -ACGGAACACGTTGATTCCCGTCAA -ACGGAACACGTTGATTCCGCTGAA -ACGGAACACGTTGATTCCAGTACG -ACGGAACACGTTGATTCCATCCGA -ACGGAACACGTTGATTCCATGGGA -ACGGAACACGTTGATTCCGTGCAA -ACGGAACACGTTGATTCCGAGGAA -ACGGAACACGTTGATTCCCAGGTA -ACGGAACACGTTGATTCCGACTCT -ACGGAACACGTTGATTCCAGTCCT -ACGGAACACGTTGATTCCTAAGCC -ACGGAACACGTTGATTCCATAGCC -ACGGAACACGTTGATTCCTAACCG -ACGGAACACGTTGATTCCATGCCA -ACGGAACACGTTCATTGGGGAAAC -ACGGAACACGTTCATTGGAACACC -ACGGAACACGTTCATTGGATCGAG -ACGGAACACGTTCATTGGCTCCTT -ACGGAACACGTTCATTGGCCTGTT -ACGGAACACGTTCATTGGCGGTTT -ACGGAACACGTTCATTGGGTGGTT -ACGGAACACGTTCATTGGGCCTTT -ACGGAACACGTTCATTGGGGTCTT -ACGGAACACGTTCATTGGACGCTT -ACGGAACACGTTCATTGGAGCGTT -ACGGAACACGTTCATTGGTTCGTC -ACGGAACACGTTCATTGGTCTCTC -ACGGAACACGTTCATTGGTGGATC -ACGGAACACGTTCATTGGCACTTC -ACGGAACACGTTCATTGGGTACTC -ACGGAACACGTTCATTGGGATGTC -ACGGAACACGTTCATTGGACAGTC -ACGGAACACGTTCATTGGTTGCTG -ACGGAACACGTTCATTGGTCCATG -ACGGAACACGTTCATTGGTGTGTG -ACGGAACACGTTCATTGGCTAGTG -ACGGAACACGTTCATTGGCATCTG -ACGGAACACGTTCATTGGGAGTTG -ACGGAACACGTTCATTGGAGACTG -ACGGAACACGTTCATTGGTCGGTA -ACGGAACACGTTCATTGGTGCCTA -ACGGAACACGTTCATTGGCCACTA -ACGGAACACGTTCATTGGGGAGTA -ACGGAACACGTTCATTGGTCGTCT -ACGGAACACGTTCATTGGTGCACT -ACGGAACACGTTCATTGGCTGACT -ACGGAACACGTTCATTGGCAACCT -ACGGAACACGTTCATTGGGCTACT -ACGGAACACGTTCATTGGGGATCT -ACGGAACACGTTCATTGGAAGGCT -ACGGAACACGTTCATTGGTCAACC -ACGGAACACGTTCATTGGTGTTCC -ACGGAACACGTTCATTGGATTCCC -ACGGAACACGTTCATTGGTTCTCG -ACGGAACACGTTCATTGGTAGACG -ACGGAACACGTTCATTGGGTAACG -ACGGAACACGTTCATTGGACTTCG -ACGGAACACGTTCATTGGTACGCA -ACGGAACACGTTCATTGGCTTGCA -ACGGAACACGTTCATTGGCGAACA -ACGGAACACGTTCATTGGCAGTCA -ACGGAACACGTTCATTGGGATCCA -ACGGAACACGTTCATTGGACGACA -ACGGAACACGTTCATTGGAGCTCA -ACGGAACACGTTCATTGGTCACGT -ACGGAACACGTTCATTGGCGTAGT -ACGGAACACGTTCATTGGGTCAGT -ACGGAACACGTTCATTGGGAAGGT -ACGGAACACGTTCATTGGAACCGT -ACGGAACACGTTCATTGGTTGTGC -ACGGAACACGTTCATTGGCTAAGC -ACGGAACACGTTCATTGGACTAGC -ACGGAACACGTTCATTGGAGATGC -ACGGAACACGTTCATTGGTGAAGG -ACGGAACACGTTCATTGGCAATGG -ACGGAACACGTTCATTGGATGAGG -ACGGAACACGTTCATTGGAATGGG -ACGGAACACGTTCATTGGTCCTGA -ACGGAACACGTTCATTGGTAGCGA -ACGGAACACGTTCATTGGCACAGA -ACGGAACACGTTCATTGGGCAAGA -ACGGAACACGTTCATTGGGGTTGA -ACGGAACACGTTCATTGGTCCGAT -ACGGAACACGTTCATTGGTGGCAT -ACGGAACACGTTCATTGGCGAGAT -ACGGAACACGTTCATTGGTACCAC -ACGGAACACGTTCATTGGCAGAAC -ACGGAACACGTTCATTGGGTCTAC -ACGGAACACGTTCATTGGACGTAC -ACGGAACACGTTCATTGGAGTGAC -ACGGAACACGTTCATTGGCTGTAG -ACGGAACACGTTCATTGGCCTAAG -ACGGAACACGTTCATTGGGTTCAG -ACGGAACACGTTCATTGGGCATAG -ACGGAACACGTTCATTGGGACAAG -ACGGAACACGTTCATTGGAAGCAG -ACGGAACACGTTCATTGGCGTCAA -ACGGAACACGTTCATTGGGCTGAA -ACGGAACACGTTCATTGGAGTACG -ACGGAACACGTTCATTGGATCCGA -ACGGAACACGTTCATTGGATGGGA -ACGGAACACGTTCATTGGGTGCAA -ACGGAACACGTTCATTGGGAGGAA -ACGGAACACGTTCATTGGCAGGTA -ACGGAACACGTTCATTGGGACTCT -ACGGAACACGTTCATTGGAGTCCT -ACGGAACACGTTCATTGGTAAGCC -ACGGAACACGTTCATTGGATAGCC -ACGGAACACGTTCATTGGTAACCG -ACGGAACACGTTCATTGGATGCCA -ACGGAACACGTTGATCGAGGAAAC -ACGGAACACGTTGATCGAAACACC -ACGGAACACGTTGATCGAATCGAG -ACGGAACACGTTGATCGACTCCTT -ACGGAACACGTTGATCGACCTGTT -ACGGAACACGTTGATCGACGGTTT -ACGGAACACGTTGATCGAGTGGTT -ACGGAACACGTTGATCGAGCCTTT -ACGGAACACGTTGATCGAGGTCTT -ACGGAACACGTTGATCGAACGCTT -ACGGAACACGTTGATCGAAGCGTT -ACGGAACACGTTGATCGATTCGTC -ACGGAACACGTTGATCGATCTCTC -ACGGAACACGTTGATCGATGGATC -ACGGAACACGTTGATCGACACTTC -ACGGAACACGTTGATCGAGTACTC -ACGGAACACGTTGATCGAGATGTC -ACGGAACACGTTGATCGAACAGTC -ACGGAACACGTTGATCGATTGCTG -ACGGAACACGTTGATCGATCCATG -ACGGAACACGTTGATCGATGTGTG -ACGGAACACGTTGATCGACTAGTG -ACGGAACACGTTGATCGACATCTG -ACGGAACACGTTGATCGAGAGTTG -ACGGAACACGTTGATCGAAGACTG -ACGGAACACGTTGATCGATCGGTA -ACGGAACACGTTGATCGATGCCTA -ACGGAACACGTTGATCGACCACTA -ACGGAACACGTTGATCGAGGAGTA -ACGGAACACGTTGATCGATCGTCT -ACGGAACACGTTGATCGATGCACT -ACGGAACACGTTGATCGACTGACT -ACGGAACACGTTGATCGACAACCT -ACGGAACACGTTGATCGAGCTACT -ACGGAACACGTTGATCGAGGATCT -ACGGAACACGTTGATCGAAAGGCT -ACGGAACACGTTGATCGATCAACC -ACGGAACACGTTGATCGATGTTCC -ACGGAACACGTTGATCGAATTCCC -ACGGAACACGTTGATCGATTCTCG -ACGGAACACGTTGATCGATAGACG -ACGGAACACGTTGATCGAGTAACG -ACGGAACACGTTGATCGAACTTCG -ACGGAACACGTTGATCGATACGCA -ACGGAACACGTTGATCGACTTGCA -ACGGAACACGTTGATCGACGAACA -ACGGAACACGTTGATCGACAGTCA -ACGGAACACGTTGATCGAGATCCA -ACGGAACACGTTGATCGAACGACA -ACGGAACACGTTGATCGAAGCTCA -ACGGAACACGTTGATCGATCACGT -ACGGAACACGTTGATCGACGTAGT -ACGGAACACGTTGATCGAGTCAGT -ACGGAACACGTTGATCGAGAAGGT -ACGGAACACGTTGATCGAAACCGT -ACGGAACACGTTGATCGATTGTGC -ACGGAACACGTTGATCGACTAAGC -ACGGAACACGTTGATCGAACTAGC -ACGGAACACGTTGATCGAAGATGC -ACGGAACACGTTGATCGATGAAGG -ACGGAACACGTTGATCGACAATGG -ACGGAACACGTTGATCGAATGAGG -ACGGAACACGTTGATCGAAATGGG -ACGGAACACGTTGATCGATCCTGA -ACGGAACACGTTGATCGATAGCGA -ACGGAACACGTTGATCGACACAGA -ACGGAACACGTTGATCGAGCAAGA -ACGGAACACGTTGATCGAGGTTGA -ACGGAACACGTTGATCGATCCGAT -ACGGAACACGTTGATCGATGGCAT -ACGGAACACGTTGATCGACGAGAT -ACGGAACACGTTGATCGATACCAC -ACGGAACACGTTGATCGACAGAAC -ACGGAACACGTTGATCGAGTCTAC -ACGGAACACGTTGATCGAACGTAC -ACGGAACACGTTGATCGAAGTGAC -ACGGAACACGTTGATCGACTGTAG -ACGGAACACGTTGATCGACCTAAG -ACGGAACACGTTGATCGAGTTCAG -ACGGAACACGTTGATCGAGCATAG -ACGGAACACGTTGATCGAGACAAG -ACGGAACACGTTGATCGAAAGCAG -ACGGAACACGTTGATCGACGTCAA -ACGGAACACGTTGATCGAGCTGAA -ACGGAACACGTTGATCGAAGTACG -ACGGAACACGTTGATCGAATCCGA -ACGGAACACGTTGATCGAATGGGA -ACGGAACACGTTGATCGAGTGCAA -ACGGAACACGTTGATCGAGAGGAA -ACGGAACACGTTGATCGACAGGTA -ACGGAACACGTTGATCGAGACTCT -ACGGAACACGTTGATCGAAGTCCT -ACGGAACACGTTGATCGATAAGCC -ACGGAACACGTTGATCGAATAGCC -ACGGAACACGTTGATCGATAACCG -ACGGAACACGTTGATCGAATGCCA -ACGGAACACGTTCACTACGGAAAC -ACGGAACACGTTCACTACAACACC -ACGGAACACGTTCACTACATCGAG -ACGGAACACGTTCACTACCTCCTT -ACGGAACACGTTCACTACCCTGTT -ACGGAACACGTTCACTACCGGTTT -ACGGAACACGTTCACTACGTGGTT -ACGGAACACGTTCACTACGCCTTT -ACGGAACACGTTCACTACGGTCTT -ACGGAACACGTTCACTACACGCTT -ACGGAACACGTTCACTACAGCGTT -ACGGAACACGTTCACTACTTCGTC -ACGGAACACGTTCACTACTCTCTC -ACGGAACACGTTCACTACTGGATC -ACGGAACACGTTCACTACCACTTC -ACGGAACACGTTCACTACGTACTC -ACGGAACACGTTCACTACGATGTC -ACGGAACACGTTCACTACACAGTC -ACGGAACACGTTCACTACTTGCTG -ACGGAACACGTTCACTACTCCATG -ACGGAACACGTTCACTACTGTGTG -ACGGAACACGTTCACTACCTAGTG -ACGGAACACGTTCACTACCATCTG -ACGGAACACGTTCACTACGAGTTG -ACGGAACACGTTCACTACAGACTG -ACGGAACACGTTCACTACTCGGTA -ACGGAACACGTTCACTACTGCCTA -ACGGAACACGTTCACTACCCACTA -ACGGAACACGTTCACTACGGAGTA -ACGGAACACGTTCACTACTCGTCT -ACGGAACACGTTCACTACTGCACT -ACGGAACACGTTCACTACCTGACT -ACGGAACACGTTCACTACCAACCT -ACGGAACACGTTCACTACGCTACT -ACGGAACACGTTCACTACGGATCT -ACGGAACACGTTCACTACAAGGCT -ACGGAACACGTTCACTACTCAACC -ACGGAACACGTTCACTACTGTTCC -ACGGAACACGTTCACTACATTCCC -ACGGAACACGTTCACTACTTCTCG -ACGGAACACGTTCACTACTAGACG -ACGGAACACGTTCACTACGTAACG -ACGGAACACGTTCACTACACTTCG -ACGGAACACGTTCACTACTACGCA -ACGGAACACGTTCACTACCTTGCA -ACGGAACACGTTCACTACCGAACA -ACGGAACACGTTCACTACCAGTCA -ACGGAACACGTTCACTACGATCCA -ACGGAACACGTTCACTACACGACA -ACGGAACACGTTCACTACAGCTCA -ACGGAACACGTTCACTACTCACGT -ACGGAACACGTTCACTACCGTAGT -ACGGAACACGTTCACTACGTCAGT -ACGGAACACGTTCACTACGAAGGT -ACGGAACACGTTCACTACAACCGT -ACGGAACACGTTCACTACTTGTGC -ACGGAACACGTTCACTACCTAAGC -ACGGAACACGTTCACTACACTAGC -ACGGAACACGTTCACTACAGATGC -ACGGAACACGTTCACTACTGAAGG -ACGGAACACGTTCACTACCAATGG -ACGGAACACGTTCACTACATGAGG -ACGGAACACGTTCACTACAATGGG -ACGGAACACGTTCACTACTCCTGA -ACGGAACACGTTCACTACTAGCGA -ACGGAACACGTTCACTACCACAGA -ACGGAACACGTTCACTACGCAAGA -ACGGAACACGTTCACTACGGTTGA -ACGGAACACGTTCACTACTCCGAT -ACGGAACACGTTCACTACTGGCAT -ACGGAACACGTTCACTACCGAGAT -ACGGAACACGTTCACTACTACCAC -ACGGAACACGTTCACTACCAGAAC -ACGGAACACGTTCACTACGTCTAC -ACGGAACACGTTCACTACACGTAC -ACGGAACACGTTCACTACAGTGAC -ACGGAACACGTTCACTACCTGTAG -ACGGAACACGTTCACTACCCTAAG -ACGGAACACGTTCACTACGTTCAG -ACGGAACACGTTCACTACGCATAG -ACGGAACACGTTCACTACGACAAG -ACGGAACACGTTCACTACAAGCAG -ACGGAACACGTTCACTACCGTCAA -ACGGAACACGTTCACTACGCTGAA -ACGGAACACGTTCACTACAGTACG -ACGGAACACGTTCACTACATCCGA -ACGGAACACGTTCACTACATGGGA -ACGGAACACGTTCACTACGTGCAA -ACGGAACACGTTCACTACGAGGAA -ACGGAACACGTTCACTACCAGGTA -ACGGAACACGTTCACTACGACTCT -ACGGAACACGTTCACTACAGTCCT -ACGGAACACGTTCACTACTAAGCC -ACGGAACACGTTCACTACATAGCC -ACGGAACACGTTCACTACTAACCG -ACGGAACACGTTCACTACATGCCA -ACGGAACACGTTAACCAGGGAAAC -ACGGAACACGTTAACCAGAACACC -ACGGAACACGTTAACCAGATCGAG -ACGGAACACGTTAACCAGCTCCTT -ACGGAACACGTTAACCAGCCTGTT -ACGGAACACGTTAACCAGCGGTTT -ACGGAACACGTTAACCAGGTGGTT -ACGGAACACGTTAACCAGGCCTTT -ACGGAACACGTTAACCAGGGTCTT -ACGGAACACGTTAACCAGACGCTT -ACGGAACACGTTAACCAGAGCGTT -ACGGAACACGTTAACCAGTTCGTC -ACGGAACACGTTAACCAGTCTCTC -ACGGAACACGTTAACCAGTGGATC -ACGGAACACGTTAACCAGCACTTC -ACGGAACACGTTAACCAGGTACTC -ACGGAACACGTTAACCAGGATGTC -ACGGAACACGTTAACCAGACAGTC -ACGGAACACGTTAACCAGTTGCTG -ACGGAACACGTTAACCAGTCCATG -ACGGAACACGTTAACCAGTGTGTG -ACGGAACACGTTAACCAGCTAGTG -ACGGAACACGTTAACCAGCATCTG -ACGGAACACGTTAACCAGGAGTTG -ACGGAACACGTTAACCAGAGACTG -ACGGAACACGTTAACCAGTCGGTA -ACGGAACACGTTAACCAGTGCCTA -ACGGAACACGTTAACCAGCCACTA -ACGGAACACGTTAACCAGGGAGTA -ACGGAACACGTTAACCAGTCGTCT -ACGGAACACGTTAACCAGTGCACT -ACGGAACACGTTAACCAGCTGACT -ACGGAACACGTTAACCAGCAACCT -ACGGAACACGTTAACCAGGCTACT -ACGGAACACGTTAACCAGGGATCT -ACGGAACACGTTAACCAGAAGGCT -ACGGAACACGTTAACCAGTCAACC -ACGGAACACGTTAACCAGTGTTCC -ACGGAACACGTTAACCAGATTCCC -ACGGAACACGTTAACCAGTTCTCG -ACGGAACACGTTAACCAGTAGACG -ACGGAACACGTTAACCAGGTAACG -ACGGAACACGTTAACCAGACTTCG -ACGGAACACGTTAACCAGTACGCA -ACGGAACACGTTAACCAGCTTGCA -ACGGAACACGTTAACCAGCGAACA -ACGGAACACGTTAACCAGCAGTCA -ACGGAACACGTTAACCAGGATCCA -ACGGAACACGTTAACCAGACGACA -ACGGAACACGTTAACCAGAGCTCA -ACGGAACACGTTAACCAGTCACGT -ACGGAACACGTTAACCAGCGTAGT -ACGGAACACGTTAACCAGGTCAGT -ACGGAACACGTTAACCAGGAAGGT -ACGGAACACGTTAACCAGAACCGT -ACGGAACACGTTAACCAGTTGTGC -ACGGAACACGTTAACCAGCTAAGC -ACGGAACACGTTAACCAGACTAGC -ACGGAACACGTTAACCAGAGATGC -ACGGAACACGTTAACCAGTGAAGG -ACGGAACACGTTAACCAGCAATGG -ACGGAACACGTTAACCAGATGAGG -ACGGAACACGTTAACCAGAATGGG -ACGGAACACGTTAACCAGTCCTGA -ACGGAACACGTTAACCAGTAGCGA -ACGGAACACGTTAACCAGCACAGA -ACGGAACACGTTAACCAGGCAAGA -ACGGAACACGTTAACCAGGGTTGA -ACGGAACACGTTAACCAGTCCGAT -ACGGAACACGTTAACCAGTGGCAT -ACGGAACACGTTAACCAGCGAGAT -ACGGAACACGTTAACCAGTACCAC -ACGGAACACGTTAACCAGCAGAAC -ACGGAACACGTTAACCAGGTCTAC -ACGGAACACGTTAACCAGACGTAC -ACGGAACACGTTAACCAGAGTGAC -ACGGAACACGTTAACCAGCTGTAG -ACGGAACACGTTAACCAGCCTAAG -ACGGAACACGTTAACCAGGTTCAG -ACGGAACACGTTAACCAGGCATAG -ACGGAACACGTTAACCAGGACAAG -ACGGAACACGTTAACCAGAAGCAG -ACGGAACACGTTAACCAGCGTCAA -ACGGAACACGTTAACCAGGCTGAA -ACGGAACACGTTAACCAGAGTACG -ACGGAACACGTTAACCAGATCCGA -ACGGAACACGTTAACCAGATGGGA -ACGGAACACGTTAACCAGGTGCAA -ACGGAACACGTTAACCAGGAGGAA -ACGGAACACGTTAACCAGCAGGTA -ACGGAACACGTTAACCAGGACTCT -ACGGAACACGTTAACCAGAGTCCT -ACGGAACACGTTAACCAGTAAGCC -ACGGAACACGTTAACCAGATAGCC -ACGGAACACGTTAACCAGTAACCG -ACGGAACACGTTAACCAGATGCCA -ACGGAACACGTTTACGTCGGAAAC -ACGGAACACGTTTACGTCAACACC -ACGGAACACGTTTACGTCATCGAG -ACGGAACACGTTTACGTCCTCCTT -ACGGAACACGTTTACGTCCCTGTT -ACGGAACACGTTTACGTCCGGTTT -ACGGAACACGTTTACGTCGTGGTT -ACGGAACACGTTTACGTCGCCTTT -ACGGAACACGTTTACGTCGGTCTT -ACGGAACACGTTTACGTCACGCTT -ACGGAACACGTTTACGTCAGCGTT -ACGGAACACGTTTACGTCTTCGTC -ACGGAACACGTTTACGTCTCTCTC -ACGGAACACGTTTACGTCTGGATC -ACGGAACACGTTTACGTCCACTTC -ACGGAACACGTTTACGTCGTACTC -ACGGAACACGTTTACGTCGATGTC -ACGGAACACGTTTACGTCACAGTC -ACGGAACACGTTTACGTCTTGCTG -ACGGAACACGTTTACGTCTCCATG -ACGGAACACGTTTACGTCTGTGTG -ACGGAACACGTTTACGTCCTAGTG -ACGGAACACGTTTACGTCCATCTG -ACGGAACACGTTTACGTCGAGTTG -ACGGAACACGTTTACGTCAGACTG -ACGGAACACGTTTACGTCTCGGTA -ACGGAACACGTTTACGTCTGCCTA -ACGGAACACGTTTACGTCCCACTA -ACGGAACACGTTTACGTCGGAGTA -ACGGAACACGTTTACGTCTCGTCT -ACGGAACACGTTTACGTCTGCACT -ACGGAACACGTTTACGTCCTGACT -ACGGAACACGTTTACGTCCAACCT -ACGGAACACGTTTACGTCGCTACT -ACGGAACACGTTTACGTCGGATCT -ACGGAACACGTTTACGTCAAGGCT -ACGGAACACGTTTACGTCTCAACC -ACGGAACACGTTTACGTCTGTTCC -ACGGAACACGTTTACGTCATTCCC -ACGGAACACGTTTACGTCTTCTCG -ACGGAACACGTTTACGTCTAGACG -ACGGAACACGTTTACGTCGTAACG -ACGGAACACGTTTACGTCACTTCG -ACGGAACACGTTTACGTCTACGCA -ACGGAACACGTTTACGTCCTTGCA -ACGGAACACGTTTACGTCCGAACA -ACGGAACACGTTTACGTCCAGTCA -ACGGAACACGTTTACGTCGATCCA -ACGGAACACGTTTACGTCACGACA -ACGGAACACGTTTACGTCAGCTCA -ACGGAACACGTTTACGTCTCACGT -ACGGAACACGTTTACGTCCGTAGT -ACGGAACACGTTTACGTCGTCAGT -ACGGAACACGTTTACGTCGAAGGT -ACGGAACACGTTTACGTCAACCGT -ACGGAACACGTTTACGTCTTGTGC -ACGGAACACGTTTACGTCCTAAGC -ACGGAACACGTTTACGTCACTAGC -ACGGAACACGTTTACGTCAGATGC -ACGGAACACGTTTACGTCTGAAGG -ACGGAACACGTTTACGTCCAATGG -ACGGAACACGTTTACGTCATGAGG -ACGGAACACGTTTACGTCAATGGG -ACGGAACACGTTTACGTCTCCTGA -ACGGAACACGTTTACGTCTAGCGA -ACGGAACACGTTTACGTCCACAGA -ACGGAACACGTTTACGTCGCAAGA -ACGGAACACGTTTACGTCGGTTGA -ACGGAACACGTTTACGTCTCCGAT -ACGGAACACGTTTACGTCTGGCAT -ACGGAACACGTTTACGTCCGAGAT -ACGGAACACGTTTACGTCTACCAC -ACGGAACACGTTTACGTCCAGAAC -ACGGAACACGTTTACGTCGTCTAC -ACGGAACACGTTTACGTCACGTAC -ACGGAACACGTTTACGTCAGTGAC -ACGGAACACGTTTACGTCCTGTAG -ACGGAACACGTTTACGTCCCTAAG -ACGGAACACGTTTACGTCGTTCAG -ACGGAACACGTTTACGTCGCATAG -ACGGAACACGTTTACGTCGACAAG -ACGGAACACGTTTACGTCAAGCAG -ACGGAACACGTTTACGTCCGTCAA -ACGGAACACGTTTACGTCGCTGAA -ACGGAACACGTTTACGTCAGTACG -ACGGAACACGTTTACGTCATCCGA -ACGGAACACGTTTACGTCATGGGA -ACGGAACACGTTTACGTCGTGCAA -ACGGAACACGTTTACGTCGAGGAA -ACGGAACACGTTTACGTCCAGGTA -ACGGAACACGTTTACGTCGACTCT -ACGGAACACGTTTACGTCAGTCCT -ACGGAACACGTTTACGTCTAAGCC -ACGGAACACGTTTACGTCATAGCC -ACGGAACACGTTTACGTCTAACCG -ACGGAACACGTTTACGTCATGCCA -ACGGAACACGTTTACACGGGAAAC -ACGGAACACGTTTACACGAACACC -ACGGAACACGTTTACACGATCGAG -ACGGAACACGTTTACACGCTCCTT -ACGGAACACGTTTACACGCCTGTT -ACGGAACACGTTTACACGCGGTTT -ACGGAACACGTTTACACGGTGGTT -ACGGAACACGTTTACACGGCCTTT -ACGGAACACGTTTACACGGGTCTT -ACGGAACACGTTTACACGACGCTT -ACGGAACACGTTTACACGAGCGTT -ACGGAACACGTTTACACGTTCGTC -ACGGAACACGTTTACACGTCTCTC -ACGGAACACGTTTACACGTGGATC -ACGGAACACGTTTACACGCACTTC -ACGGAACACGTTTACACGGTACTC -ACGGAACACGTTTACACGGATGTC -ACGGAACACGTTTACACGACAGTC -ACGGAACACGTTTACACGTTGCTG -ACGGAACACGTTTACACGTCCATG -ACGGAACACGTTTACACGTGTGTG -ACGGAACACGTTTACACGCTAGTG -ACGGAACACGTTTACACGCATCTG -ACGGAACACGTTTACACGGAGTTG -ACGGAACACGTTTACACGAGACTG -ACGGAACACGTTTACACGTCGGTA -ACGGAACACGTTTACACGTGCCTA -ACGGAACACGTTTACACGCCACTA -ACGGAACACGTTTACACGGGAGTA -ACGGAACACGTTTACACGTCGTCT -ACGGAACACGTTTACACGTGCACT -ACGGAACACGTTTACACGCTGACT -ACGGAACACGTTTACACGCAACCT -ACGGAACACGTTTACACGGCTACT -ACGGAACACGTTTACACGGGATCT -ACGGAACACGTTTACACGAAGGCT -ACGGAACACGTTTACACGTCAACC -ACGGAACACGTTTACACGTGTTCC -ACGGAACACGTTTACACGATTCCC -ACGGAACACGTTTACACGTTCTCG -ACGGAACACGTTTACACGTAGACG -ACGGAACACGTTTACACGGTAACG -ACGGAACACGTTTACACGACTTCG -ACGGAACACGTTTACACGTACGCA -ACGGAACACGTTTACACGCTTGCA -ACGGAACACGTTTACACGCGAACA -ACGGAACACGTTTACACGCAGTCA -ACGGAACACGTTTACACGGATCCA -ACGGAACACGTTTACACGACGACA -ACGGAACACGTTTACACGAGCTCA -ACGGAACACGTTTACACGTCACGT -ACGGAACACGTTTACACGCGTAGT -ACGGAACACGTTTACACGGTCAGT -ACGGAACACGTTTACACGGAAGGT -ACGGAACACGTTTACACGAACCGT -ACGGAACACGTTTACACGTTGTGC -ACGGAACACGTTTACACGCTAAGC -ACGGAACACGTTTACACGACTAGC -ACGGAACACGTTTACACGAGATGC -ACGGAACACGTTTACACGTGAAGG -ACGGAACACGTTTACACGCAATGG -ACGGAACACGTTTACACGATGAGG -ACGGAACACGTTTACACGAATGGG -ACGGAACACGTTTACACGTCCTGA -ACGGAACACGTTTACACGTAGCGA -ACGGAACACGTTTACACGCACAGA -ACGGAACACGTTTACACGGCAAGA -ACGGAACACGTTTACACGGGTTGA -ACGGAACACGTTTACACGTCCGAT -ACGGAACACGTTTACACGTGGCAT -ACGGAACACGTTTACACGCGAGAT -ACGGAACACGTTTACACGTACCAC -ACGGAACACGTTTACACGCAGAAC -ACGGAACACGTTTACACGGTCTAC -ACGGAACACGTTTACACGACGTAC -ACGGAACACGTTTACACGAGTGAC -ACGGAACACGTTTACACGCTGTAG -ACGGAACACGTTTACACGCCTAAG -ACGGAACACGTTTACACGGTTCAG -ACGGAACACGTTTACACGGCATAG -ACGGAACACGTTTACACGGACAAG -ACGGAACACGTTTACACGAAGCAG -ACGGAACACGTTTACACGCGTCAA -ACGGAACACGTTTACACGGCTGAA -ACGGAACACGTTTACACGAGTACG -ACGGAACACGTTTACACGATCCGA -ACGGAACACGTTTACACGATGGGA -ACGGAACACGTTTACACGGTGCAA -ACGGAACACGTTTACACGGAGGAA -ACGGAACACGTTTACACGCAGGTA -ACGGAACACGTTTACACGGACTCT -ACGGAACACGTTTACACGAGTCCT -ACGGAACACGTTTACACGTAAGCC -ACGGAACACGTTTACACGATAGCC -ACGGAACACGTTTACACGTAACCG -ACGGAACACGTTTACACGATGCCA -ACGGAACACGTTGACAGTGGAAAC -ACGGAACACGTTGACAGTAACACC -ACGGAACACGTTGACAGTATCGAG -ACGGAACACGTTGACAGTCTCCTT -ACGGAACACGTTGACAGTCCTGTT -ACGGAACACGTTGACAGTCGGTTT -ACGGAACACGTTGACAGTGTGGTT -ACGGAACACGTTGACAGTGCCTTT -ACGGAACACGTTGACAGTGGTCTT -ACGGAACACGTTGACAGTACGCTT -ACGGAACACGTTGACAGTAGCGTT -ACGGAACACGTTGACAGTTTCGTC -ACGGAACACGTTGACAGTTCTCTC -ACGGAACACGTTGACAGTTGGATC -ACGGAACACGTTGACAGTCACTTC -ACGGAACACGTTGACAGTGTACTC -ACGGAACACGTTGACAGTGATGTC -ACGGAACACGTTGACAGTACAGTC -ACGGAACACGTTGACAGTTTGCTG -ACGGAACACGTTGACAGTTCCATG -ACGGAACACGTTGACAGTTGTGTG -ACGGAACACGTTGACAGTCTAGTG -ACGGAACACGTTGACAGTCATCTG -ACGGAACACGTTGACAGTGAGTTG -ACGGAACACGTTGACAGTAGACTG -ACGGAACACGTTGACAGTTCGGTA -ACGGAACACGTTGACAGTTGCCTA -ACGGAACACGTTGACAGTCCACTA -ACGGAACACGTTGACAGTGGAGTA -ACGGAACACGTTGACAGTTCGTCT -ACGGAACACGTTGACAGTTGCACT -ACGGAACACGTTGACAGTCTGACT -ACGGAACACGTTGACAGTCAACCT -ACGGAACACGTTGACAGTGCTACT -ACGGAACACGTTGACAGTGGATCT -ACGGAACACGTTGACAGTAAGGCT -ACGGAACACGTTGACAGTTCAACC -ACGGAACACGTTGACAGTTGTTCC -ACGGAACACGTTGACAGTATTCCC -ACGGAACACGTTGACAGTTTCTCG -ACGGAACACGTTGACAGTTAGACG -ACGGAACACGTTGACAGTGTAACG -ACGGAACACGTTGACAGTACTTCG -ACGGAACACGTTGACAGTTACGCA -ACGGAACACGTTGACAGTCTTGCA -ACGGAACACGTTGACAGTCGAACA -ACGGAACACGTTGACAGTCAGTCA -ACGGAACACGTTGACAGTGATCCA -ACGGAACACGTTGACAGTACGACA -ACGGAACACGTTGACAGTAGCTCA -ACGGAACACGTTGACAGTTCACGT -ACGGAACACGTTGACAGTCGTAGT -ACGGAACACGTTGACAGTGTCAGT -ACGGAACACGTTGACAGTGAAGGT -ACGGAACACGTTGACAGTAACCGT -ACGGAACACGTTGACAGTTTGTGC -ACGGAACACGTTGACAGTCTAAGC -ACGGAACACGTTGACAGTACTAGC -ACGGAACACGTTGACAGTAGATGC -ACGGAACACGTTGACAGTTGAAGG -ACGGAACACGTTGACAGTCAATGG -ACGGAACACGTTGACAGTATGAGG -ACGGAACACGTTGACAGTAATGGG -ACGGAACACGTTGACAGTTCCTGA -ACGGAACACGTTGACAGTTAGCGA -ACGGAACACGTTGACAGTCACAGA -ACGGAACACGTTGACAGTGCAAGA -ACGGAACACGTTGACAGTGGTTGA -ACGGAACACGTTGACAGTTCCGAT -ACGGAACACGTTGACAGTTGGCAT -ACGGAACACGTTGACAGTCGAGAT -ACGGAACACGTTGACAGTTACCAC -ACGGAACACGTTGACAGTCAGAAC -ACGGAACACGTTGACAGTGTCTAC -ACGGAACACGTTGACAGTACGTAC -ACGGAACACGTTGACAGTAGTGAC -ACGGAACACGTTGACAGTCTGTAG -ACGGAACACGTTGACAGTCCTAAG -ACGGAACACGTTGACAGTGTTCAG -ACGGAACACGTTGACAGTGCATAG -ACGGAACACGTTGACAGTGACAAG -ACGGAACACGTTGACAGTAAGCAG -ACGGAACACGTTGACAGTCGTCAA -ACGGAACACGTTGACAGTGCTGAA -ACGGAACACGTTGACAGTAGTACG -ACGGAACACGTTGACAGTATCCGA -ACGGAACACGTTGACAGTATGGGA -ACGGAACACGTTGACAGTGTGCAA -ACGGAACACGTTGACAGTGAGGAA -ACGGAACACGTTGACAGTCAGGTA -ACGGAACACGTTGACAGTGACTCT -ACGGAACACGTTGACAGTAGTCCT -ACGGAACACGTTGACAGTTAAGCC -ACGGAACACGTTGACAGTATAGCC -ACGGAACACGTTGACAGTTAACCG -ACGGAACACGTTGACAGTATGCCA -ACGGAACACGTTTAGCTGGGAAAC -ACGGAACACGTTTAGCTGAACACC -ACGGAACACGTTTAGCTGATCGAG -ACGGAACACGTTTAGCTGCTCCTT -ACGGAACACGTTTAGCTGCCTGTT -ACGGAACACGTTTAGCTGCGGTTT -ACGGAACACGTTTAGCTGGTGGTT -ACGGAACACGTTTAGCTGGCCTTT -ACGGAACACGTTTAGCTGGGTCTT -ACGGAACACGTTTAGCTGACGCTT -ACGGAACACGTTTAGCTGAGCGTT -ACGGAACACGTTTAGCTGTTCGTC -ACGGAACACGTTTAGCTGTCTCTC -ACGGAACACGTTTAGCTGTGGATC -ACGGAACACGTTTAGCTGCACTTC -ACGGAACACGTTTAGCTGGTACTC -ACGGAACACGTTTAGCTGGATGTC -ACGGAACACGTTTAGCTGACAGTC -ACGGAACACGTTTAGCTGTTGCTG -ACGGAACACGTTTAGCTGTCCATG -ACGGAACACGTTTAGCTGTGTGTG -ACGGAACACGTTTAGCTGCTAGTG -ACGGAACACGTTTAGCTGCATCTG -ACGGAACACGTTTAGCTGGAGTTG -ACGGAACACGTTTAGCTGAGACTG -ACGGAACACGTTTAGCTGTCGGTA -ACGGAACACGTTTAGCTGTGCCTA -ACGGAACACGTTTAGCTGCCACTA -ACGGAACACGTTTAGCTGGGAGTA -ACGGAACACGTTTAGCTGTCGTCT -ACGGAACACGTTTAGCTGTGCACT -ACGGAACACGTTTAGCTGCTGACT -ACGGAACACGTTTAGCTGCAACCT -ACGGAACACGTTTAGCTGGCTACT -ACGGAACACGTTTAGCTGGGATCT -ACGGAACACGTTTAGCTGAAGGCT -ACGGAACACGTTTAGCTGTCAACC -ACGGAACACGTTTAGCTGTGTTCC -ACGGAACACGTTTAGCTGATTCCC -ACGGAACACGTTTAGCTGTTCTCG -ACGGAACACGTTTAGCTGTAGACG -ACGGAACACGTTTAGCTGGTAACG -ACGGAACACGTTTAGCTGACTTCG -ACGGAACACGTTTAGCTGTACGCA -ACGGAACACGTTTAGCTGCTTGCA -ACGGAACACGTTTAGCTGCGAACA -ACGGAACACGTTTAGCTGCAGTCA -ACGGAACACGTTTAGCTGGATCCA -ACGGAACACGTTTAGCTGACGACA -ACGGAACACGTTTAGCTGAGCTCA -ACGGAACACGTTTAGCTGTCACGT -ACGGAACACGTTTAGCTGCGTAGT -ACGGAACACGTTTAGCTGGTCAGT -ACGGAACACGTTTAGCTGGAAGGT -ACGGAACACGTTTAGCTGAACCGT -ACGGAACACGTTTAGCTGTTGTGC -ACGGAACACGTTTAGCTGCTAAGC -ACGGAACACGTTTAGCTGACTAGC -ACGGAACACGTTTAGCTGAGATGC -ACGGAACACGTTTAGCTGTGAAGG -ACGGAACACGTTTAGCTGCAATGG -ACGGAACACGTTTAGCTGATGAGG -ACGGAACACGTTTAGCTGAATGGG -ACGGAACACGTTTAGCTGTCCTGA -ACGGAACACGTTTAGCTGTAGCGA -ACGGAACACGTTTAGCTGCACAGA -ACGGAACACGTTTAGCTGGCAAGA -ACGGAACACGTTTAGCTGGGTTGA -ACGGAACACGTTTAGCTGTCCGAT -ACGGAACACGTTTAGCTGTGGCAT -ACGGAACACGTTTAGCTGCGAGAT -ACGGAACACGTTTAGCTGTACCAC -ACGGAACACGTTTAGCTGCAGAAC -ACGGAACACGTTTAGCTGGTCTAC -ACGGAACACGTTTAGCTGACGTAC -ACGGAACACGTTTAGCTGAGTGAC -ACGGAACACGTTTAGCTGCTGTAG -ACGGAACACGTTTAGCTGCCTAAG -ACGGAACACGTTTAGCTGGTTCAG -ACGGAACACGTTTAGCTGGCATAG -ACGGAACACGTTTAGCTGGACAAG -ACGGAACACGTTTAGCTGAAGCAG -ACGGAACACGTTTAGCTGCGTCAA -ACGGAACACGTTTAGCTGGCTGAA -ACGGAACACGTTTAGCTGAGTACG -ACGGAACACGTTTAGCTGATCCGA -ACGGAACACGTTTAGCTGATGGGA -ACGGAACACGTTTAGCTGGTGCAA -ACGGAACACGTTTAGCTGGAGGAA -ACGGAACACGTTTAGCTGCAGGTA -ACGGAACACGTTTAGCTGGACTCT -ACGGAACACGTTTAGCTGAGTCCT -ACGGAACACGTTTAGCTGTAAGCC -ACGGAACACGTTTAGCTGATAGCC -ACGGAACACGTTTAGCTGTAACCG -ACGGAACACGTTTAGCTGATGCCA -ACGGAACACGTTAAGCCTGGAAAC -ACGGAACACGTTAAGCCTAACACC -ACGGAACACGTTAAGCCTATCGAG -ACGGAACACGTTAAGCCTCTCCTT -ACGGAACACGTTAAGCCTCCTGTT -ACGGAACACGTTAAGCCTCGGTTT -ACGGAACACGTTAAGCCTGTGGTT -ACGGAACACGTTAAGCCTGCCTTT -ACGGAACACGTTAAGCCTGGTCTT -ACGGAACACGTTAAGCCTACGCTT -ACGGAACACGTTAAGCCTAGCGTT -ACGGAACACGTTAAGCCTTTCGTC -ACGGAACACGTTAAGCCTTCTCTC -ACGGAACACGTTAAGCCTTGGATC -ACGGAACACGTTAAGCCTCACTTC -ACGGAACACGTTAAGCCTGTACTC -ACGGAACACGTTAAGCCTGATGTC -ACGGAACACGTTAAGCCTACAGTC -ACGGAACACGTTAAGCCTTTGCTG -ACGGAACACGTTAAGCCTTCCATG -ACGGAACACGTTAAGCCTTGTGTG -ACGGAACACGTTAAGCCTCTAGTG -ACGGAACACGTTAAGCCTCATCTG -ACGGAACACGTTAAGCCTGAGTTG -ACGGAACACGTTAAGCCTAGACTG -ACGGAACACGTTAAGCCTTCGGTA -ACGGAACACGTTAAGCCTTGCCTA -ACGGAACACGTTAAGCCTCCACTA -ACGGAACACGTTAAGCCTGGAGTA -ACGGAACACGTTAAGCCTTCGTCT -ACGGAACACGTTAAGCCTTGCACT -ACGGAACACGTTAAGCCTCTGACT -ACGGAACACGTTAAGCCTCAACCT -ACGGAACACGTTAAGCCTGCTACT -ACGGAACACGTTAAGCCTGGATCT -ACGGAACACGTTAAGCCTAAGGCT -ACGGAACACGTTAAGCCTTCAACC -ACGGAACACGTTAAGCCTTGTTCC -ACGGAACACGTTAAGCCTATTCCC -ACGGAACACGTTAAGCCTTTCTCG -ACGGAACACGTTAAGCCTTAGACG -ACGGAACACGTTAAGCCTGTAACG -ACGGAACACGTTAAGCCTACTTCG -ACGGAACACGTTAAGCCTTACGCA -ACGGAACACGTTAAGCCTCTTGCA -ACGGAACACGTTAAGCCTCGAACA -ACGGAACACGTTAAGCCTCAGTCA -ACGGAACACGTTAAGCCTGATCCA -ACGGAACACGTTAAGCCTACGACA -ACGGAACACGTTAAGCCTAGCTCA -ACGGAACACGTTAAGCCTTCACGT -ACGGAACACGTTAAGCCTCGTAGT -ACGGAACACGTTAAGCCTGTCAGT -ACGGAACACGTTAAGCCTGAAGGT -ACGGAACACGTTAAGCCTAACCGT -ACGGAACACGTTAAGCCTTTGTGC -ACGGAACACGTTAAGCCTCTAAGC -ACGGAACACGTTAAGCCTACTAGC -ACGGAACACGTTAAGCCTAGATGC -ACGGAACACGTTAAGCCTTGAAGG -ACGGAACACGTTAAGCCTCAATGG -ACGGAACACGTTAAGCCTATGAGG -ACGGAACACGTTAAGCCTAATGGG -ACGGAACACGTTAAGCCTTCCTGA -ACGGAACACGTTAAGCCTTAGCGA -ACGGAACACGTTAAGCCTCACAGA -ACGGAACACGTTAAGCCTGCAAGA -ACGGAACACGTTAAGCCTGGTTGA -ACGGAACACGTTAAGCCTTCCGAT -ACGGAACACGTTAAGCCTTGGCAT -ACGGAACACGTTAAGCCTCGAGAT -ACGGAACACGTTAAGCCTTACCAC -ACGGAACACGTTAAGCCTCAGAAC -ACGGAACACGTTAAGCCTGTCTAC -ACGGAACACGTTAAGCCTACGTAC -ACGGAACACGTTAAGCCTAGTGAC -ACGGAACACGTTAAGCCTCTGTAG -ACGGAACACGTTAAGCCTCCTAAG -ACGGAACACGTTAAGCCTGTTCAG -ACGGAACACGTTAAGCCTGCATAG -ACGGAACACGTTAAGCCTGACAAG -ACGGAACACGTTAAGCCTAAGCAG -ACGGAACACGTTAAGCCTCGTCAA -ACGGAACACGTTAAGCCTGCTGAA -ACGGAACACGTTAAGCCTAGTACG -ACGGAACACGTTAAGCCTATCCGA -ACGGAACACGTTAAGCCTATGGGA -ACGGAACACGTTAAGCCTGTGCAA -ACGGAACACGTTAAGCCTGAGGAA -ACGGAACACGTTAAGCCTCAGGTA -ACGGAACACGTTAAGCCTGACTCT -ACGGAACACGTTAAGCCTAGTCCT -ACGGAACACGTTAAGCCTTAAGCC -ACGGAACACGTTAAGCCTATAGCC -ACGGAACACGTTAAGCCTTAACCG -ACGGAACACGTTAAGCCTATGCCA -ACGGAACACGTTCAGGTTGGAAAC -ACGGAACACGTTCAGGTTAACACC -ACGGAACACGTTCAGGTTATCGAG -ACGGAACACGTTCAGGTTCTCCTT -ACGGAACACGTTCAGGTTCCTGTT -ACGGAACACGTTCAGGTTCGGTTT -ACGGAACACGTTCAGGTTGTGGTT -ACGGAACACGTTCAGGTTGCCTTT -ACGGAACACGTTCAGGTTGGTCTT -ACGGAACACGTTCAGGTTACGCTT -ACGGAACACGTTCAGGTTAGCGTT -ACGGAACACGTTCAGGTTTTCGTC -ACGGAACACGTTCAGGTTTCTCTC -ACGGAACACGTTCAGGTTTGGATC -ACGGAACACGTTCAGGTTCACTTC -ACGGAACACGTTCAGGTTGTACTC -ACGGAACACGTTCAGGTTGATGTC -ACGGAACACGTTCAGGTTACAGTC -ACGGAACACGTTCAGGTTTTGCTG -ACGGAACACGTTCAGGTTTCCATG -ACGGAACACGTTCAGGTTTGTGTG -ACGGAACACGTTCAGGTTCTAGTG -ACGGAACACGTTCAGGTTCATCTG -ACGGAACACGTTCAGGTTGAGTTG -ACGGAACACGTTCAGGTTAGACTG -ACGGAACACGTTCAGGTTTCGGTA -ACGGAACACGTTCAGGTTTGCCTA -ACGGAACACGTTCAGGTTCCACTA -ACGGAACACGTTCAGGTTGGAGTA -ACGGAACACGTTCAGGTTTCGTCT -ACGGAACACGTTCAGGTTTGCACT -ACGGAACACGTTCAGGTTCTGACT -ACGGAACACGTTCAGGTTCAACCT -ACGGAACACGTTCAGGTTGCTACT -ACGGAACACGTTCAGGTTGGATCT -ACGGAACACGTTCAGGTTAAGGCT -ACGGAACACGTTCAGGTTTCAACC -ACGGAACACGTTCAGGTTTGTTCC -ACGGAACACGTTCAGGTTATTCCC -ACGGAACACGTTCAGGTTTTCTCG -ACGGAACACGTTCAGGTTTAGACG -ACGGAACACGTTCAGGTTGTAACG -ACGGAACACGTTCAGGTTACTTCG -ACGGAACACGTTCAGGTTTACGCA -ACGGAACACGTTCAGGTTCTTGCA -ACGGAACACGTTCAGGTTCGAACA -ACGGAACACGTTCAGGTTCAGTCA -ACGGAACACGTTCAGGTTGATCCA -ACGGAACACGTTCAGGTTACGACA -ACGGAACACGTTCAGGTTAGCTCA -ACGGAACACGTTCAGGTTTCACGT -ACGGAACACGTTCAGGTTCGTAGT -ACGGAACACGTTCAGGTTGTCAGT -ACGGAACACGTTCAGGTTGAAGGT -ACGGAACACGTTCAGGTTAACCGT -ACGGAACACGTTCAGGTTTTGTGC -ACGGAACACGTTCAGGTTCTAAGC -ACGGAACACGTTCAGGTTACTAGC -ACGGAACACGTTCAGGTTAGATGC -ACGGAACACGTTCAGGTTTGAAGG -ACGGAACACGTTCAGGTTCAATGG -ACGGAACACGTTCAGGTTATGAGG -ACGGAACACGTTCAGGTTAATGGG -ACGGAACACGTTCAGGTTTCCTGA -ACGGAACACGTTCAGGTTTAGCGA -ACGGAACACGTTCAGGTTCACAGA -ACGGAACACGTTCAGGTTGCAAGA -ACGGAACACGTTCAGGTTGGTTGA -ACGGAACACGTTCAGGTTTCCGAT -ACGGAACACGTTCAGGTTTGGCAT -ACGGAACACGTTCAGGTTCGAGAT -ACGGAACACGTTCAGGTTTACCAC -ACGGAACACGTTCAGGTTCAGAAC -ACGGAACACGTTCAGGTTGTCTAC -ACGGAACACGTTCAGGTTACGTAC -ACGGAACACGTTCAGGTTAGTGAC -ACGGAACACGTTCAGGTTCTGTAG -ACGGAACACGTTCAGGTTCCTAAG -ACGGAACACGTTCAGGTTGTTCAG -ACGGAACACGTTCAGGTTGCATAG -ACGGAACACGTTCAGGTTGACAAG -ACGGAACACGTTCAGGTTAAGCAG -ACGGAACACGTTCAGGTTCGTCAA -ACGGAACACGTTCAGGTTGCTGAA -ACGGAACACGTTCAGGTTAGTACG -ACGGAACACGTTCAGGTTATCCGA -ACGGAACACGTTCAGGTTATGGGA -ACGGAACACGTTCAGGTTGTGCAA -ACGGAACACGTTCAGGTTGAGGAA -ACGGAACACGTTCAGGTTCAGGTA -ACGGAACACGTTCAGGTTGACTCT -ACGGAACACGTTCAGGTTAGTCCT -ACGGAACACGTTCAGGTTTAAGCC -ACGGAACACGTTCAGGTTATAGCC -ACGGAACACGTTCAGGTTTAACCG -ACGGAACACGTTCAGGTTATGCCA -ACGGAACACGTTTAGGCAGGAAAC -ACGGAACACGTTTAGGCAAACACC -ACGGAACACGTTTAGGCAATCGAG -ACGGAACACGTTTAGGCACTCCTT -ACGGAACACGTTTAGGCACCTGTT -ACGGAACACGTTTAGGCACGGTTT -ACGGAACACGTTTAGGCAGTGGTT -ACGGAACACGTTTAGGCAGCCTTT -ACGGAACACGTTTAGGCAGGTCTT -ACGGAACACGTTTAGGCAACGCTT -ACGGAACACGTTTAGGCAAGCGTT -ACGGAACACGTTTAGGCATTCGTC -ACGGAACACGTTTAGGCATCTCTC -ACGGAACACGTTTAGGCATGGATC -ACGGAACACGTTTAGGCACACTTC -ACGGAACACGTTTAGGCAGTACTC -ACGGAACACGTTTAGGCAGATGTC -ACGGAACACGTTTAGGCAACAGTC -ACGGAACACGTTTAGGCATTGCTG -ACGGAACACGTTTAGGCATCCATG -ACGGAACACGTTTAGGCATGTGTG -ACGGAACACGTTTAGGCACTAGTG -ACGGAACACGTTTAGGCACATCTG -ACGGAACACGTTTAGGCAGAGTTG -ACGGAACACGTTTAGGCAAGACTG -ACGGAACACGTTTAGGCATCGGTA -ACGGAACACGTTTAGGCATGCCTA -ACGGAACACGTTTAGGCACCACTA -ACGGAACACGTTTAGGCAGGAGTA -ACGGAACACGTTTAGGCATCGTCT -ACGGAACACGTTTAGGCATGCACT -ACGGAACACGTTTAGGCACTGACT -ACGGAACACGTTTAGGCACAACCT -ACGGAACACGTTTAGGCAGCTACT -ACGGAACACGTTTAGGCAGGATCT -ACGGAACACGTTTAGGCAAAGGCT -ACGGAACACGTTTAGGCATCAACC -ACGGAACACGTTTAGGCATGTTCC -ACGGAACACGTTTAGGCAATTCCC -ACGGAACACGTTTAGGCATTCTCG -ACGGAACACGTTTAGGCATAGACG -ACGGAACACGTTTAGGCAGTAACG -ACGGAACACGTTTAGGCAACTTCG -ACGGAACACGTTTAGGCATACGCA -ACGGAACACGTTTAGGCACTTGCA -ACGGAACACGTTTAGGCACGAACA -ACGGAACACGTTTAGGCACAGTCA -ACGGAACACGTTTAGGCAGATCCA -ACGGAACACGTTTAGGCAACGACA -ACGGAACACGTTTAGGCAAGCTCA -ACGGAACACGTTTAGGCATCACGT -ACGGAACACGTTTAGGCACGTAGT -ACGGAACACGTTTAGGCAGTCAGT -ACGGAACACGTTTAGGCAGAAGGT -ACGGAACACGTTTAGGCAAACCGT -ACGGAACACGTTTAGGCATTGTGC -ACGGAACACGTTTAGGCACTAAGC -ACGGAACACGTTTAGGCAACTAGC -ACGGAACACGTTTAGGCAAGATGC -ACGGAACACGTTTAGGCATGAAGG -ACGGAACACGTTTAGGCACAATGG -ACGGAACACGTTTAGGCAATGAGG -ACGGAACACGTTTAGGCAAATGGG -ACGGAACACGTTTAGGCATCCTGA -ACGGAACACGTTTAGGCATAGCGA -ACGGAACACGTTTAGGCACACAGA -ACGGAACACGTTTAGGCAGCAAGA -ACGGAACACGTTTAGGCAGGTTGA -ACGGAACACGTTTAGGCATCCGAT -ACGGAACACGTTTAGGCATGGCAT -ACGGAACACGTTTAGGCACGAGAT -ACGGAACACGTTTAGGCATACCAC -ACGGAACACGTTTAGGCACAGAAC -ACGGAACACGTTTAGGCAGTCTAC -ACGGAACACGTTTAGGCAACGTAC -ACGGAACACGTTTAGGCAAGTGAC -ACGGAACACGTTTAGGCACTGTAG -ACGGAACACGTTTAGGCACCTAAG -ACGGAACACGTTTAGGCAGTTCAG -ACGGAACACGTTTAGGCAGCATAG -ACGGAACACGTTTAGGCAGACAAG -ACGGAACACGTTTAGGCAAAGCAG -ACGGAACACGTTTAGGCACGTCAA -ACGGAACACGTTTAGGCAGCTGAA -ACGGAACACGTTTAGGCAAGTACG -ACGGAACACGTTTAGGCAATCCGA -ACGGAACACGTTTAGGCAATGGGA -ACGGAACACGTTTAGGCAGTGCAA -ACGGAACACGTTTAGGCAGAGGAA -ACGGAACACGTTTAGGCACAGGTA -ACGGAACACGTTTAGGCAGACTCT -ACGGAACACGTTTAGGCAAGTCCT -ACGGAACACGTTTAGGCATAAGCC -ACGGAACACGTTTAGGCAATAGCC -ACGGAACACGTTTAGGCATAACCG -ACGGAACACGTTTAGGCAATGCCA -ACGGAACACGTTAAGGACGGAAAC -ACGGAACACGTTAAGGACAACACC -ACGGAACACGTTAAGGACATCGAG -ACGGAACACGTTAAGGACCTCCTT -ACGGAACACGTTAAGGACCCTGTT -ACGGAACACGTTAAGGACCGGTTT -ACGGAACACGTTAAGGACGTGGTT -ACGGAACACGTTAAGGACGCCTTT -ACGGAACACGTTAAGGACGGTCTT -ACGGAACACGTTAAGGACACGCTT -ACGGAACACGTTAAGGACAGCGTT -ACGGAACACGTTAAGGACTTCGTC -ACGGAACACGTTAAGGACTCTCTC -ACGGAACACGTTAAGGACTGGATC -ACGGAACACGTTAAGGACCACTTC -ACGGAACACGTTAAGGACGTACTC -ACGGAACACGTTAAGGACGATGTC -ACGGAACACGTTAAGGACACAGTC -ACGGAACACGTTAAGGACTTGCTG -ACGGAACACGTTAAGGACTCCATG -ACGGAACACGTTAAGGACTGTGTG -ACGGAACACGTTAAGGACCTAGTG -ACGGAACACGTTAAGGACCATCTG -ACGGAACACGTTAAGGACGAGTTG -ACGGAACACGTTAAGGACAGACTG -ACGGAACACGTTAAGGACTCGGTA -ACGGAACACGTTAAGGACTGCCTA -ACGGAACACGTTAAGGACCCACTA -ACGGAACACGTTAAGGACGGAGTA -ACGGAACACGTTAAGGACTCGTCT -ACGGAACACGTTAAGGACTGCACT -ACGGAACACGTTAAGGACCTGACT -ACGGAACACGTTAAGGACCAACCT -ACGGAACACGTTAAGGACGCTACT -ACGGAACACGTTAAGGACGGATCT -ACGGAACACGTTAAGGACAAGGCT -ACGGAACACGTTAAGGACTCAACC -ACGGAACACGTTAAGGACTGTTCC -ACGGAACACGTTAAGGACATTCCC -ACGGAACACGTTAAGGACTTCTCG -ACGGAACACGTTAAGGACTAGACG -ACGGAACACGTTAAGGACGTAACG -ACGGAACACGTTAAGGACACTTCG -ACGGAACACGTTAAGGACTACGCA -ACGGAACACGTTAAGGACCTTGCA -ACGGAACACGTTAAGGACCGAACA -ACGGAACACGTTAAGGACCAGTCA -ACGGAACACGTTAAGGACGATCCA -ACGGAACACGTTAAGGACACGACA -ACGGAACACGTTAAGGACAGCTCA -ACGGAACACGTTAAGGACTCACGT -ACGGAACACGTTAAGGACCGTAGT -ACGGAACACGTTAAGGACGTCAGT -ACGGAACACGTTAAGGACGAAGGT -ACGGAACACGTTAAGGACAACCGT -ACGGAACACGTTAAGGACTTGTGC -ACGGAACACGTTAAGGACCTAAGC -ACGGAACACGTTAAGGACACTAGC -ACGGAACACGTTAAGGACAGATGC -ACGGAACACGTTAAGGACTGAAGG -ACGGAACACGTTAAGGACCAATGG -ACGGAACACGTTAAGGACATGAGG -ACGGAACACGTTAAGGACAATGGG -ACGGAACACGTTAAGGACTCCTGA -ACGGAACACGTTAAGGACTAGCGA -ACGGAACACGTTAAGGACCACAGA -ACGGAACACGTTAAGGACGCAAGA -ACGGAACACGTTAAGGACGGTTGA -ACGGAACACGTTAAGGACTCCGAT -ACGGAACACGTTAAGGACTGGCAT -ACGGAACACGTTAAGGACCGAGAT -ACGGAACACGTTAAGGACTACCAC -ACGGAACACGTTAAGGACCAGAAC -ACGGAACACGTTAAGGACGTCTAC -ACGGAACACGTTAAGGACACGTAC -ACGGAACACGTTAAGGACAGTGAC -ACGGAACACGTTAAGGACCTGTAG -ACGGAACACGTTAAGGACCCTAAG -ACGGAACACGTTAAGGACGTTCAG -ACGGAACACGTTAAGGACGCATAG -ACGGAACACGTTAAGGACGACAAG -ACGGAACACGTTAAGGACAAGCAG -ACGGAACACGTTAAGGACCGTCAA -ACGGAACACGTTAAGGACGCTGAA -ACGGAACACGTTAAGGACAGTACG -ACGGAACACGTTAAGGACATCCGA -ACGGAACACGTTAAGGACATGGGA -ACGGAACACGTTAAGGACGTGCAA -ACGGAACACGTTAAGGACGAGGAA -ACGGAACACGTTAAGGACCAGGTA -ACGGAACACGTTAAGGACGACTCT -ACGGAACACGTTAAGGACAGTCCT -ACGGAACACGTTAAGGACTAAGCC -ACGGAACACGTTAAGGACATAGCC -ACGGAACACGTTAAGGACTAACCG -ACGGAACACGTTAAGGACATGCCA -ACGGAACACGTTCAGAAGGGAAAC -ACGGAACACGTTCAGAAGAACACC -ACGGAACACGTTCAGAAGATCGAG -ACGGAACACGTTCAGAAGCTCCTT -ACGGAACACGTTCAGAAGCCTGTT -ACGGAACACGTTCAGAAGCGGTTT -ACGGAACACGTTCAGAAGGTGGTT -ACGGAACACGTTCAGAAGGCCTTT -ACGGAACACGTTCAGAAGGGTCTT -ACGGAACACGTTCAGAAGACGCTT -ACGGAACACGTTCAGAAGAGCGTT -ACGGAACACGTTCAGAAGTTCGTC -ACGGAACACGTTCAGAAGTCTCTC -ACGGAACACGTTCAGAAGTGGATC -ACGGAACACGTTCAGAAGCACTTC -ACGGAACACGTTCAGAAGGTACTC -ACGGAACACGTTCAGAAGGATGTC -ACGGAACACGTTCAGAAGACAGTC -ACGGAACACGTTCAGAAGTTGCTG -ACGGAACACGTTCAGAAGTCCATG -ACGGAACACGTTCAGAAGTGTGTG -ACGGAACACGTTCAGAAGCTAGTG -ACGGAACACGTTCAGAAGCATCTG -ACGGAACACGTTCAGAAGGAGTTG -ACGGAACACGTTCAGAAGAGACTG -ACGGAACACGTTCAGAAGTCGGTA -ACGGAACACGTTCAGAAGTGCCTA -ACGGAACACGTTCAGAAGCCACTA -ACGGAACACGTTCAGAAGGGAGTA -ACGGAACACGTTCAGAAGTCGTCT -ACGGAACACGTTCAGAAGTGCACT -ACGGAACACGTTCAGAAGCTGACT -ACGGAACACGTTCAGAAGCAACCT -ACGGAACACGTTCAGAAGGCTACT -ACGGAACACGTTCAGAAGGGATCT -ACGGAACACGTTCAGAAGAAGGCT -ACGGAACACGTTCAGAAGTCAACC -ACGGAACACGTTCAGAAGTGTTCC -ACGGAACACGTTCAGAAGATTCCC -ACGGAACACGTTCAGAAGTTCTCG -ACGGAACACGTTCAGAAGTAGACG -ACGGAACACGTTCAGAAGGTAACG -ACGGAACACGTTCAGAAGACTTCG -ACGGAACACGTTCAGAAGTACGCA -ACGGAACACGTTCAGAAGCTTGCA -ACGGAACACGTTCAGAAGCGAACA -ACGGAACACGTTCAGAAGCAGTCA -ACGGAACACGTTCAGAAGGATCCA -ACGGAACACGTTCAGAAGACGACA -ACGGAACACGTTCAGAAGAGCTCA -ACGGAACACGTTCAGAAGTCACGT -ACGGAACACGTTCAGAAGCGTAGT -ACGGAACACGTTCAGAAGGTCAGT -ACGGAACACGTTCAGAAGGAAGGT -ACGGAACACGTTCAGAAGAACCGT -ACGGAACACGTTCAGAAGTTGTGC -ACGGAACACGTTCAGAAGCTAAGC -ACGGAACACGTTCAGAAGACTAGC -ACGGAACACGTTCAGAAGAGATGC -ACGGAACACGTTCAGAAGTGAAGG -ACGGAACACGTTCAGAAGCAATGG -ACGGAACACGTTCAGAAGATGAGG -ACGGAACACGTTCAGAAGAATGGG -ACGGAACACGTTCAGAAGTCCTGA -ACGGAACACGTTCAGAAGTAGCGA -ACGGAACACGTTCAGAAGCACAGA -ACGGAACACGTTCAGAAGGCAAGA -ACGGAACACGTTCAGAAGGGTTGA -ACGGAACACGTTCAGAAGTCCGAT -ACGGAACACGTTCAGAAGTGGCAT -ACGGAACACGTTCAGAAGCGAGAT -ACGGAACACGTTCAGAAGTACCAC -ACGGAACACGTTCAGAAGCAGAAC -ACGGAACACGTTCAGAAGGTCTAC -ACGGAACACGTTCAGAAGACGTAC -ACGGAACACGTTCAGAAGAGTGAC -ACGGAACACGTTCAGAAGCTGTAG -ACGGAACACGTTCAGAAGCCTAAG -ACGGAACACGTTCAGAAGGTTCAG -ACGGAACACGTTCAGAAGGCATAG -ACGGAACACGTTCAGAAGGACAAG -ACGGAACACGTTCAGAAGAAGCAG -ACGGAACACGTTCAGAAGCGTCAA -ACGGAACACGTTCAGAAGGCTGAA -ACGGAACACGTTCAGAAGAGTACG -ACGGAACACGTTCAGAAGATCCGA -ACGGAACACGTTCAGAAGATGGGA -ACGGAACACGTTCAGAAGGTGCAA -ACGGAACACGTTCAGAAGGAGGAA -ACGGAACACGTTCAGAAGCAGGTA -ACGGAACACGTTCAGAAGGACTCT -ACGGAACACGTTCAGAAGAGTCCT -ACGGAACACGTTCAGAAGTAAGCC -ACGGAACACGTTCAGAAGATAGCC -ACGGAACACGTTCAGAAGTAACCG -ACGGAACACGTTCAGAAGATGCCA -ACGGAACACGTTCAACGTGGAAAC -ACGGAACACGTTCAACGTAACACC -ACGGAACACGTTCAACGTATCGAG -ACGGAACACGTTCAACGTCTCCTT -ACGGAACACGTTCAACGTCCTGTT -ACGGAACACGTTCAACGTCGGTTT -ACGGAACACGTTCAACGTGTGGTT -ACGGAACACGTTCAACGTGCCTTT -ACGGAACACGTTCAACGTGGTCTT -ACGGAACACGTTCAACGTACGCTT -ACGGAACACGTTCAACGTAGCGTT -ACGGAACACGTTCAACGTTTCGTC -ACGGAACACGTTCAACGTTCTCTC -ACGGAACACGTTCAACGTTGGATC -ACGGAACACGTTCAACGTCACTTC -ACGGAACACGTTCAACGTGTACTC -ACGGAACACGTTCAACGTGATGTC -ACGGAACACGTTCAACGTACAGTC -ACGGAACACGTTCAACGTTTGCTG -ACGGAACACGTTCAACGTTCCATG -ACGGAACACGTTCAACGTTGTGTG -ACGGAACACGTTCAACGTCTAGTG -ACGGAACACGTTCAACGTCATCTG -ACGGAACACGTTCAACGTGAGTTG -ACGGAACACGTTCAACGTAGACTG -ACGGAACACGTTCAACGTTCGGTA -ACGGAACACGTTCAACGTTGCCTA -ACGGAACACGTTCAACGTCCACTA -ACGGAACACGTTCAACGTGGAGTA -ACGGAACACGTTCAACGTTCGTCT -ACGGAACACGTTCAACGTTGCACT -ACGGAACACGTTCAACGTCTGACT -ACGGAACACGTTCAACGTCAACCT -ACGGAACACGTTCAACGTGCTACT -ACGGAACACGTTCAACGTGGATCT -ACGGAACACGTTCAACGTAAGGCT -ACGGAACACGTTCAACGTTCAACC -ACGGAACACGTTCAACGTTGTTCC -ACGGAACACGTTCAACGTATTCCC -ACGGAACACGTTCAACGTTTCTCG -ACGGAACACGTTCAACGTTAGACG -ACGGAACACGTTCAACGTGTAACG -ACGGAACACGTTCAACGTACTTCG -ACGGAACACGTTCAACGTTACGCA -ACGGAACACGTTCAACGTCTTGCA -ACGGAACACGTTCAACGTCGAACA -ACGGAACACGTTCAACGTCAGTCA -ACGGAACACGTTCAACGTGATCCA -ACGGAACACGTTCAACGTACGACA -ACGGAACACGTTCAACGTAGCTCA -ACGGAACACGTTCAACGTTCACGT -ACGGAACACGTTCAACGTCGTAGT -ACGGAACACGTTCAACGTGTCAGT -ACGGAACACGTTCAACGTGAAGGT -ACGGAACACGTTCAACGTAACCGT -ACGGAACACGTTCAACGTTTGTGC -ACGGAACACGTTCAACGTCTAAGC -ACGGAACACGTTCAACGTACTAGC -ACGGAACACGTTCAACGTAGATGC -ACGGAACACGTTCAACGTTGAAGG -ACGGAACACGTTCAACGTCAATGG -ACGGAACACGTTCAACGTATGAGG -ACGGAACACGTTCAACGTAATGGG -ACGGAACACGTTCAACGTTCCTGA -ACGGAACACGTTCAACGTTAGCGA -ACGGAACACGTTCAACGTCACAGA -ACGGAACACGTTCAACGTGCAAGA -ACGGAACACGTTCAACGTGGTTGA -ACGGAACACGTTCAACGTTCCGAT -ACGGAACACGTTCAACGTTGGCAT -ACGGAACACGTTCAACGTCGAGAT -ACGGAACACGTTCAACGTTACCAC -ACGGAACACGTTCAACGTCAGAAC -ACGGAACACGTTCAACGTGTCTAC -ACGGAACACGTTCAACGTACGTAC -ACGGAACACGTTCAACGTAGTGAC -ACGGAACACGTTCAACGTCTGTAG -ACGGAACACGTTCAACGTCCTAAG -ACGGAACACGTTCAACGTGTTCAG -ACGGAACACGTTCAACGTGCATAG -ACGGAACACGTTCAACGTGACAAG -ACGGAACACGTTCAACGTAAGCAG -ACGGAACACGTTCAACGTCGTCAA -ACGGAACACGTTCAACGTGCTGAA -ACGGAACACGTTCAACGTAGTACG -ACGGAACACGTTCAACGTATCCGA -ACGGAACACGTTCAACGTATGGGA -ACGGAACACGTTCAACGTGTGCAA -ACGGAACACGTTCAACGTGAGGAA -ACGGAACACGTTCAACGTCAGGTA -ACGGAACACGTTCAACGTGACTCT -ACGGAACACGTTCAACGTAGTCCT -ACGGAACACGTTCAACGTTAAGCC -ACGGAACACGTTCAACGTATAGCC -ACGGAACACGTTCAACGTTAACCG -ACGGAACACGTTCAACGTATGCCA -ACGGAACACGTTGAAGCTGGAAAC -ACGGAACACGTTGAAGCTAACACC -ACGGAACACGTTGAAGCTATCGAG -ACGGAACACGTTGAAGCTCTCCTT -ACGGAACACGTTGAAGCTCCTGTT -ACGGAACACGTTGAAGCTCGGTTT -ACGGAACACGTTGAAGCTGTGGTT -ACGGAACACGTTGAAGCTGCCTTT -ACGGAACACGTTGAAGCTGGTCTT -ACGGAACACGTTGAAGCTACGCTT -ACGGAACACGTTGAAGCTAGCGTT -ACGGAACACGTTGAAGCTTTCGTC -ACGGAACACGTTGAAGCTTCTCTC -ACGGAACACGTTGAAGCTTGGATC -ACGGAACACGTTGAAGCTCACTTC -ACGGAACACGTTGAAGCTGTACTC -ACGGAACACGTTGAAGCTGATGTC -ACGGAACACGTTGAAGCTACAGTC -ACGGAACACGTTGAAGCTTTGCTG -ACGGAACACGTTGAAGCTTCCATG -ACGGAACACGTTGAAGCTTGTGTG -ACGGAACACGTTGAAGCTCTAGTG -ACGGAACACGTTGAAGCTCATCTG -ACGGAACACGTTGAAGCTGAGTTG -ACGGAACACGTTGAAGCTAGACTG -ACGGAACACGTTGAAGCTTCGGTA -ACGGAACACGTTGAAGCTTGCCTA -ACGGAACACGTTGAAGCTCCACTA -ACGGAACACGTTGAAGCTGGAGTA -ACGGAACACGTTGAAGCTTCGTCT -ACGGAACACGTTGAAGCTTGCACT -ACGGAACACGTTGAAGCTCTGACT -ACGGAACACGTTGAAGCTCAACCT -ACGGAACACGTTGAAGCTGCTACT -ACGGAACACGTTGAAGCTGGATCT -ACGGAACACGTTGAAGCTAAGGCT -ACGGAACACGTTGAAGCTTCAACC -ACGGAACACGTTGAAGCTTGTTCC -ACGGAACACGTTGAAGCTATTCCC -ACGGAACACGTTGAAGCTTTCTCG -ACGGAACACGTTGAAGCTTAGACG -ACGGAACACGTTGAAGCTGTAACG -ACGGAACACGTTGAAGCTACTTCG -ACGGAACACGTTGAAGCTTACGCA -ACGGAACACGTTGAAGCTCTTGCA -ACGGAACACGTTGAAGCTCGAACA -ACGGAACACGTTGAAGCTCAGTCA -ACGGAACACGTTGAAGCTGATCCA -ACGGAACACGTTGAAGCTACGACA -ACGGAACACGTTGAAGCTAGCTCA -ACGGAACACGTTGAAGCTTCACGT -ACGGAACACGTTGAAGCTCGTAGT -ACGGAACACGTTGAAGCTGTCAGT -ACGGAACACGTTGAAGCTGAAGGT -ACGGAACACGTTGAAGCTAACCGT -ACGGAACACGTTGAAGCTTTGTGC -ACGGAACACGTTGAAGCTCTAAGC -ACGGAACACGTTGAAGCTACTAGC -ACGGAACACGTTGAAGCTAGATGC -ACGGAACACGTTGAAGCTTGAAGG -ACGGAACACGTTGAAGCTCAATGG -ACGGAACACGTTGAAGCTATGAGG -ACGGAACACGTTGAAGCTAATGGG -ACGGAACACGTTGAAGCTTCCTGA -ACGGAACACGTTGAAGCTTAGCGA -ACGGAACACGTTGAAGCTCACAGA -ACGGAACACGTTGAAGCTGCAAGA -ACGGAACACGTTGAAGCTGGTTGA -ACGGAACACGTTGAAGCTTCCGAT -ACGGAACACGTTGAAGCTTGGCAT -ACGGAACACGTTGAAGCTCGAGAT -ACGGAACACGTTGAAGCTTACCAC -ACGGAACACGTTGAAGCTCAGAAC -ACGGAACACGTTGAAGCTGTCTAC -ACGGAACACGTTGAAGCTACGTAC -ACGGAACACGTTGAAGCTAGTGAC -ACGGAACACGTTGAAGCTCTGTAG -ACGGAACACGTTGAAGCTCCTAAG -ACGGAACACGTTGAAGCTGTTCAG -ACGGAACACGTTGAAGCTGCATAG -ACGGAACACGTTGAAGCTGACAAG -ACGGAACACGTTGAAGCTAAGCAG -ACGGAACACGTTGAAGCTCGTCAA -ACGGAACACGTTGAAGCTGCTGAA -ACGGAACACGTTGAAGCTAGTACG -ACGGAACACGTTGAAGCTATCCGA -ACGGAACACGTTGAAGCTATGGGA -ACGGAACACGTTGAAGCTGTGCAA -ACGGAACACGTTGAAGCTGAGGAA -ACGGAACACGTTGAAGCTCAGGTA -ACGGAACACGTTGAAGCTGACTCT -ACGGAACACGTTGAAGCTAGTCCT -ACGGAACACGTTGAAGCTTAAGCC -ACGGAACACGTTGAAGCTATAGCC -ACGGAACACGTTGAAGCTTAACCG -ACGGAACACGTTGAAGCTATGCCA -ACGGAACACGTTACGAGTGGAAAC -ACGGAACACGTTACGAGTAACACC -ACGGAACACGTTACGAGTATCGAG -ACGGAACACGTTACGAGTCTCCTT -ACGGAACACGTTACGAGTCCTGTT -ACGGAACACGTTACGAGTCGGTTT -ACGGAACACGTTACGAGTGTGGTT -ACGGAACACGTTACGAGTGCCTTT -ACGGAACACGTTACGAGTGGTCTT -ACGGAACACGTTACGAGTACGCTT -ACGGAACACGTTACGAGTAGCGTT -ACGGAACACGTTACGAGTTTCGTC -ACGGAACACGTTACGAGTTCTCTC -ACGGAACACGTTACGAGTTGGATC -ACGGAACACGTTACGAGTCACTTC -ACGGAACACGTTACGAGTGTACTC -ACGGAACACGTTACGAGTGATGTC -ACGGAACACGTTACGAGTACAGTC -ACGGAACACGTTACGAGTTTGCTG -ACGGAACACGTTACGAGTTCCATG -ACGGAACACGTTACGAGTTGTGTG -ACGGAACACGTTACGAGTCTAGTG -ACGGAACACGTTACGAGTCATCTG -ACGGAACACGTTACGAGTGAGTTG -ACGGAACACGTTACGAGTAGACTG -ACGGAACACGTTACGAGTTCGGTA -ACGGAACACGTTACGAGTTGCCTA -ACGGAACACGTTACGAGTCCACTA -ACGGAACACGTTACGAGTGGAGTA -ACGGAACACGTTACGAGTTCGTCT -ACGGAACACGTTACGAGTTGCACT -ACGGAACACGTTACGAGTCTGACT -ACGGAACACGTTACGAGTCAACCT -ACGGAACACGTTACGAGTGCTACT -ACGGAACACGTTACGAGTGGATCT -ACGGAACACGTTACGAGTAAGGCT -ACGGAACACGTTACGAGTTCAACC -ACGGAACACGTTACGAGTTGTTCC -ACGGAACACGTTACGAGTATTCCC -ACGGAACACGTTACGAGTTTCTCG -ACGGAACACGTTACGAGTTAGACG -ACGGAACACGTTACGAGTGTAACG -ACGGAACACGTTACGAGTACTTCG -ACGGAACACGTTACGAGTTACGCA -ACGGAACACGTTACGAGTCTTGCA -ACGGAACACGTTACGAGTCGAACA -ACGGAACACGTTACGAGTCAGTCA -ACGGAACACGTTACGAGTGATCCA -ACGGAACACGTTACGAGTACGACA -ACGGAACACGTTACGAGTAGCTCA -ACGGAACACGTTACGAGTTCACGT -ACGGAACACGTTACGAGTCGTAGT -ACGGAACACGTTACGAGTGTCAGT -ACGGAACACGTTACGAGTGAAGGT -ACGGAACACGTTACGAGTAACCGT -ACGGAACACGTTACGAGTTTGTGC -ACGGAACACGTTACGAGTCTAAGC -ACGGAACACGTTACGAGTACTAGC -ACGGAACACGTTACGAGTAGATGC -ACGGAACACGTTACGAGTTGAAGG -ACGGAACACGTTACGAGTCAATGG -ACGGAACACGTTACGAGTATGAGG -ACGGAACACGTTACGAGTAATGGG -ACGGAACACGTTACGAGTTCCTGA -ACGGAACACGTTACGAGTTAGCGA -ACGGAACACGTTACGAGTCACAGA -ACGGAACACGTTACGAGTGCAAGA -ACGGAACACGTTACGAGTGGTTGA -ACGGAACACGTTACGAGTTCCGAT -ACGGAACACGTTACGAGTTGGCAT -ACGGAACACGTTACGAGTCGAGAT -ACGGAACACGTTACGAGTTACCAC -ACGGAACACGTTACGAGTCAGAAC -ACGGAACACGTTACGAGTGTCTAC -ACGGAACACGTTACGAGTACGTAC -ACGGAACACGTTACGAGTAGTGAC -ACGGAACACGTTACGAGTCTGTAG -ACGGAACACGTTACGAGTCCTAAG -ACGGAACACGTTACGAGTGTTCAG -ACGGAACACGTTACGAGTGCATAG -ACGGAACACGTTACGAGTGACAAG -ACGGAACACGTTACGAGTAAGCAG -ACGGAACACGTTACGAGTCGTCAA -ACGGAACACGTTACGAGTGCTGAA -ACGGAACACGTTACGAGTAGTACG -ACGGAACACGTTACGAGTATCCGA -ACGGAACACGTTACGAGTATGGGA -ACGGAACACGTTACGAGTGTGCAA -ACGGAACACGTTACGAGTGAGGAA -ACGGAACACGTTACGAGTCAGGTA -ACGGAACACGTTACGAGTGACTCT -ACGGAACACGTTACGAGTAGTCCT -ACGGAACACGTTACGAGTTAAGCC -ACGGAACACGTTACGAGTATAGCC -ACGGAACACGTTACGAGTTAACCG -ACGGAACACGTTACGAGTATGCCA -ACGGAACACGTTCGAATCGGAAAC -ACGGAACACGTTCGAATCAACACC -ACGGAACACGTTCGAATCATCGAG -ACGGAACACGTTCGAATCCTCCTT -ACGGAACACGTTCGAATCCCTGTT -ACGGAACACGTTCGAATCCGGTTT -ACGGAACACGTTCGAATCGTGGTT -ACGGAACACGTTCGAATCGCCTTT -ACGGAACACGTTCGAATCGGTCTT -ACGGAACACGTTCGAATCACGCTT -ACGGAACACGTTCGAATCAGCGTT -ACGGAACACGTTCGAATCTTCGTC -ACGGAACACGTTCGAATCTCTCTC -ACGGAACACGTTCGAATCTGGATC -ACGGAACACGTTCGAATCCACTTC -ACGGAACACGTTCGAATCGTACTC -ACGGAACACGTTCGAATCGATGTC -ACGGAACACGTTCGAATCACAGTC -ACGGAACACGTTCGAATCTTGCTG -ACGGAACACGTTCGAATCTCCATG -ACGGAACACGTTCGAATCTGTGTG -ACGGAACACGTTCGAATCCTAGTG -ACGGAACACGTTCGAATCCATCTG -ACGGAACACGTTCGAATCGAGTTG -ACGGAACACGTTCGAATCAGACTG -ACGGAACACGTTCGAATCTCGGTA -ACGGAACACGTTCGAATCTGCCTA -ACGGAACACGTTCGAATCCCACTA -ACGGAACACGTTCGAATCGGAGTA -ACGGAACACGTTCGAATCTCGTCT -ACGGAACACGTTCGAATCTGCACT -ACGGAACACGTTCGAATCCTGACT -ACGGAACACGTTCGAATCCAACCT -ACGGAACACGTTCGAATCGCTACT -ACGGAACACGTTCGAATCGGATCT -ACGGAACACGTTCGAATCAAGGCT -ACGGAACACGTTCGAATCTCAACC -ACGGAACACGTTCGAATCTGTTCC -ACGGAACACGTTCGAATCATTCCC -ACGGAACACGTTCGAATCTTCTCG -ACGGAACACGTTCGAATCTAGACG -ACGGAACACGTTCGAATCGTAACG -ACGGAACACGTTCGAATCACTTCG -ACGGAACACGTTCGAATCTACGCA -ACGGAACACGTTCGAATCCTTGCA -ACGGAACACGTTCGAATCCGAACA -ACGGAACACGTTCGAATCCAGTCA -ACGGAACACGTTCGAATCGATCCA -ACGGAACACGTTCGAATCACGACA -ACGGAACACGTTCGAATCAGCTCA -ACGGAACACGTTCGAATCTCACGT -ACGGAACACGTTCGAATCCGTAGT -ACGGAACACGTTCGAATCGTCAGT -ACGGAACACGTTCGAATCGAAGGT -ACGGAACACGTTCGAATCAACCGT -ACGGAACACGTTCGAATCTTGTGC -ACGGAACACGTTCGAATCCTAAGC -ACGGAACACGTTCGAATCACTAGC -ACGGAACACGTTCGAATCAGATGC -ACGGAACACGTTCGAATCTGAAGG -ACGGAACACGTTCGAATCCAATGG -ACGGAACACGTTCGAATCATGAGG -ACGGAACACGTTCGAATCAATGGG -ACGGAACACGTTCGAATCTCCTGA -ACGGAACACGTTCGAATCTAGCGA -ACGGAACACGTTCGAATCCACAGA -ACGGAACACGTTCGAATCGCAAGA -ACGGAACACGTTCGAATCGGTTGA -ACGGAACACGTTCGAATCTCCGAT -ACGGAACACGTTCGAATCTGGCAT -ACGGAACACGTTCGAATCCGAGAT -ACGGAACACGTTCGAATCTACCAC -ACGGAACACGTTCGAATCCAGAAC -ACGGAACACGTTCGAATCGTCTAC -ACGGAACACGTTCGAATCACGTAC -ACGGAACACGTTCGAATCAGTGAC -ACGGAACACGTTCGAATCCTGTAG -ACGGAACACGTTCGAATCCCTAAG -ACGGAACACGTTCGAATCGTTCAG -ACGGAACACGTTCGAATCGCATAG -ACGGAACACGTTCGAATCGACAAG -ACGGAACACGTTCGAATCAAGCAG -ACGGAACACGTTCGAATCCGTCAA -ACGGAACACGTTCGAATCGCTGAA -ACGGAACACGTTCGAATCAGTACG -ACGGAACACGTTCGAATCATCCGA -ACGGAACACGTTCGAATCATGGGA -ACGGAACACGTTCGAATCGTGCAA -ACGGAACACGTTCGAATCGAGGAA -ACGGAACACGTTCGAATCCAGGTA -ACGGAACACGTTCGAATCGACTCT -ACGGAACACGTTCGAATCAGTCCT -ACGGAACACGTTCGAATCTAAGCC -ACGGAACACGTTCGAATCATAGCC -ACGGAACACGTTCGAATCTAACCG -ACGGAACACGTTCGAATCATGCCA -ACGGAACACGTTGGAATGGGAAAC -ACGGAACACGTTGGAATGAACACC -ACGGAACACGTTGGAATGATCGAG -ACGGAACACGTTGGAATGCTCCTT -ACGGAACACGTTGGAATGCCTGTT -ACGGAACACGTTGGAATGCGGTTT -ACGGAACACGTTGGAATGGTGGTT -ACGGAACACGTTGGAATGGCCTTT -ACGGAACACGTTGGAATGGGTCTT -ACGGAACACGTTGGAATGACGCTT -ACGGAACACGTTGGAATGAGCGTT -ACGGAACACGTTGGAATGTTCGTC -ACGGAACACGTTGGAATGTCTCTC -ACGGAACACGTTGGAATGTGGATC -ACGGAACACGTTGGAATGCACTTC -ACGGAACACGTTGGAATGGTACTC -ACGGAACACGTTGGAATGGATGTC -ACGGAACACGTTGGAATGACAGTC -ACGGAACACGTTGGAATGTTGCTG -ACGGAACACGTTGGAATGTCCATG -ACGGAACACGTTGGAATGTGTGTG -ACGGAACACGTTGGAATGCTAGTG -ACGGAACACGTTGGAATGCATCTG -ACGGAACACGTTGGAATGGAGTTG -ACGGAACACGTTGGAATGAGACTG -ACGGAACACGTTGGAATGTCGGTA -ACGGAACACGTTGGAATGTGCCTA -ACGGAACACGTTGGAATGCCACTA -ACGGAACACGTTGGAATGGGAGTA -ACGGAACACGTTGGAATGTCGTCT -ACGGAACACGTTGGAATGTGCACT -ACGGAACACGTTGGAATGCTGACT -ACGGAACACGTTGGAATGCAACCT -ACGGAACACGTTGGAATGGCTACT -ACGGAACACGTTGGAATGGGATCT -ACGGAACACGTTGGAATGAAGGCT -ACGGAACACGTTGGAATGTCAACC -ACGGAACACGTTGGAATGTGTTCC -ACGGAACACGTTGGAATGATTCCC -ACGGAACACGTTGGAATGTTCTCG -ACGGAACACGTTGGAATGTAGACG -ACGGAACACGTTGGAATGGTAACG -ACGGAACACGTTGGAATGACTTCG -ACGGAACACGTTGGAATGTACGCA -ACGGAACACGTTGGAATGCTTGCA -ACGGAACACGTTGGAATGCGAACA -ACGGAACACGTTGGAATGCAGTCA -ACGGAACACGTTGGAATGGATCCA -ACGGAACACGTTGGAATGACGACA -ACGGAACACGTTGGAATGAGCTCA -ACGGAACACGTTGGAATGTCACGT -ACGGAACACGTTGGAATGCGTAGT -ACGGAACACGTTGGAATGGTCAGT -ACGGAACACGTTGGAATGGAAGGT -ACGGAACACGTTGGAATGAACCGT -ACGGAACACGTTGGAATGTTGTGC -ACGGAACACGTTGGAATGCTAAGC -ACGGAACACGTTGGAATGACTAGC -ACGGAACACGTTGGAATGAGATGC -ACGGAACACGTTGGAATGTGAAGG -ACGGAACACGTTGGAATGCAATGG -ACGGAACACGTTGGAATGATGAGG -ACGGAACACGTTGGAATGAATGGG -ACGGAACACGTTGGAATGTCCTGA -ACGGAACACGTTGGAATGTAGCGA -ACGGAACACGTTGGAATGCACAGA -ACGGAACACGTTGGAATGGCAAGA -ACGGAACACGTTGGAATGGGTTGA -ACGGAACACGTTGGAATGTCCGAT -ACGGAACACGTTGGAATGTGGCAT -ACGGAACACGTTGGAATGCGAGAT -ACGGAACACGTTGGAATGTACCAC -ACGGAACACGTTGGAATGCAGAAC -ACGGAACACGTTGGAATGGTCTAC -ACGGAACACGTTGGAATGACGTAC -ACGGAACACGTTGGAATGAGTGAC -ACGGAACACGTTGGAATGCTGTAG -ACGGAACACGTTGGAATGCCTAAG -ACGGAACACGTTGGAATGGTTCAG -ACGGAACACGTTGGAATGGCATAG -ACGGAACACGTTGGAATGGACAAG -ACGGAACACGTTGGAATGAAGCAG -ACGGAACACGTTGGAATGCGTCAA -ACGGAACACGTTGGAATGGCTGAA -ACGGAACACGTTGGAATGAGTACG -ACGGAACACGTTGGAATGATCCGA -ACGGAACACGTTGGAATGATGGGA -ACGGAACACGTTGGAATGGTGCAA -ACGGAACACGTTGGAATGGAGGAA -ACGGAACACGTTGGAATGCAGGTA -ACGGAACACGTTGGAATGGACTCT -ACGGAACACGTTGGAATGAGTCCT -ACGGAACACGTTGGAATGTAAGCC -ACGGAACACGTTGGAATGATAGCC -ACGGAACACGTTGGAATGTAACCG -ACGGAACACGTTGGAATGATGCCA -ACGGAACACGTTCAAGTGGGAAAC -ACGGAACACGTTCAAGTGAACACC -ACGGAACACGTTCAAGTGATCGAG -ACGGAACACGTTCAAGTGCTCCTT -ACGGAACACGTTCAAGTGCCTGTT -ACGGAACACGTTCAAGTGCGGTTT -ACGGAACACGTTCAAGTGGTGGTT -ACGGAACACGTTCAAGTGGCCTTT -ACGGAACACGTTCAAGTGGGTCTT -ACGGAACACGTTCAAGTGACGCTT -ACGGAACACGTTCAAGTGAGCGTT -ACGGAACACGTTCAAGTGTTCGTC -ACGGAACACGTTCAAGTGTCTCTC -ACGGAACACGTTCAAGTGTGGATC -ACGGAACACGTTCAAGTGCACTTC -ACGGAACACGTTCAAGTGGTACTC -ACGGAACACGTTCAAGTGGATGTC -ACGGAACACGTTCAAGTGACAGTC -ACGGAACACGTTCAAGTGTTGCTG -ACGGAACACGTTCAAGTGTCCATG -ACGGAACACGTTCAAGTGTGTGTG -ACGGAACACGTTCAAGTGCTAGTG -ACGGAACACGTTCAAGTGCATCTG -ACGGAACACGTTCAAGTGGAGTTG -ACGGAACACGTTCAAGTGAGACTG -ACGGAACACGTTCAAGTGTCGGTA -ACGGAACACGTTCAAGTGTGCCTA -ACGGAACACGTTCAAGTGCCACTA -ACGGAACACGTTCAAGTGGGAGTA -ACGGAACACGTTCAAGTGTCGTCT -ACGGAACACGTTCAAGTGTGCACT -ACGGAACACGTTCAAGTGCTGACT -ACGGAACACGTTCAAGTGCAACCT -ACGGAACACGTTCAAGTGGCTACT -ACGGAACACGTTCAAGTGGGATCT -ACGGAACACGTTCAAGTGAAGGCT -ACGGAACACGTTCAAGTGTCAACC -ACGGAACACGTTCAAGTGTGTTCC -ACGGAACACGTTCAAGTGATTCCC -ACGGAACACGTTCAAGTGTTCTCG -ACGGAACACGTTCAAGTGTAGACG -ACGGAACACGTTCAAGTGGTAACG -ACGGAACACGTTCAAGTGACTTCG -ACGGAACACGTTCAAGTGTACGCA -ACGGAACACGTTCAAGTGCTTGCA -ACGGAACACGTTCAAGTGCGAACA -ACGGAACACGTTCAAGTGCAGTCA -ACGGAACACGTTCAAGTGGATCCA -ACGGAACACGTTCAAGTGACGACA -ACGGAACACGTTCAAGTGAGCTCA -ACGGAACACGTTCAAGTGTCACGT -ACGGAACACGTTCAAGTGCGTAGT -ACGGAACACGTTCAAGTGGTCAGT -ACGGAACACGTTCAAGTGGAAGGT -ACGGAACACGTTCAAGTGAACCGT -ACGGAACACGTTCAAGTGTTGTGC -ACGGAACACGTTCAAGTGCTAAGC -ACGGAACACGTTCAAGTGACTAGC -ACGGAACACGTTCAAGTGAGATGC -ACGGAACACGTTCAAGTGTGAAGG -ACGGAACACGTTCAAGTGCAATGG -ACGGAACACGTTCAAGTGATGAGG -ACGGAACACGTTCAAGTGAATGGG -ACGGAACACGTTCAAGTGTCCTGA -ACGGAACACGTTCAAGTGTAGCGA -ACGGAACACGTTCAAGTGCACAGA -ACGGAACACGTTCAAGTGGCAAGA -ACGGAACACGTTCAAGTGGGTTGA -ACGGAACACGTTCAAGTGTCCGAT -ACGGAACACGTTCAAGTGTGGCAT -ACGGAACACGTTCAAGTGCGAGAT -ACGGAACACGTTCAAGTGTACCAC -ACGGAACACGTTCAAGTGCAGAAC -ACGGAACACGTTCAAGTGGTCTAC -ACGGAACACGTTCAAGTGACGTAC -ACGGAACACGTTCAAGTGAGTGAC -ACGGAACACGTTCAAGTGCTGTAG -ACGGAACACGTTCAAGTGCCTAAG -ACGGAACACGTTCAAGTGGTTCAG -ACGGAACACGTTCAAGTGGCATAG -ACGGAACACGTTCAAGTGGACAAG -ACGGAACACGTTCAAGTGAAGCAG -ACGGAACACGTTCAAGTGCGTCAA -ACGGAACACGTTCAAGTGGCTGAA -ACGGAACACGTTCAAGTGAGTACG -ACGGAACACGTTCAAGTGATCCGA -ACGGAACACGTTCAAGTGATGGGA -ACGGAACACGTTCAAGTGGTGCAA -ACGGAACACGTTCAAGTGGAGGAA -ACGGAACACGTTCAAGTGCAGGTA -ACGGAACACGTTCAAGTGGACTCT -ACGGAACACGTTCAAGTGAGTCCT -ACGGAACACGTTCAAGTGTAAGCC -ACGGAACACGTTCAAGTGATAGCC -ACGGAACACGTTCAAGTGTAACCG -ACGGAACACGTTCAAGTGATGCCA -ACGGAACACGTTGAAGAGGGAAAC -ACGGAACACGTTGAAGAGAACACC -ACGGAACACGTTGAAGAGATCGAG -ACGGAACACGTTGAAGAGCTCCTT -ACGGAACACGTTGAAGAGCCTGTT -ACGGAACACGTTGAAGAGCGGTTT -ACGGAACACGTTGAAGAGGTGGTT -ACGGAACACGTTGAAGAGGCCTTT -ACGGAACACGTTGAAGAGGGTCTT -ACGGAACACGTTGAAGAGACGCTT -ACGGAACACGTTGAAGAGAGCGTT -ACGGAACACGTTGAAGAGTTCGTC -ACGGAACACGTTGAAGAGTCTCTC -ACGGAACACGTTGAAGAGTGGATC -ACGGAACACGTTGAAGAGCACTTC -ACGGAACACGTTGAAGAGGTACTC -ACGGAACACGTTGAAGAGGATGTC -ACGGAACACGTTGAAGAGACAGTC -ACGGAACACGTTGAAGAGTTGCTG -ACGGAACACGTTGAAGAGTCCATG -ACGGAACACGTTGAAGAGTGTGTG -ACGGAACACGTTGAAGAGCTAGTG -ACGGAACACGTTGAAGAGCATCTG -ACGGAACACGTTGAAGAGGAGTTG -ACGGAACACGTTGAAGAGAGACTG -ACGGAACACGTTGAAGAGTCGGTA -ACGGAACACGTTGAAGAGTGCCTA -ACGGAACACGTTGAAGAGCCACTA -ACGGAACACGTTGAAGAGGGAGTA -ACGGAACACGTTGAAGAGTCGTCT -ACGGAACACGTTGAAGAGTGCACT -ACGGAACACGTTGAAGAGCTGACT -ACGGAACACGTTGAAGAGCAACCT -ACGGAACACGTTGAAGAGGCTACT -ACGGAACACGTTGAAGAGGGATCT -ACGGAACACGTTGAAGAGAAGGCT -ACGGAACACGTTGAAGAGTCAACC -ACGGAACACGTTGAAGAGTGTTCC -ACGGAACACGTTGAAGAGATTCCC -ACGGAACACGTTGAAGAGTTCTCG -ACGGAACACGTTGAAGAGTAGACG -ACGGAACACGTTGAAGAGGTAACG -ACGGAACACGTTGAAGAGACTTCG -ACGGAACACGTTGAAGAGTACGCA -ACGGAACACGTTGAAGAGCTTGCA -ACGGAACACGTTGAAGAGCGAACA -ACGGAACACGTTGAAGAGCAGTCA -ACGGAACACGTTGAAGAGGATCCA -ACGGAACACGTTGAAGAGACGACA -ACGGAACACGTTGAAGAGAGCTCA -ACGGAACACGTTGAAGAGTCACGT -ACGGAACACGTTGAAGAGCGTAGT -ACGGAACACGTTGAAGAGGTCAGT -ACGGAACACGTTGAAGAGGAAGGT -ACGGAACACGTTGAAGAGAACCGT -ACGGAACACGTTGAAGAGTTGTGC -ACGGAACACGTTGAAGAGCTAAGC -ACGGAACACGTTGAAGAGACTAGC -ACGGAACACGTTGAAGAGAGATGC -ACGGAACACGTTGAAGAGTGAAGG -ACGGAACACGTTGAAGAGCAATGG -ACGGAACACGTTGAAGAGATGAGG -ACGGAACACGTTGAAGAGAATGGG -ACGGAACACGTTGAAGAGTCCTGA -ACGGAACACGTTGAAGAGTAGCGA -ACGGAACACGTTGAAGAGCACAGA -ACGGAACACGTTGAAGAGGCAAGA -ACGGAACACGTTGAAGAGGGTTGA -ACGGAACACGTTGAAGAGTCCGAT -ACGGAACACGTTGAAGAGTGGCAT -ACGGAACACGTTGAAGAGCGAGAT -ACGGAACACGTTGAAGAGTACCAC -ACGGAACACGTTGAAGAGCAGAAC -ACGGAACACGTTGAAGAGGTCTAC -ACGGAACACGTTGAAGAGACGTAC -ACGGAACACGTTGAAGAGAGTGAC -ACGGAACACGTTGAAGAGCTGTAG -ACGGAACACGTTGAAGAGCCTAAG -ACGGAACACGTTGAAGAGGTTCAG -ACGGAACACGTTGAAGAGGCATAG -ACGGAACACGTTGAAGAGGACAAG -ACGGAACACGTTGAAGAGAAGCAG -ACGGAACACGTTGAAGAGCGTCAA -ACGGAACACGTTGAAGAGGCTGAA -ACGGAACACGTTGAAGAGAGTACG -ACGGAACACGTTGAAGAGATCCGA -ACGGAACACGTTGAAGAGATGGGA -ACGGAACACGTTGAAGAGGTGCAA -ACGGAACACGTTGAAGAGGAGGAA -ACGGAACACGTTGAAGAGCAGGTA -ACGGAACACGTTGAAGAGGACTCT -ACGGAACACGTTGAAGAGAGTCCT -ACGGAACACGTTGAAGAGTAAGCC -ACGGAACACGTTGAAGAGATAGCC -ACGGAACACGTTGAAGAGTAACCG -ACGGAACACGTTGAAGAGATGCCA -ACGGAACACGTTGTACAGGGAAAC -ACGGAACACGTTGTACAGAACACC -ACGGAACACGTTGTACAGATCGAG -ACGGAACACGTTGTACAGCTCCTT -ACGGAACACGTTGTACAGCCTGTT -ACGGAACACGTTGTACAGCGGTTT -ACGGAACACGTTGTACAGGTGGTT -ACGGAACACGTTGTACAGGCCTTT -ACGGAACACGTTGTACAGGGTCTT -ACGGAACACGTTGTACAGACGCTT -ACGGAACACGTTGTACAGAGCGTT -ACGGAACACGTTGTACAGTTCGTC -ACGGAACACGTTGTACAGTCTCTC -ACGGAACACGTTGTACAGTGGATC -ACGGAACACGTTGTACAGCACTTC -ACGGAACACGTTGTACAGGTACTC -ACGGAACACGTTGTACAGGATGTC -ACGGAACACGTTGTACAGACAGTC -ACGGAACACGTTGTACAGTTGCTG -ACGGAACACGTTGTACAGTCCATG -ACGGAACACGTTGTACAGTGTGTG -ACGGAACACGTTGTACAGCTAGTG -ACGGAACACGTTGTACAGCATCTG -ACGGAACACGTTGTACAGGAGTTG -ACGGAACACGTTGTACAGAGACTG -ACGGAACACGTTGTACAGTCGGTA -ACGGAACACGTTGTACAGTGCCTA -ACGGAACACGTTGTACAGCCACTA -ACGGAACACGTTGTACAGGGAGTA -ACGGAACACGTTGTACAGTCGTCT -ACGGAACACGTTGTACAGTGCACT -ACGGAACACGTTGTACAGCTGACT -ACGGAACACGTTGTACAGCAACCT -ACGGAACACGTTGTACAGGCTACT -ACGGAACACGTTGTACAGGGATCT -ACGGAACACGTTGTACAGAAGGCT -ACGGAACACGTTGTACAGTCAACC -ACGGAACACGTTGTACAGTGTTCC -ACGGAACACGTTGTACAGATTCCC -ACGGAACACGTTGTACAGTTCTCG -ACGGAACACGTTGTACAGTAGACG -ACGGAACACGTTGTACAGGTAACG -ACGGAACACGTTGTACAGACTTCG -ACGGAACACGTTGTACAGTACGCA -ACGGAACACGTTGTACAGCTTGCA -ACGGAACACGTTGTACAGCGAACA -ACGGAACACGTTGTACAGCAGTCA -ACGGAACACGTTGTACAGGATCCA -ACGGAACACGTTGTACAGACGACA -ACGGAACACGTTGTACAGAGCTCA -ACGGAACACGTTGTACAGTCACGT -ACGGAACACGTTGTACAGCGTAGT -ACGGAACACGTTGTACAGGTCAGT -ACGGAACACGTTGTACAGGAAGGT -ACGGAACACGTTGTACAGAACCGT -ACGGAACACGTTGTACAGTTGTGC -ACGGAACACGTTGTACAGCTAAGC -ACGGAACACGTTGTACAGACTAGC -ACGGAACACGTTGTACAGAGATGC -ACGGAACACGTTGTACAGTGAAGG -ACGGAACACGTTGTACAGCAATGG -ACGGAACACGTTGTACAGATGAGG -ACGGAACACGTTGTACAGAATGGG -ACGGAACACGTTGTACAGTCCTGA -ACGGAACACGTTGTACAGTAGCGA -ACGGAACACGTTGTACAGCACAGA -ACGGAACACGTTGTACAGGCAAGA -ACGGAACACGTTGTACAGGGTTGA -ACGGAACACGTTGTACAGTCCGAT -ACGGAACACGTTGTACAGTGGCAT -ACGGAACACGTTGTACAGCGAGAT -ACGGAACACGTTGTACAGTACCAC -ACGGAACACGTTGTACAGCAGAAC -ACGGAACACGTTGTACAGGTCTAC -ACGGAACACGTTGTACAGACGTAC -ACGGAACACGTTGTACAGAGTGAC -ACGGAACACGTTGTACAGCTGTAG -ACGGAACACGTTGTACAGCCTAAG -ACGGAACACGTTGTACAGGTTCAG -ACGGAACACGTTGTACAGGCATAG -ACGGAACACGTTGTACAGGACAAG -ACGGAACACGTTGTACAGAAGCAG -ACGGAACACGTTGTACAGCGTCAA -ACGGAACACGTTGTACAGGCTGAA -ACGGAACACGTTGTACAGAGTACG -ACGGAACACGTTGTACAGATCCGA -ACGGAACACGTTGTACAGATGGGA -ACGGAACACGTTGTACAGGTGCAA -ACGGAACACGTTGTACAGGAGGAA -ACGGAACACGTTGTACAGCAGGTA -ACGGAACACGTTGTACAGGACTCT -ACGGAACACGTTGTACAGAGTCCT -ACGGAACACGTTGTACAGTAAGCC -ACGGAACACGTTGTACAGATAGCC -ACGGAACACGTTGTACAGTAACCG -ACGGAACACGTTGTACAGATGCCA -ACGGAACACGTTTCTGACGGAAAC -ACGGAACACGTTTCTGACAACACC -ACGGAACACGTTTCTGACATCGAG -ACGGAACACGTTTCTGACCTCCTT -ACGGAACACGTTTCTGACCCTGTT -ACGGAACACGTTTCTGACCGGTTT -ACGGAACACGTTTCTGACGTGGTT -ACGGAACACGTTTCTGACGCCTTT -ACGGAACACGTTTCTGACGGTCTT -ACGGAACACGTTTCTGACACGCTT -ACGGAACACGTTTCTGACAGCGTT -ACGGAACACGTTTCTGACTTCGTC -ACGGAACACGTTTCTGACTCTCTC -ACGGAACACGTTTCTGACTGGATC -ACGGAACACGTTTCTGACCACTTC -ACGGAACACGTTTCTGACGTACTC -ACGGAACACGTTTCTGACGATGTC -ACGGAACACGTTTCTGACACAGTC -ACGGAACACGTTTCTGACTTGCTG -ACGGAACACGTTTCTGACTCCATG -ACGGAACACGTTTCTGACTGTGTG -ACGGAACACGTTTCTGACCTAGTG -ACGGAACACGTTTCTGACCATCTG -ACGGAACACGTTTCTGACGAGTTG -ACGGAACACGTTTCTGACAGACTG -ACGGAACACGTTTCTGACTCGGTA -ACGGAACACGTTTCTGACTGCCTA -ACGGAACACGTTTCTGACCCACTA -ACGGAACACGTTTCTGACGGAGTA -ACGGAACACGTTTCTGACTCGTCT -ACGGAACACGTTTCTGACTGCACT -ACGGAACACGTTTCTGACCTGACT -ACGGAACACGTTTCTGACCAACCT -ACGGAACACGTTTCTGACGCTACT -ACGGAACACGTTTCTGACGGATCT -ACGGAACACGTTTCTGACAAGGCT -ACGGAACACGTTTCTGACTCAACC -ACGGAACACGTTTCTGACTGTTCC -ACGGAACACGTTTCTGACATTCCC -ACGGAACACGTTTCTGACTTCTCG -ACGGAACACGTTTCTGACTAGACG -ACGGAACACGTTTCTGACGTAACG -ACGGAACACGTTTCTGACACTTCG -ACGGAACACGTTTCTGACTACGCA -ACGGAACACGTTTCTGACCTTGCA -ACGGAACACGTTTCTGACCGAACA -ACGGAACACGTTTCTGACCAGTCA -ACGGAACACGTTTCTGACGATCCA -ACGGAACACGTTTCTGACACGACA -ACGGAACACGTTTCTGACAGCTCA -ACGGAACACGTTTCTGACTCACGT -ACGGAACACGTTTCTGACCGTAGT -ACGGAACACGTTTCTGACGTCAGT -ACGGAACACGTTTCTGACGAAGGT -ACGGAACACGTTTCTGACAACCGT -ACGGAACACGTTTCTGACTTGTGC -ACGGAACACGTTTCTGACCTAAGC -ACGGAACACGTTTCTGACACTAGC -ACGGAACACGTTTCTGACAGATGC -ACGGAACACGTTTCTGACTGAAGG -ACGGAACACGTTTCTGACCAATGG -ACGGAACACGTTTCTGACATGAGG -ACGGAACACGTTTCTGACAATGGG -ACGGAACACGTTTCTGACTCCTGA -ACGGAACACGTTTCTGACTAGCGA -ACGGAACACGTTTCTGACCACAGA -ACGGAACACGTTTCTGACGCAAGA -ACGGAACACGTTTCTGACGGTTGA -ACGGAACACGTTTCTGACTCCGAT -ACGGAACACGTTTCTGACTGGCAT -ACGGAACACGTTTCTGACCGAGAT -ACGGAACACGTTTCTGACTACCAC -ACGGAACACGTTTCTGACCAGAAC -ACGGAACACGTTTCTGACGTCTAC -ACGGAACACGTTTCTGACACGTAC -ACGGAACACGTTTCTGACAGTGAC -ACGGAACACGTTTCTGACCTGTAG -ACGGAACACGTTTCTGACCCTAAG -ACGGAACACGTTTCTGACGTTCAG -ACGGAACACGTTTCTGACGCATAG -ACGGAACACGTTTCTGACGACAAG -ACGGAACACGTTTCTGACAAGCAG -ACGGAACACGTTTCTGACCGTCAA -ACGGAACACGTTTCTGACGCTGAA -ACGGAACACGTTTCTGACAGTACG -ACGGAACACGTTTCTGACATCCGA -ACGGAACACGTTTCTGACATGGGA -ACGGAACACGTTTCTGACGTGCAA -ACGGAACACGTTTCTGACGAGGAA -ACGGAACACGTTTCTGACCAGGTA -ACGGAACACGTTTCTGACGACTCT -ACGGAACACGTTTCTGACAGTCCT -ACGGAACACGTTTCTGACTAAGCC -ACGGAACACGTTTCTGACATAGCC -ACGGAACACGTTTCTGACTAACCG -ACGGAACACGTTTCTGACATGCCA -ACGGAACACGTTCCTAGTGGAAAC -ACGGAACACGTTCCTAGTAACACC -ACGGAACACGTTCCTAGTATCGAG -ACGGAACACGTTCCTAGTCTCCTT -ACGGAACACGTTCCTAGTCCTGTT -ACGGAACACGTTCCTAGTCGGTTT -ACGGAACACGTTCCTAGTGTGGTT -ACGGAACACGTTCCTAGTGCCTTT -ACGGAACACGTTCCTAGTGGTCTT -ACGGAACACGTTCCTAGTACGCTT -ACGGAACACGTTCCTAGTAGCGTT -ACGGAACACGTTCCTAGTTTCGTC -ACGGAACACGTTCCTAGTTCTCTC -ACGGAACACGTTCCTAGTTGGATC -ACGGAACACGTTCCTAGTCACTTC -ACGGAACACGTTCCTAGTGTACTC -ACGGAACACGTTCCTAGTGATGTC -ACGGAACACGTTCCTAGTACAGTC -ACGGAACACGTTCCTAGTTTGCTG -ACGGAACACGTTCCTAGTTCCATG -ACGGAACACGTTCCTAGTTGTGTG -ACGGAACACGTTCCTAGTCTAGTG -ACGGAACACGTTCCTAGTCATCTG -ACGGAACACGTTCCTAGTGAGTTG -ACGGAACACGTTCCTAGTAGACTG -ACGGAACACGTTCCTAGTTCGGTA -ACGGAACACGTTCCTAGTTGCCTA -ACGGAACACGTTCCTAGTCCACTA -ACGGAACACGTTCCTAGTGGAGTA -ACGGAACACGTTCCTAGTTCGTCT -ACGGAACACGTTCCTAGTTGCACT -ACGGAACACGTTCCTAGTCTGACT -ACGGAACACGTTCCTAGTCAACCT -ACGGAACACGTTCCTAGTGCTACT -ACGGAACACGTTCCTAGTGGATCT -ACGGAACACGTTCCTAGTAAGGCT -ACGGAACACGTTCCTAGTTCAACC -ACGGAACACGTTCCTAGTTGTTCC -ACGGAACACGTTCCTAGTATTCCC -ACGGAACACGTTCCTAGTTTCTCG -ACGGAACACGTTCCTAGTTAGACG -ACGGAACACGTTCCTAGTGTAACG -ACGGAACACGTTCCTAGTACTTCG -ACGGAACACGTTCCTAGTTACGCA -ACGGAACACGTTCCTAGTCTTGCA -ACGGAACACGTTCCTAGTCGAACA -ACGGAACACGTTCCTAGTCAGTCA -ACGGAACACGTTCCTAGTGATCCA -ACGGAACACGTTCCTAGTACGACA -ACGGAACACGTTCCTAGTAGCTCA -ACGGAACACGTTCCTAGTTCACGT -ACGGAACACGTTCCTAGTCGTAGT -ACGGAACACGTTCCTAGTGTCAGT -ACGGAACACGTTCCTAGTGAAGGT -ACGGAACACGTTCCTAGTAACCGT -ACGGAACACGTTCCTAGTTTGTGC -ACGGAACACGTTCCTAGTCTAAGC -ACGGAACACGTTCCTAGTACTAGC -ACGGAACACGTTCCTAGTAGATGC -ACGGAACACGTTCCTAGTTGAAGG -ACGGAACACGTTCCTAGTCAATGG -ACGGAACACGTTCCTAGTATGAGG -ACGGAACACGTTCCTAGTAATGGG -ACGGAACACGTTCCTAGTTCCTGA -ACGGAACACGTTCCTAGTTAGCGA -ACGGAACACGTTCCTAGTCACAGA -ACGGAACACGTTCCTAGTGCAAGA -ACGGAACACGTTCCTAGTGGTTGA -ACGGAACACGTTCCTAGTTCCGAT -ACGGAACACGTTCCTAGTTGGCAT -ACGGAACACGTTCCTAGTCGAGAT -ACGGAACACGTTCCTAGTTACCAC -ACGGAACACGTTCCTAGTCAGAAC -ACGGAACACGTTCCTAGTGTCTAC -ACGGAACACGTTCCTAGTACGTAC -ACGGAACACGTTCCTAGTAGTGAC -ACGGAACACGTTCCTAGTCTGTAG -ACGGAACACGTTCCTAGTCCTAAG -ACGGAACACGTTCCTAGTGTTCAG -ACGGAACACGTTCCTAGTGCATAG -ACGGAACACGTTCCTAGTGACAAG -ACGGAACACGTTCCTAGTAAGCAG -ACGGAACACGTTCCTAGTCGTCAA -ACGGAACACGTTCCTAGTGCTGAA -ACGGAACACGTTCCTAGTAGTACG -ACGGAACACGTTCCTAGTATCCGA -ACGGAACACGTTCCTAGTATGGGA -ACGGAACACGTTCCTAGTGTGCAA -ACGGAACACGTTCCTAGTGAGGAA -ACGGAACACGTTCCTAGTCAGGTA -ACGGAACACGTTCCTAGTGACTCT -ACGGAACACGTTCCTAGTAGTCCT -ACGGAACACGTTCCTAGTTAAGCC -ACGGAACACGTTCCTAGTATAGCC -ACGGAACACGTTCCTAGTTAACCG -ACGGAACACGTTCCTAGTATGCCA -ACGGAACACGTTGCCTAAGGAAAC -ACGGAACACGTTGCCTAAAACACC -ACGGAACACGTTGCCTAAATCGAG -ACGGAACACGTTGCCTAACTCCTT -ACGGAACACGTTGCCTAACCTGTT -ACGGAACACGTTGCCTAACGGTTT -ACGGAACACGTTGCCTAAGTGGTT -ACGGAACACGTTGCCTAAGCCTTT -ACGGAACACGTTGCCTAAGGTCTT -ACGGAACACGTTGCCTAAACGCTT -ACGGAACACGTTGCCTAAAGCGTT -ACGGAACACGTTGCCTAATTCGTC -ACGGAACACGTTGCCTAATCTCTC -ACGGAACACGTTGCCTAATGGATC -ACGGAACACGTTGCCTAACACTTC -ACGGAACACGTTGCCTAAGTACTC -ACGGAACACGTTGCCTAAGATGTC -ACGGAACACGTTGCCTAAACAGTC -ACGGAACACGTTGCCTAATTGCTG -ACGGAACACGTTGCCTAATCCATG -ACGGAACACGTTGCCTAATGTGTG -ACGGAACACGTTGCCTAACTAGTG -ACGGAACACGTTGCCTAACATCTG -ACGGAACACGTTGCCTAAGAGTTG -ACGGAACACGTTGCCTAAAGACTG -ACGGAACACGTTGCCTAATCGGTA -ACGGAACACGTTGCCTAATGCCTA -ACGGAACACGTTGCCTAACCACTA -ACGGAACACGTTGCCTAAGGAGTA -ACGGAACACGTTGCCTAATCGTCT -ACGGAACACGTTGCCTAATGCACT -ACGGAACACGTTGCCTAACTGACT -ACGGAACACGTTGCCTAACAACCT -ACGGAACACGTTGCCTAAGCTACT -ACGGAACACGTTGCCTAAGGATCT -ACGGAACACGTTGCCTAAAAGGCT -ACGGAACACGTTGCCTAATCAACC -ACGGAACACGTTGCCTAATGTTCC -ACGGAACACGTTGCCTAAATTCCC -ACGGAACACGTTGCCTAATTCTCG -ACGGAACACGTTGCCTAATAGACG -ACGGAACACGTTGCCTAAGTAACG -ACGGAACACGTTGCCTAAACTTCG -ACGGAACACGTTGCCTAATACGCA -ACGGAACACGTTGCCTAACTTGCA -ACGGAACACGTTGCCTAACGAACA -ACGGAACACGTTGCCTAACAGTCA -ACGGAACACGTTGCCTAAGATCCA -ACGGAACACGTTGCCTAAACGACA -ACGGAACACGTTGCCTAAAGCTCA -ACGGAACACGTTGCCTAATCACGT -ACGGAACACGTTGCCTAACGTAGT -ACGGAACACGTTGCCTAAGTCAGT -ACGGAACACGTTGCCTAAGAAGGT -ACGGAACACGTTGCCTAAAACCGT -ACGGAACACGTTGCCTAATTGTGC -ACGGAACACGTTGCCTAACTAAGC -ACGGAACACGTTGCCTAAACTAGC -ACGGAACACGTTGCCTAAAGATGC -ACGGAACACGTTGCCTAATGAAGG -ACGGAACACGTTGCCTAACAATGG -ACGGAACACGTTGCCTAAATGAGG -ACGGAACACGTTGCCTAAAATGGG -ACGGAACACGTTGCCTAATCCTGA -ACGGAACACGTTGCCTAATAGCGA -ACGGAACACGTTGCCTAACACAGA -ACGGAACACGTTGCCTAAGCAAGA -ACGGAACACGTTGCCTAAGGTTGA -ACGGAACACGTTGCCTAATCCGAT -ACGGAACACGTTGCCTAATGGCAT -ACGGAACACGTTGCCTAACGAGAT -ACGGAACACGTTGCCTAATACCAC -ACGGAACACGTTGCCTAACAGAAC -ACGGAACACGTTGCCTAAGTCTAC -ACGGAACACGTTGCCTAAACGTAC -ACGGAACACGTTGCCTAAAGTGAC -ACGGAACACGTTGCCTAACTGTAG -ACGGAACACGTTGCCTAACCTAAG -ACGGAACACGTTGCCTAAGTTCAG -ACGGAACACGTTGCCTAAGCATAG -ACGGAACACGTTGCCTAAGACAAG -ACGGAACACGTTGCCTAAAAGCAG -ACGGAACACGTTGCCTAACGTCAA -ACGGAACACGTTGCCTAAGCTGAA -ACGGAACACGTTGCCTAAAGTACG -ACGGAACACGTTGCCTAAATCCGA -ACGGAACACGTTGCCTAAATGGGA -ACGGAACACGTTGCCTAAGTGCAA -ACGGAACACGTTGCCTAAGAGGAA -ACGGAACACGTTGCCTAACAGGTA -ACGGAACACGTTGCCTAAGACTCT -ACGGAACACGTTGCCTAAAGTCCT -ACGGAACACGTTGCCTAATAAGCC -ACGGAACACGTTGCCTAAATAGCC -ACGGAACACGTTGCCTAATAACCG -ACGGAACACGTTGCCTAAATGCCA -ACGGAACACGTTGCCATAGGAAAC -ACGGAACACGTTGCCATAAACACC -ACGGAACACGTTGCCATAATCGAG -ACGGAACACGTTGCCATACTCCTT -ACGGAACACGTTGCCATACCTGTT -ACGGAACACGTTGCCATACGGTTT -ACGGAACACGTTGCCATAGTGGTT -ACGGAACACGTTGCCATAGCCTTT -ACGGAACACGTTGCCATAGGTCTT -ACGGAACACGTTGCCATAACGCTT -ACGGAACACGTTGCCATAAGCGTT -ACGGAACACGTTGCCATATTCGTC -ACGGAACACGTTGCCATATCTCTC -ACGGAACACGTTGCCATATGGATC -ACGGAACACGTTGCCATACACTTC -ACGGAACACGTTGCCATAGTACTC -ACGGAACACGTTGCCATAGATGTC -ACGGAACACGTTGCCATAACAGTC -ACGGAACACGTTGCCATATTGCTG -ACGGAACACGTTGCCATATCCATG -ACGGAACACGTTGCCATATGTGTG -ACGGAACACGTTGCCATACTAGTG -ACGGAACACGTTGCCATACATCTG -ACGGAACACGTTGCCATAGAGTTG -ACGGAACACGTTGCCATAAGACTG -ACGGAACACGTTGCCATATCGGTA -ACGGAACACGTTGCCATATGCCTA -ACGGAACACGTTGCCATACCACTA -ACGGAACACGTTGCCATAGGAGTA -ACGGAACACGTTGCCATATCGTCT -ACGGAACACGTTGCCATATGCACT -ACGGAACACGTTGCCATACTGACT -ACGGAACACGTTGCCATACAACCT -ACGGAACACGTTGCCATAGCTACT -ACGGAACACGTTGCCATAGGATCT -ACGGAACACGTTGCCATAAAGGCT -ACGGAACACGTTGCCATATCAACC -ACGGAACACGTTGCCATATGTTCC -ACGGAACACGTTGCCATAATTCCC -ACGGAACACGTTGCCATATTCTCG -ACGGAACACGTTGCCATATAGACG -ACGGAACACGTTGCCATAGTAACG -ACGGAACACGTTGCCATAACTTCG -ACGGAACACGTTGCCATATACGCA -ACGGAACACGTTGCCATACTTGCA -ACGGAACACGTTGCCATACGAACA -ACGGAACACGTTGCCATACAGTCA -ACGGAACACGTTGCCATAGATCCA -ACGGAACACGTTGCCATAACGACA -ACGGAACACGTTGCCATAAGCTCA -ACGGAACACGTTGCCATATCACGT -ACGGAACACGTTGCCATACGTAGT -ACGGAACACGTTGCCATAGTCAGT -ACGGAACACGTTGCCATAGAAGGT -ACGGAACACGTTGCCATAAACCGT -ACGGAACACGTTGCCATATTGTGC -ACGGAACACGTTGCCATACTAAGC -ACGGAACACGTTGCCATAACTAGC -ACGGAACACGTTGCCATAAGATGC -ACGGAACACGTTGCCATATGAAGG -ACGGAACACGTTGCCATACAATGG -ACGGAACACGTTGCCATAATGAGG -ACGGAACACGTTGCCATAAATGGG -ACGGAACACGTTGCCATATCCTGA -ACGGAACACGTTGCCATATAGCGA -ACGGAACACGTTGCCATACACAGA -ACGGAACACGTTGCCATAGCAAGA -ACGGAACACGTTGCCATAGGTTGA -ACGGAACACGTTGCCATATCCGAT -ACGGAACACGTTGCCATATGGCAT -ACGGAACACGTTGCCATACGAGAT -ACGGAACACGTTGCCATATACCAC -ACGGAACACGTTGCCATACAGAAC -ACGGAACACGTTGCCATAGTCTAC -ACGGAACACGTTGCCATAACGTAC -ACGGAACACGTTGCCATAAGTGAC -ACGGAACACGTTGCCATACTGTAG -ACGGAACACGTTGCCATACCTAAG -ACGGAACACGTTGCCATAGTTCAG -ACGGAACACGTTGCCATAGCATAG -ACGGAACACGTTGCCATAGACAAG -ACGGAACACGTTGCCATAAAGCAG -ACGGAACACGTTGCCATACGTCAA -ACGGAACACGTTGCCATAGCTGAA -ACGGAACACGTTGCCATAAGTACG -ACGGAACACGTTGCCATAATCCGA -ACGGAACACGTTGCCATAATGGGA -ACGGAACACGTTGCCATAGTGCAA -ACGGAACACGTTGCCATAGAGGAA -ACGGAACACGTTGCCATACAGGTA -ACGGAACACGTTGCCATAGACTCT -ACGGAACACGTTGCCATAAGTCCT -ACGGAACACGTTGCCATATAAGCC -ACGGAACACGTTGCCATAATAGCC -ACGGAACACGTTGCCATATAACCG -ACGGAACACGTTGCCATAATGCCA -ACGGAACACGTTCCGTAAGGAAAC -ACGGAACACGTTCCGTAAAACACC -ACGGAACACGTTCCGTAAATCGAG -ACGGAACACGTTCCGTAACTCCTT -ACGGAACACGTTCCGTAACCTGTT -ACGGAACACGTTCCGTAACGGTTT -ACGGAACACGTTCCGTAAGTGGTT -ACGGAACACGTTCCGTAAGCCTTT -ACGGAACACGTTCCGTAAGGTCTT -ACGGAACACGTTCCGTAAACGCTT -ACGGAACACGTTCCGTAAAGCGTT -ACGGAACACGTTCCGTAATTCGTC -ACGGAACACGTTCCGTAATCTCTC -ACGGAACACGTTCCGTAATGGATC -ACGGAACACGTTCCGTAACACTTC -ACGGAACACGTTCCGTAAGTACTC -ACGGAACACGTTCCGTAAGATGTC -ACGGAACACGTTCCGTAAACAGTC -ACGGAACACGTTCCGTAATTGCTG -ACGGAACACGTTCCGTAATCCATG -ACGGAACACGTTCCGTAATGTGTG -ACGGAACACGTTCCGTAACTAGTG -ACGGAACACGTTCCGTAACATCTG -ACGGAACACGTTCCGTAAGAGTTG -ACGGAACACGTTCCGTAAAGACTG -ACGGAACACGTTCCGTAATCGGTA -ACGGAACACGTTCCGTAATGCCTA -ACGGAACACGTTCCGTAACCACTA -ACGGAACACGTTCCGTAAGGAGTA -ACGGAACACGTTCCGTAATCGTCT -ACGGAACACGTTCCGTAATGCACT -ACGGAACACGTTCCGTAACTGACT -ACGGAACACGTTCCGTAACAACCT -ACGGAACACGTTCCGTAAGCTACT -ACGGAACACGTTCCGTAAGGATCT -ACGGAACACGTTCCGTAAAAGGCT -ACGGAACACGTTCCGTAATCAACC -ACGGAACACGTTCCGTAATGTTCC -ACGGAACACGTTCCGTAAATTCCC -ACGGAACACGTTCCGTAATTCTCG -ACGGAACACGTTCCGTAATAGACG -ACGGAACACGTTCCGTAAGTAACG -ACGGAACACGTTCCGTAAACTTCG -ACGGAACACGTTCCGTAATACGCA -ACGGAACACGTTCCGTAACTTGCA -ACGGAACACGTTCCGTAACGAACA -ACGGAACACGTTCCGTAACAGTCA -ACGGAACACGTTCCGTAAGATCCA -ACGGAACACGTTCCGTAAACGACA -ACGGAACACGTTCCGTAAAGCTCA -ACGGAACACGTTCCGTAATCACGT -ACGGAACACGTTCCGTAACGTAGT -ACGGAACACGTTCCGTAAGTCAGT -ACGGAACACGTTCCGTAAGAAGGT -ACGGAACACGTTCCGTAAAACCGT -ACGGAACACGTTCCGTAATTGTGC -ACGGAACACGTTCCGTAACTAAGC -ACGGAACACGTTCCGTAAACTAGC -ACGGAACACGTTCCGTAAAGATGC -ACGGAACACGTTCCGTAATGAAGG -ACGGAACACGTTCCGTAACAATGG -ACGGAACACGTTCCGTAAATGAGG -ACGGAACACGTTCCGTAAAATGGG -ACGGAACACGTTCCGTAATCCTGA -ACGGAACACGTTCCGTAATAGCGA -ACGGAACACGTTCCGTAACACAGA -ACGGAACACGTTCCGTAAGCAAGA -ACGGAACACGTTCCGTAAGGTTGA -ACGGAACACGTTCCGTAATCCGAT -ACGGAACACGTTCCGTAATGGCAT -ACGGAACACGTTCCGTAACGAGAT -ACGGAACACGTTCCGTAATACCAC -ACGGAACACGTTCCGTAACAGAAC -ACGGAACACGTTCCGTAAGTCTAC -ACGGAACACGTTCCGTAAACGTAC -ACGGAACACGTTCCGTAAAGTGAC -ACGGAACACGTTCCGTAACTGTAG -ACGGAACACGTTCCGTAACCTAAG -ACGGAACACGTTCCGTAAGTTCAG -ACGGAACACGTTCCGTAAGCATAG -ACGGAACACGTTCCGTAAGACAAG -ACGGAACACGTTCCGTAAAAGCAG -ACGGAACACGTTCCGTAACGTCAA -ACGGAACACGTTCCGTAAGCTGAA -ACGGAACACGTTCCGTAAAGTACG -ACGGAACACGTTCCGTAAATCCGA -ACGGAACACGTTCCGTAAATGGGA -ACGGAACACGTTCCGTAAGTGCAA -ACGGAACACGTTCCGTAAGAGGAA -ACGGAACACGTTCCGTAACAGGTA -ACGGAACACGTTCCGTAAGACTCT -ACGGAACACGTTCCGTAAAGTCCT -ACGGAACACGTTCCGTAATAAGCC -ACGGAACACGTTCCGTAAATAGCC -ACGGAACACGTTCCGTAATAACCG -ACGGAACACGTTCCGTAAATGCCA -ACGGAACACGTTCCAATGGGAAAC -ACGGAACACGTTCCAATGAACACC -ACGGAACACGTTCCAATGATCGAG -ACGGAACACGTTCCAATGCTCCTT -ACGGAACACGTTCCAATGCCTGTT -ACGGAACACGTTCCAATGCGGTTT -ACGGAACACGTTCCAATGGTGGTT -ACGGAACACGTTCCAATGGCCTTT -ACGGAACACGTTCCAATGGGTCTT -ACGGAACACGTTCCAATGACGCTT -ACGGAACACGTTCCAATGAGCGTT -ACGGAACACGTTCCAATGTTCGTC -ACGGAACACGTTCCAATGTCTCTC -ACGGAACACGTTCCAATGTGGATC -ACGGAACACGTTCCAATGCACTTC -ACGGAACACGTTCCAATGGTACTC -ACGGAACACGTTCCAATGGATGTC -ACGGAACACGTTCCAATGACAGTC -ACGGAACACGTTCCAATGTTGCTG -ACGGAACACGTTCCAATGTCCATG -ACGGAACACGTTCCAATGTGTGTG -ACGGAACACGTTCCAATGCTAGTG -ACGGAACACGTTCCAATGCATCTG -ACGGAACACGTTCCAATGGAGTTG -ACGGAACACGTTCCAATGAGACTG -ACGGAACACGTTCCAATGTCGGTA -ACGGAACACGTTCCAATGTGCCTA -ACGGAACACGTTCCAATGCCACTA -ACGGAACACGTTCCAATGGGAGTA -ACGGAACACGTTCCAATGTCGTCT -ACGGAACACGTTCCAATGTGCACT -ACGGAACACGTTCCAATGCTGACT -ACGGAACACGTTCCAATGCAACCT -ACGGAACACGTTCCAATGGCTACT -ACGGAACACGTTCCAATGGGATCT -ACGGAACACGTTCCAATGAAGGCT -ACGGAACACGTTCCAATGTCAACC -ACGGAACACGTTCCAATGTGTTCC -ACGGAACACGTTCCAATGATTCCC -ACGGAACACGTTCCAATGTTCTCG -ACGGAACACGTTCCAATGTAGACG -ACGGAACACGTTCCAATGGTAACG -ACGGAACACGTTCCAATGACTTCG -ACGGAACACGTTCCAATGTACGCA -ACGGAACACGTTCCAATGCTTGCA -ACGGAACACGTTCCAATGCGAACA -ACGGAACACGTTCCAATGCAGTCA -ACGGAACACGTTCCAATGGATCCA -ACGGAACACGTTCCAATGACGACA -ACGGAACACGTTCCAATGAGCTCA -ACGGAACACGTTCCAATGTCACGT -ACGGAACACGTTCCAATGCGTAGT -ACGGAACACGTTCCAATGGTCAGT -ACGGAACACGTTCCAATGGAAGGT -ACGGAACACGTTCCAATGAACCGT -ACGGAACACGTTCCAATGTTGTGC -ACGGAACACGTTCCAATGCTAAGC -ACGGAACACGTTCCAATGACTAGC -ACGGAACACGTTCCAATGAGATGC -ACGGAACACGTTCCAATGTGAAGG -ACGGAACACGTTCCAATGCAATGG -ACGGAACACGTTCCAATGATGAGG -ACGGAACACGTTCCAATGAATGGG -ACGGAACACGTTCCAATGTCCTGA -ACGGAACACGTTCCAATGTAGCGA -ACGGAACACGTTCCAATGCACAGA -ACGGAACACGTTCCAATGGCAAGA -ACGGAACACGTTCCAATGGGTTGA -ACGGAACACGTTCCAATGTCCGAT -ACGGAACACGTTCCAATGTGGCAT -ACGGAACACGTTCCAATGCGAGAT -ACGGAACACGTTCCAATGTACCAC -ACGGAACACGTTCCAATGCAGAAC -ACGGAACACGTTCCAATGGTCTAC -ACGGAACACGTTCCAATGACGTAC -ACGGAACACGTTCCAATGAGTGAC -ACGGAACACGTTCCAATGCTGTAG -ACGGAACACGTTCCAATGCCTAAG -ACGGAACACGTTCCAATGGTTCAG -ACGGAACACGTTCCAATGGCATAG -ACGGAACACGTTCCAATGGACAAG -ACGGAACACGTTCCAATGAAGCAG -ACGGAACACGTTCCAATGCGTCAA -ACGGAACACGTTCCAATGGCTGAA -ACGGAACACGTTCCAATGAGTACG -ACGGAACACGTTCCAATGATCCGA -ACGGAACACGTTCCAATGATGGGA -ACGGAACACGTTCCAATGGTGCAA -ACGGAACACGTTCCAATGGAGGAA -ACGGAACACGTTCCAATGCAGGTA -ACGGAACACGTTCCAATGGACTCT -ACGGAACACGTTCCAATGAGTCCT -ACGGAACACGTTCCAATGTAAGCC -ACGGAACACGTTCCAATGATAGCC -ACGGAACACGTTCCAATGTAACCG -ACGGAACACGTTCCAATGATGCCA -ACGGAAGTAGTCAACGGAGGAAAC -ACGGAAGTAGTCAACGGAAACACC -ACGGAAGTAGTCAACGGAATCGAG -ACGGAAGTAGTCAACGGACTCCTT -ACGGAAGTAGTCAACGGACCTGTT -ACGGAAGTAGTCAACGGACGGTTT -ACGGAAGTAGTCAACGGAGTGGTT -ACGGAAGTAGTCAACGGAGCCTTT -ACGGAAGTAGTCAACGGAGGTCTT -ACGGAAGTAGTCAACGGAACGCTT -ACGGAAGTAGTCAACGGAAGCGTT -ACGGAAGTAGTCAACGGATTCGTC -ACGGAAGTAGTCAACGGATCTCTC -ACGGAAGTAGTCAACGGATGGATC -ACGGAAGTAGTCAACGGACACTTC -ACGGAAGTAGTCAACGGAGTACTC -ACGGAAGTAGTCAACGGAGATGTC -ACGGAAGTAGTCAACGGAACAGTC -ACGGAAGTAGTCAACGGATTGCTG -ACGGAAGTAGTCAACGGATCCATG -ACGGAAGTAGTCAACGGATGTGTG -ACGGAAGTAGTCAACGGACTAGTG -ACGGAAGTAGTCAACGGACATCTG -ACGGAAGTAGTCAACGGAGAGTTG -ACGGAAGTAGTCAACGGAAGACTG -ACGGAAGTAGTCAACGGATCGGTA -ACGGAAGTAGTCAACGGATGCCTA -ACGGAAGTAGTCAACGGACCACTA -ACGGAAGTAGTCAACGGAGGAGTA -ACGGAAGTAGTCAACGGATCGTCT -ACGGAAGTAGTCAACGGATGCACT -ACGGAAGTAGTCAACGGACTGACT -ACGGAAGTAGTCAACGGACAACCT -ACGGAAGTAGTCAACGGAGCTACT -ACGGAAGTAGTCAACGGAGGATCT -ACGGAAGTAGTCAACGGAAAGGCT -ACGGAAGTAGTCAACGGATCAACC -ACGGAAGTAGTCAACGGATGTTCC -ACGGAAGTAGTCAACGGAATTCCC -ACGGAAGTAGTCAACGGATTCTCG -ACGGAAGTAGTCAACGGATAGACG -ACGGAAGTAGTCAACGGAGTAACG -ACGGAAGTAGTCAACGGAACTTCG -ACGGAAGTAGTCAACGGATACGCA -ACGGAAGTAGTCAACGGACTTGCA -ACGGAAGTAGTCAACGGACGAACA -ACGGAAGTAGTCAACGGACAGTCA -ACGGAAGTAGTCAACGGAGATCCA -ACGGAAGTAGTCAACGGAACGACA -ACGGAAGTAGTCAACGGAAGCTCA -ACGGAAGTAGTCAACGGATCACGT -ACGGAAGTAGTCAACGGACGTAGT -ACGGAAGTAGTCAACGGAGTCAGT -ACGGAAGTAGTCAACGGAGAAGGT -ACGGAAGTAGTCAACGGAAACCGT -ACGGAAGTAGTCAACGGATTGTGC -ACGGAAGTAGTCAACGGACTAAGC -ACGGAAGTAGTCAACGGAACTAGC -ACGGAAGTAGTCAACGGAAGATGC -ACGGAAGTAGTCAACGGATGAAGG -ACGGAAGTAGTCAACGGACAATGG -ACGGAAGTAGTCAACGGAATGAGG -ACGGAAGTAGTCAACGGAAATGGG -ACGGAAGTAGTCAACGGATCCTGA -ACGGAAGTAGTCAACGGATAGCGA -ACGGAAGTAGTCAACGGACACAGA -ACGGAAGTAGTCAACGGAGCAAGA -ACGGAAGTAGTCAACGGAGGTTGA -ACGGAAGTAGTCAACGGATCCGAT -ACGGAAGTAGTCAACGGATGGCAT -ACGGAAGTAGTCAACGGACGAGAT -ACGGAAGTAGTCAACGGATACCAC -ACGGAAGTAGTCAACGGACAGAAC -ACGGAAGTAGTCAACGGAGTCTAC -ACGGAAGTAGTCAACGGAACGTAC -ACGGAAGTAGTCAACGGAAGTGAC -ACGGAAGTAGTCAACGGACTGTAG -ACGGAAGTAGTCAACGGACCTAAG -ACGGAAGTAGTCAACGGAGTTCAG -ACGGAAGTAGTCAACGGAGCATAG -ACGGAAGTAGTCAACGGAGACAAG -ACGGAAGTAGTCAACGGAAAGCAG -ACGGAAGTAGTCAACGGACGTCAA -ACGGAAGTAGTCAACGGAGCTGAA -ACGGAAGTAGTCAACGGAAGTACG -ACGGAAGTAGTCAACGGAATCCGA -ACGGAAGTAGTCAACGGAATGGGA -ACGGAAGTAGTCAACGGAGTGCAA -ACGGAAGTAGTCAACGGAGAGGAA -ACGGAAGTAGTCAACGGACAGGTA -ACGGAAGTAGTCAACGGAGACTCT -ACGGAAGTAGTCAACGGAAGTCCT -ACGGAAGTAGTCAACGGATAAGCC -ACGGAAGTAGTCAACGGAATAGCC -ACGGAAGTAGTCAACGGATAACCG -ACGGAAGTAGTCAACGGAATGCCA -ACGGAAGTAGTCACCAACGGAAAC -ACGGAAGTAGTCACCAACAACACC -ACGGAAGTAGTCACCAACATCGAG -ACGGAAGTAGTCACCAACCTCCTT -ACGGAAGTAGTCACCAACCCTGTT -ACGGAAGTAGTCACCAACCGGTTT -ACGGAAGTAGTCACCAACGTGGTT -ACGGAAGTAGTCACCAACGCCTTT -ACGGAAGTAGTCACCAACGGTCTT -ACGGAAGTAGTCACCAACACGCTT -ACGGAAGTAGTCACCAACAGCGTT -ACGGAAGTAGTCACCAACTTCGTC -ACGGAAGTAGTCACCAACTCTCTC -ACGGAAGTAGTCACCAACTGGATC -ACGGAAGTAGTCACCAACCACTTC -ACGGAAGTAGTCACCAACGTACTC -ACGGAAGTAGTCACCAACGATGTC -ACGGAAGTAGTCACCAACACAGTC -ACGGAAGTAGTCACCAACTTGCTG -ACGGAAGTAGTCACCAACTCCATG -ACGGAAGTAGTCACCAACTGTGTG -ACGGAAGTAGTCACCAACCTAGTG -ACGGAAGTAGTCACCAACCATCTG -ACGGAAGTAGTCACCAACGAGTTG -ACGGAAGTAGTCACCAACAGACTG -ACGGAAGTAGTCACCAACTCGGTA -ACGGAAGTAGTCACCAACTGCCTA -ACGGAAGTAGTCACCAACCCACTA -ACGGAAGTAGTCACCAACGGAGTA -ACGGAAGTAGTCACCAACTCGTCT -ACGGAAGTAGTCACCAACTGCACT -ACGGAAGTAGTCACCAACCTGACT -ACGGAAGTAGTCACCAACCAACCT -ACGGAAGTAGTCACCAACGCTACT -ACGGAAGTAGTCACCAACGGATCT -ACGGAAGTAGTCACCAACAAGGCT -ACGGAAGTAGTCACCAACTCAACC -ACGGAAGTAGTCACCAACTGTTCC -ACGGAAGTAGTCACCAACATTCCC -ACGGAAGTAGTCACCAACTTCTCG -ACGGAAGTAGTCACCAACTAGACG -ACGGAAGTAGTCACCAACGTAACG -ACGGAAGTAGTCACCAACACTTCG -ACGGAAGTAGTCACCAACTACGCA -ACGGAAGTAGTCACCAACCTTGCA -ACGGAAGTAGTCACCAACCGAACA -ACGGAAGTAGTCACCAACCAGTCA -ACGGAAGTAGTCACCAACGATCCA -ACGGAAGTAGTCACCAACACGACA -ACGGAAGTAGTCACCAACAGCTCA -ACGGAAGTAGTCACCAACTCACGT -ACGGAAGTAGTCACCAACCGTAGT -ACGGAAGTAGTCACCAACGTCAGT -ACGGAAGTAGTCACCAACGAAGGT -ACGGAAGTAGTCACCAACAACCGT -ACGGAAGTAGTCACCAACTTGTGC -ACGGAAGTAGTCACCAACCTAAGC -ACGGAAGTAGTCACCAACACTAGC -ACGGAAGTAGTCACCAACAGATGC -ACGGAAGTAGTCACCAACTGAAGG -ACGGAAGTAGTCACCAACCAATGG -ACGGAAGTAGTCACCAACATGAGG -ACGGAAGTAGTCACCAACAATGGG -ACGGAAGTAGTCACCAACTCCTGA -ACGGAAGTAGTCACCAACTAGCGA -ACGGAAGTAGTCACCAACCACAGA -ACGGAAGTAGTCACCAACGCAAGA -ACGGAAGTAGTCACCAACGGTTGA -ACGGAAGTAGTCACCAACTCCGAT -ACGGAAGTAGTCACCAACTGGCAT -ACGGAAGTAGTCACCAACCGAGAT -ACGGAAGTAGTCACCAACTACCAC -ACGGAAGTAGTCACCAACCAGAAC -ACGGAAGTAGTCACCAACGTCTAC -ACGGAAGTAGTCACCAACACGTAC -ACGGAAGTAGTCACCAACAGTGAC -ACGGAAGTAGTCACCAACCTGTAG -ACGGAAGTAGTCACCAACCCTAAG -ACGGAAGTAGTCACCAACGTTCAG -ACGGAAGTAGTCACCAACGCATAG -ACGGAAGTAGTCACCAACGACAAG -ACGGAAGTAGTCACCAACAAGCAG -ACGGAAGTAGTCACCAACCGTCAA -ACGGAAGTAGTCACCAACGCTGAA -ACGGAAGTAGTCACCAACAGTACG -ACGGAAGTAGTCACCAACATCCGA -ACGGAAGTAGTCACCAACATGGGA -ACGGAAGTAGTCACCAACGTGCAA -ACGGAAGTAGTCACCAACGAGGAA -ACGGAAGTAGTCACCAACCAGGTA -ACGGAAGTAGTCACCAACGACTCT -ACGGAAGTAGTCACCAACAGTCCT -ACGGAAGTAGTCACCAACTAAGCC -ACGGAAGTAGTCACCAACATAGCC -ACGGAAGTAGTCACCAACTAACCG -ACGGAAGTAGTCACCAACATGCCA -ACGGAAGTAGTCGAGATCGGAAAC -ACGGAAGTAGTCGAGATCAACACC -ACGGAAGTAGTCGAGATCATCGAG -ACGGAAGTAGTCGAGATCCTCCTT -ACGGAAGTAGTCGAGATCCCTGTT -ACGGAAGTAGTCGAGATCCGGTTT -ACGGAAGTAGTCGAGATCGTGGTT -ACGGAAGTAGTCGAGATCGCCTTT -ACGGAAGTAGTCGAGATCGGTCTT -ACGGAAGTAGTCGAGATCACGCTT -ACGGAAGTAGTCGAGATCAGCGTT -ACGGAAGTAGTCGAGATCTTCGTC -ACGGAAGTAGTCGAGATCTCTCTC -ACGGAAGTAGTCGAGATCTGGATC -ACGGAAGTAGTCGAGATCCACTTC -ACGGAAGTAGTCGAGATCGTACTC -ACGGAAGTAGTCGAGATCGATGTC -ACGGAAGTAGTCGAGATCACAGTC -ACGGAAGTAGTCGAGATCTTGCTG -ACGGAAGTAGTCGAGATCTCCATG -ACGGAAGTAGTCGAGATCTGTGTG -ACGGAAGTAGTCGAGATCCTAGTG -ACGGAAGTAGTCGAGATCCATCTG -ACGGAAGTAGTCGAGATCGAGTTG -ACGGAAGTAGTCGAGATCAGACTG -ACGGAAGTAGTCGAGATCTCGGTA -ACGGAAGTAGTCGAGATCTGCCTA -ACGGAAGTAGTCGAGATCCCACTA -ACGGAAGTAGTCGAGATCGGAGTA -ACGGAAGTAGTCGAGATCTCGTCT -ACGGAAGTAGTCGAGATCTGCACT -ACGGAAGTAGTCGAGATCCTGACT -ACGGAAGTAGTCGAGATCCAACCT -ACGGAAGTAGTCGAGATCGCTACT -ACGGAAGTAGTCGAGATCGGATCT -ACGGAAGTAGTCGAGATCAAGGCT -ACGGAAGTAGTCGAGATCTCAACC -ACGGAAGTAGTCGAGATCTGTTCC -ACGGAAGTAGTCGAGATCATTCCC -ACGGAAGTAGTCGAGATCTTCTCG -ACGGAAGTAGTCGAGATCTAGACG -ACGGAAGTAGTCGAGATCGTAACG -ACGGAAGTAGTCGAGATCACTTCG -ACGGAAGTAGTCGAGATCTACGCA -ACGGAAGTAGTCGAGATCCTTGCA -ACGGAAGTAGTCGAGATCCGAACA -ACGGAAGTAGTCGAGATCCAGTCA -ACGGAAGTAGTCGAGATCGATCCA -ACGGAAGTAGTCGAGATCACGACA -ACGGAAGTAGTCGAGATCAGCTCA -ACGGAAGTAGTCGAGATCTCACGT -ACGGAAGTAGTCGAGATCCGTAGT -ACGGAAGTAGTCGAGATCGTCAGT -ACGGAAGTAGTCGAGATCGAAGGT -ACGGAAGTAGTCGAGATCAACCGT -ACGGAAGTAGTCGAGATCTTGTGC -ACGGAAGTAGTCGAGATCCTAAGC -ACGGAAGTAGTCGAGATCACTAGC -ACGGAAGTAGTCGAGATCAGATGC -ACGGAAGTAGTCGAGATCTGAAGG -ACGGAAGTAGTCGAGATCCAATGG -ACGGAAGTAGTCGAGATCATGAGG -ACGGAAGTAGTCGAGATCAATGGG -ACGGAAGTAGTCGAGATCTCCTGA -ACGGAAGTAGTCGAGATCTAGCGA -ACGGAAGTAGTCGAGATCCACAGA -ACGGAAGTAGTCGAGATCGCAAGA -ACGGAAGTAGTCGAGATCGGTTGA -ACGGAAGTAGTCGAGATCTCCGAT -ACGGAAGTAGTCGAGATCTGGCAT -ACGGAAGTAGTCGAGATCCGAGAT -ACGGAAGTAGTCGAGATCTACCAC -ACGGAAGTAGTCGAGATCCAGAAC -ACGGAAGTAGTCGAGATCGTCTAC -ACGGAAGTAGTCGAGATCACGTAC -ACGGAAGTAGTCGAGATCAGTGAC -ACGGAAGTAGTCGAGATCCTGTAG -ACGGAAGTAGTCGAGATCCCTAAG -ACGGAAGTAGTCGAGATCGTTCAG -ACGGAAGTAGTCGAGATCGCATAG -ACGGAAGTAGTCGAGATCGACAAG -ACGGAAGTAGTCGAGATCAAGCAG -ACGGAAGTAGTCGAGATCCGTCAA -ACGGAAGTAGTCGAGATCGCTGAA -ACGGAAGTAGTCGAGATCAGTACG -ACGGAAGTAGTCGAGATCATCCGA -ACGGAAGTAGTCGAGATCATGGGA -ACGGAAGTAGTCGAGATCGTGCAA -ACGGAAGTAGTCGAGATCGAGGAA -ACGGAAGTAGTCGAGATCCAGGTA -ACGGAAGTAGTCGAGATCGACTCT -ACGGAAGTAGTCGAGATCAGTCCT -ACGGAAGTAGTCGAGATCTAAGCC -ACGGAAGTAGTCGAGATCATAGCC -ACGGAAGTAGTCGAGATCTAACCG -ACGGAAGTAGTCGAGATCATGCCA -ACGGAAGTAGTCCTTCTCGGAAAC -ACGGAAGTAGTCCTTCTCAACACC -ACGGAAGTAGTCCTTCTCATCGAG -ACGGAAGTAGTCCTTCTCCTCCTT -ACGGAAGTAGTCCTTCTCCCTGTT -ACGGAAGTAGTCCTTCTCCGGTTT -ACGGAAGTAGTCCTTCTCGTGGTT -ACGGAAGTAGTCCTTCTCGCCTTT -ACGGAAGTAGTCCTTCTCGGTCTT -ACGGAAGTAGTCCTTCTCACGCTT -ACGGAAGTAGTCCTTCTCAGCGTT -ACGGAAGTAGTCCTTCTCTTCGTC -ACGGAAGTAGTCCTTCTCTCTCTC -ACGGAAGTAGTCCTTCTCTGGATC -ACGGAAGTAGTCCTTCTCCACTTC -ACGGAAGTAGTCCTTCTCGTACTC -ACGGAAGTAGTCCTTCTCGATGTC -ACGGAAGTAGTCCTTCTCACAGTC -ACGGAAGTAGTCCTTCTCTTGCTG -ACGGAAGTAGTCCTTCTCTCCATG -ACGGAAGTAGTCCTTCTCTGTGTG -ACGGAAGTAGTCCTTCTCCTAGTG -ACGGAAGTAGTCCTTCTCCATCTG -ACGGAAGTAGTCCTTCTCGAGTTG -ACGGAAGTAGTCCTTCTCAGACTG -ACGGAAGTAGTCCTTCTCTCGGTA -ACGGAAGTAGTCCTTCTCTGCCTA -ACGGAAGTAGTCCTTCTCCCACTA -ACGGAAGTAGTCCTTCTCGGAGTA -ACGGAAGTAGTCCTTCTCTCGTCT -ACGGAAGTAGTCCTTCTCTGCACT -ACGGAAGTAGTCCTTCTCCTGACT -ACGGAAGTAGTCCTTCTCCAACCT -ACGGAAGTAGTCCTTCTCGCTACT -ACGGAAGTAGTCCTTCTCGGATCT -ACGGAAGTAGTCCTTCTCAAGGCT -ACGGAAGTAGTCCTTCTCTCAACC -ACGGAAGTAGTCCTTCTCTGTTCC -ACGGAAGTAGTCCTTCTCATTCCC -ACGGAAGTAGTCCTTCTCTTCTCG -ACGGAAGTAGTCCTTCTCTAGACG -ACGGAAGTAGTCCTTCTCGTAACG -ACGGAAGTAGTCCTTCTCACTTCG -ACGGAAGTAGTCCTTCTCTACGCA -ACGGAAGTAGTCCTTCTCCTTGCA -ACGGAAGTAGTCCTTCTCCGAACA -ACGGAAGTAGTCCTTCTCCAGTCA -ACGGAAGTAGTCCTTCTCGATCCA -ACGGAAGTAGTCCTTCTCACGACA -ACGGAAGTAGTCCTTCTCAGCTCA -ACGGAAGTAGTCCTTCTCTCACGT -ACGGAAGTAGTCCTTCTCCGTAGT -ACGGAAGTAGTCCTTCTCGTCAGT -ACGGAAGTAGTCCTTCTCGAAGGT -ACGGAAGTAGTCCTTCTCAACCGT -ACGGAAGTAGTCCTTCTCTTGTGC -ACGGAAGTAGTCCTTCTCCTAAGC -ACGGAAGTAGTCCTTCTCACTAGC -ACGGAAGTAGTCCTTCTCAGATGC -ACGGAAGTAGTCCTTCTCTGAAGG -ACGGAAGTAGTCCTTCTCCAATGG -ACGGAAGTAGTCCTTCTCATGAGG -ACGGAAGTAGTCCTTCTCAATGGG -ACGGAAGTAGTCCTTCTCTCCTGA -ACGGAAGTAGTCCTTCTCTAGCGA -ACGGAAGTAGTCCTTCTCCACAGA -ACGGAAGTAGTCCTTCTCGCAAGA -ACGGAAGTAGTCCTTCTCGGTTGA -ACGGAAGTAGTCCTTCTCTCCGAT -ACGGAAGTAGTCCTTCTCTGGCAT -ACGGAAGTAGTCCTTCTCCGAGAT -ACGGAAGTAGTCCTTCTCTACCAC -ACGGAAGTAGTCCTTCTCCAGAAC -ACGGAAGTAGTCCTTCTCGTCTAC -ACGGAAGTAGTCCTTCTCACGTAC -ACGGAAGTAGTCCTTCTCAGTGAC -ACGGAAGTAGTCCTTCTCCTGTAG -ACGGAAGTAGTCCTTCTCCCTAAG -ACGGAAGTAGTCCTTCTCGTTCAG -ACGGAAGTAGTCCTTCTCGCATAG -ACGGAAGTAGTCCTTCTCGACAAG -ACGGAAGTAGTCCTTCTCAAGCAG -ACGGAAGTAGTCCTTCTCCGTCAA -ACGGAAGTAGTCCTTCTCGCTGAA -ACGGAAGTAGTCCTTCTCAGTACG -ACGGAAGTAGTCCTTCTCATCCGA -ACGGAAGTAGTCCTTCTCATGGGA -ACGGAAGTAGTCCTTCTCGTGCAA -ACGGAAGTAGTCCTTCTCGAGGAA -ACGGAAGTAGTCCTTCTCCAGGTA -ACGGAAGTAGTCCTTCTCGACTCT -ACGGAAGTAGTCCTTCTCAGTCCT -ACGGAAGTAGTCCTTCTCTAAGCC -ACGGAAGTAGTCCTTCTCATAGCC -ACGGAAGTAGTCCTTCTCTAACCG -ACGGAAGTAGTCCTTCTCATGCCA -ACGGAAGTAGTCGTTCCTGGAAAC -ACGGAAGTAGTCGTTCCTAACACC -ACGGAAGTAGTCGTTCCTATCGAG -ACGGAAGTAGTCGTTCCTCTCCTT -ACGGAAGTAGTCGTTCCTCCTGTT -ACGGAAGTAGTCGTTCCTCGGTTT -ACGGAAGTAGTCGTTCCTGTGGTT -ACGGAAGTAGTCGTTCCTGCCTTT -ACGGAAGTAGTCGTTCCTGGTCTT -ACGGAAGTAGTCGTTCCTACGCTT -ACGGAAGTAGTCGTTCCTAGCGTT -ACGGAAGTAGTCGTTCCTTTCGTC -ACGGAAGTAGTCGTTCCTTCTCTC -ACGGAAGTAGTCGTTCCTTGGATC -ACGGAAGTAGTCGTTCCTCACTTC -ACGGAAGTAGTCGTTCCTGTACTC -ACGGAAGTAGTCGTTCCTGATGTC -ACGGAAGTAGTCGTTCCTACAGTC -ACGGAAGTAGTCGTTCCTTTGCTG -ACGGAAGTAGTCGTTCCTTCCATG -ACGGAAGTAGTCGTTCCTTGTGTG -ACGGAAGTAGTCGTTCCTCTAGTG -ACGGAAGTAGTCGTTCCTCATCTG -ACGGAAGTAGTCGTTCCTGAGTTG -ACGGAAGTAGTCGTTCCTAGACTG -ACGGAAGTAGTCGTTCCTTCGGTA -ACGGAAGTAGTCGTTCCTTGCCTA -ACGGAAGTAGTCGTTCCTCCACTA -ACGGAAGTAGTCGTTCCTGGAGTA -ACGGAAGTAGTCGTTCCTTCGTCT -ACGGAAGTAGTCGTTCCTTGCACT -ACGGAAGTAGTCGTTCCTCTGACT -ACGGAAGTAGTCGTTCCTCAACCT -ACGGAAGTAGTCGTTCCTGCTACT -ACGGAAGTAGTCGTTCCTGGATCT -ACGGAAGTAGTCGTTCCTAAGGCT -ACGGAAGTAGTCGTTCCTTCAACC -ACGGAAGTAGTCGTTCCTTGTTCC -ACGGAAGTAGTCGTTCCTATTCCC -ACGGAAGTAGTCGTTCCTTTCTCG -ACGGAAGTAGTCGTTCCTTAGACG -ACGGAAGTAGTCGTTCCTGTAACG -ACGGAAGTAGTCGTTCCTACTTCG -ACGGAAGTAGTCGTTCCTTACGCA -ACGGAAGTAGTCGTTCCTCTTGCA -ACGGAAGTAGTCGTTCCTCGAACA -ACGGAAGTAGTCGTTCCTCAGTCA -ACGGAAGTAGTCGTTCCTGATCCA -ACGGAAGTAGTCGTTCCTACGACA -ACGGAAGTAGTCGTTCCTAGCTCA -ACGGAAGTAGTCGTTCCTTCACGT -ACGGAAGTAGTCGTTCCTCGTAGT -ACGGAAGTAGTCGTTCCTGTCAGT -ACGGAAGTAGTCGTTCCTGAAGGT -ACGGAAGTAGTCGTTCCTAACCGT -ACGGAAGTAGTCGTTCCTTTGTGC -ACGGAAGTAGTCGTTCCTCTAAGC -ACGGAAGTAGTCGTTCCTACTAGC -ACGGAAGTAGTCGTTCCTAGATGC -ACGGAAGTAGTCGTTCCTTGAAGG -ACGGAAGTAGTCGTTCCTCAATGG -ACGGAAGTAGTCGTTCCTATGAGG -ACGGAAGTAGTCGTTCCTAATGGG -ACGGAAGTAGTCGTTCCTTCCTGA -ACGGAAGTAGTCGTTCCTTAGCGA -ACGGAAGTAGTCGTTCCTCACAGA -ACGGAAGTAGTCGTTCCTGCAAGA -ACGGAAGTAGTCGTTCCTGGTTGA -ACGGAAGTAGTCGTTCCTTCCGAT -ACGGAAGTAGTCGTTCCTTGGCAT -ACGGAAGTAGTCGTTCCTCGAGAT -ACGGAAGTAGTCGTTCCTTACCAC -ACGGAAGTAGTCGTTCCTCAGAAC -ACGGAAGTAGTCGTTCCTGTCTAC -ACGGAAGTAGTCGTTCCTACGTAC -ACGGAAGTAGTCGTTCCTAGTGAC -ACGGAAGTAGTCGTTCCTCTGTAG -ACGGAAGTAGTCGTTCCTCCTAAG -ACGGAAGTAGTCGTTCCTGTTCAG -ACGGAAGTAGTCGTTCCTGCATAG -ACGGAAGTAGTCGTTCCTGACAAG -ACGGAAGTAGTCGTTCCTAAGCAG -ACGGAAGTAGTCGTTCCTCGTCAA -ACGGAAGTAGTCGTTCCTGCTGAA -ACGGAAGTAGTCGTTCCTAGTACG -ACGGAAGTAGTCGTTCCTATCCGA -ACGGAAGTAGTCGTTCCTATGGGA -ACGGAAGTAGTCGTTCCTGTGCAA -ACGGAAGTAGTCGTTCCTGAGGAA -ACGGAAGTAGTCGTTCCTCAGGTA -ACGGAAGTAGTCGTTCCTGACTCT -ACGGAAGTAGTCGTTCCTAGTCCT -ACGGAAGTAGTCGTTCCTTAAGCC -ACGGAAGTAGTCGTTCCTATAGCC -ACGGAAGTAGTCGTTCCTTAACCG -ACGGAAGTAGTCGTTCCTATGCCA -ACGGAAGTAGTCTTTCGGGGAAAC -ACGGAAGTAGTCTTTCGGAACACC -ACGGAAGTAGTCTTTCGGATCGAG -ACGGAAGTAGTCTTTCGGCTCCTT -ACGGAAGTAGTCTTTCGGCCTGTT -ACGGAAGTAGTCTTTCGGCGGTTT -ACGGAAGTAGTCTTTCGGGTGGTT -ACGGAAGTAGTCTTTCGGGCCTTT -ACGGAAGTAGTCTTTCGGGGTCTT -ACGGAAGTAGTCTTTCGGACGCTT -ACGGAAGTAGTCTTTCGGAGCGTT -ACGGAAGTAGTCTTTCGGTTCGTC -ACGGAAGTAGTCTTTCGGTCTCTC -ACGGAAGTAGTCTTTCGGTGGATC -ACGGAAGTAGTCTTTCGGCACTTC -ACGGAAGTAGTCTTTCGGGTACTC -ACGGAAGTAGTCTTTCGGGATGTC -ACGGAAGTAGTCTTTCGGACAGTC -ACGGAAGTAGTCTTTCGGTTGCTG -ACGGAAGTAGTCTTTCGGTCCATG -ACGGAAGTAGTCTTTCGGTGTGTG -ACGGAAGTAGTCTTTCGGCTAGTG -ACGGAAGTAGTCTTTCGGCATCTG -ACGGAAGTAGTCTTTCGGGAGTTG -ACGGAAGTAGTCTTTCGGAGACTG -ACGGAAGTAGTCTTTCGGTCGGTA -ACGGAAGTAGTCTTTCGGTGCCTA -ACGGAAGTAGTCTTTCGGCCACTA -ACGGAAGTAGTCTTTCGGGGAGTA -ACGGAAGTAGTCTTTCGGTCGTCT -ACGGAAGTAGTCTTTCGGTGCACT -ACGGAAGTAGTCTTTCGGCTGACT -ACGGAAGTAGTCTTTCGGCAACCT -ACGGAAGTAGTCTTTCGGGCTACT -ACGGAAGTAGTCTTTCGGGGATCT -ACGGAAGTAGTCTTTCGGAAGGCT -ACGGAAGTAGTCTTTCGGTCAACC -ACGGAAGTAGTCTTTCGGTGTTCC -ACGGAAGTAGTCTTTCGGATTCCC -ACGGAAGTAGTCTTTCGGTTCTCG -ACGGAAGTAGTCTTTCGGTAGACG -ACGGAAGTAGTCTTTCGGGTAACG -ACGGAAGTAGTCTTTCGGACTTCG -ACGGAAGTAGTCTTTCGGTACGCA -ACGGAAGTAGTCTTTCGGCTTGCA -ACGGAAGTAGTCTTTCGGCGAACA -ACGGAAGTAGTCTTTCGGCAGTCA -ACGGAAGTAGTCTTTCGGGATCCA -ACGGAAGTAGTCTTTCGGACGACA -ACGGAAGTAGTCTTTCGGAGCTCA -ACGGAAGTAGTCTTTCGGTCACGT -ACGGAAGTAGTCTTTCGGCGTAGT -ACGGAAGTAGTCTTTCGGGTCAGT -ACGGAAGTAGTCTTTCGGGAAGGT -ACGGAAGTAGTCTTTCGGAACCGT -ACGGAAGTAGTCTTTCGGTTGTGC -ACGGAAGTAGTCTTTCGGCTAAGC -ACGGAAGTAGTCTTTCGGACTAGC -ACGGAAGTAGTCTTTCGGAGATGC -ACGGAAGTAGTCTTTCGGTGAAGG -ACGGAAGTAGTCTTTCGGCAATGG -ACGGAAGTAGTCTTTCGGATGAGG -ACGGAAGTAGTCTTTCGGAATGGG -ACGGAAGTAGTCTTTCGGTCCTGA -ACGGAAGTAGTCTTTCGGTAGCGA -ACGGAAGTAGTCTTTCGGCACAGA -ACGGAAGTAGTCTTTCGGGCAAGA -ACGGAAGTAGTCTTTCGGGGTTGA -ACGGAAGTAGTCTTTCGGTCCGAT -ACGGAAGTAGTCTTTCGGTGGCAT -ACGGAAGTAGTCTTTCGGCGAGAT -ACGGAAGTAGTCTTTCGGTACCAC -ACGGAAGTAGTCTTTCGGCAGAAC -ACGGAAGTAGTCTTTCGGGTCTAC -ACGGAAGTAGTCTTTCGGACGTAC -ACGGAAGTAGTCTTTCGGAGTGAC -ACGGAAGTAGTCTTTCGGCTGTAG -ACGGAAGTAGTCTTTCGGCCTAAG -ACGGAAGTAGTCTTTCGGGTTCAG -ACGGAAGTAGTCTTTCGGGCATAG -ACGGAAGTAGTCTTTCGGGACAAG -ACGGAAGTAGTCTTTCGGAAGCAG -ACGGAAGTAGTCTTTCGGCGTCAA -ACGGAAGTAGTCTTTCGGGCTGAA -ACGGAAGTAGTCTTTCGGAGTACG -ACGGAAGTAGTCTTTCGGATCCGA -ACGGAAGTAGTCTTTCGGATGGGA -ACGGAAGTAGTCTTTCGGGTGCAA -ACGGAAGTAGTCTTTCGGGAGGAA -ACGGAAGTAGTCTTTCGGCAGGTA -ACGGAAGTAGTCTTTCGGGACTCT -ACGGAAGTAGTCTTTCGGAGTCCT -ACGGAAGTAGTCTTTCGGTAAGCC -ACGGAAGTAGTCTTTCGGATAGCC -ACGGAAGTAGTCTTTCGGTAACCG -ACGGAAGTAGTCTTTCGGATGCCA -ACGGAAGTAGTCGTTGTGGGAAAC -ACGGAAGTAGTCGTTGTGAACACC -ACGGAAGTAGTCGTTGTGATCGAG -ACGGAAGTAGTCGTTGTGCTCCTT -ACGGAAGTAGTCGTTGTGCCTGTT -ACGGAAGTAGTCGTTGTGCGGTTT -ACGGAAGTAGTCGTTGTGGTGGTT -ACGGAAGTAGTCGTTGTGGCCTTT -ACGGAAGTAGTCGTTGTGGGTCTT -ACGGAAGTAGTCGTTGTGACGCTT -ACGGAAGTAGTCGTTGTGAGCGTT -ACGGAAGTAGTCGTTGTGTTCGTC -ACGGAAGTAGTCGTTGTGTCTCTC -ACGGAAGTAGTCGTTGTGTGGATC -ACGGAAGTAGTCGTTGTGCACTTC -ACGGAAGTAGTCGTTGTGGTACTC -ACGGAAGTAGTCGTTGTGGATGTC -ACGGAAGTAGTCGTTGTGACAGTC -ACGGAAGTAGTCGTTGTGTTGCTG -ACGGAAGTAGTCGTTGTGTCCATG -ACGGAAGTAGTCGTTGTGTGTGTG -ACGGAAGTAGTCGTTGTGCTAGTG -ACGGAAGTAGTCGTTGTGCATCTG -ACGGAAGTAGTCGTTGTGGAGTTG -ACGGAAGTAGTCGTTGTGAGACTG -ACGGAAGTAGTCGTTGTGTCGGTA -ACGGAAGTAGTCGTTGTGTGCCTA -ACGGAAGTAGTCGTTGTGCCACTA -ACGGAAGTAGTCGTTGTGGGAGTA -ACGGAAGTAGTCGTTGTGTCGTCT -ACGGAAGTAGTCGTTGTGTGCACT -ACGGAAGTAGTCGTTGTGCTGACT -ACGGAAGTAGTCGTTGTGCAACCT -ACGGAAGTAGTCGTTGTGGCTACT -ACGGAAGTAGTCGTTGTGGGATCT -ACGGAAGTAGTCGTTGTGAAGGCT -ACGGAAGTAGTCGTTGTGTCAACC -ACGGAAGTAGTCGTTGTGTGTTCC -ACGGAAGTAGTCGTTGTGATTCCC -ACGGAAGTAGTCGTTGTGTTCTCG -ACGGAAGTAGTCGTTGTGTAGACG -ACGGAAGTAGTCGTTGTGGTAACG -ACGGAAGTAGTCGTTGTGACTTCG -ACGGAAGTAGTCGTTGTGTACGCA -ACGGAAGTAGTCGTTGTGCTTGCA -ACGGAAGTAGTCGTTGTGCGAACA -ACGGAAGTAGTCGTTGTGCAGTCA -ACGGAAGTAGTCGTTGTGGATCCA -ACGGAAGTAGTCGTTGTGACGACA -ACGGAAGTAGTCGTTGTGAGCTCA -ACGGAAGTAGTCGTTGTGTCACGT -ACGGAAGTAGTCGTTGTGCGTAGT -ACGGAAGTAGTCGTTGTGGTCAGT -ACGGAAGTAGTCGTTGTGGAAGGT -ACGGAAGTAGTCGTTGTGAACCGT -ACGGAAGTAGTCGTTGTGTTGTGC -ACGGAAGTAGTCGTTGTGCTAAGC -ACGGAAGTAGTCGTTGTGACTAGC -ACGGAAGTAGTCGTTGTGAGATGC -ACGGAAGTAGTCGTTGTGTGAAGG -ACGGAAGTAGTCGTTGTGCAATGG -ACGGAAGTAGTCGTTGTGATGAGG -ACGGAAGTAGTCGTTGTGAATGGG -ACGGAAGTAGTCGTTGTGTCCTGA -ACGGAAGTAGTCGTTGTGTAGCGA -ACGGAAGTAGTCGTTGTGCACAGA -ACGGAAGTAGTCGTTGTGGCAAGA -ACGGAAGTAGTCGTTGTGGGTTGA -ACGGAAGTAGTCGTTGTGTCCGAT -ACGGAAGTAGTCGTTGTGTGGCAT -ACGGAAGTAGTCGTTGTGCGAGAT -ACGGAAGTAGTCGTTGTGTACCAC -ACGGAAGTAGTCGTTGTGCAGAAC -ACGGAAGTAGTCGTTGTGGTCTAC -ACGGAAGTAGTCGTTGTGACGTAC -ACGGAAGTAGTCGTTGTGAGTGAC -ACGGAAGTAGTCGTTGTGCTGTAG -ACGGAAGTAGTCGTTGTGCCTAAG -ACGGAAGTAGTCGTTGTGGTTCAG -ACGGAAGTAGTCGTTGTGGCATAG -ACGGAAGTAGTCGTTGTGGACAAG -ACGGAAGTAGTCGTTGTGAAGCAG -ACGGAAGTAGTCGTTGTGCGTCAA -ACGGAAGTAGTCGTTGTGGCTGAA -ACGGAAGTAGTCGTTGTGAGTACG -ACGGAAGTAGTCGTTGTGATCCGA -ACGGAAGTAGTCGTTGTGATGGGA -ACGGAAGTAGTCGTTGTGGTGCAA -ACGGAAGTAGTCGTTGTGGAGGAA -ACGGAAGTAGTCGTTGTGCAGGTA -ACGGAAGTAGTCGTTGTGGACTCT -ACGGAAGTAGTCGTTGTGAGTCCT -ACGGAAGTAGTCGTTGTGTAAGCC -ACGGAAGTAGTCGTTGTGATAGCC -ACGGAAGTAGTCGTTGTGTAACCG -ACGGAAGTAGTCGTTGTGATGCCA -ACGGAAGTAGTCTTTGCCGGAAAC -ACGGAAGTAGTCTTTGCCAACACC -ACGGAAGTAGTCTTTGCCATCGAG -ACGGAAGTAGTCTTTGCCCTCCTT -ACGGAAGTAGTCTTTGCCCCTGTT -ACGGAAGTAGTCTTTGCCCGGTTT -ACGGAAGTAGTCTTTGCCGTGGTT -ACGGAAGTAGTCTTTGCCGCCTTT -ACGGAAGTAGTCTTTGCCGGTCTT -ACGGAAGTAGTCTTTGCCACGCTT -ACGGAAGTAGTCTTTGCCAGCGTT -ACGGAAGTAGTCTTTGCCTTCGTC -ACGGAAGTAGTCTTTGCCTCTCTC -ACGGAAGTAGTCTTTGCCTGGATC -ACGGAAGTAGTCTTTGCCCACTTC -ACGGAAGTAGTCTTTGCCGTACTC -ACGGAAGTAGTCTTTGCCGATGTC -ACGGAAGTAGTCTTTGCCACAGTC -ACGGAAGTAGTCTTTGCCTTGCTG -ACGGAAGTAGTCTTTGCCTCCATG -ACGGAAGTAGTCTTTGCCTGTGTG -ACGGAAGTAGTCTTTGCCCTAGTG -ACGGAAGTAGTCTTTGCCCATCTG -ACGGAAGTAGTCTTTGCCGAGTTG -ACGGAAGTAGTCTTTGCCAGACTG -ACGGAAGTAGTCTTTGCCTCGGTA -ACGGAAGTAGTCTTTGCCTGCCTA -ACGGAAGTAGTCTTTGCCCCACTA -ACGGAAGTAGTCTTTGCCGGAGTA -ACGGAAGTAGTCTTTGCCTCGTCT -ACGGAAGTAGTCTTTGCCTGCACT -ACGGAAGTAGTCTTTGCCCTGACT -ACGGAAGTAGTCTTTGCCCAACCT -ACGGAAGTAGTCTTTGCCGCTACT -ACGGAAGTAGTCTTTGCCGGATCT -ACGGAAGTAGTCTTTGCCAAGGCT -ACGGAAGTAGTCTTTGCCTCAACC -ACGGAAGTAGTCTTTGCCTGTTCC -ACGGAAGTAGTCTTTGCCATTCCC -ACGGAAGTAGTCTTTGCCTTCTCG -ACGGAAGTAGTCTTTGCCTAGACG -ACGGAAGTAGTCTTTGCCGTAACG -ACGGAAGTAGTCTTTGCCACTTCG -ACGGAAGTAGTCTTTGCCTACGCA -ACGGAAGTAGTCTTTGCCCTTGCA -ACGGAAGTAGTCTTTGCCCGAACA -ACGGAAGTAGTCTTTGCCCAGTCA -ACGGAAGTAGTCTTTGCCGATCCA -ACGGAAGTAGTCTTTGCCACGACA -ACGGAAGTAGTCTTTGCCAGCTCA -ACGGAAGTAGTCTTTGCCTCACGT -ACGGAAGTAGTCTTTGCCCGTAGT -ACGGAAGTAGTCTTTGCCGTCAGT -ACGGAAGTAGTCTTTGCCGAAGGT -ACGGAAGTAGTCTTTGCCAACCGT -ACGGAAGTAGTCTTTGCCTTGTGC -ACGGAAGTAGTCTTTGCCCTAAGC -ACGGAAGTAGTCTTTGCCACTAGC -ACGGAAGTAGTCTTTGCCAGATGC -ACGGAAGTAGTCTTTGCCTGAAGG -ACGGAAGTAGTCTTTGCCCAATGG -ACGGAAGTAGTCTTTGCCATGAGG -ACGGAAGTAGTCTTTGCCAATGGG -ACGGAAGTAGTCTTTGCCTCCTGA -ACGGAAGTAGTCTTTGCCTAGCGA -ACGGAAGTAGTCTTTGCCCACAGA -ACGGAAGTAGTCTTTGCCGCAAGA -ACGGAAGTAGTCTTTGCCGGTTGA -ACGGAAGTAGTCTTTGCCTCCGAT -ACGGAAGTAGTCTTTGCCTGGCAT -ACGGAAGTAGTCTTTGCCCGAGAT -ACGGAAGTAGTCTTTGCCTACCAC -ACGGAAGTAGTCTTTGCCCAGAAC -ACGGAAGTAGTCTTTGCCGTCTAC -ACGGAAGTAGTCTTTGCCACGTAC -ACGGAAGTAGTCTTTGCCAGTGAC -ACGGAAGTAGTCTTTGCCCTGTAG -ACGGAAGTAGTCTTTGCCCCTAAG -ACGGAAGTAGTCTTTGCCGTTCAG -ACGGAAGTAGTCTTTGCCGCATAG -ACGGAAGTAGTCTTTGCCGACAAG -ACGGAAGTAGTCTTTGCCAAGCAG -ACGGAAGTAGTCTTTGCCCGTCAA -ACGGAAGTAGTCTTTGCCGCTGAA -ACGGAAGTAGTCTTTGCCAGTACG -ACGGAAGTAGTCTTTGCCATCCGA -ACGGAAGTAGTCTTTGCCATGGGA -ACGGAAGTAGTCTTTGCCGTGCAA -ACGGAAGTAGTCTTTGCCGAGGAA -ACGGAAGTAGTCTTTGCCCAGGTA -ACGGAAGTAGTCTTTGCCGACTCT -ACGGAAGTAGTCTTTGCCAGTCCT -ACGGAAGTAGTCTTTGCCTAAGCC -ACGGAAGTAGTCTTTGCCATAGCC -ACGGAAGTAGTCTTTGCCTAACCG -ACGGAAGTAGTCTTTGCCATGCCA -ACGGAAGTAGTCCTTGGTGGAAAC -ACGGAAGTAGTCCTTGGTAACACC -ACGGAAGTAGTCCTTGGTATCGAG -ACGGAAGTAGTCCTTGGTCTCCTT -ACGGAAGTAGTCCTTGGTCCTGTT -ACGGAAGTAGTCCTTGGTCGGTTT -ACGGAAGTAGTCCTTGGTGTGGTT -ACGGAAGTAGTCCTTGGTGCCTTT -ACGGAAGTAGTCCTTGGTGGTCTT -ACGGAAGTAGTCCTTGGTACGCTT -ACGGAAGTAGTCCTTGGTAGCGTT -ACGGAAGTAGTCCTTGGTTTCGTC -ACGGAAGTAGTCCTTGGTTCTCTC -ACGGAAGTAGTCCTTGGTTGGATC -ACGGAAGTAGTCCTTGGTCACTTC -ACGGAAGTAGTCCTTGGTGTACTC -ACGGAAGTAGTCCTTGGTGATGTC -ACGGAAGTAGTCCTTGGTACAGTC -ACGGAAGTAGTCCTTGGTTTGCTG -ACGGAAGTAGTCCTTGGTTCCATG -ACGGAAGTAGTCCTTGGTTGTGTG -ACGGAAGTAGTCCTTGGTCTAGTG -ACGGAAGTAGTCCTTGGTCATCTG -ACGGAAGTAGTCCTTGGTGAGTTG -ACGGAAGTAGTCCTTGGTAGACTG -ACGGAAGTAGTCCTTGGTTCGGTA -ACGGAAGTAGTCCTTGGTTGCCTA -ACGGAAGTAGTCCTTGGTCCACTA -ACGGAAGTAGTCCTTGGTGGAGTA -ACGGAAGTAGTCCTTGGTTCGTCT -ACGGAAGTAGTCCTTGGTTGCACT -ACGGAAGTAGTCCTTGGTCTGACT -ACGGAAGTAGTCCTTGGTCAACCT -ACGGAAGTAGTCCTTGGTGCTACT -ACGGAAGTAGTCCTTGGTGGATCT -ACGGAAGTAGTCCTTGGTAAGGCT -ACGGAAGTAGTCCTTGGTTCAACC -ACGGAAGTAGTCCTTGGTTGTTCC -ACGGAAGTAGTCCTTGGTATTCCC -ACGGAAGTAGTCCTTGGTTTCTCG -ACGGAAGTAGTCCTTGGTTAGACG -ACGGAAGTAGTCCTTGGTGTAACG -ACGGAAGTAGTCCTTGGTACTTCG -ACGGAAGTAGTCCTTGGTTACGCA -ACGGAAGTAGTCCTTGGTCTTGCA -ACGGAAGTAGTCCTTGGTCGAACA -ACGGAAGTAGTCCTTGGTCAGTCA -ACGGAAGTAGTCCTTGGTGATCCA -ACGGAAGTAGTCCTTGGTACGACA -ACGGAAGTAGTCCTTGGTAGCTCA -ACGGAAGTAGTCCTTGGTTCACGT -ACGGAAGTAGTCCTTGGTCGTAGT -ACGGAAGTAGTCCTTGGTGTCAGT -ACGGAAGTAGTCCTTGGTGAAGGT -ACGGAAGTAGTCCTTGGTAACCGT -ACGGAAGTAGTCCTTGGTTTGTGC -ACGGAAGTAGTCCTTGGTCTAAGC -ACGGAAGTAGTCCTTGGTACTAGC -ACGGAAGTAGTCCTTGGTAGATGC -ACGGAAGTAGTCCTTGGTTGAAGG -ACGGAAGTAGTCCTTGGTCAATGG -ACGGAAGTAGTCCTTGGTATGAGG -ACGGAAGTAGTCCTTGGTAATGGG -ACGGAAGTAGTCCTTGGTTCCTGA -ACGGAAGTAGTCCTTGGTTAGCGA -ACGGAAGTAGTCCTTGGTCACAGA -ACGGAAGTAGTCCTTGGTGCAAGA -ACGGAAGTAGTCCTTGGTGGTTGA -ACGGAAGTAGTCCTTGGTTCCGAT -ACGGAAGTAGTCCTTGGTTGGCAT -ACGGAAGTAGTCCTTGGTCGAGAT -ACGGAAGTAGTCCTTGGTTACCAC -ACGGAAGTAGTCCTTGGTCAGAAC -ACGGAAGTAGTCCTTGGTGTCTAC -ACGGAAGTAGTCCTTGGTACGTAC -ACGGAAGTAGTCCTTGGTAGTGAC -ACGGAAGTAGTCCTTGGTCTGTAG -ACGGAAGTAGTCCTTGGTCCTAAG -ACGGAAGTAGTCCTTGGTGTTCAG -ACGGAAGTAGTCCTTGGTGCATAG -ACGGAAGTAGTCCTTGGTGACAAG -ACGGAAGTAGTCCTTGGTAAGCAG -ACGGAAGTAGTCCTTGGTCGTCAA -ACGGAAGTAGTCCTTGGTGCTGAA -ACGGAAGTAGTCCTTGGTAGTACG -ACGGAAGTAGTCCTTGGTATCCGA -ACGGAAGTAGTCCTTGGTATGGGA -ACGGAAGTAGTCCTTGGTGTGCAA -ACGGAAGTAGTCCTTGGTGAGGAA -ACGGAAGTAGTCCTTGGTCAGGTA -ACGGAAGTAGTCCTTGGTGACTCT -ACGGAAGTAGTCCTTGGTAGTCCT -ACGGAAGTAGTCCTTGGTTAAGCC -ACGGAAGTAGTCCTTGGTATAGCC -ACGGAAGTAGTCCTTGGTTAACCG -ACGGAAGTAGTCCTTGGTATGCCA -ACGGAAGTAGTCCTTACGGGAAAC -ACGGAAGTAGTCCTTACGAACACC -ACGGAAGTAGTCCTTACGATCGAG -ACGGAAGTAGTCCTTACGCTCCTT -ACGGAAGTAGTCCTTACGCCTGTT -ACGGAAGTAGTCCTTACGCGGTTT -ACGGAAGTAGTCCTTACGGTGGTT -ACGGAAGTAGTCCTTACGGCCTTT -ACGGAAGTAGTCCTTACGGGTCTT -ACGGAAGTAGTCCTTACGACGCTT -ACGGAAGTAGTCCTTACGAGCGTT -ACGGAAGTAGTCCTTACGTTCGTC -ACGGAAGTAGTCCTTACGTCTCTC -ACGGAAGTAGTCCTTACGTGGATC -ACGGAAGTAGTCCTTACGCACTTC -ACGGAAGTAGTCCTTACGGTACTC -ACGGAAGTAGTCCTTACGGATGTC -ACGGAAGTAGTCCTTACGACAGTC -ACGGAAGTAGTCCTTACGTTGCTG -ACGGAAGTAGTCCTTACGTCCATG -ACGGAAGTAGTCCTTACGTGTGTG -ACGGAAGTAGTCCTTACGCTAGTG -ACGGAAGTAGTCCTTACGCATCTG -ACGGAAGTAGTCCTTACGGAGTTG -ACGGAAGTAGTCCTTACGAGACTG -ACGGAAGTAGTCCTTACGTCGGTA -ACGGAAGTAGTCCTTACGTGCCTA -ACGGAAGTAGTCCTTACGCCACTA -ACGGAAGTAGTCCTTACGGGAGTA -ACGGAAGTAGTCCTTACGTCGTCT -ACGGAAGTAGTCCTTACGTGCACT -ACGGAAGTAGTCCTTACGCTGACT -ACGGAAGTAGTCCTTACGCAACCT -ACGGAAGTAGTCCTTACGGCTACT -ACGGAAGTAGTCCTTACGGGATCT -ACGGAAGTAGTCCTTACGAAGGCT -ACGGAAGTAGTCCTTACGTCAACC -ACGGAAGTAGTCCTTACGTGTTCC -ACGGAAGTAGTCCTTACGATTCCC -ACGGAAGTAGTCCTTACGTTCTCG -ACGGAAGTAGTCCTTACGTAGACG -ACGGAAGTAGTCCTTACGGTAACG -ACGGAAGTAGTCCTTACGACTTCG -ACGGAAGTAGTCCTTACGTACGCA -ACGGAAGTAGTCCTTACGCTTGCA -ACGGAAGTAGTCCTTACGCGAACA -ACGGAAGTAGTCCTTACGCAGTCA -ACGGAAGTAGTCCTTACGGATCCA -ACGGAAGTAGTCCTTACGACGACA -ACGGAAGTAGTCCTTACGAGCTCA -ACGGAAGTAGTCCTTACGTCACGT -ACGGAAGTAGTCCTTACGCGTAGT -ACGGAAGTAGTCCTTACGGTCAGT -ACGGAAGTAGTCCTTACGGAAGGT -ACGGAAGTAGTCCTTACGAACCGT -ACGGAAGTAGTCCTTACGTTGTGC -ACGGAAGTAGTCCTTACGCTAAGC -ACGGAAGTAGTCCTTACGACTAGC -ACGGAAGTAGTCCTTACGAGATGC -ACGGAAGTAGTCCTTACGTGAAGG -ACGGAAGTAGTCCTTACGCAATGG -ACGGAAGTAGTCCTTACGATGAGG -ACGGAAGTAGTCCTTACGAATGGG -ACGGAAGTAGTCCTTACGTCCTGA -ACGGAAGTAGTCCTTACGTAGCGA -ACGGAAGTAGTCCTTACGCACAGA -ACGGAAGTAGTCCTTACGGCAAGA -ACGGAAGTAGTCCTTACGGGTTGA -ACGGAAGTAGTCCTTACGTCCGAT -ACGGAAGTAGTCCTTACGTGGCAT -ACGGAAGTAGTCCTTACGCGAGAT -ACGGAAGTAGTCCTTACGTACCAC -ACGGAAGTAGTCCTTACGCAGAAC -ACGGAAGTAGTCCTTACGGTCTAC -ACGGAAGTAGTCCTTACGACGTAC -ACGGAAGTAGTCCTTACGAGTGAC -ACGGAAGTAGTCCTTACGCTGTAG -ACGGAAGTAGTCCTTACGCCTAAG -ACGGAAGTAGTCCTTACGGTTCAG -ACGGAAGTAGTCCTTACGGCATAG -ACGGAAGTAGTCCTTACGGACAAG -ACGGAAGTAGTCCTTACGAAGCAG -ACGGAAGTAGTCCTTACGCGTCAA -ACGGAAGTAGTCCTTACGGCTGAA -ACGGAAGTAGTCCTTACGAGTACG -ACGGAAGTAGTCCTTACGATCCGA -ACGGAAGTAGTCCTTACGATGGGA -ACGGAAGTAGTCCTTACGGTGCAA -ACGGAAGTAGTCCTTACGGAGGAA -ACGGAAGTAGTCCTTACGCAGGTA -ACGGAAGTAGTCCTTACGGACTCT -ACGGAAGTAGTCCTTACGAGTCCT -ACGGAAGTAGTCCTTACGTAAGCC -ACGGAAGTAGTCCTTACGATAGCC -ACGGAAGTAGTCCTTACGTAACCG -ACGGAAGTAGTCCTTACGATGCCA -ACGGAAGTAGTCGTTAGCGGAAAC -ACGGAAGTAGTCGTTAGCAACACC -ACGGAAGTAGTCGTTAGCATCGAG -ACGGAAGTAGTCGTTAGCCTCCTT -ACGGAAGTAGTCGTTAGCCCTGTT -ACGGAAGTAGTCGTTAGCCGGTTT -ACGGAAGTAGTCGTTAGCGTGGTT -ACGGAAGTAGTCGTTAGCGCCTTT -ACGGAAGTAGTCGTTAGCGGTCTT -ACGGAAGTAGTCGTTAGCACGCTT -ACGGAAGTAGTCGTTAGCAGCGTT -ACGGAAGTAGTCGTTAGCTTCGTC -ACGGAAGTAGTCGTTAGCTCTCTC -ACGGAAGTAGTCGTTAGCTGGATC -ACGGAAGTAGTCGTTAGCCACTTC -ACGGAAGTAGTCGTTAGCGTACTC -ACGGAAGTAGTCGTTAGCGATGTC -ACGGAAGTAGTCGTTAGCACAGTC -ACGGAAGTAGTCGTTAGCTTGCTG -ACGGAAGTAGTCGTTAGCTCCATG -ACGGAAGTAGTCGTTAGCTGTGTG -ACGGAAGTAGTCGTTAGCCTAGTG -ACGGAAGTAGTCGTTAGCCATCTG -ACGGAAGTAGTCGTTAGCGAGTTG -ACGGAAGTAGTCGTTAGCAGACTG -ACGGAAGTAGTCGTTAGCTCGGTA -ACGGAAGTAGTCGTTAGCTGCCTA -ACGGAAGTAGTCGTTAGCCCACTA -ACGGAAGTAGTCGTTAGCGGAGTA -ACGGAAGTAGTCGTTAGCTCGTCT -ACGGAAGTAGTCGTTAGCTGCACT -ACGGAAGTAGTCGTTAGCCTGACT -ACGGAAGTAGTCGTTAGCCAACCT -ACGGAAGTAGTCGTTAGCGCTACT -ACGGAAGTAGTCGTTAGCGGATCT -ACGGAAGTAGTCGTTAGCAAGGCT -ACGGAAGTAGTCGTTAGCTCAACC -ACGGAAGTAGTCGTTAGCTGTTCC -ACGGAAGTAGTCGTTAGCATTCCC -ACGGAAGTAGTCGTTAGCTTCTCG -ACGGAAGTAGTCGTTAGCTAGACG -ACGGAAGTAGTCGTTAGCGTAACG -ACGGAAGTAGTCGTTAGCACTTCG -ACGGAAGTAGTCGTTAGCTACGCA -ACGGAAGTAGTCGTTAGCCTTGCA -ACGGAAGTAGTCGTTAGCCGAACA -ACGGAAGTAGTCGTTAGCCAGTCA -ACGGAAGTAGTCGTTAGCGATCCA -ACGGAAGTAGTCGTTAGCACGACA -ACGGAAGTAGTCGTTAGCAGCTCA -ACGGAAGTAGTCGTTAGCTCACGT -ACGGAAGTAGTCGTTAGCCGTAGT -ACGGAAGTAGTCGTTAGCGTCAGT -ACGGAAGTAGTCGTTAGCGAAGGT -ACGGAAGTAGTCGTTAGCAACCGT -ACGGAAGTAGTCGTTAGCTTGTGC -ACGGAAGTAGTCGTTAGCCTAAGC -ACGGAAGTAGTCGTTAGCACTAGC -ACGGAAGTAGTCGTTAGCAGATGC -ACGGAAGTAGTCGTTAGCTGAAGG -ACGGAAGTAGTCGTTAGCCAATGG -ACGGAAGTAGTCGTTAGCATGAGG -ACGGAAGTAGTCGTTAGCAATGGG -ACGGAAGTAGTCGTTAGCTCCTGA -ACGGAAGTAGTCGTTAGCTAGCGA -ACGGAAGTAGTCGTTAGCCACAGA -ACGGAAGTAGTCGTTAGCGCAAGA -ACGGAAGTAGTCGTTAGCGGTTGA -ACGGAAGTAGTCGTTAGCTCCGAT -ACGGAAGTAGTCGTTAGCTGGCAT -ACGGAAGTAGTCGTTAGCCGAGAT -ACGGAAGTAGTCGTTAGCTACCAC -ACGGAAGTAGTCGTTAGCCAGAAC -ACGGAAGTAGTCGTTAGCGTCTAC -ACGGAAGTAGTCGTTAGCACGTAC -ACGGAAGTAGTCGTTAGCAGTGAC -ACGGAAGTAGTCGTTAGCCTGTAG -ACGGAAGTAGTCGTTAGCCCTAAG -ACGGAAGTAGTCGTTAGCGTTCAG -ACGGAAGTAGTCGTTAGCGCATAG -ACGGAAGTAGTCGTTAGCGACAAG -ACGGAAGTAGTCGTTAGCAAGCAG -ACGGAAGTAGTCGTTAGCCGTCAA -ACGGAAGTAGTCGTTAGCGCTGAA -ACGGAAGTAGTCGTTAGCAGTACG -ACGGAAGTAGTCGTTAGCATCCGA -ACGGAAGTAGTCGTTAGCATGGGA -ACGGAAGTAGTCGTTAGCGTGCAA -ACGGAAGTAGTCGTTAGCGAGGAA -ACGGAAGTAGTCGTTAGCCAGGTA -ACGGAAGTAGTCGTTAGCGACTCT -ACGGAAGTAGTCGTTAGCAGTCCT -ACGGAAGTAGTCGTTAGCTAAGCC -ACGGAAGTAGTCGTTAGCATAGCC -ACGGAAGTAGTCGTTAGCTAACCG -ACGGAAGTAGTCGTTAGCATGCCA -ACGGAAGTAGTCGTCTTCGGAAAC -ACGGAAGTAGTCGTCTTCAACACC -ACGGAAGTAGTCGTCTTCATCGAG -ACGGAAGTAGTCGTCTTCCTCCTT -ACGGAAGTAGTCGTCTTCCCTGTT -ACGGAAGTAGTCGTCTTCCGGTTT -ACGGAAGTAGTCGTCTTCGTGGTT -ACGGAAGTAGTCGTCTTCGCCTTT -ACGGAAGTAGTCGTCTTCGGTCTT -ACGGAAGTAGTCGTCTTCACGCTT -ACGGAAGTAGTCGTCTTCAGCGTT -ACGGAAGTAGTCGTCTTCTTCGTC -ACGGAAGTAGTCGTCTTCTCTCTC -ACGGAAGTAGTCGTCTTCTGGATC -ACGGAAGTAGTCGTCTTCCACTTC -ACGGAAGTAGTCGTCTTCGTACTC -ACGGAAGTAGTCGTCTTCGATGTC -ACGGAAGTAGTCGTCTTCACAGTC -ACGGAAGTAGTCGTCTTCTTGCTG -ACGGAAGTAGTCGTCTTCTCCATG -ACGGAAGTAGTCGTCTTCTGTGTG -ACGGAAGTAGTCGTCTTCCTAGTG -ACGGAAGTAGTCGTCTTCCATCTG -ACGGAAGTAGTCGTCTTCGAGTTG -ACGGAAGTAGTCGTCTTCAGACTG -ACGGAAGTAGTCGTCTTCTCGGTA -ACGGAAGTAGTCGTCTTCTGCCTA -ACGGAAGTAGTCGTCTTCCCACTA -ACGGAAGTAGTCGTCTTCGGAGTA -ACGGAAGTAGTCGTCTTCTCGTCT -ACGGAAGTAGTCGTCTTCTGCACT -ACGGAAGTAGTCGTCTTCCTGACT -ACGGAAGTAGTCGTCTTCCAACCT -ACGGAAGTAGTCGTCTTCGCTACT -ACGGAAGTAGTCGTCTTCGGATCT -ACGGAAGTAGTCGTCTTCAAGGCT -ACGGAAGTAGTCGTCTTCTCAACC -ACGGAAGTAGTCGTCTTCTGTTCC -ACGGAAGTAGTCGTCTTCATTCCC -ACGGAAGTAGTCGTCTTCTTCTCG -ACGGAAGTAGTCGTCTTCTAGACG -ACGGAAGTAGTCGTCTTCGTAACG -ACGGAAGTAGTCGTCTTCACTTCG -ACGGAAGTAGTCGTCTTCTACGCA -ACGGAAGTAGTCGTCTTCCTTGCA -ACGGAAGTAGTCGTCTTCCGAACA -ACGGAAGTAGTCGTCTTCCAGTCA -ACGGAAGTAGTCGTCTTCGATCCA -ACGGAAGTAGTCGTCTTCACGACA -ACGGAAGTAGTCGTCTTCAGCTCA -ACGGAAGTAGTCGTCTTCTCACGT -ACGGAAGTAGTCGTCTTCCGTAGT -ACGGAAGTAGTCGTCTTCGTCAGT -ACGGAAGTAGTCGTCTTCGAAGGT -ACGGAAGTAGTCGTCTTCAACCGT -ACGGAAGTAGTCGTCTTCTTGTGC -ACGGAAGTAGTCGTCTTCCTAAGC -ACGGAAGTAGTCGTCTTCACTAGC -ACGGAAGTAGTCGTCTTCAGATGC -ACGGAAGTAGTCGTCTTCTGAAGG -ACGGAAGTAGTCGTCTTCCAATGG -ACGGAAGTAGTCGTCTTCATGAGG -ACGGAAGTAGTCGTCTTCAATGGG -ACGGAAGTAGTCGTCTTCTCCTGA -ACGGAAGTAGTCGTCTTCTAGCGA -ACGGAAGTAGTCGTCTTCCACAGA -ACGGAAGTAGTCGTCTTCGCAAGA -ACGGAAGTAGTCGTCTTCGGTTGA -ACGGAAGTAGTCGTCTTCTCCGAT -ACGGAAGTAGTCGTCTTCTGGCAT -ACGGAAGTAGTCGTCTTCCGAGAT -ACGGAAGTAGTCGTCTTCTACCAC -ACGGAAGTAGTCGTCTTCCAGAAC -ACGGAAGTAGTCGTCTTCGTCTAC -ACGGAAGTAGTCGTCTTCACGTAC -ACGGAAGTAGTCGTCTTCAGTGAC -ACGGAAGTAGTCGTCTTCCTGTAG -ACGGAAGTAGTCGTCTTCCCTAAG -ACGGAAGTAGTCGTCTTCGTTCAG -ACGGAAGTAGTCGTCTTCGCATAG -ACGGAAGTAGTCGTCTTCGACAAG -ACGGAAGTAGTCGTCTTCAAGCAG -ACGGAAGTAGTCGTCTTCCGTCAA -ACGGAAGTAGTCGTCTTCGCTGAA -ACGGAAGTAGTCGTCTTCAGTACG -ACGGAAGTAGTCGTCTTCATCCGA -ACGGAAGTAGTCGTCTTCATGGGA -ACGGAAGTAGTCGTCTTCGTGCAA -ACGGAAGTAGTCGTCTTCGAGGAA -ACGGAAGTAGTCGTCTTCCAGGTA -ACGGAAGTAGTCGTCTTCGACTCT -ACGGAAGTAGTCGTCTTCAGTCCT -ACGGAAGTAGTCGTCTTCTAAGCC -ACGGAAGTAGTCGTCTTCATAGCC -ACGGAAGTAGTCGTCTTCTAACCG -ACGGAAGTAGTCGTCTTCATGCCA -ACGGAAGTAGTCCTCTCTGGAAAC -ACGGAAGTAGTCCTCTCTAACACC -ACGGAAGTAGTCCTCTCTATCGAG -ACGGAAGTAGTCCTCTCTCTCCTT -ACGGAAGTAGTCCTCTCTCCTGTT -ACGGAAGTAGTCCTCTCTCGGTTT -ACGGAAGTAGTCCTCTCTGTGGTT -ACGGAAGTAGTCCTCTCTGCCTTT -ACGGAAGTAGTCCTCTCTGGTCTT -ACGGAAGTAGTCCTCTCTACGCTT -ACGGAAGTAGTCCTCTCTAGCGTT -ACGGAAGTAGTCCTCTCTTTCGTC -ACGGAAGTAGTCCTCTCTTCTCTC -ACGGAAGTAGTCCTCTCTTGGATC -ACGGAAGTAGTCCTCTCTCACTTC -ACGGAAGTAGTCCTCTCTGTACTC -ACGGAAGTAGTCCTCTCTGATGTC -ACGGAAGTAGTCCTCTCTACAGTC -ACGGAAGTAGTCCTCTCTTTGCTG -ACGGAAGTAGTCCTCTCTTCCATG -ACGGAAGTAGTCCTCTCTTGTGTG -ACGGAAGTAGTCCTCTCTCTAGTG -ACGGAAGTAGTCCTCTCTCATCTG -ACGGAAGTAGTCCTCTCTGAGTTG -ACGGAAGTAGTCCTCTCTAGACTG -ACGGAAGTAGTCCTCTCTTCGGTA -ACGGAAGTAGTCCTCTCTTGCCTA -ACGGAAGTAGTCCTCTCTCCACTA -ACGGAAGTAGTCCTCTCTGGAGTA -ACGGAAGTAGTCCTCTCTTCGTCT -ACGGAAGTAGTCCTCTCTTGCACT -ACGGAAGTAGTCCTCTCTCTGACT -ACGGAAGTAGTCCTCTCTCAACCT -ACGGAAGTAGTCCTCTCTGCTACT -ACGGAAGTAGTCCTCTCTGGATCT -ACGGAAGTAGTCCTCTCTAAGGCT -ACGGAAGTAGTCCTCTCTTCAACC -ACGGAAGTAGTCCTCTCTTGTTCC -ACGGAAGTAGTCCTCTCTATTCCC -ACGGAAGTAGTCCTCTCTTTCTCG -ACGGAAGTAGTCCTCTCTTAGACG -ACGGAAGTAGTCCTCTCTGTAACG -ACGGAAGTAGTCCTCTCTACTTCG -ACGGAAGTAGTCCTCTCTTACGCA -ACGGAAGTAGTCCTCTCTCTTGCA -ACGGAAGTAGTCCTCTCTCGAACA -ACGGAAGTAGTCCTCTCTCAGTCA -ACGGAAGTAGTCCTCTCTGATCCA -ACGGAAGTAGTCCTCTCTACGACA -ACGGAAGTAGTCCTCTCTAGCTCA -ACGGAAGTAGTCCTCTCTTCACGT -ACGGAAGTAGTCCTCTCTCGTAGT -ACGGAAGTAGTCCTCTCTGTCAGT -ACGGAAGTAGTCCTCTCTGAAGGT -ACGGAAGTAGTCCTCTCTAACCGT -ACGGAAGTAGTCCTCTCTTTGTGC -ACGGAAGTAGTCCTCTCTCTAAGC -ACGGAAGTAGTCCTCTCTACTAGC -ACGGAAGTAGTCCTCTCTAGATGC -ACGGAAGTAGTCCTCTCTTGAAGG -ACGGAAGTAGTCCTCTCTCAATGG -ACGGAAGTAGTCCTCTCTATGAGG -ACGGAAGTAGTCCTCTCTAATGGG -ACGGAAGTAGTCCTCTCTTCCTGA -ACGGAAGTAGTCCTCTCTTAGCGA -ACGGAAGTAGTCCTCTCTCACAGA -ACGGAAGTAGTCCTCTCTGCAAGA -ACGGAAGTAGTCCTCTCTGGTTGA -ACGGAAGTAGTCCTCTCTTCCGAT -ACGGAAGTAGTCCTCTCTTGGCAT -ACGGAAGTAGTCCTCTCTCGAGAT -ACGGAAGTAGTCCTCTCTTACCAC -ACGGAAGTAGTCCTCTCTCAGAAC -ACGGAAGTAGTCCTCTCTGTCTAC -ACGGAAGTAGTCCTCTCTACGTAC -ACGGAAGTAGTCCTCTCTAGTGAC -ACGGAAGTAGTCCTCTCTCTGTAG -ACGGAAGTAGTCCTCTCTCCTAAG -ACGGAAGTAGTCCTCTCTGTTCAG -ACGGAAGTAGTCCTCTCTGCATAG -ACGGAAGTAGTCCTCTCTGACAAG -ACGGAAGTAGTCCTCTCTAAGCAG -ACGGAAGTAGTCCTCTCTCGTCAA -ACGGAAGTAGTCCTCTCTGCTGAA -ACGGAAGTAGTCCTCTCTAGTACG -ACGGAAGTAGTCCTCTCTATCCGA -ACGGAAGTAGTCCTCTCTATGGGA -ACGGAAGTAGTCCTCTCTGTGCAA -ACGGAAGTAGTCCTCTCTGAGGAA -ACGGAAGTAGTCCTCTCTCAGGTA -ACGGAAGTAGTCCTCTCTGACTCT -ACGGAAGTAGTCCTCTCTAGTCCT -ACGGAAGTAGTCCTCTCTTAAGCC -ACGGAAGTAGTCCTCTCTATAGCC -ACGGAAGTAGTCCTCTCTTAACCG -ACGGAAGTAGTCCTCTCTATGCCA -ACGGAAGTAGTCATCTGGGGAAAC -ACGGAAGTAGTCATCTGGAACACC -ACGGAAGTAGTCATCTGGATCGAG -ACGGAAGTAGTCATCTGGCTCCTT -ACGGAAGTAGTCATCTGGCCTGTT -ACGGAAGTAGTCATCTGGCGGTTT -ACGGAAGTAGTCATCTGGGTGGTT -ACGGAAGTAGTCATCTGGGCCTTT -ACGGAAGTAGTCATCTGGGGTCTT -ACGGAAGTAGTCATCTGGACGCTT -ACGGAAGTAGTCATCTGGAGCGTT -ACGGAAGTAGTCATCTGGTTCGTC -ACGGAAGTAGTCATCTGGTCTCTC -ACGGAAGTAGTCATCTGGTGGATC -ACGGAAGTAGTCATCTGGCACTTC -ACGGAAGTAGTCATCTGGGTACTC -ACGGAAGTAGTCATCTGGGATGTC -ACGGAAGTAGTCATCTGGACAGTC -ACGGAAGTAGTCATCTGGTTGCTG -ACGGAAGTAGTCATCTGGTCCATG -ACGGAAGTAGTCATCTGGTGTGTG -ACGGAAGTAGTCATCTGGCTAGTG -ACGGAAGTAGTCATCTGGCATCTG -ACGGAAGTAGTCATCTGGGAGTTG -ACGGAAGTAGTCATCTGGAGACTG -ACGGAAGTAGTCATCTGGTCGGTA -ACGGAAGTAGTCATCTGGTGCCTA -ACGGAAGTAGTCATCTGGCCACTA -ACGGAAGTAGTCATCTGGGGAGTA -ACGGAAGTAGTCATCTGGTCGTCT -ACGGAAGTAGTCATCTGGTGCACT -ACGGAAGTAGTCATCTGGCTGACT -ACGGAAGTAGTCATCTGGCAACCT -ACGGAAGTAGTCATCTGGGCTACT -ACGGAAGTAGTCATCTGGGGATCT -ACGGAAGTAGTCATCTGGAAGGCT -ACGGAAGTAGTCATCTGGTCAACC -ACGGAAGTAGTCATCTGGTGTTCC -ACGGAAGTAGTCATCTGGATTCCC -ACGGAAGTAGTCATCTGGTTCTCG -ACGGAAGTAGTCATCTGGTAGACG -ACGGAAGTAGTCATCTGGGTAACG -ACGGAAGTAGTCATCTGGACTTCG -ACGGAAGTAGTCATCTGGTACGCA -ACGGAAGTAGTCATCTGGCTTGCA -ACGGAAGTAGTCATCTGGCGAACA -ACGGAAGTAGTCATCTGGCAGTCA -ACGGAAGTAGTCATCTGGGATCCA -ACGGAAGTAGTCATCTGGACGACA -ACGGAAGTAGTCATCTGGAGCTCA -ACGGAAGTAGTCATCTGGTCACGT -ACGGAAGTAGTCATCTGGCGTAGT -ACGGAAGTAGTCATCTGGGTCAGT -ACGGAAGTAGTCATCTGGGAAGGT -ACGGAAGTAGTCATCTGGAACCGT -ACGGAAGTAGTCATCTGGTTGTGC -ACGGAAGTAGTCATCTGGCTAAGC -ACGGAAGTAGTCATCTGGACTAGC -ACGGAAGTAGTCATCTGGAGATGC -ACGGAAGTAGTCATCTGGTGAAGG -ACGGAAGTAGTCATCTGGCAATGG -ACGGAAGTAGTCATCTGGATGAGG -ACGGAAGTAGTCATCTGGAATGGG -ACGGAAGTAGTCATCTGGTCCTGA -ACGGAAGTAGTCATCTGGTAGCGA -ACGGAAGTAGTCATCTGGCACAGA -ACGGAAGTAGTCATCTGGGCAAGA -ACGGAAGTAGTCATCTGGGGTTGA -ACGGAAGTAGTCATCTGGTCCGAT -ACGGAAGTAGTCATCTGGTGGCAT -ACGGAAGTAGTCATCTGGCGAGAT -ACGGAAGTAGTCATCTGGTACCAC -ACGGAAGTAGTCATCTGGCAGAAC -ACGGAAGTAGTCATCTGGGTCTAC -ACGGAAGTAGTCATCTGGACGTAC -ACGGAAGTAGTCATCTGGAGTGAC -ACGGAAGTAGTCATCTGGCTGTAG -ACGGAAGTAGTCATCTGGCCTAAG -ACGGAAGTAGTCATCTGGGTTCAG -ACGGAAGTAGTCATCTGGGCATAG -ACGGAAGTAGTCATCTGGGACAAG -ACGGAAGTAGTCATCTGGAAGCAG -ACGGAAGTAGTCATCTGGCGTCAA -ACGGAAGTAGTCATCTGGGCTGAA -ACGGAAGTAGTCATCTGGAGTACG -ACGGAAGTAGTCATCTGGATCCGA -ACGGAAGTAGTCATCTGGATGGGA -ACGGAAGTAGTCATCTGGGTGCAA -ACGGAAGTAGTCATCTGGGAGGAA -ACGGAAGTAGTCATCTGGCAGGTA -ACGGAAGTAGTCATCTGGGACTCT -ACGGAAGTAGTCATCTGGAGTCCT -ACGGAAGTAGTCATCTGGTAAGCC -ACGGAAGTAGTCATCTGGATAGCC -ACGGAAGTAGTCATCTGGTAACCG -ACGGAAGTAGTCATCTGGATGCCA -ACGGAAGTAGTCTTCCACGGAAAC -ACGGAAGTAGTCTTCCACAACACC -ACGGAAGTAGTCTTCCACATCGAG -ACGGAAGTAGTCTTCCACCTCCTT -ACGGAAGTAGTCTTCCACCCTGTT -ACGGAAGTAGTCTTCCACCGGTTT -ACGGAAGTAGTCTTCCACGTGGTT -ACGGAAGTAGTCTTCCACGCCTTT -ACGGAAGTAGTCTTCCACGGTCTT -ACGGAAGTAGTCTTCCACACGCTT -ACGGAAGTAGTCTTCCACAGCGTT -ACGGAAGTAGTCTTCCACTTCGTC -ACGGAAGTAGTCTTCCACTCTCTC -ACGGAAGTAGTCTTCCACTGGATC -ACGGAAGTAGTCTTCCACCACTTC -ACGGAAGTAGTCTTCCACGTACTC -ACGGAAGTAGTCTTCCACGATGTC -ACGGAAGTAGTCTTCCACACAGTC -ACGGAAGTAGTCTTCCACTTGCTG -ACGGAAGTAGTCTTCCACTCCATG -ACGGAAGTAGTCTTCCACTGTGTG -ACGGAAGTAGTCTTCCACCTAGTG -ACGGAAGTAGTCTTCCACCATCTG -ACGGAAGTAGTCTTCCACGAGTTG -ACGGAAGTAGTCTTCCACAGACTG -ACGGAAGTAGTCTTCCACTCGGTA -ACGGAAGTAGTCTTCCACTGCCTA -ACGGAAGTAGTCTTCCACCCACTA -ACGGAAGTAGTCTTCCACGGAGTA -ACGGAAGTAGTCTTCCACTCGTCT -ACGGAAGTAGTCTTCCACTGCACT -ACGGAAGTAGTCTTCCACCTGACT -ACGGAAGTAGTCTTCCACCAACCT -ACGGAAGTAGTCTTCCACGCTACT -ACGGAAGTAGTCTTCCACGGATCT -ACGGAAGTAGTCTTCCACAAGGCT -ACGGAAGTAGTCTTCCACTCAACC -ACGGAAGTAGTCTTCCACTGTTCC -ACGGAAGTAGTCTTCCACATTCCC -ACGGAAGTAGTCTTCCACTTCTCG -ACGGAAGTAGTCTTCCACTAGACG -ACGGAAGTAGTCTTCCACGTAACG -ACGGAAGTAGTCTTCCACACTTCG -ACGGAAGTAGTCTTCCACTACGCA -ACGGAAGTAGTCTTCCACCTTGCA -ACGGAAGTAGTCTTCCACCGAACA -ACGGAAGTAGTCTTCCACCAGTCA -ACGGAAGTAGTCTTCCACGATCCA -ACGGAAGTAGTCTTCCACACGACA -ACGGAAGTAGTCTTCCACAGCTCA -ACGGAAGTAGTCTTCCACTCACGT -ACGGAAGTAGTCTTCCACCGTAGT -ACGGAAGTAGTCTTCCACGTCAGT -ACGGAAGTAGTCTTCCACGAAGGT -ACGGAAGTAGTCTTCCACAACCGT -ACGGAAGTAGTCTTCCACTTGTGC -ACGGAAGTAGTCTTCCACCTAAGC -ACGGAAGTAGTCTTCCACACTAGC -ACGGAAGTAGTCTTCCACAGATGC -ACGGAAGTAGTCTTCCACTGAAGG -ACGGAAGTAGTCTTCCACCAATGG -ACGGAAGTAGTCTTCCACATGAGG -ACGGAAGTAGTCTTCCACAATGGG -ACGGAAGTAGTCTTCCACTCCTGA -ACGGAAGTAGTCTTCCACTAGCGA -ACGGAAGTAGTCTTCCACCACAGA -ACGGAAGTAGTCTTCCACGCAAGA -ACGGAAGTAGTCTTCCACGGTTGA -ACGGAAGTAGTCTTCCACTCCGAT -ACGGAAGTAGTCTTCCACTGGCAT -ACGGAAGTAGTCTTCCACCGAGAT -ACGGAAGTAGTCTTCCACTACCAC -ACGGAAGTAGTCTTCCACCAGAAC -ACGGAAGTAGTCTTCCACGTCTAC -ACGGAAGTAGTCTTCCACACGTAC -ACGGAAGTAGTCTTCCACAGTGAC -ACGGAAGTAGTCTTCCACCTGTAG -ACGGAAGTAGTCTTCCACCCTAAG -ACGGAAGTAGTCTTCCACGTTCAG -ACGGAAGTAGTCTTCCACGCATAG -ACGGAAGTAGTCTTCCACGACAAG -ACGGAAGTAGTCTTCCACAAGCAG -ACGGAAGTAGTCTTCCACCGTCAA -ACGGAAGTAGTCTTCCACGCTGAA -ACGGAAGTAGTCTTCCACAGTACG -ACGGAAGTAGTCTTCCACATCCGA -ACGGAAGTAGTCTTCCACATGGGA -ACGGAAGTAGTCTTCCACGTGCAA -ACGGAAGTAGTCTTCCACGAGGAA -ACGGAAGTAGTCTTCCACCAGGTA -ACGGAAGTAGTCTTCCACGACTCT -ACGGAAGTAGTCTTCCACAGTCCT -ACGGAAGTAGTCTTCCACTAAGCC -ACGGAAGTAGTCTTCCACATAGCC -ACGGAAGTAGTCTTCCACTAACCG -ACGGAAGTAGTCTTCCACATGCCA -ACGGAAGTAGTCCTCGTAGGAAAC -ACGGAAGTAGTCCTCGTAAACACC -ACGGAAGTAGTCCTCGTAATCGAG -ACGGAAGTAGTCCTCGTACTCCTT -ACGGAAGTAGTCCTCGTACCTGTT -ACGGAAGTAGTCCTCGTACGGTTT -ACGGAAGTAGTCCTCGTAGTGGTT -ACGGAAGTAGTCCTCGTAGCCTTT -ACGGAAGTAGTCCTCGTAGGTCTT -ACGGAAGTAGTCCTCGTAACGCTT -ACGGAAGTAGTCCTCGTAAGCGTT -ACGGAAGTAGTCCTCGTATTCGTC -ACGGAAGTAGTCCTCGTATCTCTC -ACGGAAGTAGTCCTCGTATGGATC -ACGGAAGTAGTCCTCGTACACTTC -ACGGAAGTAGTCCTCGTAGTACTC -ACGGAAGTAGTCCTCGTAGATGTC -ACGGAAGTAGTCCTCGTAACAGTC -ACGGAAGTAGTCCTCGTATTGCTG -ACGGAAGTAGTCCTCGTATCCATG -ACGGAAGTAGTCCTCGTATGTGTG -ACGGAAGTAGTCCTCGTACTAGTG -ACGGAAGTAGTCCTCGTACATCTG -ACGGAAGTAGTCCTCGTAGAGTTG -ACGGAAGTAGTCCTCGTAAGACTG -ACGGAAGTAGTCCTCGTATCGGTA -ACGGAAGTAGTCCTCGTATGCCTA -ACGGAAGTAGTCCTCGTACCACTA -ACGGAAGTAGTCCTCGTAGGAGTA -ACGGAAGTAGTCCTCGTATCGTCT -ACGGAAGTAGTCCTCGTATGCACT -ACGGAAGTAGTCCTCGTACTGACT -ACGGAAGTAGTCCTCGTACAACCT -ACGGAAGTAGTCCTCGTAGCTACT -ACGGAAGTAGTCCTCGTAGGATCT -ACGGAAGTAGTCCTCGTAAAGGCT -ACGGAAGTAGTCCTCGTATCAACC -ACGGAAGTAGTCCTCGTATGTTCC -ACGGAAGTAGTCCTCGTAATTCCC -ACGGAAGTAGTCCTCGTATTCTCG -ACGGAAGTAGTCCTCGTATAGACG -ACGGAAGTAGTCCTCGTAGTAACG -ACGGAAGTAGTCCTCGTAACTTCG -ACGGAAGTAGTCCTCGTATACGCA -ACGGAAGTAGTCCTCGTACTTGCA -ACGGAAGTAGTCCTCGTACGAACA -ACGGAAGTAGTCCTCGTACAGTCA -ACGGAAGTAGTCCTCGTAGATCCA -ACGGAAGTAGTCCTCGTAACGACA -ACGGAAGTAGTCCTCGTAAGCTCA -ACGGAAGTAGTCCTCGTATCACGT -ACGGAAGTAGTCCTCGTACGTAGT -ACGGAAGTAGTCCTCGTAGTCAGT -ACGGAAGTAGTCCTCGTAGAAGGT -ACGGAAGTAGTCCTCGTAAACCGT -ACGGAAGTAGTCCTCGTATTGTGC -ACGGAAGTAGTCCTCGTACTAAGC -ACGGAAGTAGTCCTCGTAACTAGC -ACGGAAGTAGTCCTCGTAAGATGC -ACGGAAGTAGTCCTCGTATGAAGG -ACGGAAGTAGTCCTCGTACAATGG -ACGGAAGTAGTCCTCGTAATGAGG -ACGGAAGTAGTCCTCGTAAATGGG -ACGGAAGTAGTCCTCGTATCCTGA -ACGGAAGTAGTCCTCGTATAGCGA -ACGGAAGTAGTCCTCGTACACAGA -ACGGAAGTAGTCCTCGTAGCAAGA -ACGGAAGTAGTCCTCGTAGGTTGA -ACGGAAGTAGTCCTCGTATCCGAT -ACGGAAGTAGTCCTCGTATGGCAT -ACGGAAGTAGTCCTCGTACGAGAT -ACGGAAGTAGTCCTCGTATACCAC -ACGGAAGTAGTCCTCGTACAGAAC -ACGGAAGTAGTCCTCGTAGTCTAC -ACGGAAGTAGTCCTCGTAACGTAC -ACGGAAGTAGTCCTCGTAAGTGAC -ACGGAAGTAGTCCTCGTACTGTAG -ACGGAAGTAGTCCTCGTACCTAAG -ACGGAAGTAGTCCTCGTAGTTCAG -ACGGAAGTAGTCCTCGTAGCATAG -ACGGAAGTAGTCCTCGTAGACAAG -ACGGAAGTAGTCCTCGTAAAGCAG -ACGGAAGTAGTCCTCGTACGTCAA -ACGGAAGTAGTCCTCGTAGCTGAA -ACGGAAGTAGTCCTCGTAAGTACG -ACGGAAGTAGTCCTCGTAATCCGA -ACGGAAGTAGTCCTCGTAATGGGA -ACGGAAGTAGTCCTCGTAGTGCAA -ACGGAAGTAGTCCTCGTAGAGGAA -ACGGAAGTAGTCCTCGTACAGGTA -ACGGAAGTAGTCCTCGTAGACTCT -ACGGAAGTAGTCCTCGTAAGTCCT -ACGGAAGTAGTCCTCGTATAAGCC -ACGGAAGTAGTCCTCGTAATAGCC -ACGGAAGTAGTCCTCGTATAACCG -ACGGAAGTAGTCCTCGTAATGCCA -ACGGAAGTAGTCGTCGATGGAAAC -ACGGAAGTAGTCGTCGATAACACC -ACGGAAGTAGTCGTCGATATCGAG -ACGGAAGTAGTCGTCGATCTCCTT -ACGGAAGTAGTCGTCGATCCTGTT -ACGGAAGTAGTCGTCGATCGGTTT -ACGGAAGTAGTCGTCGATGTGGTT -ACGGAAGTAGTCGTCGATGCCTTT -ACGGAAGTAGTCGTCGATGGTCTT -ACGGAAGTAGTCGTCGATACGCTT -ACGGAAGTAGTCGTCGATAGCGTT -ACGGAAGTAGTCGTCGATTTCGTC -ACGGAAGTAGTCGTCGATTCTCTC -ACGGAAGTAGTCGTCGATTGGATC -ACGGAAGTAGTCGTCGATCACTTC -ACGGAAGTAGTCGTCGATGTACTC -ACGGAAGTAGTCGTCGATGATGTC -ACGGAAGTAGTCGTCGATACAGTC -ACGGAAGTAGTCGTCGATTTGCTG -ACGGAAGTAGTCGTCGATTCCATG -ACGGAAGTAGTCGTCGATTGTGTG -ACGGAAGTAGTCGTCGATCTAGTG -ACGGAAGTAGTCGTCGATCATCTG -ACGGAAGTAGTCGTCGATGAGTTG -ACGGAAGTAGTCGTCGATAGACTG -ACGGAAGTAGTCGTCGATTCGGTA -ACGGAAGTAGTCGTCGATTGCCTA -ACGGAAGTAGTCGTCGATCCACTA -ACGGAAGTAGTCGTCGATGGAGTA -ACGGAAGTAGTCGTCGATTCGTCT -ACGGAAGTAGTCGTCGATTGCACT -ACGGAAGTAGTCGTCGATCTGACT -ACGGAAGTAGTCGTCGATCAACCT -ACGGAAGTAGTCGTCGATGCTACT -ACGGAAGTAGTCGTCGATGGATCT -ACGGAAGTAGTCGTCGATAAGGCT -ACGGAAGTAGTCGTCGATTCAACC -ACGGAAGTAGTCGTCGATTGTTCC -ACGGAAGTAGTCGTCGATATTCCC -ACGGAAGTAGTCGTCGATTTCTCG -ACGGAAGTAGTCGTCGATTAGACG -ACGGAAGTAGTCGTCGATGTAACG -ACGGAAGTAGTCGTCGATACTTCG -ACGGAAGTAGTCGTCGATTACGCA -ACGGAAGTAGTCGTCGATCTTGCA -ACGGAAGTAGTCGTCGATCGAACA -ACGGAAGTAGTCGTCGATCAGTCA -ACGGAAGTAGTCGTCGATGATCCA -ACGGAAGTAGTCGTCGATACGACA -ACGGAAGTAGTCGTCGATAGCTCA -ACGGAAGTAGTCGTCGATTCACGT -ACGGAAGTAGTCGTCGATCGTAGT -ACGGAAGTAGTCGTCGATGTCAGT -ACGGAAGTAGTCGTCGATGAAGGT -ACGGAAGTAGTCGTCGATAACCGT -ACGGAAGTAGTCGTCGATTTGTGC -ACGGAAGTAGTCGTCGATCTAAGC -ACGGAAGTAGTCGTCGATACTAGC -ACGGAAGTAGTCGTCGATAGATGC -ACGGAAGTAGTCGTCGATTGAAGG -ACGGAAGTAGTCGTCGATCAATGG -ACGGAAGTAGTCGTCGATATGAGG -ACGGAAGTAGTCGTCGATAATGGG -ACGGAAGTAGTCGTCGATTCCTGA -ACGGAAGTAGTCGTCGATTAGCGA -ACGGAAGTAGTCGTCGATCACAGA -ACGGAAGTAGTCGTCGATGCAAGA -ACGGAAGTAGTCGTCGATGGTTGA -ACGGAAGTAGTCGTCGATTCCGAT -ACGGAAGTAGTCGTCGATTGGCAT -ACGGAAGTAGTCGTCGATCGAGAT -ACGGAAGTAGTCGTCGATTACCAC -ACGGAAGTAGTCGTCGATCAGAAC -ACGGAAGTAGTCGTCGATGTCTAC -ACGGAAGTAGTCGTCGATACGTAC -ACGGAAGTAGTCGTCGATAGTGAC -ACGGAAGTAGTCGTCGATCTGTAG -ACGGAAGTAGTCGTCGATCCTAAG -ACGGAAGTAGTCGTCGATGTTCAG -ACGGAAGTAGTCGTCGATGCATAG -ACGGAAGTAGTCGTCGATGACAAG -ACGGAAGTAGTCGTCGATAAGCAG -ACGGAAGTAGTCGTCGATCGTCAA -ACGGAAGTAGTCGTCGATGCTGAA -ACGGAAGTAGTCGTCGATAGTACG -ACGGAAGTAGTCGTCGATATCCGA -ACGGAAGTAGTCGTCGATATGGGA -ACGGAAGTAGTCGTCGATGTGCAA -ACGGAAGTAGTCGTCGATGAGGAA -ACGGAAGTAGTCGTCGATCAGGTA -ACGGAAGTAGTCGTCGATGACTCT -ACGGAAGTAGTCGTCGATAGTCCT -ACGGAAGTAGTCGTCGATTAAGCC -ACGGAAGTAGTCGTCGATATAGCC -ACGGAAGTAGTCGTCGATTAACCG -ACGGAAGTAGTCGTCGATATGCCA -ACGGAAGTAGTCGTCACAGGAAAC -ACGGAAGTAGTCGTCACAAACACC -ACGGAAGTAGTCGTCACAATCGAG -ACGGAAGTAGTCGTCACACTCCTT -ACGGAAGTAGTCGTCACACCTGTT -ACGGAAGTAGTCGTCACACGGTTT -ACGGAAGTAGTCGTCACAGTGGTT -ACGGAAGTAGTCGTCACAGCCTTT -ACGGAAGTAGTCGTCACAGGTCTT -ACGGAAGTAGTCGTCACAACGCTT -ACGGAAGTAGTCGTCACAAGCGTT -ACGGAAGTAGTCGTCACATTCGTC -ACGGAAGTAGTCGTCACATCTCTC -ACGGAAGTAGTCGTCACATGGATC -ACGGAAGTAGTCGTCACACACTTC -ACGGAAGTAGTCGTCACAGTACTC -ACGGAAGTAGTCGTCACAGATGTC -ACGGAAGTAGTCGTCACAACAGTC -ACGGAAGTAGTCGTCACATTGCTG -ACGGAAGTAGTCGTCACATCCATG -ACGGAAGTAGTCGTCACATGTGTG -ACGGAAGTAGTCGTCACACTAGTG -ACGGAAGTAGTCGTCACACATCTG -ACGGAAGTAGTCGTCACAGAGTTG -ACGGAAGTAGTCGTCACAAGACTG -ACGGAAGTAGTCGTCACATCGGTA -ACGGAAGTAGTCGTCACATGCCTA -ACGGAAGTAGTCGTCACACCACTA -ACGGAAGTAGTCGTCACAGGAGTA -ACGGAAGTAGTCGTCACATCGTCT -ACGGAAGTAGTCGTCACATGCACT -ACGGAAGTAGTCGTCACACTGACT -ACGGAAGTAGTCGTCACACAACCT -ACGGAAGTAGTCGTCACAGCTACT -ACGGAAGTAGTCGTCACAGGATCT -ACGGAAGTAGTCGTCACAAAGGCT -ACGGAAGTAGTCGTCACATCAACC -ACGGAAGTAGTCGTCACATGTTCC -ACGGAAGTAGTCGTCACAATTCCC -ACGGAAGTAGTCGTCACATTCTCG -ACGGAAGTAGTCGTCACATAGACG -ACGGAAGTAGTCGTCACAGTAACG -ACGGAAGTAGTCGTCACAACTTCG -ACGGAAGTAGTCGTCACATACGCA -ACGGAAGTAGTCGTCACACTTGCA -ACGGAAGTAGTCGTCACACGAACA -ACGGAAGTAGTCGTCACACAGTCA -ACGGAAGTAGTCGTCACAGATCCA -ACGGAAGTAGTCGTCACAACGACA -ACGGAAGTAGTCGTCACAAGCTCA -ACGGAAGTAGTCGTCACATCACGT -ACGGAAGTAGTCGTCACACGTAGT -ACGGAAGTAGTCGTCACAGTCAGT -ACGGAAGTAGTCGTCACAGAAGGT -ACGGAAGTAGTCGTCACAAACCGT -ACGGAAGTAGTCGTCACATTGTGC -ACGGAAGTAGTCGTCACACTAAGC -ACGGAAGTAGTCGTCACAACTAGC -ACGGAAGTAGTCGTCACAAGATGC -ACGGAAGTAGTCGTCACATGAAGG -ACGGAAGTAGTCGTCACACAATGG -ACGGAAGTAGTCGTCACAATGAGG -ACGGAAGTAGTCGTCACAAATGGG -ACGGAAGTAGTCGTCACATCCTGA -ACGGAAGTAGTCGTCACATAGCGA -ACGGAAGTAGTCGTCACACACAGA -ACGGAAGTAGTCGTCACAGCAAGA -ACGGAAGTAGTCGTCACAGGTTGA -ACGGAAGTAGTCGTCACATCCGAT -ACGGAAGTAGTCGTCACATGGCAT -ACGGAAGTAGTCGTCACACGAGAT -ACGGAAGTAGTCGTCACATACCAC -ACGGAAGTAGTCGTCACACAGAAC -ACGGAAGTAGTCGTCACAGTCTAC -ACGGAAGTAGTCGTCACAACGTAC -ACGGAAGTAGTCGTCACAAGTGAC -ACGGAAGTAGTCGTCACACTGTAG -ACGGAAGTAGTCGTCACACCTAAG -ACGGAAGTAGTCGTCACAGTTCAG -ACGGAAGTAGTCGTCACAGCATAG -ACGGAAGTAGTCGTCACAGACAAG -ACGGAAGTAGTCGTCACAAAGCAG -ACGGAAGTAGTCGTCACACGTCAA -ACGGAAGTAGTCGTCACAGCTGAA -ACGGAAGTAGTCGTCACAAGTACG -ACGGAAGTAGTCGTCACAATCCGA -ACGGAAGTAGTCGTCACAATGGGA -ACGGAAGTAGTCGTCACAGTGCAA -ACGGAAGTAGTCGTCACAGAGGAA -ACGGAAGTAGTCGTCACACAGGTA -ACGGAAGTAGTCGTCACAGACTCT -ACGGAAGTAGTCGTCACAAGTCCT -ACGGAAGTAGTCGTCACATAAGCC -ACGGAAGTAGTCGTCACAATAGCC -ACGGAAGTAGTCGTCACATAACCG -ACGGAAGTAGTCGTCACAATGCCA -ACGGAAGTAGTCCTGTTGGGAAAC -ACGGAAGTAGTCCTGTTGAACACC -ACGGAAGTAGTCCTGTTGATCGAG -ACGGAAGTAGTCCTGTTGCTCCTT -ACGGAAGTAGTCCTGTTGCCTGTT -ACGGAAGTAGTCCTGTTGCGGTTT -ACGGAAGTAGTCCTGTTGGTGGTT -ACGGAAGTAGTCCTGTTGGCCTTT -ACGGAAGTAGTCCTGTTGGGTCTT -ACGGAAGTAGTCCTGTTGACGCTT -ACGGAAGTAGTCCTGTTGAGCGTT -ACGGAAGTAGTCCTGTTGTTCGTC -ACGGAAGTAGTCCTGTTGTCTCTC -ACGGAAGTAGTCCTGTTGTGGATC -ACGGAAGTAGTCCTGTTGCACTTC -ACGGAAGTAGTCCTGTTGGTACTC -ACGGAAGTAGTCCTGTTGGATGTC -ACGGAAGTAGTCCTGTTGACAGTC -ACGGAAGTAGTCCTGTTGTTGCTG -ACGGAAGTAGTCCTGTTGTCCATG -ACGGAAGTAGTCCTGTTGTGTGTG -ACGGAAGTAGTCCTGTTGCTAGTG -ACGGAAGTAGTCCTGTTGCATCTG -ACGGAAGTAGTCCTGTTGGAGTTG -ACGGAAGTAGTCCTGTTGAGACTG -ACGGAAGTAGTCCTGTTGTCGGTA -ACGGAAGTAGTCCTGTTGTGCCTA -ACGGAAGTAGTCCTGTTGCCACTA -ACGGAAGTAGTCCTGTTGGGAGTA -ACGGAAGTAGTCCTGTTGTCGTCT -ACGGAAGTAGTCCTGTTGTGCACT -ACGGAAGTAGTCCTGTTGCTGACT -ACGGAAGTAGTCCTGTTGCAACCT -ACGGAAGTAGTCCTGTTGGCTACT -ACGGAAGTAGTCCTGTTGGGATCT -ACGGAAGTAGTCCTGTTGAAGGCT -ACGGAAGTAGTCCTGTTGTCAACC -ACGGAAGTAGTCCTGTTGTGTTCC -ACGGAAGTAGTCCTGTTGATTCCC -ACGGAAGTAGTCCTGTTGTTCTCG -ACGGAAGTAGTCCTGTTGTAGACG -ACGGAAGTAGTCCTGTTGGTAACG -ACGGAAGTAGTCCTGTTGACTTCG -ACGGAAGTAGTCCTGTTGTACGCA -ACGGAAGTAGTCCTGTTGCTTGCA -ACGGAAGTAGTCCTGTTGCGAACA -ACGGAAGTAGTCCTGTTGCAGTCA -ACGGAAGTAGTCCTGTTGGATCCA -ACGGAAGTAGTCCTGTTGACGACA -ACGGAAGTAGTCCTGTTGAGCTCA -ACGGAAGTAGTCCTGTTGTCACGT -ACGGAAGTAGTCCTGTTGCGTAGT -ACGGAAGTAGTCCTGTTGGTCAGT -ACGGAAGTAGTCCTGTTGGAAGGT -ACGGAAGTAGTCCTGTTGAACCGT -ACGGAAGTAGTCCTGTTGTTGTGC -ACGGAAGTAGTCCTGTTGCTAAGC -ACGGAAGTAGTCCTGTTGACTAGC -ACGGAAGTAGTCCTGTTGAGATGC -ACGGAAGTAGTCCTGTTGTGAAGG -ACGGAAGTAGTCCTGTTGCAATGG -ACGGAAGTAGTCCTGTTGATGAGG -ACGGAAGTAGTCCTGTTGAATGGG -ACGGAAGTAGTCCTGTTGTCCTGA -ACGGAAGTAGTCCTGTTGTAGCGA -ACGGAAGTAGTCCTGTTGCACAGA -ACGGAAGTAGTCCTGTTGGCAAGA -ACGGAAGTAGTCCTGTTGGGTTGA -ACGGAAGTAGTCCTGTTGTCCGAT -ACGGAAGTAGTCCTGTTGTGGCAT -ACGGAAGTAGTCCTGTTGCGAGAT -ACGGAAGTAGTCCTGTTGTACCAC -ACGGAAGTAGTCCTGTTGCAGAAC -ACGGAAGTAGTCCTGTTGGTCTAC -ACGGAAGTAGTCCTGTTGACGTAC -ACGGAAGTAGTCCTGTTGAGTGAC -ACGGAAGTAGTCCTGTTGCTGTAG -ACGGAAGTAGTCCTGTTGCCTAAG -ACGGAAGTAGTCCTGTTGGTTCAG -ACGGAAGTAGTCCTGTTGGCATAG -ACGGAAGTAGTCCTGTTGGACAAG -ACGGAAGTAGTCCTGTTGAAGCAG -ACGGAAGTAGTCCTGTTGCGTCAA -ACGGAAGTAGTCCTGTTGGCTGAA -ACGGAAGTAGTCCTGTTGAGTACG -ACGGAAGTAGTCCTGTTGATCCGA -ACGGAAGTAGTCCTGTTGATGGGA -ACGGAAGTAGTCCTGTTGGTGCAA -ACGGAAGTAGTCCTGTTGGAGGAA -ACGGAAGTAGTCCTGTTGCAGGTA -ACGGAAGTAGTCCTGTTGGACTCT -ACGGAAGTAGTCCTGTTGAGTCCT -ACGGAAGTAGTCCTGTTGTAAGCC -ACGGAAGTAGTCCTGTTGATAGCC -ACGGAAGTAGTCCTGTTGTAACCG -ACGGAAGTAGTCCTGTTGATGCCA -ACGGAAGTAGTCATGTCCGGAAAC -ACGGAAGTAGTCATGTCCAACACC -ACGGAAGTAGTCATGTCCATCGAG -ACGGAAGTAGTCATGTCCCTCCTT -ACGGAAGTAGTCATGTCCCCTGTT -ACGGAAGTAGTCATGTCCCGGTTT -ACGGAAGTAGTCATGTCCGTGGTT -ACGGAAGTAGTCATGTCCGCCTTT -ACGGAAGTAGTCATGTCCGGTCTT -ACGGAAGTAGTCATGTCCACGCTT -ACGGAAGTAGTCATGTCCAGCGTT -ACGGAAGTAGTCATGTCCTTCGTC -ACGGAAGTAGTCATGTCCTCTCTC -ACGGAAGTAGTCATGTCCTGGATC -ACGGAAGTAGTCATGTCCCACTTC -ACGGAAGTAGTCATGTCCGTACTC -ACGGAAGTAGTCATGTCCGATGTC -ACGGAAGTAGTCATGTCCACAGTC -ACGGAAGTAGTCATGTCCTTGCTG -ACGGAAGTAGTCATGTCCTCCATG -ACGGAAGTAGTCATGTCCTGTGTG -ACGGAAGTAGTCATGTCCCTAGTG -ACGGAAGTAGTCATGTCCCATCTG -ACGGAAGTAGTCATGTCCGAGTTG -ACGGAAGTAGTCATGTCCAGACTG -ACGGAAGTAGTCATGTCCTCGGTA -ACGGAAGTAGTCATGTCCTGCCTA -ACGGAAGTAGTCATGTCCCCACTA -ACGGAAGTAGTCATGTCCGGAGTA -ACGGAAGTAGTCATGTCCTCGTCT -ACGGAAGTAGTCATGTCCTGCACT -ACGGAAGTAGTCATGTCCCTGACT -ACGGAAGTAGTCATGTCCCAACCT -ACGGAAGTAGTCATGTCCGCTACT -ACGGAAGTAGTCATGTCCGGATCT -ACGGAAGTAGTCATGTCCAAGGCT -ACGGAAGTAGTCATGTCCTCAACC -ACGGAAGTAGTCATGTCCTGTTCC -ACGGAAGTAGTCATGTCCATTCCC -ACGGAAGTAGTCATGTCCTTCTCG -ACGGAAGTAGTCATGTCCTAGACG -ACGGAAGTAGTCATGTCCGTAACG -ACGGAAGTAGTCATGTCCACTTCG -ACGGAAGTAGTCATGTCCTACGCA -ACGGAAGTAGTCATGTCCCTTGCA -ACGGAAGTAGTCATGTCCCGAACA -ACGGAAGTAGTCATGTCCCAGTCA -ACGGAAGTAGTCATGTCCGATCCA -ACGGAAGTAGTCATGTCCACGACA -ACGGAAGTAGTCATGTCCAGCTCA -ACGGAAGTAGTCATGTCCTCACGT -ACGGAAGTAGTCATGTCCCGTAGT -ACGGAAGTAGTCATGTCCGTCAGT -ACGGAAGTAGTCATGTCCGAAGGT -ACGGAAGTAGTCATGTCCAACCGT -ACGGAAGTAGTCATGTCCTTGTGC -ACGGAAGTAGTCATGTCCCTAAGC -ACGGAAGTAGTCATGTCCACTAGC -ACGGAAGTAGTCATGTCCAGATGC -ACGGAAGTAGTCATGTCCTGAAGG -ACGGAAGTAGTCATGTCCCAATGG -ACGGAAGTAGTCATGTCCATGAGG -ACGGAAGTAGTCATGTCCAATGGG -ACGGAAGTAGTCATGTCCTCCTGA -ACGGAAGTAGTCATGTCCTAGCGA -ACGGAAGTAGTCATGTCCCACAGA -ACGGAAGTAGTCATGTCCGCAAGA -ACGGAAGTAGTCATGTCCGGTTGA -ACGGAAGTAGTCATGTCCTCCGAT -ACGGAAGTAGTCATGTCCTGGCAT -ACGGAAGTAGTCATGTCCCGAGAT -ACGGAAGTAGTCATGTCCTACCAC -ACGGAAGTAGTCATGTCCCAGAAC -ACGGAAGTAGTCATGTCCGTCTAC -ACGGAAGTAGTCATGTCCACGTAC -ACGGAAGTAGTCATGTCCAGTGAC -ACGGAAGTAGTCATGTCCCTGTAG -ACGGAAGTAGTCATGTCCCCTAAG -ACGGAAGTAGTCATGTCCGTTCAG -ACGGAAGTAGTCATGTCCGCATAG -ACGGAAGTAGTCATGTCCGACAAG -ACGGAAGTAGTCATGTCCAAGCAG -ACGGAAGTAGTCATGTCCCGTCAA -ACGGAAGTAGTCATGTCCGCTGAA -ACGGAAGTAGTCATGTCCAGTACG -ACGGAAGTAGTCATGTCCATCCGA -ACGGAAGTAGTCATGTCCATGGGA -ACGGAAGTAGTCATGTCCGTGCAA -ACGGAAGTAGTCATGTCCGAGGAA -ACGGAAGTAGTCATGTCCCAGGTA -ACGGAAGTAGTCATGTCCGACTCT -ACGGAAGTAGTCATGTCCAGTCCT -ACGGAAGTAGTCATGTCCTAAGCC -ACGGAAGTAGTCATGTCCATAGCC -ACGGAAGTAGTCATGTCCTAACCG -ACGGAAGTAGTCATGTCCATGCCA -ACGGAAGTAGTCGTGTGTGGAAAC -ACGGAAGTAGTCGTGTGTAACACC -ACGGAAGTAGTCGTGTGTATCGAG -ACGGAAGTAGTCGTGTGTCTCCTT -ACGGAAGTAGTCGTGTGTCCTGTT -ACGGAAGTAGTCGTGTGTCGGTTT -ACGGAAGTAGTCGTGTGTGTGGTT -ACGGAAGTAGTCGTGTGTGCCTTT -ACGGAAGTAGTCGTGTGTGGTCTT -ACGGAAGTAGTCGTGTGTACGCTT -ACGGAAGTAGTCGTGTGTAGCGTT -ACGGAAGTAGTCGTGTGTTTCGTC -ACGGAAGTAGTCGTGTGTTCTCTC -ACGGAAGTAGTCGTGTGTTGGATC -ACGGAAGTAGTCGTGTGTCACTTC -ACGGAAGTAGTCGTGTGTGTACTC -ACGGAAGTAGTCGTGTGTGATGTC -ACGGAAGTAGTCGTGTGTACAGTC -ACGGAAGTAGTCGTGTGTTTGCTG -ACGGAAGTAGTCGTGTGTTCCATG -ACGGAAGTAGTCGTGTGTTGTGTG -ACGGAAGTAGTCGTGTGTCTAGTG -ACGGAAGTAGTCGTGTGTCATCTG -ACGGAAGTAGTCGTGTGTGAGTTG -ACGGAAGTAGTCGTGTGTAGACTG -ACGGAAGTAGTCGTGTGTTCGGTA -ACGGAAGTAGTCGTGTGTTGCCTA -ACGGAAGTAGTCGTGTGTCCACTA -ACGGAAGTAGTCGTGTGTGGAGTA -ACGGAAGTAGTCGTGTGTTCGTCT -ACGGAAGTAGTCGTGTGTTGCACT -ACGGAAGTAGTCGTGTGTCTGACT -ACGGAAGTAGTCGTGTGTCAACCT -ACGGAAGTAGTCGTGTGTGCTACT -ACGGAAGTAGTCGTGTGTGGATCT -ACGGAAGTAGTCGTGTGTAAGGCT -ACGGAAGTAGTCGTGTGTTCAACC -ACGGAAGTAGTCGTGTGTTGTTCC -ACGGAAGTAGTCGTGTGTATTCCC -ACGGAAGTAGTCGTGTGTTTCTCG -ACGGAAGTAGTCGTGTGTTAGACG -ACGGAAGTAGTCGTGTGTGTAACG -ACGGAAGTAGTCGTGTGTACTTCG -ACGGAAGTAGTCGTGTGTTACGCA -ACGGAAGTAGTCGTGTGTCTTGCA -ACGGAAGTAGTCGTGTGTCGAACA -ACGGAAGTAGTCGTGTGTCAGTCA -ACGGAAGTAGTCGTGTGTGATCCA -ACGGAAGTAGTCGTGTGTACGACA -ACGGAAGTAGTCGTGTGTAGCTCA -ACGGAAGTAGTCGTGTGTTCACGT -ACGGAAGTAGTCGTGTGTCGTAGT -ACGGAAGTAGTCGTGTGTGTCAGT -ACGGAAGTAGTCGTGTGTGAAGGT -ACGGAAGTAGTCGTGTGTAACCGT -ACGGAAGTAGTCGTGTGTTTGTGC -ACGGAAGTAGTCGTGTGTCTAAGC -ACGGAAGTAGTCGTGTGTACTAGC -ACGGAAGTAGTCGTGTGTAGATGC -ACGGAAGTAGTCGTGTGTTGAAGG -ACGGAAGTAGTCGTGTGTCAATGG -ACGGAAGTAGTCGTGTGTATGAGG -ACGGAAGTAGTCGTGTGTAATGGG -ACGGAAGTAGTCGTGTGTTCCTGA -ACGGAAGTAGTCGTGTGTTAGCGA -ACGGAAGTAGTCGTGTGTCACAGA -ACGGAAGTAGTCGTGTGTGCAAGA -ACGGAAGTAGTCGTGTGTGGTTGA -ACGGAAGTAGTCGTGTGTTCCGAT -ACGGAAGTAGTCGTGTGTTGGCAT -ACGGAAGTAGTCGTGTGTCGAGAT -ACGGAAGTAGTCGTGTGTTACCAC -ACGGAAGTAGTCGTGTGTCAGAAC -ACGGAAGTAGTCGTGTGTGTCTAC -ACGGAAGTAGTCGTGTGTACGTAC -ACGGAAGTAGTCGTGTGTAGTGAC -ACGGAAGTAGTCGTGTGTCTGTAG -ACGGAAGTAGTCGTGTGTCCTAAG -ACGGAAGTAGTCGTGTGTGTTCAG -ACGGAAGTAGTCGTGTGTGCATAG -ACGGAAGTAGTCGTGTGTGACAAG -ACGGAAGTAGTCGTGTGTAAGCAG -ACGGAAGTAGTCGTGTGTCGTCAA -ACGGAAGTAGTCGTGTGTGCTGAA -ACGGAAGTAGTCGTGTGTAGTACG -ACGGAAGTAGTCGTGTGTATCCGA -ACGGAAGTAGTCGTGTGTATGGGA -ACGGAAGTAGTCGTGTGTGTGCAA -ACGGAAGTAGTCGTGTGTGAGGAA -ACGGAAGTAGTCGTGTGTCAGGTA -ACGGAAGTAGTCGTGTGTGACTCT -ACGGAAGTAGTCGTGTGTAGTCCT -ACGGAAGTAGTCGTGTGTTAAGCC -ACGGAAGTAGTCGTGTGTATAGCC -ACGGAAGTAGTCGTGTGTTAACCG -ACGGAAGTAGTCGTGTGTATGCCA -ACGGAAGTAGTCGTGCTAGGAAAC -ACGGAAGTAGTCGTGCTAAACACC -ACGGAAGTAGTCGTGCTAATCGAG -ACGGAAGTAGTCGTGCTACTCCTT -ACGGAAGTAGTCGTGCTACCTGTT -ACGGAAGTAGTCGTGCTACGGTTT -ACGGAAGTAGTCGTGCTAGTGGTT -ACGGAAGTAGTCGTGCTAGCCTTT -ACGGAAGTAGTCGTGCTAGGTCTT -ACGGAAGTAGTCGTGCTAACGCTT -ACGGAAGTAGTCGTGCTAAGCGTT -ACGGAAGTAGTCGTGCTATTCGTC -ACGGAAGTAGTCGTGCTATCTCTC -ACGGAAGTAGTCGTGCTATGGATC -ACGGAAGTAGTCGTGCTACACTTC -ACGGAAGTAGTCGTGCTAGTACTC -ACGGAAGTAGTCGTGCTAGATGTC -ACGGAAGTAGTCGTGCTAACAGTC -ACGGAAGTAGTCGTGCTATTGCTG -ACGGAAGTAGTCGTGCTATCCATG -ACGGAAGTAGTCGTGCTATGTGTG -ACGGAAGTAGTCGTGCTACTAGTG -ACGGAAGTAGTCGTGCTACATCTG -ACGGAAGTAGTCGTGCTAGAGTTG -ACGGAAGTAGTCGTGCTAAGACTG -ACGGAAGTAGTCGTGCTATCGGTA -ACGGAAGTAGTCGTGCTATGCCTA -ACGGAAGTAGTCGTGCTACCACTA -ACGGAAGTAGTCGTGCTAGGAGTA -ACGGAAGTAGTCGTGCTATCGTCT -ACGGAAGTAGTCGTGCTATGCACT -ACGGAAGTAGTCGTGCTACTGACT -ACGGAAGTAGTCGTGCTACAACCT -ACGGAAGTAGTCGTGCTAGCTACT -ACGGAAGTAGTCGTGCTAGGATCT -ACGGAAGTAGTCGTGCTAAAGGCT -ACGGAAGTAGTCGTGCTATCAACC -ACGGAAGTAGTCGTGCTATGTTCC -ACGGAAGTAGTCGTGCTAATTCCC -ACGGAAGTAGTCGTGCTATTCTCG -ACGGAAGTAGTCGTGCTATAGACG -ACGGAAGTAGTCGTGCTAGTAACG -ACGGAAGTAGTCGTGCTAACTTCG -ACGGAAGTAGTCGTGCTATACGCA -ACGGAAGTAGTCGTGCTACTTGCA -ACGGAAGTAGTCGTGCTACGAACA -ACGGAAGTAGTCGTGCTACAGTCA -ACGGAAGTAGTCGTGCTAGATCCA -ACGGAAGTAGTCGTGCTAACGACA -ACGGAAGTAGTCGTGCTAAGCTCA -ACGGAAGTAGTCGTGCTATCACGT -ACGGAAGTAGTCGTGCTACGTAGT -ACGGAAGTAGTCGTGCTAGTCAGT -ACGGAAGTAGTCGTGCTAGAAGGT -ACGGAAGTAGTCGTGCTAAACCGT -ACGGAAGTAGTCGTGCTATTGTGC -ACGGAAGTAGTCGTGCTACTAAGC -ACGGAAGTAGTCGTGCTAACTAGC -ACGGAAGTAGTCGTGCTAAGATGC -ACGGAAGTAGTCGTGCTATGAAGG -ACGGAAGTAGTCGTGCTACAATGG -ACGGAAGTAGTCGTGCTAATGAGG -ACGGAAGTAGTCGTGCTAAATGGG -ACGGAAGTAGTCGTGCTATCCTGA -ACGGAAGTAGTCGTGCTATAGCGA -ACGGAAGTAGTCGTGCTACACAGA -ACGGAAGTAGTCGTGCTAGCAAGA -ACGGAAGTAGTCGTGCTAGGTTGA -ACGGAAGTAGTCGTGCTATCCGAT -ACGGAAGTAGTCGTGCTATGGCAT -ACGGAAGTAGTCGTGCTACGAGAT -ACGGAAGTAGTCGTGCTATACCAC -ACGGAAGTAGTCGTGCTACAGAAC -ACGGAAGTAGTCGTGCTAGTCTAC -ACGGAAGTAGTCGTGCTAACGTAC -ACGGAAGTAGTCGTGCTAAGTGAC -ACGGAAGTAGTCGTGCTACTGTAG -ACGGAAGTAGTCGTGCTACCTAAG -ACGGAAGTAGTCGTGCTAGTTCAG -ACGGAAGTAGTCGTGCTAGCATAG -ACGGAAGTAGTCGTGCTAGACAAG -ACGGAAGTAGTCGTGCTAAAGCAG -ACGGAAGTAGTCGTGCTACGTCAA -ACGGAAGTAGTCGTGCTAGCTGAA -ACGGAAGTAGTCGTGCTAAGTACG -ACGGAAGTAGTCGTGCTAATCCGA -ACGGAAGTAGTCGTGCTAATGGGA -ACGGAAGTAGTCGTGCTAGTGCAA -ACGGAAGTAGTCGTGCTAGAGGAA -ACGGAAGTAGTCGTGCTACAGGTA -ACGGAAGTAGTCGTGCTAGACTCT -ACGGAAGTAGTCGTGCTAAGTCCT -ACGGAAGTAGTCGTGCTATAAGCC -ACGGAAGTAGTCGTGCTAATAGCC -ACGGAAGTAGTCGTGCTATAACCG -ACGGAAGTAGTCGTGCTAATGCCA -ACGGAAGTAGTCCTGCATGGAAAC -ACGGAAGTAGTCCTGCATAACACC -ACGGAAGTAGTCCTGCATATCGAG -ACGGAAGTAGTCCTGCATCTCCTT -ACGGAAGTAGTCCTGCATCCTGTT -ACGGAAGTAGTCCTGCATCGGTTT -ACGGAAGTAGTCCTGCATGTGGTT -ACGGAAGTAGTCCTGCATGCCTTT -ACGGAAGTAGTCCTGCATGGTCTT -ACGGAAGTAGTCCTGCATACGCTT -ACGGAAGTAGTCCTGCATAGCGTT -ACGGAAGTAGTCCTGCATTTCGTC -ACGGAAGTAGTCCTGCATTCTCTC -ACGGAAGTAGTCCTGCATTGGATC -ACGGAAGTAGTCCTGCATCACTTC -ACGGAAGTAGTCCTGCATGTACTC -ACGGAAGTAGTCCTGCATGATGTC -ACGGAAGTAGTCCTGCATACAGTC -ACGGAAGTAGTCCTGCATTTGCTG -ACGGAAGTAGTCCTGCATTCCATG -ACGGAAGTAGTCCTGCATTGTGTG -ACGGAAGTAGTCCTGCATCTAGTG -ACGGAAGTAGTCCTGCATCATCTG -ACGGAAGTAGTCCTGCATGAGTTG -ACGGAAGTAGTCCTGCATAGACTG -ACGGAAGTAGTCCTGCATTCGGTA -ACGGAAGTAGTCCTGCATTGCCTA -ACGGAAGTAGTCCTGCATCCACTA -ACGGAAGTAGTCCTGCATGGAGTA -ACGGAAGTAGTCCTGCATTCGTCT -ACGGAAGTAGTCCTGCATTGCACT -ACGGAAGTAGTCCTGCATCTGACT -ACGGAAGTAGTCCTGCATCAACCT -ACGGAAGTAGTCCTGCATGCTACT -ACGGAAGTAGTCCTGCATGGATCT -ACGGAAGTAGTCCTGCATAAGGCT -ACGGAAGTAGTCCTGCATTCAACC -ACGGAAGTAGTCCTGCATTGTTCC -ACGGAAGTAGTCCTGCATATTCCC -ACGGAAGTAGTCCTGCATTTCTCG -ACGGAAGTAGTCCTGCATTAGACG -ACGGAAGTAGTCCTGCATGTAACG -ACGGAAGTAGTCCTGCATACTTCG -ACGGAAGTAGTCCTGCATTACGCA -ACGGAAGTAGTCCTGCATCTTGCA -ACGGAAGTAGTCCTGCATCGAACA -ACGGAAGTAGTCCTGCATCAGTCA -ACGGAAGTAGTCCTGCATGATCCA -ACGGAAGTAGTCCTGCATACGACA -ACGGAAGTAGTCCTGCATAGCTCA -ACGGAAGTAGTCCTGCATTCACGT -ACGGAAGTAGTCCTGCATCGTAGT -ACGGAAGTAGTCCTGCATGTCAGT -ACGGAAGTAGTCCTGCATGAAGGT -ACGGAAGTAGTCCTGCATAACCGT -ACGGAAGTAGTCCTGCATTTGTGC -ACGGAAGTAGTCCTGCATCTAAGC -ACGGAAGTAGTCCTGCATACTAGC -ACGGAAGTAGTCCTGCATAGATGC -ACGGAAGTAGTCCTGCATTGAAGG -ACGGAAGTAGTCCTGCATCAATGG -ACGGAAGTAGTCCTGCATATGAGG -ACGGAAGTAGTCCTGCATAATGGG -ACGGAAGTAGTCCTGCATTCCTGA -ACGGAAGTAGTCCTGCATTAGCGA -ACGGAAGTAGTCCTGCATCACAGA -ACGGAAGTAGTCCTGCATGCAAGA -ACGGAAGTAGTCCTGCATGGTTGA -ACGGAAGTAGTCCTGCATTCCGAT -ACGGAAGTAGTCCTGCATTGGCAT -ACGGAAGTAGTCCTGCATCGAGAT -ACGGAAGTAGTCCTGCATTACCAC -ACGGAAGTAGTCCTGCATCAGAAC -ACGGAAGTAGTCCTGCATGTCTAC -ACGGAAGTAGTCCTGCATACGTAC -ACGGAAGTAGTCCTGCATAGTGAC -ACGGAAGTAGTCCTGCATCTGTAG -ACGGAAGTAGTCCTGCATCCTAAG -ACGGAAGTAGTCCTGCATGTTCAG -ACGGAAGTAGTCCTGCATGCATAG -ACGGAAGTAGTCCTGCATGACAAG -ACGGAAGTAGTCCTGCATAAGCAG -ACGGAAGTAGTCCTGCATCGTCAA -ACGGAAGTAGTCCTGCATGCTGAA -ACGGAAGTAGTCCTGCATAGTACG -ACGGAAGTAGTCCTGCATATCCGA -ACGGAAGTAGTCCTGCATATGGGA -ACGGAAGTAGTCCTGCATGTGCAA -ACGGAAGTAGTCCTGCATGAGGAA -ACGGAAGTAGTCCTGCATCAGGTA -ACGGAAGTAGTCCTGCATGACTCT -ACGGAAGTAGTCCTGCATAGTCCT -ACGGAAGTAGTCCTGCATTAAGCC -ACGGAAGTAGTCCTGCATATAGCC -ACGGAAGTAGTCCTGCATTAACCG -ACGGAAGTAGTCCTGCATATGCCA -ACGGAAGTAGTCTTGGAGGGAAAC -ACGGAAGTAGTCTTGGAGAACACC -ACGGAAGTAGTCTTGGAGATCGAG -ACGGAAGTAGTCTTGGAGCTCCTT -ACGGAAGTAGTCTTGGAGCCTGTT -ACGGAAGTAGTCTTGGAGCGGTTT -ACGGAAGTAGTCTTGGAGGTGGTT -ACGGAAGTAGTCTTGGAGGCCTTT -ACGGAAGTAGTCTTGGAGGGTCTT -ACGGAAGTAGTCTTGGAGACGCTT -ACGGAAGTAGTCTTGGAGAGCGTT -ACGGAAGTAGTCTTGGAGTTCGTC -ACGGAAGTAGTCTTGGAGTCTCTC -ACGGAAGTAGTCTTGGAGTGGATC -ACGGAAGTAGTCTTGGAGCACTTC -ACGGAAGTAGTCTTGGAGGTACTC -ACGGAAGTAGTCTTGGAGGATGTC -ACGGAAGTAGTCTTGGAGACAGTC -ACGGAAGTAGTCTTGGAGTTGCTG -ACGGAAGTAGTCTTGGAGTCCATG -ACGGAAGTAGTCTTGGAGTGTGTG -ACGGAAGTAGTCTTGGAGCTAGTG -ACGGAAGTAGTCTTGGAGCATCTG -ACGGAAGTAGTCTTGGAGGAGTTG -ACGGAAGTAGTCTTGGAGAGACTG -ACGGAAGTAGTCTTGGAGTCGGTA -ACGGAAGTAGTCTTGGAGTGCCTA -ACGGAAGTAGTCTTGGAGCCACTA -ACGGAAGTAGTCTTGGAGGGAGTA -ACGGAAGTAGTCTTGGAGTCGTCT -ACGGAAGTAGTCTTGGAGTGCACT -ACGGAAGTAGTCTTGGAGCTGACT -ACGGAAGTAGTCTTGGAGCAACCT -ACGGAAGTAGTCTTGGAGGCTACT -ACGGAAGTAGTCTTGGAGGGATCT -ACGGAAGTAGTCTTGGAGAAGGCT -ACGGAAGTAGTCTTGGAGTCAACC -ACGGAAGTAGTCTTGGAGTGTTCC -ACGGAAGTAGTCTTGGAGATTCCC -ACGGAAGTAGTCTTGGAGTTCTCG -ACGGAAGTAGTCTTGGAGTAGACG -ACGGAAGTAGTCTTGGAGGTAACG -ACGGAAGTAGTCTTGGAGACTTCG -ACGGAAGTAGTCTTGGAGTACGCA -ACGGAAGTAGTCTTGGAGCTTGCA -ACGGAAGTAGTCTTGGAGCGAACA -ACGGAAGTAGTCTTGGAGCAGTCA -ACGGAAGTAGTCTTGGAGGATCCA -ACGGAAGTAGTCTTGGAGACGACA -ACGGAAGTAGTCTTGGAGAGCTCA -ACGGAAGTAGTCTTGGAGTCACGT -ACGGAAGTAGTCTTGGAGCGTAGT -ACGGAAGTAGTCTTGGAGGTCAGT -ACGGAAGTAGTCTTGGAGGAAGGT -ACGGAAGTAGTCTTGGAGAACCGT -ACGGAAGTAGTCTTGGAGTTGTGC -ACGGAAGTAGTCTTGGAGCTAAGC -ACGGAAGTAGTCTTGGAGACTAGC -ACGGAAGTAGTCTTGGAGAGATGC -ACGGAAGTAGTCTTGGAGTGAAGG -ACGGAAGTAGTCTTGGAGCAATGG -ACGGAAGTAGTCTTGGAGATGAGG -ACGGAAGTAGTCTTGGAGAATGGG -ACGGAAGTAGTCTTGGAGTCCTGA -ACGGAAGTAGTCTTGGAGTAGCGA -ACGGAAGTAGTCTTGGAGCACAGA -ACGGAAGTAGTCTTGGAGGCAAGA -ACGGAAGTAGTCTTGGAGGGTTGA -ACGGAAGTAGTCTTGGAGTCCGAT -ACGGAAGTAGTCTTGGAGTGGCAT -ACGGAAGTAGTCTTGGAGCGAGAT -ACGGAAGTAGTCTTGGAGTACCAC -ACGGAAGTAGTCTTGGAGCAGAAC -ACGGAAGTAGTCTTGGAGGTCTAC -ACGGAAGTAGTCTTGGAGACGTAC -ACGGAAGTAGTCTTGGAGAGTGAC -ACGGAAGTAGTCTTGGAGCTGTAG -ACGGAAGTAGTCTTGGAGCCTAAG -ACGGAAGTAGTCTTGGAGGTTCAG -ACGGAAGTAGTCTTGGAGGCATAG -ACGGAAGTAGTCTTGGAGGACAAG -ACGGAAGTAGTCTTGGAGAAGCAG -ACGGAAGTAGTCTTGGAGCGTCAA -ACGGAAGTAGTCTTGGAGGCTGAA -ACGGAAGTAGTCTTGGAGAGTACG -ACGGAAGTAGTCTTGGAGATCCGA -ACGGAAGTAGTCTTGGAGATGGGA -ACGGAAGTAGTCTTGGAGGTGCAA -ACGGAAGTAGTCTTGGAGGAGGAA -ACGGAAGTAGTCTTGGAGCAGGTA -ACGGAAGTAGTCTTGGAGGACTCT -ACGGAAGTAGTCTTGGAGAGTCCT -ACGGAAGTAGTCTTGGAGTAAGCC -ACGGAAGTAGTCTTGGAGATAGCC -ACGGAAGTAGTCTTGGAGTAACCG -ACGGAAGTAGTCTTGGAGATGCCA -ACGGAAGTAGTCCTGAGAGGAAAC -ACGGAAGTAGTCCTGAGAAACACC -ACGGAAGTAGTCCTGAGAATCGAG -ACGGAAGTAGTCCTGAGACTCCTT -ACGGAAGTAGTCCTGAGACCTGTT -ACGGAAGTAGTCCTGAGACGGTTT -ACGGAAGTAGTCCTGAGAGTGGTT -ACGGAAGTAGTCCTGAGAGCCTTT -ACGGAAGTAGTCCTGAGAGGTCTT -ACGGAAGTAGTCCTGAGAACGCTT -ACGGAAGTAGTCCTGAGAAGCGTT -ACGGAAGTAGTCCTGAGATTCGTC -ACGGAAGTAGTCCTGAGATCTCTC -ACGGAAGTAGTCCTGAGATGGATC -ACGGAAGTAGTCCTGAGACACTTC -ACGGAAGTAGTCCTGAGAGTACTC -ACGGAAGTAGTCCTGAGAGATGTC -ACGGAAGTAGTCCTGAGAACAGTC -ACGGAAGTAGTCCTGAGATTGCTG -ACGGAAGTAGTCCTGAGATCCATG -ACGGAAGTAGTCCTGAGATGTGTG -ACGGAAGTAGTCCTGAGACTAGTG -ACGGAAGTAGTCCTGAGACATCTG -ACGGAAGTAGTCCTGAGAGAGTTG -ACGGAAGTAGTCCTGAGAAGACTG -ACGGAAGTAGTCCTGAGATCGGTA -ACGGAAGTAGTCCTGAGATGCCTA -ACGGAAGTAGTCCTGAGACCACTA -ACGGAAGTAGTCCTGAGAGGAGTA -ACGGAAGTAGTCCTGAGATCGTCT -ACGGAAGTAGTCCTGAGATGCACT -ACGGAAGTAGTCCTGAGACTGACT -ACGGAAGTAGTCCTGAGACAACCT -ACGGAAGTAGTCCTGAGAGCTACT -ACGGAAGTAGTCCTGAGAGGATCT -ACGGAAGTAGTCCTGAGAAAGGCT -ACGGAAGTAGTCCTGAGATCAACC -ACGGAAGTAGTCCTGAGATGTTCC -ACGGAAGTAGTCCTGAGAATTCCC -ACGGAAGTAGTCCTGAGATTCTCG -ACGGAAGTAGTCCTGAGATAGACG -ACGGAAGTAGTCCTGAGAGTAACG -ACGGAAGTAGTCCTGAGAACTTCG -ACGGAAGTAGTCCTGAGATACGCA -ACGGAAGTAGTCCTGAGACTTGCA -ACGGAAGTAGTCCTGAGACGAACA -ACGGAAGTAGTCCTGAGACAGTCA -ACGGAAGTAGTCCTGAGAGATCCA -ACGGAAGTAGTCCTGAGAACGACA -ACGGAAGTAGTCCTGAGAAGCTCA -ACGGAAGTAGTCCTGAGATCACGT -ACGGAAGTAGTCCTGAGACGTAGT -ACGGAAGTAGTCCTGAGAGTCAGT -ACGGAAGTAGTCCTGAGAGAAGGT -ACGGAAGTAGTCCTGAGAAACCGT -ACGGAAGTAGTCCTGAGATTGTGC -ACGGAAGTAGTCCTGAGACTAAGC -ACGGAAGTAGTCCTGAGAACTAGC -ACGGAAGTAGTCCTGAGAAGATGC -ACGGAAGTAGTCCTGAGATGAAGG -ACGGAAGTAGTCCTGAGACAATGG -ACGGAAGTAGTCCTGAGAATGAGG -ACGGAAGTAGTCCTGAGAAATGGG -ACGGAAGTAGTCCTGAGATCCTGA -ACGGAAGTAGTCCTGAGATAGCGA -ACGGAAGTAGTCCTGAGACACAGA -ACGGAAGTAGTCCTGAGAGCAAGA -ACGGAAGTAGTCCTGAGAGGTTGA -ACGGAAGTAGTCCTGAGATCCGAT -ACGGAAGTAGTCCTGAGATGGCAT -ACGGAAGTAGTCCTGAGACGAGAT -ACGGAAGTAGTCCTGAGATACCAC -ACGGAAGTAGTCCTGAGACAGAAC -ACGGAAGTAGTCCTGAGAGTCTAC -ACGGAAGTAGTCCTGAGAACGTAC -ACGGAAGTAGTCCTGAGAAGTGAC -ACGGAAGTAGTCCTGAGACTGTAG -ACGGAAGTAGTCCTGAGACCTAAG -ACGGAAGTAGTCCTGAGAGTTCAG -ACGGAAGTAGTCCTGAGAGCATAG -ACGGAAGTAGTCCTGAGAGACAAG -ACGGAAGTAGTCCTGAGAAAGCAG -ACGGAAGTAGTCCTGAGACGTCAA -ACGGAAGTAGTCCTGAGAGCTGAA -ACGGAAGTAGTCCTGAGAAGTACG -ACGGAAGTAGTCCTGAGAATCCGA -ACGGAAGTAGTCCTGAGAATGGGA -ACGGAAGTAGTCCTGAGAGTGCAA -ACGGAAGTAGTCCTGAGAGAGGAA -ACGGAAGTAGTCCTGAGACAGGTA -ACGGAAGTAGTCCTGAGAGACTCT -ACGGAAGTAGTCCTGAGAAGTCCT -ACGGAAGTAGTCCTGAGATAAGCC -ACGGAAGTAGTCCTGAGAATAGCC -ACGGAAGTAGTCCTGAGATAACCG -ACGGAAGTAGTCCTGAGAATGCCA -ACGGAAGTAGTCGTATCGGGAAAC -ACGGAAGTAGTCGTATCGAACACC -ACGGAAGTAGTCGTATCGATCGAG -ACGGAAGTAGTCGTATCGCTCCTT -ACGGAAGTAGTCGTATCGCCTGTT -ACGGAAGTAGTCGTATCGCGGTTT -ACGGAAGTAGTCGTATCGGTGGTT -ACGGAAGTAGTCGTATCGGCCTTT -ACGGAAGTAGTCGTATCGGGTCTT -ACGGAAGTAGTCGTATCGACGCTT -ACGGAAGTAGTCGTATCGAGCGTT -ACGGAAGTAGTCGTATCGTTCGTC -ACGGAAGTAGTCGTATCGTCTCTC -ACGGAAGTAGTCGTATCGTGGATC -ACGGAAGTAGTCGTATCGCACTTC -ACGGAAGTAGTCGTATCGGTACTC -ACGGAAGTAGTCGTATCGGATGTC -ACGGAAGTAGTCGTATCGACAGTC -ACGGAAGTAGTCGTATCGTTGCTG -ACGGAAGTAGTCGTATCGTCCATG -ACGGAAGTAGTCGTATCGTGTGTG -ACGGAAGTAGTCGTATCGCTAGTG -ACGGAAGTAGTCGTATCGCATCTG -ACGGAAGTAGTCGTATCGGAGTTG -ACGGAAGTAGTCGTATCGAGACTG -ACGGAAGTAGTCGTATCGTCGGTA -ACGGAAGTAGTCGTATCGTGCCTA -ACGGAAGTAGTCGTATCGCCACTA -ACGGAAGTAGTCGTATCGGGAGTA -ACGGAAGTAGTCGTATCGTCGTCT -ACGGAAGTAGTCGTATCGTGCACT -ACGGAAGTAGTCGTATCGCTGACT -ACGGAAGTAGTCGTATCGCAACCT -ACGGAAGTAGTCGTATCGGCTACT -ACGGAAGTAGTCGTATCGGGATCT -ACGGAAGTAGTCGTATCGAAGGCT -ACGGAAGTAGTCGTATCGTCAACC -ACGGAAGTAGTCGTATCGTGTTCC -ACGGAAGTAGTCGTATCGATTCCC -ACGGAAGTAGTCGTATCGTTCTCG -ACGGAAGTAGTCGTATCGTAGACG -ACGGAAGTAGTCGTATCGGTAACG -ACGGAAGTAGTCGTATCGACTTCG -ACGGAAGTAGTCGTATCGTACGCA -ACGGAAGTAGTCGTATCGCTTGCA -ACGGAAGTAGTCGTATCGCGAACA -ACGGAAGTAGTCGTATCGCAGTCA -ACGGAAGTAGTCGTATCGGATCCA -ACGGAAGTAGTCGTATCGACGACA -ACGGAAGTAGTCGTATCGAGCTCA -ACGGAAGTAGTCGTATCGTCACGT -ACGGAAGTAGTCGTATCGCGTAGT -ACGGAAGTAGTCGTATCGGTCAGT -ACGGAAGTAGTCGTATCGGAAGGT -ACGGAAGTAGTCGTATCGAACCGT -ACGGAAGTAGTCGTATCGTTGTGC -ACGGAAGTAGTCGTATCGCTAAGC -ACGGAAGTAGTCGTATCGACTAGC -ACGGAAGTAGTCGTATCGAGATGC -ACGGAAGTAGTCGTATCGTGAAGG -ACGGAAGTAGTCGTATCGCAATGG -ACGGAAGTAGTCGTATCGATGAGG -ACGGAAGTAGTCGTATCGAATGGG -ACGGAAGTAGTCGTATCGTCCTGA -ACGGAAGTAGTCGTATCGTAGCGA -ACGGAAGTAGTCGTATCGCACAGA -ACGGAAGTAGTCGTATCGGCAAGA -ACGGAAGTAGTCGTATCGGGTTGA -ACGGAAGTAGTCGTATCGTCCGAT -ACGGAAGTAGTCGTATCGTGGCAT -ACGGAAGTAGTCGTATCGCGAGAT -ACGGAAGTAGTCGTATCGTACCAC -ACGGAAGTAGTCGTATCGCAGAAC -ACGGAAGTAGTCGTATCGGTCTAC -ACGGAAGTAGTCGTATCGACGTAC -ACGGAAGTAGTCGTATCGAGTGAC -ACGGAAGTAGTCGTATCGCTGTAG -ACGGAAGTAGTCGTATCGCCTAAG -ACGGAAGTAGTCGTATCGGTTCAG -ACGGAAGTAGTCGTATCGGCATAG -ACGGAAGTAGTCGTATCGGACAAG -ACGGAAGTAGTCGTATCGAAGCAG -ACGGAAGTAGTCGTATCGCGTCAA -ACGGAAGTAGTCGTATCGGCTGAA -ACGGAAGTAGTCGTATCGAGTACG -ACGGAAGTAGTCGTATCGATCCGA -ACGGAAGTAGTCGTATCGATGGGA -ACGGAAGTAGTCGTATCGGTGCAA -ACGGAAGTAGTCGTATCGGAGGAA -ACGGAAGTAGTCGTATCGCAGGTA -ACGGAAGTAGTCGTATCGGACTCT -ACGGAAGTAGTCGTATCGAGTCCT -ACGGAAGTAGTCGTATCGTAAGCC -ACGGAAGTAGTCGTATCGATAGCC -ACGGAAGTAGTCGTATCGTAACCG -ACGGAAGTAGTCGTATCGATGCCA -ACGGAAGTAGTCCTATGCGGAAAC -ACGGAAGTAGTCCTATGCAACACC -ACGGAAGTAGTCCTATGCATCGAG -ACGGAAGTAGTCCTATGCCTCCTT -ACGGAAGTAGTCCTATGCCCTGTT -ACGGAAGTAGTCCTATGCCGGTTT -ACGGAAGTAGTCCTATGCGTGGTT -ACGGAAGTAGTCCTATGCGCCTTT -ACGGAAGTAGTCCTATGCGGTCTT -ACGGAAGTAGTCCTATGCACGCTT -ACGGAAGTAGTCCTATGCAGCGTT -ACGGAAGTAGTCCTATGCTTCGTC -ACGGAAGTAGTCCTATGCTCTCTC -ACGGAAGTAGTCCTATGCTGGATC -ACGGAAGTAGTCCTATGCCACTTC -ACGGAAGTAGTCCTATGCGTACTC -ACGGAAGTAGTCCTATGCGATGTC -ACGGAAGTAGTCCTATGCACAGTC -ACGGAAGTAGTCCTATGCTTGCTG -ACGGAAGTAGTCCTATGCTCCATG -ACGGAAGTAGTCCTATGCTGTGTG -ACGGAAGTAGTCCTATGCCTAGTG -ACGGAAGTAGTCCTATGCCATCTG -ACGGAAGTAGTCCTATGCGAGTTG -ACGGAAGTAGTCCTATGCAGACTG -ACGGAAGTAGTCCTATGCTCGGTA -ACGGAAGTAGTCCTATGCTGCCTA -ACGGAAGTAGTCCTATGCCCACTA -ACGGAAGTAGTCCTATGCGGAGTA -ACGGAAGTAGTCCTATGCTCGTCT -ACGGAAGTAGTCCTATGCTGCACT -ACGGAAGTAGTCCTATGCCTGACT -ACGGAAGTAGTCCTATGCCAACCT -ACGGAAGTAGTCCTATGCGCTACT -ACGGAAGTAGTCCTATGCGGATCT -ACGGAAGTAGTCCTATGCAAGGCT -ACGGAAGTAGTCCTATGCTCAACC -ACGGAAGTAGTCCTATGCTGTTCC -ACGGAAGTAGTCCTATGCATTCCC -ACGGAAGTAGTCCTATGCTTCTCG -ACGGAAGTAGTCCTATGCTAGACG -ACGGAAGTAGTCCTATGCGTAACG -ACGGAAGTAGTCCTATGCACTTCG -ACGGAAGTAGTCCTATGCTACGCA -ACGGAAGTAGTCCTATGCCTTGCA -ACGGAAGTAGTCCTATGCCGAACA -ACGGAAGTAGTCCTATGCCAGTCA -ACGGAAGTAGTCCTATGCGATCCA -ACGGAAGTAGTCCTATGCACGACA -ACGGAAGTAGTCCTATGCAGCTCA -ACGGAAGTAGTCCTATGCTCACGT -ACGGAAGTAGTCCTATGCCGTAGT -ACGGAAGTAGTCCTATGCGTCAGT -ACGGAAGTAGTCCTATGCGAAGGT -ACGGAAGTAGTCCTATGCAACCGT -ACGGAAGTAGTCCTATGCTTGTGC -ACGGAAGTAGTCCTATGCCTAAGC -ACGGAAGTAGTCCTATGCACTAGC -ACGGAAGTAGTCCTATGCAGATGC -ACGGAAGTAGTCCTATGCTGAAGG -ACGGAAGTAGTCCTATGCCAATGG -ACGGAAGTAGTCCTATGCATGAGG -ACGGAAGTAGTCCTATGCAATGGG -ACGGAAGTAGTCCTATGCTCCTGA -ACGGAAGTAGTCCTATGCTAGCGA -ACGGAAGTAGTCCTATGCCACAGA -ACGGAAGTAGTCCTATGCGCAAGA -ACGGAAGTAGTCCTATGCGGTTGA -ACGGAAGTAGTCCTATGCTCCGAT -ACGGAAGTAGTCCTATGCTGGCAT -ACGGAAGTAGTCCTATGCCGAGAT -ACGGAAGTAGTCCTATGCTACCAC -ACGGAAGTAGTCCTATGCCAGAAC -ACGGAAGTAGTCCTATGCGTCTAC -ACGGAAGTAGTCCTATGCACGTAC -ACGGAAGTAGTCCTATGCAGTGAC -ACGGAAGTAGTCCTATGCCTGTAG -ACGGAAGTAGTCCTATGCCCTAAG -ACGGAAGTAGTCCTATGCGTTCAG -ACGGAAGTAGTCCTATGCGCATAG -ACGGAAGTAGTCCTATGCGACAAG -ACGGAAGTAGTCCTATGCAAGCAG -ACGGAAGTAGTCCTATGCCGTCAA -ACGGAAGTAGTCCTATGCGCTGAA -ACGGAAGTAGTCCTATGCAGTACG -ACGGAAGTAGTCCTATGCATCCGA -ACGGAAGTAGTCCTATGCATGGGA -ACGGAAGTAGTCCTATGCGTGCAA -ACGGAAGTAGTCCTATGCGAGGAA -ACGGAAGTAGTCCTATGCCAGGTA -ACGGAAGTAGTCCTATGCGACTCT -ACGGAAGTAGTCCTATGCAGTCCT -ACGGAAGTAGTCCTATGCTAAGCC -ACGGAAGTAGTCCTATGCATAGCC -ACGGAAGTAGTCCTATGCTAACCG -ACGGAAGTAGTCCTATGCATGCCA -ACGGAAGTAGTCCTACCAGGAAAC -ACGGAAGTAGTCCTACCAAACACC -ACGGAAGTAGTCCTACCAATCGAG -ACGGAAGTAGTCCTACCACTCCTT -ACGGAAGTAGTCCTACCACCTGTT -ACGGAAGTAGTCCTACCACGGTTT -ACGGAAGTAGTCCTACCAGTGGTT -ACGGAAGTAGTCCTACCAGCCTTT -ACGGAAGTAGTCCTACCAGGTCTT -ACGGAAGTAGTCCTACCAACGCTT -ACGGAAGTAGTCCTACCAAGCGTT -ACGGAAGTAGTCCTACCATTCGTC -ACGGAAGTAGTCCTACCATCTCTC -ACGGAAGTAGTCCTACCATGGATC -ACGGAAGTAGTCCTACCACACTTC -ACGGAAGTAGTCCTACCAGTACTC -ACGGAAGTAGTCCTACCAGATGTC -ACGGAAGTAGTCCTACCAACAGTC -ACGGAAGTAGTCCTACCATTGCTG -ACGGAAGTAGTCCTACCATCCATG -ACGGAAGTAGTCCTACCATGTGTG -ACGGAAGTAGTCCTACCACTAGTG -ACGGAAGTAGTCCTACCACATCTG -ACGGAAGTAGTCCTACCAGAGTTG -ACGGAAGTAGTCCTACCAAGACTG -ACGGAAGTAGTCCTACCATCGGTA -ACGGAAGTAGTCCTACCATGCCTA -ACGGAAGTAGTCCTACCACCACTA -ACGGAAGTAGTCCTACCAGGAGTA -ACGGAAGTAGTCCTACCATCGTCT -ACGGAAGTAGTCCTACCATGCACT -ACGGAAGTAGTCCTACCACTGACT -ACGGAAGTAGTCCTACCACAACCT -ACGGAAGTAGTCCTACCAGCTACT -ACGGAAGTAGTCCTACCAGGATCT -ACGGAAGTAGTCCTACCAAAGGCT -ACGGAAGTAGTCCTACCATCAACC -ACGGAAGTAGTCCTACCATGTTCC -ACGGAAGTAGTCCTACCAATTCCC -ACGGAAGTAGTCCTACCATTCTCG -ACGGAAGTAGTCCTACCATAGACG -ACGGAAGTAGTCCTACCAGTAACG -ACGGAAGTAGTCCTACCAACTTCG -ACGGAAGTAGTCCTACCATACGCA -ACGGAAGTAGTCCTACCACTTGCA -ACGGAAGTAGTCCTACCACGAACA -ACGGAAGTAGTCCTACCACAGTCA -ACGGAAGTAGTCCTACCAGATCCA -ACGGAAGTAGTCCTACCAACGACA -ACGGAAGTAGTCCTACCAAGCTCA -ACGGAAGTAGTCCTACCATCACGT -ACGGAAGTAGTCCTACCACGTAGT -ACGGAAGTAGTCCTACCAGTCAGT -ACGGAAGTAGTCCTACCAGAAGGT -ACGGAAGTAGTCCTACCAAACCGT -ACGGAAGTAGTCCTACCATTGTGC -ACGGAAGTAGTCCTACCACTAAGC -ACGGAAGTAGTCCTACCAACTAGC -ACGGAAGTAGTCCTACCAAGATGC -ACGGAAGTAGTCCTACCATGAAGG -ACGGAAGTAGTCCTACCACAATGG -ACGGAAGTAGTCCTACCAATGAGG -ACGGAAGTAGTCCTACCAAATGGG -ACGGAAGTAGTCCTACCATCCTGA -ACGGAAGTAGTCCTACCATAGCGA -ACGGAAGTAGTCCTACCACACAGA -ACGGAAGTAGTCCTACCAGCAAGA -ACGGAAGTAGTCCTACCAGGTTGA -ACGGAAGTAGTCCTACCATCCGAT -ACGGAAGTAGTCCTACCATGGCAT -ACGGAAGTAGTCCTACCACGAGAT -ACGGAAGTAGTCCTACCATACCAC -ACGGAAGTAGTCCTACCACAGAAC -ACGGAAGTAGTCCTACCAGTCTAC -ACGGAAGTAGTCCTACCAACGTAC -ACGGAAGTAGTCCTACCAAGTGAC -ACGGAAGTAGTCCTACCACTGTAG -ACGGAAGTAGTCCTACCACCTAAG -ACGGAAGTAGTCCTACCAGTTCAG -ACGGAAGTAGTCCTACCAGCATAG -ACGGAAGTAGTCCTACCAGACAAG -ACGGAAGTAGTCCTACCAAAGCAG -ACGGAAGTAGTCCTACCACGTCAA -ACGGAAGTAGTCCTACCAGCTGAA -ACGGAAGTAGTCCTACCAAGTACG -ACGGAAGTAGTCCTACCAATCCGA -ACGGAAGTAGTCCTACCAATGGGA -ACGGAAGTAGTCCTACCAGTGCAA -ACGGAAGTAGTCCTACCAGAGGAA -ACGGAAGTAGTCCTACCACAGGTA -ACGGAAGTAGTCCTACCAGACTCT -ACGGAAGTAGTCCTACCAAGTCCT -ACGGAAGTAGTCCTACCATAAGCC -ACGGAAGTAGTCCTACCAATAGCC -ACGGAAGTAGTCCTACCATAACCG -ACGGAAGTAGTCCTACCAATGCCA -ACGGAAGTAGTCGTAGGAGGAAAC -ACGGAAGTAGTCGTAGGAAACACC -ACGGAAGTAGTCGTAGGAATCGAG -ACGGAAGTAGTCGTAGGACTCCTT -ACGGAAGTAGTCGTAGGACCTGTT -ACGGAAGTAGTCGTAGGACGGTTT -ACGGAAGTAGTCGTAGGAGTGGTT -ACGGAAGTAGTCGTAGGAGCCTTT -ACGGAAGTAGTCGTAGGAGGTCTT -ACGGAAGTAGTCGTAGGAACGCTT -ACGGAAGTAGTCGTAGGAAGCGTT -ACGGAAGTAGTCGTAGGATTCGTC -ACGGAAGTAGTCGTAGGATCTCTC -ACGGAAGTAGTCGTAGGATGGATC -ACGGAAGTAGTCGTAGGACACTTC -ACGGAAGTAGTCGTAGGAGTACTC -ACGGAAGTAGTCGTAGGAGATGTC -ACGGAAGTAGTCGTAGGAACAGTC -ACGGAAGTAGTCGTAGGATTGCTG -ACGGAAGTAGTCGTAGGATCCATG -ACGGAAGTAGTCGTAGGATGTGTG -ACGGAAGTAGTCGTAGGACTAGTG -ACGGAAGTAGTCGTAGGACATCTG -ACGGAAGTAGTCGTAGGAGAGTTG -ACGGAAGTAGTCGTAGGAAGACTG -ACGGAAGTAGTCGTAGGATCGGTA -ACGGAAGTAGTCGTAGGATGCCTA -ACGGAAGTAGTCGTAGGACCACTA -ACGGAAGTAGTCGTAGGAGGAGTA -ACGGAAGTAGTCGTAGGATCGTCT -ACGGAAGTAGTCGTAGGATGCACT -ACGGAAGTAGTCGTAGGACTGACT -ACGGAAGTAGTCGTAGGACAACCT -ACGGAAGTAGTCGTAGGAGCTACT -ACGGAAGTAGTCGTAGGAGGATCT -ACGGAAGTAGTCGTAGGAAAGGCT -ACGGAAGTAGTCGTAGGATCAACC -ACGGAAGTAGTCGTAGGATGTTCC -ACGGAAGTAGTCGTAGGAATTCCC -ACGGAAGTAGTCGTAGGATTCTCG -ACGGAAGTAGTCGTAGGATAGACG -ACGGAAGTAGTCGTAGGAGTAACG -ACGGAAGTAGTCGTAGGAACTTCG -ACGGAAGTAGTCGTAGGATACGCA -ACGGAAGTAGTCGTAGGACTTGCA -ACGGAAGTAGTCGTAGGACGAACA -ACGGAAGTAGTCGTAGGACAGTCA -ACGGAAGTAGTCGTAGGAGATCCA -ACGGAAGTAGTCGTAGGAACGACA -ACGGAAGTAGTCGTAGGAAGCTCA -ACGGAAGTAGTCGTAGGATCACGT -ACGGAAGTAGTCGTAGGACGTAGT -ACGGAAGTAGTCGTAGGAGTCAGT -ACGGAAGTAGTCGTAGGAGAAGGT -ACGGAAGTAGTCGTAGGAAACCGT -ACGGAAGTAGTCGTAGGATTGTGC -ACGGAAGTAGTCGTAGGACTAAGC -ACGGAAGTAGTCGTAGGAACTAGC -ACGGAAGTAGTCGTAGGAAGATGC -ACGGAAGTAGTCGTAGGATGAAGG -ACGGAAGTAGTCGTAGGACAATGG -ACGGAAGTAGTCGTAGGAATGAGG -ACGGAAGTAGTCGTAGGAAATGGG -ACGGAAGTAGTCGTAGGATCCTGA -ACGGAAGTAGTCGTAGGATAGCGA -ACGGAAGTAGTCGTAGGACACAGA -ACGGAAGTAGTCGTAGGAGCAAGA -ACGGAAGTAGTCGTAGGAGGTTGA -ACGGAAGTAGTCGTAGGATCCGAT -ACGGAAGTAGTCGTAGGATGGCAT -ACGGAAGTAGTCGTAGGACGAGAT -ACGGAAGTAGTCGTAGGATACCAC -ACGGAAGTAGTCGTAGGACAGAAC -ACGGAAGTAGTCGTAGGAGTCTAC -ACGGAAGTAGTCGTAGGAACGTAC -ACGGAAGTAGTCGTAGGAAGTGAC -ACGGAAGTAGTCGTAGGACTGTAG -ACGGAAGTAGTCGTAGGACCTAAG -ACGGAAGTAGTCGTAGGAGTTCAG -ACGGAAGTAGTCGTAGGAGCATAG -ACGGAAGTAGTCGTAGGAGACAAG -ACGGAAGTAGTCGTAGGAAAGCAG -ACGGAAGTAGTCGTAGGACGTCAA -ACGGAAGTAGTCGTAGGAGCTGAA -ACGGAAGTAGTCGTAGGAAGTACG -ACGGAAGTAGTCGTAGGAATCCGA -ACGGAAGTAGTCGTAGGAATGGGA -ACGGAAGTAGTCGTAGGAGTGCAA -ACGGAAGTAGTCGTAGGAGAGGAA -ACGGAAGTAGTCGTAGGACAGGTA -ACGGAAGTAGTCGTAGGAGACTCT -ACGGAAGTAGTCGTAGGAAGTCCT -ACGGAAGTAGTCGTAGGATAAGCC -ACGGAAGTAGTCGTAGGAATAGCC -ACGGAAGTAGTCGTAGGATAACCG -ACGGAAGTAGTCGTAGGAATGCCA -ACGGAAGTAGTCTCTTCGGGAAAC -ACGGAAGTAGTCTCTTCGAACACC -ACGGAAGTAGTCTCTTCGATCGAG -ACGGAAGTAGTCTCTTCGCTCCTT -ACGGAAGTAGTCTCTTCGCCTGTT -ACGGAAGTAGTCTCTTCGCGGTTT -ACGGAAGTAGTCTCTTCGGTGGTT -ACGGAAGTAGTCTCTTCGGCCTTT -ACGGAAGTAGTCTCTTCGGGTCTT -ACGGAAGTAGTCTCTTCGACGCTT -ACGGAAGTAGTCTCTTCGAGCGTT -ACGGAAGTAGTCTCTTCGTTCGTC -ACGGAAGTAGTCTCTTCGTCTCTC -ACGGAAGTAGTCTCTTCGTGGATC -ACGGAAGTAGTCTCTTCGCACTTC -ACGGAAGTAGTCTCTTCGGTACTC -ACGGAAGTAGTCTCTTCGGATGTC -ACGGAAGTAGTCTCTTCGACAGTC -ACGGAAGTAGTCTCTTCGTTGCTG -ACGGAAGTAGTCTCTTCGTCCATG -ACGGAAGTAGTCTCTTCGTGTGTG -ACGGAAGTAGTCTCTTCGCTAGTG -ACGGAAGTAGTCTCTTCGCATCTG -ACGGAAGTAGTCTCTTCGGAGTTG -ACGGAAGTAGTCTCTTCGAGACTG -ACGGAAGTAGTCTCTTCGTCGGTA -ACGGAAGTAGTCTCTTCGTGCCTA -ACGGAAGTAGTCTCTTCGCCACTA -ACGGAAGTAGTCTCTTCGGGAGTA -ACGGAAGTAGTCTCTTCGTCGTCT -ACGGAAGTAGTCTCTTCGTGCACT -ACGGAAGTAGTCTCTTCGCTGACT -ACGGAAGTAGTCTCTTCGCAACCT -ACGGAAGTAGTCTCTTCGGCTACT -ACGGAAGTAGTCTCTTCGGGATCT -ACGGAAGTAGTCTCTTCGAAGGCT -ACGGAAGTAGTCTCTTCGTCAACC -ACGGAAGTAGTCTCTTCGTGTTCC -ACGGAAGTAGTCTCTTCGATTCCC -ACGGAAGTAGTCTCTTCGTTCTCG -ACGGAAGTAGTCTCTTCGTAGACG -ACGGAAGTAGTCTCTTCGGTAACG -ACGGAAGTAGTCTCTTCGACTTCG -ACGGAAGTAGTCTCTTCGTACGCA -ACGGAAGTAGTCTCTTCGCTTGCA -ACGGAAGTAGTCTCTTCGCGAACA -ACGGAAGTAGTCTCTTCGCAGTCA -ACGGAAGTAGTCTCTTCGGATCCA -ACGGAAGTAGTCTCTTCGACGACA -ACGGAAGTAGTCTCTTCGAGCTCA -ACGGAAGTAGTCTCTTCGTCACGT -ACGGAAGTAGTCTCTTCGCGTAGT -ACGGAAGTAGTCTCTTCGGTCAGT -ACGGAAGTAGTCTCTTCGGAAGGT -ACGGAAGTAGTCTCTTCGAACCGT -ACGGAAGTAGTCTCTTCGTTGTGC -ACGGAAGTAGTCTCTTCGCTAAGC -ACGGAAGTAGTCTCTTCGACTAGC -ACGGAAGTAGTCTCTTCGAGATGC -ACGGAAGTAGTCTCTTCGTGAAGG -ACGGAAGTAGTCTCTTCGCAATGG -ACGGAAGTAGTCTCTTCGATGAGG -ACGGAAGTAGTCTCTTCGAATGGG -ACGGAAGTAGTCTCTTCGTCCTGA -ACGGAAGTAGTCTCTTCGTAGCGA -ACGGAAGTAGTCTCTTCGCACAGA -ACGGAAGTAGTCTCTTCGGCAAGA -ACGGAAGTAGTCTCTTCGGGTTGA -ACGGAAGTAGTCTCTTCGTCCGAT -ACGGAAGTAGTCTCTTCGTGGCAT -ACGGAAGTAGTCTCTTCGCGAGAT -ACGGAAGTAGTCTCTTCGTACCAC -ACGGAAGTAGTCTCTTCGCAGAAC -ACGGAAGTAGTCTCTTCGGTCTAC -ACGGAAGTAGTCTCTTCGACGTAC -ACGGAAGTAGTCTCTTCGAGTGAC -ACGGAAGTAGTCTCTTCGCTGTAG -ACGGAAGTAGTCTCTTCGCCTAAG -ACGGAAGTAGTCTCTTCGGTTCAG -ACGGAAGTAGTCTCTTCGGCATAG -ACGGAAGTAGTCTCTTCGGACAAG -ACGGAAGTAGTCTCTTCGAAGCAG -ACGGAAGTAGTCTCTTCGCGTCAA -ACGGAAGTAGTCTCTTCGGCTGAA -ACGGAAGTAGTCTCTTCGAGTACG -ACGGAAGTAGTCTCTTCGATCCGA -ACGGAAGTAGTCTCTTCGATGGGA -ACGGAAGTAGTCTCTTCGGTGCAA -ACGGAAGTAGTCTCTTCGGAGGAA -ACGGAAGTAGTCTCTTCGCAGGTA -ACGGAAGTAGTCTCTTCGGACTCT -ACGGAAGTAGTCTCTTCGAGTCCT -ACGGAAGTAGTCTCTTCGTAAGCC -ACGGAAGTAGTCTCTTCGATAGCC -ACGGAAGTAGTCTCTTCGTAACCG -ACGGAAGTAGTCTCTTCGATGCCA -ACGGAAGTAGTCACTTGCGGAAAC -ACGGAAGTAGTCACTTGCAACACC -ACGGAAGTAGTCACTTGCATCGAG -ACGGAAGTAGTCACTTGCCTCCTT -ACGGAAGTAGTCACTTGCCCTGTT -ACGGAAGTAGTCACTTGCCGGTTT -ACGGAAGTAGTCACTTGCGTGGTT -ACGGAAGTAGTCACTTGCGCCTTT -ACGGAAGTAGTCACTTGCGGTCTT -ACGGAAGTAGTCACTTGCACGCTT -ACGGAAGTAGTCACTTGCAGCGTT -ACGGAAGTAGTCACTTGCTTCGTC -ACGGAAGTAGTCACTTGCTCTCTC -ACGGAAGTAGTCACTTGCTGGATC -ACGGAAGTAGTCACTTGCCACTTC -ACGGAAGTAGTCACTTGCGTACTC -ACGGAAGTAGTCACTTGCGATGTC -ACGGAAGTAGTCACTTGCACAGTC -ACGGAAGTAGTCACTTGCTTGCTG -ACGGAAGTAGTCACTTGCTCCATG -ACGGAAGTAGTCACTTGCTGTGTG -ACGGAAGTAGTCACTTGCCTAGTG -ACGGAAGTAGTCACTTGCCATCTG -ACGGAAGTAGTCACTTGCGAGTTG -ACGGAAGTAGTCACTTGCAGACTG -ACGGAAGTAGTCACTTGCTCGGTA -ACGGAAGTAGTCACTTGCTGCCTA -ACGGAAGTAGTCACTTGCCCACTA -ACGGAAGTAGTCACTTGCGGAGTA -ACGGAAGTAGTCACTTGCTCGTCT -ACGGAAGTAGTCACTTGCTGCACT -ACGGAAGTAGTCACTTGCCTGACT -ACGGAAGTAGTCACTTGCCAACCT -ACGGAAGTAGTCACTTGCGCTACT -ACGGAAGTAGTCACTTGCGGATCT -ACGGAAGTAGTCACTTGCAAGGCT -ACGGAAGTAGTCACTTGCTCAACC -ACGGAAGTAGTCACTTGCTGTTCC -ACGGAAGTAGTCACTTGCATTCCC -ACGGAAGTAGTCACTTGCTTCTCG -ACGGAAGTAGTCACTTGCTAGACG -ACGGAAGTAGTCACTTGCGTAACG -ACGGAAGTAGTCACTTGCACTTCG -ACGGAAGTAGTCACTTGCTACGCA -ACGGAAGTAGTCACTTGCCTTGCA -ACGGAAGTAGTCACTTGCCGAACA -ACGGAAGTAGTCACTTGCCAGTCA -ACGGAAGTAGTCACTTGCGATCCA -ACGGAAGTAGTCACTTGCACGACA -ACGGAAGTAGTCACTTGCAGCTCA -ACGGAAGTAGTCACTTGCTCACGT -ACGGAAGTAGTCACTTGCCGTAGT -ACGGAAGTAGTCACTTGCGTCAGT -ACGGAAGTAGTCACTTGCGAAGGT -ACGGAAGTAGTCACTTGCAACCGT -ACGGAAGTAGTCACTTGCTTGTGC -ACGGAAGTAGTCACTTGCCTAAGC -ACGGAAGTAGTCACTTGCACTAGC -ACGGAAGTAGTCACTTGCAGATGC -ACGGAAGTAGTCACTTGCTGAAGG -ACGGAAGTAGTCACTTGCCAATGG -ACGGAAGTAGTCACTTGCATGAGG -ACGGAAGTAGTCACTTGCAATGGG -ACGGAAGTAGTCACTTGCTCCTGA -ACGGAAGTAGTCACTTGCTAGCGA -ACGGAAGTAGTCACTTGCCACAGA -ACGGAAGTAGTCACTTGCGCAAGA -ACGGAAGTAGTCACTTGCGGTTGA -ACGGAAGTAGTCACTTGCTCCGAT -ACGGAAGTAGTCACTTGCTGGCAT -ACGGAAGTAGTCACTTGCCGAGAT -ACGGAAGTAGTCACTTGCTACCAC -ACGGAAGTAGTCACTTGCCAGAAC -ACGGAAGTAGTCACTTGCGTCTAC -ACGGAAGTAGTCACTTGCACGTAC -ACGGAAGTAGTCACTTGCAGTGAC -ACGGAAGTAGTCACTTGCCTGTAG -ACGGAAGTAGTCACTTGCCCTAAG -ACGGAAGTAGTCACTTGCGTTCAG -ACGGAAGTAGTCACTTGCGCATAG -ACGGAAGTAGTCACTTGCGACAAG -ACGGAAGTAGTCACTTGCAAGCAG -ACGGAAGTAGTCACTTGCCGTCAA -ACGGAAGTAGTCACTTGCGCTGAA -ACGGAAGTAGTCACTTGCAGTACG -ACGGAAGTAGTCACTTGCATCCGA -ACGGAAGTAGTCACTTGCATGGGA -ACGGAAGTAGTCACTTGCGTGCAA -ACGGAAGTAGTCACTTGCGAGGAA -ACGGAAGTAGTCACTTGCCAGGTA -ACGGAAGTAGTCACTTGCGACTCT -ACGGAAGTAGTCACTTGCAGTCCT -ACGGAAGTAGTCACTTGCTAAGCC -ACGGAAGTAGTCACTTGCATAGCC -ACGGAAGTAGTCACTTGCTAACCG -ACGGAAGTAGTCACTTGCATGCCA -ACGGAAGTAGTCACTCTGGGAAAC -ACGGAAGTAGTCACTCTGAACACC -ACGGAAGTAGTCACTCTGATCGAG -ACGGAAGTAGTCACTCTGCTCCTT -ACGGAAGTAGTCACTCTGCCTGTT -ACGGAAGTAGTCACTCTGCGGTTT -ACGGAAGTAGTCACTCTGGTGGTT -ACGGAAGTAGTCACTCTGGCCTTT -ACGGAAGTAGTCACTCTGGGTCTT -ACGGAAGTAGTCACTCTGACGCTT -ACGGAAGTAGTCACTCTGAGCGTT -ACGGAAGTAGTCACTCTGTTCGTC -ACGGAAGTAGTCACTCTGTCTCTC -ACGGAAGTAGTCACTCTGTGGATC -ACGGAAGTAGTCACTCTGCACTTC -ACGGAAGTAGTCACTCTGGTACTC -ACGGAAGTAGTCACTCTGGATGTC -ACGGAAGTAGTCACTCTGACAGTC -ACGGAAGTAGTCACTCTGTTGCTG -ACGGAAGTAGTCACTCTGTCCATG -ACGGAAGTAGTCACTCTGTGTGTG -ACGGAAGTAGTCACTCTGCTAGTG -ACGGAAGTAGTCACTCTGCATCTG -ACGGAAGTAGTCACTCTGGAGTTG -ACGGAAGTAGTCACTCTGAGACTG -ACGGAAGTAGTCACTCTGTCGGTA -ACGGAAGTAGTCACTCTGTGCCTA -ACGGAAGTAGTCACTCTGCCACTA -ACGGAAGTAGTCACTCTGGGAGTA -ACGGAAGTAGTCACTCTGTCGTCT -ACGGAAGTAGTCACTCTGTGCACT -ACGGAAGTAGTCACTCTGCTGACT -ACGGAAGTAGTCACTCTGCAACCT -ACGGAAGTAGTCACTCTGGCTACT -ACGGAAGTAGTCACTCTGGGATCT -ACGGAAGTAGTCACTCTGAAGGCT -ACGGAAGTAGTCACTCTGTCAACC -ACGGAAGTAGTCACTCTGTGTTCC -ACGGAAGTAGTCACTCTGATTCCC -ACGGAAGTAGTCACTCTGTTCTCG -ACGGAAGTAGTCACTCTGTAGACG -ACGGAAGTAGTCACTCTGGTAACG -ACGGAAGTAGTCACTCTGACTTCG -ACGGAAGTAGTCACTCTGTACGCA -ACGGAAGTAGTCACTCTGCTTGCA -ACGGAAGTAGTCACTCTGCGAACA -ACGGAAGTAGTCACTCTGCAGTCA -ACGGAAGTAGTCACTCTGGATCCA -ACGGAAGTAGTCACTCTGACGACA -ACGGAAGTAGTCACTCTGAGCTCA -ACGGAAGTAGTCACTCTGTCACGT -ACGGAAGTAGTCACTCTGCGTAGT -ACGGAAGTAGTCACTCTGGTCAGT -ACGGAAGTAGTCACTCTGGAAGGT -ACGGAAGTAGTCACTCTGAACCGT -ACGGAAGTAGTCACTCTGTTGTGC -ACGGAAGTAGTCACTCTGCTAAGC -ACGGAAGTAGTCACTCTGACTAGC -ACGGAAGTAGTCACTCTGAGATGC -ACGGAAGTAGTCACTCTGTGAAGG -ACGGAAGTAGTCACTCTGCAATGG -ACGGAAGTAGTCACTCTGATGAGG -ACGGAAGTAGTCACTCTGAATGGG -ACGGAAGTAGTCACTCTGTCCTGA -ACGGAAGTAGTCACTCTGTAGCGA -ACGGAAGTAGTCACTCTGCACAGA -ACGGAAGTAGTCACTCTGGCAAGA -ACGGAAGTAGTCACTCTGGGTTGA -ACGGAAGTAGTCACTCTGTCCGAT -ACGGAAGTAGTCACTCTGTGGCAT -ACGGAAGTAGTCACTCTGCGAGAT -ACGGAAGTAGTCACTCTGTACCAC -ACGGAAGTAGTCACTCTGCAGAAC -ACGGAAGTAGTCACTCTGGTCTAC -ACGGAAGTAGTCACTCTGACGTAC -ACGGAAGTAGTCACTCTGAGTGAC -ACGGAAGTAGTCACTCTGCTGTAG -ACGGAAGTAGTCACTCTGCCTAAG -ACGGAAGTAGTCACTCTGGTTCAG -ACGGAAGTAGTCACTCTGGCATAG -ACGGAAGTAGTCACTCTGGACAAG -ACGGAAGTAGTCACTCTGAAGCAG -ACGGAAGTAGTCACTCTGCGTCAA -ACGGAAGTAGTCACTCTGGCTGAA -ACGGAAGTAGTCACTCTGAGTACG -ACGGAAGTAGTCACTCTGATCCGA -ACGGAAGTAGTCACTCTGATGGGA -ACGGAAGTAGTCACTCTGGTGCAA -ACGGAAGTAGTCACTCTGGAGGAA -ACGGAAGTAGTCACTCTGCAGGTA -ACGGAAGTAGTCACTCTGGACTCT -ACGGAAGTAGTCACTCTGAGTCCT -ACGGAAGTAGTCACTCTGTAAGCC -ACGGAAGTAGTCACTCTGATAGCC -ACGGAAGTAGTCACTCTGTAACCG -ACGGAAGTAGTCACTCTGATGCCA -ACGGAAGTAGTCCCTCAAGGAAAC -ACGGAAGTAGTCCCTCAAAACACC -ACGGAAGTAGTCCCTCAAATCGAG -ACGGAAGTAGTCCCTCAACTCCTT -ACGGAAGTAGTCCCTCAACCTGTT -ACGGAAGTAGTCCCTCAACGGTTT -ACGGAAGTAGTCCCTCAAGTGGTT -ACGGAAGTAGTCCCTCAAGCCTTT -ACGGAAGTAGTCCCTCAAGGTCTT -ACGGAAGTAGTCCCTCAAACGCTT -ACGGAAGTAGTCCCTCAAAGCGTT -ACGGAAGTAGTCCCTCAATTCGTC -ACGGAAGTAGTCCCTCAATCTCTC -ACGGAAGTAGTCCCTCAATGGATC -ACGGAAGTAGTCCCTCAACACTTC -ACGGAAGTAGTCCCTCAAGTACTC -ACGGAAGTAGTCCCTCAAGATGTC -ACGGAAGTAGTCCCTCAAACAGTC -ACGGAAGTAGTCCCTCAATTGCTG -ACGGAAGTAGTCCCTCAATCCATG -ACGGAAGTAGTCCCTCAATGTGTG -ACGGAAGTAGTCCCTCAACTAGTG -ACGGAAGTAGTCCCTCAACATCTG -ACGGAAGTAGTCCCTCAAGAGTTG -ACGGAAGTAGTCCCTCAAAGACTG -ACGGAAGTAGTCCCTCAATCGGTA -ACGGAAGTAGTCCCTCAATGCCTA -ACGGAAGTAGTCCCTCAACCACTA -ACGGAAGTAGTCCCTCAAGGAGTA -ACGGAAGTAGTCCCTCAATCGTCT -ACGGAAGTAGTCCCTCAATGCACT -ACGGAAGTAGTCCCTCAACTGACT -ACGGAAGTAGTCCCTCAACAACCT -ACGGAAGTAGTCCCTCAAGCTACT -ACGGAAGTAGTCCCTCAAGGATCT -ACGGAAGTAGTCCCTCAAAAGGCT -ACGGAAGTAGTCCCTCAATCAACC -ACGGAAGTAGTCCCTCAATGTTCC -ACGGAAGTAGTCCCTCAAATTCCC -ACGGAAGTAGTCCCTCAATTCTCG -ACGGAAGTAGTCCCTCAATAGACG -ACGGAAGTAGTCCCTCAAGTAACG -ACGGAAGTAGTCCCTCAAACTTCG -ACGGAAGTAGTCCCTCAATACGCA -ACGGAAGTAGTCCCTCAACTTGCA -ACGGAAGTAGTCCCTCAACGAACA -ACGGAAGTAGTCCCTCAACAGTCA -ACGGAAGTAGTCCCTCAAGATCCA -ACGGAAGTAGTCCCTCAAACGACA -ACGGAAGTAGTCCCTCAAAGCTCA -ACGGAAGTAGTCCCTCAATCACGT -ACGGAAGTAGTCCCTCAACGTAGT -ACGGAAGTAGTCCCTCAAGTCAGT -ACGGAAGTAGTCCCTCAAGAAGGT -ACGGAAGTAGTCCCTCAAAACCGT -ACGGAAGTAGTCCCTCAATTGTGC -ACGGAAGTAGTCCCTCAACTAAGC -ACGGAAGTAGTCCCTCAAACTAGC -ACGGAAGTAGTCCCTCAAAGATGC -ACGGAAGTAGTCCCTCAATGAAGG -ACGGAAGTAGTCCCTCAACAATGG -ACGGAAGTAGTCCCTCAAATGAGG -ACGGAAGTAGTCCCTCAAAATGGG -ACGGAAGTAGTCCCTCAATCCTGA -ACGGAAGTAGTCCCTCAATAGCGA -ACGGAAGTAGTCCCTCAACACAGA -ACGGAAGTAGTCCCTCAAGCAAGA -ACGGAAGTAGTCCCTCAAGGTTGA -ACGGAAGTAGTCCCTCAATCCGAT -ACGGAAGTAGTCCCTCAATGGCAT -ACGGAAGTAGTCCCTCAACGAGAT -ACGGAAGTAGTCCCTCAATACCAC -ACGGAAGTAGTCCCTCAACAGAAC -ACGGAAGTAGTCCCTCAAGTCTAC -ACGGAAGTAGTCCCTCAAACGTAC -ACGGAAGTAGTCCCTCAAAGTGAC -ACGGAAGTAGTCCCTCAACTGTAG -ACGGAAGTAGTCCCTCAACCTAAG -ACGGAAGTAGTCCCTCAAGTTCAG -ACGGAAGTAGTCCCTCAAGCATAG -ACGGAAGTAGTCCCTCAAGACAAG -ACGGAAGTAGTCCCTCAAAAGCAG -ACGGAAGTAGTCCCTCAACGTCAA -ACGGAAGTAGTCCCTCAAGCTGAA -ACGGAAGTAGTCCCTCAAAGTACG -ACGGAAGTAGTCCCTCAAATCCGA -ACGGAAGTAGTCCCTCAAATGGGA -ACGGAAGTAGTCCCTCAAGTGCAA -ACGGAAGTAGTCCCTCAAGAGGAA -ACGGAAGTAGTCCCTCAACAGGTA -ACGGAAGTAGTCCCTCAAGACTCT -ACGGAAGTAGTCCCTCAAAGTCCT -ACGGAAGTAGTCCCTCAATAAGCC -ACGGAAGTAGTCCCTCAAATAGCC -ACGGAAGTAGTCCCTCAATAACCG -ACGGAAGTAGTCCCTCAAATGCCA -ACGGAAGTAGTCACTGCTGGAAAC -ACGGAAGTAGTCACTGCTAACACC -ACGGAAGTAGTCACTGCTATCGAG -ACGGAAGTAGTCACTGCTCTCCTT -ACGGAAGTAGTCACTGCTCCTGTT -ACGGAAGTAGTCACTGCTCGGTTT -ACGGAAGTAGTCACTGCTGTGGTT -ACGGAAGTAGTCACTGCTGCCTTT -ACGGAAGTAGTCACTGCTGGTCTT -ACGGAAGTAGTCACTGCTACGCTT -ACGGAAGTAGTCACTGCTAGCGTT -ACGGAAGTAGTCACTGCTTTCGTC -ACGGAAGTAGTCACTGCTTCTCTC -ACGGAAGTAGTCACTGCTTGGATC -ACGGAAGTAGTCACTGCTCACTTC -ACGGAAGTAGTCACTGCTGTACTC -ACGGAAGTAGTCACTGCTGATGTC -ACGGAAGTAGTCACTGCTACAGTC -ACGGAAGTAGTCACTGCTTTGCTG -ACGGAAGTAGTCACTGCTTCCATG -ACGGAAGTAGTCACTGCTTGTGTG -ACGGAAGTAGTCACTGCTCTAGTG -ACGGAAGTAGTCACTGCTCATCTG -ACGGAAGTAGTCACTGCTGAGTTG -ACGGAAGTAGTCACTGCTAGACTG -ACGGAAGTAGTCACTGCTTCGGTA -ACGGAAGTAGTCACTGCTTGCCTA -ACGGAAGTAGTCACTGCTCCACTA -ACGGAAGTAGTCACTGCTGGAGTA -ACGGAAGTAGTCACTGCTTCGTCT -ACGGAAGTAGTCACTGCTTGCACT -ACGGAAGTAGTCACTGCTCTGACT -ACGGAAGTAGTCACTGCTCAACCT -ACGGAAGTAGTCACTGCTGCTACT -ACGGAAGTAGTCACTGCTGGATCT -ACGGAAGTAGTCACTGCTAAGGCT -ACGGAAGTAGTCACTGCTTCAACC -ACGGAAGTAGTCACTGCTTGTTCC -ACGGAAGTAGTCACTGCTATTCCC -ACGGAAGTAGTCACTGCTTTCTCG -ACGGAAGTAGTCACTGCTTAGACG -ACGGAAGTAGTCACTGCTGTAACG -ACGGAAGTAGTCACTGCTACTTCG -ACGGAAGTAGTCACTGCTTACGCA -ACGGAAGTAGTCACTGCTCTTGCA -ACGGAAGTAGTCACTGCTCGAACA -ACGGAAGTAGTCACTGCTCAGTCA -ACGGAAGTAGTCACTGCTGATCCA -ACGGAAGTAGTCACTGCTACGACA -ACGGAAGTAGTCACTGCTAGCTCA -ACGGAAGTAGTCACTGCTTCACGT -ACGGAAGTAGTCACTGCTCGTAGT -ACGGAAGTAGTCACTGCTGTCAGT -ACGGAAGTAGTCACTGCTGAAGGT -ACGGAAGTAGTCACTGCTAACCGT -ACGGAAGTAGTCACTGCTTTGTGC -ACGGAAGTAGTCACTGCTCTAAGC -ACGGAAGTAGTCACTGCTACTAGC -ACGGAAGTAGTCACTGCTAGATGC -ACGGAAGTAGTCACTGCTTGAAGG -ACGGAAGTAGTCACTGCTCAATGG -ACGGAAGTAGTCACTGCTATGAGG -ACGGAAGTAGTCACTGCTAATGGG -ACGGAAGTAGTCACTGCTTCCTGA -ACGGAAGTAGTCACTGCTTAGCGA -ACGGAAGTAGTCACTGCTCACAGA -ACGGAAGTAGTCACTGCTGCAAGA -ACGGAAGTAGTCACTGCTGGTTGA -ACGGAAGTAGTCACTGCTTCCGAT -ACGGAAGTAGTCACTGCTTGGCAT -ACGGAAGTAGTCACTGCTCGAGAT -ACGGAAGTAGTCACTGCTTACCAC -ACGGAAGTAGTCACTGCTCAGAAC -ACGGAAGTAGTCACTGCTGTCTAC -ACGGAAGTAGTCACTGCTACGTAC -ACGGAAGTAGTCACTGCTAGTGAC -ACGGAAGTAGTCACTGCTCTGTAG -ACGGAAGTAGTCACTGCTCCTAAG -ACGGAAGTAGTCACTGCTGTTCAG -ACGGAAGTAGTCACTGCTGCATAG -ACGGAAGTAGTCACTGCTGACAAG -ACGGAAGTAGTCACTGCTAAGCAG -ACGGAAGTAGTCACTGCTCGTCAA -ACGGAAGTAGTCACTGCTGCTGAA -ACGGAAGTAGTCACTGCTAGTACG -ACGGAAGTAGTCACTGCTATCCGA -ACGGAAGTAGTCACTGCTATGGGA -ACGGAAGTAGTCACTGCTGTGCAA -ACGGAAGTAGTCACTGCTGAGGAA -ACGGAAGTAGTCACTGCTCAGGTA -ACGGAAGTAGTCACTGCTGACTCT -ACGGAAGTAGTCACTGCTAGTCCT -ACGGAAGTAGTCACTGCTTAAGCC -ACGGAAGTAGTCACTGCTATAGCC -ACGGAAGTAGTCACTGCTTAACCG -ACGGAAGTAGTCACTGCTATGCCA -ACGGAAGTAGTCTCTGGAGGAAAC -ACGGAAGTAGTCTCTGGAAACACC -ACGGAAGTAGTCTCTGGAATCGAG -ACGGAAGTAGTCTCTGGACTCCTT -ACGGAAGTAGTCTCTGGACCTGTT -ACGGAAGTAGTCTCTGGACGGTTT -ACGGAAGTAGTCTCTGGAGTGGTT -ACGGAAGTAGTCTCTGGAGCCTTT -ACGGAAGTAGTCTCTGGAGGTCTT -ACGGAAGTAGTCTCTGGAACGCTT -ACGGAAGTAGTCTCTGGAAGCGTT -ACGGAAGTAGTCTCTGGATTCGTC -ACGGAAGTAGTCTCTGGATCTCTC -ACGGAAGTAGTCTCTGGATGGATC -ACGGAAGTAGTCTCTGGACACTTC -ACGGAAGTAGTCTCTGGAGTACTC -ACGGAAGTAGTCTCTGGAGATGTC -ACGGAAGTAGTCTCTGGAACAGTC -ACGGAAGTAGTCTCTGGATTGCTG -ACGGAAGTAGTCTCTGGATCCATG -ACGGAAGTAGTCTCTGGATGTGTG -ACGGAAGTAGTCTCTGGACTAGTG -ACGGAAGTAGTCTCTGGACATCTG -ACGGAAGTAGTCTCTGGAGAGTTG -ACGGAAGTAGTCTCTGGAAGACTG -ACGGAAGTAGTCTCTGGATCGGTA -ACGGAAGTAGTCTCTGGATGCCTA -ACGGAAGTAGTCTCTGGACCACTA -ACGGAAGTAGTCTCTGGAGGAGTA -ACGGAAGTAGTCTCTGGATCGTCT -ACGGAAGTAGTCTCTGGATGCACT -ACGGAAGTAGTCTCTGGACTGACT -ACGGAAGTAGTCTCTGGACAACCT -ACGGAAGTAGTCTCTGGAGCTACT -ACGGAAGTAGTCTCTGGAGGATCT -ACGGAAGTAGTCTCTGGAAAGGCT -ACGGAAGTAGTCTCTGGATCAACC -ACGGAAGTAGTCTCTGGATGTTCC -ACGGAAGTAGTCTCTGGAATTCCC -ACGGAAGTAGTCTCTGGATTCTCG -ACGGAAGTAGTCTCTGGATAGACG -ACGGAAGTAGTCTCTGGAGTAACG -ACGGAAGTAGTCTCTGGAACTTCG -ACGGAAGTAGTCTCTGGATACGCA -ACGGAAGTAGTCTCTGGACTTGCA -ACGGAAGTAGTCTCTGGACGAACA -ACGGAAGTAGTCTCTGGACAGTCA -ACGGAAGTAGTCTCTGGAGATCCA -ACGGAAGTAGTCTCTGGAACGACA -ACGGAAGTAGTCTCTGGAAGCTCA -ACGGAAGTAGTCTCTGGATCACGT -ACGGAAGTAGTCTCTGGACGTAGT -ACGGAAGTAGTCTCTGGAGTCAGT -ACGGAAGTAGTCTCTGGAGAAGGT -ACGGAAGTAGTCTCTGGAAACCGT -ACGGAAGTAGTCTCTGGATTGTGC -ACGGAAGTAGTCTCTGGACTAAGC -ACGGAAGTAGTCTCTGGAACTAGC -ACGGAAGTAGTCTCTGGAAGATGC -ACGGAAGTAGTCTCTGGATGAAGG -ACGGAAGTAGTCTCTGGACAATGG -ACGGAAGTAGTCTCTGGAATGAGG -ACGGAAGTAGTCTCTGGAAATGGG -ACGGAAGTAGTCTCTGGATCCTGA -ACGGAAGTAGTCTCTGGATAGCGA -ACGGAAGTAGTCTCTGGACACAGA -ACGGAAGTAGTCTCTGGAGCAAGA -ACGGAAGTAGTCTCTGGAGGTTGA -ACGGAAGTAGTCTCTGGATCCGAT -ACGGAAGTAGTCTCTGGATGGCAT -ACGGAAGTAGTCTCTGGACGAGAT -ACGGAAGTAGTCTCTGGATACCAC -ACGGAAGTAGTCTCTGGACAGAAC -ACGGAAGTAGTCTCTGGAGTCTAC -ACGGAAGTAGTCTCTGGAACGTAC -ACGGAAGTAGTCTCTGGAAGTGAC -ACGGAAGTAGTCTCTGGACTGTAG -ACGGAAGTAGTCTCTGGACCTAAG -ACGGAAGTAGTCTCTGGAGTTCAG -ACGGAAGTAGTCTCTGGAGCATAG -ACGGAAGTAGTCTCTGGAGACAAG -ACGGAAGTAGTCTCTGGAAAGCAG -ACGGAAGTAGTCTCTGGACGTCAA -ACGGAAGTAGTCTCTGGAGCTGAA -ACGGAAGTAGTCTCTGGAAGTACG -ACGGAAGTAGTCTCTGGAATCCGA -ACGGAAGTAGTCTCTGGAATGGGA -ACGGAAGTAGTCTCTGGAGTGCAA -ACGGAAGTAGTCTCTGGAGAGGAA -ACGGAAGTAGTCTCTGGACAGGTA -ACGGAAGTAGTCTCTGGAGACTCT -ACGGAAGTAGTCTCTGGAAGTCCT -ACGGAAGTAGTCTCTGGATAAGCC -ACGGAAGTAGTCTCTGGAATAGCC -ACGGAAGTAGTCTCTGGATAACCG -ACGGAAGTAGTCTCTGGAATGCCA -ACGGAAGTAGTCGCTAAGGGAAAC -ACGGAAGTAGTCGCTAAGAACACC -ACGGAAGTAGTCGCTAAGATCGAG -ACGGAAGTAGTCGCTAAGCTCCTT -ACGGAAGTAGTCGCTAAGCCTGTT -ACGGAAGTAGTCGCTAAGCGGTTT -ACGGAAGTAGTCGCTAAGGTGGTT -ACGGAAGTAGTCGCTAAGGCCTTT -ACGGAAGTAGTCGCTAAGGGTCTT -ACGGAAGTAGTCGCTAAGACGCTT -ACGGAAGTAGTCGCTAAGAGCGTT -ACGGAAGTAGTCGCTAAGTTCGTC -ACGGAAGTAGTCGCTAAGTCTCTC -ACGGAAGTAGTCGCTAAGTGGATC -ACGGAAGTAGTCGCTAAGCACTTC -ACGGAAGTAGTCGCTAAGGTACTC -ACGGAAGTAGTCGCTAAGGATGTC -ACGGAAGTAGTCGCTAAGACAGTC -ACGGAAGTAGTCGCTAAGTTGCTG -ACGGAAGTAGTCGCTAAGTCCATG -ACGGAAGTAGTCGCTAAGTGTGTG -ACGGAAGTAGTCGCTAAGCTAGTG -ACGGAAGTAGTCGCTAAGCATCTG -ACGGAAGTAGTCGCTAAGGAGTTG -ACGGAAGTAGTCGCTAAGAGACTG -ACGGAAGTAGTCGCTAAGTCGGTA -ACGGAAGTAGTCGCTAAGTGCCTA -ACGGAAGTAGTCGCTAAGCCACTA -ACGGAAGTAGTCGCTAAGGGAGTA -ACGGAAGTAGTCGCTAAGTCGTCT -ACGGAAGTAGTCGCTAAGTGCACT -ACGGAAGTAGTCGCTAAGCTGACT -ACGGAAGTAGTCGCTAAGCAACCT -ACGGAAGTAGTCGCTAAGGCTACT -ACGGAAGTAGTCGCTAAGGGATCT -ACGGAAGTAGTCGCTAAGAAGGCT -ACGGAAGTAGTCGCTAAGTCAACC -ACGGAAGTAGTCGCTAAGTGTTCC -ACGGAAGTAGTCGCTAAGATTCCC -ACGGAAGTAGTCGCTAAGTTCTCG -ACGGAAGTAGTCGCTAAGTAGACG -ACGGAAGTAGTCGCTAAGGTAACG -ACGGAAGTAGTCGCTAAGACTTCG -ACGGAAGTAGTCGCTAAGTACGCA -ACGGAAGTAGTCGCTAAGCTTGCA -ACGGAAGTAGTCGCTAAGCGAACA -ACGGAAGTAGTCGCTAAGCAGTCA -ACGGAAGTAGTCGCTAAGGATCCA -ACGGAAGTAGTCGCTAAGACGACA -ACGGAAGTAGTCGCTAAGAGCTCA -ACGGAAGTAGTCGCTAAGTCACGT -ACGGAAGTAGTCGCTAAGCGTAGT -ACGGAAGTAGTCGCTAAGGTCAGT -ACGGAAGTAGTCGCTAAGGAAGGT -ACGGAAGTAGTCGCTAAGAACCGT -ACGGAAGTAGTCGCTAAGTTGTGC -ACGGAAGTAGTCGCTAAGCTAAGC -ACGGAAGTAGTCGCTAAGACTAGC -ACGGAAGTAGTCGCTAAGAGATGC -ACGGAAGTAGTCGCTAAGTGAAGG -ACGGAAGTAGTCGCTAAGCAATGG -ACGGAAGTAGTCGCTAAGATGAGG -ACGGAAGTAGTCGCTAAGAATGGG -ACGGAAGTAGTCGCTAAGTCCTGA -ACGGAAGTAGTCGCTAAGTAGCGA -ACGGAAGTAGTCGCTAAGCACAGA -ACGGAAGTAGTCGCTAAGGCAAGA -ACGGAAGTAGTCGCTAAGGGTTGA -ACGGAAGTAGTCGCTAAGTCCGAT -ACGGAAGTAGTCGCTAAGTGGCAT -ACGGAAGTAGTCGCTAAGCGAGAT -ACGGAAGTAGTCGCTAAGTACCAC -ACGGAAGTAGTCGCTAAGCAGAAC -ACGGAAGTAGTCGCTAAGGTCTAC -ACGGAAGTAGTCGCTAAGACGTAC -ACGGAAGTAGTCGCTAAGAGTGAC -ACGGAAGTAGTCGCTAAGCTGTAG -ACGGAAGTAGTCGCTAAGCCTAAG -ACGGAAGTAGTCGCTAAGGTTCAG -ACGGAAGTAGTCGCTAAGGCATAG -ACGGAAGTAGTCGCTAAGGACAAG -ACGGAAGTAGTCGCTAAGAAGCAG -ACGGAAGTAGTCGCTAAGCGTCAA -ACGGAAGTAGTCGCTAAGGCTGAA -ACGGAAGTAGTCGCTAAGAGTACG -ACGGAAGTAGTCGCTAAGATCCGA -ACGGAAGTAGTCGCTAAGATGGGA -ACGGAAGTAGTCGCTAAGGTGCAA -ACGGAAGTAGTCGCTAAGGAGGAA -ACGGAAGTAGTCGCTAAGCAGGTA -ACGGAAGTAGTCGCTAAGGACTCT -ACGGAAGTAGTCGCTAAGAGTCCT -ACGGAAGTAGTCGCTAAGTAAGCC -ACGGAAGTAGTCGCTAAGATAGCC -ACGGAAGTAGTCGCTAAGTAACCG -ACGGAAGTAGTCGCTAAGATGCCA -ACGGAAGTAGTCACCTCAGGAAAC -ACGGAAGTAGTCACCTCAAACACC -ACGGAAGTAGTCACCTCAATCGAG -ACGGAAGTAGTCACCTCACTCCTT -ACGGAAGTAGTCACCTCACCTGTT -ACGGAAGTAGTCACCTCACGGTTT -ACGGAAGTAGTCACCTCAGTGGTT -ACGGAAGTAGTCACCTCAGCCTTT -ACGGAAGTAGTCACCTCAGGTCTT -ACGGAAGTAGTCACCTCAACGCTT -ACGGAAGTAGTCACCTCAAGCGTT -ACGGAAGTAGTCACCTCATTCGTC -ACGGAAGTAGTCACCTCATCTCTC -ACGGAAGTAGTCACCTCATGGATC -ACGGAAGTAGTCACCTCACACTTC -ACGGAAGTAGTCACCTCAGTACTC -ACGGAAGTAGTCACCTCAGATGTC -ACGGAAGTAGTCACCTCAACAGTC -ACGGAAGTAGTCACCTCATTGCTG -ACGGAAGTAGTCACCTCATCCATG -ACGGAAGTAGTCACCTCATGTGTG -ACGGAAGTAGTCACCTCACTAGTG -ACGGAAGTAGTCACCTCACATCTG -ACGGAAGTAGTCACCTCAGAGTTG -ACGGAAGTAGTCACCTCAAGACTG -ACGGAAGTAGTCACCTCATCGGTA -ACGGAAGTAGTCACCTCATGCCTA -ACGGAAGTAGTCACCTCACCACTA -ACGGAAGTAGTCACCTCAGGAGTA -ACGGAAGTAGTCACCTCATCGTCT -ACGGAAGTAGTCACCTCATGCACT -ACGGAAGTAGTCACCTCACTGACT -ACGGAAGTAGTCACCTCACAACCT -ACGGAAGTAGTCACCTCAGCTACT -ACGGAAGTAGTCACCTCAGGATCT -ACGGAAGTAGTCACCTCAAAGGCT -ACGGAAGTAGTCACCTCATCAACC -ACGGAAGTAGTCACCTCATGTTCC -ACGGAAGTAGTCACCTCAATTCCC -ACGGAAGTAGTCACCTCATTCTCG -ACGGAAGTAGTCACCTCATAGACG -ACGGAAGTAGTCACCTCAGTAACG -ACGGAAGTAGTCACCTCAACTTCG -ACGGAAGTAGTCACCTCATACGCA -ACGGAAGTAGTCACCTCACTTGCA -ACGGAAGTAGTCACCTCACGAACA -ACGGAAGTAGTCACCTCACAGTCA -ACGGAAGTAGTCACCTCAGATCCA -ACGGAAGTAGTCACCTCAACGACA -ACGGAAGTAGTCACCTCAAGCTCA -ACGGAAGTAGTCACCTCATCACGT -ACGGAAGTAGTCACCTCACGTAGT -ACGGAAGTAGTCACCTCAGTCAGT -ACGGAAGTAGTCACCTCAGAAGGT -ACGGAAGTAGTCACCTCAAACCGT -ACGGAAGTAGTCACCTCATTGTGC -ACGGAAGTAGTCACCTCACTAAGC -ACGGAAGTAGTCACCTCAACTAGC -ACGGAAGTAGTCACCTCAAGATGC -ACGGAAGTAGTCACCTCATGAAGG -ACGGAAGTAGTCACCTCACAATGG -ACGGAAGTAGTCACCTCAATGAGG -ACGGAAGTAGTCACCTCAAATGGG -ACGGAAGTAGTCACCTCATCCTGA -ACGGAAGTAGTCACCTCATAGCGA -ACGGAAGTAGTCACCTCACACAGA -ACGGAAGTAGTCACCTCAGCAAGA -ACGGAAGTAGTCACCTCAGGTTGA -ACGGAAGTAGTCACCTCATCCGAT -ACGGAAGTAGTCACCTCATGGCAT -ACGGAAGTAGTCACCTCACGAGAT -ACGGAAGTAGTCACCTCATACCAC -ACGGAAGTAGTCACCTCACAGAAC -ACGGAAGTAGTCACCTCAGTCTAC -ACGGAAGTAGTCACCTCAACGTAC -ACGGAAGTAGTCACCTCAAGTGAC -ACGGAAGTAGTCACCTCACTGTAG -ACGGAAGTAGTCACCTCACCTAAG -ACGGAAGTAGTCACCTCAGTTCAG -ACGGAAGTAGTCACCTCAGCATAG -ACGGAAGTAGTCACCTCAGACAAG -ACGGAAGTAGTCACCTCAAAGCAG -ACGGAAGTAGTCACCTCACGTCAA -ACGGAAGTAGTCACCTCAGCTGAA -ACGGAAGTAGTCACCTCAAGTACG -ACGGAAGTAGTCACCTCAATCCGA -ACGGAAGTAGTCACCTCAATGGGA -ACGGAAGTAGTCACCTCAGTGCAA -ACGGAAGTAGTCACCTCAGAGGAA -ACGGAAGTAGTCACCTCACAGGTA -ACGGAAGTAGTCACCTCAGACTCT -ACGGAAGTAGTCACCTCAAGTCCT -ACGGAAGTAGTCACCTCATAAGCC -ACGGAAGTAGTCACCTCAATAGCC -ACGGAAGTAGTCACCTCATAACCG -ACGGAAGTAGTCACCTCAATGCCA -ACGGAAGTAGTCTCCTGTGGAAAC -ACGGAAGTAGTCTCCTGTAACACC -ACGGAAGTAGTCTCCTGTATCGAG -ACGGAAGTAGTCTCCTGTCTCCTT -ACGGAAGTAGTCTCCTGTCCTGTT -ACGGAAGTAGTCTCCTGTCGGTTT -ACGGAAGTAGTCTCCTGTGTGGTT -ACGGAAGTAGTCTCCTGTGCCTTT -ACGGAAGTAGTCTCCTGTGGTCTT -ACGGAAGTAGTCTCCTGTACGCTT -ACGGAAGTAGTCTCCTGTAGCGTT -ACGGAAGTAGTCTCCTGTTTCGTC -ACGGAAGTAGTCTCCTGTTCTCTC -ACGGAAGTAGTCTCCTGTTGGATC -ACGGAAGTAGTCTCCTGTCACTTC -ACGGAAGTAGTCTCCTGTGTACTC -ACGGAAGTAGTCTCCTGTGATGTC -ACGGAAGTAGTCTCCTGTACAGTC -ACGGAAGTAGTCTCCTGTTTGCTG -ACGGAAGTAGTCTCCTGTTCCATG -ACGGAAGTAGTCTCCTGTTGTGTG -ACGGAAGTAGTCTCCTGTCTAGTG -ACGGAAGTAGTCTCCTGTCATCTG -ACGGAAGTAGTCTCCTGTGAGTTG -ACGGAAGTAGTCTCCTGTAGACTG -ACGGAAGTAGTCTCCTGTTCGGTA -ACGGAAGTAGTCTCCTGTTGCCTA -ACGGAAGTAGTCTCCTGTCCACTA -ACGGAAGTAGTCTCCTGTGGAGTA -ACGGAAGTAGTCTCCTGTTCGTCT -ACGGAAGTAGTCTCCTGTTGCACT -ACGGAAGTAGTCTCCTGTCTGACT -ACGGAAGTAGTCTCCTGTCAACCT -ACGGAAGTAGTCTCCTGTGCTACT -ACGGAAGTAGTCTCCTGTGGATCT -ACGGAAGTAGTCTCCTGTAAGGCT -ACGGAAGTAGTCTCCTGTTCAACC -ACGGAAGTAGTCTCCTGTTGTTCC -ACGGAAGTAGTCTCCTGTATTCCC -ACGGAAGTAGTCTCCTGTTTCTCG -ACGGAAGTAGTCTCCTGTTAGACG -ACGGAAGTAGTCTCCTGTGTAACG -ACGGAAGTAGTCTCCTGTACTTCG -ACGGAAGTAGTCTCCTGTTACGCA -ACGGAAGTAGTCTCCTGTCTTGCA -ACGGAAGTAGTCTCCTGTCGAACA -ACGGAAGTAGTCTCCTGTCAGTCA -ACGGAAGTAGTCTCCTGTGATCCA -ACGGAAGTAGTCTCCTGTACGACA -ACGGAAGTAGTCTCCTGTAGCTCA -ACGGAAGTAGTCTCCTGTTCACGT -ACGGAAGTAGTCTCCTGTCGTAGT -ACGGAAGTAGTCTCCTGTGTCAGT -ACGGAAGTAGTCTCCTGTGAAGGT -ACGGAAGTAGTCTCCTGTAACCGT -ACGGAAGTAGTCTCCTGTTTGTGC -ACGGAAGTAGTCTCCTGTCTAAGC -ACGGAAGTAGTCTCCTGTACTAGC -ACGGAAGTAGTCTCCTGTAGATGC -ACGGAAGTAGTCTCCTGTTGAAGG -ACGGAAGTAGTCTCCTGTCAATGG -ACGGAAGTAGTCTCCTGTATGAGG -ACGGAAGTAGTCTCCTGTAATGGG -ACGGAAGTAGTCTCCTGTTCCTGA -ACGGAAGTAGTCTCCTGTTAGCGA -ACGGAAGTAGTCTCCTGTCACAGA -ACGGAAGTAGTCTCCTGTGCAAGA -ACGGAAGTAGTCTCCTGTGGTTGA -ACGGAAGTAGTCTCCTGTTCCGAT -ACGGAAGTAGTCTCCTGTTGGCAT -ACGGAAGTAGTCTCCTGTCGAGAT -ACGGAAGTAGTCTCCTGTTACCAC -ACGGAAGTAGTCTCCTGTCAGAAC -ACGGAAGTAGTCTCCTGTGTCTAC -ACGGAAGTAGTCTCCTGTACGTAC -ACGGAAGTAGTCTCCTGTAGTGAC -ACGGAAGTAGTCTCCTGTCTGTAG -ACGGAAGTAGTCTCCTGTCCTAAG -ACGGAAGTAGTCTCCTGTGTTCAG -ACGGAAGTAGTCTCCTGTGCATAG -ACGGAAGTAGTCTCCTGTGACAAG -ACGGAAGTAGTCTCCTGTAAGCAG -ACGGAAGTAGTCTCCTGTCGTCAA -ACGGAAGTAGTCTCCTGTGCTGAA -ACGGAAGTAGTCTCCTGTAGTACG -ACGGAAGTAGTCTCCTGTATCCGA -ACGGAAGTAGTCTCCTGTATGGGA -ACGGAAGTAGTCTCCTGTGTGCAA -ACGGAAGTAGTCTCCTGTGAGGAA -ACGGAAGTAGTCTCCTGTCAGGTA -ACGGAAGTAGTCTCCTGTGACTCT -ACGGAAGTAGTCTCCTGTAGTCCT -ACGGAAGTAGTCTCCTGTTAAGCC -ACGGAAGTAGTCTCCTGTATAGCC -ACGGAAGTAGTCTCCTGTTAACCG -ACGGAAGTAGTCTCCTGTATGCCA -ACGGAAGTAGTCCCCATTGGAAAC -ACGGAAGTAGTCCCCATTAACACC -ACGGAAGTAGTCCCCATTATCGAG -ACGGAAGTAGTCCCCATTCTCCTT -ACGGAAGTAGTCCCCATTCCTGTT -ACGGAAGTAGTCCCCATTCGGTTT -ACGGAAGTAGTCCCCATTGTGGTT -ACGGAAGTAGTCCCCATTGCCTTT -ACGGAAGTAGTCCCCATTGGTCTT -ACGGAAGTAGTCCCCATTACGCTT -ACGGAAGTAGTCCCCATTAGCGTT -ACGGAAGTAGTCCCCATTTTCGTC -ACGGAAGTAGTCCCCATTTCTCTC -ACGGAAGTAGTCCCCATTTGGATC -ACGGAAGTAGTCCCCATTCACTTC -ACGGAAGTAGTCCCCATTGTACTC -ACGGAAGTAGTCCCCATTGATGTC -ACGGAAGTAGTCCCCATTACAGTC -ACGGAAGTAGTCCCCATTTTGCTG -ACGGAAGTAGTCCCCATTTCCATG -ACGGAAGTAGTCCCCATTTGTGTG -ACGGAAGTAGTCCCCATTCTAGTG -ACGGAAGTAGTCCCCATTCATCTG -ACGGAAGTAGTCCCCATTGAGTTG -ACGGAAGTAGTCCCCATTAGACTG -ACGGAAGTAGTCCCCATTTCGGTA -ACGGAAGTAGTCCCCATTTGCCTA -ACGGAAGTAGTCCCCATTCCACTA -ACGGAAGTAGTCCCCATTGGAGTA -ACGGAAGTAGTCCCCATTTCGTCT -ACGGAAGTAGTCCCCATTTGCACT -ACGGAAGTAGTCCCCATTCTGACT -ACGGAAGTAGTCCCCATTCAACCT -ACGGAAGTAGTCCCCATTGCTACT -ACGGAAGTAGTCCCCATTGGATCT -ACGGAAGTAGTCCCCATTAAGGCT -ACGGAAGTAGTCCCCATTTCAACC -ACGGAAGTAGTCCCCATTTGTTCC -ACGGAAGTAGTCCCCATTATTCCC -ACGGAAGTAGTCCCCATTTTCTCG -ACGGAAGTAGTCCCCATTTAGACG -ACGGAAGTAGTCCCCATTGTAACG -ACGGAAGTAGTCCCCATTACTTCG -ACGGAAGTAGTCCCCATTTACGCA -ACGGAAGTAGTCCCCATTCTTGCA -ACGGAAGTAGTCCCCATTCGAACA -ACGGAAGTAGTCCCCATTCAGTCA -ACGGAAGTAGTCCCCATTGATCCA -ACGGAAGTAGTCCCCATTACGACA -ACGGAAGTAGTCCCCATTAGCTCA -ACGGAAGTAGTCCCCATTTCACGT -ACGGAAGTAGTCCCCATTCGTAGT -ACGGAAGTAGTCCCCATTGTCAGT -ACGGAAGTAGTCCCCATTGAAGGT -ACGGAAGTAGTCCCCATTAACCGT -ACGGAAGTAGTCCCCATTTTGTGC -ACGGAAGTAGTCCCCATTCTAAGC -ACGGAAGTAGTCCCCATTACTAGC -ACGGAAGTAGTCCCCATTAGATGC -ACGGAAGTAGTCCCCATTTGAAGG -ACGGAAGTAGTCCCCATTCAATGG -ACGGAAGTAGTCCCCATTATGAGG -ACGGAAGTAGTCCCCATTAATGGG -ACGGAAGTAGTCCCCATTTCCTGA -ACGGAAGTAGTCCCCATTTAGCGA -ACGGAAGTAGTCCCCATTCACAGA -ACGGAAGTAGTCCCCATTGCAAGA -ACGGAAGTAGTCCCCATTGGTTGA -ACGGAAGTAGTCCCCATTTCCGAT -ACGGAAGTAGTCCCCATTTGGCAT -ACGGAAGTAGTCCCCATTCGAGAT -ACGGAAGTAGTCCCCATTTACCAC -ACGGAAGTAGTCCCCATTCAGAAC -ACGGAAGTAGTCCCCATTGTCTAC -ACGGAAGTAGTCCCCATTACGTAC -ACGGAAGTAGTCCCCATTAGTGAC -ACGGAAGTAGTCCCCATTCTGTAG -ACGGAAGTAGTCCCCATTCCTAAG -ACGGAAGTAGTCCCCATTGTTCAG -ACGGAAGTAGTCCCCATTGCATAG -ACGGAAGTAGTCCCCATTGACAAG -ACGGAAGTAGTCCCCATTAAGCAG -ACGGAAGTAGTCCCCATTCGTCAA -ACGGAAGTAGTCCCCATTGCTGAA -ACGGAAGTAGTCCCCATTAGTACG -ACGGAAGTAGTCCCCATTATCCGA -ACGGAAGTAGTCCCCATTATGGGA -ACGGAAGTAGTCCCCATTGTGCAA -ACGGAAGTAGTCCCCATTGAGGAA -ACGGAAGTAGTCCCCATTCAGGTA -ACGGAAGTAGTCCCCATTGACTCT -ACGGAAGTAGTCCCCATTAGTCCT -ACGGAAGTAGTCCCCATTTAAGCC -ACGGAAGTAGTCCCCATTATAGCC -ACGGAAGTAGTCCCCATTTAACCG -ACGGAAGTAGTCCCCATTATGCCA -ACGGAAGTAGTCTCGTTCGGAAAC -ACGGAAGTAGTCTCGTTCAACACC -ACGGAAGTAGTCTCGTTCATCGAG -ACGGAAGTAGTCTCGTTCCTCCTT -ACGGAAGTAGTCTCGTTCCCTGTT -ACGGAAGTAGTCTCGTTCCGGTTT -ACGGAAGTAGTCTCGTTCGTGGTT -ACGGAAGTAGTCTCGTTCGCCTTT -ACGGAAGTAGTCTCGTTCGGTCTT -ACGGAAGTAGTCTCGTTCACGCTT -ACGGAAGTAGTCTCGTTCAGCGTT -ACGGAAGTAGTCTCGTTCTTCGTC -ACGGAAGTAGTCTCGTTCTCTCTC -ACGGAAGTAGTCTCGTTCTGGATC -ACGGAAGTAGTCTCGTTCCACTTC -ACGGAAGTAGTCTCGTTCGTACTC -ACGGAAGTAGTCTCGTTCGATGTC -ACGGAAGTAGTCTCGTTCACAGTC -ACGGAAGTAGTCTCGTTCTTGCTG -ACGGAAGTAGTCTCGTTCTCCATG -ACGGAAGTAGTCTCGTTCTGTGTG -ACGGAAGTAGTCTCGTTCCTAGTG -ACGGAAGTAGTCTCGTTCCATCTG -ACGGAAGTAGTCTCGTTCGAGTTG -ACGGAAGTAGTCTCGTTCAGACTG -ACGGAAGTAGTCTCGTTCTCGGTA -ACGGAAGTAGTCTCGTTCTGCCTA -ACGGAAGTAGTCTCGTTCCCACTA -ACGGAAGTAGTCTCGTTCGGAGTA -ACGGAAGTAGTCTCGTTCTCGTCT -ACGGAAGTAGTCTCGTTCTGCACT -ACGGAAGTAGTCTCGTTCCTGACT -ACGGAAGTAGTCTCGTTCCAACCT -ACGGAAGTAGTCTCGTTCGCTACT -ACGGAAGTAGTCTCGTTCGGATCT -ACGGAAGTAGTCTCGTTCAAGGCT -ACGGAAGTAGTCTCGTTCTCAACC -ACGGAAGTAGTCTCGTTCTGTTCC -ACGGAAGTAGTCTCGTTCATTCCC -ACGGAAGTAGTCTCGTTCTTCTCG -ACGGAAGTAGTCTCGTTCTAGACG -ACGGAAGTAGTCTCGTTCGTAACG -ACGGAAGTAGTCTCGTTCACTTCG -ACGGAAGTAGTCTCGTTCTACGCA -ACGGAAGTAGTCTCGTTCCTTGCA -ACGGAAGTAGTCTCGTTCCGAACA -ACGGAAGTAGTCTCGTTCCAGTCA -ACGGAAGTAGTCTCGTTCGATCCA -ACGGAAGTAGTCTCGTTCACGACA -ACGGAAGTAGTCTCGTTCAGCTCA -ACGGAAGTAGTCTCGTTCTCACGT -ACGGAAGTAGTCTCGTTCCGTAGT -ACGGAAGTAGTCTCGTTCGTCAGT -ACGGAAGTAGTCTCGTTCGAAGGT -ACGGAAGTAGTCTCGTTCAACCGT -ACGGAAGTAGTCTCGTTCTTGTGC -ACGGAAGTAGTCTCGTTCCTAAGC -ACGGAAGTAGTCTCGTTCACTAGC -ACGGAAGTAGTCTCGTTCAGATGC -ACGGAAGTAGTCTCGTTCTGAAGG -ACGGAAGTAGTCTCGTTCCAATGG -ACGGAAGTAGTCTCGTTCATGAGG -ACGGAAGTAGTCTCGTTCAATGGG -ACGGAAGTAGTCTCGTTCTCCTGA -ACGGAAGTAGTCTCGTTCTAGCGA -ACGGAAGTAGTCTCGTTCCACAGA -ACGGAAGTAGTCTCGTTCGCAAGA -ACGGAAGTAGTCTCGTTCGGTTGA -ACGGAAGTAGTCTCGTTCTCCGAT -ACGGAAGTAGTCTCGTTCTGGCAT -ACGGAAGTAGTCTCGTTCCGAGAT -ACGGAAGTAGTCTCGTTCTACCAC -ACGGAAGTAGTCTCGTTCCAGAAC -ACGGAAGTAGTCTCGTTCGTCTAC -ACGGAAGTAGTCTCGTTCACGTAC -ACGGAAGTAGTCTCGTTCAGTGAC -ACGGAAGTAGTCTCGTTCCTGTAG -ACGGAAGTAGTCTCGTTCCCTAAG -ACGGAAGTAGTCTCGTTCGTTCAG -ACGGAAGTAGTCTCGTTCGCATAG -ACGGAAGTAGTCTCGTTCGACAAG -ACGGAAGTAGTCTCGTTCAAGCAG -ACGGAAGTAGTCTCGTTCCGTCAA -ACGGAAGTAGTCTCGTTCGCTGAA -ACGGAAGTAGTCTCGTTCAGTACG -ACGGAAGTAGTCTCGTTCATCCGA -ACGGAAGTAGTCTCGTTCATGGGA -ACGGAAGTAGTCTCGTTCGTGCAA -ACGGAAGTAGTCTCGTTCGAGGAA -ACGGAAGTAGTCTCGTTCCAGGTA -ACGGAAGTAGTCTCGTTCGACTCT -ACGGAAGTAGTCTCGTTCAGTCCT -ACGGAAGTAGTCTCGTTCTAAGCC -ACGGAAGTAGTCTCGTTCATAGCC -ACGGAAGTAGTCTCGTTCTAACCG -ACGGAAGTAGTCTCGTTCATGCCA -ACGGAAGTAGTCACGTAGGGAAAC -ACGGAAGTAGTCACGTAGAACACC -ACGGAAGTAGTCACGTAGATCGAG -ACGGAAGTAGTCACGTAGCTCCTT -ACGGAAGTAGTCACGTAGCCTGTT -ACGGAAGTAGTCACGTAGCGGTTT -ACGGAAGTAGTCACGTAGGTGGTT -ACGGAAGTAGTCACGTAGGCCTTT -ACGGAAGTAGTCACGTAGGGTCTT -ACGGAAGTAGTCACGTAGACGCTT -ACGGAAGTAGTCACGTAGAGCGTT -ACGGAAGTAGTCACGTAGTTCGTC -ACGGAAGTAGTCACGTAGTCTCTC -ACGGAAGTAGTCACGTAGTGGATC -ACGGAAGTAGTCACGTAGCACTTC -ACGGAAGTAGTCACGTAGGTACTC -ACGGAAGTAGTCACGTAGGATGTC -ACGGAAGTAGTCACGTAGACAGTC -ACGGAAGTAGTCACGTAGTTGCTG -ACGGAAGTAGTCACGTAGTCCATG -ACGGAAGTAGTCACGTAGTGTGTG -ACGGAAGTAGTCACGTAGCTAGTG -ACGGAAGTAGTCACGTAGCATCTG -ACGGAAGTAGTCACGTAGGAGTTG -ACGGAAGTAGTCACGTAGAGACTG -ACGGAAGTAGTCACGTAGTCGGTA -ACGGAAGTAGTCACGTAGTGCCTA -ACGGAAGTAGTCACGTAGCCACTA -ACGGAAGTAGTCACGTAGGGAGTA -ACGGAAGTAGTCACGTAGTCGTCT -ACGGAAGTAGTCACGTAGTGCACT -ACGGAAGTAGTCACGTAGCTGACT -ACGGAAGTAGTCACGTAGCAACCT -ACGGAAGTAGTCACGTAGGCTACT -ACGGAAGTAGTCACGTAGGGATCT -ACGGAAGTAGTCACGTAGAAGGCT -ACGGAAGTAGTCACGTAGTCAACC -ACGGAAGTAGTCACGTAGTGTTCC -ACGGAAGTAGTCACGTAGATTCCC -ACGGAAGTAGTCACGTAGTTCTCG -ACGGAAGTAGTCACGTAGTAGACG -ACGGAAGTAGTCACGTAGGTAACG -ACGGAAGTAGTCACGTAGACTTCG -ACGGAAGTAGTCACGTAGTACGCA -ACGGAAGTAGTCACGTAGCTTGCA -ACGGAAGTAGTCACGTAGCGAACA -ACGGAAGTAGTCACGTAGCAGTCA -ACGGAAGTAGTCACGTAGGATCCA -ACGGAAGTAGTCACGTAGACGACA -ACGGAAGTAGTCACGTAGAGCTCA -ACGGAAGTAGTCACGTAGTCACGT -ACGGAAGTAGTCACGTAGCGTAGT -ACGGAAGTAGTCACGTAGGTCAGT -ACGGAAGTAGTCACGTAGGAAGGT -ACGGAAGTAGTCACGTAGAACCGT -ACGGAAGTAGTCACGTAGTTGTGC -ACGGAAGTAGTCACGTAGCTAAGC -ACGGAAGTAGTCACGTAGACTAGC -ACGGAAGTAGTCACGTAGAGATGC -ACGGAAGTAGTCACGTAGTGAAGG -ACGGAAGTAGTCACGTAGCAATGG -ACGGAAGTAGTCACGTAGATGAGG -ACGGAAGTAGTCACGTAGAATGGG -ACGGAAGTAGTCACGTAGTCCTGA -ACGGAAGTAGTCACGTAGTAGCGA -ACGGAAGTAGTCACGTAGCACAGA -ACGGAAGTAGTCACGTAGGCAAGA -ACGGAAGTAGTCACGTAGGGTTGA -ACGGAAGTAGTCACGTAGTCCGAT -ACGGAAGTAGTCACGTAGTGGCAT -ACGGAAGTAGTCACGTAGCGAGAT -ACGGAAGTAGTCACGTAGTACCAC -ACGGAAGTAGTCACGTAGCAGAAC -ACGGAAGTAGTCACGTAGGTCTAC -ACGGAAGTAGTCACGTAGACGTAC -ACGGAAGTAGTCACGTAGAGTGAC -ACGGAAGTAGTCACGTAGCTGTAG -ACGGAAGTAGTCACGTAGCCTAAG -ACGGAAGTAGTCACGTAGGTTCAG -ACGGAAGTAGTCACGTAGGCATAG -ACGGAAGTAGTCACGTAGGACAAG -ACGGAAGTAGTCACGTAGAAGCAG -ACGGAAGTAGTCACGTAGCGTCAA -ACGGAAGTAGTCACGTAGGCTGAA -ACGGAAGTAGTCACGTAGAGTACG -ACGGAAGTAGTCACGTAGATCCGA -ACGGAAGTAGTCACGTAGATGGGA -ACGGAAGTAGTCACGTAGGTGCAA -ACGGAAGTAGTCACGTAGGAGGAA -ACGGAAGTAGTCACGTAGCAGGTA -ACGGAAGTAGTCACGTAGGACTCT -ACGGAAGTAGTCACGTAGAGTCCT -ACGGAAGTAGTCACGTAGTAAGCC -ACGGAAGTAGTCACGTAGATAGCC -ACGGAAGTAGTCACGTAGTAACCG -ACGGAAGTAGTCACGTAGATGCCA -ACGGAAGTAGTCACGGTAGGAAAC -ACGGAAGTAGTCACGGTAAACACC -ACGGAAGTAGTCACGGTAATCGAG -ACGGAAGTAGTCACGGTACTCCTT -ACGGAAGTAGTCACGGTACCTGTT -ACGGAAGTAGTCACGGTACGGTTT -ACGGAAGTAGTCACGGTAGTGGTT -ACGGAAGTAGTCACGGTAGCCTTT -ACGGAAGTAGTCACGGTAGGTCTT -ACGGAAGTAGTCACGGTAACGCTT -ACGGAAGTAGTCACGGTAAGCGTT -ACGGAAGTAGTCACGGTATTCGTC -ACGGAAGTAGTCACGGTATCTCTC -ACGGAAGTAGTCACGGTATGGATC -ACGGAAGTAGTCACGGTACACTTC -ACGGAAGTAGTCACGGTAGTACTC -ACGGAAGTAGTCACGGTAGATGTC -ACGGAAGTAGTCACGGTAACAGTC -ACGGAAGTAGTCACGGTATTGCTG -ACGGAAGTAGTCACGGTATCCATG -ACGGAAGTAGTCACGGTATGTGTG -ACGGAAGTAGTCACGGTACTAGTG -ACGGAAGTAGTCACGGTACATCTG -ACGGAAGTAGTCACGGTAGAGTTG -ACGGAAGTAGTCACGGTAAGACTG -ACGGAAGTAGTCACGGTATCGGTA -ACGGAAGTAGTCACGGTATGCCTA -ACGGAAGTAGTCACGGTACCACTA -ACGGAAGTAGTCACGGTAGGAGTA -ACGGAAGTAGTCACGGTATCGTCT -ACGGAAGTAGTCACGGTATGCACT -ACGGAAGTAGTCACGGTACTGACT -ACGGAAGTAGTCACGGTACAACCT -ACGGAAGTAGTCACGGTAGCTACT -ACGGAAGTAGTCACGGTAGGATCT -ACGGAAGTAGTCACGGTAAAGGCT -ACGGAAGTAGTCACGGTATCAACC -ACGGAAGTAGTCACGGTATGTTCC -ACGGAAGTAGTCACGGTAATTCCC -ACGGAAGTAGTCACGGTATTCTCG -ACGGAAGTAGTCACGGTATAGACG -ACGGAAGTAGTCACGGTAGTAACG -ACGGAAGTAGTCACGGTAACTTCG -ACGGAAGTAGTCACGGTATACGCA -ACGGAAGTAGTCACGGTACTTGCA -ACGGAAGTAGTCACGGTACGAACA -ACGGAAGTAGTCACGGTACAGTCA -ACGGAAGTAGTCACGGTAGATCCA -ACGGAAGTAGTCACGGTAACGACA -ACGGAAGTAGTCACGGTAAGCTCA -ACGGAAGTAGTCACGGTATCACGT -ACGGAAGTAGTCACGGTACGTAGT -ACGGAAGTAGTCACGGTAGTCAGT -ACGGAAGTAGTCACGGTAGAAGGT -ACGGAAGTAGTCACGGTAAACCGT -ACGGAAGTAGTCACGGTATTGTGC -ACGGAAGTAGTCACGGTACTAAGC -ACGGAAGTAGTCACGGTAACTAGC -ACGGAAGTAGTCACGGTAAGATGC -ACGGAAGTAGTCACGGTATGAAGG -ACGGAAGTAGTCACGGTACAATGG -ACGGAAGTAGTCACGGTAATGAGG -ACGGAAGTAGTCACGGTAAATGGG -ACGGAAGTAGTCACGGTATCCTGA -ACGGAAGTAGTCACGGTATAGCGA -ACGGAAGTAGTCACGGTACACAGA -ACGGAAGTAGTCACGGTAGCAAGA -ACGGAAGTAGTCACGGTAGGTTGA -ACGGAAGTAGTCACGGTATCCGAT -ACGGAAGTAGTCACGGTATGGCAT -ACGGAAGTAGTCACGGTACGAGAT -ACGGAAGTAGTCACGGTATACCAC -ACGGAAGTAGTCACGGTACAGAAC -ACGGAAGTAGTCACGGTAGTCTAC -ACGGAAGTAGTCACGGTAACGTAC -ACGGAAGTAGTCACGGTAAGTGAC -ACGGAAGTAGTCACGGTACTGTAG -ACGGAAGTAGTCACGGTACCTAAG -ACGGAAGTAGTCACGGTAGTTCAG -ACGGAAGTAGTCACGGTAGCATAG -ACGGAAGTAGTCACGGTAGACAAG -ACGGAAGTAGTCACGGTAAAGCAG -ACGGAAGTAGTCACGGTACGTCAA -ACGGAAGTAGTCACGGTAGCTGAA -ACGGAAGTAGTCACGGTAAGTACG -ACGGAAGTAGTCACGGTAATCCGA -ACGGAAGTAGTCACGGTAATGGGA -ACGGAAGTAGTCACGGTAGTGCAA -ACGGAAGTAGTCACGGTAGAGGAA -ACGGAAGTAGTCACGGTACAGGTA -ACGGAAGTAGTCACGGTAGACTCT -ACGGAAGTAGTCACGGTAAGTCCT -ACGGAAGTAGTCACGGTATAAGCC -ACGGAAGTAGTCACGGTAATAGCC -ACGGAAGTAGTCACGGTATAACCG -ACGGAAGTAGTCACGGTAATGCCA -ACGGAAGTAGTCTCGACTGGAAAC -ACGGAAGTAGTCTCGACTAACACC -ACGGAAGTAGTCTCGACTATCGAG -ACGGAAGTAGTCTCGACTCTCCTT -ACGGAAGTAGTCTCGACTCCTGTT -ACGGAAGTAGTCTCGACTCGGTTT -ACGGAAGTAGTCTCGACTGTGGTT -ACGGAAGTAGTCTCGACTGCCTTT -ACGGAAGTAGTCTCGACTGGTCTT -ACGGAAGTAGTCTCGACTACGCTT -ACGGAAGTAGTCTCGACTAGCGTT -ACGGAAGTAGTCTCGACTTTCGTC -ACGGAAGTAGTCTCGACTTCTCTC -ACGGAAGTAGTCTCGACTTGGATC -ACGGAAGTAGTCTCGACTCACTTC -ACGGAAGTAGTCTCGACTGTACTC -ACGGAAGTAGTCTCGACTGATGTC -ACGGAAGTAGTCTCGACTACAGTC -ACGGAAGTAGTCTCGACTTTGCTG -ACGGAAGTAGTCTCGACTTCCATG -ACGGAAGTAGTCTCGACTTGTGTG -ACGGAAGTAGTCTCGACTCTAGTG -ACGGAAGTAGTCTCGACTCATCTG -ACGGAAGTAGTCTCGACTGAGTTG -ACGGAAGTAGTCTCGACTAGACTG -ACGGAAGTAGTCTCGACTTCGGTA -ACGGAAGTAGTCTCGACTTGCCTA -ACGGAAGTAGTCTCGACTCCACTA -ACGGAAGTAGTCTCGACTGGAGTA -ACGGAAGTAGTCTCGACTTCGTCT -ACGGAAGTAGTCTCGACTTGCACT -ACGGAAGTAGTCTCGACTCTGACT -ACGGAAGTAGTCTCGACTCAACCT -ACGGAAGTAGTCTCGACTGCTACT -ACGGAAGTAGTCTCGACTGGATCT -ACGGAAGTAGTCTCGACTAAGGCT -ACGGAAGTAGTCTCGACTTCAACC -ACGGAAGTAGTCTCGACTTGTTCC -ACGGAAGTAGTCTCGACTATTCCC -ACGGAAGTAGTCTCGACTTTCTCG -ACGGAAGTAGTCTCGACTTAGACG -ACGGAAGTAGTCTCGACTGTAACG -ACGGAAGTAGTCTCGACTACTTCG -ACGGAAGTAGTCTCGACTTACGCA -ACGGAAGTAGTCTCGACTCTTGCA -ACGGAAGTAGTCTCGACTCGAACA -ACGGAAGTAGTCTCGACTCAGTCA -ACGGAAGTAGTCTCGACTGATCCA -ACGGAAGTAGTCTCGACTACGACA -ACGGAAGTAGTCTCGACTAGCTCA -ACGGAAGTAGTCTCGACTTCACGT -ACGGAAGTAGTCTCGACTCGTAGT -ACGGAAGTAGTCTCGACTGTCAGT -ACGGAAGTAGTCTCGACTGAAGGT -ACGGAAGTAGTCTCGACTAACCGT -ACGGAAGTAGTCTCGACTTTGTGC -ACGGAAGTAGTCTCGACTCTAAGC -ACGGAAGTAGTCTCGACTACTAGC -ACGGAAGTAGTCTCGACTAGATGC -ACGGAAGTAGTCTCGACTTGAAGG -ACGGAAGTAGTCTCGACTCAATGG -ACGGAAGTAGTCTCGACTATGAGG -ACGGAAGTAGTCTCGACTAATGGG -ACGGAAGTAGTCTCGACTTCCTGA -ACGGAAGTAGTCTCGACTTAGCGA -ACGGAAGTAGTCTCGACTCACAGA -ACGGAAGTAGTCTCGACTGCAAGA -ACGGAAGTAGTCTCGACTGGTTGA -ACGGAAGTAGTCTCGACTTCCGAT -ACGGAAGTAGTCTCGACTTGGCAT -ACGGAAGTAGTCTCGACTCGAGAT -ACGGAAGTAGTCTCGACTTACCAC -ACGGAAGTAGTCTCGACTCAGAAC -ACGGAAGTAGTCTCGACTGTCTAC -ACGGAAGTAGTCTCGACTACGTAC -ACGGAAGTAGTCTCGACTAGTGAC -ACGGAAGTAGTCTCGACTCTGTAG -ACGGAAGTAGTCTCGACTCCTAAG -ACGGAAGTAGTCTCGACTGTTCAG -ACGGAAGTAGTCTCGACTGCATAG -ACGGAAGTAGTCTCGACTGACAAG -ACGGAAGTAGTCTCGACTAAGCAG -ACGGAAGTAGTCTCGACTCGTCAA -ACGGAAGTAGTCTCGACTGCTGAA -ACGGAAGTAGTCTCGACTAGTACG -ACGGAAGTAGTCTCGACTATCCGA -ACGGAAGTAGTCTCGACTATGGGA -ACGGAAGTAGTCTCGACTGTGCAA -ACGGAAGTAGTCTCGACTGAGGAA -ACGGAAGTAGTCTCGACTCAGGTA -ACGGAAGTAGTCTCGACTGACTCT -ACGGAAGTAGTCTCGACTAGTCCT -ACGGAAGTAGTCTCGACTTAAGCC -ACGGAAGTAGTCTCGACTATAGCC -ACGGAAGTAGTCTCGACTTAACCG -ACGGAAGTAGTCTCGACTATGCCA -ACGGAAGTAGTCGCATACGGAAAC -ACGGAAGTAGTCGCATACAACACC -ACGGAAGTAGTCGCATACATCGAG -ACGGAAGTAGTCGCATACCTCCTT -ACGGAAGTAGTCGCATACCCTGTT -ACGGAAGTAGTCGCATACCGGTTT -ACGGAAGTAGTCGCATACGTGGTT -ACGGAAGTAGTCGCATACGCCTTT -ACGGAAGTAGTCGCATACGGTCTT -ACGGAAGTAGTCGCATACACGCTT -ACGGAAGTAGTCGCATACAGCGTT -ACGGAAGTAGTCGCATACTTCGTC -ACGGAAGTAGTCGCATACTCTCTC -ACGGAAGTAGTCGCATACTGGATC -ACGGAAGTAGTCGCATACCACTTC -ACGGAAGTAGTCGCATACGTACTC -ACGGAAGTAGTCGCATACGATGTC -ACGGAAGTAGTCGCATACACAGTC -ACGGAAGTAGTCGCATACTTGCTG -ACGGAAGTAGTCGCATACTCCATG -ACGGAAGTAGTCGCATACTGTGTG -ACGGAAGTAGTCGCATACCTAGTG -ACGGAAGTAGTCGCATACCATCTG -ACGGAAGTAGTCGCATACGAGTTG -ACGGAAGTAGTCGCATACAGACTG -ACGGAAGTAGTCGCATACTCGGTA -ACGGAAGTAGTCGCATACTGCCTA -ACGGAAGTAGTCGCATACCCACTA -ACGGAAGTAGTCGCATACGGAGTA -ACGGAAGTAGTCGCATACTCGTCT -ACGGAAGTAGTCGCATACTGCACT -ACGGAAGTAGTCGCATACCTGACT -ACGGAAGTAGTCGCATACCAACCT -ACGGAAGTAGTCGCATACGCTACT -ACGGAAGTAGTCGCATACGGATCT -ACGGAAGTAGTCGCATACAAGGCT -ACGGAAGTAGTCGCATACTCAACC -ACGGAAGTAGTCGCATACTGTTCC -ACGGAAGTAGTCGCATACATTCCC -ACGGAAGTAGTCGCATACTTCTCG -ACGGAAGTAGTCGCATACTAGACG -ACGGAAGTAGTCGCATACGTAACG -ACGGAAGTAGTCGCATACACTTCG -ACGGAAGTAGTCGCATACTACGCA -ACGGAAGTAGTCGCATACCTTGCA -ACGGAAGTAGTCGCATACCGAACA -ACGGAAGTAGTCGCATACCAGTCA -ACGGAAGTAGTCGCATACGATCCA -ACGGAAGTAGTCGCATACACGACA -ACGGAAGTAGTCGCATACAGCTCA -ACGGAAGTAGTCGCATACTCACGT -ACGGAAGTAGTCGCATACCGTAGT -ACGGAAGTAGTCGCATACGTCAGT -ACGGAAGTAGTCGCATACGAAGGT -ACGGAAGTAGTCGCATACAACCGT -ACGGAAGTAGTCGCATACTTGTGC -ACGGAAGTAGTCGCATACCTAAGC -ACGGAAGTAGTCGCATACACTAGC -ACGGAAGTAGTCGCATACAGATGC -ACGGAAGTAGTCGCATACTGAAGG -ACGGAAGTAGTCGCATACCAATGG -ACGGAAGTAGTCGCATACATGAGG -ACGGAAGTAGTCGCATACAATGGG -ACGGAAGTAGTCGCATACTCCTGA -ACGGAAGTAGTCGCATACTAGCGA -ACGGAAGTAGTCGCATACCACAGA -ACGGAAGTAGTCGCATACGCAAGA -ACGGAAGTAGTCGCATACGGTTGA -ACGGAAGTAGTCGCATACTCCGAT -ACGGAAGTAGTCGCATACTGGCAT -ACGGAAGTAGTCGCATACCGAGAT -ACGGAAGTAGTCGCATACTACCAC -ACGGAAGTAGTCGCATACCAGAAC -ACGGAAGTAGTCGCATACGTCTAC -ACGGAAGTAGTCGCATACACGTAC -ACGGAAGTAGTCGCATACAGTGAC -ACGGAAGTAGTCGCATACCTGTAG -ACGGAAGTAGTCGCATACCCTAAG -ACGGAAGTAGTCGCATACGTTCAG -ACGGAAGTAGTCGCATACGCATAG -ACGGAAGTAGTCGCATACGACAAG -ACGGAAGTAGTCGCATACAAGCAG -ACGGAAGTAGTCGCATACCGTCAA -ACGGAAGTAGTCGCATACGCTGAA -ACGGAAGTAGTCGCATACAGTACG -ACGGAAGTAGTCGCATACATCCGA -ACGGAAGTAGTCGCATACATGGGA -ACGGAAGTAGTCGCATACGTGCAA -ACGGAAGTAGTCGCATACGAGGAA -ACGGAAGTAGTCGCATACCAGGTA -ACGGAAGTAGTCGCATACGACTCT -ACGGAAGTAGTCGCATACAGTCCT -ACGGAAGTAGTCGCATACTAAGCC -ACGGAAGTAGTCGCATACATAGCC -ACGGAAGTAGTCGCATACTAACCG -ACGGAAGTAGTCGCATACATGCCA -ACGGAAGTAGTCGCACTTGGAAAC -ACGGAAGTAGTCGCACTTAACACC -ACGGAAGTAGTCGCACTTATCGAG -ACGGAAGTAGTCGCACTTCTCCTT -ACGGAAGTAGTCGCACTTCCTGTT -ACGGAAGTAGTCGCACTTCGGTTT -ACGGAAGTAGTCGCACTTGTGGTT -ACGGAAGTAGTCGCACTTGCCTTT -ACGGAAGTAGTCGCACTTGGTCTT -ACGGAAGTAGTCGCACTTACGCTT -ACGGAAGTAGTCGCACTTAGCGTT -ACGGAAGTAGTCGCACTTTTCGTC -ACGGAAGTAGTCGCACTTTCTCTC -ACGGAAGTAGTCGCACTTTGGATC -ACGGAAGTAGTCGCACTTCACTTC -ACGGAAGTAGTCGCACTTGTACTC -ACGGAAGTAGTCGCACTTGATGTC -ACGGAAGTAGTCGCACTTACAGTC -ACGGAAGTAGTCGCACTTTTGCTG -ACGGAAGTAGTCGCACTTTCCATG -ACGGAAGTAGTCGCACTTTGTGTG -ACGGAAGTAGTCGCACTTCTAGTG -ACGGAAGTAGTCGCACTTCATCTG -ACGGAAGTAGTCGCACTTGAGTTG -ACGGAAGTAGTCGCACTTAGACTG -ACGGAAGTAGTCGCACTTTCGGTA -ACGGAAGTAGTCGCACTTTGCCTA -ACGGAAGTAGTCGCACTTCCACTA -ACGGAAGTAGTCGCACTTGGAGTA -ACGGAAGTAGTCGCACTTTCGTCT -ACGGAAGTAGTCGCACTTTGCACT -ACGGAAGTAGTCGCACTTCTGACT -ACGGAAGTAGTCGCACTTCAACCT -ACGGAAGTAGTCGCACTTGCTACT -ACGGAAGTAGTCGCACTTGGATCT -ACGGAAGTAGTCGCACTTAAGGCT -ACGGAAGTAGTCGCACTTTCAACC -ACGGAAGTAGTCGCACTTTGTTCC -ACGGAAGTAGTCGCACTTATTCCC -ACGGAAGTAGTCGCACTTTTCTCG -ACGGAAGTAGTCGCACTTTAGACG -ACGGAAGTAGTCGCACTTGTAACG -ACGGAAGTAGTCGCACTTACTTCG -ACGGAAGTAGTCGCACTTTACGCA -ACGGAAGTAGTCGCACTTCTTGCA -ACGGAAGTAGTCGCACTTCGAACA -ACGGAAGTAGTCGCACTTCAGTCA -ACGGAAGTAGTCGCACTTGATCCA -ACGGAAGTAGTCGCACTTACGACA -ACGGAAGTAGTCGCACTTAGCTCA -ACGGAAGTAGTCGCACTTTCACGT -ACGGAAGTAGTCGCACTTCGTAGT -ACGGAAGTAGTCGCACTTGTCAGT -ACGGAAGTAGTCGCACTTGAAGGT -ACGGAAGTAGTCGCACTTAACCGT -ACGGAAGTAGTCGCACTTTTGTGC -ACGGAAGTAGTCGCACTTCTAAGC -ACGGAAGTAGTCGCACTTACTAGC -ACGGAAGTAGTCGCACTTAGATGC -ACGGAAGTAGTCGCACTTTGAAGG -ACGGAAGTAGTCGCACTTCAATGG -ACGGAAGTAGTCGCACTTATGAGG -ACGGAAGTAGTCGCACTTAATGGG -ACGGAAGTAGTCGCACTTTCCTGA -ACGGAAGTAGTCGCACTTTAGCGA -ACGGAAGTAGTCGCACTTCACAGA -ACGGAAGTAGTCGCACTTGCAAGA -ACGGAAGTAGTCGCACTTGGTTGA -ACGGAAGTAGTCGCACTTTCCGAT -ACGGAAGTAGTCGCACTTTGGCAT -ACGGAAGTAGTCGCACTTCGAGAT -ACGGAAGTAGTCGCACTTTACCAC -ACGGAAGTAGTCGCACTTCAGAAC -ACGGAAGTAGTCGCACTTGTCTAC -ACGGAAGTAGTCGCACTTACGTAC -ACGGAAGTAGTCGCACTTAGTGAC -ACGGAAGTAGTCGCACTTCTGTAG -ACGGAAGTAGTCGCACTTCCTAAG -ACGGAAGTAGTCGCACTTGTTCAG -ACGGAAGTAGTCGCACTTGCATAG -ACGGAAGTAGTCGCACTTGACAAG -ACGGAAGTAGTCGCACTTAAGCAG -ACGGAAGTAGTCGCACTTCGTCAA -ACGGAAGTAGTCGCACTTGCTGAA -ACGGAAGTAGTCGCACTTAGTACG -ACGGAAGTAGTCGCACTTATCCGA -ACGGAAGTAGTCGCACTTATGGGA -ACGGAAGTAGTCGCACTTGTGCAA -ACGGAAGTAGTCGCACTTGAGGAA -ACGGAAGTAGTCGCACTTCAGGTA -ACGGAAGTAGTCGCACTTGACTCT -ACGGAAGTAGTCGCACTTAGTCCT -ACGGAAGTAGTCGCACTTTAAGCC -ACGGAAGTAGTCGCACTTATAGCC -ACGGAAGTAGTCGCACTTTAACCG -ACGGAAGTAGTCGCACTTATGCCA -ACGGAAGTAGTCACACGAGGAAAC -ACGGAAGTAGTCACACGAAACACC -ACGGAAGTAGTCACACGAATCGAG -ACGGAAGTAGTCACACGACTCCTT -ACGGAAGTAGTCACACGACCTGTT -ACGGAAGTAGTCACACGACGGTTT -ACGGAAGTAGTCACACGAGTGGTT -ACGGAAGTAGTCACACGAGCCTTT -ACGGAAGTAGTCACACGAGGTCTT -ACGGAAGTAGTCACACGAACGCTT -ACGGAAGTAGTCACACGAAGCGTT -ACGGAAGTAGTCACACGATTCGTC -ACGGAAGTAGTCACACGATCTCTC -ACGGAAGTAGTCACACGATGGATC -ACGGAAGTAGTCACACGACACTTC -ACGGAAGTAGTCACACGAGTACTC -ACGGAAGTAGTCACACGAGATGTC -ACGGAAGTAGTCACACGAACAGTC -ACGGAAGTAGTCACACGATTGCTG -ACGGAAGTAGTCACACGATCCATG -ACGGAAGTAGTCACACGATGTGTG -ACGGAAGTAGTCACACGACTAGTG -ACGGAAGTAGTCACACGACATCTG -ACGGAAGTAGTCACACGAGAGTTG -ACGGAAGTAGTCACACGAAGACTG -ACGGAAGTAGTCACACGATCGGTA -ACGGAAGTAGTCACACGATGCCTA -ACGGAAGTAGTCACACGACCACTA -ACGGAAGTAGTCACACGAGGAGTA -ACGGAAGTAGTCACACGATCGTCT -ACGGAAGTAGTCACACGATGCACT -ACGGAAGTAGTCACACGACTGACT -ACGGAAGTAGTCACACGACAACCT -ACGGAAGTAGTCACACGAGCTACT -ACGGAAGTAGTCACACGAGGATCT -ACGGAAGTAGTCACACGAAAGGCT -ACGGAAGTAGTCACACGATCAACC -ACGGAAGTAGTCACACGATGTTCC -ACGGAAGTAGTCACACGAATTCCC -ACGGAAGTAGTCACACGATTCTCG -ACGGAAGTAGTCACACGATAGACG -ACGGAAGTAGTCACACGAGTAACG -ACGGAAGTAGTCACACGAACTTCG -ACGGAAGTAGTCACACGATACGCA -ACGGAAGTAGTCACACGACTTGCA -ACGGAAGTAGTCACACGACGAACA -ACGGAAGTAGTCACACGACAGTCA -ACGGAAGTAGTCACACGAGATCCA -ACGGAAGTAGTCACACGAACGACA -ACGGAAGTAGTCACACGAAGCTCA -ACGGAAGTAGTCACACGATCACGT -ACGGAAGTAGTCACACGACGTAGT -ACGGAAGTAGTCACACGAGTCAGT -ACGGAAGTAGTCACACGAGAAGGT -ACGGAAGTAGTCACACGAAACCGT -ACGGAAGTAGTCACACGATTGTGC -ACGGAAGTAGTCACACGACTAAGC -ACGGAAGTAGTCACACGAACTAGC -ACGGAAGTAGTCACACGAAGATGC -ACGGAAGTAGTCACACGATGAAGG -ACGGAAGTAGTCACACGACAATGG -ACGGAAGTAGTCACACGAATGAGG -ACGGAAGTAGTCACACGAAATGGG -ACGGAAGTAGTCACACGATCCTGA -ACGGAAGTAGTCACACGATAGCGA -ACGGAAGTAGTCACACGACACAGA -ACGGAAGTAGTCACACGAGCAAGA -ACGGAAGTAGTCACACGAGGTTGA -ACGGAAGTAGTCACACGATCCGAT -ACGGAAGTAGTCACACGATGGCAT -ACGGAAGTAGTCACACGACGAGAT -ACGGAAGTAGTCACACGATACCAC -ACGGAAGTAGTCACACGACAGAAC -ACGGAAGTAGTCACACGAGTCTAC -ACGGAAGTAGTCACACGAACGTAC -ACGGAAGTAGTCACACGAAGTGAC -ACGGAAGTAGTCACACGACTGTAG -ACGGAAGTAGTCACACGACCTAAG -ACGGAAGTAGTCACACGAGTTCAG -ACGGAAGTAGTCACACGAGCATAG -ACGGAAGTAGTCACACGAGACAAG -ACGGAAGTAGTCACACGAAAGCAG -ACGGAAGTAGTCACACGACGTCAA -ACGGAAGTAGTCACACGAGCTGAA -ACGGAAGTAGTCACACGAAGTACG -ACGGAAGTAGTCACACGAATCCGA -ACGGAAGTAGTCACACGAATGGGA -ACGGAAGTAGTCACACGAGTGCAA -ACGGAAGTAGTCACACGAGAGGAA -ACGGAAGTAGTCACACGACAGGTA -ACGGAAGTAGTCACACGAGACTCT -ACGGAAGTAGTCACACGAAGTCCT -ACGGAAGTAGTCACACGATAAGCC -ACGGAAGTAGTCACACGAATAGCC -ACGGAAGTAGTCACACGATAACCG -ACGGAAGTAGTCACACGAATGCCA -ACGGAAGTAGTCTCACAGGGAAAC -ACGGAAGTAGTCTCACAGAACACC -ACGGAAGTAGTCTCACAGATCGAG -ACGGAAGTAGTCTCACAGCTCCTT -ACGGAAGTAGTCTCACAGCCTGTT -ACGGAAGTAGTCTCACAGCGGTTT -ACGGAAGTAGTCTCACAGGTGGTT -ACGGAAGTAGTCTCACAGGCCTTT -ACGGAAGTAGTCTCACAGGGTCTT -ACGGAAGTAGTCTCACAGACGCTT -ACGGAAGTAGTCTCACAGAGCGTT -ACGGAAGTAGTCTCACAGTTCGTC -ACGGAAGTAGTCTCACAGTCTCTC -ACGGAAGTAGTCTCACAGTGGATC -ACGGAAGTAGTCTCACAGCACTTC -ACGGAAGTAGTCTCACAGGTACTC -ACGGAAGTAGTCTCACAGGATGTC -ACGGAAGTAGTCTCACAGACAGTC -ACGGAAGTAGTCTCACAGTTGCTG -ACGGAAGTAGTCTCACAGTCCATG -ACGGAAGTAGTCTCACAGTGTGTG -ACGGAAGTAGTCTCACAGCTAGTG -ACGGAAGTAGTCTCACAGCATCTG -ACGGAAGTAGTCTCACAGGAGTTG -ACGGAAGTAGTCTCACAGAGACTG -ACGGAAGTAGTCTCACAGTCGGTA -ACGGAAGTAGTCTCACAGTGCCTA -ACGGAAGTAGTCTCACAGCCACTA -ACGGAAGTAGTCTCACAGGGAGTA -ACGGAAGTAGTCTCACAGTCGTCT -ACGGAAGTAGTCTCACAGTGCACT -ACGGAAGTAGTCTCACAGCTGACT -ACGGAAGTAGTCTCACAGCAACCT -ACGGAAGTAGTCTCACAGGCTACT -ACGGAAGTAGTCTCACAGGGATCT -ACGGAAGTAGTCTCACAGAAGGCT -ACGGAAGTAGTCTCACAGTCAACC -ACGGAAGTAGTCTCACAGTGTTCC -ACGGAAGTAGTCTCACAGATTCCC -ACGGAAGTAGTCTCACAGTTCTCG -ACGGAAGTAGTCTCACAGTAGACG -ACGGAAGTAGTCTCACAGGTAACG -ACGGAAGTAGTCTCACAGACTTCG -ACGGAAGTAGTCTCACAGTACGCA -ACGGAAGTAGTCTCACAGCTTGCA -ACGGAAGTAGTCTCACAGCGAACA -ACGGAAGTAGTCTCACAGCAGTCA -ACGGAAGTAGTCTCACAGGATCCA -ACGGAAGTAGTCTCACAGACGACA -ACGGAAGTAGTCTCACAGAGCTCA -ACGGAAGTAGTCTCACAGTCACGT -ACGGAAGTAGTCTCACAGCGTAGT -ACGGAAGTAGTCTCACAGGTCAGT -ACGGAAGTAGTCTCACAGGAAGGT -ACGGAAGTAGTCTCACAGAACCGT -ACGGAAGTAGTCTCACAGTTGTGC -ACGGAAGTAGTCTCACAGCTAAGC -ACGGAAGTAGTCTCACAGACTAGC -ACGGAAGTAGTCTCACAGAGATGC -ACGGAAGTAGTCTCACAGTGAAGG -ACGGAAGTAGTCTCACAGCAATGG -ACGGAAGTAGTCTCACAGATGAGG -ACGGAAGTAGTCTCACAGAATGGG -ACGGAAGTAGTCTCACAGTCCTGA -ACGGAAGTAGTCTCACAGTAGCGA -ACGGAAGTAGTCTCACAGCACAGA -ACGGAAGTAGTCTCACAGGCAAGA -ACGGAAGTAGTCTCACAGGGTTGA -ACGGAAGTAGTCTCACAGTCCGAT -ACGGAAGTAGTCTCACAGTGGCAT -ACGGAAGTAGTCTCACAGCGAGAT -ACGGAAGTAGTCTCACAGTACCAC -ACGGAAGTAGTCTCACAGCAGAAC -ACGGAAGTAGTCTCACAGGTCTAC -ACGGAAGTAGTCTCACAGACGTAC -ACGGAAGTAGTCTCACAGAGTGAC -ACGGAAGTAGTCTCACAGCTGTAG -ACGGAAGTAGTCTCACAGCCTAAG -ACGGAAGTAGTCTCACAGGTTCAG -ACGGAAGTAGTCTCACAGGCATAG -ACGGAAGTAGTCTCACAGGACAAG -ACGGAAGTAGTCTCACAGAAGCAG -ACGGAAGTAGTCTCACAGCGTCAA -ACGGAAGTAGTCTCACAGGCTGAA -ACGGAAGTAGTCTCACAGAGTACG -ACGGAAGTAGTCTCACAGATCCGA -ACGGAAGTAGTCTCACAGATGGGA -ACGGAAGTAGTCTCACAGGTGCAA -ACGGAAGTAGTCTCACAGGAGGAA -ACGGAAGTAGTCTCACAGCAGGTA -ACGGAAGTAGTCTCACAGGACTCT -ACGGAAGTAGTCTCACAGAGTCCT -ACGGAAGTAGTCTCACAGTAAGCC -ACGGAAGTAGTCTCACAGATAGCC -ACGGAAGTAGTCTCACAGTAACCG -ACGGAAGTAGTCTCACAGATGCCA -ACGGAAGTAGTCCCAGATGGAAAC -ACGGAAGTAGTCCCAGATAACACC -ACGGAAGTAGTCCCAGATATCGAG -ACGGAAGTAGTCCCAGATCTCCTT -ACGGAAGTAGTCCCAGATCCTGTT -ACGGAAGTAGTCCCAGATCGGTTT -ACGGAAGTAGTCCCAGATGTGGTT -ACGGAAGTAGTCCCAGATGCCTTT -ACGGAAGTAGTCCCAGATGGTCTT -ACGGAAGTAGTCCCAGATACGCTT -ACGGAAGTAGTCCCAGATAGCGTT -ACGGAAGTAGTCCCAGATTTCGTC -ACGGAAGTAGTCCCAGATTCTCTC -ACGGAAGTAGTCCCAGATTGGATC -ACGGAAGTAGTCCCAGATCACTTC -ACGGAAGTAGTCCCAGATGTACTC -ACGGAAGTAGTCCCAGATGATGTC -ACGGAAGTAGTCCCAGATACAGTC -ACGGAAGTAGTCCCAGATTTGCTG -ACGGAAGTAGTCCCAGATTCCATG -ACGGAAGTAGTCCCAGATTGTGTG -ACGGAAGTAGTCCCAGATCTAGTG -ACGGAAGTAGTCCCAGATCATCTG -ACGGAAGTAGTCCCAGATGAGTTG -ACGGAAGTAGTCCCAGATAGACTG -ACGGAAGTAGTCCCAGATTCGGTA -ACGGAAGTAGTCCCAGATTGCCTA -ACGGAAGTAGTCCCAGATCCACTA -ACGGAAGTAGTCCCAGATGGAGTA -ACGGAAGTAGTCCCAGATTCGTCT -ACGGAAGTAGTCCCAGATTGCACT -ACGGAAGTAGTCCCAGATCTGACT -ACGGAAGTAGTCCCAGATCAACCT -ACGGAAGTAGTCCCAGATGCTACT -ACGGAAGTAGTCCCAGATGGATCT -ACGGAAGTAGTCCCAGATAAGGCT -ACGGAAGTAGTCCCAGATTCAACC -ACGGAAGTAGTCCCAGATTGTTCC -ACGGAAGTAGTCCCAGATATTCCC -ACGGAAGTAGTCCCAGATTTCTCG -ACGGAAGTAGTCCCAGATTAGACG -ACGGAAGTAGTCCCAGATGTAACG -ACGGAAGTAGTCCCAGATACTTCG -ACGGAAGTAGTCCCAGATTACGCA -ACGGAAGTAGTCCCAGATCTTGCA -ACGGAAGTAGTCCCAGATCGAACA -ACGGAAGTAGTCCCAGATCAGTCA -ACGGAAGTAGTCCCAGATGATCCA -ACGGAAGTAGTCCCAGATACGACA -ACGGAAGTAGTCCCAGATAGCTCA -ACGGAAGTAGTCCCAGATTCACGT -ACGGAAGTAGTCCCAGATCGTAGT -ACGGAAGTAGTCCCAGATGTCAGT -ACGGAAGTAGTCCCAGATGAAGGT -ACGGAAGTAGTCCCAGATAACCGT -ACGGAAGTAGTCCCAGATTTGTGC -ACGGAAGTAGTCCCAGATCTAAGC -ACGGAAGTAGTCCCAGATACTAGC -ACGGAAGTAGTCCCAGATAGATGC -ACGGAAGTAGTCCCAGATTGAAGG -ACGGAAGTAGTCCCAGATCAATGG -ACGGAAGTAGTCCCAGATATGAGG -ACGGAAGTAGTCCCAGATAATGGG -ACGGAAGTAGTCCCAGATTCCTGA -ACGGAAGTAGTCCCAGATTAGCGA -ACGGAAGTAGTCCCAGATCACAGA -ACGGAAGTAGTCCCAGATGCAAGA -ACGGAAGTAGTCCCAGATGGTTGA -ACGGAAGTAGTCCCAGATTCCGAT -ACGGAAGTAGTCCCAGATTGGCAT -ACGGAAGTAGTCCCAGATCGAGAT -ACGGAAGTAGTCCCAGATTACCAC -ACGGAAGTAGTCCCAGATCAGAAC -ACGGAAGTAGTCCCAGATGTCTAC -ACGGAAGTAGTCCCAGATACGTAC -ACGGAAGTAGTCCCAGATAGTGAC -ACGGAAGTAGTCCCAGATCTGTAG -ACGGAAGTAGTCCCAGATCCTAAG -ACGGAAGTAGTCCCAGATGTTCAG -ACGGAAGTAGTCCCAGATGCATAG -ACGGAAGTAGTCCCAGATGACAAG -ACGGAAGTAGTCCCAGATAAGCAG -ACGGAAGTAGTCCCAGATCGTCAA -ACGGAAGTAGTCCCAGATGCTGAA -ACGGAAGTAGTCCCAGATAGTACG -ACGGAAGTAGTCCCAGATATCCGA -ACGGAAGTAGTCCCAGATATGGGA -ACGGAAGTAGTCCCAGATGTGCAA -ACGGAAGTAGTCCCAGATGAGGAA -ACGGAAGTAGTCCCAGATCAGGTA -ACGGAAGTAGTCCCAGATGACTCT -ACGGAAGTAGTCCCAGATAGTCCT -ACGGAAGTAGTCCCAGATTAAGCC -ACGGAAGTAGTCCCAGATATAGCC -ACGGAAGTAGTCCCAGATTAACCG -ACGGAAGTAGTCCCAGATATGCCA -ACGGAAGTAGTCACAACGGGAAAC -ACGGAAGTAGTCACAACGAACACC -ACGGAAGTAGTCACAACGATCGAG -ACGGAAGTAGTCACAACGCTCCTT -ACGGAAGTAGTCACAACGCCTGTT -ACGGAAGTAGTCACAACGCGGTTT -ACGGAAGTAGTCACAACGGTGGTT -ACGGAAGTAGTCACAACGGCCTTT -ACGGAAGTAGTCACAACGGGTCTT -ACGGAAGTAGTCACAACGACGCTT -ACGGAAGTAGTCACAACGAGCGTT -ACGGAAGTAGTCACAACGTTCGTC -ACGGAAGTAGTCACAACGTCTCTC -ACGGAAGTAGTCACAACGTGGATC -ACGGAAGTAGTCACAACGCACTTC -ACGGAAGTAGTCACAACGGTACTC -ACGGAAGTAGTCACAACGGATGTC -ACGGAAGTAGTCACAACGACAGTC -ACGGAAGTAGTCACAACGTTGCTG -ACGGAAGTAGTCACAACGTCCATG -ACGGAAGTAGTCACAACGTGTGTG -ACGGAAGTAGTCACAACGCTAGTG -ACGGAAGTAGTCACAACGCATCTG -ACGGAAGTAGTCACAACGGAGTTG -ACGGAAGTAGTCACAACGAGACTG -ACGGAAGTAGTCACAACGTCGGTA -ACGGAAGTAGTCACAACGTGCCTA -ACGGAAGTAGTCACAACGCCACTA -ACGGAAGTAGTCACAACGGGAGTA -ACGGAAGTAGTCACAACGTCGTCT -ACGGAAGTAGTCACAACGTGCACT -ACGGAAGTAGTCACAACGCTGACT -ACGGAAGTAGTCACAACGCAACCT -ACGGAAGTAGTCACAACGGCTACT -ACGGAAGTAGTCACAACGGGATCT -ACGGAAGTAGTCACAACGAAGGCT -ACGGAAGTAGTCACAACGTCAACC -ACGGAAGTAGTCACAACGTGTTCC -ACGGAAGTAGTCACAACGATTCCC -ACGGAAGTAGTCACAACGTTCTCG -ACGGAAGTAGTCACAACGTAGACG -ACGGAAGTAGTCACAACGGTAACG -ACGGAAGTAGTCACAACGACTTCG -ACGGAAGTAGTCACAACGTACGCA -ACGGAAGTAGTCACAACGCTTGCA -ACGGAAGTAGTCACAACGCGAACA -ACGGAAGTAGTCACAACGCAGTCA -ACGGAAGTAGTCACAACGGATCCA -ACGGAAGTAGTCACAACGACGACA -ACGGAAGTAGTCACAACGAGCTCA -ACGGAAGTAGTCACAACGTCACGT -ACGGAAGTAGTCACAACGCGTAGT -ACGGAAGTAGTCACAACGGTCAGT -ACGGAAGTAGTCACAACGGAAGGT -ACGGAAGTAGTCACAACGAACCGT -ACGGAAGTAGTCACAACGTTGTGC -ACGGAAGTAGTCACAACGCTAAGC -ACGGAAGTAGTCACAACGACTAGC -ACGGAAGTAGTCACAACGAGATGC -ACGGAAGTAGTCACAACGTGAAGG -ACGGAAGTAGTCACAACGCAATGG -ACGGAAGTAGTCACAACGATGAGG -ACGGAAGTAGTCACAACGAATGGG -ACGGAAGTAGTCACAACGTCCTGA -ACGGAAGTAGTCACAACGTAGCGA -ACGGAAGTAGTCACAACGCACAGA -ACGGAAGTAGTCACAACGGCAAGA -ACGGAAGTAGTCACAACGGGTTGA -ACGGAAGTAGTCACAACGTCCGAT -ACGGAAGTAGTCACAACGTGGCAT -ACGGAAGTAGTCACAACGCGAGAT -ACGGAAGTAGTCACAACGTACCAC -ACGGAAGTAGTCACAACGCAGAAC -ACGGAAGTAGTCACAACGGTCTAC -ACGGAAGTAGTCACAACGACGTAC -ACGGAAGTAGTCACAACGAGTGAC -ACGGAAGTAGTCACAACGCTGTAG -ACGGAAGTAGTCACAACGCCTAAG -ACGGAAGTAGTCACAACGGTTCAG -ACGGAAGTAGTCACAACGGCATAG -ACGGAAGTAGTCACAACGGACAAG -ACGGAAGTAGTCACAACGAAGCAG -ACGGAAGTAGTCACAACGCGTCAA -ACGGAAGTAGTCACAACGGCTGAA -ACGGAAGTAGTCACAACGAGTACG -ACGGAAGTAGTCACAACGATCCGA -ACGGAAGTAGTCACAACGATGGGA -ACGGAAGTAGTCACAACGGTGCAA -ACGGAAGTAGTCACAACGGAGGAA -ACGGAAGTAGTCACAACGCAGGTA -ACGGAAGTAGTCACAACGGACTCT -ACGGAAGTAGTCACAACGAGTCCT -ACGGAAGTAGTCACAACGTAAGCC -ACGGAAGTAGTCACAACGATAGCC -ACGGAAGTAGTCACAACGTAACCG -ACGGAAGTAGTCACAACGATGCCA -ACGGAAGTAGTCTCAAGCGGAAAC -ACGGAAGTAGTCTCAAGCAACACC -ACGGAAGTAGTCTCAAGCATCGAG -ACGGAAGTAGTCTCAAGCCTCCTT -ACGGAAGTAGTCTCAAGCCCTGTT -ACGGAAGTAGTCTCAAGCCGGTTT -ACGGAAGTAGTCTCAAGCGTGGTT -ACGGAAGTAGTCTCAAGCGCCTTT -ACGGAAGTAGTCTCAAGCGGTCTT -ACGGAAGTAGTCTCAAGCACGCTT -ACGGAAGTAGTCTCAAGCAGCGTT -ACGGAAGTAGTCTCAAGCTTCGTC -ACGGAAGTAGTCTCAAGCTCTCTC -ACGGAAGTAGTCTCAAGCTGGATC -ACGGAAGTAGTCTCAAGCCACTTC -ACGGAAGTAGTCTCAAGCGTACTC -ACGGAAGTAGTCTCAAGCGATGTC -ACGGAAGTAGTCTCAAGCACAGTC -ACGGAAGTAGTCTCAAGCTTGCTG -ACGGAAGTAGTCTCAAGCTCCATG -ACGGAAGTAGTCTCAAGCTGTGTG -ACGGAAGTAGTCTCAAGCCTAGTG -ACGGAAGTAGTCTCAAGCCATCTG -ACGGAAGTAGTCTCAAGCGAGTTG -ACGGAAGTAGTCTCAAGCAGACTG -ACGGAAGTAGTCTCAAGCTCGGTA -ACGGAAGTAGTCTCAAGCTGCCTA -ACGGAAGTAGTCTCAAGCCCACTA -ACGGAAGTAGTCTCAAGCGGAGTA -ACGGAAGTAGTCTCAAGCTCGTCT -ACGGAAGTAGTCTCAAGCTGCACT -ACGGAAGTAGTCTCAAGCCTGACT -ACGGAAGTAGTCTCAAGCCAACCT -ACGGAAGTAGTCTCAAGCGCTACT -ACGGAAGTAGTCTCAAGCGGATCT -ACGGAAGTAGTCTCAAGCAAGGCT -ACGGAAGTAGTCTCAAGCTCAACC -ACGGAAGTAGTCTCAAGCTGTTCC -ACGGAAGTAGTCTCAAGCATTCCC -ACGGAAGTAGTCTCAAGCTTCTCG -ACGGAAGTAGTCTCAAGCTAGACG -ACGGAAGTAGTCTCAAGCGTAACG -ACGGAAGTAGTCTCAAGCACTTCG -ACGGAAGTAGTCTCAAGCTACGCA -ACGGAAGTAGTCTCAAGCCTTGCA -ACGGAAGTAGTCTCAAGCCGAACA -ACGGAAGTAGTCTCAAGCCAGTCA -ACGGAAGTAGTCTCAAGCGATCCA -ACGGAAGTAGTCTCAAGCACGACA -ACGGAAGTAGTCTCAAGCAGCTCA -ACGGAAGTAGTCTCAAGCTCACGT -ACGGAAGTAGTCTCAAGCCGTAGT -ACGGAAGTAGTCTCAAGCGTCAGT -ACGGAAGTAGTCTCAAGCGAAGGT -ACGGAAGTAGTCTCAAGCAACCGT -ACGGAAGTAGTCTCAAGCTTGTGC -ACGGAAGTAGTCTCAAGCCTAAGC -ACGGAAGTAGTCTCAAGCACTAGC -ACGGAAGTAGTCTCAAGCAGATGC -ACGGAAGTAGTCTCAAGCTGAAGG -ACGGAAGTAGTCTCAAGCCAATGG -ACGGAAGTAGTCTCAAGCATGAGG -ACGGAAGTAGTCTCAAGCAATGGG -ACGGAAGTAGTCTCAAGCTCCTGA -ACGGAAGTAGTCTCAAGCTAGCGA -ACGGAAGTAGTCTCAAGCCACAGA -ACGGAAGTAGTCTCAAGCGCAAGA -ACGGAAGTAGTCTCAAGCGGTTGA -ACGGAAGTAGTCTCAAGCTCCGAT -ACGGAAGTAGTCTCAAGCTGGCAT -ACGGAAGTAGTCTCAAGCCGAGAT -ACGGAAGTAGTCTCAAGCTACCAC -ACGGAAGTAGTCTCAAGCCAGAAC -ACGGAAGTAGTCTCAAGCGTCTAC -ACGGAAGTAGTCTCAAGCACGTAC -ACGGAAGTAGTCTCAAGCAGTGAC -ACGGAAGTAGTCTCAAGCCTGTAG -ACGGAAGTAGTCTCAAGCCCTAAG -ACGGAAGTAGTCTCAAGCGTTCAG -ACGGAAGTAGTCTCAAGCGCATAG -ACGGAAGTAGTCTCAAGCGACAAG -ACGGAAGTAGTCTCAAGCAAGCAG -ACGGAAGTAGTCTCAAGCCGTCAA -ACGGAAGTAGTCTCAAGCGCTGAA -ACGGAAGTAGTCTCAAGCAGTACG -ACGGAAGTAGTCTCAAGCATCCGA -ACGGAAGTAGTCTCAAGCATGGGA -ACGGAAGTAGTCTCAAGCGTGCAA -ACGGAAGTAGTCTCAAGCGAGGAA -ACGGAAGTAGTCTCAAGCCAGGTA -ACGGAAGTAGTCTCAAGCGACTCT -ACGGAAGTAGTCTCAAGCAGTCCT -ACGGAAGTAGTCTCAAGCTAAGCC -ACGGAAGTAGTCTCAAGCATAGCC -ACGGAAGTAGTCTCAAGCTAACCG -ACGGAAGTAGTCTCAAGCATGCCA -ACGGAAGTAGTCCGTTCAGGAAAC -ACGGAAGTAGTCCGTTCAAACACC -ACGGAAGTAGTCCGTTCAATCGAG -ACGGAAGTAGTCCGTTCACTCCTT -ACGGAAGTAGTCCGTTCACCTGTT -ACGGAAGTAGTCCGTTCACGGTTT -ACGGAAGTAGTCCGTTCAGTGGTT -ACGGAAGTAGTCCGTTCAGCCTTT -ACGGAAGTAGTCCGTTCAGGTCTT -ACGGAAGTAGTCCGTTCAACGCTT -ACGGAAGTAGTCCGTTCAAGCGTT -ACGGAAGTAGTCCGTTCATTCGTC -ACGGAAGTAGTCCGTTCATCTCTC -ACGGAAGTAGTCCGTTCATGGATC -ACGGAAGTAGTCCGTTCACACTTC -ACGGAAGTAGTCCGTTCAGTACTC -ACGGAAGTAGTCCGTTCAGATGTC -ACGGAAGTAGTCCGTTCAACAGTC -ACGGAAGTAGTCCGTTCATTGCTG -ACGGAAGTAGTCCGTTCATCCATG -ACGGAAGTAGTCCGTTCATGTGTG -ACGGAAGTAGTCCGTTCACTAGTG -ACGGAAGTAGTCCGTTCACATCTG -ACGGAAGTAGTCCGTTCAGAGTTG -ACGGAAGTAGTCCGTTCAAGACTG -ACGGAAGTAGTCCGTTCATCGGTA -ACGGAAGTAGTCCGTTCATGCCTA -ACGGAAGTAGTCCGTTCACCACTA -ACGGAAGTAGTCCGTTCAGGAGTA -ACGGAAGTAGTCCGTTCATCGTCT -ACGGAAGTAGTCCGTTCATGCACT -ACGGAAGTAGTCCGTTCACTGACT -ACGGAAGTAGTCCGTTCACAACCT -ACGGAAGTAGTCCGTTCAGCTACT -ACGGAAGTAGTCCGTTCAGGATCT -ACGGAAGTAGTCCGTTCAAAGGCT -ACGGAAGTAGTCCGTTCATCAACC -ACGGAAGTAGTCCGTTCATGTTCC -ACGGAAGTAGTCCGTTCAATTCCC -ACGGAAGTAGTCCGTTCATTCTCG -ACGGAAGTAGTCCGTTCATAGACG -ACGGAAGTAGTCCGTTCAGTAACG -ACGGAAGTAGTCCGTTCAACTTCG -ACGGAAGTAGTCCGTTCATACGCA -ACGGAAGTAGTCCGTTCACTTGCA -ACGGAAGTAGTCCGTTCACGAACA -ACGGAAGTAGTCCGTTCACAGTCA -ACGGAAGTAGTCCGTTCAGATCCA -ACGGAAGTAGTCCGTTCAACGACA -ACGGAAGTAGTCCGTTCAAGCTCA -ACGGAAGTAGTCCGTTCATCACGT -ACGGAAGTAGTCCGTTCACGTAGT -ACGGAAGTAGTCCGTTCAGTCAGT -ACGGAAGTAGTCCGTTCAGAAGGT -ACGGAAGTAGTCCGTTCAAACCGT -ACGGAAGTAGTCCGTTCATTGTGC -ACGGAAGTAGTCCGTTCACTAAGC -ACGGAAGTAGTCCGTTCAACTAGC -ACGGAAGTAGTCCGTTCAAGATGC -ACGGAAGTAGTCCGTTCATGAAGG -ACGGAAGTAGTCCGTTCACAATGG -ACGGAAGTAGTCCGTTCAATGAGG -ACGGAAGTAGTCCGTTCAAATGGG -ACGGAAGTAGTCCGTTCATCCTGA -ACGGAAGTAGTCCGTTCATAGCGA -ACGGAAGTAGTCCGTTCACACAGA -ACGGAAGTAGTCCGTTCAGCAAGA -ACGGAAGTAGTCCGTTCAGGTTGA -ACGGAAGTAGTCCGTTCATCCGAT -ACGGAAGTAGTCCGTTCATGGCAT -ACGGAAGTAGTCCGTTCACGAGAT -ACGGAAGTAGTCCGTTCATACCAC -ACGGAAGTAGTCCGTTCACAGAAC -ACGGAAGTAGTCCGTTCAGTCTAC -ACGGAAGTAGTCCGTTCAACGTAC -ACGGAAGTAGTCCGTTCAAGTGAC -ACGGAAGTAGTCCGTTCACTGTAG -ACGGAAGTAGTCCGTTCACCTAAG -ACGGAAGTAGTCCGTTCAGTTCAG -ACGGAAGTAGTCCGTTCAGCATAG -ACGGAAGTAGTCCGTTCAGACAAG -ACGGAAGTAGTCCGTTCAAAGCAG -ACGGAAGTAGTCCGTTCACGTCAA -ACGGAAGTAGTCCGTTCAGCTGAA -ACGGAAGTAGTCCGTTCAAGTACG -ACGGAAGTAGTCCGTTCAATCCGA -ACGGAAGTAGTCCGTTCAATGGGA -ACGGAAGTAGTCCGTTCAGTGCAA -ACGGAAGTAGTCCGTTCAGAGGAA -ACGGAAGTAGTCCGTTCACAGGTA -ACGGAAGTAGTCCGTTCAGACTCT -ACGGAAGTAGTCCGTTCAAGTCCT -ACGGAAGTAGTCCGTTCATAAGCC -ACGGAAGTAGTCCGTTCAATAGCC -ACGGAAGTAGTCCGTTCATAACCG -ACGGAAGTAGTCCGTTCAATGCCA -ACGGAAGTAGTCAGTCGTGGAAAC -ACGGAAGTAGTCAGTCGTAACACC -ACGGAAGTAGTCAGTCGTATCGAG -ACGGAAGTAGTCAGTCGTCTCCTT -ACGGAAGTAGTCAGTCGTCCTGTT -ACGGAAGTAGTCAGTCGTCGGTTT -ACGGAAGTAGTCAGTCGTGTGGTT -ACGGAAGTAGTCAGTCGTGCCTTT -ACGGAAGTAGTCAGTCGTGGTCTT -ACGGAAGTAGTCAGTCGTACGCTT -ACGGAAGTAGTCAGTCGTAGCGTT -ACGGAAGTAGTCAGTCGTTTCGTC -ACGGAAGTAGTCAGTCGTTCTCTC -ACGGAAGTAGTCAGTCGTTGGATC -ACGGAAGTAGTCAGTCGTCACTTC -ACGGAAGTAGTCAGTCGTGTACTC -ACGGAAGTAGTCAGTCGTGATGTC -ACGGAAGTAGTCAGTCGTACAGTC -ACGGAAGTAGTCAGTCGTTTGCTG -ACGGAAGTAGTCAGTCGTTCCATG -ACGGAAGTAGTCAGTCGTTGTGTG -ACGGAAGTAGTCAGTCGTCTAGTG -ACGGAAGTAGTCAGTCGTCATCTG -ACGGAAGTAGTCAGTCGTGAGTTG -ACGGAAGTAGTCAGTCGTAGACTG -ACGGAAGTAGTCAGTCGTTCGGTA -ACGGAAGTAGTCAGTCGTTGCCTA -ACGGAAGTAGTCAGTCGTCCACTA -ACGGAAGTAGTCAGTCGTGGAGTA -ACGGAAGTAGTCAGTCGTTCGTCT -ACGGAAGTAGTCAGTCGTTGCACT -ACGGAAGTAGTCAGTCGTCTGACT -ACGGAAGTAGTCAGTCGTCAACCT -ACGGAAGTAGTCAGTCGTGCTACT -ACGGAAGTAGTCAGTCGTGGATCT -ACGGAAGTAGTCAGTCGTAAGGCT -ACGGAAGTAGTCAGTCGTTCAACC -ACGGAAGTAGTCAGTCGTTGTTCC -ACGGAAGTAGTCAGTCGTATTCCC -ACGGAAGTAGTCAGTCGTTTCTCG -ACGGAAGTAGTCAGTCGTTAGACG -ACGGAAGTAGTCAGTCGTGTAACG -ACGGAAGTAGTCAGTCGTACTTCG -ACGGAAGTAGTCAGTCGTTACGCA -ACGGAAGTAGTCAGTCGTCTTGCA -ACGGAAGTAGTCAGTCGTCGAACA -ACGGAAGTAGTCAGTCGTCAGTCA -ACGGAAGTAGTCAGTCGTGATCCA -ACGGAAGTAGTCAGTCGTACGACA -ACGGAAGTAGTCAGTCGTAGCTCA -ACGGAAGTAGTCAGTCGTTCACGT -ACGGAAGTAGTCAGTCGTCGTAGT -ACGGAAGTAGTCAGTCGTGTCAGT -ACGGAAGTAGTCAGTCGTGAAGGT -ACGGAAGTAGTCAGTCGTAACCGT -ACGGAAGTAGTCAGTCGTTTGTGC -ACGGAAGTAGTCAGTCGTCTAAGC -ACGGAAGTAGTCAGTCGTACTAGC -ACGGAAGTAGTCAGTCGTAGATGC -ACGGAAGTAGTCAGTCGTTGAAGG -ACGGAAGTAGTCAGTCGTCAATGG -ACGGAAGTAGTCAGTCGTATGAGG -ACGGAAGTAGTCAGTCGTAATGGG -ACGGAAGTAGTCAGTCGTTCCTGA -ACGGAAGTAGTCAGTCGTTAGCGA -ACGGAAGTAGTCAGTCGTCACAGA -ACGGAAGTAGTCAGTCGTGCAAGA -ACGGAAGTAGTCAGTCGTGGTTGA -ACGGAAGTAGTCAGTCGTTCCGAT -ACGGAAGTAGTCAGTCGTTGGCAT -ACGGAAGTAGTCAGTCGTCGAGAT -ACGGAAGTAGTCAGTCGTTACCAC -ACGGAAGTAGTCAGTCGTCAGAAC -ACGGAAGTAGTCAGTCGTGTCTAC -ACGGAAGTAGTCAGTCGTACGTAC -ACGGAAGTAGTCAGTCGTAGTGAC -ACGGAAGTAGTCAGTCGTCTGTAG -ACGGAAGTAGTCAGTCGTCCTAAG -ACGGAAGTAGTCAGTCGTGTTCAG -ACGGAAGTAGTCAGTCGTGCATAG -ACGGAAGTAGTCAGTCGTGACAAG -ACGGAAGTAGTCAGTCGTAAGCAG -ACGGAAGTAGTCAGTCGTCGTCAA -ACGGAAGTAGTCAGTCGTGCTGAA -ACGGAAGTAGTCAGTCGTAGTACG -ACGGAAGTAGTCAGTCGTATCCGA -ACGGAAGTAGTCAGTCGTATGGGA -ACGGAAGTAGTCAGTCGTGTGCAA -ACGGAAGTAGTCAGTCGTGAGGAA -ACGGAAGTAGTCAGTCGTCAGGTA -ACGGAAGTAGTCAGTCGTGACTCT -ACGGAAGTAGTCAGTCGTAGTCCT -ACGGAAGTAGTCAGTCGTTAAGCC -ACGGAAGTAGTCAGTCGTATAGCC -ACGGAAGTAGTCAGTCGTTAACCG -ACGGAAGTAGTCAGTCGTATGCCA -ACGGAAGTAGTCAGTGTCGGAAAC -ACGGAAGTAGTCAGTGTCAACACC -ACGGAAGTAGTCAGTGTCATCGAG -ACGGAAGTAGTCAGTGTCCTCCTT -ACGGAAGTAGTCAGTGTCCCTGTT -ACGGAAGTAGTCAGTGTCCGGTTT -ACGGAAGTAGTCAGTGTCGTGGTT -ACGGAAGTAGTCAGTGTCGCCTTT -ACGGAAGTAGTCAGTGTCGGTCTT -ACGGAAGTAGTCAGTGTCACGCTT -ACGGAAGTAGTCAGTGTCAGCGTT -ACGGAAGTAGTCAGTGTCTTCGTC -ACGGAAGTAGTCAGTGTCTCTCTC -ACGGAAGTAGTCAGTGTCTGGATC -ACGGAAGTAGTCAGTGTCCACTTC -ACGGAAGTAGTCAGTGTCGTACTC -ACGGAAGTAGTCAGTGTCGATGTC -ACGGAAGTAGTCAGTGTCACAGTC -ACGGAAGTAGTCAGTGTCTTGCTG -ACGGAAGTAGTCAGTGTCTCCATG -ACGGAAGTAGTCAGTGTCTGTGTG -ACGGAAGTAGTCAGTGTCCTAGTG -ACGGAAGTAGTCAGTGTCCATCTG -ACGGAAGTAGTCAGTGTCGAGTTG -ACGGAAGTAGTCAGTGTCAGACTG -ACGGAAGTAGTCAGTGTCTCGGTA -ACGGAAGTAGTCAGTGTCTGCCTA -ACGGAAGTAGTCAGTGTCCCACTA -ACGGAAGTAGTCAGTGTCGGAGTA -ACGGAAGTAGTCAGTGTCTCGTCT -ACGGAAGTAGTCAGTGTCTGCACT -ACGGAAGTAGTCAGTGTCCTGACT -ACGGAAGTAGTCAGTGTCCAACCT -ACGGAAGTAGTCAGTGTCGCTACT -ACGGAAGTAGTCAGTGTCGGATCT -ACGGAAGTAGTCAGTGTCAAGGCT -ACGGAAGTAGTCAGTGTCTCAACC -ACGGAAGTAGTCAGTGTCTGTTCC -ACGGAAGTAGTCAGTGTCATTCCC -ACGGAAGTAGTCAGTGTCTTCTCG -ACGGAAGTAGTCAGTGTCTAGACG -ACGGAAGTAGTCAGTGTCGTAACG -ACGGAAGTAGTCAGTGTCACTTCG -ACGGAAGTAGTCAGTGTCTACGCA -ACGGAAGTAGTCAGTGTCCTTGCA -ACGGAAGTAGTCAGTGTCCGAACA -ACGGAAGTAGTCAGTGTCCAGTCA -ACGGAAGTAGTCAGTGTCGATCCA -ACGGAAGTAGTCAGTGTCACGACA -ACGGAAGTAGTCAGTGTCAGCTCA -ACGGAAGTAGTCAGTGTCTCACGT -ACGGAAGTAGTCAGTGTCCGTAGT -ACGGAAGTAGTCAGTGTCGTCAGT -ACGGAAGTAGTCAGTGTCGAAGGT -ACGGAAGTAGTCAGTGTCAACCGT -ACGGAAGTAGTCAGTGTCTTGTGC -ACGGAAGTAGTCAGTGTCCTAAGC -ACGGAAGTAGTCAGTGTCACTAGC -ACGGAAGTAGTCAGTGTCAGATGC -ACGGAAGTAGTCAGTGTCTGAAGG -ACGGAAGTAGTCAGTGTCCAATGG -ACGGAAGTAGTCAGTGTCATGAGG -ACGGAAGTAGTCAGTGTCAATGGG -ACGGAAGTAGTCAGTGTCTCCTGA -ACGGAAGTAGTCAGTGTCTAGCGA -ACGGAAGTAGTCAGTGTCCACAGA -ACGGAAGTAGTCAGTGTCGCAAGA -ACGGAAGTAGTCAGTGTCGGTTGA -ACGGAAGTAGTCAGTGTCTCCGAT -ACGGAAGTAGTCAGTGTCTGGCAT -ACGGAAGTAGTCAGTGTCCGAGAT -ACGGAAGTAGTCAGTGTCTACCAC -ACGGAAGTAGTCAGTGTCCAGAAC -ACGGAAGTAGTCAGTGTCGTCTAC -ACGGAAGTAGTCAGTGTCACGTAC -ACGGAAGTAGTCAGTGTCAGTGAC -ACGGAAGTAGTCAGTGTCCTGTAG -ACGGAAGTAGTCAGTGTCCCTAAG -ACGGAAGTAGTCAGTGTCGTTCAG -ACGGAAGTAGTCAGTGTCGCATAG -ACGGAAGTAGTCAGTGTCGACAAG -ACGGAAGTAGTCAGTGTCAAGCAG -ACGGAAGTAGTCAGTGTCCGTCAA -ACGGAAGTAGTCAGTGTCGCTGAA -ACGGAAGTAGTCAGTGTCAGTACG -ACGGAAGTAGTCAGTGTCATCCGA -ACGGAAGTAGTCAGTGTCATGGGA -ACGGAAGTAGTCAGTGTCGTGCAA -ACGGAAGTAGTCAGTGTCGAGGAA -ACGGAAGTAGTCAGTGTCCAGGTA -ACGGAAGTAGTCAGTGTCGACTCT -ACGGAAGTAGTCAGTGTCAGTCCT -ACGGAAGTAGTCAGTGTCTAAGCC -ACGGAAGTAGTCAGTGTCATAGCC -ACGGAAGTAGTCAGTGTCTAACCG -ACGGAAGTAGTCAGTGTCATGCCA -ACGGAAGTAGTCGGTGAAGGAAAC -ACGGAAGTAGTCGGTGAAAACACC -ACGGAAGTAGTCGGTGAAATCGAG -ACGGAAGTAGTCGGTGAACTCCTT -ACGGAAGTAGTCGGTGAACCTGTT -ACGGAAGTAGTCGGTGAACGGTTT -ACGGAAGTAGTCGGTGAAGTGGTT -ACGGAAGTAGTCGGTGAAGCCTTT -ACGGAAGTAGTCGGTGAAGGTCTT -ACGGAAGTAGTCGGTGAAACGCTT -ACGGAAGTAGTCGGTGAAAGCGTT -ACGGAAGTAGTCGGTGAATTCGTC -ACGGAAGTAGTCGGTGAATCTCTC -ACGGAAGTAGTCGGTGAATGGATC -ACGGAAGTAGTCGGTGAACACTTC -ACGGAAGTAGTCGGTGAAGTACTC -ACGGAAGTAGTCGGTGAAGATGTC -ACGGAAGTAGTCGGTGAAACAGTC -ACGGAAGTAGTCGGTGAATTGCTG -ACGGAAGTAGTCGGTGAATCCATG -ACGGAAGTAGTCGGTGAATGTGTG -ACGGAAGTAGTCGGTGAACTAGTG -ACGGAAGTAGTCGGTGAACATCTG -ACGGAAGTAGTCGGTGAAGAGTTG -ACGGAAGTAGTCGGTGAAAGACTG -ACGGAAGTAGTCGGTGAATCGGTA -ACGGAAGTAGTCGGTGAATGCCTA -ACGGAAGTAGTCGGTGAACCACTA -ACGGAAGTAGTCGGTGAAGGAGTA -ACGGAAGTAGTCGGTGAATCGTCT -ACGGAAGTAGTCGGTGAATGCACT -ACGGAAGTAGTCGGTGAACTGACT -ACGGAAGTAGTCGGTGAACAACCT -ACGGAAGTAGTCGGTGAAGCTACT -ACGGAAGTAGTCGGTGAAGGATCT -ACGGAAGTAGTCGGTGAAAAGGCT -ACGGAAGTAGTCGGTGAATCAACC -ACGGAAGTAGTCGGTGAATGTTCC -ACGGAAGTAGTCGGTGAAATTCCC -ACGGAAGTAGTCGGTGAATTCTCG -ACGGAAGTAGTCGGTGAATAGACG -ACGGAAGTAGTCGGTGAAGTAACG -ACGGAAGTAGTCGGTGAAACTTCG -ACGGAAGTAGTCGGTGAATACGCA -ACGGAAGTAGTCGGTGAACTTGCA -ACGGAAGTAGTCGGTGAACGAACA -ACGGAAGTAGTCGGTGAACAGTCA -ACGGAAGTAGTCGGTGAAGATCCA -ACGGAAGTAGTCGGTGAAACGACA -ACGGAAGTAGTCGGTGAAAGCTCA -ACGGAAGTAGTCGGTGAATCACGT -ACGGAAGTAGTCGGTGAACGTAGT -ACGGAAGTAGTCGGTGAAGTCAGT -ACGGAAGTAGTCGGTGAAGAAGGT -ACGGAAGTAGTCGGTGAAAACCGT -ACGGAAGTAGTCGGTGAATTGTGC -ACGGAAGTAGTCGGTGAACTAAGC -ACGGAAGTAGTCGGTGAAACTAGC -ACGGAAGTAGTCGGTGAAAGATGC -ACGGAAGTAGTCGGTGAATGAAGG -ACGGAAGTAGTCGGTGAACAATGG -ACGGAAGTAGTCGGTGAAATGAGG -ACGGAAGTAGTCGGTGAAAATGGG -ACGGAAGTAGTCGGTGAATCCTGA -ACGGAAGTAGTCGGTGAATAGCGA -ACGGAAGTAGTCGGTGAACACAGA -ACGGAAGTAGTCGGTGAAGCAAGA -ACGGAAGTAGTCGGTGAAGGTTGA -ACGGAAGTAGTCGGTGAATCCGAT -ACGGAAGTAGTCGGTGAATGGCAT -ACGGAAGTAGTCGGTGAACGAGAT -ACGGAAGTAGTCGGTGAATACCAC -ACGGAAGTAGTCGGTGAACAGAAC -ACGGAAGTAGTCGGTGAAGTCTAC -ACGGAAGTAGTCGGTGAAACGTAC -ACGGAAGTAGTCGGTGAAAGTGAC -ACGGAAGTAGTCGGTGAACTGTAG -ACGGAAGTAGTCGGTGAACCTAAG -ACGGAAGTAGTCGGTGAAGTTCAG -ACGGAAGTAGTCGGTGAAGCATAG -ACGGAAGTAGTCGGTGAAGACAAG -ACGGAAGTAGTCGGTGAAAAGCAG -ACGGAAGTAGTCGGTGAACGTCAA -ACGGAAGTAGTCGGTGAAGCTGAA -ACGGAAGTAGTCGGTGAAAGTACG -ACGGAAGTAGTCGGTGAAATCCGA -ACGGAAGTAGTCGGTGAAATGGGA -ACGGAAGTAGTCGGTGAAGTGCAA -ACGGAAGTAGTCGGTGAAGAGGAA -ACGGAAGTAGTCGGTGAACAGGTA -ACGGAAGTAGTCGGTGAAGACTCT -ACGGAAGTAGTCGGTGAAAGTCCT -ACGGAAGTAGTCGGTGAATAAGCC -ACGGAAGTAGTCGGTGAAATAGCC -ACGGAAGTAGTCGGTGAATAACCG -ACGGAAGTAGTCGGTGAAATGCCA -ACGGAAGTAGTCCGTAACGGAAAC -ACGGAAGTAGTCCGTAACAACACC -ACGGAAGTAGTCCGTAACATCGAG -ACGGAAGTAGTCCGTAACCTCCTT -ACGGAAGTAGTCCGTAACCCTGTT -ACGGAAGTAGTCCGTAACCGGTTT -ACGGAAGTAGTCCGTAACGTGGTT -ACGGAAGTAGTCCGTAACGCCTTT -ACGGAAGTAGTCCGTAACGGTCTT -ACGGAAGTAGTCCGTAACACGCTT -ACGGAAGTAGTCCGTAACAGCGTT -ACGGAAGTAGTCCGTAACTTCGTC -ACGGAAGTAGTCCGTAACTCTCTC -ACGGAAGTAGTCCGTAACTGGATC -ACGGAAGTAGTCCGTAACCACTTC -ACGGAAGTAGTCCGTAACGTACTC -ACGGAAGTAGTCCGTAACGATGTC -ACGGAAGTAGTCCGTAACACAGTC -ACGGAAGTAGTCCGTAACTTGCTG -ACGGAAGTAGTCCGTAACTCCATG -ACGGAAGTAGTCCGTAACTGTGTG -ACGGAAGTAGTCCGTAACCTAGTG -ACGGAAGTAGTCCGTAACCATCTG -ACGGAAGTAGTCCGTAACGAGTTG -ACGGAAGTAGTCCGTAACAGACTG -ACGGAAGTAGTCCGTAACTCGGTA -ACGGAAGTAGTCCGTAACTGCCTA -ACGGAAGTAGTCCGTAACCCACTA -ACGGAAGTAGTCCGTAACGGAGTA -ACGGAAGTAGTCCGTAACTCGTCT -ACGGAAGTAGTCCGTAACTGCACT -ACGGAAGTAGTCCGTAACCTGACT -ACGGAAGTAGTCCGTAACCAACCT -ACGGAAGTAGTCCGTAACGCTACT -ACGGAAGTAGTCCGTAACGGATCT -ACGGAAGTAGTCCGTAACAAGGCT -ACGGAAGTAGTCCGTAACTCAACC -ACGGAAGTAGTCCGTAACTGTTCC -ACGGAAGTAGTCCGTAACATTCCC -ACGGAAGTAGTCCGTAACTTCTCG -ACGGAAGTAGTCCGTAACTAGACG -ACGGAAGTAGTCCGTAACGTAACG -ACGGAAGTAGTCCGTAACACTTCG -ACGGAAGTAGTCCGTAACTACGCA -ACGGAAGTAGTCCGTAACCTTGCA -ACGGAAGTAGTCCGTAACCGAACA -ACGGAAGTAGTCCGTAACCAGTCA -ACGGAAGTAGTCCGTAACGATCCA -ACGGAAGTAGTCCGTAACACGACA -ACGGAAGTAGTCCGTAACAGCTCA -ACGGAAGTAGTCCGTAACTCACGT -ACGGAAGTAGTCCGTAACCGTAGT -ACGGAAGTAGTCCGTAACGTCAGT -ACGGAAGTAGTCCGTAACGAAGGT -ACGGAAGTAGTCCGTAACAACCGT -ACGGAAGTAGTCCGTAACTTGTGC -ACGGAAGTAGTCCGTAACCTAAGC -ACGGAAGTAGTCCGTAACACTAGC -ACGGAAGTAGTCCGTAACAGATGC -ACGGAAGTAGTCCGTAACTGAAGG -ACGGAAGTAGTCCGTAACCAATGG -ACGGAAGTAGTCCGTAACATGAGG -ACGGAAGTAGTCCGTAACAATGGG -ACGGAAGTAGTCCGTAACTCCTGA -ACGGAAGTAGTCCGTAACTAGCGA -ACGGAAGTAGTCCGTAACCACAGA -ACGGAAGTAGTCCGTAACGCAAGA -ACGGAAGTAGTCCGTAACGGTTGA -ACGGAAGTAGTCCGTAACTCCGAT -ACGGAAGTAGTCCGTAACTGGCAT -ACGGAAGTAGTCCGTAACCGAGAT -ACGGAAGTAGTCCGTAACTACCAC -ACGGAAGTAGTCCGTAACCAGAAC -ACGGAAGTAGTCCGTAACGTCTAC -ACGGAAGTAGTCCGTAACACGTAC -ACGGAAGTAGTCCGTAACAGTGAC -ACGGAAGTAGTCCGTAACCTGTAG -ACGGAAGTAGTCCGTAACCCTAAG -ACGGAAGTAGTCCGTAACGTTCAG -ACGGAAGTAGTCCGTAACGCATAG -ACGGAAGTAGTCCGTAACGACAAG -ACGGAAGTAGTCCGTAACAAGCAG -ACGGAAGTAGTCCGTAACCGTCAA -ACGGAAGTAGTCCGTAACGCTGAA -ACGGAAGTAGTCCGTAACAGTACG -ACGGAAGTAGTCCGTAACATCCGA -ACGGAAGTAGTCCGTAACATGGGA -ACGGAAGTAGTCCGTAACGTGCAA -ACGGAAGTAGTCCGTAACGAGGAA -ACGGAAGTAGTCCGTAACCAGGTA -ACGGAAGTAGTCCGTAACGACTCT -ACGGAAGTAGTCCGTAACAGTCCT -ACGGAAGTAGTCCGTAACTAAGCC -ACGGAAGTAGTCCGTAACATAGCC -ACGGAAGTAGTCCGTAACTAACCG -ACGGAAGTAGTCCGTAACATGCCA -ACGGAAGTAGTCTGCTTGGGAAAC -ACGGAAGTAGTCTGCTTGAACACC -ACGGAAGTAGTCTGCTTGATCGAG -ACGGAAGTAGTCTGCTTGCTCCTT -ACGGAAGTAGTCTGCTTGCCTGTT -ACGGAAGTAGTCTGCTTGCGGTTT -ACGGAAGTAGTCTGCTTGGTGGTT -ACGGAAGTAGTCTGCTTGGCCTTT -ACGGAAGTAGTCTGCTTGGGTCTT -ACGGAAGTAGTCTGCTTGACGCTT -ACGGAAGTAGTCTGCTTGAGCGTT -ACGGAAGTAGTCTGCTTGTTCGTC -ACGGAAGTAGTCTGCTTGTCTCTC -ACGGAAGTAGTCTGCTTGTGGATC -ACGGAAGTAGTCTGCTTGCACTTC -ACGGAAGTAGTCTGCTTGGTACTC -ACGGAAGTAGTCTGCTTGGATGTC -ACGGAAGTAGTCTGCTTGACAGTC -ACGGAAGTAGTCTGCTTGTTGCTG -ACGGAAGTAGTCTGCTTGTCCATG -ACGGAAGTAGTCTGCTTGTGTGTG -ACGGAAGTAGTCTGCTTGCTAGTG -ACGGAAGTAGTCTGCTTGCATCTG -ACGGAAGTAGTCTGCTTGGAGTTG -ACGGAAGTAGTCTGCTTGAGACTG -ACGGAAGTAGTCTGCTTGTCGGTA -ACGGAAGTAGTCTGCTTGTGCCTA -ACGGAAGTAGTCTGCTTGCCACTA -ACGGAAGTAGTCTGCTTGGGAGTA -ACGGAAGTAGTCTGCTTGTCGTCT -ACGGAAGTAGTCTGCTTGTGCACT -ACGGAAGTAGTCTGCTTGCTGACT -ACGGAAGTAGTCTGCTTGCAACCT -ACGGAAGTAGTCTGCTTGGCTACT -ACGGAAGTAGTCTGCTTGGGATCT -ACGGAAGTAGTCTGCTTGAAGGCT -ACGGAAGTAGTCTGCTTGTCAACC -ACGGAAGTAGTCTGCTTGTGTTCC -ACGGAAGTAGTCTGCTTGATTCCC -ACGGAAGTAGTCTGCTTGTTCTCG -ACGGAAGTAGTCTGCTTGTAGACG -ACGGAAGTAGTCTGCTTGGTAACG -ACGGAAGTAGTCTGCTTGACTTCG -ACGGAAGTAGTCTGCTTGTACGCA -ACGGAAGTAGTCTGCTTGCTTGCA -ACGGAAGTAGTCTGCTTGCGAACA -ACGGAAGTAGTCTGCTTGCAGTCA -ACGGAAGTAGTCTGCTTGGATCCA -ACGGAAGTAGTCTGCTTGACGACA -ACGGAAGTAGTCTGCTTGAGCTCA -ACGGAAGTAGTCTGCTTGTCACGT -ACGGAAGTAGTCTGCTTGCGTAGT -ACGGAAGTAGTCTGCTTGGTCAGT -ACGGAAGTAGTCTGCTTGGAAGGT -ACGGAAGTAGTCTGCTTGAACCGT -ACGGAAGTAGTCTGCTTGTTGTGC -ACGGAAGTAGTCTGCTTGCTAAGC -ACGGAAGTAGTCTGCTTGACTAGC -ACGGAAGTAGTCTGCTTGAGATGC -ACGGAAGTAGTCTGCTTGTGAAGG -ACGGAAGTAGTCTGCTTGCAATGG -ACGGAAGTAGTCTGCTTGATGAGG -ACGGAAGTAGTCTGCTTGAATGGG -ACGGAAGTAGTCTGCTTGTCCTGA -ACGGAAGTAGTCTGCTTGTAGCGA -ACGGAAGTAGTCTGCTTGCACAGA -ACGGAAGTAGTCTGCTTGGCAAGA -ACGGAAGTAGTCTGCTTGGGTTGA -ACGGAAGTAGTCTGCTTGTCCGAT -ACGGAAGTAGTCTGCTTGTGGCAT -ACGGAAGTAGTCTGCTTGCGAGAT -ACGGAAGTAGTCTGCTTGTACCAC -ACGGAAGTAGTCTGCTTGCAGAAC -ACGGAAGTAGTCTGCTTGGTCTAC -ACGGAAGTAGTCTGCTTGACGTAC -ACGGAAGTAGTCTGCTTGAGTGAC -ACGGAAGTAGTCTGCTTGCTGTAG -ACGGAAGTAGTCTGCTTGCCTAAG -ACGGAAGTAGTCTGCTTGGTTCAG -ACGGAAGTAGTCTGCTTGGCATAG -ACGGAAGTAGTCTGCTTGGACAAG -ACGGAAGTAGTCTGCTTGAAGCAG -ACGGAAGTAGTCTGCTTGCGTCAA -ACGGAAGTAGTCTGCTTGGCTGAA -ACGGAAGTAGTCTGCTTGAGTACG -ACGGAAGTAGTCTGCTTGATCCGA -ACGGAAGTAGTCTGCTTGATGGGA -ACGGAAGTAGTCTGCTTGGTGCAA -ACGGAAGTAGTCTGCTTGGAGGAA -ACGGAAGTAGTCTGCTTGCAGGTA -ACGGAAGTAGTCTGCTTGGACTCT -ACGGAAGTAGTCTGCTTGAGTCCT -ACGGAAGTAGTCTGCTTGTAAGCC -ACGGAAGTAGTCTGCTTGATAGCC -ACGGAAGTAGTCTGCTTGTAACCG -ACGGAAGTAGTCTGCTTGATGCCA -ACGGAAGTAGTCAGCCTAGGAAAC -ACGGAAGTAGTCAGCCTAAACACC -ACGGAAGTAGTCAGCCTAATCGAG -ACGGAAGTAGTCAGCCTACTCCTT -ACGGAAGTAGTCAGCCTACCTGTT -ACGGAAGTAGTCAGCCTACGGTTT -ACGGAAGTAGTCAGCCTAGTGGTT -ACGGAAGTAGTCAGCCTAGCCTTT -ACGGAAGTAGTCAGCCTAGGTCTT -ACGGAAGTAGTCAGCCTAACGCTT -ACGGAAGTAGTCAGCCTAAGCGTT -ACGGAAGTAGTCAGCCTATTCGTC -ACGGAAGTAGTCAGCCTATCTCTC -ACGGAAGTAGTCAGCCTATGGATC -ACGGAAGTAGTCAGCCTACACTTC -ACGGAAGTAGTCAGCCTAGTACTC -ACGGAAGTAGTCAGCCTAGATGTC -ACGGAAGTAGTCAGCCTAACAGTC -ACGGAAGTAGTCAGCCTATTGCTG -ACGGAAGTAGTCAGCCTATCCATG -ACGGAAGTAGTCAGCCTATGTGTG -ACGGAAGTAGTCAGCCTACTAGTG -ACGGAAGTAGTCAGCCTACATCTG -ACGGAAGTAGTCAGCCTAGAGTTG -ACGGAAGTAGTCAGCCTAAGACTG -ACGGAAGTAGTCAGCCTATCGGTA -ACGGAAGTAGTCAGCCTATGCCTA -ACGGAAGTAGTCAGCCTACCACTA -ACGGAAGTAGTCAGCCTAGGAGTA -ACGGAAGTAGTCAGCCTATCGTCT -ACGGAAGTAGTCAGCCTATGCACT -ACGGAAGTAGTCAGCCTACTGACT -ACGGAAGTAGTCAGCCTACAACCT -ACGGAAGTAGTCAGCCTAGCTACT -ACGGAAGTAGTCAGCCTAGGATCT -ACGGAAGTAGTCAGCCTAAAGGCT -ACGGAAGTAGTCAGCCTATCAACC -ACGGAAGTAGTCAGCCTATGTTCC -ACGGAAGTAGTCAGCCTAATTCCC -ACGGAAGTAGTCAGCCTATTCTCG -ACGGAAGTAGTCAGCCTATAGACG -ACGGAAGTAGTCAGCCTAGTAACG -ACGGAAGTAGTCAGCCTAACTTCG -ACGGAAGTAGTCAGCCTATACGCA -ACGGAAGTAGTCAGCCTACTTGCA -ACGGAAGTAGTCAGCCTACGAACA -ACGGAAGTAGTCAGCCTACAGTCA -ACGGAAGTAGTCAGCCTAGATCCA -ACGGAAGTAGTCAGCCTAACGACA -ACGGAAGTAGTCAGCCTAAGCTCA -ACGGAAGTAGTCAGCCTATCACGT -ACGGAAGTAGTCAGCCTACGTAGT -ACGGAAGTAGTCAGCCTAGTCAGT -ACGGAAGTAGTCAGCCTAGAAGGT -ACGGAAGTAGTCAGCCTAAACCGT -ACGGAAGTAGTCAGCCTATTGTGC -ACGGAAGTAGTCAGCCTACTAAGC -ACGGAAGTAGTCAGCCTAACTAGC -ACGGAAGTAGTCAGCCTAAGATGC -ACGGAAGTAGTCAGCCTATGAAGG -ACGGAAGTAGTCAGCCTACAATGG -ACGGAAGTAGTCAGCCTAATGAGG -ACGGAAGTAGTCAGCCTAAATGGG -ACGGAAGTAGTCAGCCTATCCTGA -ACGGAAGTAGTCAGCCTATAGCGA -ACGGAAGTAGTCAGCCTACACAGA -ACGGAAGTAGTCAGCCTAGCAAGA -ACGGAAGTAGTCAGCCTAGGTTGA -ACGGAAGTAGTCAGCCTATCCGAT -ACGGAAGTAGTCAGCCTATGGCAT -ACGGAAGTAGTCAGCCTACGAGAT -ACGGAAGTAGTCAGCCTATACCAC -ACGGAAGTAGTCAGCCTACAGAAC -ACGGAAGTAGTCAGCCTAGTCTAC -ACGGAAGTAGTCAGCCTAACGTAC -ACGGAAGTAGTCAGCCTAAGTGAC -ACGGAAGTAGTCAGCCTACTGTAG -ACGGAAGTAGTCAGCCTACCTAAG -ACGGAAGTAGTCAGCCTAGTTCAG -ACGGAAGTAGTCAGCCTAGCATAG -ACGGAAGTAGTCAGCCTAGACAAG -ACGGAAGTAGTCAGCCTAAAGCAG -ACGGAAGTAGTCAGCCTACGTCAA -ACGGAAGTAGTCAGCCTAGCTGAA -ACGGAAGTAGTCAGCCTAAGTACG -ACGGAAGTAGTCAGCCTAATCCGA -ACGGAAGTAGTCAGCCTAATGGGA -ACGGAAGTAGTCAGCCTAGTGCAA -ACGGAAGTAGTCAGCCTAGAGGAA -ACGGAAGTAGTCAGCCTACAGGTA -ACGGAAGTAGTCAGCCTAGACTCT -ACGGAAGTAGTCAGCCTAAGTCCT -ACGGAAGTAGTCAGCCTATAAGCC -ACGGAAGTAGTCAGCCTAATAGCC -ACGGAAGTAGTCAGCCTATAACCG -ACGGAAGTAGTCAGCCTAATGCCA -ACGGAAGTAGTCAGCACTGGAAAC -ACGGAAGTAGTCAGCACTAACACC -ACGGAAGTAGTCAGCACTATCGAG -ACGGAAGTAGTCAGCACTCTCCTT -ACGGAAGTAGTCAGCACTCCTGTT -ACGGAAGTAGTCAGCACTCGGTTT -ACGGAAGTAGTCAGCACTGTGGTT -ACGGAAGTAGTCAGCACTGCCTTT -ACGGAAGTAGTCAGCACTGGTCTT -ACGGAAGTAGTCAGCACTACGCTT -ACGGAAGTAGTCAGCACTAGCGTT -ACGGAAGTAGTCAGCACTTTCGTC -ACGGAAGTAGTCAGCACTTCTCTC -ACGGAAGTAGTCAGCACTTGGATC -ACGGAAGTAGTCAGCACTCACTTC -ACGGAAGTAGTCAGCACTGTACTC -ACGGAAGTAGTCAGCACTGATGTC -ACGGAAGTAGTCAGCACTACAGTC -ACGGAAGTAGTCAGCACTTTGCTG -ACGGAAGTAGTCAGCACTTCCATG -ACGGAAGTAGTCAGCACTTGTGTG -ACGGAAGTAGTCAGCACTCTAGTG -ACGGAAGTAGTCAGCACTCATCTG -ACGGAAGTAGTCAGCACTGAGTTG -ACGGAAGTAGTCAGCACTAGACTG -ACGGAAGTAGTCAGCACTTCGGTA -ACGGAAGTAGTCAGCACTTGCCTA -ACGGAAGTAGTCAGCACTCCACTA -ACGGAAGTAGTCAGCACTGGAGTA -ACGGAAGTAGTCAGCACTTCGTCT -ACGGAAGTAGTCAGCACTTGCACT -ACGGAAGTAGTCAGCACTCTGACT -ACGGAAGTAGTCAGCACTCAACCT -ACGGAAGTAGTCAGCACTGCTACT -ACGGAAGTAGTCAGCACTGGATCT -ACGGAAGTAGTCAGCACTAAGGCT -ACGGAAGTAGTCAGCACTTCAACC -ACGGAAGTAGTCAGCACTTGTTCC -ACGGAAGTAGTCAGCACTATTCCC -ACGGAAGTAGTCAGCACTTTCTCG -ACGGAAGTAGTCAGCACTTAGACG -ACGGAAGTAGTCAGCACTGTAACG -ACGGAAGTAGTCAGCACTACTTCG -ACGGAAGTAGTCAGCACTTACGCA -ACGGAAGTAGTCAGCACTCTTGCA -ACGGAAGTAGTCAGCACTCGAACA -ACGGAAGTAGTCAGCACTCAGTCA -ACGGAAGTAGTCAGCACTGATCCA -ACGGAAGTAGTCAGCACTACGACA -ACGGAAGTAGTCAGCACTAGCTCA -ACGGAAGTAGTCAGCACTTCACGT -ACGGAAGTAGTCAGCACTCGTAGT -ACGGAAGTAGTCAGCACTGTCAGT -ACGGAAGTAGTCAGCACTGAAGGT -ACGGAAGTAGTCAGCACTAACCGT -ACGGAAGTAGTCAGCACTTTGTGC -ACGGAAGTAGTCAGCACTCTAAGC -ACGGAAGTAGTCAGCACTACTAGC -ACGGAAGTAGTCAGCACTAGATGC -ACGGAAGTAGTCAGCACTTGAAGG -ACGGAAGTAGTCAGCACTCAATGG -ACGGAAGTAGTCAGCACTATGAGG -ACGGAAGTAGTCAGCACTAATGGG -ACGGAAGTAGTCAGCACTTCCTGA -ACGGAAGTAGTCAGCACTTAGCGA -ACGGAAGTAGTCAGCACTCACAGA -ACGGAAGTAGTCAGCACTGCAAGA -ACGGAAGTAGTCAGCACTGGTTGA -ACGGAAGTAGTCAGCACTTCCGAT -ACGGAAGTAGTCAGCACTTGGCAT -ACGGAAGTAGTCAGCACTCGAGAT -ACGGAAGTAGTCAGCACTTACCAC -ACGGAAGTAGTCAGCACTCAGAAC -ACGGAAGTAGTCAGCACTGTCTAC -ACGGAAGTAGTCAGCACTACGTAC -ACGGAAGTAGTCAGCACTAGTGAC -ACGGAAGTAGTCAGCACTCTGTAG -ACGGAAGTAGTCAGCACTCCTAAG -ACGGAAGTAGTCAGCACTGTTCAG -ACGGAAGTAGTCAGCACTGCATAG -ACGGAAGTAGTCAGCACTGACAAG -ACGGAAGTAGTCAGCACTAAGCAG -ACGGAAGTAGTCAGCACTCGTCAA -ACGGAAGTAGTCAGCACTGCTGAA -ACGGAAGTAGTCAGCACTAGTACG -ACGGAAGTAGTCAGCACTATCCGA -ACGGAAGTAGTCAGCACTATGGGA -ACGGAAGTAGTCAGCACTGTGCAA -ACGGAAGTAGTCAGCACTGAGGAA -ACGGAAGTAGTCAGCACTCAGGTA -ACGGAAGTAGTCAGCACTGACTCT -ACGGAAGTAGTCAGCACTAGTCCT -ACGGAAGTAGTCAGCACTTAAGCC -ACGGAAGTAGTCAGCACTATAGCC -ACGGAAGTAGTCAGCACTTAACCG -ACGGAAGTAGTCAGCACTATGCCA -ACGGAAGTAGTCTGCAGAGGAAAC -ACGGAAGTAGTCTGCAGAAACACC -ACGGAAGTAGTCTGCAGAATCGAG -ACGGAAGTAGTCTGCAGACTCCTT -ACGGAAGTAGTCTGCAGACCTGTT -ACGGAAGTAGTCTGCAGACGGTTT -ACGGAAGTAGTCTGCAGAGTGGTT -ACGGAAGTAGTCTGCAGAGCCTTT -ACGGAAGTAGTCTGCAGAGGTCTT -ACGGAAGTAGTCTGCAGAACGCTT -ACGGAAGTAGTCTGCAGAAGCGTT -ACGGAAGTAGTCTGCAGATTCGTC -ACGGAAGTAGTCTGCAGATCTCTC -ACGGAAGTAGTCTGCAGATGGATC -ACGGAAGTAGTCTGCAGACACTTC -ACGGAAGTAGTCTGCAGAGTACTC -ACGGAAGTAGTCTGCAGAGATGTC -ACGGAAGTAGTCTGCAGAACAGTC -ACGGAAGTAGTCTGCAGATTGCTG -ACGGAAGTAGTCTGCAGATCCATG -ACGGAAGTAGTCTGCAGATGTGTG -ACGGAAGTAGTCTGCAGACTAGTG -ACGGAAGTAGTCTGCAGACATCTG -ACGGAAGTAGTCTGCAGAGAGTTG -ACGGAAGTAGTCTGCAGAAGACTG -ACGGAAGTAGTCTGCAGATCGGTA -ACGGAAGTAGTCTGCAGATGCCTA -ACGGAAGTAGTCTGCAGACCACTA -ACGGAAGTAGTCTGCAGAGGAGTA -ACGGAAGTAGTCTGCAGATCGTCT -ACGGAAGTAGTCTGCAGATGCACT -ACGGAAGTAGTCTGCAGACTGACT -ACGGAAGTAGTCTGCAGACAACCT -ACGGAAGTAGTCTGCAGAGCTACT -ACGGAAGTAGTCTGCAGAGGATCT -ACGGAAGTAGTCTGCAGAAAGGCT -ACGGAAGTAGTCTGCAGATCAACC -ACGGAAGTAGTCTGCAGATGTTCC -ACGGAAGTAGTCTGCAGAATTCCC -ACGGAAGTAGTCTGCAGATTCTCG -ACGGAAGTAGTCTGCAGATAGACG -ACGGAAGTAGTCTGCAGAGTAACG -ACGGAAGTAGTCTGCAGAACTTCG -ACGGAAGTAGTCTGCAGATACGCA -ACGGAAGTAGTCTGCAGACTTGCA -ACGGAAGTAGTCTGCAGACGAACA -ACGGAAGTAGTCTGCAGACAGTCA -ACGGAAGTAGTCTGCAGAGATCCA -ACGGAAGTAGTCTGCAGAACGACA -ACGGAAGTAGTCTGCAGAAGCTCA -ACGGAAGTAGTCTGCAGATCACGT -ACGGAAGTAGTCTGCAGACGTAGT -ACGGAAGTAGTCTGCAGAGTCAGT -ACGGAAGTAGTCTGCAGAGAAGGT -ACGGAAGTAGTCTGCAGAAACCGT -ACGGAAGTAGTCTGCAGATTGTGC -ACGGAAGTAGTCTGCAGACTAAGC -ACGGAAGTAGTCTGCAGAACTAGC -ACGGAAGTAGTCTGCAGAAGATGC -ACGGAAGTAGTCTGCAGATGAAGG -ACGGAAGTAGTCTGCAGACAATGG -ACGGAAGTAGTCTGCAGAATGAGG -ACGGAAGTAGTCTGCAGAAATGGG -ACGGAAGTAGTCTGCAGATCCTGA -ACGGAAGTAGTCTGCAGATAGCGA -ACGGAAGTAGTCTGCAGACACAGA -ACGGAAGTAGTCTGCAGAGCAAGA -ACGGAAGTAGTCTGCAGAGGTTGA -ACGGAAGTAGTCTGCAGATCCGAT -ACGGAAGTAGTCTGCAGATGGCAT -ACGGAAGTAGTCTGCAGACGAGAT -ACGGAAGTAGTCTGCAGATACCAC -ACGGAAGTAGTCTGCAGACAGAAC -ACGGAAGTAGTCTGCAGAGTCTAC -ACGGAAGTAGTCTGCAGAACGTAC -ACGGAAGTAGTCTGCAGAAGTGAC -ACGGAAGTAGTCTGCAGACTGTAG -ACGGAAGTAGTCTGCAGACCTAAG -ACGGAAGTAGTCTGCAGAGTTCAG -ACGGAAGTAGTCTGCAGAGCATAG -ACGGAAGTAGTCTGCAGAGACAAG -ACGGAAGTAGTCTGCAGAAAGCAG -ACGGAAGTAGTCTGCAGACGTCAA -ACGGAAGTAGTCTGCAGAGCTGAA -ACGGAAGTAGTCTGCAGAAGTACG -ACGGAAGTAGTCTGCAGAATCCGA -ACGGAAGTAGTCTGCAGAATGGGA -ACGGAAGTAGTCTGCAGAGTGCAA -ACGGAAGTAGTCTGCAGAGAGGAA -ACGGAAGTAGTCTGCAGACAGGTA -ACGGAAGTAGTCTGCAGAGACTCT -ACGGAAGTAGTCTGCAGAAGTCCT -ACGGAAGTAGTCTGCAGATAAGCC -ACGGAAGTAGTCTGCAGAATAGCC -ACGGAAGTAGTCTGCAGATAACCG -ACGGAAGTAGTCTGCAGAATGCCA -ACGGAAGTAGTCAGGTGAGGAAAC -ACGGAAGTAGTCAGGTGAAACACC -ACGGAAGTAGTCAGGTGAATCGAG -ACGGAAGTAGTCAGGTGACTCCTT -ACGGAAGTAGTCAGGTGACCTGTT -ACGGAAGTAGTCAGGTGACGGTTT -ACGGAAGTAGTCAGGTGAGTGGTT -ACGGAAGTAGTCAGGTGAGCCTTT -ACGGAAGTAGTCAGGTGAGGTCTT -ACGGAAGTAGTCAGGTGAACGCTT -ACGGAAGTAGTCAGGTGAAGCGTT -ACGGAAGTAGTCAGGTGATTCGTC -ACGGAAGTAGTCAGGTGATCTCTC -ACGGAAGTAGTCAGGTGATGGATC -ACGGAAGTAGTCAGGTGACACTTC -ACGGAAGTAGTCAGGTGAGTACTC -ACGGAAGTAGTCAGGTGAGATGTC -ACGGAAGTAGTCAGGTGAACAGTC -ACGGAAGTAGTCAGGTGATTGCTG -ACGGAAGTAGTCAGGTGATCCATG -ACGGAAGTAGTCAGGTGATGTGTG -ACGGAAGTAGTCAGGTGACTAGTG -ACGGAAGTAGTCAGGTGACATCTG -ACGGAAGTAGTCAGGTGAGAGTTG -ACGGAAGTAGTCAGGTGAAGACTG -ACGGAAGTAGTCAGGTGATCGGTA -ACGGAAGTAGTCAGGTGATGCCTA -ACGGAAGTAGTCAGGTGACCACTA -ACGGAAGTAGTCAGGTGAGGAGTA -ACGGAAGTAGTCAGGTGATCGTCT -ACGGAAGTAGTCAGGTGATGCACT -ACGGAAGTAGTCAGGTGACTGACT -ACGGAAGTAGTCAGGTGACAACCT -ACGGAAGTAGTCAGGTGAGCTACT -ACGGAAGTAGTCAGGTGAGGATCT -ACGGAAGTAGTCAGGTGAAAGGCT -ACGGAAGTAGTCAGGTGATCAACC -ACGGAAGTAGTCAGGTGATGTTCC -ACGGAAGTAGTCAGGTGAATTCCC -ACGGAAGTAGTCAGGTGATTCTCG -ACGGAAGTAGTCAGGTGATAGACG -ACGGAAGTAGTCAGGTGAGTAACG -ACGGAAGTAGTCAGGTGAACTTCG -ACGGAAGTAGTCAGGTGATACGCA -ACGGAAGTAGTCAGGTGACTTGCA -ACGGAAGTAGTCAGGTGACGAACA -ACGGAAGTAGTCAGGTGACAGTCA -ACGGAAGTAGTCAGGTGAGATCCA -ACGGAAGTAGTCAGGTGAACGACA -ACGGAAGTAGTCAGGTGAAGCTCA -ACGGAAGTAGTCAGGTGATCACGT -ACGGAAGTAGTCAGGTGACGTAGT -ACGGAAGTAGTCAGGTGAGTCAGT -ACGGAAGTAGTCAGGTGAGAAGGT -ACGGAAGTAGTCAGGTGAAACCGT -ACGGAAGTAGTCAGGTGATTGTGC -ACGGAAGTAGTCAGGTGACTAAGC -ACGGAAGTAGTCAGGTGAACTAGC -ACGGAAGTAGTCAGGTGAAGATGC -ACGGAAGTAGTCAGGTGATGAAGG -ACGGAAGTAGTCAGGTGACAATGG -ACGGAAGTAGTCAGGTGAATGAGG -ACGGAAGTAGTCAGGTGAAATGGG -ACGGAAGTAGTCAGGTGATCCTGA -ACGGAAGTAGTCAGGTGATAGCGA -ACGGAAGTAGTCAGGTGACACAGA -ACGGAAGTAGTCAGGTGAGCAAGA -ACGGAAGTAGTCAGGTGAGGTTGA -ACGGAAGTAGTCAGGTGATCCGAT -ACGGAAGTAGTCAGGTGATGGCAT -ACGGAAGTAGTCAGGTGACGAGAT -ACGGAAGTAGTCAGGTGATACCAC -ACGGAAGTAGTCAGGTGACAGAAC -ACGGAAGTAGTCAGGTGAGTCTAC -ACGGAAGTAGTCAGGTGAACGTAC -ACGGAAGTAGTCAGGTGAAGTGAC -ACGGAAGTAGTCAGGTGACTGTAG -ACGGAAGTAGTCAGGTGACCTAAG -ACGGAAGTAGTCAGGTGAGTTCAG -ACGGAAGTAGTCAGGTGAGCATAG -ACGGAAGTAGTCAGGTGAGACAAG -ACGGAAGTAGTCAGGTGAAAGCAG -ACGGAAGTAGTCAGGTGACGTCAA -ACGGAAGTAGTCAGGTGAGCTGAA -ACGGAAGTAGTCAGGTGAAGTACG -ACGGAAGTAGTCAGGTGAATCCGA -ACGGAAGTAGTCAGGTGAATGGGA -ACGGAAGTAGTCAGGTGAGTGCAA -ACGGAAGTAGTCAGGTGAGAGGAA -ACGGAAGTAGTCAGGTGACAGGTA -ACGGAAGTAGTCAGGTGAGACTCT -ACGGAAGTAGTCAGGTGAAGTCCT -ACGGAAGTAGTCAGGTGATAAGCC -ACGGAAGTAGTCAGGTGAATAGCC -ACGGAAGTAGTCAGGTGATAACCG -ACGGAAGTAGTCAGGTGAATGCCA -ACGGAAGTAGTCTGGCAAGGAAAC -ACGGAAGTAGTCTGGCAAAACACC -ACGGAAGTAGTCTGGCAAATCGAG -ACGGAAGTAGTCTGGCAACTCCTT -ACGGAAGTAGTCTGGCAACCTGTT -ACGGAAGTAGTCTGGCAACGGTTT -ACGGAAGTAGTCTGGCAAGTGGTT -ACGGAAGTAGTCTGGCAAGCCTTT -ACGGAAGTAGTCTGGCAAGGTCTT -ACGGAAGTAGTCTGGCAAACGCTT -ACGGAAGTAGTCTGGCAAAGCGTT -ACGGAAGTAGTCTGGCAATTCGTC -ACGGAAGTAGTCTGGCAATCTCTC -ACGGAAGTAGTCTGGCAATGGATC -ACGGAAGTAGTCTGGCAACACTTC -ACGGAAGTAGTCTGGCAAGTACTC -ACGGAAGTAGTCTGGCAAGATGTC -ACGGAAGTAGTCTGGCAAACAGTC -ACGGAAGTAGTCTGGCAATTGCTG -ACGGAAGTAGTCTGGCAATCCATG -ACGGAAGTAGTCTGGCAATGTGTG -ACGGAAGTAGTCTGGCAACTAGTG -ACGGAAGTAGTCTGGCAACATCTG -ACGGAAGTAGTCTGGCAAGAGTTG -ACGGAAGTAGTCTGGCAAAGACTG -ACGGAAGTAGTCTGGCAATCGGTA -ACGGAAGTAGTCTGGCAATGCCTA -ACGGAAGTAGTCTGGCAACCACTA -ACGGAAGTAGTCTGGCAAGGAGTA -ACGGAAGTAGTCTGGCAATCGTCT -ACGGAAGTAGTCTGGCAATGCACT -ACGGAAGTAGTCTGGCAACTGACT -ACGGAAGTAGTCTGGCAACAACCT -ACGGAAGTAGTCTGGCAAGCTACT -ACGGAAGTAGTCTGGCAAGGATCT -ACGGAAGTAGTCTGGCAAAAGGCT -ACGGAAGTAGTCTGGCAATCAACC -ACGGAAGTAGTCTGGCAATGTTCC -ACGGAAGTAGTCTGGCAAATTCCC -ACGGAAGTAGTCTGGCAATTCTCG -ACGGAAGTAGTCTGGCAATAGACG -ACGGAAGTAGTCTGGCAAGTAACG -ACGGAAGTAGTCTGGCAAACTTCG -ACGGAAGTAGTCTGGCAATACGCA -ACGGAAGTAGTCTGGCAACTTGCA -ACGGAAGTAGTCTGGCAACGAACA -ACGGAAGTAGTCTGGCAACAGTCA -ACGGAAGTAGTCTGGCAAGATCCA -ACGGAAGTAGTCTGGCAAACGACA -ACGGAAGTAGTCTGGCAAAGCTCA -ACGGAAGTAGTCTGGCAATCACGT -ACGGAAGTAGTCTGGCAACGTAGT -ACGGAAGTAGTCTGGCAAGTCAGT -ACGGAAGTAGTCTGGCAAGAAGGT -ACGGAAGTAGTCTGGCAAAACCGT -ACGGAAGTAGTCTGGCAATTGTGC -ACGGAAGTAGTCTGGCAACTAAGC -ACGGAAGTAGTCTGGCAAACTAGC -ACGGAAGTAGTCTGGCAAAGATGC -ACGGAAGTAGTCTGGCAATGAAGG -ACGGAAGTAGTCTGGCAACAATGG -ACGGAAGTAGTCTGGCAAATGAGG -ACGGAAGTAGTCTGGCAAAATGGG -ACGGAAGTAGTCTGGCAATCCTGA -ACGGAAGTAGTCTGGCAATAGCGA -ACGGAAGTAGTCTGGCAACACAGA -ACGGAAGTAGTCTGGCAAGCAAGA -ACGGAAGTAGTCTGGCAAGGTTGA -ACGGAAGTAGTCTGGCAATCCGAT -ACGGAAGTAGTCTGGCAATGGCAT -ACGGAAGTAGTCTGGCAACGAGAT -ACGGAAGTAGTCTGGCAATACCAC -ACGGAAGTAGTCTGGCAACAGAAC -ACGGAAGTAGTCTGGCAAGTCTAC -ACGGAAGTAGTCTGGCAAACGTAC -ACGGAAGTAGTCTGGCAAAGTGAC -ACGGAAGTAGTCTGGCAACTGTAG -ACGGAAGTAGTCTGGCAACCTAAG -ACGGAAGTAGTCTGGCAAGTTCAG -ACGGAAGTAGTCTGGCAAGCATAG -ACGGAAGTAGTCTGGCAAGACAAG -ACGGAAGTAGTCTGGCAAAAGCAG -ACGGAAGTAGTCTGGCAACGTCAA -ACGGAAGTAGTCTGGCAAGCTGAA -ACGGAAGTAGTCTGGCAAAGTACG -ACGGAAGTAGTCTGGCAAATCCGA -ACGGAAGTAGTCTGGCAAATGGGA -ACGGAAGTAGTCTGGCAAGTGCAA -ACGGAAGTAGTCTGGCAAGAGGAA -ACGGAAGTAGTCTGGCAACAGGTA -ACGGAAGTAGTCTGGCAAGACTCT -ACGGAAGTAGTCTGGCAAAGTCCT -ACGGAAGTAGTCTGGCAATAAGCC -ACGGAAGTAGTCTGGCAAATAGCC -ACGGAAGTAGTCTGGCAATAACCG -ACGGAAGTAGTCTGGCAAATGCCA -ACGGAAGTAGTCAGGATGGGAAAC -ACGGAAGTAGTCAGGATGAACACC -ACGGAAGTAGTCAGGATGATCGAG -ACGGAAGTAGTCAGGATGCTCCTT -ACGGAAGTAGTCAGGATGCCTGTT -ACGGAAGTAGTCAGGATGCGGTTT -ACGGAAGTAGTCAGGATGGTGGTT -ACGGAAGTAGTCAGGATGGCCTTT -ACGGAAGTAGTCAGGATGGGTCTT -ACGGAAGTAGTCAGGATGACGCTT -ACGGAAGTAGTCAGGATGAGCGTT -ACGGAAGTAGTCAGGATGTTCGTC -ACGGAAGTAGTCAGGATGTCTCTC -ACGGAAGTAGTCAGGATGTGGATC -ACGGAAGTAGTCAGGATGCACTTC -ACGGAAGTAGTCAGGATGGTACTC -ACGGAAGTAGTCAGGATGGATGTC -ACGGAAGTAGTCAGGATGACAGTC -ACGGAAGTAGTCAGGATGTTGCTG -ACGGAAGTAGTCAGGATGTCCATG -ACGGAAGTAGTCAGGATGTGTGTG -ACGGAAGTAGTCAGGATGCTAGTG -ACGGAAGTAGTCAGGATGCATCTG -ACGGAAGTAGTCAGGATGGAGTTG -ACGGAAGTAGTCAGGATGAGACTG -ACGGAAGTAGTCAGGATGTCGGTA -ACGGAAGTAGTCAGGATGTGCCTA -ACGGAAGTAGTCAGGATGCCACTA -ACGGAAGTAGTCAGGATGGGAGTA -ACGGAAGTAGTCAGGATGTCGTCT -ACGGAAGTAGTCAGGATGTGCACT -ACGGAAGTAGTCAGGATGCTGACT -ACGGAAGTAGTCAGGATGCAACCT -ACGGAAGTAGTCAGGATGGCTACT -ACGGAAGTAGTCAGGATGGGATCT -ACGGAAGTAGTCAGGATGAAGGCT -ACGGAAGTAGTCAGGATGTCAACC -ACGGAAGTAGTCAGGATGTGTTCC -ACGGAAGTAGTCAGGATGATTCCC -ACGGAAGTAGTCAGGATGTTCTCG -ACGGAAGTAGTCAGGATGTAGACG -ACGGAAGTAGTCAGGATGGTAACG -ACGGAAGTAGTCAGGATGACTTCG -ACGGAAGTAGTCAGGATGTACGCA -ACGGAAGTAGTCAGGATGCTTGCA -ACGGAAGTAGTCAGGATGCGAACA -ACGGAAGTAGTCAGGATGCAGTCA -ACGGAAGTAGTCAGGATGGATCCA -ACGGAAGTAGTCAGGATGACGACA -ACGGAAGTAGTCAGGATGAGCTCA -ACGGAAGTAGTCAGGATGTCACGT -ACGGAAGTAGTCAGGATGCGTAGT -ACGGAAGTAGTCAGGATGGTCAGT -ACGGAAGTAGTCAGGATGGAAGGT -ACGGAAGTAGTCAGGATGAACCGT -ACGGAAGTAGTCAGGATGTTGTGC -ACGGAAGTAGTCAGGATGCTAAGC -ACGGAAGTAGTCAGGATGACTAGC -ACGGAAGTAGTCAGGATGAGATGC -ACGGAAGTAGTCAGGATGTGAAGG -ACGGAAGTAGTCAGGATGCAATGG -ACGGAAGTAGTCAGGATGATGAGG -ACGGAAGTAGTCAGGATGAATGGG -ACGGAAGTAGTCAGGATGTCCTGA -ACGGAAGTAGTCAGGATGTAGCGA -ACGGAAGTAGTCAGGATGCACAGA -ACGGAAGTAGTCAGGATGGCAAGA -ACGGAAGTAGTCAGGATGGGTTGA -ACGGAAGTAGTCAGGATGTCCGAT -ACGGAAGTAGTCAGGATGTGGCAT -ACGGAAGTAGTCAGGATGCGAGAT -ACGGAAGTAGTCAGGATGTACCAC -ACGGAAGTAGTCAGGATGCAGAAC -ACGGAAGTAGTCAGGATGGTCTAC -ACGGAAGTAGTCAGGATGACGTAC -ACGGAAGTAGTCAGGATGAGTGAC -ACGGAAGTAGTCAGGATGCTGTAG -ACGGAAGTAGTCAGGATGCCTAAG -ACGGAAGTAGTCAGGATGGTTCAG -ACGGAAGTAGTCAGGATGGCATAG -ACGGAAGTAGTCAGGATGGACAAG -ACGGAAGTAGTCAGGATGAAGCAG -ACGGAAGTAGTCAGGATGCGTCAA -ACGGAAGTAGTCAGGATGGCTGAA -ACGGAAGTAGTCAGGATGAGTACG -ACGGAAGTAGTCAGGATGATCCGA -ACGGAAGTAGTCAGGATGATGGGA -ACGGAAGTAGTCAGGATGGTGCAA -ACGGAAGTAGTCAGGATGGAGGAA -ACGGAAGTAGTCAGGATGCAGGTA -ACGGAAGTAGTCAGGATGGACTCT -ACGGAAGTAGTCAGGATGAGTCCT -ACGGAAGTAGTCAGGATGTAAGCC -ACGGAAGTAGTCAGGATGATAGCC -ACGGAAGTAGTCAGGATGTAACCG -ACGGAAGTAGTCAGGATGATGCCA -ACGGAAGTAGTCGGGAATGGAAAC -ACGGAAGTAGTCGGGAATAACACC -ACGGAAGTAGTCGGGAATATCGAG -ACGGAAGTAGTCGGGAATCTCCTT -ACGGAAGTAGTCGGGAATCCTGTT -ACGGAAGTAGTCGGGAATCGGTTT -ACGGAAGTAGTCGGGAATGTGGTT -ACGGAAGTAGTCGGGAATGCCTTT -ACGGAAGTAGTCGGGAATGGTCTT -ACGGAAGTAGTCGGGAATACGCTT -ACGGAAGTAGTCGGGAATAGCGTT -ACGGAAGTAGTCGGGAATTTCGTC -ACGGAAGTAGTCGGGAATTCTCTC -ACGGAAGTAGTCGGGAATTGGATC -ACGGAAGTAGTCGGGAATCACTTC -ACGGAAGTAGTCGGGAATGTACTC -ACGGAAGTAGTCGGGAATGATGTC -ACGGAAGTAGTCGGGAATACAGTC -ACGGAAGTAGTCGGGAATTTGCTG -ACGGAAGTAGTCGGGAATTCCATG -ACGGAAGTAGTCGGGAATTGTGTG -ACGGAAGTAGTCGGGAATCTAGTG -ACGGAAGTAGTCGGGAATCATCTG -ACGGAAGTAGTCGGGAATGAGTTG -ACGGAAGTAGTCGGGAATAGACTG -ACGGAAGTAGTCGGGAATTCGGTA -ACGGAAGTAGTCGGGAATTGCCTA -ACGGAAGTAGTCGGGAATCCACTA -ACGGAAGTAGTCGGGAATGGAGTA -ACGGAAGTAGTCGGGAATTCGTCT -ACGGAAGTAGTCGGGAATTGCACT -ACGGAAGTAGTCGGGAATCTGACT -ACGGAAGTAGTCGGGAATCAACCT -ACGGAAGTAGTCGGGAATGCTACT -ACGGAAGTAGTCGGGAATGGATCT -ACGGAAGTAGTCGGGAATAAGGCT -ACGGAAGTAGTCGGGAATTCAACC -ACGGAAGTAGTCGGGAATTGTTCC -ACGGAAGTAGTCGGGAATATTCCC -ACGGAAGTAGTCGGGAATTTCTCG -ACGGAAGTAGTCGGGAATTAGACG -ACGGAAGTAGTCGGGAATGTAACG -ACGGAAGTAGTCGGGAATACTTCG -ACGGAAGTAGTCGGGAATTACGCA -ACGGAAGTAGTCGGGAATCTTGCA -ACGGAAGTAGTCGGGAATCGAACA -ACGGAAGTAGTCGGGAATCAGTCA -ACGGAAGTAGTCGGGAATGATCCA -ACGGAAGTAGTCGGGAATACGACA -ACGGAAGTAGTCGGGAATAGCTCA -ACGGAAGTAGTCGGGAATTCACGT -ACGGAAGTAGTCGGGAATCGTAGT -ACGGAAGTAGTCGGGAATGTCAGT -ACGGAAGTAGTCGGGAATGAAGGT -ACGGAAGTAGTCGGGAATAACCGT -ACGGAAGTAGTCGGGAATTTGTGC -ACGGAAGTAGTCGGGAATCTAAGC -ACGGAAGTAGTCGGGAATACTAGC -ACGGAAGTAGTCGGGAATAGATGC -ACGGAAGTAGTCGGGAATTGAAGG -ACGGAAGTAGTCGGGAATCAATGG -ACGGAAGTAGTCGGGAATATGAGG -ACGGAAGTAGTCGGGAATAATGGG -ACGGAAGTAGTCGGGAATTCCTGA -ACGGAAGTAGTCGGGAATTAGCGA -ACGGAAGTAGTCGGGAATCACAGA -ACGGAAGTAGTCGGGAATGCAAGA -ACGGAAGTAGTCGGGAATGGTTGA -ACGGAAGTAGTCGGGAATTCCGAT -ACGGAAGTAGTCGGGAATTGGCAT -ACGGAAGTAGTCGGGAATCGAGAT -ACGGAAGTAGTCGGGAATTACCAC -ACGGAAGTAGTCGGGAATCAGAAC -ACGGAAGTAGTCGGGAATGTCTAC -ACGGAAGTAGTCGGGAATACGTAC -ACGGAAGTAGTCGGGAATAGTGAC -ACGGAAGTAGTCGGGAATCTGTAG -ACGGAAGTAGTCGGGAATCCTAAG -ACGGAAGTAGTCGGGAATGTTCAG -ACGGAAGTAGTCGGGAATGCATAG -ACGGAAGTAGTCGGGAATGACAAG -ACGGAAGTAGTCGGGAATAAGCAG -ACGGAAGTAGTCGGGAATCGTCAA -ACGGAAGTAGTCGGGAATGCTGAA -ACGGAAGTAGTCGGGAATAGTACG -ACGGAAGTAGTCGGGAATATCCGA -ACGGAAGTAGTCGGGAATATGGGA -ACGGAAGTAGTCGGGAATGTGCAA -ACGGAAGTAGTCGGGAATGAGGAA -ACGGAAGTAGTCGGGAATCAGGTA -ACGGAAGTAGTCGGGAATGACTCT -ACGGAAGTAGTCGGGAATAGTCCT -ACGGAAGTAGTCGGGAATTAAGCC -ACGGAAGTAGTCGGGAATATAGCC -ACGGAAGTAGTCGGGAATTAACCG -ACGGAAGTAGTCGGGAATATGCCA -ACGGAAGTAGTCTGATCCGGAAAC -ACGGAAGTAGTCTGATCCAACACC -ACGGAAGTAGTCTGATCCATCGAG -ACGGAAGTAGTCTGATCCCTCCTT -ACGGAAGTAGTCTGATCCCCTGTT -ACGGAAGTAGTCTGATCCCGGTTT -ACGGAAGTAGTCTGATCCGTGGTT -ACGGAAGTAGTCTGATCCGCCTTT -ACGGAAGTAGTCTGATCCGGTCTT -ACGGAAGTAGTCTGATCCACGCTT -ACGGAAGTAGTCTGATCCAGCGTT -ACGGAAGTAGTCTGATCCTTCGTC -ACGGAAGTAGTCTGATCCTCTCTC -ACGGAAGTAGTCTGATCCTGGATC -ACGGAAGTAGTCTGATCCCACTTC -ACGGAAGTAGTCTGATCCGTACTC -ACGGAAGTAGTCTGATCCGATGTC -ACGGAAGTAGTCTGATCCACAGTC -ACGGAAGTAGTCTGATCCTTGCTG -ACGGAAGTAGTCTGATCCTCCATG -ACGGAAGTAGTCTGATCCTGTGTG -ACGGAAGTAGTCTGATCCCTAGTG -ACGGAAGTAGTCTGATCCCATCTG -ACGGAAGTAGTCTGATCCGAGTTG -ACGGAAGTAGTCTGATCCAGACTG -ACGGAAGTAGTCTGATCCTCGGTA -ACGGAAGTAGTCTGATCCTGCCTA -ACGGAAGTAGTCTGATCCCCACTA -ACGGAAGTAGTCTGATCCGGAGTA -ACGGAAGTAGTCTGATCCTCGTCT -ACGGAAGTAGTCTGATCCTGCACT -ACGGAAGTAGTCTGATCCCTGACT -ACGGAAGTAGTCTGATCCCAACCT -ACGGAAGTAGTCTGATCCGCTACT -ACGGAAGTAGTCTGATCCGGATCT -ACGGAAGTAGTCTGATCCAAGGCT -ACGGAAGTAGTCTGATCCTCAACC -ACGGAAGTAGTCTGATCCTGTTCC -ACGGAAGTAGTCTGATCCATTCCC -ACGGAAGTAGTCTGATCCTTCTCG -ACGGAAGTAGTCTGATCCTAGACG -ACGGAAGTAGTCTGATCCGTAACG -ACGGAAGTAGTCTGATCCACTTCG -ACGGAAGTAGTCTGATCCTACGCA -ACGGAAGTAGTCTGATCCCTTGCA -ACGGAAGTAGTCTGATCCCGAACA -ACGGAAGTAGTCTGATCCCAGTCA -ACGGAAGTAGTCTGATCCGATCCA -ACGGAAGTAGTCTGATCCACGACA -ACGGAAGTAGTCTGATCCAGCTCA -ACGGAAGTAGTCTGATCCTCACGT -ACGGAAGTAGTCTGATCCCGTAGT -ACGGAAGTAGTCTGATCCGTCAGT -ACGGAAGTAGTCTGATCCGAAGGT -ACGGAAGTAGTCTGATCCAACCGT -ACGGAAGTAGTCTGATCCTTGTGC -ACGGAAGTAGTCTGATCCCTAAGC -ACGGAAGTAGTCTGATCCACTAGC -ACGGAAGTAGTCTGATCCAGATGC -ACGGAAGTAGTCTGATCCTGAAGG -ACGGAAGTAGTCTGATCCCAATGG -ACGGAAGTAGTCTGATCCATGAGG -ACGGAAGTAGTCTGATCCAATGGG -ACGGAAGTAGTCTGATCCTCCTGA -ACGGAAGTAGTCTGATCCTAGCGA -ACGGAAGTAGTCTGATCCCACAGA -ACGGAAGTAGTCTGATCCGCAAGA -ACGGAAGTAGTCTGATCCGGTTGA -ACGGAAGTAGTCTGATCCTCCGAT -ACGGAAGTAGTCTGATCCTGGCAT -ACGGAAGTAGTCTGATCCCGAGAT -ACGGAAGTAGTCTGATCCTACCAC -ACGGAAGTAGTCTGATCCCAGAAC -ACGGAAGTAGTCTGATCCGTCTAC -ACGGAAGTAGTCTGATCCACGTAC -ACGGAAGTAGTCTGATCCAGTGAC -ACGGAAGTAGTCTGATCCCTGTAG -ACGGAAGTAGTCTGATCCCCTAAG -ACGGAAGTAGTCTGATCCGTTCAG -ACGGAAGTAGTCTGATCCGCATAG -ACGGAAGTAGTCTGATCCGACAAG -ACGGAAGTAGTCTGATCCAAGCAG -ACGGAAGTAGTCTGATCCCGTCAA -ACGGAAGTAGTCTGATCCGCTGAA -ACGGAAGTAGTCTGATCCAGTACG -ACGGAAGTAGTCTGATCCATCCGA -ACGGAAGTAGTCTGATCCATGGGA -ACGGAAGTAGTCTGATCCGTGCAA -ACGGAAGTAGTCTGATCCGAGGAA -ACGGAAGTAGTCTGATCCCAGGTA -ACGGAAGTAGTCTGATCCGACTCT -ACGGAAGTAGTCTGATCCAGTCCT -ACGGAAGTAGTCTGATCCTAAGCC -ACGGAAGTAGTCTGATCCATAGCC -ACGGAAGTAGTCTGATCCTAACCG -ACGGAAGTAGTCTGATCCATGCCA -ACGGAAGTAGTCCGATAGGGAAAC -ACGGAAGTAGTCCGATAGAACACC -ACGGAAGTAGTCCGATAGATCGAG -ACGGAAGTAGTCCGATAGCTCCTT -ACGGAAGTAGTCCGATAGCCTGTT -ACGGAAGTAGTCCGATAGCGGTTT -ACGGAAGTAGTCCGATAGGTGGTT -ACGGAAGTAGTCCGATAGGCCTTT -ACGGAAGTAGTCCGATAGGGTCTT -ACGGAAGTAGTCCGATAGACGCTT -ACGGAAGTAGTCCGATAGAGCGTT -ACGGAAGTAGTCCGATAGTTCGTC -ACGGAAGTAGTCCGATAGTCTCTC -ACGGAAGTAGTCCGATAGTGGATC -ACGGAAGTAGTCCGATAGCACTTC -ACGGAAGTAGTCCGATAGGTACTC -ACGGAAGTAGTCCGATAGGATGTC -ACGGAAGTAGTCCGATAGACAGTC -ACGGAAGTAGTCCGATAGTTGCTG -ACGGAAGTAGTCCGATAGTCCATG -ACGGAAGTAGTCCGATAGTGTGTG -ACGGAAGTAGTCCGATAGCTAGTG -ACGGAAGTAGTCCGATAGCATCTG -ACGGAAGTAGTCCGATAGGAGTTG -ACGGAAGTAGTCCGATAGAGACTG -ACGGAAGTAGTCCGATAGTCGGTA -ACGGAAGTAGTCCGATAGTGCCTA -ACGGAAGTAGTCCGATAGCCACTA -ACGGAAGTAGTCCGATAGGGAGTA -ACGGAAGTAGTCCGATAGTCGTCT -ACGGAAGTAGTCCGATAGTGCACT -ACGGAAGTAGTCCGATAGCTGACT -ACGGAAGTAGTCCGATAGCAACCT -ACGGAAGTAGTCCGATAGGCTACT -ACGGAAGTAGTCCGATAGGGATCT -ACGGAAGTAGTCCGATAGAAGGCT -ACGGAAGTAGTCCGATAGTCAACC -ACGGAAGTAGTCCGATAGTGTTCC -ACGGAAGTAGTCCGATAGATTCCC -ACGGAAGTAGTCCGATAGTTCTCG -ACGGAAGTAGTCCGATAGTAGACG -ACGGAAGTAGTCCGATAGGTAACG -ACGGAAGTAGTCCGATAGACTTCG -ACGGAAGTAGTCCGATAGTACGCA -ACGGAAGTAGTCCGATAGCTTGCA -ACGGAAGTAGTCCGATAGCGAACA -ACGGAAGTAGTCCGATAGCAGTCA -ACGGAAGTAGTCCGATAGGATCCA -ACGGAAGTAGTCCGATAGACGACA -ACGGAAGTAGTCCGATAGAGCTCA -ACGGAAGTAGTCCGATAGTCACGT -ACGGAAGTAGTCCGATAGCGTAGT -ACGGAAGTAGTCCGATAGGTCAGT -ACGGAAGTAGTCCGATAGGAAGGT -ACGGAAGTAGTCCGATAGAACCGT -ACGGAAGTAGTCCGATAGTTGTGC -ACGGAAGTAGTCCGATAGCTAAGC -ACGGAAGTAGTCCGATAGACTAGC -ACGGAAGTAGTCCGATAGAGATGC -ACGGAAGTAGTCCGATAGTGAAGG -ACGGAAGTAGTCCGATAGCAATGG -ACGGAAGTAGTCCGATAGATGAGG -ACGGAAGTAGTCCGATAGAATGGG -ACGGAAGTAGTCCGATAGTCCTGA -ACGGAAGTAGTCCGATAGTAGCGA -ACGGAAGTAGTCCGATAGCACAGA -ACGGAAGTAGTCCGATAGGCAAGA -ACGGAAGTAGTCCGATAGGGTTGA -ACGGAAGTAGTCCGATAGTCCGAT -ACGGAAGTAGTCCGATAGTGGCAT -ACGGAAGTAGTCCGATAGCGAGAT -ACGGAAGTAGTCCGATAGTACCAC -ACGGAAGTAGTCCGATAGCAGAAC -ACGGAAGTAGTCCGATAGGTCTAC -ACGGAAGTAGTCCGATAGACGTAC -ACGGAAGTAGTCCGATAGAGTGAC -ACGGAAGTAGTCCGATAGCTGTAG -ACGGAAGTAGTCCGATAGCCTAAG -ACGGAAGTAGTCCGATAGGTTCAG -ACGGAAGTAGTCCGATAGGCATAG -ACGGAAGTAGTCCGATAGGACAAG -ACGGAAGTAGTCCGATAGAAGCAG -ACGGAAGTAGTCCGATAGCGTCAA -ACGGAAGTAGTCCGATAGGCTGAA -ACGGAAGTAGTCCGATAGAGTACG -ACGGAAGTAGTCCGATAGATCCGA -ACGGAAGTAGTCCGATAGATGGGA -ACGGAAGTAGTCCGATAGGTGCAA -ACGGAAGTAGTCCGATAGGAGGAA -ACGGAAGTAGTCCGATAGCAGGTA -ACGGAAGTAGTCCGATAGGACTCT -ACGGAAGTAGTCCGATAGAGTCCT -ACGGAAGTAGTCCGATAGTAAGCC -ACGGAAGTAGTCCGATAGATAGCC -ACGGAAGTAGTCCGATAGTAACCG -ACGGAAGTAGTCCGATAGATGCCA -ACGGAAGTAGTCAGACACGGAAAC -ACGGAAGTAGTCAGACACAACACC -ACGGAAGTAGTCAGACACATCGAG -ACGGAAGTAGTCAGACACCTCCTT -ACGGAAGTAGTCAGACACCCTGTT -ACGGAAGTAGTCAGACACCGGTTT -ACGGAAGTAGTCAGACACGTGGTT -ACGGAAGTAGTCAGACACGCCTTT -ACGGAAGTAGTCAGACACGGTCTT -ACGGAAGTAGTCAGACACACGCTT -ACGGAAGTAGTCAGACACAGCGTT -ACGGAAGTAGTCAGACACTTCGTC -ACGGAAGTAGTCAGACACTCTCTC -ACGGAAGTAGTCAGACACTGGATC -ACGGAAGTAGTCAGACACCACTTC -ACGGAAGTAGTCAGACACGTACTC -ACGGAAGTAGTCAGACACGATGTC -ACGGAAGTAGTCAGACACACAGTC -ACGGAAGTAGTCAGACACTTGCTG -ACGGAAGTAGTCAGACACTCCATG -ACGGAAGTAGTCAGACACTGTGTG -ACGGAAGTAGTCAGACACCTAGTG -ACGGAAGTAGTCAGACACCATCTG -ACGGAAGTAGTCAGACACGAGTTG -ACGGAAGTAGTCAGACACAGACTG -ACGGAAGTAGTCAGACACTCGGTA -ACGGAAGTAGTCAGACACTGCCTA -ACGGAAGTAGTCAGACACCCACTA -ACGGAAGTAGTCAGACACGGAGTA -ACGGAAGTAGTCAGACACTCGTCT -ACGGAAGTAGTCAGACACTGCACT -ACGGAAGTAGTCAGACACCTGACT -ACGGAAGTAGTCAGACACCAACCT -ACGGAAGTAGTCAGACACGCTACT -ACGGAAGTAGTCAGACACGGATCT -ACGGAAGTAGTCAGACACAAGGCT -ACGGAAGTAGTCAGACACTCAACC -ACGGAAGTAGTCAGACACTGTTCC -ACGGAAGTAGTCAGACACATTCCC -ACGGAAGTAGTCAGACACTTCTCG -ACGGAAGTAGTCAGACACTAGACG -ACGGAAGTAGTCAGACACGTAACG -ACGGAAGTAGTCAGACACACTTCG -ACGGAAGTAGTCAGACACTACGCA -ACGGAAGTAGTCAGACACCTTGCA -ACGGAAGTAGTCAGACACCGAACA -ACGGAAGTAGTCAGACACCAGTCA -ACGGAAGTAGTCAGACACGATCCA -ACGGAAGTAGTCAGACACACGACA -ACGGAAGTAGTCAGACACAGCTCA -ACGGAAGTAGTCAGACACTCACGT -ACGGAAGTAGTCAGACACCGTAGT -ACGGAAGTAGTCAGACACGTCAGT -ACGGAAGTAGTCAGACACGAAGGT -ACGGAAGTAGTCAGACACAACCGT -ACGGAAGTAGTCAGACACTTGTGC -ACGGAAGTAGTCAGACACCTAAGC -ACGGAAGTAGTCAGACACACTAGC -ACGGAAGTAGTCAGACACAGATGC -ACGGAAGTAGTCAGACACTGAAGG -ACGGAAGTAGTCAGACACCAATGG -ACGGAAGTAGTCAGACACATGAGG -ACGGAAGTAGTCAGACACAATGGG -ACGGAAGTAGTCAGACACTCCTGA -ACGGAAGTAGTCAGACACTAGCGA -ACGGAAGTAGTCAGACACCACAGA -ACGGAAGTAGTCAGACACGCAAGA -ACGGAAGTAGTCAGACACGGTTGA -ACGGAAGTAGTCAGACACTCCGAT -ACGGAAGTAGTCAGACACTGGCAT -ACGGAAGTAGTCAGACACCGAGAT -ACGGAAGTAGTCAGACACTACCAC -ACGGAAGTAGTCAGACACCAGAAC -ACGGAAGTAGTCAGACACGTCTAC -ACGGAAGTAGTCAGACACACGTAC -ACGGAAGTAGTCAGACACAGTGAC -ACGGAAGTAGTCAGACACCTGTAG -ACGGAAGTAGTCAGACACCCTAAG -ACGGAAGTAGTCAGACACGTTCAG -ACGGAAGTAGTCAGACACGCATAG -ACGGAAGTAGTCAGACACGACAAG -ACGGAAGTAGTCAGACACAAGCAG -ACGGAAGTAGTCAGACACCGTCAA -ACGGAAGTAGTCAGACACGCTGAA -ACGGAAGTAGTCAGACACAGTACG -ACGGAAGTAGTCAGACACATCCGA -ACGGAAGTAGTCAGACACATGGGA -ACGGAAGTAGTCAGACACGTGCAA -ACGGAAGTAGTCAGACACGAGGAA -ACGGAAGTAGTCAGACACCAGGTA -ACGGAAGTAGTCAGACACGACTCT -ACGGAAGTAGTCAGACACAGTCCT -ACGGAAGTAGTCAGACACTAAGCC -ACGGAAGTAGTCAGACACATAGCC -ACGGAAGTAGTCAGACACTAACCG -ACGGAAGTAGTCAGACACATGCCA -ACGGAAGTAGTCAGAGCAGGAAAC -ACGGAAGTAGTCAGAGCAAACACC -ACGGAAGTAGTCAGAGCAATCGAG -ACGGAAGTAGTCAGAGCACTCCTT -ACGGAAGTAGTCAGAGCACCTGTT -ACGGAAGTAGTCAGAGCACGGTTT -ACGGAAGTAGTCAGAGCAGTGGTT -ACGGAAGTAGTCAGAGCAGCCTTT -ACGGAAGTAGTCAGAGCAGGTCTT -ACGGAAGTAGTCAGAGCAACGCTT -ACGGAAGTAGTCAGAGCAAGCGTT -ACGGAAGTAGTCAGAGCATTCGTC -ACGGAAGTAGTCAGAGCATCTCTC -ACGGAAGTAGTCAGAGCATGGATC -ACGGAAGTAGTCAGAGCACACTTC -ACGGAAGTAGTCAGAGCAGTACTC -ACGGAAGTAGTCAGAGCAGATGTC -ACGGAAGTAGTCAGAGCAACAGTC -ACGGAAGTAGTCAGAGCATTGCTG -ACGGAAGTAGTCAGAGCATCCATG -ACGGAAGTAGTCAGAGCATGTGTG -ACGGAAGTAGTCAGAGCACTAGTG -ACGGAAGTAGTCAGAGCACATCTG -ACGGAAGTAGTCAGAGCAGAGTTG -ACGGAAGTAGTCAGAGCAAGACTG -ACGGAAGTAGTCAGAGCATCGGTA -ACGGAAGTAGTCAGAGCATGCCTA -ACGGAAGTAGTCAGAGCACCACTA -ACGGAAGTAGTCAGAGCAGGAGTA -ACGGAAGTAGTCAGAGCATCGTCT -ACGGAAGTAGTCAGAGCATGCACT -ACGGAAGTAGTCAGAGCACTGACT -ACGGAAGTAGTCAGAGCACAACCT -ACGGAAGTAGTCAGAGCAGCTACT -ACGGAAGTAGTCAGAGCAGGATCT -ACGGAAGTAGTCAGAGCAAAGGCT -ACGGAAGTAGTCAGAGCATCAACC -ACGGAAGTAGTCAGAGCATGTTCC -ACGGAAGTAGTCAGAGCAATTCCC -ACGGAAGTAGTCAGAGCATTCTCG -ACGGAAGTAGTCAGAGCATAGACG -ACGGAAGTAGTCAGAGCAGTAACG -ACGGAAGTAGTCAGAGCAACTTCG -ACGGAAGTAGTCAGAGCATACGCA -ACGGAAGTAGTCAGAGCACTTGCA -ACGGAAGTAGTCAGAGCACGAACA -ACGGAAGTAGTCAGAGCACAGTCA -ACGGAAGTAGTCAGAGCAGATCCA -ACGGAAGTAGTCAGAGCAACGACA -ACGGAAGTAGTCAGAGCAAGCTCA -ACGGAAGTAGTCAGAGCATCACGT -ACGGAAGTAGTCAGAGCACGTAGT -ACGGAAGTAGTCAGAGCAGTCAGT -ACGGAAGTAGTCAGAGCAGAAGGT -ACGGAAGTAGTCAGAGCAAACCGT -ACGGAAGTAGTCAGAGCATTGTGC -ACGGAAGTAGTCAGAGCACTAAGC -ACGGAAGTAGTCAGAGCAACTAGC -ACGGAAGTAGTCAGAGCAAGATGC -ACGGAAGTAGTCAGAGCATGAAGG -ACGGAAGTAGTCAGAGCACAATGG -ACGGAAGTAGTCAGAGCAATGAGG -ACGGAAGTAGTCAGAGCAAATGGG -ACGGAAGTAGTCAGAGCATCCTGA -ACGGAAGTAGTCAGAGCATAGCGA -ACGGAAGTAGTCAGAGCACACAGA -ACGGAAGTAGTCAGAGCAGCAAGA -ACGGAAGTAGTCAGAGCAGGTTGA -ACGGAAGTAGTCAGAGCATCCGAT -ACGGAAGTAGTCAGAGCATGGCAT -ACGGAAGTAGTCAGAGCACGAGAT -ACGGAAGTAGTCAGAGCATACCAC -ACGGAAGTAGTCAGAGCACAGAAC -ACGGAAGTAGTCAGAGCAGTCTAC -ACGGAAGTAGTCAGAGCAACGTAC -ACGGAAGTAGTCAGAGCAAGTGAC -ACGGAAGTAGTCAGAGCACTGTAG -ACGGAAGTAGTCAGAGCACCTAAG -ACGGAAGTAGTCAGAGCAGTTCAG -ACGGAAGTAGTCAGAGCAGCATAG -ACGGAAGTAGTCAGAGCAGACAAG -ACGGAAGTAGTCAGAGCAAAGCAG -ACGGAAGTAGTCAGAGCACGTCAA -ACGGAAGTAGTCAGAGCAGCTGAA -ACGGAAGTAGTCAGAGCAAGTACG -ACGGAAGTAGTCAGAGCAATCCGA -ACGGAAGTAGTCAGAGCAATGGGA -ACGGAAGTAGTCAGAGCAGTGCAA -ACGGAAGTAGTCAGAGCAGAGGAA -ACGGAAGTAGTCAGAGCACAGGTA -ACGGAAGTAGTCAGAGCAGACTCT -ACGGAAGTAGTCAGAGCAAGTCCT -ACGGAAGTAGTCAGAGCATAAGCC -ACGGAAGTAGTCAGAGCAATAGCC -ACGGAAGTAGTCAGAGCATAACCG -ACGGAAGTAGTCAGAGCAATGCCA -ACGGAAGTAGTCTGAGGTGGAAAC -ACGGAAGTAGTCTGAGGTAACACC -ACGGAAGTAGTCTGAGGTATCGAG -ACGGAAGTAGTCTGAGGTCTCCTT -ACGGAAGTAGTCTGAGGTCCTGTT -ACGGAAGTAGTCTGAGGTCGGTTT -ACGGAAGTAGTCTGAGGTGTGGTT -ACGGAAGTAGTCTGAGGTGCCTTT -ACGGAAGTAGTCTGAGGTGGTCTT -ACGGAAGTAGTCTGAGGTACGCTT -ACGGAAGTAGTCTGAGGTAGCGTT -ACGGAAGTAGTCTGAGGTTTCGTC -ACGGAAGTAGTCTGAGGTTCTCTC -ACGGAAGTAGTCTGAGGTTGGATC -ACGGAAGTAGTCTGAGGTCACTTC -ACGGAAGTAGTCTGAGGTGTACTC -ACGGAAGTAGTCTGAGGTGATGTC -ACGGAAGTAGTCTGAGGTACAGTC -ACGGAAGTAGTCTGAGGTTTGCTG -ACGGAAGTAGTCTGAGGTTCCATG -ACGGAAGTAGTCTGAGGTTGTGTG -ACGGAAGTAGTCTGAGGTCTAGTG -ACGGAAGTAGTCTGAGGTCATCTG -ACGGAAGTAGTCTGAGGTGAGTTG -ACGGAAGTAGTCTGAGGTAGACTG -ACGGAAGTAGTCTGAGGTTCGGTA -ACGGAAGTAGTCTGAGGTTGCCTA -ACGGAAGTAGTCTGAGGTCCACTA -ACGGAAGTAGTCTGAGGTGGAGTA -ACGGAAGTAGTCTGAGGTTCGTCT -ACGGAAGTAGTCTGAGGTTGCACT -ACGGAAGTAGTCTGAGGTCTGACT -ACGGAAGTAGTCTGAGGTCAACCT -ACGGAAGTAGTCTGAGGTGCTACT -ACGGAAGTAGTCTGAGGTGGATCT -ACGGAAGTAGTCTGAGGTAAGGCT -ACGGAAGTAGTCTGAGGTTCAACC -ACGGAAGTAGTCTGAGGTTGTTCC -ACGGAAGTAGTCTGAGGTATTCCC -ACGGAAGTAGTCTGAGGTTTCTCG -ACGGAAGTAGTCTGAGGTTAGACG -ACGGAAGTAGTCTGAGGTGTAACG -ACGGAAGTAGTCTGAGGTACTTCG -ACGGAAGTAGTCTGAGGTTACGCA -ACGGAAGTAGTCTGAGGTCTTGCA -ACGGAAGTAGTCTGAGGTCGAACA -ACGGAAGTAGTCTGAGGTCAGTCA -ACGGAAGTAGTCTGAGGTGATCCA -ACGGAAGTAGTCTGAGGTACGACA -ACGGAAGTAGTCTGAGGTAGCTCA -ACGGAAGTAGTCTGAGGTTCACGT -ACGGAAGTAGTCTGAGGTCGTAGT -ACGGAAGTAGTCTGAGGTGTCAGT -ACGGAAGTAGTCTGAGGTGAAGGT -ACGGAAGTAGTCTGAGGTAACCGT -ACGGAAGTAGTCTGAGGTTTGTGC -ACGGAAGTAGTCTGAGGTCTAAGC -ACGGAAGTAGTCTGAGGTACTAGC -ACGGAAGTAGTCTGAGGTAGATGC -ACGGAAGTAGTCTGAGGTTGAAGG -ACGGAAGTAGTCTGAGGTCAATGG -ACGGAAGTAGTCTGAGGTATGAGG -ACGGAAGTAGTCTGAGGTAATGGG -ACGGAAGTAGTCTGAGGTTCCTGA -ACGGAAGTAGTCTGAGGTTAGCGA -ACGGAAGTAGTCTGAGGTCACAGA -ACGGAAGTAGTCTGAGGTGCAAGA -ACGGAAGTAGTCTGAGGTGGTTGA -ACGGAAGTAGTCTGAGGTTCCGAT -ACGGAAGTAGTCTGAGGTTGGCAT -ACGGAAGTAGTCTGAGGTCGAGAT -ACGGAAGTAGTCTGAGGTTACCAC -ACGGAAGTAGTCTGAGGTCAGAAC -ACGGAAGTAGTCTGAGGTGTCTAC -ACGGAAGTAGTCTGAGGTACGTAC -ACGGAAGTAGTCTGAGGTAGTGAC -ACGGAAGTAGTCTGAGGTCTGTAG -ACGGAAGTAGTCTGAGGTCCTAAG -ACGGAAGTAGTCTGAGGTGTTCAG -ACGGAAGTAGTCTGAGGTGCATAG -ACGGAAGTAGTCTGAGGTGACAAG -ACGGAAGTAGTCTGAGGTAAGCAG -ACGGAAGTAGTCTGAGGTCGTCAA -ACGGAAGTAGTCTGAGGTGCTGAA -ACGGAAGTAGTCTGAGGTAGTACG -ACGGAAGTAGTCTGAGGTATCCGA -ACGGAAGTAGTCTGAGGTATGGGA -ACGGAAGTAGTCTGAGGTGTGCAA -ACGGAAGTAGTCTGAGGTGAGGAA -ACGGAAGTAGTCTGAGGTCAGGTA -ACGGAAGTAGTCTGAGGTGACTCT -ACGGAAGTAGTCTGAGGTAGTCCT -ACGGAAGTAGTCTGAGGTTAAGCC -ACGGAAGTAGTCTGAGGTATAGCC -ACGGAAGTAGTCTGAGGTTAACCG -ACGGAAGTAGTCTGAGGTATGCCA -ACGGAAGTAGTCGATTCCGGAAAC -ACGGAAGTAGTCGATTCCAACACC -ACGGAAGTAGTCGATTCCATCGAG -ACGGAAGTAGTCGATTCCCTCCTT -ACGGAAGTAGTCGATTCCCCTGTT -ACGGAAGTAGTCGATTCCCGGTTT -ACGGAAGTAGTCGATTCCGTGGTT -ACGGAAGTAGTCGATTCCGCCTTT -ACGGAAGTAGTCGATTCCGGTCTT -ACGGAAGTAGTCGATTCCACGCTT -ACGGAAGTAGTCGATTCCAGCGTT -ACGGAAGTAGTCGATTCCTTCGTC -ACGGAAGTAGTCGATTCCTCTCTC -ACGGAAGTAGTCGATTCCTGGATC -ACGGAAGTAGTCGATTCCCACTTC -ACGGAAGTAGTCGATTCCGTACTC -ACGGAAGTAGTCGATTCCGATGTC -ACGGAAGTAGTCGATTCCACAGTC -ACGGAAGTAGTCGATTCCTTGCTG -ACGGAAGTAGTCGATTCCTCCATG -ACGGAAGTAGTCGATTCCTGTGTG -ACGGAAGTAGTCGATTCCCTAGTG -ACGGAAGTAGTCGATTCCCATCTG -ACGGAAGTAGTCGATTCCGAGTTG -ACGGAAGTAGTCGATTCCAGACTG -ACGGAAGTAGTCGATTCCTCGGTA -ACGGAAGTAGTCGATTCCTGCCTA -ACGGAAGTAGTCGATTCCCCACTA -ACGGAAGTAGTCGATTCCGGAGTA -ACGGAAGTAGTCGATTCCTCGTCT -ACGGAAGTAGTCGATTCCTGCACT -ACGGAAGTAGTCGATTCCCTGACT -ACGGAAGTAGTCGATTCCCAACCT -ACGGAAGTAGTCGATTCCGCTACT -ACGGAAGTAGTCGATTCCGGATCT -ACGGAAGTAGTCGATTCCAAGGCT -ACGGAAGTAGTCGATTCCTCAACC -ACGGAAGTAGTCGATTCCTGTTCC -ACGGAAGTAGTCGATTCCATTCCC -ACGGAAGTAGTCGATTCCTTCTCG -ACGGAAGTAGTCGATTCCTAGACG -ACGGAAGTAGTCGATTCCGTAACG -ACGGAAGTAGTCGATTCCACTTCG -ACGGAAGTAGTCGATTCCTACGCA -ACGGAAGTAGTCGATTCCCTTGCA -ACGGAAGTAGTCGATTCCCGAACA -ACGGAAGTAGTCGATTCCCAGTCA -ACGGAAGTAGTCGATTCCGATCCA -ACGGAAGTAGTCGATTCCACGACA -ACGGAAGTAGTCGATTCCAGCTCA -ACGGAAGTAGTCGATTCCTCACGT -ACGGAAGTAGTCGATTCCCGTAGT -ACGGAAGTAGTCGATTCCGTCAGT -ACGGAAGTAGTCGATTCCGAAGGT -ACGGAAGTAGTCGATTCCAACCGT -ACGGAAGTAGTCGATTCCTTGTGC -ACGGAAGTAGTCGATTCCCTAAGC -ACGGAAGTAGTCGATTCCACTAGC -ACGGAAGTAGTCGATTCCAGATGC -ACGGAAGTAGTCGATTCCTGAAGG -ACGGAAGTAGTCGATTCCCAATGG -ACGGAAGTAGTCGATTCCATGAGG -ACGGAAGTAGTCGATTCCAATGGG -ACGGAAGTAGTCGATTCCTCCTGA -ACGGAAGTAGTCGATTCCTAGCGA -ACGGAAGTAGTCGATTCCCACAGA -ACGGAAGTAGTCGATTCCGCAAGA -ACGGAAGTAGTCGATTCCGGTTGA -ACGGAAGTAGTCGATTCCTCCGAT -ACGGAAGTAGTCGATTCCTGGCAT -ACGGAAGTAGTCGATTCCCGAGAT -ACGGAAGTAGTCGATTCCTACCAC -ACGGAAGTAGTCGATTCCCAGAAC -ACGGAAGTAGTCGATTCCGTCTAC -ACGGAAGTAGTCGATTCCACGTAC -ACGGAAGTAGTCGATTCCAGTGAC -ACGGAAGTAGTCGATTCCCTGTAG -ACGGAAGTAGTCGATTCCCCTAAG -ACGGAAGTAGTCGATTCCGTTCAG -ACGGAAGTAGTCGATTCCGCATAG -ACGGAAGTAGTCGATTCCGACAAG -ACGGAAGTAGTCGATTCCAAGCAG -ACGGAAGTAGTCGATTCCCGTCAA -ACGGAAGTAGTCGATTCCGCTGAA -ACGGAAGTAGTCGATTCCAGTACG -ACGGAAGTAGTCGATTCCATCCGA -ACGGAAGTAGTCGATTCCATGGGA -ACGGAAGTAGTCGATTCCGTGCAA -ACGGAAGTAGTCGATTCCGAGGAA -ACGGAAGTAGTCGATTCCCAGGTA -ACGGAAGTAGTCGATTCCGACTCT -ACGGAAGTAGTCGATTCCAGTCCT -ACGGAAGTAGTCGATTCCTAAGCC -ACGGAAGTAGTCGATTCCATAGCC -ACGGAAGTAGTCGATTCCTAACCG -ACGGAAGTAGTCGATTCCATGCCA -ACGGAAGTAGTCCATTGGGGAAAC -ACGGAAGTAGTCCATTGGAACACC -ACGGAAGTAGTCCATTGGATCGAG -ACGGAAGTAGTCCATTGGCTCCTT -ACGGAAGTAGTCCATTGGCCTGTT -ACGGAAGTAGTCCATTGGCGGTTT -ACGGAAGTAGTCCATTGGGTGGTT -ACGGAAGTAGTCCATTGGGCCTTT -ACGGAAGTAGTCCATTGGGGTCTT -ACGGAAGTAGTCCATTGGACGCTT -ACGGAAGTAGTCCATTGGAGCGTT -ACGGAAGTAGTCCATTGGTTCGTC -ACGGAAGTAGTCCATTGGTCTCTC -ACGGAAGTAGTCCATTGGTGGATC -ACGGAAGTAGTCCATTGGCACTTC -ACGGAAGTAGTCCATTGGGTACTC -ACGGAAGTAGTCCATTGGGATGTC -ACGGAAGTAGTCCATTGGACAGTC -ACGGAAGTAGTCCATTGGTTGCTG -ACGGAAGTAGTCCATTGGTCCATG -ACGGAAGTAGTCCATTGGTGTGTG -ACGGAAGTAGTCCATTGGCTAGTG -ACGGAAGTAGTCCATTGGCATCTG -ACGGAAGTAGTCCATTGGGAGTTG -ACGGAAGTAGTCCATTGGAGACTG -ACGGAAGTAGTCCATTGGTCGGTA -ACGGAAGTAGTCCATTGGTGCCTA -ACGGAAGTAGTCCATTGGCCACTA -ACGGAAGTAGTCCATTGGGGAGTA -ACGGAAGTAGTCCATTGGTCGTCT -ACGGAAGTAGTCCATTGGTGCACT -ACGGAAGTAGTCCATTGGCTGACT -ACGGAAGTAGTCCATTGGCAACCT -ACGGAAGTAGTCCATTGGGCTACT -ACGGAAGTAGTCCATTGGGGATCT -ACGGAAGTAGTCCATTGGAAGGCT -ACGGAAGTAGTCCATTGGTCAACC -ACGGAAGTAGTCCATTGGTGTTCC -ACGGAAGTAGTCCATTGGATTCCC -ACGGAAGTAGTCCATTGGTTCTCG -ACGGAAGTAGTCCATTGGTAGACG -ACGGAAGTAGTCCATTGGGTAACG -ACGGAAGTAGTCCATTGGACTTCG -ACGGAAGTAGTCCATTGGTACGCA -ACGGAAGTAGTCCATTGGCTTGCA -ACGGAAGTAGTCCATTGGCGAACA -ACGGAAGTAGTCCATTGGCAGTCA -ACGGAAGTAGTCCATTGGGATCCA -ACGGAAGTAGTCCATTGGACGACA -ACGGAAGTAGTCCATTGGAGCTCA -ACGGAAGTAGTCCATTGGTCACGT -ACGGAAGTAGTCCATTGGCGTAGT -ACGGAAGTAGTCCATTGGGTCAGT -ACGGAAGTAGTCCATTGGGAAGGT -ACGGAAGTAGTCCATTGGAACCGT -ACGGAAGTAGTCCATTGGTTGTGC -ACGGAAGTAGTCCATTGGCTAAGC -ACGGAAGTAGTCCATTGGACTAGC -ACGGAAGTAGTCCATTGGAGATGC -ACGGAAGTAGTCCATTGGTGAAGG -ACGGAAGTAGTCCATTGGCAATGG -ACGGAAGTAGTCCATTGGATGAGG -ACGGAAGTAGTCCATTGGAATGGG -ACGGAAGTAGTCCATTGGTCCTGA -ACGGAAGTAGTCCATTGGTAGCGA -ACGGAAGTAGTCCATTGGCACAGA -ACGGAAGTAGTCCATTGGGCAAGA -ACGGAAGTAGTCCATTGGGGTTGA -ACGGAAGTAGTCCATTGGTCCGAT -ACGGAAGTAGTCCATTGGTGGCAT -ACGGAAGTAGTCCATTGGCGAGAT -ACGGAAGTAGTCCATTGGTACCAC -ACGGAAGTAGTCCATTGGCAGAAC -ACGGAAGTAGTCCATTGGGTCTAC -ACGGAAGTAGTCCATTGGACGTAC -ACGGAAGTAGTCCATTGGAGTGAC -ACGGAAGTAGTCCATTGGCTGTAG -ACGGAAGTAGTCCATTGGCCTAAG -ACGGAAGTAGTCCATTGGGTTCAG -ACGGAAGTAGTCCATTGGGCATAG -ACGGAAGTAGTCCATTGGGACAAG -ACGGAAGTAGTCCATTGGAAGCAG -ACGGAAGTAGTCCATTGGCGTCAA -ACGGAAGTAGTCCATTGGGCTGAA -ACGGAAGTAGTCCATTGGAGTACG -ACGGAAGTAGTCCATTGGATCCGA -ACGGAAGTAGTCCATTGGATGGGA -ACGGAAGTAGTCCATTGGGTGCAA -ACGGAAGTAGTCCATTGGGAGGAA -ACGGAAGTAGTCCATTGGCAGGTA -ACGGAAGTAGTCCATTGGGACTCT -ACGGAAGTAGTCCATTGGAGTCCT -ACGGAAGTAGTCCATTGGTAAGCC -ACGGAAGTAGTCCATTGGATAGCC -ACGGAAGTAGTCCATTGGTAACCG -ACGGAAGTAGTCCATTGGATGCCA -ACGGAAGTAGTCGATCGAGGAAAC -ACGGAAGTAGTCGATCGAAACACC -ACGGAAGTAGTCGATCGAATCGAG -ACGGAAGTAGTCGATCGACTCCTT -ACGGAAGTAGTCGATCGACCTGTT -ACGGAAGTAGTCGATCGACGGTTT -ACGGAAGTAGTCGATCGAGTGGTT -ACGGAAGTAGTCGATCGAGCCTTT -ACGGAAGTAGTCGATCGAGGTCTT -ACGGAAGTAGTCGATCGAACGCTT -ACGGAAGTAGTCGATCGAAGCGTT -ACGGAAGTAGTCGATCGATTCGTC -ACGGAAGTAGTCGATCGATCTCTC -ACGGAAGTAGTCGATCGATGGATC -ACGGAAGTAGTCGATCGACACTTC -ACGGAAGTAGTCGATCGAGTACTC -ACGGAAGTAGTCGATCGAGATGTC -ACGGAAGTAGTCGATCGAACAGTC -ACGGAAGTAGTCGATCGATTGCTG -ACGGAAGTAGTCGATCGATCCATG -ACGGAAGTAGTCGATCGATGTGTG -ACGGAAGTAGTCGATCGACTAGTG -ACGGAAGTAGTCGATCGACATCTG -ACGGAAGTAGTCGATCGAGAGTTG -ACGGAAGTAGTCGATCGAAGACTG -ACGGAAGTAGTCGATCGATCGGTA -ACGGAAGTAGTCGATCGATGCCTA -ACGGAAGTAGTCGATCGACCACTA -ACGGAAGTAGTCGATCGAGGAGTA -ACGGAAGTAGTCGATCGATCGTCT -ACGGAAGTAGTCGATCGATGCACT -ACGGAAGTAGTCGATCGACTGACT -ACGGAAGTAGTCGATCGACAACCT -ACGGAAGTAGTCGATCGAGCTACT -ACGGAAGTAGTCGATCGAGGATCT -ACGGAAGTAGTCGATCGAAAGGCT -ACGGAAGTAGTCGATCGATCAACC -ACGGAAGTAGTCGATCGATGTTCC -ACGGAAGTAGTCGATCGAATTCCC -ACGGAAGTAGTCGATCGATTCTCG -ACGGAAGTAGTCGATCGATAGACG -ACGGAAGTAGTCGATCGAGTAACG -ACGGAAGTAGTCGATCGAACTTCG -ACGGAAGTAGTCGATCGATACGCA -ACGGAAGTAGTCGATCGACTTGCA -ACGGAAGTAGTCGATCGACGAACA -ACGGAAGTAGTCGATCGACAGTCA -ACGGAAGTAGTCGATCGAGATCCA -ACGGAAGTAGTCGATCGAACGACA -ACGGAAGTAGTCGATCGAAGCTCA -ACGGAAGTAGTCGATCGATCACGT -ACGGAAGTAGTCGATCGACGTAGT -ACGGAAGTAGTCGATCGAGTCAGT -ACGGAAGTAGTCGATCGAGAAGGT -ACGGAAGTAGTCGATCGAAACCGT -ACGGAAGTAGTCGATCGATTGTGC -ACGGAAGTAGTCGATCGACTAAGC -ACGGAAGTAGTCGATCGAACTAGC -ACGGAAGTAGTCGATCGAAGATGC -ACGGAAGTAGTCGATCGATGAAGG -ACGGAAGTAGTCGATCGACAATGG -ACGGAAGTAGTCGATCGAATGAGG -ACGGAAGTAGTCGATCGAAATGGG -ACGGAAGTAGTCGATCGATCCTGA -ACGGAAGTAGTCGATCGATAGCGA -ACGGAAGTAGTCGATCGACACAGA -ACGGAAGTAGTCGATCGAGCAAGA -ACGGAAGTAGTCGATCGAGGTTGA -ACGGAAGTAGTCGATCGATCCGAT -ACGGAAGTAGTCGATCGATGGCAT -ACGGAAGTAGTCGATCGACGAGAT -ACGGAAGTAGTCGATCGATACCAC -ACGGAAGTAGTCGATCGACAGAAC -ACGGAAGTAGTCGATCGAGTCTAC -ACGGAAGTAGTCGATCGAACGTAC -ACGGAAGTAGTCGATCGAAGTGAC -ACGGAAGTAGTCGATCGACTGTAG -ACGGAAGTAGTCGATCGACCTAAG -ACGGAAGTAGTCGATCGAGTTCAG -ACGGAAGTAGTCGATCGAGCATAG -ACGGAAGTAGTCGATCGAGACAAG -ACGGAAGTAGTCGATCGAAAGCAG -ACGGAAGTAGTCGATCGACGTCAA -ACGGAAGTAGTCGATCGAGCTGAA -ACGGAAGTAGTCGATCGAAGTACG -ACGGAAGTAGTCGATCGAATCCGA -ACGGAAGTAGTCGATCGAATGGGA -ACGGAAGTAGTCGATCGAGTGCAA -ACGGAAGTAGTCGATCGAGAGGAA -ACGGAAGTAGTCGATCGACAGGTA -ACGGAAGTAGTCGATCGAGACTCT -ACGGAAGTAGTCGATCGAAGTCCT -ACGGAAGTAGTCGATCGATAAGCC -ACGGAAGTAGTCGATCGAATAGCC -ACGGAAGTAGTCGATCGATAACCG -ACGGAAGTAGTCGATCGAATGCCA -ACGGAAGTAGTCCACTACGGAAAC -ACGGAAGTAGTCCACTACAACACC -ACGGAAGTAGTCCACTACATCGAG -ACGGAAGTAGTCCACTACCTCCTT -ACGGAAGTAGTCCACTACCCTGTT -ACGGAAGTAGTCCACTACCGGTTT -ACGGAAGTAGTCCACTACGTGGTT -ACGGAAGTAGTCCACTACGCCTTT -ACGGAAGTAGTCCACTACGGTCTT -ACGGAAGTAGTCCACTACACGCTT -ACGGAAGTAGTCCACTACAGCGTT -ACGGAAGTAGTCCACTACTTCGTC -ACGGAAGTAGTCCACTACTCTCTC -ACGGAAGTAGTCCACTACTGGATC -ACGGAAGTAGTCCACTACCACTTC -ACGGAAGTAGTCCACTACGTACTC -ACGGAAGTAGTCCACTACGATGTC -ACGGAAGTAGTCCACTACACAGTC -ACGGAAGTAGTCCACTACTTGCTG -ACGGAAGTAGTCCACTACTCCATG -ACGGAAGTAGTCCACTACTGTGTG -ACGGAAGTAGTCCACTACCTAGTG -ACGGAAGTAGTCCACTACCATCTG -ACGGAAGTAGTCCACTACGAGTTG -ACGGAAGTAGTCCACTACAGACTG -ACGGAAGTAGTCCACTACTCGGTA -ACGGAAGTAGTCCACTACTGCCTA -ACGGAAGTAGTCCACTACCCACTA -ACGGAAGTAGTCCACTACGGAGTA -ACGGAAGTAGTCCACTACTCGTCT -ACGGAAGTAGTCCACTACTGCACT -ACGGAAGTAGTCCACTACCTGACT -ACGGAAGTAGTCCACTACCAACCT -ACGGAAGTAGTCCACTACGCTACT -ACGGAAGTAGTCCACTACGGATCT -ACGGAAGTAGTCCACTACAAGGCT -ACGGAAGTAGTCCACTACTCAACC -ACGGAAGTAGTCCACTACTGTTCC -ACGGAAGTAGTCCACTACATTCCC -ACGGAAGTAGTCCACTACTTCTCG -ACGGAAGTAGTCCACTACTAGACG -ACGGAAGTAGTCCACTACGTAACG -ACGGAAGTAGTCCACTACACTTCG -ACGGAAGTAGTCCACTACTACGCA -ACGGAAGTAGTCCACTACCTTGCA -ACGGAAGTAGTCCACTACCGAACA -ACGGAAGTAGTCCACTACCAGTCA -ACGGAAGTAGTCCACTACGATCCA -ACGGAAGTAGTCCACTACACGACA -ACGGAAGTAGTCCACTACAGCTCA -ACGGAAGTAGTCCACTACTCACGT -ACGGAAGTAGTCCACTACCGTAGT -ACGGAAGTAGTCCACTACGTCAGT -ACGGAAGTAGTCCACTACGAAGGT -ACGGAAGTAGTCCACTACAACCGT -ACGGAAGTAGTCCACTACTTGTGC -ACGGAAGTAGTCCACTACCTAAGC -ACGGAAGTAGTCCACTACACTAGC -ACGGAAGTAGTCCACTACAGATGC -ACGGAAGTAGTCCACTACTGAAGG -ACGGAAGTAGTCCACTACCAATGG -ACGGAAGTAGTCCACTACATGAGG -ACGGAAGTAGTCCACTACAATGGG -ACGGAAGTAGTCCACTACTCCTGA -ACGGAAGTAGTCCACTACTAGCGA -ACGGAAGTAGTCCACTACCACAGA -ACGGAAGTAGTCCACTACGCAAGA -ACGGAAGTAGTCCACTACGGTTGA -ACGGAAGTAGTCCACTACTCCGAT -ACGGAAGTAGTCCACTACTGGCAT -ACGGAAGTAGTCCACTACCGAGAT -ACGGAAGTAGTCCACTACTACCAC -ACGGAAGTAGTCCACTACCAGAAC -ACGGAAGTAGTCCACTACGTCTAC -ACGGAAGTAGTCCACTACACGTAC -ACGGAAGTAGTCCACTACAGTGAC -ACGGAAGTAGTCCACTACCTGTAG -ACGGAAGTAGTCCACTACCCTAAG -ACGGAAGTAGTCCACTACGTTCAG -ACGGAAGTAGTCCACTACGCATAG -ACGGAAGTAGTCCACTACGACAAG -ACGGAAGTAGTCCACTACAAGCAG -ACGGAAGTAGTCCACTACCGTCAA -ACGGAAGTAGTCCACTACGCTGAA -ACGGAAGTAGTCCACTACAGTACG -ACGGAAGTAGTCCACTACATCCGA -ACGGAAGTAGTCCACTACATGGGA -ACGGAAGTAGTCCACTACGTGCAA -ACGGAAGTAGTCCACTACGAGGAA -ACGGAAGTAGTCCACTACCAGGTA -ACGGAAGTAGTCCACTACGACTCT -ACGGAAGTAGTCCACTACAGTCCT -ACGGAAGTAGTCCACTACTAAGCC -ACGGAAGTAGTCCACTACATAGCC -ACGGAAGTAGTCCACTACTAACCG -ACGGAAGTAGTCCACTACATGCCA -ACGGAAGTAGTCAACCAGGGAAAC -ACGGAAGTAGTCAACCAGAACACC -ACGGAAGTAGTCAACCAGATCGAG -ACGGAAGTAGTCAACCAGCTCCTT -ACGGAAGTAGTCAACCAGCCTGTT -ACGGAAGTAGTCAACCAGCGGTTT -ACGGAAGTAGTCAACCAGGTGGTT -ACGGAAGTAGTCAACCAGGCCTTT -ACGGAAGTAGTCAACCAGGGTCTT -ACGGAAGTAGTCAACCAGACGCTT -ACGGAAGTAGTCAACCAGAGCGTT -ACGGAAGTAGTCAACCAGTTCGTC -ACGGAAGTAGTCAACCAGTCTCTC -ACGGAAGTAGTCAACCAGTGGATC -ACGGAAGTAGTCAACCAGCACTTC -ACGGAAGTAGTCAACCAGGTACTC -ACGGAAGTAGTCAACCAGGATGTC -ACGGAAGTAGTCAACCAGACAGTC -ACGGAAGTAGTCAACCAGTTGCTG -ACGGAAGTAGTCAACCAGTCCATG -ACGGAAGTAGTCAACCAGTGTGTG -ACGGAAGTAGTCAACCAGCTAGTG -ACGGAAGTAGTCAACCAGCATCTG -ACGGAAGTAGTCAACCAGGAGTTG -ACGGAAGTAGTCAACCAGAGACTG -ACGGAAGTAGTCAACCAGTCGGTA -ACGGAAGTAGTCAACCAGTGCCTA -ACGGAAGTAGTCAACCAGCCACTA -ACGGAAGTAGTCAACCAGGGAGTA -ACGGAAGTAGTCAACCAGTCGTCT -ACGGAAGTAGTCAACCAGTGCACT -ACGGAAGTAGTCAACCAGCTGACT -ACGGAAGTAGTCAACCAGCAACCT -ACGGAAGTAGTCAACCAGGCTACT -ACGGAAGTAGTCAACCAGGGATCT -ACGGAAGTAGTCAACCAGAAGGCT -ACGGAAGTAGTCAACCAGTCAACC -ACGGAAGTAGTCAACCAGTGTTCC -ACGGAAGTAGTCAACCAGATTCCC -ACGGAAGTAGTCAACCAGTTCTCG -ACGGAAGTAGTCAACCAGTAGACG -ACGGAAGTAGTCAACCAGGTAACG -ACGGAAGTAGTCAACCAGACTTCG -ACGGAAGTAGTCAACCAGTACGCA -ACGGAAGTAGTCAACCAGCTTGCA -ACGGAAGTAGTCAACCAGCGAACA -ACGGAAGTAGTCAACCAGCAGTCA -ACGGAAGTAGTCAACCAGGATCCA -ACGGAAGTAGTCAACCAGACGACA -ACGGAAGTAGTCAACCAGAGCTCA -ACGGAAGTAGTCAACCAGTCACGT -ACGGAAGTAGTCAACCAGCGTAGT -ACGGAAGTAGTCAACCAGGTCAGT -ACGGAAGTAGTCAACCAGGAAGGT -ACGGAAGTAGTCAACCAGAACCGT -ACGGAAGTAGTCAACCAGTTGTGC -ACGGAAGTAGTCAACCAGCTAAGC -ACGGAAGTAGTCAACCAGACTAGC -ACGGAAGTAGTCAACCAGAGATGC -ACGGAAGTAGTCAACCAGTGAAGG -ACGGAAGTAGTCAACCAGCAATGG -ACGGAAGTAGTCAACCAGATGAGG -ACGGAAGTAGTCAACCAGAATGGG -ACGGAAGTAGTCAACCAGTCCTGA -ACGGAAGTAGTCAACCAGTAGCGA -ACGGAAGTAGTCAACCAGCACAGA -ACGGAAGTAGTCAACCAGGCAAGA -ACGGAAGTAGTCAACCAGGGTTGA -ACGGAAGTAGTCAACCAGTCCGAT -ACGGAAGTAGTCAACCAGTGGCAT -ACGGAAGTAGTCAACCAGCGAGAT -ACGGAAGTAGTCAACCAGTACCAC -ACGGAAGTAGTCAACCAGCAGAAC -ACGGAAGTAGTCAACCAGGTCTAC -ACGGAAGTAGTCAACCAGACGTAC -ACGGAAGTAGTCAACCAGAGTGAC -ACGGAAGTAGTCAACCAGCTGTAG -ACGGAAGTAGTCAACCAGCCTAAG -ACGGAAGTAGTCAACCAGGTTCAG -ACGGAAGTAGTCAACCAGGCATAG -ACGGAAGTAGTCAACCAGGACAAG -ACGGAAGTAGTCAACCAGAAGCAG -ACGGAAGTAGTCAACCAGCGTCAA -ACGGAAGTAGTCAACCAGGCTGAA -ACGGAAGTAGTCAACCAGAGTACG -ACGGAAGTAGTCAACCAGATCCGA -ACGGAAGTAGTCAACCAGATGGGA -ACGGAAGTAGTCAACCAGGTGCAA -ACGGAAGTAGTCAACCAGGAGGAA -ACGGAAGTAGTCAACCAGCAGGTA -ACGGAAGTAGTCAACCAGGACTCT -ACGGAAGTAGTCAACCAGAGTCCT -ACGGAAGTAGTCAACCAGTAAGCC -ACGGAAGTAGTCAACCAGATAGCC -ACGGAAGTAGTCAACCAGTAACCG -ACGGAAGTAGTCAACCAGATGCCA -ACGGAAGTAGTCTACGTCGGAAAC -ACGGAAGTAGTCTACGTCAACACC -ACGGAAGTAGTCTACGTCATCGAG -ACGGAAGTAGTCTACGTCCTCCTT -ACGGAAGTAGTCTACGTCCCTGTT -ACGGAAGTAGTCTACGTCCGGTTT -ACGGAAGTAGTCTACGTCGTGGTT -ACGGAAGTAGTCTACGTCGCCTTT -ACGGAAGTAGTCTACGTCGGTCTT -ACGGAAGTAGTCTACGTCACGCTT -ACGGAAGTAGTCTACGTCAGCGTT -ACGGAAGTAGTCTACGTCTTCGTC -ACGGAAGTAGTCTACGTCTCTCTC -ACGGAAGTAGTCTACGTCTGGATC -ACGGAAGTAGTCTACGTCCACTTC -ACGGAAGTAGTCTACGTCGTACTC -ACGGAAGTAGTCTACGTCGATGTC -ACGGAAGTAGTCTACGTCACAGTC -ACGGAAGTAGTCTACGTCTTGCTG -ACGGAAGTAGTCTACGTCTCCATG -ACGGAAGTAGTCTACGTCTGTGTG -ACGGAAGTAGTCTACGTCCTAGTG -ACGGAAGTAGTCTACGTCCATCTG -ACGGAAGTAGTCTACGTCGAGTTG -ACGGAAGTAGTCTACGTCAGACTG -ACGGAAGTAGTCTACGTCTCGGTA -ACGGAAGTAGTCTACGTCTGCCTA -ACGGAAGTAGTCTACGTCCCACTA -ACGGAAGTAGTCTACGTCGGAGTA -ACGGAAGTAGTCTACGTCTCGTCT -ACGGAAGTAGTCTACGTCTGCACT -ACGGAAGTAGTCTACGTCCTGACT -ACGGAAGTAGTCTACGTCCAACCT -ACGGAAGTAGTCTACGTCGCTACT -ACGGAAGTAGTCTACGTCGGATCT -ACGGAAGTAGTCTACGTCAAGGCT -ACGGAAGTAGTCTACGTCTCAACC -ACGGAAGTAGTCTACGTCTGTTCC -ACGGAAGTAGTCTACGTCATTCCC -ACGGAAGTAGTCTACGTCTTCTCG -ACGGAAGTAGTCTACGTCTAGACG -ACGGAAGTAGTCTACGTCGTAACG -ACGGAAGTAGTCTACGTCACTTCG -ACGGAAGTAGTCTACGTCTACGCA -ACGGAAGTAGTCTACGTCCTTGCA -ACGGAAGTAGTCTACGTCCGAACA -ACGGAAGTAGTCTACGTCCAGTCA -ACGGAAGTAGTCTACGTCGATCCA -ACGGAAGTAGTCTACGTCACGACA -ACGGAAGTAGTCTACGTCAGCTCA -ACGGAAGTAGTCTACGTCTCACGT -ACGGAAGTAGTCTACGTCCGTAGT -ACGGAAGTAGTCTACGTCGTCAGT -ACGGAAGTAGTCTACGTCGAAGGT -ACGGAAGTAGTCTACGTCAACCGT -ACGGAAGTAGTCTACGTCTTGTGC -ACGGAAGTAGTCTACGTCCTAAGC -ACGGAAGTAGTCTACGTCACTAGC -ACGGAAGTAGTCTACGTCAGATGC -ACGGAAGTAGTCTACGTCTGAAGG -ACGGAAGTAGTCTACGTCCAATGG -ACGGAAGTAGTCTACGTCATGAGG -ACGGAAGTAGTCTACGTCAATGGG -ACGGAAGTAGTCTACGTCTCCTGA -ACGGAAGTAGTCTACGTCTAGCGA -ACGGAAGTAGTCTACGTCCACAGA -ACGGAAGTAGTCTACGTCGCAAGA -ACGGAAGTAGTCTACGTCGGTTGA -ACGGAAGTAGTCTACGTCTCCGAT -ACGGAAGTAGTCTACGTCTGGCAT -ACGGAAGTAGTCTACGTCCGAGAT -ACGGAAGTAGTCTACGTCTACCAC -ACGGAAGTAGTCTACGTCCAGAAC -ACGGAAGTAGTCTACGTCGTCTAC -ACGGAAGTAGTCTACGTCACGTAC -ACGGAAGTAGTCTACGTCAGTGAC -ACGGAAGTAGTCTACGTCCTGTAG -ACGGAAGTAGTCTACGTCCCTAAG -ACGGAAGTAGTCTACGTCGTTCAG -ACGGAAGTAGTCTACGTCGCATAG -ACGGAAGTAGTCTACGTCGACAAG -ACGGAAGTAGTCTACGTCAAGCAG -ACGGAAGTAGTCTACGTCCGTCAA -ACGGAAGTAGTCTACGTCGCTGAA -ACGGAAGTAGTCTACGTCAGTACG -ACGGAAGTAGTCTACGTCATCCGA -ACGGAAGTAGTCTACGTCATGGGA -ACGGAAGTAGTCTACGTCGTGCAA -ACGGAAGTAGTCTACGTCGAGGAA -ACGGAAGTAGTCTACGTCCAGGTA -ACGGAAGTAGTCTACGTCGACTCT -ACGGAAGTAGTCTACGTCAGTCCT -ACGGAAGTAGTCTACGTCTAAGCC -ACGGAAGTAGTCTACGTCATAGCC -ACGGAAGTAGTCTACGTCTAACCG -ACGGAAGTAGTCTACGTCATGCCA -ACGGAAGTAGTCTACACGGGAAAC -ACGGAAGTAGTCTACACGAACACC -ACGGAAGTAGTCTACACGATCGAG -ACGGAAGTAGTCTACACGCTCCTT -ACGGAAGTAGTCTACACGCCTGTT -ACGGAAGTAGTCTACACGCGGTTT -ACGGAAGTAGTCTACACGGTGGTT -ACGGAAGTAGTCTACACGGCCTTT -ACGGAAGTAGTCTACACGGGTCTT -ACGGAAGTAGTCTACACGACGCTT -ACGGAAGTAGTCTACACGAGCGTT -ACGGAAGTAGTCTACACGTTCGTC -ACGGAAGTAGTCTACACGTCTCTC -ACGGAAGTAGTCTACACGTGGATC -ACGGAAGTAGTCTACACGCACTTC -ACGGAAGTAGTCTACACGGTACTC -ACGGAAGTAGTCTACACGGATGTC -ACGGAAGTAGTCTACACGACAGTC -ACGGAAGTAGTCTACACGTTGCTG -ACGGAAGTAGTCTACACGTCCATG -ACGGAAGTAGTCTACACGTGTGTG -ACGGAAGTAGTCTACACGCTAGTG -ACGGAAGTAGTCTACACGCATCTG -ACGGAAGTAGTCTACACGGAGTTG -ACGGAAGTAGTCTACACGAGACTG -ACGGAAGTAGTCTACACGTCGGTA -ACGGAAGTAGTCTACACGTGCCTA -ACGGAAGTAGTCTACACGCCACTA -ACGGAAGTAGTCTACACGGGAGTA -ACGGAAGTAGTCTACACGTCGTCT -ACGGAAGTAGTCTACACGTGCACT -ACGGAAGTAGTCTACACGCTGACT -ACGGAAGTAGTCTACACGCAACCT -ACGGAAGTAGTCTACACGGCTACT -ACGGAAGTAGTCTACACGGGATCT -ACGGAAGTAGTCTACACGAAGGCT -ACGGAAGTAGTCTACACGTCAACC -ACGGAAGTAGTCTACACGTGTTCC -ACGGAAGTAGTCTACACGATTCCC -ACGGAAGTAGTCTACACGTTCTCG -ACGGAAGTAGTCTACACGTAGACG -ACGGAAGTAGTCTACACGGTAACG -ACGGAAGTAGTCTACACGACTTCG -ACGGAAGTAGTCTACACGTACGCA -ACGGAAGTAGTCTACACGCTTGCA -ACGGAAGTAGTCTACACGCGAACA -ACGGAAGTAGTCTACACGCAGTCA -ACGGAAGTAGTCTACACGGATCCA -ACGGAAGTAGTCTACACGACGACA -ACGGAAGTAGTCTACACGAGCTCA -ACGGAAGTAGTCTACACGTCACGT -ACGGAAGTAGTCTACACGCGTAGT -ACGGAAGTAGTCTACACGGTCAGT -ACGGAAGTAGTCTACACGGAAGGT -ACGGAAGTAGTCTACACGAACCGT -ACGGAAGTAGTCTACACGTTGTGC -ACGGAAGTAGTCTACACGCTAAGC -ACGGAAGTAGTCTACACGACTAGC -ACGGAAGTAGTCTACACGAGATGC -ACGGAAGTAGTCTACACGTGAAGG -ACGGAAGTAGTCTACACGCAATGG -ACGGAAGTAGTCTACACGATGAGG -ACGGAAGTAGTCTACACGAATGGG -ACGGAAGTAGTCTACACGTCCTGA -ACGGAAGTAGTCTACACGTAGCGA -ACGGAAGTAGTCTACACGCACAGA -ACGGAAGTAGTCTACACGGCAAGA -ACGGAAGTAGTCTACACGGGTTGA -ACGGAAGTAGTCTACACGTCCGAT -ACGGAAGTAGTCTACACGTGGCAT -ACGGAAGTAGTCTACACGCGAGAT -ACGGAAGTAGTCTACACGTACCAC -ACGGAAGTAGTCTACACGCAGAAC -ACGGAAGTAGTCTACACGGTCTAC -ACGGAAGTAGTCTACACGACGTAC -ACGGAAGTAGTCTACACGAGTGAC -ACGGAAGTAGTCTACACGCTGTAG -ACGGAAGTAGTCTACACGCCTAAG -ACGGAAGTAGTCTACACGGTTCAG -ACGGAAGTAGTCTACACGGCATAG -ACGGAAGTAGTCTACACGGACAAG -ACGGAAGTAGTCTACACGAAGCAG -ACGGAAGTAGTCTACACGCGTCAA -ACGGAAGTAGTCTACACGGCTGAA -ACGGAAGTAGTCTACACGAGTACG -ACGGAAGTAGTCTACACGATCCGA -ACGGAAGTAGTCTACACGATGGGA -ACGGAAGTAGTCTACACGGTGCAA -ACGGAAGTAGTCTACACGGAGGAA -ACGGAAGTAGTCTACACGCAGGTA -ACGGAAGTAGTCTACACGGACTCT -ACGGAAGTAGTCTACACGAGTCCT -ACGGAAGTAGTCTACACGTAAGCC -ACGGAAGTAGTCTACACGATAGCC -ACGGAAGTAGTCTACACGTAACCG -ACGGAAGTAGTCTACACGATGCCA -ACGGAAGTAGTCGACAGTGGAAAC -ACGGAAGTAGTCGACAGTAACACC -ACGGAAGTAGTCGACAGTATCGAG -ACGGAAGTAGTCGACAGTCTCCTT -ACGGAAGTAGTCGACAGTCCTGTT -ACGGAAGTAGTCGACAGTCGGTTT -ACGGAAGTAGTCGACAGTGTGGTT -ACGGAAGTAGTCGACAGTGCCTTT -ACGGAAGTAGTCGACAGTGGTCTT -ACGGAAGTAGTCGACAGTACGCTT -ACGGAAGTAGTCGACAGTAGCGTT -ACGGAAGTAGTCGACAGTTTCGTC -ACGGAAGTAGTCGACAGTTCTCTC -ACGGAAGTAGTCGACAGTTGGATC -ACGGAAGTAGTCGACAGTCACTTC -ACGGAAGTAGTCGACAGTGTACTC -ACGGAAGTAGTCGACAGTGATGTC -ACGGAAGTAGTCGACAGTACAGTC -ACGGAAGTAGTCGACAGTTTGCTG -ACGGAAGTAGTCGACAGTTCCATG -ACGGAAGTAGTCGACAGTTGTGTG -ACGGAAGTAGTCGACAGTCTAGTG -ACGGAAGTAGTCGACAGTCATCTG -ACGGAAGTAGTCGACAGTGAGTTG -ACGGAAGTAGTCGACAGTAGACTG -ACGGAAGTAGTCGACAGTTCGGTA -ACGGAAGTAGTCGACAGTTGCCTA -ACGGAAGTAGTCGACAGTCCACTA -ACGGAAGTAGTCGACAGTGGAGTA -ACGGAAGTAGTCGACAGTTCGTCT -ACGGAAGTAGTCGACAGTTGCACT -ACGGAAGTAGTCGACAGTCTGACT -ACGGAAGTAGTCGACAGTCAACCT -ACGGAAGTAGTCGACAGTGCTACT -ACGGAAGTAGTCGACAGTGGATCT -ACGGAAGTAGTCGACAGTAAGGCT -ACGGAAGTAGTCGACAGTTCAACC -ACGGAAGTAGTCGACAGTTGTTCC -ACGGAAGTAGTCGACAGTATTCCC -ACGGAAGTAGTCGACAGTTTCTCG -ACGGAAGTAGTCGACAGTTAGACG -ACGGAAGTAGTCGACAGTGTAACG -ACGGAAGTAGTCGACAGTACTTCG -ACGGAAGTAGTCGACAGTTACGCA -ACGGAAGTAGTCGACAGTCTTGCA -ACGGAAGTAGTCGACAGTCGAACA -ACGGAAGTAGTCGACAGTCAGTCA -ACGGAAGTAGTCGACAGTGATCCA -ACGGAAGTAGTCGACAGTACGACA -ACGGAAGTAGTCGACAGTAGCTCA -ACGGAAGTAGTCGACAGTTCACGT -ACGGAAGTAGTCGACAGTCGTAGT -ACGGAAGTAGTCGACAGTGTCAGT -ACGGAAGTAGTCGACAGTGAAGGT -ACGGAAGTAGTCGACAGTAACCGT -ACGGAAGTAGTCGACAGTTTGTGC -ACGGAAGTAGTCGACAGTCTAAGC -ACGGAAGTAGTCGACAGTACTAGC -ACGGAAGTAGTCGACAGTAGATGC -ACGGAAGTAGTCGACAGTTGAAGG -ACGGAAGTAGTCGACAGTCAATGG -ACGGAAGTAGTCGACAGTATGAGG -ACGGAAGTAGTCGACAGTAATGGG -ACGGAAGTAGTCGACAGTTCCTGA -ACGGAAGTAGTCGACAGTTAGCGA -ACGGAAGTAGTCGACAGTCACAGA -ACGGAAGTAGTCGACAGTGCAAGA -ACGGAAGTAGTCGACAGTGGTTGA -ACGGAAGTAGTCGACAGTTCCGAT -ACGGAAGTAGTCGACAGTTGGCAT -ACGGAAGTAGTCGACAGTCGAGAT -ACGGAAGTAGTCGACAGTTACCAC -ACGGAAGTAGTCGACAGTCAGAAC -ACGGAAGTAGTCGACAGTGTCTAC -ACGGAAGTAGTCGACAGTACGTAC -ACGGAAGTAGTCGACAGTAGTGAC -ACGGAAGTAGTCGACAGTCTGTAG -ACGGAAGTAGTCGACAGTCCTAAG -ACGGAAGTAGTCGACAGTGTTCAG -ACGGAAGTAGTCGACAGTGCATAG -ACGGAAGTAGTCGACAGTGACAAG -ACGGAAGTAGTCGACAGTAAGCAG -ACGGAAGTAGTCGACAGTCGTCAA -ACGGAAGTAGTCGACAGTGCTGAA -ACGGAAGTAGTCGACAGTAGTACG -ACGGAAGTAGTCGACAGTATCCGA -ACGGAAGTAGTCGACAGTATGGGA -ACGGAAGTAGTCGACAGTGTGCAA -ACGGAAGTAGTCGACAGTGAGGAA -ACGGAAGTAGTCGACAGTCAGGTA -ACGGAAGTAGTCGACAGTGACTCT -ACGGAAGTAGTCGACAGTAGTCCT -ACGGAAGTAGTCGACAGTTAAGCC -ACGGAAGTAGTCGACAGTATAGCC -ACGGAAGTAGTCGACAGTTAACCG -ACGGAAGTAGTCGACAGTATGCCA -ACGGAAGTAGTCTAGCTGGGAAAC -ACGGAAGTAGTCTAGCTGAACACC -ACGGAAGTAGTCTAGCTGATCGAG -ACGGAAGTAGTCTAGCTGCTCCTT -ACGGAAGTAGTCTAGCTGCCTGTT -ACGGAAGTAGTCTAGCTGCGGTTT -ACGGAAGTAGTCTAGCTGGTGGTT -ACGGAAGTAGTCTAGCTGGCCTTT -ACGGAAGTAGTCTAGCTGGGTCTT -ACGGAAGTAGTCTAGCTGACGCTT -ACGGAAGTAGTCTAGCTGAGCGTT -ACGGAAGTAGTCTAGCTGTTCGTC -ACGGAAGTAGTCTAGCTGTCTCTC -ACGGAAGTAGTCTAGCTGTGGATC -ACGGAAGTAGTCTAGCTGCACTTC -ACGGAAGTAGTCTAGCTGGTACTC -ACGGAAGTAGTCTAGCTGGATGTC -ACGGAAGTAGTCTAGCTGACAGTC -ACGGAAGTAGTCTAGCTGTTGCTG -ACGGAAGTAGTCTAGCTGTCCATG -ACGGAAGTAGTCTAGCTGTGTGTG -ACGGAAGTAGTCTAGCTGCTAGTG -ACGGAAGTAGTCTAGCTGCATCTG -ACGGAAGTAGTCTAGCTGGAGTTG -ACGGAAGTAGTCTAGCTGAGACTG -ACGGAAGTAGTCTAGCTGTCGGTA -ACGGAAGTAGTCTAGCTGTGCCTA -ACGGAAGTAGTCTAGCTGCCACTA -ACGGAAGTAGTCTAGCTGGGAGTA -ACGGAAGTAGTCTAGCTGTCGTCT -ACGGAAGTAGTCTAGCTGTGCACT -ACGGAAGTAGTCTAGCTGCTGACT -ACGGAAGTAGTCTAGCTGCAACCT -ACGGAAGTAGTCTAGCTGGCTACT -ACGGAAGTAGTCTAGCTGGGATCT -ACGGAAGTAGTCTAGCTGAAGGCT -ACGGAAGTAGTCTAGCTGTCAACC -ACGGAAGTAGTCTAGCTGTGTTCC -ACGGAAGTAGTCTAGCTGATTCCC -ACGGAAGTAGTCTAGCTGTTCTCG -ACGGAAGTAGTCTAGCTGTAGACG -ACGGAAGTAGTCTAGCTGGTAACG -ACGGAAGTAGTCTAGCTGACTTCG -ACGGAAGTAGTCTAGCTGTACGCA -ACGGAAGTAGTCTAGCTGCTTGCA -ACGGAAGTAGTCTAGCTGCGAACA -ACGGAAGTAGTCTAGCTGCAGTCA -ACGGAAGTAGTCTAGCTGGATCCA -ACGGAAGTAGTCTAGCTGACGACA -ACGGAAGTAGTCTAGCTGAGCTCA -ACGGAAGTAGTCTAGCTGTCACGT -ACGGAAGTAGTCTAGCTGCGTAGT -ACGGAAGTAGTCTAGCTGGTCAGT -ACGGAAGTAGTCTAGCTGGAAGGT -ACGGAAGTAGTCTAGCTGAACCGT -ACGGAAGTAGTCTAGCTGTTGTGC -ACGGAAGTAGTCTAGCTGCTAAGC -ACGGAAGTAGTCTAGCTGACTAGC -ACGGAAGTAGTCTAGCTGAGATGC -ACGGAAGTAGTCTAGCTGTGAAGG -ACGGAAGTAGTCTAGCTGCAATGG -ACGGAAGTAGTCTAGCTGATGAGG -ACGGAAGTAGTCTAGCTGAATGGG -ACGGAAGTAGTCTAGCTGTCCTGA -ACGGAAGTAGTCTAGCTGTAGCGA -ACGGAAGTAGTCTAGCTGCACAGA -ACGGAAGTAGTCTAGCTGGCAAGA -ACGGAAGTAGTCTAGCTGGGTTGA -ACGGAAGTAGTCTAGCTGTCCGAT -ACGGAAGTAGTCTAGCTGTGGCAT -ACGGAAGTAGTCTAGCTGCGAGAT -ACGGAAGTAGTCTAGCTGTACCAC -ACGGAAGTAGTCTAGCTGCAGAAC -ACGGAAGTAGTCTAGCTGGTCTAC -ACGGAAGTAGTCTAGCTGACGTAC -ACGGAAGTAGTCTAGCTGAGTGAC -ACGGAAGTAGTCTAGCTGCTGTAG -ACGGAAGTAGTCTAGCTGCCTAAG -ACGGAAGTAGTCTAGCTGGTTCAG -ACGGAAGTAGTCTAGCTGGCATAG -ACGGAAGTAGTCTAGCTGGACAAG -ACGGAAGTAGTCTAGCTGAAGCAG -ACGGAAGTAGTCTAGCTGCGTCAA -ACGGAAGTAGTCTAGCTGGCTGAA -ACGGAAGTAGTCTAGCTGAGTACG -ACGGAAGTAGTCTAGCTGATCCGA -ACGGAAGTAGTCTAGCTGATGGGA -ACGGAAGTAGTCTAGCTGGTGCAA -ACGGAAGTAGTCTAGCTGGAGGAA -ACGGAAGTAGTCTAGCTGCAGGTA -ACGGAAGTAGTCTAGCTGGACTCT -ACGGAAGTAGTCTAGCTGAGTCCT -ACGGAAGTAGTCTAGCTGTAAGCC -ACGGAAGTAGTCTAGCTGATAGCC -ACGGAAGTAGTCTAGCTGTAACCG -ACGGAAGTAGTCTAGCTGATGCCA -ACGGAAGTAGTCAAGCCTGGAAAC -ACGGAAGTAGTCAAGCCTAACACC -ACGGAAGTAGTCAAGCCTATCGAG -ACGGAAGTAGTCAAGCCTCTCCTT -ACGGAAGTAGTCAAGCCTCCTGTT -ACGGAAGTAGTCAAGCCTCGGTTT -ACGGAAGTAGTCAAGCCTGTGGTT -ACGGAAGTAGTCAAGCCTGCCTTT -ACGGAAGTAGTCAAGCCTGGTCTT -ACGGAAGTAGTCAAGCCTACGCTT -ACGGAAGTAGTCAAGCCTAGCGTT -ACGGAAGTAGTCAAGCCTTTCGTC -ACGGAAGTAGTCAAGCCTTCTCTC -ACGGAAGTAGTCAAGCCTTGGATC -ACGGAAGTAGTCAAGCCTCACTTC -ACGGAAGTAGTCAAGCCTGTACTC -ACGGAAGTAGTCAAGCCTGATGTC -ACGGAAGTAGTCAAGCCTACAGTC -ACGGAAGTAGTCAAGCCTTTGCTG -ACGGAAGTAGTCAAGCCTTCCATG -ACGGAAGTAGTCAAGCCTTGTGTG -ACGGAAGTAGTCAAGCCTCTAGTG -ACGGAAGTAGTCAAGCCTCATCTG -ACGGAAGTAGTCAAGCCTGAGTTG -ACGGAAGTAGTCAAGCCTAGACTG -ACGGAAGTAGTCAAGCCTTCGGTA -ACGGAAGTAGTCAAGCCTTGCCTA -ACGGAAGTAGTCAAGCCTCCACTA -ACGGAAGTAGTCAAGCCTGGAGTA -ACGGAAGTAGTCAAGCCTTCGTCT -ACGGAAGTAGTCAAGCCTTGCACT -ACGGAAGTAGTCAAGCCTCTGACT -ACGGAAGTAGTCAAGCCTCAACCT -ACGGAAGTAGTCAAGCCTGCTACT -ACGGAAGTAGTCAAGCCTGGATCT -ACGGAAGTAGTCAAGCCTAAGGCT -ACGGAAGTAGTCAAGCCTTCAACC -ACGGAAGTAGTCAAGCCTTGTTCC -ACGGAAGTAGTCAAGCCTATTCCC -ACGGAAGTAGTCAAGCCTTTCTCG -ACGGAAGTAGTCAAGCCTTAGACG -ACGGAAGTAGTCAAGCCTGTAACG -ACGGAAGTAGTCAAGCCTACTTCG -ACGGAAGTAGTCAAGCCTTACGCA -ACGGAAGTAGTCAAGCCTCTTGCA -ACGGAAGTAGTCAAGCCTCGAACA -ACGGAAGTAGTCAAGCCTCAGTCA -ACGGAAGTAGTCAAGCCTGATCCA -ACGGAAGTAGTCAAGCCTACGACA -ACGGAAGTAGTCAAGCCTAGCTCA -ACGGAAGTAGTCAAGCCTTCACGT -ACGGAAGTAGTCAAGCCTCGTAGT -ACGGAAGTAGTCAAGCCTGTCAGT -ACGGAAGTAGTCAAGCCTGAAGGT -ACGGAAGTAGTCAAGCCTAACCGT -ACGGAAGTAGTCAAGCCTTTGTGC -ACGGAAGTAGTCAAGCCTCTAAGC -ACGGAAGTAGTCAAGCCTACTAGC -ACGGAAGTAGTCAAGCCTAGATGC -ACGGAAGTAGTCAAGCCTTGAAGG -ACGGAAGTAGTCAAGCCTCAATGG -ACGGAAGTAGTCAAGCCTATGAGG -ACGGAAGTAGTCAAGCCTAATGGG -ACGGAAGTAGTCAAGCCTTCCTGA -ACGGAAGTAGTCAAGCCTTAGCGA -ACGGAAGTAGTCAAGCCTCACAGA -ACGGAAGTAGTCAAGCCTGCAAGA -ACGGAAGTAGTCAAGCCTGGTTGA -ACGGAAGTAGTCAAGCCTTCCGAT -ACGGAAGTAGTCAAGCCTTGGCAT -ACGGAAGTAGTCAAGCCTCGAGAT -ACGGAAGTAGTCAAGCCTTACCAC -ACGGAAGTAGTCAAGCCTCAGAAC -ACGGAAGTAGTCAAGCCTGTCTAC -ACGGAAGTAGTCAAGCCTACGTAC -ACGGAAGTAGTCAAGCCTAGTGAC -ACGGAAGTAGTCAAGCCTCTGTAG -ACGGAAGTAGTCAAGCCTCCTAAG -ACGGAAGTAGTCAAGCCTGTTCAG -ACGGAAGTAGTCAAGCCTGCATAG -ACGGAAGTAGTCAAGCCTGACAAG -ACGGAAGTAGTCAAGCCTAAGCAG -ACGGAAGTAGTCAAGCCTCGTCAA -ACGGAAGTAGTCAAGCCTGCTGAA -ACGGAAGTAGTCAAGCCTAGTACG -ACGGAAGTAGTCAAGCCTATCCGA -ACGGAAGTAGTCAAGCCTATGGGA -ACGGAAGTAGTCAAGCCTGTGCAA -ACGGAAGTAGTCAAGCCTGAGGAA -ACGGAAGTAGTCAAGCCTCAGGTA -ACGGAAGTAGTCAAGCCTGACTCT -ACGGAAGTAGTCAAGCCTAGTCCT -ACGGAAGTAGTCAAGCCTTAAGCC -ACGGAAGTAGTCAAGCCTATAGCC -ACGGAAGTAGTCAAGCCTTAACCG -ACGGAAGTAGTCAAGCCTATGCCA -ACGGAAGTAGTCCAGGTTGGAAAC -ACGGAAGTAGTCCAGGTTAACACC -ACGGAAGTAGTCCAGGTTATCGAG -ACGGAAGTAGTCCAGGTTCTCCTT -ACGGAAGTAGTCCAGGTTCCTGTT -ACGGAAGTAGTCCAGGTTCGGTTT -ACGGAAGTAGTCCAGGTTGTGGTT -ACGGAAGTAGTCCAGGTTGCCTTT -ACGGAAGTAGTCCAGGTTGGTCTT -ACGGAAGTAGTCCAGGTTACGCTT -ACGGAAGTAGTCCAGGTTAGCGTT -ACGGAAGTAGTCCAGGTTTTCGTC -ACGGAAGTAGTCCAGGTTTCTCTC -ACGGAAGTAGTCCAGGTTTGGATC -ACGGAAGTAGTCCAGGTTCACTTC -ACGGAAGTAGTCCAGGTTGTACTC -ACGGAAGTAGTCCAGGTTGATGTC -ACGGAAGTAGTCCAGGTTACAGTC -ACGGAAGTAGTCCAGGTTTTGCTG -ACGGAAGTAGTCCAGGTTTCCATG -ACGGAAGTAGTCCAGGTTTGTGTG -ACGGAAGTAGTCCAGGTTCTAGTG -ACGGAAGTAGTCCAGGTTCATCTG -ACGGAAGTAGTCCAGGTTGAGTTG -ACGGAAGTAGTCCAGGTTAGACTG -ACGGAAGTAGTCCAGGTTTCGGTA -ACGGAAGTAGTCCAGGTTTGCCTA -ACGGAAGTAGTCCAGGTTCCACTA -ACGGAAGTAGTCCAGGTTGGAGTA -ACGGAAGTAGTCCAGGTTTCGTCT -ACGGAAGTAGTCCAGGTTTGCACT -ACGGAAGTAGTCCAGGTTCTGACT -ACGGAAGTAGTCCAGGTTCAACCT -ACGGAAGTAGTCCAGGTTGCTACT -ACGGAAGTAGTCCAGGTTGGATCT -ACGGAAGTAGTCCAGGTTAAGGCT -ACGGAAGTAGTCCAGGTTTCAACC -ACGGAAGTAGTCCAGGTTTGTTCC -ACGGAAGTAGTCCAGGTTATTCCC -ACGGAAGTAGTCCAGGTTTTCTCG -ACGGAAGTAGTCCAGGTTTAGACG -ACGGAAGTAGTCCAGGTTGTAACG -ACGGAAGTAGTCCAGGTTACTTCG -ACGGAAGTAGTCCAGGTTTACGCA -ACGGAAGTAGTCCAGGTTCTTGCA -ACGGAAGTAGTCCAGGTTCGAACA -ACGGAAGTAGTCCAGGTTCAGTCA -ACGGAAGTAGTCCAGGTTGATCCA -ACGGAAGTAGTCCAGGTTACGACA -ACGGAAGTAGTCCAGGTTAGCTCA -ACGGAAGTAGTCCAGGTTTCACGT -ACGGAAGTAGTCCAGGTTCGTAGT -ACGGAAGTAGTCCAGGTTGTCAGT -ACGGAAGTAGTCCAGGTTGAAGGT -ACGGAAGTAGTCCAGGTTAACCGT -ACGGAAGTAGTCCAGGTTTTGTGC -ACGGAAGTAGTCCAGGTTCTAAGC -ACGGAAGTAGTCCAGGTTACTAGC -ACGGAAGTAGTCCAGGTTAGATGC -ACGGAAGTAGTCCAGGTTTGAAGG -ACGGAAGTAGTCCAGGTTCAATGG -ACGGAAGTAGTCCAGGTTATGAGG -ACGGAAGTAGTCCAGGTTAATGGG -ACGGAAGTAGTCCAGGTTTCCTGA -ACGGAAGTAGTCCAGGTTTAGCGA -ACGGAAGTAGTCCAGGTTCACAGA -ACGGAAGTAGTCCAGGTTGCAAGA -ACGGAAGTAGTCCAGGTTGGTTGA -ACGGAAGTAGTCCAGGTTTCCGAT -ACGGAAGTAGTCCAGGTTTGGCAT -ACGGAAGTAGTCCAGGTTCGAGAT -ACGGAAGTAGTCCAGGTTTACCAC -ACGGAAGTAGTCCAGGTTCAGAAC -ACGGAAGTAGTCCAGGTTGTCTAC -ACGGAAGTAGTCCAGGTTACGTAC -ACGGAAGTAGTCCAGGTTAGTGAC -ACGGAAGTAGTCCAGGTTCTGTAG -ACGGAAGTAGTCCAGGTTCCTAAG -ACGGAAGTAGTCCAGGTTGTTCAG -ACGGAAGTAGTCCAGGTTGCATAG -ACGGAAGTAGTCCAGGTTGACAAG -ACGGAAGTAGTCCAGGTTAAGCAG -ACGGAAGTAGTCCAGGTTCGTCAA -ACGGAAGTAGTCCAGGTTGCTGAA -ACGGAAGTAGTCCAGGTTAGTACG -ACGGAAGTAGTCCAGGTTATCCGA -ACGGAAGTAGTCCAGGTTATGGGA -ACGGAAGTAGTCCAGGTTGTGCAA -ACGGAAGTAGTCCAGGTTGAGGAA -ACGGAAGTAGTCCAGGTTCAGGTA -ACGGAAGTAGTCCAGGTTGACTCT -ACGGAAGTAGTCCAGGTTAGTCCT -ACGGAAGTAGTCCAGGTTTAAGCC -ACGGAAGTAGTCCAGGTTATAGCC -ACGGAAGTAGTCCAGGTTTAACCG -ACGGAAGTAGTCCAGGTTATGCCA -ACGGAAGTAGTCTAGGCAGGAAAC -ACGGAAGTAGTCTAGGCAAACACC -ACGGAAGTAGTCTAGGCAATCGAG -ACGGAAGTAGTCTAGGCACTCCTT -ACGGAAGTAGTCTAGGCACCTGTT -ACGGAAGTAGTCTAGGCACGGTTT -ACGGAAGTAGTCTAGGCAGTGGTT -ACGGAAGTAGTCTAGGCAGCCTTT -ACGGAAGTAGTCTAGGCAGGTCTT -ACGGAAGTAGTCTAGGCAACGCTT -ACGGAAGTAGTCTAGGCAAGCGTT -ACGGAAGTAGTCTAGGCATTCGTC -ACGGAAGTAGTCTAGGCATCTCTC -ACGGAAGTAGTCTAGGCATGGATC -ACGGAAGTAGTCTAGGCACACTTC -ACGGAAGTAGTCTAGGCAGTACTC -ACGGAAGTAGTCTAGGCAGATGTC -ACGGAAGTAGTCTAGGCAACAGTC -ACGGAAGTAGTCTAGGCATTGCTG -ACGGAAGTAGTCTAGGCATCCATG -ACGGAAGTAGTCTAGGCATGTGTG -ACGGAAGTAGTCTAGGCACTAGTG -ACGGAAGTAGTCTAGGCACATCTG -ACGGAAGTAGTCTAGGCAGAGTTG -ACGGAAGTAGTCTAGGCAAGACTG -ACGGAAGTAGTCTAGGCATCGGTA -ACGGAAGTAGTCTAGGCATGCCTA -ACGGAAGTAGTCTAGGCACCACTA -ACGGAAGTAGTCTAGGCAGGAGTA -ACGGAAGTAGTCTAGGCATCGTCT -ACGGAAGTAGTCTAGGCATGCACT -ACGGAAGTAGTCTAGGCACTGACT -ACGGAAGTAGTCTAGGCACAACCT -ACGGAAGTAGTCTAGGCAGCTACT -ACGGAAGTAGTCTAGGCAGGATCT -ACGGAAGTAGTCTAGGCAAAGGCT -ACGGAAGTAGTCTAGGCATCAACC -ACGGAAGTAGTCTAGGCATGTTCC -ACGGAAGTAGTCTAGGCAATTCCC -ACGGAAGTAGTCTAGGCATTCTCG -ACGGAAGTAGTCTAGGCATAGACG -ACGGAAGTAGTCTAGGCAGTAACG -ACGGAAGTAGTCTAGGCAACTTCG -ACGGAAGTAGTCTAGGCATACGCA -ACGGAAGTAGTCTAGGCACTTGCA -ACGGAAGTAGTCTAGGCACGAACA -ACGGAAGTAGTCTAGGCACAGTCA -ACGGAAGTAGTCTAGGCAGATCCA -ACGGAAGTAGTCTAGGCAACGACA -ACGGAAGTAGTCTAGGCAAGCTCA -ACGGAAGTAGTCTAGGCATCACGT -ACGGAAGTAGTCTAGGCACGTAGT -ACGGAAGTAGTCTAGGCAGTCAGT -ACGGAAGTAGTCTAGGCAGAAGGT -ACGGAAGTAGTCTAGGCAAACCGT -ACGGAAGTAGTCTAGGCATTGTGC -ACGGAAGTAGTCTAGGCACTAAGC -ACGGAAGTAGTCTAGGCAACTAGC -ACGGAAGTAGTCTAGGCAAGATGC -ACGGAAGTAGTCTAGGCATGAAGG -ACGGAAGTAGTCTAGGCACAATGG -ACGGAAGTAGTCTAGGCAATGAGG -ACGGAAGTAGTCTAGGCAAATGGG -ACGGAAGTAGTCTAGGCATCCTGA -ACGGAAGTAGTCTAGGCATAGCGA -ACGGAAGTAGTCTAGGCACACAGA -ACGGAAGTAGTCTAGGCAGCAAGA -ACGGAAGTAGTCTAGGCAGGTTGA -ACGGAAGTAGTCTAGGCATCCGAT -ACGGAAGTAGTCTAGGCATGGCAT -ACGGAAGTAGTCTAGGCACGAGAT -ACGGAAGTAGTCTAGGCATACCAC -ACGGAAGTAGTCTAGGCACAGAAC -ACGGAAGTAGTCTAGGCAGTCTAC -ACGGAAGTAGTCTAGGCAACGTAC -ACGGAAGTAGTCTAGGCAAGTGAC -ACGGAAGTAGTCTAGGCACTGTAG -ACGGAAGTAGTCTAGGCACCTAAG -ACGGAAGTAGTCTAGGCAGTTCAG -ACGGAAGTAGTCTAGGCAGCATAG -ACGGAAGTAGTCTAGGCAGACAAG -ACGGAAGTAGTCTAGGCAAAGCAG -ACGGAAGTAGTCTAGGCACGTCAA -ACGGAAGTAGTCTAGGCAGCTGAA -ACGGAAGTAGTCTAGGCAAGTACG -ACGGAAGTAGTCTAGGCAATCCGA -ACGGAAGTAGTCTAGGCAATGGGA -ACGGAAGTAGTCTAGGCAGTGCAA -ACGGAAGTAGTCTAGGCAGAGGAA -ACGGAAGTAGTCTAGGCACAGGTA -ACGGAAGTAGTCTAGGCAGACTCT -ACGGAAGTAGTCTAGGCAAGTCCT -ACGGAAGTAGTCTAGGCATAAGCC -ACGGAAGTAGTCTAGGCAATAGCC -ACGGAAGTAGTCTAGGCATAACCG -ACGGAAGTAGTCTAGGCAATGCCA -ACGGAAGTAGTCAAGGACGGAAAC -ACGGAAGTAGTCAAGGACAACACC -ACGGAAGTAGTCAAGGACATCGAG -ACGGAAGTAGTCAAGGACCTCCTT -ACGGAAGTAGTCAAGGACCCTGTT -ACGGAAGTAGTCAAGGACCGGTTT -ACGGAAGTAGTCAAGGACGTGGTT -ACGGAAGTAGTCAAGGACGCCTTT -ACGGAAGTAGTCAAGGACGGTCTT -ACGGAAGTAGTCAAGGACACGCTT -ACGGAAGTAGTCAAGGACAGCGTT -ACGGAAGTAGTCAAGGACTTCGTC -ACGGAAGTAGTCAAGGACTCTCTC -ACGGAAGTAGTCAAGGACTGGATC -ACGGAAGTAGTCAAGGACCACTTC -ACGGAAGTAGTCAAGGACGTACTC -ACGGAAGTAGTCAAGGACGATGTC -ACGGAAGTAGTCAAGGACACAGTC -ACGGAAGTAGTCAAGGACTTGCTG -ACGGAAGTAGTCAAGGACTCCATG -ACGGAAGTAGTCAAGGACTGTGTG -ACGGAAGTAGTCAAGGACCTAGTG -ACGGAAGTAGTCAAGGACCATCTG -ACGGAAGTAGTCAAGGACGAGTTG -ACGGAAGTAGTCAAGGACAGACTG -ACGGAAGTAGTCAAGGACTCGGTA -ACGGAAGTAGTCAAGGACTGCCTA -ACGGAAGTAGTCAAGGACCCACTA -ACGGAAGTAGTCAAGGACGGAGTA -ACGGAAGTAGTCAAGGACTCGTCT -ACGGAAGTAGTCAAGGACTGCACT -ACGGAAGTAGTCAAGGACCTGACT -ACGGAAGTAGTCAAGGACCAACCT -ACGGAAGTAGTCAAGGACGCTACT -ACGGAAGTAGTCAAGGACGGATCT -ACGGAAGTAGTCAAGGACAAGGCT -ACGGAAGTAGTCAAGGACTCAACC -ACGGAAGTAGTCAAGGACTGTTCC -ACGGAAGTAGTCAAGGACATTCCC -ACGGAAGTAGTCAAGGACTTCTCG -ACGGAAGTAGTCAAGGACTAGACG -ACGGAAGTAGTCAAGGACGTAACG -ACGGAAGTAGTCAAGGACACTTCG -ACGGAAGTAGTCAAGGACTACGCA -ACGGAAGTAGTCAAGGACCTTGCA -ACGGAAGTAGTCAAGGACCGAACA -ACGGAAGTAGTCAAGGACCAGTCA -ACGGAAGTAGTCAAGGACGATCCA -ACGGAAGTAGTCAAGGACACGACA -ACGGAAGTAGTCAAGGACAGCTCA -ACGGAAGTAGTCAAGGACTCACGT -ACGGAAGTAGTCAAGGACCGTAGT -ACGGAAGTAGTCAAGGACGTCAGT -ACGGAAGTAGTCAAGGACGAAGGT -ACGGAAGTAGTCAAGGACAACCGT -ACGGAAGTAGTCAAGGACTTGTGC -ACGGAAGTAGTCAAGGACCTAAGC -ACGGAAGTAGTCAAGGACACTAGC -ACGGAAGTAGTCAAGGACAGATGC -ACGGAAGTAGTCAAGGACTGAAGG -ACGGAAGTAGTCAAGGACCAATGG -ACGGAAGTAGTCAAGGACATGAGG -ACGGAAGTAGTCAAGGACAATGGG -ACGGAAGTAGTCAAGGACTCCTGA -ACGGAAGTAGTCAAGGACTAGCGA -ACGGAAGTAGTCAAGGACCACAGA -ACGGAAGTAGTCAAGGACGCAAGA -ACGGAAGTAGTCAAGGACGGTTGA -ACGGAAGTAGTCAAGGACTCCGAT -ACGGAAGTAGTCAAGGACTGGCAT -ACGGAAGTAGTCAAGGACCGAGAT -ACGGAAGTAGTCAAGGACTACCAC -ACGGAAGTAGTCAAGGACCAGAAC -ACGGAAGTAGTCAAGGACGTCTAC -ACGGAAGTAGTCAAGGACACGTAC -ACGGAAGTAGTCAAGGACAGTGAC -ACGGAAGTAGTCAAGGACCTGTAG -ACGGAAGTAGTCAAGGACCCTAAG -ACGGAAGTAGTCAAGGACGTTCAG -ACGGAAGTAGTCAAGGACGCATAG -ACGGAAGTAGTCAAGGACGACAAG -ACGGAAGTAGTCAAGGACAAGCAG -ACGGAAGTAGTCAAGGACCGTCAA -ACGGAAGTAGTCAAGGACGCTGAA -ACGGAAGTAGTCAAGGACAGTACG -ACGGAAGTAGTCAAGGACATCCGA -ACGGAAGTAGTCAAGGACATGGGA -ACGGAAGTAGTCAAGGACGTGCAA -ACGGAAGTAGTCAAGGACGAGGAA -ACGGAAGTAGTCAAGGACCAGGTA -ACGGAAGTAGTCAAGGACGACTCT -ACGGAAGTAGTCAAGGACAGTCCT -ACGGAAGTAGTCAAGGACTAAGCC -ACGGAAGTAGTCAAGGACATAGCC -ACGGAAGTAGTCAAGGACTAACCG -ACGGAAGTAGTCAAGGACATGCCA -ACGGAAGTAGTCCAGAAGGGAAAC -ACGGAAGTAGTCCAGAAGAACACC -ACGGAAGTAGTCCAGAAGATCGAG -ACGGAAGTAGTCCAGAAGCTCCTT -ACGGAAGTAGTCCAGAAGCCTGTT -ACGGAAGTAGTCCAGAAGCGGTTT -ACGGAAGTAGTCCAGAAGGTGGTT -ACGGAAGTAGTCCAGAAGGCCTTT -ACGGAAGTAGTCCAGAAGGGTCTT -ACGGAAGTAGTCCAGAAGACGCTT -ACGGAAGTAGTCCAGAAGAGCGTT -ACGGAAGTAGTCCAGAAGTTCGTC -ACGGAAGTAGTCCAGAAGTCTCTC -ACGGAAGTAGTCCAGAAGTGGATC -ACGGAAGTAGTCCAGAAGCACTTC -ACGGAAGTAGTCCAGAAGGTACTC -ACGGAAGTAGTCCAGAAGGATGTC -ACGGAAGTAGTCCAGAAGACAGTC -ACGGAAGTAGTCCAGAAGTTGCTG -ACGGAAGTAGTCCAGAAGTCCATG -ACGGAAGTAGTCCAGAAGTGTGTG -ACGGAAGTAGTCCAGAAGCTAGTG -ACGGAAGTAGTCCAGAAGCATCTG -ACGGAAGTAGTCCAGAAGGAGTTG -ACGGAAGTAGTCCAGAAGAGACTG -ACGGAAGTAGTCCAGAAGTCGGTA -ACGGAAGTAGTCCAGAAGTGCCTA -ACGGAAGTAGTCCAGAAGCCACTA -ACGGAAGTAGTCCAGAAGGGAGTA -ACGGAAGTAGTCCAGAAGTCGTCT -ACGGAAGTAGTCCAGAAGTGCACT -ACGGAAGTAGTCCAGAAGCTGACT -ACGGAAGTAGTCCAGAAGCAACCT -ACGGAAGTAGTCCAGAAGGCTACT -ACGGAAGTAGTCCAGAAGGGATCT -ACGGAAGTAGTCCAGAAGAAGGCT -ACGGAAGTAGTCCAGAAGTCAACC -ACGGAAGTAGTCCAGAAGTGTTCC -ACGGAAGTAGTCCAGAAGATTCCC -ACGGAAGTAGTCCAGAAGTTCTCG -ACGGAAGTAGTCCAGAAGTAGACG -ACGGAAGTAGTCCAGAAGGTAACG -ACGGAAGTAGTCCAGAAGACTTCG -ACGGAAGTAGTCCAGAAGTACGCA -ACGGAAGTAGTCCAGAAGCTTGCA -ACGGAAGTAGTCCAGAAGCGAACA -ACGGAAGTAGTCCAGAAGCAGTCA -ACGGAAGTAGTCCAGAAGGATCCA -ACGGAAGTAGTCCAGAAGACGACA -ACGGAAGTAGTCCAGAAGAGCTCA -ACGGAAGTAGTCCAGAAGTCACGT -ACGGAAGTAGTCCAGAAGCGTAGT -ACGGAAGTAGTCCAGAAGGTCAGT -ACGGAAGTAGTCCAGAAGGAAGGT -ACGGAAGTAGTCCAGAAGAACCGT -ACGGAAGTAGTCCAGAAGTTGTGC -ACGGAAGTAGTCCAGAAGCTAAGC -ACGGAAGTAGTCCAGAAGACTAGC -ACGGAAGTAGTCCAGAAGAGATGC -ACGGAAGTAGTCCAGAAGTGAAGG -ACGGAAGTAGTCCAGAAGCAATGG -ACGGAAGTAGTCCAGAAGATGAGG -ACGGAAGTAGTCCAGAAGAATGGG -ACGGAAGTAGTCCAGAAGTCCTGA -ACGGAAGTAGTCCAGAAGTAGCGA -ACGGAAGTAGTCCAGAAGCACAGA -ACGGAAGTAGTCCAGAAGGCAAGA -ACGGAAGTAGTCCAGAAGGGTTGA -ACGGAAGTAGTCCAGAAGTCCGAT -ACGGAAGTAGTCCAGAAGTGGCAT -ACGGAAGTAGTCCAGAAGCGAGAT -ACGGAAGTAGTCCAGAAGTACCAC -ACGGAAGTAGTCCAGAAGCAGAAC -ACGGAAGTAGTCCAGAAGGTCTAC -ACGGAAGTAGTCCAGAAGACGTAC -ACGGAAGTAGTCCAGAAGAGTGAC -ACGGAAGTAGTCCAGAAGCTGTAG -ACGGAAGTAGTCCAGAAGCCTAAG -ACGGAAGTAGTCCAGAAGGTTCAG -ACGGAAGTAGTCCAGAAGGCATAG -ACGGAAGTAGTCCAGAAGGACAAG -ACGGAAGTAGTCCAGAAGAAGCAG -ACGGAAGTAGTCCAGAAGCGTCAA -ACGGAAGTAGTCCAGAAGGCTGAA -ACGGAAGTAGTCCAGAAGAGTACG -ACGGAAGTAGTCCAGAAGATCCGA -ACGGAAGTAGTCCAGAAGATGGGA -ACGGAAGTAGTCCAGAAGGTGCAA -ACGGAAGTAGTCCAGAAGGAGGAA -ACGGAAGTAGTCCAGAAGCAGGTA -ACGGAAGTAGTCCAGAAGGACTCT -ACGGAAGTAGTCCAGAAGAGTCCT -ACGGAAGTAGTCCAGAAGTAAGCC -ACGGAAGTAGTCCAGAAGATAGCC -ACGGAAGTAGTCCAGAAGTAACCG -ACGGAAGTAGTCCAGAAGATGCCA -ACGGAAGTAGTCCAACGTGGAAAC -ACGGAAGTAGTCCAACGTAACACC -ACGGAAGTAGTCCAACGTATCGAG -ACGGAAGTAGTCCAACGTCTCCTT -ACGGAAGTAGTCCAACGTCCTGTT -ACGGAAGTAGTCCAACGTCGGTTT -ACGGAAGTAGTCCAACGTGTGGTT -ACGGAAGTAGTCCAACGTGCCTTT -ACGGAAGTAGTCCAACGTGGTCTT -ACGGAAGTAGTCCAACGTACGCTT -ACGGAAGTAGTCCAACGTAGCGTT -ACGGAAGTAGTCCAACGTTTCGTC -ACGGAAGTAGTCCAACGTTCTCTC -ACGGAAGTAGTCCAACGTTGGATC -ACGGAAGTAGTCCAACGTCACTTC -ACGGAAGTAGTCCAACGTGTACTC -ACGGAAGTAGTCCAACGTGATGTC -ACGGAAGTAGTCCAACGTACAGTC -ACGGAAGTAGTCCAACGTTTGCTG -ACGGAAGTAGTCCAACGTTCCATG -ACGGAAGTAGTCCAACGTTGTGTG -ACGGAAGTAGTCCAACGTCTAGTG -ACGGAAGTAGTCCAACGTCATCTG -ACGGAAGTAGTCCAACGTGAGTTG -ACGGAAGTAGTCCAACGTAGACTG -ACGGAAGTAGTCCAACGTTCGGTA -ACGGAAGTAGTCCAACGTTGCCTA -ACGGAAGTAGTCCAACGTCCACTA -ACGGAAGTAGTCCAACGTGGAGTA -ACGGAAGTAGTCCAACGTTCGTCT -ACGGAAGTAGTCCAACGTTGCACT -ACGGAAGTAGTCCAACGTCTGACT -ACGGAAGTAGTCCAACGTCAACCT -ACGGAAGTAGTCCAACGTGCTACT -ACGGAAGTAGTCCAACGTGGATCT -ACGGAAGTAGTCCAACGTAAGGCT -ACGGAAGTAGTCCAACGTTCAACC -ACGGAAGTAGTCCAACGTTGTTCC -ACGGAAGTAGTCCAACGTATTCCC -ACGGAAGTAGTCCAACGTTTCTCG -ACGGAAGTAGTCCAACGTTAGACG -ACGGAAGTAGTCCAACGTGTAACG -ACGGAAGTAGTCCAACGTACTTCG -ACGGAAGTAGTCCAACGTTACGCA -ACGGAAGTAGTCCAACGTCTTGCA -ACGGAAGTAGTCCAACGTCGAACA -ACGGAAGTAGTCCAACGTCAGTCA -ACGGAAGTAGTCCAACGTGATCCA -ACGGAAGTAGTCCAACGTACGACA -ACGGAAGTAGTCCAACGTAGCTCA -ACGGAAGTAGTCCAACGTTCACGT -ACGGAAGTAGTCCAACGTCGTAGT -ACGGAAGTAGTCCAACGTGTCAGT -ACGGAAGTAGTCCAACGTGAAGGT -ACGGAAGTAGTCCAACGTAACCGT -ACGGAAGTAGTCCAACGTTTGTGC -ACGGAAGTAGTCCAACGTCTAAGC -ACGGAAGTAGTCCAACGTACTAGC -ACGGAAGTAGTCCAACGTAGATGC -ACGGAAGTAGTCCAACGTTGAAGG -ACGGAAGTAGTCCAACGTCAATGG -ACGGAAGTAGTCCAACGTATGAGG -ACGGAAGTAGTCCAACGTAATGGG -ACGGAAGTAGTCCAACGTTCCTGA -ACGGAAGTAGTCCAACGTTAGCGA -ACGGAAGTAGTCCAACGTCACAGA -ACGGAAGTAGTCCAACGTGCAAGA -ACGGAAGTAGTCCAACGTGGTTGA -ACGGAAGTAGTCCAACGTTCCGAT -ACGGAAGTAGTCCAACGTTGGCAT -ACGGAAGTAGTCCAACGTCGAGAT -ACGGAAGTAGTCCAACGTTACCAC -ACGGAAGTAGTCCAACGTCAGAAC -ACGGAAGTAGTCCAACGTGTCTAC -ACGGAAGTAGTCCAACGTACGTAC -ACGGAAGTAGTCCAACGTAGTGAC -ACGGAAGTAGTCCAACGTCTGTAG -ACGGAAGTAGTCCAACGTCCTAAG -ACGGAAGTAGTCCAACGTGTTCAG -ACGGAAGTAGTCCAACGTGCATAG -ACGGAAGTAGTCCAACGTGACAAG -ACGGAAGTAGTCCAACGTAAGCAG -ACGGAAGTAGTCCAACGTCGTCAA -ACGGAAGTAGTCCAACGTGCTGAA -ACGGAAGTAGTCCAACGTAGTACG -ACGGAAGTAGTCCAACGTATCCGA -ACGGAAGTAGTCCAACGTATGGGA -ACGGAAGTAGTCCAACGTGTGCAA -ACGGAAGTAGTCCAACGTGAGGAA -ACGGAAGTAGTCCAACGTCAGGTA -ACGGAAGTAGTCCAACGTGACTCT -ACGGAAGTAGTCCAACGTAGTCCT -ACGGAAGTAGTCCAACGTTAAGCC -ACGGAAGTAGTCCAACGTATAGCC -ACGGAAGTAGTCCAACGTTAACCG -ACGGAAGTAGTCCAACGTATGCCA -ACGGAAGTAGTCGAAGCTGGAAAC -ACGGAAGTAGTCGAAGCTAACACC -ACGGAAGTAGTCGAAGCTATCGAG -ACGGAAGTAGTCGAAGCTCTCCTT -ACGGAAGTAGTCGAAGCTCCTGTT -ACGGAAGTAGTCGAAGCTCGGTTT -ACGGAAGTAGTCGAAGCTGTGGTT -ACGGAAGTAGTCGAAGCTGCCTTT -ACGGAAGTAGTCGAAGCTGGTCTT -ACGGAAGTAGTCGAAGCTACGCTT -ACGGAAGTAGTCGAAGCTAGCGTT -ACGGAAGTAGTCGAAGCTTTCGTC -ACGGAAGTAGTCGAAGCTTCTCTC -ACGGAAGTAGTCGAAGCTTGGATC -ACGGAAGTAGTCGAAGCTCACTTC -ACGGAAGTAGTCGAAGCTGTACTC -ACGGAAGTAGTCGAAGCTGATGTC -ACGGAAGTAGTCGAAGCTACAGTC -ACGGAAGTAGTCGAAGCTTTGCTG -ACGGAAGTAGTCGAAGCTTCCATG -ACGGAAGTAGTCGAAGCTTGTGTG -ACGGAAGTAGTCGAAGCTCTAGTG -ACGGAAGTAGTCGAAGCTCATCTG -ACGGAAGTAGTCGAAGCTGAGTTG -ACGGAAGTAGTCGAAGCTAGACTG -ACGGAAGTAGTCGAAGCTTCGGTA -ACGGAAGTAGTCGAAGCTTGCCTA -ACGGAAGTAGTCGAAGCTCCACTA -ACGGAAGTAGTCGAAGCTGGAGTA -ACGGAAGTAGTCGAAGCTTCGTCT -ACGGAAGTAGTCGAAGCTTGCACT -ACGGAAGTAGTCGAAGCTCTGACT -ACGGAAGTAGTCGAAGCTCAACCT -ACGGAAGTAGTCGAAGCTGCTACT -ACGGAAGTAGTCGAAGCTGGATCT -ACGGAAGTAGTCGAAGCTAAGGCT -ACGGAAGTAGTCGAAGCTTCAACC -ACGGAAGTAGTCGAAGCTTGTTCC -ACGGAAGTAGTCGAAGCTATTCCC -ACGGAAGTAGTCGAAGCTTTCTCG -ACGGAAGTAGTCGAAGCTTAGACG -ACGGAAGTAGTCGAAGCTGTAACG -ACGGAAGTAGTCGAAGCTACTTCG -ACGGAAGTAGTCGAAGCTTACGCA -ACGGAAGTAGTCGAAGCTCTTGCA -ACGGAAGTAGTCGAAGCTCGAACA -ACGGAAGTAGTCGAAGCTCAGTCA -ACGGAAGTAGTCGAAGCTGATCCA -ACGGAAGTAGTCGAAGCTACGACA -ACGGAAGTAGTCGAAGCTAGCTCA -ACGGAAGTAGTCGAAGCTTCACGT -ACGGAAGTAGTCGAAGCTCGTAGT -ACGGAAGTAGTCGAAGCTGTCAGT -ACGGAAGTAGTCGAAGCTGAAGGT -ACGGAAGTAGTCGAAGCTAACCGT -ACGGAAGTAGTCGAAGCTTTGTGC -ACGGAAGTAGTCGAAGCTCTAAGC -ACGGAAGTAGTCGAAGCTACTAGC -ACGGAAGTAGTCGAAGCTAGATGC -ACGGAAGTAGTCGAAGCTTGAAGG -ACGGAAGTAGTCGAAGCTCAATGG -ACGGAAGTAGTCGAAGCTATGAGG -ACGGAAGTAGTCGAAGCTAATGGG -ACGGAAGTAGTCGAAGCTTCCTGA -ACGGAAGTAGTCGAAGCTTAGCGA -ACGGAAGTAGTCGAAGCTCACAGA -ACGGAAGTAGTCGAAGCTGCAAGA -ACGGAAGTAGTCGAAGCTGGTTGA -ACGGAAGTAGTCGAAGCTTCCGAT -ACGGAAGTAGTCGAAGCTTGGCAT -ACGGAAGTAGTCGAAGCTCGAGAT -ACGGAAGTAGTCGAAGCTTACCAC -ACGGAAGTAGTCGAAGCTCAGAAC -ACGGAAGTAGTCGAAGCTGTCTAC -ACGGAAGTAGTCGAAGCTACGTAC -ACGGAAGTAGTCGAAGCTAGTGAC -ACGGAAGTAGTCGAAGCTCTGTAG -ACGGAAGTAGTCGAAGCTCCTAAG -ACGGAAGTAGTCGAAGCTGTTCAG -ACGGAAGTAGTCGAAGCTGCATAG -ACGGAAGTAGTCGAAGCTGACAAG -ACGGAAGTAGTCGAAGCTAAGCAG -ACGGAAGTAGTCGAAGCTCGTCAA -ACGGAAGTAGTCGAAGCTGCTGAA -ACGGAAGTAGTCGAAGCTAGTACG -ACGGAAGTAGTCGAAGCTATCCGA -ACGGAAGTAGTCGAAGCTATGGGA -ACGGAAGTAGTCGAAGCTGTGCAA -ACGGAAGTAGTCGAAGCTGAGGAA -ACGGAAGTAGTCGAAGCTCAGGTA -ACGGAAGTAGTCGAAGCTGACTCT -ACGGAAGTAGTCGAAGCTAGTCCT -ACGGAAGTAGTCGAAGCTTAAGCC -ACGGAAGTAGTCGAAGCTATAGCC -ACGGAAGTAGTCGAAGCTTAACCG -ACGGAAGTAGTCGAAGCTATGCCA -ACGGAAGTAGTCACGAGTGGAAAC -ACGGAAGTAGTCACGAGTAACACC -ACGGAAGTAGTCACGAGTATCGAG -ACGGAAGTAGTCACGAGTCTCCTT -ACGGAAGTAGTCACGAGTCCTGTT -ACGGAAGTAGTCACGAGTCGGTTT -ACGGAAGTAGTCACGAGTGTGGTT -ACGGAAGTAGTCACGAGTGCCTTT -ACGGAAGTAGTCACGAGTGGTCTT -ACGGAAGTAGTCACGAGTACGCTT -ACGGAAGTAGTCACGAGTAGCGTT -ACGGAAGTAGTCACGAGTTTCGTC -ACGGAAGTAGTCACGAGTTCTCTC -ACGGAAGTAGTCACGAGTTGGATC -ACGGAAGTAGTCACGAGTCACTTC -ACGGAAGTAGTCACGAGTGTACTC -ACGGAAGTAGTCACGAGTGATGTC -ACGGAAGTAGTCACGAGTACAGTC -ACGGAAGTAGTCACGAGTTTGCTG -ACGGAAGTAGTCACGAGTTCCATG -ACGGAAGTAGTCACGAGTTGTGTG -ACGGAAGTAGTCACGAGTCTAGTG -ACGGAAGTAGTCACGAGTCATCTG -ACGGAAGTAGTCACGAGTGAGTTG -ACGGAAGTAGTCACGAGTAGACTG -ACGGAAGTAGTCACGAGTTCGGTA -ACGGAAGTAGTCACGAGTTGCCTA -ACGGAAGTAGTCACGAGTCCACTA -ACGGAAGTAGTCACGAGTGGAGTA -ACGGAAGTAGTCACGAGTTCGTCT -ACGGAAGTAGTCACGAGTTGCACT -ACGGAAGTAGTCACGAGTCTGACT -ACGGAAGTAGTCACGAGTCAACCT -ACGGAAGTAGTCACGAGTGCTACT -ACGGAAGTAGTCACGAGTGGATCT -ACGGAAGTAGTCACGAGTAAGGCT -ACGGAAGTAGTCACGAGTTCAACC -ACGGAAGTAGTCACGAGTTGTTCC -ACGGAAGTAGTCACGAGTATTCCC -ACGGAAGTAGTCACGAGTTTCTCG -ACGGAAGTAGTCACGAGTTAGACG -ACGGAAGTAGTCACGAGTGTAACG -ACGGAAGTAGTCACGAGTACTTCG -ACGGAAGTAGTCACGAGTTACGCA -ACGGAAGTAGTCACGAGTCTTGCA -ACGGAAGTAGTCACGAGTCGAACA -ACGGAAGTAGTCACGAGTCAGTCA -ACGGAAGTAGTCACGAGTGATCCA -ACGGAAGTAGTCACGAGTACGACA -ACGGAAGTAGTCACGAGTAGCTCA -ACGGAAGTAGTCACGAGTTCACGT -ACGGAAGTAGTCACGAGTCGTAGT -ACGGAAGTAGTCACGAGTGTCAGT -ACGGAAGTAGTCACGAGTGAAGGT -ACGGAAGTAGTCACGAGTAACCGT -ACGGAAGTAGTCACGAGTTTGTGC -ACGGAAGTAGTCACGAGTCTAAGC -ACGGAAGTAGTCACGAGTACTAGC -ACGGAAGTAGTCACGAGTAGATGC -ACGGAAGTAGTCACGAGTTGAAGG -ACGGAAGTAGTCACGAGTCAATGG -ACGGAAGTAGTCACGAGTATGAGG -ACGGAAGTAGTCACGAGTAATGGG -ACGGAAGTAGTCACGAGTTCCTGA -ACGGAAGTAGTCACGAGTTAGCGA -ACGGAAGTAGTCACGAGTCACAGA -ACGGAAGTAGTCACGAGTGCAAGA -ACGGAAGTAGTCACGAGTGGTTGA -ACGGAAGTAGTCACGAGTTCCGAT -ACGGAAGTAGTCACGAGTTGGCAT -ACGGAAGTAGTCACGAGTCGAGAT -ACGGAAGTAGTCACGAGTTACCAC -ACGGAAGTAGTCACGAGTCAGAAC -ACGGAAGTAGTCACGAGTGTCTAC -ACGGAAGTAGTCACGAGTACGTAC -ACGGAAGTAGTCACGAGTAGTGAC -ACGGAAGTAGTCACGAGTCTGTAG -ACGGAAGTAGTCACGAGTCCTAAG -ACGGAAGTAGTCACGAGTGTTCAG -ACGGAAGTAGTCACGAGTGCATAG -ACGGAAGTAGTCACGAGTGACAAG -ACGGAAGTAGTCACGAGTAAGCAG -ACGGAAGTAGTCACGAGTCGTCAA -ACGGAAGTAGTCACGAGTGCTGAA -ACGGAAGTAGTCACGAGTAGTACG -ACGGAAGTAGTCACGAGTATCCGA -ACGGAAGTAGTCACGAGTATGGGA -ACGGAAGTAGTCACGAGTGTGCAA -ACGGAAGTAGTCACGAGTGAGGAA -ACGGAAGTAGTCACGAGTCAGGTA -ACGGAAGTAGTCACGAGTGACTCT -ACGGAAGTAGTCACGAGTAGTCCT -ACGGAAGTAGTCACGAGTTAAGCC -ACGGAAGTAGTCACGAGTATAGCC -ACGGAAGTAGTCACGAGTTAACCG -ACGGAAGTAGTCACGAGTATGCCA -ACGGAAGTAGTCCGAATCGGAAAC -ACGGAAGTAGTCCGAATCAACACC -ACGGAAGTAGTCCGAATCATCGAG -ACGGAAGTAGTCCGAATCCTCCTT -ACGGAAGTAGTCCGAATCCCTGTT -ACGGAAGTAGTCCGAATCCGGTTT -ACGGAAGTAGTCCGAATCGTGGTT -ACGGAAGTAGTCCGAATCGCCTTT -ACGGAAGTAGTCCGAATCGGTCTT -ACGGAAGTAGTCCGAATCACGCTT -ACGGAAGTAGTCCGAATCAGCGTT -ACGGAAGTAGTCCGAATCTTCGTC -ACGGAAGTAGTCCGAATCTCTCTC -ACGGAAGTAGTCCGAATCTGGATC -ACGGAAGTAGTCCGAATCCACTTC -ACGGAAGTAGTCCGAATCGTACTC -ACGGAAGTAGTCCGAATCGATGTC -ACGGAAGTAGTCCGAATCACAGTC -ACGGAAGTAGTCCGAATCTTGCTG -ACGGAAGTAGTCCGAATCTCCATG -ACGGAAGTAGTCCGAATCTGTGTG -ACGGAAGTAGTCCGAATCCTAGTG -ACGGAAGTAGTCCGAATCCATCTG -ACGGAAGTAGTCCGAATCGAGTTG -ACGGAAGTAGTCCGAATCAGACTG -ACGGAAGTAGTCCGAATCTCGGTA -ACGGAAGTAGTCCGAATCTGCCTA -ACGGAAGTAGTCCGAATCCCACTA -ACGGAAGTAGTCCGAATCGGAGTA -ACGGAAGTAGTCCGAATCTCGTCT -ACGGAAGTAGTCCGAATCTGCACT -ACGGAAGTAGTCCGAATCCTGACT -ACGGAAGTAGTCCGAATCCAACCT -ACGGAAGTAGTCCGAATCGCTACT -ACGGAAGTAGTCCGAATCGGATCT -ACGGAAGTAGTCCGAATCAAGGCT -ACGGAAGTAGTCCGAATCTCAACC -ACGGAAGTAGTCCGAATCTGTTCC -ACGGAAGTAGTCCGAATCATTCCC -ACGGAAGTAGTCCGAATCTTCTCG -ACGGAAGTAGTCCGAATCTAGACG -ACGGAAGTAGTCCGAATCGTAACG -ACGGAAGTAGTCCGAATCACTTCG -ACGGAAGTAGTCCGAATCTACGCA -ACGGAAGTAGTCCGAATCCTTGCA -ACGGAAGTAGTCCGAATCCGAACA -ACGGAAGTAGTCCGAATCCAGTCA -ACGGAAGTAGTCCGAATCGATCCA -ACGGAAGTAGTCCGAATCACGACA -ACGGAAGTAGTCCGAATCAGCTCA -ACGGAAGTAGTCCGAATCTCACGT -ACGGAAGTAGTCCGAATCCGTAGT -ACGGAAGTAGTCCGAATCGTCAGT -ACGGAAGTAGTCCGAATCGAAGGT -ACGGAAGTAGTCCGAATCAACCGT -ACGGAAGTAGTCCGAATCTTGTGC -ACGGAAGTAGTCCGAATCCTAAGC -ACGGAAGTAGTCCGAATCACTAGC -ACGGAAGTAGTCCGAATCAGATGC -ACGGAAGTAGTCCGAATCTGAAGG -ACGGAAGTAGTCCGAATCCAATGG -ACGGAAGTAGTCCGAATCATGAGG -ACGGAAGTAGTCCGAATCAATGGG -ACGGAAGTAGTCCGAATCTCCTGA -ACGGAAGTAGTCCGAATCTAGCGA -ACGGAAGTAGTCCGAATCCACAGA -ACGGAAGTAGTCCGAATCGCAAGA -ACGGAAGTAGTCCGAATCGGTTGA -ACGGAAGTAGTCCGAATCTCCGAT -ACGGAAGTAGTCCGAATCTGGCAT -ACGGAAGTAGTCCGAATCCGAGAT -ACGGAAGTAGTCCGAATCTACCAC -ACGGAAGTAGTCCGAATCCAGAAC -ACGGAAGTAGTCCGAATCGTCTAC -ACGGAAGTAGTCCGAATCACGTAC -ACGGAAGTAGTCCGAATCAGTGAC -ACGGAAGTAGTCCGAATCCTGTAG -ACGGAAGTAGTCCGAATCCCTAAG -ACGGAAGTAGTCCGAATCGTTCAG -ACGGAAGTAGTCCGAATCGCATAG -ACGGAAGTAGTCCGAATCGACAAG -ACGGAAGTAGTCCGAATCAAGCAG -ACGGAAGTAGTCCGAATCCGTCAA -ACGGAAGTAGTCCGAATCGCTGAA -ACGGAAGTAGTCCGAATCAGTACG -ACGGAAGTAGTCCGAATCATCCGA -ACGGAAGTAGTCCGAATCATGGGA -ACGGAAGTAGTCCGAATCGTGCAA -ACGGAAGTAGTCCGAATCGAGGAA -ACGGAAGTAGTCCGAATCCAGGTA -ACGGAAGTAGTCCGAATCGACTCT -ACGGAAGTAGTCCGAATCAGTCCT -ACGGAAGTAGTCCGAATCTAAGCC -ACGGAAGTAGTCCGAATCATAGCC -ACGGAAGTAGTCCGAATCTAACCG -ACGGAAGTAGTCCGAATCATGCCA -ACGGAAGTAGTCGGAATGGGAAAC -ACGGAAGTAGTCGGAATGAACACC -ACGGAAGTAGTCGGAATGATCGAG -ACGGAAGTAGTCGGAATGCTCCTT -ACGGAAGTAGTCGGAATGCCTGTT -ACGGAAGTAGTCGGAATGCGGTTT -ACGGAAGTAGTCGGAATGGTGGTT -ACGGAAGTAGTCGGAATGGCCTTT -ACGGAAGTAGTCGGAATGGGTCTT -ACGGAAGTAGTCGGAATGACGCTT -ACGGAAGTAGTCGGAATGAGCGTT -ACGGAAGTAGTCGGAATGTTCGTC -ACGGAAGTAGTCGGAATGTCTCTC -ACGGAAGTAGTCGGAATGTGGATC -ACGGAAGTAGTCGGAATGCACTTC -ACGGAAGTAGTCGGAATGGTACTC -ACGGAAGTAGTCGGAATGGATGTC -ACGGAAGTAGTCGGAATGACAGTC -ACGGAAGTAGTCGGAATGTTGCTG -ACGGAAGTAGTCGGAATGTCCATG -ACGGAAGTAGTCGGAATGTGTGTG -ACGGAAGTAGTCGGAATGCTAGTG -ACGGAAGTAGTCGGAATGCATCTG -ACGGAAGTAGTCGGAATGGAGTTG -ACGGAAGTAGTCGGAATGAGACTG -ACGGAAGTAGTCGGAATGTCGGTA -ACGGAAGTAGTCGGAATGTGCCTA -ACGGAAGTAGTCGGAATGCCACTA -ACGGAAGTAGTCGGAATGGGAGTA -ACGGAAGTAGTCGGAATGTCGTCT -ACGGAAGTAGTCGGAATGTGCACT -ACGGAAGTAGTCGGAATGCTGACT -ACGGAAGTAGTCGGAATGCAACCT -ACGGAAGTAGTCGGAATGGCTACT -ACGGAAGTAGTCGGAATGGGATCT -ACGGAAGTAGTCGGAATGAAGGCT -ACGGAAGTAGTCGGAATGTCAACC -ACGGAAGTAGTCGGAATGTGTTCC -ACGGAAGTAGTCGGAATGATTCCC -ACGGAAGTAGTCGGAATGTTCTCG -ACGGAAGTAGTCGGAATGTAGACG -ACGGAAGTAGTCGGAATGGTAACG -ACGGAAGTAGTCGGAATGACTTCG -ACGGAAGTAGTCGGAATGTACGCA -ACGGAAGTAGTCGGAATGCTTGCA -ACGGAAGTAGTCGGAATGCGAACA -ACGGAAGTAGTCGGAATGCAGTCA -ACGGAAGTAGTCGGAATGGATCCA -ACGGAAGTAGTCGGAATGACGACA -ACGGAAGTAGTCGGAATGAGCTCA -ACGGAAGTAGTCGGAATGTCACGT -ACGGAAGTAGTCGGAATGCGTAGT -ACGGAAGTAGTCGGAATGGTCAGT -ACGGAAGTAGTCGGAATGGAAGGT -ACGGAAGTAGTCGGAATGAACCGT -ACGGAAGTAGTCGGAATGTTGTGC -ACGGAAGTAGTCGGAATGCTAAGC -ACGGAAGTAGTCGGAATGACTAGC -ACGGAAGTAGTCGGAATGAGATGC -ACGGAAGTAGTCGGAATGTGAAGG -ACGGAAGTAGTCGGAATGCAATGG -ACGGAAGTAGTCGGAATGATGAGG -ACGGAAGTAGTCGGAATGAATGGG -ACGGAAGTAGTCGGAATGTCCTGA -ACGGAAGTAGTCGGAATGTAGCGA -ACGGAAGTAGTCGGAATGCACAGA -ACGGAAGTAGTCGGAATGGCAAGA -ACGGAAGTAGTCGGAATGGGTTGA -ACGGAAGTAGTCGGAATGTCCGAT -ACGGAAGTAGTCGGAATGTGGCAT -ACGGAAGTAGTCGGAATGCGAGAT -ACGGAAGTAGTCGGAATGTACCAC -ACGGAAGTAGTCGGAATGCAGAAC -ACGGAAGTAGTCGGAATGGTCTAC -ACGGAAGTAGTCGGAATGACGTAC -ACGGAAGTAGTCGGAATGAGTGAC -ACGGAAGTAGTCGGAATGCTGTAG -ACGGAAGTAGTCGGAATGCCTAAG -ACGGAAGTAGTCGGAATGGTTCAG -ACGGAAGTAGTCGGAATGGCATAG -ACGGAAGTAGTCGGAATGGACAAG -ACGGAAGTAGTCGGAATGAAGCAG -ACGGAAGTAGTCGGAATGCGTCAA -ACGGAAGTAGTCGGAATGGCTGAA -ACGGAAGTAGTCGGAATGAGTACG -ACGGAAGTAGTCGGAATGATCCGA -ACGGAAGTAGTCGGAATGATGGGA -ACGGAAGTAGTCGGAATGGTGCAA -ACGGAAGTAGTCGGAATGGAGGAA -ACGGAAGTAGTCGGAATGCAGGTA -ACGGAAGTAGTCGGAATGGACTCT -ACGGAAGTAGTCGGAATGAGTCCT -ACGGAAGTAGTCGGAATGTAAGCC -ACGGAAGTAGTCGGAATGATAGCC -ACGGAAGTAGTCGGAATGTAACCG -ACGGAAGTAGTCGGAATGATGCCA -ACGGAAGTAGTCCAAGTGGGAAAC -ACGGAAGTAGTCCAAGTGAACACC -ACGGAAGTAGTCCAAGTGATCGAG -ACGGAAGTAGTCCAAGTGCTCCTT -ACGGAAGTAGTCCAAGTGCCTGTT -ACGGAAGTAGTCCAAGTGCGGTTT -ACGGAAGTAGTCCAAGTGGTGGTT -ACGGAAGTAGTCCAAGTGGCCTTT -ACGGAAGTAGTCCAAGTGGGTCTT -ACGGAAGTAGTCCAAGTGACGCTT -ACGGAAGTAGTCCAAGTGAGCGTT -ACGGAAGTAGTCCAAGTGTTCGTC -ACGGAAGTAGTCCAAGTGTCTCTC -ACGGAAGTAGTCCAAGTGTGGATC -ACGGAAGTAGTCCAAGTGCACTTC -ACGGAAGTAGTCCAAGTGGTACTC -ACGGAAGTAGTCCAAGTGGATGTC -ACGGAAGTAGTCCAAGTGACAGTC -ACGGAAGTAGTCCAAGTGTTGCTG -ACGGAAGTAGTCCAAGTGTCCATG -ACGGAAGTAGTCCAAGTGTGTGTG -ACGGAAGTAGTCCAAGTGCTAGTG -ACGGAAGTAGTCCAAGTGCATCTG -ACGGAAGTAGTCCAAGTGGAGTTG -ACGGAAGTAGTCCAAGTGAGACTG -ACGGAAGTAGTCCAAGTGTCGGTA -ACGGAAGTAGTCCAAGTGTGCCTA -ACGGAAGTAGTCCAAGTGCCACTA -ACGGAAGTAGTCCAAGTGGGAGTA -ACGGAAGTAGTCCAAGTGTCGTCT -ACGGAAGTAGTCCAAGTGTGCACT -ACGGAAGTAGTCCAAGTGCTGACT -ACGGAAGTAGTCCAAGTGCAACCT -ACGGAAGTAGTCCAAGTGGCTACT -ACGGAAGTAGTCCAAGTGGGATCT -ACGGAAGTAGTCCAAGTGAAGGCT -ACGGAAGTAGTCCAAGTGTCAACC -ACGGAAGTAGTCCAAGTGTGTTCC -ACGGAAGTAGTCCAAGTGATTCCC -ACGGAAGTAGTCCAAGTGTTCTCG -ACGGAAGTAGTCCAAGTGTAGACG -ACGGAAGTAGTCCAAGTGGTAACG -ACGGAAGTAGTCCAAGTGACTTCG -ACGGAAGTAGTCCAAGTGTACGCA -ACGGAAGTAGTCCAAGTGCTTGCA -ACGGAAGTAGTCCAAGTGCGAACA -ACGGAAGTAGTCCAAGTGCAGTCA -ACGGAAGTAGTCCAAGTGGATCCA -ACGGAAGTAGTCCAAGTGACGACA -ACGGAAGTAGTCCAAGTGAGCTCA -ACGGAAGTAGTCCAAGTGTCACGT -ACGGAAGTAGTCCAAGTGCGTAGT -ACGGAAGTAGTCCAAGTGGTCAGT -ACGGAAGTAGTCCAAGTGGAAGGT -ACGGAAGTAGTCCAAGTGAACCGT -ACGGAAGTAGTCCAAGTGTTGTGC -ACGGAAGTAGTCCAAGTGCTAAGC -ACGGAAGTAGTCCAAGTGACTAGC -ACGGAAGTAGTCCAAGTGAGATGC -ACGGAAGTAGTCCAAGTGTGAAGG -ACGGAAGTAGTCCAAGTGCAATGG -ACGGAAGTAGTCCAAGTGATGAGG -ACGGAAGTAGTCCAAGTGAATGGG -ACGGAAGTAGTCCAAGTGTCCTGA -ACGGAAGTAGTCCAAGTGTAGCGA -ACGGAAGTAGTCCAAGTGCACAGA -ACGGAAGTAGTCCAAGTGGCAAGA -ACGGAAGTAGTCCAAGTGGGTTGA -ACGGAAGTAGTCCAAGTGTCCGAT -ACGGAAGTAGTCCAAGTGTGGCAT -ACGGAAGTAGTCCAAGTGCGAGAT -ACGGAAGTAGTCCAAGTGTACCAC -ACGGAAGTAGTCCAAGTGCAGAAC -ACGGAAGTAGTCCAAGTGGTCTAC -ACGGAAGTAGTCCAAGTGACGTAC -ACGGAAGTAGTCCAAGTGAGTGAC -ACGGAAGTAGTCCAAGTGCTGTAG -ACGGAAGTAGTCCAAGTGCCTAAG -ACGGAAGTAGTCCAAGTGGTTCAG -ACGGAAGTAGTCCAAGTGGCATAG -ACGGAAGTAGTCCAAGTGGACAAG -ACGGAAGTAGTCCAAGTGAAGCAG -ACGGAAGTAGTCCAAGTGCGTCAA -ACGGAAGTAGTCCAAGTGGCTGAA -ACGGAAGTAGTCCAAGTGAGTACG -ACGGAAGTAGTCCAAGTGATCCGA -ACGGAAGTAGTCCAAGTGATGGGA -ACGGAAGTAGTCCAAGTGGTGCAA -ACGGAAGTAGTCCAAGTGGAGGAA -ACGGAAGTAGTCCAAGTGCAGGTA -ACGGAAGTAGTCCAAGTGGACTCT -ACGGAAGTAGTCCAAGTGAGTCCT -ACGGAAGTAGTCCAAGTGTAAGCC -ACGGAAGTAGTCCAAGTGATAGCC -ACGGAAGTAGTCCAAGTGTAACCG -ACGGAAGTAGTCCAAGTGATGCCA -ACGGAAGTAGTCGAAGAGGGAAAC -ACGGAAGTAGTCGAAGAGAACACC -ACGGAAGTAGTCGAAGAGATCGAG -ACGGAAGTAGTCGAAGAGCTCCTT -ACGGAAGTAGTCGAAGAGCCTGTT -ACGGAAGTAGTCGAAGAGCGGTTT -ACGGAAGTAGTCGAAGAGGTGGTT -ACGGAAGTAGTCGAAGAGGCCTTT -ACGGAAGTAGTCGAAGAGGGTCTT -ACGGAAGTAGTCGAAGAGACGCTT -ACGGAAGTAGTCGAAGAGAGCGTT -ACGGAAGTAGTCGAAGAGTTCGTC -ACGGAAGTAGTCGAAGAGTCTCTC -ACGGAAGTAGTCGAAGAGTGGATC -ACGGAAGTAGTCGAAGAGCACTTC -ACGGAAGTAGTCGAAGAGGTACTC -ACGGAAGTAGTCGAAGAGGATGTC -ACGGAAGTAGTCGAAGAGACAGTC -ACGGAAGTAGTCGAAGAGTTGCTG -ACGGAAGTAGTCGAAGAGTCCATG -ACGGAAGTAGTCGAAGAGTGTGTG -ACGGAAGTAGTCGAAGAGCTAGTG -ACGGAAGTAGTCGAAGAGCATCTG -ACGGAAGTAGTCGAAGAGGAGTTG -ACGGAAGTAGTCGAAGAGAGACTG -ACGGAAGTAGTCGAAGAGTCGGTA -ACGGAAGTAGTCGAAGAGTGCCTA -ACGGAAGTAGTCGAAGAGCCACTA -ACGGAAGTAGTCGAAGAGGGAGTA -ACGGAAGTAGTCGAAGAGTCGTCT -ACGGAAGTAGTCGAAGAGTGCACT -ACGGAAGTAGTCGAAGAGCTGACT -ACGGAAGTAGTCGAAGAGCAACCT -ACGGAAGTAGTCGAAGAGGCTACT -ACGGAAGTAGTCGAAGAGGGATCT -ACGGAAGTAGTCGAAGAGAAGGCT -ACGGAAGTAGTCGAAGAGTCAACC -ACGGAAGTAGTCGAAGAGTGTTCC -ACGGAAGTAGTCGAAGAGATTCCC -ACGGAAGTAGTCGAAGAGTTCTCG -ACGGAAGTAGTCGAAGAGTAGACG -ACGGAAGTAGTCGAAGAGGTAACG -ACGGAAGTAGTCGAAGAGACTTCG -ACGGAAGTAGTCGAAGAGTACGCA -ACGGAAGTAGTCGAAGAGCTTGCA -ACGGAAGTAGTCGAAGAGCGAACA -ACGGAAGTAGTCGAAGAGCAGTCA -ACGGAAGTAGTCGAAGAGGATCCA -ACGGAAGTAGTCGAAGAGACGACA -ACGGAAGTAGTCGAAGAGAGCTCA -ACGGAAGTAGTCGAAGAGTCACGT -ACGGAAGTAGTCGAAGAGCGTAGT -ACGGAAGTAGTCGAAGAGGTCAGT -ACGGAAGTAGTCGAAGAGGAAGGT -ACGGAAGTAGTCGAAGAGAACCGT -ACGGAAGTAGTCGAAGAGTTGTGC -ACGGAAGTAGTCGAAGAGCTAAGC -ACGGAAGTAGTCGAAGAGACTAGC -ACGGAAGTAGTCGAAGAGAGATGC -ACGGAAGTAGTCGAAGAGTGAAGG -ACGGAAGTAGTCGAAGAGCAATGG -ACGGAAGTAGTCGAAGAGATGAGG -ACGGAAGTAGTCGAAGAGAATGGG -ACGGAAGTAGTCGAAGAGTCCTGA -ACGGAAGTAGTCGAAGAGTAGCGA -ACGGAAGTAGTCGAAGAGCACAGA -ACGGAAGTAGTCGAAGAGGCAAGA -ACGGAAGTAGTCGAAGAGGGTTGA -ACGGAAGTAGTCGAAGAGTCCGAT -ACGGAAGTAGTCGAAGAGTGGCAT -ACGGAAGTAGTCGAAGAGCGAGAT -ACGGAAGTAGTCGAAGAGTACCAC -ACGGAAGTAGTCGAAGAGCAGAAC -ACGGAAGTAGTCGAAGAGGTCTAC -ACGGAAGTAGTCGAAGAGACGTAC -ACGGAAGTAGTCGAAGAGAGTGAC -ACGGAAGTAGTCGAAGAGCTGTAG -ACGGAAGTAGTCGAAGAGCCTAAG -ACGGAAGTAGTCGAAGAGGTTCAG -ACGGAAGTAGTCGAAGAGGCATAG -ACGGAAGTAGTCGAAGAGGACAAG -ACGGAAGTAGTCGAAGAGAAGCAG -ACGGAAGTAGTCGAAGAGCGTCAA -ACGGAAGTAGTCGAAGAGGCTGAA -ACGGAAGTAGTCGAAGAGAGTACG -ACGGAAGTAGTCGAAGAGATCCGA -ACGGAAGTAGTCGAAGAGATGGGA -ACGGAAGTAGTCGAAGAGGTGCAA -ACGGAAGTAGTCGAAGAGGAGGAA -ACGGAAGTAGTCGAAGAGCAGGTA -ACGGAAGTAGTCGAAGAGGACTCT -ACGGAAGTAGTCGAAGAGAGTCCT -ACGGAAGTAGTCGAAGAGTAAGCC -ACGGAAGTAGTCGAAGAGATAGCC -ACGGAAGTAGTCGAAGAGTAACCG -ACGGAAGTAGTCGAAGAGATGCCA -ACGGAAGTAGTCGTACAGGGAAAC -ACGGAAGTAGTCGTACAGAACACC -ACGGAAGTAGTCGTACAGATCGAG -ACGGAAGTAGTCGTACAGCTCCTT -ACGGAAGTAGTCGTACAGCCTGTT -ACGGAAGTAGTCGTACAGCGGTTT -ACGGAAGTAGTCGTACAGGTGGTT -ACGGAAGTAGTCGTACAGGCCTTT -ACGGAAGTAGTCGTACAGGGTCTT -ACGGAAGTAGTCGTACAGACGCTT -ACGGAAGTAGTCGTACAGAGCGTT -ACGGAAGTAGTCGTACAGTTCGTC -ACGGAAGTAGTCGTACAGTCTCTC -ACGGAAGTAGTCGTACAGTGGATC -ACGGAAGTAGTCGTACAGCACTTC -ACGGAAGTAGTCGTACAGGTACTC -ACGGAAGTAGTCGTACAGGATGTC -ACGGAAGTAGTCGTACAGACAGTC -ACGGAAGTAGTCGTACAGTTGCTG -ACGGAAGTAGTCGTACAGTCCATG -ACGGAAGTAGTCGTACAGTGTGTG -ACGGAAGTAGTCGTACAGCTAGTG -ACGGAAGTAGTCGTACAGCATCTG -ACGGAAGTAGTCGTACAGGAGTTG -ACGGAAGTAGTCGTACAGAGACTG -ACGGAAGTAGTCGTACAGTCGGTA -ACGGAAGTAGTCGTACAGTGCCTA -ACGGAAGTAGTCGTACAGCCACTA -ACGGAAGTAGTCGTACAGGGAGTA -ACGGAAGTAGTCGTACAGTCGTCT -ACGGAAGTAGTCGTACAGTGCACT -ACGGAAGTAGTCGTACAGCTGACT -ACGGAAGTAGTCGTACAGCAACCT -ACGGAAGTAGTCGTACAGGCTACT -ACGGAAGTAGTCGTACAGGGATCT -ACGGAAGTAGTCGTACAGAAGGCT -ACGGAAGTAGTCGTACAGTCAACC -ACGGAAGTAGTCGTACAGTGTTCC -ACGGAAGTAGTCGTACAGATTCCC -ACGGAAGTAGTCGTACAGTTCTCG -ACGGAAGTAGTCGTACAGTAGACG -ACGGAAGTAGTCGTACAGGTAACG -ACGGAAGTAGTCGTACAGACTTCG -ACGGAAGTAGTCGTACAGTACGCA -ACGGAAGTAGTCGTACAGCTTGCA -ACGGAAGTAGTCGTACAGCGAACA -ACGGAAGTAGTCGTACAGCAGTCA -ACGGAAGTAGTCGTACAGGATCCA -ACGGAAGTAGTCGTACAGACGACA -ACGGAAGTAGTCGTACAGAGCTCA -ACGGAAGTAGTCGTACAGTCACGT -ACGGAAGTAGTCGTACAGCGTAGT -ACGGAAGTAGTCGTACAGGTCAGT -ACGGAAGTAGTCGTACAGGAAGGT -ACGGAAGTAGTCGTACAGAACCGT -ACGGAAGTAGTCGTACAGTTGTGC -ACGGAAGTAGTCGTACAGCTAAGC -ACGGAAGTAGTCGTACAGACTAGC -ACGGAAGTAGTCGTACAGAGATGC -ACGGAAGTAGTCGTACAGTGAAGG -ACGGAAGTAGTCGTACAGCAATGG -ACGGAAGTAGTCGTACAGATGAGG -ACGGAAGTAGTCGTACAGAATGGG -ACGGAAGTAGTCGTACAGTCCTGA -ACGGAAGTAGTCGTACAGTAGCGA -ACGGAAGTAGTCGTACAGCACAGA -ACGGAAGTAGTCGTACAGGCAAGA -ACGGAAGTAGTCGTACAGGGTTGA -ACGGAAGTAGTCGTACAGTCCGAT -ACGGAAGTAGTCGTACAGTGGCAT -ACGGAAGTAGTCGTACAGCGAGAT -ACGGAAGTAGTCGTACAGTACCAC -ACGGAAGTAGTCGTACAGCAGAAC -ACGGAAGTAGTCGTACAGGTCTAC -ACGGAAGTAGTCGTACAGACGTAC -ACGGAAGTAGTCGTACAGAGTGAC -ACGGAAGTAGTCGTACAGCTGTAG -ACGGAAGTAGTCGTACAGCCTAAG -ACGGAAGTAGTCGTACAGGTTCAG -ACGGAAGTAGTCGTACAGGCATAG -ACGGAAGTAGTCGTACAGGACAAG -ACGGAAGTAGTCGTACAGAAGCAG -ACGGAAGTAGTCGTACAGCGTCAA -ACGGAAGTAGTCGTACAGGCTGAA -ACGGAAGTAGTCGTACAGAGTACG -ACGGAAGTAGTCGTACAGATCCGA -ACGGAAGTAGTCGTACAGATGGGA -ACGGAAGTAGTCGTACAGGTGCAA -ACGGAAGTAGTCGTACAGGAGGAA -ACGGAAGTAGTCGTACAGCAGGTA -ACGGAAGTAGTCGTACAGGACTCT -ACGGAAGTAGTCGTACAGAGTCCT -ACGGAAGTAGTCGTACAGTAAGCC -ACGGAAGTAGTCGTACAGATAGCC -ACGGAAGTAGTCGTACAGTAACCG -ACGGAAGTAGTCGTACAGATGCCA -ACGGAAGTAGTCTCTGACGGAAAC -ACGGAAGTAGTCTCTGACAACACC -ACGGAAGTAGTCTCTGACATCGAG -ACGGAAGTAGTCTCTGACCTCCTT -ACGGAAGTAGTCTCTGACCCTGTT -ACGGAAGTAGTCTCTGACCGGTTT -ACGGAAGTAGTCTCTGACGTGGTT -ACGGAAGTAGTCTCTGACGCCTTT -ACGGAAGTAGTCTCTGACGGTCTT -ACGGAAGTAGTCTCTGACACGCTT -ACGGAAGTAGTCTCTGACAGCGTT -ACGGAAGTAGTCTCTGACTTCGTC -ACGGAAGTAGTCTCTGACTCTCTC -ACGGAAGTAGTCTCTGACTGGATC -ACGGAAGTAGTCTCTGACCACTTC -ACGGAAGTAGTCTCTGACGTACTC -ACGGAAGTAGTCTCTGACGATGTC -ACGGAAGTAGTCTCTGACACAGTC -ACGGAAGTAGTCTCTGACTTGCTG -ACGGAAGTAGTCTCTGACTCCATG -ACGGAAGTAGTCTCTGACTGTGTG -ACGGAAGTAGTCTCTGACCTAGTG -ACGGAAGTAGTCTCTGACCATCTG -ACGGAAGTAGTCTCTGACGAGTTG -ACGGAAGTAGTCTCTGACAGACTG -ACGGAAGTAGTCTCTGACTCGGTA -ACGGAAGTAGTCTCTGACTGCCTA -ACGGAAGTAGTCTCTGACCCACTA -ACGGAAGTAGTCTCTGACGGAGTA -ACGGAAGTAGTCTCTGACTCGTCT -ACGGAAGTAGTCTCTGACTGCACT -ACGGAAGTAGTCTCTGACCTGACT -ACGGAAGTAGTCTCTGACCAACCT -ACGGAAGTAGTCTCTGACGCTACT -ACGGAAGTAGTCTCTGACGGATCT -ACGGAAGTAGTCTCTGACAAGGCT -ACGGAAGTAGTCTCTGACTCAACC -ACGGAAGTAGTCTCTGACTGTTCC -ACGGAAGTAGTCTCTGACATTCCC -ACGGAAGTAGTCTCTGACTTCTCG -ACGGAAGTAGTCTCTGACTAGACG -ACGGAAGTAGTCTCTGACGTAACG -ACGGAAGTAGTCTCTGACACTTCG -ACGGAAGTAGTCTCTGACTACGCA -ACGGAAGTAGTCTCTGACCTTGCA -ACGGAAGTAGTCTCTGACCGAACA -ACGGAAGTAGTCTCTGACCAGTCA -ACGGAAGTAGTCTCTGACGATCCA -ACGGAAGTAGTCTCTGACACGACA -ACGGAAGTAGTCTCTGACAGCTCA -ACGGAAGTAGTCTCTGACTCACGT -ACGGAAGTAGTCTCTGACCGTAGT -ACGGAAGTAGTCTCTGACGTCAGT -ACGGAAGTAGTCTCTGACGAAGGT -ACGGAAGTAGTCTCTGACAACCGT -ACGGAAGTAGTCTCTGACTTGTGC -ACGGAAGTAGTCTCTGACCTAAGC -ACGGAAGTAGTCTCTGACACTAGC -ACGGAAGTAGTCTCTGACAGATGC -ACGGAAGTAGTCTCTGACTGAAGG -ACGGAAGTAGTCTCTGACCAATGG -ACGGAAGTAGTCTCTGACATGAGG -ACGGAAGTAGTCTCTGACAATGGG -ACGGAAGTAGTCTCTGACTCCTGA -ACGGAAGTAGTCTCTGACTAGCGA -ACGGAAGTAGTCTCTGACCACAGA -ACGGAAGTAGTCTCTGACGCAAGA -ACGGAAGTAGTCTCTGACGGTTGA -ACGGAAGTAGTCTCTGACTCCGAT -ACGGAAGTAGTCTCTGACTGGCAT -ACGGAAGTAGTCTCTGACCGAGAT -ACGGAAGTAGTCTCTGACTACCAC -ACGGAAGTAGTCTCTGACCAGAAC -ACGGAAGTAGTCTCTGACGTCTAC -ACGGAAGTAGTCTCTGACACGTAC -ACGGAAGTAGTCTCTGACAGTGAC -ACGGAAGTAGTCTCTGACCTGTAG -ACGGAAGTAGTCTCTGACCCTAAG -ACGGAAGTAGTCTCTGACGTTCAG -ACGGAAGTAGTCTCTGACGCATAG -ACGGAAGTAGTCTCTGACGACAAG -ACGGAAGTAGTCTCTGACAAGCAG -ACGGAAGTAGTCTCTGACCGTCAA -ACGGAAGTAGTCTCTGACGCTGAA -ACGGAAGTAGTCTCTGACAGTACG -ACGGAAGTAGTCTCTGACATCCGA -ACGGAAGTAGTCTCTGACATGGGA -ACGGAAGTAGTCTCTGACGTGCAA -ACGGAAGTAGTCTCTGACGAGGAA -ACGGAAGTAGTCTCTGACCAGGTA -ACGGAAGTAGTCTCTGACGACTCT -ACGGAAGTAGTCTCTGACAGTCCT -ACGGAAGTAGTCTCTGACTAAGCC -ACGGAAGTAGTCTCTGACATAGCC -ACGGAAGTAGTCTCTGACTAACCG -ACGGAAGTAGTCTCTGACATGCCA -ACGGAAGTAGTCCCTAGTGGAAAC -ACGGAAGTAGTCCCTAGTAACACC -ACGGAAGTAGTCCCTAGTATCGAG -ACGGAAGTAGTCCCTAGTCTCCTT -ACGGAAGTAGTCCCTAGTCCTGTT -ACGGAAGTAGTCCCTAGTCGGTTT -ACGGAAGTAGTCCCTAGTGTGGTT -ACGGAAGTAGTCCCTAGTGCCTTT -ACGGAAGTAGTCCCTAGTGGTCTT -ACGGAAGTAGTCCCTAGTACGCTT -ACGGAAGTAGTCCCTAGTAGCGTT -ACGGAAGTAGTCCCTAGTTTCGTC -ACGGAAGTAGTCCCTAGTTCTCTC -ACGGAAGTAGTCCCTAGTTGGATC -ACGGAAGTAGTCCCTAGTCACTTC -ACGGAAGTAGTCCCTAGTGTACTC -ACGGAAGTAGTCCCTAGTGATGTC -ACGGAAGTAGTCCCTAGTACAGTC -ACGGAAGTAGTCCCTAGTTTGCTG -ACGGAAGTAGTCCCTAGTTCCATG -ACGGAAGTAGTCCCTAGTTGTGTG -ACGGAAGTAGTCCCTAGTCTAGTG -ACGGAAGTAGTCCCTAGTCATCTG -ACGGAAGTAGTCCCTAGTGAGTTG -ACGGAAGTAGTCCCTAGTAGACTG -ACGGAAGTAGTCCCTAGTTCGGTA -ACGGAAGTAGTCCCTAGTTGCCTA -ACGGAAGTAGTCCCTAGTCCACTA -ACGGAAGTAGTCCCTAGTGGAGTA -ACGGAAGTAGTCCCTAGTTCGTCT -ACGGAAGTAGTCCCTAGTTGCACT -ACGGAAGTAGTCCCTAGTCTGACT -ACGGAAGTAGTCCCTAGTCAACCT -ACGGAAGTAGTCCCTAGTGCTACT -ACGGAAGTAGTCCCTAGTGGATCT -ACGGAAGTAGTCCCTAGTAAGGCT -ACGGAAGTAGTCCCTAGTTCAACC -ACGGAAGTAGTCCCTAGTTGTTCC -ACGGAAGTAGTCCCTAGTATTCCC -ACGGAAGTAGTCCCTAGTTTCTCG -ACGGAAGTAGTCCCTAGTTAGACG -ACGGAAGTAGTCCCTAGTGTAACG -ACGGAAGTAGTCCCTAGTACTTCG -ACGGAAGTAGTCCCTAGTTACGCA -ACGGAAGTAGTCCCTAGTCTTGCA -ACGGAAGTAGTCCCTAGTCGAACA -ACGGAAGTAGTCCCTAGTCAGTCA -ACGGAAGTAGTCCCTAGTGATCCA -ACGGAAGTAGTCCCTAGTACGACA -ACGGAAGTAGTCCCTAGTAGCTCA -ACGGAAGTAGTCCCTAGTTCACGT -ACGGAAGTAGTCCCTAGTCGTAGT -ACGGAAGTAGTCCCTAGTGTCAGT -ACGGAAGTAGTCCCTAGTGAAGGT -ACGGAAGTAGTCCCTAGTAACCGT -ACGGAAGTAGTCCCTAGTTTGTGC -ACGGAAGTAGTCCCTAGTCTAAGC -ACGGAAGTAGTCCCTAGTACTAGC -ACGGAAGTAGTCCCTAGTAGATGC -ACGGAAGTAGTCCCTAGTTGAAGG -ACGGAAGTAGTCCCTAGTCAATGG -ACGGAAGTAGTCCCTAGTATGAGG -ACGGAAGTAGTCCCTAGTAATGGG -ACGGAAGTAGTCCCTAGTTCCTGA -ACGGAAGTAGTCCCTAGTTAGCGA -ACGGAAGTAGTCCCTAGTCACAGA -ACGGAAGTAGTCCCTAGTGCAAGA -ACGGAAGTAGTCCCTAGTGGTTGA -ACGGAAGTAGTCCCTAGTTCCGAT -ACGGAAGTAGTCCCTAGTTGGCAT -ACGGAAGTAGTCCCTAGTCGAGAT -ACGGAAGTAGTCCCTAGTTACCAC -ACGGAAGTAGTCCCTAGTCAGAAC -ACGGAAGTAGTCCCTAGTGTCTAC -ACGGAAGTAGTCCCTAGTACGTAC -ACGGAAGTAGTCCCTAGTAGTGAC -ACGGAAGTAGTCCCTAGTCTGTAG -ACGGAAGTAGTCCCTAGTCCTAAG -ACGGAAGTAGTCCCTAGTGTTCAG -ACGGAAGTAGTCCCTAGTGCATAG -ACGGAAGTAGTCCCTAGTGACAAG -ACGGAAGTAGTCCCTAGTAAGCAG -ACGGAAGTAGTCCCTAGTCGTCAA -ACGGAAGTAGTCCCTAGTGCTGAA -ACGGAAGTAGTCCCTAGTAGTACG -ACGGAAGTAGTCCCTAGTATCCGA -ACGGAAGTAGTCCCTAGTATGGGA -ACGGAAGTAGTCCCTAGTGTGCAA -ACGGAAGTAGTCCCTAGTGAGGAA -ACGGAAGTAGTCCCTAGTCAGGTA -ACGGAAGTAGTCCCTAGTGACTCT -ACGGAAGTAGTCCCTAGTAGTCCT -ACGGAAGTAGTCCCTAGTTAAGCC -ACGGAAGTAGTCCCTAGTATAGCC -ACGGAAGTAGTCCCTAGTTAACCG -ACGGAAGTAGTCCCTAGTATGCCA -ACGGAAGTAGTCGCCTAAGGAAAC -ACGGAAGTAGTCGCCTAAAACACC -ACGGAAGTAGTCGCCTAAATCGAG -ACGGAAGTAGTCGCCTAACTCCTT -ACGGAAGTAGTCGCCTAACCTGTT -ACGGAAGTAGTCGCCTAACGGTTT -ACGGAAGTAGTCGCCTAAGTGGTT -ACGGAAGTAGTCGCCTAAGCCTTT -ACGGAAGTAGTCGCCTAAGGTCTT -ACGGAAGTAGTCGCCTAAACGCTT -ACGGAAGTAGTCGCCTAAAGCGTT -ACGGAAGTAGTCGCCTAATTCGTC -ACGGAAGTAGTCGCCTAATCTCTC -ACGGAAGTAGTCGCCTAATGGATC -ACGGAAGTAGTCGCCTAACACTTC -ACGGAAGTAGTCGCCTAAGTACTC -ACGGAAGTAGTCGCCTAAGATGTC -ACGGAAGTAGTCGCCTAAACAGTC -ACGGAAGTAGTCGCCTAATTGCTG -ACGGAAGTAGTCGCCTAATCCATG -ACGGAAGTAGTCGCCTAATGTGTG -ACGGAAGTAGTCGCCTAACTAGTG -ACGGAAGTAGTCGCCTAACATCTG -ACGGAAGTAGTCGCCTAAGAGTTG -ACGGAAGTAGTCGCCTAAAGACTG -ACGGAAGTAGTCGCCTAATCGGTA -ACGGAAGTAGTCGCCTAATGCCTA -ACGGAAGTAGTCGCCTAACCACTA -ACGGAAGTAGTCGCCTAAGGAGTA -ACGGAAGTAGTCGCCTAATCGTCT -ACGGAAGTAGTCGCCTAATGCACT -ACGGAAGTAGTCGCCTAACTGACT -ACGGAAGTAGTCGCCTAACAACCT -ACGGAAGTAGTCGCCTAAGCTACT -ACGGAAGTAGTCGCCTAAGGATCT -ACGGAAGTAGTCGCCTAAAAGGCT -ACGGAAGTAGTCGCCTAATCAACC -ACGGAAGTAGTCGCCTAATGTTCC -ACGGAAGTAGTCGCCTAAATTCCC -ACGGAAGTAGTCGCCTAATTCTCG -ACGGAAGTAGTCGCCTAATAGACG -ACGGAAGTAGTCGCCTAAGTAACG -ACGGAAGTAGTCGCCTAAACTTCG -ACGGAAGTAGTCGCCTAATACGCA -ACGGAAGTAGTCGCCTAACTTGCA -ACGGAAGTAGTCGCCTAACGAACA -ACGGAAGTAGTCGCCTAACAGTCA -ACGGAAGTAGTCGCCTAAGATCCA -ACGGAAGTAGTCGCCTAAACGACA -ACGGAAGTAGTCGCCTAAAGCTCA -ACGGAAGTAGTCGCCTAATCACGT -ACGGAAGTAGTCGCCTAACGTAGT -ACGGAAGTAGTCGCCTAAGTCAGT -ACGGAAGTAGTCGCCTAAGAAGGT -ACGGAAGTAGTCGCCTAAAACCGT -ACGGAAGTAGTCGCCTAATTGTGC -ACGGAAGTAGTCGCCTAACTAAGC -ACGGAAGTAGTCGCCTAAACTAGC -ACGGAAGTAGTCGCCTAAAGATGC -ACGGAAGTAGTCGCCTAATGAAGG -ACGGAAGTAGTCGCCTAACAATGG -ACGGAAGTAGTCGCCTAAATGAGG -ACGGAAGTAGTCGCCTAAAATGGG -ACGGAAGTAGTCGCCTAATCCTGA -ACGGAAGTAGTCGCCTAATAGCGA -ACGGAAGTAGTCGCCTAACACAGA -ACGGAAGTAGTCGCCTAAGCAAGA -ACGGAAGTAGTCGCCTAAGGTTGA -ACGGAAGTAGTCGCCTAATCCGAT -ACGGAAGTAGTCGCCTAATGGCAT -ACGGAAGTAGTCGCCTAACGAGAT -ACGGAAGTAGTCGCCTAATACCAC -ACGGAAGTAGTCGCCTAACAGAAC -ACGGAAGTAGTCGCCTAAGTCTAC -ACGGAAGTAGTCGCCTAAACGTAC -ACGGAAGTAGTCGCCTAAAGTGAC -ACGGAAGTAGTCGCCTAACTGTAG -ACGGAAGTAGTCGCCTAACCTAAG -ACGGAAGTAGTCGCCTAAGTTCAG -ACGGAAGTAGTCGCCTAAGCATAG -ACGGAAGTAGTCGCCTAAGACAAG -ACGGAAGTAGTCGCCTAAAAGCAG -ACGGAAGTAGTCGCCTAACGTCAA -ACGGAAGTAGTCGCCTAAGCTGAA -ACGGAAGTAGTCGCCTAAAGTACG -ACGGAAGTAGTCGCCTAAATCCGA -ACGGAAGTAGTCGCCTAAATGGGA -ACGGAAGTAGTCGCCTAAGTGCAA -ACGGAAGTAGTCGCCTAAGAGGAA -ACGGAAGTAGTCGCCTAACAGGTA -ACGGAAGTAGTCGCCTAAGACTCT -ACGGAAGTAGTCGCCTAAAGTCCT -ACGGAAGTAGTCGCCTAATAAGCC -ACGGAAGTAGTCGCCTAAATAGCC -ACGGAAGTAGTCGCCTAATAACCG -ACGGAAGTAGTCGCCTAAATGCCA -ACGGAAGTAGTCGCCATAGGAAAC -ACGGAAGTAGTCGCCATAAACACC -ACGGAAGTAGTCGCCATAATCGAG -ACGGAAGTAGTCGCCATACTCCTT -ACGGAAGTAGTCGCCATACCTGTT -ACGGAAGTAGTCGCCATACGGTTT -ACGGAAGTAGTCGCCATAGTGGTT -ACGGAAGTAGTCGCCATAGCCTTT -ACGGAAGTAGTCGCCATAGGTCTT -ACGGAAGTAGTCGCCATAACGCTT -ACGGAAGTAGTCGCCATAAGCGTT -ACGGAAGTAGTCGCCATATTCGTC -ACGGAAGTAGTCGCCATATCTCTC -ACGGAAGTAGTCGCCATATGGATC -ACGGAAGTAGTCGCCATACACTTC -ACGGAAGTAGTCGCCATAGTACTC -ACGGAAGTAGTCGCCATAGATGTC -ACGGAAGTAGTCGCCATAACAGTC -ACGGAAGTAGTCGCCATATTGCTG -ACGGAAGTAGTCGCCATATCCATG -ACGGAAGTAGTCGCCATATGTGTG -ACGGAAGTAGTCGCCATACTAGTG -ACGGAAGTAGTCGCCATACATCTG -ACGGAAGTAGTCGCCATAGAGTTG -ACGGAAGTAGTCGCCATAAGACTG -ACGGAAGTAGTCGCCATATCGGTA -ACGGAAGTAGTCGCCATATGCCTA -ACGGAAGTAGTCGCCATACCACTA -ACGGAAGTAGTCGCCATAGGAGTA -ACGGAAGTAGTCGCCATATCGTCT -ACGGAAGTAGTCGCCATATGCACT -ACGGAAGTAGTCGCCATACTGACT -ACGGAAGTAGTCGCCATACAACCT -ACGGAAGTAGTCGCCATAGCTACT -ACGGAAGTAGTCGCCATAGGATCT -ACGGAAGTAGTCGCCATAAAGGCT -ACGGAAGTAGTCGCCATATCAACC -ACGGAAGTAGTCGCCATATGTTCC -ACGGAAGTAGTCGCCATAATTCCC -ACGGAAGTAGTCGCCATATTCTCG -ACGGAAGTAGTCGCCATATAGACG -ACGGAAGTAGTCGCCATAGTAACG -ACGGAAGTAGTCGCCATAACTTCG -ACGGAAGTAGTCGCCATATACGCA -ACGGAAGTAGTCGCCATACTTGCA -ACGGAAGTAGTCGCCATACGAACA -ACGGAAGTAGTCGCCATACAGTCA -ACGGAAGTAGTCGCCATAGATCCA -ACGGAAGTAGTCGCCATAACGACA -ACGGAAGTAGTCGCCATAAGCTCA -ACGGAAGTAGTCGCCATATCACGT -ACGGAAGTAGTCGCCATACGTAGT -ACGGAAGTAGTCGCCATAGTCAGT -ACGGAAGTAGTCGCCATAGAAGGT -ACGGAAGTAGTCGCCATAAACCGT -ACGGAAGTAGTCGCCATATTGTGC -ACGGAAGTAGTCGCCATACTAAGC -ACGGAAGTAGTCGCCATAACTAGC -ACGGAAGTAGTCGCCATAAGATGC -ACGGAAGTAGTCGCCATATGAAGG -ACGGAAGTAGTCGCCATACAATGG -ACGGAAGTAGTCGCCATAATGAGG -ACGGAAGTAGTCGCCATAAATGGG -ACGGAAGTAGTCGCCATATCCTGA -ACGGAAGTAGTCGCCATATAGCGA -ACGGAAGTAGTCGCCATACACAGA -ACGGAAGTAGTCGCCATAGCAAGA -ACGGAAGTAGTCGCCATAGGTTGA -ACGGAAGTAGTCGCCATATCCGAT -ACGGAAGTAGTCGCCATATGGCAT -ACGGAAGTAGTCGCCATACGAGAT -ACGGAAGTAGTCGCCATATACCAC -ACGGAAGTAGTCGCCATACAGAAC -ACGGAAGTAGTCGCCATAGTCTAC -ACGGAAGTAGTCGCCATAACGTAC -ACGGAAGTAGTCGCCATAAGTGAC -ACGGAAGTAGTCGCCATACTGTAG -ACGGAAGTAGTCGCCATACCTAAG -ACGGAAGTAGTCGCCATAGTTCAG -ACGGAAGTAGTCGCCATAGCATAG -ACGGAAGTAGTCGCCATAGACAAG -ACGGAAGTAGTCGCCATAAAGCAG -ACGGAAGTAGTCGCCATACGTCAA -ACGGAAGTAGTCGCCATAGCTGAA -ACGGAAGTAGTCGCCATAAGTACG -ACGGAAGTAGTCGCCATAATCCGA -ACGGAAGTAGTCGCCATAATGGGA -ACGGAAGTAGTCGCCATAGTGCAA -ACGGAAGTAGTCGCCATAGAGGAA -ACGGAAGTAGTCGCCATACAGGTA -ACGGAAGTAGTCGCCATAGACTCT -ACGGAAGTAGTCGCCATAAGTCCT -ACGGAAGTAGTCGCCATATAAGCC -ACGGAAGTAGTCGCCATAATAGCC -ACGGAAGTAGTCGCCATATAACCG -ACGGAAGTAGTCGCCATAATGCCA -ACGGAAGTAGTCCCGTAAGGAAAC -ACGGAAGTAGTCCCGTAAAACACC -ACGGAAGTAGTCCCGTAAATCGAG -ACGGAAGTAGTCCCGTAACTCCTT -ACGGAAGTAGTCCCGTAACCTGTT -ACGGAAGTAGTCCCGTAACGGTTT -ACGGAAGTAGTCCCGTAAGTGGTT -ACGGAAGTAGTCCCGTAAGCCTTT -ACGGAAGTAGTCCCGTAAGGTCTT -ACGGAAGTAGTCCCGTAAACGCTT -ACGGAAGTAGTCCCGTAAAGCGTT -ACGGAAGTAGTCCCGTAATTCGTC -ACGGAAGTAGTCCCGTAATCTCTC -ACGGAAGTAGTCCCGTAATGGATC -ACGGAAGTAGTCCCGTAACACTTC -ACGGAAGTAGTCCCGTAAGTACTC -ACGGAAGTAGTCCCGTAAGATGTC -ACGGAAGTAGTCCCGTAAACAGTC -ACGGAAGTAGTCCCGTAATTGCTG -ACGGAAGTAGTCCCGTAATCCATG -ACGGAAGTAGTCCCGTAATGTGTG -ACGGAAGTAGTCCCGTAACTAGTG -ACGGAAGTAGTCCCGTAACATCTG -ACGGAAGTAGTCCCGTAAGAGTTG -ACGGAAGTAGTCCCGTAAAGACTG -ACGGAAGTAGTCCCGTAATCGGTA -ACGGAAGTAGTCCCGTAATGCCTA -ACGGAAGTAGTCCCGTAACCACTA -ACGGAAGTAGTCCCGTAAGGAGTA -ACGGAAGTAGTCCCGTAATCGTCT -ACGGAAGTAGTCCCGTAATGCACT -ACGGAAGTAGTCCCGTAACTGACT -ACGGAAGTAGTCCCGTAACAACCT -ACGGAAGTAGTCCCGTAAGCTACT -ACGGAAGTAGTCCCGTAAGGATCT -ACGGAAGTAGTCCCGTAAAAGGCT -ACGGAAGTAGTCCCGTAATCAACC -ACGGAAGTAGTCCCGTAATGTTCC -ACGGAAGTAGTCCCGTAAATTCCC -ACGGAAGTAGTCCCGTAATTCTCG -ACGGAAGTAGTCCCGTAATAGACG -ACGGAAGTAGTCCCGTAAGTAACG -ACGGAAGTAGTCCCGTAAACTTCG -ACGGAAGTAGTCCCGTAATACGCA -ACGGAAGTAGTCCCGTAACTTGCA -ACGGAAGTAGTCCCGTAACGAACA -ACGGAAGTAGTCCCGTAACAGTCA -ACGGAAGTAGTCCCGTAAGATCCA -ACGGAAGTAGTCCCGTAAACGACA -ACGGAAGTAGTCCCGTAAAGCTCA -ACGGAAGTAGTCCCGTAATCACGT -ACGGAAGTAGTCCCGTAACGTAGT -ACGGAAGTAGTCCCGTAAGTCAGT -ACGGAAGTAGTCCCGTAAGAAGGT -ACGGAAGTAGTCCCGTAAAACCGT -ACGGAAGTAGTCCCGTAATTGTGC -ACGGAAGTAGTCCCGTAACTAAGC -ACGGAAGTAGTCCCGTAAACTAGC -ACGGAAGTAGTCCCGTAAAGATGC -ACGGAAGTAGTCCCGTAATGAAGG -ACGGAAGTAGTCCCGTAACAATGG -ACGGAAGTAGTCCCGTAAATGAGG -ACGGAAGTAGTCCCGTAAAATGGG -ACGGAAGTAGTCCCGTAATCCTGA -ACGGAAGTAGTCCCGTAATAGCGA -ACGGAAGTAGTCCCGTAACACAGA -ACGGAAGTAGTCCCGTAAGCAAGA -ACGGAAGTAGTCCCGTAAGGTTGA -ACGGAAGTAGTCCCGTAATCCGAT -ACGGAAGTAGTCCCGTAATGGCAT -ACGGAAGTAGTCCCGTAACGAGAT -ACGGAAGTAGTCCCGTAATACCAC -ACGGAAGTAGTCCCGTAACAGAAC -ACGGAAGTAGTCCCGTAAGTCTAC -ACGGAAGTAGTCCCGTAAACGTAC -ACGGAAGTAGTCCCGTAAAGTGAC -ACGGAAGTAGTCCCGTAACTGTAG -ACGGAAGTAGTCCCGTAACCTAAG -ACGGAAGTAGTCCCGTAAGTTCAG -ACGGAAGTAGTCCCGTAAGCATAG -ACGGAAGTAGTCCCGTAAGACAAG -ACGGAAGTAGTCCCGTAAAAGCAG -ACGGAAGTAGTCCCGTAACGTCAA -ACGGAAGTAGTCCCGTAAGCTGAA -ACGGAAGTAGTCCCGTAAAGTACG -ACGGAAGTAGTCCCGTAAATCCGA -ACGGAAGTAGTCCCGTAAATGGGA -ACGGAAGTAGTCCCGTAAGTGCAA -ACGGAAGTAGTCCCGTAAGAGGAA -ACGGAAGTAGTCCCGTAACAGGTA -ACGGAAGTAGTCCCGTAAGACTCT -ACGGAAGTAGTCCCGTAAAGTCCT -ACGGAAGTAGTCCCGTAATAAGCC -ACGGAAGTAGTCCCGTAAATAGCC -ACGGAAGTAGTCCCGTAATAACCG -ACGGAAGTAGTCCCGTAAATGCCA -ACGGAAGTAGTCCCAATGGGAAAC -ACGGAAGTAGTCCCAATGAACACC -ACGGAAGTAGTCCCAATGATCGAG -ACGGAAGTAGTCCCAATGCTCCTT -ACGGAAGTAGTCCCAATGCCTGTT -ACGGAAGTAGTCCCAATGCGGTTT -ACGGAAGTAGTCCCAATGGTGGTT -ACGGAAGTAGTCCCAATGGCCTTT -ACGGAAGTAGTCCCAATGGGTCTT -ACGGAAGTAGTCCCAATGACGCTT -ACGGAAGTAGTCCCAATGAGCGTT -ACGGAAGTAGTCCCAATGTTCGTC -ACGGAAGTAGTCCCAATGTCTCTC -ACGGAAGTAGTCCCAATGTGGATC -ACGGAAGTAGTCCCAATGCACTTC -ACGGAAGTAGTCCCAATGGTACTC -ACGGAAGTAGTCCCAATGGATGTC -ACGGAAGTAGTCCCAATGACAGTC -ACGGAAGTAGTCCCAATGTTGCTG -ACGGAAGTAGTCCCAATGTCCATG -ACGGAAGTAGTCCCAATGTGTGTG -ACGGAAGTAGTCCCAATGCTAGTG -ACGGAAGTAGTCCCAATGCATCTG -ACGGAAGTAGTCCCAATGGAGTTG -ACGGAAGTAGTCCCAATGAGACTG -ACGGAAGTAGTCCCAATGTCGGTA -ACGGAAGTAGTCCCAATGTGCCTA -ACGGAAGTAGTCCCAATGCCACTA -ACGGAAGTAGTCCCAATGGGAGTA -ACGGAAGTAGTCCCAATGTCGTCT -ACGGAAGTAGTCCCAATGTGCACT -ACGGAAGTAGTCCCAATGCTGACT -ACGGAAGTAGTCCCAATGCAACCT -ACGGAAGTAGTCCCAATGGCTACT -ACGGAAGTAGTCCCAATGGGATCT -ACGGAAGTAGTCCCAATGAAGGCT -ACGGAAGTAGTCCCAATGTCAACC -ACGGAAGTAGTCCCAATGTGTTCC -ACGGAAGTAGTCCCAATGATTCCC -ACGGAAGTAGTCCCAATGTTCTCG -ACGGAAGTAGTCCCAATGTAGACG -ACGGAAGTAGTCCCAATGGTAACG -ACGGAAGTAGTCCCAATGACTTCG -ACGGAAGTAGTCCCAATGTACGCA -ACGGAAGTAGTCCCAATGCTTGCA -ACGGAAGTAGTCCCAATGCGAACA -ACGGAAGTAGTCCCAATGCAGTCA -ACGGAAGTAGTCCCAATGGATCCA -ACGGAAGTAGTCCCAATGACGACA -ACGGAAGTAGTCCCAATGAGCTCA -ACGGAAGTAGTCCCAATGTCACGT -ACGGAAGTAGTCCCAATGCGTAGT -ACGGAAGTAGTCCCAATGGTCAGT -ACGGAAGTAGTCCCAATGGAAGGT -ACGGAAGTAGTCCCAATGAACCGT -ACGGAAGTAGTCCCAATGTTGTGC -ACGGAAGTAGTCCCAATGCTAAGC -ACGGAAGTAGTCCCAATGACTAGC -ACGGAAGTAGTCCCAATGAGATGC -ACGGAAGTAGTCCCAATGTGAAGG -ACGGAAGTAGTCCCAATGCAATGG -ACGGAAGTAGTCCCAATGATGAGG -ACGGAAGTAGTCCCAATGAATGGG -ACGGAAGTAGTCCCAATGTCCTGA -ACGGAAGTAGTCCCAATGTAGCGA -ACGGAAGTAGTCCCAATGCACAGA -ACGGAAGTAGTCCCAATGGCAAGA -ACGGAAGTAGTCCCAATGGGTTGA -ACGGAAGTAGTCCCAATGTCCGAT -ACGGAAGTAGTCCCAATGTGGCAT -ACGGAAGTAGTCCCAATGCGAGAT -ACGGAAGTAGTCCCAATGTACCAC -ACGGAAGTAGTCCCAATGCAGAAC -ACGGAAGTAGTCCCAATGGTCTAC -ACGGAAGTAGTCCCAATGACGTAC -ACGGAAGTAGTCCCAATGAGTGAC -ACGGAAGTAGTCCCAATGCTGTAG -ACGGAAGTAGTCCCAATGCCTAAG -ACGGAAGTAGTCCCAATGGTTCAG -ACGGAAGTAGTCCCAATGGCATAG -ACGGAAGTAGTCCCAATGGACAAG -ACGGAAGTAGTCCCAATGAAGCAG -ACGGAAGTAGTCCCAATGCGTCAA -ACGGAAGTAGTCCCAATGGCTGAA -ACGGAAGTAGTCCCAATGAGTACG -ACGGAAGTAGTCCCAATGATCCGA -ACGGAAGTAGTCCCAATGATGGGA -ACGGAAGTAGTCCCAATGGTGCAA -ACGGAAGTAGTCCCAATGGAGGAA -ACGGAAGTAGTCCCAATGCAGGTA -ACGGAAGTAGTCCCAATGGACTCT -ACGGAAGTAGTCCCAATGAGTCCT -ACGGAAGTAGTCCCAATGTAAGCC -ACGGAAGTAGTCCCAATGATAGCC -ACGGAAGTAGTCCCAATGTAACCG -ACGGAAGTAGTCCCAATGATGCCA -ACGGAATCAGTGAACGGAGGAAAC -ACGGAATCAGTGAACGGAAACACC -ACGGAATCAGTGAACGGAATCGAG -ACGGAATCAGTGAACGGACTCCTT -ACGGAATCAGTGAACGGACCTGTT -ACGGAATCAGTGAACGGACGGTTT -ACGGAATCAGTGAACGGAGTGGTT -ACGGAATCAGTGAACGGAGCCTTT -ACGGAATCAGTGAACGGAGGTCTT -ACGGAATCAGTGAACGGAACGCTT -ACGGAATCAGTGAACGGAAGCGTT -ACGGAATCAGTGAACGGATTCGTC -ACGGAATCAGTGAACGGATCTCTC -ACGGAATCAGTGAACGGATGGATC -ACGGAATCAGTGAACGGACACTTC -ACGGAATCAGTGAACGGAGTACTC -ACGGAATCAGTGAACGGAGATGTC -ACGGAATCAGTGAACGGAACAGTC -ACGGAATCAGTGAACGGATTGCTG -ACGGAATCAGTGAACGGATCCATG -ACGGAATCAGTGAACGGATGTGTG -ACGGAATCAGTGAACGGACTAGTG -ACGGAATCAGTGAACGGACATCTG -ACGGAATCAGTGAACGGAGAGTTG -ACGGAATCAGTGAACGGAAGACTG -ACGGAATCAGTGAACGGATCGGTA -ACGGAATCAGTGAACGGATGCCTA -ACGGAATCAGTGAACGGACCACTA -ACGGAATCAGTGAACGGAGGAGTA -ACGGAATCAGTGAACGGATCGTCT -ACGGAATCAGTGAACGGATGCACT -ACGGAATCAGTGAACGGACTGACT -ACGGAATCAGTGAACGGACAACCT -ACGGAATCAGTGAACGGAGCTACT -ACGGAATCAGTGAACGGAGGATCT -ACGGAATCAGTGAACGGAAAGGCT -ACGGAATCAGTGAACGGATCAACC -ACGGAATCAGTGAACGGATGTTCC -ACGGAATCAGTGAACGGAATTCCC -ACGGAATCAGTGAACGGATTCTCG -ACGGAATCAGTGAACGGATAGACG -ACGGAATCAGTGAACGGAGTAACG -ACGGAATCAGTGAACGGAACTTCG -ACGGAATCAGTGAACGGATACGCA -ACGGAATCAGTGAACGGACTTGCA -ACGGAATCAGTGAACGGACGAACA -ACGGAATCAGTGAACGGACAGTCA -ACGGAATCAGTGAACGGAGATCCA -ACGGAATCAGTGAACGGAACGACA -ACGGAATCAGTGAACGGAAGCTCA -ACGGAATCAGTGAACGGATCACGT -ACGGAATCAGTGAACGGACGTAGT -ACGGAATCAGTGAACGGAGTCAGT -ACGGAATCAGTGAACGGAGAAGGT -ACGGAATCAGTGAACGGAAACCGT -ACGGAATCAGTGAACGGATTGTGC -ACGGAATCAGTGAACGGACTAAGC -ACGGAATCAGTGAACGGAACTAGC -ACGGAATCAGTGAACGGAAGATGC -ACGGAATCAGTGAACGGATGAAGG -ACGGAATCAGTGAACGGACAATGG -ACGGAATCAGTGAACGGAATGAGG -ACGGAATCAGTGAACGGAAATGGG -ACGGAATCAGTGAACGGATCCTGA -ACGGAATCAGTGAACGGATAGCGA -ACGGAATCAGTGAACGGACACAGA -ACGGAATCAGTGAACGGAGCAAGA -ACGGAATCAGTGAACGGAGGTTGA -ACGGAATCAGTGAACGGATCCGAT -ACGGAATCAGTGAACGGATGGCAT -ACGGAATCAGTGAACGGACGAGAT -ACGGAATCAGTGAACGGATACCAC -ACGGAATCAGTGAACGGACAGAAC -ACGGAATCAGTGAACGGAGTCTAC -ACGGAATCAGTGAACGGAACGTAC -ACGGAATCAGTGAACGGAAGTGAC -ACGGAATCAGTGAACGGACTGTAG -ACGGAATCAGTGAACGGACCTAAG -ACGGAATCAGTGAACGGAGTTCAG -ACGGAATCAGTGAACGGAGCATAG -ACGGAATCAGTGAACGGAGACAAG -ACGGAATCAGTGAACGGAAAGCAG -ACGGAATCAGTGAACGGACGTCAA -ACGGAATCAGTGAACGGAGCTGAA -ACGGAATCAGTGAACGGAAGTACG -ACGGAATCAGTGAACGGAATCCGA -ACGGAATCAGTGAACGGAATGGGA -ACGGAATCAGTGAACGGAGTGCAA -ACGGAATCAGTGAACGGAGAGGAA -ACGGAATCAGTGAACGGACAGGTA -ACGGAATCAGTGAACGGAGACTCT -ACGGAATCAGTGAACGGAAGTCCT -ACGGAATCAGTGAACGGATAAGCC -ACGGAATCAGTGAACGGAATAGCC -ACGGAATCAGTGAACGGATAACCG -ACGGAATCAGTGAACGGAATGCCA -ACGGAATCAGTGACCAACGGAAAC -ACGGAATCAGTGACCAACAACACC -ACGGAATCAGTGACCAACATCGAG -ACGGAATCAGTGACCAACCTCCTT -ACGGAATCAGTGACCAACCCTGTT -ACGGAATCAGTGACCAACCGGTTT -ACGGAATCAGTGACCAACGTGGTT -ACGGAATCAGTGACCAACGCCTTT -ACGGAATCAGTGACCAACGGTCTT -ACGGAATCAGTGACCAACACGCTT -ACGGAATCAGTGACCAACAGCGTT -ACGGAATCAGTGACCAACTTCGTC -ACGGAATCAGTGACCAACTCTCTC -ACGGAATCAGTGACCAACTGGATC -ACGGAATCAGTGACCAACCACTTC -ACGGAATCAGTGACCAACGTACTC -ACGGAATCAGTGACCAACGATGTC -ACGGAATCAGTGACCAACACAGTC -ACGGAATCAGTGACCAACTTGCTG -ACGGAATCAGTGACCAACTCCATG -ACGGAATCAGTGACCAACTGTGTG -ACGGAATCAGTGACCAACCTAGTG -ACGGAATCAGTGACCAACCATCTG -ACGGAATCAGTGACCAACGAGTTG -ACGGAATCAGTGACCAACAGACTG -ACGGAATCAGTGACCAACTCGGTA -ACGGAATCAGTGACCAACTGCCTA -ACGGAATCAGTGACCAACCCACTA -ACGGAATCAGTGACCAACGGAGTA -ACGGAATCAGTGACCAACTCGTCT -ACGGAATCAGTGACCAACTGCACT -ACGGAATCAGTGACCAACCTGACT -ACGGAATCAGTGACCAACCAACCT -ACGGAATCAGTGACCAACGCTACT -ACGGAATCAGTGACCAACGGATCT -ACGGAATCAGTGACCAACAAGGCT -ACGGAATCAGTGACCAACTCAACC -ACGGAATCAGTGACCAACTGTTCC -ACGGAATCAGTGACCAACATTCCC -ACGGAATCAGTGACCAACTTCTCG -ACGGAATCAGTGACCAACTAGACG -ACGGAATCAGTGACCAACGTAACG -ACGGAATCAGTGACCAACACTTCG -ACGGAATCAGTGACCAACTACGCA -ACGGAATCAGTGACCAACCTTGCA -ACGGAATCAGTGACCAACCGAACA -ACGGAATCAGTGACCAACCAGTCA -ACGGAATCAGTGACCAACGATCCA -ACGGAATCAGTGACCAACACGACA -ACGGAATCAGTGACCAACAGCTCA -ACGGAATCAGTGACCAACTCACGT -ACGGAATCAGTGACCAACCGTAGT -ACGGAATCAGTGACCAACGTCAGT -ACGGAATCAGTGACCAACGAAGGT -ACGGAATCAGTGACCAACAACCGT -ACGGAATCAGTGACCAACTTGTGC -ACGGAATCAGTGACCAACCTAAGC -ACGGAATCAGTGACCAACACTAGC -ACGGAATCAGTGACCAACAGATGC -ACGGAATCAGTGACCAACTGAAGG -ACGGAATCAGTGACCAACCAATGG -ACGGAATCAGTGACCAACATGAGG -ACGGAATCAGTGACCAACAATGGG -ACGGAATCAGTGACCAACTCCTGA -ACGGAATCAGTGACCAACTAGCGA -ACGGAATCAGTGACCAACCACAGA -ACGGAATCAGTGACCAACGCAAGA -ACGGAATCAGTGACCAACGGTTGA -ACGGAATCAGTGACCAACTCCGAT -ACGGAATCAGTGACCAACTGGCAT -ACGGAATCAGTGACCAACCGAGAT -ACGGAATCAGTGACCAACTACCAC -ACGGAATCAGTGACCAACCAGAAC -ACGGAATCAGTGACCAACGTCTAC -ACGGAATCAGTGACCAACACGTAC -ACGGAATCAGTGACCAACAGTGAC -ACGGAATCAGTGACCAACCTGTAG -ACGGAATCAGTGACCAACCCTAAG -ACGGAATCAGTGACCAACGTTCAG -ACGGAATCAGTGACCAACGCATAG -ACGGAATCAGTGACCAACGACAAG -ACGGAATCAGTGACCAACAAGCAG -ACGGAATCAGTGACCAACCGTCAA -ACGGAATCAGTGACCAACGCTGAA -ACGGAATCAGTGACCAACAGTACG -ACGGAATCAGTGACCAACATCCGA -ACGGAATCAGTGACCAACATGGGA -ACGGAATCAGTGACCAACGTGCAA -ACGGAATCAGTGACCAACGAGGAA -ACGGAATCAGTGACCAACCAGGTA -ACGGAATCAGTGACCAACGACTCT -ACGGAATCAGTGACCAACAGTCCT -ACGGAATCAGTGACCAACTAAGCC -ACGGAATCAGTGACCAACATAGCC -ACGGAATCAGTGACCAACTAACCG -ACGGAATCAGTGACCAACATGCCA -ACGGAATCAGTGGAGATCGGAAAC -ACGGAATCAGTGGAGATCAACACC -ACGGAATCAGTGGAGATCATCGAG -ACGGAATCAGTGGAGATCCTCCTT -ACGGAATCAGTGGAGATCCCTGTT -ACGGAATCAGTGGAGATCCGGTTT -ACGGAATCAGTGGAGATCGTGGTT -ACGGAATCAGTGGAGATCGCCTTT -ACGGAATCAGTGGAGATCGGTCTT -ACGGAATCAGTGGAGATCACGCTT -ACGGAATCAGTGGAGATCAGCGTT -ACGGAATCAGTGGAGATCTTCGTC -ACGGAATCAGTGGAGATCTCTCTC -ACGGAATCAGTGGAGATCTGGATC -ACGGAATCAGTGGAGATCCACTTC -ACGGAATCAGTGGAGATCGTACTC -ACGGAATCAGTGGAGATCGATGTC -ACGGAATCAGTGGAGATCACAGTC -ACGGAATCAGTGGAGATCTTGCTG -ACGGAATCAGTGGAGATCTCCATG -ACGGAATCAGTGGAGATCTGTGTG -ACGGAATCAGTGGAGATCCTAGTG -ACGGAATCAGTGGAGATCCATCTG -ACGGAATCAGTGGAGATCGAGTTG -ACGGAATCAGTGGAGATCAGACTG -ACGGAATCAGTGGAGATCTCGGTA -ACGGAATCAGTGGAGATCTGCCTA -ACGGAATCAGTGGAGATCCCACTA -ACGGAATCAGTGGAGATCGGAGTA -ACGGAATCAGTGGAGATCTCGTCT -ACGGAATCAGTGGAGATCTGCACT -ACGGAATCAGTGGAGATCCTGACT -ACGGAATCAGTGGAGATCCAACCT -ACGGAATCAGTGGAGATCGCTACT -ACGGAATCAGTGGAGATCGGATCT -ACGGAATCAGTGGAGATCAAGGCT -ACGGAATCAGTGGAGATCTCAACC -ACGGAATCAGTGGAGATCTGTTCC -ACGGAATCAGTGGAGATCATTCCC -ACGGAATCAGTGGAGATCTTCTCG -ACGGAATCAGTGGAGATCTAGACG -ACGGAATCAGTGGAGATCGTAACG -ACGGAATCAGTGGAGATCACTTCG -ACGGAATCAGTGGAGATCTACGCA -ACGGAATCAGTGGAGATCCTTGCA -ACGGAATCAGTGGAGATCCGAACA -ACGGAATCAGTGGAGATCCAGTCA -ACGGAATCAGTGGAGATCGATCCA -ACGGAATCAGTGGAGATCACGACA -ACGGAATCAGTGGAGATCAGCTCA -ACGGAATCAGTGGAGATCTCACGT -ACGGAATCAGTGGAGATCCGTAGT -ACGGAATCAGTGGAGATCGTCAGT -ACGGAATCAGTGGAGATCGAAGGT -ACGGAATCAGTGGAGATCAACCGT -ACGGAATCAGTGGAGATCTTGTGC -ACGGAATCAGTGGAGATCCTAAGC -ACGGAATCAGTGGAGATCACTAGC -ACGGAATCAGTGGAGATCAGATGC -ACGGAATCAGTGGAGATCTGAAGG -ACGGAATCAGTGGAGATCCAATGG -ACGGAATCAGTGGAGATCATGAGG -ACGGAATCAGTGGAGATCAATGGG -ACGGAATCAGTGGAGATCTCCTGA -ACGGAATCAGTGGAGATCTAGCGA -ACGGAATCAGTGGAGATCCACAGA -ACGGAATCAGTGGAGATCGCAAGA -ACGGAATCAGTGGAGATCGGTTGA -ACGGAATCAGTGGAGATCTCCGAT -ACGGAATCAGTGGAGATCTGGCAT -ACGGAATCAGTGGAGATCCGAGAT -ACGGAATCAGTGGAGATCTACCAC -ACGGAATCAGTGGAGATCCAGAAC -ACGGAATCAGTGGAGATCGTCTAC -ACGGAATCAGTGGAGATCACGTAC -ACGGAATCAGTGGAGATCAGTGAC -ACGGAATCAGTGGAGATCCTGTAG -ACGGAATCAGTGGAGATCCCTAAG -ACGGAATCAGTGGAGATCGTTCAG -ACGGAATCAGTGGAGATCGCATAG -ACGGAATCAGTGGAGATCGACAAG -ACGGAATCAGTGGAGATCAAGCAG -ACGGAATCAGTGGAGATCCGTCAA -ACGGAATCAGTGGAGATCGCTGAA -ACGGAATCAGTGGAGATCAGTACG -ACGGAATCAGTGGAGATCATCCGA -ACGGAATCAGTGGAGATCATGGGA -ACGGAATCAGTGGAGATCGTGCAA -ACGGAATCAGTGGAGATCGAGGAA -ACGGAATCAGTGGAGATCCAGGTA -ACGGAATCAGTGGAGATCGACTCT -ACGGAATCAGTGGAGATCAGTCCT -ACGGAATCAGTGGAGATCTAAGCC -ACGGAATCAGTGGAGATCATAGCC -ACGGAATCAGTGGAGATCTAACCG -ACGGAATCAGTGGAGATCATGCCA -ACGGAATCAGTGCTTCTCGGAAAC -ACGGAATCAGTGCTTCTCAACACC -ACGGAATCAGTGCTTCTCATCGAG -ACGGAATCAGTGCTTCTCCTCCTT -ACGGAATCAGTGCTTCTCCCTGTT -ACGGAATCAGTGCTTCTCCGGTTT -ACGGAATCAGTGCTTCTCGTGGTT -ACGGAATCAGTGCTTCTCGCCTTT -ACGGAATCAGTGCTTCTCGGTCTT -ACGGAATCAGTGCTTCTCACGCTT -ACGGAATCAGTGCTTCTCAGCGTT -ACGGAATCAGTGCTTCTCTTCGTC -ACGGAATCAGTGCTTCTCTCTCTC -ACGGAATCAGTGCTTCTCTGGATC -ACGGAATCAGTGCTTCTCCACTTC -ACGGAATCAGTGCTTCTCGTACTC -ACGGAATCAGTGCTTCTCGATGTC -ACGGAATCAGTGCTTCTCACAGTC -ACGGAATCAGTGCTTCTCTTGCTG -ACGGAATCAGTGCTTCTCTCCATG -ACGGAATCAGTGCTTCTCTGTGTG -ACGGAATCAGTGCTTCTCCTAGTG -ACGGAATCAGTGCTTCTCCATCTG -ACGGAATCAGTGCTTCTCGAGTTG -ACGGAATCAGTGCTTCTCAGACTG -ACGGAATCAGTGCTTCTCTCGGTA -ACGGAATCAGTGCTTCTCTGCCTA -ACGGAATCAGTGCTTCTCCCACTA -ACGGAATCAGTGCTTCTCGGAGTA -ACGGAATCAGTGCTTCTCTCGTCT -ACGGAATCAGTGCTTCTCTGCACT -ACGGAATCAGTGCTTCTCCTGACT -ACGGAATCAGTGCTTCTCCAACCT -ACGGAATCAGTGCTTCTCGCTACT -ACGGAATCAGTGCTTCTCGGATCT -ACGGAATCAGTGCTTCTCAAGGCT -ACGGAATCAGTGCTTCTCTCAACC -ACGGAATCAGTGCTTCTCTGTTCC -ACGGAATCAGTGCTTCTCATTCCC -ACGGAATCAGTGCTTCTCTTCTCG -ACGGAATCAGTGCTTCTCTAGACG -ACGGAATCAGTGCTTCTCGTAACG -ACGGAATCAGTGCTTCTCACTTCG -ACGGAATCAGTGCTTCTCTACGCA -ACGGAATCAGTGCTTCTCCTTGCA -ACGGAATCAGTGCTTCTCCGAACA -ACGGAATCAGTGCTTCTCCAGTCA -ACGGAATCAGTGCTTCTCGATCCA -ACGGAATCAGTGCTTCTCACGACA -ACGGAATCAGTGCTTCTCAGCTCA -ACGGAATCAGTGCTTCTCTCACGT -ACGGAATCAGTGCTTCTCCGTAGT -ACGGAATCAGTGCTTCTCGTCAGT -ACGGAATCAGTGCTTCTCGAAGGT -ACGGAATCAGTGCTTCTCAACCGT -ACGGAATCAGTGCTTCTCTTGTGC -ACGGAATCAGTGCTTCTCCTAAGC -ACGGAATCAGTGCTTCTCACTAGC -ACGGAATCAGTGCTTCTCAGATGC -ACGGAATCAGTGCTTCTCTGAAGG -ACGGAATCAGTGCTTCTCCAATGG -ACGGAATCAGTGCTTCTCATGAGG -ACGGAATCAGTGCTTCTCAATGGG -ACGGAATCAGTGCTTCTCTCCTGA -ACGGAATCAGTGCTTCTCTAGCGA -ACGGAATCAGTGCTTCTCCACAGA -ACGGAATCAGTGCTTCTCGCAAGA -ACGGAATCAGTGCTTCTCGGTTGA -ACGGAATCAGTGCTTCTCTCCGAT -ACGGAATCAGTGCTTCTCTGGCAT -ACGGAATCAGTGCTTCTCCGAGAT -ACGGAATCAGTGCTTCTCTACCAC -ACGGAATCAGTGCTTCTCCAGAAC -ACGGAATCAGTGCTTCTCGTCTAC -ACGGAATCAGTGCTTCTCACGTAC -ACGGAATCAGTGCTTCTCAGTGAC -ACGGAATCAGTGCTTCTCCTGTAG -ACGGAATCAGTGCTTCTCCCTAAG -ACGGAATCAGTGCTTCTCGTTCAG -ACGGAATCAGTGCTTCTCGCATAG -ACGGAATCAGTGCTTCTCGACAAG -ACGGAATCAGTGCTTCTCAAGCAG -ACGGAATCAGTGCTTCTCCGTCAA -ACGGAATCAGTGCTTCTCGCTGAA -ACGGAATCAGTGCTTCTCAGTACG -ACGGAATCAGTGCTTCTCATCCGA -ACGGAATCAGTGCTTCTCATGGGA -ACGGAATCAGTGCTTCTCGTGCAA -ACGGAATCAGTGCTTCTCGAGGAA -ACGGAATCAGTGCTTCTCCAGGTA -ACGGAATCAGTGCTTCTCGACTCT -ACGGAATCAGTGCTTCTCAGTCCT -ACGGAATCAGTGCTTCTCTAAGCC -ACGGAATCAGTGCTTCTCATAGCC -ACGGAATCAGTGCTTCTCTAACCG -ACGGAATCAGTGCTTCTCATGCCA -ACGGAATCAGTGGTTCCTGGAAAC -ACGGAATCAGTGGTTCCTAACACC -ACGGAATCAGTGGTTCCTATCGAG -ACGGAATCAGTGGTTCCTCTCCTT -ACGGAATCAGTGGTTCCTCCTGTT -ACGGAATCAGTGGTTCCTCGGTTT -ACGGAATCAGTGGTTCCTGTGGTT -ACGGAATCAGTGGTTCCTGCCTTT -ACGGAATCAGTGGTTCCTGGTCTT -ACGGAATCAGTGGTTCCTACGCTT -ACGGAATCAGTGGTTCCTAGCGTT -ACGGAATCAGTGGTTCCTTTCGTC -ACGGAATCAGTGGTTCCTTCTCTC -ACGGAATCAGTGGTTCCTTGGATC -ACGGAATCAGTGGTTCCTCACTTC -ACGGAATCAGTGGTTCCTGTACTC -ACGGAATCAGTGGTTCCTGATGTC -ACGGAATCAGTGGTTCCTACAGTC -ACGGAATCAGTGGTTCCTTTGCTG -ACGGAATCAGTGGTTCCTTCCATG -ACGGAATCAGTGGTTCCTTGTGTG -ACGGAATCAGTGGTTCCTCTAGTG -ACGGAATCAGTGGTTCCTCATCTG -ACGGAATCAGTGGTTCCTGAGTTG -ACGGAATCAGTGGTTCCTAGACTG -ACGGAATCAGTGGTTCCTTCGGTA -ACGGAATCAGTGGTTCCTTGCCTA -ACGGAATCAGTGGTTCCTCCACTA -ACGGAATCAGTGGTTCCTGGAGTA -ACGGAATCAGTGGTTCCTTCGTCT -ACGGAATCAGTGGTTCCTTGCACT -ACGGAATCAGTGGTTCCTCTGACT -ACGGAATCAGTGGTTCCTCAACCT -ACGGAATCAGTGGTTCCTGCTACT -ACGGAATCAGTGGTTCCTGGATCT -ACGGAATCAGTGGTTCCTAAGGCT -ACGGAATCAGTGGTTCCTTCAACC -ACGGAATCAGTGGTTCCTTGTTCC -ACGGAATCAGTGGTTCCTATTCCC -ACGGAATCAGTGGTTCCTTTCTCG -ACGGAATCAGTGGTTCCTTAGACG -ACGGAATCAGTGGTTCCTGTAACG -ACGGAATCAGTGGTTCCTACTTCG -ACGGAATCAGTGGTTCCTTACGCA -ACGGAATCAGTGGTTCCTCTTGCA -ACGGAATCAGTGGTTCCTCGAACA -ACGGAATCAGTGGTTCCTCAGTCA -ACGGAATCAGTGGTTCCTGATCCA -ACGGAATCAGTGGTTCCTACGACA -ACGGAATCAGTGGTTCCTAGCTCA -ACGGAATCAGTGGTTCCTTCACGT -ACGGAATCAGTGGTTCCTCGTAGT -ACGGAATCAGTGGTTCCTGTCAGT -ACGGAATCAGTGGTTCCTGAAGGT -ACGGAATCAGTGGTTCCTAACCGT -ACGGAATCAGTGGTTCCTTTGTGC -ACGGAATCAGTGGTTCCTCTAAGC -ACGGAATCAGTGGTTCCTACTAGC -ACGGAATCAGTGGTTCCTAGATGC -ACGGAATCAGTGGTTCCTTGAAGG -ACGGAATCAGTGGTTCCTCAATGG -ACGGAATCAGTGGTTCCTATGAGG -ACGGAATCAGTGGTTCCTAATGGG -ACGGAATCAGTGGTTCCTTCCTGA -ACGGAATCAGTGGTTCCTTAGCGA -ACGGAATCAGTGGTTCCTCACAGA -ACGGAATCAGTGGTTCCTGCAAGA -ACGGAATCAGTGGTTCCTGGTTGA -ACGGAATCAGTGGTTCCTTCCGAT -ACGGAATCAGTGGTTCCTTGGCAT -ACGGAATCAGTGGTTCCTCGAGAT -ACGGAATCAGTGGTTCCTTACCAC -ACGGAATCAGTGGTTCCTCAGAAC -ACGGAATCAGTGGTTCCTGTCTAC -ACGGAATCAGTGGTTCCTACGTAC -ACGGAATCAGTGGTTCCTAGTGAC -ACGGAATCAGTGGTTCCTCTGTAG -ACGGAATCAGTGGTTCCTCCTAAG -ACGGAATCAGTGGTTCCTGTTCAG -ACGGAATCAGTGGTTCCTGCATAG -ACGGAATCAGTGGTTCCTGACAAG -ACGGAATCAGTGGTTCCTAAGCAG -ACGGAATCAGTGGTTCCTCGTCAA -ACGGAATCAGTGGTTCCTGCTGAA -ACGGAATCAGTGGTTCCTAGTACG -ACGGAATCAGTGGTTCCTATCCGA -ACGGAATCAGTGGTTCCTATGGGA -ACGGAATCAGTGGTTCCTGTGCAA -ACGGAATCAGTGGTTCCTGAGGAA -ACGGAATCAGTGGTTCCTCAGGTA -ACGGAATCAGTGGTTCCTGACTCT -ACGGAATCAGTGGTTCCTAGTCCT -ACGGAATCAGTGGTTCCTTAAGCC -ACGGAATCAGTGGTTCCTATAGCC -ACGGAATCAGTGGTTCCTTAACCG -ACGGAATCAGTGGTTCCTATGCCA -ACGGAATCAGTGTTTCGGGGAAAC -ACGGAATCAGTGTTTCGGAACACC -ACGGAATCAGTGTTTCGGATCGAG -ACGGAATCAGTGTTTCGGCTCCTT -ACGGAATCAGTGTTTCGGCCTGTT -ACGGAATCAGTGTTTCGGCGGTTT -ACGGAATCAGTGTTTCGGGTGGTT -ACGGAATCAGTGTTTCGGGCCTTT -ACGGAATCAGTGTTTCGGGGTCTT -ACGGAATCAGTGTTTCGGACGCTT -ACGGAATCAGTGTTTCGGAGCGTT -ACGGAATCAGTGTTTCGGTTCGTC -ACGGAATCAGTGTTTCGGTCTCTC -ACGGAATCAGTGTTTCGGTGGATC -ACGGAATCAGTGTTTCGGCACTTC -ACGGAATCAGTGTTTCGGGTACTC -ACGGAATCAGTGTTTCGGGATGTC -ACGGAATCAGTGTTTCGGACAGTC -ACGGAATCAGTGTTTCGGTTGCTG -ACGGAATCAGTGTTTCGGTCCATG -ACGGAATCAGTGTTTCGGTGTGTG -ACGGAATCAGTGTTTCGGCTAGTG -ACGGAATCAGTGTTTCGGCATCTG -ACGGAATCAGTGTTTCGGGAGTTG -ACGGAATCAGTGTTTCGGAGACTG -ACGGAATCAGTGTTTCGGTCGGTA -ACGGAATCAGTGTTTCGGTGCCTA -ACGGAATCAGTGTTTCGGCCACTA -ACGGAATCAGTGTTTCGGGGAGTA -ACGGAATCAGTGTTTCGGTCGTCT -ACGGAATCAGTGTTTCGGTGCACT -ACGGAATCAGTGTTTCGGCTGACT -ACGGAATCAGTGTTTCGGCAACCT -ACGGAATCAGTGTTTCGGGCTACT -ACGGAATCAGTGTTTCGGGGATCT -ACGGAATCAGTGTTTCGGAAGGCT -ACGGAATCAGTGTTTCGGTCAACC -ACGGAATCAGTGTTTCGGTGTTCC -ACGGAATCAGTGTTTCGGATTCCC -ACGGAATCAGTGTTTCGGTTCTCG -ACGGAATCAGTGTTTCGGTAGACG -ACGGAATCAGTGTTTCGGGTAACG -ACGGAATCAGTGTTTCGGACTTCG -ACGGAATCAGTGTTTCGGTACGCA -ACGGAATCAGTGTTTCGGCTTGCA -ACGGAATCAGTGTTTCGGCGAACA -ACGGAATCAGTGTTTCGGCAGTCA -ACGGAATCAGTGTTTCGGGATCCA -ACGGAATCAGTGTTTCGGACGACA -ACGGAATCAGTGTTTCGGAGCTCA -ACGGAATCAGTGTTTCGGTCACGT -ACGGAATCAGTGTTTCGGCGTAGT -ACGGAATCAGTGTTTCGGGTCAGT -ACGGAATCAGTGTTTCGGGAAGGT -ACGGAATCAGTGTTTCGGAACCGT -ACGGAATCAGTGTTTCGGTTGTGC -ACGGAATCAGTGTTTCGGCTAAGC -ACGGAATCAGTGTTTCGGACTAGC -ACGGAATCAGTGTTTCGGAGATGC -ACGGAATCAGTGTTTCGGTGAAGG -ACGGAATCAGTGTTTCGGCAATGG -ACGGAATCAGTGTTTCGGATGAGG -ACGGAATCAGTGTTTCGGAATGGG -ACGGAATCAGTGTTTCGGTCCTGA -ACGGAATCAGTGTTTCGGTAGCGA -ACGGAATCAGTGTTTCGGCACAGA -ACGGAATCAGTGTTTCGGGCAAGA -ACGGAATCAGTGTTTCGGGGTTGA -ACGGAATCAGTGTTTCGGTCCGAT -ACGGAATCAGTGTTTCGGTGGCAT -ACGGAATCAGTGTTTCGGCGAGAT -ACGGAATCAGTGTTTCGGTACCAC -ACGGAATCAGTGTTTCGGCAGAAC -ACGGAATCAGTGTTTCGGGTCTAC -ACGGAATCAGTGTTTCGGACGTAC -ACGGAATCAGTGTTTCGGAGTGAC -ACGGAATCAGTGTTTCGGCTGTAG -ACGGAATCAGTGTTTCGGCCTAAG -ACGGAATCAGTGTTTCGGGTTCAG -ACGGAATCAGTGTTTCGGGCATAG -ACGGAATCAGTGTTTCGGGACAAG -ACGGAATCAGTGTTTCGGAAGCAG -ACGGAATCAGTGTTTCGGCGTCAA -ACGGAATCAGTGTTTCGGGCTGAA -ACGGAATCAGTGTTTCGGAGTACG -ACGGAATCAGTGTTTCGGATCCGA -ACGGAATCAGTGTTTCGGATGGGA -ACGGAATCAGTGTTTCGGGTGCAA -ACGGAATCAGTGTTTCGGGAGGAA -ACGGAATCAGTGTTTCGGCAGGTA -ACGGAATCAGTGTTTCGGGACTCT -ACGGAATCAGTGTTTCGGAGTCCT -ACGGAATCAGTGTTTCGGTAAGCC -ACGGAATCAGTGTTTCGGATAGCC -ACGGAATCAGTGTTTCGGTAACCG -ACGGAATCAGTGTTTCGGATGCCA -ACGGAATCAGTGGTTGTGGGAAAC -ACGGAATCAGTGGTTGTGAACACC -ACGGAATCAGTGGTTGTGATCGAG -ACGGAATCAGTGGTTGTGCTCCTT -ACGGAATCAGTGGTTGTGCCTGTT -ACGGAATCAGTGGTTGTGCGGTTT -ACGGAATCAGTGGTTGTGGTGGTT -ACGGAATCAGTGGTTGTGGCCTTT -ACGGAATCAGTGGTTGTGGGTCTT -ACGGAATCAGTGGTTGTGACGCTT -ACGGAATCAGTGGTTGTGAGCGTT -ACGGAATCAGTGGTTGTGTTCGTC -ACGGAATCAGTGGTTGTGTCTCTC -ACGGAATCAGTGGTTGTGTGGATC -ACGGAATCAGTGGTTGTGCACTTC -ACGGAATCAGTGGTTGTGGTACTC -ACGGAATCAGTGGTTGTGGATGTC -ACGGAATCAGTGGTTGTGACAGTC -ACGGAATCAGTGGTTGTGTTGCTG -ACGGAATCAGTGGTTGTGTCCATG -ACGGAATCAGTGGTTGTGTGTGTG -ACGGAATCAGTGGTTGTGCTAGTG -ACGGAATCAGTGGTTGTGCATCTG -ACGGAATCAGTGGTTGTGGAGTTG -ACGGAATCAGTGGTTGTGAGACTG -ACGGAATCAGTGGTTGTGTCGGTA -ACGGAATCAGTGGTTGTGTGCCTA -ACGGAATCAGTGGTTGTGCCACTA -ACGGAATCAGTGGTTGTGGGAGTA -ACGGAATCAGTGGTTGTGTCGTCT -ACGGAATCAGTGGTTGTGTGCACT -ACGGAATCAGTGGTTGTGCTGACT -ACGGAATCAGTGGTTGTGCAACCT -ACGGAATCAGTGGTTGTGGCTACT -ACGGAATCAGTGGTTGTGGGATCT -ACGGAATCAGTGGTTGTGAAGGCT -ACGGAATCAGTGGTTGTGTCAACC -ACGGAATCAGTGGTTGTGTGTTCC -ACGGAATCAGTGGTTGTGATTCCC -ACGGAATCAGTGGTTGTGTTCTCG -ACGGAATCAGTGGTTGTGTAGACG -ACGGAATCAGTGGTTGTGGTAACG -ACGGAATCAGTGGTTGTGACTTCG -ACGGAATCAGTGGTTGTGTACGCA -ACGGAATCAGTGGTTGTGCTTGCA -ACGGAATCAGTGGTTGTGCGAACA -ACGGAATCAGTGGTTGTGCAGTCA -ACGGAATCAGTGGTTGTGGATCCA -ACGGAATCAGTGGTTGTGACGACA -ACGGAATCAGTGGTTGTGAGCTCA -ACGGAATCAGTGGTTGTGTCACGT -ACGGAATCAGTGGTTGTGCGTAGT -ACGGAATCAGTGGTTGTGGTCAGT -ACGGAATCAGTGGTTGTGGAAGGT -ACGGAATCAGTGGTTGTGAACCGT -ACGGAATCAGTGGTTGTGTTGTGC -ACGGAATCAGTGGTTGTGCTAAGC -ACGGAATCAGTGGTTGTGACTAGC -ACGGAATCAGTGGTTGTGAGATGC -ACGGAATCAGTGGTTGTGTGAAGG -ACGGAATCAGTGGTTGTGCAATGG -ACGGAATCAGTGGTTGTGATGAGG -ACGGAATCAGTGGTTGTGAATGGG -ACGGAATCAGTGGTTGTGTCCTGA -ACGGAATCAGTGGTTGTGTAGCGA -ACGGAATCAGTGGTTGTGCACAGA -ACGGAATCAGTGGTTGTGGCAAGA -ACGGAATCAGTGGTTGTGGGTTGA -ACGGAATCAGTGGTTGTGTCCGAT -ACGGAATCAGTGGTTGTGTGGCAT -ACGGAATCAGTGGTTGTGCGAGAT -ACGGAATCAGTGGTTGTGTACCAC -ACGGAATCAGTGGTTGTGCAGAAC -ACGGAATCAGTGGTTGTGGTCTAC -ACGGAATCAGTGGTTGTGACGTAC -ACGGAATCAGTGGTTGTGAGTGAC -ACGGAATCAGTGGTTGTGCTGTAG -ACGGAATCAGTGGTTGTGCCTAAG -ACGGAATCAGTGGTTGTGGTTCAG -ACGGAATCAGTGGTTGTGGCATAG -ACGGAATCAGTGGTTGTGGACAAG -ACGGAATCAGTGGTTGTGAAGCAG -ACGGAATCAGTGGTTGTGCGTCAA -ACGGAATCAGTGGTTGTGGCTGAA -ACGGAATCAGTGGTTGTGAGTACG -ACGGAATCAGTGGTTGTGATCCGA -ACGGAATCAGTGGTTGTGATGGGA -ACGGAATCAGTGGTTGTGGTGCAA -ACGGAATCAGTGGTTGTGGAGGAA -ACGGAATCAGTGGTTGTGCAGGTA -ACGGAATCAGTGGTTGTGGACTCT -ACGGAATCAGTGGTTGTGAGTCCT -ACGGAATCAGTGGTTGTGTAAGCC -ACGGAATCAGTGGTTGTGATAGCC -ACGGAATCAGTGGTTGTGTAACCG -ACGGAATCAGTGGTTGTGATGCCA -ACGGAATCAGTGTTTGCCGGAAAC -ACGGAATCAGTGTTTGCCAACACC -ACGGAATCAGTGTTTGCCATCGAG -ACGGAATCAGTGTTTGCCCTCCTT -ACGGAATCAGTGTTTGCCCCTGTT -ACGGAATCAGTGTTTGCCCGGTTT -ACGGAATCAGTGTTTGCCGTGGTT -ACGGAATCAGTGTTTGCCGCCTTT -ACGGAATCAGTGTTTGCCGGTCTT -ACGGAATCAGTGTTTGCCACGCTT -ACGGAATCAGTGTTTGCCAGCGTT -ACGGAATCAGTGTTTGCCTTCGTC -ACGGAATCAGTGTTTGCCTCTCTC -ACGGAATCAGTGTTTGCCTGGATC -ACGGAATCAGTGTTTGCCCACTTC -ACGGAATCAGTGTTTGCCGTACTC -ACGGAATCAGTGTTTGCCGATGTC -ACGGAATCAGTGTTTGCCACAGTC -ACGGAATCAGTGTTTGCCTTGCTG -ACGGAATCAGTGTTTGCCTCCATG -ACGGAATCAGTGTTTGCCTGTGTG -ACGGAATCAGTGTTTGCCCTAGTG -ACGGAATCAGTGTTTGCCCATCTG -ACGGAATCAGTGTTTGCCGAGTTG -ACGGAATCAGTGTTTGCCAGACTG -ACGGAATCAGTGTTTGCCTCGGTA -ACGGAATCAGTGTTTGCCTGCCTA -ACGGAATCAGTGTTTGCCCCACTA -ACGGAATCAGTGTTTGCCGGAGTA -ACGGAATCAGTGTTTGCCTCGTCT -ACGGAATCAGTGTTTGCCTGCACT -ACGGAATCAGTGTTTGCCCTGACT -ACGGAATCAGTGTTTGCCCAACCT -ACGGAATCAGTGTTTGCCGCTACT -ACGGAATCAGTGTTTGCCGGATCT -ACGGAATCAGTGTTTGCCAAGGCT -ACGGAATCAGTGTTTGCCTCAACC -ACGGAATCAGTGTTTGCCTGTTCC -ACGGAATCAGTGTTTGCCATTCCC -ACGGAATCAGTGTTTGCCTTCTCG -ACGGAATCAGTGTTTGCCTAGACG -ACGGAATCAGTGTTTGCCGTAACG -ACGGAATCAGTGTTTGCCACTTCG -ACGGAATCAGTGTTTGCCTACGCA -ACGGAATCAGTGTTTGCCCTTGCA -ACGGAATCAGTGTTTGCCCGAACA -ACGGAATCAGTGTTTGCCCAGTCA -ACGGAATCAGTGTTTGCCGATCCA -ACGGAATCAGTGTTTGCCACGACA -ACGGAATCAGTGTTTGCCAGCTCA -ACGGAATCAGTGTTTGCCTCACGT -ACGGAATCAGTGTTTGCCCGTAGT -ACGGAATCAGTGTTTGCCGTCAGT -ACGGAATCAGTGTTTGCCGAAGGT -ACGGAATCAGTGTTTGCCAACCGT -ACGGAATCAGTGTTTGCCTTGTGC -ACGGAATCAGTGTTTGCCCTAAGC -ACGGAATCAGTGTTTGCCACTAGC -ACGGAATCAGTGTTTGCCAGATGC -ACGGAATCAGTGTTTGCCTGAAGG -ACGGAATCAGTGTTTGCCCAATGG -ACGGAATCAGTGTTTGCCATGAGG -ACGGAATCAGTGTTTGCCAATGGG -ACGGAATCAGTGTTTGCCTCCTGA -ACGGAATCAGTGTTTGCCTAGCGA -ACGGAATCAGTGTTTGCCCACAGA -ACGGAATCAGTGTTTGCCGCAAGA -ACGGAATCAGTGTTTGCCGGTTGA -ACGGAATCAGTGTTTGCCTCCGAT -ACGGAATCAGTGTTTGCCTGGCAT -ACGGAATCAGTGTTTGCCCGAGAT -ACGGAATCAGTGTTTGCCTACCAC -ACGGAATCAGTGTTTGCCCAGAAC -ACGGAATCAGTGTTTGCCGTCTAC -ACGGAATCAGTGTTTGCCACGTAC -ACGGAATCAGTGTTTGCCAGTGAC -ACGGAATCAGTGTTTGCCCTGTAG -ACGGAATCAGTGTTTGCCCCTAAG -ACGGAATCAGTGTTTGCCGTTCAG -ACGGAATCAGTGTTTGCCGCATAG -ACGGAATCAGTGTTTGCCGACAAG -ACGGAATCAGTGTTTGCCAAGCAG -ACGGAATCAGTGTTTGCCCGTCAA -ACGGAATCAGTGTTTGCCGCTGAA -ACGGAATCAGTGTTTGCCAGTACG -ACGGAATCAGTGTTTGCCATCCGA -ACGGAATCAGTGTTTGCCATGGGA -ACGGAATCAGTGTTTGCCGTGCAA -ACGGAATCAGTGTTTGCCGAGGAA -ACGGAATCAGTGTTTGCCCAGGTA -ACGGAATCAGTGTTTGCCGACTCT -ACGGAATCAGTGTTTGCCAGTCCT -ACGGAATCAGTGTTTGCCTAAGCC -ACGGAATCAGTGTTTGCCATAGCC -ACGGAATCAGTGTTTGCCTAACCG -ACGGAATCAGTGTTTGCCATGCCA -ACGGAATCAGTGCTTGGTGGAAAC -ACGGAATCAGTGCTTGGTAACACC -ACGGAATCAGTGCTTGGTATCGAG -ACGGAATCAGTGCTTGGTCTCCTT -ACGGAATCAGTGCTTGGTCCTGTT -ACGGAATCAGTGCTTGGTCGGTTT -ACGGAATCAGTGCTTGGTGTGGTT -ACGGAATCAGTGCTTGGTGCCTTT -ACGGAATCAGTGCTTGGTGGTCTT -ACGGAATCAGTGCTTGGTACGCTT -ACGGAATCAGTGCTTGGTAGCGTT -ACGGAATCAGTGCTTGGTTTCGTC -ACGGAATCAGTGCTTGGTTCTCTC -ACGGAATCAGTGCTTGGTTGGATC -ACGGAATCAGTGCTTGGTCACTTC -ACGGAATCAGTGCTTGGTGTACTC -ACGGAATCAGTGCTTGGTGATGTC -ACGGAATCAGTGCTTGGTACAGTC -ACGGAATCAGTGCTTGGTTTGCTG -ACGGAATCAGTGCTTGGTTCCATG -ACGGAATCAGTGCTTGGTTGTGTG -ACGGAATCAGTGCTTGGTCTAGTG -ACGGAATCAGTGCTTGGTCATCTG -ACGGAATCAGTGCTTGGTGAGTTG -ACGGAATCAGTGCTTGGTAGACTG -ACGGAATCAGTGCTTGGTTCGGTA -ACGGAATCAGTGCTTGGTTGCCTA -ACGGAATCAGTGCTTGGTCCACTA -ACGGAATCAGTGCTTGGTGGAGTA -ACGGAATCAGTGCTTGGTTCGTCT -ACGGAATCAGTGCTTGGTTGCACT -ACGGAATCAGTGCTTGGTCTGACT -ACGGAATCAGTGCTTGGTCAACCT -ACGGAATCAGTGCTTGGTGCTACT -ACGGAATCAGTGCTTGGTGGATCT -ACGGAATCAGTGCTTGGTAAGGCT -ACGGAATCAGTGCTTGGTTCAACC -ACGGAATCAGTGCTTGGTTGTTCC -ACGGAATCAGTGCTTGGTATTCCC -ACGGAATCAGTGCTTGGTTTCTCG -ACGGAATCAGTGCTTGGTTAGACG -ACGGAATCAGTGCTTGGTGTAACG -ACGGAATCAGTGCTTGGTACTTCG -ACGGAATCAGTGCTTGGTTACGCA -ACGGAATCAGTGCTTGGTCTTGCA -ACGGAATCAGTGCTTGGTCGAACA -ACGGAATCAGTGCTTGGTCAGTCA -ACGGAATCAGTGCTTGGTGATCCA -ACGGAATCAGTGCTTGGTACGACA -ACGGAATCAGTGCTTGGTAGCTCA -ACGGAATCAGTGCTTGGTTCACGT -ACGGAATCAGTGCTTGGTCGTAGT -ACGGAATCAGTGCTTGGTGTCAGT -ACGGAATCAGTGCTTGGTGAAGGT -ACGGAATCAGTGCTTGGTAACCGT -ACGGAATCAGTGCTTGGTTTGTGC -ACGGAATCAGTGCTTGGTCTAAGC -ACGGAATCAGTGCTTGGTACTAGC -ACGGAATCAGTGCTTGGTAGATGC -ACGGAATCAGTGCTTGGTTGAAGG -ACGGAATCAGTGCTTGGTCAATGG -ACGGAATCAGTGCTTGGTATGAGG -ACGGAATCAGTGCTTGGTAATGGG -ACGGAATCAGTGCTTGGTTCCTGA -ACGGAATCAGTGCTTGGTTAGCGA -ACGGAATCAGTGCTTGGTCACAGA -ACGGAATCAGTGCTTGGTGCAAGA -ACGGAATCAGTGCTTGGTGGTTGA -ACGGAATCAGTGCTTGGTTCCGAT -ACGGAATCAGTGCTTGGTTGGCAT -ACGGAATCAGTGCTTGGTCGAGAT -ACGGAATCAGTGCTTGGTTACCAC -ACGGAATCAGTGCTTGGTCAGAAC -ACGGAATCAGTGCTTGGTGTCTAC -ACGGAATCAGTGCTTGGTACGTAC -ACGGAATCAGTGCTTGGTAGTGAC -ACGGAATCAGTGCTTGGTCTGTAG -ACGGAATCAGTGCTTGGTCCTAAG -ACGGAATCAGTGCTTGGTGTTCAG -ACGGAATCAGTGCTTGGTGCATAG -ACGGAATCAGTGCTTGGTGACAAG -ACGGAATCAGTGCTTGGTAAGCAG -ACGGAATCAGTGCTTGGTCGTCAA -ACGGAATCAGTGCTTGGTGCTGAA -ACGGAATCAGTGCTTGGTAGTACG -ACGGAATCAGTGCTTGGTATCCGA -ACGGAATCAGTGCTTGGTATGGGA -ACGGAATCAGTGCTTGGTGTGCAA -ACGGAATCAGTGCTTGGTGAGGAA -ACGGAATCAGTGCTTGGTCAGGTA -ACGGAATCAGTGCTTGGTGACTCT -ACGGAATCAGTGCTTGGTAGTCCT -ACGGAATCAGTGCTTGGTTAAGCC -ACGGAATCAGTGCTTGGTATAGCC -ACGGAATCAGTGCTTGGTTAACCG -ACGGAATCAGTGCTTGGTATGCCA -ACGGAATCAGTGCTTACGGGAAAC -ACGGAATCAGTGCTTACGAACACC -ACGGAATCAGTGCTTACGATCGAG -ACGGAATCAGTGCTTACGCTCCTT -ACGGAATCAGTGCTTACGCCTGTT -ACGGAATCAGTGCTTACGCGGTTT -ACGGAATCAGTGCTTACGGTGGTT -ACGGAATCAGTGCTTACGGCCTTT -ACGGAATCAGTGCTTACGGGTCTT -ACGGAATCAGTGCTTACGACGCTT -ACGGAATCAGTGCTTACGAGCGTT -ACGGAATCAGTGCTTACGTTCGTC -ACGGAATCAGTGCTTACGTCTCTC -ACGGAATCAGTGCTTACGTGGATC -ACGGAATCAGTGCTTACGCACTTC -ACGGAATCAGTGCTTACGGTACTC -ACGGAATCAGTGCTTACGGATGTC -ACGGAATCAGTGCTTACGACAGTC -ACGGAATCAGTGCTTACGTTGCTG -ACGGAATCAGTGCTTACGTCCATG -ACGGAATCAGTGCTTACGTGTGTG -ACGGAATCAGTGCTTACGCTAGTG -ACGGAATCAGTGCTTACGCATCTG -ACGGAATCAGTGCTTACGGAGTTG -ACGGAATCAGTGCTTACGAGACTG -ACGGAATCAGTGCTTACGTCGGTA -ACGGAATCAGTGCTTACGTGCCTA -ACGGAATCAGTGCTTACGCCACTA -ACGGAATCAGTGCTTACGGGAGTA -ACGGAATCAGTGCTTACGTCGTCT -ACGGAATCAGTGCTTACGTGCACT -ACGGAATCAGTGCTTACGCTGACT -ACGGAATCAGTGCTTACGCAACCT -ACGGAATCAGTGCTTACGGCTACT -ACGGAATCAGTGCTTACGGGATCT -ACGGAATCAGTGCTTACGAAGGCT -ACGGAATCAGTGCTTACGTCAACC -ACGGAATCAGTGCTTACGTGTTCC -ACGGAATCAGTGCTTACGATTCCC -ACGGAATCAGTGCTTACGTTCTCG -ACGGAATCAGTGCTTACGTAGACG -ACGGAATCAGTGCTTACGGTAACG -ACGGAATCAGTGCTTACGACTTCG -ACGGAATCAGTGCTTACGTACGCA -ACGGAATCAGTGCTTACGCTTGCA -ACGGAATCAGTGCTTACGCGAACA -ACGGAATCAGTGCTTACGCAGTCA -ACGGAATCAGTGCTTACGGATCCA -ACGGAATCAGTGCTTACGACGACA -ACGGAATCAGTGCTTACGAGCTCA -ACGGAATCAGTGCTTACGTCACGT -ACGGAATCAGTGCTTACGCGTAGT -ACGGAATCAGTGCTTACGGTCAGT -ACGGAATCAGTGCTTACGGAAGGT -ACGGAATCAGTGCTTACGAACCGT -ACGGAATCAGTGCTTACGTTGTGC -ACGGAATCAGTGCTTACGCTAAGC -ACGGAATCAGTGCTTACGACTAGC -ACGGAATCAGTGCTTACGAGATGC -ACGGAATCAGTGCTTACGTGAAGG -ACGGAATCAGTGCTTACGCAATGG -ACGGAATCAGTGCTTACGATGAGG -ACGGAATCAGTGCTTACGAATGGG -ACGGAATCAGTGCTTACGTCCTGA -ACGGAATCAGTGCTTACGTAGCGA -ACGGAATCAGTGCTTACGCACAGA -ACGGAATCAGTGCTTACGGCAAGA -ACGGAATCAGTGCTTACGGGTTGA -ACGGAATCAGTGCTTACGTCCGAT -ACGGAATCAGTGCTTACGTGGCAT -ACGGAATCAGTGCTTACGCGAGAT -ACGGAATCAGTGCTTACGTACCAC -ACGGAATCAGTGCTTACGCAGAAC -ACGGAATCAGTGCTTACGGTCTAC -ACGGAATCAGTGCTTACGACGTAC -ACGGAATCAGTGCTTACGAGTGAC -ACGGAATCAGTGCTTACGCTGTAG -ACGGAATCAGTGCTTACGCCTAAG -ACGGAATCAGTGCTTACGGTTCAG -ACGGAATCAGTGCTTACGGCATAG -ACGGAATCAGTGCTTACGGACAAG -ACGGAATCAGTGCTTACGAAGCAG -ACGGAATCAGTGCTTACGCGTCAA -ACGGAATCAGTGCTTACGGCTGAA -ACGGAATCAGTGCTTACGAGTACG -ACGGAATCAGTGCTTACGATCCGA -ACGGAATCAGTGCTTACGATGGGA -ACGGAATCAGTGCTTACGGTGCAA -ACGGAATCAGTGCTTACGGAGGAA -ACGGAATCAGTGCTTACGCAGGTA -ACGGAATCAGTGCTTACGGACTCT -ACGGAATCAGTGCTTACGAGTCCT -ACGGAATCAGTGCTTACGTAAGCC -ACGGAATCAGTGCTTACGATAGCC -ACGGAATCAGTGCTTACGTAACCG -ACGGAATCAGTGCTTACGATGCCA -ACGGAATCAGTGGTTAGCGGAAAC -ACGGAATCAGTGGTTAGCAACACC -ACGGAATCAGTGGTTAGCATCGAG -ACGGAATCAGTGGTTAGCCTCCTT -ACGGAATCAGTGGTTAGCCCTGTT -ACGGAATCAGTGGTTAGCCGGTTT -ACGGAATCAGTGGTTAGCGTGGTT -ACGGAATCAGTGGTTAGCGCCTTT -ACGGAATCAGTGGTTAGCGGTCTT -ACGGAATCAGTGGTTAGCACGCTT -ACGGAATCAGTGGTTAGCAGCGTT -ACGGAATCAGTGGTTAGCTTCGTC -ACGGAATCAGTGGTTAGCTCTCTC -ACGGAATCAGTGGTTAGCTGGATC -ACGGAATCAGTGGTTAGCCACTTC -ACGGAATCAGTGGTTAGCGTACTC -ACGGAATCAGTGGTTAGCGATGTC -ACGGAATCAGTGGTTAGCACAGTC -ACGGAATCAGTGGTTAGCTTGCTG -ACGGAATCAGTGGTTAGCTCCATG -ACGGAATCAGTGGTTAGCTGTGTG -ACGGAATCAGTGGTTAGCCTAGTG -ACGGAATCAGTGGTTAGCCATCTG -ACGGAATCAGTGGTTAGCGAGTTG -ACGGAATCAGTGGTTAGCAGACTG -ACGGAATCAGTGGTTAGCTCGGTA -ACGGAATCAGTGGTTAGCTGCCTA -ACGGAATCAGTGGTTAGCCCACTA -ACGGAATCAGTGGTTAGCGGAGTA -ACGGAATCAGTGGTTAGCTCGTCT -ACGGAATCAGTGGTTAGCTGCACT -ACGGAATCAGTGGTTAGCCTGACT -ACGGAATCAGTGGTTAGCCAACCT -ACGGAATCAGTGGTTAGCGCTACT -ACGGAATCAGTGGTTAGCGGATCT -ACGGAATCAGTGGTTAGCAAGGCT -ACGGAATCAGTGGTTAGCTCAACC -ACGGAATCAGTGGTTAGCTGTTCC -ACGGAATCAGTGGTTAGCATTCCC -ACGGAATCAGTGGTTAGCTTCTCG -ACGGAATCAGTGGTTAGCTAGACG -ACGGAATCAGTGGTTAGCGTAACG -ACGGAATCAGTGGTTAGCACTTCG -ACGGAATCAGTGGTTAGCTACGCA -ACGGAATCAGTGGTTAGCCTTGCA -ACGGAATCAGTGGTTAGCCGAACA -ACGGAATCAGTGGTTAGCCAGTCA -ACGGAATCAGTGGTTAGCGATCCA -ACGGAATCAGTGGTTAGCACGACA -ACGGAATCAGTGGTTAGCAGCTCA -ACGGAATCAGTGGTTAGCTCACGT -ACGGAATCAGTGGTTAGCCGTAGT -ACGGAATCAGTGGTTAGCGTCAGT -ACGGAATCAGTGGTTAGCGAAGGT -ACGGAATCAGTGGTTAGCAACCGT -ACGGAATCAGTGGTTAGCTTGTGC -ACGGAATCAGTGGTTAGCCTAAGC -ACGGAATCAGTGGTTAGCACTAGC -ACGGAATCAGTGGTTAGCAGATGC -ACGGAATCAGTGGTTAGCTGAAGG -ACGGAATCAGTGGTTAGCCAATGG -ACGGAATCAGTGGTTAGCATGAGG -ACGGAATCAGTGGTTAGCAATGGG -ACGGAATCAGTGGTTAGCTCCTGA -ACGGAATCAGTGGTTAGCTAGCGA -ACGGAATCAGTGGTTAGCCACAGA -ACGGAATCAGTGGTTAGCGCAAGA -ACGGAATCAGTGGTTAGCGGTTGA -ACGGAATCAGTGGTTAGCTCCGAT -ACGGAATCAGTGGTTAGCTGGCAT -ACGGAATCAGTGGTTAGCCGAGAT -ACGGAATCAGTGGTTAGCTACCAC -ACGGAATCAGTGGTTAGCCAGAAC -ACGGAATCAGTGGTTAGCGTCTAC -ACGGAATCAGTGGTTAGCACGTAC -ACGGAATCAGTGGTTAGCAGTGAC -ACGGAATCAGTGGTTAGCCTGTAG -ACGGAATCAGTGGTTAGCCCTAAG -ACGGAATCAGTGGTTAGCGTTCAG -ACGGAATCAGTGGTTAGCGCATAG -ACGGAATCAGTGGTTAGCGACAAG -ACGGAATCAGTGGTTAGCAAGCAG -ACGGAATCAGTGGTTAGCCGTCAA -ACGGAATCAGTGGTTAGCGCTGAA -ACGGAATCAGTGGTTAGCAGTACG -ACGGAATCAGTGGTTAGCATCCGA -ACGGAATCAGTGGTTAGCATGGGA -ACGGAATCAGTGGTTAGCGTGCAA -ACGGAATCAGTGGTTAGCGAGGAA -ACGGAATCAGTGGTTAGCCAGGTA -ACGGAATCAGTGGTTAGCGACTCT -ACGGAATCAGTGGTTAGCAGTCCT -ACGGAATCAGTGGTTAGCTAAGCC -ACGGAATCAGTGGTTAGCATAGCC -ACGGAATCAGTGGTTAGCTAACCG -ACGGAATCAGTGGTTAGCATGCCA -ACGGAATCAGTGGTCTTCGGAAAC -ACGGAATCAGTGGTCTTCAACACC -ACGGAATCAGTGGTCTTCATCGAG -ACGGAATCAGTGGTCTTCCTCCTT -ACGGAATCAGTGGTCTTCCCTGTT -ACGGAATCAGTGGTCTTCCGGTTT -ACGGAATCAGTGGTCTTCGTGGTT -ACGGAATCAGTGGTCTTCGCCTTT -ACGGAATCAGTGGTCTTCGGTCTT -ACGGAATCAGTGGTCTTCACGCTT -ACGGAATCAGTGGTCTTCAGCGTT -ACGGAATCAGTGGTCTTCTTCGTC -ACGGAATCAGTGGTCTTCTCTCTC -ACGGAATCAGTGGTCTTCTGGATC -ACGGAATCAGTGGTCTTCCACTTC -ACGGAATCAGTGGTCTTCGTACTC -ACGGAATCAGTGGTCTTCGATGTC -ACGGAATCAGTGGTCTTCACAGTC -ACGGAATCAGTGGTCTTCTTGCTG -ACGGAATCAGTGGTCTTCTCCATG -ACGGAATCAGTGGTCTTCTGTGTG -ACGGAATCAGTGGTCTTCCTAGTG -ACGGAATCAGTGGTCTTCCATCTG -ACGGAATCAGTGGTCTTCGAGTTG -ACGGAATCAGTGGTCTTCAGACTG -ACGGAATCAGTGGTCTTCTCGGTA -ACGGAATCAGTGGTCTTCTGCCTA -ACGGAATCAGTGGTCTTCCCACTA -ACGGAATCAGTGGTCTTCGGAGTA -ACGGAATCAGTGGTCTTCTCGTCT -ACGGAATCAGTGGTCTTCTGCACT -ACGGAATCAGTGGTCTTCCTGACT -ACGGAATCAGTGGTCTTCCAACCT -ACGGAATCAGTGGTCTTCGCTACT -ACGGAATCAGTGGTCTTCGGATCT -ACGGAATCAGTGGTCTTCAAGGCT -ACGGAATCAGTGGTCTTCTCAACC -ACGGAATCAGTGGTCTTCTGTTCC -ACGGAATCAGTGGTCTTCATTCCC -ACGGAATCAGTGGTCTTCTTCTCG -ACGGAATCAGTGGTCTTCTAGACG -ACGGAATCAGTGGTCTTCGTAACG -ACGGAATCAGTGGTCTTCACTTCG -ACGGAATCAGTGGTCTTCTACGCA -ACGGAATCAGTGGTCTTCCTTGCA -ACGGAATCAGTGGTCTTCCGAACA -ACGGAATCAGTGGTCTTCCAGTCA -ACGGAATCAGTGGTCTTCGATCCA -ACGGAATCAGTGGTCTTCACGACA -ACGGAATCAGTGGTCTTCAGCTCA -ACGGAATCAGTGGTCTTCTCACGT -ACGGAATCAGTGGTCTTCCGTAGT -ACGGAATCAGTGGTCTTCGTCAGT -ACGGAATCAGTGGTCTTCGAAGGT -ACGGAATCAGTGGTCTTCAACCGT -ACGGAATCAGTGGTCTTCTTGTGC -ACGGAATCAGTGGTCTTCCTAAGC -ACGGAATCAGTGGTCTTCACTAGC -ACGGAATCAGTGGTCTTCAGATGC -ACGGAATCAGTGGTCTTCTGAAGG -ACGGAATCAGTGGTCTTCCAATGG -ACGGAATCAGTGGTCTTCATGAGG -ACGGAATCAGTGGTCTTCAATGGG -ACGGAATCAGTGGTCTTCTCCTGA -ACGGAATCAGTGGTCTTCTAGCGA -ACGGAATCAGTGGTCTTCCACAGA -ACGGAATCAGTGGTCTTCGCAAGA -ACGGAATCAGTGGTCTTCGGTTGA -ACGGAATCAGTGGTCTTCTCCGAT -ACGGAATCAGTGGTCTTCTGGCAT -ACGGAATCAGTGGTCTTCCGAGAT -ACGGAATCAGTGGTCTTCTACCAC -ACGGAATCAGTGGTCTTCCAGAAC -ACGGAATCAGTGGTCTTCGTCTAC -ACGGAATCAGTGGTCTTCACGTAC -ACGGAATCAGTGGTCTTCAGTGAC -ACGGAATCAGTGGTCTTCCTGTAG -ACGGAATCAGTGGTCTTCCCTAAG -ACGGAATCAGTGGTCTTCGTTCAG -ACGGAATCAGTGGTCTTCGCATAG -ACGGAATCAGTGGTCTTCGACAAG -ACGGAATCAGTGGTCTTCAAGCAG -ACGGAATCAGTGGTCTTCCGTCAA -ACGGAATCAGTGGTCTTCGCTGAA -ACGGAATCAGTGGTCTTCAGTACG -ACGGAATCAGTGGTCTTCATCCGA -ACGGAATCAGTGGTCTTCATGGGA -ACGGAATCAGTGGTCTTCGTGCAA -ACGGAATCAGTGGTCTTCGAGGAA -ACGGAATCAGTGGTCTTCCAGGTA -ACGGAATCAGTGGTCTTCGACTCT -ACGGAATCAGTGGTCTTCAGTCCT -ACGGAATCAGTGGTCTTCTAAGCC -ACGGAATCAGTGGTCTTCATAGCC -ACGGAATCAGTGGTCTTCTAACCG -ACGGAATCAGTGGTCTTCATGCCA -ACGGAATCAGTGCTCTCTGGAAAC -ACGGAATCAGTGCTCTCTAACACC -ACGGAATCAGTGCTCTCTATCGAG -ACGGAATCAGTGCTCTCTCTCCTT -ACGGAATCAGTGCTCTCTCCTGTT -ACGGAATCAGTGCTCTCTCGGTTT -ACGGAATCAGTGCTCTCTGTGGTT -ACGGAATCAGTGCTCTCTGCCTTT -ACGGAATCAGTGCTCTCTGGTCTT -ACGGAATCAGTGCTCTCTACGCTT -ACGGAATCAGTGCTCTCTAGCGTT -ACGGAATCAGTGCTCTCTTTCGTC -ACGGAATCAGTGCTCTCTTCTCTC -ACGGAATCAGTGCTCTCTTGGATC -ACGGAATCAGTGCTCTCTCACTTC -ACGGAATCAGTGCTCTCTGTACTC -ACGGAATCAGTGCTCTCTGATGTC -ACGGAATCAGTGCTCTCTACAGTC -ACGGAATCAGTGCTCTCTTTGCTG -ACGGAATCAGTGCTCTCTTCCATG -ACGGAATCAGTGCTCTCTTGTGTG -ACGGAATCAGTGCTCTCTCTAGTG -ACGGAATCAGTGCTCTCTCATCTG -ACGGAATCAGTGCTCTCTGAGTTG -ACGGAATCAGTGCTCTCTAGACTG -ACGGAATCAGTGCTCTCTTCGGTA -ACGGAATCAGTGCTCTCTTGCCTA -ACGGAATCAGTGCTCTCTCCACTA -ACGGAATCAGTGCTCTCTGGAGTA -ACGGAATCAGTGCTCTCTTCGTCT -ACGGAATCAGTGCTCTCTTGCACT -ACGGAATCAGTGCTCTCTCTGACT -ACGGAATCAGTGCTCTCTCAACCT -ACGGAATCAGTGCTCTCTGCTACT -ACGGAATCAGTGCTCTCTGGATCT -ACGGAATCAGTGCTCTCTAAGGCT -ACGGAATCAGTGCTCTCTTCAACC -ACGGAATCAGTGCTCTCTTGTTCC -ACGGAATCAGTGCTCTCTATTCCC -ACGGAATCAGTGCTCTCTTTCTCG -ACGGAATCAGTGCTCTCTTAGACG -ACGGAATCAGTGCTCTCTGTAACG -ACGGAATCAGTGCTCTCTACTTCG -ACGGAATCAGTGCTCTCTTACGCA -ACGGAATCAGTGCTCTCTCTTGCA -ACGGAATCAGTGCTCTCTCGAACA -ACGGAATCAGTGCTCTCTCAGTCA -ACGGAATCAGTGCTCTCTGATCCA -ACGGAATCAGTGCTCTCTACGACA -ACGGAATCAGTGCTCTCTAGCTCA -ACGGAATCAGTGCTCTCTTCACGT -ACGGAATCAGTGCTCTCTCGTAGT -ACGGAATCAGTGCTCTCTGTCAGT -ACGGAATCAGTGCTCTCTGAAGGT -ACGGAATCAGTGCTCTCTAACCGT -ACGGAATCAGTGCTCTCTTTGTGC -ACGGAATCAGTGCTCTCTCTAAGC -ACGGAATCAGTGCTCTCTACTAGC -ACGGAATCAGTGCTCTCTAGATGC -ACGGAATCAGTGCTCTCTTGAAGG -ACGGAATCAGTGCTCTCTCAATGG -ACGGAATCAGTGCTCTCTATGAGG -ACGGAATCAGTGCTCTCTAATGGG -ACGGAATCAGTGCTCTCTTCCTGA -ACGGAATCAGTGCTCTCTTAGCGA -ACGGAATCAGTGCTCTCTCACAGA -ACGGAATCAGTGCTCTCTGCAAGA -ACGGAATCAGTGCTCTCTGGTTGA -ACGGAATCAGTGCTCTCTTCCGAT -ACGGAATCAGTGCTCTCTTGGCAT -ACGGAATCAGTGCTCTCTCGAGAT -ACGGAATCAGTGCTCTCTTACCAC -ACGGAATCAGTGCTCTCTCAGAAC -ACGGAATCAGTGCTCTCTGTCTAC -ACGGAATCAGTGCTCTCTACGTAC -ACGGAATCAGTGCTCTCTAGTGAC -ACGGAATCAGTGCTCTCTCTGTAG -ACGGAATCAGTGCTCTCTCCTAAG -ACGGAATCAGTGCTCTCTGTTCAG -ACGGAATCAGTGCTCTCTGCATAG -ACGGAATCAGTGCTCTCTGACAAG -ACGGAATCAGTGCTCTCTAAGCAG -ACGGAATCAGTGCTCTCTCGTCAA -ACGGAATCAGTGCTCTCTGCTGAA -ACGGAATCAGTGCTCTCTAGTACG -ACGGAATCAGTGCTCTCTATCCGA -ACGGAATCAGTGCTCTCTATGGGA -ACGGAATCAGTGCTCTCTGTGCAA -ACGGAATCAGTGCTCTCTGAGGAA -ACGGAATCAGTGCTCTCTCAGGTA -ACGGAATCAGTGCTCTCTGACTCT -ACGGAATCAGTGCTCTCTAGTCCT -ACGGAATCAGTGCTCTCTTAAGCC -ACGGAATCAGTGCTCTCTATAGCC -ACGGAATCAGTGCTCTCTTAACCG -ACGGAATCAGTGCTCTCTATGCCA -ACGGAATCAGTGATCTGGGGAAAC -ACGGAATCAGTGATCTGGAACACC -ACGGAATCAGTGATCTGGATCGAG -ACGGAATCAGTGATCTGGCTCCTT -ACGGAATCAGTGATCTGGCCTGTT -ACGGAATCAGTGATCTGGCGGTTT -ACGGAATCAGTGATCTGGGTGGTT -ACGGAATCAGTGATCTGGGCCTTT -ACGGAATCAGTGATCTGGGGTCTT -ACGGAATCAGTGATCTGGACGCTT -ACGGAATCAGTGATCTGGAGCGTT -ACGGAATCAGTGATCTGGTTCGTC -ACGGAATCAGTGATCTGGTCTCTC -ACGGAATCAGTGATCTGGTGGATC -ACGGAATCAGTGATCTGGCACTTC -ACGGAATCAGTGATCTGGGTACTC -ACGGAATCAGTGATCTGGGATGTC -ACGGAATCAGTGATCTGGACAGTC -ACGGAATCAGTGATCTGGTTGCTG -ACGGAATCAGTGATCTGGTCCATG -ACGGAATCAGTGATCTGGTGTGTG -ACGGAATCAGTGATCTGGCTAGTG -ACGGAATCAGTGATCTGGCATCTG -ACGGAATCAGTGATCTGGGAGTTG -ACGGAATCAGTGATCTGGAGACTG -ACGGAATCAGTGATCTGGTCGGTA -ACGGAATCAGTGATCTGGTGCCTA -ACGGAATCAGTGATCTGGCCACTA -ACGGAATCAGTGATCTGGGGAGTA -ACGGAATCAGTGATCTGGTCGTCT -ACGGAATCAGTGATCTGGTGCACT -ACGGAATCAGTGATCTGGCTGACT -ACGGAATCAGTGATCTGGCAACCT -ACGGAATCAGTGATCTGGGCTACT -ACGGAATCAGTGATCTGGGGATCT -ACGGAATCAGTGATCTGGAAGGCT -ACGGAATCAGTGATCTGGTCAACC -ACGGAATCAGTGATCTGGTGTTCC -ACGGAATCAGTGATCTGGATTCCC -ACGGAATCAGTGATCTGGTTCTCG -ACGGAATCAGTGATCTGGTAGACG -ACGGAATCAGTGATCTGGGTAACG -ACGGAATCAGTGATCTGGACTTCG -ACGGAATCAGTGATCTGGTACGCA -ACGGAATCAGTGATCTGGCTTGCA -ACGGAATCAGTGATCTGGCGAACA -ACGGAATCAGTGATCTGGCAGTCA -ACGGAATCAGTGATCTGGGATCCA -ACGGAATCAGTGATCTGGACGACA -ACGGAATCAGTGATCTGGAGCTCA -ACGGAATCAGTGATCTGGTCACGT -ACGGAATCAGTGATCTGGCGTAGT -ACGGAATCAGTGATCTGGGTCAGT -ACGGAATCAGTGATCTGGGAAGGT -ACGGAATCAGTGATCTGGAACCGT -ACGGAATCAGTGATCTGGTTGTGC -ACGGAATCAGTGATCTGGCTAAGC -ACGGAATCAGTGATCTGGACTAGC -ACGGAATCAGTGATCTGGAGATGC -ACGGAATCAGTGATCTGGTGAAGG -ACGGAATCAGTGATCTGGCAATGG -ACGGAATCAGTGATCTGGATGAGG -ACGGAATCAGTGATCTGGAATGGG -ACGGAATCAGTGATCTGGTCCTGA -ACGGAATCAGTGATCTGGTAGCGA -ACGGAATCAGTGATCTGGCACAGA -ACGGAATCAGTGATCTGGGCAAGA -ACGGAATCAGTGATCTGGGGTTGA -ACGGAATCAGTGATCTGGTCCGAT -ACGGAATCAGTGATCTGGTGGCAT -ACGGAATCAGTGATCTGGCGAGAT -ACGGAATCAGTGATCTGGTACCAC -ACGGAATCAGTGATCTGGCAGAAC -ACGGAATCAGTGATCTGGGTCTAC -ACGGAATCAGTGATCTGGACGTAC -ACGGAATCAGTGATCTGGAGTGAC -ACGGAATCAGTGATCTGGCTGTAG -ACGGAATCAGTGATCTGGCCTAAG -ACGGAATCAGTGATCTGGGTTCAG -ACGGAATCAGTGATCTGGGCATAG -ACGGAATCAGTGATCTGGGACAAG -ACGGAATCAGTGATCTGGAAGCAG -ACGGAATCAGTGATCTGGCGTCAA -ACGGAATCAGTGATCTGGGCTGAA -ACGGAATCAGTGATCTGGAGTACG -ACGGAATCAGTGATCTGGATCCGA -ACGGAATCAGTGATCTGGATGGGA -ACGGAATCAGTGATCTGGGTGCAA -ACGGAATCAGTGATCTGGGAGGAA -ACGGAATCAGTGATCTGGCAGGTA -ACGGAATCAGTGATCTGGGACTCT -ACGGAATCAGTGATCTGGAGTCCT -ACGGAATCAGTGATCTGGTAAGCC -ACGGAATCAGTGATCTGGATAGCC -ACGGAATCAGTGATCTGGTAACCG -ACGGAATCAGTGATCTGGATGCCA -ACGGAATCAGTGTTCCACGGAAAC -ACGGAATCAGTGTTCCACAACACC -ACGGAATCAGTGTTCCACATCGAG -ACGGAATCAGTGTTCCACCTCCTT -ACGGAATCAGTGTTCCACCCTGTT -ACGGAATCAGTGTTCCACCGGTTT -ACGGAATCAGTGTTCCACGTGGTT -ACGGAATCAGTGTTCCACGCCTTT -ACGGAATCAGTGTTCCACGGTCTT -ACGGAATCAGTGTTCCACACGCTT -ACGGAATCAGTGTTCCACAGCGTT -ACGGAATCAGTGTTCCACTTCGTC -ACGGAATCAGTGTTCCACTCTCTC -ACGGAATCAGTGTTCCACTGGATC -ACGGAATCAGTGTTCCACCACTTC -ACGGAATCAGTGTTCCACGTACTC -ACGGAATCAGTGTTCCACGATGTC -ACGGAATCAGTGTTCCACACAGTC -ACGGAATCAGTGTTCCACTTGCTG -ACGGAATCAGTGTTCCACTCCATG -ACGGAATCAGTGTTCCACTGTGTG -ACGGAATCAGTGTTCCACCTAGTG -ACGGAATCAGTGTTCCACCATCTG -ACGGAATCAGTGTTCCACGAGTTG -ACGGAATCAGTGTTCCACAGACTG -ACGGAATCAGTGTTCCACTCGGTA -ACGGAATCAGTGTTCCACTGCCTA -ACGGAATCAGTGTTCCACCCACTA -ACGGAATCAGTGTTCCACGGAGTA -ACGGAATCAGTGTTCCACTCGTCT -ACGGAATCAGTGTTCCACTGCACT -ACGGAATCAGTGTTCCACCTGACT -ACGGAATCAGTGTTCCACCAACCT -ACGGAATCAGTGTTCCACGCTACT -ACGGAATCAGTGTTCCACGGATCT -ACGGAATCAGTGTTCCACAAGGCT -ACGGAATCAGTGTTCCACTCAACC -ACGGAATCAGTGTTCCACTGTTCC -ACGGAATCAGTGTTCCACATTCCC -ACGGAATCAGTGTTCCACTTCTCG -ACGGAATCAGTGTTCCACTAGACG -ACGGAATCAGTGTTCCACGTAACG -ACGGAATCAGTGTTCCACACTTCG -ACGGAATCAGTGTTCCACTACGCA -ACGGAATCAGTGTTCCACCTTGCA -ACGGAATCAGTGTTCCACCGAACA -ACGGAATCAGTGTTCCACCAGTCA -ACGGAATCAGTGTTCCACGATCCA -ACGGAATCAGTGTTCCACACGACA -ACGGAATCAGTGTTCCACAGCTCA -ACGGAATCAGTGTTCCACTCACGT -ACGGAATCAGTGTTCCACCGTAGT -ACGGAATCAGTGTTCCACGTCAGT -ACGGAATCAGTGTTCCACGAAGGT -ACGGAATCAGTGTTCCACAACCGT -ACGGAATCAGTGTTCCACTTGTGC -ACGGAATCAGTGTTCCACCTAAGC -ACGGAATCAGTGTTCCACACTAGC -ACGGAATCAGTGTTCCACAGATGC -ACGGAATCAGTGTTCCACTGAAGG -ACGGAATCAGTGTTCCACCAATGG -ACGGAATCAGTGTTCCACATGAGG -ACGGAATCAGTGTTCCACAATGGG -ACGGAATCAGTGTTCCACTCCTGA -ACGGAATCAGTGTTCCACTAGCGA -ACGGAATCAGTGTTCCACCACAGA -ACGGAATCAGTGTTCCACGCAAGA -ACGGAATCAGTGTTCCACGGTTGA -ACGGAATCAGTGTTCCACTCCGAT -ACGGAATCAGTGTTCCACTGGCAT -ACGGAATCAGTGTTCCACCGAGAT -ACGGAATCAGTGTTCCACTACCAC -ACGGAATCAGTGTTCCACCAGAAC -ACGGAATCAGTGTTCCACGTCTAC -ACGGAATCAGTGTTCCACACGTAC -ACGGAATCAGTGTTCCACAGTGAC -ACGGAATCAGTGTTCCACCTGTAG -ACGGAATCAGTGTTCCACCCTAAG -ACGGAATCAGTGTTCCACGTTCAG -ACGGAATCAGTGTTCCACGCATAG -ACGGAATCAGTGTTCCACGACAAG -ACGGAATCAGTGTTCCACAAGCAG -ACGGAATCAGTGTTCCACCGTCAA -ACGGAATCAGTGTTCCACGCTGAA -ACGGAATCAGTGTTCCACAGTACG -ACGGAATCAGTGTTCCACATCCGA -ACGGAATCAGTGTTCCACATGGGA -ACGGAATCAGTGTTCCACGTGCAA -ACGGAATCAGTGTTCCACGAGGAA -ACGGAATCAGTGTTCCACCAGGTA -ACGGAATCAGTGTTCCACGACTCT -ACGGAATCAGTGTTCCACAGTCCT -ACGGAATCAGTGTTCCACTAAGCC -ACGGAATCAGTGTTCCACATAGCC -ACGGAATCAGTGTTCCACTAACCG -ACGGAATCAGTGTTCCACATGCCA -ACGGAATCAGTGCTCGTAGGAAAC -ACGGAATCAGTGCTCGTAAACACC -ACGGAATCAGTGCTCGTAATCGAG -ACGGAATCAGTGCTCGTACTCCTT -ACGGAATCAGTGCTCGTACCTGTT -ACGGAATCAGTGCTCGTACGGTTT -ACGGAATCAGTGCTCGTAGTGGTT -ACGGAATCAGTGCTCGTAGCCTTT -ACGGAATCAGTGCTCGTAGGTCTT -ACGGAATCAGTGCTCGTAACGCTT -ACGGAATCAGTGCTCGTAAGCGTT -ACGGAATCAGTGCTCGTATTCGTC -ACGGAATCAGTGCTCGTATCTCTC -ACGGAATCAGTGCTCGTATGGATC -ACGGAATCAGTGCTCGTACACTTC -ACGGAATCAGTGCTCGTAGTACTC -ACGGAATCAGTGCTCGTAGATGTC -ACGGAATCAGTGCTCGTAACAGTC -ACGGAATCAGTGCTCGTATTGCTG -ACGGAATCAGTGCTCGTATCCATG -ACGGAATCAGTGCTCGTATGTGTG -ACGGAATCAGTGCTCGTACTAGTG -ACGGAATCAGTGCTCGTACATCTG -ACGGAATCAGTGCTCGTAGAGTTG -ACGGAATCAGTGCTCGTAAGACTG -ACGGAATCAGTGCTCGTATCGGTA -ACGGAATCAGTGCTCGTATGCCTA -ACGGAATCAGTGCTCGTACCACTA -ACGGAATCAGTGCTCGTAGGAGTA -ACGGAATCAGTGCTCGTATCGTCT -ACGGAATCAGTGCTCGTATGCACT -ACGGAATCAGTGCTCGTACTGACT -ACGGAATCAGTGCTCGTACAACCT -ACGGAATCAGTGCTCGTAGCTACT -ACGGAATCAGTGCTCGTAGGATCT -ACGGAATCAGTGCTCGTAAAGGCT -ACGGAATCAGTGCTCGTATCAACC -ACGGAATCAGTGCTCGTATGTTCC -ACGGAATCAGTGCTCGTAATTCCC -ACGGAATCAGTGCTCGTATTCTCG -ACGGAATCAGTGCTCGTATAGACG -ACGGAATCAGTGCTCGTAGTAACG -ACGGAATCAGTGCTCGTAACTTCG -ACGGAATCAGTGCTCGTATACGCA -ACGGAATCAGTGCTCGTACTTGCA -ACGGAATCAGTGCTCGTACGAACA -ACGGAATCAGTGCTCGTACAGTCA -ACGGAATCAGTGCTCGTAGATCCA -ACGGAATCAGTGCTCGTAACGACA -ACGGAATCAGTGCTCGTAAGCTCA -ACGGAATCAGTGCTCGTATCACGT -ACGGAATCAGTGCTCGTACGTAGT -ACGGAATCAGTGCTCGTAGTCAGT -ACGGAATCAGTGCTCGTAGAAGGT -ACGGAATCAGTGCTCGTAAACCGT -ACGGAATCAGTGCTCGTATTGTGC -ACGGAATCAGTGCTCGTACTAAGC -ACGGAATCAGTGCTCGTAACTAGC -ACGGAATCAGTGCTCGTAAGATGC -ACGGAATCAGTGCTCGTATGAAGG -ACGGAATCAGTGCTCGTACAATGG -ACGGAATCAGTGCTCGTAATGAGG -ACGGAATCAGTGCTCGTAAATGGG -ACGGAATCAGTGCTCGTATCCTGA -ACGGAATCAGTGCTCGTATAGCGA -ACGGAATCAGTGCTCGTACACAGA -ACGGAATCAGTGCTCGTAGCAAGA -ACGGAATCAGTGCTCGTAGGTTGA -ACGGAATCAGTGCTCGTATCCGAT -ACGGAATCAGTGCTCGTATGGCAT -ACGGAATCAGTGCTCGTACGAGAT -ACGGAATCAGTGCTCGTATACCAC -ACGGAATCAGTGCTCGTACAGAAC -ACGGAATCAGTGCTCGTAGTCTAC -ACGGAATCAGTGCTCGTAACGTAC -ACGGAATCAGTGCTCGTAAGTGAC -ACGGAATCAGTGCTCGTACTGTAG -ACGGAATCAGTGCTCGTACCTAAG -ACGGAATCAGTGCTCGTAGTTCAG -ACGGAATCAGTGCTCGTAGCATAG -ACGGAATCAGTGCTCGTAGACAAG -ACGGAATCAGTGCTCGTAAAGCAG -ACGGAATCAGTGCTCGTACGTCAA -ACGGAATCAGTGCTCGTAGCTGAA -ACGGAATCAGTGCTCGTAAGTACG -ACGGAATCAGTGCTCGTAATCCGA -ACGGAATCAGTGCTCGTAATGGGA -ACGGAATCAGTGCTCGTAGTGCAA -ACGGAATCAGTGCTCGTAGAGGAA -ACGGAATCAGTGCTCGTACAGGTA -ACGGAATCAGTGCTCGTAGACTCT -ACGGAATCAGTGCTCGTAAGTCCT -ACGGAATCAGTGCTCGTATAAGCC -ACGGAATCAGTGCTCGTAATAGCC -ACGGAATCAGTGCTCGTATAACCG -ACGGAATCAGTGCTCGTAATGCCA -ACGGAATCAGTGGTCGATGGAAAC -ACGGAATCAGTGGTCGATAACACC -ACGGAATCAGTGGTCGATATCGAG -ACGGAATCAGTGGTCGATCTCCTT -ACGGAATCAGTGGTCGATCCTGTT -ACGGAATCAGTGGTCGATCGGTTT -ACGGAATCAGTGGTCGATGTGGTT -ACGGAATCAGTGGTCGATGCCTTT -ACGGAATCAGTGGTCGATGGTCTT -ACGGAATCAGTGGTCGATACGCTT -ACGGAATCAGTGGTCGATAGCGTT -ACGGAATCAGTGGTCGATTTCGTC -ACGGAATCAGTGGTCGATTCTCTC -ACGGAATCAGTGGTCGATTGGATC -ACGGAATCAGTGGTCGATCACTTC -ACGGAATCAGTGGTCGATGTACTC -ACGGAATCAGTGGTCGATGATGTC -ACGGAATCAGTGGTCGATACAGTC -ACGGAATCAGTGGTCGATTTGCTG -ACGGAATCAGTGGTCGATTCCATG -ACGGAATCAGTGGTCGATTGTGTG -ACGGAATCAGTGGTCGATCTAGTG -ACGGAATCAGTGGTCGATCATCTG -ACGGAATCAGTGGTCGATGAGTTG -ACGGAATCAGTGGTCGATAGACTG -ACGGAATCAGTGGTCGATTCGGTA -ACGGAATCAGTGGTCGATTGCCTA -ACGGAATCAGTGGTCGATCCACTA -ACGGAATCAGTGGTCGATGGAGTA -ACGGAATCAGTGGTCGATTCGTCT -ACGGAATCAGTGGTCGATTGCACT -ACGGAATCAGTGGTCGATCTGACT -ACGGAATCAGTGGTCGATCAACCT -ACGGAATCAGTGGTCGATGCTACT -ACGGAATCAGTGGTCGATGGATCT -ACGGAATCAGTGGTCGATAAGGCT -ACGGAATCAGTGGTCGATTCAACC -ACGGAATCAGTGGTCGATTGTTCC -ACGGAATCAGTGGTCGATATTCCC -ACGGAATCAGTGGTCGATTTCTCG -ACGGAATCAGTGGTCGATTAGACG -ACGGAATCAGTGGTCGATGTAACG -ACGGAATCAGTGGTCGATACTTCG -ACGGAATCAGTGGTCGATTACGCA -ACGGAATCAGTGGTCGATCTTGCA -ACGGAATCAGTGGTCGATCGAACA -ACGGAATCAGTGGTCGATCAGTCA -ACGGAATCAGTGGTCGATGATCCA -ACGGAATCAGTGGTCGATACGACA -ACGGAATCAGTGGTCGATAGCTCA -ACGGAATCAGTGGTCGATTCACGT -ACGGAATCAGTGGTCGATCGTAGT -ACGGAATCAGTGGTCGATGTCAGT -ACGGAATCAGTGGTCGATGAAGGT -ACGGAATCAGTGGTCGATAACCGT -ACGGAATCAGTGGTCGATTTGTGC -ACGGAATCAGTGGTCGATCTAAGC -ACGGAATCAGTGGTCGATACTAGC -ACGGAATCAGTGGTCGATAGATGC -ACGGAATCAGTGGTCGATTGAAGG -ACGGAATCAGTGGTCGATCAATGG -ACGGAATCAGTGGTCGATATGAGG -ACGGAATCAGTGGTCGATAATGGG -ACGGAATCAGTGGTCGATTCCTGA -ACGGAATCAGTGGTCGATTAGCGA -ACGGAATCAGTGGTCGATCACAGA -ACGGAATCAGTGGTCGATGCAAGA -ACGGAATCAGTGGTCGATGGTTGA -ACGGAATCAGTGGTCGATTCCGAT -ACGGAATCAGTGGTCGATTGGCAT -ACGGAATCAGTGGTCGATCGAGAT -ACGGAATCAGTGGTCGATTACCAC -ACGGAATCAGTGGTCGATCAGAAC -ACGGAATCAGTGGTCGATGTCTAC -ACGGAATCAGTGGTCGATACGTAC -ACGGAATCAGTGGTCGATAGTGAC -ACGGAATCAGTGGTCGATCTGTAG -ACGGAATCAGTGGTCGATCCTAAG -ACGGAATCAGTGGTCGATGTTCAG -ACGGAATCAGTGGTCGATGCATAG -ACGGAATCAGTGGTCGATGACAAG -ACGGAATCAGTGGTCGATAAGCAG -ACGGAATCAGTGGTCGATCGTCAA -ACGGAATCAGTGGTCGATGCTGAA -ACGGAATCAGTGGTCGATAGTACG -ACGGAATCAGTGGTCGATATCCGA -ACGGAATCAGTGGTCGATATGGGA -ACGGAATCAGTGGTCGATGTGCAA -ACGGAATCAGTGGTCGATGAGGAA -ACGGAATCAGTGGTCGATCAGGTA -ACGGAATCAGTGGTCGATGACTCT -ACGGAATCAGTGGTCGATAGTCCT -ACGGAATCAGTGGTCGATTAAGCC -ACGGAATCAGTGGTCGATATAGCC -ACGGAATCAGTGGTCGATTAACCG -ACGGAATCAGTGGTCGATATGCCA -ACGGAATCAGTGGTCACAGGAAAC -ACGGAATCAGTGGTCACAAACACC -ACGGAATCAGTGGTCACAATCGAG -ACGGAATCAGTGGTCACACTCCTT -ACGGAATCAGTGGTCACACCTGTT -ACGGAATCAGTGGTCACACGGTTT -ACGGAATCAGTGGTCACAGTGGTT -ACGGAATCAGTGGTCACAGCCTTT -ACGGAATCAGTGGTCACAGGTCTT -ACGGAATCAGTGGTCACAACGCTT -ACGGAATCAGTGGTCACAAGCGTT -ACGGAATCAGTGGTCACATTCGTC -ACGGAATCAGTGGTCACATCTCTC -ACGGAATCAGTGGTCACATGGATC -ACGGAATCAGTGGTCACACACTTC -ACGGAATCAGTGGTCACAGTACTC -ACGGAATCAGTGGTCACAGATGTC -ACGGAATCAGTGGTCACAACAGTC -ACGGAATCAGTGGTCACATTGCTG -ACGGAATCAGTGGTCACATCCATG -ACGGAATCAGTGGTCACATGTGTG -ACGGAATCAGTGGTCACACTAGTG -ACGGAATCAGTGGTCACACATCTG -ACGGAATCAGTGGTCACAGAGTTG -ACGGAATCAGTGGTCACAAGACTG -ACGGAATCAGTGGTCACATCGGTA -ACGGAATCAGTGGTCACATGCCTA -ACGGAATCAGTGGTCACACCACTA -ACGGAATCAGTGGTCACAGGAGTA -ACGGAATCAGTGGTCACATCGTCT -ACGGAATCAGTGGTCACATGCACT -ACGGAATCAGTGGTCACACTGACT -ACGGAATCAGTGGTCACACAACCT -ACGGAATCAGTGGTCACAGCTACT -ACGGAATCAGTGGTCACAGGATCT -ACGGAATCAGTGGTCACAAAGGCT -ACGGAATCAGTGGTCACATCAACC -ACGGAATCAGTGGTCACATGTTCC -ACGGAATCAGTGGTCACAATTCCC -ACGGAATCAGTGGTCACATTCTCG -ACGGAATCAGTGGTCACATAGACG -ACGGAATCAGTGGTCACAGTAACG -ACGGAATCAGTGGTCACAACTTCG -ACGGAATCAGTGGTCACATACGCA -ACGGAATCAGTGGTCACACTTGCA -ACGGAATCAGTGGTCACACGAACA -ACGGAATCAGTGGTCACACAGTCA -ACGGAATCAGTGGTCACAGATCCA -ACGGAATCAGTGGTCACAACGACA -ACGGAATCAGTGGTCACAAGCTCA -ACGGAATCAGTGGTCACATCACGT -ACGGAATCAGTGGTCACACGTAGT -ACGGAATCAGTGGTCACAGTCAGT -ACGGAATCAGTGGTCACAGAAGGT -ACGGAATCAGTGGTCACAAACCGT -ACGGAATCAGTGGTCACATTGTGC -ACGGAATCAGTGGTCACACTAAGC -ACGGAATCAGTGGTCACAACTAGC -ACGGAATCAGTGGTCACAAGATGC -ACGGAATCAGTGGTCACATGAAGG -ACGGAATCAGTGGTCACACAATGG -ACGGAATCAGTGGTCACAATGAGG -ACGGAATCAGTGGTCACAAATGGG -ACGGAATCAGTGGTCACATCCTGA -ACGGAATCAGTGGTCACATAGCGA -ACGGAATCAGTGGTCACACACAGA -ACGGAATCAGTGGTCACAGCAAGA -ACGGAATCAGTGGTCACAGGTTGA -ACGGAATCAGTGGTCACATCCGAT -ACGGAATCAGTGGTCACATGGCAT -ACGGAATCAGTGGTCACACGAGAT -ACGGAATCAGTGGTCACATACCAC -ACGGAATCAGTGGTCACACAGAAC -ACGGAATCAGTGGTCACAGTCTAC -ACGGAATCAGTGGTCACAACGTAC -ACGGAATCAGTGGTCACAAGTGAC -ACGGAATCAGTGGTCACACTGTAG -ACGGAATCAGTGGTCACACCTAAG -ACGGAATCAGTGGTCACAGTTCAG -ACGGAATCAGTGGTCACAGCATAG -ACGGAATCAGTGGTCACAGACAAG -ACGGAATCAGTGGTCACAAAGCAG -ACGGAATCAGTGGTCACACGTCAA -ACGGAATCAGTGGTCACAGCTGAA -ACGGAATCAGTGGTCACAAGTACG -ACGGAATCAGTGGTCACAATCCGA -ACGGAATCAGTGGTCACAATGGGA -ACGGAATCAGTGGTCACAGTGCAA -ACGGAATCAGTGGTCACAGAGGAA -ACGGAATCAGTGGTCACACAGGTA -ACGGAATCAGTGGTCACAGACTCT -ACGGAATCAGTGGTCACAAGTCCT -ACGGAATCAGTGGTCACATAAGCC -ACGGAATCAGTGGTCACAATAGCC -ACGGAATCAGTGGTCACATAACCG -ACGGAATCAGTGGTCACAATGCCA -ACGGAATCAGTGCTGTTGGGAAAC -ACGGAATCAGTGCTGTTGAACACC -ACGGAATCAGTGCTGTTGATCGAG -ACGGAATCAGTGCTGTTGCTCCTT -ACGGAATCAGTGCTGTTGCCTGTT -ACGGAATCAGTGCTGTTGCGGTTT -ACGGAATCAGTGCTGTTGGTGGTT -ACGGAATCAGTGCTGTTGGCCTTT -ACGGAATCAGTGCTGTTGGGTCTT -ACGGAATCAGTGCTGTTGACGCTT -ACGGAATCAGTGCTGTTGAGCGTT -ACGGAATCAGTGCTGTTGTTCGTC -ACGGAATCAGTGCTGTTGTCTCTC -ACGGAATCAGTGCTGTTGTGGATC -ACGGAATCAGTGCTGTTGCACTTC -ACGGAATCAGTGCTGTTGGTACTC -ACGGAATCAGTGCTGTTGGATGTC -ACGGAATCAGTGCTGTTGACAGTC -ACGGAATCAGTGCTGTTGTTGCTG -ACGGAATCAGTGCTGTTGTCCATG -ACGGAATCAGTGCTGTTGTGTGTG -ACGGAATCAGTGCTGTTGCTAGTG -ACGGAATCAGTGCTGTTGCATCTG -ACGGAATCAGTGCTGTTGGAGTTG -ACGGAATCAGTGCTGTTGAGACTG -ACGGAATCAGTGCTGTTGTCGGTA -ACGGAATCAGTGCTGTTGTGCCTA -ACGGAATCAGTGCTGTTGCCACTA -ACGGAATCAGTGCTGTTGGGAGTA -ACGGAATCAGTGCTGTTGTCGTCT -ACGGAATCAGTGCTGTTGTGCACT -ACGGAATCAGTGCTGTTGCTGACT -ACGGAATCAGTGCTGTTGCAACCT -ACGGAATCAGTGCTGTTGGCTACT -ACGGAATCAGTGCTGTTGGGATCT -ACGGAATCAGTGCTGTTGAAGGCT -ACGGAATCAGTGCTGTTGTCAACC -ACGGAATCAGTGCTGTTGTGTTCC -ACGGAATCAGTGCTGTTGATTCCC -ACGGAATCAGTGCTGTTGTTCTCG -ACGGAATCAGTGCTGTTGTAGACG -ACGGAATCAGTGCTGTTGGTAACG -ACGGAATCAGTGCTGTTGACTTCG -ACGGAATCAGTGCTGTTGTACGCA -ACGGAATCAGTGCTGTTGCTTGCA -ACGGAATCAGTGCTGTTGCGAACA -ACGGAATCAGTGCTGTTGCAGTCA -ACGGAATCAGTGCTGTTGGATCCA -ACGGAATCAGTGCTGTTGACGACA -ACGGAATCAGTGCTGTTGAGCTCA -ACGGAATCAGTGCTGTTGTCACGT -ACGGAATCAGTGCTGTTGCGTAGT -ACGGAATCAGTGCTGTTGGTCAGT -ACGGAATCAGTGCTGTTGGAAGGT -ACGGAATCAGTGCTGTTGAACCGT -ACGGAATCAGTGCTGTTGTTGTGC -ACGGAATCAGTGCTGTTGCTAAGC -ACGGAATCAGTGCTGTTGACTAGC -ACGGAATCAGTGCTGTTGAGATGC -ACGGAATCAGTGCTGTTGTGAAGG -ACGGAATCAGTGCTGTTGCAATGG -ACGGAATCAGTGCTGTTGATGAGG -ACGGAATCAGTGCTGTTGAATGGG -ACGGAATCAGTGCTGTTGTCCTGA -ACGGAATCAGTGCTGTTGTAGCGA -ACGGAATCAGTGCTGTTGCACAGA -ACGGAATCAGTGCTGTTGGCAAGA -ACGGAATCAGTGCTGTTGGGTTGA -ACGGAATCAGTGCTGTTGTCCGAT -ACGGAATCAGTGCTGTTGTGGCAT -ACGGAATCAGTGCTGTTGCGAGAT -ACGGAATCAGTGCTGTTGTACCAC -ACGGAATCAGTGCTGTTGCAGAAC -ACGGAATCAGTGCTGTTGGTCTAC -ACGGAATCAGTGCTGTTGACGTAC -ACGGAATCAGTGCTGTTGAGTGAC -ACGGAATCAGTGCTGTTGCTGTAG -ACGGAATCAGTGCTGTTGCCTAAG -ACGGAATCAGTGCTGTTGGTTCAG -ACGGAATCAGTGCTGTTGGCATAG -ACGGAATCAGTGCTGTTGGACAAG -ACGGAATCAGTGCTGTTGAAGCAG -ACGGAATCAGTGCTGTTGCGTCAA -ACGGAATCAGTGCTGTTGGCTGAA -ACGGAATCAGTGCTGTTGAGTACG -ACGGAATCAGTGCTGTTGATCCGA -ACGGAATCAGTGCTGTTGATGGGA -ACGGAATCAGTGCTGTTGGTGCAA -ACGGAATCAGTGCTGTTGGAGGAA -ACGGAATCAGTGCTGTTGCAGGTA -ACGGAATCAGTGCTGTTGGACTCT -ACGGAATCAGTGCTGTTGAGTCCT -ACGGAATCAGTGCTGTTGTAAGCC -ACGGAATCAGTGCTGTTGATAGCC -ACGGAATCAGTGCTGTTGTAACCG -ACGGAATCAGTGCTGTTGATGCCA -ACGGAATCAGTGATGTCCGGAAAC -ACGGAATCAGTGATGTCCAACACC -ACGGAATCAGTGATGTCCATCGAG -ACGGAATCAGTGATGTCCCTCCTT -ACGGAATCAGTGATGTCCCCTGTT -ACGGAATCAGTGATGTCCCGGTTT -ACGGAATCAGTGATGTCCGTGGTT -ACGGAATCAGTGATGTCCGCCTTT -ACGGAATCAGTGATGTCCGGTCTT -ACGGAATCAGTGATGTCCACGCTT -ACGGAATCAGTGATGTCCAGCGTT -ACGGAATCAGTGATGTCCTTCGTC -ACGGAATCAGTGATGTCCTCTCTC -ACGGAATCAGTGATGTCCTGGATC -ACGGAATCAGTGATGTCCCACTTC -ACGGAATCAGTGATGTCCGTACTC -ACGGAATCAGTGATGTCCGATGTC -ACGGAATCAGTGATGTCCACAGTC -ACGGAATCAGTGATGTCCTTGCTG -ACGGAATCAGTGATGTCCTCCATG -ACGGAATCAGTGATGTCCTGTGTG -ACGGAATCAGTGATGTCCCTAGTG -ACGGAATCAGTGATGTCCCATCTG -ACGGAATCAGTGATGTCCGAGTTG -ACGGAATCAGTGATGTCCAGACTG -ACGGAATCAGTGATGTCCTCGGTA -ACGGAATCAGTGATGTCCTGCCTA -ACGGAATCAGTGATGTCCCCACTA -ACGGAATCAGTGATGTCCGGAGTA -ACGGAATCAGTGATGTCCTCGTCT -ACGGAATCAGTGATGTCCTGCACT -ACGGAATCAGTGATGTCCCTGACT -ACGGAATCAGTGATGTCCCAACCT -ACGGAATCAGTGATGTCCGCTACT -ACGGAATCAGTGATGTCCGGATCT -ACGGAATCAGTGATGTCCAAGGCT -ACGGAATCAGTGATGTCCTCAACC -ACGGAATCAGTGATGTCCTGTTCC -ACGGAATCAGTGATGTCCATTCCC -ACGGAATCAGTGATGTCCTTCTCG -ACGGAATCAGTGATGTCCTAGACG -ACGGAATCAGTGATGTCCGTAACG -ACGGAATCAGTGATGTCCACTTCG -ACGGAATCAGTGATGTCCTACGCA -ACGGAATCAGTGATGTCCCTTGCA -ACGGAATCAGTGATGTCCCGAACA -ACGGAATCAGTGATGTCCCAGTCA -ACGGAATCAGTGATGTCCGATCCA -ACGGAATCAGTGATGTCCACGACA -ACGGAATCAGTGATGTCCAGCTCA -ACGGAATCAGTGATGTCCTCACGT -ACGGAATCAGTGATGTCCCGTAGT -ACGGAATCAGTGATGTCCGTCAGT -ACGGAATCAGTGATGTCCGAAGGT -ACGGAATCAGTGATGTCCAACCGT -ACGGAATCAGTGATGTCCTTGTGC -ACGGAATCAGTGATGTCCCTAAGC -ACGGAATCAGTGATGTCCACTAGC -ACGGAATCAGTGATGTCCAGATGC -ACGGAATCAGTGATGTCCTGAAGG -ACGGAATCAGTGATGTCCCAATGG -ACGGAATCAGTGATGTCCATGAGG -ACGGAATCAGTGATGTCCAATGGG -ACGGAATCAGTGATGTCCTCCTGA -ACGGAATCAGTGATGTCCTAGCGA -ACGGAATCAGTGATGTCCCACAGA -ACGGAATCAGTGATGTCCGCAAGA -ACGGAATCAGTGATGTCCGGTTGA -ACGGAATCAGTGATGTCCTCCGAT -ACGGAATCAGTGATGTCCTGGCAT -ACGGAATCAGTGATGTCCCGAGAT -ACGGAATCAGTGATGTCCTACCAC -ACGGAATCAGTGATGTCCCAGAAC -ACGGAATCAGTGATGTCCGTCTAC -ACGGAATCAGTGATGTCCACGTAC -ACGGAATCAGTGATGTCCAGTGAC -ACGGAATCAGTGATGTCCCTGTAG -ACGGAATCAGTGATGTCCCCTAAG -ACGGAATCAGTGATGTCCGTTCAG -ACGGAATCAGTGATGTCCGCATAG -ACGGAATCAGTGATGTCCGACAAG -ACGGAATCAGTGATGTCCAAGCAG -ACGGAATCAGTGATGTCCCGTCAA -ACGGAATCAGTGATGTCCGCTGAA -ACGGAATCAGTGATGTCCAGTACG -ACGGAATCAGTGATGTCCATCCGA -ACGGAATCAGTGATGTCCATGGGA -ACGGAATCAGTGATGTCCGTGCAA -ACGGAATCAGTGATGTCCGAGGAA -ACGGAATCAGTGATGTCCCAGGTA -ACGGAATCAGTGATGTCCGACTCT -ACGGAATCAGTGATGTCCAGTCCT -ACGGAATCAGTGATGTCCTAAGCC -ACGGAATCAGTGATGTCCATAGCC -ACGGAATCAGTGATGTCCTAACCG -ACGGAATCAGTGATGTCCATGCCA -ACGGAATCAGTGGTGTGTGGAAAC -ACGGAATCAGTGGTGTGTAACACC -ACGGAATCAGTGGTGTGTATCGAG -ACGGAATCAGTGGTGTGTCTCCTT -ACGGAATCAGTGGTGTGTCCTGTT -ACGGAATCAGTGGTGTGTCGGTTT -ACGGAATCAGTGGTGTGTGTGGTT -ACGGAATCAGTGGTGTGTGCCTTT -ACGGAATCAGTGGTGTGTGGTCTT -ACGGAATCAGTGGTGTGTACGCTT -ACGGAATCAGTGGTGTGTAGCGTT -ACGGAATCAGTGGTGTGTTTCGTC -ACGGAATCAGTGGTGTGTTCTCTC -ACGGAATCAGTGGTGTGTTGGATC -ACGGAATCAGTGGTGTGTCACTTC -ACGGAATCAGTGGTGTGTGTACTC -ACGGAATCAGTGGTGTGTGATGTC -ACGGAATCAGTGGTGTGTACAGTC -ACGGAATCAGTGGTGTGTTTGCTG -ACGGAATCAGTGGTGTGTTCCATG -ACGGAATCAGTGGTGTGTTGTGTG -ACGGAATCAGTGGTGTGTCTAGTG -ACGGAATCAGTGGTGTGTCATCTG -ACGGAATCAGTGGTGTGTGAGTTG -ACGGAATCAGTGGTGTGTAGACTG -ACGGAATCAGTGGTGTGTTCGGTA -ACGGAATCAGTGGTGTGTTGCCTA -ACGGAATCAGTGGTGTGTCCACTA -ACGGAATCAGTGGTGTGTGGAGTA -ACGGAATCAGTGGTGTGTTCGTCT -ACGGAATCAGTGGTGTGTTGCACT -ACGGAATCAGTGGTGTGTCTGACT -ACGGAATCAGTGGTGTGTCAACCT -ACGGAATCAGTGGTGTGTGCTACT -ACGGAATCAGTGGTGTGTGGATCT -ACGGAATCAGTGGTGTGTAAGGCT -ACGGAATCAGTGGTGTGTTCAACC -ACGGAATCAGTGGTGTGTTGTTCC -ACGGAATCAGTGGTGTGTATTCCC -ACGGAATCAGTGGTGTGTTTCTCG -ACGGAATCAGTGGTGTGTTAGACG -ACGGAATCAGTGGTGTGTGTAACG -ACGGAATCAGTGGTGTGTACTTCG -ACGGAATCAGTGGTGTGTTACGCA -ACGGAATCAGTGGTGTGTCTTGCA -ACGGAATCAGTGGTGTGTCGAACA -ACGGAATCAGTGGTGTGTCAGTCA -ACGGAATCAGTGGTGTGTGATCCA -ACGGAATCAGTGGTGTGTACGACA -ACGGAATCAGTGGTGTGTAGCTCA -ACGGAATCAGTGGTGTGTTCACGT -ACGGAATCAGTGGTGTGTCGTAGT -ACGGAATCAGTGGTGTGTGTCAGT -ACGGAATCAGTGGTGTGTGAAGGT -ACGGAATCAGTGGTGTGTAACCGT -ACGGAATCAGTGGTGTGTTTGTGC -ACGGAATCAGTGGTGTGTCTAAGC -ACGGAATCAGTGGTGTGTACTAGC -ACGGAATCAGTGGTGTGTAGATGC -ACGGAATCAGTGGTGTGTTGAAGG -ACGGAATCAGTGGTGTGTCAATGG -ACGGAATCAGTGGTGTGTATGAGG -ACGGAATCAGTGGTGTGTAATGGG -ACGGAATCAGTGGTGTGTTCCTGA -ACGGAATCAGTGGTGTGTTAGCGA -ACGGAATCAGTGGTGTGTCACAGA -ACGGAATCAGTGGTGTGTGCAAGA -ACGGAATCAGTGGTGTGTGGTTGA -ACGGAATCAGTGGTGTGTTCCGAT -ACGGAATCAGTGGTGTGTTGGCAT -ACGGAATCAGTGGTGTGTCGAGAT -ACGGAATCAGTGGTGTGTTACCAC -ACGGAATCAGTGGTGTGTCAGAAC -ACGGAATCAGTGGTGTGTGTCTAC -ACGGAATCAGTGGTGTGTACGTAC -ACGGAATCAGTGGTGTGTAGTGAC -ACGGAATCAGTGGTGTGTCTGTAG -ACGGAATCAGTGGTGTGTCCTAAG -ACGGAATCAGTGGTGTGTGTTCAG -ACGGAATCAGTGGTGTGTGCATAG -ACGGAATCAGTGGTGTGTGACAAG -ACGGAATCAGTGGTGTGTAAGCAG -ACGGAATCAGTGGTGTGTCGTCAA -ACGGAATCAGTGGTGTGTGCTGAA -ACGGAATCAGTGGTGTGTAGTACG -ACGGAATCAGTGGTGTGTATCCGA -ACGGAATCAGTGGTGTGTATGGGA -ACGGAATCAGTGGTGTGTGTGCAA -ACGGAATCAGTGGTGTGTGAGGAA -ACGGAATCAGTGGTGTGTCAGGTA -ACGGAATCAGTGGTGTGTGACTCT -ACGGAATCAGTGGTGTGTAGTCCT -ACGGAATCAGTGGTGTGTTAAGCC -ACGGAATCAGTGGTGTGTATAGCC -ACGGAATCAGTGGTGTGTTAACCG -ACGGAATCAGTGGTGTGTATGCCA -ACGGAATCAGTGGTGCTAGGAAAC -ACGGAATCAGTGGTGCTAAACACC -ACGGAATCAGTGGTGCTAATCGAG -ACGGAATCAGTGGTGCTACTCCTT -ACGGAATCAGTGGTGCTACCTGTT -ACGGAATCAGTGGTGCTACGGTTT -ACGGAATCAGTGGTGCTAGTGGTT -ACGGAATCAGTGGTGCTAGCCTTT -ACGGAATCAGTGGTGCTAGGTCTT -ACGGAATCAGTGGTGCTAACGCTT -ACGGAATCAGTGGTGCTAAGCGTT -ACGGAATCAGTGGTGCTATTCGTC -ACGGAATCAGTGGTGCTATCTCTC -ACGGAATCAGTGGTGCTATGGATC -ACGGAATCAGTGGTGCTACACTTC -ACGGAATCAGTGGTGCTAGTACTC -ACGGAATCAGTGGTGCTAGATGTC -ACGGAATCAGTGGTGCTAACAGTC -ACGGAATCAGTGGTGCTATTGCTG -ACGGAATCAGTGGTGCTATCCATG -ACGGAATCAGTGGTGCTATGTGTG -ACGGAATCAGTGGTGCTACTAGTG -ACGGAATCAGTGGTGCTACATCTG -ACGGAATCAGTGGTGCTAGAGTTG -ACGGAATCAGTGGTGCTAAGACTG -ACGGAATCAGTGGTGCTATCGGTA -ACGGAATCAGTGGTGCTATGCCTA -ACGGAATCAGTGGTGCTACCACTA -ACGGAATCAGTGGTGCTAGGAGTA -ACGGAATCAGTGGTGCTATCGTCT -ACGGAATCAGTGGTGCTATGCACT -ACGGAATCAGTGGTGCTACTGACT -ACGGAATCAGTGGTGCTACAACCT -ACGGAATCAGTGGTGCTAGCTACT -ACGGAATCAGTGGTGCTAGGATCT -ACGGAATCAGTGGTGCTAAAGGCT -ACGGAATCAGTGGTGCTATCAACC -ACGGAATCAGTGGTGCTATGTTCC -ACGGAATCAGTGGTGCTAATTCCC -ACGGAATCAGTGGTGCTATTCTCG -ACGGAATCAGTGGTGCTATAGACG -ACGGAATCAGTGGTGCTAGTAACG -ACGGAATCAGTGGTGCTAACTTCG -ACGGAATCAGTGGTGCTATACGCA -ACGGAATCAGTGGTGCTACTTGCA -ACGGAATCAGTGGTGCTACGAACA -ACGGAATCAGTGGTGCTACAGTCA -ACGGAATCAGTGGTGCTAGATCCA -ACGGAATCAGTGGTGCTAACGACA -ACGGAATCAGTGGTGCTAAGCTCA -ACGGAATCAGTGGTGCTATCACGT -ACGGAATCAGTGGTGCTACGTAGT -ACGGAATCAGTGGTGCTAGTCAGT -ACGGAATCAGTGGTGCTAGAAGGT -ACGGAATCAGTGGTGCTAAACCGT -ACGGAATCAGTGGTGCTATTGTGC -ACGGAATCAGTGGTGCTACTAAGC -ACGGAATCAGTGGTGCTAACTAGC -ACGGAATCAGTGGTGCTAAGATGC -ACGGAATCAGTGGTGCTATGAAGG -ACGGAATCAGTGGTGCTACAATGG -ACGGAATCAGTGGTGCTAATGAGG -ACGGAATCAGTGGTGCTAAATGGG -ACGGAATCAGTGGTGCTATCCTGA -ACGGAATCAGTGGTGCTATAGCGA -ACGGAATCAGTGGTGCTACACAGA -ACGGAATCAGTGGTGCTAGCAAGA -ACGGAATCAGTGGTGCTAGGTTGA -ACGGAATCAGTGGTGCTATCCGAT -ACGGAATCAGTGGTGCTATGGCAT -ACGGAATCAGTGGTGCTACGAGAT -ACGGAATCAGTGGTGCTATACCAC -ACGGAATCAGTGGTGCTACAGAAC -ACGGAATCAGTGGTGCTAGTCTAC -ACGGAATCAGTGGTGCTAACGTAC -ACGGAATCAGTGGTGCTAAGTGAC -ACGGAATCAGTGGTGCTACTGTAG -ACGGAATCAGTGGTGCTACCTAAG -ACGGAATCAGTGGTGCTAGTTCAG -ACGGAATCAGTGGTGCTAGCATAG -ACGGAATCAGTGGTGCTAGACAAG -ACGGAATCAGTGGTGCTAAAGCAG -ACGGAATCAGTGGTGCTACGTCAA -ACGGAATCAGTGGTGCTAGCTGAA -ACGGAATCAGTGGTGCTAAGTACG -ACGGAATCAGTGGTGCTAATCCGA -ACGGAATCAGTGGTGCTAATGGGA -ACGGAATCAGTGGTGCTAGTGCAA -ACGGAATCAGTGGTGCTAGAGGAA -ACGGAATCAGTGGTGCTACAGGTA -ACGGAATCAGTGGTGCTAGACTCT -ACGGAATCAGTGGTGCTAAGTCCT -ACGGAATCAGTGGTGCTATAAGCC -ACGGAATCAGTGGTGCTAATAGCC -ACGGAATCAGTGGTGCTATAACCG -ACGGAATCAGTGGTGCTAATGCCA -ACGGAATCAGTGCTGCATGGAAAC -ACGGAATCAGTGCTGCATAACACC -ACGGAATCAGTGCTGCATATCGAG -ACGGAATCAGTGCTGCATCTCCTT -ACGGAATCAGTGCTGCATCCTGTT -ACGGAATCAGTGCTGCATCGGTTT -ACGGAATCAGTGCTGCATGTGGTT -ACGGAATCAGTGCTGCATGCCTTT -ACGGAATCAGTGCTGCATGGTCTT -ACGGAATCAGTGCTGCATACGCTT -ACGGAATCAGTGCTGCATAGCGTT -ACGGAATCAGTGCTGCATTTCGTC -ACGGAATCAGTGCTGCATTCTCTC -ACGGAATCAGTGCTGCATTGGATC -ACGGAATCAGTGCTGCATCACTTC -ACGGAATCAGTGCTGCATGTACTC -ACGGAATCAGTGCTGCATGATGTC -ACGGAATCAGTGCTGCATACAGTC -ACGGAATCAGTGCTGCATTTGCTG -ACGGAATCAGTGCTGCATTCCATG -ACGGAATCAGTGCTGCATTGTGTG -ACGGAATCAGTGCTGCATCTAGTG -ACGGAATCAGTGCTGCATCATCTG -ACGGAATCAGTGCTGCATGAGTTG -ACGGAATCAGTGCTGCATAGACTG -ACGGAATCAGTGCTGCATTCGGTA -ACGGAATCAGTGCTGCATTGCCTA -ACGGAATCAGTGCTGCATCCACTA -ACGGAATCAGTGCTGCATGGAGTA -ACGGAATCAGTGCTGCATTCGTCT -ACGGAATCAGTGCTGCATTGCACT -ACGGAATCAGTGCTGCATCTGACT -ACGGAATCAGTGCTGCATCAACCT -ACGGAATCAGTGCTGCATGCTACT -ACGGAATCAGTGCTGCATGGATCT -ACGGAATCAGTGCTGCATAAGGCT -ACGGAATCAGTGCTGCATTCAACC -ACGGAATCAGTGCTGCATTGTTCC -ACGGAATCAGTGCTGCATATTCCC -ACGGAATCAGTGCTGCATTTCTCG -ACGGAATCAGTGCTGCATTAGACG -ACGGAATCAGTGCTGCATGTAACG -ACGGAATCAGTGCTGCATACTTCG -ACGGAATCAGTGCTGCATTACGCA -ACGGAATCAGTGCTGCATCTTGCA -ACGGAATCAGTGCTGCATCGAACA -ACGGAATCAGTGCTGCATCAGTCA -ACGGAATCAGTGCTGCATGATCCA -ACGGAATCAGTGCTGCATACGACA -ACGGAATCAGTGCTGCATAGCTCA -ACGGAATCAGTGCTGCATTCACGT -ACGGAATCAGTGCTGCATCGTAGT -ACGGAATCAGTGCTGCATGTCAGT -ACGGAATCAGTGCTGCATGAAGGT -ACGGAATCAGTGCTGCATAACCGT -ACGGAATCAGTGCTGCATTTGTGC -ACGGAATCAGTGCTGCATCTAAGC -ACGGAATCAGTGCTGCATACTAGC -ACGGAATCAGTGCTGCATAGATGC -ACGGAATCAGTGCTGCATTGAAGG -ACGGAATCAGTGCTGCATCAATGG -ACGGAATCAGTGCTGCATATGAGG -ACGGAATCAGTGCTGCATAATGGG -ACGGAATCAGTGCTGCATTCCTGA -ACGGAATCAGTGCTGCATTAGCGA -ACGGAATCAGTGCTGCATCACAGA -ACGGAATCAGTGCTGCATGCAAGA -ACGGAATCAGTGCTGCATGGTTGA -ACGGAATCAGTGCTGCATTCCGAT -ACGGAATCAGTGCTGCATTGGCAT -ACGGAATCAGTGCTGCATCGAGAT -ACGGAATCAGTGCTGCATTACCAC -ACGGAATCAGTGCTGCATCAGAAC -ACGGAATCAGTGCTGCATGTCTAC -ACGGAATCAGTGCTGCATACGTAC -ACGGAATCAGTGCTGCATAGTGAC -ACGGAATCAGTGCTGCATCTGTAG -ACGGAATCAGTGCTGCATCCTAAG -ACGGAATCAGTGCTGCATGTTCAG -ACGGAATCAGTGCTGCATGCATAG -ACGGAATCAGTGCTGCATGACAAG -ACGGAATCAGTGCTGCATAAGCAG -ACGGAATCAGTGCTGCATCGTCAA -ACGGAATCAGTGCTGCATGCTGAA -ACGGAATCAGTGCTGCATAGTACG -ACGGAATCAGTGCTGCATATCCGA -ACGGAATCAGTGCTGCATATGGGA -ACGGAATCAGTGCTGCATGTGCAA -ACGGAATCAGTGCTGCATGAGGAA -ACGGAATCAGTGCTGCATCAGGTA -ACGGAATCAGTGCTGCATGACTCT -ACGGAATCAGTGCTGCATAGTCCT -ACGGAATCAGTGCTGCATTAAGCC -ACGGAATCAGTGCTGCATATAGCC -ACGGAATCAGTGCTGCATTAACCG -ACGGAATCAGTGCTGCATATGCCA -ACGGAATCAGTGTTGGAGGGAAAC -ACGGAATCAGTGTTGGAGAACACC -ACGGAATCAGTGTTGGAGATCGAG -ACGGAATCAGTGTTGGAGCTCCTT -ACGGAATCAGTGTTGGAGCCTGTT -ACGGAATCAGTGTTGGAGCGGTTT -ACGGAATCAGTGTTGGAGGTGGTT -ACGGAATCAGTGTTGGAGGCCTTT -ACGGAATCAGTGTTGGAGGGTCTT -ACGGAATCAGTGTTGGAGACGCTT -ACGGAATCAGTGTTGGAGAGCGTT -ACGGAATCAGTGTTGGAGTTCGTC -ACGGAATCAGTGTTGGAGTCTCTC -ACGGAATCAGTGTTGGAGTGGATC -ACGGAATCAGTGTTGGAGCACTTC -ACGGAATCAGTGTTGGAGGTACTC -ACGGAATCAGTGTTGGAGGATGTC -ACGGAATCAGTGTTGGAGACAGTC -ACGGAATCAGTGTTGGAGTTGCTG -ACGGAATCAGTGTTGGAGTCCATG -ACGGAATCAGTGTTGGAGTGTGTG -ACGGAATCAGTGTTGGAGCTAGTG -ACGGAATCAGTGTTGGAGCATCTG -ACGGAATCAGTGTTGGAGGAGTTG -ACGGAATCAGTGTTGGAGAGACTG -ACGGAATCAGTGTTGGAGTCGGTA -ACGGAATCAGTGTTGGAGTGCCTA -ACGGAATCAGTGTTGGAGCCACTA -ACGGAATCAGTGTTGGAGGGAGTA -ACGGAATCAGTGTTGGAGTCGTCT -ACGGAATCAGTGTTGGAGTGCACT -ACGGAATCAGTGTTGGAGCTGACT -ACGGAATCAGTGTTGGAGCAACCT -ACGGAATCAGTGTTGGAGGCTACT -ACGGAATCAGTGTTGGAGGGATCT -ACGGAATCAGTGTTGGAGAAGGCT -ACGGAATCAGTGTTGGAGTCAACC -ACGGAATCAGTGTTGGAGTGTTCC -ACGGAATCAGTGTTGGAGATTCCC -ACGGAATCAGTGTTGGAGTTCTCG -ACGGAATCAGTGTTGGAGTAGACG -ACGGAATCAGTGTTGGAGGTAACG -ACGGAATCAGTGTTGGAGACTTCG -ACGGAATCAGTGTTGGAGTACGCA -ACGGAATCAGTGTTGGAGCTTGCA -ACGGAATCAGTGTTGGAGCGAACA -ACGGAATCAGTGTTGGAGCAGTCA -ACGGAATCAGTGTTGGAGGATCCA -ACGGAATCAGTGTTGGAGACGACA -ACGGAATCAGTGTTGGAGAGCTCA -ACGGAATCAGTGTTGGAGTCACGT -ACGGAATCAGTGTTGGAGCGTAGT -ACGGAATCAGTGTTGGAGGTCAGT -ACGGAATCAGTGTTGGAGGAAGGT -ACGGAATCAGTGTTGGAGAACCGT -ACGGAATCAGTGTTGGAGTTGTGC -ACGGAATCAGTGTTGGAGCTAAGC -ACGGAATCAGTGTTGGAGACTAGC -ACGGAATCAGTGTTGGAGAGATGC -ACGGAATCAGTGTTGGAGTGAAGG -ACGGAATCAGTGTTGGAGCAATGG -ACGGAATCAGTGTTGGAGATGAGG -ACGGAATCAGTGTTGGAGAATGGG -ACGGAATCAGTGTTGGAGTCCTGA -ACGGAATCAGTGTTGGAGTAGCGA -ACGGAATCAGTGTTGGAGCACAGA -ACGGAATCAGTGTTGGAGGCAAGA -ACGGAATCAGTGTTGGAGGGTTGA -ACGGAATCAGTGTTGGAGTCCGAT -ACGGAATCAGTGTTGGAGTGGCAT -ACGGAATCAGTGTTGGAGCGAGAT -ACGGAATCAGTGTTGGAGTACCAC -ACGGAATCAGTGTTGGAGCAGAAC -ACGGAATCAGTGTTGGAGGTCTAC -ACGGAATCAGTGTTGGAGACGTAC -ACGGAATCAGTGTTGGAGAGTGAC -ACGGAATCAGTGTTGGAGCTGTAG -ACGGAATCAGTGTTGGAGCCTAAG -ACGGAATCAGTGTTGGAGGTTCAG -ACGGAATCAGTGTTGGAGGCATAG -ACGGAATCAGTGTTGGAGGACAAG -ACGGAATCAGTGTTGGAGAAGCAG -ACGGAATCAGTGTTGGAGCGTCAA -ACGGAATCAGTGTTGGAGGCTGAA -ACGGAATCAGTGTTGGAGAGTACG -ACGGAATCAGTGTTGGAGATCCGA -ACGGAATCAGTGTTGGAGATGGGA -ACGGAATCAGTGTTGGAGGTGCAA -ACGGAATCAGTGTTGGAGGAGGAA -ACGGAATCAGTGTTGGAGCAGGTA -ACGGAATCAGTGTTGGAGGACTCT -ACGGAATCAGTGTTGGAGAGTCCT -ACGGAATCAGTGTTGGAGTAAGCC -ACGGAATCAGTGTTGGAGATAGCC -ACGGAATCAGTGTTGGAGTAACCG -ACGGAATCAGTGTTGGAGATGCCA -ACGGAATCAGTGCTGAGAGGAAAC -ACGGAATCAGTGCTGAGAAACACC -ACGGAATCAGTGCTGAGAATCGAG -ACGGAATCAGTGCTGAGACTCCTT -ACGGAATCAGTGCTGAGACCTGTT -ACGGAATCAGTGCTGAGACGGTTT -ACGGAATCAGTGCTGAGAGTGGTT -ACGGAATCAGTGCTGAGAGCCTTT -ACGGAATCAGTGCTGAGAGGTCTT -ACGGAATCAGTGCTGAGAACGCTT -ACGGAATCAGTGCTGAGAAGCGTT -ACGGAATCAGTGCTGAGATTCGTC -ACGGAATCAGTGCTGAGATCTCTC -ACGGAATCAGTGCTGAGATGGATC -ACGGAATCAGTGCTGAGACACTTC -ACGGAATCAGTGCTGAGAGTACTC -ACGGAATCAGTGCTGAGAGATGTC -ACGGAATCAGTGCTGAGAACAGTC -ACGGAATCAGTGCTGAGATTGCTG -ACGGAATCAGTGCTGAGATCCATG -ACGGAATCAGTGCTGAGATGTGTG -ACGGAATCAGTGCTGAGACTAGTG -ACGGAATCAGTGCTGAGACATCTG -ACGGAATCAGTGCTGAGAGAGTTG -ACGGAATCAGTGCTGAGAAGACTG -ACGGAATCAGTGCTGAGATCGGTA -ACGGAATCAGTGCTGAGATGCCTA -ACGGAATCAGTGCTGAGACCACTA -ACGGAATCAGTGCTGAGAGGAGTA -ACGGAATCAGTGCTGAGATCGTCT -ACGGAATCAGTGCTGAGATGCACT -ACGGAATCAGTGCTGAGACTGACT -ACGGAATCAGTGCTGAGACAACCT -ACGGAATCAGTGCTGAGAGCTACT -ACGGAATCAGTGCTGAGAGGATCT -ACGGAATCAGTGCTGAGAAAGGCT -ACGGAATCAGTGCTGAGATCAACC -ACGGAATCAGTGCTGAGATGTTCC -ACGGAATCAGTGCTGAGAATTCCC -ACGGAATCAGTGCTGAGATTCTCG -ACGGAATCAGTGCTGAGATAGACG -ACGGAATCAGTGCTGAGAGTAACG -ACGGAATCAGTGCTGAGAACTTCG -ACGGAATCAGTGCTGAGATACGCA -ACGGAATCAGTGCTGAGACTTGCA -ACGGAATCAGTGCTGAGACGAACA -ACGGAATCAGTGCTGAGACAGTCA -ACGGAATCAGTGCTGAGAGATCCA -ACGGAATCAGTGCTGAGAACGACA -ACGGAATCAGTGCTGAGAAGCTCA -ACGGAATCAGTGCTGAGATCACGT -ACGGAATCAGTGCTGAGACGTAGT -ACGGAATCAGTGCTGAGAGTCAGT -ACGGAATCAGTGCTGAGAGAAGGT -ACGGAATCAGTGCTGAGAAACCGT -ACGGAATCAGTGCTGAGATTGTGC -ACGGAATCAGTGCTGAGACTAAGC -ACGGAATCAGTGCTGAGAACTAGC -ACGGAATCAGTGCTGAGAAGATGC -ACGGAATCAGTGCTGAGATGAAGG -ACGGAATCAGTGCTGAGACAATGG -ACGGAATCAGTGCTGAGAATGAGG -ACGGAATCAGTGCTGAGAAATGGG -ACGGAATCAGTGCTGAGATCCTGA -ACGGAATCAGTGCTGAGATAGCGA -ACGGAATCAGTGCTGAGACACAGA -ACGGAATCAGTGCTGAGAGCAAGA -ACGGAATCAGTGCTGAGAGGTTGA -ACGGAATCAGTGCTGAGATCCGAT -ACGGAATCAGTGCTGAGATGGCAT -ACGGAATCAGTGCTGAGACGAGAT -ACGGAATCAGTGCTGAGATACCAC -ACGGAATCAGTGCTGAGACAGAAC -ACGGAATCAGTGCTGAGAGTCTAC -ACGGAATCAGTGCTGAGAACGTAC -ACGGAATCAGTGCTGAGAAGTGAC -ACGGAATCAGTGCTGAGACTGTAG -ACGGAATCAGTGCTGAGACCTAAG -ACGGAATCAGTGCTGAGAGTTCAG -ACGGAATCAGTGCTGAGAGCATAG -ACGGAATCAGTGCTGAGAGACAAG -ACGGAATCAGTGCTGAGAAAGCAG -ACGGAATCAGTGCTGAGACGTCAA -ACGGAATCAGTGCTGAGAGCTGAA -ACGGAATCAGTGCTGAGAAGTACG -ACGGAATCAGTGCTGAGAATCCGA -ACGGAATCAGTGCTGAGAATGGGA -ACGGAATCAGTGCTGAGAGTGCAA -ACGGAATCAGTGCTGAGAGAGGAA -ACGGAATCAGTGCTGAGACAGGTA -ACGGAATCAGTGCTGAGAGACTCT -ACGGAATCAGTGCTGAGAAGTCCT -ACGGAATCAGTGCTGAGATAAGCC -ACGGAATCAGTGCTGAGAATAGCC -ACGGAATCAGTGCTGAGATAACCG -ACGGAATCAGTGCTGAGAATGCCA -ACGGAATCAGTGGTATCGGGAAAC -ACGGAATCAGTGGTATCGAACACC -ACGGAATCAGTGGTATCGATCGAG -ACGGAATCAGTGGTATCGCTCCTT -ACGGAATCAGTGGTATCGCCTGTT -ACGGAATCAGTGGTATCGCGGTTT -ACGGAATCAGTGGTATCGGTGGTT -ACGGAATCAGTGGTATCGGCCTTT -ACGGAATCAGTGGTATCGGGTCTT -ACGGAATCAGTGGTATCGACGCTT -ACGGAATCAGTGGTATCGAGCGTT -ACGGAATCAGTGGTATCGTTCGTC -ACGGAATCAGTGGTATCGTCTCTC -ACGGAATCAGTGGTATCGTGGATC -ACGGAATCAGTGGTATCGCACTTC -ACGGAATCAGTGGTATCGGTACTC -ACGGAATCAGTGGTATCGGATGTC -ACGGAATCAGTGGTATCGACAGTC -ACGGAATCAGTGGTATCGTTGCTG -ACGGAATCAGTGGTATCGTCCATG -ACGGAATCAGTGGTATCGTGTGTG -ACGGAATCAGTGGTATCGCTAGTG -ACGGAATCAGTGGTATCGCATCTG -ACGGAATCAGTGGTATCGGAGTTG -ACGGAATCAGTGGTATCGAGACTG -ACGGAATCAGTGGTATCGTCGGTA -ACGGAATCAGTGGTATCGTGCCTA -ACGGAATCAGTGGTATCGCCACTA -ACGGAATCAGTGGTATCGGGAGTA -ACGGAATCAGTGGTATCGTCGTCT -ACGGAATCAGTGGTATCGTGCACT -ACGGAATCAGTGGTATCGCTGACT -ACGGAATCAGTGGTATCGCAACCT -ACGGAATCAGTGGTATCGGCTACT -ACGGAATCAGTGGTATCGGGATCT -ACGGAATCAGTGGTATCGAAGGCT -ACGGAATCAGTGGTATCGTCAACC -ACGGAATCAGTGGTATCGTGTTCC -ACGGAATCAGTGGTATCGATTCCC -ACGGAATCAGTGGTATCGTTCTCG -ACGGAATCAGTGGTATCGTAGACG -ACGGAATCAGTGGTATCGGTAACG -ACGGAATCAGTGGTATCGACTTCG -ACGGAATCAGTGGTATCGTACGCA -ACGGAATCAGTGGTATCGCTTGCA -ACGGAATCAGTGGTATCGCGAACA -ACGGAATCAGTGGTATCGCAGTCA -ACGGAATCAGTGGTATCGGATCCA -ACGGAATCAGTGGTATCGACGACA -ACGGAATCAGTGGTATCGAGCTCA -ACGGAATCAGTGGTATCGTCACGT -ACGGAATCAGTGGTATCGCGTAGT -ACGGAATCAGTGGTATCGGTCAGT -ACGGAATCAGTGGTATCGGAAGGT -ACGGAATCAGTGGTATCGAACCGT -ACGGAATCAGTGGTATCGTTGTGC -ACGGAATCAGTGGTATCGCTAAGC -ACGGAATCAGTGGTATCGACTAGC -ACGGAATCAGTGGTATCGAGATGC -ACGGAATCAGTGGTATCGTGAAGG -ACGGAATCAGTGGTATCGCAATGG -ACGGAATCAGTGGTATCGATGAGG -ACGGAATCAGTGGTATCGAATGGG -ACGGAATCAGTGGTATCGTCCTGA -ACGGAATCAGTGGTATCGTAGCGA -ACGGAATCAGTGGTATCGCACAGA -ACGGAATCAGTGGTATCGGCAAGA -ACGGAATCAGTGGTATCGGGTTGA -ACGGAATCAGTGGTATCGTCCGAT -ACGGAATCAGTGGTATCGTGGCAT -ACGGAATCAGTGGTATCGCGAGAT -ACGGAATCAGTGGTATCGTACCAC -ACGGAATCAGTGGTATCGCAGAAC -ACGGAATCAGTGGTATCGGTCTAC -ACGGAATCAGTGGTATCGACGTAC -ACGGAATCAGTGGTATCGAGTGAC -ACGGAATCAGTGGTATCGCTGTAG -ACGGAATCAGTGGTATCGCCTAAG -ACGGAATCAGTGGTATCGGTTCAG -ACGGAATCAGTGGTATCGGCATAG -ACGGAATCAGTGGTATCGGACAAG -ACGGAATCAGTGGTATCGAAGCAG -ACGGAATCAGTGGTATCGCGTCAA -ACGGAATCAGTGGTATCGGCTGAA -ACGGAATCAGTGGTATCGAGTACG -ACGGAATCAGTGGTATCGATCCGA -ACGGAATCAGTGGTATCGATGGGA -ACGGAATCAGTGGTATCGGTGCAA -ACGGAATCAGTGGTATCGGAGGAA -ACGGAATCAGTGGTATCGCAGGTA -ACGGAATCAGTGGTATCGGACTCT -ACGGAATCAGTGGTATCGAGTCCT -ACGGAATCAGTGGTATCGTAAGCC -ACGGAATCAGTGGTATCGATAGCC -ACGGAATCAGTGGTATCGTAACCG -ACGGAATCAGTGGTATCGATGCCA -ACGGAATCAGTGCTATGCGGAAAC -ACGGAATCAGTGCTATGCAACACC -ACGGAATCAGTGCTATGCATCGAG -ACGGAATCAGTGCTATGCCTCCTT -ACGGAATCAGTGCTATGCCCTGTT -ACGGAATCAGTGCTATGCCGGTTT -ACGGAATCAGTGCTATGCGTGGTT -ACGGAATCAGTGCTATGCGCCTTT -ACGGAATCAGTGCTATGCGGTCTT -ACGGAATCAGTGCTATGCACGCTT -ACGGAATCAGTGCTATGCAGCGTT -ACGGAATCAGTGCTATGCTTCGTC -ACGGAATCAGTGCTATGCTCTCTC -ACGGAATCAGTGCTATGCTGGATC -ACGGAATCAGTGCTATGCCACTTC -ACGGAATCAGTGCTATGCGTACTC -ACGGAATCAGTGCTATGCGATGTC -ACGGAATCAGTGCTATGCACAGTC -ACGGAATCAGTGCTATGCTTGCTG -ACGGAATCAGTGCTATGCTCCATG -ACGGAATCAGTGCTATGCTGTGTG -ACGGAATCAGTGCTATGCCTAGTG -ACGGAATCAGTGCTATGCCATCTG -ACGGAATCAGTGCTATGCGAGTTG -ACGGAATCAGTGCTATGCAGACTG -ACGGAATCAGTGCTATGCTCGGTA -ACGGAATCAGTGCTATGCTGCCTA -ACGGAATCAGTGCTATGCCCACTA -ACGGAATCAGTGCTATGCGGAGTA -ACGGAATCAGTGCTATGCTCGTCT -ACGGAATCAGTGCTATGCTGCACT -ACGGAATCAGTGCTATGCCTGACT -ACGGAATCAGTGCTATGCCAACCT -ACGGAATCAGTGCTATGCGCTACT -ACGGAATCAGTGCTATGCGGATCT -ACGGAATCAGTGCTATGCAAGGCT -ACGGAATCAGTGCTATGCTCAACC -ACGGAATCAGTGCTATGCTGTTCC -ACGGAATCAGTGCTATGCATTCCC -ACGGAATCAGTGCTATGCTTCTCG -ACGGAATCAGTGCTATGCTAGACG -ACGGAATCAGTGCTATGCGTAACG -ACGGAATCAGTGCTATGCACTTCG -ACGGAATCAGTGCTATGCTACGCA -ACGGAATCAGTGCTATGCCTTGCA -ACGGAATCAGTGCTATGCCGAACA -ACGGAATCAGTGCTATGCCAGTCA -ACGGAATCAGTGCTATGCGATCCA -ACGGAATCAGTGCTATGCACGACA -ACGGAATCAGTGCTATGCAGCTCA -ACGGAATCAGTGCTATGCTCACGT -ACGGAATCAGTGCTATGCCGTAGT -ACGGAATCAGTGCTATGCGTCAGT -ACGGAATCAGTGCTATGCGAAGGT -ACGGAATCAGTGCTATGCAACCGT -ACGGAATCAGTGCTATGCTTGTGC -ACGGAATCAGTGCTATGCCTAAGC -ACGGAATCAGTGCTATGCACTAGC -ACGGAATCAGTGCTATGCAGATGC -ACGGAATCAGTGCTATGCTGAAGG -ACGGAATCAGTGCTATGCCAATGG -ACGGAATCAGTGCTATGCATGAGG -ACGGAATCAGTGCTATGCAATGGG -ACGGAATCAGTGCTATGCTCCTGA -ACGGAATCAGTGCTATGCTAGCGA -ACGGAATCAGTGCTATGCCACAGA -ACGGAATCAGTGCTATGCGCAAGA -ACGGAATCAGTGCTATGCGGTTGA -ACGGAATCAGTGCTATGCTCCGAT -ACGGAATCAGTGCTATGCTGGCAT -ACGGAATCAGTGCTATGCCGAGAT -ACGGAATCAGTGCTATGCTACCAC -ACGGAATCAGTGCTATGCCAGAAC -ACGGAATCAGTGCTATGCGTCTAC -ACGGAATCAGTGCTATGCACGTAC -ACGGAATCAGTGCTATGCAGTGAC -ACGGAATCAGTGCTATGCCTGTAG -ACGGAATCAGTGCTATGCCCTAAG -ACGGAATCAGTGCTATGCGTTCAG -ACGGAATCAGTGCTATGCGCATAG -ACGGAATCAGTGCTATGCGACAAG -ACGGAATCAGTGCTATGCAAGCAG -ACGGAATCAGTGCTATGCCGTCAA -ACGGAATCAGTGCTATGCGCTGAA -ACGGAATCAGTGCTATGCAGTACG -ACGGAATCAGTGCTATGCATCCGA -ACGGAATCAGTGCTATGCATGGGA -ACGGAATCAGTGCTATGCGTGCAA -ACGGAATCAGTGCTATGCGAGGAA -ACGGAATCAGTGCTATGCCAGGTA -ACGGAATCAGTGCTATGCGACTCT -ACGGAATCAGTGCTATGCAGTCCT -ACGGAATCAGTGCTATGCTAAGCC -ACGGAATCAGTGCTATGCATAGCC -ACGGAATCAGTGCTATGCTAACCG -ACGGAATCAGTGCTATGCATGCCA -ACGGAATCAGTGCTACCAGGAAAC -ACGGAATCAGTGCTACCAAACACC -ACGGAATCAGTGCTACCAATCGAG -ACGGAATCAGTGCTACCACTCCTT -ACGGAATCAGTGCTACCACCTGTT -ACGGAATCAGTGCTACCACGGTTT -ACGGAATCAGTGCTACCAGTGGTT -ACGGAATCAGTGCTACCAGCCTTT -ACGGAATCAGTGCTACCAGGTCTT -ACGGAATCAGTGCTACCAACGCTT -ACGGAATCAGTGCTACCAAGCGTT -ACGGAATCAGTGCTACCATTCGTC -ACGGAATCAGTGCTACCATCTCTC -ACGGAATCAGTGCTACCATGGATC -ACGGAATCAGTGCTACCACACTTC -ACGGAATCAGTGCTACCAGTACTC -ACGGAATCAGTGCTACCAGATGTC -ACGGAATCAGTGCTACCAACAGTC -ACGGAATCAGTGCTACCATTGCTG -ACGGAATCAGTGCTACCATCCATG -ACGGAATCAGTGCTACCATGTGTG -ACGGAATCAGTGCTACCACTAGTG -ACGGAATCAGTGCTACCACATCTG -ACGGAATCAGTGCTACCAGAGTTG -ACGGAATCAGTGCTACCAAGACTG -ACGGAATCAGTGCTACCATCGGTA -ACGGAATCAGTGCTACCATGCCTA -ACGGAATCAGTGCTACCACCACTA -ACGGAATCAGTGCTACCAGGAGTA -ACGGAATCAGTGCTACCATCGTCT -ACGGAATCAGTGCTACCATGCACT -ACGGAATCAGTGCTACCACTGACT -ACGGAATCAGTGCTACCACAACCT -ACGGAATCAGTGCTACCAGCTACT -ACGGAATCAGTGCTACCAGGATCT -ACGGAATCAGTGCTACCAAAGGCT -ACGGAATCAGTGCTACCATCAACC -ACGGAATCAGTGCTACCATGTTCC -ACGGAATCAGTGCTACCAATTCCC -ACGGAATCAGTGCTACCATTCTCG -ACGGAATCAGTGCTACCATAGACG -ACGGAATCAGTGCTACCAGTAACG -ACGGAATCAGTGCTACCAACTTCG -ACGGAATCAGTGCTACCATACGCA -ACGGAATCAGTGCTACCACTTGCA -ACGGAATCAGTGCTACCACGAACA -ACGGAATCAGTGCTACCACAGTCA -ACGGAATCAGTGCTACCAGATCCA -ACGGAATCAGTGCTACCAACGACA -ACGGAATCAGTGCTACCAAGCTCA -ACGGAATCAGTGCTACCATCACGT -ACGGAATCAGTGCTACCACGTAGT -ACGGAATCAGTGCTACCAGTCAGT -ACGGAATCAGTGCTACCAGAAGGT -ACGGAATCAGTGCTACCAAACCGT -ACGGAATCAGTGCTACCATTGTGC -ACGGAATCAGTGCTACCACTAAGC -ACGGAATCAGTGCTACCAACTAGC -ACGGAATCAGTGCTACCAAGATGC -ACGGAATCAGTGCTACCATGAAGG -ACGGAATCAGTGCTACCACAATGG -ACGGAATCAGTGCTACCAATGAGG -ACGGAATCAGTGCTACCAAATGGG -ACGGAATCAGTGCTACCATCCTGA -ACGGAATCAGTGCTACCATAGCGA -ACGGAATCAGTGCTACCACACAGA -ACGGAATCAGTGCTACCAGCAAGA -ACGGAATCAGTGCTACCAGGTTGA -ACGGAATCAGTGCTACCATCCGAT -ACGGAATCAGTGCTACCATGGCAT -ACGGAATCAGTGCTACCACGAGAT -ACGGAATCAGTGCTACCATACCAC -ACGGAATCAGTGCTACCACAGAAC -ACGGAATCAGTGCTACCAGTCTAC -ACGGAATCAGTGCTACCAACGTAC -ACGGAATCAGTGCTACCAAGTGAC -ACGGAATCAGTGCTACCACTGTAG -ACGGAATCAGTGCTACCACCTAAG -ACGGAATCAGTGCTACCAGTTCAG -ACGGAATCAGTGCTACCAGCATAG -ACGGAATCAGTGCTACCAGACAAG -ACGGAATCAGTGCTACCAAAGCAG -ACGGAATCAGTGCTACCACGTCAA -ACGGAATCAGTGCTACCAGCTGAA -ACGGAATCAGTGCTACCAAGTACG -ACGGAATCAGTGCTACCAATCCGA -ACGGAATCAGTGCTACCAATGGGA -ACGGAATCAGTGCTACCAGTGCAA -ACGGAATCAGTGCTACCAGAGGAA -ACGGAATCAGTGCTACCACAGGTA -ACGGAATCAGTGCTACCAGACTCT -ACGGAATCAGTGCTACCAAGTCCT -ACGGAATCAGTGCTACCATAAGCC -ACGGAATCAGTGCTACCAATAGCC -ACGGAATCAGTGCTACCATAACCG -ACGGAATCAGTGCTACCAATGCCA -ACGGAATCAGTGGTAGGAGGAAAC -ACGGAATCAGTGGTAGGAAACACC -ACGGAATCAGTGGTAGGAATCGAG -ACGGAATCAGTGGTAGGACTCCTT -ACGGAATCAGTGGTAGGACCTGTT -ACGGAATCAGTGGTAGGACGGTTT -ACGGAATCAGTGGTAGGAGTGGTT -ACGGAATCAGTGGTAGGAGCCTTT -ACGGAATCAGTGGTAGGAGGTCTT -ACGGAATCAGTGGTAGGAACGCTT -ACGGAATCAGTGGTAGGAAGCGTT -ACGGAATCAGTGGTAGGATTCGTC -ACGGAATCAGTGGTAGGATCTCTC -ACGGAATCAGTGGTAGGATGGATC -ACGGAATCAGTGGTAGGACACTTC -ACGGAATCAGTGGTAGGAGTACTC -ACGGAATCAGTGGTAGGAGATGTC -ACGGAATCAGTGGTAGGAACAGTC -ACGGAATCAGTGGTAGGATTGCTG -ACGGAATCAGTGGTAGGATCCATG -ACGGAATCAGTGGTAGGATGTGTG -ACGGAATCAGTGGTAGGACTAGTG -ACGGAATCAGTGGTAGGACATCTG -ACGGAATCAGTGGTAGGAGAGTTG -ACGGAATCAGTGGTAGGAAGACTG -ACGGAATCAGTGGTAGGATCGGTA -ACGGAATCAGTGGTAGGATGCCTA -ACGGAATCAGTGGTAGGACCACTA -ACGGAATCAGTGGTAGGAGGAGTA -ACGGAATCAGTGGTAGGATCGTCT -ACGGAATCAGTGGTAGGATGCACT -ACGGAATCAGTGGTAGGACTGACT -ACGGAATCAGTGGTAGGACAACCT -ACGGAATCAGTGGTAGGAGCTACT -ACGGAATCAGTGGTAGGAGGATCT -ACGGAATCAGTGGTAGGAAAGGCT -ACGGAATCAGTGGTAGGATCAACC -ACGGAATCAGTGGTAGGATGTTCC -ACGGAATCAGTGGTAGGAATTCCC -ACGGAATCAGTGGTAGGATTCTCG -ACGGAATCAGTGGTAGGATAGACG -ACGGAATCAGTGGTAGGAGTAACG -ACGGAATCAGTGGTAGGAACTTCG -ACGGAATCAGTGGTAGGATACGCA -ACGGAATCAGTGGTAGGACTTGCA -ACGGAATCAGTGGTAGGACGAACA -ACGGAATCAGTGGTAGGACAGTCA -ACGGAATCAGTGGTAGGAGATCCA -ACGGAATCAGTGGTAGGAACGACA -ACGGAATCAGTGGTAGGAAGCTCA -ACGGAATCAGTGGTAGGATCACGT -ACGGAATCAGTGGTAGGACGTAGT -ACGGAATCAGTGGTAGGAGTCAGT -ACGGAATCAGTGGTAGGAGAAGGT -ACGGAATCAGTGGTAGGAAACCGT -ACGGAATCAGTGGTAGGATTGTGC -ACGGAATCAGTGGTAGGACTAAGC -ACGGAATCAGTGGTAGGAACTAGC -ACGGAATCAGTGGTAGGAAGATGC -ACGGAATCAGTGGTAGGATGAAGG -ACGGAATCAGTGGTAGGACAATGG -ACGGAATCAGTGGTAGGAATGAGG -ACGGAATCAGTGGTAGGAAATGGG -ACGGAATCAGTGGTAGGATCCTGA -ACGGAATCAGTGGTAGGATAGCGA -ACGGAATCAGTGGTAGGACACAGA -ACGGAATCAGTGGTAGGAGCAAGA -ACGGAATCAGTGGTAGGAGGTTGA -ACGGAATCAGTGGTAGGATCCGAT -ACGGAATCAGTGGTAGGATGGCAT -ACGGAATCAGTGGTAGGACGAGAT -ACGGAATCAGTGGTAGGATACCAC -ACGGAATCAGTGGTAGGACAGAAC -ACGGAATCAGTGGTAGGAGTCTAC -ACGGAATCAGTGGTAGGAACGTAC -ACGGAATCAGTGGTAGGAAGTGAC -ACGGAATCAGTGGTAGGACTGTAG -ACGGAATCAGTGGTAGGACCTAAG -ACGGAATCAGTGGTAGGAGTTCAG -ACGGAATCAGTGGTAGGAGCATAG -ACGGAATCAGTGGTAGGAGACAAG -ACGGAATCAGTGGTAGGAAAGCAG -ACGGAATCAGTGGTAGGACGTCAA -ACGGAATCAGTGGTAGGAGCTGAA -ACGGAATCAGTGGTAGGAAGTACG -ACGGAATCAGTGGTAGGAATCCGA -ACGGAATCAGTGGTAGGAATGGGA -ACGGAATCAGTGGTAGGAGTGCAA -ACGGAATCAGTGGTAGGAGAGGAA -ACGGAATCAGTGGTAGGACAGGTA -ACGGAATCAGTGGTAGGAGACTCT -ACGGAATCAGTGGTAGGAAGTCCT -ACGGAATCAGTGGTAGGATAAGCC -ACGGAATCAGTGGTAGGAATAGCC -ACGGAATCAGTGGTAGGATAACCG -ACGGAATCAGTGGTAGGAATGCCA -ACGGAATCAGTGTCTTCGGGAAAC -ACGGAATCAGTGTCTTCGAACACC -ACGGAATCAGTGTCTTCGATCGAG -ACGGAATCAGTGTCTTCGCTCCTT -ACGGAATCAGTGTCTTCGCCTGTT -ACGGAATCAGTGTCTTCGCGGTTT -ACGGAATCAGTGTCTTCGGTGGTT -ACGGAATCAGTGTCTTCGGCCTTT -ACGGAATCAGTGTCTTCGGGTCTT -ACGGAATCAGTGTCTTCGACGCTT -ACGGAATCAGTGTCTTCGAGCGTT -ACGGAATCAGTGTCTTCGTTCGTC -ACGGAATCAGTGTCTTCGTCTCTC -ACGGAATCAGTGTCTTCGTGGATC -ACGGAATCAGTGTCTTCGCACTTC -ACGGAATCAGTGTCTTCGGTACTC -ACGGAATCAGTGTCTTCGGATGTC -ACGGAATCAGTGTCTTCGACAGTC -ACGGAATCAGTGTCTTCGTTGCTG -ACGGAATCAGTGTCTTCGTCCATG -ACGGAATCAGTGTCTTCGTGTGTG -ACGGAATCAGTGTCTTCGCTAGTG -ACGGAATCAGTGTCTTCGCATCTG -ACGGAATCAGTGTCTTCGGAGTTG -ACGGAATCAGTGTCTTCGAGACTG -ACGGAATCAGTGTCTTCGTCGGTA -ACGGAATCAGTGTCTTCGTGCCTA -ACGGAATCAGTGTCTTCGCCACTA -ACGGAATCAGTGTCTTCGGGAGTA -ACGGAATCAGTGTCTTCGTCGTCT -ACGGAATCAGTGTCTTCGTGCACT -ACGGAATCAGTGTCTTCGCTGACT -ACGGAATCAGTGTCTTCGCAACCT -ACGGAATCAGTGTCTTCGGCTACT -ACGGAATCAGTGTCTTCGGGATCT -ACGGAATCAGTGTCTTCGAAGGCT -ACGGAATCAGTGTCTTCGTCAACC -ACGGAATCAGTGTCTTCGTGTTCC -ACGGAATCAGTGTCTTCGATTCCC -ACGGAATCAGTGTCTTCGTTCTCG -ACGGAATCAGTGTCTTCGTAGACG -ACGGAATCAGTGTCTTCGGTAACG -ACGGAATCAGTGTCTTCGACTTCG -ACGGAATCAGTGTCTTCGTACGCA -ACGGAATCAGTGTCTTCGCTTGCA -ACGGAATCAGTGTCTTCGCGAACA -ACGGAATCAGTGTCTTCGCAGTCA -ACGGAATCAGTGTCTTCGGATCCA -ACGGAATCAGTGTCTTCGACGACA -ACGGAATCAGTGTCTTCGAGCTCA -ACGGAATCAGTGTCTTCGTCACGT -ACGGAATCAGTGTCTTCGCGTAGT -ACGGAATCAGTGTCTTCGGTCAGT -ACGGAATCAGTGTCTTCGGAAGGT -ACGGAATCAGTGTCTTCGAACCGT -ACGGAATCAGTGTCTTCGTTGTGC -ACGGAATCAGTGTCTTCGCTAAGC -ACGGAATCAGTGTCTTCGACTAGC -ACGGAATCAGTGTCTTCGAGATGC -ACGGAATCAGTGTCTTCGTGAAGG -ACGGAATCAGTGTCTTCGCAATGG -ACGGAATCAGTGTCTTCGATGAGG -ACGGAATCAGTGTCTTCGAATGGG -ACGGAATCAGTGTCTTCGTCCTGA -ACGGAATCAGTGTCTTCGTAGCGA -ACGGAATCAGTGTCTTCGCACAGA -ACGGAATCAGTGTCTTCGGCAAGA -ACGGAATCAGTGTCTTCGGGTTGA -ACGGAATCAGTGTCTTCGTCCGAT -ACGGAATCAGTGTCTTCGTGGCAT -ACGGAATCAGTGTCTTCGCGAGAT -ACGGAATCAGTGTCTTCGTACCAC -ACGGAATCAGTGTCTTCGCAGAAC -ACGGAATCAGTGTCTTCGGTCTAC -ACGGAATCAGTGTCTTCGACGTAC -ACGGAATCAGTGTCTTCGAGTGAC -ACGGAATCAGTGTCTTCGCTGTAG -ACGGAATCAGTGTCTTCGCCTAAG -ACGGAATCAGTGTCTTCGGTTCAG -ACGGAATCAGTGTCTTCGGCATAG -ACGGAATCAGTGTCTTCGGACAAG -ACGGAATCAGTGTCTTCGAAGCAG -ACGGAATCAGTGTCTTCGCGTCAA -ACGGAATCAGTGTCTTCGGCTGAA -ACGGAATCAGTGTCTTCGAGTACG -ACGGAATCAGTGTCTTCGATCCGA -ACGGAATCAGTGTCTTCGATGGGA -ACGGAATCAGTGTCTTCGGTGCAA -ACGGAATCAGTGTCTTCGGAGGAA -ACGGAATCAGTGTCTTCGCAGGTA -ACGGAATCAGTGTCTTCGGACTCT -ACGGAATCAGTGTCTTCGAGTCCT -ACGGAATCAGTGTCTTCGTAAGCC -ACGGAATCAGTGTCTTCGATAGCC -ACGGAATCAGTGTCTTCGTAACCG -ACGGAATCAGTGTCTTCGATGCCA -ACGGAATCAGTGACTTGCGGAAAC -ACGGAATCAGTGACTTGCAACACC -ACGGAATCAGTGACTTGCATCGAG -ACGGAATCAGTGACTTGCCTCCTT -ACGGAATCAGTGACTTGCCCTGTT -ACGGAATCAGTGACTTGCCGGTTT -ACGGAATCAGTGACTTGCGTGGTT -ACGGAATCAGTGACTTGCGCCTTT -ACGGAATCAGTGACTTGCGGTCTT -ACGGAATCAGTGACTTGCACGCTT -ACGGAATCAGTGACTTGCAGCGTT -ACGGAATCAGTGACTTGCTTCGTC -ACGGAATCAGTGACTTGCTCTCTC -ACGGAATCAGTGACTTGCTGGATC -ACGGAATCAGTGACTTGCCACTTC -ACGGAATCAGTGACTTGCGTACTC -ACGGAATCAGTGACTTGCGATGTC -ACGGAATCAGTGACTTGCACAGTC -ACGGAATCAGTGACTTGCTTGCTG -ACGGAATCAGTGACTTGCTCCATG -ACGGAATCAGTGACTTGCTGTGTG -ACGGAATCAGTGACTTGCCTAGTG -ACGGAATCAGTGACTTGCCATCTG -ACGGAATCAGTGACTTGCGAGTTG -ACGGAATCAGTGACTTGCAGACTG -ACGGAATCAGTGACTTGCTCGGTA -ACGGAATCAGTGACTTGCTGCCTA -ACGGAATCAGTGACTTGCCCACTA -ACGGAATCAGTGACTTGCGGAGTA -ACGGAATCAGTGACTTGCTCGTCT -ACGGAATCAGTGACTTGCTGCACT -ACGGAATCAGTGACTTGCCTGACT -ACGGAATCAGTGACTTGCCAACCT -ACGGAATCAGTGACTTGCGCTACT -ACGGAATCAGTGACTTGCGGATCT -ACGGAATCAGTGACTTGCAAGGCT -ACGGAATCAGTGACTTGCTCAACC -ACGGAATCAGTGACTTGCTGTTCC -ACGGAATCAGTGACTTGCATTCCC -ACGGAATCAGTGACTTGCTTCTCG -ACGGAATCAGTGACTTGCTAGACG -ACGGAATCAGTGACTTGCGTAACG -ACGGAATCAGTGACTTGCACTTCG -ACGGAATCAGTGACTTGCTACGCA -ACGGAATCAGTGACTTGCCTTGCA -ACGGAATCAGTGACTTGCCGAACA -ACGGAATCAGTGACTTGCCAGTCA -ACGGAATCAGTGACTTGCGATCCA -ACGGAATCAGTGACTTGCACGACA -ACGGAATCAGTGACTTGCAGCTCA -ACGGAATCAGTGACTTGCTCACGT -ACGGAATCAGTGACTTGCCGTAGT -ACGGAATCAGTGACTTGCGTCAGT -ACGGAATCAGTGACTTGCGAAGGT -ACGGAATCAGTGACTTGCAACCGT -ACGGAATCAGTGACTTGCTTGTGC -ACGGAATCAGTGACTTGCCTAAGC -ACGGAATCAGTGACTTGCACTAGC -ACGGAATCAGTGACTTGCAGATGC -ACGGAATCAGTGACTTGCTGAAGG -ACGGAATCAGTGACTTGCCAATGG -ACGGAATCAGTGACTTGCATGAGG -ACGGAATCAGTGACTTGCAATGGG -ACGGAATCAGTGACTTGCTCCTGA -ACGGAATCAGTGACTTGCTAGCGA -ACGGAATCAGTGACTTGCCACAGA -ACGGAATCAGTGACTTGCGCAAGA -ACGGAATCAGTGACTTGCGGTTGA -ACGGAATCAGTGACTTGCTCCGAT -ACGGAATCAGTGACTTGCTGGCAT -ACGGAATCAGTGACTTGCCGAGAT -ACGGAATCAGTGACTTGCTACCAC -ACGGAATCAGTGACTTGCCAGAAC -ACGGAATCAGTGACTTGCGTCTAC -ACGGAATCAGTGACTTGCACGTAC -ACGGAATCAGTGACTTGCAGTGAC -ACGGAATCAGTGACTTGCCTGTAG -ACGGAATCAGTGACTTGCCCTAAG -ACGGAATCAGTGACTTGCGTTCAG -ACGGAATCAGTGACTTGCGCATAG -ACGGAATCAGTGACTTGCGACAAG -ACGGAATCAGTGACTTGCAAGCAG -ACGGAATCAGTGACTTGCCGTCAA -ACGGAATCAGTGACTTGCGCTGAA -ACGGAATCAGTGACTTGCAGTACG -ACGGAATCAGTGACTTGCATCCGA -ACGGAATCAGTGACTTGCATGGGA -ACGGAATCAGTGACTTGCGTGCAA -ACGGAATCAGTGACTTGCGAGGAA -ACGGAATCAGTGACTTGCCAGGTA -ACGGAATCAGTGACTTGCGACTCT -ACGGAATCAGTGACTTGCAGTCCT -ACGGAATCAGTGACTTGCTAAGCC -ACGGAATCAGTGACTTGCATAGCC -ACGGAATCAGTGACTTGCTAACCG -ACGGAATCAGTGACTTGCATGCCA -ACGGAATCAGTGACTCTGGGAAAC -ACGGAATCAGTGACTCTGAACACC -ACGGAATCAGTGACTCTGATCGAG -ACGGAATCAGTGACTCTGCTCCTT -ACGGAATCAGTGACTCTGCCTGTT -ACGGAATCAGTGACTCTGCGGTTT -ACGGAATCAGTGACTCTGGTGGTT -ACGGAATCAGTGACTCTGGCCTTT -ACGGAATCAGTGACTCTGGGTCTT -ACGGAATCAGTGACTCTGACGCTT -ACGGAATCAGTGACTCTGAGCGTT -ACGGAATCAGTGACTCTGTTCGTC -ACGGAATCAGTGACTCTGTCTCTC -ACGGAATCAGTGACTCTGTGGATC -ACGGAATCAGTGACTCTGCACTTC -ACGGAATCAGTGACTCTGGTACTC -ACGGAATCAGTGACTCTGGATGTC -ACGGAATCAGTGACTCTGACAGTC -ACGGAATCAGTGACTCTGTTGCTG -ACGGAATCAGTGACTCTGTCCATG -ACGGAATCAGTGACTCTGTGTGTG -ACGGAATCAGTGACTCTGCTAGTG -ACGGAATCAGTGACTCTGCATCTG -ACGGAATCAGTGACTCTGGAGTTG -ACGGAATCAGTGACTCTGAGACTG -ACGGAATCAGTGACTCTGTCGGTA -ACGGAATCAGTGACTCTGTGCCTA -ACGGAATCAGTGACTCTGCCACTA -ACGGAATCAGTGACTCTGGGAGTA -ACGGAATCAGTGACTCTGTCGTCT -ACGGAATCAGTGACTCTGTGCACT -ACGGAATCAGTGACTCTGCTGACT -ACGGAATCAGTGACTCTGCAACCT -ACGGAATCAGTGACTCTGGCTACT -ACGGAATCAGTGACTCTGGGATCT -ACGGAATCAGTGACTCTGAAGGCT -ACGGAATCAGTGACTCTGTCAACC -ACGGAATCAGTGACTCTGTGTTCC -ACGGAATCAGTGACTCTGATTCCC -ACGGAATCAGTGACTCTGTTCTCG -ACGGAATCAGTGACTCTGTAGACG -ACGGAATCAGTGACTCTGGTAACG -ACGGAATCAGTGACTCTGACTTCG -ACGGAATCAGTGACTCTGTACGCA -ACGGAATCAGTGACTCTGCTTGCA -ACGGAATCAGTGACTCTGCGAACA -ACGGAATCAGTGACTCTGCAGTCA -ACGGAATCAGTGACTCTGGATCCA -ACGGAATCAGTGACTCTGACGACA -ACGGAATCAGTGACTCTGAGCTCA -ACGGAATCAGTGACTCTGTCACGT -ACGGAATCAGTGACTCTGCGTAGT -ACGGAATCAGTGACTCTGGTCAGT -ACGGAATCAGTGACTCTGGAAGGT -ACGGAATCAGTGACTCTGAACCGT -ACGGAATCAGTGACTCTGTTGTGC -ACGGAATCAGTGACTCTGCTAAGC -ACGGAATCAGTGACTCTGACTAGC -ACGGAATCAGTGACTCTGAGATGC -ACGGAATCAGTGACTCTGTGAAGG -ACGGAATCAGTGACTCTGCAATGG -ACGGAATCAGTGACTCTGATGAGG -ACGGAATCAGTGACTCTGAATGGG -ACGGAATCAGTGACTCTGTCCTGA -ACGGAATCAGTGACTCTGTAGCGA -ACGGAATCAGTGACTCTGCACAGA -ACGGAATCAGTGACTCTGGCAAGA -ACGGAATCAGTGACTCTGGGTTGA -ACGGAATCAGTGACTCTGTCCGAT -ACGGAATCAGTGACTCTGTGGCAT -ACGGAATCAGTGACTCTGCGAGAT -ACGGAATCAGTGACTCTGTACCAC -ACGGAATCAGTGACTCTGCAGAAC -ACGGAATCAGTGACTCTGGTCTAC -ACGGAATCAGTGACTCTGACGTAC -ACGGAATCAGTGACTCTGAGTGAC -ACGGAATCAGTGACTCTGCTGTAG -ACGGAATCAGTGACTCTGCCTAAG -ACGGAATCAGTGACTCTGGTTCAG -ACGGAATCAGTGACTCTGGCATAG -ACGGAATCAGTGACTCTGGACAAG -ACGGAATCAGTGACTCTGAAGCAG -ACGGAATCAGTGACTCTGCGTCAA -ACGGAATCAGTGACTCTGGCTGAA -ACGGAATCAGTGACTCTGAGTACG -ACGGAATCAGTGACTCTGATCCGA -ACGGAATCAGTGACTCTGATGGGA -ACGGAATCAGTGACTCTGGTGCAA -ACGGAATCAGTGACTCTGGAGGAA -ACGGAATCAGTGACTCTGCAGGTA -ACGGAATCAGTGACTCTGGACTCT -ACGGAATCAGTGACTCTGAGTCCT -ACGGAATCAGTGACTCTGTAAGCC -ACGGAATCAGTGACTCTGATAGCC -ACGGAATCAGTGACTCTGTAACCG -ACGGAATCAGTGACTCTGATGCCA -ACGGAATCAGTGCCTCAAGGAAAC -ACGGAATCAGTGCCTCAAAACACC -ACGGAATCAGTGCCTCAAATCGAG -ACGGAATCAGTGCCTCAACTCCTT -ACGGAATCAGTGCCTCAACCTGTT -ACGGAATCAGTGCCTCAACGGTTT -ACGGAATCAGTGCCTCAAGTGGTT -ACGGAATCAGTGCCTCAAGCCTTT -ACGGAATCAGTGCCTCAAGGTCTT -ACGGAATCAGTGCCTCAAACGCTT -ACGGAATCAGTGCCTCAAAGCGTT -ACGGAATCAGTGCCTCAATTCGTC -ACGGAATCAGTGCCTCAATCTCTC -ACGGAATCAGTGCCTCAATGGATC -ACGGAATCAGTGCCTCAACACTTC -ACGGAATCAGTGCCTCAAGTACTC -ACGGAATCAGTGCCTCAAGATGTC -ACGGAATCAGTGCCTCAAACAGTC -ACGGAATCAGTGCCTCAATTGCTG -ACGGAATCAGTGCCTCAATCCATG -ACGGAATCAGTGCCTCAATGTGTG -ACGGAATCAGTGCCTCAACTAGTG -ACGGAATCAGTGCCTCAACATCTG -ACGGAATCAGTGCCTCAAGAGTTG -ACGGAATCAGTGCCTCAAAGACTG -ACGGAATCAGTGCCTCAATCGGTA -ACGGAATCAGTGCCTCAATGCCTA -ACGGAATCAGTGCCTCAACCACTA -ACGGAATCAGTGCCTCAAGGAGTA -ACGGAATCAGTGCCTCAATCGTCT -ACGGAATCAGTGCCTCAATGCACT -ACGGAATCAGTGCCTCAACTGACT -ACGGAATCAGTGCCTCAACAACCT -ACGGAATCAGTGCCTCAAGCTACT -ACGGAATCAGTGCCTCAAGGATCT -ACGGAATCAGTGCCTCAAAAGGCT -ACGGAATCAGTGCCTCAATCAACC -ACGGAATCAGTGCCTCAATGTTCC -ACGGAATCAGTGCCTCAAATTCCC -ACGGAATCAGTGCCTCAATTCTCG -ACGGAATCAGTGCCTCAATAGACG -ACGGAATCAGTGCCTCAAGTAACG -ACGGAATCAGTGCCTCAAACTTCG -ACGGAATCAGTGCCTCAATACGCA -ACGGAATCAGTGCCTCAACTTGCA -ACGGAATCAGTGCCTCAACGAACA -ACGGAATCAGTGCCTCAACAGTCA -ACGGAATCAGTGCCTCAAGATCCA -ACGGAATCAGTGCCTCAAACGACA -ACGGAATCAGTGCCTCAAAGCTCA -ACGGAATCAGTGCCTCAATCACGT -ACGGAATCAGTGCCTCAACGTAGT -ACGGAATCAGTGCCTCAAGTCAGT -ACGGAATCAGTGCCTCAAGAAGGT -ACGGAATCAGTGCCTCAAAACCGT -ACGGAATCAGTGCCTCAATTGTGC -ACGGAATCAGTGCCTCAACTAAGC -ACGGAATCAGTGCCTCAAACTAGC -ACGGAATCAGTGCCTCAAAGATGC -ACGGAATCAGTGCCTCAATGAAGG -ACGGAATCAGTGCCTCAACAATGG -ACGGAATCAGTGCCTCAAATGAGG -ACGGAATCAGTGCCTCAAAATGGG -ACGGAATCAGTGCCTCAATCCTGA -ACGGAATCAGTGCCTCAATAGCGA -ACGGAATCAGTGCCTCAACACAGA -ACGGAATCAGTGCCTCAAGCAAGA -ACGGAATCAGTGCCTCAAGGTTGA -ACGGAATCAGTGCCTCAATCCGAT -ACGGAATCAGTGCCTCAATGGCAT -ACGGAATCAGTGCCTCAACGAGAT -ACGGAATCAGTGCCTCAATACCAC -ACGGAATCAGTGCCTCAACAGAAC -ACGGAATCAGTGCCTCAAGTCTAC -ACGGAATCAGTGCCTCAAACGTAC -ACGGAATCAGTGCCTCAAAGTGAC -ACGGAATCAGTGCCTCAACTGTAG -ACGGAATCAGTGCCTCAACCTAAG -ACGGAATCAGTGCCTCAAGTTCAG -ACGGAATCAGTGCCTCAAGCATAG -ACGGAATCAGTGCCTCAAGACAAG -ACGGAATCAGTGCCTCAAAAGCAG -ACGGAATCAGTGCCTCAACGTCAA -ACGGAATCAGTGCCTCAAGCTGAA -ACGGAATCAGTGCCTCAAAGTACG -ACGGAATCAGTGCCTCAAATCCGA -ACGGAATCAGTGCCTCAAATGGGA -ACGGAATCAGTGCCTCAAGTGCAA -ACGGAATCAGTGCCTCAAGAGGAA -ACGGAATCAGTGCCTCAACAGGTA -ACGGAATCAGTGCCTCAAGACTCT -ACGGAATCAGTGCCTCAAAGTCCT -ACGGAATCAGTGCCTCAATAAGCC -ACGGAATCAGTGCCTCAAATAGCC -ACGGAATCAGTGCCTCAATAACCG -ACGGAATCAGTGCCTCAAATGCCA -ACGGAATCAGTGACTGCTGGAAAC -ACGGAATCAGTGACTGCTAACACC -ACGGAATCAGTGACTGCTATCGAG -ACGGAATCAGTGACTGCTCTCCTT -ACGGAATCAGTGACTGCTCCTGTT -ACGGAATCAGTGACTGCTCGGTTT -ACGGAATCAGTGACTGCTGTGGTT -ACGGAATCAGTGACTGCTGCCTTT -ACGGAATCAGTGACTGCTGGTCTT -ACGGAATCAGTGACTGCTACGCTT -ACGGAATCAGTGACTGCTAGCGTT -ACGGAATCAGTGACTGCTTTCGTC -ACGGAATCAGTGACTGCTTCTCTC -ACGGAATCAGTGACTGCTTGGATC -ACGGAATCAGTGACTGCTCACTTC -ACGGAATCAGTGACTGCTGTACTC -ACGGAATCAGTGACTGCTGATGTC -ACGGAATCAGTGACTGCTACAGTC -ACGGAATCAGTGACTGCTTTGCTG -ACGGAATCAGTGACTGCTTCCATG -ACGGAATCAGTGACTGCTTGTGTG -ACGGAATCAGTGACTGCTCTAGTG -ACGGAATCAGTGACTGCTCATCTG -ACGGAATCAGTGACTGCTGAGTTG -ACGGAATCAGTGACTGCTAGACTG -ACGGAATCAGTGACTGCTTCGGTA -ACGGAATCAGTGACTGCTTGCCTA -ACGGAATCAGTGACTGCTCCACTA -ACGGAATCAGTGACTGCTGGAGTA -ACGGAATCAGTGACTGCTTCGTCT -ACGGAATCAGTGACTGCTTGCACT -ACGGAATCAGTGACTGCTCTGACT -ACGGAATCAGTGACTGCTCAACCT -ACGGAATCAGTGACTGCTGCTACT -ACGGAATCAGTGACTGCTGGATCT -ACGGAATCAGTGACTGCTAAGGCT -ACGGAATCAGTGACTGCTTCAACC -ACGGAATCAGTGACTGCTTGTTCC -ACGGAATCAGTGACTGCTATTCCC -ACGGAATCAGTGACTGCTTTCTCG -ACGGAATCAGTGACTGCTTAGACG -ACGGAATCAGTGACTGCTGTAACG -ACGGAATCAGTGACTGCTACTTCG -ACGGAATCAGTGACTGCTTACGCA -ACGGAATCAGTGACTGCTCTTGCA -ACGGAATCAGTGACTGCTCGAACA -ACGGAATCAGTGACTGCTCAGTCA -ACGGAATCAGTGACTGCTGATCCA -ACGGAATCAGTGACTGCTACGACA -ACGGAATCAGTGACTGCTAGCTCA -ACGGAATCAGTGACTGCTTCACGT -ACGGAATCAGTGACTGCTCGTAGT -ACGGAATCAGTGACTGCTGTCAGT -ACGGAATCAGTGACTGCTGAAGGT -ACGGAATCAGTGACTGCTAACCGT -ACGGAATCAGTGACTGCTTTGTGC -ACGGAATCAGTGACTGCTCTAAGC -ACGGAATCAGTGACTGCTACTAGC -ACGGAATCAGTGACTGCTAGATGC -ACGGAATCAGTGACTGCTTGAAGG -ACGGAATCAGTGACTGCTCAATGG -ACGGAATCAGTGACTGCTATGAGG -ACGGAATCAGTGACTGCTAATGGG -ACGGAATCAGTGACTGCTTCCTGA -ACGGAATCAGTGACTGCTTAGCGA -ACGGAATCAGTGACTGCTCACAGA -ACGGAATCAGTGACTGCTGCAAGA -ACGGAATCAGTGACTGCTGGTTGA -ACGGAATCAGTGACTGCTTCCGAT -ACGGAATCAGTGACTGCTTGGCAT -ACGGAATCAGTGACTGCTCGAGAT -ACGGAATCAGTGACTGCTTACCAC -ACGGAATCAGTGACTGCTCAGAAC -ACGGAATCAGTGACTGCTGTCTAC -ACGGAATCAGTGACTGCTACGTAC -ACGGAATCAGTGACTGCTAGTGAC -ACGGAATCAGTGACTGCTCTGTAG -ACGGAATCAGTGACTGCTCCTAAG -ACGGAATCAGTGACTGCTGTTCAG -ACGGAATCAGTGACTGCTGCATAG -ACGGAATCAGTGACTGCTGACAAG -ACGGAATCAGTGACTGCTAAGCAG -ACGGAATCAGTGACTGCTCGTCAA -ACGGAATCAGTGACTGCTGCTGAA -ACGGAATCAGTGACTGCTAGTACG -ACGGAATCAGTGACTGCTATCCGA -ACGGAATCAGTGACTGCTATGGGA -ACGGAATCAGTGACTGCTGTGCAA -ACGGAATCAGTGACTGCTGAGGAA -ACGGAATCAGTGACTGCTCAGGTA -ACGGAATCAGTGACTGCTGACTCT -ACGGAATCAGTGACTGCTAGTCCT -ACGGAATCAGTGACTGCTTAAGCC -ACGGAATCAGTGACTGCTATAGCC -ACGGAATCAGTGACTGCTTAACCG -ACGGAATCAGTGACTGCTATGCCA -ACGGAATCAGTGTCTGGAGGAAAC -ACGGAATCAGTGTCTGGAAACACC -ACGGAATCAGTGTCTGGAATCGAG -ACGGAATCAGTGTCTGGACTCCTT -ACGGAATCAGTGTCTGGACCTGTT -ACGGAATCAGTGTCTGGACGGTTT -ACGGAATCAGTGTCTGGAGTGGTT -ACGGAATCAGTGTCTGGAGCCTTT -ACGGAATCAGTGTCTGGAGGTCTT -ACGGAATCAGTGTCTGGAACGCTT -ACGGAATCAGTGTCTGGAAGCGTT -ACGGAATCAGTGTCTGGATTCGTC -ACGGAATCAGTGTCTGGATCTCTC -ACGGAATCAGTGTCTGGATGGATC -ACGGAATCAGTGTCTGGACACTTC -ACGGAATCAGTGTCTGGAGTACTC -ACGGAATCAGTGTCTGGAGATGTC -ACGGAATCAGTGTCTGGAACAGTC -ACGGAATCAGTGTCTGGATTGCTG -ACGGAATCAGTGTCTGGATCCATG -ACGGAATCAGTGTCTGGATGTGTG -ACGGAATCAGTGTCTGGACTAGTG -ACGGAATCAGTGTCTGGACATCTG -ACGGAATCAGTGTCTGGAGAGTTG -ACGGAATCAGTGTCTGGAAGACTG -ACGGAATCAGTGTCTGGATCGGTA -ACGGAATCAGTGTCTGGATGCCTA -ACGGAATCAGTGTCTGGACCACTA -ACGGAATCAGTGTCTGGAGGAGTA -ACGGAATCAGTGTCTGGATCGTCT -ACGGAATCAGTGTCTGGATGCACT -ACGGAATCAGTGTCTGGACTGACT -ACGGAATCAGTGTCTGGACAACCT -ACGGAATCAGTGTCTGGAGCTACT -ACGGAATCAGTGTCTGGAGGATCT -ACGGAATCAGTGTCTGGAAAGGCT -ACGGAATCAGTGTCTGGATCAACC -ACGGAATCAGTGTCTGGATGTTCC -ACGGAATCAGTGTCTGGAATTCCC -ACGGAATCAGTGTCTGGATTCTCG -ACGGAATCAGTGTCTGGATAGACG -ACGGAATCAGTGTCTGGAGTAACG -ACGGAATCAGTGTCTGGAACTTCG -ACGGAATCAGTGTCTGGATACGCA -ACGGAATCAGTGTCTGGACTTGCA -ACGGAATCAGTGTCTGGACGAACA -ACGGAATCAGTGTCTGGACAGTCA -ACGGAATCAGTGTCTGGAGATCCA -ACGGAATCAGTGTCTGGAACGACA -ACGGAATCAGTGTCTGGAAGCTCA -ACGGAATCAGTGTCTGGATCACGT -ACGGAATCAGTGTCTGGACGTAGT -ACGGAATCAGTGTCTGGAGTCAGT -ACGGAATCAGTGTCTGGAGAAGGT -ACGGAATCAGTGTCTGGAAACCGT -ACGGAATCAGTGTCTGGATTGTGC -ACGGAATCAGTGTCTGGACTAAGC -ACGGAATCAGTGTCTGGAACTAGC -ACGGAATCAGTGTCTGGAAGATGC -ACGGAATCAGTGTCTGGATGAAGG -ACGGAATCAGTGTCTGGACAATGG -ACGGAATCAGTGTCTGGAATGAGG -ACGGAATCAGTGTCTGGAAATGGG -ACGGAATCAGTGTCTGGATCCTGA -ACGGAATCAGTGTCTGGATAGCGA -ACGGAATCAGTGTCTGGACACAGA -ACGGAATCAGTGTCTGGAGCAAGA -ACGGAATCAGTGTCTGGAGGTTGA -ACGGAATCAGTGTCTGGATCCGAT -ACGGAATCAGTGTCTGGATGGCAT -ACGGAATCAGTGTCTGGACGAGAT -ACGGAATCAGTGTCTGGATACCAC -ACGGAATCAGTGTCTGGACAGAAC -ACGGAATCAGTGTCTGGAGTCTAC -ACGGAATCAGTGTCTGGAACGTAC -ACGGAATCAGTGTCTGGAAGTGAC -ACGGAATCAGTGTCTGGACTGTAG -ACGGAATCAGTGTCTGGACCTAAG -ACGGAATCAGTGTCTGGAGTTCAG -ACGGAATCAGTGTCTGGAGCATAG -ACGGAATCAGTGTCTGGAGACAAG -ACGGAATCAGTGTCTGGAAAGCAG -ACGGAATCAGTGTCTGGACGTCAA -ACGGAATCAGTGTCTGGAGCTGAA -ACGGAATCAGTGTCTGGAAGTACG -ACGGAATCAGTGTCTGGAATCCGA -ACGGAATCAGTGTCTGGAATGGGA -ACGGAATCAGTGTCTGGAGTGCAA -ACGGAATCAGTGTCTGGAGAGGAA -ACGGAATCAGTGTCTGGACAGGTA -ACGGAATCAGTGTCTGGAGACTCT -ACGGAATCAGTGTCTGGAAGTCCT -ACGGAATCAGTGTCTGGATAAGCC -ACGGAATCAGTGTCTGGAATAGCC -ACGGAATCAGTGTCTGGATAACCG -ACGGAATCAGTGTCTGGAATGCCA -ACGGAATCAGTGGCTAAGGGAAAC -ACGGAATCAGTGGCTAAGAACACC -ACGGAATCAGTGGCTAAGATCGAG -ACGGAATCAGTGGCTAAGCTCCTT -ACGGAATCAGTGGCTAAGCCTGTT -ACGGAATCAGTGGCTAAGCGGTTT -ACGGAATCAGTGGCTAAGGTGGTT -ACGGAATCAGTGGCTAAGGCCTTT -ACGGAATCAGTGGCTAAGGGTCTT -ACGGAATCAGTGGCTAAGACGCTT -ACGGAATCAGTGGCTAAGAGCGTT -ACGGAATCAGTGGCTAAGTTCGTC -ACGGAATCAGTGGCTAAGTCTCTC -ACGGAATCAGTGGCTAAGTGGATC -ACGGAATCAGTGGCTAAGCACTTC -ACGGAATCAGTGGCTAAGGTACTC -ACGGAATCAGTGGCTAAGGATGTC -ACGGAATCAGTGGCTAAGACAGTC -ACGGAATCAGTGGCTAAGTTGCTG -ACGGAATCAGTGGCTAAGTCCATG -ACGGAATCAGTGGCTAAGTGTGTG -ACGGAATCAGTGGCTAAGCTAGTG -ACGGAATCAGTGGCTAAGCATCTG -ACGGAATCAGTGGCTAAGGAGTTG -ACGGAATCAGTGGCTAAGAGACTG -ACGGAATCAGTGGCTAAGTCGGTA -ACGGAATCAGTGGCTAAGTGCCTA -ACGGAATCAGTGGCTAAGCCACTA -ACGGAATCAGTGGCTAAGGGAGTA -ACGGAATCAGTGGCTAAGTCGTCT -ACGGAATCAGTGGCTAAGTGCACT -ACGGAATCAGTGGCTAAGCTGACT -ACGGAATCAGTGGCTAAGCAACCT -ACGGAATCAGTGGCTAAGGCTACT -ACGGAATCAGTGGCTAAGGGATCT -ACGGAATCAGTGGCTAAGAAGGCT -ACGGAATCAGTGGCTAAGTCAACC -ACGGAATCAGTGGCTAAGTGTTCC -ACGGAATCAGTGGCTAAGATTCCC -ACGGAATCAGTGGCTAAGTTCTCG -ACGGAATCAGTGGCTAAGTAGACG -ACGGAATCAGTGGCTAAGGTAACG -ACGGAATCAGTGGCTAAGACTTCG -ACGGAATCAGTGGCTAAGTACGCA -ACGGAATCAGTGGCTAAGCTTGCA -ACGGAATCAGTGGCTAAGCGAACA -ACGGAATCAGTGGCTAAGCAGTCA -ACGGAATCAGTGGCTAAGGATCCA -ACGGAATCAGTGGCTAAGACGACA -ACGGAATCAGTGGCTAAGAGCTCA -ACGGAATCAGTGGCTAAGTCACGT -ACGGAATCAGTGGCTAAGCGTAGT -ACGGAATCAGTGGCTAAGGTCAGT -ACGGAATCAGTGGCTAAGGAAGGT -ACGGAATCAGTGGCTAAGAACCGT -ACGGAATCAGTGGCTAAGTTGTGC -ACGGAATCAGTGGCTAAGCTAAGC -ACGGAATCAGTGGCTAAGACTAGC -ACGGAATCAGTGGCTAAGAGATGC -ACGGAATCAGTGGCTAAGTGAAGG -ACGGAATCAGTGGCTAAGCAATGG -ACGGAATCAGTGGCTAAGATGAGG -ACGGAATCAGTGGCTAAGAATGGG -ACGGAATCAGTGGCTAAGTCCTGA -ACGGAATCAGTGGCTAAGTAGCGA -ACGGAATCAGTGGCTAAGCACAGA -ACGGAATCAGTGGCTAAGGCAAGA -ACGGAATCAGTGGCTAAGGGTTGA -ACGGAATCAGTGGCTAAGTCCGAT -ACGGAATCAGTGGCTAAGTGGCAT -ACGGAATCAGTGGCTAAGCGAGAT -ACGGAATCAGTGGCTAAGTACCAC -ACGGAATCAGTGGCTAAGCAGAAC -ACGGAATCAGTGGCTAAGGTCTAC -ACGGAATCAGTGGCTAAGACGTAC -ACGGAATCAGTGGCTAAGAGTGAC -ACGGAATCAGTGGCTAAGCTGTAG -ACGGAATCAGTGGCTAAGCCTAAG -ACGGAATCAGTGGCTAAGGTTCAG -ACGGAATCAGTGGCTAAGGCATAG -ACGGAATCAGTGGCTAAGGACAAG -ACGGAATCAGTGGCTAAGAAGCAG -ACGGAATCAGTGGCTAAGCGTCAA -ACGGAATCAGTGGCTAAGGCTGAA -ACGGAATCAGTGGCTAAGAGTACG -ACGGAATCAGTGGCTAAGATCCGA -ACGGAATCAGTGGCTAAGATGGGA -ACGGAATCAGTGGCTAAGGTGCAA -ACGGAATCAGTGGCTAAGGAGGAA -ACGGAATCAGTGGCTAAGCAGGTA -ACGGAATCAGTGGCTAAGGACTCT -ACGGAATCAGTGGCTAAGAGTCCT -ACGGAATCAGTGGCTAAGTAAGCC -ACGGAATCAGTGGCTAAGATAGCC -ACGGAATCAGTGGCTAAGTAACCG -ACGGAATCAGTGGCTAAGATGCCA -ACGGAATCAGTGACCTCAGGAAAC -ACGGAATCAGTGACCTCAAACACC -ACGGAATCAGTGACCTCAATCGAG -ACGGAATCAGTGACCTCACTCCTT -ACGGAATCAGTGACCTCACCTGTT -ACGGAATCAGTGACCTCACGGTTT -ACGGAATCAGTGACCTCAGTGGTT -ACGGAATCAGTGACCTCAGCCTTT -ACGGAATCAGTGACCTCAGGTCTT -ACGGAATCAGTGACCTCAACGCTT -ACGGAATCAGTGACCTCAAGCGTT -ACGGAATCAGTGACCTCATTCGTC -ACGGAATCAGTGACCTCATCTCTC -ACGGAATCAGTGACCTCATGGATC -ACGGAATCAGTGACCTCACACTTC -ACGGAATCAGTGACCTCAGTACTC -ACGGAATCAGTGACCTCAGATGTC -ACGGAATCAGTGACCTCAACAGTC -ACGGAATCAGTGACCTCATTGCTG -ACGGAATCAGTGACCTCATCCATG -ACGGAATCAGTGACCTCATGTGTG -ACGGAATCAGTGACCTCACTAGTG -ACGGAATCAGTGACCTCACATCTG -ACGGAATCAGTGACCTCAGAGTTG -ACGGAATCAGTGACCTCAAGACTG -ACGGAATCAGTGACCTCATCGGTA -ACGGAATCAGTGACCTCATGCCTA -ACGGAATCAGTGACCTCACCACTA -ACGGAATCAGTGACCTCAGGAGTA -ACGGAATCAGTGACCTCATCGTCT -ACGGAATCAGTGACCTCATGCACT -ACGGAATCAGTGACCTCACTGACT -ACGGAATCAGTGACCTCACAACCT -ACGGAATCAGTGACCTCAGCTACT -ACGGAATCAGTGACCTCAGGATCT -ACGGAATCAGTGACCTCAAAGGCT -ACGGAATCAGTGACCTCATCAACC -ACGGAATCAGTGACCTCATGTTCC -ACGGAATCAGTGACCTCAATTCCC -ACGGAATCAGTGACCTCATTCTCG -ACGGAATCAGTGACCTCATAGACG -ACGGAATCAGTGACCTCAGTAACG -ACGGAATCAGTGACCTCAACTTCG -ACGGAATCAGTGACCTCATACGCA -ACGGAATCAGTGACCTCACTTGCA -ACGGAATCAGTGACCTCACGAACA -ACGGAATCAGTGACCTCACAGTCA -ACGGAATCAGTGACCTCAGATCCA -ACGGAATCAGTGACCTCAACGACA -ACGGAATCAGTGACCTCAAGCTCA -ACGGAATCAGTGACCTCATCACGT -ACGGAATCAGTGACCTCACGTAGT -ACGGAATCAGTGACCTCAGTCAGT -ACGGAATCAGTGACCTCAGAAGGT -ACGGAATCAGTGACCTCAAACCGT -ACGGAATCAGTGACCTCATTGTGC -ACGGAATCAGTGACCTCACTAAGC -ACGGAATCAGTGACCTCAACTAGC -ACGGAATCAGTGACCTCAAGATGC -ACGGAATCAGTGACCTCATGAAGG -ACGGAATCAGTGACCTCACAATGG -ACGGAATCAGTGACCTCAATGAGG -ACGGAATCAGTGACCTCAAATGGG -ACGGAATCAGTGACCTCATCCTGA -ACGGAATCAGTGACCTCATAGCGA -ACGGAATCAGTGACCTCACACAGA -ACGGAATCAGTGACCTCAGCAAGA -ACGGAATCAGTGACCTCAGGTTGA -ACGGAATCAGTGACCTCATCCGAT -ACGGAATCAGTGACCTCATGGCAT -ACGGAATCAGTGACCTCACGAGAT -ACGGAATCAGTGACCTCATACCAC -ACGGAATCAGTGACCTCACAGAAC -ACGGAATCAGTGACCTCAGTCTAC -ACGGAATCAGTGACCTCAACGTAC -ACGGAATCAGTGACCTCAAGTGAC -ACGGAATCAGTGACCTCACTGTAG -ACGGAATCAGTGACCTCACCTAAG -ACGGAATCAGTGACCTCAGTTCAG -ACGGAATCAGTGACCTCAGCATAG -ACGGAATCAGTGACCTCAGACAAG -ACGGAATCAGTGACCTCAAAGCAG -ACGGAATCAGTGACCTCACGTCAA -ACGGAATCAGTGACCTCAGCTGAA -ACGGAATCAGTGACCTCAAGTACG -ACGGAATCAGTGACCTCAATCCGA -ACGGAATCAGTGACCTCAATGGGA -ACGGAATCAGTGACCTCAGTGCAA -ACGGAATCAGTGACCTCAGAGGAA -ACGGAATCAGTGACCTCACAGGTA -ACGGAATCAGTGACCTCAGACTCT -ACGGAATCAGTGACCTCAAGTCCT -ACGGAATCAGTGACCTCATAAGCC -ACGGAATCAGTGACCTCAATAGCC -ACGGAATCAGTGACCTCATAACCG -ACGGAATCAGTGACCTCAATGCCA -ACGGAATCAGTGTCCTGTGGAAAC -ACGGAATCAGTGTCCTGTAACACC -ACGGAATCAGTGTCCTGTATCGAG -ACGGAATCAGTGTCCTGTCTCCTT -ACGGAATCAGTGTCCTGTCCTGTT -ACGGAATCAGTGTCCTGTCGGTTT -ACGGAATCAGTGTCCTGTGTGGTT -ACGGAATCAGTGTCCTGTGCCTTT -ACGGAATCAGTGTCCTGTGGTCTT -ACGGAATCAGTGTCCTGTACGCTT -ACGGAATCAGTGTCCTGTAGCGTT -ACGGAATCAGTGTCCTGTTTCGTC -ACGGAATCAGTGTCCTGTTCTCTC -ACGGAATCAGTGTCCTGTTGGATC -ACGGAATCAGTGTCCTGTCACTTC -ACGGAATCAGTGTCCTGTGTACTC -ACGGAATCAGTGTCCTGTGATGTC -ACGGAATCAGTGTCCTGTACAGTC -ACGGAATCAGTGTCCTGTTTGCTG -ACGGAATCAGTGTCCTGTTCCATG -ACGGAATCAGTGTCCTGTTGTGTG -ACGGAATCAGTGTCCTGTCTAGTG -ACGGAATCAGTGTCCTGTCATCTG -ACGGAATCAGTGTCCTGTGAGTTG -ACGGAATCAGTGTCCTGTAGACTG -ACGGAATCAGTGTCCTGTTCGGTA -ACGGAATCAGTGTCCTGTTGCCTA -ACGGAATCAGTGTCCTGTCCACTA -ACGGAATCAGTGTCCTGTGGAGTA -ACGGAATCAGTGTCCTGTTCGTCT -ACGGAATCAGTGTCCTGTTGCACT -ACGGAATCAGTGTCCTGTCTGACT -ACGGAATCAGTGTCCTGTCAACCT -ACGGAATCAGTGTCCTGTGCTACT -ACGGAATCAGTGTCCTGTGGATCT -ACGGAATCAGTGTCCTGTAAGGCT -ACGGAATCAGTGTCCTGTTCAACC -ACGGAATCAGTGTCCTGTTGTTCC -ACGGAATCAGTGTCCTGTATTCCC -ACGGAATCAGTGTCCTGTTTCTCG -ACGGAATCAGTGTCCTGTTAGACG -ACGGAATCAGTGTCCTGTGTAACG -ACGGAATCAGTGTCCTGTACTTCG -ACGGAATCAGTGTCCTGTTACGCA -ACGGAATCAGTGTCCTGTCTTGCA -ACGGAATCAGTGTCCTGTCGAACA -ACGGAATCAGTGTCCTGTCAGTCA -ACGGAATCAGTGTCCTGTGATCCA -ACGGAATCAGTGTCCTGTACGACA -ACGGAATCAGTGTCCTGTAGCTCA -ACGGAATCAGTGTCCTGTTCACGT -ACGGAATCAGTGTCCTGTCGTAGT -ACGGAATCAGTGTCCTGTGTCAGT -ACGGAATCAGTGTCCTGTGAAGGT -ACGGAATCAGTGTCCTGTAACCGT -ACGGAATCAGTGTCCTGTTTGTGC -ACGGAATCAGTGTCCTGTCTAAGC -ACGGAATCAGTGTCCTGTACTAGC -ACGGAATCAGTGTCCTGTAGATGC -ACGGAATCAGTGTCCTGTTGAAGG -ACGGAATCAGTGTCCTGTCAATGG -ACGGAATCAGTGTCCTGTATGAGG -ACGGAATCAGTGTCCTGTAATGGG -ACGGAATCAGTGTCCTGTTCCTGA -ACGGAATCAGTGTCCTGTTAGCGA -ACGGAATCAGTGTCCTGTCACAGA -ACGGAATCAGTGTCCTGTGCAAGA -ACGGAATCAGTGTCCTGTGGTTGA -ACGGAATCAGTGTCCTGTTCCGAT -ACGGAATCAGTGTCCTGTTGGCAT -ACGGAATCAGTGTCCTGTCGAGAT -ACGGAATCAGTGTCCTGTTACCAC -ACGGAATCAGTGTCCTGTCAGAAC -ACGGAATCAGTGTCCTGTGTCTAC -ACGGAATCAGTGTCCTGTACGTAC -ACGGAATCAGTGTCCTGTAGTGAC -ACGGAATCAGTGTCCTGTCTGTAG -ACGGAATCAGTGTCCTGTCCTAAG -ACGGAATCAGTGTCCTGTGTTCAG -ACGGAATCAGTGTCCTGTGCATAG -ACGGAATCAGTGTCCTGTGACAAG -ACGGAATCAGTGTCCTGTAAGCAG -ACGGAATCAGTGTCCTGTCGTCAA -ACGGAATCAGTGTCCTGTGCTGAA -ACGGAATCAGTGTCCTGTAGTACG -ACGGAATCAGTGTCCTGTATCCGA -ACGGAATCAGTGTCCTGTATGGGA -ACGGAATCAGTGTCCTGTGTGCAA -ACGGAATCAGTGTCCTGTGAGGAA -ACGGAATCAGTGTCCTGTCAGGTA -ACGGAATCAGTGTCCTGTGACTCT -ACGGAATCAGTGTCCTGTAGTCCT -ACGGAATCAGTGTCCTGTTAAGCC -ACGGAATCAGTGTCCTGTATAGCC -ACGGAATCAGTGTCCTGTTAACCG -ACGGAATCAGTGTCCTGTATGCCA -ACGGAATCAGTGCCCATTGGAAAC -ACGGAATCAGTGCCCATTAACACC -ACGGAATCAGTGCCCATTATCGAG -ACGGAATCAGTGCCCATTCTCCTT -ACGGAATCAGTGCCCATTCCTGTT -ACGGAATCAGTGCCCATTCGGTTT -ACGGAATCAGTGCCCATTGTGGTT -ACGGAATCAGTGCCCATTGCCTTT -ACGGAATCAGTGCCCATTGGTCTT -ACGGAATCAGTGCCCATTACGCTT -ACGGAATCAGTGCCCATTAGCGTT -ACGGAATCAGTGCCCATTTTCGTC -ACGGAATCAGTGCCCATTTCTCTC -ACGGAATCAGTGCCCATTTGGATC -ACGGAATCAGTGCCCATTCACTTC -ACGGAATCAGTGCCCATTGTACTC -ACGGAATCAGTGCCCATTGATGTC -ACGGAATCAGTGCCCATTACAGTC -ACGGAATCAGTGCCCATTTTGCTG -ACGGAATCAGTGCCCATTTCCATG -ACGGAATCAGTGCCCATTTGTGTG -ACGGAATCAGTGCCCATTCTAGTG -ACGGAATCAGTGCCCATTCATCTG -ACGGAATCAGTGCCCATTGAGTTG -ACGGAATCAGTGCCCATTAGACTG -ACGGAATCAGTGCCCATTTCGGTA -ACGGAATCAGTGCCCATTTGCCTA -ACGGAATCAGTGCCCATTCCACTA -ACGGAATCAGTGCCCATTGGAGTA -ACGGAATCAGTGCCCATTTCGTCT -ACGGAATCAGTGCCCATTTGCACT -ACGGAATCAGTGCCCATTCTGACT -ACGGAATCAGTGCCCATTCAACCT -ACGGAATCAGTGCCCATTGCTACT -ACGGAATCAGTGCCCATTGGATCT -ACGGAATCAGTGCCCATTAAGGCT -ACGGAATCAGTGCCCATTTCAACC -ACGGAATCAGTGCCCATTTGTTCC -ACGGAATCAGTGCCCATTATTCCC -ACGGAATCAGTGCCCATTTTCTCG -ACGGAATCAGTGCCCATTTAGACG -ACGGAATCAGTGCCCATTGTAACG -ACGGAATCAGTGCCCATTACTTCG -ACGGAATCAGTGCCCATTTACGCA -ACGGAATCAGTGCCCATTCTTGCA -ACGGAATCAGTGCCCATTCGAACA -ACGGAATCAGTGCCCATTCAGTCA -ACGGAATCAGTGCCCATTGATCCA -ACGGAATCAGTGCCCATTACGACA -ACGGAATCAGTGCCCATTAGCTCA -ACGGAATCAGTGCCCATTTCACGT -ACGGAATCAGTGCCCATTCGTAGT -ACGGAATCAGTGCCCATTGTCAGT -ACGGAATCAGTGCCCATTGAAGGT -ACGGAATCAGTGCCCATTAACCGT -ACGGAATCAGTGCCCATTTTGTGC -ACGGAATCAGTGCCCATTCTAAGC -ACGGAATCAGTGCCCATTACTAGC -ACGGAATCAGTGCCCATTAGATGC -ACGGAATCAGTGCCCATTTGAAGG -ACGGAATCAGTGCCCATTCAATGG -ACGGAATCAGTGCCCATTATGAGG -ACGGAATCAGTGCCCATTAATGGG -ACGGAATCAGTGCCCATTTCCTGA -ACGGAATCAGTGCCCATTTAGCGA -ACGGAATCAGTGCCCATTCACAGA -ACGGAATCAGTGCCCATTGCAAGA -ACGGAATCAGTGCCCATTGGTTGA -ACGGAATCAGTGCCCATTTCCGAT -ACGGAATCAGTGCCCATTTGGCAT -ACGGAATCAGTGCCCATTCGAGAT -ACGGAATCAGTGCCCATTTACCAC -ACGGAATCAGTGCCCATTCAGAAC -ACGGAATCAGTGCCCATTGTCTAC -ACGGAATCAGTGCCCATTACGTAC -ACGGAATCAGTGCCCATTAGTGAC -ACGGAATCAGTGCCCATTCTGTAG -ACGGAATCAGTGCCCATTCCTAAG -ACGGAATCAGTGCCCATTGTTCAG -ACGGAATCAGTGCCCATTGCATAG -ACGGAATCAGTGCCCATTGACAAG -ACGGAATCAGTGCCCATTAAGCAG -ACGGAATCAGTGCCCATTCGTCAA -ACGGAATCAGTGCCCATTGCTGAA -ACGGAATCAGTGCCCATTAGTACG -ACGGAATCAGTGCCCATTATCCGA -ACGGAATCAGTGCCCATTATGGGA -ACGGAATCAGTGCCCATTGTGCAA -ACGGAATCAGTGCCCATTGAGGAA -ACGGAATCAGTGCCCATTCAGGTA -ACGGAATCAGTGCCCATTGACTCT -ACGGAATCAGTGCCCATTAGTCCT -ACGGAATCAGTGCCCATTTAAGCC -ACGGAATCAGTGCCCATTATAGCC -ACGGAATCAGTGCCCATTTAACCG -ACGGAATCAGTGCCCATTATGCCA -ACGGAATCAGTGTCGTTCGGAAAC -ACGGAATCAGTGTCGTTCAACACC -ACGGAATCAGTGTCGTTCATCGAG -ACGGAATCAGTGTCGTTCCTCCTT -ACGGAATCAGTGTCGTTCCCTGTT -ACGGAATCAGTGTCGTTCCGGTTT -ACGGAATCAGTGTCGTTCGTGGTT -ACGGAATCAGTGTCGTTCGCCTTT -ACGGAATCAGTGTCGTTCGGTCTT -ACGGAATCAGTGTCGTTCACGCTT -ACGGAATCAGTGTCGTTCAGCGTT -ACGGAATCAGTGTCGTTCTTCGTC -ACGGAATCAGTGTCGTTCTCTCTC -ACGGAATCAGTGTCGTTCTGGATC -ACGGAATCAGTGTCGTTCCACTTC -ACGGAATCAGTGTCGTTCGTACTC -ACGGAATCAGTGTCGTTCGATGTC -ACGGAATCAGTGTCGTTCACAGTC -ACGGAATCAGTGTCGTTCTTGCTG -ACGGAATCAGTGTCGTTCTCCATG -ACGGAATCAGTGTCGTTCTGTGTG -ACGGAATCAGTGTCGTTCCTAGTG -ACGGAATCAGTGTCGTTCCATCTG -ACGGAATCAGTGTCGTTCGAGTTG -ACGGAATCAGTGTCGTTCAGACTG -ACGGAATCAGTGTCGTTCTCGGTA -ACGGAATCAGTGTCGTTCTGCCTA -ACGGAATCAGTGTCGTTCCCACTA -ACGGAATCAGTGTCGTTCGGAGTA -ACGGAATCAGTGTCGTTCTCGTCT -ACGGAATCAGTGTCGTTCTGCACT -ACGGAATCAGTGTCGTTCCTGACT -ACGGAATCAGTGTCGTTCCAACCT -ACGGAATCAGTGTCGTTCGCTACT -ACGGAATCAGTGTCGTTCGGATCT -ACGGAATCAGTGTCGTTCAAGGCT -ACGGAATCAGTGTCGTTCTCAACC -ACGGAATCAGTGTCGTTCTGTTCC -ACGGAATCAGTGTCGTTCATTCCC -ACGGAATCAGTGTCGTTCTTCTCG -ACGGAATCAGTGTCGTTCTAGACG -ACGGAATCAGTGTCGTTCGTAACG -ACGGAATCAGTGTCGTTCACTTCG -ACGGAATCAGTGTCGTTCTACGCA -ACGGAATCAGTGTCGTTCCTTGCA -ACGGAATCAGTGTCGTTCCGAACA -ACGGAATCAGTGTCGTTCCAGTCA -ACGGAATCAGTGTCGTTCGATCCA -ACGGAATCAGTGTCGTTCACGACA -ACGGAATCAGTGTCGTTCAGCTCA -ACGGAATCAGTGTCGTTCTCACGT -ACGGAATCAGTGTCGTTCCGTAGT -ACGGAATCAGTGTCGTTCGTCAGT -ACGGAATCAGTGTCGTTCGAAGGT -ACGGAATCAGTGTCGTTCAACCGT -ACGGAATCAGTGTCGTTCTTGTGC -ACGGAATCAGTGTCGTTCCTAAGC -ACGGAATCAGTGTCGTTCACTAGC -ACGGAATCAGTGTCGTTCAGATGC -ACGGAATCAGTGTCGTTCTGAAGG -ACGGAATCAGTGTCGTTCCAATGG -ACGGAATCAGTGTCGTTCATGAGG -ACGGAATCAGTGTCGTTCAATGGG -ACGGAATCAGTGTCGTTCTCCTGA -ACGGAATCAGTGTCGTTCTAGCGA -ACGGAATCAGTGTCGTTCCACAGA -ACGGAATCAGTGTCGTTCGCAAGA -ACGGAATCAGTGTCGTTCGGTTGA -ACGGAATCAGTGTCGTTCTCCGAT -ACGGAATCAGTGTCGTTCTGGCAT -ACGGAATCAGTGTCGTTCCGAGAT -ACGGAATCAGTGTCGTTCTACCAC -ACGGAATCAGTGTCGTTCCAGAAC -ACGGAATCAGTGTCGTTCGTCTAC -ACGGAATCAGTGTCGTTCACGTAC -ACGGAATCAGTGTCGTTCAGTGAC -ACGGAATCAGTGTCGTTCCTGTAG -ACGGAATCAGTGTCGTTCCCTAAG -ACGGAATCAGTGTCGTTCGTTCAG -ACGGAATCAGTGTCGTTCGCATAG -ACGGAATCAGTGTCGTTCGACAAG -ACGGAATCAGTGTCGTTCAAGCAG -ACGGAATCAGTGTCGTTCCGTCAA -ACGGAATCAGTGTCGTTCGCTGAA -ACGGAATCAGTGTCGTTCAGTACG -ACGGAATCAGTGTCGTTCATCCGA -ACGGAATCAGTGTCGTTCATGGGA -ACGGAATCAGTGTCGTTCGTGCAA -ACGGAATCAGTGTCGTTCGAGGAA -ACGGAATCAGTGTCGTTCCAGGTA -ACGGAATCAGTGTCGTTCGACTCT -ACGGAATCAGTGTCGTTCAGTCCT -ACGGAATCAGTGTCGTTCTAAGCC -ACGGAATCAGTGTCGTTCATAGCC -ACGGAATCAGTGTCGTTCTAACCG -ACGGAATCAGTGTCGTTCATGCCA -ACGGAATCAGTGACGTAGGGAAAC -ACGGAATCAGTGACGTAGAACACC -ACGGAATCAGTGACGTAGATCGAG -ACGGAATCAGTGACGTAGCTCCTT -ACGGAATCAGTGACGTAGCCTGTT -ACGGAATCAGTGACGTAGCGGTTT -ACGGAATCAGTGACGTAGGTGGTT -ACGGAATCAGTGACGTAGGCCTTT -ACGGAATCAGTGACGTAGGGTCTT -ACGGAATCAGTGACGTAGACGCTT -ACGGAATCAGTGACGTAGAGCGTT -ACGGAATCAGTGACGTAGTTCGTC -ACGGAATCAGTGACGTAGTCTCTC -ACGGAATCAGTGACGTAGTGGATC -ACGGAATCAGTGACGTAGCACTTC -ACGGAATCAGTGACGTAGGTACTC -ACGGAATCAGTGACGTAGGATGTC -ACGGAATCAGTGACGTAGACAGTC -ACGGAATCAGTGACGTAGTTGCTG -ACGGAATCAGTGACGTAGTCCATG -ACGGAATCAGTGACGTAGTGTGTG -ACGGAATCAGTGACGTAGCTAGTG -ACGGAATCAGTGACGTAGCATCTG -ACGGAATCAGTGACGTAGGAGTTG -ACGGAATCAGTGACGTAGAGACTG -ACGGAATCAGTGACGTAGTCGGTA -ACGGAATCAGTGACGTAGTGCCTA -ACGGAATCAGTGACGTAGCCACTA -ACGGAATCAGTGACGTAGGGAGTA -ACGGAATCAGTGACGTAGTCGTCT -ACGGAATCAGTGACGTAGTGCACT -ACGGAATCAGTGACGTAGCTGACT -ACGGAATCAGTGACGTAGCAACCT -ACGGAATCAGTGACGTAGGCTACT -ACGGAATCAGTGACGTAGGGATCT -ACGGAATCAGTGACGTAGAAGGCT -ACGGAATCAGTGACGTAGTCAACC -ACGGAATCAGTGACGTAGTGTTCC -ACGGAATCAGTGACGTAGATTCCC -ACGGAATCAGTGACGTAGTTCTCG -ACGGAATCAGTGACGTAGTAGACG -ACGGAATCAGTGACGTAGGTAACG -ACGGAATCAGTGACGTAGACTTCG -ACGGAATCAGTGACGTAGTACGCA -ACGGAATCAGTGACGTAGCTTGCA -ACGGAATCAGTGACGTAGCGAACA -ACGGAATCAGTGACGTAGCAGTCA -ACGGAATCAGTGACGTAGGATCCA -ACGGAATCAGTGACGTAGACGACA -ACGGAATCAGTGACGTAGAGCTCA -ACGGAATCAGTGACGTAGTCACGT -ACGGAATCAGTGACGTAGCGTAGT -ACGGAATCAGTGACGTAGGTCAGT -ACGGAATCAGTGACGTAGGAAGGT -ACGGAATCAGTGACGTAGAACCGT -ACGGAATCAGTGACGTAGTTGTGC -ACGGAATCAGTGACGTAGCTAAGC -ACGGAATCAGTGACGTAGACTAGC -ACGGAATCAGTGACGTAGAGATGC -ACGGAATCAGTGACGTAGTGAAGG -ACGGAATCAGTGACGTAGCAATGG -ACGGAATCAGTGACGTAGATGAGG -ACGGAATCAGTGACGTAGAATGGG -ACGGAATCAGTGACGTAGTCCTGA -ACGGAATCAGTGACGTAGTAGCGA -ACGGAATCAGTGACGTAGCACAGA -ACGGAATCAGTGACGTAGGCAAGA -ACGGAATCAGTGACGTAGGGTTGA -ACGGAATCAGTGACGTAGTCCGAT -ACGGAATCAGTGACGTAGTGGCAT -ACGGAATCAGTGACGTAGCGAGAT -ACGGAATCAGTGACGTAGTACCAC -ACGGAATCAGTGACGTAGCAGAAC -ACGGAATCAGTGACGTAGGTCTAC -ACGGAATCAGTGACGTAGACGTAC -ACGGAATCAGTGACGTAGAGTGAC -ACGGAATCAGTGACGTAGCTGTAG -ACGGAATCAGTGACGTAGCCTAAG -ACGGAATCAGTGACGTAGGTTCAG -ACGGAATCAGTGACGTAGGCATAG -ACGGAATCAGTGACGTAGGACAAG -ACGGAATCAGTGACGTAGAAGCAG -ACGGAATCAGTGACGTAGCGTCAA -ACGGAATCAGTGACGTAGGCTGAA -ACGGAATCAGTGACGTAGAGTACG -ACGGAATCAGTGACGTAGATCCGA -ACGGAATCAGTGACGTAGATGGGA -ACGGAATCAGTGACGTAGGTGCAA -ACGGAATCAGTGACGTAGGAGGAA -ACGGAATCAGTGACGTAGCAGGTA -ACGGAATCAGTGACGTAGGACTCT -ACGGAATCAGTGACGTAGAGTCCT -ACGGAATCAGTGACGTAGTAAGCC -ACGGAATCAGTGACGTAGATAGCC -ACGGAATCAGTGACGTAGTAACCG -ACGGAATCAGTGACGTAGATGCCA -ACGGAATCAGTGACGGTAGGAAAC -ACGGAATCAGTGACGGTAAACACC -ACGGAATCAGTGACGGTAATCGAG -ACGGAATCAGTGACGGTACTCCTT -ACGGAATCAGTGACGGTACCTGTT -ACGGAATCAGTGACGGTACGGTTT -ACGGAATCAGTGACGGTAGTGGTT -ACGGAATCAGTGACGGTAGCCTTT -ACGGAATCAGTGACGGTAGGTCTT -ACGGAATCAGTGACGGTAACGCTT -ACGGAATCAGTGACGGTAAGCGTT -ACGGAATCAGTGACGGTATTCGTC -ACGGAATCAGTGACGGTATCTCTC -ACGGAATCAGTGACGGTATGGATC -ACGGAATCAGTGACGGTACACTTC -ACGGAATCAGTGACGGTAGTACTC -ACGGAATCAGTGACGGTAGATGTC -ACGGAATCAGTGACGGTAACAGTC -ACGGAATCAGTGACGGTATTGCTG -ACGGAATCAGTGACGGTATCCATG -ACGGAATCAGTGACGGTATGTGTG -ACGGAATCAGTGACGGTACTAGTG -ACGGAATCAGTGACGGTACATCTG -ACGGAATCAGTGACGGTAGAGTTG -ACGGAATCAGTGACGGTAAGACTG -ACGGAATCAGTGACGGTATCGGTA -ACGGAATCAGTGACGGTATGCCTA -ACGGAATCAGTGACGGTACCACTA -ACGGAATCAGTGACGGTAGGAGTA -ACGGAATCAGTGACGGTATCGTCT -ACGGAATCAGTGACGGTATGCACT -ACGGAATCAGTGACGGTACTGACT -ACGGAATCAGTGACGGTACAACCT -ACGGAATCAGTGACGGTAGCTACT -ACGGAATCAGTGACGGTAGGATCT -ACGGAATCAGTGACGGTAAAGGCT -ACGGAATCAGTGACGGTATCAACC -ACGGAATCAGTGACGGTATGTTCC -ACGGAATCAGTGACGGTAATTCCC -ACGGAATCAGTGACGGTATTCTCG -ACGGAATCAGTGACGGTATAGACG -ACGGAATCAGTGACGGTAGTAACG -ACGGAATCAGTGACGGTAACTTCG -ACGGAATCAGTGACGGTATACGCA -ACGGAATCAGTGACGGTACTTGCA -ACGGAATCAGTGACGGTACGAACA -ACGGAATCAGTGACGGTACAGTCA -ACGGAATCAGTGACGGTAGATCCA -ACGGAATCAGTGACGGTAACGACA -ACGGAATCAGTGACGGTAAGCTCA -ACGGAATCAGTGACGGTATCACGT -ACGGAATCAGTGACGGTACGTAGT -ACGGAATCAGTGACGGTAGTCAGT -ACGGAATCAGTGACGGTAGAAGGT -ACGGAATCAGTGACGGTAAACCGT -ACGGAATCAGTGACGGTATTGTGC -ACGGAATCAGTGACGGTACTAAGC -ACGGAATCAGTGACGGTAACTAGC -ACGGAATCAGTGACGGTAAGATGC -ACGGAATCAGTGACGGTATGAAGG -ACGGAATCAGTGACGGTACAATGG -ACGGAATCAGTGACGGTAATGAGG -ACGGAATCAGTGACGGTAAATGGG -ACGGAATCAGTGACGGTATCCTGA -ACGGAATCAGTGACGGTATAGCGA -ACGGAATCAGTGACGGTACACAGA -ACGGAATCAGTGACGGTAGCAAGA -ACGGAATCAGTGACGGTAGGTTGA -ACGGAATCAGTGACGGTATCCGAT -ACGGAATCAGTGACGGTATGGCAT -ACGGAATCAGTGACGGTACGAGAT -ACGGAATCAGTGACGGTATACCAC -ACGGAATCAGTGACGGTACAGAAC -ACGGAATCAGTGACGGTAGTCTAC -ACGGAATCAGTGACGGTAACGTAC -ACGGAATCAGTGACGGTAAGTGAC -ACGGAATCAGTGACGGTACTGTAG -ACGGAATCAGTGACGGTACCTAAG -ACGGAATCAGTGACGGTAGTTCAG -ACGGAATCAGTGACGGTAGCATAG -ACGGAATCAGTGACGGTAGACAAG -ACGGAATCAGTGACGGTAAAGCAG -ACGGAATCAGTGACGGTACGTCAA -ACGGAATCAGTGACGGTAGCTGAA -ACGGAATCAGTGACGGTAAGTACG -ACGGAATCAGTGACGGTAATCCGA -ACGGAATCAGTGACGGTAATGGGA -ACGGAATCAGTGACGGTAGTGCAA -ACGGAATCAGTGACGGTAGAGGAA -ACGGAATCAGTGACGGTACAGGTA -ACGGAATCAGTGACGGTAGACTCT -ACGGAATCAGTGACGGTAAGTCCT -ACGGAATCAGTGACGGTATAAGCC -ACGGAATCAGTGACGGTAATAGCC -ACGGAATCAGTGACGGTATAACCG -ACGGAATCAGTGACGGTAATGCCA -ACGGAATCAGTGTCGACTGGAAAC -ACGGAATCAGTGTCGACTAACACC -ACGGAATCAGTGTCGACTATCGAG -ACGGAATCAGTGTCGACTCTCCTT -ACGGAATCAGTGTCGACTCCTGTT -ACGGAATCAGTGTCGACTCGGTTT -ACGGAATCAGTGTCGACTGTGGTT -ACGGAATCAGTGTCGACTGCCTTT -ACGGAATCAGTGTCGACTGGTCTT -ACGGAATCAGTGTCGACTACGCTT -ACGGAATCAGTGTCGACTAGCGTT -ACGGAATCAGTGTCGACTTTCGTC -ACGGAATCAGTGTCGACTTCTCTC -ACGGAATCAGTGTCGACTTGGATC -ACGGAATCAGTGTCGACTCACTTC -ACGGAATCAGTGTCGACTGTACTC -ACGGAATCAGTGTCGACTGATGTC -ACGGAATCAGTGTCGACTACAGTC -ACGGAATCAGTGTCGACTTTGCTG -ACGGAATCAGTGTCGACTTCCATG -ACGGAATCAGTGTCGACTTGTGTG -ACGGAATCAGTGTCGACTCTAGTG -ACGGAATCAGTGTCGACTCATCTG -ACGGAATCAGTGTCGACTGAGTTG -ACGGAATCAGTGTCGACTAGACTG -ACGGAATCAGTGTCGACTTCGGTA -ACGGAATCAGTGTCGACTTGCCTA -ACGGAATCAGTGTCGACTCCACTA -ACGGAATCAGTGTCGACTGGAGTA -ACGGAATCAGTGTCGACTTCGTCT -ACGGAATCAGTGTCGACTTGCACT -ACGGAATCAGTGTCGACTCTGACT -ACGGAATCAGTGTCGACTCAACCT -ACGGAATCAGTGTCGACTGCTACT -ACGGAATCAGTGTCGACTGGATCT -ACGGAATCAGTGTCGACTAAGGCT -ACGGAATCAGTGTCGACTTCAACC -ACGGAATCAGTGTCGACTTGTTCC -ACGGAATCAGTGTCGACTATTCCC -ACGGAATCAGTGTCGACTTTCTCG -ACGGAATCAGTGTCGACTTAGACG -ACGGAATCAGTGTCGACTGTAACG -ACGGAATCAGTGTCGACTACTTCG -ACGGAATCAGTGTCGACTTACGCA -ACGGAATCAGTGTCGACTCTTGCA -ACGGAATCAGTGTCGACTCGAACA -ACGGAATCAGTGTCGACTCAGTCA -ACGGAATCAGTGTCGACTGATCCA -ACGGAATCAGTGTCGACTACGACA -ACGGAATCAGTGTCGACTAGCTCA -ACGGAATCAGTGTCGACTTCACGT -ACGGAATCAGTGTCGACTCGTAGT -ACGGAATCAGTGTCGACTGTCAGT -ACGGAATCAGTGTCGACTGAAGGT -ACGGAATCAGTGTCGACTAACCGT -ACGGAATCAGTGTCGACTTTGTGC -ACGGAATCAGTGTCGACTCTAAGC -ACGGAATCAGTGTCGACTACTAGC -ACGGAATCAGTGTCGACTAGATGC -ACGGAATCAGTGTCGACTTGAAGG -ACGGAATCAGTGTCGACTCAATGG -ACGGAATCAGTGTCGACTATGAGG -ACGGAATCAGTGTCGACTAATGGG -ACGGAATCAGTGTCGACTTCCTGA -ACGGAATCAGTGTCGACTTAGCGA -ACGGAATCAGTGTCGACTCACAGA -ACGGAATCAGTGTCGACTGCAAGA -ACGGAATCAGTGTCGACTGGTTGA -ACGGAATCAGTGTCGACTTCCGAT -ACGGAATCAGTGTCGACTTGGCAT -ACGGAATCAGTGTCGACTCGAGAT -ACGGAATCAGTGTCGACTTACCAC -ACGGAATCAGTGTCGACTCAGAAC -ACGGAATCAGTGTCGACTGTCTAC -ACGGAATCAGTGTCGACTACGTAC -ACGGAATCAGTGTCGACTAGTGAC -ACGGAATCAGTGTCGACTCTGTAG -ACGGAATCAGTGTCGACTCCTAAG -ACGGAATCAGTGTCGACTGTTCAG -ACGGAATCAGTGTCGACTGCATAG -ACGGAATCAGTGTCGACTGACAAG -ACGGAATCAGTGTCGACTAAGCAG -ACGGAATCAGTGTCGACTCGTCAA -ACGGAATCAGTGTCGACTGCTGAA -ACGGAATCAGTGTCGACTAGTACG -ACGGAATCAGTGTCGACTATCCGA -ACGGAATCAGTGTCGACTATGGGA -ACGGAATCAGTGTCGACTGTGCAA -ACGGAATCAGTGTCGACTGAGGAA -ACGGAATCAGTGTCGACTCAGGTA -ACGGAATCAGTGTCGACTGACTCT -ACGGAATCAGTGTCGACTAGTCCT -ACGGAATCAGTGTCGACTTAAGCC -ACGGAATCAGTGTCGACTATAGCC -ACGGAATCAGTGTCGACTTAACCG -ACGGAATCAGTGTCGACTATGCCA -ACGGAATCAGTGGCATACGGAAAC -ACGGAATCAGTGGCATACAACACC -ACGGAATCAGTGGCATACATCGAG -ACGGAATCAGTGGCATACCTCCTT -ACGGAATCAGTGGCATACCCTGTT -ACGGAATCAGTGGCATACCGGTTT -ACGGAATCAGTGGCATACGTGGTT -ACGGAATCAGTGGCATACGCCTTT -ACGGAATCAGTGGCATACGGTCTT -ACGGAATCAGTGGCATACACGCTT -ACGGAATCAGTGGCATACAGCGTT -ACGGAATCAGTGGCATACTTCGTC -ACGGAATCAGTGGCATACTCTCTC -ACGGAATCAGTGGCATACTGGATC -ACGGAATCAGTGGCATACCACTTC -ACGGAATCAGTGGCATACGTACTC -ACGGAATCAGTGGCATACGATGTC -ACGGAATCAGTGGCATACACAGTC -ACGGAATCAGTGGCATACTTGCTG -ACGGAATCAGTGGCATACTCCATG -ACGGAATCAGTGGCATACTGTGTG -ACGGAATCAGTGGCATACCTAGTG -ACGGAATCAGTGGCATACCATCTG -ACGGAATCAGTGGCATACGAGTTG -ACGGAATCAGTGGCATACAGACTG -ACGGAATCAGTGGCATACTCGGTA -ACGGAATCAGTGGCATACTGCCTA -ACGGAATCAGTGGCATACCCACTA -ACGGAATCAGTGGCATACGGAGTA -ACGGAATCAGTGGCATACTCGTCT -ACGGAATCAGTGGCATACTGCACT -ACGGAATCAGTGGCATACCTGACT -ACGGAATCAGTGGCATACCAACCT -ACGGAATCAGTGGCATACGCTACT -ACGGAATCAGTGGCATACGGATCT -ACGGAATCAGTGGCATACAAGGCT -ACGGAATCAGTGGCATACTCAACC -ACGGAATCAGTGGCATACTGTTCC -ACGGAATCAGTGGCATACATTCCC -ACGGAATCAGTGGCATACTTCTCG -ACGGAATCAGTGGCATACTAGACG -ACGGAATCAGTGGCATACGTAACG -ACGGAATCAGTGGCATACACTTCG -ACGGAATCAGTGGCATACTACGCA -ACGGAATCAGTGGCATACCTTGCA -ACGGAATCAGTGGCATACCGAACA -ACGGAATCAGTGGCATACCAGTCA -ACGGAATCAGTGGCATACGATCCA -ACGGAATCAGTGGCATACACGACA -ACGGAATCAGTGGCATACAGCTCA -ACGGAATCAGTGGCATACTCACGT -ACGGAATCAGTGGCATACCGTAGT -ACGGAATCAGTGGCATACGTCAGT -ACGGAATCAGTGGCATACGAAGGT -ACGGAATCAGTGGCATACAACCGT -ACGGAATCAGTGGCATACTTGTGC -ACGGAATCAGTGGCATACCTAAGC -ACGGAATCAGTGGCATACACTAGC -ACGGAATCAGTGGCATACAGATGC -ACGGAATCAGTGGCATACTGAAGG -ACGGAATCAGTGGCATACCAATGG -ACGGAATCAGTGGCATACATGAGG -ACGGAATCAGTGGCATACAATGGG -ACGGAATCAGTGGCATACTCCTGA -ACGGAATCAGTGGCATACTAGCGA -ACGGAATCAGTGGCATACCACAGA -ACGGAATCAGTGGCATACGCAAGA -ACGGAATCAGTGGCATACGGTTGA -ACGGAATCAGTGGCATACTCCGAT -ACGGAATCAGTGGCATACTGGCAT -ACGGAATCAGTGGCATACCGAGAT -ACGGAATCAGTGGCATACTACCAC -ACGGAATCAGTGGCATACCAGAAC -ACGGAATCAGTGGCATACGTCTAC -ACGGAATCAGTGGCATACACGTAC -ACGGAATCAGTGGCATACAGTGAC -ACGGAATCAGTGGCATACCTGTAG -ACGGAATCAGTGGCATACCCTAAG -ACGGAATCAGTGGCATACGTTCAG -ACGGAATCAGTGGCATACGCATAG -ACGGAATCAGTGGCATACGACAAG -ACGGAATCAGTGGCATACAAGCAG -ACGGAATCAGTGGCATACCGTCAA -ACGGAATCAGTGGCATACGCTGAA -ACGGAATCAGTGGCATACAGTACG -ACGGAATCAGTGGCATACATCCGA -ACGGAATCAGTGGCATACATGGGA -ACGGAATCAGTGGCATACGTGCAA -ACGGAATCAGTGGCATACGAGGAA -ACGGAATCAGTGGCATACCAGGTA -ACGGAATCAGTGGCATACGACTCT -ACGGAATCAGTGGCATACAGTCCT -ACGGAATCAGTGGCATACTAAGCC -ACGGAATCAGTGGCATACATAGCC -ACGGAATCAGTGGCATACTAACCG -ACGGAATCAGTGGCATACATGCCA -ACGGAATCAGTGGCACTTGGAAAC -ACGGAATCAGTGGCACTTAACACC -ACGGAATCAGTGGCACTTATCGAG -ACGGAATCAGTGGCACTTCTCCTT -ACGGAATCAGTGGCACTTCCTGTT -ACGGAATCAGTGGCACTTCGGTTT -ACGGAATCAGTGGCACTTGTGGTT -ACGGAATCAGTGGCACTTGCCTTT -ACGGAATCAGTGGCACTTGGTCTT -ACGGAATCAGTGGCACTTACGCTT -ACGGAATCAGTGGCACTTAGCGTT -ACGGAATCAGTGGCACTTTTCGTC -ACGGAATCAGTGGCACTTTCTCTC -ACGGAATCAGTGGCACTTTGGATC -ACGGAATCAGTGGCACTTCACTTC -ACGGAATCAGTGGCACTTGTACTC -ACGGAATCAGTGGCACTTGATGTC -ACGGAATCAGTGGCACTTACAGTC -ACGGAATCAGTGGCACTTTTGCTG -ACGGAATCAGTGGCACTTTCCATG -ACGGAATCAGTGGCACTTTGTGTG -ACGGAATCAGTGGCACTTCTAGTG -ACGGAATCAGTGGCACTTCATCTG -ACGGAATCAGTGGCACTTGAGTTG -ACGGAATCAGTGGCACTTAGACTG -ACGGAATCAGTGGCACTTTCGGTA -ACGGAATCAGTGGCACTTTGCCTA -ACGGAATCAGTGGCACTTCCACTA -ACGGAATCAGTGGCACTTGGAGTA -ACGGAATCAGTGGCACTTTCGTCT -ACGGAATCAGTGGCACTTTGCACT -ACGGAATCAGTGGCACTTCTGACT -ACGGAATCAGTGGCACTTCAACCT -ACGGAATCAGTGGCACTTGCTACT -ACGGAATCAGTGGCACTTGGATCT -ACGGAATCAGTGGCACTTAAGGCT -ACGGAATCAGTGGCACTTTCAACC -ACGGAATCAGTGGCACTTTGTTCC -ACGGAATCAGTGGCACTTATTCCC -ACGGAATCAGTGGCACTTTTCTCG -ACGGAATCAGTGGCACTTTAGACG -ACGGAATCAGTGGCACTTGTAACG -ACGGAATCAGTGGCACTTACTTCG -ACGGAATCAGTGGCACTTTACGCA -ACGGAATCAGTGGCACTTCTTGCA -ACGGAATCAGTGGCACTTCGAACA -ACGGAATCAGTGGCACTTCAGTCA -ACGGAATCAGTGGCACTTGATCCA -ACGGAATCAGTGGCACTTACGACA -ACGGAATCAGTGGCACTTAGCTCA -ACGGAATCAGTGGCACTTTCACGT -ACGGAATCAGTGGCACTTCGTAGT -ACGGAATCAGTGGCACTTGTCAGT -ACGGAATCAGTGGCACTTGAAGGT -ACGGAATCAGTGGCACTTAACCGT -ACGGAATCAGTGGCACTTTTGTGC -ACGGAATCAGTGGCACTTCTAAGC -ACGGAATCAGTGGCACTTACTAGC -ACGGAATCAGTGGCACTTAGATGC -ACGGAATCAGTGGCACTTTGAAGG -ACGGAATCAGTGGCACTTCAATGG -ACGGAATCAGTGGCACTTATGAGG -ACGGAATCAGTGGCACTTAATGGG -ACGGAATCAGTGGCACTTTCCTGA -ACGGAATCAGTGGCACTTTAGCGA -ACGGAATCAGTGGCACTTCACAGA -ACGGAATCAGTGGCACTTGCAAGA -ACGGAATCAGTGGCACTTGGTTGA -ACGGAATCAGTGGCACTTTCCGAT -ACGGAATCAGTGGCACTTTGGCAT -ACGGAATCAGTGGCACTTCGAGAT -ACGGAATCAGTGGCACTTTACCAC -ACGGAATCAGTGGCACTTCAGAAC -ACGGAATCAGTGGCACTTGTCTAC -ACGGAATCAGTGGCACTTACGTAC -ACGGAATCAGTGGCACTTAGTGAC -ACGGAATCAGTGGCACTTCTGTAG -ACGGAATCAGTGGCACTTCCTAAG -ACGGAATCAGTGGCACTTGTTCAG -ACGGAATCAGTGGCACTTGCATAG -ACGGAATCAGTGGCACTTGACAAG -ACGGAATCAGTGGCACTTAAGCAG -ACGGAATCAGTGGCACTTCGTCAA -ACGGAATCAGTGGCACTTGCTGAA -ACGGAATCAGTGGCACTTAGTACG -ACGGAATCAGTGGCACTTATCCGA -ACGGAATCAGTGGCACTTATGGGA -ACGGAATCAGTGGCACTTGTGCAA -ACGGAATCAGTGGCACTTGAGGAA -ACGGAATCAGTGGCACTTCAGGTA -ACGGAATCAGTGGCACTTGACTCT -ACGGAATCAGTGGCACTTAGTCCT -ACGGAATCAGTGGCACTTTAAGCC -ACGGAATCAGTGGCACTTATAGCC -ACGGAATCAGTGGCACTTTAACCG -ACGGAATCAGTGGCACTTATGCCA -ACGGAATCAGTGACACGAGGAAAC -ACGGAATCAGTGACACGAAACACC -ACGGAATCAGTGACACGAATCGAG -ACGGAATCAGTGACACGACTCCTT -ACGGAATCAGTGACACGACCTGTT -ACGGAATCAGTGACACGACGGTTT -ACGGAATCAGTGACACGAGTGGTT -ACGGAATCAGTGACACGAGCCTTT -ACGGAATCAGTGACACGAGGTCTT -ACGGAATCAGTGACACGAACGCTT -ACGGAATCAGTGACACGAAGCGTT -ACGGAATCAGTGACACGATTCGTC -ACGGAATCAGTGACACGATCTCTC -ACGGAATCAGTGACACGATGGATC -ACGGAATCAGTGACACGACACTTC -ACGGAATCAGTGACACGAGTACTC -ACGGAATCAGTGACACGAGATGTC -ACGGAATCAGTGACACGAACAGTC -ACGGAATCAGTGACACGATTGCTG -ACGGAATCAGTGACACGATCCATG -ACGGAATCAGTGACACGATGTGTG -ACGGAATCAGTGACACGACTAGTG -ACGGAATCAGTGACACGACATCTG -ACGGAATCAGTGACACGAGAGTTG -ACGGAATCAGTGACACGAAGACTG -ACGGAATCAGTGACACGATCGGTA -ACGGAATCAGTGACACGATGCCTA -ACGGAATCAGTGACACGACCACTA -ACGGAATCAGTGACACGAGGAGTA -ACGGAATCAGTGACACGATCGTCT -ACGGAATCAGTGACACGATGCACT -ACGGAATCAGTGACACGACTGACT -ACGGAATCAGTGACACGACAACCT -ACGGAATCAGTGACACGAGCTACT -ACGGAATCAGTGACACGAGGATCT -ACGGAATCAGTGACACGAAAGGCT -ACGGAATCAGTGACACGATCAACC -ACGGAATCAGTGACACGATGTTCC -ACGGAATCAGTGACACGAATTCCC -ACGGAATCAGTGACACGATTCTCG -ACGGAATCAGTGACACGATAGACG -ACGGAATCAGTGACACGAGTAACG -ACGGAATCAGTGACACGAACTTCG -ACGGAATCAGTGACACGATACGCA -ACGGAATCAGTGACACGACTTGCA -ACGGAATCAGTGACACGACGAACA -ACGGAATCAGTGACACGACAGTCA -ACGGAATCAGTGACACGAGATCCA -ACGGAATCAGTGACACGAACGACA -ACGGAATCAGTGACACGAAGCTCA -ACGGAATCAGTGACACGATCACGT -ACGGAATCAGTGACACGACGTAGT -ACGGAATCAGTGACACGAGTCAGT -ACGGAATCAGTGACACGAGAAGGT -ACGGAATCAGTGACACGAAACCGT -ACGGAATCAGTGACACGATTGTGC -ACGGAATCAGTGACACGACTAAGC -ACGGAATCAGTGACACGAACTAGC -ACGGAATCAGTGACACGAAGATGC -ACGGAATCAGTGACACGATGAAGG -ACGGAATCAGTGACACGACAATGG -ACGGAATCAGTGACACGAATGAGG -ACGGAATCAGTGACACGAAATGGG -ACGGAATCAGTGACACGATCCTGA -ACGGAATCAGTGACACGATAGCGA -ACGGAATCAGTGACACGACACAGA -ACGGAATCAGTGACACGAGCAAGA -ACGGAATCAGTGACACGAGGTTGA -ACGGAATCAGTGACACGATCCGAT -ACGGAATCAGTGACACGATGGCAT -ACGGAATCAGTGACACGACGAGAT -ACGGAATCAGTGACACGATACCAC -ACGGAATCAGTGACACGACAGAAC -ACGGAATCAGTGACACGAGTCTAC -ACGGAATCAGTGACACGAACGTAC -ACGGAATCAGTGACACGAAGTGAC -ACGGAATCAGTGACACGACTGTAG -ACGGAATCAGTGACACGACCTAAG -ACGGAATCAGTGACACGAGTTCAG -ACGGAATCAGTGACACGAGCATAG -ACGGAATCAGTGACACGAGACAAG -ACGGAATCAGTGACACGAAAGCAG -ACGGAATCAGTGACACGACGTCAA -ACGGAATCAGTGACACGAGCTGAA -ACGGAATCAGTGACACGAAGTACG -ACGGAATCAGTGACACGAATCCGA -ACGGAATCAGTGACACGAATGGGA -ACGGAATCAGTGACACGAGTGCAA -ACGGAATCAGTGACACGAGAGGAA -ACGGAATCAGTGACACGACAGGTA -ACGGAATCAGTGACACGAGACTCT -ACGGAATCAGTGACACGAAGTCCT -ACGGAATCAGTGACACGATAAGCC -ACGGAATCAGTGACACGAATAGCC -ACGGAATCAGTGACACGATAACCG -ACGGAATCAGTGACACGAATGCCA -ACGGAATCAGTGTCACAGGGAAAC -ACGGAATCAGTGTCACAGAACACC -ACGGAATCAGTGTCACAGATCGAG -ACGGAATCAGTGTCACAGCTCCTT -ACGGAATCAGTGTCACAGCCTGTT -ACGGAATCAGTGTCACAGCGGTTT -ACGGAATCAGTGTCACAGGTGGTT -ACGGAATCAGTGTCACAGGCCTTT -ACGGAATCAGTGTCACAGGGTCTT -ACGGAATCAGTGTCACAGACGCTT -ACGGAATCAGTGTCACAGAGCGTT -ACGGAATCAGTGTCACAGTTCGTC -ACGGAATCAGTGTCACAGTCTCTC -ACGGAATCAGTGTCACAGTGGATC -ACGGAATCAGTGTCACAGCACTTC -ACGGAATCAGTGTCACAGGTACTC -ACGGAATCAGTGTCACAGGATGTC -ACGGAATCAGTGTCACAGACAGTC -ACGGAATCAGTGTCACAGTTGCTG -ACGGAATCAGTGTCACAGTCCATG -ACGGAATCAGTGTCACAGTGTGTG -ACGGAATCAGTGTCACAGCTAGTG -ACGGAATCAGTGTCACAGCATCTG -ACGGAATCAGTGTCACAGGAGTTG -ACGGAATCAGTGTCACAGAGACTG -ACGGAATCAGTGTCACAGTCGGTA -ACGGAATCAGTGTCACAGTGCCTA -ACGGAATCAGTGTCACAGCCACTA -ACGGAATCAGTGTCACAGGGAGTA -ACGGAATCAGTGTCACAGTCGTCT -ACGGAATCAGTGTCACAGTGCACT -ACGGAATCAGTGTCACAGCTGACT -ACGGAATCAGTGTCACAGCAACCT -ACGGAATCAGTGTCACAGGCTACT -ACGGAATCAGTGTCACAGGGATCT -ACGGAATCAGTGTCACAGAAGGCT -ACGGAATCAGTGTCACAGTCAACC -ACGGAATCAGTGTCACAGTGTTCC -ACGGAATCAGTGTCACAGATTCCC -ACGGAATCAGTGTCACAGTTCTCG -ACGGAATCAGTGTCACAGTAGACG -ACGGAATCAGTGTCACAGGTAACG -ACGGAATCAGTGTCACAGACTTCG -ACGGAATCAGTGTCACAGTACGCA -ACGGAATCAGTGTCACAGCTTGCA -ACGGAATCAGTGTCACAGCGAACA -ACGGAATCAGTGTCACAGCAGTCA -ACGGAATCAGTGTCACAGGATCCA -ACGGAATCAGTGTCACAGACGACA -ACGGAATCAGTGTCACAGAGCTCA -ACGGAATCAGTGTCACAGTCACGT -ACGGAATCAGTGTCACAGCGTAGT -ACGGAATCAGTGTCACAGGTCAGT -ACGGAATCAGTGTCACAGGAAGGT -ACGGAATCAGTGTCACAGAACCGT -ACGGAATCAGTGTCACAGTTGTGC -ACGGAATCAGTGTCACAGCTAAGC -ACGGAATCAGTGTCACAGACTAGC -ACGGAATCAGTGTCACAGAGATGC -ACGGAATCAGTGTCACAGTGAAGG -ACGGAATCAGTGTCACAGCAATGG -ACGGAATCAGTGTCACAGATGAGG -ACGGAATCAGTGTCACAGAATGGG -ACGGAATCAGTGTCACAGTCCTGA -ACGGAATCAGTGTCACAGTAGCGA -ACGGAATCAGTGTCACAGCACAGA -ACGGAATCAGTGTCACAGGCAAGA -ACGGAATCAGTGTCACAGGGTTGA -ACGGAATCAGTGTCACAGTCCGAT -ACGGAATCAGTGTCACAGTGGCAT -ACGGAATCAGTGTCACAGCGAGAT -ACGGAATCAGTGTCACAGTACCAC -ACGGAATCAGTGTCACAGCAGAAC -ACGGAATCAGTGTCACAGGTCTAC -ACGGAATCAGTGTCACAGACGTAC -ACGGAATCAGTGTCACAGAGTGAC -ACGGAATCAGTGTCACAGCTGTAG -ACGGAATCAGTGTCACAGCCTAAG -ACGGAATCAGTGTCACAGGTTCAG -ACGGAATCAGTGTCACAGGCATAG -ACGGAATCAGTGTCACAGGACAAG -ACGGAATCAGTGTCACAGAAGCAG -ACGGAATCAGTGTCACAGCGTCAA -ACGGAATCAGTGTCACAGGCTGAA -ACGGAATCAGTGTCACAGAGTACG -ACGGAATCAGTGTCACAGATCCGA -ACGGAATCAGTGTCACAGATGGGA -ACGGAATCAGTGTCACAGGTGCAA -ACGGAATCAGTGTCACAGGAGGAA -ACGGAATCAGTGTCACAGCAGGTA -ACGGAATCAGTGTCACAGGACTCT -ACGGAATCAGTGTCACAGAGTCCT -ACGGAATCAGTGTCACAGTAAGCC -ACGGAATCAGTGTCACAGATAGCC -ACGGAATCAGTGTCACAGTAACCG -ACGGAATCAGTGTCACAGATGCCA -ACGGAATCAGTGCCAGATGGAAAC -ACGGAATCAGTGCCAGATAACACC -ACGGAATCAGTGCCAGATATCGAG -ACGGAATCAGTGCCAGATCTCCTT -ACGGAATCAGTGCCAGATCCTGTT -ACGGAATCAGTGCCAGATCGGTTT -ACGGAATCAGTGCCAGATGTGGTT -ACGGAATCAGTGCCAGATGCCTTT -ACGGAATCAGTGCCAGATGGTCTT -ACGGAATCAGTGCCAGATACGCTT -ACGGAATCAGTGCCAGATAGCGTT -ACGGAATCAGTGCCAGATTTCGTC -ACGGAATCAGTGCCAGATTCTCTC -ACGGAATCAGTGCCAGATTGGATC -ACGGAATCAGTGCCAGATCACTTC -ACGGAATCAGTGCCAGATGTACTC -ACGGAATCAGTGCCAGATGATGTC -ACGGAATCAGTGCCAGATACAGTC -ACGGAATCAGTGCCAGATTTGCTG -ACGGAATCAGTGCCAGATTCCATG -ACGGAATCAGTGCCAGATTGTGTG -ACGGAATCAGTGCCAGATCTAGTG -ACGGAATCAGTGCCAGATCATCTG -ACGGAATCAGTGCCAGATGAGTTG -ACGGAATCAGTGCCAGATAGACTG -ACGGAATCAGTGCCAGATTCGGTA -ACGGAATCAGTGCCAGATTGCCTA -ACGGAATCAGTGCCAGATCCACTA -ACGGAATCAGTGCCAGATGGAGTA -ACGGAATCAGTGCCAGATTCGTCT -ACGGAATCAGTGCCAGATTGCACT -ACGGAATCAGTGCCAGATCTGACT -ACGGAATCAGTGCCAGATCAACCT -ACGGAATCAGTGCCAGATGCTACT -ACGGAATCAGTGCCAGATGGATCT -ACGGAATCAGTGCCAGATAAGGCT -ACGGAATCAGTGCCAGATTCAACC -ACGGAATCAGTGCCAGATTGTTCC -ACGGAATCAGTGCCAGATATTCCC -ACGGAATCAGTGCCAGATTTCTCG -ACGGAATCAGTGCCAGATTAGACG -ACGGAATCAGTGCCAGATGTAACG -ACGGAATCAGTGCCAGATACTTCG -ACGGAATCAGTGCCAGATTACGCA -ACGGAATCAGTGCCAGATCTTGCA -ACGGAATCAGTGCCAGATCGAACA -ACGGAATCAGTGCCAGATCAGTCA -ACGGAATCAGTGCCAGATGATCCA -ACGGAATCAGTGCCAGATACGACA -ACGGAATCAGTGCCAGATAGCTCA -ACGGAATCAGTGCCAGATTCACGT -ACGGAATCAGTGCCAGATCGTAGT -ACGGAATCAGTGCCAGATGTCAGT -ACGGAATCAGTGCCAGATGAAGGT -ACGGAATCAGTGCCAGATAACCGT -ACGGAATCAGTGCCAGATTTGTGC -ACGGAATCAGTGCCAGATCTAAGC -ACGGAATCAGTGCCAGATACTAGC -ACGGAATCAGTGCCAGATAGATGC -ACGGAATCAGTGCCAGATTGAAGG -ACGGAATCAGTGCCAGATCAATGG -ACGGAATCAGTGCCAGATATGAGG -ACGGAATCAGTGCCAGATAATGGG -ACGGAATCAGTGCCAGATTCCTGA -ACGGAATCAGTGCCAGATTAGCGA -ACGGAATCAGTGCCAGATCACAGA -ACGGAATCAGTGCCAGATGCAAGA -ACGGAATCAGTGCCAGATGGTTGA -ACGGAATCAGTGCCAGATTCCGAT -ACGGAATCAGTGCCAGATTGGCAT -ACGGAATCAGTGCCAGATCGAGAT -ACGGAATCAGTGCCAGATTACCAC -ACGGAATCAGTGCCAGATCAGAAC -ACGGAATCAGTGCCAGATGTCTAC -ACGGAATCAGTGCCAGATACGTAC -ACGGAATCAGTGCCAGATAGTGAC -ACGGAATCAGTGCCAGATCTGTAG -ACGGAATCAGTGCCAGATCCTAAG -ACGGAATCAGTGCCAGATGTTCAG -ACGGAATCAGTGCCAGATGCATAG -ACGGAATCAGTGCCAGATGACAAG -ACGGAATCAGTGCCAGATAAGCAG -ACGGAATCAGTGCCAGATCGTCAA -ACGGAATCAGTGCCAGATGCTGAA -ACGGAATCAGTGCCAGATAGTACG -ACGGAATCAGTGCCAGATATCCGA -ACGGAATCAGTGCCAGATATGGGA -ACGGAATCAGTGCCAGATGTGCAA -ACGGAATCAGTGCCAGATGAGGAA -ACGGAATCAGTGCCAGATCAGGTA -ACGGAATCAGTGCCAGATGACTCT -ACGGAATCAGTGCCAGATAGTCCT -ACGGAATCAGTGCCAGATTAAGCC -ACGGAATCAGTGCCAGATATAGCC -ACGGAATCAGTGCCAGATTAACCG -ACGGAATCAGTGCCAGATATGCCA -ACGGAATCAGTGACAACGGGAAAC -ACGGAATCAGTGACAACGAACACC -ACGGAATCAGTGACAACGATCGAG -ACGGAATCAGTGACAACGCTCCTT -ACGGAATCAGTGACAACGCCTGTT -ACGGAATCAGTGACAACGCGGTTT -ACGGAATCAGTGACAACGGTGGTT -ACGGAATCAGTGACAACGGCCTTT -ACGGAATCAGTGACAACGGGTCTT -ACGGAATCAGTGACAACGACGCTT -ACGGAATCAGTGACAACGAGCGTT -ACGGAATCAGTGACAACGTTCGTC -ACGGAATCAGTGACAACGTCTCTC -ACGGAATCAGTGACAACGTGGATC -ACGGAATCAGTGACAACGCACTTC -ACGGAATCAGTGACAACGGTACTC -ACGGAATCAGTGACAACGGATGTC -ACGGAATCAGTGACAACGACAGTC -ACGGAATCAGTGACAACGTTGCTG -ACGGAATCAGTGACAACGTCCATG -ACGGAATCAGTGACAACGTGTGTG -ACGGAATCAGTGACAACGCTAGTG -ACGGAATCAGTGACAACGCATCTG -ACGGAATCAGTGACAACGGAGTTG -ACGGAATCAGTGACAACGAGACTG -ACGGAATCAGTGACAACGTCGGTA -ACGGAATCAGTGACAACGTGCCTA -ACGGAATCAGTGACAACGCCACTA -ACGGAATCAGTGACAACGGGAGTA -ACGGAATCAGTGACAACGTCGTCT -ACGGAATCAGTGACAACGTGCACT -ACGGAATCAGTGACAACGCTGACT -ACGGAATCAGTGACAACGCAACCT -ACGGAATCAGTGACAACGGCTACT -ACGGAATCAGTGACAACGGGATCT -ACGGAATCAGTGACAACGAAGGCT -ACGGAATCAGTGACAACGTCAACC -ACGGAATCAGTGACAACGTGTTCC -ACGGAATCAGTGACAACGATTCCC -ACGGAATCAGTGACAACGTTCTCG -ACGGAATCAGTGACAACGTAGACG -ACGGAATCAGTGACAACGGTAACG -ACGGAATCAGTGACAACGACTTCG -ACGGAATCAGTGACAACGTACGCA -ACGGAATCAGTGACAACGCTTGCA -ACGGAATCAGTGACAACGCGAACA -ACGGAATCAGTGACAACGCAGTCA -ACGGAATCAGTGACAACGGATCCA -ACGGAATCAGTGACAACGACGACA -ACGGAATCAGTGACAACGAGCTCA -ACGGAATCAGTGACAACGTCACGT -ACGGAATCAGTGACAACGCGTAGT -ACGGAATCAGTGACAACGGTCAGT -ACGGAATCAGTGACAACGGAAGGT -ACGGAATCAGTGACAACGAACCGT -ACGGAATCAGTGACAACGTTGTGC -ACGGAATCAGTGACAACGCTAAGC -ACGGAATCAGTGACAACGACTAGC -ACGGAATCAGTGACAACGAGATGC -ACGGAATCAGTGACAACGTGAAGG -ACGGAATCAGTGACAACGCAATGG -ACGGAATCAGTGACAACGATGAGG -ACGGAATCAGTGACAACGAATGGG -ACGGAATCAGTGACAACGTCCTGA -ACGGAATCAGTGACAACGTAGCGA -ACGGAATCAGTGACAACGCACAGA -ACGGAATCAGTGACAACGGCAAGA -ACGGAATCAGTGACAACGGGTTGA -ACGGAATCAGTGACAACGTCCGAT -ACGGAATCAGTGACAACGTGGCAT -ACGGAATCAGTGACAACGCGAGAT -ACGGAATCAGTGACAACGTACCAC -ACGGAATCAGTGACAACGCAGAAC -ACGGAATCAGTGACAACGGTCTAC -ACGGAATCAGTGACAACGACGTAC -ACGGAATCAGTGACAACGAGTGAC -ACGGAATCAGTGACAACGCTGTAG -ACGGAATCAGTGACAACGCCTAAG -ACGGAATCAGTGACAACGGTTCAG -ACGGAATCAGTGACAACGGCATAG -ACGGAATCAGTGACAACGGACAAG -ACGGAATCAGTGACAACGAAGCAG -ACGGAATCAGTGACAACGCGTCAA -ACGGAATCAGTGACAACGGCTGAA -ACGGAATCAGTGACAACGAGTACG -ACGGAATCAGTGACAACGATCCGA -ACGGAATCAGTGACAACGATGGGA -ACGGAATCAGTGACAACGGTGCAA -ACGGAATCAGTGACAACGGAGGAA -ACGGAATCAGTGACAACGCAGGTA -ACGGAATCAGTGACAACGGACTCT -ACGGAATCAGTGACAACGAGTCCT -ACGGAATCAGTGACAACGTAAGCC -ACGGAATCAGTGACAACGATAGCC -ACGGAATCAGTGACAACGTAACCG -ACGGAATCAGTGACAACGATGCCA -ACGGAATCAGTGTCAAGCGGAAAC -ACGGAATCAGTGTCAAGCAACACC -ACGGAATCAGTGTCAAGCATCGAG -ACGGAATCAGTGTCAAGCCTCCTT -ACGGAATCAGTGTCAAGCCCTGTT -ACGGAATCAGTGTCAAGCCGGTTT -ACGGAATCAGTGTCAAGCGTGGTT -ACGGAATCAGTGTCAAGCGCCTTT -ACGGAATCAGTGTCAAGCGGTCTT -ACGGAATCAGTGTCAAGCACGCTT -ACGGAATCAGTGTCAAGCAGCGTT -ACGGAATCAGTGTCAAGCTTCGTC -ACGGAATCAGTGTCAAGCTCTCTC -ACGGAATCAGTGTCAAGCTGGATC -ACGGAATCAGTGTCAAGCCACTTC -ACGGAATCAGTGTCAAGCGTACTC -ACGGAATCAGTGTCAAGCGATGTC -ACGGAATCAGTGTCAAGCACAGTC -ACGGAATCAGTGTCAAGCTTGCTG -ACGGAATCAGTGTCAAGCTCCATG -ACGGAATCAGTGTCAAGCTGTGTG -ACGGAATCAGTGTCAAGCCTAGTG -ACGGAATCAGTGTCAAGCCATCTG -ACGGAATCAGTGTCAAGCGAGTTG -ACGGAATCAGTGTCAAGCAGACTG -ACGGAATCAGTGTCAAGCTCGGTA -ACGGAATCAGTGTCAAGCTGCCTA -ACGGAATCAGTGTCAAGCCCACTA -ACGGAATCAGTGTCAAGCGGAGTA -ACGGAATCAGTGTCAAGCTCGTCT -ACGGAATCAGTGTCAAGCTGCACT -ACGGAATCAGTGTCAAGCCTGACT -ACGGAATCAGTGTCAAGCCAACCT -ACGGAATCAGTGTCAAGCGCTACT -ACGGAATCAGTGTCAAGCGGATCT -ACGGAATCAGTGTCAAGCAAGGCT -ACGGAATCAGTGTCAAGCTCAACC -ACGGAATCAGTGTCAAGCTGTTCC -ACGGAATCAGTGTCAAGCATTCCC -ACGGAATCAGTGTCAAGCTTCTCG -ACGGAATCAGTGTCAAGCTAGACG -ACGGAATCAGTGTCAAGCGTAACG -ACGGAATCAGTGTCAAGCACTTCG -ACGGAATCAGTGTCAAGCTACGCA -ACGGAATCAGTGTCAAGCCTTGCA -ACGGAATCAGTGTCAAGCCGAACA -ACGGAATCAGTGTCAAGCCAGTCA -ACGGAATCAGTGTCAAGCGATCCA -ACGGAATCAGTGTCAAGCACGACA -ACGGAATCAGTGTCAAGCAGCTCA -ACGGAATCAGTGTCAAGCTCACGT -ACGGAATCAGTGTCAAGCCGTAGT -ACGGAATCAGTGTCAAGCGTCAGT -ACGGAATCAGTGTCAAGCGAAGGT -ACGGAATCAGTGTCAAGCAACCGT -ACGGAATCAGTGTCAAGCTTGTGC -ACGGAATCAGTGTCAAGCCTAAGC -ACGGAATCAGTGTCAAGCACTAGC -ACGGAATCAGTGTCAAGCAGATGC -ACGGAATCAGTGTCAAGCTGAAGG -ACGGAATCAGTGTCAAGCCAATGG -ACGGAATCAGTGTCAAGCATGAGG -ACGGAATCAGTGTCAAGCAATGGG -ACGGAATCAGTGTCAAGCTCCTGA -ACGGAATCAGTGTCAAGCTAGCGA -ACGGAATCAGTGTCAAGCCACAGA -ACGGAATCAGTGTCAAGCGCAAGA -ACGGAATCAGTGTCAAGCGGTTGA -ACGGAATCAGTGTCAAGCTCCGAT -ACGGAATCAGTGTCAAGCTGGCAT -ACGGAATCAGTGTCAAGCCGAGAT -ACGGAATCAGTGTCAAGCTACCAC -ACGGAATCAGTGTCAAGCCAGAAC -ACGGAATCAGTGTCAAGCGTCTAC -ACGGAATCAGTGTCAAGCACGTAC -ACGGAATCAGTGTCAAGCAGTGAC -ACGGAATCAGTGTCAAGCCTGTAG -ACGGAATCAGTGTCAAGCCCTAAG -ACGGAATCAGTGTCAAGCGTTCAG -ACGGAATCAGTGTCAAGCGCATAG -ACGGAATCAGTGTCAAGCGACAAG -ACGGAATCAGTGTCAAGCAAGCAG -ACGGAATCAGTGTCAAGCCGTCAA -ACGGAATCAGTGTCAAGCGCTGAA -ACGGAATCAGTGTCAAGCAGTACG -ACGGAATCAGTGTCAAGCATCCGA -ACGGAATCAGTGTCAAGCATGGGA -ACGGAATCAGTGTCAAGCGTGCAA -ACGGAATCAGTGTCAAGCGAGGAA -ACGGAATCAGTGTCAAGCCAGGTA -ACGGAATCAGTGTCAAGCGACTCT -ACGGAATCAGTGTCAAGCAGTCCT -ACGGAATCAGTGTCAAGCTAAGCC -ACGGAATCAGTGTCAAGCATAGCC -ACGGAATCAGTGTCAAGCTAACCG -ACGGAATCAGTGTCAAGCATGCCA -ACGGAATCAGTGCGTTCAGGAAAC -ACGGAATCAGTGCGTTCAAACACC -ACGGAATCAGTGCGTTCAATCGAG -ACGGAATCAGTGCGTTCACTCCTT -ACGGAATCAGTGCGTTCACCTGTT -ACGGAATCAGTGCGTTCACGGTTT -ACGGAATCAGTGCGTTCAGTGGTT -ACGGAATCAGTGCGTTCAGCCTTT -ACGGAATCAGTGCGTTCAGGTCTT -ACGGAATCAGTGCGTTCAACGCTT -ACGGAATCAGTGCGTTCAAGCGTT -ACGGAATCAGTGCGTTCATTCGTC -ACGGAATCAGTGCGTTCATCTCTC -ACGGAATCAGTGCGTTCATGGATC -ACGGAATCAGTGCGTTCACACTTC -ACGGAATCAGTGCGTTCAGTACTC -ACGGAATCAGTGCGTTCAGATGTC -ACGGAATCAGTGCGTTCAACAGTC -ACGGAATCAGTGCGTTCATTGCTG -ACGGAATCAGTGCGTTCATCCATG -ACGGAATCAGTGCGTTCATGTGTG -ACGGAATCAGTGCGTTCACTAGTG -ACGGAATCAGTGCGTTCACATCTG -ACGGAATCAGTGCGTTCAGAGTTG -ACGGAATCAGTGCGTTCAAGACTG -ACGGAATCAGTGCGTTCATCGGTA -ACGGAATCAGTGCGTTCATGCCTA -ACGGAATCAGTGCGTTCACCACTA -ACGGAATCAGTGCGTTCAGGAGTA -ACGGAATCAGTGCGTTCATCGTCT -ACGGAATCAGTGCGTTCATGCACT -ACGGAATCAGTGCGTTCACTGACT -ACGGAATCAGTGCGTTCACAACCT -ACGGAATCAGTGCGTTCAGCTACT -ACGGAATCAGTGCGTTCAGGATCT -ACGGAATCAGTGCGTTCAAAGGCT -ACGGAATCAGTGCGTTCATCAACC -ACGGAATCAGTGCGTTCATGTTCC -ACGGAATCAGTGCGTTCAATTCCC -ACGGAATCAGTGCGTTCATTCTCG -ACGGAATCAGTGCGTTCATAGACG -ACGGAATCAGTGCGTTCAGTAACG -ACGGAATCAGTGCGTTCAACTTCG -ACGGAATCAGTGCGTTCATACGCA -ACGGAATCAGTGCGTTCACTTGCA -ACGGAATCAGTGCGTTCACGAACA -ACGGAATCAGTGCGTTCACAGTCA -ACGGAATCAGTGCGTTCAGATCCA -ACGGAATCAGTGCGTTCAACGACA -ACGGAATCAGTGCGTTCAAGCTCA -ACGGAATCAGTGCGTTCATCACGT -ACGGAATCAGTGCGTTCACGTAGT -ACGGAATCAGTGCGTTCAGTCAGT -ACGGAATCAGTGCGTTCAGAAGGT -ACGGAATCAGTGCGTTCAAACCGT -ACGGAATCAGTGCGTTCATTGTGC -ACGGAATCAGTGCGTTCACTAAGC -ACGGAATCAGTGCGTTCAACTAGC -ACGGAATCAGTGCGTTCAAGATGC -ACGGAATCAGTGCGTTCATGAAGG -ACGGAATCAGTGCGTTCACAATGG -ACGGAATCAGTGCGTTCAATGAGG -ACGGAATCAGTGCGTTCAAATGGG -ACGGAATCAGTGCGTTCATCCTGA -ACGGAATCAGTGCGTTCATAGCGA -ACGGAATCAGTGCGTTCACACAGA -ACGGAATCAGTGCGTTCAGCAAGA -ACGGAATCAGTGCGTTCAGGTTGA -ACGGAATCAGTGCGTTCATCCGAT -ACGGAATCAGTGCGTTCATGGCAT -ACGGAATCAGTGCGTTCACGAGAT -ACGGAATCAGTGCGTTCATACCAC -ACGGAATCAGTGCGTTCACAGAAC -ACGGAATCAGTGCGTTCAGTCTAC -ACGGAATCAGTGCGTTCAACGTAC -ACGGAATCAGTGCGTTCAAGTGAC -ACGGAATCAGTGCGTTCACTGTAG -ACGGAATCAGTGCGTTCACCTAAG -ACGGAATCAGTGCGTTCAGTTCAG -ACGGAATCAGTGCGTTCAGCATAG -ACGGAATCAGTGCGTTCAGACAAG -ACGGAATCAGTGCGTTCAAAGCAG -ACGGAATCAGTGCGTTCACGTCAA -ACGGAATCAGTGCGTTCAGCTGAA -ACGGAATCAGTGCGTTCAAGTACG -ACGGAATCAGTGCGTTCAATCCGA -ACGGAATCAGTGCGTTCAATGGGA -ACGGAATCAGTGCGTTCAGTGCAA -ACGGAATCAGTGCGTTCAGAGGAA -ACGGAATCAGTGCGTTCACAGGTA -ACGGAATCAGTGCGTTCAGACTCT -ACGGAATCAGTGCGTTCAAGTCCT -ACGGAATCAGTGCGTTCATAAGCC -ACGGAATCAGTGCGTTCAATAGCC -ACGGAATCAGTGCGTTCATAACCG -ACGGAATCAGTGCGTTCAATGCCA -ACGGAATCAGTGAGTCGTGGAAAC -ACGGAATCAGTGAGTCGTAACACC -ACGGAATCAGTGAGTCGTATCGAG -ACGGAATCAGTGAGTCGTCTCCTT -ACGGAATCAGTGAGTCGTCCTGTT -ACGGAATCAGTGAGTCGTCGGTTT -ACGGAATCAGTGAGTCGTGTGGTT -ACGGAATCAGTGAGTCGTGCCTTT -ACGGAATCAGTGAGTCGTGGTCTT -ACGGAATCAGTGAGTCGTACGCTT -ACGGAATCAGTGAGTCGTAGCGTT -ACGGAATCAGTGAGTCGTTTCGTC -ACGGAATCAGTGAGTCGTTCTCTC -ACGGAATCAGTGAGTCGTTGGATC -ACGGAATCAGTGAGTCGTCACTTC -ACGGAATCAGTGAGTCGTGTACTC -ACGGAATCAGTGAGTCGTGATGTC -ACGGAATCAGTGAGTCGTACAGTC -ACGGAATCAGTGAGTCGTTTGCTG -ACGGAATCAGTGAGTCGTTCCATG -ACGGAATCAGTGAGTCGTTGTGTG -ACGGAATCAGTGAGTCGTCTAGTG -ACGGAATCAGTGAGTCGTCATCTG -ACGGAATCAGTGAGTCGTGAGTTG -ACGGAATCAGTGAGTCGTAGACTG -ACGGAATCAGTGAGTCGTTCGGTA -ACGGAATCAGTGAGTCGTTGCCTA -ACGGAATCAGTGAGTCGTCCACTA -ACGGAATCAGTGAGTCGTGGAGTA -ACGGAATCAGTGAGTCGTTCGTCT -ACGGAATCAGTGAGTCGTTGCACT -ACGGAATCAGTGAGTCGTCTGACT -ACGGAATCAGTGAGTCGTCAACCT -ACGGAATCAGTGAGTCGTGCTACT -ACGGAATCAGTGAGTCGTGGATCT -ACGGAATCAGTGAGTCGTAAGGCT -ACGGAATCAGTGAGTCGTTCAACC -ACGGAATCAGTGAGTCGTTGTTCC -ACGGAATCAGTGAGTCGTATTCCC -ACGGAATCAGTGAGTCGTTTCTCG -ACGGAATCAGTGAGTCGTTAGACG -ACGGAATCAGTGAGTCGTGTAACG -ACGGAATCAGTGAGTCGTACTTCG -ACGGAATCAGTGAGTCGTTACGCA -ACGGAATCAGTGAGTCGTCTTGCA -ACGGAATCAGTGAGTCGTCGAACA -ACGGAATCAGTGAGTCGTCAGTCA -ACGGAATCAGTGAGTCGTGATCCA -ACGGAATCAGTGAGTCGTACGACA -ACGGAATCAGTGAGTCGTAGCTCA -ACGGAATCAGTGAGTCGTTCACGT -ACGGAATCAGTGAGTCGTCGTAGT -ACGGAATCAGTGAGTCGTGTCAGT -ACGGAATCAGTGAGTCGTGAAGGT -ACGGAATCAGTGAGTCGTAACCGT -ACGGAATCAGTGAGTCGTTTGTGC -ACGGAATCAGTGAGTCGTCTAAGC -ACGGAATCAGTGAGTCGTACTAGC -ACGGAATCAGTGAGTCGTAGATGC -ACGGAATCAGTGAGTCGTTGAAGG -ACGGAATCAGTGAGTCGTCAATGG -ACGGAATCAGTGAGTCGTATGAGG -ACGGAATCAGTGAGTCGTAATGGG -ACGGAATCAGTGAGTCGTTCCTGA -ACGGAATCAGTGAGTCGTTAGCGA -ACGGAATCAGTGAGTCGTCACAGA -ACGGAATCAGTGAGTCGTGCAAGA -ACGGAATCAGTGAGTCGTGGTTGA -ACGGAATCAGTGAGTCGTTCCGAT -ACGGAATCAGTGAGTCGTTGGCAT -ACGGAATCAGTGAGTCGTCGAGAT -ACGGAATCAGTGAGTCGTTACCAC -ACGGAATCAGTGAGTCGTCAGAAC -ACGGAATCAGTGAGTCGTGTCTAC -ACGGAATCAGTGAGTCGTACGTAC -ACGGAATCAGTGAGTCGTAGTGAC -ACGGAATCAGTGAGTCGTCTGTAG -ACGGAATCAGTGAGTCGTCCTAAG -ACGGAATCAGTGAGTCGTGTTCAG -ACGGAATCAGTGAGTCGTGCATAG -ACGGAATCAGTGAGTCGTGACAAG -ACGGAATCAGTGAGTCGTAAGCAG -ACGGAATCAGTGAGTCGTCGTCAA -ACGGAATCAGTGAGTCGTGCTGAA -ACGGAATCAGTGAGTCGTAGTACG -ACGGAATCAGTGAGTCGTATCCGA -ACGGAATCAGTGAGTCGTATGGGA -ACGGAATCAGTGAGTCGTGTGCAA -ACGGAATCAGTGAGTCGTGAGGAA -ACGGAATCAGTGAGTCGTCAGGTA -ACGGAATCAGTGAGTCGTGACTCT -ACGGAATCAGTGAGTCGTAGTCCT -ACGGAATCAGTGAGTCGTTAAGCC -ACGGAATCAGTGAGTCGTATAGCC -ACGGAATCAGTGAGTCGTTAACCG -ACGGAATCAGTGAGTCGTATGCCA -ACGGAATCAGTGAGTGTCGGAAAC -ACGGAATCAGTGAGTGTCAACACC -ACGGAATCAGTGAGTGTCATCGAG -ACGGAATCAGTGAGTGTCCTCCTT -ACGGAATCAGTGAGTGTCCCTGTT -ACGGAATCAGTGAGTGTCCGGTTT -ACGGAATCAGTGAGTGTCGTGGTT -ACGGAATCAGTGAGTGTCGCCTTT -ACGGAATCAGTGAGTGTCGGTCTT -ACGGAATCAGTGAGTGTCACGCTT -ACGGAATCAGTGAGTGTCAGCGTT -ACGGAATCAGTGAGTGTCTTCGTC -ACGGAATCAGTGAGTGTCTCTCTC -ACGGAATCAGTGAGTGTCTGGATC -ACGGAATCAGTGAGTGTCCACTTC -ACGGAATCAGTGAGTGTCGTACTC -ACGGAATCAGTGAGTGTCGATGTC -ACGGAATCAGTGAGTGTCACAGTC -ACGGAATCAGTGAGTGTCTTGCTG -ACGGAATCAGTGAGTGTCTCCATG -ACGGAATCAGTGAGTGTCTGTGTG -ACGGAATCAGTGAGTGTCCTAGTG -ACGGAATCAGTGAGTGTCCATCTG -ACGGAATCAGTGAGTGTCGAGTTG -ACGGAATCAGTGAGTGTCAGACTG -ACGGAATCAGTGAGTGTCTCGGTA -ACGGAATCAGTGAGTGTCTGCCTA -ACGGAATCAGTGAGTGTCCCACTA -ACGGAATCAGTGAGTGTCGGAGTA -ACGGAATCAGTGAGTGTCTCGTCT -ACGGAATCAGTGAGTGTCTGCACT -ACGGAATCAGTGAGTGTCCTGACT -ACGGAATCAGTGAGTGTCCAACCT -ACGGAATCAGTGAGTGTCGCTACT -ACGGAATCAGTGAGTGTCGGATCT -ACGGAATCAGTGAGTGTCAAGGCT -ACGGAATCAGTGAGTGTCTCAACC -ACGGAATCAGTGAGTGTCTGTTCC -ACGGAATCAGTGAGTGTCATTCCC -ACGGAATCAGTGAGTGTCTTCTCG -ACGGAATCAGTGAGTGTCTAGACG -ACGGAATCAGTGAGTGTCGTAACG -ACGGAATCAGTGAGTGTCACTTCG -ACGGAATCAGTGAGTGTCTACGCA -ACGGAATCAGTGAGTGTCCTTGCA -ACGGAATCAGTGAGTGTCCGAACA -ACGGAATCAGTGAGTGTCCAGTCA -ACGGAATCAGTGAGTGTCGATCCA -ACGGAATCAGTGAGTGTCACGACA -ACGGAATCAGTGAGTGTCAGCTCA -ACGGAATCAGTGAGTGTCTCACGT -ACGGAATCAGTGAGTGTCCGTAGT -ACGGAATCAGTGAGTGTCGTCAGT -ACGGAATCAGTGAGTGTCGAAGGT -ACGGAATCAGTGAGTGTCAACCGT -ACGGAATCAGTGAGTGTCTTGTGC -ACGGAATCAGTGAGTGTCCTAAGC -ACGGAATCAGTGAGTGTCACTAGC -ACGGAATCAGTGAGTGTCAGATGC -ACGGAATCAGTGAGTGTCTGAAGG -ACGGAATCAGTGAGTGTCCAATGG -ACGGAATCAGTGAGTGTCATGAGG -ACGGAATCAGTGAGTGTCAATGGG -ACGGAATCAGTGAGTGTCTCCTGA -ACGGAATCAGTGAGTGTCTAGCGA -ACGGAATCAGTGAGTGTCCACAGA -ACGGAATCAGTGAGTGTCGCAAGA -ACGGAATCAGTGAGTGTCGGTTGA -ACGGAATCAGTGAGTGTCTCCGAT -ACGGAATCAGTGAGTGTCTGGCAT -ACGGAATCAGTGAGTGTCCGAGAT -ACGGAATCAGTGAGTGTCTACCAC -ACGGAATCAGTGAGTGTCCAGAAC -ACGGAATCAGTGAGTGTCGTCTAC -ACGGAATCAGTGAGTGTCACGTAC -ACGGAATCAGTGAGTGTCAGTGAC -ACGGAATCAGTGAGTGTCCTGTAG -ACGGAATCAGTGAGTGTCCCTAAG -ACGGAATCAGTGAGTGTCGTTCAG -ACGGAATCAGTGAGTGTCGCATAG -ACGGAATCAGTGAGTGTCGACAAG -ACGGAATCAGTGAGTGTCAAGCAG -ACGGAATCAGTGAGTGTCCGTCAA -ACGGAATCAGTGAGTGTCGCTGAA -ACGGAATCAGTGAGTGTCAGTACG -ACGGAATCAGTGAGTGTCATCCGA -ACGGAATCAGTGAGTGTCATGGGA -ACGGAATCAGTGAGTGTCGTGCAA -ACGGAATCAGTGAGTGTCGAGGAA -ACGGAATCAGTGAGTGTCCAGGTA -ACGGAATCAGTGAGTGTCGACTCT -ACGGAATCAGTGAGTGTCAGTCCT -ACGGAATCAGTGAGTGTCTAAGCC -ACGGAATCAGTGAGTGTCATAGCC -ACGGAATCAGTGAGTGTCTAACCG -ACGGAATCAGTGAGTGTCATGCCA -ACGGAATCAGTGGGTGAAGGAAAC -ACGGAATCAGTGGGTGAAAACACC -ACGGAATCAGTGGGTGAAATCGAG -ACGGAATCAGTGGGTGAACTCCTT -ACGGAATCAGTGGGTGAACCTGTT -ACGGAATCAGTGGGTGAACGGTTT -ACGGAATCAGTGGGTGAAGTGGTT -ACGGAATCAGTGGGTGAAGCCTTT -ACGGAATCAGTGGGTGAAGGTCTT -ACGGAATCAGTGGGTGAAACGCTT -ACGGAATCAGTGGGTGAAAGCGTT -ACGGAATCAGTGGGTGAATTCGTC -ACGGAATCAGTGGGTGAATCTCTC -ACGGAATCAGTGGGTGAATGGATC -ACGGAATCAGTGGGTGAACACTTC -ACGGAATCAGTGGGTGAAGTACTC -ACGGAATCAGTGGGTGAAGATGTC -ACGGAATCAGTGGGTGAAACAGTC -ACGGAATCAGTGGGTGAATTGCTG -ACGGAATCAGTGGGTGAATCCATG -ACGGAATCAGTGGGTGAATGTGTG -ACGGAATCAGTGGGTGAACTAGTG -ACGGAATCAGTGGGTGAACATCTG -ACGGAATCAGTGGGTGAAGAGTTG -ACGGAATCAGTGGGTGAAAGACTG -ACGGAATCAGTGGGTGAATCGGTA -ACGGAATCAGTGGGTGAATGCCTA -ACGGAATCAGTGGGTGAACCACTA -ACGGAATCAGTGGGTGAAGGAGTA -ACGGAATCAGTGGGTGAATCGTCT -ACGGAATCAGTGGGTGAATGCACT -ACGGAATCAGTGGGTGAACTGACT -ACGGAATCAGTGGGTGAACAACCT -ACGGAATCAGTGGGTGAAGCTACT -ACGGAATCAGTGGGTGAAGGATCT -ACGGAATCAGTGGGTGAAAAGGCT -ACGGAATCAGTGGGTGAATCAACC -ACGGAATCAGTGGGTGAATGTTCC -ACGGAATCAGTGGGTGAAATTCCC -ACGGAATCAGTGGGTGAATTCTCG -ACGGAATCAGTGGGTGAATAGACG -ACGGAATCAGTGGGTGAAGTAACG -ACGGAATCAGTGGGTGAAACTTCG -ACGGAATCAGTGGGTGAATACGCA -ACGGAATCAGTGGGTGAACTTGCA -ACGGAATCAGTGGGTGAACGAACA -ACGGAATCAGTGGGTGAACAGTCA -ACGGAATCAGTGGGTGAAGATCCA -ACGGAATCAGTGGGTGAAACGACA -ACGGAATCAGTGGGTGAAAGCTCA -ACGGAATCAGTGGGTGAATCACGT -ACGGAATCAGTGGGTGAACGTAGT -ACGGAATCAGTGGGTGAAGTCAGT -ACGGAATCAGTGGGTGAAGAAGGT -ACGGAATCAGTGGGTGAAAACCGT -ACGGAATCAGTGGGTGAATTGTGC -ACGGAATCAGTGGGTGAACTAAGC -ACGGAATCAGTGGGTGAAACTAGC -ACGGAATCAGTGGGTGAAAGATGC -ACGGAATCAGTGGGTGAATGAAGG -ACGGAATCAGTGGGTGAACAATGG -ACGGAATCAGTGGGTGAAATGAGG -ACGGAATCAGTGGGTGAAAATGGG -ACGGAATCAGTGGGTGAATCCTGA -ACGGAATCAGTGGGTGAATAGCGA -ACGGAATCAGTGGGTGAACACAGA -ACGGAATCAGTGGGTGAAGCAAGA -ACGGAATCAGTGGGTGAAGGTTGA -ACGGAATCAGTGGGTGAATCCGAT -ACGGAATCAGTGGGTGAATGGCAT -ACGGAATCAGTGGGTGAACGAGAT -ACGGAATCAGTGGGTGAATACCAC -ACGGAATCAGTGGGTGAACAGAAC -ACGGAATCAGTGGGTGAAGTCTAC -ACGGAATCAGTGGGTGAAACGTAC -ACGGAATCAGTGGGTGAAAGTGAC -ACGGAATCAGTGGGTGAACTGTAG -ACGGAATCAGTGGGTGAACCTAAG -ACGGAATCAGTGGGTGAAGTTCAG -ACGGAATCAGTGGGTGAAGCATAG -ACGGAATCAGTGGGTGAAGACAAG -ACGGAATCAGTGGGTGAAAAGCAG -ACGGAATCAGTGGGTGAACGTCAA -ACGGAATCAGTGGGTGAAGCTGAA -ACGGAATCAGTGGGTGAAAGTACG -ACGGAATCAGTGGGTGAAATCCGA -ACGGAATCAGTGGGTGAAATGGGA -ACGGAATCAGTGGGTGAAGTGCAA -ACGGAATCAGTGGGTGAAGAGGAA -ACGGAATCAGTGGGTGAACAGGTA -ACGGAATCAGTGGGTGAAGACTCT -ACGGAATCAGTGGGTGAAAGTCCT -ACGGAATCAGTGGGTGAATAAGCC -ACGGAATCAGTGGGTGAAATAGCC -ACGGAATCAGTGGGTGAATAACCG -ACGGAATCAGTGGGTGAAATGCCA -ACGGAATCAGTGCGTAACGGAAAC -ACGGAATCAGTGCGTAACAACACC -ACGGAATCAGTGCGTAACATCGAG -ACGGAATCAGTGCGTAACCTCCTT -ACGGAATCAGTGCGTAACCCTGTT -ACGGAATCAGTGCGTAACCGGTTT -ACGGAATCAGTGCGTAACGTGGTT -ACGGAATCAGTGCGTAACGCCTTT -ACGGAATCAGTGCGTAACGGTCTT -ACGGAATCAGTGCGTAACACGCTT -ACGGAATCAGTGCGTAACAGCGTT -ACGGAATCAGTGCGTAACTTCGTC -ACGGAATCAGTGCGTAACTCTCTC -ACGGAATCAGTGCGTAACTGGATC -ACGGAATCAGTGCGTAACCACTTC -ACGGAATCAGTGCGTAACGTACTC -ACGGAATCAGTGCGTAACGATGTC -ACGGAATCAGTGCGTAACACAGTC -ACGGAATCAGTGCGTAACTTGCTG -ACGGAATCAGTGCGTAACTCCATG -ACGGAATCAGTGCGTAACTGTGTG -ACGGAATCAGTGCGTAACCTAGTG -ACGGAATCAGTGCGTAACCATCTG -ACGGAATCAGTGCGTAACGAGTTG -ACGGAATCAGTGCGTAACAGACTG -ACGGAATCAGTGCGTAACTCGGTA -ACGGAATCAGTGCGTAACTGCCTA -ACGGAATCAGTGCGTAACCCACTA -ACGGAATCAGTGCGTAACGGAGTA -ACGGAATCAGTGCGTAACTCGTCT -ACGGAATCAGTGCGTAACTGCACT -ACGGAATCAGTGCGTAACCTGACT -ACGGAATCAGTGCGTAACCAACCT -ACGGAATCAGTGCGTAACGCTACT -ACGGAATCAGTGCGTAACGGATCT -ACGGAATCAGTGCGTAACAAGGCT -ACGGAATCAGTGCGTAACTCAACC -ACGGAATCAGTGCGTAACTGTTCC -ACGGAATCAGTGCGTAACATTCCC -ACGGAATCAGTGCGTAACTTCTCG -ACGGAATCAGTGCGTAACTAGACG -ACGGAATCAGTGCGTAACGTAACG -ACGGAATCAGTGCGTAACACTTCG -ACGGAATCAGTGCGTAACTACGCA -ACGGAATCAGTGCGTAACCTTGCA -ACGGAATCAGTGCGTAACCGAACA -ACGGAATCAGTGCGTAACCAGTCA -ACGGAATCAGTGCGTAACGATCCA -ACGGAATCAGTGCGTAACACGACA -ACGGAATCAGTGCGTAACAGCTCA -ACGGAATCAGTGCGTAACTCACGT -ACGGAATCAGTGCGTAACCGTAGT -ACGGAATCAGTGCGTAACGTCAGT -ACGGAATCAGTGCGTAACGAAGGT -ACGGAATCAGTGCGTAACAACCGT -ACGGAATCAGTGCGTAACTTGTGC -ACGGAATCAGTGCGTAACCTAAGC -ACGGAATCAGTGCGTAACACTAGC -ACGGAATCAGTGCGTAACAGATGC -ACGGAATCAGTGCGTAACTGAAGG -ACGGAATCAGTGCGTAACCAATGG -ACGGAATCAGTGCGTAACATGAGG -ACGGAATCAGTGCGTAACAATGGG -ACGGAATCAGTGCGTAACTCCTGA -ACGGAATCAGTGCGTAACTAGCGA -ACGGAATCAGTGCGTAACCACAGA -ACGGAATCAGTGCGTAACGCAAGA -ACGGAATCAGTGCGTAACGGTTGA -ACGGAATCAGTGCGTAACTCCGAT -ACGGAATCAGTGCGTAACTGGCAT -ACGGAATCAGTGCGTAACCGAGAT -ACGGAATCAGTGCGTAACTACCAC -ACGGAATCAGTGCGTAACCAGAAC -ACGGAATCAGTGCGTAACGTCTAC -ACGGAATCAGTGCGTAACACGTAC -ACGGAATCAGTGCGTAACAGTGAC -ACGGAATCAGTGCGTAACCTGTAG -ACGGAATCAGTGCGTAACCCTAAG -ACGGAATCAGTGCGTAACGTTCAG -ACGGAATCAGTGCGTAACGCATAG -ACGGAATCAGTGCGTAACGACAAG -ACGGAATCAGTGCGTAACAAGCAG -ACGGAATCAGTGCGTAACCGTCAA -ACGGAATCAGTGCGTAACGCTGAA -ACGGAATCAGTGCGTAACAGTACG -ACGGAATCAGTGCGTAACATCCGA -ACGGAATCAGTGCGTAACATGGGA -ACGGAATCAGTGCGTAACGTGCAA -ACGGAATCAGTGCGTAACGAGGAA -ACGGAATCAGTGCGTAACCAGGTA -ACGGAATCAGTGCGTAACGACTCT -ACGGAATCAGTGCGTAACAGTCCT -ACGGAATCAGTGCGTAACTAAGCC -ACGGAATCAGTGCGTAACATAGCC -ACGGAATCAGTGCGTAACTAACCG -ACGGAATCAGTGCGTAACATGCCA -ACGGAATCAGTGTGCTTGGGAAAC -ACGGAATCAGTGTGCTTGAACACC -ACGGAATCAGTGTGCTTGATCGAG -ACGGAATCAGTGTGCTTGCTCCTT -ACGGAATCAGTGTGCTTGCCTGTT -ACGGAATCAGTGTGCTTGCGGTTT -ACGGAATCAGTGTGCTTGGTGGTT -ACGGAATCAGTGTGCTTGGCCTTT -ACGGAATCAGTGTGCTTGGGTCTT -ACGGAATCAGTGTGCTTGACGCTT -ACGGAATCAGTGTGCTTGAGCGTT -ACGGAATCAGTGTGCTTGTTCGTC -ACGGAATCAGTGTGCTTGTCTCTC -ACGGAATCAGTGTGCTTGTGGATC -ACGGAATCAGTGTGCTTGCACTTC -ACGGAATCAGTGTGCTTGGTACTC -ACGGAATCAGTGTGCTTGGATGTC -ACGGAATCAGTGTGCTTGACAGTC -ACGGAATCAGTGTGCTTGTTGCTG -ACGGAATCAGTGTGCTTGTCCATG -ACGGAATCAGTGTGCTTGTGTGTG -ACGGAATCAGTGTGCTTGCTAGTG -ACGGAATCAGTGTGCTTGCATCTG -ACGGAATCAGTGTGCTTGGAGTTG -ACGGAATCAGTGTGCTTGAGACTG -ACGGAATCAGTGTGCTTGTCGGTA -ACGGAATCAGTGTGCTTGTGCCTA -ACGGAATCAGTGTGCTTGCCACTA -ACGGAATCAGTGTGCTTGGGAGTA -ACGGAATCAGTGTGCTTGTCGTCT -ACGGAATCAGTGTGCTTGTGCACT -ACGGAATCAGTGTGCTTGCTGACT -ACGGAATCAGTGTGCTTGCAACCT -ACGGAATCAGTGTGCTTGGCTACT -ACGGAATCAGTGTGCTTGGGATCT -ACGGAATCAGTGTGCTTGAAGGCT -ACGGAATCAGTGTGCTTGTCAACC -ACGGAATCAGTGTGCTTGTGTTCC -ACGGAATCAGTGTGCTTGATTCCC -ACGGAATCAGTGTGCTTGTTCTCG -ACGGAATCAGTGTGCTTGTAGACG -ACGGAATCAGTGTGCTTGGTAACG -ACGGAATCAGTGTGCTTGACTTCG -ACGGAATCAGTGTGCTTGTACGCA -ACGGAATCAGTGTGCTTGCTTGCA -ACGGAATCAGTGTGCTTGCGAACA -ACGGAATCAGTGTGCTTGCAGTCA -ACGGAATCAGTGTGCTTGGATCCA -ACGGAATCAGTGTGCTTGACGACA -ACGGAATCAGTGTGCTTGAGCTCA -ACGGAATCAGTGTGCTTGTCACGT -ACGGAATCAGTGTGCTTGCGTAGT -ACGGAATCAGTGTGCTTGGTCAGT -ACGGAATCAGTGTGCTTGGAAGGT -ACGGAATCAGTGTGCTTGAACCGT -ACGGAATCAGTGTGCTTGTTGTGC -ACGGAATCAGTGTGCTTGCTAAGC -ACGGAATCAGTGTGCTTGACTAGC -ACGGAATCAGTGTGCTTGAGATGC -ACGGAATCAGTGTGCTTGTGAAGG -ACGGAATCAGTGTGCTTGCAATGG -ACGGAATCAGTGTGCTTGATGAGG -ACGGAATCAGTGTGCTTGAATGGG -ACGGAATCAGTGTGCTTGTCCTGA -ACGGAATCAGTGTGCTTGTAGCGA -ACGGAATCAGTGTGCTTGCACAGA -ACGGAATCAGTGTGCTTGGCAAGA -ACGGAATCAGTGTGCTTGGGTTGA -ACGGAATCAGTGTGCTTGTCCGAT -ACGGAATCAGTGTGCTTGTGGCAT -ACGGAATCAGTGTGCTTGCGAGAT -ACGGAATCAGTGTGCTTGTACCAC -ACGGAATCAGTGTGCTTGCAGAAC -ACGGAATCAGTGTGCTTGGTCTAC -ACGGAATCAGTGTGCTTGACGTAC -ACGGAATCAGTGTGCTTGAGTGAC -ACGGAATCAGTGTGCTTGCTGTAG -ACGGAATCAGTGTGCTTGCCTAAG -ACGGAATCAGTGTGCTTGGTTCAG -ACGGAATCAGTGTGCTTGGCATAG -ACGGAATCAGTGTGCTTGGACAAG -ACGGAATCAGTGTGCTTGAAGCAG -ACGGAATCAGTGTGCTTGCGTCAA -ACGGAATCAGTGTGCTTGGCTGAA -ACGGAATCAGTGTGCTTGAGTACG -ACGGAATCAGTGTGCTTGATCCGA -ACGGAATCAGTGTGCTTGATGGGA -ACGGAATCAGTGTGCTTGGTGCAA -ACGGAATCAGTGTGCTTGGAGGAA -ACGGAATCAGTGTGCTTGCAGGTA -ACGGAATCAGTGTGCTTGGACTCT -ACGGAATCAGTGTGCTTGAGTCCT -ACGGAATCAGTGTGCTTGTAAGCC -ACGGAATCAGTGTGCTTGATAGCC -ACGGAATCAGTGTGCTTGTAACCG -ACGGAATCAGTGTGCTTGATGCCA -ACGGAATCAGTGAGCCTAGGAAAC -ACGGAATCAGTGAGCCTAAACACC -ACGGAATCAGTGAGCCTAATCGAG -ACGGAATCAGTGAGCCTACTCCTT -ACGGAATCAGTGAGCCTACCTGTT -ACGGAATCAGTGAGCCTACGGTTT -ACGGAATCAGTGAGCCTAGTGGTT -ACGGAATCAGTGAGCCTAGCCTTT -ACGGAATCAGTGAGCCTAGGTCTT -ACGGAATCAGTGAGCCTAACGCTT -ACGGAATCAGTGAGCCTAAGCGTT -ACGGAATCAGTGAGCCTATTCGTC -ACGGAATCAGTGAGCCTATCTCTC -ACGGAATCAGTGAGCCTATGGATC -ACGGAATCAGTGAGCCTACACTTC -ACGGAATCAGTGAGCCTAGTACTC -ACGGAATCAGTGAGCCTAGATGTC -ACGGAATCAGTGAGCCTAACAGTC -ACGGAATCAGTGAGCCTATTGCTG -ACGGAATCAGTGAGCCTATCCATG -ACGGAATCAGTGAGCCTATGTGTG -ACGGAATCAGTGAGCCTACTAGTG -ACGGAATCAGTGAGCCTACATCTG -ACGGAATCAGTGAGCCTAGAGTTG -ACGGAATCAGTGAGCCTAAGACTG -ACGGAATCAGTGAGCCTATCGGTA -ACGGAATCAGTGAGCCTATGCCTA -ACGGAATCAGTGAGCCTACCACTA -ACGGAATCAGTGAGCCTAGGAGTA -ACGGAATCAGTGAGCCTATCGTCT -ACGGAATCAGTGAGCCTATGCACT -ACGGAATCAGTGAGCCTACTGACT -ACGGAATCAGTGAGCCTACAACCT -ACGGAATCAGTGAGCCTAGCTACT -ACGGAATCAGTGAGCCTAGGATCT -ACGGAATCAGTGAGCCTAAAGGCT -ACGGAATCAGTGAGCCTATCAACC -ACGGAATCAGTGAGCCTATGTTCC -ACGGAATCAGTGAGCCTAATTCCC -ACGGAATCAGTGAGCCTATTCTCG -ACGGAATCAGTGAGCCTATAGACG -ACGGAATCAGTGAGCCTAGTAACG -ACGGAATCAGTGAGCCTAACTTCG -ACGGAATCAGTGAGCCTATACGCA -ACGGAATCAGTGAGCCTACTTGCA -ACGGAATCAGTGAGCCTACGAACA -ACGGAATCAGTGAGCCTACAGTCA -ACGGAATCAGTGAGCCTAGATCCA -ACGGAATCAGTGAGCCTAACGACA -ACGGAATCAGTGAGCCTAAGCTCA -ACGGAATCAGTGAGCCTATCACGT -ACGGAATCAGTGAGCCTACGTAGT -ACGGAATCAGTGAGCCTAGTCAGT -ACGGAATCAGTGAGCCTAGAAGGT -ACGGAATCAGTGAGCCTAAACCGT -ACGGAATCAGTGAGCCTATTGTGC -ACGGAATCAGTGAGCCTACTAAGC -ACGGAATCAGTGAGCCTAACTAGC -ACGGAATCAGTGAGCCTAAGATGC -ACGGAATCAGTGAGCCTATGAAGG -ACGGAATCAGTGAGCCTACAATGG -ACGGAATCAGTGAGCCTAATGAGG -ACGGAATCAGTGAGCCTAAATGGG -ACGGAATCAGTGAGCCTATCCTGA -ACGGAATCAGTGAGCCTATAGCGA -ACGGAATCAGTGAGCCTACACAGA -ACGGAATCAGTGAGCCTAGCAAGA -ACGGAATCAGTGAGCCTAGGTTGA -ACGGAATCAGTGAGCCTATCCGAT -ACGGAATCAGTGAGCCTATGGCAT -ACGGAATCAGTGAGCCTACGAGAT -ACGGAATCAGTGAGCCTATACCAC -ACGGAATCAGTGAGCCTACAGAAC -ACGGAATCAGTGAGCCTAGTCTAC -ACGGAATCAGTGAGCCTAACGTAC -ACGGAATCAGTGAGCCTAAGTGAC -ACGGAATCAGTGAGCCTACTGTAG -ACGGAATCAGTGAGCCTACCTAAG -ACGGAATCAGTGAGCCTAGTTCAG -ACGGAATCAGTGAGCCTAGCATAG -ACGGAATCAGTGAGCCTAGACAAG -ACGGAATCAGTGAGCCTAAAGCAG -ACGGAATCAGTGAGCCTACGTCAA -ACGGAATCAGTGAGCCTAGCTGAA -ACGGAATCAGTGAGCCTAAGTACG -ACGGAATCAGTGAGCCTAATCCGA -ACGGAATCAGTGAGCCTAATGGGA -ACGGAATCAGTGAGCCTAGTGCAA -ACGGAATCAGTGAGCCTAGAGGAA -ACGGAATCAGTGAGCCTACAGGTA -ACGGAATCAGTGAGCCTAGACTCT -ACGGAATCAGTGAGCCTAAGTCCT -ACGGAATCAGTGAGCCTATAAGCC -ACGGAATCAGTGAGCCTAATAGCC -ACGGAATCAGTGAGCCTATAACCG -ACGGAATCAGTGAGCCTAATGCCA -ACGGAATCAGTGAGCACTGGAAAC -ACGGAATCAGTGAGCACTAACACC -ACGGAATCAGTGAGCACTATCGAG -ACGGAATCAGTGAGCACTCTCCTT -ACGGAATCAGTGAGCACTCCTGTT -ACGGAATCAGTGAGCACTCGGTTT -ACGGAATCAGTGAGCACTGTGGTT -ACGGAATCAGTGAGCACTGCCTTT -ACGGAATCAGTGAGCACTGGTCTT -ACGGAATCAGTGAGCACTACGCTT -ACGGAATCAGTGAGCACTAGCGTT -ACGGAATCAGTGAGCACTTTCGTC -ACGGAATCAGTGAGCACTTCTCTC -ACGGAATCAGTGAGCACTTGGATC -ACGGAATCAGTGAGCACTCACTTC -ACGGAATCAGTGAGCACTGTACTC -ACGGAATCAGTGAGCACTGATGTC -ACGGAATCAGTGAGCACTACAGTC -ACGGAATCAGTGAGCACTTTGCTG -ACGGAATCAGTGAGCACTTCCATG -ACGGAATCAGTGAGCACTTGTGTG -ACGGAATCAGTGAGCACTCTAGTG -ACGGAATCAGTGAGCACTCATCTG -ACGGAATCAGTGAGCACTGAGTTG -ACGGAATCAGTGAGCACTAGACTG -ACGGAATCAGTGAGCACTTCGGTA -ACGGAATCAGTGAGCACTTGCCTA -ACGGAATCAGTGAGCACTCCACTA -ACGGAATCAGTGAGCACTGGAGTA -ACGGAATCAGTGAGCACTTCGTCT -ACGGAATCAGTGAGCACTTGCACT -ACGGAATCAGTGAGCACTCTGACT -ACGGAATCAGTGAGCACTCAACCT -ACGGAATCAGTGAGCACTGCTACT -ACGGAATCAGTGAGCACTGGATCT -ACGGAATCAGTGAGCACTAAGGCT -ACGGAATCAGTGAGCACTTCAACC -ACGGAATCAGTGAGCACTTGTTCC -ACGGAATCAGTGAGCACTATTCCC -ACGGAATCAGTGAGCACTTTCTCG -ACGGAATCAGTGAGCACTTAGACG -ACGGAATCAGTGAGCACTGTAACG -ACGGAATCAGTGAGCACTACTTCG -ACGGAATCAGTGAGCACTTACGCA -ACGGAATCAGTGAGCACTCTTGCA -ACGGAATCAGTGAGCACTCGAACA -ACGGAATCAGTGAGCACTCAGTCA -ACGGAATCAGTGAGCACTGATCCA -ACGGAATCAGTGAGCACTACGACA -ACGGAATCAGTGAGCACTAGCTCA -ACGGAATCAGTGAGCACTTCACGT -ACGGAATCAGTGAGCACTCGTAGT -ACGGAATCAGTGAGCACTGTCAGT -ACGGAATCAGTGAGCACTGAAGGT -ACGGAATCAGTGAGCACTAACCGT -ACGGAATCAGTGAGCACTTTGTGC -ACGGAATCAGTGAGCACTCTAAGC -ACGGAATCAGTGAGCACTACTAGC -ACGGAATCAGTGAGCACTAGATGC -ACGGAATCAGTGAGCACTTGAAGG -ACGGAATCAGTGAGCACTCAATGG -ACGGAATCAGTGAGCACTATGAGG -ACGGAATCAGTGAGCACTAATGGG -ACGGAATCAGTGAGCACTTCCTGA -ACGGAATCAGTGAGCACTTAGCGA -ACGGAATCAGTGAGCACTCACAGA -ACGGAATCAGTGAGCACTGCAAGA -ACGGAATCAGTGAGCACTGGTTGA -ACGGAATCAGTGAGCACTTCCGAT -ACGGAATCAGTGAGCACTTGGCAT -ACGGAATCAGTGAGCACTCGAGAT -ACGGAATCAGTGAGCACTTACCAC -ACGGAATCAGTGAGCACTCAGAAC -ACGGAATCAGTGAGCACTGTCTAC -ACGGAATCAGTGAGCACTACGTAC -ACGGAATCAGTGAGCACTAGTGAC -ACGGAATCAGTGAGCACTCTGTAG -ACGGAATCAGTGAGCACTCCTAAG -ACGGAATCAGTGAGCACTGTTCAG -ACGGAATCAGTGAGCACTGCATAG -ACGGAATCAGTGAGCACTGACAAG -ACGGAATCAGTGAGCACTAAGCAG -ACGGAATCAGTGAGCACTCGTCAA -ACGGAATCAGTGAGCACTGCTGAA -ACGGAATCAGTGAGCACTAGTACG -ACGGAATCAGTGAGCACTATCCGA -ACGGAATCAGTGAGCACTATGGGA -ACGGAATCAGTGAGCACTGTGCAA -ACGGAATCAGTGAGCACTGAGGAA -ACGGAATCAGTGAGCACTCAGGTA -ACGGAATCAGTGAGCACTGACTCT -ACGGAATCAGTGAGCACTAGTCCT -ACGGAATCAGTGAGCACTTAAGCC -ACGGAATCAGTGAGCACTATAGCC -ACGGAATCAGTGAGCACTTAACCG -ACGGAATCAGTGAGCACTATGCCA -ACGGAATCAGTGTGCAGAGGAAAC -ACGGAATCAGTGTGCAGAAACACC -ACGGAATCAGTGTGCAGAATCGAG -ACGGAATCAGTGTGCAGACTCCTT -ACGGAATCAGTGTGCAGACCTGTT -ACGGAATCAGTGTGCAGACGGTTT -ACGGAATCAGTGTGCAGAGTGGTT -ACGGAATCAGTGTGCAGAGCCTTT -ACGGAATCAGTGTGCAGAGGTCTT -ACGGAATCAGTGTGCAGAACGCTT -ACGGAATCAGTGTGCAGAAGCGTT -ACGGAATCAGTGTGCAGATTCGTC -ACGGAATCAGTGTGCAGATCTCTC -ACGGAATCAGTGTGCAGATGGATC -ACGGAATCAGTGTGCAGACACTTC -ACGGAATCAGTGTGCAGAGTACTC -ACGGAATCAGTGTGCAGAGATGTC -ACGGAATCAGTGTGCAGAACAGTC -ACGGAATCAGTGTGCAGATTGCTG -ACGGAATCAGTGTGCAGATCCATG -ACGGAATCAGTGTGCAGATGTGTG -ACGGAATCAGTGTGCAGACTAGTG -ACGGAATCAGTGTGCAGACATCTG -ACGGAATCAGTGTGCAGAGAGTTG -ACGGAATCAGTGTGCAGAAGACTG -ACGGAATCAGTGTGCAGATCGGTA -ACGGAATCAGTGTGCAGATGCCTA -ACGGAATCAGTGTGCAGACCACTA -ACGGAATCAGTGTGCAGAGGAGTA -ACGGAATCAGTGTGCAGATCGTCT -ACGGAATCAGTGTGCAGATGCACT -ACGGAATCAGTGTGCAGACTGACT -ACGGAATCAGTGTGCAGACAACCT -ACGGAATCAGTGTGCAGAGCTACT -ACGGAATCAGTGTGCAGAGGATCT -ACGGAATCAGTGTGCAGAAAGGCT -ACGGAATCAGTGTGCAGATCAACC -ACGGAATCAGTGTGCAGATGTTCC -ACGGAATCAGTGTGCAGAATTCCC -ACGGAATCAGTGTGCAGATTCTCG -ACGGAATCAGTGTGCAGATAGACG -ACGGAATCAGTGTGCAGAGTAACG -ACGGAATCAGTGTGCAGAACTTCG -ACGGAATCAGTGTGCAGATACGCA -ACGGAATCAGTGTGCAGACTTGCA -ACGGAATCAGTGTGCAGACGAACA -ACGGAATCAGTGTGCAGACAGTCA -ACGGAATCAGTGTGCAGAGATCCA -ACGGAATCAGTGTGCAGAACGACA -ACGGAATCAGTGTGCAGAAGCTCA -ACGGAATCAGTGTGCAGATCACGT -ACGGAATCAGTGTGCAGACGTAGT -ACGGAATCAGTGTGCAGAGTCAGT -ACGGAATCAGTGTGCAGAGAAGGT -ACGGAATCAGTGTGCAGAAACCGT -ACGGAATCAGTGTGCAGATTGTGC -ACGGAATCAGTGTGCAGACTAAGC -ACGGAATCAGTGTGCAGAACTAGC -ACGGAATCAGTGTGCAGAAGATGC -ACGGAATCAGTGTGCAGATGAAGG -ACGGAATCAGTGTGCAGACAATGG -ACGGAATCAGTGTGCAGAATGAGG -ACGGAATCAGTGTGCAGAAATGGG -ACGGAATCAGTGTGCAGATCCTGA -ACGGAATCAGTGTGCAGATAGCGA -ACGGAATCAGTGTGCAGACACAGA -ACGGAATCAGTGTGCAGAGCAAGA -ACGGAATCAGTGTGCAGAGGTTGA -ACGGAATCAGTGTGCAGATCCGAT -ACGGAATCAGTGTGCAGATGGCAT -ACGGAATCAGTGTGCAGACGAGAT -ACGGAATCAGTGTGCAGATACCAC -ACGGAATCAGTGTGCAGACAGAAC -ACGGAATCAGTGTGCAGAGTCTAC -ACGGAATCAGTGTGCAGAACGTAC -ACGGAATCAGTGTGCAGAAGTGAC -ACGGAATCAGTGTGCAGACTGTAG -ACGGAATCAGTGTGCAGACCTAAG -ACGGAATCAGTGTGCAGAGTTCAG -ACGGAATCAGTGTGCAGAGCATAG -ACGGAATCAGTGTGCAGAGACAAG -ACGGAATCAGTGTGCAGAAAGCAG -ACGGAATCAGTGTGCAGACGTCAA -ACGGAATCAGTGTGCAGAGCTGAA -ACGGAATCAGTGTGCAGAAGTACG -ACGGAATCAGTGTGCAGAATCCGA -ACGGAATCAGTGTGCAGAATGGGA -ACGGAATCAGTGTGCAGAGTGCAA -ACGGAATCAGTGTGCAGAGAGGAA -ACGGAATCAGTGTGCAGACAGGTA -ACGGAATCAGTGTGCAGAGACTCT -ACGGAATCAGTGTGCAGAAGTCCT -ACGGAATCAGTGTGCAGATAAGCC -ACGGAATCAGTGTGCAGAATAGCC -ACGGAATCAGTGTGCAGATAACCG -ACGGAATCAGTGTGCAGAATGCCA -ACGGAATCAGTGAGGTGAGGAAAC -ACGGAATCAGTGAGGTGAAACACC -ACGGAATCAGTGAGGTGAATCGAG -ACGGAATCAGTGAGGTGACTCCTT -ACGGAATCAGTGAGGTGACCTGTT -ACGGAATCAGTGAGGTGACGGTTT -ACGGAATCAGTGAGGTGAGTGGTT -ACGGAATCAGTGAGGTGAGCCTTT -ACGGAATCAGTGAGGTGAGGTCTT -ACGGAATCAGTGAGGTGAACGCTT -ACGGAATCAGTGAGGTGAAGCGTT -ACGGAATCAGTGAGGTGATTCGTC -ACGGAATCAGTGAGGTGATCTCTC -ACGGAATCAGTGAGGTGATGGATC -ACGGAATCAGTGAGGTGACACTTC -ACGGAATCAGTGAGGTGAGTACTC -ACGGAATCAGTGAGGTGAGATGTC -ACGGAATCAGTGAGGTGAACAGTC -ACGGAATCAGTGAGGTGATTGCTG -ACGGAATCAGTGAGGTGATCCATG -ACGGAATCAGTGAGGTGATGTGTG -ACGGAATCAGTGAGGTGACTAGTG -ACGGAATCAGTGAGGTGACATCTG -ACGGAATCAGTGAGGTGAGAGTTG -ACGGAATCAGTGAGGTGAAGACTG -ACGGAATCAGTGAGGTGATCGGTA -ACGGAATCAGTGAGGTGATGCCTA -ACGGAATCAGTGAGGTGACCACTA -ACGGAATCAGTGAGGTGAGGAGTA -ACGGAATCAGTGAGGTGATCGTCT -ACGGAATCAGTGAGGTGATGCACT -ACGGAATCAGTGAGGTGACTGACT -ACGGAATCAGTGAGGTGACAACCT -ACGGAATCAGTGAGGTGAGCTACT -ACGGAATCAGTGAGGTGAGGATCT -ACGGAATCAGTGAGGTGAAAGGCT -ACGGAATCAGTGAGGTGATCAACC -ACGGAATCAGTGAGGTGATGTTCC -ACGGAATCAGTGAGGTGAATTCCC -ACGGAATCAGTGAGGTGATTCTCG -ACGGAATCAGTGAGGTGATAGACG -ACGGAATCAGTGAGGTGAGTAACG -ACGGAATCAGTGAGGTGAACTTCG -ACGGAATCAGTGAGGTGATACGCA -ACGGAATCAGTGAGGTGACTTGCA -ACGGAATCAGTGAGGTGACGAACA -ACGGAATCAGTGAGGTGACAGTCA -ACGGAATCAGTGAGGTGAGATCCA -ACGGAATCAGTGAGGTGAACGACA -ACGGAATCAGTGAGGTGAAGCTCA -ACGGAATCAGTGAGGTGATCACGT -ACGGAATCAGTGAGGTGACGTAGT -ACGGAATCAGTGAGGTGAGTCAGT -ACGGAATCAGTGAGGTGAGAAGGT -ACGGAATCAGTGAGGTGAAACCGT -ACGGAATCAGTGAGGTGATTGTGC -ACGGAATCAGTGAGGTGACTAAGC -ACGGAATCAGTGAGGTGAACTAGC -ACGGAATCAGTGAGGTGAAGATGC -ACGGAATCAGTGAGGTGATGAAGG -ACGGAATCAGTGAGGTGACAATGG -ACGGAATCAGTGAGGTGAATGAGG -ACGGAATCAGTGAGGTGAAATGGG -ACGGAATCAGTGAGGTGATCCTGA -ACGGAATCAGTGAGGTGATAGCGA -ACGGAATCAGTGAGGTGACACAGA -ACGGAATCAGTGAGGTGAGCAAGA -ACGGAATCAGTGAGGTGAGGTTGA -ACGGAATCAGTGAGGTGATCCGAT -ACGGAATCAGTGAGGTGATGGCAT -ACGGAATCAGTGAGGTGACGAGAT -ACGGAATCAGTGAGGTGATACCAC -ACGGAATCAGTGAGGTGACAGAAC -ACGGAATCAGTGAGGTGAGTCTAC -ACGGAATCAGTGAGGTGAACGTAC -ACGGAATCAGTGAGGTGAAGTGAC -ACGGAATCAGTGAGGTGACTGTAG -ACGGAATCAGTGAGGTGACCTAAG -ACGGAATCAGTGAGGTGAGTTCAG -ACGGAATCAGTGAGGTGAGCATAG -ACGGAATCAGTGAGGTGAGACAAG -ACGGAATCAGTGAGGTGAAAGCAG -ACGGAATCAGTGAGGTGACGTCAA -ACGGAATCAGTGAGGTGAGCTGAA -ACGGAATCAGTGAGGTGAAGTACG -ACGGAATCAGTGAGGTGAATCCGA -ACGGAATCAGTGAGGTGAATGGGA -ACGGAATCAGTGAGGTGAGTGCAA -ACGGAATCAGTGAGGTGAGAGGAA -ACGGAATCAGTGAGGTGACAGGTA -ACGGAATCAGTGAGGTGAGACTCT -ACGGAATCAGTGAGGTGAAGTCCT -ACGGAATCAGTGAGGTGATAAGCC -ACGGAATCAGTGAGGTGAATAGCC -ACGGAATCAGTGAGGTGATAACCG -ACGGAATCAGTGAGGTGAATGCCA -ACGGAATCAGTGTGGCAAGGAAAC -ACGGAATCAGTGTGGCAAAACACC -ACGGAATCAGTGTGGCAAATCGAG -ACGGAATCAGTGTGGCAACTCCTT -ACGGAATCAGTGTGGCAACCTGTT -ACGGAATCAGTGTGGCAACGGTTT -ACGGAATCAGTGTGGCAAGTGGTT -ACGGAATCAGTGTGGCAAGCCTTT -ACGGAATCAGTGTGGCAAGGTCTT -ACGGAATCAGTGTGGCAAACGCTT -ACGGAATCAGTGTGGCAAAGCGTT -ACGGAATCAGTGTGGCAATTCGTC -ACGGAATCAGTGTGGCAATCTCTC -ACGGAATCAGTGTGGCAATGGATC -ACGGAATCAGTGTGGCAACACTTC -ACGGAATCAGTGTGGCAAGTACTC -ACGGAATCAGTGTGGCAAGATGTC -ACGGAATCAGTGTGGCAAACAGTC -ACGGAATCAGTGTGGCAATTGCTG -ACGGAATCAGTGTGGCAATCCATG -ACGGAATCAGTGTGGCAATGTGTG -ACGGAATCAGTGTGGCAACTAGTG -ACGGAATCAGTGTGGCAACATCTG -ACGGAATCAGTGTGGCAAGAGTTG -ACGGAATCAGTGTGGCAAAGACTG -ACGGAATCAGTGTGGCAATCGGTA -ACGGAATCAGTGTGGCAATGCCTA -ACGGAATCAGTGTGGCAACCACTA -ACGGAATCAGTGTGGCAAGGAGTA -ACGGAATCAGTGTGGCAATCGTCT -ACGGAATCAGTGTGGCAATGCACT -ACGGAATCAGTGTGGCAACTGACT -ACGGAATCAGTGTGGCAACAACCT -ACGGAATCAGTGTGGCAAGCTACT -ACGGAATCAGTGTGGCAAGGATCT -ACGGAATCAGTGTGGCAAAAGGCT -ACGGAATCAGTGTGGCAATCAACC -ACGGAATCAGTGTGGCAATGTTCC -ACGGAATCAGTGTGGCAAATTCCC -ACGGAATCAGTGTGGCAATTCTCG -ACGGAATCAGTGTGGCAATAGACG -ACGGAATCAGTGTGGCAAGTAACG -ACGGAATCAGTGTGGCAAACTTCG -ACGGAATCAGTGTGGCAATACGCA -ACGGAATCAGTGTGGCAACTTGCA -ACGGAATCAGTGTGGCAACGAACA -ACGGAATCAGTGTGGCAACAGTCA -ACGGAATCAGTGTGGCAAGATCCA -ACGGAATCAGTGTGGCAAACGACA -ACGGAATCAGTGTGGCAAAGCTCA -ACGGAATCAGTGTGGCAATCACGT -ACGGAATCAGTGTGGCAACGTAGT -ACGGAATCAGTGTGGCAAGTCAGT -ACGGAATCAGTGTGGCAAGAAGGT -ACGGAATCAGTGTGGCAAAACCGT -ACGGAATCAGTGTGGCAATTGTGC -ACGGAATCAGTGTGGCAACTAAGC -ACGGAATCAGTGTGGCAAACTAGC -ACGGAATCAGTGTGGCAAAGATGC -ACGGAATCAGTGTGGCAATGAAGG -ACGGAATCAGTGTGGCAACAATGG -ACGGAATCAGTGTGGCAAATGAGG -ACGGAATCAGTGTGGCAAAATGGG -ACGGAATCAGTGTGGCAATCCTGA -ACGGAATCAGTGTGGCAATAGCGA -ACGGAATCAGTGTGGCAACACAGA -ACGGAATCAGTGTGGCAAGCAAGA -ACGGAATCAGTGTGGCAAGGTTGA -ACGGAATCAGTGTGGCAATCCGAT -ACGGAATCAGTGTGGCAATGGCAT -ACGGAATCAGTGTGGCAACGAGAT -ACGGAATCAGTGTGGCAATACCAC -ACGGAATCAGTGTGGCAACAGAAC -ACGGAATCAGTGTGGCAAGTCTAC -ACGGAATCAGTGTGGCAAACGTAC -ACGGAATCAGTGTGGCAAAGTGAC -ACGGAATCAGTGTGGCAACTGTAG -ACGGAATCAGTGTGGCAACCTAAG -ACGGAATCAGTGTGGCAAGTTCAG -ACGGAATCAGTGTGGCAAGCATAG -ACGGAATCAGTGTGGCAAGACAAG -ACGGAATCAGTGTGGCAAAAGCAG -ACGGAATCAGTGTGGCAACGTCAA -ACGGAATCAGTGTGGCAAGCTGAA -ACGGAATCAGTGTGGCAAAGTACG -ACGGAATCAGTGTGGCAAATCCGA -ACGGAATCAGTGTGGCAAATGGGA -ACGGAATCAGTGTGGCAAGTGCAA -ACGGAATCAGTGTGGCAAGAGGAA -ACGGAATCAGTGTGGCAACAGGTA -ACGGAATCAGTGTGGCAAGACTCT -ACGGAATCAGTGTGGCAAAGTCCT -ACGGAATCAGTGTGGCAATAAGCC -ACGGAATCAGTGTGGCAAATAGCC -ACGGAATCAGTGTGGCAATAACCG -ACGGAATCAGTGTGGCAAATGCCA -ACGGAATCAGTGAGGATGGGAAAC -ACGGAATCAGTGAGGATGAACACC -ACGGAATCAGTGAGGATGATCGAG -ACGGAATCAGTGAGGATGCTCCTT -ACGGAATCAGTGAGGATGCCTGTT -ACGGAATCAGTGAGGATGCGGTTT -ACGGAATCAGTGAGGATGGTGGTT -ACGGAATCAGTGAGGATGGCCTTT -ACGGAATCAGTGAGGATGGGTCTT -ACGGAATCAGTGAGGATGACGCTT -ACGGAATCAGTGAGGATGAGCGTT -ACGGAATCAGTGAGGATGTTCGTC -ACGGAATCAGTGAGGATGTCTCTC -ACGGAATCAGTGAGGATGTGGATC -ACGGAATCAGTGAGGATGCACTTC -ACGGAATCAGTGAGGATGGTACTC -ACGGAATCAGTGAGGATGGATGTC -ACGGAATCAGTGAGGATGACAGTC -ACGGAATCAGTGAGGATGTTGCTG -ACGGAATCAGTGAGGATGTCCATG -ACGGAATCAGTGAGGATGTGTGTG -ACGGAATCAGTGAGGATGCTAGTG -ACGGAATCAGTGAGGATGCATCTG -ACGGAATCAGTGAGGATGGAGTTG -ACGGAATCAGTGAGGATGAGACTG -ACGGAATCAGTGAGGATGTCGGTA -ACGGAATCAGTGAGGATGTGCCTA -ACGGAATCAGTGAGGATGCCACTA -ACGGAATCAGTGAGGATGGGAGTA -ACGGAATCAGTGAGGATGTCGTCT -ACGGAATCAGTGAGGATGTGCACT -ACGGAATCAGTGAGGATGCTGACT -ACGGAATCAGTGAGGATGCAACCT -ACGGAATCAGTGAGGATGGCTACT -ACGGAATCAGTGAGGATGGGATCT -ACGGAATCAGTGAGGATGAAGGCT -ACGGAATCAGTGAGGATGTCAACC -ACGGAATCAGTGAGGATGTGTTCC -ACGGAATCAGTGAGGATGATTCCC -ACGGAATCAGTGAGGATGTTCTCG -ACGGAATCAGTGAGGATGTAGACG -ACGGAATCAGTGAGGATGGTAACG -ACGGAATCAGTGAGGATGACTTCG -ACGGAATCAGTGAGGATGTACGCA -ACGGAATCAGTGAGGATGCTTGCA -ACGGAATCAGTGAGGATGCGAACA -ACGGAATCAGTGAGGATGCAGTCA -ACGGAATCAGTGAGGATGGATCCA -ACGGAATCAGTGAGGATGACGACA -ACGGAATCAGTGAGGATGAGCTCA -ACGGAATCAGTGAGGATGTCACGT -ACGGAATCAGTGAGGATGCGTAGT -ACGGAATCAGTGAGGATGGTCAGT -ACGGAATCAGTGAGGATGGAAGGT -ACGGAATCAGTGAGGATGAACCGT -ACGGAATCAGTGAGGATGTTGTGC -ACGGAATCAGTGAGGATGCTAAGC -ACGGAATCAGTGAGGATGACTAGC -ACGGAATCAGTGAGGATGAGATGC -ACGGAATCAGTGAGGATGTGAAGG -ACGGAATCAGTGAGGATGCAATGG -ACGGAATCAGTGAGGATGATGAGG -ACGGAATCAGTGAGGATGAATGGG -ACGGAATCAGTGAGGATGTCCTGA -ACGGAATCAGTGAGGATGTAGCGA -ACGGAATCAGTGAGGATGCACAGA -ACGGAATCAGTGAGGATGGCAAGA -ACGGAATCAGTGAGGATGGGTTGA -ACGGAATCAGTGAGGATGTCCGAT -ACGGAATCAGTGAGGATGTGGCAT -ACGGAATCAGTGAGGATGCGAGAT -ACGGAATCAGTGAGGATGTACCAC -ACGGAATCAGTGAGGATGCAGAAC -ACGGAATCAGTGAGGATGGTCTAC -ACGGAATCAGTGAGGATGACGTAC -ACGGAATCAGTGAGGATGAGTGAC -ACGGAATCAGTGAGGATGCTGTAG -ACGGAATCAGTGAGGATGCCTAAG -ACGGAATCAGTGAGGATGGTTCAG -ACGGAATCAGTGAGGATGGCATAG -ACGGAATCAGTGAGGATGGACAAG -ACGGAATCAGTGAGGATGAAGCAG -ACGGAATCAGTGAGGATGCGTCAA -ACGGAATCAGTGAGGATGGCTGAA -ACGGAATCAGTGAGGATGAGTACG -ACGGAATCAGTGAGGATGATCCGA -ACGGAATCAGTGAGGATGATGGGA -ACGGAATCAGTGAGGATGGTGCAA -ACGGAATCAGTGAGGATGGAGGAA -ACGGAATCAGTGAGGATGCAGGTA -ACGGAATCAGTGAGGATGGACTCT -ACGGAATCAGTGAGGATGAGTCCT -ACGGAATCAGTGAGGATGTAAGCC -ACGGAATCAGTGAGGATGATAGCC -ACGGAATCAGTGAGGATGTAACCG -ACGGAATCAGTGAGGATGATGCCA -ACGGAATCAGTGGGGAATGGAAAC -ACGGAATCAGTGGGGAATAACACC -ACGGAATCAGTGGGGAATATCGAG -ACGGAATCAGTGGGGAATCTCCTT -ACGGAATCAGTGGGGAATCCTGTT -ACGGAATCAGTGGGGAATCGGTTT -ACGGAATCAGTGGGGAATGTGGTT -ACGGAATCAGTGGGGAATGCCTTT -ACGGAATCAGTGGGGAATGGTCTT -ACGGAATCAGTGGGGAATACGCTT -ACGGAATCAGTGGGGAATAGCGTT -ACGGAATCAGTGGGGAATTTCGTC -ACGGAATCAGTGGGGAATTCTCTC -ACGGAATCAGTGGGGAATTGGATC -ACGGAATCAGTGGGGAATCACTTC -ACGGAATCAGTGGGGAATGTACTC -ACGGAATCAGTGGGGAATGATGTC -ACGGAATCAGTGGGGAATACAGTC -ACGGAATCAGTGGGGAATTTGCTG -ACGGAATCAGTGGGGAATTCCATG -ACGGAATCAGTGGGGAATTGTGTG -ACGGAATCAGTGGGGAATCTAGTG -ACGGAATCAGTGGGGAATCATCTG -ACGGAATCAGTGGGGAATGAGTTG -ACGGAATCAGTGGGGAATAGACTG -ACGGAATCAGTGGGGAATTCGGTA -ACGGAATCAGTGGGGAATTGCCTA -ACGGAATCAGTGGGGAATCCACTA -ACGGAATCAGTGGGGAATGGAGTA -ACGGAATCAGTGGGGAATTCGTCT -ACGGAATCAGTGGGGAATTGCACT -ACGGAATCAGTGGGGAATCTGACT -ACGGAATCAGTGGGGAATCAACCT -ACGGAATCAGTGGGGAATGCTACT -ACGGAATCAGTGGGGAATGGATCT -ACGGAATCAGTGGGGAATAAGGCT -ACGGAATCAGTGGGGAATTCAACC -ACGGAATCAGTGGGGAATTGTTCC -ACGGAATCAGTGGGGAATATTCCC -ACGGAATCAGTGGGGAATTTCTCG -ACGGAATCAGTGGGGAATTAGACG -ACGGAATCAGTGGGGAATGTAACG -ACGGAATCAGTGGGGAATACTTCG -ACGGAATCAGTGGGGAATTACGCA -ACGGAATCAGTGGGGAATCTTGCA -ACGGAATCAGTGGGGAATCGAACA -ACGGAATCAGTGGGGAATCAGTCA -ACGGAATCAGTGGGGAATGATCCA -ACGGAATCAGTGGGGAATACGACA -ACGGAATCAGTGGGGAATAGCTCA -ACGGAATCAGTGGGGAATTCACGT -ACGGAATCAGTGGGGAATCGTAGT -ACGGAATCAGTGGGGAATGTCAGT -ACGGAATCAGTGGGGAATGAAGGT -ACGGAATCAGTGGGGAATAACCGT -ACGGAATCAGTGGGGAATTTGTGC -ACGGAATCAGTGGGGAATCTAAGC -ACGGAATCAGTGGGGAATACTAGC -ACGGAATCAGTGGGGAATAGATGC -ACGGAATCAGTGGGGAATTGAAGG -ACGGAATCAGTGGGGAATCAATGG -ACGGAATCAGTGGGGAATATGAGG -ACGGAATCAGTGGGGAATAATGGG -ACGGAATCAGTGGGGAATTCCTGA -ACGGAATCAGTGGGGAATTAGCGA -ACGGAATCAGTGGGGAATCACAGA -ACGGAATCAGTGGGGAATGCAAGA -ACGGAATCAGTGGGGAATGGTTGA -ACGGAATCAGTGGGGAATTCCGAT -ACGGAATCAGTGGGGAATTGGCAT -ACGGAATCAGTGGGGAATCGAGAT -ACGGAATCAGTGGGGAATTACCAC -ACGGAATCAGTGGGGAATCAGAAC -ACGGAATCAGTGGGGAATGTCTAC -ACGGAATCAGTGGGGAATACGTAC -ACGGAATCAGTGGGGAATAGTGAC -ACGGAATCAGTGGGGAATCTGTAG -ACGGAATCAGTGGGGAATCCTAAG -ACGGAATCAGTGGGGAATGTTCAG -ACGGAATCAGTGGGGAATGCATAG -ACGGAATCAGTGGGGAATGACAAG -ACGGAATCAGTGGGGAATAAGCAG -ACGGAATCAGTGGGGAATCGTCAA -ACGGAATCAGTGGGGAATGCTGAA -ACGGAATCAGTGGGGAATAGTACG -ACGGAATCAGTGGGGAATATCCGA -ACGGAATCAGTGGGGAATATGGGA -ACGGAATCAGTGGGGAATGTGCAA -ACGGAATCAGTGGGGAATGAGGAA -ACGGAATCAGTGGGGAATCAGGTA -ACGGAATCAGTGGGGAATGACTCT -ACGGAATCAGTGGGGAATAGTCCT -ACGGAATCAGTGGGGAATTAAGCC -ACGGAATCAGTGGGGAATATAGCC -ACGGAATCAGTGGGGAATTAACCG -ACGGAATCAGTGGGGAATATGCCA -ACGGAATCAGTGTGATCCGGAAAC -ACGGAATCAGTGTGATCCAACACC -ACGGAATCAGTGTGATCCATCGAG -ACGGAATCAGTGTGATCCCTCCTT -ACGGAATCAGTGTGATCCCCTGTT -ACGGAATCAGTGTGATCCCGGTTT -ACGGAATCAGTGTGATCCGTGGTT -ACGGAATCAGTGTGATCCGCCTTT -ACGGAATCAGTGTGATCCGGTCTT -ACGGAATCAGTGTGATCCACGCTT -ACGGAATCAGTGTGATCCAGCGTT -ACGGAATCAGTGTGATCCTTCGTC -ACGGAATCAGTGTGATCCTCTCTC -ACGGAATCAGTGTGATCCTGGATC -ACGGAATCAGTGTGATCCCACTTC -ACGGAATCAGTGTGATCCGTACTC -ACGGAATCAGTGTGATCCGATGTC -ACGGAATCAGTGTGATCCACAGTC -ACGGAATCAGTGTGATCCTTGCTG -ACGGAATCAGTGTGATCCTCCATG -ACGGAATCAGTGTGATCCTGTGTG -ACGGAATCAGTGTGATCCCTAGTG -ACGGAATCAGTGTGATCCCATCTG -ACGGAATCAGTGTGATCCGAGTTG -ACGGAATCAGTGTGATCCAGACTG -ACGGAATCAGTGTGATCCTCGGTA -ACGGAATCAGTGTGATCCTGCCTA -ACGGAATCAGTGTGATCCCCACTA -ACGGAATCAGTGTGATCCGGAGTA -ACGGAATCAGTGTGATCCTCGTCT -ACGGAATCAGTGTGATCCTGCACT -ACGGAATCAGTGTGATCCCTGACT -ACGGAATCAGTGTGATCCCAACCT -ACGGAATCAGTGTGATCCGCTACT -ACGGAATCAGTGTGATCCGGATCT -ACGGAATCAGTGTGATCCAAGGCT -ACGGAATCAGTGTGATCCTCAACC -ACGGAATCAGTGTGATCCTGTTCC -ACGGAATCAGTGTGATCCATTCCC -ACGGAATCAGTGTGATCCTTCTCG -ACGGAATCAGTGTGATCCTAGACG -ACGGAATCAGTGTGATCCGTAACG -ACGGAATCAGTGTGATCCACTTCG -ACGGAATCAGTGTGATCCTACGCA -ACGGAATCAGTGTGATCCCTTGCA -ACGGAATCAGTGTGATCCCGAACA -ACGGAATCAGTGTGATCCCAGTCA -ACGGAATCAGTGTGATCCGATCCA -ACGGAATCAGTGTGATCCACGACA -ACGGAATCAGTGTGATCCAGCTCA -ACGGAATCAGTGTGATCCTCACGT -ACGGAATCAGTGTGATCCCGTAGT -ACGGAATCAGTGTGATCCGTCAGT -ACGGAATCAGTGTGATCCGAAGGT -ACGGAATCAGTGTGATCCAACCGT -ACGGAATCAGTGTGATCCTTGTGC -ACGGAATCAGTGTGATCCCTAAGC -ACGGAATCAGTGTGATCCACTAGC -ACGGAATCAGTGTGATCCAGATGC -ACGGAATCAGTGTGATCCTGAAGG -ACGGAATCAGTGTGATCCCAATGG -ACGGAATCAGTGTGATCCATGAGG -ACGGAATCAGTGTGATCCAATGGG -ACGGAATCAGTGTGATCCTCCTGA -ACGGAATCAGTGTGATCCTAGCGA -ACGGAATCAGTGTGATCCCACAGA -ACGGAATCAGTGTGATCCGCAAGA -ACGGAATCAGTGTGATCCGGTTGA -ACGGAATCAGTGTGATCCTCCGAT -ACGGAATCAGTGTGATCCTGGCAT -ACGGAATCAGTGTGATCCCGAGAT -ACGGAATCAGTGTGATCCTACCAC -ACGGAATCAGTGTGATCCCAGAAC -ACGGAATCAGTGTGATCCGTCTAC -ACGGAATCAGTGTGATCCACGTAC -ACGGAATCAGTGTGATCCAGTGAC -ACGGAATCAGTGTGATCCCTGTAG -ACGGAATCAGTGTGATCCCCTAAG -ACGGAATCAGTGTGATCCGTTCAG -ACGGAATCAGTGTGATCCGCATAG -ACGGAATCAGTGTGATCCGACAAG -ACGGAATCAGTGTGATCCAAGCAG -ACGGAATCAGTGTGATCCCGTCAA -ACGGAATCAGTGTGATCCGCTGAA -ACGGAATCAGTGTGATCCAGTACG -ACGGAATCAGTGTGATCCATCCGA -ACGGAATCAGTGTGATCCATGGGA -ACGGAATCAGTGTGATCCGTGCAA -ACGGAATCAGTGTGATCCGAGGAA -ACGGAATCAGTGTGATCCCAGGTA -ACGGAATCAGTGTGATCCGACTCT -ACGGAATCAGTGTGATCCAGTCCT -ACGGAATCAGTGTGATCCTAAGCC -ACGGAATCAGTGTGATCCATAGCC -ACGGAATCAGTGTGATCCTAACCG -ACGGAATCAGTGTGATCCATGCCA -ACGGAATCAGTGCGATAGGGAAAC -ACGGAATCAGTGCGATAGAACACC -ACGGAATCAGTGCGATAGATCGAG -ACGGAATCAGTGCGATAGCTCCTT -ACGGAATCAGTGCGATAGCCTGTT -ACGGAATCAGTGCGATAGCGGTTT -ACGGAATCAGTGCGATAGGTGGTT -ACGGAATCAGTGCGATAGGCCTTT -ACGGAATCAGTGCGATAGGGTCTT -ACGGAATCAGTGCGATAGACGCTT -ACGGAATCAGTGCGATAGAGCGTT -ACGGAATCAGTGCGATAGTTCGTC -ACGGAATCAGTGCGATAGTCTCTC -ACGGAATCAGTGCGATAGTGGATC -ACGGAATCAGTGCGATAGCACTTC -ACGGAATCAGTGCGATAGGTACTC -ACGGAATCAGTGCGATAGGATGTC -ACGGAATCAGTGCGATAGACAGTC -ACGGAATCAGTGCGATAGTTGCTG -ACGGAATCAGTGCGATAGTCCATG -ACGGAATCAGTGCGATAGTGTGTG -ACGGAATCAGTGCGATAGCTAGTG -ACGGAATCAGTGCGATAGCATCTG -ACGGAATCAGTGCGATAGGAGTTG -ACGGAATCAGTGCGATAGAGACTG -ACGGAATCAGTGCGATAGTCGGTA -ACGGAATCAGTGCGATAGTGCCTA -ACGGAATCAGTGCGATAGCCACTA -ACGGAATCAGTGCGATAGGGAGTA -ACGGAATCAGTGCGATAGTCGTCT -ACGGAATCAGTGCGATAGTGCACT -ACGGAATCAGTGCGATAGCTGACT -ACGGAATCAGTGCGATAGCAACCT -ACGGAATCAGTGCGATAGGCTACT -ACGGAATCAGTGCGATAGGGATCT -ACGGAATCAGTGCGATAGAAGGCT -ACGGAATCAGTGCGATAGTCAACC -ACGGAATCAGTGCGATAGTGTTCC -ACGGAATCAGTGCGATAGATTCCC -ACGGAATCAGTGCGATAGTTCTCG -ACGGAATCAGTGCGATAGTAGACG -ACGGAATCAGTGCGATAGGTAACG -ACGGAATCAGTGCGATAGACTTCG -ACGGAATCAGTGCGATAGTACGCA -ACGGAATCAGTGCGATAGCTTGCA -ACGGAATCAGTGCGATAGCGAACA -ACGGAATCAGTGCGATAGCAGTCA -ACGGAATCAGTGCGATAGGATCCA -ACGGAATCAGTGCGATAGACGACA -ACGGAATCAGTGCGATAGAGCTCA -ACGGAATCAGTGCGATAGTCACGT -ACGGAATCAGTGCGATAGCGTAGT -ACGGAATCAGTGCGATAGGTCAGT -ACGGAATCAGTGCGATAGGAAGGT -ACGGAATCAGTGCGATAGAACCGT -ACGGAATCAGTGCGATAGTTGTGC -ACGGAATCAGTGCGATAGCTAAGC -ACGGAATCAGTGCGATAGACTAGC -ACGGAATCAGTGCGATAGAGATGC -ACGGAATCAGTGCGATAGTGAAGG -ACGGAATCAGTGCGATAGCAATGG -ACGGAATCAGTGCGATAGATGAGG -ACGGAATCAGTGCGATAGAATGGG -ACGGAATCAGTGCGATAGTCCTGA -ACGGAATCAGTGCGATAGTAGCGA -ACGGAATCAGTGCGATAGCACAGA -ACGGAATCAGTGCGATAGGCAAGA -ACGGAATCAGTGCGATAGGGTTGA -ACGGAATCAGTGCGATAGTCCGAT -ACGGAATCAGTGCGATAGTGGCAT -ACGGAATCAGTGCGATAGCGAGAT -ACGGAATCAGTGCGATAGTACCAC -ACGGAATCAGTGCGATAGCAGAAC -ACGGAATCAGTGCGATAGGTCTAC -ACGGAATCAGTGCGATAGACGTAC -ACGGAATCAGTGCGATAGAGTGAC -ACGGAATCAGTGCGATAGCTGTAG -ACGGAATCAGTGCGATAGCCTAAG -ACGGAATCAGTGCGATAGGTTCAG -ACGGAATCAGTGCGATAGGCATAG -ACGGAATCAGTGCGATAGGACAAG -ACGGAATCAGTGCGATAGAAGCAG -ACGGAATCAGTGCGATAGCGTCAA -ACGGAATCAGTGCGATAGGCTGAA -ACGGAATCAGTGCGATAGAGTACG -ACGGAATCAGTGCGATAGATCCGA -ACGGAATCAGTGCGATAGATGGGA -ACGGAATCAGTGCGATAGGTGCAA -ACGGAATCAGTGCGATAGGAGGAA -ACGGAATCAGTGCGATAGCAGGTA -ACGGAATCAGTGCGATAGGACTCT -ACGGAATCAGTGCGATAGAGTCCT -ACGGAATCAGTGCGATAGTAAGCC -ACGGAATCAGTGCGATAGATAGCC -ACGGAATCAGTGCGATAGTAACCG -ACGGAATCAGTGCGATAGATGCCA -ACGGAATCAGTGAGACACGGAAAC -ACGGAATCAGTGAGACACAACACC -ACGGAATCAGTGAGACACATCGAG -ACGGAATCAGTGAGACACCTCCTT -ACGGAATCAGTGAGACACCCTGTT -ACGGAATCAGTGAGACACCGGTTT -ACGGAATCAGTGAGACACGTGGTT -ACGGAATCAGTGAGACACGCCTTT -ACGGAATCAGTGAGACACGGTCTT -ACGGAATCAGTGAGACACACGCTT -ACGGAATCAGTGAGACACAGCGTT -ACGGAATCAGTGAGACACTTCGTC -ACGGAATCAGTGAGACACTCTCTC -ACGGAATCAGTGAGACACTGGATC -ACGGAATCAGTGAGACACCACTTC -ACGGAATCAGTGAGACACGTACTC -ACGGAATCAGTGAGACACGATGTC -ACGGAATCAGTGAGACACACAGTC -ACGGAATCAGTGAGACACTTGCTG -ACGGAATCAGTGAGACACTCCATG -ACGGAATCAGTGAGACACTGTGTG -ACGGAATCAGTGAGACACCTAGTG -ACGGAATCAGTGAGACACCATCTG -ACGGAATCAGTGAGACACGAGTTG -ACGGAATCAGTGAGACACAGACTG -ACGGAATCAGTGAGACACTCGGTA -ACGGAATCAGTGAGACACTGCCTA -ACGGAATCAGTGAGACACCCACTA -ACGGAATCAGTGAGACACGGAGTA -ACGGAATCAGTGAGACACTCGTCT -ACGGAATCAGTGAGACACTGCACT -ACGGAATCAGTGAGACACCTGACT -ACGGAATCAGTGAGACACCAACCT -ACGGAATCAGTGAGACACGCTACT -ACGGAATCAGTGAGACACGGATCT -ACGGAATCAGTGAGACACAAGGCT -ACGGAATCAGTGAGACACTCAACC -ACGGAATCAGTGAGACACTGTTCC -ACGGAATCAGTGAGACACATTCCC -ACGGAATCAGTGAGACACTTCTCG -ACGGAATCAGTGAGACACTAGACG -ACGGAATCAGTGAGACACGTAACG -ACGGAATCAGTGAGACACACTTCG -ACGGAATCAGTGAGACACTACGCA -ACGGAATCAGTGAGACACCTTGCA -ACGGAATCAGTGAGACACCGAACA -ACGGAATCAGTGAGACACCAGTCA -ACGGAATCAGTGAGACACGATCCA -ACGGAATCAGTGAGACACACGACA -ACGGAATCAGTGAGACACAGCTCA -ACGGAATCAGTGAGACACTCACGT -ACGGAATCAGTGAGACACCGTAGT -ACGGAATCAGTGAGACACGTCAGT -ACGGAATCAGTGAGACACGAAGGT -ACGGAATCAGTGAGACACAACCGT -ACGGAATCAGTGAGACACTTGTGC -ACGGAATCAGTGAGACACCTAAGC -ACGGAATCAGTGAGACACACTAGC -ACGGAATCAGTGAGACACAGATGC -ACGGAATCAGTGAGACACTGAAGG -ACGGAATCAGTGAGACACCAATGG -ACGGAATCAGTGAGACACATGAGG -ACGGAATCAGTGAGACACAATGGG -ACGGAATCAGTGAGACACTCCTGA -ACGGAATCAGTGAGACACTAGCGA -ACGGAATCAGTGAGACACCACAGA -ACGGAATCAGTGAGACACGCAAGA -ACGGAATCAGTGAGACACGGTTGA -ACGGAATCAGTGAGACACTCCGAT -ACGGAATCAGTGAGACACTGGCAT -ACGGAATCAGTGAGACACCGAGAT -ACGGAATCAGTGAGACACTACCAC -ACGGAATCAGTGAGACACCAGAAC -ACGGAATCAGTGAGACACGTCTAC -ACGGAATCAGTGAGACACACGTAC -ACGGAATCAGTGAGACACAGTGAC -ACGGAATCAGTGAGACACCTGTAG -ACGGAATCAGTGAGACACCCTAAG -ACGGAATCAGTGAGACACGTTCAG -ACGGAATCAGTGAGACACGCATAG -ACGGAATCAGTGAGACACGACAAG -ACGGAATCAGTGAGACACAAGCAG -ACGGAATCAGTGAGACACCGTCAA -ACGGAATCAGTGAGACACGCTGAA -ACGGAATCAGTGAGACACAGTACG -ACGGAATCAGTGAGACACATCCGA -ACGGAATCAGTGAGACACATGGGA -ACGGAATCAGTGAGACACGTGCAA -ACGGAATCAGTGAGACACGAGGAA -ACGGAATCAGTGAGACACCAGGTA -ACGGAATCAGTGAGACACGACTCT -ACGGAATCAGTGAGACACAGTCCT -ACGGAATCAGTGAGACACTAAGCC -ACGGAATCAGTGAGACACATAGCC -ACGGAATCAGTGAGACACTAACCG -ACGGAATCAGTGAGACACATGCCA -ACGGAATCAGTGAGAGCAGGAAAC -ACGGAATCAGTGAGAGCAAACACC -ACGGAATCAGTGAGAGCAATCGAG -ACGGAATCAGTGAGAGCACTCCTT -ACGGAATCAGTGAGAGCACCTGTT -ACGGAATCAGTGAGAGCACGGTTT -ACGGAATCAGTGAGAGCAGTGGTT -ACGGAATCAGTGAGAGCAGCCTTT -ACGGAATCAGTGAGAGCAGGTCTT -ACGGAATCAGTGAGAGCAACGCTT -ACGGAATCAGTGAGAGCAAGCGTT -ACGGAATCAGTGAGAGCATTCGTC -ACGGAATCAGTGAGAGCATCTCTC -ACGGAATCAGTGAGAGCATGGATC -ACGGAATCAGTGAGAGCACACTTC -ACGGAATCAGTGAGAGCAGTACTC -ACGGAATCAGTGAGAGCAGATGTC -ACGGAATCAGTGAGAGCAACAGTC -ACGGAATCAGTGAGAGCATTGCTG -ACGGAATCAGTGAGAGCATCCATG -ACGGAATCAGTGAGAGCATGTGTG -ACGGAATCAGTGAGAGCACTAGTG -ACGGAATCAGTGAGAGCACATCTG -ACGGAATCAGTGAGAGCAGAGTTG -ACGGAATCAGTGAGAGCAAGACTG -ACGGAATCAGTGAGAGCATCGGTA -ACGGAATCAGTGAGAGCATGCCTA -ACGGAATCAGTGAGAGCACCACTA -ACGGAATCAGTGAGAGCAGGAGTA -ACGGAATCAGTGAGAGCATCGTCT -ACGGAATCAGTGAGAGCATGCACT -ACGGAATCAGTGAGAGCACTGACT -ACGGAATCAGTGAGAGCACAACCT -ACGGAATCAGTGAGAGCAGCTACT -ACGGAATCAGTGAGAGCAGGATCT -ACGGAATCAGTGAGAGCAAAGGCT -ACGGAATCAGTGAGAGCATCAACC -ACGGAATCAGTGAGAGCATGTTCC -ACGGAATCAGTGAGAGCAATTCCC -ACGGAATCAGTGAGAGCATTCTCG -ACGGAATCAGTGAGAGCATAGACG -ACGGAATCAGTGAGAGCAGTAACG -ACGGAATCAGTGAGAGCAACTTCG -ACGGAATCAGTGAGAGCATACGCA -ACGGAATCAGTGAGAGCACTTGCA -ACGGAATCAGTGAGAGCACGAACA -ACGGAATCAGTGAGAGCACAGTCA -ACGGAATCAGTGAGAGCAGATCCA -ACGGAATCAGTGAGAGCAACGACA -ACGGAATCAGTGAGAGCAAGCTCA -ACGGAATCAGTGAGAGCATCACGT -ACGGAATCAGTGAGAGCACGTAGT -ACGGAATCAGTGAGAGCAGTCAGT -ACGGAATCAGTGAGAGCAGAAGGT -ACGGAATCAGTGAGAGCAAACCGT -ACGGAATCAGTGAGAGCATTGTGC -ACGGAATCAGTGAGAGCACTAAGC -ACGGAATCAGTGAGAGCAACTAGC -ACGGAATCAGTGAGAGCAAGATGC -ACGGAATCAGTGAGAGCATGAAGG -ACGGAATCAGTGAGAGCACAATGG -ACGGAATCAGTGAGAGCAATGAGG -ACGGAATCAGTGAGAGCAAATGGG -ACGGAATCAGTGAGAGCATCCTGA -ACGGAATCAGTGAGAGCATAGCGA -ACGGAATCAGTGAGAGCACACAGA -ACGGAATCAGTGAGAGCAGCAAGA -ACGGAATCAGTGAGAGCAGGTTGA -ACGGAATCAGTGAGAGCATCCGAT -ACGGAATCAGTGAGAGCATGGCAT -ACGGAATCAGTGAGAGCACGAGAT -ACGGAATCAGTGAGAGCATACCAC -ACGGAATCAGTGAGAGCACAGAAC -ACGGAATCAGTGAGAGCAGTCTAC -ACGGAATCAGTGAGAGCAACGTAC -ACGGAATCAGTGAGAGCAAGTGAC -ACGGAATCAGTGAGAGCACTGTAG -ACGGAATCAGTGAGAGCACCTAAG -ACGGAATCAGTGAGAGCAGTTCAG -ACGGAATCAGTGAGAGCAGCATAG -ACGGAATCAGTGAGAGCAGACAAG -ACGGAATCAGTGAGAGCAAAGCAG -ACGGAATCAGTGAGAGCACGTCAA -ACGGAATCAGTGAGAGCAGCTGAA -ACGGAATCAGTGAGAGCAAGTACG -ACGGAATCAGTGAGAGCAATCCGA -ACGGAATCAGTGAGAGCAATGGGA -ACGGAATCAGTGAGAGCAGTGCAA -ACGGAATCAGTGAGAGCAGAGGAA -ACGGAATCAGTGAGAGCACAGGTA -ACGGAATCAGTGAGAGCAGACTCT -ACGGAATCAGTGAGAGCAAGTCCT -ACGGAATCAGTGAGAGCATAAGCC -ACGGAATCAGTGAGAGCAATAGCC -ACGGAATCAGTGAGAGCATAACCG -ACGGAATCAGTGAGAGCAATGCCA -ACGGAATCAGTGTGAGGTGGAAAC -ACGGAATCAGTGTGAGGTAACACC -ACGGAATCAGTGTGAGGTATCGAG -ACGGAATCAGTGTGAGGTCTCCTT -ACGGAATCAGTGTGAGGTCCTGTT -ACGGAATCAGTGTGAGGTCGGTTT -ACGGAATCAGTGTGAGGTGTGGTT -ACGGAATCAGTGTGAGGTGCCTTT -ACGGAATCAGTGTGAGGTGGTCTT -ACGGAATCAGTGTGAGGTACGCTT -ACGGAATCAGTGTGAGGTAGCGTT -ACGGAATCAGTGTGAGGTTTCGTC -ACGGAATCAGTGTGAGGTTCTCTC -ACGGAATCAGTGTGAGGTTGGATC -ACGGAATCAGTGTGAGGTCACTTC -ACGGAATCAGTGTGAGGTGTACTC -ACGGAATCAGTGTGAGGTGATGTC -ACGGAATCAGTGTGAGGTACAGTC -ACGGAATCAGTGTGAGGTTTGCTG -ACGGAATCAGTGTGAGGTTCCATG -ACGGAATCAGTGTGAGGTTGTGTG -ACGGAATCAGTGTGAGGTCTAGTG -ACGGAATCAGTGTGAGGTCATCTG -ACGGAATCAGTGTGAGGTGAGTTG -ACGGAATCAGTGTGAGGTAGACTG -ACGGAATCAGTGTGAGGTTCGGTA -ACGGAATCAGTGTGAGGTTGCCTA -ACGGAATCAGTGTGAGGTCCACTA -ACGGAATCAGTGTGAGGTGGAGTA -ACGGAATCAGTGTGAGGTTCGTCT -ACGGAATCAGTGTGAGGTTGCACT -ACGGAATCAGTGTGAGGTCTGACT -ACGGAATCAGTGTGAGGTCAACCT -ACGGAATCAGTGTGAGGTGCTACT -ACGGAATCAGTGTGAGGTGGATCT -ACGGAATCAGTGTGAGGTAAGGCT -ACGGAATCAGTGTGAGGTTCAACC -ACGGAATCAGTGTGAGGTTGTTCC -ACGGAATCAGTGTGAGGTATTCCC -ACGGAATCAGTGTGAGGTTTCTCG -ACGGAATCAGTGTGAGGTTAGACG -ACGGAATCAGTGTGAGGTGTAACG -ACGGAATCAGTGTGAGGTACTTCG -ACGGAATCAGTGTGAGGTTACGCA -ACGGAATCAGTGTGAGGTCTTGCA -ACGGAATCAGTGTGAGGTCGAACA -ACGGAATCAGTGTGAGGTCAGTCA -ACGGAATCAGTGTGAGGTGATCCA -ACGGAATCAGTGTGAGGTACGACA -ACGGAATCAGTGTGAGGTAGCTCA -ACGGAATCAGTGTGAGGTTCACGT -ACGGAATCAGTGTGAGGTCGTAGT -ACGGAATCAGTGTGAGGTGTCAGT -ACGGAATCAGTGTGAGGTGAAGGT -ACGGAATCAGTGTGAGGTAACCGT -ACGGAATCAGTGTGAGGTTTGTGC -ACGGAATCAGTGTGAGGTCTAAGC -ACGGAATCAGTGTGAGGTACTAGC -ACGGAATCAGTGTGAGGTAGATGC -ACGGAATCAGTGTGAGGTTGAAGG -ACGGAATCAGTGTGAGGTCAATGG -ACGGAATCAGTGTGAGGTATGAGG -ACGGAATCAGTGTGAGGTAATGGG -ACGGAATCAGTGTGAGGTTCCTGA -ACGGAATCAGTGTGAGGTTAGCGA -ACGGAATCAGTGTGAGGTCACAGA -ACGGAATCAGTGTGAGGTGCAAGA -ACGGAATCAGTGTGAGGTGGTTGA -ACGGAATCAGTGTGAGGTTCCGAT -ACGGAATCAGTGTGAGGTTGGCAT -ACGGAATCAGTGTGAGGTCGAGAT -ACGGAATCAGTGTGAGGTTACCAC -ACGGAATCAGTGTGAGGTCAGAAC -ACGGAATCAGTGTGAGGTGTCTAC -ACGGAATCAGTGTGAGGTACGTAC -ACGGAATCAGTGTGAGGTAGTGAC -ACGGAATCAGTGTGAGGTCTGTAG -ACGGAATCAGTGTGAGGTCCTAAG -ACGGAATCAGTGTGAGGTGTTCAG -ACGGAATCAGTGTGAGGTGCATAG -ACGGAATCAGTGTGAGGTGACAAG -ACGGAATCAGTGTGAGGTAAGCAG -ACGGAATCAGTGTGAGGTCGTCAA -ACGGAATCAGTGTGAGGTGCTGAA -ACGGAATCAGTGTGAGGTAGTACG -ACGGAATCAGTGTGAGGTATCCGA -ACGGAATCAGTGTGAGGTATGGGA -ACGGAATCAGTGTGAGGTGTGCAA -ACGGAATCAGTGTGAGGTGAGGAA -ACGGAATCAGTGTGAGGTCAGGTA -ACGGAATCAGTGTGAGGTGACTCT -ACGGAATCAGTGTGAGGTAGTCCT -ACGGAATCAGTGTGAGGTTAAGCC -ACGGAATCAGTGTGAGGTATAGCC -ACGGAATCAGTGTGAGGTTAACCG -ACGGAATCAGTGTGAGGTATGCCA -ACGGAATCAGTGGATTCCGGAAAC -ACGGAATCAGTGGATTCCAACACC -ACGGAATCAGTGGATTCCATCGAG -ACGGAATCAGTGGATTCCCTCCTT -ACGGAATCAGTGGATTCCCCTGTT -ACGGAATCAGTGGATTCCCGGTTT -ACGGAATCAGTGGATTCCGTGGTT -ACGGAATCAGTGGATTCCGCCTTT -ACGGAATCAGTGGATTCCGGTCTT -ACGGAATCAGTGGATTCCACGCTT -ACGGAATCAGTGGATTCCAGCGTT -ACGGAATCAGTGGATTCCTTCGTC -ACGGAATCAGTGGATTCCTCTCTC -ACGGAATCAGTGGATTCCTGGATC -ACGGAATCAGTGGATTCCCACTTC -ACGGAATCAGTGGATTCCGTACTC -ACGGAATCAGTGGATTCCGATGTC -ACGGAATCAGTGGATTCCACAGTC -ACGGAATCAGTGGATTCCTTGCTG -ACGGAATCAGTGGATTCCTCCATG -ACGGAATCAGTGGATTCCTGTGTG -ACGGAATCAGTGGATTCCCTAGTG -ACGGAATCAGTGGATTCCCATCTG -ACGGAATCAGTGGATTCCGAGTTG -ACGGAATCAGTGGATTCCAGACTG -ACGGAATCAGTGGATTCCTCGGTA -ACGGAATCAGTGGATTCCTGCCTA -ACGGAATCAGTGGATTCCCCACTA -ACGGAATCAGTGGATTCCGGAGTA -ACGGAATCAGTGGATTCCTCGTCT -ACGGAATCAGTGGATTCCTGCACT -ACGGAATCAGTGGATTCCCTGACT -ACGGAATCAGTGGATTCCCAACCT -ACGGAATCAGTGGATTCCGCTACT -ACGGAATCAGTGGATTCCGGATCT -ACGGAATCAGTGGATTCCAAGGCT -ACGGAATCAGTGGATTCCTCAACC -ACGGAATCAGTGGATTCCTGTTCC -ACGGAATCAGTGGATTCCATTCCC -ACGGAATCAGTGGATTCCTTCTCG -ACGGAATCAGTGGATTCCTAGACG -ACGGAATCAGTGGATTCCGTAACG -ACGGAATCAGTGGATTCCACTTCG -ACGGAATCAGTGGATTCCTACGCA -ACGGAATCAGTGGATTCCCTTGCA -ACGGAATCAGTGGATTCCCGAACA -ACGGAATCAGTGGATTCCCAGTCA -ACGGAATCAGTGGATTCCGATCCA -ACGGAATCAGTGGATTCCACGACA -ACGGAATCAGTGGATTCCAGCTCA -ACGGAATCAGTGGATTCCTCACGT -ACGGAATCAGTGGATTCCCGTAGT -ACGGAATCAGTGGATTCCGTCAGT -ACGGAATCAGTGGATTCCGAAGGT -ACGGAATCAGTGGATTCCAACCGT -ACGGAATCAGTGGATTCCTTGTGC -ACGGAATCAGTGGATTCCCTAAGC -ACGGAATCAGTGGATTCCACTAGC -ACGGAATCAGTGGATTCCAGATGC -ACGGAATCAGTGGATTCCTGAAGG -ACGGAATCAGTGGATTCCCAATGG -ACGGAATCAGTGGATTCCATGAGG -ACGGAATCAGTGGATTCCAATGGG -ACGGAATCAGTGGATTCCTCCTGA -ACGGAATCAGTGGATTCCTAGCGA -ACGGAATCAGTGGATTCCCACAGA -ACGGAATCAGTGGATTCCGCAAGA -ACGGAATCAGTGGATTCCGGTTGA -ACGGAATCAGTGGATTCCTCCGAT -ACGGAATCAGTGGATTCCTGGCAT -ACGGAATCAGTGGATTCCCGAGAT -ACGGAATCAGTGGATTCCTACCAC -ACGGAATCAGTGGATTCCCAGAAC -ACGGAATCAGTGGATTCCGTCTAC -ACGGAATCAGTGGATTCCACGTAC -ACGGAATCAGTGGATTCCAGTGAC -ACGGAATCAGTGGATTCCCTGTAG -ACGGAATCAGTGGATTCCCCTAAG -ACGGAATCAGTGGATTCCGTTCAG -ACGGAATCAGTGGATTCCGCATAG -ACGGAATCAGTGGATTCCGACAAG -ACGGAATCAGTGGATTCCAAGCAG -ACGGAATCAGTGGATTCCCGTCAA -ACGGAATCAGTGGATTCCGCTGAA -ACGGAATCAGTGGATTCCAGTACG -ACGGAATCAGTGGATTCCATCCGA -ACGGAATCAGTGGATTCCATGGGA -ACGGAATCAGTGGATTCCGTGCAA -ACGGAATCAGTGGATTCCGAGGAA -ACGGAATCAGTGGATTCCCAGGTA -ACGGAATCAGTGGATTCCGACTCT -ACGGAATCAGTGGATTCCAGTCCT -ACGGAATCAGTGGATTCCTAAGCC -ACGGAATCAGTGGATTCCATAGCC -ACGGAATCAGTGGATTCCTAACCG -ACGGAATCAGTGGATTCCATGCCA -ACGGAATCAGTGCATTGGGGAAAC -ACGGAATCAGTGCATTGGAACACC -ACGGAATCAGTGCATTGGATCGAG -ACGGAATCAGTGCATTGGCTCCTT -ACGGAATCAGTGCATTGGCCTGTT -ACGGAATCAGTGCATTGGCGGTTT -ACGGAATCAGTGCATTGGGTGGTT -ACGGAATCAGTGCATTGGGCCTTT -ACGGAATCAGTGCATTGGGGTCTT -ACGGAATCAGTGCATTGGACGCTT -ACGGAATCAGTGCATTGGAGCGTT -ACGGAATCAGTGCATTGGTTCGTC -ACGGAATCAGTGCATTGGTCTCTC -ACGGAATCAGTGCATTGGTGGATC -ACGGAATCAGTGCATTGGCACTTC -ACGGAATCAGTGCATTGGGTACTC -ACGGAATCAGTGCATTGGGATGTC -ACGGAATCAGTGCATTGGACAGTC -ACGGAATCAGTGCATTGGTTGCTG -ACGGAATCAGTGCATTGGTCCATG -ACGGAATCAGTGCATTGGTGTGTG -ACGGAATCAGTGCATTGGCTAGTG -ACGGAATCAGTGCATTGGCATCTG -ACGGAATCAGTGCATTGGGAGTTG -ACGGAATCAGTGCATTGGAGACTG -ACGGAATCAGTGCATTGGTCGGTA -ACGGAATCAGTGCATTGGTGCCTA -ACGGAATCAGTGCATTGGCCACTA -ACGGAATCAGTGCATTGGGGAGTA -ACGGAATCAGTGCATTGGTCGTCT -ACGGAATCAGTGCATTGGTGCACT -ACGGAATCAGTGCATTGGCTGACT -ACGGAATCAGTGCATTGGCAACCT -ACGGAATCAGTGCATTGGGCTACT -ACGGAATCAGTGCATTGGGGATCT -ACGGAATCAGTGCATTGGAAGGCT -ACGGAATCAGTGCATTGGTCAACC -ACGGAATCAGTGCATTGGTGTTCC -ACGGAATCAGTGCATTGGATTCCC -ACGGAATCAGTGCATTGGTTCTCG -ACGGAATCAGTGCATTGGTAGACG -ACGGAATCAGTGCATTGGGTAACG -ACGGAATCAGTGCATTGGACTTCG -ACGGAATCAGTGCATTGGTACGCA -ACGGAATCAGTGCATTGGCTTGCA -ACGGAATCAGTGCATTGGCGAACA -ACGGAATCAGTGCATTGGCAGTCA -ACGGAATCAGTGCATTGGGATCCA -ACGGAATCAGTGCATTGGACGACA -ACGGAATCAGTGCATTGGAGCTCA -ACGGAATCAGTGCATTGGTCACGT -ACGGAATCAGTGCATTGGCGTAGT -ACGGAATCAGTGCATTGGGTCAGT -ACGGAATCAGTGCATTGGGAAGGT -ACGGAATCAGTGCATTGGAACCGT -ACGGAATCAGTGCATTGGTTGTGC -ACGGAATCAGTGCATTGGCTAAGC -ACGGAATCAGTGCATTGGACTAGC -ACGGAATCAGTGCATTGGAGATGC -ACGGAATCAGTGCATTGGTGAAGG -ACGGAATCAGTGCATTGGCAATGG -ACGGAATCAGTGCATTGGATGAGG -ACGGAATCAGTGCATTGGAATGGG -ACGGAATCAGTGCATTGGTCCTGA -ACGGAATCAGTGCATTGGTAGCGA -ACGGAATCAGTGCATTGGCACAGA -ACGGAATCAGTGCATTGGGCAAGA -ACGGAATCAGTGCATTGGGGTTGA -ACGGAATCAGTGCATTGGTCCGAT -ACGGAATCAGTGCATTGGTGGCAT -ACGGAATCAGTGCATTGGCGAGAT -ACGGAATCAGTGCATTGGTACCAC -ACGGAATCAGTGCATTGGCAGAAC -ACGGAATCAGTGCATTGGGTCTAC -ACGGAATCAGTGCATTGGACGTAC -ACGGAATCAGTGCATTGGAGTGAC -ACGGAATCAGTGCATTGGCTGTAG -ACGGAATCAGTGCATTGGCCTAAG -ACGGAATCAGTGCATTGGGTTCAG -ACGGAATCAGTGCATTGGGCATAG -ACGGAATCAGTGCATTGGGACAAG -ACGGAATCAGTGCATTGGAAGCAG -ACGGAATCAGTGCATTGGCGTCAA -ACGGAATCAGTGCATTGGGCTGAA -ACGGAATCAGTGCATTGGAGTACG -ACGGAATCAGTGCATTGGATCCGA -ACGGAATCAGTGCATTGGATGGGA -ACGGAATCAGTGCATTGGGTGCAA -ACGGAATCAGTGCATTGGGAGGAA -ACGGAATCAGTGCATTGGCAGGTA -ACGGAATCAGTGCATTGGGACTCT -ACGGAATCAGTGCATTGGAGTCCT -ACGGAATCAGTGCATTGGTAAGCC -ACGGAATCAGTGCATTGGATAGCC -ACGGAATCAGTGCATTGGTAACCG -ACGGAATCAGTGCATTGGATGCCA -ACGGAATCAGTGGATCGAGGAAAC -ACGGAATCAGTGGATCGAAACACC -ACGGAATCAGTGGATCGAATCGAG -ACGGAATCAGTGGATCGACTCCTT -ACGGAATCAGTGGATCGACCTGTT -ACGGAATCAGTGGATCGACGGTTT -ACGGAATCAGTGGATCGAGTGGTT -ACGGAATCAGTGGATCGAGCCTTT -ACGGAATCAGTGGATCGAGGTCTT -ACGGAATCAGTGGATCGAACGCTT -ACGGAATCAGTGGATCGAAGCGTT -ACGGAATCAGTGGATCGATTCGTC -ACGGAATCAGTGGATCGATCTCTC -ACGGAATCAGTGGATCGATGGATC -ACGGAATCAGTGGATCGACACTTC -ACGGAATCAGTGGATCGAGTACTC -ACGGAATCAGTGGATCGAGATGTC -ACGGAATCAGTGGATCGAACAGTC -ACGGAATCAGTGGATCGATTGCTG -ACGGAATCAGTGGATCGATCCATG -ACGGAATCAGTGGATCGATGTGTG -ACGGAATCAGTGGATCGACTAGTG -ACGGAATCAGTGGATCGACATCTG -ACGGAATCAGTGGATCGAGAGTTG -ACGGAATCAGTGGATCGAAGACTG -ACGGAATCAGTGGATCGATCGGTA -ACGGAATCAGTGGATCGATGCCTA -ACGGAATCAGTGGATCGACCACTA -ACGGAATCAGTGGATCGAGGAGTA -ACGGAATCAGTGGATCGATCGTCT -ACGGAATCAGTGGATCGATGCACT -ACGGAATCAGTGGATCGACTGACT -ACGGAATCAGTGGATCGACAACCT -ACGGAATCAGTGGATCGAGCTACT -ACGGAATCAGTGGATCGAGGATCT -ACGGAATCAGTGGATCGAAAGGCT -ACGGAATCAGTGGATCGATCAACC -ACGGAATCAGTGGATCGATGTTCC -ACGGAATCAGTGGATCGAATTCCC -ACGGAATCAGTGGATCGATTCTCG -ACGGAATCAGTGGATCGATAGACG -ACGGAATCAGTGGATCGAGTAACG -ACGGAATCAGTGGATCGAACTTCG -ACGGAATCAGTGGATCGATACGCA -ACGGAATCAGTGGATCGACTTGCA -ACGGAATCAGTGGATCGACGAACA -ACGGAATCAGTGGATCGACAGTCA -ACGGAATCAGTGGATCGAGATCCA -ACGGAATCAGTGGATCGAACGACA -ACGGAATCAGTGGATCGAAGCTCA -ACGGAATCAGTGGATCGATCACGT -ACGGAATCAGTGGATCGACGTAGT -ACGGAATCAGTGGATCGAGTCAGT -ACGGAATCAGTGGATCGAGAAGGT -ACGGAATCAGTGGATCGAAACCGT -ACGGAATCAGTGGATCGATTGTGC -ACGGAATCAGTGGATCGACTAAGC -ACGGAATCAGTGGATCGAACTAGC -ACGGAATCAGTGGATCGAAGATGC -ACGGAATCAGTGGATCGATGAAGG -ACGGAATCAGTGGATCGACAATGG -ACGGAATCAGTGGATCGAATGAGG -ACGGAATCAGTGGATCGAAATGGG -ACGGAATCAGTGGATCGATCCTGA -ACGGAATCAGTGGATCGATAGCGA -ACGGAATCAGTGGATCGACACAGA -ACGGAATCAGTGGATCGAGCAAGA -ACGGAATCAGTGGATCGAGGTTGA -ACGGAATCAGTGGATCGATCCGAT -ACGGAATCAGTGGATCGATGGCAT -ACGGAATCAGTGGATCGACGAGAT -ACGGAATCAGTGGATCGATACCAC -ACGGAATCAGTGGATCGACAGAAC -ACGGAATCAGTGGATCGAGTCTAC -ACGGAATCAGTGGATCGAACGTAC -ACGGAATCAGTGGATCGAAGTGAC -ACGGAATCAGTGGATCGACTGTAG -ACGGAATCAGTGGATCGACCTAAG -ACGGAATCAGTGGATCGAGTTCAG -ACGGAATCAGTGGATCGAGCATAG -ACGGAATCAGTGGATCGAGACAAG -ACGGAATCAGTGGATCGAAAGCAG -ACGGAATCAGTGGATCGACGTCAA -ACGGAATCAGTGGATCGAGCTGAA -ACGGAATCAGTGGATCGAAGTACG -ACGGAATCAGTGGATCGAATCCGA -ACGGAATCAGTGGATCGAATGGGA -ACGGAATCAGTGGATCGAGTGCAA -ACGGAATCAGTGGATCGAGAGGAA -ACGGAATCAGTGGATCGACAGGTA -ACGGAATCAGTGGATCGAGACTCT -ACGGAATCAGTGGATCGAAGTCCT -ACGGAATCAGTGGATCGATAAGCC -ACGGAATCAGTGGATCGAATAGCC -ACGGAATCAGTGGATCGATAACCG -ACGGAATCAGTGGATCGAATGCCA -ACGGAATCAGTGCACTACGGAAAC -ACGGAATCAGTGCACTACAACACC -ACGGAATCAGTGCACTACATCGAG -ACGGAATCAGTGCACTACCTCCTT -ACGGAATCAGTGCACTACCCTGTT -ACGGAATCAGTGCACTACCGGTTT -ACGGAATCAGTGCACTACGTGGTT -ACGGAATCAGTGCACTACGCCTTT -ACGGAATCAGTGCACTACGGTCTT -ACGGAATCAGTGCACTACACGCTT -ACGGAATCAGTGCACTACAGCGTT -ACGGAATCAGTGCACTACTTCGTC -ACGGAATCAGTGCACTACTCTCTC -ACGGAATCAGTGCACTACTGGATC -ACGGAATCAGTGCACTACCACTTC -ACGGAATCAGTGCACTACGTACTC -ACGGAATCAGTGCACTACGATGTC -ACGGAATCAGTGCACTACACAGTC -ACGGAATCAGTGCACTACTTGCTG -ACGGAATCAGTGCACTACTCCATG -ACGGAATCAGTGCACTACTGTGTG -ACGGAATCAGTGCACTACCTAGTG -ACGGAATCAGTGCACTACCATCTG -ACGGAATCAGTGCACTACGAGTTG -ACGGAATCAGTGCACTACAGACTG -ACGGAATCAGTGCACTACTCGGTA -ACGGAATCAGTGCACTACTGCCTA -ACGGAATCAGTGCACTACCCACTA -ACGGAATCAGTGCACTACGGAGTA -ACGGAATCAGTGCACTACTCGTCT -ACGGAATCAGTGCACTACTGCACT -ACGGAATCAGTGCACTACCTGACT -ACGGAATCAGTGCACTACCAACCT -ACGGAATCAGTGCACTACGCTACT -ACGGAATCAGTGCACTACGGATCT -ACGGAATCAGTGCACTACAAGGCT -ACGGAATCAGTGCACTACTCAACC -ACGGAATCAGTGCACTACTGTTCC -ACGGAATCAGTGCACTACATTCCC -ACGGAATCAGTGCACTACTTCTCG -ACGGAATCAGTGCACTACTAGACG -ACGGAATCAGTGCACTACGTAACG -ACGGAATCAGTGCACTACACTTCG -ACGGAATCAGTGCACTACTACGCA -ACGGAATCAGTGCACTACCTTGCA -ACGGAATCAGTGCACTACCGAACA -ACGGAATCAGTGCACTACCAGTCA -ACGGAATCAGTGCACTACGATCCA -ACGGAATCAGTGCACTACACGACA -ACGGAATCAGTGCACTACAGCTCA -ACGGAATCAGTGCACTACTCACGT -ACGGAATCAGTGCACTACCGTAGT -ACGGAATCAGTGCACTACGTCAGT -ACGGAATCAGTGCACTACGAAGGT -ACGGAATCAGTGCACTACAACCGT -ACGGAATCAGTGCACTACTTGTGC -ACGGAATCAGTGCACTACCTAAGC -ACGGAATCAGTGCACTACACTAGC -ACGGAATCAGTGCACTACAGATGC -ACGGAATCAGTGCACTACTGAAGG -ACGGAATCAGTGCACTACCAATGG -ACGGAATCAGTGCACTACATGAGG -ACGGAATCAGTGCACTACAATGGG -ACGGAATCAGTGCACTACTCCTGA -ACGGAATCAGTGCACTACTAGCGA -ACGGAATCAGTGCACTACCACAGA -ACGGAATCAGTGCACTACGCAAGA -ACGGAATCAGTGCACTACGGTTGA -ACGGAATCAGTGCACTACTCCGAT -ACGGAATCAGTGCACTACTGGCAT -ACGGAATCAGTGCACTACCGAGAT -ACGGAATCAGTGCACTACTACCAC -ACGGAATCAGTGCACTACCAGAAC -ACGGAATCAGTGCACTACGTCTAC -ACGGAATCAGTGCACTACACGTAC -ACGGAATCAGTGCACTACAGTGAC -ACGGAATCAGTGCACTACCTGTAG -ACGGAATCAGTGCACTACCCTAAG -ACGGAATCAGTGCACTACGTTCAG -ACGGAATCAGTGCACTACGCATAG -ACGGAATCAGTGCACTACGACAAG -ACGGAATCAGTGCACTACAAGCAG -ACGGAATCAGTGCACTACCGTCAA -ACGGAATCAGTGCACTACGCTGAA -ACGGAATCAGTGCACTACAGTACG -ACGGAATCAGTGCACTACATCCGA -ACGGAATCAGTGCACTACATGGGA -ACGGAATCAGTGCACTACGTGCAA -ACGGAATCAGTGCACTACGAGGAA -ACGGAATCAGTGCACTACCAGGTA -ACGGAATCAGTGCACTACGACTCT -ACGGAATCAGTGCACTACAGTCCT -ACGGAATCAGTGCACTACTAAGCC -ACGGAATCAGTGCACTACATAGCC -ACGGAATCAGTGCACTACTAACCG -ACGGAATCAGTGCACTACATGCCA -ACGGAATCAGTGAACCAGGGAAAC -ACGGAATCAGTGAACCAGAACACC -ACGGAATCAGTGAACCAGATCGAG -ACGGAATCAGTGAACCAGCTCCTT -ACGGAATCAGTGAACCAGCCTGTT -ACGGAATCAGTGAACCAGCGGTTT -ACGGAATCAGTGAACCAGGTGGTT -ACGGAATCAGTGAACCAGGCCTTT -ACGGAATCAGTGAACCAGGGTCTT -ACGGAATCAGTGAACCAGACGCTT -ACGGAATCAGTGAACCAGAGCGTT -ACGGAATCAGTGAACCAGTTCGTC -ACGGAATCAGTGAACCAGTCTCTC -ACGGAATCAGTGAACCAGTGGATC -ACGGAATCAGTGAACCAGCACTTC -ACGGAATCAGTGAACCAGGTACTC -ACGGAATCAGTGAACCAGGATGTC -ACGGAATCAGTGAACCAGACAGTC -ACGGAATCAGTGAACCAGTTGCTG -ACGGAATCAGTGAACCAGTCCATG -ACGGAATCAGTGAACCAGTGTGTG -ACGGAATCAGTGAACCAGCTAGTG -ACGGAATCAGTGAACCAGCATCTG -ACGGAATCAGTGAACCAGGAGTTG -ACGGAATCAGTGAACCAGAGACTG -ACGGAATCAGTGAACCAGTCGGTA -ACGGAATCAGTGAACCAGTGCCTA -ACGGAATCAGTGAACCAGCCACTA -ACGGAATCAGTGAACCAGGGAGTA -ACGGAATCAGTGAACCAGTCGTCT -ACGGAATCAGTGAACCAGTGCACT -ACGGAATCAGTGAACCAGCTGACT -ACGGAATCAGTGAACCAGCAACCT -ACGGAATCAGTGAACCAGGCTACT -ACGGAATCAGTGAACCAGGGATCT -ACGGAATCAGTGAACCAGAAGGCT -ACGGAATCAGTGAACCAGTCAACC -ACGGAATCAGTGAACCAGTGTTCC -ACGGAATCAGTGAACCAGATTCCC -ACGGAATCAGTGAACCAGTTCTCG -ACGGAATCAGTGAACCAGTAGACG -ACGGAATCAGTGAACCAGGTAACG -ACGGAATCAGTGAACCAGACTTCG -ACGGAATCAGTGAACCAGTACGCA -ACGGAATCAGTGAACCAGCTTGCA -ACGGAATCAGTGAACCAGCGAACA -ACGGAATCAGTGAACCAGCAGTCA -ACGGAATCAGTGAACCAGGATCCA -ACGGAATCAGTGAACCAGACGACA -ACGGAATCAGTGAACCAGAGCTCA -ACGGAATCAGTGAACCAGTCACGT -ACGGAATCAGTGAACCAGCGTAGT -ACGGAATCAGTGAACCAGGTCAGT -ACGGAATCAGTGAACCAGGAAGGT -ACGGAATCAGTGAACCAGAACCGT -ACGGAATCAGTGAACCAGTTGTGC -ACGGAATCAGTGAACCAGCTAAGC -ACGGAATCAGTGAACCAGACTAGC -ACGGAATCAGTGAACCAGAGATGC -ACGGAATCAGTGAACCAGTGAAGG -ACGGAATCAGTGAACCAGCAATGG -ACGGAATCAGTGAACCAGATGAGG -ACGGAATCAGTGAACCAGAATGGG -ACGGAATCAGTGAACCAGTCCTGA -ACGGAATCAGTGAACCAGTAGCGA -ACGGAATCAGTGAACCAGCACAGA -ACGGAATCAGTGAACCAGGCAAGA -ACGGAATCAGTGAACCAGGGTTGA -ACGGAATCAGTGAACCAGTCCGAT -ACGGAATCAGTGAACCAGTGGCAT -ACGGAATCAGTGAACCAGCGAGAT -ACGGAATCAGTGAACCAGTACCAC -ACGGAATCAGTGAACCAGCAGAAC -ACGGAATCAGTGAACCAGGTCTAC -ACGGAATCAGTGAACCAGACGTAC -ACGGAATCAGTGAACCAGAGTGAC -ACGGAATCAGTGAACCAGCTGTAG -ACGGAATCAGTGAACCAGCCTAAG -ACGGAATCAGTGAACCAGGTTCAG -ACGGAATCAGTGAACCAGGCATAG -ACGGAATCAGTGAACCAGGACAAG -ACGGAATCAGTGAACCAGAAGCAG -ACGGAATCAGTGAACCAGCGTCAA -ACGGAATCAGTGAACCAGGCTGAA -ACGGAATCAGTGAACCAGAGTACG -ACGGAATCAGTGAACCAGATCCGA -ACGGAATCAGTGAACCAGATGGGA -ACGGAATCAGTGAACCAGGTGCAA -ACGGAATCAGTGAACCAGGAGGAA -ACGGAATCAGTGAACCAGCAGGTA -ACGGAATCAGTGAACCAGGACTCT -ACGGAATCAGTGAACCAGAGTCCT -ACGGAATCAGTGAACCAGTAAGCC -ACGGAATCAGTGAACCAGATAGCC -ACGGAATCAGTGAACCAGTAACCG -ACGGAATCAGTGAACCAGATGCCA -ACGGAATCAGTGTACGTCGGAAAC -ACGGAATCAGTGTACGTCAACACC -ACGGAATCAGTGTACGTCATCGAG -ACGGAATCAGTGTACGTCCTCCTT -ACGGAATCAGTGTACGTCCCTGTT -ACGGAATCAGTGTACGTCCGGTTT -ACGGAATCAGTGTACGTCGTGGTT -ACGGAATCAGTGTACGTCGCCTTT -ACGGAATCAGTGTACGTCGGTCTT -ACGGAATCAGTGTACGTCACGCTT -ACGGAATCAGTGTACGTCAGCGTT -ACGGAATCAGTGTACGTCTTCGTC -ACGGAATCAGTGTACGTCTCTCTC -ACGGAATCAGTGTACGTCTGGATC -ACGGAATCAGTGTACGTCCACTTC -ACGGAATCAGTGTACGTCGTACTC -ACGGAATCAGTGTACGTCGATGTC -ACGGAATCAGTGTACGTCACAGTC -ACGGAATCAGTGTACGTCTTGCTG -ACGGAATCAGTGTACGTCTCCATG -ACGGAATCAGTGTACGTCTGTGTG -ACGGAATCAGTGTACGTCCTAGTG -ACGGAATCAGTGTACGTCCATCTG -ACGGAATCAGTGTACGTCGAGTTG -ACGGAATCAGTGTACGTCAGACTG -ACGGAATCAGTGTACGTCTCGGTA -ACGGAATCAGTGTACGTCTGCCTA -ACGGAATCAGTGTACGTCCCACTA -ACGGAATCAGTGTACGTCGGAGTA -ACGGAATCAGTGTACGTCTCGTCT -ACGGAATCAGTGTACGTCTGCACT -ACGGAATCAGTGTACGTCCTGACT -ACGGAATCAGTGTACGTCCAACCT -ACGGAATCAGTGTACGTCGCTACT -ACGGAATCAGTGTACGTCGGATCT -ACGGAATCAGTGTACGTCAAGGCT -ACGGAATCAGTGTACGTCTCAACC -ACGGAATCAGTGTACGTCTGTTCC -ACGGAATCAGTGTACGTCATTCCC -ACGGAATCAGTGTACGTCTTCTCG -ACGGAATCAGTGTACGTCTAGACG -ACGGAATCAGTGTACGTCGTAACG -ACGGAATCAGTGTACGTCACTTCG -ACGGAATCAGTGTACGTCTACGCA -ACGGAATCAGTGTACGTCCTTGCA -ACGGAATCAGTGTACGTCCGAACA -ACGGAATCAGTGTACGTCCAGTCA -ACGGAATCAGTGTACGTCGATCCA -ACGGAATCAGTGTACGTCACGACA -ACGGAATCAGTGTACGTCAGCTCA -ACGGAATCAGTGTACGTCTCACGT -ACGGAATCAGTGTACGTCCGTAGT -ACGGAATCAGTGTACGTCGTCAGT -ACGGAATCAGTGTACGTCGAAGGT -ACGGAATCAGTGTACGTCAACCGT -ACGGAATCAGTGTACGTCTTGTGC -ACGGAATCAGTGTACGTCCTAAGC -ACGGAATCAGTGTACGTCACTAGC -ACGGAATCAGTGTACGTCAGATGC -ACGGAATCAGTGTACGTCTGAAGG -ACGGAATCAGTGTACGTCCAATGG -ACGGAATCAGTGTACGTCATGAGG -ACGGAATCAGTGTACGTCAATGGG -ACGGAATCAGTGTACGTCTCCTGA -ACGGAATCAGTGTACGTCTAGCGA -ACGGAATCAGTGTACGTCCACAGA -ACGGAATCAGTGTACGTCGCAAGA -ACGGAATCAGTGTACGTCGGTTGA -ACGGAATCAGTGTACGTCTCCGAT -ACGGAATCAGTGTACGTCTGGCAT -ACGGAATCAGTGTACGTCCGAGAT -ACGGAATCAGTGTACGTCTACCAC -ACGGAATCAGTGTACGTCCAGAAC -ACGGAATCAGTGTACGTCGTCTAC -ACGGAATCAGTGTACGTCACGTAC -ACGGAATCAGTGTACGTCAGTGAC -ACGGAATCAGTGTACGTCCTGTAG -ACGGAATCAGTGTACGTCCCTAAG -ACGGAATCAGTGTACGTCGTTCAG -ACGGAATCAGTGTACGTCGCATAG -ACGGAATCAGTGTACGTCGACAAG -ACGGAATCAGTGTACGTCAAGCAG -ACGGAATCAGTGTACGTCCGTCAA -ACGGAATCAGTGTACGTCGCTGAA -ACGGAATCAGTGTACGTCAGTACG -ACGGAATCAGTGTACGTCATCCGA -ACGGAATCAGTGTACGTCATGGGA -ACGGAATCAGTGTACGTCGTGCAA -ACGGAATCAGTGTACGTCGAGGAA -ACGGAATCAGTGTACGTCCAGGTA -ACGGAATCAGTGTACGTCGACTCT -ACGGAATCAGTGTACGTCAGTCCT -ACGGAATCAGTGTACGTCTAAGCC -ACGGAATCAGTGTACGTCATAGCC -ACGGAATCAGTGTACGTCTAACCG -ACGGAATCAGTGTACGTCATGCCA -ACGGAATCAGTGTACACGGGAAAC -ACGGAATCAGTGTACACGAACACC -ACGGAATCAGTGTACACGATCGAG -ACGGAATCAGTGTACACGCTCCTT -ACGGAATCAGTGTACACGCCTGTT -ACGGAATCAGTGTACACGCGGTTT -ACGGAATCAGTGTACACGGTGGTT -ACGGAATCAGTGTACACGGCCTTT -ACGGAATCAGTGTACACGGGTCTT -ACGGAATCAGTGTACACGACGCTT -ACGGAATCAGTGTACACGAGCGTT -ACGGAATCAGTGTACACGTTCGTC -ACGGAATCAGTGTACACGTCTCTC -ACGGAATCAGTGTACACGTGGATC -ACGGAATCAGTGTACACGCACTTC -ACGGAATCAGTGTACACGGTACTC -ACGGAATCAGTGTACACGGATGTC -ACGGAATCAGTGTACACGACAGTC -ACGGAATCAGTGTACACGTTGCTG -ACGGAATCAGTGTACACGTCCATG -ACGGAATCAGTGTACACGTGTGTG -ACGGAATCAGTGTACACGCTAGTG -ACGGAATCAGTGTACACGCATCTG -ACGGAATCAGTGTACACGGAGTTG -ACGGAATCAGTGTACACGAGACTG -ACGGAATCAGTGTACACGTCGGTA -ACGGAATCAGTGTACACGTGCCTA -ACGGAATCAGTGTACACGCCACTA -ACGGAATCAGTGTACACGGGAGTA -ACGGAATCAGTGTACACGTCGTCT -ACGGAATCAGTGTACACGTGCACT -ACGGAATCAGTGTACACGCTGACT -ACGGAATCAGTGTACACGCAACCT -ACGGAATCAGTGTACACGGCTACT -ACGGAATCAGTGTACACGGGATCT -ACGGAATCAGTGTACACGAAGGCT -ACGGAATCAGTGTACACGTCAACC -ACGGAATCAGTGTACACGTGTTCC -ACGGAATCAGTGTACACGATTCCC -ACGGAATCAGTGTACACGTTCTCG -ACGGAATCAGTGTACACGTAGACG -ACGGAATCAGTGTACACGGTAACG -ACGGAATCAGTGTACACGACTTCG -ACGGAATCAGTGTACACGTACGCA -ACGGAATCAGTGTACACGCTTGCA -ACGGAATCAGTGTACACGCGAACA -ACGGAATCAGTGTACACGCAGTCA -ACGGAATCAGTGTACACGGATCCA -ACGGAATCAGTGTACACGACGACA -ACGGAATCAGTGTACACGAGCTCA -ACGGAATCAGTGTACACGTCACGT -ACGGAATCAGTGTACACGCGTAGT -ACGGAATCAGTGTACACGGTCAGT -ACGGAATCAGTGTACACGGAAGGT -ACGGAATCAGTGTACACGAACCGT -ACGGAATCAGTGTACACGTTGTGC -ACGGAATCAGTGTACACGCTAAGC -ACGGAATCAGTGTACACGACTAGC -ACGGAATCAGTGTACACGAGATGC -ACGGAATCAGTGTACACGTGAAGG -ACGGAATCAGTGTACACGCAATGG -ACGGAATCAGTGTACACGATGAGG -ACGGAATCAGTGTACACGAATGGG -ACGGAATCAGTGTACACGTCCTGA -ACGGAATCAGTGTACACGTAGCGA -ACGGAATCAGTGTACACGCACAGA -ACGGAATCAGTGTACACGGCAAGA -ACGGAATCAGTGTACACGGGTTGA -ACGGAATCAGTGTACACGTCCGAT -ACGGAATCAGTGTACACGTGGCAT -ACGGAATCAGTGTACACGCGAGAT -ACGGAATCAGTGTACACGTACCAC -ACGGAATCAGTGTACACGCAGAAC -ACGGAATCAGTGTACACGGTCTAC -ACGGAATCAGTGTACACGACGTAC -ACGGAATCAGTGTACACGAGTGAC -ACGGAATCAGTGTACACGCTGTAG -ACGGAATCAGTGTACACGCCTAAG -ACGGAATCAGTGTACACGGTTCAG -ACGGAATCAGTGTACACGGCATAG -ACGGAATCAGTGTACACGGACAAG -ACGGAATCAGTGTACACGAAGCAG -ACGGAATCAGTGTACACGCGTCAA -ACGGAATCAGTGTACACGGCTGAA -ACGGAATCAGTGTACACGAGTACG -ACGGAATCAGTGTACACGATCCGA -ACGGAATCAGTGTACACGATGGGA -ACGGAATCAGTGTACACGGTGCAA -ACGGAATCAGTGTACACGGAGGAA -ACGGAATCAGTGTACACGCAGGTA -ACGGAATCAGTGTACACGGACTCT -ACGGAATCAGTGTACACGAGTCCT -ACGGAATCAGTGTACACGTAAGCC -ACGGAATCAGTGTACACGATAGCC -ACGGAATCAGTGTACACGTAACCG -ACGGAATCAGTGTACACGATGCCA -ACGGAATCAGTGGACAGTGGAAAC -ACGGAATCAGTGGACAGTAACACC -ACGGAATCAGTGGACAGTATCGAG -ACGGAATCAGTGGACAGTCTCCTT -ACGGAATCAGTGGACAGTCCTGTT -ACGGAATCAGTGGACAGTCGGTTT -ACGGAATCAGTGGACAGTGTGGTT -ACGGAATCAGTGGACAGTGCCTTT -ACGGAATCAGTGGACAGTGGTCTT -ACGGAATCAGTGGACAGTACGCTT -ACGGAATCAGTGGACAGTAGCGTT -ACGGAATCAGTGGACAGTTTCGTC -ACGGAATCAGTGGACAGTTCTCTC -ACGGAATCAGTGGACAGTTGGATC -ACGGAATCAGTGGACAGTCACTTC -ACGGAATCAGTGGACAGTGTACTC -ACGGAATCAGTGGACAGTGATGTC -ACGGAATCAGTGGACAGTACAGTC -ACGGAATCAGTGGACAGTTTGCTG -ACGGAATCAGTGGACAGTTCCATG -ACGGAATCAGTGGACAGTTGTGTG -ACGGAATCAGTGGACAGTCTAGTG -ACGGAATCAGTGGACAGTCATCTG -ACGGAATCAGTGGACAGTGAGTTG -ACGGAATCAGTGGACAGTAGACTG -ACGGAATCAGTGGACAGTTCGGTA -ACGGAATCAGTGGACAGTTGCCTA -ACGGAATCAGTGGACAGTCCACTA -ACGGAATCAGTGGACAGTGGAGTA -ACGGAATCAGTGGACAGTTCGTCT -ACGGAATCAGTGGACAGTTGCACT -ACGGAATCAGTGGACAGTCTGACT -ACGGAATCAGTGGACAGTCAACCT -ACGGAATCAGTGGACAGTGCTACT -ACGGAATCAGTGGACAGTGGATCT -ACGGAATCAGTGGACAGTAAGGCT -ACGGAATCAGTGGACAGTTCAACC -ACGGAATCAGTGGACAGTTGTTCC -ACGGAATCAGTGGACAGTATTCCC -ACGGAATCAGTGGACAGTTTCTCG -ACGGAATCAGTGGACAGTTAGACG -ACGGAATCAGTGGACAGTGTAACG -ACGGAATCAGTGGACAGTACTTCG -ACGGAATCAGTGGACAGTTACGCA -ACGGAATCAGTGGACAGTCTTGCA -ACGGAATCAGTGGACAGTCGAACA -ACGGAATCAGTGGACAGTCAGTCA -ACGGAATCAGTGGACAGTGATCCA -ACGGAATCAGTGGACAGTACGACA -ACGGAATCAGTGGACAGTAGCTCA -ACGGAATCAGTGGACAGTTCACGT -ACGGAATCAGTGGACAGTCGTAGT -ACGGAATCAGTGGACAGTGTCAGT -ACGGAATCAGTGGACAGTGAAGGT -ACGGAATCAGTGGACAGTAACCGT -ACGGAATCAGTGGACAGTTTGTGC -ACGGAATCAGTGGACAGTCTAAGC -ACGGAATCAGTGGACAGTACTAGC -ACGGAATCAGTGGACAGTAGATGC -ACGGAATCAGTGGACAGTTGAAGG -ACGGAATCAGTGGACAGTCAATGG -ACGGAATCAGTGGACAGTATGAGG -ACGGAATCAGTGGACAGTAATGGG -ACGGAATCAGTGGACAGTTCCTGA -ACGGAATCAGTGGACAGTTAGCGA -ACGGAATCAGTGGACAGTCACAGA -ACGGAATCAGTGGACAGTGCAAGA -ACGGAATCAGTGGACAGTGGTTGA -ACGGAATCAGTGGACAGTTCCGAT -ACGGAATCAGTGGACAGTTGGCAT -ACGGAATCAGTGGACAGTCGAGAT -ACGGAATCAGTGGACAGTTACCAC -ACGGAATCAGTGGACAGTCAGAAC -ACGGAATCAGTGGACAGTGTCTAC -ACGGAATCAGTGGACAGTACGTAC -ACGGAATCAGTGGACAGTAGTGAC -ACGGAATCAGTGGACAGTCTGTAG -ACGGAATCAGTGGACAGTCCTAAG -ACGGAATCAGTGGACAGTGTTCAG -ACGGAATCAGTGGACAGTGCATAG -ACGGAATCAGTGGACAGTGACAAG -ACGGAATCAGTGGACAGTAAGCAG -ACGGAATCAGTGGACAGTCGTCAA -ACGGAATCAGTGGACAGTGCTGAA -ACGGAATCAGTGGACAGTAGTACG -ACGGAATCAGTGGACAGTATCCGA -ACGGAATCAGTGGACAGTATGGGA -ACGGAATCAGTGGACAGTGTGCAA -ACGGAATCAGTGGACAGTGAGGAA -ACGGAATCAGTGGACAGTCAGGTA -ACGGAATCAGTGGACAGTGACTCT -ACGGAATCAGTGGACAGTAGTCCT -ACGGAATCAGTGGACAGTTAAGCC -ACGGAATCAGTGGACAGTATAGCC -ACGGAATCAGTGGACAGTTAACCG -ACGGAATCAGTGGACAGTATGCCA -ACGGAATCAGTGTAGCTGGGAAAC -ACGGAATCAGTGTAGCTGAACACC -ACGGAATCAGTGTAGCTGATCGAG -ACGGAATCAGTGTAGCTGCTCCTT -ACGGAATCAGTGTAGCTGCCTGTT -ACGGAATCAGTGTAGCTGCGGTTT -ACGGAATCAGTGTAGCTGGTGGTT -ACGGAATCAGTGTAGCTGGCCTTT -ACGGAATCAGTGTAGCTGGGTCTT -ACGGAATCAGTGTAGCTGACGCTT -ACGGAATCAGTGTAGCTGAGCGTT -ACGGAATCAGTGTAGCTGTTCGTC -ACGGAATCAGTGTAGCTGTCTCTC -ACGGAATCAGTGTAGCTGTGGATC -ACGGAATCAGTGTAGCTGCACTTC -ACGGAATCAGTGTAGCTGGTACTC -ACGGAATCAGTGTAGCTGGATGTC -ACGGAATCAGTGTAGCTGACAGTC -ACGGAATCAGTGTAGCTGTTGCTG -ACGGAATCAGTGTAGCTGTCCATG -ACGGAATCAGTGTAGCTGTGTGTG -ACGGAATCAGTGTAGCTGCTAGTG -ACGGAATCAGTGTAGCTGCATCTG -ACGGAATCAGTGTAGCTGGAGTTG -ACGGAATCAGTGTAGCTGAGACTG -ACGGAATCAGTGTAGCTGTCGGTA -ACGGAATCAGTGTAGCTGTGCCTA -ACGGAATCAGTGTAGCTGCCACTA -ACGGAATCAGTGTAGCTGGGAGTA -ACGGAATCAGTGTAGCTGTCGTCT -ACGGAATCAGTGTAGCTGTGCACT -ACGGAATCAGTGTAGCTGCTGACT -ACGGAATCAGTGTAGCTGCAACCT -ACGGAATCAGTGTAGCTGGCTACT -ACGGAATCAGTGTAGCTGGGATCT -ACGGAATCAGTGTAGCTGAAGGCT -ACGGAATCAGTGTAGCTGTCAACC -ACGGAATCAGTGTAGCTGTGTTCC -ACGGAATCAGTGTAGCTGATTCCC -ACGGAATCAGTGTAGCTGTTCTCG -ACGGAATCAGTGTAGCTGTAGACG -ACGGAATCAGTGTAGCTGGTAACG -ACGGAATCAGTGTAGCTGACTTCG -ACGGAATCAGTGTAGCTGTACGCA -ACGGAATCAGTGTAGCTGCTTGCA -ACGGAATCAGTGTAGCTGCGAACA -ACGGAATCAGTGTAGCTGCAGTCA -ACGGAATCAGTGTAGCTGGATCCA -ACGGAATCAGTGTAGCTGACGACA -ACGGAATCAGTGTAGCTGAGCTCA -ACGGAATCAGTGTAGCTGTCACGT -ACGGAATCAGTGTAGCTGCGTAGT -ACGGAATCAGTGTAGCTGGTCAGT -ACGGAATCAGTGTAGCTGGAAGGT -ACGGAATCAGTGTAGCTGAACCGT -ACGGAATCAGTGTAGCTGTTGTGC -ACGGAATCAGTGTAGCTGCTAAGC -ACGGAATCAGTGTAGCTGACTAGC -ACGGAATCAGTGTAGCTGAGATGC -ACGGAATCAGTGTAGCTGTGAAGG -ACGGAATCAGTGTAGCTGCAATGG -ACGGAATCAGTGTAGCTGATGAGG -ACGGAATCAGTGTAGCTGAATGGG -ACGGAATCAGTGTAGCTGTCCTGA -ACGGAATCAGTGTAGCTGTAGCGA -ACGGAATCAGTGTAGCTGCACAGA -ACGGAATCAGTGTAGCTGGCAAGA -ACGGAATCAGTGTAGCTGGGTTGA -ACGGAATCAGTGTAGCTGTCCGAT -ACGGAATCAGTGTAGCTGTGGCAT -ACGGAATCAGTGTAGCTGCGAGAT -ACGGAATCAGTGTAGCTGTACCAC -ACGGAATCAGTGTAGCTGCAGAAC -ACGGAATCAGTGTAGCTGGTCTAC -ACGGAATCAGTGTAGCTGACGTAC -ACGGAATCAGTGTAGCTGAGTGAC -ACGGAATCAGTGTAGCTGCTGTAG -ACGGAATCAGTGTAGCTGCCTAAG -ACGGAATCAGTGTAGCTGGTTCAG -ACGGAATCAGTGTAGCTGGCATAG -ACGGAATCAGTGTAGCTGGACAAG -ACGGAATCAGTGTAGCTGAAGCAG -ACGGAATCAGTGTAGCTGCGTCAA -ACGGAATCAGTGTAGCTGGCTGAA -ACGGAATCAGTGTAGCTGAGTACG -ACGGAATCAGTGTAGCTGATCCGA -ACGGAATCAGTGTAGCTGATGGGA -ACGGAATCAGTGTAGCTGGTGCAA -ACGGAATCAGTGTAGCTGGAGGAA -ACGGAATCAGTGTAGCTGCAGGTA -ACGGAATCAGTGTAGCTGGACTCT -ACGGAATCAGTGTAGCTGAGTCCT -ACGGAATCAGTGTAGCTGTAAGCC -ACGGAATCAGTGTAGCTGATAGCC -ACGGAATCAGTGTAGCTGTAACCG -ACGGAATCAGTGTAGCTGATGCCA -ACGGAATCAGTGAAGCCTGGAAAC -ACGGAATCAGTGAAGCCTAACACC -ACGGAATCAGTGAAGCCTATCGAG -ACGGAATCAGTGAAGCCTCTCCTT -ACGGAATCAGTGAAGCCTCCTGTT -ACGGAATCAGTGAAGCCTCGGTTT -ACGGAATCAGTGAAGCCTGTGGTT -ACGGAATCAGTGAAGCCTGCCTTT -ACGGAATCAGTGAAGCCTGGTCTT -ACGGAATCAGTGAAGCCTACGCTT -ACGGAATCAGTGAAGCCTAGCGTT -ACGGAATCAGTGAAGCCTTTCGTC -ACGGAATCAGTGAAGCCTTCTCTC -ACGGAATCAGTGAAGCCTTGGATC -ACGGAATCAGTGAAGCCTCACTTC -ACGGAATCAGTGAAGCCTGTACTC -ACGGAATCAGTGAAGCCTGATGTC -ACGGAATCAGTGAAGCCTACAGTC -ACGGAATCAGTGAAGCCTTTGCTG -ACGGAATCAGTGAAGCCTTCCATG -ACGGAATCAGTGAAGCCTTGTGTG -ACGGAATCAGTGAAGCCTCTAGTG -ACGGAATCAGTGAAGCCTCATCTG -ACGGAATCAGTGAAGCCTGAGTTG -ACGGAATCAGTGAAGCCTAGACTG -ACGGAATCAGTGAAGCCTTCGGTA -ACGGAATCAGTGAAGCCTTGCCTA -ACGGAATCAGTGAAGCCTCCACTA -ACGGAATCAGTGAAGCCTGGAGTA -ACGGAATCAGTGAAGCCTTCGTCT -ACGGAATCAGTGAAGCCTTGCACT -ACGGAATCAGTGAAGCCTCTGACT -ACGGAATCAGTGAAGCCTCAACCT -ACGGAATCAGTGAAGCCTGCTACT -ACGGAATCAGTGAAGCCTGGATCT -ACGGAATCAGTGAAGCCTAAGGCT -ACGGAATCAGTGAAGCCTTCAACC -ACGGAATCAGTGAAGCCTTGTTCC -ACGGAATCAGTGAAGCCTATTCCC -ACGGAATCAGTGAAGCCTTTCTCG -ACGGAATCAGTGAAGCCTTAGACG -ACGGAATCAGTGAAGCCTGTAACG -ACGGAATCAGTGAAGCCTACTTCG -ACGGAATCAGTGAAGCCTTACGCA -ACGGAATCAGTGAAGCCTCTTGCA -ACGGAATCAGTGAAGCCTCGAACA -ACGGAATCAGTGAAGCCTCAGTCA -ACGGAATCAGTGAAGCCTGATCCA -ACGGAATCAGTGAAGCCTACGACA -ACGGAATCAGTGAAGCCTAGCTCA -ACGGAATCAGTGAAGCCTTCACGT -ACGGAATCAGTGAAGCCTCGTAGT -ACGGAATCAGTGAAGCCTGTCAGT -ACGGAATCAGTGAAGCCTGAAGGT -ACGGAATCAGTGAAGCCTAACCGT -ACGGAATCAGTGAAGCCTTTGTGC -ACGGAATCAGTGAAGCCTCTAAGC -ACGGAATCAGTGAAGCCTACTAGC -ACGGAATCAGTGAAGCCTAGATGC -ACGGAATCAGTGAAGCCTTGAAGG -ACGGAATCAGTGAAGCCTCAATGG -ACGGAATCAGTGAAGCCTATGAGG -ACGGAATCAGTGAAGCCTAATGGG -ACGGAATCAGTGAAGCCTTCCTGA -ACGGAATCAGTGAAGCCTTAGCGA -ACGGAATCAGTGAAGCCTCACAGA -ACGGAATCAGTGAAGCCTGCAAGA -ACGGAATCAGTGAAGCCTGGTTGA -ACGGAATCAGTGAAGCCTTCCGAT -ACGGAATCAGTGAAGCCTTGGCAT -ACGGAATCAGTGAAGCCTCGAGAT -ACGGAATCAGTGAAGCCTTACCAC -ACGGAATCAGTGAAGCCTCAGAAC -ACGGAATCAGTGAAGCCTGTCTAC -ACGGAATCAGTGAAGCCTACGTAC -ACGGAATCAGTGAAGCCTAGTGAC -ACGGAATCAGTGAAGCCTCTGTAG -ACGGAATCAGTGAAGCCTCCTAAG -ACGGAATCAGTGAAGCCTGTTCAG -ACGGAATCAGTGAAGCCTGCATAG -ACGGAATCAGTGAAGCCTGACAAG -ACGGAATCAGTGAAGCCTAAGCAG -ACGGAATCAGTGAAGCCTCGTCAA -ACGGAATCAGTGAAGCCTGCTGAA -ACGGAATCAGTGAAGCCTAGTACG -ACGGAATCAGTGAAGCCTATCCGA -ACGGAATCAGTGAAGCCTATGGGA -ACGGAATCAGTGAAGCCTGTGCAA -ACGGAATCAGTGAAGCCTGAGGAA -ACGGAATCAGTGAAGCCTCAGGTA -ACGGAATCAGTGAAGCCTGACTCT -ACGGAATCAGTGAAGCCTAGTCCT -ACGGAATCAGTGAAGCCTTAAGCC -ACGGAATCAGTGAAGCCTATAGCC -ACGGAATCAGTGAAGCCTTAACCG -ACGGAATCAGTGAAGCCTATGCCA -ACGGAATCAGTGCAGGTTGGAAAC -ACGGAATCAGTGCAGGTTAACACC -ACGGAATCAGTGCAGGTTATCGAG -ACGGAATCAGTGCAGGTTCTCCTT -ACGGAATCAGTGCAGGTTCCTGTT -ACGGAATCAGTGCAGGTTCGGTTT -ACGGAATCAGTGCAGGTTGTGGTT -ACGGAATCAGTGCAGGTTGCCTTT -ACGGAATCAGTGCAGGTTGGTCTT -ACGGAATCAGTGCAGGTTACGCTT -ACGGAATCAGTGCAGGTTAGCGTT -ACGGAATCAGTGCAGGTTTTCGTC -ACGGAATCAGTGCAGGTTTCTCTC -ACGGAATCAGTGCAGGTTTGGATC -ACGGAATCAGTGCAGGTTCACTTC -ACGGAATCAGTGCAGGTTGTACTC -ACGGAATCAGTGCAGGTTGATGTC -ACGGAATCAGTGCAGGTTACAGTC -ACGGAATCAGTGCAGGTTTTGCTG -ACGGAATCAGTGCAGGTTTCCATG -ACGGAATCAGTGCAGGTTTGTGTG -ACGGAATCAGTGCAGGTTCTAGTG -ACGGAATCAGTGCAGGTTCATCTG -ACGGAATCAGTGCAGGTTGAGTTG -ACGGAATCAGTGCAGGTTAGACTG -ACGGAATCAGTGCAGGTTTCGGTA -ACGGAATCAGTGCAGGTTTGCCTA -ACGGAATCAGTGCAGGTTCCACTA -ACGGAATCAGTGCAGGTTGGAGTA -ACGGAATCAGTGCAGGTTTCGTCT -ACGGAATCAGTGCAGGTTTGCACT -ACGGAATCAGTGCAGGTTCTGACT -ACGGAATCAGTGCAGGTTCAACCT -ACGGAATCAGTGCAGGTTGCTACT -ACGGAATCAGTGCAGGTTGGATCT -ACGGAATCAGTGCAGGTTAAGGCT -ACGGAATCAGTGCAGGTTTCAACC -ACGGAATCAGTGCAGGTTTGTTCC -ACGGAATCAGTGCAGGTTATTCCC -ACGGAATCAGTGCAGGTTTTCTCG -ACGGAATCAGTGCAGGTTTAGACG -ACGGAATCAGTGCAGGTTGTAACG -ACGGAATCAGTGCAGGTTACTTCG -ACGGAATCAGTGCAGGTTTACGCA -ACGGAATCAGTGCAGGTTCTTGCA -ACGGAATCAGTGCAGGTTCGAACA -ACGGAATCAGTGCAGGTTCAGTCA -ACGGAATCAGTGCAGGTTGATCCA -ACGGAATCAGTGCAGGTTACGACA -ACGGAATCAGTGCAGGTTAGCTCA -ACGGAATCAGTGCAGGTTTCACGT -ACGGAATCAGTGCAGGTTCGTAGT -ACGGAATCAGTGCAGGTTGTCAGT -ACGGAATCAGTGCAGGTTGAAGGT -ACGGAATCAGTGCAGGTTAACCGT -ACGGAATCAGTGCAGGTTTTGTGC -ACGGAATCAGTGCAGGTTCTAAGC -ACGGAATCAGTGCAGGTTACTAGC -ACGGAATCAGTGCAGGTTAGATGC -ACGGAATCAGTGCAGGTTTGAAGG -ACGGAATCAGTGCAGGTTCAATGG -ACGGAATCAGTGCAGGTTATGAGG -ACGGAATCAGTGCAGGTTAATGGG -ACGGAATCAGTGCAGGTTTCCTGA -ACGGAATCAGTGCAGGTTTAGCGA -ACGGAATCAGTGCAGGTTCACAGA -ACGGAATCAGTGCAGGTTGCAAGA -ACGGAATCAGTGCAGGTTGGTTGA -ACGGAATCAGTGCAGGTTTCCGAT -ACGGAATCAGTGCAGGTTTGGCAT -ACGGAATCAGTGCAGGTTCGAGAT -ACGGAATCAGTGCAGGTTTACCAC -ACGGAATCAGTGCAGGTTCAGAAC -ACGGAATCAGTGCAGGTTGTCTAC -ACGGAATCAGTGCAGGTTACGTAC -ACGGAATCAGTGCAGGTTAGTGAC -ACGGAATCAGTGCAGGTTCTGTAG -ACGGAATCAGTGCAGGTTCCTAAG -ACGGAATCAGTGCAGGTTGTTCAG -ACGGAATCAGTGCAGGTTGCATAG -ACGGAATCAGTGCAGGTTGACAAG -ACGGAATCAGTGCAGGTTAAGCAG -ACGGAATCAGTGCAGGTTCGTCAA -ACGGAATCAGTGCAGGTTGCTGAA -ACGGAATCAGTGCAGGTTAGTACG -ACGGAATCAGTGCAGGTTATCCGA -ACGGAATCAGTGCAGGTTATGGGA -ACGGAATCAGTGCAGGTTGTGCAA -ACGGAATCAGTGCAGGTTGAGGAA -ACGGAATCAGTGCAGGTTCAGGTA -ACGGAATCAGTGCAGGTTGACTCT -ACGGAATCAGTGCAGGTTAGTCCT -ACGGAATCAGTGCAGGTTTAAGCC -ACGGAATCAGTGCAGGTTATAGCC -ACGGAATCAGTGCAGGTTTAACCG -ACGGAATCAGTGCAGGTTATGCCA -ACGGAATCAGTGTAGGCAGGAAAC -ACGGAATCAGTGTAGGCAAACACC -ACGGAATCAGTGTAGGCAATCGAG -ACGGAATCAGTGTAGGCACTCCTT -ACGGAATCAGTGTAGGCACCTGTT -ACGGAATCAGTGTAGGCACGGTTT -ACGGAATCAGTGTAGGCAGTGGTT -ACGGAATCAGTGTAGGCAGCCTTT -ACGGAATCAGTGTAGGCAGGTCTT -ACGGAATCAGTGTAGGCAACGCTT -ACGGAATCAGTGTAGGCAAGCGTT -ACGGAATCAGTGTAGGCATTCGTC -ACGGAATCAGTGTAGGCATCTCTC -ACGGAATCAGTGTAGGCATGGATC -ACGGAATCAGTGTAGGCACACTTC -ACGGAATCAGTGTAGGCAGTACTC -ACGGAATCAGTGTAGGCAGATGTC -ACGGAATCAGTGTAGGCAACAGTC -ACGGAATCAGTGTAGGCATTGCTG -ACGGAATCAGTGTAGGCATCCATG -ACGGAATCAGTGTAGGCATGTGTG -ACGGAATCAGTGTAGGCACTAGTG -ACGGAATCAGTGTAGGCACATCTG -ACGGAATCAGTGTAGGCAGAGTTG -ACGGAATCAGTGTAGGCAAGACTG -ACGGAATCAGTGTAGGCATCGGTA -ACGGAATCAGTGTAGGCATGCCTA -ACGGAATCAGTGTAGGCACCACTA -ACGGAATCAGTGTAGGCAGGAGTA -ACGGAATCAGTGTAGGCATCGTCT -ACGGAATCAGTGTAGGCATGCACT -ACGGAATCAGTGTAGGCACTGACT -ACGGAATCAGTGTAGGCACAACCT -ACGGAATCAGTGTAGGCAGCTACT -ACGGAATCAGTGTAGGCAGGATCT -ACGGAATCAGTGTAGGCAAAGGCT -ACGGAATCAGTGTAGGCATCAACC -ACGGAATCAGTGTAGGCATGTTCC -ACGGAATCAGTGTAGGCAATTCCC -ACGGAATCAGTGTAGGCATTCTCG -ACGGAATCAGTGTAGGCATAGACG -ACGGAATCAGTGTAGGCAGTAACG -ACGGAATCAGTGTAGGCAACTTCG -ACGGAATCAGTGTAGGCATACGCA -ACGGAATCAGTGTAGGCACTTGCA -ACGGAATCAGTGTAGGCACGAACA -ACGGAATCAGTGTAGGCACAGTCA -ACGGAATCAGTGTAGGCAGATCCA -ACGGAATCAGTGTAGGCAACGACA -ACGGAATCAGTGTAGGCAAGCTCA -ACGGAATCAGTGTAGGCATCACGT -ACGGAATCAGTGTAGGCACGTAGT -ACGGAATCAGTGTAGGCAGTCAGT -ACGGAATCAGTGTAGGCAGAAGGT -ACGGAATCAGTGTAGGCAAACCGT -ACGGAATCAGTGTAGGCATTGTGC -ACGGAATCAGTGTAGGCACTAAGC -ACGGAATCAGTGTAGGCAACTAGC -ACGGAATCAGTGTAGGCAAGATGC -ACGGAATCAGTGTAGGCATGAAGG -ACGGAATCAGTGTAGGCACAATGG -ACGGAATCAGTGTAGGCAATGAGG -ACGGAATCAGTGTAGGCAAATGGG -ACGGAATCAGTGTAGGCATCCTGA -ACGGAATCAGTGTAGGCATAGCGA -ACGGAATCAGTGTAGGCACACAGA -ACGGAATCAGTGTAGGCAGCAAGA -ACGGAATCAGTGTAGGCAGGTTGA -ACGGAATCAGTGTAGGCATCCGAT -ACGGAATCAGTGTAGGCATGGCAT -ACGGAATCAGTGTAGGCACGAGAT -ACGGAATCAGTGTAGGCATACCAC -ACGGAATCAGTGTAGGCACAGAAC -ACGGAATCAGTGTAGGCAGTCTAC -ACGGAATCAGTGTAGGCAACGTAC -ACGGAATCAGTGTAGGCAAGTGAC -ACGGAATCAGTGTAGGCACTGTAG -ACGGAATCAGTGTAGGCACCTAAG -ACGGAATCAGTGTAGGCAGTTCAG -ACGGAATCAGTGTAGGCAGCATAG -ACGGAATCAGTGTAGGCAGACAAG -ACGGAATCAGTGTAGGCAAAGCAG -ACGGAATCAGTGTAGGCACGTCAA -ACGGAATCAGTGTAGGCAGCTGAA -ACGGAATCAGTGTAGGCAAGTACG -ACGGAATCAGTGTAGGCAATCCGA -ACGGAATCAGTGTAGGCAATGGGA -ACGGAATCAGTGTAGGCAGTGCAA -ACGGAATCAGTGTAGGCAGAGGAA -ACGGAATCAGTGTAGGCACAGGTA -ACGGAATCAGTGTAGGCAGACTCT -ACGGAATCAGTGTAGGCAAGTCCT -ACGGAATCAGTGTAGGCATAAGCC -ACGGAATCAGTGTAGGCAATAGCC -ACGGAATCAGTGTAGGCATAACCG -ACGGAATCAGTGTAGGCAATGCCA -ACGGAATCAGTGAAGGACGGAAAC -ACGGAATCAGTGAAGGACAACACC -ACGGAATCAGTGAAGGACATCGAG -ACGGAATCAGTGAAGGACCTCCTT -ACGGAATCAGTGAAGGACCCTGTT -ACGGAATCAGTGAAGGACCGGTTT -ACGGAATCAGTGAAGGACGTGGTT -ACGGAATCAGTGAAGGACGCCTTT -ACGGAATCAGTGAAGGACGGTCTT -ACGGAATCAGTGAAGGACACGCTT -ACGGAATCAGTGAAGGACAGCGTT -ACGGAATCAGTGAAGGACTTCGTC -ACGGAATCAGTGAAGGACTCTCTC -ACGGAATCAGTGAAGGACTGGATC -ACGGAATCAGTGAAGGACCACTTC -ACGGAATCAGTGAAGGACGTACTC -ACGGAATCAGTGAAGGACGATGTC -ACGGAATCAGTGAAGGACACAGTC -ACGGAATCAGTGAAGGACTTGCTG -ACGGAATCAGTGAAGGACTCCATG -ACGGAATCAGTGAAGGACTGTGTG -ACGGAATCAGTGAAGGACCTAGTG -ACGGAATCAGTGAAGGACCATCTG -ACGGAATCAGTGAAGGACGAGTTG -ACGGAATCAGTGAAGGACAGACTG -ACGGAATCAGTGAAGGACTCGGTA -ACGGAATCAGTGAAGGACTGCCTA -ACGGAATCAGTGAAGGACCCACTA -ACGGAATCAGTGAAGGACGGAGTA -ACGGAATCAGTGAAGGACTCGTCT -ACGGAATCAGTGAAGGACTGCACT -ACGGAATCAGTGAAGGACCTGACT -ACGGAATCAGTGAAGGACCAACCT -ACGGAATCAGTGAAGGACGCTACT -ACGGAATCAGTGAAGGACGGATCT -ACGGAATCAGTGAAGGACAAGGCT -ACGGAATCAGTGAAGGACTCAACC -ACGGAATCAGTGAAGGACTGTTCC -ACGGAATCAGTGAAGGACATTCCC -ACGGAATCAGTGAAGGACTTCTCG -ACGGAATCAGTGAAGGACTAGACG -ACGGAATCAGTGAAGGACGTAACG -ACGGAATCAGTGAAGGACACTTCG -ACGGAATCAGTGAAGGACTACGCA -ACGGAATCAGTGAAGGACCTTGCA -ACGGAATCAGTGAAGGACCGAACA -ACGGAATCAGTGAAGGACCAGTCA -ACGGAATCAGTGAAGGACGATCCA -ACGGAATCAGTGAAGGACACGACA -ACGGAATCAGTGAAGGACAGCTCA -ACGGAATCAGTGAAGGACTCACGT -ACGGAATCAGTGAAGGACCGTAGT -ACGGAATCAGTGAAGGACGTCAGT -ACGGAATCAGTGAAGGACGAAGGT -ACGGAATCAGTGAAGGACAACCGT -ACGGAATCAGTGAAGGACTTGTGC -ACGGAATCAGTGAAGGACCTAAGC -ACGGAATCAGTGAAGGACACTAGC -ACGGAATCAGTGAAGGACAGATGC -ACGGAATCAGTGAAGGACTGAAGG -ACGGAATCAGTGAAGGACCAATGG -ACGGAATCAGTGAAGGACATGAGG -ACGGAATCAGTGAAGGACAATGGG -ACGGAATCAGTGAAGGACTCCTGA -ACGGAATCAGTGAAGGACTAGCGA -ACGGAATCAGTGAAGGACCACAGA -ACGGAATCAGTGAAGGACGCAAGA -ACGGAATCAGTGAAGGACGGTTGA -ACGGAATCAGTGAAGGACTCCGAT -ACGGAATCAGTGAAGGACTGGCAT -ACGGAATCAGTGAAGGACCGAGAT -ACGGAATCAGTGAAGGACTACCAC -ACGGAATCAGTGAAGGACCAGAAC -ACGGAATCAGTGAAGGACGTCTAC -ACGGAATCAGTGAAGGACACGTAC -ACGGAATCAGTGAAGGACAGTGAC -ACGGAATCAGTGAAGGACCTGTAG -ACGGAATCAGTGAAGGACCCTAAG -ACGGAATCAGTGAAGGACGTTCAG -ACGGAATCAGTGAAGGACGCATAG -ACGGAATCAGTGAAGGACGACAAG -ACGGAATCAGTGAAGGACAAGCAG -ACGGAATCAGTGAAGGACCGTCAA -ACGGAATCAGTGAAGGACGCTGAA -ACGGAATCAGTGAAGGACAGTACG -ACGGAATCAGTGAAGGACATCCGA -ACGGAATCAGTGAAGGACATGGGA -ACGGAATCAGTGAAGGACGTGCAA -ACGGAATCAGTGAAGGACGAGGAA -ACGGAATCAGTGAAGGACCAGGTA -ACGGAATCAGTGAAGGACGACTCT -ACGGAATCAGTGAAGGACAGTCCT -ACGGAATCAGTGAAGGACTAAGCC -ACGGAATCAGTGAAGGACATAGCC -ACGGAATCAGTGAAGGACTAACCG -ACGGAATCAGTGAAGGACATGCCA -ACGGAATCAGTGCAGAAGGGAAAC -ACGGAATCAGTGCAGAAGAACACC -ACGGAATCAGTGCAGAAGATCGAG -ACGGAATCAGTGCAGAAGCTCCTT -ACGGAATCAGTGCAGAAGCCTGTT -ACGGAATCAGTGCAGAAGCGGTTT -ACGGAATCAGTGCAGAAGGTGGTT -ACGGAATCAGTGCAGAAGGCCTTT -ACGGAATCAGTGCAGAAGGGTCTT -ACGGAATCAGTGCAGAAGACGCTT -ACGGAATCAGTGCAGAAGAGCGTT -ACGGAATCAGTGCAGAAGTTCGTC -ACGGAATCAGTGCAGAAGTCTCTC -ACGGAATCAGTGCAGAAGTGGATC -ACGGAATCAGTGCAGAAGCACTTC -ACGGAATCAGTGCAGAAGGTACTC -ACGGAATCAGTGCAGAAGGATGTC -ACGGAATCAGTGCAGAAGACAGTC -ACGGAATCAGTGCAGAAGTTGCTG -ACGGAATCAGTGCAGAAGTCCATG -ACGGAATCAGTGCAGAAGTGTGTG -ACGGAATCAGTGCAGAAGCTAGTG -ACGGAATCAGTGCAGAAGCATCTG -ACGGAATCAGTGCAGAAGGAGTTG -ACGGAATCAGTGCAGAAGAGACTG -ACGGAATCAGTGCAGAAGTCGGTA -ACGGAATCAGTGCAGAAGTGCCTA -ACGGAATCAGTGCAGAAGCCACTA -ACGGAATCAGTGCAGAAGGGAGTA -ACGGAATCAGTGCAGAAGTCGTCT -ACGGAATCAGTGCAGAAGTGCACT -ACGGAATCAGTGCAGAAGCTGACT -ACGGAATCAGTGCAGAAGCAACCT -ACGGAATCAGTGCAGAAGGCTACT -ACGGAATCAGTGCAGAAGGGATCT -ACGGAATCAGTGCAGAAGAAGGCT -ACGGAATCAGTGCAGAAGTCAACC -ACGGAATCAGTGCAGAAGTGTTCC -ACGGAATCAGTGCAGAAGATTCCC -ACGGAATCAGTGCAGAAGTTCTCG -ACGGAATCAGTGCAGAAGTAGACG -ACGGAATCAGTGCAGAAGGTAACG -ACGGAATCAGTGCAGAAGACTTCG -ACGGAATCAGTGCAGAAGTACGCA -ACGGAATCAGTGCAGAAGCTTGCA -ACGGAATCAGTGCAGAAGCGAACA -ACGGAATCAGTGCAGAAGCAGTCA -ACGGAATCAGTGCAGAAGGATCCA -ACGGAATCAGTGCAGAAGACGACA -ACGGAATCAGTGCAGAAGAGCTCA -ACGGAATCAGTGCAGAAGTCACGT -ACGGAATCAGTGCAGAAGCGTAGT -ACGGAATCAGTGCAGAAGGTCAGT -ACGGAATCAGTGCAGAAGGAAGGT -ACGGAATCAGTGCAGAAGAACCGT -ACGGAATCAGTGCAGAAGTTGTGC -ACGGAATCAGTGCAGAAGCTAAGC -ACGGAATCAGTGCAGAAGACTAGC -ACGGAATCAGTGCAGAAGAGATGC -ACGGAATCAGTGCAGAAGTGAAGG -ACGGAATCAGTGCAGAAGCAATGG -ACGGAATCAGTGCAGAAGATGAGG -ACGGAATCAGTGCAGAAGAATGGG -ACGGAATCAGTGCAGAAGTCCTGA -ACGGAATCAGTGCAGAAGTAGCGA -ACGGAATCAGTGCAGAAGCACAGA -ACGGAATCAGTGCAGAAGGCAAGA -ACGGAATCAGTGCAGAAGGGTTGA -ACGGAATCAGTGCAGAAGTCCGAT -ACGGAATCAGTGCAGAAGTGGCAT -ACGGAATCAGTGCAGAAGCGAGAT -ACGGAATCAGTGCAGAAGTACCAC -ACGGAATCAGTGCAGAAGCAGAAC -ACGGAATCAGTGCAGAAGGTCTAC -ACGGAATCAGTGCAGAAGACGTAC -ACGGAATCAGTGCAGAAGAGTGAC -ACGGAATCAGTGCAGAAGCTGTAG -ACGGAATCAGTGCAGAAGCCTAAG -ACGGAATCAGTGCAGAAGGTTCAG -ACGGAATCAGTGCAGAAGGCATAG -ACGGAATCAGTGCAGAAGGACAAG -ACGGAATCAGTGCAGAAGAAGCAG -ACGGAATCAGTGCAGAAGCGTCAA -ACGGAATCAGTGCAGAAGGCTGAA -ACGGAATCAGTGCAGAAGAGTACG -ACGGAATCAGTGCAGAAGATCCGA -ACGGAATCAGTGCAGAAGATGGGA -ACGGAATCAGTGCAGAAGGTGCAA -ACGGAATCAGTGCAGAAGGAGGAA -ACGGAATCAGTGCAGAAGCAGGTA -ACGGAATCAGTGCAGAAGGACTCT -ACGGAATCAGTGCAGAAGAGTCCT -ACGGAATCAGTGCAGAAGTAAGCC -ACGGAATCAGTGCAGAAGATAGCC -ACGGAATCAGTGCAGAAGTAACCG -ACGGAATCAGTGCAGAAGATGCCA -ACGGAATCAGTGCAACGTGGAAAC -ACGGAATCAGTGCAACGTAACACC -ACGGAATCAGTGCAACGTATCGAG -ACGGAATCAGTGCAACGTCTCCTT -ACGGAATCAGTGCAACGTCCTGTT -ACGGAATCAGTGCAACGTCGGTTT -ACGGAATCAGTGCAACGTGTGGTT -ACGGAATCAGTGCAACGTGCCTTT -ACGGAATCAGTGCAACGTGGTCTT -ACGGAATCAGTGCAACGTACGCTT -ACGGAATCAGTGCAACGTAGCGTT -ACGGAATCAGTGCAACGTTTCGTC -ACGGAATCAGTGCAACGTTCTCTC -ACGGAATCAGTGCAACGTTGGATC -ACGGAATCAGTGCAACGTCACTTC -ACGGAATCAGTGCAACGTGTACTC -ACGGAATCAGTGCAACGTGATGTC -ACGGAATCAGTGCAACGTACAGTC -ACGGAATCAGTGCAACGTTTGCTG -ACGGAATCAGTGCAACGTTCCATG -ACGGAATCAGTGCAACGTTGTGTG -ACGGAATCAGTGCAACGTCTAGTG -ACGGAATCAGTGCAACGTCATCTG -ACGGAATCAGTGCAACGTGAGTTG -ACGGAATCAGTGCAACGTAGACTG -ACGGAATCAGTGCAACGTTCGGTA -ACGGAATCAGTGCAACGTTGCCTA -ACGGAATCAGTGCAACGTCCACTA -ACGGAATCAGTGCAACGTGGAGTA -ACGGAATCAGTGCAACGTTCGTCT -ACGGAATCAGTGCAACGTTGCACT -ACGGAATCAGTGCAACGTCTGACT -ACGGAATCAGTGCAACGTCAACCT -ACGGAATCAGTGCAACGTGCTACT -ACGGAATCAGTGCAACGTGGATCT -ACGGAATCAGTGCAACGTAAGGCT -ACGGAATCAGTGCAACGTTCAACC -ACGGAATCAGTGCAACGTTGTTCC -ACGGAATCAGTGCAACGTATTCCC -ACGGAATCAGTGCAACGTTTCTCG -ACGGAATCAGTGCAACGTTAGACG -ACGGAATCAGTGCAACGTGTAACG -ACGGAATCAGTGCAACGTACTTCG -ACGGAATCAGTGCAACGTTACGCA -ACGGAATCAGTGCAACGTCTTGCA -ACGGAATCAGTGCAACGTCGAACA -ACGGAATCAGTGCAACGTCAGTCA -ACGGAATCAGTGCAACGTGATCCA -ACGGAATCAGTGCAACGTACGACA -ACGGAATCAGTGCAACGTAGCTCA -ACGGAATCAGTGCAACGTTCACGT -ACGGAATCAGTGCAACGTCGTAGT -ACGGAATCAGTGCAACGTGTCAGT -ACGGAATCAGTGCAACGTGAAGGT -ACGGAATCAGTGCAACGTAACCGT -ACGGAATCAGTGCAACGTTTGTGC -ACGGAATCAGTGCAACGTCTAAGC -ACGGAATCAGTGCAACGTACTAGC -ACGGAATCAGTGCAACGTAGATGC -ACGGAATCAGTGCAACGTTGAAGG -ACGGAATCAGTGCAACGTCAATGG -ACGGAATCAGTGCAACGTATGAGG -ACGGAATCAGTGCAACGTAATGGG -ACGGAATCAGTGCAACGTTCCTGA -ACGGAATCAGTGCAACGTTAGCGA -ACGGAATCAGTGCAACGTCACAGA -ACGGAATCAGTGCAACGTGCAAGA -ACGGAATCAGTGCAACGTGGTTGA -ACGGAATCAGTGCAACGTTCCGAT -ACGGAATCAGTGCAACGTTGGCAT -ACGGAATCAGTGCAACGTCGAGAT -ACGGAATCAGTGCAACGTTACCAC -ACGGAATCAGTGCAACGTCAGAAC -ACGGAATCAGTGCAACGTGTCTAC -ACGGAATCAGTGCAACGTACGTAC -ACGGAATCAGTGCAACGTAGTGAC -ACGGAATCAGTGCAACGTCTGTAG -ACGGAATCAGTGCAACGTCCTAAG -ACGGAATCAGTGCAACGTGTTCAG -ACGGAATCAGTGCAACGTGCATAG -ACGGAATCAGTGCAACGTGACAAG -ACGGAATCAGTGCAACGTAAGCAG -ACGGAATCAGTGCAACGTCGTCAA -ACGGAATCAGTGCAACGTGCTGAA -ACGGAATCAGTGCAACGTAGTACG -ACGGAATCAGTGCAACGTATCCGA -ACGGAATCAGTGCAACGTATGGGA -ACGGAATCAGTGCAACGTGTGCAA -ACGGAATCAGTGCAACGTGAGGAA -ACGGAATCAGTGCAACGTCAGGTA -ACGGAATCAGTGCAACGTGACTCT -ACGGAATCAGTGCAACGTAGTCCT -ACGGAATCAGTGCAACGTTAAGCC -ACGGAATCAGTGCAACGTATAGCC -ACGGAATCAGTGCAACGTTAACCG -ACGGAATCAGTGCAACGTATGCCA -ACGGAATCAGTGGAAGCTGGAAAC -ACGGAATCAGTGGAAGCTAACACC -ACGGAATCAGTGGAAGCTATCGAG -ACGGAATCAGTGGAAGCTCTCCTT -ACGGAATCAGTGGAAGCTCCTGTT -ACGGAATCAGTGGAAGCTCGGTTT -ACGGAATCAGTGGAAGCTGTGGTT -ACGGAATCAGTGGAAGCTGCCTTT -ACGGAATCAGTGGAAGCTGGTCTT -ACGGAATCAGTGGAAGCTACGCTT -ACGGAATCAGTGGAAGCTAGCGTT -ACGGAATCAGTGGAAGCTTTCGTC -ACGGAATCAGTGGAAGCTTCTCTC -ACGGAATCAGTGGAAGCTTGGATC -ACGGAATCAGTGGAAGCTCACTTC -ACGGAATCAGTGGAAGCTGTACTC -ACGGAATCAGTGGAAGCTGATGTC -ACGGAATCAGTGGAAGCTACAGTC -ACGGAATCAGTGGAAGCTTTGCTG -ACGGAATCAGTGGAAGCTTCCATG -ACGGAATCAGTGGAAGCTTGTGTG -ACGGAATCAGTGGAAGCTCTAGTG -ACGGAATCAGTGGAAGCTCATCTG -ACGGAATCAGTGGAAGCTGAGTTG -ACGGAATCAGTGGAAGCTAGACTG -ACGGAATCAGTGGAAGCTTCGGTA -ACGGAATCAGTGGAAGCTTGCCTA -ACGGAATCAGTGGAAGCTCCACTA -ACGGAATCAGTGGAAGCTGGAGTA -ACGGAATCAGTGGAAGCTTCGTCT -ACGGAATCAGTGGAAGCTTGCACT -ACGGAATCAGTGGAAGCTCTGACT -ACGGAATCAGTGGAAGCTCAACCT -ACGGAATCAGTGGAAGCTGCTACT -ACGGAATCAGTGGAAGCTGGATCT -ACGGAATCAGTGGAAGCTAAGGCT -ACGGAATCAGTGGAAGCTTCAACC -ACGGAATCAGTGGAAGCTTGTTCC -ACGGAATCAGTGGAAGCTATTCCC -ACGGAATCAGTGGAAGCTTTCTCG -ACGGAATCAGTGGAAGCTTAGACG -ACGGAATCAGTGGAAGCTGTAACG -ACGGAATCAGTGGAAGCTACTTCG -ACGGAATCAGTGGAAGCTTACGCA -ACGGAATCAGTGGAAGCTCTTGCA -ACGGAATCAGTGGAAGCTCGAACA -ACGGAATCAGTGGAAGCTCAGTCA -ACGGAATCAGTGGAAGCTGATCCA -ACGGAATCAGTGGAAGCTACGACA -ACGGAATCAGTGGAAGCTAGCTCA -ACGGAATCAGTGGAAGCTTCACGT -ACGGAATCAGTGGAAGCTCGTAGT -ACGGAATCAGTGGAAGCTGTCAGT -ACGGAATCAGTGGAAGCTGAAGGT -ACGGAATCAGTGGAAGCTAACCGT -ACGGAATCAGTGGAAGCTTTGTGC -ACGGAATCAGTGGAAGCTCTAAGC -ACGGAATCAGTGGAAGCTACTAGC -ACGGAATCAGTGGAAGCTAGATGC -ACGGAATCAGTGGAAGCTTGAAGG -ACGGAATCAGTGGAAGCTCAATGG -ACGGAATCAGTGGAAGCTATGAGG -ACGGAATCAGTGGAAGCTAATGGG -ACGGAATCAGTGGAAGCTTCCTGA -ACGGAATCAGTGGAAGCTTAGCGA -ACGGAATCAGTGGAAGCTCACAGA -ACGGAATCAGTGGAAGCTGCAAGA -ACGGAATCAGTGGAAGCTGGTTGA -ACGGAATCAGTGGAAGCTTCCGAT -ACGGAATCAGTGGAAGCTTGGCAT -ACGGAATCAGTGGAAGCTCGAGAT -ACGGAATCAGTGGAAGCTTACCAC -ACGGAATCAGTGGAAGCTCAGAAC -ACGGAATCAGTGGAAGCTGTCTAC -ACGGAATCAGTGGAAGCTACGTAC -ACGGAATCAGTGGAAGCTAGTGAC -ACGGAATCAGTGGAAGCTCTGTAG -ACGGAATCAGTGGAAGCTCCTAAG -ACGGAATCAGTGGAAGCTGTTCAG -ACGGAATCAGTGGAAGCTGCATAG -ACGGAATCAGTGGAAGCTGACAAG -ACGGAATCAGTGGAAGCTAAGCAG -ACGGAATCAGTGGAAGCTCGTCAA -ACGGAATCAGTGGAAGCTGCTGAA -ACGGAATCAGTGGAAGCTAGTACG -ACGGAATCAGTGGAAGCTATCCGA -ACGGAATCAGTGGAAGCTATGGGA -ACGGAATCAGTGGAAGCTGTGCAA -ACGGAATCAGTGGAAGCTGAGGAA -ACGGAATCAGTGGAAGCTCAGGTA -ACGGAATCAGTGGAAGCTGACTCT -ACGGAATCAGTGGAAGCTAGTCCT -ACGGAATCAGTGGAAGCTTAAGCC -ACGGAATCAGTGGAAGCTATAGCC -ACGGAATCAGTGGAAGCTTAACCG -ACGGAATCAGTGGAAGCTATGCCA -ACGGAATCAGTGACGAGTGGAAAC -ACGGAATCAGTGACGAGTAACACC -ACGGAATCAGTGACGAGTATCGAG -ACGGAATCAGTGACGAGTCTCCTT -ACGGAATCAGTGACGAGTCCTGTT -ACGGAATCAGTGACGAGTCGGTTT -ACGGAATCAGTGACGAGTGTGGTT -ACGGAATCAGTGACGAGTGCCTTT -ACGGAATCAGTGACGAGTGGTCTT -ACGGAATCAGTGACGAGTACGCTT -ACGGAATCAGTGACGAGTAGCGTT -ACGGAATCAGTGACGAGTTTCGTC -ACGGAATCAGTGACGAGTTCTCTC -ACGGAATCAGTGACGAGTTGGATC -ACGGAATCAGTGACGAGTCACTTC -ACGGAATCAGTGACGAGTGTACTC -ACGGAATCAGTGACGAGTGATGTC -ACGGAATCAGTGACGAGTACAGTC -ACGGAATCAGTGACGAGTTTGCTG -ACGGAATCAGTGACGAGTTCCATG -ACGGAATCAGTGACGAGTTGTGTG -ACGGAATCAGTGACGAGTCTAGTG -ACGGAATCAGTGACGAGTCATCTG -ACGGAATCAGTGACGAGTGAGTTG -ACGGAATCAGTGACGAGTAGACTG -ACGGAATCAGTGACGAGTTCGGTA -ACGGAATCAGTGACGAGTTGCCTA -ACGGAATCAGTGACGAGTCCACTA -ACGGAATCAGTGACGAGTGGAGTA -ACGGAATCAGTGACGAGTTCGTCT -ACGGAATCAGTGACGAGTTGCACT -ACGGAATCAGTGACGAGTCTGACT -ACGGAATCAGTGACGAGTCAACCT -ACGGAATCAGTGACGAGTGCTACT -ACGGAATCAGTGACGAGTGGATCT -ACGGAATCAGTGACGAGTAAGGCT -ACGGAATCAGTGACGAGTTCAACC -ACGGAATCAGTGACGAGTTGTTCC -ACGGAATCAGTGACGAGTATTCCC -ACGGAATCAGTGACGAGTTTCTCG -ACGGAATCAGTGACGAGTTAGACG -ACGGAATCAGTGACGAGTGTAACG -ACGGAATCAGTGACGAGTACTTCG -ACGGAATCAGTGACGAGTTACGCA -ACGGAATCAGTGACGAGTCTTGCA -ACGGAATCAGTGACGAGTCGAACA -ACGGAATCAGTGACGAGTCAGTCA -ACGGAATCAGTGACGAGTGATCCA -ACGGAATCAGTGACGAGTACGACA -ACGGAATCAGTGACGAGTAGCTCA -ACGGAATCAGTGACGAGTTCACGT -ACGGAATCAGTGACGAGTCGTAGT -ACGGAATCAGTGACGAGTGTCAGT -ACGGAATCAGTGACGAGTGAAGGT -ACGGAATCAGTGACGAGTAACCGT -ACGGAATCAGTGACGAGTTTGTGC -ACGGAATCAGTGACGAGTCTAAGC -ACGGAATCAGTGACGAGTACTAGC -ACGGAATCAGTGACGAGTAGATGC -ACGGAATCAGTGACGAGTTGAAGG -ACGGAATCAGTGACGAGTCAATGG -ACGGAATCAGTGACGAGTATGAGG -ACGGAATCAGTGACGAGTAATGGG -ACGGAATCAGTGACGAGTTCCTGA -ACGGAATCAGTGACGAGTTAGCGA -ACGGAATCAGTGACGAGTCACAGA -ACGGAATCAGTGACGAGTGCAAGA -ACGGAATCAGTGACGAGTGGTTGA -ACGGAATCAGTGACGAGTTCCGAT -ACGGAATCAGTGACGAGTTGGCAT -ACGGAATCAGTGACGAGTCGAGAT -ACGGAATCAGTGACGAGTTACCAC -ACGGAATCAGTGACGAGTCAGAAC -ACGGAATCAGTGACGAGTGTCTAC -ACGGAATCAGTGACGAGTACGTAC -ACGGAATCAGTGACGAGTAGTGAC -ACGGAATCAGTGACGAGTCTGTAG -ACGGAATCAGTGACGAGTCCTAAG -ACGGAATCAGTGACGAGTGTTCAG -ACGGAATCAGTGACGAGTGCATAG -ACGGAATCAGTGACGAGTGACAAG -ACGGAATCAGTGACGAGTAAGCAG -ACGGAATCAGTGACGAGTCGTCAA -ACGGAATCAGTGACGAGTGCTGAA -ACGGAATCAGTGACGAGTAGTACG -ACGGAATCAGTGACGAGTATCCGA -ACGGAATCAGTGACGAGTATGGGA -ACGGAATCAGTGACGAGTGTGCAA -ACGGAATCAGTGACGAGTGAGGAA -ACGGAATCAGTGACGAGTCAGGTA -ACGGAATCAGTGACGAGTGACTCT -ACGGAATCAGTGACGAGTAGTCCT -ACGGAATCAGTGACGAGTTAAGCC -ACGGAATCAGTGACGAGTATAGCC -ACGGAATCAGTGACGAGTTAACCG -ACGGAATCAGTGACGAGTATGCCA -ACGGAATCAGTGCGAATCGGAAAC -ACGGAATCAGTGCGAATCAACACC -ACGGAATCAGTGCGAATCATCGAG -ACGGAATCAGTGCGAATCCTCCTT -ACGGAATCAGTGCGAATCCCTGTT -ACGGAATCAGTGCGAATCCGGTTT -ACGGAATCAGTGCGAATCGTGGTT -ACGGAATCAGTGCGAATCGCCTTT -ACGGAATCAGTGCGAATCGGTCTT -ACGGAATCAGTGCGAATCACGCTT -ACGGAATCAGTGCGAATCAGCGTT -ACGGAATCAGTGCGAATCTTCGTC -ACGGAATCAGTGCGAATCTCTCTC -ACGGAATCAGTGCGAATCTGGATC -ACGGAATCAGTGCGAATCCACTTC -ACGGAATCAGTGCGAATCGTACTC -ACGGAATCAGTGCGAATCGATGTC -ACGGAATCAGTGCGAATCACAGTC -ACGGAATCAGTGCGAATCTTGCTG -ACGGAATCAGTGCGAATCTCCATG -ACGGAATCAGTGCGAATCTGTGTG -ACGGAATCAGTGCGAATCCTAGTG -ACGGAATCAGTGCGAATCCATCTG -ACGGAATCAGTGCGAATCGAGTTG -ACGGAATCAGTGCGAATCAGACTG -ACGGAATCAGTGCGAATCTCGGTA -ACGGAATCAGTGCGAATCTGCCTA -ACGGAATCAGTGCGAATCCCACTA -ACGGAATCAGTGCGAATCGGAGTA -ACGGAATCAGTGCGAATCTCGTCT -ACGGAATCAGTGCGAATCTGCACT -ACGGAATCAGTGCGAATCCTGACT -ACGGAATCAGTGCGAATCCAACCT -ACGGAATCAGTGCGAATCGCTACT -ACGGAATCAGTGCGAATCGGATCT -ACGGAATCAGTGCGAATCAAGGCT -ACGGAATCAGTGCGAATCTCAACC -ACGGAATCAGTGCGAATCTGTTCC -ACGGAATCAGTGCGAATCATTCCC -ACGGAATCAGTGCGAATCTTCTCG -ACGGAATCAGTGCGAATCTAGACG -ACGGAATCAGTGCGAATCGTAACG -ACGGAATCAGTGCGAATCACTTCG -ACGGAATCAGTGCGAATCTACGCA -ACGGAATCAGTGCGAATCCTTGCA -ACGGAATCAGTGCGAATCCGAACA -ACGGAATCAGTGCGAATCCAGTCA -ACGGAATCAGTGCGAATCGATCCA -ACGGAATCAGTGCGAATCACGACA -ACGGAATCAGTGCGAATCAGCTCA -ACGGAATCAGTGCGAATCTCACGT -ACGGAATCAGTGCGAATCCGTAGT -ACGGAATCAGTGCGAATCGTCAGT -ACGGAATCAGTGCGAATCGAAGGT -ACGGAATCAGTGCGAATCAACCGT -ACGGAATCAGTGCGAATCTTGTGC -ACGGAATCAGTGCGAATCCTAAGC -ACGGAATCAGTGCGAATCACTAGC -ACGGAATCAGTGCGAATCAGATGC -ACGGAATCAGTGCGAATCTGAAGG -ACGGAATCAGTGCGAATCCAATGG -ACGGAATCAGTGCGAATCATGAGG -ACGGAATCAGTGCGAATCAATGGG -ACGGAATCAGTGCGAATCTCCTGA -ACGGAATCAGTGCGAATCTAGCGA -ACGGAATCAGTGCGAATCCACAGA -ACGGAATCAGTGCGAATCGCAAGA -ACGGAATCAGTGCGAATCGGTTGA -ACGGAATCAGTGCGAATCTCCGAT -ACGGAATCAGTGCGAATCTGGCAT -ACGGAATCAGTGCGAATCCGAGAT -ACGGAATCAGTGCGAATCTACCAC -ACGGAATCAGTGCGAATCCAGAAC -ACGGAATCAGTGCGAATCGTCTAC -ACGGAATCAGTGCGAATCACGTAC -ACGGAATCAGTGCGAATCAGTGAC -ACGGAATCAGTGCGAATCCTGTAG -ACGGAATCAGTGCGAATCCCTAAG -ACGGAATCAGTGCGAATCGTTCAG -ACGGAATCAGTGCGAATCGCATAG -ACGGAATCAGTGCGAATCGACAAG -ACGGAATCAGTGCGAATCAAGCAG -ACGGAATCAGTGCGAATCCGTCAA -ACGGAATCAGTGCGAATCGCTGAA -ACGGAATCAGTGCGAATCAGTACG -ACGGAATCAGTGCGAATCATCCGA -ACGGAATCAGTGCGAATCATGGGA -ACGGAATCAGTGCGAATCGTGCAA -ACGGAATCAGTGCGAATCGAGGAA -ACGGAATCAGTGCGAATCCAGGTA -ACGGAATCAGTGCGAATCGACTCT -ACGGAATCAGTGCGAATCAGTCCT -ACGGAATCAGTGCGAATCTAAGCC -ACGGAATCAGTGCGAATCATAGCC -ACGGAATCAGTGCGAATCTAACCG -ACGGAATCAGTGCGAATCATGCCA -ACGGAATCAGTGGGAATGGGAAAC -ACGGAATCAGTGGGAATGAACACC -ACGGAATCAGTGGGAATGATCGAG -ACGGAATCAGTGGGAATGCTCCTT -ACGGAATCAGTGGGAATGCCTGTT -ACGGAATCAGTGGGAATGCGGTTT -ACGGAATCAGTGGGAATGGTGGTT -ACGGAATCAGTGGGAATGGCCTTT -ACGGAATCAGTGGGAATGGGTCTT -ACGGAATCAGTGGGAATGACGCTT -ACGGAATCAGTGGGAATGAGCGTT -ACGGAATCAGTGGGAATGTTCGTC -ACGGAATCAGTGGGAATGTCTCTC -ACGGAATCAGTGGGAATGTGGATC -ACGGAATCAGTGGGAATGCACTTC -ACGGAATCAGTGGGAATGGTACTC -ACGGAATCAGTGGGAATGGATGTC -ACGGAATCAGTGGGAATGACAGTC -ACGGAATCAGTGGGAATGTTGCTG -ACGGAATCAGTGGGAATGTCCATG -ACGGAATCAGTGGGAATGTGTGTG -ACGGAATCAGTGGGAATGCTAGTG -ACGGAATCAGTGGGAATGCATCTG -ACGGAATCAGTGGGAATGGAGTTG -ACGGAATCAGTGGGAATGAGACTG -ACGGAATCAGTGGGAATGTCGGTA -ACGGAATCAGTGGGAATGTGCCTA -ACGGAATCAGTGGGAATGCCACTA -ACGGAATCAGTGGGAATGGGAGTA -ACGGAATCAGTGGGAATGTCGTCT -ACGGAATCAGTGGGAATGTGCACT -ACGGAATCAGTGGGAATGCTGACT -ACGGAATCAGTGGGAATGCAACCT -ACGGAATCAGTGGGAATGGCTACT -ACGGAATCAGTGGGAATGGGATCT -ACGGAATCAGTGGGAATGAAGGCT -ACGGAATCAGTGGGAATGTCAACC -ACGGAATCAGTGGGAATGTGTTCC -ACGGAATCAGTGGGAATGATTCCC -ACGGAATCAGTGGGAATGTTCTCG -ACGGAATCAGTGGGAATGTAGACG -ACGGAATCAGTGGGAATGGTAACG -ACGGAATCAGTGGGAATGACTTCG -ACGGAATCAGTGGGAATGTACGCA -ACGGAATCAGTGGGAATGCTTGCA -ACGGAATCAGTGGGAATGCGAACA -ACGGAATCAGTGGGAATGCAGTCA -ACGGAATCAGTGGGAATGGATCCA -ACGGAATCAGTGGGAATGACGACA -ACGGAATCAGTGGGAATGAGCTCA -ACGGAATCAGTGGGAATGTCACGT -ACGGAATCAGTGGGAATGCGTAGT -ACGGAATCAGTGGGAATGGTCAGT -ACGGAATCAGTGGGAATGGAAGGT -ACGGAATCAGTGGGAATGAACCGT -ACGGAATCAGTGGGAATGTTGTGC -ACGGAATCAGTGGGAATGCTAAGC -ACGGAATCAGTGGGAATGACTAGC -ACGGAATCAGTGGGAATGAGATGC -ACGGAATCAGTGGGAATGTGAAGG -ACGGAATCAGTGGGAATGCAATGG -ACGGAATCAGTGGGAATGATGAGG -ACGGAATCAGTGGGAATGAATGGG -ACGGAATCAGTGGGAATGTCCTGA -ACGGAATCAGTGGGAATGTAGCGA -ACGGAATCAGTGGGAATGCACAGA -ACGGAATCAGTGGGAATGGCAAGA -ACGGAATCAGTGGGAATGGGTTGA -ACGGAATCAGTGGGAATGTCCGAT -ACGGAATCAGTGGGAATGTGGCAT -ACGGAATCAGTGGGAATGCGAGAT -ACGGAATCAGTGGGAATGTACCAC -ACGGAATCAGTGGGAATGCAGAAC -ACGGAATCAGTGGGAATGGTCTAC -ACGGAATCAGTGGGAATGACGTAC -ACGGAATCAGTGGGAATGAGTGAC -ACGGAATCAGTGGGAATGCTGTAG -ACGGAATCAGTGGGAATGCCTAAG -ACGGAATCAGTGGGAATGGTTCAG -ACGGAATCAGTGGGAATGGCATAG -ACGGAATCAGTGGGAATGGACAAG -ACGGAATCAGTGGGAATGAAGCAG -ACGGAATCAGTGGGAATGCGTCAA -ACGGAATCAGTGGGAATGGCTGAA -ACGGAATCAGTGGGAATGAGTACG -ACGGAATCAGTGGGAATGATCCGA -ACGGAATCAGTGGGAATGATGGGA -ACGGAATCAGTGGGAATGGTGCAA -ACGGAATCAGTGGGAATGGAGGAA -ACGGAATCAGTGGGAATGCAGGTA -ACGGAATCAGTGGGAATGGACTCT -ACGGAATCAGTGGGAATGAGTCCT -ACGGAATCAGTGGGAATGTAAGCC -ACGGAATCAGTGGGAATGATAGCC -ACGGAATCAGTGGGAATGTAACCG -ACGGAATCAGTGGGAATGATGCCA -ACGGAATCAGTGCAAGTGGGAAAC -ACGGAATCAGTGCAAGTGAACACC -ACGGAATCAGTGCAAGTGATCGAG -ACGGAATCAGTGCAAGTGCTCCTT -ACGGAATCAGTGCAAGTGCCTGTT -ACGGAATCAGTGCAAGTGCGGTTT -ACGGAATCAGTGCAAGTGGTGGTT -ACGGAATCAGTGCAAGTGGCCTTT -ACGGAATCAGTGCAAGTGGGTCTT -ACGGAATCAGTGCAAGTGACGCTT -ACGGAATCAGTGCAAGTGAGCGTT -ACGGAATCAGTGCAAGTGTTCGTC -ACGGAATCAGTGCAAGTGTCTCTC -ACGGAATCAGTGCAAGTGTGGATC -ACGGAATCAGTGCAAGTGCACTTC -ACGGAATCAGTGCAAGTGGTACTC -ACGGAATCAGTGCAAGTGGATGTC -ACGGAATCAGTGCAAGTGACAGTC -ACGGAATCAGTGCAAGTGTTGCTG -ACGGAATCAGTGCAAGTGTCCATG -ACGGAATCAGTGCAAGTGTGTGTG -ACGGAATCAGTGCAAGTGCTAGTG -ACGGAATCAGTGCAAGTGCATCTG -ACGGAATCAGTGCAAGTGGAGTTG -ACGGAATCAGTGCAAGTGAGACTG -ACGGAATCAGTGCAAGTGTCGGTA -ACGGAATCAGTGCAAGTGTGCCTA -ACGGAATCAGTGCAAGTGCCACTA -ACGGAATCAGTGCAAGTGGGAGTA -ACGGAATCAGTGCAAGTGTCGTCT -ACGGAATCAGTGCAAGTGTGCACT -ACGGAATCAGTGCAAGTGCTGACT -ACGGAATCAGTGCAAGTGCAACCT -ACGGAATCAGTGCAAGTGGCTACT -ACGGAATCAGTGCAAGTGGGATCT -ACGGAATCAGTGCAAGTGAAGGCT -ACGGAATCAGTGCAAGTGTCAACC -ACGGAATCAGTGCAAGTGTGTTCC -ACGGAATCAGTGCAAGTGATTCCC -ACGGAATCAGTGCAAGTGTTCTCG -ACGGAATCAGTGCAAGTGTAGACG -ACGGAATCAGTGCAAGTGGTAACG -ACGGAATCAGTGCAAGTGACTTCG -ACGGAATCAGTGCAAGTGTACGCA -ACGGAATCAGTGCAAGTGCTTGCA -ACGGAATCAGTGCAAGTGCGAACA -ACGGAATCAGTGCAAGTGCAGTCA -ACGGAATCAGTGCAAGTGGATCCA -ACGGAATCAGTGCAAGTGACGACA -ACGGAATCAGTGCAAGTGAGCTCA -ACGGAATCAGTGCAAGTGTCACGT -ACGGAATCAGTGCAAGTGCGTAGT -ACGGAATCAGTGCAAGTGGTCAGT -ACGGAATCAGTGCAAGTGGAAGGT -ACGGAATCAGTGCAAGTGAACCGT -ACGGAATCAGTGCAAGTGTTGTGC -ACGGAATCAGTGCAAGTGCTAAGC -ACGGAATCAGTGCAAGTGACTAGC -ACGGAATCAGTGCAAGTGAGATGC -ACGGAATCAGTGCAAGTGTGAAGG -ACGGAATCAGTGCAAGTGCAATGG -ACGGAATCAGTGCAAGTGATGAGG -ACGGAATCAGTGCAAGTGAATGGG -ACGGAATCAGTGCAAGTGTCCTGA -ACGGAATCAGTGCAAGTGTAGCGA -ACGGAATCAGTGCAAGTGCACAGA -ACGGAATCAGTGCAAGTGGCAAGA -ACGGAATCAGTGCAAGTGGGTTGA -ACGGAATCAGTGCAAGTGTCCGAT -ACGGAATCAGTGCAAGTGTGGCAT -ACGGAATCAGTGCAAGTGCGAGAT -ACGGAATCAGTGCAAGTGTACCAC -ACGGAATCAGTGCAAGTGCAGAAC -ACGGAATCAGTGCAAGTGGTCTAC -ACGGAATCAGTGCAAGTGACGTAC -ACGGAATCAGTGCAAGTGAGTGAC -ACGGAATCAGTGCAAGTGCTGTAG -ACGGAATCAGTGCAAGTGCCTAAG -ACGGAATCAGTGCAAGTGGTTCAG -ACGGAATCAGTGCAAGTGGCATAG -ACGGAATCAGTGCAAGTGGACAAG -ACGGAATCAGTGCAAGTGAAGCAG -ACGGAATCAGTGCAAGTGCGTCAA -ACGGAATCAGTGCAAGTGGCTGAA -ACGGAATCAGTGCAAGTGAGTACG -ACGGAATCAGTGCAAGTGATCCGA -ACGGAATCAGTGCAAGTGATGGGA -ACGGAATCAGTGCAAGTGGTGCAA -ACGGAATCAGTGCAAGTGGAGGAA -ACGGAATCAGTGCAAGTGCAGGTA -ACGGAATCAGTGCAAGTGGACTCT -ACGGAATCAGTGCAAGTGAGTCCT -ACGGAATCAGTGCAAGTGTAAGCC -ACGGAATCAGTGCAAGTGATAGCC -ACGGAATCAGTGCAAGTGTAACCG -ACGGAATCAGTGCAAGTGATGCCA -ACGGAATCAGTGGAAGAGGGAAAC -ACGGAATCAGTGGAAGAGAACACC -ACGGAATCAGTGGAAGAGATCGAG -ACGGAATCAGTGGAAGAGCTCCTT -ACGGAATCAGTGGAAGAGCCTGTT -ACGGAATCAGTGGAAGAGCGGTTT -ACGGAATCAGTGGAAGAGGTGGTT -ACGGAATCAGTGGAAGAGGCCTTT -ACGGAATCAGTGGAAGAGGGTCTT -ACGGAATCAGTGGAAGAGACGCTT -ACGGAATCAGTGGAAGAGAGCGTT -ACGGAATCAGTGGAAGAGTTCGTC -ACGGAATCAGTGGAAGAGTCTCTC -ACGGAATCAGTGGAAGAGTGGATC -ACGGAATCAGTGGAAGAGCACTTC -ACGGAATCAGTGGAAGAGGTACTC -ACGGAATCAGTGGAAGAGGATGTC -ACGGAATCAGTGGAAGAGACAGTC -ACGGAATCAGTGGAAGAGTTGCTG -ACGGAATCAGTGGAAGAGTCCATG -ACGGAATCAGTGGAAGAGTGTGTG -ACGGAATCAGTGGAAGAGCTAGTG -ACGGAATCAGTGGAAGAGCATCTG -ACGGAATCAGTGGAAGAGGAGTTG -ACGGAATCAGTGGAAGAGAGACTG -ACGGAATCAGTGGAAGAGTCGGTA -ACGGAATCAGTGGAAGAGTGCCTA -ACGGAATCAGTGGAAGAGCCACTA -ACGGAATCAGTGGAAGAGGGAGTA -ACGGAATCAGTGGAAGAGTCGTCT -ACGGAATCAGTGGAAGAGTGCACT -ACGGAATCAGTGGAAGAGCTGACT -ACGGAATCAGTGGAAGAGCAACCT -ACGGAATCAGTGGAAGAGGCTACT -ACGGAATCAGTGGAAGAGGGATCT -ACGGAATCAGTGGAAGAGAAGGCT -ACGGAATCAGTGGAAGAGTCAACC -ACGGAATCAGTGGAAGAGTGTTCC -ACGGAATCAGTGGAAGAGATTCCC -ACGGAATCAGTGGAAGAGTTCTCG -ACGGAATCAGTGGAAGAGTAGACG -ACGGAATCAGTGGAAGAGGTAACG -ACGGAATCAGTGGAAGAGACTTCG -ACGGAATCAGTGGAAGAGTACGCA -ACGGAATCAGTGGAAGAGCTTGCA -ACGGAATCAGTGGAAGAGCGAACA -ACGGAATCAGTGGAAGAGCAGTCA -ACGGAATCAGTGGAAGAGGATCCA -ACGGAATCAGTGGAAGAGACGACA -ACGGAATCAGTGGAAGAGAGCTCA -ACGGAATCAGTGGAAGAGTCACGT -ACGGAATCAGTGGAAGAGCGTAGT -ACGGAATCAGTGGAAGAGGTCAGT -ACGGAATCAGTGGAAGAGGAAGGT -ACGGAATCAGTGGAAGAGAACCGT -ACGGAATCAGTGGAAGAGTTGTGC -ACGGAATCAGTGGAAGAGCTAAGC -ACGGAATCAGTGGAAGAGACTAGC -ACGGAATCAGTGGAAGAGAGATGC -ACGGAATCAGTGGAAGAGTGAAGG -ACGGAATCAGTGGAAGAGCAATGG -ACGGAATCAGTGGAAGAGATGAGG -ACGGAATCAGTGGAAGAGAATGGG -ACGGAATCAGTGGAAGAGTCCTGA -ACGGAATCAGTGGAAGAGTAGCGA -ACGGAATCAGTGGAAGAGCACAGA -ACGGAATCAGTGGAAGAGGCAAGA -ACGGAATCAGTGGAAGAGGGTTGA -ACGGAATCAGTGGAAGAGTCCGAT -ACGGAATCAGTGGAAGAGTGGCAT -ACGGAATCAGTGGAAGAGCGAGAT -ACGGAATCAGTGGAAGAGTACCAC -ACGGAATCAGTGGAAGAGCAGAAC -ACGGAATCAGTGGAAGAGGTCTAC -ACGGAATCAGTGGAAGAGACGTAC -ACGGAATCAGTGGAAGAGAGTGAC -ACGGAATCAGTGGAAGAGCTGTAG -ACGGAATCAGTGGAAGAGCCTAAG -ACGGAATCAGTGGAAGAGGTTCAG -ACGGAATCAGTGGAAGAGGCATAG -ACGGAATCAGTGGAAGAGGACAAG -ACGGAATCAGTGGAAGAGAAGCAG -ACGGAATCAGTGGAAGAGCGTCAA -ACGGAATCAGTGGAAGAGGCTGAA -ACGGAATCAGTGGAAGAGAGTACG -ACGGAATCAGTGGAAGAGATCCGA -ACGGAATCAGTGGAAGAGATGGGA -ACGGAATCAGTGGAAGAGGTGCAA -ACGGAATCAGTGGAAGAGGAGGAA -ACGGAATCAGTGGAAGAGCAGGTA -ACGGAATCAGTGGAAGAGGACTCT -ACGGAATCAGTGGAAGAGAGTCCT -ACGGAATCAGTGGAAGAGTAAGCC -ACGGAATCAGTGGAAGAGATAGCC -ACGGAATCAGTGGAAGAGTAACCG -ACGGAATCAGTGGAAGAGATGCCA -ACGGAATCAGTGGTACAGGGAAAC -ACGGAATCAGTGGTACAGAACACC -ACGGAATCAGTGGTACAGATCGAG -ACGGAATCAGTGGTACAGCTCCTT -ACGGAATCAGTGGTACAGCCTGTT -ACGGAATCAGTGGTACAGCGGTTT -ACGGAATCAGTGGTACAGGTGGTT -ACGGAATCAGTGGTACAGGCCTTT -ACGGAATCAGTGGTACAGGGTCTT -ACGGAATCAGTGGTACAGACGCTT -ACGGAATCAGTGGTACAGAGCGTT -ACGGAATCAGTGGTACAGTTCGTC -ACGGAATCAGTGGTACAGTCTCTC -ACGGAATCAGTGGTACAGTGGATC -ACGGAATCAGTGGTACAGCACTTC -ACGGAATCAGTGGTACAGGTACTC -ACGGAATCAGTGGTACAGGATGTC -ACGGAATCAGTGGTACAGACAGTC -ACGGAATCAGTGGTACAGTTGCTG -ACGGAATCAGTGGTACAGTCCATG -ACGGAATCAGTGGTACAGTGTGTG -ACGGAATCAGTGGTACAGCTAGTG -ACGGAATCAGTGGTACAGCATCTG -ACGGAATCAGTGGTACAGGAGTTG -ACGGAATCAGTGGTACAGAGACTG -ACGGAATCAGTGGTACAGTCGGTA -ACGGAATCAGTGGTACAGTGCCTA -ACGGAATCAGTGGTACAGCCACTA -ACGGAATCAGTGGTACAGGGAGTA -ACGGAATCAGTGGTACAGTCGTCT -ACGGAATCAGTGGTACAGTGCACT -ACGGAATCAGTGGTACAGCTGACT -ACGGAATCAGTGGTACAGCAACCT -ACGGAATCAGTGGTACAGGCTACT -ACGGAATCAGTGGTACAGGGATCT -ACGGAATCAGTGGTACAGAAGGCT -ACGGAATCAGTGGTACAGTCAACC -ACGGAATCAGTGGTACAGTGTTCC -ACGGAATCAGTGGTACAGATTCCC -ACGGAATCAGTGGTACAGTTCTCG -ACGGAATCAGTGGTACAGTAGACG -ACGGAATCAGTGGTACAGGTAACG -ACGGAATCAGTGGTACAGACTTCG -ACGGAATCAGTGGTACAGTACGCA -ACGGAATCAGTGGTACAGCTTGCA -ACGGAATCAGTGGTACAGCGAACA -ACGGAATCAGTGGTACAGCAGTCA -ACGGAATCAGTGGTACAGGATCCA -ACGGAATCAGTGGTACAGACGACA -ACGGAATCAGTGGTACAGAGCTCA -ACGGAATCAGTGGTACAGTCACGT -ACGGAATCAGTGGTACAGCGTAGT -ACGGAATCAGTGGTACAGGTCAGT -ACGGAATCAGTGGTACAGGAAGGT -ACGGAATCAGTGGTACAGAACCGT -ACGGAATCAGTGGTACAGTTGTGC -ACGGAATCAGTGGTACAGCTAAGC -ACGGAATCAGTGGTACAGACTAGC -ACGGAATCAGTGGTACAGAGATGC -ACGGAATCAGTGGTACAGTGAAGG -ACGGAATCAGTGGTACAGCAATGG -ACGGAATCAGTGGTACAGATGAGG -ACGGAATCAGTGGTACAGAATGGG -ACGGAATCAGTGGTACAGTCCTGA -ACGGAATCAGTGGTACAGTAGCGA -ACGGAATCAGTGGTACAGCACAGA -ACGGAATCAGTGGTACAGGCAAGA -ACGGAATCAGTGGTACAGGGTTGA -ACGGAATCAGTGGTACAGTCCGAT -ACGGAATCAGTGGTACAGTGGCAT -ACGGAATCAGTGGTACAGCGAGAT -ACGGAATCAGTGGTACAGTACCAC -ACGGAATCAGTGGTACAGCAGAAC -ACGGAATCAGTGGTACAGGTCTAC -ACGGAATCAGTGGTACAGACGTAC -ACGGAATCAGTGGTACAGAGTGAC -ACGGAATCAGTGGTACAGCTGTAG -ACGGAATCAGTGGTACAGCCTAAG -ACGGAATCAGTGGTACAGGTTCAG -ACGGAATCAGTGGTACAGGCATAG -ACGGAATCAGTGGTACAGGACAAG -ACGGAATCAGTGGTACAGAAGCAG -ACGGAATCAGTGGTACAGCGTCAA -ACGGAATCAGTGGTACAGGCTGAA -ACGGAATCAGTGGTACAGAGTACG -ACGGAATCAGTGGTACAGATCCGA -ACGGAATCAGTGGTACAGATGGGA -ACGGAATCAGTGGTACAGGTGCAA -ACGGAATCAGTGGTACAGGAGGAA -ACGGAATCAGTGGTACAGCAGGTA -ACGGAATCAGTGGTACAGGACTCT -ACGGAATCAGTGGTACAGAGTCCT -ACGGAATCAGTGGTACAGTAAGCC -ACGGAATCAGTGGTACAGATAGCC -ACGGAATCAGTGGTACAGTAACCG -ACGGAATCAGTGGTACAGATGCCA -ACGGAATCAGTGTCTGACGGAAAC -ACGGAATCAGTGTCTGACAACACC -ACGGAATCAGTGTCTGACATCGAG -ACGGAATCAGTGTCTGACCTCCTT -ACGGAATCAGTGTCTGACCCTGTT -ACGGAATCAGTGTCTGACCGGTTT -ACGGAATCAGTGTCTGACGTGGTT -ACGGAATCAGTGTCTGACGCCTTT -ACGGAATCAGTGTCTGACGGTCTT -ACGGAATCAGTGTCTGACACGCTT -ACGGAATCAGTGTCTGACAGCGTT -ACGGAATCAGTGTCTGACTTCGTC -ACGGAATCAGTGTCTGACTCTCTC -ACGGAATCAGTGTCTGACTGGATC -ACGGAATCAGTGTCTGACCACTTC -ACGGAATCAGTGTCTGACGTACTC -ACGGAATCAGTGTCTGACGATGTC -ACGGAATCAGTGTCTGACACAGTC -ACGGAATCAGTGTCTGACTTGCTG -ACGGAATCAGTGTCTGACTCCATG -ACGGAATCAGTGTCTGACTGTGTG -ACGGAATCAGTGTCTGACCTAGTG -ACGGAATCAGTGTCTGACCATCTG -ACGGAATCAGTGTCTGACGAGTTG -ACGGAATCAGTGTCTGACAGACTG -ACGGAATCAGTGTCTGACTCGGTA -ACGGAATCAGTGTCTGACTGCCTA -ACGGAATCAGTGTCTGACCCACTA -ACGGAATCAGTGTCTGACGGAGTA -ACGGAATCAGTGTCTGACTCGTCT -ACGGAATCAGTGTCTGACTGCACT -ACGGAATCAGTGTCTGACCTGACT -ACGGAATCAGTGTCTGACCAACCT -ACGGAATCAGTGTCTGACGCTACT -ACGGAATCAGTGTCTGACGGATCT -ACGGAATCAGTGTCTGACAAGGCT -ACGGAATCAGTGTCTGACTCAACC -ACGGAATCAGTGTCTGACTGTTCC -ACGGAATCAGTGTCTGACATTCCC -ACGGAATCAGTGTCTGACTTCTCG -ACGGAATCAGTGTCTGACTAGACG -ACGGAATCAGTGTCTGACGTAACG -ACGGAATCAGTGTCTGACACTTCG -ACGGAATCAGTGTCTGACTACGCA -ACGGAATCAGTGTCTGACCTTGCA -ACGGAATCAGTGTCTGACCGAACA -ACGGAATCAGTGTCTGACCAGTCA -ACGGAATCAGTGTCTGACGATCCA -ACGGAATCAGTGTCTGACACGACA -ACGGAATCAGTGTCTGACAGCTCA -ACGGAATCAGTGTCTGACTCACGT -ACGGAATCAGTGTCTGACCGTAGT -ACGGAATCAGTGTCTGACGTCAGT -ACGGAATCAGTGTCTGACGAAGGT -ACGGAATCAGTGTCTGACAACCGT -ACGGAATCAGTGTCTGACTTGTGC -ACGGAATCAGTGTCTGACCTAAGC -ACGGAATCAGTGTCTGACACTAGC -ACGGAATCAGTGTCTGACAGATGC -ACGGAATCAGTGTCTGACTGAAGG -ACGGAATCAGTGTCTGACCAATGG -ACGGAATCAGTGTCTGACATGAGG -ACGGAATCAGTGTCTGACAATGGG -ACGGAATCAGTGTCTGACTCCTGA -ACGGAATCAGTGTCTGACTAGCGA -ACGGAATCAGTGTCTGACCACAGA -ACGGAATCAGTGTCTGACGCAAGA -ACGGAATCAGTGTCTGACGGTTGA -ACGGAATCAGTGTCTGACTCCGAT -ACGGAATCAGTGTCTGACTGGCAT -ACGGAATCAGTGTCTGACCGAGAT -ACGGAATCAGTGTCTGACTACCAC -ACGGAATCAGTGTCTGACCAGAAC -ACGGAATCAGTGTCTGACGTCTAC -ACGGAATCAGTGTCTGACACGTAC -ACGGAATCAGTGTCTGACAGTGAC -ACGGAATCAGTGTCTGACCTGTAG -ACGGAATCAGTGTCTGACCCTAAG -ACGGAATCAGTGTCTGACGTTCAG -ACGGAATCAGTGTCTGACGCATAG -ACGGAATCAGTGTCTGACGACAAG -ACGGAATCAGTGTCTGACAAGCAG -ACGGAATCAGTGTCTGACCGTCAA -ACGGAATCAGTGTCTGACGCTGAA -ACGGAATCAGTGTCTGACAGTACG -ACGGAATCAGTGTCTGACATCCGA -ACGGAATCAGTGTCTGACATGGGA -ACGGAATCAGTGTCTGACGTGCAA -ACGGAATCAGTGTCTGACGAGGAA -ACGGAATCAGTGTCTGACCAGGTA -ACGGAATCAGTGTCTGACGACTCT -ACGGAATCAGTGTCTGACAGTCCT -ACGGAATCAGTGTCTGACTAAGCC -ACGGAATCAGTGTCTGACATAGCC -ACGGAATCAGTGTCTGACTAACCG -ACGGAATCAGTGTCTGACATGCCA -ACGGAATCAGTGCCTAGTGGAAAC -ACGGAATCAGTGCCTAGTAACACC -ACGGAATCAGTGCCTAGTATCGAG -ACGGAATCAGTGCCTAGTCTCCTT -ACGGAATCAGTGCCTAGTCCTGTT -ACGGAATCAGTGCCTAGTCGGTTT -ACGGAATCAGTGCCTAGTGTGGTT -ACGGAATCAGTGCCTAGTGCCTTT -ACGGAATCAGTGCCTAGTGGTCTT -ACGGAATCAGTGCCTAGTACGCTT -ACGGAATCAGTGCCTAGTAGCGTT -ACGGAATCAGTGCCTAGTTTCGTC -ACGGAATCAGTGCCTAGTTCTCTC -ACGGAATCAGTGCCTAGTTGGATC -ACGGAATCAGTGCCTAGTCACTTC -ACGGAATCAGTGCCTAGTGTACTC -ACGGAATCAGTGCCTAGTGATGTC -ACGGAATCAGTGCCTAGTACAGTC -ACGGAATCAGTGCCTAGTTTGCTG -ACGGAATCAGTGCCTAGTTCCATG -ACGGAATCAGTGCCTAGTTGTGTG -ACGGAATCAGTGCCTAGTCTAGTG -ACGGAATCAGTGCCTAGTCATCTG -ACGGAATCAGTGCCTAGTGAGTTG -ACGGAATCAGTGCCTAGTAGACTG -ACGGAATCAGTGCCTAGTTCGGTA -ACGGAATCAGTGCCTAGTTGCCTA -ACGGAATCAGTGCCTAGTCCACTA -ACGGAATCAGTGCCTAGTGGAGTA -ACGGAATCAGTGCCTAGTTCGTCT -ACGGAATCAGTGCCTAGTTGCACT -ACGGAATCAGTGCCTAGTCTGACT -ACGGAATCAGTGCCTAGTCAACCT -ACGGAATCAGTGCCTAGTGCTACT -ACGGAATCAGTGCCTAGTGGATCT -ACGGAATCAGTGCCTAGTAAGGCT -ACGGAATCAGTGCCTAGTTCAACC -ACGGAATCAGTGCCTAGTTGTTCC -ACGGAATCAGTGCCTAGTATTCCC -ACGGAATCAGTGCCTAGTTTCTCG -ACGGAATCAGTGCCTAGTTAGACG -ACGGAATCAGTGCCTAGTGTAACG -ACGGAATCAGTGCCTAGTACTTCG -ACGGAATCAGTGCCTAGTTACGCA -ACGGAATCAGTGCCTAGTCTTGCA -ACGGAATCAGTGCCTAGTCGAACA -ACGGAATCAGTGCCTAGTCAGTCA -ACGGAATCAGTGCCTAGTGATCCA -ACGGAATCAGTGCCTAGTACGACA -ACGGAATCAGTGCCTAGTAGCTCA -ACGGAATCAGTGCCTAGTTCACGT -ACGGAATCAGTGCCTAGTCGTAGT -ACGGAATCAGTGCCTAGTGTCAGT -ACGGAATCAGTGCCTAGTGAAGGT -ACGGAATCAGTGCCTAGTAACCGT -ACGGAATCAGTGCCTAGTTTGTGC -ACGGAATCAGTGCCTAGTCTAAGC -ACGGAATCAGTGCCTAGTACTAGC -ACGGAATCAGTGCCTAGTAGATGC -ACGGAATCAGTGCCTAGTTGAAGG -ACGGAATCAGTGCCTAGTCAATGG -ACGGAATCAGTGCCTAGTATGAGG -ACGGAATCAGTGCCTAGTAATGGG -ACGGAATCAGTGCCTAGTTCCTGA -ACGGAATCAGTGCCTAGTTAGCGA -ACGGAATCAGTGCCTAGTCACAGA -ACGGAATCAGTGCCTAGTGCAAGA -ACGGAATCAGTGCCTAGTGGTTGA -ACGGAATCAGTGCCTAGTTCCGAT -ACGGAATCAGTGCCTAGTTGGCAT -ACGGAATCAGTGCCTAGTCGAGAT -ACGGAATCAGTGCCTAGTTACCAC -ACGGAATCAGTGCCTAGTCAGAAC -ACGGAATCAGTGCCTAGTGTCTAC -ACGGAATCAGTGCCTAGTACGTAC -ACGGAATCAGTGCCTAGTAGTGAC -ACGGAATCAGTGCCTAGTCTGTAG -ACGGAATCAGTGCCTAGTCCTAAG -ACGGAATCAGTGCCTAGTGTTCAG -ACGGAATCAGTGCCTAGTGCATAG -ACGGAATCAGTGCCTAGTGACAAG -ACGGAATCAGTGCCTAGTAAGCAG -ACGGAATCAGTGCCTAGTCGTCAA -ACGGAATCAGTGCCTAGTGCTGAA -ACGGAATCAGTGCCTAGTAGTACG -ACGGAATCAGTGCCTAGTATCCGA -ACGGAATCAGTGCCTAGTATGGGA -ACGGAATCAGTGCCTAGTGTGCAA -ACGGAATCAGTGCCTAGTGAGGAA -ACGGAATCAGTGCCTAGTCAGGTA -ACGGAATCAGTGCCTAGTGACTCT -ACGGAATCAGTGCCTAGTAGTCCT -ACGGAATCAGTGCCTAGTTAAGCC -ACGGAATCAGTGCCTAGTATAGCC -ACGGAATCAGTGCCTAGTTAACCG -ACGGAATCAGTGCCTAGTATGCCA -ACGGAATCAGTGGCCTAAGGAAAC -ACGGAATCAGTGGCCTAAAACACC -ACGGAATCAGTGGCCTAAATCGAG -ACGGAATCAGTGGCCTAACTCCTT -ACGGAATCAGTGGCCTAACCTGTT -ACGGAATCAGTGGCCTAACGGTTT -ACGGAATCAGTGGCCTAAGTGGTT -ACGGAATCAGTGGCCTAAGCCTTT -ACGGAATCAGTGGCCTAAGGTCTT -ACGGAATCAGTGGCCTAAACGCTT -ACGGAATCAGTGGCCTAAAGCGTT -ACGGAATCAGTGGCCTAATTCGTC -ACGGAATCAGTGGCCTAATCTCTC -ACGGAATCAGTGGCCTAATGGATC -ACGGAATCAGTGGCCTAACACTTC -ACGGAATCAGTGGCCTAAGTACTC -ACGGAATCAGTGGCCTAAGATGTC -ACGGAATCAGTGGCCTAAACAGTC -ACGGAATCAGTGGCCTAATTGCTG -ACGGAATCAGTGGCCTAATCCATG -ACGGAATCAGTGGCCTAATGTGTG -ACGGAATCAGTGGCCTAACTAGTG -ACGGAATCAGTGGCCTAACATCTG -ACGGAATCAGTGGCCTAAGAGTTG -ACGGAATCAGTGGCCTAAAGACTG -ACGGAATCAGTGGCCTAATCGGTA -ACGGAATCAGTGGCCTAATGCCTA -ACGGAATCAGTGGCCTAACCACTA -ACGGAATCAGTGGCCTAAGGAGTA -ACGGAATCAGTGGCCTAATCGTCT -ACGGAATCAGTGGCCTAATGCACT -ACGGAATCAGTGGCCTAACTGACT -ACGGAATCAGTGGCCTAACAACCT -ACGGAATCAGTGGCCTAAGCTACT -ACGGAATCAGTGGCCTAAGGATCT -ACGGAATCAGTGGCCTAAAAGGCT -ACGGAATCAGTGGCCTAATCAACC -ACGGAATCAGTGGCCTAATGTTCC -ACGGAATCAGTGGCCTAAATTCCC -ACGGAATCAGTGGCCTAATTCTCG -ACGGAATCAGTGGCCTAATAGACG -ACGGAATCAGTGGCCTAAGTAACG -ACGGAATCAGTGGCCTAAACTTCG -ACGGAATCAGTGGCCTAATACGCA -ACGGAATCAGTGGCCTAACTTGCA -ACGGAATCAGTGGCCTAACGAACA -ACGGAATCAGTGGCCTAACAGTCA -ACGGAATCAGTGGCCTAAGATCCA -ACGGAATCAGTGGCCTAAACGACA -ACGGAATCAGTGGCCTAAAGCTCA -ACGGAATCAGTGGCCTAATCACGT -ACGGAATCAGTGGCCTAACGTAGT -ACGGAATCAGTGGCCTAAGTCAGT -ACGGAATCAGTGGCCTAAGAAGGT -ACGGAATCAGTGGCCTAAAACCGT -ACGGAATCAGTGGCCTAATTGTGC -ACGGAATCAGTGGCCTAACTAAGC -ACGGAATCAGTGGCCTAAACTAGC -ACGGAATCAGTGGCCTAAAGATGC -ACGGAATCAGTGGCCTAATGAAGG -ACGGAATCAGTGGCCTAACAATGG -ACGGAATCAGTGGCCTAAATGAGG -ACGGAATCAGTGGCCTAAAATGGG -ACGGAATCAGTGGCCTAATCCTGA -ACGGAATCAGTGGCCTAATAGCGA -ACGGAATCAGTGGCCTAACACAGA -ACGGAATCAGTGGCCTAAGCAAGA -ACGGAATCAGTGGCCTAAGGTTGA -ACGGAATCAGTGGCCTAATCCGAT -ACGGAATCAGTGGCCTAATGGCAT -ACGGAATCAGTGGCCTAACGAGAT -ACGGAATCAGTGGCCTAATACCAC -ACGGAATCAGTGGCCTAACAGAAC -ACGGAATCAGTGGCCTAAGTCTAC -ACGGAATCAGTGGCCTAAACGTAC -ACGGAATCAGTGGCCTAAAGTGAC -ACGGAATCAGTGGCCTAACTGTAG -ACGGAATCAGTGGCCTAACCTAAG -ACGGAATCAGTGGCCTAAGTTCAG -ACGGAATCAGTGGCCTAAGCATAG -ACGGAATCAGTGGCCTAAGACAAG -ACGGAATCAGTGGCCTAAAAGCAG -ACGGAATCAGTGGCCTAACGTCAA -ACGGAATCAGTGGCCTAAGCTGAA -ACGGAATCAGTGGCCTAAAGTACG -ACGGAATCAGTGGCCTAAATCCGA -ACGGAATCAGTGGCCTAAATGGGA -ACGGAATCAGTGGCCTAAGTGCAA -ACGGAATCAGTGGCCTAAGAGGAA -ACGGAATCAGTGGCCTAACAGGTA -ACGGAATCAGTGGCCTAAGACTCT -ACGGAATCAGTGGCCTAAAGTCCT -ACGGAATCAGTGGCCTAATAAGCC -ACGGAATCAGTGGCCTAAATAGCC -ACGGAATCAGTGGCCTAATAACCG -ACGGAATCAGTGGCCTAAATGCCA -ACGGAATCAGTGGCCATAGGAAAC -ACGGAATCAGTGGCCATAAACACC -ACGGAATCAGTGGCCATAATCGAG -ACGGAATCAGTGGCCATACTCCTT -ACGGAATCAGTGGCCATACCTGTT -ACGGAATCAGTGGCCATACGGTTT -ACGGAATCAGTGGCCATAGTGGTT -ACGGAATCAGTGGCCATAGCCTTT -ACGGAATCAGTGGCCATAGGTCTT -ACGGAATCAGTGGCCATAACGCTT -ACGGAATCAGTGGCCATAAGCGTT -ACGGAATCAGTGGCCATATTCGTC -ACGGAATCAGTGGCCATATCTCTC -ACGGAATCAGTGGCCATATGGATC -ACGGAATCAGTGGCCATACACTTC -ACGGAATCAGTGGCCATAGTACTC -ACGGAATCAGTGGCCATAGATGTC -ACGGAATCAGTGGCCATAACAGTC -ACGGAATCAGTGGCCATATTGCTG -ACGGAATCAGTGGCCATATCCATG -ACGGAATCAGTGGCCATATGTGTG -ACGGAATCAGTGGCCATACTAGTG -ACGGAATCAGTGGCCATACATCTG -ACGGAATCAGTGGCCATAGAGTTG -ACGGAATCAGTGGCCATAAGACTG -ACGGAATCAGTGGCCATATCGGTA -ACGGAATCAGTGGCCATATGCCTA -ACGGAATCAGTGGCCATACCACTA -ACGGAATCAGTGGCCATAGGAGTA -ACGGAATCAGTGGCCATATCGTCT -ACGGAATCAGTGGCCATATGCACT -ACGGAATCAGTGGCCATACTGACT -ACGGAATCAGTGGCCATACAACCT -ACGGAATCAGTGGCCATAGCTACT -ACGGAATCAGTGGCCATAGGATCT -ACGGAATCAGTGGCCATAAAGGCT -ACGGAATCAGTGGCCATATCAACC -ACGGAATCAGTGGCCATATGTTCC -ACGGAATCAGTGGCCATAATTCCC -ACGGAATCAGTGGCCATATTCTCG -ACGGAATCAGTGGCCATATAGACG -ACGGAATCAGTGGCCATAGTAACG -ACGGAATCAGTGGCCATAACTTCG -ACGGAATCAGTGGCCATATACGCA -ACGGAATCAGTGGCCATACTTGCA -ACGGAATCAGTGGCCATACGAACA -ACGGAATCAGTGGCCATACAGTCA -ACGGAATCAGTGGCCATAGATCCA -ACGGAATCAGTGGCCATAACGACA -ACGGAATCAGTGGCCATAAGCTCA -ACGGAATCAGTGGCCATATCACGT -ACGGAATCAGTGGCCATACGTAGT -ACGGAATCAGTGGCCATAGTCAGT -ACGGAATCAGTGGCCATAGAAGGT -ACGGAATCAGTGGCCATAAACCGT -ACGGAATCAGTGGCCATATTGTGC -ACGGAATCAGTGGCCATACTAAGC -ACGGAATCAGTGGCCATAACTAGC -ACGGAATCAGTGGCCATAAGATGC -ACGGAATCAGTGGCCATATGAAGG -ACGGAATCAGTGGCCATACAATGG -ACGGAATCAGTGGCCATAATGAGG -ACGGAATCAGTGGCCATAAATGGG -ACGGAATCAGTGGCCATATCCTGA -ACGGAATCAGTGGCCATATAGCGA -ACGGAATCAGTGGCCATACACAGA -ACGGAATCAGTGGCCATAGCAAGA -ACGGAATCAGTGGCCATAGGTTGA -ACGGAATCAGTGGCCATATCCGAT -ACGGAATCAGTGGCCATATGGCAT -ACGGAATCAGTGGCCATACGAGAT -ACGGAATCAGTGGCCATATACCAC -ACGGAATCAGTGGCCATACAGAAC -ACGGAATCAGTGGCCATAGTCTAC -ACGGAATCAGTGGCCATAACGTAC -ACGGAATCAGTGGCCATAAGTGAC -ACGGAATCAGTGGCCATACTGTAG -ACGGAATCAGTGGCCATACCTAAG -ACGGAATCAGTGGCCATAGTTCAG -ACGGAATCAGTGGCCATAGCATAG -ACGGAATCAGTGGCCATAGACAAG -ACGGAATCAGTGGCCATAAAGCAG -ACGGAATCAGTGGCCATACGTCAA -ACGGAATCAGTGGCCATAGCTGAA -ACGGAATCAGTGGCCATAAGTACG -ACGGAATCAGTGGCCATAATCCGA -ACGGAATCAGTGGCCATAATGGGA -ACGGAATCAGTGGCCATAGTGCAA -ACGGAATCAGTGGCCATAGAGGAA -ACGGAATCAGTGGCCATACAGGTA -ACGGAATCAGTGGCCATAGACTCT -ACGGAATCAGTGGCCATAAGTCCT -ACGGAATCAGTGGCCATATAAGCC -ACGGAATCAGTGGCCATAATAGCC -ACGGAATCAGTGGCCATATAACCG -ACGGAATCAGTGGCCATAATGCCA -ACGGAATCAGTGCCGTAAGGAAAC -ACGGAATCAGTGCCGTAAAACACC -ACGGAATCAGTGCCGTAAATCGAG -ACGGAATCAGTGCCGTAACTCCTT -ACGGAATCAGTGCCGTAACCTGTT -ACGGAATCAGTGCCGTAACGGTTT -ACGGAATCAGTGCCGTAAGTGGTT -ACGGAATCAGTGCCGTAAGCCTTT -ACGGAATCAGTGCCGTAAGGTCTT -ACGGAATCAGTGCCGTAAACGCTT -ACGGAATCAGTGCCGTAAAGCGTT -ACGGAATCAGTGCCGTAATTCGTC -ACGGAATCAGTGCCGTAATCTCTC -ACGGAATCAGTGCCGTAATGGATC -ACGGAATCAGTGCCGTAACACTTC -ACGGAATCAGTGCCGTAAGTACTC -ACGGAATCAGTGCCGTAAGATGTC -ACGGAATCAGTGCCGTAAACAGTC -ACGGAATCAGTGCCGTAATTGCTG -ACGGAATCAGTGCCGTAATCCATG -ACGGAATCAGTGCCGTAATGTGTG -ACGGAATCAGTGCCGTAACTAGTG -ACGGAATCAGTGCCGTAACATCTG -ACGGAATCAGTGCCGTAAGAGTTG -ACGGAATCAGTGCCGTAAAGACTG -ACGGAATCAGTGCCGTAATCGGTA -ACGGAATCAGTGCCGTAATGCCTA -ACGGAATCAGTGCCGTAACCACTA -ACGGAATCAGTGCCGTAAGGAGTA -ACGGAATCAGTGCCGTAATCGTCT -ACGGAATCAGTGCCGTAATGCACT -ACGGAATCAGTGCCGTAACTGACT -ACGGAATCAGTGCCGTAACAACCT -ACGGAATCAGTGCCGTAAGCTACT -ACGGAATCAGTGCCGTAAGGATCT -ACGGAATCAGTGCCGTAAAAGGCT -ACGGAATCAGTGCCGTAATCAACC -ACGGAATCAGTGCCGTAATGTTCC -ACGGAATCAGTGCCGTAAATTCCC -ACGGAATCAGTGCCGTAATTCTCG -ACGGAATCAGTGCCGTAATAGACG -ACGGAATCAGTGCCGTAAGTAACG -ACGGAATCAGTGCCGTAAACTTCG -ACGGAATCAGTGCCGTAATACGCA -ACGGAATCAGTGCCGTAACTTGCA -ACGGAATCAGTGCCGTAACGAACA -ACGGAATCAGTGCCGTAACAGTCA -ACGGAATCAGTGCCGTAAGATCCA -ACGGAATCAGTGCCGTAAACGACA -ACGGAATCAGTGCCGTAAAGCTCA -ACGGAATCAGTGCCGTAATCACGT -ACGGAATCAGTGCCGTAACGTAGT -ACGGAATCAGTGCCGTAAGTCAGT -ACGGAATCAGTGCCGTAAGAAGGT -ACGGAATCAGTGCCGTAAAACCGT -ACGGAATCAGTGCCGTAATTGTGC -ACGGAATCAGTGCCGTAACTAAGC -ACGGAATCAGTGCCGTAAACTAGC -ACGGAATCAGTGCCGTAAAGATGC -ACGGAATCAGTGCCGTAATGAAGG -ACGGAATCAGTGCCGTAACAATGG -ACGGAATCAGTGCCGTAAATGAGG -ACGGAATCAGTGCCGTAAAATGGG -ACGGAATCAGTGCCGTAATCCTGA -ACGGAATCAGTGCCGTAATAGCGA -ACGGAATCAGTGCCGTAACACAGA -ACGGAATCAGTGCCGTAAGCAAGA -ACGGAATCAGTGCCGTAAGGTTGA -ACGGAATCAGTGCCGTAATCCGAT -ACGGAATCAGTGCCGTAATGGCAT -ACGGAATCAGTGCCGTAACGAGAT -ACGGAATCAGTGCCGTAATACCAC -ACGGAATCAGTGCCGTAACAGAAC -ACGGAATCAGTGCCGTAAGTCTAC -ACGGAATCAGTGCCGTAAACGTAC -ACGGAATCAGTGCCGTAAAGTGAC -ACGGAATCAGTGCCGTAACTGTAG -ACGGAATCAGTGCCGTAACCTAAG -ACGGAATCAGTGCCGTAAGTTCAG -ACGGAATCAGTGCCGTAAGCATAG -ACGGAATCAGTGCCGTAAGACAAG -ACGGAATCAGTGCCGTAAAAGCAG -ACGGAATCAGTGCCGTAACGTCAA -ACGGAATCAGTGCCGTAAGCTGAA -ACGGAATCAGTGCCGTAAAGTACG -ACGGAATCAGTGCCGTAAATCCGA -ACGGAATCAGTGCCGTAAATGGGA -ACGGAATCAGTGCCGTAAGTGCAA -ACGGAATCAGTGCCGTAAGAGGAA -ACGGAATCAGTGCCGTAACAGGTA -ACGGAATCAGTGCCGTAAGACTCT -ACGGAATCAGTGCCGTAAAGTCCT -ACGGAATCAGTGCCGTAATAAGCC -ACGGAATCAGTGCCGTAAATAGCC -ACGGAATCAGTGCCGTAATAACCG -ACGGAATCAGTGCCGTAAATGCCA -ACGGAATCAGTGCCAATGGGAAAC -ACGGAATCAGTGCCAATGAACACC -ACGGAATCAGTGCCAATGATCGAG -ACGGAATCAGTGCCAATGCTCCTT -ACGGAATCAGTGCCAATGCCTGTT -ACGGAATCAGTGCCAATGCGGTTT -ACGGAATCAGTGCCAATGGTGGTT -ACGGAATCAGTGCCAATGGCCTTT -ACGGAATCAGTGCCAATGGGTCTT -ACGGAATCAGTGCCAATGACGCTT -ACGGAATCAGTGCCAATGAGCGTT -ACGGAATCAGTGCCAATGTTCGTC -ACGGAATCAGTGCCAATGTCTCTC -ACGGAATCAGTGCCAATGTGGATC -ACGGAATCAGTGCCAATGCACTTC -ACGGAATCAGTGCCAATGGTACTC -ACGGAATCAGTGCCAATGGATGTC -ACGGAATCAGTGCCAATGACAGTC -ACGGAATCAGTGCCAATGTTGCTG -ACGGAATCAGTGCCAATGTCCATG -ACGGAATCAGTGCCAATGTGTGTG -ACGGAATCAGTGCCAATGCTAGTG -ACGGAATCAGTGCCAATGCATCTG -ACGGAATCAGTGCCAATGGAGTTG -ACGGAATCAGTGCCAATGAGACTG -ACGGAATCAGTGCCAATGTCGGTA -ACGGAATCAGTGCCAATGTGCCTA -ACGGAATCAGTGCCAATGCCACTA -ACGGAATCAGTGCCAATGGGAGTA -ACGGAATCAGTGCCAATGTCGTCT -ACGGAATCAGTGCCAATGTGCACT -ACGGAATCAGTGCCAATGCTGACT -ACGGAATCAGTGCCAATGCAACCT -ACGGAATCAGTGCCAATGGCTACT -ACGGAATCAGTGCCAATGGGATCT -ACGGAATCAGTGCCAATGAAGGCT -ACGGAATCAGTGCCAATGTCAACC -ACGGAATCAGTGCCAATGTGTTCC -ACGGAATCAGTGCCAATGATTCCC -ACGGAATCAGTGCCAATGTTCTCG -ACGGAATCAGTGCCAATGTAGACG -ACGGAATCAGTGCCAATGGTAACG -ACGGAATCAGTGCCAATGACTTCG -ACGGAATCAGTGCCAATGTACGCA -ACGGAATCAGTGCCAATGCTTGCA -ACGGAATCAGTGCCAATGCGAACA -ACGGAATCAGTGCCAATGCAGTCA -ACGGAATCAGTGCCAATGGATCCA -ACGGAATCAGTGCCAATGACGACA -ACGGAATCAGTGCCAATGAGCTCA -ACGGAATCAGTGCCAATGTCACGT -ACGGAATCAGTGCCAATGCGTAGT -ACGGAATCAGTGCCAATGGTCAGT -ACGGAATCAGTGCCAATGGAAGGT -ACGGAATCAGTGCCAATGAACCGT -ACGGAATCAGTGCCAATGTTGTGC -ACGGAATCAGTGCCAATGCTAAGC -ACGGAATCAGTGCCAATGACTAGC -ACGGAATCAGTGCCAATGAGATGC -ACGGAATCAGTGCCAATGTGAAGG -ACGGAATCAGTGCCAATGCAATGG -ACGGAATCAGTGCCAATGATGAGG -ACGGAATCAGTGCCAATGAATGGG -ACGGAATCAGTGCCAATGTCCTGA -ACGGAATCAGTGCCAATGTAGCGA -ACGGAATCAGTGCCAATGCACAGA -ACGGAATCAGTGCCAATGGCAAGA -ACGGAATCAGTGCCAATGGGTTGA -ACGGAATCAGTGCCAATGTCCGAT -ACGGAATCAGTGCCAATGTGGCAT -ACGGAATCAGTGCCAATGCGAGAT -ACGGAATCAGTGCCAATGTACCAC -ACGGAATCAGTGCCAATGCAGAAC -ACGGAATCAGTGCCAATGGTCTAC -ACGGAATCAGTGCCAATGACGTAC -ACGGAATCAGTGCCAATGAGTGAC -ACGGAATCAGTGCCAATGCTGTAG -ACGGAATCAGTGCCAATGCCTAAG -ACGGAATCAGTGCCAATGGTTCAG -ACGGAATCAGTGCCAATGGCATAG -ACGGAATCAGTGCCAATGGACAAG -ACGGAATCAGTGCCAATGAAGCAG -ACGGAATCAGTGCCAATGCGTCAA -ACGGAATCAGTGCCAATGGCTGAA -ACGGAATCAGTGCCAATGAGTACG -ACGGAATCAGTGCCAATGATCCGA -ACGGAATCAGTGCCAATGATGGGA -ACGGAATCAGTGCCAATGGTGCAA -ACGGAATCAGTGCCAATGGAGGAA -ACGGAATCAGTGCCAATGCAGGTA -ACGGAATCAGTGCCAATGGACTCT -ACGGAATCAGTGCCAATGAGTCCT -ACGGAATCAGTGCCAATGTAAGCC -ACGGAATCAGTGCCAATGATAGCC -ACGGAATCAGTGCCAATGTAACCG -ACGGAATCAGTGCCAATGATGCCA -ACGGAAAAGGTGAACGGAGGAAAC -ACGGAAAAGGTGAACGGAAACACC -ACGGAAAAGGTGAACGGAATCGAG -ACGGAAAAGGTGAACGGACTCCTT -ACGGAAAAGGTGAACGGACCTGTT -ACGGAAAAGGTGAACGGACGGTTT -ACGGAAAAGGTGAACGGAGTGGTT -ACGGAAAAGGTGAACGGAGCCTTT -ACGGAAAAGGTGAACGGAGGTCTT -ACGGAAAAGGTGAACGGAACGCTT -ACGGAAAAGGTGAACGGAAGCGTT -ACGGAAAAGGTGAACGGATTCGTC -ACGGAAAAGGTGAACGGATCTCTC -ACGGAAAAGGTGAACGGATGGATC -ACGGAAAAGGTGAACGGACACTTC -ACGGAAAAGGTGAACGGAGTACTC -ACGGAAAAGGTGAACGGAGATGTC -ACGGAAAAGGTGAACGGAACAGTC -ACGGAAAAGGTGAACGGATTGCTG -ACGGAAAAGGTGAACGGATCCATG -ACGGAAAAGGTGAACGGATGTGTG -ACGGAAAAGGTGAACGGACTAGTG -ACGGAAAAGGTGAACGGACATCTG -ACGGAAAAGGTGAACGGAGAGTTG -ACGGAAAAGGTGAACGGAAGACTG -ACGGAAAAGGTGAACGGATCGGTA -ACGGAAAAGGTGAACGGATGCCTA -ACGGAAAAGGTGAACGGACCACTA -ACGGAAAAGGTGAACGGAGGAGTA -ACGGAAAAGGTGAACGGATCGTCT -ACGGAAAAGGTGAACGGATGCACT -ACGGAAAAGGTGAACGGACTGACT -ACGGAAAAGGTGAACGGACAACCT -ACGGAAAAGGTGAACGGAGCTACT -ACGGAAAAGGTGAACGGAGGATCT -ACGGAAAAGGTGAACGGAAAGGCT -ACGGAAAAGGTGAACGGATCAACC -ACGGAAAAGGTGAACGGATGTTCC -ACGGAAAAGGTGAACGGAATTCCC -ACGGAAAAGGTGAACGGATTCTCG -ACGGAAAAGGTGAACGGATAGACG -ACGGAAAAGGTGAACGGAGTAACG -ACGGAAAAGGTGAACGGAACTTCG -ACGGAAAAGGTGAACGGATACGCA -ACGGAAAAGGTGAACGGACTTGCA -ACGGAAAAGGTGAACGGACGAACA -ACGGAAAAGGTGAACGGACAGTCA -ACGGAAAAGGTGAACGGAGATCCA -ACGGAAAAGGTGAACGGAACGACA -ACGGAAAAGGTGAACGGAAGCTCA -ACGGAAAAGGTGAACGGATCACGT -ACGGAAAAGGTGAACGGACGTAGT -ACGGAAAAGGTGAACGGAGTCAGT -ACGGAAAAGGTGAACGGAGAAGGT -ACGGAAAAGGTGAACGGAAACCGT -ACGGAAAAGGTGAACGGATTGTGC -ACGGAAAAGGTGAACGGACTAAGC -ACGGAAAAGGTGAACGGAACTAGC -ACGGAAAAGGTGAACGGAAGATGC -ACGGAAAAGGTGAACGGATGAAGG -ACGGAAAAGGTGAACGGACAATGG -ACGGAAAAGGTGAACGGAATGAGG -ACGGAAAAGGTGAACGGAAATGGG -ACGGAAAAGGTGAACGGATCCTGA -ACGGAAAAGGTGAACGGATAGCGA -ACGGAAAAGGTGAACGGACACAGA -ACGGAAAAGGTGAACGGAGCAAGA -ACGGAAAAGGTGAACGGAGGTTGA -ACGGAAAAGGTGAACGGATCCGAT -ACGGAAAAGGTGAACGGATGGCAT -ACGGAAAAGGTGAACGGACGAGAT -ACGGAAAAGGTGAACGGATACCAC -ACGGAAAAGGTGAACGGACAGAAC -ACGGAAAAGGTGAACGGAGTCTAC -ACGGAAAAGGTGAACGGAACGTAC -ACGGAAAAGGTGAACGGAAGTGAC -ACGGAAAAGGTGAACGGACTGTAG -ACGGAAAAGGTGAACGGACCTAAG -ACGGAAAAGGTGAACGGAGTTCAG -ACGGAAAAGGTGAACGGAGCATAG -ACGGAAAAGGTGAACGGAGACAAG -ACGGAAAAGGTGAACGGAAAGCAG -ACGGAAAAGGTGAACGGACGTCAA -ACGGAAAAGGTGAACGGAGCTGAA -ACGGAAAAGGTGAACGGAAGTACG -ACGGAAAAGGTGAACGGAATCCGA -ACGGAAAAGGTGAACGGAATGGGA -ACGGAAAAGGTGAACGGAGTGCAA -ACGGAAAAGGTGAACGGAGAGGAA -ACGGAAAAGGTGAACGGACAGGTA -ACGGAAAAGGTGAACGGAGACTCT -ACGGAAAAGGTGAACGGAAGTCCT -ACGGAAAAGGTGAACGGATAAGCC -ACGGAAAAGGTGAACGGAATAGCC -ACGGAAAAGGTGAACGGATAACCG -ACGGAAAAGGTGAACGGAATGCCA -ACGGAAAAGGTGACCAACGGAAAC -ACGGAAAAGGTGACCAACAACACC -ACGGAAAAGGTGACCAACATCGAG -ACGGAAAAGGTGACCAACCTCCTT -ACGGAAAAGGTGACCAACCCTGTT -ACGGAAAAGGTGACCAACCGGTTT -ACGGAAAAGGTGACCAACGTGGTT -ACGGAAAAGGTGACCAACGCCTTT -ACGGAAAAGGTGACCAACGGTCTT -ACGGAAAAGGTGACCAACACGCTT -ACGGAAAAGGTGACCAACAGCGTT -ACGGAAAAGGTGACCAACTTCGTC -ACGGAAAAGGTGACCAACTCTCTC -ACGGAAAAGGTGACCAACTGGATC -ACGGAAAAGGTGACCAACCACTTC -ACGGAAAAGGTGACCAACGTACTC -ACGGAAAAGGTGACCAACGATGTC -ACGGAAAAGGTGACCAACACAGTC -ACGGAAAAGGTGACCAACTTGCTG -ACGGAAAAGGTGACCAACTCCATG -ACGGAAAAGGTGACCAACTGTGTG -ACGGAAAAGGTGACCAACCTAGTG -ACGGAAAAGGTGACCAACCATCTG -ACGGAAAAGGTGACCAACGAGTTG -ACGGAAAAGGTGACCAACAGACTG -ACGGAAAAGGTGACCAACTCGGTA -ACGGAAAAGGTGACCAACTGCCTA -ACGGAAAAGGTGACCAACCCACTA -ACGGAAAAGGTGACCAACGGAGTA -ACGGAAAAGGTGACCAACTCGTCT -ACGGAAAAGGTGACCAACTGCACT -ACGGAAAAGGTGACCAACCTGACT -ACGGAAAAGGTGACCAACCAACCT -ACGGAAAAGGTGACCAACGCTACT -ACGGAAAAGGTGACCAACGGATCT -ACGGAAAAGGTGACCAACAAGGCT -ACGGAAAAGGTGACCAACTCAACC -ACGGAAAAGGTGACCAACTGTTCC -ACGGAAAAGGTGACCAACATTCCC -ACGGAAAAGGTGACCAACTTCTCG -ACGGAAAAGGTGACCAACTAGACG -ACGGAAAAGGTGACCAACGTAACG -ACGGAAAAGGTGACCAACACTTCG -ACGGAAAAGGTGACCAACTACGCA -ACGGAAAAGGTGACCAACCTTGCA -ACGGAAAAGGTGACCAACCGAACA -ACGGAAAAGGTGACCAACCAGTCA -ACGGAAAAGGTGACCAACGATCCA -ACGGAAAAGGTGACCAACACGACA -ACGGAAAAGGTGACCAACAGCTCA -ACGGAAAAGGTGACCAACTCACGT -ACGGAAAAGGTGACCAACCGTAGT -ACGGAAAAGGTGACCAACGTCAGT -ACGGAAAAGGTGACCAACGAAGGT -ACGGAAAAGGTGACCAACAACCGT -ACGGAAAAGGTGACCAACTTGTGC -ACGGAAAAGGTGACCAACCTAAGC -ACGGAAAAGGTGACCAACACTAGC -ACGGAAAAGGTGACCAACAGATGC -ACGGAAAAGGTGACCAACTGAAGG -ACGGAAAAGGTGACCAACCAATGG -ACGGAAAAGGTGACCAACATGAGG -ACGGAAAAGGTGACCAACAATGGG -ACGGAAAAGGTGACCAACTCCTGA -ACGGAAAAGGTGACCAACTAGCGA -ACGGAAAAGGTGACCAACCACAGA -ACGGAAAAGGTGACCAACGCAAGA -ACGGAAAAGGTGACCAACGGTTGA -ACGGAAAAGGTGACCAACTCCGAT -ACGGAAAAGGTGACCAACTGGCAT -ACGGAAAAGGTGACCAACCGAGAT -ACGGAAAAGGTGACCAACTACCAC -ACGGAAAAGGTGACCAACCAGAAC -ACGGAAAAGGTGACCAACGTCTAC -ACGGAAAAGGTGACCAACACGTAC -ACGGAAAAGGTGACCAACAGTGAC -ACGGAAAAGGTGACCAACCTGTAG -ACGGAAAAGGTGACCAACCCTAAG -ACGGAAAAGGTGACCAACGTTCAG -ACGGAAAAGGTGACCAACGCATAG -ACGGAAAAGGTGACCAACGACAAG -ACGGAAAAGGTGACCAACAAGCAG -ACGGAAAAGGTGACCAACCGTCAA -ACGGAAAAGGTGACCAACGCTGAA -ACGGAAAAGGTGACCAACAGTACG -ACGGAAAAGGTGACCAACATCCGA -ACGGAAAAGGTGACCAACATGGGA -ACGGAAAAGGTGACCAACGTGCAA -ACGGAAAAGGTGACCAACGAGGAA -ACGGAAAAGGTGACCAACCAGGTA -ACGGAAAAGGTGACCAACGACTCT -ACGGAAAAGGTGACCAACAGTCCT -ACGGAAAAGGTGACCAACTAAGCC -ACGGAAAAGGTGACCAACATAGCC -ACGGAAAAGGTGACCAACTAACCG -ACGGAAAAGGTGACCAACATGCCA -ACGGAAAAGGTGGAGATCGGAAAC -ACGGAAAAGGTGGAGATCAACACC -ACGGAAAAGGTGGAGATCATCGAG -ACGGAAAAGGTGGAGATCCTCCTT -ACGGAAAAGGTGGAGATCCCTGTT -ACGGAAAAGGTGGAGATCCGGTTT -ACGGAAAAGGTGGAGATCGTGGTT -ACGGAAAAGGTGGAGATCGCCTTT -ACGGAAAAGGTGGAGATCGGTCTT -ACGGAAAAGGTGGAGATCACGCTT -ACGGAAAAGGTGGAGATCAGCGTT -ACGGAAAAGGTGGAGATCTTCGTC -ACGGAAAAGGTGGAGATCTCTCTC -ACGGAAAAGGTGGAGATCTGGATC -ACGGAAAAGGTGGAGATCCACTTC -ACGGAAAAGGTGGAGATCGTACTC -ACGGAAAAGGTGGAGATCGATGTC -ACGGAAAAGGTGGAGATCACAGTC -ACGGAAAAGGTGGAGATCTTGCTG -ACGGAAAAGGTGGAGATCTCCATG -ACGGAAAAGGTGGAGATCTGTGTG -ACGGAAAAGGTGGAGATCCTAGTG -ACGGAAAAGGTGGAGATCCATCTG -ACGGAAAAGGTGGAGATCGAGTTG -ACGGAAAAGGTGGAGATCAGACTG -ACGGAAAAGGTGGAGATCTCGGTA -ACGGAAAAGGTGGAGATCTGCCTA -ACGGAAAAGGTGGAGATCCCACTA -ACGGAAAAGGTGGAGATCGGAGTA -ACGGAAAAGGTGGAGATCTCGTCT -ACGGAAAAGGTGGAGATCTGCACT -ACGGAAAAGGTGGAGATCCTGACT -ACGGAAAAGGTGGAGATCCAACCT -ACGGAAAAGGTGGAGATCGCTACT -ACGGAAAAGGTGGAGATCGGATCT -ACGGAAAAGGTGGAGATCAAGGCT -ACGGAAAAGGTGGAGATCTCAACC -ACGGAAAAGGTGGAGATCTGTTCC -ACGGAAAAGGTGGAGATCATTCCC -ACGGAAAAGGTGGAGATCTTCTCG -ACGGAAAAGGTGGAGATCTAGACG -ACGGAAAAGGTGGAGATCGTAACG -ACGGAAAAGGTGGAGATCACTTCG -ACGGAAAAGGTGGAGATCTACGCA -ACGGAAAAGGTGGAGATCCTTGCA -ACGGAAAAGGTGGAGATCCGAACA -ACGGAAAAGGTGGAGATCCAGTCA -ACGGAAAAGGTGGAGATCGATCCA -ACGGAAAAGGTGGAGATCACGACA -ACGGAAAAGGTGGAGATCAGCTCA -ACGGAAAAGGTGGAGATCTCACGT -ACGGAAAAGGTGGAGATCCGTAGT -ACGGAAAAGGTGGAGATCGTCAGT -ACGGAAAAGGTGGAGATCGAAGGT -ACGGAAAAGGTGGAGATCAACCGT -ACGGAAAAGGTGGAGATCTTGTGC -ACGGAAAAGGTGGAGATCCTAAGC -ACGGAAAAGGTGGAGATCACTAGC -ACGGAAAAGGTGGAGATCAGATGC -ACGGAAAAGGTGGAGATCTGAAGG -ACGGAAAAGGTGGAGATCCAATGG -ACGGAAAAGGTGGAGATCATGAGG -ACGGAAAAGGTGGAGATCAATGGG -ACGGAAAAGGTGGAGATCTCCTGA -ACGGAAAAGGTGGAGATCTAGCGA -ACGGAAAAGGTGGAGATCCACAGA -ACGGAAAAGGTGGAGATCGCAAGA -ACGGAAAAGGTGGAGATCGGTTGA -ACGGAAAAGGTGGAGATCTCCGAT -ACGGAAAAGGTGGAGATCTGGCAT -ACGGAAAAGGTGGAGATCCGAGAT -ACGGAAAAGGTGGAGATCTACCAC -ACGGAAAAGGTGGAGATCCAGAAC -ACGGAAAAGGTGGAGATCGTCTAC -ACGGAAAAGGTGGAGATCACGTAC -ACGGAAAAGGTGGAGATCAGTGAC -ACGGAAAAGGTGGAGATCCTGTAG -ACGGAAAAGGTGGAGATCCCTAAG -ACGGAAAAGGTGGAGATCGTTCAG -ACGGAAAAGGTGGAGATCGCATAG -ACGGAAAAGGTGGAGATCGACAAG -ACGGAAAAGGTGGAGATCAAGCAG -ACGGAAAAGGTGGAGATCCGTCAA -ACGGAAAAGGTGGAGATCGCTGAA -ACGGAAAAGGTGGAGATCAGTACG -ACGGAAAAGGTGGAGATCATCCGA -ACGGAAAAGGTGGAGATCATGGGA -ACGGAAAAGGTGGAGATCGTGCAA -ACGGAAAAGGTGGAGATCGAGGAA -ACGGAAAAGGTGGAGATCCAGGTA -ACGGAAAAGGTGGAGATCGACTCT -ACGGAAAAGGTGGAGATCAGTCCT -ACGGAAAAGGTGGAGATCTAAGCC -ACGGAAAAGGTGGAGATCATAGCC -ACGGAAAAGGTGGAGATCTAACCG -ACGGAAAAGGTGGAGATCATGCCA -ACGGAAAAGGTGCTTCTCGGAAAC -ACGGAAAAGGTGCTTCTCAACACC -ACGGAAAAGGTGCTTCTCATCGAG -ACGGAAAAGGTGCTTCTCCTCCTT -ACGGAAAAGGTGCTTCTCCCTGTT -ACGGAAAAGGTGCTTCTCCGGTTT -ACGGAAAAGGTGCTTCTCGTGGTT -ACGGAAAAGGTGCTTCTCGCCTTT -ACGGAAAAGGTGCTTCTCGGTCTT -ACGGAAAAGGTGCTTCTCACGCTT -ACGGAAAAGGTGCTTCTCAGCGTT -ACGGAAAAGGTGCTTCTCTTCGTC -ACGGAAAAGGTGCTTCTCTCTCTC -ACGGAAAAGGTGCTTCTCTGGATC -ACGGAAAAGGTGCTTCTCCACTTC -ACGGAAAAGGTGCTTCTCGTACTC -ACGGAAAAGGTGCTTCTCGATGTC -ACGGAAAAGGTGCTTCTCACAGTC -ACGGAAAAGGTGCTTCTCTTGCTG -ACGGAAAAGGTGCTTCTCTCCATG -ACGGAAAAGGTGCTTCTCTGTGTG -ACGGAAAAGGTGCTTCTCCTAGTG -ACGGAAAAGGTGCTTCTCCATCTG -ACGGAAAAGGTGCTTCTCGAGTTG -ACGGAAAAGGTGCTTCTCAGACTG -ACGGAAAAGGTGCTTCTCTCGGTA -ACGGAAAAGGTGCTTCTCTGCCTA -ACGGAAAAGGTGCTTCTCCCACTA -ACGGAAAAGGTGCTTCTCGGAGTA -ACGGAAAAGGTGCTTCTCTCGTCT -ACGGAAAAGGTGCTTCTCTGCACT -ACGGAAAAGGTGCTTCTCCTGACT -ACGGAAAAGGTGCTTCTCCAACCT -ACGGAAAAGGTGCTTCTCGCTACT -ACGGAAAAGGTGCTTCTCGGATCT -ACGGAAAAGGTGCTTCTCAAGGCT -ACGGAAAAGGTGCTTCTCTCAACC -ACGGAAAAGGTGCTTCTCTGTTCC -ACGGAAAAGGTGCTTCTCATTCCC -ACGGAAAAGGTGCTTCTCTTCTCG -ACGGAAAAGGTGCTTCTCTAGACG -ACGGAAAAGGTGCTTCTCGTAACG -ACGGAAAAGGTGCTTCTCACTTCG -ACGGAAAAGGTGCTTCTCTACGCA -ACGGAAAAGGTGCTTCTCCTTGCA -ACGGAAAAGGTGCTTCTCCGAACA -ACGGAAAAGGTGCTTCTCCAGTCA -ACGGAAAAGGTGCTTCTCGATCCA -ACGGAAAAGGTGCTTCTCACGACA -ACGGAAAAGGTGCTTCTCAGCTCA -ACGGAAAAGGTGCTTCTCTCACGT -ACGGAAAAGGTGCTTCTCCGTAGT -ACGGAAAAGGTGCTTCTCGTCAGT -ACGGAAAAGGTGCTTCTCGAAGGT -ACGGAAAAGGTGCTTCTCAACCGT -ACGGAAAAGGTGCTTCTCTTGTGC -ACGGAAAAGGTGCTTCTCCTAAGC -ACGGAAAAGGTGCTTCTCACTAGC -ACGGAAAAGGTGCTTCTCAGATGC -ACGGAAAAGGTGCTTCTCTGAAGG -ACGGAAAAGGTGCTTCTCCAATGG -ACGGAAAAGGTGCTTCTCATGAGG -ACGGAAAAGGTGCTTCTCAATGGG -ACGGAAAAGGTGCTTCTCTCCTGA -ACGGAAAAGGTGCTTCTCTAGCGA -ACGGAAAAGGTGCTTCTCCACAGA -ACGGAAAAGGTGCTTCTCGCAAGA -ACGGAAAAGGTGCTTCTCGGTTGA -ACGGAAAAGGTGCTTCTCTCCGAT -ACGGAAAAGGTGCTTCTCTGGCAT -ACGGAAAAGGTGCTTCTCCGAGAT -ACGGAAAAGGTGCTTCTCTACCAC -ACGGAAAAGGTGCTTCTCCAGAAC -ACGGAAAAGGTGCTTCTCGTCTAC -ACGGAAAAGGTGCTTCTCACGTAC -ACGGAAAAGGTGCTTCTCAGTGAC -ACGGAAAAGGTGCTTCTCCTGTAG -ACGGAAAAGGTGCTTCTCCCTAAG -ACGGAAAAGGTGCTTCTCGTTCAG -ACGGAAAAGGTGCTTCTCGCATAG -ACGGAAAAGGTGCTTCTCGACAAG -ACGGAAAAGGTGCTTCTCAAGCAG -ACGGAAAAGGTGCTTCTCCGTCAA -ACGGAAAAGGTGCTTCTCGCTGAA -ACGGAAAAGGTGCTTCTCAGTACG -ACGGAAAAGGTGCTTCTCATCCGA -ACGGAAAAGGTGCTTCTCATGGGA -ACGGAAAAGGTGCTTCTCGTGCAA -ACGGAAAAGGTGCTTCTCGAGGAA -ACGGAAAAGGTGCTTCTCCAGGTA -ACGGAAAAGGTGCTTCTCGACTCT -ACGGAAAAGGTGCTTCTCAGTCCT -ACGGAAAAGGTGCTTCTCTAAGCC -ACGGAAAAGGTGCTTCTCATAGCC -ACGGAAAAGGTGCTTCTCTAACCG -ACGGAAAAGGTGCTTCTCATGCCA -ACGGAAAAGGTGGTTCCTGGAAAC -ACGGAAAAGGTGGTTCCTAACACC -ACGGAAAAGGTGGTTCCTATCGAG -ACGGAAAAGGTGGTTCCTCTCCTT -ACGGAAAAGGTGGTTCCTCCTGTT -ACGGAAAAGGTGGTTCCTCGGTTT -ACGGAAAAGGTGGTTCCTGTGGTT -ACGGAAAAGGTGGTTCCTGCCTTT -ACGGAAAAGGTGGTTCCTGGTCTT -ACGGAAAAGGTGGTTCCTACGCTT -ACGGAAAAGGTGGTTCCTAGCGTT -ACGGAAAAGGTGGTTCCTTTCGTC -ACGGAAAAGGTGGTTCCTTCTCTC -ACGGAAAAGGTGGTTCCTTGGATC -ACGGAAAAGGTGGTTCCTCACTTC -ACGGAAAAGGTGGTTCCTGTACTC -ACGGAAAAGGTGGTTCCTGATGTC -ACGGAAAAGGTGGTTCCTACAGTC -ACGGAAAAGGTGGTTCCTTTGCTG -ACGGAAAAGGTGGTTCCTTCCATG -ACGGAAAAGGTGGTTCCTTGTGTG -ACGGAAAAGGTGGTTCCTCTAGTG -ACGGAAAAGGTGGTTCCTCATCTG -ACGGAAAAGGTGGTTCCTGAGTTG -ACGGAAAAGGTGGTTCCTAGACTG -ACGGAAAAGGTGGTTCCTTCGGTA -ACGGAAAAGGTGGTTCCTTGCCTA -ACGGAAAAGGTGGTTCCTCCACTA -ACGGAAAAGGTGGTTCCTGGAGTA -ACGGAAAAGGTGGTTCCTTCGTCT -ACGGAAAAGGTGGTTCCTTGCACT -ACGGAAAAGGTGGTTCCTCTGACT -ACGGAAAAGGTGGTTCCTCAACCT -ACGGAAAAGGTGGTTCCTGCTACT -ACGGAAAAGGTGGTTCCTGGATCT -ACGGAAAAGGTGGTTCCTAAGGCT -ACGGAAAAGGTGGTTCCTTCAACC -ACGGAAAAGGTGGTTCCTTGTTCC -ACGGAAAAGGTGGTTCCTATTCCC -ACGGAAAAGGTGGTTCCTTTCTCG -ACGGAAAAGGTGGTTCCTTAGACG -ACGGAAAAGGTGGTTCCTGTAACG -ACGGAAAAGGTGGTTCCTACTTCG -ACGGAAAAGGTGGTTCCTTACGCA -ACGGAAAAGGTGGTTCCTCTTGCA -ACGGAAAAGGTGGTTCCTCGAACA -ACGGAAAAGGTGGTTCCTCAGTCA -ACGGAAAAGGTGGTTCCTGATCCA -ACGGAAAAGGTGGTTCCTACGACA -ACGGAAAAGGTGGTTCCTAGCTCA -ACGGAAAAGGTGGTTCCTTCACGT -ACGGAAAAGGTGGTTCCTCGTAGT -ACGGAAAAGGTGGTTCCTGTCAGT -ACGGAAAAGGTGGTTCCTGAAGGT -ACGGAAAAGGTGGTTCCTAACCGT -ACGGAAAAGGTGGTTCCTTTGTGC -ACGGAAAAGGTGGTTCCTCTAAGC -ACGGAAAAGGTGGTTCCTACTAGC -ACGGAAAAGGTGGTTCCTAGATGC -ACGGAAAAGGTGGTTCCTTGAAGG -ACGGAAAAGGTGGTTCCTCAATGG -ACGGAAAAGGTGGTTCCTATGAGG -ACGGAAAAGGTGGTTCCTAATGGG -ACGGAAAAGGTGGTTCCTTCCTGA -ACGGAAAAGGTGGTTCCTTAGCGA -ACGGAAAAGGTGGTTCCTCACAGA -ACGGAAAAGGTGGTTCCTGCAAGA -ACGGAAAAGGTGGTTCCTGGTTGA -ACGGAAAAGGTGGTTCCTTCCGAT -ACGGAAAAGGTGGTTCCTTGGCAT -ACGGAAAAGGTGGTTCCTCGAGAT -ACGGAAAAGGTGGTTCCTTACCAC -ACGGAAAAGGTGGTTCCTCAGAAC -ACGGAAAAGGTGGTTCCTGTCTAC -ACGGAAAAGGTGGTTCCTACGTAC -ACGGAAAAGGTGGTTCCTAGTGAC -ACGGAAAAGGTGGTTCCTCTGTAG -ACGGAAAAGGTGGTTCCTCCTAAG -ACGGAAAAGGTGGTTCCTGTTCAG -ACGGAAAAGGTGGTTCCTGCATAG -ACGGAAAAGGTGGTTCCTGACAAG -ACGGAAAAGGTGGTTCCTAAGCAG -ACGGAAAAGGTGGTTCCTCGTCAA -ACGGAAAAGGTGGTTCCTGCTGAA -ACGGAAAAGGTGGTTCCTAGTACG -ACGGAAAAGGTGGTTCCTATCCGA -ACGGAAAAGGTGGTTCCTATGGGA -ACGGAAAAGGTGGTTCCTGTGCAA -ACGGAAAAGGTGGTTCCTGAGGAA -ACGGAAAAGGTGGTTCCTCAGGTA -ACGGAAAAGGTGGTTCCTGACTCT -ACGGAAAAGGTGGTTCCTAGTCCT -ACGGAAAAGGTGGTTCCTTAAGCC -ACGGAAAAGGTGGTTCCTATAGCC -ACGGAAAAGGTGGTTCCTTAACCG -ACGGAAAAGGTGGTTCCTATGCCA -ACGGAAAAGGTGTTTCGGGGAAAC -ACGGAAAAGGTGTTTCGGAACACC -ACGGAAAAGGTGTTTCGGATCGAG -ACGGAAAAGGTGTTTCGGCTCCTT -ACGGAAAAGGTGTTTCGGCCTGTT -ACGGAAAAGGTGTTTCGGCGGTTT -ACGGAAAAGGTGTTTCGGGTGGTT -ACGGAAAAGGTGTTTCGGGCCTTT -ACGGAAAAGGTGTTTCGGGGTCTT -ACGGAAAAGGTGTTTCGGACGCTT -ACGGAAAAGGTGTTTCGGAGCGTT -ACGGAAAAGGTGTTTCGGTTCGTC -ACGGAAAAGGTGTTTCGGTCTCTC -ACGGAAAAGGTGTTTCGGTGGATC -ACGGAAAAGGTGTTTCGGCACTTC -ACGGAAAAGGTGTTTCGGGTACTC -ACGGAAAAGGTGTTTCGGGATGTC -ACGGAAAAGGTGTTTCGGACAGTC -ACGGAAAAGGTGTTTCGGTTGCTG -ACGGAAAAGGTGTTTCGGTCCATG -ACGGAAAAGGTGTTTCGGTGTGTG -ACGGAAAAGGTGTTTCGGCTAGTG -ACGGAAAAGGTGTTTCGGCATCTG -ACGGAAAAGGTGTTTCGGGAGTTG -ACGGAAAAGGTGTTTCGGAGACTG -ACGGAAAAGGTGTTTCGGTCGGTA -ACGGAAAAGGTGTTTCGGTGCCTA -ACGGAAAAGGTGTTTCGGCCACTA -ACGGAAAAGGTGTTTCGGGGAGTA -ACGGAAAAGGTGTTTCGGTCGTCT -ACGGAAAAGGTGTTTCGGTGCACT -ACGGAAAAGGTGTTTCGGCTGACT -ACGGAAAAGGTGTTTCGGCAACCT -ACGGAAAAGGTGTTTCGGGCTACT -ACGGAAAAGGTGTTTCGGGGATCT -ACGGAAAAGGTGTTTCGGAAGGCT -ACGGAAAAGGTGTTTCGGTCAACC -ACGGAAAAGGTGTTTCGGTGTTCC -ACGGAAAAGGTGTTTCGGATTCCC -ACGGAAAAGGTGTTTCGGTTCTCG -ACGGAAAAGGTGTTTCGGTAGACG -ACGGAAAAGGTGTTTCGGGTAACG -ACGGAAAAGGTGTTTCGGACTTCG -ACGGAAAAGGTGTTTCGGTACGCA -ACGGAAAAGGTGTTTCGGCTTGCA -ACGGAAAAGGTGTTTCGGCGAACA -ACGGAAAAGGTGTTTCGGCAGTCA -ACGGAAAAGGTGTTTCGGGATCCA -ACGGAAAAGGTGTTTCGGACGACA -ACGGAAAAGGTGTTTCGGAGCTCA -ACGGAAAAGGTGTTTCGGTCACGT -ACGGAAAAGGTGTTTCGGCGTAGT -ACGGAAAAGGTGTTTCGGGTCAGT -ACGGAAAAGGTGTTTCGGGAAGGT -ACGGAAAAGGTGTTTCGGAACCGT -ACGGAAAAGGTGTTTCGGTTGTGC -ACGGAAAAGGTGTTTCGGCTAAGC -ACGGAAAAGGTGTTTCGGACTAGC -ACGGAAAAGGTGTTTCGGAGATGC -ACGGAAAAGGTGTTTCGGTGAAGG -ACGGAAAAGGTGTTTCGGCAATGG -ACGGAAAAGGTGTTTCGGATGAGG -ACGGAAAAGGTGTTTCGGAATGGG -ACGGAAAAGGTGTTTCGGTCCTGA -ACGGAAAAGGTGTTTCGGTAGCGA -ACGGAAAAGGTGTTTCGGCACAGA -ACGGAAAAGGTGTTTCGGGCAAGA -ACGGAAAAGGTGTTTCGGGGTTGA -ACGGAAAAGGTGTTTCGGTCCGAT -ACGGAAAAGGTGTTTCGGTGGCAT -ACGGAAAAGGTGTTTCGGCGAGAT -ACGGAAAAGGTGTTTCGGTACCAC -ACGGAAAAGGTGTTTCGGCAGAAC -ACGGAAAAGGTGTTTCGGGTCTAC -ACGGAAAAGGTGTTTCGGACGTAC -ACGGAAAAGGTGTTTCGGAGTGAC -ACGGAAAAGGTGTTTCGGCTGTAG -ACGGAAAAGGTGTTTCGGCCTAAG -ACGGAAAAGGTGTTTCGGGTTCAG -ACGGAAAAGGTGTTTCGGGCATAG -ACGGAAAAGGTGTTTCGGGACAAG -ACGGAAAAGGTGTTTCGGAAGCAG -ACGGAAAAGGTGTTTCGGCGTCAA -ACGGAAAAGGTGTTTCGGGCTGAA -ACGGAAAAGGTGTTTCGGAGTACG -ACGGAAAAGGTGTTTCGGATCCGA -ACGGAAAAGGTGTTTCGGATGGGA -ACGGAAAAGGTGTTTCGGGTGCAA -ACGGAAAAGGTGTTTCGGGAGGAA -ACGGAAAAGGTGTTTCGGCAGGTA -ACGGAAAAGGTGTTTCGGGACTCT -ACGGAAAAGGTGTTTCGGAGTCCT -ACGGAAAAGGTGTTTCGGTAAGCC -ACGGAAAAGGTGTTTCGGATAGCC -ACGGAAAAGGTGTTTCGGTAACCG -ACGGAAAAGGTGTTTCGGATGCCA -ACGGAAAAGGTGGTTGTGGGAAAC -ACGGAAAAGGTGGTTGTGAACACC -ACGGAAAAGGTGGTTGTGATCGAG -ACGGAAAAGGTGGTTGTGCTCCTT -ACGGAAAAGGTGGTTGTGCCTGTT -ACGGAAAAGGTGGTTGTGCGGTTT -ACGGAAAAGGTGGTTGTGGTGGTT -ACGGAAAAGGTGGTTGTGGCCTTT -ACGGAAAAGGTGGTTGTGGGTCTT -ACGGAAAAGGTGGTTGTGACGCTT -ACGGAAAAGGTGGTTGTGAGCGTT -ACGGAAAAGGTGGTTGTGTTCGTC -ACGGAAAAGGTGGTTGTGTCTCTC -ACGGAAAAGGTGGTTGTGTGGATC -ACGGAAAAGGTGGTTGTGCACTTC -ACGGAAAAGGTGGTTGTGGTACTC -ACGGAAAAGGTGGTTGTGGATGTC -ACGGAAAAGGTGGTTGTGACAGTC -ACGGAAAAGGTGGTTGTGTTGCTG -ACGGAAAAGGTGGTTGTGTCCATG -ACGGAAAAGGTGGTTGTGTGTGTG -ACGGAAAAGGTGGTTGTGCTAGTG -ACGGAAAAGGTGGTTGTGCATCTG -ACGGAAAAGGTGGTTGTGGAGTTG -ACGGAAAAGGTGGTTGTGAGACTG -ACGGAAAAGGTGGTTGTGTCGGTA -ACGGAAAAGGTGGTTGTGTGCCTA -ACGGAAAAGGTGGTTGTGCCACTA -ACGGAAAAGGTGGTTGTGGGAGTA -ACGGAAAAGGTGGTTGTGTCGTCT -ACGGAAAAGGTGGTTGTGTGCACT -ACGGAAAAGGTGGTTGTGCTGACT -ACGGAAAAGGTGGTTGTGCAACCT -ACGGAAAAGGTGGTTGTGGCTACT -ACGGAAAAGGTGGTTGTGGGATCT -ACGGAAAAGGTGGTTGTGAAGGCT -ACGGAAAAGGTGGTTGTGTCAACC -ACGGAAAAGGTGGTTGTGTGTTCC -ACGGAAAAGGTGGTTGTGATTCCC -ACGGAAAAGGTGGTTGTGTTCTCG -ACGGAAAAGGTGGTTGTGTAGACG -ACGGAAAAGGTGGTTGTGGTAACG -ACGGAAAAGGTGGTTGTGACTTCG -ACGGAAAAGGTGGTTGTGTACGCA -ACGGAAAAGGTGGTTGTGCTTGCA -ACGGAAAAGGTGGTTGTGCGAACA -ACGGAAAAGGTGGTTGTGCAGTCA -ACGGAAAAGGTGGTTGTGGATCCA -ACGGAAAAGGTGGTTGTGACGACA -ACGGAAAAGGTGGTTGTGAGCTCA -ACGGAAAAGGTGGTTGTGTCACGT -ACGGAAAAGGTGGTTGTGCGTAGT -ACGGAAAAGGTGGTTGTGGTCAGT -ACGGAAAAGGTGGTTGTGGAAGGT -ACGGAAAAGGTGGTTGTGAACCGT -ACGGAAAAGGTGGTTGTGTTGTGC -ACGGAAAAGGTGGTTGTGCTAAGC -ACGGAAAAGGTGGTTGTGACTAGC -ACGGAAAAGGTGGTTGTGAGATGC -ACGGAAAAGGTGGTTGTGTGAAGG -ACGGAAAAGGTGGTTGTGCAATGG -ACGGAAAAGGTGGTTGTGATGAGG -ACGGAAAAGGTGGTTGTGAATGGG -ACGGAAAAGGTGGTTGTGTCCTGA -ACGGAAAAGGTGGTTGTGTAGCGA -ACGGAAAAGGTGGTTGTGCACAGA -ACGGAAAAGGTGGTTGTGGCAAGA -ACGGAAAAGGTGGTTGTGGGTTGA -ACGGAAAAGGTGGTTGTGTCCGAT -ACGGAAAAGGTGGTTGTGTGGCAT -ACGGAAAAGGTGGTTGTGCGAGAT -ACGGAAAAGGTGGTTGTGTACCAC -ACGGAAAAGGTGGTTGTGCAGAAC -ACGGAAAAGGTGGTTGTGGTCTAC -ACGGAAAAGGTGGTTGTGACGTAC -ACGGAAAAGGTGGTTGTGAGTGAC -ACGGAAAAGGTGGTTGTGCTGTAG -ACGGAAAAGGTGGTTGTGCCTAAG -ACGGAAAAGGTGGTTGTGGTTCAG -ACGGAAAAGGTGGTTGTGGCATAG -ACGGAAAAGGTGGTTGTGGACAAG -ACGGAAAAGGTGGTTGTGAAGCAG -ACGGAAAAGGTGGTTGTGCGTCAA -ACGGAAAAGGTGGTTGTGGCTGAA -ACGGAAAAGGTGGTTGTGAGTACG -ACGGAAAAGGTGGTTGTGATCCGA -ACGGAAAAGGTGGTTGTGATGGGA -ACGGAAAAGGTGGTTGTGGTGCAA -ACGGAAAAGGTGGTTGTGGAGGAA -ACGGAAAAGGTGGTTGTGCAGGTA -ACGGAAAAGGTGGTTGTGGACTCT -ACGGAAAAGGTGGTTGTGAGTCCT -ACGGAAAAGGTGGTTGTGTAAGCC -ACGGAAAAGGTGGTTGTGATAGCC -ACGGAAAAGGTGGTTGTGTAACCG -ACGGAAAAGGTGGTTGTGATGCCA -ACGGAAAAGGTGTTTGCCGGAAAC -ACGGAAAAGGTGTTTGCCAACACC -ACGGAAAAGGTGTTTGCCATCGAG -ACGGAAAAGGTGTTTGCCCTCCTT -ACGGAAAAGGTGTTTGCCCCTGTT -ACGGAAAAGGTGTTTGCCCGGTTT -ACGGAAAAGGTGTTTGCCGTGGTT -ACGGAAAAGGTGTTTGCCGCCTTT -ACGGAAAAGGTGTTTGCCGGTCTT -ACGGAAAAGGTGTTTGCCACGCTT -ACGGAAAAGGTGTTTGCCAGCGTT -ACGGAAAAGGTGTTTGCCTTCGTC -ACGGAAAAGGTGTTTGCCTCTCTC -ACGGAAAAGGTGTTTGCCTGGATC -ACGGAAAAGGTGTTTGCCCACTTC -ACGGAAAAGGTGTTTGCCGTACTC -ACGGAAAAGGTGTTTGCCGATGTC -ACGGAAAAGGTGTTTGCCACAGTC -ACGGAAAAGGTGTTTGCCTTGCTG -ACGGAAAAGGTGTTTGCCTCCATG -ACGGAAAAGGTGTTTGCCTGTGTG -ACGGAAAAGGTGTTTGCCCTAGTG -ACGGAAAAGGTGTTTGCCCATCTG -ACGGAAAAGGTGTTTGCCGAGTTG -ACGGAAAAGGTGTTTGCCAGACTG -ACGGAAAAGGTGTTTGCCTCGGTA -ACGGAAAAGGTGTTTGCCTGCCTA -ACGGAAAAGGTGTTTGCCCCACTA -ACGGAAAAGGTGTTTGCCGGAGTA -ACGGAAAAGGTGTTTGCCTCGTCT -ACGGAAAAGGTGTTTGCCTGCACT -ACGGAAAAGGTGTTTGCCCTGACT -ACGGAAAAGGTGTTTGCCCAACCT -ACGGAAAAGGTGTTTGCCGCTACT -ACGGAAAAGGTGTTTGCCGGATCT -ACGGAAAAGGTGTTTGCCAAGGCT -ACGGAAAAGGTGTTTGCCTCAACC -ACGGAAAAGGTGTTTGCCTGTTCC -ACGGAAAAGGTGTTTGCCATTCCC -ACGGAAAAGGTGTTTGCCTTCTCG -ACGGAAAAGGTGTTTGCCTAGACG -ACGGAAAAGGTGTTTGCCGTAACG -ACGGAAAAGGTGTTTGCCACTTCG -ACGGAAAAGGTGTTTGCCTACGCA -ACGGAAAAGGTGTTTGCCCTTGCA -ACGGAAAAGGTGTTTGCCCGAACA -ACGGAAAAGGTGTTTGCCCAGTCA -ACGGAAAAGGTGTTTGCCGATCCA -ACGGAAAAGGTGTTTGCCACGACA -ACGGAAAAGGTGTTTGCCAGCTCA -ACGGAAAAGGTGTTTGCCTCACGT -ACGGAAAAGGTGTTTGCCCGTAGT -ACGGAAAAGGTGTTTGCCGTCAGT -ACGGAAAAGGTGTTTGCCGAAGGT -ACGGAAAAGGTGTTTGCCAACCGT -ACGGAAAAGGTGTTTGCCTTGTGC -ACGGAAAAGGTGTTTGCCCTAAGC -ACGGAAAAGGTGTTTGCCACTAGC -ACGGAAAAGGTGTTTGCCAGATGC -ACGGAAAAGGTGTTTGCCTGAAGG -ACGGAAAAGGTGTTTGCCCAATGG -ACGGAAAAGGTGTTTGCCATGAGG -ACGGAAAAGGTGTTTGCCAATGGG -ACGGAAAAGGTGTTTGCCTCCTGA -ACGGAAAAGGTGTTTGCCTAGCGA -ACGGAAAAGGTGTTTGCCCACAGA -ACGGAAAAGGTGTTTGCCGCAAGA -ACGGAAAAGGTGTTTGCCGGTTGA -ACGGAAAAGGTGTTTGCCTCCGAT -ACGGAAAAGGTGTTTGCCTGGCAT -ACGGAAAAGGTGTTTGCCCGAGAT -ACGGAAAAGGTGTTTGCCTACCAC -ACGGAAAAGGTGTTTGCCCAGAAC -ACGGAAAAGGTGTTTGCCGTCTAC -ACGGAAAAGGTGTTTGCCACGTAC -ACGGAAAAGGTGTTTGCCAGTGAC -ACGGAAAAGGTGTTTGCCCTGTAG -ACGGAAAAGGTGTTTGCCCCTAAG -ACGGAAAAGGTGTTTGCCGTTCAG -ACGGAAAAGGTGTTTGCCGCATAG -ACGGAAAAGGTGTTTGCCGACAAG -ACGGAAAAGGTGTTTGCCAAGCAG -ACGGAAAAGGTGTTTGCCCGTCAA -ACGGAAAAGGTGTTTGCCGCTGAA -ACGGAAAAGGTGTTTGCCAGTACG -ACGGAAAAGGTGTTTGCCATCCGA -ACGGAAAAGGTGTTTGCCATGGGA -ACGGAAAAGGTGTTTGCCGTGCAA -ACGGAAAAGGTGTTTGCCGAGGAA -ACGGAAAAGGTGTTTGCCCAGGTA -ACGGAAAAGGTGTTTGCCGACTCT -ACGGAAAAGGTGTTTGCCAGTCCT -ACGGAAAAGGTGTTTGCCTAAGCC -ACGGAAAAGGTGTTTGCCATAGCC -ACGGAAAAGGTGTTTGCCTAACCG -ACGGAAAAGGTGTTTGCCATGCCA -ACGGAAAAGGTGCTTGGTGGAAAC -ACGGAAAAGGTGCTTGGTAACACC -ACGGAAAAGGTGCTTGGTATCGAG -ACGGAAAAGGTGCTTGGTCTCCTT -ACGGAAAAGGTGCTTGGTCCTGTT -ACGGAAAAGGTGCTTGGTCGGTTT -ACGGAAAAGGTGCTTGGTGTGGTT -ACGGAAAAGGTGCTTGGTGCCTTT -ACGGAAAAGGTGCTTGGTGGTCTT -ACGGAAAAGGTGCTTGGTACGCTT -ACGGAAAAGGTGCTTGGTAGCGTT -ACGGAAAAGGTGCTTGGTTTCGTC -ACGGAAAAGGTGCTTGGTTCTCTC -ACGGAAAAGGTGCTTGGTTGGATC -ACGGAAAAGGTGCTTGGTCACTTC -ACGGAAAAGGTGCTTGGTGTACTC -ACGGAAAAGGTGCTTGGTGATGTC -ACGGAAAAGGTGCTTGGTACAGTC -ACGGAAAAGGTGCTTGGTTTGCTG -ACGGAAAAGGTGCTTGGTTCCATG -ACGGAAAAGGTGCTTGGTTGTGTG -ACGGAAAAGGTGCTTGGTCTAGTG -ACGGAAAAGGTGCTTGGTCATCTG -ACGGAAAAGGTGCTTGGTGAGTTG -ACGGAAAAGGTGCTTGGTAGACTG -ACGGAAAAGGTGCTTGGTTCGGTA -ACGGAAAAGGTGCTTGGTTGCCTA -ACGGAAAAGGTGCTTGGTCCACTA -ACGGAAAAGGTGCTTGGTGGAGTA -ACGGAAAAGGTGCTTGGTTCGTCT -ACGGAAAAGGTGCTTGGTTGCACT -ACGGAAAAGGTGCTTGGTCTGACT -ACGGAAAAGGTGCTTGGTCAACCT -ACGGAAAAGGTGCTTGGTGCTACT -ACGGAAAAGGTGCTTGGTGGATCT -ACGGAAAAGGTGCTTGGTAAGGCT -ACGGAAAAGGTGCTTGGTTCAACC -ACGGAAAAGGTGCTTGGTTGTTCC -ACGGAAAAGGTGCTTGGTATTCCC -ACGGAAAAGGTGCTTGGTTTCTCG -ACGGAAAAGGTGCTTGGTTAGACG -ACGGAAAAGGTGCTTGGTGTAACG -ACGGAAAAGGTGCTTGGTACTTCG -ACGGAAAAGGTGCTTGGTTACGCA -ACGGAAAAGGTGCTTGGTCTTGCA -ACGGAAAAGGTGCTTGGTCGAACA -ACGGAAAAGGTGCTTGGTCAGTCA -ACGGAAAAGGTGCTTGGTGATCCA -ACGGAAAAGGTGCTTGGTACGACA -ACGGAAAAGGTGCTTGGTAGCTCA -ACGGAAAAGGTGCTTGGTTCACGT -ACGGAAAAGGTGCTTGGTCGTAGT -ACGGAAAAGGTGCTTGGTGTCAGT -ACGGAAAAGGTGCTTGGTGAAGGT -ACGGAAAAGGTGCTTGGTAACCGT -ACGGAAAAGGTGCTTGGTTTGTGC -ACGGAAAAGGTGCTTGGTCTAAGC -ACGGAAAAGGTGCTTGGTACTAGC -ACGGAAAAGGTGCTTGGTAGATGC -ACGGAAAAGGTGCTTGGTTGAAGG -ACGGAAAAGGTGCTTGGTCAATGG -ACGGAAAAGGTGCTTGGTATGAGG -ACGGAAAAGGTGCTTGGTAATGGG -ACGGAAAAGGTGCTTGGTTCCTGA -ACGGAAAAGGTGCTTGGTTAGCGA -ACGGAAAAGGTGCTTGGTCACAGA -ACGGAAAAGGTGCTTGGTGCAAGA -ACGGAAAAGGTGCTTGGTGGTTGA -ACGGAAAAGGTGCTTGGTTCCGAT -ACGGAAAAGGTGCTTGGTTGGCAT -ACGGAAAAGGTGCTTGGTCGAGAT -ACGGAAAAGGTGCTTGGTTACCAC -ACGGAAAAGGTGCTTGGTCAGAAC -ACGGAAAAGGTGCTTGGTGTCTAC -ACGGAAAAGGTGCTTGGTACGTAC -ACGGAAAAGGTGCTTGGTAGTGAC -ACGGAAAAGGTGCTTGGTCTGTAG -ACGGAAAAGGTGCTTGGTCCTAAG -ACGGAAAAGGTGCTTGGTGTTCAG -ACGGAAAAGGTGCTTGGTGCATAG -ACGGAAAAGGTGCTTGGTGACAAG -ACGGAAAAGGTGCTTGGTAAGCAG -ACGGAAAAGGTGCTTGGTCGTCAA -ACGGAAAAGGTGCTTGGTGCTGAA -ACGGAAAAGGTGCTTGGTAGTACG -ACGGAAAAGGTGCTTGGTATCCGA -ACGGAAAAGGTGCTTGGTATGGGA -ACGGAAAAGGTGCTTGGTGTGCAA -ACGGAAAAGGTGCTTGGTGAGGAA -ACGGAAAAGGTGCTTGGTCAGGTA -ACGGAAAAGGTGCTTGGTGACTCT -ACGGAAAAGGTGCTTGGTAGTCCT -ACGGAAAAGGTGCTTGGTTAAGCC -ACGGAAAAGGTGCTTGGTATAGCC -ACGGAAAAGGTGCTTGGTTAACCG -ACGGAAAAGGTGCTTGGTATGCCA -ACGGAAAAGGTGCTTACGGGAAAC -ACGGAAAAGGTGCTTACGAACACC -ACGGAAAAGGTGCTTACGATCGAG -ACGGAAAAGGTGCTTACGCTCCTT -ACGGAAAAGGTGCTTACGCCTGTT -ACGGAAAAGGTGCTTACGCGGTTT -ACGGAAAAGGTGCTTACGGTGGTT -ACGGAAAAGGTGCTTACGGCCTTT -ACGGAAAAGGTGCTTACGGGTCTT -ACGGAAAAGGTGCTTACGACGCTT -ACGGAAAAGGTGCTTACGAGCGTT -ACGGAAAAGGTGCTTACGTTCGTC -ACGGAAAAGGTGCTTACGTCTCTC -ACGGAAAAGGTGCTTACGTGGATC -ACGGAAAAGGTGCTTACGCACTTC -ACGGAAAAGGTGCTTACGGTACTC -ACGGAAAAGGTGCTTACGGATGTC -ACGGAAAAGGTGCTTACGACAGTC -ACGGAAAAGGTGCTTACGTTGCTG -ACGGAAAAGGTGCTTACGTCCATG -ACGGAAAAGGTGCTTACGTGTGTG -ACGGAAAAGGTGCTTACGCTAGTG -ACGGAAAAGGTGCTTACGCATCTG -ACGGAAAAGGTGCTTACGGAGTTG -ACGGAAAAGGTGCTTACGAGACTG -ACGGAAAAGGTGCTTACGTCGGTA -ACGGAAAAGGTGCTTACGTGCCTA -ACGGAAAAGGTGCTTACGCCACTA -ACGGAAAAGGTGCTTACGGGAGTA -ACGGAAAAGGTGCTTACGTCGTCT -ACGGAAAAGGTGCTTACGTGCACT -ACGGAAAAGGTGCTTACGCTGACT -ACGGAAAAGGTGCTTACGCAACCT -ACGGAAAAGGTGCTTACGGCTACT -ACGGAAAAGGTGCTTACGGGATCT -ACGGAAAAGGTGCTTACGAAGGCT -ACGGAAAAGGTGCTTACGTCAACC -ACGGAAAAGGTGCTTACGTGTTCC -ACGGAAAAGGTGCTTACGATTCCC -ACGGAAAAGGTGCTTACGTTCTCG -ACGGAAAAGGTGCTTACGTAGACG -ACGGAAAAGGTGCTTACGGTAACG -ACGGAAAAGGTGCTTACGACTTCG -ACGGAAAAGGTGCTTACGTACGCA -ACGGAAAAGGTGCTTACGCTTGCA -ACGGAAAAGGTGCTTACGCGAACA -ACGGAAAAGGTGCTTACGCAGTCA -ACGGAAAAGGTGCTTACGGATCCA -ACGGAAAAGGTGCTTACGACGACA -ACGGAAAAGGTGCTTACGAGCTCA -ACGGAAAAGGTGCTTACGTCACGT -ACGGAAAAGGTGCTTACGCGTAGT -ACGGAAAAGGTGCTTACGGTCAGT -ACGGAAAAGGTGCTTACGGAAGGT -ACGGAAAAGGTGCTTACGAACCGT -ACGGAAAAGGTGCTTACGTTGTGC -ACGGAAAAGGTGCTTACGCTAAGC -ACGGAAAAGGTGCTTACGACTAGC -ACGGAAAAGGTGCTTACGAGATGC -ACGGAAAAGGTGCTTACGTGAAGG -ACGGAAAAGGTGCTTACGCAATGG -ACGGAAAAGGTGCTTACGATGAGG -ACGGAAAAGGTGCTTACGAATGGG -ACGGAAAAGGTGCTTACGTCCTGA -ACGGAAAAGGTGCTTACGTAGCGA -ACGGAAAAGGTGCTTACGCACAGA -ACGGAAAAGGTGCTTACGGCAAGA -ACGGAAAAGGTGCTTACGGGTTGA -ACGGAAAAGGTGCTTACGTCCGAT -ACGGAAAAGGTGCTTACGTGGCAT -ACGGAAAAGGTGCTTACGCGAGAT -ACGGAAAAGGTGCTTACGTACCAC -ACGGAAAAGGTGCTTACGCAGAAC -ACGGAAAAGGTGCTTACGGTCTAC -ACGGAAAAGGTGCTTACGACGTAC -ACGGAAAAGGTGCTTACGAGTGAC -ACGGAAAAGGTGCTTACGCTGTAG -ACGGAAAAGGTGCTTACGCCTAAG -ACGGAAAAGGTGCTTACGGTTCAG -ACGGAAAAGGTGCTTACGGCATAG -ACGGAAAAGGTGCTTACGGACAAG -ACGGAAAAGGTGCTTACGAAGCAG -ACGGAAAAGGTGCTTACGCGTCAA -ACGGAAAAGGTGCTTACGGCTGAA -ACGGAAAAGGTGCTTACGAGTACG -ACGGAAAAGGTGCTTACGATCCGA -ACGGAAAAGGTGCTTACGATGGGA -ACGGAAAAGGTGCTTACGGTGCAA -ACGGAAAAGGTGCTTACGGAGGAA -ACGGAAAAGGTGCTTACGCAGGTA -ACGGAAAAGGTGCTTACGGACTCT -ACGGAAAAGGTGCTTACGAGTCCT -ACGGAAAAGGTGCTTACGTAAGCC -ACGGAAAAGGTGCTTACGATAGCC -ACGGAAAAGGTGCTTACGTAACCG -ACGGAAAAGGTGCTTACGATGCCA -ACGGAAAAGGTGGTTAGCGGAAAC -ACGGAAAAGGTGGTTAGCAACACC -ACGGAAAAGGTGGTTAGCATCGAG -ACGGAAAAGGTGGTTAGCCTCCTT -ACGGAAAAGGTGGTTAGCCCTGTT -ACGGAAAAGGTGGTTAGCCGGTTT -ACGGAAAAGGTGGTTAGCGTGGTT -ACGGAAAAGGTGGTTAGCGCCTTT -ACGGAAAAGGTGGTTAGCGGTCTT -ACGGAAAAGGTGGTTAGCACGCTT -ACGGAAAAGGTGGTTAGCAGCGTT -ACGGAAAAGGTGGTTAGCTTCGTC -ACGGAAAAGGTGGTTAGCTCTCTC -ACGGAAAAGGTGGTTAGCTGGATC -ACGGAAAAGGTGGTTAGCCACTTC -ACGGAAAAGGTGGTTAGCGTACTC -ACGGAAAAGGTGGTTAGCGATGTC -ACGGAAAAGGTGGTTAGCACAGTC -ACGGAAAAGGTGGTTAGCTTGCTG -ACGGAAAAGGTGGTTAGCTCCATG -ACGGAAAAGGTGGTTAGCTGTGTG -ACGGAAAAGGTGGTTAGCCTAGTG -ACGGAAAAGGTGGTTAGCCATCTG -ACGGAAAAGGTGGTTAGCGAGTTG -ACGGAAAAGGTGGTTAGCAGACTG -ACGGAAAAGGTGGTTAGCTCGGTA -ACGGAAAAGGTGGTTAGCTGCCTA -ACGGAAAAGGTGGTTAGCCCACTA -ACGGAAAAGGTGGTTAGCGGAGTA -ACGGAAAAGGTGGTTAGCTCGTCT -ACGGAAAAGGTGGTTAGCTGCACT -ACGGAAAAGGTGGTTAGCCTGACT -ACGGAAAAGGTGGTTAGCCAACCT -ACGGAAAAGGTGGTTAGCGCTACT -ACGGAAAAGGTGGTTAGCGGATCT -ACGGAAAAGGTGGTTAGCAAGGCT -ACGGAAAAGGTGGTTAGCTCAACC -ACGGAAAAGGTGGTTAGCTGTTCC -ACGGAAAAGGTGGTTAGCATTCCC -ACGGAAAAGGTGGTTAGCTTCTCG -ACGGAAAAGGTGGTTAGCTAGACG -ACGGAAAAGGTGGTTAGCGTAACG -ACGGAAAAGGTGGTTAGCACTTCG -ACGGAAAAGGTGGTTAGCTACGCA -ACGGAAAAGGTGGTTAGCCTTGCA -ACGGAAAAGGTGGTTAGCCGAACA -ACGGAAAAGGTGGTTAGCCAGTCA -ACGGAAAAGGTGGTTAGCGATCCA -ACGGAAAAGGTGGTTAGCACGACA -ACGGAAAAGGTGGTTAGCAGCTCA -ACGGAAAAGGTGGTTAGCTCACGT -ACGGAAAAGGTGGTTAGCCGTAGT -ACGGAAAAGGTGGTTAGCGTCAGT -ACGGAAAAGGTGGTTAGCGAAGGT -ACGGAAAAGGTGGTTAGCAACCGT -ACGGAAAAGGTGGTTAGCTTGTGC -ACGGAAAAGGTGGTTAGCCTAAGC -ACGGAAAAGGTGGTTAGCACTAGC -ACGGAAAAGGTGGTTAGCAGATGC -ACGGAAAAGGTGGTTAGCTGAAGG -ACGGAAAAGGTGGTTAGCCAATGG -ACGGAAAAGGTGGTTAGCATGAGG -ACGGAAAAGGTGGTTAGCAATGGG -ACGGAAAAGGTGGTTAGCTCCTGA -ACGGAAAAGGTGGTTAGCTAGCGA -ACGGAAAAGGTGGTTAGCCACAGA -ACGGAAAAGGTGGTTAGCGCAAGA -ACGGAAAAGGTGGTTAGCGGTTGA -ACGGAAAAGGTGGTTAGCTCCGAT -ACGGAAAAGGTGGTTAGCTGGCAT -ACGGAAAAGGTGGTTAGCCGAGAT -ACGGAAAAGGTGGTTAGCTACCAC -ACGGAAAAGGTGGTTAGCCAGAAC -ACGGAAAAGGTGGTTAGCGTCTAC -ACGGAAAAGGTGGTTAGCACGTAC -ACGGAAAAGGTGGTTAGCAGTGAC -ACGGAAAAGGTGGTTAGCCTGTAG -ACGGAAAAGGTGGTTAGCCCTAAG -ACGGAAAAGGTGGTTAGCGTTCAG -ACGGAAAAGGTGGTTAGCGCATAG -ACGGAAAAGGTGGTTAGCGACAAG -ACGGAAAAGGTGGTTAGCAAGCAG -ACGGAAAAGGTGGTTAGCCGTCAA -ACGGAAAAGGTGGTTAGCGCTGAA -ACGGAAAAGGTGGTTAGCAGTACG -ACGGAAAAGGTGGTTAGCATCCGA -ACGGAAAAGGTGGTTAGCATGGGA -ACGGAAAAGGTGGTTAGCGTGCAA -ACGGAAAAGGTGGTTAGCGAGGAA -ACGGAAAAGGTGGTTAGCCAGGTA -ACGGAAAAGGTGGTTAGCGACTCT -ACGGAAAAGGTGGTTAGCAGTCCT -ACGGAAAAGGTGGTTAGCTAAGCC -ACGGAAAAGGTGGTTAGCATAGCC -ACGGAAAAGGTGGTTAGCTAACCG -ACGGAAAAGGTGGTTAGCATGCCA -ACGGAAAAGGTGGTCTTCGGAAAC -ACGGAAAAGGTGGTCTTCAACACC -ACGGAAAAGGTGGTCTTCATCGAG -ACGGAAAAGGTGGTCTTCCTCCTT -ACGGAAAAGGTGGTCTTCCCTGTT -ACGGAAAAGGTGGTCTTCCGGTTT -ACGGAAAAGGTGGTCTTCGTGGTT -ACGGAAAAGGTGGTCTTCGCCTTT -ACGGAAAAGGTGGTCTTCGGTCTT -ACGGAAAAGGTGGTCTTCACGCTT -ACGGAAAAGGTGGTCTTCAGCGTT -ACGGAAAAGGTGGTCTTCTTCGTC -ACGGAAAAGGTGGTCTTCTCTCTC -ACGGAAAAGGTGGTCTTCTGGATC -ACGGAAAAGGTGGTCTTCCACTTC -ACGGAAAAGGTGGTCTTCGTACTC -ACGGAAAAGGTGGTCTTCGATGTC -ACGGAAAAGGTGGTCTTCACAGTC -ACGGAAAAGGTGGTCTTCTTGCTG -ACGGAAAAGGTGGTCTTCTCCATG -ACGGAAAAGGTGGTCTTCTGTGTG -ACGGAAAAGGTGGTCTTCCTAGTG -ACGGAAAAGGTGGTCTTCCATCTG -ACGGAAAAGGTGGTCTTCGAGTTG -ACGGAAAAGGTGGTCTTCAGACTG -ACGGAAAAGGTGGTCTTCTCGGTA -ACGGAAAAGGTGGTCTTCTGCCTA -ACGGAAAAGGTGGTCTTCCCACTA -ACGGAAAAGGTGGTCTTCGGAGTA -ACGGAAAAGGTGGTCTTCTCGTCT -ACGGAAAAGGTGGTCTTCTGCACT -ACGGAAAAGGTGGTCTTCCTGACT -ACGGAAAAGGTGGTCTTCCAACCT -ACGGAAAAGGTGGTCTTCGCTACT -ACGGAAAAGGTGGTCTTCGGATCT -ACGGAAAAGGTGGTCTTCAAGGCT -ACGGAAAAGGTGGTCTTCTCAACC -ACGGAAAAGGTGGTCTTCTGTTCC -ACGGAAAAGGTGGTCTTCATTCCC -ACGGAAAAGGTGGTCTTCTTCTCG -ACGGAAAAGGTGGTCTTCTAGACG -ACGGAAAAGGTGGTCTTCGTAACG -ACGGAAAAGGTGGTCTTCACTTCG -ACGGAAAAGGTGGTCTTCTACGCA -ACGGAAAAGGTGGTCTTCCTTGCA -ACGGAAAAGGTGGTCTTCCGAACA -ACGGAAAAGGTGGTCTTCCAGTCA -ACGGAAAAGGTGGTCTTCGATCCA -ACGGAAAAGGTGGTCTTCACGACA -ACGGAAAAGGTGGTCTTCAGCTCA -ACGGAAAAGGTGGTCTTCTCACGT -ACGGAAAAGGTGGTCTTCCGTAGT -ACGGAAAAGGTGGTCTTCGTCAGT -ACGGAAAAGGTGGTCTTCGAAGGT -ACGGAAAAGGTGGTCTTCAACCGT -ACGGAAAAGGTGGTCTTCTTGTGC -ACGGAAAAGGTGGTCTTCCTAAGC -ACGGAAAAGGTGGTCTTCACTAGC -ACGGAAAAGGTGGTCTTCAGATGC -ACGGAAAAGGTGGTCTTCTGAAGG -ACGGAAAAGGTGGTCTTCCAATGG -ACGGAAAAGGTGGTCTTCATGAGG -ACGGAAAAGGTGGTCTTCAATGGG -ACGGAAAAGGTGGTCTTCTCCTGA -ACGGAAAAGGTGGTCTTCTAGCGA -ACGGAAAAGGTGGTCTTCCACAGA -ACGGAAAAGGTGGTCTTCGCAAGA -ACGGAAAAGGTGGTCTTCGGTTGA -ACGGAAAAGGTGGTCTTCTCCGAT -ACGGAAAAGGTGGTCTTCTGGCAT -ACGGAAAAGGTGGTCTTCCGAGAT -ACGGAAAAGGTGGTCTTCTACCAC -ACGGAAAAGGTGGTCTTCCAGAAC -ACGGAAAAGGTGGTCTTCGTCTAC -ACGGAAAAGGTGGTCTTCACGTAC -ACGGAAAAGGTGGTCTTCAGTGAC -ACGGAAAAGGTGGTCTTCCTGTAG -ACGGAAAAGGTGGTCTTCCCTAAG -ACGGAAAAGGTGGTCTTCGTTCAG -ACGGAAAAGGTGGTCTTCGCATAG -ACGGAAAAGGTGGTCTTCGACAAG -ACGGAAAAGGTGGTCTTCAAGCAG -ACGGAAAAGGTGGTCTTCCGTCAA -ACGGAAAAGGTGGTCTTCGCTGAA -ACGGAAAAGGTGGTCTTCAGTACG -ACGGAAAAGGTGGTCTTCATCCGA -ACGGAAAAGGTGGTCTTCATGGGA -ACGGAAAAGGTGGTCTTCGTGCAA -ACGGAAAAGGTGGTCTTCGAGGAA -ACGGAAAAGGTGGTCTTCCAGGTA -ACGGAAAAGGTGGTCTTCGACTCT -ACGGAAAAGGTGGTCTTCAGTCCT -ACGGAAAAGGTGGTCTTCTAAGCC -ACGGAAAAGGTGGTCTTCATAGCC -ACGGAAAAGGTGGTCTTCTAACCG -ACGGAAAAGGTGGTCTTCATGCCA -ACGGAAAAGGTGCTCTCTGGAAAC -ACGGAAAAGGTGCTCTCTAACACC -ACGGAAAAGGTGCTCTCTATCGAG -ACGGAAAAGGTGCTCTCTCTCCTT -ACGGAAAAGGTGCTCTCTCCTGTT -ACGGAAAAGGTGCTCTCTCGGTTT -ACGGAAAAGGTGCTCTCTGTGGTT -ACGGAAAAGGTGCTCTCTGCCTTT -ACGGAAAAGGTGCTCTCTGGTCTT -ACGGAAAAGGTGCTCTCTACGCTT -ACGGAAAAGGTGCTCTCTAGCGTT -ACGGAAAAGGTGCTCTCTTTCGTC -ACGGAAAAGGTGCTCTCTTCTCTC -ACGGAAAAGGTGCTCTCTTGGATC -ACGGAAAAGGTGCTCTCTCACTTC -ACGGAAAAGGTGCTCTCTGTACTC -ACGGAAAAGGTGCTCTCTGATGTC -ACGGAAAAGGTGCTCTCTACAGTC -ACGGAAAAGGTGCTCTCTTTGCTG -ACGGAAAAGGTGCTCTCTTCCATG -ACGGAAAAGGTGCTCTCTTGTGTG -ACGGAAAAGGTGCTCTCTCTAGTG -ACGGAAAAGGTGCTCTCTCATCTG -ACGGAAAAGGTGCTCTCTGAGTTG -ACGGAAAAGGTGCTCTCTAGACTG -ACGGAAAAGGTGCTCTCTTCGGTA -ACGGAAAAGGTGCTCTCTTGCCTA -ACGGAAAAGGTGCTCTCTCCACTA -ACGGAAAAGGTGCTCTCTGGAGTA -ACGGAAAAGGTGCTCTCTTCGTCT -ACGGAAAAGGTGCTCTCTTGCACT -ACGGAAAAGGTGCTCTCTCTGACT -ACGGAAAAGGTGCTCTCTCAACCT -ACGGAAAAGGTGCTCTCTGCTACT -ACGGAAAAGGTGCTCTCTGGATCT -ACGGAAAAGGTGCTCTCTAAGGCT -ACGGAAAAGGTGCTCTCTTCAACC -ACGGAAAAGGTGCTCTCTTGTTCC -ACGGAAAAGGTGCTCTCTATTCCC -ACGGAAAAGGTGCTCTCTTTCTCG -ACGGAAAAGGTGCTCTCTTAGACG -ACGGAAAAGGTGCTCTCTGTAACG -ACGGAAAAGGTGCTCTCTACTTCG -ACGGAAAAGGTGCTCTCTTACGCA -ACGGAAAAGGTGCTCTCTCTTGCA -ACGGAAAAGGTGCTCTCTCGAACA -ACGGAAAAGGTGCTCTCTCAGTCA -ACGGAAAAGGTGCTCTCTGATCCA -ACGGAAAAGGTGCTCTCTACGACA -ACGGAAAAGGTGCTCTCTAGCTCA -ACGGAAAAGGTGCTCTCTTCACGT -ACGGAAAAGGTGCTCTCTCGTAGT -ACGGAAAAGGTGCTCTCTGTCAGT -ACGGAAAAGGTGCTCTCTGAAGGT -ACGGAAAAGGTGCTCTCTAACCGT -ACGGAAAAGGTGCTCTCTTTGTGC -ACGGAAAAGGTGCTCTCTCTAAGC -ACGGAAAAGGTGCTCTCTACTAGC -ACGGAAAAGGTGCTCTCTAGATGC -ACGGAAAAGGTGCTCTCTTGAAGG -ACGGAAAAGGTGCTCTCTCAATGG -ACGGAAAAGGTGCTCTCTATGAGG -ACGGAAAAGGTGCTCTCTAATGGG -ACGGAAAAGGTGCTCTCTTCCTGA -ACGGAAAAGGTGCTCTCTTAGCGA -ACGGAAAAGGTGCTCTCTCACAGA -ACGGAAAAGGTGCTCTCTGCAAGA -ACGGAAAAGGTGCTCTCTGGTTGA -ACGGAAAAGGTGCTCTCTTCCGAT -ACGGAAAAGGTGCTCTCTTGGCAT -ACGGAAAAGGTGCTCTCTCGAGAT -ACGGAAAAGGTGCTCTCTTACCAC -ACGGAAAAGGTGCTCTCTCAGAAC -ACGGAAAAGGTGCTCTCTGTCTAC -ACGGAAAAGGTGCTCTCTACGTAC -ACGGAAAAGGTGCTCTCTAGTGAC -ACGGAAAAGGTGCTCTCTCTGTAG -ACGGAAAAGGTGCTCTCTCCTAAG -ACGGAAAAGGTGCTCTCTGTTCAG -ACGGAAAAGGTGCTCTCTGCATAG -ACGGAAAAGGTGCTCTCTGACAAG -ACGGAAAAGGTGCTCTCTAAGCAG -ACGGAAAAGGTGCTCTCTCGTCAA -ACGGAAAAGGTGCTCTCTGCTGAA -ACGGAAAAGGTGCTCTCTAGTACG -ACGGAAAAGGTGCTCTCTATCCGA -ACGGAAAAGGTGCTCTCTATGGGA -ACGGAAAAGGTGCTCTCTGTGCAA -ACGGAAAAGGTGCTCTCTGAGGAA -ACGGAAAAGGTGCTCTCTCAGGTA -ACGGAAAAGGTGCTCTCTGACTCT -ACGGAAAAGGTGCTCTCTAGTCCT -ACGGAAAAGGTGCTCTCTTAAGCC -ACGGAAAAGGTGCTCTCTATAGCC -ACGGAAAAGGTGCTCTCTTAACCG -ACGGAAAAGGTGCTCTCTATGCCA -ACGGAAAAGGTGATCTGGGGAAAC -ACGGAAAAGGTGATCTGGAACACC -ACGGAAAAGGTGATCTGGATCGAG -ACGGAAAAGGTGATCTGGCTCCTT -ACGGAAAAGGTGATCTGGCCTGTT -ACGGAAAAGGTGATCTGGCGGTTT -ACGGAAAAGGTGATCTGGGTGGTT -ACGGAAAAGGTGATCTGGGCCTTT -ACGGAAAAGGTGATCTGGGGTCTT -ACGGAAAAGGTGATCTGGACGCTT -ACGGAAAAGGTGATCTGGAGCGTT -ACGGAAAAGGTGATCTGGTTCGTC -ACGGAAAAGGTGATCTGGTCTCTC -ACGGAAAAGGTGATCTGGTGGATC -ACGGAAAAGGTGATCTGGCACTTC -ACGGAAAAGGTGATCTGGGTACTC -ACGGAAAAGGTGATCTGGGATGTC -ACGGAAAAGGTGATCTGGACAGTC -ACGGAAAAGGTGATCTGGTTGCTG -ACGGAAAAGGTGATCTGGTCCATG -ACGGAAAAGGTGATCTGGTGTGTG -ACGGAAAAGGTGATCTGGCTAGTG -ACGGAAAAGGTGATCTGGCATCTG -ACGGAAAAGGTGATCTGGGAGTTG -ACGGAAAAGGTGATCTGGAGACTG -ACGGAAAAGGTGATCTGGTCGGTA -ACGGAAAAGGTGATCTGGTGCCTA -ACGGAAAAGGTGATCTGGCCACTA -ACGGAAAAGGTGATCTGGGGAGTA -ACGGAAAAGGTGATCTGGTCGTCT -ACGGAAAAGGTGATCTGGTGCACT -ACGGAAAAGGTGATCTGGCTGACT -ACGGAAAAGGTGATCTGGCAACCT -ACGGAAAAGGTGATCTGGGCTACT -ACGGAAAAGGTGATCTGGGGATCT -ACGGAAAAGGTGATCTGGAAGGCT -ACGGAAAAGGTGATCTGGTCAACC -ACGGAAAAGGTGATCTGGTGTTCC -ACGGAAAAGGTGATCTGGATTCCC -ACGGAAAAGGTGATCTGGTTCTCG -ACGGAAAAGGTGATCTGGTAGACG -ACGGAAAAGGTGATCTGGGTAACG -ACGGAAAAGGTGATCTGGACTTCG -ACGGAAAAGGTGATCTGGTACGCA -ACGGAAAAGGTGATCTGGCTTGCA -ACGGAAAAGGTGATCTGGCGAACA -ACGGAAAAGGTGATCTGGCAGTCA -ACGGAAAAGGTGATCTGGGATCCA -ACGGAAAAGGTGATCTGGACGACA -ACGGAAAAGGTGATCTGGAGCTCA -ACGGAAAAGGTGATCTGGTCACGT -ACGGAAAAGGTGATCTGGCGTAGT -ACGGAAAAGGTGATCTGGGTCAGT -ACGGAAAAGGTGATCTGGGAAGGT -ACGGAAAAGGTGATCTGGAACCGT -ACGGAAAAGGTGATCTGGTTGTGC -ACGGAAAAGGTGATCTGGCTAAGC -ACGGAAAAGGTGATCTGGACTAGC -ACGGAAAAGGTGATCTGGAGATGC -ACGGAAAAGGTGATCTGGTGAAGG -ACGGAAAAGGTGATCTGGCAATGG -ACGGAAAAGGTGATCTGGATGAGG -ACGGAAAAGGTGATCTGGAATGGG -ACGGAAAAGGTGATCTGGTCCTGA -ACGGAAAAGGTGATCTGGTAGCGA -ACGGAAAAGGTGATCTGGCACAGA -ACGGAAAAGGTGATCTGGGCAAGA -ACGGAAAAGGTGATCTGGGGTTGA -ACGGAAAAGGTGATCTGGTCCGAT -ACGGAAAAGGTGATCTGGTGGCAT -ACGGAAAAGGTGATCTGGCGAGAT -ACGGAAAAGGTGATCTGGTACCAC -ACGGAAAAGGTGATCTGGCAGAAC -ACGGAAAAGGTGATCTGGGTCTAC -ACGGAAAAGGTGATCTGGACGTAC -ACGGAAAAGGTGATCTGGAGTGAC -ACGGAAAAGGTGATCTGGCTGTAG -ACGGAAAAGGTGATCTGGCCTAAG -ACGGAAAAGGTGATCTGGGTTCAG -ACGGAAAAGGTGATCTGGGCATAG -ACGGAAAAGGTGATCTGGGACAAG -ACGGAAAAGGTGATCTGGAAGCAG -ACGGAAAAGGTGATCTGGCGTCAA -ACGGAAAAGGTGATCTGGGCTGAA -ACGGAAAAGGTGATCTGGAGTACG -ACGGAAAAGGTGATCTGGATCCGA -ACGGAAAAGGTGATCTGGATGGGA -ACGGAAAAGGTGATCTGGGTGCAA -ACGGAAAAGGTGATCTGGGAGGAA -ACGGAAAAGGTGATCTGGCAGGTA -ACGGAAAAGGTGATCTGGGACTCT -ACGGAAAAGGTGATCTGGAGTCCT -ACGGAAAAGGTGATCTGGTAAGCC -ACGGAAAAGGTGATCTGGATAGCC -ACGGAAAAGGTGATCTGGTAACCG -ACGGAAAAGGTGATCTGGATGCCA -ACGGAAAAGGTGTTCCACGGAAAC -ACGGAAAAGGTGTTCCACAACACC -ACGGAAAAGGTGTTCCACATCGAG -ACGGAAAAGGTGTTCCACCTCCTT -ACGGAAAAGGTGTTCCACCCTGTT -ACGGAAAAGGTGTTCCACCGGTTT -ACGGAAAAGGTGTTCCACGTGGTT -ACGGAAAAGGTGTTCCACGCCTTT -ACGGAAAAGGTGTTCCACGGTCTT -ACGGAAAAGGTGTTCCACACGCTT -ACGGAAAAGGTGTTCCACAGCGTT -ACGGAAAAGGTGTTCCACTTCGTC -ACGGAAAAGGTGTTCCACTCTCTC -ACGGAAAAGGTGTTCCACTGGATC -ACGGAAAAGGTGTTCCACCACTTC -ACGGAAAAGGTGTTCCACGTACTC -ACGGAAAAGGTGTTCCACGATGTC -ACGGAAAAGGTGTTCCACACAGTC -ACGGAAAAGGTGTTCCACTTGCTG -ACGGAAAAGGTGTTCCACTCCATG -ACGGAAAAGGTGTTCCACTGTGTG -ACGGAAAAGGTGTTCCACCTAGTG -ACGGAAAAGGTGTTCCACCATCTG -ACGGAAAAGGTGTTCCACGAGTTG -ACGGAAAAGGTGTTCCACAGACTG -ACGGAAAAGGTGTTCCACTCGGTA -ACGGAAAAGGTGTTCCACTGCCTA -ACGGAAAAGGTGTTCCACCCACTA -ACGGAAAAGGTGTTCCACGGAGTA -ACGGAAAAGGTGTTCCACTCGTCT -ACGGAAAAGGTGTTCCACTGCACT -ACGGAAAAGGTGTTCCACCTGACT -ACGGAAAAGGTGTTCCACCAACCT -ACGGAAAAGGTGTTCCACGCTACT -ACGGAAAAGGTGTTCCACGGATCT -ACGGAAAAGGTGTTCCACAAGGCT -ACGGAAAAGGTGTTCCACTCAACC -ACGGAAAAGGTGTTCCACTGTTCC -ACGGAAAAGGTGTTCCACATTCCC -ACGGAAAAGGTGTTCCACTTCTCG -ACGGAAAAGGTGTTCCACTAGACG -ACGGAAAAGGTGTTCCACGTAACG -ACGGAAAAGGTGTTCCACACTTCG -ACGGAAAAGGTGTTCCACTACGCA -ACGGAAAAGGTGTTCCACCTTGCA -ACGGAAAAGGTGTTCCACCGAACA -ACGGAAAAGGTGTTCCACCAGTCA -ACGGAAAAGGTGTTCCACGATCCA -ACGGAAAAGGTGTTCCACACGACA -ACGGAAAAGGTGTTCCACAGCTCA -ACGGAAAAGGTGTTCCACTCACGT -ACGGAAAAGGTGTTCCACCGTAGT -ACGGAAAAGGTGTTCCACGTCAGT -ACGGAAAAGGTGTTCCACGAAGGT -ACGGAAAAGGTGTTCCACAACCGT -ACGGAAAAGGTGTTCCACTTGTGC -ACGGAAAAGGTGTTCCACCTAAGC -ACGGAAAAGGTGTTCCACACTAGC -ACGGAAAAGGTGTTCCACAGATGC -ACGGAAAAGGTGTTCCACTGAAGG -ACGGAAAAGGTGTTCCACCAATGG -ACGGAAAAGGTGTTCCACATGAGG -ACGGAAAAGGTGTTCCACAATGGG -ACGGAAAAGGTGTTCCACTCCTGA -ACGGAAAAGGTGTTCCACTAGCGA -ACGGAAAAGGTGTTCCACCACAGA -ACGGAAAAGGTGTTCCACGCAAGA -ACGGAAAAGGTGTTCCACGGTTGA -ACGGAAAAGGTGTTCCACTCCGAT -ACGGAAAAGGTGTTCCACTGGCAT -ACGGAAAAGGTGTTCCACCGAGAT -ACGGAAAAGGTGTTCCACTACCAC -ACGGAAAAGGTGTTCCACCAGAAC -ACGGAAAAGGTGTTCCACGTCTAC -ACGGAAAAGGTGTTCCACACGTAC -ACGGAAAAGGTGTTCCACAGTGAC -ACGGAAAAGGTGTTCCACCTGTAG -ACGGAAAAGGTGTTCCACCCTAAG -ACGGAAAAGGTGTTCCACGTTCAG -ACGGAAAAGGTGTTCCACGCATAG -ACGGAAAAGGTGTTCCACGACAAG -ACGGAAAAGGTGTTCCACAAGCAG -ACGGAAAAGGTGTTCCACCGTCAA -ACGGAAAAGGTGTTCCACGCTGAA -ACGGAAAAGGTGTTCCACAGTACG -ACGGAAAAGGTGTTCCACATCCGA -ACGGAAAAGGTGTTCCACATGGGA -ACGGAAAAGGTGTTCCACGTGCAA -ACGGAAAAGGTGTTCCACGAGGAA -ACGGAAAAGGTGTTCCACCAGGTA -ACGGAAAAGGTGTTCCACGACTCT -ACGGAAAAGGTGTTCCACAGTCCT -ACGGAAAAGGTGTTCCACTAAGCC -ACGGAAAAGGTGTTCCACATAGCC -ACGGAAAAGGTGTTCCACTAACCG -ACGGAAAAGGTGTTCCACATGCCA -ACGGAAAAGGTGCTCGTAGGAAAC -ACGGAAAAGGTGCTCGTAAACACC -ACGGAAAAGGTGCTCGTAATCGAG -ACGGAAAAGGTGCTCGTACTCCTT -ACGGAAAAGGTGCTCGTACCTGTT -ACGGAAAAGGTGCTCGTACGGTTT -ACGGAAAAGGTGCTCGTAGTGGTT -ACGGAAAAGGTGCTCGTAGCCTTT -ACGGAAAAGGTGCTCGTAGGTCTT -ACGGAAAAGGTGCTCGTAACGCTT -ACGGAAAAGGTGCTCGTAAGCGTT -ACGGAAAAGGTGCTCGTATTCGTC -ACGGAAAAGGTGCTCGTATCTCTC -ACGGAAAAGGTGCTCGTATGGATC -ACGGAAAAGGTGCTCGTACACTTC -ACGGAAAAGGTGCTCGTAGTACTC -ACGGAAAAGGTGCTCGTAGATGTC -ACGGAAAAGGTGCTCGTAACAGTC -ACGGAAAAGGTGCTCGTATTGCTG -ACGGAAAAGGTGCTCGTATCCATG -ACGGAAAAGGTGCTCGTATGTGTG -ACGGAAAAGGTGCTCGTACTAGTG -ACGGAAAAGGTGCTCGTACATCTG -ACGGAAAAGGTGCTCGTAGAGTTG -ACGGAAAAGGTGCTCGTAAGACTG -ACGGAAAAGGTGCTCGTATCGGTA -ACGGAAAAGGTGCTCGTATGCCTA -ACGGAAAAGGTGCTCGTACCACTA -ACGGAAAAGGTGCTCGTAGGAGTA -ACGGAAAAGGTGCTCGTATCGTCT -ACGGAAAAGGTGCTCGTATGCACT -ACGGAAAAGGTGCTCGTACTGACT -ACGGAAAAGGTGCTCGTACAACCT -ACGGAAAAGGTGCTCGTAGCTACT -ACGGAAAAGGTGCTCGTAGGATCT -ACGGAAAAGGTGCTCGTAAAGGCT -ACGGAAAAGGTGCTCGTATCAACC -ACGGAAAAGGTGCTCGTATGTTCC -ACGGAAAAGGTGCTCGTAATTCCC -ACGGAAAAGGTGCTCGTATTCTCG -ACGGAAAAGGTGCTCGTATAGACG -ACGGAAAAGGTGCTCGTAGTAACG -ACGGAAAAGGTGCTCGTAACTTCG -ACGGAAAAGGTGCTCGTATACGCA -ACGGAAAAGGTGCTCGTACTTGCA -ACGGAAAAGGTGCTCGTACGAACA -ACGGAAAAGGTGCTCGTACAGTCA -ACGGAAAAGGTGCTCGTAGATCCA -ACGGAAAAGGTGCTCGTAACGACA -ACGGAAAAGGTGCTCGTAAGCTCA -ACGGAAAAGGTGCTCGTATCACGT -ACGGAAAAGGTGCTCGTACGTAGT -ACGGAAAAGGTGCTCGTAGTCAGT -ACGGAAAAGGTGCTCGTAGAAGGT -ACGGAAAAGGTGCTCGTAAACCGT -ACGGAAAAGGTGCTCGTATTGTGC -ACGGAAAAGGTGCTCGTACTAAGC -ACGGAAAAGGTGCTCGTAACTAGC -ACGGAAAAGGTGCTCGTAAGATGC -ACGGAAAAGGTGCTCGTATGAAGG -ACGGAAAAGGTGCTCGTACAATGG -ACGGAAAAGGTGCTCGTAATGAGG -ACGGAAAAGGTGCTCGTAAATGGG -ACGGAAAAGGTGCTCGTATCCTGA -ACGGAAAAGGTGCTCGTATAGCGA -ACGGAAAAGGTGCTCGTACACAGA -ACGGAAAAGGTGCTCGTAGCAAGA -ACGGAAAAGGTGCTCGTAGGTTGA -ACGGAAAAGGTGCTCGTATCCGAT -ACGGAAAAGGTGCTCGTATGGCAT -ACGGAAAAGGTGCTCGTACGAGAT -ACGGAAAAGGTGCTCGTATACCAC -ACGGAAAAGGTGCTCGTACAGAAC -ACGGAAAAGGTGCTCGTAGTCTAC -ACGGAAAAGGTGCTCGTAACGTAC -ACGGAAAAGGTGCTCGTAAGTGAC -ACGGAAAAGGTGCTCGTACTGTAG -ACGGAAAAGGTGCTCGTACCTAAG -ACGGAAAAGGTGCTCGTAGTTCAG -ACGGAAAAGGTGCTCGTAGCATAG -ACGGAAAAGGTGCTCGTAGACAAG -ACGGAAAAGGTGCTCGTAAAGCAG -ACGGAAAAGGTGCTCGTACGTCAA -ACGGAAAAGGTGCTCGTAGCTGAA -ACGGAAAAGGTGCTCGTAAGTACG -ACGGAAAAGGTGCTCGTAATCCGA -ACGGAAAAGGTGCTCGTAATGGGA -ACGGAAAAGGTGCTCGTAGTGCAA -ACGGAAAAGGTGCTCGTAGAGGAA -ACGGAAAAGGTGCTCGTACAGGTA -ACGGAAAAGGTGCTCGTAGACTCT -ACGGAAAAGGTGCTCGTAAGTCCT -ACGGAAAAGGTGCTCGTATAAGCC -ACGGAAAAGGTGCTCGTAATAGCC -ACGGAAAAGGTGCTCGTATAACCG -ACGGAAAAGGTGCTCGTAATGCCA -ACGGAAAAGGTGGTCGATGGAAAC -ACGGAAAAGGTGGTCGATAACACC -ACGGAAAAGGTGGTCGATATCGAG -ACGGAAAAGGTGGTCGATCTCCTT -ACGGAAAAGGTGGTCGATCCTGTT -ACGGAAAAGGTGGTCGATCGGTTT -ACGGAAAAGGTGGTCGATGTGGTT -ACGGAAAAGGTGGTCGATGCCTTT -ACGGAAAAGGTGGTCGATGGTCTT -ACGGAAAAGGTGGTCGATACGCTT -ACGGAAAAGGTGGTCGATAGCGTT -ACGGAAAAGGTGGTCGATTTCGTC -ACGGAAAAGGTGGTCGATTCTCTC -ACGGAAAAGGTGGTCGATTGGATC -ACGGAAAAGGTGGTCGATCACTTC -ACGGAAAAGGTGGTCGATGTACTC -ACGGAAAAGGTGGTCGATGATGTC -ACGGAAAAGGTGGTCGATACAGTC -ACGGAAAAGGTGGTCGATTTGCTG -ACGGAAAAGGTGGTCGATTCCATG -ACGGAAAAGGTGGTCGATTGTGTG -ACGGAAAAGGTGGTCGATCTAGTG -ACGGAAAAGGTGGTCGATCATCTG -ACGGAAAAGGTGGTCGATGAGTTG -ACGGAAAAGGTGGTCGATAGACTG -ACGGAAAAGGTGGTCGATTCGGTA -ACGGAAAAGGTGGTCGATTGCCTA -ACGGAAAAGGTGGTCGATCCACTA -ACGGAAAAGGTGGTCGATGGAGTA -ACGGAAAAGGTGGTCGATTCGTCT -ACGGAAAAGGTGGTCGATTGCACT -ACGGAAAAGGTGGTCGATCTGACT -ACGGAAAAGGTGGTCGATCAACCT -ACGGAAAAGGTGGTCGATGCTACT -ACGGAAAAGGTGGTCGATGGATCT -ACGGAAAAGGTGGTCGATAAGGCT -ACGGAAAAGGTGGTCGATTCAACC -ACGGAAAAGGTGGTCGATTGTTCC -ACGGAAAAGGTGGTCGATATTCCC -ACGGAAAAGGTGGTCGATTTCTCG -ACGGAAAAGGTGGTCGATTAGACG -ACGGAAAAGGTGGTCGATGTAACG -ACGGAAAAGGTGGTCGATACTTCG -ACGGAAAAGGTGGTCGATTACGCA -ACGGAAAAGGTGGTCGATCTTGCA -ACGGAAAAGGTGGTCGATCGAACA -ACGGAAAAGGTGGTCGATCAGTCA -ACGGAAAAGGTGGTCGATGATCCA -ACGGAAAAGGTGGTCGATACGACA -ACGGAAAAGGTGGTCGATAGCTCA -ACGGAAAAGGTGGTCGATTCACGT -ACGGAAAAGGTGGTCGATCGTAGT -ACGGAAAAGGTGGTCGATGTCAGT -ACGGAAAAGGTGGTCGATGAAGGT -ACGGAAAAGGTGGTCGATAACCGT -ACGGAAAAGGTGGTCGATTTGTGC -ACGGAAAAGGTGGTCGATCTAAGC -ACGGAAAAGGTGGTCGATACTAGC -ACGGAAAAGGTGGTCGATAGATGC -ACGGAAAAGGTGGTCGATTGAAGG -ACGGAAAAGGTGGTCGATCAATGG -ACGGAAAAGGTGGTCGATATGAGG -ACGGAAAAGGTGGTCGATAATGGG -ACGGAAAAGGTGGTCGATTCCTGA -ACGGAAAAGGTGGTCGATTAGCGA -ACGGAAAAGGTGGTCGATCACAGA -ACGGAAAAGGTGGTCGATGCAAGA -ACGGAAAAGGTGGTCGATGGTTGA -ACGGAAAAGGTGGTCGATTCCGAT -ACGGAAAAGGTGGTCGATTGGCAT -ACGGAAAAGGTGGTCGATCGAGAT -ACGGAAAAGGTGGTCGATTACCAC -ACGGAAAAGGTGGTCGATCAGAAC -ACGGAAAAGGTGGTCGATGTCTAC -ACGGAAAAGGTGGTCGATACGTAC -ACGGAAAAGGTGGTCGATAGTGAC -ACGGAAAAGGTGGTCGATCTGTAG -ACGGAAAAGGTGGTCGATCCTAAG -ACGGAAAAGGTGGTCGATGTTCAG -ACGGAAAAGGTGGTCGATGCATAG -ACGGAAAAGGTGGTCGATGACAAG -ACGGAAAAGGTGGTCGATAAGCAG -ACGGAAAAGGTGGTCGATCGTCAA -ACGGAAAAGGTGGTCGATGCTGAA -ACGGAAAAGGTGGTCGATAGTACG -ACGGAAAAGGTGGTCGATATCCGA -ACGGAAAAGGTGGTCGATATGGGA -ACGGAAAAGGTGGTCGATGTGCAA -ACGGAAAAGGTGGTCGATGAGGAA -ACGGAAAAGGTGGTCGATCAGGTA -ACGGAAAAGGTGGTCGATGACTCT -ACGGAAAAGGTGGTCGATAGTCCT -ACGGAAAAGGTGGTCGATTAAGCC -ACGGAAAAGGTGGTCGATATAGCC -ACGGAAAAGGTGGTCGATTAACCG -ACGGAAAAGGTGGTCGATATGCCA -ACGGAAAAGGTGGTCACAGGAAAC -ACGGAAAAGGTGGTCACAAACACC -ACGGAAAAGGTGGTCACAATCGAG -ACGGAAAAGGTGGTCACACTCCTT -ACGGAAAAGGTGGTCACACCTGTT -ACGGAAAAGGTGGTCACACGGTTT -ACGGAAAAGGTGGTCACAGTGGTT -ACGGAAAAGGTGGTCACAGCCTTT -ACGGAAAAGGTGGTCACAGGTCTT -ACGGAAAAGGTGGTCACAACGCTT -ACGGAAAAGGTGGTCACAAGCGTT -ACGGAAAAGGTGGTCACATTCGTC -ACGGAAAAGGTGGTCACATCTCTC -ACGGAAAAGGTGGTCACATGGATC -ACGGAAAAGGTGGTCACACACTTC -ACGGAAAAGGTGGTCACAGTACTC -ACGGAAAAGGTGGTCACAGATGTC -ACGGAAAAGGTGGTCACAACAGTC -ACGGAAAAGGTGGTCACATTGCTG -ACGGAAAAGGTGGTCACATCCATG -ACGGAAAAGGTGGTCACATGTGTG -ACGGAAAAGGTGGTCACACTAGTG -ACGGAAAAGGTGGTCACACATCTG -ACGGAAAAGGTGGTCACAGAGTTG -ACGGAAAAGGTGGTCACAAGACTG -ACGGAAAAGGTGGTCACATCGGTA -ACGGAAAAGGTGGTCACATGCCTA -ACGGAAAAGGTGGTCACACCACTA -ACGGAAAAGGTGGTCACAGGAGTA -ACGGAAAAGGTGGTCACATCGTCT -ACGGAAAAGGTGGTCACATGCACT -ACGGAAAAGGTGGTCACACTGACT -ACGGAAAAGGTGGTCACACAACCT -ACGGAAAAGGTGGTCACAGCTACT -ACGGAAAAGGTGGTCACAGGATCT -ACGGAAAAGGTGGTCACAAAGGCT -ACGGAAAAGGTGGTCACATCAACC -ACGGAAAAGGTGGTCACATGTTCC -ACGGAAAAGGTGGTCACAATTCCC -ACGGAAAAGGTGGTCACATTCTCG -ACGGAAAAGGTGGTCACATAGACG -ACGGAAAAGGTGGTCACAGTAACG -ACGGAAAAGGTGGTCACAACTTCG -ACGGAAAAGGTGGTCACATACGCA -ACGGAAAAGGTGGTCACACTTGCA -ACGGAAAAGGTGGTCACACGAACA -ACGGAAAAGGTGGTCACACAGTCA -ACGGAAAAGGTGGTCACAGATCCA -ACGGAAAAGGTGGTCACAACGACA -ACGGAAAAGGTGGTCACAAGCTCA -ACGGAAAAGGTGGTCACATCACGT -ACGGAAAAGGTGGTCACACGTAGT -ACGGAAAAGGTGGTCACAGTCAGT -ACGGAAAAGGTGGTCACAGAAGGT -ACGGAAAAGGTGGTCACAAACCGT -ACGGAAAAGGTGGTCACATTGTGC -ACGGAAAAGGTGGTCACACTAAGC -ACGGAAAAGGTGGTCACAACTAGC -ACGGAAAAGGTGGTCACAAGATGC -ACGGAAAAGGTGGTCACATGAAGG -ACGGAAAAGGTGGTCACACAATGG -ACGGAAAAGGTGGTCACAATGAGG -ACGGAAAAGGTGGTCACAAATGGG -ACGGAAAAGGTGGTCACATCCTGA -ACGGAAAAGGTGGTCACATAGCGA -ACGGAAAAGGTGGTCACACACAGA -ACGGAAAAGGTGGTCACAGCAAGA -ACGGAAAAGGTGGTCACAGGTTGA -ACGGAAAAGGTGGTCACATCCGAT -ACGGAAAAGGTGGTCACATGGCAT -ACGGAAAAGGTGGTCACACGAGAT -ACGGAAAAGGTGGTCACATACCAC -ACGGAAAAGGTGGTCACACAGAAC -ACGGAAAAGGTGGTCACAGTCTAC -ACGGAAAAGGTGGTCACAACGTAC -ACGGAAAAGGTGGTCACAAGTGAC -ACGGAAAAGGTGGTCACACTGTAG -ACGGAAAAGGTGGTCACACCTAAG -ACGGAAAAGGTGGTCACAGTTCAG -ACGGAAAAGGTGGTCACAGCATAG -ACGGAAAAGGTGGTCACAGACAAG -ACGGAAAAGGTGGTCACAAAGCAG -ACGGAAAAGGTGGTCACACGTCAA -ACGGAAAAGGTGGTCACAGCTGAA -ACGGAAAAGGTGGTCACAAGTACG -ACGGAAAAGGTGGTCACAATCCGA -ACGGAAAAGGTGGTCACAATGGGA -ACGGAAAAGGTGGTCACAGTGCAA -ACGGAAAAGGTGGTCACAGAGGAA -ACGGAAAAGGTGGTCACACAGGTA -ACGGAAAAGGTGGTCACAGACTCT -ACGGAAAAGGTGGTCACAAGTCCT -ACGGAAAAGGTGGTCACATAAGCC -ACGGAAAAGGTGGTCACAATAGCC -ACGGAAAAGGTGGTCACATAACCG -ACGGAAAAGGTGGTCACAATGCCA -ACGGAAAAGGTGCTGTTGGGAAAC -ACGGAAAAGGTGCTGTTGAACACC -ACGGAAAAGGTGCTGTTGATCGAG -ACGGAAAAGGTGCTGTTGCTCCTT -ACGGAAAAGGTGCTGTTGCCTGTT -ACGGAAAAGGTGCTGTTGCGGTTT -ACGGAAAAGGTGCTGTTGGTGGTT -ACGGAAAAGGTGCTGTTGGCCTTT -ACGGAAAAGGTGCTGTTGGGTCTT -ACGGAAAAGGTGCTGTTGACGCTT -ACGGAAAAGGTGCTGTTGAGCGTT -ACGGAAAAGGTGCTGTTGTTCGTC -ACGGAAAAGGTGCTGTTGTCTCTC -ACGGAAAAGGTGCTGTTGTGGATC -ACGGAAAAGGTGCTGTTGCACTTC -ACGGAAAAGGTGCTGTTGGTACTC -ACGGAAAAGGTGCTGTTGGATGTC -ACGGAAAAGGTGCTGTTGACAGTC -ACGGAAAAGGTGCTGTTGTTGCTG -ACGGAAAAGGTGCTGTTGTCCATG -ACGGAAAAGGTGCTGTTGTGTGTG -ACGGAAAAGGTGCTGTTGCTAGTG -ACGGAAAAGGTGCTGTTGCATCTG -ACGGAAAAGGTGCTGTTGGAGTTG -ACGGAAAAGGTGCTGTTGAGACTG -ACGGAAAAGGTGCTGTTGTCGGTA -ACGGAAAAGGTGCTGTTGTGCCTA -ACGGAAAAGGTGCTGTTGCCACTA -ACGGAAAAGGTGCTGTTGGGAGTA -ACGGAAAAGGTGCTGTTGTCGTCT -ACGGAAAAGGTGCTGTTGTGCACT -ACGGAAAAGGTGCTGTTGCTGACT -ACGGAAAAGGTGCTGTTGCAACCT -ACGGAAAAGGTGCTGTTGGCTACT -ACGGAAAAGGTGCTGTTGGGATCT -ACGGAAAAGGTGCTGTTGAAGGCT -ACGGAAAAGGTGCTGTTGTCAACC -ACGGAAAAGGTGCTGTTGTGTTCC -ACGGAAAAGGTGCTGTTGATTCCC -ACGGAAAAGGTGCTGTTGTTCTCG -ACGGAAAAGGTGCTGTTGTAGACG -ACGGAAAAGGTGCTGTTGGTAACG -ACGGAAAAGGTGCTGTTGACTTCG -ACGGAAAAGGTGCTGTTGTACGCA -ACGGAAAAGGTGCTGTTGCTTGCA -ACGGAAAAGGTGCTGTTGCGAACA -ACGGAAAAGGTGCTGTTGCAGTCA -ACGGAAAAGGTGCTGTTGGATCCA -ACGGAAAAGGTGCTGTTGACGACA -ACGGAAAAGGTGCTGTTGAGCTCA -ACGGAAAAGGTGCTGTTGTCACGT -ACGGAAAAGGTGCTGTTGCGTAGT -ACGGAAAAGGTGCTGTTGGTCAGT -ACGGAAAAGGTGCTGTTGGAAGGT -ACGGAAAAGGTGCTGTTGAACCGT -ACGGAAAAGGTGCTGTTGTTGTGC -ACGGAAAAGGTGCTGTTGCTAAGC -ACGGAAAAGGTGCTGTTGACTAGC -ACGGAAAAGGTGCTGTTGAGATGC -ACGGAAAAGGTGCTGTTGTGAAGG -ACGGAAAAGGTGCTGTTGCAATGG -ACGGAAAAGGTGCTGTTGATGAGG -ACGGAAAAGGTGCTGTTGAATGGG -ACGGAAAAGGTGCTGTTGTCCTGA -ACGGAAAAGGTGCTGTTGTAGCGA -ACGGAAAAGGTGCTGTTGCACAGA -ACGGAAAAGGTGCTGTTGGCAAGA -ACGGAAAAGGTGCTGTTGGGTTGA -ACGGAAAAGGTGCTGTTGTCCGAT -ACGGAAAAGGTGCTGTTGTGGCAT -ACGGAAAAGGTGCTGTTGCGAGAT -ACGGAAAAGGTGCTGTTGTACCAC -ACGGAAAAGGTGCTGTTGCAGAAC -ACGGAAAAGGTGCTGTTGGTCTAC -ACGGAAAAGGTGCTGTTGACGTAC -ACGGAAAAGGTGCTGTTGAGTGAC -ACGGAAAAGGTGCTGTTGCTGTAG -ACGGAAAAGGTGCTGTTGCCTAAG -ACGGAAAAGGTGCTGTTGGTTCAG -ACGGAAAAGGTGCTGTTGGCATAG -ACGGAAAAGGTGCTGTTGGACAAG -ACGGAAAAGGTGCTGTTGAAGCAG -ACGGAAAAGGTGCTGTTGCGTCAA -ACGGAAAAGGTGCTGTTGGCTGAA -ACGGAAAAGGTGCTGTTGAGTACG -ACGGAAAAGGTGCTGTTGATCCGA -ACGGAAAAGGTGCTGTTGATGGGA -ACGGAAAAGGTGCTGTTGGTGCAA -ACGGAAAAGGTGCTGTTGGAGGAA -ACGGAAAAGGTGCTGTTGCAGGTA -ACGGAAAAGGTGCTGTTGGACTCT -ACGGAAAAGGTGCTGTTGAGTCCT -ACGGAAAAGGTGCTGTTGTAAGCC -ACGGAAAAGGTGCTGTTGATAGCC -ACGGAAAAGGTGCTGTTGTAACCG -ACGGAAAAGGTGCTGTTGATGCCA -ACGGAAAAGGTGATGTCCGGAAAC -ACGGAAAAGGTGATGTCCAACACC -ACGGAAAAGGTGATGTCCATCGAG -ACGGAAAAGGTGATGTCCCTCCTT -ACGGAAAAGGTGATGTCCCCTGTT -ACGGAAAAGGTGATGTCCCGGTTT -ACGGAAAAGGTGATGTCCGTGGTT -ACGGAAAAGGTGATGTCCGCCTTT -ACGGAAAAGGTGATGTCCGGTCTT -ACGGAAAAGGTGATGTCCACGCTT -ACGGAAAAGGTGATGTCCAGCGTT -ACGGAAAAGGTGATGTCCTTCGTC -ACGGAAAAGGTGATGTCCTCTCTC -ACGGAAAAGGTGATGTCCTGGATC -ACGGAAAAGGTGATGTCCCACTTC -ACGGAAAAGGTGATGTCCGTACTC -ACGGAAAAGGTGATGTCCGATGTC -ACGGAAAAGGTGATGTCCACAGTC -ACGGAAAAGGTGATGTCCTTGCTG -ACGGAAAAGGTGATGTCCTCCATG -ACGGAAAAGGTGATGTCCTGTGTG -ACGGAAAAGGTGATGTCCCTAGTG -ACGGAAAAGGTGATGTCCCATCTG -ACGGAAAAGGTGATGTCCGAGTTG -ACGGAAAAGGTGATGTCCAGACTG -ACGGAAAAGGTGATGTCCTCGGTA -ACGGAAAAGGTGATGTCCTGCCTA -ACGGAAAAGGTGATGTCCCCACTA -ACGGAAAAGGTGATGTCCGGAGTA -ACGGAAAAGGTGATGTCCTCGTCT -ACGGAAAAGGTGATGTCCTGCACT -ACGGAAAAGGTGATGTCCCTGACT -ACGGAAAAGGTGATGTCCCAACCT -ACGGAAAAGGTGATGTCCGCTACT -ACGGAAAAGGTGATGTCCGGATCT -ACGGAAAAGGTGATGTCCAAGGCT -ACGGAAAAGGTGATGTCCTCAACC -ACGGAAAAGGTGATGTCCTGTTCC -ACGGAAAAGGTGATGTCCATTCCC -ACGGAAAAGGTGATGTCCTTCTCG -ACGGAAAAGGTGATGTCCTAGACG -ACGGAAAAGGTGATGTCCGTAACG -ACGGAAAAGGTGATGTCCACTTCG -ACGGAAAAGGTGATGTCCTACGCA -ACGGAAAAGGTGATGTCCCTTGCA -ACGGAAAAGGTGATGTCCCGAACA -ACGGAAAAGGTGATGTCCCAGTCA -ACGGAAAAGGTGATGTCCGATCCA -ACGGAAAAGGTGATGTCCACGACA -ACGGAAAAGGTGATGTCCAGCTCA -ACGGAAAAGGTGATGTCCTCACGT -ACGGAAAAGGTGATGTCCCGTAGT -ACGGAAAAGGTGATGTCCGTCAGT -ACGGAAAAGGTGATGTCCGAAGGT -ACGGAAAAGGTGATGTCCAACCGT -ACGGAAAAGGTGATGTCCTTGTGC -ACGGAAAAGGTGATGTCCCTAAGC -ACGGAAAAGGTGATGTCCACTAGC -ACGGAAAAGGTGATGTCCAGATGC -ACGGAAAAGGTGATGTCCTGAAGG -ACGGAAAAGGTGATGTCCCAATGG -ACGGAAAAGGTGATGTCCATGAGG -ACGGAAAAGGTGATGTCCAATGGG -ACGGAAAAGGTGATGTCCTCCTGA -ACGGAAAAGGTGATGTCCTAGCGA -ACGGAAAAGGTGATGTCCCACAGA -ACGGAAAAGGTGATGTCCGCAAGA -ACGGAAAAGGTGATGTCCGGTTGA -ACGGAAAAGGTGATGTCCTCCGAT -ACGGAAAAGGTGATGTCCTGGCAT -ACGGAAAAGGTGATGTCCCGAGAT -ACGGAAAAGGTGATGTCCTACCAC -ACGGAAAAGGTGATGTCCCAGAAC -ACGGAAAAGGTGATGTCCGTCTAC -ACGGAAAAGGTGATGTCCACGTAC -ACGGAAAAGGTGATGTCCAGTGAC -ACGGAAAAGGTGATGTCCCTGTAG -ACGGAAAAGGTGATGTCCCCTAAG -ACGGAAAAGGTGATGTCCGTTCAG -ACGGAAAAGGTGATGTCCGCATAG -ACGGAAAAGGTGATGTCCGACAAG -ACGGAAAAGGTGATGTCCAAGCAG -ACGGAAAAGGTGATGTCCCGTCAA -ACGGAAAAGGTGATGTCCGCTGAA -ACGGAAAAGGTGATGTCCAGTACG -ACGGAAAAGGTGATGTCCATCCGA -ACGGAAAAGGTGATGTCCATGGGA -ACGGAAAAGGTGATGTCCGTGCAA -ACGGAAAAGGTGATGTCCGAGGAA -ACGGAAAAGGTGATGTCCCAGGTA -ACGGAAAAGGTGATGTCCGACTCT -ACGGAAAAGGTGATGTCCAGTCCT -ACGGAAAAGGTGATGTCCTAAGCC -ACGGAAAAGGTGATGTCCATAGCC -ACGGAAAAGGTGATGTCCTAACCG -ACGGAAAAGGTGATGTCCATGCCA -ACGGAAAAGGTGGTGTGTGGAAAC -ACGGAAAAGGTGGTGTGTAACACC -ACGGAAAAGGTGGTGTGTATCGAG -ACGGAAAAGGTGGTGTGTCTCCTT -ACGGAAAAGGTGGTGTGTCCTGTT -ACGGAAAAGGTGGTGTGTCGGTTT -ACGGAAAAGGTGGTGTGTGTGGTT -ACGGAAAAGGTGGTGTGTGCCTTT -ACGGAAAAGGTGGTGTGTGGTCTT -ACGGAAAAGGTGGTGTGTACGCTT -ACGGAAAAGGTGGTGTGTAGCGTT -ACGGAAAAGGTGGTGTGTTTCGTC -ACGGAAAAGGTGGTGTGTTCTCTC -ACGGAAAAGGTGGTGTGTTGGATC -ACGGAAAAGGTGGTGTGTCACTTC -ACGGAAAAGGTGGTGTGTGTACTC -ACGGAAAAGGTGGTGTGTGATGTC -ACGGAAAAGGTGGTGTGTACAGTC -ACGGAAAAGGTGGTGTGTTTGCTG -ACGGAAAAGGTGGTGTGTTCCATG -ACGGAAAAGGTGGTGTGTTGTGTG -ACGGAAAAGGTGGTGTGTCTAGTG -ACGGAAAAGGTGGTGTGTCATCTG -ACGGAAAAGGTGGTGTGTGAGTTG -ACGGAAAAGGTGGTGTGTAGACTG -ACGGAAAAGGTGGTGTGTTCGGTA -ACGGAAAAGGTGGTGTGTTGCCTA -ACGGAAAAGGTGGTGTGTCCACTA -ACGGAAAAGGTGGTGTGTGGAGTA -ACGGAAAAGGTGGTGTGTTCGTCT -ACGGAAAAGGTGGTGTGTTGCACT -ACGGAAAAGGTGGTGTGTCTGACT -ACGGAAAAGGTGGTGTGTCAACCT -ACGGAAAAGGTGGTGTGTGCTACT -ACGGAAAAGGTGGTGTGTGGATCT -ACGGAAAAGGTGGTGTGTAAGGCT -ACGGAAAAGGTGGTGTGTTCAACC -ACGGAAAAGGTGGTGTGTTGTTCC -ACGGAAAAGGTGGTGTGTATTCCC -ACGGAAAAGGTGGTGTGTTTCTCG -ACGGAAAAGGTGGTGTGTTAGACG -ACGGAAAAGGTGGTGTGTGTAACG -ACGGAAAAGGTGGTGTGTACTTCG -ACGGAAAAGGTGGTGTGTTACGCA -ACGGAAAAGGTGGTGTGTCTTGCA -ACGGAAAAGGTGGTGTGTCGAACA -ACGGAAAAGGTGGTGTGTCAGTCA -ACGGAAAAGGTGGTGTGTGATCCA -ACGGAAAAGGTGGTGTGTACGACA -ACGGAAAAGGTGGTGTGTAGCTCA -ACGGAAAAGGTGGTGTGTTCACGT -ACGGAAAAGGTGGTGTGTCGTAGT -ACGGAAAAGGTGGTGTGTGTCAGT -ACGGAAAAGGTGGTGTGTGAAGGT -ACGGAAAAGGTGGTGTGTAACCGT -ACGGAAAAGGTGGTGTGTTTGTGC -ACGGAAAAGGTGGTGTGTCTAAGC -ACGGAAAAGGTGGTGTGTACTAGC -ACGGAAAAGGTGGTGTGTAGATGC -ACGGAAAAGGTGGTGTGTTGAAGG -ACGGAAAAGGTGGTGTGTCAATGG -ACGGAAAAGGTGGTGTGTATGAGG -ACGGAAAAGGTGGTGTGTAATGGG -ACGGAAAAGGTGGTGTGTTCCTGA -ACGGAAAAGGTGGTGTGTTAGCGA -ACGGAAAAGGTGGTGTGTCACAGA -ACGGAAAAGGTGGTGTGTGCAAGA -ACGGAAAAGGTGGTGTGTGGTTGA -ACGGAAAAGGTGGTGTGTTCCGAT -ACGGAAAAGGTGGTGTGTTGGCAT -ACGGAAAAGGTGGTGTGTCGAGAT -ACGGAAAAGGTGGTGTGTTACCAC -ACGGAAAAGGTGGTGTGTCAGAAC -ACGGAAAAGGTGGTGTGTGTCTAC -ACGGAAAAGGTGGTGTGTACGTAC -ACGGAAAAGGTGGTGTGTAGTGAC -ACGGAAAAGGTGGTGTGTCTGTAG -ACGGAAAAGGTGGTGTGTCCTAAG -ACGGAAAAGGTGGTGTGTGTTCAG -ACGGAAAAGGTGGTGTGTGCATAG -ACGGAAAAGGTGGTGTGTGACAAG -ACGGAAAAGGTGGTGTGTAAGCAG -ACGGAAAAGGTGGTGTGTCGTCAA -ACGGAAAAGGTGGTGTGTGCTGAA -ACGGAAAAGGTGGTGTGTAGTACG -ACGGAAAAGGTGGTGTGTATCCGA -ACGGAAAAGGTGGTGTGTATGGGA -ACGGAAAAGGTGGTGTGTGTGCAA -ACGGAAAAGGTGGTGTGTGAGGAA -ACGGAAAAGGTGGTGTGTCAGGTA -ACGGAAAAGGTGGTGTGTGACTCT -ACGGAAAAGGTGGTGTGTAGTCCT -ACGGAAAAGGTGGTGTGTTAAGCC -ACGGAAAAGGTGGTGTGTATAGCC -ACGGAAAAGGTGGTGTGTTAACCG -ACGGAAAAGGTGGTGTGTATGCCA -ACGGAAAAGGTGGTGCTAGGAAAC -ACGGAAAAGGTGGTGCTAAACACC -ACGGAAAAGGTGGTGCTAATCGAG -ACGGAAAAGGTGGTGCTACTCCTT -ACGGAAAAGGTGGTGCTACCTGTT -ACGGAAAAGGTGGTGCTACGGTTT -ACGGAAAAGGTGGTGCTAGTGGTT -ACGGAAAAGGTGGTGCTAGCCTTT -ACGGAAAAGGTGGTGCTAGGTCTT -ACGGAAAAGGTGGTGCTAACGCTT -ACGGAAAAGGTGGTGCTAAGCGTT -ACGGAAAAGGTGGTGCTATTCGTC -ACGGAAAAGGTGGTGCTATCTCTC -ACGGAAAAGGTGGTGCTATGGATC -ACGGAAAAGGTGGTGCTACACTTC -ACGGAAAAGGTGGTGCTAGTACTC -ACGGAAAAGGTGGTGCTAGATGTC -ACGGAAAAGGTGGTGCTAACAGTC -ACGGAAAAGGTGGTGCTATTGCTG -ACGGAAAAGGTGGTGCTATCCATG -ACGGAAAAGGTGGTGCTATGTGTG -ACGGAAAAGGTGGTGCTACTAGTG -ACGGAAAAGGTGGTGCTACATCTG -ACGGAAAAGGTGGTGCTAGAGTTG -ACGGAAAAGGTGGTGCTAAGACTG -ACGGAAAAGGTGGTGCTATCGGTA -ACGGAAAAGGTGGTGCTATGCCTA -ACGGAAAAGGTGGTGCTACCACTA -ACGGAAAAGGTGGTGCTAGGAGTA -ACGGAAAAGGTGGTGCTATCGTCT -ACGGAAAAGGTGGTGCTATGCACT -ACGGAAAAGGTGGTGCTACTGACT -ACGGAAAAGGTGGTGCTACAACCT -ACGGAAAAGGTGGTGCTAGCTACT -ACGGAAAAGGTGGTGCTAGGATCT -ACGGAAAAGGTGGTGCTAAAGGCT -ACGGAAAAGGTGGTGCTATCAACC -ACGGAAAAGGTGGTGCTATGTTCC -ACGGAAAAGGTGGTGCTAATTCCC -ACGGAAAAGGTGGTGCTATTCTCG -ACGGAAAAGGTGGTGCTATAGACG -ACGGAAAAGGTGGTGCTAGTAACG -ACGGAAAAGGTGGTGCTAACTTCG -ACGGAAAAGGTGGTGCTATACGCA -ACGGAAAAGGTGGTGCTACTTGCA -ACGGAAAAGGTGGTGCTACGAACA -ACGGAAAAGGTGGTGCTACAGTCA -ACGGAAAAGGTGGTGCTAGATCCA -ACGGAAAAGGTGGTGCTAACGACA -ACGGAAAAGGTGGTGCTAAGCTCA -ACGGAAAAGGTGGTGCTATCACGT -ACGGAAAAGGTGGTGCTACGTAGT -ACGGAAAAGGTGGTGCTAGTCAGT -ACGGAAAAGGTGGTGCTAGAAGGT -ACGGAAAAGGTGGTGCTAAACCGT -ACGGAAAAGGTGGTGCTATTGTGC -ACGGAAAAGGTGGTGCTACTAAGC -ACGGAAAAGGTGGTGCTAACTAGC -ACGGAAAAGGTGGTGCTAAGATGC -ACGGAAAAGGTGGTGCTATGAAGG -ACGGAAAAGGTGGTGCTACAATGG -ACGGAAAAGGTGGTGCTAATGAGG -ACGGAAAAGGTGGTGCTAAATGGG -ACGGAAAAGGTGGTGCTATCCTGA -ACGGAAAAGGTGGTGCTATAGCGA -ACGGAAAAGGTGGTGCTACACAGA -ACGGAAAAGGTGGTGCTAGCAAGA -ACGGAAAAGGTGGTGCTAGGTTGA -ACGGAAAAGGTGGTGCTATCCGAT -ACGGAAAAGGTGGTGCTATGGCAT -ACGGAAAAGGTGGTGCTACGAGAT -ACGGAAAAGGTGGTGCTATACCAC -ACGGAAAAGGTGGTGCTACAGAAC -ACGGAAAAGGTGGTGCTAGTCTAC -ACGGAAAAGGTGGTGCTAACGTAC -ACGGAAAAGGTGGTGCTAAGTGAC -ACGGAAAAGGTGGTGCTACTGTAG -ACGGAAAAGGTGGTGCTACCTAAG -ACGGAAAAGGTGGTGCTAGTTCAG -ACGGAAAAGGTGGTGCTAGCATAG -ACGGAAAAGGTGGTGCTAGACAAG -ACGGAAAAGGTGGTGCTAAAGCAG -ACGGAAAAGGTGGTGCTACGTCAA -ACGGAAAAGGTGGTGCTAGCTGAA -ACGGAAAAGGTGGTGCTAAGTACG -ACGGAAAAGGTGGTGCTAATCCGA -ACGGAAAAGGTGGTGCTAATGGGA -ACGGAAAAGGTGGTGCTAGTGCAA -ACGGAAAAGGTGGTGCTAGAGGAA -ACGGAAAAGGTGGTGCTACAGGTA -ACGGAAAAGGTGGTGCTAGACTCT -ACGGAAAAGGTGGTGCTAAGTCCT -ACGGAAAAGGTGGTGCTATAAGCC -ACGGAAAAGGTGGTGCTAATAGCC -ACGGAAAAGGTGGTGCTATAACCG -ACGGAAAAGGTGGTGCTAATGCCA -ACGGAAAAGGTGCTGCATGGAAAC -ACGGAAAAGGTGCTGCATAACACC -ACGGAAAAGGTGCTGCATATCGAG -ACGGAAAAGGTGCTGCATCTCCTT -ACGGAAAAGGTGCTGCATCCTGTT -ACGGAAAAGGTGCTGCATCGGTTT -ACGGAAAAGGTGCTGCATGTGGTT -ACGGAAAAGGTGCTGCATGCCTTT -ACGGAAAAGGTGCTGCATGGTCTT -ACGGAAAAGGTGCTGCATACGCTT -ACGGAAAAGGTGCTGCATAGCGTT -ACGGAAAAGGTGCTGCATTTCGTC -ACGGAAAAGGTGCTGCATTCTCTC -ACGGAAAAGGTGCTGCATTGGATC -ACGGAAAAGGTGCTGCATCACTTC -ACGGAAAAGGTGCTGCATGTACTC -ACGGAAAAGGTGCTGCATGATGTC -ACGGAAAAGGTGCTGCATACAGTC -ACGGAAAAGGTGCTGCATTTGCTG -ACGGAAAAGGTGCTGCATTCCATG -ACGGAAAAGGTGCTGCATTGTGTG -ACGGAAAAGGTGCTGCATCTAGTG -ACGGAAAAGGTGCTGCATCATCTG -ACGGAAAAGGTGCTGCATGAGTTG -ACGGAAAAGGTGCTGCATAGACTG -ACGGAAAAGGTGCTGCATTCGGTA -ACGGAAAAGGTGCTGCATTGCCTA -ACGGAAAAGGTGCTGCATCCACTA -ACGGAAAAGGTGCTGCATGGAGTA -ACGGAAAAGGTGCTGCATTCGTCT -ACGGAAAAGGTGCTGCATTGCACT -ACGGAAAAGGTGCTGCATCTGACT -ACGGAAAAGGTGCTGCATCAACCT -ACGGAAAAGGTGCTGCATGCTACT -ACGGAAAAGGTGCTGCATGGATCT -ACGGAAAAGGTGCTGCATAAGGCT -ACGGAAAAGGTGCTGCATTCAACC -ACGGAAAAGGTGCTGCATTGTTCC -ACGGAAAAGGTGCTGCATATTCCC -ACGGAAAAGGTGCTGCATTTCTCG -ACGGAAAAGGTGCTGCATTAGACG -ACGGAAAAGGTGCTGCATGTAACG -ACGGAAAAGGTGCTGCATACTTCG -ACGGAAAAGGTGCTGCATTACGCA -ACGGAAAAGGTGCTGCATCTTGCA -ACGGAAAAGGTGCTGCATCGAACA -ACGGAAAAGGTGCTGCATCAGTCA -ACGGAAAAGGTGCTGCATGATCCA -ACGGAAAAGGTGCTGCATACGACA -ACGGAAAAGGTGCTGCATAGCTCA -ACGGAAAAGGTGCTGCATTCACGT -ACGGAAAAGGTGCTGCATCGTAGT -ACGGAAAAGGTGCTGCATGTCAGT -ACGGAAAAGGTGCTGCATGAAGGT -ACGGAAAAGGTGCTGCATAACCGT -ACGGAAAAGGTGCTGCATTTGTGC -ACGGAAAAGGTGCTGCATCTAAGC -ACGGAAAAGGTGCTGCATACTAGC -ACGGAAAAGGTGCTGCATAGATGC -ACGGAAAAGGTGCTGCATTGAAGG -ACGGAAAAGGTGCTGCATCAATGG -ACGGAAAAGGTGCTGCATATGAGG -ACGGAAAAGGTGCTGCATAATGGG -ACGGAAAAGGTGCTGCATTCCTGA -ACGGAAAAGGTGCTGCATTAGCGA -ACGGAAAAGGTGCTGCATCACAGA -ACGGAAAAGGTGCTGCATGCAAGA -ACGGAAAAGGTGCTGCATGGTTGA -ACGGAAAAGGTGCTGCATTCCGAT -ACGGAAAAGGTGCTGCATTGGCAT -ACGGAAAAGGTGCTGCATCGAGAT -ACGGAAAAGGTGCTGCATTACCAC -ACGGAAAAGGTGCTGCATCAGAAC -ACGGAAAAGGTGCTGCATGTCTAC -ACGGAAAAGGTGCTGCATACGTAC -ACGGAAAAGGTGCTGCATAGTGAC -ACGGAAAAGGTGCTGCATCTGTAG -ACGGAAAAGGTGCTGCATCCTAAG -ACGGAAAAGGTGCTGCATGTTCAG -ACGGAAAAGGTGCTGCATGCATAG -ACGGAAAAGGTGCTGCATGACAAG -ACGGAAAAGGTGCTGCATAAGCAG -ACGGAAAAGGTGCTGCATCGTCAA -ACGGAAAAGGTGCTGCATGCTGAA -ACGGAAAAGGTGCTGCATAGTACG -ACGGAAAAGGTGCTGCATATCCGA -ACGGAAAAGGTGCTGCATATGGGA -ACGGAAAAGGTGCTGCATGTGCAA -ACGGAAAAGGTGCTGCATGAGGAA -ACGGAAAAGGTGCTGCATCAGGTA -ACGGAAAAGGTGCTGCATGACTCT -ACGGAAAAGGTGCTGCATAGTCCT -ACGGAAAAGGTGCTGCATTAAGCC -ACGGAAAAGGTGCTGCATATAGCC -ACGGAAAAGGTGCTGCATTAACCG -ACGGAAAAGGTGCTGCATATGCCA -ACGGAAAAGGTGTTGGAGGGAAAC -ACGGAAAAGGTGTTGGAGAACACC -ACGGAAAAGGTGTTGGAGATCGAG -ACGGAAAAGGTGTTGGAGCTCCTT -ACGGAAAAGGTGTTGGAGCCTGTT -ACGGAAAAGGTGTTGGAGCGGTTT -ACGGAAAAGGTGTTGGAGGTGGTT -ACGGAAAAGGTGTTGGAGGCCTTT -ACGGAAAAGGTGTTGGAGGGTCTT -ACGGAAAAGGTGTTGGAGACGCTT -ACGGAAAAGGTGTTGGAGAGCGTT -ACGGAAAAGGTGTTGGAGTTCGTC -ACGGAAAAGGTGTTGGAGTCTCTC -ACGGAAAAGGTGTTGGAGTGGATC -ACGGAAAAGGTGTTGGAGCACTTC -ACGGAAAAGGTGTTGGAGGTACTC -ACGGAAAAGGTGTTGGAGGATGTC -ACGGAAAAGGTGTTGGAGACAGTC -ACGGAAAAGGTGTTGGAGTTGCTG -ACGGAAAAGGTGTTGGAGTCCATG -ACGGAAAAGGTGTTGGAGTGTGTG -ACGGAAAAGGTGTTGGAGCTAGTG -ACGGAAAAGGTGTTGGAGCATCTG -ACGGAAAAGGTGTTGGAGGAGTTG -ACGGAAAAGGTGTTGGAGAGACTG -ACGGAAAAGGTGTTGGAGTCGGTA -ACGGAAAAGGTGTTGGAGTGCCTA -ACGGAAAAGGTGTTGGAGCCACTA -ACGGAAAAGGTGTTGGAGGGAGTA -ACGGAAAAGGTGTTGGAGTCGTCT -ACGGAAAAGGTGTTGGAGTGCACT -ACGGAAAAGGTGTTGGAGCTGACT -ACGGAAAAGGTGTTGGAGCAACCT -ACGGAAAAGGTGTTGGAGGCTACT -ACGGAAAAGGTGTTGGAGGGATCT -ACGGAAAAGGTGTTGGAGAAGGCT -ACGGAAAAGGTGTTGGAGTCAACC -ACGGAAAAGGTGTTGGAGTGTTCC -ACGGAAAAGGTGTTGGAGATTCCC -ACGGAAAAGGTGTTGGAGTTCTCG -ACGGAAAAGGTGTTGGAGTAGACG -ACGGAAAAGGTGTTGGAGGTAACG -ACGGAAAAGGTGTTGGAGACTTCG -ACGGAAAAGGTGTTGGAGTACGCA -ACGGAAAAGGTGTTGGAGCTTGCA -ACGGAAAAGGTGTTGGAGCGAACA -ACGGAAAAGGTGTTGGAGCAGTCA -ACGGAAAAGGTGTTGGAGGATCCA -ACGGAAAAGGTGTTGGAGACGACA -ACGGAAAAGGTGTTGGAGAGCTCA -ACGGAAAAGGTGTTGGAGTCACGT -ACGGAAAAGGTGTTGGAGCGTAGT -ACGGAAAAGGTGTTGGAGGTCAGT -ACGGAAAAGGTGTTGGAGGAAGGT -ACGGAAAAGGTGTTGGAGAACCGT -ACGGAAAAGGTGTTGGAGTTGTGC -ACGGAAAAGGTGTTGGAGCTAAGC -ACGGAAAAGGTGTTGGAGACTAGC -ACGGAAAAGGTGTTGGAGAGATGC -ACGGAAAAGGTGTTGGAGTGAAGG -ACGGAAAAGGTGTTGGAGCAATGG -ACGGAAAAGGTGTTGGAGATGAGG -ACGGAAAAGGTGTTGGAGAATGGG -ACGGAAAAGGTGTTGGAGTCCTGA -ACGGAAAAGGTGTTGGAGTAGCGA -ACGGAAAAGGTGTTGGAGCACAGA -ACGGAAAAGGTGTTGGAGGCAAGA -ACGGAAAAGGTGTTGGAGGGTTGA -ACGGAAAAGGTGTTGGAGTCCGAT -ACGGAAAAGGTGTTGGAGTGGCAT -ACGGAAAAGGTGTTGGAGCGAGAT -ACGGAAAAGGTGTTGGAGTACCAC -ACGGAAAAGGTGTTGGAGCAGAAC -ACGGAAAAGGTGTTGGAGGTCTAC -ACGGAAAAGGTGTTGGAGACGTAC -ACGGAAAAGGTGTTGGAGAGTGAC -ACGGAAAAGGTGTTGGAGCTGTAG -ACGGAAAAGGTGTTGGAGCCTAAG -ACGGAAAAGGTGTTGGAGGTTCAG -ACGGAAAAGGTGTTGGAGGCATAG -ACGGAAAAGGTGTTGGAGGACAAG -ACGGAAAAGGTGTTGGAGAAGCAG -ACGGAAAAGGTGTTGGAGCGTCAA -ACGGAAAAGGTGTTGGAGGCTGAA -ACGGAAAAGGTGTTGGAGAGTACG -ACGGAAAAGGTGTTGGAGATCCGA -ACGGAAAAGGTGTTGGAGATGGGA -ACGGAAAAGGTGTTGGAGGTGCAA -ACGGAAAAGGTGTTGGAGGAGGAA -ACGGAAAAGGTGTTGGAGCAGGTA -ACGGAAAAGGTGTTGGAGGACTCT -ACGGAAAAGGTGTTGGAGAGTCCT -ACGGAAAAGGTGTTGGAGTAAGCC -ACGGAAAAGGTGTTGGAGATAGCC -ACGGAAAAGGTGTTGGAGTAACCG -ACGGAAAAGGTGTTGGAGATGCCA -ACGGAAAAGGTGCTGAGAGGAAAC -ACGGAAAAGGTGCTGAGAAACACC -ACGGAAAAGGTGCTGAGAATCGAG -ACGGAAAAGGTGCTGAGACTCCTT -ACGGAAAAGGTGCTGAGACCTGTT -ACGGAAAAGGTGCTGAGACGGTTT -ACGGAAAAGGTGCTGAGAGTGGTT -ACGGAAAAGGTGCTGAGAGCCTTT -ACGGAAAAGGTGCTGAGAGGTCTT -ACGGAAAAGGTGCTGAGAACGCTT -ACGGAAAAGGTGCTGAGAAGCGTT -ACGGAAAAGGTGCTGAGATTCGTC -ACGGAAAAGGTGCTGAGATCTCTC -ACGGAAAAGGTGCTGAGATGGATC -ACGGAAAAGGTGCTGAGACACTTC -ACGGAAAAGGTGCTGAGAGTACTC -ACGGAAAAGGTGCTGAGAGATGTC -ACGGAAAAGGTGCTGAGAACAGTC -ACGGAAAAGGTGCTGAGATTGCTG -ACGGAAAAGGTGCTGAGATCCATG -ACGGAAAAGGTGCTGAGATGTGTG -ACGGAAAAGGTGCTGAGACTAGTG -ACGGAAAAGGTGCTGAGACATCTG -ACGGAAAAGGTGCTGAGAGAGTTG -ACGGAAAAGGTGCTGAGAAGACTG -ACGGAAAAGGTGCTGAGATCGGTA -ACGGAAAAGGTGCTGAGATGCCTA -ACGGAAAAGGTGCTGAGACCACTA -ACGGAAAAGGTGCTGAGAGGAGTA -ACGGAAAAGGTGCTGAGATCGTCT -ACGGAAAAGGTGCTGAGATGCACT -ACGGAAAAGGTGCTGAGACTGACT -ACGGAAAAGGTGCTGAGACAACCT -ACGGAAAAGGTGCTGAGAGCTACT -ACGGAAAAGGTGCTGAGAGGATCT -ACGGAAAAGGTGCTGAGAAAGGCT -ACGGAAAAGGTGCTGAGATCAACC -ACGGAAAAGGTGCTGAGATGTTCC -ACGGAAAAGGTGCTGAGAATTCCC -ACGGAAAAGGTGCTGAGATTCTCG -ACGGAAAAGGTGCTGAGATAGACG -ACGGAAAAGGTGCTGAGAGTAACG -ACGGAAAAGGTGCTGAGAACTTCG -ACGGAAAAGGTGCTGAGATACGCA -ACGGAAAAGGTGCTGAGACTTGCA -ACGGAAAAGGTGCTGAGACGAACA -ACGGAAAAGGTGCTGAGACAGTCA -ACGGAAAAGGTGCTGAGAGATCCA -ACGGAAAAGGTGCTGAGAACGACA -ACGGAAAAGGTGCTGAGAAGCTCA -ACGGAAAAGGTGCTGAGATCACGT -ACGGAAAAGGTGCTGAGACGTAGT -ACGGAAAAGGTGCTGAGAGTCAGT -ACGGAAAAGGTGCTGAGAGAAGGT -ACGGAAAAGGTGCTGAGAAACCGT -ACGGAAAAGGTGCTGAGATTGTGC -ACGGAAAAGGTGCTGAGACTAAGC -ACGGAAAAGGTGCTGAGAACTAGC -ACGGAAAAGGTGCTGAGAAGATGC -ACGGAAAAGGTGCTGAGATGAAGG -ACGGAAAAGGTGCTGAGACAATGG -ACGGAAAAGGTGCTGAGAATGAGG -ACGGAAAAGGTGCTGAGAAATGGG -ACGGAAAAGGTGCTGAGATCCTGA -ACGGAAAAGGTGCTGAGATAGCGA -ACGGAAAAGGTGCTGAGACACAGA -ACGGAAAAGGTGCTGAGAGCAAGA -ACGGAAAAGGTGCTGAGAGGTTGA -ACGGAAAAGGTGCTGAGATCCGAT -ACGGAAAAGGTGCTGAGATGGCAT -ACGGAAAAGGTGCTGAGACGAGAT -ACGGAAAAGGTGCTGAGATACCAC -ACGGAAAAGGTGCTGAGACAGAAC -ACGGAAAAGGTGCTGAGAGTCTAC -ACGGAAAAGGTGCTGAGAACGTAC -ACGGAAAAGGTGCTGAGAAGTGAC -ACGGAAAAGGTGCTGAGACTGTAG -ACGGAAAAGGTGCTGAGACCTAAG -ACGGAAAAGGTGCTGAGAGTTCAG -ACGGAAAAGGTGCTGAGAGCATAG -ACGGAAAAGGTGCTGAGAGACAAG -ACGGAAAAGGTGCTGAGAAAGCAG -ACGGAAAAGGTGCTGAGACGTCAA -ACGGAAAAGGTGCTGAGAGCTGAA -ACGGAAAAGGTGCTGAGAAGTACG -ACGGAAAAGGTGCTGAGAATCCGA -ACGGAAAAGGTGCTGAGAATGGGA -ACGGAAAAGGTGCTGAGAGTGCAA -ACGGAAAAGGTGCTGAGAGAGGAA -ACGGAAAAGGTGCTGAGACAGGTA -ACGGAAAAGGTGCTGAGAGACTCT -ACGGAAAAGGTGCTGAGAAGTCCT -ACGGAAAAGGTGCTGAGATAAGCC -ACGGAAAAGGTGCTGAGAATAGCC -ACGGAAAAGGTGCTGAGATAACCG -ACGGAAAAGGTGCTGAGAATGCCA -ACGGAAAAGGTGGTATCGGGAAAC -ACGGAAAAGGTGGTATCGAACACC -ACGGAAAAGGTGGTATCGATCGAG -ACGGAAAAGGTGGTATCGCTCCTT -ACGGAAAAGGTGGTATCGCCTGTT -ACGGAAAAGGTGGTATCGCGGTTT -ACGGAAAAGGTGGTATCGGTGGTT -ACGGAAAAGGTGGTATCGGCCTTT -ACGGAAAAGGTGGTATCGGGTCTT -ACGGAAAAGGTGGTATCGACGCTT -ACGGAAAAGGTGGTATCGAGCGTT -ACGGAAAAGGTGGTATCGTTCGTC -ACGGAAAAGGTGGTATCGTCTCTC -ACGGAAAAGGTGGTATCGTGGATC -ACGGAAAAGGTGGTATCGCACTTC -ACGGAAAAGGTGGTATCGGTACTC -ACGGAAAAGGTGGTATCGGATGTC -ACGGAAAAGGTGGTATCGACAGTC -ACGGAAAAGGTGGTATCGTTGCTG -ACGGAAAAGGTGGTATCGTCCATG -ACGGAAAAGGTGGTATCGTGTGTG -ACGGAAAAGGTGGTATCGCTAGTG -ACGGAAAAGGTGGTATCGCATCTG -ACGGAAAAGGTGGTATCGGAGTTG -ACGGAAAAGGTGGTATCGAGACTG -ACGGAAAAGGTGGTATCGTCGGTA -ACGGAAAAGGTGGTATCGTGCCTA -ACGGAAAAGGTGGTATCGCCACTA -ACGGAAAAGGTGGTATCGGGAGTA -ACGGAAAAGGTGGTATCGTCGTCT -ACGGAAAAGGTGGTATCGTGCACT -ACGGAAAAGGTGGTATCGCTGACT -ACGGAAAAGGTGGTATCGCAACCT -ACGGAAAAGGTGGTATCGGCTACT -ACGGAAAAGGTGGTATCGGGATCT -ACGGAAAAGGTGGTATCGAAGGCT -ACGGAAAAGGTGGTATCGTCAACC -ACGGAAAAGGTGGTATCGTGTTCC -ACGGAAAAGGTGGTATCGATTCCC -ACGGAAAAGGTGGTATCGTTCTCG -ACGGAAAAGGTGGTATCGTAGACG -ACGGAAAAGGTGGTATCGGTAACG -ACGGAAAAGGTGGTATCGACTTCG -ACGGAAAAGGTGGTATCGTACGCA -ACGGAAAAGGTGGTATCGCTTGCA -ACGGAAAAGGTGGTATCGCGAACA -ACGGAAAAGGTGGTATCGCAGTCA -ACGGAAAAGGTGGTATCGGATCCA -ACGGAAAAGGTGGTATCGACGACA -ACGGAAAAGGTGGTATCGAGCTCA -ACGGAAAAGGTGGTATCGTCACGT -ACGGAAAAGGTGGTATCGCGTAGT -ACGGAAAAGGTGGTATCGGTCAGT -ACGGAAAAGGTGGTATCGGAAGGT -ACGGAAAAGGTGGTATCGAACCGT -ACGGAAAAGGTGGTATCGTTGTGC -ACGGAAAAGGTGGTATCGCTAAGC -ACGGAAAAGGTGGTATCGACTAGC -ACGGAAAAGGTGGTATCGAGATGC -ACGGAAAAGGTGGTATCGTGAAGG -ACGGAAAAGGTGGTATCGCAATGG -ACGGAAAAGGTGGTATCGATGAGG -ACGGAAAAGGTGGTATCGAATGGG -ACGGAAAAGGTGGTATCGTCCTGA -ACGGAAAAGGTGGTATCGTAGCGA -ACGGAAAAGGTGGTATCGCACAGA -ACGGAAAAGGTGGTATCGGCAAGA -ACGGAAAAGGTGGTATCGGGTTGA -ACGGAAAAGGTGGTATCGTCCGAT -ACGGAAAAGGTGGTATCGTGGCAT -ACGGAAAAGGTGGTATCGCGAGAT -ACGGAAAAGGTGGTATCGTACCAC -ACGGAAAAGGTGGTATCGCAGAAC -ACGGAAAAGGTGGTATCGGTCTAC -ACGGAAAAGGTGGTATCGACGTAC -ACGGAAAAGGTGGTATCGAGTGAC -ACGGAAAAGGTGGTATCGCTGTAG -ACGGAAAAGGTGGTATCGCCTAAG -ACGGAAAAGGTGGTATCGGTTCAG -ACGGAAAAGGTGGTATCGGCATAG -ACGGAAAAGGTGGTATCGGACAAG -ACGGAAAAGGTGGTATCGAAGCAG -ACGGAAAAGGTGGTATCGCGTCAA -ACGGAAAAGGTGGTATCGGCTGAA -ACGGAAAAGGTGGTATCGAGTACG -ACGGAAAAGGTGGTATCGATCCGA -ACGGAAAAGGTGGTATCGATGGGA -ACGGAAAAGGTGGTATCGGTGCAA -ACGGAAAAGGTGGTATCGGAGGAA -ACGGAAAAGGTGGTATCGCAGGTA -ACGGAAAAGGTGGTATCGGACTCT -ACGGAAAAGGTGGTATCGAGTCCT -ACGGAAAAGGTGGTATCGTAAGCC -ACGGAAAAGGTGGTATCGATAGCC -ACGGAAAAGGTGGTATCGTAACCG -ACGGAAAAGGTGGTATCGATGCCA -ACGGAAAAGGTGCTATGCGGAAAC -ACGGAAAAGGTGCTATGCAACACC -ACGGAAAAGGTGCTATGCATCGAG -ACGGAAAAGGTGCTATGCCTCCTT -ACGGAAAAGGTGCTATGCCCTGTT -ACGGAAAAGGTGCTATGCCGGTTT -ACGGAAAAGGTGCTATGCGTGGTT -ACGGAAAAGGTGCTATGCGCCTTT -ACGGAAAAGGTGCTATGCGGTCTT -ACGGAAAAGGTGCTATGCACGCTT -ACGGAAAAGGTGCTATGCAGCGTT -ACGGAAAAGGTGCTATGCTTCGTC -ACGGAAAAGGTGCTATGCTCTCTC -ACGGAAAAGGTGCTATGCTGGATC -ACGGAAAAGGTGCTATGCCACTTC -ACGGAAAAGGTGCTATGCGTACTC -ACGGAAAAGGTGCTATGCGATGTC -ACGGAAAAGGTGCTATGCACAGTC -ACGGAAAAGGTGCTATGCTTGCTG -ACGGAAAAGGTGCTATGCTCCATG -ACGGAAAAGGTGCTATGCTGTGTG -ACGGAAAAGGTGCTATGCCTAGTG -ACGGAAAAGGTGCTATGCCATCTG -ACGGAAAAGGTGCTATGCGAGTTG -ACGGAAAAGGTGCTATGCAGACTG -ACGGAAAAGGTGCTATGCTCGGTA -ACGGAAAAGGTGCTATGCTGCCTA -ACGGAAAAGGTGCTATGCCCACTA -ACGGAAAAGGTGCTATGCGGAGTA -ACGGAAAAGGTGCTATGCTCGTCT -ACGGAAAAGGTGCTATGCTGCACT -ACGGAAAAGGTGCTATGCCTGACT -ACGGAAAAGGTGCTATGCCAACCT -ACGGAAAAGGTGCTATGCGCTACT -ACGGAAAAGGTGCTATGCGGATCT -ACGGAAAAGGTGCTATGCAAGGCT -ACGGAAAAGGTGCTATGCTCAACC -ACGGAAAAGGTGCTATGCTGTTCC -ACGGAAAAGGTGCTATGCATTCCC -ACGGAAAAGGTGCTATGCTTCTCG -ACGGAAAAGGTGCTATGCTAGACG -ACGGAAAAGGTGCTATGCGTAACG -ACGGAAAAGGTGCTATGCACTTCG -ACGGAAAAGGTGCTATGCTACGCA -ACGGAAAAGGTGCTATGCCTTGCA -ACGGAAAAGGTGCTATGCCGAACA -ACGGAAAAGGTGCTATGCCAGTCA -ACGGAAAAGGTGCTATGCGATCCA -ACGGAAAAGGTGCTATGCACGACA -ACGGAAAAGGTGCTATGCAGCTCA -ACGGAAAAGGTGCTATGCTCACGT -ACGGAAAAGGTGCTATGCCGTAGT -ACGGAAAAGGTGCTATGCGTCAGT -ACGGAAAAGGTGCTATGCGAAGGT -ACGGAAAAGGTGCTATGCAACCGT -ACGGAAAAGGTGCTATGCTTGTGC -ACGGAAAAGGTGCTATGCCTAAGC -ACGGAAAAGGTGCTATGCACTAGC -ACGGAAAAGGTGCTATGCAGATGC -ACGGAAAAGGTGCTATGCTGAAGG -ACGGAAAAGGTGCTATGCCAATGG -ACGGAAAAGGTGCTATGCATGAGG -ACGGAAAAGGTGCTATGCAATGGG -ACGGAAAAGGTGCTATGCTCCTGA -ACGGAAAAGGTGCTATGCTAGCGA -ACGGAAAAGGTGCTATGCCACAGA -ACGGAAAAGGTGCTATGCGCAAGA -ACGGAAAAGGTGCTATGCGGTTGA -ACGGAAAAGGTGCTATGCTCCGAT -ACGGAAAAGGTGCTATGCTGGCAT -ACGGAAAAGGTGCTATGCCGAGAT -ACGGAAAAGGTGCTATGCTACCAC -ACGGAAAAGGTGCTATGCCAGAAC -ACGGAAAAGGTGCTATGCGTCTAC -ACGGAAAAGGTGCTATGCACGTAC -ACGGAAAAGGTGCTATGCAGTGAC -ACGGAAAAGGTGCTATGCCTGTAG -ACGGAAAAGGTGCTATGCCCTAAG -ACGGAAAAGGTGCTATGCGTTCAG -ACGGAAAAGGTGCTATGCGCATAG -ACGGAAAAGGTGCTATGCGACAAG -ACGGAAAAGGTGCTATGCAAGCAG -ACGGAAAAGGTGCTATGCCGTCAA -ACGGAAAAGGTGCTATGCGCTGAA -ACGGAAAAGGTGCTATGCAGTACG -ACGGAAAAGGTGCTATGCATCCGA -ACGGAAAAGGTGCTATGCATGGGA -ACGGAAAAGGTGCTATGCGTGCAA -ACGGAAAAGGTGCTATGCGAGGAA -ACGGAAAAGGTGCTATGCCAGGTA -ACGGAAAAGGTGCTATGCGACTCT -ACGGAAAAGGTGCTATGCAGTCCT -ACGGAAAAGGTGCTATGCTAAGCC -ACGGAAAAGGTGCTATGCATAGCC -ACGGAAAAGGTGCTATGCTAACCG -ACGGAAAAGGTGCTATGCATGCCA -ACGGAAAAGGTGCTACCAGGAAAC -ACGGAAAAGGTGCTACCAAACACC -ACGGAAAAGGTGCTACCAATCGAG -ACGGAAAAGGTGCTACCACTCCTT -ACGGAAAAGGTGCTACCACCTGTT -ACGGAAAAGGTGCTACCACGGTTT -ACGGAAAAGGTGCTACCAGTGGTT -ACGGAAAAGGTGCTACCAGCCTTT -ACGGAAAAGGTGCTACCAGGTCTT -ACGGAAAAGGTGCTACCAACGCTT -ACGGAAAAGGTGCTACCAAGCGTT -ACGGAAAAGGTGCTACCATTCGTC -ACGGAAAAGGTGCTACCATCTCTC -ACGGAAAAGGTGCTACCATGGATC -ACGGAAAAGGTGCTACCACACTTC -ACGGAAAAGGTGCTACCAGTACTC -ACGGAAAAGGTGCTACCAGATGTC -ACGGAAAAGGTGCTACCAACAGTC -ACGGAAAAGGTGCTACCATTGCTG -ACGGAAAAGGTGCTACCATCCATG -ACGGAAAAGGTGCTACCATGTGTG -ACGGAAAAGGTGCTACCACTAGTG -ACGGAAAAGGTGCTACCACATCTG -ACGGAAAAGGTGCTACCAGAGTTG -ACGGAAAAGGTGCTACCAAGACTG -ACGGAAAAGGTGCTACCATCGGTA -ACGGAAAAGGTGCTACCATGCCTA -ACGGAAAAGGTGCTACCACCACTA -ACGGAAAAGGTGCTACCAGGAGTA -ACGGAAAAGGTGCTACCATCGTCT -ACGGAAAAGGTGCTACCATGCACT -ACGGAAAAGGTGCTACCACTGACT -ACGGAAAAGGTGCTACCACAACCT -ACGGAAAAGGTGCTACCAGCTACT -ACGGAAAAGGTGCTACCAGGATCT -ACGGAAAAGGTGCTACCAAAGGCT -ACGGAAAAGGTGCTACCATCAACC -ACGGAAAAGGTGCTACCATGTTCC -ACGGAAAAGGTGCTACCAATTCCC -ACGGAAAAGGTGCTACCATTCTCG -ACGGAAAAGGTGCTACCATAGACG -ACGGAAAAGGTGCTACCAGTAACG -ACGGAAAAGGTGCTACCAACTTCG -ACGGAAAAGGTGCTACCATACGCA -ACGGAAAAGGTGCTACCACTTGCA -ACGGAAAAGGTGCTACCACGAACA -ACGGAAAAGGTGCTACCACAGTCA -ACGGAAAAGGTGCTACCAGATCCA -ACGGAAAAGGTGCTACCAACGACA -ACGGAAAAGGTGCTACCAAGCTCA -ACGGAAAAGGTGCTACCATCACGT -ACGGAAAAGGTGCTACCACGTAGT -ACGGAAAAGGTGCTACCAGTCAGT -ACGGAAAAGGTGCTACCAGAAGGT -ACGGAAAAGGTGCTACCAAACCGT -ACGGAAAAGGTGCTACCATTGTGC -ACGGAAAAGGTGCTACCACTAAGC -ACGGAAAAGGTGCTACCAACTAGC -ACGGAAAAGGTGCTACCAAGATGC -ACGGAAAAGGTGCTACCATGAAGG -ACGGAAAAGGTGCTACCACAATGG -ACGGAAAAGGTGCTACCAATGAGG -ACGGAAAAGGTGCTACCAAATGGG -ACGGAAAAGGTGCTACCATCCTGA -ACGGAAAAGGTGCTACCATAGCGA -ACGGAAAAGGTGCTACCACACAGA -ACGGAAAAGGTGCTACCAGCAAGA -ACGGAAAAGGTGCTACCAGGTTGA -ACGGAAAAGGTGCTACCATCCGAT -ACGGAAAAGGTGCTACCATGGCAT -ACGGAAAAGGTGCTACCACGAGAT -ACGGAAAAGGTGCTACCATACCAC -ACGGAAAAGGTGCTACCACAGAAC -ACGGAAAAGGTGCTACCAGTCTAC -ACGGAAAAGGTGCTACCAACGTAC -ACGGAAAAGGTGCTACCAAGTGAC -ACGGAAAAGGTGCTACCACTGTAG -ACGGAAAAGGTGCTACCACCTAAG -ACGGAAAAGGTGCTACCAGTTCAG -ACGGAAAAGGTGCTACCAGCATAG -ACGGAAAAGGTGCTACCAGACAAG -ACGGAAAAGGTGCTACCAAAGCAG -ACGGAAAAGGTGCTACCACGTCAA -ACGGAAAAGGTGCTACCAGCTGAA -ACGGAAAAGGTGCTACCAAGTACG -ACGGAAAAGGTGCTACCAATCCGA -ACGGAAAAGGTGCTACCAATGGGA -ACGGAAAAGGTGCTACCAGTGCAA -ACGGAAAAGGTGCTACCAGAGGAA -ACGGAAAAGGTGCTACCACAGGTA -ACGGAAAAGGTGCTACCAGACTCT -ACGGAAAAGGTGCTACCAAGTCCT -ACGGAAAAGGTGCTACCATAAGCC -ACGGAAAAGGTGCTACCAATAGCC -ACGGAAAAGGTGCTACCATAACCG -ACGGAAAAGGTGCTACCAATGCCA -ACGGAAAAGGTGGTAGGAGGAAAC -ACGGAAAAGGTGGTAGGAAACACC -ACGGAAAAGGTGGTAGGAATCGAG -ACGGAAAAGGTGGTAGGACTCCTT -ACGGAAAAGGTGGTAGGACCTGTT -ACGGAAAAGGTGGTAGGACGGTTT -ACGGAAAAGGTGGTAGGAGTGGTT -ACGGAAAAGGTGGTAGGAGCCTTT -ACGGAAAAGGTGGTAGGAGGTCTT -ACGGAAAAGGTGGTAGGAACGCTT -ACGGAAAAGGTGGTAGGAAGCGTT -ACGGAAAAGGTGGTAGGATTCGTC -ACGGAAAAGGTGGTAGGATCTCTC -ACGGAAAAGGTGGTAGGATGGATC -ACGGAAAAGGTGGTAGGACACTTC -ACGGAAAAGGTGGTAGGAGTACTC -ACGGAAAAGGTGGTAGGAGATGTC -ACGGAAAAGGTGGTAGGAACAGTC -ACGGAAAAGGTGGTAGGATTGCTG -ACGGAAAAGGTGGTAGGATCCATG -ACGGAAAAGGTGGTAGGATGTGTG -ACGGAAAAGGTGGTAGGACTAGTG -ACGGAAAAGGTGGTAGGACATCTG -ACGGAAAAGGTGGTAGGAGAGTTG -ACGGAAAAGGTGGTAGGAAGACTG -ACGGAAAAGGTGGTAGGATCGGTA -ACGGAAAAGGTGGTAGGATGCCTA -ACGGAAAAGGTGGTAGGACCACTA -ACGGAAAAGGTGGTAGGAGGAGTA -ACGGAAAAGGTGGTAGGATCGTCT -ACGGAAAAGGTGGTAGGATGCACT -ACGGAAAAGGTGGTAGGACTGACT -ACGGAAAAGGTGGTAGGACAACCT -ACGGAAAAGGTGGTAGGAGCTACT -ACGGAAAAGGTGGTAGGAGGATCT -ACGGAAAAGGTGGTAGGAAAGGCT -ACGGAAAAGGTGGTAGGATCAACC -ACGGAAAAGGTGGTAGGATGTTCC -ACGGAAAAGGTGGTAGGAATTCCC -ACGGAAAAGGTGGTAGGATTCTCG -ACGGAAAAGGTGGTAGGATAGACG -ACGGAAAAGGTGGTAGGAGTAACG -ACGGAAAAGGTGGTAGGAACTTCG -ACGGAAAAGGTGGTAGGATACGCA -ACGGAAAAGGTGGTAGGACTTGCA -ACGGAAAAGGTGGTAGGACGAACA -ACGGAAAAGGTGGTAGGACAGTCA -ACGGAAAAGGTGGTAGGAGATCCA -ACGGAAAAGGTGGTAGGAACGACA -ACGGAAAAGGTGGTAGGAAGCTCA -ACGGAAAAGGTGGTAGGATCACGT -ACGGAAAAGGTGGTAGGACGTAGT -ACGGAAAAGGTGGTAGGAGTCAGT -ACGGAAAAGGTGGTAGGAGAAGGT -ACGGAAAAGGTGGTAGGAAACCGT -ACGGAAAAGGTGGTAGGATTGTGC -ACGGAAAAGGTGGTAGGACTAAGC -ACGGAAAAGGTGGTAGGAACTAGC -ACGGAAAAGGTGGTAGGAAGATGC -ACGGAAAAGGTGGTAGGATGAAGG -ACGGAAAAGGTGGTAGGACAATGG -ACGGAAAAGGTGGTAGGAATGAGG -ACGGAAAAGGTGGTAGGAAATGGG -ACGGAAAAGGTGGTAGGATCCTGA -ACGGAAAAGGTGGTAGGATAGCGA -ACGGAAAAGGTGGTAGGACACAGA -ACGGAAAAGGTGGTAGGAGCAAGA -ACGGAAAAGGTGGTAGGAGGTTGA -ACGGAAAAGGTGGTAGGATCCGAT -ACGGAAAAGGTGGTAGGATGGCAT -ACGGAAAAGGTGGTAGGACGAGAT -ACGGAAAAGGTGGTAGGATACCAC -ACGGAAAAGGTGGTAGGACAGAAC -ACGGAAAAGGTGGTAGGAGTCTAC -ACGGAAAAGGTGGTAGGAACGTAC -ACGGAAAAGGTGGTAGGAAGTGAC -ACGGAAAAGGTGGTAGGACTGTAG -ACGGAAAAGGTGGTAGGACCTAAG -ACGGAAAAGGTGGTAGGAGTTCAG -ACGGAAAAGGTGGTAGGAGCATAG -ACGGAAAAGGTGGTAGGAGACAAG -ACGGAAAAGGTGGTAGGAAAGCAG -ACGGAAAAGGTGGTAGGACGTCAA -ACGGAAAAGGTGGTAGGAGCTGAA -ACGGAAAAGGTGGTAGGAAGTACG -ACGGAAAAGGTGGTAGGAATCCGA -ACGGAAAAGGTGGTAGGAATGGGA -ACGGAAAAGGTGGTAGGAGTGCAA -ACGGAAAAGGTGGTAGGAGAGGAA -ACGGAAAAGGTGGTAGGACAGGTA -ACGGAAAAGGTGGTAGGAGACTCT -ACGGAAAAGGTGGTAGGAAGTCCT -ACGGAAAAGGTGGTAGGATAAGCC -ACGGAAAAGGTGGTAGGAATAGCC -ACGGAAAAGGTGGTAGGATAACCG -ACGGAAAAGGTGGTAGGAATGCCA -ACGGAAAAGGTGTCTTCGGGAAAC -ACGGAAAAGGTGTCTTCGAACACC -ACGGAAAAGGTGTCTTCGATCGAG -ACGGAAAAGGTGTCTTCGCTCCTT -ACGGAAAAGGTGTCTTCGCCTGTT -ACGGAAAAGGTGTCTTCGCGGTTT -ACGGAAAAGGTGTCTTCGGTGGTT -ACGGAAAAGGTGTCTTCGGCCTTT -ACGGAAAAGGTGTCTTCGGGTCTT -ACGGAAAAGGTGTCTTCGACGCTT -ACGGAAAAGGTGTCTTCGAGCGTT -ACGGAAAAGGTGTCTTCGTTCGTC -ACGGAAAAGGTGTCTTCGTCTCTC -ACGGAAAAGGTGTCTTCGTGGATC -ACGGAAAAGGTGTCTTCGCACTTC -ACGGAAAAGGTGTCTTCGGTACTC -ACGGAAAAGGTGTCTTCGGATGTC -ACGGAAAAGGTGTCTTCGACAGTC -ACGGAAAAGGTGTCTTCGTTGCTG -ACGGAAAAGGTGTCTTCGTCCATG -ACGGAAAAGGTGTCTTCGTGTGTG -ACGGAAAAGGTGTCTTCGCTAGTG -ACGGAAAAGGTGTCTTCGCATCTG -ACGGAAAAGGTGTCTTCGGAGTTG -ACGGAAAAGGTGTCTTCGAGACTG -ACGGAAAAGGTGTCTTCGTCGGTA -ACGGAAAAGGTGTCTTCGTGCCTA -ACGGAAAAGGTGTCTTCGCCACTA -ACGGAAAAGGTGTCTTCGGGAGTA -ACGGAAAAGGTGTCTTCGTCGTCT -ACGGAAAAGGTGTCTTCGTGCACT -ACGGAAAAGGTGTCTTCGCTGACT -ACGGAAAAGGTGTCTTCGCAACCT -ACGGAAAAGGTGTCTTCGGCTACT -ACGGAAAAGGTGTCTTCGGGATCT -ACGGAAAAGGTGTCTTCGAAGGCT -ACGGAAAAGGTGTCTTCGTCAACC -ACGGAAAAGGTGTCTTCGTGTTCC -ACGGAAAAGGTGTCTTCGATTCCC -ACGGAAAAGGTGTCTTCGTTCTCG -ACGGAAAAGGTGTCTTCGTAGACG -ACGGAAAAGGTGTCTTCGGTAACG -ACGGAAAAGGTGTCTTCGACTTCG -ACGGAAAAGGTGTCTTCGTACGCA -ACGGAAAAGGTGTCTTCGCTTGCA -ACGGAAAAGGTGTCTTCGCGAACA -ACGGAAAAGGTGTCTTCGCAGTCA -ACGGAAAAGGTGTCTTCGGATCCA -ACGGAAAAGGTGTCTTCGACGACA -ACGGAAAAGGTGTCTTCGAGCTCA -ACGGAAAAGGTGTCTTCGTCACGT -ACGGAAAAGGTGTCTTCGCGTAGT -ACGGAAAAGGTGTCTTCGGTCAGT -ACGGAAAAGGTGTCTTCGGAAGGT -ACGGAAAAGGTGTCTTCGAACCGT -ACGGAAAAGGTGTCTTCGTTGTGC -ACGGAAAAGGTGTCTTCGCTAAGC -ACGGAAAAGGTGTCTTCGACTAGC -ACGGAAAAGGTGTCTTCGAGATGC -ACGGAAAAGGTGTCTTCGTGAAGG -ACGGAAAAGGTGTCTTCGCAATGG -ACGGAAAAGGTGTCTTCGATGAGG -ACGGAAAAGGTGTCTTCGAATGGG -ACGGAAAAGGTGTCTTCGTCCTGA -ACGGAAAAGGTGTCTTCGTAGCGA -ACGGAAAAGGTGTCTTCGCACAGA -ACGGAAAAGGTGTCTTCGGCAAGA -ACGGAAAAGGTGTCTTCGGGTTGA -ACGGAAAAGGTGTCTTCGTCCGAT -ACGGAAAAGGTGTCTTCGTGGCAT -ACGGAAAAGGTGTCTTCGCGAGAT -ACGGAAAAGGTGTCTTCGTACCAC -ACGGAAAAGGTGTCTTCGCAGAAC -ACGGAAAAGGTGTCTTCGGTCTAC -ACGGAAAAGGTGTCTTCGACGTAC -ACGGAAAAGGTGTCTTCGAGTGAC -ACGGAAAAGGTGTCTTCGCTGTAG -ACGGAAAAGGTGTCTTCGCCTAAG -ACGGAAAAGGTGTCTTCGGTTCAG -ACGGAAAAGGTGTCTTCGGCATAG -ACGGAAAAGGTGTCTTCGGACAAG -ACGGAAAAGGTGTCTTCGAAGCAG -ACGGAAAAGGTGTCTTCGCGTCAA -ACGGAAAAGGTGTCTTCGGCTGAA -ACGGAAAAGGTGTCTTCGAGTACG -ACGGAAAAGGTGTCTTCGATCCGA -ACGGAAAAGGTGTCTTCGATGGGA -ACGGAAAAGGTGTCTTCGGTGCAA -ACGGAAAAGGTGTCTTCGGAGGAA -ACGGAAAAGGTGTCTTCGCAGGTA -ACGGAAAAGGTGTCTTCGGACTCT -ACGGAAAAGGTGTCTTCGAGTCCT -ACGGAAAAGGTGTCTTCGTAAGCC -ACGGAAAAGGTGTCTTCGATAGCC -ACGGAAAAGGTGTCTTCGTAACCG -ACGGAAAAGGTGTCTTCGATGCCA -ACGGAAAAGGTGACTTGCGGAAAC -ACGGAAAAGGTGACTTGCAACACC -ACGGAAAAGGTGACTTGCATCGAG -ACGGAAAAGGTGACTTGCCTCCTT -ACGGAAAAGGTGACTTGCCCTGTT -ACGGAAAAGGTGACTTGCCGGTTT -ACGGAAAAGGTGACTTGCGTGGTT -ACGGAAAAGGTGACTTGCGCCTTT -ACGGAAAAGGTGACTTGCGGTCTT -ACGGAAAAGGTGACTTGCACGCTT -ACGGAAAAGGTGACTTGCAGCGTT -ACGGAAAAGGTGACTTGCTTCGTC -ACGGAAAAGGTGACTTGCTCTCTC -ACGGAAAAGGTGACTTGCTGGATC -ACGGAAAAGGTGACTTGCCACTTC -ACGGAAAAGGTGACTTGCGTACTC -ACGGAAAAGGTGACTTGCGATGTC -ACGGAAAAGGTGACTTGCACAGTC -ACGGAAAAGGTGACTTGCTTGCTG -ACGGAAAAGGTGACTTGCTCCATG -ACGGAAAAGGTGACTTGCTGTGTG -ACGGAAAAGGTGACTTGCCTAGTG -ACGGAAAAGGTGACTTGCCATCTG -ACGGAAAAGGTGACTTGCGAGTTG -ACGGAAAAGGTGACTTGCAGACTG -ACGGAAAAGGTGACTTGCTCGGTA -ACGGAAAAGGTGACTTGCTGCCTA -ACGGAAAAGGTGACTTGCCCACTA -ACGGAAAAGGTGACTTGCGGAGTA -ACGGAAAAGGTGACTTGCTCGTCT -ACGGAAAAGGTGACTTGCTGCACT -ACGGAAAAGGTGACTTGCCTGACT -ACGGAAAAGGTGACTTGCCAACCT -ACGGAAAAGGTGACTTGCGCTACT -ACGGAAAAGGTGACTTGCGGATCT -ACGGAAAAGGTGACTTGCAAGGCT -ACGGAAAAGGTGACTTGCTCAACC -ACGGAAAAGGTGACTTGCTGTTCC -ACGGAAAAGGTGACTTGCATTCCC -ACGGAAAAGGTGACTTGCTTCTCG -ACGGAAAAGGTGACTTGCTAGACG -ACGGAAAAGGTGACTTGCGTAACG -ACGGAAAAGGTGACTTGCACTTCG -ACGGAAAAGGTGACTTGCTACGCA -ACGGAAAAGGTGACTTGCCTTGCA -ACGGAAAAGGTGACTTGCCGAACA -ACGGAAAAGGTGACTTGCCAGTCA -ACGGAAAAGGTGACTTGCGATCCA -ACGGAAAAGGTGACTTGCACGACA -ACGGAAAAGGTGACTTGCAGCTCA -ACGGAAAAGGTGACTTGCTCACGT -ACGGAAAAGGTGACTTGCCGTAGT -ACGGAAAAGGTGACTTGCGTCAGT -ACGGAAAAGGTGACTTGCGAAGGT -ACGGAAAAGGTGACTTGCAACCGT -ACGGAAAAGGTGACTTGCTTGTGC -ACGGAAAAGGTGACTTGCCTAAGC -ACGGAAAAGGTGACTTGCACTAGC -ACGGAAAAGGTGACTTGCAGATGC -ACGGAAAAGGTGACTTGCTGAAGG -ACGGAAAAGGTGACTTGCCAATGG -ACGGAAAAGGTGACTTGCATGAGG -ACGGAAAAGGTGACTTGCAATGGG -ACGGAAAAGGTGACTTGCTCCTGA -ACGGAAAAGGTGACTTGCTAGCGA -ACGGAAAAGGTGACTTGCCACAGA -ACGGAAAAGGTGACTTGCGCAAGA -ACGGAAAAGGTGACTTGCGGTTGA -ACGGAAAAGGTGACTTGCTCCGAT -ACGGAAAAGGTGACTTGCTGGCAT -ACGGAAAAGGTGACTTGCCGAGAT -ACGGAAAAGGTGACTTGCTACCAC -ACGGAAAAGGTGACTTGCCAGAAC -ACGGAAAAGGTGACTTGCGTCTAC -ACGGAAAAGGTGACTTGCACGTAC -ACGGAAAAGGTGACTTGCAGTGAC -ACGGAAAAGGTGACTTGCCTGTAG -ACGGAAAAGGTGACTTGCCCTAAG -ACGGAAAAGGTGACTTGCGTTCAG -ACGGAAAAGGTGACTTGCGCATAG -ACGGAAAAGGTGACTTGCGACAAG -ACGGAAAAGGTGACTTGCAAGCAG -ACGGAAAAGGTGACTTGCCGTCAA -ACGGAAAAGGTGACTTGCGCTGAA -ACGGAAAAGGTGACTTGCAGTACG -ACGGAAAAGGTGACTTGCATCCGA -ACGGAAAAGGTGACTTGCATGGGA -ACGGAAAAGGTGACTTGCGTGCAA -ACGGAAAAGGTGACTTGCGAGGAA -ACGGAAAAGGTGACTTGCCAGGTA -ACGGAAAAGGTGACTTGCGACTCT -ACGGAAAAGGTGACTTGCAGTCCT -ACGGAAAAGGTGACTTGCTAAGCC -ACGGAAAAGGTGACTTGCATAGCC -ACGGAAAAGGTGACTTGCTAACCG -ACGGAAAAGGTGACTTGCATGCCA -ACGGAAAAGGTGACTCTGGGAAAC -ACGGAAAAGGTGACTCTGAACACC -ACGGAAAAGGTGACTCTGATCGAG -ACGGAAAAGGTGACTCTGCTCCTT -ACGGAAAAGGTGACTCTGCCTGTT -ACGGAAAAGGTGACTCTGCGGTTT -ACGGAAAAGGTGACTCTGGTGGTT -ACGGAAAAGGTGACTCTGGCCTTT -ACGGAAAAGGTGACTCTGGGTCTT -ACGGAAAAGGTGACTCTGACGCTT -ACGGAAAAGGTGACTCTGAGCGTT -ACGGAAAAGGTGACTCTGTTCGTC -ACGGAAAAGGTGACTCTGTCTCTC -ACGGAAAAGGTGACTCTGTGGATC -ACGGAAAAGGTGACTCTGCACTTC -ACGGAAAAGGTGACTCTGGTACTC -ACGGAAAAGGTGACTCTGGATGTC -ACGGAAAAGGTGACTCTGACAGTC -ACGGAAAAGGTGACTCTGTTGCTG -ACGGAAAAGGTGACTCTGTCCATG -ACGGAAAAGGTGACTCTGTGTGTG -ACGGAAAAGGTGACTCTGCTAGTG -ACGGAAAAGGTGACTCTGCATCTG -ACGGAAAAGGTGACTCTGGAGTTG -ACGGAAAAGGTGACTCTGAGACTG -ACGGAAAAGGTGACTCTGTCGGTA -ACGGAAAAGGTGACTCTGTGCCTA -ACGGAAAAGGTGACTCTGCCACTA -ACGGAAAAGGTGACTCTGGGAGTA -ACGGAAAAGGTGACTCTGTCGTCT -ACGGAAAAGGTGACTCTGTGCACT -ACGGAAAAGGTGACTCTGCTGACT -ACGGAAAAGGTGACTCTGCAACCT -ACGGAAAAGGTGACTCTGGCTACT -ACGGAAAAGGTGACTCTGGGATCT -ACGGAAAAGGTGACTCTGAAGGCT -ACGGAAAAGGTGACTCTGTCAACC -ACGGAAAAGGTGACTCTGTGTTCC -ACGGAAAAGGTGACTCTGATTCCC -ACGGAAAAGGTGACTCTGTTCTCG -ACGGAAAAGGTGACTCTGTAGACG -ACGGAAAAGGTGACTCTGGTAACG -ACGGAAAAGGTGACTCTGACTTCG -ACGGAAAAGGTGACTCTGTACGCA -ACGGAAAAGGTGACTCTGCTTGCA -ACGGAAAAGGTGACTCTGCGAACA -ACGGAAAAGGTGACTCTGCAGTCA -ACGGAAAAGGTGACTCTGGATCCA -ACGGAAAAGGTGACTCTGACGACA -ACGGAAAAGGTGACTCTGAGCTCA -ACGGAAAAGGTGACTCTGTCACGT -ACGGAAAAGGTGACTCTGCGTAGT -ACGGAAAAGGTGACTCTGGTCAGT -ACGGAAAAGGTGACTCTGGAAGGT -ACGGAAAAGGTGACTCTGAACCGT -ACGGAAAAGGTGACTCTGTTGTGC -ACGGAAAAGGTGACTCTGCTAAGC -ACGGAAAAGGTGACTCTGACTAGC -ACGGAAAAGGTGACTCTGAGATGC -ACGGAAAAGGTGACTCTGTGAAGG -ACGGAAAAGGTGACTCTGCAATGG -ACGGAAAAGGTGACTCTGATGAGG -ACGGAAAAGGTGACTCTGAATGGG -ACGGAAAAGGTGACTCTGTCCTGA -ACGGAAAAGGTGACTCTGTAGCGA -ACGGAAAAGGTGACTCTGCACAGA -ACGGAAAAGGTGACTCTGGCAAGA -ACGGAAAAGGTGACTCTGGGTTGA -ACGGAAAAGGTGACTCTGTCCGAT -ACGGAAAAGGTGACTCTGTGGCAT -ACGGAAAAGGTGACTCTGCGAGAT -ACGGAAAAGGTGACTCTGTACCAC -ACGGAAAAGGTGACTCTGCAGAAC -ACGGAAAAGGTGACTCTGGTCTAC -ACGGAAAAGGTGACTCTGACGTAC -ACGGAAAAGGTGACTCTGAGTGAC -ACGGAAAAGGTGACTCTGCTGTAG -ACGGAAAAGGTGACTCTGCCTAAG -ACGGAAAAGGTGACTCTGGTTCAG -ACGGAAAAGGTGACTCTGGCATAG -ACGGAAAAGGTGACTCTGGACAAG -ACGGAAAAGGTGACTCTGAAGCAG -ACGGAAAAGGTGACTCTGCGTCAA -ACGGAAAAGGTGACTCTGGCTGAA -ACGGAAAAGGTGACTCTGAGTACG -ACGGAAAAGGTGACTCTGATCCGA -ACGGAAAAGGTGACTCTGATGGGA -ACGGAAAAGGTGACTCTGGTGCAA -ACGGAAAAGGTGACTCTGGAGGAA -ACGGAAAAGGTGACTCTGCAGGTA -ACGGAAAAGGTGACTCTGGACTCT -ACGGAAAAGGTGACTCTGAGTCCT -ACGGAAAAGGTGACTCTGTAAGCC -ACGGAAAAGGTGACTCTGATAGCC -ACGGAAAAGGTGACTCTGTAACCG -ACGGAAAAGGTGACTCTGATGCCA -ACGGAAAAGGTGCCTCAAGGAAAC -ACGGAAAAGGTGCCTCAAAACACC -ACGGAAAAGGTGCCTCAAATCGAG -ACGGAAAAGGTGCCTCAACTCCTT -ACGGAAAAGGTGCCTCAACCTGTT -ACGGAAAAGGTGCCTCAACGGTTT -ACGGAAAAGGTGCCTCAAGTGGTT -ACGGAAAAGGTGCCTCAAGCCTTT -ACGGAAAAGGTGCCTCAAGGTCTT -ACGGAAAAGGTGCCTCAAACGCTT -ACGGAAAAGGTGCCTCAAAGCGTT -ACGGAAAAGGTGCCTCAATTCGTC -ACGGAAAAGGTGCCTCAATCTCTC -ACGGAAAAGGTGCCTCAATGGATC -ACGGAAAAGGTGCCTCAACACTTC -ACGGAAAAGGTGCCTCAAGTACTC -ACGGAAAAGGTGCCTCAAGATGTC -ACGGAAAAGGTGCCTCAAACAGTC -ACGGAAAAGGTGCCTCAATTGCTG -ACGGAAAAGGTGCCTCAATCCATG -ACGGAAAAGGTGCCTCAATGTGTG -ACGGAAAAGGTGCCTCAACTAGTG -ACGGAAAAGGTGCCTCAACATCTG -ACGGAAAAGGTGCCTCAAGAGTTG -ACGGAAAAGGTGCCTCAAAGACTG -ACGGAAAAGGTGCCTCAATCGGTA -ACGGAAAAGGTGCCTCAATGCCTA -ACGGAAAAGGTGCCTCAACCACTA -ACGGAAAAGGTGCCTCAAGGAGTA -ACGGAAAAGGTGCCTCAATCGTCT -ACGGAAAAGGTGCCTCAATGCACT -ACGGAAAAGGTGCCTCAACTGACT -ACGGAAAAGGTGCCTCAACAACCT -ACGGAAAAGGTGCCTCAAGCTACT -ACGGAAAAGGTGCCTCAAGGATCT -ACGGAAAAGGTGCCTCAAAAGGCT -ACGGAAAAGGTGCCTCAATCAACC -ACGGAAAAGGTGCCTCAATGTTCC -ACGGAAAAGGTGCCTCAAATTCCC -ACGGAAAAGGTGCCTCAATTCTCG -ACGGAAAAGGTGCCTCAATAGACG -ACGGAAAAGGTGCCTCAAGTAACG -ACGGAAAAGGTGCCTCAAACTTCG -ACGGAAAAGGTGCCTCAATACGCA -ACGGAAAAGGTGCCTCAACTTGCA -ACGGAAAAGGTGCCTCAACGAACA -ACGGAAAAGGTGCCTCAACAGTCA -ACGGAAAAGGTGCCTCAAGATCCA -ACGGAAAAGGTGCCTCAAACGACA -ACGGAAAAGGTGCCTCAAAGCTCA -ACGGAAAAGGTGCCTCAATCACGT -ACGGAAAAGGTGCCTCAACGTAGT -ACGGAAAAGGTGCCTCAAGTCAGT -ACGGAAAAGGTGCCTCAAGAAGGT -ACGGAAAAGGTGCCTCAAAACCGT -ACGGAAAAGGTGCCTCAATTGTGC -ACGGAAAAGGTGCCTCAACTAAGC -ACGGAAAAGGTGCCTCAAACTAGC -ACGGAAAAGGTGCCTCAAAGATGC -ACGGAAAAGGTGCCTCAATGAAGG -ACGGAAAAGGTGCCTCAACAATGG -ACGGAAAAGGTGCCTCAAATGAGG -ACGGAAAAGGTGCCTCAAAATGGG -ACGGAAAAGGTGCCTCAATCCTGA -ACGGAAAAGGTGCCTCAATAGCGA -ACGGAAAAGGTGCCTCAACACAGA -ACGGAAAAGGTGCCTCAAGCAAGA -ACGGAAAAGGTGCCTCAAGGTTGA -ACGGAAAAGGTGCCTCAATCCGAT -ACGGAAAAGGTGCCTCAATGGCAT -ACGGAAAAGGTGCCTCAACGAGAT -ACGGAAAAGGTGCCTCAATACCAC -ACGGAAAAGGTGCCTCAACAGAAC -ACGGAAAAGGTGCCTCAAGTCTAC -ACGGAAAAGGTGCCTCAAACGTAC -ACGGAAAAGGTGCCTCAAAGTGAC -ACGGAAAAGGTGCCTCAACTGTAG -ACGGAAAAGGTGCCTCAACCTAAG -ACGGAAAAGGTGCCTCAAGTTCAG -ACGGAAAAGGTGCCTCAAGCATAG -ACGGAAAAGGTGCCTCAAGACAAG -ACGGAAAAGGTGCCTCAAAAGCAG -ACGGAAAAGGTGCCTCAACGTCAA -ACGGAAAAGGTGCCTCAAGCTGAA -ACGGAAAAGGTGCCTCAAAGTACG -ACGGAAAAGGTGCCTCAAATCCGA -ACGGAAAAGGTGCCTCAAATGGGA -ACGGAAAAGGTGCCTCAAGTGCAA -ACGGAAAAGGTGCCTCAAGAGGAA -ACGGAAAAGGTGCCTCAACAGGTA -ACGGAAAAGGTGCCTCAAGACTCT -ACGGAAAAGGTGCCTCAAAGTCCT -ACGGAAAAGGTGCCTCAATAAGCC -ACGGAAAAGGTGCCTCAAATAGCC -ACGGAAAAGGTGCCTCAATAACCG -ACGGAAAAGGTGCCTCAAATGCCA -ACGGAAAAGGTGACTGCTGGAAAC -ACGGAAAAGGTGACTGCTAACACC -ACGGAAAAGGTGACTGCTATCGAG -ACGGAAAAGGTGACTGCTCTCCTT -ACGGAAAAGGTGACTGCTCCTGTT -ACGGAAAAGGTGACTGCTCGGTTT -ACGGAAAAGGTGACTGCTGTGGTT -ACGGAAAAGGTGACTGCTGCCTTT -ACGGAAAAGGTGACTGCTGGTCTT -ACGGAAAAGGTGACTGCTACGCTT -ACGGAAAAGGTGACTGCTAGCGTT -ACGGAAAAGGTGACTGCTTTCGTC -ACGGAAAAGGTGACTGCTTCTCTC -ACGGAAAAGGTGACTGCTTGGATC -ACGGAAAAGGTGACTGCTCACTTC -ACGGAAAAGGTGACTGCTGTACTC -ACGGAAAAGGTGACTGCTGATGTC -ACGGAAAAGGTGACTGCTACAGTC -ACGGAAAAGGTGACTGCTTTGCTG -ACGGAAAAGGTGACTGCTTCCATG -ACGGAAAAGGTGACTGCTTGTGTG -ACGGAAAAGGTGACTGCTCTAGTG -ACGGAAAAGGTGACTGCTCATCTG -ACGGAAAAGGTGACTGCTGAGTTG -ACGGAAAAGGTGACTGCTAGACTG -ACGGAAAAGGTGACTGCTTCGGTA -ACGGAAAAGGTGACTGCTTGCCTA -ACGGAAAAGGTGACTGCTCCACTA -ACGGAAAAGGTGACTGCTGGAGTA -ACGGAAAAGGTGACTGCTTCGTCT -ACGGAAAAGGTGACTGCTTGCACT -ACGGAAAAGGTGACTGCTCTGACT -ACGGAAAAGGTGACTGCTCAACCT -ACGGAAAAGGTGACTGCTGCTACT -ACGGAAAAGGTGACTGCTGGATCT -ACGGAAAAGGTGACTGCTAAGGCT -ACGGAAAAGGTGACTGCTTCAACC -ACGGAAAAGGTGACTGCTTGTTCC -ACGGAAAAGGTGACTGCTATTCCC -ACGGAAAAGGTGACTGCTTTCTCG -ACGGAAAAGGTGACTGCTTAGACG -ACGGAAAAGGTGACTGCTGTAACG -ACGGAAAAGGTGACTGCTACTTCG -ACGGAAAAGGTGACTGCTTACGCA -ACGGAAAAGGTGACTGCTCTTGCA -ACGGAAAAGGTGACTGCTCGAACA -ACGGAAAAGGTGACTGCTCAGTCA -ACGGAAAAGGTGACTGCTGATCCA -ACGGAAAAGGTGACTGCTACGACA -ACGGAAAAGGTGACTGCTAGCTCA -ACGGAAAAGGTGACTGCTTCACGT -ACGGAAAAGGTGACTGCTCGTAGT -ACGGAAAAGGTGACTGCTGTCAGT -ACGGAAAAGGTGACTGCTGAAGGT -ACGGAAAAGGTGACTGCTAACCGT -ACGGAAAAGGTGACTGCTTTGTGC -ACGGAAAAGGTGACTGCTCTAAGC -ACGGAAAAGGTGACTGCTACTAGC -ACGGAAAAGGTGACTGCTAGATGC -ACGGAAAAGGTGACTGCTTGAAGG -ACGGAAAAGGTGACTGCTCAATGG -ACGGAAAAGGTGACTGCTATGAGG -ACGGAAAAGGTGACTGCTAATGGG -ACGGAAAAGGTGACTGCTTCCTGA -ACGGAAAAGGTGACTGCTTAGCGA -ACGGAAAAGGTGACTGCTCACAGA -ACGGAAAAGGTGACTGCTGCAAGA -ACGGAAAAGGTGACTGCTGGTTGA -ACGGAAAAGGTGACTGCTTCCGAT -ACGGAAAAGGTGACTGCTTGGCAT -ACGGAAAAGGTGACTGCTCGAGAT -ACGGAAAAGGTGACTGCTTACCAC -ACGGAAAAGGTGACTGCTCAGAAC -ACGGAAAAGGTGACTGCTGTCTAC -ACGGAAAAGGTGACTGCTACGTAC -ACGGAAAAGGTGACTGCTAGTGAC -ACGGAAAAGGTGACTGCTCTGTAG -ACGGAAAAGGTGACTGCTCCTAAG -ACGGAAAAGGTGACTGCTGTTCAG -ACGGAAAAGGTGACTGCTGCATAG -ACGGAAAAGGTGACTGCTGACAAG -ACGGAAAAGGTGACTGCTAAGCAG -ACGGAAAAGGTGACTGCTCGTCAA -ACGGAAAAGGTGACTGCTGCTGAA -ACGGAAAAGGTGACTGCTAGTACG -ACGGAAAAGGTGACTGCTATCCGA -ACGGAAAAGGTGACTGCTATGGGA -ACGGAAAAGGTGACTGCTGTGCAA -ACGGAAAAGGTGACTGCTGAGGAA -ACGGAAAAGGTGACTGCTCAGGTA -ACGGAAAAGGTGACTGCTGACTCT -ACGGAAAAGGTGACTGCTAGTCCT -ACGGAAAAGGTGACTGCTTAAGCC -ACGGAAAAGGTGACTGCTATAGCC -ACGGAAAAGGTGACTGCTTAACCG -ACGGAAAAGGTGACTGCTATGCCA -ACGGAAAAGGTGTCTGGAGGAAAC -ACGGAAAAGGTGTCTGGAAACACC -ACGGAAAAGGTGTCTGGAATCGAG -ACGGAAAAGGTGTCTGGACTCCTT -ACGGAAAAGGTGTCTGGACCTGTT -ACGGAAAAGGTGTCTGGACGGTTT -ACGGAAAAGGTGTCTGGAGTGGTT -ACGGAAAAGGTGTCTGGAGCCTTT -ACGGAAAAGGTGTCTGGAGGTCTT -ACGGAAAAGGTGTCTGGAACGCTT -ACGGAAAAGGTGTCTGGAAGCGTT -ACGGAAAAGGTGTCTGGATTCGTC -ACGGAAAAGGTGTCTGGATCTCTC -ACGGAAAAGGTGTCTGGATGGATC -ACGGAAAAGGTGTCTGGACACTTC -ACGGAAAAGGTGTCTGGAGTACTC -ACGGAAAAGGTGTCTGGAGATGTC -ACGGAAAAGGTGTCTGGAACAGTC -ACGGAAAAGGTGTCTGGATTGCTG -ACGGAAAAGGTGTCTGGATCCATG -ACGGAAAAGGTGTCTGGATGTGTG -ACGGAAAAGGTGTCTGGACTAGTG -ACGGAAAAGGTGTCTGGACATCTG -ACGGAAAAGGTGTCTGGAGAGTTG -ACGGAAAAGGTGTCTGGAAGACTG -ACGGAAAAGGTGTCTGGATCGGTA -ACGGAAAAGGTGTCTGGATGCCTA -ACGGAAAAGGTGTCTGGACCACTA -ACGGAAAAGGTGTCTGGAGGAGTA -ACGGAAAAGGTGTCTGGATCGTCT -ACGGAAAAGGTGTCTGGATGCACT -ACGGAAAAGGTGTCTGGACTGACT -ACGGAAAAGGTGTCTGGACAACCT -ACGGAAAAGGTGTCTGGAGCTACT -ACGGAAAAGGTGTCTGGAGGATCT -ACGGAAAAGGTGTCTGGAAAGGCT -ACGGAAAAGGTGTCTGGATCAACC -ACGGAAAAGGTGTCTGGATGTTCC -ACGGAAAAGGTGTCTGGAATTCCC -ACGGAAAAGGTGTCTGGATTCTCG -ACGGAAAAGGTGTCTGGATAGACG -ACGGAAAAGGTGTCTGGAGTAACG -ACGGAAAAGGTGTCTGGAACTTCG -ACGGAAAAGGTGTCTGGATACGCA -ACGGAAAAGGTGTCTGGACTTGCA -ACGGAAAAGGTGTCTGGACGAACA -ACGGAAAAGGTGTCTGGACAGTCA -ACGGAAAAGGTGTCTGGAGATCCA -ACGGAAAAGGTGTCTGGAACGACA -ACGGAAAAGGTGTCTGGAAGCTCA -ACGGAAAAGGTGTCTGGATCACGT -ACGGAAAAGGTGTCTGGACGTAGT -ACGGAAAAGGTGTCTGGAGTCAGT -ACGGAAAAGGTGTCTGGAGAAGGT -ACGGAAAAGGTGTCTGGAAACCGT -ACGGAAAAGGTGTCTGGATTGTGC -ACGGAAAAGGTGTCTGGACTAAGC -ACGGAAAAGGTGTCTGGAACTAGC -ACGGAAAAGGTGTCTGGAAGATGC -ACGGAAAAGGTGTCTGGATGAAGG -ACGGAAAAGGTGTCTGGACAATGG -ACGGAAAAGGTGTCTGGAATGAGG -ACGGAAAAGGTGTCTGGAAATGGG -ACGGAAAAGGTGTCTGGATCCTGA -ACGGAAAAGGTGTCTGGATAGCGA -ACGGAAAAGGTGTCTGGACACAGA -ACGGAAAAGGTGTCTGGAGCAAGA -ACGGAAAAGGTGTCTGGAGGTTGA -ACGGAAAAGGTGTCTGGATCCGAT -ACGGAAAAGGTGTCTGGATGGCAT -ACGGAAAAGGTGTCTGGACGAGAT -ACGGAAAAGGTGTCTGGATACCAC -ACGGAAAAGGTGTCTGGACAGAAC -ACGGAAAAGGTGTCTGGAGTCTAC -ACGGAAAAGGTGTCTGGAACGTAC -ACGGAAAAGGTGTCTGGAAGTGAC -ACGGAAAAGGTGTCTGGACTGTAG -ACGGAAAAGGTGTCTGGACCTAAG -ACGGAAAAGGTGTCTGGAGTTCAG -ACGGAAAAGGTGTCTGGAGCATAG -ACGGAAAAGGTGTCTGGAGACAAG -ACGGAAAAGGTGTCTGGAAAGCAG -ACGGAAAAGGTGTCTGGACGTCAA -ACGGAAAAGGTGTCTGGAGCTGAA -ACGGAAAAGGTGTCTGGAAGTACG -ACGGAAAAGGTGTCTGGAATCCGA -ACGGAAAAGGTGTCTGGAATGGGA -ACGGAAAAGGTGTCTGGAGTGCAA -ACGGAAAAGGTGTCTGGAGAGGAA -ACGGAAAAGGTGTCTGGACAGGTA -ACGGAAAAGGTGTCTGGAGACTCT -ACGGAAAAGGTGTCTGGAAGTCCT -ACGGAAAAGGTGTCTGGATAAGCC -ACGGAAAAGGTGTCTGGAATAGCC -ACGGAAAAGGTGTCTGGATAACCG -ACGGAAAAGGTGTCTGGAATGCCA -ACGGAAAAGGTGGCTAAGGGAAAC -ACGGAAAAGGTGGCTAAGAACACC -ACGGAAAAGGTGGCTAAGATCGAG -ACGGAAAAGGTGGCTAAGCTCCTT -ACGGAAAAGGTGGCTAAGCCTGTT -ACGGAAAAGGTGGCTAAGCGGTTT -ACGGAAAAGGTGGCTAAGGTGGTT -ACGGAAAAGGTGGCTAAGGCCTTT -ACGGAAAAGGTGGCTAAGGGTCTT -ACGGAAAAGGTGGCTAAGACGCTT -ACGGAAAAGGTGGCTAAGAGCGTT -ACGGAAAAGGTGGCTAAGTTCGTC -ACGGAAAAGGTGGCTAAGTCTCTC -ACGGAAAAGGTGGCTAAGTGGATC -ACGGAAAAGGTGGCTAAGCACTTC -ACGGAAAAGGTGGCTAAGGTACTC -ACGGAAAAGGTGGCTAAGGATGTC -ACGGAAAAGGTGGCTAAGACAGTC -ACGGAAAAGGTGGCTAAGTTGCTG -ACGGAAAAGGTGGCTAAGTCCATG -ACGGAAAAGGTGGCTAAGTGTGTG -ACGGAAAAGGTGGCTAAGCTAGTG -ACGGAAAAGGTGGCTAAGCATCTG -ACGGAAAAGGTGGCTAAGGAGTTG -ACGGAAAAGGTGGCTAAGAGACTG -ACGGAAAAGGTGGCTAAGTCGGTA -ACGGAAAAGGTGGCTAAGTGCCTA -ACGGAAAAGGTGGCTAAGCCACTA -ACGGAAAAGGTGGCTAAGGGAGTA -ACGGAAAAGGTGGCTAAGTCGTCT -ACGGAAAAGGTGGCTAAGTGCACT -ACGGAAAAGGTGGCTAAGCTGACT -ACGGAAAAGGTGGCTAAGCAACCT -ACGGAAAAGGTGGCTAAGGCTACT -ACGGAAAAGGTGGCTAAGGGATCT -ACGGAAAAGGTGGCTAAGAAGGCT -ACGGAAAAGGTGGCTAAGTCAACC -ACGGAAAAGGTGGCTAAGTGTTCC -ACGGAAAAGGTGGCTAAGATTCCC -ACGGAAAAGGTGGCTAAGTTCTCG -ACGGAAAAGGTGGCTAAGTAGACG -ACGGAAAAGGTGGCTAAGGTAACG -ACGGAAAAGGTGGCTAAGACTTCG -ACGGAAAAGGTGGCTAAGTACGCA -ACGGAAAAGGTGGCTAAGCTTGCA -ACGGAAAAGGTGGCTAAGCGAACA -ACGGAAAAGGTGGCTAAGCAGTCA -ACGGAAAAGGTGGCTAAGGATCCA -ACGGAAAAGGTGGCTAAGACGACA -ACGGAAAAGGTGGCTAAGAGCTCA -ACGGAAAAGGTGGCTAAGTCACGT -ACGGAAAAGGTGGCTAAGCGTAGT -ACGGAAAAGGTGGCTAAGGTCAGT -ACGGAAAAGGTGGCTAAGGAAGGT -ACGGAAAAGGTGGCTAAGAACCGT -ACGGAAAAGGTGGCTAAGTTGTGC -ACGGAAAAGGTGGCTAAGCTAAGC -ACGGAAAAGGTGGCTAAGACTAGC -ACGGAAAAGGTGGCTAAGAGATGC -ACGGAAAAGGTGGCTAAGTGAAGG -ACGGAAAAGGTGGCTAAGCAATGG -ACGGAAAAGGTGGCTAAGATGAGG -ACGGAAAAGGTGGCTAAGAATGGG -ACGGAAAAGGTGGCTAAGTCCTGA -ACGGAAAAGGTGGCTAAGTAGCGA -ACGGAAAAGGTGGCTAAGCACAGA -ACGGAAAAGGTGGCTAAGGCAAGA -ACGGAAAAGGTGGCTAAGGGTTGA -ACGGAAAAGGTGGCTAAGTCCGAT -ACGGAAAAGGTGGCTAAGTGGCAT -ACGGAAAAGGTGGCTAAGCGAGAT -ACGGAAAAGGTGGCTAAGTACCAC -ACGGAAAAGGTGGCTAAGCAGAAC -ACGGAAAAGGTGGCTAAGGTCTAC -ACGGAAAAGGTGGCTAAGACGTAC -ACGGAAAAGGTGGCTAAGAGTGAC -ACGGAAAAGGTGGCTAAGCTGTAG -ACGGAAAAGGTGGCTAAGCCTAAG -ACGGAAAAGGTGGCTAAGGTTCAG -ACGGAAAAGGTGGCTAAGGCATAG -ACGGAAAAGGTGGCTAAGGACAAG -ACGGAAAAGGTGGCTAAGAAGCAG -ACGGAAAAGGTGGCTAAGCGTCAA -ACGGAAAAGGTGGCTAAGGCTGAA -ACGGAAAAGGTGGCTAAGAGTACG -ACGGAAAAGGTGGCTAAGATCCGA -ACGGAAAAGGTGGCTAAGATGGGA -ACGGAAAAGGTGGCTAAGGTGCAA -ACGGAAAAGGTGGCTAAGGAGGAA -ACGGAAAAGGTGGCTAAGCAGGTA -ACGGAAAAGGTGGCTAAGGACTCT -ACGGAAAAGGTGGCTAAGAGTCCT -ACGGAAAAGGTGGCTAAGTAAGCC -ACGGAAAAGGTGGCTAAGATAGCC -ACGGAAAAGGTGGCTAAGTAACCG -ACGGAAAAGGTGGCTAAGATGCCA -ACGGAAAAGGTGACCTCAGGAAAC -ACGGAAAAGGTGACCTCAAACACC -ACGGAAAAGGTGACCTCAATCGAG -ACGGAAAAGGTGACCTCACTCCTT -ACGGAAAAGGTGACCTCACCTGTT -ACGGAAAAGGTGACCTCACGGTTT -ACGGAAAAGGTGACCTCAGTGGTT -ACGGAAAAGGTGACCTCAGCCTTT -ACGGAAAAGGTGACCTCAGGTCTT -ACGGAAAAGGTGACCTCAACGCTT -ACGGAAAAGGTGACCTCAAGCGTT -ACGGAAAAGGTGACCTCATTCGTC -ACGGAAAAGGTGACCTCATCTCTC -ACGGAAAAGGTGACCTCATGGATC -ACGGAAAAGGTGACCTCACACTTC -ACGGAAAAGGTGACCTCAGTACTC -ACGGAAAAGGTGACCTCAGATGTC -ACGGAAAAGGTGACCTCAACAGTC -ACGGAAAAGGTGACCTCATTGCTG -ACGGAAAAGGTGACCTCATCCATG -ACGGAAAAGGTGACCTCATGTGTG -ACGGAAAAGGTGACCTCACTAGTG -ACGGAAAAGGTGACCTCACATCTG -ACGGAAAAGGTGACCTCAGAGTTG -ACGGAAAAGGTGACCTCAAGACTG -ACGGAAAAGGTGACCTCATCGGTA -ACGGAAAAGGTGACCTCATGCCTA -ACGGAAAAGGTGACCTCACCACTA -ACGGAAAAGGTGACCTCAGGAGTA -ACGGAAAAGGTGACCTCATCGTCT -ACGGAAAAGGTGACCTCATGCACT -ACGGAAAAGGTGACCTCACTGACT -ACGGAAAAGGTGACCTCACAACCT -ACGGAAAAGGTGACCTCAGCTACT -ACGGAAAAGGTGACCTCAGGATCT -ACGGAAAAGGTGACCTCAAAGGCT -ACGGAAAAGGTGACCTCATCAACC -ACGGAAAAGGTGACCTCATGTTCC -ACGGAAAAGGTGACCTCAATTCCC -ACGGAAAAGGTGACCTCATTCTCG -ACGGAAAAGGTGACCTCATAGACG -ACGGAAAAGGTGACCTCAGTAACG -ACGGAAAAGGTGACCTCAACTTCG -ACGGAAAAGGTGACCTCATACGCA -ACGGAAAAGGTGACCTCACTTGCA -ACGGAAAAGGTGACCTCACGAACA -ACGGAAAAGGTGACCTCACAGTCA -ACGGAAAAGGTGACCTCAGATCCA -ACGGAAAAGGTGACCTCAACGACA -ACGGAAAAGGTGACCTCAAGCTCA -ACGGAAAAGGTGACCTCATCACGT -ACGGAAAAGGTGACCTCACGTAGT -ACGGAAAAGGTGACCTCAGTCAGT -ACGGAAAAGGTGACCTCAGAAGGT -ACGGAAAAGGTGACCTCAAACCGT -ACGGAAAAGGTGACCTCATTGTGC -ACGGAAAAGGTGACCTCACTAAGC -ACGGAAAAGGTGACCTCAACTAGC -ACGGAAAAGGTGACCTCAAGATGC -ACGGAAAAGGTGACCTCATGAAGG -ACGGAAAAGGTGACCTCACAATGG -ACGGAAAAGGTGACCTCAATGAGG -ACGGAAAAGGTGACCTCAAATGGG -ACGGAAAAGGTGACCTCATCCTGA -ACGGAAAAGGTGACCTCATAGCGA -ACGGAAAAGGTGACCTCACACAGA -ACGGAAAAGGTGACCTCAGCAAGA -ACGGAAAAGGTGACCTCAGGTTGA -ACGGAAAAGGTGACCTCATCCGAT -ACGGAAAAGGTGACCTCATGGCAT -ACGGAAAAGGTGACCTCACGAGAT -ACGGAAAAGGTGACCTCATACCAC -ACGGAAAAGGTGACCTCACAGAAC -ACGGAAAAGGTGACCTCAGTCTAC -ACGGAAAAGGTGACCTCAACGTAC -ACGGAAAAGGTGACCTCAAGTGAC -ACGGAAAAGGTGACCTCACTGTAG -ACGGAAAAGGTGACCTCACCTAAG -ACGGAAAAGGTGACCTCAGTTCAG -ACGGAAAAGGTGACCTCAGCATAG -ACGGAAAAGGTGACCTCAGACAAG -ACGGAAAAGGTGACCTCAAAGCAG -ACGGAAAAGGTGACCTCACGTCAA -ACGGAAAAGGTGACCTCAGCTGAA -ACGGAAAAGGTGACCTCAAGTACG -ACGGAAAAGGTGACCTCAATCCGA -ACGGAAAAGGTGACCTCAATGGGA -ACGGAAAAGGTGACCTCAGTGCAA -ACGGAAAAGGTGACCTCAGAGGAA -ACGGAAAAGGTGACCTCACAGGTA -ACGGAAAAGGTGACCTCAGACTCT -ACGGAAAAGGTGACCTCAAGTCCT -ACGGAAAAGGTGACCTCATAAGCC -ACGGAAAAGGTGACCTCAATAGCC -ACGGAAAAGGTGACCTCATAACCG -ACGGAAAAGGTGACCTCAATGCCA -ACGGAAAAGGTGTCCTGTGGAAAC -ACGGAAAAGGTGTCCTGTAACACC -ACGGAAAAGGTGTCCTGTATCGAG -ACGGAAAAGGTGTCCTGTCTCCTT -ACGGAAAAGGTGTCCTGTCCTGTT -ACGGAAAAGGTGTCCTGTCGGTTT -ACGGAAAAGGTGTCCTGTGTGGTT -ACGGAAAAGGTGTCCTGTGCCTTT -ACGGAAAAGGTGTCCTGTGGTCTT -ACGGAAAAGGTGTCCTGTACGCTT -ACGGAAAAGGTGTCCTGTAGCGTT -ACGGAAAAGGTGTCCTGTTTCGTC -ACGGAAAAGGTGTCCTGTTCTCTC -ACGGAAAAGGTGTCCTGTTGGATC -ACGGAAAAGGTGTCCTGTCACTTC -ACGGAAAAGGTGTCCTGTGTACTC -ACGGAAAAGGTGTCCTGTGATGTC -ACGGAAAAGGTGTCCTGTACAGTC -ACGGAAAAGGTGTCCTGTTTGCTG -ACGGAAAAGGTGTCCTGTTCCATG -ACGGAAAAGGTGTCCTGTTGTGTG -ACGGAAAAGGTGTCCTGTCTAGTG -ACGGAAAAGGTGTCCTGTCATCTG -ACGGAAAAGGTGTCCTGTGAGTTG -ACGGAAAAGGTGTCCTGTAGACTG -ACGGAAAAGGTGTCCTGTTCGGTA -ACGGAAAAGGTGTCCTGTTGCCTA -ACGGAAAAGGTGTCCTGTCCACTA -ACGGAAAAGGTGTCCTGTGGAGTA -ACGGAAAAGGTGTCCTGTTCGTCT -ACGGAAAAGGTGTCCTGTTGCACT -ACGGAAAAGGTGTCCTGTCTGACT -ACGGAAAAGGTGTCCTGTCAACCT -ACGGAAAAGGTGTCCTGTGCTACT -ACGGAAAAGGTGTCCTGTGGATCT -ACGGAAAAGGTGTCCTGTAAGGCT -ACGGAAAAGGTGTCCTGTTCAACC -ACGGAAAAGGTGTCCTGTTGTTCC -ACGGAAAAGGTGTCCTGTATTCCC -ACGGAAAAGGTGTCCTGTTTCTCG -ACGGAAAAGGTGTCCTGTTAGACG -ACGGAAAAGGTGTCCTGTGTAACG -ACGGAAAAGGTGTCCTGTACTTCG -ACGGAAAAGGTGTCCTGTTACGCA -ACGGAAAAGGTGTCCTGTCTTGCA -ACGGAAAAGGTGTCCTGTCGAACA -ACGGAAAAGGTGTCCTGTCAGTCA -ACGGAAAAGGTGTCCTGTGATCCA -ACGGAAAAGGTGTCCTGTACGACA -ACGGAAAAGGTGTCCTGTAGCTCA -ACGGAAAAGGTGTCCTGTTCACGT -ACGGAAAAGGTGTCCTGTCGTAGT -ACGGAAAAGGTGTCCTGTGTCAGT -ACGGAAAAGGTGTCCTGTGAAGGT -ACGGAAAAGGTGTCCTGTAACCGT -ACGGAAAAGGTGTCCTGTTTGTGC -ACGGAAAAGGTGTCCTGTCTAAGC -ACGGAAAAGGTGTCCTGTACTAGC -ACGGAAAAGGTGTCCTGTAGATGC -ACGGAAAAGGTGTCCTGTTGAAGG -ACGGAAAAGGTGTCCTGTCAATGG -ACGGAAAAGGTGTCCTGTATGAGG -ACGGAAAAGGTGTCCTGTAATGGG -ACGGAAAAGGTGTCCTGTTCCTGA -ACGGAAAAGGTGTCCTGTTAGCGA -ACGGAAAAGGTGTCCTGTCACAGA -ACGGAAAAGGTGTCCTGTGCAAGA -ACGGAAAAGGTGTCCTGTGGTTGA -ACGGAAAAGGTGTCCTGTTCCGAT -ACGGAAAAGGTGTCCTGTTGGCAT -ACGGAAAAGGTGTCCTGTCGAGAT -ACGGAAAAGGTGTCCTGTTACCAC -ACGGAAAAGGTGTCCTGTCAGAAC -ACGGAAAAGGTGTCCTGTGTCTAC -ACGGAAAAGGTGTCCTGTACGTAC -ACGGAAAAGGTGTCCTGTAGTGAC -ACGGAAAAGGTGTCCTGTCTGTAG -ACGGAAAAGGTGTCCTGTCCTAAG -ACGGAAAAGGTGTCCTGTGTTCAG -ACGGAAAAGGTGTCCTGTGCATAG -ACGGAAAAGGTGTCCTGTGACAAG -ACGGAAAAGGTGTCCTGTAAGCAG -ACGGAAAAGGTGTCCTGTCGTCAA -ACGGAAAAGGTGTCCTGTGCTGAA -ACGGAAAAGGTGTCCTGTAGTACG -ACGGAAAAGGTGTCCTGTATCCGA -ACGGAAAAGGTGTCCTGTATGGGA -ACGGAAAAGGTGTCCTGTGTGCAA -ACGGAAAAGGTGTCCTGTGAGGAA -ACGGAAAAGGTGTCCTGTCAGGTA -ACGGAAAAGGTGTCCTGTGACTCT -ACGGAAAAGGTGTCCTGTAGTCCT -ACGGAAAAGGTGTCCTGTTAAGCC -ACGGAAAAGGTGTCCTGTATAGCC -ACGGAAAAGGTGTCCTGTTAACCG -ACGGAAAAGGTGTCCTGTATGCCA -ACGGAAAAGGTGCCCATTGGAAAC -ACGGAAAAGGTGCCCATTAACACC -ACGGAAAAGGTGCCCATTATCGAG -ACGGAAAAGGTGCCCATTCTCCTT -ACGGAAAAGGTGCCCATTCCTGTT -ACGGAAAAGGTGCCCATTCGGTTT -ACGGAAAAGGTGCCCATTGTGGTT -ACGGAAAAGGTGCCCATTGCCTTT -ACGGAAAAGGTGCCCATTGGTCTT -ACGGAAAAGGTGCCCATTACGCTT -ACGGAAAAGGTGCCCATTAGCGTT -ACGGAAAAGGTGCCCATTTTCGTC -ACGGAAAAGGTGCCCATTTCTCTC -ACGGAAAAGGTGCCCATTTGGATC -ACGGAAAAGGTGCCCATTCACTTC -ACGGAAAAGGTGCCCATTGTACTC -ACGGAAAAGGTGCCCATTGATGTC -ACGGAAAAGGTGCCCATTACAGTC -ACGGAAAAGGTGCCCATTTTGCTG -ACGGAAAAGGTGCCCATTTCCATG -ACGGAAAAGGTGCCCATTTGTGTG -ACGGAAAAGGTGCCCATTCTAGTG -ACGGAAAAGGTGCCCATTCATCTG -ACGGAAAAGGTGCCCATTGAGTTG -ACGGAAAAGGTGCCCATTAGACTG -ACGGAAAAGGTGCCCATTTCGGTA -ACGGAAAAGGTGCCCATTTGCCTA -ACGGAAAAGGTGCCCATTCCACTA -ACGGAAAAGGTGCCCATTGGAGTA -ACGGAAAAGGTGCCCATTTCGTCT -ACGGAAAAGGTGCCCATTTGCACT -ACGGAAAAGGTGCCCATTCTGACT -ACGGAAAAGGTGCCCATTCAACCT -ACGGAAAAGGTGCCCATTGCTACT -ACGGAAAAGGTGCCCATTGGATCT -ACGGAAAAGGTGCCCATTAAGGCT -ACGGAAAAGGTGCCCATTTCAACC -ACGGAAAAGGTGCCCATTTGTTCC -ACGGAAAAGGTGCCCATTATTCCC -ACGGAAAAGGTGCCCATTTTCTCG -ACGGAAAAGGTGCCCATTTAGACG -ACGGAAAAGGTGCCCATTGTAACG -ACGGAAAAGGTGCCCATTACTTCG -ACGGAAAAGGTGCCCATTTACGCA -ACGGAAAAGGTGCCCATTCTTGCA -ACGGAAAAGGTGCCCATTCGAACA -ACGGAAAAGGTGCCCATTCAGTCA -ACGGAAAAGGTGCCCATTGATCCA -ACGGAAAAGGTGCCCATTACGACA -ACGGAAAAGGTGCCCATTAGCTCA -ACGGAAAAGGTGCCCATTTCACGT -ACGGAAAAGGTGCCCATTCGTAGT -ACGGAAAAGGTGCCCATTGTCAGT -ACGGAAAAGGTGCCCATTGAAGGT -ACGGAAAAGGTGCCCATTAACCGT -ACGGAAAAGGTGCCCATTTTGTGC -ACGGAAAAGGTGCCCATTCTAAGC -ACGGAAAAGGTGCCCATTACTAGC -ACGGAAAAGGTGCCCATTAGATGC -ACGGAAAAGGTGCCCATTTGAAGG -ACGGAAAAGGTGCCCATTCAATGG -ACGGAAAAGGTGCCCATTATGAGG -ACGGAAAAGGTGCCCATTAATGGG -ACGGAAAAGGTGCCCATTTCCTGA -ACGGAAAAGGTGCCCATTTAGCGA -ACGGAAAAGGTGCCCATTCACAGA -ACGGAAAAGGTGCCCATTGCAAGA -ACGGAAAAGGTGCCCATTGGTTGA -ACGGAAAAGGTGCCCATTTCCGAT -ACGGAAAAGGTGCCCATTTGGCAT -ACGGAAAAGGTGCCCATTCGAGAT -ACGGAAAAGGTGCCCATTTACCAC -ACGGAAAAGGTGCCCATTCAGAAC -ACGGAAAAGGTGCCCATTGTCTAC -ACGGAAAAGGTGCCCATTACGTAC -ACGGAAAAGGTGCCCATTAGTGAC -ACGGAAAAGGTGCCCATTCTGTAG -ACGGAAAAGGTGCCCATTCCTAAG -ACGGAAAAGGTGCCCATTGTTCAG -ACGGAAAAGGTGCCCATTGCATAG -ACGGAAAAGGTGCCCATTGACAAG -ACGGAAAAGGTGCCCATTAAGCAG -ACGGAAAAGGTGCCCATTCGTCAA -ACGGAAAAGGTGCCCATTGCTGAA -ACGGAAAAGGTGCCCATTAGTACG -ACGGAAAAGGTGCCCATTATCCGA -ACGGAAAAGGTGCCCATTATGGGA -ACGGAAAAGGTGCCCATTGTGCAA -ACGGAAAAGGTGCCCATTGAGGAA -ACGGAAAAGGTGCCCATTCAGGTA -ACGGAAAAGGTGCCCATTGACTCT -ACGGAAAAGGTGCCCATTAGTCCT -ACGGAAAAGGTGCCCATTTAAGCC -ACGGAAAAGGTGCCCATTATAGCC -ACGGAAAAGGTGCCCATTTAACCG -ACGGAAAAGGTGCCCATTATGCCA -ACGGAAAAGGTGTCGTTCGGAAAC -ACGGAAAAGGTGTCGTTCAACACC -ACGGAAAAGGTGTCGTTCATCGAG -ACGGAAAAGGTGTCGTTCCTCCTT -ACGGAAAAGGTGTCGTTCCCTGTT -ACGGAAAAGGTGTCGTTCCGGTTT -ACGGAAAAGGTGTCGTTCGTGGTT -ACGGAAAAGGTGTCGTTCGCCTTT -ACGGAAAAGGTGTCGTTCGGTCTT -ACGGAAAAGGTGTCGTTCACGCTT -ACGGAAAAGGTGTCGTTCAGCGTT -ACGGAAAAGGTGTCGTTCTTCGTC -ACGGAAAAGGTGTCGTTCTCTCTC -ACGGAAAAGGTGTCGTTCTGGATC -ACGGAAAAGGTGTCGTTCCACTTC -ACGGAAAAGGTGTCGTTCGTACTC -ACGGAAAAGGTGTCGTTCGATGTC -ACGGAAAAGGTGTCGTTCACAGTC -ACGGAAAAGGTGTCGTTCTTGCTG -ACGGAAAAGGTGTCGTTCTCCATG -ACGGAAAAGGTGTCGTTCTGTGTG -ACGGAAAAGGTGTCGTTCCTAGTG -ACGGAAAAGGTGTCGTTCCATCTG -ACGGAAAAGGTGTCGTTCGAGTTG -ACGGAAAAGGTGTCGTTCAGACTG -ACGGAAAAGGTGTCGTTCTCGGTA -ACGGAAAAGGTGTCGTTCTGCCTA -ACGGAAAAGGTGTCGTTCCCACTA -ACGGAAAAGGTGTCGTTCGGAGTA -ACGGAAAAGGTGTCGTTCTCGTCT -ACGGAAAAGGTGTCGTTCTGCACT -ACGGAAAAGGTGTCGTTCCTGACT -ACGGAAAAGGTGTCGTTCCAACCT -ACGGAAAAGGTGTCGTTCGCTACT -ACGGAAAAGGTGTCGTTCGGATCT -ACGGAAAAGGTGTCGTTCAAGGCT -ACGGAAAAGGTGTCGTTCTCAACC -ACGGAAAAGGTGTCGTTCTGTTCC -ACGGAAAAGGTGTCGTTCATTCCC -ACGGAAAAGGTGTCGTTCTTCTCG -ACGGAAAAGGTGTCGTTCTAGACG -ACGGAAAAGGTGTCGTTCGTAACG -ACGGAAAAGGTGTCGTTCACTTCG -ACGGAAAAGGTGTCGTTCTACGCA -ACGGAAAAGGTGTCGTTCCTTGCA -ACGGAAAAGGTGTCGTTCCGAACA -ACGGAAAAGGTGTCGTTCCAGTCA -ACGGAAAAGGTGTCGTTCGATCCA -ACGGAAAAGGTGTCGTTCACGACA -ACGGAAAAGGTGTCGTTCAGCTCA -ACGGAAAAGGTGTCGTTCTCACGT -ACGGAAAAGGTGTCGTTCCGTAGT -ACGGAAAAGGTGTCGTTCGTCAGT -ACGGAAAAGGTGTCGTTCGAAGGT -ACGGAAAAGGTGTCGTTCAACCGT -ACGGAAAAGGTGTCGTTCTTGTGC -ACGGAAAAGGTGTCGTTCCTAAGC -ACGGAAAAGGTGTCGTTCACTAGC -ACGGAAAAGGTGTCGTTCAGATGC -ACGGAAAAGGTGTCGTTCTGAAGG -ACGGAAAAGGTGTCGTTCCAATGG -ACGGAAAAGGTGTCGTTCATGAGG -ACGGAAAAGGTGTCGTTCAATGGG -ACGGAAAAGGTGTCGTTCTCCTGA -ACGGAAAAGGTGTCGTTCTAGCGA -ACGGAAAAGGTGTCGTTCCACAGA -ACGGAAAAGGTGTCGTTCGCAAGA -ACGGAAAAGGTGTCGTTCGGTTGA -ACGGAAAAGGTGTCGTTCTCCGAT -ACGGAAAAGGTGTCGTTCTGGCAT -ACGGAAAAGGTGTCGTTCCGAGAT -ACGGAAAAGGTGTCGTTCTACCAC -ACGGAAAAGGTGTCGTTCCAGAAC -ACGGAAAAGGTGTCGTTCGTCTAC -ACGGAAAAGGTGTCGTTCACGTAC -ACGGAAAAGGTGTCGTTCAGTGAC -ACGGAAAAGGTGTCGTTCCTGTAG -ACGGAAAAGGTGTCGTTCCCTAAG -ACGGAAAAGGTGTCGTTCGTTCAG -ACGGAAAAGGTGTCGTTCGCATAG -ACGGAAAAGGTGTCGTTCGACAAG -ACGGAAAAGGTGTCGTTCAAGCAG -ACGGAAAAGGTGTCGTTCCGTCAA -ACGGAAAAGGTGTCGTTCGCTGAA -ACGGAAAAGGTGTCGTTCAGTACG -ACGGAAAAGGTGTCGTTCATCCGA -ACGGAAAAGGTGTCGTTCATGGGA -ACGGAAAAGGTGTCGTTCGTGCAA -ACGGAAAAGGTGTCGTTCGAGGAA -ACGGAAAAGGTGTCGTTCCAGGTA -ACGGAAAAGGTGTCGTTCGACTCT -ACGGAAAAGGTGTCGTTCAGTCCT -ACGGAAAAGGTGTCGTTCTAAGCC -ACGGAAAAGGTGTCGTTCATAGCC -ACGGAAAAGGTGTCGTTCTAACCG -ACGGAAAAGGTGTCGTTCATGCCA -ACGGAAAAGGTGACGTAGGGAAAC -ACGGAAAAGGTGACGTAGAACACC -ACGGAAAAGGTGACGTAGATCGAG -ACGGAAAAGGTGACGTAGCTCCTT -ACGGAAAAGGTGACGTAGCCTGTT -ACGGAAAAGGTGACGTAGCGGTTT -ACGGAAAAGGTGACGTAGGTGGTT -ACGGAAAAGGTGACGTAGGCCTTT -ACGGAAAAGGTGACGTAGGGTCTT -ACGGAAAAGGTGACGTAGACGCTT -ACGGAAAAGGTGACGTAGAGCGTT -ACGGAAAAGGTGACGTAGTTCGTC -ACGGAAAAGGTGACGTAGTCTCTC -ACGGAAAAGGTGACGTAGTGGATC -ACGGAAAAGGTGACGTAGCACTTC -ACGGAAAAGGTGACGTAGGTACTC -ACGGAAAAGGTGACGTAGGATGTC -ACGGAAAAGGTGACGTAGACAGTC -ACGGAAAAGGTGACGTAGTTGCTG -ACGGAAAAGGTGACGTAGTCCATG -ACGGAAAAGGTGACGTAGTGTGTG -ACGGAAAAGGTGACGTAGCTAGTG -ACGGAAAAGGTGACGTAGCATCTG -ACGGAAAAGGTGACGTAGGAGTTG -ACGGAAAAGGTGACGTAGAGACTG -ACGGAAAAGGTGACGTAGTCGGTA -ACGGAAAAGGTGACGTAGTGCCTA -ACGGAAAAGGTGACGTAGCCACTA -ACGGAAAAGGTGACGTAGGGAGTA -ACGGAAAAGGTGACGTAGTCGTCT -ACGGAAAAGGTGACGTAGTGCACT -ACGGAAAAGGTGACGTAGCTGACT -ACGGAAAAGGTGACGTAGCAACCT -ACGGAAAAGGTGACGTAGGCTACT -ACGGAAAAGGTGACGTAGGGATCT -ACGGAAAAGGTGACGTAGAAGGCT -ACGGAAAAGGTGACGTAGTCAACC -ACGGAAAAGGTGACGTAGTGTTCC -ACGGAAAAGGTGACGTAGATTCCC -ACGGAAAAGGTGACGTAGTTCTCG -ACGGAAAAGGTGACGTAGTAGACG -ACGGAAAAGGTGACGTAGGTAACG -ACGGAAAAGGTGACGTAGACTTCG -ACGGAAAAGGTGACGTAGTACGCA -ACGGAAAAGGTGACGTAGCTTGCA -ACGGAAAAGGTGACGTAGCGAACA -ACGGAAAAGGTGACGTAGCAGTCA -ACGGAAAAGGTGACGTAGGATCCA -ACGGAAAAGGTGACGTAGACGACA -ACGGAAAAGGTGACGTAGAGCTCA -ACGGAAAAGGTGACGTAGTCACGT -ACGGAAAAGGTGACGTAGCGTAGT -ACGGAAAAGGTGACGTAGGTCAGT -ACGGAAAAGGTGACGTAGGAAGGT -ACGGAAAAGGTGACGTAGAACCGT -ACGGAAAAGGTGACGTAGTTGTGC -ACGGAAAAGGTGACGTAGCTAAGC -ACGGAAAAGGTGACGTAGACTAGC -ACGGAAAAGGTGACGTAGAGATGC -ACGGAAAAGGTGACGTAGTGAAGG -ACGGAAAAGGTGACGTAGCAATGG -ACGGAAAAGGTGACGTAGATGAGG -ACGGAAAAGGTGACGTAGAATGGG -ACGGAAAAGGTGACGTAGTCCTGA -ACGGAAAAGGTGACGTAGTAGCGA -ACGGAAAAGGTGACGTAGCACAGA -ACGGAAAAGGTGACGTAGGCAAGA -ACGGAAAAGGTGACGTAGGGTTGA -ACGGAAAAGGTGACGTAGTCCGAT -ACGGAAAAGGTGACGTAGTGGCAT -ACGGAAAAGGTGACGTAGCGAGAT -ACGGAAAAGGTGACGTAGTACCAC -ACGGAAAAGGTGACGTAGCAGAAC -ACGGAAAAGGTGACGTAGGTCTAC -ACGGAAAAGGTGACGTAGACGTAC -ACGGAAAAGGTGACGTAGAGTGAC -ACGGAAAAGGTGACGTAGCTGTAG -ACGGAAAAGGTGACGTAGCCTAAG -ACGGAAAAGGTGACGTAGGTTCAG -ACGGAAAAGGTGACGTAGGCATAG -ACGGAAAAGGTGACGTAGGACAAG -ACGGAAAAGGTGACGTAGAAGCAG -ACGGAAAAGGTGACGTAGCGTCAA -ACGGAAAAGGTGACGTAGGCTGAA -ACGGAAAAGGTGACGTAGAGTACG -ACGGAAAAGGTGACGTAGATCCGA -ACGGAAAAGGTGACGTAGATGGGA -ACGGAAAAGGTGACGTAGGTGCAA -ACGGAAAAGGTGACGTAGGAGGAA -ACGGAAAAGGTGACGTAGCAGGTA -ACGGAAAAGGTGACGTAGGACTCT -ACGGAAAAGGTGACGTAGAGTCCT -ACGGAAAAGGTGACGTAGTAAGCC -ACGGAAAAGGTGACGTAGATAGCC -ACGGAAAAGGTGACGTAGTAACCG -ACGGAAAAGGTGACGTAGATGCCA -ACGGAAAAGGTGACGGTAGGAAAC -ACGGAAAAGGTGACGGTAAACACC -ACGGAAAAGGTGACGGTAATCGAG -ACGGAAAAGGTGACGGTACTCCTT -ACGGAAAAGGTGACGGTACCTGTT -ACGGAAAAGGTGACGGTACGGTTT -ACGGAAAAGGTGACGGTAGTGGTT -ACGGAAAAGGTGACGGTAGCCTTT -ACGGAAAAGGTGACGGTAGGTCTT -ACGGAAAAGGTGACGGTAACGCTT -ACGGAAAAGGTGACGGTAAGCGTT -ACGGAAAAGGTGACGGTATTCGTC -ACGGAAAAGGTGACGGTATCTCTC -ACGGAAAAGGTGACGGTATGGATC -ACGGAAAAGGTGACGGTACACTTC -ACGGAAAAGGTGACGGTAGTACTC -ACGGAAAAGGTGACGGTAGATGTC -ACGGAAAAGGTGACGGTAACAGTC -ACGGAAAAGGTGACGGTATTGCTG -ACGGAAAAGGTGACGGTATCCATG -ACGGAAAAGGTGACGGTATGTGTG -ACGGAAAAGGTGACGGTACTAGTG -ACGGAAAAGGTGACGGTACATCTG -ACGGAAAAGGTGACGGTAGAGTTG -ACGGAAAAGGTGACGGTAAGACTG -ACGGAAAAGGTGACGGTATCGGTA -ACGGAAAAGGTGACGGTATGCCTA -ACGGAAAAGGTGACGGTACCACTA -ACGGAAAAGGTGACGGTAGGAGTA -ACGGAAAAGGTGACGGTATCGTCT -ACGGAAAAGGTGACGGTATGCACT -ACGGAAAAGGTGACGGTACTGACT -ACGGAAAAGGTGACGGTACAACCT -ACGGAAAAGGTGACGGTAGCTACT -ACGGAAAAGGTGACGGTAGGATCT -ACGGAAAAGGTGACGGTAAAGGCT -ACGGAAAAGGTGACGGTATCAACC -ACGGAAAAGGTGACGGTATGTTCC -ACGGAAAAGGTGACGGTAATTCCC -ACGGAAAAGGTGACGGTATTCTCG -ACGGAAAAGGTGACGGTATAGACG -ACGGAAAAGGTGACGGTAGTAACG -ACGGAAAAGGTGACGGTAACTTCG -ACGGAAAAGGTGACGGTATACGCA -ACGGAAAAGGTGACGGTACTTGCA -ACGGAAAAGGTGACGGTACGAACA -ACGGAAAAGGTGACGGTACAGTCA -ACGGAAAAGGTGACGGTAGATCCA -ACGGAAAAGGTGACGGTAACGACA -ACGGAAAAGGTGACGGTAAGCTCA -ACGGAAAAGGTGACGGTATCACGT -ACGGAAAAGGTGACGGTACGTAGT -ACGGAAAAGGTGACGGTAGTCAGT -ACGGAAAAGGTGACGGTAGAAGGT -ACGGAAAAGGTGACGGTAAACCGT -ACGGAAAAGGTGACGGTATTGTGC -ACGGAAAAGGTGACGGTACTAAGC -ACGGAAAAGGTGACGGTAACTAGC -ACGGAAAAGGTGACGGTAAGATGC -ACGGAAAAGGTGACGGTATGAAGG -ACGGAAAAGGTGACGGTACAATGG -ACGGAAAAGGTGACGGTAATGAGG -ACGGAAAAGGTGACGGTAAATGGG -ACGGAAAAGGTGACGGTATCCTGA -ACGGAAAAGGTGACGGTATAGCGA -ACGGAAAAGGTGACGGTACACAGA -ACGGAAAAGGTGACGGTAGCAAGA -ACGGAAAAGGTGACGGTAGGTTGA -ACGGAAAAGGTGACGGTATCCGAT -ACGGAAAAGGTGACGGTATGGCAT -ACGGAAAAGGTGACGGTACGAGAT -ACGGAAAAGGTGACGGTATACCAC -ACGGAAAAGGTGACGGTACAGAAC -ACGGAAAAGGTGACGGTAGTCTAC -ACGGAAAAGGTGACGGTAACGTAC -ACGGAAAAGGTGACGGTAAGTGAC -ACGGAAAAGGTGACGGTACTGTAG -ACGGAAAAGGTGACGGTACCTAAG -ACGGAAAAGGTGACGGTAGTTCAG -ACGGAAAAGGTGACGGTAGCATAG -ACGGAAAAGGTGACGGTAGACAAG -ACGGAAAAGGTGACGGTAAAGCAG -ACGGAAAAGGTGACGGTACGTCAA -ACGGAAAAGGTGACGGTAGCTGAA -ACGGAAAAGGTGACGGTAAGTACG -ACGGAAAAGGTGACGGTAATCCGA -ACGGAAAAGGTGACGGTAATGGGA -ACGGAAAAGGTGACGGTAGTGCAA -ACGGAAAAGGTGACGGTAGAGGAA -ACGGAAAAGGTGACGGTACAGGTA -ACGGAAAAGGTGACGGTAGACTCT -ACGGAAAAGGTGACGGTAAGTCCT -ACGGAAAAGGTGACGGTATAAGCC -ACGGAAAAGGTGACGGTAATAGCC -ACGGAAAAGGTGACGGTATAACCG -ACGGAAAAGGTGACGGTAATGCCA -ACGGAAAAGGTGTCGACTGGAAAC -ACGGAAAAGGTGTCGACTAACACC -ACGGAAAAGGTGTCGACTATCGAG -ACGGAAAAGGTGTCGACTCTCCTT -ACGGAAAAGGTGTCGACTCCTGTT -ACGGAAAAGGTGTCGACTCGGTTT -ACGGAAAAGGTGTCGACTGTGGTT -ACGGAAAAGGTGTCGACTGCCTTT -ACGGAAAAGGTGTCGACTGGTCTT -ACGGAAAAGGTGTCGACTACGCTT -ACGGAAAAGGTGTCGACTAGCGTT -ACGGAAAAGGTGTCGACTTTCGTC -ACGGAAAAGGTGTCGACTTCTCTC -ACGGAAAAGGTGTCGACTTGGATC -ACGGAAAAGGTGTCGACTCACTTC -ACGGAAAAGGTGTCGACTGTACTC -ACGGAAAAGGTGTCGACTGATGTC -ACGGAAAAGGTGTCGACTACAGTC -ACGGAAAAGGTGTCGACTTTGCTG -ACGGAAAAGGTGTCGACTTCCATG -ACGGAAAAGGTGTCGACTTGTGTG -ACGGAAAAGGTGTCGACTCTAGTG -ACGGAAAAGGTGTCGACTCATCTG -ACGGAAAAGGTGTCGACTGAGTTG -ACGGAAAAGGTGTCGACTAGACTG -ACGGAAAAGGTGTCGACTTCGGTA -ACGGAAAAGGTGTCGACTTGCCTA -ACGGAAAAGGTGTCGACTCCACTA -ACGGAAAAGGTGTCGACTGGAGTA -ACGGAAAAGGTGTCGACTTCGTCT -ACGGAAAAGGTGTCGACTTGCACT -ACGGAAAAGGTGTCGACTCTGACT -ACGGAAAAGGTGTCGACTCAACCT -ACGGAAAAGGTGTCGACTGCTACT -ACGGAAAAGGTGTCGACTGGATCT -ACGGAAAAGGTGTCGACTAAGGCT -ACGGAAAAGGTGTCGACTTCAACC -ACGGAAAAGGTGTCGACTTGTTCC -ACGGAAAAGGTGTCGACTATTCCC -ACGGAAAAGGTGTCGACTTTCTCG -ACGGAAAAGGTGTCGACTTAGACG -ACGGAAAAGGTGTCGACTGTAACG -ACGGAAAAGGTGTCGACTACTTCG -ACGGAAAAGGTGTCGACTTACGCA -ACGGAAAAGGTGTCGACTCTTGCA -ACGGAAAAGGTGTCGACTCGAACA -ACGGAAAAGGTGTCGACTCAGTCA -ACGGAAAAGGTGTCGACTGATCCA -ACGGAAAAGGTGTCGACTACGACA -ACGGAAAAGGTGTCGACTAGCTCA -ACGGAAAAGGTGTCGACTTCACGT -ACGGAAAAGGTGTCGACTCGTAGT -ACGGAAAAGGTGTCGACTGTCAGT -ACGGAAAAGGTGTCGACTGAAGGT -ACGGAAAAGGTGTCGACTAACCGT -ACGGAAAAGGTGTCGACTTTGTGC -ACGGAAAAGGTGTCGACTCTAAGC -ACGGAAAAGGTGTCGACTACTAGC -ACGGAAAAGGTGTCGACTAGATGC -ACGGAAAAGGTGTCGACTTGAAGG -ACGGAAAAGGTGTCGACTCAATGG -ACGGAAAAGGTGTCGACTATGAGG -ACGGAAAAGGTGTCGACTAATGGG -ACGGAAAAGGTGTCGACTTCCTGA -ACGGAAAAGGTGTCGACTTAGCGA -ACGGAAAAGGTGTCGACTCACAGA -ACGGAAAAGGTGTCGACTGCAAGA -ACGGAAAAGGTGTCGACTGGTTGA -ACGGAAAAGGTGTCGACTTCCGAT -ACGGAAAAGGTGTCGACTTGGCAT -ACGGAAAAGGTGTCGACTCGAGAT -ACGGAAAAGGTGTCGACTTACCAC -ACGGAAAAGGTGTCGACTCAGAAC -ACGGAAAAGGTGTCGACTGTCTAC -ACGGAAAAGGTGTCGACTACGTAC -ACGGAAAAGGTGTCGACTAGTGAC -ACGGAAAAGGTGTCGACTCTGTAG -ACGGAAAAGGTGTCGACTCCTAAG -ACGGAAAAGGTGTCGACTGTTCAG -ACGGAAAAGGTGTCGACTGCATAG -ACGGAAAAGGTGTCGACTGACAAG -ACGGAAAAGGTGTCGACTAAGCAG -ACGGAAAAGGTGTCGACTCGTCAA -ACGGAAAAGGTGTCGACTGCTGAA -ACGGAAAAGGTGTCGACTAGTACG -ACGGAAAAGGTGTCGACTATCCGA -ACGGAAAAGGTGTCGACTATGGGA -ACGGAAAAGGTGTCGACTGTGCAA -ACGGAAAAGGTGTCGACTGAGGAA -ACGGAAAAGGTGTCGACTCAGGTA -ACGGAAAAGGTGTCGACTGACTCT -ACGGAAAAGGTGTCGACTAGTCCT -ACGGAAAAGGTGTCGACTTAAGCC -ACGGAAAAGGTGTCGACTATAGCC -ACGGAAAAGGTGTCGACTTAACCG -ACGGAAAAGGTGTCGACTATGCCA -ACGGAAAAGGTGGCATACGGAAAC -ACGGAAAAGGTGGCATACAACACC -ACGGAAAAGGTGGCATACATCGAG -ACGGAAAAGGTGGCATACCTCCTT -ACGGAAAAGGTGGCATACCCTGTT -ACGGAAAAGGTGGCATACCGGTTT -ACGGAAAAGGTGGCATACGTGGTT -ACGGAAAAGGTGGCATACGCCTTT -ACGGAAAAGGTGGCATACGGTCTT -ACGGAAAAGGTGGCATACACGCTT -ACGGAAAAGGTGGCATACAGCGTT -ACGGAAAAGGTGGCATACTTCGTC -ACGGAAAAGGTGGCATACTCTCTC -ACGGAAAAGGTGGCATACTGGATC -ACGGAAAAGGTGGCATACCACTTC -ACGGAAAAGGTGGCATACGTACTC -ACGGAAAAGGTGGCATACGATGTC -ACGGAAAAGGTGGCATACACAGTC -ACGGAAAAGGTGGCATACTTGCTG -ACGGAAAAGGTGGCATACTCCATG -ACGGAAAAGGTGGCATACTGTGTG -ACGGAAAAGGTGGCATACCTAGTG -ACGGAAAAGGTGGCATACCATCTG -ACGGAAAAGGTGGCATACGAGTTG -ACGGAAAAGGTGGCATACAGACTG -ACGGAAAAGGTGGCATACTCGGTA -ACGGAAAAGGTGGCATACTGCCTA -ACGGAAAAGGTGGCATACCCACTA -ACGGAAAAGGTGGCATACGGAGTA -ACGGAAAAGGTGGCATACTCGTCT -ACGGAAAAGGTGGCATACTGCACT -ACGGAAAAGGTGGCATACCTGACT -ACGGAAAAGGTGGCATACCAACCT -ACGGAAAAGGTGGCATACGCTACT -ACGGAAAAGGTGGCATACGGATCT -ACGGAAAAGGTGGCATACAAGGCT -ACGGAAAAGGTGGCATACTCAACC -ACGGAAAAGGTGGCATACTGTTCC -ACGGAAAAGGTGGCATACATTCCC -ACGGAAAAGGTGGCATACTTCTCG -ACGGAAAAGGTGGCATACTAGACG -ACGGAAAAGGTGGCATACGTAACG -ACGGAAAAGGTGGCATACACTTCG -ACGGAAAAGGTGGCATACTACGCA -ACGGAAAAGGTGGCATACCTTGCA -ACGGAAAAGGTGGCATACCGAACA -ACGGAAAAGGTGGCATACCAGTCA -ACGGAAAAGGTGGCATACGATCCA -ACGGAAAAGGTGGCATACACGACA -ACGGAAAAGGTGGCATACAGCTCA -ACGGAAAAGGTGGCATACTCACGT -ACGGAAAAGGTGGCATACCGTAGT -ACGGAAAAGGTGGCATACGTCAGT -ACGGAAAAGGTGGCATACGAAGGT -ACGGAAAAGGTGGCATACAACCGT -ACGGAAAAGGTGGCATACTTGTGC -ACGGAAAAGGTGGCATACCTAAGC -ACGGAAAAGGTGGCATACACTAGC -ACGGAAAAGGTGGCATACAGATGC -ACGGAAAAGGTGGCATACTGAAGG -ACGGAAAAGGTGGCATACCAATGG -ACGGAAAAGGTGGCATACATGAGG -ACGGAAAAGGTGGCATACAATGGG -ACGGAAAAGGTGGCATACTCCTGA -ACGGAAAAGGTGGCATACTAGCGA -ACGGAAAAGGTGGCATACCACAGA -ACGGAAAAGGTGGCATACGCAAGA -ACGGAAAAGGTGGCATACGGTTGA -ACGGAAAAGGTGGCATACTCCGAT -ACGGAAAAGGTGGCATACTGGCAT -ACGGAAAAGGTGGCATACCGAGAT -ACGGAAAAGGTGGCATACTACCAC -ACGGAAAAGGTGGCATACCAGAAC -ACGGAAAAGGTGGCATACGTCTAC -ACGGAAAAGGTGGCATACACGTAC -ACGGAAAAGGTGGCATACAGTGAC -ACGGAAAAGGTGGCATACCTGTAG -ACGGAAAAGGTGGCATACCCTAAG -ACGGAAAAGGTGGCATACGTTCAG -ACGGAAAAGGTGGCATACGCATAG -ACGGAAAAGGTGGCATACGACAAG -ACGGAAAAGGTGGCATACAAGCAG -ACGGAAAAGGTGGCATACCGTCAA -ACGGAAAAGGTGGCATACGCTGAA -ACGGAAAAGGTGGCATACAGTACG -ACGGAAAAGGTGGCATACATCCGA -ACGGAAAAGGTGGCATACATGGGA -ACGGAAAAGGTGGCATACGTGCAA -ACGGAAAAGGTGGCATACGAGGAA -ACGGAAAAGGTGGCATACCAGGTA -ACGGAAAAGGTGGCATACGACTCT -ACGGAAAAGGTGGCATACAGTCCT -ACGGAAAAGGTGGCATACTAAGCC -ACGGAAAAGGTGGCATACATAGCC -ACGGAAAAGGTGGCATACTAACCG -ACGGAAAAGGTGGCATACATGCCA -ACGGAAAAGGTGGCACTTGGAAAC -ACGGAAAAGGTGGCACTTAACACC -ACGGAAAAGGTGGCACTTATCGAG -ACGGAAAAGGTGGCACTTCTCCTT -ACGGAAAAGGTGGCACTTCCTGTT -ACGGAAAAGGTGGCACTTCGGTTT -ACGGAAAAGGTGGCACTTGTGGTT -ACGGAAAAGGTGGCACTTGCCTTT -ACGGAAAAGGTGGCACTTGGTCTT -ACGGAAAAGGTGGCACTTACGCTT -ACGGAAAAGGTGGCACTTAGCGTT -ACGGAAAAGGTGGCACTTTTCGTC -ACGGAAAAGGTGGCACTTTCTCTC -ACGGAAAAGGTGGCACTTTGGATC -ACGGAAAAGGTGGCACTTCACTTC -ACGGAAAAGGTGGCACTTGTACTC -ACGGAAAAGGTGGCACTTGATGTC -ACGGAAAAGGTGGCACTTACAGTC -ACGGAAAAGGTGGCACTTTTGCTG -ACGGAAAAGGTGGCACTTTCCATG -ACGGAAAAGGTGGCACTTTGTGTG -ACGGAAAAGGTGGCACTTCTAGTG -ACGGAAAAGGTGGCACTTCATCTG -ACGGAAAAGGTGGCACTTGAGTTG -ACGGAAAAGGTGGCACTTAGACTG -ACGGAAAAGGTGGCACTTTCGGTA -ACGGAAAAGGTGGCACTTTGCCTA -ACGGAAAAGGTGGCACTTCCACTA -ACGGAAAAGGTGGCACTTGGAGTA -ACGGAAAAGGTGGCACTTTCGTCT -ACGGAAAAGGTGGCACTTTGCACT -ACGGAAAAGGTGGCACTTCTGACT -ACGGAAAAGGTGGCACTTCAACCT -ACGGAAAAGGTGGCACTTGCTACT -ACGGAAAAGGTGGCACTTGGATCT -ACGGAAAAGGTGGCACTTAAGGCT -ACGGAAAAGGTGGCACTTTCAACC -ACGGAAAAGGTGGCACTTTGTTCC -ACGGAAAAGGTGGCACTTATTCCC -ACGGAAAAGGTGGCACTTTTCTCG -ACGGAAAAGGTGGCACTTTAGACG -ACGGAAAAGGTGGCACTTGTAACG -ACGGAAAAGGTGGCACTTACTTCG -ACGGAAAAGGTGGCACTTTACGCA -ACGGAAAAGGTGGCACTTCTTGCA -ACGGAAAAGGTGGCACTTCGAACA -ACGGAAAAGGTGGCACTTCAGTCA -ACGGAAAAGGTGGCACTTGATCCA -ACGGAAAAGGTGGCACTTACGACA -ACGGAAAAGGTGGCACTTAGCTCA -ACGGAAAAGGTGGCACTTTCACGT -ACGGAAAAGGTGGCACTTCGTAGT -ACGGAAAAGGTGGCACTTGTCAGT -ACGGAAAAGGTGGCACTTGAAGGT -ACGGAAAAGGTGGCACTTAACCGT -ACGGAAAAGGTGGCACTTTTGTGC -ACGGAAAAGGTGGCACTTCTAAGC -ACGGAAAAGGTGGCACTTACTAGC -ACGGAAAAGGTGGCACTTAGATGC -ACGGAAAAGGTGGCACTTTGAAGG -ACGGAAAAGGTGGCACTTCAATGG -ACGGAAAAGGTGGCACTTATGAGG -ACGGAAAAGGTGGCACTTAATGGG -ACGGAAAAGGTGGCACTTTCCTGA -ACGGAAAAGGTGGCACTTTAGCGA -ACGGAAAAGGTGGCACTTCACAGA -ACGGAAAAGGTGGCACTTGCAAGA -ACGGAAAAGGTGGCACTTGGTTGA -ACGGAAAAGGTGGCACTTTCCGAT -ACGGAAAAGGTGGCACTTTGGCAT -ACGGAAAAGGTGGCACTTCGAGAT -ACGGAAAAGGTGGCACTTTACCAC -ACGGAAAAGGTGGCACTTCAGAAC -ACGGAAAAGGTGGCACTTGTCTAC -ACGGAAAAGGTGGCACTTACGTAC -ACGGAAAAGGTGGCACTTAGTGAC -ACGGAAAAGGTGGCACTTCTGTAG -ACGGAAAAGGTGGCACTTCCTAAG -ACGGAAAAGGTGGCACTTGTTCAG -ACGGAAAAGGTGGCACTTGCATAG -ACGGAAAAGGTGGCACTTGACAAG -ACGGAAAAGGTGGCACTTAAGCAG -ACGGAAAAGGTGGCACTTCGTCAA -ACGGAAAAGGTGGCACTTGCTGAA -ACGGAAAAGGTGGCACTTAGTACG -ACGGAAAAGGTGGCACTTATCCGA -ACGGAAAAGGTGGCACTTATGGGA -ACGGAAAAGGTGGCACTTGTGCAA -ACGGAAAAGGTGGCACTTGAGGAA -ACGGAAAAGGTGGCACTTCAGGTA -ACGGAAAAGGTGGCACTTGACTCT -ACGGAAAAGGTGGCACTTAGTCCT -ACGGAAAAGGTGGCACTTTAAGCC -ACGGAAAAGGTGGCACTTATAGCC -ACGGAAAAGGTGGCACTTTAACCG -ACGGAAAAGGTGGCACTTATGCCA -ACGGAAAAGGTGACACGAGGAAAC -ACGGAAAAGGTGACACGAAACACC -ACGGAAAAGGTGACACGAATCGAG -ACGGAAAAGGTGACACGACTCCTT -ACGGAAAAGGTGACACGACCTGTT -ACGGAAAAGGTGACACGACGGTTT -ACGGAAAAGGTGACACGAGTGGTT -ACGGAAAAGGTGACACGAGCCTTT -ACGGAAAAGGTGACACGAGGTCTT -ACGGAAAAGGTGACACGAACGCTT -ACGGAAAAGGTGACACGAAGCGTT -ACGGAAAAGGTGACACGATTCGTC -ACGGAAAAGGTGACACGATCTCTC -ACGGAAAAGGTGACACGATGGATC -ACGGAAAAGGTGACACGACACTTC -ACGGAAAAGGTGACACGAGTACTC -ACGGAAAAGGTGACACGAGATGTC -ACGGAAAAGGTGACACGAACAGTC -ACGGAAAAGGTGACACGATTGCTG -ACGGAAAAGGTGACACGATCCATG -ACGGAAAAGGTGACACGATGTGTG -ACGGAAAAGGTGACACGACTAGTG -ACGGAAAAGGTGACACGACATCTG -ACGGAAAAGGTGACACGAGAGTTG -ACGGAAAAGGTGACACGAAGACTG -ACGGAAAAGGTGACACGATCGGTA -ACGGAAAAGGTGACACGATGCCTA -ACGGAAAAGGTGACACGACCACTA -ACGGAAAAGGTGACACGAGGAGTA -ACGGAAAAGGTGACACGATCGTCT -ACGGAAAAGGTGACACGATGCACT -ACGGAAAAGGTGACACGACTGACT -ACGGAAAAGGTGACACGACAACCT -ACGGAAAAGGTGACACGAGCTACT -ACGGAAAAGGTGACACGAGGATCT -ACGGAAAAGGTGACACGAAAGGCT -ACGGAAAAGGTGACACGATCAACC -ACGGAAAAGGTGACACGATGTTCC -ACGGAAAAGGTGACACGAATTCCC -ACGGAAAAGGTGACACGATTCTCG -ACGGAAAAGGTGACACGATAGACG -ACGGAAAAGGTGACACGAGTAACG -ACGGAAAAGGTGACACGAACTTCG -ACGGAAAAGGTGACACGATACGCA -ACGGAAAAGGTGACACGACTTGCA -ACGGAAAAGGTGACACGACGAACA -ACGGAAAAGGTGACACGACAGTCA -ACGGAAAAGGTGACACGAGATCCA -ACGGAAAAGGTGACACGAACGACA -ACGGAAAAGGTGACACGAAGCTCA -ACGGAAAAGGTGACACGATCACGT -ACGGAAAAGGTGACACGACGTAGT -ACGGAAAAGGTGACACGAGTCAGT -ACGGAAAAGGTGACACGAGAAGGT -ACGGAAAAGGTGACACGAAACCGT -ACGGAAAAGGTGACACGATTGTGC -ACGGAAAAGGTGACACGACTAAGC -ACGGAAAAGGTGACACGAACTAGC -ACGGAAAAGGTGACACGAAGATGC -ACGGAAAAGGTGACACGATGAAGG -ACGGAAAAGGTGACACGACAATGG -ACGGAAAAGGTGACACGAATGAGG -ACGGAAAAGGTGACACGAAATGGG -ACGGAAAAGGTGACACGATCCTGA -ACGGAAAAGGTGACACGATAGCGA -ACGGAAAAGGTGACACGACACAGA -ACGGAAAAGGTGACACGAGCAAGA -ACGGAAAAGGTGACACGAGGTTGA -ACGGAAAAGGTGACACGATCCGAT -ACGGAAAAGGTGACACGATGGCAT -ACGGAAAAGGTGACACGACGAGAT -ACGGAAAAGGTGACACGATACCAC -ACGGAAAAGGTGACACGACAGAAC -ACGGAAAAGGTGACACGAGTCTAC -ACGGAAAAGGTGACACGAACGTAC -ACGGAAAAGGTGACACGAAGTGAC -ACGGAAAAGGTGACACGACTGTAG -ACGGAAAAGGTGACACGACCTAAG -ACGGAAAAGGTGACACGAGTTCAG -ACGGAAAAGGTGACACGAGCATAG -ACGGAAAAGGTGACACGAGACAAG -ACGGAAAAGGTGACACGAAAGCAG -ACGGAAAAGGTGACACGACGTCAA -ACGGAAAAGGTGACACGAGCTGAA -ACGGAAAAGGTGACACGAAGTACG -ACGGAAAAGGTGACACGAATCCGA -ACGGAAAAGGTGACACGAATGGGA -ACGGAAAAGGTGACACGAGTGCAA -ACGGAAAAGGTGACACGAGAGGAA -ACGGAAAAGGTGACACGACAGGTA -ACGGAAAAGGTGACACGAGACTCT -ACGGAAAAGGTGACACGAAGTCCT -ACGGAAAAGGTGACACGATAAGCC -ACGGAAAAGGTGACACGAATAGCC -ACGGAAAAGGTGACACGATAACCG -ACGGAAAAGGTGACACGAATGCCA -ACGGAAAAGGTGTCACAGGGAAAC -ACGGAAAAGGTGTCACAGAACACC -ACGGAAAAGGTGTCACAGATCGAG -ACGGAAAAGGTGTCACAGCTCCTT -ACGGAAAAGGTGTCACAGCCTGTT -ACGGAAAAGGTGTCACAGCGGTTT -ACGGAAAAGGTGTCACAGGTGGTT -ACGGAAAAGGTGTCACAGGCCTTT -ACGGAAAAGGTGTCACAGGGTCTT -ACGGAAAAGGTGTCACAGACGCTT -ACGGAAAAGGTGTCACAGAGCGTT -ACGGAAAAGGTGTCACAGTTCGTC -ACGGAAAAGGTGTCACAGTCTCTC -ACGGAAAAGGTGTCACAGTGGATC -ACGGAAAAGGTGTCACAGCACTTC -ACGGAAAAGGTGTCACAGGTACTC -ACGGAAAAGGTGTCACAGGATGTC -ACGGAAAAGGTGTCACAGACAGTC -ACGGAAAAGGTGTCACAGTTGCTG -ACGGAAAAGGTGTCACAGTCCATG -ACGGAAAAGGTGTCACAGTGTGTG -ACGGAAAAGGTGTCACAGCTAGTG -ACGGAAAAGGTGTCACAGCATCTG -ACGGAAAAGGTGTCACAGGAGTTG -ACGGAAAAGGTGTCACAGAGACTG -ACGGAAAAGGTGTCACAGTCGGTA -ACGGAAAAGGTGTCACAGTGCCTA -ACGGAAAAGGTGTCACAGCCACTA -ACGGAAAAGGTGTCACAGGGAGTA -ACGGAAAAGGTGTCACAGTCGTCT -ACGGAAAAGGTGTCACAGTGCACT -ACGGAAAAGGTGTCACAGCTGACT -ACGGAAAAGGTGTCACAGCAACCT -ACGGAAAAGGTGTCACAGGCTACT -ACGGAAAAGGTGTCACAGGGATCT -ACGGAAAAGGTGTCACAGAAGGCT -ACGGAAAAGGTGTCACAGTCAACC -ACGGAAAAGGTGTCACAGTGTTCC -ACGGAAAAGGTGTCACAGATTCCC -ACGGAAAAGGTGTCACAGTTCTCG -ACGGAAAAGGTGTCACAGTAGACG -ACGGAAAAGGTGTCACAGGTAACG -ACGGAAAAGGTGTCACAGACTTCG -ACGGAAAAGGTGTCACAGTACGCA -ACGGAAAAGGTGTCACAGCTTGCA -ACGGAAAAGGTGTCACAGCGAACA -ACGGAAAAGGTGTCACAGCAGTCA -ACGGAAAAGGTGTCACAGGATCCA -ACGGAAAAGGTGTCACAGACGACA -ACGGAAAAGGTGTCACAGAGCTCA -ACGGAAAAGGTGTCACAGTCACGT -ACGGAAAAGGTGTCACAGCGTAGT -ACGGAAAAGGTGTCACAGGTCAGT -ACGGAAAAGGTGTCACAGGAAGGT -ACGGAAAAGGTGTCACAGAACCGT -ACGGAAAAGGTGTCACAGTTGTGC -ACGGAAAAGGTGTCACAGCTAAGC -ACGGAAAAGGTGTCACAGACTAGC -ACGGAAAAGGTGTCACAGAGATGC -ACGGAAAAGGTGTCACAGTGAAGG -ACGGAAAAGGTGTCACAGCAATGG -ACGGAAAAGGTGTCACAGATGAGG -ACGGAAAAGGTGTCACAGAATGGG -ACGGAAAAGGTGTCACAGTCCTGA -ACGGAAAAGGTGTCACAGTAGCGA -ACGGAAAAGGTGTCACAGCACAGA -ACGGAAAAGGTGTCACAGGCAAGA -ACGGAAAAGGTGTCACAGGGTTGA -ACGGAAAAGGTGTCACAGTCCGAT -ACGGAAAAGGTGTCACAGTGGCAT -ACGGAAAAGGTGTCACAGCGAGAT -ACGGAAAAGGTGTCACAGTACCAC -ACGGAAAAGGTGTCACAGCAGAAC -ACGGAAAAGGTGTCACAGGTCTAC -ACGGAAAAGGTGTCACAGACGTAC -ACGGAAAAGGTGTCACAGAGTGAC -ACGGAAAAGGTGTCACAGCTGTAG -ACGGAAAAGGTGTCACAGCCTAAG -ACGGAAAAGGTGTCACAGGTTCAG -ACGGAAAAGGTGTCACAGGCATAG -ACGGAAAAGGTGTCACAGGACAAG -ACGGAAAAGGTGTCACAGAAGCAG -ACGGAAAAGGTGTCACAGCGTCAA -ACGGAAAAGGTGTCACAGGCTGAA -ACGGAAAAGGTGTCACAGAGTACG -ACGGAAAAGGTGTCACAGATCCGA -ACGGAAAAGGTGTCACAGATGGGA -ACGGAAAAGGTGTCACAGGTGCAA -ACGGAAAAGGTGTCACAGGAGGAA -ACGGAAAAGGTGTCACAGCAGGTA -ACGGAAAAGGTGTCACAGGACTCT -ACGGAAAAGGTGTCACAGAGTCCT -ACGGAAAAGGTGTCACAGTAAGCC -ACGGAAAAGGTGTCACAGATAGCC -ACGGAAAAGGTGTCACAGTAACCG -ACGGAAAAGGTGTCACAGATGCCA -ACGGAAAAGGTGCCAGATGGAAAC -ACGGAAAAGGTGCCAGATAACACC -ACGGAAAAGGTGCCAGATATCGAG -ACGGAAAAGGTGCCAGATCTCCTT -ACGGAAAAGGTGCCAGATCCTGTT -ACGGAAAAGGTGCCAGATCGGTTT -ACGGAAAAGGTGCCAGATGTGGTT -ACGGAAAAGGTGCCAGATGCCTTT -ACGGAAAAGGTGCCAGATGGTCTT -ACGGAAAAGGTGCCAGATACGCTT -ACGGAAAAGGTGCCAGATAGCGTT -ACGGAAAAGGTGCCAGATTTCGTC -ACGGAAAAGGTGCCAGATTCTCTC -ACGGAAAAGGTGCCAGATTGGATC -ACGGAAAAGGTGCCAGATCACTTC -ACGGAAAAGGTGCCAGATGTACTC -ACGGAAAAGGTGCCAGATGATGTC -ACGGAAAAGGTGCCAGATACAGTC -ACGGAAAAGGTGCCAGATTTGCTG -ACGGAAAAGGTGCCAGATTCCATG -ACGGAAAAGGTGCCAGATTGTGTG -ACGGAAAAGGTGCCAGATCTAGTG -ACGGAAAAGGTGCCAGATCATCTG -ACGGAAAAGGTGCCAGATGAGTTG -ACGGAAAAGGTGCCAGATAGACTG -ACGGAAAAGGTGCCAGATTCGGTA -ACGGAAAAGGTGCCAGATTGCCTA -ACGGAAAAGGTGCCAGATCCACTA -ACGGAAAAGGTGCCAGATGGAGTA -ACGGAAAAGGTGCCAGATTCGTCT -ACGGAAAAGGTGCCAGATTGCACT -ACGGAAAAGGTGCCAGATCTGACT -ACGGAAAAGGTGCCAGATCAACCT -ACGGAAAAGGTGCCAGATGCTACT -ACGGAAAAGGTGCCAGATGGATCT -ACGGAAAAGGTGCCAGATAAGGCT -ACGGAAAAGGTGCCAGATTCAACC -ACGGAAAAGGTGCCAGATTGTTCC -ACGGAAAAGGTGCCAGATATTCCC -ACGGAAAAGGTGCCAGATTTCTCG -ACGGAAAAGGTGCCAGATTAGACG -ACGGAAAAGGTGCCAGATGTAACG -ACGGAAAAGGTGCCAGATACTTCG -ACGGAAAAGGTGCCAGATTACGCA -ACGGAAAAGGTGCCAGATCTTGCA -ACGGAAAAGGTGCCAGATCGAACA -ACGGAAAAGGTGCCAGATCAGTCA -ACGGAAAAGGTGCCAGATGATCCA -ACGGAAAAGGTGCCAGATACGACA -ACGGAAAAGGTGCCAGATAGCTCA -ACGGAAAAGGTGCCAGATTCACGT -ACGGAAAAGGTGCCAGATCGTAGT -ACGGAAAAGGTGCCAGATGTCAGT -ACGGAAAAGGTGCCAGATGAAGGT -ACGGAAAAGGTGCCAGATAACCGT -ACGGAAAAGGTGCCAGATTTGTGC -ACGGAAAAGGTGCCAGATCTAAGC -ACGGAAAAGGTGCCAGATACTAGC -ACGGAAAAGGTGCCAGATAGATGC -ACGGAAAAGGTGCCAGATTGAAGG -ACGGAAAAGGTGCCAGATCAATGG -ACGGAAAAGGTGCCAGATATGAGG -ACGGAAAAGGTGCCAGATAATGGG -ACGGAAAAGGTGCCAGATTCCTGA -ACGGAAAAGGTGCCAGATTAGCGA -ACGGAAAAGGTGCCAGATCACAGA -ACGGAAAAGGTGCCAGATGCAAGA -ACGGAAAAGGTGCCAGATGGTTGA -ACGGAAAAGGTGCCAGATTCCGAT -ACGGAAAAGGTGCCAGATTGGCAT -ACGGAAAAGGTGCCAGATCGAGAT -ACGGAAAAGGTGCCAGATTACCAC -ACGGAAAAGGTGCCAGATCAGAAC -ACGGAAAAGGTGCCAGATGTCTAC -ACGGAAAAGGTGCCAGATACGTAC -ACGGAAAAGGTGCCAGATAGTGAC -ACGGAAAAGGTGCCAGATCTGTAG -ACGGAAAAGGTGCCAGATCCTAAG -ACGGAAAAGGTGCCAGATGTTCAG -ACGGAAAAGGTGCCAGATGCATAG -ACGGAAAAGGTGCCAGATGACAAG -ACGGAAAAGGTGCCAGATAAGCAG -ACGGAAAAGGTGCCAGATCGTCAA -ACGGAAAAGGTGCCAGATGCTGAA -ACGGAAAAGGTGCCAGATAGTACG -ACGGAAAAGGTGCCAGATATCCGA -ACGGAAAAGGTGCCAGATATGGGA -ACGGAAAAGGTGCCAGATGTGCAA -ACGGAAAAGGTGCCAGATGAGGAA -ACGGAAAAGGTGCCAGATCAGGTA -ACGGAAAAGGTGCCAGATGACTCT -ACGGAAAAGGTGCCAGATAGTCCT -ACGGAAAAGGTGCCAGATTAAGCC -ACGGAAAAGGTGCCAGATATAGCC -ACGGAAAAGGTGCCAGATTAACCG -ACGGAAAAGGTGCCAGATATGCCA -ACGGAAAAGGTGACAACGGGAAAC -ACGGAAAAGGTGACAACGAACACC -ACGGAAAAGGTGACAACGATCGAG -ACGGAAAAGGTGACAACGCTCCTT -ACGGAAAAGGTGACAACGCCTGTT -ACGGAAAAGGTGACAACGCGGTTT -ACGGAAAAGGTGACAACGGTGGTT -ACGGAAAAGGTGACAACGGCCTTT -ACGGAAAAGGTGACAACGGGTCTT -ACGGAAAAGGTGACAACGACGCTT -ACGGAAAAGGTGACAACGAGCGTT -ACGGAAAAGGTGACAACGTTCGTC -ACGGAAAAGGTGACAACGTCTCTC -ACGGAAAAGGTGACAACGTGGATC -ACGGAAAAGGTGACAACGCACTTC -ACGGAAAAGGTGACAACGGTACTC -ACGGAAAAGGTGACAACGGATGTC -ACGGAAAAGGTGACAACGACAGTC -ACGGAAAAGGTGACAACGTTGCTG -ACGGAAAAGGTGACAACGTCCATG -ACGGAAAAGGTGACAACGTGTGTG -ACGGAAAAGGTGACAACGCTAGTG -ACGGAAAAGGTGACAACGCATCTG -ACGGAAAAGGTGACAACGGAGTTG -ACGGAAAAGGTGACAACGAGACTG -ACGGAAAAGGTGACAACGTCGGTA -ACGGAAAAGGTGACAACGTGCCTA -ACGGAAAAGGTGACAACGCCACTA -ACGGAAAAGGTGACAACGGGAGTA -ACGGAAAAGGTGACAACGTCGTCT -ACGGAAAAGGTGACAACGTGCACT -ACGGAAAAGGTGACAACGCTGACT -ACGGAAAAGGTGACAACGCAACCT -ACGGAAAAGGTGACAACGGCTACT -ACGGAAAAGGTGACAACGGGATCT -ACGGAAAAGGTGACAACGAAGGCT -ACGGAAAAGGTGACAACGTCAACC -ACGGAAAAGGTGACAACGTGTTCC -ACGGAAAAGGTGACAACGATTCCC -ACGGAAAAGGTGACAACGTTCTCG -ACGGAAAAGGTGACAACGTAGACG -ACGGAAAAGGTGACAACGGTAACG -ACGGAAAAGGTGACAACGACTTCG -ACGGAAAAGGTGACAACGTACGCA -ACGGAAAAGGTGACAACGCTTGCA -ACGGAAAAGGTGACAACGCGAACA -ACGGAAAAGGTGACAACGCAGTCA -ACGGAAAAGGTGACAACGGATCCA -ACGGAAAAGGTGACAACGACGACA -ACGGAAAAGGTGACAACGAGCTCA -ACGGAAAAGGTGACAACGTCACGT -ACGGAAAAGGTGACAACGCGTAGT -ACGGAAAAGGTGACAACGGTCAGT -ACGGAAAAGGTGACAACGGAAGGT -ACGGAAAAGGTGACAACGAACCGT -ACGGAAAAGGTGACAACGTTGTGC -ACGGAAAAGGTGACAACGCTAAGC -ACGGAAAAGGTGACAACGACTAGC -ACGGAAAAGGTGACAACGAGATGC -ACGGAAAAGGTGACAACGTGAAGG -ACGGAAAAGGTGACAACGCAATGG -ACGGAAAAGGTGACAACGATGAGG -ACGGAAAAGGTGACAACGAATGGG -ACGGAAAAGGTGACAACGTCCTGA -ACGGAAAAGGTGACAACGTAGCGA -ACGGAAAAGGTGACAACGCACAGA -ACGGAAAAGGTGACAACGGCAAGA -ACGGAAAAGGTGACAACGGGTTGA -ACGGAAAAGGTGACAACGTCCGAT -ACGGAAAAGGTGACAACGTGGCAT -ACGGAAAAGGTGACAACGCGAGAT -ACGGAAAAGGTGACAACGTACCAC -ACGGAAAAGGTGACAACGCAGAAC -ACGGAAAAGGTGACAACGGTCTAC -ACGGAAAAGGTGACAACGACGTAC -ACGGAAAAGGTGACAACGAGTGAC -ACGGAAAAGGTGACAACGCTGTAG -ACGGAAAAGGTGACAACGCCTAAG -ACGGAAAAGGTGACAACGGTTCAG -ACGGAAAAGGTGACAACGGCATAG -ACGGAAAAGGTGACAACGGACAAG -ACGGAAAAGGTGACAACGAAGCAG -ACGGAAAAGGTGACAACGCGTCAA -ACGGAAAAGGTGACAACGGCTGAA -ACGGAAAAGGTGACAACGAGTACG -ACGGAAAAGGTGACAACGATCCGA -ACGGAAAAGGTGACAACGATGGGA -ACGGAAAAGGTGACAACGGTGCAA -ACGGAAAAGGTGACAACGGAGGAA -ACGGAAAAGGTGACAACGCAGGTA -ACGGAAAAGGTGACAACGGACTCT -ACGGAAAAGGTGACAACGAGTCCT -ACGGAAAAGGTGACAACGTAAGCC -ACGGAAAAGGTGACAACGATAGCC -ACGGAAAAGGTGACAACGTAACCG -ACGGAAAAGGTGACAACGATGCCA -ACGGAAAAGGTGTCAAGCGGAAAC -ACGGAAAAGGTGTCAAGCAACACC -ACGGAAAAGGTGTCAAGCATCGAG -ACGGAAAAGGTGTCAAGCCTCCTT -ACGGAAAAGGTGTCAAGCCCTGTT -ACGGAAAAGGTGTCAAGCCGGTTT -ACGGAAAAGGTGTCAAGCGTGGTT -ACGGAAAAGGTGTCAAGCGCCTTT -ACGGAAAAGGTGTCAAGCGGTCTT -ACGGAAAAGGTGTCAAGCACGCTT -ACGGAAAAGGTGTCAAGCAGCGTT -ACGGAAAAGGTGTCAAGCTTCGTC -ACGGAAAAGGTGTCAAGCTCTCTC -ACGGAAAAGGTGTCAAGCTGGATC -ACGGAAAAGGTGTCAAGCCACTTC -ACGGAAAAGGTGTCAAGCGTACTC -ACGGAAAAGGTGTCAAGCGATGTC -ACGGAAAAGGTGTCAAGCACAGTC -ACGGAAAAGGTGTCAAGCTTGCTG -ACGGAAAAGGTGTCAAGCTCCATG -ACGGAAAAGGTGTCAAGCTGTGTG -ACGGAAAAGGTGTCAAGCCTAGTG -ACGGAAAAGGTGTCAAGCCATCTG -ACGGAAAAGGTGTCAAGCGAGTTG -ACGGAAAAGGTGTCAAGCAGACTG -ACGGAAAAGGTGTCAAGCTCGGTA -ACGGAAAAGGTGTCAAGCTGCCTA -ACGGAAAAGGTGTCAAGCCCACTA -ACGGAAAAGGTGTCAAGCGGAGTA -ACGGAAAAGGTGTCAAGCTCGTCT -ACGGAAAAGGTGTCAAGCTGCACT -ACGGAAAAGGTGTCAAGCCTGACT -ACGGAAAAGGTGTCAAGCCAACCT -ACGGAAAAGGTGTCAAGCGCTACT -ACGGAAAAGGTGTCAAGCGGATCT -ACGGAAAAGGTGTCAAGCAAGGCT -ACGGAAAAGGTGTCAAGCTCAACC -ACGGAAAAGGTGTCAAGCTGTTCC -ACGGAAAAGGTGTCAAGCATTCCC -ACGGAAAAGGTGTCAAGCTTCTCG -ACGGAAAAGGTGTCAAGCTAGACG -ACGGAAAAGGTGTCAAGCGTAACG -ACGGAAAAGGTGTCAAGCACTTCG -ACGGAAAAGGTGTCAAGCTACGCA -ACGGAAAAGGTGTCAAGCCTTGCA -ACGGAAAAGGTGTCAAGCCGAACA -ACGGAAAAGGTGTCAAGCCAGTCA -ACGGAAAAGGTGTCAAGCGATCCA -ACGGAAAAGGTGTCAAGCACGACA -ACGGAAAAGGTGTCAAGCAGCTCA -ACGGAAAAGGTGTCAAGCTCACGT -ACGGAAAAGGTGTCAAGCCGTAGT -ACGGAAAAGGTGTCAAGCGTCAGT -ACGGAAAAGGTGTCAAGCGAAGGT -ACGGAAAAGGTGTCAAGCAACCGT -ACGGAAAAGGTGTCAAGCTTGTGC -ACGGAAAAGGTGTCAAGCCTAAGC -ACGGAAAAGGTGTCAAGCACTAGC -ACGGAAAAGGTGTCAAGCAGATGC -ACGGAAAAGGTGTCAAGCTGAAGG -ACGGAAAAGGTGTCAAGCCAATGG -ACGGAAAAGGTGTCAAGCATGAGG -ACGGAAAAGGTGTCAAGCAATGGG -ACGGAAAAGGTGTCAAGCTCCTGA -ACGGAAAAGGTGTCAAGCTAGCGA -ACGGAAAAGGTGTCAAGCCACAGA -ACGGAAAAGGTGTCAAGCGCAAGA -ACGGAAAAGGTGTCAAGCGGTTGA -ACGGAAAAGGTGTCAAGCTCCGAT -ACGGAAAAGGTGTCAAGCTGGCAT -ACGGAAAAGGTGTCAAGCCGAGAT -ACGGAAAAGGTGTCAAGCTACCAC -ACGGAAAAGGTGTCAAGCCAGAAC -ACGGAAAAGGTGTCAAGCGTCTAC -ACGGAAAAGGTGTCAAGCACGTAC -ACGGAAAAGGTGTCAAGCAGTGAC -ACGGAAAAGGTGTCAAGCCTGTAG -ACGGAAAAGGTGTCAAGCCCTAAG -ACGGAAAAGGTGTCAAGCGTTCAG -ACGGAAAAGGTGTCAAGCGCATAG -ACGGAAAAGGTGTCAAGCGACAAG -ACGGAAAAGGTGTCAAGCAAGCAG -ACGGAAAAGGTGTCAAGCCGTCAA -ACGGAAAAGGTGTCAAGCGCTGAA -ACGGAAAAGGTGTCAAGCAGTACG -ACGGAAAAGGTGTCAAGCATCCGA -ACGGAAAAGGTGTCAAGCATGGGA -ACGGAAAAGGTGTCAAGCGTGCAA -ACGGAAAAGGTGTCAAGCGAGGAA -ACGGAAAAGGTGTCAAGCCAGGTA -ACGGAAAAGGTGTCAAGCGACTCT -ACGGAAAAGGTGTCAAGCAGTCCT -ACGGAAAAGGTGTCAAGCTAAGCC -ACGGAAAAGGTGTCAAGCATAGCC -ACGGAAAAGGTGTCAAGCTAACCG -ACGGAAAAGGTGTCAAGCATGCCA -ACGGAAAAGGTGCGTTCAGGAAAC -ACGGAAAAGGTGCGTTCAAACACC -ACGGAAAAGGTGCGTTCAATCGAG -ACGGAAAAGGTGCGTTCACTCCTT -ACGGAAAAGGTGCGTTCACCTGTT -ACGGAAAAGGTGCGTTCACGGTTT -ACGGAAAAGGTGCGTTCAGTGGTT -ACGGAAAAGGTGCGTTCAGCCTTT -ACGGAAAAGGTGCGTTCAGGTCTT -ACGGAAAAGGTGCGTTCAACGCTT -ACGGAAAAGGTGCGTTCAAGCGTT -ACGGAAAAGGTGCGTTCATTCGTC -ACGGAAAAGGTGCGTTCATCTCTC -ACGGAAAAGGTGCGTTCATGGATC -ACGGAAAAGGTGCGTTCACACTTC -ACGGAAAAGGTGCGTTCAGTACTC -ACGGAAAAGGTGCGTTCAGATGTC -ACGGAAAAGGTGCGTTCAACAGTC -ACGGAAAAGGTGCGTTCATTGCTG -ACGGAAAAGGTGCGTTCATCCATG -ACGGAAAAGGTGCGTTCATGTGTG -ACGGAAAAGGTGCGTTCACTAGTG -ACGGAAAAGGTGCGTTCACATCTG -ACGGAAAAGGTGCGTTCAGAGTTG -ACGGAAAAGGTGCGTTCAAGACTG -ACGGAAAAGGTGCGTTCATCGGTA -ACGGAAAAGGTGCGTTCATGCCTA -ACGGAAAAGGTGCGTTCACCACTA -ACGGAAAAGGTGCGTTCAGGAGTA -ACGGAAAAGGTGCGTTCATCGTCT -ACGGAAAAGGTGCGTTCATGCACT -ACGGAAAAGGTGCGTTCACTGACT -ACGGAAAAGGTGCGTTCACAACCT -ACGGAAAAGGTGCGTTCAGCTACT -ACGGAAAAGGTGCGTTCAGGATCT -ACGGAAAAGGTGCGTTCAAAGGCT -ACGGAAAAGGTGCGTTCATCAACC -ACGGAAAAGGTGCGTTCATGTTCC -ACGGAAAAGGTGCGTTCAATTCCC -ACGGAAAAGGTGCGTTCATTCTCG -ACGGAAAAGGTGCGTTCATAGACG -ACGGAAAAGGTGCGTTCAGTAACG -ACGGAAAAGGTGCGTTCAACTTCG -ACGGAAAAGGTGCGTTCATACGCA -ACGGAAAAGGTGCGTTCACTTGCA -ACGGAAAAGGTGCGTTCACGAACA -ACGGAAAAGGTGCGTTCACAGTCA -ACGGAAAAGGTGCGTTCAGATCCA -ACGGAAAAGGTGCGTTCAACGACA -ACGGAAAAGGTGCGTTCAAGCTCA -ACGGAAAAGGTGCGTTCATCACGT -ACGGAAAAGGTGCGTTCACGTAGT -ACGGAAAAGGTGCGTTCAGTCAGT -ACGGAAAAGGTGCGTTCAGAAGGT -ACGGAAAAGGTGCGTTCAAACCGT -ACGGAAAAGGTGCGTTCATTGTGC -ACGGAAAAGGTGCGTTCACTAAGC -ACGGAAAAGGTGCGTTCAACTAGC -ACGGAAAAGGTGCGTTCAAGATGC -ACGGAAAAGGTGCGTTCATGAAGG -ACGGAAAAGGTGCGTTCACAATGG -ACGGAAAAGGTGCGTTCAATGAGG -ACGGAAAAGGTGCGTTCAAATGGG -ACGGAAAAGGTGCGTTCATCCTGA -ACGGAAAAGGTGCGTTCATAGCGA -ACGGAAAAGGTGCGTTCACACAGA -ACGGAAAAGGTGCGTTCAGCAAGA -ACGGAAAAGGTGCGTTCAGGTTGA -ACGGAAAAGGTGCGTTCATCCGAT -ACGGAAAAGGTGCGTTCATGGCAT -ACGGAAAAGGTGCGTTCACGAGAT -ACGGAAAAGGTGCGTTCATACCAC -ACGGAAAAGGTGCGTTCACAGAAC -ACGGAAAAGGTGCGTTCAGTCTAC -ACGGAAAAGGTGCGTTCAACGTAC -ACGGAAAAGGTGCGTTCAAGTGAC -ACGGAAAAGGTGCGTTCACTGTAG -ACGGAAAAGGTGCGTTCACCTAAG -ACGGAAAAGGTGCGTTCAGTTCAG -ACGGAAAAGGTGCGTTCAGCATAG -ACGGAAAAGGTGCGTTCAGACAAG -ACGGAAAAGGTGCGTTCAAAGCAG -ACGGAAAAGGTGCGTTCACGTCAA -ACGGAAAAGGTGCGTTCAGCTGAA -ACGGAAAAGGTGCGTTCAAGTACG -ACGGAAAAGGTGCGTTCAATCCGA -ACGGAAAAGGTGCGTTCAATGGGA -ACGGAAAAGGTGCGTTCAGTGCAA -ACGGAAAAGGTGCGTTCAGAGGAA -ACGGAAAAGGTGCGTTCACAGGTA -ACGGAAAAGGTGCGTTCAGACTCT -ACGGAAAAGGTGCGTTCAAGTCCT -ACGGAAAAGGTGCGTTCATAAGCC -ACGGAAAAGGTGCGTTCAATAGCC -ACGGAAAAGGTGCGTTCATAACCG -ACGGAAAAGGTGCGTTCAATGCCA -ACGGAAAAGGTGAGTCGTGGAAAC -ACGGAAAAGGTGAGTCGTAACACC -ACGGAAAAGGTGAGTCGTATCGAG -ACGGAAAAGGTGAGTCGTCTCCTT -ACGGAAAAGGTGAGTCGTCCTGTT -ACGGAAAAGGTGAGTCGTCGGTTT -ACGGAAAAGGTGAGTCGTGTGGTT -ACGGAAAAGGTGAGTCGTGCCTTT -ACGGAAAAGGTGAGTCGTGGTCTT -ACGGAAAAGGTGAGTCGTACGCTT -ACGGAAAAGGTGAGTCGTAGCGTT -ACGGAAAAGGTGAGTCGTTTCGTC -ACGGAAAAGGTGAGTCGTTCTCTC -ACGGAAAAGGTGAGTCGTTGGATC -ACGGAAAAGGTGAGTCGTCACTTC -ACGGAAAAGGTGAGTCGTGTACTC -ACGGAAAAGGTGAGTCGTGATGTC -ACGGAAAAGGTGAGTCGTACAGTC -ACGGAAAAGGTGAGTCGTTTGCTG -ACGGAAAAGGTGAGTCGTTCCATG -ACGGAAAAGGTGAGTCGTTGTGTG -ACGGAAAAGGTGAGTCGTCTAGTG -ACGGAAAAGGTGAGTCGTCATCTG -ACGGAAAAGGTGAGTCGTGAGTTG -ACGGAAAAGGTGAGTCGTAGACTG -ACGGAAAAGGTGAGTCGTTCGGTA -ACGGAAAAGGTGAGTCGTTGCCTA -ACGGAAAAGGTGAGTCGTCCACTA -ACGGAAAAGGTGAGTCGTGGAGTA -ACGGAAAAGGTGAGTCGTTCGTCT -ACGGAAAAGGTGAGTCGTTGCACT -ACGGAAAAGGTGAGTCGTCTGACT -ACGGAAAAGGTGAGTCGTCAACCT -ACGGAAAAGGTGAGTCGTGCTACT -ACGGAAAAGGTGAGTCGTGGATCT -ACGGAAAAGGTGAGTCGTAAGGCT -ACGGAAAAGGTGAGTCGTTCAACC -ACGGAAAAGGTGAGTCGTTGTTCC -ACGGAAAAGGTGAGTCGTATTCCC -ACGGAAAAGGTGAGTCGTTTCTCG -ACGGAAAAGGTGAGTCGTTAGACG -ACGGAAAAGGTGAGTCGTGTAACG -ACGGAAAAGGTGAGTCGTACTTCG -ACGGAAAAGGTGAGTCGTTACGCA -ACGGAAAAGGTGAGTCGTCTTGCA -ACGGAAAAGGTGAGTCGTCGAACA -ACGGAAAAGGTGAGTCGTCAGTCA -ACGGAAAAGGTGAGTCGTGATCCA -ACGGAAAAGGTGAGTCGTACGACA -ACGGAAAAGGTGAGTCGTAGCTCA -ACGGAAAAGGTGAGTCGTTCACGT -ACGGAAAAGGTGAGTCGTCGTAGT -ACGGAAAAGGTGAGTCGTGTCAGT -ACGGAAAAGGTGAGTCGTGAAGGT -ACGGAAAAGGTGAGTCGTAACCGT -ACGGAAAAGGTGAGTCGTTTGTGC -ACGGAAAAGGTGAGTCGTCTAAGC -ACGGAAAAGGTGAGTCGTACTAGC -ACGGAAAAGGTGAGTCGTAGATGC -ACGGAAAAGGTGAGTCGTTGAAGG -ACGGAAAAGGTGAGTCGTCAATGG -ACGGAAAAGGTGAGTCGTATGAGG -ACGGAAAAGGTGAGTCGTAATGGG -ACGGAAAAGGTGAGTCGTTCCTGA -ACGGAAAAGGTGAGTCGTTAGCGA -ACGGAAAAGGTGAGTCGTCACAGA -ACGGAAAAGGTGAGTCGTGCAAGA -ACGGAAAAGGTGAGTCGTGGTTGA -ACGGAAAAGGTGAGTCGTTCCGAT -ACGGAAAAGGTGAGTCGTTGGCAT -ACGGAAAAGGTGAGTCGTCGAGAT -ACGGAAAAGGTGAGTCGTTACCAC -ACGGAAAAGGTGAGTCGTCAGAAC -ACGGAAAAGGTGAGTCGTGTCTAC -ACGGAAAAGGTGAGTCGTACGTAC -ACGGAAAAGGTGAGTCGTAGTGAC -ACGGAAAAGGTGAGTCGTCTGTAG -ACGGAAAAGGTGAGTCGTCCTAAG -ACGGAAAAGGTGAGTCGTGTTCAG -ACGGAAAAGGTGAGTCGTGCATAG -ACGGAAAAGGTGAGTCGTGACAAG -ACGGAAAAGGTGAGTCGTAAGCAG -ACGGAAAAGGTGAGTCGTCGTCAA -ACGGAAAAGGTGAGTCGTGCTGAA -ACGGAAAAGGTGAGTCGTAGTACG -ACGGAAAAGGTGAGTCGTATCCGA -ACGGAAAAGGTGAGTCGTATGGGA -ACGGAAAAGGTGAGTCGTGTGCAA -ACGGAAAAGGTGAGTCGTGAGGAA -ACGGAAAAGGTGAGTCGTCAGGTA -ACGGAAAAGGTGAGTCGTGACTCT -ACGGAAAAGGTGAGTCGTAGTCCT -ACGGAAAAGGTGAGTCGTTAAGCC -ACGGAAAAGGTGAGTCGTATAGCC -ACGGAAAAGGTGAGTCGTTAACCG -ACGGAAAAGGTGAGTCGTATGCCA -ACGGAAAAGGTGAGTGTCGGAAAC -ACGGAAAAGGTGAGTGTCAACACC -ACGGAAAAGGTGAGTGTCATCGAG -ACGGAAAAGGTGAGTGTCCTCCTT -ACGGAAAAGGTGAGTGTCCCTGTT -ACGGAAAAGGTGAGTGTCCGGTTT -ACGGAAAAGGTGAGTGTCGTGGTT -ACGGAAAAGGTGAGTGTCGCCTTT -ACGGAAAAGGTGAGTGTCGGTCTT -ACGGAAAAGGTGAGTGTCACGCTT -ACGGAAAAGGTGAGTGTCAGCGTT -ACGGAAAAGGTGAGTGTCTTCGTC -ACGGAAAAGGTGAGTGTCTCTCTC -ACGGAAAAGGTGAGTGTCTGGATC -ACGGAAAAGGTGAGTGTCCACTTC -ACGGAAAAGGTGAGTGTCGTACTC -ACGGAAAAGGTGAGTGTCGATGTC -ACGGAAAAGGTGAGTGTCACAGTC -ACGGAAAAGGTGAGTGTCTTGCTG -ACGGAAAAGGTGAGTGTCTCCATG -ACGGAAAAGGTGAGTGTCTGTGTG -ACGGAAAAGGTGAGTGTCCTAGTG -ACGGAAAAGGTGAGTGTCCATCTG -ACGGAAAAGGTGAGTGTCGAGTTG -ACGGAAAAGGTGAGTGTCAGACTG -ACGGAAAAGGTGAGTGTCTCGGTA -ACGGAAAAGGTGAGTGTCTGCCTA -ACGGAAAAGGTGAGTGTCCCACTA -ACGGAAAAGGTGAGTGTCGGAGTA -ACGGAAAAGGTGAGTGTCTCGTCT -ACGGAAAAGGTGAGTGTCTGCACT -ACGGAAAAGGTGAGTGTCCTGACT -ACGGAAAAGGTGAGTGTCCAACCT -ACGGAAAAGGTGAGTGTCGCTACT -ACGGAAAAGGTGAGTGTCGGATCT -ACGGAAAAGGTGAGTGTCAAGGCT -ACGGAAAAGGTGAGTGTCTCAACC -ACGGAAAAGGTGAGTGTCTGTTCC -ACGGAAAAGGTGAGTGTCATTCCC -ACGGAAAAGGTGAGTGTCTTCTCG -ACGGAAAAGGTGAGTGTCTAGACG -ACGGAAAAGGTGAGTGTCGTAACG -ACGGAAAAGGTGAGTGTCACTTCG -ACGGAAAAGGTGAGTGTCTACGCA -ACGGAAAAGGTGAGTGTCCTTGCA -ACGGAAAAGGTGAGTGTCCGAACA -ACGGAAAAGGTGAGTGTCCAGTCA -ACGGAAAAGGTGAGTGTCGATCCA -ACGGAAAAGGTGAGTGTCACGACA -ACGGAAAAGGTGAGTGTCAGCTCA -ACGGAAAAGGTGAGTGTCTCACGT -ACGGAAAAGGTGAGTGTCCGTAGT -ACGGAAAAGGTGAGTGTCGTCAGT -ACGGAAAAGGTGAGTGTCGAAGGT -ACGGAAAAGGTGAGTGTCAACCGT -ACGGAAAAGGTGAGTGTCTTGTGC -ACGGAAAAGGTGAGTGTCCTAAGC -ACGGAAAAGGTGAGTGTCACTAGC -ACGGAAAAGGTGAGTGTCAGATGC -ACGGAAAAGGTGAGTGTCTGAAGG -ACGGAAAAGGTGAGTGTCCAATGG -ACGGAAAAGGTGAGTGTCATGAGG -ACGGAAAAGGTGAGTGTCAATGGG -ACGGAAAAGGTGAGTGTCTCCTGA -ACGGAAAAGGTGAGTGTCTAGCGA -ACGGAAAAGGTGAGTGTCCACAGA -ACGGAAAAGGTGAGTGTCGCAAGA -ACGGAAAAGGTGAGTGTCGGTTGA -ACGGAAAAGGTGAGTGTCTCCGAT -ACGGAAAAGGTGAGTGTCTGGCAT -ACGGAAAAGGTGAGTGTCCGAGAT -ACGGAAAAGGTGAGTGTCTACCAC -ACGGAAAAGGTGAGTGTCCAGAAC -ACGGAAAAGGTGAGTGTCGTCTAC -ACGGAAAAGGTGAGTGTCACGTAC -ACGGAAAAGGTGAGTGTCAGTGAC -ACGGAAAAGGTGAGTGTCCTGTAG -ACGGAAAAGGTGAGTGTCCCTAAG -ACGGAAAAGGTGAGTGTCGTTCAG -ACGGAAAAGGTGAGTGTCGCATAG -ACGGAAAAGGTGAGTGTCGACAAG -ACGGAAAAGGTGAGTGTCAAGCAG -ACGGAAAAGGTGAGTGTCCGTCAA -ACGGAAAAGGTGAGTGTCGCTGAA -ACGGAAAAGGTGAGTGTCAGTACG -ACGGAAAAGGTGAGTGTCATCCGA -ACGGAAAAGGTGAGTGTCATGGGA -ACGGAAAAGGTGAGTGTCGTGCAA -ACGGAAAAGGTGAGTGTCGAGGAA -ACGGAAAAGGTGAGTGTCCAGGTA -ACGGAAAAGGTGAGTGTCGACTCT -ACGGAAAAGGTGAGTGTCAGTCCT -ACGGAAAAGGTGAGTGTCTAAGCC -ACGGAAAAGGTGAGTGTCATAGCC -ACGGAAAAGGTGAGTGTCTAACCG -ACGGAAAAGGTGAGTGTCATGCCA -ACGGAAAAGGTGGGTGAAGGAAAC -ACGGAAAAGGTGGGTGAAAACACC -ACGGAAAAGGTGGGTGAAATCGAG -ACGGAAAAGGTGGGTGAACTCCTT -ACGGAAAAGGTGGGTGAACCTGTT -ACGGAAAAGGTGGGTGAACGGTTT -ACGGAAAAGGTGGGTGAAGTGGTT -ACGGAAAAGGTGGGTGAAGCCTTT -ACGGAAAAGGTGGGTGAAGGTCTT -ACGGAAAAGGTGGGTGAAACGCTT -ACGGAAAAGGTGGGTGAAAGCGTT -ACGGAAAAGGTGGGTGAATTCGTC -ACGGAAAAGGTGGGTGAATCTCTC -ACGGAAAAGGTGGGTGAATGGATC -ACGGAAAAGGTGGGTGAACACTTC -ACGGAAAAGGTGGGTGAAGTACTC -ACGGAAAAGGTGGGTGAAGATGTC -ACGGAAAAGGTGGGTGAAACAGTC -ACGGAAAAGGTGGGTGAATTGCTG -ACGGAAAAGGTGGGTGAATCCATG -ACGGAAAAGGTGGGTGAATGTGTG -ACGGAAAAGGTGGGTGAACTAGTG -ACGGAAAAGGTGGGTGAACATCTG -ACGGAAAAGGTGGGTGAAGAGTTG -ACGGAAAAGGTGGGTGAAAGACTG -ACGGAAAAGGTGGGTGAATCGGTA -ACGGAAAAGGTGGGTGAATGCCTA -ACGGAAAAGGTGGGTGAACCACTA -ACGGAAAAGGTGGGTGAAGGAGTA -ACGGAAAAGGTGGGTGAATCGTCT -ACGGAAAAGGTGGGTGAATGCACT -ACGGAAAAGGTGGGTGAACTGACT -ACGGAAAAGGTGGGTGAACAACCT -ACGGAAAAGGTGGGTGAAGCTACT -ACGGAAAAGGTGGGTGAAGGATCT -ACGGAAAAGGTGGGTGAAAAGGCT -ACGGAAAAGGTGGGTGAATCAACC -ACGGAAAAGGTGGGTGAATGTTCC -ACGGAAAAGGTGGGTGAAATTCCC -ACGGAAAAGGTGGGTGAATTCTCG -ACGGAAAAGGTGGGTGAATAGACG -ACGGAAAAGGTGGGTGAAGTAACG -ACGGAAAAGGTGGGTGAAACTTCG -ACGGAAAAGGTGGGTGAATACGCA -ACGGAAAAGGTGGGTGAACTTGCA -ACGGAAAAGGTGGGTGAACGAACA -ACGGAAAAGGTGGGTGAACAGTCA -ACGGAAAAGGTGGGTGAAGATCCA -ACGGAAAAGGTGGGTGAAACGACA -ACGGAAAAGGTGGGTGAAAGCTCA -ACGGAAAAGGTGGGTGAATCACGT -ACGGAAAAGGTGGGTGAACGTAGT -ACGGAAAAGGTGGGTGAAGTCAGT -ACGGAAAAGGTGGGTGAAGAAGGT -ACGGAAAAGGTGGGTGAAAACCGT -ACGGAAAAGGTGGGTGAATTGTGC -ACGGAAAAGGTGGGTGAACTAAGC -ACGGAAAAGGTGGGTGAAACTAGC -ACGGAAAAGGTGGGTGAAAGATGC -ACGGAAAAGGTGGGTGAATGAAGG -ACGGAAAAGGTGGGTGAACAATGG -ACGGAAAAGGTGGGTGAAATGAGG -ACGGAAAAGGTGGGTGAAAATGGG -ACGGAAAAGGTGGGTGAATCCTGA -ACGGAAAAGGTGGGTGAATAGCGA -ACGGAAAAGGTGGGTGAACACAGA -ACGGAAAAGGTGGGTGAAGCAAGA -ACGGAAAAGGTGGGTGAAGGTTGA -ACGGAAAAGGTGGGTGAATCCGAT -ACGGAAAAGGTGGGTGAATGGCAT -ACGGAAAAGGTGGGTGAACGAGAT -ACGGAAAAGGTGGGTGAATACCAC -ACGGAAAAGGTGGGTGAACAGAAC -ACGGAAAAGGTGGGTGAAGTCTAC -ACGGAAAAGGTGGGTGAAACGTAC -ACGGAAAAGGTGGGTGAAAGTGAC -ACGGAAAAGGTGGGTGAACTGTAG -ACGGAAAAGGTGGGTGAACCTAAG -ACGGAAAAGGTGGGTGAAGTTCAG -ACGGAAAAGGTGGGTGAAGCATAG -ACGGAAAAGGTGGGTGAAGACAAG -ACGGAAAAGGTGGGTGAAAAGCAG -ACGGAAAAGGTGGGTGAACGTCAA -ACGGAAAAGGTGGGTGAAGCTGAA -ACGGAAAAGGTGGGTGAAAGTACG -ACGGAAAAGGTGGGTGAAATCCGA -ACGGAAAAGGTGGGTGAAATGGGA -ACGGAAAAGGTGGGTGAAGTGCAA -ACGGAAAAGGTGGGTGAAGAGGAA -ACGGAAAAGGTGGGTGAACAGGTA -ACGGAAAAGGTGGGTGAAGACTCT -ACGGAAAAGGTGGGTGAAAGTCCT -ACGGAAAAGGTGGGTGAATAAGCC -ACGGAAAAGGTGGGTGAAATAGCC -ACGGAAAAGGTGGGTGAATAACCG -ACGGAAAAGGTGGGTGAAATGCCA -ACGGAAAAGGTGCGTAACGGAAAC -ACGGAAAAGGTGCGTAACAACACC -ACGGAAAAGGTGCGTAACATCGAG -ACGGAAAAGGTGCGTAACCTCCTT -ACGGAAAAGGTGCGTAACCCTGTT -ACGGAAAAGGTGCGTAACCGGTTT -ACGGAAAAGGTGCGTAACGTGGTT -ACGGAAAAGGTGCGTAACGCCTTT -ACGGAAAAGGTGCGTAACGGTCTT -ACGGAAAAGGTGCGTAACACGCTT -ACGGAAAAGGTGCGTAACAGCGTT -ACGGAAAAGGTGCGTAACTTCGTC -ACGGAAAAGGTGCGTAACTCTCTC -ACGGAAAAGGTGCGTAACTGGATC -ACGGAAAAGGTGCGTAACCACTTC -ACGGAAAAGGTGCGTAACGTACTC -ACGGAAAAGGTGCGTAACGATGTC -ACGGAAAAGGTGCGTAACACAGTC -ACGGAAAAGGTGCGTAACTTGCTG -ACGGAAAAGGTGCGTAACTCCATG -ACGGAAAAGGTGCGTAACTGTGTG -ACGGAAAAGGTGCGTAACCTAGTG -ACGGAAAAGGTGCGTAACCATCTG -ACGGAAAAGGTGCGTAACGAGTTG -ACGGAAAAGGTGCGTAACAGACTG -ACGGAAAAGGTGCGTAACTCGGTA -ACGGAAAAGGTGCGTAACTGCCTA -ACGGAAAAGGTGCGTAACCCACTA -ACGGAAAAGGTGCGTAACGGAGTA -ACGGAAAAGGTGCGTAACTCGTCT -ACGGAAAAGGTGCGTAACTGCACT -ACGGAAAAGGTGCGTAACCTGACT -ACGGAAAAGGTGCGTAACCAACCT -ACGGAAAAGGTGCGTAACGCTACT -ACGGAAAAGGTGCGTAACGGATCT -ACGGAAAAGGTGCGTAACAAGGCT -ACGGAAAAGGTGCGTAACTCAACC -ACGGAAAAGGTGCGTAACTGTTCC -ACGGAAAAGGTGCGTAACATTCCC -ACGGAAAAGGTGCGTAACTTCTCG -ACGGAAAAGGTGCGTAACTAGACG -ACGGAAAAGGTGCGTAACGTAACG -ACGGAAAAGGTGCGTAACACTTCG -ACGGAAAAGGTGCGTAACTACGCA -ACGGAAAAGGTGCGTAACCTTGCA -ACGGAAAAGGTGCGTAACCGAACA -ACGGAAAAGGTGCGTAACCAGTCA -ACGGAAAAGGTGCGTAACGATCCA -ACGGAAAAGGTGCGTAACACGACA -ACGGAAAAGGTGCGTAACAGCTCA -ACGGAAAAGGTGCGTAACTCACGT -ACGGAAAAGGTGCGTAACCGTAGT -ACGGAAAAGGTGCGTAACGTCAGT -ACGGAAAAGGTGCGTAACGAAGGT -ACGGAAAAGGTGCGTAACAACCGT -ACGGAAAAGGTGCGTAACTTGTGC -ACGGAAAAGGTGCGTAACCTAAGC -ACGGAAAAGGTGCGTAACACTAGC -ACGGAAAAGGTGCGTAACAGATGC -ACGGAAAAGGTGCGTAACTGAAGG -ACGGAAAAGGTGCGTAACCAATGG -ACGGAAAAGGTGCGTAACATGAGG -ACGGAAAAGGTGCGTAACAATGGG -ACGGAAAAGGTGCGTAACTCCTGA -ACGGAAAAGGTGCGTAACTAGCGA -ACGGAAAAGGTGCGTAACCACAGA -ACGGAAAAGGTGCGTAACGCAAGA -ACGGAAAAGGTGCGTAACGGTTGA -ACGGAAAAGGTGCGTAACTCCGAT -ACGGAAAAGGTGCGTAACTGGCAT -ACGGAAAAGGTGCGTAACCGAGAT -ACGGAAAAGGTGCGTAACTACCAC -ACGGAAAAGGTGCGTAACCAGAAC -ACGGAAAAGGTGCGTAACGTCTAC -ACGGAAAAGGTGCGTAACACGTAC -ACGGAAAAGGTGCGTAACAGTGAC -ACGGAAAAGGTGCGTAACCTGTAG -ACGGAAAAGGTGCGTAACCCTAAG -ACGGAAAAGGTGCGTAACGTTCAG -ACGGAAAAGGTGCGTAACGCATAG -ACGGAAAAGGTGCGTAACGACAAG -ACGGAAAAGGTGCGTAACAAGCAG -ACGGAAAAGGTGCGTAACCGTCAA -ACGGAAAAGGTGCGTAACGCTGAA -ACGGAAAAGGTGCGTAACAGTACG -ACGGAAAAGGTGCGTAACATCCGA -ACGGAAAAGGTGCGTAACATGGGA -ACGGAAAAGGTGCGTAACGTGCAA -ACGGAAAAGGTGCGTAACGAGGAA -ACGGAAAAGGTGCGTAACCAGGTA -ACGGAAAAGGTGCGTAACGACTCT -ACGGAAAAGGTGCGTAACAGTCCT -ACGGAAAAGGTGCGTAACTAAGCC -ACGGAAAAGGTGCGTAACATAGCC -ACGGAAAAGGTGCGTAACTAACCG -ACGGAAAAGGTGCGTAACATGCCA -ACGGAAAAGGTGTGCTTGGGAAAC -ACGGAAAAGGTGTGCTTGAACACC -ACGGAAAAGGTGTGCTTGATCGAG -ACGGAAAAGGTGTGCTTGCTCCTT -ACGGAAAAGGTGTGCTTGCCTGTT -ACGGAAAAGGTGTGCTTGCGGTTT -ACGGAAAAGGTGTGCTTGGTGGTT -ACGGAAAAGGTGTGCTTGGCCTTT -ACGGAAAAGGTGTGCTTGGGTCTT -ACGGAAAAGGTGTGCTTGACGCTT -ACGGAAAAGGTGTGCTTGAGCGTT -ACGGAAAAGGTGTGCTTGTTCGTC -ACGGAAAAGGTGTGCTTGTCTCTC -ACGGAAAAGGTGTGCTTGTGGATC -ACGGAAAAGGTGTGCTTGCACTTC -ACGGAAAAGGTGTGCTTGGTACTC -ACGGAAAAGGTGTGCTTGGATGTC -ACGGAAAAGGTGTGCTTGACAGTC -ACGGAAAAGGTGTGCTTGTTGCTG -ACGGAAAAGGTGTGCTTGTCCATG -ACGGAAAAGGTGTGCTTGTGTGTG -ACGGAAAAGGTGTGCTTGCTAGTG -ACGGAAAAGGTGTGCTTGCATCTG -ACGGAAAAGGTGTGCTTGGAGTTG -ACGGAAAAGGTGTGCTTGAGACTG -ACGGAAAAGGTGTGCTTGTCGGTA -ACGGAAAAGGTGTGCTTGTGCCTA -ACGGAAAAGGTGTGCTTGCCACTA -ACGGAAAAGGTGTGCTTGGGAGTA -ACGGAAAAGGTGTGCTTGTCGTCT -ACGGAAAAGGTGTGCTTGTGCACT -ACGGAAAAGGTGTGCTTGCTGACT -ACGGAAAAGGTGTGCTTGCAACCT -ACGGAAAAGGTGTGCTTGGCTACT -ACGGAAAAGGTGTGCTTGGGATCT -ACGGAAAAGGTGTGCTTGAAGGCT -ACGGAAAAGGTGTGCTTGTCAACC -ACGGAAAAGGTGTGCTTGTGTTCC -ACGGAAAAGGTGTGCTTGATTCCC -ACGGAAAAGGTGTGCTTGTTCTCG -ACGGAAAAGGTGTGCTTGTAGACG -ACGGAAAAGGTGTGCTTGGTAACG -ACGGAAAAGGTGTGCTTGACTTCG -ACGGAAAAGGTGTGCTTGTACGCA -ACGGAAAAGGTGTGCTTGCTTGCA -ACGGAAAAGGTGTGCTTGCGAACA -ACGGAAAAGGTGTGCTTGCAGTCA -ACGGAAAAGGTGTGCTTGGATCCA -ACGGAAAAGGTGTGCTTGACGACA -ACGGAAAAGGTGTGCTTGAGCTCA -ACGGAAAAGGTGTGCTTGTCACGT -ACGGAAAAGGTGTGCTTGCGTAGT -ACGGAAAAGGTGTGCTTGGTCAGT -ACGGAAAAGGTGTGCTTGGAAGGT -ACGGAAAAGGTGTGCTTGAACCGT -ACGGAAAAGGTGTGCTTGTTGTGC -ACGGAAAAGGTGTGCTTGCTAAGC -ACGGAAAAGGTGTGCTTGACTAGC -ACGGAAAAGGTGTGCTTGAGATGC -ACGGAAAAGGTGTGCTTGTGAAGG -ACGGAAAAGGTGTGCTTGCAATGG -ACGGAAAAGGTGTGCTTGATGAGG -ACGGAAAAGGTGTGCTTGAATGGG -ACGGAAAAGGTGTGCTTGTCCTGA -ACGGAAAAGGTGTGCTTGTAGCGA -ACGGAAAAGGTGTGCTTGCACAGA -ACGGAAAAGGTGTGCTTGGCAAGA -ACGGAAAAGGTGTGCTTGGGTTGA -ACGGAAAAGGTGTGCTTGTCCGAT -ACGGAAAAGGTGTGCTTGTGGCAT -ACGGAAAAGGTGTGCTTGCGAGAT -ACGGAAAAGGTGTGCTTGTACCAC -ACGGAAAAGGTGTGCTTGCAGAAC -ACGGAAAAGGTGTGCTTGGTCTAC -ACGGAAAAGGTGTGCTTGACGTAC -ACGGAAAAGGTGTGCTTGAGTGAC -ACGGAAAAGGTGTGCTTGCTGTAG -ACGGAAAAGGTGTGCTTGCCTAAG -ACGGAAAAGGTGTGCTTGGTTCAG -ACGGAAAAGGTGTGCTTGGCATAG -ACGGAAAAGGTGTGCTTGGACAAG -ACGGAAAAGGTGTGCTTGAAGCAG -ACGGAAAAGGTGTGCTTGCGTCAA -ACGGAAAAGGTGTGCTTGGCTGAA -ACGGAAAAGGTGTGCTTGAGTACG -ACGGAAAAGGTGTGCTTGATCCGA -ACGGAAAAGGTGTGCTTGATGGGA -ACGGAAAAGGTGTGCTTGGTGCAA -ACGGAAAAGGTGTGCTTGGAGGAA -ACGGAAAAGGTGTGCTTGCAGGTA -ACGGAAAAGGTGTGCTTGGACTCT -ACGGAAAAGGTGTGCTTGAGTCCT -ACGGAAAAGGTGTGCTTGTAAGCC -ACGGAAAAGGTGTGCTTGATAGCC -ACGGAAAAGGTGTGCTTGTAACCG -ACGGAAAAGGTGTGCTTGATGCCA -ACGGAAAAGGTGAGCCTAGGAAAC -ACGGAAAAGGTGAGCCTAAACACC -ACGGAAAAGGTGAGCCTAATCGAG -ACGGAAAAGGTGAGCCTACTCCTT -ACGGAAAAGGTGAGCCTACCTGTT -ACGGAAAAGGTGAGCCTACGGTTT -ACGGAAAAGGTGAGCCTAGTGGTT -ACGGAAAAGGTGAGCCTAGCCTTT -ACGGAAAAGGTGAGCCTAGGTCTT -ACGGAAAAGGTGAGCCTAACGCTT -ACGGAAAAGGTGAGCCTAAGCGTT -ACGGAAAAGGTGAGCCTATTCGTC -ACGGAAAAGGTGAGCCTATCTCTC -ACGGAAAAGGTGAGCCTATGGATC -ACGGAAAAGGTGAGCCTACACTTC -ACGGAAAAGGTGAGCCTAGTACTC -ACGGAAAAGGTGAGCCTAGATGTC -ACGGAAAAGGTGAGCCTAACAGTC -ACGGAAAAGGTGAGCCTATTGCTG -ACGGAAAAGGTGAGCCTATCCATG -ACGGAAAAGGTGAGCCTATGTGTG -ACGGAAAAGGTGAGCCTACTAGTG -ACGGAAAAGGTGAGCCTACATCTG -ACGGAAAAGGTGAGCCTAGAGTTG -ACGGAAAAGGTGAGCCTAAGACTG -ACGGAAAAGGTGAGCCTATCGGTA -ACGGAAAAGGTGAGCCTATGCCTA -ACGGAAAAGGTGAGCCTACCACTA -ACGGAAAAGGTGAGCCTAGGAGTA -ACGGAAAAGGTGAGCCTATCGTCT -ACGGAAAAGGTGAGCCTATGCACT -ACGGAAAAGGTGAGCCTACTGACT -ACGGAAAAGGTGAGCCTACAACCT -ACGGAAAAGGTGAGCCTAGCTACT -ACGGAAAAGGTGAGCCTAGGATCT -ACGGAAAAGGTGAGCCTAAAGGCT -ACGGAAAAGGTGAGCCTATCAACC -ACGGAAAAGGTGAGCCTATGTTCC -ACGGAAAAGGTGAGCCTAATTCCC -ACGGAAAAGGTGAGCCTATTCTCG -ACGGAAAAGGTGAGCCTATAGACG -ACGGAAAAGGTGAGCCTAGTAACG -ACGGAAAAGGTGAGCCTAACTTCG -ACGGAAAAGGTGAGCCTATACGCA -ACGGAAAAGGTGAGCCTACTTGCA -ACGGAAAAGGTGAGCCTACGAACA -ACGGAAAAGGTGAGCCTACAGTCA -ACGGAAAAGGTGAGCCTAGATCCA -ACGGAAAAGGTGAGCCTAACGACA -ACGGAAAAGGTGAGCCTAAGCTCA -ACGGAAAAGGTGAGCCTATCACGT -ACGGAAAAGGTGAGCCTACGTAGT -ACGGAAAAGGTGAGCCTAGTCAGT -ACGGAAAAGGTGAGCCTAGAAGGT -ACGGAAAAGGTGAGCCTAAACCGT -ACGGAAAAGGTGAGCCTATTGTGC -ACGGAAAAGGTGAGCCTACTAAGC -ACGGAAAAGGTGAGCCTAACTAGC -ACGGAAAAGGTGAGCCTAAGATGC -ACGGAAAAGGTGAGCCTATGAAGG -ACGGAAAAGGTGAGCCTACAATGG -ACGGAAAAGGTGAGCCTAATGAGG -ACGGAAAAGGTGAGCCTAAATGGG -ACGGAAAAGGTGAGCCTATCCTGA -ACGGAAAAGGTGAGCCTATAGCGA -ACGGAAAAGGTGAGCCTACACAGA -ACGGAAAAGGTGAGCCTAGCAAGA -ACGGAAAAGGTGAGCCTAGGTTGA -ACGGAAAAGGTGAGCCTATCCGAT -ACGGAAAAGGTGAGCCTATGGCAT -ACGGAAAAGGTGAGCCTACGAGAT -ACGGAAAAGGTGAGCCTATACCAC -ACGGAAAAGGTGAGCCTACAGAAC -ACGGAAAAGGTGAGCCTAGTCTAC -ACGGAAAAGGTGAGCCTAACGTAC -ACGGAAAAGGTGAGCCTAAGTGAC -ACGGAAAAGGTGAGCCTACTGTAG -ACGGAAAAGGTGAGCCTACCTAAG -ACGGAAAAGGTGAGCCTAGTTCAG -ACGGAAAAGGTGAGCCTAGCATAG -ACGGAAAAGGTGAGCCTAGACAAG -ACGGAAAAGGTGAGCCTAAAGCAG -ACGGAAAAGGTGAGCCTACGTCAA -ACGGAAAAGGTGAGCCTAGCTGAA -ACGGAAAAGGTGAGCCTAAGTACG -ACGGAAAAGGTGAGCCTAATCCGA -ACGGAAAAGGTGAGCCTAATGGGA -ACGGAAAAGGTGAGCCTAGTGCAA -ACGGAAAAGGTGAGCCTAGAGGAA -ACGGAAAAGGTGAGCCTACAGGTA -ACGGAAAAGGTGAGCCTAGACTCT -ACGGAAAAGGTGAGCCTAAGTCCT -ACGGAAAAGGTGAGCCTATAAGCC -ACGGAAAAGGTGAGCCTAATAGCC -ACGGAAAAGGTGAGCCTATAACCG -ACGGAAAAGGTGAGCCTAATGCCA -ACGGAAAAGGTGAGCACTGGAAAC -ACGGAAAAGGTGAGCACTAACACC -ACGGAAAAGGTGAGCACTATCGAG -ACGGAAAAGGTGAGCACTCTCCTT -ACGGAAAAGGTGAGCACTCCTGTT -ACGGAAAAGGTGAGCACTCGGTTT -ACGGAAAAGGTGAGCACTGTGGTT -ACGGAAAAGGTGAGCACTGCCTTT -ACGGAAAAGGTGAGCACTGGTCTT -ACGGAAAAGGTGAGCACTACGCTT -ACGGAAAAGGTGAGCACTAGCGTT -ACGGAAAAGGTGAGCACTTTCGTC -ACGGAAAAGGTGAGCACTTCTCTC -ACGGAAAAGGTGAGCACTTGGATC -ACGGAAAAGGTGAGCACTCACTTC -ACGGAAAAGGTGAGCACTGTACTC -ACGGAAAAGGTGAGCACTGATGTC -ACGGAAAAGGTGAGCACTACAGTC -ACGGAAAAGGTGAGCACTTTGCTG -ACGGAAAAGGTGAGCACTTCCATG -ACGGAAAAGGTGAGCACTTGTGTG -ACGGAAAAGGTGAGCACTCTAGTG -ACGGAAAAGGTGAGCACTCATCTG -ACGGAAAAGGTGAGCACTGAGTTG -ACGGAAAAGGTGAGCACTAGACTG -ACGGAAAAGGTGAGCACTTCGGTA -ACGGAAAAGGTGAGCACTTGCCTA -ACGGAAAAGGTGAGCACTCCACTA -ACGGAAAAGGTGAGCACTGGAGTA -ACGGAAAAGGTGAGCACTTCGTCT -ACGGAAAAGGTGAGCACTTGCACT -ACGGAAAAGGTGAGCACTCTGACT -ACGGAAAAGGTGAGCACTCAACCT -ACGGAAAAGGTGAGCACTGCTACT -ACGGAAAAGGTGAGCACTGGATCT -ACGGAAAAGGTGAGCACTAAGGCT -ACGGAAAAGGTGAGCACTTCAACC -ACGGAAAAGGTGAGCACTTGTTCC -ACGGAAAAGGTGAGCACTATTCCC -ACGGAAAAGGTGAGCACTTTCTCG -ACGGAAAAGGTGAGCACTTAGACG -ACGGAAAAGGTGAGCACTGTAACG -ACGGAAAAGGTGAGCACTACTTCG -ACGGAAAAGGTGAGCACTTACGCA -ACGGAAAAGGTGAGCACTCTTGCA -ACGGAAAAGGTGAGCACTCGAACA -ACGGAAAAGGTGAGCACTCAGTCA -ACGGAAAAGGTGAGCACTGATCCA -ACGGAAAAGGTGAGCACTACGACA -ACGGAAAAGGTGAGCACTAGCTCA -ACGGAAAAGGTGAGCACTTCACGT -ACGGAAAAGGTGAGCACTCGTAGT -ACGGAAAAGGTGAGCACTGTCAGT -ACGGAAAAGGTGAGCACTGAAGGT -ACGGAAAAGGTGAGCACTAACCGT -ACGGAAAAGGTGAGCACTTTGTGC -ACGGAAAAGGTGAGCACTCTAAGC -ACGGAAAAGGTGAGCACTACTAGC -ACGGAAAAGGTGAGCACTAGATGC -ACGGAAAAGGTGAGCACTTGAAGG -ACGGAAAAGGTGAGCACTCAATGG -ACGGAAAAGGTGAGCACTATGAGG -ACGGAAAAGGTGAGCACTAATGGG -ACGGAAAAGGTGAGCACTTCCTGA -ACGGAAAAGGTGAGCACTTAGCGA -ACGGAAAAGGTGAGCACTCACAGA -ACGGAAAAGGTGAGCACTGCAAGA -ACGGAAAAGGTGAGCACTGGTTGA -ACGGAAAAGGTGAGCACTTCCGAT -ACGGAAAAGGTGAGCACTTGGCAT -ACGGAAAAGGTGAGCACTCGAGAT -ACGGAAAAGGTGAGCACTTACCAC -ACGGAAAAGGTGAGCACTCAGAAC -ACGGAAAAGGTGAGCACTGTCTAC -ACGGAAAAGGTGAGCACTACGTAC -ACGGAAAAGGTGAGCACTAGTGAC -ACGGAAAAGGTGAGCACTCTGTAG -ACGGAAAAGGTGAGCACTCCTAAG -ACGGAAAAGGTGAGCACTGTTCAG -ACGGAAAAGGTGAGCACTGCATAG -ACGGAAAAGGTGAGCACTGACAAG -ACGGAAAAGGTGAGCACTAAGCAG -ACGGAAAAGGTGAGCACTCGTCAA -ACGGAAAAGGTGAGCACTGCTGAA -ACGGAAAAGGTGAGCACTAGTACG -ACGGAAAAGGTGAGCACTATCCGA -ACGGAAAAGGTGAGCACTATGGGA -ACGGAAAAGGTGAGCACTGTGCAA -ACGGAAAAGGTGAGCACTGAGGAA -ACGGAAAAGGTGAGCACTCAGGTA -ACGGAAAAGGTGAGCACTGACTCT -ACGGAAAAGGTGAGCACTAGTCCT -ACGGAAAAGGTGAGCACTTAAGCC -ACGGAAAAGGTGAGCACTATAGCC -ACGGAAAAGGTGAGCACTTAACCG -ACGGAAAAGGTGAGCACTATGCCA -ACGGAAAAGGTGTGCAGAGGAAAC -ACGGAAAAGGTGTGCAGAAACACC -ACGGAAAAGGTGTGCAGAATCGAG -ACGGAAAAGGTGTGCAGACTCCTT -ACGGAAAAGGTGTGCAGACCTGTT -ACGGAAAAGGTGTGCAGACGGTTT -ACGGAAAAGGTGTGCAGAGTGGTT -ACGGAAAAGGTGTGCAGAGCCTTT -ACGGAAAAGGTGTGCAGAGGTCTT -ACGGAAAAGGTGTGCAGAACGCTT -ACGGAAAAGGTGTGCAGAAGCGTT -ACGGAAAAGGTGTGCAGATTCGTC -ACGGAAAAGGTGTGCAGATCTCTC -ACGGAAAAGGTGTGCAGATGGATC -ACGGAAAAGGTGTGCAGACACTTC -ACGGAAAAGGTGTGCAGAGTACTC -ACGGAAAAGGTGTGCAGAGATGTC -ACGGAAAAGGTGTGCAGAACAGTC -ACGGAAAAGGTGTGCAGATTGCTG -ACGGAAAAGGTGTGCAGATCCATG -ACGGAAAAGGTGTGCAGATGTGTG -ACGGAAAAGGTGTGCAGACTAGTG -ACGGAAAAGGTGTGCAGACATCTG -ACGGAAAAGGTGTGCAGAGAGTTG -ACGGAAAAGGTGTGCAGAAGACTG -ACGGAAAAGGTGTGCAGATCGGTA -ACGGAAAAGGTGTGCAGATGCCTA -ACGGAAAAGGTGTGCAGACCACTA -ACGGAAAAGGTGTGCAGAGGAGTA -ACGGAAAAGGTGTGCAGATCGTCT -ACGGAAAAGGTGTGCAGATGCACT -ACGGAAAAGGTGTGCAGACTGACT -ACGGAAAAGGTGTGCAGACAACCT -ACGGAAAAGGTGTGCAGAGCTACT -ACGGAAAAGGTGTGCAGAGGATCT -ACGGAAAAGGTGTGCAGAAAGGCT -ACGGAAAAGGTGTGCAGATCAACC -ACGGAAAAGGTGTGCAGATGTTCC -ACGGAAAAGGTGTGCAGAATTCCC -ACGGAAAAGGTGTGCAGATTCTCG -ACGGAAAAGGTGTGCAGATAGACG -ACGGAAAAGGTGTGCAGAGTAACG -ACGGAAAAGGTGTGCAGAACTTCG -ACGGAAAAGGTGTGCAGATACGCA -ACGGAAAAGGTGTGCAGACTTGCA -ACGGAAAAGGTGTGCAGACGAACA -ACGGAAAAGGTGTGCAGACAGTCA -ACGGAAAAGGTGTGCAGAGATCCA -ACGGAAAAGGTGTGCAGAACGACA -ACGGAAAAGGTGTGCAGAAGCTCA -ACGGAAAAGGTGTGCAGATCACGT -ACGGAAAAGGTGTGCAGACGTAGT -ACGGAAAAGGTGTGCAGAGTCAGT -ACGGAAAAGGTGTGCAGAGAAGGT -ACGGAAAAGGTGTGCAGAAACCGT -ACGGAAAAGGTGTGCAGATTGTGC -ACGGAAAAGGTGTGCAGACTAAGC -ACGGAAAAGGTGTGCAGAACTAGC -ACGGAAAAGGTGTGCAGAAGATGC -ACGGAAAAGGTGTGCAGATGAAGG -ACGGAAAAGGTGTGCAGACAATGG -ACGGAAAAGGTGTGCAGAATGAGG -ACGGAAAAGGTGTGCAGAAATGGG -ACGGAAAAGGTGTGCAGATCCTGA -ACGGAAAAGGTGTGCAGATAGCGA -ACGGAAAAGGTGTGCAGACACAGA -ACGGAAAAGGTGTGCAGAGCAAGA -ACGGAAAAGGTGTGCAGAGGTTGA -ACGGAAAAGGTGTGCAGATCCGAT -ACGGAAAAGGTGTGCAGATGGCAT -ACGGAAAAGGTGTGCAGACGAGAT -ACGGAAAAGGTGTGCAGATACCAC -ACGGAAAAGGTGTGCAGACAGAAC -ACGGAAAAGGTGTGCAGAGTCTAC -ACGGAAAAGGTGTGCAGAACGTAC -ACGGAAAAGGTGTGCAGAAGTGAC -ACGGAAAAGGTGTGCAGACTGTAG -ACGGAAAAGGTGTGCAGACCTAAG -ACGGAAAAGGTGTGCAGAGTTCAG -ACGGAAAAGGTGTGCAGAGCATAG -ACGGAAAAGGTGTGCAGAGACAAG -ACGGAAAAGGTGTGCAGAAAGCAG -ACGGAAAAGGTGTGCAGACGTCAA -ACGGAAAAGGTGTGCAGAGCTGAA -ACGGAAAAGGTGTGCAGAAGTACG -ACGGAAAAGGTGTGCAGAATCCGA -ACGGAAAAGGTGTGCAGAATGGGA -ACGGAAAAGGTGTGCAGAGTGCAA -ACGGAAAAGGTGTGCAGAGAGGAA -ACGGAAAAGGTGTGCAGACAGGTA -ACGGAAAAGGTGTGCAGAGACTCT -ACGGAAAAGGTGTGCAGAAGTCCT -ACGGAAAAGGTGTGCAGATAAGCC -ACGGAAAAGGTGTGCAGAATAGCC -ACGGAAAAGGTGTGCAGATAACCG -ACGGAAAAGGTGTGCAGAATGCCA -ACGGAAAAGGTGAGGTGAGGAAAC -ACGGAAAAGGTGAGGTGAAACACC -ACGGAAAAGGTGAGGTGAATCGAG -ACGGAAAAGGTGAGGTGACTCCTT -ACGGAAAAGGTGAGGTGACCTGTT -ACGGAAAAGGTGAGGTGACGGTTT -ACGGAAAAGGTGAGGTGAGTGGTT -ACGGAAAAGGTGAGGTGAGCCTTT -ACGGAAAAGGTGAGGTGAGGTCTT -ACGGAAAAGGTGAGGTGAACGCTT -ACGGAAAAGGTGAGGTGAAGCGTT -ACGGAAAAGGTGAGGTGATTCGTC -ACGGAAAAGGTGAGGTGATCTCTC -ACGGAAAAGGTGAGGTGATGGATC -ACGGAAAAGGTGAGGTGACACTTC -ACGGAAAAGGTGAGGTGAGTACTC -ACGGAAAAGGTGAGGTGAGATGTC -ACGGAAAAGGTGAGGTGAACAGTC -ACGGAAAAGGTGAGGTGATTGCTG -ACGGAAAAGGTGAGGTGATCCATG -ACGGAAAAGGTGAGGTGATGTGTG -ACGGAAAAGGTGAGGTGACTAGTG -ACGGAAAAGGTGAGGTGACATCTG -ACGGAAAAGGTGAGGTGAGAGTTG -ACGGAAAAGGTGAGGTGAAGACTG -ACGGAAAAGGTGAGGTGATCGGTA -ACGGAAAAGGTGAGGTGATGCCTA -ACGGAAAAGGTGAGGTGACCACTA -ACGGAAAAGGTGAGGTGAGGAGTA -ACGGAAAAGGTGAGGTGATCGTCT -ACGGAAAAGGTGAGGTGATGCACT -ACGGAAAAGGTGAGGTGACTGACT -ACGGAAAAGGTGAGGTGACAACCT -ACGGAAAAGGTGAGGTGAGCTACT -ACGGAAAAGGTGAGGTGAGGATCT -ACGGAAAAGGTGAGGTGAAAGGCT -ACGGAAAAGGTGAGGTGATCAACC -ACGGAAAAGGTGAGGTGATGTTCC -ACGGAAAAGGTGAGGTGAATTCCC -ACGGAAAAGGTGAGGTGATTCTCG -ACGGAAAAGGTGAGGTGATAGACG -ACGGAAAAGGTGAGGTGAGTAACG -ACGGAAAAGGTGAGGTGAACTTCG -ACGGAAAAGGTGAGGTGATACGCA -ACGGAAAAGGTGAGGTGACTTGCA -ACGGAAAAGGTGAGGTGACGAACA -ACGGAAAAGGTGAGGTGACAGTCA -ACGGAAAAGGTGAGGTGAGATCCA -ACGGAAAAGGTGAGGTGAACGACA -ACGGAAAAGGTGAGGTGAAGCTCA -ACGGAAAAGGTGAGGTGATCACGT -ACGGAAAAGGTGAGGTGACGTAGT -ACGGAAAAGGTGAGGTGAGTCAGT -ACGGAAAAGGTGAGGTGAGAAGGT -ACGGAAAAGGTGAGGTGAAACCGT -ACGGAAAAGGTGAGGTGATTGTGC -ACGGAAAAGGTGAGGTGACTAAGC -ACGGAAAAGGTGAGGTGAACTAGC -ACGGAAAAGGTGAGGTGAAGATGC -ACGGAAAAGGTGAGGTGATGAAGG -ACGGAAAAGGTGAGGTGACAATGG -ACGGAAAAGGTGAGGTGAATGAGG -ACGGAAAAGGTGAGGTGAAATGGG -ACGGAAAAGGTGAGGTGATCCTGA -ACGGAAAAGGTGAGGTGATAGCGA -ACGGAAAAGGTGAGGTGACACAGA -ACGGAAAAGGTGAGGTGAGCAAGA -ACGGAAAAGGTGAGGTGAGGTTGA -ACGGAAAAGGTGAGGTGATCCGAT -ACGGAAAAGGTGAGGTGATGGCAT -ACGGAAAAGGTGAGGTGACGAGAT -ACGGAAAAGGTGAGGTGATACCAC -ACGGAAAAGGTGAGGTGACAGAAC -ACGGAAAAGGTGAGGTGAGTCTAC -ACGGAAAAGGTGAGGTGAACGTAC -ACGGAAAAGGTGAGGTGAAGTGAC -ACGGAAAAGGTGAGGTGACTGTAG -ACGGAAAAGGTGAGGTGACCTAAG -ACGGAAAAGGTGAGGTGAGTTCAG -ACGGAAAAGGTGAGGTGAGCATAG -ACGGAAAAGGTGAGGTGAGACAAG -ACGGAAAAGGTGAGGTGAAAGCAG -ACGGAAAAGGTGAGGTGACGTCAA -ACGGAAAAGGTGAGGTGAGCTGAA -ACGGAAAAGGTGAGGTGAAGTACG -ACGGAAAAGGTGAGGTGAATCCGA -ACGGAAAAGGTGAGGTGAATGGGA -ACGGAAAAGGTGAGGTGAGTGCAA -ACGGAAAAGGTGAGGTGAGAGGAA -ACGGAAAAGGTGAGGTGACAGGTA -ACGGAAAAGGTGAGGTGAGACTCT -ACGGAAAAGGTGAGGTGAAGTCCT -ACGGAAAAGGTGAGGTGATAAGCC -ACGGAAAAGGTGAGGTGAATAGCC -ACGGAAAAGGTGAGGTGATAACCG -ACGGAAAAGGTGAGGTGAATGCCA -ACGGAAAAGGTGTGGCAAGGAAAC -ACGGAAAAGGTGTGGCAAAACACC -ACGGAAAAGGTGTGGCAAATCGAG -ACGGAAAAGGTGTGGCAACTCCTT -ACGGAAAAGGTGTGGCAACCTGTT -ACGGAAAAGGTGTGGCAACGGTTT -ACGGAAAAGGTGTGGCAAGTGGTT -ACGGAAAAGGTGTGGCAAGCCTTT -ACGGAAAAGGTGTGGCAAGGTCTT -ACGGAAAAGGTGTGGCAAACGCTT -ACGGAAAAGGTGTGGCAAAGCGTT -ACGGAAAAGGTGTGGCAATTCGTC -ACGGAAAAGGTGTGGCAATCTCTC -ACGGAAAAGGTGTGGCAATGGATC -ACGGAAAAGGTGTGGCAACACTTC -ACGGAAAAGGTGTGGCAAGTACTC -ACGGAAAAGGTGTGGCAAGATGTC -ACGGAAAAGGTGTGGCAAACAGTC -ACGGAAAAGGTGTGGCAATTGCTG -ACGGAAAAGGTGTGGCAATCCATG -ACGGAAAAGGTGTGGCAATGTGTG -ACGGAAAAGGTGTGGCAACTAGTG -ACGGAAAAGGTGTGGCAACATCTG -ACGGAAAAGGTGTGGCAAGAGTTG -ACGGAAAAGGTGTGGCAAAGACTG -ACGGAAAAGGTGTGGCAATCGGTA -ACGGAAAAGGTGTGGCAATGCCTA -ACGGAAAAGGTGTGGCAACCACTA -ACGGAAAAGGTGTGGCAAGGAGTA -ACGGAAAAGGTGTGGCAATCGTCT -ACGGAAAAGGTGTGGCAATGCACT -ACGGAAAAGGTGTGGCAACTGACT -ACGGAAAAGGTGTGGCAACAACCT -ACGGAAAAGGTGTGGCAAGCTACT -ACGGAAAAGGTGTGGCAAGGATCT -ACGGAAAAGGTGTGGCAAAAGGCT -ACGGAAAAGGTGTGGCAATCAACC -ACGGAAAAGGTGTGGCAATGTTCC -ACGGAAAAGGTGTGGCAAATTCCC -ACGGAAAAGGTGTGGCAATTCTCG -ACGGAAAAGGTGTGGCAATAGACG -ACGGAAAAGGTGTGGCAAGTAACG -ACGGAAAAGGTGTGGCAAACTTCG -ACGGAAAAGGTGTGGCAATACGCA -ACGGAAAAGGTGTGGCAACTTGCA -ACGGAAAAGGTGTGGCAACGAACA -ACGGAAAAGGTGTGGCAACAGTCA -ACGGAAAAGGTGTGGCAAGATCCA -ACGGAAAAGGTGTGGCAAACGACA -ACGGAAAAGGTGTGGCAAAGCTCA -ACGGAAAAGGTGTGGCAATCACGT -ACGGAAAAGGTGTGGCAACGTAGT -ACGGAAAAGGTGTGGCAAGTCAGT -ACGGAAAAGGTGTGGCAAGAAGGT -ACGGAAAAGGTGTGGCAAAACCGT -ACGGAAAAGGTGTGGCAATTGTGC -ACGGAAAAGGTGTGGCAACTAAGC -ACGGAAAAGGTGTGGCAAACTAGC -ACGGAAAAGGTGTGGCAAAGATGC -ACGGAAAAGGTGTGGCAATGAAGG -ACGGAAAAGGTGTGGCAACAATGG -ACGGAAAAGGTGTGGCAAATGAGG -ACGGAAAAGGTGTGGCAAAATGGG -ACGGAAAAGGTGTGGCAATCCTGA -ACGGAAAAGGTGTGGCAATAGCGA -ACGGAAAAGGTGTGGCAACACAGA -ACGGAAAAGGTGTGGCAAGCAAGA -ACGGAAAAGGTGTGGCAAGGTTGA -ACGGAAAAGGTGTGGCAATCCGAT -ACGGAAAAGGTGTGGCAATGGCAT -ACGGAAAAGGTGTGGCAACGAGAT -ACGGAAAAGGTGTGGCAATACCAC -ACGGAAAAGGTGTGGCAACAGAAC -ACGGAAAAGGTGTGGCAAGTCTAC -ACGGAAAAGGTGTGGCAAACGTAC -ACGGAAAAGGTGTGGCAAAGTGAC -ACGGAAAAGGTGTGGCAACTGTAG -ACGGAAAAGGTGTGGCAACCTAAG -ACGGAAAAGGTGTGGCAAGTTCAG -ACGGAAAAGGTGTGGCAAGCATAG -ACGGAAAAGGTGTGGCAAGACAAG -ACGGAAAAGGTGTGGCAAAAGCAG -ACGGAAAAGGTGTGGCAACGTCAA -ACGGAAAAGGTGTGGCAAGCTGAA -ACGGAAAAGGTGTGGCAAAGTACG -ACGGAAAAGGTGTGGCAAATCCGA -ACGGAAAAGGTGTGGCAAATGGGA -ACGGAAAAGGTGTGGCAAGTGCAA -ACGGAAAAGGTGTGGCAAGAGGAA -ACGGAAAAGGTGTGGCAACAGGTA -ACGGAAAAGGTGTGGCAAGACTCT -ACGGAAAAGGTGTGGCAAAGTCCT -ACGGAAAAGGTGTGGCAATAAGCC -ACGGAAAAGGTGTGGCAAATAGCC -ACGGAAAAGGTGTGGCAATAACCG -ACGGAAAAGGTGTGGCAAATGCCA -ACGGAAAAGGTGAGGATGGGAAAC -ACGGAAAAGGTGAGGATGAACACC -ACGGAAAAGGTGAGGATGATCGAG -ACGGAAAAGGTGAGGATGCTCCTT -ACGGAAAAGGTGAGGATGCCTGTT -ACGGAAAAGGTGAGGATGCGGTTT -ACGGAAAAGGTGAGGATGGTGGTT -ACGGAAAAGGTGAGGATGGCCTTT -ACGGAAAAGGTGAGGATGGGTCTT -ACGGAAAAGGTGAGGATGACGCTT -ACGGAAAAGGTGAGGATGAGCGTT -ACGGAAAAGGTGAGGATGTTCGTC -ACGGAAAAGGTGAGGATGTCTCTC -ACGGAAAAGGTGAGGATGTGGATC -ACGGAAAAGGTGAGGATGCACTTC -ACGGAAAAGGTGAGGATGGTACTC -ACGGAAAAGGTGAGGATGGATGTC -ACGGAAAAGGTGAGGATGACAGTC -ACGGAAAAGGTGAGGATGTTGCTG -ACGGAAAAGGTGAGGATGTCCATG -ACGGAAAAGGTGAGGATGTGTGTG -ACGGAAAAGGTGAGGATGCTAGTG -ACGGAAAAGGTGAGGATGCATCTG -ACGGAAAAGGTGAGGATGGAGTTG -ACGGAAAAGGTGAGGATGAGACTG -ACGGAAAAGGTGAGGATGTCGGTA -ACGGAAAAGGTGAGGATGTGCCTA -ACGGAAAAGGTGAGGATGCCACTA -ACGGAAAAGGTGAGGATGGGAGTA -ACGGAAAAGGTGAGGATGTCGTCT -ACGGAAAAGGTGAGGATGTGCACT -ACGGAAAAGGTGAGGATGCTGACT -ACGGAAAAGGTGAGGATGCAACCT -ACGGAAAAGGTGAGGATGGCTACT -ACGGAAAAGGTGAGGATGGGATCT -ACGGAAAAGGTGAGGATGAAGGCT -ACGGAAAAGGTGAGGATGTCAACC -ACGGAAAAGGTGAGGATGTGTTCC -ACGGAAAAGGTGAGGATGATTCCC -ACGGAAAAGGTGAGGATGTTCTCG -ACGGAAAAGGTGAGGATGTAGACG -ACGGAAAAGGTGAGGATGGTAACG -ACGGAAAAGGTGAGGATGACTTCG -ACGGAAAAGGTGAGGATGTACGCA -ACGGAAAAGGTGAGGATGCTTGCA -ACGGAAAAGGTGAGGATGCGAACA -ACGGAAAAGGTGAGGATGCAGTCA -ACGGAAAAGGTGAGGATGGATCCA -ACGGAAAAGGTGAGGATGACGACA -ACGGAAAAGGTGAGGATGAGCTCA -ACGGAAAAGGTGAGGATGTCACGT -ACGGAAAAGGTGAGGATGCGTAGT -ACGGAAAAGGTGAGGATGGTCAGT -ACGGAAAAGGTGAGGATGGAAGGT -ACGGAAAAGGTGAGGATGAACCGT -ACGGAAAAGGTGAGGATGTTGTGC -ACGGAAAAGGTGAGGATGCTAAGC -ACGGAAAAGGTGAGGATGACTAGC -ACGGAAAAGGTGAGGATGAGATGC -ACGGAAAAGGTGAGGATGTGAAGG -ACGGAAAAGGTGAGGATGCAATGG -ACGGAAAAGGTGAGGATGATGAGG -ACGGAAAAGGTGAGGATGAATGGG -ACGGAAAAGGTGAGGATGTCCTGA -ACGGAAAAGGTGAGGATGTAGCGA -ACGGAAAAGGTGAGGATGCACAGA -ACGGAAAAGGTGAGGATGGCAAGA -ACGGAAAAGGTGAGGATGGGTTGA -ACGGAAAAGGTGAGGATGTCCGAT -ACGGAAAAGGTGAGGATGTGGCAT -ACGGAAAAGGTGAGGATGCGAGAT -ACGGAAAAGGTGAGGATGTACCAC -ACGGAAAAGGTGAGGATGCAGAAC -ACGGAAAAGGTGAGGATGGTCTAC -ACGGAAAAGGTGAGGATGACGTAC -ACGGAAAAGGTGAGGATGAGTGAC -ACGGAAAAGGTGAGGATGCTGTAG -ACGGAAAAGGTGAGGATGCCTAAG -ACGGAAAAGGTGAGGATGGTTCAG -ACGGAAAAGGTGAGGATGGCATAG -ACGGAAAAGGTGAGGATGGACAAG -ACGGAAAAGGTGAGGATGAAGCAG -ACGGAAAAGGTGAGGATGCGTCAA -ACGGAAAAGGTGAGGATGGCTGAA -ACGGAAAAGGTGAGGATGAGTACG -ACGGAAAAGGTGAGGATGATCCGA -ACGGAAAAGGTGAGGATGATGGGA -ACGGAAAAGGTGAGGATGGTGCAA -ACGGAAAAGGTGAGGATGGAGGAA -ACGGAAAAGGTGAGGATGCAGGTA -ACGGAAAAGGTGAGGATGGACTCT -ACGGAAAAGGTGAGGATGAGTCCT -ACGGAAAAGGTGAGGATGTAAGCC -ACGGAAAAGGTGAGGATGATAGCC -ACGGAAAAGGTGAGGATGTAACCG -ACGGAAAAGGTGAGGATGATGCCA -ACGGAAAAGGTGGGGAATGGAAAC -ACGGAAAAGGTGGGGAATAACACC -ACGGAAAAGGTGGGGAATATCGAG -ACGGAAAAGGTGGGGAATCTCCTT -ACGGAAAAGGTGGGGAATCCTGTT -ACGGAAAAGGTGGGGAATCGGTTT -ACGGAAAAGGTGGGGAATGTGGTT -ACGGAAAAGGTGGGGAATGCCTTT -ACGGAAAAGGTGGGGAATGGTCTT -ACGGAAAAGGTGGGGAATACGCTT -ACGGAAAAGGTGGGGAATAGCGTT -ACGGAAAAGGTGGGGAATTTCGTC -ACGGAAAAGGTGGGGAATTCTCTC -ACGGAAAAGGTGGGGAATTGGATC -ACGGAAAAGGTGGGGAATCACTTC -ACGGAAAAGGTGGGGAATGTACTC -ACGGAAAAGGTGGGGAATGATGTC -ACGGAAAAGGTGGGGAATACAGTC -ACGGAAAAGGTGGGGAATTTGCTG -ACGGAAAAGGTGGGGAATTCCATG -ACGGAAAAGGTGGGGAATTGTGTG -ACGGAAAAGGTGGGGAATCTAGTG -ACGGAAAAGGTGGGGAATCATCTG -ACGGAAAAGGTGGGGAATGAGTTG -ACGGAAAAGGTGGGGAATAGACTG -ACGGAAAAGGTGGGGAATTCGGTA -ACGGAAAAGGTGGGGAATTGCCTA -ACGGAAAAGGTGGGGAATCCACTA -ACGGAAAAGGTGGGGAATGGAGTA -ACGGAAAAGGTGGGGAATTCGTCT -ACGGAAAAGGTGGGGAATTGCACT -ACGGAAAAGGTGGGGAATCTGACT -ACGGAAAAGGTGGGGAATCAACCT -ACGGAAAAGGTGGGGAATGCTACT -ACGGAAAAGGTGGGGAATGGATCT -ACGGAAAAGGTGGGGAATAAGGCT -ACGGAAAAGGTGGGGAATTCAACC -ACGGAAAAGGTGGGGAATTGTTCC -ACGGAAAAGGTGGGGAATATTCCC -ACGGAAAAGGTGGGGAATTTCTCG -ACGGAAAAGGTGGGGAATTAGACG -ACGGAAAAGGTGGGGAATGTAACG -ACGGAAAAGGTGGGGAATACTTCG -ACGGAAAAGGTGGGGAATTACGCA -ACGGAAAAGGTGGGGAATCTTGCA -ACGGAAAAGGTGGGGAATCGAACA -ACGGAAAAGGTGGGGAATCAGTCA -ACGGAAAAGGTGGGGAATGATCCA -ACGGAAAAGGTGGGGAATACGACA -ACGGAAAAGGTGGGGAATAGCTCA -ACGGAAAAGGTGGGGAATTCACGT -ACGGAAAAGGTGGGGAATCGTAGT -ACGGAAAAGGTGGGGAATGTCAGT -ACGGAAAAGGTGGGGAATGAAGGT -ACGGAAAAGGTGGGGAATAACCGT -ACGGAAAAGGTGGGGAATTTGTGC -ACGGAAAAGGTGGGGAATCTAAGC -ACGGAAAAGGTGGGGAATACTAGC -ACGGAAAAGGTGGGGAATAGATGC -ACGGAAAAGGTGGGGAATTGAAGG -ACGGAAAAGGTGGGGAATCAATGG -ACGGAAAAGGTGGGGAATATGAGG -ACGGAAAAGGTGGGGAATAATGGG -ACGGAAAAGGTGGGGAATTCCTGA -ACGGAAAAGGTGGGGAATTAGCGA -ACGGAAAAGGTGGGGAATCACAGA -ACGGAAAAGGTGGGGAATGCAAGA -ACGGAAAAGGTGGGGAATGGTTGA -ACGGAAAAGGTGGGGAATTCCGAT -ACGGAAAAGGTGGGGAATTGGCAT -ACGGAAAAGGTGGGGAATCGAGAT -ACGGAAAAGGTGGGGAATTACCAC -ACGGAAAAGGTGGGGAATCAGAAC -ACGGAAAAGGTGGGGAATGTCTAC -ACGGAAAAGGTGGGGAATACGTAC -ACGGAAAAGGTGGGGAATAGTGAC -ACGGAAAAGGTGGGGAATCTGTAG -ACGGAAAAGGTGGGGAATCCTAAG -ACGGAAAAGGTGGGGAATGTTCAG -ACGGAAAAGGTGGGGAATGCATAG -ACGGAAAAGGTGGGGAATGACAAG -ACGGAAAAGGTGGGGAATAAGCAG -ACGGAAAAGGTGGGGAATCGTCAA -ACGGAAAAGGTGGGGAATGCTGAA -ACGGAAAAGGTGGGGAATAGTACG -ACGGAAAAGGTGGGGAATATCCGA -ACGGAAAAGGTGGGGAATATGGGA -ACGGAAAAGGTGGGGAATGTGCAA -ACGGAAAAGGTGGGGAATGAGGAA -ACGGAAAAGGTGGGGAATCAGGTA -ACGGAAAAGGTGGGGAATGACTCT -ACGGAAAAGGTGGGGAATAGTCCT -ACGGAAAAGGTGGGGAATTAAGCC -ACGGAAAAGGTGGGGAATATAGCC -ACGGAAAAGGTGGGGAATTAACCG -ACGGAAAAGGTGGGGAATATGCCA -ACGGAAAAGGTGTGATCCGGAAAC -ACGGAAAAGGTGTGATCCAACACC -ACGGAAAAGGTGTGATCCATCGAG -ACGGAAAAGGTGTGATCCCTCCTT -ACGGAAAAGGTGTGATCCCCTGTT -ACGGAAAAGGTGTGATCCCGGTTT -ACGGAAAAGGTGTGATCCGTGGTT -ACGGAAAAGGTGTGATCCGCCTTT -ACGGAAAAGGTGTGATCCGGTCTT -ACGGAAAAGGTGTGATCCACGCTT -ACGGAAAAGGTGTGATCCAGCGTT -ACGGAAAAGGTGTGATCCTTCGTC -ACGGAAAAGGTGTGATCCTCTCTC -ACGGAAAAGGTGTGATCCTGGATC -ACGGAAAAGGTGTGATCCCACTTC -ACGGAAAAGGTGTGATCCGTACTC -ACGGAAAAGGTGTGATCCGATGTC -ACGGAAAAGGTGTGATCCACAGTC -ACGGAAAAGGTGTGATCCTTGCTG -ACGGAAAAGGTGTGATCCTCCATG -ACGGAAAAGGTGTGATCCTGTGTG -ACGGAAAAGGTGTGATCCCTAGTG -ACGGAAAAGGTGTGATCCCATCTG -ACGGAAAAGGTGTGATCCGAGTTG -ACGGAAAAGGTGTGATCCAGACTG -ACGGAAAAGGTGTGATCCTCGGTA -ACGGAAAAGGTGTGATCCTGCCTA -ACGGAAAAGGTGTGATCCCCACTA -ACGGAAAAGGTGTGATCCGGAGTA -ACGGAAAAGGTGTGATCCTCGTCT -ACGGAAAAGGTGTGATCCTGCACT -ACGGAAAAGGTGTGATCCCTGACT -ACGGAAAAGGTGTGATCCCAACCT -ACGGAAAAGGTGTGATCCGCTACT -ACGGAAAAGGTGTGATCCGGATCT -ACGGAAAAGGTGTGATCCAAGGCT -ACGGAAAAGGTGTGATCCTCAACC -ACGGAAAAGGTGTGATCCTGTTCC -ACGGAAAAGGTGTGATCCATTCCC -ACGGAAAAGGTGTGATCCTTCTCG -ACGGAAAAGGTGTGATCCTAGACG -ACGGAAAAGGTGTGATCCGTAACG -ACGGAAAAGGTGTGATCCACTTCG -ACGGAAAAGGTGTGATCCTACGCA -ACGGAAAAGGTGTGATCCCTTGCA -ACGGAAAAGGTGTGATCCCGAACA -ACGGAAAAGGTGTGATCCCAGTCA -ACGGAAAAGGTGTGATCCGATCCA -ACGGAAAAGGTGTGATCCACGACA -ACGGAAAAGGTGTGATCCAGCTCA -ACGGAAAAGGTGTGATCCTCACGT -ACGGAAAAGGTGTGATCCCGTAGT -ACGGAAAAGGTGTGATCCGTCAGT -ACGGAAAAGGTGTGATCCGAAGGT -ACGGAAAAGGTGTGATCCAACCGT -ACGGAAAAGGTGTGATCCTTGTGC -ACGGAAAAGGTGTGATCCCTAAGC -ACGGAAAAGGTGTGATCCACTAGC -ACGGAAAAGGTGTGATCCAGATGC -ACGGAAAAGGTGTGATCCTGAAGG -ACGGAAAAGGTGTGATCCCAATGG -ACGGAAAAGGTGTGATCCATGAGG -ACGGAAAAGGTGTGATCCAATGGG -ACGGAAAAGGTGTGATCCTCCTGA -ACGGAAAAGGTGTGATCCTAGCGA -ACGGAAAAGGTGTGATCCCACAGA -ACGGAAAAGGTGTGATCCGCAAGA -ACGGAAAAGGTGTGATCCGGTTGA -ACGGAAAAGGTGTGATCCTCCGAT -ACGGAAAAGGTGTGATCCTGGCAT -ACGGAAAAGGTGTGATCCCGAGAT -ACGGAAAAGGTGTGATCCTACCAC -ACGGAAAAGGTGTGATCCCAGAAC -ACGGAAAAGGTGTGATCCGTCTAC -ACGGAAAAGGTGTGATCCACGTAC -ACGGAAAAGGTGTGATCCAGTGAC -ACGGAAAAGGTGTGATCCCTGTAG -ACGGAAAAGGTGTGATCCCCTAAG -ACGGAAAAGGTGTGATCCGTTCAG -ACGGAAAAGGTGTGATCCGCATAG -ACGGAAAAGGTGTGATCCGACAAG -ACGGAAAAGGTGTGATCCAAGCAG -ACGGAAAAGGTGTGATCCCGTCAA -ACGGAAAAGGTGTGATCCGCTGAA -ACGGAAAAGGTGTGATCCAGTACG -ACGGAAAAGGTGTGATCCATCCGA -ACGGAAAAGGTGTGATCCATGGGA -ACGGAAAAGGTGTGATCCGTGCAA -ACGGAAAAGGTGTGATCCGAGGAA -ACGGAAAAGGTGTGATCCCAGGTA -ACGGAAAAGGTGTGATCCGACTCT -ACGGAAAAGGTGTGATCCAGTCCT -ACGGAAAAGGTGTGATCCTAAGCC -ACGGAAAAGGTGTGATCCATAGCC -ACGGAAAAGGTGTGATCCTAACCG -ACGGAAAAGGTGTGATCCATGCCA -ACGGAAAAGGTGCGATAGGGAAAC -ACGGAAAAGGTGCGATAGAACACC -ACGGAAAAGGTGCGATAGATCGAG -ACGGAAAAGGTGCGATAGCTCCTT -ACGGAAAAGGTGCGATAGCCTGTT -ACGGAAAAGGTGCGATAGCGGTTT -ACGGAAAAGGTGCGATAGGTGGTT -ACGGAAAAGGTGCGATAGGCCTTT -ACGGAAAAGGTGCGATAGGGTCTT -ACGGAAAAGGTGCGATAGACGCTT -ACGGAAAAGGTGCGATAGAGCGTT -ACGGAAAAGGTGCGATAGTTCGTC -ACGGAAAAGGTGCGATAGTCTCTC -ACGGAAAAGGTGCGATAGTGGATC -ACGGAAAAGGTGCGATAGCACTTC -ACGGAAAAGGTGCGATAGGTACTC -ACGGAAAAGGTGCGATAGGATGTC -ACGGAAAAGGTGCGATAGACAGTC -ACGGAAAAGGTGCGATAGTTGCTG -ACGGAAAAGGTGCGATAGTCCATG -ACGGAAAAGGTGCGATAGTGTGTG -ACGGAAAAGGTGCGATAGCTAGTG -ACGGAAAAGGTGCGATAGCATCTG -ACGGAAAAGGTGCGATAGGAGTTG -ACGGAAAAGGTGCGATAGAGACTG -ACGGAAAAGGTGCGATAGTCGGTA -ACGGAAAAGGTGCGATAGTGCCTA -ACGGAAAAGGTGCGATAGCCACTA -ACGGAAAAGGTGCGATAGGGAGTA -ACGGAAAAGGTGCGATAGTCGTCT -ACGGAAAAGGTGCGATAGTGCACT -ACGGAAAAGGTGCGATAGCTGACT -ACGGAAAAGGTGCGATAGCAACCT -ACGGAAAAGGTGCGATAGGCTACT -ACGGAAAAGGTGCGATAGGGATCT -ACGGAAAAGGTGCGATAGAAGGCT -ACGGAAAAGGTGCGATAGTCAACC -ACGGAAAAGGTGCGATAGTGTTCC -ACGGAAAAGGTGCGATAGATTCCC -ACGGAAAAGGTGCGATAGTTCTCG -ACGGAAAAGGTGCGATAGTAGACG -ACGGAAAAGGTGCGATAGGTAACG -ACGGAAAAGGTGCGATAGACTTCG -ACGGAAAAGGTGCGATAGTACGCA -ACGGAAAAGGTGCGATAGCTTGCA -ACGGAAAAGGTGCGATAGCGAACA -ACGGAAAAGGTGCGATAGCAGTCA -ACGGAAAAGGTGCGATAGGATCCA -ACGGAAAAGGTGCGATAGACGACA -ACGGAAAAGGTGCGATAGAGCTCA -ACGGAAAAGGTGCGATAGTCACGT -ACGGAAAAGGTGCGATAGCGTAGT -ACGGAAAAGGTGCGATAGGTCAGT -ACGGAAAAGGTGCGATAGGAAGGT -ACGGAAAAGGTGCGATAGAACCGT -ACGGAAAAGGTGCGATAGTTGTGC -ACGGAAAAGGTGCGATAGCTAAGC -ACGGAAAAGGTGCGATAGACTAGC -ACGGAAAAGGTGCGATAGAGATGC -ACGGAAAAGGTGCGATAGTGAAGG -ACGGAAAAGGTGCGATAGCAATGG -ACGGAAAAGGTGCGATAGATGAGG -ACGGAAAAGGTGCGATAGAATGGG -ACGGAAAAGGTGCGATAGTCCTGA -ACGGAAAAGGTGCGATAGTAGCGA -ACGGAAAAGGTGCGATAGCACAGA -ACGGAAAAGGTGCGATAGGCAAGA -ACGGAAAAGGTGCGATAGGGTTGA -ACGGAAAAGGTGCGATAGTCCGAT -ACGGAAAAGGTGCGATAGTGGCAT -ACGGAAAAGGTGCGATAGCGAGAT -ACGGAAAAGGTGCGATAGTACCAC -ACGGAAAAGGTGCGATAGCAGAAC -ACGGAAAAGGTGCGATAGGTCTAC -ACGGAAAAGGTGCGATAGACGTAC -ACGGAAAAGGTGCGATAGAGTGAC -ACGGAAAAGGTGCGATAGCTGTAG -ACGGAAAAGGTGCGATAGCCTAAG -ACGGAAAAGGTGCGATAGGTTCAG -ACGGAAAAGGTGCGATAGGCATAG -ACGGAAAAGGTGCGATAGGACAAG -ACGGAAAAGGTGCGATAGAAGCAG -ACGGAAAAGGTGCGATAGCGTCAA -ACGGAAAAGGTGCGATAGGCTGAA -ACGGAAAAGGTGCGATAGAGTACG -ACGGAAAAGGTGCGATAGATCCGA -ACGGAAAAGGTGCGATAGATGGGA -ACGGAAAAGGTGCGATAGGTGCAA -ACGGAAAAGGTGCGATAGGAGGAA -ACGGAAAAGGTGCGATAGCAGGTA -ACGGAAAAGGTGCGATAGGACTCT -ACGGAAAAGGTGCGATAGAGTCCT -ACGGAAAAGGTGCGATAGTAAGCC -ACGGAAAAGGTGCGATAGATAGCC -ACGGAAAAGGTGCGATAGTAACCG -ACGGAAAAGGTGCGATAGATGCCA -ACGGAAAAGGTGAGACACGGAAAC -ACGGAAAAGGTGAGACACAACACC -ACGGAAAAGGTGAGACACATCGAG -ACGGAAAAGGTGAGACACCTCCTT -ACGGAAAAGGTGAGACACCCTGTT -ACGGAAAAGGTGAGACACCGGTTT -ACGGAAAAGGTGAGACACGTGGTT -ACGGAAAAGGTGAGACACGCCTTT -ACGGAAAAGGTGAGACACGGTCTT -ACGGAAAAGGTGAGACACACGCTT -ACGGAAAAGGTGAGACACAGCGTT -ACGGAAAAGGTGAGACACTTCGTC -ACGGAAAAGGTGAGACACTCTCTC -ACGGAAAAGGTGAGACACTGGATC -ACGGAAAAGGTGAGACACCACTTC -ACGGAAAAGGTGAGACACGTACTC -ACGGAAAAGGTGAGACACGATGTC -ACGGAAAAGGTGAGACACACAGTC -ACGGAAAAGGTGAGACACTTGCTG -ACGGAAAAGGTGAGACACTCCATG -ACGGAAAAGGTGAGACACTGTGTG -ACGGAAAAGGTGAGACACCTAGTG -ACGGAAAAGGTGAGACACCATCTG -ACGGAAAAGGTGAGACACGAGTTG -ACGGAAAAGGTGAGACACAGACTG -ACGGAAAAGGTGAGACACTCGGTA -ACGGAAAAGGTGAGACACTGCCTA -ACGGAAAAGGTGAGACACCCACTA -ACGGAAAAGGTGAGACACGGAGTA -ACGGAAAAGGTGAGACACTCGTCT -ACGGAAAAGGTGAGACACTGCACT -ACGGAAAAGGTGAGACACCTGACT -ACGGAAAAGGTGAGACACCAACCT -ACGGAAAAGGTGAGACACGCTACT -ACGGAAAAGGTGAGACACGGATCT -ACGGAAAAGGTGAGACACAAGGCT -ACGGAAAAGGTGAGACACTCAACC -ACGGAAAAGGTGAGACACTGTTCC -ACGGAAAAGGTGAGACACATTCCC -ACGGAAAAGGTGAGACACTTCTCG -ACGGAAAAGGTGAGACACTAGACG -ACGGAAAAGGTGAGACACGTAACG -ACGGAAAAGGTGAGACACACTTCG -ACGGAAAAGGTGAGACACTACGCA -ACGGAAAAGGTGAGACACCTTGCA -ACGGAAAAGGTGAGACACCGAACA -ACGGAAAAGGTGAGACACCAGTCA -ACGGAAAAGGTGAGACACGATCCA -ACGGAAAAGGTGAGACACACGACA -ACGGAAAAGGTGAGACACAGCTCA -ACGGAAAAGGTGAGACACTCACGT -ACGGAAAAGGTGAGACACCGTAGT -ACGGAAAAGGTGAGACACGTCAGT -ACGGAAAAGGTGAGACACGAAGGT -ACGGAAAAGGTGAGACACAACCGT -ACGGAAAAGGTGAGACACTTGTGC -ACGGAAAAGGTGAGACACCTAAGC -ACGGAAAAGGTGAGACACACTAGC -ACGGAAAAGGTGAGACACAGATGC -ACGGAAAAGGTGAGACACTGAAGG -ACGGAAAAGGTGAGACACCAATGG -ACGGAAAAGGTGAGACACATGAGG -ACGGAAAAGGTGAGACACAATGGG -ACGGAAAAGGTGAGACACTCCTGA -ACGGAAAAGGTGAGACACTAGCGA -ACGGAAAAGGTGAGACACCACAGA -ACGGAAAAGGTGAGACACGCAAGA -ACGGAAAAGGTGAGACACGGTTGA -ACGGAAAAGGTGAGACACTCCGAT -ACGGAAAAGGTGAGACACTGGCAT -ACGGAAAAGGTGAGACACCGAGAT -ACGGAAAAGGTGAGACACTACCAC -ACGGAAAAGGTGAGACACCAGAAC -ACGGAAAAGGTGAGACACGTCTAC -ACGGAAAAGGTGAGACACACGTAC -ACGGAAAAGGTGAGACACAGTGAC -ACGGAAAAGGTGAGACACCTGTAG -ACGGAAAAGGTGAGACACCCTAAG -ACGGAAAAGGTGAGACACGTTCAG -ACGGAAAAGGTGAGACACGCATAG -ACGGAAAAGGTGAGACACGACAAG -ACGGAAAAGGTGAGACACAAGCAG -ACGGAAAAGGTGAGACACCGTCAA -ACGGAAAAGGTGAGACACGCTGAA -ACGGAAAAGGTGAGACACAGTACG -ACGGAAAAGGTGAGACACATCCGA -ACGGAAAAGGTGAGACACATGGGA -ACGGAAAAGGTGAGACACGTGCAA -ACGGAAAAGGTGAGACACGAGGAA -ACGGAAAAGGTGAGACACCAGGTA -ACGGAAAAGGTGAGACACGACTCT -ACGGAAAAGGTGAGACACAGTCCT -ACGGAAAAGGTGAGACACTAAGCC -ACGGAAAAGGTGAGACACATAGCC -ACGGAAAAGGTGAGACACTAACCG -ACGGAAAAGGTGAGACACATGCCA -ACGGAAAAGGTGAGAGCAGGAAAC -ACGGAAAAGGTGAGAGCAAACACC -ACGGAAAAGGTGAGAGCAATCGAG -ACGGAAAAGGTGAGAGCACTCCTT -ACGGAAAAGGTGAGAGCACCTGTT -ACGGAAAAGGTGAGAGCACGGTTT -ACGGAAAAGGTGAGAGCAGTGGTT -ACGGAAAAGGTGAGAGCAGCCTTT -ACGGAAAAGGTGAGAGCAGGTCTT -ACGGAAAAGGTGAGAGCAACGCTT -ACGGAAAAGGTGAGAGCAAGCGTT -ACGGAAAAGGTGAGAGCATTCGTC -ACGGAAAAGGTGAGAGCATCTCTC -ACGGAAAAGGTGAGAGCATGGATC -ACGGAAAAGGTGAGAGCACACTTC -ACGGAAAAGGTGAGAGCAGTACTC -ACGGAAAAGGTGAGAGCAGATGTC -ACGGAAAAGGTGAGAGCAACAGTC -ACGGAAAAGGTGAGAGCATTGCTG -ACGGAAAAGGTGAGAGCATCCATG -ACGGAAAAGGTGAGAGCATGTGTG -ACGGAAAAGGTGAGAGCACTAGTG -ACGGAAAAGGTGAGAGCACATCTG -ACGGAAAAGGTGAGAGCAGAGTTG -ACGGAAAAGGTGAGAGCAAGACTG -ACGGAAAAGGTGAGAGCATCGGTA -ACGGAAAAGGTGAGAGCATGCCTA -ACGGAAAAGGTGAGAGCACCACTA -ACGGAAAAGGTGAGAGCAGGAGTA -ACGGAAAAGGTGAGAGCATCGTCT -ACGGAAAAGGTGAGAGCATGCACT -ACGGAAAAGGTGAGAGCACTGACT -ACGGAAAAGGTGAGAGCACAACCT -ACGGAAAAGGTGAGAGCAGCTACT -ACGGAAAAGGTGAGAGCAGGATCT -ACGGAAAAGGTGAGAGCAAAGGCT -ACGGAAAAGGTGAGAGCATCAACC -ACGGAAAAGGTGAGAGCATGTTCC -ACGGAAAAGGTGAGAGCAATTCCC -ACGGAAAAGGTGAGAGCATTCTCG -ACGGAAAAGGTGAGAGCATAGACG -ACGGAAAAGGTGAGAGCAGTAACG -ACGGAAAAGGTGAGAGCAACTTCG -ACGGAAAAGGTGAGAGCATACGCA -ACGGAAAAGGTGAGAGCACTTGCA -ACGGAAAAGGTGAGAGCACGAACA -ACGGAAAAGGTGAGAGCACAGTCA -ACGGAAAAGGTGAGAGCAGATCCA -ACGGAAAAGGTGAGAGCAACGACA -ACGGAAAAGGTGAGAGCAAGCTCA -ACGGAAAAGGTGAGAGCATCACGT -ACGGAAAAGGTGAGAGCACGTAGT -ACGGAAAAGGTGAGAGCAGTCAGT -ACGGAAAAGGTGAGAGCAGAAGGT -ACGGAAAAGGTGAGAGCAAACCGT -ACGGAAAAGGTGAGAGCATTGTGC -ACGGAAAAGGTGAGAGCACTAAGC -ACGGAAAAGGTGAGAGCAACTAGC -ACGGAAAAGGTGAGAGCAAGATGC -ACGGAAAAGGTGAGAGCATGAAGG -ACGGAAAAGGTGAGAGCACAATGG -ACGGAAAAGGTGAGAGCAATGAGG -ACGGAAAAGGTGAGAGCAAATGGG -ACGGAAAAGGTGAGAGCATCCTGA -ACGGAAAAGGTGAGAGCATAGCGA -ACGGAAAAGGTGAGAGCACACAGA -ACGGAAAAGGTGAGAGCAGCAAGA -ACGGAAAAGGTGAGAGCAGGTTGA -ACGGAAAAGGTGAGAGCATCCGAT -ACGGAAAAGGTGAGAGCATGGCAT -ACGGAAAAGGTGAGAGCACGAGAT -ACGGAAAAGGTGAGAGCATACCAC -ACGGAAAAGGTGAGAGCACAGAAC -ACGGAAAAGGTGAGAGCAGTCTAC -ACGGAAAAGGTGAGAGCAACGTAC -ACGGAAAAGGTGAGAGCAAGTGAC -ACGGAAAAGGTGAGAGCACTGTAG -ACGGAAAAGGTGAGAGCACCTAAG -ACGGAAAAGGTGAGAGCAGTTCAG -ACGGAAAAGGTGAGAGCAGCATAG -ACGGAAAAGGTGAGAGCAGACAAG -ACGGAAAAGGTGAGAGCAAAGCAG -ACGGAAAAGGTGAGAGCACGTCAA -ACGGAAAAGGTGAGAGCAGCTGAA -ACGGAAAAGGTGAGAGCAAGTACG -ACGGAAAAGGTGAGAGCAATCCGA -ACGGAAAAGGTGAGAGCAATGGGA -ACGGAAAAGGTGAGAGCAGTGCAA -ACGGAAAAGGTGAGAGCAGAGGAA -ACGGAAAAGGTGAGAGCACAGGTA -ACGGAAAAGGTGAGAGCAGACTCT -ACGGAAAAGGTGAGAGCAAGTCCT -ACGGAAAAGGTGAGAGCATAAGCC -ACGGAAAAGGTGAGAGCAATAGCC -ACGGAAAAGGTGAGAGCATAACCG -ACGGAAAAGGTGAGAGCAATGCCA -ACGGAAAAGGTGTGAGGTGGAAAC -ACGGAAAAGGTGTGAGGTAACACC -ACGGAAAAGGTGTGAGGTATCGAG -ACGGAAAAGGTGTGAGGTCTCCTT -ACGGAAAAGGTGTGAGGTCCTGTT -ACGGAAAAGGTGTGAGGTCGGTTT -ACGGAAAAGGTGTGAGGTGTGGTT -ACGGAAAAGGTGTGAGGTGCCTTT -ACGGAAAAGGTGTGAGGTGGTCTT -ACGGAAAAGGTGTGAGGTACGCTT -ACGGAAAAGGTGTGAGGTAGCGTT -ACGGAAAAGGTGTGAGGTTTCGTC -ACGGAAAAGGTGTGAGGTTCTCTC -ACGGAAAAGGTGTGAGGTTGGATC -ACGGAAAAGGTGTGAGGTCACTTC -ACGGAAAAGGTGTGAGGTGTACTC -ACGGAAAAGGTGTGAGGTGATGTC -ACGGAAAAGGTGTGAGGTACAGTC -ACGGAAAAGGTGTGAGGTTTGCTG -ACGGAAAAGGTGTGAGGTTCCATG -ACGGAAAAGGTGTGAGGTTGTGTG -ACGGAAAAGGTGTGAGGTCTAGTG -ACGGAAAAGGTGTGAGGTCATCTG -ACGGAAAAGGTGTGAGGTGAGTTG -ACGGAAAAGGTGTGAGGTAGACTG -ACGGAAAAGGTGTGAGGTTCGGTA -ACGGAAAAGGTGTGAGGTTGCCTA -ACGGAAAAGGTGTGAGGTCCACTA -ACGGAAAAGGTGTGAGGTGGAGTA -ACGGAAAAGGTGTGAGGTTCGTCT -ACGGAAAAGGTGTGAGGTTGCACT -ACGGAAAAGGTGTGAGGTCTGACT -ACGGAAAAGGTGTGAGGTCAACCT -ACGGAAAAGGTGTGAGGTGCTACT -ACGGAAAAGGTGTGAGGTGGATCT -ACGGAAAAGGTGTGAGGTAAGGCT -ACGGAAAAGGTGTGAGGTTCAACC -ACGGAAAAGGTGTGAGGTTGTTCC -ACGGAAAAGGTGTGAGGTATTCCC -ACGGAAAAGGTGTGAGGTTTCTCG -ACGGAAAAGGTGTGAGGTTAGACG -ACGGAAAAGGTGTGAGGTGTAACG -ACGGAAAAGGTGTGAGGTACTTCG -ACGGAAAAGGTGTGAGGTTACGCA -ACGGAAAAGGTGTGAGGTCTTGCA -ACGGAAAAGGTGTGAGGTCGAACA -ACGGAAAAGGTGTGAGGTCAGTCA -ACGGAAAAGGTGTGAGGTGATCCA -ACGGAAAAGGTGTGAGGTACGACA -ACGGAAAAGGTGTGAGGTAGCTCA -ACGGAAAAGGTGTGAGGTTCACGT -ACGGAAAAGGTGTGAGGTCGTAGT -ACGGAAAAGGTGTGAGGTGTCAGT -ACGGAAAAGGTGTGAGGTGAAGGT -ACGGAAAAGGTGTGAGGTAACCGT -ACGGAAAAGGTGTGAGGTTTGTGC -ACGGAAAAGGTGTGAGGTCTAAGC -ACGGAAAAGGTGTGAGGTACTAGC -ACGGAAAAGGTGTGAGGTAGATGC -ACGGAAAAGGTGTGAGGTTGAAGG -ACGGAAAAGGTGTGAGGTCAATGG -ACGGAAAAGGTGTGAGGTATGAGG -ACGGAAAAGGTGTGAGGTAATGGG -ACGGAAAAGGTGTGAGGTTCCTGA -ACGGAAAAGGTGTGAGGTTAGCGA -ACGGAAAAGGTGTGAGGTCACAGA -ACGGAAAAGGTGTGAGGTGCAAGA -ACGGAAAAGGTGTGAGGTGGTTGA -ACGGAAAAGGTGTGAGGTTCCGAT -ACGGAAAAGGTGTGAGGTTGGCAT -ACGGAAAAGGTGTGAGGTCGAGAT -ACGGAAAAGGTGTGAGGTTACCAC -ACGGAAAAGGTGTGAGGTCAGAAC -ACGGAAAAGGTGTGAGGTGTCTAC -ACGGAAAAGGTGTGAGGTACGTAC -ACGGAAAAGGTGTGAGGTAGTGAC -ACGGAAAAGGTGTGAGGTCTGTAG -ACGGAAAAGGTGTGAGGTCCTAAG -ACGGAAAAGGTGTGAGGTGTTCAG -ACGGAAAAGGTGTGAGGTGCATAG -ACGGAAAAGGTGTGAGGTGACAAG -ACGGAAAAGGTGTGAGGTAAGCAG -ACGGAAAAGGTGTGAGGTCGTCAA -ACGGAAAAGGTGTGAGGTGCTGAA -ACGGAAAAGGTGTGAGGTAGTACG -ACGGAAAAGGTGTGAGGTATCCGA -ACGGAAAAGGTGTGAGGTATGGGA -ACGGAAAAGGTGTGAGGTGTGCAA -ACGGAAAAGGTGTGAGGTGAGGAA -ACGGAAAAGGTGTGAGGTCAGGTA -ACGGAAAAGGTGTGAGGTGACTCT -ACGGAAAAGGTGTGAGGTAGTCCT -ACGGAAAAGGTGTGAGGTTAAGCC -ACGGAAAAGGTGTGAGGTATAGCC -ACGGAAAAGGTGTGAGGTTAACCG -ACGGAAAAGGTGTGAGGTATGCCA -ACGGAAAAGGTGGATTCCGGAAAC -ACGGAAAAGGTGGATTCCAACACC -ACGGAAAAGGTGGATTCCATCGAG -ACGGAAAAGGTGGATTCCCTCCTT -ACGGAAAAGGTGGATTCCCCTGTT -ACGGAAAAGGTGGATTCCCGGTTT -ACGGAAAAGGTGGATTCCGTGGTT -ACGGAAAAGGTGGATTCCGCCTTT -ACGGAAAAGGTGGATTCCGGTCTT -ACGGAAAAGGTGGATTCCACGCTT -ACGGAAAAGGTGGATTCCAGCGTT -ACGGAAAAGGTGGATTCCTTCGTC -ACGGAAAAGGTGGATTCCTCTCTC -ACGGAAAAGGTGGATTCCTGGATC -ACGGAAAAGGTGGATTCCCACTTC -ACGGAAAAGGTGGATTCCGTACTC -ACGGAAAAGGTGGATTCCGATGTC -ACGGAAAAGGTGGATTCCACAGTC -ACGGAAAAGGTGGATTCCTTGCTG -ACGGAAAAGGTGGATTCCTCCATG -ACGGAAAAGGTGGATTCCTGTGTG -ACGGAAAAGGTGGATTCCCTAGTG -ACGGAAAAGGTGGATTCCCATCTG -ACGGAAAAGGTGGATTCCGAGTTG -ACGGAAAAGGTGGATTCCAGACTG -ACGGAAAAGGTGGATTCCTCGGTA -ACGGAAAAGGTGGATTCCTGCCTA -ACGGAAAAGGTGGATTCCCCACTA -ACGGAAAAGGTGGATTCCGGAGTA -ACGGAAAAGGTGGATTCCTCGTCT -ACGGAAAAGGTGGATTCCTGCACT -ACGGAAAAGGTGGATTCCCTGACT -ACGGAAAAGGTGGATTCCCAACCT -ACGGAAAAGGTGGATTCCGCTACT -ACGGAAAAGGTGGATTCCGGATCT -ACGGAAAAGGTGGATTCCAAGGCT -ACGGAAAAGGTGGATTCCTCAACC -ACGGAAAAGGTGGATTCCTGTTCC -ACGGAAAAGGTGGATTCCATTCCC -ACGGAAAAGGTGGATTCCTTCTCG -ACGGAAAAGGTGGATTCCTAGACG -ACGGAAAAGGTGGATTCCGTAACG -ACGGAAAAGGTGGATTCCACTTCG -ACGGAAAAGGTGGATTCCTACGCA -ACGGAAAAGGTGGATTCCCTTGCA -ACGGAAAAGGTGGATTCCCGAACA -ACGGAAAAGGTGGATTCCCAGTCA -ACGGAAAAGGTGGATTCCGATCCA -ACGGAAAAGGTGGATTCCACGACA -ACGGAAAAGGTGGATTCCAGCTCA -ACGGAAAAGGTGGATTCCTCACGT -ACGGAAAAGGTGGATTCCCGTAGT -ACGGAAAAGGTGGATTCCGTCAGT -ACGGAAAAGGTGGATTCCGAAGGT -ACGGAAAAGGTGGATTCCAACCGT -ACGGAAAAGGTGGATTCCTTGTGC -ACGGAAAAGGTGGATTCCCTAAGC -ACGGAAAAGGTGGATTCCACTAGC -ACGGAAAAGGTGGATTCCAGATGC -ACGGAAAAGGTGGATTCCTGAAGG -ACGGAAAAGGTGGATTCCCAATGG -ACGGAAAAGGTGGATTCCATGAGG -ACGGAAAAGGTGGATTCCAATGGG -ACGGAAAAGGTGGATTCCTCCTGA -ACGGAAAAGGTGGATTCCTAGCGA -ACGGAAAAGGTGGATTCCCACAGA -ACGGAAAAGGTGGATTCCGCAAGA -ACGGAAAAGGTGGATTCCGGTTGA -ACGGAAAAGGTGGATTCCTCCGAT -ACGGAAAAGGTGGATTCCTGGCAT -ACGGAAAAGGTGGATTCCCGAGAT -ACGGAAAAGGTGGATTCCTACCAC -ACGGAAAAGGTGGATTCCCAGAAC -ACGGAAAAGGTGGATTCCGTCTAC -ACGGAAAAGGTGGATTCCACGTAC -ACGGAAAAGGTGGATTCCAGTGAC -ACGGAAAAGGTGGATTCCCTGTAG -ACGGAAAAGGTGGATTCCCCTAAG -ACGGAAAAGGTGGATTCCGTTCAG -ACGGAAAAGGTGGATTCCGCATAG -ACGGAAAAGGTGGATTCCGACAAG -ACGGAAAAGGTGGATTCCAAGCAG -ACGGAAAAGGTGGATTCCCGTCAA -ACGGAAAAGGTGGATTCCGCTGAA -ACGGAAAAGGTGGATTCCAGTACG -ACGGAAAAGGTGGATTCCATCCGA -ACGGAAAAGGTGGATTCCATGGGA -ACGGAAAAGGTGGATTCCGTGCAA -ACGGAAAAGGTGGATTCCGAGGAA -ACGGAAAAGGTGGATTCCCAGGTA -ACGGAAAAGGTGGATTCCGACTCT -ACGGAAAAGGTGGATTCCAGTCCT -ACGGAAAAGGTGGATTCCTAAGCC -ACGGAAAAGGTGGATTCCATAGCC -ACGGAAAAGGTGGATTCCTAACCG -ACGGAAAAGGTGGATTCCATGCCA -ACGGAAAAGGTGCATTGGGGAAAC -ACGGAAAAGGTGCATTGGAACACC -ACGGAAAAGGTGCATTGGATCGAG -ACGGAAAAGGTGCATTGGCTCCTT -ACGGAAAAGGTGCATTGGCCTGTT -ACGGAAAAGGTGCATTGGCGGTTT -ACGGAAAAGGTGCATTGGGTGGTT -ACGGAAAAGGTGCATTGGGCCTTT -ACGGAAAAGGTGCATTGGGGTCTT -ACGGAAAAGGTGCATTGGACGCTT -ACGGAAAAGGTGCATTGGAGCGTT -ACGGAAAAGGTGCATTGGTTCGTC -ACGGAAAAGGTGCATTGGTCTCTC -ACGGAAAAGGTGCATTGGTGGATC -ACGGAAAAGGTGCATTGGCACTTC -ACGGAAAAGGTGCATTGGGTACTC -ACGGAAAAGGTGCATTGGGATGTC -ACGGAAAAGGTGCATTGGACAGTC -ACGGAAAAGGTGCATTGGTTGCTG -ACGGAAAAGGTGCATTGGTCCATG -ACGGAAAAGGTGCATTGGTGTGTG -ACGGAAAAGGTGCATTGGCTAGTG -ACGGAAAAGGTGCATTGGCATCTG -ACGGAAAAGGTGCATTGGGAGTTG -ACGGAAAAGGTGCATTGGAGACTG -ACGGAAAAGGTGCATTGGTCGGTA -ACGGAAAAGGTGCATTGGTGCCTA -ACGGAAAAGGTGCATTGGCCACTA -ACGGAAAAGGTGCATTGGGGAGTA -ACGGAAAAGGTGCATTGGTCGTCT -ACGGAAAAGGTGCATTGGTGCACT -ACGGAAAAGGTGCATTGGCTGACT -ACGGAAAAGGTGCATTGGCAACCT -ACGGAAAAGGTGCATTGGGCTACT -ACGGAAAAGGTGCATTGGGGATCT -ACGGAAAAGGTGCATTGGAAGGCT -ACGGAAAAGGTGCATTGGTCAACC -ACGGAAAAGGTGCATTGGTGTTCC -ACGGAAAAGGTGCATTGGATTCCC -ACGGAAAAGGTGCATTGGTTCTCG -ACGGAAAAGGTGCATTGGTAGACG -ACGGAAAAGGTGCATTGGGTAACG -ACGGAAAAGGTGCATTGGACTTCG -ACGGAAAAGGTGCATTGGTACGCA -ACGGAAAAGGTGCATTGGCTTGCA -ACGGAAAAGGTGCATTGGCGAACA -ACGGAAAAGGTGCATTGGCAGTCA -ACGGAAAAGGTGCATTGGGATCCA -ACGGAAAAGGTGCATTGGACGACA -ACGGAAAAGGTGCATTGGAGCTCA -ACGGAAAAGGTGCATTGGTCACGT -ACGGAAAAGGTGCATTGGCGTAGT -ACGGAAAAGGTGCATTGGGTCAGT -ACGGAAAAGGTGCATTGGGAAGGT -ACGGAAAAGGTGCATTGGAACCGT -ACGGAAAAGGTGCATTGGTTGTGC -ACGGAAAAGGTGCATTGGCTAAGC -ACGGAAAAGGTGCATTGGACTAGC -ACGGAAAAGGTGCATTGGAGATGC -ACGGAAAAGGTGCATTGGTGAAGG -ACGGAAAAGGTGCATTGGCAATGG -ACGGAAAAGGTGCATTGGATGAGG -ACGGAAAAGGTGCATTGGAATGGG -ACGGAAAAGGTGCATTGGTCCTGA -ACGGAAAAGGTGCATTGGTAGCGA -ACGGAAAAGGTGCATTGGCACAGA -ACGGAAAAGGTGCATTGGGCAAGA -ACGGAAAAGGTGCATTGGGGTTGA -ACGGAAAAGGTGCATTGGTCCGAT -ACGGAAAAGGTGCATTGGTGGCAT -ACGGAAAAGGTGCATTGGCGAGAT -ACGGAAAAGGTGCATTGGTACCAC -ACGGAAAAGGTGCATTGGCAGAAC -ACGGAAAAGGTGCATTGGGTCTAC -ACGGAAAAGGTGCATTGGACGTAC -ACGGAAAAGGTGCATTGGAGTGAC -ACGGAAAAGGTGCATTGGCTGTAG -ACGGAAAAGGTGCATTGGCCTAAG -ACGGAAAAGGTGCATTGGGTTCAG -ACGGAAAAGGTGCATTGGGCATAG -ACGGAAAAGGTGCATTGGGACAAG -ACGGAAAAGGTGCATTGGAAGCAG -ACGGAAAAGGTGCATTGGCGTCAA -ACGGAAAAGGTGCATTGGGCTGAA -ACGGAAAAGGTGCATTGGAGTACG -ACGGAAAAGGTGCATTGGATCCGA -ACGGAAAAGGTGCATTGGATGGGA -ACGGAAAAGGTGCATTGGGTGCAA -ACGGAAAAGGTGCATTGGGAGGAA -ACGGAAAAGGTGCATTGGCAGGTA -ACGGAAAAGGTGCATTGGGACTCT -ACGGAAAAGGTGCATTGGAGTCCT -ACGGAAAAGGTGCATTGGTAAGCC -ACGGAAAAGGTGCATTGGATAGCC -ACGGAAAAGGTGCATTGGTAACCG -ACGGAAAAGGTGCATTGGATGCCA -ACGGAAAAGGTGGATCGAGGAAAC -ACGGAAAAGGTGGATCGAAACACC -ACGGAAAAGGTGGATCGAATCGAG -ACGGAAAAGGTGGATCGACTCCTT -ACGGAAAAGGTGGATCGACCTGTT -ACGGAAAAGGTGGATCGACGGTTT -ACGGAAAAGGTGGATCGAGTGGTT -ACGGAAAAGGTGGATCGAGCCTTT -ACGGAAAAGGTGGATCGAGGTCTT -ACGGAAAAGGTGGATCGAACGCTT -ACGGAAAAGGTGGATCGAAGCGTT -ACGGAAAAGGTGGATCGATTCGTC -ACGGAAAAGGTGGATCGATCTCTC -ACGGAAAAGGTGGATCGATGGATC -ACGGAAAAGGTGGATCGACACTTC -ACGGAAAAGGTGGATCGAGTACTC -ACGGAAAAGGTGGATCGAGATGTC -ACGGAAAAGGTGGATCGAACAGTC -ACGGAAAAGGTGGATCGATTGCTG -ACGGAAAAGGTGGATCGATCCATG -ACGGAAAAGGTGGATCGATGTGTG -ACGGAAAAGGTGGATCGACTAGTG -ACGGAAAAGGTGGATCGACATCTG -ACGGAAAAGGTGGATCGAGAGTTG -ACGGAAAAGGTGGATCGAAGACTG -ACGGAAAAGGTGGATCGATCGGTA -ACGGAAAAGGTGGATCGATGCCTA -ACGGAAAAGGTGGATCGACCACTA -ACGGAAAAGGTGGATCGAGGAGTA -ACGGAAAAGGTGGATCGATCGTCT -ACGGAAAAGGTGGATCGATGCACT -ACGGAAAAGGTGGATCGACTGACT -ACGGAAAAGGTGGATCGACAACCT -ACGGAAAAGGTGGATCGAGCTACT -ACGGAAAAGGTGGATCGAGGATCT -ACGGAAAAGGTGGATCGAAAGGCT -ACGGAAAAGGTGGATCGATCAACC -ACGGAAAAGGTGGATCGATGTTCC -ACGGAAAAGGTGGATCGAATTCCC -ACGGAAAAGGTGGATCGATTCTCG -ACGGAAAAGGTGGATCGATAGACG -ACGGAAAAGGTGGATCGAGTAACG -ACGGAAAAGGTGGATCGAACTTCG -ACGGAAAAGGTGGATCGATACGCA -ACGGAAAAGGTGGATCGACTTGCA -ACGGAAAAGGTGGATCGACGAACA -ACGGAAAAGGTGGATCGACAGTCA -ACGGAAAAGGTGGATCGAGATCCA -ACGGAAAAGGTGGATCGAACGACA -ACGGAAAAGGTGGATCGAAGCTCA -ACGGAAAAGGTGGATCGATCACGT -ACGGAAAAGGTGGATCGACGTAGT -ACGGAAAAGGTGGATCGAGTCAGT -ACGGAAAAGGTGGATCGAGAAGGT -ACGGAAAAGGTGGATCGAAACCGT -ACGGAAAAGGTGGATCGATTGTGC -ACGGAAAAGGTGGATCGACTAAGC -ACGGAAAAGGTGGATCGAACTAGC -ACGGAAAAGGTGGATCGAAGATGC -ACGGAAAAGGTGGATCGATGAAGG -ACGGAAAAGGTGGATCGACAATGG -ACGGAAAAGGTGGATCGAATGAGG -ACGGAAAAGGTGGATCGAAATGGG -ACGGAAAAGGTGGATCGATCCTGA -ACGGAAAAGGTGGATCGATAGCGA -ACGGAAAAGGTGGATCGACACAGA -ACGGAAAAGGTGGATCGAGCAAGA -ACGGAAAAGGTGGATCGAGGTTGA -ACGGAAAAGGTGGATCGATCCGAT -ACGGAAAAGGTGGATCGATGGCAT -ACGGAAAAGGTGGATCGACGAGAT -ACGGAAAAGGTGGATCGATACCAC -ACGGAAAAGGTGGATCGACAGAAC -ACGGAAAAGGTGGATCGAGTCTAC -ACGGAAAAGGTGGATCGAACGTAC -ACGGAAAAGGTGGATCGAAGTGAC -ACGGAAAAGGTGGATCGACTGTAG -ACGGAAAAGGTGGATCGACCTAAG -ACGGAAAAGGTGGATCGAGTTCAG -ACGGAAAAGGTGGATCGAGCATAG -ACGGAAAAGGTGGATCGAGACAAG -ACGGAAAAGGTGGATCGAAAGCAG -ACGGAAAAGGTGGATCGACGTCAA -ACGGAAAAGGTGGATCGAGCTGAA -ACGGAAAAGGTGGATCGAAGTACG -ACGGAAAAGGTGGATCGAATCCGA -ACGGAAAAGGTGGATCGAATGGGA -ACGGAAAAGGTGGATCGAGTGCAA -ACGGAAAAGGTGGATCGAGAGGAA -ACGGAAAAGGTGGATCGACAGGTA -ACGGAAAAGGTGGATCGAGACTCT -ACGGAAAAGGTGGATCGAAGTCCT -ACGGAAAAGGTGGATCGATAAGCC -ACGGAAAAGGTGGATCGAATAGCC -ACGGAAAAGGTGGATCGATAACCG -ACGGAAAAGGTGGATCGAATGCCA -ACGGAAAAGGTGCACTACGGAAAC -ACGGAAAAGGTGCACTACAACACC -ACGGAAAAGGTGCACTACATCGAG -ACGGAAAAGGTGCACTACCTCCTT -ACGGAAAAGGTGCACTACCCTGTT -ACGGAAAAGGTGCACTACCGGTTT -ACGGAAAAGGTGCACTACGTGGTT -ACGGAAAAGGTGCACTACGCCTTT -ACGGAAAAGGTGCACTACGGTCTT -ACGGAAAAGGTGCACTACACGCTT -ACGGAAAAGGTGCACTACAGCGTT -ACGGAAAAGGTGCACTACTTCGTC -ACGGAAAAGGTGCACTACTCTCTC -ACGGAAAAGGTGCACTACTGGATC -ACGGAAAAGGTGCACTACCACTTC -ACGGAAAAGGTGCACTACGTACTC -ACGGAAAAGGTGCACTACGATGTC -ACGGAAAAGGTGCACTACACAGTC -ACGGAAAAGGTGCACTACTTGCTG -ACGGAAAAGGTGCACTACTCCATG -ACGGAAAAGGTGCACTACTGTGTG -ACGGAAAAGGTGCACTACCTAGTG -ACGGAAAAGGTGCACTACCATCTG -ACGGAAAAGGTGCACTACGAGTTG -ACGGAAAAGGTGCACTACAGACTG -ACGGAAAAGGTGCACTACTCGGTA -ACGGAAAAGGTGCACTACTGCCTA -ACGGAAAAGGTGCACTACCCACTA -ACGGAAAAGGTGCACTACGGAGTA -ACGGAAAAGGTGCACTACTCGTCT -ACGGAAAAGGTGCACTACTGCACT -ACGGAAAAGGTGCACTACCTGACT -ACGGAAAAGGTGCACTACCAACCT -ACGGAAAAGGTGCACTACGCTACT -ACGGAAAAGGTGCACTACGGATCT -ACGGAAAAGGTGCACTACAAGGCT -ACGGAAAAGGTGCACTACTCAACC -ACGGAAAAGGTGCACTACTGTTCC -ACGGAAAAGGTGCACTACATTCCC -ACGGAAAAGGTGCACTACTTCTCG -ACGGAAAAGGTGCACTACTAGACG -ACGGAAAAGGTGCACTACGTAACG -ACGGAAAAGGTGCACTACACTTCG -ACGGAAAAGGTGCACTACTACGCA -ACGGAAAAGGTGCACTACCTTGCA -ACGGAAAAGGTGCACTACCGAACA -ACGGAAAAGGTGCACTACCAGTCA -ACGGAAAAGGTGCACTACGATCCA -ACGGAAAAGGTGCACTACACGACA -ACGGAAAAGGTGCACTACAGCTCA -ACGGAAAAGGTGCACTACTCACGT -ACGGAAAAGGTGCACTACCGTAGT -ACGGAAAAGGTGCACTACGTCAGT -ACGGAAAAGGTGCACTACGAAGGT -ACGGAAAAGGTGCACTACAACCGT -ACGGAAAAGGTGCACTACTTGTGC -ACGGAAAAGGTGCACTACCTAAGC -ACGGAAAAGGTGCACTACACTAGC -ACGGAAAAGGTGCACTACAGATGC -ACGGAAAAGGTGCACTACTGAAGG -ACGGAAAAGGTGCACTACCAATGG -ACGGAAAAGGTGCACTACATGAGG -ACGGAAAAGGTGCACTACAATGGG -ACGGAAAAGGTGCACTACTCCTGA -ACGGAAAAGGTGCACTACTAGCGA -ACGGAAAAGGTGCACTACCACAGA -ACGGAAAAGGTGCACTACGCAAGA -ACGGAAAAGGTGCACTACGGTTGA -ACGGAAAAGGTGCACTACTCCGAT -ACGGAAAAGGTGCACTACTGGCAT -ACGGAAAAGGTGCACTACCGAGAT -ACGGAAAAGGTGCACTACTACCAC -ACGGAAAAGGTGCACTACCAGAAC -ACGGAAAAGGTGCACTACGTCTAC -ACGGAAAAGGTGCACTACACGTAC -ACGGAAAAGGTGCACTACAGTGAC -ACGGAAAAGGTGCACTACCTGTAG -ACGGAAAAGGTGCACTACCCTAAG -ACGGAAAAGGTGCACTACGTTCAG -ACGGAAAAGGTGCACTACGCATAG -ACGGAAAAGGTGCACTACGACAAG -ACGGAAAAGGTGCACTACAAGCAG -ACGGAAAAGGTGCACTACCGTCAA -ACGGAAAAGGTGCACTACGCTGAA -ACGGAAAAGGTGCACTACAGTACG -ACGGAAAAGGTGCACTACATCCGA -ACGGAAAAGGTGCACTACATGGGA -ACGGAAAAGGTGCACTACGTGCAA -ACGGAAAAGGTGCACTACGAGGAA -ACGGAAAAGGTGCACTACCAGGTA -ACGGAAAAGGTGCACTACGACTCT -ACGGAAAAGGTGCACTACAGTCCT -ACGGAAAAGGTGCACTACTAAGCC -ACGGAAAAGGTGCACTACATAGCC -ACGGAAAAGGTGCACTACTAACCG -ACGGAAAAGGTGCACTACATGCCA -ACGGAAAAGGTGAACCAGGGAAAC -ACGGAAAAGGTGAACCAGAACACC -ACGGAAAAGGTGAACCAGATCGAG -ACGGAAAAGGTGAACCAGCTCCTT -ACGGAAAAGGTGAACCAGCCTGTT -ACGGAAAAGGTGAACCAGCGGTTT -ACGGAAAAGGTGAACCAGGTGGTT -ACGGAAAAGGTGAACCAGGCCTTT -ACGGAAAAGGTGAACCAGGGTCTT -ACGGAAAAGGTGAACCAGACGCTT -ACGGAAAAGGTGAACCAGAGCGTT -ACGGAAAAGGTGAACCAGTTCGTC -ACGGAAAAGGTGAACCAGTCTCTC -ACGGAAAAGGTGAACCAGTGGATC -ACGGAAAAGGTGAACCAGCACTTC -ACGGAAAAGGTGAACCAGGTACTC -ACGGAAAAGGTGAACCAGGATGTC -ACGGAAAAGGTGAACCAGACAGTC -ACGGAAAAGGTGAACCAGTTGCTG -ACGGAAAAGGTGAACCAGTCCATG -ACGGAAAAGGTGAACCAGTGTGTG -ACGGAAAAGGTGAACCAGCTAGTG -ACGGAAAAGGTGAACCAGCATCTG -ACGGAAAAGGTGAACCAGGAGTTG -ACGGAAAAGGTGAACCAGAGACTG -ACGGAAAAGGTGAACCAGTCGGTA -ACGGAAAAGGTGAACCAGTGCCTA -ACGGAAAAGGTGAACCAGCCACTA -ACGGAAAAGGTGAACCAGGGAGTA -ACGGAAAAGGTGAACCAGTCGTCT -ACGGAAAAGGTGAACCAGTGCACT -ACGGAAAAGGTGAACCAGCTGACT -ACGGAAAAGGTGAACCAGCAACCT -ACGGAAAAGGTGAACCAGGCTACT -ACGGAAAAGGTGAACCAGGGATCT -ACGGAAAAGGTGAACCAGAAGGCT -ACGGAAAAGGTGAACCAGTCAACC -ACGGAAAAGGTGAACCAGTGTTCC -ACGGAAAAGGTGAACCAGATTCCC -ACGGAAAAGGTGAACCAGTTCTCG -ACGGAAAAGGTGAACCAGTAGACG -ACGGAAAAGGTGAACCAGGTAACG -ACGGAAAAGGTGAACCAGACTTCG -ACGGAAAAGGTGAACCAGTACGCA -ACGGAAAAGGTGAACCAGCTTGCA -ACGGAAAAGGTGAACCAGCGAACA -ACGGAAAAGGTGAACCAGCAGTCA -ACGGAAAAGGTGAACCAGGATCCA -ACGGAAAAGGTGAACCAGACGACA -ACGGAAAAGGTGAACCAGAGCTCA -ACGGAAAAGGTGAACCAGTCACGT -ACGGAAAAGGTGAACCAGCGTAGT -ACGGAAAAGGTGAACCAGGTCAGT -ACGGAAAAGGTGAACCAGGAAGGT -ACGGAAAAGGTGAACCAGAACCGT -ACGGAAAAGGTGAACCAGTTGTGC -ACGGAAAAGGTGAACCAGCTAAGC -ACGGAAAAGGTGAACCAGACTAGC -ACGGAAAAGGTGAACCAGAGATGC -ACGGAAAAGGTGAACCAGTGAAGG -ACGGAAAAGGTGAACCAGCAATGG -ACGGAAAAGGTGAACCAGATGAGG -ACGGAAAAGGTGAACCAGAATGGG -ACGGAAAAGGTGAACCAGTCCTGA -ACGGAAAAGGTGAACCAGTAGCGA -ACGGAAAAGGTGAACCAGCACAGA -ACGGAAAAGGTGAACCAGGCAAGA -ACGGAAAAGGTGAACCAGGGTTGA -ACGGAAAAGGTGAACCAGTCCGAT -ACGGAAAAGGTGAACCAGTGGCAT -ACGGAAAAGGTGAACCAGCGAGAT -ACGGAAAAGGTGAACCAGTACCAC -ACGGAAAAGGTGAACCAGCAGAAC -ACGGAAAAGGTGAACCAGGTCTAC -ACGGAAAAGGTGAACCAGACGTAC -ACGGAAAAGGTGAACCAGAGTGAC -ACGGAAAAGGTGAACCAGCTGTAG -ACGGAAAAGGTGAACCAGCCTAAG -ACGGAAAAGGTGAACCAGGTTCAG -ACGGAAAAGGTGAACCAGGCATAG -ACGGAAAAGGTGAACCAGGACAAG -ACGGAAAAGGTGAACCAGAAGCAG -ACGGAAAAGGTGAACCAGCGTCAA -ACGGAAAAGGTGAACCAGGCTGAA -ACGGAAAAGGTGAACCAGAGTACG -ACGGAAAAGGTGAACCAGATCCGA -ACGGAAAAGGTGAACCAGATGGGA -ACGGAAAAGGTGAACCAGGTGCAA -ACGGAAAAGGTGAACCAGGAGGAA -ACGGAAAAGGTGAACCAGCAGGTA -ACGGAAAAGGTGAACCAGGACTCT -ACGGAAAAGGTGAACCAGAGTCCT -ACGGAAAAGGTGAACCAGTAAGCC -ACGGAAAAGGTGAACCAGATAGCC -ACGGAAAAGGTGAACCAGTAACCG -ACGGAAAAGGTGAACCAGATGCCA -ACGGAAAAGGTGTACGTCGGAAAC -ACGGAAAAGGTGTACGTCAACACC -ACGGAAAAGGTGTACGTCATCGAG -ACGGAAAAGGTGTACGTCCTCCTT -ACGGAAAAGGTGTACGTCCCTGTT -ACGGAAAAGGTGTACGTCCGGTTT -ACGGAAAAGGTGTACGTCGTGGTT -ACGGAAAAGGTGTACGTCGCCTTT -ACGGAAAAGGTGTACGTCGGTCTT -ACGGAAAAGGTGTACGTCACGCTT -ACGGAAAAGGTGTACGTCAGCGTT -ACGGAAAAGGTGTACGTCTTCGTC -ACGGAAAAGGTGTACGTCTCTCTC -ACGGAAAAGGTGTACGTCTGGATC -ACGGAAAAGGTGTACGTCCACTTC -ACGGAAAAGGTGTACGTCGTACTC -ACGGAAAAGGTGTACGTCGATGTC -ACGGAAAAGGTGTACGTCACAGTC -ACGGAAAAGGTGTACGTCTTGCTG -ACGGAAAAGGTGTACGTCTCCATG -ACGGAAAAGGTGTACGTCTGTGTG -ACGGAAAAGGTGTACGTCCTAGTG -ACGGAAAAGGTGTACGTCCATCTG -ACGGAAAAGGTGTACGTCGAGTTG -ACGGAAAAGGTGTACGTCAGACTG -ACGGAAAAGGTGTACGTCTCGGTA -ACGGAAAAGGTGTACGTCTGCCTA -ACGGAAAAGGTGTACGTCCCACTA -ACGGAAAAGGTGTACGTCGGAGTA -ACGGAAAAGGTGTACGTCTCGTCT -ACGGAAAAGGTGTACGTCTGCACT -ACGGAAAAGGTGTACGTCCTGACT -ACGGAAAAGGTGTACGTCCAACCT -ACGGAAAAGGTGTACGTCGCTACT -ACGGAAAAGGTGTACGTCGGATCT -ACGGAAAAGGTGTACGTCAAGGCT -ACGGAAAAGGTGTACGTCTCAACC -ACGGAAAAGGTGTACGTCTGTTCC -ACGGAAAAGGTGTACGTCATTCCC -ACGGAAAAGGTGTACGTCTTCTCG -ACGGAAAAGGTGTACGTCTAGACG -ACGGAAAAGGTGTACGTCGTAACG -ACGGAAAAGGTGTACGTCACTTCG -ACGGAAAAGGTGTACGTCTACGCA -ACGGAAAAGGTGTACGTCCTTGCA -ACGGAAAAGGTGTACGTCCGAACA -ACGGAAAAGGTGTACGTCCAGTCA -ACGGAAAAGGTGTACGTCGATCCA -ACGGAAAAGGTGTACGTCACGACA -ACGGAAAAGGTGTACGTCAGCTCA -ACGGAAAAGGTGTACGTCTCACGT -ACGGAAAAGGTGTACGTCCGTAGT -ACGGAAAAGGTGTACGTCGTCAGT -ACGGAAAAGGTGTACGTCGAAGGT -ACGGAAAAGGTGTACGTCAACCGT -ACGGAAAAGGTGTACGTCTTGTGC -ACGGAAAAGGTGTACGTCCTAAGC -ACGGAAAAGGTGTACGTCACTAGC -ACGGAAAAGGTGTACGTCAGATGC -ACGGAAAAGGTGTACGTCTGAAGG -ACGGAAAAGGTGTACGTCCAATGG -ACGGAAAAGGTGTACGTCATGAGG -ACGGAAAAGGTGTACGTCAATGGG -ACGGAAAAGGTGTACGTCTCCTGA -ACGGAAAAGGTGTACGTCTAGCGA -ACGGAAAAGGTGTACGTCCACAGA -ACGGAAAAGGTGTACGTCGCAAGA -ACGGAAAAGGTGTACGTCGGTTGA -ACGGAAAAGGTGTACGTCTCCGAT -ACGGAAAAGGTGTACGTCTGGCAT -ACGGAAAAGGTGTACGTCCGAGAT -ACGGAAAAGGTGTACGTCTACCAC -ACGGAAAAGGTGTACGTCCAGAAC -ACGGAAAAGGTGTACGTCGTCTAC -ACGGAAAAGGTGTACGTCACGTAC -ACGGAAAAGGTGTACGTCAGTGAC -ACGGAAAAGGTGTACGTCCTGTAG -ACGGAAAAGGTGTACGTCCCTAAG -ACGGAAAAGGTGTACGTCGTTCAG -ACGGAAAAGGTGTACGTCGCATAG -ACGGAAAAGGTGTACGTCGACAAG -ACGGAAAAGGTGTACGTCAAGCAG -ACGGAAAAGGTGTACGTCCGTCAA -ACGGAAAAGGTGTACGTCGCTGAA -ACGGAAAAGGTGTACGTCAGTACG -ACGGAAAAGGTGTACGTCATCCGA -ACGGAAAAGGTGTACGTCATGGGA -ACGGAAAAGGTGTACGTCGTGCAA -ACGGAAAAGGTGTACGTCGAGGAA -ACGGAAAAGGTGTACGTCCAGGTA -ACGGAAAAGGTGTACGTCGACTCT -ACGGAAAAGGTGTACGTCAGTCCT -ACGGAAAAGGTGTACGTCTAAGCC -ACGGAAAAGGTGTACGTCATAGCC -ACGGAAAAGGTGTACGTCTAACCG -ACGGAAAAGGTGTACGTCATGCCA -ACGGAAAAGGTGTACACGGGAAAC -ACGGAAAAGGTGTACACGAACACC -ACGGAAAAGGTGTACACGATCGAG -ACGGAAAAGGTGTACACGCTCCTT -ACGGAAAAGGTGTACACGCCTGTT -ACGGAAAAGGTGTACACGCGGTTT -ACGGAAAAGGTGTACACGGTGGTT -ACGGAAAAGGTGTACACGGCCTTT -ACGGAAAAGGTGTACACGGGTCTT -ACGGAAAAGGTGTACACGACGCTT -ACGGAAAAGGTGTACACGAGCGTT -ACGGAAAAGGTGTACACGTTCGTC -ACGGAAAAGGTGTACACGTCTCTC -ACGGAAAAGGTGTACACGTGGATC -ACGGAAAAGGTGTACACGCACTTC -ACGGAAAAGGTGTACACGGTACTC -ACGGAAAAGGTGTACACGGATGTC -ACGGAAAAGGTGTACACGACAGTC -ACGGAAAAGGTGTACACGTTGCTG -ACGGAAAAGGTGTACACGTCCATG -ACGGAAAAGGTGTACACGTGTGTG -ACGGAAAAGGTGTACACGCTAGTG -ACGGAAAAGGTGTACACGCATCTG -ACGGAAAAGGTGTACACGGAGTTG -ACGGAAAAGGTGTACACGAGACTG -ACGGAAAAGGTGTACACGTCGGTA -ACGGAAAAGGTGTACACGTGCCTA -ACGGAAAAGGTGTACACGCCACTA -ACGGAAAAGGTGTACACGGGAGTA -ACGGAAAAGGTGTACACGTCGTCT -ACGGAAAAGGTGTACACGTGCACT -ACGGAAAAGGTGTACACGCTGACT -ACGGAAAAGGTGTACACGCAACCT -ACGGAAAAGGTGTACACGGCTACT -ACGGAAAAGGTGTACACGGGATCT -ACGGAAAAGGTGTACACGAAGGCT -ACGGAAAAGGTGTACACGTCAACC -ACGGAAAAGGTGTACACGTGTTCC -ACGGAAAAGGTGTACACGATTCCC -ACGGAAAAGGTGTACACGTTCTCG -ACGGAAAAGGTGTACACGTAGACG -ACGGAAAAGGTGTACACGGTAACG -ACGGAAAAGGTGTACACGACTTCG -ACGGAAAAGGTGTACACGTACGCA -ACGGAAAAGGTGTACACGCTTGCA -ACGGAAAAGGTGTACACGCGAACA -ACGGAAAAGGTGTACACGCAGTCA -ACGGAAAAGGTGTACACGGATCCA -ACGGAAAAGGTGTACACGACGACA -ACGGAAAAGGTGTACACGAGCTCA -ACGGAAAAGGTGTACACGTCACGT -ACGGAAAAGGTGTACACGCGTAGT -ACGGAAAAGGTGTACACGGTCAGT -ACGGAAAAGGTGTACACGGAAGGT -ACGGAAAAGGTGTACACGAACCGT -ACGGAAAAGGTGTACACGTTGTGC -ACGGAAAAGGTGTACACGCTAAGC -ACGGAAAAGGTGTACACGACTAGC -ACGGAAAAGGTGTACACGAGATGC -ACGGAAAAGGTGTACACGTGAAGG -ACGGAAAAGGTGTACACGCAATGG -ACGGAAAAGGTGTACACGATGAGG -ACGGAAAAGGTGTACACGAATGGG -ACGGAAAAGGTGTACACGTCCTGA -ACGGAAAAGGTGTACACGTAGCGA -ACGGAAAAGGTGTACACGCACAGA -ACGGAAAAGGTGTACACGGCAAGA -ACGGAAAAGGTGTACACGGGTTGA -ACGGAAAAGGTGTACACGTCCGAT -ACGGAAAAGGTGTACACGTGGCAT -ACGGAAAAGGTGTACACGCGAGAT -ACGGAAAAGGTGTACACGTACCAC -ACGGAAAAGGTGTACACGCAGAAC -ACGGAAAAGGTGTACACGGTCTAC -ACGGAAAAGGTGTACACGACGTAC -ACGGAAAAGGTGTACACGAGTGAC -ACGGAAAAGGTGTACACGCTGTAG -ACGGAAAAGGTGTACACGCCTAAG -ACGGAAAAGGTGTACACGGTTCAG -ACGGAAAAGGTGTACACGGCATAG -ACGGAAAAGGTGTACACGGACAAG -ACGGAAAAGGTGTACACGAAGCAG -ACGGAAAAGGTGTACACGCGTCAA -ACGGAAAAGGTGTACACGGCTGAA -ACGGAAAAGGTGTACACGAGTACG -ACGGAAAAGGTGTACACGATCCGA -ACGGAAAAGGTGTACACGATGGGA -ACGGAAAAGGTGTACACGGTGCAA -ACGGAAAAGGTGTACACGGAGGAA -ACGGAAAAGGTGTACACGCAGGTA -ACGGAAAAGGTGTACACGGACTCT -ACGGAAAAGGTGTACACGAGTCCT -ACGGAAAAGGTGTACACGTAAGCC -ACGGAAAAGGTGTACACGATAGCC -ACGGAAAAGGTGTACACGTAACCG -ACGGAAAAGGTGTACACGATGCCA -ACGGAAAAGGTGGACAGTGGAAAC -ACGGAAAAGGTGGACAGTAACACC -ACGGAAAAGGTGGACAGTATCGAG -ACGGAAAAGGTGGACAGTCTCCTT -ACGGAAAAGGTGGACAGTCCTGTT -ACGGAAAAGGTGGACAGTCGGTTT -ACGGAAAAGGTGGACAGTGTGGTT -ACGGAAAAGGTGGACAGTGCCTTT -ACGGAAAAGGTGGACAGTGGTCTT -ACGGAAAAGGTGGACAGTACGCTT -ACGGAAAAGGTGGACAGTAGCGTT -ACGGAAAAGGTGGACAGTTTCGTC -ACGGAAAAGGTGGACAGTTCTCTC -ACGGAAAAGGTGGACAGTTGGATC -ACGGAAAAGGTGGACAGTCACTTC -ACGGAAAAGGTGGACAGTGTACTC -ACGGAAAAGGTGGACAGTGATGTC -ACGGAAAAGGTGGACAGTACAGTC -ACGGAAAAGGTGGACAGTTTGCTG -ACGGAAAAGGTGGACAGTTCCATG -ACGGAAAAGGTGGACAGTTGTGTG -ACGGAAAAGGTGGACAGTCTAGTG -ACGGAAAAGGTGGACAGTCATCTG -ACGGAAAAGGTGGACAGTGAGTTG -ACGGAAAAGGTGGACAGTAGACTG -ACGGAAAAGGTGGACAGTTCGGTA -ACGGAAAAGGTGGACAGTTGCCTA -ACGGAAAAGGTGGACAGTCCACTA -ACGGAAAAGGTGGACAGTGGAGTA -ACGGAAAAGGTGGACAGTTCGTCT -ACGGAAAAGGTGGACAGTTGCACT -ACGGAAAAGGTGGACAGTCTGACT -ACGGAAAAGGTGGACAGTCAACCT -ACGGAAAAGGTGGACAGTGCTACT -ACGGAAAAGGTGGACAGTGGATCT -ACGGAAAAGGTGGACAGTAAGGCT -ACGGAAAAGGTGGACAGTTCAACC -ACGGAAAAGGTGGACAGTTGTTCC -ACGGAAAAGGTGGACAGTATTCCC -ACGGAAAAGGTGGACAGTTTCTCG -ACGGAAAAGGTGGACAGTTAGACG -ACGGAAAAGGTGGACAGTGTAACG -ACGGAAAAGGTGGACAGTACTTCG -ACGGAAAAGGTGGACAGTTACGCA -ACGGAAAAGGTGGACAGTCTTGCA -ACGGAAAAGGTGGACAGTCGAACA -ACGGAAAAGGTGGACAGTCAGTCA -ACGGAAAAGGTGGACAGTGATCCA -ACGGAAAAGGTGGACAGTACGACA -ACGGAAAAGGTGGACAGTAGCTCA -ACGGAAAAGGTGGACAGTTCACGT -ACGGAAAAGGTGGACAGTCGTAGT -ACGGAAAAGGTGGACAGTGTCAGT -ACGGAAAAGGTGGACAGTGAAGGT -ACGGAAAAGGTGGACAGTAACCGT -ACGGAAAAGGTGGACAGTTTGTGC -ACGGAAAAGGTGGACAGTCTAAGC -ACGGAAAAGGTGGACAGTACTAGC -ACGGAAAAGGTGGACAGTAGATGC -ACGGAAAAGGTGGACAGTTGAAGG -ACGGAAAAGGTGGACAGTCAATGG -ACGGAAAAGGTGGACAGTATGAGG -ACGGAAAAGGTGGACAGTAATGGG -ACGGAAAAGGTGGACAGTTCCTGA -ACGGAAAAGGTGGACAGTTAGCGA -ACGGAAAAGGTGGACAGTCACAGA -ACGGAAAAGGTGGACAGTGCAAGA -ACGGAAAAGGTGGACAGTGGTTGA -ACGGAAAAGGTGGACAGTTCCGAT -ACGGAAAAGGTGGACAGTTGGCAT -ACGGAAAAGGTGGACAGTCGAGAT -ACGGAAAAGGTGGACAGTTACCAC -ACGGAAAAGGTGGACAGTCAGAAC -ACGGAAAAGGTGGACAGTGTCTAC -ACGGAAAAGGTGGACAGTACGTAC -ACGGAAAAGGTGGACAGTAGTGAC -ACGGAAAAGGTGGACAGTCTGTAG -ACGGAAAAGGTGGACAGTCCTAAG -ACGGAAAAGGTGGACAGTGTTCAG -ACGGAAAAGGTGGACAGTGCATAG -ACGGAAAAGGTGGACAGTGACAAG -ACGGAAAAGGTGGACAGTAAGCAG -ACGGAAAAGGTGGACAGTCGTCAA -ACGGAAAAGGTGGACAGTGCTGAA -ACGGAAAAGGTGGACAGTAGTACG -ACGGAAAAGGTGGACAGTATCCGA -ACGGAAAAGGTGGACAGTATGGGA -ACGGAAAAGGTGGACAGTGTGCAA -ACGGAAAAGGTGGACAGTGAGGAA -ACGGAAAAGGTGGACAGTCAGGTA -ACGGAAAAGGTGGACAGTGACTCT -ACGGAAAAGGTGGACAGTAGTCCT -ACGGAAAAGGTGGACAGTTAAGCC -ACGGAAAAGGTGGACAGTATAGCC -ACGGAAAAGGTGGACAGTTAACCG -ACGGAAAAGGTGGACAGTATGCCA -ACGGAAAAGGTGTAGCTGGGAAAC -ACGGAAAAGGTGTAGCTGAACACC -ACGGAAAAGGTGTAGCTGATCGAG -ACGGAAAAGGTGTAGCTGCTCCTT -ACGGAAAAGGTGTAGCTGCCTGTT -ACGGAAAAGGTGTAGCTGCGGTTT -ACGGAAAAGGTGTAGCTGGTGGTT -ACGGAAAAGGTGTAGCTGGCCTTT -ACGGAAAAGGTGTAGCTGGGTCTT -ACGGAAAAGGTGTAGCTGACGCTT -ACGGAAAAGGTGTAGCTGAGCGTT -ACGGAAAAGGTGTAGCTGTTCGTC -ACGGAAAAGGTGTAGCTGTCTCTC -ACGGAAAAGGTGTAGCTGTGGATC -ACGGAAAAGGTGTAGCTGCACTTC -ACGGAAAAGGTGTAGCTGGTACTC -ACGGAAAAGGTGTAGCTGGATGTC -ACGGAAAAGGTGTAGCTGACAGTC -ACGGAAAAGGTGTAGCTGTTGCTG -ACGGAAAAGGTGTAGCTGTCCATG -ACGGAAAAGGTGTAGCTGTGTGTG -ACGGAAAAGGTGTAGCTGCTAGTG -ACGGAAAAGGTGTAGCTGCATCTG -ACGGAAAAGGTGTAGCTGGAGTTG -ACGGAAAAGGTGTAGCTGAGACTG -ACGGAAAAGGTGTAGCTGTCGGTA -ACGGAAAAGGTGTAGCTGTGCCTA -ACGGAAAAGGTGTAGCTGCCACTA -ACGGAAAAGGTGTAGCTGGGAGTA -ACGGAAAAGGTGTAGCTGTCGTCT -ACGGAAAAGGTGTAGCTGTGCACT -ACGGAAAAGGTGTAGCTGCTGACT -ACGGAAAAGGTGTAGCTGCAACCT -ACGGAAAAGGTGTAGCTGGCTACT -ACGGAAAAGGTGTAGCTGGGATCT -ACGGAAAAGGTGTAGCTGAAGGCT -ACGGAAAAGGTGTAGCTGTCAACC -ACGGAAAAGGTGTAGCTGTGTTCC -ACGGAAAAGGTGTAGCTGATTCCC -ACGGAAAAGGTGTAGCTGTTCTCG -ACGGAAAAGGTGTAGCTGTAGACG -ACGGAAAAGGTGTAGCTGGTAACG -ACGGAAAAGGTGTAGCTGACTTCG -ACGGAAAAGGTGTAGCTGTACGCA -ACGGAAAAGGTGTAGCTGCTTGCA -ACGGAAAAGGTGTAGCTGCGAACA -ACGGAAAAGGTGTAGCTGCAGTCA -ACGGAAAAGGTGTAGCTGGATCCA -ACGGAAAAGGTGTAGCTGACGACA -ACGGAAAAGGTGTAGCTGAGCTCA -ACGGAAAAGGTGTAGCTGTCACGT -ACGGAAAAGGTGTAGCTGCGTAGT -ACGGAAAAGGTGTAGCTGGTCAGT -ACGGAAAAGGTGTAGCTGGAAGGT -ACGGAAAAGGTGTAGCTGAACCGT -ACGGAAAAGGTGTAGCTGTTGTGC -ACGGAAAAGGTGTAGCTGCTAAGC -ACGGAAAAGGTGTAGCTGACTAGC -ACGGAAAAGGTGTAGCTGAGATGC -ACGGAAAAGGTGTAGCTGTGAAGG -ACGGAAAAGGTGTAGCTGCAATGG -ACGGAAAAGGTGTAGCTGATGAGG -ACGGAAAAGGTGTAGCTGAATGGG -ACGGAAAAGGTGTAGCTGTCCTGA -ACGGAAAAGGTGTAGCTGTAGCGA -ACGGAAAAGGTGTAGCTGCACAGA -ACGGAAAAGGTGTAGCTGGCAAGA -ACGGAAAAGGTGTAGCTGGGTTGA -ACGGAAAAGGTGTAGCTGTCCGAT -ACGGAAAAGGTGTAGCTGTGGCAT -ACGGAAAAGGTGTAGCTGCGAGAT -ACGGAAAAGGTGTAGCTGTACCAC -ACGGAAAAGGTGTAGCTGCAGAAC -ACGGAAAAGGTGTAGCTGGTCTAC -ACGGAAAAGGTGTAGCTGACGTAC -ACGGAAAAGGTGTAGCTGAGTGAC -ACGGAAAAGGTGTAGCTGCTGTAG -ACGGAAAAGGTGTAGCTGCCTAAG -ACGGAAAAGGTGTAGCTGGTTCAG -ACGGAAAAGGTGTAGCTGGCATAG -ACGGAAAAGGTGTAGCTGGACAAG -ACGGAAAAGGTGTAGCTGAAGCAG -ACGGAAAAGGTGTAGCTGCGTCAA -ACGGAAAAGGTGTAGCTGGCTGAA -ACGGAAAAGGTGTAGCTGAGTACG -ACGGAAAAGGTGTAGCTGATCCGA -ACGGAAAAGGTGTAGCTGATGGGA -ACGGAAAAGGTGTAGCTGGTGCAA -ACGGAAAAGGTGTAGCTGGAGGAA -ACGGAAAAGGTGTAGCTGCAGGTA -ACGGAAAAGGTGTAGCTGGACTCT -ACGGAAAAGGTGTAGCTGAGTCCT -ACGGAAAAGGTGTAGCTGTAAGCC -ACGGAAAAGGTGTAGCTGATAGCC -ACGGAAAAGGTGTAGCTGTAACCG -ACGGAAAAGGTGTAGCTGATGCCA -ACGGAAAAGGTGAAGCCTGGAAAC -ACGGAAAAGGTGAAGCCTAACACC -ACGGAAAAGGTGAAGCCTATCGAG -ACGGAAAAGGTGAAGCCTCTCCTT -ACGGAAAAGGTGAAGCCTCCTGTT -ACGGAAAAGGTGAAGCCTCGGTTT -ACGGAAAAGGTGAAGCCTGTGGTT -ACGGAAAAGGTGAAGCCTGCCTTT -ACGGAAAAGGTGAAGCCTGGTCTT -ACGGAAAAGGTGAAGCCTACGCTT -ACGGAAAAGGTGAAGCCTAGCGTT -ACGGAAAAGGTGAAGCCTTTCGTC -ACGGAAAAGGTGAAGCCTTCTCTC -ACGGAAAAGGTGAAGCCTTGGATC -ACGGAAAAGGTGAAGCCTCACTTC -ACGGAAAAGGTGAAGCCTGTACTC -ACGGAAAAGGTGAAGCCTGATGTC -ACGGAAAAGGTGAAGCCTACAGTC -ACGGAAAAGGTGAAGCCTTTGCTG -ACGGAAAAGGTGAAGCCTTCCATG -ACGGAAAAGGTGAAGCCTTGTGTG -ACGGAAAAGGTGAAGCCTCTAGTG -ACGGAAAAGGTGAAGCCTCATCTG -ACGGAAAAGGTGAAGCCTGAGTTG -ACGGAAAAGGTGAAGCCTAGACTG -ACGGAAAAGGTGAAGCCTTCGGTA -ACGGAAAAGGTGAAGCCTTGCCTA -ACGGAAAAGGTGAAGCCTCCACTA -ACGGAAAAGGTGAAGCCTGGAGTA -ACGGAAAAGGTGAAGCCTTCGTCT -ACGGAAAAGGTGAAGCCTTGCACT -ACGGAAAAGGTGAAGCCTCTGACT -ACGGAAAAGGTGAAGCCTCAACCT -ACGGAAAAGGTGAAGCCTGCTACT -ACGGAAAAGGTGAAGCCTGGATCT -ACGGAAAAGGTGAAGCCTAAGGCT -ACGGAAAAGGTGAAGCCTTCAACC -ACGGAAAAGGTGAAGCCTTGTTCC -ACGGAAAAGGTGAAGCCTATTCCC -ACGGAAAAGGTGAAGCCTTTCTCG -ACGGAAAAGGTGAAGCCTTAGACG -ACGGAAAAGGTGAAGCCTGTAACG -ACGGAAAAGGTGAAGCCTACTTCG -ACGGAAAAGGTGAAGCCTTACGCA -ACGGAAAAGGTGAAGCCTCTTGCA -ACGGAAAAGGTGAAGCCTCGAACA -ACGGAAAAGGTGAAGCCTCAGTCA -ACGGAAAAGGTGAAGCCTGATCCA -ACGGAAAAGGTGAAGCCTACGACA -ACGGAAAAGGTGAAGCCTAGCTCA -ACGGAAAAGGTGAAGCCTTCACGT -ACGGAAAAGGTGAAGCCTCGTAGT -ACGGAAAAGGTGAAGCCTGTCAGT -ACGGAAAAGGTGAAGCCTGAAGGT -ACGGAAAAGGTGAAGCCTAACCGT -ACGGAAAAGGTGAAGCCTTTGTGC -ACGGAAAAGGTGAAGCCTCTAAGC -ACGGAAAAGGTGAAGCCTACTAGC -ACGGAAAAGGTGAAGCCTAGATGC -ACGGAAAAGGTGAAGCCTTGAAGG -ACGGAAAAGGTGAAGCCTCAATGG -ACGGAAAAGGTGAAGCCTATGAGG -ACGGAAAAGGTGAAGCCTAATGGG -ACGGAAAAGGTGAAGCCTTCCTGA -ACGGAAAAGGTGAAGCCTTAGCGA -ACGGAAAAGGTGAAGCCTCACAGA -ACGGAAAAGGTGAAGCCTGCAAGA -ACGGAAAAGGTGAAGCCTGGTTGA -ACGGAAAAGGTGAAGCCTTCCGAT -ACGGAAAAGGTGAAGCCTTGGCAT -ACGGAAAAGGTGAAGCCTCGAGAT -ACGGAAAAGGTGAAGCCTTACCAC -ACGGAAAAGGTGAAGCCTCAGAAC -ACGGAAAAGGTGAAGCCTGTCTAC -ACGGAAAAGGTGAAGCCTACGTAC -ACGGAAAAGGTGAAGCCTAGTGAC -ACGGAAAAGGTGAAGCCTCTGTAG -ACGGAAAAGGTGAAGCCTCCTAAG -ACGGAAAAGGTGAAGCCTGTTCAG -ACGGAAAAGGTGAAGCCTGCATAG -ACGGAAAAGGTGAAGCCTGACAAG -ACGGAAAAGGTGAAGCCTAAGCAG -ACGGAAAAGGTGAAGCCTCGTCAA -ACGGAAAAGGTGAAGCCTGCTGAA -ACGGAAAAGGTGAAGCCTAGTACG -ACGGAAAAGGTGAAGCCTATCCGA -ACGGAAAAGGTGAAGCCTATGGGA -ACGGAAAAGGTGAAGCCTGTGCAA -ACGGAAAAGGTGAAGCCTGAGGAA -ACGGAAAAGGTGAAGCCTCAGGTA -ACGGAAAAGGTGAAGCCTGACTCT -ACGGAAAAGGTGAAGCCTAGTCCT -ACGGAAAAGGTGAAGCCTTAAGCC -ACGGAAAAGGTGAAGCCTATAGCC -ACGGAAAAGGTGAAGCCTTAACCG -ACGGAAAAGGTGAAGCCTATGCCA -ACGGAAAAGGTGCAGGTTGGAAAC -ACGGAAAAGGTGCAGGTTAACACC -ACGGAAAAGGTGCAGGTTATCGAG -ACGGAAAAGGTGCAGGTTCTCCTT -ACGGAAAAGGTGCAGGTTCCTGTT -ACGGAAAAGGTGCAGGTTCGGTTT -ACGGAAAAGGTGCAGGTTGTGGTT -ACGGAAAAGGTGCAGGTTGCCTTT -ACGGAAAAGGTGCAGGTTGGTCTT -ACGGAAAAGGTGCAGGTTACGCTT -ACGGAAAAGGTGCAGGTTAGCGTT -ACGGAAAAGGTGCAGGTTTTCGTC -ACGGAAAAGGTGCAGGTTTCTCTC -ACGGAAAAGGTGCAGGTTTGGATC -ACGGAAAAGGTGCAGGTTCACTTC -ACGGAAAAGGTGCAGGTTGTACTC -ACGGAAAAGGTGCAGGTTGATGTC -ACGGAAAAGGTGCAGGTTACAGTC -ACGGAAAAGGTGCAGGTTTTGCTG -ACGGAAAAGGTGCAGGTTTCCATG -ACGGAAAAGGTGCAGGTTTGTGTG -ACGGAAAAGGTGCAGGTTCTAGTG -ACGGAAAAGGTGCAGGTTCATCTG -ACGGAAAAGGTGCAGGTTGAGTTG -ACGGAAAAGGTGCAGGTTAGACTG -ACGGAAAAGGTGCAGGTTTCGGTA -ACGGAAAAGGTGCAGGTTTGCCTA -ACGGAAAAGGTGCAGGTTCCACTA -ACGGAAAAGGTGCAGGTTGGAGTA -ACGGAAAAGGTGCAGGTTTCGTCT -ACGGAAAAGGTGCAGGTTTGCACT -ACGGAAAAGGTGCAGGTTCTGACT -ACGGAAAAGGTGCAGGTTCAACCT -ACGGAAAAGGTGCAGGTTGCTACT -ACGGAAAAGGTGCAGGTTGGATCT -ACGGAAAAGGTGCAGGTTAAGGCT -ACGGAAAAGGTGCAGGTTTCAACC -ACGGAAAAGGTGCAGGTTTGTTCC -ACGGAAAAGGTGCAGGTTATTCCC -ACGGAAAAGGTGCAGGTTTTCTCG -ACGGAAAAGGTGCAGGTTTAGACG -ACGGAAAAGGTGCAGGTTGTAACG -ACGGAAAAGGTGCAGGTTACTTCG -ACGGAAAAGGTGCAGGTTTACGCA -ACGGAAAAGGTGCAGGTTCTTGCA -ACGGAAAAGGTGCAGGTTCGAACA -ACGGAAAAGGTGCAGGTTCAGTCA -ACGGAAAAGGTGCAGGTTGATCCA -ACGGAAAAGGTGCAGGTTACGACA -ACGGAAAAGGTGCAGGTTAGCTCA -ACGGAAAAGGTGCAGGTTTCACGT -ACGGAAAAGGTGCAGGTTCGTAGT -ACGGAAAAGGTGCAGGTTGTCAGT -ACGGAAAAGGTGCAGGTTGAAGGT -ACGGAAAAGGTGCAGGTTAACCGT -ACGGAAAAGGTGCAGGTTTTGTGC -ACGGAAAAGGTGCAGGTTCTAAGC -ACGGAAAAGGTGCAGGTTACTAGC -ACGGAAAAGGTGCAGGTTAGATGC -ACGGAAAAGGTGCAGGTTTGAAGG -ACGGAAAAGGTGCAGGTTCAATGG -ACGGAAAAGGTGCAGGTTATGAGG -ACGGAAAAGGTGCAGGTTAATGGG -ACGGAAAAGGTGCAGGTTTCCTGA -ACGGAAAAGGTGCAGGTTTAGCGA -ACGGAAAAGGTGCAGGTTCACAGA -ACGGAAAAGGTGCAGGTTGCAAGA -ACGGAAAAGGTGCAGGTTGGTTGA -ACGGAAAAGGTGCAGGTTTCCGAT -ACGGAAAAGGTGCAGGTTTGGCAT -ACGGAAAAGGTGCAGGTTCGAGAT -ACGGAAAAGGTGCAGGTTTACCAC -ACGGAAAAGGTGCAGGTTCAGAAC -ACGGAAAAGGTGCAGGTTGTCTAC -ACGGAAAAGGTGCAGGTTACGTAC -ACGGAAAAGGTGCAGGTTAGTGAC -ACGGAAAAGGTGCAGGTTCTGTAG -ACGGAAAAGGTGCAGGTTCCTAAG -ACGGAAAAGGTGCAGGTTGTTCAG -ACGGAAAAGGTGCAGGTTGCATAG -ACGGAAAAGGTGCAGGTTGACAAG -ACGGAAAAGGTGCAGGTTAAGCAG -ACGGAAAAGGTGCAGGTTCGTCAA -ACGGAAAAGGTGCAGGTTGCTGAA -ACGGAAAAGGTGCAGGTTAGTACG -ACGGAAAAGGTGCAGGTTATCCGA -ACGGAAAAGGTGCAGGTTATGGGA -ACGGAAAAGGTGCAGGTTGTGCAA -ACGGAAAAGGTGCAGGTTGAGGAA -ACGGAAAAGGTGCAGGTTCAGGTA -ACGGAAAAGGTGCAGGTTGACTCT -ACGGAAAAGGTGCAGGTTAGTCCT -ACGGAAAAGGTGCAGGTTTAAGCC -ACGGAAAAGGTGCAGGTTATAGCC -ACGGAAAAGGTGCAGGTTTAACCG -ACGGAAAAGGTGCAGGTTATGCCA -ACGGAAAAGGTGTAGGCAGGAAAC -ACGGAAAAGGTGTAGGCAAACACC -ACGGAAAAGGTGTAGGCAATCGAG -ACGGAAAAGGTGTAGGCACTCCTT -ACGGAAAAGGTGTAGGCACCTGTT -ACGGAAAAGGTGTAGGCACGGTTT -ACGGAAAAGGTGTAGGCAGTGGTT -ACGGAAAAGGTGTAGGCAGCCTTT -ACGGAAAAGGTGTAGGCAGGTCTT -ACGGAAAAGGTGTAGGCAACGCTT -ACGGAAAAGGTGTAGGCAAGCGTT -ACGGAAAAGGTGTAGGCATTCGTC -ACGGAAAAGGTGTAGGCATCTCTC -ACGGAAAAGGTGTAGGCATGGATC -ACGGAAAAGGTGTAGGCACACTTC -ACGGAAAAGGTGTAGGCAGTACTC -ACGGAAAAGGTGTAGGCAGATGTC -ACGGAAAAGGTGTAGGCAACAGTC -ACGGAAAAGGTGTAGGCATTGCTG -ACGGAAAAGGTGTAGGCATCCATG -ACGGAAAAGGTGTAGGCATGTGTG -ACGGAAAAGGTGTAGGCACTAGTG -ACGGAAAAGGTGTAGGCACATCTG -ACGGAAAAGGTGTAGGCAGAGTTG -ACGGAAAAGGTGTAGGCAAGACTG -ACGGAAAAGGTGTAGGCATCGGTA -ACGGAAAAGGTGTAGGCATGCCTA -ACGGAAAAGGTGTAGGCACCACTA -ACGGAAAAGGTGTAGGCAGGAGTA -ACGGAAAAGGTGTAGGCATCGTCT -ACGGAAAAGGTGTAGGCATGCACT -ACGGAAAAGGTGTAGGCACTGACT -ACGGAAAAGGTGTAGGCACAACCT -ACGGAAAAGGTGTAGGCAGCTACT -ACGGAAAAGGTGTAGGCAGGATCT -ACGGAAAAGGTGTAGGCAAAGGCT -ACGGAAAAGGTGTAGGCATCAACC -ACGGAAAAGGTGTAGGCATGTTCC -ACGGAAAAGGTGTAGGCAATTCCC -ACGGAAAAGGTGTAGGCATTCTCG -ACGGAAAAGGTGTAGGCATAGACG -ACGGAAAAGGTGTAGGCAGTAACG -ACGGAAAAGGTGTAGGCAACTTCG -ACGGAAAAGGTGTAGGCATACGCA -ACGGAAAAGGTGTAGGCACTTGCA -ACGGAAAAGGTGTAGGCACGAACA -ACGGAAAAGGTGTAGGCACAGTCA -ACGGAAAAGGTGTAGGCAGATCCA -ACGGAAAAGGTGTAGGCAACGACA -ACGGAAAAGGTGTAGGCAAGCTCA -ACGGAAAAGGTGTAGGCATCACGT -ACGGAAAAGGTGTAGGCACGTAGT -ACGGAAAAGGTGTAGGCAGTCAGT -ACGGAAAAGGTGTAGGCAGAAGGT -ACGGAAAAGGTGTAGGCAAACCGT -ACGGAAAAGGTGTAGGCATTGTGC -ACGGAAAAGGTGTAGGCACTAAGC -ACGGAAAAGGTGTAGGCAACTAGC -ACGGAAAAGGTGTAGGCAAGATGC -ACGGAAAAGGTGTAGGCATGAAGG -ACGGAAAAGGTGTAGGCACAATGG -ACGGAAAAGGTGTAGGCAATGAGG -ACGGAAAAGGTGTAGGCAAATGGG -ACGGAAAAGGTGTAGGCATCCTGA -ACGGAAAAGGTGTAGGCATAGCGA -ACGGAAAAGGTGTAGGCACACAGA -ACGGAAAAGGTGTAGGCAGCAAGA -ACGGAAAAGGTGTAGGCAGGTTGA -ACGGAAAAGGTGTAGGCATCCGAT -ACGGAAAAGGTGTAGGCATGGCAT -ACGGAAAAGGTGTAGGCACGAGAT -ACGGAAAAGGTGTAGGCATACCAC -ACGGAAAAGGTGTAGGCACAGAAC -ACGGAAAAGGTGTAGGCAGTCTAC -ACGGAAAAGGTGTAGGCAACGTAC -ACGGAAAAGGTGTAGGCAAGTGAC -ACGGAAAAGGTGTAGGCACTGTAG -ACGGAAAAGGTGTAGGCACCTAAG -ACGGAAAAGGTGTAGGCAGTTCAG -ACGGAAAAGGTGTAGGCAGCATAG -ACGGAAAAGGTGTAGGCAGACAAG -ACGGAAAAGGTGTAGGCAAAGCAG -ACGGAAAAGGTGTAGGCACGTCAA -ACGGAAAAGGTGTAGGCAGCTGAA -ACGGAAAAGGTGTAGGCAAGTACG -ACGGAAAAGGTGTAGGCAATCCGA -ACGGAAAAGGTGTAGGCAATGGGA -ACGGAAAAGGTGTAGGCAGTGCAA -ACGGAAAAGGTGTAGGCAGAGGAA -ACGGAAAAGGTGTAGGCACAGGTA -ACGGAAAAGGTGTAGGCAGACTCT -ACGGAAAAGGTGTAGGCAAGTCCT -ACGGAAAAGGTGTAGGCATAAGCC -ACGGAAAAGGTGTAGGCAATAGCC -ACGGAAAAGGTGTAGGCATAACCG -ACGGAAAAGGTGTAGGCAATGCCA -ACGGAAAAGGTGAAGGACGGAAAC -ACGGAAAAGGTGAAGGACAACACC -ACGGAAAAGGTGAAGGACATCGAG -ACGGAAAAGGTGAAGGACCTCCTT -ACGGAAAAGGTGAAGGACCCTGTT -ACGGAAAAGGTGAAGGACCGGTTT -ACGGAAAAGGTGAAGGACGTGGTT -ACGGAAAAGGTGAAGGACGCCTTT -ACGGAAAAGGTGAAGGACGGTCTT -ACGGAAAAGGTGAAGGACACGCTT -ACGGAAAAGGTGAAGGACAGCGTT -ACGGAAAAGGTGAAGGACTTCGTC -ACGGAAAAGGTGAAGGACTCTCTC -ACGGAAAAGGTGAAGGACTGGATC -ACGGAAAAGGTGAAGGACCACTTC -ACGGAAAAGGTGAAGGACGTACTC -ACGGAAAAGGTGAAGGACGATGTC -ACGGAAAAGGTGAAGGACACAGTC -ACGGAAAAGGTGAAGGACTTGCTG -ACGGAAAAGGTGAAGGACTCCATG -ACGGAAAAGGTGAAGGACTGTGTG -ACGGAAAAGGTGAAGGACCTAGTG -ACGGAAAAGGTGAAGGACCATCTG -ACGGAAAAGGTGAAGGACGAGTTG -ACGGAAAAGGTGAAGGACAGACTG -ACGGAAAAGGTGAAGGACTCGGTA -ACGGAAAAGGTGAAGGACTGCCTA -ACGGAAAAGGTGAAGGACCCACTA -ACGGAAAAGGTGAAGGACGGAGTA -ACGGAAAAGGTGAAGGACTCGTCT -ACGGAAAAGGTGAAGGACTGCACT -ACGGAAAAGGTGAAGGACCTGACT -ACGGAAAAGGTGAAGGACCAACCT -ACGGAAAAGGTGAAGGACGCTACT -ACGGAAAAGGTGAAGGACGGATCT -ACGGAAAAGGTGAAGGACAAGGCT -ACGGAAAAGGTGAAGGACTCAACC -ACGGAAAAGGTGAAGGACTGTTCC -ACGGAAAAGGTGAAGGACATTCCC -ACGGAAAAGGTGAAGGACTTCTCG -ACGGAAAAGGTGAAGGACTAGACG -ACGGAAAAGGTGAAGGACGTAACG -ACGGAAAAGGTGAAGGACACTTCG -ACGGAAAAGGTGAAGGACTACGCA -ACGGAAAAGGTGAAGGACCTTGCA -ACGGAAAAGGTGAAGGACCGAACA -ACGGAAAAGGTGAAGGACCAGTCA -ACGGAAAAGGTGAAGGACGATCCA -ACGGAAAAGGTGAAGGACACGACA -ACGGAAAAGGTGAAGGACAGCTCA -ACGGAAAAGGTGAAGGACTCACGT -ACGGAAAAGGTGAAGGACCGTAGT -ACGGAAAAGGTGAAGGACGTCAGT -ACGGAAAAGGTGAAGGACGAAGGT -ACGGAAAAGGTGAAGGACAACCGT -ACGGAAAAGGTGAAGGACTTGTGC -ACGGAAAAGGTGAAGGACCTAAGC -ACGGAAAAGGTGAAGGACACTAGC -ACGGAAAAGGTGAAGGACAGATGC -ACGGAAAAGGTGAAGGACTGAAGG -ACGGAAAAGGTGAAGGACCAATGG -ACGGAAAAGGTGAAGGACATGAGG -ACGGAAAAGGTGAAGGACAATGGG -ACGGAAAAGGTGAAGGACTCCTGA -ACGGAAAAGGTGAAGGACTAGCGA -ACGGAAAAGGTGAAGGACCACAGA -ACGGAAAAGGTGAAGGACGCAAGA -ACGGAAAAGGTGAAGGACGGTTGA -ACGGAAAAGGTGAAGGACTCCGAT -ACGGAAAAGGTGAAGGACTGGCAT -ACGGAAAAGGTGAAGGACCGAGAT -ACGGAAAAGGTGAAGGACTACCAC -ACGGAAAAGGTGAAGGACCAGAAC -ACGGAAAAGGTGAAGGACGTCTAC -ACGGAAAAGGTGAAGGACACGTAC -ACGGAAAAGGTGAAGGACAGTGAC -ACGGAAAAGGTGAAGGACCTGTAG -ACGGAAAAGGTGAAGGACCCTAAG -ACGGAAAAGGTGAAGGACGTTCAG -ACGGAAAAGGTGAAGGACGCATAG -ACGGAAAAGGTGAAGGACGACAAG -ACGGAAAAGGTGAAGGACAAGCAG -ACGGAAAAGGTGAAGGACCGTCAA -ACGGAAAAGGTGAAGGACGCTGAA -ACGGAAAAGGTGAAGGACAGTACG -ACGGAAAAGGTGAAGGACATCCGA -ACGGAAAAGGTGAAGGACATGGGA -ACGGAAAAGGTGAAGGACGTGCAA -ACGGAAAAGGTGAAGGACGAGGAA -ACGGAAAAGGTGAAGGACCAGGTA -ACGGAAAAGGTGAAGGACGACTCT -ACGGAAAAGGTGAAGGACAGTCCT -ACGGAAAAGGTGAAGGACTAAGCC -ACGGAAAAGGTGAAGGACATAGCC -ACGGAAAAGGTGAAGGACTAACCG -ACGGAAAAGGTGAAGGACATGCCA -ACGGAAAAGGTGCAGAAGGGAAAC -ACGGAAAAGGTGCAGAAGAACACC -ACGGAAAAGGTGCAGAAGATCGAG -ACGGAAAAGGTGCAGAAGCTCCTT -ACGGAAAAGGTGCAGAAGCCTGTT -ACGGAAAAGGTGCAGAAGCGGTTT -ACGGAAAAGGTGCAGAAGGTGGTT -ACGGAAAAGGTGCAGAAGGCCTTT -ACGGAAAAGGTGCAGAAGGGTCTT -ACGGAAAAGGTGCAGAAGACGCTT -ACGGAAAAGGTGCAGAAGAGCGTT -ACGGAAAAGGTGCAGAAGTTCGTC -ACGGAAAAGGTGCAGAAGTCTCTC -ACGGAAAAGGTGCAGAAGTGGATC -ACGGAAAAGGTGCAGAAGCACTTC -ACGGAAAAGGTGCAGAAGGTACTC -ACGGAAAAGGTGCAGAAGGATGTC -ACGGAAAAGGTGCAGAAGACAGTC -ACGGAAAAGGTGCAGAAGTTGCTG -ACGGAAAAGGTGCAGAAGTCCATG -ACGGAAAAGGTGCAGAAGTGTGTG -ACGGAAAAGGTGCAGAAGCTAGTG -ACGGAAAAGGTGCAGAAGCATCTG -ACGGAAAAGGTGCAGAAGGAGTTG -ACGGAAAAGGTGCAGAAGAGACTG -ACGGAAAAGGTGCAGAAGTCGGTA -ACGGAAAAGGTGCAGAAGTGCCTA -ACGGAAAAGGTGCAGAAGCCACTA -ACGGAAAAGGTGCAGAAGGGAGTA -ACGGAAAAGGTGCAGAAGTCGTCT -ACGGAAAAGGTGCAGAAGTGCACT -ACGGAAAAGGTGCAGAAGCTGACT -ACGGAAAAGGTGCAGAAGCAACCT -ACGGAAAAGGTGCAGAAGGCTACT -ACGGAAAAGGTGCAGAAGGGATCT -ACGGAAAAGGTGCAGAAGAAGGCT -ACGGAAAAGGTGCAGAAGTCAACC -ACGGAAAAGGTGCAGAAGTGTTCC -ACGGAAAAGGTGCAGAAGATTCCC -ACGGAAAAGGTGCAGAAGTTCTCG -ACGGAAAAGGTGCAGAAGTAGACG -ACGGAAAAGGTGCAGAAGGTAACG -ACGGAAAAGGTGCAGAAGACTTCG -ACGGAAAAGGTGCAGAAGTACGCA -ACGGAAAAGGTGCAGAAGCTTGCA -ACGGAAAAGGTGCAGAAGCGAACA -ACGGAAAAGGTGCAGAAGCAGTCA -ACGGAAAAGGTGCAGAAGGATCCA -ACGGAAAAGGTGCAGAAGACGACA -ACGGAAAAGGTGCAGAAGAGCTCA -ACGGAAAAGGTGCAGAAGTCACGT -ACGGAAAAGGTGCAGAAGCGTAGT -ACGGAAAAGGTGCAGAAGGTCAGT -ACGGAAAAGGTGCAGAAGGAAGGT -ACGGAAAAGGTGCAGAAGAACCGT -ACGGAAAAGGTGCAGAAGTTGTGC -ACGGAAAAGGTGCAGAAGCTAAGC -ACGGAAAAGGTGCAGAAGACTAGC -ACGGAAAAGGTGCAGAAGAGATGC -ACGGAAAAGGTGCAGAAGTGAAGG -ACGGAAAAGGTGCAGAAGCAATGG -ACGGAAAAGGTGCAGAAGATGAGG -ACGGAAAAGGTGCAGAAGAATGGG -ACGGAAAAGGTGCAGAAGTCCTGA -ACGGAAAAGGTGCAGAAGTAGCGA -ACGGAAAAGGTGCAGAAGCACAGA -ACGGAAAAGGTGCAGAAGGCAAGA -ACGGAAAAGGTGCAGAAGGGTTGA -ACGGAAAAGGTGCAGAAGTCCGAT -ACGGAAAAGGTGCAGAAGTGGCAT -ACGGAAAAGGTGCAGAAGCGAGAT -ACGGAAAAGGTGCAGAAGTACCAC -ACGGAAAAGGTGCAGAAGCAGAAC -ACGGAAAAGGTGCAGAAGGTCTAC -ACGGAAAAGGTGCAGAAGACGTAC -ACGGAAAAGGTGCAGAAGAGTGAC -ACGGAAAAGGTGCAGAAGCTGTAG -ACGGAAAAGGTGCAGAAGCCTAAG -ACGGAAAAGGTGCAGAAGGTTCAG -ACGGAAAAGGTGCAGAAGGCATAG -ACGGAAAAGGTGCAGAAGGACAAG -ACGGAAAAGGTGCAGAAGAAGCAG -ACGGAAAAGGTGCAGAAGCGTCAA -ACGGAAAAGGTGCAGAAGGCTGAA -ACGGAAAAGGTGCAGAAGAGTACG -ACGGAAAAGGTGCAGAAGATCCGA -ACGGAAAAGGTGCAGAAGATGGGA -ACGGAAAAGGTGCAGAAGGTGCAA -ACGGAAAAGGTGCAGAAGGAGGAA -ACGGAAAAGGTGCAGAAGCAGGTA -ACGGAAAAGGTGCAGAAGGACTCT -ACGGAAAAGGTGCAGAAGAGTCCT -ACGGAAAAGGTGCAGAAGTAAGCC -ACGGAAAAGGTGCAGAAGATAGCC -ACGGAAAAGGTGCAGAAGTAACCG -ACGGAAAAGGTGCAGAAGATGCCA -ACGGAAAAGGTGCAACGTGGAAAC -ACGGAAAAGGTGCAACGTAACACC -ACGGAAAAGGTGCAACGTATCGAG -ACGGAAAAGGTGCAACGTCTCCTT -ACGGAAAAGGTGCAACGTCCTGTT -ACGGAAAAGGTGCAACGTCGGTTT -ACGGAAAAGGTGCAACGTGTGGTT -ACGGAAAAGGTGCAACGTGCCTTT -ACGGAAAAGGTGCAACGTGGTCTT -ACGGAAAAGGTGCAACGTACGCTT -ACGGAAAAGGTGCAACGTAGCGTT -ACGGAAAAGGTGCAACGTTTCGTC -ACGGAAAAGGTGCAACGTTCTCTC -ACGGAAAAGGTGCAACGTTGGATC -ACGGAAAAGGTGCAACGTCACTTC -ACGGAAAAGGTGCAACGTGTACTC -ACGGAAAAGGTGCAACGTGATGTC -ACGGAAAAGGTGCAACGTACAGTC -ACGGAAAAGGTGCAACGTTTGCTG -ACGGAAAAGGTGCAACGTTCCATG -ACGGAAAAGGTGCAACGTTGTGTG -ACGGAAAAGGTGCAACGTCTAGTG -ACGGAAAAGGTGCAACGTCATCTG -ACGGAAAAGGTGCAACGTGAGTTG -ACGGAAAAGGTGCAACGTAGACTG -ACGGAAAAGGTGCAACGTTCGGTA -ACGGAAAAGGTGCAACGTTGCCTA -ACGGAAAAGGTGCAACGTCCACTA -ACGGAAAAGGTGCAACGTGGAGTA -ACGGAAAAGGTGCAACGTTCGTCT -ACGGAAAAGGTGCAACGTTGCACT -ACGGAAAAGGTGCAACGTCTGACT -ACGGAAAAGGTGCAACGTCAACCT -ACGGAAAAGGTGCAACGTGCTACT -ACGGAAAAGGTGCAACGTGGATCT -ACGGAAAAGGTGCAACGTAAGGCT -ACGGAAAAGGTGCAACGTTCAACC -ACGGAAAAGGTGCAACGTTGTTCC -ACGGAAAAGGTGCAACGTATTCCC -ACGGAAAAGGTGCAACGTTTCTCG -ACGGAAAAGGTGCAACGTTAGACG -ACGGAAAAGGTGCAACGTGTAACG -ACGGAAAAGGTGCAACGTACTTCG -ACGGAAAAGGTGCAACGTTACGCA -ACGGAAAAGGTGCAACGTCTTGCA -ACGGAAAAGGTGCAACGTCGAACA -ACGGAAAAGGTGCAACGTCAGTCA -ACGGAAAAGGTGCAACGTGATCCA -ACGGAAAAGGTGCAACGTACGACA -ACGGAAAAGGTGCAACGTAGCTCA -ACGGAAAAGGTGCAACGTTCACGT -ACGGAAAAGGTGCAACGTCGTAGT -ACGGAAAAGGTGCAACGTGTCAGT -ACGGAAAAGGTGCAACGTGAAGGT -ACGGAAAAGGTGCAACGTAACCGT -ACGGAAAAGGTGCAACGTTTGTGC -ACGGAAAAGGTGCAACGTCTAAGC -ACGGAAAAGGTGCAACGTACTAGC -ACGGAAAAGGTGCAACGTAGATGC -ACGGAAAAGGTGCAACGTTGAAGG -ACGGAAAAGGTGCAACGTCAATGG -ACGGAAAAGGTGCAACGTATGAGG -ACGGAAAAGGTGCAACGTAATGGG -ACGGAAAAGGTGCAACGTTCCTGA -ACGGAAAAGGTGCAACGTTAGCGA -ACGGAAAAGGTGCAACGTCACAGA -ACGGAAAAGGTGCAACGTGCAAGA -ACGGAAAAGGTGCAACGTGGTTGA -ACGGAAAAGGTGCAACGTTCCGAT -ACGGAAAAGGTGCAACGTTGGCAT -ACGGAAAAGGTGCAACGTCGAGAT -ACGGAAAAGGTGCAACGTTACCAC -ACGGAAAAGGTGCAACGTCAGAAC -ACGGAAAAGGTGCAACGTGTCTAC -ACGGAAAAGGTGCAACGTACGTAC -ACGGAAAAGGTGCAACGTAGTGAC -ACGGAAAAGGTGCAACGTCTGTAG -ACGGAAAAGGTGCAACGTCCTAAG -ACGGAAAAGGTGCAACGTGTTCAG -ACGGAAAAGGTGCAACGTGCATAG -ACGGAAAAGGTGCAACGTGACAAG -ACGGAAAAGGTGCAACGTAAGCAG -ACGGAAAAGGTGCAACGTCGTCAA -ACGGAAAAGGTGCAACGTGCTGAA -ACGGAAAAGGTGCAACGTAGTACG -ACGGAAAAGGTGCAACGTATCCGA -ACGGAAAAGGTGCAACGTATGGGA -ACGGAAAAGGTGCAACGTGTGCAA -ACGGAAAAGGTGCAACGTGAGGAA -ACGGAAAAGGTGCAACGTCAGGTA -ACGGAAAAGGTGCAACGTGACTCT -ACGGAAAAGGTGCAACGTAGTCCT -ACGGAAAAGGTGCAACGTTAAGCC -ACGGAAAAGGTGCAACGTATAGCC -ACGGAAAAGGTGCAACGTTAACCG -ACGGAAAAGGTGCAACGTATGCCA -ACGGAAAAGGTGGAAGCTGGAAAC -ACGGAAAAGGTGGAAGCTAACACC -ACGGAAAAGGTGGAAGCTATCGAG -ACGGAAAAGGTGGAAGCTCTCCTT -ACGGAAAAGGTGGAAGCTCCTGTT -ACGGAAAAGGTGGAAGCTCGGTTT -ACGGAAAAGGTGGAAGCTGTGGTT -ACGGAAAAGGTGGAAGCTGCCTTT -ACGGAAAAGGTGGAAGCTGGTCTT -ACGGAAAAGGTGGAAGCTACGCTT -ACGGAAAAGGTGGAAGCTAGCGTT -ACGGAAAAGGTGGAAGCTTTCGTC -ACGGAAAAGGTGGAAGCTTCTCTC -ACGGAAAAGGTGGAAGCTTGGATC -ACGGAAAAGGTGGAAGCTCACTTC -ACGGAAAAGGTGGAAGCTGTACTC -ACGGAAAAGGTGGAAGCTGATGTC -ACGGAAAAGGTGGAAGCTACAGTC -ACGGAAAAGGTGGAAGCTTTGCTG -ACGGAAAAGGTGGAAGCTTCCATG -ACGGAAAAGGTGGAAGCTTGTGTG -ACGGAAAAGGTGGAAGCTCTAGTG -ACGGAAAAGGTGGAAGCTCATCTG -ACGGAAAAGGTGGAAGCTGAGTTG -ACGGAAAAGGTGGAAGCTAGACTG -ACGGAAAAGGTGGAAGCTTCGGTA -ACGGAAAAGGTGGAAGCTTGCCTA -ACGGAAAAGGTGGAAGCTCCACTA -ACGGAAAAGGTGGAAGCTGGAGTA -ACGGAAAAGGTGGAAGCTTCGTCT -ACGGAAAAGGTGGAAGCTTGCACT -ACGGAAAAGGTGGAAGCTCTGACT -ACGGAAAAGGTGGAAGCTCAACCT -ACGGAAAAGGTGGAAGCTGCTACT -ACGGAAAAGGTGGAAGCTGGATCT -ACGGAAAAGGTGGAAGCTAAGGCT -ACGGAAAAGGTGGAAGCTTCAACC -ACGGAAAAGGTGGAAGCTTGTTCC -ACGGAAAAGGTGGAAGCTATTCCC -ACGGAAAAGGTGGAAGCTTTCTCG -ACGGAAAAGGTGGAAGCTTAGACG -ACGGAAAAGGTGGAAGCTGTAACG -ACGGAAAAGGTGGAAGCTACTTCG -ACGGAAAAGGTGGAAGCTTACGCA -ACGGAAAAGGTGGAAGCTCTTGCA -ACGGAAAAGGTGGAAGCTCGAACA -ACGGAAAAGGTGGAAGCTCAGTCA -ACGGAAAAGGTGGAAGCTGATCCA -ACGGAAAAGGTGGAAGCTACGACA -ACGGAAAAGGTGGAAGCTAGCTCA -ACGGAAAAGGTGGAAGCTTCACGT -ACGGAAAAGGTGGAAGCTCGTAGT -ACGGAAAAGGTGGAAGCTGTCAGT -ACGGAAAAGGTGGAAGCTGAAGGT -ACGGAAAAGGTGGAAGCTAACCGT -ACGGAAAAGGTGGAAGCTTTGTGC -ACGGAAAAGGTGGAAGCTCTAAGC -ACGGAAAAGGTGGAAGCTACTAGC -ACGGAAAAGGTGGAAGCTAGATGC -ACGGAAAAGGTGGAAGCTTGAAGG -ACGGAAAAGGTGGAAGCTCAATGG -ACGGAAAAGGTGGAAGCTATGAGG -ACGGAAAAGGTGGAAGCTAATGGG -ACGGAAAAGGTGGAAGCTTCCTGA -ACGGAAAAGGTGGAAGCTTAGCGA -ACGGAAAAGGTGGAAGCTCACAGA -ACGGAAAAGGTGGAAGCTGCAAGA -ACGGAAAAGGTGGAAGCTGGTTGA -ACGGAAAAGGTGGAAGCTTCCGAT -ACGGAAAAGGTGGAAGCTTGGCAT -ACGGAAAAGGTGGAAGCTCGAGAT -ACGGAAAAGGTGGAAGCTTACCAC -ACGGAAAAGGTGGAAGCTCAGAAC -ACGGAAAAGGTGGAAGCTGTCTAC -ACGGAAAAGGTGGAAGCTACGTAC -ACGGAAAAGGTGGAAGCTAGTGAC -ACGGAAAAGGTGGAAGCTCTGTAG -ACGGAAAAGGTGGAAGCTCCTAAG -ACGGAAAAGGTGGAAGCTGTTCAG -ACGGAAAAGGTGGAAGCTGCATAG -ACGGAAAAGGTGGAAGCTGACAAG -ACGGAAAAGGTGGAAGCTAAGCAG -ACGGAAAAGGTGGAAGCTCGTCAA -ACGGAAAAGGTGGAAGCTGCTGAA -ACGGAAAAGGTGGAAGCTAGTACG -ACGGAAAAGGTGGAAGCTATCCGA -ACGGAAAAGGTGGAAGCTATGGGA -ACGGAAAAGGTGGAAGCTGTGCAA -ACGGAAAAGGTGGAAGCTGAGGAA -ACGGAAAAGGTGGAAGCTCAGGTA -ACGGAAAAGGTGGAAGCTGACTCT -ACGGAAAAGGTGGAAGCTAGTCCT -ACGGAAAAGGTGGAAGCTTAAGCC -ACGGAAAAGGTGGAAGCTATAGCC -ACGGAAAAGGTGGAAGCTTAACCG -ACGGAAAAGGTGGAAGCTATGCCA -ACGGAAAAGGTGACGAGTGGAAAC -ACGGAAAAGGTGACGAGTAACACC -ACGGAAAAGGTGACGAGTATCGAG -ACGGAAAAGGTGACGAGTCTCCTT -ACGGAAAAGGTGACGAGTCCTGTT -ACGGAAAAGGTGACGAGTCGGTTT -ACGGAAAAGGTGACGAGTGTGGTT -ACGGAAAAGGTGACGAGTGCCTTT -ACGGAAAAGGTGACGAGTGGTCTT -ACGGAAAAGGTGACGAGTACGCTT -ACGGAAAAGGTGACGAGTAGCGTT -ACGGAAAAGGTGACGAGTTTCGTC -ACGGAAAAGGTGACGAGTTCTCTC -ACGGAAAAGGTGACGAGTTGGATC -ACGGAAAAGGTGACGAGTCACTTC -ACGGAAAAGGTGACGAGTGTACTC -ACGGAAAAGGTGACGAGTGATGTC -ACGGAAAAGGTGACGAGTACAGTC -ACGGAAAAGGTGACGAGTTTGCTG -ACGGAAAAGGTGACGAGTTCCATG -ACGGAAAAGGTGACGAGTTGTGTG -ACGGAAAAGGTGACGAGTCTAGTG -ACGGAAAAGGTGACGAGTCATCTG -ACGGAAAAGGTGACGAGTGAGTTG -ACGGAAAAGGTGACGAGTAGACTG -ACGGAAAAGGTGACGAGTTCGGTA -ACGGAAAAGGTGACGAGTTGCCTA -ACGGAAAAGGTGACGAGTCCACTA -ACGGAAAAGGTGACGAGTGGAGTA -ACGGAAAAGGTGACGAGTTCGTCT -ACGGAAAAGGTGACGAGTTGCACT -ACGGAAAAGGTGACGAGTCTGACT -ACGGAAAAGGTGACGAGTCAACCT -ACGGAAAAGGTGACGAGTGCTACT -ACGGAAAAGGTGACGAGTGGATCT -ACGGAAAAGGTGACGAGTAAGGCT -ACGGAAAAGGTGACGAGTTCAACC -ACGGAAAAGGTGACGAGTTGTTCC -ACGGAAAAGGTGACGAGTATTCCC -ACGGAAAAGGTGACGAGTTTCTCG -ACGGAAAAGGTGACGAGTTAGACG -ACGGAAAAGGTGACGAGTGTAACG -ACGGAAAAGGTGACGAGTACTTCG -ACGGAAAAGGTGACGAGTTACGCA -ACGGAAAAGGTGACGAGTCTTGCA -ACGGAAAAGGTGACGAGTCGAACA -ACGGAAAAGGTGACGAGTCAGTCA -ACGGAAAAGGTGACGAGTGATCCA -ACGGAAAAGGTGACGAGTACGACA -ACGGAAAAGGTGACGAGTAGCTCA -ACGGAAAAGGTGACGAGTTCACGT -ACGGAAAAGGTGACGAGTCGTAGT -ACGGAAAAGGTGACGAGTGTCAGT -ACGGAAAAGGTGACGAGTGAAGGT -ACGGAAAAGGTGACGAGTAACCGT -ACGGAAAAGGTGACGAGTTTGTGC -ACGGAAAAGGTGACGAGTCTAAGC -ACGGAAAAGGTGACGAGTACTAGC -ACGGAAAAGGTGACGAGTAGATGC -ACGGAAAAGGTGACGAGTTGAAGG -ACGGAAAAGGTGACGAGTCAATGG -ACGGAAAAGGTGACGAGTATGAGG -ACGGAAAAGGTGACGAGTAATGGG -ACGGAAAAGGTGACGAGTTCCTGA -ACGGAAAAGGTGACGAGTTAGCGA -ACGGAAAAGGTGACGAGTCACAGA -ACGGAAAAGGTGACGAGTGCAAGA -ACGGAAAAGGTGACGAGTGGTTGA -ACGGAAAAGGTGACGAGTTCCGAT -ACGGAAAAGGTGACGAGTTGGCAT -ACGGAAAAGGTGACGAGTCGAGAT -ACGGAAAAGGTGACGAGTTACCAC -ACGGAAAAGGTGACGAGTCAGAAC -ACGGAAAAGGTGACGAGTGTCTAC -ACGGAAAAGGTGACGAGTACGTAC -ACGGAAAAGGTGACGAGTAGTGAC -ACGGAAAAGGTGACGAGTCTGTAG -ACGGAAAAGGTGACGAGTCCTAAG -ACGGAAAAGGTGACGAGTGTTCAG -ACGGAAAAGGTGACGAGTGCATAG -ACGGAAAAGGTGACGAGTGACAAG -ACGGAAAAGGTGACGAGTAAGCAG -ACGGAAAAGGTGACGAGTCGTCAA -ACGGAAAAGGTGACGAGTGCTGAA -ACGGAAAAGGTGACGAGTAGTACG -ACGGAAAAGGTGACGAGTATCCGA -ACGGAAAAGGTGACGAGTATGGGA -ACGGAAAAGGTGACGAGTGTGCAA -ACGGAAAAGGTGACGAGTGAGGAA -ACGGAAAAGGTGACGAGTCAGGTA -ACGGAAAAGGTGACGAGTGACTCT -ACGGAAAAGGTGACGAGTAGTCCT -ACGGAAAAGGTGACGAGTTAAGCC -ACGGAAAAGGTGACGAGTATAGCC -ACGGAAAAGGTGACGAGTTAACCG -ACGGAAAAGGTGACGAGTATGCCA -ACGGAAAAGGTGCGAATCGGAAAC -ACGGAAAAGGTGCGAATCAACACC -ACGGAAAAGGTGCGAATCATCGAG -ACGGAAAAGGTGCGAATCCTCCTT -ACGGAAAAGGTGCGAATCCCTGTT -ACGGAAAAGGTGCGAATCCGGTTT -ACGGAAAAGGTGCGAATCGTGGTT -ACGGAAAAGGTGCGAATCGCCTTT -ACGGAAAAGGTGCGAATCGGTCTT -ACGGAAAAGGTGCGAATCACGCTT -ACGGAAAAGGTGCGAATCAGCGTT -ACGGAAAAGGTGCGAATCTTCGTC -ACGGAAAAGGTGCGAATCTCTCTC -ACGGAAAAGGTGCGAATCTGGATC -ACGGAAAAGGTGCGAATCCACTTC -ACGGAAAAGGTGCGAATCGTACTC -ACGGAAAAGGTGCGAATCGATGTC -ACGGAAAAGGTGCGAATCACAGTC -ACGGAAAAGGTGCGAATCTTGCTG -ACGGAAAAGGTGCGAATCTCCATG -ACGGAAAAGGTGCGAATCTGTGTG -ACGGAAAAGGTGCGAATCCTAGTG -ACGGAAAAGGTGCGAATCCATCTG -ACGGAAAAGGTGCGAATCGAGTTG -ACGGAAAAGGTGCGAATCAGACTG -ACGGAAAAGGTGCGAATCTCGGTA -ACGGAAAAGGTGCGAATCTGCCTA -ACGGAAAAGGTGCGAATCCCACTA -ACGGAAAAGGTGCGAATCGGAGTA -ACGGAAAAGGTGCGAATCTCGTCT -ACGGAAAAGGTGCGAATCTGCACT -ACGGAAAAGGTGCGAATCCTGACT -ACGGAAAAGGTGCGAATCCAACCT -ACGGAAAAGGTGCGAATCGCTACT -ACGGAAAAGGTGCGAATCGGATCT -ACGGAAAAGGTGCGAATCAAGGCT -ACGGAAAAGGTGCGAATCTCAACC -ACGGAAAAGGTGCGAATCTGTTCC -ACGGAAAAGGTGCGAATCATTCCC -ACGGAAAAGGTGCGAATCTTCTCG -ACGGAAAAGGTGCGAATCTAGACG -ACGGAAAAGGTGCGAATCGTAACG -ACGGAAAAGGTGCGAATCACTTCG -ACGGAAAAGGTGCGAATCTACGCA -ACGGAAAAGGTGCGAATCCTTGCA -ACGGAAAAGGTGCGAATCCGAACA -ACGGAAAAGGTGCGAATCCAGTCA -ACGGAAAAGGTGCGAATCGATCCA -ACGGAAAAGGTGCGAATCACGACA -ACGGAAAAGGTGCGAATCAGCTCA -ACGGAAAAGGTGCGAATCTCACGT -ACGGAAAAGGTGCGAATCCGTAGT -ACGGAAAAGGTGCGAATCGTCAGT -ACGGAAAAGGTGCGAATCGAAGGT -ACGGAAAAGGTGCGAATCAACCGT -ACGGAAAAGGTGCGAATCTTGTGC -ACGGAAAAGGTGCGAATCCTAAGC -ACGGAAAAGGTGCGAATCACTAGC -ACGGAAAAGGTGCGAATCAGATGC -ACGGAAAAGGTGCGAATCTGAAGG -ACGGAAAAGGTGCGAATCCAATGG -ACGGAAAAGGTGCGAATCATGAGG -ACGGAAAAGGTGCGAATCAATGGG -ACGGAAAAGGTGCGAATCTCCTGA -ACGGAAAAGGTGCGAATCTAGCGA -ACGGAAAAGGTGCGAATCCACAGA -ACGGAAAAGGTGCGAATCGCAAGA -ACGGAAAAGGTGCGAATCGGTTGA -ACGGAAAAGGTGCGAATCTCCGAT -ACGGAAAAGGTGCGAATCTGGCAT -ACGGAAAAGGTGCGAATCCGAGAT -ACGGAAAAGGTGCGAATCTACCAC -ACGGAAAAGGTGCGAATCCAGAAC -ACGGAAAAGGTGCGAATCGTCTAC -ACGGAAAAGGTGCGAATCACGTAC -ACGGAAAAGGTGCGAATCAGTGAC -ACGGAAAAGGTGCGAATCCTGTAG -ACGGAAAAGGTGCGAATCCCTAAG -ACGGAAAAGGTGCGAATCGTTCAG -ACGGAAAAGGTGCGAATCGCATAG -ACGGAAAAGGTGCGAATCGACAAG -ACGGAAAAGGTGCGAATCAAGCAG -ACGGAAAAGGTGCGAATCCGTCAA -ACGGAAAAGGTGCGAATCGCTGAA -ACGGAAAAGGTGCGAATCAGTACG -ACGGAAAAGGTGCGAATCATCCGA -ACGGAAAAGGTGCGAATCATGGGA -ACGGAAAAGGTGCGAATCGTGCAA -ACGGAAAAGGTGCGAATCGAGGAA -ACGGAAAAGGTGCGAATCCAGGTA -ACGGAAAAGGTGCGAATCGACTCT -ACGGAAAAGGTGCGAATCAGTCCT -ACGGAAAAGGTGCGAATCTAAGCC -ACGGAAAAGGTGCGAATCATAGCC -ACGGAAAAGGTGCGAATCTAACCG -ACGGAAAAGGTGCGAATCATGCCA -ACGGAAAAGGTGGGAATGGGAAAC -ACGGAAAAGGTGGGAATGAACACC -ACGGAAAAGGTGGGAATGATCGAG -ACGGAAAAGGTGGGAATGCTCCTT -ACGGAAAAGGTGGGAATGCCTGTT -ACGGAAAAGGTGGGAATGCGGTTT -ACGGAAAAGGTGGGAATGGTGGTT -ACGGAAAAGGTGGGAATGGCCTTT -ACGGAAAAGGTGGGAATGGGTCTT -ACGGAAAAGGTGGGAATGACGCTT -ACGGAAAAGGTGGGAATGAGCGTT -ACGGAAAAGGTGGGAATGTTCGTC -ACGGAAAAGGTGGGAATGTCTCTC -ACGGAAAAGGTGGGAATGTGGATC -ACGGAAAAGGTGGGAATGCACTTC -ACGGAAAAGGTGGGAATGGTACTC -ACGGAAAAGGTGGGAATGGATGTC -ACGGAAAAGGTGGGAATGACAGTC -ACGGAAAAGGTGGGAATGTTGCTG -ACGGAAAAGGTGGGAATGTCCATG -ACGGAAAAGGTGGGAATGTGTGTG -ACGGAAAAGGTGGGAATGCTAGTG -ACGGAAAAGGTGGGAATGCATCTG -ACGGAAAAGGTGGGAATGGAGTTG -ACGGAAAAGGTGGGAATGAGACTG -ACGGAAAAGGTGGGAATGTCGGTA -ACGGAAAAGGTGGGAATGTGCCTA -ACGGAAAAGGTGGGAATGCCACTA -ACGGAAAAGGTGGGAATGGGAGTA -ACGGAAAAGGTGGGAATGTCGTCT -ACGGAAAAGGTGGGAATGTGCACT -ACGGAAAAGGTGGGAATGCTGACT -ACGGAAAAGGTGGGAATGCAACCT -ACGGAAAAGGTGGGAATGGCTACT -ACGGAAAAGGTGGGAATGGGATCT -ACGGAAAAGGTGGGAATGAAGGCT -ACGGAAAAGGTGGGAATGTCAACC -ACGGAAAAGGTGGGAATGTGTTCC -ACGGAAAAGGTGGGAATGATTCCC -ACGGAAAAGGTGGGAATGTTCTCG -ACGGAAAAGGTGGGAATGTAGACG -ACGGAAAAGGTGGGAATGGTAACG -ACGGAAAAGGTGGGAATGACTTCG -ACGGAAAAGGTGGGAATGTACGCA -ACGGAAAAGGTGGGAATGCTTGCA -ACGGAAAAGGTGGGAATGCGAACA -ACGGAAAAGGTGGGAATGCAGTCA -ACGGAAAAGGTGGGAATGGATCCA -ACGGAAAAGGTGGGAATGACGACA -ACGGAAAAGGTGGGAATGAGCTCA -ACGGAAAAGGTGGGAATGTCACGT -ACGGAAAAGGTGGGAATGCGTAGT -ACGGAAAAGGTGGGAATGGTCAGT -ACGGAAAAGGTGGGAATGGAAGGT -ACGGAAAAGGTGGGAATGAACCGT -ACGGAAAAGGTGGGAATGTTGTGC -ACGGAAAAGGTGGGAATGCTAAGC -ACGGAAAAGGTGGGAATGACTAGC -ACGGAAAAGGTGGGAATGAGATGC -ACGGAAAAGGTGGGAATGTGAAGG -ACGGAAAAGGTGGGAATGCAATGG -ACGGAAAAGGTGGGAATGATGAGG -ACGGAAAAGGTGGGAATGAATGGG -ACGGAAAAGGTGGGAATGTCCTGA -ACGGAAAAGGTGGGAATGTAGCGA -ACGGAAAAGGTGGGAATGCACAGA -ACGGAAAAGGTGGGAATGGCAAGA -ACGGAAAAGGTGGGAATGGGTTGA -ACGGAAAAGGTGGGAATGTCCGAT -ACGGAAAAGGTGGGAATGTGGCAT -ACGGAAAAGGTGGGAATGCGAGAT -ACGGAAAAGGTGGGAATGTACCAC -ACGGAAAAGGTGGGAATGCAGAAC -ACGGAAAAGGTGGGAATGGTCTAC -ACGGAAAAGGTGGGAATGACGTAC -ACGGAAAAGGTGGGAATGAGTGAC -ACGGAAAAGGTGGGAATGCTGTAG -ACGGAAAAGGTGGGAATGCCTAAG -ACGGAAAAGGTGGGAATGGTTCAG -ACGGAAAAGGTGGGAATGGCATAG -ACGGAAAAGGTGGGAATGGACAAG -ACGGAAAAGGTGGGAATGAAGCAG -ACGGAAAAGGTGGGAATGCGTCAA -ACGGAAAAGGTGGGAATGGCTGAA -ACGGAAAAGGTGGGAATGAGTACG -ACGGAAAAGGTGGGAATGATCCGA -ACGGAAAAGGTGGGAATGATGGGA -ACGGAAAAGGTGGGAATGGTGCAA -ACGGAAAAGGTGGGAATGGAGGAA -ACGGAAAAGGTGGGAATGCAGGTA -ACGGAAAAGGTGGGAATGGACTCT -ACGGAAAAGGTGGGAATGAGTCCT -ACGGAAAAGGTGGGAATGTAAGCC -ACGGAAAAGGTGGGAATGATAGCC -ACGGAAAAGGTGGGAATGTAACCG -ACGGAAAAGGTGGGAATGATGCCA -ACGGAAAAGGTGCAAGTGGGAAAC -ACGGAAAAGGTGCAAGTGAACACC -ACGGAAAAGGTGCAAGTGATCGAG -ACGGAAAAGGTGCAAGTGCTCCTT -ACGGAAAAGGTGCAAGTGCCTGTT -ACGGAAAAGGTGCAAGTGCGGTTT -ACGGAAAAGGTGCAAGTGGTGGTT -ACGGAAAAGGTGCAAGTGGCCTTT -ACGGAAAAGGTGCAAGTGGGTCTT -ACGGAAAAGGTGCAAGTGACGCTT -ACGGAAAAGGTGCAAGTGAGCGTT -ACGGAAAAGGTGCAAGTGTTCGTC -ACGGAAAAGGTGCAAGTGTCTCTC -ACGGAAAAGGTGCAAGTGTGGATC -ACGGAAAAGGTGCAAGTGCACTTC -ACGGAAAAGGTGCAAGTGGTACTC -ACGGAAAAGGTGCAAGTGGATGTC -ACGGAAAAGGTGCAAGTGACAGTC -ACGGAAAAGGTGCAAGTGTTGCTG -ACGGAAAAGGTGCAAGTGTCCATG -ACGGAAAAGGTGCAAGTGTGTGTG -ACGGAAAAGGTGCAAGTGCTAGTG -ACGGAAAAGGTGCAAGTGCATCTG -ACGGAAAAGGTGCAAGTGGAGTTG -ACGGAAAAGGTGCAAGTGAGACTG -ACGGAAAAGGTGCAAGTGTCGGTA -ACGGAAAAGGTGCAAGTGTGCCTA -ACGGAAAAGGTGCAAGTGCCACTA -ACGGAAAAGGTGCAAGTGGGAGTA -ACGGAAAAGGTGCAAGTGTCGTCT -ACGGAAAAGGTGCAAGTGTGCACT -ACGGAAAAGGTGCAAGTGCTGACT -ACGGAAAAGGTGCAAGTGCAACCT -ACGGAAAAGGTGCAAGTGGCTACT -ACGGAAAAGGTGCAAGTGGGATCT -ACGGAAAAGGTGCAAGTGAAGGCT -ACGGAAAAGGTGCAAGTGTCAACC -ACGGAAAAGGTGCAAGTGTGTTCC -ACGGAAAAGGTGCAAGTGATTCCC -ACGGAAAAGGTGCAAGTGTTCTCG -ACGGAAAAGGTGCAAGTGTAGACG -ACGGAAAAGGTGCAAGTGGTAACG -ACGGAAAAGGTGCAAGTGACTTCG -ACGGAAAAGGTGCAAGTGTACGCA -ACGGAAAAGGTGCAAGTGCTTGCA -ACGGAAAAGGTGCAAGTGCGAACA -ACGGAAAAGGTGCAAGTGCAGTCA -ACGGAAAAGGTGCAAGTGGATCCA -ACGGAAAAGGTGCAAGTGACGACA -ACGGAAAAGGTGCAAGTGAGCTCA -ACGGAAAAGGTGCAAGTGTCACGT -ACGGAAAAGGTGCAAGTGCGTAGT -ACGGAAAAGGTGCAAGTGGTCAGT -ACGGAAAAGGTGCAAGTGGAAGGT -ACGGAAAAGGTGCAAGTGAACCGT -ACGGAAAAGGTGCAAGTGTTGTGC -ACGGAAAAGGTGCAAGTGCTAAGC -ACGGAAAAGGTGCAAGTGACTAGC -ACGGAAAAGGTGCAAGTGAGATGC -ACGGAAAAGGTGCAAGTGTGAAGG -ACGGAAAAGGTGCAAGTGCAATGG -ACGGAAAAGGTGCAAGTGATGAGG -ACGGAAAAGGTGCAAGTGAATGGG -ACGGAAAAGGTGCAAGTGTCCTGA -ACGGAAAAGGTGCAAGTGTAGCGA -ACGGAAAAGGTGCAAGTGCACAGA -ACGGAAAAGGTGCAAGTGGCAAGA -ACGGAAAAGGTGCAAGTGGGTTGA -ACGGAAAAGGTGCAAGTGTCCGAT -ACGGAAAAGGTGCAAGTGTGGCAT -ACGGAAAAGGTGCAAGTGCGAGAT -ACGGAAAAGGTGCAAGTGTACCAC -ACGGAAAAGGTGCAAGTGCAGAAC -ACGGAAAAGGTGCAAGTGGTCTAC -ACGGAAAAGGTGCAAGTGACGTAC -ACGGAAAAGGTGCAAGTGAGTGAC -ACGGAAAAGGTGCAAGTGCTGTAG -ACGGAAAAGGTGCAAGTGCCTAAG -ACGGAAAAGGTGCAAGTGGTTCAG -ACGGAAAAGGTGCAAGTGGCATAG -ACGGAAAAGGTGCAAGTGGACAAG -ACGGAAAAGGTGCAAGTGAAGCAG -ACGGAAAAGGTGCAAGTGCGTCAA -ACGGAAAAGGTGCAAGTGGCTGAA -ACGGAAAAGGTGCAAGTGAGTACG -ACGGAAAAGGTGCAAGTGATCCGA -ACGGAAAAGGTGCAAGTGATGGGA -ACGGAAAAGGTGCAAGTGGTGCAA -ACGGAAAAGGTGCAAGTGGAGGAA -ACGGAAAAGGTGCAAGTGCAGGTA -ACGGAAAAGGTGCAAGTGGACTCT -ACGGAAAAGGTGCAAGTGAGTCCT -ACGGAAAAGGTGCAAGTGTAAGCC -ACGGAAAAGGTGCAAGTGATAGCC -ACGGAAAAGGTGCAAGTGTAACCG -ACGGAAAAGGTGCAAGTGATGCCA -ACGGAAAAGGTGGAAGAGGGAAAC -ACGGAAAAGGTGGAAGAGAACACC -ACGGAAAAGGTGGAAGAGATCGAG -ACGGAAAAGGTGGAAGAGCTCCTT -ACGGAAAAGGTGGAAGAGCCTGTT -ACGGAAAAGGTGGAAGAGCGGTTT -ACGGAAAAGGTGGAAGAGGTGGTT -ACGGAAAAGGTGGAAGAGGCCTTT -ACGGAAAAGGTGGAAGAGGGTCTT -ACGGAAAAGGTGGAAGAGACGCTT -ACGGAAAAGGTGGAAGAGAGCGTT -ACGGAAAAGGTGGAAGAGTTCGTC -ACGGAAAAGGTGGAAGAGTCTCTC -ACGGAAAAGGTGGAAGAGTGGATC -ACGGAAAAGGTGGAAGAGCACTTC -ACGGAAAAGGTGGAAGAGGTACTC -ACGGAAAAGGTGGAAGAGGATGTC -ACGGAAAAGGTGGAAGAGACAGTC -ACGGAAAAGGTGGAAGAGTTGCTG -ACGGAAAAGGTGGAAGAGTCCATG -ACGGAAAAGGTGGAAGAGTGTGTG -ACGGAAAAGGTGGAAGAGCTAGTG -ACGGAAAAGGTGGAAGAGCATCTG -ACGGAAAAGGTGGAAGAGGAGTTG -ACGGAAAAGGTGGAAGAGAGACTG -ACGGAAAAGGTGGAAGAGTCGGTA -ACGGAAAAGGTGGAAGAGTGCCTA -ACGGAAAAGGTGGAAGAGCCACTA -ACGGAAAAGGTGGAAGAGGGAGTA -ACGGAAAAGGTGGAAGAGTCGTCT -ACGGAAAAGGTGGAAGAGTGCACT -ACGGAAAAGGTGGAAGAGCTGACT -ACGGAAAAGGTGGAAGAGCAACCT -ACGGAAAAGGTGGAAGAGGCTACT -ACGGAAAAGGTGGAAGAGGGATCT -ACGGAAAAGGTGGAAGAGAAGGCT -ACGGAAAAGGTGGAAGAGTCAACC -ACGGAAAAGGTGGAAGAGTGTTCC -ACGGAAAAGGTGGAAGAGATTCCC -ACGGAAAAGGTGGAAGAGTTCTCG -ACGGAAAAGGTGGAAGAGTAGACG -ACGGAAAAGGTGGAAGAGGTAACG -ACGGAAAAGGTGGAAGAGACTTCG -ACGGAAAAGGTGGAAGAGTACGCA -ACGGAAAAGGTGGAAGAGCTTGCA -ACGGAAAAGGTGGAAGAGCGAACA -ACGGAAAAGGTGGAAGAGCAGTCA -ACGGAAAAGGTGGAAGAGGATCCA -ACGGAAAAGGTGGAAGAGACGACA -ACGGAAAAGGTGGAAGAGAGCTCA -ACGGAAAAGGTGGAAGAGTCACGT -ACGGAAAAGGTGGAAGAGCGTAGT -ACGGAAAAGGTGGAAGAGGTCAGT -ACGGAAAAGGTGGAAGAGGAAGGT -ACGGAAAAGGTGGAAGAGAACCGT -ACGGAAAAGGTGGAAGAGTTGTGC -ACGGAAAAGGTGGAAGAGCTAAGC -ACGGAAAAGGTGGAAGAGACTAGC -ACGGAAAAGGTGGAAGAGAGATGC -ACGGAAAAGGTGGAAGAGTGAAGG -ACGGAAAAGGTGGAAGAGCAATGG -ACGGAAAAGGTGGAAGAGATGAGG -ACGGAAAAGGTGGAAGAGAATGGG -ACGGAAAAGGTGGAAGAGTCCTGA -ACGGAAAAGGTGGAAGAGTAGCGA -ACGGAAAAGGTGGAAGAGCACAGA -ACGGAAAAGGTGGAAGAGGCAAGA -ACGGAAAAGGTGGAAGAGGGTTGA -ACGGAAAAGGTGGAAGAGTCCGAT -ACGGAAAAGGTGGAAGAGTGGCAT -ACGGAAAAGGTGGAAGAGCGAGAT -ACGGAAAAGGTGGAAGAGTACCAC -ACGGAAAAGGTGGAAGAGCAGAAC -ACGGAAAAGGTGGAAGAGGTCTAC -ACGGAAAAGGTGGAAGAGACGTAC -ACGGAAAAGGTGGAAGAGAGTGAC -ACGGAAAAGGTGGAAGAGCTGTAG -ACGGAAAAGGTGGAAGAGCCTAAG -ACGGAAAAGGTGGAAGAGGTTCAG -ACGGAAAAGGTGGAAGAGGCATAG -ACGGAAAAGGTGGAAGAGGACAAG -ACGGAAAAGGTGGAAGAGAAGCAG -ACGGAAAAGGTGGAAGAGCGTCAA -ACGGAAAAGGTGGAAGAGGCTGAA -ACGGAAAAGGTGGAAGAGAGTACG -ACGGAAAAGGTGGAAGAGATCCGA -ACGGAAAAGGTGGAAGAGATGGGA -ACGGAAAAGGTGGAAGAGGTGCAA -ACGGAAAAGGTGGAAGAGGAGGAA -ACGGAAAAGGTGGAAGAGCAGGTA -ACGGAAAAGGTGGAAGAGGACTCT -ACGGAAAAGGTGGAAGAGAGTCCT -ACGGAAAAGGTGGAAGAGTAAGCC -ACGGAAAAGGTGGAAGAGATAGCC -ACGGAAAAGGTGGAAGAGTAACCG -ACGGAAAAGGTGGAAGAGATGCCA -ACGGAAAAGGTGGTACAGGGAAAC -ACGGAAAAGGTGGTACAGAACACC -ACGGAAAAGGTGGTACAGATCGAG -ACGGAAAAGGTGGTACAGCTCCTT -ACGGAAAAGGTGGTACAGCCTGTT -ACGGAAAAGGTGGTACAGCGGTTT -ACGGAAAAGGTGGTACAGGTGGTT -ACGGAAAAGGTGGTACAGGCCTTT -ACGGAAAAGGTGGTACAGGGTCTT -ACGGAAAAGGTGGTACAGACGCTT -ACGGAAAAGGTGGTACAGAGCGTT -ACGGAAAAGGTGGTACAGTTCGTC -ACGGAAAAGGTGGTACAGTCTCTC -ACGGAAAAGGTGGTACAGTGGATC -ACGGAAAAGGTGGTACAGCACTTC -ACGGAAAAGGTGGTACAGGTACTC -ACGGAAAAGGTGGTACAGGATGTC -ACGGAAAAGGTGGTACAGACAGTC -ACGGAAAAGGTGGTACAGTTGCTG -ACGGAAAAGGTGGTACAGTCCATG -ACGGAAAAGGTGGTACAGTGTGTG -ACGGAAAAGGTGGTACAGCTAGTG -ACGGAAAAGGTGGTACAGCATCTG -ACGGAAAAGGTGGTACAGGAGTTG -ACGGAAAAGGTGGTACAGAGACTG -ACGGAAAAGGTGGTACAGTCGGTA -ACGGAAAAGGTGGTACAGTGCCTA -ACGGAAAAGGTGGTACAGCCACTA -ACGGAAAAGGTGGTACAGGGAGTA -ACGGAAAAGGTGGTACAGTCGTCT -ACGGAAAAGGTGGTACAGTGCACT -ACGGAAAAGGTGGTACAGCTGACT -ACGGAAAAGGTGGTACAGCAACCT -ACGGAAAAGGTGGTACAGGCTACT -ACGGAAAAGGTGGTACAGGGATCT -ACGGAAAAGGTGGTACAGAAGGCT -ACGGAAAAGGTGGTACAGTCAACC -ACGGAAAAGGTGGTACAGTGTTCC -ACGGAAAAGGTGGTACAGATTCCC -ACGGAAAAGGTGGTACAGTTCTCG -ACGGAAAAGGTGGTACAGTAGACG -ACGGAAAAGGTGGTACAGGTAACG -ACGGAAAAGGTGGTACAGACTTCG -ACGGAAAAGGTGGTACAGTACGCA -ACGGAAAAGGTGGTACAGCTTGCA -ACGGAAAAGGTGGTACAGCGAACA -ACGGAAAAGGTGGTACAGCAGTCA -ACGGAAAAGGTGGTACAGGATCCA -ACGGAAAAGGTGGTACAGACGACA -ACGGAAAAGGTGGTACAGAGCTCA -ACGGAAAAGGTGGTACAGTCACGT -ACGGAAAAGGTGGTACAGCGTAGT -ACGGAAAAGGTGGTACAGGTCAGT -ACGGAAAAGGTGGTACAGGAAGGT -ACGGAAAAGGTGGTACAGAACCGT -ACGGAAAAGGTGGTACAGTTGTGC -ACGGAAAAGGTGGTACAGCTAAGC -ACGGAAAAGGTGGTACAGACTAGC -ACGGAAAAGGTGGTACAGAGATGC -ACGGAAAAGGTGGTACAGTGAAGG -ACGGAAAAGGTGGTACAGCAATGG -ACGGAAAAGGTGGTACAGATGAGG -ACGGAAAAGGTGGTACAGAATGGG -ACGGAAAAGGTGGTACAGTCCTGA -ACGGAAAAGGTGGTACAGTAGCGA -ACGGAAAAGGTGGTACAGCACAGA -ACGGAAAAGGTGGTACAGGCAAGA -ACGGAAAAGGTGGTACAGGGTTGA -ACGGAAAAGGTGGTACAGTCCGAT -ACGGAAAAGGTGGTACAGTGGCAT -ACGGAAAAGGTGGTACAGCGAGAT -ACGGAAAAGGTGGTACAGTACCAC -ACGGAAAAGGTGGTACAGCAGAAC -ACGGAAAAGGTGGTACAGGTCTAC -ACGGAAAAGGTGGTACAGACGTAC -ACGGAAAAGGTGGTACAGAGTGAC -ACGGAAAAGGTGGTACAGCTGTAG -ACGGAAAAGGTGGTACAGCCTAAG -ACGGAAAAGGTGGTACAGGTTCAG -ACGGAAAAGGTGGTACAGGCATAG -ACGGAAAAGGTGGTACAGGACAAG -ACGGAAAAGGTGGTACAGAAGCAG -ACGGAAAAGGTGGTACAGCGTCAA -ACGGAAAAGGTGGTACAGGCTGAA -ACGGAAAAGGTGGTACAGAGTACG -ACGGAAAAGGTGGTACAGATCCGA -ACGGAAAAGGTGGTACAGATGGGA -ACGGAAAAGGTGGTACAGGTGCAA -ACGGAAAAGGTGGTACAGGAGGAA -ACGGAAAAGGTGGTACAGCAGGTA -ACGGAAAAGGTGGTACAGGACTCT -ACGGAAAAGGTGGTACAGAGTCCT -ACGGAAAAGGTGGTACAGTAAGCC -ACGGAAAAGGTGGTACAGATAGCC -ACGGAAAAGGTGGTACAGTAACCG -ACGGAAAAGGTGGTACAGATGCCA -ACGGAAAAGGTGTCTGACGGAAAC -ACGGAAAAGGTGTCTGACAACACC -ACGGAAAAGGTGTCTGACATCGAG -ACGGAAAAGGTGTCTGACCTCCTT -ACGGAAAAGGTGTCTGACCCTGTT -ACGGAAAAGGTGTCTGACCGGTTT -ACGGAAAAGGTGTCTGACGTGGTT -ACGGAAAAGGTGTCTGACGCCTTT -ACGGAAAAGGTGTCTGACGGTCTT -ACGGAAAAGGTGTCTGACACGCTT -ACGGAAAAGGTGTCTGACAGCGTT -ACGGAAAAGGTGTCTGACTTCGTC -ACGGAAAAGGTGTCTGACTCTCTC -ACGGAAAAGGTGTCTGACTGGATC -ACGGAAAAGGTGTCTGACCACTTC -ACGGAAAAGGTGTCTGACGTACTC -ACGGAAAAGGTGTCTGACGATGTC -ACGGAAAAGGTGTCTGACACAGTC -ACGGAAAAGGTGTCTGACTTGCTG -ACGGAAAAGGTGTCTGACTCCATG -ACGGAAAAGGTGTCTGACTGTGTG -ACGGAAAAGGTGTCTGACCTAGTG -ACGGAAAAGGTGTCTGACCATCTG -ACGGAAAAGGTGTCTGACGAGTTG -ACGGAAAAGGTGTCTGACAGACTG -ACGGAAAAGGTGTCTGACTCGGTA -ACGGAAAAGGTGTCTGACTGCCTA -ACGGAAAAGGTGTCTGACCCACTA -ACGGAAAAGGTGTCTGACGGAGTA -ACGGAAAAGGTGTCTGACTCGTCT -ACGGAAAAGGTGTCTGACTGCACT -ACGGAAAAGGTGTCTGACCTGACT -ACGGAAAAGGTGTCTGACCAACCT -ACGGAAAAGGTGTCTGACGCTACT -ACGGAAAAGGTGTCTGACGGATCT -ACGGAAAAGGTGTCTGACAAGGCT -ACGGAAAAGGTGTCTGACTCAACC -ACGGAAAAGGTGTCTGACTGTTCC -ACGGAAAAGGTGTCTGACATTCCC -ACGGAAAAGGTGTCTGACTTCTCG -ACGGAAAAGGTGTCTGACTAGACG -ACGGAAAAGGTGTCTGACGTAACG -ACGGAAAAGGTGTCTGACACTTCG -ACGGAAAAGGTGTCTGACTACGCA -ACGGAAAAGGTGTCTGACCTTGCA -ACGGAAAAGGTGTCTGACCGAACA -ACGGAAAAGGTGTCTGACCAGTCA -ACGGAAAAGGTGTCTGACGATCCA -ACGGAAAAGGTGTCTGACACGACA -ACGGAAAAGGTGTCTGACAGCTCA -ACGGAAAAGGTGTCTGACTCACGT -ACGGAAAAGGTGTCTGACCGTAGT -ACGGAAAAGGTGTCTGACGTCAGT -ACGGAAAAGGTGTCTGACGAAGGT -ACGGAAAAGGTGTCTGACAACCGT -ACGGAAAAGGTGTCTGACTTGTGC -ACGGAAAAGGTGTCTGACCTAAGC -ACGGAAAAGGTGTCTGACACTAGC -ACGGAAAAGGTGTCTGACAGATGC -ACGGAAAAGGTGTCTGACTGAAGG -ACGGAAAAGGTGTCTGACCAATGG -ACGGAAAAGGTGTCTGACATGAGG -ACGGAAAAGGTGTCTGACAATGGG -ACGGAAAAGGTGTCTGACTCCTGA -ACGGAAAAGGTGTCTGACTAGCGA -ACGGAAAAGGTGTCTGACCACAGA -ACGGAAAAGGTGTCTGACGCAAGA -ACGGAAAAGGTGTCTGACGGTTGA -ACGGAAAAGGTGTCTGACTCCGAT -ACGGAAAAGGTGTCTGACTGGCAT -ACGGAAAAGGTGTCTGACCGAGAT -ACGGAAAAGGTGTCTGACTACCAC -ACGGAAAAGGTGTCTGACCAGAAC -ACGGAAAAGGTGTCTGACGTCTAC -ACGGAAAAGGTGTCTGACACGTAC -ACGGAAAAGGTGTCTGACAGTGAC -ACGGAAAAGGTGTCTGACCTGTAG -ACGGAAAAGGTGTCTGACCCTAAG -ACGGAAAAGGTGTCTGACGTTCAG -ACGGAAAAGGTGTCTGACGCATAG -ACGGAAAAGGTGTCTGACGACAAG -ACGGAAAAGGTGTCTGACAAGCAG -ACGGAAAAGGTGTCTGACCGTCAA -ACGGAAAAGGTGTCTGACGCTGAA -ACGGAAAAGGTGTCTGACAGTACG -ACGGAAAAGGTGTCTGACATCCGA -ACGGAAAAGGTGTCTGACATGGGA -ACGGAAAAGGTGTCTGACGTGCAA -ACGGAAAAGGTGTCTGACGAGGAA -ACGGAAAAGGTGTCTGACCAGGTA -ACGGAAAAGGTGTCTGACGACTCT -ACGGAAAAGGTGTCTGACAGTCCT -ACGGAAAAGGTGTCTGACTAAGCC -ACGGAAAAGGTGTCTGACATAGCC -ACGGAAAAGGTGTCTGACTAACCG -ACGGAAAAGGTGTCTGACATGCCA -ACGGAAAAGGTGCCTAGTGGAAAC -ACGGAAAAGGTGCCTAGTAACACC -ACGGAAAAGGTGCCTAGTATCGAG -ACGGAAAAGGTGCCTAGTCTCCTT -ACGGAAAAGGTGCCTAGTCCTGTT -ACGGAAAAGGTGCCTAGTCGGTTT -ACGGAAAAGGTGCCTAGTGTGGTT -ACGGAAAAGGTGCCTAGTGCCTTT -ACGGAAAAGGTGCCTAGTGGTCTT -ACGGAAAAGGTGCCTAGTACGCTT -ACGGAAAAGGTGCCTAGTAGCGTT -ACGGAAAAGGTGCCTAGTTTCGTC -ACGGAAAAGGTGCCTAGTTCTCTC -ACGGAAAAGGTGCCTAGTTGGATC -ACGGAAAAGGTGCCTAGTCACTTC -ACGGAAAAGGTGCCTAGTGTACTC -ACGGAAAAGGTGCCTAGTGATGTC -ACGGAAAAGGTGCCTAGTACAGTC -ACGGAAAAGGTGCCTAGTTTGCTG -ACGGAAAAGGTGCCTAGTTCCATG -ACGGAAAAGGTGCCTAGTTGTGTG -ACGGAAAAGGTGCCTAGTCTAGTG -ACGGAAAAGGTGCCTAGTCATCTG -ACGGAAAAGGTGCCTAGTGAGTTG -ACGGAAAAGGTGCCTAGTAGACTG -ACGGAAAAGGTGCCTAGTTCGGTA -ACGGAAAAGGTGCCTAGTTGCCTA -ACGGAAAAGGTGCCTAGTCCACTA -ACGGAAAAGGTGCCTAGTGGAGTA -ACGGAAAAGGTGCCTAGTTCGTCT -ACGGAAAAGGTGCCTAGTTGCACT -ACGGAAAAGGTGCCTAGTCTGACT -ACGGAAAAGGTGCCTAGTCAACCT -ACGGAAAAGGTGCCTAGTGCTACT -ACGGAAAAGGTGCCTAGTGGATCT -ACGGAAAAGGTGCCTAGTAAGGCT -ACGGAAAAGGTGCCTAGTTCAACC -ACGGAAAAGGTGCCTAGTTGTTCC -ACGGAAAAGGTGCCTAGTATTCCC -ACGGAAAAGGTGCCTAGTTTCTCG -ACGGAAAAGGTGCCTAGTTAGACG -ACGGAAAAGGTGCCTAGTGTAACG -ACGGAAAAGGTGCCTAGTACTTCG -ACGGAAAAGGTGCCTAGTTACGCA -ACGGAAAAGGTGCCTAGTCTTGCA -ACGGAAAAGGTGCCTAGTCGAACA -ACGGAAAAGGTGCCTAGTCAGTCA -ACGGAAAAGGTGCCTAGTGATCCA -ACGGAAAAGGTGCCTAGTACGACA -ACGGAAAAGGTGCCTAGTAGCTCA -ACGGAAAAGGTGCCTAGTTCACGT -ACGGAAAAGGTGCCTAGTCGTAGT -ACGGAAAAGGTGCCTAGTGTCAGT -ACGGAAAAGGTGCCTAGTGAAGGT -ACGGAAAAGGTGCCTAGTAACCGT -ACGGAAAAGGTGCCTAGTTTGTGC -ACGGAAAAGGTGCCTAGTCTAAGC -ACGGAAAAGGTGCCTAGTACTAGC -ACGGAAAAGGTGCCTAGTAGATGC -ACGGAAAAGGTGCCTAGTTGAAGG -ACGGAAAAGGTGCCTAGTCAATGG -ACGGAAAAGGTGCCTAGTATGAGG -ACGGAAAAGGTGCCTAGTAATGGG -ACGGAAAAGGTGCCTAGTTCCTGA -ACGGAAAAGGTGCCTAGTTAGCGA -ACGGAAAAGGTGCCTAGTCACAGA -ACGGAAAAGGTGCCTAGTGCAAGA -ACGGAAAAGGTGCCTAGTGGTTGA -ACGGAAAAGGTGCCTAGTTCCGAT -ACGGAAAAGGTGCCTAGTTGGCAT -ACGGAAAAGGTGCCTAGTCGAGAT -ACGGAAAAGGTGCCTAGTTACCAC -ACGGAAAAGGTGCCTAGTCAGAAC -ACGGAAAAGGTGCCTAGTGTCTAC -ACGGAAAAGGTGCCTAGTACGTAC -ACGGAAAAGGTGCCTAGTAGTGAC -ACGGAAAAGGTGCCTAGTCTGTAG -ACGGAAAAGGTGCCTAGTCCTAAG -ACGGAAAAGGTGCCTAGTGTTCAG -ACGGAAAAGGTGCCTAGTGCATAG -ACGGAAAAGGTGCCTAGTGACAAG -ACGGAAAAGGTGCCTAGTAAGCAG -ACGGAAAAGGTGCCTAGTCGTCAA -ACGGAAAAGGTGCCTAGTGCTGAA -ACGGAAAAGGTGCCTAGTAGTACG -ACGGAAAAGGTGCCTAGTATCCGA -ACGGAAAAGGTGCCTAGTATGGGA -ACGGAAAAGGTGCCTAGTGTGCAA -ACGGAAAAGGTGCCTAGTGAGGAA -ACGGAAAAGGTGCCTAGTCAGGTA -ACGGAAAAGGTGCCTAGTGACTCT -ACGGAAAAGGTGCCTAGTAGTCCT -ACGGAAAAGGTGCCTAGTTAAGCC -ACGGAAAAGGTGCCTAGTATAGCC -ACGGAAAAGGTGCCTAGTTAACCG -ACGGAAAAGGTGCCTAGTATGCCA -ACGGAAAAGGTGGCCTAAGGAAAC -ACGGAAAAGGTGGCCTAAAACACC -ACGGAAAAGGTGGCCTAAATCGAG -ACGGAAAAGGTGGCCTAACTCCTT -ACGGAAAAGGTGGCCTAACCTGTT -ACGGAAAAGGTGGCCTAACGGTTT -ACGGAAAAGGTGGCCTAAGTGGTT -ACGGAAAAGGTGGCCTAAGCCTTT -ACGGAAAAGGTGGCCTAAGGTCTT -ACGGAAAAGGTGGCCTAAACGCTT -ACGGAAAAGGTGGCCTAAAGCGTT -ACGGAAAAGGTGGCCTAATTCGTC -ACGGAAAAGGTGGCCTAATCTCTC -ACGGAAAAGGTGGCCTAATGGATC -ACGGAAAAGGTGGCCTAACACTTC -ACGGAAAAGGTGGCCTAAGTACTC -ACGGAAAAGGTGGCCTAAGATGTC -ACGGAAAAGGTGGCCTAAACAGTC -ACGGAAAAGGTGGCCTAATTGCTG -ACGGAAAAGGTGGCCTAATCCATG -ACGGAAAAGGTGGCCTAATGTGTG -ACGGAAAAGGTGGCCTAACTAGTG -ACGGAAAAGGTGGCCTAACATCTG -ACGGAAAAGGTGGCCTAAGAGTTG -ACGGAAAAGGTGGCCTAAAGACTG -ACGGAAAAGGTGGCCTAATCGGTA -ACGGAAAAGGTGGCCTAATGCCTA -ACGGAAAAGGTGGCCTAACCACTA -ACGGAAAAGGTGGCCTAAGGAGTA -ACGGAAAAGGTGGCCTAATCGTCT -ACGGAAAAGGTGGCCTAATGCACT -ACGGAAAAGGTGGCCTAACTGACT -ACGGAAAAGGTGGCCTAACAACCT -ACGGAAAAGGTGGCCTAAGCTACT -ACGGAAAAGGTGGCCTAAGGATCT -ACGGAAAAGGTGGCCTAAAAGGCT -ACGGAAAAGGTGGCCTAATCAACC -ACGGAAAAGGTGGCCTAATGTTCC -ACGGAAAAGGTGGCCTAAATTCCC -ACGGAAAAGGTGGCCTAATTCTCG -ACGGAAAAGGTGGCCTAATAGACG -ACGGAAAAGGTGGCCTAAGTAACG -ACGGAAAAGGTGGCCTAAACTTCG -ACGGAAAAGGTGGCCTAATACGCA -ACGGAAAAGGTGGCCTAACTTGCA -ACGGAAAAGGTGGCCTAACGAACA -ACGGAAAAGGTGGCCTAACAGTCA -ACGGAAAAGGTGGCCTAAGATCCA -ACGGAAAAGGTGGCCTAAACGACA -ACGGAAAAGGTGGCCTAAAGCTCA -ACGGAAAAGGTGGCCTAATCACGT -ACGGAAAAGGTGGCCTAACGTAGT -ACGGAAAAGGTGGCCTAAGTCAGT -ACGGAAAAGGTGGCCTAAGAAGGT -ACGGAAAAGGTGGCCTAAAACCGT -ACGGAAAAGGTGGCCTAATTGTGC -ACGGAAAAGGTGGCCTAACTAAGC -ACGGAAAAGGTGGCCTAAACTAGC -ACGGAAAAGGTGGCCTAAAGATGC -ACGGAAAAGGTGGCCTAATGAAGG -ACGGAAAAGGTGGCCTAACAATGG -ACGGAAAAGGTGGCCTAAATGAGG -ACGGAAAAGGTGGCCTAAAATGGG -ACGGAAAAGGTGGCCTAATCCTGA -ACGGAAAAGGTGGCCTAATAGCGA -ACGGAAAAGGTGGCCTAACACAGA -ACGGAAAAGGTGGCCTAAGCAAGA -ACGGAAAAGGTGGCCTAAGGTTGA -ACGGAAAAGGTGGCCTAATCCGAT -ACGGAAAAGGTGGCCTAATGGCAT -ACGGAAAAGGTGGCCTAACGAGAT -ACGGAAAAGGTGGCCTAATACCAC -ACGGAAAAGGTGGCCTAACAGAAC -ACGGAAAAGGTGGCCTAAGTCTAC -ACGGAAAAGGTGGCCTAAACGTAC -ACGGAAAAGGTGGCCTAAAGTGAC -ACGGAAAAGGTGGCCTAACTGTAG -ACGGAAAAGGTGGCCTAACCTAAG -ACGGAAAAGGTGGCCTAAGTTCAG -ACGGAAAAGGTGGCCTAAGCATAG -ACGGAAAAGGTGGCCTAAGACAAG -ACGGAAAAGGTGGCCTAAAAGCAG -ACGGAAAAGGTGGCCTAACGTCAA -ACGGAAAAGGTGGCCTAAGCTGAA -ACGGAAAAGGTGGCCTAAAGTACG -ACGGAAAAGGTGGCCTAAATCCGA -ACGGAAAAGGTGGCCTAAATGGGA -ACGGAAAAGGTGGCCTAAGTGCAA -ACGGAAAAGGTGGCCTAAGAGGAA -ACGGAAAAGGTGGCCTAACAGGTA -ACGGAAAAGGTGGCCTAAGACTCT -ACGGAAAAGGTGGCCTAAAGTCCT -ACGGAAAAGGTGGCCTAATAAGCC -ACGGAAAAGGTGGCCTAAATAGCC -ACGGAAAAGGTGGCCTAATAACCG -ACGGAAAAGGTGGCCTAAATGCCA -ACGGAAAAGGTGGCCATAGGAAAC -ACGGAAAAGGTGGCCATAAACACC -ACGGAAAAGGTGGCCATAATCGAG -ACGGAAAAGGTGGCCATACTCCTT -ACGGAAAAGGTGGCCATACCTGTT -ACGGAAAAGGTGGCCATACGGTTT -ACGGAAAAGGTGGCCATAGTGGTT -ACGGAAAAGGTGGCCATAGCCTTT -ACGGAAAAGGTGGCCATAGGTCTT -ACGGAAAAGGTGGCCATAACGCTT -ACGGAAAAGGTGGCCATAAGCGTT -ACGGAAAAGGTGGCCATATTCGTC -ACGGAAAAGGTGGCCATATCTCTC -ACGGAAAAGGTGGCCATATGGATC -ACGGAAAAGGTGGCCATACACTTC -ACGGAAAAGGTGGCCATAGTACTC -ACGGAAAAGGTGGCCATAGATGTC -ACGGAAAAGGTGGCCATAACAGTC -ACGGAAAAGGTGGCCATATTGCTG -ACGGAAAAGGTGGCCATATCCATG -ACGGAAAAGGTGGCCATATGTGTG -ACGGAAAAGGTGGCCATACTAGTG -ACGGAAAAGGTGGCCATACATCTG -ACGGAAAAGGTGGCCATAGAGTTG -ACGGAAAAGGTGGCCATAAGACTG -ACGGAAAAGGTGGCCATATCGGTA -ACGGAAAAGGTGGCCATATGCCTA -ACGGAAAAGGTGGCCATACCACTA -ACGGAAAAGGTGGCCATAGGAGTA -ACGGAAAAGGTGGCCATATCGTCT -ACGGAAAAGGTGGCCATATGCACT -ACGGAAAAGGTGGCCATACTGACT -ACGGAAAAGGTGGCCATACAACCT -ACGGAAAAGGTGGCCATAGCTACT -ACGGAAAAGGTGGCCATAGGATCT -ACGGAAAAGGTGGCCATAAAGGCT -ACGGAAAAGGTGGCCATATCAACC -ACGGAAAAGGTGGCCATATGTTCC -ACGGAAAAGGTGGCCATAATTCCC -ACGGAAAAGGTGGCCATATTCTCG -ACGGAAAAGGTGGCCATATAGACG -ACGGAAAAGGTGGCCATAGTAACG -ACGGAAAAGGTGGCCATAACTTCG -ACGGAAAAGGTGGCCATATACGCA -ACGGAAAAGGTGGCCATACTTGCA -ACGGAAAAGGTGGCCATACGAACA -ACGGAAAAGGTGGCCATACAGTCA -ACGGAAAAGGTGGCCATAGATCCA -ACGGAAAAGGTGGCCATAACGACA -ACGGAAAAGGTGGCCATAAGCTCA -ACGGAAAAGGTGGCCATATCACGT -ACGGAAAAGGTGGCCATACGTAGT -ACGGAAAAGGTGGCCATAGTCAGT -ACGGAAAAGGTGGCCATAGAAGGT -ACGGAAAAGGTGGCCATAAACCGT -ACGGAAAAGGTGGCCATATTGTGC -ACGGAAAAGGTGGCCATACTAAGC -ACGGAAAAGGTGGCCATAACTAGC -ACGGAAAAGGTGGCCATAAGATGC -ACGGAAAAGGTGGCCATATGAAGG -ACGGAAAAGGTGGCCATACAATGG -ACGGAAAAGGTGGCCATAATGAGG -ACGGAAAAGGTGGCCATAAATGGG -ACGGAAAAGGTGGCCATATCCTGA -ACGGAAAAGGTGGCCATATAGCGA -ACGGAAAAGGTGGCCATACACAGA -ACGGAAAAGGTGGCCATAGCAAGA -ACGGAAAAGGTGGCCATAGGTTGA -ACGGAAAAGGTGGCCATATCCGAT -ACGGAAAAGGTGGCCATATGGCAT -ACGGAAAAGGTGGCCATACGAGAT -ACGGAAAAGGTGGCCATATACCAC -ACGGAAAAGGTGGCCATACAGAAC -ACGGAAAAGGTGGCCATAGTCTAC -ACGGAAAAGGTGGCCATAACGTAC -ACGGAAAAGGTGGCCATAAGTGAC -ACGGAAAAGGTGGCCATACTGTAG -ACGGAAAAGGTGGCCATACCTAAG -ACGGAAAAGGTGGCCATAGTTCAG -ACGGAAAAGGTGGCCATAGCATAG -ACGGAAAAGGTGGCCATAGACAAG -ACGGAAAAGGTGGCCATAAAGCAG -ACGGAAAAGGTGGCCATACGTCAA -ACGGAAAAGGTGGCCATAGCTGAA -ACGGAAAAGGTGGCCATAAGTACG -ACGGAAAAGGTGGCCATAATCCGA -ACGGAAAAGGTGGCCATAATGGGA -ACGGAAAAGGTGGCCATAGTGCAA -ACGGAAAAGGTGGCCATAGAGGAA -ACGGAAAAGGTGGCCATACAGGTA -ACGGAAAAGGTGGCCATAGACTCT -ACGGAAAAGGTGGCCATAAGTCCT -ACGGAAAAGGTGGCCATATAAGCC -ACGGAAAAGGTGGCCATAATAGCC -ACGGAAAAGGTGGCCATATAACCG -ACGGAAAAGGTGGCCATAATGCCA -ACGGAAAAGGTGCCGTAAGGAAAC -ACGGAAAAGGTGCCGTAAAACACC -ACGGAAAAGGTGCCGTAAATCGAG -ACGGAAAAGGTGCCGTAACTCCTT -ACGGAAAAGGTGCCGTAACCTGTT -ACGGAAAAGGTGCCGTAACGGTTT -ACGGAAAAGGTGCCGTAAGTGGTT -ACGGAAAAGGTGCCGTAAGCCTTT -ACGGAAAAGGTGCCGTAAGGTCTT -ACGGAAAAGGTGCCGTAAACGCTT -ACGGAAAAGGTGCCGTAAAGCGTT -ACGGAAAAGGTGCCGTAATTCGTC -ACGGAAAAGGTGCCGTAATCTCTC -ACGGAAAAGGTGCCGTAATGGATC -ACGGAAAAGGTGCCGTAACACTTC -ACGGAAAAGGTGCCGTAAGTACTC -ACGGAAAAGGTGCCGTAAGATGTC -ACGGAAAAGGTGCCGTAAACAGTC -ACGGAAAAGGTGCCGTAATTGCTG -ACGGAAAAGGTGCCGTAATCCATG -ACGGAAAAGGTGCCGTAATGTGTG -ACGGAAAAGGTGCCGTAACTAGTG -ACGGAAAAGGTGCCGTAACATCTG -ACGGAAAAGGTGCCGTAAGAGTTG -ACGGAAAAGGTGCCGTAAAGACTG -ACGGAAAAGGTGCCGTAATCGGTA -ACGGAAAAGGTGCCGTAATGCCTA -ACGGAAAAGGTGCCGTAACCACTA -ACGGAAAAGGTGCCGTAAGGAGTA -ACGGAAAAGGTGCCGTAATCGTCT -ACGGAAAAGGTGCCGTAATGCACT -ACGGAAAAGGTGCCGTAACTGACT -ACGGAAAAGGTGCCGTAACAACCT -ACGGAAAAGGTGCCGTAAGCTACT -ACGGAAAAGGTGCCGTAAGGATCT -ACGGAAAAGGTGCCGTAAAAGGCT -ACGGAAAAGGTGCCGTAATCAACC -ACGGAAAAGGTGCCGTAATGTTCC -ACGGAAAAGGTGCCGTAAATTCCC -ACGGAAAAGGTGCCGTAATTCTCG -ACGGAAAAGGTGCCGTAATAGACG -ACGGAAAAGGTGCCGTAAGTAACG -ACGGAAAAGGTGCCGTAAACTTCG -ACGGAAAAGGTGCCGTAATACGCA -ACGGAAAAGGTGCCGTAACTTGCA -ACGGAAAAGGTGCCGTAACGAACA -ACGGAAAAGGTGCCGTAACAGTCA -ACGGAAAAGGTGCCGTAAGATCCA -ACGGAAAAGGTGCCGTAAACGACA -ACGGAAAAGGTGCCGTAAAGCTCA -ACGGAAAAGGTGCCGTAATCACGT -ACGGAAAAGGTGCCGTAACGTAGT -ACGGAAAAGGTGCCGTAAGTCAGT -ACGGAAAAGGTGCCGTAAGAAGGT -ACGGAAAAGGTGCCGTAAAACCGT -ACGGAAAAGGTGCCGTAATTGTGC -ACGGAAAAGGTGCCGTAACTAAGC -ACGGAAAAGGTGCCGTAAACTAGC -ACGGAAAAGGTGCCGTAAAGATGC -ACGGAAAAGGTGCCGTAATGAAGG -ACGGAAAAGGTGCCGTAACAATGG -ACGGAAAAGGTGCCGTAAATGAGG -ACGGAAAAGGTGCCGTAAAATGGG -ACGGAAAAGGTGCCGTAATCCTGA -ACGGAAAAGGTGCCGTAATAGCGA -ACGGAAAAGGTGCCGTAACACAGA -ACGGAAAAGGTGCCGTAAGCAAGA -ACGGAAAAGGTGCCGTAAGGTTGA -ACGGAAAAGGTGCCGTAATCCGAT -ACGGAAAAGGTGCCGTAATGGCAT -ACGGAAAAGGTGCCGTAACGAGAT -ACGGAAAAGGTGCCGTAATACCAC -ACGGAAAAGGTGCCGTAACAGAAC -ACGGAAAAGGTGCCGTAAGTCTAC -ACGGAAAAGGTGCCGTAAACGTAC -ACGGAAAAGGTGCCGTAAAGTGAC -ACGGAAAAGGTGCCGTAACTGTAG -ACGGAAAAGGTGCCGTAACCTAAG -ACGGAAAAGGTGCCGTAAGTTCAG -ACGGAAAAGGTGCCGTAAGCATAG -ACGGAAAAGGTGCCGTAAGACAAG -ACGGAAAAGGTGCCGTAAAAGCAG -ACGGAAAAGGTGCCGTAACGTCAA -ACGGAAAAGGTGCCGTAAGCTGAA -ACGGAAAAGGTGCCGTAAAGTACG -ACGGAAAAGGTGCCGTAAATCCGA -ACGGAAAAGGTGCCGTAAATGGGA -ACGGAAAAGGTGCCGTAAGTGCAA -ACGGAAAAGGTGCCGTAAGAGGAA -ACGGAAAAGGTGCCGTAACAGGTA -ACGGAAAAGGTGCCGTAAGACTCT -ACGGAAAAGGTGCCGTAAAGTCCT -ACGGAAAAGGTGCCGTAATAAGCC -ACGGAAAAGGTGCCGTAAATAGCC -ACGGAAAAGGTGCCGTAATAACCG -ACGGAAAAGGTGCCGTAAATGCCA -ACGGAAAAGGTGCCAATGGGAAAC -ACGGAAAAGGTGCCAATGAACACC -ACGGAAAAGGTGCCAATGATCGAG -ACGGAAAAGGTGCCAATGCTCCTT -ACGGAAAAGGTGCCAATGCCTGTT -ACGGAAAAGGTGCCAATGCGGTTT -ACGGAAAAGGTGCCAATGGTGGTT -ACGGAAAAGGTGCCAATGGCCTTT -ACGGAAAAGGTGCCAATGGGTCTT -ACGGAAAAGGTGCCAATGACGCTT -ACGGAAAAGGTGCCAATGAGCGTT -ACGGAAAAGGTGCCAATGTTCGTC -ACGGAAAAGGTGCCAATGTCTCTC -ACGGAAAAGGTGCCAATGTGGATC -ACGGAAAAGGTGCCAATGCACTTC -ACGGAAAAGGTGCCAATGGTACTC -ACGGAAAAGGTGCCAATGGATGTC -ACGGAAAAGGTGCCAATGACAGTC -ACGGAAAAGGTGCCAATGTTGCTG -ACGGAAAAGGTGCCAATGTCCATG -ACGGAAAAGGTGCCAATGTGTGTG -ACGGAAAAGGTGCCAATGCTAGTG -ACGGAAAAGGTGCCAATGCATCTG -ACGGAAAAGGTGCCAATGGAGTTG -ACGGAAAAGGTGCCAATGAGACTG -ACGGAAAAGGTGCCAATGTCGGTA -ACGGAAAAGGTGCCAATGTGCCTA -ACGGAAAAGGTGCCAATGCCACTA -ACGGAAAAGGTGCCAATGGGAGTA -ACGGAAAAGGTGCCAATGTCGTCT -ACGGAAAAGGTGCCAATGTGCACT -ACGGAAAAGGTGCCAATGCTGACT -ACGGAAAAGGTGCCAATGCAACCT -ACGGAAAAGGTGCCAATGGCTACT -ACGGAAAAGGTGCCAATGGGATCT -ACGGAAAAGGTGCCAATGAAGGCT -ACGGAAAAGGTGCCAATGTCAACC -ACGGAAAAGGTGCCAATGTGTTCC -ACGGAAAAGGTGCCAATGATTCCC -ACGGAAAAGGTGCCAATGTTCTCG -ACGGAAAAGGTGCCAATGTAGACG -ACGGAAAAGGTGCCAATGGTAACG -ACGGAAAAGGTGCCAATGACTTCG -ACGGAAAAGGTGCCAATGTACGCA -ACGGAAAAGGTGCCAATGCTTGCA -ACGGAAAAGGTGCCAATGCGAACA -ACGGAAAAGGTGCCAATGCAGTCA -ACGGAAAAGGTGCCAATGGATCCA -ACGGAAAAGGTGCCAATGACGACA -ACGGAAAAGGTGCCAATGAGCTCA -ACGGAAAAGGTGCCAATGTCACGT -ACGGAAAAGGTGCCAATGCGTAGT -ACGGAAAAGGTGCCAATGGTCAGT -ACGGAAAAGGTGCCAATGGAAGGT -ACGGAAAAGGTGCCAATGAACCGT -ACGGAAAAGGTGCCAATGTTGTGC -ACGGAAAAGGTGCCAATGCTAAGC -ACGGAAAAGGTGCCAATGACTAGC -ACGGAAAAGGTGCCAATGAGATGC -ACGGAAAAGGTGCCAATGTGAAGG -ACGGAAAAGGTGCCAATGCAATGG -ACGGAAAAGGTGCCAATGATGAGG -ACGGAAAAGGTGCCAATGAATGGG -ACGGAAAAGGTGCCAATGTCCTGA -ACGGAAAAGGTGCCAATGTAGCGA -ACGGAAAAGGTGCCAATGCACAGA -ACGGAAAAGGTGCCAATGGCAAGA -ACGGAAAAGGTGCCAATGGGTTGA -ACGGAAAAGGTGCCAATGTCCGAT -ACGGAAAAGGTGCCAATGTGGCAT -ACGGAAAAGGTGCCAATGCGAGAT -ACGGAAAAGGTGCCAATGTACCAC -ACGGAAAAGGTGCCAATGCAGAAC -ACGGAAAAGGTGCCAATGGTCTAC -ACGGAAAAGGTGCCAATGACGTAC -ACGGAAAAGGTGCCAATGAGTGAC -ACGGAAAAGGTGCCAATGCTGTAG -ACGGAAAAGGTGCCAATGCCTAAG -ACGGAAAAGGTGCCAATGGTTCAG -ACGGAAAAGGTGCCAATGGCATAG -ACGGAAAAGGTGCCAATGGACAAG -ACGGAAAAGGTGCCAATGAAGCAG -ACGGAAAAGGTGCCAATGCGTCAA -ACGGAAAAGGTGCCAATGGCTGAA -ACGGAAAAGGTGCCAATGAGTACG -ACGGAAAAGGTGCCAATGATCCGA -ACGGAAAAGGTGCCAATGATGGGA -ACGGAAAAGGTGCCAATGGTGCAA -ACGGAAAAGGTGCCAATGGAGGAA -ACGGAAAAGGTGCCAATGCAGGTA -ACGGAAAAGGTGCCAATGGACTCT -ACGGAAAAGGTGCCAATGAGTCCT -ACGGAAAAGGTGCCAATGTAAGCC -ACGGAAAAGGTGCCAATGATAGCC -ACGGAAAAGGTGCCAATGTAACCG -ACGGAAAAGGTGCCAATGATGCCA -ACGGAAACCGTAAACGGAGGAAAC -ACGGAAACCGTAAACGGAAACACC -ACGGAAACCGTAAACGGAATCGAG -ACGGAAACCGTAAACGGACTCCTT -ACGGAAACCGTAAACGGACCTGTT -ACGGAAACCGTAAACGGACGGTTT -ACGGAAACCGTAAACGGAGTGGTT -ACGGAAACCGTAAACGGAGCCTTT -ACGGAAACCGTAAACGGAGGTCTT -ACGGAAACCGTAAACGGAACGCTT -ACGGAAACCGTAAACGGAAGCGTT -ACGGAAACCGTAAACGGATTCGTC -ACGGAAACCGTAAACGGATCTCTC -ACGGAAACCGTAAACGGATGGATC -ACGGAAACCGTAAACGGACACTTC -ACGGAAACCGTAAACGGAGTACTC -ACGGAAACCGTAAACGGAGATGTC -ACGGAAACCGTAAACGGAACAGTC -ACGGAAACCGTAAACGGATTGCTG -ACGGAAACCGTAAACGGATCCATG -ACGGAAACCGTAAACGGATGTGTG -ACGGAAACCGTAAACGGACTAGTG -ACGGAAACCGTAAACGGACATCTG -ACGGAAACCGTAAACGGAGAGTTG -ACGGAAACCGTAAACGGAAGACTG -ACGGAAACCGTAAACGGATCGGTA -ACGGAAACCGTAAACGGATGCCTA -ACGGAAACCGTAAACGGACCACTA -ACGGAAACCGTAAACGGAGGAGTA -ACGGAAACCGTAAACGGATCGTCT -ACGGAAACCGTAAACGGATGCACT -ACGGAAACCGTAAACGGACTGACT -ACGGAAACCGTAAACGGACAACCT -ACGGAAACCGTAAACGGAGCTACT -ACGGAAACCGTAAACGGAGGATCT -ACGGAAACCGTAAACGGAAAGGCT -ACGGAAACCGTAAACGGATCAACC -ACGGAAACCGTAAACGGATGTTCC -ACGGAAACCGTAAACGGAATTCCC -ACGGAAACCGTAAACGGATTCTCG -ACGGAAACCGTAAACGGATAGACG -ACGGAAACCGTAAACGGAGTAACG -ACGGAAACCGTAAACGGAACTTCG -ACGGAAACCGTAAACGGATACGCA -ACGGAAACCGTAAACGGACTTGCA -ACGGAAACCGTAAACGGACGAACA -ACGGAAACCGTAAACGGACAGTCA -ACGGAAACCGTAAACGGAGATCCA -ACGGAAACCGTAAACGGAACGACA -ACGGAAACCGTAAACGGAAGCTCA -ACGGAAACCGTAAACGGATCACGT -ACGGAAACCGTAAACGGACGTAGT -ACGGAAACCGTAAACGGAGTCAGT -ACGGAAACCGTAAACGGAGAAGGT -ACGGAAACCGTAAACGGAAACCGT -ACGGAAACCGTAAACGGATTGTGC -ACGGAAACCGTAAACGGACTAAGC -ACGGAAACCGTAAACGGAACTAGC -ACGGAAACCGTAAACGGAAGATGC -ACGGAAACCGTAAACGGATGAAGG -ACGGAAACCGTAAACGGACAATGG -ACGGAAACCGTAAACGGAATGAGG -ACGGAAACCGTAAACGGAAATGGG -ACGGAAACCGTAAACGGATCCTGA -ACGGAAACCGTAAACGGATAGCGA -ACGGAAACCGTAAACGGACACAGA -ACGGAAACCGTAAACGGAGCAAGA -ACGGAAACCGTAAACGGAGGTTGA -ACGGAAACCGTAAACGGATCCGAT -ACGGAAACCGTAAACGGATGGCAT -ACGGAAACCGTAAACGGACGAGAT -ACGGAAACCGTAAACGGATACCAC -ACGGAAACCGTAAACGGACAGAAC -ACGGAAACCGTAAACGGAGTCTAC -ACGGAAACCGTAAACGGAACGTAC -ACGGAAACCGTAAACGGAAGTGAC -ACGGAAACCGTAAACGGACTGTAG -ACGGAAACCGTAAACGGACCTAAG -ACGGAAACCGTAAACGGAGTTCAG -ACGGAAACCGTAAACGGAGCATAG -ACGGAAACCGTAAACGGAGACAAG -ACGGAAACCGTAAACGGAAAGCAG -ACGGAAACCGTAAACGGACGTCAA -ACGGAAACCGTAAACGGAGCTGAA -ACGGAAACCGTAAACGGAAGTACG -ACGGAAACCGTAAACGGAATCCGA -ACGGAAACCGTAAACGGAATGGGA -ACGGAAACCGTAAACGGAGTGCAA -ACGGAAACCGTAAACGGAGAGGAA -ACGGAAACCGTAAACGGACAGGTA -ACGGAAACCGTAAACGGAGACTCT -ACGGAAACCGTAAACGGAAGTCCT -ACGGAAACCGTAAACGGATAAGCC -ACGGAAACCGTAAACGGAATAGCC -ACGGAAACCGTAAACGGATAACCG -ACGGAAACCGTAAACGGAATGCCA -ACGGAAACCGTAACCAACGGAAAC -ACGGAAACCGTAACCAACAACACC -ACGGAAACCGTAACCAACATCGAG -ACGGAAACCGTAACCAACCTCCTT -ACGGAAACCGTAACCAACCCTGTT -ACGGAAACCGTAACCAACCGGTTT -ACGGAAACCGTAACCAACGTGGTT -ACGGAAACCGTAACCAACGCCTTT -ACGGAAACCGTAACCAACGGTCTT -ACGGAAACCGTAACCAACACGCTT -ACGGAAACCGTAACCAACAGCGTT -ACGGAAACCGTAACCAACTTCGTC -ACGGAAACCGTAACCAACTCTCTC -ACGGAAACCGTAACCAACTGGATC -ACGGAAACCGTAACCAACCACTTC -ACGGAAACCGTAACCAACGTACTC -ACGGAAACCGTAACCAACGATGTC -ACGGAAACCGTAACCAACACAGTC -ACGGAAACCGTAACCAACTTGCTG -ACGGAAACCGTAACCAACTCCATG -ACGGAAACCGTAACCAACTGTGTG -ACGGAAACCGTAACCAACCTAGTG -ACGGAAACCGTAACCAACCATCTG -ACGGAAACCGTAACCAACGAGTTG -ACGGAAACCGTAACCAACAGACTG -ACGGAAACCGTAACCAACTCGGTA -ACGGAAACCGTAACCAACTGCCTA -ACGGAAACCGTAACCAACCCACTA -ACGGAAACCGTAACCAACGGAGTA -ACGGAAACCGTAACCAACTCGTCT -ACGGAAACCGTAACCAACTGCACT -ACGGAAACCGTAACCAACCTGACT -ACGGAAACCGTAACCAACCAACCT -ACGGAAACCGTAACCAACGCTACT -ACGGAAACCGTAACCAACGGATCT -ACGGAAACCGTAACCAACAAGGCT -ACGGAAACCGTAACCAACTCAACC -ACGGAAACCGTAACCAACTGTTCC -ACGGAAACCGTAACCAACATTCCC -ACGGAAACCGTAACCAACTTCTCG -ACGGAAACCGTAACCAACTAGACG -ACGGAAACCGTAACCAACGTAACG -ACGGAAACCGTAACCAACACTTCG -ACGGAAACCGTAACCAACTACGCA -ACGGAAACCGTAACCAACCTTGCA -ACGGAAACCGTAACCAACCGAACA -ACGGAAACCGTAACCAACCAGTCA -ACGGAAACCGTAACCAACGATCCA -ACGGAAACCGTAACCAACACGACA -ACGGAAACCGTAACCAACAGCTCA -ACGGAAACCGTAACCAACTCACGT -ACGGAAACCGTAACCAACCGTAGT -ACGGAAACCGTAACCAACGTCAGT -ACGGAAACCGTAACCAACGAAGGT -ACGGAAACCGTAACCAACAACCGT -ACGGAAACCGTAACCAACTTGTGC -ACGGAAACCGTAACCAACCTAAGC -ACGGAAACCGTAACCAACACTAGC -ACGGAAACCGTAACCAACAGATGC -ACGGAAACCGTAACCAACTGAAGG -ACGGAAACCGTAACCAACCAATGG -ACGGAAACCGTAACCAACATGAGG -ACGGAAACCGTAACCAACAATGGG -ACGGAAACCGTAACCAACTCCTGA -ACGGAAACCGTAACCAACTAGCGA -ACGGAAACCGTAACCAACCACAGA -ACGGAAACCGTAACCAACGCAAGA -ACGGAAACCGTAACCAACGGTTGA -ACGGAAACCGTAACCAACTCCGAT -ACGGAAACCGTAACCAACTGGCAT -ACGGAAACCGTAACCAACCGAGAT -ACGGAAACCGTAACCAACTACCAC -ACGGAAACCGTAACCAACCAGAAC -ACGGAAACCGTAACCAACGTCTAC -ACGGAAACCGTAACCAACACGTAC -ACGGAAACCGTAACCAACAGTGAC -ACGGAAACCGTAACCAACCTGTAG -ACGGAAACCGTAACCAACCCTAAG -ACGGAAACCGTAACCAACGTTCAG -ACGGAAACCGTAACCAACGCATAG -ACGGAAACCGTAACCAACGACAAG -ACGGAAACCGTAACCAACAAGCAG -ACGGAAACCGTAACCAACCGTCAA -ACGGAAACCGTAACCAACGCTGAA -ACGGAAACCGTAACCAACAGTACG -ACGGAAACCGTAACCAACATCCGA -ACGGAAACCGTAACCAACATGGGA -ACGGAAACCGTAACCAACGTGCAA -ACGGAAACCGTAACCAACGAGGAA -ACGGAAACCGTAACCAACCAGGTA -ACGGAAACCGTAACCAACGACTCT -ACGGAAACCGTAACCAACAGTCCT -ACGGAAACCGTAACCAACTAAGCC -ACGGAAACCGTAACCAACATAGCC -ACGGAAACCGTAACCAACTAACCG -ACGGAAACCGTAACCAACATGCCA -ACGGAAACCGTAGAGATCGGAAAC -ACGGAAACCGTAGAGATCAACACC -ACGGAAACCGTAGAGATCATCGAG -ACGGAAACCGTAGAGATCCTCCTT -ACGGAAACCGTAGAGATCCCTGTT -ACGGAAACCGTAGAGATCCGGTTT -ACGGAAACCGTAGAGATCGTGGTT -ACGGAAACCGTAGAGATCGCCTTT -ACGGAAACCGTAGAGATCGGTCTT -ACGGAAACCGTAGAGATCACGCTT -ACGGAAACCGTAGAGATCAGCGTT -ACGGAAACCGTAGAGATCTTCGTC -ACGGAAACCGTAGAGATCTCTCTC -ACGGAAACCGTAGAGATCTGGATC -ACGGAAACCGTAGAGATCCACTTC -ACGGAAACCGTAGAGATCGTACTC -ACGGAAACCGTAGAGATCGATGTC -ACGGAAACCGTAGAGATCACAGTC -ACGGAAACCGTAGAGATCTTGCTG -ACGGAAACCGTAGAGATCTCCATG -ACGGAAACCGTAGAGATCTGTGTG -ACGGAAACCGTAGAGATCCTAGTG -ACGGAAACCGTAGAGATCCATCTG -ACGGAAACCGTAGAGATCGAGTTG -ACGGAAACCGTAGAGATCAGACTG -ACGGAAACCGTAGAGATCTCGGTA -ACGGAAACCGTAGAGATCTGCCTA -ACGGAAACCGTAGAGATCCCACTA -ACGGAAACCGTAGAGATCGGAGTA -ACGGAAACCGTAGAGATCTCGTCT -ACGGAAACCGTAGAGATCTGCACT -ACGGAAACCGTAGAGATCCTGACT -ACGGAAACCGTAGAGATCCAACCT -ACGGAAACCGTAGAGATCGCTACT -ACGGAAACCGTAGAGATCGGATCT -ACGGAAACCGTAGAGATCAAGGCT -ACGGAAACCGTAGAGATCTCAACC -ACGGAAACCGTAGAGATCTGTTCC -ACGGAAACCGTAGAGATCATTCCC -ACGGAAACCGTAGAGATCTTCTCG -ACGGAAACCGTAGAGATCTAGACG -ACGGAAACCGTAGAGATCGTAACG -ACGGAAACCGTAGAGATCACTTCG -ACGGAAACCGTAGAGATCTACGCA -ACGGAAACCGTAGAGATCCTTGCA -ACGGAAACCGTAGAGATCCGAACA -ACGGAAACCGTAGAGATCCAGTCA -ACGGAAACCGTAGAGATCGATCCA -ACGGAAACCGTAGAGATCACGACA -ACGGAAACCGTAGAGATCAGCTCA -ACGGAAACCGTAGAGATCTCACGT -ACGGAAACCGTAGAGATCCGTAGT -ACGGAAACCGTAGAGATCGTCAGT -ACGGAAACCGTAGAGATCGAAGGT -ACGGAAACCGTAGAGATCAACCGT -ACGGAAACCGTAGAGATCTTGTGC -ACGGAAACCGTAGAGATCCTAAGC -ACGGAAACCGTAGAGATCACTAGC -ACGGAAACCGTAGAGATCAGATGC -ACGGAAACCGTAGAGATCTGAAGG -ACGGAAACCGTAGAGATCCAATGG -ACGGAAACCGTAGAGATCATGAGG -ACGGAAACCGTAGAGATCAATGGG -ACGGAAACCGTAGAGATCTCCTGA -ACGGAAACCGTAGAGATCTAGCGA -ACGGAAACCGTAGAGATCCACAGA -ACGGAAACCGTAGAGATCGCAAGA -ACGGAAACCGTAGAGATCGGTTGA -ACGGAAACCGTAGAGATCTCCGAT -ACGGAAACCGTAGAGATCTGGCAT -ACGGAAACCGTAGAGATCCGAGAT -ACGGAAACCGTAGAGATCTACCAC -ACGGAAACCGTAGAGATCCAGAAC -ACGGAAACCGTAGAGATCGTCTAC -ACGGAAACCGTAGAGATCACGTAC -ACGGAAACCGTAGAGATCAGTGAC -ACGGAAACCGTAGAGATCCTGTAG -ACGGAAACCGTAGAGATCCCTAAG -ACGGAAACCGTAGAGATCGTTCAG -ACGGAAACCGTAGAGATCGCATAG -ACGGAAACCGTAGAGATCGACAAG -ACGGAAACCGTAGAGATCAAGCAG -ACGGAAACCGTAGAGATCCGTCAA -ACGGAAACCGTAGAGATCGCTGAA -ACGGAAACCGTAGAGATCAGTACG -ACGGAAACCGTAGAGATCATCCGA -ACGGAAACCGTAGAGATCATGGGA -ACGGAAACCGTAGAGATCGTGCAA -ACGGAAACCGTAGAGATCGAGGAA -ACGGAAACCGTAGAGATCCAGGTA -ACGGAAACCGTAGAGATCGACTCT -ACGGAAACCGTAGAGATCAGTCCT -ACGGAAACCGTAGAGATCTAAGCC -ACGGAAACCGTAGAGATCATAGCC -ACGGAAACCGTAGAGATCTAACCG -ACGGAAACCGTAGAGATCATGCCA -ACGGAAACCGTACTTCTCGGAAAC -ACGGAAACCGTACTTCTCAACACC -ACGGAAACCGTACTTCTCATCGAG -ACGGAAACCGTACTTCTCCTCCTT -ACGGAAACCGTACTTCTCCCTGTT -ACGGAAACCGTACTTCTCCGGTTT -ACGGAAACCGTACTTCTCGTGGTT -ACGGAAACCGTACTTCTCGCCTTT -ACGGAAACCGTACTTCTCGGTCTT -ACGGAAACCGTACTTCTCACGCTT -ACGGAAACCGTACTTCTCAGCGTT -ACGGAAACCGTACTTCTCTTCGTC -ACGGAAACCGTACTTCTCTCTCTC -ACGGAAACCGTACTTCTCTGGATC -ACGGAAACCGTACTTCTCCACTTC -ACGGAAACCGTACTTCTCGTACTC -ACGGAAACCGTACTTCTCGATGTC -ACGGAAACCGTACTTCTCACAGTC -ACGGAAACCGTACTTCTCTTGCTG -ACGGAAACCGTACTTCTCTCCATG -ACGGAAACCGTACTTCTCTGTGTG -ACGGAAACCGTACTTCTCCTAGTG -ACGGAAACCGTACTTCTCCATCTG -ACGGAAACCGTACTTCTCGAGTTG -ACGGAAACCGTACTTCTCAGACTG -ACGGAAACCGTACTTCTCTCGGTA -ACGGAAACCGTACTTCTCTGCCTA -ACGGAAACCGTACTTCTCCCACTA -ACGGAAACCGTACTTCTCGGAGTA -ACGGAAACCGTACTTCTCTCGTCT -ACGGAAACCGTACTTCTCTGCACT -ACGGAAACCGTACTTCTCCTGACT -ACGGAAACCGTACTTCTCCAACCT -ACGGAAACCGTACTTCTCGCTACT -ACGGAAACCGTACTTCTCGGATCT -ACGGAAACCGTACTTCTCAAGGCT -ACGGAAACCGTACTTCTCTCAACC -ACGGAAACCGTACTTCTCTGTTCC -ACGGAAACCGTACTTCTCATTCCC -ACGGAAACCGTACTTCTCTTCTCG -ACGGAAACCGTACTTCTCTAGACG -ACGGAAACCGTACTTCTCGTAACG -ACGGAAACCGTACTTCTCACTTCG -ACGGAAACCGTACTTCTCTACGCA -ACGGAAACCGTACTTCTCCTTGCA -ACGGAAACCGTACTTCTCCGAACA -ACGGAAACCGTACTTCTCCAGTCA -ACGGAAACCGTACTTCTCGATCCA -ACGGAAACCGTACTTCTCACGACA -ACGGAAACCGTACTTCTCAGCTCA -ACGGAAACCGTACTTCTCTCACGT -ACGGAAACCGTACTTCTCCGTAGT -ACGGAAACCGTACTTCTCGTCAGT -ACGGAAACCGTACTTCTCGAAGGT -ACGGAAACCGTACTTCTCAACCGT -ACGGAAACCGTACTTCTCTTGTGC -ACGGAAACCGTACTTCTCCTAAGC -ACGGAAACCGTACTTCTCACTAGC -ACGGAAACCGTACTTCTCAGATGC -ACGGAAACCGTACTTCTCTGAAGG -ACGGAAACCGTACTTCTCCAATGG -ACGGAAACCGTACTTCTCATGAGG -ACGGAAACCGTACTTCTCAATGGG -ACGGAAACCGTACTTCTCTCCTGA -ACGGAAACCGTACTTCTCTAGCGA -ACGGAAACCGTACTTCTCCACAGA -ACGGAAACCGTACTTCTCGCAAGA -ACGGAAACCGTACTTCTCGGTTGA -ACGGAAACCGTACTTCTCTCCGAT -ACGGAAACCGTACTTCTCTGGCAT -ACGGAAACCGTACTTCTCCGAGAT -ACGGAAACCGTACTTCTCTACCAC -ACGGAAACCGTACTTCTCCAGAAC -ACGGAAACCGTACTTCTCGTCTAC -ACGGAAACCGTACTTCTCACGTAC -ACGGAAACCGTACTTCTCAGTGAC -ACGGAAACCGTACTTCTCCTGTAG -ACGGAAACCGTACTTCTCCCTAAG -ACGGAAACCGTACTTCTCGTTCAG -ACGGAAACCGTACTTCTCGCATAG -ACGGAAACCGTACTTCTCGACAAG -ACGGAAACCGTACTTCTCAAGCAG -ACGGAAACCGTACTTCTCCGTCAA -ACGGAAACCGTACTTCTCGCTGAA -ACGGAAACCGTACTTCTCAGTACG -ACGGAAACCGTACTTCTCATCCGA -ACGGAAACCGTACTTCTCATGGGA -ACGGAAACCGTACTTCTCGTGCAA -ACGGAAACCGTACTTCTCGAGGAA -ACGGAAACCGTACTTCTCCAGGTA -ACGGAAACCGTACTTCTCGACTCT -ACGGAAACCGTACTTCTCAGTCCT -ACGGAAACCGTACTTCTCTAAGCC -ACGGAAACCGTACTTCTCATAGCC -ACGGAAACCGTACTTCTCTAACCG -ACGGAAACCGTACTTCTCATGCCA -ACGGAAACCGTAGTTCCTGGAAAC -ACGGAAACCGTAGTTCCTAACACC -ACGGAAACCGTAGTTCCTATCGAG -ACGGAAACCGTAGTTCCTCTCCTT -ACGGAAACCGTAGTTCCTCCTGTT -ACGGAAACCGTAGTTCCTCGGTTT -ACGGAAACCGTAGTTCCTGTGGTT -ACGGAAACCGTAGTTCCTGCCTTT -ACGGAAACCGTAGTTCCTGGTCTT -ACGGAAACCGTAGTTCCTACGCTT -ACGGAAACCGTAGTTCCTAGCGTT -ACGGAAACCGTAGTTCCTTTCGTC -ACGGAAACCGTAGTTCCTTCTCTC -ACGGAAACCGTAGTTCCTTGGATC -ACGGAAACCGTAGTTCCTCACTTC -ACGGAAACCGTAGTTCCTGTACTC -ACGGAAACCGTAGTTCCTGATGTC -ACGGAAACCGTAGTTCCTACAGTC -ACGGAAACCGTAGTTCCTTTGCTG -ACGGAAACCGTAGTTCCTTCCATG -ACGGAAACCGTAGTTCCTTGTGTG -ACGGAAACCGTAGTTCCTCTAGTG -ACGGAAACCGTAGTTCCTCATCTG -ACGGAAACCGTAGTTCCTGAGTTG -ACGGAAACCGTAGTTCCTAGACTG -ACGGAAACCGTAGTTCCTTCGGTA -ACGGAAACCGTAGTTCCTTGCCTA -ACGGAAACCGTAGTTCCTCCACTA -ACGGAAACCGTAGTTCCTGGAGTA -ACGGAAACCGTAGTTCCTTCGTCT -ACGGAAACCGTAGTTCCTTGCACT -ACGGAAACCGTAGTTCCTCTGACT -ACGGAAACCGTAGTTCCTCAACCT -ACGGAAACCGTAGTTCCTGCTACT -ACGGAAACCGTAGTTCCTGGATCT -ACGGAAACCGTAGTTCCTAAGGCT -ACGGAAACCGTAGTTCCTTCAACC -ACGGAAACCGTAGTTCCTTGTTCC -ACGGAAACCGTAGTTCCTATTCCC -ACGGAAACCGTAGTTCCTTTCTCG -ACGGAAACCGTAGTTCCTTAGACG -ACGGAAACCGTAGTTCCTGTAACG -ACGGAAACCGTAGTTCCTACTTCG -ACGGAAACCGTAGTTCCTTACGCA -ACGGAAACCGTAGTTCCTCTTGCA -ACGGAAACCGTAGTTCCTCGAACA -ACGGAAACCGTAGTTCCTCAGTCA -ACGGAAACCGTAGTTCCTGATCCA -ACGGAAACCGTAGTTCCTACGACA -ACGGAAACCGTAGTTCCTAGCTCA -ACGGAAACCGTAGTTCCTTCACGT -ACGGAAACCGTAGTTCCTCGTAGT -ACGGAAACCGTAGTTCCTGTCAGT -ACGGAAACCGTAGTTCCTGAAGGT -ACGGAAACCGTAGTTCCTAACCGT -ACGGAAACCGTAGTTCCTTTGTGC -ACGGAAACCGTAGTTCCTCTAAGC -ACGGAAACCGTAGTTCCTACTAGC -ACGGAAACCGTAGTTCCTAGATGC -ACGGAAACCGTAGTTCCTTGAAGG -ACGGAAACCGTAGTTCCTCAATGG -ACGGAAACCGTAGTTCCTATGAGG -ACGGAAACCGTAGTTCCTAATGGG -ACGGAAACCGTAGTTCCTTCCTGA -ACGGAAACCGTAGTTCCTTAGCGA -ACGGAAACCGTAGTTCCTCACAGA -ACGGAAACCGTAGTTCCTGCAAGA -ACGGAAACCGTAGTTCCTGGTTGA -ACGGAAACCGTAGTTCCTTCCGAT -ACGGAAACCGTAGTTCCTTGGCAT -ACGGAAACCGTAGTTCCTCGAGAT -ACGGAAACCGTAGTTCCTTACCAC -ACGGAAACCGTAGTTCCTCAGAAC -ACGGAAACCGTAGTTCCTGTCTAC -ACGGAAACCGTAGTTCCTACGTAC -ACGGAAACCGTAGTTCCTAGTGAC -ACGGAAACCGTAGTTCCTCTGTAG -ACGGAAACCGTAGTTCCTCCTAAG -ACGGAAACCGTAGTTCCTGTTCAG -ACGGAAACCGTAGTTCCTGCATAG -ACGGAAACCGTAGTTCCTGACAAG -ACGGAAACCGTAGTTCCTAAGCAG -ACGGAAACCGTAGTTCCTCGTCAA -ACGGAAACCGTAGTTCCTGCTGAA -ACGGAAACCGTAGTTCCTAGTACG -ACGGAAACCGTAGTTCCTATCCGA -ACGGAAACCGTAGTTCCTATGGGA -ACGGAAACCGTAGTTCCTGTGCAA -ACGGAAACCGTAGTTCCTGAGGAA -ACGGAAACCGTAGTTCCTCAGGTA -ACGGAAACCGTAGTTCCTGACTCT -ACGGAAACCGTAGTTCCTAGTCCT -ACGGAAACCGTAGTTCCTTAAGCC -ACGGAAACCGTAGTTCCTATAGCC -ACGGAAACCGTAGTTCCTTAACCG -ACGGAAACCGTAGTTCCTATGCCA -ACGGAAACCGTATTTCGGGGAAAC -ACGGAAACCGTATTTCGGAACACC -ACGGAAACCGTATTTCGGATCGAG -ACGGAAACCGTATTTCGGCTCCTT -ACGGAAACCGTATTTCGGCCTGTT -ACGGAAACCGTATTTCGGCGGTTT -ACGGAAACCGTATTTCGGGTGGTT -ACGGAAACCGTATTTCGGGCCTTT -ACGGAAACCGTATTTCGGGGTCTT -ACGGAAACCGTATTTCGGACGCTT -ACGGAAACCGTATTTCGGAGCGTT -ACGGAAACCGTATTTCGGTTCGTC -ACGGAAACCGTATTTCGGTCTCTC -ACGGAAACCGTATTTCGGTGGATC -ACGGAAACCGTATTTCGGCACTTC -ACGGAAACCGTATTTCGGGTACTC -ACGGAAACCGTATTTCGGGATGTC -ACGGAAACCGTATTTCGGACAGTC -ACGGAAACCGTATTTCGGTTGCTG -ACGGAAACCGTATTTCGGTCCATG -ACGGAAACCGTATTTCGGTGTGTG -ACGGAAACCGTATTTCGGCTAGTG -ACGGAAACCGTATTTCGGCATCTG -ACGGAAACCGTATTTCGGGAGTTG -ACGGAAACCGTATTTCGGAGACTG -ACGGAAACCGTATTTCGGTCGGTA -ACGGAAACCGTATTTCGGTGCCTA -ACGGAAACCGTATTTCGGCCACTA -ACGGAAACCGTATTTCGGGGAGTA -ACGGAAACCGTATTTCGGTCGTCT -ACGGAAACCGTATTTCGGTGCACT -ACGGAAACCGTATTTCGGCTGACT -ACGGAAACCGTATTTCGGCAACCT -ACGGAAACCGTATTTCGGGCTACT -ACGGAAACCGTATTTCGGGGATCT -ACGGAAACCGTATTTCGGAAGGCT -ACGGAAACCGTATTTCGGTCAACC -ACGGAAACCGTATTTCGGTGTTCC -ACGGAAACCGTATTTCGGATTCCC -ACGGAAACCGTATTTCGGTTCTCG -ACGGAAACCGTATTTCGGTAGACG -ACGGAAACCGTATTTCGGGTAACG -ACGGAAACCGTATTTCGGACTTCG -ACGGAAACCGTATTTCGGTACGCA -ACGGAAACCGTATTTCGGCTTGCA -ACGGAAACCGTATTTCGGCGAACA -ACGGAAACCGTATTTCGGCAGTCA -ACGGAAACCGTATTTCGGGATCCA -ACGGAAACCGTATTTCGGACGACA -ACGGAAACCGTATTTCGGAGCTCA -ACGGAAACCGTATTTCGGTCACGT -ACGGAAACCGTATTTCGGCGTAGT -ACGGAAACCGTATTTCGGGTCAGT -ACGGAAACCGTATTTCGGGAAGGT -ACGGAAACCGTATTTCGGAACCGT -ACGGAAACCGTATTTCGGTTGTGC -ACGGAAACCGTATTTCGGCTAAGC -ACGGAAACCGTATTTCGGACTAGC -ACGGAAACCGTATTTCGGAGATGC -ACGGAAACCGTATTTCGGTGAAGG -ACGGAAACCGTATTTCGGCAATGG -ACGGAAACCGTATTTCGGATGAGG -ACGGAAACCGTATTTCGGAATGGG -ACGGAAACCGTATTTCGGTCCTGA -ACGGAAACCGTATTTCGGTAGCGA -ACGGAAACCGTATTTCGGCACAGA -ACGGAAACCGTATTTCGGGCAAGA -ACGGAAACCGTATTTCGGGGTTGA -ACGGAAACCGTATTTCGGTCCGAT -ACGGAAACCGTATTTCGGTGGCAT -ACGGAAACCGTATTTCGGCGAGAT -ACGGAAACCGTATTTCGGTACCAC -ACGGAAACCGTATTTCGGCAGAAC -ACGGAAACCGTATTTCGGGTCTAC -ACGGAAACCGTATTTCGGACGTAC -ACGGAAACCGTATTTCGGAGTGAC -ACGGAAACCGTATTTCGGCTGTAG -ACGGAAACCGTATTTCGGCCTAAG -ACGGAAACCGTATTTCGGGTTCAG -ACGGAAACCGTATTTCGGGCATAG -ACGGAAACCGTATTTCGGGACAAG -ACGGAAACCGTATTTCGGAAGCAG -ACGGAAACCGTATTTCGGCGTCAA -ACGGAAACCGTATTTCGGGCTGAA -ACGGAAACCGTATTTCGGAGTACG -ACGGAAACCGTATTTCGGATCCGA -ACGGAAACCGTATTTCGGATGGGA -ACGGAAACCGTATTTCGGGTGCAA -ACGGAAACCGTATTTCGGGAGGAA -ACGGAAACCGTATTTCGGCAGGTA -ACGGAAACCGTATTTCGGGACTCT -ACGGAAACCGTATTTCGGAGTCCT -ACGGAAACCGTATTTCGGTAAGCC -ACGGAAACCGTATTTCGGATAGCC -ACGGAAACCGTATTTCGGTAACCG -ACGGAAACCGTATTTCGGATGCCA -ACGGAAACCGTAGTTGTGGGAAAC -ACGGAAACCGTAGTTGTGAACACC -ACGGAAACCGTAGTTGTGATCGAG -ACGGAAACCGTAGTTGTGCTCCTT -ACGGAAACCGTAGTTGTGCCTGTT -ACGGAAACCGTAGTTGTGCGGTTT -ACGGAAACCGTAGTTGTGGTGGTT -ACGGAAACCGTAGTTGTGGCCTTT -ACGGAAACCGTAGTTGTGGGTCTT -ACGGAAACCGTAGTTGTGACGCTT -ACGGAAACCGTAGTTGTGAGCGTT -ACGGAAACCGTAGTTGTGTTCGTC -ACGGAAACCGTAGTTGTGTCTCTC -ACGGAAACCGTAGTTGTGTGGATC -ACGGAAACCGTAGTTGTGCACTTC -ACGGAAACCGTAGTTGTGGTACTC -ACGGAAACCGTAGTTGTGGATGTC -ACGGAAACCGTAGTTGTGACAGTC -ACGGAAACCGTAGTTGTGTTGCTG -ACGGAAACCGTAGTTGTGTCCATG -ACGGAAACCGTAGTTGTGTGTGTG -ACGGAAACCGTAGTTGTGCTAGTG -ACGGAAACCGTAGTTGTGCATCTG -ACGGAAACCGTAGTTGTGGAGTTG -ACGGAAACCGTAGTTGTGAGACTG -ACGGAAACCGTAGTTGTGTCGGTA -ACGGAAACCGTAGTTGTGTGCCTA -ACGGAAACCGTAGTTGTGCCACTA -ACGGAAACCGTAGTTGTGGGAGTA -ACGGAAACCGTAGTTGTGTCGTCT -ACGGAAACCGTAGTTGTGTGCACT -ACGGAAACCGTAGTTGTGCTGACT -ACGGAAACCGTAGTTGTGCAACCT -ACGGAAACCGTAGTTGTGGCTACT -ACGGAAACCGTAGTTGTGGGATCT -ACGGAAACCGTAGTTGTGAAGGCT -ACGGAAACCGTAGTTGTGTCAACC -ACGGAAACCGTAGTTGTGTGTTCC -ACGGAAACCGTAGTTGTGATTCCC -ACGGAAACCGTAGTTGTGTTCTCG -ACGGAAACCGTAGTTGTGTAGACG -ACGGAAACCGTAGTTGTGGTAACG -ACGGAAACCGTAGTTGTGACTTCG -ACGGAAACCGTAGTTGTGTACGCA -ACGGAAACCGTAGTTGTGCTTGCA -ACGGAAACCGTAGTTGTGCGAACA -ACGGAAACCGTAGTTGTGCAGTCA -ACGGAAACCGTAGTTGTGGATCCA -ACGGAAACCGTAGTTGTGACGACA -ACGGAAACCGTAGTTGTGAGCTCA -ACGGAAACCGTAGTTGTGTCACGT -ACGGAAACCGTAGTTGTGCGTAGT -ACGGAAACCGTAGTTGTGGTCAGT -ACGGAAACCGTAGTTGTGGAAGGT -ACGGAAACCGTAGTTGTGAACCGT -ACGGAAACCGTAGTTGTGTTGTGC -ACGGAAACCGTAGTTGTGCTAAGC -ACGGAAACCGTAGTTGTGACTAGC -ACGGAAACCGTAGTTGTGAGATGC -ACGGAAACCGTAGTTGTGTGAAGG -ACGGAAACCGTAGTTGTGCAATGG -ACGGAAACCGTAGTTGTGATGAGG -ACGGAAACCGTAGTTGTGAATGGG -ACGGAAACCGTAGTTGTGTCCTGA -ACGGAAACCGTAGTTGTGTAGCGA -ACGGAAACCGTAGTTGTGCACAGA -ACGGAAACCGTAGTTGTGGCAAGA -ACGGAAACCGTAGTTGTGGGTTGA -ACGGAAACCGTAGTTGTGTCCGAT -ACGGAAACCGTAGTTGTGTGGCAT -ACGGAAACCGTAGTTGTGCGAGAT -ACGGAAACCGTAGTTGTGTACCAC -ACGGAAACCGTAGTTGTGCAGAAC -ACGGAAACCGTAGTTGTGGTCTAC -ACGGAAACCGTAGTTGTGACGTAC -ACGGAAACCGTAGTTGTGAGTGAC -ACGGAAACCGTAGTTGTGCTGTAG -ACGGAAACCGTAGTTGTGCCTAAG -ACGGAAACCGTAGTTGTGGTTCAG -ACGGAAACCGTAGTTGTGGCATAG -ACGGAAACCGTAGTTGTGGACAAG -ACGGAAACCGTAGTTGTGAAGCAG -ACGGAAACCGTAGTTGTGCGTCAA -ACGGAAACCGTAGTTGTGGCTGAA -ACGGAAACCGTAGTTGTGAGTACG -ACGGAAACCGTAGTTGTGATCCGA -ACGGAAACCGTAGTTGTGATGGGA -ACGGAAACCGTAGTTGTGGTGCAA -ACGGAAACCGTAGTTGTGGAGGAA -ACGGAAACCGTAGTTGTGCAGGTA -ACGGAAACCGTAGTTGTGGACTCT -ACGGAAACCGTAGTTGTGAGTCCT -ACGGAAACCGTAGTTGTGTAAGCC -ACGGAAACCGTAGTTGTGATAGCC -ACGGAAACCGTAGTTGTGTAACCG -ACGGAAACCGTAGTTGTGATGCCA -ACGGAAACCGTATTTGCCGGAAAC -ACGGAAACCGTATTTGCCAACACC -ACGGAAACCGTATTTGCCATCGAG -ACGGAAACCGTATTTGCCCTCCTT -ACGGAAACCGTATTTGCCCCTGTT -ACGGAAACCGTATTTGCCCGGTTT -ACGGAAACCGTATTTGCCGTGGTT -ACGGAAACCGTATTTGCCGCCTTT -ACGGAAACCGTATTTGCCGGTCTT -ACGGAAACCGTATTTGCCACGCTT -ACGGAAACCGTATTTGCCAGCGTT -ACGGAAACCGTATTTGCCTTCGTC -ACGGAAACCGTATTTGCCTCTCTC -ACGGAAACCGTATTTGCCTGGATC -ACGGAAACCGTATTTGCCCACTTC -ACGGAAACCGTATTTGCCGTACTC -ACGGAAACCGTATTTGCCGATGTC -ACGGAAACCGTATTTGCCACAGTC -ACGGAAACCGTATTTGCCTTGCTG -ACGGAAACCGTATTTGCCTCCATG -ACGGAAACCGTATTTGCCTGTGTG -ACGGAAACCGTATTTGCCCTAGTG -ACGGAAACCGTATTTGCCCATCTG -ACGGAAACCGTATTTGCCGAGTTG -ACGGAAACCGTATTTGCCAGACTG -ACGGAAACCGTATTTGCCTCGGTA -ACGGAAACCGTATTTGCCTGCCTA -ACGGAAACCGTATTTGCCCCACTA -ACGGAAACCGTATTTGCCGGAGTA -ACGGAAACCGTATTTGCCTCGTCT -ACGGAAACCGTATTTGCCTGCACT -ACGGAAACCGTATTTGCCCTGACT -ACGGAAACCGTATTTGCCCAACCT -ACGGAAACCGTATTTGCCGCTACT -ACGGAAACCGTATTTGCCGGATCT -ACGGAAACCGTATTTGCCAAGGCT -ACGGAAACCGTATTTGCCTCAACC -ACGGAAACCGTATTTGCCTGTTCC -ACGGAAACCGTATTTGCCATTCCC -ACGGAAACCGTATTTGCCTTCTCG -ACGGAAACCGTATTTGCCTAGACG -ACGGAAACCGTATTTGCCGTAACG -ACGGAAACCGTATTTGCCACTTCG -ACGGAAACCGTATTTGCCTACGCA -ACGGAAACCGTATTTGCCCTTGCA -ACGGAAACCGTATTTGCCCGAACA -ACGGAAACCGTATTTGCCCAGTCA -ACGGAAACCGTATTTGCCGATCCA -ACGGAAACCGTATTTGCCACGACA -ACGGAAACCGTATTTGCCAGCTCA -ACGGAAACCGTATTTGCCTCACGT -ACGGAAACCGTATTTGCCCGTAGT -ACGGAAACCGTATTTGCCGTCAGT -ACGGAAACCGTATTTGCCGAAGGT -ACGGAAACCGTATTTGCCAACCGT -ACGGAAACCGTATTTGCCTTGTGC -ACGGAAACCGTATTTGCCCTAAGC -ACGGAAACCGTATTTGCCACTAGC -ACGGAAACCGTATTTGCCAGATGC -ACGGAAACCGTATTTGCCTGAAGG -ACGGAAACCGTATTTGCCCAATGG -ACGGAAACCGTATTTGCCATGAGG -ACGGAAACCGTATTTGCCAATGGG -ACGGAAACCGTATTTGCCTCCTGA -ACGGAAACCGTATTTGCCTAGCGA -ACGGAAACCGTATTTGCCCACAGA -ACGGAAACCGTATTTGCCGCAAGA -ACGGAAACCGTATTTGCCGGTTGA -ACGGAAACCGTATTTGCCTCCGAT -ACGGAAACCGTATTTGCCTGGCAT -ACGGAAACCGTATTTGCCCGAGAT -ACGGAAACCGTATTTGCCTACCAC -ACGGAAACCGTATTTGCCCAGAAC -ACGGAAACCGTATTTGCCGTCTAC -ACGGAAACCGTATTTGCCACGTAC -ACGGAAACCGTATTTGCCAGTGAC -ACGGAAACCGTATTTGCCCTGTAG -ACGGAAACCGTATTTGCCCCTAAG -ACGGAAACCGTATTTGCCGTTCAG -ACGGAAACCGTATTTGCCGCATAG -ACGGAAACCGTATTTGCCGACAAG -ACGGAAACCGTATTTGCCAAGCAG -ACGGAAACCGTATTTGCCCGTCAA -ACGGAAACCGTATTTGCCGCTGAA -ACGGAAACCGTATTTGCCAGTACG -ACGGAAACCGTATTTGCCATCCGA -ACGGAAACCGTATTTGCCATGGGA -ACGGAAACCGTATTTGCCGTGCAA -ACGGAAACCGTATTTGCCGAGGAA -ACGGAAACCGTATTTGCCCAGGTA -ACGGAAACCGTATTTGCCGACTCT -ACGGAAACCGTATTTGCCAGTCCT -ACGGAAACCGTATTTGCCTAAGCC -ACGGAAACCGTATTTGCCATAGCC -ACGGAAACCGTATTTGCCTAACCG -ACGGAAACCGTATTTGCCATGCCA -ACGGAAACCGTACTTGGTGGAAAC -ACGGAAACCGTACTTGGTAACACC -ACGGAAACCGTACTTGGTATCGAG -ACGGAAACCGTACTTGGTCTCCTT -ACGGAAACCGTACTTGGTCCTGTT -ACGGAAACCGTACTTGGTCGGTTT -ACGGAAACCGTACTTGGTGTGGTT -ACGGAAACCGTACTTGGTGCCTTT -ACGGAAACCGTACTTGGTGGTCTT -ACGGAAACCGTACTTGGTACGCTT -ACGGAAACCGTACTTGGTAGCGTT -ACGGAAACCGTACTTGGTTTCGTC -ACGGAAACCGTACTTGGTTCTCTC -ACGGAAACCGTACTTGGTTGGATC -ACGGAAACCGTACTTGGTCACTTC -ACGGAAACCGTACTTGGTGTACTC -ACGGAAACCGTACTTGGTGATGTC -ACGGAAACCGTACTTGGTACAGTC -ACGGAAACCGTACTTGGTTTGCTG -ACGGAAACCGTACTTGGTTCCATG -ACGGAAACCGTACTTGGTTGTGTG -ACGGAAACCGTACTTGGTCTAGTG -ACGGAAACCGTACTTGGTCATCTG -ACGGAAACCGTACTTGGTGAGTTG -ACGGAAACCGTACTTGGTAGACTG -ACGGAAACCGTACTTGGTTCGGTA -ACGGAAACCGTACTTGGTTGCCTA -ACGGAAACCGTACTTGGTCCACTA -ACGGAAACCGTACTTGGTGGAGTA -ACGGAAACCGTACTTGGTTCGTCT -ACGGAAACCGTACTTGGTTGCACT -ACGGAAACCGTACTTGGTCTGACT -ACGGAAACCGTACTTGGTCAACCT -ACGGAAACCGTACTTGGTGCTACT -ACGGAAACCGTACTTGGTGGATCT -ACGGAAACCGTACTTGGTAAGGCT -ACGGAAACCGTACTTGGTTCAACC -ACGGAAACCGTACTTGGTTGTTCC -ACGGAAACCGTACTTGGTATTCCC -ACGGAAACCGTACTTGGTTTCTCG -ACGGAAACCGTACTTGGTTAGACG -ACGGAAACCGTACTTGGTGTAACG -ACGGAAACCGTACTTGGTACTTCG -ACGGAAACCGTACTTGGTTACGCA -ACGGAAACCGTACTTGGTCTTGCA -ACGGAAACCGTACTTGGTCGAACA -ACGGAAACCGTACTTGGTCAGTCA -ACGGAAACCGTACTTGGTGATCCA -ACGGAAACCGTACTTGGTACGACA -ACGGAAACCGTACTTGGTAGCTCA -ACGGAAACCGTACTTGGTTCACGT -ACGGAAACCGTACTTGGTCGTAGT -ACGGAAACCGTACTTGGTGTCAGT -ACGGAAACCGTACTTGGTGAAGGT -ACGGAAACCGTACTTGGTAACCGT -ACGGAAACCGTACTTGGTTTGTGC -ACGGAAACCGTACTTGGTCTAAGC -ACGGAAACCGTACTTGGTACTAGC -ACGGAAACCGTACTTGGTAGATGC -ACGGAAACCGTACTTGGTTGAAGG -ACGGAAACCGTACTTGGTCAATGG -ACGGAAACCGTACTTGGTATGAGG -ACGGAAACCGTACTTGGTAATGGG -ACGGAAACCGTACTTGGTTCCTGA -ACGGAAACCGTACTTGGTTAGCGA -ACGGAAACCGTACTTGGTCACAGA -ACGGAAACCGTACTTGGTGCAAGA -ACGGAAACCGTACTTGGTGGTTGA -ACGGAAACCGTACTTGGTTCCGAT -ACGGAAACCGTACTTGGTTGGCAT -ACGGAAACCGTACTTGGTCGAGAT -ACGGAAACCGTACTTGGTTACCAC -ACGGAAACCGTACTTGGTCAGAAC -ACGGAAACCGTACTTGGTGTCTAC -ACGGAAACCGTACTTGGTACGTAC -ACGGAAACCGTACTTGGTAGTGAC -ACGGAAACCGTACTTGGTCTGTAG -ACGGAAACCGTACTTGGTCCTAAG -ACGGAAACCGTACTTGGTGTTCAG -ACGGAAACCGTACTTGGTGCATAG -ACGGAAACCGTACTTGGTGACAAG -ACGGAAACCGTACTTGGTAAGCAG -ACGGAAACCGTACTTGGTCGTCAA -ACGGAAACCGTACTTGGTGCTGAA -ACGGAAACCGTACTTGGTAGTACG -ACGGAAACCGTACTTGGTATCCGA -ACGGAAACCGTACTTGGTATGGGA -ACGGAAACCGTACTTGGTGTGCAA -ACGGAAACCGTACTTGGTGAGGAA -ACGGAAACCGTACTTGGTCAGGTA -ACGGAAACCGTACTTGGTGACTCT -ACGGAAACCGTACTTGGTAGTCCT -ACGGAAACCGTACTTGGTTAAGCC -ACGGAAACCGTACTTGGTATAGCC -ACGGAAACCGTACTTGGTTAACCG -ACGGAAACCGTACTTGGTATGCCA -ACGGAAACCGTACTTACGGGAAAC -ACGGAAACCGTACTTACGAACACC -ACGGAAACCGTACTTACGATCGAG -ACGGAAACCGTACTTACGCTCCTT -ACGGAAACCGTACTTACGCCTGTT -ACGGAAACCGTACTTACGCGGTTT -ACGGAAACCGTACTTACGGTGGTT -ACGGAAACCGTACTTACGGCCTTT -ACGGAAACCGTACTTACGGGTCTT -ACGGAAACCGTACTTACGACGCTT -ACGGAAACCGTACTTACGAGCGTT -ACGGAAACCGTACTTACGTTCGTC -ACGGAAACCGTACTTACGTCTCTC -ACGGAAACCGTACTTACGTGGATC -ACGGAAACCGTACTTACGCACTTC -ACGGAAACCGTACTTACGGTACTC -ACGGAAACCGTACTTACGGATGTC -ACGGAAACCGTACTTACGACAGTC -ACGGAAACCGTACTTACGTTGCTG -ACGGAAACCGTACTTACGTCCATG -ACGGAAACCGTACTTACGTGTGTG -ACGGAAACCGTACTTACGCTAGTG -ACGGAAACCGTACTTACGCATCTG -ACGGAAACCGTACTTACGGAGTTG -ACGGAAACCGTACTTACGAGACTG -ACGGAAACCGTACTTACGTCGGTA -ACGGAAACCGTACTTACGTGCCTA -ACGGAAACCGTACTTACGCCACTA -ACGGAAACCGTACTTACGGGAGTA -ACGGAAACCGTACTTACGTCGTCT -ACGGAAACCGTACTTACGTGCACT -ACGGAAACCGTACTTACGCTGACT -ACGGAAACCGTACTTACGCAACCT -ACGGAAACCGTACTTACGGCTACT -ACGGAAACCGTACTTACGGGATCT -ACGGAAACCGTACTTACGAAGGCT -ACGGAAACCGTACTTACGTCAACC -ACGGAAACCGTACTTACGTGTTCC -ACGGAAACCGTACTTACGATTCCC -ACGGAAACCGTACTTACGTTCTCG -ACGGAAACCGTACTTACGTAGACG -ACGGAAACCGTACTTACGGTAACG -ACGGAAACCGTACTTACGACTTCG -ACGGAAACCGTACTTACGTACGCA -ACGGAAACCGTACTTACGCTTGCA -ACGGAAACCGTACTTACGCGAACA -ACGGAAACCGTACTTACGCAGTCA -ACGGAAACCGTACTTACGGATCCA -ACGGAAACCGTACTTACGACGACA -ACGGAAACCGTACTTACGAGCTCA -ACGGAAACCGTACTTACGTCACGT -ACGGAAACCGTACTTACGCGTAGT -ACGGAAACCGTACTTACGGTCAGT -ACGGAAACCGTACTTACGGAAGGT -ACGGAAACCGTACTTACGAACCGT -ACGGAAACCGTACTTACGTTGTGC -ACGGAAACCGTACTTACGCTAAGC -ACGGAAACCGTACTTACGACTAGC -ACGGAAACCGTACTTACGAGATGC -ACGGAAACCGTACTTACGTGAAGG -ACGGAAACCGTACTTACGCAATGG -ACGGAAACCGTACTTACGATGAGG -ACGGAAACCGTACTTACGAATGGG -ACGGAAACCGTACTTACGTCCTGA -ACGGAAACCGTACTTACGTAGCGA -ACGGAAACCGTACTTACGCACAGA -ACGGAAACCGTACTTACGGCAAGA -ACGGAAACCGTACTTACGGGTTGA -ACGGAAACCGTACTTACGTCCGAT -ACGGAAACCGTACTTACGTGGCAT -ACGGAAACCGTACTTACGCGAGAT -ACGGAAACCGTACTTACGTACCAC -ACGGAAACCGTACTTACGCAGAAC -ACGGAAACCGTACTTACGGTCTAC -ACGGAAACCGTACTTACGACGTAC -ACGGAAACCGTACTTACGAGTGAC -ACGGAAACCGTACTTACGCTGTAG -ACGGAAACCGTACTTACGCCTAAG -ACGGAAACCGTACTTACGGTTCAG -ACGGAAACCGTACTTACGGCATAG -ACGGAAACCGTACTTACGGACAAG -ACGGAAACCGTACTTACGAAGCAG -ACGGAAACCGTACTTACGCGTCAA -ACGGAAACCGTACTTACGGCTGAA -ACGGAAACCGTACTTACGAGTACG -ACGGAAACCGTACTTACGATCCGA -ACGGAAACCGTACTTACGATGGGA -ACGGAAACCGTACTTACGGTGCAA -ACGGAAACCGTACTTACGGAGGAA -ACGGAAACCGTACTTACGCAGGTA -ACGGAAACCGTACTTACGGACTCT -ACGGAAACCGTACTTACGAGTCCT -ACGGAAACCGTACTTACGTAAGCC -ACGGAAACCGTACTTACGATAGCC -ACGGAAACCGTACTTACGTAACCG -ACGGAAACCGTACTTACGATGCCA -ACGGAAACCGTAGTTAGCGGAAAC -ACGGAAACCGTAGTTAGCAACACC -ACGGAAACCGTAGTTAGCATCGAG -ACGGAAACCGTAGTTAGCCTCCTT -ACGGAAACCGTAGTTAGCCCTGTT -ACGGAAACCGTAGTTAGCCGGTTT -ACGGAAACCGTAGTTAGCGTGGTT -ACGGAAACCGTAGTTAGCGCCTTT -ACGGAAACCGTAGTTAGCGGTCTT -ACGGAAACCGTAGTTAGCACGCTT -ACGGAAACCGTAGTTAGCAGCGTT -ACGGAAACCGTAGTTAGCTTCGTC -ACGGAAACCGTAGTTAGCTCTCTC -ACGGAAACCGTAGTTAGCTGGATC -ACGGAAACCGTAGTTAGCCACTTC -ACGGAAACCGTAGTTAGCGTACTC -ACGGAAACCGTAGTTAGCGATGTC -ACGGAAACCGTAGTTAGCACAGTC -ACGGAAACCGTAGTTAGCTTGCTG -ACGGAAACCGTAGTTAGCTCCATG -ACGGAAACCGTAGTTAGCTGTGTG -ACGGAAACCGTAGTTAGCCTAGTG -ACGGAAACCGTAGTTAGCCATCTG -ACGGAAACCGTAGTTAGCGAGTTG -ACGGAAACCGTAGTTAGCAGACTG -ACGGAAACCGTAGTTAGCTCGGTA -ACGGAAACCGTAGTTAGCTGCCTA -ACGGAAACCGTAGTTAGCCCACTA -ACGGAAACCGTAGTTAGCGGAGTA -ACGGAAACCGTAGTTAGCTCGTCT -ACGGAAACCGTAGTTAGCTGCACT -ACGGAAACCGTAGTTAGCCTGACT -ACGGAAACCGTAGTTAGCCAACCT -ACGGAAACCGTAGTTAGCGCTACT -ACGGAAACCGTAGTTAGCGGATCT -ACGGAAACCGTAGTTAGCAAGGCT -ACGGAAACCGTAGTTAGCTCAACC -ACGGAAACCGTAGTTAGCTGTTCC -ACGGAAACCGTAGTTAGCATTCCC -ACGGAAACCGTAGTTAGCTTCTCG -ACGGAAACCGTAGTTAGCTAGACG -ACGGAAACCGTAGTTAGCGTAACG -ACGGAAACCGTAGTTAGCACTTCG -ACGGAAACCGTAGTTAGCTACGCA -ACGGAAACCGTAGTTAGCCTTGCA -ACGGAAACCGTAGTTAGCCGAACA -ACGGAAACCGTAGTTAGCCAGTCA -ACGGAAACCGTAGTTAGCGATCCA -ACGGAAACCGTAGTTAGCACGACA -ACGGAAACCGTAGTTAGCAGCTCA -ACGGAAACCGTAGTTAGCTCACGT -ACGGAAACCGTAGTTAGCCGTAGT -ACGGAAACCGTAGTTAGCGTCAGT -ACGGAAACCGTAGTTAGCGAAGGT -ACGGAAACCGTAGTTAGCAACCGT -ACGGAAACCGTAGTTAGCTTGTGC -ACGGAAACCGTAGTTAGCCTAAGC -ACGGAAACCGTAGTTAGCACTAGC -ACGGAAACCGTAGTTAGCAGATGC -ACGGAAACCGTAGTTAGCTGAAGG -ACGGAAACCGTAGTTAGCCAATGG -ACGGAAACCGTAGTTAGCATGAGG -ACGGAAACCGTAGTTAGCAATGGG -ACGGAAACCGTAGTTAGCTCCTGA -ACGGAAACCGTAGTTAGCTAGCGA -ACGGAAACCGTAGTTAGCCACAGA -ACGGAAACCGTAGTTAGCGCAAGA -ACGGAAACCGTAGTTAGCGGTTGA -ACGGAAACCGTAGTTAGCTCCGAT -ACGGAAACCGTAGTTAGCTGGCAT -ACGGAAACCGTAGTTAGCCGAGAT -ACGGAAACCGTAGTTAGCTACCAC -ACGGAAACCGTAGTTAGCCAGAAC -ACGGAAACCGTAGTTAGCGTCTAC -ACGGAAACCGTAGTTAGCACGTAC -ACGGAAACCGTAGTTAGCAGTGAC -ACGGAAACCGTAGTTAGCCTGTAG -ACGGAAACCGTAGTTAGCCCTAAG -ACGGAAACCGTAGTTAGCGTTCAG -ACGGAAACCGTAGTTAGCGCATAG -ACGGAAACCGTAGTTAGCGACAAG -ACGGAAACCGTAGTTAGCAAGCAG -ACGGAAACCGTAGTTAGCCGTCAA -ACGGAAACCGTAGTTAGCGCTGAA -ACGGAAACCGTAGTTAGCAGTACG -ACGGAAACCGTAGTTAGCATCCGA -ACGGAAACCGTAGTTAGCATGGGA -ACGGAAACCGTAGTTAGCGTGCAA -ACGGAAACCGTAGTTAGCGAGGAA -ACGGAAACCGTAGTTAGCCAGGTA -ACGGAAACCGTAGTTAGCGACTCT -ACGGAAACCGTAGTTAGCAGTCCT -ACGGAAACCGTAGTTAGCTAAGCC -ACGGAAACCGTAGTTAGCATAGCC -ACGGAAACCGTAGTTAGCTAACCG -ACGGAAACCGTAGTTAGCATGCCA -ACGGAAACCGTAGTCTTCGGAAAC -ACGGAAACCGTAGTCTTCAACACC -ACGGAAACCGTAGTCTTCATCGAG -ACGGAAACCGTAGTCTTCCTCCTT -ACGGAAACCGTAGTCTTCCCTGTT -ACGGAAACCGTAGTCTTCCGGTTT -ACGGAAACCGTAGTCTTCGTGGTT -ACGGAAACCGTAGTCTTCGCCTTT -ACGGAAACCGTAGTCTTCGGTCTT -ACGGAAACCGTAGTCTTCACGCTT -ACGGAAACCGTAGTCTTCAGCGTT -ACGGAAACCGTAGTCTTCTTCGTC -ACGGAAACCGTAGTCTTCTCTCTC -ACGGAAACCGTAGTCTTCTGGATC -ACGGAAACCGTAGTCTTCCACTTC -ACGGAAACCGTAGTCTTCGTACTC -ACGGAAACCGTAGTCTTCGATGTC -ACGGAAACCGTAGTCTTCACAGTC -ACGGAAACCGTAGTCTTCTTGCTG -ACGGAAACCGTAGTCTTCTCCATG -ACGGAAACCGTAGTCTTCTGTGTG -ACGGAAACCGTAGTCTTCCTAGTG -ACGGAAACCGTAGTCTTCCATCTG -ACGGAAACCGTAGTCTTCGAGTTG -ACGGAAACCGTAGTCTTCAGACTG -ACGGAAACCGTAGTCTTCTCGGTA -ACGGAAACCGTAGTCTTCTGCCTA -ACGGAAACCGTAGTCTTCCCACTA -ACGGAAACCGTAGTCTTCGGAGTA -ACGGAAACCGTAGTCTTCTCGTCT -ACGGAAACCGTAGTCTTCTGCACT -ACGGAAACCGTAGTCTTCCTGACT -ACGGAAACCGTAGTCTTCCAACCT -ACGGAAACCGTAGTCTTCGCTACT -ACGGAAACCGTAGTCTTCGGATCT -ACGGAAACCGTAGTCTTCAAGGCT -ACGGAAACCGTAGTCTTCTCAACC -ACGGAAACCGTAGTCTTCTGTTCC -ACGGAAACCGTAGTCTTCATTCCC -ACGGAAACCGTAGTCTTCTTCTCG -ACGGAAACCGTAGTCTTCTAGACG -ACGGAAACCGTAGTCTTCGTAACG -ACGGAAACCGTAGTCTTCACTTCG -ACGGAAACCGTAGTCTTCTACGCA -ACGGAAACCGTAGTCTTCCTTGCA -ACGGAAACCGTAGTCTTCCGAACA -ACGGAAACCGTAGTCTTCCAGTCA -ACGGAAACCGTAGTCTTCGATCCA -ACGGAAACCGTAGTCTTCACGACA -ACGGAAACCGTAGTCTTCAGCTCA -ACGGAAACCGTAGTCTTCTCACGT -ACGGAAACCGTAGTCTTCCGTAGT -ACGGAAACCGTAGTCTTCGTCAGT -ACGGAAACCGTAGTCTTCGAAGGT -ACGGAAACCGTAGTCTTCAACCGT -ACGGAAACCGTAGTCTTCTTGTGC -ACGGAAACCGTAGTCTTCCTAAGC -ACGGAAACCGTAGTCTTCACTAGC -ACGGAAACCGTAGTCTTCAGATGC -ACGGAAACCGTAGTCTTCTGAAGG -ACGGAAACCGTAGTCTTCCAATGG -ACGGAAACCGTAGTCTTCATGAGG -ACGGAAACCGTAGTCTTCAATGGG -ACGGAAACCGTAGTCTTCTCCTGA -ACGGAAACCGTAGTCTTCTAGCGA -ACGGAAACCGTAGTCTTCCACAGA -ACGGAAACCGTAGTCTTCGCAAGA -ACGGAAACCGTAGTCTTCGGTTGA -ACGGAAACCGTAGTCTTCTCCGAT -ACGGAAACCGTAGTCTTCTGGCAT -ACGGAAACCGTAGTCTTCCGAGAT -ACGGAAACCGTAGTCTTCTACCAC -ACGGAAACCGTAGTCTTCCAGAAC -ACGGAAACCGTAGTCTTCGTCTAC -ACGGAAACCGTAGTCTTCACGTAC -ACGGAAACCGTAGTCTTCAGTGAC -ACGGAAACCGTAGTCTTCCTGTAG -ACGGAAACCGTAGTCTTCCCTAAG -ACGGAAACCGTAGTCTTCGTTCAG -ACGGAAACCGTAGTCTTCGCATAG -ACGGAAACCGTAGTCTTCGACAAG -ACGGAAACCGTAGTCTTCAAGCAG -ACGGAAACCGTAGTCTTCCGTCAA -ACGGAAACCGTAGTCTTCGCTGAA -ACGGAAACCGTAGTCTTCAGTACG -ACGGAAACCGTAGTCTTCATCCGA -ACGGAAACCGTAGTCTTCATGGGA -ACGGAAACCGTAGTCTTCGTGCAA -ACGGAAACCGTAGTCTTCGAGGAA -ACGGAAACCGTAGTCTTCCAGGTA -ACGGAAACCGTAGTCTTCGACTCT -ACGGAAACCGTAGTCTTCAGTCCT -ACGGAAACCGTAGTCTTCTAAGCC -ACGGAAACCGTAGTCTTCATAGCC -ACGGAAACCGTAGTCTTCTAACCG -ACGGAAACCGTAGTCTTCATGCCA -ACGGAAACCGTACTCTCTGGAAAC -ACGGAAACCGTACTCTCTAACACC -ACGGAAACCGTACTCTCTATCGAG -ACGGAAACCGTACTCTCTCTCCTT -ACGGAAACCGTACTCTCTCCTGTT -ACGGAAACCGTACTCTCTCGGTTT -ACGGAAACCGTACTCTCTGTGGTT -ACGGAAACCGTACTCTCTGCCTTT -ACGGAAACCGTACTCTCTGGTCTT -ACGGAAACCGTACTCTCTACGCTT -ACGGAAACCGTACTCTCTAGCGTT -ACGGAAACCGTACTCTCTTTCGTC -ACGGAAACCGTACTCTCTTCTCTC -ACGGAAACCGTACTCTCTTGGATC -ACGGAAACCGTACTCTCTCACTTC -ACGGAAACCGTACTCTCTGTACTC -ACGGAAACCGTACTCTCTGATGTC -ACGGAAACCGTACTCTCTACAGTC -ACGGAAACCGTACTCTCTTTGCTG -ACGGAAACCGTACTCTCTTCCATG -ACGGAAACCGTACTCTCTTGTGTG -ACGGAAACCGTACTCTCTCTAGTG -ACGGAAACCGTACTCTCTCATCTG -ACGGAAACCGTACTCTCTGAGTTG -ACGGAAACCGTACTCTCTAGACTG -ACGGAAACCGTACTCTCTTCGGTA -ACGGAAACCGTACTCTCTTGCCTA -ACGGAAACCGTACTCTCTCCACTA -ACGGAAACCGTACTCTCTGGAGTA -ACGGAAACCGTACTCTCTTCGTCT -ACGGAAACCGTACTCTCTTGCACT -ACGGAAACCGTACTCTCTCTGACT -ACGGAAACCGTACTCTCTCAACCT -ACGGAAACCGTACTCTCTGCTACT -ACGGAAACCGTACTCTCTGGATCT -ACGGAAACCGTACTCTCTAAGGCT -ACGGAAACCGTACTCTCTTCAACC -ACGGAAACCGTACTCTCTTGTTCC -ACGGAAACCGTACTCTCTATTCCC -ACGGAAACCGTACTCTCTTTCTCG -ACGGAAACCGTACTCTCTTAGACG -ACGGAAACCGTACTCTCTGTAACG -ACGGAAACCGTACTCTCTACTTCG -ACGGAAACCGTACTCTCTTACGCA -ACGGAAACCGTACTCTCTCTTGCA -ACGGAAACCGTACTCTCTCGAACA -ACGGAAACCGTACTCTCTCAGTCA -ACGGAAACCGTACTCTCTGATCCA -ACGGAAACCGTACTCTCTACGACA -ACGGAAACCGTACTCTCTAGCTCA -ACGGAAACCGTACTCTCTTCACGT -ACGGAAACCGTACTCTCTCGTAGT -ACGGAAACCGTACTCTCTGTCAGT -ACGGAAACCGTACTCTCTGAAGGT -ACGGAAACCGTACTCTCTAACCGT -ACGGAAACCGTACTCTCTTTGTGC -ACGGAAACCGTACTCTCTCTAAGC -ACGGAAACCGTACTCTCTACTAGC -ACGGAAACCGTACTCTCTAGATGC -ACGGAAACCGTACTCTCTTGAAGG -ACGGAAACCGTACTCTCTCAATGG -ACGGAAACCGTACTCTCTATGAGG -ACGGAAACCGTACTCTCTAATGGG -ACGGAAACCGTACTCTCTTCCTGA -ACGGAAACCGTACTCTCTTAGCGA -ACGGAAACCGTACTCTCTCACAGA -ACGGAAACCGTACTCTCTGCAAGA -ACGGAAACCGTACTCTCTGGTTGA -ACGGAAACCGTACTCTCTTCCGAT -ACGGAAACCGTACTCTCTTGGCAT -ACGGAAACCGTACTCTCTCGAGAT -ACGGAAACCGTACTCTCTTACCAC -ACGGAAACCGTACTCTCTCAGAAC -ACGGAAACCGTACTCTCTGTCTAC -ACGGAAACCGTACTCTCTACGTAC -ACGGAAACCGTACTCTCTAGTGAC -ACGGAAACCGTACTCTCTCTGTAG -ACGGAAACCGTACTCTCTCCTAAG -ACGGAAACCGTACTCTCTGTTCAG -ACGGAAACCGTACTCTCTGCATAG -ACGGAAACCGTACTCTCTGACAAG -ACGGAAACCGTACTCTCTAAGCAG -ACGGAAACCGTACTCTCTCGTCAA -ACGGAAACCGTACTCTCTGCTGAA -ACGGAAACCGTACTCTCTAGTACG -ACGGAAACCGTACTCTCTATCCGA -ACGGAAACCGTACTCTCTATGGGA -ACGGAAACCGTACTCTCTGTGCAA -ACGGAAACCGTACTCTCTGAGGAA -ACGGAAACCGTACTCTCTCAGGTA -ACGGAAACCGTACTCTCTGACTCT -ACGGAAACCGTACTCTCTAGTCCT -ACGGAAACCGTACTCTCTTAAGCC -ACGGAAACCGTACTCTCTATAGCC -ACGGAAACCGTACTCTCTTAACCG -ACGGAAACCGTACTCTCTATGCCA -ACGGAAACCGTAATCTGGGGAAAC -ACGGAAACCGTAATCTGGAACACC -ACGGAAACCGTAATCTGGATCGAG -ACGGAAACCGTAATCTGGCTCCTT -ACGGAAACCGTAATCTGGCCTGTT -ACGGAAACCGTAATCTGGCGGTTT -ACGGAAACCGTAATCTGGGTGGTT -ACGGAAACCGTAATCTGGGCCTTT -ACGGAAACCGTAATCTGGGGTCTT -ACGGAAACCGTAATCTGGACGCTT -ACGGAAACCGTAATCTGGAGCGTT -ACGGAAACCGTAATCTGGTTCGTC -ACGGAAACCGTAATCTGGTCTCTC -ACGGAAACCGTAATCTGGTGGATC -ACGGAAACCGTAATCTGGCACTTC -ACGGAAACCGTAATCTGGGTACTC -ACGGAAACCGTAATCTGGGATGTC -ACGGAAACCGTAATCTGGACAGTC -ACGGAAACCGTAATCTGGTTGCTG -ACGGAAACCGTAATCTGGTCCATG -ACGGAAACCGTAATCTGGTGTGTG -ACGGAAACCGTAATCTGGCTAGTG -ACGGAAACCGTAATCTGGCATCTG -ACGGAAACCGTAATCTGGGAGTTG -ACGGAAACCGTAATCTGGAGACTG -ACGGAAACCGTAATCTGGTCGGTA -ACGGAAACCGTAATCTGGTGCCTA -ACGGAAACCGTAATCTGGCCACTA -ACGGAAACCGTAATCTGGGGAGTA -ACGGAAACCGTAATCTGGTCGTCT -ACGGAAACCGTAATCTGGTGCACT -ACGGAAACCGTAATCTGGCTGACT -ACGGAAACCGTAATCTGGCAACCT -ACGGAAACCGTAATCTGGGCTACT -ACGGAAACCGTAATCTGGGGATCT -ACGGAAACCGTAATCTGGAAGGCT -ACGGAAACCGTAATCTGGTCAACC -ACGGAAACCGTAATCTGGTGTTCC -ACGGAAACCGTAATCTGGATTCCC -ACGGAAACCGTAATCTGGTTCTCG -ACGGAAACCGTAATCTGGTAGACG -ACGGAAACCGTAATCTGGGTAACG -ACGGAAACCGTAATCTGGACTTCG -ACGGAAACCGTAATCTGGTACGCA -ACGGAAACCGTAATCTGGCTTGCA -ACGGAAACCGTAATCTGGCGAACA -ACGGAAACCGTAATCTGGCAGTCA -ACGGAAACCGTAATCTGGGATCCA -ACGGAAACCGTAATCTGGACGACA -ACGGAAACCGTAATCTGGAGCTCA -ACGGAAACCGTAATCTGGTCACGT -ACGGAAACCGTAATCTGGCGTAGT -ACGGAAACCGTAATCTGGGTCAGT -ACGGAAACCGTAATCTGGGAAGGT -ACGGAAACCGTAATCTGGAACCGT -ACGGAAACCGTAATCTGGTTGTGC -ACGGAAACCGTAATCTGGCTAAGC -ACGGAAACCGTAATCTGGACTAGC -ACGGAAACCGTAATCTGGAGATGC -ACGGAAACCGTAATCTGGTGAAGG -ACGGAAACCGTAATCTGGCAATGG -ACGGAAACCGTAATCTGGATGAGG -ACGGAAACCGTAATCTGGAATGGG -ACGGAAACCGTAATCTGGTCCTGA -ACGGAAACCGTAATCTGGTAGCGA -ACGGAAACCGTAATCTGGCACAGA -ACGGAAACCGTAATCTGGGCAAGA -ACGGAAACCGTAATCTGGGGTTGA -ACGGAAACCGTAATCTGGTCCGAT -ACGGAAACCGTAATCTGGTGGCAT -ACGGAAACCGTAATCTGGCGAGAT -ACGGAAACCGTAATCTGGTACCAC -ACGGAAACCGTAATCTGGCAGAAC -ACGGAAACCGTAATCTGGGTCTAC -ACGGAAACCGTAATCTGGACGTAC -ACGGAAACCGTAATCTGGAGTGAC -ACGGAAACCGTAATCTGGCTGTAG -ACGGAAACCGTAATCTGGCCTAAG -ACGGAAACCGTAATCTGGGTTCAG -ACGGAAACCGTAATCTGGGCATAG -ACGGAAACCGTAATCTGGGACAAG -ACGGAAACCGTAATCTGGAAGCAG -ACGGAAACCGTAATCTGGCGTCAA -ACGGAAACCGTAATCTGGGCTGAA -ACGGAAACCGTAATCTGGAGTACG -ACGGAAACCGTAATCTGGATCCGA -ACGGAAACCGTAATCTGGATGGGA -ACGGAAACCGTAATCTGGGTGCAA -ACGGAAACCGTAATCTGGGAGGAA -ACGGAAACCGTAATCTGGCAGGTA -ACGGAAACCGTAATCTGGGACTCT -ACGGAAACCGTAATCTGGAGTCCT -ACGGAAACCGTAATCTGGTAAGCC -ACGGAAACCGTAATCTGGATAGCC -ACGGAAACCGTAATCTGGTAACCG -ACGGAAACCGTAATCTGGATGCCA -ACGGAAACCGTATTCCACGGAAAC -ACGGAAACCGTATTCCACAACACC -ACGGAAACCGTATTCCACATCGAG -ACGGAAACCGTATTCCACCTCCTT -ACGGAAACCGTATTCCACCCTGTT -ACGGAAACCGTATTCCACCGGTTT -ACGGAAACCGTATTCCACGTGGTT -ACGGAAACCGTATTCCACGCCTTT -ACGGAAACCGTATTCCACGGTCTT -ACGGAAACCGTATTCCACACGCTT -ACGGAAACCGTATTCCACAGCGTT -ACGGAAACCGTATTCCACTTCGTC -ACGGAAACCGTATTCCACTCTCTC -ACGGAAACCGTATTCCACTGGATC -ACGGAAACCGTATTCCACCACTTC -ACGGAAACCGTATTCCACGTACTC -ACGGAAACCGTATTCCACGATGTC -ACGGAAACCGTATTCCACACAGTC -ACGGAAACCGTATTCCACTTGCTG -ACGGAAACCGTATTCCACTCCATG -ACGGAAACCGTATTCCACTGTGTG -ACGGAAACCGTATTCCACCTAGTG -ACGGAAACCGTATTCCACCATCTG -ACGGAAACCGTATTCCACGAGTTG -ACGGAAACCGTATTCCACAGACTG -ACGGAAACCGTATTCCACTCGGTA -ACGGAAACCGTATTCCACTGCCTA -ACGGAAACCGTATTCCACCCACTA -ACGGAAACCGTATTCCACGGAGTA -ACGGAAACCGTATTCCACTCGTCT -ACGGAAACCGTATTCCACTGCACT -ACGGAAACCGTATTCCACCTGACT -ACGGAAACCGTATTCCACCAACCT -ACGGAAACCGTATTCCACGCTACT -ACGGAAACCGTATTCCACGGATCT -ACGGAAACCGTATTCCACAAGGCT -ACGGAAACCGTATTCCACTCAACC -ACGGAAACCGTATTCCACTGTTCC -ACGGAAACCGTATTCCACATTCCC -ACGGAAACCGTATTCCACTTCTCG -ACGGAAACCGTATTCCACTAGACG -ACGGAAACCGTATTCCACGTAACG -ACGGAAACCGTATTCCACACTTCG -ACGGAAACCGTATTCCACTACGCA -ACGGAAACCGTATTCCACCTTGCA -ACGGAAACCGTATTCCACCGAACA -ACGGAAACCGTATTCCACCAGTCA -ACGGAAACCGTATTCCACGATCCA -ACGGAAACCGTATTCCACACGACA -ACGGAAACCGTATTCCACAGCTCA -ACGGAAACCGTATTCCACTCACGT -ACGGAAACCGTATTCCACCGTAGT -ACGGAAACCGTATTCCACGTCAGT -ACGGAAACCGTATTCCACGAAGGT -ACGGAAACCGTATTCCACAACCGT -ACGGAAACCGTATTCCACTTGTGC -ACGGAAACCGTATTCCACCTAAGC -ACGGAAACCGTATTCCACACTAGC -ACGGAAACCGTATTCCACAGATGC -ACGGAAACCGTATTCCACTGAAGG -ACGGAAACCGTATTCCACCAATGG -ACGGAAACCGTATTCCACATGAGG -ACGGAAACCGTATTCCACAATGGG -ACGGAAACCGTATTCCACTCCTGA -ACGGAAACCGTATTCCACTAGCGA -ACGGAAACCGTATTCCACCACAGA -ACGGAAACCGTATTCCACGCAAGA -ACGGAAACCGTATTCCACGGTTGA -ACGGAAACCGTATTCCACTCCGAT -ACGGAAACCGTATTCCACTGGCAT -ACGGAAACCGTATTCCACCGAGAT -ACGGAAACCGTATTCCACTACCAC -ACGGAAACCGTATTCCACCAGAAC -ACGGAAACCGTATTCCACGTCTAC -ACGGAAACCGTATTCCACACGTAC -ACGGAAACCGTATTCCACAGTGAC -ACGGAAACCGTATTCCACCTGTAG -ACGGAAACCGTATTCCACCCTAAG -ACGGAAACCGTATTCCACGTTCAG -ACGGAAACCGTATTCCACGCATAG -ACGGAAACCGTATTCCACGACAAG -ACGGAAACCGTATTCCACAAGCAG -ACGGAAACCGTATTCCACCGTCAA -ACGGAAACCGTATTCCACGCTGAA -ACGGAAACCGTATTCCACAGTACG -ACGGAAACCGTATTCCACATCCGA -ACGGAAACCGTATTCCACATGGGA -ACGGAAACCGTATTCCACGTGCAA -ACGGAAACCGTATTCCACGAGGAA -ACGGAAACCGTATTCCACCAGGTA -ACGGAAACCGTATTCCACGACTCT -ACGGAAACCGTATTCCACAGTCCT -ACGGAAACCGTATTCCACTAAGCC -ACGGAAACCGTATTCCACATAGCC -ACGGAAACCGTATTCCACTAACCG -ACGGAAACCGTATTCCACATGCCA -ACGGAAACCGTACTCGTAGGAAAC -ACGGAAACCGTACTCGTAAACACC -ACGGAAACCGTACTCGTAATCGAG -ACGGAAACCGTACTCGTACTCCTT -ACGGAAACCGTACTCGTACCTGTT -ACGGAAACCGTACTCGTACGGTTT -ACGGAAACCGTACTCGTAGTGGTT -ACGGAAACCGTACTCGTAGCCTTT -ACGGAAACCGTACTCGTAGGTCTT -ACGGAAACCGTACTCGTAACGCTT -ACGGAAACCGTACTCGTAAGCGTT -ACGGAAACCGTACTCGTATTCGTC -ACGGAAACCGTACTCGTATCTCTC -ACGGAAACCGTACTCGTATGGATC -ACGGAAACCGTACTCGTACACTTC -ACGGAAACCGTACTCGTAGTACTC -ACGGAAACCGTACTCGTAGATGTC -ACGGAAACCGTACTCGTAACAGTC -ACGGAAACCGTACTCGTATTGCTG -ACGGAAACCGTACTCGTATCCATG -ACGGAAACCGTACTCGTATGTGTG -ACGGAAACCGTACTCGTACTAGTG -ACGGAAACCGTACTCGTACATCTG -ACGGAAACCGTACTCGTAGAGTTG -ACGGAAACCGTACTCGTAAGACTG -ACGGAAACCGTACTCGTATCGGTA -ACGGAAACCGTACTCGTATGCCTA -ACGGAAACCGTACTCGTACCACTA -ACGGAAACCGTACTCGTAGGAGTA -ACGGAAACCGTACTCGTATCGTCT -ACGGAAACCGTACTCGTATGCACT -ACGGAAACCGTACTCGTACTGACT -ACGGAAACCGTACTCGTACAACCT -ACGGAAACCGTACTCGTAGCTACT -ACGGAAACCGTACTCGTAGGATCT -ACGGAAACCGTACTCGTAAAGGCT -ACGGAAACCGTACTCGTATCAACC -ACGGAAACCGTACTCGTATGTTCC -ACGGAAACCGTACTCGTAATTCCC -ACGGAAACCGTACTCGTATTCTCG -ACGGAAACCGTACTCGTATAGACG -ACGGAAACCGTACTCGTAGTAACG -ACGGAAACCGTACTCGTAACTTCG -ACGGAAACCGTACTCGTATACGCA -ACGGAAACCGTACTCGTACTTGCA -ACGGAAACCGTACTCGTACGAACA -ACGGAAACCGTACTCGTACAGTCA -ACGGAAACCGTACTCGTAGATCCA -ACGGAAACCGTACTCGTAACGACA -ACGGAAACCGTACTCGTAAGCTCA -ACGGAAACCGTACTCGTATCACGT -ACGGAAACCGTACTCGTACGTAGT -ACGGAAACCGTACTCGTAGTCAGT -ACGGAAACCGTACTCGTAGAAGGT -ACGGAAACCGTACTCGTAAACCGT -ACGGAAACCGTACTCGTATTGTGC -ACGGAAACCGTACTCGTACTAAGC -ACGGAAACCGTACTCGTAACTAGC -ACGGAAACCGTACTCGTAAGATGC -ACGGAAACCGTACTCGTATGAAGG -ACGGAAACCGTACTCGTACAATGG -ACGGAAACCGTACTCGTAATGAGG -ACGGAAACCGTACTCGTAAATGGG -ACGGAAACCGTACTCGTATCCTGA -ACGGAAACCGTACTCGTATAGCGA -ACGGAAACCGTACTCGTACACAGA -ACGGAAACCGTACTCGTAGCAAGA -ACGGAAACCGTACTCGTAGGTTGA -ACGGAAACCGTACTCGTATCCGAT -ACGGAAACCGTACTCGTATGGCAT -ACGGAAACCGTACTCGTACGAGAT -ACGGAAACCGTACTCGTATACCAC -ACGGAAACCGTACTCGTACAGAAC -ACGGAAACCGTACTCGTAGTCTAC -ACGGAAACCGTACTCGTAACGTAC -ACGGAAACCGTACTCGTAAGTGAC -ACGGAAACCGTACTCGTACTGTAG -ACGGAAACCGTACTCGTACCTAAG -ACGGAAACCGTACTCGTAGTTCAG -ACGGAAACCGTACTCGTAGCATAG -ACGGAAACCGTACTCGTAGACAAG -ACGGAAACCGTACTCGTAAAGCAG -ACGGAAACCGTACTCGTACGTCAA -ACGGAAACCGTACTCGTAGCTGAA -ACGGAAACCGTACTCGTAAGTACG -ACGGAAACCGTACTCGTAATCCGA -ACGGAAACCGTACTCGTAATGGGA -ACGGAAACCGTACTCGTAGTGCAA -ACGGAAACCGTACTCGTAGAGGAA -ACGGAAACCGTACTCGTACAGGTA -ACGGAAACCGTACTCGTAGACTCT -ACGGAAACCGTACTCGTAAGTCCT -ACGGAAACCGTACTCGTATAAGCC -ACGGAAACCGTACTCGTAATAGCC -ACGGAAACCGTACTCGTATAACCG -ACGGAAACCGTACTCGTAATGCCA -ACGGAAACCGTAGTCGATGGAAAC -ACGGAAACCGTAGTCGATAACACC -ACGGAAACCGTAGTCGATATCGAG -ACGGAAACCGTAGTCGATCTCCTT -ACGGAAACCGTAGTCGATCCTGTT -ACGGAAACCGTAGTCGATCGGTTT -ACGGAAACCGTAGTCGATGTGGTT -ACGGAAACCGTAGTCGATGCCTTT -ACGGAAACCGTAGTCGATGGTCTT -ACGGAAACCGTAGTCGATACGCTT -ACGGAAACCGTAGTCGATAGCGTT -ACGGAAACCGTAGTCGATTTCGTC -ACGGAAACCGTAGTCGATTCTCTC -ACGGAAACCGTAGTCGATTGGATC -ACGGAAACCGTAGTCGATCACTTC -ACGGAAACCGTAGTCGATGTACTC -ACGGAAACCGTAGTCGATGATGTC -ACGGAAACCGTAGTCGATACAGTC -ACGGAAACCGTAGTCGATTTGCTG -ACGGAAACCGTAGTCGATTCCATG -ACGGAAACCGTAGTCGATTGTGTG -ACGGAAACCGTAGTCGATCTAGTG -ACGGAAACCGTAGTCGATCATCTG -ACGGAAACCGTAGTCGATGAGTTG -ACGGAAACCGTAGTCGATAGACTG -ACGGAAACCGTAGTCGATTCGGTA -ACGGAAACCGTAGTCGATTGCCTA -ACGGAAACCGTAGTCGATCCACTA -ACGGAAACCGTAGTCGATGGAGTA -ACGGAAACCGTAGTCGATTCGTCT -ACGGAAACCGTAGTCGATTGCACT -ACGGAAACCGTAGTCGATCTGACT -ACGGAAACCGTAGTCGATCAACCT -ACGGAAACCGTAGTCGATGCTACT -ACGGAAACCGTAGTCGATGGATCT -ACGGAAACCGTAGTCGATAAGGCT -ACGGAAACCGTAGTCGATTCAACC -ACGGAAACCGTAGTCGATTGTTCC -ACGGAAACCGTAGTCGATATTCCC -ACGGAAACCGTAGTCGATTTCTCG -ACGGAAACCGTAGTCGATTAGACG -ACGGAAACCGTAGTCGATGTAACG -ACGGAAACCGTAGTCGATACTTCG -ACGGAAACCGTAGTCGATTACGCA -ACGGAAACCGTAGTCGATCTTGCA -ACGGAAACCGTAGTCGATCGAACA -ACGGAAACCGTAGTCGATCAGTCA -ACGGAAACCGTAGTCGATGATCCA -ACGGAAACCGTAGTCGATACGACA -ACGGAAACCGTAGTCGATAGCTCA -ACGGAAACCGTAGTCGATTCACGT -ACGGAAACCGTAGTCGATCGTAGT -ACGGAAACCGTAGTCGATGTCAGT -ACGGAAACCGTAGTCGATGAAGGT -ACGGAAACCGTAGTCGATAACCGT -ACGGAAACCGTAGTCGATTTGTGC -ACGGAAACCGTAGTCGATCTAAGC -ACGGAAACCGTAGTCGATACTAGC -ACGGAAACCGTAGTCGATAGATGC -ACGGAAACCGTAGTCGATTGAAGG -ACGGAAACCGTAGTCGATCAATGG -ACGGAAACCGTAGTCGATATGAGG -ACGGAAACCGTAGTCGATAATGGG -ACGGAAACCGTAGTCGATTCCTGA -ACGGAAACCGTAGTCGATTAGCGA -ACGGAAACCGTAGTCGATCACAGA -ACGGAAACCGTAGTCGATGCAAGA -ACGGAAACCGTAGTCGATGGTTGA -ACGGAAACCGTAGTCGATTCCGAT -ACGGAAACCGTAGTCGATTGGCAT -ACGGAAACCGTAGTCGATCGAGAT -ACGGAAACCGTAGTCGATTACCAC -ACGGAAACCGTAGTCGATCAGAAC -ACGGAAACCGTAGTCGATGTCTAC -ACGGAAACCGTAGTCGATACGTAC -ACGGAAACCGTAGTCGATAGTGAC -ACGGAAACCGTAGTCGATCTGTAG -ACGGAAACCGTAGTCGATCCTAAG -ACGGAAACCGTAGTCGATGTTCAG -ACGGAAACCGTAGTCGATGCATAG -ACGGAAACCGTAGTCGATGACAAG -ACGGAAACCGTAGTCGATAAGCAG -ACGGAAACCGTAGTCGATCGTCAA -ACGGAAACCGTAGTCGATGCTGAA -ACGGAAACCGTAGTCGATAGTACG -ACGGAAACCGTAGTCGATATCCGA -ACGGAAACCGTAGTCGATATGGGA -ACGGAAACCGTAGTCGATGTGCAA -ACGGAAACCGTAGTCGATGAGGAA -ACGGAAACCGTAGTCGATCAGGTA -ACGGAAACCGTAGTCGATGACTCT -ACGGAAACCGTAGTCGATAGTCCT -ACGGAAACCGTAGTCGATTAAGCC -ACGGAAACCGTAGTCGATATAGCC -ACGGAAACCGTAGTCGATTAACCG -ACGGAAACCGTAGTCGATATGCCA -ACGGAAACCGTAGTCACAGGAAAC -ACGGAAACCGTAGTCACAAACACC -ACGGAAACCGTAGTCACAATCGAG -ACGGAAACCGTAGTCACACTCCTT -ACGGAAACCGTAGTCACACCTGTT -ACGGAAACCGTAGTCACACGGTTT -ACGGAAACCGTAGTCACAGTGGTT -ACGGAAACCGTAGTCACAGCCTTT -ACGGAAACCGTAGTCACAGGTCTT -ACGGAAACCGTAGTCACAACGCTT -ACGGAAACCGTAGTCACAAGCGTT -ACGGAAACCGTAGTCACATTCGTC -ACGGAAACCGTAGTCACATCTCTC -ACGGAAACCGTAGTCACATGGATC -ACGGAAACCGTAGTCACACACTTC -ACGGAAACCGTAGTCACAGTACTC -ACGGAAACCGTAGTCACAGATGTC -ACGGAAACCGTAGTCACAACAGTC -ACGGAAACCGTAGTCACATTGCTG -ACGGAAACCGTAGTCACATCCATG -ACGGAAACCGTAGTCACATGTGTG -ACGGAAACCGTAGTCACACTAGTG -ACGGAAACCGTAGTCACACATCTG -ACGGAAACCGTAGTCACAGAGTTG -ACGGAAACCGTAGTCACAAGACTG -ACGGAAACCGTAGTCACATCGGTA -ACGGAAACCGTAGTCACATGCCTA -ACGGAAACCGTAGTCACACCACTA -ACGGAAACCGTAGTCACAGGAGTA -ACGGAAACCGTAGTCACATCGTCT -ACGGAAACCGTAGTCACATGCACT -ACGGAAACCGTAGTCACACTGACT -ACGGAAACCGTAGTCACACAACCT -ACGGAAACCGTAGTCACAGCTACT -ACGGAAACCGTAGTCACAGGATCT -ACGGAAACCGTAGTCACAAAGGCT -ACGGAAACCGTAGTCACATCAACC -ACGGAAACCGTAGTCACATGTTCC -ACGGAAACCGTAGTCACAATTCCC -ACGGAAACCGTAGTCACATTCTCG -ACGGAAACCGTAGTCACATAGACG -ACGGAAACCGTAGTCACAGTAACG -ACGGAAACCGTAGTCACAACTTCG -ACGGAAACCGTAGTCACATACGCA -ACGGAAACCGTAGTCACACTTGCA -ACGGAAACCGTAGTCACACGAACA -ACGGAAACCGTAGTCACACAGTCA -ACGGAAACCGTAGTCACAGATCCA -ACGGAAACCGTAGTCACAACGACA -ACGGAAACCGTAGTCACAAGCTCA -ACGGAAACCGTAGTCACATCACGT -ACGGAAACCGTAGTCACACGTAGT -ACGGAAACCGTAGTCACAGTCAGT -ACGGAAACCGTAGTCACAGAAGGT -ACGGAAACCGTAGTCACAAACCGT -ACGGAAACCGTAGTCACATTGTGC -ACGGAAACCGTAGTCACACTAAGC -ACGGAAACCGTAGTCACAACTAGC -ACGGAAACCGTAGTCACAAGATGC -ACGGAAACCGTAGTCACATGAAGG -ACGGAAACCGTAGTCACACAATGG -ACGGAAACCGTAGTCACAATGAGG -ACGGAAACCGTAGTCACAAATGGG -ACGGAAACCGTAGTCACATCCTGA -ACGGAAACCGTAGTCACATAGCGA -ACGGAAACCGTAGTCACACACAGA -ACGGAAACCGTAGTCACAGCAAGA -ACGGAAACCGTAGTCACAGGTTGA -ACGGAAACCGTAGTCACATCCGAT -ACGGAAACCGTAGTCACATGGCAT -ACGGAAACCGTAGTCACACGAGAT -ACGGAAACCGTAGTCACATACCAC -ACGGAAACCGTAGTCACACAGAAC -ACGGAAACCGTAGTCACAGTCTAC -ACGGAAACCGTAGTCACAACGTAC -ACGGAAACCGTAGTCACAAGTGAC -ACGGAAACCGTAGTCACACTGTAG -ACGGAAACCGTAGTCACACCTAAG -ACGGAAACCGTAGTCACAGTTCAG -ACGGAAACCGTAGTCACAGCATAG -ACGGAAACCGTAGTCACAGACAAG -ACGGAAACCGTAGTCACAAAGCAG -ACGGAAACCGTAGTCACACGTCAA -ACGGAAACCGTAGTCACAGCTGAA -ACGGAAACCGTAGTCACAAGTACG -ACGGAAACCGTAGTCACAATCCGA -ACGGAAACCGTAGTCACAATGGGA -ACGGAAACCGTAGTCACAGTGCAA -ACGGAAACCGTAGTCACAGAGGAA -ACGGAAACCGTAGTCACACAGGTA -ACGGAAACCGTAGTCACAGACTCT -ACGGAAACCGTAGTCACAAGTCCT -ACGGAAACCGTAGTCACATAAGCC -ACGGAAACCGTAGTCACAATAGCC -ACGGAAACCGTAGTCACATAACCG -ACGGAAACCGTAGTCACAATGCCA -ACGGAAACCGTACTGTTGGGAAAC -ACGGAAACCGTACTGTTGAACACC -ACGGAAACCGTACTGTTGATCGAG -ACGGAAACCGTACTGTTGCTCCTT -ACGGAAACCGTACTGTTGCCTGTT -ACGGAAACCGTACTGTTGCGGTTT -ACGGAAACCGTACTGTTGGTGGTT -ACGGAAACCGTACTGTTGGCCTTT -ACGGAAACCGTACTGTTGGGTCTT -ACGGAAACCGTACTGTTGACGCTT -ACGGAAACCGTACTGTTGAGCGTT -ACGGAAACCGTACTGTTGTTCGTC -ACGGAAACCGTACTGTTGTCTCTC -ACGGAAACCGTACTGTTGTGGATC -ACGGAAACCGTACTGTTGCACTTC -ACGGAAACCGTACTGTTGGTACTC -ACGGAAACCGTACTGTTGGATGTC -ACGGAAACCGTACTGTTGACAGTC -ACGGAAACCGTACTGTTGTTGCTG -ACGGAAACCGTACTGTTGTCCATG -ACGGAAACCGTACTGTTGTGTGTG -ACGGAAACCGTACTGTTGCTAGTG -ACGGAAACCGTACTGTTGCATCTG -ACGGAAACCGTACTGTTGGAGTTG -ACGGAAACCGTACTGTTGAGACTG -ACGGAAACCGTACTGTTGTCGGTA -ACGGAAACCGTACTGTTGTGCCTA -ACGGAAACCGTACTGTTGCCACTA -ACGGAAACCGTACTGTTGGGAGTA -ACGGAAACCGTACTGTTGTCGTCT -ACGGAAACCGTACTGTTGTGCACT -ACGGAAACCGTACTGTTGCTGACT -ACGGAAACCGTACTGTTGCAACCT -ACGGAAACCGTACTGTTGGCTACT -ACGGAAACCGTACTGTTGGGATCT -ACGGAAACCGTACTGTTGAAGGCT -ACGGAAACCGTACTGTTGTCAACC -ACGGAAACCGTACTGTTGTGTTCC -ACGGAAACCGTACTGTTGATTCCC -ACGGAAACCGTACTGTTGTTCTCG -ACGGAAACCGTACTGTTGTAGACG -ACGGAAACCGTACTGTTGGTAACG -ACGGAAACCGTACTGTTGACTTCG -ACGGAAACCGTACTGTTGTACGCA -ACGGAAACCGTACTGTTGCTTGCA -ACGGAAACCGTACTGTTGCGAACA -ACGGAAACCGTACTGTTGCAGTCA -ACGGAAACCGTACTGTTGGATCCA -ACGGAAACCGTACTGTTGACGACA -ACGGAAACCGTACTGTTGAGCTCA -ACGGAAACCGTACTGTTGTCACGT -ACGGAAACCGTACTGTTGCGTAGT -ACGGAAACCGTACTGTTGGTCAGT -ACGGAAACCGTACTGTTGGAAGGT -ACGGAAACCGTACTGTTGAACCGT -ACGGAAACCGTACTGTTGTTGTGC -ACGGAAACCGTACTGTTGCTAAGC -ACGGAAACCGTACTGTTGACTAGC -ACGGAAACCGTACTGTTGAGATGC -ACGGAAACCGTACTGTTGTGAAGG -ACGGAAACCGTACTGTTGCAATGG -ACGGAAACCGTACTGTTGATGAGG -ACGGAAACCGTACTGTTGAATGGG -ACGGAAACCGTACTGTTGTCCTGA -ACGGAAACCGTACTGTTGTAGCGA -ACGGAAACCGTACTGTTGCACAGA -ACGGAAACCGTACTGTTGGCAAGA -ACGGAAACCGTACTGTTGGGTTGA -ACGGAAACCGTACTGTTGTCCGAT -ACGGAAACCGTACTGTTGTGGCAT -ACGGAAACCGTACTGTTGCGAGAT -ACGGAAACCGTACTGTTGTACCAC -ACGGAAACCGTACTGTTGCAGAAC -ACGGAAACCGTACTGTTGGTCTAC -ACGGAAACCGTACTGTTGACGTAC -ACGGAAACCGTACTGTTGAGTGAC -ACGGAAACCGTACTGTTGCTGTAG -ACGGAAACCGTACTGTTGCCTAAG -ACGGAAACCGTACTGTTGGTTCAG -ACGGAAACCGTACTGTTGGCATAG -ACGGAAACCGTACTGTTGGACAAG -ACGGAAACCGTACTGTTGAAGCAG -ACGGAAACCGTACTGTTGCGTCAA -ACGGAAACCGTACTGTTGGCTGAA -ACGGAAACCGTACTGTTGAGTACG -ACGGAAACCGTACTGTTGATCCGA -ACGGAAACCGTACTGTTGATGGGA -ACGGAAACCGTACTGTTGGTGCAA -ACGGAAACCGTACTGTTGGAGGAA -ACGGAAACCGTACTGTTGCAGGTA -ACGGAAACCGTACTGTTGGACTCT -ACGGAAACCGTACTGTTGAGTCCT -ACGGAAACCGTACTGTTGTAAGCC -ACGGAAACCGTACTGTTGATAGCC -ACGGAAACCGTACTGTTGTAACCG -ACGGAAACCGTACTGTTGATGCCA -ACGGAAACCGTAATGTCCGGAAAC -ACGGAAACCGTAATGTCCAACACC -ACGGAAACCGTAATGTCCATCGAG -ACGGAAACCGTAATGTCCCTCCTT -ACGGAAACCGTAATGTCCCCTGTT -ACGGAAACCGTAATGTCCCGGTTT -ACGGAAACCGTAATGTCCGTGGTT -ACGGAAACCGTAATGTCCGCCTTT -ACGGAAACCGTAATGTCCGGTCTT -ACGGAAACCGTAATGTCCACGCTT -ACGGAAACCGTAATGTCCAGCGTT -ACGGAAACCGTAATGTCCTTCGTC -ACGGAAACCGTAATGTCCTCTCTC -ACGGAAACCGTAATGTCCTGGATC -ACGGAAACCGTAATGTCCCACTTC -ACGGAAACCGTAATGTCCGTACTC -ACGGAAACCGTAATGTCCGATGTC -ACGGAAACCGTAATGTCCACAGTC -ACGGAAACCGTAATGTCCTTGCTG -ACGGAAACCGTAATGTCCTCCATG -ACGGAAACCGTAATGTCCTGTGTG -ACGGAAACCGTAATGTCCCTAGTG -ACGGAAACCGTAATGTCCCATCTG -ACGGAAACCGTAATGTCCGAGTTG -ACGGAAACCGTAATGTCCAGACTG -ACGGAAACCGTAATGTCCTCGGTA -ACGGAAACCGTAATGTCCTGCCTA -ACGGAAACCGTAATGTCCCCACTA -ACGGAAACCGTAATGTCCGGAGTA -ACGGAAACCGTAATGTCCTCGTCT -ACGGAAACCGTAATGTCCTGCACT -ACGGAAACCGTAATGTCCCTGACT -ACGGAAACCGTAATGTCCCAACCT -ACGGAAACCGTAATGTCCGCTACT -ACGGAAACCGTAATGTCCGGATCT -ACGGAAACCGTAATGTCCAAGGCT -ACGGAAACCGTAATGTCCTCAACC -ACGGAAACCGTAATGTCCTGTTCC -ACGGAAACCGTAATGTCCATTCCC -ACGGAAACCGTAATGTCCTTCTCG -ACGGAAACCGTAATGTCCTAGACG -ACGGAAACCGTAATGTCCGTAACG -ACGGAAACCGTAATGTCCACTTCG -ACGGAAACCGTAATGTCCTACGCA -ACGGAAACCGTAATGTCCCTTGCA -ACGGAAACCGTAATGTCCCGAACA -ACGGAAACCGTAATGTCCCAGTCA -ACGGAAACCGTAATGTCCGATCCA -ACGGAAACCGTAATGTCCACGACA -ACGGAAACCGTAATGTCCAGCTCA -ACGGAAACCGTAATGTCCTCACGT -ACGGAAACCGTAATGTCCCGTAGT -ACGGAAACCGTAATGTCCGTCAGT -ACGGAAACCGTAATGTCCGAAGGT -ACGGAAACCGTAATGTCCAACCGT -ACGGAAACCGTAATGTCCTTGTGC -ACGGAAACCGTAATGTCCCTAAGC -ACGGAAACCGTAATGTCCACTAGC -ACGGAAACCGTAATGTCCAGATGC -ACGGAAACCGTAATGTCCTGAAGG -ACGGAAACCGTAATGTCCCAATGG -ACGGAAACCGTAATGTCCATGAGG -ACGGAAACCGTAATGTCCAATGGG -ACGGAAACCGTAATGTCCTCCTGA -ACGGAAACCGTAATGTCCTAGCGA -ACGGAAACCGTAATGTCCCACAGA -ACGGAAACCGTAATGTCCGCAAGA -ACGGAAACCGTAATGTCCGGTTGA -ACGGAAACCGTAATGTCCTCCGAT -ACGGAAACCGTAATGTCCTGGCAT -ACGGAAACCGTAATGTCCCGAGAT -ACGGAAACCGTAATGTCCTACCAC -ACGGAAACCGTAATGTCCCAGAAC -ACGGAAACCGTAATGTCCGTCTAC -ACGGAAACCGTAATGTCCACGTAC -ACGGAAACCGTAATGTCCAGTGAC -ACGGAAACCGTAATGTCCCTGTAG -ACGGAAACCGTAATGTCCCCTAAG -ACGGAAACCGTAATGTCCGTTCAG -ACGGAAACCGTAATGTCCGCATAG -ACGGAAACCGTAATGTCCGACAAG -ACGGAAACCGTAATGTCCAAGCAG -ACGGAAACCGTAATGTCCCGTCAA -ACGGAAACCGTAATGTCCGCTGAA -ACGGAAACCGTAATGTCCAGTACG -ACGGAAACCGTAATGTCCATCCGA -ACGGAAACCGTAATGTCCATGGGA -ACGGAAACCGTAATGTCCGTGCAA -ACGGAAACCGTAATGTCCGAGGAA -ACGGAAACCGTAATGTCCCAGGTA -ACGGAAACCGTAATGTCCGACTCT -ACGGAAACCGTAATGTCCAGTCCT -ACGGAAACCGTAATGTCCTAAGCC -ACGGAAACCGTAATGTCCATAGCC -ACGGAAACCGTAATGTCCTAACCG -ACGGAAACCGTAATGTCCATGCCA -ACGGAAACCGTAGTGTGTGGAAAC -ACGGAAACCGTAGTGTGTAACACC -ACGGAAACCGTAGTGTGTATCGAG -ACGGAAACCGTAGTGTGTCTCCTT -ACGGAAACCGTAGTGTGTCCTGTT -ACGGAAACCGTAGTGTGTCGGTTT -ACGGAAACCGTAGTGTGTGTGGTT -ACGGAAACCGTAGTGTGTGCCTTT -ACGGAAACCGTAGTGTGTGGTCTT -ACGGAAACCGTAGTGTGTACGCTT -ACGGAAACCGTAGTGTGTAGCGTT -ACGGAAACCGTAGTGTGTTTCGTC -ACGGAAACCGTAGTGTGTTCTCTC -ACGGAAACCGTAGTGTGTTGGATC -ACGGAAACCGTAGTGTGTCACTTC -ACGGAAACCGTAGTGTGTGTACTC -ACGGAAACCGTAGTGTGTGATGTC -ACGGAAACCGTAGTGTGTACAGTC -ACGGAAACCGTAGTGTGTTTGCTG -ACGGAAACCGTAGTGTGTTCCATG -ACGGAAACCGTAGTGTGTTGTGTG -ACGGAAACCGTAGTGTGTCTAGTG -ACGGAAACCGTAGTGTGTCATCTG -ACGGAAACCGTAGTGTGTGAGTTG -ACGGAAACCGTAGTGTGTAGACTG -ACGGAAACCGTAGTGTGTTCGGTA -ACGGAAACCGTAGTGTGTTGCCTA -ACGGAAACCGTAGTGTGTCCACTA -ACGGAAACCGTAGTGTGTGGAGTA -ACGGAAACCGTAGTGTGTTCGTCT -ACGGAAACCGTAGTGTGTTGCACT -ACGGAAACCGTAGTGTGTCTGACT -ACGGAAACCGTAGTGTGTCAACCT -ACGGAAACCGTAGTGTGTGCTACT -ACGGAAACCGTAGTGTGTGGATCT -ACGGAAACCGTAGTGTGTAAGGCT -ACGGAAACCGTAGTGTGTTCAACC -ACGGAAACCGTAGTGTGTTGTTCC -ACGGAAACCGTAGTGTGTATTCCC -ACGGAAACCGTAGTGTGTTTCTCG -ACGGAAACCGTAGTGTGTTAGACG -ACGGAAACCGTAGTGTGTGTAACG -ACGGAAACCGTAGTGTGTACTTCG -ACGGAAACCGTAGTGTGTTACGCA -ACGGAAACCGTAGTGTGTCTTGCA -ACGGAAACCGTAGTGTGTCGAACA -ACGGAAACCGTAGTGTGTCAGTCA -ACGGAAACCGTAGTGTGTGATCCA -ACGGAAACCGTAGTGTGTACGACA -ACGGAAACCGTAGTGTGTAGCTCA -ACGGAAACCGTAGTGTGTTCACGT -ACGGAAACCGTAGTGTGTCGTAGT -ACGGAAACCGTAGTGTGTGTCAGT -ACGGAAACCGTAGTGTGTGAAGGT -ACGGAAACCGTAGTGTGTAACCGT -ACGGAAACCGTAGTGTGTTTGTGC -ACGGAAACCGTAGTGTGTCTAAGC -ACGGAAACCGTAGTGTGTACTAGC -ACGGAAACCGTAGTGTGTAGATGC -ACGGAAACCGTAGTGTGTTGAAGG -ACGGAAACCGTAGTGTGTCAATGG -ACGGAAACCGTAGTGTGTATGAGG -ACGGAAACCGTAGTGTGTAATGGG -ACGGAAACCGTAGTGTGTTCCTGA -ACGGAAACCGTAGTGTGTTAGCGA -ACGGAAACCGTAGTGTGTCACAGA -ACGGAAACCGTAGTGTGTGCAAGA -ACGGAAACCGTAGTGTGTGGTTGA -ACGGAAACCGTAGTGTGTTCCGAT -ACGGAAACCGTAGTGTGTTGGCAT -ACGGAAACCGTAGTGTGTCGAGAT -ACGGAAACCGTAGTGTGTTACCAC -ACGGAAACCGTAGTGTGTCAGAAC -ACGGAAACCGTAGTGTGTGTCTAC -ACGGAAACCGTAGTGTGTACGTAC -ACGGAAACCGTAGTGTGTAGTGAC -ACGGAAACCGTAGTGTGTCTGTAG -ACGGAAACCGTAGTGTGTCCTAAG -ACGGAAACCGTAGTGTGTGTTCAG -ACGGAAACCGTAGTGTGTGCATAG -ACGGAAACCGTAGTGTGTGACAAG -ACGGAAACCGTAGTGTGTAAGCAG -ACGGAAACCGTAGTGTGTCGTCAA -ACGGAAACCGTAGTGTGTGCTGAA -ACGGAAACCGTAGTGTGTAGTACG -ACGGAAACCGTAGTGTGTATCCGA -ACGGAAACCGTAGTGTGTATGGGA -ACGGAAACCGTAGTGTGTGTGCAA -ACGGAAACCGTAGTGTGTGAGGAA -ACGGAAACCGTAGTGTGTCAGGTA -ACGGAAACCGTAGTGTGTGACTCT -ACGGAAACCGTAGTGTGTAGTCCT -ACGGAAACCGTAGTGTGTTAAGCC -ACGGAAACCGTAGTGTGTATAGCC -ACGGAAACCGTAGTGTGTTAACCG -ACGGAAACCGTAGTGTGTATGCCA -ACGGAAACCGTAGTGCTAGGAAAC -ACGGAAACCGTAGTGCTAAACACC -ACGGAAACCGTAGTGCTAATCGAG -ACGGAAACCGTAGTGCTACTCCTT -ACGGAAACCGTAGTGCTACCTGTT -ACGGAAACCGTAGTGCTACGGTTT -ACGGAAACCGTAGTGCTAGTGGTT -ACGGAAACCGTAGTGCTAGCCTTT -ACGGAAACCGTAGTGCTAGGTCTT -ACGGAAACCGTAGTGCTAACGCTT -ACGGAAACCGTAGTGCTAAGCGTT -ACGGAAACCGTAGTGCTATTCGTC -ACGGAAACCGTAGTGCTATCTCTC -ACGGAAACCGTAGTGCTATGGATC -ACGGAAACCGTAGTGCTACACTTC -ACGGAAACCGTAGTGCTAGTACTC -ACGGAAACCGTAGTGCTAGATGTC -ACGGAAACCGTAGTGCTAACAGTC -ACGGAAACCGTAGTGCTATTGCTG -ACGGAAACCGTAGTGCTATCCATG -ACGGAAACCGTAGTGCTATGTGTG -ACGGAAACCGTAGTGCTACTAGTG -ACGGAAACCGTAGTGCTACATCTG -ACGGAAACCGTAGTGCTAGAGTTG -ACGGAAACCGTAGTGCTAAGACTG -ACGGAAACCGTAGTGCTATCGGTA -ACGGAAACCGTAGTGCTATGCCTA -ACGGAAACCGTAGTGCTACCACTA -ACGGAAACCGTAGTGCTAGGAGTA -ACGGAAACCGTAGTGCTATCGTCT -ACGGAAACCGTAGTGCTATGCACT -ACGGAAACCGTAGTGCTACTGACT -ACGGAAACCGTAGTGCTACAACCT -ACGGAAACCGTAGTGCTAGCTACT -ACGGAAACCGTAGTGCTAGGATCT -ACGGAAACCGTAGTGCTAAAGGCT -ACGGAAACCGTAGTGCTATCAACC -ACGGAAACCGTAGTGCTATGTTCC -ACGGAAACCGTAGTGCTAATTCCC -ACGGAAACCGTAGTGCTATTCTCG -ACGGAAACCGTAGTGCTATAGACG -ACGGAAACCGTAGTGCTAGTAACG -ACGGAAACCGTAGTGCTAACTTCG -ACGGAAACCGTAGTGCTATACGCA -ACGGAAACCGTAGTGCTACTTGCA -ACGGAAACCGTAGTGCTACGAACA -ACGGAAACCGTAGTGCTACAGTCA -ACGGAAACCGTAGTGCTAGATCCA -ACGGAAACCGTAGTGCTAACGACA -ACGGAAACCGTAGTGCTAAGCTCA -ACGGAAACCGTAGTGCTATCACGT -ACGGAAACCGTAGTGCTACGTAGT -ACGGAAACCGTAGTGCTAGTCAGT -ACGGAAACCGTAGTGCTAGAAGGT -ACGGAAACCGTAGTGCTAAACCGT -ACGGAAACCGTAGTGCTATTGTGC -ACGGAAACCGTAGTGCTACTAAGC -ACGGAAACCGTAGTGCTAACTAGC -ACGGAAACCGTAGTGCTAAGATGC -ACGGAAACCGTAGTGCTATGAAGG -ACGGAAACCGTAGTGCTACAATGG -ACGGAAACCGTAGTGCTAATGAGG -ACGGAAACCGTAGTGCTAAATGGG -ACGGAAACCGTAGTGCTATCCTGA -ACGGAAACCGTAGTGCTATAGCGA -ACGGAAACCGTAGTGCTACACAGA -ACGGAAACCGTAGTGCTAGCAAGA -ACGGAAACCGTAGTGCTAGGTTGA -ACGGAAACCGTAGTGCTATCCGAT -ACGGAAACCGTAGTGCTATGGCAT -ACGGAAACCGTAGTGCTACGAGAT -ACGGAAACCGTAGTGCTATACCAC -ACGGAAACCGTAGTGCTACAGAAC -ACGGAAACCGTAGTGCTAGTCTAC -ACGGAAACCGTAGTGCTAACGTAC -ACGGAAACCGTAGTGCTAAGTGAC -ACGGAAACCGTAGTGCTACTGTAG -ACGGAAACCGTAGTGCTACCTAAG -ACGGAAACCGTAGTGCTAGTTCAG -ACGGAAACCGTAGTGCTAGCATAG -ACGGAAACCGTAGTGCTAGACAAG -ACGGAAACCGTAGTGCTAAAGCAG -ACGGAAACCGTAGTGCTACGTCAA -ACGGAAACCGTAGTGCTAGCTGAA -ACGGAAACCGTAGTGCTAAGTACG -ACGGAAACCGTAGTGCTAATCCGA -ACGGAAACCGTAGTGCTAATGGGA -ACGGAAACCGTAGTGCTAGTGCAA -ACGGAAACCGTAGTGCTAGAGGAA -ACGGAAACCGTAGTGCTACAGGTA -ACGGAAACCGTAGTGCTAGACTCT -ACGGAAACCGTAGTGCTAAGTCCT -ACGGAAACCGTAGTGCTATAAGCC -ACGGAAACCGTAGTGCTAATAGCC -ACGGAAACCGTAGTGCTATAACCG -ACGGAAACCGTAGTGCTAATGCCA -ACGGAAACCGTACTGCATGGAAAC -ACGGAAACCGTACTGCATAACACC -ACGGAAACCGTACTGCATATCGAG -ACGGAAACCGTACTGCATCTCCTT -ACGGAAACCGTACTGCATCCTGTT -ACGGAAACCGTACTGCATCGGTTT -ACGGAAACCGTACTGCATGTGGTT -ACGGAAACCGTACTGCATGCCTTT -ACGGAAACCGTACTGCATGGTCTT -ACGGAAACCGTACTGCATACGCTT -ACGGAAACCGTACTGCATAGCGTT -ACGGAAACCGTACTGCATTTCGTC -ACGGAAACCGTACTGCATTCTCTC -ACGGAAACCGTACTGCATTGGATC -ACGGAAACCGTACTGCATCACTTC -ACGGAAACCGTACTGCATGTACTC -ACGGAAACCGTACTGCATGATGTC -ACGGAAACCGTACTGCATACAGTC -ACGGAAACCGTACTGCATTTGCTG -ACGGAAACCGTACTGCATTCCATG -ACGGAAACCGTACTGCATTGTGTG -ACGGAAACCGTACTGCATCTAGTG -ACGGAAACCGTACTGCATCATCTG -ACGGAAACCGTACTGCATGAGTTG -ACGGAAACCGTACTGCATAGACTG -ACGGAAACCGTACTGCATTCGGTA -ACGGAAACCGTACTGCATTGCCTA -ACGGAAACCGTACTGCATCCACTA -ACGGAAACCGTACTGCATGGAGTA -ACGGAAACCGTACTGCATTCGTCT -ACGGAAACCGTACTGCATTGCACT -ACGGAAACCGTACTGCATCTGACT -ACGGAAACCGTACTGCATCAACCT -ACGGAAACCGTACTGCATGCTACT -ACGGAAACCGTACTGCATGGATCT -ACGGAAACCGTACTGCATAAGGCT -ACGGAAACCGTACTGCATTCAACC -ACGGAAACCGTACTGCATTGTTCC -ACGGAAACCGTACTGCATATTCCC -ACGGAAACCGTACTGCATTTCTCG -ACGGAAACCGTACTGCATTAGACG -ACGGAAACCGTACTGCATGTAACG -ACGGAAACCGTACTGCATACTTCG -ACGGAAACCGTACTGCATTACGCA -ACGGAAACCGTACTGCATCTTGCA -ACGGAAACCGTACTGCATCGAACA -ACGGAAACCGTACTGCATCAGTCA -ACGGAAACCGTACTGCATGATCCA -ACGGAAACCGTACTGCATACGACA -ACGGAAACCGTACTGCATAGCTCA -ACGGAAACCGTACTGCATTCACGT -ACGGAAACCGTACTGCATCGTAGT -ACGGAAACCGTACTGCATGTCAGT -ACGGAAACCGTACTGCATGAAGGT -ACGGAAACCGTACTGCATAACCGT -ACGGAAACCGTACTGCATTTGTGC -ACGGAAACCGTACTGCATCTAAGC -ACGGAAACCGTACTGCATACTAGC -ACGGAAACCGTACTGCATAGATGC -ACGGAAACCGTACTGCATTGAAGG -ACGGAAACCGTACTGCATCAATGG -ACGGAAACCGTACTGCATATGAGG -ACGGAAACCGTACTGCATAATGGG -ACGGAAACCGTACTGCATTCCTGA -ACGGAAACCGTACTGCATTAGCGA -ACGGAAACCGTACTGCATCACAGA -ACGGAAACCGTACTGCATGCAAGA -ACGGAAACCGTACTGCATGGTTGA -ACGGAAACCGTACTGCATTCCGAT -ACGGAAACCGTACTGCATTGGCAT -ACGGAAACCGTACTGCATCGAGAT -ACGGAAACCGTACTGCATTACCAC -ACGGAAACCGTACTGCATCAGAAC -ACGGAAACCGTACTGCATGTCTAC -ACGGAAACCGTACTGCATACGTAC -ACGGAAACCGTACTGCATAGTGAC -ACGGAAACCGTACTGCATCTGTAG -ACGGAAACCGTACTGCATCCTAAG -ACGGAAACCGTACTGCATGTTCAG -ACGGAAACCGTACTGCATGCATAG -ACGGAAACCGTACTGCATGACAAG -ACGGAAACCGTACTGCATAAGCAG -ACGGAAACCGTACTGCATCGTCAA -ACGGAAACCGTACTGCATGCTGAA -ACGGAAACCGTACTGCATAGTACG -ACGGAAACCGTACTGCATATCCGA -ACGGAAACCGTACTGCATATGGGA -ACGGAAACCGTACTGCATGTGCAA -ACGGAAACCGTACTGCATGAGGAA -ACGGAAACCGTACTGCATCAGGTA -ACGGAAACCGTACTGCATGACTCT -ACGGAAACCGTACTGCATAGTCCT -ACGGAAACCGTACTGCATTAAGCC -ACGGAAACCGTACTGCATATAGCC -ACGGAAACCGTACTGCATTAACCG -ACGGAAACCGTACTGCATATGCCA -ACGGAAACCGTATTGGAGGGAAAC -ACGGAAACCGTATTGGAGAACACC -ACGGAAACCGTATTGGAGATCGAG -ACGGAAACCGTATTGGAGCTCCTT -ACGGAAACCGTATTGGAGCCTGTT -ACGGAAACCGTATTGGAGCGGTTT -ACGGAAACCGTATTGGAGGTGGTT -ACGGAAACCGTATTGGAGGCCTTT -ACGGAAACCGTATTGGAGGGTCTT -ACGGAAACCGTATTGGAGACGCTT -ACGGAAACCGTATTGGAGAGCGTT -ACGGAAACCGTATTGGAGTTCGTC -ACGGAAACCGTATTGGAGTCTCTC -ACGGAAACCGTATTGGAGTGGATC -ACGGAAACCGTATTGGAGCACTTC -ACGGAAACCGTATTGGAGGTACTC -ACGGAAACCGTATTGGAGGATGTC -ACGGAAACCGTATTGGAGACAGTC -ACGGAAACCGTATTGGAGTTGCTG -ACGGAAACCGTATTGGAGTCCATG -ACGGAAACCGTATTGGAGTGTGTG -ACGGAAACCGTATTGGAGCTAGTG -ACGGAAACCGTATTGGAGCATCTG -ACGGAAACCGTATTGGAGGAGTTG -ACGGAAACCGTATTGGAGAGACTG -ACGGAAACCGTATTGGAGTCGGTA -ACGGAAACCGTATTGGAGTGCCTA -ACGGAAACCGTATTGGAGCCACTA -ACGGAAACCGTATTGGAGGGAGTA -ACGGAAACCGTATTGGAGTCGTCT -ACGGAAACCGTATTGGAGTGCACT -ACGGAAACCGTATTGGAGCTGACT -ACGGAAACCGTATTGGAGCAACCT -ACGGAAACCGTATTGGAGGCTACT -ACGGAAACCGTATTGGAGGGATCT -ACGGAAACCGTATTGGAGAAGGCT -ACGGAAACCGTATTGGAGTCAACC -ACGGAAACCGTATTGGAGTGTTCC -ACGGAAACCGTATTGGAGATTCCC -ACGGAAACCGTATTGGAGTTCTCG -ACGGAAACCGTATTGGAGTAGACG -ACGGAAACCGTATTGGAGGTAACG -ACGGAAACCGTATTGGAGACTTCG -ACGGAAACCGTATTGGAGTACGCA -ACGGAAACCGTATTGGAGCTTGCA -ACGGAAACCGTATTGGAGCGAACA -ACGGAAACCGTATTGGAGCAGTCA -ACGGAAACCGTATTGGAGGATCCA -ACGGAAACCGTATTGGAGACGACA -ACGGAAACCGTATTGGAGAGCTCA -ACGGAAACCGTATTGGAGTCACGT -ACGGAAACCGTATTGGAGCGTAGT -ACGGAAACCGTATTGGAGGTCAGT -ACGGAAACCGTATTGGAGGAAGGT -ACGGAAACCGTATTGGAGAACCGT -ACGGAAACCGTATTGGAGTTGTGC -ACGGAAACCGTATTGGAGCTAAGC -ACGGAAACCGTATTGGAGACTAGC -ACGGAAACCGTATTGGAGAGATGC -ACGGAAACCGTATTGGAGTGAAGG -ACGGAAACCGTATTGGAGCAATGG -ACGGAAACCGTATTGGAGATGAGG -ACGGAAACCGTATTGGAGAATGGG -ACGGAAACCGTATTGGAGTCCTGA -ACGGAAACCGTATTGGAGTAGCGA -ACGGAAACCGTATTGGAGCACAGA -ACGGAAACCGTATTGGAGGCAAGA -ACGGAAACCGTATTGGAGGGTTGA -ACGGAAACCGTATTGGAGTCCGAT -ACGGAAACCGTATTGGAGTGGCAT -ACGGAAACCGTATTGGAGCGAGAT -ACGGAAACCGTATTGGAGTACCAC -ACGGAAACCGTATTGGAGCAGAAC -ACGGAAACCGTATTGGAGGTCTAC -ACGGAAACCGTATTGGAGACGTAC -ACGGAAACCGTATTGGAGAGTGAC -ACGGAAACCGTATTGGAGCTGTAG -ACGGAAACCGTATTGGAGCCTAAG -ACGGAAACCGTATTGGAGGTTCAG -ACGGAAACCGTATTGGAGGCATAG -ACGGAAACCGTATTGGAGGACAAG -ACGGAAACCGTATTGGAGAAGCAG -ACGGAAACCGTATTGGAGCGTCAA -ACGGAAACCGTATTGGAGGCTGAA -ACGGAAACCGTATTGGAGAGTACG -ACGGAAACCGTATTGGAGATCCGA -ACGGAAACCGTATTGGAGATGGGA -ACGGAAACCGTATTGGAGGTGCAA -ACGGAAACCGTATTGGAGGAGGAA -ACGGAAACCGTATTGGAGCAGGTA -ACGGAAACCGTATTGGAGGACTCT -ACGGAAACCGTATTGGAGAGTCCT -ACGGAAACCGTATTGGAGTAAGCC -ACGGAAACCGTATTGGAGATAGCC -ACGGAAACCGTATTGGAGTAACCG -ACGGAAACCGTATTGGAGATGCCA -ACGGAAACCGTACTGAGAGGAAAC -ACGGAAACCGTACTGAGAAACACC -ACGGAAACCGTACTGAGAATCGAG -ACGGAAACCGTACTGAGACTCCTT -ACGGAAACCGTACTGAGACCTGTT -ACGGAAACCGTACTGAGACGGTTT -ACGGAAACCGTACTGAGAGTGGTT -ACGGAAACCGTACTGAGAGCCTTT -ACGGAAACCGTACTGAGAGGTCTT -ACGGAAACCGTACTGAGAACGCTT -ACGGAAACCGTACTGAGAAGCGTT -ACGGAAACCGTACTGAGATTCGTC -ACGGAAACCGTACTGAGATCTCTC -ACGGAAACCGTACTGAGATGGATC -ACGGAAACCGTACTGAGACACTTC -ACGGAAACCGTACTGAGAGTACTC -ACGGAAACCGTACTGAGAGATGTC -ACGGAAACCGTACTGAGAACAGTC -ACGGAAACCGTACTGAGATTGCTG -ACGGAAACCGTACTGAGATCCATG -ACGGAAACCGTACTGAGATGTGTG -ACGGAAACCGTACTGAGACTAGTG -ACGGAAACCGTACTGAGACATCTG -ACGGAAACCGTACTGAGAGAGTTG -ACGGAAACCGTACTGAGAAGACTG -ACGGAAACCGTACTGAGATCGGTA -ACGGAAACCGTACTGAGATGCCTA -ACGGAAACCGTACTGAGACCACTA -ACGGAAACCGTACTGAGAGGAGTA -ACGGAAACCGTACTGAGATCGTCT -ACGGAAACCGTACTGAGATGCACT -ACGGAAACCGTACTGAGACTGACT -ACGGAAACCGTACTGAGACAACCT -ACGGAAACCGTACTGAGAGCTACT -ACGGAAACCGTACTGAGAGGATCT -ACGGAAACCGTACTGAGAAAGGCT -ACGGAAACCGTACTGAGATCAACC -ACGGAAACCGTACTGAGATGTTCC -ACGGAAACCGTACTGAGAATTCCC -ACGGAAACCGTACTGAGATTCTCG -ACGGAAACCGTACTGAGATAGACG -ACGGAAACCGTACTGAGAGTAACG -ACGGAAACCGTACTGAGAACTTCG -ACGGAAACCGTACTGAGATACGCA -ACGGAAACCGTACTGAGACTTGCA -ACGGAAACCGTACTGAGACGAACA -ACGGAAACCGTACTGAGACAGTCA -ACGGAAACCGTACTGAGAGATCCA -ACGGAAACCGTACTGAGAACGACA -ACGGAAACCGTACTGAGAAGCTCA -ACGGAAACCGTACTGAGATCACGT -ACGGAAACCGTACTGAGACGTAGT -ACGGAAACCGTACTGAGAGTCAGT -ACGGAAACCGTACTGAGAGAAGGT -ACGGAAACCGTACTGAGAAACCGT -ACGGAAACCGTACTGAGATTGTGC -ACGGAAACCGTACTGAGACTAAGC -ACGGAAACCGTACTGAGAACTAGC -ACGGAAACCGTACTGAGAAGATGC -ACGGAAACCGTACTGAGATGAAGG -ACGGAAACCGTACTGAGACAATGG -ACGGAAACCGTACTGAGAATGAGG -ACGGAAACCGTACTGAGAAATGGG -ACGGAAACCGTACTGAGATCCTGA -ACGGAAACCGTACTGAGATAGCGA -ACGGAAACCGTACTGAGACACAGA -ACGGAAACCGTACTGAGAGCAAGA -ACGGAAACCGTACTGAGAGGTTGA -ACGGAAACCGTACTGAGATCCGAT -ACGGAAACCGTACTGAGATGGCAT -ACGGAAACCGTACTGAGACGAGAT -ACGGAAACCGTACTGAGATACCAC -ACGGAAACCGTACTGAGACAGAAC -ACGGAAACCGTACTGAGAGTCTAC -ACGGAAACCGTACTGAGAACGTAC -ACGGAAACCGTACTGAGAAGTGAC -ACGGAAACCGTACTGAGACTGTAG -ACGGAAACCGTACTGAGACCTAAG -ACGGAAACCGTACTGAGAGTTCAG -ACGGAAACCGTACTGAGAGCATAG -ACGGAAACCGTACTGAGAGACAAG -ACGGAAACCGTACTGAGAAAGCAG -ACGGAAACCGTACTGAGACGTCAA -ACGGAAACCGTACTGAGAGCTGAA -ACGGAAACCGTACTGAGAAGTACG -ACGGAAACCGTACTGAGAATCCGA -ACGGAAACCGTACTGAGAATGGGA -ACGGAAACCGTACTGAGAGTGCAA -ACGGAAACCGTACTGAGAGAGGAA -ACGGAAACCGTACTGAGACAGGTA -ACGGAAACCGTACTGAGAGACTCT -ACGGAAACCGTACTGAGAAGTCCT -ACGGAAACCGTACTGAGATAAGCC -ACGGAAACCGTACTGAGAATAGCC -ACGGAAACCGTACTGAGATAACCG -ACGGAAACCGTACTGAGAATGCCA -ACGGAAACCGTAGTATCGGGAAAC -ACGGAAACCGTAGTATCGAACACC -ACGGAAACCGTAGTATCGATCGAG -ACGGAAACCGTAGTATCGCTCCTT -ACGGAAACCGTAGTATCGCCTGTT -ACGGAAACCGTAGTATCGCGGTTT -ACGGAAACCGTAGTATCGGTGGTT -ACGGAAACCGTAGTATCGGCCTTT -ACGGAAACCGTAGTATCGGGTCTT -ACGGAAACCGTAGTATCGACGCTT -ACGGAAACCGTAGTATCGAGCGTT -ACGGAAACCGTAGTATCGTTCGTC -ACGGAAACCGTAGTATCGTCTCTC -ACGGAAACCGTAGTATCGTGGATC -ACGGAAACCGTAGTATCGCACTTC -ACGGAAACCGTAGTATCGGTACTC -ACGGAAACCGTAGTATCGGATGTC -ACGGAAACCGTAGTATCGACAGTC -ACGGAAACCGTAGTATCGTTGCTG -ACGGAAACCGTAGTATCGTCCATG -ACGGAAACCGTAGTATCGTGTGTG -ACGGAAACCGTAGTATCGCTAGTG -ACGGAAACCGTAGTATCGCATCTG -ACGGAAACCGTAGTATCGGAGTTG -ACGGAAACCGTAGTATCGAGACTG -ACGGAAACCGTAGTATCGTCGGTA -ACGGAAACCGTAGTATCGTGCCTA -ACGGAAACCGTAGTATCGCCACTA -ACGGAAACCGTAGTATCGGGAGTA -ACGGAAACCGTAGTATCGTCGTCT -ACGGAAACCGTAGTATCGTGCACT -ACGGAAACCGTAGTATCGCTGACT -ACGGAAACCGTAGTATCGCAACCT -ACGGAAACCGTAGTATCGGCTACT -ACGGAAACCGTAGTATCGGGATCT -ACGGAAACCGTAGTATCGAAGGCT -ACGGAAACCGTAGTATCGTCAACC -ACGGAAACCGTAGTATCGTGTTCC -ACGGAAACCGTAGTATCGATTCCC -ACGGAAACCGTAGTATCGTTCTCG -ACGGAAACCGTAGTATCGTAGACG -ACGGAAACCGTAGTATCGGTAACG -ACGGAAACCGTAGTATCGACTTCG -ACGGAAACCGTAGTATCGTACGCA -ACGGAAACCGTAGTATCGCTTGCA -ACGGAAACCGTAGTATCGCGAACA -ACGGAAACCGTAGTATCGCAGTCA -ACGGAAACCGTAGTATCGGATCCA -ACGGAAACCGTAGTATCGACGACA -ACGGAAACCGTAGTATCGAGCTCA -ACGGAAACCGTAGTATCGTCACGT -ACGGAAACCGTAGTATCGCGTAGT -ACGGAAACCGTAGTATCGGTCAGT -ACGGAAACCGTAGTATCGGAAGGT -ACGGAAACCGTAGTATCGAACCGT -ACGGAAACCGTAGTATCGTTGTGC -ACGGAAACCGTAGTATCGCTAAGC -ACGGAAACCGTAGTATCGACTAGC -ACGGAAACCGTAGTATCGAGATGC -ACGGAAACCGTAGTATCGTGAAGG -ACGGAAACCGTAGTATCGCAATGG -ACGGAAACCGTAGTATCGATGAGG -ACGGAAACCGTAGTATCGAATGGG -ACGGAAACCGTAGTATCGTCCTGA -ACGGAAACCGTAGTATCGTAGCGA -ACGGAAACCGTAGTATCGCACAGA -ACGGAAACCGTAGTATCGGCAAGA -ACGGAAACCGTAGTATCGGGTTGA -ACGGAAACCGTAGTATCGTCCGAT -ACGGAAACCGTAGTATCGTGGCAT -ACGGAAACCGTAGTATCGCGAGAT -ACGGAAACCGTAGTATCGTACCAC -ACGGAAACCGTAGTATCGCAGAAC -ACGGAAACCGTAGTATCGGTCTAC -ACGGAAACCGTAGTATCGACGTAC -ACGGAAACCGTAGTATCGAGTGAC -ACGGAAACCGTAGTATCGCTGTAG -ACGGAAACCGTAGTATCGCCTAAG -ACGGAAACCGTAGTATCGGTTCAG -ACGGAAACCGTAGTATCGGCATAG -ACGGAAACCGTAGTATCGGACAAG -ACGGAAACCGTAGTATCGAAGCAG -ACGGAAACCGTAGTATCGCGTCAA -ACGGAAACCGTAGTATCGGCTGAA -ACGGAAACCGTAGTATCGAGTACG -ACGGAAACCGTAGTATCGATCCGA -ACGGAAACCGTAGTATCGATGGGA -ACGGAAACCGTAGTATCGGTGCAA -ACGGAAACCGTAGTATCGGAGGAA -ACGGAAACCGTAGTATCGCAGGTA -ACGGAAACCGTAGTATCGGACTCT -ACGGAAACCGTAGTATCGAGTCCT -ACGGAAACCGTAGTATCGTAAGCC -ACGGAAACCGTAGTATCGATAGCC -ACGGAAACCGTAGTATCGTAACCG -ACGGAAACCGTAGTATCGATGCCA -ACGGAAACCGTACTATGCGGAAAC -ACGGAAACCGTACTATGCAACACC -ACGGAAACCGTACTATGCATCGAG -ACGGAAACCGTACTATGCCTCCTT -ACGGAAACCGTACTATGCCCTGTT -ACGGAAACCGTACTATGCCGGTTT -ACGGAAACCGTACTATGCGTGGTT -ACGGAAACCGTACTATGCGCCTTT -ACGGAAACCGTACTATGCGGTCTT -ACGGAAACCGTACTATGCACGCTT -ACGGAAACCGTACTATGCAGCGTT -ACGGAAACCGTACTATGCTTCGTC -ACGGAAACCGTACTATGCTCTCTC -ACGGAAACCGTACTATGCTGGATC -ACGGAAACCGTACTATGCCACTTC -ACGGAAACCGTACTATGCGTACTC -ACGGAAACCGTACTATGCGATGTC -ACGGAAACCGTACTATGCACAGTC -ACGGAAACCGTACTATGCTTGCTG -ACGGAAACCGTACTATGCTCCATG -ACGGAAACCGTACTATGCTGTGTG -ACGGAAACCGTACTATGCCTAGTG -ACGGAAACCGTACTATGCCATCTG -ACGGAAACCGTACTATGCGAGTTG -ACGGAAACCGTACTATGCAGACTG -ACGGAAACCGTACTATGCTCGGTA -ACGGAAACCGTACTATGCTGCCTA -ACGGAAACCGTACTATGCCCACTA -ACGGAAACCGTACTATGCGGAGTA -ACGGAAACCGTACTATGCTCGTCT -ACGGAAACCGTACTATGCTGCACT -ACGGAAACCGTACTATGCCTGACT -ACGGAAACCGTACTATGCCAACCT -ACGGAAACCGTACTATGCGCTACT -ACGGAAACCGTACTATGCGGATCT -ACGGAAACCGTACTATGCAAGGCT -ACGGAAACCGTACTATGCTCAACC -ACGGAAACCGTACTATGCTGTTCC -ACGGAAACCGTACTATGCATTCCC -ACGGAAACCGTACTATGCTTCTCG -ACGGAAACCGTACTATGCTAGACG -ACGGAAACCGTACTATGCGTAACG -ACGGAAACCGTACTATGCACTTCG -ACGGAAACCGTACTATGCTACGCA -ACGGAAACCGTACTATGCCTTGCA -ACGGAAACCGTACTATGCCGAACA -ACGGAAACCGTACTATGCCAGTCA -ACGGAAACCGTACTATGCGATCCA -ACGGAAACCGTACTATGCACGACA -ACGGAAACCGTACTATGCAGCTCA -ACGGAAACCGTACTATGCTCACGT -ACGGAAACCGTACTATGCCGTAGT -ACGGAAACCGTACTATGCGTCAGT -ACGGAAACCGTACTATGCGAAGGT -ACGGAAACCGTACTATGCAACCGT -ACGGAAACCGTACTATGCTTGTGC -ACGGAAACCGTACTATGCCTAAGC -ACGGAAACCGTACTATGCACTAGC -ACGGAAACCGTACTATGCAGATGC -ACGGAAACCGTACTATGCTGAAGG -ACGGAAACCGTACTATGCCAATGG -ACGGAAACCGTACTATGCATGAGG -ACGGAAACCGTACTATGCAATGGG -ACGGAAACCGTACTATGCTCCTGA -ACGGAAACCGTACTATGCTAGCGA -ACGGAAACCGTACTATGCCACAGA -ACGGAAACCGTACTATGCGCAAGA -ACGGAAACCGTACTATGCGGTTGA -ACGGAAACCGTACTATGCTCCGAT -ACGGAAACCGTACTATGCTGGCAT -ACGGAAACCGTACTATGCCGAGAT -ACGGAAACCGTACTATGCTACCAC -ACGGAAACCGTACTATGCCAGAAC -ACGGAAACCGTACTATGCGTCTAC -ACGGAAACCGTACTATGCACGTAC -ACGGAAACCGTACTATGCAGTGAC -ACGGAAACCGTACTATGCCTGTAG -ACGGAAACCGTACTATGCCCTAAG -ACGGAAACCGTACTATGCGTTCAG -ACGGAAACCGTACTATGCGCATAG -ACGGAAACCGTACTATGCGACAAG -ACGGAAACCGTACTATGCAAGCAG -ACGGAAACCGTACTATGCCGTCAA -ACGGAAACCGTACTATGCGCTGAA -ACGGAAACCGTACTATGCAGTACG -ACGGAAACCGTACTATGCATCCGA -ACGGAAACCGTACTATGCATGGGA -ACGGAAACCGTACTATGCGTGCAA -ACGGAAACCGTACTATGCGAGGAA -ACGGAAACCGTACTATGCCAGGTA -ACGGAAACCGTACTATGCGACTCT -ACGGAAACCGTACTATGCAGTCCT -ACGGAAACCGTACTATGCTAAGCC -ACGGAAACCGTACTATGCATAGCC -ACGGAAACCGTACTATGCTAACCG -ACGGAAACCGTACTATGCATGCCA -ACGGAAACCGTACTACCAGGAAAC -ACGGAAACCGTACTACCAAACACC -ACGGAAACCGTACTACCAATCGAG -ACGGAAACCGTACTACCACTCCTT -ACGGAAACCGTACTACCACCTGTT -ACGGAAACCGTACTACCACGGTTT -ACGGAAACCGTACTACCAGTGGTT -ACGGAAACCGTACTACCAGCCTTT -ACGGAAACCGTACTACCAGGTCTT -ACGGAAACCGTACTACCAACGCTT -ACGGAAACCGTACTACCAAGCGTT -ACGGAAACCGTACTACCATTCGTC -ACGGAAACCGTACTACCATCTCTC -ACGGAAACCGTACTACCATGGATC -ACGGAAACCGTACTACCACACTTC -ACGGAAACCGTACTACCAGTACTC -ACGGAAACCGTACTACCAGATGTC -ACGGAAACCGTACTACCAACAGTC -ACGGAAACCGTACTACCATTGCTG -ACGGAAACCGTACTACCATCCATG -ACGGAAACCGTACTACCATGTGTG -ACGGAAACCGTACTACCACTAGTG -ACGGAAACCGTACTACCACATCTG -ACGGAAACCGTACTACCAGAGTTG -ACGGAAACCGTACTACCAAGACTG -ACGGAAACCGTACTACCATCGGTA -ACGGAAACCGTACTACCATGCCTA -ACGGAAACCGTACTACCACCACTA -ACGGAAACCGTACTACCAGGAGTA -ACGGAAACCGTACTACCATCGTCT -ACGGAAACCGTACTACCATGCACT -ACGGAAACCGTACTACCACTGACT -ACGGAAACCGTACTACCACAACCT -ACGGAAACCGTACTACCAGCTACT -ACGGAAACCGTACTACCAGGATCT -ACGGAAACCGTACTACCAAAGGCT -ACGGAAACCGTACTACCATCAACC -ACGGAAACCGTACTACCATGTTCC -ACGGAAACCGTACTACCAATTCCC -ACGGAAACCGTACTACCATTCTCG -ACGGAAACCGTACTACCATAGACG -ACGGAAACCGTACTACCAGTAACG -ACGGAAACCGTACTACCAACTTCG -ACGGAAACCGTACTACCATACGCA -ACGGAAACCGTACTACCACTTGCA -ACGGAAACCGTACTACCACGAACA -ACGGAAACCGTACTACCACAGTCA -ACGGAAACCGTACTACCAGATCCA -ACGGAAACCGTACTACCAACGACA -ACGGAAACCGTACTACCAAGCTCA -ACGGAAACCGTACTACCATCACGT -ACGGAAACCGTACTACCACGTAGT -ACGGAAACCGTACTACCAGTCAGT -ACGGAAACCGTACTACCAGAAGGT -ACGGAAACCGTACTACCAAACCGT -ACGGAAACCGTACTACCATTGTGC -ACGGAAACCGTACTACCACTAAGC -ACGGAAACCGTACTACCAACTAGC -ACGGAAACCGTACTACCAAGATGC -ACGGAAACCGTACTACCATGAAGG -ACGGAAACCGTACTACCACAATGG -ACGGAAACCGTACTACCAATGAGG -ACGGAAACCGTACTACCAAATGGG -ACGGAAACCGTACTACCATCCTGA -ACGGAAACCGTACTACCATAGCGA -ACGGAAACCGTACTACCACACAGA -ACGGAAACCGTACTACCAGCAAGA -ACGGAAACCGTACTACCAGGTTGA -ACGGAAACCGTACTACCATCCGAT -ACGGAAACCGTACTACCATGGCAT -ACGGAAACCGTACTACCACGAGAT -ACGGAAACCGTACTACCATACCAC -ACGGAAACCGTACTACCACAGAAC -ACGGAAACCGTACTACCAGTCTAC -ACGGAAACCGTACTACCAACGTAC -ACGGAAACCGTACTACCAAGTGAC -ACGGAAACCGTACTACCACTGTAG -ACGGAAACCGTACTACCACCTAAG -ACGGAAACCGTACTACCAGTTCAG -ACGGAAACCGTACTACCAGCATAG -ACGGAAACCGTACTACCAGACAAG -ACGGAAACCGTACTACCAAAGCAG -ACGGAAACCGTACTACCACGTCAA -ACGGAAACCGTACTACCAGCTGAA -ACGGAAACCGTACTACCAAGTACG -ACGGAAACCGTACTACCAATCCGA -ACGGAAACCGTACTACCAATGGGA -ACGGAAACCGTACTACCAGTGCAA -ACGGAAACCGTACTACCAGAGGAA -ACGGAAACCGTACTACCACAGGTA -ACGGAAACCGTACTACCAGACTCT -ACGGAAACCGTACTACCAAGTCCT -ACGGAAACCGTACTACCATAAGCC -ACGGAAACCGTACTACCAATAGCC -ACGGAAACCGTACTACCATAACCG -ACGGAAACCGTACTACCAATGCCA -ACGGAAACCGTAGTAGGAGGAAAC -ACGGAAACCGTAGTAGGAAACACC -ACGGAAACCGTAGTAGGAATCGAG -ACGGAAACCGTAGTAGGACTCCTT -ACGGAAACCGTAGTAGGACCTGTT -ACGGAAACCGTAGTAGGACGGTTT -ACGGAAACCGTAGTAGGAGTGGTT -ACGGAAACCGTAGTAGGAGCCTTT -ACGGAAACCGTAGTAGGAGGTCTT -ACGGAAACCGTAGTAGGAACGCTT -ACGGAAACCGTAGTAGGAAGCGTT -ACGGAAACCGTAGTAGGATTCGTC -ACGGAAACCGTAGTAGGATCTCTC -ACGGAAACCGTAGTAGGATGGATC -ACGGAAACCGTAGTAGGACACTTC -ACGGAAACCGTAGTAGGAGTACTC -ACGGAAACCGTAGTAGGAGATGTC -ACGGAAACCGTAGTAGGAACAGTC -ACGGAAACCGTAGTAGGATTGCTG -ACGGAAACCGTAGTAGGATCCATG -ACGGAAACCGTAGTAGGATGTGTG -ACGGAAACCGTAGTAGGACTAGTG -ACGGAAACCGTAGTAGGACATCTG -ACGGAAACCGTAGTAGGAGAGTTG -ACGGAAACCGTAGTAGGAAGACTG -ACGGAAACCGTAGTAGGATCGGTA -ACGGAAACCGTAGTAGGATGCCTA -ACGGAAACCGTAGTAGGACCACTA -ACGGAAACCGTAGTAGGAGGAGTA -ACGGAAACCGTAGTAGGATCGTCT -ACGGAAACCGTAGTAGGATGCACT -ACGGAAACCGTAGTAGGACTGACT -ACGGAAACCGTAGTAGGACAACCT -ACGGAAACCGTAGTAGGAGCTACT -ACGGAAACCGTAGTAGGAGGATCT -ACGGAAACCGTAGTAGGAAAGGCT -ACGGAAACCGTAGTAGGATCAACC -ACGGAAACCGTAGTAGGATGTTCC -ACGGAAACCGTAGTAGGAATTCCC -ACGGAAACCGTAGTAGGATTCTCG -ACGGAAACCGTAGTAGGATAGACG -ACGGAAACCGTAGTAGGAGTAACG -ACGGAAACCGTAGTAGGAACTTCG -ACGGAAACCGTAGTAGGATACGCA -ACGGAAACCGTAGTAGGACTTGCA -ACGGAAACCGTAGTAGGACGAACA -ACGGAAACCGTAGTAGGACAGTCA -ACGGAAACCGTAGTAGGAGATCCA -ACGGAAACCGTAGTAGGAACGACA -ACGGAAACCGTAGTAGGAAGCTCA -ACGGAAACCGTAGTAGGATCACGT -ACGGAAACCGTAGTAGGACGTAGT -ACGGAAACCGTAGTAGGAGTCAGT -ACGGAAACCGTAGTAGGAGAAGGT -ACGGAAACCGTAGTAGGAAACCGT -ACGGAAACCGTAGTAGGATTGTGC -ACGGAAACCGTAGTAGGACTAAGC -ACGGAAACCGTAGTAGGAACTAGC -ACGGAAACCGTAGTAGGAAGATGC -ACGGAAACCGTAGTAGGATGAAGG -ACGGAAACCGTAGTAGGACAATGG -ACGGAAACCGTAGTAGGAATGAGG -ACGGAAACCGTAGTAGGAAATGGG -ACGGAAACCGTAGTAGGATCCTGA -ACGGAAACCGTAGTAGGATAGCGA -ACGGAAACCGTAGTAGGACACAGA -ACGGAAACCGTAGTAGGAGCAAGA -ACGGAAACCGTAGTAGGAGGTTGA -ACGGAAACCGTAGTAGGATCCGAT -ACGGAAACCGTAGTAGGATGGCAT -ACGGAAACCGTAGTAGGACGAGAT -ACGGAAACCGTAGTAGGATACCAC -ACGGAAACCGTAGTAGGACAGAAC -ACGGAAACCGTAGTAGGAGTCTAC -ACGGAAACCGTAGTAGGAACGTAC -ACGGAAACCGTAGTAGGAAGTGAC -ACGGAAACCGTAGTAGGACTGTAG -ACGGAAACCGTAGTAGGACCTAAG -ACGGAAACCGTAGTAGGAGTTCAG -ACGGAAACCGTAGTAGGAGCATAG -ACGGAAACCGTAGTAGGAGACAAG -ACGGAAACCGTAGTAGGAAAGCAG -ACGGAAACCGTAGTAGGACGTCAA -ACGGAAACCGTAGTAGGAGCTGAA -ACGGAAACCGTAGTAGGAAGTACG -ACGGAAACCGTAGTAGGAATCCGA -ACGGAAACCGTAGTAGGAATGGGA -ACGGAAACCGTAGTAGGAGTGCAA -ACGGAAACCGTAGTAGGAGAGGAA -ACGGAAACCGTAGTAGGACAGGTA -ACGGAAACCGTAGTAGGAGACTCT -ACGGAAACCGTAGTAGGAAGTCCT -ACGGAAACCGTAGTAGGATAAGCC -ACGGAAACCGTAGTAGGAATAGCC -ACGGAAACCGTAGTAGGATAACCG -ACGGAAACCGTAGTAGGAATGCCA -ACGGAAACCGTATCTTCGGGAAAC -ACGGAAACCGTATCTTCGAACACC -ACGGAAACCGTATCTTCGATCGAG -ACGGAAACCGTATCTTCGCTCCTT -ACGGAAACCGTATCTTCGCCTGTT -ACGGAAACCGTATCTTCGCGGTTT -ACGGAAACCGTATCTTCGGTGGTT -ACGGAAACCGTATCTTCGGCCTTT -ACGGAAACCGTATCTTCGGGTCTT -ACGGAAACCGTATCTTCGACGCTT -ACGGAAACCGTATCTTCGAGCGTT -ACGGAAACCGTATCTTCGTTCGTC -ACGGAAACCGTATCTTCGTCTCTC -ACGGAAACCGTATCTTCGTGGATC -ACGGAAACCGTATCTTCGCACTTC -ACGGAAACCGTATCTTCGGTACTC -ACGGAAACCGTATCTTCGGATGTC -ACGGAAACCGTATCTTCGACAGTC -ACGGAAACCGTATCTTCGTTGCTG -ACGGAAACCGTATCTTCGTCCATG -ACGGAAACCGTATCTTCGTGTGTG -ACGGAAACCGTATCTTCGCTAGTG -ACGGAAACCGTATCTTCGCATCTG -ACGGAAACCGTATCTTCGGAGTTG -ACGGAAACCGTATCTTCGAGACTG -ACGGAAACCGTATCTTCGTCGGTA -ACGGAAACCGTATCTTCGTGCCTA -ACGGAAACCGTATCTTCGCCACTA -ACGGAAACCGTATCTTCGGGAGTA -ACGGAAACCGTATCTTCGTCGTCT -ACGGAAACCGTATCTTCGTGCACT -ACGGAAACCGTATCTTCGCTGACT -ACGGAAACCGTATCTTCGCAACCT -ACGGAAACCGTATCTTCGGCTACT -ACGGAAACCGTATCTTCGGGATCT -ACGGAAACCGTATCTTCGAAGGCT -ACGGAAACCGTATCTTCGTCAACC -ACGGAAACCGTATCTTCGTGTTCC -ACGGAAACCGTATCTTCGATTCCC -ACGGAAACCGTATCTTCGTTCTCG -ACGGAAACCGTATCTTCGTAGACG -ACGGAAACCGTATCTTCGGTAACG -ACGGAAACCGTATCTTCGACTTCG -ACGGAAACCGTATCTTCGTACGCA -ACGGAAACCGTATCTTCGCTTGCA -ACGGAAACCGTATCTTCGCGAACA -ACGGAAACCGTATCTTCGCAGTCA -ACGGAAACCGTATCTTCGGATCCA -ACGGAAACCGTATCTTCGACGACA -ACGGAAACCGTATCTTCGAGCTCA -ACGGAAACCGTATCTTCGTCACGT -ACGGAAACCGTATCTTCGCGTAGT -ACGGAAACCGTATCTTCGGTCAGT -ACGGAAACCGTATCTTCGGAAGGT -ACGGAAACCGTATCTTCGAACCGT -ACGGAAACCGTATCTTCGTTGTGC -ACGGAAACCGTATCTTCGCTAAGC -ACGGAAACCGTATCTTCGACTAGC -ACGGAAACCGTATCTTCGAGATGC -ACGGAAACCGTATCTTCGTGAAGG -ACGGAAACCGTATCTTCGCAATGG -ACGGAAACCGTATCTTCGATGAGG -ACGGAAACCGTATCTTCGAATGGG -ACGGAAACCGTATCTTCGTCCTGA -ACGGAAACCGTATCTTCGTAGCGA -ACGGAAACCGTATCTTCGCACAGA -ACGGAAACCGTATCTTCGGCAAGA -ACGGAAACCGTATCTTCGGGTTGA -ACGGAAACCGTATCTTCGTCCGAT -ACGGAAACCGTATCTTCGTGGCAT -ACGGAAACCGTATCTTCGCGAGAT -ACGGAAACCGTATCTTCGTACCAC -ACGGAAACCGTATCTTCGCAGAAC -ACGGAAACCGTATCTTCGGTCTAC -ACGGAAACCGTATCTTCGACGTAC -ACGGAAACCGTATCTTCGAGTGAC -ACGGAAACCGTATCTTCGCTGTAG -ACGGAAACCGTATCTTCGCCTAAG -ACGGAAACCGTATCTTCGGTTCAG -ACGGAAACCGTATCTTCGGCATAG -ACGGAAACCGTATCTTCGGACAAG -ACGGAAACCGTATCTTCGAAGCAG -ACGGAAACCGTATCTTCGCGTCAA -ACGGAAACCGTATCTTCGGCTGAA -ACGGAAACCGTATCTTCGAGTACG -ACGGAAACCGTATCTTCGATCCGA -ACGGAAACCGTATCTTCGATGGGA -ACGGAAACCGTATCTTCGGTGCAA -ACGGAAACCGTATCTTCGGAGGAA -ACGGAAACCGTATCTTCGCAGGTA -ACGGAAACCGTATCTTCGGACTCT -ACGGAAACCGTATCTTCGAGTCCT -ACGGAAACCGTATCTTCGTAAGCC -ACGGAAACCGTATCTTCGATAGCC -ACGGAAACCGTATCTTCGTAACCG -ACGGAAACCGTATCTTCGATGCCA -ACGGAAACCGTAACTTGCGGAAAC -ACGGAAACCGTAACTTGCAACACC -ACGGAAACCGTAACTTGCATCGAG -ACGGAAACCGTAACTTGCCTCCTT -ACGGAAACCGTAACTTGCCCTGTT -ACGGAAACCGTAACTTGCCGGTTT -ACGGAAACCGTAACTTGCGTGGTT -ACGGAAACCGTAACTTGCGCCTTT -ACGGAAACCGTAACTTGCGGTCTT -ACGGAAACCGTAACTTGCACGCTT -ACGGAAACCGTAACTTGCAGCGTT -ACGGAAACCGTAACTTGCTTCGTC -ACGGAAACCGTAACTTGCTCTCTC -ACGGAAACCGTAACTTGCTGGATC -ACGGAAACCGTAACTTGCCACTTC -ACGGAAACCGTAACTTGCGTACTC -ACGGAAACCGTAACTTGCGATGTC -ACGGAAACCGTAACTTGCACAGTC -ACGGAAACCGTAACTTGCTTGCTG -ACGGAAACCGTAACTTGCTCCATG -ACGGAAACCGTAACTTGCTGTGTG -ACGGAAACCGTAACTTGCCTAGTG -ACGGAAACCGTAACTTGCCATCTG -ACGGAAACCGTAACTTGCGAGTTG -ACGGAAACCGTAACTTGCAGACTG -ACGGAAACCGTAACTTGCTCGGTA -ACGGAAACCGTAACTTGCTGCCTA -ACGGAAACCGTAACTTGCCCACTA -ACGGAAACCGTAACTTGCGGAGTA -ACGGAAACCGTAACTTGCTCGTCT -ACGGAAACCGTAACTTGCTGCACT -ACGGAAACCGTAACTTGCCTGACT -ACGGAAACCGTAACTTGCCAACCT -ACGGAAACCGTAACTTGCGCTACT -ACGGAAACCGTAACTTGCGGATCT -ACGGAAACCGTAACTTGCAAGGCT -ACGGAAACCGTAACTTGCTCAACC -ACGGAAACCGTAACTTGCTGTTCC -ACGGAAACCGTAACTTGCATTCCC -ACGGAAACCGTAACTTGCTTCTCG -ACGGAAACCGTAACTTGCTAGACG -ACGGAAACCGTAACTTGCGTAACG -ACGGAAACCGTAACTTGCACTTCG -ACGGAAACCGTAACTTGCTACGCA -ACGGAAACCGTAACTTGCCTTGCA -ACGGAAACCGTAACTTGCCGAACA -ACGGAAACCGTAACTTGCCAGTCA -ACGGAAACCGTAACTTGCGATCCA -ACGGAAACCGTAACTTGCACGACA -ACGGAAACCGTAACTTGCAGCTCA -ACGGAAACCGTAACTTGCTCACGT -ACGGAAACCGTAACTTGCCGTAGT -ACGGAAACCGTAACTTGCGTCAGT -ACGGAAACCGTAACTTGCGAAGGT -ACGGAAACCGTAACTTGCAACCGT -ACGGAAACCGTAACTTGCTTGTGC -ACGGAAACCGTAACTTGCCTAAGC -ACGGAAACCGTAACTTGCACTAGC -ACGGAAACCGTAACTTGCAGATGC -ACGGAAACCGTAACTTGCTGAAGG -ACGGAAACCGTAACTTGCCAATGG -ACGGAAACCGTAACTTGCATGAGG -ACGGAAACCGTAACTTGCAATGGG -ACGGAAACCGTAACTTGCTCCTGA -ACGGAAACCGTAACTTGCTAGCGA -ACGGAAACCGTAACTTGCCACAGA -ACGGAAACCGTAACTTGCGCAAGA -ACGGAAACCGTAACTTGCGGTTGA -ACGGAAACCGTAACTTGCTCCGAT -ACGGAAACCGTAACTTGCTGGCAT -ACGGAAACCGTAACTTGCCGAGAT -ACGGAAACCGTAACTTGCTACCAC -ACGGAAACCGTAACTTGCCAGAAC -ACGGAAACCGTAACTTGCGTCTAC -ACGGAAACCGTAACTTGCACGTAC -ACGGAAACCGTAACTTGCAGTGAC -ACGGAAACCGTAACTTGCCTGTAG -ACGGAAACCGTAACTTGCCCTAAG -ACGGAAACCGTAACTTGCGTTCAG -ACGGAAACCGTAACTTGCGCATAG -ACGGAAACCGTAACTTGCGACAAG -ACGGAAACCGTAACTTGCAAGCAG -ACGGAAACCGTAACTTGCCGTCAA -ACGGAAACCGTAACTTGCGCTGAA -ACGGAAACCGTAACTTGCAGTACG -ACGGAAACCGTAACTTGCATCCGA -ACGGAAACCGTAACTTGCATGGGA -ACGGAAACCGTAACTTGCGTGCAA -ACGGAAACCGTAACTTGCGAGGAA -ACGGAAACCGTAACTTGCCAGGTA -ACGGAAACCGTAACTTGCGACTCT -ACGGAAACCGTAACTTGCAGTCCT -ACGGAAACCGTAACTTGCTAAGCC -ACGGAAACCGTAACTTGCATAGCC -ACGGAAACCGTAACTTGCTAACCG -ACGGAAACCGTAACTTGCATGCCA -ACGGAAACCGTAACTCTGGGAAAC -ACGGAAACCGTAACTCTGAACACC -ACGGAAACCGTAACTCTGATCGAG -ACGGAAACCGTAACTCTGCTCCTT -ACGGAAACCGTAACTCTGCCTGTT -ACGGAAACCGTAACTCTGCGGTTT -ACGGAAACCGTAACTCTGGTGGTT -ACGGAAACCGTAACTCTGGCCTTT -ACGGAAACCGTAACTCTGGGTCTT -ACGGAAACCGTAACTCTGACGCTT -ACGGAAACCGTAACTCTGAGCGTT -ACGGAAACCGTAACTCTGTTCGTC -ACGGAAACCGTAACTCTGTCTCTC -ACGGAAACCGTAACTCTGTGGATC -ACGGAAACCGTAACTCTGCACTTC -ACGGAAACCGTAACTCTGGTACTC -ACGGAAACCGTAACTCTGGATGTC -ACGGAAACCGTAACTCTGACAGTC -ACGGAAACCGTAACTCTGTTGCTG -ACGGAAACCGTAACTCTGTCCATG -ACGGAAACCGTAACTCTGTGTGTG -ACGGAAACCGTAACTCTGCTAGTG -ACGGAAACCGTAACTCTGCATCTG -ACGGAAACCGTAACTCTGGAGTTG -ACGGAAACCGTAACTCTGAGACTG -ACGGAAACCGTAACTCTGTCGGTA -ACGGAAACCGTAACTCTGTGCCTA -ACGGAAACCGTAACTCTGCCACTA -ACGGAAACCGTAACTCTGGGAGTA -ACGGAAACCGTAACTCTGTCGTCT -ACGGAAACCGTAACTCTGTGCACT -ACGGAAACCGTAACTCTGCTGACT -ACGGAAACCGTAACTCTGCAACCT -ACGGAAACCGTAACTCTGGCTACT -ACGGAAACCGTAACTCTGGGATCT -ACGGAAACCGTAACTCTGAAGGCT -ACGGAAACCGTAACTCTGTCAACC -ACGGAAACCGTAACTCTGTGTTCC -ACGGAAACCGTAACTCTGATTCCC -ACGGAAACCGTAACTCTGTTCTCG -ACGGAAACCGTAACTCTGTAGACG -ACGGAAACCGTAACTCTGGTAACG -ACGGAAACCGTAACTCTGACTTCG -ACGGAAACCGTAACTCTGTACGCA -ACGGAAACCGTAACTCTGCTTGCA -ACGGAAACCGTAACTCTGCGAACA -ACGGAAACCGTAACTCTGCAGTCA -ACGGAAACCGTAACTCTGGATCCA -ACGGAAACCGTAACTCTGACGACA -ACGGAAACCGTAACTCTGAGCTCA -ACGGAAACCGTAACTCTGTCACGT -ACGGAAACCGTAACTCTGCGTAGT -ACGGAAACCGTAACTCTGGTCAGT -ACGGAAACCGTAACTCTGGAAGGT -ACGGAAACCGTAACTCTGAACCGT -ACGGAAACCGTAACTCTGTTGTGC -ACGGAAACCGTAACTCTGCTAAGC -ACGGAAACCGTAACTCTGACTAGC -ACGGAAACCGTAACTCTGAGATGC -ACGGAAACCGTAACTCTGTGAAGG -ACGGAAACCGTAACTCTGCAATGG -ACGGAAACCGTAACTCTGATGAGG -ACGGAAACCGTAACTCTGAATGGG -ACGGAAACCGTAACTCTGTCCTGA -ACGGAAACCGTAACTCTGTAGCGA -ACGGAAACCGTAACTCTGCACAGA -ACGGAAACCGTAACTCTGGCAAGA -ACGGAAACCGTAACTCTGGGTTGA -ACGGAAACCGTAACTCTGTCCGAT -ACGGAAACCGTAACTCTGTGGCAT -ACGGAAACCGTAACTCTGCGAGAT -ACGGAAACCGTAACTCTGTACCAC -ACGGAAACCGTAACTCTGCAGAAC -ACGGAAACCGTAACTCTGGTCTAC -ACGGAAACCGTAACTCTGACGTAC -ACGGAAACCGTAACTCTGAGTGAC -ACGGAAACCGTAACTCTGCTGTAG -ACGGAAACCGTAACTCTGCCTAAG -ACGGAAACCGTAACTCTGGTTCAG -ACGGAAACCGTAACTCTGGCATAG -ACGGAAACCGTAACTCTGGACAAG -ACGGAAACCGTAACTCTGAAGCAG -ACGGAAACCGTAACTCTGCGTCAA -ACGGAAACCGTAACTCTGGCTGAA -ACGGAAACCGTAACTCTGAGTACG -ACGGAAACCGTAACTCTGATCCGA -ACGGAAACCGTAACTCTGATGGGA -ACGGAAACCGTAACTCTGGTGCAA -ACGGAAACCGTAACTCTGGAGGAA -ACGGAAACCGTAACTCTGCAGGTA -ACGGAAACCGTAACTCTGGACTCT -ACGGAAACCGTAACTCTGAGTCCT -ACGGAAACCGTAACTCTGTAAGCC -ACGGAAACCGTAACTCTGATAGCC -ACGGAAACCGTAACTCTGTAACCG -ACGGAAACCGTAACTCTGATGCCA -ACGGAAACCGTACCTCAAGGAAAC -ACGGAAACCGTACCTCAAAACACC -ACGGAAACCGTACCTCAAATCGAG -ACGGAAACCGTACCTCAACTCCTT -ACGGAAACCGTACCTCAACCTGTT -ACGGAAACCGTACCTCAACGGTTT -ACGGAAACCGTACCTCAAGTGGTT -ACGGAAACCGTACCTCAAGCCTTT -ACGGAAACCGTACCTCAAGGTCTT -ACGGAAACCGTACCTCAAACGCTT -ACGGAAACCGTACCTCAAAGCGTT -ACGGAAACCGTACCTCAATTCGTC -ACGGAAACCGTACCTCAATCTCTC -ACGGAAACCGTACCTCAATGGATC -ACGGAAACCGTACCTCAACACTTC -ACGGAAACCGTACCTCAAGTACTC -ACGGAAACCGTACCTCAAGATGTC -ACGGAAACCGTACCTCAAACAGTC -ACGGAAACCGTACCTCAATTGCTG -ACGGAAACCGTACCTCAATCCATG -ACGGAAACCGTACCTCAATGTGTG -ACGGAAACCGTACCTCAACTAGTG -ACGGAAACCGTACCTCAACATCTG -ACGGAAACCGTACCTCAAGAGTTG -ACGGAAACCGTACCTCAAAGACTG -ACGGAAACCGTACCTCAATCGGTA -ACGGAAACCGTACCTCAATGCCTA -ACGGAAACCGTACCTCAACCACTA -ACGGAAACCGTACCTCAAGGAGTA -ACGGAAACCGTACCTCAATCGTCT -ACGGAAACCGTACCTCAATGCACT -ACGGAAACCGTACCTCAACTGACT -ACGGAAACCGTACCTCAACAACCT -ACGGAAACCGTACCTCAAGCTACT -ACGGAAACCGTACCTCAAGGATCT -ACGGAAACCGTACCTCAAAAGGCT -ACGGAAACCGTACCTCAATCAACC -ACGGAAACCGTACCTCAATGTTCC -ACGGAAACCGTACCTCAAATTCCC -ACGGAAACCGTACCTCAATTCTCG -ACGGAAACCGTACCTCAATAGACG -ACGGAAACCGTACCTCAAGTAACG -ACGGAAACCGTACCTCAAACTTCG -ACGGAAACCGTACCTCAATACGCA -ACGGAAACCGTACCTCAACTTGCA -ACGGAAACCGTACCTCAACGAACA -ACGGAAACCGTACCTCAACAGTCA -ACGGAAACCGTACCTCAAGATCCA -ACGGAAACCGTACCTCAAACGACA -ACGGAAACCGTACCTCAAAGCTCA -ACGGAAACCGTACCTCAATCACGT -ACGGAAACCGTACCTCAACGTAGT -ACGGAAACCGTACCTCAAGTCAGT -ACGGAAACCGTACCTCAAGAAGGT -ACGGAAACCGTACCTCAAAACCGT -ACGGAAACCGTACCTCAATTGTGC -ACGGAAACCGTACCTCAACTAAGC -ACGGAAACCGTACCTCAAACTAGC -ACGGAAACCGTACCTCAAAGATGC -ACGGAAACCGTACCTCAATGAAGG -ACGGAAACCGTACCTCAACAATGG -ACGGAAACCGTACCTCAAATGAGG -ACGGAAACCGTACCTCAAAATGGG -ACGGAAACCGTACCTCAATCCTGA -ACGGAAACCGTACCTCAATAGCGA -ACGGAAACCGTACCTCAACACAGA -ACGGAAACCGTACCTCAAGCAAGA -ACGGAAACCGTACCTCAAGGTTGA -ACGGAAACCGTACCTCAATCCGAT -ACGGAAACCGTACCTCAATGGCAT -ACGGAAACCGTACCTCAACGAGAT -ACGGAAACCGTACCTCAATACCAC -ACGGAAACCGTACCTCAACAGAAC -ACGGAAACCGTACCTCAAGTCTAC -ACGGAAACCGTACCTCAAACGTAC -ACGGAAACCGTACCTCAAAGTGAC -ACGGAAACCGTACCTCAACTGTAG -ACGGAAACCGTACCTCAACCTAAG -ACGGAAACCGTACCTCAAGTTCAG -ACGGAAACCGTACCTCAAGCATAG -ACGGAAACCGTACCTCAAGACAAG -ACGGAAACCGTACCTCAAAAGCAG -ACGGAAACCGTACCTCAACGTCAA -ACGGAAACCGTACCTCAAGCTGAA -ACGGAAACCGTACCTCAAAGTACG -ACGGAAACCGTACCTCAAATCCGA -ACGGAAACCGTACCTCAAATGGGA -ACGGAAACCGTACCTCAAGTGCAA -ACGGAAACCGTACCTCAAGAGGAA -ACGGAAACCGTACCTCAACAGGTA -ACGGAAACCGTACCTCAAGACTCT -ACGGAAACCGTACCTCAAAGTCCT -ACGGAAACCGTACCTCAATAAGCC -ACGGAAACCGTACCTCAAATAGCC -ACGGAAACCGTACCTCAATAACCG -ACGGAAACCGTACCTCAAATGCCA -ACGGAAACCGTAACTGCTGGAAAC -ACGGAAACCGTAACTGCTAACACC -ACGGAAACCGTAACTGCTATCGAG -ACGGAAACCGTAACTGCTCTCCTT -ACGGAAACCGTAACTGCTCCTGTT -ACGGAAACCGTAACTGCTCGGTTT -ACGGAAACCGTAACTGCTGTGGTT -ACGGAAACCGTAACTGCTGCCTTT -ACGGAAACCGTAACTGCTGGTCTT -ACGGAAACCGTAACTGCTACGCTT -ACGGAAACCGTAACTGCTAGCGTT -ACGGAAACCGTAACTGCTTTCGTC -ACGGAAACCGTAACTGCTTCTCTC -ACGGAAACCGTAACTGCTTGGATC -ACGGAAACCGTAACTGCTCACTTC -ACGGAAACCGTAACTGCTGTACTC -ACGGAAACCGTAACTGCTGATGTC -ACGGAAACCGTAACTGCTACAGTC -ACGGAAACCGTAACTGCTTTGCTG -ACGGAAACCGTAACTGCTTCCATG -ACGGAAACCGTAACTGCTTGTGTG -ACGGAAACCGTAACTGCTCTAGTG -ACGGAAACCGTAACTGCTCATCTG -ACGGAAACCGTAACTGCTGAGTTG -ACGGAAACCGTAACTGCTAGACTG -ACGGAAACCGTAACTGCTTCGGTA -ACGGAAACCGTAACTGCTTGCCTA -ACGGAAACCGTAACTGCTCCACTA -ACGGAAACCGTAACTGCTGGAGTA -ACGGAAACCGTAACTGCTTCGTCT -ACGGAAACCGTAACTGCTTGCACT -ACGGAAACCGTAACTGCTCTGACT -ACGGAAACCGTAACTGCTCAACCT -ACGGAAACCGTAACTGCTGCTACT -ACGGAAACCGTAACTGCTGGATCT -ACGGAAACCGTAACTGCTAAGGCT -ACGGAAACCGTAACTGCTTCAACC -ACGGAAACCGTAACTGCTTGTTCC -ACGGAAACCGTAACTGCTATTCCC -ACGGAAACCGTAACTGCTTTCTCG -ACGGAAACCGTAACTGCTTAGACG -ACGGAAACCGTAACTGCTGTAACG -ACGGAAACCGTAACTGCTACTTCG -ACGGAAACCGTAACTGCTTACGCA -ACGGAAACCGTAACTGCTCTTGCA -ACGGAAACCGTAACTGCTCGAACA -ACGGAAACCGTAACTGCTCAGTCA -ACGGAAACCGTAACTGCTGATCCA -ACGGAAACCGTAACTGCTACGACA -ACGGAAACCGTAACTGCTAGCTCA -ACGGAAACCGTAACTGCTTCACGT -ACGGAAACCGTAACTGCTCGTAGT -ACGGAAACCGTAACTGCTGTCAGT -ACGGAAACCGTAACTGCTGAAGGT -ACGGAAACCGTAACTGCTAACCGT -ACGGAAACCGTAACTGCTTTGTGC -ACGGAAACCGTAACTGCTCTAAGC -ACGGAAACCGTAACTGCTACTAGC -ACGGAAACCGTAACTGCTAGATGC -ACGGAAACCGTAACTGCTTGAAGG -ACGGAAACCGTAACTGCTCAATGG -ACGGAAACCGTAACTGCTATGAGG -ACGGAAACCGTAACTGCTAATGGG -ACGGAAACCGTAACTGCTTCCTGA -ACGGAAACCGTAACTGCTTAGCGA -ACGGAAACCGTAACTGCTCACAGA -ACGGAAACCGTAACTGCTGCAAGA -ACGGAAACCGTAACTGCTGGTTGA -ACGGAAACCGTAACTGCTTCCGAT -ACGGAAACCGTAACTGCTTGGCAT -ACGGAAACCGTAACTGCTCGAGAT -ACGGAAACCGTAACTGCTTACCAC -ACGGAAACCGTAACTGCTCAGAAC -ACGGAAACCGTAACTGCTGTCTAC -ACGGAAACCGTAACTGCTACGTAC -ACGGAAACCGTAACTGCTAGTGAC -ACGGAAACCGTAACTGCTCTGTAG -ACGGAAACCGTAACTGCTCCTAAG -ACGGAAACCGTAACTGCTGTTCAG -ACGGAAACCGTAACTGCTGCATAG -ACGGAAACCGTAACTGCTGACAAG -ACGGAAACCGTAACTGCTAAGCAG -ACGGAAACCGTAACTGCTCGTCAA -ACGGAAACCGTAACTGCTGCTGAA -ACGGAAACCGTAACTGCTAGTACG -ACGGAAACCGTAACTGCTATCCGA -ACGGAAACCGTAACTGCTATGGGA -ACGGAAACCGTAACTGCTGTGCAA -ACGGAAACCGTAACTGCTGAGGAA -ACGGAAACCGTAACTGCTCAGGTA -ACGGAAACCGTAACTGCTGACTCT -ACGGAAACCGTAACTGCTAGTCCT -ACGGAAACCGTAACTGCTTAAGCC -ACGGAAACCGTAACTGCTATAGCC -ACGGAAACCGTAACTGCTTAACCG -ACGGAAACCGTAACTGCTATGCCA -ACGGAAACCGTATCTGGAGGAAAC -ACGGAAACCGTATCTGGAAACACC -ACGGAAACCGTATCTGGAATCGAG -ACGGAAACCGTATCTGGACTCCTT -ACGGAAACCGTATCTGGACCTGTT -ACGGAAACCGTATCTGGACGGTTT -ACGGAAACCGTATCTGGAGTGGTT -ACGGAAACCGTATCTGGAGCCTTT -ACGGAAACCGTATCTGGAGGTCTT -ACGGAAACCGTATCTGGAACGCTT -ACGGAAACCGTATCTGGAAGCGTT -ACGGAAACCGTATCTGGATTCGTC -ACGGAAACCGTATCTGGATCTCTC -ACGGAAACCGTATCTGGATGGATC -ACGGAAACCGTATCTGGACACTTC -ACGGAAACCGTATCTGGAGTACTC -ACGGAAACCGTATCTGGAGATGTC -ACGGAAACCGTATCTGGAACAGTC -ACGGAAACCGTATCTGGATTGCTG -ACGGAAACCGTATCTGGATCCATG -ACGGAAACCGTATCTGGATGTGTG -ACGGAAACCGTATCTGGACTAGTG -ACGGAAACCGTATCTGGACATCTG -ACGGAAACCGTATCTGGAGAGTTG -ACGGAAACCGTATCTGGAAGACTG -ACGGAAACCGTATCTGGATCGGTA -ACGGAAACCGTATCTGGATGCCTA -ACGGAAACCGTATCTGGACCACTA -ACGGAAACCGTATCTGGAGGAGTA -ACGGAAACCGTATCTGGATCGTCT -ACGGAAACCGTATCTGGATGCACT -ACGGAAACCGTATCTGGACTGACT -ACGGAAACCGTATCTGGACAACCT -ACGGAAACCGTATCTGGAGCTACT -ACGGAAACCGTATCTGGAGGATCT -ACGGAAACCGTATCTGGAAAGGCT -ACGGAAACCGTATCTGGATCAACC -ACGGAAACCGTATCTGGATGTTCC -ACGGAAACCGTATCTGGAATTCCC -ACGGAAACCGTATCTGGATTCTCG -ACGGAAACCGTATCTGGATAGACG -ACGGAAACCGTATCTGGAGTAACG -ACGGAAACCGTATCTGGAACTTCG -ACGGAAACCGTATCTGGATACGCA -ACGGAAACCGTATCTGGACTTGCA -ACGGAAACCGTATCTGGACGAACA -ACGGAAACCGTATCTGGACAGTCA -ACGGAAACCGTATCTGGAGATCCA -ACGGAAACCGTATCTGGAACGACA -ACGGAAACCGTATCTGGAAGCTCA -ACGGAAACCGTATCTGGATCACGT -ACGGAAACCGTATCTGGACGTAGT -ACGGAAACCGTATCTGGAGTCAGT -ACGGAAACCGTATCTGGAGAAGGT -ACGGAAACCGTATCTGGAAACCGT -ACGGAAACCGTATCTGGATTGTGC -ACGGAAACCGTATCTGGACTAAGC -ACGGAAACCGTATCTGGAACTAGC -ACGGAAACCGTATCTGGAAGATGC -ACGGAAACCGTATCTGGATGAAGG -ACGGAAACCGTATCTGGACAATGG -ACGGAAACCGTATCTGGAATGAGG -ACGGAAACCGTATCTGGAAATGGG -ACGGAAACCGTATCTGGATCCTGA -ACGGAAACCGTATCTGGATAGCGA -ACGGAAACCGTATCTGGACACAGA -ACGGAAACCGTATCTGGAGCAAGA -ACGGAAACCGTATCTGGAGGTTGA -ACGGAAACCGTATCTGGATCCGAT -ACGGAAACCGTATCTGGATGGCAT -ACGGAAACCGTATCTGGACGAGAT -ACGGAAACCGTATCTGGATACCAC -ACGGAAACCGTATCTGGACAGAAC -ACGGAAACCGTATCTGGAGTCTAC -ACGGAAACCGTATCTGGAACGTAC -ACGGAAACCGTATCTGGAAGTGAC -ACGGAAACCGTATCTGGACTGTAG -ACGGAAACCGTATCTGGACCTAAG -ACGGAAACCGTATCTGGAGTTCAG -ACGGAAACCGTATCTGGAGCATAG -ACGGAAACCGTATCTGGAGACAAG -ACGGAAACCGTATCTGGAAAGCAG -ACGGAAACCGTATCTGGACGTCAA -ACGGAAACCGTATCTGGAGCTGAA -ACGGAAACCGTATCTGGAAGTACG -ACGGAAACCGTATCTGGAATCCGA -ACGGAAACCGTATCTGGAATGGGA -ACGGAAACCGTATCTGGAGTGCAA -ACGGAAACCGTATCTGGAGAGGAA -ACGGAAACCGTATCTGGACAGGTA -ACGGAAACCGTATCTGGAGACTCT -ACGGAAACCGTATCTGGAAGTCCT -ACGGAAACCGTATCTGGATAAGCC -ACGGAAACCGTATCTGGAATAGCC -ACGGAAACCGTATCTGGATAACCG -ACGGAAACCGTATCTGGAATGCCA -ACGGAAACCGTAGCTAAGGGAAAC -ACGGAAACCGTAGCTAAGAACACC -ACGGAAACCGTAGCTAAGATCGAG -ACGGAAACCGTAGCTAAGCTCCTT -ACGGAAACCGTAGCTAAGCCTGTT -ACGGAAACCGTAGCTAAGCGGTTT -ACGGAAACCGTAGCTAAGGTGGTT -ACGGAAACCGTAGCTAAGGCCTTT -ACGGAAACCGTAGCTAAGGGTCTT -ACGGAAACCGTAGCTAAGACGCTT -ACGGAAACCGTAGCTAAGAGCGTT -ACGGAAACCGTAGCTAAGTTCGTC -ACGGAAACCGTAGCTAAGTCTCTC -ACGGAAACCGTAGCTAAGTGGATC -ACGGAAACCGTAGCTAAGCACTTC -ACGGAAACCGTAGCTAAGGTACTC -ACGGAAACCGTAGCTAAGGATGTC -ACGGAAACCGTAGCTAAGACAGTC -ACGGAAACCGTAGCTAAGTTGCTG -ACGGAAACCGTAGCTAAGTCCATG -ACGGAAACCGTAGCTAAGTGTGTG -ACGGAAACCGTAGCTAAGCTAGTG -ACGGAAACCGTAGCTAAGCATCTG -ACGGAAACCGTAGCTAAGGAGTTG -ACGGAAACCGTAGCTAAGAGACTG -ACGGAAACCGTAGCTAAGTCGGTA -ACGGAAACCGTAGCTAAGTGCCTA -ACGGAAACCGTAGCTAAGCCACTA -ACGGAAACCGTAGCTAAGGGAGTA -ACGGAAACCGTAGCTAAGTCGTCT -ACGGAAACCGTAGCTAAGTGCACT -ACGGAAACCGTAGCTAAGCTGACT -ACGGAAACCGTAGCTAAGCAACCT -ACGGAAACCGTAGCTAAGGCTACT -ACGGAAACCGTAGCTAAGGGATCT -ACGGAAACCGTAGCTAAGAAGGCT -ACGGAAACCGTAGCTAAGTCAACC -ACGGAAACCGTAGCTAAGTGTTCC -ACGGAAACCGTAGCTAAGATTCCC -ACGGAAACCGTAGCTAAGTTCTCG -ACGGAAACCGTAGCTAAGTAGACG -ACGGAAACCGTAGCTAAGGTAACG -ACGGAAACCGTAGCTAAGACTTCG -ACGGAAACCGTAGCTAAGTACGCA -ACGGAAACCGTAGCTAAGCTTGCA -ACGGAAACCGTAGCTAAGCGAACA -ACGGAAACCGTAGCTAAGCAGTCA -ACGGAAACCGTAGCTAAGGATCCA -ACGGAAACCGTAGCTAAGACGACA -ACGGAAACCGTAGCTAAGAGCTCA -ACGGAAACCGTAGCTAAGTCACGT -ACGGAAACCGTAGCTAAGCGTAGT -ACGGAAACCGTAGCTAAGGTCAGT -ACGGAAACCGTAGCTAAGGAAGGT -ACGGAAACCGTAGCTAAGAACCGT -ACGGAAACCGTAGCTAAGTTGTGC -ACGGAAACCGTAGCTAAGCTAAGC -ACGGAAACCGTAGCTAAGACTAGC -ACGGAAACCGTAGCTAAGAGATGC -ACGGAAACCGTAGCTAAGTGAAGG -ACGGAAACCGTAGCTAAGCAATGG -ACGGAAACCGTAGCTAAGATGAGG -ACGGAAACCGTAGCTAAGAATGGG -ACGGAAACCGTAGCTAAGTCCTGA -ACGGAAACCGTAGCTAAGTAGCGA -ACGGAAACCGTAGCTAAGCACAGA -ACGGAAACCGTAGCTAAGGCAAGA -ACGGAAACCGTAGCTAAGGGTTGA -ACGGAAACCGTAGCTAAGTCCGAT -ACGGAAACCGTAGCTAAGTGGCAT -ACGGAAACCGTAGCTAAGCGAGAT -ACGGAAACCGTAGCTAAGTACCAC -ACGGAAACCGTAGCTAAGCAGAAC -ACGGAAACCGTAGCTAAGGTCTAC -ACGGAAACCGTAGCTAAGACGTAC -ACGGAAACCGTAGCTAAGAGTGAC -ACGGAAACCGTAGCTAAGCTGTAG -ACGGAAACCGTAGCTAAGCCTAAG -ACGGAAACCGTAGCTAAGGTTCAG -ACGGAAACCGTAGCTAAGGCATAG -ACGGAAACCGTAGCTAAGGACAAG -ACGGAAACCGTAGCTAAGAAGCAG -ACGGAAACCGTAGCTAAGCGTCAA -ACGGAAACCGTAGCTAAGGCTGAA -ACGGAAACCGTAGCTAAGAGTACG -ACGGAAACCGTAGCTAAGATCCGA -ACGGAAACCGTAGCTAAGATGGGA -ACGGAAACCGTAGCTAAGGTGCAA -ACGGAAACCGTAGCTAAGGAGGAA -ACGGAAACCGTAGCTAAGCAGGTA -ACGGAAACCGTAGCTAAGGACTCT -ACGGAAACCGTAGCTAAGAGTCCT -ACGGAAACCGTAGCTAAGTAAGCC -ACGGAAACCGTAGCTAAGATAGCC -ACGGAAACCGTAGCTAAGTAACCG -ACGGAAACCGTAGCTAAGATGCCA -ACGGAAACCGTAACCTCAGGAAAC -ACGGAAACCGTAACCTCAAACACC -ACGGAAACCGTAACCTCAATCGAG -ACGGAAACCGTAACCTCACTCCTT -ACGGAAACCGTAACCTCACCTGTT -ACGGAAACCGTAACCTCACGGTTT -ACGGAAACCGTAACCTCAGTGGTT -ACGGAAACCGTAACCTCAGCCTTT -ACGGAAACCGTAACCTCAGGTCTT -ACGGAAACCGTAACCTCAACGCTT -ACGGAAACCGTAACCTCAAGCGTT -ACGGAAACCGTAACCTCATTCGTC -ACGGAAACCGTAACCTCATCTCTC -ACGGAAACCGTAACCTCATGGATC -ACGGAAACCGTAACCTCACACTTC -ACGGAAACCGTAACCTCAGTACTC -ACGGAAACCGTAACCTCAGATGTC -ACGGAAACCGTAACCTCAACAGTC -ACGGAAACCGTAACCTCATTGCTG -ACGGAAACCGTAACCTCATCCATG -ACGGAAACCGTAACCTCATGTGTG -ACGGAAACCGTAACCTCACTAGTG -ACGGAAACCGTAACCTCACATCTG -ACGGAAACCGTAACCTCAGAGTTG -ACGGAAACCGTAACCTCAAGACTG -ACGGAAACCGTAACCTCATCGGTA -ACGGAAACCGTAACCTCATGCCTA -ACGGAAACCGTAACCTCACCACTA -ACGGAAACCGTAACCTCAGGAGTA -ACGGAAACCGTAACCTCATCGTCT -ACGGAAACCGTAACCTCATGCACT -ACGGAAACCGTAACCTCACTGACT -ACGGAAACCGTAACCTCACAACCT -ACGGAAACCGTAACCTCAGCTACT -ACGGAAACCGTAACCTCAGGATCT -ACGGAAACCGTAACCTCAAAGGCT -ACGGAAACCGTAACCTCATCAACC -ACGGAAACCGTAACCTCATGTTCC -ACGGAAACCGTAACCTCAATTCCC -ACGGAAACCGTAACCTCATTCTCG -ACGGAAACCGTAACCTCATAGACG -ACGGAAACCGTAACCTCAGTAACG -ACGGAAACCGTAACCTCAACTTCG -ACGGAAACCGTAACCTCATACGCA -ACGGAAACCGTAACCTCACTTGCA -ACGGAAACCGTAACCTCACGAACA -ACGGAAACCGTAACCTCACAGTCA -ACGGAAACCGTAACCTCAGATCCA -ACGGAAACCGTAACCTCAACGACA -ACGGAAACCGTAACCTCAAGCTCA -ACGGAAACCGTAACCTCATCACGT -ACGGAAACCGTAACCTCACGTAGT -ACGGAAACCGTAACCTCAGTCAGT -ACGGAAACCGTAACCTCAGAAGGT -ACGGAAACCGTAACCTCAAACCGT -ACGGAAACCGTAACCTCATTGTGC -ACGGAAACCGTAACCTCACTAAGC -ACGGAAACCGTAACCTCAACTAGC -ACGGAAACCGTAACCTCAAGATGC -ACGGAAACCGTAACCTCATGAAGG -ACGGAAACCGTAACCTCACAATGG -ACGGAAACCGTAACCTCAATGAGG -ACGGAAACCGTAACCTCAAATGGG -ACGGAAACCGTAACCTCATCCTGA -ACGGAAACCGTAACCTCATAGCGA -ACGGAAACCGTAACCTCACACAGA -ACGGAAACCGTAACCTCAGCAAGA -ACGGAAACCGTAACCTCAGGTTGA -ACGGAAACCGTAACCTCATCCGAT -ACGGAAACCGTAACCTCATGGCAT -ACGGAAACCGTAACCTCACGAGAT -ACGGAAACCGTAACCTCATACCAC -ACGGAAACCGTAACCTCACAGAAC -ACGGAAACCGTAACCTCAGTCTAC -ACGGAAACCGTAACCTCAACGTAC -ACGGAAACCGTAACCTCAAGTGAC -ACGGAAACCGTAACCTCACTGTAG -ACGGAAACCGTAACCTCACCTAAG -ACGGAAACCGTAACCTCAGTTCAG -ACGGAAACCGTAACCTCAGCATAG -ACGGAAACCGTAACCTCAGACAAG -ACGGAAACCGTAACCTCAAAGCAG -ACGGAAACCGTAACCTCACGTCAA -ACGGAAACCGTAACCTCAGCTGAA -ACGGAAACCGTAACCTCAAGTACG -ACGGAAACCGTAACCTCAATCCGA -ACGGAAACCGTAACCTCAATGGGA -ACGGAAACCGTAACCTCAGTGCAA -ACGGAAACCGTAACCTCAGAGGAA -ACGGAAACCGTAACCTCACAGGTA -ACGGAAACCGTAACCTCAGACTCT -ACGGAAACCGTAACCTCAAGTCCT -ACGGAAACCGTAACCTCATAAGCC -ACGGAAACCGTAACCTCAATAGCC -ACGGAAACCGTAACCTCATAACCG -ACGGAAACCGTAACCTCAATGCCA -ACGGAAACCGTATCCTGTGGAAAC -ACGGAAACCGTATCCTGTAACACC -ACGGAAACCGTATCCTGTATCGAG -ACGGAAACCGTATCCTGTCTCCTT -ACGGAAACCGTATCCTGTCCTGTT -ACGGAAACCGTATCCTGTCGGTTT -ACGGAAACCGTATCCTGTGTGGTT -ACGGAAACCGTATCCTGTGCCTTT -ACGGAAACCGTATCCTGTGGTCTT -ACGGAAACCGTATCCTGTACGCTT -ACGGAAACCGTATCCTGTAGCGTT -ACGGAAACCGTATCCTGTTTCGTC -ACGGAAACCGTATCCTGTTCTCTC -ACGGAAACCGTATCCTGTTGGATC -ACGGAAACCGTATCCTGTCACTTC -ACGGAAACCGTATCCTGTGTACTC -ACGGAAACCGTATCCTGTGATGTC -ACGGAAACCGTATCCTGTACAGTC -ACGGAAACCGTATCCTGTTTGCTG -ACGGAAACCGTATCCTGTTCCATG -ACGGAAACCGTATCCTGTTGTGTG -ACGGAAACCGTATCCTGTCTAGTG -ACGGAAACCGTATCCTGTCATCTG -ACGGAAACCGTATCCTGTGAGTTG -ACGGAAACCGTATCCTGTAGACTG -ACGGAAACCGTATCCTGTTCGGTA -ACGGAAACCGTATCCTGTTGCCTA -ACGGAAACCGTATCCTGTCCACTA -ACGGAAACCGTATCCTGTGGAGTA -ACGGAAACCGTATCCTGTTCGTCT -ACGGAAACCGTATCCTGTTGCACT -ACGGAAACCGTATCCTGTCTGACT -ACGGAAACCGTATCCTGTCAACCT -ACGGAAACCGTATCCTGTGCTACT -ACGGAAACCGTATCCTGTGGATCT -ACGGAAACCGTATCCTGTAAGGCT -ACGGAAACCGTATCCTGTTCAACC -ACGGAAACCGTATCCTGTTGTTCC -ACGGAAACCGTATCCTGTATTCCC -ACGGAAACCGTATCCTGTTTCTCG -ACGGAAACCGTATCCTGTTAGACG -ACGGAAACCGTATCCTGTGTAACG -ACGGAAACCGTATCCTGTACTTCG -ACGGAAACCGTATCCTGTTACGCA -ACGGAAACCGTATCCTGTCTTGCA -ACGGAAACCGTATCCTGTCGAACA -ACGGAAACCGTATCCTGTCAGTCA -ACGGAAACCGTATCCTGTGATCCA -ACGGAAACCGTATCCTGTACGACA -ACGGAAACCGTATCCTGTAGCTCA -ACGGAAACCGTATCCTGTTCACGT -ACGGAAACCGTATCCTGTCGTAGT -ACGGAAACCGTATCCTGTGTCAGT -ACGGAAACCGTATCCTGTGAAGGT -ACGGAAACCGTATCCTGTAACCGT -ACGGAAACCGTATCCTGTTTGTGC -ACGGAAACCGTATCCTGTCTAAGC -ACGGAAACCGTATCCTGTACTAGC -ACGGAAACCGTATCCTGTAGATGC -ACGGAAACCGTATCCTGTTGAAGG -ACGGAAACCGTATCCTGTCAATGG -ACGGAAACCGTATCCTGTATGAGG -ACGGAAACCGTATCCTGTAATGGG -ACGGAAACCGTATCCTGTTCCTGA -ACGGAAACCGTATCCTGTTAGCGA -ACGGAAACCGTATCCTGTCACAGA -ACGGAAACCGTATCCTGTGCAAGA -ACGGAAACCGTATCCTGTGGTTGA -ACGGAAACCGTATCCTGTTCCGAT -ACGGAAACCGTATCCTGTTGGCAT -ACGGAAACCGTATCCTGTCGAGAT -ACGGAAACCGTATCCTGTTACCAC -ACGGAAACCGTATCCTGTCAGAAC -ACGGAAACCGTATCCTGTGTCTAC -ACGGAAACCGTATCCTGTACGTAC -ACGGAAACCGTATCCTGTAGTGAC -ACGGAAACCGTATCCTGTCTGTAG -ACGGAAACCGTATCCTGTCCTAAG -ACGGAAACCGTATCCTGTGTTCAG -ACGGAAACCGTATCCTGTGCATAG -ACGGAAACCGTATCCTGTGACAAG -ACGGAAACCGTATCCTGTAAGCAG -ACGGAAACCGTATCCTGTCGTCAA -ACGGAAACCGTATCCTGTGCTGAA -ACGGAAACCGTATCCTGTAGTACG -ACGGAAACCGTATCCTGTATCCGA -ACGGAAACCGTATCCTGTATGGGA -ACGGAAACCGTATCCTGTGTGCAA -ACGGAAACCGTATCCTGTGAGGAA -ACGGAAACCGTATCCTGTCAGGTA -ACGGAAACCGTATCCTGTGACTCT -ACGGAAACCGTATCCTGTAGTCCT -ACGGAAACCGTATCCTGTTAAGCC -ACGGAAACCGTATCCTGTATAGCC -ACGGAAACCGTATCCTGTTAACCG -ACGGAAACCGTATCCTGTATGCCA -ACGGAAACCGTACCCATTGGAAAC -ACGGAAACCGTACCCATTAACACC -ACGGAAACCGTACCCATTATCGAG -ACGGAAACCGTACCCATTCTCCTT -ACGGAAACCGTACCCATTCCTGTT -ACGGAAACCGTACCCATTCGGTTT -ACGGAAACCGTACCCATTGTGGTT -ACGGAAACCGTACCCATTGCCTTT -ACGGAAACCGTACCCATTGGTCTT -ACGGAAACCGTACCCATTACGCTT -ACGGAAACCGTACCCATTAGCGTT -ACGGAAACCGTACCCATTTTCGTC -ACGGAAACCGTACCCATTTCTCTC -ACGGAAACCGTACCCATTTGGATC -ACGGAAACCGTACCCATTCACTTC -ACGGAAACCGTACCCATTGTACTC -ACGGAAACCGTACCCATTGATGTC -ACGGAAACCGTACCCATTACAGTC -ACGGAAACCGTACCCATTTTGCTG -ACGGAAACCGTACCCATTTCCATG -ACGGAAACCGTACCCATTTGTGTG -ACGGAAACCGTACCCATTCTAGTG -ACGGAAACCGTACCCATTCATCTG -ACGGAAACCGTACCCATTGAGTTG -ACGGAAACCGTACCCATTAGACTG -ACGGAAACCGTACCCATTTCGGTA -ACGGAAACCGTACCCATTTGCCTA -ACGGAAACCGTACCCATTCCACTA -ACGGAAACCGTACCCATTGGAGTA -ACGGAAACCGTACCCATTTCGTCT -ACGGAAACCGTACCCATTTGCACT -ACGGAAACCGTACCCATTCTGACT -ACGGAAACCGTACCCATTCAACCT -ACGGAAACCGTACCCATTGCTACT -ACGGAAACCGTACCCATTGGATCT -ACGGAAACCGTACCCATTAAGGCT -ACGGAAACCGTACCCATTTCAACC -ACGGAAACCGTACCCATTTGTTCC -ACGGAAACCGTACCCATTATTCCC -ACGGAAACCGTACCCATTTTCTCG -ACGGAAACCGTACCCATTTAGACG -ACGGAAACCGTACCCATTGTAACG -ACGGAAACCGTACCCATTACTTCG -ACGGAAACCGTACCCATTTACGCA -ACGGAAACCGTACCCATTCTTGCA -ACGGAAACCGTACCCATTCGAACA -ACGGAAACCGTACCCATTCAGTCA -ACGGAAACCGTACCCATTGATCCA -ACGGAAACCGTACCCATTACGACA -ACGGAAACCGTACCCATTAGCTCA -ACGGAAACCGTACCCATTTCACGT -ACGGAAACCGTACCCATTCGTAGT -ACGGAAACCGTACCCATTGTCAGT -ACGGAAACCGTACCCATTGAAGGT -ACGGAAACCGTACCCATTAACCGT -ACGGAAACCGTACCCATTTTGTGC -ACGGAAACCGTACCCATTCTAAGC -ACGGAAACCGTACCCATTACTAGC -ACGGAAACCGTACCCATTAGATGC -ACGGAAACCGTACCCATTTGAAGG -ACGGAAACCGTACCCATTCAATGG -ACGGAAACCGTACCCATTATGAGG -ACGGAAACCGTACCCATTAATGGG -ACGGAAACCGTACCCATTTCCTGA -ACGGAAACCGTACCCATTTAGCGA -ACGGAAACCGTACCCATTCACAGA -ACGGAAACCGTACCCATTGCAAGA -ACGGAAACCGTACCCATTGGTTGA -ACGGAAACCGTACCCATTTCCGAT -ACGGAAACCGTACCCATTTGGCAT -ACGGAAACCGTACCCATTCGAGAT -ACGGAAACCGTACCCATTTACCAC -ACGGAAACCGTACCCATTCAGAAC -ACGGAAACCGTACCCATTGTCTAC -ACGGAAACCGTACCCATTACGTAC -ACGGAAACCGTACCCATTAGTGAC -ACGGAAACCGTACCCATTCTGTAG -ACGGAAACCGTACCCATTCCTAAG -ACGGAAACCGTACCCATTGTTCAG -ACGGAAACCGTACCCATTGCATAG -ACGGAAACCGTACCCATTGACAAG -ACGGAAACCGTACCCATTAAGCAG -ACGGAAACCGTACCCATTCGTCAA -ACGGAAACCGTACCCATTGCTGAA -ACGGAAACCGTACCCATTAGTACG -ACGGAAACCGTACCCATTATCCGA -ACGGAAACCGTACCCATTATGGGA -ACGGAAACCGTACCCATTGTGCAA -ACGGAAACCGTACCCATTGAGGAA -ACGGAAACCGTACCCATTCAGGTA -ACGGAAACCGTACCCATTGACTCT -ACGGAAACCGTACCCATTAGTCCT -ACGGAAACCGTACCCATTTAAGCC -ACGGAAACCGTACCCATTATAGCC -ACGGAAACCGTACCCATTTAACCG -ACGGAAACCGTACCCATTATGCCA -ACGGAAACCGTATCGTTCGGAAAC -ACGGAAACCGTATCGTTCAACACC -ACGGAAACCGTATCGTTCATCGAG -ACGGAAACCGTATCGTTCCTCCTT -ACGGAAACCGTATCGTTCCCTGTT -ACGGAAACCGTATCGTTCCGGTTT -ACGGAAACCGTATCGTTCGTGGTT -ACGGAAACCGTATCGTTCGCCTTT -ACGGAAACCGTATCGTTCGGTCTT -ACGGAAACCGTATCGTTCACGCTT -ACGGAAACCGTATCGTTCAGCGTT -ACGGAAACCGTATCGTTCTTCGTC -ACGGAAACCGTATCGTTCTCTCTC -ACGGAAACCGTATCGTTCTGGATC -ACGGAAACCGTATCGTTCCACTTC -ACGGAAACCGTATCGTTCGTACTC -ACGGAAACCGTATCGTTCGATGTC -ACGGAAACCGTATCGTTCACAGTC -ACGGAAACCGTATCGTTCTTGCTG -ACGGAAACCGTATCGTTCTCCATG -ACGGAAACCGTATCGTTCTGTGTG -ACGGAAACCGTATCGTTCCTAGTG -ACGGAAACCGTATCGTTCCATCTG -ACGGAAACCGTATCGTTCGAGTTG -ACGGAAACCGTATCGTTCAGACTG -ACGGAAACCGTATCGTTCTCGGTA -ACGGAAACCGTATCGTTCTGCCTA -ACGGAAACCGTATCGTTCCCACTA -ACGGAAACCGTATCGTTCGGAGTA -ACGGAAACCGTATCGTTCTCGTCT -ACGGAAACCGTATCGTTCTGCACT -ACGGAAACCGTATCGTTCCTGACT -ACGGAAACCGTATCGTTCCAACCT -ACGGAAACCGTATCGTTCGCTACT -ACGGAAACCGTATCGTTCGGATCT -ACGGAAACCGTATCGTTCAAGGCT -ACGGAAACCGTATCGTTCTCAACC -ACGGAAACCGTATCGTTCTGTTCC -ACGGAAACCGTATCGTTCATTCCC -ACGGAAACCGTATCGTTCTTCTCG -ACGGAAACCGTATCGTTCTAGACG -ACGGAAACCGTATCGTTCGTAACG -ACGGAAACCGTATCGTTCACTTCG -ACGGAAACCGTATCGTTCTACGCA -ACGGAAACCGTATCGTTCCTTGCA -ACGGAAACCGTATCGTTCCGAACA -ACGGAAACCGTATCGTTCCAGTCA -ACGGAAACCGTATCGTTCGATCCA -ACGGAAACCGTATCGTTCACGACA -ACGGAAACCGTATCGTTCAGCTCA -ACGGAAACCGTATCGTTCTCACGT -ACGGAAACCGTATCGTTCCGTAGT -ACGGAAACCGTATCGTTCGTCAGT -ACGGAAACCGTATCGTTCGAAGGT -ACGGAAACCGTATCGTTCAACCGT -ACGGAAACCGTATCGTTCTTGTGC -ACGGAAACCGTATCGTTCCTAAGC -ACGGAAACCGTATCGTTCACTAGC -ACGGAAACCGTATCGTTCAGATGC -ACGGAAACCGTATCGTTCTGAAGG -ACGGAAACCGTATCGTTCCAATGG -ACGGAAACCGTATCGTTCATGAGG -ACGGAAACCGTATCGTTCAATGGG -ACGGAAACCGTATCGTTCTCCTGA -ACGGAAACCGTATCGTTCTAGCGA -ACGGAAACCGTATCGTTCCACAGA -ACGGAAACCGTATCGTTCGCAAGA -ACGGAAACCGTATCGTTCGGTTGA -ACGGAAACCGTATCGTTCTCCGAT -ACGGAAACCGTATCGTTCTGGCAT -ACGGAAACCGTATCGTTCCGAGAT -ACGGAAACCGTATCGTTCTACCAC -ACGGAAACCGTATCGTTCCAGAAC -ACGGAAACCGTATCGTTCGTCTAC -ACGGAAACCGTATCGTTCACGTAC -ACGGAAACCGTATCGTTCAGTGAC -ACGGAAACCGTATCGTTCCTGTAG -ACGGAAACCGTATCGTTCCCTAAG -ACGGAAACCGTATCGTTCGTTCAG -ACGGAAACCGTATCGTTCGCATAG -ACGGAAACCGTATCGTTCGACAAG -ACGGAAACCGTATCGTTCAAGCAG -ACGGAAACCGTATCGTTCCGTCAA -ACGGAAACCGTATCGTTCGCTGAA -ACGGAAACCGTATCGTTCAGTACG -ACGGAAACCGTATCGTTCATCCGA -ACGGAAACCGTATCGTTCATGGGA -ACGGAAACCGTATCGTTCGTGCAA -ACGGAAACCGTATCGTTCGAGGAA -ACGGAAACCGTATCGTTCCAGGTA -ACGGAAACCGTATCGTTCGACTCT -ACGGAAACCGTATCGTTCAGTCCT -ACGGAAACCGTATCGTTCTAAGCC -ACGGAAACCGTATCGTTCATAGCC -ACGGAAACCGTATCGTTCTAACCG -ACGGAAACCGTATCGTTCATGCCA -ACGGAAACCGTAACGTAGGGAAAC -ACGGAAACCGTAACGTAGAACACC -ACGGAAACCGTAACGTAGATCGAG -ACGGAAACCGTAACGTAGCTCCTT -ACGGAAACCGTAACGTAGCCTGTT -ACGGAAACCGTAACGTAGCGGTTT -ACGGAAACCGTAACGTAGGTGGTT -ACGGAAACCGTAACGTAGGCCTTT -ACGGAAACCGTAACGTAGGGTCTT -ACGGAAACCGTAACGTAGACGCTT -ACGGAAACCGTAACGTAGAGCGTT -ACGGAAACCGTAACGTAGTTCGTC -ACGGAAACCGTAACGTAGTCTCTC -ACGGAAACCGTAACGTAGTGGATC -ACGGAAACCGTAACGTAGCACTTC -ACGGAAACCGTAACGTAGGTACTC -ACGGAAACCGTAACGTAGGATGTC -ACGGAAACCGTAACGTAGACAGTC -ACGGAAACCGTAACGTAGTTGCTG -ACGGAAACCGTAACGTAGTCCATG -ACGGAAACCGTAACGTAGTGTGTG -ACGGAAACCGTAACGTAGCTAGTG -ACGGAAACCGTAACGTAGCATCTG -ACGGAAACCGTAACGTAGGAGTTG -ACGGAAACCGTAACGTAGAGACTG -ACGGAAACCGTAACGTAGTCGGTA -ACGGAAACCGTAACGTAGTGCCTA -ACGGAAACCGTAACGTAGCCACTA -ACGGAAACCGTAACGTAGGGAGTA -ACGGAAACCGTAACGTAGTCGTCT -ACGGAAACCGTAACGTAGTGCACT -ACGGAAACCGTAACGTAGCTGACT -ACGGAAACCGTAACGTAGCAACCT -ACGGAAACCGTAACGTAGGCTACT -ACGGAAACCGTAACGTAGGGATCT -ACGGAAACCGTAACGTAGAAGGCT -ACGGAAACCGTAACGTAGTCAACC -ACGGAAACCGTAACGTAGTGTTCC -ACGGAAACCGTAACGTAGATTCCC -ACGGAAACCGTAACGTAGTTCTCG -ACGGAAACCGTAACGTAGTAGACG -ACGGAAACCGTAACGTAGGTAACG -ACGGAAACCGTAACGTAGACTTCG -ACGGAAACCGTAACGTAGTACGCA -ACGGAAACCGTAACGTAGCTTGCA -ACGGAAACCGTAACGTAGCGAACA -ACGGAAACCGTAACGTAGCAGTCA -ACGGAAACCGTAACGTAGGATCCA -ACGGAAACCGTAACGTAGACGACA -ACGGAAACCGTAACGTAGAGCTCA -ACGGAAACCGTAACGTAGTCACGT -ACGGAAACCGTAACGTAGCGTAGT -ACGGAAACCGTAACGTAGGTCAGT -ACGGAAACCGTAACGTAGGAAGGT -ACGGAAACCGTAACGTAGAACCGT -ACGGAAACCGTAACGTAGTTGTGC -ACGGAAACCGTAACGTAGCTAAGC -ACGGAAACCGTAACGTAGACTAGC -ACGGAAACCGTAACGTAGAGATGC -ACGGAAACCGTAACGTAGTGAAGG -ACGGAAACCGTAACGTAGCAATGG -ACGGAAACCGTAACGTAGATGAGG -ACGGAAACCGTAACGTAGAATGGG -ACGGAAACCGTAACGTAGTCCTGA -ACGGAAACCGTAACGTAGTAGCGA -ACGGAAACCGTAACGTAGCACAGA -ACGGAAACCGTAACGTAGGCAAGA -ACGGAAACCGTAACGTAGGGTTGA -ACGGAAACCGTAACGTAGTCCGAT -ACGGAAACCGTAACGTAGTGGCAT -ACGGAAACCGTAACGTAGCGAGAT -ACGGAAACCGTAACGTAGTACCAC -ACGGAAACCGTAACGTAGCAGAAC -ACGGAAACCGTAACGTAGGTCTAC -ACGGAAACCGTAACGTAGACGTAC -ACGGAAACCGTAACGTAGAGTGAC -ACGGAAACCGTAACGTAGCTGTAG -ACGGAAACCGTAACGTAGCCTAAG -ACGGAAACCGTAACGTAGGTTCAG -ACGGAAACCGTAACGTAGGCATAG -ACGGAAACCGTAACGTAGGACAAG -ACGGAAACCGTAACGTAGAAGCAG -ACGGAAACCGTAACGTAGCGTCAA -ACGGAAACCGTAACGTAGGCTGAA -ACGGAAACCGTAACGTAGAGTACG -ACGGAAACCGTAACGTAGATCCGA -ACGGAAACCGTAACGTAGATGGGA -ACGGAAACCGTAACGTAGGTGCAA -ACGGAAACCGTAACGTAGGAGGAA -ACGGAAACCGTAACGTAGCAGGTA -ACGGAAACCGTAACGTAGGACTCT -ACGGAAACCGTAACGTAGAGTCCT -ACGGAAACCGTAACGTAGTAAGCC -ACGGAAACCGTAACGTAGATAGCC -ACGGAAACCGTAACGTAGTAACCG -ACGGAAACCGTAACGTAGATGCCA -ACGGAAACCGTAACGGTAGGAAAC -ACGGAAACCGTAACGGTAAACACC -ACGGAAACCGTAACGGTAATCGAG -ACGGAAACCGTAACGGTACTCCTT -ACGGAAACCGTAACGGTACCTGTT -ACGGAAACCGTAACGGTACGGTTT -ACGGAAACCGTAACGGTAGTGGTT -ACGGAAACCGTAACGGTAGCCTTT -ACGGAAACCGTAACGGTAGGTCTT -ACGGAAACCGTAACGGTAACGCTT -ACGGAAACCGTAACGGTAAGCGTT -ACGGAAACCGTAACGGTATTCGTC -ACGGAAACCGTAACGGTATCTCTC -ACGGAAACCGTAACGGTATGGATC -ACGGAAACCGTAACGGTACACTTC -ACGGAAACCGTAACGGTAGTACTC -ACGGAAACCGTAACGGTAGATGTC -ACGGAAACCGTAACGGTAACAGTC -ACGGAAACCGTAACGGTATTGCTG -ACGGAAACCGTAACGGTATCCATG -ACGGAAACCGTAACGGTATGTGTG -ACGGAAACCGTAACGGTACTAGTG -ACGGAAACCGTAACGGTACATCTG -ACGGAAACCGTAACGGTAGAGTTG -ACGGAAACCGTAACGGTAAGACTG -ACGGAAACCGTAACGGTATCGGTA -ACGGAAACCGTAACGGTATGCCTA -ACGGAAACCGTAACGGTACCACTA -ACGGAAACCGTAACGGTAGGAGTA -ACGGAAACCGTAACGGTATCGTCT -ACGGAAACCGTAACGGTATGCACT -ACGGAAACCGTAACGGTACTGACT -ACGGAAACCGTAACGGTACAACCT -ACGGAAACCGTAACGGTAGCTACT -ACGGAAACCGTAACGGTAGGATCT -ACGGAAACCGTAACGGTAAAGGCT -ACGGAAACCGTAACGGTATCAACC -ACGGAAACCGTAACGGTATGTTCC -ACGGAAACCGTAACGGTAATTCCC -ACGGAAACCGTAACGGTATTCTCG -ACGGAAACCGTAACGGTATAGACG -ACGGAAACCGTAACGGTAGTAACG -ACGGAAACCGTAACGGTAACTTCG -ACGGAAACCGTAACGGTATACGCA -ACGGAAACCGTAACGGTACTTGCA -ACGGAAACCGTAACGGTACGAACA -ACGGAAACCGTAACGGTACAGTCA -ACGGAAACCGTAACGGTAGATCCA -ACGGAAACCGTAACGGTAACGACA -ACGGAAACCGTAACGGTAAGCTCA -ACGGAAACCGTAACGGTATCACGT -ACGGAAACCGTAACGGTACGTAGT -ACGGAAACCGTAACGGTAGTCAGT -ACGGAAACCGTAACGGTAGAAGGT -ACGGAAACCGTAACGGTAAACCGT -ACGGAAACCGTAACGGTATTGTGC -ACGGAAACCGTAACGGTACTAAGC -ACGGAAACCGTAACGGTAACTAGC -ACGGAAACCGTAACGGTAAGATGC -ACGGAAACCGTAACGGTATGAAGG -ACGGAAACCGTAACGGTACAATGG -ACGGAAACCGTAACGGTAATGAGG -ACGGAAACCGTAACGGTAAATGGG -ACGGAAACCGTAACGGTATCCTGA -ACGGAAACCGTAACGGTATAGCGA -ACGGAAACCGTAACGGTACACAGA -ACGGAAACCGTAACGGTAGCAAGA -ACGGAAACCGTAACGGTAGGTTGA -ACGGAAACCGTAACGGTATCCGAT -ACGGAAACCGTAACGGTATGGCAT -ACGGAAACCGTAACGGTACGAGAT -ACGGAAACCGTAACGGTATACCAC -ACGGAAACCGTAACGGTACAGAAC -ACGGAAACCGTAACGGTAGTCTAC -ACGGAAACCGTAACGGTAACGTAC -ACGGAAACCGTAACGGTAAGTGAC -ACGGAAACCGTAACGGTACTGTAG -ACGGAAACCGTAACGGTACCTAAG -ACGGAAACCGTAACGGTAGTTCAG -ACGGAAACCGTAACGGTAGCATAG -ACGGAAACCGTAACGGTAGACAAG -ACGGAAACCGTAACGGTAAAGCAG -ACGGAAACCGTAACGGTACGTCAA -ACGGAAACCGTAACGGTAGCTGAA -ACGGAAACCGTAACGGTAAGTACG -ACGGAAACCGTAACGGTAATCCGA -ACGGAAACCGTAACGGTAATGGGA -ACGGAAACCGTAACGGTAGTGCAA -ACGGAAACCGTAACGGTAGAGGAA -ACGGAAACCGTAACGGTACAGGTA -ACGGAAACCGTAACGGTAGACTCT -ACGGAAACCGTAACGGTAAGTCCT -ACGGAAACCGTAACGGTATAAGCC -ACGGAAACCGTAACGGTAATAGCC -ACGGAAACCGTAACGGTATAACCG -ACGGAAACCGTAACGGTAATGCCA -ACGGAAACCGTATCGACTGGAAAC -ACGGAAACCGTATCGACTAACACC -ACGGAAACCGTATCGACTATCGAG -ACGGAAACCGTATCGACTCTCCTT -ACGGAAACCGTATCGACTCCTGTT -ACGGAAACCGTATCGACTCGGTTT -ACGGAAACCGTATCGACTGTGGTT -ACGGAAACCGTATCGACTGCCTTT -ACGGAAACCGTATCGACTGGTCTT -ACGGAAACCGTATCGACTACGCTT -ACGGAAACCGTATCGACTAGCGTT -ACGGAAACCGTATCGACTTTCGTC -ACGGAAACCGTATCGACTTCTCTC -ACGGAAACCGTATCGACTTGGATC -ACGGAAACCGTATCGACTCACTTC -ACGGAAACCGTATCGACTGTACTC -ACGGAAACCGTATCGACTGATGTC -ACGGAAACCGTATCGACTACAGTC -ACGGAAACCGTATCGACTTTGCTG -ACGGAAACCGTATCGACTTCCATG -ACGGAAACCGTATCGACTTGTGTG -ACGGAAACCGTATCGACTCTAGTG -ACGGAAACCGTATCGACTCATCTG -ACGGAAACCGTATCGACTGAGTTG -ACGGAAACCGTATCGACTAGACTG -ACGGAAACCGTATCGACTTCGGTA -ACGGAAACCGTATCGACTTGCCTA -ACGGAAACCGTATCGACTCCACTA -ACGGAAACCGTATCGACTGGAGTA -ACGGAAACCGTATCGACTTCGTCT -ACGGAAACCGTATCGACTTGCACT -ACGGAAACCGTATCGACTCTGACT -ACGGAAACCGTATCGACTCAACCT -ACGGAAACCGTATCGACTGCTACT -ACGGAAACCGTATCGACTGGATCT -ACGGAAACCGTATCGACTAAGGCT -ACGGAAACCGTATCGACTTCAACC -ACGGAAACCGTATCGACTTGTTCC -ACGGAAACCGTATCGACTATTCCC -ACGGAAACCGTATCGACTTTCTCG -ACGGAAACCGTATCGACTTAGACG -ACGGAAACCGTATCGACTGTAACG -ACGGAAACCGTATCGACTACTTCG -ACGGAAACCGTATCGACTTACGCA -ACGGAAACCGTATCGACTCTTGCA -ACGGAAACCGTATCGACTCGAACA -ACGGAAACCGTATCGACTCAGTCA -ACGGAAACCGTATCGACTGATCCA -ACGGAAACCGTATCGACTACGACA -ACGGAAACCGTATCGACTAGCTCA -ACGGAAACCGTATCGACTTCACGT -ACGGAAACCGTATCGACTCGTAGT -ACGGAAACCGTATCGACTGTCAGT -ACGGAAACCGTATCGACTGAAGGT -ACGGAAACCGTATCGACTAACCGT -ACGGAAACCGTATCGACTTTGTGC -ACGGAAACCGTATCGACTCTAAGC -ACGGAAACCGTATCGACTACTAGC -ACGGAAACCGTATCGACTAGATGC -ACGGAAACCGTATCGACTTGAAGG -ACGGAAACCGTATCGACTCAATGG -ACGGAAACCGTATCGACTATGAGG -ACGGAAACCGTATCGACTAATGGG -ACGGAAACCGTATCGACTTCCTGA -ACGGAAACCGTATCGACTTAGCGA -ACGGAAACCGTATCGACTCACAGA -ACGGAAACCGTATCGACTGCAAGA -ACGGAAACCGTATCGACTGGTTGA -ACGGAAACCGTATCGACTTCCGAT -ACGGAAACCGTATCGACTTGGCAT -ACGGAAACCGTATCGACTCGAGAT -ACGGAAACCGTATCGACTTACCAC -ACGGAAACCGTATCGACTCAGAAC -ACGGAAACCGTATCGACTGTCTAC -ACGGAAACCGTATCGACTACGTAC -ACGGAAACCGTATCGACTAGTGAC -ACGGAAACCGTATCGACTCTGTAG -ACGGAAACCGTATCGACTCCTAAG -ACGGAAACCGTATCGACTGTTCAG -ACGGAAACCGTATCGACTGCATAG -ACGGAAACCGTATCGACTGACAAG -ACGGAAACCGTATCGACTAAGCAG -ACGGAAACCGTATCGACTCGTCAA -ACGGAAACCGTATCGACTGCTGAA -ACGGAAACCGTATCGACTAGTACG -ACGGAAACCGTATCGACTATCCGA -ACGGAAACCGTATCGACTATGGGA -ACGGAAACCGTATCGACTGTGCAA -ACGGAAACCGTATCGACTGAGGAA -ACGGAAACCGTATCGACTCAGGTA -ACGGAAACCGTATCGACTGACTCT -ACGGAAACCGTATCGACTAGTCCT -ACGGAAACCGTATCGACTTAAGCC -ACGGAAACCGTATCGACTATAGCC -ACGGAAACCGTATCGACTTAACCG -ACGGAAACCGTATCGACTATGCCA -ACGGAAACCGTAGCATACGGAAAC -ACGGAAACCGTAGCATACAACACC -ACGGAAACCGTAGCATACATCGAG -ACGGAAACCGTAGCATACCTCCTT -ACGGAAACCGTAGCATACCCTGTT -ACGGAAACCGTAGCATACCGGTTT -ACGGAAACCGTAGCATACGTGGTT -ACGGAAACCGTAGCATACGCCTTT -ACGGAAACCGTAGCATACGGTCTT -ACGGAAACCGTAGCATACACGCTT -ACGGAAACCGTAGCATACAGCGTT -ACGGAAACCGTAGCATACTTCGTC -ACGGAAACCGTAGCATACTCTCTC -ACGGAAACCGTAGCATACTGGATC -ACGGAAACCGTAGCATACCACTTC -ACGGAAACCGTAGCATACGTACTC -ACGGAAACCGTAGCATACGATGTC -ACGGAAACCGTAGCATACACAGTC -ACGGAAACCGTAGCATACTTGCTG -ACGGAAACCGTAGCATACTCCATG -ACGGAAACCGTAGCATACTGTGTG -ACGGAAACCGTAGCATACCTAGTG -ACGGAAACCGTAGCATACCATCTG -ACGGAAACCGTAGCATACGAGTTG -ACGGAAACCGTAGCATACAGACTG -ACGGAAACCGTAGCATACTCGGTA -ACGGAAACCGTAGCATACTGCCTA -ACGGAAACCGTAGCATACCCACTA -ACGGAAACCGTAGCATACGGAGTA -ACGGAAACCGTAGCATACTCGTCT -ACGGAAACCGTAGCATACTGCACT -ACGGAAACCGTAGCATACCTGACT -ACGGAAACCGTAGCATACCAACCT -ACGGAAACCGTAGCATACGCTACT -ACGGAAACCGTAGCATACGGATCT -ACGGAAACCGTAGCATACAAGGCT -ACGGAAACCGTAGCATACTCAACC -ACGGAAACCGTAGCATACTGTTCC -ACGGAAACCGTAGCATACATTCCC -ACGGAAACCGTAGCATACTTCTCG -ACGGAAACCGTAGCATACTAGACG -ACGGAAACCGTAGCATACGTAACG -ACGGAAACCGTAGCATACACTTCG -ACGGAAACCGTAGCATACTACGCA -ACGGAAACCGTAGCATACCTTGCA -ACGGAAACCGTAGCATACCGAACA -ACGGAAACCGTAGCATACCAGTCA -ACGGAAACCGTAGCATACGATCCA -ACGGAAACCGTAGCATACACGACA -ACGGAAACCGTAGCATACAGCTCA -ACGGAAACCGTAGCATACTCACGT -ACGGAAACCGTAGCATACCGTAGT -ACGGAAACCGTAGCATACGTCAGT -ACGGAAACCGTAGCATACGAAGGT -ACGGAAACCGTAGCATACAACCGT -ACGGAAACCGTAGCATACTTGTGC -ACGGAAACCGTAGCATACCTAAGC -ACGGAAACCGTAGCATACACTAGC -ACGGAAACCGTAGCATACAGATGC -ACGGAAACCGTAGCATACTGAAGG -ACGGAAACCGTAGCATACCAATGG -ACGGAAACCGTAGCATACATGAGG -ACGGAAACCGTAGCATACAATGGG -ACGGAAACCGTAGCATACTCCTGA -ACGGAAACCGTAGCATACTAGCGA -ACGGAAACCGTAGCATACCACAGA -ACGGAAACCGTAGCATACGCAAGA -ACGGAAACCGTAGCATACGGTTGA -ACGGAAACCGTAGCATACTCCGAT -ACGGAAACCGTAGCATACTGGCAT -ACGGAAACCGTAGCATACCGAGAT -ACGGAAACCGTAGCATACTACCAC -ACGGAAACCGTAGCATACCAGAAC -ACGGAAACCGTAGCATACGTCTAC -ACGGAAACCGTAGCATACACGTAC -ACGGAAACCGTAGCATACAGTGAC -ACGGAAACCGTAGCATACCTGTAG -ACGGAAACCGTAGCATACCCTAAG -ACGGAAACCGTAGCATACGTTCAG -ACGGAAACCGTAGCATACGCATAG -ACGGAAACCGTAGCATACGACAAG -ACGGAAACCGTAGCATACAAGCAG -ACGGAAACCGTAGCATACCGTCAA -ACGGAAACCGTAGCATACGCTGAA -ACGGAAACCGTAGCATACAGTACG -ACGGAAACCGTAGCATACATCCGA -ACGGAAACCGTAGCATACATGGGA -ACGGAAACCGTAGCATACGTGCAA -ACGGAAACCGTAGCATACGAGGAA -ACGGAAACCGTAGCATACCAGGTA -ACGGAAACCGTAGCATACGACTCT -ACGGAAACCGTAGCATACAGTCCT -ACGGAAACCGTAGCATACTAAGCC -ACGGAAACCGTAGCATACATAGCC -ACGGAAACCGTAGCATACTAACCG -ACGGAAACCGTAGCATACATGCCA -ACGGAAACCGTAGCACTTGGAAAC -ACGGAAACCGTAGCACTTAACACC -ACGGAAACCGTAGCACTTATCGAG -ACGGAAACCGTAGCACTTCTCCTT -ACGGAAACCGTAGCACTTCCTGTT -ACGGAAACCGTAGCACTTCGGTTT -ACGGAAACCGTAGCACTTGTGGTT -ACGGAAACCGTAGCACTTGCCTTT -ACGGAAACCGTAGCACTTGGTCTT -ACGGAAACCGTAGCACTTACGCTT -ACGGAAACCGTAGCACTTAGCGTT -ACGGAAACCGTAGCACTTTTCGTC -ACGGAAACCGTAGCACTTTCTCTC -ACGGAAACCGTAGCACTTTGGATC -ACGGAAACCGTAGCACTTCACTTC -ACGGAAACCGTAGCACTTGTACTC -ACGGAAACCGTAGCACTTGATGTC -ACGGAAACCGTAGCACTTACAGTC -ACGGAAACCGTAGCACTTTTGCTG -ACGGAAACCGTAGCACTTTCCATG -ACGGAAACCGTAGCACTTTGTGTG -ACGGAAACCGTAGCACTTCTAGTG -ACGGAAACCGTAGCACTTCATCTG -ACGGAAACCGTAGCACTTGAGTTG -ACGGAAACCGTAGCACTTAGACTG -ACGGAAACCGTAGCACTTTCGGTA -ACGGAAACCGTAGCACTTTGCCTA -ACGGAAACCGTAGCACTTCCACTA -ACGGAAACCGTAGCACTTGGAGTA -ACGGAAACCGTAGCACTTTCGTCT -ACGGAAACCGTAGCACTTTGCACT -ACGGAAACCGTAGCACTTCTGACT -ACGGAAACCGTAGCACTTCAACCT -ACGGAAACCGTAGCACTTGCTACT -ACGGAAACCGTAGCACTTGGATCT -ACGGAAACCGTAGCACTTAAGGCT -ACGGAAACCGTAGCACTTTCAACC -ACGGAAACCGTAGCACTTTGTTCC -ACGGAAACCGTAGCACTTATTCCC -ACGGAAACCGTAGCACTTTTCTCG -ACGGAAACCGTAGCACTTTAGACG -ACGGAAACCGTAGCACTTGTAACG -ACGGAAACCGTAGCACTTACTTCG -ACGGAAACCGTAGCACTTTACGCA -ACGGAAACCGTAGCACTTCTTGCA -ACGGAAACCGTAGCACTTCGAACA -ACGGAAACCGTAGCACTTCAGTCA -ACGGAAACCGTAGCACTTGATCCA -ACGGAAACCGTAGCACTTACGACA -ACGGAAACCGTAGCACTTAGCTCA -ACGGAAACCGTAGCACTTTCACGT -ACGGAAACCGTAGCACTTCGTAGT -ACGGAAACCGTAGCACTTGTCAGT -ACGGAAACCGTAGCACTTGAAGGT -ACGGAAACCGTAGCACTTAACCGT -ACGGAAACCGTAGCACTTTTGTGC -ACGGAAACCGTAGCACTTCTAAGC -ACGGAAACCGTAGCACTTACTAGC -ACGGAAACCGTAGCACTTAGATGC -ACGGAAACCGTAGCACTTTGAAGG -ACGGAAACCGTAGCACTTCAATGG -ACGGAAACCGTAGCACTTATGAGG -ACGGAAACCGTAGCACTTAATGGG -ACGGAAACCGTAGCACTTTCCTGA -ACGGAAACCGTAGCACTTTAGCGA -ACGGAAACCGTAGCACTTCACAGA -ACGGAAACCGTAGCACTTGCAAGA -ACGGAAACCGTAGCACTTGGTTGA -ACGGAAACCGTAGCACTTTCCGAT -ACGGAAACCGTAGCACTTTGGCAT -ACGGAAACCGTAGCACTTCGAGAT -ACGGAAACCGTAGCACTTTACCAC -ACGGAAACCGTAGCACTTCAGAAC -ACGGAAACCGTAGCACTTGTCTAC -ACGGAAACCGTAGCACTTACGTAC -ACGGAAACCGTAGCACTTAGTGAC -ACGGAAACCGTAGCACTTCTGTAG -ACGGAAACCGTAGCACTTCCTAAG -ACGGAAACCGTAGCACTTGTTCAG -ACGGAAACCGTAGCACTTGCATAG -ACGGAAACCGTAGCACTTGACAAG -ACGGAAACCGTAGCACTTAAGCAG -ACGGAAACCGTAGCACTTCGTCAA -ACGGAAACCGTAGCACTTGCTGAA -ACGGAAACCGTAGCACTTAGTACG -ACGGAAACCGTAGCACTTATCCGA -ACGGAAACCGTAGCACTTATGGGA -ACGGAAACCGTAGCACTTGTGCAA -ACGGAAACCGTAGCACTTGAGGAA -ACGGAAACCGTAGCACTTCAGGTA -ACGGAAACCGTAGCACTTGACTCT -ACGGAAACCGTAGCACTTAGTCCT -ACGGAAACCGTAGCACTTTAAGCC -ACGGAAACCGTAGCACTTATAGCC -ACGGAAACCGTAGCACTTTAACCG -ACGGAAACCGTAGCACTTATGCCA -ACGGAAACCGTAACACGAGGAAAC -ACGGAAACCGTAACACGAAACACC -ACGGAAACCGTAACACGAATCGAG -ACGGAAACCGTAACACGACTCCTT -ACGGAAACCGTAACACGACCTGTT -ACGGAAACCGTAACACGACGGTTT -ACGGAAACCGTAACACGAGTGGTT -ACGGAAACCGTAACACGAGCCTTT -ACGGAAACCGTAACACGAGGTCTT -ACGGAAACCGTAACACGAACGCTT -ACGGAAACCGTAACACGAAGCGTT -ACGGAAACCGTAACACGATTCGTC -ACGGAAACCGTAACACGATCTCTC -ACGGAAACCGTAACACGATGGATC -ACGGAAACCGTAACACGACACTTC -ACGGAAACCGTAACACGAGTACTC -ACGGAAACCGTAACACGAGATGTC -ACGGAAACCGTAACACGAACAGTC -ACGGAAACCGTAACACGATTGCTG -ACGGAAACCGTAACACGATCCATG -ACGGAAACCGTAACACGATGTGTG -ACGGAAACCGTAACACGACTAGTG -ACGGAAACCGTAACACGACATCTG -ACGGAAACCGTAACACGAGAGTTG -ACGGAAACCGTAACACGAAGACTG -ACGGAAACCGTAACACGATCGGTA -ACGGAAACCGTAACACGATGCCTA -ACGGAAACCGTAACACGACCACTA -ACGGAAACCGTAACACGAGGAGTA -ACGGAAACCGTAACACGATCGTCT -ACGGAAACCGTAACACGATGCACT -ACGGAAACCGTAACACGACTGACT -ACGGAAACCGTAACACGACAACCT -ACGGAAACCGTAACACGAGCTACT -ACGGAAACCGTAACACGAGGATCT -ACGGAAACCGTAACACGAAAGGCT -ACGGAAACCGTAACACGATCAACC -ACGGAAACCGTAACACGATGTTCC -ACGGAAACCGTAACACGAATTCCC -ACGGAAACCGTAACACGATTCTCG -ACGGAAACCGTAACACGATAGACG -ACGGAAACCGTAACACGAGTAACG -ACGGAAACCGTAACACGAACTTCG -ACGGAAACCGTAACACGATACGCA -ACGGAAACCGTAACACGACTTGCA -ACGGAAACCGTAACACGACGAACA -ACGGAAACCGTAACACGACAGTCA -ACGGAAACCGTAACACGAGATCCA -ACGGAAACCGTAACACGAACGACA -ACGGAAACCGTAACACGAAGCTCA -ACGGAAACCGTAACACGATCACGT -ACGGAAACCGTAACACGACGTAGT -ACGGAAACCGTAACACGAGTCAGT -ACGGAAACCGTAACACGAGAAGGT -ACGGAAACCGTAACACGAAACCGT -ACGGAAACCGTAACACGATTGTGC -ACGGAAACCGTAACACGACTAAGC -ACGGAAACCGTAACACGAACTAGC -ACGGAAACCGTAACACGAAGATGC -ACGGAAACCGTAACACGATGAAGG -ACGGAAACCGTAACACGACAATGG -ACGGAAACCGTAACACGAATGAGG -ACGGAAACCGTAACACGAAATGGG -ACGGAAACCGTAACACGATCCTGA -ACGGAAACCGTAACACGATAGCGA -ACGGAAACCGTAACACGACACAGA -ACGGAAACCGTAACACGAGCAAGA -ACGGAAACCGTAACACGAGGTTGA -ACGGAAACCGTAACACGATCCGAT -ACGGAAACCGTAACACGATGGCAT -ACGGAAACCGTAACACGACGAGAT -ACGGAAACCGTAACACGATACCAC -ACGGAAACCGTAACACGACAGAAC -ACGGAAACCGTAACACGAGTCTAC -ACGGAAACCGTAACACGAACGTAC -ACGGAAACCGTAACACGAAGTGAC -ACGGAAACCGTAACACGACTGTAG -ACGGAAACCGTAACACGACCTAAG -ACGGAAACCGTAACACGAGTTCAG -ACGGAAACCGTAACACGAGCATAG -ACGGAAACCGTAACACGAGACAAG -ACGGAAACCGTAACACGAAAGCAG -ACGGAAACCGTAACACGACGTCAA -ACGGAAACCGTAACACGAGCTGAA -ACGGAAACCGTAACACGAAGTACG -ACGGAAACCGTAACACGAATCCGA -ACGGAAACCGTAACACGAATGGGA -ACGGAAACCGTAACACGAGTGCAA -ACGGAAACCGTAACACGAGAGGAA -ACGGAAACCGTAACACGACAGGTA -ACGGAAACCGTAACACGAGACTCT -ACGGAAACCGTAACACGAAGTCCT -ACGGAAACCGTAACACGATAAGCC -ACGGAAACCGTAACACGAATAGCC -ACGGAAACCGTAACACGATAACCG -ACGGAAACCGTAACACGAATGCCA -ACGGAAACCGTATCACAGGGAAAC -ACGGAAACCGTATCACAGAACACC -ACGGAAACCGTATCACAGATCGAG -ACGGAAACCGTATCACAGCTCCTT -ACGGAAACCGTATCACAGCCTGTT -ACGGAAACCGTATCACAGCGGTTT -ACGGAAACCGTATCACAGGTGGTT -ACGGAAACCGTATCACAGGCCTTT -ACGGAAACCGTATCACAGGGTCTT -ACGGAAACCGTATCACAGACGCTT -ACGGAAACCGTATCACAGAGCGTT -ACGGAAACCGTATCACAGTTCGTC -ACGGAAACCGTATCACAGTCTCTC -ACGGAAACCGTATCACAGTGGATC -ACGGAAACCGTATCACAGCACTTC -ACGGAAACCGTATCACAGGTACTC -ACGGAAACCGTATCACAGGATGTC -ACGGAAACCGTATCACAGACAGTC -ACGGAAACCGTATCACAGTTGCTG -ACGGAAACCGTATCACAGTCCATG -ACGGAAACCGTATCACAGTGTGTG -ACGGAAACCGTATCACAGCTAGTG -ACGGAAACCGTATCACAGCATCTG -ACGGAAACCGTATCACAGGAGTTG -ACGGAAACCGTATCACAGAGACTG -ACGGAAACCGTATCACAGTCGGTA -ACGGAAACCGTATCACAGTGCCTA -ACGGAAACCGTATCACAGCCACTA -ACGGAAACCGTATCACAGGGAGTA -ACGGAAACCGTATCACAGTCGTCT -ACGGAAACCGTATCACAGTGCACT -ACGGAAACCGTATCACAGCTGACT -ACGGAAACCGTATCACAGCAACCT -ACGGAAACCGTATCACAGGCTACT -ACGGAAACCGTATCACAGGGATCT -ACGGAAACCGTATCACAGAAGGCT -ACGGAAACCGTATCACAGTCAACC -ACGGAAACCGTATCACAGTGTTCC -ACGGAAACCGTATCACAGATTCCC -ACGGAAACCGTATCACAGTTCTCG -ACGGAAACCGTATCACAGTAGACG -ACGGAAACCGTATCACAGGTAACG -ACGGAAACCGTATCACAGACTTCG -ACGGAAACCGTATCACAGTACGCA -ACGGAAACCGTATCACAGCTTGCA -ACGGAAACCGTATCACAGCGAACA -ACGGAAACCGTATCACAGCAGTCA -ACGGAAACCGTATCACAGGATCCA -ACGGAAACCGTATCACAGACGACA -ACGGAAACCGTATCACAGAGCTCA -ACGGAAACCGTATCACAGTCACGT -ACGGAAACCGTATCACAGCGTAGT -ACGGAAACCGTATCACAGGTCAGT -ACGGAAACCGTATCACAGGAAGGT -ACGGAAACCGTATCACAGAACCGT -ACGGAAACCGTATCACAGTTGTGC -ACGGAAACCGTATCACAGCTAAGC -ACGGAAACCGTATCACAGACTAGC -ACGGAAACCGTATCACAGAGATGC -ACGGAAACCGTATCACAGTGAAGG -ACGGAAACCGTATCACAGCAATGG -ACGGAAACCGTATCACAGATGAGG -ACGGAAACCGTATCACAGAATGGG -ACGGAAACCGTATCACAGTCCTGA -ACGGAAACCGTATCACAGTAGCGA -ACGGAAACCGTATCACAGCACAGA -ACGGAAACCGTATCACAGGCAAGA -ACGGAAACCGTATCACAGGGTTGA -ACGGAAACCGTATCACAGTCCGAT -ACGGAAACCGTATCACAGTGGCAT -ACGGAAACCGTATCACAGCGAGAT -ACGGAAACCGTATCACAGTACCAC -ACGGAAACCGTATCACAGCAGAAC -ACGGAAACCGTATCACAGGTCTAC -ACGGAAACCGTATCACAGACGTAC -ACGGAAACCGTATCACAGAGTGAC -ACGGAAACCGTATCACAGCTGTAG -ACGGAAACCGTATCACAGCCTAAG -ACGGAAACCGTATCACAGGTTCAG -ACGGAAACCGTATCACAGGCATAG -ACGGAAACCGTATCACAGGACAAG -ACGGAAACCGTATCACAGAAGCAG -ACGGAAACCGTATCACAGCGTCAA -ACGGAAACCGTATCACAGGCTGAA -ACGGAAACCGTATCACAGAGTACG -ACGGAAACCGTATCACAGATCCGA -ACGGAAACCGTATCACAGATGGGA -ACGGAAACCGTATCACAGGTGCAA -ACGGAAACCGTATCACAGGAGGAA -ACGGAAACCGTATCACAGCAGGTA -ACGGAAACCGTATCACAGGACTCT -ACGGAAACCGTATCACAGAGTCCT -ACGGAAACCGTATCACAGTAAGCC -ACGGAAACCGTATCACAGATAGCC -ACGGAAACCGTATCACAGTAACCG -ACGGAAACCGTATCACAGATGCCA -ACGGAAACCGTACCAGATGGAAAC -ACGGAAACCGTACCAGATAACACC -ACGGAAACCGTACCAGATATCGAG -ACGGAAACCGTACCAGATCTCCTT -ACGGAAACCGTACCAGATCCTGTT -ACGGAAACCGTACCAGATCGGTTT -ACGGAAACCGTACCAGATGTGGTT -ACGGAAACCGTACCAGATGCCTTT -ACGGAAACCGTACCAGATGGTCTT -ACGGAAACCGTACCAGATACGCTT -ACGGAAACCGTACCAGATAGCGTT -ACGGAAACCGTACCAGATTTCGTC -ACGGAAACCGTACCAGATTCTCTC -ACGGAAACCGTACCAGATTGGATC -ACGGAAACCGTACCAGATCACTTC -ACGGAAACCGTACCAGATGTACTC -ACGGAAACCGTACCAGATGATGTC -ACGGAAACCGTACCAGATACAGTC -ACGGAAACCGTACCAGATTTGCTG -ACGGAAACCGTACCAGATTCCATG -ACGGAAACCGTACCAGATTGTGTG -ACGGAAACCGTACCAGATCTAGTG -ACGGAAACCGTACCAGATCATCTG -ACGGAAACCGTACCAGATGAGTTG -ACGGAAACCGTACCAGATAGACTG -ACGGAAACCGTACCAGATTCGGTA -ACGGAAACCGTACCAGATTGCCTA -ACGGAAACCGTACCAGATCCACTA -ACGGAAACCGTACCAGATGGAGTA -ACGGAAACCGTACCAGATTCGTCT -ACGGAAACCGTACCAGATTGCACT -ACGGAAACCGTACCAGATCTGACT -ACGGAAACCGTACCAGATCAACCT -ACGGAAACCGTACCAGATGCTACT -ACGGAAACCGTACCAGATGGATCT -ACGGAAACCGTACCAGATAAGGCT -ACGGAAACCGTACCAGATTCAACC -ACGGAAACCGTACCAGATTGTTCC -ACGGAAACCGTACCAGATATTCCC -ACGGAAACCGTACCAGATTTCTCG -ACGGAAACCGTACCAGATTAGACG -ACGGAAACCGTACCAGATGTAACG -ACGGAAACCGTACCAGATACTTCG -ACGGAAACCGTACCAGATTACGCA -ACGGAAACCGTACCAGATCTTGCA -ACGGAAACCGTACCAGATCGAACA -ACGGAAACCGTACCAGATCAGTCA -ACGGAAACCGTACCAGATGATCCA -ACGGAAACCGTACCAGATACGACA -ACGGAAACCGTACCAGATAGCTCA -ACGGAAACCGTACCAGATTCACGT -ACGGAAACCGTACCAGATCGTAGT -ACGGAAACCGTACCAGATGTCAGT -ACGGAAACCGTACCAGATGAAGGT -ACGGAAACCGTACCAGATAACCGT -ACGGAAACCGTACCAGATTTGTGC -ACGGAAACCGTACCAGATCTAAGC -ACGGAAACCGTACCAGATACTAGC -ACGGAAACCGTACCAGATAGATGC -ACGGAAACCGTACCAGATTGAAGG -ACGGAAACCGTACCAGATCAATGG -ACGGAAACCGTACCAGATATGAGG -ACGGAAACCGTACCAGATAATGGG -ACGGAAACCGTACCAGATTCCTGA -ACGGAAACCGTACCAGATTAGCGA -ACGGAAACCGTACCAGATCACAGA -ACGGAAACCGTACCAGATGCAAGA -ACGGAAACCGTACCAGATGGTTGA -ACGGAAACCGTACCAGATTCCGAT -ACGGAAACCGTACCAGATTGGCAT -ACGGAAACCGTACCAGATCGAGAT -ACGGAAACCGTACCAGATTACCAC -ACGGAAACCGTACCAGATCAGAAC -ACGGAAACCGTACCAGATGTCTAC -ACGGAAACCGTACCAGATACGTAC -ACGGAAACCGTACCAGATAGTGAC -ACGGAAACCGTACCAGATCTGTAG -ACGGAAACCGTACCAGATCCTAAG -ACGGAAACCGTACCAGATGTTCAG -ACGGAAACCGTACCAGATGCATAG -ACGGAAACCGTACCAGATGACAAG -ACGGAAACCGTACCAGATAAGCAG -ACGGAAACCGTACCAGATCGTCAA -ACGGAAACCGTACCAGATGCTGAA -ACGGAAACCGTACCAGATAGTACG -ACGGAAACCGTACCAGATATCCGA -ACGGAAACCGTACCAGATATGGGA -ACGGAAACCGTACCAGATGTGCAA -ACGGAAACCGTACCAGATGAGGAA -ACGGAAACCGTACCAGATCAGGTA -ACGGAAACCGTACCAGATGACTCT -ACGGAAACCGTACCAGATAGTCCT -ACGGAAACCGTACCAGATTAAGCC -ACGGAAACCGTACCAGATATAGCC -ACGGAAACCGTACCAGATTAACCG -ACGGAAACCGTACCAGATATGCCA -ACGGAAACCGTAACAACGGGAAAC -ACGGAAACCGTAACAACGAACACC -ACGGAAACCGTAACAACGATCGAG -ACGGAAACCGTAACAACGCTCCTT -ACGGAAACCGTAACAACGCCTGTT -ACGGAAACCGTAACAACGCGGTTT -ACGGAAACCGTAACAACGGTGGTT -ACGGAAACCGTAACAACGGCCTTT -ACGGAAACCGTAACAACGGGTCTT -ACGGAAACCGTAACAACGACGCTT -ACGGAAACCGTAACAACGAGCGTT -ACGGAAACCGTAACAACGTTCGTC -ACGGAAACCGTAACAACGTCTCTC -ACGGAAACCGTAACAACGTGGATC -ACGGAAACCGTAACAACGCACTTC -ACGGAAACCGTAACAACGGTACTC -ACGGAAACCGTAACAACGGATGTC -ACGGAAACCGTAACAACGACAGTC -ACGGAAACCGTAACAACGTTGCTG -ACGGAAACCGTAACAACGTCCATG -ACGGAAACCGTAACAACGTGTGTG -ACGGAAACCGTAACAACGCTAGTG -ACGGAAACCGTAACAACGCATCTG -ACGGAAACCGTAACAACGGAGTTG -ACGGAAACCGTAACAACGAGACTG -ACGGAAACCGTAACAACGTCGGTA -ACGGAAACCGTAACAACGTGCCTA -ACGGAAACCGTAACAACGCCACTA -ACGGAAACCGTAACAACGGGAGTA -ACGGAAACCGTAACAACGTCGTCT -ACGGAAACCGTAACAACGTGCACT -ACGGAAACCGTAACAACGCTGACT -ACGGAAACCGTAACAACGCAACCT -ACGGAAACCGTAACAACGGCTACT -ACGGAAACCGTAACAACGGGATCT -ACGGAAACCGTAACAACGAAGGCT -ACGGAAACCGTAACAACGTCAACC -ACGGAAACCGTAACAACGTGTTCC -ACGGAAACCGTAACAACGATTCCC -ACGGAAACCGTAACAACGTTCTCG -ACGGAAACCGTAACAACGTAGACG -ACGGAAACCGTAACAACGGTAACG -ACGGAAACCGTAACAACGACTTCG -ACGGAAACCGTAACAACGTACGCA -ACGGAAACCGTAACAACGCTTGCA -ACGGAAACCGTAACAACGCGAACA -ACGGAAACCGTAACAACGCAGTCA -ACGGAAACCGTAACAACGGATCCA -ACGGAAACCGTAACAACGACGACA -ACGGAAACCGTAACAACGAGCTCA -ACGGAAACCGTAACAACGTCACGT -ACGGAAACCGTAACAACGCGTAGT -ACGGAAACCGTAACAACGGTCAGT -ACGGAAACCGTAACAACGGAAGGT -ACGGAAACCGTAACAACGAACCGT -ACGGAAACCGTAACAACGTTGTGC -ACGGAAACCGTAACAACGCTAAGC -ACGGAAACCGTAACAACGACTAGC -ACGGAAACCGTAACAACGAGATGC -ACGGAAACCGTAACAACGTGAAGG -ACGGAAACCGTAACAACGCAATGG -ACGGAAACCGTAACAACGATGAGG -ACGGAAACCGTAACAACGAATGGG -ACGGAAACCGTAACAACGTCCTGA -ACGGAAACCGTAACAACGTAGCGA -ACGGAAACCGTAACAACGCACAGA -ACGGAAACCGTAACAACGGCAAGA -ACGGAAACCGTAACAACGGGTTGA -ACGGAAACCGTAACAACGTCCGAT -ACGGAAACCGTAACAACGTGGCAT -ACGGAAACCGTAACAACGCGAGAT -ACGGAAACCGTAACAACGTACCAC -ACGGAAACCGTAACAACGCAGAAC -ACGGAAACCGTAACAACGGTCTAC -ACGGAAACCGTAACAACGACGTAC -ACGGAAACCGTAACAACGAGTGAC -ACGGAAACCGTAACAACGCTGTAG -ACGGAAACCGTAACAACGCCTAAG -ACGGAAACCGTAACAACGGTTCAG -ACGGAAACCGTAACAACGGCATAG -ACGGAAACCGTAACAACGGACAAG -ACGGAAACCGTAACAACGAAGCAG -ACGGAAACCGTAACAACGCGTCAA -ACGGAAACCGTAACAACGGCTGAA -ACGGAAACCGTAACAACGAGTACG -ACGGAAACCGTAACAACGATCCGA -ACGGAAACCGTAACAACGATGGGA -ACGGAAACCGTAACAACGGTGCAA -ACGGAAACCGTAACAACGGAGGAA -ACGGAAACCGTAACAACGCAGGTA -ACGGAAACCGTAACAACGGACTCT -ACGGAAACCGTAACAACGAGTCCT -ACGGAAACCGTAACAACGTAAGCC -ACGGAAACCGTAACAACGATAGCC -ACGGAAACCGTAACAACGTAACCG -ACGGAAACCGTAACAACGATGCCA -ACGGAAACCGTATCAAGCGGAAAC -ACGGAAACCGTATCAAGCAACACC -ACGGAAACCGTATCAAGCATCGAG -ACGGAAACCGTATCAAGCCTCCTT -ACGGAAACCGTATCAAGCCCTGTT -ACGGAAACCGTATCAAGCCGGTTT -ACGGAAACCGTATCAAGCGTGGTT -ACGGAAACCGTATCAAGCGCCTTT -ACGGAAACCGTATCAAGCGGTCTT -ACGGAAACCGTATCAAGCACGCTT -ACGGAAACCGTATCAAGCAGCGTT -ACGGAAACCGTATCAAGCTTCGTC -ACGGAAACCGTATCAAGCTCTCTC -ACGGAAACCGTATCAAGCTGGATC -ACGGAAACCGTATCAAGCCACTTC -ACGGAAACCGTATCAAGCGTACTC -ACGGAAACCGTATCAAGCGATGTC -ACGGAAACCGTATCAAGCACAGTC -ACGGAAACCGTATCAAGCTTGCTG -ACGGAAACCGTATCAAGCTCCATG -ACGGAAACCGTATCAAGCTGTGTG -ACGGAAACCGTATCAAGCCTAGTG -ACGGAAACCGTATCAAGCCATCTG -ACGGAAACCGTATCAAGCGAGTTG -ACGGAAACCGTATCAAGCAGACTG -ACGGAAACCGTATCAAGCTCGGTA -ACGGAAACCGTATCAAGCTGCCTA -ACGGAAACCGTATCAAGCCCACTA -ACGGAAACCGTATCAAGCGGAGTA -ACGGAAACCGTATCAAGCTCGTCT -ACGGAAACCGTATCAAGCTGCACT -ACGGAAACCGTATCAAGCCTGACT -ACGGAAACCGTATCAAGCCAACCT -ACGGAAACCGTATCAAGCGCTACT -ACGGAAACCGTATCAAGCGGATCT -ACGGAAACCGTATCAAGCAAGGCT -ACGGAAACCGTATCAAGCTCAACC -ACGGAAACCGTATCAAGCTGTTCC -ACGGAAACCGTATCAAGCATTCCC -ACGGAAACCGTATCAAGCTTCTCG -ACGGAAACCGTATCAAGCTAGACG -ACGGAAACCGTATCAAGCGTAACG -ACGGAAACCGTATCAAGCACTTCG -ACGGAAACCGTATCAAGCTACGCA -ACGGAAACCGTATCAAGCCTTGCA -ACGGAAACCGTATCAAGCCGAACA -ACGGAAACCGTATCAAGCCAGTCA -ACGGAAACCGTATCAAGCGATCCA -ACGGAAACCGTATCAAGCACGACA -ACGGAAACCGTATCAAGCAGCTCA -ACGGAAACCGTATCAAGCTCACGT -ACGGAAACCGTATCAAGCCGTAGT -ACGGAAACCGTATCAAGCGTCAGT -ACGGAAACCGTATCAAGCGAAGGT -ACGGAAACCGTATCAAGCAACCGT -ACGGAAACCGTATCAAGCTTGTGC -ACGGAAACCGTATCAAGCCTAAGC -ACGGAAACCGTATCAAGCACTAGC -ACGGAAACCGTATCAAGCAGATGC -ACGGAAACCGTATCAAGCTGAAGG -ACGGAAACCGTATCAAGCCAATGG -ACGGAAACCGTATCAAGCATGAGG -ACGGAAACCGTATCAAGCAATGGG -ACGGAAACCGTATCAAGCTCCTGA -ACGGAAACCGTATCAAGCTAGCGA -ACGGAAACCGTATCAAGCCACAGA -ACGGAAACCGTATCAAGCGCAAGA -ACGGAAACCGTATCAAGCGGTTGA -ACGGAAACCGTATCAAGCTCCGAT -ACGGAAACCGTATCAAGCTGGCAT -ACGGAAACCGTATCAAGCCGAGAT -ACGGAAACCGTATCAAGCTACCAC -ACGGAAACCGTATCAAGCCAGAAC -ACGGAAACCGTATCAAGCGTCTAC -ACGGAAACCGTATCAAGCACGTAC -ACGGAAACCGTATCAAGCAGTGAC -ACGGAAACCGTATCAAGCCTGTAG -ACGGAAACCGTATCAAGCCCTAAG -ACGGAAACCGTATCAAGCGTTCAG -ACGGAAACCGTATCAAGCGCATAG -ACGGAAACCGTATCAAGCGACAAG -ACGGAAACCGTATCAAGCAAGCAG -ACGGAAACCGTATCAAGCCGTCAA -ACGGAAACCGTATCAAGCGCTGAA -ACGGAAACCGTATCAAGCAGTACG -ACGGAAACCGTATCAAGCATCCGA -ACGGAAACCGTATCAAGCATGGGA -ACGGAAACCGTATCAAGCGTGCAA -ACGGAAACCGTATCAAGCGAGGAA -ACGGAAACCGTATCAAGCCAGGTA -ACGGAAACCGTATCAAGCGACTCT -ACGGAAACCGTATCAAGCAGTCCT -ACGGAAACCGTATCAAGCTAAGCC -ACGGAAACCGTATCAAGCATAGCC -ACGGAAACCGTATCAAGCTAACCG -ACGGAAACCGTATCAAGCATGCCA -ACGGAAACCGTACGTTCAGGAAAC -ACGGAAACCGTACGTTCAAACACC -ACGGAAACCGTACGTTCAATCGAG -ACGGAAACCGTACGTTCACTCCTT -ACGGAAACCGTACGTTCACCTGTT -ACGGAAACCGTACGTTCACGGTTT -ACGGAAACCGTACGTTCAGTGGTT -ACGGAAACCGTACGTTCAGCCTTT -ACGGAAACCGTACGTTCAGGTCTT -ACGGAAACCGTACGTTCAACGCTT -ACGGAAACCGTACGTTCAAGCGTT -ACGGAAACCGTACGTTCATTCGTC -ACGGAAACCGTACGTTCATCTCTC -ACGGAAACCGTACGTTCATGGATC -ACGGAAACCGTACGTTCACACTTC -ACGGAAACCGTACGTTCAGTACTC -ACGGAAACCGTACGTTCAGATGTC -ACGGAAACCGTACGTTCAACAGTC -ACGGAAACCGTACGTTCATTGCTG -ACGGAAACCGTACGTTCATCCATG -ACGGAAACCGTACGTTCATGTGTG -ACGGAAACCGTACGTTCACTAGTG -ACGGAAACCGTACGTTCACATCTG -ACGGAAACCGTACGTTCAGAGTTG -ACGGAAACCGTACGTTCAAGACTG -ACGGAAACCGTACGTTCATCGGTA -ACGGAAACCGTACGTTCATGCCTA -ACGGAAACCGTACGTTCACCACTA -ACGGAAACCGTACGTTCAGGAGTA -ACGGAAACCGTACGTTCATCGTCT -ACGGAAACCGTACGTTCATGCACT -ACGGAAACCGTACGTTCACTGACT -ACGGAAACCGTACGTTCACAACCT -ACGGAAACCGTACGTTCAGCTACT -ACGGAAACCGTACGTTCAGGATCT -ACGGAAACCGTACGTTCAAAGGCT -ACGGAAACCGTACGTTCATCAACC -ACGGAAACCGTACGTTCATGTTCC -ACGGAAACCGTACGTTCAATTCCC -ACGGAAACCGTACGTTCATTCTCG -ACGGAAACCGTACGTTCATAGACG -ACGGAAACCGTACGTTCAGTAACG -ACGGAAACCGTACGTTCAACTTCG -ACGGAAACCGTACGTTCATACGCA -ACGGAAACCGTACGTTCACTTGCA -ACGGAAACCGTACGTTCACGAACA -ACGGAAACCGTACGTTCACAGTCA -ACGGAAACCGTACGTTCAGATCCA -ACGGAAACCGTACGTTCAACGACA -ACGGAAACCGTACGTTCAAGCTCA -ACGGAAACCGTACGTTCATCACGT -ACGGAAACCGTACGTTCACGTAGT -ACGGAAACCGTACGTTCAGTCAGT -ACGGAAACCGTACGTTCAGAAGGT -ACGGAAACCGTACGTTCAAACCGT -ACGGAAACCGTACGTTCATTGTGC -ACGGAAACCGTACGTTCACTAAGC -ACGGAAACCGTACGTTCAACTAGC -ACGGAAACCGTACGTTCAAGATGC -ACGGAAACCGTACGTTCATGAAGG -ACGGAAACCGTACGTTCACAATGG -ACGGAAACCGTACGTTCAATGAGG -ACGGAAACCGTACGTTCAAATGGG -ACGGAAACCGTACGTTCATCCTGA -ACGGAAACCGTACGTTCATAGCGA -ACGGAAACCGTACGTTCACACAGA -ACGGAAACCGTACGTTCAGCAAGA -ACGGAAACCGTACGTTCAGGTTGA -ACGGAAACCGTACGTTCATCCGAT -ACGGAAACCGTACGTTCATGGCAT -ACGGAAACCGTACGTTCACGAGAT -ACGGAAACCGTACGTTCATACCAC -ACGGAAACCGTACGTTCACAGAAC -ACGGAAACCGTACGTTCAGTCTAC -ACGGAAACCGTACGTTCAACGTAC -ACGGAAACCGTACGTTCAAGTGAC -ACGGAAACCGTACGTTCACTGTAG -ACGGAAACCGTACGTTCACCTAAG -ACGGAAACCGTACGTTCAGTTCAG -ACGGAAACCGTACGTTCAGCATAG -ACGGAAACCGTACGTTCAGACAAG -ACGGAAACCGTACGTTCAAAGCAG -ACGGAAACCGTACGTTCACGTCAA -ACGGAAACCGTACGTTCAGCTGAA -ACGGAAACCGTACGTTCAAGTACG -ACGGAAACCGTACGTTCAATCCGA -ACGGAAACCGTACGTTCAATGGGA -ACGGAAACCGTACGTTCAGTGCAA -ACGGAAACCGTACGTTCAGAGGAA -ACGGAAACCGTACGTTCACAGGTA -ACGGAAACCGTACGTTCAGACTCT -ACGGAAACCGTACGTTCAAGTCCT -ACGGAAACCGTACGTTCATAAGCC -ACGGAAACCGTACGTTCAATAGCC -ACGGAAACCGTACGTTCATAACCG -ACGGAAACCGTACGTTCAATGCCA -ACGGAAACCGTAAGTCGTGGAAAC -ACGGAAACCGTAAGTCGTAACACC -ACGGAAACCGTAAGTCGTATCGAG -ACGGAAACCGTAAGTCGTCTCCTT -ACGGAAACCGTAAGTCGTCCTGTT -ACGGAAACCGTAAGTCGTCGGTTT -ACGGAAACCGTAAGTCGTGTGGTT -ACGGAAACCGTAAGTCGTGCCTTT -ACGGAAACCGTAAGTCGTGGTCTT -ACGGAAACCGTAAGTCGTACGCTT -ACGGAAACCGTAAGTCGTAGCGTT -ACGGAAACCGTAAGTCGTTTCGTC -ACGGAAACCGTAAGTCGTTCTCTC -ACGGAAACCGTAAGTCGTTGGATC -ACGGAAACCGTAAGTCGTCACTTC -ACGGAAACCGTAAGTCGTGTACTC -ACGGAAACCGTAAGTCGTGATGTC -ACGGAAACCGTAAGTCGTACAGTC -ACGGAAACCGTAAGTCGTTTGCTG -ACGGAAACCGTAAGTCGTTCCATG -ACGGAAACCGTAAGTCGTTGTGTG -ACGGAAACCGTAAGTCGTCTAGTG -ACGGAAACCGTAAGTCGTCATCTG -ACGGAAACCGTAAGTCGTGAGTTG -ACGGAAACCGTAAGTCGTAGACTG -ACGGAAACCGTAAGTCGTTCGGTA -ACGGAAACCGTAAGTCGTTGCCTA -ACGGAAACCGTAAGTCGTCCACTA -ACGGAAACCGTAAGTCGTGGAGTA -ACGGAAACCGTAAGTCGTTCGTCT -ACGGAAACCGTAAGTCGTTGCACT -ACGGAAACCGTAAGTCGTCTGACT -ACGGAAACCGTAAGTCGTCAACCT -ACGGAAACCGTAAGTCGTGCTACT -ACGGAAACCGTAAGTCGTGGATCT -ACGGAAACCGTAAGTCGTAAGGCT -ACGGAAACCGTAAGTCGTTCAACC -ACGGAAACCGTAAGTCGTTGTTCC -ACGGAAACCGTAAGTCGTATTCCC -ACGGAAACCGTAAGTCGTTTCTCG -ACGGAAACCGTAAGTCGTTAGACG -ACGGAAACCGTAAGTCGTGTAACG -ACGGAAACCGTAAGTCGTACTTCG -ACGGAAACCGTAAGTCGTTACGCA -ACGGAAACCGTAAGTCGTCTTGCA -ACGGAAACCGTAAGTCGTCGAACA -ACGGAAACCGTAAGTCGTCAGTCA -ACGGAAACCGTAAGTCGTGATCCA -ACGGAAACCGTAAGTCGTACGACA -ACGGAAACCGTAAGTCGTAGCTCA -ACGGAAACCGTAAGTCGTTCACGT -ACGGAAACCGTAAGTCGTCGTAGT -ACGGAAACCGTAAGTCGTGTCAGT -ACGGAAACCGTAAGTCGTGAAGGT -ACGGAAACCGTAAGTCGTAACCGT -ACGGAAACCGTAAGTCGTTTGTGC -ACGGAAACCGTAAGTCGTCTAAGC -ACGGAAACCGTAAGTCGTACTAGC -ACGGAAACCGTAAGTCGTAGATGC -ACGGAAACCGTAAGTCGTTGAAGG -ACGGAAACCGTAAGTCGTCAATGG -ACGGAAACCGTAAGTCGTATGAGG -ACGGAAACCGTAAGTCGTAATGGG -ACGGAAACCGTAAGTCGTTCCTGA -ACGGAAACCGTAAGTCGTTAGCGA -ACGGAAACCGTAAGTCGTCACAGA -ACGGAAACCGTAAGTCGTGCAAGA -ACGGAAACCGTAAGTCGTGGTTGA -ACGGAAACCGTAAGTCGTTCCGAT -ACGGAAACCGTAAGTCGTTGGCAT -ACGGAAACCGTAAGTCGTCGAGAT -ACGGAAACCGTAAGTCGTTACCAC -ACGGAAACCGTAAGTCGTCAGAAC -ACGGAAACCGTAAGTCGTGTCTAC -ACGGAAACCGTAAGTCGTACGTAC -ACGGAAACCGTAAGTCGTAGTGAC -ACGGAAACCGTAAGTCGTCTGTAG -ACGGAAACCGTAAGTCGTCCTAAG -ACGGAAACCGTAAGTCGTGTTCAG -ACGGAAACCGTAAGTCGTGCATAG -ACGGAAACCGTAAGTCGTGACAAG -ACGGAAACCGTAAGTCGTAAGCAG -ACGGAAACCGTAAGTCGTCGTCAA -ACGGAAACCGTAAGTCGTGCTGAA -ACGGAAACCGTAAGTCGTAGTACG -ACGGAAACCGTAAGTCGTATCCGA -ACGGAAACCGTAAGTCGTATGGGA -ACGGAAACCGTAAGTCGTGTGCAA -ACGGAAACCGTAAGTCGTGAGGAA -ACGGAAACCGTAAGTCGTCAGGTA -ACGGAAACCGTAAGTCGTGACTCT -ACGGAAACCGTAAGTCGTAGTCCT -ACGGAAACCGTAAGTCGTTAAGCC -ACGGAAACCGTAAGTCGTATAGCC -ACGGAAACCGTAAGTCGTTAACCG -ACGGAAACCGTAAGTCGTATGCCA -ACGGAAACCGTAAGTGTCGGAAAC -ACGGAAACCGTAAGTGTCAACACC -ACGGAAACCGTAAGTGTCATCGAG -ACGGAAACCGTAAGTGTCCTCCTT -ACGGAAACCGTAAGTGTCCCTGTT -ACGGAAACCGTAAGTGTCCGGTTT -ACGGAAACCGTAAGTGTCGTGGTT -ACGGAAACCGTAAGTGTCGCCTTT -ACGGAAACCGTAAGTGTCGGTCTT -ACGGAAACCGTAAGTGTCACGCTT -ACGGAAACCGTAAGTGTCAGCGTT -ACGGAAACCGTAAGTGTCTTCGTC -ACGGAAACCGTAAGTGTCTCTCTC -ACGGAAACCGTAAGTGTCTGGATC -ACGGAAACCGTAAGTGTCCACTTC -ACGGAAACCGTAAGTGTCGTACTC -ACGGAAACCGTAAGTGTCGATGTC -ACGGAAACCGTAAGTGTCACAGTC -ACGGAAACCGTAAGTGTCTTGCTG -ACGGAAACCGTAAGTGTCTCCATG -ACGGAAACCGTAAGTGTCTGTGTG -ACGGAAACCGTAAGTGTCCTAGTG -ACGGAAACCGTAAGTGTCCATCTG -ACGGAAACCGTAAGTGTCGAGTTG -ACGGAAACCGTAAGTGTCAGACTG -ACGGAAACCGTAAGTGTCTCGGTA -ACGGAAACCGTAAGTGTCTGCCTA -ACGGAAACCGTAAGTGTCCCACTA -ACGGAAACCGTAAGTGTCGGAGTA -ACGGAAACCGTAAGTGTCTCGTCT -ACGGAAACCGTAAGTGTCTGCACT -ACGGAAACCGTAAGTGTCCTGACT -ACGGAAACCGTAAGTGTCCAACCT -ACGGAAACCGTAAGTGTCGCTACT -ACGGAAACCGTAAGTGTCGGATCT -ACGGAAACCGTAAGTGTCAAGGCT -ACGGAAACCGTAAGTGTCTCAACC -ACGGAAACCGTAAGTGTCTGTTCC -ACGGAAACCGTAAGTGTCATTCCC -ACGGAAACCGTAAGTGTCTTCTCG -ACGGAAACCGTAAGTGTCTAGACG -ACGGAAACCGTAAGTGTCGTAACG -ACGGAAACCGTAAGTGTCACTTCG -ACGGAAACCGTAAGTGTCTACGCA -ACGGAAACCGTAAGTGTCCTTGCA -ACGGAAACCGTAAGTGTCCGAACA -ACGGAAACCGTAAGTGTCCAGTCA -ACGGAAACCGTAAGTGTCGATCCA -ACGGAAACCGTAAGTGTCACGACA -ACGGAAACCGTAAGTGTCAGCTCA -ACGGAAACCGTAAGTGTCTCACGT -ACGGAAACCGTAAGTGTCCGTAGT -ACGGAAACCGTAAGTGTCGTCAGT -ACGGAAACCGTAAGTGTCGAAGGT -ACGGAAACCGTAAGTGTCAACCGT -ACGGAAACCGTAAGTGTCTTGTGC -ACGGAAACCGTAAGTGTCCTAAGC -ACGGAAACCGTAAGTGTCACTAGC -ACGGAAACCGTAAGTGTCAGATGC -ACGGAAACCGTAAGTGTCTGAAGG -ACGGAAACCGTAAGTGTCCAATGG -ACGGAAACCGTAAGTGTCATGAGG -ACGGAAACCGTAAGTGTCAATGGG -ACGGAAACCGTAAGTGTCTCCTGA -ACGGAAACCGTAAGTGTCTAGCGA -ACGGAAACCGTAAGTGTCCACAGA -ACGGAAACCGTAAGTGTCGCAAGA -ACGGAAACCGTAAGTGTCGGTTGA -ACGGAAACCGTAAGTGTCTCCGAT -ACGGAAACCGTAAGTGTCTGGCAT -ACGGAAACCGTAAGTGTCCGAGAT -ACGGAAACCGTAAGTGTCTACCAC -ACGGAAACCGTAAGTGTCCAGAAC -ACGGAAACCGTAAGTGTCGTCTAC -ACGGAAACCGTAAGTGTCACGTAC -ACGGAAACCGTAAGTGTCAGTGAC -ACGGAAACCGTAAGTGTCCTGTAG -ACGGAAACCGTAAGTGTCCCTAAG -ACGGAAACCGTAAGTGTCGTTCAG -ACGGAAACCGTAAGTGTCGCATAG -ACGGAAACCGTAAGTGTCGACAAG -ACGGAAACCGTAAGTGTCAAGCAG -ACGGAAACCGTAAGTGTCCGTCAA -ACGGAAACCGTAAGTGTCGCTGAA -ACGGAAACCGTAAGTGTCAGTACG -ACGGAAACCGTAAGTGTCATCCGA -ACGGAAACCGTAAGTGTCATGGGA -ACGGAAACCGTAAGTGTCGTGCAA -ACGGAAACCGTAAGTGTCGAGGAA -ACGGAAACCGTAAGTGTCCAGGTA -ACGGAAACCGTAAGTGTCGACTCT -ACGGAAACCGTAAGTGTCAGTCCT -ACGGAAACCGTAAGTGTCTAAGCC -ACGGAAACCGTAAGTGTCATAGCC -ACGGAAACCGTAAGTGTCTAACCG -ACGGAAACCGTAAGTGTCATGCCA -ACGGAAACCGTAGGTGAAGGAAAC -ACGGAAACCGTAGGTGAAAACACC -ACGGAAACCGTAGGTGAAATCGAG -ACGGAAACCGTAGGTGAACTCCTT -ACGGAAACCGTAGGTGAACCTGTT -ACGGAAACCGTAGGTGAACGGTTT -ACGGAAACCGTAGGTGAAGTGGTT -ACGGAAACCGTAGGTGAAGCCTTT -ACGGAAACCGTAGGTGAAGGTCTT -ACGGAAACCGTAGGTGAAACGCTT -ACGGAAACCGTAGGTGAAAGCGTT -ACGGAAACCGTAGGTGAATTCGTC -ACGGAAACCGTAGGTGAATCTCTC -ACGGAAACCGTAGGTGAATGGATC -ACGGAAACCGTAGGTGAACACTTC -ACGGAAACCGTAGGTGAAGTACTC -ACGGAAACCGTAGGTGAAGATGTC -ACGGAAACCGTAGGTGAAACAGTC -ACGGAAACCGTAGGTGAATTGCTG -ACGGAAACCGTAGGTGAATCCATG -ACGGAAACCGTAGGTGAATGTGTG -ACGGAAACCGTAGGTGAACTAGTG -ACGGAAACCGTAGGTGAACATCTG -ACGGAAACCGTAGGTGAAGAGTTG -ACGGAAACCGTAGGTGAAAGACTG -ACGGAAACCGTAGGTGAATCGGTA -ACGGAAACCGTAGGTGAATGCCTA -ACGGAAACCGTAGGTGAACCACTA -ACGGAAACCGTAGGTGAAGGAGTA -ACGGAAACCGTAGGTGAATCGTCT -ACGGAAACCGTAGGTGAATGCACT -ACGGAAACCGTAGGTGAACTGACT -ACGGAAACCGTAGGTGAACAACCT -ACGGAAACCGTAGGTGAAGCTACT -ACGGAAACCGTAGGTGAAGGATCT -ACGGAAACCGTAGGTGAAAAGGCT -ACGGAAACCGTAGGTGAATCAACC -ACGGAAACCGTAGGTGAATGTTCC -ACGGAAACCGTAGGTGAAATTCCC -ACGGAAACCGTAGGTGAATTCTCG -ACGGAAACCGTAGGTGAATAGACG -ACGGAAACCGTAGGTGAAGTAACG -ACGGAAACCGTAGGTGAAACTTCG -ACGGAAACCGTAGGTGAATACGCA -ACGGAAACCGTAGGTGAACTTGCA -ACGGAAACCGTAGGTGAACGAACA -ACGGAAACCGTAGGTGAACAGTCA -ACGGAAACCGTAGGTGAAGATCCA -ACGGAAACCGTAGGTGAAACGACA -ACGGAAACCGTAGGTGAAAGCTCA -ACGGAAACCGTAGGTGAATCACGT -ACGGAAACCGTAGGTGAACGTAGT -ACGGAAACCGTAGGTGAAGTCAGT -ACGGAAACCGTAGGTGAAGAAGGT -ACGGAAACCGTAGGTGAAAACCGT -ACGGAAACCGTAGGTGAATTGTGC -ACGGAAACCGTAGGTGAACTAAGC -ACGGAAACCGTAGGTGAAACTAGC -ACGGAAACCGTAGGTGAAAGATGC -ACGGAAACCGTAGGTGAATGAAGG -ACGGAAACCGTAGGTGAACAATGG -ACGGAAACCGTAGGTGAAATGAGG -ACGGAAACCGTAGGTGAAAATGGG -ACGGAAACCGTAGGTGAATCCTGA -ACGGAAACCGTAGGTGAATAGCGA -ACGGAAACCGTAGGTGAACACAGA -ACGGAAACCGTAGGTGAAGCAAGA -ACGGAAACCGTAGGTGAAGGTTGA -ACGGAAACCGTAGGTGAATCCGAT -ACGGAAACCGTAGGTGAATGGCAT -ACGGAAACCGTAGGTGAACGAGAT -ACGGAAACCGTAGGTGAATACCAC -ACGGAAACCGTAGGTGAACAGAAC -ACGGAAACCGTAGGTGAAGTCTAC -ACGGAAACCGTAGGTGAAACGTAC -ACGGAAACCGTAGGTGAAAGTGAC -ACGGAAACCGTAGGTGAACTGTAG -ACGGAAACCGTAGGTGAACCTAAG -ACGGAAACCGTAGGTGAAGTTCAG -ACGGAAACCGTAGGTGAAGCATAG -ACGGAAACCGTAGGTGAAGACAAG -ACGGAAACCGTAGGTGAAAAGCAG -ACGGAAACCGTAGGTGAACGTCAA -ACGGAAACCGTAGGTGAAGCTGAA -ACGGAAACCGTAGGTGAAAGTACG -ACGGAAACCGTAGGTGAAATCCGA -ACGGAAACCGTAGGTGAAATGGGA -ACGGAAACCGTAGGTGAAGTGCAA -ACGGAAACCGTAGGTGAAGAGGAA -ACGGAAACCGTAGGTGAACAGGTA -ACGGAAACCGTAGGTGAAGACTCT -ACGGAAACCGTAGGTGAAAGTCCT -ACGGAAACCGTAGGTGAATAAGCC -ACGGAAACCGTAGGTGAAATAGCC -ACGGAAACCGTAGGTGAATAACCG -ACGGAAACCGTAGGTGAAATGCCA -ACGGAAACCGTACGTAACGGAAAC -ACGGAAACCGTACGTAACAACACC -ACGGAAACCGTACGTAACATCGAG -ACGGAAACCGTACGTAACCTCCTT -ACGGAAACCGTACGTAACCCTGTT -ACGGAAACCGTACGTAACCGGTTT -ACGGAAACCGTACGTAACGTGGTT -ACGGAAACCGTACGTAACGCCTTT -ACGGAAACCGTACGTAACGGTCTT -ACGGAAACCGTACGTAACACGCTT -ACGGAAACCGTACGTAACAGCGTT -ACGGAAACCGTACGTAACTTCGTC -ACGGAAACCGTACGTAACTCTCTC -ACGGAAACCGTACGTAACTGGATC -ACGGAAACCGTACGTAACCACTTC -ACGGAAACCGTACGTAACGTACTC -ACGGAAACCGTACGTAACGATGTC -ACGGAAACCGTACGTAACACAGTC -ACGGAAACCGTACGTAACTTGCTG -ACGGAAACCGTACGTAACTCCATG -ACGGAAACCGTACGTAACTGTGTG -ACGGAAACCGTACGTAACCTAGTG -ACGGAAACCGTACGTAACCATCTG -ACGGAAACCGTACGTAACGAGTTG -ACGGAAACCGTACGTAACAGACTG -ACGGAAACCGTACGTAACTCGGTA -ACGGAAACCGTACGTAACTGCCTA -ACGGAAACCGTACGTAACCCACTA -ACGGAAACCGTACGTAACGGAGTA -ACGGAAACCGTACGTAACTCGTCT -ACGGAAACCGTACGTAACTGCACT -ACGGAAACCGTACGTAACCTGACT -ACGGAAACCGTACGTAACCAACCT -ACGGAAACCGTACGTAACGCTACT -ACGGAAACCGTACGTAACGGATCT -ACGGAAACCGTACGTAACAAGGCT -ACGGAAACCGTACGTAACTCAACC -ACGGAAACCGTACGTAACTGTTCC -ACGGAAACCGTACGTAACATTCCC -ACGGAAACCGTACGTAACTTCTCG -ACGGAAACCGTACGTAACTAGACG -ACGGAAACCGTACGTAACGTAACG -ACGGAAACCGTACGTAACACTTCG -ACGGAAACCGTACGTAACTACGCA -ACGGAAACCGTACGTAACCTTGCA -ACGGAAACCGTACGTAACCGAACA -ACGGAAACCGTACGTAACCAGTCA -ACGGAAACCGTACGTAACGATCCA -ACGGAAACCGTACGTAACACGACA -ACGGAAACCGTACGTAACAGCTCA -ACGGAAACCGTACGTAACTCACGT -ACGGAAACCGTACGTAACCGTAGT -ACGGAAACCGTACGTAACGTCAGT -ACGGAAACCGTACGTAACGAAGGT -ACGGAAACCGTACGTAACAACCGT -ACGGAAACCGTACGTAACTTGTGC -ACGGAAACCGTACGTAACCTAAGC -ACGGAAACCGTACGTAACACTAGC -ACGGAAACCGTACGTAACAGATGC -ACGGAAACCGTACGTAACTGAAGG -ACGGAAACCGTACGTAACCAATGG -ACGGAAACCGTACGTAACATGAGG -ACGGAAACCGTACGTAACAATGGG -ACGGAAACCGTACGTAACTCCTGA -ACGGAAACCGTACGTAACTAGCGA -ACGGAAACCGTACGTAACCACAGA -ACGGAAACCGTACGTAACGCAAGA -ACGGAAACCGTACGTAACGGTTGA -ACGGAAACCGTACGTAACTCCGAT -ACGGAAACCGTACGTAACTGGCAT -ACGGAAACCGTACGTAACCGAGAT -ACGGAAACCGTACGTAACTACCAC -ACGGAAACCGTACGTAACCAGAAC -ACGGAAACCGTACGTAACGTCTAC -ACGGAAACCGTACGTAACACGTAC -ACGGAAACCGTACGTAACAGTGAC -ACGGAAACCGTACGTAACCTGTAG -ACGGAAACCGTACGTAACCCTAAG -ACGGAAACCGTACGTAACGTTCAG -ACGGAAACCGTACGTAACGCATAG -ACGGAAACCGTACGTAACGACAAG -ACGGAAACCGTACGTAACAAGCAG -ACGGAAACCGTACGTAACCGTCAA -ACGGAAACCGTACGTAACGCTGAA -ACGGAAACCGTACGTAACAGTACG -ACGGAAACCGTACGTAACATCCGA -ACGGAAACCGTACGTAACATGGGA -ACGGAAACCGTACGTAACGTGCAA -ACGGAAACCGTACGTAACGAGGAA -ACGGAAACCGTACGTAACCAGGTA -ACGGAAACCGTACGTAACGACTCT -ACGGAAACCGTACGTAACAGTCCT -ACGGAAACCGTACGTAACTAAGCC -ACGGAAACCGTACGTAACATAGCC -ACGGAAACCGTACGTAACTAACCG -ACGGAAACCGTACGTAACATGCCA -ACGGAAACCGTATGCTTGGGAAAC -ACGGAAACCGTATGCTTGAACACC -ACGGAAACCGTATGCTTGATCGAG -ACGGAAACCGTATGCTTGCTCCTT -ACGGAAACCGTATGCTTGCCTGTT -ACGGAAACCGTATGCTTGCGGTTT -ACGGAAACCGTATGCTTGGTGGTT -ACGGAAACCGTATGCTTGGCCTTT -ACGGAAACCGTATGCTTGGGTCTT -ACGGAAACCGTATGCTTGACGCTT -ACGGAAACCGTATGCTTGAGCGTT -ACGGAAACCGTATGCTTGTTCGTC -ACGGAAACCGTATGCTTGTCTCTC -ACGGAAACCGTATGCTTGTGGATC -ACGGAAACCGTATGCTTGCACTTC -ACGGAAACCGTATGCTTGGTACTC -ACGGAAACCGTATGCTTGGATGTC -ACGGAAACCGTATGCTTGACAGTC -ACGGAAACCGTATGCTTGTTGCTG -ACGGAAACCGTATGCTTGTCCATG -ACGGAAACCGTATGCTTGTGTGTG -ACGGAAACCGTATGCTTGCTAGTG -ACGGAAACCGTATGCTTGCATCTG -ACGGAAACCGTATGCTTGGAGTTG -ACGGAAACCGTATGCTTGAGACTG -ACGGAAACCGTATGCTTGTCGGTA -ACGGAAACCGTATGCTTGTGCCTA -ACGGAAACCGTATGCTTGCCACTA -ACGGAAACCGTATGCTTGGGAGTA -ACGGAAACCGTATGCTTGTCGTCT -ACGGAAACCGTATGCTTGTGCACT -ACGGAAACCGTATGCTTGCTGACT -ACGGAAACCGTATGCTTGCAACCT -ACGGAAACCGTATGCTTGGCTACT -ACGGAAACCGTATGCTTGGGATCT -ACGGAAACCGTATGCTTGAAGGCT -ACGGAAACCGTATGCTTGTCAACC -ACGGAAACCGTATGCTTGTGTTCC -ACGGAAACCGTATGCTTGATTCCC -ACGGAAACCGTATGCTTGTTCTCG -ACGGAAACCGTATGCTTGTAGACG -ACGGAAACCGTATGCTTGGTAACG -ACGGAAACCGTATGCTTGACTTCG -ACGGAAACCGTATGCTTGTACGCA -ACGGAAACCGTATGCTTGCTTGCA -ACGGAAACCGTATGCTTGCGAACA -ACGGAAACCGTATGCTTGCAGTCA -ACGGAAACCGTATGCTTGGATCCA -ACGGAAACCGTATGCTTGACGACA -ACGGAAACCGTATGCTTGAGCTCA -ACGGAAACCGTATGCTTGTCACGT -ACGGAAACCGTATGCTTGCGTAGT -ACGGAAACCGTATGCTTGGTCAGT -ACGGAAACCGTATGCTTGGAAGGT -ACGGAAACCGTATGCTTGAACCGT -ACGGAAACCGTATGCTTGTTGTGC -ACGGAAACCGTATGCTTGCTAAGC -ACGGAAACCGTATGCTTGACTAGC -ACGGAAACCGTATGCTTGAGATGC -ACGGAAACCGTATGCTTGTGAAGG -ACGGAAACCGTATGCTTGCAATGG -ACGGAAACCGTATGCTTGATGAGG -ACGGAAACCGTATGCTTGAATGGG -ACGGAAACCGTATGCTTGTCCTGA -ACGGAAACCGTATGCTTGTAGCGA -ACGGAAACCGTATGCTTGCACAGA -ACGGAAACCGTATGCTTGGCAAGA -ACGGAAACCGTATGCTTGGGTTGA -ACGGAAACCGTATGCTTGTCCGAT -ACGGAAACCGTATGCTTGTGGCAT -ACGGAAACCGTATGCTTGCGAGAT -ACGGAAACCGTATGCTTGTACCAC -ACGGAAACCGTATGCTTGCAGAAC -ACGGAAACCGTATGCTTGGTCTAC -ACGGAAACCGTATGCTTGACGTAC -ACGGAAACCGTATGCTTGAGTGAC -ACGGAAACCGTATGCTTGCTGTAG -ACGGAAACCGTATGCTTGCCTAAG -ACGGAAACCGTATGCTTGGTTCAG -ACGGAAACCGTATGCTTGGCATAG -ACGGAAACCGTATGCTTGGACAAG -ACGGAAACCGTATGCTTGAAGCAG -ACGGAAACCGTATGCTTGCGTCAA -ACGGAAACCGTATGCTTGGCTGAA -ACGGAAACCGTATGCTTGAGTACG -ACGGAAACCGTATGCTTGATCCGA -ACGGAAACCGTATGCTTGATGGGA -ACGGAAACCGTATGCTTGGTGCAA -ACGGAAACCGTATGCTTGGAGGAA -ACGGAAACCGTATGCTTGCAGGTA -ACGGAAACCGTATGCTTGGACTCT -ACGGAAACCGTATGCTTGAGTCCT -ACGGAAACCGTATGCTTGTAAGCC -ACGGAAACCGTATGCTTGATAGCC -ACGGAAACCGTATGCTTGTAACCG -ACGGAAACCGTATGCTTGATGCCA -ACGGAAACCGTAAGCCTAGGAAAC -ACGGAAACCGTAAGCCTAAACACC -ACGGAAACCGTAAGCCTAATCGAG -ACGGAAACCGTAAGCCTACTCCTT -ACGGAAACCGTAAGCCTACCTGTT -ACGGAAACCGTAAGCCTACGGTTT -ACGGAAACCGTAAGCCTAGTGGTT -ACGGAAACCGTAAGCCTAGCCTTT -ACGGAAACCGTAAGCCTAGGTCTT -ACGGAAACCGTAAGCCTAACGCTT -ACGGAAACCGTAAGCCTAAGCGTT -ACGGAAACCGTAAGCCTATTCGTC -ACGGAAACCGTAAGCCTATCTCTC -ACGGAAACCGTAAGCCTATGGATC -ACGGAAACCGTAAGCCTACACTTC -ACGGAAACCGTAAGCCTAGTACTC -ACGGAAACCGTAAGCCTAGATGTC -ACGGAAACCGTAAGCCTAACAGTC -ACGGAAACCGTAAGCCTATTGCTG -ACGGAAACCGTAAGCCTATCCATG -ACGGAAACCGTAAGCCTATGTGTG -ACGGAAACCGTAAGCCTACTAGTG -ACGGAAACCGTAAGCCTACATCTG -ACGGAAACCGTAAGCCTAGAGTTG -ACGGAAACCGTAAGCCTAAGACTG -ACGGAAACCGTAAGCCTATCGGTA -ACGGAAACCGTAAGCCTATGCCTA -ACGGAAACCGTAAGCCTACCACTA -ACGGAAACCGTAAGCCTAGGAGTA -ACGGAAACCGTAAGCCTATCGTCT -ACGGAAACCGTAAGCCTATGCACT -ACGGAAACCGTAAGCCTACTGACT -ACGGAAACCGTAAGCCTACAACCT -ACGGAAACCGTAAGCCTAGCTACT -ACGGAAACCGTAAGCCTAGGATCT -ACGGAAACCGTAAGCCTAAAGGCT -ACGGAAACCGTAAGCCTATCAACC -ACGGAAACCGTAAGCCTATGTTCC -ACGGAAACCGTAAGCCTAATTCCC -ACGGAAACCGTAAGCCTATTCTCG -ACGGAAACCGTAAGCCTATAGACG -ACGGAAACCGTAAGCCTAGTAACG -ACGGAAACCGTAAGCCTAACTTCG -ACGGAAACCGTAAGCCTATACGCA -ACGGAAACCGTAAGCCTACTTGCA -ACGGAAACCGTAAGCCTACGAACA -ACGGAAACCGTAAGCCTACAGTCA -ACGGAAACCGTAAGCCTAGATCCA -ACGGAAACCGTAAGCCTAACGACA -ACGGAAACCGTAAGCCTAAGCTCA -ACGGAAACCGTAAGCCTATCACGT -ACGGAAACCGTAAGCCTACGTAGT -ACGGAAACCGTAAGCCTAGTCAGT -ACGGAAACCGTAAGCCTAGAAGGT -ACGGAAACCGTAAGCCTAAACCGT -ACGGAAACCGTAAGCCTATTGTGC -ACGGAAACCGTAAGCCTACTAAGC -ACGGAAACCGTAAGCCTAACTAGC -ACGGAAACCGTAAGCCTAAGATGC -ACGGAAACCGTAAGCCTATGAAGG -ACGGAAACCGTAAGCCTACAATGG -ACGGAAACCGTAAGCCTAATGAGG -ACGGAAACCGTAAGCCTAAATGGG -ACGGAAACCGTAAGCCTATCCTGA -ACGGAAACCGTAAGCCTATAGCGA -ACGGAAACCGTAAGCCTACACAGA -ACGGAAACCGTAAGCCTAGCAAGA -ACGGAAACCGTAAGCCTAGGTTGA -ACGGAAACCGTAAGCCTATCCGAT -ACGGAAACCGTAAGCCTATGGCAT -ACGGAAACCGTAAGCCTACGAGAT -ACGGAAACCGTAAGCCTATACCAC -ACGGAAACCGTAAGCCTACAGAAC -ACGGAAACCGTAAGCCTAGTCTAC -ACGGAAACCGTAAGCCTAACGTAC -ACGGAAACCGTAAGCCTAAGTGAC -ACGGAAACCGTAAGCCTACTGTAG -ACGGAAACCGTAAGCCTACCTAAG -ACGGAAACCGTAAGCCTAGTTCAG -ACGGAAACCGTAAGCCTAGCATAG -ACGGAAACCGTAAGCCTAGACAAG -ACGGAAACCGTAAGCCTAAAGCAG -ACGGAAACCGTAAGCCTACGTCAA -ACGGAAACCGTAAGCCTAGCTGAA -ACGGAAACCGTAAGCCTAAGTACG -ACGGAAACCGTAAGCCTAATCCGA -ACGGAAACCGTAAGCCTAATGGGA -ACGGAAACCGTAAGCCTAGTGCAA -ACGGAAACCGTAAGCCTAGAGGAA -ACGGAAACCGTAAGCCTACAGGTA -ACGGAAACCGTAAGCCTAGACTCT -ACGGAAACCGTAAGCCTAAGTCCT -ACGGAAACCGTAAGCCTATAAGCC -ACGGAAACCGTAAGCCTAATAGCC -ACGGAAACCGTAAGCCTATAACCG -ACGGAAACCGTAAGCCTAATGCCA -ACGGAAACCGTAAGCACTGGAAAC -ACGGAAACCGTAAGCACTAACACC -ACGGAAACCGTAAGCACTATCGAG -ACGGAAACCGTAAGCACTCTCCTT -ACGGAAACCGTAAGCACTCCTGTT -ACGGAAACCGTAAGCACTCGGTTT -ACGGAAACCGTAAGCACTGTGGTT -ACGGAAACCGTAAGCACTGCCTTT -ACGGAAACCGTAAGCACTGGTCTT -ACGGAAACCGTAAGCACTACGCTT -ACGGAAACCGTAAGCACTAGCGTT -ACGGAAACCGTAAGCACTTTCGTC -ACGGAAACCGTAAGCACTTCTCTC -ACGGAAACCGTAAGCACTTGGATC -ACGGAAACCGTAAGCACTCACTTC -ACGGAAACCGTAAGCACTGTACTC -ACGGAAACCGTAAGCACTGATGTC -ACGGAAACCGTAAGCACTACAGTC -ACGGAAACCGTAAGCACTTTGCTG -ACGGAAACCGTAAGCACTTCCATG -ACGGAAACCGTAAGCACTTGTGTG -ACGGAAACCGTAAGCACTCTAGTG -ACGGAAACCGTAAGCACTCATCTG -ACGGAAACCGTAAGCACTGAGTTG -ACGGAAACCGTAAGCACTAGACTG -ACGGAAACCGTAAGCACTTCGGTA -ACGGAAACCGTAAGCACTTGCCTA -ACGGAAACCGTAAGCACTCCACTA -ACGGAAACCGTAAGCACTGGAGTA -ACGGAAACCGTAAGCACTTCGTCT -ACGGAAACCGTAAGCACTTGCACT -ACGGAAACCGTAAGCACTCTGACT -ACGGAAACCGTAAGCACTCAACCT -ACGGAAACCGTAAGCACTGCTACT -ACGGAAACCGTAAGCACTGGATCT -ACGGAAACCGTAAGCACTAAGGCT -ACGGAAACCGTAAGCACTTCAACC -ACGGAAACCGTAAGCACTTGTTCC -ACGGAAACCGTAAGCACTATTCCC -ACGGAAACCGTAAGCACTTTCTCG -ACGGAAACCGTAAGCACTTAGACG -ACGGAAACCGTAAGCACTGTAACG -ACGGAAACCGTAAGCACTACTTCG -ACGGAAACCGTAAGCACTTACGCA -ACGGAAACCGTAAGCACTCTTGCA -ACGGAAACCGTAAGCACTCGAACA -ACGGAAACCGTAAGCACTCAGTCA -ACGGAAACCGTAAGCACTGATCCA -ACGGAAACCGTAAGCACTACGACA -ACGGAAACCGTAAGCACTAGCTCA -ACGGAAACCGTAAGCACTTCACGT -ACGGAAACCGTAAGCACTCGTAGT -ACGGAAACCGTAAGCACTGTCAGT -ACGGAAACCGTAAGCACTGAAGGT -ACGGAAACCGTAAGCACTAACCGT -ACGGAAACCGTAAGCACTTTGTGC -ACGGAAACCGTAAGCACTCTAAGC -ACGGAAACCGTAAGCACTACTAGC -ACGGAAACCGTAAGCACTAGATGC -ACGGAAACCGTAAGCACTTGAAGG -ACGGAAACCGTAAGCACTCAATGG -ACGGAAACCGTAAGCACTATGAGG -ACGGAAACCGTAAGCACTAATGGG -ACGGAAACCGTAAGCACTTCCTGA -ACGGAAACCGTAAGCACTTAGCGA -ACGGAAACCGTAAGCACTCACAGA -ACGGAAACCGTAAGCACTGCAAGA -ACGGAAACCGTAAGCACTGGTTGA -ACGGAAACCGTAAGCACTTCCGAT -ACGGAAACCGTAAGCACTTGGCAT -ACGGAAACCGTAAGCACTCGAGAT -ACGGAAACCGTAAGCACTTACCAC -ACGGAAACCGTAAGCACTCAGAAC -ACGGAAACCGTAAGCACTGTCTAC -ACGGAAACCGTAAGCACTACGTAC -ACGGAAACCGTAAGCACTAGTGAC -ACGGAAACCGTAAGCACTCTGTAG -ACGGAAACCGTAAGCACTCCTAAG -ACGGAAACCGTAAGCACTGTTCAG -ACGGAAACCGTAAGCACTGCATAG -ACGGAAACCGTAAGCACTGACAAG -ACGGAAACCGTAAGCACTAAGCAG -ACGGAAACCGTAAGCACTCGTCAA -ACGGAAACCGTAAGCACTGCTGAA -ACGGAAACCGTAAGCACTAGTACG -ACGGAAACCGTAAGCACTATCCGA -ACGGAAACCGTAAGCACTATGGGA -ACGGAAACCGTAAGCACTGTGCAA -ACGGAAACCGTAAGCACTGAGGAA -ACGGAAACCGTAAGCACTCAGGTA -ACGGAAACCGTAAGCACTGACTCT -ACGGAAACCGTAAGCACTAGTCCT -ACGGAAACCGTAAGCACTTAAGCC -ACGGAAACCGTAAGCACTATAGCC -ACGGAAACCGTAAGCACTTAACCG -ACGGAAACCGTAAGCACTATGCCA -ACGGAAACCGTATGCAGAGGAAAC -ACGGAAACCGTATGCAGAAACACC -ACGGAAACCGTATGCAGAATCGAG -ACGGAAACCGTATGCAGACTCCTT -ACGGAAACCGTATGCAGACCTGTT -ACGGAAACCGTATGCAGACGGTTT -ACGGAAACCGTATGCAGAGTGGTT -ACGGAAACCGTATGCAGAGCCTTT -ACGGAAACCGTATGCAGAGGTCTT -ACGGAAACCGTATGCAGAACGCTT -ACGGAAACCGTATGCAGAAGCGTT -ACGGAAACCGTATGCAGATTCGTC -ACGGAAACCGTATGCAGATCTCTC -ACGGAAACCGTATGCAGATGGATC -ACGGAAACCGTATGCAGACACTTC -ACGGAAACCGTATGCAGAGTACTC -ACGGAAACCGTATGCAGAGATGTC -ACGGAAACCGTATGCAGAACAGTC -ACGGAAACCGTATGCAGATTGCTG -ACGGAAACCGTATGCAGATCCATG -ACGGAAACCGTATGCAGATGTGTG -ACGGAAACCGTATGCAGACTAGTG -ACGGAAACCGTATGCAGACATCTG -ACGGAAACCGTATGCAGAGAGTTG -ACGGAAACCGTATGCAGAAGACTG -ACGGAAACCGTATGCAGATCGGTA -ACGGAAACCGTATGCAGATGCCTA -ACGGAAACCGTATGCAGACCACTA -ACGGAAACCGTATGCAGAGGAGTA -ACGGAAACCGTATGCAGATCGTCT -ACGGAAACCGTATGCAGATGCACT -ACGGAAACCGTATGCAGACTGACT -ACGGAAACCGTATGCAGACAACCT -ACGGAAACCGTATGCAGAGCTACT -ACGGAAACCGTATGCAGAGGATCT -ACGGAAACCGTATGCAGAAAGGCT -ACGGAAACCGTATGCAGATCAACC -ACGGAAACCGTATGCAGATGTTCC -ACGGAAACCGTATGCAGAATTCCC -ACGGAAACCGTATGCAGATTCTCG -ACGGAAACCGTATGCAGATAGACG -ACGGAAACCGTATGCAGAGTAACG -ACGGAAACCGTATGCAGAACTTCG -ACGGAAACCGTATGCAGATACGCA -ACGGAAACCGTATGCAGACTTGCA -ACGGAAACCGTATGCAGACGAACA -ACGGAAACCGTATGCAGACAGTCA -ACGGAAACCGTATGCAGAGATCCA -ACGGAAACCGTATGCAGAACGACA -ACGGAAACCGTATGCAGAAGCTCA -ACGGAAACCGTATGCAGATCACGT -ACGGAAACCGTATGCAGACGTAGT -ACGGAAACCGTATGCAGAGTCAGT -ACGGAAACCGTATGCAGAGAAGGT -ACGGAAACCGTATGCAGAAACCGT -ACGGAAACCGTATGCAGATTGTGC -ACGGAAACCGTATGCAGACTAAGC -ACGGAAACCGTATGCAGAACTAGC -ACGGAAACCGTATGCAGAAGATGC -ACGGAAACCGTATGCAGATGAAGG -ACGGAAACCGTATGCAGACAATGG -ACGGAAACCGTATGCAGAATGAGG -ACGGAAACCGTATGCAGAAATGGG -ACGGAAACCGTATGCAGATCCTGA -ACGGAAACCGTATGCAGATAGCGA -ACGGAAACCGTATGCAGACACAGA -ACGGAAACCGTATGCAGAGCAAGA -ACGGAAACCGTATGCAGAGGTTGA -ACGGAAACCGTATGCAGATCCGAT -ACGGAAACCGTATGCAGATGGCAT -ACGGAAACCGTATGCAGACGAGAT -ACGGAAACCGTATGCAGATACCAC -ACGGAAACCGTATGCAGACAGAAC -ACGGAAACCGTATGCAGAGTCTAC -ACGGAAACCGTATGCAGAACGTAC -ACGGAAACCGTATGCAGAAGTGAC -ACGGAAACCGTATGCAGACTGTAG -ACGGAAACCGTATGCAGACCTAAG -ACGGAAACCGTATGCAGAGTTCAG -ACGGAAACCGTATGCAGAGCATAG -ACGGAAACCGTATGCAGAGACAAG -ACGGAAACCGTATGCAGAAAGCAG -ACGGAAACCGTATGCAGACGTCAA -ACGGAAACCGTATGCAGAGCTGAA -ACGGAAACCGTATGCAGAAGTACG -ACGGAAACCGTATGCAGAATCCGA -ACGGAAACCGTATGCAGAATGGGA -ACGGAAACCGTATGCAGAGTGCAA -ACGGAAACCGTATGCAGAGAGGAA -ACGGAAACCGTATGCAGACAGGTA -ACGGAAACCGTATGCAGAGACTCT -ACGGAAACCGTATGCAGAAGTCCT -ACGGAAACCGTATGCAGATAAGCC -ACGGAAACCGTATGCAGAATAGCC -ACGGAAACCGTATGCAGATAACCG -ACGGAAACCGTATGCAGAATGCCA -ACGGAAACCGTAAGGTGAGGAAAC -ACGGAAACCGTAAGGTGAAACACC -ACGGAAACCGTAAGGTGAATCGAG -ACGGAAACCGTAAGGTGACTCCTT -ACGGAAACCGTAAGGTGACCTGTT -ACGGAAACCGTAAGGTGACGGTTT -ACGGAAACCGTAAGGTGAGTGGTT -ACGGAAACCGTAAGGTGAGCCTTT -ACGGAAACCGTAAGGTGAGGTCTT -ACGGAAACCGTAAGGTGAACGCTT -ACGGAAACCGTAAGGTGAAGCGTT -ACGGAAACCGTAAGGTGATTCGTC -ACGGAAACCGTAAGGTGATCTCTC -ACGGAAACCGTAAGGTGATGGATC -ACGGAAACCGTAAGGTGACACTTC -ACGGAAACCGTAAGGTGAGTACTC -ACGGAAACCGTAAGGTGAGATGTC -ACGGAAACCGTAAGGTGAACAGTC -ACGGAAACCGTAAGGTGATTGCTG -ACGGAAACCGTAAGGTGATCCATG -ACGGAAACCGTAAGGTGATGTGTG -ACGGAAACCGTAAGGTGACTAGTG -ACGGAAACCGTAAGGTGACATCTG -ACGGAAACCGTAAGGTGAGAGTTG -ACGGAAACCGTAAGGTGAAGACTG -ACGGAAACCGTAAGGTGATCGGTA -ACGGAAACCGTAAGGTGATGCCTA -ACGGAAACCGTAAGGTGACCACTA -ACGGAAACCGTAAGGTGAGGAGTA -ACGGAAACCGTAAGGTGATCGTCT -ACGGAAACCGTAAGGTGATGCACT -ACGGAAACCGTAAGGTGACTGACT -ACGGAAACCGTAAGGTGACAACCT -ACGGAAACCGTAAGGTGAGCTACT -ACGGAAACCGTAAGGTGAGGATCT -ACGGAAACCGTAAGGTGAAAGGCT -ACGGAAACCGTAAGGTGATCAACC -ACGGAAACCGTAAGGTGATGTTCC -ACGGAAACCGTAAGGTGAATTCCC -ACGGAAACCGTAAGGTGATTCTCG -ACGGAAACCGTAAGGTGATAGACG -ACGGAAACCGTAAGGTGAGTAACG -ACGGAAACCGTAAGGTGAACTTCG -ACGGAAACCGTAAGGTGATACGCA -ACGGAAACCGTAAGGTGACTTGCA -ACGGAAACCGTAAGGTGACGAACA -ACGGAAACCGTAAGGTGACAGTCA -ACGGAAACCGTAAGGTGAGATCCA -ACGGAAACCGTAAGGTGAACGACA -ACGGAAACCGTAAGGTGAAGCTCA -ACGGAAACCGTAAGGTGATCACGT -ACGGAAACCGTAAGGTGACGTAGT -ACGGAAACCGTAAGGTGAGTCAGT -ACGGAAACCGTAAGGTGAGAAGGT -ACGGAAACCGTAAGGTGAAACCGT -ACGGAAACCGTAAGGTGATTGTGC -ACGGAAACCGTAAGGTGACTAAGC -ACGGAAACCGTAAGGTGAACTAGC -ACGGAAACCGTAAGGTGAAGATGC -ACGGAAACCGTAAGGTGATGAAGG -ACGGAAACCGTAAGGTGACAATGG -ACGGAAACCGTAAGGTGAATGAGG -ACGGAAACCGTAAGGTGAAATGGG -ACGGAAACCGTAAGGTGATCCTGA -ACGGAAACCGTAAGGTGATAGCGA -ACGGAAACCGTAAGGTGACACAGA -ACGGAAACCGTAAGGTGAGCAAGA -ACGGAAACCGTAAGGTGAGGTTGA -ACGGAAACCGTAAGGTGATCCGAT -ACGGAAACCGTAAGGTGATGGCAT -ACGGAAACCGTAAGGTGACGAGAT -ACGGAAACCGTAAGGTGATACCAC -ACGGAAACCGTAAGGTGACAGAAC -ACGGAAACCGTAAGGTGAGTCTAC -ACGGAAACCGTAAGGTGAACGTAC -ACGGAAACCGTAAGGTGAAGTGAC -ACGGAAACCGTAAGGTGACTGTAG -ACGGAAACCGTAAGGTGACCTAAG -ACGGAAACCGTAAGGTGAGTTCAG -ACGGAAACCGTAAGGTGAGCATAG -ACGGAAACCGTAAGGTGAGACAAG -ACGGAAACCGTAAGGTGAAAGCAG -ACGGAAACCGTAAGGTGACGTCAA -ACGGAAACCGTAAGGTGAGCTGAA -ACGGAAACCGTAAGGTGAAGTACG -ACGGAAACCGTAAGGTGAATCCGA -ACGGAAACCGTAAGGTGAATGGGA -ACGGAAACCGTAAGGTGAGTGCAA -ACGGAAACCGTAAGGTGAGAGGAA -ACGGAAACCGTAAGGTGACAGGTA -ACGGAAACCGTAAGGTGAGACTCT -ACGGAAACCGTAAGGTGAAGTCCT -ACGGAAACCGTAAGGTGATAAGCC -ACGGAAACCGTAAGGTGAATAGCC -ACGGAAACCGTAAGGTGATAACCG -ACGGAAACCGTAAGGTGAATGCCA -ACGGAAACCGTATGGCAAGGAAAC -ACGGAAACCGTATGGCAAAACACC -ACGGAAACCGTATGGCAAATCGAG -ACGGAAACCGTATGGCAACTCCTT -ACGGAAACCGTATGGCAACCTGTT -ACGGAAACCGTATGGCAACGGTTT -ACGGAAACCGTATGGCAAGTGGTT -ACGGAAACCGTATGGCAAGCCTTT -ACGGAAACCGTATGGCAAGGTCTT -ACGGAAACCGTATGGCAAACGCTT -ACGGAAACCGTATGGCAAAGCGTT -ACGGAAACCGTATGGCAATTCGTC -ACGGAAACCGTATGGCAATCTCTC -ACGGAAACCGTATGGCAATGGATC -ACGGAAACCGTATGGCAACACTTC -ACGGAAACCGTATGGCAAGTACTC -ACGGAAACCGTATGGCAAGATGTC -ACGGAAACCGTATGGCAAACAGTC -ACGGAAACCGTATGGCAATTGCTG -ACGGAAACCGTATGGCAATCCATG -ACGGAAACCGTATGGCAATGTGTG -ACGGAAACCGTATGGCAACTAGTG -ACGGAAACCGTATGGCAACATCTG -ACGGAAACCGTATGGCAAGAGTTG -ACGGAAACCGTATGGCAAAGACTG -ACGGAAACCGTATGGCAATCGGTA -ACGGAAACCGTATGGCAATGCCTA -ACGGAAACCGTATGGCAACCACTA -ACGGAAACCGTATGGCAAGGAGTA -ACGGAAACCGTATGGCAATCGTCT -ACGGAAACCGTATGGCAATGCACT -ACGGAAACCGTATGGCAACTGACT -ACGGAAACCGTATGGCAACAACCT -ACGGAAACCGTATGGCAAGCTACT -ACGGAAACCGTATGGCAAGGATCT -ACGGAAACCGTATGGCAAAAGGCT -ACGGAAACCGTATGGCAATCAACC -ACGGAAACCGTATGGCAATGTTCC -ACGGAAACCGTATGGCAAATTCCC -ACGGAAACCGTATGGCAATTCTCG -ACGGAAACCGTATGGCAATAGACG -ACGGAAACCGTATGGCAAGTAACG -ACGGAAACCGTATGGCAAACTTCG -ACGGAAACCGTATGGCAATACGCA -ACGGAAACCGTATGGCAACTTGCA -ACGGAAACCGTATGGCAACGAACA -ACGGAAACCGTATGGCAACAGTCA -ACGGAAACCGTATGGCAAGATCCA -ACGGAAACCGTATGGCAAACGACA -ACGGAAACCGTATGGCAAAGCTCA -ACGGAAACCGTATGGCAATCACGT -ACGGAAACCGTATGGCAACGTAGT -ACGGAAACCGTATGGCAAGTCAGT -ACGGAAACCGTATGGCAAGAAGGT -ACGGAAACCGTATGGCAAAACCGT -ACGGAAACCGTATGGCAATTGTGC -ACGGAAACCGTATGGCAACTAAGC -ACGGAAACCGTATGGCAAACTAGC -ACGGAAACCGTATGGCAAAGATGC -ACGGAAACCGTATGGCAATGAAGG -ACGGAAACCGTATGGCAACAATGG -ACGGAAACCGTATGGCAAATGAGG -ACGGAAACCGTATGGCAAAATGGG -ACGGAAACCGTATGGCAATCCTGA -ACGGAAACCGTATGGCAATAGCGA -ACGGAAACCGTATGGCAACACAGA -ACGGAAACCGTATGGCAAGCAAGA -ACGGAAACCGTATGGCAAGGTTGA -ACGGAAACCGTATGGCAATCCGAT -ACGGAAACCGTATGGCAATGGCAT -ACGGAAACCGTATGGCAACGAGAT -ACGGAAACCGTATGGCAATACCAC -ACGGAAACCGTATGGCAACAGAAC -ACGGAAACCGTATGGCAAGTCTAC -ACGGAAACCGTATGGCAAACGTAC -ACGGAAACCGTATGGCAAAGTGAC -ACGGAAACCGTATGGCAACTGTAG -ACGGAAACCGTATGGCAACCTAAG -ACGGAAACCGTATGGCAAGTTCAG -ACGGAAACCGTATGGCAAGCATAG -ACGGAAACCGTATGGCAAGACAAG -ACGGAAACCGTATGGCAAAAGCAG -ACGGAAACCGTATGGCAACGTCAA -ACGGAAACCGTATGGCAAGCTGAA -ACGGAAACCGTATGGCAAAGTACG -ACGGAAACCGTATGGCAAATCCGA -ACGGAAACCGTATGGCAAATGGGA -ACGGAAACCGTATGGCAAGTGCAA -ACGGAAACCGTATGGCAAGAGGAA -ACGGAAACCGTATGGCAACAGGTA -ACGGAAACCGTATGGCAAGACTCT -ACGGAAACCGTATGGCAAAGTCCT -ACGGAAACCGTATGGCAATAAGCC -ACGGAAACCGTATGGCAAATAGCC -ACGGAAACCGTATGGCAATAACCG -ACGGAAACCGTATGGCAAATGCCA -ACGGAAACCGTAAGGATGGGAAAC -ACGGAAACCGTAAGGATGAACACC -ACGGAAACCGTAAGGATGATCGAG -ACGGAAACCGTAAGGATGCTCCTT -ACGGAAACCGTAAGGATGCCTGTT -ACGGAAACCGTAAGGATGCGGTTT -ACGGAAACCGTAAGGATGGTGGTT -ACGGAAACCGTAAGGATGGCCTTT -ACGGAAACCGTAAGGATGGGTCTT -ACGGAAACCGTAAGGATGACGCTT -ACGGAAACCGTAAGGATGAGCGTT -ACGGAAACCGTAAGGATGTTCGTC -ACGGAAACCGTAAGGATGTCTCTC -ACGGAAACCGTAAGGATGTGGATC -ACGGAAACCGTAAGGATGCACTTC -ACGGAAACCGTAAGGATGGTACTC -ACGGAAACCGTAAGGATGGATGTC -ACGGAAACCGTAAGGATGACAGTC -ACGGAAACCGTAAGGATGTTGCTG -ACGGAAACCGTAAGGATGTCCATG -ACGGAAACCGTAAGGATGTGTGTG -ACGGAAACCGTAAGGATGCTAGTG -ACGGAAACCGTAAGGATGCATCTG -ACGGAAACCGTAAGGATGGAGTTG -ACGGAAACCGTAAGGATGAGACTG -ACGGAAACCGTAAGGATGTCGGTA -ACGGAAACCGTAAGGATGTGCCTA -ACGGAAACCGTAAGGATGCCACTA -ACGGAAACCGTAAGGATGGGAGTA -ACGGAAACCGTAAGGATGTCGTCT -ACGGAAACCGTAAGGATGTGCACT -ACGGAAACCGTAAGGATGCTGACT -ACGGAAACCGTAAGGATGCAACCT -ACGGAAACCGTAAGGATGGCTACT -ACGGAAACCGTAAGGATGGGATCT -ACGGAAACCGTAAGGATGAAGGCT -ACGGAAACCGTAAGGATGTCAACC -ACGGAAACCGTAAGGATGTGTTCC -ACGGAAACCGTAAGGATGATTCCC -ACGGAAACCGTAAGGATGTTCTCG -ACGGAAACCGTAAGGATGTAGACG -ACGGAAACCGTAAGGATGGTAACG -ACGGAAACCGTAAGGATGACTTCG -ACGGAAACCGTAAGGATGTACGCA -ACGGAAACCGTAAGGATGCTTGCA -ACGGAAACCGTAAGGATGCGAACA -ACGGAAACCGTAAGGATGCAGTCA -ACGGAAACCGTAAGGATGGATCCA -ACGGAAACCGTAAGGATGACGACA -ACGGAAACCGTAAGGATGAGCTCA -ACGGAAACCGTAAGGATGTCACGT -ACGGAAACCGTAAGGATGCGTAGT -ACGGAAACCGTAAGGATGGTCAGT -ACGGAAACCGTAAGGATGGAAGGT -ACGGAAACCGTAAGGATGAACCGT -ACGGAAACCGTAAGGATGTTGTGC -ACGGAAACCGTAAGGATGCTAAGC -ACGGAAACCGTAAGGATGACTAGC -ACGGAAACCGTAAGGATGAGATGC -ACGGAAACCGTAAGGATGTGAAGG -ACGGAAACCGTAAGGATGCAATGG -ACGGAAACCGTAAGGATGATGAGG -ACGGAAACCGTAAGGATGAATGGG -ACGGAAACCGTAAGGATGTCCTGA -ACGGAAACCGTAAGGATGTAGCGA -ACGGAAACCGTAAGGATGCACAGA -ACGGAAACCGTAAGGATGGCAAGA -ACGGAAACCGTAAGGATGGGTTGA -ACGGAAACCGTAAGGATGTCCGAT -ACGGAAACCGTAAGGATGTGGCAT -ACGGAAACCGTAAGGATGCGAGAT -ACGGAAACCGTAAGGATGTACCAC -ACGGAAACCGTAAGGATGCAGAAC -ACGGAAACCGTAAGGATGGTCTAC -ACGGAAACCGTAAGGATGACGTAC -ACGGAAACCGTAAGGATGAGTGAC -ACGGAAACCGTAAGGATGCTGTAG -ACGGAAACCGTAAGGATGCCTAAG -ACGGAAACCGTAAGGATGGTTCAG -ACGGAAACCGTAAGGATGGCATAG -ACGGAAACCGTAAGGATGGACAAG -ACGGAAACCGTAAGGATGAAGCAG -ACGGAAACCGTAAGGATGCGTCAA -ACGGAAACCGTAAGGATGGCTGAA -ACGGAAACCGTAAGGATGAGTACG -ACGGAAACCGTAAGGATGATCCGA -ACGGAAACCGTAAGGATGATGGGA -ACGGAAACCGTAAGGATGGTGCAA -ACGGAAACCGTAAGGATGGAGGAA -ACGGAAACCGTAAGGATGCAGGTA -ACGGAAACCGTAAGGATGGACTCT -ACGGAAACCGTAAGGATGAGTCCT -ACGGAAACCGTAAGGATGTAAGCC -ACGGAAACCGTAAGGATGATAGCC -ACGGAAACCGTAAGGATGTAACCG -ACGGAAACCGTAAGGATGATGCCA -ACGGAAACCGTAGGGAATGGAAAC -ACGGAAACCGTAGGGAATAACACC -ACGGAAACCGTAGGGAATATCGAG -ACGGAAACCGTAGGGAATCTCCTT -ACGGAAACCGTAGGGAATCCTGTT -ACGGAAACCGTAGGGAATCGGTTT -ACGGAAACCGTAGGGAATGTGGTT -ACGGAAACCGTAGGGAATGCCTTT -ACGGAAACCGTAGGGAATGGTCTT -ACGGAAACCGTAGGGAATACGCTT -ACGGAAACCGTAGGGAATAGCGTT -ACGGAAACCGTAGGGAATTTCGTC -ACGGAAACCGTAGGGAATTCTCTC -ACGGAAACCGTAGGGAATTGGATC -ACGGAAACCGTAGGGAATCACTTC -ACGGAAACCGTAGGGAATGTACTC -ACGGAAACCGTAGGGAATGATGTC -ACGGAAACCGTAGGGAATACAGTC -ACGGAAACCGTAGGGAATTTGCTG -ACGGAAACCGTAGGGAATTCCATG -ACGGAAACCGTAGGGAATTGTGTG -ACGGAAACCGTAGGGAATCTAGTG -ACGGAAACCGTAGGGAATCATCTG -ACGGAAACCGTAGGGAATGAGTTG -ACGGAAACCGTAGGGAATAGACTG -ACGGAAACCGTAGGGAATTCGGTA -ACGGAAACCGTAGGGAATTGCCTA -ACGGAAACCGTAGGGAATCCACTA -ACGGAAACCGTAGGGAATGGAGTA -ACGGAAACCGTAGGGAATTCGTCT -ACGGAAACCGTAGGGAATTGCACT -ACGGAAACCGTAGGGAATCTGACT -ACGGAAACCGTAGGGAATCAACCT -ACGGAAACCGTAGGGAATGCTACT -ACGGAAACCGTAGGGAATGGATCT -ACGGAAACCGTAGGGAATAAGGCT -ACGGAAACCGTAGGGAATTCAACC -ACGGAAACCGTAGGGAATTGTTCC -ACGGAAACCGTAGGGAATATTCCC -ACGGAAACCGTAGGGAATTTCTCG -ACGGAAACCGTAGGGAATTAGACG -ACGGAAACCGTAGGGAATGTAACG -ACGGAAACCGTAGGGAATACTTCG -ACGGAAACCGTAGGGAATTACGCA -ACGGAAACCGTAGGGAATCTTGCA -ACGGAAACCGTAGGGAATCGAACA -ACGGAAACCGTAGGGAATCAGTCA -ACGGAAACCGTAGGGAATGATCCA -ACGGAAACCGTAGGGAATACGACA -ACGGAAACCGTAGGGAATAGCTCA -ACGGAAACCGTAGGGAATTCACGT -ACGGAAACCGTAGGGAATCGTAGT -ACGGAAACCGTAGGGAATGTCAGT -ACGGAAACCGTAGGGAATGAAGGT -ACGGAAACCGTAGGGAATAACCGT -ACGGAAACCGTAGGGAATTTGTGC -ACGGAAACCGTAGGGAATCTAAGC -ACGGAAACCGTAGGGAATACTAGC -ACGGAAACCGTAGGGAATAGATGC -ACGGAAACCGTAGGGAATTGAAGG -ACGGAAACCGTAGGGAATCAATGG -ACGGAAACCGTAGGGAATATGAGG -ACGGAAACCGTAGGGAATAATGGG -ACGGAAACCGTAGGGAATTCCTGA -ACGGAAACCGTAGGGAATTAGCGA -ACGGAAACCGTAGGGAATCACAGA -ACGGAAACCGTAGGGAATGCAAGA -ACGGAAACCGTAGGGAATGGTTGA -ACGGAAACCGTAGGGAATTCCGAT -ACGGAAACCGTAGGGAATTGGCAT -ACGGAAACCGTAGGGAATCGAGAT -ACGGAAACCGTAGGGAATTACCAC -ACGGAAACCGTAGGGAATCAGAAC -ACGGAAACCGTAGGGAATGTCTAC -ACGGAAACCGTAGGGAATACGTAC -ACGGAAACCGTAGGGAATAGTGAC -ACGGAAACCGTAGGGAATCTGTAG -ACGGAAACCGTAGGGAATCCTAAG -ACGGAAACCGTAGGGAATGTTCAG -ACGGAAACCGTAGGGAATGCATAG -ACGGAAACCGTAGGGAATGACAAG -ACGGAAACCGTAGGGAATAAGCAG -ACGGAAACCGTAGGGAATCGTCAA -ACGGAAACCGTAGGGAATGCTGAA -ACGGAAACCGTAGGGAATAGTACG -ACGGAAACCGTAGGGAATATCCGA -ACGGAAACCGTAGGGAATATGGGA -ACGGAAACCGTAGGGAATGTGCAA -ACGGAAACCGTAGGGAATGAGGAA -ACGGAAACCGTAGGGAATCAGGTA -ACGGAAACCGTAGGGAATGACTCT -ACGGAAACCGTAGGGAATAGTCCT -ACGGAAACCGTAGGGAATTAAGCC -ACGGAAACCGTAGGGAATATAGCC -ACGGAAACCGTAGGGAATTAACCG -ACGGAAACCGTAGGGAATATGCCA -ACGGAAACCGTATGATCCGGAAAC -ACGGAAACCGTATGATCCAACACC -ACGGAAACCGTATGATCCATCGAG -ACGGAAACCGTATGATCCCTCCTT -ACGGAAACCGTATGATCCCCTGTT -ACGGAAACCGTATGATCCCGGTTT -ACGGAAACCGTATGATCCGTGGTT -ACGGAAACCGTATGATCCGCCTTT -ACGGAAACCGTATGATCCGGTCTT -ACGGAAACCGTATGATCCACGCTT -ACGGAAACCGTATGATCCAGCGTT -ACGGAAACCGTATGATCCTTCGTC -ACGGAAACCGTATGATCCTCTCTC -ACGGAAACCGTATGATCCTGGATC -ACGGAAACCGTATGATCCCACTTC -ACGGAAACCGTATGATCCGTACTC -ACGGAAACCGTATGATCCGATGTC -ACGGAAACCGTATGATCCACAGTC -ACGGAAACCGTATGATCCTTGCTG -ACGGAAACCGTATGATCCTCCATG -ACGGAAACCGTATGATCCTGTGTG -ACGGAAACCGTATGATCCCTAGTG -ACGGAAACCGTATGATCCCATCTG -ACGGAAACCGTATGATCCGAGTTG -ACGGAAACCGTATGATCCAGACTG -ACGGAAACCGTATGATCCTCGGTA -ACGGAAACCGTATGATCCTGCCTA -ACGGAAACCGTATGATCCCCACTA -ACGGAAACCGTATGATCCGGAGTA -ACGGAAACCGTATGATCCTCGTCT -ACGGAAACCGTATGATCCTGCACT -ACGGAAACCGTATGATCCCTGACT -ACGGAAACCGTATGATCCCAACCT -ACGGAAACCGTATGATCCGCTACT -ACGGAAACCGTATGATCCGGATCT -ACGGAAACCGTATGATCCAAGGCT -ACGGAAACCGTATGATCCTCAACC -ACGGAAACCGTATGATCCTGTTCC -ACGGAAACCGTATGATCCATTCCC -ACGGAAACCGTATGATCCTTCTCG -ACGGAAACCGTATGATCCTAGACG -ACGGAAACCGTATGATCCGTAACG -ACGGAAACCGTATGATCCACTTCG -ACGGAAACCGTATGATCCTACGCA -ACGGAAACCGTATGATCCCTTGCA -ACGGAAACCGTATGATCCCGAACA -ACGGAAACCGTATGATCCCAGTCA -ACGGAAACCGTATGATCCGATCCA -ACGGAAACCGTATGATCCACGACA -ACGGAAACCGTATGATCCAGCTCA -ACGGAAACCGTATGATCCTCACGT -ACGGAAACCGTATGATCCCGTAGT -ACGGAAACCGTATGATCCGTCAGT -ACGGAAACCGTATGATCCGAAGGT -ACGGAAACCGTATGATCCAACCGT -ACGGAAACCGTATGATCCTTGTGC -ACGGAAACCGTATGATCCCTAAGC -ACGGAAACCGTATGATCCACTAGC -ACGGAAACCGTATGATCCAGATGC -ACGGAAACCGTATGATCCTGAAGG -ACGGAAACCGTATGATCCCAATGG -ACGGAAACCGTATGATCCATGAGG -ACGGAAACCGTATGATCCAATGGG -ACGGAAACCGTATGATCCTCCTGA -ACGGAAACCGTATGATCCTAGCGA -ACGGAAACCGTATGATCCCACAGA -ACGGAAACCGTATGATCCGCAAGA -ACGGAAACCGTATGATCCGGTTGA -ACGGAAACCGTATGATCCTCCGAT -ACGGAAACCGTATGATCCTGGCAT -ACGGAAACCGTATGATCCCGAGAT -ACGGAAACCGTATGATCCTACCAC -ACGGAAACCGTATGATCCCAGAAC -ACGGAAACCGTATGATCCGTCTAC -ACGGAAACCGTATGATCCACGTAC -ACGGAAACCGTATGATCCAGTGAC -ACGGAAACCGTATGATCCCTGTAG -ACGGAAACCGTATGATCCCCTAAG -ACGGAAACCGTATGATCCGTTCAG -ACGGAAACCGTATGATCCGCATAG -ACGGAAACCGTATGATCCGACAAG -ACGGAAACCGTATGATCCAAGCAG -ACGGAAACCGTATGATCCCGTCAA -ACGGAAACCGTATGATCCGCTGAA -ACGGAAACCGTATGATCCAGTACG -ACGGAAACCGTATGATCCATCCGA -ACGGAAACCGTATGATCCATGGGA -ACGGAAACCGTATGATCCGTGCAA -ACGGAAACCGTATGATCCGAGGAA -ACGGAAACCGTATGATCCCAGGTA -ACGGAAACCGTATGATCCGACTCT -ACGGAAACCGTATGATCCAGTCCT -ACGGAAACCGTATGATCCTAAGCC -ACGGAAACCGTATGATCCATAGCC -ACGGAAACCGTATGATCCTAACCG -ACGGAAACCGTATGATCCATGCCA -ACGGAAACCGTACGATAGGGAAAC -ACGGAAACCGTACGATAGAACACC -ACGGAAACCGTACGATAGATCGAG -ACGGAAACCGTACGATAGCTCCTT -ACGGAAACCGTACGATAGCCTGTT -ACGGAAACCGTACGATAGCGGTTT -ACGGAAACCGTACGATAGGTGGTT -ACGGAAACCGTACGATAGGCCTTT -ACGGAAACCGTACGATAGGGTCTT -ACGGAAACCGTACGATAGACGCTT -ACGGAAACCGTACGATAGAGCGTT -ACGGAAACCGTACGATAGTTCGTC -ACGGAAACCGTACGATAGTCTCTC -ACGGAAACCGTACGATAGTGGATC -ACGGAAACCGTACGATAGCACTTC -ACGGAAACCGTACGATAGGTACTC -ACGGAAACCGTACGATAGGATGTC -ACGGAAACCGTACGATAGACAGTC -ACGGAAACCGTACGATAGTTGCTG -ACGGAAACCGTACGATAGTCCATG -ACGGAAACCGTACGATAGTGTGTG -ACGGAAACCGTACGATAGCTAGTG -ACGGAAACCGTACGATAGCATCTG -ACGGAAACCGTACGATAGGAGTTG -ACGGAAACCGTACGATAGAGACTG -ACGGAAACCGTACGATAGTCGGTA -ACGGAAACCGTACGATAGTGCCTA -ACGGAAACCGTACGATAGCCACTA -ACGGAAACCGTACGATAGGGAGTA -ACGGAAACCGTACGATAGTCGTCT -ACGGAAACCGTACGATAGTGCACT -ACGGAAACCGTACGATAGCTGACT -ACGGAAACCGTACGATAGCAACCT -ACGGAAACCGTACGATAGGCTACT -ACGGAAACCGTACGATAGGGATCT -ACGGAAACCGTACGATAGAAGGCT -ACGGAAACCGTACGATAGTCAACC -ACGGAAACCGTACGATAGTGTTCC -ACGGAAACCGTACGATAGATTCCC -ACGGAAACCGTACGATAGTTCTCG -ACGGAAACCGTACGATAGTAGACG -ACGGAAACCGTACGATAGGTAACG -ACGGAAACCGTACGATAGACTTCG -ACGGAAACCGTACGATAGTACGCA -ACGGAAACCGTACGATAGCTTGCA -ACGGAAACCGTACGATAGCGAACA -ACGGAAACCGTACGATAGCAGTCA -ACGGAAACCGTACGATAGGATCCA -ACGGAAACCGTACGATAGACGACA -ACGGAAACCGTACGATAGAGCTCA -ACGGAAACCGTACGATAGTCACGT -ACGGAAACCGTACGATAGCGTAGT -ACGGAAACCGTACGATAGGTCAGT -ACGGAAACCGTACGATAGGAAGGT -ACGGAAACCGTACGATAGAACCGT -ACGGAAACCGTACGATAGTTGTGC -ACGGAAACCGTACGATAGCTAAGC -ACGGAAACCGTACGATAGACTAGC -ACGGAAACCGTACGATAGAGATGC -ACGGAAACCGTACGATAGTGAAGG -ACGGAAACCGTACGATAGCAATGG -ACGGAAACCGTACGATAGATGAGG -ACGGAAACCGTACGATAGAATGGG -ACGGAAACCGTACGATAGTCCTGA -ACGGAAACCGTACGATAGTAGCGA -ACGGAAACCGTACGATAGCACAGA -ACGGAAACCGTACGATAGGCAAGA -ACGGAAACCGTACGATAGGGTTGA -ACGGAAACCGTACGATAGTCCGAT -ACGGAAACCGTACGATAGTGGCAT -ACGGAAACCGTACGATAGCGAGAT -ACGGAAACCGTACGATAGTACCAC -ACGGAAACCGTACGATAGCAGAAC -ACGGAAACCGTACGATAGGTCTAC -ACGGAAACCGTACGATAGACGTAC -ACGGAAACCGTACGATAGAGTGAC -ACGGAAACCGTACGATAGCTGTAG -ACGGAAACCGTACGATAGCCTAAG -ACGGAAACCGTACGATAGGTTCAG -ACGGAAACCGTACGATAGGCATAG -ACGGAAACCGTACGATAGGACAAG -ACGGAAACCGTACGATAGAAGCAG -ACGGAAACCGTACGATAGCGTCAA -ACGGAAACCGTACGATAGGCTGAA -ACGGAAACCGTACGATAGAGTACG -ACGGAAACCGTACGATAGATCCGA -ACGGAAACCGTACGATAGATGGGA -ACGGAAACCGTACGATAGGTGCAA -ACGGAAACCGTACGATAGGAGGAA -ACGGAAACCGTACGATAGCAGGTA -ACGGAAACCGTACGATAGGACTCT -ACGGAAACCGTACGATAGAGTCCT -ACGGAAACCGTACGATAGTAAGCC -ACGGAAACCGTACGATAGATAGCC -ACGGAAACCGTACGATAGTAACCG -ACGGAAACCGTACGATAGATGCCA -ACGGAAACCGTAAGACACGGAAAC -ACGGAAACCGTAAGACACAACACC -ACGGAAACCGTAAGACACATCGAG -ACGGAAACCGTAAGACACCTCCTT -ACGGAAACCGTAAGACACCCTGTT -ACGGAAACCGTAAGACACCGGTTT -ACGGAAACCGTAAGACACGTGGTT -ACGGAAACCGTAAGACACGCCTTT -ACGGAAACCGTAAGACACGGTCTT -ACGGAAACCGTAAGACACACGCTT -ACGGAAACCGTAAGACACAGCGTT -ACGGAAACCGTAAGACACTTCGTC -ACGGAAACCGTAAGACACTCTCTC -ACGGAAACCGTAAGACACTGGATC -ACGGAAACCGTAAGACACCACTTC -ACGGAAACCGTAAGACACGTACTC -ACGGAAACCGTAAGACACGATGTC -ACGGAAACCGTAAGACACACAGTC -ACGGAAACCGTAAGACACTTGCTG -ACGGAAACCGTAAGACACTCCATG -ACGGAAACCGTAAGACACTGTGTG -ACGGAAACCGTAAGACACCTAGTG -ACGGAAACCGTAAGACACCATCTG -ACGGAAACCGTAAGACACGAGTTG -ACGGAAACCGTAAGACACAGACTG -ACGGAAACCGTAAGACACTCGGTA -ACGGAAACCGTAAGACACTGCCTA -ACGGAAACCGTAAGACACCCACTA -ACGGAAACCGTAAGACACGGAGTA -ACGGAAACCGTAAGACACTCGTCT -ACGGAAACCGTAAGACACTGCACT -ACGGAAACCGTAAGACACCTGACT -ACGGAAACCGTAAGACACCAACCT -ACGGAAACCGTAAGACACGCTACT -ACGGAAACCGTAAGACACGGATCT -ACGGAAACCGTAAGACACAAGGCT -ACGGAAACCGTAAGACACTCAACC -ACGGAAACCGTAAGACACTGTTCC -ACGGAAACCGTAAGACACATTCCC -ACGGAAACCGTAAGACACTTCTCG -ACGGAAACCGTAAGACACTAGACG -ACGGAAACCGTAAGACACGTAACG -ACGGAAACCGTAAGACACACTTCG -ACGGAAACCGTAAGACACTACGCA -ACGGAAACCGTAAGACACCTTGCA -ACGGAAACCGTAAGACACCGAACA -ACGGAAACCGTAAGACACCAGTCA -ACGGAAACCGTAAGACACGATCCA -ACGGAAACCGTAAGACACACGACA -ACGGAAACCGTAAGACACAGCTCA -ACGGAAACCGTAAGACACTCACGT -ACGGAAACCGTAAGACACCGTAGT -ACGGAAACCGTAAGACACGTCAGT -ACGGAAACCGTAAGACACGAAGGT -ACGGAAACCGTAAGACACAACCGT -ACGGAAACCGTAAGACACTTGTGC -ACGGAAACCGTAAGACACCTAAGC -ACGGAAACCGTAAGACACACTAGC -ACGGAAACCGTAAGACACAGATGC -ACGGAAACCGTAAGACACTGAAGG -ACGGAAACCGTAAGACACCAATGG -ACGGAAACCGTAAGACACATGAGG -ACGGAAACCGTAAGACACAATGGG -ACGGAAACCGTAAGACACTCCTGA -ACGGAAACCGTAAGACACTAGCGA -ACGGAAACCGTAAGACACCACAGA -ACGGAAACCGTAAGACACGCAAGA -ACGGAAACCGTAAGACACGGTTGA -ACGGAAACCGTAAGACACTCCGAT -ACGGAAACCGTAAGACACTGGCAT -ACGGAAACCGTAAGACACCGAGAT -ACGGAAACCGTAAGACACTACCAC -ACGGAAACCGTAAGACACCAGAAC -ACGGAAACCGTAAGACACGTCTAC -ACGGAAACCGTAAGACACACGTAC -ACGGAAACCGTAAGACACAGTGAC -ACGGAAACCGTAAGACACCTGTAG -ACGGAAACCGTAAGACACCCTAAG -ACGGAAACCGTAAGACACGTTCAG -ACGGAAACCGTAAGACACGCATAG -ACGGAAACCGTAAGACACGACAAG -ACGGAAACCGTAAGACACAAGCAG -ACGGAAACCGTAAGACACCGTCAA -ACGGAAACCGTAAGACACGCTGAA -ACGGAAACCGTAAGACACAGTACG -ACGGAAACCGTAAGACACATCCGA -ACGGAAACCGTAAGACACATGGGA -ACGGAAACCGTAAGACACGTGCAA -ACGGAAACCGTAAGACACGAGGAA -ACGGAAACCGTAAGACACCAGGTA -ACGGAAACCGTAAGACACGACTCT -ACGGAAACCGTAAGACACAGTCCT -ACGGAAACCGTAAGACACTAAGCC -ACGGAAACCGTAAGACACATAGCC -ACGGAAACCGTAAGACACTAACCG -ACGGAAACCGTAAGACACATGCCA -ACGGAAACCGTAAGAGCAGGAAAC -ACGGAAACCGTAAGAGCAAACACC -ACGGAAACCGTAAGAGCAATCGAG -ACGGAAACCGTAAGAGCACTCCTT -ACGGAAACCGTAAGAGCACCTGTT -ACGGAAACCGTAAGAGCACGGTTT -ACGGAAACCGTAAGAGCAGTGGTT -ACGGAAACCGTAAGAGCAGCCTTT -ACGGAAACCGTAAGAGCAGGTCTT -ACGGAAACCGTAAGAGCAACGCTT -ACGGAAACCGTAAGAGCAAGCGTT -ACGGAAACCGTAAGAGCATTCGTC -ACGGAAACCGTAAGAGCATCTCTC -ACGGAAACCGTAAGAGCATGGATC -ACGGAAACCGTAAGAGCACACTTC -ACGGAAACCGTAAGAGCAGTACTC -ACGGAAACCGTAAGAGCAGATGTC -ACGGAAACCGTAAGAGCAACAGTC -ACGGAAACCGTAAGAGCATTGCTG -ACGGAAACCGTAAGAGCATCCATG -ACGGAAACCGTAAGAGCATGTGTG -ACGGAAACCGTAAGAGCACTAGTG -ACGGAAACCGTAAGAGCACATCTG -ACGGAAACCGTAAGAGCAGAGTTG -ACGGAAACCGTAAGAGCAAGACTG -ACGGAAACCGTAAGAGCATCGGTA -ACGGAAACCGTAAGAGCATGCCTA -ACGGAAACCGTAAGAGCACCACTA -ACGGAAACCGTAAGAGCAGGAGTA -ACGGAAACCGTAAGAGCATCGTCT -ACGGAAACCGTAAGAGCATGCACT -ACGGAAACCGTAAGAGCACTGACT -ACGGAAACCGTAAGAGCACAACCT -ACGGAAACCGTAAGAGCAGCTACT -ACGGAAACCGTAAGAGCAGGATCT -ACGGAAACCGTAAGAGCAAAGGCT -ACGGAAACCGTAAGAGCATCAACC -ACGGAAACCGTAAGAGCATGTTCC -ACGGAAACCGTAAGAGCAATTCCC -ACGGAAACCGTAAGAGCATTCTCG -ACGGAAACCGTAAGAGCATAGACG -ACGGAAACCGTAAGAGCAGTAACG -ACGGAAACCGTAAGAGCAACTTCG -ACGGAAACCGTAAGAGCATACGCA -ACGGAAACCGTAAGAGCACTTGCA -ACGGAAACCGTAAGAGCACGAACA -ACGGAAACCGTAAGAGCACAGTCA -ACGGAAACCGTAAGAGCAGATCCA -ACGGAAACCGTAAGAGCAACGACA -ACGGAAACCGTAAGAGCAAGCTCA -ACGGAAACCGTAAGAGCATCACGT -ACGGAAACCGTAAGAGCACGTAGT -ACGGAAACCGTAAGAGCAGTCAGT -ACGGAAACCGTAAGAGCAGAAGGT -ACGGAAACCGTAAGAGCAAACCGT -ACGGAAACCGTAAGAGCATTGTGC -ACGGAAACCGTAAGAGCACTAAGC -ACGGAAACCGTAAGAGCAACTAGC -ACGGAAACCGTAAGAGCAAGATGC -ACGGAAACCGTAAGAGCATGAAGG -ACGGAAACCGTAAGAGCACAATGG -ACGGAAACCGTAAGAGCAATGAGG -ACGGAAACCGTAAGAGCAAATGGG -ACGGAAACCGTAAGAGCATCCTGA -ACGGAAACCGTAAGAGCATAGCGA -ACGGAAACCGTAAGAGCACACAGA -ACGGAAACCGTAAGAGCAGCAAGA -ACGGAAACCGTAAGAGCAGGTTGA -ACGGAAACCGTAAGAGCATCCGAT -ACGGAAACCGTAAGAGCATGGCAT -ACGGAAACCGTAAGAGCACGAGAT -ACGGAAACCGTAAGAGCATACCAC -ACGGAAACCGTAAGAGCACAGAAC -ACGGAAACCGTAAGAGCAGTCTAC -ACGGAAACCGTAAGAGCAACGTAC -ACGGAAACCGTAAGAGCAAGTGAC -ACGGAAACCGTAAGAGCACTGTAG -ACGGAAACCGTAAGAGCACCTAAG -ACGGAAACCGTAAGAGCAGTTCAG -ACGGAAACCGTAAGAGCAGCATAG -ACGGAAACCGTAAGAGCAGACAAG -ACGGAAACCGTAAGAGCAAAGCAG -ACGGAAACCGTAAGAGCACGTCAA -ACGGAAACCGTAAGAGCAGCTGAA -ACGGAAACCGTAAGAGCAAGTACG -ACGGAAACCGTAAGAGCAATCCGA -ACGGAAACCGTAAGAGCAATGGGA -ACGGAAACCGTAAGAGCAGTGCAA -ACGGAAACCGTAAGAGCAGAGGAA -ACGGAAACCGTAAGAGCACAGGTA -ACGGAAACCGTAAGAGCAGACTCT -ACGGAAACCGTAAGAGCAAGTCCT -ACGGAAACCGTAAGAGCATAAGCC -ACGGAAACCGTAAGAGCAATAGCC -ACGGAAACCGTAAGAGCATAACCG -ACGGAAACCGTAAGAGCAATGCCA -ACGGAAACCGTATGAGGTGGAAAC -ACGGAAACCGTATGAGGTAACACC -ACGGAAACCGTATGAGGTATCGAG -ACGGAAACCGTATGAGGTCTCCTT -ACGGAAACCGTATGAGGTCCTGTT -ACGGAAACCGTATGAGGTCGGTTT -ACGGAAACCGTATGAGGTGTGGTT -ACGGAAACCGTATGAGGTGCCTTT -ACGGAAACCGTATGAGGTGGTCTT -ACGGAAACCGTATGAGGTACGCTT -ACGGAAACCGTATGAGGTAGCGTT -ACGGAAACCGTATGAGGTTTCGTC -ACGGAAACCGTATGAGGTTCTCTC -ACGGAAACCGTATGAGGTTGGATC -ACGGAAACCGTATGAGGTCACTTC -ACGGAAACCGTATGAGGTGTACTC -ACGGAAACCGTATGAGGTGATGTC -ACGGAAACCGTATGAGGTACAGTC -ACGGAAACCGTATGAGGTTTGCTG -ACGGAAACCGTATGAGGTTCCATG -ACGGAAACCGTATGAGGTTGTGTG -ACGGAAACCGTATGAGGTCTAGTG -ACGGAAACCGTATGAGGTCATCTG -ACGGAAACCGTATGAGGTGAGTTG -ACGGAAACCGTATGAGGTAGACTG -ACGGAAACCGTATGAGGTTCGGTA -ACGGAAACCGTATGAGGTTGCCTA -ACGGAAACCGTATGAGGTCCACTA -ACGGAAACCGTATGAGGTGGAGTA -ACGGAAACCGTATGAGGTTCGTCT -ACGGAAACCGTATGAGGTTGCACT -ACGGAAACCGTATGAGGTCTGACT -ACGGAAACCGTATGAGGTCAACCT -ACGGAAACCGTATGAGGTGCTACT -ACGGAAACCGTATGAGGTGGATCT -ACGGAAACCGTATGAGGTAAGGCT -ACGGAAACCGTATGAGGTTCAACC -ACGGAAACCGTATGAGGTTGTTCC -ACGGAAACCGTATGAGGTATTCCC -ACGGAAACCGTATGAGGTTTCTCG -ACGGAAACCGTATGAGGTTAGACG -ACGGAAACCGTATGAGGTGTAACG -ACGGAAACCGTATGAGGTACTTCG -ACGGAAACCGTATGAGGTTACGCA -ACGGAAACCGTATGAGGTCTTGCA -ACGGAAACCGTATGAGGTCGAACA -ACGGAAACCGTATGAGGTCAGTCA -ACGGAAACCGTATGAGGTGATCCA -ACGGAAACCGTATGAGGTACGACA -ACGGAAACCGTATGAGGTAGCTCA -ACGGAAACCGTATGAGGTTCACGT -ACGGAAACCGTATGAGGTCGTAGT -ACGGAAACCGTATGAGGTGTCAGT -ACGGAAACCGTATGAGGTGAAGGT -ACGGAAACCGTATGAGGTAACCGT -ACGGAAACCGTATGAGGTTTGTGC -ACGGAAACCGTATGAGGTCTAAGC -ACGGAAACCGTATGAGGTACTAGC -ACGGAAACCGTATGAGGTAGATGC -ACGGAAACCGTATGAGGTTGAAGG -ACGGAAACCGTATGAGGTCAATGG -ACGGAAACCGTATGAGGTATGAGG -ACGGAAACCGTATGAGGTAATGGG -ACGGAAACCGTATGAGGTTCCTGA -ACGGAAACCGTATGAGGTTAGCGA -ACGGAAACCGTATGAGGTCACAGA -ACGGAAACCGTATGAGGTGCAAGA -ACGGAAACCGTATGAGGTGGTTGA -ACGGAAACCGTATGAGGTTCCGAT -ACGGAAACCGTATGAGGTTGGCAT -ACGGAAACCGTATGAGGTCGAGAT -ACGGAAACCGTATGAGGTTACCAC -ACGGAAACCGTATGAGGTCAGAAC -ACGGAAACCGTATGAGGTGTCTAC -ACGGAAACCGTATGAGGTACGTAC -ACGGAAACCGTATGAGGTAGTGAC -ACGGAAACCGTATGAGGTCTGTAG -ACGGAAACCGTATGAGGTCCTAAG -ACGGAAACCGTATGAGGTGTTCAG -ACGGAAACCGTATGAGGTGCATAG -ACGGAAACCGTATGAGGTGACAAG -ACGGAAACCGTATGAGGTAAGCAG -ACGGAAACCGTATGAGGTCGTCAA -ACGGAAACCGTATGAGGTGCTGAA -ACGGAAACCGTATGAGGTAGTACG -ACGGAAACCGTATGAGGTATCCGA -ACGGAAACCGTATGAGGTATGGGA -ACGGAAACCGTATGAGGTGTGCAA -ACGGAAACCGTATGAGGTGAGGAA -ACGGAAACCGTATGAGGTCAGGTA -ACGGAAACCGTATGAGGTGACTCT -ACGGAAACCGTATGAGGTAGTCCT -ACGGAAACCGTATGAGGTTAAGCC -ACGGAAACCGTATGAGGTATAGCC -ACGGAAACCGTATGAGGTTAACCG -ACGGAAACCGTATGAGGTATGCCA -ACGGAAACCGTAGATTCCGGAAAC -ACGGAAACCGTAGATTCCAACACC -ACGGAAACCGTAGATTCCATCGAG -ACGGAAACCGTAGATTCCCTCCTT -ACGGAAACCGTAGATTCCCCTGTT -ACGGAAACCGTAGATTCCCGGTTT -ACGGAAACCGTAGATTCCGTGGTT -ACGGAAACCGTAGATTCCGCCTTT -ACGGAAACCGTAGATTCCGGTCTT -ACGGAAACCGTAGATTCCACGCTT -ACGGAAACCGTAGATTCCAGCGTT -ACGGAAACCGTAGATTCCTTCGTC -ACGGAAACCGTAGATTCCTCTCTC -ACGGAAACCGTAGATTCCTGGATC -ACGGAAACCGTAGATTCCCACTTC -ACGGAAACCGTAGATTCCGTACTC -ACGGAAACCGTAGATTCCGATGTC -ACGGAAACCGTAGATTCCACAGTC -ACGGAAACCGTAGATTCCTTGCTG -ACGGAAACCGTAGATTCCTCCATG -ACGGAAACCGTAGATTCCTGTGTG -ACGGAAACCGTAGATTCCCTAGTG -ACGGAAACCGTAGATTCCCATCTG -ACGGAAACCGTAGATTCCGAGTTG -ACGGAAACCGTAGATTCCAGACTG -ACGGAAACCGTAGATTCCTCGGTA -ACGGAAACCGTAGATTCCTGCCTA -ACGGAAACCGTAGATTCCCCACTA -ACGGAAACCGTAGATTCCGGAGTA -ACGGAAACCGTAGATTCCTCGTCT -ACGGAAACCGTAGATTCCTGCACT -ACGGAAACCGTAGATTCCCTGACT -ACGGAAACCGTAGATTCCCAACCT -ACGGAAACCGTAGATTCCGCTACT -ACGGAAACCGTAGATTCCGGATCT -ACGGAAACCGTAGATTCCAAGGCT -ACGGAAACCGTAGATTCCTCAACC -ACGGAAACCGTAGATTCCTGTTCC -ACGGAAACCGTAGATTCCATTCCC -ACGGAAACCGTAGATTCCTTCTCG -ACGGAAACCGTAGATTCCTAGACG -ACGGAAACCGTAGATTCCGTAACG -ACGGAAACCGTAGATTCCACTTCG -ACGGAAACCGTAGATTCCTACGCA -ACGGAAACCGTAGATTCCCTTGCA -ACGGAAACCGTAGATTCCCGAACA -ACGGAAACCGTAGATTCCCAGTCA -ACGGAAACCGTAGATTCCGATCCA -ACGGAAACCGTAGATTCCACGACA -ACGGAAACCGTAGATTCCAGCTCA -ACGGAAACCGTAGATTCCTCACGT -ACGGAAACCGTAGATTCCCGTAGT -ACGGAAACCGTAGATTCCGTCAGT -ACGGAAACCGTAGATTCCGAAGGT -ACGGAAACCGTAGATTCCAACCGT -ACGGAAACCGTAGATTCCTTGTGC -ACGGAAACCGTAGATTCCCTAAGC -ACGGAAACCGTAGATTCCACTAGC -ACGGAAACCGTAGATTCCAGATGC -ACGGAAACCGTAGATTCCTGAAGG -ACGGAAACCGTAGATTCCCAATGG -ACGGAAACCGTAGATTCCATGAGG -ACGGAAACCGTAGATTCCAATGGG -ACGGAAACCGTAGATTCCTCCTGA -ACGGAAACCGTAGATTCCTAGCGA -ACGGAAACCGTAGATTCCCACAGA -ACGGAAACCGTAGATTCCGCAAGA -ACGGAAACCGTAGATTCCGGTTGA -ACGGAAACCGTAGATTCCTCCGAT -ACGGAAACCGTAGATTCCTGGCAT -ACGGAAACCGTAGATTCCCGAGAT -ACGGAAACCGTAGATTCCTACCAC -ACGGAAACCGTAGATTCCCAGAAC -ACGGAAACCGTAGATTCCGTCTAC -ACGGAAACCGTAGATTCCACGTAC -ACGGAAACCGTAGATTCCAGTGAC -ACGGAAACCGTAGATTCCCTGTAG -ACGGAAACCGTAGATTCCCCTAAG -ACGGAAACCGTAGATTCCGTTCAG -ACGGAAACCGTAGATTCCGCATAG -ACGGAAACCGTAGATTCCGACAAG -ACGGAAACCGTAGATTCCAAGCAG -ACGGAAACCGTAGATTCCCGTCAA -ACGGAAACCGTAGATTCCGCTGAA -ACGGAAACCGTAGATTCCAGTACG -ACGGAAACCGTAGATTCCATCCGA -ACGGAAACCGTAGATTCCATGGGA -ACGGAAACCGTAGATTCCGTGCAA -ACGGAAACCGTAGATTCCGAGGAA -ACGGAAACCGTAGATTCCCAGGTA -ACGGAAACCGTAGATTCCGACTCT -ACGGAAACCGTAGATTCCAGTCCT -ACGGAAACCGTAGATTCCTAAGCC -ACGGAAACCGTAGATTCCATAGCC -ACGGAAACCGTAGATTCCTAACCG -ACGGAAACCGTAGATTCCATGCCA -ACGGAAACCGTACATTGGGGAAAC -ACGGAAACCGTACATTGGAACACC -ACGGAAACCGTACATTGGATCGAG -ACGGAAACCGTACATTGGCTCCTT -ACGGAAACCGTACATTGGCCTGTT -ACGGAAACCGTACATTGGCGGTTT -ACGGAAACCGTACATTGGGTGGTT -ACGGAAACCGTACATTGGGCCTTT -ACGGAAACCGTACATTGGGGTCTT -ACGGAAACCGTACATTGGACGCTT -ACGGAAACCGTACATTGGAGCGTT -ACGGAAACCGTACATTGGTTCGTC -ACGGAAACCGTACATTGGTCTCTC -ACGGAAACCGTACATTGGTGGATC -ACGGAAACCGTACATTGGCACTTC -ACGGAAACCGTACATTGGGTACTC -ACGGAAACCGTACATTGGGATGTC -ACGGAAACCGTACATTGGACAGTC -ACGGAAACCGTACATTGGTTGCTG -ACGGAAACCGTACATTGGTCCATG -ACGGAAACCGTACATTGGTGTGTG -ACGGAAACCGTACATTGGCTAGTG -ACGGAAACCGTACATTGGCATCTG -ACGGAAACCGTACATTGGGAGTTG -ACGGAAACCGTACATTGGAGACTG -ACGGAAACCGTACATTGGTCGGTA -ACGGAAACCGTACATTGGTGCCTA -ACGGAAACCGTACATTGGCCACTA -ACGGAAACCGTACATTGGGGAGTA -ACGGAAACCGTACATTGGTCGTCT -ACGGAAACCGTACATTGGTGCACT -ACGGAAACCGTACATTGGCTGACT -ACGGAAACCGTACATTGGCAACCT -ACGGAAACCGTACATTGGGCTACT -ACGGAAACCGTACATTGGGGATCT -ACGGAAACCGTACATTGGAAGGCT -ACGGAAACCGTACATTGGTCAACC -ACGGAAACCGTACATTGGTGTTCC -ACGGAAACCGTACATTGGATTCCC -ACGGAAACCGTACATTGGTTCTCG -ACGGAAACCGTACATTGGTAGACG -ACGGAAACCGTACATTGGGTAACG -ACGGAAACCGTACATTGGACTTCG -ACGGAAACCGTACATTGGTACGCA -ACGGAAACCGTACATTGGCTTGCA -ACGGAAACCGTACATTGGCGAACA -ACGGAAACCGTACATTGGCAGTCA -ACGGAAACCGTACATTGGGATCCA -ACGGAAACCGTACATTGGACGACA -ACGGAAACCGTACATTGGAGCTCA -ACGGAAACCGTACATTGGTCACGT -ACGGAAACCGTACATTGGCGTAGT -ACGGAAACCGTACATTGGGTCAGT -ACGGAAACCGTACATTGGGAAGGT -ACGGAAACCGTACATTGGAACCGT -ACGGAAACCGTACATTGGTTGTGC -ACGGAAACCGTACATTGGCTAAGC -ACGGAAACCGTACATTGGACTAGC -ACGGAAACCGTACATTGGAGATGC -ACGGAAACCGTACATTGGTGAAGG -ACGGAAACCGTACATTGGCAATGG -ACGGAAACCGTACATTGGATGAGG -ACGGAAACCGTACATTGGAATGGG -ACGGAAACCGTACATTGGTCCTGA -ACGGAAACCGTACATTGGTAGCGA -ACGGAAACCGTACATTGGCACAGA -ACGGAAACCGTACATTGGGCAAGA -ACGGAAACCGTACATTGGGGTTGA -ACGGAAACCGTACATTGGTCCGAT -ACGGAAACCGTACATTGGTGGCAT -ACGGAAACCGTACATTGGCGAGAT -ACGGAAACCGTACATTGGTACCAC -ACGGAAACCGTACATTGGCAGAAC -ACGGAAACCGTACATTGGGTCTAC -ACGGAAACCGTACATTGGACGTAC -ACGGAAACCGTACATTGGAGTGAC -ACGGAAACCGTACATTGGCTGTAG -ACGGAAACCGTACATTGGCCTAAG -ACGGAAACCGTACATTGGGTTCAG -ACGGAAACCGTACATTGGGCATAG -ACGGAAACCGTACATTGGGACAAG -ACGGAAACCGTACATTGGAAGCAG -ACGGAAACCGTACATTGGCGTCAA -ACGGAAACCGTACATTGGGCTGAA -ACGGAAACCGTACATTGGAGTACG -ACGGAAACCGTACATTGGATCCGA -ACGGAAACCGTACATTGGATGGGA -ACGGAAACCGTACATTGGGTGCAA -ACGGAAACCGTACATTGGGAGGAA -ACGGAAACCGTACATTGGCAGGTA -ACGGAAACCGTACATTGGGACTCT -ACGGAAACCGTACATTGGAGTCCT -ACGGAAACCGTACATTGGTAAGCC -ACGGAAACCGTACATTGGATAGCC -ACGGAAACCGTACATTGGTAACCG -ACGGAAACCGTACATTGGATGCCA -ACGGAAACCGTAGATCGAGGAAAC -ACGGAAACCGTAGATCGAAACACC -ACGGAAACCGTAGATCGAATCGAG -ACGGAAACCGTAGATCGACTCCTT -ACGGAAACCGTAGATCGACCTGTT -ACGGAAACCGTAGATCGACGGTTT -ACGGAAACCGTAGATCGAGTGGTT -ACGGAAACCGTAGATCGAGCCTTT -ACGGAAACCGTAGATCGAGGTCTT -ACGGAAACCGTAGATCGAACGCTT -ACGGAAACCGTAGATCGAAGCGTT -ACGGAAACCGTAGATCGATTCGTC -ACGGAAACCGTAGATCGATCTCTC -ACGGAAACCGTAGATCGATGGATC -ACGGAAACCGTAGATCGACACTTC -ACGGAAACCGTAGATCGAGTACTC -ACGGAAACCGTAGATCGAGATGTC -ACGGAAACCGTAGATCGAACAGTC -ACGGAAACCGTAGATCGATTGCTG -ACGGAAACCGTAGATCGATCCATG -ACGGAAACCGTAGATCGATGTGTG -ACGGAAACCGTAGATCGACTAGTG -ACGGAAACCGTAGATCGACATCTG -ACGGAAACCGTAGATCGAGAGTTG -ACGGAAACCGTAGATCGAAGACTG -ACGGAAACCGTAGATCGATCGGTA -ACGGAAACCGTAGATCGATGCCTA -ACGGAAACCGTAGATCGACCACTA -ACGGAAACCGTAGATCGAGGAGTA -ACGGAAACCGTAGATCGATCGTCT -ACGGAAACCGTAGATCGATGCACT -ACGGAAACCGTAGATCGACTGACT -ACGGAAACCGTAGATCGACAACCT -ACGGAAACCGTAGATCGAGCTACT -ACGGAAACCGTAGATCGAGGATCT -ACGGAAACCGTAGATCGAAAGGCT -ACGGAAACCGTAGATCGATCAACC -ACGGAAACCGTAGATCGATGTTCC -ACGGAAACCGTAGATCGAATTCCC -ACGGAAACCGTAGATCGATTCTCG -ACGGAAACCGTAGATCGATAGACG -ACGGAAACCGTAGATCGAGTAACG -ACGGAAACCGTAGATCGAACTTCG -ACGGAAACCGTAGATCGATACGCA -ACGGAAACCGTAGATCGACTTGCA -ACGGAAACCGTAGATCGACGAACA -ACGGAAACCGTAGATCGACAGTCA -ACGGAAACCGTAGATCGAGATCCA -ACGGAAACCGTAGATCGAACGACA -ACGGAAACCGTAGATCGAAGCTCA -ACGGAAACCGTAGATCGATCACGT -ACGGAAACCGTAGATCGACGTAGT -ACGGAAACCGTAGATCGAGTCAGT -ACGGAAACCGTAGATCGAGAAGGT -ACGGAAACCGTAGATCGAAACCGT -ACGGAAACCGTAGATCGATTGTGC -ACGGAAACCGTAGATCGACTAAGC -ACGGAAACCGTAGATCGAACTAGC -ACGGAAACCGTAGATCGAAGATGC -ACGGAAACCGTAGATCGATGAAGG -ACGGAAACCGTAGATCGACAATGG -ACGGAAACCGTAGATCGAATGAGG -ACGGAAACCGTAGATCGAAATGGG -ACGGAAACCGTAGATCGATCCTGA -ACGGAAACCGTAGATCGATAGCGA -ACGGAAACCGTAGATCGACACAGA -ACGGAAACCGTAGATCGAGCAAGA -ACGGAAACCGTAGATCGAGGTTGA -ACGGAAACCGTAGATCGATCCGAT -ACGGAAACCGTAGATCGATGGCAT -ACGGAAACCGTAGATCGACGAGAT -ACGGAAACCGTAGATCGATACCAC -ACGGAAACCGTAGATCGACAGAAC -ACGGAAACCGTAGATCGAGTCTAC -ACGGAAACCGTAGATCGAACGTAC -ACGGAAACCGTAGATCGAAGTGAC -ACGGAAACCGTAGATCGACTGTAG -ACGGAAACCGTAGATCGACCTAAG -ACGGAAACCGTAGATCGAGTTCAG -ACGGAAACCGTAGATCGAGCATAG -ACGGAAACCGTAGATCGAGACAAG -ACGGAAACCGTAGATCGAAAGCAG -ACGGAAACCGTAGATCGACGTCAA -ACGGAAACCGTAGATCGAGCTGAA -ACGGAAACCGTAGATCGAAGTACG -ACGGAAACCGTAGATCGAATCCGA -ACGGAAACCGTAGATCGAATGGGA -ACGGAAACCGTAGATCGAGTGCAA -ACGGAAACCGTAGATCGAGAGGAA -ACGGAAACCGTAGATCGACAGGTA -ACGGAAACCGTAGATCGAGACTCT -ACGGAAACCGTAGATCGAAGTCCT -ACGGAAACCGTAGATCGATAAGCC -ACGGAAACCGTAGATCGAATAGCC -ACGGAAACCGTAGATCGATAACCG -ACGGAAACCGTAGATCGAATGCCA -ACGGAAACCGTACACTACGGAAAC -ACGGAAACCGTACACTACAACACC -ACGGAAACCGTACACTACATCGAG -ACGGAAACCGTACACTACCTCCTT -ACGGAAACCGTACACTACCCTGTT -ACGGAAACCGTACACTACCGGTTT -ACGGAAACCGTACACTACGTGGTT -ACGGAAACCGTACACTACGCCTTT -ACGGAAACCGTACACTACGGTCTT -ACGGAAACCGTACACTACACGCTT -ACGGAAACCGTACACTACAGCGTT -ACGGAAACCGTACACTACTTCGTC -ACGGAAACCGTACACTACTCTCTC -ACGGAAACCGTACACTACTGGATC -ACGGAAACCGTACACTACCACTTC -ACGGAAACCGTACACTACGTACTC -ACGGAAACCGTACACTACGATGTC -ACGGAAACCGTACACTACACAGTC -ACGGAAACCGTACACTACTTGCTG -ACGGAAACCGTACACTACTCCATG -ACGGAAACCGTACACTACTGTGTG -ACGGAAACCGTACACTACCTAGTG -ACGGAAACCGTACACTACCATCTG -ACGGAAACCGTACACTACGAGTTG -ACGGAAACCGTACACTACAGACTG -ACGGAAACCGTACACTACTCGGTA -ACGGAAACCGTACACTACTGCCTA -ACGGAAACCGTACACTACCCACTA -ACGGAAACCGTACACTACGGAGTA -ACGGAAACCGTACACTACTCGTCT -ACGGAAACCGTACACTACTGCACT -ACGGAAACCGTACACTACCTGACT -ACGGAAACCGTACACTACCAACCT -ACGGAAACCGTACACTACGCTACT -ACGGAAACCGTACACTACGGATCT -ACGGAAACCGTACACTACAAGGCT -ACGGAAACCGTACACTACTCAACC -ACGGAAACCGTACACTACTGTTCC -ACGGAAACCGTACACTACATTCCC -ACGGAAACCGTACACTACTTCTCG -ACGGAAACCGTACACTACTAGACG -ACGGAAACCGTACACTACGTAACG -ACGGAAACCGTACACTACACTTCG -ACGGAAACCGTACACTACTACGCA -ACGGAAACCGTACACTACCTTGCA -ACGGAAACCGTACACTACCGAACA -ACGGAAACCGTACACTACCAGTCA -ACGGAAACCGTACACTACGATCCA -ACGGAAACCGTACACTACACGACA -ACGGAAACCGTACACTACAGCTCA -ACGGAAACCGTACACTACTCACGT -ACGGAAACCGTACACTACCGTAGT -ACGGAAACCGTACACTACGTCAGT -ACGGAAACCGTACACTACGAAGGT -ACGGAAACCGTACACTACAACCGT -ACGGAAACCGTACACTACTTGTGC -ACGGAAACCGTACACTACCTAAGC -ACGGAAACCGTACACTACACTAGC -ACGGAAACCGTACACTACAGATGC -ACGGAAACCGTACACTACTGAAGG -ACGGAAACCGTACACTACCAATGG -ACGGAAACCGTACACTACATGAGG -ACGGAAACCGTACACTACAATGGG -ACGGAAACCGTACACTACTCCTGA -ACGGAAACCGTACACTACTAGCGA -ACGGAAACCGTACACTACCACAGA -ACGGAAACCGTACACTACGCAAGA -ACGGAAACCGTACACTACGGTTGA -ACGGAAACCGTACACTACTCCGAT -ACGGAAACCGTACACTACTGGCAT -ACGGAAACCGTACACTACCGAGAT -ACGGAAACCGTACACTACTACCAC -ACGGAAACCGTACACTACCAGAAC -ACGGAAACCGTACACTACGTCTAC -ACGGAAACCGTACACTACACGTAC -ACGGAAACCGTACACTACAGTGAC -ACGGAAACCGTACACTACCTGTAG -ACGGAAACCGTACACTACCCTAAG -ACGGAAACCGTACACTACGTTCAG -ACGGAAACCGTACACTACGCATAG -ACGGAAACCGTACACTACGACAAG -ACGGAAACCGTACACTACAAGCAG -ACGGAAACCGTACACTACCGTCAA -ACGGAAACCGTACACTACGCTGAA -ACGGAAACCGTACACTACAGTACG -ACGGAAACCGTACACTACATCCGA -ACGGAAACCGTACACTACATGGGA -ACGGAAACCGTACACTACGTGCAA -ACGGAAACCGTACACTACGAGGAA -ACGGAAACCGTACACTACCAGGTA -ACGGAAACCGTACACTACGACTCT -ACGGAAACCGTACACTACAGTCCT -ACGGAAACCGTACACTACTAAGCC -ACGGAAACCGTACACTACATAGCC -ACGGAAACCGTACACTACTAACCG -ACGGAAACCGTACACTACATGCCA -ACGGAAACCGTAAACCAGGGAAAC -ACGGAAACCGTAAACCAGAACACC -ACGGAAACCGTAAACCAGATCGAG -ACGGAAACCGTAAACCAGCTCCTT -ACGGAAACCGTAAACCAGCCTGTT -ACGGAAACCGTAAACCAGCGGTTT -ACGGAAACCGTAAACCAGGTGGTT -ACGGAAACCGTAAACCAGGCCTTT -ACGGAAACCGTAAACCAGGGTCTT -ACGGAAACCGTAAACCAGACGCTT -ACGGAAACCGTAAACCAGAGCGTT -ACGGAAACCGTAAACCAGTTCGTC -ACGGAAACCGTAAACCAGTCTCTC -ACGGAAACCGTAAACCAGTGGATC -ACGGAAACCGTAAACCAGCACTTC -ACGGAAACCGTAAACCAGGTACTC -ACGGAAACCGTAAACCAGGATGTC -ACGGAAACCGTAAACCAGACAGTC -ACGGAAACCGTAAACCAGTTGCTG -ACGGAAACCGTAAACCAGTCCATG -ACGGAAACCGTAAACCAGTGTGTG -ACGGAAACCGTAAACCAGCTAGTG -ACGGAAACCGTAAACCAGCATCTG -ACGGAAACCGTAAACCAGGAGTTG -ACGGAAACCGTAAACCAGAGACTG -ACGGAAACCGTAAACCAGTCGGTA -ACGGAAACCGTAAACCAGTGCCTA -ACGGAAACCGTAAACCAGCCACTA -ACGGAAACCGTAAACCAGGGAGTA -ACGGAAACCGTAAACCAGTCGTCT -ACGGAAACCGTAAACCAGTGCACT -ACGGAAACCGTAAACCAGCTGACT -ACGGAAACCGTAAACCAGCAACCT -ACGGAAACCGTAAACCAGGCTACT -ACGGAAACCGTAAACCAGGGATCT -ACGGAAACCGTAAACCAGAAGGCT -ACGGAAACCGTAAACCAGTCAACC -ACGGAAACCGTAAACCAGTGTTCC -ACGGAAACCGTAAACCAGATTCCC -ACGGAAACCGTAAACCAGTTCTCG -ACGGAAACCGTAAACCAGTAGACG -ACGGAAACCGTAAACCAGGTAACG -ACGGAAACCGTAAACCAGACTTCG -ACGGAAACCGTAAACCAGTACGCA -ACGGAAACCGTAAACCAGCTTGCA -ACGGAAACCGTAAACCAGCGAACA -ACGGAAACCGTAAACCAGCAGTCA -ACGGAAACCGTAAACCAGGATCCA -ACGGAAACCGTAAACCAGACGACA -ACGGAAACCGTAAACCAGAGCTCA -ACGGAAACCGTAAACCAGTCACGT -ACGGAAACCGTAAACCAGCGTAGT -ACGGAAACCGTAAACCAGGTCAGT -ACGGAAACCGTAAACCAGGAAGGT -ACGGAAACCGTAAACCAGAACCGT -ACGGAAACCGTAAACCAGTTGTGC -ACGGAAACCGTAAACCAGCTAAGC -ACGGAAACCGTAAACCAGACTAGC -ACGGAAACCGTAAACCAGAGATGC -ACGGAAACCGTAAACCAGTGAAGG -ACGGAAACCGTAAACCAGCAATGG -ACGGAAACCGTAAACCAGATGAGG -ACGGAAACCGTAAACCAGAATGGG -ACGGAAACCGTAAACCAGTCCTGA -ACGGAAACCGTAAACCAGTAGCGA -ACGGAAACCGTAAACCAGCACAGA -ACGGAAACCGTAAACCAGGCAAGA -ACGGAAACCGTAAACCAGGGTTGA -ACGGAAACCGTAAACCAGTCCGAT -ACGGAAACCGTAAACCAGTGGCAT -ACGGAAACCGTAAACCAGCGAGAT -ACGGAAACCGTAAACCAGTACCAC -ACGGAAACCGTAAACCAGCAGAAC -ACGGAAACCGTAAACCAGGTCTAC -ACGGAAACCGTAAACCAGACGTAC -ACGGAAACCGTAAACCAGAGTGAC -ACGGAAACCGTAAACCAGCTGTAG -ACGGAAACCGTAAACCAGCCTAAG -ACGGAAACCGTAAACCAGGTTCAG -ACGGAAACCGTAAACCAGGCATAG -ACGGAAACCGTAAACCAGGACAAG -ACGGAAACCGTAAACCAGAAGCAG -ACGGAAACCGTAAACCAGCGTCAA -ACGGAAACCGTAAACCAGGCTGAA -ACGGAAACCGTAAACCAGAGTACG -ACGGAAACCGTAAACCAGATCCGA -ACGGAAACCGTAAACCAGATGGGA -ACGGAAACCGTAAACCAGGTGCAA -ACGGAAACCGTAAACCAGGAGGAA -ACGGAAACCGTAAACCAGCAGGTA -ACGGAAACCGTAAACCAGGACTCT -ACGGAAACCGTAAACCAGAGTCCT -ACGGAAACCGTAAACCAGTAAGCC -ACGGAAACCGTAAACCAGATAGCC -ACGGAAACCGTAAACCAGTAACCG -ACGGAAACCGTAAACCAGATGCCA -ACGGAAACCGTATACGTCGGAAAC -ACGGAAACCGTATACGTCAACACC -ACGGAAACCGTATACGTCATCGAG -ACGGAAACCGTATACGTCCTCCTT -ACGGAAACCGTATACGTCCCTGTT -ACGGAAACCGTATACGTCCGGTTT -ACGGAAACCGTATACGTCGTGGTT -ACGGAAACCGTATACGTCGCCTTT -ACGGAAACCGTATACGTCGGTCTT -ACGGAAACCGTATACGTCACGCTT -ACGGAAACCGTATACGTCAGCGTT -ACGGAAACCGTATACGTCTTCGTC -ACGGAAACCGTATACGTCTCTCTC -ACGGAAACCGTATACGTCTGGATC -ACGGAAACCGTATACGTCCACTTC -ACGGAAACCGTATACGTCGTACTC -ACGGAAACCGTATACGTCGATGTC -ACGGAAACCGTATACGTCACAGTC -ACGGAAACCGTATACGTCTTGCTG -ACGGAAACCGTATACGTCTCCATG -ACGGAAACCGTATACGTCTGTGTG -ACGGAAACCGTATACGTCCTAGTG -ACGGAAACCGTATACGTCCATCTG -ACGGAAACCGTATACGTCGAGTTG -ACGGAAACCGTATACGTCAGACTG -ACGGAAACCGTATACGTCTCGGTA -ACGGAAACCGTATACGTCTGCCTA -ACGGAAACCGTATACGTCCCACTA -ACGGAAACCGTATACGTCGGAGTA -ACGGAAACCGTATACGTCTCGTCT -ACGGAAACCGTATACGTCTGCACT -ACGGAAACCGTATACGTCCTGACT -ACGGAAACCGTATACGTCCAACCT -ACGGAAACCGTATACGTCGCTACT -ACGGAAACCGTATACGTCGGATCT -ACGGAAACCGTATACGTCAAGGCT -ACGGAAACCGTATACGTCTCAACC -ACGGAAACCGTATACGTCTGTTCC -ACGGAAACCGTATACGTCATTCCC -ACGGAAACCGTATACGTCTTCTCG -ACGGAAACCGTATACGTCTAGACG -ACGGAAACCGTATACGTCGTAACG -ACGGAAACCGTATACGTCACTTCG -ACGGAAACCGTATACGTCTACGCA -ACGGAAACCGTATACGTCCTTGCA -ACGGAAACCGTATACGTCCGAACA -ACGGAAACCGTATACGTCCAGTCA -ACGGAAACCGTATACGTCGATCCA -ACGGAAACCGTATACGTCACGACA -ACGGAAACCGTATACGTCAGCTCA -ACGGAAACCGTATACGTCTCACGT -ACGGAAACCGTATACGTCCGTAGT -ACGGAAACCGTATACGTCGTCAGT -ACGGAAACCGTATACGTCGAAGGT -ACGGAAACCGTATACGTCAACCGT -ACGGAAACCGTATACGTCTTGTGC -ACGGAAACCGTATACGTCCTAAGC -ACGGAAACCGTATACGTCACTAGC -ACGGAAACCGTATACGTCAGATGC -ACGGAAACCGTATACGTCTGAAGG -ACGGAAACCGTATACGTCCAATGG -ACGGAAACCGTATACGTCATGAGG -ACGGAAACCGTATACGTCAATGGG -ACGGAAACCGTATACGTCTCCTGA -ACGGAAACCGTATACGTCTAGCGA -ACGGAAACCGTATACGTCCACAGA -ACGGAAACCGTATACGTCGCAAGA -ACGGAAACCGTATACGTCGGTTGA -ACGGAAACCGTATACGTCTCCGAT -ACGGAAACCGTATACGTCTGGCAT -ACGGAAACCGTATACGTCCGAGAT -ACGGAAACCGTATACGTCTACCAC -ACGGAAACCGTATACGTCCAGAAC -ACGGAAACCGTATACGTCGTCTAC -ACGGAAACCGTATACGTCACGTAC -ACGGAAACCGTATACGTCAGTGAC -ACGGAAACCGTATACGTCCTGTAG -ACGGAAACCGTATACGTCCCTAAG -ACGGAAACCGTATACGTCGTTCAG -ACGGAAACCGTATACGTCGCATAG -ACGGAAACCGTATACGTCGACAAG -ACGGAAACCGTATACGTCAAGCAG -ACGGAAACCGTATACGTCCGTCAA -ACGGAAACCGTATACGTCGCTGAA -ACGGAAACCGTATACGTCAGTACG -ACGGAAACCGTATACGTCATCCGA -ACGGAAACCGTATACGTCATGGGA -ACGGAAACCGTATACGTCGTGCAA -ACGGAAACCGTATACGTCGAGGAA -ACGGAAACCGTATACGTCCAGGTA -ACGGAAACCGTATACGTCGACTCT -ACGGAAACCGTATACGTCAGTCCT -ACGGAAACCGTATACGTCTAAGCC -ACGGAAACCGTATACGTCATAGCC -ACGGAAACCGTATACGTCTAACCG -ACGGAAACCGTATACGTCATGCCA -ACGGAAACCGTATACACGGGAAAC -ACGGAAACCGTATACACGAACACC -ACGGAAACCGTATACACGATCGAG -ACGGAAACCGTATACACGCTCCTT -ACGGAAACCGTATACACGCCTGTT -ACGGAAACCGTATACACGCGGTTT -ACGGAAACCGTATACACGGTGGTT -ACGGAAACCGTATACACGGCCTTT -ACGGAAACCGTATACACGGGTCTT -ACGGAAACCGTATACACGACGCTT -ACGGAAACCGTATACACGAGCGTT -ACGGAAACCGTATACACGTTCGTC -ACGGAAACCGTATACACGTCTCTC -ACGGAAACCGTATACACGTGGATC -ACGGAAACCGTATACACGCACTTC -ACGGAAACCGTATACACGGTACTC -ACGGAAACCGTATACACGGATGTC -ACGGAAACCGTATACACGACAGTC -ACGGAAACCGTATACACGTTGCTG -ACGGAAACCGTATACACGTCCATG -ACGGAAACCGTATACACGTGTGTG -ACGGAAACCGTATACACGCTAGTG -ACGGAAACCGTATACACGCATCTG -ACGGAAACCGTATACACGGAGTTG -ACGGAAACCGTATACACGAGACTG -ACGGAAACCGTATACACGTCGGTA -ACGGAAACCGTATACACGTGCCTA -ACGGAAACCGTATACACGCCACTA -ACGGAAACCGTATACACGGGAGTA -ACGGAAACCGTATACACGTCGTCT -ACGGAAACCGTATACACGTGCACT -ACGGAAACCGTATACACGCTGACT -ACGGAAACCGTATACACGCAACCT -ACGGAAACCGTATACACGGCTACT -ACGGAAACCGTATACACGGGATCT -ACGGAAACCGTATACACGAAGGCT -ACGGAAACCGTATACACGTCAACC -ACGGAAACCGTATACACGTGTTCC -ACGGAAACCGTATACACGATTCCC -ACGGAAACCGTATACACGTTCTCG -ACGGAAACCGTATACACGTAGACG -ACGGAAACCGTATACACGGTAACG -ACGGAAACCGTATACACGACTTCG -ACGGAAACCGTATACACGTACGCA -ACGGAAACCGTATACACGCTTGCA -ACGGAAACCGTATACACGCGAACA -ACGGAAACCGTATACACGCAGTCA -ACGGAAACCGTATACACGGATCCA -ACGGAAACCGTATACACGACGACA -ACGGAAACCGTATACACGAGCTCA -ACGGAAACCGTATACACGTCACGT -ACGGAAACCGTATACACGCGTAGT -ACGGAAACCGTATACACGGTCAGT -ACGGAAACCGTATACACGGAAGGT -ACGGAAACCGTATACACGAACCGT -ACGGAAACCGTATACACGTTGTGC -ACGGAAACCGTATACACGCTAAGC -ACGGAAACCGTATACACGACTAGC -ACGGAAACCGTATACACGAGATGC -ACGGAAACCGTATACACGTGAAGG -ACGGAAACCGTATACACGCAATGG -ACGGAAACCGTATACACGATGAGG -ACGGAAACCGTATACACGAATGGG -ACGGAAACCGTATACACGTCCTGA -ACGGAAACCGTATACACGTAGCGA -ACGGAAACCGTATACACGCACAGA -ACGGAAACCGTATACACGGCAAGA -ACGGAAACCGTATACACGGGTTGA -ACGGAAACCGTATACACGTCCGAT -ACGGAAACCGTATACACGTGGCAT -ACGGAAACCGTATACACGCGAGAT -ACGGAAACCGTATACACGTACCAC -ACGGAAACCGTATACACGCAGAAC -ACGGAAACCGTATACACGGTCTAC -ACGGAAACCGTATACACGACGTAC -ACGGAAACCGTATACACGAGTGAC -ACGGAAACCGTATACACGCTGTAG -ACGGAAACCGTATACACGCCTAAG -ACGGAAACCGTATACACGGTTCAG -ACGGAAACCGTATACACGGCATAG -ACGGAAACCGTATACACGGACAAG -ACGGAAACCGTATACACGAAGCAG -ACGGAAACCGTATACACGCGTCAA -ACGGAAACCGTATACACGGCTGAA -ACGGAAACCGTATACACGAGTACG -ACGGAAACCGTATACACGATCCGA -ACGGAAACCGTATACACGATGGGA -ACGGAAACCGTATACACGGTGCAA -ACGGAAACCGTATACACGGAGGAA -ACGGAAACCGTATACACGCAGGTA -ACGGAAACCGTATACACGGACTCT -ACGGAAACCGTATACACGAGTCCT -ACGGAAACCGTATACACGTAAGCC -ACGGAAACCGTATACACGATAGCC -ACGGAAACCGTATACACGTAACCG -ACGGAAACCGTATACACGATGCCA -ACGGAAACCGTAGACAGTGGAAAC -ACGGAAACCGTAGACAGTAACACC -ACGGAAACCGTAGACAGTATCGAG -ACGGAAACCGTAGACAGTCTCCTT -ACGGAAACCGTAGACAGTCCTGTT -ACGGAAACCGTAGACAGTCGGTTT -ACGGAAACCGTAGACAGTGTGGTT -ACGGAAACCGTAGACAGTGCCTTT -ACGGAAACCGTAGACAGTGGTCTT -ACGGAAACCGTAGACAGTACGCTT -ACGGAAACCGTAGACAGTAGCGTT -ACGGAAACCGTAGACAGTTTCGTC -ACGGAAACCGTAGACAGTTCTCTC -ACGGAAACCGTAGACAGTTGGATC -ACGGAAACCGTAGACAGTCACTTC -ACGGAAACCGTAGACAGTGTACTC -ACGGAAACCGTAGACAGTGATGTC -ACGGAAACCGTAGACAGTACAGTC -ACGGAAACCGTAGACAGTTTGCTG -ACGGAAACCGTAGACAGTTCCATG -ACGGAAACCGTAGACAGTTGTGTG -ACGGAAACCGTAGACAGTCTAGTG -ACGGAAACCGTAGACAGTCATCTG -ACGGAAACCGTAGACAGTGAGTTG -ACGGAAACCGTAGACAGTAGACTG -ACGGAAACCGTAGACAGTTCGGTA -ACGGAAACCGTAGACAGTTGCCTA -ACGGAAACCGTAGACAGTCCACTA -ACGGAAACCGTAGACAGTGGAGTA -ACGGAAACCGTAGACAGTTCGTCT -ACGGAAACCGTAGACAGTTGCACT -ACGGAAACCGTAGACAGTCTGACT -ACGGAAACCGTAGACAGTCAACCT -ACGGAAACCGTAGACAGTGCTACT -ACGGAAACCGTAGACAGTGGATCT -ACGGAAACCGTAGACAGTAAGGCT -ACGGAAACCGTAGACAGTTCAACC -ACGGAAACCGTAGACAGTTGTTCC -ACGGAAACCGTAGACAGTATTCCC -ACGGAAACCGTAGACAGTTTCTCG -ACGGAAACCGTAGACAGTTAGACG -ACGGAAACCGTAGACAGTGTAACG -ACGGAAACCGTAGACAGTACTTCG -ACGGAAACCGTAGACAGTTACGCA -ACGGAAACCGTAGACAGTCTTGCA -ACGGAAACCGTAGACAGTCGAACA -ACGGAAACCGTAGACAGTCAGTCA -ACGGAAACCGTAGACAGTGATCCA -ACGGAAACCGTAGACAGTACGACA -ACGGAAACCGTAGACAGTAGCTCA -ACGGAAACCGTAGACAGTTCACGT -ACGGAAACCGTAGACAGTCGTAGT -ACGGAAACCGTAGACAGTGTCAGT -ACGGAAACCGTAGACAGTGAAGGT -ACGGAAACCGTAGACAGTAACCGT -ACGGAAACCGTAGACAGTTTGTGC -ACGGAAACCGTAGACAGTCTAAGC -ACGGAAACCGTAGACAGTACTAGC -ACGGAAACCGTAGACAGTAGATGC -ACGGAAACCGTAGACAGTTGAAGG -ACGGAAACCGTAGACAGTCAATGG -ACGGAAACCGTAGACAGTATGAGG -ACGGAAACCGTAGACAGTAATGGG -ACGGAAACCGTAGACAGTTCCTGA -ACGGAAACCGTAGACAGTTAGCGA -ACGGAAACCGTAGACAGTCACAGA -ACGGAAACCGTAGACAGTGCAAGA -ACGGAAACCGTAGACAGTGGTTGA -ACGGAAACCGTAGACAGTTCCGAT -ACGGAAACCGTAGACAGTTGGCAT -ACGGAAACCGTAGACAGTCGAGAT -ACGGAAACCGTAGACAGTTACCAC -ACGGAAACCGTAGACAGTCAGAAC -ACGGAAACCGTAGACAGTGTCTAC -ACGGAAACCGTAGACAGTACGTAC -ACGGAAACCGTAGACAGTAGTGAC -ACGGAAACCGTAGACAGTCTGTAG -ACGGAAACCGTAGACAGTCCTAAG -ACGGAAACCGTAGACAGTGTTCAG -ACGGAAACCGTAGACAGTGCATAG -ACGGAAACCGTAGACAGTGACAAG -ACGGAAACCGTAGACAGTAAGCAG -ACGGAAACCGTAGACAGTCGTCAA -ACGGAAACCGTAGACAGTGCTGAA -ACGGAAACCGTAGACAGTAGTACG -ACGGAAACCGTAGACAGTATCCGA -ACGGAAACCGTAGACAGTATGGGA -ACGGAAACCGTAGACAGTGTGCAA -ACGGAAACCGTAGACAGTGAGGAA -ACGGAAACCGTAGACAGTCAGGTA -ACGGAAACCGTAGACAGTGACTCT -ACGGAAACCGTAGACAGTAGTCCT -ACGGAAACCGTAGACAGTTAAGCC -ACGGAAACCGTAGACAGTATAGCC -ACGGAAACCGTAGACAGTTAACCG -ACGGAAACCGTAGACAGTATGCCA -ACGGAAACCGTATAGCTGGGAAAC -ACGGAAACCGTATAGCTGAACACC -ACGGAAACCGTATAGCTGATCGAG -ACGGAAACCGTATAGCTGCTCCTT -ACGGAAACCGTATAGCTGCCTGTT -ACGGAAACCGTATAGCTGCGGTTT -ACGGAAACCGTATAGCTGGTGGTT -ACGGAAACCGTATAGCTGGCCTTT -ACGGAAACCGTATAGCTGGGTCTT -ACGGAAACCGTATAGCTGACGCTT -ACGGAAACCGTATAGCTGAGCGTT -ACGGAAACCGTATAGCTGTTCGTC -ACGGAAACCGTATAGCTGTCTCTC -ACGGAAACCGTATAGCTGTGGATC -ACGGAAACCGTATAGCTGCACTTC -ACGGAAACCGTATAGCTGGTACTC -ACGGAAACCGTATAGCTGGATGTC -ACGGAAACCGTATAGCTGACAGTC -ACGGAAACCGTATAGCTGTTGCTG -ACGGAAACCGTATAGCTGTCCATG -ACGGAAACCGTATAGCTGTGTGTG -ACGGAAACCGTATAGCTGCTAGTG -ACGGAAACCGTATAGCTGCATCTG -ACGGAAACCGTATAGCTGGAGTTG -ACGGAAACCGTATAGCTGAGACTG -ACGGAAACCGTATAGCTGTCGGTA -ACGGAAACCGTATAGCTGTGCCTA -ACGGAAACCGTATAGCTGCCACTA -ACGGAAACCGTATAGCTGGGAGTA -ACGGAAACCGTATAGCTGTCGTCT -ACGGAAACCGTATAGCTGTGCACT -ACGGAAACCGTATAGCTGCTGACT -ACGGAAACCGTATAGCTGCAACCT -ACGGAAACCGTATAGCTGGCTACT -ACGGAAACCGTATAGCTGGGATCT -ACGGAAACCGTATAGCTGAAGGCT -ACGGAAACCGTATAGCTGTCAACC -ACGGAAACCGTATAGCTGTGTTCC -ACGGAAACCGTATAGCTGATTCCC -ACGGAAACCGTATAGCTGTTCTCG -ACGGAAACCGTATAGCTGTAGACG -ACGGAAACCGTATAGCTGGTAACG -ACGGAAACCGTATAGCTGACTTCG -ACGGAAACCGTATAGCTGTACGCA -ACGGAAACCGTATAGCTGCTTGCA -ACGGAAACCGTATAGCTGCGAACA -ACGGAAACCGTATAGCTGCAGTCA -ACGGAAACCGTATAGCTGGATCCA -ACGGAAACCGTATAGCTGACGACA -ACGGAAACCGTATAGCTGAGCTCA -ACGGAAACCGTATAGCTGTCACGT -ACGGAAACCGTATAGCTGCGTAGT -ACGGAAACCGTATAGCTGGTCAGT -ACGGAAACCGTATAGCTGGAAGGT -ACGGAAACCGTATAGCTGAACCGT -ACGGAAACCGTATAGCTGTTGTGC -ACGGAAACCGTATAGCTGCTAAGC -ACGGAAACCGTATAGCTGACTAGC -ACGGAAACCGTATAGCTGAGATGC -ACGGAAACCGTATAGCTGTGAAGG -ACGGAAACCGTATAGCTGCAATGG -ACGGAAACCGTATAGCTGATGAGG -ACGGAAACCGTATAGCTGAATGGG -ACGGAAACCGTATAGCTGTCCTGA -ACGGAAACCGTATAGCTGTAGCGA -ACGGAAACCGTATAGCTGCACAGA -ACGGAAACCGTATAGCTGGCAAGA -ACGGAAACCGTATAGCTGGGTTGA -ACGGAAACCGTATAGCTGTCCGAT -ACGGAAACCGTATAGCTGTGGCAT -ACGGAAACCGTATAGCTGCGAGAT -ACGGAAACCGTATAGCTGTACCAC -ACGGAAACCGTATAGCTGCAGAAC -ACGGAAACCGTATAGCTGGTCTAC -ACGGAAACCGTATAGCTGACGTAC -ACGGAAACCGTATAGCTGAGTGAC -ACGGAAACCGTATAGCTGCTGTAG -ACGGAAACCGTATAGCTGCCTAAG -ACGGAAACCGTATAGCTGGTTCAG -ACGGAAACCGTATAGCTGGCATAG -ACGGAAACCGTATAGCTGGACAAG -ACGGAAACCGTATAGCTGAAGCAG -ACGGAAACCGTATAGCTGCGTCAA -ACGGAAACCGTATAGCTGGCTGAA -ACGGAAACCGTATAGCTGAGTACG -ACGGAAACCGTATAGCTGATCCGA -ACGGAAACCGTATAGCTGATGGGA -ACGGAAACCGTATAGCTGGTGCAA -ACGGAAACCGTATAGCTGGAGGAA -ACGGAAACCGTATAGCTGCAGGTA -ACGGAAACCGTATAGCTGGACTCT -ACGGAAACCGTATAGCTGAGTCCT -ACGGAAACCGTATAGCTGTAAGCC -ACGGAAACCGTATAGCTGATAGCC -ACGGAAACCGTATAGCTGTAACCG -ACGGAAACCGTATAGCTGATGCCA -ACGGAAACCGTAAAGCCTGGAAAC -ACGGAAACCGTAAAGCCTAACACC -ACGGAAACCGTAAAGCCTATCGAG -ACGGAAACCGTAAAGCCTCTCCTT -ACGGAAACCGTAAAGCCTCCTGTT -ACGGAAACCGTAAAGCCTCGGTTT -ACGGAAACCGTAAAGCCTGTGGTT -ACGGAAACCGTAAAGCCTGCCTTT -ACGGAAACCGTAAAGCCTGGTCTT -ACGGAAACCGTAAAGCCTACGCTT -ACGGAAACCGTAAAGCCTAGCGTT -ACGGAAACCGTAAAGCCTTTCGTC -ACGGAAACCGTAAAGCCTTCTCTC -ACGGAAACCGTAAAGCCTTGGATC -ACGGAAACCGTAAAGCCTCACTTC -ACGGAAACCGTAAAGCCTGTACTC -ACGGAAACCGTAAAGCCTGATGTC -ACGGAAACCGTAAAGCCTACAGTC -ACGGAAACCGTAAAGCCTTTGCTG -ACGGAAACCGTAAAGCCTTCCATG -ACGGAAACCGTAAAGCCTTGTGTG -ACGGAAACCGTAAAGCCTCTAGTG -ACGGAAACCGTAAAGCCTCATCTG -ACGGAAACCGTAAAGCCTGAGTTG -ACGGAAACCGTAAAGCCTAGACTG -ACGGAAACCGTAAAGCCTTCGGTA -ACGGAAACCGTAAAGCCTTGCCTA -ACGGAAACCGTAAAGCCTCCACTA -ACGGAAACCGTAAAGCCTGGAGTA -ACGGAAACCGTAAAGCCTTCGTCT -ACGGAAACCGTAAAGCCTTGCACT -ACGGAAACCGTAAAGCCTCTGACT -ACGGAAACCGTAAAGCCTCAACCT -ACGGAAACCGTAAAGCCTGCTACT -ACGGAAACCGTAAAGCCTGGATCT -ACGGAAACCGTAAAGCCTAAGGCT -ACGGAAACCGTAAAGCCTTCAACC -ACGGAAACCGTAAAGCCTTGTTCC -ACGGAAACCGTAAAGCCTATTCCC -ACGGAAACCGTAAAGCCTTTCTCG -ACGGAAACCGTAAAGCCTTAGACG -ACGGAAACCGTAAAGCCTGTAACG -ACGGAAACCGTAAAGCCTACTTCG -ACGGAAACCGTAAAGCCTTACGCA -ACGGAAACCGTAAAGCCTCTTGCA -ACGGAAACCGTAAAGCCTCGAACA -ACGGAAACCGTAAAGCCTCAGTCA -ACGGAAACCGTAAAGCCTGATCCA -ACGGAAACCGTAAAGCCTACGACA -ACGGAAACCGTAAAGCCTAGCTCA -ACGGAAACCGTAAAGCCTTCACGT -ACGGAAACCGTAAAGCCTCGTAGT -ACGGAAACCGTAAAGCCTGTCAGT -ACGGAAACCGTAAAGCCTGAAGGT -ACGGAAACCGTAAAGCCTAACCGT -ACGGAAACCGTAAAGCCTTTGTGC -ACGGAAACCGTAAAGCCTCTAAGC -ACGGAAACCGTAAAGCCTACTAGC -ACGGAAACCGTAAAGCCTAGATGC -ACGGAAACCGTAAAGCCTTGAAGG -ACGGAAACCGTAAAGCCTCAATGG -ACGGAAACCGTAAAGCCTATGAGG -ACGGAAACCGTAAAGCCTAATGGG -ACGGAAACCGTAAAGCCTTCCTGA -ACGGAAACCGTAAAGCCTTAGCGA -ACGGAAACCGTAAAGCCTCACAGA -ACGGAAACCGTAAAGCCTGCAAGA -ACGGAAACCGTAAAGCCTGGTTGA -ACGGAAACCGTAAAGCCTTCCGAT -ACGGAAACCGTAAAGCCTTGGCAT -ACGGAAACCGTAAAGCCTCGAGAT -ACGGAAACCGTAAAGCCTTACCAC -ACGGAAACCGTAAAGCCTCAGAAC -ACGGAAACCGTAAAGCCTGTCTAC -ACGGAAACCGTAAAGCCTACGTAC -ACGGAAACCGTAAAGCCTAGTGAC -ACGGAAACCGTAAAGCCTCTGTAG -ACGGAAACCGTAAAGCCTCCTAAG -ACGGAAACCGTAAAGCCTGTTCAG -ACGGAAACCGTAAAGCCTGCATAG -ACGGAAACCGTAAAGCCTGACAAG -ACGGAAACCGTAAAGCCTAAGCAG -ACGGAAACCGTAAAGCCTCGTCAA -ACGGAAACCGTAAAGCCTGCTGAA -ACGGAAACCGTAAAGCCTAGTACG -ACGGAAACCGTAAAGCCTATCCGA -ACGGAAACCGTAAAGCCTATGGGA -ACGGAAACCGTAAAGCCTGTGCAA -ACGGAAACCGTAAAGCCTGAGGAA -ACGGAAACCGTAAAGCCTCAGGTA -ACGGAAACCGTAAAGCCTGACTCT -ACGGAAACCGTAAAGCCTAGTCCT -ACGGAAACCGTAAAGCCTTAAGCC -ACGGAAACCGTAAAGCCTATAGCC -ACGGAAACCGTAAAGCCTTAACCG -ACGGAAACCGTAAAGCCTATGCCA -ACGGAAACCGTACAGGTTGGAAAC -ACGGAAACCGTACAGGTTAACACC -ACGGAAACCGTACAGGTTATCGAG -ACGGAAACCGTACAGGTTCTCCTT -ACGGAAACCGTACAGGTTCCTGTT -ACGGAAACCGTACAGGTTCGGTTT -ACGGAAACCGTACAGGTTGTGGTT -ACGGAAACCGTACAGGTTGCCTTT -ACGGAAACCGTACAGGTTGGTCTT -ACGGAAACCGTACAGGTTACGCTT -ACGGAAACCGTACAGGTTAGCGTT -ACGGAAACCGTACAGGTTTTCGTC -ACGGAAACCGTACAGGTTTCTCTC -ACGGAAACCGTACAGGTTTGGATC -ACGGAAACCGTACAGGTTCACTTC -ACGGAAACCGTACAGGTTGTACTC -ACGGAAACCGTACAGGTTGATGTC -ACGGAAACCGTACAGGTTACAGTC -ACGGAAACCGTACAGGTTTTGCTG -ACGGAAACCGTACAGGTTTCCATG -ACGGAAACCGTACAGGTTTGTGTG -ACGGAAACCGTACAGGTTCTAGTG -ACGGAAACCGTACAGGTTCATCTG -ACGGAAACCGTACAGGTTGAGTTG -ACGGAAACCGTACAGGTTAGACTG -ACGGAAACCGTACAGGTTTCGGTA -ACGGAAACCGTACAGGTTTGCCTA -ACGGAAACCGTACAGGTTCCACTA -ACGGAAACCGTACAGGTTGGAGTA -ACGGAAACCGTACAGGTTTCGTCT -ACGGAAACCGTACAGGTTTGCACT -ACGGAAACCGTACAGGTTCTGACT -ACGGAAACCGTACAGGTTCAACCT -ACGGAAACCGTACAGGTTGCTACT -ACGGAAACCGTACAGGTTGGATCT -ACGGAAACCGTACAGGTTAAGGCT -ACGGAAACCGTACAGGTTTCAACC -ACGGAAACCGTACAGGTTTGTTCC -ACGGAAACCGTACAGGTTATTCCC -ACGGAAACCGTACAGGTTTTCTCG -ACGGAAACCGTACAGGTTTAGACG -ACGGAAACCGTACAGGTTGTAACG -ACGGAAACCGTACAGGTTACTTCG -ACGGAAACCGTACAGGTTTACGCA -ACGGAAACCGTACAGGTTCTTGCA -ACGGAAACCGTACAGGTTCGAACA -ACGGAAACCGTACAGGTTCAGTCA -ACGGAAACCGTACAGGTTGATCCA -ACGGAAACCGTACAGGTTACGACA -ACGGAAACCGTACAGGTTAGCTCA -ACGGAAACCGTACAGGTTTCACGT -ACGGAAACCGTACAGGTTCGTAGT -ACGGAAACCGTACAGGTTGTCAGT -ACGGAAACCGTACAGGTTGAAGGT -ACGGAAACCGTACAGGTTAACCGT -ACGGAAACCGTACAGGTTTTGTGC -ACGGAAACCGTACAGGTTCTAAGC -ACGGAAACCGTACAGGTTACTAGC -ACGGAAACCGTACAGGTTAGATGC -ACGGAAACCGTACAGGTTTGAAGG -ACGGAAACCGTACAGGTTCAATGG -ACGGAAACCGTACAGGTTATGAGG -ACGGAAACCGTACAGGTTAATGGG -ACGGAAACCGTACAGGTTTCCTGA -ACGGAAACCGTACAGGTTTAGCGA -ACGGAAACCGTACAGGTTCACAGA -ACGGAAACCGTACAGGTTGCAAGA -ACGGAAACCGTACAGGTTGGTTGA -ACGGAAACCGTACAGGTTTCCGAT -ACGGAAACCGTACAGGTTTGGCAT -ACGGAAACCGTACAGGTTCGAGAT -ACGGAAACCGTACAGGTTTACCAC -ACGGAAACCGTACAGGTTCAGAAC -ACGGAAACCGTACAGGTTGTCTAC -ACGGAAACCGTACAGGTTACGTAC -ACGGAAACCGTACAGGTTAGTGAC -ACGGAAACCGTACAGGTTCTGTAG -ACGGAAACCGTACAGGTTCCTAAG -ACGGAAACCGTACAGGTTGTTCAG -ACGGAAACCGTACAGGTTGCATAG -ACGGAAACCGTACAGGTTGACAAG -ACGGAAACCGTACAGGTTAAGCAG -ACGGAAACCGTACAGGTTCGTCAA -ACGGAAACCGTACAGGTTGCTGAA -ACGGAAACCGTACAGGTTAGTACG -ACGGAAACCGTACAGGTTATCCGA -ACGGAAACCGTACAGGTTATGGGA -ACGGAAACCGTACAGGTTGTGCAA -ACGGAAACCGTACAGGTTGAGGAA -ACGGAAACCGTACAGGTTCAGGTA -ACGGAAACCGTACAGGTTGACTCT -ACGGAAACCGTACAGGTTAGTCCT -ACGGAAACCGTACAGGTTTAAGCC -ACGGAAACCGTACAGGTTATAGCC -ACGGAAACCGTACAGGTTTAACCG -ACGGAAACCGTACAGGTTATGCCA -ACGGAAACCGTATAGGCAGGAAAC -ACGGAAACCGTATAGGCAAACACC -ACGGAAACCGTATAGGCAATCGAG -ACGGAAACCGTATAGGCACTCCTT -ACGGAAACCGTATAGGCACCTGTT -ACGGAAACCGTATAGGCACGGTTT -ACGGAAACCGTATAGGCAGTGGTT -ACGGAAACCGTATAGGCAGCCTTT -ACGGAAACCGTATAGGCAGGTCTT -ACGGAAACCGTATAGGCAACGCTT -ACGGAAACCGTATAGGCAAGCGTT -ACGGAAACCGTATAGGCATTCGTC -ACGGAAACCGTATAGGCATCTCTC -ACGGAAACCGTATAGGCATGGATC -ACGGAAACCGTATAGGCACACTTC -ACGGAAACCGTATAGGCAGTACTC -ACGGAAACCGTATAGGCAGATGTC -ACGGAAACCGTATAGGCAACAGTC -ACGGAAACCGTATAGGCATTGCTG -ACGGAAACCGTATAGGCATCCATG -ACGGAAACCGTATAGGCATGTGTG -ACGGAAACCGTATAGGCACTAGTG -ACGGAAACCGTATAGGCACATCTG -ACGGAAACCGTATAGGCAGAGTTG -ACGGAAACCGTATAGGCAAGACTG -ACGGAAACCGTATAGGCATCGGTA -ACGGAAACCGTATAGGCATGCCTA -ACGGAAACCGTATAGGCACCACTA -ACGGAAACCGTATAGGCAGGAGTA -ACGGAAACCGTATAGGCATCGTCT -ACGGAAACCGTATAGGCATGCACT -ACGGAAACCGTATAGGCACTGACT -ACGGAAACCGTATAGGCACAACCT -ACGGAAACCGTATAGGCAGCTACT -ACGGAAACCGTATAGGCAGGATCT -ACGGAAACCGTATAGGCAAAGGCT -ACGGAAACCGTATAGGCATCAACC -ACGGAAACCGTATAGGCATGTTCC -ACGGAAACCGTATAGGCAATTCCC -ACGGAAACCGTATAGGCATTCTCG -ACGGAAACCGTATAGGCATAGACG -ACGGAAACCGTATAGGCAGTAACG -ACGGAAACCGTATAGGCAACTTCG -ACGGAAACCGTATAGGCATACGCA -ACGGAAACCGTATAGGCACTTGCA -ACGGAAACCGTATAGGCACGAACA -ACGGAAACCGTATAGGCACAGTCA -ACGGAAACCGTATAGGCAGATCCA -ACGGAAACCGTATAGGCAACGACA -ACGGAAACCGTATAGGCAAGCTCA -ACGGAAACCGTATAGGCATCACGT -ACGGAAACCGTATAGGCACGTAGT -ACGGAAACCGTATAGGCAGTCAGT -ACGGAAACCGTATAGGCAGAAGGT -ACGGAAACCGTATAGGCAAACCGT -ACGGAAACCGTATAGGCATTGTGC -ACGGAAACCGTATAGGCACTAAGC -ACGGAAACCGTATAGGCAACTAGC -ACGGAAACCGTATAGGCAAGATGC -ACGGAAACCGTATAGGCATGAAGG -ACGGAAACCGTATAGGCACAATGG -ACGGAAACCGTATAGGCAATGAGG -ACGGAAACCGTATAGGCAAATGGG -ACGGAAACCGTATAGGCATCCTGA -ACGGAAACCGTATAGGCATAGCGA -ACGGAAACCGTATAGGCACACAGA -ACGGAAACCGTATAGGCAGCAAGA -ACGGAAACCGTATAGGCAGGTTGA -ACGGAAACCGTATAGGCATCCGAT -ACGGAAACCGTATAGGCATGGCAT -ACGGAAACCGTATAGGCACGAGAT -ACGGAAACCGTATAGGCATACCAC -ACGGAAACCGTATAGGCACAGAAC -ACGGAAACCGTATAGGCAGTCTAC -ACGGAAACCGTATAGGCAACGTAC -ACGGAAACCGTATAGGCAAGTGAC -ACGGAAACCGTATAGGCACTGTAG -ACGGAAACCGTATAGGCACCTAAG -ACGGAAACCGTATAGGCAGTTCAG -ACGGAAACCGTATAGGCAGCATAG -ACGGAAACCGTATAGGCAGACAAG -ACGGAAACCGTATAGGCAAAGCAG -ACGGAAACCGTATAGGCACGTCAA -ACGGAAACCGTATAGGCAGCTGAA -ACGGAAACCGTATAGGCAAGTACG -ACGGAAACCGTATAGGCAATCCGA -ACGGAAACCGTATAGGCAATGGGA -ACGGAAACCGTATAGGCAGTGCAA -ACGGAAACCGTATAGGCAGAGGAA -ACGGAAACCGTATAGGCACAGGTA -ACGGAAACCGTATAGGCAGACTCT -ACGGAAACCGTATAGGCAAGTCCT -ACGGAAACCGTATAGGCATAAGCC -ACGGAAACCGTATAGGCAATAGCC -ACGGAAACCGTATAGGCATAACCG -ACGGAAACCGTATAGGCAATGCCA -ACGGAAACCGTAAAGGACGGAAAC -ACGGAAACCGTAAAGGACAACACC -ACGGAAACCGTAAAGGACATCGAG -ACGGAAACCGTAAAGGACCTCCTT -ACGGAAACCGTAAAGGACCCTGTT -ACGGAAACCGTAAAGGACCGGTTT -ACGGAAACCGTAAAGGACGTGGTT -ACGGAAACCGTAAAGGACGCCTTT -ACGGAAACCGTAAAGGACGGTCTT -ACGGAAACCGTAAAGGACACGCTT -ACGGAAACCGTAAAGGACAGCGTT -ACGGAAACCGTAAAGGACTTCGTC -ACGGAAACCGTAAAGGACTCTCTC -ACGGAAACCGTAAAGGACTGGATC -ACGGAAACCGTAAAGGACCACTTC -ACGGAAACCGTAAAGGACGTACTC -ACGGAAACCGTAAAGGACGATGTC -ACGGAAACCGTAAAGGACACAGTC -ACGGAAACCGTAAAGGACTTGCTG -ACGGAAACCGTAAAGGACTCCATG -ACGGAAACCGTAAAGGACTGTGTG -ACGGAAACCGTAAAGGACCTAGTG -ACGGAAACCGTAAAGGACCATCTG -ACGGAAACCGTAAAGGACGAGTTG -ACGGAAACCGTAAAGGACAGACTG -ACGGAAACCGTAAAGGACTCGGTA -ACGGAAACCGTAAAGGACTGCCTA -ACGGAAACCGTAAAGGACCCACTA -ACGGAAACCGTAAAGGACGGAGTA -ACGGAAACCGTAAAGGACTCGTCT -ACGGAAACCGTAAAGGACTGCACT -ACGGAAACCGTAAAGGACCTGACT -ACGGAAACCGTAAAGGACCAACCT -ACGGAAACCGTAAAGGACGCTACT -ACGGAAACCGTAAAGGACGGATCT -ACGGAAACCGTAAAGGACAAGGCT -ACGGAAACCGTAAAGGACTCAACC -ACGGAAACCGTAAAGGACTGTTCC -ACGGAAACCGTAAAGGACATTCCC -ACGGAAACCGTAAAGGACTTCTCG -ACGGAAACCGTAAAGGACTAGACG -ACGGAAACCGTAAAGGACGTAACG -ACGGAAACCGTAAAGGACACTTCG -ACGGAAACCGTAAAGGACTACGCA -ACGGAAACCGTAAAGGACCTTGCA -ACGGAAACCGTAAAGGACCGAACA -ACGGAAACCGTAAAGGACCAGTCA -ACGGAAACCGTAAAGGACGATCCA -ACGGAAACCGTAAAGGACACGACA -ACGGAAACCGTAAAGGACAGCTCA -ACGGAAACCGTAAAGGACTCACGT -ACGGAAACCGTAAAGGACCGTAGT -ACGGAAACCGTAAAGGACGTCAGT -ACGGAAACCGTAAAGGACGAAGGT -ACGGAAACCGTAAAGGACAACCGT -ACGGAAACCGTAAAGGACTTGTGC -ACGGAAACCGTAAAGGACCTAAGC -ACGGAAACCGTAAAGGACACTAGC -ACGGAAACCGTAAAGGACAGATGC -ACGGAAACCGTAAAGGACTGAAGG -ACGGAAACCGTAAAGGACCAATGG -ACGGAAACCGTAAAGGACATGAGG -ACGGAAACCGTAAAGGACAATGGG -ACGGAAACCGTAAAGGACTCCTGA -ACGGAAACCGTAAAGGACTAGCGA -ACGGAAACCGTAAAGGACCACAGA -ACGGAAACCGTAAAGGACGCAAGA -ACGGAAACCGTAAAGGACGGTTGA -ACGGAAACCGTAAAGGACTCCGAT -ACGGAAACCGTAAAGGACTGGCAT -ACGGAAACCGTAAAGGACCGAGAT -ACGGAAACCGTAAAGGACTACCAC -ACGGAAACCGTAAAGGACCAGAAC -ACGGAAACCGTAAAGGACGTCTAC -ACGGAAACCGTAAAGGACACGTAC -ACGGAAACCGTAAAGGACAGTGAC -ACGGAAACCGTAAAGGACCTGTAG -ACGGAAACCGTAAAGGACCCTAAG -ACGGAAACCGTAAAGGACGTTCAG -ACGGAAACCGTAAAGGACGCATAG -ACGGAAACCGTAAAGGACGACAAG -ACGGAAACCGTAAAGGACAAGCAG -ACGGAAACCGTAAAGGACCGTCAA -ACGGAAACCGTAAAGGACGCTGAA -ACGGAAACCGTAAAGGACAGTACG -ACGGAAACCGTAAAGGACATCCGA -ACGGAAACCGTAAAGGACATGGGA -ACGGAAACCGTAAAGGACGTGCAA -ACGGAAACCGTAAAGGACGAGGAA -ACGGAAACCGTAAAGGACCAGGTA -ACGGAAACCGTAAAGGACGACTCT -ACGGAAACCGTAAAGGACAGTCCT -ACGGAAACCGTAAAGGACTAAGCC -ACGGAAACCGTAAAGGACATAGCC -ACGGAAACCGTAAAGGACTAACCG -ACGGAAACCGTAAAGGACATGCCA -ACGGAAACCGTACAGAAGGGAAAC -ACGGAAACCGTACAGAAGAACACC -ACGGAAACCGTACAGAAGATCGAG -ACGGAAACCGTACAGAAGCTCCTT -ACGGAAACCGTACAGAAGCCTGTT -ACGGAAACCGTACAGAAGCGGTTT -ACGGAAACCGTACAGAAGGTGGTT -ACGGAAACCGTACAGAAGGCCTTT -ACGGAAACCGTACAGAAGGGTCTT -ACGGAAACCGTACAGAAGACGCTT -ACGGAAACCGTACAGAAGAGCGTT -ACGGAAACCGTACAGAAGTTCGTC -ACGGAAACCGTACAGAAGTCTCTC -ACGGAAACCGTACAGAAGTGGATC -ACGGAAACCGTACAGAAGCACTTC -ACGGAAACCGTACAGAAGGTACTC -ACGGAAACCGTACAGAAGGATGTC -ACGGAAACCGTACAGAAGACAGTC -ACGGAAACCGTACAGAAGTTGCTG -ACGGAAACCGTACAGAAGTCCATG -ACGGAAACCGTACAGAAGTGTGTG -ACGGAAACCGTACAGAAGCTAGTG -ACGGAAACCGTACAGAAGCATCTG -ACGGAAACCGTACAGAAGGAGTTG -ACGGAAACCGTACAGAAGAGACTG -ACGGAAACCGTACAGAAGTCGGTA -ACGGAAACCGTACAGAAGTGCCTA -ACGGAAACCGTACAGAAGCCACTA -ACGGAAACCGTACAGAAGGGAGTA -ACGGAAACCGTACAGAAGTCGTCT -ACGGAAACCGTACAGAAGTGCACT -ACGGAAACCGTACAGAAGCTGACT -ACGGAAACCGTACAGAAGCAACCT -ACGGAAACCGTACAGAAGGCTACT -ACGGAAACCGTACAGAAGGGATCT -ACGGAAACCGTACAGAAGAAGGCT -ACGGAAACCGTACAGAAGTCAACC -ACGGAAACCGTACAGAAGTGTTCC -ACGGAAACCGTACAGAAGATTCCC -ACGGAAACCGTACAGAAGTTCTCG -ACGGAAACCGTACAGAAGTAGACG -ACGGAAACCGTACAGAAGGTAACG -ACGGAAACCGTACAGAAGACTTCG -ACGGAAACCGTACAGAAGTACGCA -ACGGAAACCGTACAGAAGCTTGCA -ACGGAAACCGTACAGAAGCGAACA -ACGGAAACCGTACAGAAGCAGTCA -ACGGAAACCGTACAGAAGGATCCA -ACGGAAACCGTACAGAAGACGACA -ACGGAAACCGTACAGAAGAGCTCA -ACGGAAACCGTACAGAAGTCACGT -ACGGAAACCGTACAGAAGCGTAGT -ACGGAAACCGTACAGAAGGTCAGT -ACGGAAACCGTACAGAAGGAAGGT -ACGGAAACCGTACAGAAGAACCGT -ACGGAAACCGTACAGAAGTTGTGC -ACGGAAACCGTACAGAAGCTAAGC -ACGGAAACCGTACAGAAGACTAGC -ACGGAAACCGTACAGAAGAGATGC -ACGGAAACCGTACAGAAGTGAAGG -ACGGAAACCGTACAGAAGCAATGG -ACGGAAACCGTACAGAAGATGAGG -ACGGAAACCGTACAGAAGAATGGG -ACGGAAACCGTACAGAAGTCCTGA -ACGGAAACCGTACAGAAGTAGCGA -ACGGAAACCGTACAGAAGCACAGA -ACGGAAACCGTACAGAAGGCAAGA -ACGGAAACCGTACAGAAGGGTTGA -ACGGAAACCGTACAGAAGTCCGAT -ACGGAAACCGTACAGAAGTGGCAT -ACGGAAACCGTACAGAAGCGAGAT -ACGGAAACCGTACAGAAGTACCAC -ACGGAAACCGTACAGAAGCAGAAC -ACGGAAACCGTACAGAAGGTCTAC -ACGGAAACCGTACAGAAGACGTAC -ACGGAAACCGTACAGAAGAGTGAC -ACGGAAACCGTACAGAAGCTGTAG -ACGGAAACCGTACAGAAGCCTAAG -ACGGAAACCGTACAGAAGGTTCAG -ACGGAAACCGTACAGAAGGCATAG -ACGGAAACCGTACAGAAGGACAAG -ACGGAAACCGTACAGAAGAAGCAG -ACGGAAACCGTACAGAAGCGTCAA -ACGGAAACCGTACAGAAGGCTGAA -ACGGAAACCGTACAGAAGAGTACG -ACGGAAACCGTACAGAAGATCCGA -ACGGAAACCGTACAGAAGATGGGA -ACGGAAACCGTACAGAAGGTGCAA -ACGGAAACCGTACAGAAGGAGGAA -ACGGAAACCGTACAGAAGCAGGTA -ACGGAAACCGTACAGAAGGACTCT -ACGGAAACCGTACAGAAGAGTCCT -ACGGAAACCGTACAGAAGTAAGCC -ACGGAAACCGTACAGAAGATAGCC -ACGGAAACCGTACAGAAGTAACCG -ACGGAAACCGTACAGAAGATGCCA -ACGGAAACCGTACAACGTGGAAAC -ACGGAAACCGTACAACGTAACACC -ACGGAAACCGTACAACGTATCGAG -ACGGAAACCGTACAACGTCTCCTT -ACGGAAACCGTACAACGTCCTGTT -ACGGAAACCGTACAACGTCGGTTT -ACGGAAACCGTACAACGTGTGGTT -ACGGAAACCGTACAACGTGCCTTT -ACGGAAACCGTACAACGTGGTCTT -ACGGAAACCGTACAACGTACGCTT -ACGGAAACCGTACAACGTAGCGTT -ACGGAAACCGTACAACGTTTCGTC -ACGGAAACCGTACAACGTTCTCTC -ACGGAAACCGTACAACGTTGGATC -ACGGAAACCGTACAACGTCACTTC -ACGGAAACCGTACAACGTGTACTC -ACGGAAACCGTACAACGTGATGTC -ACGGAAACCGTACAACGTACAGTC -ACGGAAACCGTACAACGTTTGCTG -ACGGAAACCGTACAACGTTCCATG -ACGGAAACCGTACAACGTTGTGTG -ACGGAAACCGTACAACGTCTAGTG -ACGGAAACCGTACAACGTCATCTG -ACGGAAACCGTACAACGTGAGTTG -ACGGAAACCGTACAACGTAGACTG -ACGGAAACCGTACAACGTTCGGTA -ACGGAAACCGTACAACGTTGCCTA -ACGGAAACCGTACAACGTCCACTA -ACGGAAACCGTACAACGTGGAGTA -ACGGAAACCGTACAACGTTCGTCT -ACGGAAACCGTACAACGTTGCACT -ACGGAAACCGTACAACGTCTGACT -ACGGAAACCGTACAACGTCAACCT -ACGGAAACCGTACAACGTGCTACT -ACGGAAACCGTACAACGTGGATCT -ACGGAAACCGTACAACGTAAGGCT -ACGGAAACCGTACAACGTTCAACC -ACGGAAACCGTACAACGTTGTTCC -ACGGAAACCGTACAACGTATTCCC -ACGGAAACCGTACAACGTTTCTCG -ACGGAAACCGTACAACGTTAGACG -ACGGAAACCGTACAACGTGTAACG -ACGGAAACCGTACAACGTACTTCG -ACGGAAACCGTACAACGTTACGCA -ACGGAAACCGTACAACGTCTTGCA -ACGGAAACCGTACAACGTCGAACA -ACGGAAACCGTACAACGTCAGTCA -ACGGAAACCGTACAACGTGATCCA -ACGGAAACCGTACAACGTACGACA -ACGGAAACCGTACAACGTAGCTCA -ACGGAAACCGTACAACGTTCACGT -ACGGAAACCGTACAACGTCGTAGT -ACGGAAACCGTACAACGTGTCAGT -ACGGAAACCGTACAACGTGAAGGT -ACGGAAACCGTACAACGTAACCGT -ACGGAAACCGTACAACGTTTGTGC -ACGGAAACCGTACAACGTCTAAGC -ACGGAAACCGTACAACGTACTAGC -ACGGAAACCGTACAACGTAGATGC -ACGGAAACCGTACAACGTTGAAGG -ACGGAAACCGTACAACGTCAATGG -ACGGAAACCGTACAACGTATGAGG -ACGGAAACCGTACAACGTAATGGG -ACGGAAACCGTACAACGTTCCTGA -ACGGAAACCGTACAACGTTAGCGA -ACGGAAACCGTACAACGTCACAGA -ACGGAAACCGTACAACGTGCAAGA -ACGGAAACCGTACAACGTGGTTGA -ACGGAAACCGTACAACGTTCCGAT -ACGGAAACCGTACAACGTTGGCAT -ACGGAAACCGTACAACGTCGAGAT -ACGGAAACCGTACAACGTTACCAC -ACGGAAACCGTACAACGTCAGAAC -ACGGAAACCGTACAACGTGTCTAC -ACGGAAACCGTACAACGTACGTAC -ACGGAAACCGTACAACGTAGTGAC -ACGGAAACCGTACAACGTCTGTAG -ACGGAAACCGTACAACGTCCTAAG -ACGGAAACCGTACAACGTGTTCAG -ACGGAAACCGTACAACGTGCATAG -ACGGAAACCGTACAACGTGACAAG -ACGGAAACCGTACAACGTAAGCAG -ACGGAAACCGTACAACGTCGTCAA -ACGGAAACCGTACAACGTGCTGAA -ACGGAAACCGTACAACGTAGTACG -ACGGAAACCGTACAACGTATCCGA -ACGGAAACCGTACAACGTATGGGA -ACGGAAACCGTACAACGTGTGCAA -ACGGAAACCGTACAACGTGAGGAA -ACGGAAACCGTACAACGTCAGGTA -ACGGAAACCGTACAACGTGACTCT -ACGGAAACCGTACAACGTAGTCCT -ACGGAAACCGTACAACGTTAAGCC -ACGGAAACCGTACAACGTATAGCC -ACGGAAACCGTACAACGTTAACCG -ACGGAAACCGTACAACGTATGCCA -ACGGAAACCGTAGAAGCTGGAAAC -ACGGAAACCGTAGAAGCTAACACC -ACGGAAACCGTAGAAGCTATCGAG -ACGGAAACCGTAGAAGCTCTCCTT -ACGGAAACCGTAGAAGCTCCTGTT -ACGGAAACCGTAGAAGCTCGGTTT -ACGGAAACCGTAGAAGCTGTGGTT -ACGGAAACCGTAGAAGCTGCCTTT -ACGGAAACCGTAGAAGCTGGTCTT -ACGGAAACCGTAGAAGCTACGCTT -ACGGAAACCGTAGAAGCTAGCGTT -ACGGAAACCGTAGAAGCTTTCGTC -ACGGAAACCGTAGAAGCTTCTCTC -ACGGAAACCGTAGAAGCTTGGATC -ACGGAAACCGTAGAAGCTCACTTC -ACGGAAACCGTAGAAGCTGTACTC -ACGGAAACCGTAGAAGCTGATGTC -ACGGAAACCGTAGAAGCTACAGTC -ACGGAAACCGTAGAAGCTTTGCTG -ACGGAAACCGTAGAAGCTTCCATG -ACGGAAACCGTAGAAGCTTGTGTG -ACGGAAACCGTAGAAGCTCTAGTG -ACGGAAACCGTAGAAGCTCATCTG -ACGGAAACCGTAGAAGCTGAGTTG -ACGGAAACCGTAGAAGCTAGACTG -ACGGAAACCGTAGAAGCTTCGGTA -ACGGAAACCGTAGAAGCTTGCCTA -ACGGAAACCGTAGAAGCTCCACTA -ACGGAAACCGTAGAAGCTGGAGTA -ACGGAAACCGTAGAAGCTTCGTCT -ACGGAAACCGTAGAAGCTTGCACT -ACGGAAACCGTAGAAGCTCTGACT -ACGGAAACCGTAGAAGCTCAACCT -ACGGAAACCGTAGAAGCTGCTACT -ACGGAAACCGTAGAAGCTGGATCT -ACGGAAACCGTAGAAGCTAAGGCT -ACGGAAACCGTAGAAGCTTCAACC -ACGGAAACCGTAGAAGCTTGTTCC -ACGGAAACCGTAGAAGCTATTCCC -ACGGAAACCGTAGAAGCTTTCTCG -ACGGAAACCGTAGAAGCTTAGACG -ACGGAAACCGTAGAAGCTGTAACG -ACGGAAACCGTAGAAGCTACTTCG -ACGGAAACCGTAGAAGCTTACGCA -ACGGAAACCGTAGAAGCTCTTGCA -ACGGAAACCGTAGAAGCTCGAACA -ACGGAAACCGTAGAAGCTCAGTCA -ACGGAAACCGTAGAAGCTGATCCA -ACGGAAACCGTAGAAGCTACGACA -ACGGAAACCGTAGAAGCTAGCTCA -ACGGAAACCGTAGAAGCTTCACGT -ACGGAAACCGTAGAAGCTCGTAGT -ACGGAAACCGTAGAAGCTGTCAGT -ACGGAAACCGTAGAAGCTGAAGGT -ACGGAAACCGTAGAAGCTAACCGT -ACGGAAACCGTAGAAGCTTTGTGC -ACGGAAACCGTAGAAGCTCTAAGC -ACGGAAACCGTAGAAGCTACTAGC -ACGGAAACCGTAGAAGCTAGATGC -ACGGAAACCGTAGAAGCTTGAAGG -ACGGAAACCGTAGAAGCTCAATGG -ACGGAAACCGTAGAAGCTATGAGG -ACGGAAACCGTAGAAGCTAATGGG -ACGGAAACCGTAGAAGCTTCCTGA -ACGGAAACCGTAGAAGCTTAGCGA -ACGGAAACCGTAGAAGCTCACAGA -ACGGAAACCGTAGAAGCTGCAAGA -ACGGAAACCGTAGAAGCTGGTTGA -ACGGAAACCGTAGAAGCTTCCGAT -ACGGAAACCGTAGAAGCTTGGCAT -ACGGAAACCGTAGAAGCTCGAGAT -ACGGAAACCGTAGAAGCTTACCAC -ACGGAAACCGTAGAAGCTCAGAAC -ACGGAAACCGTAGAAGCTGTCTAC -ACGGAAACCGTAGAAGCTACGTAC -ACGGAAACCGTAGAAGCTAGTGAC -ACGGAAACCGTAGAAGCTCTGTAG -ACGGAAACCGTAGAAGCTCCTAAG -ACGGAAACCGTAGAAGCTGTTCAG -ACGGAAACCGTAGAAGCTGCATAG -ACGGAAACCGTAGAAGCTGACAAG -ACGGAAACCGTAGAAGCTAAGCAG -ACGGAAACCGTAGAAGCTCGTCAA -ACGGAAACCGTAGAAGCTGCTGAA -ACGGAAACCGTAGAAGCTAGTACG -ACGGAAACCGTAGAAGCTATCCGA -ACGGAAACCGTAGAAGCTATGGGA -ACGGAAACCGTAGAAGCTGTGCAA -ACGGAAACCGTAGAAGCTGAGGAA -ACGGAAACCGTAGAAGCTCAGGTA -ACGGAAACCGTAGAAGCTGACTCT -ACGGAAACCGTAGAAGCTAGTCCT -ACGGAAACCGTAGAAGCTTAAGCC -ACGGAAACCGTAGAAGCTATAGCC -ACGGAAACCGTAGAAGCTTAACCG -ACGGAAACCGTAGAAGCTATGCCA -ACGGAAACCGTAACGAGTGGAAAC -ACGGAAACCGTAACGAGTAACACC -ACGGAAACCGTAACGAGTATCGAG -ACGGAAACCGTAACGAGTCTCCTT -ACGGAAACCGTAACGAGTCCTGTT -ACGGAAACCGTAACGAGTCGGTTT -ACGGAAACCGTAACGAGTGTGGTT -ACGGAAACCGTAACGAGTGCCTTT -ACGGAAACCGTAACGAGTGGTCTT -ACGGAAACCGTAACGAGTACGCTT -ACGGAAACCGTAACGAGTAGCGTT -ACGGAAACCGTAACGAGTTTCGTC -ACGGAAACCGTAACGAGTTCTCTC -ACGGAAACCGTAACGAGTTGGATC -ACGGAAACCGTAACGAGTCACTTC -ACGGAAACCGTAACGAGTGTACTC -ACGGAAACCGTAACGAGTGATGTC -ACGGAAACCGTAACGAGTACAGTC -ACGGAAACCGTAACGAGTTTGCTG -ACGGAAACCGTAACGAGTTCCATG -ACGGAAACCGTAACGAGTTGTGTG -ACGGAAACCGTAACGAGTCTAGTG -ACGGAAACCGTAACGAGTCATCTG -ACGGAAACCGTAACGAGTGAGTTG -ACGGAAACCGTAACGAGTAGACTG -ACGGAAACCGTAACGAGTTCGGTA -ACGGAAACCGTAACGAGTTGCCTA -ACGGAAACCGTAACGAGTCCACTA -ACGGAAACCGTAACGAGTGGAGTA -ACGGAAACCGTAACGAGTTCGTCT -ACGGAAACCGTAACGAGTTGCACT -ACGGAAACCGTAACGAGTCTGACT -ACGGAAACCGTAACGAGTCAACCT -ACGGAAACCGTAACGAGTGCTACT -ACGGAAACCGTAACGAGTGGATCT -ACGGAAACCGTAACGAGTAAGGCT -ACGGAAACCGTAACGAGTTCAACC -ACGGAAACCGTAACGAGTTGTTCC -ACGGAAACCGTAACGAGTATTCCC -ACGGAAACCGTAACGAGTTTCTCG -ACGGAAACCGTAACGAGTTAGACG -ACGGAAACCGTAACGAGTGTAACG -ACGGAAACCGTAACGAGTACTTCG -ACGGAAACCGTAACGAGTTACGCA -ACGGAAACCGTAACGAGTCTTGCA -ACGGAAACCGTAACGAGTCGAACA -ACGGAAACCGTAACGAGTCAGTCA -ACGGAAACCGTAACGAGTGATCCA -ACGGAAACCGTAACGAGTACGACA -ACGGAAACCGTAACGAGTAGCTCA -ACGGAAACCGTAACGAGTTCACGT -ACGGAAACCGTAACGAGTCGTAGT -ACGGAAACCGTAACGAGTGTCAGT -ACGGAAACCGTAACGAGTGAAGGT -ACGGAAACCGTAACGAGTAACCGT -ACGGAAACCGTAACGAGTTTGTGC -ACGGAAACCGTAACGAGTCTAAGC -ACGGAAACCGTAACGAGTACTAGC -ACGGAAACCGTAACGAGTAGATGC -ACGGAAACCGTAACGAGTTGAAGG -ACGGAAACCGTAACGAGTCAATGG -ACGGAAACCGTAACGAGTATGAGG -ACGGAAACCGTAACGAGTAATGGG -ACGGAAACCGTAACGAGTTCCTGA -ACGGAAACCGTAACGAGTTAGCGA -ACGGAAACCGTAACGAGTCACAGA -ACGGAAACCGTAACGAGTGCAAGA -ACGGAAACCGTAACGAGTGGTTGA -ACGGAAACCGTAACGAGTTCCGAT -ACGGAAACCGTAACGAGTTGGCAT -ACGGAAACCGTAACGAGTCGAGAT -ACGGAAACCGTAACGAGTTACCAC -ACGGAAACCGTAACGAGTCAGAAC -ACGGAAACCGTAACGAGTGTCTAC -ACGGAAACCGTAACGAGTACGTAC -ACGGAAACCGTAACGAGTAGTGAC -ACGGAAACCGTAACGAGTCTGTAG -ACGGAAACCGTAACGAGTCCTAAG -ACGGAAACCGTAACGAGTGTTCAG -ACGGAAACCGTAACGAGTGCATAG -ACGGAAACCGTAACGAGTGACAAG -ACGGAAACCGTAACGAGTAAGCAG -ACGGAAACCGTAACGAGTCGTCAA -ACGGAAACCGTAACGAGTGCTGAA -ACGGAAACCGTAACGAGTAGTACG -ACGGAAACCGTAACGAGTATCCGA -ACGGAAACCGTAACGAGTATGGGA -ACGGAAACCGTAACGAGTGTGCAA -ACGGAAACCGTAACGAGTGAGGAA -ACGGAAACCGTAACGAGTCAGGTA -ACGGAAACCGTAACGAGTGACTCT -ACGGAAACCGTAACGAGTAGTCCT -ACGGAAACCGTAACGAGTTAAGCC -ACGGAAACCGTAACGAGTATAGCC -ACGGAAACCGTAACGAGTTAACCG -ACGGAAACCGTAACGAGTATGCCA -ACGGAAACCGTACGAATCGGAAAC -ACGGAAACCGTACGAATCAACACC -ACGGAAACCGTACGAATCATCGAG -ACGGAAACCGTACGAATCCTCCTT -ACGGAAACCGTACGAATCCCTGTT -ACGGAAACCGTACGAATCCGGTTT -ACGGAAACCGTACGAATCGTGGTT -ACGGAAACCGTACGAATCGCCTTT -ACGGAAACCGTACGAATCGGTCTT -ACGGAAACCGTACGAATCACGCTT -ACGGAAACCGTACGAATCAGCGTT -ACGGAAACCGTACGAATCTTCGTC -ACGGAAACCGTACGAATCTCTCTC -ACGGAAACCGTACGAATCTGGATC -ACGGAAACCGTACGAATCCACTTC -ACGGAAACCGTACGAATCGTACTC -ACGGAAACCGTACGAATCGATGTC -ACGGAAACCGTACGAATCACAGTC -ACGGAAACCGTACGAATCTTGCTG -ACGGAAACCGTACGAATCTCCATG -ACGGAAACCGTACGAATCTGTGTG -ACGGAAACCGTACGAATCCTAGTG -ACGGAAACCGTACGAATCCATCTG -ACGGAAACCGTACGAATCGAGTTG -ACGGAAACCGTACGAATCAGACTG -ACGGAAACCGTACGAATCTCGGTA -ACGGAAACCGTACGAATCTGCCTA -ACGGAAACCGTACGAATCCCACTA -ACGGAAACCGTACGAATCGGAGTA -ACGGAAACCGTACGAATCTCGTCT -ACGGAAACCGTACGAATCTGCACT -ACGGAAACCGTACGAATCCTGACT -ACGGAAACCGTACGAATCCAACCT -ACGGAAACCGTACGAATCGCTACT -ACGGAAACCGTACGAATCGGATCT -ACGGAAACCGTACGAATCAAGGCT -ACGGAAACCGTACGAATCTCAACC -ACGGAAACCGTACGAATCTGTTCC -ACGGAAACCGTACGAATCATTCCC -ACGGAAACCGTACGAATCTTCTCG -ACGGAAACCGTACGAATCTAGACG -ACGGAAACCGTACGAATCGTAACG -ACGGAAACCGTACGAATCACTTCG -ACGGAAACCGTACGAATCTACGCA -ACGGAAACCGTACGAATCCTTGCA -ACGGAAACCGTACGAATCCGAACA -ACGGAAACCGTACGAATCCAGTCA -ACGGAAACCGTACGAATCGATCCA -ACGGAAACCGTACGAATCACGACA -ACGGAAACCGTACGAATCAGCTCA -ACGGAAACCGTACGAATCTCACGT -ACGGAAACCGTACGAATCCGTAGT -ACGGAAACCGTACGAATCGTCAGT -ACGGAAACCGTACGAATCGAAGGT -ACGGAAACCGTACGAATCAACCGT -ACGGAAACCGTACGAATCTTGTGC -ACGGAAACCGTACGAATCCTAAGC -ACGGAAACCGTACGAATCACTAGC -ACGGAAACCGTACGAATCAGATGC -ACGGAAACCGTACGAATCTGAAGG -ACGGAAACCGTACGAATCCAATGG -ACGGAAACCGTACGAATCATGAGG -ACGGAAACCGTACGAATCAATGGG -ACGGAAACCGTACGAATCTCCTGA -ACGGAAACCGTACGAATCTAGCGA -ACGGAAACCGTACGAATCCACAGA -ACGGAAACCGTACGAATCGCAAGA -ACGGAAACCGTACGAATCGGTTGA -ACGGAAACCGTACGAATCTCCGAT -ACGGAAACCGTACGAATCTGGCAT -ACGGAAACCGTACGAATCCGAGAT -ACGGAAACCGTACGAATCTACCAC -ACGGAAACCGTACGAATCCAGAAC -ACGGAAACCGTACGAATCGTCTAC -ACGGAAACCGTACGAATCACGTAC -ACGGAAACCGTACGAATCAGTGAC -ACGGAAACCGTACGAATCCTGTAG -ACGGAAACCGTACGAATCCCTAAG -ACGGAAACCGTACGAATCGTTCAG -ACGGAAACCGTACGAATCGCATAG -ACGGAAACCGTACGAATCGACAAG -ACGGAAACCGTACGAATCAAGCAG -ACGGAAACCGTACGAATCCGTCAA -ACGGAAACCGTACGAATCGCTGAA -ACGGAAACCGTACGAATCAGTACG -ACGGAAACCGTACGAATCATCCGA -ACGGAAACCGTACGAATCATGGGA -ACGGAAACCGTACGAATCGTGCAA -ACGGAAACCGTACGAATCGAGGAA -ACGGAAACCGTACGAATCCAGGTA -ACGGAAACCGTACGAATCGACTCT -ACGGAAACCGTACGAATCAGTCCT -ACGGAAACCGTACGAATCTAAGCC -ACGGAAACCGTACGAATCATAGCC -ACGGAAACCGTACGAATCTAACCG -ACGGAAACCGTACGAATCATGCCA -ACGGAAACCGTAGGAATGGGAAAC -ACGGAAACCGTAGGAATGAACACC -ACGGAAACCGTAGGAATGATCGAG -ACGGAAACCGTAGGAATGCTCCTT -ACGGAAACCGTAGGAATGCCTGTT -ACGGAAACCGTAGGAATGCGGTTT -ACGGAAACCGTAGGAATGGTGGTT -ACGGAAACCGTAGGAATGGCCTTT -ACGGAAACCGTAGGAATGGGTCTT -ACGGAAACCGTAGGAATGACGCTT -ACGGAAACCGTAGGAATGAGCGTT -ACGGAAACCGTAGGAATGTTCGTC -ACGGAAACCGTAGGAATGTCTCTC -ACGGAAACCGTAGGAATGTGGATC -ACGGAAACCGTAGGAATGCACTTC -ACGGAAACCGTAGGAATGGTACTC -ACGGAAACCGTAGGAATGGATGTC -ACGGAAACCGTAGGAATGACAGTC -ACGGAAACCGTAGGAATGTTGCTG -ACGGAAACCGTAGGAATGTCCATG -ACGGAAACCGTAGGAATGTGTGTG -ACGGAAACCGTAGGAATGCTAGTG -ACGGAAACCGTAGGAATGCATCTG -ACGGAAACCGTAGGAATGGAGTTG -ACGGAAACCGTAGGAATGAGACTG -ACGGAAACCGTAGGAATGTCGGTA -ACGGAAACCGTAGGAATGTGCCTA -ACGGAAACCGTAGGAATGCCACTA -ACGGAAACCGTAGGAATGGGAGTA -ACGGAAACCGTAGGAATGTCGTCT -ACGGAAACCGTAGGAATGTGCACT -ACGGAAACCGTAGGAATGCTGACT -ACGGAAACCGTAGGAATGCAACCT -ACGGAAACCGTAGGAATGGCTACT -ACGGAAACCGTAGGAATGGGATCT -ACGGAAACCGTAGGAATGAAGGCT -ACGGAAACCGTAGGAATGTCAACC -ACGGAAACCGTAGGAATGTGTTCC -ACGGAAACCGTAGGAATGATTCCC -ACGGAAACCGTAGGAATGTTCTCG -ACGGAAACCGTAGGAATGTAGACG -ACGGAAACCGTAGGAATGGTAACG -ACGGAAACCGTAGGAATGACTTCG -ACGGAAACCGTAGGAATGTACGCA -ACGGAAACCGTAGGAATGCTTGCA -ACGGAAACCGTAGGAATGCGAACA -ACGGAAACCGTAGGAATGCAGTCA -ACGGAAACCGTAGGAATGGATCCA -ACGGAAACCGTAGGAATGACGACA -ACGGAAACCGTAGGAATGAGCTCA -ACGGAAACCGTAGGAATGTCACGT -ACGGAAACCGTAGGAATGCGTAGT -ACGGAAACCGTAGGAATGGTCAGT -ACGGAAACCGTAGGAATGGAAGGT -ACGGAAACCGTAGGAATGAACCGT -ACGGAAACCGTAGGAATGTTGTGC -ACGGAAACCGTAGGAATGCTAAGC -ACGGAAACCGTAGGAATGACTAGC -ACGGAAACCGTAGGAATGAGATGC -ACGGAAACCGTAGGAATGTGAAGG -ACGGAAACCGTAGGAATGCAATGG -ACGGAAACCGTAGGAATGATGAGG -ACGGAAACCGTAGGAATGAATGGG -ACGGAAACCGTAGGAATGTCCTGA -ACGGAAACCGTAGGAATGTAGCGA -ACGGAAACCGTAGGAATGCACAGA -ACGGAAACCGTAGGAATGGCAAGA -ACGGAAACCGTAGGAATGGGTTGA -ACGGAAACCGTAGGAATGTCCGAT -ACGGAAACCGTAGGAATGTGGCAT -ACGGAAACCGTAGGAATGCGAGAT -ACGGAAACCGTAGGAATGTACCAC -ACGGAAACCGTAGGAATGCAGAAC -ACGGAAACCGTAGGAATGGTCTAC -ACGGAAACCGTAGGAATGACGTAC -ACGGAAACCGTAGGAATGAGTGAC -ACGGAAACCGTAGGAATGCTGTAG -ACGGAAACCGTAGGAATGCCTAAG -ACGGAAACCGTAGGAATGGTTCAG -ACGGAAACCGTAGGAATGGCATAG -ACGGAAACCGTAGGAATGGACAAG -ACGGAAACCGTAGGAATGAAGCAG -ACGGAAACCGTAGGAATGCGTCAA -ACGGAAACCGTAGGAATGGCTGAA -ACGGAAACCGTAGGAATGAGTACG -ACGGAAACCGTAGGAATGATCCGA -ACGGAAACCGTAGGAATGATGGGA -ACGGAAACCGTAGGAATGGTGCAA -ACGGAAACCGTAGGAATGGAGGAA -ACGGAAACCGTAGGAATGCAGGTA -ACGGAAACCGTAGGAATGGACTCT -ACGGAAACCGTAGGAATGAGTCCT -ACGGAAACCGTAGGAATGTAAGCC -ACGGAAACCGTAGGAATGATAGCC -ACGGAAACCGTAGGAATGTAACCG -ACGGAAACCGTAGGAATGATGCCA -ACGGAAACCGTACAAGTGGGAAAC -ACGGAAACCGTACAAGTGAACACC -ACGGAAACCGTACAAGTGATCGAG -ACGGAAACCGTACAAGTGCTCCTT -ACGGAAACCGTACAAGTGCCTGTT -ACGGAAACCGTACAAGTGCGGTTT -ACGGAAACCGTACAAGTGGTGGTT -ACGGAAACCGTACAAGTGGCCTTT -ACGGAAACCGTACAAGTGGGTCTT -ACGGAAACCGTACAAGTGACGCTT -ACGGAAACCGTACAAGTGAGCGTT -ACGGAAACCGTACAAGTGTTCGTC -ACGGAAACCGTACAAGTGTCTCTC -ACGGAAACCGTACAAGTGTGGATC -ACGGAAACCGTACAAGTGCACTTC -ACGGAAACCGTACAAGTGGTACTC -ACGGAAACCGTACAAGTGGATGTC -ACGGAAACCGTACAAGTGACAGTC -ACGGAAACCGTACAAGTGTTGCTG -ACGGAAACCGTACAAGTGTCCATG -ACGGAAACCGTACAAGTGTGTGTG -ACGGAAACCGTACAAGTGCTAGTG -ACGGAAACCGTACAAGTGCATCTG -ACGGAAACCGTACAAGTGGAGTTG -ACGGAAACCGTACAAGTGAGACTG -ACGGAAACCGTACAAGTGTCGGTA -ACGGAAACCGTACAAGTGTGCCTA -ACGGAAACCGTACAAGTGCCACTA -ACGGAAACCGTACAAGTGGGAGTA -ACGGAAACCGTACAAGTGTCGTCT -ACGGAAACCGTACAAGTGTGCACT -ACGGAAACCGTACAAGTGCTGACT -ACGGAAACCGTACAAGTGCAACCT -ACGGAAACCGTACAAGTGGCTACT -ACGGAAACCGTACAAGTGGGATCT -ACGGAAACCGTACAAGTGAAGGCT -ACGGAAACCGTACAAGTGTCAACC -ACGGAAACCGTACAAGTGTGTTCC -ACGGAAACCGTACAAGTGATTCCC -ACGGAAACCGTACAAGTGTTCTCG -ACGGAAACCGTACAAGTGTAGACG -ACGGAAACCGTACAAGTGGTAACG -ACGGAAACCGTACAAGTGACTTCG -ACGGAAACCGTACAAGTGTACGCA -ACGGAAACCGTACAAGTGCTTGCA -ACGGAAACCGTACAAGTGCGAACA -ACGGAAACCGTACAAGTGCAGTCA -ACGGAAACCGTACAAGTGGATCCA -ACGGAAACCGTACAAGTGACGACA -ACGGAAACCGTACAAGTGAGCTCA -ACGGAAACCGTACAAGTGTCACGT -ACGGAAACCGTACAAGTGCGTAGT -ACGGAAACCGTACAAGTGGTCAGT -ACGGAAACCGTACAAGTGGAAGGT -ACGGAAACCGTACAAGTGAACCGT -ACGGAAACCGTACAAGTGTTGTGC -ACGGAAACCGTACAAGTGCTAAGC -ACGGAAACCGTACAAGTGACTAGC -ACGGAAACCGTACAAGTGAGATGC -ACGGAAACCGTACAAGTGTGAAGG -ACGGAAACCGTACAAGTGCAATGG -ACGGAAACCGTACAAGTGATGAGG -ACGGAAACCGTACAAGTGAATGGG -ACGGAAACCGTACAAGTGTCCTGA -ACGGAAACCGTACAAGTGTAGCGA -ACGGAAACCGTACAAGTGCACAGA -ACGGAAACCGTACAAGTGGCAAGA -ACGGAAACCGTACAAGTGGGTTGA -ACGGAAACCGTACAAGTGTCCGAT -ACGGAAACCGTACAAGTGTGGCAT -ACGGAAACCGTACAAGTGCGAGAT -ACGGAAACCGTACAAGTGTACCAC -ACGGAAACCGTACAAGTGCAGAAC -ACGGAAACCGTACAAGTGGTCTAC -ACGGAAACCGTACAAGTGACGTAC -ACGGAAACCGTACAAGTGAGTGAC -ACGGAAACCGTACAAGTGCTGTAG -ACGGAAACCGTACAAGTGCCTAAG -ACGGAAACCGTACAAGTGGTTCAG -ACGGAAACCGTACAAGTGGCATAG -ACGGAAACCGTACAAGTGGACAAG -ACGGAAACCGTACAAGTGAAGCAG -ACGGAAACCGTACAAGTGCGTCAA -ACGGAAACCGTACAAGTGGCTGAA -ACGGAAACCGTACAAGTGAGTACG -ACGGAAACCGTACAAGTGATCCGA -ACGGAAACCGTACAAGTGATGGGA -ACGGAAACCGTACAAGTGGTGCAA -ACGGAAACCGTACAAGTGGAGGAA -ACGGAAACCGTACAAGTGCAGGTA -ACGGAAACCGTACAAGTGGACTCT -ACGGAAACCGTACAAGTGAGTCCT -ACGGAAACCGTACAAGTGTAAGCC -ACGGAAACCGTACAAGTGATAGCC -ACGGAAACCGTACAAGTGTAACCG -ACGGAAACCGTACAAGTGATGCCA -ACGGAAACCGTAGAAGAGGGAAAC -ACGGAAACCGTAGAAGAGAACACC -ACGGAAACCGTAGAAGAGATCGAG -ACGGAAACCGTAGAAGAGCTCCTT -ACGGAAACCGTAGAAGAGCCTGTT -ACGGAAACCGTAGAAGAGCGGTTT -ACGGAAACCGTAGAAGAGGTGGTT -ACGGAAACCGTAGAAGAGGCCTTT -ACGGAAACCGTAGAAGAGGGTCTT -ACGGAAACCGTAGAAGAGACGCTT -ACGGAAACCGTAGAAGAGAGCGTT -ACGGAAACCGTAGAAGAGTTCGTC -ACGGAAACCGTAGAAGAGTCTCTC -ACGGAAACCGTAGAAGAGTGGATC -ACGGAAACCGTAGAAGAGCACTTC -ACGGAAACCGTAGAAGAGGTACTC -ACGGAAACCGTAGAAGAGGATGTC -ACGGAAACCGTAGAAGAGACAGTC -ACGGAAACCGTAGAAGAGTTGCTG -ACGGAAACCGTAGAAGAGTCCATG -ACGGAAACCGTAGAAGAGTGTGTG -ACGGAAACCGTAGAAGAGCTAGTG -ACGGAAACCGTAGAAGAGCATCTG -ACGGAAACCGTAGAAGAGGAGTTG -ACGGAAACCGTAGAAGAGAGACTG -ACGGAAACCGTAGAAGAGTCGGTA -ACGGAAACCGTAGAAGAGTGCCTA -ACGGAAACCGTAGAAGAGCCACTA -ACGGAAACCGTAGAAGAGGGAGTA -ACGGAAACCGTAGAAGAGTCGTCT -ACGGAAACCGTAGAAGAGTGCACT -ACGGAAACCGTAGAAGAGCTGACT -ACGGAAACCGTAGAAGAGCAACCT -ACGGAAACCGTAGAAGAGGCTACT -ACGGAAACCGTAGAAGAGGGATCT -ACGGAAACCGTAGAAGAGAAGGCT -ACGGAAACCGTAGAAGAGTCAACC -ACGGAAACCGTAGAAGAGTGTTCC -ACGGAAACCGTAGAAGAGATTCCC -ACGGAAACCGTAGAAGAGTTCTCG -ACGGAAACCGTAGAAGAGTAGACG -ACGGAAACCGTAGAAGAGGTAACG -ACGGAAACCGTAGAAGAGACTTCG -ACGGAAACCGTAGAAGAGTACGCA -ACGGAAACCGTAGAAGAGCTTGCA -ACGGAAACCGTAGAAGAGCGAACA -ACGGAAACCGTAGAAGAGCAGTCA -ACGGAAACCGTAGAAGAGGATCCA -ACGGAAACCGTAGAAGAGACGACA -ACGGAAACCGTAGAAGAGAGCTCA -ACGGAAACCGTAGAAGAGTCACGT -ACGGAAACCGTAGAAGAGCGTAGT -ACGGAAACCGTAGAAGAGGTCAGT -ACGGAAACCGTAGAAGAGGAAGGT -ACGGAAACCGTAGAAGAGAACCGT -ACGGAAACCGTAGAAGAGTTGTGC -ACGGAAACCGTAGAAGAGCTAAGC -ACGGAAACCGTAGAAGAGACTAGC -ACGGAAACCGTAGAAGAGAGATGC -ACGGAAACCGTAGAAGAGTGAAGG -ACGGAAACCGTAGAAGAGCAATGG -ACGGAAACCGTAGAAGAGATGAGG -ACGGAAACCGTAGAAGAGAATGGG -ACGGAAACCGTAGAAGAGTCCTGA -ACGGAAACCGTAGAAGAGTAGCGA -ACGGAAACCGTAGAAGAGCACAGA -ACGGAAACCGTAGAAGAGGCAAGA -ACGGAAACCGTAGAAGAGGGTTGA -ACGGAAACCGTAGAAGAGTCCGAT -ACGGAAACCGTAGAAGAGTGGCAT -ACGGAAACCGTAGAAGAGCGAGAT -ACGGAAACCGTAGAAGAGTACCAC -ACGGAAACCGTAGAAGAGCAGAAC -ACGGAAACCGTAGAAGAGGTCTAC -ACGGAAACCGTAGAAGAGACGTAC -ACGGAAACCGTAGAAGAGAGTGAC -ACGGAAACCGTAGAAGAGCTGTAG -ACGGAAACCGTAGAAGAGCCTAAG -ACGGAAACCGTAGAAGAGGTTCAG -ACGGAAACCGTAGAAGAGGCATAG -ACGGAAACCGTAGAAGAGGACAAG -ACGGAAACCGTAGAAGAGAAGCAG -ACGGAAACCGTAGAAGAGCGTCAA -ACGGAAACCGTAGAAGAGGCTGAA -ACGGAAACCGTAGAAGAGAGTACG -ACGGAAACCGTAGAAGAGATCCGA -ACGGAAACCGTAGAAGAGATGGGA -ACGGAAACCGTAGAAGAGGTGCAA -ACGGAAACCGTAGAAGAGGAGGAA -ACGGAAACCGTAGAAGAGCAGGTA -ACGGAAACCGTAGAAGAGGACTCT -ACGGAAACCGTAGAAGAGAGTCCT -ACGGAAACCGTAGAAGAGTAAGCC -ACGGAAACCGTAGAAGAGATAGCC -ACGGAAACCGTAGAAGAGTAACCG -ACGGAAACCGTAGAAGAGATGCCA -ACGGAAACCGTAGTACAGGGAAAC -ACGGAAACCGTAGTACAGAACACC -ACGGAAACCGTAGTACAGATCGAG -ACGGAAACCGTAGTACAGCTCCTT -ACGGAAACCGTAGTACAGCCTGTT -ACGGAAACCGTAGTACAGCGGTTT -ACGGAAACCGTAGTACAGGTGGTT -ACGGAAACCGTAGTACAGGCCTTT -ACGGAAACCGTAGTACAGGGTCTT -ACGGAAACCGTAGTACAGACGCTT -ACGGAAACCGTAGTACAGAGCGTT -ACGGAAACCGTAGTACAGTTCGTC -ACGGAAACCGTAGTACAGTCTCTC -ACGGAAACCGTAGTACAGTGGATC -ACGGAAACCGTAGTACAGCACTTC -ACGGAAACCGTAGTACAGGTACTC -ACGGAAACCGTAGTACAGGATGTC -ACGGAAACCGTAGTACAGACAGTC -ACGGAAACCGTAGTACAGTTGCTG -ACGGAAACCGTAGTACAGTCCATG -ACGGAAACCGTAGTACAGTGTGTG -ACGGAAACCGTAGTACAGCTAGTG -ACGGAAACCGTAGTACAGCATCTG -ACGGAAACCGTAGTACAGGAGTTG -ACGGAAACCGTAGTACAGAGACTG -ACGGAAACCGTAGTACAGTCGGTA -ACGGAAACCGTAGTACAGTGCCTA -ACGGAAACCGTAGTACAGCCACTA -ACGGAAACCGTAGTACAGGGAGTA -ACGGAAACCGTAGTACAGTCGTCT -ACGGAAACCGTAGTACAGTGCACT -ACGGAAACCGTAGTACAGCTGACT -ACGGAAACCGTAGTACAGCAACCT -ACGGAAACCGTAGTACAGGCTACT -ACGGAAACCGTAGTACAGGGATCT -ACGGAAACCGTAGTACAGAAGGCT -ACGGAAACCGTAGTACAGTCAACC -ACGGAAACCGTAGTACAGTGTTCC -ACGGAAACCGTAGTACAGATTCCC -ACGGAAACCGTAGTACAGTTCTCG -ACGGAAACCGTAGTACAGTAGACG -ACGGAAACCGTAGTACAGGTAACG -ACGGAAACCGTAGTACAGACTTCG -ACGGAAACCGTAGTACAGTACGCA -ACGGAAACCGTAGTACAGCTTGCA -ACGGAAACCGTAGTACAGCGAACA -ACGGAAACCGTAGTACAGCAGTCA -ACGGAAACCGTAGTACAGGATCCA -ACGGAAACCGTAGTACAGACGACA -ACGGAAACCGTAGTACAGAGCTCA -ACGGAAACCGTAGTACAGTCACGT -ACGGAAACCGTAGTACAGCGTAGT -ACGGAAACCGTAGTACAGGTCAGT -ACGGAAACCGTAGTACAGGAAGGT -ACGGAAACCGTAGTACAGAACCGT -ACGGAAACCGTAGTACAGTTGTGC -ACGGAAACCGTAGTACAGCTAAGC -ACGGAAACCGTAGTACAGACTAGC -ACGGAAACCGTAGTACAGAGATGC -ACGGAAACCGTAGTACAGTGAAGG -ACGGAAACCGTAGTACAGCAATGG -ACGGAAACCGTAGTACAGATGAGG -ACGGAAACCGTAGTACAGAATGGG -ACGGAAACCGTAGTACAGTCCTGA -ACGGAAACCGTAGTACAGTAGCGA -ACGGAAACCGTAGTACAGCACAGA -ACGGAAACCGTAGTACAGGCAAGA -ACGGAAACCGTAGTACAGGGTTGA -ACGGAAACCGTAGTACAGTCCGAT -ACGGAAACCGTAGTACAGTGGCAT -ACGGAAACCGTAGTACAGCGAGAT -ACGGAAACCGTAGTACAGTACCAC -ACGGAAACCGTAGTACAGCAGAAC -ACGGAAACCGTAGTACAGGTCTAC -ACGGAAACCGTAGTACAGACGTAC -ACGGAAACCGTAGTACAGAGTGAC -ACGGAAACCGTAGTACAGCTGTAG -ACGGAAACCGTAGTACAGCCTAAG -ACGGAAACCGTAGTACAGGTTCAG -ACGGAAACCGTAGTACAGGCATAG -ACGGAAACCGTAGTACAGGACAAG -ACGGAAACCGTAGTACAGAAGCAG -ACGGAAACCGTAGTACAGCGTCAA -ACGGAAACCGTAGTACAGGCTGAA -ACGGAAACCGTAGTACAGAGTACG -ACGGAAACCGTAGTACAGATCCGA -ACGGAAACCGTAGTACAGATGGGA -ACGGAAACCGTAGTACAGGTGCAA -ACGGAAACCGTAGTACAGGAGGAA -ACGGAAACCGTAGTACAGCAGGTA -ACGGAAACCGTAGTACAGGACTCT -ACGGAAACCGTAGTACAGAGTCCT -ACGGAAACCGTAGTACAGTAAGCC -ACGGAAACCGTAGTACAGATAGCC -ACGGAAACCGTAGTACAGTAACCG -ACGGAAACCGTAGTACAGATGCCA -ACGGAAACCGTATCTGACGGAAAC -ACGGAAACCGTATCTGACAACACC -ACGGAAACCGTATCTGACATCGAG -ACGGAAACCGTATCTGACCTCCTT -ACGGAAACCGTATCTGACCCTGTT -ACGGAAACCGTATCTGACCGGTTT -ACGGAAACCGTATCTGACGTGGTT -ACGGAAACCGTATCTGACGCCTTT -ACGGAAACCGTATCTGACGGTCTT -ACGGAAACCGTATCTGACACGCTT -ACGGAAACCGTATCTGACAGCGTT -ACGGAAACCGTATCTGACTTCGTC -ACGGAAACCGTATCTGACTCTCTC -ACGGAAACCGTATCTGACTGGATC -ACGGAAACCGTATCTGACCACTTC -ACGGAAACCGTATCTGACGTACTC -ACGGAAACCGTATCTGACGATGTC -ACGGAAACCGTATCTGACACAGTC -ACGGAAACCGTATCTGACTTGCTG -ACGGAAACCGTATCTGACTCCATG -ACGGAAACCGTATCTGACTGTGTG -ACGGAAACCGTATCTGACCTAGTG -ACGGAAACCGTATCTGACCATCTG -ACGGAAACCGTATCTGACGAGTTG -ACGGAAACCGTATCTGACAGACTG -ACGGAAACCGTATCTGACTCGGTA -ACGGAAACCGTATCTGACTGCCTA -ACGGAAACCGTATCTGACCCACTA -ACGGAAACCGTATCTGACGGAGTA -ACGGAAACCGTATCTGACTCGTCT -ACGGAAACCGTATCTGACTGCACT -ACGGAAACCGTATCTGACCTGACT -ACGGAAACCGTATCTGACCAACCT -ACGGAAACCGTATCTGACGCTACT -ACGGAAACCGTATCTGACGGATCT -ACGGAAACCGTATCTGACAAGGCT -ACGGAAACCGTATCTGACTCAACC -ACGGAAACCGTATCTGACTGTTCC -ACGGAAACCGTATCTGACATTCCC -ACGGAAACCGTATCTGACTTCTCG -ACGGAAACCGTATCTGACTAGACG -ACGGAAACCGTATCTGACGTAACG -ACGGAAACCGTATCTGACACTTCG -ACGGAAACCGTATCTGACTACGCA -ACGGAAACCGTATCTGACCTTGCA -ACGGAAACCGTATCTGACCGAACA -ACGGAAACCGTATCTGACCAGTCA -ACGGAAACCGTATCTGACGATCCA -ACGGAAACCGTATCTGACACGACA -ACGGAAACCGTATCTGACAGCTCA -ACGGAAACCGTATCTGACTCACGT -ACGGAAACCGTATCTGACCGTAGT -ACGGAAACCGTATCTGACGTCAGT -ACGGAAACCGTATCTGACGAAGGT -ACGGAAACCGTATCTGACAACCGT -ACGGAAACCGTATCTGACTTGTGC -ACGGAAACCGTATCTGACCTAAGC -ACGGAAACCGTATCTGACACTAGC -ACGGAAACCGTATCTGACAGATGC -ACGGAAACCGTATCTGACTGAAGG -ACGGAAACCGTATCTGACCAATGG -ACGGAAACCGTATCTGACATGAGG -ACGGAAACCGTATCTGACAATGGG -ACGGAAACCGTATCTGACTCCTGA -ACGGAAACCGTATCTGACTAGCGA -ACGGAAACCGTATCTGACCACAGA -ACGGAAACCGTATCTGACGCAAGA -ACGGAAACCGTATCTGACGGTTGA -ACGGAAACCGTATCTGACTCCGAT -ACGGAAACCGTATCTGACTGGCAT -ACGGAAACCGTATCTGACCGAGAT -ACGGAAACCGTATCTGACTACCAC -ACGGAAACCGTATCTGACCAGAAC -ACGGAAACCGTATCTGACGTCTAC -ACGGAAACCGTATCTGACACGTAC -ACGGAAACCGTATCTGACAGTGAC -ACGGAAACCGTATCTGACCTGTAG -ACGGAAACCGTATCTGACCCTAAG -ACGGAAACCGTATCTGACGTTCAG -ACGGAAACCGTATCTGACGCATAG -ACGGAAACCGTATCTGACGACAAG -ACGGAAACCGTATCTGACAAGCAG -ACGGAAACCGTATCTGACCGTCAA -ACGGAAACCGTATCTGACGCTGAA -ACGGAAACCGTATCTGACAGTACG -ACGGAAACCGTATCTGACATCCGA -ACGGAAACCGTATCTGACATGGGA -ACGGAAACCGTATCTGACGTGCAA -ACGGAAACCGTATCTGACGAGGAA -ACGGAAACCGTATCTGACCAGGTA -ACGGAAACCGTATCTGACGACTCT -ACGGAAACCGTATCTGACAGTCCT -ACGGAAACCGTATCTGACTAAGCC -ACGGAAACCGTATCTGACATAGCC -ACGGAAACCGTATCTGACTAACCG -ACGGAAACCGTATCTGACATGCCA -ACGGAAACCGTACCTAGTGGAAAC -ACGGAAACCGTACCTAGTAACACC -ACGGAAACCGTACCTAGTATCGAG -ACGGAAACCGTACCTAGTCTCCTT -ACGGAAACCGTACCTAGTCCTGTT -ACGGAAACCGTACCTAGTCGGTTT -ACGGAAACCGTACCTAGTGTGGTT -ACGGAAACCGTACCTAGTGCCTTT -ACGGAAACCGTACCTAGTGGTCTT -ACGGAAACCGTACCTAGTACGCTT -ACGGAAACCGTACCTAGTAGCGTT -ACGGAAACCGTACCTAGTTTCGTC -ACGGAAACCGTACCTAGTTCTCTC -ACGGAAACCGTACCTAGTTGGATC -ACGGAAACCGTACCTAGTCACTTC -ACGGAAACCGTACCTAGTGTACTC -ACGGAAACCGTACCTAGTGATGTC -ACGGAAACCGTACCTAGTACAGTC -ACGGAAACCGTACCTAGTTTGCTG -ACGGAAACCGTACCTAGTTCCATG -ACGGAAACCGTACCTAGTTGTGTG -ACGGAAACCGTACCTAGTCTAGTG -ACGGAAACCGTACCTAGTCATCTG -ACGGAAACCGTACCTAGTGAGTTG -ACGGAAACCGTACCTAGTAGACTG -ACGGAAACCGTACCTAGTTCGGTA -ACGGAAACCGTACCTAGTTGCCTA -ACGGAAACCGTACCTAGTCCACTA -ACGGAAACCGTACCTAGTGGAGTA -ACGGAAACCGTACCTAGTTCGTCT -ACGGAAACCGTACCTAGTTGCACT -ACGGAAACCGTACCTAGTCTGACT -ACGGAAACCGTACCTAGTCAACCT -ACGGAAACCGTACCTAGTGCTACT -ACGGAAACCGTACCTAGTGGATCT -ACGGAAACCGTACCTAGTAAGGCT -ACGGAAACCGTACCTAGTTCAACC -ACGGAAACCGTACCTAGTTGTTCC -ACGGAAACCGTACCTAGTATTCCC -ACGGAAACCGTACCTAGTTTCTCG -ACGGAAACCGTACCTAGTTAGACG -ACGGAAACCGTACCTAGTGTAACG -ACGGAAACCGTACCTAGTACTTCG -ACGGAAACCGTACCTAGTTACGCA -ACGGAAACCGTACCTAGTCTTGCA -ACGGAAACCGTACCTAGTCGAACA -ACGGAAACCGTACCTAGTCAGTCA -ACGGAAACCGTACCTAGTGATCCA -ACGGAAACCGTACCTAGTACGACA -ACGGAAACCGTACCTAGTAGCTCA -ACGGAAACCGTACCTAGTTCACGT -ACGGAAACCGTACCTAGTCGTAGT -ACGGAAACCGTACCTAGTGTCAGT -ACGGAAACCGTACCTAGTGAAGGT -ACGGAAACCGTACCTAGTAACCGT -ACGGAAACCGTACCTAGTTTGTGC -ACGGAAACCGTACCTAGTCTAAGC -ACGGAAACCGTACCTAGTACTAGC -ACGGAAACCGTACCTAGTAGATGC -ACGGAAACCGTACCTAGTTGAAGG -ACGGAAACCGTACCTAGTCAATGG -ACGGAAACCGTACCTAGTATGAGG -ACGGAAACCGTACCTAGTAATGGG -ACGGAAACCGTACCTAGTTCCTGA -ACGGAAACCGTACCTAGTTAGCGA -ACGGAAACCGTACCTAGTCACAGA -ACGGAAACCGTACCTAGTGCAAGA -ACGGAAACCGTACCTAGTGGTTGA -ACGGAAACCGTACCTAGTTCCGAT -ACGGAAACCGTACCTAGTTGGCAT -ACGGAAACCGTACCTAGTCGAGAT -ACGGAAACCGTACCTAGTTACCAC -ACGGAAACCGTACCTAGTCAGAAC -ACGGAAACCGTACCTAGTGTCTAC -ACGGAAACCGTACCTAGTACGTAC -ACGGAAACCGTACCTAGTAGTGAC -ACGGAAACCGTACCTAGTCTGTAG -ACGGAAACCGTACCTAGTCCTAAG -ACGGAAACCGTACCTAGTGTTCAG -ACGGAAACCGTACCTAGTGCATAG -ACGGAAACCGTACCTAGTGACAAG -ACGGAAACCGTACCTAGTAAGCAG -ACGGAAACCGTACCTAGTCGTCAA -ACGGAAACCGTACCTAGTGCTGAA -ACGGAAACCGTACCTAGTAGTACG -ACGGAAACCGTACCTAGTATCCGA -ACGGAAACCGTACCTAGTATGGGA -ACGGAAACCGTACCTAGTGTGCAA -ACGGAAACCGTACCTAGTGAGGAA -ACGGAAACCGTACCTAGTCAGGTA -ACGGAAACCGTACCTAGTGACTCT -ACGGAAACCGTACCTAGTAGTCCT -ACGGAAACCGTACCTAGTTAAGCC -ACGGAAACCGTACCTAGTATAGCC -ACGGAAACCGTACCTAGTTAACCG -ACGGAAACCGTACCTAGTATGCCA -ACGGAAACCGTAGCCTAAGGAAAC -ACGGAAACCGTAGCCTAAAACACC -ACGGAAACCGTAGCCTAAATCGAG -ACGGAAACCGTAGCCTAACTCCTT -ACGGAAACCGTAGCCTAACCTGTT -ACGGAAACCGTAGCCTAACGGTTT -ACGGAAACCGTAGCCTAAGTGGTT -ACGGAAACCGTAGCCTAAGCCTTT -ACGGAAACCGTAGCCTAAGGTCTT -ACGGAAACCGTAGCCTAAACGCTT -ACGGAAACCGTAGCCTAAAGCGTT -ACGGAAACCGTAGCCTAATTCGTC -ACGGAAACCGTAGCCTAATCTCTC -ACGGAAACCGTAGCCTAATGGATC -ACGGAAACCGTAGCCTAACACTTC -ACGGAAACCGTAGCCTAAGTACTC -ACGGAAACCGTAGCCTAAGATGTC -ACGGAAACCGTAGCCTAAACAGTC -ACGGAAACCGTAGCCTAATTGCTG -ACGGAAACCGTAGCCTAATCCATG -ACGGAAACCGTAGCCTAATGTGTG -ACGGAAACCGTAGCCTAACTAGTG -ACGGAAACCGTAGCCTAACATCTG -ACGGAAACCGTAGCCTAAGAGTTG -ACGGAAACCGTAGCCTAAAGACTG -ACGGAAACCGTAGCCTAATCGGTA -ACGGAAACCGTAGCCTAATGCCTA -ACGGAAACCGTAGCCTAACCACTA -ACGGAAACCGTAGCCTAAGGAGTA -ACGGAAACCGTAGCCTAATCGTCT -ACGGAAACCGTAGCCTAATGCACT -ACGGAAACCGTAGCCTAACTGACT -ACGGAAACCGTAGCCTAACAACCT -ACGGAAACCGTAGCCTAAGCTACT -ACGGAAACCGTAGCCTAAGGATCT -ACGGAAACCGTAGCCTAAAAGGCT -ACGGAAACCGTAGCCTAATCAACC -ACGGAAACCGTAGCCTAATGTTCC -ACGGAAACCGTAGCCTAAATTCCC -ACGGAAACCGTAGCCTAATTCTCG -ACGGAAACCGTAGCCTAATAGACG -ACGGAAACCGTAGCCTAAGTAACG -ACGGAAACCGTAGCCTAAACTTCG -ACGGAAACCGTAGCCTAATACGCA -ACGGAAACCGTAGCCTAACTTGCA -ACGGAAACCGTAGCCTAACGAACA -ACGGAAACCGTAGCCTAACAGTCA -ACGGAAACCGTAGCCTAAGATCCA -ACGGAAACCGTAGCCTAAACGACA -ACGGAAACCGTAGCCTAAAGCTCA -ACGGAAACCGTAGCCTAATCACGT -ACGGAAACCGTAGCCTAACGTAGT -ACGGAAACCGTAGCCTAAGTCAGT -ACGGAAACCGTAGCCTAAGAAGGT -ACGGAAACCGTAGCCTAAAACCGT -ACGGAAACCGTAGCCTAATTGTGC -ACGGAAACCGTAGCCTAACTAAGC -ACGGAAACCGTAGCCTAAACTAGC -ACGGAAACCGTAGCCTAAAGATGC -ACGGAAACCGTAGCCTAATGAAGG -ACGGAAACCGTAGCCTAACAATGG -ACGGAAACCGTAGCCTAAATGAGG -ACGGAAACCGTAGCCTAAAATGGG -ACGGAAACCGTAGCCTAATCCTGA -ACGGAAACCGTAGCCTAATAGCGA -ACGGAAACCGTAGCCTAACACAGA -ACGGAAACCGTAGCCTAAGCAAGA -ACGGAAACCGTAGCCTAAGGTTGA -ACGGAAACCGTAGCCTAATCCGAT -ACGGAAACCGTAGCCTAATGGCAT -ACGGAAACCGTAGCCTAACGAGAT -ACGGAAACCGTAGCCTAATACCAC -ACGGAAACCGTAGCCTAACAGAAC -ACGGAAACCGTAGCCTAAGTCTAC -ACGGAAACCGTAGCCTAAACGTAC -ACGGAAACCGTAGCCTAAAGTGAC -ACGGAAACCGTAGCCTAACTGTAG -ACGGAAACCGTAGCCTAACCTAAG -ACGGAAACCGTAGCCTAAGTTCAG -ACGGAAACCGTAGCCTAAGCATAG -ACGGAAACCGTAGCCTAAGACAAG -ACGGAAACCGTAGCCTAAAAGCAG -ACGGAAACCGTAGCCTAACGTCAA -ACGGAAACCGTAGCCTAAGCTGAA -ACGGAAACCGTAGCCTAAAGTACG -ACGGAAACCGTAGCCTAAATCCGA -ACGGAAACCGTAGCCTAAATGGGA -ACGGAAACCGTAGCCTAAGTGCAA -ACGGAAACCGTAGCCTAAGAGGAA -ACGGAAACCGTAGCCTAACAGGTA -ACGGAAACCGTAGCCTAAGACTCT -ACGGAAACCGTAGCCTAAAGTCCT -ACGGAAACCGTAGCCTAATAAGCC -ACGGAAACCGTAGCCTAAATAGCC -ACGGAAACCGTAGCCTAATAACCG -ACGGAAACCGTAGCCTAAATGCCA -ACGGAAACCGTAGCCATAGGAAAC -ACGGAAACCGTAGCCATAAACACC -ACGGAAACCGTAGCCATAATCGAG -ACGGAAACCGTAGCCATACTCCTT -ACGGAAACCGTAGCCATACCTGTT -ACGGAAACCGTAGCCATACGGTTT -ACGGAAACCGTAGCCATAGTGGTT -ACGGAAACCGTAGCCATAGCCTTT -ACGGAAACCGTAGCCATAGGTCTT -ACGGAAACCGTAGCCATAACGCTT -ACGGAAACCGTAGCCATAAGCGTT -ACGGAAACCGTAGCCATATTCGTC -ACGGAAACCGTAGCCATATCTCTC -ACGGAAACCGTAGCCATATGGATC -ACGGAAACCGTAGCCATACACTTC -ACGGAAACCGTAGCCATAGTACTC -ACGGAAACCGTAGCCATAGATGTC -ACGGAAACCGTAGCCATAACAGTC -ACGGAAACCGTAGCCATATTGCTG -ACGGAAACCGTAGCCATATCCATG -ACGGAAACCGTAGCCATATGTGTG -ACGGAAACCGTAGCCATACTAGTG -ACGGAAACCGTAGCCATACATCTG -ACGGAAACCGTAGCCATAGAGTTG -ACGGAAACCGTAGCCATAAGACTG -ACGGAAACCGTAGCCATATCGGTA -ACGGAAACCGTAGCCATATGCCTA -ACGGAAACCGTAGCCATACCACTA -ACGGAAACCGTAGCCATAGGAGTA -ACGGAAACCGTAGCCATATCGTCT -ACGGAAACCGTAGCCATATGCACT -ACGGAAACCGTAGCCATACTGACT -ACGGAAACCGTAGCCATACAACCT -ACGGAAACCGTAGCCATAGCTACT -ACGGAAACCGTAGCCATAGGATCT -ACGGAAACCGTAGCCATAAAGGCT -ACGGAAACCGTAGCCATATCAACC -ACGGAAACCGTAGCCATATGTTCC -ACGGAAACCGTAGCCATAATTCCC -ACGGAAACCGTAGCCATATTCTCG -ACGGAAACCGTAGCCATATAGACG -ACGGAAACCGTAGCCATAGTAACG -ACGGAAACCGTAGCCATAACTTCG -ACGGAAACCGTAGCCATATACGCA -ACGGAAACCGTAGCCATACTTGCA -ACGGAAACCGTAGCCATACGAACA -ACGGAAACCGTAGCCATACAGTCA -ACGGAAACCGTAGCCATAGATCCA -ACGGAAACCGTAGCCATAACGACA -ACGGAAACCGTAGCCATAAGCTCA -ACGGAAACCGTAGCCATATCACGT -ACGGAAACCGTAGCCATACGTAGT -ACGGAAACCGTAGCCATAGTCAGT -ACGGAAACCGTAGCCATAGAAGGT -ACGGAAACCGTAGCCATAAACCGT -ACGGAAACCGTAGCCATATTGTGC -ACGGAAACCGTAGCCATACTAAGC -ACGGAAACCGTAGCCATAACTAGC -ACGGAAACCGTAGCCATAAGATGC -ACGGAAACCGTAGCCATATGAAGG -ACGGAAACCGTAGCCATACAATGG -ACGGAAACCGTAGCCATAATGAGG -ACGGAAACCGTAGCCATAAATGGG -ACGGAAACCGTAGCCATATCCTGA -ACGGAAACCGTAGCCATATAGCGA -ACGGAAACCGTAGCCATACACAGA -ACGGAAACCGTAGCCATAGCAAGA -ACGGAAACCGTAGCCATAGGTTGA -ACGGAAACCGTAGCCATATCCGAT -ACGGAAACCGTAGCCATATGGCAT -ACGGAAACCGTAGCCATACGAGAT -ACGGAAACCGTAGCCATATACCAC -ACGGAAACCGTAGCCATACAGAAC -ACGGAAACCGTAGCCATAGTCTAC -ACGGAAACCGTAGCCATAACGTAC -ACGGAAACCGTAGCCATAAGTGAC -ACGGAAACCGTAGCCATACTGTAG -ACGGAAACCGTAGCCATACCTAAG -ACGGAAACCGTAGCCATAGTTCAG -ACGGAAACCGTAGCCATAGCATAG -ACGGAAACCGTAGCCATAGACAAG -ACGGAAACCGTAGCCATAAAGCAG -ACGGAAACCGTAGCCATACGTCAA -ACGGAAACCGTAGCCATAGCTGAA -ACGGAAACCGTAGCCATAAGTACG -ACGGAAACCGTAGCCATAATCCGA -ACGGAAACCGTAGCCATAATGGGA -ACGGAAACCGTAGCCATAGTGCAA -ACGGAAACCGTAGCCATAGAGGAA -ACGGAAACCGTAGCCATACAGGTA -ACGGAAACCGTAGCCATAGACTCT -ACGGAAACCGTAGCCATAAGTCCT -ACGGAAACCGTAGCCATATAAGCC -ACGGAAACCGTAGCCATAATAGCC -ACGGAAACCGTAGCCATATAACCG -ACGGAAACCGTAGCCATAATGCCA -ACGGAAACCGTACCGTAAGGAAAC -ACGGAAACCGTACCGTAAAACACC -ACGGAAACCGTACCGTAAATCGAG -ACGGAAACCGTACCGTAACTCCTT -ACGGAAACCGTACCGTAACCTGTT -ACGGAAACCGTACCGTAACGGTTT -ACGGAAACCGTACCGTAAGTGGTT -ACGGAAACCGTACCGTAAGCCTTT -ACGGAAACCGTACCGTAAGGTCTT -ACGGAAACCGTACCGTAAACGCTT -ACGGAAACCGTACCGTAAAGCGTT -ACGGAAACCGTACCGTAATTCGTC -ACGGAAACCGTACCGTAATCTCTC -ACGGAAACCGTACCGTAATGGATC -ACGGAAACCGTACCGTAACACTTC -ACGGAAACCGTACCGTAAGTACTC -ACGGAAACCGTACCGTAAGATGTC -ACGGAAACCGTACCGTAAACAGTC -ACGGAAACCGTACCGTAATTGCTG -ACGGAAACCGTACCGTAATCCATG -ACGGAAACCGTACCGTAATGTGTG -ACGGAAACCGTACCGTAACTAGTG -ACGGAAACCGTACCGTAACATCTG -ACGGAAACCGTACCGTAAGAGTTG -ACGGAAACCGTACCGTAAAGACTG -ACGGAAACCGTACCGTAATCGGTA -ACGGAAACCGTACCGTAATGCCTA -ACGGAAACCGTACCGTAACCACTA -ACGGAAACCGTACCGTAAGGAGTA -ACGGAAACCGTACCGTAATCGTCT -ACGGAAACCGTACCGTAATGCACT -ACGGAAACCGTACCGTAACTGACT -ACGGAAACCGTACCGTAACAACCT -ACGGAAACCGTACCGTAAGCTACT -ACGGAAACCGTACCGTAAGGATCT -ACGGAAACCGTACCGTAAAAGGCT -ACGGAAACCGTACCGTAATCAACC -ACGGAAACCGTACCGTAATGTTCC -ACGGAAACCGTACCGTAAATTCCC -ACGGAAACCGTACCGTAATTCTCG -ACGGAAACCGTACCGTAATAGACG -ACGGAAACCGTACCGTAAGTAACG -ACGGAAACCGTACCGTAAACTTCG -ACGGAAACCGTACCGTAATACGCA -ACGGAAACCGTACCGTAACTTGCA -ACGGAAACCGTACCGTAACGAACA -ACGGAAACCGTACCGTAACAGTCA -ACGGAAACCGTACCGTAAGATCCA -ACGGAAACCGTACCGTAAACGACA -ACGGAAACCGTACCGTAAAGCTCA -ACGGAAACCGTACCGTAATCACGT -ACGGAAACCGTACCGTAACGTAGT -ACGGAAACCGTACCGTAAGTCAGT -ACGGAAACCGTACCGTAAGAAGGT -ACGGAAACCGTACCGTAAAACCGT -ACGGAAACCGTACCGTAATTGTGC -ACGGAAACCGTACCGTAACTAAGC -ACGGAAACCGTACCGTAAACTAGC -ACGGAAACCGTACCGTAAAGATGC -ACGGAAACCGTACCGTAATGAAGG -ACGGAAACCGTACCGTAACAATGG -ACGGAAACCGTACCGTAAATGAGG -ACGGAAACCGTACCGTAAAATGGG -ACGGAAACCGTACCGTAATCCTGA -ACGGAAACCGTACCGTAATAGCGA -ACGGAAACCGTACCGTAACACAGA -ACGGAAACCGTACCGTAAGCAAGA -ACGGAAACCGTACCGTAAGGTTGA -ACGGAAACCGTACCGTAATCCGAT -ACGGAAACCGTACCGTAATGGCAT -ACGGAAACCGTACCGTAACGAGAT -ACGGAAACCGTACCGTAATACCAC -ACGGAAACCGTACCGTAACAGAAC -ACGGAAACCGTACCGTAAGTCTAC -ACGGAAACCGTACCGTAAACGTAC -ACGGAAACCGTACCGTAAAGTGAC -ACGGAAACCGTACCGTAACTGTAG -ACGGAAACCGTACCGTAACCTAAG -ACGGAAACCGTACCGTAAGTTCAG -ACGGAAACCGTACCGTAAGCATAG -ACGGAAACCGTACCGTAAGACAAG -ACGGAAACCGTACCGTAAAAGCAG -ACGGAAACCGTACCGTAACGTCAA -ACGGAAACCGTACCGTAAGCTGAA -ACGGAAACCGTACCGTAAAGTACG -ACGGAAACCGTACCGTAAATCCGA -ACGGAAACCGTACCGTAAATGGGA -ACGGAAACCGTACCGTAAGTGCAA -ACGGAAACCGTACCGTAAGAGGAA -ACGGAAACCGTACCGTAACAGGTA -ACGGAAACCGTACCGTAAGACTCT -ACGGAAACCGTACCGTAAAGTCCT -ACGGAAACCGTACCGTAATAAGCC -ACGGAAACCGTACCGTAAATAGCC -ACGGAAACCGTACCGTAATAACCG -ACGGAAACCGTACCGTAAATGCCA -ACGGAAACCGTACCAATGGGAAAC -ACGGAAACCGTACCAATGAACACC -ACGGAAACCGTACCAATGATCGAG -ACGGAAACCGTACCAATGCTCCTT -ACGGAAACCGTACCAATGCCTGTT -ACGGAAACCGTACCAATGCGGTTT -ACGGAAACCGTACCAATGGTGGTT -ACGGAAACCGTACCAATGGCCTTT -ACGGAAACCGTACCAATGGGTCTT -ACGGAAACCGTACCAATGACGCTT -ACGGAAACCGTACCAATGAGCGTT -ACGGAAACCGTACCAATGTTCGTC -ACGGAAACCGTACCAATGTCTCTC -ACGGAAACCGTACCAATGTGGATC -ACGGAAACCGTACCAATGCACTTC -ACGGAAACCGTACCAATGGTACTC -ACGGAAACCGTACCAATGGATGTC -ACGGAAACCGTACCAATGACAGTC -ACGGAAACCGTACCAATGTTGCTG -ACGGAAACCGTACCAATGTCCATG -ACGGAAACCGTACCAATGTGTGTG -ACGGAAACCGTACCAATGCTAGTG -ACGGAAACCGTACCAATGCATCTG -ACGGAAACCGTACCAATGGAGTTG -ACGGAAACCGTACCAATGAGACTG -ACGGAAACCGTACCAATGTCGGTA -ACGGAAACCGTACCAATGTGCCTA -ACGGAAACCGTACCAATGCCACTA -ACGGAAACCGTACCAATGGGAGTA -ACGGAAACCGTACCAATGTCGTCT -ACGGAAACCGTACCAATGTGCACT -ACGGAAACCGTACCAATGCTGACT -ACGGAAACCGTACCAATGCAACCT -ACGGAAACCGTACCAATGGCTACT -ACGGAAACCGTACCAATGGGATCT -ACGGAAACCGTACCAATGAAGGCT -ACGGAAACCGTACCAATGTCAACC -ACGGAAACCGTACCAATGTGTTCC -ACGGAAACCGTACCAATGATTCCC -ACGGAAACCGTACCAATGTTCTCG -ACGGAAACCGTACCAATGTAGACG -ACGGAAACCGTACCAATGGTAACG -ACGGAAACCGTACCAATGACTTCG -ACGGAAACCGTACCAATGTACGCA -ACGGAAACCGTACCAATGCTTGCA -ACGGAAACCGTACCAATGCGAACA -ACGGAAACCGTACCAATGCAGTCA -ACGGAAACCGTACCAATGGATCCA -ACGGAAACCGTACCAATGACGACA -ACGGAAACCGTACCAATGAGCTCA -ACGGAAACCGTACCAATGTCACGT -ACGGAAACCGTACCAATGCGTAGT -ACGGAAACCGTACCAATGGTCAGT -ACGGAAACCGTACCAATGGAAGGT -ACGGAAACCGTACCAATGAACCGT -ACGGAAACCGTACCAATGTTGTGC -ACGGAAACCGTACCAATGCTAAGC -ACGGAAACCGTACCAATGACTAGC -ACGGAAACCGTACCAATGAGATGC -ACGGAAACCGTACCAATGTGAAGG -ACGGAAACCGTACCAATGCAATGG -ACGGAAACCGTACCAATGATGAGG -ACGGAAACCGTACCAATGAATGGG -ACGGAAACCGTACCAATGTCCTGA -ACGGAAACCGTACCAATGTAGCGA -ACGGAAACCGTACCAATGCACAGA -ACGGAAACCGTACCAATGGCAAGA -ACGGAAACCGTACCAATGGGTTGA -ACGGAAACCGTACCAATGTCCGAT -ACGGAAACCGTACCAATGTGGCAT -ACGGAAACCGTACCAATGCGAGAT -ACGGAAACCGTACCAATGTACCAC -ACGGAAACCGTACCAATGCAGAAC -ACGGAAACCGTACCAATGGTCTAC -ACGGAAACCGTACCAATGACGTAC -ACGGAAACCGTACCAATGAGTGAC -ACGGAAACCGTACCAATGCTGTAG -ACGGAAACCGTACCAATGCCTAAG -ACGGAAACCGTACCAATGGTTCAG -ACGGAAACCGTACCAATGGCATAG -ACGGAAACCGTACCAATGGACAAG -ACGGAAACCGTACCAATGAAGCAG -ACGGAAACCGTACCAATGCGTCAA -ACGGAAACCGTACCAATGGCTGAA -ACGGAAACCGTACCAATGAGTACG -ACGGAAACCGTACCAATGATCCGA -ACGGAAACCGTACCAATGATGGGA -ACGGAAACCGTACCAATGGTGCAA -ACGGAAACCGTACCAATGGAGGAA -ACGGAAACCGTACCAATGCAGGTA -ACGGAAACCGTACCAATGGACTCT -ACGGAAACCGTACCAATGAGTCCT -ACGGAAACCGTACCAATGTAAGCC -ACGGAAACCGTACCAATGATAGCC -ACGGAAACCGTACCAATGTAACCG -ACGGAAACCGTACCAATGATGCCA -ACGGAATGTGCTAACGGAGGAAAC -ACGGAATGTGCTAACGGAAACACC -ACGGAATGTGCTAACGGAATCGAG -ACGGAATGTGCTAACGGACTCCTT -ACGGAATGTGCTAACGGACCTGTT -ACGGAATGTGCTAACGGACGGTTT -ACGGAATGTGCTAACGGAGTGGTT -ACGGAATGTGCTAACGGAGCCTTT -ACGGAATGTGCTAACGGAGGTCTT -ACGGAATGTGCTAACGGAACGCTT -ACGGAATGTGCTAACGGAAGCGTT -ACGGAATGTGCTAACGGATTCGTC -ACGGAATGTGCTAACGGATCTCTC -ACGGAATGTGCTAACGGATGGATC -ACGGAATGTGCTAACGGACACTTC -ACGGAATGTGCTAACGGAGTACTC -ACGGAATGTGCTAACGGAGATGTC -ACGGAATGTGCTAACGGAACAGTC -ACGGAATGTGCTAACGGATTGCTG -ACGGAATGTGCTAACGGATCCATG -ACGGAATGTGCTAACGGATGTGTG -ACGGAATGTGCTAACGGACTAGTG -ACGGAATGTGCTAACGGACATCTG -ACGGAATGTGCTAACGGAGAGTTG -ACGGAATGTGCTAACGGAAGACTG -ACGGAATGTGCTAACGGATCGGTA -ACGGAATGTGCTAACGGATGCCTA -ACGGAATGTGCTAACGGACCACTA -ACGGAATGTGCTAACGGAGGAGTA -ACGGAATGTGCTAACGGATCGTCT -ACGGAATGTGCTAACGGATGCACT -ACGGAATGTGCTAACGGACTGACT -ACGGAATGTGCTAACGGACAACCT -ACGGAATGTGCTAACGGAGCTACT -ACGGAATGTGCTAACGGAGGATCT -ACGGAATGTGCTAACGGAAAGGCT -ACGGAATGTGCTAACGGATCAACC -ACGGAATGTGCTAACGGATGTTCC -ACGGAATGTGCTAACGGAATTCCC -ACGGAATGTGCTAACGGATTCTCG -ACGGAATGTGCTAACGGATAGACG -ACGGAATGTGCTAACGGAGTAACG -ACGGAATGTGCTAACGGAACTTCG -ACGGAATGTGCTAACGGATACGCA -ACGGAATGTGCTAACGGACTTGCA -ACGGAATGTGCTAACGGACGAACA -ACGGAATGTGCTAACGGACAGTCA -ACGGAATGTGCTAACGGAGATCCA -ACGGAATGTGCTAACGGAACGACA -ACGGAATGTGCTAACGGAAGCTCA -ACGGAATGTGCTAACGGATCACGT -ACGGAATGTGCTAACGGACGTAGT -ACGGAATGTGCTAACGGAGTCAGT -ACGGAATGTGCTAACGGAGAAGGT -ACGGAATGTGCTAACGGAAACCGT -ACGGAATGTGCTAACGGATTGTGC -ACGGAATGTGCTAACGGACTAAGC -ACGGAATGTGCTAACGGAACTAGC -ACGGAATGTGCTAACGGAAGATGC -ACGGAATGTGCTAACGGATGAAGG -ACGGAATGTGCTAACGGACAATGG -ACGGAATGTGCTAACGGAATGAGG -ACGGAATGTGCTAACGGAAATGGG -ACGGAATGTGCTAACGGATCCTGA -ACGGAATGTGCTAACGGATAGCGA -ACGGAATGTGCTAACGGACACAGA -ACGGAATGTGCTAACGGAGCAAGA -ACGGAATGTGCTAACGGAGGTTGA -ACGGAATGTGCTAACGGATCCGAT -ACGGAATGTGCTAACGGATGGCAT -ACGGAATGTGCTAACGGACGAGAT -ACGGAATGTGCTAACGGATACCAC -ACGGAATGTGCTAACGGACAGAAC -ACGGAATGTGCTAACGGAGTCTAC -ACGGAATGTGCTAACGGAACGTAC -ACGGAATGTGCTAACGGAAGTGAC -ACGGAATGTGCTAACGGACTGTAG -ACGGAATGTGCTAACGGACCTAAG -ACGGAATGTGCTAACGGAGTTCAG -ACGGAATGTGCTAACGGAGCATAG -ACGGAATGTGCTAACGGAGACAAG -ACGGAATGTGCTAACGGAAAGCAG -ACGGAATGTGCTAACGGACGTCAA -ACGGAATGTGCTAACGGAGCTGAA -ACGGAATGTGCTAACGGAAGTACG -ACGGAATGTGCTAACGGAATCCGA -ACGGAATGTGCTAACGGAATGGGA -ACGGAATGTGCTAACGGAGTGCAA -ACGGAATGTGCTAACGGAGAGGAA -ACGGAATGTGCTAACGGACAGGTA -ACGGAATGTGCTAACGGAGACTCT -ACGGAATGTGCTAACGGAAGTCCT -ACGGAATGTGCTAACGGATAAGCC -ACGGAATGTGCTAACGGAATAGCC -ACGGAATGTGCTAACGGATAACCG -ACGGAATGTGCTAACGGAATGCCA -ACGGAATGTGCTACCAACGGAAAC -ACGGAATGTGCTACCAACAACACC -ACGGAATGTGCTACCAACATCGAG -ACGGAATGTGCTACCAACCTCCTT -ACGGAATGTGCTACCAACCCTGTT -ACGGAATGTGCTACCAACCGGTTT -ACGGAATGTGCTACCAACGTGGTT -ACGGAATGTGCTACCAACGCCTTT -ACGGAATGTGCTACCAACGGTCTT -ACGGAATGTGCTACCAACACGCTT -ACGGAATGTGCTACCAACAGCGTT -ACGGAATGTGCTACCAACTTCGTC -ACGGAATGTGCTACCAACTCTCTC -ACGGAATGTGCTACCAACTGGATC -ACGGAATGTGCTACCAACCACTTC -ACGGAATGTGCTACCAACGTACTC -ACGGAATGTGCTACCAACGATGTC -ACGGAATGTGCTACCAACACAGTC -ACGGAATGTGCTACCAACTTGCTG -ACGGAATGTGCTACCAACTCCATG -ACGGAATGTGCTACCAACTGTGTG -ACGGAATGTGCTACCAACCTAGTG -ACGGAATGTGCTACCAACCATCTG -ACGGAATGTGCTACCAACGAGTTG -ACGGAATGTGCTACCAACAGACTG -ACGGAATGTGCTACCAACTCGGTA -ACGGAATGTGCTACCAACTGCCTA -ACGGAATGTGCTACCAACCCACTA -ACGGAATGTGCTACCAACGGAGTA -ACGGAATGTGCTACCAACTCGTCT -ACGGAATGTGCTACCAACTGCACT -ACGGAATGTGCTACCAACCTGACT -ACGGAATGTGCTACCAACCAACCT -ACGGAATGTGCTACCAACGCTACT -ACGGAATGTGCTACCAACGGATCT -ACGGAATGTGCTACCAACAAGGCT -ACGGAATGTGCTACCAACTCAACC -ACGGAATGTGCTACCAACTGTTCC -ACGGAATGTGCTACCAACATTCCC -ACGGAATGTGCTACCAACTTCTCG -ACGGAATGTGCTACCAACTAGACG -ACGGAATGTGCTACCAACGTAACG -ACGGAATGTGCTACCAACACTTCG -ACGGAATGTGCTACCAACTACGCA -ACGGAATGTGCTACCAACCTTGCA -ACGGAATGTGCTACCAACCGAACA -ACGGAATGTGCTACCAACCAGTCA -ACGGAATGTGCTACCAACGATCCA -ACGGAATGTGCTACCAACACGACA -ACGGAATGTGCTACCAACAGCTCA -ACGGAATGTGCTACCAACTCACGT -ACGGAATGTGCTACCAACCGTAGT -ACGGAATGTGCTACCAACGTCAGT -ACGGAATGTGCTACCAACGAAGGT -ACGGAATGTGCTACCAACAACCGT -ACGGAATGTGCTACCAACTTGTGC -ACGGAATGTGCTACCAACCTAAGC -ACGGAATGTGCTACCAACACTAGC -ACGGAATGTGCTACCAACAGATGC -ACGGAATGTGCTACCAACTGAAGG -ACGGAATGTGCTACCAACCAATGG -ACGGAATGTGCTACCAACATGAGG -ACGGAATGTGCTACCAACAATGGG -ACGGAATGTGCTACCAACTCCTGA -ACGGAATGTGCTACCAACTAGCGA -ACGGAATGTGCTACCAACCACAGA -ACGGAATGTGCTACCAACGCAAGA -ACGGAATGTGCTACCAACGGTTGA -ACGGAATGTGCTACCAACTCCGAT -ACGGAATGTGCTACCAACTGGCAT -ACGGAATGTGCTACCAACCGAGAT -ACGGAATGTGCTACCAACTACCAC -ACGGAATGTGCTACCAACCAGAAC -ACGGAATGTGCTACCAACGTCTAC -ACGGAATGTGCTACCAACACGTAC -ACGGAATGTGCTACCAACAGTGAC -ACGGAATGTGCTACCAACCTGTAG -ACGGAATGTGCTACCAACCCTAAG -ACGGAATGTGCTACCAACGTTCAG -ACGGAATGTGCTACCAACGCATAG -ACGGAATGTGCTACCAACGACAAG -ACGGAATGTGCTACCAACAAGCAG -ACGGAATGTGCTACCAACCGTCAA -ACGGAATGTGCTACCAACGCTGAA -ACGGAATGTGCTACCAACAGTACG -ACGGAATGTGCTACCAACATCCGA -ACGGAATGTGCTACCAACATGGGA -ACGGAATGTGCTACCAACGTGCAA -ACGGAATGTGCTACCAACGAGGAA -ACGGAATGTGCTACCAACCAGGTA -ACGGAATGTGCTACCAACGACTCT -ACGGAATGTGCTACCAACAGTCCT -ACGGAATGTGCTACCAACTAAGCC -ACGGAATGTGCTACCAACATAGCC -ACGGAATGTGCTACCAACTAACCG -ACGGAATGTGCTACCAACATGCCA -ACGGAATGTGCTGAGATCGGAAAC -ACGGAATGTGCTGAGATCAACACC -ACGGAATGTGCTGAGATCATCGAG -ACGGAATGTGCTGAGATCCTCCTT -ACGGAATGTGCTGAGATCCCTGTT -ACGGAATGTGCTGAGATCCGGTTT -ACGGAATGTGCTGAGATCGTGGTT -ACGGAATGTGCTGAGATCGCCTTT -ACGGAATGTGCTGAGATCGGTCTT -ACGGAATGTGCTGAGATCACGCTT -ACGGAATGTGCTGAGATCAGCGTT -ACGGAATGTGCTGAGATCTTCGTC -ACGGAATGTGCTGAGATCTCTCTC -ACGGAATGTGCTGAGATCTGGATC -ACGGAATGTGCTGAGATCCACTTC -ACGGAATGTGCTGAGATCGTACTC -ACGGAATGTGCTGAGATCGATGTC -ACGGAATGTGCTGAGATCACAGTC -ACGGAATGTGCTGAGATCTTGCTG -ACGGAATGTGCTGAGATCTCCATG -ACGGAATGTGCTGAGATCTGTGTG -ACGGAATGTGCTGAGATCCTAGTG -ACGGAATGTGCTGAGATCCATCTG -ACGGAATGTGCTGAGATCGAGTTG -ACGGAATGTGCTGAGATCAGACTG -ACGGAATGTGCTGAGATCTCGGTA -ACGGAATGTGCTGAGATCTGCCTA -ACGGAATGTGCTGAGATCCCACTA -ACGGAATGTGCTGAGATCGGAGTA -ACGGAATGTGCTGAGATCTCGTCT -ACGGAATGTGCTGAGATCTGCACT -ACGGAATGTGCTGAGATCCTGACT -ACGGAATGTGCTGAGATCCAACCT -ACGGAATGTGCTGAGATCGCTACT -ACGGAATGTGCTGAGATCGGATCT -ACGGAATGTGCTGAGATCAAGGCT -ACGGAATGTGCTGAGATCTCAACC -ACGGAATGTGCTGAGATCTGTTCC -ACGGAATGTGCTGAGATCATTCCC -ACGGAATGTGCTGAGATCTTCTCG -ACGGAATGTGCTGAGATCTAGACG -ACGGAATGTGCTGAGATCGTAACG -ACGGAATGTGCTGAGATCACTTCG -ACGGAATGTGCTGAGATCTACGCA -ACGGAATGTGCTGAGATCCTTGCA -ACGGAATGTGCTGAGATCCGAACA -ACGGAATGTGCTGAGATCCAGTCA -ACGGAATGTGCTGAGATCGATCCA -ACGGAATGTGCTGAGATCACGACA -ACGGAATGTGCTGAGATCAGCTCA -ACGGAATGTGCTGAGATCTCACGT -ACGGAATGTGCTGAGATCCGTAGT -ACGGAATGTGCTGAGATCGTCAGT -ACGGAATGTGCTGAGATCGAAGGT -ACGGAATGTGCTGAGATCAACCGT -ACGGAATGTGCTGAGATCTTGTGC -ACGGAATGTGCTGAGATCCTAAGC -ACGGAATGTGCTGAGATCACTAGC -ACGGAATGTGCTGAGATCAGATGC -ACGGAATGTGCTGAGATCTGAAGG -ACGGAATGTGCTGAGATCCAATGG -ACGGAATGTGCTGAGATCATGAGG -ACGGAATGTGCTGAGATCAATGGG -ACGGAATGTGCTGAGATCTCCTGA -ACGGAATGTGCTGAGATCTAGCGA -ACGGAATGTGCTGAGATCCACAGA -ACGGAATGTGCTGAGATCGCAAGA -ACGGAATGTGCTGAGATCGGTTGA -ACGGAATGTGCTGAGATCTCCGAT -ACGGAATGTGCTGAGATCTGGCAT -ACGGAATGTGCTGAGATCCGAGAT -ACGGAATGTGCTGAGATCTACCAC -ACGGAATGTGCTGAGATCCAGAAC -ACGGAATGTGCTGAGATCGTCTAC -ACGGAATGTGCTGAGATCACGTAC -ACGGAATGTGCTGAGATCAGTGAC -ACGGAATGTGCTGAGATCCTGTAG -ACGGAATGTGCTGAGATCCCTAAG -ACGGAATGTGCTGAGATCGTTCAG -ACGGAATGTGCTGAGATCGCATAG -ACGGAATGTGCTGAGATCGACAAG -ACGGAATGTGCTGAGATCAAGCAG -ACGGAATGTGCTGAGATCCGTCAA -ACGGAATGTGCTGAGATCGCTGAA -ACGGAATGTGCTGAGATCAGTACG -ACGGAATGTGCTGAGATCATCCGA -ACGGAATGTGCTGAGATCATGGGA -ACGGAATGTGCTGAGATCGTGCAA -ACGGAATGTGCTGAGATCGAGGAA -ACGGAATGTGCTGAGATCCAGGTA -ACGGAATGTGCTGAGATCGACTCT -ACGGAATGTGCTGAGATCAGTCCT -ACGGAATGTGCTGAGATCTAAGCC -ACGGAATGTGCTGAGATCATAGCC -ACGGAATGTGCTGAGATCTAACCG -ACGGAATGTGCTGAGATCATGCCA -ACGGAATGTGCTCTTCTCGGAAAC -ACGGAATGTGCTCTTCTCAACACC -ACGGAATGTGCTCTTCTCATCGAG -ACGGAATGTGCTCTTCTCCTCCTT -ACGGAATGTGCTCTTCTCCCTGTT -ACGGAATGTGCTCTTCTCCGGTTT -ACGGAATGTGCTCTTCTCGTGGTT -ACGGAATGTGCTCTTCTCGCCTTT -ACGGAATGTGCTCTTCTCGGTCTT -ACGGAATGTGCTCTTCTCACGCTT -ACGGAATGTGCTCTTCTCAGCGTT -ACGGAATGTGCTCTTCTCTTCGTC -ACGGAATGTGCTCTTCTCTCTCTC -ACGGAATGTGCTCTTCTCTGGATC -ACGGAATGTGCTCTTCTCCACTTC -ACGGAATGTGCTCTTCTCGTACTC -ACGGAATGTGCTCTTCTCGATGTC -ACGGAATGTGCTCTTCTCACAGTC -ACGGAATGTGCTCTTCTCTTGCTG -ACGGAATGTGCTCTTCTCTCCATG -ACGGAATGTGCTCTTCTCTGTGTG -ACGGAATGTGCTCTTCTCCTAGTG -ACGGAATGTGCTCTTCTCCATCTG -ACGGAATGTGCTCTTCTCGAGTTG -ACGGAATGTGCTCTTCTCAGACTG -ACGGAATGTGCTCTTCTCTCGGTA -ACGGAATGTGCTCTTCTCTGCCTA -ACGGAATGTGCTCTTCTCCCACTA -ACGGAATGTGCTCTTCTCGGAGTA -ACGGAATGTGCTCTTCTCTCGTCT -ACGGAATGTGCTCTTCTCTGCACT -ACGGAATGTGCTCTTCTCCTGACT -ACGGAATGTGCTCTTCTCCAACCT -ACGGAATGTGCTCTTCTCGCTACT -ACGGAATGTGCTCTTCTCGGATCT -ACGGAATGTGCTCTTCTCAAGGCT -ACGGAATGTGCTCTTCTCTCAACC -ACGGAATGTGCTCTTCTCTGTTCC -ACGGAATGTGCTCTTCTCATTCCC -ACGGAATGTGCTCTTCTCTTCTCG -ACGGAATGTGCTCTTCTCTAGACG -ACGGAATGTGCTCTTCTCGTAACG -ACGGAATGTGCTCTTCTCACTTCG -ACGGAATGTGCTCTTCTCTACGCA -ACGGAATGTGCTCTTCTCCTTGCA -ACGGAATGTGCTCTTCTCCGAACA -ACGGAATGTGCTCTTCTCCAGTCA -ACGGAATGTGCTCTTCTCGATCCA -ACGGAATGTGCTCTTCTCACGACA -ACGGAATGTGCTCTTCTCAGCTCA -ACGGAATGTGCTCTTCTCTCACGT -ACGGAATGTGCTCTTCTCCGTAGT -ACGGAATGTGCTCTTCTCGTCAGT -ACGGAATGTGCTCTTCTCGAAGGT -ACGGAATGTGCTCTTCTCAACCGT -ACGGAATGTGCTCTTCTCTTGTGC -ACGGAATGTGCTCTTCTCCTAAGC -ACGGAATGTGCTCTTCTCACTAGC -ACGGAATGTGCTCTTCTCAGATGC -ACGGAATGTGCTCTTCTCTGAAGG -ACGGAATGTGCTCTTCTCCAATGG -ACGGAATGTGCTCTTCTCATGAGG -ACGGAATGTGCTCTTCTCAATGGG -ACGGAATGTGCTCTTCTCTCCTGA -ACGGAATGTGCTCTTCTCTAGCGA -ACGGAATGTGCTCTTCTCCACAGA -ACGGAATGTGCTCTTCTCGCAAGA -ACGGAATGTGCTCTTCTCGGTTGA -ACGGAATGTGCTCTTCTCTCCGAT -ACGGAATGTGCTCTTCTCTGGCAT -ACGGAATGTGCTCTTCTCCGAGAT -ACGGAATGTGCTCTTCTCTACCAC -ACGGAATGTGCTCTTCTCCAGAAC -ACGGAATGTGCTCTTCTCGTCTAC -ACGGAATGTGCTCTTCTCACGTAC -ACGGAATGTGCTCTTCTCAGTGAC -ACGGAATGTGCTCTTCTCCTGTAG -ACGGAATGTGCTCTTCTCCCTAAG -ACGGAATGTGCTCTTCTCGTTCAG -ACGGAATGTGCTCTTCTCGCATAG -ACGGAATGTGCTCTTCTCGACAAG -ACGGAATGTGCTCTTCTCAAGCAG -ACGGAATGTGCTCTTCTCCGTCAA -ACGGAATGTGCTCTTCTCGCTGAA -ACGGAATGTGCTCTTCTCAGTACG -ACGGAATGTGCTCTTCTCATCCGA -ACGGAATGTGCTCTTCTCATGGGA -ACGGAATGTGCTCTTCTCGTGCAA -ACGGAATGTGCTCTTCTCGAGGAA -ACGGAATGTGCTCTTCTCCAGGTA -ACGGAATGTGCTCTTCTCGACTCT -ACGGAATGTGCTCTTCTCAGTCCT -ACGGAATGTGCTCTTCTCTAAGCC -ACGGAATGTGCTCTTCTCATAGCC -ACGGAATGTGCTCTTCTCTAACCG -ACGGAATGTGCTCTTCTCATGCCA -ACGGAATGTGCTGTTCCTGGAAAC -ACGGAATGTGCTGTTCCTAACACC -ACGGAATGTGCTGTTCCTATCGAG -ACGGAATGTGCTGTTCCTCTCCTT -ACGGAATGTGCTGTTCCTCCTGTT -ACGGAATGTGCTGTTCCTCGGTTT -ACGGAATGTGCTGTTCCTGTGGTT -ACGGAATGTGCTGTTCCTGCCTTT -ACGGAATGTGCTGTTCCTGGTCTT -ACGGAATGTGCTGTTCCTACGCTT -ACGGAATGTGCTGTTCCTAGCGTT -ACGGAATGTGCTGTTCCTTTCGTC -ACGGAATGTGCTGTTCCTTCTCTC -ACGGAATGTGCTGTTCCTTGGATC -ACGGAATGTGCTGTTCCTCACTTC -ACGGAATGTGCTGTTCCTGTACTC -ACGGAATGTGCTGTTCCTGATGTC -ACGGAATGTGCTGTTCCTACAGTC -ACGGAATGTGCTGTTCCTTTGCTG -ACGGAATGTGCTGTTCCTTCCATG -ACGGAATGTGCTGTTCCTTGTGTG -ACGGAATGTGCTGTTCCTCTAGTG -ACGGAATGTGCTGTTCCTCATCTG -ACGGAATGTGCTGTTCCTGAGTTG -ACGGAATGTGCTGTTCCTAGACTG -ACGGAATGTGCTGTTCCTTCGGTA -ACGGAATGTGCTGTTCCTTGCCTA -ACGGAATGTGCTGTTCCTCCACTA -ACGGAATGTGCTGTTCCTGGAGTA -ACGGAATGTGCTGTTCCTTCGTCT -ACGGAATGTGCTGTTCCTTGCACT -ACGGAATGTGCTGTTCCTCTGACT -ACGGAATGTGCTGTTCCTCAACCT -ACGGAATGTGCTGTTCCTGCTACT -ACGGAATGTGCTGTTCCTGGATCT -ACGGAATGTGCTGTTCCTAAGGCT -ACGGAATGTGCTGTTCCTTCAACC -ACGGAATGTGCTGTTCCTTGTTCC -ACGGAATGTGCTGTTCCTATTCCC -ACGGAATGTGCTGTTCCTTTCTCG -ACGGAATGTGCTGTTCCTTAGACG -ACGGAATGTGCTGTTCCTGTAACG -ACGGAATGTGCTGTTCCTACTTCG -ACGGAATGTGCTGTTCCTTACGCA -ACGGAATGTGCTGTTCCTCTTGCA -ACGGAATGTGCTGTTCCTCGAACA -ACGGAATGTGCTGTTCCTCAGTCA -ACGGAATGTGCTGTTCCTGATCCA -ACGGAATGTGCTGTTCCTACGACA -ACGGAATGTGCTGTTCCTAGCTCA -ACGGAATGTGCTGTTCCTTCACGT -ACGGAATGTGCTGTTCCTCGTAGT -ACGGAATGTGCTGTTCCTGTCAGT -ACGGAATGTGCTGTTCCTGAAGGT -ACGGAATGTGCTGTTCCTAACCGT -ACGGAATGTGCTGTTCCTTTGTGC -ACGGAATGTGCTGTTCCTCTAAGC -ACGGAATGTGCTGTTCCTACTAGC -ACGGAATGTGCTGTTCCTAGATGC -ACGGAATGTGCTGTTCCTTGAAGG -ACGGAATGTGCTGTTCCTCAATGG -ACGGAATGTGCTGTTCCTATGAGG -ACGGAATGTGCTGTTCCTAATGGG -ACGGAATGTGCTGTTCCTTCCTGA -ACGGAATGTGCTGTTCCTTAGCGA -ACGGAATGTGCTGTTCCTCACAGA -ACGGAATGTGCTGTTCCTGCAAGA -ACGGAATGTGCTGTTCCTGGTTGA -ACGGAATGTGCTGTTCCTTCCGAT -ACGGAATGTGCTGTTCCTTGGCAT -ACGGAATGTGCTGTTCCTCGAGAT -ACGGAATGTGCTGTTCCTTACCAC -ACGGAATGTGCTGTTCCTCAGAAC -ACGGAATGTGCTGTTCCTGTCTAC -ACGGAATGTGCTGTTCCTACGTAC -ACGGAATGTGCTGTTCCTAGTGAC -ACGGAATGTGCTGTTCCTCTGTAG -ACGGAATGTGCTGTTCCTCCTAAG -ACGGAATGTGCTGTTCCTGTTCAG -ACGGAATGTGCTGTTCCTGCATAG -ACGGAATGTGCTGTTCCTGACAAG -ACGGAATGTGCTGTTCCTAAGCAG -ACGGAATGTGCTGTTCCTCGTCAA -ACGGAATGTGCTGTTCCTGCTGAA -ACGGAATGTGCTGTTCCTAGTACG -ACGGAATGTGCTGTTCCTATCCGA -ACGGAATGTGCTGTTCCTATGGGA -ACGGAATGTGCTGTTCCTGTGCAA -ACGGAATGTGCTGTTCCTGAGGAA -ACGGAATGTGCTGTTCCTCAGGTA -ACGGAATGTGCTGTTCCTGACTCT -ACGGAATGTGCTGTTCCTAGTCCT -ACGGAATGTGCTGTTCCTTAAGCC -ACGGAATGTGCTGTTCCTATAGCC -ACGGAATGTGCTGTTCCTTAACCG -ACGGAATGTGCTGTTCCTATGCCA -ACGGAATGTGCTTTTCGGGGAAAC -ACGGAATGTGCTTTTCGGAACACC -ACGGAATGTGCTTTTCGGATCGAG -ACGGAATGTGCTTTTCGGCTCCTT -ACGGAATGTGCTTTTCGGCCTGTT -ACGGAATGTGCTTTTCGGCGGTTT -ACGGAATGTGCTTTTCGGGTGGTT -ACGGAATGTGCTTTTCGGGCCTTT -ACGGAATGTGCTTTTCGGGGTCTT -ACGGAATGTGCTTTTCGGACGCTT -ACGGAATGTGCTTTTCGGAGCGTT -ACGGAATGTGCTTTTCGGTTCGTC -ACGGAATGTGCTTTTCGGTCTCTC -ACGGAATGTGCTTTTCGGTGGATC -ACGGAATGTGCTTTTCGGCACTTC -ACGGAATGTGCTTTTCGGGTACTC -ACGGAATGTGCTTTTCGGGATGTC -ACGGAATGTGCTTTTCGGACAGTC -ACGGAATGTGCTTTTCGGTTGCTG -ACGGAATGTGCTTTTCGGTCCATG -ACGGAATGTGCTTTTCGGTGTGTG -ACGGAATGTGCTTTTCGGCTAGTG -ACGGAATGTGCTTTTCGGCATCTG -ACGGAATGTGCTTTTCGGGAGTTG -ACGGAATGTGCTTTTCGGAGACTG -ACGGAATGTGCTTTTCGGTCGGTA -ACGGAATGTGCTTTTCGGTGCCTA -ACGGAATGTGCTTTTCGGCCACTA -ACGGAATGTGCTTTTCGGGGAGTA -ACGGAATGTGCTTTTCGGTCGTCT -ACGGAATGTGCTTTTCGGTGCACT -ACGGAATGTGCTTTTCGGCTGACT -ACGGAATGTGCTTTTCGGCAACCT -ACGGAATGTGCTTTTCGGGCTACT -ACGGAATGTGCTTTTCGGGGATCT -ACGGAATGTGCTTTTCGGAAGGCT -ACGGAATGTGCTTTTCGGTCAACC -ACGGAATGTGCTTTTCGGTGTTCC -ACGGAATGTGCTTTTCGGATTCCC -ACGGAATGTGCTTTTCGGTTCTCG -ACGGAATGTGCTTTTCGGTAGACG -ACGGAATGTGCTTTTCGGGTAACG -ACGGAATGTGCTTTTCGGACTTCG -ACGGAATGTGCTTTTCGGTACGCA -ACGGAATGTGCTTTTCGGCTTGCA -ACGGAATGTGCTTTTCGGCGAACA -ACGGAATGTGCTTTTCGGCAGTCA -ACGGAATGTGCTTTTCGGGATCCA -ACGGAATGTGCTTTTCGGACGACA -ACGGAATGTGCTTTTCGGAGCTCA -ACGGAATGTGCTTTTCGGTCACGT -ACGGAATGTGCTTTTCGGCGTAGT -ACGGAATGTGCTTTTCGGGTCAGT -ACGGAATGTGCTTTTCGGGAAGGT -ACGGAATGTGCTTTTCGGAACCGT -ACGGAATGTGCTTTTCGGTTGTGC -ACGGAATGTGCTTTTCGGCTAAGC -ACGGAATGTGCTTTTCGGACTAGC -ACGGAATGTGCTTTTCGGAGATGC -ACGGAATGTGCTTTTCGGTGAAGG -ACGGAATGTGCTTTTCGGCAATGG -ACGGAATGTGCTTTTCGGATGAGG -ACGGAATGTGCTTTTCGGAATGGG -ACGGAATGTGCTTTTCGGTCCTGA -ACGGAATGTGCTTTTCGGTAGCGA -ACGGAATGTGCTTTTCGGCACAGA -ACGGAATGTGCTTTTCGGGCAAGA -ACGGAATGTGCTTTTCGGGGTTGA -ACGGAATGTGCTTTTCGGTCCGAT -ACGGAATGTGCTTTTCGGTGGCAT -ACGGAATGTGCTTTTCGGCGAGAT -ACGGAATGTGCTTTTCGGTACCAC -ACGGAATGTGCTTTTCGGCAGAAC -ACGGAATGTGCTTTTCGGGTCTAC -ACGGAATGTGCTTTTCGGACGTAC -ACGGAATGTGCTTTTCGGAGTGAC -ACGGAATGTGCTTTTCGGCTGTAG -ACGGAATGTGCTTTTCGGCCTAAG -ACGGAATGTGCTTTTCGGGTTCAG -ACGGAATGTGCTTTTCGGGCATAG -ACGGAATGTGCTTTTCGGGACAAG -ACGGAATGTGCTTTTCGGAAGCAG -ACGGAATGTGCTTTTCGGCGTCAA -ACGGAATGTGCTTTTCGGGCTGAA -ACGGAATGTGCTTTTCGGAGTACG -ACGGAATGTGCTTTTCGGATCCGA -ACGGAATGTGCTTTTCGGATGGGA -ACGGAATGTGCTTTTCGGGTGCAA -ACGGAATGTGCTTTTCGGGAGGAA -ACGGAATGTGCTTTTCGGCAGGTA -ACGGAATGTGCTTTTCGGGACTCT -ACGGAATGTGCTTTTCGGAGTCCT -ACGGAATGTGCTTTTCGGTAAGCC -ACGGAATGTGCTTTTCGGATAGCC -ACGGAATGTGCTTTTCGGTAACCG -ACGGAATGTGCTTTTCGGATGCCA -ACGGAATGTGCTGTTGTGGGAAAC -ACGGAATGTGCTGTTGTGAACACC -ACGGAATGTGCTGTTGTGATCGAG -ACGGAATGTGCTGTTGTGCTCCTT -ACGGAATGTGCTGTTGTGCCTGTT -ACGGAATGTGCTGTTGTGCGGTTT -ACGGAATGTGCTGTTGTGGTGGTT -ACGGAATGTGCTGTTGTGGCCTTT -ACGGAATGTGCTGTTGTGGGTCTT -ACGGAATGTGCTGTTGTGACGCTT -ACGGAATGTGCTGTTGTGAGCGTT -ACGGAATGTGCTGTTGTGTTCGTC -ACGGAATGTGCTGTTGTGTCTCTC -ACGGAATGTGCTGTTGTGTGGATC -ACGGAATGTGCTGTTGTGCACTTC -ACGGAATGTGCTGTTGTGGTACTC -ACGGAATGTGCTGTTGTGGATGTC -ACGGAATGTGCTGTTGTGACAGTC -ACGGAATGTGCTGTTGTGTTGCTG -ACGGAATGTGCTGTTGTGTCCATG -ACGGAATGTGCTGTTGTGTGTGTG -ACGGAATGTGCTGTTGTGCTAGTG -ACGGAATGTGCTGTTGTGCATCTG -ACGGAATGTGCTGTTGTGGAGTTG -ACGGAATGTGCTGTTGTGAGACTG -ACGGAATGTGCTGTTGTGTCGGTA -ACGGAATGTGCTGTTGTGTGCCTA -ACGGAATGTGCTGTTGTGCCACTA -ACGGAATGTGCTGTTGTGGGAGTA -ACGGAATGTGCTGTTGTGTCGTCT -ACGGAATGTGCTGTTGTGTGCACT -ACGGAATGTGCTGTTGTGCTGACT -ACGGAATGTGCTGTTGTGCAACCT -ACGGAATGTGCTGTTGTGGCTACT -ACGGAATGTGCTGTTGTGGGATCT -ACGGAATGTGCTGTTGTGAAGGCT -ACGGAATGTGCTGTTGTGTCAACC -ACGGAATGTGCTGTTGTGTGTTCC -ACGGAATGTGCTGTTGTGATTCCC -ACGGAATGTGCTGTTGTGTTCTCG -ACGGAATGTGCTGTTGTGTAGACG -ACGGAATGTGCTGTTGTGGTAACG -ACGGAATGTGCTGTTGTGACTTCG -ACGGAATGTGCTGTTGTGTACGCA -ACGGAATGTGCTGTTGTGCTTGCA -ACGGAATGTGCTGTTGTGCGAACA -ACGGAATGTGCTGTTGTGCAGTCA -ACGGAATGTGCTGTTGTGGATCCA -ACGGAATGTGCTGTTGTGACGACA -ACGGAATGTGCTGTTGTGAGCTCA -ACGGAATGTGCTGTTGTGTCACGT -ACGGAATGTGCTGTTGTGCGTAGT -ACGGAATGTGCTGTTGTGGTCAGT -ACGGAATGTGCTGTTGTGGAAGGT -ACGGAATGTGCTGTTGTGAACCGT -ACGGAATGTGCTGTTGTGTTGTGC -ACGGAATGTGCTGTTGTGCTAAGC -ACGGAATGTGCTGTTGTGACTAGC -ACGGAATGTGCTGTTGTGAGATGC -ACGGAATGTGCTGTTGTGTGAAGG -ACGGAATGTGCTGTTGTGCAATGG -ACGGAATGTGCTGTTGTGATGAGG -ACGGAATGTGCTGTTGTGAATGGG -ACGGAATGTGCTGTTGTGTCCTGA -ACGGAATGTGCTGTTGTGTAGCGA -ACGGAATGTGCTGTTGTGCACAGA -ACGGAATGTGCTGTTGTGGCAAGA -ACGGAATGTGCTGTTGTGGGTTGA -ACGGAATGTGCTGTTGTGTCCGAT -ACGGAATGTGCTGTTGTGTGGCAT -ACGGAATGTGCTGTTGTGCGAGAT -ACGGAATGTGCTGTTGTGTACCAC -ACGGAATGTGCTGTTGTGCAGAAC -ACGGAATGTGCTGTTGTGGTCTAC -ACGGAATGTGCTGTTGTGACGTAC -ACGGAATGTGCTGTTGTGAGTGAC -ACGGAATGTGCTGTTGTGCTGTAG -ACGGAATGTGCTGTTGTGCCTAAG -ACGGAATGTGCTGTTGTGGTTCAG -ACGGAATGTGCTGTTGTGGCATAG -ACGGAATGTGCTGTTGTGGACAAG -ACGGAATGTGCTGTTGTGAAGCAG -ACGGAATGTGCTGTTGTGCGTCAA -ACGGAATGTGCTGTTGTGGCTGAA -ACGGAATGTGCTGTTGTGAGTACG -ACGGAATGTGCTGTTGTGATCCGA -ACGGAATGTGCTGTTGTGATGGGA -ACGGAATGTGCTGTTGTGGTGCAA -ACGGAATGTGCTGTTGTGGAGGAA -ACGGAATGTGCTGTTGTGCAGGTA -ACGGAATGTGCTGTTGTGGACTCT -ACGGAATGTGCTGTTGTGAGTCCT -ACGGAATGTGCTGTTGTGTAAGCC -ACGGAATGTGCTGTTGTGATAGCC -ACGGAATGTGCTGTTGTGTAACCG -ACGGAATGTGCTGTTGTGATGCCA -ACGGAATGTGCTTTTGCCGGAAAC -ACGGAATGTGCTTTTGCCAACACC -ACGGAATGTGCTTTTGCCATCGAG -ACGGAATGTGCTTTTGCCCTCCTT -ACGGAATGTGCTTTTGCCCCTGTT -ACGGAATGTGCTTTTGCCCGGTTT -ACGGAATGTGCTTTTGCCGTGGTT -ACGGAATGTGCTTTTGCCGCCTTT -ACGGAATGTGCTTTTGCCGGTCTT -ACGGAATGTGCTTTTGCCACGCTT -ACGGAATGTGCTTTTGCCAGCGTT -ACGGAATGTGCTTTTGCCTTCGTC -ACGGAATGTGCTTTTGCCTCTCTC -ACGGAATGTGCTTTTGCCTGGATC -ACGGAATGTGCTTTTGCCCACTTC -ACGGAATGTGCTTTTGCCGTACTC -ACGGAATGTGCTTTTGCCGATGTC -ACGGAATGTGCTTTTGCCACAGTC -ACGGAATGTGCTTTTGCCTTGCTG -ACGGAATGTGCTTTTGCCTCCATG -ACGGAATGTGCTTTTGCCTGTGTG -ACGGAATGTGCTTTTGCCCTAGTG -ACGGAATGTGCTTTTGCCCATCTG -ACGGAATGTGCTTTTGCCGAGTTG -ACGGAATGTGCTTTTGCCAGACTG -ACGGAATGTGCTTTTGCCTCGGTA -ACGGAATGTGCTTTTGCCTGCCTA -ACGGAATGTGCTTTTGCCCCACTA -ACGGAATGTGCTTTTGCCGGAGTA -ACGGAATGTGCTTTTGCCTCGTCT -ACGGAATGTGCTTTTGCCTGCACT -ACGGAATGTGCTTTTGCCCTGACT -ACGGAATGTGCTTTTGCCCAACCT -ACGGAATGTGCTTTTGCCGCTACT -ACGGAATGTGCTTTTGCCGGATCT -ACGGAATGTGCTTTTGCCAAGGCT -ACGGAATGTGCTTTTGCCTCAACC -ACGGAATGTGCTTTTGCCTGTTCC -ACGGAATGTGCTTTTGCCATTCCC -ACGGAATGTGCTTTTGCCTTCTCG -ACGGAATGTGCTTTTGCCTAGACG -ACGGAATGTGCTTTTGCCGTAACG -ACGGAATGTGCTTTTGCCACTTCG -ACGGAATGTGCTTTTGCCTACGCA -ACGGAATGTGCTTTTGCCCTTGCA -ACGGAATGTGCTTTTGCCCGAACA -ACGGAATGTGCTTTTGCCCAGTCA -ACGGAATGTGCTTTTGCCGATCCA -ACGGAATGTGCTTTTGCCACGACA -ACGGAATGTGCTTTTGCCAGCTCA -ACGGAATGTGCTTTTGCCTCACGT -ACGGAATGTGCTTTTGCCCGTAGT -ACGGAATGTGCTTTTGCCGTCAGT -ACGGAATGTGCTTTTGCCGAAGGT -ACGGAATGTGCTTTTGCCAACCGT -ACGGAATGTGCTTTTGCCTTGTGC -ACGGAATGTGCTTTTGCCCTAAGC -ACGGAATGTGCTTTTGCCACTAGC -ACGGAATGTGCTTTTGCCAGATGC -ACGGAATGTGCTTTTGCCTGAAGG -ACGGAATGTGCTTTTGCCCAATGG -ACGGAATGTGCTTTTGCCATGAGG -ACGGAATGTGCTTTTGCCAATGGG -ACGGAATGTGCTTTTGCCTCCTGA -ACGGAATGTGCTTTTGCCTAGCGA -ACGGAATGTGCTTTTGCCCACAGA -ACGGAATGTGCTTTTGCCGCAAGA -ACGGAATGTGCTTTTGCCGGTTGA -ACGGAATGTGCTTTTGCCTCCGAT -ACGGAATGTGCTTTTGCCTGGCAT -ACGGAATGTGCTTTTGCCCGAGAT -ACGGAATGTGCTTTTGCCTACCAC -ACGGAATGTGCTTTTGCCCAGAAC -ACGGAATGTGCTTTTGCCGTCTAC -ACGGAATGTGCTTTTGCCACGTAC -ACGGAATGTGCTTTTGCCAGTGAC -ACGGAATGTGCTTTTGCCCTGTAG -ACGGAATGTGCTTTTGCCCCTAAG -ACGGAATGTGCTTTTGCCGTTCAG -ACGGAATGTGCTTTTGCCGCATAG -ACGGAATGTGCTTTTGCCGACAAG -ACGGAATGTGCTTTTGCCAAGCAG -ACGGAATGTGCTTTTGCCCGTCAA -ACGGAATGTGCTTTTGCCGCTGAA -ACGGAATGTGCTTTTGCCAGTACG -ACGGAATGTGCTTTTGCCATCCGA -ACGGAATGTGCTTTTGCCATGGGA -ACGGAATGTGCTTTTGCCGTGCAA -ACGGAATGTGCTTTTGCCGAGGAA -ACGGAATGTGCTTTTGCCCAGGTA -ACGGAATGTGCTTTTGCCGACTCT -ACGGAATGTGCTTTTGCCAGTCCT -ACGGAATGTGCTTTTGCCTAAGCC -ACGGAATGTGCTTTTGCCATAGCC -ACGGAATGTGCTTTTGCCTAACCG -ACGGAATGTGCTTTTGCCATGCCA -ACGGAATGTGCTCTTGGTGGAAAC -ACGGAATGTGCTCTTGGTAACACC -ACGGAATGTGCTCTTGGTATCGAG -ACGGAATGTGCTCTTGGTCTCCTT -ACGGAATGTGCTCTTGGTCCTGTT -ACGGAATGTGCTCTTGGTCGGTTT -ACGGAATGTGCTCTTGGTGTGGTT -ACGGAATGTGCTCTTGGTGCCTTT -ACGGAATGTGCTCTTGGTGGTCTT -ACGGAATGTGCTCTTGGTACGCTT -ACGGAATGTGCTCTTGGTAGCGTT -ACGGAATGTGCTCTTGGTTTCGTC -ACGGAATGTGCTCTTGGTTCTCTC -ACGGAATGTGCTCTTGGTTGGATC -ACGGAATGTGCTCTTGGTCACTTC -ACGGAATGTGCTCTTGGTGTACTC -ACGGAATGTGCTCTTGGTGATGTC -ACGGAATGTGCTCTTGGTACAGTC -ACGGAATGTGCTCTTGGTTTGCTG -ACGGAATGTGCTCTTGGTTCCATG -ACGGAATGTGCTCTTGGTTGTGTG -ACGGAATGTGCTCTTGGTCTAGTG -ACGGAATGTGCTCTTGGTCATCTG -ACGGAATGTGCTCTTGGTGAGTTG -ACGGAATGTGCTCTTGGTAGACTG -ACGGAATGTGCTCTTGGTTCGGTA -ACGGAATGTGCTCTTGGTTGCCTA -ACGGAATGTGCTCTTGGTCCACTA -ACGGAATGTGCTCTTGGTGGAGTA -ACGGAATGTGCTCTTGGTTCGTCT -ACGGAATGTGCTCTTGGTTGCACT -ACGGAATGTGCTCTTGGTCTGACT -ACGGAATGTGCTCTTGGTCAACCT -ACGGAATGTGCTCTTGGTGCTACT -ACGGAATGTGCTCTTGGTGGATCT -ACGGAATGTGCTCTTGGTAAGGCT -ACGGAATGTGCTCTTGGTTCAACC -ACGGAATGTGCTCTTGGTTGTTCC -ACGGAATGTGCTCTTGGTATTCCC -ACGGAATGTGCTCTTGGTTTCTCG -ACGGAATGTGCTCTTGGTTAGACG -ACGGAATGTGCTCTTGGTGTAACG -ACGGAATGTGCTCTTGGTACTTCG -ACGGAATGTGCTCTTGGTTACGCA -ACGGAATGTGCTCTTGGTCTTGCA -ACGGAATGTGCTCTTGGTCGAACA -ACGGAATGTGCTCTTGGTCAGTCA -ACGGAATGTGCTCTTGGTGATCCA -ACGGAATGTGCTCTTGGTACGACA -ACGGAATGTGCTCTTGGTAGCTCA -ACGGAATGTGCTCTTGGTTCACGT -ACGGAATGTGCTCTTGGTCGTAGT -ACGGAATGTGCTCTTGGTGTCAGT -ACGGAATGTGCTCTTGGTGAAGGT -ACGGAATGTGCTCTTGGTAACCGT -ACGGAATGTGCTCTTGGTTTGTGC -ACGGAATGTGCTCTTGGTCTAAGC -ACGGAATGTGCTCTTGGTACTAGC -ACGGAATGTGCTCTTGGTAGATGC -ACGGAATGTGCTCTTGGTTGAAGG -ACGGAATGTGCTCTTGGTCAATGG -ACGGAATGTGCTCTTGGTATGAGG -ACGGAATGTGCTCTTGGTAATGGG -ACGGAATGTGCTCTTGGTTCCTGA -ACGGAATGTGCTCTTGGTTAGCGA -ACGGAATGTGCTCTTGGTCACAGA -ACGGAATGTGCTCTTGGTGCAAGA -ACGGAATGTGCTCTTGGTGGTTGA -ACGGAATGTGCTCTTGGTTCCGAT -ACGGAATGTGCTCTTGGTTGGCAT -ACGGAATGTGCTCTTGGTCGAGAT -ACGGAATGTGCTCTTGGTTACCAC -ACGGAATGTGCTCTTGGTCAGAAC -ACGGAATGTGCTCTTGGTGTCTAC -ACGGAATGTGCTCTTGGTACGTAC -ACGGAATGTGCTCTTGGTAGTGAC -ACGGAATGTGCTCTTGGTCTGTAG -ACGGAATGTGCTCTTGGTCCTAAG -ACGGAATGTGCTCTTGGTGTTCAG -ACGGAATGTGCTCTTGGTGCATAG -ACGGAATGTGCTCTTGGTGACAAG -ACGGAATGTGCTCTTGGTAAGCAG -ACGGAATGTGCTCTTGGTCGTCAA -ACGGAATGTGCTCTTGGTGCTGAA -ACGGAATGTGCTCTTGGTAGTACG -ACGGAATGTGCTCTTGGTATCCGA -ACGGAATGTGCTCTTGGTATGGGA -ACGGAATGTGCTCTTGGTGTGCAA -ACGGAATGTGCTCTTGGTGAGGAA -ACGGAATGTGCTCTTGGTCAGGTA -ACGGAATGTGCTCTTGGTGACTCT -ACGGAATGTGCTCTTGGTAGTCCT -ACGGAATGTGCTCTTGGTTAAGCC -ACGGAATGTGCTCTTGGTATAGCC -ACGGAATGTGCTCTTGGTTAACCG -ACGGAATGTGCTCTTGGTATGCCA -ACGGAATGTGCTCTTACGGGAAAC -ACGGAATGTGCTCTTACGAACACC -ACGGAATGTGCTCTTACGATCGAG -ACGGAATGTGCTCTTACGCTCCTT -ACGGAATGTGCTCTTACGCCTGTT -ACGGAATGTGCTCTTACGCGGTTT -ACGGAATGTGCTCTTACGGTGGTT -ACGGAATGTGCTCTTACGGCCTTT -ACGGAATGTGCTCTTACGGGTCTT -ACGGAATGTGCTCTTACGACGCTT -ACGGAATGTGCTCTTACGAGCGTT -ACGGAATGTGCTCTTACGTTCGTC -ACGGAATGTGCTCTTACGTCTCTC -ACGGAATGTGCTCTTACGTGGATC -ACGGAATGTGCTCTTACGCACTTC -ACGGAATGTGCTCTTACGGTACTC -ACGGAATGTGCTCTTACGGATGTC -ACGGAATGTGCTCTTACGACAGTC -ACGGAATGTGCTCTTACGTTGCTG -ACGGAATGTGCTCTTACGTCCATG -ACGGAATGTGCTCTTACGTGTGTG -ACGGAATGTGCTCTTACGCTAGTG -ACGGAATGTGCTCTTACGCATCTG -ACGGAATGTGCTCTTACGGAGTTG -ACGGAATGTGCTCTTACGAGACTG -ACGGAATGTGCTCTTACGTCGGTA -ACGGAATGTGCTCTTACGTGCCTA -ACGGAATGTGCTCTTACGCCACTA -ACGGAATGTGCTCTTACGGGAGTA -ACGGAATGTGCTCTTACGTCGTCT -ACGGAATGTGCTCTTACGTGCACT -ACGGAATGTGCTCTTACGCTGACT -ACGGAATGTGCTCTTACGCAACCT -ACGGAATGTGCTCTTACGGCTACT -ACGGAATGTGCTCTTACGGGATCT -ACGGAATGTGCTCTTACGAAGGCT -ACGGAATGTGCTCTTACGTCAACC -ACGGAATGTGCTCTTACGTGTTCC -ACGGAATGTGCTCTTACGATTCCC -ACGGAATGTGCTCTTACGTTCTCG -ACGGAATGTGCTCTTACGTAGACG -ACGGAATGTGCTCTTACGGTAACG -ACGGAATGTGCTCTTACGACTTCG -ACGGAATGTGCTCTTACGTACGCA -ACGGAATGTGCTCTTACGCTTGCA -ACGGAATGTGCTCTTACGCGAACA -ACGGAATGTGCTCTTACGCAGTCA -ACGGAATGTGCTCTTACGGATCCA -ACGGAATGTGCTCTTACGACGACA -ACGGAATGTGCTCTTACGAGCTCA -ACGGAATGTGCTCTTACGTCACGT -ACGGAATGTGCTCTTACGCGTAGT -ACGGAATGTGCTCTTACGGTCAGT -ACGGAATGTGCTCTTACGGAAGGT -ACGGAATGTGCTCTTACGAACCGT -ACGGAATGTGCTCTTACGTTGTGC -ACGGAATGTGCTCTTACGCTAAGC -ACGGAATGTGCTCTTACGACTAGC -ACGGAATGTGCTCTTACGAGATGC -ACGGAATGTGCTCTTACGTGAAGG -ACGGAATGTGCTCTTACGCAATGG -ACGGAATGTGCTCTTACGATGAGG -ACGGAATGTGCTCTTACGAATGGG -ACGGAATGTGCTCTTACGTCCTGA -ACGGAATGTGCTCTTACGTAGCGA -ACGGAATGTGCTCTTACGCACAGA -ACGGAATGTGCTCTTACGGCAAGA -ACGGAATGTGCTCTTACGGGTTGA -ACGGAATGTGCTCTTACGTCCGAT -ACGGAATGTGCTCTTACGTGGCAT -ACGGAATGTGCTCTTACGCGAGAT -ACGGAATGTGCTCTTACGTACCAC -ACGGAATGTGCTCTTACGCAGAAC -ACGGAATGTGCTCTTACGGTCTAC -ACGGAATGTGCTCTTACGACGTAC -ACGGAATGTGCTCTTACGAGTGAC -ACGGAATGTGCTCTTACGCTGTAG -ACGGAATGTGCTCTTACGCCTAAG -ACGGAATGTGCTCTTACGGTTCAG -ACGGAATGTGCTCTTACGGCATAG -ACGGAATGTGCTCTTACGGACAAG -ACGGAATGTGCTCTTACGAAGCAG -ACGGAATGTGCTCTTACGCGTCAA -ACGGAATGTGCTCTTACGGCTGAA -ACGGAATGTGCTCTTACGAGTACG -ACGGAATGTGCTCTTACGATCCGA -ACGGAATGTGCTCTTACGATGGGA -ACGGAATGTGCTCTTACGGTGCAA -ACGGAATGTGCTCTTACGGAGGAA -ACGGAATGTGCTCTTACGCAGGTA -ACGGAATGTGCTCTTACGGACTCT -ACGGAATGTGCTCTTACGAGTCCT -ACGGAATGTGCTCTTACGTAAGCC -ACGGAATGTGCTCTTACGATAGCC -ACGGAATGTGCTCTTACGTAACCG -ACGGAATGTGCTCTTACGATGCCA -ACGGAATGTGCTGTTAGCGGAAAC -ACGGAATGTGCTGTTAGCAACACC -ACGGAATGTGCTGTTAGCATCGAG -ACGGAATGTGCTGTTAGCCTCCTT -ACGGAATGTGCTGTTAGCCCTGTT -ACGGAATGTGCTGTTAGCCGGTTT -ACGGAATGTGCTGTTAGCGTGGTT -ACGGAATGTGCTGTTAGCGCCTTT -ACGGAATGTGCTGTTAGCGGTCTT -ACGGAATGTGCTGTTAGCACGCTT -ACGGAATGTGCTGTTAGCAGCGTT -ACGGAATGTGCTGTTAGCTTCGTC -ACGGAATGTGCTGTTAGCTCTCTC -ACGGAATGTGCTGTTAGCTGGATC -ACGGAATGTGCTGTTAGCCACTTC -ACGGAATGTGCTGTTAGCGTACTC -ACGGAATGTGCTGTTAGCGATGTC -ACGGAATGTGCTGTTAGCACAGTC -ACGGAATGTGCTGTTAGCTTGCTG -ACGGAATGTGCTGTTAGCTCCATG -ACGGAATGTGCTGTTAGCTGTGTG -ACGGAATGTGCTGTTAGCCTAGTG -ACGGAATGTGCTGTTAGCCATCTG -ACGGAATGTGCTGTTAGCGAGTTG -ACGGAATGTGCTGTTAGCAGACTG -ACGGAATGTGCTGTTAGCTCGGTA -ACGGAATGTGCTGTTAGCTGCCTA -ACGGAATGTGCTGTTAGCCCACTA -ACGGAATGTGCTGTTAGCGGAGTA -ACGGAATGTGCTGTTAGCTCGTCT -ACGGAATGTGCTGTTAGCTGCACT -ACGGAATGTGCTGTTAGCCTGACT -ACGGAATGTGCTGTTAGCCAACCT -ACGGAATGTGCTGTTAGCGCTACT -ACGGAATGTGCTGTTAGCGGATCT -ACGGAATGTGCTGTTAGCAAGGCT -ACGGAATGTGCTGTTAGCTCAACC -ACGGAATGTGCTGTTAGCTGTTCC -ACGGAATGTGCTGTTAGCATTCCC -ACGGAATGTGCTGTTAGCTTCTCG -ACGGAATGTGCTGTTAGCTAGACG -ACGGAATGTGCTGTTAGCGTAACG -ACGGAATGTGCTGTTAGCACTTCG -ACGGAATGTGCTGTTAGCTACGCA -ACGGAATGTGCTGTTAGCCTTGCA -ACGGAATGTGCTGTTAGCCGAACA -ACGGAATGTGCTGTTAGCCAGTCA -ACGGAATGTGCTGTTAGCGATCCA -ACGGAATGTGCTGTTAGCACGACA -ACGGAATGTGCTGTTAGCAGCTCA -ACGGAATGTGCTGTTAGCTCACGT -ACGGAATGTGCTGTTAGCCGTAGT -ACGGAATGTGCTGTTAGCGTCAGT -ACGGAATGTGCTGTTAGCGAAGGT -ACGGAATGTGCTGTTAGCAACCGT -ACGGAATGTGCTGTTAGCTTGTGC -ACGGAATGTGCTGTTAGCCTAAGC -ACGGAATGTGCTGTTAGCACTAGC -ACGGAATGTGCTGTTAGCAGATGC -ACGGAATGTGCTGTTAGCTGAAGG -ACGGAATGTGCTGTTAGCCAATGG -ACGGAATGTGCTGTTAGCATGAGG -ACGGAATGTGCTGTTAGCAATGGG -ACGGAATGTGCTGTTAGCTCCTGA -ACGGAATGTGCTGTTAGCTAGCGA -ACGGAATGTGCTGTTAGCCACAGA -ACGGAATGTGCTGTTAGCGCAAGA -ACGGAATGTGCTGTTAGCGGTTGA -ACGGAATGTGCTGTTAGCTCCGAT -ACGGAATGTGCTGTTAGCTGGCAT -ACGGAATGTGCTGTTAGCCGAGAT -ACGGAATGTGCTGTTAGCTACCAC -ACGGAATGTGCTGTTAGCCAGAAC -ACGGAATGTGCTGTTAGCGTCTAC -ACGGAATGTGCTGTTAGCACGTAC -ACGGAATGTGCTGTTAGCAGTGAC -ACGGAATGTGCTGTTAGCCTGTAG -ACGGAATGTGCTGTTAGCCCTAAG -ACGGAATGTGCTGTTAGCGTTCAG -ACGGAATGTGCTGTTAGCGCATAG -ACGGAATGTGCTGTTAGCGACAAG -ACGGAATGTGCTGTTAGCAAGCAG -ACGGAATGTGCTGTTAGCCGTCAA -ACGGAATGTGCTGTTAGCGCTGAA -ACGGAATGTGCTGTTAGCAGTACG -ACGGAATGTGCTGTTAGCATCCGA -ACGGAATGTGCTGTTAGCATGGGA -ACGGAATGTGCTGTTAGCGTGCAA -ACGGAATGTGCTGTTAGCGAGGAA -ACGGAATGTGCTGTTAGCCAGGTA -ACGGAATGTGCTGTTAGCGACTCT -ACGGAATGTGCTGTTAGCAGTCCT -ACGGAATGTGCTGTTAGCTAAGCC -ACGGAATGTGCTGTTAGCATAGCC -ACGGAATGTGCTGTTAGCTAACCG -ACGGAATGTGCTGTTAGCATGCCA -ACGGAATGTGCTGTCTTCGGAAAC -ACGGAATGTGCTGTCTTCAACACC -ACGGAATGTGCTGTCTTCATCGAG -ACGGAATGTGCTGTCTTCCTCCTT -ACGGAATGTGCTGTCTTCCCTGTT -ACGGAATGTGCTGTCTTCCGGTTT -ACGGAATGTGCTGTCTTCGTGGTT -ACGGAATGTGCTGTCTTCGCCTTT -ACGGAATGTGCTGTCTTCGGTCTT -ACGGAATGTGCTGTCTTCACGCTT -ACGGAATGTGCTGTCTTCAGCGTT -ACGGAATGTGCTGTCTTCTTCGTC -ACGGAATGTGCTGTCTTCTCTCTC -ACGGAATGTGCTGTCTTCTGGATC -ACGGAATGTGCTGTCTTCCACTTC -ACGGAATGTGCTGTCTTCGTACTC -ACGGAATGTGCTGTCTTCGATGTC -ACGGAATGTGCTGTCTTCACAGTC -ACGGAATGTGCTGTCTTCTTGCTG -ACGGAATGTGCTGTCTTCTCCATG -ACGGAATGTGCTGTCTTCTGTGTG -ACGGAATGTGCTGTCTTCCTAGTG -ACGGAATGTGCTGTCTTCCATCTG -ACGGAATGTGCTGTCTTCGAGTTG -ACGGAATGTGCTGTCTTCAGACTG -ACGGAATGTGCTGTCTTCTCGGTA -ACGGAATGTGCTGTCTTCTGCCTA -ACGGAATGTGCTGTCTTCCCACTA -ACGGAATGTGCTGTCTTCGGAGTA -ACGGAATGTGCTGTCTTCTCGTCT -ACGGAATGTGCTGTCTTCTGCACT -ACGGAATGTGCTGTCTTCCTGACT -ACGGAATGTGCTGTCTTCCAACCT -ACGGAATGTGCTGTCTTCGCTACT -ACGGAATGTGCTGTCTTCGGATCT -ACGGAATGTGCTGTCTTCAAGGCT -ACGGAATGTGCTGTCTTCTCAACC -ACGGAATGTGCTGTCTTCTGTTCC -ACGGAATGTGCTGTCTTCATTCCC -ACGGAATGTGCTGTCTTCTTCTCG -ACGGAATGTGCTGTCTTCTAGACG -ACGGAATGTGCTGTCTTCGTAACG -ACGGAATGTGCTGTCTTCACTTCG -ACGGAATGTGCTGTCTTCTACGCA -ACGGAATGTGCTGTCTTCCTTGCA -ACGGAATGTGCTGTCTTCCGAACA -ACGGAATGTGCTGTCTTCCAGTCA -ACGGAATGTGCTGTCTTCGATCCA -ACGGAATGTGCTGTCTTCACGACA -ACGGAATGTGCTGTCTTCAGCTCA -ACGGAATGTGCTGTCTTCTCACGT -ACGGAATGTGCTGTCTTCCGTAGT -ACGGAATGTGCTGTCTTCGTCAGT -ACGGAATGTGCTGTCTTCGAAGGT -ACGGAATGTGCTGTCTTCAACCGT -ACGGAATGTGCTGTCTTCTTGTGC -ACGGAATGTGCTGTCTTCCTAAGC -ACGGAATGTGCTGTCTTCACTAGC -ACGGAATGTGCTGTCTTCAGATGC -ACGGAATGTGCTGTCTTCTGAAGG -ACGGAATGTGCTGTCTTCCAATGG -ACGGAATGTGCTGTCTTCATGAGG -ACGGAATGTGCTGTCTTCAATGGG -ACGGAATGTGCTGTCTTCTCCTGA -ACGGAATGTGCTGTCTTCTAGCGA -ACGGAATGTGCTGTCTTCCACAGA -ACGGAATGTGCTGTCTTCGCAAGA -ACGGAATGTGCTGTCTTCGGTTGA -ACGGAATGTGCTGTCTTCTCCGAT -ACGGAATGTGCTGTCTTCTGGCAT -ACGGAATGTGCTGTCTTCCGAGAT -ACGGAATGTGCTGTCTTCTACCAC -ACGGAATGTGCTGTCTTCCAGAAC -ACGGAATGTGCTGTCTTCGTCTAC -ACGGAATGTGCTGTCTTCACGTAC -ACGGAATGTGCTGTCTTCAGTGAC -ACGGAATGTGCTGTCTTCCTGTAG -ACGGAATGTGCTGTCTTCCCTAAG -ACGGAATGTGCTGTCTTCGTTCAG -ACGGAATGTGCTGTCTTCGCATAG -ACGGAATGTGCTGTCTTCGACAAG -ACGGAATGTGCTGTCTTCAAGCAG -ACGGAATGTGCTGTCTTCCGTCAA -ACGGAATGTGCTGTCTTCGCTGAA -ACGGAATGTGCTGTCTTCAGTACG -ACGGAATGTGCTGTCTTCATCCGA -ACGGAATGTGCTGTCTTCATGGGA -ACGGAATGTGCTGTCTTCGTGCAA -ACGGAATGTGCTGTCTTCGAGGAA -ACGGAATGTGCTGTCTTCCAGGTA -ACGGAATGTGCTGTCTTCGACTCT -ACGGAATGTGCTGTCTTCAGTCCT -ACGGAATGTGCTGTCTTCTAAGCC -ACGGAATGTGCTGTCTTCATAGCC -ACGGAATGTGCTGTCTTCTAACCG -ACGGAATGTGCTGTCTTCATGCCA -ACGGAATGTGCTCTCTCTGGAAAC -ACGGAATGTGCTCTCTCTAACACC -ACGGAATGTGCTCTCTCTATCGAG -ACGGAATGTGCTCTCTCTCTCCTT -ACGGAATGTGCTCTCTCTCCTGTT -ACGGAATGTGCTCTCTCTCGGTTT -ACGGAATGTGCTCTCTCTGTGGTT -ACGGAATGTGCTCTCTCTGCCTTT -ACGGAATGTGCTCTCTCTGGTCTT -ACGGAATGTGCTCTCTCTACGCTT -ACGGAATGTGCTCTCTCTAGCGTT -ACGGAATGTGCTCTCTCTTTCGTC -ACGGAATGTGCTCTCTCTTCTCTC -ACGGAATGTGCTCTCTCTTGGATC -ACGGAATGTGCTCTCTCTCACTTC -ACGGAATGTGCTCTCTCTGTACTC -ACGGAATGTGCTCTCTCTGATGTC -ACGGAATGTGCTCTCTCTACAGTC -ACGGAATGTGCTCTCTCTTTGCTG -ACGGAATGTGCTCTCTCTTCCATG -ACGGAATGTGCTCTCTCTTGTGTG -ACGGAATGTGCTCTCTCTCTAGTG -ACGGAATGTGCTCTCTCTCATCTG -ACGGAATGTGCTCTCTCTGAGTTG -ACGGAATGTGCTCTCTCTAGACTG -ACGGAATGTGCTCTCTCTTCGGTA -ACGGAATGTGCTCTCTCTTGCCTA -ACGGAATGTGCTCTCTCTCCACTA -ACGGAATGTGCTCTCTCTGGAGTA -ACGGAATGTGCTCTCTCTTCGTCT -ACGGAATGTGCTCTCTCTTGCACT -ACGGAATGTGCTCTCTCTCTGACT -ACGGAATGTGCTCTCTCTCAACCT -ACGGAATGTGCTCTCTCTGCTACT -ACGGAATGTGCTCTCTCTGGATCT -ACGGAATGTGCTCTCTCTAAGGCT -ACGGAATGTGCTCTCTCTTCAACC -ACGGAATGTGCTCTCTCTTGTTCC -ACGGAATGTGCTCTCTCTATTCCC -ACGGAATGTGCTCTCTCTTTCTCG -ACGGAATGTGCTCTCTCTTAGACG -ACGGAATGTGCTCTCTCTGTAACG -ACGGAATGTGCTCTCTCTACTTCG -ACGGAATGTGCTCTCTCTTACGCA -ACGGAATGTGCTCTCTCTCTTGCA -ACGGAATGTGCTCTCTCTCGAACA -ACGGAATGTGCTCTCTCTCAGTCA -ACGGAATGTGCTCTCTCTGATCCA -ACGGAATGTGCTCTCTCTACGACA -ACGGAATGTGCTCTCTCTAGCTCA -ACGGAATGTGCTCTCTCTTCACGT -ACGGAATGTGCTCTCTCTCGTAGT -ACGGAATGTGCTCTCTCTGTCAGT -ACGGAATGTGCTCTCTCTGAAGGT -ACGGAATGTGCTCTCTCTAACCGT -ACGGAATGTGCTCTCTCTTTGTGC -ACGGAATGTGCTCTCTCTCTAAGC -ACGGAATGTGCTCTCTCTACTAGC -ACGGAATGTGCTCTCTCTAGATGC -ACGGAATGTGCTCTCTCTTGAAGG -ACGGAATGTGCTCTCTCTCAATGG -ACGGAATGTGCTCTCTCTATGAGG -ACGGAATGTGCTCTCTCTAATGGG -ACGGAATGTGCTCTCTCTTCCTGA -ACGGAATGTGCTCTCTCTTAGCGA -ACGGAATGTGCTCTCTCTCACAGA -ACGGAATGTGCTCTCTCTGCAAGA -ACGGAATGTGCTCTCTCTGGTTGA -ACGGAATGTGCTCTCTCTTCCGAT -ACGGAATGTGCTCTCTCTTGGCAT -ACGGAATGTGCTCTCTCTCGAGAT -ACGGAATGTGCTCTCTCTTACCAC -ACGGAATGTGCTCTCTCTCAGAAC -ACGGAATGTGCTCTCTCTGTCTAC -ACGGAATGTGCTCTCTCTACGTAC -ACGGAATGTGCTCTCTCTAGTGAC -ACGGAATGTGCTCTCTCTCTGTAG -ACGGAATGTGCTCTCTCTCCTAAG -ACGGAATGTGCTCTCTCTGTTCAG -ACGGAATGTGCTCTCTCTGCATAG -ACGGAATGTGCTCTCTCTGACAAG -ACGGAATGTGCTCTCTCTAAGCAG -ACGGAATGTGCTCTCTCTCGTCAA -ACGGAATGTGCTCTCTCTGCTGAA -ACGGAATGTGCTCTCTCTAGTACG -ACGGAATGTGCTCTCTCTATCCGA -ACGGAATGTGCTCTCTCTATGGGA -ACGGAATGTGCTCTCTCTGTGCAA -ACGGAATGTGCTCTCTCTGAGGAA -ACGGAATGTGCTCTCTCTCAGGTA -ACGGAATGTGCTCTCTCTGACTCT -ACGGAATGTGCTCTCTCTAGTCCT -ACGGAATGTGCTCTCTCTTAAGCC -ACGGAATGTGCTCTCTCTATAGCC -ACGGAATGTGCTCTCTCTTAACCG -ACGGAATGTGCTCTCTCTATGCCA -ACGGAATGTGCTATCTGGGGAAAC -ACGGAATGTGCTATCTGGAACACC -ACGGAATGTGCTATCTGGATCGAG -ACGGAATGTGCTATCTGGCTCCTT -ACGGAATGTGCTATCTGGCCTGTT -ACGGAATGTGCTATCTGGCGGTTT -ACGGAATGTGCTATCTGGGTGGTT -ACGGAATGTGCTATCTGGGCCTTT -ACGGAATGTGCTATCTGGGGTCTT -ACGGAATGTGCTATCTGGACGCTT -ACGGAATGTGCTATCTGGAGCGTT -ACGGAATGTGCTATCTGGTTCGTC -ACGGAATGTGCTATCTGGTCTCTC -ACGGAATGTGCTATCTGGTGGATC -ACGGAATGTGCTATCTGGCACTTC -ACGGAATGTGCTATCTGGGTACTC -ACGGAATGTGCTATCTGGGATGTC -ACGGAATGTGCTATCTGGACAGTC -ACGGAATGTGCTATCTGGTTGCTG -ACGGAATGTGCTATCTGGTCCATG -ACGGAATGTGCTATCTGGTGTGTG -ACGGAATGTGCTATCTGGCTAGTG -ACGGAATGTGCTATCTGGCATCTG -ACGGAATGTGCTATCTGGGAGTTG -ACGGAATGTGCTATCTGGAGACTG -ACGGAATGTGCTATCTGGTCGGTA -ACGGAATGTGCTATCTGGTGCCTA -ACGGAATGTGCTATCTGGCCACTA -ACGGAATGTGCTATCTGGGGAGTA -ACGGAATGTGCTATCTGGTCGTCT -ACGGAATGTGCTATCTGGTGCACT -ACGGAATGTGCTATCTGGCTGACT -ACGGAATGTGCTATCTGGCAACCT -ACGGAATGTGCTATCTGGGCTACT -ACGGAATGTGCTATCTGGGGATCT -ACGGAATGTGCTATCTGGAAGGCT -ACGGAATGTGCTATCTGGTCAACC -ACGGAATGTGCTATCTGGTGTTCC -ACGGAATGTGCTATCTGGATTCCC -ACGGAATGTGCTATCTGGTTCTCG -ACGGAATGTGCTATCTGGTAGACG -ACGGAATGTGCTATCTGGGTAACG -ACGGAATGTGCTATCTGGACTTCG -ACGGAATGTGCTATCTGGTACGCA -ACGGAATGTGCTATCTGGCTTGCA -ACGGAATGTGCTATCTGGCGAACA -ACGGAATGTGCTATCTGGCAGTCA -ACGGAATGTGCTATCTGGGATCCA -ACGGAATGTGCTATCTGGACGACA -ACGGAATGTGCTATCTGGAGCTCA -ACGGAATGTGCTATCTGGTCACGT -ACGGAATGTGCTATCTGGCGTAGT -ACGGAATGTGCTATCTGGGTCAGT -ACGGAATGTGCTATCTGGGAAGGT -ACGGAATGTGCTATCTGGAACCGT -ACGGAATGTGCTATCTGGTTGTGC -ACGGAATGTGCTATCTGGCTAAGC -ACGGAATGTGCTATCTGGACTAGC -ACGGAATGTGCTATCTGGAGATGC -ACGGAATGTGCTATCTGGTGAAGG -ACGGAATGTGCTATCTGGCAATGG -ACGGAATGTGCTATCTGGATGAGG -ACGGAATGTGCTATCTGGAATGGG -ACGGAATGTGCTATCTGGTCCTGA -ACGGAATGTGCTATCTGGTAGCGA -ACGGAATGTGCTATCTGGCACAGA -ACGGAATGTGCTATCTGGGCAAGA -ACGGAATGTGCTATCTGGGGTTGA -ACGGAATGTGCTATCTGGTCCGAT -ACGGAATGTGCTATCTGGTGGCAT -ACGGAATGTGCTATCTGGCGAGAT -ACGGAATGTGCTATCTGGTACCAC -ACGGAATGTGCTATCTGGCAGAAC -ACGGAATGTGCTATCTGGGTCTAC -ACGGAATGTGCTATCTGGACGTAC -ACGGAATGTGCTATCTGGAGTGAC -ACGGAATGTGCTATCTGGCTGTAG -ACGGAATGTGCTATCTGGCCTAAG -ACGGAATGTGCTATCTGGGTTCAG -ACGGAATGTGCTATCTGGGCATAG -ACGGAATGTGCTATCTGGGACAAG -ACGGAATGTGCTATCTGGAAGCAG -ACGGAATGTGCTATCTGGCGTCAA -ACGGAATGTGCTATCTGGGCTGAA -ACGGAATGTGCTATCTGGAGTACG -ACGGAATGTGCTATCTGGATCCGA -ACGGAATGTGCTATCTGGATGGGA -ACGGAATGTGCTATCTGGGTGCAA -ACGGAATGTGCTATCTGGGAGGAA -ACGGAATGTGCTATCTGGCAGGTA -ACGGAATGTGCTATCTGGGACTCT -ACGGAATGTGCTATCTGGAGTCCT -ACGGAATGTGCTATCTGGTAAGCC -ACGGAATGTGCTATCTGGATAGCC -ACGGAATGTGCTATCTGGTAACCG -ACGGAATGTGCTATCTGGATGCCA -ACGGAATGTGCTTTCCACGGAAAC -ACGGAATGTGCTTTCCACAACACC -ACGGAATGTGCTTTCCACATCGAG -ACGGAATGTGCTTTCCACCTCCTT -ACGGAATGTGCTTTCCACCCTGTT -ACGGAATGTGCTTTCCACCGGTTT -ACGGAATGTGCTTTCCACGTGGTT -ACGGAATGTGCTTTCCACGCCTTT -ACGGAATGTGCTTTCCACGGTCTT -ACGGAATGTGCTTTCCACACGCTT -ACGGAATGTGCTTTCCACAGCGTT -ACGGAATGTGCTTTCCACTTCGTC -ACGGAATGTGCTTTCCACTCTCTC -ACGGAATGTGCTTTCCACTGGATC -ACGGAATGTGCTTTCCACCACTTC -ACGGAATGTGCTTTCCACGTACTC -ACGGAATGTGCTTTCCACGATGTC -ACGGAATGTGCTTTCCACACAGTC -ACGGAATGTGCTTTCCACTTGCTG -ACGGAATGTGCTTTCCACTCCATG -ACGGAATGTGCTTTCCACTGTGTG -ACGGAATGTGCTTTCCACCTAGTG -ACGGAATGTGCTTTCCACCATCTG -ACGGAATGTGCTTTCCACGAGTTG -ACGGAATGTGCTTTCCACAGACTG -ACGGAATGTGCTTTCCACTCGGTA -ACGGAATGTGCTTTCCACTGCCTA -ACGGAATGTGCTTTCCACCCACTA -ACGGAATGTGCTTTCCACGGAGTA -ACGGAATGTGCTTTCCACTCGTCT -ACGGAATGTGCTTTCCACTGCACT -ACGGAATGTGCTTTCCACCTGACT -ACGGAATGTGCTTTCCACCAACCT -ACGGAATGTGCTTTCCACGCTACT -ACGGAATGTGCTTTCCACGGATCT -ACGGAATGTGCTTTCCACAAGGCT -ACGGAATGTGCTTTCCACTCAACC -ACGGAATGTGCTTTCCACTGTTCC -ACGGAATGTGCTTTCCACATTCCC -ACGGAATGTGCTTTCCACTTCTCG -ACGGAATGTGCTTTCCACTAGACG -ACGGAATGTGCTTTCCACGTAACG -ACGGAATGTGCTTTCCACACTTCG -ACGGAATGTGCTTTCCACTACGCA -ACGGAATGTGCTTTCCACCTTGCA -ACGGAATGTGCTTTCCACCGAACA -ACGGAATGTGCTTTCCACCAGTCA -ACGGAATGTGCTTTCCACGATCCA -ACGGAATGTGCTTTCCACACGACA -ACGGAATGTGCTTTCCACAGCTCA -ACGGAATGTGCTTTCCACTCACGT -ACGGAATGTGCTTTCCACCGTAGT -ACGGAATGTGCTTTCCACGTCAGT -ACGGAATGTGCTTTCCACGAAGGT -ACGGAATGTGCTTTCCACAACCGT -ACGGAATGTGCTTTCCACTTGTGC -ACGGAATGTGCTTTCCACCTAAGC -ACGGAATGTGCTTTCCACACTAGC -ACGGAATGTGCTTTCCACAGATGC -ACGGAATGTGCTTTCCACTGAAGG -ACGGAATGTGCTTTCCACCAATGG -ACGGAATGTGCTTTCCACATGAGG -ACGGAATGTGCTTTCCACAATGGG -ACGGAATGTGCTTTCCACTCCTGA -ACGGAATGTGCTTTCCACTAGCGA -ACGGAATGTGCTTTCCACCACAGA -ACGGAATGTGCTTTCCACGCAAGA -ACGGAATGTGCTTTCCACGGTTGA -ACGGAATGTGCTTTCCACTCCGAT -ACGGAATGTGCTTTCCACTGGCAT -ACGGAATGTGCTTTCCACCGAGAT -ACGGAATGTGCTTTCCACTACCAC -ACGGAATGTGCTTTCCACCAGAAC -ACGGAATGTGCTTTCCACGTCTAC -ACGGAATGTGCTTTCCACACGTAC -ACGGAATGTGCTTTCCACAGTGAC -ACGGAATGTGCTTTCCACCTGTAG -ACGGAATGTGCTTTCCACCCTAAG -ACGGAATGTGCTTTCCACGTTCAG -ACGGAATGTGCTTTCCACGCATAG -ACGGAATGTGCTTTCCACGACAAG -ACGGAATGTGCTTTCCACAAGCAG -ACGGAATGTGCTTTCCACCGTCAA -ACGGAATGTGCTTTCCACGCTGAA -ACGGAATGTGCTTTCCACAGTACG -ACGGAATGTGCTTTCCACATCCGA -ACGGAATGTGCTTTCCACATGGGA -ACGGAATGTGCTTTCCACGTGCAA -ACGGAATGTGCTTTCCACGAGGAA -ACGGAATGTGCTTTCCACCAGGTA -ACGGAATGTGCTTTCCACGACTCT -ACGGAATGTGCTTTCCACAGTCCT -ACGGAATGTGCTTTCCACTAAGCC -ACGGAATGTGCTTTCCACATAGCC -ACGGAATGTGCTTTCCACTAACCG -ACGGAATGTGCTTTCCACATGCCA -ACGGAATGTGCTCTCGTAGGAAAC -ACGGAATGTGCTCTCGTAAACACC -ACGGAATGTGCTCTCGTAATCGAG -ACGGAATGTGCTCTCGTACTCCTT -ACGGAATGTGCTCTCGTACCTGTT -ACGGAATGTGCTCTCGTACGGTTT -ACGGAATGTGCTCTCGTAGTGGTT -ACGGAATGTGCTCTCGTAGCCTTT -ACGGAATGTGCTCTCGTAGGTCTT -ACGGAATGTGCTCTCGTAACGCTT -ACGGAATGTGCTCTCGTAAGCGTT -ACGGAATGTGCTCTCGTATTCGTC -ACGGAATGTGCTCTCGTATCTCTC -ACGGAATGTGCTCTCGTATGGATC -ACGGAATGTGCTCTCGTACACTTC -ACGGAATGTGCTCTCGTAGTACTC -ACGGAATGTGCTCTCGTAGATGTC -ACGGAATGTGCTCTCGTAACAGTC -ACGGAATGTGCTCTCGTATTGCTG -ACGGAATGTGCTCTCGTATCCATG -ACGGAATGTGCTCTCGTATGTGTG -ACGGAATGTGCTCTCGTACTAGTG -ACGGAATGTGCTCTCGTACATCTG -ACGGAATGTGCTCTCGTAGAGTTG -ACGGAATGTGCTCTCGTAAGACTG -ACGGAATGTGCTCTCGTATCGGTA -ACGGAATGTGCTCTCGTATGCCTA -ACGGAATGTGCTCTCGTACCACTA -ACGGAATGTGCTCTCGTAGGAGTA -ACGGAATGTGCTCTCGTATCGTCT -ACGGAATGTGCTCTCGTATGCACT -ACGGAATGTGCTCTCGTACTGACT -ACGGAATGTGCTCTCGTACAACCT -ACGGAATGTGCTCTCGTAGCTACT -ACGGAATGTGCTCTCGTAGGATCT -ACGGAATGTGCTCTCGTAAAGGCT -ACGGAATGTGCTCTCGTATCAACC -ACGGAATGTGCTCTCGTATGTTCC -ACGGAATGTGCTCTCGTAATTCCC -ACGGAATGTGCTCTCGTATTCTCG -ACGGAATGTGCTCTCGTATAGACG -ACGGAATGTGCTCTCGTAGTAACG -ACGGAATGTGCTCTCGTAACTTCG -ACGGAATGTGCTCTCGTATACGCA -ACGGAATGTGCTCTCGTACTTGCA -ACGGAATGTGCTCTCGTACGAACA -ACGGAATGTGCTCTCGTACAGTCA -ACGGAATGTGCTCTCGTAGATCCA -ACGGAATGTGCTCTCGTAACGACA -ACGGAATGTGCTCTCGTAAGCTCA -ACGGAATGTGCTCTCGTATCACGT -ACGGAATGTGCTCTCGTACGTAGT -ACGGAATGTGCTCTCGTAGTCAGT -ACGGAATGTGCTCTCGTAGAAGGT -ACGGAATGTGCTCTCGTAAACCGT -ACGGAATGTGCTCTCGTATTGTGC -ACGGAATGTGCTCTCGTACTAAGC -ACGGAATGTGCTCTCGTAACTAGC -ACGGAATGTGCTCTCGTAAGATGC -ACGGAATGTGCTCTCGTATGAAGG -ACGGAATGTGCTCTCGTACAATGG -ACGGAATGTGCTCTCGTAATGAGG -ACGGAATGTGCTCTCGTAAATGGG -ACGGAATGTGCTCTCGTATCCTGA -ACGGAATGTGCTCTCGTATAGCGA -ACGGAATGTGCTCTCGTACACAGA -ACGGAATGTGCTCTCGTAGCAAGA -ACGGAATGTGCTCTCGTAGGTTGA -ACGGAATGTGCTCTCGTATCCGAT -ACGGAATGTGCTCTCGTATGGCAT -ACGGAATGTGCTCTCGTACGAGAT -ACGGAATGTGCTCTCGTATACCAC -ACGGAATGTGCTCTCGTACAGAAC -ACGGAATGTGCTCTCGTAGTCTAC -ACGGAATGTGCTCTCGTAACGTAC -ACGGAATGTGCTCTCGTAAGTGAC -ACGGAATGTGCTCTCGTACTGTAG -ACGGAATGTGCTCTCGTACCTAAG -ACGGAATGTGCTCTCGTAGTTCAG -ACGGAATGTGCTCTCGTAGCATAG -ACGGAATGTGCTCTCGTAGACAAG -ACGGAATGTGCTCTCGTAAAGCAG -ACGGAATGTGCTCTCGTACGTCAA -ACGGAATGTGCTCTCGTAGCTGAA -ACGGAATGTGCTCTCGTAAGTACG -ACGGAATGTGCTCTCGTAATCCGA -ACGGAATGTGCTCTCGTAATGGGA -ACGGAATGTGCTCTCGTAGTGCAA -ACGGAATGTGCTCTCGTAGAGGAA -ACGGAATGTGCTCTCGTACAGGTA -ACGGAATGTGCTCTCGTAGACTCT -ACGGAATGTGCTCTCGTAAGTCCT -ACGGAATGTGCTCTCGTATAAGCC -ACGGAATGTGCTCTCGTAATAGCC -ACGGAATGTGCTCTCGTATAACCG -ACGGAATGTGCTCTCGTAATGCCA -ACGGAATGTGCTGTCGATGGAAAC -ACGGAATGTGCTGTCGATAACACC -ACGGAATGTGCTGTCGATATCGAG -ACGGAATGTGCTGTCGATCTCCTT -ACGGAATGTGCTGTCGATCCTGTT -ACGGAATGTGCTGTCGATCGGTTT -ACGGAATGTGCTGTCGATGTGGTT -ACGGAATGTGCTGTCGATGCCTTT -ACGGAATGTGCTGTCGATGGTCTT -ACGGAATGTGCTGTCGATACGCTT -ACGGAATGTGCTGTCGATAGCGTT -ACGGAATGTGCTGTCGATTTCGTC -ACGGAATGTGCTGTCGATTCTCTC -ACGGAATGTGCTGTCGATTGGATC -ACGGAATGTGCTGTCGATCACTTC -ACGGAATGTGCTGTCGATGTACTC -ACGGAATGTGCTGTCGATGATGTC -ACGGAATGTGCTGTCGATACAGTC -ACGGAATGTGCTGTCGATTTGCTG -ACGGAATGTGCTGTCGATTCCATG -ACGGAATGTGCTGTCGATTGTGTG -ACGGAATGTGCTGTCGATCTAGTG -ACGGAATGTGCTGTCGATCATCTG -ACGGAATGTGCTGTCGATGAGTTG -ACGGAATGTGCTGTCGATAGACTG -ACGGAATGTGCTGTCGATTCGGTA -ACGGAATGTGCTGTCGATTGCCTA -ACGGAATGTGCTGTCGATCCACTA -ACGGAATGTGCTGTCGATGGAGTA -ACGGAATGTGCTGTCGATTCGTCT -ACGGAATGTGCTGTCGATTGCACT -ACGGAATGTGCTGTCGATCTGACT -ACGGAATGTGCTGTCGATCAACCT -ACGGAATGTGCTGTCGATGCTACT -ACGGAATGTGCTGTCGATGGATCT -ACGGAATGTGCTGTCGATAAGGCT -ACGGAATGTGCTGTCGATTCAACC -ACGGAATGTGCTGTCGATTGTTCC -ACGGAATGTGCTGTCGATATTCCC -ACGGAATGTGCTGTCGATTTCTCG -ACGGAATGTGCTGTCGATTAGACG -ACGGAATGTGCTGTCGATGTAACG -ACGGAATGTGCTGTCGATACTTCG -ACGGAATGTGCTGTCGATTACGCA -ACGGAATGTGCTGTCGATCTTGCA -ACGGAATGTGCTGTCGATCGAACA -ACGGAATGTGCTGTCGATCAGTCA -ACGGAATGTGCTGTCGATGATCCA -ACGGAATGTGCTGTCGATACGACA -ACGGAATGTGCTGTCGATAGCTCA -ACGGAATGTGCTGTCGATTCACGT -ACGGAATGTGCTGTCGATCGTAGT -ACGGAATGTGCTGTCGATGTCAGT -ACGGAATGTGCTGTCGATGAAGGT -ACGGAATGTGCTGTCGATAACCGT -ACGGAATGTGCTGTCGATTTGTGC -ACGGAATGTGCTGTCGATCTAAGC -ACGGAATGTGCTGTCGATACTAGC -ACGGAATGTGCTGTCGATAGATGC -ACGGAATGTGCTGTCGATTGAAGG -ACGGAATGTGCTGTCGATCAATGG -ACGGAATGTGCTGTCGATATGAGG -ACGGAATGTGCTGTCGATAATGGG -ACGGAATGTGCTGTCGATTCCTGA -ACGGAATGTGCTGTCGATTAGCGA -ACGGAATGTGCTGTCGATCACAGA -ACGGAATGTGCTGTCGATGCAAGA -ACGGAATGTGCTGTCGATGGTTGA -ACGGAATGTGCTGTCGATTCCGAT -ACGGAATGTGCTGTCGATTGGCAT -ACGGAATGTGCTGTCGATCGAGAT -ACGGAATGTGCTGTCGATTACCAC -ACGGAATGTGCTGTCGATCAGAAC -ACGGAATGTGCTGTCGATGTCTAC -ACGGAATGTGCTGTCGATACGTAC -ACGGAATGTGCTGTCGATAGTGAC -ACGGAATGTGCTGTCGATCTGTAG -ACGGAATGTGCTGTCGATCCTAAG -ACGGAATGTGCTGTCGATGTTCAG -ACGGAATGTGCTGTCGATGCATAG -ACGGAATGTGCTGTCGATGACAAG -ACGGAATGTGCTGTCGATAAGCAG -ACGGAATGTGCTGTCGATCGTCAA -ACGGAATGTGCTGTCGATGCTGAA -ACGGAATGTGCTGTCGATAGTACG -ACGGAATGTGCTGTCGATATCCGA -ACGGAATGTGCTGTCGATATGGGA -ACGGAATGTGCTGTCGATGTGCAA -ACGGAATGTGCTGTCGATGAGGAA -ACGGAATGTGCTGTCGATCAGGTA -ACGGAATGTGCTGTCGATGACTCT -ACGGAATGTGCTGTCGATAGTCCT -ACGGAATGTGCTGTCGATTAAGCC -ACGGAATGTGCTGTCGATATAGCC -ACGGAATGTGCTGTCGATTAACCG -ACGGAATGTGCTGTCGATATGCCA -ACGGAATGTGCTGTCACAGGAAAC -ACGGAATGTGCTGTCACAAACACC -ACGGAATGTGCTGTCACAATCGAG -ACGGAATGTGCTGTCACACTCCTT -ACGGAATGTGCTGTCACACCTGTT -ACGGAATGTGCTGTCACACGGTTT -ACGGAATGTGCTGTCACAGTGGTT -ACGGAATGTGCTGTCACAGCCTTT -ACGGAATGTGCTGTCACAGGTCTT -ACGGAATGTGCTGTCACAACGCTT -ACGGAATGTGCTGTCACAAGCGTT -ACGGAATGTGCTGTCACATTCGTC -ACGGAATGTGCTGTCACATCTCTC -ACGGAATGTGCTGTCACATGGATC -ACGGAATGTGCTGTCACACACTTC -ACGGAATGTGCTGTCACAGTACTC -ACGGAATGTGCTGTCACAGATGTC -ACGGAATGTGCTGTCACAACAGTC -ACGGAATGTGCTGTCACATTGCTG -ACGGAATGTGCTGTCACATCCATG -ACGGAATGTGCTGTCACATGTGTG -ACGGAATGTGCTGTCACACTAGTG -ACGGAATGTGCTGTCACACATCTG -ACGGAATGTGCTGTCACAGAGTTG -ACGGAATGTGCTGTCACAAGACTG -ACGGAATGTGCTGTCACATCGGTA -ACGGAATGTGCTGTCACATGCCTA -ACGGAATGTGCTGTCACACCACTA -ACGGAATGTGCTGTCACAGGAGTA -ACGGAATGTGCTGTCACATCGTCT -ACGGAATGTGCTGTCACATGCACT -ACGGAATGTGCTGTCACACTGACT -ACGGAATGTGCTGTCACACAACCT -ACGGAATGTGCTGTCACAGCTACT -ACGGAATGTGCTGTCACAGGATCT -ACGGAATGTGCTGTCACAAAGGCT -ACGGAATGTGCTGTCACATCAACC -ACGGAATGTGCTGTCACATGTTCC -ACGGAATGTGCTGTCACAATTCCC -ACGGAATGTGCTGTCACATTCTCG -ACGGAATGTGCTGTCACATAGACG -ACGGAATGTGCTGTCACAGTAACG -ACGGAATGTGCTGTCACAACTTCG -ACGGAATGTGCTGTCACATACGCA -ACGGAATGTGCTGTCACACTTGCA -ACGGAATGTGCTGTCACACGAACA -ACGGAATGTGCTGTCACACAGTCA -ACGGAATGTGCTGTCACAGATCCA -ACGGAATGTGCTGTCACAACGACA -ACGGAATGTGCTGTCACAAGCTCA -ACGGAATGTGCTGTCACATCACGT -ACGGAATGTGCTGTCACACGTAGT -ACGGAATGTGCTGTCACAGTCAGT -ACGGAATGTGCTGTCACAGAAGGT -ACGGAATGTGCTGTCACAAACCGT -ACGGAATGTGCTGTCACATTGTGC -ACGGAATGTGCTGTCACACTAAGC -ACGGAATGTGCTGTCACAACTAGC -ACGGAATGTGCTGTCACAAGATGC -ACGGAATGTGCTGTCACATGAAGG -ACGGAATGTGCTGTCACACAATGG -ACGGAATGTGCTGTCACAATGAGG -ACGGAATGTGCTGTCACAAATGGG -ACGGAATGTGCTGTCACATCCTGA -ACGGAATGTGCTGTCACATAGCGA -ACGGAATGTGCTGTCACACACAGA -ACGGAATGTGCTGTCACAGCAAGA -ACGGAATGTGCTGTCACAGGTTGA -ACGGAATGTGCTGTCACATCCGAT -ACGGAATGTGCTGTCACATGGCAT -ACGGAATGTGCTGTCACACGAGAT -ACGGAATGTGCTGTCACATACCAC -ACGGAATGTGCTGTCACACAGAAC -ACGGAATGTGCTGTCACAGTCTAC -ACGGAATGTGCTGTCACAACGTAC -ACGGAATGTGCTGTCACAAGTGAC -ACGGAATGTGCTGTCACACTGTAG -ACGGAATGTGCTGTCACACCTAAG -ACGGAATGTGCTGTCACAGTTCAG -ACGGAATGTGCTGTCACAGCATAG -ACGGAATGTGCTGTCACAGACAAG -ACGGAATGTGCTGTCACAAAGCAG -ACGGAATGTGCTGTCACACGTCAA -ACGGAATGTGCTGTCACAGCTGAA -ACGGAATGTGCTGTCACAAGTACG -ACGGAATGTGCTGTCACAATCCGA -ACGGAATGTGCTGTCACAATGGGA -ACGGAATGTGCTGTCACAGTGCAA -ACGGAATGTGCTGTCACAGAGGAA -ACGGAATGTGCTGTCACACAGGTA -ACGGAATGTGCTGTCACAGACTCT -ACGGAATGTGCTGTCACAAGTCCT -ACGGAATGTGCTGTCACATAAGCC -ACGGAATGTGCTGTCACAATAGCC -ACGGAATGTGCTGTCACATAACCG -ACGGAATGTGCTGTCACAATGCCA -ACGGAATGTGCTCTGTTGGGAAAC -ACGGAATGTGCTCTGTTGAACACC -ACGGAATGTGCTCTGTTGATCGAG -ACGGAATGTGCTCTGTTGCTCCTT -ACGGAATGTGCTCTGTTGCCTGTT -ACGGAATGTGCTCTGTTGCGGTTT -ACGGAATGTGCTCTGTTGGTGGTT -ACGGAATGTGCTCTGTTGGCCTTT -ACGGAATGTGCTCTGTTGGGTCTT -ACGGAATGTGCTCTGTTGACGCTT -ACGGAATGTGCTCTGTTGAGCGTT -ACGGAATGTGCTCTGTTGTTCGTC -ACGGAATGTGCTCTGTTGTCTCTC -ACGGAATGTGCTCTGTTGTGGATC -ACGGAATGTGCTCTGTTGCACTTC -ACGGAATGTGCTCTGTTGGTACTC -ACGGAATGTGCTCTGTTGGATGTC -ACGGAATGTGCTCTGTTGACAGTC -ACGGAATGTGCTCTGTTGTTGCTG -ACGGAATGTGCTCTGTTGTCCATG -ACGGAATGTGCTCTGTTGTGTGTG -ACGGAATGTGCTCTGTTGCTAGTG -ACGGAATGTGCTCTGTTGCATCTG -ACGGAATGTGCTCTGTTGGAGTTG -ACGGAATGTGCTCTGTTGAGACTG -ACGGAATGTGCTCTGTTGTCGGTA -ACGGAATGTGCTCTGTTGTGCCTA -ACGGAATGTGCTCTGTTGCCACTA -ACGGAATGTGCTCTGTTGGGAGTA -ACGGAATGTGCTCTGTTGTCGTCT -ACGGAATGTGCTCTGTTGTGCACT -ACGGAATGTGCTCTGTTGCTGACT -ACGGAATGTGCTCTGTTGCAACCT -ACGGAATGTGCTCTGTTGGCTACT -ACGGAATGTGCTCTGTTGGGATCT -ACGGAATGTGCTCTGTTGAAGGCT -ACGGAATGTGCTCTGTTGTCAACC -ACGGAATGTGCTCTGTTGTGTTCC -ACGGAATGTGCTCTGTTGATTCCC -ACGGAATGTGCTCTGTTGTTCTCG -ACGGAATGTGCTCTGTTGTAGACG -ACGGAATGTGCTCTGTTGGTAACG -ACGGAATGTGCTCTGTTGACTTCG -ACGGAATGTGCTCTGTTGTACGCA -ACGGAATGTGCTCTGTTGCTTGCA -ACGGAATGTGCTCTGTTGCGAACA -ACGGAATGTGCTCTGTTGCAGTCA -ACGGAATGTGCTCTGTTGGATCCA -ACGGAATGTGCTCTGTTGACGACA -ACGGAATGTGCTCTGTTGAGCTCA -ACGGAATGTGCTCTGTTGTCACGT -ACGGAATGTGCTCTGTTGCGTAGT -ACGGAATGTGCTCTGTTGGTCAGT -ACGGAATGTGCTCTGTTGGAAGGT -ACGGAATGTGCTCTGTTGAACCGT -ACGGAATGTGCTCTGTTGTTGTGC -ACGGAATGTGCTCTGTTGCTAAGC -ACGGAATGTGCTCTGTTGACTAGC -ACGGAATGTGCTCTGTTGAGATGC -ACGGAATGTGCTCTGTTGTGAAGG -ACGGAATGTGCTCTGTTGCAATGG -ACGGAATGTGCTCTGTTGATGAGG -ACGGAATGTGCTCTGTTGAATGGG -ACGGAATGTGCTCTGTTGTCCTGA -ACGGAATGTGCTCTGTTGTAGCGA -ACGGAATGTGCTCTGTTGCACAGA -ACGGAATGTGCTCTGTTGGCAAGA -ACGGAATGTGCTCTGTTGGGTTGA -ACGGAATGTGCTCTGTTGTCCGAT -ACGGAATGTGCTCTGTTGTGGCAT -ACGGAATGTGCTCTGTTGCGAGAT -ACGGAATGTGCTCTGTTGTACCAC -ACGGAATGTGCTCTGTTGCAGAAC -ACGGAATGTGCTCTGTTGGTCTAC -ACGGAATGTGCTCTGTTGACGTAC -ACGGAATGTGCTCTGTTGAGTGAC -ACGGAATGTGCTCTGTTGCTGTAG -ACGGAATGTGCTCTGTTGCCTAAG -ACGGAATGTGCTCTGTTGGTTCAG -ACGGAATGTGCTCTGTTGGCATAG -ACGGAATGTGCTCTGTTGGACAAG -ACGGAATGTGCTCTGTTGAAGCAG -ACGGAATGTGCTCTGTTGCGTCAA -ACGGAATGTGCTCTGTTGGCTGAA -ACGGAATGTGCTCTGTTGAGTACG -ACGGAATGTGCTCTGTTGATCCGA -ACGGAATGTGCTCTGTTGATGGGA -ACGGAATGTGCTCTGTTGGTGCAA -ACGGAATGTGCTCTGTTGGAGGAA -ACGGAATGTGCTCTGTTGCAGGTA -ACGGAATGTGCTCTGTTGGACTCT -ACGGAATGTGCTCTGTTGAGTCCT -ACGGAATGTGCTCTGTTGTAAGCC -ACGGAATGTGCTCTGTTGATAGCC -ACGGAATGTGCTCTGTTGTAACCG -ACGGAATGTGCTCTGTTGATGCCA -ACGGAATGTGCTATGTCCGGAAAC -ACGGAATGTGCTATGTCCAACACC -ACGGAATGTGCTATGTCCATCGAG -ACGGAATGTGCTATGTCCCTCCTT -ACGGAATGTGCTATGTCCCCTGTT -ACGGAATGTGCTATGTCCCGGTTT -ACGGAATGTGCTATGTCCGTGGTT -ACGGAATGTGCTATGTCCGCCTTT -ACGGAATGTGCTATGTCCGGTCTT -ACGGAATGTGCTATGTCCACGCTT -ACGGAATGTGCTATGTCCAGCGTT -ACGGAATGTGCTATGTCCTTCGTC -ACGGAATGTGCTATGTCCTCTCTC -ACGGAATGTGCTATGTCCTGGATC -ACGGAATGTGCTATGTCCCACTTC -ACGGAATGTGCTATGTCCGTACTC -ACGGAATGTGCTATGTCCGATGTC -ACGGAATGTGCTATGTCCACAGTC -ACGGAATGTGCTATGTCCTTGCTG -ACGGAATGTGCTATGTCCTCCATG -ACGGAATGTGCTATGTCCTGTGTG -ACGGAATGTGCTATGTCCCTAGTG -ACGGAATGTGCTATGTCCCATCTG -ACGGAATGTGCTATGTCCGAGTTG -ACGGAATGTGCTATGTCCAGACTG -ACGGAATGTGCTATGTCCTCGGTA -ACGGAATGTGCTATGTCCTGCCTA -ACGGAATGTGCTATGTCCCCACTA -ACGGAATGTGCTATGTCCGGAGTA -ACGGAATGTGCTATGTCCTCGTCT -ACGGAATGTGCTATGTCCTGCACT -ACGGAATGTGCTATGTCCCTGACT -ACGGAATGTGCTATGTCCCAACCT -ACGGAATGTGCTATGTCCGCTACT -ACGGAATGTGCTATGTCCGGATCT -ACGGAATGTGCTATGTCCAAGGCT -ACGGAATGTGCTATGTCCTCAACC -ACGGAATGTGCTATGTCCTGTTCC -ACGGAATGTGCTATGTCCATTCCC -ACGGAATGTGCTATGTCCTTCTCG -ACGGAATGTGCTATGTCCTAGACG -ACGGAATGTGCTATGTCCGTAACG -ACGGAATGTGCTATGTCCACTTCG -ACGGAATGTGCTATGTCCTACGCA -ACGGAATGTGCTATGTCCCTTGCA -ACGGAATGTGCTATGTCCCGAACA -ACGGAATGTGCTATGTCCCAGTCA -ACGGAATGTGCTATGTCCGATCCA -ACGGAATGTGCTATGTCCACGACA -ACGGAATGTGCTATGTCCAGCTCA -ACGGAATGTGCTATGTCCTCACGT -ACGGAATGTGCTATGTCCCGTAGT -ACGGAATGTGCTATGTCCGTCAGT -ACGGAATGTGCTATGTCCGAAGGT -ACGGAATGTGCTATGTCCAACCGT -ACGGAATGTGCTATGTCCTTGTGC -ACGGAATGTGCTATGTCCCTAAGC -ACGGAATGTGCTATGTCCACTAGC -ACGGAATGTGCTATGTCCAGATGC -ACGGAATGTGCTATGTCCTGAAGG -ACGGAATGTGCTATGTCCCAATGG -ACGGAATGTGCTATGTCCATGAGG -ACGGAATGTGCTATGTCCAATGGG -ACGGAATGTGCTATGTCCTCCTGA -ACGGAATGTGCTATGTCCTAGCGA -ACGGAATGTGCTATGTCCCACAGA -ACGGAATGTGCTATGTCCGCAAGA -ACGGAATGTGCTATGTCCGGTTGA -ACGGAATGTGCTATGTCCTCCGAT -ACGGAATGTGCTATGTCCTGGCAT -ACGGAATGTGCTATGTCCCGAGAT -ACGGAATGTGCTATGTCCTACCAC -ACGGAATGTGCTATGTCCCAGAAC -ACGGAATGTGCTATGTCCGTCTAC -ACGGAATGTGCTATGTCCACGTAC -ACGGAATGTGCTATGTCCAGTGAC -ACGGAATGTGCTATGTCCCTGTAG -ACGGAATGTGCTATGTCCCCTAAG -ACGGAATGTGCTATGTCCGTTCAG -ACGGAATGTGCTATGTCCGCATAG -ACGGAATGTGCTATGTCCGACAAG -ACGGAATGTGCTATGTCCAAGCAG -ACGGAATGTGCTATGTCCCGTCAA -ACGGAATGTGCTATGTCCGCTGAA -ACGGAATGTGCTATGTCCAGTACG -ACGGAATGTGCTATGTCCATCCGA -ACGGAATGTGCTATGTCCATGGGA -ACGGAATGTGCTATGTCCGTGCAA -ACGGAATGTGCTATGTCCGAGGAA -ACGGAATGTGCTATGTCCCAGGTA -ACGGAATGTGCTATGTCCGACTCT -ACGGAATGTGCTATGTCCAGTCCT -ACGGAATGTGCTATGTCCTAAGCC -ACGGAATGTGCTATGTCCATAGCC -ACGGAATGTGCTATGTCCTAACCG -ACGGAATGTGCTATGTCCATGCCA -ACGGAATGTGCTGTGTGTGGAAAC -ACGGAATGTGCTGTGTGTAACACC -ACGGAATGTGCTGTGTGTATCGAG -ACGGAATGTGCTGTGTGTCTCCTT -ACGGAATGTGCTGTGTGTCCTGTT -ACGGAATGTGCTGTGTGTCGGTTT -ACGGAATGTGCTGTGTGTGTGGTT -ACGGAATGTGCTGTGTGTGCCTTT -ACGGAATGTGCTGTGTGTGGTCTT -ACGGAATGTGCTGTGTGTACGCTT -ACGGAATGTGCTGTGTGTAGCGTT -ACGGAATGTGCTGTGTGTTTCGTC -ACGGAATGTGCTGTGTGTTCTCTC -ACGGAATGTGCTGTGTGTTGGATC -ACGGAATGTGCTGTGTGTCACTTC -ACGGAATGTGCTGTGTGTGTACTC -ACGGAATGTGCTGTGTGTGATGTC -ACGGAATGTGCTGTGTGTACAGTC -ACGGAATGTGCTGTGTGTTTGCTG -ACGGAATGTGCTGTGTGTTCCATG -ACGGAATGTGCTGTGTGTTGTGTG -ACGGAATGTGCTGTGTGTCTAGTG -ACGGAATGTGCTGTGTGTCATCTG -ACGGAATGTGCTGTGTGTGAGTTG -ACGGAATGTGCTGTGTGTAGACTG -ACGGAATGTGCTGTGTGTTCGGTA -ACGGAATGTGCTGTGTGTTGCCTA -ACGGAATGTGCTGTGTGTCCACTA -ACGGAATGTGCTGTGTGTGGAGTA -ACGGAATGTGCTGTGTGTTCGTCT -ACGGAATGTGCTGTGTGTTGCACT -ACGGAATGTGCTGTGTGTCTGACT -ACGGAATGTGCTGTGTGTCAACCT -ACGGAATGTGCTGTGTGTGCTACT -ACGGAATGTGCTGTGTGTGGATCT -ACGGAATGTGCTGTGTGTAAGGCT -ACGGAATGTGCTGTGTGTTCAACC -ACGGAATGTGCTGTGTGTTGTTCC -ACGGAATGTGCTGTGTGTATTCCC -ACGGAATGTGCTGTGTGTTTCTCG -ACGGAATGTGCTGTGTGTTAGACG -ACGGAATGTGCTGTGTGTGTAACG -ACGGAATGTGCTGTGTGTACTTCG -ACGGAATGTGCTGTGTGTTACGCA -ACGGAATGTGCTGTGTGTCTTGCA -ACGGAATGTGCTGTGTGTCGAACA -ACGGAATGTGCTGTGTGTCAGTCA -ACGGAATGTGCTGTGTGTGATCCA -ACGGAATGTGCTGTGTGTACGACA -ACGGAATGTGCTGTGTGTAGCTCA -ACGGAATGTGCTGTGTGTTCACGT -ACGGAATGTGCTGTGTGTCGTAGT -ACGGAATGTGCTGTGTGTGTCAGT -ACGGAATGTGCTGTGTGTGAAGGT -ACGGAATGTGCTGTGTGTAACCGT -ACGGAATGTGCTGTGTGTTTGTGC -ACGGAATGTGCTGTGTGTCTAAGC -ACGGAATGTGCTGTGTGTACTAGC -ACGGAATGTGCTGTGTGTAGATGC -ACGGAATGTGCTGTGTGTTGAAGG -ACGGAATGTGCTGTGTGTCAATGG -ACGGAATGTGCTGTGTGTATGAGG -ACGGAATGTGCTGTGTGTAATGGG -ACGGAATGTGCTGTGTGTTCCTGA -ACGGAATGTGCTGTGTGTTAGCGA -ACGGAATGTGCTGTGTGTCACAGA -ACGGAATGTGCTGTGTGTGCAAGA -ACGGAATGTGCTGTGTGTGGTTGA -ACGGAATGTGCTGTGTGTTCCGAT -ACGGAATGTGCTGTGTGTTGGCAT -ACGGAATGTGCTGTGTGTCGAGAT -ACGGAATGTGCTGTGTGTTACCAC -ACGGAATGTGCTGTGTGTCAGAAC -ACGGAATGTGCTGTGTGTGTCTAC -ACGGAATGTGCTGTGTGTACGTAC -ACGGAATGTGCTGTGTGTAGTGAC -ACGGAATGTGCTGTGTGTCTGTAG -ACGGAATGTGCTGTGTGTCCTAAG -ACGGAATGTGCTGTGTGTGTTCAG -ACGGAATGTGCTGTGTGTGCATAG -ACGGAATGTGCTGTGTGTGACAAG -ACGGAATGTGCTGTGTGTAAGCAG -ACGGAATGTGCTGTGTGTCGTCAA -ACGGAATGTGCTGTGTGTGCTGAA -ACGGAATGTGCTGTGTGTAGTACG -ACGGAATGTGCTGTGTGTATCCGA -ACGGAATGTGCTGTGTGTATGGGA -ACGGAATGTGCTGTGTGTGTGCAA -ACGGAATGTGCTGTGTGTGAGGAA -ACGGAATGTGCTGTGTGTCAGGTA -ACGGAATGTGCTGTGTGTGACTCT -ACGGAATGTGCTGTGTGTAGTCCT -ACGGAATGTGCTGTGTGTTAAGCC -ACGGAATGTGCTGTGTGTATAGCC -ACGGAATGTGCTGTGTGTTAACCG -ACGGAATGTGCTGTGTGTATGCCA -ACGGAATGTGCTGTGCTAGGAAAC -ACGGAATGTGCTGTGCTAAACACC -ACGGAATGTGCTGTGCTAATCGAG -ACGGAATGTGCTGTGCTACTCCTT -ACGGAATGTGCTGTGCTACCTGTT -ACGGAATGTGCTGTGCTACGGTTT -ACGGAATGTGCTGTGCTAGTGGTT -ACGGAATGTGCTGTGCTAGCCTTT -ACGGAATGTGCTGTGCTAGGTCTT -ACGGAATGTGCTGTGCTAACGCTT -ACGGAATGTGCTGTGCTAAGCGTT -ACGGAATGTGCTGTGCTATTCGTC -ACGGAATGTGCTGTGCTATCTCTC -ACGGAATGTGCTGTGCTATGGATC -ACGGAATGTGCTGTGCTACACTTC -ACGGAATGTGCTGTGCTAGTACTC -ACGGAATGTGCTGTGCTAGATGTC -ACGGAATGTGCTGTGCTAACAGTC -ACGGAATGTGCTGTGCTATTGCTG -ACGGAATGTGCTGTGCTATCCATG -ACGGAATGTGCTGTGCTATGTGTG -ACGGAATGTGCTGTGCTACTAGTG -ACGGAATGTGCTGTGCTACATCTG -ACGGAATGTGCTGTGCTAGAGTTG -ACGGAATGTGCTGTGCTAAGACTG -ACGGAATGTGCTGTGCTATCGGTA -ACGGAATGTGCTGTGCTATGCCTA -ACGGAATGTGCTGTGCTACCACTA -ACGGAATGTGCTGTGCTAGGAGTA -ACGGAATGTGCTGTGCTATCGTCT -ACGGAATGTGCTGTGCTATGCACT -ACGGAATGTGCTGTGCTACTGACT -ACGGAATGTGCTGTGCTACAACCT -ACGGAATGTGCTGTGCTAGCTACT -ACGGAATGTGCTGTGCTAGGATCT -ACGGAATGTGCTGTGCTAAAGGCT -ACGGAATGTGCTGTGCTATCAACC -ACGGAATGTGCTGTGCTATGTTCC -ACGGAATGTGCTGTGCTAATTCCC -ACGGAATGTGCTGTGCTATTCTCG -ACGGAATGTGCTGTGCTATAGACG -ACGGAATGTGCTGTGCTAGTAACG -ACGGAATGTGCTGTGCTAACTTCG -ACGGAATGTGCTGTGCTATACGCA -ACGGAATGTGCTGTGCTACTTGCA -ACGGAATGTGCTGTGCTACGAACA -ACGGAATGTGCTGTGCTACAGTCA -ACGGAATGTGCTGTGCTAGATCCA -ACGGAATGTGCTGTGCTAACGACA -ACGGAATGTGCTGTGCTAAGCTCA -ACGGAATGTGCTGTGCTATCACGT -ACGGAATGTGCTGTGCTACGTAGT -ACGGAATGTGCTGTGCTAGTCAGT -ACGGAATGTGCTGTGCTAGAAGGT -ACGGAATGTGCTGTGCTAAACCGT -ACGGAATGTGCTGTGCTATTGTGC -ACGGAATGTGCTGTGCTACTAAGC -ACGGAATGTGCTGTGCTAACTAGC -ACGGAATGTGCTGTGCTAAGATGC -ACGGAATGTGCTGTGCTATGAAGG -ACGGAATGTGCTGTGCTACAATGG -ACGGAATGTGCTGTGCTAATGAGG -ACGGAATGTGCTGTGCTAAATGGG -ACGGAATGTGCTGTGCTATCCTGA -ACGGAATGTGCTGTGCTATAGCGA -ACGGAATGTGCTGTGCTACACAGA -ACGGAATGTGCTGTGCTAGCAAGA -ACGGAATGTGCTGTGCTAGGTTGA -ACGGAATGTGCTGTGCTATCCGAT -ACGGAATGTGCTGTGCTATGGCAT -ACGGAATGTGCTGTGCTACGAGAT -ACGGAATGTGCTGTGCTATACCAC -ACGGAATGTGCTGTGCTACAGAAC -ACGGAATGTGCTGTGCTAGTCTAC -ACGGAATGTGCTGTGCTAACGTAC -ACGGAATGTGCTGTGCTAAGTGAC -ACGGAATGTGCTGTGCTACTGTAG -ACGGAATGTGCTGTGCTACCTAAG -ACGGAATGTGCTGTGCTAGTTCAG -ACGGAATGTGCTGTGCTAGCATAG -ACGGAATGTGCTGTGCTAGACAAG -ACGGAATGTGCTGTGCTAAAGCAG -ACGGAATGTGCTGTGCTACGTCAA -ACGGAATGTGCTGTGCTAGCTGAA -ACGGAATGTGCTGTGCTAAGTACG -ACGGAATGTGCTGTGCTAATCCGA -ACGGAATGTGCTGTGCTAATGGGA -ACGGAATGTGCTGTGCTAGTGCAA -ACGGAATGTGCTGTGCTAGAGGAA -ACGGAATGTGCTGTGCTACAGGTA -ACGGAATGTGCTGTGCTAGACTCT -ACGGAATGTGCTGTGCTAAGTCCT -ACGGAATGTGCTGTGCTATAAGCC -ACGGAATGTGCTGTGCTAATAGCC -ACGGAATGTGCTGTGCTATAACCG -ACGGAATGTGCTGTGCTAATGCCA -ACGGAATGTGCTCTGCATGGAAAC -ACGGAATGTGCTCTGCATAACACC -ACGGAATGTGCTCTGCATATCGAG -ACGGAATGTGCTCTGCATCTCCTT -ACGGAATGTGCTCTGCATCCTGTT -ACGGAATGTGCTCTGCATCGGTTT -ACGGAATGTGCTCTGCATGTGGTT -ACGGAATGTGCTCTGCATGCCTTT -ACGGAATGTGCTCTGCATGGTCTT -ACGGAATGTGCTCTGCATACGCTT -ACGGAATGTGCTCTGCATAGCGTT -ACGGAATGTGCTCTGCATTTCGTC -ACGGAATGTGCTCTGCATTCTCTC -ACGGAATGTGCTCTGCATTGGATC -ACGGAATGTGCTCTGCATCACTTC -ACGGAATGTGCTCTGCATGTACTC -ACGGAATGTGCTCTGCATGATGTC -ACGGAATGTGCTCTGCATACAGTC -ACGGAATGTGCTCTGCATTTGCTG -ACGGAATGTGCTCTGCATTCCATG -ACGGAATGTGCTCTGCATTGTGTG -ACGGAATGTGCTCTGCATCTAGTG -ACGGAATGTGCTCTGCATCATCTG -ACGGAATGTGCTCTGCATGAGTTG -ACGGAATGTGCTCTGCATAGACTG -ACGGAATGTGCTCTGCATTCGGTA -ACGGAATGTGCTCTGCATTGCCTA -ACGGAATGTGCTCTGCATCCACTA -ACGGAATGTGCTCTGCATGGAGTA -ACGGAATGTGCTCTGCATTCGTCT -ACGGAATGTGCTCTGCATTGCACT -ACGGAATGTGCTCTGCATCTGACT -ACGGAATGTGCTCTGCATCAACCT -ACGGAATGTGCTCTGCATGCTACT -ACGGAATGTGCTCTGCATGGATCT -ACGGAATGTGCTCTGCATAAGGCT -ACGGAATGTGCTCTGCATTCAACC -ACGGAATGTGCTCTGCATTGTTCC -ACGGAATGTGCTCTGCATATTCCC -ACGGAATGTGCTCTGCATTTCTCG -ACGGAATGTGCTCTGCATTAGACG -ACGGAATGTGCTCTGCATGTAACG -ACGGAATGTGCTCTGCATACTTCG -ACGGAATGTGCTCTGCATTACGCA -ACGGAATGTGCTCTGCATCTTGCA -ACGGAATGTGCTCTGCATCGAACA -ACGGAATGTGCTCTGCATCAGTCA -ACGGAATGTGCTCTGCATGATCCA -ACGGAATGTGCTCTGCATACGACA -ACGGAATGTGCTCTGCATAGCTCA -ACGGAATGTGCTCTGCATTCACGT -ACGGAATGTGCTCTGCATCGTAGT -ACGGAATGTGCTCTGCATGTCAGT -ACGGAATGTGCTCTGCATGAAGGT -ACGGAATGTGCTCTGCATAACCGT -ACGGAATGTGCTCTGCATTTGTGC -ACGGAATGTGCTCTGCATCTAAGC -ACGGAATGTGCTCTGCATACTAGC -ACGGAATGTGCTCTGCATAGATGC -ACGGAATGTGCTCTGCATTGAAGG -ACGGAATGTGCTCTGCATCAATGG -ACGGAATGTGCTCTGCATATGAGG -ACGGAATGTGCTCTGCATAATGGG -ACGGAATGTGCTCTGCATTCCTGA -ACGGAATGTGCTCTGCATTAGCGA -ACGGAATGTGCTCTGCATCACAGA -ACGGAATGTGCTCTGCATGCAAGA -ACGGAATGTGCTCTGCATGGTTGA -ACGGAATGTGCTCTGCATTCCGAT -ACGGAATGTGCTCTGCATTGGCAT -ACGGAATGTGCTCTGCATCGAGAT -ACGGAATGTGCTCTGCATTACCAC -ACGGAATGTGCTCTGCATCAGAAC -ACGGAATGTGCTCTGCATGTCTAC -ACGGAATGTGCTCTGCATACGTAC -ACGGAATGTGCTCTGCATAGTGAC -ACGGAATGTGCTCTGCATCTGTAG -ACGGAATGTGCTCTGCATCCTAAG -ACGGAATGTGCTCTGCATGTTCAG -ACGGAATGTGCTCTGCATGCATAG -ACGGAATGTGCTCTGCATGACAAG -ACGGAATGTGCTCTGCATAAGCAG -ACGGAATGTGCTCTGCATCGTCAA -ACGGAATGTGCTCTGCATGCTGAA -ACGGAATGTGCTCTGCATAGTACG -ACGGAATGTGCTCTGCATATCCGA -ACGGAATGTGCTCTGCATATGGGA -ACGGAATGTGCTCTGCATGTGCAA -ACGGAATGTGCTCTGCATGAGGAA -ACGGAATGTGCTCTGCATCAGGTA -ACGGAATGTGCTCTGCATGACTCT -ACGGAATGTGCTCTGCATAGTCCT -ACGGAATGTGCTCTGCATTAAGCC -ACGGAATGTGCTCTGCATATAGCC -ACGGAATGTGCTCTGCATTAACCG -ACGGAATGTGCTCTGCATATGCCA -ACGGAATGTGCTTTGGAGGGAAAC -ACGGAATGTGCTTTGGAGAACACC -ACGGAATGTGCTTTGGAGATCGAG -ACGGAATGTGCTTTGGAGCTCCTT -ACGGAATGTGCTTTGGAGCCTGTT -ACGGAATGTGCTTTGGAGCGGTTT -ACGGAATGTGCTTTGGAGGTGGTT -ACGGAATGTGCTTTGGAGGCCTTT -ACGGAATGTGCTTTGGAGGGTCTT -ACGGAATGTGCTTTGGAGACGCTT -ACGGAATGTGCTTTGGAGAGCGTT -ACGGAATGTGCTTTGGAGTTCGTC -ACGGAATGTGCTTTGGAGTCTCTC -ACGGAATGTGCTTTGGAGTGGATC -ACGGAATGTGCTTTGGAGCACTTC -ACGGAATGTGCTTTGGAGGTACTC -ACGGAATGTGCTTTGGAGGATGTC -ACGGAATGTGCTTTGGAGACAGTC -ACGGAATGTGCTTTGGAGTTGCTG -ACGGAATGTGCTTTGGAGTCCATG -ACGGAATGTGCTTTGGAGTGTGTG -ACGGAATGTGCTTTGGAGCTAGTG -ACGGAATGTGCTTTGGAGCATCTG -ACGGAATGTGCTTTGGAGGAGTTG -ACGGAATGTGCTTTGGAGAGACTG -ACGGAATGTGCTTTGGAGTCGGTA -ACGGAATGTGCTTTGGAGTGCCTA -ACGGAATGTGCTTTGGAGCCACTA -ACGGAATGTGCTTTGGAGGGAGTA -ACGGAATGTGCTTTGGAGTCGTCT -ACGGAATGTGCTTTGGAGTGCACT -ACGGAATGTGCTTTGGAGCTGACT -ACGGAATGTGCTTTGGAGCAACCT -ACGGAATGTGCTTTGGAGGCTACT -ACGGAATGTGCTTTGGAGGGATCT -ACGGAATGTGCTTTGGAGAAGGCT -ACGGAATGTGCTTTGGAGTCAACC -ACGGAATGTGCTTTGGAGTGTTCC -ACGGAATGTGCTTTGGAGATTCCC -ACGGAATGTGCTTTGGAGTTCTCG -ACGGAATGTGCTTTGGAGTAGACG -ACGGAATGTGCTTTGGAGGTAACG -ACGGAATGTGCTTTGGAGACTTCG -ACGGAATGTGCTTTGGAGTACGCA -ACGGAATGTGCTTTGGAGCTTGCA -ACGGAATGTGCTTTGGAGCGAACA -ACGGAATGTGCTTTGGAGCAGTCA -ACGGAATGTGCTTTGGAGGATCCA -ACGGAATGTGCTTTGGAGACGACA -ACGGAATGTGCTTTGGAGAGCTCA -ACGGAATGTGCTTTGGAGTCACGT -ACGGAATGTGCTTTGGAGCGTAGT -ACGGAATGTGCTTTGGAGGTCAGT -ACGGAATGTGCTTTGGAGGAAGGT -ACGGAATGTGCTTTGGAGAACCGT -ACGGAATGTGCTTTGGAGTTGTGC -ACGGAATGTGCTTTGGAGCTAAGC -ACGGAATGTGCTTTGGAGACTAGC -ACGGAATGTGCTTTGGAGAGATGC -ACGGAATGTGCTTTGGAGTGAAGG -ACGGAATGTGCTTTGGAGCAATGG -ACGGAATGTGCTTTGGAGATGAGG -ACGGAATGTGCTTTGGAGAATGGG -ACGGAATGTGCTTTGGAGTCCTGA -ACGGAATGTGCTTTGGAGTAGCGA -ACGGAATGTGCTTTGGAGCACAGA -ACGGAATGTGCTTTGGAGGCAAGA -ACGGAATGTGCTTTGGAGGGTTGA -ACGGAATGTGCTTTGGAGTCCGAT -ACGGAATGTGCTTTGGAGTGGCAT -ACGGAATGTGCTTTGGAGCGAGAT -ACGGAATGTGCTTTGGAGTACCAC -ACGGAATGTGCTTTGGAGCAGAAC -ACGGAATGTGCTTTGGAGGTCTAC -ACGGAATGTGCTTTGGAGACGTAC -ACGGAATGTGCTTTGGAGAGTGAC -ACGGAATGTGCTTTGGAGCTGTAG -ACGGAATGTGCTTTGGAGCCTAAG -ACGGAATGTGCTTTGGAGGTTCAG -ACGGAATGTGCTTTGGAGGCATAG -ACGGAATGTGCTTTGGAGGACAAG -ACGGAATGTGCTTTGGAGAAGCAG -ACGGAATGTGCTTTGGAGCGTCAA -ACGGAATGTGCTTTGGAGGCTGAA -ACGGAATGTGCTTTGGAGAGTACG -ACGGAATGTGCTTTGGAGATCCGA -ACGGAATGTGCTTTGGAGATGGGA -ACGGAATGTGCTTTGGAGGTGCAA -ACGGAATGTGCTTTGGAGGAGGAA -ACGGAATGTGCTTTGGAGCAGGTA -ACGGAATGTGCTTTGGAGGACTCT -ACGGAATGTGCTTTGGAGAGTCCT -ACGGAATGTGCTTTGGAGTAAGCC -ACGGAATGTGCTTTGGAGATAGCC -ACGGAATGTGCTTTGGAGTAACCG -ACGGAATGTGCTTTGGAGATGCCA -ACGGAATGTGCTCTGAGAGGAAAC -ACGGAATGTGCTCTGAGAAACACC -ACGGAATGTGCTCTGAGAATCGAG -ACGGAATGTGCTCTGAGACTCCTT -ACGGAATGTGCTCTGAGACCTGTT -ACGGAATGTGCTCTGAGACGGTTT -ACGGAATGTGCTCTGAGAGTGGTT -ACGGAATGTGCTCTGAGAGCCTTT -ACGGAATGTGCTCTGAGAGGTCTT -ACGGAATGTGCTCTGAGAACGCTT -ACGGAATGTGCTCTGAGAAGCGTT -ACGGAATGTGCTCTGAGATTCGTC -ACGGAATGTGCTCTGAGATCTCTC -ACGGAATGTGCTCTGAGATGGATC -ACGGAATGTGCTCTGAGACACTTC -ACGGAATGTGCTCTGAGAGTACTC -ACGGAATGTGCTCTGAGAGATGTC -ACGGAATGTGCTCTGAGAACAGTC -ACGGAATGTGCTCTGAGATTGCTG -ACGGAATGTGCTCTGAGATCCATG -ACGGAATGTGCTCTGAGATGTGTG -ACGGAATGTGCTCTGAGACTAGTG -ACGGAATGTGCTCTGAGACATCTG -ACGGAATGTGCTCTGAGAGAGTTG -ACGGAATGTGCTCTGAGAAGACTG -ACGGAATGTGCTCTGAGATCGGTA -ACGGAATGTGCTCTGAGATGCCTA -ACGGAATGTGCTCTGAGACCACTA -ACGGAATGTGCTCTGAGAGGAGTA -ACGGAATGTGCTCTGAGATCGTCT -ACGGAATGTGCTCTGAGATGCACT -ACGGAATGTGCTCTGAGACTGACT -ACGGAATGTGCTCTGAGACAACCT -ACGGAATGTGCTCTGAGAGCTACT -ACGGAATGTGCTCTGAGAGGATCT -ACGGAATGTGCTCTGAGAAAGGCT -ACGGAATGTGCTCTGAGATCAACC -ACGGAATGTGCTCTGAGATGTTCC -ACGGAATGTGCTCTGAGAATTCCC -ACGGAATGTGCTCTGAGATTCTCG -ACGGAATGTGCTCTGAGATAGACG -ACGGAATGTGCTCTGAGAGTAACG -ACGGAATGTGCTCTGAGAACTTCG -ACGGAATGTGCTCTGAGATACGCA -ACGGAATGTGCTCTGAGACTTGCA -ACGGAATGTGCTCTGAGACGAACA -ACGGAATGTGCTCTGAGACAGTCA -ACGGAATGTGCTCTGAGAGATCCA -ACGGAATGTGCTCTGAGAACGACA -ACGGAATGTGCTCTGAGAAGCTCA -ACGGAATGTGCTCTGAGATCACGT -ACGGAATGTGCTCTGAGACGTAGT -ACGGAATGTGCTCTGAGAGTCAGT -ACGGAATGTGCTCTGAGAGAAGGT -ACGGAATGTGCTCTGAGAAACCGT -ACGGAATGTGCTCTGAGATTGTGC -ACGGAATGTGCTCTGAGACTAAGC -ACGGAATGTGCTCTGAGAACTAGC -ACGGAATGTGCTCTGAGAAGATGC -ACGGAATGTGCTCTGAGATGAAGG -ACGGAATGTGCTCTGAGACAATGG -ACGGAATGTGCTCTGAGAATGAGG -ACGGAATGTGCTCTGAGAAATGGG -ACGGAATGTGCTCTGAGATCCTGA -ACGGAATGTGCTCTGAGATAGCGA -ACGGAATGTGCTCTGAGACACAGA -ACGGAATGTGCTCTGAGAGCAAGA -ACGGAATGTGCTCTGAGAGGTTGA -ACGGAATGTGCTCTGAGATCCGAT -ACGGAATGTGCTCTGAGATGGCAT -ACGGAATGTGCTCTGAGACGAGAT -ACGGAATGTGCTCTGAGATACCAC -ACGGAATGTGCTCTGAGACAGAAC -ACGGAATGTGCTCTGAGAGTCTAC -ACGGAATGTGCTCTGAGAACGTAC -ACGGAATGTGCTCTGAGAAGTGAC -ACGGAATGTGCTCTGAGACTGTAG -ACGGAATGTGCTCTGAGACCTAAG -ACGGAATGTGCTCTGAGAGTTCAG -ACGGAATGTGCTCTGAGAGCATAG -ACGGAATGTGCTCTGAGAGACAAG -ACGGAATGTGCTCTGAGAAAGCAG -ACGGAATGTGCTCTGAGACGTCAA -ACGGAATGTGCTCTGAGAGCTGAA -ACGGAATGTGCTCTGAGAAGTACG -ACGGAATGTGCTCTGAGAATCCGA -ACGGAATGTGCTCTGAGAATGGGA -ACGGAATGTGCTCTGAGAGTGCAA -ACGGAATGTGCTCTGAGAGAGGAA -ACGGAATGTGCTCTGAGACAGGTA -ACGGAATGTGCTCTGAGAGACTCT -ACGGAATGTGCTCTGAGAAGTCCT -ACGGAATGTGCTCTGAGATAAGCC -ACGGAATGTGCTCTGAGAATAGCC -ACGGAATGTGCTCTGAGATAACCG -ACGGAATGTGCTCTGAGAATGCCA -ACGGAATGTGCTGTATCGGGAAAC -ACGGAATGTGCTGTATCGAACACC -ACGGAATGTGCTGTATCGATCGAG -ACGGAATGTGCTGTATCGCTCCTT -ACGGAATGTGCTGTATCGCCTGTT -ACGGAATGTGCTGTATCGCGGTTT -ACGGAATGTGCTGTATCGGTGGTT -ACGGAATGTGCTGTATCGGCCTTT -ACGGAATGTGCTGTATCGGGTCTT -ACGGAATGTGCTGTATCGACGCTT -ACGGAATGTGCTGTATCGAGCGTT -ACGGAATGTGCTGTATCGTTCGTC -ACGGAATGTGCTGTATCGTCTCTC -ACGGAATGTGCTGTATCGTGGATC -ACGGAATGTGCTGTATCGCACTTC -ACGGAATGTGCTGTATCGGTACTC -ACGGAATGTGCTGTATCGGATGTC -ACGGAATGTGCTGTATCGACAGTC -ACGGAATGTGCTGTATCGTTGCTG -ACGGAATGTGCTGTATCGTCCATG -ACGGAATGTGCTGTATCGTGTGTG -ACGGAATGTGCTGTATCGCTAGTG -ACGGAATGTGCTGTATCGCATCTG -ACGGAATGTGCTGTATCGGAGTTG -ACGGAATGTGCTGTATCGAGACTG -ACGGAATGTGCTGTATCGTCGGTA -ACGGAATGTGCTGTATCGTGCCTA -ACGGAATGTGCTGTATCGCCACTA -ACGGAATGTGCTGTATCGGGAGTA -ACGGAATGTGCTGTATCGTCGTCT -ACGGAATGTGCTGTATCGTGCACT -ACGGAATGTGCTGTATCGCTGACT -ACGGAATGTGCTGTATCGCAACCT -ACGGAATGTGCTGTATCGGCTACT -ACGGAATGTGCTGTATCGGGATCT -ACGGAATGTGCTGTATCGAAGGCT -ACGGAATGTGCTGTATCGTCAACC -ACGGAATGTGCTGTATCGTGTTCC -ACGGAATGTGCTGTATCGATTCCC -ACGGAATGTGCTGTATCGTTCTCG -ACGGAATGTGCTGTATCGTAGACG -ACGGAATGTGCTGTATCGGTAACG -ACGGAATGTGCTGTATCGACTTCG -ACGGAATGTGCTGTATCGTACGCA -ACGGAATGTGCTGTATCGCTTGCA -ACGGAATGTGCTGTATCGCGAACA -ACGGAATGTGCTGTATCGCAGTCA -ACGGAATGTGCTGTATCGGATCCA -ACGGAATGTGCTGTATCGACGACA -ACGGAATGTGCTGTATCGAGCTCA -ACGGAATGTGCTGTATCGTCACGT -ACGGAATGTGCTGTATCGCGTAGT -ACGGAATGTGCTGTATCGGTCAGT -ACGGAATGTGCTGTATCGGAAGGT -ACGGAATGTGCTGTATCGAACCGT -ACGGAATGTGCTGTATCGTTGTGC -ACGGAATGTGCTGTATCGCTAAGC -ACGGAATGTGCTGTATCGACTAGC -ACGGAATGTGCTGTATCGAGATGC -ACGGAATGTGCTGTATCGTGAAGG -ACGGAATGTGCTGTATCGCAATGG -ACGGAATGTGCTGTATCGATGAGG -ACGGAATGTGCTGTATCGAATGGG -ACGGAATGTGCTGTATCGTCCTGA -ACGGAATGTGCTGTATCGTAGCGA -ACGGAATGTGCTGTATCGCACAGA -ACGGAATGTGCTGTATCGGCAAGA -ACGGAATGTGCTGTATCGGGTTGA -ACGGAATGTGCTGTATCGTCCGAT -ACGGAATGTGCTGTATCGTGGCAT -ACGGAATGTGCTGTATCGCGAGAT -ACGGAATGTGCTGTATCGTACCAC -ACGGAATGTGCTGTATCGCAGAAC -ACGGAATGTGCTGTATCGGTCTAC -ACGGAATGTGCTGTATCGACGTAC -ACGGAATGTGCTGTATCGAGTGAC -ACGGAATGTGCTGTATCGCTGTAG -ACGGAATGTGCTGTATCGCCTAAG -ACGGAATGTGCTGTATCGGTTCAG -ACGGAATGTGCTGTATCGGCATAG -ACGGAATGTGCTGTATCGGACAAG -ACGGAATGTGCTGTATCGAAGCAG -ACGGAATGTGCTGTATCGCGTCAA -ACGGAATGTGCTGTATCGGCTGAA -ACGGAATGTGCTGTATCGAGTACG -ACGGAATGTGCTGTATCGATCCGA -ACGGAATGTGCTGTATCGATGGGA -ACGGAATGTGCTGTATCGGTGCAA -ACGGAATGTGCTGTATCGGAGGAA -ACGGAATGTGCTGTATCGCAGGTA -ACGGAATGTGCTGTATCGGACTCT -ACGGAATGTGCTGTATCGAGTCCT -ACGGAATGTGCTGTATCGTAAGCC -ACGGAATGTGCTGTATCGATAGCC -ACGGAATGTGCTGTATCGTAACCG -ACGGAATGTGCTGTATCGATGCCA -ACGGAATGTGCTCTATGCGGAAAC -ACGGAATGTGCTCTATGCAACACC -ACGGAATGTGCTCTATGCATCGAG -ACGGAATGTGCTCTATGCCTCCTT -ACGGAATGTGCTCTATGCCCTGTT -ACGGAATGTGCTCTATGCCGGTTT -ACGGAATGTGCTCTATGCGTGGTT -ACGGAATGTGCTCTATGCGCCTTT -ACGGAATGTGCTCTATGCGGTCTT -ACGGAATGTGCTCTATGCACGCTT -ACGGAATGTGCTCTATGCAGCGTT -ACGGAATGTGCTCTATGCTTCGTC -ACGGAATGTGCTCTATGCTCTCTC -ACGGAATGTGCTCTATGCTGGATC -ACGGAATGTGCTCTATGCCACTTC -ACGGAATGTGCTCTATGCGTACTC -ACGGAATGTGCTCTATGCGATGTC -ACGGAATGTGCTCTATGCACAGTC -ACGGAATGTGCTCTATGCTTGCTG -ACGGAATGTGCTCTATGCTCCATG -ACGGAATGTGCTCTATGCTGTGTG -ACGGAATGTGCTCTATGCCTAGTG -ACGGAATGTGCTCTATGCCATCTG -ACGGAATGTGCTCTATGCGAGTTG -ACGGAATGTGCTCTATGCAGACTG -ACGGAATGTGCTCTATGCTCGGTA -ACGGAATGTGCTCTATGCTGCCTA -ACGGAATGTGCTCTATGCCCACTA -ACGGAATGTGCTCTATGCGGAGTA -ACGGAATGTGCTCTATGCTCGTCT -ACGGAATGTGCTCTATGCTGCACT -ACGGAATGTGCTCTATGCCTGACT -ACGGAATGTGCTCTATGCCAACCT -ACGGAATGTGCTCTATGCGCTACT -ACGGAATGTGCTCTATGCGGATCT -ACGGAATGTGCTCTATGCAAGGCT -ACGGAATGTGCTCTATGCTCAACC -ACGGAATGTGCTCTATGCTGTTCC -ACGGAATGTGCTCTATGCATTCCC -ACGGAATGTGCTCTATGCTTCTCG -ACGGAATGTGCTCTATGCTAGACG -ACGGAATGTGCTCTATGCGTAACG -ACGGAATGTGCTCTATGCACTTCG -ACGGAATGTGCTCTATGCTACGCA -ACGGAATGTGCTCTATGCCTTGCA -ACGGAATGTGCTCTATGCCGAACA -ACGGAATGTGCTCTATGCCAGTCA -ACGGAATGTGCTCTATGCGATCCA -ACGGAATGTGCTCTATGCACGACA -ACGGAATGTGCTCTATGCAGCTCA -ACGGAATGTGCTCTATGCTCACGT -ACGGAATGTGCTCTATGCCGTAGT -ACGGAATGTGCTCTATGCGTCAGT -ACGGAATGTGCTCTATGCGAAGGT -ACGGAATGTGCTCTATGCAACCGT -ACGGAATGTGCTCTATGCTTGTGC -ACGGAATGTGCTCTATGCCTAAGC -ACGGAATGTGCTCTATGCACTAGC -ACGGAATGTGCTCTATGCAGATGC -ACGGAATGTGCTCTATGCTGAAGG -ACGGAATGTGCTCTATGCCAATGG -ACGGAATGTGCTCTATGCATGAGG -ACGGAATGTGCTCTATGCAATGGG -ACGGAATGTGCTCTATGCTCCTGA -ACGGAATGTGCTCTATGCTAGCGA -ACGGAATGTGCTCTATGCCACAGA -ACGGAATGTGCTCTATGCGCAAGA -ACGGAATGTGCTCTATGCGGTTGA -ACGGAATGTGCTCTATGCTCCGAT -ACGGAATGTGCTCTATGCTGGCAT -ACGGAATGTGCTCTATGCCGAGAT -ACGGAATGTGCTCTATGCTACCAC -ACGGAATGTGCTCTATGCCAGAAC -ACGGAATGTGCTCTATGCGTCTAC -ACGGAATGTGCTCTATGCACGTAC -ACGGAATGTGCTCTATGCAGTGAC -ACGGAATGTGCTCTATGCCTGTAG -ACGGAATGTGCTCTATGCCCTAAG -ACGGAATGTGCTCTATGCGTTCAG -ACGGAATGTGCTCTATGCGCATAG -ACGGAATGTGCTCTATGCGACAAG -ACGGAATGTGCTCTATGCAAGCAG -ACGGAATGTGCTCTATGCCGTCAA -ACGGAATGTGCTCTATGCGCTGAA -ACGGAATGTGCTCTATGCAGTACG -ACGGAATGTGCTCTATGCATCCGA -ACGGAATGTGCTCTATGCATGGGA -ACGGAATGTGCTCTATGCGTGCAA -ACGGAATGTGCTCTATGCGAGGAA -ACGGAATGTGCTCTATGCCAGGTA -ACGGAATGTGCTCTATGCGACTCT -ACGGAATGTGCTCTATGCAGTCCT -ACGGAATGTGCTCTATGCTAAGCC -ACGGAATGTGCTCTATGCATAGCC -ACGGAATGTGCTCTATGCTAACCG -ACGGAATGTGCTCTATGCATGCCA -ACGGAATGTGCTCTACCAGGAAAC -ACGGAATGTGCTCTACCAAACACC -ACGGAATGTGCTCTACCAATCGAG -ACGGAATGTGCTCTACCACTCCTT -ACGGAATGTGCTCTACCACCTGTT -ACGGAATGTGCTCTACCACGGTTT -ACGGAATGTGCTCTACCAGTGGTT -ACGGAATGTGCTCTACCAGCCTTT -ACGGAATGTGCTCTACCAGGTCTT -ACGGAATGTGCTCTACCAACGCTT -ACGGAATGTGCTCTACCAAGCGTT -ACGGAATGTGCTCTACCATTCGTC -ACGGAATGTGCTCTACCATCTCTC -ACGGAATGTGCTCTACCATGGATC -ACGGAATGTGCTCTACCACACTTC -ACGGAATGTGCTCTACCAGTACTC -ACGGAATGTGCTCTACCAGATGTC -ACGGAATGTGCTCTACCAACAGTC -ACGGAATGTGCTCTACCATTGCTG -ACGGAATGTGCTCTACCATCCATG -ACGGAATGTGCTCTACCATGTGTG -ACGGAATGTGCTCTACCACTAGTG -ACGGAATGTGCTCTACCACATCTG -ACGGAATGTGCTCTACCAGAGTTG -ACGGAATGTGCTCTACCAAGACTG -ACGGAATGTGCTCTACCATCGGTA -ACGGAATGTGCTCTACCATGCCTA -ACGGAATGTGCTCTACCACCACTA -ACGGAATGTGCTCTACCAGGAGTA -ACGGAATGTGCTCTACCATCGTCT -ACGGAATGTGCTCTACCATGCACT -ACGGAATGTGCTCTACCACTGACT -ACGGAATGTGCTCTACCACAACCT -ACGGAATGTGCTCTACCAGCTACT -ACGGAATGTGCTCTACCAGGATCT -ACGGAATGTGCTCTACCAAAGGCT -ACGGAATGTGCTCTACCATCAACC -ACGGAATGTGCTCTACCATGTTCC -ACGGAATGTGCTCTACCAATTCCC -ACGGAATGTGCTCTACCATTCTCG -ACGGAATGTGCTCTACCATAGACG -ACGGAATGTGCTCTACCAGTAACG -ACGGAATGTGCTCTACCAACTTCG -ACGGAATGTGCTCTACCATACGCA -ACGGAATGTGCTCTACCACTTGCA -ACGGAATGTGCTCTACCACGAACA -ACGGAATGTGCTCTACCACAGTCA -ACGGAATGTGCTCTACCAGATCCA -ACGGAATGTGCTCTACCAACGACA -ACGGAATGTGCTCTACCAAGCTCA -ACGGAATGTGCTCTACCATCACGT -ACGGAATGTGCTCTACCACGTAGT -ACGGAATGTGCTCTACCAGTCAGT -ACGGAATGTGCTCTACCAGAAGGT -ACGGAATGTGCTCTACCAAACCGT -ACGGAATGTGCTCTACCATTGTGC -ACGGAATGTGCTCTACCACTAAGC -ACGGAATGTGCTCTACCAACTAGC -ACGGAATGTGCTCTACCAAGATGC -ACGGAATGTGCTCTACCATGAAGG -ACGGAATGTGCTCTACCACAATGG -ACGGAATGTGCTCTACCAATGAGG -ACGGAATGTGCTCTACCAAATGGG -ACGGAATGTGCTCTACCATCCTGA -ACGGAATGTGCTCTACCATAGCGA -ACGGAATGTGCTCTACCACACAGA -ACGGAATGTGCTCTACCAGCAAGA -ACGGAATGTGCTCTACCAGGTTGA -ACGGAATGTGCTCTACCATCCGAT -ACGGAATGTGCTCTACCATGGCAT -ACGGAATGTGCTCTACCACGAGAT -ACGGAATGTGCTCTACCATACCAC -ACGGAATGTGCTCTACCACAGAAC -ACGGAATGTGCTCTACCAGTCTAC -ACGGAATGTGCTCTACCAACGTAC -ACGGAATGTGCTCTACCAAGTGAC -ACGGAATGTGCTCTACCACTGTAG -ACGGAATGTGCTCTACCACCTAAG -ACGGAATGTGCTCTACCAGTTCAG -ACGGAATGTGCTCTACCAGCATAG -ACGGAATGTGCTCTACCAGACAAG -ACGGAATGTGCTCTACCAAAGCAG -ACGGAATGTGCTCTACCACGTCAA -ACGGAATGTGCTCTACCAGCTGAA -ACGGAATGTGCTCTACCAAGTACG -ACGGAATGTGCTCTACCAATCCGA -ACGGAATGTGCTCTACCAATGGGA -ACGGAATGTGCTCTACCAGTGCAA -ACGGAATGTGCTCTACCAGAGGAA -ACGGAATGTGCTCTACCACAGGTA -ACGGAATGTGCTCTACCAGACTCT -ACGGAATGTGCTCTACCAAGTCCT -ACGGAATGTGCTCTACCATAAGCC -ACGGAATGTGCTCTACCAATAGCC -ACGGAATGTGCTCTACCATAACCG -ACGGAATGTGCTCTACCAATGCCA -ACGGAATGTGCTGTAGGAGGAAAC -ACGGAATGTGCTGTAGGAAACACC -ACGGAATGTGCTGTAGGAATCGAG -ACGGAATGTGCTGTAGGACTCCTT -ACGGAATGTGCTGTAGGACCTGTT -ACGGAATGTGCTGTAGGACGGTTT -ACGGAATGTGCTGTAGGAGTGGTT -ACGGAATGTGCTGTAGGAGCCTTT -ACGGAATGTGCTGTAGGAGGTCTT -ACGGAATGTGCTGTAGGAACGCTT -ACGGAATGTGCTGTAGGAAGCGTT -ACGGAATGTGCTGTAGGATTCGTC -ACGGAATGTGCTGTAGGATCTCTC -ACGGAATGTGCTGTAGGATGGATC -ACGGAATGTGCTGTAGGACACTTC -ACGGAATGTGCTGTAGGAGTACTC -ACGGAATGTGCTGTAGGAGATGTC -ACGGAATGTGCTGTAGGAACAGTC -ACGGAATGTGCTGTAGGATTGCTG -ACGGAATGTGCTGTAGGATCCATG -ACGGAATGTGCTGTAGGATGTGTG -ACGGAATGTGCTGTAGGACTAGTG -ACGGAATGTGCTGTAGGACATCTG -ACGGAATGTGCTGTAGGAGAGTTG -ACGGAATGTGCTGTAGGAAGACTG -ACGGAATGTGCTGTAGGATCGGTA -ACGGAATGTGCTGTAGGATGCCTA -ACGGAATGTGCTGTAGGACCACTA -ACGGAATGTGCTGTAGGAGGAGTA -ACGGAATGTGCTGTAGGATCGTCT -ACGGAATGTGCTGTAGGATGCACT -ACGGAATGTGCTGTAGGACTGACT -ACGGAATGTGCTGTAGGACAACCT -ACGGAATGTGCTGTAGGAGCTACT -ACGGAATGTGCTGTAGGAGGATCT -ACGGAATGTGCTGTAGGAAAGGCT -ACGGAATGTGCTGTAGGATCAACC -ACGGAATGTGCTGTAGGATGTTCC -ACGGAATGTGCTGTAGGAATTCCC -ACGGAATGTGCTGTAGGATTCTCG -ACGGAATGTGCTGTAGGATAGACG -ACGGAATGTGCTGTAGGAGTAACG -ACGGAATGTGCTGTAGGAACTTCG -ACGGAATGTGCTGTAGGATACGCA -ACGGAATGTGCTGTAGGACTTGCA -ACGGAATGTGCTGTAGGACGAACA -ACGGAATGTGCTGTAGGACAGTCA -ACGGAATGTGCTGTAGGAGATCCA -ACGGAATGTGCTGTAGGAACGACA -ACGGAATGTGCTGTAGGAAGCTCA -ACGGAATGTGCTGTAGGATCACGT -ACGGAATGTGCTGTAGGACGTAGT -ACGGAATGTGCTGTAGGAGTCAGT -ACGGAATGTGCTGTAGGAGAAGGT -ACGGAATGTGCTGTAGGAAACCGT -ACGGAATGTGCTGTAGGATTGTGC -ACGGAATGTGCTGTAGGACTAAGC -ACGGAATGTGCTGTAGGAACTAGC -ACGGAATGTGCTGTAGGAAGATGC -ACGGAATGTGCTGTAGGATGAAGG -ACGGAATGTGCTGTAGGACAATGG -ACGGAATGTGCTGTAGGAATGAGG -ACGGAATGTGCTGTAGGAAATGGG -ACGGAATGTGCTGTAGGATCCTGA -ACGGAATGTGCTGTAGGATAGCGA -ACGGAATGTGCTGTAGGACACAGA -ACGGAATGTGCTGTAGGAGCAAGA -ACGGAATGTGCTGTAGGAGGTTGA -ACGGAATGTGCTGTAGGATCCGAT -ACGGAATGTGCTGTAGGATGGCAT -ACGGAATGTGCTGTAGGACGAGAT -ACGGAATGTGCTGTAGGATACCAC -ACGGAATGTGCTGTAGGACAGAAC -ACGGAATGTGCTGTAGGAGTCTAC -ACGGAATGTGCTGTAGGAACGTAC -ACGGAATGTGCTGTAGGAAGTGAC -ACGGAATGTGCTGTAGGACTGTAG -ACGGAATGTGCTGTAGGACCTAAG -ACGGAATGTGCTGTAGGAGTTCAG -ACGGAATGTGCTGTAGGAGCATAG -ACGGAATGTGCTGTAGGAGACAAG -ACGGAATGTGCTGTAGGAAAGCAG -ACGGAATGTGCTGTAGGACGTCAA -ACGGAATGTGCTGTAGGAGCTGAA -ACGGAATGTGCTGTAGGAAGTACG -ACGGAATGTGCTGTAGGAATCCGA -ACGGAATGTGCTGTAGGAATGGGA -ACGGAATGTGCTGTAGGAGTGCAA -ACGGAATGTGCTGTAGGAGAGGAA -ACGGAATGTGCTGTAGGACAGGTA -ACGGAATGTGCTGTAGGAGACTCT -ACGGAATGTGCTGTAGGAAGTCCT -ACGGAATGTGCTGTAGGATAAGCC -ACGGAATGTGCTGTAGGAATAGCC -ACGGAATGTGCTGTAGGATAACCG -ACGGAATGTGCTGTAGGAATGCCA -ACGGAATGTGCTTCTTCGGGAAAC -ACGGAATGTGCTTCTTCGAACACC -ACGGAATGTGCTTCTTCGATCGAG -ACGGAATGTGCTTCTTCGCTCCTT -ACGGAATGTGCTTCTTCGCCTGTT -ACGGAATGTGCTTCTTCGCGGTTT -ACGGAATGTGCTTCTTCGGTGGTT -ACGGAATGTGCTTCTTCGGCCTTT -ACGGAATGTGCTTCTTCGGGTCTT -ACGGAATGTGCTTCTTCGACGCTT -ACGGAATGTGCTTCTTCGAGCGTT -ACGGAATGTGCTTCTTCGTTCGTC -ACGGAATGTGCTTCTTCGTCTCTC -ACGGAATGTGCTTCTTCGTGGATC -ACGGAATGTGCTTCTTCGCACTTC -ACGGAATGTGCTTCTTCGGTACTC -ACGGAATGTGCTTCTTCGGATGTC -ACGGAATGTGCTTCTTCGACAGTC -ACGGAATGTGCTTCTTCGTTGCTG -ACGGAATGTGCTTCTTCGTCCATG -ACGGAATGTGCTTCTTCGTGTGTG -ACGGAATGTGCTTCTTCGCTAGTG -ACGGAATGTGCTTCTTCGCATCTG -ACGGAATGTGCTTCTTCGGAGTTG -ACGGAATGTGCTTCTTCGAGACTG -ACGGAATGTGCTTCTTCGTCGGTA -ACGGAATGTGCTTCTTCGTGCCTA -ACGGAATGTGCTTCTTCGCCACTA -ACGGAATGTGCTTCTTCGGGAGTA -ACGGAATGTGCTTCTTCGTCGTCT -ACGGAATGTGCTTCTTCGTGCACT -ACGGAATGTGCTTCTTCGCTGACT -ACGGAATGTGCTTCTTCGCAACCT -ACGGAATGTGCTTCTTCGGCTACT -ACGGAATGTGCTTCTTCGGGATCT -ACGGAATGTGCTTCTTCGAAGGCT -ACGGAATGTGCTTCTTCGTCAACC -ACGGAATGTGCTTCTTCGTGTTCC -ACGGAATGTGCTTCTTCGATTCCC -ACGGAATGTGCTTCTTCGTTCTCG -ACGGAATGTGCTTCTTCGTAGACG -ACGGAATGTGCTTCTTCGGTAACG -ACGGAATGTGCTTCTTCGACTTCG -ACGGAATGTGCTTCTTCGTACGCA -ACGGAATGTGCTTCTTCGCTTGCA -ACGGAATGTGCTTCTTCGCGAACA -ACGGAATGTGCTTCTTCGCAGTCA -ACGGAATGTGCTTCTTCGGATCCA -ACGGAATGTGCTTCTTCGACGACA -ACGGAATGTGCTTCTTCGAGCTCA -ACGGAATGTGCTTCTTCGTCACGT -ACGGAATGTGCTTCTTCGCGTAGT -ACGGAATGTGCTTCTTCGGTCAGT -ACGGAATGTGCTTCTTCGGAAGGT -ACGGAATGTGCTTCTTCGAACCGT -ACGGAATGTGCTTCTTCGTTGTGC -ACGGAATGTGCTTCTTCGCTAAGC -ACGGAATGTGCTTCTTCGACTAGC -ACGGAATGTGCTTCTTCGAGATGC -ACGGAATGTGCTTCTTCGTGAAGG -ACGGAATGTGCTTCTTCGCAATGG -ACGGAATGTGCTTCTTCGATGAGG -ACGGAATGTGCTTCTTCGAATGGG -ACGGAATGTGCTTCTTCGTCCTGA -ACGGAATGTGCTTCTTCGTAGCGA -ACGGAATGTGCTTCTTCGCACAGA -ACGGAATGTGCTTCTTCGGCAAGA -ACGGAATGTGCTTCTTCGGGTTGA -ACGGAATGTGCTTCTTCGTCCGAT -ACGGAATGTGCTTCTTCGTGGCAT -ACGGAATGTGCTTCTTCGCGAGAT -ACGGAATGTGCTTCTTCGTACCAC -ACGGAATGTGCTTCTTCGCAGAAC -ACGGAATGTGCTTCTTCGGTCTAC -ACGGAATGTGCTTCTTCGACGTAC -ACGGAATGTGCTTCTTCGAGTGAC -ACGGAATGTGCTTCTTCGCTGTAG -ACGGAATGTGCTTCTTCGCCTAAG -ACGGAATGTGCTTCTTCGGTTCAG -ACGGAATGTGCTTCTTCGGCATAG -ACGGAATGTGCTTCTTCGGACAAG -ACGGAATGTGCTTCTTCGAAGCAG -ACGGAATGTGCTTCTTCGCGTCAA -ACGGAATGTGCTTCTTCGGCTGAA -ACGGAATGTGCTTCTTCGAGTACG -ACGGAATGTGCTTCTTCGATCCGA -ACGGAATGTGCTTCTTCGATGGGA -ACGGAATGTGCTTCTTCGGTGCAA -ACGGAATGTGCTTCTTCGGAGGAA -ACGGAATGTGCTTCTTCGCAGGTA -ACGGAATGTGCTTCTTCGGACTCT -ACGGAATGTGCTTCTTCGAGTCCT -ACGGAATGTGCTTCTTCGTAAGCC -ACGGAATGTGCTTCTTCGATAGCC -ACGGAATGTGCTTCTTCGTAACCG -ACGGAATGTGCTTCTTCGATGCCA -ACGGAATGTGCTACTTGCGGAAAC -ACGGAATGTGCTACTTGCAACACC -ACGGAATGTGCTACTTGCATCGAG -ACGGAATGTGCTACTTGCCTCCTT -ACGGAATGTGCTACTTGCCCTGTT -ACGGAATGTGCTACTTGCCGGTTT -ACGGAATGTGCTACTTGCGTGGTT -ACGGAATGTGCTACTTGCGCCTTT -ACGGAATGTGCTACTTGCGGTCTT -ACGGAATGTGCTACTTGCACGCTT -ACGGAATGTGCTACTTGCAGCGTT -ACGGAATGTGCTACTTGCTTCGTC -ACGGAATGTGCTACTTGCTCTCTC -ACGGAATGTGCTACTTGCTGGATC -ACGGAATGTGCTACTTGCCACTTC -ACGGAATGTGCTACTTGCGTACTC -ACGGAATGTGCTACTTGCGATGTC -ACGGAATGTGCTACTTGCACAGTC -ACGGAATGTGCTACTTGCTTGCTG -ACGGAATGTGCTACTTGCTCCATG -ACGGAATGTGCTACTTGCTGTGTG -ACGGAATGTGCTACTTGCCTAGTG -ACGGAATGTGCTACTTGCCATCTG -ACGGAATGTGCTACTTGCGAGTTG -ACGGAATGTGCTACTTGCAGACTG -ACGGAATGTGCTACTTGCTCGGTA -ACGGAATGTGCTACTTGCTGCCTA -ACGGAATGTGCTACTTGCCCACTA -ACGGAATGTGCTACTTGCGGAGTA -ACGGAATGTGCTACTTGCTCGTCT -ACGGAATGTGCTACTTGCTGCACT -ACGGAATGTGCTACTTGCCTGACT -ACGGAATGTGCTACTTGCCAACCT -ACGGAATGTGCTACTTGCGCTACT -ACGGAATGTGCTACTTGCGGATCT -ACGGAATGTGCTACTTGCAAGGCT -ACGGAATGTGCTACTTGCTCAACC -ACGGAATGTGCTACTTGCTGTTCC -ACGGAATGTGCTACTTGCATTCCC -ACGGAATGTGCTACTTGCTTCTCG -ACGGAATGTGCTACTTGCTAGACG -ACGGAATGTGCTACTTGCGTAACG -ACGGAATGTGCTACTTGCACTTCG -ACGGAATGTGCTACTTGCTACGCA -ACGGAATGTGCTACTTGCCTTGCA -ACGGAATGTGCTACTTGCCGAACA -ACGGAATGTGCTACTTGCCAGTCA -ACGGAATGTGCTACTTGCGATCCA -ACGGAATGTGCTACTTGCACGACA -ACGGAATGTGCTACTTGCAGCTCA -ACGGAATGTGCTACTTGCTCACGT -ACGGAATGTGCTACTTGCCGTAGT -ACGGAATGTGCTACTTGCGTCAGT -ACGGAATGTGCTACTTGCGAAGGT -ACGGAATGTGCTACTTGCAACCGT -ACGGAATGTGCTACTTGCTTGTGC -ACGGAATGTGCTACTTGCCTAAGC -ACGGAATGTGCTACTTGCACTAGC -ACGGAATGTGCTACTTGCAGATGC -ACGGAATGTGCTACTTGCTGAAGG -ACGGAATGTGCTACTTGCCAATGG -ACGGAATGTGCTACTTGCATGAGG -ACGGAATGTGCTACTTGCAATGGG -ACGGAATGTGCTACTTGCTCCTGA -ACGGAATGTGCTACTTGCTAGCGA -ACGGAATGTGCTACTTGCCACAGA -ACGGAATGTGCTACTTGCGCAAGA -ACGGAATGTGCTACTTGCGGTTGA -ACGGAATGTGCTACTTGCTCCGAT -ACGGAATGTGCTACTTGCTGGCAT -ACGGAATGTGCTACTTGCCGAGAT -ACGGAATGTGCTACTTGCTACCAC -ACGGAATGTGCTACTTGCCAGAAC -ACGGAATGTGCTACTTGCGTCTAC -ACGGAATGTGCTACTTGCACGTAC -ACGGAATGTGCTACTTGCAGTGAC -ACGGAATGTGCTACTTGCCTGTAG -ACGGAATGTGCTACTTGCCCTAAG -ACGGAATGTGCTACTTGCGTTCAG -ACGGAATGTGCTACTTGCGCATAG -ACGGAATGTGCTACTTGCGACAAG -ACGGAATGTGCTACTTGCAAGCAG -ACGGAATGTGCTACTTGCCGTCAA -ACGGAATGTGCTACTTGCGCTGAA -ACGGAATGTGCTACTTGCAGTACG -ACGGAATGTGCTACTTGCATCCGA -ACGGAATGTGCTACTTGCATGGGA -ACGGAATGTGCTACTTGCGTGCAA -ACGGAATGTGCTACTTGCGAGGAA -ACGGAATGTGCTACTTGCCAGGTA -ACGGAATGTGCTACTTGCGACTCT -ACGGAATGTGCTACTTGCAGTCCT -ACGGAATGTGCTACTTGCTAAGCC -ACGGAATGTGCTACTTGCATAGCC -ACGGAATGTGCTACTTGCTAACCG -ACGGAATGTGCTACTTGCATGCCA -ACGGAATGTGCTACTCTGGGAAAC -ACGGAATGTGCTACTCTGAACACC -ACGGAATGTGCTACTCTGATCGAG -ACGGAATGTGCTACTCTGCTCCTT -ACGGAATGTGCTACTCTGCCTGTT -ACGGAATGTGCTACTCTGCGGTTT -ACGGAATGTGCTACTCTGGTGGTT -ACGGAATGTGCTACTCTGGCCTTT -ACGGAATGTGCTACTCTGGGTCTT -ACGGAATGTGCTACTCTGACGCTT -ACGGAATGTGCTACTCTGAGCGTT -ACGGAATGTGCTACTCTGTTCGTC -ACGGAATGTGCTACTCTGTCTCTC -ACGGAATGTGCTACTCTGTGGATC -ACGGAATGTGCTACTCTGCACTTC -ACGGAATGTGCTACTCTGGTACTC -ACGGAATGTGCTACTCTGGATGTC -ACGGAATGTGCTACTCTGACAGTC -ACGGAATGTGCTACTCTGTTGCTG -ACGGAATGTGCTACTCTGTCCATG -ACGGAATGTGCTACTCTGTGTGTG -ACGGAATGTGCTACTCTGCTAGTG -ACGGAATGTGCTACTCTGCATCTG -ACGGAATGTGCTACTCTGGAGTTG -ACGGAATGTGCTACTCTGAGACTG -ACGGAATGTGCTACTCTGTCGGTA -ACGGAATGTGCTACTCTGTGCCTA -ACGGAATGTGCTACTCTGCCACTA -ACGGAATGTGCTACTCTGGGAGTA -ACGGAATGTGCTACTCTGTCGTCT -ACGGAATGTGCTACTCTGTGCACT -ACGGAATGTGCTACTCTGCTGACT -ACGGAATGTGCTACTCTGCAACCT -ACGGAATGTGCTACTCTGGCTACT -ACGGAATGTGCTACTCTGGGATCT -ACGGAATGTGCTACTCTGAAGGCT -ACGGAATGTGCTACTCTGTCAACC -ACGGAATGTGCTACTCTGTGTTCC -ACGGAATGTGCTACTCTGATTCCC -ACGGAATGTGCTACTCTGTTCTCG -ACGGAATGTGCTACTCTGTAGACG -ACGGAATGTGCTACTCTGGTAACG -ACGGAATGTGCTACTCTGACTTCG -ACGGAATGTGCTACTCTGTACGCA -ACGGAATGTGCTACTCTGCTTGCA -ACGGAATGTGCTACTCTGCGAACA -ACGGAATGTGCTACTCTGCAGTCA -ACGGAATGTGCTACTCTGGATCCA -ACGGAATGTGCTACTCTGACGACA -ACGGAATGTGCTACTCTGAGCTCA -ACGGAATGTGCTACTCTGTCACGT -ACGGAATGTGCTACTCTGCGTAGT -ACGGAATGTGCTACTCTGGTCAGT -ACGGAATGTGCTACTCTGGAAGGT -ACGGAATGTGCTACTCTGAACCGT -ACGGAATGTGCTACTCTGTTGTGC -ACGGAATGTGCTACTCTGCTAAGC -ACGGAATGTGCTACTCTGACTAGC -ACGGAATGTGCTACTCTGAGATGC -ACGGAATGTGCTACTCTGTGAAGG -ACGGAATGTGCTACTCTGCAATGG -ACGGAATGTGCTACTCTGATGAGG -ACGGAATGTGCTACTCTGAATGGG -ACGGAATGTGCTACTCTGTCCTGA -ACGGAATGTGCTACTCTGTAGCGA -ACGGAATGTGCTACTCTGCACAGA -ACGGAATGTGCTACTCTGGCAAGA -ACGGAATGTGCTACTCTGGGTTGA -ACGGAATGTGCTACTCTGTCCGAT -ACGGAATGTGCTACTCTGTGGCAT -ACGGAATGTGCTACTCTGCGAGAT -ACGGAATGTGCTACTCTGTACCAC -ACGGAATGTGCTACTCTGCAGAAC -ACGGAATGTGCTACTCTGGTCTAC -ACGGAATGTGCTACTCTGACGTAC -ACGGAATGTGCTACTCTGAGTGAC -ACGGAATGTGCTACTCTGCTGTAG -ACGGAATGTGCTACTCTGCCTAAG -ACGGAATGTGCTACTCTGGTTCAG -ACGGAATGTGCTACTCTGGCATAG -ACGGAATGTGCTACTCTGGACAAG -ACGGAATGTGCTACTCTGAAGCAG -ACGGAATGTGCTACTCTGCGTCAA -ACGGAATGTGCTACTCTGGCTGAA -ACGGAATGTGCTACTCTGAGTACG -ACGGAATGTGCTACTCTGATCCGA -ACGGAATGTGCTACTCTGATGGGA -ACGGAATGTGCTACTCTGGTGCAA -ACGGAATGTGCTACTCTGGAGGAA -ACGGAATGTGCTACTCTGCAGGTA -ACGGAATGTGCTACTCTGGACTCT -ACGGAATGTGCTACTCTGAGTCCT -ACGGAATGTGCTACTCTGTAAGCC -ACGGAATGTGCTACTCTGATAGCC -ACGGAATGTGCTACTCTGTAACCG -ACGGAATGTGCTACTCTGATGCCA -ACGGAATGTGCTCCTCAAGGAAAC -ACGGAATGTGCTCCTCAAAACACC -ACGGAATGTGCTCCTCAAATCGAG -ACGGAATGTGCTCCTCAACTCCTT -ACGGAATGTGCTCCTCAACCTGTT -ACGGAATGTGCTCCTCAACGGTTT -ACGGAATGTGCTCCTCAAGTGGTT -ACGGAATGTGCTCCTCAAGCCTTT -ACGGAATGTGCTCCTCAAGGTCTT -ACGGAATGTGCTCCTCAAACGCTT -ACGGAATGTGCTCCTCAAAGCGTT -ACGGAATGTGCTCCTCAATTCGTC -ACGGAATGTGCTCCTCAATCTCTC -ACGGAATGTGCTCCTCAATGGATC -ACGGAATGTGCTCCTCAACACTTC -ACGGAATGTGCTCCTCAAGTACTC -ACGGAATGTGCTCCTCAAGATGTC -ACGGAATGTGCTCCTCAAACAGTC -ACGGAATGTGCTCCTCAATTGCTG -ACGGAATGTGCTCCTCAATCCATG -ACGGAATGTGCTCCTCAATGTGTG -ACGGAATGTGCTCCTCAACTAGTG -ACGGAATGTGCTCCTCAACATCTG -ACGGAATGTGCTCCTCAAGAGTTG -ACGGAATGTGCTCCTCAAAGACTG -ACGGAATGTGCTCCTCAATCGGTA -ACGGAATGTGCTCCTCAATGCCTA -ACGGAATGTGCTCCTCAACCACTA -ACGGAATGTGCTCCTCAAGGAGTA -ACGGAATGTGCTCCTCAATCGTCT -ACGGAATGTGCTCCTCAATGCACT -ACGGAATGTGCTCCTCAACTGACT -ACGGAATGTGCTCCTCAACAACCT -ACGGAATGTGCTCCTCAAGCTACT -ACGGAATGTGCTCCTCAAGGATCT -ACGGAATGTGCTCCTCAAAAGGCT -ACGGAATGTGCTCCTCAATCAACC -ACGGAATGTGCTCCTCAATGTTCC -ACGGAATGTGCTCCTCAAATTCCC -ACGGAATGTGCTCCTCAATTCTCG -ACGGAATGTGCTCCTCAATAGACG -ACGGAATGTGCTCCTCAAGTAACG -ACGGAATGTGCTCCTCAAACTTCG -ACGGAATGTGCTCCTCAATACGCA -ACGGAATGTGCTCCTCAACTTGCA -ACGGAATGTGCTCCTCAACGAACA -ACGGAATGTGCTCCTCAACAGTCA -ACGGAATGTGCTCCTCAAGATCCA -ACGGAATGTGCTCCTCAAACGACA -ACGGAATGTGCTCCTCAAAGCTCA -ACGGAATGTGCTCCTCAATCACGT -ACGGAATGTGCTCCTCAACGTAGT -ACGGAATGTGCTCCTCAAGTCAGT -ACGGAATGTGCTCCTCAAGAAGGT -ACGGAATGTGCTCCTCAAAACCGT -ACGGAATGTGCTCCTCAATTGTGC -ACGGAATGTGCTCCTCAACTAAGC -ACGGAATGTGCTCCTCAAACTAGC -ACGGAATGTGCTCCTCAAAGATGC -ACGGAATGTGCTCCTCAATGAAGG -ACGGAATGTGCTCCTCAACAATGG -ACGGAATGTGCTCCTCAAATGAGG -ACGGAATGTGCTCCTCAAAATGGG -ACGGAATGTGCTCCTCAATCCTGA -ACGGAATGTGCTCCTCAATAGCGA -ACGGAATGTGCTCCTCAACACAGA -ACGGAATGTGCTCCTCAAGCAAGA -ACGGAATGTGCTCCTCAAGGTTGA -ACGGAATGTGCTCCTCAATCCGAT -ACGGAATGTGCTCCTCAATGGCAT -ACGGAATGTGCTCCTCAACGAGAT -ACGGAATGTGCTCCTCAATACCAC -ACGGAATGTGCTCCTCAACAGAAC -ACGGAATGTGCTCCTCAAGTCTAC -ACGGAATGTGCTCCTCAAACGTAC -ACGGAATGTGCTCCTCAAAGTGAC -ACGGAATGTGCTCCTCAACTGTAG -ACGGAATGTGCTCCTCAACCTAAG -ACGGAATGTGCTCCTCAAGTTCAG -ACGGAATGTGCTCCTCAAGCATAG -ACGGAATGTGCTCCTCAAGACAAG -ACGGAATGTGCTCCTCAAAAGCAG -ACGGAATGTGCTCCTCAACGTCAA -ACGGAATGTGCTCCTCAAGCTGAA -ACGGAATGTGCTCCTCAAAGTACG -ACGGAATGTGCTCCTCAAATCCGA -ACGGAATGTGCTCCTCAAATGGGA -ACGGAATGTGCTCCTCAAGTGCAA -ACGGAATGTGCTCCTCAAGAGGAA -ACGGAATGTGCTCCTCAACAGGTA -ACGGAATGTGCTCCTCAAGACTCT -ACGGAATGTGCTCCTCAAAGTCCT -ACGGAATGTGCTCCTCAATAAGCC -ACGGAATGTGCTCCTCAAATAGCC -ACGGAATGTGCTCCTCAATAACCG -ACGGAATGTGCTCCTCAAATGCCA -ACGGAATGTGCTACTGCTGGAAAC -ACGGAATGTGCTACTGCTAACACC -ACGGAATGTGCTACTGCTATCGAG -ACGGAATGTGCTACTGCTCTCCTT -ACGGAATGTGCTACTGCTCCTGTT -ACGGAATGTGCTACTGCTCGGTTT -ACGGAATGTGCTACTGCTGTGGTT -ACGGAATGTGCTACTGCTGCCTTT -ACGGAATGTGCTACTGCTGGTCTT -ACGGAATGTGCTACTGCTACGCTT -ACGGAATGTGCTACTGCTAGCGTT -ACGGAATGTGCTACTGCTTTCGTC -ACGGAATGTGCTACTGCTTCTCTC -ACGGAATGTGCTACTGCTTGGATC -ACGGAATGTGCTACTGCTCACTTC -ACGGAATGTGCTACTGCTGTACTC -ACGGAATGTGCTACTGCTGATGTC -ACGGAATGTGCTACTGCTACAGTC -ACGGAATGTGCTACTGCTTTGCTG -ACGGAATGTGCTACTGCTTCCATG -ACGGAATGTGCTACTGCTTGTGTG -ACGGAATGTGCTACTGCTCTAGTG -ACGGAATGTGCTACTGCTCATCTG -ACGGAATGTGCTACTGCTGAGTTG -ACGGAATGTGCTACTGCTAGACTG -ACGGAATGTGCTACTGCTTCGGTA -ACGGAATGTGCTACTGCTTGCCTA -ACGGAATGTGCTACTGCTCCACTA -ACGGAATGTGCTACTGCTGGAGTA -ACGGAATGTGCTACTGCTTCGTCT -ACGGAATGTGCTACTGCTTGCACT -ACGGAATGTGCTACTGCTCTGACT -ACGGAATGTGCTACTGCTCAACCT -ACGGAATGTGCTACTGCTGCTACT -ACGGAATGTGCTACTGCTGGATCT -ACGGAATGTGCTACTGCTAAGGCT -ACGGAATGTGCTACTGCTTCAACC -ACGGAATGTGCTACTGCTTGTTCC -ACGGAATGTGCTACTGCTATTCCC -ACGGAATGTGCTACTGCTTTCTCG -ACGGAATGTGCTACTGCTTAGACG -ACGGAATGTGCTACTGCTGTAACG -ACGGAATGTGCTACTGCTACTTCG -ACGGAATGTGCTACTGCTTACGCA -ACGGAATGTGCTACTGCTCTTGCA -ACGGAATGTGCTACTGCTCGAACA -ACGGAATGTGCTACTGCTCAGTCA -ACGGAATGTGCTACTGCTGATCCA -ACGGAATGTGCTACTGCTACGACA -ACGGAATGTGCTACTGCTAGCTCA -ACGGAATGTGCTACTGCTTCACGT -ACGGAATGTGCTACTGCTCGTAGT -ACGGAATGTGCTACTGCTGTCAGT -ACGGAATGTGCTACTGCTGAAGGT -ACGGAATGTGCTACTGCTAACCGT -ACGGAATGTGCTACTGCTTTGTGC -ACGGAATGTGCTACTGCTCTAAGC -ACGGAATGTGCTACTGCTACTAGC -ACGGAATGTGCTACTGCTAGATGC -ACGGAATGTGCTACTGCTTGAAGG -ACGGAATGTGCTACTGCTCAATGG -ACGGAATGTGCTACTGCTATGAGG -ACGGAATGTGCTACTGCTAATGGG -ACGGAATGTGCTACTGCTTCCTGA -ACGGAATGTGCTACTGCTTAGCGA -ACGGAATGTGCTACTGCTCACAGA -ACGGAATGTGCTACTGCTGCAAGA -ACGGAATGTGCTACTGCTGGTTGA -ACGGAATGTGCTACTGCTTCCGAT -ACGGAATGTGCTACTGCTTGGCAT -ACGGAATGTGCTACTGCTCGAGAT -ACGGAATGTGCTACTGCTTACCAC -ACGGAATGTGCTACTGCTCAGAAC -ACGGAATGTGCTACTGCTGTCTAC -ACGGAATGTGCTACTGCTACGTAC -ACGGAATGTGCTACTGCTAGTGAC -ACGGAATGTGCTACTGCTCTGTAG -ACGGAATGTGCTACTGCTCCTAAG -ACGGAATGTGCTACTGCTGTTCAG -ACGGAATGTGCTACTGCTGCATAG -ACGGAATGTGCTACTGCTGACAAG -ACGGAATGTGCTACTGCTAAGCAG -ACGGAATGTGCTACTGCTCGTCAA -ACGGAATGTGCTACTGCTGCTGAA -ACGGAATGTGCTACTGCTAGTACG -ACGGAATGTGCTACTGCTATCCGA -ACGGAATGTGCTACTGCTATGGGA -ACGGAATGTGCTACTGCTGTGCAA -ACGGAATGTGCTACTGCTGAGGAA -ACGGAATGTGCTACTGCTCAGGTA -ACGGAATGTGCTACTGCTGACTCT -ACGGAATGTGCTACTGCTAGTCCT -ACGGAATGTGCTACTGCTTAAGCC -ACGGAATGTGCTACTGCTATAGCC -ACGGAATGTGCTACTGCTTAACCG -ACGGAATGTGCTACTGCTATGCCA -ACGGAATGTGCTTCTGGAGGAAAC -ACGGAATGTGCTTCTGGAAACACC -ACGGAATGTGCTTCTGGAATCGAG -ACGGAATGTGCTTCTGGACTCCTT -ACGGAATGTGCTTCTGGACCTGTT -ACGGAATGTGCTTCTGGACGGTTT -ACGGAATGTGCTTCTGGAGTGGTT -ACGGAATGTGCTTCTGGAGCCTTT -ACGGAATGTGCTTCTGGAGGTCTT -ACGGAATGTGCTTCTGGAACGCTT -ACGGAATGTGCTTCTGGAAGCGTT -ACGGAATGTGCTTCTGGATTCGTC -ACGGAATGTGCTTCTGGATCTCTC -ACGGAATGTGCTTCTGGATGGATC -ACGGAATGTGCTTCTGGACACTTC -ACGGAATGTGCTTCTGGAGTACTC -ACGGAATGTGCTTCTGGAGATGTC -ACGGAATGTGCTTCTGGAACAGTC -ACGGAATGTGCTTCTGGATTGCTG -ACGGAATGTGCTTCTGGATCCATG -ACGGAATGTGCTTCTGGATGTGTG -ACGGAATGTGCTTCTGGACTAGTG -ACGGAATGTGCTTCTGGACATCTG -ACGGAATGTGCTTCTGGAGAGTTG -ACGGAATGTGCTTCTGGAAGACTG -ACGGAATGTGCTTCTGGATCGGTA -ACGGAATGTGCTTCTGGATGCCTA -ACGGAATGTGCTTCTGGACCACTA -ACGGAATGTGCTTCTGGAGGAGTA -ACGGAATGTGCTTCTGGATCGTCT -ACGGAATGTGCTTCTGGATGCACT -ACGGAATGTGCTTCTGGACTGACT -ACGGAATGTGCTTCTGGACAACCT -ACGGAATGTGCTTCTGGAGCTACT -ACGGAATGTGCTTCTGGAGGATCT -ACGGAATGTGCTTCTGGAAAGGCT -ACGGAATGTGCTTCTGGATCAACC -ACGGAATGTGCTTCTGGATGTTCC -ACGGAATGTGCTTCTGGAATTCCC -ACGGAATGTGCTTCTGGATTCTCG -ACGGAATGTGCTTCTGGATAGACG -ACGGAATGTGCTTCTGGAGTAACG -ACGGAATGTGCTTCTGGAACTTCG -ACGGAATGTGCTTCTGGATACGCA -ACGGAATGTGCTTCTGGACTTGCA -ACGGAATGTGCTTCTGGACGAACA -ACGGAATGTGCTTCTGGACAGTCA -ACGGAATGTGCTTCTGGAGATCCA -ACGGAATGTGCTTCTGGAACGACA -ACGGAATGTGCTTCTGGAAGCTCA -ACGGAATGTGCTTCTGGATCACGT -ACGGAATGTGCTTCTGGACGTAGT -ACGGAATGTGCTTCTGGAGTCAGT -ACGGAATGTGCTTCTGGAGAAGGT -ACGGAATGTGCTTCTGGAAACCGT -ACGGAATGTGCTTCTGGATTGTGC -ACGGAATGTGCTTCTGGACTAAGC -ACGGAATGTGCTTCTGGAACTAGC -ACGGAATGTGCTTCTGGAAGATGC -ACGGAATGTGCTTCTGGATGAAGG -ACGGAATGTGCTTCTGGACAATGG -ACGGAATGTGCTTCTGGAATGAGG -ACGGAATGTGCTTCTGGAAATGGG -ACGGAATGTGCTTCTGGATCCTGA -ACGGAATGTGCTTCTGGATAGCGA -ACGGAATGTGCTTCTGGACACAGA -ACGGAATGTGCTTCTGGAGCAAGA -ACGGAATGTGCTTCTGGAGGTTGA -ACGGAATGTGCTTCTGGATCCGAT -ACGGAATGTGCTTCTGGATGGCAT -ACGGAATGTGCTTCTGGACGAGAT -ACGGAATGTGCTTCTGGATACCAC -ACGGAATGTGCTTCTGGACAGAAC -ACGGAATGTGCTTCTGGAGTCTAC -ACGGAATGTGCTTCTGGAACGTAC -ACGGAATGTGCTTCTGGAAGTGAC -ACGGAATGTGCTTCTGGACTGTAG -ACGGAATGTGCTTCTGGACCTAAG -ACGGAATGTGCTTCTGGAGTTCAG -ACGGAATGTGCTTCTGGAGCATAG -ACGGAATGTGCTTCTGGAGACAAG -ACGGAATGTGCTTCTGGAAAGCAG -ACGGAATGTGCTTCTGGACGTCAA -ACGGAATGTGCTTCTGGAGCTGAA -ACGGAATGTGCTTCTGGAAGTACG -ACGGAATGTGCTTCTGGAATCCGA -ACGGAATGTGCTTCTGGAATGGGA -ACGGAATGTGCTTCTGGAGTGCAA -ACGGAATGTGCTTCTGGAGAGGAA -ACGGAATGTGCTTCTGGACAGGTA -ACGGAATGTGCTTCTGGAGACTCT -ACGGAATGTGCTTCTGGAAGTCCT -ACGGAATGTGCTTCTGGATAAGCC -ACGGAATGTGCTTCTGGAATAGCC -ACGGAATGTGCTTCTGGATAACCG -ACGGAATGTGCTTCTGGAATGCCA -ACGGAATGTGCTGCTAAGGGAAAC -ACGGAATGTGCTGCTAAGAACACC -ACGGAATGTGCTGCTAAGATCGAG -ACGGAATGTGCTGCTAAGCTCCTT -ACGGAATGTGCTGCTAAGCCTGTT -ACGGAATGTGCTGCTAAGCGGTTT -ACGGAATGTGCTGCTAAGGTGGTT -ACGGAATGTGCTGCTAAGGCCTTT -ACGGAATGTGCTGCTAAGGGTCTT -ACGGAATGTGCTGCTAAGACGCTT -ACGGAATGTGCTGCTAAGAGCGTT -ACGGAATGTGCTGCTAAGTTCGTC -ACGGAATGTGCTGCTAAGTCTCTC -ACGGAATGTGCTGCTAAGTGGATC -ACGGAATGTGCTGCTAAGCACTTC -ACGGAATGTGCTGCTAAGGTACTC -ACGGAATGTGCTGCTAAGGATGTC -ACGGAATGTGCTGCTAAGACAGTC -ACGGAATGTGCTGCTAAGTTGCTG -ACGGAATGTGCTGCTAAGTCCATG -ACGGAATGTGCTGCTAAGTGTGTG -ACGGAATGTGCTGCTAAGCTAGTG -ACGGAATGTGCTGCTAAGCATCTG -ACGGAATGTGCTGCTAAGGAGTTG -ACGGAATGTGCTGCTAAGAGACTG -ACGGAATGTGCTGCTAAGTCGGTA -ACGGAATGTGCTGCTAAGTGCCTA -ACGGAATGTGCTGCTAAGCCACTA -ACGGAATGTGCTGCTAAGGGAGTA -ACGGAATGTGCTGCTAAGTCGTCT -ACGGAATGTGCTGCTAAGTGCACT -ACGGAATGTGCTGCTAAGCTGACT -ACGGAATGTGCTGCTAAGCAACCT -ACGGAATGTGCTGCTAAGGCTACT -ACGGAATGTGCTGCTAAGGGATCT -ACGGAATGTGCTGCTAAGAAGGCT -ACGGAATGTGCTGCTAAGTCAACC -ACGGAATGTGCTGCTAAGTGTTCC -ACGGAATGTGCTGCTAAGATTCCC -ACGGAATGTGCTGCTAAGTTCTCG -ACGGAATGTGCTGCTAAGTAGACG -ACGGAATGTGCTGCTAAGGTAACG -ACGGAATGTGCTGCTAAGACTTCG -ACGGAATGTGCTGCTAAGTACGCA -ACGGAATGTGCTGCTAAGCTTGCA -ACGGAATGTGCTGCTAAGCGAACA -ACGGAATGTGCTGCTAAGCAGTCA -ACGGAATGTGCTGCTAAGGATCCA -ACGGAATGTGCTGCTAAGACGACA -ACGGAATGTGCTGCTAAGAGCTCA -ACGGAATGTGCTGCTAAGTCACGT -ACGGAATGTGCTGCTAAGCGTAGT -ACGGAATGTGCTGCTAAGGTCAGT -ACGGAATGTGCTGCTAAGGAAGGT -ACGGAATGTGCTGCTAAGAACCGT -ACGGAATGTGCTGCTAAGTTGTGC -ACGGAATGTGCTGCTAAGCTAAGC -ACGGAATGTGCTGCTAAGACTAGC -ACGGAATGTGCTGCTAAGAGATGC -ACGGAATGTGCTGCTAAGTGAAGG -ACGGAATGTGCTGCTAAGCAATGG -ACGGAATGTGCTGCTAAGATGAGG -ACGGAATGTGCTGCTAAGAATGGG -ACGGAATGTGCTGCTAAGTCCTGA -ACGGAATGTGCTGCTAAGTAGCGA -ACGGAATGTGCTGCTAAGCACAGA -ACGGAATGTGCTGCTAAGGCAAGA -ACGGAATGTGCTGCTAAGGGTTGA -ACGGAATGTGCTGCTAAGTCCGAT -ACGGAATGTGCTGCTAAGTGGCAT -ACGGAATGTGCTGCTAAGCGAGAT -ACGGAATGTGCTGCTAAGTACCAC -ACGGAATGTGCTGCTAAGCAGAAC -ACGGAATGTGCTGCTAAGGTCTAC -ACGGAATGTGCTGCTAAGACGTAC -ACGGAATGTGCTGCTAAGAGTGAC -ACGGAATGTGCTGCTAAGCTGTAG -ACGGAATGTGCTGCTAAGCCTAAG -ACGGAATGTGCTGCTAAGGTTCAG -ACGGAATGTGCTGCTAAGGCATAG -ACGGAATGTGCTGCTAAGGACAAG -ACGGAATGTGCTGCTAAGAAGCAG -ACGGAATGTGCTGCTAAGCGTCAA -ACGGAATGTGCTGCTAAGGCTGAA -ACGGAATGTGCTGCTAAGAGTACG -ACGGAATGTGCTGCTAAGATCCGA -ACGGAATGTGCTGCTAAGATGGGA -ACGGAATGTGCTGCTAAGGTGCAA -ACGGAATGTGCTGCTAAGGAGGAA -ACGGAATGTGCTGCTAAGCAGGTA -ACGGAATGTGCTGCTAAGGACTCT -ACGGAATGTGCTGCTAAGAGTCCT -ACGGAATGTGCTGCTAAGTAAGCC -ACGGAATGTGCTGCTAAGATAGCC -ACGGAATGTGCTGCTAAGTAACCG -ACGGAATGTGCTGCTAAGATGCCA -ACGGAATGTGCTACCTCAGGAAAC -ACGGAATGTGCTACCTCAAACACC -ACGGAATGTGCTACCTCAATCGAG -ACGGAATGTGCTACCTCACTCCTT -ACGGAATGTGCTACCTCACCTGTT -ACGGAATGTGCTACCTCACGGTTT -ACGGAATGTGCTACCTCAGTGGTT -ACGGAATGTGCTACCTCAGCCTTT -ACGGAATGTGCTACCTCAGGTCTT -ACGGAATGTGCTACCTCAACGCTT -ACGGAATGTGCTACCTCAAGCGTT -ACGGAATGTGCTACCTCATTCGTC -ACGGAATGTGCTACCTCATCTCTC -ACGGAATGTGCTACCTCATGGATC -ACGGAATGTGCTACCTCACACTTC -ACGGAATGTGCTACCTCAGTACTC -ACGGAATGTGCTACCTCAGATGTC -ACGGAATGTGCTACCTCAACAGTC -ACGGAATGTGCTACCTCATTGCTG -ACGGAATGTGCTACCTCATCCATG -ACGGAATGTGCTACCTCATGTGTG -ACGGAATGTGCTACCTCACTAGTG -ACGGAATGTGCTACCTCACATCTG -ACGGAATGTGCTACCTCAGAGTTG -ACGGAATGTGCTACCTCAAGACTG -ACGGAATGTGCTACCTCATCGGTA -ACGGAATGTGCTACCTCATGCCTA -ACGGAATGTGCTACCTCACCACTA -ACGGAATGTGCTACCTCAGGAGTA -ACGGAATGTGCTACCTCATCGTCT -ACGGAATGTGCTACCTCATGCACT -ACGGAATGTGCTACCTCACTGACT -ACGGAATGTGCTACCTCACAACCT -ACGGAATGTGCTACCTCAGCTACT -ACGGAATGTGCTACCTCAGGATCT -ACGGAATGTGCTACCTCAAAGGCT -ACGGAATGTGCTACCTCATCAACC -ACGGAATGTGCTACCTCATGTTCC -ACGGAATGTGCTACCTCAATTCCC -ACGGAATGTGCTACCTCATTCTCG -ACGGAATGTGCTACCTCATAGACG -ACGGAATGTGCTACCTCAGTAACG -ACGGAATGTGCTACCTCAACTTCG -ACGGAATGTGCTACCTCATACGCA -ACGGAATGTGCTACCTCACTTGCA -ACGGAATGTGCTACCTCACGAACA -ACGGAATGTGCTACCTCACAGTCA -ACGGAATGTGCTACCTCAGATCCA -ACGGAATGTGCTACCTCAACGACA -ACGGAATGTGCTACCTCAAGCTCA -ACGGAATGTGCTACCTCATCACGT -ACGGAATGTGCTACCTCACGTAGT -ACGGAATGTGCTACCTCAGTCAGT -ACGGAATGTGCTACCTCAGAAGGT -ACGGAATGTGCTACCTCAAACCGT -ACGGAATGTGCTACCTCATTGTGC -ACGGAATGTGCTACCTCACTAAGC -ACGGAATGTGCTACCTCAACTAGC -ACGGAATGTGCTACCTCAAGATGC -ACGGAATGTGCTACCTCATGAAGG -ACGGAATGTGCTACCTCACAATGG -ACGGAATGTGCTACCTCAATGAGG -ACGGAATGTGCTACCTCAAATGGG -ACGGAATGTGCTACCTCATCCTGA -ACGGAATGTGCTACCTCATAGCGA -ACGGAATGTGCTACCTCACACAGA -ACGGAATGTGCTACCTCAGCAAGA -ACGGAATGTGCTACCTCAGGTTGA -ACGGAATGTGCTACCTCATCCGAT -ACGGAATGTGCTACCTCATGGCAT -ACGGAATGTGCTACCTCACGAGAT -ACGGAATGTGCTACCTCATACCAC -ACGGAATGTGCTACCTCACAGAAC -ACGGAATGTGCTACCTCAGTCTAC -ACGGAATGTGCTACCTCAACGTAC -ACGGAATGTGCTACCTCAAGTGAC -ACGGAATGTGCTACCTCACTGTAG -ACGGAATGTGCTACCTCACCTAAG -ACGGAATGTGCTACCTCAGTTCAG -ACGGAATGTGCTACCTCAGCATAG -ACGGAATGTGCTACCTCAGACAAG -ACGGAATGTGCTACCTCAAAGCAG -ACGGAATGTGCTACCTCACGTCAA -ACGGAATGTGCTACCTCAGCTGAA -ACGGAATGTGCTACCTCAAGTACG -ACGGAATGTGCTACCTCAATCCGA -ACGGAATGTGCTACCTCAATGGGA -ACGGAATGTGCTACCTCAGTGCAA -ACGGAATGTGCTACCTCAGAGGAA -ACGGAATGTGCTACCTCACAGGTA -ACGGAATGTGCTACCTCAGACTCT -ACGGAATGTGCTACCTCAAGTCCT -ACGGAATGTGCTACCTCATAAGCC -ACGGAATGTGCTACCTCAATAGCC -ACGGAATGTGCTACCTCATAACCG -ACGGAATGTGCTACCTCAATGCCA -ACGGAATGTGCTTCCTGTGGAAAC -ACGGAATGTGCTTCCTGTAACACC -ACGGAATGTGCTTCCTGTATCGAG -ACGGAATGTGCTTCCTGTCTCCTT -ACGGAATGTGCTTCCTGTCCTGTT -ACGGAATGTGCTTCCTGTCGGTTT -ACGGAATGTGCTTCCTGTGTGGTT -ACGGAATGTGCTTCCTGTGCCTTT -ACGGAATGTGCTTCCTGTGGTCTT -ACGGAATGTGCTTCCTGTACGCTT -ACGGAATGTGCTTCCTGTAGCGTT -ACGGAATGTGCTTCCTGTTTCGTC -ACGGAATGTGCTTCCTGTTCTCTC -ACGGAATGTGCTTCCTGTTGGATC -ACGGAATGTGCTTCCTGTCACTTC -ACGGAATGTGCTTCCTGTGTACTC -ACGGAATGTGCTTCCTGTGATGTC -ACGGAATGTGCTTCCTGTACAGTC -ACGGAATGTGCTTCCTGTTTGCTG -ACGGAATGTGCTTCCTGTTCCATG -ACGGAATGTGCTTCCTGTTGTGTG -ACGGAATGTGCTTCCTGTCTAGTG -ACGGAATGTGCTTCCTGTCATCTG -ACGGAATGTGCTTCCTGTGAGTTG -ACGGAATGTGCTTCCTGTAGACTG -ACGGAATGTGCTTCCTGTTCGGTA -ACGGAATGTGCTTCCTGTTGCCTA -ACGGAATGTGCTTCCTGTCCACTA -ACGGAATGTGCTTCCTGTGGAGTA -ACGGAATGTGCTTCCTGTTCGTCT -ACGGAATGTGCTTCCTGTTGCACT -ACGGAATGTGCTTCCTGTCTGACT -ACGGAATGTGCTTCCTGTCAACCT -ACGGAATGTGCTTCCTGTGCTACT -ACGGAATGTGCTTCCTGTGGATCT -ACGGAATGTGCTTCCTGTAAGGCT -ACGGAATGTGCTTCCTGTTCAACC -ACGGAATGTGCTTCCTGTTGTTCC -ACGGAATGTGCTTCCTGTATTCCC -ACGGAATGTGCTTCCTGTTTCTCG -ACGGAATGTGCTTCCTGTTAGACG -ACGGAATGTGCTTCCTGTGTAACG -ACGGAATGTGCTTCCTGTACTTCG -ACGGAATGTGCTTCCTGTTACGCA -ACGGAATGTGCTTCCTGTCTTGCA -ACGGAATGTGCTTCCTGTCGAACA -ACGGAATGTGCTTCCTGTCAGTCA -ACGGAATGTGCTTCCTGTGATCCA -ACGGAATGTGCTTCCTGTACGACA -ACGGAATGTGCTTCCTGTAGCTCA -ACGGAATGTGCTTCCTGTTCACGT -ACGGAATGTGCTTCCTGTCGTAGT -ACGGAATGTGCTTCCTGTGTCAGT -ACGGAATGTGCTTCCTGTGAAGGT -ACGGAATGTGCTTCCTGTAACCGT -ACGGAATGTGCTTCCTGTTTGTGC -ACGGAATGTGCTTCCTGTCTAAGC -ACGGAATGTGCTTCCTGTACTAGC -ACGGAATGTGCTTCCTGTAGATGC -ACGGAATGTGCTTCCTGTTGAAGG -ACGGAATGTGCTTCCTGTCAATGG -ACGGAATGTGCTTCCTGTATGAGG -ACGGAATGTGCTTCCTGTAATGGG -ACGGAATGTGCTTCCTGTTCCTGA -ACGGAATGTGCTTCCTGTTAGCGA -ACGGAATGTGCTTCCTGTCACAGA -ACGGAATGTGCTTCCTGTGCAAGA -ACGGAATGTGCTTCCTGTGGTTGA -ACGGAATGTGCTTCCTGTTCCGAT -ACGGAATGTGCTTCCTGTTGGCAT -ACGGAATGTGCTTCCTGTCGAGAT -ACGGAATGTGCTTCCTGTTACCAC -ACGGAATGTGCTTCCTGTCAGAAC -ACGGAATGTGCTTCCTGTGTCTAC -ACGGAATGTGCTTCCTGTACGTAC -ACGGAATGTGCTTCCTGTAGTGAC -ACGGAATGTGCTTCCTGTCTGTAG -ACGGAATGTGCTTCCTGTCCTAAG -ACGGAATGTGCTTCCTGTGTTCAG -ACGGAATGTGCTTCCTGTGCATAG -ACGGAATGTGCTTCCTGTGACAAG -ACGGAATGTGCTTCCTGTAAGCAG -ACGGAATGTGCTTCCTGTCGTCAA -ACGGAATGTGCTTCCTGTGCTGAA -ACGGAATGTGCTTCCTGTAGTACG -ACGGAATGTGCTTCCTGTATCCGA -ACGGAATGTGCTTCCTGTATGGGA -ACGGAATGTGCTTCCTGTGTGCAA -ACGGAATGTGCTTCCTGTGAGGAA -ACGGAATGTGCTTCCTGTCAGGTA -ACGGAATGTGCTTCCTGTGACTCT -ACGGAATGTGCTTCCTGTAGTCCT -ACGGAATGTGCTTCCTGTTAAGCC -ACGGAATGTGCTTCCTGTATAGCC -ACGGAATGTGCTTCCTGTTAACCG -ACGGAATGTGCTTCCTGTATGCCA -ACGGAATGTGCTCCCATTGGAAAC -ACGGAATGTGCTCCCATTAACACC -ACGGAATGTGCTCCCATTATCGAG -ACGGAATGTGCTCCCATTCTCCTT -ACGGAATGTGCTCCCATTCCTGTT -ACGGAATGTGCTCCCATTCGGTTT -ACGGAATGTGCTCCCATTGTGGTT -ACGGAATGTGCTCCCATTGCCTTT -ACGGAATGTGCTCCCATTGGTCTT -ACGGAATGTGCTCCCATTACGCTT -ACGGAATGTGCTCCCATTAGCGTT -ACGGAATGTGCTCCCATTTTCGTC -ACGGAATGTGCTCCCATTTCTCTC -ACGGAATGTGCTCCCATTTGGATC -ACGGAATGTGCTCCCATTCACTTC -ACGGAATGTGCTCCCATTGTACTC -ACGGAATGTGCTCCCATTGATGTC -ACGGAATGTGCTCCCATTACAGTC -ACGGAATGTGCTCCCATTTTGCTG -ACGGAATGTGCTCCCATTTCCATG -ACGGAATGTGCTCCCATTTGTGTG -ACGGAATGTGCTCCCATTCTAGTG -ACGGAATGTGCTCCCATTCATCTG -ACGGAATGTGCTCCCATTGAGTTG -ACGGAATGTGCTCCCATTAGACTG -ACGGAATGTGCTCCCATTTCGGTA -ACGGAATGTGCTCCCATTTGCCTA -ACGGAATGTGCTCCCATTCCACTA -ACGGAATGTGCTCCCATTGGAGTA -ACGGAATGTGCTCCCATTTCGTCT -ACGGAATGTGCTCCCATTTGCACT -ACGGAATGTGCTCCCATTCTGACT -ACGGAATGTGCTCCCATTCAACCT -ACGGAATGTGCTCCCATTGCTACT -ACGGAATGTGCTCCCATTGGATCT -ACGGAATGTGCTCCCATTAAGGCT -ACGGAATGTGCTCCCATTTCAACC -ACGGAATGTGCTCCCATTTGTTCC -ACGGAATGTGCTCCCATTATTCCC -ACGGAATGTGCTCCCATTTTCTCG -ACGGAATGTGCTCCCATTTAGACG -ACGGAATGTGCTCCCATTGTAACG -ACGGAATGTGCTCCCATTACTTCG -ACGGAATGTGCTCCCATTTACGCA -ACGGAATGTGCTCCCATTCTTGCA -ACGGAATGTGCTCCCATTCGAACA -ACGGAATGTGCTCCCATTCAGTCA -ACGGAATGTGCTCCCATTGATCCA -ACGGAATGTGCTCCCATTACGACA -ACGGAATGTGCTCCCATTAGCTCA -ACGGAATGTGCTCCCATTTCACGT -ACGGAATGTGCTCCCATTCGTAGT -ACGGAATGTGCTCCCATTGTCAGT -ACGGAATGTGCTCCCATTGAAGGT -ACGGAATGTGCTCCCATTAACCGT -ACGGAATGTGCTCCCATTTTGTGC -ACGGAATGTGCTCCCATTCTAAGC -ACGGAATGTGCTCCCATTACTAGC -ACGGAATGTGCTCCCATTAGATGC -ACGGAATGTGCTCCCATTTGAAGG -ACGGAATGTGCTCCCATTCAATGG -ACGGAATGTGCTCCCATTATGAGG -ACGGAATGTGCTCCCATTAATGGG -ACGGAATGTGCTCCCATTTCCTGA -ACGGAATGTGCTCCCATTTAGCGA -ACGGAATGTGCTCCCATTCACAGA -ACGGAATGTGCTCCCATTGCAAGA -ACGGAATGTGCTCCCATTGGTTGA -ACGGAATGTGCTCCCATTTCCGAT -ACGGAATGTGCTCCCATTTGGCAT -ACGGAATGTGCTCCCATTCGAGAT -ACGGAATGTGCTCCCATTTACCAC -ACGGAATGTGCTCCCATTCAGAAC -ACGGAATGTGCTCCCATTGTCTAC -ACGGAATGTGCTCCCATTACGTAC -ACGGAATGTGCTCCCATTAGTGAC -ACGGAATGTGCTCCCATTCTGTAG -ACGGAATGTGCTCCCATTCCTAAG -ACGGAATGTGCTCCCATTGTTCAG -ACGGAATGTGCTCCCATTGCATAG -ACGGAATGTGCTCCCATTGACAAG -ACGGAATGTGCTCCCATTAAGCAG -ACGGAATGTGCTCCCATTCGTCAA -ACGGAATGTGCTCCCATTGCTGAA -ACGGAATGTGCTCCCATTAGTACG -ACGGAATGTGCTCCCATTATCCGA -ACGGAATGTGCTCCCATTATGGGA -ACGGAATGTGCTCCCATTGTGCAA -ACGGAATGTGCTCCCATTGAGGAA -ACGGAATGTGCTCCCATTCAGGTA -ACGGAATGTGCTCCCATTGACTCT -ACGGAATGTGCTCCCATTAGTCCT -ACGGAATGTGCTCCCATTTAAGCC -ACGGAATGTGCTCCCATTATAGCC -ACGGAATGTGCTCCCATTTAACCG -ACGGAATGTGCTCCCATTATGCCA -ACGGAATGTGCTTCGTTCGGAAAC -ACGGAATGTGCTTCGTTCAACACC -ACGGAATGTGCTTCGTTCATCGAG -ACGGAATGTGCTTCGTTCCTCCTT -ACGGAATGTGCTTCGTTCCCTGTT -ACGGAATGTGCTTCGTTCCGGTTT -ACGGAATGTGCTTCGTTCGTGGTT -ACGGAATGTGCTTCGTTCGCCTTT -ACGGAATGTGCTTCGTTCGGTCTT -ACGGAATGTGCTTCGTTCACGCTT -ACGGAATGTGCTTCGTTCAGCGTT -ACGGAATGTGCTTCGTTCTTCGTC -ACGGAATGTGCTTCGTTCTCTCTC -ACGGAATGTGCTTCGTTCTGGATC -ACGGAATGTGCTTCGTTCCACTTC -ACGGAATGTGCTTCGTTCGTACTC -ACGGAATGTGCTTCGTTCGATGTC -ACGGAATGTGCTTCGTTCACAGTC -ACGGAATGTGCTTCGTTCTTGCTG -ACGGAATGTGCTTCGTTCTCCATG -ACGGAATGTGCTTCGTTCTGTGTG -ACGGAATGTGCTTCGTTCCTAGTG -ACGGAATGTGCTTCGTTCCATCTG -ACGGAATGTGCTTCGTTCGAGTTG -ACGGAATGTGCTTCGTTCAGACTG -ACGGAATGTGCTTCGTTCTCGGTA -ACGGAATGTGCTTCGTTCTGCCTA -ACGGAATGTGCTTCGTTCCCACTA -ACGGAATGTGCTTCGTTCGGAGTA -ACGGAATGTGCTTCGTTCTCGTCT -ACGGAATGTGCTTCGTTCTGCACT -ACGGAATGTGCTTCGTTCCTGACT -ACGGAATGTGCTTCGTTCCAACCT -ACGGAATGTGCTTCGTTCGCTACT -ACGGAATGTGCTTCGTTCGGATCT -ACGGAATGTGCTTCGTTCAAGGCT -ACGGAATGTGCTTCGTTCTCAACC -ACGGAATGTGCTTCGTTCTGTTCC -ACGGAATGTGCTTCGTTCATTCCC -ACGGAATGTGCTTCGTTCTTCTCG -ACGGAATGTGCTTCGTTCTAGACG -ACGGAATGTGCTTCGTTCGTAACG -ACGGAATGTGCTTCGTTCACTTCG -ACGGAATGTGCTTCGTTCTACGCA -ACGGAATGTGCTTCGTTCCTTGCA -ACGGAATGTGCTTCGTTCCGAACA -ACGGAATGTGCTTCGTTCCAGTCA -ACGGAATGTGCTTCGTTCGATCCA -ACGGAATGTGCTTCGTTCACGACA -ACGGAATGTGCTTCGTTCAGCTCA -ACGGAATGTGCTTCGTTCTCACGT -ACGGAATGTGCTTCGTTCCGTAGT -ACGGAATGTGCTTCGTTCGTCAGT -ACGGAATGTGCTTCGTTCGAAGGT -ACGGAATGTGCTTCGTTCAACCGT -ACGGAATGTGCTTCGTTCTTGTGC -ACGGAATGTGCTTCGTTCCTAAGC -ACGGAATGTGCTTCGTTCACTAGC -ACGGAATGTGCTTCGTTCAGATGC -ACGGAATGTGCTTCGTTCTGAAGG -ACGGAATGTGCTTCGTTCCAATGG -ACGGAATGTGCTTCGTTCATGAGG -ACGGAATGTGCTTCGTTCAATGGG -ACGGAATGTGCTTCGTTCTCCTGA -ACGGAATGTGCTTCGTTCTAGCGA -ACGGAATGTGCTTCGTTCCACAGA -ACGGAATGTGCTTCGTTCGCAAGA -ACGGAATGTGCTTCGTTCGGTTGA -ACGGAATGTGCTTCGTTCTCCGAT -ACGGAATGTGCTTCGTTCTGGCAT -ACGGAATGTGCTTCGTTCCGAGAT -ACGGAATGTGCTTCGTTCTACCAC -ACGGAATGTGCTTCGTTCCAGAAC -ACGGAATGTGCTTCGTTCGTCTAC -ACGGAATGTGCTTCGTTCACGTAC -ACGGAATGTGCTTCGTTCAGTGAC -ACGGAATGTGCTTCGTTCCTGTAG -ACGGAATGTGCTTCGTTCCCTAAG -ACGGAATGTGCTTCGTTCGTTCAG -ACGGAATGTGCTTCGTTCGCATAG -ACGGAATGTGCTTCGTTCGACAAG -ACGGAATGTGCTTCGTTCAAGCAG -ACGGAATGTGCTTCGTTCCGTCAA -ACGGAATGTGCTTCGTTCGCTGAA -ACGGAATGTGCTTCGTTCAGTACG -ACGGAATGTGCTTCGTTCATCCGA -ACGGAATGTGCTTCGTTCATGGGA -ACGGAATGTGCTTCGTTCGTGCAA -ACGGAATGTGCTTCGTTCGAGGAA -ACGGAATGTGCTTCGTTCCAGGTA -ACGGAATGTGCTTCGTTCGACTCT -ACGGAATGTGCTTCGTTCAGTCCT -ACGGAATGTGCTTCGTTCTAAGCC -ACGGAATGTGCTTCGTTCATAGCC -ACGGAATGTGCTTCGTTCTAACCG -ACGGAATGTGCTTCGTTCATGCCA -ACGGAATGTGCTACGTAGGGAAAC -ACGGAATGTGCTACGTAGAACACC -ACGGAATGTGCTACGTAGATCGAG -ACGGAATGTGCTACGTAGCTCCTT -ACGGAATGTGCTACGTAGCCTGTT -ACGGAATGTGCTACGTAGCGGTTT -ACGGAATGTGCTACGTAGGTGGTT -ACGGAATGTGCTACGTAGGCCTTT -ACGGAATGTGCTACGTAGGGTCTT -ACGGAATGTGCTACGTAGACGCTT -ACGGAATGTGCTACGTAGAGCGTT -ACGGAATGTGCTACGTAGTTCGTC -ACGGAATGTGCTACGTAGTCTCTC -ACGGAATGTGCTACGTAGTGGATC -ACGGAATGTGCTACGTAGCACTTC -ACGGAATGTGCTACGTAGGTACTC -ACGGAATGTGCTACGTAGGATGTC -ACGGAATGTGCTACGTAGACAGTC -ACGGAATGTGCTACGTAGTTGCTG -ACGGAATGTGCTACGTAGTCCATG -ACGGAATGTGCTACGTAGTGTGTG -ACGGAATGTGCTACGTAGCTAGTG -ACGGAATGTGCTACGTAGCATCTG -ACGGAATGTGCTACGTAGGAGTTG -ACGGAATGTGCTACGTAGAGACTG -ACGGAATGTGCTACGTAGTCGGTA -ACGGAATGTGCTACGTAGTGCCTA -ACGGAATGTGCTACGTAGCCACTA -ACGGAATGTGCTACGTAGGGAGTA -ACGGAATGTGCTACGTAGTCGTCT -ACGGAATGTGCTACGTAGTGCACT -ACGGAATGTGCTACGTAGCTGACT -ACGGAATGTGCTACGTAGCAACCT -ACGGAATGTGCTACGTAGGCTACT -ACGGAATGTGCTACGTAGGGATCT -ACGGAATGTGCTACGTAGAAGGCT -ACGGAATGTGCTACGTAGTCAACC -ACGGAATGTGCTACGTAGTGTTCC -ACGGAATGTGCTACGTAGATTCCC -ACGGAATGTGCTACGTAGTTCTCG -ACGGAATGTGCTACGTAGTAGACG -ACGGAATGTGCTACGTAGGTAACG -ACGGAATGTGCTACGTAGACTTCG -ACGGAATGTGCTACGTAGTACGCA -ACGGAATGTGCTACGTAGCTTGCA -ACGGAATGTGCTACGTAGCGAACA -ACGGAATGTGCTACGTAGCAGTCA -ACGGAATGTGCTACGTAGGATCCA -ACGGAATGTGCTACGTAGACGACA -ACGGAATGTGCTACGTAGAGCTCA -ACGGAATGTGCTACGTAGTCACGT -ACGGAATGTGCTACGTAGCGTAGT -ACGGAATGTGCTACGTAGGTCAGT -ACGGAATGTGCTACGTAGGAAGGT -ACGGAATGTGCTACGTAGAACCGT -ACGGAATGTGCTACGTAGTTGTGC -ACGGAATGTGCTACGTAGCTAAGC -ACGGAATGTGCTACGTAGACTAGC -ACGGAATGTGCTACGTAGAGATGC -ACGGAATGTGCTACGTAGTGAAGG -ACGGAATGTGCTACGTAGCAATGG -ACGGAATGTGCTACGTAGATGAGG -ACGGAATGTGCTACGTAGAATGGG -ACGGAATGTGCTACGTAGTCCTGA -ACGGAATGTGCTACGTAGTAGCGA -ACGGAATGTGCTACGTAGCACAGA -ACGGAATGTGCTACGTAGGCAAGA -ACGGAATGTGCTACGTAGGGTTGA -ACGGAATGTGCTACGTAGTCCGAT -ACGGAATGTGCTACGTAGTGGCAT -ACGGAATGTGCTACGTAGCGAGAT -ACGGAATGTGCTACGTAGTACCAC -ACGGAATGTGCTACGTAGCAGAAC -ACGGAATGTGCTACGTAGGTCTAC -ACGGAATGTGCTACGTAGACGTAC -ACGGAATGTGCTACGTAGAGTGAC -ACGGAATGTGCTACGTAGCTGTAG -ACGGAATGTGCTACGTAGCCTAAG -ACGGAATGTGCTACGTAGGTTCAG -ACGGAATGTGCTACGTAGGCATAG -ACGGAATGTGCTACGTAGGACAAG -ACGGAATGTGCTACGTAGAAGCAG -ACGGAATGTGCTACGTAGCGTCAA -ACGGAATGTGCTACGTAGGCTGAA -ACGGAATGTGCTACGTAGAGTACG -ACGGAATGTGCTACGTAGATCCGA -ACGGAATGTGCTACGTAGATGGGA -ACGGAATGTGCTACGTAGGTGCAA -ACGGAATGTGCTACGTAGGAGGAA -ACGGAATGTGCTACGTAGCAGGTA -ACGGAATGTGCTACGTAGGACTCT -ACGGAATGTGCTACGTAGAGTCCT -ACGGAATGTGCTACGTAGTAAGCC -ACGGAATGTGCTACGTAGATAGCC -ACGGAATGTGCTACGTAGTAACCG -ACGGAATGTGCTACGTAGATGCCA -ACGGAATGTGCTACGGTAGGAAAC -ACGGAATGTGCTACGGTAAACACC -ACGGAATGTGCTACGGTAATCGAG -ACGGAATGTGCTACGGTACTCCTT -ACGGAATGTGCTACGGTACCTGTT -ACGGAATGTGCTACGGTACGGTTT -ACGGAATGTGCTACGGTAGTGGTT -ACGGAATGTGCTACGGTAGCCTTT -ACGGAATGTGCTACGGTAGGTCTT -ACGGAATGTGCTACGGTAACGCTT -ACGGAATGTGCTACGGTAAGCGTT -ACGGAATGTGCTACGGTATTCGTC -ACGGAATGTGCTACGGTATCTCTC -ACGGAATGTGCTACGGTATGGATC -ACGGAATGTGCTACGGTACACTTC -ACGGAATGTGCTACGGTAGTACTC -ACGGAATGTGCTACGGTAGATGTC -ACGGAATGTGCTACGGTAACAGTC -ACGGAATGTGCTACGGTATTGCTG -ACGGAATGTGCTACGGTATCCATG -ACGGAATGTGCTACGGTATGTGTG -ACGGAATGTGCTACGGTACTAGTG -ACGGAATGTGCTACGGTACATCTG -ACGGAATGTGCTACGGTAGAGTTG -ACGGAATGTGCTACGGTAAGACTG -ACGGAATGTGCTACGGTATCGGTA -ACGGAATGTGCTACGGTATGCCTA -ACGGAATGTGCTACGGTACCACTA -ACGGAATGTGCTACGGTAGGAGTA -ACGGAATGTGCTACGGTATCGTCT -ACGGAATGTGCTACGGTATGCACT -ACGGAATGTGCTACGGTACTGACT -ACGGAATGTGCTACGGTACAACCT -ACGGAATGTGCTACGGTAGCTACT -ACGGAATGTGCTACGGTAGGATCT -ACGGAATGTGCTACGGTAAAGGCT -ACGGAATGTGCTACGGTATCAACC -ACGGAATGTGCTACGGTATGTTCC -ACGGAATGTGCTACGGTAATTCCC -ACGGAATGTGCTACGGTATTCTCG -ACGGAATGTGCTACGGTATAGACG -ACGGAATGTGCTACGGTAGTAACG -ACGGAATGTGCTACGGTAACTTCG -ACGGAATGTGCTACGGTATACGCA -ACGGAATGTGCTACGGTACTTGCA -ACGGAATGTGCTACGGTACGAACA -ACGGAATGTGCTACGGTACAGTCA -ACGGAATGTGCTACGGTAGATCCA -ACGGAATGTGCTACGGTAACGACA -ACGGAATGTGCTACGGTAAGCTCA -ACGGAATGTGCTACGGTATCACGT -ACGGAATGTGCTACGGTACGTAGT -ACGGAATGTGCTACGGTAGTCAGT -ACGGAATGTGCTACGGTAGAAGGT -ACGGAATGTGCTACGGTAAACCGT -ACGGAATGTGCTACGGTATTGTGC -ACGGAATGTGCTACGGTACTAAGC -ACGGAATGTGCTACGGTAACTAGC -ACGGAATGTGCTACGGTAAGATGC -ACGGAATGTGCTACGGTATGAAGG -ACGGAATGTGCTACGGTACAATGG -ACGGAATGTGCTACGGTAATGAGG -ACGGAATGTGCTACGGTAAATGGG -ACGGAATGTGCTACGGTATCCTGA -ACGGAATGTGCTACGGTATAGCGA -ACGGAATGTGCTACGGTACACAGA -ACGGAATGTGCTACGGTAGCAAGA -ACGGAATGTGCTACGGTAGGTTGA -ACGGAATGTGCTACGGTATCCGAT -ACGGAATGTGCTACGGTATGGCAT -ACGGAATGTGCTACGGTACGAGAT -ACGGAATGTGCTACGGTATACCAC -ACGGAATGTGCTACGGTACAGAAC -ACGGAATGTGCTACGGTAGTCTAC -ACGGAATGTGCTACGGTAACGTAC -ACGGAATGTGCTACGGTAAGTGAC -ACGGAATGTGCTACGGTACTGTAG -ACGGAATGTGCTACGGTACCTAAG -ACGGAATGTGCTACGGTAGTTCAG -ACGGAATGTGCTACGGTAGCATAG -ACGGAATGTGCTACGGTAGACAAG -ACGGAATGTGCTACGGTAAAGCAG -ACGGAATGTGCTACGGTACGTCAA -ACGGAATGTGCTACGGTAGCTGAA -ACGGAATGTGCTACGGTAAGTACG -ACGGAATGTGCTACGGTAATCCGA -ACGGAATGTGCTACGGTAATGGGA -ACGGAATGTGCTACGGTAGTGCAA -ACGGAATGTGCTACGGTAGAGGAA -ACGGAATGTGCTACGGTACAGGTA -ACGGAATGTGCTACGGTAGACTCT -ACGGAATGTGCTACGGTAAGTCCT -ACGGAATGTGCTACGGTATAAGCC -ACGGAATGTGCTACGGTAATAGCC -ACGGAATGTGCTACGGTATAACCG -ACGGAATGTGCTACGGTAATGCCA -ACGGAATGTGCTTCGACTGGAAAC -ACGGAATGTGCTTCGACTAACACC -ACGGAATGTGCTTCGACTATCGAG -ACGGAATGTGCTTCGACTCTCCTT -ACGGAATGTGCTTCGACTCCTGTT -ACGGAATGTGCTTCGACTCGGTTT -ACGGAATGTGCTTCGACTGTGGTT -ACGGAATGTGCTTCGACTGCCTTT -ACGGAATGTGCTTCGACTGGTCTT -ACGGAATGTGCTTCGACTACGCTT -ACGGAATGTGCTTCGACTAGCGTT -ACGGAATGTGCTTCGACTTTCGTC -ACGGAATGTGCTTCGACTTCTCTC -ACGGAATGTGCTTCGACTTGGATC -ACGGAATGTGCTTCGACTCACTTC -ACGGAATGTGCTTCGACTGTACTC -ACGGAATGTGCTTCGACTGATGTC -ACGGAATGTGCTTCGACTACAGTC -ACGGAATGTGCTTCGACTTTGCTG -ACGGAATGTGCTTCGACTTCCATG -ACGGAATGTGCTTCGACTTGTGTG -ACGGAATGTGCTTCGACTCTAGTG -ACGGAATGTGCTTCGACTCATCTG -ACGGAATGTGCTTCGACTGAGTTG -ACGGAATGTGCTTCGACTAGACTG -ACGGAATGTGCTTCGACTTCGGTA -ACGGAATGTGCTTCGACTTGCCTA -ACGGAATGTGCTTCGACTCCACTA -ACGGAATGTGCTTCGACTGGAGTA -ACGGAATGTGCTTCGACTTCGTCT -ACGGAATGTGCTTCGACTTGCACT -ACGGAATGTGCTTCGACTCTGACT -ACGGAATGTGCTTCGACTCAACCT -ACGGAATGTGCTTCGACTGCTACT -ACGGAATGTGCTTCGACTGGATCT -ACGGAATGTGCTTCGACTAAGGCT -ACGGAATGTGCTTCGACTTCAACC -ACGGAATGTGCTTCGACTTGTTCC -ACGGAATGTGCTTCGACTATTCCC -ACGGAATGTGCTTCGACTTTCTCG -ACGGAATGTGCTTCGACTTAGACG -ACGGAATGTGCTTCGACTGTAACG -ACGGAATGTGCTTCGACTACTTCG -ACGGAATGTGCTTCGACTTACGCA -ACGGAATGTGCTTCGACTCTTGCA -ACGGAATGTGCTTCGACTCGAACA -ACGGAATGTGCTTCGACTCAGTCA -ACGGAATGTGCTTCGACTGATCCA -ACGGAATGTGCTTCGACTACGACA -ACGGAATGTGCTTCGACTAGCTCA -ACGGAATGTGCTTCGACTTCACGT -ACGGAATGTGCTTCGACTCGTAGT -ACGGAATGTGCTTCGACTGTCAGT -ACGGAATGTGCTTCGACTGAAGGT -ACGGAATGTGCTTCGACTAACCGT -ACGGAATGTGCTTCGACTTTGTGC -ACGGAATGTGCTTCGACTCTAAGC -ACGGAATGTGCTTCGACTACTAGC -ACGGAATGTGCTTCGACTAGATGC -ACGGAATGTGCTTCGACTTGAAGG -ACGGAATGTGCTTCGACTCAATGG -ACGGAATGTGCTTCGACTATGAGG -ACGGAATGTGCTTCGACTAATGGG -ACGGAATGTGCTTCGACTTCCTGA -ACGGAATGTGCTTCGACTTAGCGA -ACGGAATGTGCTTCGACTCACAGA -ACGGAATGTGCTTCGACTGCAAGA -ACGGAATGTGCTTCGACTGGTTGA -ACGGAATGTGCTTCGACTTCCGAT -ACGGAATGTGCTTCGACTTGGCAT -ACGGAATGTGCTTCGACTCGAGAT -ACGGAATGTGCTTCGACTTACCAC -ACGGAATGTGCTTCGACTCAGAAC -ACGGAATGTGCTTCGACTGTCTAC -ACGGAATGTGCTTCGACTACGTAC -ACGGAATGTGCTTCGACTAGTGAC -ACGGAATGTGCTTCGACTCTGTAG -ACGGAATGTGCTTCGACTCCTAAG -ACGGAATGTGCTTCGACTGTTCAG -ACGGAATGTGCTTCGACTGCATAG -ACGGAATGTGCTTCGACTGACAAG -ACGGAATGTGCTTCGACTAAGCAG -ACGGAATGTGCTTCGACTCGTCAA -ACGGAATGTGCTTCGACTGCTGAA -ACGGAATGTGCTTCGACTAGTACG -ACGGAATGTGCTTCGACTATCCGA -ACGGAATGTGCTTCGACTATGGGA -ACGGAATGTGCTTCGACTGTGCAA -ACGGAATGTGCTTCGACTGAGGAA -ACGGAATGTGCTTCGACTCAGGTA -ACGGAATGTGCTTCGACTGACTCT -ACGGAATGTGCTTCGACTAGTCCT -ACGGAATGTGCTTCGACTTAAGCC -ACGGAATGTGCTTCGACTATAGCC -ACGGAATGTGCTTCGACTTAACCG -ACGGAATGTGCTTCGACTATGCCA -ACGGAATGTGCTGCATACGGAAAC -ACGGAATGTGCTGCATACAACACC -ACGGAATGTGCTGCATACATCGAG -ACGGAATGTGCTGCATACCTCCTT -ACGGAATGTGCTGCATACCCTGTT -ACGGAATGTGCTGCATACCGGTTT -ACGGAATGTGCTGCATACGTGGTT -ACGGAATGTGCTGCATACGCCTTT -ACGGAATGTGCTGCATACGGTCTT -ACGGAATGTGCTGCATACACGCTT -ACGGAATGTGCTGCATACAGCGTT -ACGGAATGTGCTGCATACTTCGTC -ACGGAATGTGCTGCATACTCTCTC -ACGGAATGTGCTGCATACTGGATC -ACGGAATGTGCTGCATACCACTTC -ACGGAATGTGCTGCATACGTACTC -ACGGAATGTGCTGCATACGATGTC -ACGGAATGTGCTGCATACACAGTC -ACGGAATGTGCTGCATACTTGCTG -ACGGAATGTGCTGCATACTCCATG -ACGGAATGTGCTGCATACTGTGTG -ACGGAATGTGCTGCATACCTAGTG -ACGGAATGTGCTGCATACCATCTG -ACGGAATGTGCTGCATACGAGTTG -ACGGAATGTGCTGCATACAGACTG -ACGGAATGTGCTGCATACTCGGTA -ACGGAATGTGCTGCATACTGCCTA -ACGGAATGTGCTGCATACCCACTA -ACGGAATGTGCTGCATACGGAGTA -ACGGAATGTGCTGCATACTCGTCT -ACGGAATGTGCTGCATACTGCACT -ACGGAATGTGCTGCATACCTGACT -ACGGAATGTGCTGCATACCAACCT -ACGGAATGTGCTGCATACGCTACT -ACGGAATGTGCTGCATACGGATCT -ACGGAATGTGCTGCATACAAGGCT -ACGGAATGTGCTGCATACTCAACC -ACGGAATGTGCTGCATACTGTTCC -ACGGAATGTGCTGCATACATTCCC -ACGGAATGTGCTGCATACTTCTCG -ACGGAATGTGCTGCATACTAGACG -ACGGAATGTGCTGCATACGTAACG -ACGGAATGTGCTGCATACACTTCG -ACGGAATGTGCTGCATACTACGCA -ACGGAATGTGCTGCATACCTTGCA -ACGGAATGTGCTGCATACCGAACA -ACGGAATGTGCTGCATACCAGTCA -ACGGAATGTGCTGCATACGATCCA -ACGGAATGTGCTGCATACACGACA -ACGGAATGTGCTGCATACAGCTCA -ACGGAATGTGCTGCATACTCACGT -ACGGAATGTGCTGCATACCGTAGT -ACGGAATGTGCTGCATACGTCAGT -ACGGAATGTGCTGCATACGAAGGT -ACGGAATGTGCTGCATACAACCGT -ACGGAATGTGCTGCATACTTGTGC -ACGGAATGTGCTGCATACCTAAGC -ACGGAATGTGCTGCATACACTAGC -ACGGAATGTGCTGCATACAGATGC -ACGGAATGTGCTGCATACTGAAGG -ACGGAATGTGCTGCATACCAATGG -ACGGAATGTGCTGCATACATGAGG -ACGGAATGTGCTGCATACAATGGG -ACGGAATGTGCTGCATACTCCTGA -ACGGAATGTGCTGCATACTAGCGA -ACGGAATGTGCTGCATACCACAGA -ACGGAATGTGCTGCATACGCAAGA -ACGGAATGTGCTGCATACGGTTGA -ACGGAATGTGCTGCATACTCCGAT -ACGGAATGTGCTGCATACTGGCAT -ACGGAATGTGCTGCATACCGAGAT -ACGGAATGTGCTGCATACTACCAC -ACGGAATGTGCTGCATACCAGAAC -ACGGAATGTGCTGCATACGTCTAC -ACGGAATGTGCTGCATACACGTAC -ACGGAATGTGCTGCATACAGTGAC -ACGGAATGTGCTGCATACCTGTAG -ACGGAATGTGCTGCATACCCTAAG -ACGGAATGTGCTGCATACGTTCAG -ACGGAATGTGCTGCATACGCATAG -ACGGAATGTGCTGCATACGACAAG -ACGGAATGTGCTGCATACAAGCAG -ACGGAATGTGCTGCATACCGTCAA -ACGGAATGTGCTGCATACGCTGAA -ACGGAATGTGCTGCATACAGTACG -ACGGAATGTGCTGCATACATCCGA -ACGGAATGTGCTGCATACATGGGA -ACGGAATGTGCTGCATACGTGCAA -ACGGAATGTGCTGCATACGAGGAA -ACGGAATGTGCTGCATACCAGGTA -ACGGAATGTGCTGCATACGACTCT -ACGGAATGTGCTGCATACAGTCCT -ACGGAATGTGCTGCATACTAAGCC -ACGGAATGTGCTGCATACATAGCC -ACGGAATGTGCTGCATACTAACCG -ACGGAATGTGCTGCATACATGCCA -ACGGAATGTGCTGCACTTGGAAAC -ACGGAATGTGCTGCACTTAACACC -ACGGAATGTGCTGCACTTATCGAG -ACGGAATGTGCTGCACTTCTCCTT -ACGGAATGTGCTGCACTTCCTGTT -ACGGAATGTGCTGCACTTCGGTTT -ACGGAATGTGCTGCACTTGTGGTT -ACGGAATGTGCTGCACTTGCCTTT -ACGGAATGTGCTGCACTTGGTCTT -ACGGAATGTGCTGCACTTACGCTT -ACGGAATGTGCTGCACTTAGCGTT -ACGGAATGTGCTGCACTTTTCGTC -ACGGAATGTGCTGCACTTTCTCTC -ACGGAATGTGCTGCACTTTGGATC -ACGGAATGTGCTGCACTTCACTTC -ACGGAATGTGCTGCACTTGTACTC -ACGGAATGTGCTGCACTTGATGTC -ACGGAATGTGCTGCACTTACAGTC -ACGGAATGTGCTGCACTTTTGCTG -ACGGAATGTGCTGCACTTTCCATG -ACGGAATGTGCTGCACTTTGTGTG -ACGGAATGTGCTGCACTTCTAGTG -ACGGAATGTGCTGCACTTCATCTG -ACGGAATGTGCTGCACTTGAGTTG -ACGGAATGTGCTGCACTTAGACTG -ACGGAATGTGCTGCACTTTCGGTA -ACGGAATGTGCTGCACTTTGCCTA -ACGGAATGTGCTGCACTTCCACTA -ACGGAATGTGCTGCACTTGGAGTA -ACGGAATGTGCTGCACTTTCGTCT -ACGGAATGTGCTGCACTTTGCACT -ACGGAATGTGCTGCACTTCTGACT -ACGGAATGTGCTGCACTTCAACCT -ACGGAATGTGCTGCACTTGCTACT -ACGGAATGTGCTGCACTTGGATCT -ACGGAATGTGCTGCACTTAAGGCT -ACGGAATGTGCTGCACTTTCAACC -ACGGAATGTGCTGCACTTTGTTCC -ACGGAATGTGCTGCACTTATTCCC -ACGGAATGTGCTGCACTTTTCTCG -ACGGAATGTGCTGCACTTTAGACG -ACGGAATGTGCTGCACTTGTAACG -ACGGAATGTGCTGCACTTACTTCG -ACGGAATGTGCTGCACTTTACGCA -ACGGAATGTGCTGCACTTCTTGCA -ACGGAATGTGCTGCACTTCGAACA -ACGGAATGTGCTGCACTTCAGTCA -ACGGAATGTGCTGCACTTGATCCA -ACGGAATGTGCTGCACTTACGACA -ACGGAATGTGCTGCACTTAGCTCA -ACGGAATGTGCTGCACTTTCACGT -ACGGAATGTGCTGCACTTCGTAGT -ACGGAATGTGCTGCACTTGTCAGT -ACGGAATGTGCTGCACTTGAAGGT -ACGGAATGTGCTGCACTTAACCGT -ACGGAATGTGCTGCACTTTTGTGC -ACGGAATGTGCTGCACTTCTAAGC -ACGGAATGTGCTGCACTTACTAGC -ACGGAATGTGCTGCACTTAGATGC -ACGGAATGTGCTGCACTTTGAAGG -ACGGAATGTGCTGCACTTCAATGG -ACGGAATGTGCTGCACTTATGAGG -ACGGAATGTGCTGCACTTAATGGG -ACGGAATGTGCTGCACTTTCCTGA -ACGGAATGTGCTGCACTTTAGCGA -ACGGAATGTGCTGCACTTCACAGA -ACGGAATGTGCTGCACTTGCAAGA -ACGGAATGTGCTGCACTTGGTTGA -ACGGAATGTGCTGCACTTTCCGAT -ACGGAATGTGCTGCACTTTGGCAT -ACGGAATGTGCTGCACTTCGAGAT -ACGGAATGTGCTGCACTTTACCAC -ACGGAATGTGCTGCACTTCAGAAC -ACGGAATGTGCTGCACTTGTCTAC -ACGGAATGTGCTGCACTTACGTAC -ACGGAATGTGCTGCACTTAGTGAC -ACGGAATGTGCTGCACTTCTGTAG -ACGGAATGTGCTGCACTTCCTAAG -ACGGAATGTGCTGCACTTGTTCAG -ACGGAATGTGCTGCACTTGCATAG -ACGGAATGTGCTGCACTTGACAAG -ACGGAATGTGCTGCACTTAAGCAG -ACGGAATGTGCTGCACTTCGTCAA -ACGGAATGTGCTGCACTTGCTGAA -ACGGAATGTGCTGCACTTAGTACG -ACGGAATGTGCTGCACTTATCCGA -ACGGAATGTGCTGCACTTATGGGA -ACGGAATGTGCTGCACTTGTGCAA -ACGGAATGTGCTGCACTTGAGGAA -ACGGAATGTGCTGCACTTCAGGTA -ACGGAATGTGCTGCACTTGACTCT -ACGGAATGTGCTGCACTTAGTCCT -ACGGAATGTGCTGCACTTTAAGCC -ACGGAATGTGCTGCACTTATAGCC -ACGGAATGTGCTGCACTTTAACCG -ACGGAATGTGCTGCACTTATGCCA -ACGGAATGTGCTACACGAGGAAAC -ACGGAATGTGCTACACGAAACACC -ACGGAATGTGCTACACGAATCGAG -ACGGAATGTGCTACACGACTCCTT -ACGGAATGTGCTACACGACCTGTT -ACGGAATGTGCTACACGACGGTTT -ACGGAATGTGCTACACGAGTGGTT -ACGGAATGTGCTACACGAGCCTTT -ACGGAATGTGCTACACGAGGTCTT -ACGGAATGTGCTACACGAACGCTT -ACGGAATGTGCTACACGAAGCGTT -ACGGAATGTGCTACACGATTCGTC -ACGGAATGTGCTACACGATCTCTC -ACGGAATGTGCTACACGATGGATC -ACGGAATGTGCTACACGACACTTC -ACGGAATGTGCTACACGAGTACTC -ACGGAATGTGCTACACGAGATGTC -ACGGAATGTGCTACACGAACAGTC -ACGGAATGTGCTACACGATTGCTG -ACGGAATGTGCTACACGATCCATG -ACGGAATGTGCTACACGATGTGTG -ACGGAATGTGCTACACGACTAGTG -ACGGAATGTGCTACACGACATCTG -ACGGAATGTGCTACACGAGAGTTG -ACGGAATGTGCTACACGAAGACTG -ACGGAATGTGCTACACGATCGGTA -ACGGAATGTGCTACACGATGCCTA -ACGGAATGTGCTACACGACCACTA -ACGGAATGTGCTACACGAGGAGTA -ACGGAATGTGCTACACGATCGTCT -ACGGAATGTGCTACACGATGCACT -ACGGAATGTGCTACACGACTGACT -ACGGAATGTGCTACACGACAACCT -ACGGAATGTGCTACACGAGCTACT -ACGGAATGTGCTACACGAGGATCT -ACGGAATGTGCTACACGAAAGGCT -ACGGAATGTGCTACACGATCAACC -ACGGAATGTGCTACACGATGTTCC -ACGGAATGTGCTACACGAATTCCC -ACGGAATGTGCTACACGATTCTCG -ACGGAATGTGCTACACGATAGACG -ACGGAATGTGCTACACGAGTAACG -ACGGAATGTGCTACACGAACTTCG -ACGGAATGTGCTACACGATACGCA -ACGGAATGTGCTACACGACTTGCA -ACGGAATGTGCTACACGACGAACA -ACGGAATGTGCTACACGACAGTCA -ACGGAATGTGCTACACGAGATCCA -ACGGAATGTGCTACACGAACGACA -ACGGAATGTGCTACACGAAGCTCA -ACGGAATGTGCTACACGATCACGT -ACGGAATGTGCTACACGACGTAGT -ACGGAATGTGCTACACGAGTCAGT -ACGGAATGTGCTACACGAGAAGGT -ACGGAATGTGCTACACGAAACCGT -ACGGAATGTGCTACACGATTGTGC -ACGGAATGTGCTACACGACTAAGC -ACGGAATGTGCTACACGAACTAGC -ACGGAATGTGCTACACGAAGATGC -ACGGAATGTGCTACACGATGAAGG -ACGGAATGTGCTACACGACAATGG -ACGGAATGTGCTACACGAATGAGG -ACGGAATGTGCTACACGAAATGGG -ACGGAATGTGCTACACGATCCTGA -ACGGAATGTGCTACACGATAGCGA -ACGGAATGTGCTACACGACACAGA -ACGGAATGTGCTACACGAGCAAGA -ACGGAATGTGCTACACGAGGTTGA -ACGGAATGTGCTACACGATCCGAT -ACGGAATGTGCTACACGATGGCAT -ACGGAATGTGCTACACGACGAGAT -ACGGAATGTGCTACACGATACCAC -ACGGAATGTGCTACACGACAGAAC -ACGGAATGTGCTACACGAGTCTAC -ACGGAATGTGCTACACGAACGTAC -ACGGAATGTGCTACACGAAGTGAC -ACGGAATGTGCTACACGACTGTAG -ACGGAATGTGCTACACGACCTAAG -ACGGAATGTGCTACACGAGTTCAG -ACGGAATGTGCTACACGAGCATAG -ACGGAATGTGCTACACGAGACAAG -ACGGAATGTGCTACACGAAAGCAG -ACGGAATGTGCTACACGACGTCAA -ACGGAATGTGCTACACGAGCTGAA -ACGGAATGTGCTACACGAAGTACG -ACGGAATGTGCTACACGAATCCGA -ACGGAATGTGCTACACGAATGGGA -ACGGAATGTGCTACACGAGTGCAA -ACGGAATGTGCTACACGAGAGGAA -ACGGAATGTGCTACACGACAGGTA -ACGGAATGTGCTACACGAGACTCT -ACGGAATGTGCTACACGAAGTCCT -ACGGAATGTGCTACACGATAAGCC -ACGGAATGTGCTACACGAATAGCC -ACGGAATGTGCTACACGATAACCG -ACGGAATGTGCTACACGAATGCCA -ACGGAATGTGCTTCACAGGGAAAC -ACGGAATGTGCTTCACAGAACACC -ACGGAATGTGCTTCACAGATCGAG -ACGGAATGTGCTTCACAGCTCCTT -ACGGAATGTGCTTCACAGCCTGTT -ACGGAATGTGCTTCACAGCGGTTT -ACGGAATGTGCTTCACAGGTGGTT -ACGGAATGTGCTTCACAGGCCTTT -ACGGAATGTGCTTCACAGGGTCTT -ACGGAATGTGCTTCACAGACGCTT -ACGGAATGTGCTTCACAGAGCGTT -ACGGAATGTGCTTCACAGTTCGTC -ACGGAATGTGCTTCACAGTCTCTC -ACGGAATGTGCTTCACAGTGGATC -ACGGAATGTGCTTCACAGCACTTC -ACGGAATGTGCTTCACAGGTACTC -ACGGAATGTGCTTCACAGGATGTC -ACGGAATGTGCTTCACAGACAGTC -ACGGAATGTGCTTCACAGTTGCTG -ACGGAATGTGCTTCACAGTCCATG -ACGGAATGTGCTTCACAGTGTGTG -ACGGAATGTGCTTCACAGCTAGTG -ACGGAATGTGCTTCACAGCATCTG -ACGGAATGTGCTTCACAGGAGTTG -ACGGAATGTGCTTCACAGAGACTG -ACGGAATGTGCTTCACAGTCGGTA -ACGGAATGTGCTTCACAGTGCCTA -ACGGAATGTGCTTCACAGCCACTA -ACGGAATGTGCTTCACAGGGAGTA -ACGGAATGTGCTTCACAGTCGTCT -ACGGAATGTGCTTCACAGTGCACT -ACGGAATGTGCTTCACAGCTGACT -ACGGAATGTGCTTCACAGCAACCT -ACGGAATGTGCTTCACAGGCTACT -ACGGAATGTGCTTCACAGGGATCT -ACGGAATGTGCTTCACAGAAGGCT -ACGGAATGTGCTTCACAGTCAACC -ACGGAATGTGCTTCACAGTGTTCC -ACGGAATGTGCTTCACAGATTCCC -ACGGAATGTGCTTCACAGTTCTCG -ACGGAATGTGCTTCACAGTAGACG -ACGGAATGTGCTTCACAGGTAACG -ACGGAATGTGCTTCACAGACTTCG -ACGGAATGTGCTTCACAGTACGCA -ACGGAATGTGCTTCACAGCTTGCA -ACGGAATGTGCTTCACAGCGAACA -ACGGAATGTGCTTCACAGCAGTCA -ACGGAATGTGCTTCACAGGATCCA -ACGGAATGTGCTTCACAGACGACA -ACGGAATGTGCTTCACAGAGCTCA -ACGGAATGTGCTTCACAGTCACGT -ACGGAATGTGCTTCACAGCGTAGT -ACGGAATGTGCTTCACAGGTCAGT -ACGGAATGTGCTTCACAGGAAGGT -ACGGAATGTGCTTCACAGAACCGT -ACGGAATGTGCTTCACAGTTGTGC -ACGGAATGTGCTTCACAGCTAAGC -ACGGAATGTGCTTCACAGACTAGC -ACGGAATGTGCTTCACAGAGATGC -ACGGAATGTGCTTCACAGTGAAGG -ACGGAATGTGCTTCACAGCAATGG -ACGGAATGTGCTTCACAGATGAGG -ACGGAATGTGCTTCACAGAATGGG -ACGGAATGTGCTTCACAGTCCTGA -ACGGAATGTGCTTCACAGTAGCGA -ACGGAATGTGCTTCACAGCACAGA -ACGGAATGTGCTTCACAGGCAAGA -ACGGAATGTGCTTCACAGGGTTGA -ACGGAATGTGCTTCACAGTCCGAT -ACGGAATGTGCTTCACAGTGGCAT -ACGGAATGTGCTTCACAGCGAGAT -ACGGAATGTGCTTCACAGTACCAC -ACGGAATGTGCTTCACAGCAGAAC -ACGGAATGTGCTTCACAGGTCTAC -ACGGAATGTGCTTCACAGACGTAC -ACGGAATGTGCTTCACAGAGTGAC -ACGGAATGTGCTTCACAGCTGTAG -ACGGAATGTGCTTCACAGCCTAAG -ACGGAATGTGCTTCACAGGTTCAG -ACGGAATGTGCTTCACAGGCATAG -ACGGAATGTGCTTCACAGGACAAG -ACGGAATGTGCTTCACAGAAGCAG -ACGGAATGTGCTTCACAGCGTCAA -ACGGAATGTGCTTCACAGGCTGAA -ACGGAATGTGCTTCACAGAGTACG -ACGGAATGTGCTTCACAGATCCGA -ACGGAATGTGCTTCACAGATGGGA -ACGGAATGTGCTTCACAGGTGCAA -ACGGAATGTGCTTCACAGGAGGAA -ACGGAATGTGCTTCACAGCAGGTA -ACGGAATGTGCTTCACAGGACTCT -ACGGAATGTGCTTCACAGAGTCCT -ACGGAATGTGCTTCACAGTAAGCC -ACGGAATGTGCTTCACAGATAGCC -ACGGAATGTGCTTCACAGTAACCG -ACGGAATGTGCTTCACAGATGCCA -ACGGAATGTGCTCCAGATGGAAAC -ACGGAATGTGCTCCAGATAACACC -ACGGAATGTGCTCCAGATATCGAG -ACGGAATGTGCTCCAGATCTCCTT -ACGGAATGTGCTCCAGATCCTGTT -ACGGAATGTGCTCCAGATCGGTTT -ACGGAATGTGCTCCAGATGTGGTT -ACGGAATGTGCTCCAGATGCCTTT -ACGGAATGTGCTCCAGATGGTCTT -ACGGAATGTGCTCCAGATACGCTT -ACGGAATGTGCTCCAGATAGCGTT -ACGGAATGTGCTCCAGATTTCGTC -ACGGAATGTGCTCCAGATTCTCTC -ACGGAATGTGCTCCAGATTGGATC -ACGGAATGTGCTCCAGATCACTTC -ACGGAATGTGCTCCAGATGTACTC -ACGGAATGTGCTCCAGATGATGTC -ACGGAATGTGCTCCAGATACAGTC -ACGGAATGTGCTCCAGATTTGCTG -ACGGAATGTGCTCCAGATTCCATG -ACGGAATGTGCTCCAGATTGTGTG -ACGGAATGTGCTCCAGATCTAGTG -ACGGAATGTGCTCCAGATCATCTG -ACGGAATGTGCTCCAGATGAGTTG -ACGGAATGTGCTCCAGATAGACTG -ACGGAATGTGCTCCAGATTCGGTA -ACGGAATGTGCTCCAGATTGCCTA -ACGGAATGTGCTCCAGATCCACTA -ACGGAATGTGCTCCAGATGGAGTA -ACGGAATGTGCTCCAGATTCGTCT -ACGGAATGTGCTCCAGATTGCACT -ACGGAATGTGCTCCAGATCTGACT -ACGGAATGTGCTCCAGATCAACCT -ACGGAATGTGCTCCAGATGCTACT -ACGGAATGTGCTCCAGATGGATCT -ACGGAATGTGCTCCAGATAAGGCT -ACGGAATGTGCTCCAGATTCAACC -ACGGAATGTGCTCCAGATTGTTCC -ACGGAATGTGCTCCAGATATTCCC -ACGGAATGTGCTCCAGATTTCTCG -ACGGAATGTGCTCCAGATTAGACG -ACGGAATGTGCTCCAGATGTAACG -ACGGAATGTGCTCCAGATACTTCG -ACGGAATGTGCTCCAGATTACGCA -ACGGAATGTGCTCCAGATCTTGCA -ACGGAATGTGCTCCAGATCGAACA -ACGGAATGTGCTCCAGATCAGTCA -ACGGAATGTGCTCCAGATGATCCA -ACGGAATGTGCTCCAGATACGACA -ACGGAATGTGCTCCAGATAGCTCA -ACGGAATGTGCTCCAGATTCACGT -ACGGAATGTGCTCCAGATCGTAGT -ACGGAATGTGCTCCAGATGTCAGT -ACGGAATGTGCTCCAGATGAAGGT -ACGGAATGTGCTCCAGATAACCGT -ACGGAATGTGCTCCAGATTTGTGC -ACGGAATGTGCTCCAGATCTAAGC -ACGGAATGTGCTCCAGATACTAGC -ACGGAATGTGCTCCAGATAGATGC -ACGGAATGTGCTCCAGATTGAAGG -ACGGAATGTGCTCCAGATCAATGG -ACGGAATGTGCTCCAGATATGAGG -ACGGAATGTGCTCCAGATAATGGG -ACGGAATGTGCTCCAGATTCCTGA -ACGGAATGTGCTCCAGATTAGCGA -ACGGAATGTGCTCCAGATCACAGA -ACGGAATGTGCTCCAGATGCAAGA -ACGGAATGTGCTCCAGATGGTTGA -ACGGAATGTGCTCCAGATTCCGAT -ACGGAATGTGCTCCAGATTGGCAT -ACGGAATGTGCTCCAGATCGAGAT -ACGGAATGTGCTCCAGATTACCAC -ACGGAATGTGCTCCAGATCAGAAC -ACGGAATGTGCTCCAGATGTCTAC -ACGGAATGTGCTCCAGATACGTAC -ACGGAATGTGCTCCAGATAGTGAC -ACGGAATGTGCTCCAGATCTGTAG -ACGGAATGTGCTCCAGATCCTAAG -ACGGAATGTGCTCCAGATGTTCAG -ACGGAATGTGCTCCAGATGCATAG -ACGGAATGTGCTCCAGATGACAAG -ACGGAATGTGCTCCAGATAAGCAG -ACGGAATGTGCTCCAGATCGTCAA -ACGGAATGTGCTCCAGATGCTGAA -ACGGAATGTGCTCCAGATAGTACG -ACGGAATGTGCTCCAGATATCCGA -ACGGAATGTGCTCCAGATATGGGA -ACGGAATGTGCTCCAGATGTGCAA -ACGGAATGTGCTCCAGATGAGGAA -ACGGAATGTGCTCCAGATCAGGTA -ACGGAATGTGCTCCAGATGACTCT -ACGGAATGTGCTCCAGATAGTCCT -ACGGAATGTGCTCCAGATTAAGCC -ACGGAATGTGCTCCAGATATAGCC -ACGGAATGTGCTCCAGATTAACCG -ACGGAATGTGCTCCAGATATGCCA -ACGGAATGTGCTACAACGGGAAAC -ACGGAATGTGCTACAACGAACACC -ACGGAATGTGCTACAACGATCGAG -ACGGAATGTGCTACAACGCTCCTT -ACGGAATGTGCTACAACGCCTGTT -ACGGAATGTGCTACAACGCGGTTT -ACGGAATGTGCTACAACGGTGGTT -ACGGAATGTGCTACAACGGCCTTT -ACGGAATGTGCTACAACGGGTCTT -ACGGAATGTGCTACAACGACGCTT -ACGGAATGTGCTACAACGAGCGTT -ACGGAATGTGCTACAACGTTCGTC -ACGGAATGTGCTACAACGTCTCTC -ACGGAATGTGCTACAACGTGGATC -ACGGAATGTGCTACAACGCACTTC -ACGGAATGTGCTACAACGGTACTC -ACGGAATGTGCTACAACGGATGTC -ACGGAATGTGCTACAACGACAGTC -ACGGAATGTGCTACAACGTTGCTG -ACGGAATGTGCTACAACGTCCATG -ACGGAATGTGCTACAACGTGTGTG -ACGGAATGTGCTACAACGCTAGTG -ACGGAATGTGCTACAACGCATCTG -ACGGAATGTGCTACAACGGAGTTG -ACGGAATGTGCTACAACGAGACTG -ACGGAATGTGCTACAACGTCGGTA -ACGGAATGTGCTACAACGTGCCTA -ACGGAATGTGCTACAACGCCACTA -ACGGAATGTGCTACAACGGGAGTA -ACGGAATGTGCTACAACGTCGTCT -ACGGAATGTGCTACAACGTGCACT -ACGGAATGTGCTACAACGCTGACT -ACGGAATGTGCTACAACGCAACCT -ACGGAATGTGCTACAACGGCTACT -ACGGAATGTGCTACAACGGGATCT -ACGGAATGTGCTACAACGAAGGCT -ACGGAATGTGCTACAACGTCAACC -ACGGAATGTGCTACAACGTGTTCC -ACGGAATGTGCTACAACGATTCCC -ACGGAATGTGCTACAACGTTCTCG -ACGGAATGTGCTACAACGTAGACG -ACGGAATGTGCTACAACGGTAACG -ACGGAATGTGCTACAACGACTTCG -ACGGAATGTGCTACAACGTACGCA -ACGGAATGTGCTACAACGCTTGCA -ACGGAATGTGCTACAACGCGAACA -ACGGAATGTGCTACAACGCAGTCA -ACGGAATGTGCTACAACGGATCCA -ACGGAATGTGCTACAACGACGACA -ACGGAATGTGCTACAACGAGCTCA -ACGGAATGTGCTACAACGTCACGT -ACGGAATGTGCTACAACGCGTAGT -ACGGAATGTGCTACAACGGTCAGT -ACGGAATGTGCTACAACGGAAGGT -ACGGAATGTGCTACAACGAACCGT -ACGGAATGTGCTACAACGTTGTGC -ACGGAATGTGCTACAACGCTAAGC -ACGGAATGTGCTACAACGACTAGC -ACGGAATGTGCTACAACGAGATGC -ACGGAATGTGCTACAACGTGAAGG -ACGGAATGTGCTACAACGCAATGG -ACGGAATGTGCTACAACGATGAGG -ACGGAATGTGCTACAACGAATGGG -ACGGAATGTGCTACAACGTCCTGA -ACGGAATGTGCTACAACGTAGCGA -ACGGAATGTGCTACAACGCACAGA -ACGGAATGTGCTACAACGGCAAGA -ACGGAATGTGCTACAACGGGTTGA -ACGGAATGTGCTACAACGTCCGAT -ACGGAATGTGCTACAACGTGGCAT -ACGGAATGTGCTACAACGCGAGAT -ACGGAATGTGCTACAACGTACCAC -ACGGAATGTGCTACAACGCAGAAC -ACGGAATGTGCTACAACGGTCTAC -ACGGAATGTGCTACAACGACGTAC -ACGGAATGTGCTACAACGAGTGAC -ACGGAATGTGCTACAACGCTGTAG -ACGGAATGTGCTACAACGCCTAAG -ACGGAATGTGCTACAACGGTTCAG -ACGGAATGTGCTACAACGGCATAG -ACGGAATGTGCTACAACGGACAAG -ACGGAATGTGCTACAACGAAGCAG -ACGGAATGTGCTACAACGCGTCAA -ACGGAATGTGCTACAACGGCTGAA -ACGGAATGTGCTACAACGAGTACG -ACGGAATGTGCTACAACGATCCGA -ACGGAATGTGCTACAACGATGGGA -ACGGAATGTGCTACAACGGTGCAA -ACGGAATGTGCTACAACGGAGGAA -ACGGAATGTGCTACAACGCAGGTA -ACGGAATGTGCTACAACGGACTCT -ACGGAATGTGCTACAACGAGTCCT -ACGGAATGTGCTACAACGTAAGCC -ACGGAATGTGCTACAACGATAGCC -ACGGAATGTGCTACAACGTAACCG -ACGGAATGTGCTACAACGATGCCA -ACGGAATGTGCTTCAAGCGGAAAC -ACGGAATGTGCTTCAAGCAACACC -ACGGAATGTGCTTCAAGCATCGAG -ACGGAATGTGCTTCAAGCCTCCTT -ACGGAATGTGCTTCAAGCCCTGTT -ACGGAATGTGCTTCAAGCCGGTTT -ACGGAATGTGCTTCAAGCGTGGTT -ACGGAATGTGCTTCAAGCGCCTTT -ACGGAATGTGCTTCAAGCGGTCTT -ACGGAATGTGCTTCAAGCACGCTT -ACGGAATGTGCTTCAAGCAGCGTT -ACGGAATGTGCTTCAAGCTTCGTC -ACGGAATGTGCTTCAAGCTCTCTC -ACGGAATGTGCTTCAAGCTGGATC -ACGGAATGTGCTTCAAGCCACTTC -ACGGAATGTGCTTCAAGCGTACTC -ACGGAATGTGCTTCAAGCGATGTC -ACGGAATGTGCTTCAAGCACAGTC -ACGGAATGTGCTTCAAGCTTGCTG -ACGGAATGTGCTTCAAGCTCCATG -ACGGAATGTGCTTCAAGCTGTGTG -ACGGAATGTGCTTCAAGCCTAGTG -ACGGAATGTGCTTCAAGCCATCTG -ACGGAATGTGCTTCAAGCGAGTTG -ACGGAATGTGCTTCAAGCAGACTG -ACGGAATGTGCTTCAAGCTCGGTA -ACGGAATGTGCTTCAAGCTGCCTA -ACGGAATGTGCTTCAAGCCCACTA -ACGGAATGTGCTTCAAGCGGAGTA -ACGGAATGTGCTTCAAGCTCGTCT -ACGGAATGTGCTTCAAGCTGCACT -ACGGAATGTGCTTCAAGCCTGACT -ACGGAATGTGCTTCAAGCCAACCT -ACGGAATGTGCTTCAAGCGCTACT -ACGGAATGTGCTTCAAGCGGATCT -ACGGAATGTGCTTCAAGCAAGGCT -ACGGAATGTGCTTCAAGCTCAACC -ACGGAATGTGCTTCAAGCTGTTCC -ACGGAATGTGCTTCAAGCATTCCC -ACGGAATGTGCTTCAAGCTTCTCG -ACGGAATGTGCTTCAAGCTAGACG -ACGGAATGTGCTTCAAGCGTAACG -ACGGAATGTGCTTCAAGCACTTCG -ACGGAATGTGCTTCAAGCTACGCA -ACGGAATGTGCTTCAAGCCTTGCA -ACGGAATGTGCTTCAAGCCGAACA -ACGGAATGTGCTTCAAGCCAGTCA -ACGGAATGTGCTTCAAGCGATCCA -ACGGAATGTGCTTCAAGCACGACA -ACGGAATGTGCTTCAAGCAGCTCA -ACGGAATGTGCTTCAAGCTCACGT -ACGGAATGTGCTTCAAGCCGTAGT -ACGGAATGTGCTTCAAGCGTCAGT -ACGGAATGTGCTTCAAGCGAAGGT -ACGGAATGTGCTTCAAGCAACCGT -ACGGAATGTGCTTCAAGCTTGTGC -ACGGAATGTGCTTCAAGCCTAAGC -ACGGAATGTGCTTCAAGCACTAGC -ACGGAATGTGCTTCAAGCAGATGC -ACGGAATGTGCTTCAAGCTGAAGG -ACGGAATGTGCTTCAAGCCAATGG -ACGGAATGTGCTTCAAGCATGAGG -ACGGAATGTGCTTCAAGCAATGGG -ACGGAATGTGCTTCAAGCTCCTGA -ACGGAATGTGCTTCAAGCTAGCGA -ACGGAATGTGCTTCAAGCCACAGA -ACGGAATGTGCTTCAAGCGCAAGA -ACGGAATGTGCTTCAAGCGGTTGA -ACGGAATGTGCTTCAAGCTCCGAT -ACGGAATGTGCTTCAAGCTGGCAT -ACGGAATGTGCTTCAAGCCGAGAT -ACGGAATGTGCTTCAAGCTACCAC -ACGGAATGTGCTTCAAGCCAGAAC -ACGGAATGTGCTTCAAGCGTCTAC -ACGGAATGTGCTTCAAGCACGTAC -ACGGAATGTGCTTCAAGCAGTGAC -ACGGAATGTGCTTCAAGCCTGTAG -ACGGAATGTGCTTCAAGCCCTAAG -ACGGAATGTGCTTCAAGCGTTCAG -ACGGAATGTGCTTCAAGCGCATAG -ACGGAATGTGCTTCAAGCGACAAG -ACGGAATGTGCTTCAAGCAAGCAG -ACGGAATGTGCTTCAAGCCGTCAA -ACGGAATGTGCTTCAAGCGCTGAA -ACGGAATGTGCTTCAAGCAGTACG -ACGGAATGTGCTTCAAGCATCCGA -ACGGAATGTGCTTCAAGCATGGGA -ACGGAATGTGCTTCAAGCGTGCAA -ACGGAATGTGCTTCAAGCGAGGAA -ACGGAATGTGCTTCAAGCCAGGTA -ACGGAATGTGCTTCAAGCGACTCT -ACGGAATGTGCTTCAAGCAGTCCT -ACGGAATGTGCTTCAAGCTAAGCC -ACGGAATGTGCTTCAAGCATAGCC -ACGGAATGTGCTTCAAGCTAACCG -ACGGAATGTGCTTCAAGCATGCCA -ACGGAATGTGCTCGTTCAGGAAAC -ACGGAATGTGCTCGTTCAAACACC -ACGGAATGTGCTCGTTCAATCGAG -ACGGAATGTGCTCGTTCACTCCTT -ACGGAATGTGCTCGTTCACCTGTT -ACGGAATGTGCTCGTTCACGGTTT -ACGGAATGTGCTCGTTCAGTGGTT -ACGGAATGTGCTCGTTCAGCCTTT -ACGGAATGTGCTCGTTCAGGTCTT -ACGGAATGTGCTCGTTCAACGCTT -ACGGAATGTGCTCGTTCAAGCGTT -ACGGAATGTGCTCGTTCATTCGTC -ACGGAATGTGCTCGTTCATCTCTC -ACGGAATGTGCTCGTTCATGGATC -ACGGAATGTGCTCGTTCACACTTC -ACGGAATGTGCTCGTTCAGTACTC -ACGGAATGTGCTCGTTCAGATGTC -ACGGAATGTGCTCGTTCAACAGTC -ACGGAATGTGCTCGTTCATTGCTG -ACGGAATGTGCTCGTTCATCCATG -ACGGAATGTGCTCGTTCATGTGTG -ACGGAATGTGCTCGTTCACTAGTG -ACGGAATGTGCTCGTTCACATCTG -ACGGAATGTGCTCGTTCAGAGTTG -ACGGAATGTGCTCGTTCAAGACTG -ACGGAATGTGCTCGTTCATCGGTA -ACGGAATGTGCTCGTTCATGCCTA -ACGGAATGTGCTCGTTCACCACTA -ACGGAATGTGCTCGTTCAGGAGTA -ACGGAATGTGCTCGTTCATCGTCT -ACGGAATGTGCTCGTTCATGCACT -ACGGAATGTGCTCGTTCACTGACT -ACGGAATGTGCTCGTTCACAACCT -ACGGAATGTGCTCGTTCAGCTACT -ACGGAATGTGCTCGTTCAGGATCT -ACGGAATGTGCTCGTTCAAAGGCT -ACGGAATGTGCTCGTTCATCAACC -ACGGAATGTGCTCGTTCATGTTCC -ACGGAATGTGCTCGTTCAATTCCC -ACGGAATGTGCTCGTTCATTCTCG -ACGGAATGTGCTCGTTCATAGACG -ACGGAATGTGCTCGTTCAGTAACG -ACGGAATGTGCTCGTTCAACTTCG -ACGGAATGTGCTCGTTCATACGCA -ACGGAATGTGCTCGTTCACTTGCA -ACGGAATGTGCTCGTTCACGAACA -ACGGAATGTGCTCGTTCACAGTCA -ACGGAATGTGCTCGTTCAGATCCA -ACGGAATGTGCTCGTTCAACGACA -ACGGAATGTGCTCGTTCAAGCTCA -ACGGAATGTGCTCGTTCATCACGT -ACGGAATGTGCTCGTTCACGTAGT -ACGGAATGTGCTCGTTCAGTCAGT -ACGGAATGTGCTCGTTCAGAAGGT -ACGGAATGTGCTCGTTCAAACCGT -ACGGAATGTGCTCGTTCATTGTGC -ACGGAATGTGCTCGTTCACTAAGC -ACGGAATGTGCTCGTTCAACTAGC -ACGGAATGTGCTCGTTCAAGATGC -ACGGAATGTGCTCGTTCATGAAGG -ACGGAATGTGCTCGTTCACAATGG -ACGGAATGTGCTCGTTCAATGAGG -ACGGAATGTGCTCGTTCAAATGGG -ACGGAATGTGCTCGTTCATCCTGA -ACGGAATGTGCTCGTTCATAGCGA -ACGGAATGTGCTCGTTCACACAGA -ACGGAATGTGCTCGTTCAGCAAGA -ACGGAATGTGCTCGTTCAGGTTGA -ACGGAATGTGCTCGTTCATCCGAT -ACGGAATGTGCTCGTTCATGGCAT -ACGGAATGTGCTCGTTCACGAGAT -ACGGAATGTGCTCGTTCATACCAC -ACGGAATGTGCTCGTTCACAGAAC -ACGGAATGTGCTCGTTCAGTCTAC -ACGGAATGTGCTCGTTCAACGTAC -ACGGAATGTGCTCGTTCAAGTGAC -ACGGAATGTGCTCGTTCACTGTAG -ACGGAATGTGCTCGTTCACCTAAG -ACGGAATGTGCTCGTTCAGTTCAG -ACGGAATGTGCTCGTTCAGCATAG -ACGGAATGTGCTCGTTCAGACAAG -ACGGAATGTGCTCGTTCAAAGCAG -ACGGAATGTGCTCGTTCACGTCAA -ACGGAATGTGCTCGTTCAGCTGAA -ACGGAATGTGCTCGTTCAAGTACG -ACGGAATGTGCTCGTTCAATCCGA -ACGGAATGTGCTCGTTCAATGGGA -ACGGAATGTGCTCGTTCAGTGCAA -ACGGAATGTGCTCGTTCAGAGGAA -ACGGAATGTGCTCGTTCACAGGTA -ACGGAATGTGCTCGTTCAGACTCT -ACGGAATGTGCTCGTTCAAGTCCT -ACGGAATGTGCTCGTTCATAAGCC -ACGGAATGTGCTCGTTCAATAGCC -ACGGAATGTGCTCGTTCATAACCG -ACGGAATGTGCTCGTTCAATGCCA -ACGGAATGTGCTAGTCGTGGAAAC -ACGGAATGTGCTAGTCGTAACACC -ACGGAATGTGCTAGTCGTATCGAG -ACGGAATGTGCTAGTCGTCTCCTT -ACGGAATGTGCTAGTCGTCCTGTT -ACGGAATGTGCTAGTCGTCGGTTT -ACGGAATGTGCTAGTCGTGTGGTT -ACGGAATGTGCTAGTCGTGCCTTT -ACGGAATGTGCTAGTCGTGGTCTT -ACGGAATGTGCTAGTCGTACGCTT -ACGGAATGTGCTAGTCGTAGCGTT -ACGGAATGTGCTAGTCGTTTCGTC -ACGGAATGTGCTAGTCGTTCTCTC -ACGGAATGTGCTAGTCGTTGGATC -ACGGAATGTGCTAGTCGTCACTTC -ACGGAATGTGCTAGTCGTGTACTC -ACGGAATGTGCTAGTCGTGATGTC -ACGGAATGTGCTAGTCGTACAGTC -ACGGAATGTGCTAGTCGTTTGCTG -ACGGAATGTGCTAGTCGTTCCATG -ACGGAATGTGCTAGTCGTTGTGTG -ACGGAATGTGCTAGTCGTCTAGTG -ACGGAATGTGCTAGTCGTCATCTG -ACGGAATGTGCTAGTCGTGAGTTG -ACGGAATGTGCTAGTCGTAGACTG -ACGGAATGTGCTAGTCGTTCGGTA -ACGGAATGTGCTAGTCGTTGCCTA -ACGGAATGTGCTAGTCGTCCACTA -ACGGAATGTGCTAGTCGTGGAGTA -ACGGAATGTGCTAGTCGTTCGTCT -ACGGAATGTGCTAGTCGTTGCACT -ACGGAATGTGCTAGTCGTCTGACT -ACGGAATGTGCTAGTCGTCAACCT -ACGGAATGTGCTAGTCGTGCTACT -ACGGAATGTGCTAGTCGTGGATCT -ACGGAATGTGCTAGTCGTAAGGCT -ACGGAATGTGCTAGTCGTTCAACC -ACGGAATGTGCTAGTCGTTGTTCC -ACGGAATGTGCTAGTCGTATTCCC -ACGGAATGTGCTAGTCGTTTCTCG -ACGGAATGTGCTAGTCGTTAGACG -ACGGAATGTGCTAGTCGTGTAACG -ACGGAATGTGCTAGTCGTACTTCG -ACGGAATGTGCTAGTCGTTACGCA -ACGGAATGTGCTAGTCGTCTTGCA -ACGGAATGTGCTAGTCGTCGAACA -ACGGAATGTGCTAGTCGTCAGTCA -ACGGAATGTGCTAGTCGTGATCCA -ACGGAATGTGCTAGTCGTACGACA -ACGGAATGTGCTAGTCGTAGCTCA -ACGGAATGTGCTAGTCGTTCACGT -ACGGAATGTGCTAGTCGTCGTAGT -ACGGAATGTGCTAGTCGTGTCAGT -ACGGAATGTGCTAGTCGTGAAGGT -ACGGAATGTGCTAGTCGTAACCGT -ACGGAATGTGCTAGTCGTTTGTGC -ACGGAATGTGCTAGTCGTCTAAGC -ACGGAATGTGCTAGTCGTACTAGC -ACGGAATGTGCTAGTCGTAGATGC -ACGGAATGTGCTAGTCGTTGAAGG -ACGGAATGTGCTAGTCGTCAATGG -ACGGAATGTGCTAGTCGTATGAGG -ACGGAATGTGCTAGTCGTAATGGG -ACGGAATGTGCTAGTCGTTCCTGA -ACGGAATGTGCTAGTCGTTAGCGA -ACGGAATGTGCTAGTCGTCACAGA -ACGGAATGTGCTAGTCGTGCAAGA -ACGGAATGTGCTAGTCGTGGTTGA -ACGGAATGTGCTAGTCGTTCCGAT -ACGGAATGTGCTAGTCGTTGGCAT -ACGGAATGTGCTAGTCGTCGAGAT -ACGGAATGTGCTAGTCGTTACCAC -ACGGAATGTGCTAGTCGTCAGAAC -ACGGAATGTGCTAGTCGTGTCTAC -ACGGAATGTGCTAGTCGTACGTAC -ACGGAATGTGCTAGTCGTAGTGAC -ACGGAATGTGCTAGTCGTCTGTAG -ACGGAATGTGCTAGTCGTCCTAAG -ACGGAATGTGCTAGTCGTGTTCAG -ACGGAATGTGCTAGTCGTGCATAG -ACGGAATGTGCTAGTCGTGACAAG -ACGGAATGTGCTAGTCGTAAGCAG -ACGGAATGTGCTAGTCGTCGTCAA -ACGGAATGTGCTAGTCGTGCTGAA -ACGGAATGTGCTAGTCGTAGTACG -ACGGAATGTGCTAGTCGTATCCGA -ACGGAATGTGCTAGTCGTATGGGA -ACGGAATGTGCTAGTCGTGTGCAA -ACGGAATGTGCTAGTCGTGAGGAA -ACGGAATGTGCTAGTCGTCAGGTA -ACGGAATGTGCTAGTCGTGACTCT -ACGGAATGTGCTAGTCGTAGTCCT -ACGGAATGTGCTAGTCGTTAAGCC -ACGGAATGTGCTAGTCGTATAGCC -ACGGAATGTGCTAGTCGTTAACCG -ACGGAATGTGCTAGTCGTATGCCA -ACGGAATGTGCTAGTGTCGGAAAC -ACGGAATGTGCTAGTGTCAACACC -ACGGAATGTGCTAGTGTCATCGAG -ACGGAATGTGCTAGTGTCCTCCTT -ACGGAATGTGCTAGTGTCCCTGTT -ACGGAATGTGCTAGTGTCCGGTTT -ACGGAATGTGCTAGTGTCGTGGTT -ACGGAATGTGCTAGTGTCGCCTTT -ACGGAATGTGCTAGTGTCGGTCTT -ACGGAATGTGCTAGTGTCACGCTT -ACGGAATGTGCTAGTGTCAGCGTT -ACGGAATGTGCTAGTGTCTTCGTC -ACGGAATGTGCTAGTGTCTCTCTC -ACGGAATGTGCTAGTGTCTGGATC -ACGGAATGTGCTAGTGTCCACTTC -ACGGAATGTGCTAGTGTCGTACTC -ACGGAATGTGCTAGTGTCGATGTC -ACGGAATGTGCTAGTGTCACAGTC -ACGGAATGTGCTAGTGTCTTGCTG -ACGGAATGTGCTAGTGTCTCCATG -ACGGAATGTGCTAGTGTCTGTGTG -ACGGAATGTGCTAGTGTCCTAGTG -ACGGAATGTGCTAGTGTCCATCTG -ACGGAATGTGCTAGTGTCGAGTTG -ACGGAATGTGCTAGTGTCAGACTG -ACGGAATGTGCTAGTGTCTCGGTA -ACGGAATGTGCTAGTGTCTGCCTA -ACGGAATGTGCTAGTGTCCCACTA -ACGGAATGTGCTAGTGTCGGAGTA -ACGGAATGTGCTAGTGTCTCGTCT -ACGGAATGTGCTAGTGTCTGCACT -ACGGAATGTGCTAGTGTCCTGACT -ACGGAATGTGCTAGTGTCCAACCT -ACGGAATGTGCTAGTGTCGCTACT -ACGGAATGTGCTAGTGTCGGATCT -ACGGAATGTGCTAGTGTCAAGGCT -ACGGAATGTGCTAGTGTCTCAACC -ACGGAATGTGCTAGTGTCTGTTCC -ACGGAATGTGCTAGTGTCATTCCC -ACGGAATGTGCTAGTGTCTTCTCG -ACGGAATGTGCTAGTGTCTAGACG -ACGGAATGTGCTAGTGTCGTAACG -ACGGAATGTGCTAGTGTCACTTCG -ACGGAATGTGCTAGTGTCTACGCA -ACGGAATGTGCTAGTGTCCTTGCA -ACGGAATGTGCTAGTGTCCGAACA -ACGGAATGTGCTAGTGTCCAGTCA -ACGGAATGTGCTAGTGTCGATCCA -ACGGAATGTGCTAGTGTCACGACA -ACGGAATGTGCTAGTGTCAGCTCA -ACGGAATGTGCTAGTGTCTCACGT -ACGGAATGTGCTAGTGTCCGTAGT -ACGGAATGTGCTAGTGTCGTCAGT -ACGGAATGTGCTAGTGTCGAAGGT -ACGGAATGTGCTAGTGTCAACCGT -ACGGAATGTGCTAGTGTCTTGTGC -ACGGAATGTGCTAGTGTCCTAAGC -ACGGAATGTGCTAGTGTCACTAGC -ACGGAATGTGCTAGTGTCAGATGC -ACGGAATGTGCTAGTGTCTGAAGG -ACGGAATGTGCTAGTGTCCAATGG -ACGGAATGTGCTAGTGTCATGAGG -ACGGAATGTGCTAGTGTCAATGGG -ACGGAATGTGCTAGTGTCTCCTGA -ACGGAATGTGCTAGTGTCTAGCGA -ACGGAATGTGCTAGTGTCCACAGA -ACGGAATGTGCTAGTGTCGCAAGA -ACGGAATGTGCTAGTGTCGGTTGA -ACGGAATGTGCTAGTGTCTCCGAT -ACGGAATGTGCTAGTGTCTGGCAT -ACGGAATGTGCTAGTGTCCGAGAT -ACGGAATGTGCTAGTGTCTACCAC -ACGGAATGTGCTAGTGTCCAGAAC -ACGGAATGTGCTAGTGTCGTCTAC -ACGGAATGTGCTAGTGTCACGTAC -ACGGAATGTGCTAGTGTCAGTGAC -ACGGAATGTGCTAGTGTCCTGTAG -ACGGAATGTGCTAGTGTCCCTAAG -ACGGAATGTGCTAGTGTCGTTCAG -ACGGAATGTGCTAGTGTCGCATAG -ACGGAATGTGCTAGTGTCGACAAG -ACGGAATGTGCTAGTGTCAAGCAG -ACGGAATGTGCTAGTGTCCGTCAA -ACGGAATGTGCTAGTGTCGCTGAA -ACGGAATGTGCTAGTGTCAGTACG -ACGGAATGTGCTAGTGTCATCCGA -ACGGAATGTGCTAGTGTCATGGGA -ACGGAATGTGCTAGTGTCGTGCAA -ACGGAATGTGCTAGTGTCGAGGAA -ACGGAATGTGCTAGTGTCCAGGTA -ACGGAATGTGCTAGTGTCGACTCT -ACGGAATGTGCTAGTGTCAGTCCT -ACGGAATGTGCTAGTGTCTAAGCC -ACGGAATGTGCTAGTGTCATAGCC -ACGGAATGTGCTAGTGTCTAACCG -ACGGAATGTGCTAGTGTCATGCCA -ACGGAATGTGCTGGTGAAGGAAAC -ACGGAATGTGCTGGTGAAAACACC -ACGGAATGTGCTGGTGAAATCGAG -ACGGAATGTGCTGGTGAACTCCTT -ACGGAATGTGCTGGTGAACCTGTT -ACGGAATGTGCTGGTGAACGGTTT -ACGGAATGTGCTGGTGAAGTGGTT -ACGGAATGTGCTGGTGAAGCCTTT -ACGGAATGTGCTGGTGAAGGTCTT -ACGGAATGTGCTGGTGAAACGCTT -ACGGAATGTGCTGGTGAAAGCGTT -ACGGAATGTGCTGGTGAATTCGTC -ACGGAATGTGCTGGTGAATCTCTC -ACGGAATGTGCTGGTGAATGGATC -ACGGAATGTGCTGGTGAACACTTC -ACGGAATGTGCTGGTGAAGTACTC -ACGGAATGTGCTGGTGAAGATGTC -ACGGAATGTGCTGGTGAAACAGTC -ACGGAATGTGCTGGTGAATTGCTG -ACGGAATGTGCTGGTGAATCCATG -ACGGAATGTGCTGGTGAATGTGTG -ACGGAATGTGCTGGTGAACTAGTG -ACGGAATGTGCTGGTGAACATCTG -ACGGAATGTGCTGGTGAAGAGTTG -ACGGAATGTGCTGGTGAAAGACTG -ACGGAATGTGCTGGTGAATCGGTA -ACGGAATGTGCTGGTGAATGCCTA -ACGGAATGTGCTGGTGAACCACTA -ACGGAATGTGCTGGTGAAGGAGTA -ACGGAATGTGCTGGTGAATCGTCT -ACGGAATGTGCTGGTGAATGCACT -ACGGAATGTGCTGGTGAACTGACT -ACGGAATGTGCTGGTGAACAACCT -ACGGAATGTGCTGGTGAAGCTACT -ACGGAATGTGCTGGTGAAGGATCT -ACGGAATGTGCTGGTGAAAAGGCT -ACGGAATGTGCTGGTGAATCAACC -ACGGAATGTGCTGGTGAATGTTCC -ACGGAATGTGCTGGTGAAATTCCC -ACGGAATGTGCTGGTGAATTCTCG -ACGGAATGTGCTGGTGAATAGACG -ACGGAATGTGCTGGTGAAGTAACG -ACGGAATGTGCTGGTGAAACTTCG -ACGGAATGTGCTGGTGAATACGCA -ACGGAATGTGCTGGTGAACTTGCA -ACGGAATGTGCTGGTGAACGAACA -ACGGAATGTGCTGGTGAACAGTCA -ACGGAATGTGCTGGTGAAGATCCA -ACGGAATGTGCTGGTGAAACGACA -ACGGAATGTGCTGGTGAAAGCTCA -ACGGAATGTGCTGGTGAATCACGT -ACGGAATGTGCTGGTGAACGTAGT -ACGGAATGTGCTGGTGAAGTCAGT -ACGGAATGTGCTGGTGAAGAAGGT -ACGGAATGTGCTGGTGAAAACCGT -ACGGAATGTGCTGGTGAATTGTGC -ACGGAATGTGCTGGTGAACTAAGC -ACGGAATGTGCTGGTGAAACTAGC -ACGGAATGTGCTGGTGAAAGATGC -ACGGAATGTGCTGGTGAATGAAGG -ACGGAATGTGCTGGTGAACAATGG -ACGGAATGTGCTGGTGAAATGAGG -ACGGAATGTGCTGGTGAAAATGGG -ACGGAATGTGCTGGTGAATCCTGA -ACGGAATGTGCTGGTGAATAGCGA -ACGGAATGTGCTGGTGAACACAGA -ACGGAATGTGCTGGTGAAGCAAGA -ACGGAATGTGCTGGTGAAGGTTGA -ACGGAATGTGCTGGTGAATCCGAT -ACGGAATGTGCTGGTGAATGGCAT -ACGGAATGTGCTGGTGAACGAGAT -ACGGAATGTGCTGGTGAATACCAC -ACGGAATGTGCTGGTGAACAGAAC -ACGGAATGTGCTGGTGAAGTCTAC -ACGGAATGTGCTGGTGAAACGTAC -ACGGAATGTGCTGGTGAAAGTGAC -ACGGAATGTGCTGGTGAACTGTAG -ACGGAATGTGCTGGTGAACCTAAG -ACGGAATGTGCTGGTGAAGTTCAG -ACGGAATGTGCTGGTGAAGCATAG -ACGGAATGTGCTGGTGAAGACAAG -ACGGAATGTGCTGGTGAAAAGCAG -ACGGAATGTGCTGGTGAACGTCAA -ACGGAATGTGCTGGTGAAGCTGAA -ACGGAATGTGCTGGTGAAAGTACG -ACGGAATGTGCTGGTGAAATCCGA -ACGGAATGTGCTGGTGAAATGGGA -ACGGAATGTGCTGGTGAAGTGCAA -ACGGAATGTGCTGGTGAAGAGGAA -ACGGAATGTGCTGGTGAACAGGTA -ACGGAATGTGCTGGTGAAGACTCT -ACGGAATGTGCTGGTGAAAGTCCT -ACGGAATGTGCTGGTGAATAAGCC -ACGGAATGTGCTGGTGAAATAGCC -ACGGAATGTGCTGGTGAATAACCG -ACGGAATGTGCTGGTGAAATGCCA -ACGGAATGTGCTCGTAACGGAAAC -ACGGAATGTGCTCGTAACAACACC -ACGGAATGTGCTCGTAACATCGAG -ACGGAATGTGCTCGTAACCTCCTT -ACGGAATGTGCTCGTAACCCTGTT -ACGGAATGTGCTCGTAACCGGTTT -ACGGAATGTGCTCGTAACGTGGTT -ACGGAATGTGCTCGTAACGCCTTT -ACGGAATGTGCTCGTAACGGTCTT -ACGGAATGTGCTCGTAACACGCTT -ACGGAATGTGCTCGTAACAGCGTT -ACGGAATGTGCTCGTAACTTCGTC -ACGGAATGTGCTCGTAACTCTCTC -ACGGAATGTGCTCGTAACTGGATC -ACGGAATGTGCTCGTAACCACTTC -ACGGAATGTGCTCGTAACGTACTC -ACGGAATGTGCTCGTAACGATGTC -ACGGAATGTGCTCGTAACACAGTC -ACGGAATGTGCTCGTAACTTGCTG -ACGGAATGTGCTCGTAACTCCATG -ACGGAATGTGCTCGTAACTGTGTG -ACGGAATGTGCTCGTAACCTAGTG -ACGGAATGTGCTCGTAACCATCTG -ACGGAATGTGCTCGTAACGAGTTG -ACGGAATGTGCTCGTAACAGACTG -ACGGAATGTGCTCGTAACTCGGTA -ACGGAATGTGCTCGTAACTGCCTA -ACGGAATGTGCTCGTAACCCACTA -ACGGAATGTGCTCGTAACGGAGTA -ACGGAATGTGCTCGTAACTCGTCT -ACGGAATGTGCTCGTAACTGCACT -ACGGAATGTGCTCGTAACCTGACT -ACGGAATGTGCTCGTAACCAACCT -ACGGAATGTGCTCGTAACGCTACT -ACGGAATGTGCTCGTAACGGATCT -ACGGAATGTGCTCGTAACAAGGCT -ACGGAATGTGCTCGTAACTCAACC -ACGGAATGTGCTCGTAACTGTTCC -ACGGAATGTGCTCGTAACATTCCC -ACGGAATGTGCTCGTAACTTCTCG -ACGGAATGTGCTCGTAACTAGACG -ACGGAATGTGCTCGTAACGTAACG -ACGGAATGTGCTCGTAACACTTCG -ACGGAATGTGCTCGTAACTACGCA -ACGGAATGTGCTCGTAACCTTGCA -ACGGAATGTGCTCGTAACCGAACA -ACGGAATGTGCTCGTAACCAGTCA -ACGGAATGTGCTCGTAACGATCCA -ACGGAATGTGCTCGTAACACGACA -ACGGAATGTGCTCGTAACAGCTCA -ACGGAATGTGCTCGTAACTCACGT -ACGGAATGTGCTCGTAACCGTAGT -ACGGAATGTGCTCGTAACGTCAGT -ACGGAATGTGCTCGTAACGAAGGT -ACGGAATGTGCTCGTAACAACCGT -ACGGAATGTGCTCGTAACTTGTGC -ACGGAATGTGCTCGTAACCTAAGC -ACGGAATGTGCTCGTAACACTAGC -ACGGAATGTGCTCGTAACAGATGC -ACGGAATGTGCTCGTAACTGAAGG -ACGGAATGTGCTCGTAACCAATGG -ACGGAATGTGCTCGTAACATGAGG -ACGGAATGTGCTCGTAACAATGGG -ACGGAATGTGCTCGTAACTCCTGA -ACGGAATGTGCTCGTAACTAGCGA -ACGGAATGTGCTCGTAACCACAGA -ACGGAATGTGCTCGTAACGCAAGA -ACGGAATGTGCTCGTAACGGTTGA -ACGGAATGTGCTCGTAACTCCGAT -ACGGAATGTGCTCGTAACTGGCAT -ACGGAATGTGCTCGTAACCGAGAT -ACGGAATGTGCTCGTAACTACCAC -ACGGAATGTGCTCGTAACCAGAAC -ACGGAATGTGCTCGTAACGTCTAC -ACGGAATGTGCTCGTAACACGTAC -ACGGAATGTGCTCGTAACAGTGAC -ACGGAATGTGCTCGTAACCTGTAG -ACGGAATGTGCTCGTAACCCTAAG -ACGGAATGTGCTCGTAACGTTCAG -ACGGAATGTGCTCGTAACGCATAG -ACGGAATGTGCTCGTAACGACAAG -ACGGAATGTGCTCGTAACAAGCAG -ACGGAATGTGCTCGTAACCGTCAA -ACGGAATGTGCTCGTAACGCTGAA -ACGGAATGTGCTCGTAACAGTACG -ACGGAATGTGCTCGTAACATCCGA -ACGGAATGTGCTCGTAACATGGGA -ACGGAATGTGCTCGTAACGTGCAA -ACGGAATGTGCTCGTAACGAGGAA -ACGGAATGTGCTCGTAACCAGGTA -ACGGAATGTGCTCGTAACGACTCT -ACGGAATGTGCTCGTAACAGTCCT -ACGGAATGTGCTCGTAACTAAGCC -ACGGAATGTGCTCGTAACATAGCC -ACGGAATGTGCTCGTAACTAACCG -ACGGAATGTGCTCGTAACATGCCA -ACGGAATGTGCTTGCTTGGGAAAC -ACGGAATGTGCTTGCTTGAACACC -ACGGAATGTGCTTGCTTGATCGAG -ACGGAATGTGCTTGCTTGCTCCTT -ACGGAATGTGCTTGCTTGCCTGTT -ACGGAATGTGCTTGCTTGCGGTTT -ACGGAATGTGCTTGCTTGGTGGTT -ACGGAATGTGCTTGCTTGGCCTTT -ACGGAATGTGCTTGCTTGGGTCTT -ACGGAATGTGCTTGCTTGACGCTT -ACGGAATGTGCTTGCTTGAGCGTT -ACGGAATGTGCTTGCTTGTTCGTC -ACGGAATGTGCTTGCTTGTCTCTC -ACGGAATGTGCTTGCTTGTGGATC -ACGGAATGTGCTTGCTTGCACTTC -ACGGAATGTGCTTGCTTGGTACTC -ACGGAATGTGCTTGCTTGGATGTC -ACGGAATGTGCTTGCTTGACAGTC -ACGGAATGTGCTTGCTTGTTGCTG -ACGGAATGTGCTTGCTTGTCCATG -ACGGAATGTGCTTGCTTGTGTGTG -ACGGAATGTGCTTGCTTGCTAGTG -ACGGAATGTGCTTGCTTGCATCTG -ACGGAATGTGCTTGCTTGGAGTTG -ACGGAATGTGCTTGCTTGAGACTG -ACGGAATGTGCTTGCTTGTCGGTA -ACGGAATGTGCTTGCTTGTGCCTA -ACGGAATGTGCTTGCTTGCCACTA -ACGGAATGTGCTTGCTTGGGAGTA -ACGGAATGTGCTTGCTTGTCGTCT -ACGGAATGTGCTTGCTTGTGCACT -ACGGAATGTGCTTGCTTGCTGACT -ACGGAATGTGCTTGCTTGCAACCT -ACGGAATGTGCTTGCTTGGCTACT -ACGGAATGTGCTTGCTTGGGATCT -ACGGAATGTGCTTGCTTGAAGGCT -ACGGAATGTGCTTGCTTGTCAACC -ACGGAATGTGCTTGCTTGTGTTCC -ACGGAATGTGCTTGCTTGATTCCC -ACGGAATGTGCTTGCTTGTTCTCG -ACGGAATGTGCTTGCTTGTAGACG -ACGGAATGTGCTTGCTTGGTAACG -ACGGAATGTGCTTGCTTGACTTCG -ACGGAATGTGCTTGCTTGTACGCA -ACGGAATGTGCTTGCTTGCTTGCA -ACGGAATGTGCTTGCTTGCGAACA -ACGGAATGTGCTTGCTTGCAGTCA -ACGGAATGTGCTTGCTTGGATCCA -ACGGAATGTGCTTGCTTGACGACA -ACGGAATGTGCTTGCTTGAGCTCA -ACGGAATGTGCTTGCTTGTCACGT -ACGGAATGTGCTTGCTTGCGTAGT -ACGGAATGTGCTTGCTTGGTCAGT -ACGGAATGTGCTTGCTTGGAAGGT -ACGGAATGTGCTTGCTTGAACCGT -ACGGAATGTGCTTGCTTGTTGTGC -ACGGAATGTGCTTGCTTGCTAAGC -ACGGAATGTGCTTGCTTGACTAGC -ACGGAATGTGCTTGCTTGAGATGC -ACGGAATGTGCTTGCTTGTGAAGG -ACGGAATGTGCTTGCTTGCAATGG -ACGGAATGTGCTTGCTTGATGAGG -ACGGAATGTGCTTGCTTGAATGGG -ACGGAATGTGCTTGCTTGTCCTGA -ACGGAATGTGCTTGCTTGTAGCGA -ACGGAATGTGCTTGCTTGCACAGA -ACGGAATGTGCTTGCTTGGCAAGA -ACGGAATGTGCTTGCTTGGGTTGA -ACGGAATGTGCTTGCTTGTCCGAT -ACGGAATGTGCTTGCTTGTGGCAT -ACGGAATGTGCTTGCTTGCGAGAT -ACGGAATGTGCTTGCTTGTACCAC -ACGGAATGTGCTTGCTTGCAGAAC -ACGGAATGTGCTTGCTTGGTCTAC -ACGGAATGTGCTTGCTTGACGTAC -ACGGAATGTGCTTGCTTGAGTGAC -ACGGAATGTGCTTGCTTGCTGTAG -ACGGAATGTGCTTGCTTGCCTAAG -ACGGAATGTGCTTGCTTGGTTCAG -ACGGAATGTGCTTGCTTGGCATAG -ACGGAATGTGCTTGCTTGGACAAG -ACGGAATGTGCTTGCTTGAAGCAG -ACGGAATGTGCTTGCTTGCGTCAA -ACGGAATGTGCTTGCTTGGCTGAA -ACGGAATGTGCTTGCTTGAGTACG -ACGGAATGTGCTTGCTTGATCCGA -ACGGAATGTGCTTGCTTGATGGGA -ACGGAATGTGCTTGCTTGGTGCAA -ACGGAATGTGCTTGCTTGGAGGAA -ACGGAATGTGCTTGCTTGCAGGTA -ACGGAATGTGCTTGCTTGGACTCT -ACGGAATGTGCTTGCTTGAGTCCT -ACGGAATGTGCTTGCTTGTAAGCC -ACGGAATGTGCTTGCTTGATAGCC -ACGGAATGTGCTTGCTTGTAACCG -ACGGAATGTGCTTGCTTGATGCCA -ACGGAATGTGCTAGCCTAGGAAAC -ACGGAATGTGCTAGCCTAAACACC -ACGGAATGTGCTAGCCTAATCGAG -ACGGAATGTGCTAGCCTACTCCTT -ACGGAATGTGCTAGCCTACCTGTT -ACGGAATGTGCTAGCCTACGGTTT -ACGGAATGTGCTAGCCTAGTGGTT -ACGGAATGTGCTAGCCTAGCCTTT -ACGGAATGTGCTAGCCTAGGTCTT -ACGGAATGTGCTAGCCTAACGCTT -ACGGAATGTGCTAGCCTAAGCGTT -ACGGAATGTGCTAGCCTATTCGTC -ACGGAATGTGCTAGCCTATCTCTC -ACGGAATGTGCTAGCCTATGGATC -ACGGAATGTGCTAGCCTACACTTC -ACGGAATGTGCTAGCCTAGTACTC -ACGGAATGTGCTAGCCTAGATGTC -ACGGAATGTGCTAGCCTAACAGTC -ACGGAATGTGCTAGCCTATTGCTG -ACGGAATGTGCTAGCCTATCCATG -ACGGAATGTGCTAGCCTATGTGTG -ACGGAATGTGCTAGCCTACTAGTG -ACGGAATGTGCTAGCCTACATCTG -ACGGAATGTGCTAGCCTAGAGTTG -ACGGAATGTGCTAGCCTAAGACTG -ACGGAATGTGCTAGCCTATCGGTA -ACGGAATGTGCTAGCCTATGCCTA -ACGGAATGTGCTAGCCTACCACTA -ACGGAATGTGCTAGCCTAGGAGTA -ACGGAATGTGCTAGCCTATCGTCT -ACGGAATGTGCTAGCCTATGCACT -ACGGAATGTGCTAGCCTACTGACT -ACGGAATGTGCTAGCCTACAACCT -ACGGAATGTGCTAGCCTAGCTACT -ACGGAATGTGCTAGCCTAGGATCT -ACGGAATGTGCTAGCCTAAAGGCT -ACGGAATGTGCTAGCCTATCAACC -ACGGAATGTGCTAGCCTATGTTCC -ACGGAATGTGCTAGCCTAATTCCC -ACGGAATGTGCTAGCCTATTCTCG -ACGGAATGTGCTAGCCTATAGACG -ACGGAATGTGCTAGCCTAGTAACG -ACGGAATGTGCTAGCCTAACTTCG -ACGGAATGTGCTAGCCTATACGCA -ACGGAATGTGCTAGCCTACTTGCA -ACGGAATGTGCTAGCCTACGAACA -ACGGAATGTGCTAGCCTACAGTCA -ACGGAATGTGCTAGCCTAGATCCA -ACGGAATGTGCTAGCCTAACGACA -ACGGAATGTGCTAGCCTAAGCTCA -ACGGAATGTGCTAGCCTATCACGT -ACGGAATGTGCTAGCCTACGTAGT -ACGGAATGTGCTAGCCTAGTCAGT -ACGGAATGTGCTAGCCTAGAAGGT -ACGGAATGTGCTAGCCTAAACCGT -ACGGAATGTGCTAGCCTATTGTGC -ACGGAATGTGCTAGCCTACTAAGC -ACGGAATGTGCTAGCCTAACTAGC -ACGGAATGTGCTAGCCTAAGATGC -ACGGAATGTGCTAGCCTATGAAGG -ACGGAATGTGCTAGCCTACAATGG -ACGGAATGTGCTAGCCTAATGAGG -ACGGAATGTGCTAGCCTAAATGGG -ACGGAATGTGCTAGCCTATCCTGA -ACGGAATGTGCTAGCCTATAGCGA -ACGGAATGTGCTAGCCTACACAGA -ACGGAATGTGCTAGCCTAGCAAGA -ACGGAATGTGCTAGCCTAGGTTGA -ACGGAATGTGCTAGCCTATCCGAT -ACGGAATGTGCTAGCCTATGGCAT -ACGGAATGTGCTAGCCTACGAGAT -ACGGAATGTGCTAGCCTATACCAC -ACGGAATGTGCTAGCCTACAGAAC -ACGGAATGTGCTAGCCTAGTCTAC -ACGGAATGTGCTAGCCTAACGTAC -ACGGAATGTGCTAGCCTAAGTGAC -ACGGAATGTGCTAGCCTACTGTAG -ACGGAATGTGCTAGCCTACCTAAG -ACGGAATGTGCTAGCCTAGTTCAG -ACGGAATGTGCTAGCCTAGCATAG -ACGGAATGTGCTAGCCTAGACAAG -ACGGAATGTGCTAGCCTAAAGCAG -ACGGAATGTGCTAGCCTACGTCAA -ACGGAATGTGCTAGCCTAGCTGAA -ACGGAATGTGCTAGCCTAAGTACG -ACGGAATGTGCTAGCCTAATCCGA -ACGGAATGTGCTAGCCTAATGGGA -ACGGAATGTGCTAGCCTAGTGCAA -ACGGAATGTGCTAGCCTAGAGGAA -ACGGAATGTGCTAGCCTACAGGTA -ACGGAATGTGCTAGCCTAGACTCT -ACGGAATGTGCTAGCCTAAGTCCT -ACGGAATGTGCTAGCCTATAAGCC -ACGGAATGTGCTAGCCTAATAGCC -ACGGAATGTGCTAGCCTATAACCG -ACGGAATGTGCTAGCCTAATGCCA -ACGGAATGTGCTAGCACTGGAAAC -ACGGAATGTGCTAGCACTAACACC -ACGGAATGTGCTAGCACTATCGAG -ACGGAATGTGCTAGCACTCTCCTT -ACGGAATGTGCTAGCACTCCTGTT -ACGGAATGTGCTAGCACTCGGTTT -ACGGAATGTGCTAGCACTGTGGTT -ACGGAATGTGCTAGCACTGCCTTT -ACGGAATGTGCTAGCACTGGTCTT -ACGGAATGTGCTAGCACTACGCTT -ACGGAATGTGCTAGCACTAGCGTT -ACGGAATGTGCTAGCACTTTCGTC -ACGGAATGTGCTAGCACTTCTCTC -ACGGAATGTGCTAGCACTTGGATC -ACGGAATGTGCTAGCACTCACTTC -ACGGAATGTGCTAGCACTGTACTC -ACGGAATGTGCTAGCACTGATGTC -ACGGAATGTGCTAGCACTACAGTC -ACGGAATGTGCTAGCACTTTGCTG -ACGGAATGTGCTAGCACTTCCATG -ACGGAATGTGCTAGCACTTGTGTG -ACGGAATGTGCTAGCACTCTAGTG -ACGGAATGTGCTAGCACTCATCTG -ACGGAATGTGCTAGCACTGAGTTG -ACGGAATGTGCTAGCACTAGACTG -ACGGAATGTGCTAGCACTTCGGTA -ACGGAATGTGCTAGCACTTGCCTA -ACGGAATGTGCTAGCACTCCACTA -ACGGAATGTGCTAGCACTGGAGTA -ACGGAATGTGCTAGCACTTCGTCT -ACGGAATGTGCTAGCACTTGCACT -ACGGAATGTGCTAGCACTCTGACT -ACGGAATGTGCTAGCACTCAACCT -ACGGAATGTGCTAGCACTGCTACT -ACGGAATGTGCTAGCACTGGATCT -ACGGAATGTGCTAGCACTAAGGCT -ACGGAATGTGCTAGCACTTCAACC -ACGGAATGTGCTAGCACTTGTTCC -ACGGAATGTGCTAGCACTATTCCC -ACGGAATGTGCTAGCACTTTCTCG -ACGGAATGTGCTAGCACTTAGACG -ACGGAATGTGCTAGCACTGTAACG -ACGGAATGTGCTAGCACTACTTCG -ACGGAATGTGCTAGCACTTACGCA -ACGGAATGTGCTAGCACTCTTGCA -ACGGAATGTGCTAGCACTCGAACA -ACGGAATGTGCTAGCACTCAGTCA -ACGGAATGTGCTAGCACTGATCCA -ACGGAATGTGCTAGCACTACGACA -ACGGAATGTGCTAGCACTAGCTCA -ACGGAATGTGCTAGCACTTCACGT -ACGGAATGTGCTAGCACTCGTAGT -ACGGAATGTGCTAGCACTGTCAGT -ACGGAATGTGCTAGCACTGAAGGT -ACGGAATGTGCTAGCACTAACCGT -ACGGAATGTGCTAGCACTTTGTGC -ACGGAATGTGCTAGCACTCTAAGC -ACGGAATGTGCTAGCACTACTAGC -ACGGAATGTGCTAGCACTAGATGC -ACGGAATGTGCTAGCACTTGAAGG -ACGGAATGTGCTAGCACTCAATGG -ACGGAATGTGCTAGCACTATGAGG -ACGGAATGTGCTAGCACTAATGGG -ACGGAATGTGCTAGCACTTCCTGA -ACGGAATGTGCTAGCACTTAGCGA -ACGGAATGTGCTAGCACTCACAGA -ACGGAATGTGCTAGCACTGCAAGA -ACGGAATGTGCTAGCACTGGTTGA -ACGGAATGTGCTAGCACTTCCGAT -ACGGAATGTGCTAGCACTTGGCAT -ACGGAATGTGCTAGCACTCGAGAT -ACGGAATGTGCTAGCACTTACCAC -ACGGAATGTGCTAGCACTCAGAAC -ACGGAATGTGCTAGCACTGTCTAC -ACGGAATGTGCTAGCACTACGTAC -ACGGAATGTGCTAGCACTAGTGAC -ACGGAATGTGCTAGCACTCTGTAG -ACGGAATGTGCTAGCACTCCTAAG -ACGGAATGTGCTAGCACTGTTCAG -ACGGAATGTGCTAGCACTGCATAG -ACGGAATGTGCTAGCACTGACAAG -ACGGAATGTGCTAGCACTAAGCAG -ACGGAATGTGCTAGCACTCGTCAA -ACGGAATGTGCTAGCACTGCTGAA -ACGGAATGTGCTAGCACTAGTACG -ACGGAATGTGCTAGCACTATCCGA -ACGGAATGTGCTAGCACTATGGGA -ACGGAATGTGCTAGCACTGTGCAA -ACGGAATGTGCTAGCACTGAGGAA -ACGGAATGTGCTAGCACTCAGGTA -ACGGAATGTGCTAGCACTGACTCT -ACGGAATGTGCTAGCACTAGTCCT -ACGGAATGTGCTAGCACTTAAGCC -ACGGAATGTGCTAGCACTATAGCC -ACGGAATGTGCTAGCACTTAACCG -ACGGAATGTGCTAGCACTATGCCA -ACGGAATGTGCTTGCAGAGGAAAC -ACGGAATGTGCTTGCAGAAACACC -ACGGAATGTGCTTGCAGAATCGAG -ACGGAATGTGCTTGCAGACTCCTT -ACGGAATGTGCTTGCAGACCTGTT -ACGGAATGTGCTTGCAGACGGTTT -ACGGAATGTGCTTGCAGAGTGGTT -ACGGAATGTGCTTGCAGAGCCTTT -ACGGAATGTGCTTGCAGAGGTCTT -ACGGAATGTGCTTGCAGAACGCTT -ACGGAATGTGCTTGCAGAAGCGTT -ACGGAATGTGCTTGCAGATTCGTC -ACGGAATGTGCTTGCAGATCTCTC -ACGGAATGTGCTTGCAGATGGATC -ACGGAATGTGCTTGCAGACACTTC -ACGGAATGTGCTTGCAGAGTACTC -ACGGAATGTGCTTGCAGAGATGTC -ACGGAATGTGCTTGCAGAACAGTC -ACGGAATGTGCTTGCAGATTGCTG -ACGGAATGTGCTTGCAGATCCATG -ACGGAATGTGCTTGCAGATGTGTG -ACGGAATGTGCTTGCAGACTAGTG -ACGGAATGTGCTTGCAGACATCTG -ACGGAATGTGCTTGCAGAGAGTTG -ACGGAATGTGCTTGCAGAAGACTG -ACGGAATGTGCTTGCAGATCGGTA -ACGGAATGTGCTTGCAGATGCCTA -ACGGAATGTGCTTGCAGACCACTA -ACGGAATGTGCTTGCAGAGGAGTA -ACGGAATGTGCTTGCAGATCGTCT -ACGGAATGTGCTTGCAGATGCACT -ACGGAATGTGCTTGCAGACTGACT -ACGGAATGTGCTTGCAGACAACCT -ACGGAATGTGCTTGCAGAGCTACT -ACGGAATGTGCTTGCAGAGGATCT -ACGGAATGTGCTTGCAGAAAGGCT -ACGGAATGTGCTTGCAGATCAACC -ACGGAATGTGCTTGCAGATGTTCC -ACGGAATGTGCTTGCAGAATTCCC -ACGGAATGTGCTTGCAGATTCTCG -ACGGAATGTGCTTGCAGATAGACG -ACGGAATGTGCTTGCAGAGTAACG -ACGGAATGTGCTTGCAGAACTTCG -ACGGAATGTGCTTGCAGATACGCA -ACGGAATGTGCTTGCAGACTTGCA -ACGGAATGTGCTTGCAGACGAACA -ACGGAATGTGCTTGCAGACAGTCA -ACGGAATGTGCTTGCAGAGATCCA -ACGGAATGTGCTTGCAGAACGACA -ACGGAATGTGCTTGCAGAAGCTCA -ACGGAATGTGCTTGCAGATCACGT -ACGGAATGTGCTTGCAGACGTAGT -ACGGAATGTGCTTGCAGAGTCAGT -ACGGAATGTGCTTGCAGAGAAGGT -ACGGAATGTGCTTGCAGAAACCGT -ACGGAATGTGCTTGCAGATTGTGC -ACGGAATGTGCTTGCAGACTAAGC -ACGGAATGTGCTTGCAGAACTAGC -ACGGAATGTGCTTGCAGAAGATGC -ACGGAATGTGCTTGCAGATGAAGG -ACGGAATGTGCTTGCAGACAATGG -ACGGAATGTGCTTGCAGAATGAGG -ACGGAATGTGCTTGCAGAAATGGG -ACGGAATGTGCTTGCAGATCCTGA -ACGGAATGTGCTTGCAGATAGCGA -ACGGAATGTGCTTGCAGACACAGA -ACGGAATGTGCTTGCAGAGCAAGA -ACGGAATGTGCTTGCAGAGGTTGA -ACGGAATGTGCTTGCAGATCCGAT -ACGGAATGTGCTTGCAGATGGCAT -ACGGAATGTGCTTGCAGACGAGAT -ACGGAATGTGCTTGCAGATACCAC -ACGGAATGTGCTTGCAGACAGAAC -ACGGAATGTGCTTGCAGAGTCTAC -ACGGAATGTGCTTGCAGAACGTAC -ACGGAATGTGCTTGCAGAAGTGAC -ACGGAATGTGCTTGCAGACTGTAG -ACGGAATGTGCTTGCAGACCTAAG -ACGGAATGTGCTTGCAGAGTTCAG -ACGGAATGTGCTTGCAGAGCATAG -ACGGAATGTGCTTGCAGAGACAAG -ACGGAATGTGCTTGCAGAAAGCAG -ACGGAATGTGCTTGCAGACGTCAA -ACGGAATGTGCTTGCAGAGCTGAA -ACGGAATGTGCTTGCAGAAGTACG -ACGGAATGTGCTTGCAGAATCCGA -ACGGAATGTGCTTGCAGAATGGGA -ACGGAATGTGCTTGCAGAGTGCAA -ACGGAATGTGCTTGCAGAGAGGAA -ACGGAATGTGCTTGCAGACAGGTA -ACGGAATGTGCTTGCAGAGACTCT -ACGGAATGTGCTTGCAGAAGTCCT -ACGGAATGTGCTTGCAGATAAGCC -ACGGAATGTGCTTGCAGAATAGCC -ACGGAATGTGCTTGCAGATAACCG -ACGGAATGTGCTTGCAGAATGCCA -ACGGAATGTGCTAGGTGAGGAAAC -ACGGAATGTGCTAGGTGAAACACC -ACGGAATGTGCTAGGTGAATCGAG -ACGGAATGTGCTAGGTGACTCCTT -ACGGAATGTGCTAGGTGACCTGTT -ACGGAATGTGCTAGGTGACGGTTT -ACGGAATGTGCTAGGTGAGTGGTT -ACGGAATGTGCTAGGTGAGCCTTT -ACGGAATGTGCTAGGTGAGGTCTT -ACGGAATGTGCTAGGTGAACGCTT -ACGGAATGTGCTAGGTGAAGCGTT -ACGGAATGTGCTAGGTGATTCGTC -ACGGAATGTGCTAGGTGATCTCTC -ACGGAATGTGCTAGGTGATGGATC -ACGGAATGTGCTAGGTGACACTTC -ACGGAATGTGCTAGGTGAGTACTC -ACGGAATGTGCTAGGTGAGATGTC -ACGGAATGTGCTAGGTGAACAGTC -ACGGAATGTGCTAGGTGATTGCTG -ACGGAATGTGCTAGGTGATCCATG -ACGGAATGTGCTAGGTGATGTGTG -ACGGAATGTGCTAGGTGACTAGTG -ACGGAATGTGCTAGGTGACATCTG -ACGGAATGTGCTAGGTGAGAGTTG -ACGGAATGTGCTAGGTGAAGACTG -ACGGAATGTGCTAGGTGATCGGTA -ACGGAATGTGCTAGGTGATGCCTA -ACGGAATGTGCTAGGTGACCACTA -ACGGAATGTGCTAGGTGAGGAGTA -ACGGAATGTGCTAGGTGATCGTCT -ACGGAATGTGCTAGGTGATGCACT -ACGGAATGTGCTAGGTGACTGACT -ACGGAATGTGCTAGGTGACAACCT -ACGGAATGTGCTAGGTGAGCTACT -ACGGAATGTGCTAGGTGAGGATCT -ACGGAATGTGCTAGGTGAAAGGCT -ACGGAATGTGCTAGGTGATCAACC -ACGGAATGTGCTAGGTGATGTTCC -ACGGAATGTGCTAGGTGAATTCCC -ACGGAATGTGCTAGGTGATTCTCG -ACGGAATGTGCTAGGTGATAGACG -ACGGAATGTGCTAGGTGAGTAACG -ACGGAATGTGCTAGGTGAACTTCG -ACGGAATGTGCTAGGTGATACGCA -ACGGAATGTGCTAGGTGACTTGCA -ACGGAATGTGCTAGGTGACGAACA -ACGGAATGTGCTAGGTGACAGTCA -ACGGAATGTGCTAGGTGAGATCCA -ACGGAATGTGCTAGGTGAACGACA -ACGGAATGTGCTAGGTGAAGCTCA -ACGGAATGTGCTAGGTGATCACGT -ACGGAATGTGCTAGGTGACGTAGT -ACGGAATGTGCTAGGTGAGTCAGT -ACGGAATGTGCTAGGTGAGAAGGT -ACGGAATGTGCTAGGTGAAACCGT -ACGGAATGTGCTAGGTGATTGTGC -ACGGAATGTGCTAGGTGACTAAGC -ACGGAATGTGCTAGGTGAACTAGC -ACGGAATGTGCTAGGTGAAGATGC -ACGGAATGTGCTAGGTGATGAAGG -ACGGAATGTGCTAGGTGACAATGG -ACGGAATGTGCTAGGTGAATGAGG -ACGGAATGTGCTAGGTGAAATGGG -ACGGAATGTGCTAGGTGATCCTGA -ACGGAATGTGCTAGGTGATAGCGA -ACGGAATGTGCTAGGTGACACAGA -ACGGAATGTGCTAGGTGAGCAAGA -ACGGAATGTGCTAGGTGAGGTTGA -ACGGAATGTGCTAGGTGATCCGAT -ACGGAATGTGCTAGGTGATGGCAT -ACGGAATGTGCTAGGTGACGAGAT -ACGGAATGTGCTAGGTGATACCAC -ACGGAATGTGCTAGGTGACAGAAC -ACGGAATGTGCTAGGTGAGTCTAC -ACGGAATGTGCTAGGTGAACGTAC -ACGGAATGTGCTAGGTGAAGTGAC -ACGGAATGTGCTAGGTGACTGTAG -ACGGAATGTGCTAGGTGACCTAAG -ACGGAATGTGCTAGGTGAGTTCAG -ACGGAATGTGCTAGGTGAGCATAG -ACGGAATGTGCTAGGTGAGACAAG -ACGGAATGTGCTAGGTGAAAGCAG -ACGGAATGTGCTAGGTGACGTCAA -ACGGAATGTGCTAGGTGAGCTGAA -ACGGAATGTGCTAGGTGAAGTACG -ACGGAATGTGCTAGGTGAATCCGA -ACGGAATGTGCTAGGTGAATGGGA -ACGGAATGTGCTAGGTGAGTGCAA -ACGGAATGTGCTAGGTGAGAGGAA -ACGGAATGTGCTAGGTGACAGGTA -ACGGAATGTGCTAGGTGAGACTCT -ACGGAATGTGCTAGGTGAAGTCCT -ACGGAATGTGCTAGGTGATAAGCC -ACGGAATGTGCTAGGTGAATAGCC -ACGGAATGTGCTAGGTGATAACCG -ACGGAATGTGCTAGGTGAATGCCA -ACGGAATGTGCTTGGCAAGGAAAC -ACGGAATGTGCTTGGCAAAACACC -ACGGAATGTGCTTGGCAAATCGAG -ACGGAATGTGCTTGGCAACTCCTT -ACGGAATGTGCTTGGCAACCTGTT -ACGGAATGTGCTTGGCAACGGTTT -ACGGAATGTGCTTGGCAAGTGGTT -ACGGAATGTGCTTGGCAAGCCTTT -ACGGAATGTGCTTGGCAAGGTCTT -ACGGAATGTGCTTGGCAAACGCTT -ACGGAATGTGCTTGGCAAAGCGTT -ACGGAATGTGCTTGGCAATTCGTC -ACGGAATGTGCTTGGCAATCTCTC -ACGGAATGTGCTTGGCAATGGATC -ACGGAATGTGCTTGGCAACACTTC -ACGGAATGTGCTTGGCAAGTACTC -ACGGAATGTGCTTGGCAAGATGTC -ACGGAATGTGCTTGGCAAACAGTC -ACGGAATGTGCTTGGCAATTGCTG -ACGGAATGTGCTTGGCAATCCATG -ACGGAATGTGCTTGGCAATGTGTG -ACGGAATGTGCTTGGCAACTAGTG -ACGGAATGTGCTTGGCAACATCTG -ACGGAATGTGCTTGGCAAGAGTTG -ACGGAATGTGCTTGGCAAAGACTG -ACGGAATGTGCTTGGCAATCGGTA -ACGGAATGTGCTTGGCAATGCCTA -ACGGAATGTGCTTGGCAACCACTA -ACGGAATGTGCTTGGCAAGGAGTA -ACGGAATGTGCTTGGCAATCGTCT -ACGGAATGTGCTTGGCAATGCACT -ACGGAATGTGCTTGGCAACTGACT -ACGGAATGTGCTTGGCAACAACCT -ACGGAATGTGCTTGGCAAGCTACT -ACGGAATGTGCTTGGCAAGGATCT -ACGGAATGTGCTTGGCAAAAGGCT -ACGGAATGTGCTTGGCAATCAACC -ACGGAATGTGCTTGGCAATGTTCC -ACGGAATGTGCTTGGCAAATTCCC -ACGGAATGTGCTTGGCAATTCTCG -ACGGAATGTGCTTGGCAATAGACG -ACGGAATGTGCTTGGCAAGTAACG -ACGGAATGTGCTTGGCAAACTTCG -ACGGAATGTGCTTGGCAATACGCA -ACGGAATGTGCTTGGCAACTTGCA -ACGGAATGTGCTTGGCAACGAACA -ACGGAATGTGCTTGGCAACAGTCA -ACGGAATGTGCTTGGCAAGATCCA -ACGGAATGTGCTTGGCAAACGACA -ACGGAATGTGCTTGGCAAAGCTCA -ACGGAATGTGCTTGGCAATCACGT -ACGGAATGTGCTTGGCAACGTAGT -ACGGAATGTGCTTGGCAAGTCAGT -ACGGAATGTGCTTGGCAAGAAGGT -ACGGAATGTGCTTGGCAAAACCGT -ACGGAATGTGCTTGGCAATTGTGC -ACGGAATGTGCTTGGCAACTAAGC -ACGGAATGTGCTTGGCAAACTAGC -ACGGAATGTGCTTGGCAAAGATGC -ACGGAATGTGCTTGGCAATGAAGG -ACGGAATGTGCTTGGCAACAATGG -ACGGAATGTGCTTGGCAAATGAGG -ACGGAATGTGCTTGGCAAAATGGG -ACGGAATGTGCTTGGCAATCCTGA -ACGGAATGTGCTTGGCAATAGCGA -ACGGAATGTGCTTGGCAACACAGA -ACGGAATGTGCTTGGCAAGCAAGA -ACGGAATGTGCTTGGCAAGGTTGA -ACGGAATGTGCTTGGCAATCCGAT -ACGGAATGTGCTTGGCAATGGCAT -ACGGAATGTGCTTGGCAACGAGAT -ACGGAATGTGCTTGGCAATACCAC -ACGGAATGTGCTTGGCAACAGAAC -ACGGAATGTGCTTGGCAAGTCTAC -ACGGAATGTGCTTGGCAAACGTAC -ACGGAATGTGCTTGGCAAAGTGAC -ACGGAATGTGCTTGGCAACTGTAG -ACGGAATGTGCTTGGCAACCTAAG -ACGGAATGTGCTTGGCAAGTTCAG -ACGGAATGTGCTTGGCAAGCATAG -ACGGAATGTGCTTGGCAAGACAAG -ACGGAATGTGCTTGGCAAAAGCAG -ACGGAATGTGCTTGGCAACGTCAA -ACGGAATGTGCTTGGCAAGCTGAA -ACGGAATGTGCTTGGCAAAGTACG -ACGGAATGTGCTTGGCAAATCCGA -ACGGAATGTGCTTGGCAAATGGGA -ACGGAATGTGCTTGGCAAGTGCAA -ACGGAATGTGCTTGGCAAGAGGAA -ACGGAATGTGCTTGGCAACAGGTA -ACGGAATGTGCTTGGCAAGACTCT -ACGGAATGTGCTTGGCAAAGTCCT -ACGGAATGTGCTTGGCAATAAGCC -ACGGAATGTGCTTGGCAAATAGCC -ACGGAATGTGCTTGGCAATAACCG -ACGGAATGTGCTTGGCAAATGCCA -ACGGAATGTGCTAGGATGGGAAAC -ACGGAATGTGCTAGGATGAACACC -ACGGAATGTGCTAGGATGATCGAG -ACGGAATGTGCTAGGATGCTCCTT -ACGGAATGTGCTAGGATGCCTGTT -ACGGAATGTGCTAGGATGCGGTTT -ACGGAATGTGCTAGGATGGTGGTT -ACGGAATGTGCTAGGATGGCCTTT -ACGGAATGTGCTAGGATGGGTCTT -ACGGAATGTGCTAGGATGACGCTT -ACGGAATGTGCTAGGATGAGCGTT -ACGGAATGTGCTAGGATGTTCGTC -ACGGAATGTGCTAGGATGTCTCTC -ACGGAATGTGCTAGGATGTGGATC -ACGGAATGTGCTAGGATGCACTTC -ACGGAATGTGCTAGGATGGTACTC -ACGGAATGTGCTAGGATGGATGTC -ACGGAATGTGCTAGGATGACAGTC -ACGGAATGTGCTAGGATGTTGCTG -ACGGAATGTGCTAGGATGTCCATG -ACGGAATGTGCTAGGATGTGTGTG -ACGGAATGTGCTAGGATGCTAGTG -ACGGAATGTGCTAGGATGCATCTG -ACGGAATGTGCTAGGATGGAGTTG -ACGGAATGTGCTAGGATGAGACTG -ACGGAATGTGCTAGGATGTCGGTA -ACGGAATGTGCTAGGATGTGCCTA -ACGGAATGTGCTAGGATGCCACTA -ACGGAATGTGCTAGGATGGGAGTA -ACGGAATGTGCTAGGATGTCGTCT -ACGGAATGTGCTAGGATGTGCACT -ACGGAATGTGCTAGGATGCTGACT -ACGGAATGTGCTAGGATGCAACCT -ACGGAATGTGCTAGGATGGCTACT -ACGGAATGTGCTAGGATGGGATCT -ACGGAATGTGCTAGGATGAAGGCT -ACGGAATGTGCTAGGATGTCAACC -ACGGAATGTGCTAGGATGTGTTCC -ACGGAATGTGCTAGGATGATTCCC -ACGGAATGTGCTAGGATGTTCTCG -ACGGAATGTGCTAGGATGTAGACG -ACGGAATGTGCTAGGATGGTAACG -ACGGAATGTGCTAGGATGACTTCG -ACGGAATGTGCTAGGATGTACGCA -ACGGAATGTGCTAGGATGCTTGCA -ACGGAATGTGCTAGGATGCGAACA -ACGGAATGTGCTAGGATGCAGTCA -ACGGAATGTGCTAGGATGGATCCA -ACGGAATGTGCTAGGATGACGACA -ACGGAATGTGCTAGGATGAGCTCA -ACGGAATGTGCTAGGATGTCACGT -ACGGAATGTGCTAGGATGCGTAGT -ACGGAATGTGCTAGGATGGTCAGT -ACGGAATGTGCTAGGATGGAAGGT -ACGGAATGTGCTAGGATGAACCGT -ACGGAATGTGCTAGGATGTTGTGC -ACGGAATGTGCTAGGATGCTAAGC -ACGGAATGTGCTAGGATGACTAGC -ACGGAATGTGCTAGGATGAGATGC -ACGGAATGTGCTAGGATGTGAAGG -ACGGAATGTGCTAGGATGCAATGG -ACGGAATGTGCTAGGATGATGAGG -ACGGAATGTGCTAGGATGAATGGG -ACGGAATGTGCTAGGATGTCCTGA -ACGGAATGTGCTAGGATGTAGCGA -ACGGAATGTGCTAGGATGCACAGA -ACGGAATGTGCTAGGATGGCAAGA -ACGGAATGTGCTAGGATGGGTTGA -ACGGAATGTGCTAGGATGTCCGAT -ACGGAATGTGCTAGGATGTGGCAT -ACGGAATGTGCTAGGATGCGAGAT -ACGGAATGTGCTAGGATGTACCAC -ACGGAATGTGCTAGGATGCAGAAC -ACGGAATGTGCTAGGATGGTCTAC -ACGGAATGTGCTAGGATGACGTAC -ACGGAATGTGCTAGGATGAGTGAC -ACGGAATGTGCTAGGATGCTGTAG -ACGGAATGTGCTAGGATGCCTAAG -ACGGAATGTGCTAGGATGGTTCAG -ACGGAATGTGCTAGGATGGCATAG -ACGGAATGTGCTAGGATGGACAAG -ACGGAATGTGCTAGGATGAAGCAG -ACGGAATGTGCTAGGATGCGTCAA -ACGGAATGTGCTAGGATGGCTGAA -ACGGAATGTGCTAGGATGAGTACG -ACGGAATGTGCTAGGATGATCCGA -ACGGAATGTGCTAGGATGATGGGA -ACGGAATGTGCTAGGATGGTGCAA -ACGGAATGTGCTAGGATGGAGGAA -ACGGAATGTGCTAGGATGCAGGTA -ACGGAATGTGCTAGGATGGACTCT -ACGGAATGTGCTAGGATGAGTCCT -ACGGAATGTGCTAGGATGTAAGCC -ACGGAATGTGCTAGGATGATAGCC -ACGGAATGTGCTAGGATGTAACCG -ACGGAATGTGCTAGGATGATGCCA -ACGGAATGTGCTGGGAATGGAAAC -ACGGAATGTGCTGGGAATAACACC -ACGGAATGTGCTGGGAATATCGAG -ACGGAATGTGCTGGGAATCTCCTT -ACGGAATGTGCTGGGAATCCTGTT -ACGGAATGTGCTGGGAATCGGTTT -ACGGAATGTGCTGGGAATGTGGTT -ACGGAATGTGCTGGGAATGCCTTT -ACGGAATGTGCTGGGAATGGTCTT -ACGGAATGTGCTGGGAATACGCTT -ACGGAATGTGCTGGGAATAGCGTT -ACGGAATGTGCTGGGAATTTCGTC -ACGGAATGTGCTGGGAATTCTCTC -ACGGAATGTGCTGGGAATTGGATC -ACGGAATGTGCTGGGAATCACTTC -ACGGAATGTGCTGGGAATGTACTC -ACGGAATGTGCTGGGAATGATGTC -ACGGAATGTGCTGGGAATACAGTC -ACGGAATGTGCTGGGAATTTGCTG -ACGGAATGTGCTGGGAATTCCATG -ACGGAATGTGCTGGGAATTGTGTG -ACGGAATGTGCTGGGAATCTAGTG -ACGGAATGTGCTGGGAATCATCTG -ACGGAATGTGCTGGGAATGAGTTG -ACGGAATGTGCTGGGAATAGACTG -ACGGAATGTGCTGGGAATTCGGTA -ACGGAATGTGCTGGGAATTGCCTA -ACGGAATGTGCTGGGAATCCACTA -ACGGAATGTGCTGGGAATGGAGTA -ACGGAATGTGCTGGGAATTCGTCT -ACGGAATGTGCTGGGAATTGCACT -ACGGAATGTGCTGGGAATCTGACT -ACGGAATGTGCTGGGAATCAACCT -ACGGAATGTGCTGGGAATGCTACT -ACGGAATGTGCTGGGAATGGATCT -ACGGAATGTGCTGGGAATAAGGCT -ACGGAATGTGCTGGGAATTCAACC -ACGGAATGTGCTGGGAATTGTTCC -ACGGAATGTGCTGGGAATATTCCC -ACGGAATGTGCTGGGAATTTCTCG -ACGGAATGTGCTGGGAATTAGACG -ACGGAATGTGCTGGGAATGTAACG -ACGGAATGTGCTGGGAATACTTCG -ACGGAATGTGCTGGGAATTACGCA -ACGGAATGTGCTGGGAATCTTGCA -ACGGAATGTGCTGGGAATCGAACA -ACGGAATGTGCTGGGAATCAGTCA -ACGGAATGTGCTGGGAATGATCCA -ACGGAATGTGCTGGGAATACGACA -ACGGAATGTGCTGGGAATAGCTCA -ACGGAATGTGCTGGGAATTCACGT -ACGGAATGTGCTGGGAATCGTAGT -ACGGAATGTGCTGGGAATGTCAGT -ACGGAATGTGCTGGGAATGAAGGT -ACGGAATGTGCTGGGAATAACCGT -ACGGAATGTGCTGGGAATTTGTGC -ACGGAATGTGCTGGGAATCTAAGC -ACGGAATGTGCTGGGAATACTAGC -ACGGAATGTGCTGGGAATAGATGC -ACGGAATGTGCTGGGAATTGAAGG -ACGGAATGTGCTGGGAATCAATGG -ACGGAATGTGCTGGGAATATGAGG -ACGGAATGTGCTGGGAATAATGGG -ACGGAATGTGCTGGGAATTCCTGA -ACGGAATGTGCTGGGAATTAGCGA -ACGGAATGTGCTGGGAATCACAGA -ACGGAATGTGCTGGGAATGCAAGA -ACGGAATGTGCTGGGAATGGTTGA -ACGGAATGTGCTGGGAATTCCGAT -ACGGAATGTGCTGGGAATTGGCAT -ACGGAATGTGCTGGGAATCGAGAT -ACGGAATGTGCTGGGAATTACCAC -ACGGAATGTGCTGGGAATCAGAAC -ACGGAATGTGCTGGGAATGTCTAC -ACGGAATGTGCTGGGAATACGTAC -ACGGAATGTGCTGGGAATAGTGAC -ACGGAATGTGCTGGGAATCTGTAG -ACGGAATGTGCTGGGAATCCTAAG -ACGGAATGTGCTGGGAATGTTCAG -ACGGAATGTGCTGGGAATGCATAG -ACGGAATGTGCTGGGAATGACAAG -ACGGAATGTGCTGGGAATAAGCAG -ACGGAATGTGCTGGGAATCGTCAA -ACGGAATGTGCTGGGAATGCTGAA -ACGGAATGTGCTGGGAATAGTACG -ACGGAATGTGCTGGGAATATCCGA -ACGGAATGTGCTGGGAATATGGGA -ACGGAATGTGCTGGGAATGTGCAA -ACGGAATGTGCTGGGAATGAGGAA -ACGGAATGTGCTGGGAATCAGGTA -ACGGAATGTGCTGGGAATGACTCT -ACGGAATGTGCTGGGAATAGTCCT -ACGGAATGTGCTGGGAATTAAGCC -ACGGAATGTGCTGGGAATATAGCC -ACGGAATGTGCTGGGAATTAACCG -ACGGAATGTGCTGGGAATATGCCA -ACGGAATGTGCTTGATCCGGAAAC -ACGGAATGTGCTTGATCCAACACC -ACGGAATGTGCTTGATCCATCGAG -ACGGAATGTGCTTGATCCCTCCTT -ACGGAATGTGCTTGATCCCCTGTT -ACGGAATGTGCTTGATCCCGGTTT -ACGGAATGTGCTTGATCCGTGGTT -ACGGAATGTGCTTGATCCGCCTTT -ACGGAATGTGCTTGATCCGGTCTT -ACGGAATGTGCTTGATCCACGCTT -ACGGAATGTGCTTGATCCAGCGTT -ACGGAATGTGCTTGATCCTTCGTC -ACGGAATGTGCTTGATCCTCTCTC -ACGGAATGTGCTTGATCCTGGATC -ACGGAATGTGCTTGATCCCACTTC -ACGGAATGTGCTTGATCCGTACTC -ACGGAATGTGCTTGATCCGATGTC -ACGGAATGTGCTTGATCCACAGTC -ACGGAATGTGCTTGATCCTTGCTG -ACGGAATGTGCTTGATCCTCCATG -ACGGAATGTGCTTGATCCTGTGTG -ACGGAATGTGCTTGATCCCTAGTG -ACGGAATGTGCTTGATCCCATCTG -ACGGAATGTGCTTGATCCGAGTTG -ACGGAATGTGCTTGATCCAGACTG -ACGGAATGTGCTTGATCCTCGGTA -ACGGAATGTGCTTGATCCTGCCTA -ACGGAATGTGCTTGATCCCCACTA -ACGGAATGTGCTTGATCCGGAGTA -ACGGAATGTGCTTGATCCTCGTCT -ACGGAATGTGCTTGATCCTGCACT -ACGGAATGTGCTTGATCCCTGACT -ACGGAATGTGCTTGATCCCAACCT -ACGGAATGTGCTTGATCCGCTACT -ACGGAATGTGCTTGATCCGGATCT -ACGGAATGTGCTTGATCCAAGGCT -ACGGAATGTGCTTGATCCTCAACC -ACGGAATGTGCTTGATCCTGTTCC -ACGGAATGTGCTTGATCCATTCCC -ACGGAATGTGCTTGATCCTTCTCG -ACGGAATGTGCTTGATCCTAGACG -ACGGAATGTGCTTGATCCGTAACG -ACGGAATGTGCTTGATCCACTTCG -ACGGAATGTGCTTGATCCTACGCA -ACGGAATGTGCTTGATCCCTTGCA -ACGGAATGTGCTTGATCCCGAACA -ACGGAATGTGCTTGATCCCAGTCA -ACGGAATGTGCTTGATCCGATCCA -ACGGAATGTGCTTGATCCACGACA -ACGGAATGTGCTTGATCCAGCTCA -ACGGAATGTGCTTGATCCTCACGT -ACGGAATGTGCTTGATCCCGTAGT -ACGGAATGTGCTTGATCCGTCAGT -ACGGAATGTGCTTGATCCGAAGGT -ACGGAATGTGCTTGATCCAACCGT -ACGGAATGTGCTTGATCCTTGTGC -ACGGAATGTGCTTGATCCCTAAGC -ACGGAATGTGCTTGATCCACTAGC -ACGGAATGTGCTTGATCCAGATGC -ACGGAATGTGCTTGATCCTGAAGG -ACGGAATGTGCTTGATCCCAATGG -ACGGAATGTGCTTGATCCATGAGG -ACGGAATGTGCTTGATCCAATGGG -ACGGAATGTGCTTGATCCTCCTGA -ACGGAATGTGCTTGATCCTAGCGA -ACGGAATGTGCTTGATCCCACAGA -ACGGAATGTGCTTGATCCGCAAGA -ACGGAATGTGCTTGATCCGGTTGA -ACGGAATGTGCTTGATCCTCCGAT -ACGGAATGTGCTTGATCCTGGCAT -ACGGAATGTGCTTGATCCCGAGAT -ACGGAATGTGCTTGATCCTACCAC -ACGGAATGTGCTTGATCCCAGAAC -ACGGAATGTGCTTGATCCGTCTAC -ACGGAATGTGCTTGATCCACGTAC -ACGGAATGTGCTTGATCCAGTGAC -ACGGAATGTGCTTGATCCCTGTAG -ACGGAATGTGCTTGATCCCCTAAG -ACGGAATGTGCTTGATCCGTTCAG -ACGGAATGTGCTTGATCCGCATAG -ACGGAATGTGCTTGATCCGACAAG -ACGGAATGTGCTTGATCCAAGCAG -ACGGAATGTGCTTGATCCCGTCAA -ACGGAATGTGCTTGATCCGCTGAA -ACGGAATGTGCTTGATCCAGTACG -ACGGAATGTGCTTGATCCATCCGA -ACGGAATGTGCTTGATCCATGGGA -ACGGAATGTGCTTGATCCGTGCAA -ACGGAATGTGCTTGATCCGAGGAA -ACGGAATGTGCTTGATCCCAGGTA -ACGGAATGTGCTTGATCCGACTCT -ACGGAATGTGCTTGATCCAGTCCT -ACGGAATGTGCTTGATCCTAAGCC -ACGGAATGTGCTTGATCCATAGCC -ACGGAATGTGCTTGATCCTAACCG -ACGGAATGTGCTTGATCCATGCCA -ACGGAATGTGCTCGATAGGGAAAC -ACGGAATGTGCTCGATAGAACACC -ACGGAATGTGCTCGATAGATCGAG -ACGGAATGTGCTCGATAGCTCCTT -ACGGAATGTGCTCGATAGCCTGTT -ACGGAATGTGCTCGATAGCGGTTT -ACGGAATGTGCTCGATAGGTGGTT -ACGGAATGTGCTCGATAGGCCTTT -ACGGAATGTGCTCGATAGGGTCTT -ACGGAATGTGCTCGATAGACGCTT -ACGGAATGTGCTCGATAGAGCGTT -ACGGAATGTGCTCGATAGTTCGTC -ACGGAATGTGCTCGATAGTCTCTC -ACGGAATGTGCTCGATAGTGGATC -ACGGAATGTGCTCGATAGCACTTC -ACGGAATGTGCTCGATAGGTACTC -ACGGAATGTGCTCGATAGGATGTC -ACGGAATGTGCTCGATAGACAGTC -ACGGAATGTGCTCGATAGTTGCTG -ACGGAATGTGCTCGATAGTCCATG -ACGGAATGTGCTCGATAGTGTGTG -ACGGAATGTGCTCGATAGCTAGTG -ACGGAATGTGCTCGATAGCATCTG -ACGGAATGTGCTCGATAGGAGTTG -ACGGAATGTGCTCGATAGAGACTG -ACGGAATGTGCTCGATAGTCGGTA -ACGGAATGTGCTCGATAGTGCCTA -ACGGAATGTGCTCGATAGCCACTA -ACGGAATGTGCTCGATAGGGAGTA -ACGGAATGTGCTCGATAGTCGTCT -ACGGAATGTGCTCGATAGTGCACT -ACGGAATGTGCTCGATAGCTGACT -ACGGAATGTGCTCGATAGCAACCT -ACGGAATGTGCTCGATAGGCTACT -ACGGAATGTGCTCGATAGGGATCT -ACGGAATGTGCTCGATAGAAGGCT -ACGGAATGTGCTCGATAGTCAACC -ACGGAATGTGCTCGATAGTGTTCC -ACGGAATGTGCTCGATAGATTCCC -ACGGAATGTGCTCGATAGTTCTCG -ACGGAATGTGCTCGATAGTAGACG -ACGGAATGTGCTCGATAGGTAACG -ACGGAATGTGCTCGATAGACTTCG -ACGGAATGTGCTCGATAGTACGCA -ACGGAATGTGCTCGATAGCTTGCA -ACGGAATGTGCTCGATAGCGAACA -ACGGAATGTGCTCGATAGCAGTCA -ACGGAATGTGCTCGATAGGATCCA -ACGGAATGTGCTCGATAGACGACA -ACGGAATGTGCTCGATAGAGCTCA -ACGGAATGTGCTCGATAGTCACGT -ACGGAATGTGCTCGATAGCGTAGT -ACGGAATGTGCTCGATAGGTCAGT -ACGGAATGTGCTCGATAGGAAGGT -ACGGAATGTGCTCGATAGAACCGT -ACGGAATGTGCTCGATAGTTGTGC -ACGGAATGTGCTCGATAGCTAAGC -ACGGAATGTGCTCGATAGACTAGC -ACGGAATGTGCTCGATAGAGATGC -ACGGAATGTGCTCGATAGTGAAGG -ACGGAATGTGCTCGATAGCAATGG -ACGGAATGTGCTCGATAGATGAGG -ACGGAATGTGCTCGATAGAATGGG -ACGGAATGTGCTCGATAGTCCTGA -ACGGAATGTGCTCGATAGTAGCGA -ACGGAATGTGCTCGATAGCACAGA -ACGGAATGTGCTCGATAGGCAAGA -ACGGAATGTGCTCGATAGGGTTGA -ACGGAATGTGCTCGATAGTCCGAT -ACGGAATGTGCTCGATAGTGGCAT -ACGGAATGTGCTCGATAGCGAGAT -ACGGAATGTGCTCGATAGTACCAC -ACGGAATGTGCTCGATAGCAGAAC -ACGGAATGTGCTCGATAGGTCTAC -ACGGAATGTGCTCGATAGACGTAC -ACGGAATGTGCTCGATAGAGTGAC -ACGGAATGTGCTCGATAGCTGTAG -ACGGAATGTGCTCGATAGCCTAAG -ACGGAATGTGCTCGATAGGTTCAG -ACGGAATGTGCTCGATAGGCATAG -ACGGAATGTGCTCGATAGGACAAG -ACGGAATGTGCTCGATAGAAGCAG -ACGGAATGTGCTCGATAGCGTCAA -ACGGAATGTGCTCGATAGGCTGAA -ACGGAATGTGCTCGATAGAGTACG -ACGGAATGTGCTCGATAGATCCGA -ACGGAATGTGCTCGATAGATGGGA -ACGGAATGTGCTCGATAGGTGCAA -ACGGAATGTGCTCGATAGGAGGAA -ACGGAATGTGCTCGATAGCAGGTA -ACGGAATGTGCTCGATAGGACTCT -ACGGAATGTGCTCGATAGAGTCCT -ACGGAATGTGCTCGATAGTAAGCC -ACGGAATGTGCTCGATAGATAGCC -ACGGAATGTGCTCGATAGTAACCG -ACGGAATGTGCTCGATAGATGCCA -ACGGAATGTGCTAGACACGGAAAC -ACGGAATGTGCTAGACACAACACC -ACGGAATGTGCTAGACACATCGAG -ACGGAATGTGCTAGACACCTCCTT -ACGGAATGTGCTAGACACCCTGTT -ACGGAATGTGCTAGACACCGGTTT -ACGGAATGTGCTAGACACGTGGTT -ACGGAATGTGCTAGACACGCCTTT -ACGGAATGTGCTAGACACGGTCTT -ACGGAATGTGCTAGACACACGCTT -ACGGAATGTGCTAGACACAGCGTT -ACGGAATGTGCTAGACACTTCGTC -ACGGAATGTGCTAGACACTCTCTC -ACGGAATGTGCTAGACACTGGATC -ACGGAATGTGCTAGACACCACTTC -ACGGAATGTGCTAGACACGTACTC -ACGGAATGTGCTAGACACGATGTC -ACGGAATGTGCTAGACACACAGTC -ACGGAATGTGCTAGACACTTGCTG -ACGGAATGTGCTAGACACTCCATG -ACGGAATGTGCTAGACACTGTGTG -ACGGAATGTGCTAGACACCTAGTG -ACGGAATGTGCTAGACACCATCTG -ACGGAATGTGCTAGACACGAGTTG -ACGGAATGTGCTAGACACAGACTG -ACGGAATGTGCTAGACACTCGGTA -ACGGAATGTGCTAGACACTGCCTA -ACGGAATGTGCTAGACACCCACTA -ACGGAATGTGCTAGACACGGAGTA -ACGGAATGTGCTAGACACTCGTCT -ACGGAATGTGCTAGACACTGCACT -ACGGAATGTGCTAGACACCTGACT -ACGGAATGTGCTAGACACCAACCT -ACGGAATGTGCTAGACACGCTACT -ACGGAATGTGCTAGACACGGATCT -ACGGAATGTGCTAGACACAAGGCT -ACGGAATGTGCTAGACACTCAACC -ACGGAATGTGCTAGACACTGTTCC -ACGGAATGTGCTAGACACATTCCC -ACGGAATGTGCTAGACACTTCTCG -ACGGAATGTGCTAGACACTAGACG -ACGGAATGTGCTAGACACGTAACG -ACGGAATGTGCTAGACACACTTCG -ACGGAATGTGCTAGACACTACGCA -ACGGAATGTGCTAGACACCTTGCA -ACGGAATGTGCTAGACACCGAACA -ACGGAATGTGCTAGACACCAGTCA -ACGGAATGTGCTAGACACGATCCA -ACGGAATGTGCTAGACACACGACA -ACGGAATGTGCTAGACACAGCTCA -ACGGAATGTGCTAGACACTCACGT -ACGGAATGTGCTAGACACCGTAGT -ACGGAATGTGCTAGACACGTCAGT -ACGGAATGTGCTAGACACGAAGGT -ACGGAATGTGCTAGACACAACCGT -ACGGAATGTGCTAGACACTTGTGC -ACGGAATGTGCTAGACACCTAAGC -ACGGAATGTGCTAGACACACTAGC -ACGGAATGTGCTAGACACAGATGC -ACGGAATGTGCTAGACACTGAAGG -ACGGAATGTGCTAGACACCAATGG -ACGGAATGTGCTAGACACATGAGG -ACGGAATGTGCTAGACACAATGGG -ACGGAATGTGCTAGACACTCCTGA -ACGGAATGTGCTAGACACTAGCGA -ACGGAATGTGCTAGACACCACAGA -ACGGAATGTGCTAGACACGCAAGA -ACGGAATGTGCTAGACACGGTTGA -ACGGAATGTGCTAGACACTCCGAT -ACGGAATGTGCTAGACACTGGCAT -ACGGAATGTGCTAGACACCGAGAT -ACGGAATGTGCTAGACACTACCAC -ACGGAATGTGCTAGACACCAGAAC -ACGGAATGTGCTAGACACGTCTAC -ACGGAATGTGCTAGACACACGTAC -ACGGAATGTGCTAGACACAGTGAC -ACGGAATGTGCTAGACACCTGTAG -ACGGAATGTGCTAGACACCCTAAG -ACGGAATGTGCTAGACACGTTCAG -ACGGAATGTGCTAGACACGCATAG -ACGGAATGTGCTAGACACGACAAG -ACGGAATGTGCTAGACACAAGCAG -ACGGAATGTGCTAGACACCGTCAA -ACGGAATGTGCTAGACACGCTGAA -ACGGAATGTGCTAGACACAGTACG -ACGGAATGTGCTAGACACATCCGA -ACGGAATGTGCTAGACACATGGGA -ACGGAATGTGCTAGACACGTGCAA -ACGGAATGTGCTAGACACGAGGAA -ACGGAATGTGCTAGACACCAGGTA -ACGGAATGTGCTAGACACGACTCT -ACGGAATGTGCTAGACACAGTCCT -ACGGAATGTGCTAGACACTAAGCC -ACGGAATGTGCTAGACACATAGCC -ACGGAATGTGCTAGACACTAACCG -ACGGAATGTGCTAGACACATGCCA -ACGGAATGTGCTAGAGCAGGAAAC -ACGGAATGTGCTAGAGCAAACACC -ACGGAATGTGCTAGAGCAATCGAG -ACGGAATGTGCTAGAGCACTCCTT -ACGGAATGTGCTAGAGCACCTGTT -ACGGAATGTGCTAGAGCACGGTTT -ACGGAATGTGCTAGAGCAGTGGTT -ACGGAATGTGCTAGAGCAGCCTTT -ACGGAATGTGCTAGAGCAGGTCTT -ACGGAATGTGCTAGAGCAACGCTT -ACGGAATGTGCTAGAGCAAGCGTT -ACGGAATGTGCTAGAGCATTCGTC -ACGGAATGTGCTAGAGCATCTCTC -ACGGAATGTGCTAGAGCATGGATC -ACGGAATGTGCTAGAGCACACTTC -ACGGAATGTGCTAGAGCAGTACTC -ACGGAATGTGCTAGAGCAGATGTC -ACGGAATGTGCTAGAGCAACAGTC -ACGGAATGTGCTAGAGCATTGCTG -ACGGAATGTGCTAGAGCATCCATG -ACGGAATGTGCTAGAGCATGTGTG -ACGGAATGTGCTAGAGCACTAGTG -ACGGAATGTGCTAGAGCACATCTG -ACGGAATGTGCTAGAGCAGAGTTG -ACGGAATGTGCTAGAGCAAGACTG -ACGGAATGTGCTAGAGCATCGGTA -ACGGAATGTGCTAGAGCATGCCTA -ACGGAATGTGCTAGAGCACCACTA -ACGGAATGTGCTAGAGCAGGAGTA -ACGGAATGTGCTAGAGCATCGTCT -ACGGAATGTGCTAGAGCATGCACT -ACGGAATGTGCTAGAGCACTGACT -ACGGAATGTGCTAGAGCACAACCT -ACGGAATGTGCTAGAGCAGCTACT -ACGGAATGTGCTAGAGCAGGATCT -ACGGAATGTGCTAGAGCAAAGGCT -ACGGAATGTGCTAGAGCATCAACC -ACGGAATGTGCTAGAGCATGTTCC -ACGGAATGTGCTAGAGCAATTCCC -ACGGAATGTGCTAGAGCATTCTCG -ACGGAATGTGCTAGAGCATAGACG -ACGGAATGTGCTAGAGCAGTAACG -ACGGAATGTGCTAGAGCAACTTCG -ACGGAATGTGCTAGAGCATACGCA -ACGGAATGTGCTAGAGCACTTGCA -ACGGAATGTGCTAGAGCACGAACA -ACGGAATGTGCTAGAGCACAGTCA -ACGGAATGTGCTAGAGCAGATCCA -ACGGAATGTGCTAGAGCAACGACA -ACGGAATGTGCTAGAGCAAGCTCA -ACGGAATGTGCTAGAGCATCACGT -ACGGAATGTGCTAGAGCACGTAGT -ACGGAATGTGCTAGAGCAGTCAGT -ACGGAATGTGCTAGAGCAGAAGGT -ACGGAATGTGCTAGAGCAAACCGT -ACGGAATGTGCTAGAGCATTGTGC -ACGGAATGTGCTAGAGCACTAAGC -ACGGAATGTGCTAGAGCAACTAGC -ACGGAATGTGCTAGAGCAAGATGC -ACGGAATGTGCTAGAGCATGAAGG -ACGGAATGTGCTAGAGCACAATGG -ACGGAATGTGCTAGAGCAATGAGG -ACGGAATGTGCTAGAGCAAATGGG -ACGGAATGTGCTAGAGCATCCTGA -ACGGAATGTGCTAGAGCATAGCGA -ACGGAATGTGCTAGAGCACACAGA -ACGGAATGTGCTAGAGCAGCAAGA -ACGGAATGTGCTAGAGCAGGTTGA -ACGGAATGTGCTAGAGCATCCGAT -ACGGAATGTGCTAGAGCATGGCAT -ACGGAATGTGCTAGAGCACGAGAT -ACGGAATGTGCTAGAGCATACCAC -ACGGAATGTGCTAGAGCACAGAAC -ACGGAATGTGCTAGAGCAGTCTAC -ACGGAATGTGCTAGAGCAACGTAC -ACGGAATGTGCTAGAGCAAGTGAC -ACGGAATGTGCTAGAGCACTGTAG -ACGGAATGTGCTAGAGCACCTAAG -ACGGAATGTGCTAGAGCAGTTCAG -ACGGAATGTGCTAGAGCAGCATAG -ACGGAATGTGCTAGAGCAGACAAG -ACGGAATGTGCTAGAGCAAAGCAG -ACGGAATGTGCTAGAGCACGTCAA -ACGGAATGTGCTAGAGCAGCTGAA -ACGGAATGTGCTAGAGCAAGTACG -ACGGAATGTGCTAGAGCAATCCGA -ACGGAATGTGCTAGAGCAATGGGA -ACGGAATGTGCTAGAGCAGTGCAA -ACGGAATGTGCTAGAGCAGAGGAA -ACGGAATGTGCTAGAGCACAGGTA -ACGGAATGTGCTAGAGCAGACTCT -ACGGAATGTGCTAGAGCAAGTCCT -ACGGAATGTGCTAGAGCATAAGCC -ACGGAATGTGCTAGAGCAATAGCC -ACGGAATGTGCTAGAGCATAACCG -ACGGAATGTGCTAGAGCAATGCCA -ACGGAATGTGCTTGAGGTGGAAAC -ACGGAATGTGCTTGAGGTAACACC -ACGGAATGTGCTTGAGGTATCGAG -ACGGAATGTGCTTGAGGTCTCCTT -ACGGAATGTGCTTGAGGTCCTGTT -ACGGAATGTGCTTGAGGTCGGTTT -ACGGAATGTGCTTGAGGTGTGGTT -ACGGAATGTGCTTGAGGTGCCTTT -ACGGAATGTGCTTGAGGTGGTCTT -ACGGAATGTGCTTGAGGTACGCTT -ACGGAATGTGCTTGAGGTAGCGTT -ACGGAATGTGCTTGAGGTTTCGTC -ACGGAATGTGCTTGAGGTTCTCTC -ACGGAATGTGCTTGAGGTTGGATC -ACGGAATGTGCTTGAGGTCACTTC -ACGGAATGTGCTTGAGGTGTACTC -ACGGAATGTGCTTGAGGTGATGTC -ACGGAATGTGCTTGAGGTACAGTC -ACGGAATGTGCTTGAGGTTTGCTG -ACGGAATGTGCTTGAGGTTCCATG -ACGGAATGTGCTTGAGGTTGTGTG -ACGGAATGTGCTTGAGGTCTAGTG -ACGGAATGTGCTTGAGGTCATCTG -ACGGAATGTGCTTGAGGTGAGTTG -ACGGAATGTGCTTGAGGTAGACTG -ACGGAATGTGCTTGAGGTTCGGTA -ACGGAATGTGCTTGAGGTTGCCTA -ACGGAATGTGCTTGAGGTCCACTA -ACGGAATGTGCTTGAGGTGGAGTA -ACGGAATGTGCTTGAGGTTCGTCT -ACGGAATGTGCTTGAGGTTGCACT -ACGGAATGTGCTTGAGGTCTGACT -ACGGAATGTGCTTGAGGTCAACCT -ACGGAATGTGCTTGAGGTGCTACT -ACGGAATGTGCTTGAGGTGGATCT -ACGGAATGTGCTTGAGGTAAGGCT -ACGGAATGTGCTTGAGGTTCAACC -ACGGAATGTGCTTGAGGTTGTTCC -ACGGAATGTGCTTGAGGTATTCCC -ACGGAATGTGCTTGAGGTTTCTCG -ACGGAATGTGCTTGAGGTTAGACG -ACGGAATGTGCTTGAGGTGTAACG -ACGGAATGTGCTTGAGGTACTTCG -ACGGAATGTGCTTGAGGTTACGCA -ACGGAATGTGCTTGAGGTCTTGCA -ACGGAATGTGCTTGAGGTCGAACA -ACGGAATGTGCTTGAGGTCAGTCA -ACGGAATGTGCTTGAGGTGATCCA -ACGGAATGTGCTTGAGGTACGACA -ACGGAATGTGCTTGAGGTAGCTCA -ACGGAATGTGCTTGAGGTTCACGT -ACGGAATGTGCTTGAGGTCGTAGT -ACGGAATGTGCTTGAGGTGTCAGT -ACGGAATGTGCTTGAGGTGAAGGT -ACGGAATGTGCTTGAGGTAACCGT -ACGGAATGTGCTTGAGGTTTGTGC -ACGGAATGTGCTTGAGGTCTAAGC -ACGGAATGTGCTTGAGGTACTAGC -ACGGAATGTGCTTGAGGTAGATGC -ACGGAATGTGCTTGAGGTTGAAGG -ACGGAATGTGCTTGAGGTCAATGG -ACGGAATGTGCTTGAGGTATGAGG -ACGGAATGTGCTTGAGGTAATGGG -ACGGAATGTGCTTGAGGTTCCTGA -ACGGAATGTGCTTGAGGTTAGCGA -ACGGAATGTGCTTGAGGTCACAGA -ACGGAATGTGCTTGAGGTGCAAGA -ACGGAATGTGCTTGAGGTGGTTGA -ACGGAATGTGCTTGAGGTTCCGAT -ACGGAATGTGCTTGAGGTTGGCAT -ACGGAATGTGCTTGAGGTCGAGAT -ACGGAATGTGCTTGAGGTTACCAC -ACGGAATGTGCTTGAGGTCAGAAC -ACGGAATGTGCTTGAGGTGTCTAC -ACGGAATGTGCTTGAGGTACGTAC -ACGGAATGTGCTTGAGGTAGTGAC -ACGGAATGTGCTTGAGGTCTGTAG -ACGGAATGTGCTTGAGGTCCTAAG -ACGGAATGTGCTTGAGGTGTTCAG -ACGGAATGTGCTTGAGGTGCATAG -ACGGAATGTGCTTGAGGTGACAAG -ACGGAATGTGCTTGAGGTAAGCAG -ACGGAATGTGCTTGAGGTCGTCAA -ACGGAATGTGCTTGAGGTGCTGAA -ACGGAATGTGCTTGAGGTAGTACG -ACGGAATGTGCTTGAGGTATCCGA -ACGGAATGTGCTTGAGGTATGGGA -ACGGAATGTGCTTGAGGTGTGCAA -ACGGAATGTGCTTGAGGTGAGGAA -ACGGAATGTGCTTGAGGTCAGGTA -ACGGAATGTGCTTGAGGTGACTCT -ACGGAATGTGCTTGAGGTAGTCCT -ACGGAATGTGCTTGAGGTTAAGCC -ACGGAATGTGCTTGAGGTATAGCC -ACGGAATGTGCTTGAGGTTAACCG -ACGGAATGTGCTTGAGGTATGCCA -ACGGAATGTGCTGATTCCGGAAAC -ACGGAATGTGCTGATTCCAACACC -ACGGAATGTGCTGATTCCATCGAG -ACGGAATGTGCTGATTCCCTCCTT -ACGGAATGTGCTGATTCCCCTGTT -ACGGAATGTGCTGATTCCCGGTTT -ACGGAATGTGCTGATTCCGTGGTT -ACGGAATGTGCTGATTCCGCCTTT -ACGGAATGTGCTGATTCCGGTCTT -ACGGAATGTGCTGATTCCACGCTT -ACGGAATGTGCTGATTCCAGCGTT -ACGGAATGTGCTGATTCCTTCGTC -ACGGAATGTGCTGATTCCTCTCTC -ACGGAATGTGCTGATTCCTGGATC -ACGGAATGTGCTGATTCCCACTTC -ACGGAATGTGCTGATTCCGTACTC -ACGGAATGTGCTGATTCCGATGTC -ACGGAATGTGCTGATTCCACAGTC -ACGGAATGTGCTGATTCCTTGCTG -ACGGAATGTGCTGATTCCTCCATG -ACGGAATGTGCTGATTCCTGTGTG -ACGGAATGTGCTGATTCCCTAGTG -ACGGAATGTGCTGATTCCCATCTG -ACGGAATGTGCTGATTCCGAGTTG -ACGGAATGTGCTGATTCCAGACTG -ACGGAATGTGCTGATTCCTCGGTA -ACGGAATGTGCTGATTCCTGCCTA -ACGGAATGTGCTGATTCCCCACTA -ACGGAATGTGCTGATTCCGGAGTA -ACGGAATGTGCTGATTCCTCGTCT -ACGGAATGTGCTGATTCCTGCACT -ACGGAATGTGCTGATTCCCTGACT -ACGGAATGTGCTGATTCCCAACCT -ACGGAATGTGCTGATTCCGCTACT -ACGGAATGTGCTGATTCCGGATCT -ACGGAATGTGCTGATTCCAAGGCT -ACGGAATGTGCTGATTCCTCAACC -ACGGAATGTGCTGATTCCTGTTCC -ACGGAATGTGCTGATTCCATTCCC -ACGGAATGTGCTGATTCCTTCTCG -ACGGAATGTGCTGATTCCTAGACG -ACGGAATGTGCTGATTCCGTAACG -ACGGAATGTGCTGATTCCACTTCG -ACGGAATGTGCTGATTCCTACGCA -ACGGAATGTGCTGATTCCCTTGCA -ACGGAATGTGCTGATTCCCGAACA -ACGGAATGTGCTGATTCCCAGTCA -ACGGAATGTGCTGATTCCGATCCA -ACGGAATGTGCTGATTCCACGACA -ACGGAATGTGCTGATTCCAGCTCA -ACGGAATGTGCTGATTCCTCACGT -ACGGAATGTGCTGATTCCCGTAGT -ACGGAATGTGCTGATTCCGTCAGT -ACGGAATGTGCTGATTCCGAAGGT -ACGGAATGTGCTGATTCCAACCGT -ACGGAATGTGCTGATTCCTTGTGC -ACGGAATGTGCTGATTCCCTAAGC -ACGGAATGTGCTGATTCCACTAGC -ACGGAATGTGCTGATTCCAGATGC -ACGGAATGTGCTGATTCCTGAAGG -ACGGAATGTGCTGATTCCCAATGG -ACGGAATGTGCTGATTCCATGAGG -ACGGAATGTGCTGATTCCAATGGG -ACGGAATGTGCTGATTCCTCCTGA -ACGGAATGTGCTGATTCCTAGCGA -ACGGAATGTGCTGATTCCCACAGA -ACGGAATGTGCTGATTCCGCAAGA -ACGGAATGTGCTGATTCCGGTTGA -ACGGAATGTGCTGATTCCTCCGAT -ACGGAATGTGCTGATTCCTGGCAT -ACGGAATGTGCTGATTCCCGAGAT -ACGGAATGTGCTGATTCCTACCAC -ACGGAATGTGCTGATTCCCAGAAC -ACGGAATGTGCTGATTCCGTCTAC -ACGGAATGTGCTGATTCCACGTAC -ACGGAATGTGCTGATTCCAGTGAC -ACGGAATGTGCTGATTCCCTGTAG -ACGGAATGTGCTGATTCCCCTAAG -ACGGAATGTGCTGATTCCGTTCAG -ACGGAATGTGCTGATTCCGCATAG -ACGGAATGTGCTGATTCCGACAAG -ACGGAATGTGCTGATTCCAAGCAG -ACGGAATGTGCTGATTCCCGTCAA -ACGGAATGTGCTGATTCCGCTGAA -ACGGAATGTGCTGATTCCAGTACG -ACGGAATGTGCTGATTCCATCCGA -ACGGAATGTGCTGATTCCATGGGA -ACGGAATGTGCTGATTCCGTGCAA -ACGGAATGTGCTGATTCCGAGGAA -ACGGAATGTGCTGATTCCCAGGTA -ACGGAATGTGCTGATTCCGACTCT -ACGGAATGTGCTGATTCCAGTCCT -ACGGAATGTGCTGATTCCTAAGCC -ACGGAATGTGCTGATTCCATAGCC -ACGGAATGTGCTGATTCCTAACCG -ACGGAATGTGCTGATTCCATGCCA -ACGGAATGTGCTCATTGGGGAAAC -ACGGAATGTGCTCATTGGAACACC -ACGGAATGTGCTCATTGGATCGAG -ACGGAATGTGCTCATTGGCTCCTT -ACGGAATGTGCTCATTGGCCTGTT -ACGGAATGTGCTCATTGGCGGTTT -ACGGAATGTGCTCATTGGGTGGTT -ACGGAATGTGCTCATTGGGCCTTT -ACGGAATGTGCTCATTGGGGTCTT -ACGGAATGTGCTCATTGGACGCTT -ACGGAATGTGCTCATTGGAGCGTT -ACGGAATGTGCTCATTGGTTCGTC -ACGGAATGTGCTCATTGGTCTCTC -ACGGAATGTGCTCATTGGTGGATC -ACGGAATGTGCTCATTGGCACTTC -ACGGAATGTGCTCATTGGGTACTC -ACGGAATGTGCTCATTGGGATGTC -ACGGAATGTGCTCATTGGACAGTC -ACGGAATGTGCTCATTGGTTGCTG -ACGGAATGTGCTCATTGGTCCATG -ACGGAATGTGCTCATTGGTGTGTG -ACGGAATGTGCTCATTGGCTAGTG -ACGGAATGTGCTCATTGGCATCTG -ACGGAATGTGCTCATTGGGAGTTG -ACGGAATGTGCTCATTGGAGACTG -ACGGAATGTGCTCATTGGTCGGTA -ACGGAATGTGCTCATTGGTGCCTA -ACGGAATGTGCTCATTGGCCACTA -ACGGAATGTGCTCATTGGGGAGTA -ACGGAATGTGCTCATTGGTCGTCT -ACGGAATGTGCTCATTGGTGCACT -ACGGAATGTGCTCATTGGCTGACT -ACGGAATGTGCTCATTGGCAACCT -ACGGAATGTGCTCATTGGGCTACT -ACGGAATGTGCTCATTGGGGATCT -ACGGAATGTGCTCATTGGAAGGCT -ACGGAATGTGCTCATTGGTCAACC -ACGGAATGTGCTCATTGGTGTTCC -ACGGAATGTGCTCATTGGATTCCC -ACGGAATGTGCTCATTGGTTCTCG -ACGGAATGTGCTCATTGGTAGACG -ACGGAATGTGCTCATTGGGTAACG -ACGGAATGTGCTCATTGGACTTCG -ACGGAATGTGCTCATTGGTACGCA -ACGGAATGTGCTCATTGGCTTGCA -ACGGAATGTGCTCATTGGCGAACA -ACGGAATGTGCTCATTGGCAGTCA -ACGGAATGTGCTCATTGGGATCCA -ACGGAATGTGCTCATTGGACGACA -ACGGAATGTGCTCATTGGAGCTCA -ACGGAATGTGCTCATTGGTCACGT -ACGGAATGTGCTCATTGGCGTAGT -ACGGAATGTGCTCATTGGGTCAGT -ACGGAATGTGCTCATTGGGAAGGT -ACGGAATGTGCTCATTGGAACCGT -ACGGAATGTGCTCATTGGTTGTGC -ACGGAATGTGCTCATTGGCTAAGC -ACGGAATGTGCTCATTGGACTAGC -ACGGAATGTGCTCATTGGAGATGC -ACGGAATGTGCTCATTGGTGAAGG -ACGGAATGTGCTCATTGGCAATGG -ACGGAATGTGCTCATTGGATGAGG -ACGGAATGTGCTCATTGGAATGGG -ACGGAATGTGCTCATTGGTCCTGA -ACGGAATGTGCTCATTGGTAGCGA -ACGGAATGTGCTCATTGGCACAGA -ACGGAATGTGCTCATTGGGCAAGA -ACGGAATGTGCTCATTGGGGTTGA -ACGGAATGTGCTCATTGGTCCGAT -ACGGAATGTGCTCATTGGTGGCAT -ACGGAATGTGCTCATTGGCGAGAT -ACGGAATGTGCTCATTGGTACCAC -ACGGAATGTGCTCATTGGCAGAAC -ACGGAATGTGCTCATTGGGTCTAC -ACGGAATGTGCTCATTGGACGTAC -ACGGAATGTGCTCATTGGAGTGAC -ACGGAATGTGCTCATTGGCTGTAG -ACGGAATGTGCTCATTGGCCTAAG -ACGGAATGTGCTCATTGGGTTCAG -ACGGAATGTGCTCATTGGGCATAG -ACGGAATGTGCTCATTGGGACAAG -ACGGAATGTGCTCATTGGAAGCAG -ACGGAATGTGCTCATTGGCGTCAA -ACGGAATGTGCTCATTGGGCTGAA -ACGGAATGTGCTCATTGGAGTACG -ACGGAATGTGCTCATTGGATCCGA -ACGGAATGTGCTCATTGGATGGGA -ACGGAATGTGCTCATTGGGTGCAA -ACGGAATGTGCTCATTGGGAGGAA -ACGGAATGTGCTCATTGGCAGGTA -ACGGAATGTGCTCATTGGGACTCT -ACGGAATGTGCTCATTGGAGTCCT -ACGGAATGTGCTCATTGGTAAGCC -ACGGAATGTGCTCATTGGATAGCC -ACGGAATGTGCTCATTGGTAACCG -ACGGAATGTGCTCATTGGATGCCA -ACGGAATGTGCTGATCGAGGAAAC -ACGGAATGTGCTGATCGAAACACC -ACGGAATGTGCTGATCGAATCGAG -ACGGAATGTGCTGATCGACTCCTT -ACGGAATGTGCTGATCGACCTGTT -ACGGAATGTGCTGATCGACGGTTT -ACGGAATGTGCTGATCGAGTGGTT -ACGGAATGTGCTGATCGAGCCTTT -ACGGAATGTGCTGATCGAGGTCTT -ACGGAATGTGCTGATCGAACGCTT -ACGGAATGTGCTGATCGAAGCGTT -ACGGAATGTGCTGATCGATTCGTC -ACGGAATGTGCTGATCGATCTCTC -ACGGAATGTGCTGATCGATGGATC -ACGGAATGTGCTGATCGACACTTC -ACGGAATGTGCTGATCGAGTACTC -ACGGAATGTGCTGATCGAGATGTC -ACGGAATGTGCTGATCGAACAGTC -ACGGAATGTGCTGATCGATTGCTG -ACGGAATGTGCTGATCGATCCATG -ACGGAATGTGCTGATCGATGTGTG -ACGGAATGTGCTGATCGACTAGTG -ACGGAATGTGCTGATCGACATCTG -ACGGAATGTGCTGATCGAGAGTTG -ACGGAATGTGCTGATCGAAGACTG -ACGGAATGTGCTGATCGATCGGTA -ACGGAATGTGCTGATCGATGCCTA -ACGGAATGTGCTGATCGACCACTA -ACGGAATGTGCTGATCGAGGAGTA -ACGGAATGTGCTGATCGATCGTCT -ACGGAATGTGCTGATCGATGCACT -ACGGAATGTGCTGATCGACTGACT -ACGGAATGTGCTGATCGACAACCT -ACGGAATGTGCTGATCGAGCTACT -ACGGAATGTGCTGATCGAGGATCT -ACGGAATGTGCTGATCGAAAGGCT -ACGGAATGTGCTGATCGATCAACC -ACGGAATGTGCTGATCGATGTTCC -ACGGAATGTGCTGATCGAATTCCC -ACGGAATGTGCTGATCGATTCTCG -ACGGAATGTGCTGATCGATAGACG -ACGGAATGTGCTGATCGAGTAACG -ACGGAATGTGCTGATCGAACTTCG -ACGGAATGTGCTGATCGATACGCA -ACGGAATGTGCTGATCGACTTGCA -ACGGAATGTGCTGATCGACGAACA -ACGGAATGTGCTGATCGACAGTCA -ACGGAATGTGCTGATCGAGATCCA -ACGGAATGTGCTGATCGAACGACA -ACGGAATGTGCTGATCGAAGCTCA -ACGGAATGTGCTGATCGATCACGT -ACGGAATGTGCTGATCGACGTAGT -ACGGAATGTGCTGATCGAGTCAGT -ACGGAATGTGCTGATCGAGAAGGT -ACGGAATGTGCTGATCGAAACCGT -ACGGAATGTGCTGATCGATTGTGC -ACGGAATGTGCTGATCGACTAAGC -ACGGAATGTGCTGATCGAACTAGC -ACGGAATGTGCTGATCGAAGATGC -ACGGAATGTGCTGATCGATGAAGG -ACGGAATGTGCTGATCGACAATGG -ACGGAATGTGCTGATCGAATGAGG -ACGGAATGTGCTGATCGAAATGGG -ACGGAATGTGCTGATCGATCCTGA -ACGGAATGTGCTGATCGATAGCGA -ACGGAATGTGCTGATCGACACAGA -ACGGAATGTGCTGATCGAGCAAGA -ACGGAATGTGCTGATCGAGGTTGA -ACGGAATGTGCTGATCGATCCGAT -ACGGAATGTGCTGATCGATGGCAT -ACGGAATGTGCTGATCGACGAGAT -ACGGAATGTGCTGATCGATACCAC -ACGGAATGTGCTGATCGACAGAAC -ACGGAATGTGCTGATCGAGTCTAC -ACGGAATGTGCTGATCGAACGTAC -ACGGAATGTGCTGATCGAAGTGAC -ACGGAATGTGCTGATCGACTGTAG -ACGGAATGTGCTGATCGACCTAAG -ACGGAATGTGCTGATCGAGTTCAG -ACGGAATGTGCTGATCGAGCATAG -ACGGAATGTGCTGATCGAGACAAG -ACGGAATGTGCTGATCGAAAGCAG -ACGGAATGTGCTGATCGACGTCAA -ACGGAATGTGCTGATCGAGCTGAA -ACGGAATGTGCTGATCGAAGTACG -ACGGAATGTGCTGATCGAATCCGA -ACGGAATGTGCTGATCGAATGGGA -ACGGAATGTGCTGATCGAGTGCAA -ACGGAATGTGCTGATCGAGAGGAA -ACGGAATGTGCTGATCGACAGGTA -ACGGAATGTGCTGATCGAGACTCT -ACGGAATGTGCTGATCGAAGTCCT -ACGGAATGTGCTGATCGATAAGCC -ACGGAATGTGCTGATCGAATAGCC -ACGGAATGTGCTGATCGATAACCG -ACGGAATGTGCTGATCGAATGCCA -ACGGAATGTGCTCACTACGGAAAC -ACGGAATGTGCTCACTACAACACC -ACGGAATGTGCTCACTACATCGAG -ACGGAATGTGCTCACTACCTCCTT -ACGGAATGTGCTCACTACCCTGTT -ACGGAATGTGCTCACTACCGGTTT -ACGGAATGTGCTCACTACGTGGTT -ACGGAATGTGCTCACTACGCCTTT -ACGGAATGTGCTCACTACGGTCTT -ACGGAATGTGCTCACTACACGCTT -ACGGAATGTGCTCACTACAGCGTT -ACGGAATGTGCTCACTACTTCGTC -ACGGAATGTGCTCACTACTCTCTC -ACGGAATGTGCTCACTACTGGATC -ACGGAATGTGCTCACTACCACTTC -ACGGAATGTGCTCACTACGTACTC -ACGGAATGTGCTCACTACGATGTC -ACGGAATGTGCTCACTACACAGTC -ACGGAATGTGCTCACTACTTGCTG -ACGGAATGTGCTCACTACTCCATG -ACGGAATGTGCTCACTACTGTGTG -ACGGAATGTGCTCACTACCTAGTG -ACGGAATGTGCTCACTACCATCTG -ACGGAATGTGCTCACTACGAGTTG -ACGGAATGTGCTCACTACAGACTG -ACGGAATGTGCTCACTACTCGGTA -ACGGAATGTGCTCACTACTGCCTA -ACGGAATGTGCTCACTACCCACTA -ACGGAATGTGCTCACTACGGAGTA -ACGGAATGTGCTCACTACTCGTCT -ACGGAATGTGCTCACTACTGCACT -ACGGAATGTGCTCACTACCTGACT -ACGGAATGTGCTCACTACCAACCT -ACGGAATGTGCTCACTACGCTACT -ACGGAATGTGCTCACTACGGATCT -ACGGAATGTGCTCACTACAAGGCT -ACGGAATGTGCTCACTACTCAACC -ACGGAATGTGCTCACTACTGTTCC -ACGGAATGTGCTCACTACATTCCC -ACGGAATGTGCTCACTACTTCTCG -ACGGAATGTGCTCACTACTAGACG -ACGGAATGTGCTCACTACGTAACG -ACGGAATGTGCTCACTACACTTCG -ACGGAATGTGCTCACTACTACGCA -ACGGAATGTGCTCACTACCTTGCA -ACGGAATGTGCTCACTACCGAACA -ACGGAATGTGCTCACTACCAGTCA -ACGGAATGTGCTCACTACGATCCA -ACGGAATGTGCTCACTACACGACA -ACGGAATGTGCTCACTACAGCTCA -ACGGAATGTGCTCACTACTCACGT -ACGGAATGTGCTCACTACCGTAGT -ACGGAATGTGCTCACTACGTCAGT -ACGGAATGTGCTCACTACGAAGGT -ACGGAATGTGCTCACTACAACCGT -ACGGAATGTGCTCACTACTTGTGC -ACGGAATGTGCTCACTACCTAAGC -ACGGAATGTGCTCACTACACTAGC -ACGGAATGTGCTCACTACAGATGC -ACGGAATGTGCTCACTACTGAAGG -ACGGAATGTGCTCACTACCAATGG -ACGGAATGTGCTCACTACATGAGG -ACGGAATGTGCTCACTACAATGGG -ACGGAATGTGCTCACTACTCCTGA -ACGGAATGTGCTCACTACTAGCGA -ACGGAATGTGCTCACTACCACAGA -ACGGAATGTGCTCACTACGCAAGA -ACGGAATGTGCTCACTACGGTTGA -ACGGAATGTGCTCACTACTCCGAT -ACGGAATGTGCTCACTACTGGCAT -ACGGAATGTGCTCACTACCGAGAT -ACGGAATGTGCTCACTACTACCAC -ACGGAATGTGCTCACTACCAGAAC -ACGGAATGTGCTCACTACGTCTAC -ACGGAATGTGCTCACTACACGTAC -ACGGAATGTGCTCACTACAGTGAC -ACGGAATGTGCTCACTACCTGTAG -ACGGAATGTGCTCACTACCCTAAG -ACGGAATGTGCTCACTACGTTCAG -ACGGAATGTGCTCACTACGCATAG -ACGGAATGTGCTCACTACGACAAG -ACGGAATGTGCTCACTACAAGCAG -ACGGAATGTGCTCACTACCGTCAA -ACGGAATGTGCTCACTACGCTGAA -ACGGAATGTGCTCACTACAGTACG -ACGGAATGTGCTCACTACATCCGA -ACGGAATGTGCTCACTACATGGGA -ACGGAATGTGCTCACTACGTGCAA -ACGGAATGTGCTCACTACGAGGAA -ACGGAATGTGCTCACTACCAGGTA -ACGGAATGTGCTCACTACGACTCT -ACGGAATGTGCTCACTACAGTCCT -ACGGAATGTGCTCACTACTAAGCC -ACGGAATGTGCTCACTACATAGCC -ACGGAATGTGCTCACTACTAACCG -ACGGAATGTGCTCACTACATGCCA -ACGGAATGTGCTAACCAGGGAAAC -ACGGAATGTGCTAACCAGAACACC -ACGGAATGTGCTAACCAGATCGAG -ACGGAATGTGCTAACCAGCTCCTT -ACGGAATGTGCTAACCAGCCTGTT -ACGGAATGTGCTAACCAGCGGTTT -ACGGAATGTGCTAACCAGGTGGTT -ACGGAATGTGCTAACCAGGCCTTT -ACGGAATGTGCTAACCAGGGTCTT -ACGGAATGTGCTAACCAGACGCTT -ACGGAATGTGCTAACCAGAGCGTT -ACGGAATGTGCTAACCAGTTCGTC -ACGGAATGTGCTAACCAGTCTCTC -ACGGAATGTGCTAACCAGTGGATC -ACGGAATGTGCTAACCAGCACTTC -ACGGAATGTGCTAACCAGGTACTC -ACGGAATGTGCTAACCAGGATGTC -ACGGAATGTGCTAACCAGACAGTC -ACGGAATGTGCTAACCAGTTGCTG -ACGGAATGTGCTAACCAGTCCATG -ACGGAATGTGCTAACCAGTGTGTG -ACGGAATGTGCTAACCAGCTAGTG -ACGGAATGTGCTAACCAGCATCTG -ACGGAATGTGCTAACCAGGAGTTG -ACGGAATGTGCTAACCAGAGACTG -ACGGAATGTGCTAACCAGTCGGTA -ACGGAATGTGCTAACCAGTGCCTA -ACGGAATGTGCTAACCAGCCACTA -ACGGAATGTGCTAACCAGGGAGTA -ACGGAATGTGCTAACCAGTCGTCT -ACGGAATGTGCTAACCAGTGCACT -ACGGAATGTGCTAACCAGCTGACT -ACGGAATGTGCTAACCAGCAACCT -ACGGAATGTGCTAACCAGGCTACT -ACGGAATGTGCTAACCAGGGATCT -ACGGAATGTGCTAACCAGAAGGCT -ACGGAATGTGCTAACCAGTCAACC -ACGGAATGTGCTAACCAGTGTTCC -ACGGAATGTGCTAACCAGATTCCC -ACGGAATGTGCTAACCAGTTCTCG -ACGGAATGTGCTAACCAGTAGACG -ACGGAATGTGCTAACCAGGTAACG -ACGGAATGTGCTAACCAGACTTCG -ACGGAATGTGCTAACCAGTACGCA -ACGGAATGTGCTAACCAGCTTGCA -ACGGAATGTGCTAACCAGCGAACA -ACGGAATGTGCTAACCAGCAGTCA -ACGGAATGTGCTAACCAGGATCCA -ACGGAATGTGCTAACCAGACGACA -ACGGAATGTGCTAACCAGAGCTCA -ACGGAATGTGCTAACCAGTCACGT -ACGGAATGTGCTAACCAGCGTAGT -ACGGAATGTGCTAACCAGGTCAGT -ACGGAATGTGCTAACCAGGAAGGT -ACGGAATGTGCTAACCAGAACCGT -ACGGAATGTGCTAACCAGTTGTGC -ACGGAATGTGCTAACCAGCTAAGC -ACGGAATGTGCTAACCAGACTAGC -ACGGAATGTGCTAACCAGAGATGC -ACGGAATGTGCTAACCAGTGAAGG -ACGGAATGTGCTAACCAGCAATGG -ACGGAATGTGCTAACCAGATGAGG -ACGGAATGTGCTAACCAGAATGGG -ACGGAATGTGCTAACCAGTCCTGA -ACGGAATGTGCTAACCAGTAGCGA -ACGGAATGTGCTAACCAGCACAGA -ACGGAATGTGCTAACCAGGCAAGA -ACGGAATGTGCTAACCAGGGTTGA -ACGGAATGTGCTAACCAGTCCGAT -ACGGAATGTGCTAACCAGTGGCAT -ACGGAATGTGCTAACCAGCGAGAT -ACGGAATGTGCTAACCAGTACCAC -ACGGAATGTGCTAACCAGCAGAAC -ACGGAATGTGCTAACCAGGTCTAC -ACGGAATGTGCTAACCAGACGTAC -ACGGAATGTGCTAACCAGAGTGAC -ACGGAATGTGCTAACCAGCTGTAG -ACGGAATGTGCTAACCAGCCTAAG -ACGGAATGTGCTAACCAGGTTCAG -ACGGAATGTGCTAACCAGGCATAG -ACGGAATGTGCTAACCAGGACAAG -ACGGAATGTGCTAACCAGAAGCAG -ACGGAATGTGCTAACCAGCGTCAA -ACGGAATGTGCTAACCAGGCTGAA -ACGGAATGTGCTAACCAGAGTACG -ACGGAATGTGCTAACCAGATCCGA -ACGGAATGTGCTAACCAGATGGGA -ACGGAATGTGCTAACCAGGTGCAA -ACGGAATGTGCTAACCAGGAGGAA -ACGGAATGTGCTAACCAGCAGGTA -ACGGAATGTGCTAACCAGGACTCT -ACGGAATGTGCTAACCAGAGTCCT -ACGGAATGTGCTAACCAGTAAGCC -ACGGAATGTGCTAACCAGATAGCC -ACGGAATGTGCTAACCAGTAACCG -ACGGAATGTGCTAACCAGATGCCA -ACGGAATGTGCTTACGTCGGAAAC -ACGGAATGTGCTTACGTCAACACC -ACGGAATGTGCTTACGTCATCGAG -ACGGAATGTGCTTACGTCCTCCTT -ACGGAATGTGCTTACGTCCCTGTT -ACGGAATGTGCTTACGTCCGGTTT -ACGGAATGTGCTTACGTCGTGGTT -ACGGAATGTGCTTACGTCGCCTTT -ACGGAATGTGCTTACGTCGGTCTT -ACGGAATGTGCTTACGTCACGCTT -ACGGAATGTGCTTACGTCAGCGTT -ACGGAATGTGCTTACGTCTTCGTC -ACGGAATGTGCTTACGTCTCTCTC -ACGGAATGTGCTTACGTCTGGATC -ACGGAATGTGCTTACGTCCACTTC -ACGGAATGTGCTTACGTCGTACTC -ACGGAATGTGCTTACGTCGATGTC -ACGGAATGTGCTTACGTCACAGTC -ACGGAATGTGCTTACGTCTTGCTG -ACGGAATGTGCTTACGTCTCCATG -ACGGAATGTGCTTACGTCTGTGTG -ACGGAATGTGCTTACGTCCTAGTG -ACGGAATGTGCTTACGTCCATCTG -ACGGAATGTGCTTACGTCGAGTTG -ACGGAATGTGCTTACGTCAGACTG -ACGGAATGTGCTTACGTCTCGGTA -ACGGAATGTGCTTACGTCTGCCTA -ACGGAATGTGCTTACGTCCCACTA -ACGGAATGTGCTTACGTCGGAGTA -ACGGAATGTGCTTACGTCTCGTCT -ACGGAATGTGCTTACGTCTGCACT -ACGGAATGTGCTTACGTCCTGACT -ACGGAATGTGCTTACGTCCAACCT -ACGGAATGTGCTTACGTCGCTACT -ACGGAATGTGCTTACGTCGGATCT -ACGGAATGTGCTTACGTCAAGGCT -ACGGAATGTGCTTACGTCTCAACC -ACGGAATGTGCTTACGTCTGTTCC -ACGGAATGTGCTTACGTCATTCCC -ACGGAATGTGCTTACGTCTTCTCG -ACGGAATGTGCTTACGTCTAGACG -ACGGAATGTGCTTACGTCGTAACG -ACGGAATGTGCTTACGTCACTTCG -ACGGAATGTGCTTACGTCTACGCA -ACGGAATGTGCTTACGTCCTTGCA -ACGGAATGTGCTTACGTCCGAACA -ACGGAATGTGCTTACGTCCAGTCA -ACGGAATGTGCTTACGTCGATCCA -ACGGAATGTGCTTACGTCACGACA -ACGGAATGTGCTTACGTCAGCTCA -ACGGAATGTGCTTACGTCTCACGT -ACGGAATGTGCTTACGTCCGTAGT -ACGGAATGTGCTTACGTCGTCAGT -ACGGAATGTGCTTACGTCGAAGGT -ACGGAATGTGCTTACGTCAACCGT -ACGGAATGTGCTTACGTCTTGTGC -ACGGAATGTGCTTACGTCCTAAGC -ACGGAATGTGCTTACGTCACTAGC -ACGGAATGTGCTTACGTCAGATGC -ACGGAATGTGCTTACGTCTGAAGG -ACGGAATGTGCTTACGTCCAATGG -ACGGAATGTGCTTACGTCATGAGG -ACGGAATGTGCTTACGTCAATGGG -ACGGAATGTGCTTACGTCTCCTGA -ACGGAATGTGCTTACGTCTAGCGA -ACGGAATGTGCTTACGTCCACAGA -ACGGAATGTGCTTACGTCGCAAGA -ACGGAATGTGCTTACGTCGGTTGA -ACGGAATGTGCTTACGTCTCCGAT -ACGGAATGTGCTTACGTCTGGCAT -ACGGAATGTGCTTACGTCCGAGAT -ACGGAATGTGCTTACGTCTACCAC -ACGGAATGTGCTTACGTCCAGAAC -ACGGAATGTGCTTACGTCGTCTAC -ACGGAATGTGCTTACGTCACGTAC -ACGGAATGTGCTTACGTCAGTGAC -ACGGAATGTGCTTACGTCCTGTAG -ACGGAATGTGCTTACGTCCCTAAG -ACGGAATGTGCTTACGTCGTTCAG -ACGGAATGTGCTTACGTCGCATAG -ACGGAATGTGCTTACGTCGACAAG -ACGGAATGTGCTTACGTCAAGCAG -ACGGAATGTGCTTACGTCCGTCAA -ACGGAATGTGCTTACGTCGCTGAA -ACGGAATGTGCTTACGTCAGTACG -ACGGAATGTGCTTACGTCATCCGA -ACGGAATGTGCTTACGTCATGGGA -ACGGAATGTGCTTACGTCGTGCAA -ACGGAATGTGCTTACGTCGAGGAA -ACGGAATGTGCTTACGTCCAGGTA -ACGGAATGTGCTTACGTCGACTCT -ACGGAATGTGCTTACGTCAGTCCT -ACGGAATGTGCTTACGTCTAAGCC -ACGGAATGTGCTTACGTCATAGCC -ACGGAATGTGCTTACGTCTAACCG -ACGGAATGTGCTTACGTCATGCCA -ACGGAATGTGCTTACACGGGAAAC -ACGGAATGTGCTTACACGAACACC -ACGGAATGTGCTTACACGATCGAG -ACGGAATGTGCTTACACGCTCCTT -ACGGAATGTGCTTACACGCCTGTT -ACGGAATGTGCTTACACGCGGTTT -ACGGAATGTGCTTACACGGTGGTT -ACGGAATGTGCTTACACGGCCTTT -ACGGAATGTGCTTACACGGGTCTT -ACGGAATGTGCTTACACGACGCTT -ACGGAATGTGCTTACACGAGCGTT -ACGGAATGTGCTTACACGTTCGTC -ACGGAATGTGCTTACACGTCTCTC -ACGGAATGTGCTTACACGTGGATC -ACGGAATGTGCTTACACGCACTTC -ACGGAATGTGCTTACACGGTACTC -ACGGAATGTGCTTACACGGATGTC -ACGGAATGTGCTTACACGACAGTC -ACGGAATGTGCTTACACGTTGCTG -ACGGAATGTGCTTACACGTCCATG -ACGGAATGTGCTTACACGTGTGTG -ACGGAATGTGCTTACACGCTAGTG -ACGGAATGTGCTTACACGCATCTG -ACGGAATGTGCTTACACGGAGTTG -ACGGAATGTGCTTACACGAGACTG -ACGGAATGTGCTTACACGTCGGTA -ACGGAATGTGCTTACACGTGCCTA -ACGGAATGTGCTTACACGCCACTA -ACGGAATGTGCTTACACGGGAGTA -ACGGAATGTGCTTACACGTCGTCT -ACGGAATGTGCTTACACGTGCACT -ACGGAATGTGCTTACACGCTGACT -ACGGAATGTGCTTACACGCAACCT -ACGGAATGTGCTTACACGGCTACT -ACGGAATGTGCTTACACGGGATCT -ACGGAATGTGCTTACACGAAGGCT -ACGGAATGTGCTTACACGTCAACC -ACGGAATGTGCTTACACGTGTTCC -ACGGAATGTGCTTACACGATTCCC -ACGGAATGTGCTTACACGTTCTCG -ACGGAATGTGCTTACACGTAGACG -ACGGAATGTGCTTACACGGTAACG -ACGGAATGTGCTTACACGACTTCG -ACGGAATGTGCTTACACGTACGCA -ACGGAATGTGCTTACACGCTTGCA -ACGGAATGTGCTTACACGCGAACA -ACGGAATGTGCTTACACGCAGTCA -ACGGAATGTGCTTACACGGATCCA -ACGGAATGTGCTTACACGACGACA -ACGGAATGTGCTTACACGAGCTCA -ACGGAATGTGCTTACACGTCACGT -ACGGAATGTGCTTACACGCGTAGT -ACGGAATGTGCTTACACGGTCAGT -ACGGAATGTGCTTACACGGAAGGT -ACGGAATGTGCTTACACGAACCGT -ACGGAATGTGCTTACACGTTGTGC -ACGGAATGTGCTTACACGCTAAGC -ACGGAATGTGCTTACACGACTAGC -ACGGAATGTGCTTACACGAGATGC -ACGGAATGTGCTTACACGTGAAGG -ACGGAATGTGCTTACACGCAATGG -ACGGAATGTGCTTACACGATGAGG -ACGGAATGTGCTTACACGAATGGG -ACGGAATGTGCTTACACGTCCTGA -ACGGAATGTGCTTACACGTAGCGA -ACGGAATGTGCTTACACGCACAGA -ACGGAATGTGCTTACACGGCAAGA -ACGGAATGTGCTTACACGGGTTGA -ACGGAATGTGCTTACACGTCCGAT -ACGGAATGTGCTTACACGTGGCAT -ACGGAATGTGCTTACACGCGAGAT -ACGGAATGTGCTTACACGTACCAC -ACGGAATGTGCTTACACGCAGAAC -ACGGAATGTGCTTACACGGTCTAC -ACGGAATGTGCTTACACGACGTAC -ACGGAATGTGCTTACACGAGTGAC -ACGGAATGTGCTTACACGCTGTAG -ACGGAATGTGCTTACACGCCTAAG -ACGGAATGTGCTTACACGGTTCAG -ACGGAATGTGCTTACACGGCATAG -ACGGAATGTGCTTACACGGACAAG -ACGGAATGTGCTTACACGAAGCAG -ACGGAATGTGCTTACACGCGTCAA -ACGGAATGTGCTTACACGGCTGAA -ACGGAATGTGCTTACACGAGTACG -ACGGAATGTGCTTACACGATCCGA -ACGGAATGTGCTTACACGATGGGA -ACGGAATGTGCTTACACGGTGCAA -ACGGAATGTGCTTACACGGAGGAA -ACGGAATGTGCTTACACGCAGGTA -ACGGAATGTGCTTACACGGACTCT -ACGGAATGTGCTTACACGAGTCCT -ACGGAATGTGCTTACACGTAAGCC -ACGGAATGTGCTTACACGATAGCC -ACGGAATGTGCTTACACGTAACCG -ACGGAATGTGCTTACACGATGCCA -ACGGAATGTGCTGACAGTGGAAAC -ACGGAATGTGCTGACAGTAACACC -ACGGAATGTGCTGACAGTATCGAG -ACGGAATGTGCTGACAGTCTCCTT -ACGGAATGTGCTGACAGTCCTGTT -ACGGAATGTGCTGACAGTCGGTTT -ACGGAATGTGCTGACAGTGTGGTT -ACGGAATGTGCTGACAGTGCCTTT -ACGGAATGTGCTGACAGTGGTCTT -ACGGAATGTGCTGACAGTACGCTT -ACGGAATGTGCTGACAGTAGCGTT -ACGGAATGTGCTGACAGTTTCGTC -ACGGAATGTGCTGACAGTTCTCTC -ACGGAATGTGCTGACAGTTGGATC -ACGGAATGTGCTGACAGTCACTTC -ACGGAATGTGCTGACAGTGTACTC -ACGGAATGTGCTGACAGTGATGTC -ACGGAATGTGCTGACAGTACAGTC -ACGGAATGTGCTGACAGTTTGCTG -ACGGAATGTGCTGACAGTTCCATG -ACGGAATGTGCTGACAGTTGTGTG -ACGGAATGTGCTGACAGTCTAGTG -ACGGAATGTGCTGACAGTCATCTG -ACGGAATGTGCTGACAGTGAGTTG -ACGGAATGTGCTGACAGTAGACTG -ACGGAATGTGCTGACAGTTCGGTA -ACGGAATGTGCTGACAGTTGCCTA -ACGGAATGTGCTGACAGTCCACTA -ACGGAATGTGCTGACAGTGGAGTA -ACGGAATGTGCTGACAGTTCGTCT -ACGGAATGTGCTGACAGTTGCACT -ACGGAATGTGCTGACAGTCTGACT -ACGGAATGTGCTGACAGTCAACCT -ACGGAATGTGCTGACAGTGCTACT -ACGGAATGTGCTGACAGTGGATCT -ACGGAATGTGCTGACAGTAAGGCT -ACGGAATGTGCTGACAGTTCAACC -ACGGAATGTGCTGACAGTTGTTCC -ACGGAATGTGCTGACAGTATTCCC -ACGGAATGTGCTGACAGTTTCTCG -ACGGAATGTGCTGACAGTTAGACG -ACGGAATGTGCTGACAGTGTAACG -ACGGAATGTGCTGACAGTACTTCG -ACGGAATGTGCTGACAGTTACGCA -ACGGAATGTGCTGACAGTCTTGCA -ACGGAATGTGCTGACAGTCGAACA -ACGGAATGTGCTGACAGTCAGTCA -ACGGAATGTGCTGACAGTGATCCA -ACGGAATGTGCTGACAGTACGACA -ACGGAATGTGCTGACAGTAGCTCA -ACGGAATGTGCTGACAGTTCACGT -ACGGAATGTGCTGACAGTCGTAGT -ACGGAATGTGCTGACAGTGTCAGT -ACGGAATGTGCTGACAGTGAAGGT -ACGGAATGTGCTGACAGTAACCGT -ACGGAATGTGCTGACAGTTTGTGC -ACGGAATGTGCTGACAGTCTAAGC -ACGGAATGTGCTGACAGTACTAGC -ACGGAATGTGCTGACAGTAGATGC -ACGGAATGTGCTGACAGTTGAAGG -ACGGAATGTGCTGACAGTCAATGG -ACGGAATGTGCTGACAGTATGAGG -ACGGAATGTGCTGACAGTAATGGG -ACGGAATGTGCTGACAGTTCCTGA -ACGGAATGTGCTGACAGTTAGCGA -ACGGAATGTGCTGACAGTCACAGA -ACGGAATGTGCTGACAGTGCAAGA -ACGGAATGTGCTGACAGTGGTTGA -ACGGAATGTGCTGACAGTTCCGAT -ACGGAATGTGCTGACAGTTGGCAT -ACGGAATGTGCTGACAGTCGAGAT -ACGGAATGTGCTGACAGTTACCAC -ACGGAATGTGCTGACAGTCAGAAC -ACGGAATGTGCTGACAGTGTCTAC -ACGGAATGTGCTGACAGTACGTAC -ACGGAATGTGCTGACAGTAGTGAC -ACGGAATGTGCTGACAGTCTGTAG -ACGGAATGTGCTGACAGTCCTAAG -ACGGAATGTGCTGACAGTGTTCAG -ACGGAATGTGCTGACAGTGCATAG -ACGGAATGTGCTGACAGTGACAAG -ACGGAATGTGCTGACAGTAAGCAG -ACGGAATGTGCTGACAGTCGTCAA -ACGGAATGTGCTGACAGTGCTGAA -ACGGAATGTGCTGACAGTAGTACG -ACGGAATGTGCTGACAGTATCCGA -ACGGAATGTGCTGACAGTATGGGA -ACGGAATGTGCTGACAGTGTGCAA -ACGGAATGTGCTGACAGTGAGGAA -ACGGAATGTGCTGACAGTCAGGTA -ACGGAATGTGCTGACAGTGACTCT -ACGGAATGTGCTGACAGTAGTCCT -ACGGAATGTGCTGACAGTTAAGCC -ACGGAATGTGCTGACAGTATAGCC -ACGGAATGTGCTGACAGTTAACCG -ACGGAATGTGCTGACAGTATGCCA -ACGGAATGTGCTTAGCTGGGAAAC -ACGGAATGTGCTTAGCTGAACACC -ACGGAATGTGCTTAGCTGATCGAG -ACGGAATGTGCTTAGCTGCTCCTT -ACGGAATGTGCTTAGCTGCCTGTT -ACGGAATGTGCTTAGCTGCGGTTT -ACGGAATGTGCTTAGCTGGTGGTT -ACGGAATGTGCTTAGCTGGCCTTT -ACGGAATGTGCTTAGCTGGGTCTT -ACGGAATGTGCTTAGCTGACGCTT -ACGGAATGTGCTTAGCTGAGCGTT -ACGGAATGTGCTTAGCTGTTCGTC -ACGGAATGTGCTTAGCTGTCTCTC -ACGGAATGTGCTTAGCTGTGGATC -ACGGAATGTGCTTAGCTGCACTTC -ACGGAATGTGCTTAGCTGGTACTC -ACGGAATGTGCTTAGCTGGATGTC -ACGGAATGTGCTTAGCTGACAGTC -ACGGAATGTGCTTAGCTGTTGCTG -ACGGAATGTGCTTAGCTGTCCATG -ACGGAATGTGCTTAGCTGTGTGTG -ACGGAATGTGCTTAGCTGCTAGTG -ACGGAATGTGCTTAGCTGCATCTG -ACGGAATGTGCTTAGCTGGAGTTG -ACGGAATGTGCTTAGCTGAGACTG -ACGGAATGTGCTTAGCTGTCGGTA -ACGGAATGTGCTTAGCTGTGCCTA -ACGGAATGTGCTTAGCTGCCACTA -ACGGAATGTGCTTAGCTGGGAGTA -ACGGAATGTGCTTAGCTGTCGTCT -ACGGAATGTGCTTAGCTGTGCACT -ACGGAATGTGCTTAGCTGCTGACT -ACGGAATGTGCTTAGCTGCAACCT -ACGGAATGTGCTTAGCTGGCTACT -ACGGAATGTGCTTAGCTGGGATCT -ACGGAATGTGCTTAGCTGAAGGCT -ACGGAATGTGCTTAGCTGTCAACC -ACGGAATGTGCTTAGCTGTGTTCC -ACGGAATGTGCTTAGCTGATTCCC -ACGGAATGTGCTTAGCTGTTCTCG -ACGGAATGTGCTTAGCTGTAGACG -ACGGAATGTGCTTAGCTGGTAACG -ACGGAATGTGCTTAGCTGACTTCG -ACGGAATGTGCTTAGCTGTACGCA -ACGGAATGTGCTTAGCTGCTTGCA -ACGGAATGTGCTTAGCTGCGAACA -ACGGAATGTGCTTAGCTGCAGTCA -ACGGAATGTGCTTAGCTGGATCCA -ACGGAATGTGCTTAGCTGACGACA -ACGGAATGTGCTTAGCTGAGCTCA -ACGGAATGTGCTTAGCTGTCACGT -ACGGAATGTGCTTAGCTGCGTAGT -ACGGAATGTGCTTAGCTGGTCAGT -ACGGAATGTGCTTAGCTGGAAGGT -ACGGAATGTGCTTAGCTGAACCGT -ACGGAATGTGCTTAGCTGTTGTGC -ACGGAATGTGCTTAGCTGCTAAGC -ACGGAATGTGCTTAGCTGACTAGC -ACGGAATGTGCTTAGCTGAGATGC -ACGGAATGTGCTTAGCTGTGAAGG -ACGGAATGTGCTTAGCTGCAATGG -ACGGAATGTGCTTAGCTGATGAGG -ACGGAATGTGCTTAGCTGAATGGG -ACGGAATGTGCTTAGCTGTCCTGA -ACGGAATGTGCTTAGCTGTAGCGA -ACGGAATGTGCTTAGCTGCACAGA -ACGGAATGTGCTTAGCTGGCAAGA -ACGGAATGTGCTTAGCTGGGTTGA -ACGGAATGTGCTTAGCTGTCCGAT -ACGGAATGTGCTTAGCTGTGGCAT -ACGGAATGTGCTTAGCTGCGAGAT -ACGGAATGTGCTTAGCTGTACCAC -ACGGAATGTGCTTAGCTGCAGAAC -ACGGAATGTGCTTAGCTGGTCTAC -ACGGAATGTGCTTAGCTGACGTAC -ACGGAATGTGCTTAGCTGAGTGAC -ACGGAATGTGCTTAGCTGCTGTAG -ACGGAATGTGCTTAGCTGCCTAAG -ACGGAATGTGCTTAGCTGGTTCAG -ACGGAATGTGCTTAGCTGGCATAG -ACGGAATGTGCTTAGCTGGACAAG -ACGGAATGTGCTTAGCTGAAGCAG -ACGGAATGTGCTTAGCTGCGTCAA -ACGGAATGTGCTTAGCTGGCTGAA -ACGGAATGTGCTTAGCTGAGTACG -ACGGAATGTGCTTAGCTGATCCGA -ACGGAATGTGCTTAGCTGATGGGA -ACGGAATGTGCTTAGCTGGTGCAA -ACGGAATGTGCTTAGCTGGAGGAA -ACGGAATGTGCTTAGCTGCAGGTA -ACGGAATGTGCTTAGCTGGACTCT -ACGGAATGTGCTTAGCTGAGTCCT -ACGGAATGTGCTTAGCTGTAAGCC -ACGGAATGTGCTTAGCTGATAGCC -ACGGAATGTGCTTAGCTGTAACCG -ACGGAATGTGCTTAGCTGATGCCA -ACGGAATGTGCTAAGCCTGGAAAC -ACGGAATGTGCTAAGCCTAACACC -ACGGAATGTGCTAAGCCTATCGAG -ACGGAATGTGCTAAGCCTCTCCTT -ACGGAATGTGCTAAGCCTCCTGTT -ACGGAATGTGCTAAGCCTCGGTTT -ACGGAATGTGCTAAGCCTGTGGTT -ACGGAATGTGCTAAGCCTGCCTTT -ACGGAATGTGCTAAGCCTGGTCTT -ACGGAATGTGCTAAGCCTACGCTT -ACGGAATGTGCTAAGCCTAGCGTT -ACGGAATGTGCTAAGCCTTTCGTC -ACGGAATGTGCTAAGCCTTCTCTC -ACGGAATGTGCTAAGCCTTGGATC -ACGGAATGTGCTAAGCCTCACTTC -ACGGAATGTGCTAAGCCTGTACTC -ACGGAATGTGCTAAGCCTGATGTC -ACGGAATGTGCTAAGCCTACAGTC -ACGGAATGTGCTAAGCCTTTGCTG -ACGGAATGTGCTAAGCCTTCCATG -ACGGAATGTGCTAAGCCTTGTGTG -ACGGAATGTGCTAAGCCTCTAGTG -ACGGAATGTGCTAAGCCTCATCTG -ACGGAATGTGCTAAGCCTGAGTTG -ACGGAATGTGCTAAGCCTAGACTG -ACGGAATGTGCTAAGCCTTCGGTA -ACGGAATGTGCTAAGCCTTGCCTA -ACGGAATGTGCTAAGCCTCCACTA -ACGGAATGTGCTAAGCCTGGAGTA -ACGGAATGTGCTAAGCCTTCGTCT -ACGGAATGTGCTAAGCCTTGCACT -ACGGAATGTGCTAAGCCTCTGACT -ACGGAATGTGCTAAGCCTCAACCT -ACGGAATGTGCTAAGCCTGCTACT -ACGGAATGTGCTAAGCCTGGATCT -ACGGAATGTGCTAAGCCTAAGGCT -ACGGAATGTGCTAAGCCTTCAACC -ACGGAATGTGCTAAGCCTTGTTCC -ACGGAATGTGCTAAGCCTATTCCC -ACGGAATGTGCTAAGCCTTTCTCG -ACGGAATGTGCTAAGCCTTAGACG -ACGGAATGTGCTAAGCCTGTAACG -ACGGAATGTGCTAAGCCTACTTCG -ACGGAATGTGCTAAGCCTTACGCA -ACGGAATGTGCTAAGCCTCTTGCA -ACGGAATGTGCTAAGCCTCGAACA -ACGGAATGTGCTAAGCCTCAGTCA -ACGGAATGTGCTAAGCCTGATCCA -ACGGAATGTGCTAAGCCTACGACA -ACGGAATGTGCTAAGCCTAGCTCA -ACGGAATGTGCTAAGCCTTCACGT -ACGGAATGTGCTAAGCCTCGTAGT -ACGGAATGTGCTAAGCCTGTCAGT -ACGGAATGTGCTAAGCCTGAAGGT -ACGGAATGTGCTAAGCCTAACCGT -ACGGAATGTGCTAAGCCTTTGTGC -ACGGAATGTGCTAAGCCTCTAAGC -ACGGAATGTGCTAAGCCTACTAGC -ACGGAATGTGCTAAGCCTAGATGC -ACGGAATGTGCTAAGCCTTGAAGG -ACGGAATGTGCTAAGCCTCAATGG -ACGGAATGTGCTAAGCCTATGAGG -ACGGAATGTGCTAAGCCTAATGGG -ACGGAATGTGCTAAGCCTTCCTGA -ACGGAATGTGCTAAGCCTTAGCGA -ACGGAATGTGCTAAGCCTCACAGA -ACGGAATGTGCTAAGCCTGCAAGA -ACGGAATGTGCTAAGCCTGGTTGA -ACGGAATGTGCTAAGCCTTCCGAT -ACGGAATGTGCTAAGCCTTGGCAT -ACGGAATGTGCTAAGCCTCGAGAT -ACGGAATGTGCTAAGCCTTACCAC -ACGGAATGTGCTAAGCCTCAGAAC -ACGGAATGTGCTAAGCCTGTCTAC -ACGGAATGTGCTAAGCCTACGTAC -ACGGAATGTGCTAAGCCTAGTGAC -ACGGAATGTGCTAAGCCTCTGTAG -ACGGAATGTGCTAAGCCTCCTAAG -ACGGAATGTGCTAAGCCTGTTCAG -ACGGAATGTGCTAAGCCTGCATAG -ACGGAATGTGCTAAGCCTGACAAG -ACGGAATGTGCTAAGCCTAAGCAG -ACGGAATGTGCTAAGCCTCGTCAA -ACGGAATGTGCTAAGCCTGCTGAA -ACGGAATGTGCTAAGCCTAGTACG -ACGGAATGTGCTAAGCCTATCCGA -ACGGAATGTGCTAAGCCTATGGGA -ACGGAATGTGCTAAGCCTGTGCAA -ACGGAATGTGCTAAGCCTGAGGAA -ACGGAATGTGCTAAGCCTCAGGTA -ACGGAATGTGCTAAGCCTGACTCT -ACGGAATGTGCTAAGCCTAGTCCT -ACGGAATGTGCTAAGCCTTAAGCC -ACGGAATGTGCTAAGCCTATAGCC -ACGGAATGTGCTAAGCCTTAACCG -ACGGAATGTGCTAAGCCTATGCCA -ACGGAATGTGCTCAGGTTGGAAAC -ACGGAATGTGCTCAGGTTAACACC -ACGGAATGTGCTCAGGTTATCGAG -ACGGAATGTGCTCAGGTTCTCCTT -ACGGAATGTGCTCAGGTTCCTGTT -ACGGAATGTGCTCAGGTTCGGTTT -ACGGAATGTGCTCAGGTTGTGGTT -ACGGAATGTGCTCAGGTTGCCTTT -ACGGAATGTGCTCAGGTTGGTCTT -ACGGAATGTGCTCAGGTTACGCTT -ACGGAATGTGCTCAGGTTAGCGTT -ACGGAATGTGCTCAGGTTTTCGTC -ACGGAATGTGCTCAGGTTTCTCTC -ACGGAATGTGCTCAGGTTTGGATC -ACGGAATGTGCTCAGGTTCACTTC -ACGGAATGTGCTCAGGTTGTACTC -ACGGAATGTGCTCAGGTTGATGTC -ACGGAATGTGCTCAGGTTACAGTC -ACGGAATGTGCTCAGGTTTTGCTG -ACGGAATGTGCTCAGGTTTCCATG -ACGGAATGTGCTCAGGTTTGTGTG -ACGGAATGTGCTCAGGTTCTAGTG -ACGGAATGTGCTCAGGTTCATCTG -ACGGAATGTGCTCAGGTTGAGTTG -ACGGAATGTGCTCAGGTTAGACTG -ACGGAATGTGCTCAGGTTTCGGTA -ACGGAATGTGCTCAGGTTTGCCTA -ACGGAATGTGCTCAGGTTCCACTA -ACGGAATGTGCTCAGGTTGGAGTA -ACGGAATGTGCTCAGGTTTCGTCT -ACGGAATGTGCTCAGGTTTGCACT -ACGGAATGTGCTCAGGTTCTGACT -ACGGAATGTGCTCAGGTTCAACCT -ACGGAATGTGCTCAGGTTGCTACT -ACGGAATGTGCTCAGGTTGGATCT -ACGGAATGTGCTCAGGTTAAGGCT -ACGGAATGTGCTCAGGTTTCAACC -ACGGAATGTGCTCAGGTTTGTTCC -ACGGAATGTGCTCAGGTTATTCCC -ACGGAATGTGCTCAGGTTTTCTCG -ACGGAATGTGCTCAGGTTTAGACG -ACGGAATGTGCTCAGGTTGTAACG -ACGGAATGTGCTCAGGTTACTTCG -ACGGAATGTGCTCAGGTTTACGCA -ACGGAATGTGCTCAGGTTCTTGCA -ACGGAATGTGCTCAGGTTCGAACA -ACGGAATGTGCTCAGGTTCAGTCA -ACGGAATGTGCTCAGGTTGATCCA -ACGGAATGTGCTCAGGTTACGACA -ACGGAATGTGCTCAGGTTAGCTCA -ACGGAATGTGCTCAGGTTTCACGT -ACGGAATGTGCTCAGGTTCGTAGT -ACGGAATGTGCTCAGGTTGTCAGT -ACGGAATGTGCTCAGGTTGAAGGT -ACGGAATGTGCTCAGGTTAACCGT -ACGGAATGTGCTCAGGTTTTGTGC -ACGGAATGTGCTCAGGTTCTAAGC -ACGGAATGTGCTCAGGTTACTAGC -ACGGAATGTGCTCAGGTTAGATGC -ACGGAATGTGCTCAGGTTTGAAGG -ACGGAATGTGCTCAGGTTCAATGG -ACGGAATGTGCTCAGGTTATGAGG -ACGGAATGTGCTCAGGTTAATGGG -ACGGAATGTGCTCAGGTTTCCTGA -ACGGAATGTGCTCAGGTTTAGCGA -ACGGAATGTGCTCAGGTTCACAGA -ACGGAATGTGCTCAGGTTGCAAGA -ACGGAATGTGCTCAGGTTGGTTGA -ACGGAATGTGCTCAGGTTTCCGAT -ACGGAATGTGCTCAGGTTTGGCAT -ACGGAATGTGCTCAGGTTCGAGAT -ACGGAATGTGCTCAGGTTTACCAC -ACGGAATGTGCTCAGGTTCAGAAC -ACGGAATGTGCTCAGGTTGTCTAC -ACGGAATGTGCTCAGGTTACGTAC -ACGGAATGTGCTCAGGTTAGTGAC -ACGGAATGTGCTCAGGTTCTGTAG -ACGGAATGTGCTCAGGTTCCTAAG -ACGGAATGTGCTCAGGTTGTTCAG -ACGGAATGTGCTCAGGTTGCATAG -ACGGAATGTGCTCAGGTTGACAAG -ACGGAATGTGCTCAGGTTAAGCAG -ACGGAATGTGCTCAGGTTCGTCAA -ACGGAATGTGCTCAGGTTGCTGAA -ACGGAATGTGCTCAGGTTAGTACG -ACGGAATGTGCTCAGGTTATCCGA -ACGGAATGTGCTCAGGTTATGGGA -ACGGAATGTGCTCAGGTTGTGCAA -ACGGAATGTGCTCAGGTTGAGGAA -ACGGAATGTGCTCAGGTTCAGGTA -ACGGAATGTGCTCAGGTTGACTCT -ACGGAATGTGCTCAGGTTAGTCCT -ACGGAATGTGCTCAGGTTTAAGCC -ACGGAATGTGCTCAGGTTATAGCC -ACGGAATGTGCTCAGGTTTAACCG -ACGGAATGTGCTCAGGTTATGCCA -ACGGAATGTGCTTAGGCAGGAAAC -ACGGAATGTGCTTAGGCAAACACC -ACGGAATGTGCTTAGGCAATCGAG -ACGGAATGTGCTTAGGCACTCCTT -ACGGAATGTGCTTAGGCACCTGTT -ACGGAATGTGCTTAGGCACGGTTT -ACGGAATGTGCTTAGGCAGTGGTT -ACGGAATGTGCTTAGGCAGCCTTT -ACGGAATGTGCTTAGGCAGGTCTT -ACGGAATGTGCTTAGGCAACGCTT -ACGGAATGTGCTTAGGCAAGCGTT -ACGGAATGTGCTTAGGCATTCGTC -ACGGAATGTGCTTAGGCATCTCTC -ACGGAATGTGCTTAGGCATGGATC -ACGGAATGTGCTTAGGCACACTTC -ACGGAATGTGCTTAGGCAGTACTC -ACGGAATGTGCTTAGGCAGATGTC -ACGGAATGTGCTTAGGCAACAGTC -ACGGAATGTGCTTAGGCATTGCTG -ACGGAATGTGCTTAGGCATCCATG -ACGGAATGTGCTTAGGCATGTGTG -ACGGAATGTGCTTAGGCACTAGTG -ACGGAATGTGCTTAGGCACATCTG -ACGGAATGTGCTTAGGCAGAGTTG -ACGGAATGTGCTTAGGCAAGACTG -ACGGAATGTGCTTAGGCATCGGTA -ACGGAATGTGCTTAGGCATGCCTA -ACGGAATGTGCTTAGGCACCACTA -ACGGAATGTGCTTAGGCAGGAGTA -ACGGAATGTGCTTAGGCATCGTCT -ACGGAATGTGCTTAGGCATGCACT -ACGGAATGTGCTTAGGCACTGACT -ACGGAATGTGCTTAGGCACAACCT -ACGGAATGTGCTTAGGCAGCTACT -ACGGAATGTGCTTAGGCAGGATCT -ACGGAATGTGCTTAGGCAAAGGCT -ACGGAATGTGCTTAGGCATCAACC -ACGGAATGTGCTTAGGCATGTTCC -ACGGAATGTGCTTAGGCAATTCCC -ACGGAATGTGCTTAGGCATTCTCG -ACGGAATGTGCTTAGGCATAGACG -ACGGAATGTGCTTAGGCAGTAACG -ACGGAATGTGCTTAGGCAACTTCG -ACGGAATGTGCTTAGGCATACGCA -ACGGAATGTGCTTAGGCACTTGCA -ACGGAATGTGCTTAGGCACGAACA -ACGGAATGTGCTTAGGCACAGTCA -ACGGAATGTGCTTAGGCAGATCCA -ACGGAATGTGCTTAGGCAACGACA -ACGGAATGTGCTTAGGCAAGCTCA -ACGGAATGTGCTTAGGCATCACGT -ACGGAATGTGCTTAGGCACGTAGT -ACGGAATGTGCTTAGGCAGTCAGT -ACGGAATGTGCTTAGGCAGAAGGT -ACGGAATGTGCTTAGGCAAACCGT -ACGGAATGTGCTTAGGCATTGTGC -ACGGAATGTGCTTAGGCACTAAGC -ACGGAATGTGCTTAGGCAACTAGC -ACGGAATGTGCTTAGGCAAGATGC -ACGGAATGTGCTTAGGCATGAAGG -ACGGAATGTGCTTAGGCACAATGG -ACGGAATGTGCTTAGGCAATGAGG -ACGGAATGTGCTTAGGCAAATGGG -ACGGAATGTGCTTAGGCATCCTGA -ACGGAATGTGCTTAGGCATAGCGA -ACGGAATGTGCTTAGGCACACAGA -ACGGAATGTGCTTAGGCAGCAAGA -ACGGAATGTGCTTAGGCAGGTTGA -ACGGAATGTGCTTAGGCATCCGAT -ACGGAATGTGCTTAGGCATGGCAT -ACGGAATGTGCTTAGGCACGAGAT -ACGGAATGTGCTTAGGCATACCAC -ACGGAATGTGCTTAGGCACAGAAC -ACGGAATGTGCTTAGGCAGTCTAC -ACGGAATGTGCTTAGGCAACGTAC -ACGGAATGTGCTTAGGCAAGTGAC -ACGGAATGTGCTTAGGCACTGTAG -ACGGAATGTGCTTAGGCACCTAAG -ACGGAATGTGCTTAGGCAGTTCAG -ACGGAATGTGCTTAGGCAGCATAG -ACGGAATGTGCTTAGGCAGACAAG -ACGGAATGTGCTTAGGCAAAGCAG -ACGGAATGTGCTTAGGCACGTCAA -ACGGAATGTGCTTAGGCAGCTGAA -ACGGAATGTGCTTAGGCAAGTACG -ACGGAATGTGCTTAGGCAATCCGA -ACGGAATGTGCTTAGGCAATGGGA -ACGGAATGTGCTTAGGCAGTGCAA -ACGGAATGTGCTTAGGCAGAGGAA -ACGGAATGTGCTTAGGCACAGGTA -ACGGAATGTGCTTAGGCAGACTCT -ACGGAATGTGCTTAGGCAAGTCCT -ACGGAATGTGCTTAGGCATAAGCC -ACGGAATGTGCTTAGGCAATAGCC -ACGGAATGTGCTTAGGCATAACCG -ACGGAATGTGCTTAGGCAATGCCA -ACGGAATGTGCTAAGGACGGAAAC -ACGGAATGTGCTAAGGACAACACC -ACGGAATGTGCTAAGGACATCGAG -ACGGAATGTGCTAAGGACCTCCTT -ACGGAATGTGCTAAGGACCCTGTT -ACGGAATGTGCTAAGGACCGGTTT -ACGGAATGTGCTAAGGACGTGGTT -ACGGAATGTGCTAAGGACGCCTTT -ACGGAATGTGCTAAGGACGGTCTT -ACGGAATGTGCTAAGGACACGCTT -ACGGAATGTGCTAAGGACAGCGTT -ACGGAATGTGCTAAGGACTTCGTC -ACGGAATGTGCTAAGGACTCTCTC -ACGGAATGTGCTAAGGACTGGATC -ACGGAATGTGCTAAGGACCACTTC -ACGGAATGTGCTAAGGACGTACTC -ACGGAATGTGCTAAGGACGATGTC -ACGGAATGTGCTAAGGACACAGTC -ACGGAATGTGCTAAGGACTTGCTG -ACGGAATGTGCTAAGGACTCCATG -ACGGAATGTGCTAAGGACTGTGTG -ACGGAATGTGCTAAGGACCTAGTG -ACGGAATGTGCTAAGGACCATCTG -ACGGAATGTGCTAAGGACGAGTTG -ACGGAATGTGCTAAGGACAGACTG -ACGGAATGTGCTAAGGACTCGGTA -ACGGAATGTGCTAAGGACTGCCTA -ACGGAATGTGCTAAGGACCCACTA -ACGGAATGTGCTAAGGACGGAGTA -ACGGAATGTGCTAAGGACTCGTCT -ACGGAATGTGCTAAGGACTGCACT -ACGGAATGTGCTAAGGACCTGACT -ACGGAATGTGCTAAGGACCAACCT -ACGGAATGTGCTAAGGACGCTACT -ACGGAATGTGCTAAGGACGGATCT -ACGGAATGTGCTAAGGACAAGGCT -ACGGAATGTGCTAAGGACTCAACC -ACGGAATGTGCTAAGGACTGTTCC -ACGGAATGTGCTAAGGACATTCCC -ACGGAATGTGCTAAGGACTTCTCG -ACGGAATGTGCTAAGGACTAGACG -ACGGAATGTGCTAAGGACGTAACG -ACGGAATGTGCTAAGGACACTTCG -ACGGAATGTGCTAAGGACTACGCA -ACGGAATGTGCTAAGGACCTTGCA -ACGGAATGTGCTAAGGACCGAACA -ACGGAATGTGCTAAGGACCAGTCA -ACGGAATGTGCTAAGGACGATCCA -ACGGAATGTGCTAAGGACACGACA -ACGGAATGTGCTAAGGACAGCTCA -ACGGAATGTGCTAAGGACTCACGT -ACGGAATGTGCTAAGGACCGTAGT -ACGGAATGTGCTAAGGACGTCAGT -ACGGAATGTGCTAAGGACGAAGGT -ACGGAATGTGCTAAGGACAACCGT -ACGGAATGTGCTAAGGACTTGTGC -ACGGAATGTGCTAAGGACCTAAGC -ACGGAATGTGCTAAGGACACTAGC -ACGGAATGTGCTAAGGACAGATGC -ACGGAATGTGCTAAGGACTGAAGG -ACGGAATGTGCTAAGGACCAATGG -ACGGAATGTGCTAAGGACATGAGG -ACGGAATGTGCTAAGGACAATGGG -ACGGAATGTGCTAAGGACTCCTGA -ACGGAATGTGCTAAGGACTAGCGA -ACGGAATGTGCTAAGGACCACAGA -ACGGAATGTGCTAAGGACGCAAGA -ACGGAATGTGCTAAGGACGGTTGA -ACGGAATGTGCTAAGGACTCCGAT -ACGGAATGTGCTAAGGACTGGCAT -ACGGAATGTGCTAAGGACCGAGAT -ACGGAATGTGCTAAGGACTACCAC -ACGGAATGTGCTAAGGACCAGAAC -ACGGAATGTGCTAAGGACGTCTAC -ACGGAATGTGCTAAGGACACGTAC -ACGGAATGTGCTAAGGACAGTGAC -ACGGAATGTGCTAAGGACCTGTAG -ACGGAATGTGCTAAGGACCCTAAG -ACGGAATGTGCTAAGGACGTTCAG -ACGGAATGTGCTAAGGACGCATAG -ACGGAATGTGCTAAGGACGACAAG -ACGGAATGTGCTAAGGACAAGCAG -ACGGAATGTGCTAAGGACCGTCAA -ACGGAATGTGCTAAGGACGCTGAA -ACGGAATGTGCTAAGGACAGTACG -ACGGAATGTGCTAAGGACATCCGA -ACGGAATGTGCTAAGGACATGGGA -ACGGAATGTGCTAAGGACGTGCAA -ACGGAATGTGCTAAGGACGAGGAA -ACGGAATGTGCTAAGGACCAGGTA -ACGGAATGTGCTAAGGACGACTCT -ACGGAATGTGCTAAGGACAGTCCT -ACGGAATGTGCTAAGGACTAAGCC -ACGGAATGTGCTAAGGACATAGCC -ACGGAATGTGCTAAGGACTAACCG -ACGGAATGTGCTAAGGACATGCCA -ACGGAATGTGCTCAGAAGGGAAAC -ACGGAATGTGCTCAGAAGAACACC -ACGGAATGTGCTCAGAAGATCGAG -ACGGAATGTGCTCAGAAGCTCCTT -ACGGAATGTGCTCAGAAGCCTGTT -ACGGAATGTGCTCAGAAGCGGTTT -ACGGAATGTGCTCAGAAGGTGGTT -ACGGAATGTGCTCAGAAGGCCTTT -ACGGAATGTGCTCAGAAGGGTCTT -ACGGAATGTGCTCAGAAGACGCTT -ACGGAATGTGCTCAGAAGAGCGTT -ACGGAATGTGCTCAGAAGTTCGTC -ACGGAATGTGCTCAGAAGTCTCTC -ACGGAATGTGCTCAGAAGTGGATC -ACGGAATGTGCTCAGAAGCACTTC -ACGGAATGTGCTCAGAAGGTACTC -ACGGAATGTGCTCAGAAGGATGTC -ACGGAATGTGCTCAGAAGACAGTC -ACGGAATGTGCTCAGAAGTTGCTG -ACGGAATGTGCTCAGAAGTCCATG -ACGGAATGTGCTCAGAAGTGTGTG -ACGGAATGTGCTCAGAAGCTAGTG -ACGGAATGTGCTCAGAAGCATCTG -ACGGAATGTGCTCAGAAGGAGTTG -ACGGAATGTGCTCAGAAGAGACTG -ACGGAATGTGCTCAGAAGTCGGTA -ACGGAATGTGCTCAGAAGTGCCTA -ACGGAATGTGCTCAGAAGCCACTA -ACGGAATGTGCTCAGAAGGGAGTA -ACGGAATGTGCTCAGAAGTCGTCT -ACGGAATGTGCTCAGAAGTGCACT -ACGGAATGTGCTCAGAAGCTGACT -ACGGAATGTGCTCAGAAGCAACCT -ACGGAATGTGCTCAGAAGGCTACT -ACGGAATGTGCTCAGAAGGGATCT -ACGGAATGTGCTCAGAAGAAGGCT -ACGGAATGTGCTCAGAAGTCAACC -ACGGAATGTGCTCAGAAGTGTTCC -ACGGAATGTGCTCAGAAGATTCCC -ACGGAATGTGCTCAGAAGTTCTCG -ACGGAATGTGCTCAGAAGTAGACG -ACGGAATGTGCTCAGAAGGTAACG -ACGGAATGTGCTCAGAAGACTTCG -ACGGAATGTGCTCAGAAGTACGCA -ACGGAATGTGCTCAGAAGCTTGCA -ACGGAATGTGCTCAGAAGCGAACA -ACGGAATGTGCTCAGAAGCAGTCA -ACGGAATGTGCTCAGAAGGATCCA -ACGGAATGTGCTCAGAAGACGACA -ACGGAATGTGCTCAGAAGAGCTCA -ACGGAATGTGCTCAGAAGTCACGT -ACGGAATGTGCTCAGAAGCGTAGT -ACGGAATGTGCTCAGAAGGTCAGT -ACGGAATGTGCTCAGAAGGAAGGT -ACGGAATGTGCTCAGAAGAACCGT -ACGGAATGTGCTCAGAAGTTGTGC -ACGGAATGTGCTCAGAAGCTAAGC -ACGGAATGTGCTCAGAAGACTAGC -ACGGAATGTGCTCAGAAGAGATGC -ACGGAATGTGCTCAGAAGTGAAGG -ACGGAATGTGCTCAGAAGCAATGG -ACGGAATGTGCTCAGAAGATGAGG -ACGGAATGTGCTCAGAAGAATGGG -ACGGAATGTGCTCAGAAGTCCTGA -ACGGAATGTGCTCAGAAGTAGCGA -ACGGAATGTGCTCAGAAGCACAGA -ACGGAATGTGCTCAGAAGGCAAGA -ACGGAATGTGCTCAGAAGGGTTGA -ACGGAATGTGCTCAGAAGTCCGAT -ACGGAATGTGCTCAGAAGTGGCAT -ACGGAATGTGCTCAGAAGCGAGAT -ACGGAATGTGCTCAGAAGTACCAC -ACGGAATGTGCTCAGAAGCAGAAC -ACGGAATGTGCTCAGAAGGTCTAC -ACGGAATGTGCTCAGAAGACGTAC -ACGGAATGTGCTCAGAAGAGTGAC -ACGGAATGTGCTCAGAAGCTGTAG -ACGGAATGTGCTCAGAAGCCTAAG -ACGGAATGTGCTCAGAAGGTTCAG -ACGGAATGTGCTCAGAAGGCATAG -ACGGAATGTGCTCAGAAGGACAAG -ACGGAATGTGCTCAGAAGAAGCAG -ACGGAATGTGCTCAGAAGCGTCAA -ACGGAATGTGCTCAGAAGGCTGAA -ACGGAATGTGCTCAGAAGAGTACG -ACGGAATGTGCTCAGAAGATCCGA -ACGGAATGTGCTCAGAAGATGGGA -ACGGAATGTGCTCAGAAGGTGCAA -ACGGAATGTGCTCAGAAGGAGGAA -ACGGAATGTGCTCAGAAGCAGGTA -ACGGAATGTGCTCAGAAGGACTCT -ACGGAATGTGCTCAGAAGAGTCCT -ACGGAATGTGCTCAGAAGTAAGCC -ACGGAATGTGCTCAGAAGATAGCC -ACGGAATGTGCTCAGAAGTAACCG -ACGGAATGTGCTCAGAAGATGCCA -ACGGAATGTGCTCAACGTGGAAAC -ACGGAATGTGCTCAACGTAACACC -ACGGAATGTGCTCAACGTATCGAG -ACGGAATGTGCTCAACGTCTCCTT -ACGGAATGTGCTCAACGTCCTGTT -ACGGAATGTGCTCAACGTCGGTTT -ACGGAATGTGCTCAACGTGTGGTT -ACGGAATGTGCTCAACGTGCCTTT -ACGGAATGTGCTCAACGTGGTCTT -ACGGAATGTGCTCAACGTACGCTT -ACGGAATGTGCTCAACGTAGCGTT -ACGGAATGTGCTCAACGTTTCGTC -ACGGAATGTGCTCAACGTTCTCTC -ACGGAATGTGCTCAACGTTGGATC -ACGGAATGTGCTCAACGTCACTTC -ACGGAATGTGCTCAACGTGTACTC -ACGGAATGTGCTCAACGTGATGTC -ACGGAATGTGCTCAACGTACAGTC -ACGGAATGTGCTCAACGTTTGCTG -ACGGAATGTGCTCAACGTTCCATG -ACGGAATGTGCTCAACGTTGTGTG -ACGGAATGTGCTCAACGTCTAGTG -ACGGAATGTGCTCAACGTCATCTG -ACGGAATGTGCTCAACGTGAGTTG -ACGGAATGTGCTCAACGTAGACTG -ACGGAATGTGCTCAACGTTCGGTA -ACGGAATGTGCTCAACGTTGCCTA -ACGGAATGTGCTCAACGTCCACTA -ACGGAATGTGCTCAACGTGGAGTA -ACGGAATGTGCTCAACGTTCGTCT -ACGGAATGTGCTCAACGTTGCACT -ACGGAATGTGCTCAACGTCTGACT -ACGGAATGTGCTCAACGTCAACCT -ACGGAATGTGCTCAACGTGCTACT -ACGGAATGTGCTCAACGTGGATCT -ACGGAATGTGCTCAACGTAAGGCT -ACGGAATGTGCTCAACGTTCAACC -ACGGAATGTGCTCAACGTTGTTCC -ACGGAATGTGCTCAACGTATTCCC -ACGGAATGTGCTCAACGTTTCTCG -ACGGAATGTGCTCAACGTTAGACG -ACGGAATGTGCTCAACGTGTAACG -ACGGAATGTGCTCAACGTACTTCG -ACGGAATGTGCTCAACGTTACGCA -ACGGAATGTGCTCAACGTCTTGCA -ACGGAATGTGCTCAACGTCGAACA -ACGGAATGTGCTCAACGTCAGTCA -ACGGAATGTGCTCAACGTGATCCA -ACGGAATGTGCTCAACGTACGACA -ACGGAATGTGCTCAACGTAGCTCA -ACGGAATGTGCTCAACGTTCACGT -ACGGAATGTGCTCAACGTCGTAGT -ACGGAATGTGCTCAACGTGTCAGT -ACGGAATGTGCTCAACGTGAAGGT -ACGGAATGTGCTCAACGTAACCGT -ACGGAATGTGCTCAACGTTTGTGC -ACGGAATGTGCTCAACGTCTAAGC -ACGGAATGTGCTCAACGTACTAGC -ACGGAATGTGCTCAACGTAGATGC -ACGGAATGTGCTCAACGTTGAAGG -ACGGAATGTGCTCAACGTCAATGG -ACGGAATGTGCTCAACGTATGAGG -ACGGAATGTGCTCAACGTAATGGG -ACGGAATGTGCTCAACGTTCCTGA -ACGGAATGTGCTCAACGTTAGCGA -ACGGAATGTGCTCAACGTCACAGA -ACGGAATGTGCTCAACGTGCAAGA -ACGGAATGTGCTCAACGTGGTTGA -ACGGAATGTGCTCAACGTTCCGAT -ACGGAATGTGCTCAACGTTGGCAT -ACGGAATGTGCTCAACGTCGAGAT -ACGGAATGTGCTCAACGTTACCAC -ACGGAATGTGCTCAACGTCAGAAC -ACGGAATGTGCTCAACGTGTCTAC -ACGGAATGTGCTCAACGTACGTAC -ACGGAATGTGCTCAACGTAGTGAC -ACGGAATGTGCTCAACGTCTGTAG -ACGGAATGTGCTCAACGTCCTAAG -ACGGAATGTGCTCAACGTGTTCAG -ACGGAATGTGCTCAACGTGCATAG -ACGGAATGTGCTCAACGTGACAAG -ACGGAATGTGCTCAACGTAAGCAG -ACGGAATGTGCTCAACGTCGTCAA -ACGGAATGTGCTCAACGTGCTGAA -ACGGAATGTGCTCAACGTAGTACG -ACGGAATGTGCTCAACGTATCCGA -ACGGAATGTGCTCAACGTATGGGA -ACGGAATGTGCTCAACGTGTGCAA -ACGGAATGTGCTCAACGTGAGGAA -ACGGAATGTGCTCAACGTCAGGTA -ACGGAATGTGCTCAACGTGACTCT -ACGGAATGTGCTCAACGTAGTCCT -ACGGAATGTGCTCAACGTTAAGCC -ACGGAATGTGCTCAACGTATAGCC -ACGGAATGTGCTCAACGTTAACCG -ACGGAATGTGCTCAACGTATGCCA -ACGGAATGTGCTGAAGCTGGAAAC -ACGGAATGTGCTGAAGCTAACACC -ACGGAATGTGCTGAAGCTATCGAG -ACGGAATGTGCTGAAGCTCTCCTT -ACGGAATGTGCTGAAGCTCCTGTT -ACGGAATGTGCTGAAGCTCGGTTT -ACGGAATGTGCTGAAGCTGTGGTT -ACGGAATGTGCTGAAGCTGCCTTT -ACGGAATGTGCTGAAGCTGGTCTT -ACGGAATGTGCTGAAGCTACGCTT -ACGGAATGTGCTGAAGCTAGCGTT -ACGGAATGTGCTGAAGCTTTCGTC -ACGGAATGTGCTGAAGCTTCTCTC -ACGGAATGTGCTGAAGCTTGGATC -ACGGAATGTGCTGAAGCTCACTTC -ACGGAATGTGCTGAAGCTGTACTC -ACGGAATGTGCTGAAGCTGATGTC -ACGGAATGTGCTGAAGCTACAGTC -ACGGAATGTGCTGAAGCTTTGCTG -ACGGAATGTGCTGAAGCTTCCATG -ACGGAATGTGCTGAAGCTTGTGTG -ACGGAATGTGCTGAAGCTCTAGTG -ACGGAATGTGCTGAAGCTCATCTG -ACGGAATGTGCTGAAGCTGAGTTG -ACGGAATGTGCTGAAGCTAGACTG -ACGGAATGTGCTGAAGCTTCGGTA -ACGGAATGTGCTGAAGCTTGCCTA -ACGGAATGTGCTGAAGCTCCACTA -ACGGAATGTGCTGAAGCTGGAGTA -ACGGAATGTGCTGAAGCTTCGTCT -ACGGAATGTGCTGAAGCTTGCACT -ACGGAATGTGCTGAAGCTCTGACT -ACGGAATGTGCTGAAGCTCAACCT -ACGGAATGTGCTGAAGCTGCTACT -ACGGAATGTGCTGAAGCTGGATCT -ACGGAATGTGCTGAAGCTAAGGCT -ACGGAATGTGCTGAAGCTTCAACC -ACGGAATGTGCTGAAGCTTGTTCC -ACGGAATGTGCTGAAGCTATTCCC -ACGGAATGTGCTGAAGCTTTCTCG -ACGGAATGTGCTGAAGCTTAGACG -ACGGAATGTGCTGAAGCTGTAACG -ACGGAATGTGCTGAAGCTACTTCG -ACGGAATGTGCTGAAGCTTACGCA -ACGGAATGTGCTGAAGCTCTTGCA -ACGGAATGTGCTGAAGCTCGAACA -ACGGAATGTGCTGAAGCTCAGTCA -ACGGAATGTGCTGAAGCTGATCCA -ACGGAATGTGCTGAAGCTACGACA -ACGGAATGTGCTGAAGCTAGCTCA -ACGGAATGTGCTGAAGCTTCACGT -ACGGAATGTGCTGAAGCTCGTAGT -ACGGAATGTGCTGAAGCTGTCAGT -ACGGAATGTGCTGAAGCTGAAGGT -ACGGAATGTGCTGAAGCTAACCGT -ACGGAATGTGCTGAAGCTTTGTGC -ACGGAATGTGCTGAAGCTCTAAGC -ACGGAATGTGCTGAAGCTACTAGC -ACGGAATGTGCTGAAGCTAGATGC -ACGGAATGTGCTGAAGCTTGAAGG -ACGGAATGTGCTGAAGCTCAATGG -ACGGAATGTGCTGAAGCTATGAGG -ACGGAATGTGCTGAAGCTAATGGG -ACGGAATGTGCTGAAGCTTCCTGA -ACGGAATGTGCTGAAGCTTAGCGA -ACGGAATGTGCTGAAGCTCACAGA -ACGGAATGTGCTGAAGCTGCAAGA -ACGGAATGTGCTGAAGCTGGTTGA -ACGGAATGTGCTGAAGCTTCCGAT -ACGGAATGTGCTGAAGCTTGGCAT -ACGGAATGTGCTGAAGCTCGAGAT -ACGGAATGTGCTGAAGCTTACCAC -ACGGAATGTGCTGAAGCTCAGAAC -ACGGAATGTGCTGAAGCTGTCTAC -ACGGAATGTGCTGAAGCTACGTAC -ACGGAATGTGCTGAAGCTAGTGAC -ACGGAATGTGCTGAAGCTCTGTAG -ACGGAATGTGCTGAAGCTCCTAAG -ACGGAATGTGCTGAAGCTGTTCAG -ACGGAATGTGCTGAAGCTGCATAG -ACGGAATGTGCTGAAGCTGACAAG -ACGGAATGTGCTGAAGCTAAGCAG -ACGGAATGTGCTGAAGCTCGTCAA -ACGGAATGTGCTGAAGCTGCTGAA -ACGGAATGTGCTGAAGCTAGTACG -ACGGAATGTGCTGAAGCTATCCGA -ACGGAATGTGCTGAAGCTATGGGA -ACGGAATGTGCTGAAGCTGTGCAA -ACGGAATGTGCTGAAGCTGAGGAA -ACGGAATGTGCTGAAGCTCAGGTA -ACGGAATGTGCTGAAGCTGACTCT -ACGGAATGTGCTGAAGCTAGTCCT -ACGGAATGTGCTGAAGCTTAAGCC -ACGGAATGTGCTGAAGCTATAGCC -ACGGAATGTGCTGAAGCTTAACCG -ACGGAATGTGCTGAAGCTATGCCA -ACGGAATGTGCTACGAGTGGAAAC -ACGGAATGTGCTACGAGTAACACC -ACGGAATGTGCTACGAGTATCGAG -ACGGAATGTGCTACGAGTCTCCTT -ACGGAATGTGCTACGAGTCCTGTT -ACGGAATGTGCTACGAGTCGGTTT -ACGGAATGTGCTACGAGTGTGGTT -ACGGAATGTGCTACGAGTGCCTTT -ACGGAATGTGCTACGAGTGGTCTT -ACGGAATGTGCTACGAGTACGCTT -ACGGAATGTGCTACGAGTAGCGTT -ACGGAATGTGCTACGAGTTTCGTC -ACGGAATGTGCTACGAGTTCTCTC -ACGGAATGTGCTACGAGTTGGATC -ACGGAATGTGCTACGAGTCACTTC -ACGGAATGTGCTACGAGTGTACTC -ACGGAATGTGCTACGAGTGATGTC -ACGGAATGTGCTACGAGTACAGTC -ACGGAATGTGCTACGAGTTTGCTG -ACGGAATGTGCTACGAGTTCCATG -ACGGAATGTGCTACGAGTTGTGTG -ACGGAATGTGCTACGAGTCTAGTG -ACGGAATGTGCTACGAGTCATCTG -ACGGAATGTGCTACGAGTGAGTTG -ACGGAATGTGCTACGAGTAGACTG -ACGGAATGTGCTACGAGTTCGGTA -ACGGAATGTGCTACGAGTTGCCTA -ACGGAATGTGCTACGAGTCCACTA -ACGGAATGTGCTACGAGTGGAGTA -ACGGAATGTGCTACGAGTTCGTCT -ACGGAATGTGCTACGAGTTGCACT -ACGGAATGTGCTACGAGTCTGACT -ACGGAATGTGCTACGAGTCAACCT -ACGGAATGTGCTACGAGTGCTACT -ACGGAATGTGCTACGAGTGGATCT -ACGGAATGTGCTACGAGTAAGGCT -ACGGAATGTGCTACGAGTTCAACC -ACGGAATGTGCTACGAGTTGTTCC -ACGGAATGTGCTACGAGTATTCCC -ACGGAATGTGCTACGAGTTTCTCG -ACGGAATGTGCTACGAGTTAGACG -ACGGAATGTGCTACGAGTGTAACG -ACGGAATGTGCTACGAGTACTTCG -ACGGAATGTGCTACGAGTTACGCA -ACGGAATGTGCTACGAGTCTTGCA -ACGGAATGTGCTACGAGTCGAACA -ACGGAATGTGCTACGAGTCAGTCA -ACGGAATGTGCTACGAGTGATCCA -ACGGAATGTGCTACGAGTACGACA -ACGGAATGTGCTACGAGTAGCTCA -ACGGAATGTGCTACGAGTTCACGT -ACGGAATGTGCTACGAGTCGTAGT -ACGGAATGTGCTACGAGTGTCAGT -ACGGAATGTGCTACGAGTGAAGGT -ACGGAATGTGCTACGAGTAACCGT -ACGGAATGTGCTACGAGTTTGTGC -ACGGAATGTGCTACGAGTCTAAGC -ACGGAATGTGCTACGAGTACTAGC -ACGGAATGTGCTACGAGTAGATGC -ACGGAATGTGCTACGAGTTGAAGG -ACGGAATGTGCTACGAGTCAATGG -ACGGAATGTGCTACGAGTATGAGG -ACGGAATGTGCTACGAGTAATGGG -ACGGAATGTGCTACGAGTTCCTGA -ACGGAATGTGCTACGAGTTAGCGA -ACGGAATGTGCTACGAGTCACAGA -ACGGAATGTGCTACGAGTGCAAGA -ACGGAATGTGCTACGAGTGGTTGA -ACGGAATGTGCTACGAGTTCCGAT -ACGGAATGTGCTACGAGTTGGCAT -ACGGAATGTGCTACGAGTCGAGAT -ACGGAATGTGCTACGAGTTACCAC -ACGGAATGTGCTACGAGTCAGAAC -ACGGAATGTGCTACGAGTGTCTAC -ACGGAATGTGCTACGAGTACGTAC -ACGGAATGTGCTACGAGTAGTGAC -ACGGAATGTGCTACGAGTCTGTAG -ACGGAATGTGCTACGAGTCCTAAG -ACGGAATGTGCTACGAGTGTTCAG -ACGGAATGTGCTACGAGTGCATAG -ACGGAATGTGCTACGAGTGACAAG -ACGGAATGTGCTACGAGTAAGCAG -ACGGAATGTGCTACGAGTCGTCAA -ACGGAATGTGCTACGAGTGCTGAA -ACGGAATGTGCTACGAGTAGTACG -ACGGAATGTGCTACGAGTATCCGA -ACGGAATGTGCTACGAGTATGGGA -ACGGAATGTGCTACGAGTGTGCAA -ACGGAATGTGCTACGAGTGAGGAA -ACGGAATGTGCTACGAGTCAGGTA -ACGGAATGTGCTACGAGTGACTCT -ACGGAATGTGCTACGAGTAGTCCT -ACGGAATGTGCTACGAGTTAAGCC -ACGGAATGTGCTACGAGTATAGCC -ACGGAATGTGCTACGAGTTAACCG -ACGGAATGTGCTACGAGTATGCCA -ACGGAATGTGCTCGAATCGGAAAC -ACGGAATGTGCTCGAATCAACACC -ACGGAATGTGCTCGAATCATCGAG -ACGGAATGTGCTCGAATCCTCCTT -ACGGAATGTGCTCGAATCCCTGTT -ACGGAATGTGCTCGAATCCGGTTT -ACGGAATGTGCTCGAATCGTGGTT -ACGGAATGTGCTCGAATCGCCTTT -ACGGAATGTGCTCGAATCGGTCTT -ACGGAATGTGCTCGAATCACGCTT -ACGGAATGTGCTCGAATCAGCGTT -ACGGAATGTGCTCGAATCTTCGTC -ACGGAATGTGCTCGAATCTCTCTC -ACGGAATGTGCTCGAATCTGGATC -ACGGAATGTGCTCGAATCCACTTC -ACGGAATGTGCTCGAATCGTACTC -ACGGAATGTGCTCGAATCGATGTC -ACGGAATGTGCTCGAATCACAGTC -ACGGAATGTGCTCGAATCTTGCTG -ACGGAATGTGCTCGAATCTCCATG -ACGGAATGTGCTCGAATCTGTGTG -ACGGAATGTGCTCGAATCCTAGTG -ACGGAATGTGCTCGAATCCATCTG -ACGGAATGTGCTCGAATCGAGTTG -ACGGAATGTGCTCGAATCAGACTG -ACGGAATGTGCTCGAATCTCGGTA -ACGGAATGTGCTCGAATCTGCCTA -ACGGAATGTGCTCGAATCCCACTA -ACGGAATGTGCTCGAATCGGAGTA -ACGGAATGTGCTCGAATCTCGTCT -ACGGAATGTGCTCGAATCTGCACT -ACGGAATGTGCTCGAATCCTGACT -ACGGAATGTGCTCGAATCCAACCT -ACGGAATGTGCTCGAATCGCTACT -ACGGAATGTGCTCGAATCGGATCT -ACGGAATGTGCTCGAATCAAGGCT -ACGGAATGTGCTCGAATCTCAACC -ACGGAATGTGCTCGAATCTGTTCC -ACGGAATGTGCTCGAATCATTCCC -ACGGAATGTGCTCGAATCTTCTCG -ACGGAATGTGCTCGAATCTAGACG -ACGGAATGTGCTCGAATCGTAACG -ACGGAATGTGCTCGAATCACTTCG -ACGGAATGTGCTCGAATCTACGCA -ACGGAATGTGCTCGAATCCTTGCA -ACGGAATGTGCTCGAATCCGAACA -ACGGAATGTGCTCGAATCCAGTCA -ACGGAATGTGCTCGAATCGATCCA -ACGGAATGTGCTCGAATCACGACA -ACGGAATGTGCTCGAATCAGCTCA -ACGGAATGTGCTCGAATCTCACGT -ACGGAATGTGCTCGAATCCGTAGT -ACGGAATGTGCTCGAATCGTCAGT -ACGGAATGTGCTCGAATCGAAGGT -ACGGAATGTGCTCGAATCAACCGT -ACGGAATGTGCTCGAATCTTGTGC -ACGGAATGTGCTCGAATCCTAAGC -ACGGAATGTGCTCGAATCACTAGC -ACGGAATGTGCTCGAATCAGATGC -ACGGAATGTGCTCGAATCTGAAGG -ACGGAATGTGCTCGAATCCAATGG -ACGGAATGTGCTCGAATCATGAGG -ACGGAATGTGCTCGAATCAATGGG -ACGGAATGTGCTCGAATCTCCTGA -ACGGAATGTGCTCGAATCTAGCGA -ACGGAATGTGCTCGAATCCACAGA -ACGGAATGTGCTCGAATCGCAAGA -ACGGAATGTGCTCGAATCGGTTGA -ACGGAATGTGCTCGAATCTCCGAT -ACGGAATGTGCTCGAATCTGGCAT -ACGGAATGTGCTCGAATCCGAGAT -ACGGAATGTGCTCGAATCTACCAC -ACGGAATGTGCTCGAATCCAGAAC -ACGGAATGTGCTCGAATCGTCTAC -ACGGAATGTGCTCGAATCACGTAC -ACGGAATGTGCTCGAATCAGTGAC -ACGGAATGTGCTCGAATCCTGTAG -ACGGAATGTGCTCGAATCCCTAAG -ACGGAATGTGCTCGAATCGTTCAG -ACGGAATGTGCTCGAATCGCATAG -ACGGAATGTGCTCGAATCGACAAG -ACGGAATGTGCTCGAATCAAGCAG -ACGGAATGTGCTCGAATCCGTCAA -ACGGAATGTGCTCGAATCGCTGAA -ACGGAATGTGCTCGAATCAGTACG -ACGGAATGTGCTCGAATCATCCGA -ACGGAATGTGCTCGAATCATGGGA -ACGGAATGTGCTCGAATCGTGCAA -ACGGAATGTGCTCGAATCGAGGAA -ACGGAATGTGCTCGAATCCAGGTA -ACGGAATGTGCTCGAATCGACTCT -ACGGAATGTGCTCGAATCAGTCCT -ACGGAATGTGCTCGAATCTAAGCC -ACGGAATGTGCTCGAATCATAGCC -ACGGAATGTGCTCGAATCTAACCG -ACGGAATGTGCTCGAATCATGCCA -ACGGAATGTGCTGGAATGGGAAAC -ACGGAATGTGCTGGAATGAACACC -ACGGAATGTGCTGGAATGATCGAG -ACGGAATGTGCTGGAATGCTCCTT -ACGGAATGTGCTGGAATGCCTGTT -ACGGAATGTGCTGGAATGCGGTTT -ACGGAATGTGCTGGAATGGTGGTT -ACGGAATGTGCTGGAATGGCCTTT -ACGGAATGTGCTGGAATGGGTCTT -ACGGAATGTGCTGGAATGACGCTT -ACGGAATGTGCTGGAATGAGCGTT -ACGGAATGTGCTGGAATGTTCGTC -ACGGAATGTGCTGGAATGTCTCTC -ACGGAATGTGCTGGAATGTGGATC -ACGGAATGTGCTGGAATGCACTTC -ACGGAATGTGCTGGAATGGTACTC -ACGGAATGTGCTGGAATGGATGTC -ACGGAATGTGCTGGAATGACAGTC -ACGGAATGTGCTGGAATGTTGCTG -ACGGAATGTGCTGGAATGTCCATG -ACGGAATGTGCTGGAATGTGTGTG -ACGGAATGTGCTGGAATGCTAGTG -ACGGAATGTGCTGGAATGCATCTG -ACGGAATGTGCTGGAATGGAGTTG -ACGGAATGTGCTGGAATGAGACTG -ACGGAATGTGCTGGAATGTCGGTA -ACGGAATGTGCTGGAATGTGCCTA -ACGGAATGTGCTGGAATGCCACTA -ACGGAATGTGCTGGAATGGGAGTA -ACGGAATGTGCTGGAATGTCGTCT -ACGGAATGTGCTGGAATGTGCACT -ACGGAATGTGCTGGAATGCTGACT -ACGGAATGTGCTGGAATGCAACCT -ACGGAATGTGCTGGAATGGCTACT -ACGGAATGTGCTGGAATGGGATCT -ACGGAATGTGCTGGAATGAAGGCT -ACGGAATGTGCTGGAATGTCAACC -ACGGAATGTGCTGGAATGTGTTCC -ACGGAATGTGCTGGAATGATTCCC -ACGGAATGTGCTGGAATGTTCTCG -ACGGAATGTGCTGGAATGTAGACG -ACGGAATGTGCTGGAATGGTAACG -ACGGAATGTGCTGGAATGACTTCG -ACGGAATGTGCTGGAATGTACGCA -ACGGAATGTGCTGGAATGCTTGCA -ACGGAATGTGCTGGAATGCGAACA -ACGGAATGTGCTGGAATGCAGTCA -ACGGAATGTGCTGGAATGGATCCA -ACGGAATGTGCTGGAATGACGACA -ACGGAATGTGCTGGAATGAGCTCA -ACGGAATGTGCTGGAATGTCACGT -ACGGAATGTGCTGGAATGCGTAGT -ACGGAATGTGCTGGAATGGTCAGT -ACGGAATGTGCTGGAATGGAAGGT -ACGGAATGTGCTGGAATGAACCGT -ACGGAATGTGCTGGAATGTTGTGC -ACGGAATGTGCTGGAATGCTAAGC -ACGGAATGTGCTGGAATGACTAGC -ACGGAATGTGCTGGAATGAGATGC -ACGGAATGTGCTGGAATGTGAAGG -ACGGAATGTGCTGGAATGCAATGG -ACGGAATGTGCTGGAATGATGAGG -ACGGAATGTGCTGGAATGAATGGG -ACGGAATGTGCTGGAATGTCCTGA -ACGGAATGTGCTGGAATGTAGCGA -ACGGAATGTGCTGGAATGCACAGA -ACGGAATGTGCTGGAATGGCAAGA -ACGGAATGTGCTGGAATGGGTTGA -ACGGAATGTGCTGGAATGTCCGAT -ACGGAATGTGCTGGAATGTGGCAT -ACGGAATGTGCTGGAATGCGAGAT -ACGGAATGTGCTGGAATGTACCAC -ACGGAATGTGCTGGAATGCAGAAC -ACGGAATGTGCTGGAATGGTCTAC -ACGGAATGTGCTGGAATGACGTAC -ACGGAATGTGCTGGAATGAGTGAC -ACGGAATGTGCTGGAATGCTGTAG -ACGGAATGTGCTGGAATGCCTAAG -ACGGAATGTGCTGGAATGGTTCAG -ACGGAATGTGCTGGAATGGCATAG -ACGGAATGTGCTGGAATGGACAAG -ACGGAATGTGCTGGAATGAAGCAG -ACGGAATGTGCTGGAATGCGTCAA -ACGGAATGTGCTGGAATGGCTGAA -ACGGAATGTGCTGGAATGAGTACG -ACGGAATGTGCTGGAATGATCCGA -ACGGAATGTGCTGGAATGATGGGA -ACGGAATGTGCTGGAATGGTGCAA -ACGGAATGTGCTGGAATGGAGGAA -ACGGAATGTGCTGGAATGCAGGTA -ACGGAATGTGCTGGAATGGACTCT -ACGGAATGTGCTGGAATGAGTCCT -ACGGAATGTGCTGGAATGTAAGCC -ACGGAATGTGCTGGAATGATAGCC -ACGGAATGTGCTGGAATGTAACCG -ACGGAATGTGCTGGAATGATGCCA -ACGGAATGTGCTCAAGTGGGAAAC -ACGGAATGTGCTCAAGTGAACACC -ACGGAATGTGCTCAAGTGATCGAG -ACGGAATGTGCTCAAGTGCTCCTT -ACGGAATGTGCTCAAGTGCCTGTT -ACGGAATGTGCTCAAGTGCGGTTT -ACGGAATGTGCTCAAGTGGTGGTT -ACGGAATGTGCTCAAGTGGCCTTT -ACGGAATGTGCTCAAGTGGGTCTT -ACGGAATGTGCTCAAGTGACGCTT -ACGGAATGTGCTCAAGTGAGCGTT -ACGGAATGTGCTCAAGTGTTCGTC -ACGGAATGTGCTCAAGTGTCTCTC -ACGGAATGTGCTCAAGTGTGGATC -ACGGAATGTGCTCAAGTGCACTTC -ACGGAATGTGCTCAAGTGGTACTC -ACGGAATGTGCTCAAGTGGATGTC -ACGGAATGTGCTCAAGTGACAGTC -ACGGAATGTGCTCAAGTGTTGCTG -ACGGAATGTGCTCAAGTGTCCATG -ACGGAATGTGCTCAAGTGTGTGTG -ACGGAATGTGCTCAAGTGCTAGTG -ACGGAATGTGCTCAAGTGCATCTG -ACGGAATGTGCTCAAGTGGAGTTG -ACGGAATGTGCTCAAGTGAGACTG -ACGGAATGTGCTCAAGTGTCGGTA -ACGGAATGTGCTCAAGTGTGCCTA -ACGGAATGTGCTCAAGTGCCACTA -ACGGAATGTGCTCAAGTGGGAGTA -ACGGAATGTGCTCAAGTGTCGTCT -ACGGAATGTGCTCAAGTGTGCACT -ACGGAATGTGCTCAAGTGCTGACT -ACGGAATGTGCTCAAGTGCAACCT -ACGGAATGTGCTCAAGTGGCTACT -ACGGAATGTGCTCAAGTGGGATCT -ACGGAATGTGCTCAAGTGAAGGCT -ACGGAATGTGCTCAAGTGTCAACC -ACGGAATGTGCTCAAGTGTGTTCC -ACGGAATGTGCTCAAGTGATTCCC -ACGGAATGTGCTCAAGTGTTCTCG -ACGGAATGTGCTCAAGTGTAGACG -ACGGAATGTGCTCAAGTGGTAACG -ACGGAATGTGCTCAAGTGACTTCG -ACGGAATGTGCTCAAGTGTACGCA -ACGGAATGTGCTCAAGTGCTTGCA -ACGGAATGTGCTCAAGTGCGAACA -ACGGAATGTGCTCAAGTGCAGTCA -ACGGAATGTGCTCAAGTGGATCCA -ACGGAATGTGCTCAAGTGACGACA -ACGGAATGTGCTCAAGTGAGCTCA -ACGGAATGTGCTCAAGTGTCACGT -ACGGAATGTGCTCAAGTGCGTAGT -ACGGAATGTGCTCAAGTGGTCAGT -ACGGAATGTGCTCAAGTGGAAGGT -ACGGAATGTGCTCAAGTGAACCGT -ACGGAATGTGCTCAAGTGTTGTGC -ACGGAATGTGCTCAAGTGCTAAGC -ACGGAATGTGCTCAAGTGACTAGC -ACGGAATGTGCTCAAGTGAGATGC -ACGGAATGTGCTCAAGTGTGAAGG -ACGGAATGTGCTCAAGTGCAATGG -ACGGAATGTGCTCAAGTGATGAGG -ACGGAATGTGCTCAAGTGAATGGG -ACGGAATGTGCTCAAGTGTCCTGA -ACGGAATGTGCTCAAGTGTAGCGA -ACGGAATGTGCTCAAGTGCACAGA -ACGGAATGTGCTCAAGTGGCAAGA -ACGGAATGTGCTCAAGTGGGTTGA -ACGGAATGTGCTCAAGTGTCCGAT -ACGGAATGTGCTCAAGTGTGGCAT -ACGGAATGTGCTCAAGTGCGAGAT -ACGGAATGTGCTCAAGTGTACCAC -ACGGAATGTGCTCAAGTGCAGAAC -ACGGAATGTGCTCAAGTGGTCTAC -ACGGAATGTGCTCAAGTGACGTAC -ACGGAATGTGCTCAAGTGAGTGAC -ACGGAATGTGCTCAAGTGCTGTAG -ACGGAATGTGCTCAAGTGCCTAAG -ACGGAATGTGCTCAAGTGGTTCAG -ACGGAATGTGCTCAAGTGGCATAG -ACGGAATGTGCTCAAGTGGACAAG -ACGGAATGTGCTCAAGTGAAGCAG -ACGGAATGTGCTCAAGTGCGTCAA -ACGGAATGTGCTCAAGTGGCTGAA -ACGGAATGTGCTCAAGTGAGTACG -ACGGAATGTGCTCAAGTGATCCGA -ACGGAATGTGCTCAAGTGATGGGA -ACGGAATGTGCTCAAGTGGTGCAA -ACGGAATGTGCTCAAGTGGAGGAA -ACGGAATGTGCTCAAGTGCAGGTA -ACGGAATGTGCTCAAGTGGACTCT -ACGGAATGTGCTCAAGTGAGTCCT -ACGGAATGTGCTCAAGTGTAAGCC -ACGGAATGTGCTCAAGTGATAGCC -ACGGAATGTGCTCAAGTGTAACCG -ACGGAATGTGCTCAAGTGATGCCA -ACGGAATGTGCTGAAGAGGGAAAC -ACGGAATGTGCTGAAGAGAACACC -ACGGAATGTGCTGAAGAGATCGAG -ACGGAATGTGCTGAAGAGCTCCTT -ACGGAATGTGCTGAAGAGCCTGTT -ACGGAATGTGCTGAAGAGCGGTTT -ACGGAATGTGCTGAAGAGGTGGTT -ACGGAATGTGCTGAAGAGGCCTTT -ACGGAATGTGCTGAAGAGGGTCTT -ACGGAATGTGCTGAAGAGACGCTT -ACGGAATGTGCTGAAGAGAGCGTT -ACGGAATGTGCTGAAGAGTTCGTC -ACGGAATGTGCTGAAGAGTCTCTC -ACGGAATGTGCTGAAGAGTGGATC -ACGGAATGTGCTGAAGAGCACTTC -ACGGAATGTGCTGAAGAGGTACTC -ACGGAATGTGCTGAAGAGGATGTC -ACGGAATGTGCTGAAGAGACAGTC -ACGGAATGTGCTGAAGAGTTGCTG -ACGGAATGTGCTGAAGAGTCCATG -ACGGAATGTGCTGAAGAGTGTGTG -ACGGAATGTGCTGAAGAGCTAGTG -ACGGAATGTGCTGAAGAGCATCTG -ACGGAATGTGCTGAAGAGGAGTTG -ACGGAATGTGCTGAAGAGAGACTG -ACGGAATGTGCTGAAGAGTCGGTA -ACGGAATGTGCTGAAGAGTGCCTA -ACGGAATGTGCTGAAGAGCCACTA -ACGGAATGTGCTGAAGAGGGAGTA -ACGGAATGTGCTGAAGAGTCGTCT -ACGGAATGTGCTGAAGAGTGCACT -ACGGAATGTGCTGAAGAGCTGACT -ACGGAATGTGCTGAAGAGCAACCT -ACGGAATGTGCTGAAGAGGCTACT -ACGGAATGTGCTGAAGAGGGATCT -ACGGAATGTGCTGAAGAGAAGGCT -ACGGAATGTGCTGAAGAGTCAACC -ACGGAATGTGCTGAAGAGTGTTCC -ACGGAATGTGCTGAAGAGATTCCC -ACGGAATGTGCTGAAGAGTTCTCG -ACGGAATGTGCTGAAGAGTAGACG -ACGGAATGTGCTGAAGAGGTAACG -ACGGAATGTGCTGAAGAGACTTCG -ACGGAATGTGCTGAAGAGTACGCA -ACGGAATGTGCTGAAGAGCTTGCA -ACGGAATGTGCTGAAGAGCGAACA -ACGGAATGTGCTGAAGAGCAGTCA -ACGGAATGTGCTGAAGAGGATCCA -ACGGAATGTGCTGAAGAGACGACA -ACGGAATGTGCTGAAGAGAGCTCA -ACGGAATGTGCTGAAGAGTCACGT -ACGGAATGTGCTGAAGAGCGTAGT -ACGGAATGTGCTGAAGAGGTCAGT -ACGGAATGTGCTGAAGAGGAAGGT -ACGGAATGTGCTGAAGAGAACCGT -ACGGAATGTGCTGAAGAGTTGTGC -ACGGAATGTGCTGAAGAGCTAAGC -ACGGAATGTGCTGAAGAGACTAGC -ACGGAATGTGCTGAAGAGAGATGC -ACGGAATGTGCTGAAGAGTGAAGG -ACGGAATGTGCTGAAGAGCAATGG -ACGGAATGTGCTGAAGAGATGAGG -ACGGAATGTGCTGAAGAGAATGGG -ACGGAATGTGCTGAAGAGTCCTGA -ACGGAATGTGCTGAAGAGTAGCGA -ACGGAATGTGCTGAAGAGCACAGA -ACGGAATGTGCTGAAGAGGCAAGA -ACGGAATGTGCTGAAGAGGGTTGA -ACGGAATGTGCTGAAGAGTCCGAT -ACGGAATGTGCTGAAGAGTGGCAT -ACGGAATGTGCTGAAGAGCGAGAT -ACGGAATGTGCTGAAGAGTACCAC -ACGGAATGTGCTGAAGAGCAGAAC -ACGGAATGTGCTGAAGAGGTCTAC -ACGGAATGTGCTGAAGAGACGTAC -ACGGAATGTGCTGAAGAGAGTGAC -ACGGAATGTGCTGAAGAGCTGTAG -ACGGAATGTGCTGAAGAGCCTAAG -ACGGAATGTGCTGAAGAGGTTCAG -ACGGAATGTGCTGAAGAGGCATAG -ACGGAATGTGCTGAAGAGGACAAG -ACGGAATGTGCTGAAGAGAAGCAG -ACGGAATGTGCTGAAGAGCGTCAA -ACGGAATGTGCTGAAGAGGCTGAA -ACGGAATGTGCTGAAGAGAGTACG -ACGGAATGTGCTGAAGAGATCCGA -ACGGAATGTGCTGAAGAGATGGGA -ACGGAATGTGCTGAAGAGGTGCAA -ACGGAATGTGCTGAAGAGGAGGAA -ACGGAATGTGCTGAAGAGCAGGTA -ACGGAATGTGCTGAAGAGGACTCT -ACGGAATGTGCTGAAGAGAGTCCT -ACGGAATGTGCTGAAGAGTAAGCC -ACGGAATGTGCTGAAGAGATAGCC -ACGGAATGTGCTGAAGAGTAACCG -ACGGAATGTGCTGAAGAGATGCCA -ACGGAATGTGCTGTACAGGGAAAC -ACGGAATGTGCTGTACAGAACACC -ACGGAATGTGCTGTACAGATCGAG -ACGGAATGTGCTGTACAGCTCCTT -ACGGAATGTGCTGTACAGCCTGTT -ACGGAATGTGCTGTACAGCGGTTT -ACGGAATGTGCTGTACAGGTGGTT -ACGGAATGTGCTGTACAGGCCTTT -ACGGAATGTGCTGTACAGGGTCTT -ACGGAATGTGCTGTACAGACGCTT -ACGGAATGTGCTGTACAGAGCGTT -ACGGAATGTGCTGTACAGTTCGTC -ACGGAATGTGCTGTACAGTCTCTC -ACGGAATGTGCTGTACAGTGGATC -ACGGAATGTGCTGTACAGCACTTC -ACGGAATGTGCTGTACAGGTACTC -ACGGAATGTGCTGTACAGGATGTC -ACGGAATGTGCTGTACAGACAGTC -ACGGAATGTGCTGTACAGTTGCTG -ACGGAATGTGCTGTACAGTCCATG -ACGGAATGTGCTGTACAGTGTGTG -ACGGAATGTGCTGTACAGCTAGTG -ACGGAATGTGCTGTACAGCATCTG -ACGGAATGTGCTGTACAGGAGTTG -ACGGAATGTGCTGTACAGAGACTG -ACGGAATGTGCTGTACAGTCGGTA -ACGGAATGTGCTGTACAGTGCCTA -ACGGAATGTGCTGTACAGCCACTA -ACGGAATGTGCTGTACAGGGAGTA -ACGGAATGTGCTGTACAGTCGTCT -ACGGAATGTGCTGTACAGTGCACT -ACGGAATGTGCTGTACAGCTGACT -ACGGAATGTGCTGTACAGCAACCT -ACGGAATGTGCTGTACAGGCTACT -ACGGAATGTGCTGTACAGGGATCT -ACGGAATGTGCTGTACAGAAGGCT -ACGGAATGTGCTGTACAGTCAACC -ACGGAATGTGCTGTACAGTGTTCC -ACGGAATGTGCTGTACAGATTCCC -ACGGAATGTGCTGTACAGTTCTCG -ACGGAATGTGCTGTACAGTAGACG -ACGGAATGTGCTGTACAGGTAACG -ACGGAATGTGCTGTACAGACTTCG -ACGGAATGTGCTGTACAGTACGCA -ACGGAATGTGCTGTACAGCTTGCA -ACGGAATGTGCTGTACAGCGAACA -ACGGAATGTGCTGTACAGCAGTCA -ACGGAATGTGCTGTACAGGATCCA -ACGGAATGTGCTGTACAGACGACA -ACGGAATGTGCTGTACAGAGCTCA -ACGGAATGTGCTGTACAGTCACGT -ACGGAATGTGCTGTACAGCGTAGT -ACGGAATGTGCTGTACAGGTCAGT -ACGGAATGTGCTGTACAGGAAGGT -ACGGAATGTGCTGTACAGAACCGT -ACGGAATGTGCTGTACAGTTGTGC -ACGGAATGTGCTGTACAGCTAAGC -ACGGAATGTGCTGTACAGACTAGC -ACGGAATGTGCTGTACAGAGATGC -ACGGAATGTGCTGTACAGTGAAGG -ACGGAATGTGCTGTACAGCAATGG -ACGGAATGTGCTGTACAGATGAGG -ACGGAATGTGCTGTACAGAATGGG -ACGGAATGTGCTGTACAGTCCTGA -ACGGAATGTGCTGTACAGTAGCGA -ACGGAATGTGCTGTACAGCACAGA -ACGGAATGTGCTGTACAGGCAAGA -ACGGAATGTGCTGTACAGGGTTGA -ACGGAATGTGCTGTACAGTCCGAT -ACGGAATGTGCTGTACAGTGGCAT -ACGGAATGTGCTGTACAGCGAGAT -ACGGAATGTGCTGTACAGTACCAC -ACGGAATGTGCTGTACAGCAGAAC -ACGGAATGTGCTGTACAGGTCTAC -ACGGAATGTGCTGTACAGACGTAC -ACGGAATGTGCTGTACAGAGTGAC -ACGGAATGTGCTGTACAGCTGTAG -ACGGAATGTGCTGTACAGCCTAAG -ACGGAATGTGCTGTACAGGTTCAG -ACGGAATGTGCTGTACAGGCATAG -ACGGAATGTGCTGTACAGGACAAG -ACGGAATGTGCTGTACAGAAGCAG -ACGGAATGTGCTGTACAGCGTCAA -ACGGAATGTGCTGTACAGGCTGAA -ACGGAATGTGCTGTACAGAGTACG -ACGGAATGTGCTGTACAGATCCGA -ACGGAATGTGCTGTACAGATGGGA -ACGGAATGTGCTGTACAGGTGCAA -ACGGAATGTGCTGTACAGGAGGAA -ACGGAATGTGCTGTACAGCAGGTA -ACGGAATGTGCTGTACAGGACTCT -ACGGAATGTGCTGTACAGAGTCCT -ACGGAATGTGCTGTACAGTAAGCC -ACGGAATGTGCTGTACAGATAGCC -ACGGAATGTGCTGTACAGTAACCG -ACGGAATGTGCTGTACAGATGCCA -ACGGAATGTGCTTCTGACGGAAAC -ACGGAATGTGCTTCTGACAACACC -ACGGAATGTGCTTCTGACATCGAG -ACGGAATGTGCTTCTGACCTCCTT -ACGGAATGTGCTTCTGACCCTGTT -ACGGAATGTGCTTCTGACCGGTTT -ACGGAATGTGCTTCTGACGTGGTT -ACGGAATGTGCTTCTGACGCCTTT -ACGGAATGTGCTTCTGACGGTCTT -ACGGAATGTGCTTCTGACACGCTT -ACGGAATGTGCTTCTGACAGCGTT -ACGGAATGTGCTTCTGACTTCGTC -ACGGAATGTGCTTCTGACTCTCTC -ACGGAATGTGCTTCTGACTGGATC -ACGGAATGTGCTTCTGACCACTTC -ACGGAATGTGCTTCTGACGTACTC -ACGGAATGTGCTTCTGACGATGTC -ACGGAATGTGCTTCTGACACAGTC -ACGGAATGTGCTTCTGACTTGCTG -ACGGAATGTGCTTCTGACTCCATG -ACGGAATGTGCTTCTGACTGTGTG -ACGGAATGTGCTTCTGACCTAGTG -ACGGAATGTGCTTCTGACCATCTG -ACGGAATGTGCTTCTGACGAGTTG -ACGGAATGTGCTTCTGACAGACTG -ACGGAATGTGCTTCTGACTCGGTA -ACGGAATGTGCTTCTGACTGCCTA -ACGGAATGTGCTTCTGACCCACTA -ACGGAATGTGCTTCTGACGGAGTA -ACGGAATGTGCTTCTGACTCGTCT -ACGGAATGTGCTTCTGACTGCACT -ACGGAATGTGCTTCTGACCTGACT -ACGGAATGTGCTTCTGACCAACCT -ACGGAATGTGCTTCTGACGCTACT -ACGGAATGTGCTTCTGACGGATCT -ACGGAATGTGCTTCTGACAAGGCT -ACGGAATGTGCTTCTGACTCAACC -ACGGAATGTGCTTCTGACTGTTCC -ACGGAATGTGCTTCTGACATTCCC -ACGGAATGTGCTTCTGACTTCTCG -ACGGAATGTGCTTCTGACTAGACG -ACGGAATGTGCTTCTGACGTAACG -ACGGAATGTGCTTCTGACACTTCG -ACGGAATGTGCTTCTGACTACGCA -ACGGAATGTGCTTCTGACCTTGCA -ACGGAATGTGCTTCTGACCGAACA -ACGGAATGTGCTTCTGACCAGTCA -ACGGAATGTGCTTCTGACGATCCA -ACGGAATGTGCTTCTGACACGACA -ACGGAATGTGCTTCTGACAGCTCA -ACGGAATGTGCTTCTGACTCACGT -ACGGAATGTGCTTCTGACCGTAGT -ACGGAATGTGCTTCTGACGTCAGT -ACGGAATGTGCTTCTGACGAAGGT -ACGGAATGTGCTTCTGACAACCGT -ACGGAATGTGCTTCTGACTTGTGC -ACGGAATGTGCTTCTGACCTAAGC -ACGGAATGTGCTTCTGACACTAGC -ACGGAATGTGCTTCTGACAGATGC -ACGGAATGTGCTTCTGACTGAAGG -ACGGAATGTGCTTCTGACCAATGG -ACGGAATGTGCTTCTGACATGAGG -ACGGAATGTGCTTCTGACAATGGG -ACGGAATGTGCTTCTGACTCCTGA -ACGGAATGTGCTTCTGACTAGCGA -ACGGAATGTGCTTCTGACCACAGA -ACGGAATGTGCTTCTGACGCAAGA -ACGGAATGTGCTTCTGACGGTTGA -ACGGAATGTGCTTCTGACTCCGAT -ACGGAATGTGCTTCTGACTGGCAT -ACGGAATGTGCTTCTGACCGAGAT -ACGGAATGTGCTTCTGACTACCAC -ACGGAATGTGCTTCTGACCAGAAC -ACGGAATGTGCTTCTGACGTCTAC -ACGGAATGTGCTTCTGACACGTAC -ACGGAATGTGCTTCTGACAGTGAC -ACGGAATGTGCTTCTGACCTGTAG -ACGGAATGTGCTTCTGACCCTAAG -ACGGAATGTGCTTCTGACGTTCAG -ACGGAATGTGCTTCTGACGCATAG -ACGGAATGTGCTTCTGACGACAAG -ACGGAATGTGCTTCTGACAAGCAG -ACGGAATGTGCTTCTGACCGTCAA -ACGGAATGTGCTTCTGACGCTGAA -ACGGAATGTGCTTCTGACAGTACG -ACGGAATGTGCTTCTGACATCCGA -ACGGAATGTGCTTCTGACATGGGA -ACGGAATGTGCTTCTGACGTGCAA -ACGGAATGTGCTTCTGACGAGGAA -ACGGAATGTGCTTCTGACCAGGTA -ACGGAATGTGCTTCTGACGACTCT -ACGGAATGTGCTTCTGACAGTCCT -ACGGAATGTGCTTCTGACTAAGCC -ACGGAATGTGCTTCTGACATAGCC -ACGGAATGTGCTTCTGACTAACCG -ACGGAATGTGCTTCTGACATGCCA -ACGGAATGTGCTCCTAGTGGAAAC -ACGGAATGTGCTCCTAGTAACACC -ACGGAATGTGCTCCTAGTATCGAG -ACGGAATGTGCTCCTAGTCTCCTT -ACGGAATGTGCTCCTAGTCCTGTT -ACGGAATGTGCTCCTAGTCGGTTT -ACGGAATGTGCTCCTAGTGTGGTT -ACGGAATGTGCTCCTAGTGCCTTT -ACGGAATGTGCTCCTAGTGGTCTT -ACGGAATGTGCTCCTAGTACGCTT -ACGGAATGTGCTCCTAGTAGCGTT -ACGGAATGTGCTCCTAGTTTCGTC -ACGGAATGTGCTCCTAGTTCTCTC -ACGGAATGTGCTCCTAGTTGGATC -ACGGAATGTGCTCCTAGTCACTTC -ACGGAATGTGCTCCTAGTGTACTC -ACGGAATGTGCTCCTAGTGATGTC -ACGGAATGTGCTCCTAGTACAGTC -ACGGAATGTGCTCCTAGTTTGCTG -ACGGAATGTGCTCCTAGTTCCATG -ACGGAATGTGCTCCTAGTTGTGTG -ACGGAATGTGCTCCTAGTCTAGTG -ACGGAATGTGCTCCTAGTCATCTG -ACGGAATGTGCTCCTAGTGAGTTG -ACGGAATGTGCTCCTAGTAGACTG -ACGGAATGTGCTCCTAGTTCGGTA -ACGGAATGTGCTCCTAGTTGCCTA -ACGGAATGTGCTCCTAGTCCACTA -ACGGAATGTGCTCCTAGTGGAGTA -ACGGAATGTGCTCCTAGTTCGTCT -ACGGAATGTGCTCCTAGTTGCACT -ACGGAATGTGCTCCTAGTCTGACT -ACGGAATGTGCTCCTAGTCAACCT -ACGGAATGTGCTCCTAGTGCTACT -ACGGAATGTGCTCCTAGTGGATCT -ACGGAATGTGCTCCTAGTAAGGCT -ACGGAATGTGCTCCTAGTTCAACC -ACGGAATGTGCTCCTAGTTGTTCC -ACGGAATGTGCTCCTAGTATTCCC -ACGGAATGTGCTCCTAGTTTCTCG -ACGGAATGTGCTCCTAGTTAGACG -ACGGAATGTGCTCCTAGTGTAACG -ACGGAATGTGCTCCTAGTACTTCG -ACGGAATGTGCTCCTAGTTACGCA -ACGGAATGTGCTCCTAGTCTTGCA -ACGGAATGTGCTCCTAGTCGAACA -ACGGAATGTGCTCCTAGTCAGTCA -ACGGAATGTGCTCCTAGTGATCCA -ACGGAATGTGCTCCTAGTACGACA -ACGGAATGTGCTCCTAGTAGCTCA -ACGGAATGTGCTCCTAGTTCACGT -ACGGAATGTGCTCCTAGTCGTAGT -ACGGAATGTGCTCCTAGTGTCAGT -ACGGAATGTGCTCCTAGTGAAGGT -ACGGAATGTGCTCCTAGTAACCGT -ACGGAATGTGCTCCTAGTTTGTGC -ACGGAATGTGCTCCTAGTCTAAGC -ACGGAATGTGCTCCTAGTACTAGC -ACGGAATGTGCTCCTAGTAGATGC -ACGGAATGTGCTCCTAGTTGAAGG -ACGGAATGTGCTCCTAGTCAATGG -ACGGAATGTGCTCCTAGTATGAGG -ACGGAATGTGCTCCTAGTAATGGG -ACGGAATGTGCTCCTAGTTCCTGA -ACGGAATGTGCTCCTAGTTAGCGA -ACGGAATGTGCTCCTAGTCACAGA -ACGGAATGTGCTCCTAGTGCAAGA -ACGGAATGTGCTCCTAGTGGTTGA -ACGGAATGTGCTCCTAGTTCCGAT -ACGGAATGTGCTCCTAGTTGGCAT -ACGGAATGTGCTCCTAGTCGAGAT -ACGGAATGTGCTCCTAGTTACCAC -ACGGAATGTGCTCCTAGTCAGAAC -ACGGAATGTGCTCCTAGTGTCTAC -ACGGAATGTGCTCCTAGTACGTAC -ACGGAATGTGCTCCTAGTAGTGAC -ACGGAATGTGCTCCTAGTCTGTAG -ACGGAATGTGCTCCTAGTCCTAAG -ACGGAATGTGCTCCTAGTGTTCAG -ACGGAATGTGCTCCTAGTGCATAG -ACGGAATGTGCTCCTAGTGACAAG -ACGGAATGTGCTCCTAGTAAGCAG -ACGGAATGTGCTCCTAGTCGTCAA -ACGGAATGTGCTCCTAGTGCTGAA -ACGGAATGTGCTCCTAGTAGTACG -ACGGAATGTGCTCCTAGTATCCGA -ACGGAATGTGCTCCTAGTATGGGA -ACGGAATGTGCTCCTAGTGTGCAA -ACGGAATGTGCTCCTAGTGAGGAA -ACGGAATGTGCTCCTAGTCAGGTA -ACGGAATGTGCTCCTAGTGACTCT -ACGGAATGTGCTCCTAGTAGTCCT -ACGGAATGTGCTCCTAGTTAAGCC -ACGGAATGTGCTCCTAGTATAGCC -ACGGAATGTGCTCCTAGTTAACCG -ACGGAATGTGCTCCTAGTATGCCA -ACGGAATGTGCTGCCTAAGGAAAC -ACGGAATGTGCTGCCTAAAACACC -ACGGAATGTGCTGCCTAAATCGAG -ACGGAATGTGCTGCCTAACTCCTT -ACGGAATGTGCTGCCTAACCTGTT -ACGGAATGTGCTGCCTAACGGTTT -ACGGAATGTGCTGCCTAAGTGGTT -ACGGAATGTGCTGCCTAAGCCTTT -ACGGAATGTGCTGCCTAAGGTCTT -ACGGAATGTGCTGCCTAAACGCTT -ACGGAATGTGCTGCCTAAAGCGTT -ACGGAATGTGCTGCCTAATTCGTC -ACGGAATGTGCTGCCTAATCTCTC -ACGGAATGTGCTGCCTAATGGATC -ACGGAATGTGCTGCCTAACACTTC -ACGGAATGTGCTGCCTAAGTACTC -ACGGAATGTGCTGCCTAAGATGTC -ACGGAATGTGCTGCCTAAACAGTC -ACGGAATGTGCTGCCTAATTGCTG -ACGGAATGTGCTGCCTAATCCATG -ACGGAATGTGCTGCCTAATGTGTG -ACGGAATGTGCTGCCTAACTAGTG -ACGGAATGTGCTGCCTAACATCTG -ACGGAATGTGCTGCCTAAGAGTTG -ACGGAATGTGCTGCCTAAAGACTG -ACGGAATGTGCTGCCTAATCGGTA -ACGGAATGTGCTGCCTAATGCCTA -ACGGAATGTGCTGCCTAACCACTA -ACGGAATGTGCTGCCTAAGGAGTA -ACGGAATGTGCTGCCTAATCGTCT -ACGGAATGTGCTGCCTAATGCACT -ACGGAATGTGCTGCCTAACTGACT -ACGGAATGTGCTGCCTAACAACCT -ACGGAATGTGCTGCCTAAGCTACT -ACGGAATGTGCTGCCTAAGGATCT -ACGGAATGTGCTGCCTAAAAGGCT -ACGGAATGTGCTGCCTAATCAACC -ACGGAATGTGCTGCCTAATGTTCC -ACGGAATGTGCTGCCTAAATTCCC -ACGGAATGTGCTGCCTAATTCTCG -ACGGAATGTGCTGCCTAATAGACG -ACGGAATGTGCTGCCTAAGTAACG -ACGGAATGTGCTGCCTAAACTTCG -ACGGAATGTGCTGCCTAATACGCA -ACGGAATGTGCTGCCTAACTTGCA -ACGGAATGTGCTGCCTAACGAACA -ACGGAATGTGCTGCCTAACAGTCA -ACGGAATGTGCTGCCTAAGATCCA -ACGGAATGTGCTGCCTAAACGACA -ACGGAATGTGCTGCCTAAAGCTCA -ACGGAATGTGCTGCCTAATCACGT -ACGGAATGTGCTGCCTAACGTAGT -ACGGAATGTGCTGCCTAAGTCAGT -ACGGAATGTGCTGCCTAAGAAGGT -ACGGAATGTGCTGCCTAAAACCGT -ACGGAATGTGCTGCCTAATTGTGC -ACGGAATGTGCTGCCTAACTAAGC -ACGGAATGTGCTGCCTAAACTAGC -ACGGAATGTGCTGCCTAAAGATGC -ACGGAATGTGCTGCCTAATGAAGG -ACGGAATGTGCTGCCTAACAATGG -ACGGAATGTGCTGCCTAAATGAGG -ACGGAATGTGCTGCCTAAAATGGG -ACGGAATGTGCTGCCTAATCCTGA -ACGGAATGTGCTGCCTAATAGCGA -ACGGAATGTGCTGCCTAACACAGA -ACGGAATGTGCTGCCTAAGCAAGA -ACGGAATGTGCTGCCTAAGGTTGA -ACGGAATGTGCTGCCTAATCCGAT -ACGGAATGTGCTGCCTAATGGCAT -ACGGAATGTGCTGCCTAACGAGAT -ACGGAATGTGCTGCCTAATACCAC -ACGGAATGTGCTGCCTAACAGAAC -ACGGAATGTGCTGCCTAAGTCTAC -ACGGAATGTGCTGCCTAAACGTAC -ACGGAATGTGCTGCCTAAAGTGAC -ACGGAATGTGCTGCCTAACTGTAG -ACGGAATGTGCTGCCTAACCTAAG -ACGGAATGTGCTGCCTAAGTTCAG -ACGGAATGTGCTGCCTAAGCATAG -ACGGAATGTGCTGCCTAAGACAAG -ACGGAATGTGCTGCCTAAAAGCAG -ACGGAATGTGCTGCCTAACGTCAA -ACGGAATGTGCTGCCTAAGCTGAA -ACGGAATGTGCTGCCTAAAGTACG -ACGGAATGTGCTGCCTAAATCCGA -ACGGAATGTGCTGCCTAAATGGGA -ACGGAATGTGCTGCCTAAGTGCAA -ACGGAATGTGCTGCCTAAGAGGAA -ACGGAATGTGCTGCCTAACAGGTA -ACGGAATGTGCTGCCTAAGACTCT -ACGGAATGTGCTGCCTAAAGTCCT -ACGGAATGTGCTGCCTAATAAGCC -ACGGAATGTGCTGCCTAAATAGCC -ACGGAATGTGCTGCCTAATAACCG -ACGGAATGTGCTGCCTAAATGCCA -ACGGAATGTGCTGCCATAGGAAAC -ACGGAATGTGCTGCCATAAACACC -ACGGAATGTGCTGCCATAATCGAG -ACGGAATGTGCTGCCATACTCCTT -ACGGAATGTGCTGCCATACCTGTT -ACGGAATGTGCTGCCATACGGTTT -ACGGAATGTGCTGCCATAGTGGTT -ACGGAATGTGCTGCCATAGCCTTT -ACGGAATGTGCTGCCATAGGTCTT -ACGGAATGTGCTGCCATAACGCTT -ACGGAATGTGCTGCCATAAGCGTT -ACGGAATGTGCTGCCATATTCGTC -ACGGAATGTGCTGCCATATCTCTC -ACGGAATGTGCTGCCATATGGATC -ACGGAATGTGCTGCCATACACTTC -ACGGAATGTGCTGCCATAGTACTC -ACGGAATGTGCTGCCATAGATGTC -ACGGAATGTGCTGCCATAACAGTC -ACGGAATGTGCTGCCATATTGCTG -ACGGAATGTGCTGCCATATCCATG -ACGGAATGTGCTGCCATATGTGTG -ACGGAATGTGCTGCCATACTAGTG -ACGGAATGTGCTGCCATACATCTG -ACGGAATGTGCTGCCATAGAGTTG -ACGGAATGTGCTGCCATAAGACTG -ACGGAATGTGCTGCCATATCGGTA -ACGGAATGTGCTGCCATATGCCTA -ACGGAATGTGCTGCCATACCACTA -ACGGAATGTGCTGCCATAGGAGTA -ACGGAATGTGCTGCCATATCGTCT -ACGGAATGTGCTGCCATATGCACT -ACGGAATGTGCTGCCATACTGACT -ACGGAATGTGCTGCCATACAACCT -ACGGAATGTGCTGCCATAGCTACT -ACGGAATGTGCTGCCATAGGATCT -ACGGAATGTGCTGCCATAAAGGCT -ACGGAATGTGCTGCCATATCAACC -ACGGAATGTGCTGCCATATGTTCC -ACGGAATGTGCTGCCATAATTCCC -ACGGAATGTGCTGCCATATTCTCG -ACGGAATGTGCTGCCATATAGACG -ACGGAATGTGCTGCCATAGTAACG -ACGGAATGTGCTGCCATAACTTCG -ACGGAATGTGCTGCCATATACGCA -ACGGAATGTGCTGCCATACTTGCA -ACGGAATGTGCTGCCATACGAACA -ACGGAATGTGCTGCCATACAGTCA -ACGGAATGTGCTGCCATAGATCCA -ACGGAATGTGCTGCCATAACGACA -ACGGAATGTGCTGCCATAAGCTCA -ACGGAATGTGCTGCCATATCACGT -ACGGAATGTGCTGCCATACGTAGT -ACGGAATGTGCTGCCATAGTCAGT -ACGGAATGTGCTGCCATAGAAGGT -ACGGAATGTGCTGCCATAAACCGT -ACGGAATGTGCTGCCATATTGTGC -ACGGAATGTGCTGCCATACTAAGC -ACGGAATGTGCTGCCATAACTAGC -ACGGAATGTGCTGCCATAAGATGC -ACGGAATGTGCTGCCATATGAAGG -ACGGAATGTGCTGCCATACAATGG -ACGGAATGTGCTGCCATAATGAGG -ACGGAATGTGCTGCCATAAATGGG -ACGGAATGTGCTGCCATATCCTGA -ACGGAATGTGCTGCCATATAGCGA -ACGGAATGTGCTGCCATACACAGA -ACGGAATGTGCTGCCATAGCAAGA -ACGGAATGTGCTGCCATAGGTTGA -ACGGAATGTGCTGCCATATCCGAT -ACGGAATGTGCTGCCATATGGCAT -ACGGAATGTGCTGCCATACGAGAT -ACGGAATGTGCTGCCATATACCAC -ACGGAATGTGCTGCCATACAGAAC -ACGGAATGTGCTGCCATAGTCTAC -ACGGAATGTGCTGCCATAACGTAC -ACGGAATGTGCTGCCATAAGTGAC -ACGGAATGTGCTGCCATACTGTAG -ACGGAATGTGCTGCCATACCTAAG -ACGGAATGTGCTGCCATAGTTCAG -ACGGAATGTGCTGCCATAGCATAG -ACGGAATGTGCTGCCATAGACAAG -ACGGAATGTGCTGCCATAAAGCAG -ACGGAATGTGCTGCCATACGTCAA -ACGGAATGTGCTGCCATAGCTGAA -ACGGAATGTGCTGCCATAAGTACG -ACGGAATGTGCTGCCATAATCCGA -ACGGAATGTGCTGCCATAATGGGA -ACGGAATGTGCTGCCATAGTGCAA -ACGGAATGTGCTGCCATAGAGGAA -ACGGAATGTGCTGCCATACAGGTA -ACGGAATGTGCTGCCATAGACTCT -ACGGAATGTGCTGCCATAAGTCCT -ACGGAATGTGCTGCCATATAAGCC -ACGGAATGTGCTGCCATAATAGCC -ACGGAATGTGCTGCCATATAACCG -ACGGAATGTGCTGCCATAATGCCA -ACGGAATGTGCTCCGTAAGGAAAC -ACGGAATGTGCTCCGTAAAACACC -ACGGAATGTGCTCCGTAAATCGAG -ACGGAATGTGCTCCGTAACTCCTT -ACGGAATGTGCTCCGTAACCTGTT -ACGGAATGTGCTCCGTAACGGTTT -ACGGAATGTGCTCCGTAAGTGGTT -ACGGAATGTGCTCCGTAAGCCTTT -ACGGAATGTGCTCCGTAAGGTCTT -ACGGAATGTGCTCCGTAAACGCTT -ACGGAATGTGCTCCGTAAAGCGTT -ACGGAATGTGCTCCGTAATTCGTC -ACGGAATGTGCTCCGTAATCTCTC -ACGGAATGTGCTCCGTAATGGATC -ACGGAATGTGCTCCGTAACACTTC -ACGGAATGTGCTCCGTAAGTACTC -ACGGAATGTGCTCCGTAAGATGTC -ACGGAATGTGCTCCGTAAACAGTC -ACGGAATGTGCTCCGTAATTGCTG -ACGGAATGTGCTCCGTAATCCATG -ACGGAATGTGCTCCGTAATGTGTG -ACGGAATGTGCTCCGTAACTAGTG -ACGGAATGTGCTCCGTAACATCTG -ACGGAATGTGCTCCGTAAGAGTTG -ACGGAATGTGCTCCGTAAAGACTG -ACGGAATGTGCTCCGTAATCGGTA -ACGGAATGTGCTCCGTAATGCCTA -ACGGAATGTGCTCCGTAACCACTA -ACGGAATGTGCTCCGTAAGGAGTA -ACGGAATGTGCTCCGTAATCGTCT -ACGGAATGTGCTCCGTAATGCACT -ACGGAATGTGCTCCGTAACTGACT -ACGGAATGTGCTCCGTAACAACCT -ACGGAATGTGCTCCGTAAGCTACT -ACGGAATGTGCTCCGTAAGGATCT -ACGGAATGTGCTCCGTAAAAGGCT -ACGGAATGTGCTCCGTAATCAACC -ACGGAATGTGCTCCGTAATGTTCC -ACGGAATGTGCTCCGTAAATTCCC -ACGGAATGTGCTCCGTAATTCTCG -ACGGAATGTGCTCCGTAATAGACG -ACGGAATGTGCTCCGTAAGTAACG -ACGGAATGTGCTCCGTAAACTTCG -ACGGAATGTGCTCCGTAATACGCA -ACGGAATGTGCTCCGTAACTTGCA -ACGGAATGTGCTCCGTAACGAACA -ACGGAATGTGCTCCGTAACAGTCA -ACGGAATGTGCTCCGTAAGATCCA -ACGGAATGTGCTCCGTAAACGACA -ACGGAATGTGCTCCGTAAAGCTCA -ACGGAATGTGCTCCGTAATCACGT -ACGGAATGTGCTCCGTAACGTAGT -ACGGAATGTGCTCCGTAAGTCAGT -ACGGAATGTGCTCCGTAAGAAGGT -ACGGAATGTGCTCCGTAAAACCGT -ACGGAATGTGCTCCGTAATTGTGC -ACGGAATGTGCTCCGTAACTAAGC -ACGGAATGTGCTCCGTAAACTAGC -ACGGAATGTGCTCCGTAAAGATGC -ACGGAATGTGCTCCGTAATGAAGG -ACGGAATGTGCTCCGTAACAATGG -ACGGAATGTGCTCCGTAAATGAGG -ACGGAATGTGCTCCGTAAAATGGG -ACGGAATGTGCTCCGTAATCCTGA -ACGGAATGTGCTCCGTAATAGCGA -ACGGAATGTGCTCCGTAACACAGA -ACGGAATGTGCTCCGTAAGCAAGA -ACGGAATGTGCTCCGTAAGGTTGA -ACGGAATGTGCTCCGTAATCCGAT -ACGGAATGTGCTCCGTAATGGCAT -ACGGAATGTGCTCCGTAACGAGAT -ACGGAATGTGCTCCGTAATACCAC -ACGGAATGTGCTCCGTAACAGAAC -ACGGAATGTGCTCCGTAAGTCTAC -ACGGAATGTGCTCCGTAAACGTAC -ACGGAATGTGCTCCGTAAAGTGAC -ACGGAATGTGCTCCGTAACTGTAG -ACGGAATGTGCTCCGTAACCTAAG -ACGGAATGTGCTCCGTAAGTTCAG -ACGGAATGTGCTCCGTAAGCATAG -ACGGAATGTGCTCCGTAAGACAAG -ACGGAATGTGCTCCGTAAAAGCAG -ACGGAATGTGCTCCGTAACGTCAA -ACGGAATGTGCTCCGTAAGCTGAA -ACGGAATGTGCTCCGTAAAGTACG -ACGGAATGTGCTCCGTAAATCCGA -ACGGAATGTGCTCCGTAAATGGGA -ACGGAATGTGCTCCGTAAGTGCAA -ACGGAATGTGCTCCGTAAGAGGAA -ACGGAATGTGCTCCGTAACAGGTA -ACGGAATGTGCTCCGTAAGACTCT -ACGGAATGTGCTCCGTAAAGTCCT -ACGGAATGTGCTCCGTAATAAGCC -ACGGAATGTGCTCCGTAAATAGCC -ACGGAATGTGCTCCGTAATAACCG -ACGGAATGTGCTCCGTAAATGCCA -ACGGAATGTGCTCCAATGGGAAAC -ACGGAATGTGCTCCAATGAACACC -ACGGAATGTGCTCCAATGATCGAG -ACGGAATGTGCTCCAATGCTCCTT -ACGGAATGTGCTCCAATGCCTGTT -ACGGAATGTGCTCCAATGCGGTTT -ACGGAATGTGCTCCAATGGTGGTT -ACGGAATGTGCTCCAATGGCCTTT -ACGGAATGTGCTCCAATGGGTCTT -ACGGAATGTGCTCCAATGACGCTT -ACGGAATGTGCTCCAATGAGCGTT -ACGGAATGTGCTCCAATGTTCGTC -ACGGAATGTGCTCCAATGTCTCTC -ACGGAATGTGCTCCAATGTGGATC -ACGGAATGTGCTCCAATGCACTTC -ACGGAATGTGCTCCAATGGTACTC -ACGGAATGTGCTCCAATGGATGTC -ACGGAATGTGCTCCAATGACAGTC -ACGGAATGTGCTCCAATGTTGCTG -ACGGAATGTGCTCCAATGTCCATG -ACGGAATGTGCTCCAATGTGTGTG -ACGGAATGTGCTCCAATGCTAGTG -ACGGAATGTGCTCCAATGCATCTG -ACGGAATGTGCTCCAATGGAGTTG -ACGGAATGTGCTCCAATGAGACTG -ACGGAATGTGCTCCAATGTCGGTA -ACGGAATGTGCTCCAATGTGCCTA -ACGGAATGTGCTCCAATGCCACTA -ACGGAATGTGCTCCAATGGGAGTA -ACGGAATGTGCTCCAATGTCGTCT -ACGGAATGTGCTCCAATGTGCACT -ACGGAATGTGCTCCAATGCTGACT -ACGGAATGTGCTCCAATGCAACCT -ACGGAATGTGCTCCAATGGCTACT -ACGGAATGTGCTCCAATGGGATCT -ACGGAATGTGCTCCAATGAAGGCT -ACGGAATGTGCTCCAATGTCAACC -ACGGAATGTGCTCCAATGTGTTCC -ACGGAATGTGCTCCAATGATTCCC -ACGGAATGTGCTCCAATGTTCTCG -ACGGAATGTGCTCCAATGTAGACG -ACGGAATGTGCTCCAATGGTAACG -ACGGAATGTGCTCCAATGACTTCG -ACGGAATGTGCTCCAATGTACGCA -ACGGAATGTGCTCCAATGCTTGCA -ACGGAATGTGCTCCAATGCGAACA -ACGGAATGTGCTCCAATGCAGTCA -ACGGAATGTGCTCCAATGGATCCA -ACGGAATGTGCTCCAATGACGACA -ACGGAATGTGCTCCAATGAGCTCA -ACGGAATGTGCTCCAATGTCACGT -ACGGAATGTGCTCCAATGCGTAGT -ACGGAATGTGCTCCAATGGTCAGT -ACGGAATGTGCTCCAATGGAAGGT -ACGGAATGTGCTCCAATGAACCGT -ACGGAATGTGCTCCAATGTTGTGC -ACGGAATGTGCTCCAATGCTAAGC -ACGGAATGTGCTCCAATGACTAGC -ACGGAATGTGCTCCAATGAGATGC -ACGGAATGTGCTCCAATGTGAAGG -ACGGAATGTGCTCCAATGCAATGG -ACGGAATGTGCTCCAATGATGAGG -ACGGAATGTGCTCCAATGAATGGG -ACGGAATGTGCTCCAATGTCCTGA -ACGGAATGTGCTCCAATGTAGCGA -ACGGAATGTGCTCCAATGCACAGA -ACGGAATGTGCTCCAATGGCAAGA -ACGGAATGTGCTCCAATGGGTTGA -ACGGAATGTGCTCCAATGTCCGAT -ACGGAATGTGCTCCAATGTGGCAT -ACGGAATGTGCTCCAATGCGAGAT -ACGGAATGTGCTCCAATGTACCAC -ACGGAATGTGCTCCAATGCAGAAC -ACGGAATGTGCTCCAATGGTCTAC -ACGGAATGTGCTCCAATGACGTAC -ACGGAATGTGCTCCAATGAGTGAC -ACGGAATGTGCTCCAATGCTGTAG -ACGGAATGTGCTCCAATGCCTAAG -ACGGAATGTGCTCCAATGGTTCAG -ACGGAATGTGCTCCAATGGCATAG -ACGGAATGTGCTCCAATGGACAAG -ACGGAATGTGCTCCAATGAAGCAG -ACGGAATGTGCTCCAATGCGTCAA -ACGGAATGTGCTCCAATGGCTGAA -ACGGAATGTGCTCCAATGAGTACG -ACGGAATGTGCTCCAATGATCCGA -ACGGAATGTGCTCCAATGATGGGA -ACGGAATGTGCTCCAATGGTGCAA -ACGGAATGTGCTCCAATGGAGGAA -ACGGAATGTGCTCCAATGCAGGTA -ACGGAATGTGCTCCAATGGACTCT -ACGGAATGTGCTCCAATGAGTCCT -ACGGAATGTGCTCCAATGTAAGCC -ACGGAATGTGCTCCAATGATAGCC -ACGGAATGTGCTCCAATGTAACCG -ACGGAATGTGCTCCAATGATGCCA -ACGGAATAAGCCAACGGAGGAAAC -ACGGAATAAGCCAACGGAAACACC -ACGGAATAAGCCAACGGAATCGAG -ACGGAATAAGCCAACGGACTCCTT -ACGGAATAAGCCAACGGACCTGTT -ACGGAATAAGCCAACGGACGGTTT -ACGGAATAAGCCAACGGAGTGGTT -ACGGAATAAGCCAACGGAGCCTTT -ACGGAATAAGCCAACGGAGGTCTT -ACGGAATAAGCCAACGGAACGCTT -ACGGAATAAGCCAACGGAAGCGTT -ACGGAATAAGCCAACGGATTCGTC -ACGGAATAAGCCAACGGATCTCTC -ACGGAATAAGCCAACGGATGGATC -ACGGAATAAGCCAACGGACACTTC -ACGGAATAAGCCAACGGAGTACTC -ACGGAATAAGCCAACGGAGATGTC -ACGGAATAAGCCAACGGAACAGTC -ACGGAATAAGCCAACGGATTGCTG -ACGGAATAAGCCAACGGATCCATG -ACGGAATAAGCCAACGGATGTGTG -ACGGAATAAGCCAACGGACTAGTG -ACGGAATAAGCCAACGGACATCTG -ACGGAATAAGCCAACGGAGAGTTG -ACGGAATAAGCCAACGGAAGACTG -ACGGAATAAGCCAACGGATCGGTA -ACGGAATAAGCCAACGGATGCCTA -ACGGAATAAGCCAACGGACCACTA -ACGGAATAAGCCAACGGAGGAGTA -ACGGAATAAGCCAACGGATCGTCT -ACGGAATAAGCCAACGGATGCACT -ACGGAATAAGCCAACGGACTGACT -ACGGAATAAGCCAACGGACAACCT -ACGGAATAAGCCAACGGAGCTACT -ACGGAATAAGCCAACGGAGGATCT -ACGGAATAAGCCAACGGAAAGGCT -ACGGAATAAGCCAACGGATCAACC -ACGGAATAAGCCAACGGATGTTCC -ACGGAATAAGCCAACGGAATTCCC -ACGGAATAAGCCAACGGATTCTCG -ACGGAATAAGCCAACGGATAGACG -ACGGAATAAGCCAACGGAGTAACG -ACGGAATAAGCCAACGGAACTTCG -ACGGAATAAGCCAACGGATACGCA -ACGGAATAAGCCAACGGACTTGCA -ACGGAATAAGCCAACGGACGAACA -ACGGAATAAGCCAACGGACAGTCA -ACGGAATAAGCCAACGGAGATCCA -ACGGAATAAGCCAACGGAACGACA -ACGGAATAAGCCAACGGAAGCTCA -ACGGAATAAGCCAACGGATCACGT -ACGGAATAAGCCAACGGACGTAGT -ACGGAATAAGCCAACGGAGTCAGT -ACGGAATAAGCCAACGGAGAAGGT -ACGGAATAAGCCAACGGAAACCGT -ACGGAATAAGCCAACGGATTGTGC -ACGGAATAAGCCAACGGACTAAGC -ACGGAATAAGCCAACGGAACTAGC -ACGGAATAAGCCAACGGAAGATGC -ACGGAATAAGCCAACGGATGAAGG -ACGGAATAAGCCAACGGACAATGG -ACGGAATAAGCCAACGGAATGAGG -ACGGAATAAGCCAACGGAAATGGG -ACGGAATAAGCCAACGGATCCTGA -ACGGAATAAGCCAACGGATAGCGA -ACGGAATAAGCCAACGGACACAGA -ACGGAATAAGCCAACGGAGCAAGA -ACGGAATAAGCCAACGGAGGTTGA -ACGGAATAAGCCAACGGATCCGAT -ACGGAATAAGCCAACGGATGGCAT -ACGGAATAAGCCAACGGACGAGAT -ACGGAATAAGCCAACGGATACCAC -ACGGAATAAGCCAACGGACAGAAC -ACGGAATAAGCCAACGGAGTCTAC -ACGGAATAAGCCAACGGAACGTAC -ACGGAATAAGCCAACGGAAGTGAC -ACGGAATAAGCCAACGGACTGTAG -ACGGAATAAGCCAACGGACCTAAG -ACGGAATAAGCCAACGGAGTTCAG -ACGGAATAAGCCAACGGAGCATAG -ACGGAATAAGCCAACGGAGACAAG -ACGGAATAAGCCAACGGAAAGCAG -ACGGAATAAGCCAACGGACGTCAA -ACGGAATAAGCCAACGGAGCTGAA -ACGGAATAAGCCAACGGAAGTACG -ACGGAATAAGCCAACGGAATCCGA -ACGGAATAAGCCAACGGAATGGGA -ACGGAATAAGCCAACGGAGTGCAA -ACGGAATAAGCCAACGGAGAGGAA -ACGGAATAAGCCAACGGACAGGTA -ACGGAATAAGCCAACGGAGACTCT -ACGGAATAAGCCAACGGAAGTCCT -ACGGAATAAGCCAACGGATAAGCC -ACGGAATAAGCCAACGGAATAGCC -ACGGAATAAGCCAACGGATAACCG -ACGGAATAAGCCAACGGAATGCCA -ACGGAATAAGCCACCAACGGAAAC -ACGGAATAAGCCACCAACAACACC -ACGGAATAAGCCACCAACATCGAG -ACGGAATAAGCCACCAACCTCCTT -ACGGAATAAGCCACCAACCCTGTT -ACGGAATAAGCCACCAACCGGTTT -ACGGAATAAGCCACCAACGTGGTT -ACGGAATAAGCCACCAACGCCTTT -ACGGAATAAGCCACCAACGGTCTT -ACGGAATAAGCCACCAACACGCTT -ACGGAATAAGCCACCAACAGCGTT -ACGGAATAAGCCACCAACTTCGTC -ACGGAATAAGCCACCAACTCTCTC -ACGGAATAAGCCACCAACTGGATC -ACGGAATAAGCCACCAACCACTTC -ACGGAATAAGCCACCAACGTACTC -ACGGAATAAGCCACCAACGATGTC -ACGGAATAAGCCACCAACACAGTC -ACGGAATAAGCCACCAACTTGCTG -ACGGAATAAGCCACCAACTCCATG -ACGGAATAAGCCACCAACTGTGTG -ACGGAATAAGCCACCAACCTAGTG -ACGGAATAAGCCACCAACCATCTG -ACGGAATAAGCCACCAACGAGTTG -ACGGAATAAGCCACCAACAGACTG -ACGGAATAAGCCACCAACTCGGTA -ACGGAATAAGCCACCAACTGCCTA -ACGGAATAAGCCACCAACCCACTA -ACGGAATAAGCCACCAACGGAGTA -ACGGAATAAGCCACCAACTCGTCT -ACGGAATAAGCCACCAACTGCACT -ACGGAATAAGCCACCAACCTGACT -ACGGAATAAGCCACCAACCAACCT -ACGGAATAAGCCACCAACGCTACT -ACGGAATAAGCCACCAACGGATCT -ACGGAATAAGCCACCAACAAGGCT -ACGGAATAAGCCACCAACTCAACC -ACGGAATAAGCCACCAACTGTTCC -ACGGAATAAGCCACCAACATTCCC -ACGGAATAAGCCACCAACTTCTCG -ACGGAATAAGCCACCAACTAGACG -ACGGAATAAGCCACCAACGTAACG -ACGGAATAAGCCACCAACACTTCG -ACGGAATAAGCCACCAACTACGCA -ACGGAATAAGCCACCAACCTTGCA -ACGGAATAAGCCACCAACCGAACA -ACGGAATAAGCCACCAACCAGTCA -ACGGAATAAGCCACCAACGATCCA -ACGGAATAAGCCACCAACACGACA -ACGGAATAAGCCACCAACAGCTCA -ACGGAATAAGCCACCAACTCACGT -ACGGAATAAGCCACCAACCGTAGT -ACGGAATAAGCCACCAACGTCAGT -ACGGAATAAGCCACCAACGAAGGT -ACGGAATAAGCCACCAACAACCGT -ACGGAATAAGCCACCAACTTGTGC -ACGGAATAAGCCACCAACCTAAGC -ACGGAATAAGCCACCAACACTAGC -ACGGAATAAGCCACCAACAGATGC -ACGGAATAAGCCACCAACTGAAGG -ACGGAATAAGCCACCAACCAATGG -ACGGAATAAGCCACCAACATGAGG -ACGGAATAAGCCACCAACAATGGG -ACGGAATAAGCCACCAACTCCTGA -ACGGAATAAGCCACCAACTAGCGA -ACGGAATAAGCCACCAACCACAGA -ACGGAATAAGCCACCAACGCAAGA -ACGGAATAAGCCACCAACGGTTGA -ACGGAATAAGCCACCAACTCCGAT -ACGGAATAAGCCACCAACTGGCAT -ACGGAATAAGCCACCAACCGAGAT -ACGGAATAAGCCACCAACTACCAC -ACGGAATAAGCCACCAACCAGAAC -ACGGAATAAGCCACCAACGTCTAC -ACGGAATAAGCCACCAACACGTAC -ACGGAATAAGCCACCAACAGTGAC -ACGGAATAAGCCACCAACCTGTAG -ACGGAATAAGCCACCAACCCTAAG -ACGGAATAAGCCACCAACGTTCAG -ACGGAATAAGCCACCAACGCATAG -ACGGAATAAGCCACCAACGACAAG -ACGGAATAAGCCACCAACAAGCAG -ACGGAATAAGCCACCAACCGTCAA -ACGGAATAAGCCACCAACGCTGAA -ACGGAATAAGCCACCAACAGTACG -ACGGAATAAGCCACCAACATCCGA -ACGGAATAAGCCACCAACATGGGA -ACGGAATAAGCCACCAACGTGCAA -ACGGAATAAGCCACCAACGAGGAA -ACGGAATAAGCCACCAACCAGGTA -ACGGAATAAGCCACCAACGACTCT -ACGGAATAAGCCACCAACAGTCCT -ACGGAATAAGCCACCAACTAAGCC -ACGGAATAAGCCACCAACATAGCC -ACGGAATAAGCCACCAACTAACCG -ACGGAATAAGCCACCAACATGCCA -ACGGAATAAGCCGAGATCGGAAAC -ACGGAATAAGCCGAGATCAACACC -ACGGAATAAGCCGAGATCATCGAG -ACGGAATAAGCCGAGATCCTCCTT -ACGGAATAAGCCGAGATCCCTGTT -ACGGAATAAGCCGAGATCCGGTTT -ACGGAATAAGCCGAGATCGTGGTT -ACGGAATAAGCCGAGATCGCCTTT -ACGGAATAAGCCGAGATCGGTCTT -ACGGAATAAGCCGAGATCACGCTT -ACGGAATAAGCCGAGATCAGCGTT -ACGGAATAAGCCGAGATCTTCGTC -ACGGAATAAGCCGAGATCTCTCTC -ACGGAATAAGCCGAGATCTGGATC -ACGGAATAAGCCGAGATCCACTTC -ACGGAATAAGCCGAGATCGTACTC -ACGGAATAAGCCGAGATCGATGTC -ACGGAATAAGCCGAGATCACAGTC -ACGGAATAAGCCGAGATCTTGCTG -ACGGAATAAGCCGAGATCTCCATG -ACGGAATAAGCCGAGATCTGTGTG -ACGGAATAAGCCGAGATCCTAGTG -ACGGAATAAGCCGAGATCCATCTG -ACGGAATAAGCCGAGATCGAGTTG -ACGGAATAAGCCGAGATCAGACTG -ACGGAATAAGCCGAGATCTCGGTA -ACGGAATAAGCCGAGATCTGCCTA -ACGGAATAAGCCGAGATCCCACTA -ACGGAATAAGCCGAGATCGGAGTA -ACGGAATAAGCCGAGATCTCGTCT -ACGGAATAAGCCGAGATCTGCACT -ACGGAATAAGCCGAGATCCTGACT -ACGGAATAAGCCGAGATCCAACCT -ACGGAATAAGCCGAGATCGCTACT -ACGGAATAAGCCGAGATCGGATCT -ACGGAATAAGCCGAGATCAAGGCT -ACGGAATAAGCCGAGATCTCAACC -ACGGAATAAGCCGAGATCTGTTCC -ACGGAATAAGCCGAGATCATTCCC -ACGGAATAAGCCGAGATCTTCTCG -ACGGAATAAGCCGAGATCTAGACG -ACGGAATAAGCCGAGATCGTAACG -ACGGAATAAGCCGAGATCACTTCG -ACGGAATAAGCCGAGATCTACGCA -ACGGAATAAGCCGAGATCCTTGCA -ACGGAATAAGCCGAGATCCGAACA -ACGGAATAAGCCGAGATCCAGTCA -ACGGAATAAGCCGAGATCGATCCA -ACGGAATAAGCCGAGATCACGACA -ACGGAATAAGCCGAGATCAGCTCA -ACGGAATAAGCCGAGATCTCACGT -ACGGAATAAGCCGAGATCCGTAGT -ACGGAATAAGCCGAGATCGTCAGT -ACGGAATAAGCCGAGATCGAAGGT -ACGGAATAAGCCGAGATCAACCGT -ACGGAATAAGCCGAGATCTTGTGC -ACGGAATAAGCCGAGATCCTAAGC -ACGGAATAAGCCGAGATCACTAGC -ACGGAATAAGCCGAGATCAGATGC -ACGGAATAAGCCGAGATCTGAAGG -ACGGAATAAGCCGAGATCCAATGG -ACGGAATAAGCCGAGATCATGAGG -ACGGAATAAGCCGAGATCAATGGG -ACGGAATAAGCCGAGATCTCCTGA -ACGGAATAAGCCGAGATCTAGCGA -ACGGAATAAGCCGAGATCCACAGA -ACGGAATAAGCCGAGATCGCAAGA -ACGGAATAAGCCGAGATCGGTTGA -ACGGAATAAGCCGAGATCTCCGAT -ACGGAATAAGCCGAGATCTGGCAT -ACGGAATAAGCCGAGATCCGAGAT -ACGGAATAAGCCGAGATCTACCAC -ACGGAATAAGCCGAGATCCAGAAC -ACGGAATAAGCCGAGATCGTCTAC -ACGGAATAAGCCGAGATCACGTAC -ACGGAATAAGCCGAGATCAGTGAC -ACGGAATAAGCCGAGATCCTGTAG -ACGGAATAAGCCGAGATCCCTAAG -ACGGAATAAGCCGAGATCGTTCAG -ACGGAATAAGCCGAGATCGCATAG -ACGGAATAAGCCGAGATCGACAAG -ACGGAATAAGCCGAGATCAAGCAG -ACGGAATAAGCCGAGATCCGTCAA -ACGGAATAAGCCGAGATCGCTGAA -ACGGAATAAGCCGAGATCAGTACG -ACGGAATAAGCCGAGATCATCCGA -ACGGAATAAGCCGAGATCATGGGA -ACGGAATAAGCCGAGATCGTGCAA -ACGGAATAAGCCGAGATCGAGGAA -ACGGAATAAGCCGAGATCCAGGTA -ACGGAATAAGCCGAGATCGACTCT -ACGGAATAAGCCGAGATCAGTCCT -ACGGAATAAGCCGAGATCTAAGCC -ACGGAATAAGCCGAGATCATAGCC -ACGGAATAAGCCGAGATCTAACCG -ACGGAATAAGCCGAGATCATGCCA -ACGGAATAAGCCCTTCTCGGAAAC -ACGGAATAAGCCCTTCTCAACACC -ACGGAATAAGCCCTTCTCATCGAG -ACGGAATAAGCCCTTCTCCTCCTT -ACGGAATAAGCCCTTCTCCCTGTT -ACGGAATAAGCCCTTCTCCGGTTT -ACGGAATAAGCCCTTCTCGTGGTT -ACGGAATAAGCCCTTCTCGCCTTT -ACGGAATAAGCCCTTCTCGGTCTT -ACGGAATAAGCCCTTCTCACGCTT -ACGGAATAAGCCCTTCTCAGCGTT -ACGGAATAAGCCCTTCTCTTCGTC -ACGGAATAAGCCCTTCTCTCTCTC -ACGGAATAAGCCCTTCTCTGGATC -ACGGAATAAGCCCTTCTCCACTTC -ACGGAATAAGCCCTTCTCGTACTC -ACGGAATAAGCCCTTCTCGATGTC -ACGGAATAAGCCCTTCTCACAGTC -ACGGAATAAGCCCTTCTCTTGCTG -ACGGAATAAGCCCTTCTCTCCATG -ACGGAATAAGCCCTTCTCTGTGTG -ACGGAATAAGCCCTTCTCCTAGTG -ACGGAATAAGCCCTTCTCCATCTG -ACGGAATAAGCCCTTCTCGAGTTG -ACGGAATAAGCCCTTCTCAGACTG -ACGGAATAAGCCCTTCTCTCGGTA -ACGGAATAAGCCCTTCTCTGCCTA -ACGGAATAAGCCCTTCTCCCACTA -ACGGAATAAGCCCTTCTCGGAGTA -ACGGAATAAGCCCTTCTCTCGTCT -ACGGAATAAGCCCTTCTCTGCACT -ACGGAATAAGCCCTTCTCCTGACT -ACGGAATAAGCCCTTCTCCAACCT -ACGGAATAAGCCCTTCTCGCTACT -ACGGAATAAGCCCTTCTCGGATCT -ACGGAATAAGCCCTTCTCAAGGCT -ACGGAATAAGCCCTTCTCTCAACC -ACGGAATAAGCCCTTCTCTGTTCC -ACGGAATAAGCCCTTCTCATTCCC -ACGGAATAAGCCCTTCTCTTCTCG -ACGGAATAAGCCCTTCTCTAGACG -ACGGAATAAGCCCTTCTCGTAACG -ACGGAATAAGCCCTTCTCACTTCG -ACGGAATAAGCCCTTCTCTACGCA -ACGGAATAAGCCCTTCTCCTTGCA -ACGGAATAAGCCCTTCTCCGAACA -ACGGAATAAGCCCTTCTCCAGTCA -ACGGAATAAGCCCTTCTCGATCCA -ACGGAATAAGCCCTTCTCACGACA -ACGGAATAAGCCCTTCTCAGCTCA -ACGGAATAAGCCCTTCTCTCACGT -ACGGAATAAGCCCTTCTCCGTAGT -ACGGAATAAGCCCTTCTCGTCAGT -ACGGAATAAGCCCTTCTCGAAGGT -ACGGAATAAGCCCTTCTCAACCGT -ACGGAATAAGCCCTTCTCTTGTGC -ACGGAATAAGCCCTTCTCCTAAGC -ACGGAATAAGCCCTTCTCACTAGC -ACGGAATAAGCCCTTCTCAGATGC -ACGGAATAAGCCCTTCTCTGAAGG -ACGGAATAAGCCCTTCTCCAATGG -ACGGAATAAGCCCTTCTCATGAGG -ACGGAATAAGCCCTTCTCAATGGG -ACGGAATAAGCCCTTCTCTCCTGA -ACGGAATAAGCCCTTCTCTAGCGA -ACGGAATAAGCCCTTCTCCACAGA -ACGGAATAAGCCCTTCTCGCAAGA -ACGGAATAAGCCCTTCTCGGTTGA -ACGGAATAAGCCCTTCTCTCCGAT -ACGGAATAAGCCCTTCTCTGGCAT -ACGGAATAAGCCCTTCTCCGAGAT -ACGGAATAAGCCCTTCTCTACCAC -ACGGAATAAGCCCTTCTCCAGAAC -ACGGAATAAGCCCTTCTCGTCTAC -ACGGAATAAGCCCTTCTCACGTAC -ACGGAATAAGCCCTTCTCAGTGAC -ACGGAATAAGCCCTTCTCCTGTAG -ACGGAATAAGCCCTTCTCCCTAAG -ACGGAATAAGCCCTTCTCGTTCAG -ACGGAATAAGCCCTTCTCGCATAG -ACGGAATAAGCCCTTCTCGACAAG -ACGGAATAAGCCCTTCTCAAGCAG -ACGGAATAAGCCCTTCTCCGTCAA -ACGGAATAAGCCCTTCTCGCTGAA -ACGGAATAAGCCCTTCTCAGTACG -ACGGAATAAGCCCTTCTCATCCGA -ACGGAATAAGCCCTTCTCATGGGA -ACGGAATAAGCCCTTCTCGTGCAA -ACGGAATAAGCCCTTCTCGAGGAA -ACGGAATAAGCCCTTCTCCAGGTA -ACGGAATAAGCCCTTCTCGACTCT -ACGGAATAAGCCCTTCTCAGTCCT -ACGGAATAAGCCCTTCTCTAAGCC -ACGGAATAAGCCCTTCTCATAGCC -ACGGAATAAGCCCTTCTCTAACCG -ACGGAATAAGCCCTTCTCATGCCA -ACGGAATAAGCCGTTCCTGGAAAC -ACGGAATAAGCCGTTCCTAACACC -ACGGAATAAGCCGTTCCTATCGAG -ACGGAATAAGCCGTTCCTCTCCTT -ACGGAATAAGCCGTTCCTCCTGTT -ACGGAATAAGCCGTTCCTCGGTTT -ACGGAATAAGCCGTTCCTGTGGTT -ACGGAATAAGCCGTTCCTGCCTTT -ACGGAATAAGCCGTTCCTGGTCTT -ACGGAATAAGCCGTTCCTACGCTT -ACGGAATAAGCCGTTCCTAGCGTT -ACGGAATAAGCCGTTCCTTTCGTC -ACGGAATAAGCCGTTCCTTCTCTC -ACGGAATAAGCCGTTCCTTGGATC -ACGGAATAAGCCGTTCCTCACTTC -ACGGAATAAGCCGTTCCTGTACTC -ACGGAATAAGCCGTTCCTGATGTC -ACGGAATAAGCCGTTCCTACAGTC -ACGGAATAAGCCGTTCCTTTGCTG -ACGGAATAAGCCGTTCCTTCCATG -ACGGAATAAGCCGTTCCTTGTGTG -ACGGAATAAGCCGTTCCTCTAGTG -ACGGAATAAGCCGTTCCTCATCTG -ACGGAATAAGCCGTTCCTGAGTTG -ACGGAATAAGCCGTTCCTAGACTG -ACGGAATAAGCCGTTCCTTCGGTA -ACGGAATAAGCCGTTCCTTGCCTA -ACGGAATAAGCCGTTCCTCCACTA -ACGGAATAAGCCGTTCCTGGAGTA -ACGGAATAAGCCGTTCCTTCGTCT -ACGGAATAAGCCGTTCCTTGCACT -ACGGAATAAGCCGTTCCTCTGACT -ACGGAATAAGCCGTTCCTCAACCT -ACGGAATAAGCCGTTCCTGCTACT -ACGGAATAAGCCGTTCCTGGATCT -ACGGAATAAGCCGTTCCTAAGGCT -ACGGAATAAGCCGTTCCTTCAACC -ACGGAATAAGCCGTTCCTTGTTCC -ACGGAATAAGCCGTTCCTATTCCC -ACGGAATAAGCCGTTCCTTTCTCG -ACGGAATAAGCCGTTCCTTAGACG -ACGGAATAAGCCGTTCCTGTAACG -ACGGAATAAGCCGTTCCTACTTCG -ACGGAATAAGCCGTTCCTTACGCA -ACGGAATAAGCCGTTCCTCTTGCA -ACGGAATAAGCCGTTCCTCGAACA -ACGGAATAAGCCGTTCCTCAGTCA -ACGGAATAAGCCGTTCCTGATCCA -ACGGAATAAGCCGTTCCTACGACA -ACGGAATAAGCCGTTCCTAGCTCA -ACGGAATAAGCCGTTCCTTCACGT -ACGGAATAAGCCGTTCCTCGTAGT -ACGGAATAAGCCGTTCCTGTCAGT -ACGGAATAAGCCGTTCCTGAAGGT -ACGGAATAAGCCGTTCCTAACCGT -ACGGAATAAGCCGTTCCTTTGTGC -ACGGAATAAGCCGTTCCTCTAAGC -ACGGAATAAGCCGTTCCTACTAGC -ACGGAATAAGCCGTTCCTAGATGC -ACGGAATAAGCCGTTCCTTGAAGG -ACGGAATAAGCCGTTCCTCAATGG -ACGGAATAAGCCGTTCCTATGAGG -ACGGAATAAGCCGTTCCTAATGGG -ACGGAATAAGCCGTTCCTTCCTGA -ACGGAATAAGCCGTTCCTTAGCGA -ACGGAATAAGCCGTTCCTCACAGA -ACGGAATAAGCCGTTCCTGCAAGA -ACGGAATAAGCCGTTCCTGGTTGA -ACGGAATAAGCCGTTCCTTCCGAT -ACGGAATAAGCCGTTCCTTGGCAT -ACGGAATAAGCCGTTCCTCGAGAT -ACGGAATAAGCCGTTCCTTACCAC -ACGGAATAAGCCGTTCCTCAGAAC -ACGGAATAAGCCGTTCCTGTCTAC -ACGGAATAAGCCGTTCCTACGTAC -ACGGAATAAGCCGTTCCTAGTGAC -ACGGAATAAGCCGTTCCTCTGTAG -ACGGAATAAGCCGTTCCTCCTAAG -ACGGAATAAGCCGTTCCTGTTCAG -ACGGAATAAGCCGTTCCTGCATAG -ACGGAATAAGCCGTTCCTGACAAG -ACGGAATAAGCCGTTCCTAAGCAG -ACGGAATAAGCCGTTCCTCGTCAA -ACGGAATAAGCCGTTCCTGCTGAA -ACGGAATAAGCCGTTCCTAGTACG -ACGGAATAAGCCGTTCCTATCCGA -ACGGAATAAGCCGTTCCTATGGGA -ACGGAATAAGCCGTTCCTGTGCAA -ACGGAATAAGCCGTTCCTGAGGAA -ACGGAATAAGCCGTTCCTCAGGTA -ACGGAATAAGCCGTTCCTGACTCT -ACGGAATAAGCCGTTCCTAGTCCT -ACGGAATAAGCCGTTCCTTAAGCC -ACGGAATAAGCCGTTCCTATAGCC -ACGGAATAAGCCGTTCCTTAACCG -ACGGAATAAGCCGTTCCTATGCCA -ACGGAATAAGCCTTTCGGGGAAAC -ACGGAATAAGCCTTTCGGAACACC -ACGGAATAAGCCTTTCGGATCGAG -ACGGAATAAGCCTTTCGGCTCCTT -ACGGAATAAGCCTTTCGGCCTGTT -ACGGAATAAGCCTTTCGGCGGTTT -ACGGAATAAGCCTTTCGGGTGGTT -ACGGAATAAGCCTTTCGGGCCTTT -ACGGAATAAGCCTTTCGGGGTCTT -ACGGAATAAGCCTTTCGGACGCTT -ACGGAATAAGCCTTTCGGAGCGTT -ACGGAATAAGCCTTTCGGTTCGTC -ACGGAATAAGCCTTTCGGTCTCTC -ACGGAATAAGCCTTTCGGTGGATC -ACGGAATAAGCCTTTCGGCACTTC -ACGGAATAAGCCTTTCGGGTACTC -ACGGAATAAGCCTTTCGGGATGTC -ACGGAATAAGCCTTTCGGACAGTC -ACGGAATAAGCCTTTCGGTTGCTG -ACGGAATAAGCCTTTCGGTCCATG -ACGGAATAAGCCTTTCGGTGTGTG -ACGGAATAAGCCTTTCGGCTAGTG -ACGGAATAAGCCTTTCGGCATCTG -ACGGAATAAGCCTTTCGGGAGTTG -ACGGAATAAGCCTTTCGGAGACTG -ACGGAATAAGCCTTTCGGTCGGTA -ACGGAATAAGCCTTTCGGTGCCTA -ACGGAATAAGCCTTTCGGCCACTA -ACGGAATAAGCCTTTCGGGGAGTA -ACGGAATAAGCCTTTCGGTCGTCT -ACGGAATAAGCCTTTCGGTGCACT -ACGGAATAAGCCTTTCGGCTGACT -ACGGAATAAGCCTTTCGGCAACCT -ACGGAATAAGCCTTTCGGGCTACT -ACGGAATAAGCCTTTCGGGGATCT -ACGGAATAAGCCTTTCGGAAGGCT -ACGGAATAAGCCTTTCGGTCAACC -ACGGAATAAGCCTTTCGGTGTTCC -ACGGAATAAGCCTTTCGGATTCCC -ACGGAATAAGCCTTTCGGTTCTCG -ACGGAATAAGCCTTTCGGTAGACG -ACGGAATAAGCCTTTCGGGTAACG -ACGGAATAAGCCTTTCGGACTTCG -ACGGAATAAGCCTTTCGGTACGCA -ACGGAATAAGCCTTTCGGCTTGCA -ACGGAATAAGCCTTTCGGCGAACA -ACGGAATAAGCCTTTCGGCAGTCA -ACGGAATAAGCCTTTCGGGATCCA -ACGGAATAAGCCTTTCGGACGACA -ACGGAATAAGCCTTTCGGAGCTCA -ACGGAATAAGCCTTTCGGTCACGT -ACGGAATAAGCCTTTCGGCGTAGT -ACGGAATAAGCCTTTCGGGTCAGT -ACGGAATAAGCCTTTCGGGAAGGT -ACGGAATAAGCCTTTCGGAACCGT -ACGGAATAAGCCTTTCGGTTGTGC -ACGGAATAAGCCTTTCGGCTAAGC -ACGGAATAAGCCTTTCGGACTAGC -ACGGAATAAGCCTTTCGGAGATGC -ACGGAATAAGCCTTTCGGTGAAGG -ACGGAATAAGCCTTTCGGCAATGG -ACGGAATAAGCCTTTCGGATGAGG -ACGGAATAAGCCTTTCGGAATGGG -ACGGAATAAGCCTTTCGGTCCTGA -ACGGAATAAGCCTTTCGGTAGCGA -ACGGAATAAGCCTTTCGGCACAGA -ACGGAATAAGCCTTTCGGGCAAGA -ACGGAATAAGCCTTTCGGGGTTGA -ACGGAATAAGCCTTTCGGTCCGAT -ACGGAATAAGCCTTTCGGTGGCAT -ACGGAATAAGCCTTTCGGCGAGAT -ACGGAATAAGCCTTTCGGTACCAC -ACGGAATAAGCCTTTCGGCAGAAC -ACGGAATAAGCCTTTCGGGTCTAC -ACGGAATAAGCCTTTCGGACGTAC -ACGGAATAAGCCTTTCGGAGTGAC -ACGGAATAAGCCTTTCGGCTGTAG -ACGGAATAAGCCTTTCGGCCTAAG -ACGGAATAAGCCTTTCGGGTTCAG -ACGGAATAAGCCTTTCGGGCATAG -ACGGAATAAGCCTTTCGGGACAAG -ACGGAATAAGCCTTTCGGAAGCAG -ACGGAATAAGCCTTTCGGCGTCAA -ACGGAATAAGCCTTTCGGGCTGAA -ACGGAATAAGCCTTTCGGAGTACG -ACGGAATAAGCCTTTCGGATCCGA -ACGGAATAAGCCTTTCGGATGGGA -ACGGAATAAGCCTTTCGGGTGCAA -ACGGAATAAGCCTTTCGGGAGGAA -ACGGAATAAGCCTTTCGGCAGGTA -ACGGAATAAGCCTTTCGGGACTCT -ACGGAATAAGCCTTTCGGAGTCCT -ACGGAATAAGCCTTTCGGTAAGCC -ACGGAATAAGCCTTTCGGATAGCC -ACGGAATAAGCCTTTCGGTAACCG -ACGGAATAAGCCTTTCGGATGCCA -ACGGAATAAGCCGTTGTGGGAAAC -ACGGAATAAGCCGTTGTGAACACC -ACGGAATAAGCCGTTGTGATCGAG -ACGGAATAAGCCGTTGTGCTCCTT -ACGGAATAAGCCGTTGTGCCTGTT -ACGGAATAAGCCGTTGTGCGGTTT -ACGGAATAAGCCGTTGTGGTGGTT -ACGGAATAAGCCGTTGTGGCCTTT -ACGGAATAAGCCGTTGTGGGTCTT -ACGGAATAAGCCGTTGTGACGCTT -ACGGAATAAGCCGTTGTGAGCGTT -ACGGAATAAGCCGTTGTGTTCGTC -ACGGAATAAGCCGTTGTGTCTCTC -ACGGAATAAGCCGTTGTGTGGATC -ACGGAATAAGCCGTTGTGCACTTC -ACGGAATAAGCCGTTGTGGTACTC -ACGGAATAAGCCGTTGTGGATGTC -ACGGAATAAGCCGTTGTGACAGTC -ACGGAATAAGCCGTTGTGTTGCTG -ACGGAATAAGCCGTTGTGTCCATG -ACGGAATAAGCCGTTGTGTGTGTG -ACGGAATAAGCCGTTGTGCTAGTG -ACGGAATAAGCCGTTGTGCATCTG -ACGGAATAAGCCGTTGTGGAGTTG -ACGGAATAAGCCGTTGTGAGACTG -ACGGAATAAGCCGTTGTGTCGGTA -ACGGAATAAGCCGTTGTGTGCCTA -ACGGAATAAGCCGTTGTGCCACTA -ACGGAATAAGCCGTTGTGGGAGTA -ACGGAATAAGCCGTTGTGTCGTCT -ACGGAATAAGCCGTTGTGTGCACT -ACGGAATAAGCCGTTGTGCTGACT -ACGGAATAAGCCGTTGTGCAACCT -ACGGAATAAGCCGTTGTGGCTACT -ACGGAATAAGCCGTTGTGGGATCT -ACGGAATAAGCCGTTGTGAAGGCT -ACGGAATAAGCCGTTGTGTCAACC -ACGGAATAAGCCGTTGTGTGTTCC -ACGGAATAAGCCGTTGTGATTCCC -ACGGAATAAGCCGTTGTGTTCTCG -ACGGAATAAGCCGTTGTGTAGACG -ACGGAATAAGCCGTTGTGGTAACG -ACGGAATAAGCCGTTGTGACTTCG -ACGGAATAAGCCGTTGTGTACGCA -ACGGAATAAGCCGTTGTGCTTGCA -ACGGAATAAGCCGTTGTGCGAACA -ACGGAATAAGCCGTTGTGCAGTCA -ACGGAATAAGCCGTTGTGGATCCA -ACGGAATAAGCCGTTGTGACGACA -ACGGAATAAGCCGTTGTGAGCTCA -ACGGAATAAGCCGTTGTGTCACGT -ACGGAATAAGCCGTTGTGCGTAGT -ACGGAATAAGCCGTTGTGGTCAGT -ACGGAATAAGCCGTTGTGGAAGGT -ACGGAATAAGCCGTTGTGAACCGT -ACGGAATAAGCCGTTGTGTTGTGC -ACGGAATAAGCCGTTGTGCTAAGC -ACGGAATAAGCCGTTGTGACTAGC -ACGGAATAAGCCGTTGTGAGATGC -ACGGAATAAGCCGTTGTGTGAAGG -ACGGAATAAGCCGTTGTGCAATGG -ACGGAATAAGCCGTTGTGATGAGG -ACGGAATAAGCCGTTGTGAATGGG -ACGGAATAAGCCGTTGTGTCCTGA -ACGGAATAAGCCGTTGTGTAGCGA -ACGGAATAAGCCGTTGTGCACAGA -ACGGAATAAGCCGTTGTGGCAAGA -ACGGAATAAGCCGTTGTGGGTTGA -ACGGAATAAGCCGTTGTGTCCGAT -ACGGAATAAGCCGTTGTGTGGCAT -ACGGAATAAGCCGTTGTGCGAGAT -ACGGAATAAGCCGTTGTGTACCAC -ACGGAATAAGCCGTTGTGCAGAAC -ACGGAATAAGCCGTTGTGGTCTAC -ACGGAATAAGCCGTTGTGACGTAC -ACGGAATAAGCCGTTGTGAGTGAC -ACGGAATAAGCCGTTGTGCTGTAG -ACGGAATAAGCCGTTGTGCCTAAG -ACGGAATAAGCCGTTGTGGTTCAG -ACGGAATAAGCCGTTGTGGCATAG -ACGGAATAAGCCGTTGTGGACAAG -ACGGAATAAGCCGTTGTGAAGCAG -ACGGAATAAGCCGTTGTGCGTCAA -ACGGAATAAGCCGTTGTGGCTGAA -ACGGAATAAGCCGTTGTGAGTACG -ACGGAATAAGCCGTTGTGATCCGA -ACGGAATAAGCCGTTGTGATGGGA -ACGGAATAAGCCGTTGTGGTGCAA -ACGGAATAAGCCGTTGTGGAGGAA -ACGGAATAAGCCGTTGTGCAGGTA -ACGGAATAAGCCGTTGTGGACTCT -ACGGAATAAGCCGTTGTGAGTCCT -ACGGAATAAGCCGTTGTGTAAGCC -ACGGAATAAGCCGTTGTGATAGCC -ACGGAATAAGCCGTTGTGTAACCG -ACGGAATAAGCCGTTGTGATGCCA -ACGGAATAAGCCTTTGCCGGAAAC -ACGGAATAAGCCTTTGCCAACACC -ACGGAATAAGCCTTTGCCATCGAG -ACGGAATAAGCCTTTGCCCTCCTT -ACGGAATAAGCCTTTGCCCCTGTT -ACGGAATAAGCCTTTGCCCGGTTT -ACGGAATAAGCCTTTGCCGTGGTT -ACGGAATAAGCCTTTGCCGCCTTT -ACGGAATAAGCCTTTGCCGGTCTT -ACGGAATAAGCCTTTGCCACGCTT -ACGGAATAAGCCTTTGCCAGCGTT -ACGGAATAAGCCTTTGCCTTCGTC -ACGGAATAAGCCTTTGCCTCTCTC -ACGGAATAAGCCTTTGCCTGGATC -ACGGAATAAGCCTTTGCCCACTTC -ACGGAATAAGCCTTTGCCGTACTC -ACGGAATAAGCCTTTGCCGATGTC -ACGGAATAAGCCTTTGCCACAGTC -ACGGAATAAGCCTTTGCCTTGCTG -ACGGAATAAGCCTTTGCCTCCATG -ACGGAATAAGCCTTTGCCTGTGTG -ACGGAATAAGCCTTTGCCCTAGTG -ACGGAATAAGCCTTTGCCCATCTG -ACGGAATAAGCCTTTGCCGAGTTG -ACGGAATAAGCCTTTGCCAGACTG -ACGGAATAAGCCTTTGCCTCGGTA -ACGGAATAAGCCTTTGCCTGCCTA -ACGGAATAAGCCTTTGCCCCACTA -ACGGAATAAGCCTTTGCCGGAGTA -ACGGAATAAGCCTTTGCCTCGTCT -ACGGAATAAGCCTTTGCCTGCACT -ACGGAATAAGCCTTTGCCCTGACT -ACGGAATAAGCCTTTGCCCAACCT -ACGGAATAAGCCTTTGCCGCTACT -ACGGAATAAGCCTTTGCCGGATCT -ACGGAATAAGCCTTTGCCAAGGCT -ACGGAATAAGCCTTTGCCTCAACC -ACGGAATAAGCCTTTGCCTGTTCC -ACGGAATAAGCCTTTGCCATTCCC -ACGGAATAAGCCTTTGCCTTCTCG -ACGGAATAAGCCTTTGCCTAGACG -ACGGAATAAGCCTTTGCCGTAACG -ACGGAATAAGCCTTTGCCACTTCG -ACGGAATAAGCCTTTGCCTACGCA -ACGGAATAAGCCTTTGCCCTTGCA -ACGGAATAAGCCTTTGCCCGAACA -ACGGAATAAGCCTTTGCCCAGTCA -ACGGAATAAGCCTTTGCCGATCCA -ACGGAATAAGCCTTTGCCACGACA -ACGGAATAAGCCTTTGCCAGCTCA -ACGGAATAAGCCTTTGCCTCACGT -ACGGAATAAGCCTTTGCCCGTAGT -ACGGAATAAGCCTTTGCCGTCAGT -ACGGAATAAGCCTTTGCCGAAGGT -ACGGAATAAGCCTTTGCCAACCGT -ACGGAATAAGCCTTTGCCTTGTGC -ACGGAATAAGCCTTTGCCCTAAGC -ACGGAATAAGCCTTTGCCACTAGC -ACGGAATAAGCCTTTGCCAGATGC -ACGGAATAAGCCTTTGCCTGAAGG -ACGGAATAAGCCTTTGCCCAATGG -ACGGAATAAGCCTTTGCCATGAGG -ACGGAATAAGCCTTTGCCAATGGG -ACGGAATAAGCCTTTGCCTCCTGA -ACGGAATAAGCCTTTGCCTAGCGA -ACGGAATAAGCCTTTGCCCACAGA -ACGGAATAAGCCTTTGCCGCAAGA -ACGGAATAAGCCTTTGCCGGTTGA -ACGGAATAAGCCTTTGCCTCCGAT -ACGGAATAAGCCTTTGCCTGGCAT -ACGGAATAAGCCTTTGCCCGAGAT -ACGGAATAAGCCTTTGCCTACCAC -ACGGAATAAGCCTTTGCCCAGAAC -ACGGAATAAGCCTTTGCCGTCTAC -ACGGAATAAGCCTTTGCCACGTAC -ACGGAATAAGCCTTTGCCAGTGAC -ACGGAATAAGCCTTTGCCCTGTAG -ACGGAATAAGCCTTTGCCCCTAAG -ACGGAATAAGCCTTTGCCGTTCAG -ACGGAATAAGCCTTTGCCGCATAG -ACGGAATAAGCCTTTGCCGACAAG -ACGGAATAAGCCTTTGCCAAGCAG -ACGGAATAAGCCTTTGCCCGTCAA -ACGGAATAAGCCTTTGCCGCTGAA -ACGGAATAAGCCTTTGCCAGTACG -ACGGAATAAGCCTTTGCCATCCGA -ACGGAATAAGCCTTTGCCATGGGA -ACGGAATAAGCCTTTGCCGTGCAA -ACGGAATAAGCCTTTGCCGAGGAA -ACGGAATAAGCCTTTGCCCAGGTA -ACGGAATAAGCCTTTGCCGACTCT -ACGGAATAAGCCTTTGCCAGTCCT -ACGGAATAAGCCTTTGCCTAAGCC -ACGGAATAAGCCTTTGCCATAGCC -ACGGAATAAGCCTTTGCCTAACCG -ACGGAATAAGCCTTTGCCATGCCA -ACGGAATAAGCCCTTGGTGGAAAC -ACGGAATAAGCCCTTGGTAACACC -ACGGAATAAGCCCTTGGTATCGAG -ACGGAATAAGCCCTTGGTCTCCTT -ACGGAATAAGCCCTTGGTCCTGTT -ACGGAATAAGCCCTTGGTCGGTTT -ACGGAATAAGCCCTTGGTGTGGTT -ACGGAATAAGCCCTTGGTGCCTTT -ACGGAATAAGCCCTTGGTGGTCTT -ACGGAATAAGCCCTTGGTACGCTT -ACGGAATAAGCCCTTGGTAGCGTT -ACGGAATAAGCCCTTGGTTTCGTC -ACGGAATAAGCCCTTGGTTCTCTC -ACGGAATAAGCCCTTGGTTGGATC -ACGGAATAAGCCCTTGGTCACTTC -ACGGAATAAGCCCTTGGTGTACTC -ACGGAATAAGCCCTTGGTGATGTC -ACGGAATAAGCCCTTGGTACAGTC -ACGGAATAAGCCCTTGGTTTGCTG -ACGGAATAAGCCCTTGGTTCCATG -ACGGAATAAGCCCTTGGTTGTGTG -ACGGAATAAGCCCTTGGTCTAGTG -ACGGAATAAGCCCTTGGTCATCTG -ACGGAATAAGCCCTTGGTGAGTTG -ACGGAATAAGCCCTTGGTAGACTG -ACGGAATAAGCCCTTGGTTCGGTA -ACGGAATAAGCCCTTGGTTGCCTA -ACGGAATAAGCCCTTGGTCCACTA -ACGGAATAAGCCCTTGGTGGAGTA -ACGGAATAAGCCCTTGGTTCGTCT -ACGGAATAAGCCCTTGGTTGCACT -ACGGAATAAGCCCTTGGTCTGACT -ACGGAATAAGCCCTTGGTCAACCT -ACGGAATAAGCCCTTGGTGCTACT -ACGGAATAAGCCCTTGGTGGATCT -ACGGAATAAGCCCTTGGTAAGGCT -ACGGAATAAGCCCTTGGTTCAACC -ACGGAATAAGCCCTTGGTTGTTCC -ACGGAATAAGCCCTTGGTATTCCC -ACGGAATAAGCCCTTGGTTTCTCG -ACGGAATAAGCCCTTGGTTAGACG -ACGGAATAAGCCCTTGGTGTAACG -ACGGAATAAGCCCTTGGTACTTCG -ACGGAATAAGCCCTTGGTTACGCA -ACGGAATAAGCCCTTGGTCTTGCA -ACGGAATAAGCCCTTGGTCGAACA -ACGGAATAAGCCCTTGGTCAGTCA -ACGGAATAAGCCCTTGGTGATCCA -ACGGAATAAGCCCTTGGTACGACA -ACGGAATAAGCCCTTGGTAGCTCA -ACGGAATAAGCCCTTGGTTCACGT -ACGGAATAAGCCCTTGGTCGTAGT -ACGGAATAAGCCCTTGGTGTCAGT -ACGGAATAAGCCCTTGGTGAAGGT -ACGGAATAAGCCCTTGGTAACCGT -ACGGAATAAGCCCTTGGTTTGTGC -ACGGAATAAGCCCTTGGTCTAAGC -ACGGAATAAGCCCTTGGTACTAGC -ACGGAATAAGCCCTTGGTAGATGC -ACGGAATAAGCCCTTGGTTGAAGG -ACGGAATAAGCCCTTGGTCAATGG -ACGGAATAAGCCCTTGGTATGAGG -ACGGAATAAGCCCTTGGTAATGGG -ACGGAATAAGCCCTTGGTTCCTGA -ACGGAATAAGCCCTTGGTTAGCGA -ACGGAATAAGCCCTTGGTCACAGA -ACGGAATAAGCCCTTGGTGCAAGA -ACGGAATAAGCCCTTGGTGGTTGA -ACGGAATAAGCCCTTGGTTCCGAT -ACGGAATAAGCCCTTGGTTGGCAT -ACGGAATAAGCCCTTGGTCGAGAT -ACGGAATAAGCCCTTGGTTACCAC -ACGGAATAAGCCCTTGGTCAGAAC -ACGGAATAAGCCCTTGGTGTCTAC -ACGGAATAAGCCCTTGGTACGTAC -ACGGAATAAGCCCTTGGTAGTGAC -ACGGAATAAGCCCTTGGTCTGTAG -ACGGAATAAGCCCTTGGTCCTAAG -ACGGAATAAGCCCTTGGTGTTCAG -ACGGAATAAGCCCTTGGTGCATAG -ACGGAATAAGCCCTTGGTGACAAG -ACGGAATAAGCCCTTGGTAAGCAG -ACGGAATAAGCCCTTGGTCGTCAA -ACGGAATAAGCCCTTGGTGCTGAA -ACGGAATAAGCCCTTGGTAGTACG -ACGGAATAAGCCCTTGGTATCCGA -ACGGAATAAGCCCTTGGTATGGGA -ACGGAATAAGCCCTTGGTGTGCAA -ACGGAATAAGCCCTTGGTGAGGAA -ACGGAATAAGCCCTTGGTCAGGTA -ACGGAATAAGCCCTTGGTGACTCT -ACGGAATAAGCCCTTGGTAGTCCT -ACGGAATAAGCCCTTGGTTAAGCC -ACGGAATAAGCCCTTGGTATAGCC -ACGGAATAAGCCCTTGGTTAACCG -ACGGAATAAGCCCTTGGTATGCCA -ACGGAATAAGCCCTTACGGGAAAC -ACGGAATAAGCCCTTACGAACACC -ACGGAATAAGCCCTTACGATCGAG -ACGGAATAAGCCCTTACGCTCCTT -ACGGAATAAGCCCTTACGCCTGTT -ACGGAATAAGCCCTTACGCGGTTT -ACGGAATAAGCCCTTACGGTGGTT -ACGGAATAAGCCCTTACGGCCTTT -ACGGAATAAGCCCTTACGGGTCTT -ACGGAATAAGCCCTTACGACGCTT -ACGGAATAAGCCCTTACGAGCGTT -ACGGAATAAGCCCTTACGTTCGTC -ACGGAATAAGCCCTTACGTCTCTC -ACGGAATAAGCCCTTACGTGGATC -ACGGAATAAGCCCTTACGCACTTC -ACGGAATAAGCCCTTACGGTACTC -ACGGAATAAGCCCTTACGGATGTC -ACGGAATAAGCCCTTACGACAGTC -ACGGAATAAGCCCTTACGTTGCTG -ACGGAATAAGCCCTTACGTCCATG -ACGGAATAAGCCCTTACGTGTGTG -ACGGAATAAGCCCTTACGCTAGTG -ACGGAATAAGCCCTTACGCATCTG -ACGGAATAAGCCCTTACGGAGTTG -ACGGAATAAGCCCTTACGAGACTG -ACGGAATAAGCCCTTACGTCGGTA -ACGGAATAAGCCCTTACGTGCCTA -ACGGAATAAGCCCTTACGCCACTA -ACGGAATAAGCCCTTACGGGAGTA -ACGGAATAAGCCCTTACGTCGTCT -ACGGAATAAGCCCTTACGTGCACT -ACGGAATAAGCCCTTACGCTGACT -ACGGAATAAGCCCTTACGCAACCT -ACGGAATAAGCCCTTACGGCTACT -ACGGAATAAGCCCTTACGGGATCT -ACGGAATAAGCCCTTACGAAGGCT -ACGGAATAAGCCCTTACGTCAACC -ACGGAATAAGCCCTTACGTGTTCC -ACGGAATAAGCCCTTACGATTCCC -ACGGAATAAGCCCTTACGTTCTCG -ACGGAATAAGCCCTTACGTAGACG -ACGGAATAAGCCCTTACGGTAACG -ACGGAATAAGCCCTTACGACTTCG -ACGGAATAAGCCCTTACGTACGCA -ACGGAATAAGCCCTTACGCTTGCA -ACGGAATAAGCCCTTACGCGAACA -ACGGAATAAGCCCTTACGCAGTCA -ACGGAATAAGCCCTTACGGATCCA -ACGGAATAAGCCCTTACGACGACA -ACGGAATAAGCCCTTACGAGCTCA -ACGGAATAAGCCCTTACGTCACGT -ACGGAATAAGCCCTTACGCGTAGT -ACGGAATAAGCCCTTACGGTCAGT -ACGGAATAAGCCCTTACGGAAGGT -ACGGAATAAGCCCTTACGAACCGT -ACGGAATAAGCCCTTACGTTGTGC -ACGGAATAAGCCCTTACGCTAAGC -ACGGAATAAGCCCTTACGACTAGC -ACGGAATAAGCCCTTACGAGATGC -ACGGAATAAGCCCTTACGTGAAGG -ACGGAATAAGCCCTTACGCAATGG -ACGGAATAAGCCCTTACGATGAGG -ACGGAATAAGCCCTTACGAATGGG -ACGGAATAAGCCCTTACGTCCTGA -ACGGAATAAGCCCTTACGTAGCGA -ACGGAATAAGCCCTTACGCACAGA -ACGGAATAAGCCCTTACGGCAAGA -ACGGAATAAGCCCTTACGGGTTGA -ACGGAATAAGCCCTTACGTCCGAT -ACGGAATAAGCCCTTACGTGGCAT -ACGGAATAAGCCCTTACGCGAGAT -ACGGAATAAGCCCTTACGTACCAC -ACGGAATAAGCCCTTACGCAGAAC -ACGGAATAAGCCCTTACGGTCTAC -ACGGAATAAGCCCTTACGACGTAC -ACGGAATAAGCCCTTACGAGTGAC -ACGGAATAAGCCCTTACGCTGTAG -ACGGAATAAGCCCTTACGCCTAAG -ACGGAATAAGCCCTTACGGTTCAG -ACGGAATAAGCCCTTACGGCATAG -ACGGAATAAGCCCTTACGGACAAG -ACGGAATAAGCCCTTACGAAGCAG -ACGGAATAAGCCCTTACGCGTCAA -ACGGAATAAGCCCTTACGGCTGAA -ACGGAATAAGCCCTTACGAGTACG -ACGGAATAAGCCCTTACGATCCGA -ACGGAATAAGCCCTTACGATGGGA -ACGGAATAAGCCCTTACGGTGCAA -ACGGAATAAGCCCTTACGGAGGAA -ACGGAATAAGCCCTTACGCAGGTA -ACGGAATAAGCCCTTACGGACTCT -ACGGAATAAGCCCTTACGAGTCCT -ACGGAATAAGCCCTTACGTAAGCC -ACGGAATAAGCCCTTACGATAGCC -ACGGAATAAGCCCTTACGTAACCG -ACGGAATAAGCCCTTACGATGCCA -ACGGAATAAGCCGTTAGCGGAAAC -ACGGAATAAGCCGTTAGCAACACC -ACGGAATAAGCCGTTAGCATCGAG -ACGGAATAAGCCGTTAGCCTCCTT -ACGGAATAAGCCGTTAGCCCTGTT -ACGGAATAAGCCGTTAGCCGGTTT -ACGGAATAAGCCGTTAGCGTGGTT -ACGGAATAAGCCGTTAGCGCCTTT -ACGGAATAAGCCGTTAGCGGTCTT -ACGGAATAAGCCGTTAGCACGCTT -ACGGAATAAGCCGTTAGCAGCGTT -ACGGAATAAGCCGTTAGCTTCGTC -ACGGAATAAGCCGTTAGCTCTCTC -ACGGAATAAGCCGTTAGCTGGATC -ACGGAATAAGCCGTTAGCCACTTC -ACGGAATAAGCCGTTAGCGTACTC -ACGGAATAAGCCGTTAGCGATGTC -ACGGAATAAGCCGTTAGCACAGTC -ACGGAATAAGCCGTTAGCTTGCTG -ACGGAATAAGCCGTTAGCTCCATG -ACGGAATAAGCCGTTAGCTGTGTG -ACGGAATAAGCCGTTAGCCTAGTG -ACGGAATAAGCCGTTAGCCATCTG -ACGGAATAAGCCGTTAGCGAGTTG -ACGGAATAAGCCGTTAGCAGACTG -ACGGAATAAGCCGTTAGCTCGGTA -ACGGAATAAGCCGTTAGCTGCCTA -ACGGAATAAGCCGTTAGCCCACTA -ACGGAATAAGCCGTTAGCGGAGTA -ACGGAATAAGCCGTTAGCTCGTCT -ACGGAATAAGCCGTTAGCTGCACT -ACGGAATAAGCCGTTAGCCTGACT -ACGGAATAAGCCGTTAGCCAACCT -ACGGAATAAGCCGTTAGCGCTACT -ACGGAATAAGCCGTTAGCGGATCT -ACGGAATAAGCCGTTAGCAAGGCT -ACGGAATAAGCCGTTAGCTCAACC -ACGGAATAAGCCGTTAGCTGTTCC -ACGGAATAAGCCGTTAGCATTCCC -ACGGAATAAGCCGTTAGCTTCTCG -ACGGAATAAGCCGTTAGCTAGACG -ACGGAATAAGCCGTTAGCGTAACG -ACGGAATAAGCCGTTAGCACTTCG -ACGGAATAAGCCGTTAGCTACGCA -ACGGAATAAGCCGTTAGCCTTGCA -ACGGAATAAGCCGTTAGCCGAACA -ACGGAATAAGCCGTTAGCCAGTCA -ACGGAATAAGCCGTTAGCGATCCA -ACGGAATAAGCCGTTAGCACGACA -ACGGAATAAGCCGTTAGCAGCTCA -ACGGAATAAGCCGTTAGCTCACGT -ACGGAATAAGCCGTTAGCCGTAGT -ACGGAATAAGCCGTTAGCGTCAGT -ACGGAATAAGCCGTTAGCGAAGGT -ACGGAATAAGCCGTTAGCAACCGT -ACGGAATAAGCCGTTAGCTTGTGC -ACGGAATAAGCCGTTAGCCTAAGC -ACGGAATAAGCCGTTAGCACTAGC -ACGGAATAAGCCGTTAGCAGATGC -ACGGAATAAGCCGTTAGCTGAAGG -ACGGAATAAGCCGTTAGCCAATGG -ACGGAATAAGCCGTTAGCATGAGG -ACGGAATAAGCCGTTAGCAATGGG -ACGGAATAAGCCGTTAGCTCCTGA -ACGGAATAAGCCGTTAGCTAGCGA -ACGGAATAAGCCGTTAGCCACAGA -ACGGAATAAGCCGTTAGCGCAAGA -ACGGAATAAGCCGTTAGCGGTTGA -ACGGAATAAGCCGTTAGCTCCGAT -ACGGAATAAGCCGTTAGCTGGCAT -ACGGAATAAGCCGTTAGCCGAGAT -ACGGAATAAGCCGTTAGCTACCAC -ACGGAATAAGCCGTTAGCCAGAAC -ACGGAATAAGCCGTTAGCGTCTAC -ACGGAATAAGCCGTTAGCACGTAC -ACGGAATAAGCCGTTAGCAGTGAC -ACGGAATAAGCCGTTAGCCTGTAG -ACGGAATAAGCCGTTAGCCCTAAG -ACGGAATAAGCCGTTAGCGTTCAG -ACGGAATAAGCCGTTAGCGCATAG -ACGGAATAAGCCGTTAGCGACAAG -ACGGAATAAGCCGTTAGCAAGCAG -ACGGAATAAGCCGTTAGCCGTCAA -ACGGAATAAGCCGTTAGCGCTGAA -ACGGAATAAGCCGTTAGCAGTACG -ACGGAATAAGCCGTTAGCATCCGA -ACGGAATAAGCCGTTAGCATGGGA -ACGGAATAAGCCGTTAGCGTGCAA -ACGGAATAAGCCGTTAGCGAGGAA -ACGGAATAAGCCGTTAGCCAGGTA -ACGGAATAAGCCGTTAGCGACTCT -ACGGAATAAGCCGTTAGCAGTCCT -ACGGAATAAGCCGTTAGCTAAGCC -ACGGAATAAGCCGTTAGCATAGCC -ACGGAATAAGCCGTTAGCTAACCG -ACGGAATAAGCCGTTAGCATGCCA -ACGGAATAAGCCGTCTTCGGAAAC -ACGGAATAAGCCGTCTTCAACACC -ACGGAATAAGCCGTCTTCATCGAG -ACGGAATAAGCCGTCTTCCTCCTT -ACGGAATAAGCCGTCTTCCCTGTT -ACGGAATAAGCCGTCTTCCGGTTT -ACGGAATAAGCCGTCTTCGTGGTT -ACGGAATAAGCCGTCTTCGCCTTT -ACGGAATAAGCCGTCTTCGGTCTT -ACGGAATAAGCCGTCTTCACGCTT -ACGGAATAAGCCGTCTTCAGCGTT -ACGGAATAAGCCGTCTTCTTCGTC -ACGGAATAAGCCGTCTTCTCTCTC -ACGGAATAAGCCGTCTTCTGGATC -ACGGAATAAGCCGTCTTCCACTTC -ACGGAATAAGCCGTCTTCGTACTC -ACGGAATAAGCCGTCTTCGATGTC -ACGGAATAAGCCGTCTTCACAGTC -ACGGAATAAGCCGTCTTCTTGCTG -ACGGAATAAGCCGTCTTCTCCATG -ACGGAATAAGCCGTCTTCTGTGTG -ACGGAATAAGCCGTCTTCCTAGTG -ACGGAATAAGCCGTCTTCCATCTG -ACGGAATAAGCCGTCTTCGAGTTG -ACGGAATAAGCCGTCTTCAGACTG -ACGGAATAAGCCGTCTTCTCGGTA -ACGGAATAAGCCGTCTTCTGCCTA -ACGGAATAAGCCGTCTTCCCACTA -ACGGAATAAGCCGTCTTCGGAGTA -ACGGAATAAGCCGTCTTCTCGTCT -ACGGAATAAGCCGTCTTCTGCACT -ACGGAATAAGCCGTCTTCCTGACT -ACGGAATAAGCCGTCTTCCAACCT -ACGGAATAAGCCGTCTTCGCTACT -ACGGAATAAGCCGTCTTCGGATCT -ACGGAATAAGCCGTCTTCAAGGCT -ACGGAATAAGCCGTCTTCTCAACC -ACGGAATAAGCCGTCTTCTGTTCC -ACGGAATAAGCCGTCTTCATTCCC -ACGGAATAAGCCGTCTTCTTCTCG -ACGGAATAAGCCGTCTTCTAGACG -ACGGAATAAGCCGTCTTCGTAACG -ACGGAATAAGCCGTCTTCACTTCG -ACGGAATAAGCCGTCTTCTACGCA -ACGGAATAAGCCGTCTTCCTTGCA -ACGGAATAAGCCGTCTTCCGAACA -ACGGAATAAGCCGTCTTCCAGTCA -ACGGAATAAGCCGTCTTCGATCCA -ACGGAATAAGCCGTCTTCACGACA -ACGGAATAAGCCGTCTTCAGCTCA -ACGGAATAAGCCGTCTTCTCACGT -ACGGAATAAGCCGTCTTCCGTAGT -ACGGAATAAGCCGTCTTCGTCAGT -ACGGAATAAGCCGTCTTCGAAGGT -ACGGAATAAGCCGTCTTCAACCGT -ACGGAATAAGCCGTCTTCTTGTGC -ACGGAATAAGCCGTCTTCCTAAGC -ACGGAATAAGCCGTCTTCACTAGC -ACGGAATAAGCCGTCTTCAGATGC -ACGGAATAAGCCGTCTTCTGAAGG -ACGGAATAAGCCGTCTTCCAATGG -ACGGAATAAGCCGTCTTCATGAGG -ACGGAATAAGCCGTCTTCAATGGG -ACGGAATAAGCCGTCTTCTCCTGA -ACGGAATAAGCCGTCTTCTAGCGA -ACGGAATAAGCCGTCTTCCACAGA -ACGGAATAAGCCGTCTTCGCAAGA -ACGGAATAAGCCGTCTTCGGTTGA -ACGGAATAAGCCGTCTTCTCCGAT -ACGGAATAAGCCGTCTTCTGGCAT -ACGGAATAAGCCGTCTTCCGAGAT -ACGGAATAAGCCGTCTTCTACCAC -ACGGAATAAGCCGTCTTCCAGAAC -ACGGAATAAGCCGTCTTCGTCTAC -ACGGAATAAGCCGTCTTCACGTAC -ACGGAATAAGCCGTCTTCAGTGAC -ACGGAATAAGCCGTCTTCCTGTAG -ACGGAATAAGCCGTCTTCCCTAAG -ACGGAATAAGCCGTCTTCGTTCAG -ACGGAATAAGCCGTCTTCGCATAG -ACGGAATAAGCCGTCTTCGACAAG -ACGGAATAAGCCGTCTTCAAGCAG -ACGGAATAAGCCGTCTTCCGTCAA -ACGGAATAAGCCGTCTTCGCTGAA -ACGGAATAAGCCGTCTTCAGTACG -ACGGAATAAGCCGTCTTCATCCGA -ACGGAATAAGCCGTCTTCATGGGA -ACGGAATAAGCCGTCTTCGTGCAA -ACGGAATAAGCCGTCTTCGAGGAA -ACGGAATAAGCCGTCTTCCAGGTA -ACGGAATAAGCCGTCTTCGACTCT -ACGGAATAAGCCGTCTTCAGTCCT -ACGGAATAAGCCGTCTTCTAAGCC -ACGGAATAAGCCGTCTTCATAGCC -ACGGAATAAGCCGTCTTCTAACCG -ACGGAATAAGCCGTCTTCATGCCA -ACGGAATAAGCCCTCTCTGGAAAC -ACGGAATAAGCCCTCTCTAACACC -ACGGAATAAGCCCTCTCTATCGAG -ACGGAATAAGCCCTCTCTCTCCTT -ACGGAATAAGCCCTCTCTCCTGTT -ACGGAATAAGCCCTCTCTCGGTTT -ACGGAATAAGCCCTCTCTGTGGTT -ACGGAATAAGCCCTCTCTGCCTTT -ACGGAATAAGCCCTCTCTGGTCTT -ACGGAATAAGCCCTCTCTACGCTT -ACGGAATAAGCCCTCTCTAGCGTT -ACGGAATAAGCCCTCTCTTTCGTC -ACGGAATAAGCCCTCTCTTCTCTC -ACGGAATAAGCCCTCTCTTGGATC -ACGGAATAAGCCCTCTCTCACTTC -ACGGAATAAGCCCTCTCTGTACTC -ACGGAATAAGCCCTCTCTGATGTC -ACGGAATAAGCCCTCTCTACAGTC -ACGGAATAAGCCCTCTCTTTGCTG -ACGGAATAAGCCCTCTCTTCCATG -ACGGAATAAGCCCTCTCTTGTGTG -ACGGAATAAGCCCTCTCTCTAGTG -ACGGAATAAGCCCTCTCTCATCTG -ACGGAATAAGCCCTCTCTGAGTTG -ACGGAATAAGCCCTCTCTAGACTG -ACGGAATAAGCCCTCTCTTCGGTA -ACGGAATAAGCCCTCTCTTGCCTA -ACGGAATAAGCCCTCTCTCCACTA -ACGGAATAAGCCCTCTCTGGAGTA -ACGGAATAAGCCCTCTCTTCGTCT -ACGGAATAAGCCCTCTCTTGCACT -ACGGAATAAGCCCTCTCTCTGACT -ACGGAATAAGCCCTCTCTCAACCT -ACGGAATAAGCCCTCTCTGCTACT -ACGGAATAAGCCCTCTCTGGATCT -ACGGAATAAGCCCTCTCTAAGGCT -ACGGAATAAGCCCTCTCTTCAACC -ACGGAATAAGCCCTCTCTTGTTCC -ACGGAATAAGCCCTCTCTATTCCC -ACGGAATAAGCCCTCTCTTTCTCG -ACGGAATAAGCCCTCTCTTAGACG -ACGGAATAAGCCCTCTCTGTAACG -ACGGAATAAGCCCTCTCTACTTCG -ACGGAATAAGCCCTCTCTTACGCA -ACGGAATAAGCCCTCTCTCTTGCA -ACGGAATAAGCCCTCTCTCGAACA -ACGGAATAAGCCCTCTCTCAGTCA -ACGGAATAAGCCCTCTCTGATCCA -ACGGAATAAGCCCTCTCTACGACA -ACGGAATAAGCCCTCTCTAGCTCA -ACGGAATAAGCCCTCTCTTCACGT -ACGGAATAAGCCCTCTCTCGTAGT -ACGGAATAAGCCCTCTCTGTCAGT -ACGGAATAAGCCCTCTCTGAAGGT -ACGGAATAAGCCCTCTCTAACCGT -ACGGAATAAGCCCTCTCTTTGTGC -ACGGAATAAGCCCTCTCTCTAAGC -ACGGAATAAGCCCTCTCTACTAGC -ACGGAATAAGCCCTCTCTAGATGC -ACGGAATAAGCCCTCTCTTGAAGG -ACGGAATAAGCCCTCTCTCAATGG -ACGGAATAAGCCCTCTCTATGAGG -ACGGAATAAGCCCTCTCTAATGGG -ACGGAATAAGCCCTCTCTTCCTGA -ACGGAATAAGCCCTCTCTTAGCGA -ACGGAATAAGCCCTCTCTCACAGA -ACGGAATAAGCCCTCTCTGCAAGA -ACGGAATAAGCCCTCTCTGGTTGA -ACGGAATAAGCCCTCTCTTCCGAT -ACGGAATAAGCCCTCTCTTGGCAT -ACGGAATAAGCCCTCTCTCGAGAT -ACGGAATAAGCCCTCTCTTACCAC -ACGGAATAAGCCCTCTCTCAGAAC -ACGGAATAAGCCCTCTCTGTCTAC -ACGGAATAAGCCCTCTCTACGTAC -ACGGAATAAGCCCTCTCTAGTGAC -ACGGAATAAGCCCTCTCTCTGTAG -ACGGAATAAGCCCTCTCTCCTAAG -ACGGAATAAGCCCTCTCTGTTCAG -ACGGAATAAGCCCTCTCTGCATAG -ACGGAATAAGCCCTCTCTGACAAG -ACGGAATAAGCCCTCTCTAAGCAG -ACGGAATAAGCCCTCTCTCGTCAA -ACGGAATAAGCCCTCTCTGCTGAA -ACGGAATAAGCCCTCTCTAGTACG -ACGGAATAAGCCCTCTCTATCCGA -ACGGAATAAGCCCTCTCTATGGGA -ACGGAATAAGCCCTCTCTGTGCAA -ACGGAATAAGCCCTCTCTGAGGAA -ACGGAATAAGCCCTCTCTCAGGTA -ACGGAATAAGCCCTCTCTGACTCT -ACGGAATAAGCCCTCTCTAGTCCT -ACGGAATAAGCCCTCTCTTAAGCC -ACGGAATAAGCCCTCTCTATAGCC -ACGGAATAAGCCCTCTCTTAACCG -ACGGAATAAGCCCTCTCTATGCCA -ACGGAATAAGCCATCTGGGGAAAC -ACGGAATAAGCCATCTGGAACACC -ACGGAATAAGCCATCTGGATCGAG -ACGGAATAAGCCATCTGGCTCCTT -ACGGAATAAGCCATCTGGCCTGTT -ACGGAATAAGCCATCTGGCGGTTT -ACGGAATAAGCCATCTGGGTGGTT -ACGGAATAAGCCATCTGGGCCTTT -ACGGAATAAGCCATCTGGGGTCTT -ACGGAATAAGCCATCTGGACGCTT -ACGGAATAAGCCATCTGGAGCGTT -ACGGAATAAGCCATCTGGTTCGTC -ACGGAATAAGCCATCTGGTCTCTC -ACGGAATAAGCCATCTGGTGGATC -ACGGAATAAGCCATCTGGCACTTC -ACGGAATAAGCCATCTGGGTACTC -ACGGAATAAGCCATCTGGGATGTC -ACGGAATAAGCCATCTGGACAGTC -ACGGAATAAGCCATCTGGTTGCTG -ACGGAATAAGCCATCTGGTCCATG -ACGGAATAAGCCATCTGGTGTGTG -ACGGAATAAGCCATCTGGCTAGTG -ACGGAATAAGCCATCTGGCATCTG -ACGGAATAAGCCATCTGGGAGTTG -ACGGAATAAGCCATCTGGAGACTG -ACGGAATAAGCCATCTGGTCGGTA -ACGGAATAAGCCATCTGGTGCCTA -ACGGAATAAGCCATCTGGCCACTA -ACGGAATAAGCCATCTGGGGAGTA -ACGGAATAAGCCATCTGGTCGTCT -ACGGAATAAGCCATCTGGTGCACT -ACGGAATAAGCCATCTGGCTGACT -ACGGAATAAGCCATCTGGCAACCT -ACGGAATAAGCCATCTGGGCTACT -ACGGAATAAGCCATCTGGGGATCT -ACGGAATAAGCCATCTGGAAGGCT -ACGGAATAAGCCATCTGGTCAACC -ACGGAATAAGCCATCTGGTGTTCC -ACGGAATAAGCCATCTGGATTCCC -ACGGAATAAGCCATCTGGTTCTCG -ACGGAATAAGCCATCTGGTAGACG -ACGGAATAAGCCATCTGGGTAACG -ACGGAATAAGCCATCTGGACTTCG -ACGGAATAAGCCATCTGGTACGCA -ACGGAATAAGCCATCTGGCTTGCA -ACGGAATAAGCCATCTGGCGAACA -ACGGAATAAGCCATCTGGCAGTCA -ACGGAATAAGCCATCTGGGATCCA -ACGGAATAAGCCATCTGGACGACA -ACGGAATAAGCCATCTGGAGCTCA -ACGGAATAAGCCATCTGGTCACGT -ACGGAATAAGCCATCTGGCGTAGT -ACGGAATAAGCCATCTGGGTCAGT -ACGGAATAAGCCATCTGGGAAGGT -ACGGAATAAGCCATCTGGAACCGT -ACGGAATAAGCCATCTGGTTGTGC -ACGGAATAAGCCATCTGGCTAAGC -ACGGAATAAGCCATCTGGACTAGC -ACGGAATAAGCCATCTGGAGATGC -ACGGAATAAGCCATCTGGTGAAGG -ACGGAATAAGCCATCTGGCAATGG -ACGGAATAAGCCATCTGGATGAGG -ACGGAATAAGCCATCTGGAATGGG -ACGGAATAAGCCATCTGGTCCTGA -ACGGAATAAGCCATCTGGTAGCGA -ACGGAATAAGCCATCTGGCACAGA -ACGGAATAAGCCATCTGGGCAAGA -ACGGAATAAGCCATCTGGGGTTGA -ACGGAATAAGCCATCTGGTCCGAT -ACGGAATAAGCCATCTGGTGGCAT -ACGGAATAAGCCATCTGGCGAGAT -ACGGAATAAGCCATCTGGTACCAC -ACGGAATAAGCCATCTGGCAGAAC -ACGGAATAAGCCATCTGGGTCTAC -ACGGAATAAGCCATCTGGACGTAC -ACGGAATAAGCCATCTGGAGTGAC -ACGGAATAAGCCATCTGGCTGTAG -ACGGAATAAGCCATCTGGCCTAAG -ACGGAATAAGCCATCTGGGTTCAG -ACGGAATAAGCCATCTGGGCATAG -ACGGAATAAGCCATCTGGGACAAG -ACGGAATAAGCCATCTGGAAGCAG -ACGGAATAAGCCATCTGGCGTCAA -ACGGAATAAGCCATCTGGGCTGAA -ACGGAATAAGCCATCTGGAGTACG -ACGGAATAAGCCATCTGGATCCGA -ACGGAATAAGCCATCTGGATGGGA -ACGGAATAAGCCATCTGGGTGCAA -ACGGAATAAGCCATCTGGGAGGAA -ACGGAATAAGCCATCTGGCAGGTA -ACGGAATAAGCCATCTGGGACTCT -ACGGAATAAGCCATCTGGAGTCCT -ACGGAATAAGCCATCTGGTAAGCC -ACGGAATAAGCCATCTGGATAGCC -ACGGAATAAGCCATCTGGTAACCG -ACGGAATAAGCCATCTGGATGCCA -ACGGAATAAGCCTTCCACGGAAAC -ACGGAATAAGCCTTCCACAACACC -ACGGAATAAGCCTTCCACATCGAG -ACGGAATAAGCCTTCCACCTCCTT -ACGGAATAAGCCTTCCACCCTGTT -ACGGAATAAGCCTTCCACCGGTTT -ACGGAATAAGCCTTCCACGTGGTT -ACGGAATAAGCCTTCCACGCCTTT -ACGGAATAAGCCTTCCACGGTCTT -ACGGAATAAGCCTTCCACACGCTT -ACGGAATAAGCCTTCCACAGCGTT -ACGGAATAAGCCTTCCACTTCGTC -ACGGAATAAGCCTTCCACTCTCTC -ACGGAATAAGCCTTCCACTGGATC -ACGGAATAAGCCTTCCACCACTTC -ACGGAATAAGCCTTCCACGTACTC -ACGGAATAAGCCTTCCACGATGTC -ACGGAATAAGCCTTCCACACAGTC -ACGGAATAAGCCTTCCACTTGCTG -ACGGAATAAGCCTTCCACTCCATG -ACGGAATAAGCCTTCCACTGTGTG -ACGGAATAAGCCTTCCACCTAGTG -ACGGAATAAGCCTTCCACCATCTG -ACGGAATAAGCCTTCCACGAGTTG -ACGGAATAAGCCTTCCACAGACTG -ACGGAATAAGCCTTCCACTCGGTA -ACGGAATAAGCCTTCCACTGCCTA -ACGGAATAAGCCTTCCACCCACTA -ACGGAATAAGCCTTCCACGGAGTA -ACGGAATAAGCCTTCCACTCGTCT -ACGGAATAAGCCTTCCACTGCACT -ACGGAATAAGCCTTCCACCTGACT -ACGGAATAAGCCTTCCACCAACCT -ACGGAATAAGCCTTCCACGCTACT -ACGGAATAAGCCTTCCACGGATCT -ACGGAATAAGCCTTCCACAAGGCT -ACGGAATAAGCCTTCCACTCAACC -ACGGAATAAGCCTTCCACTGTTCC -ACGGAATAAGCCTTCCACATTCCC -ACGGAATAAGCCTTCCACTTCTCG -ACGGAATAAGCCTTCCACTAGACG -ACGGAATAAGCCTTCCACGTAACG -ACGGAATAAGCCTTCCACACTTCG -ACGGAATAAGCCTTCCACTACGCA -ACGGAATAAGCCTTCCACCTTGCA -ACGGAATAAGCCTTCCACCGAACA -ACGGAATAAGCCTTCCACCAGTCA -ACGGAATAAGCCTTCCACGATCCA -ACGGAATAAGCCTTCCACACGACA -ACGGAATAAGCCTTCCACAGCTCA -ACGGAATAAGCCTTCCACTCACGT -ACGGAATAAGCCTTCCACCGTAGT -ACGGAATAAGCCTTCCACGTCAGT -ACGGAATAAGCCTTCCACGAAGGT -ACGGAATAAGCCTTCCACAACCGT -ACGGAATAAGCCTTCCACTTGTGC -ACGGAATAAGCCTTCCACCTAAGC -ACGGAATAAGCCTTCCACACTAGC -ACGGAATAAGCCTTCCACAGATGC -ACGGAATAAGCCTTCCACTGAAGG -ACGGAATAAGCCTTCCACCAATGG -ACGGAATAAGCCTTCCACATGAGG -ACGGAATAAGCCTTCCACAATGGG -ACGGAATAAGCCTTCCACTCCTGA -ACGGAATAAGCCTTCCACTAGCGA -ACGGAATAAGCCTTCCACCACAGA -ACGGAATAAGCCTTCCACGCAAGA -ACGGAATAAGCCTTCCACGGTTGA -ACGGAATAAGCCTTCCACTCCGAT -ACGGAATAAGCCTTCCACTGGCAT -ACGGAATAAGCCTTCCACCGAGAT -ACGGAATAAGCCTTCCACTACCAC -ACGGAATAAGCCTTCCACCAGAAC -ACGGAATAAGCCTTCCACGTCTAC -ACGGAATAAGCCTTCCACACGTAC -ACGGAATAAGCCTTCCACAGTGAC -ACGGAATAAGCCTTCCACCTGTAG -ACGGAATAAGCCTTCCACCCTAAG -ACGGAATAAGCCTTCCACGTTCAG -ACGGAATAAGCCTTCCACGCATAG -ACGGAATAAGCCTTCCACGACAAG -ACGGAATAAGCCTTCCACAAGCAG -ACGGAATAAGCCTTCCACCGTCAA -ACGGAATAAGCCTTCCACGCTGAA -ACGGAATAAGCCTTCCACAGTACG -ACGGAATAAGCCTTCCACATCCGA -ACGGAATAAGCCTTCCACATGGGA -ACGGAATAAGCCTTCCACGTGCAA -ACGGAATAAGCCTTCCACGAGGAA -ACGGAATAAGCCTTCCACCAGGTA -ACGGAATAAGCCTTCCACGACTCT -ACGGAATAAGCCTTCCACAGTCCT -ACGGAATAAGCCTTCCACTAAGCC -ACGGAATAAGCCTTCCACATAGCC -ACGGAATAAGCCTTCCACTAACCG -ACGGAATAAGCCTTCCACATGCCA -ACGGAATAAGCCCTCGTAGGAAAC -ACGGAATAAGCCCTCGTAAACACC -ACGGAATAAGCCCTCGTAATCGAG -ACGGAATAAGCCCTCGTACTCCTT -ACGGAATAAGCCCTCGTACCTGTT -ACGGAATAAGCCCTCGTACGGTTT -ACGGAATAAGCCCTCGTAGTGGTT -ACGGAATAAGCCCTCGTAGCCTTT -ACGGAATAAGCCCTCGTAGGTCTT -ACGGAATAAGCCCTCGTAACGCTT -ACGGAATAAGCCCTCGTAAGCGTT -ACGGAATAAGCCCTCGTATTCGTC -ACGGAATAAGCCCTCGTATCTCTC -ACGGAATAAGCCCTCGTATGGATC -ACGGAATAAGCCCTCGTACACTTC -ACGGAATAAGCCCTCGTAGTACTC -ACGGAATAAGCCCTCGTAGATGTC -ACGGAATAAGCCCTCGTAACAGTC -ACGGAATAAGCCCTCGTATTGCTG -ACGGAATAAGCCCTCGTATCCATG -ACGGAATAAGCCCTCGTATGTGTG -ACGGAATAAGCCCTCGTACTAGTG -ACGGAATAAGCCCTCGTACATCTG -ACGGAATAAGCCCTCGTAGAGTTG -ACGGAATAAGCCCTCGTAAGACTG -ACGGAATAAGCCCTCGTATCGGTA -ACGGAATAAGCCCTCGTATGCCTA -ACGGAATAAGCCCTCGTACCACTA -ACGGAATAAGCCCTCGTAGGAGTA -ACGGAATAAGCCCTCGTATCGTCT -ACGGAATAAGCCCTCGTATGCACT -ACGGAATAAGCCCTCGTACTGACT -ACGGAATAAGCCCTCGTACAACCT -ACGGAATAAGCCCTCGTAGCTACT -ACGGAATAAGCCCTCGTAGGATCT -ACGGAATAAGCCCTCGTAAAGGCT -ACGGAATAAGCCCTCGTATCAACC -ACGGAATAAGCCCTCGTATGTTCC -ACGGAATAAGCCCTCGTAATTCCC -ACGGAATAAGCCCTCGTATTCTCG -ACGGAATAAGCCCTCGTATAGACG -ACGGAATAAGCCCTCGTAGTAACG -ACGGAATAAGCCCTCGTAACTTCG -ACGGAATAAGCCCTCGTATACGCA -ACGGAATAAGCCCTCGTACTTGCA -ACGGAATAAGCCCTCGTACGAACA -ACGGAATAAGCCCTCGTACAGTCA -ACGGAATAAGCCCTCGTAGATCCA -ACGGAATAAGCCCTCGTAACGACA -ACGGAATAAGCCCTCGTAAGCTCA -ACGGAATAAGCCCTCGTATCACGT -ACGGAATAAGCCCTCGTACGTAGT -ACGGAATAAGCCCTCGTAGTCAGT -ACGGAATAAGCCCTCGTAGAAGGT -ACGGAATAAGCCCTCGTAAACCGT -ACGGAATAAGCCCTCGTATTGTGC -ACGGAATAAGCCCTCGTACTAAGC -ACGGAATAAGCCCTCGTAACTAGC -ACGGAATAAGCCCTCGTAAGATGC -ACGGAATAAGCCCTCGTATGAAGG -ACGGAATAAGCCCTCGTACAATGG -ACGGAATAAGCCCTCGTAATGAGG -ACGGAATAAGCCCTCGTAAATGGG -ACGGAATAAGCCCTCGTATCCTGA -ACGGAATAAGCCCTCGTATAGCGA -ACGGAATAAGCCCTCGTACACAGA -ACGGAATAAGCCCTCGTAGCAAGA -ACGGAATAAGCCCTCGTAGGTTGA -ACGGAATAAGCCCTCGTATCCGAT -ACGGAATAAGCCCTCGTATGGCAT -ACGGAATAAGCCCTCGTACGAGAT -ACGGAATAAGCCCTCGTATACCAC -ACGGAATAAGCCCTCGTACAGAAC -ACGGAATAAGCCCTCGTAGTCTAC -ACGGAATAAGCCCTCGTAACGTAC -ACGGAATAAGCCCTCGTAAGTGAC -ACGGAATAAGCCCTCGTACTGTAG -ACGGAATAAGCCCTCGTACCTAAG -ACGGAATAAGCCCTCGTAGTTCAG -ACGGAATAAGCCCTCGTAGCATAG -ACGGAATAAGCCCTCGTAGACAAG -ACGGAATAAGCCCTCGTAAAGCAG -ACGGAATAAGCCCTCGTACGTCAA -ACGGAATAAGCCCTCGTAGCTGAA -ACGGAATAAGCCCTCGTAAGTACG -ACGGAATAAGCCCTCGTAATCCGA -ACGGAATAAGCCCTCGTAATGGGA -ACGGAATAAGCCCTCGTAGTGCAA -ACGGAATAAGCCCTCGTAGAGGAA -ACGGAATAAGCCCTCGTACAGGTA -ACGGAATAAGCCCTCGTAGACTCT -ACGGAATAAGCCCTCGTAAGTCCT -ACGGAATAAGCCCTCGTATAAGCC -ACGGAATAAGCCCTCGTAATAGCC -ACGGAATAAGCCCTCGTATAACCG -ACGGAATAAGCCCTCGTAATGCCA -ACGGAATAAGCCGTCGATGGAAAC -ACGGAATAAGCCGTCGATAACACC -ACGGAATAAGCCGTCGATATCGAG -ACGGAATAAGCCGTCGATCTCCTT -ACGGAATAAGCCGTCGATCCTGTT -ACGGAATAAGCCGTCGATCGGTTT -ACGGAATAAGCCGTCGATGTGGTT -ACGGAATAAGCCGTCGATGCCTTT -ACGGAATAAGCCGTCGATGGTCTT -ACGGAATAAGCCGTCGATACGCTT -ACGGAATAAGCCGTCGATAGCGTT -ACGGAATAAGCCGTCGATTTCGTC -ACGGAATAAGCCGTCGATTCTCTC -ACGGAATAAGCCGTCGATTGGATC -ACGGAATAAGCCGTCGATCACTTC -ACGGAATAAGCCGTCGATGTACTC -ACGGAATAAGCCGTCGATGATGTC -ACGGAATAAGCCGTCGATACAGTC -ACGGAATAAGCCGTCGATTTGCTG -ACGGAATAAGCCGTCGATTCCATG -ACGGAATAAGCCGTCGATTGTGTG -ACGGAATAAGCCGTCGATCTAGTG -ACGGAATAAGCCGTCGATCATCTG -ACGGAATAAGCCGTCGATGAGTTG -ACGGAATAAGCCGTCGATAGACTG -ACGGAATAAGCCGTCGATTCGGTA -ACGGAATAAGCCGTCGATTGCCTA -ACGGAATAAGCCGTCGATCCACTA -ACGGAATAAGCCGTCGATGGAGTA -ACGGAATAAGCCGTCGATTCGTCT -ACGGAATAAGCCGTCGATTGCACT -ACGGAATAAGCCGTCGATCTGACT -ACGGAATAAGCCGTCGATCAACCT -ACGGAATAAGCCGTCGATGCTACT -ACGGAATAAGCCGTCGATGGATCT -ACGGAATAAGCCGTCGATAAGGCT -ACGGAATAAGCCGTCGATTCAACC -ACGGAATAAGCCGTCGATTGTTCC -ACGGAATAAGCCGTCGATATTCCC -ACGGAATAAGCCGTCGATTTCTCG -ACGGAATAAGCCGTCGATTAGACG -ACGGAATAAGCCGTCGATGTAACG -ACGGAATAAGCCGTCGATACTTCG -ACGGAATAAGCCGTCGATTACGCA -ACGGAATAAGCCGTCGATCTTGCA -ACGGAATAAGCCGTCGATCGAACA -ACGGAATAAGCCGTCGATCAGTCA -ACGGAATAAGCCGTCGATGATCCA -ACGGAATAAGCCGTCGATACGACA -ACGGAATAAGCCGTCGATAGCTCA -ACGGAATAAGCCGTCGATTCACGT -ACGGAATAAGCCGTCGATCGTAGT -ACGGAATAAGCCGTCGATGTCAGT -ACGGAATAAGCCGTCGATGAAGGT -ACGGAATAAGCCGTCGATAACCGT -ACGGAATAAGCCGTCGATTTGTGC -ACGGAATAAGCCGTCGATCTAAGC -ACGGAATAAGCCGTCGATACTAGC -ACGGAATAAGCCGTCGATAGATGC -ACGGAATAAGCCGTCGATTGAAGG -ACGGAATAAGCCGTCGATCAATGG -ACGGAATAAGCCGTCGATATGAGG -ACGGAATAAGCCGTCGATAATGGG -ACGGAATAAGCCGTCGATTCCTGA -ACGGAATAAGCCGTCGATTAGCGA -ACGGAATAAGCCGTCGATCACAGA -ACGGAATAAGCCGTCGATGCAAGA -ACGGAATAAGCCGTCGATGGTTGA -ACGGAATAAGCCGTCGATTCCGAT -ACGGAATAAGCCGTCGATTGGCAT -ACGGAATAAGCCGTCGATCGAGAT -ACGGAATAAGCCGTCGATTACCAC -ACGGAATAAGCCGTCGATCAGAAC -ACGGAATAAGCCGTCGATGTCTAC -ACGGAATAAGCCGTCGATACGTAC -ACGGAATAAGCCGTCGATAGTGAC -ACGGAATAAGCCGTCGATCTGTAG -ACGGAATAAGCCGTCGATCCTAAG -ACGGAATAAGCCGTCGATGTTCAG -ACGGAATAAGCCGTCGATGCATAG -ACGGAATAAGCCGTCGATGACAAG -ACGGAATAAGCCGTCGATAAGCAG -ACGGAATAAGCCGTCGATCGTCAA -ACGGAATAAGCCGTCGATGCTGAA -ACGGAATAAGCCGTCGATAGTACG -ACGGAATAAGCCGTCGATATCCGA -ACGGAATAAGCCGTCGATATGGGA -ACGGAATAAGCCGTCGATGTGCAA -ACGGAATAAGCCGTCGATGAGGAA -ACGGAATAAGCCGTCGATCAGGTA -ACGGAATAAGCCGTCGATGACTCT -ACGGAATAAGCCGTCGATAGTCCT -ACGGAATAAGCCGTCGATTAAGCC -ACGGAATAAGCCGTCGATATAGCC -ACGGAATAAGCCGTCGATTAACCG -ACGGAATAAGCCGTCGATATGCCA -ACGGAATAAGCCGTCACAGGAAAC -ACGGAATAAGCCGTCACAAACACC -ACGGAATAAGCCGTCACAATCGAG -ACGGAATAAGCCGTCACACTCCTT -ACGGAATAAGCCGTCACACCTGTT -ACGGAATAAGCCGTCACACGGTTT -ACGGAATAAGCCGTCACAGTGGTT -ACGGAATAAGCCGTCACAGCCTTT -ACGGAATAAGCCGTCACAGGTCTT -ACGGAATAAGCCGTCACAACGCTT -ACGGAATAAGCCGTCACAAGCGTT -ACGGAATAAGCCGTCACATTCGTC -ACGGAATAAGCCGTCACATCTCTC -ACGGAATAAGCCGTCACATGGATC -ACGGAATAAGCCGTCACACACTTC -ACGGAATAAGCCGTCACAGTACTC -ACGGAATAAGCCGTCACAGATGTC -ACGGAATAAGCCGTCACAACAGTC -ACGGAATAAGCCGTCACATTGCTG -ACGGAATAAGCCGTCACATCCATG -ACGGAATAAGCCGTCACATGTGTG -ACGGAATAAGCCGTCACACTAGTG -ACGGAATAAGCCGTCACACATCTG -ACGGAATAAGCCGTCACAGAGTTG -ACGGAATAAGCCGTCACAAGACTG -ACGGAATAAGCCGTCACATCGGTA -ACGGAATAAGCCGTCACATGCCTA -ACGGAATAAGCCGTCACACCACTA -ACGGAATAAGCCGTCACAGGAGTA -ACGGAATAAGCCGTCACATCGTCT -ACGGAATAAGCCGTCACATGCACT -ACGGAATAAGCCGTCACACTGACT -ACGGAATAAGCCGTCACACAACCT -ACGGAATAAGCCGTCACAGCTACT -ACGGAATAAGCCGTCACAGGATCT -ACGGAATAAGCCGTCACAAAGGCT -ACGGAATAAGCCGTCACATCAACC -ACGGAATAAGCCGTCACATGTTCC -ACGGAATAAGCCGTCACAATTCCC -ACGGAATAAGCCGTCACATTCTCG -ACGGAATAAGCCGTCACATAGACG -ACGGAATAAGCCGTCACAGTAACG -ACGGAATAAGCCGTCACAACTTCG -ACGGAATAAGCCGTCACATACGCA -ACGGAATAAGCCGTCACACTTGCA -ACGGAATAAGCCGTCACACGAACA -ACGGAATAAGCCGTCACACAGTCA -ACGGAATAAGCCGTCACAGATCCA -ACGGAATAAGCCGTCACAACGACA -ACGGAATAAGCCGTCACAAGCTCA -ACGGAATAAGCCGTCACATCACGT -ACGGAATAAGCCGTCACACGTAGT -ACGGAATAAGCCGTCACAGTCAGT -ACGGAATAAGCCGTCACAGAAGGT -ACGGAATAAGCCGTCACAAACCGT -ACGGAATAAGCCGTCACATTGTGC -ACGGAATAAGCCGTCACACTAAGC -ACGGAATAAGCCGTCACAACTAGC -ACGGAATAAGCCGTCACAAGATGC -ACGGAATAAGCCGTCACATGAAGG -ACGGAATAAGCCGTCACACAATGG -ACGGAATAAGCCGTCACAATGAGG -ACGGAATAAGCCGTCACAAATGGG -ACGGAATAAGCCGTCACATCCTGA -ACGGAATAAGCCGTCACATAGCGA -ACGGAATAAGCCGTCACACACAGA -ACGGAATAAGCCGTCACAGCAAGA -ACGGAATAAGCCGTCACAGGTTGA -ACGGAATAAGCCGTCACATCCGAT -ACGGAATAAGCCGTCACATGGCAT -ACGGAATAAGCCGTCACACGAGAT -ACGGAATAAGCCGTCACATACCAC -ACGGAATAAGCCGTCACACAGAAC -ACGGAATAAGCCGTCACAGTCTAC -ACGGAATAAGCCGTCACAACGTAC -ACGGAATAAGCCGTCACAAGTGAC -ACGGAATAAGCCGTCACACTGTAG -ACGGAATAAGCCGTCACACCTAAG -ACGGAATAAGCCGTCACAGTTCAG -ACGGAATAAGCCGTCACAGCATAG -ACGGAATAAGCCGTCACAGACAAG -ACGGAATAAGCCGTCACAAAGCAG -ACGGAATAAGCCGTCACACGTCAA -ACGGAATAAGCCGTCACAGCTGAA -ACGGAATAAGCCGTCACAAGTACG -ACGGAATAAGCCGTCACAATCCGA -ACGGAATAAGCCGTCACAATGGGA -ACGGAATAAGCCGTCACAGTGCAA -ACGGAATAAGCCGTCACAGAGGAA -ACGGAATAAGCCGTCACACAGGTA -ACGGAATAAGCCGTCACAGACTCT -ACGGAATAAGCCGTCACAAGTCCT -ACGGAATAAGCCGTCACATAAGCC -ACGGAATAAGCCGTCACAATAGCC -ACGGAATAAGCCGTCACATAACCG -ACGGAATAAGCCGTCACAATGCCA -ACGGAATAAGCCCTGTTGGGAAAC -ACGGAATAAGCCCTGTTGAACACC -ACGGAATAAGCCCTGTTGATCGAG -ACGGAATAAGCCCTGTTGCTCCTT -ACGGAATAAGCCCTGTTGCCTGTT -ACGGAATAAGCCCTGTTGCGGTTT -ACGGAATAAGCCCTGTTGGTGGTT -ACGGAATAAGCCCTGTTGGCCTTT -ACGGAATAAGCCCTGTTGGGTCTT -ACGGAATAAGCCCTGTTGACGCTT -ACGGAATAAGCCCTGTTGAGCGTT -ACGGAATAAGCCCTGTTGTTCGTC -ACGGAATAAGCCCTGTTGTCTCTC -ACGGAATAAGCCCTGTTGTGGATC -ACGGAATAAGCCCTGTTGCACTTC -ACGGAATAAGCCCTGTTGGTACTC -ACGGAATAAGCCCTGTTGGATGTC -ACGGAATAAGCCCTGTTGACAGTC -ACGGAATAAGCCCTGTTGTTGCTG -ACGGAATAAGCCCTGTTGTCCATG -ACGGAATAAGCCCTGTTGTGTGTG -ACGGAATAAGCCCTGTTGCTAGTG -ACGGAATAAGCCCTGTTGCATCTG -ACGGAATAAGCCCTGTTGGAGTTG -ACGGAATAAGCCCTGTTGAGACTG -ACGGAATAAGCCCTGTTGTCGGTA -ACGGAATAAGCCCTGTTGTGCCTA -ACGGAATAAGCCCTGTTGCCACTA -ACGGAATAAGCCCTGTTGGGAGTA -ACGGAATAAGCCCTGTTGTCGTCT -ACGGAATAAGCCCTGTTGTGCACT -ACGGAATAAGCCCTGTTGCTGACT -ACGGAATAAGCCCTGTTGCAACCT -ACGGAATAAGCCCTGTTGGCTACT -ACGGAATAAGCCCTGTTGGGATCT -ACGGAATAAGCCCTGTTGAAGGCT -ACGGAATAAGCCCTGTTGTCAACC -ACGGAATAAGCCCTGTTGTGTTCC -ACGGAATAAGCCCTGTTGATTCCC -ACGGAATAAGCCCTGTTGTTCTCG -ACGGAATAAGCCCTGTTGTAGACG -ACGGAATAAGCCCTGTTGGTAACG -ACGGAATAAGCCCTGTTGACTTCG -ACGGAATAAGCCCTGTTGTACGCA -ACGGAATAAGCCCTGTTGCTTGCA -ACGGAATAAGCCCTGTTGCGAACA -ACGGAATAAGCCCTGTTGCAGTCA -ACGGAATAAGCCCTGTTGGATCCA -ACGGAATAAGCCCTGTTGACGACA -ACGGAATAAGCCCTGTTGAGCTCA -ACGGAATAAGCCCTGTTGTCACGT -ACGGAATAAGCCCTGTTGCGTAGT -ACGGAATAAGCCCTGTTGGTCAGT -ACGGAATAAGCCCTGTTGGAAGGT -ACGGAATAAGCCCTGTTGAACCGT -ACGGAATAAGCCCTGTTGTTGTGC -ACGGAATAAGCCCTGTTGCTAAGC -ACGGAATAAGCCCTGTTGACTAGC -ACGGAATAAGCCCTGTTGAGATGC -ACGGAATAAGCCCTGTTGTGAAGG -ACGGAATAAGCCCTGTTGCAATGG -ACGGAATAAGCCCTGTTGATGAGG -ACGGAATAAGCCCTGTTGAATGGG -ACGGAATAAGCCCTGTTGTCCTGA -ACGGAATAAGCCCTGTTGTAGCGA -ACGGAATAAGCCCTGTTGCACAGA -ACGGAATAAGCCCTGTTGGCAAGA -ACGGAATAAGCCCTGTTGGGTTGA -ACGGAATAAGCCCTGTTGTCCGAT -ACGGAATAAGCCCTGTTGTGGCAT -ACGGAATAAGCCCTGTTGCGAGAT -ACGGAATAAGCCCTGTTGTACCAC -ACGGAATAAGCCCTGTTGCAGAAC -ACGGAATAAGCCCTGTTGGTCTAC -ACGGAATAAGCCCTGTTGACGTAC -ACGGAATAAGCCCTGTTGAGTGAC -ACGGAATAAGCCCTGTTGCTGTAG -ACGGAATAAGCCCTGTTGCCTAAG -ACGGAATAAGCCCTGTTGGTTCAG -ACGGAATAAGCCCTGTTGGCATAG -ACGGAATAAGCCCTGTTGGACAAG -ACGGAATAAGCCCTGTTGAAGCAG -ACGGAATAAGCCCTGTTGCGTCAA -ACGGAATAAGCCCTGTTGGCTGAA -ACGGAATAAGCCCTGTTGAGTACG -ACGGAATAAGCCCTGTTGATCCGA -ACGGAATAAGCCCTGTTGATGGGA -ACGGAATAAGCCCTGTTGGTGCAA -ACGGAATAAGCCCTGTTGGAGGAA -ACGGAATAAGCCCTGTTGCAGGTA -ACGGAATAAGCCCTGTTGGACTCT -ACGGAATAAGCCCTGTTGAGTCCT -ACGGAATAAGCCCTGTTGTAAGCC -ACGGAATAAGCCCTGTTGATAGCC -ACGGAATAAGCCCTGTTGTAACCG -ACGGAATAAGCCCTGTTGATGCCA -ACGGAATAAGCCATGTCCGGAAAC -ACGGAATAAGCCATGTCCAACACC -ACGGAATAAGCCATGTCCATCGAG -ACGGAATAAGCCATGTCCCTCCTT -ACGGAATAAGCCATGTCCCCTGTT -ACGGAATAAGCCATGTCCCGGTTT -ACGGAATAAGCCATGTCCGTGGTT -ACGGAATAAGCCATGTCCGCCTTT -ACGGAATAAGCCATGTCCGGTCTT -ACGGAATAAGCCATGTCCACGCTT -ACGGAATAAGCCATGTCCAGCGTT -ACGGAATAAGCCATGTCCTTCGTC -ACGGAATAAGCCATGTCCTCTCTC -ACGGAATAAGCCATGTCCTGGATC -ACGGAATAAGCCATGTCCCACTTC -ACGGAATAAGCCATGTCCGTACTC -ACGGAATAAGCCATGTCCGATGTC -ACGGAATAAGCCATGTCCACAGTC -ACGGAATAAGCCATGTCCTTGCTG -ACGGAATAAGCCATGTCCTCCATG -ACGGAATAAGCCATGTCCTGTGTG -ACGGAATAAGCCATGTCCCTAGTG -ACGGAATAAGCCATGTCCCATCTG -ACGGAATAAGCCATGTCCGAGTTG -ACGGAATAAGCCATGTCCAGACTG -ACGGAATAAGCCATGTCCTCGGTA -ACGGAATAAGCCATGTCCTGCCTA -ACGGAATAAGCCATGTCCCCACTA -ACGGAATAAGCCATGTCCGGAGTA -ACGGAATAAGCCATGTCCTCGTCT -ACGGAATAAGCCATGTCCTGCACT -ACGGAATAAGCCATGTCCCTGACT -ACGGAATAAGCCATGTCCCAACCT -ACGGAATAAGCCATGTCCGCTACT -ACGGAATAAGCCATGTCCGGATCT -ACGGAATAAGCCATGTCCAAGGCT -ACGGAATAAGCCATGTCCTCAACC -ACGGAATAAGCCATGTCCTGTTCC -ACGGAATAAGCCATGTCCATTCCC -ACGGAATAAGCCATGTCCTTCTCG -ACGGAATAAGCCATGTCCTAGACG -ACGGAATAAGCCATGTCCGTAACG -ACGGAATAAGCCATGTCCACTTCG -ACGGAATAAGCCATGTCCTACGCA -ACGGAATAAGCCATGTCCCTTGCA -ACGGAATAAGCCATGTCCCGAACA -ACGGAATAAGCCATGTCCCAGTCA -ACGGAATAAGCCATGTCCGATCCA -ACGGAATAAGCCATGTCCACGACA -ACGGAATAAGCCATGTCCAGCTCA -ACGGAATAAGCCATGTCCTCACGT -ACGGAATAAGCCATGTCCCGTAGT -ACGGAATAAGCCATGTCCGTCAGT -ACGGAATAAGCCATGTCCGAAGGT -ACGGAATAAGCCATGTCCAACCGT -ACGGAATAAGCCATGTCCTTGTGC -ACGGAATAAGCCATGTCCCTAAGC -ACGGAATAAGCCATGTCCACTAGC -ACGGAATAAGCCATGTCCAGATGC -ACGGAATAAGCCATGTCCTGAAGG -ACGGAATAAGCCATGTCCCAATGG -ACGGAATAAGCCATGTCCATGAGG -ACGGAATAAGCCATGTCCAATGGG -ACGGAATAAGCCATGTCCTCCTGA -ACGGAATAAGCCATGTCCTAGCGA -ACGGAATAAGCCATGTCCCACAGA -ACGGAATAAGCCATGTCCGCAAGA -ACGGAATAAGCCATGTCCGGTTGA -ACGGAATAAGCCATGTCCTCCGAT -ACGGAATAAGCCATGTCCTGGCAT -ACGGAATAAGCCATGTCCCGAGAT -ACGGAATAAGCCATGTCCTACCAC -ACGGAATAAGCCATGTCCCAGAAC -ACGGAATAAGCCATGTCCGTCTAC -ACGGAATAAGCCATGTCCACGTAC -ACGGAATAAGCCATGTCCAGTGAC -ACGGAATAAGCCATGTCCCTGTAG -ACGGAATAAGCCATGTCCCCTAAG -ACGGAATAAGCCATGTCCGTTCAG -ACGGAATAAGCCATGTCCGCATAG -ACGGAATAAGCCATGTCCGACAAG -ACGGAATAAGCCATGTCCAAGCAG -ACGGAATAAGCCATGTCCCGTCAA -ACGGAATAAGCCATGTCCGCTGAA -ACGGAATAAGCCATGTCCAGTACG -ACGGAATAAGCCATGTCCATCCGA -ACGGAATAAGCCATGTCCATGGGA -ACGGAATAAGCCATGTCCGTGCAA -ACGGAATAAGCCATGTCCGAGGAA -ACGGAATAAGCCATGTCCCAGGTA -ACGGAATAAGCCATGTCCGACTCT -ACGGAATAAGCCATGTCCAGTCCT -ACGGAATAAGCCATGTCCTAAGCC -ACGGAATAAGCCATGTCCATAGCC -ACGGAATAAGCCATGTCCTAACCG -ACGGAATAAGCCATGTCCATGCCA -ACGGAATAAGCCGTGTGTGGAAAC -ACGGAATAAGCCGTGTGTAACACC -ACGGAATAAGCCGTGTGTATCGAG -ACGGAATAAGCCGTGTGTCTCCTT -ACGGAATAAGCCGTGTGTCCTGTT -ACGGAATAAGCCGTGTGTCGGTTT -ACGGAATAAGCCGTGTGTGTGGTT -ACGGAATAAGCCGTGTGTGCCTTT -ACGGAATAAGCCGTGTGTGGTCTT -ACGGAATAAGCCGTGTGTACGCTT -ACGGAATAAGCCGTGTGTAGCGTT -ACGGAATAAGCCGTGTGTTTCGTC -ACGGAATAAGCCGTGTGTTCTCTC -ACGGAATAAGCCGTGTGTTGGATC -ACGGAATAAGCCGTGTGTCACTTC -ACGGAATAAGCCGTGTGTGTACTC -ACGGAATAAGCCGTGTGTGATGTC -ACGGAATAAGCCGTGTGTACAGTC -ACGGAATAAGCCGTGTGTTTGCTG -ACGGAATAAGCCGTGTGTTCCATG -ACGGAATAAGCCGTGTGTTGTGTG -ACGGAATAAGCCGTGTGTCTAGTG -ACGGAATAAGCCGTGTGTCATCTG -ACGGAATAAGCCGTGTGTGAGTTG -ACGGAATAAGCCGTGTGTAGACTG -ACGGAATAAGCCGTGTGTTCGGTA -ACGGAATAAGCCGTGTGTTGCCTA -ACGGAATAAGCCGTGTGTCCACTA -ACGGAATAAGCCGTGTGTGGAGTA -ACGGAATAAGCCGTGTGTTCGTCT -ACGGAATAAGCCGTGTGTTGCACT -ACGGAATAAGCCGTGTGTCTGACT -ACGGAATAAGCCGTGTGTCAACCT -ACGGAATAAGCCGTGTGTGCTACT -ACGGAATAAGCCGTGTGTGGATCT -ACGGAATAAGCCGTGTGTAAGGCT -ACGGAATAAGCCGTGTGTTCAACC -ACGGAATAAGCCGTGTGTTGTTCC -ACGGAATAAGCCGTGTGTATTCCC -ACGGAATAAGCCGTGTGTTTCTCG -ACGGAATAAGCCGTGTGTTAGACG -ACGGAATAAGCCGTGTGTGTAACG -ACGGAATAAGCCGTGTGTACTTCG -ACGGAATAAGCCGTGTGTTACGCA -ACGGAATAAGCCGTGTGTCTTGCA -ACGGAATAAGCCGTGTGTCGAACA -ACGGAATAAGCCGTGTGTCAGTCA -ACGGAATAAGCCGTGTGTGATCCA -ACGGAATAAGCCGTGTGTACGACA -ACGGAATAAGCCGTGTGTAGCTCA -ACGGAATAAGCCGTGTGTTCACGT -ACGGAATAAGCCGTGTGTCGTAGT -ACGGAATAAGCCGTGTGTGTCAGT -ACGGAATAAGCCGTGTGTGAAGGT -ACGGAATAAGCCGTGTGTAACCGT -ACGGAATAAGCCGTGTGTTTGTGC -ACGGAATAAGCCGTGTGTCTAAGC -ACGGAATAAGCCGTGTGTACTAGC -ACGGAATAAGCCGTGTGTAGATGC -ACGGAATAAGCCGTGTGTTGAAGG -ACGGAATAAGCCGTGTGTCAATGG -ACGGAATAAGCCGTGTGTATGAGG -ACGGAATAAGCCGTGTGTAATGGG -ACGGAATAAGCCGTGTGTTCCTGA -ACGGAATAAGCCGTGTGTTAGCGA -ACGGAATAAGCCGTGTGTCACAGA -ACGGAATAAGCCGTGTGTGCAAGA -ACGGAATAAGCCGTGTGTGGTTGA -ACGGAATAAGCCGTGTGTTCCGAT -ACGGAATAAGCCGTGTGTTGGCAT -ACGGAATAAGCCGTGTGTCGAGAT -ACGGAATAAGCCGTGTGTTACCAC -ACGGAATAAGCCGTGTGTCAGAAC -ACGGAATAAGCCGTGTGTGTCTAC -ACGGAATAAGCCGTGTGTACGTAC -ACGGAATAAGCCGTGTGTAGTGAC -ACGGAATAAGCCGTGTGTCTGTAG -ACGGAATAAGCCGTGTGTCCTAAG -ACGGAATAAGCCGTGTGTGTTCAG -ACGGAATAAGCCGTGTGTGCATAG -ACGGAATAAGCCGTGTGTGACAAG -ACGGAATAAGCCGTGTGTAAGCAG -ACGGAATAAGCCGTGTGTCGTCAA -ACGGAATAAGCCGTGTGTGCTGAA -ACGGAATAAGCCGTGTGTAGTACG -ACGGAATAAGCCGTGTGTATCCGA -ACGGAATAAGCCGTGTGTATGGGA -ACGGAATAAGCCGTGTGTGTGCAA -ACGGAATAAGCCGTGTGTGAGGAA -ACGGAATAAGCCGTGTGTCAGGTA -ACGGAATAAGCCGTGTGTGACTCT -ACGGAATAAGCCGTGTGTAGTCCT -ACGGAATAAGCCGTGTGTTAAGCC -ACGGAATAAGCCGTGTGTATAGCC -ACGGAATAAGCCGTGTGTTAACCG -ACGGAATAAGCCGTGTGTATGCCA -ACGGAATAAGCCGTGCTAGGAAAC -ACGGAATAAGCCGTGCTAAACACC -ACGGAATAAGCCGTGCTAATCGAG -ACGGAATAAGCCGTGCTACTCCTT -ACGGAATAAGCCGTGCTACCTGTT -ACGGAATAAGCCGTGCTACGGTTT -ACGGAATAAGCCGTGCTAGTGGTT -ACGGAATAAGCCGTGCTAGCCTTT -ACGGAATAAGCCGTGCTAGGTCTT -ACGGAATAAGCCGTGCTAACGCTT -ACGGAATAAGCCGTGCTAAGCGTT -ACGGAATAAGCCGTGCTATTCGTC -ACGGAATAAGCCGTGCTATCTCTC -ACGGAATAAGCCGTGCTATGGATC -ACGGAATAAGCCGTGCTACACTTC -ACGGAATAAGCCGTGCTAGTACTC -ACGGAATAAGCCGTGCTAGATGTC -ACGGAATAAGCCGTGCTAACAGTC -ACGGAATAAGCCGTGCTATTGCTG -ACGGAATAAGCCGTGCTATCCATG -ACGGAATAAGCCGTGCTATGTGTG -ACGGAATAAGCCGTGCTACTAGTG -ACGGAATAAGCCGTGCTACATCTG -ACGGAATAAGCCGTGCTAGAGTTG -ACGGAATAAGCCGTGCTAAGACTG -ACGGAATAAGCCGTGCTATCGGTA -ACGGAATAAGCCGTGCTATGCCTA -ACGGAATAAGCCGTGCTACCACTA -ACGGAATAAGCCGTGCTAGGAGTA -ACGGAATAAGCCGTGCTATCGTCT -ACGGAATAAGCCGTGCTATGCACT -ACGGAATAAGCCGTGCTACTGACT -ACGGAATAAGCCGTGCTACAACCT -ACGGAATAAGCCGTGCTAGCTACT -ACGGAATAAGCCGTGCTAGGATCT -ACGGAATAAGCCGTGCTAAAGGCT -ACGGAATAAGCCGTGCTATCAACC -ACGGAATAAGCCGTGCTATGTTCC -ACGGAATAAGCCGTGCTAATTCCC -ACGGAATAAGCCGTGCTATTCTCG -ACGGAATAAGCCGTGCTATAGACG -ACGGAATAAGCCGTGCTAGTAACG -ACGGAATAAGCCGTGCTAACTTCG -ACGGAATAAGCCGTGCTATACGCA -ACGGAATAAGCCGTGCTACTTGCA -ACGGAATAAGCCGTGCTACGAACA -ACGGAATAAGCCGTGCTACAGTCA -ACGGAATAAGCCGTGCTAGATCCA -ACGGAATAAGCCGTGCTAACGACA -ACGGAATAAGCCGTGCTAAGCTCA -ACGGAATAAGCCGTGCTATCACGT -ACGGAATAAGCCGTGCTACGTAGT -ACGGAATAAGCCGTGCTAGTCAGT -ACGGAATAAGCCGTGCTAGAAGGT -ACGGAATAAGCCGTGCTAAACCGT -ACGGAATAAGCCGTGCTATTGTGC -ACGGAATAAGCCGTGCTACTAAGC -ACGGAATAAGCCGTGCTAACTAGC -ACGGAATAAGCCGTGCTAAGATGC -ACGGAATAAGCCGTGCTATGAAGG -ACGGAATAAGCCGTGCTACAATGG -ACGGAATAAGCCGTGCTAATGAGG -ACGGAATAAGCCGTGCTAAATGGG -ACGGAATAAGCCGTGCTATCCTGA -ACGGAATAAGCCGTGCTATAGCGA -ACGGAATAAGCCGTGCTACACAGA -ACGGAATAAGCCGTGCTAGCAAGA -ACGGAATAAGCCGTGCTAGGTTGA -ACGGAATAAGCCGTGCTATCCGAT -ACGGAATAAGCCGTGCTATGGCAT -ACGGAATAAGCCGTGCTACGAGAT -ACGGAATAAGCCGTGCTATACCAC -ACGGAATAAGCCGTGCTACAGAAC -ACGGAATAAGCCGTGCTAGTCTAC -ACGGAATAAGCCGTGCTAACGTAC -ACGGAATAAGCCGTGCTAAGTGAC -ACGGAATAAGCCGTGCTACTGTAG -ACGGAATAAGCCGTGCTACCTAAG -ACGGAATAAGCCGTGCTAGTTCAG -ACGGAATAAGCCGTGCTAGCATAG -ACGGAATAAGCCGTGCTAGACAAG -ACGGAATAAGCCGTGCTAAAGCAG -ACGGAATAAGCCGTGCTACGTCAA -ACGGAATAAGCCGTGCTAGCTGAA -ACGGAATAAGCCGTGCTAAGTACG -ACGGAATAAGCCGTGCTAATCCGA -ACGGAATAAGCCGTGCTAATGGGA -ACGGAATAAGCCGTGCTAGTGCAA -ACGGAATAAGCCGTGCTAGAGGAA -ACGGAATAAGCCGTGCTACAGGTA -ACGGAATAAGCCGTGCTAGACTCT -ACGGAATAAGCCGTGCTAAGTCCT -ACGGAATAAGCCGTGCTATAAGCC -ACGGAATAAGCCGTGCTAATAGCC -ACGGAATAAGCCGTGCTATAACCG -ACGGAATAAGCCGTGCTAATGCCA -ACGGAATAAGCCCTGCATGGAAAC -ACGGAATAAGCCCTGCATAACACC -ACGGAATAAGCCCTGCATATCGAG -ACGGAATAAGCCCTGCATCTCCTT -ACGGAATAAGCCCTGCATCCTGTT -ACGGAATAAGCCCTGCATCGGTTT -ACGGAATAAGCCCTGCATGTGGTT -ACGGAATAAGCCCTGCATGCCTTT -ACGGAATAAGCCCTGCATGGTCTT -ACGGAATAAGCCCTGCATACGCTT -ACGGAATAAGCCCTGCATAGCGTT -ACGGAATAAGCCCTGCATTTCGTC -ACGGAATAAGCCCTGCATTCTCTC -ACGGAATAAGCCCTGCATTGGATC -ACGGAATAAGCCCTGCATCACTTC -ACGGAATAAGCCCTGCATGTACTC -ACGGAATAAGCCCTGCATGATGTC -ACGGAATAAGCCCTGCATACAGTC -ACGGAATAAGCCCTGCATTTGCTG -ACGGAATAAGCCCTGCATTCCATG -ACGGAATAAGCCCTGCATTGTGTG -ACGGAATAAGCCCTGCATCTAGTG -ACGGAATAAGCCCTGCATCATCTG -ACGGAATAAGCCCTGCATGAGTTG -ACGGAATAAGCCCTGCATAGACTG -ACGGAATAAGCCCTGCATTCGGTA -ACGGAATAAGCCCTGCATTGCCTA -ACGGAATAAGCCCTGCATCCACTA -ACGGAATAAGCCCTGCATGGAGTA -ACGGAATAAGCCCTGCATTCGTCT -ACGGAATAAGCCCTGCATTGCACT -ACGGAATAAGCCCTGCATCTGACT -ACGGAATAAGCCCTGCATCAACCT -ACGGAATAAGCCCTGCATGCTACT -ACGGAATAAGCCCTGCATGGATCT -ACGGAATAAGCCCTGCATAAGGCT -ACGGAATAAGCCCTGCATTCAACC -ACGGAATAAGCCCTGCATTGTTCC -ACGGAATAAGCCCTGCATATTCCC -ACGGAATAAGCCCTGCATTTCTCG -ACGGAATAAGCCCTGCATTAGACG -ACGGAATAAGCCCTGCATGTAACG -ACGGAATAAGCCCTGCATACTTCG -ACGGAATAAGCCCTGCATTACGCA -ACGGAATAAGCCCTGCATCTTGCA -ACGGAATAAGCCCTGCATCGAACA -ACGGAATAAGCCCTGCATCAGTCA -ACGGAATAAGCCCTGCATGATCCA -ACGGAATAAGCCCTGCATACGACA -ACGGAATAAGCCCTGCATAGCTCA -ACGGAATAAGCCCTGCATTCACGT -ACGGAATAAGCCCTGCATCGTAGT -ACGGAATAAGCCCTGCATGTCAGT -ACGGAATAAGCCCTGCATGAAGGT -ACGGAATAAGCCCTGCATAACCGT -ACGGAATAAGCCCTGCATTTGTGC -ACGGAATAAGCCCTGCATCTAAGC -ACGGAATAAGCCCTGCATACTAGC -ACGGAATAAGCCCTGCATAGATGC -ACGGAATAAGCCCTGCATTGAAGG -ACGGAATAAGCCCTGCATCAATGG -ACGGAATAAGCCCTGCATATGAGG -ACGGAATAAGCCCTGCATAATGGG -ACGGAATAAGCCCTGCATTCCTGA -ACGGAATAAGCCCTGCATTAGCGA -ACGGAATAAGCCCTGCATCACAGA -ACGGAATAAGCCCTGCATGCAAGA -ACGGAATAAGCCCTGCATGGTTGA -ACGGAATAAGCCCTGCATTCCGAT -ACGGAATAAGCCCTGCATTGGCAT -ACGGAATAAGCCCTGCATCGAGAT -ACGGAATAAGCCCTGCATTACCAC -ACGGAATAAGCCCTGCATCAGAAC -ACGGAATAAGCCCTGCATGTCTAC -ACGGAATAAGCCCTGCATACGTAC -ACGGAATAAGCCCTGCATAGTGAC -ACGGAATAAGCCCTGCATCTGTAG -ACGGAATAAGCCCTGCATCCTAAG -ACGGAATAAGCCCTGCATGTTCAG -ACGGAATAAGCCCTGCATGCATAG -ACGGAATAAGCCCTGCATGACAAG -ACGGAATAAGCCCTGCATAAGCAG -ACGGAATAAGCCCTGCATCGTCAA -ACGGAATAAGCCCTGCATGCTGAA -ACGGAATAAGCCCTGCATAGTACG -ACGGAATAAGCCCTGCATATCCGA -ACGGAATAAGCCCTGCATATGGGA -ACGGAATAAGCCCTGCATGTGCAA -ACGGAATAAGCCCTGCATGAGGAA -ACGGAATAAGCCCTGCATCAGGTA -ACGGAATAAGCCCTGCATGACTCT -ACGGAATAAGCCCTGCATAGTCCT -ACGGAATAAGCCCTGCATTAAGCC -ACGGAATAAGCCCTGCATATAGCC -ACGGAATAAGCCCTGCATTAACCG -ACGGAATAAGCCCTGCATATGCCA -ACGGAATAAGCCTTGGAGGGAAAC -ACGGAATAAGCCTTGGAGAACACC -ACGGAATAAGCCTTGGAGATCGAG -ACGGAATAAGCCTTGGAGCTCCTT -ACGGAATAAGCCTTGGAGCCTGTT -ACGGAATAAGCCTTGGAGCGGTTT -ACGGAATAAGCCTTGGAGGTGGTT -ACGGAATAAGCCTTGGAGGCCTTT -ACGGAATAAGCCTTGGAGGGTCTT -ACGGAATAAGCCTTGGAGACGCTT -ACGGAATAAGCCTTGGAGAGCGTT -ACGGAATAAGCCTTGGAGTTCGTC -ACGGAATAAGCCTTGGAGTCTCTC -ACGGAATAAGCCTTGGAGTGGATC -ACGGAATAAGCCTTGGAGCACTTC -ACGGAATAAGCCTTGGAGGTACTC -ACGGAATAAGCCTTGGAGGATGTC -ACGGAATAAGCCTTGGAGACAGTC -ACGGAATAAGCCTTGGAGTTGCTG -ACGGAATAAGCCTTGGAGTCCATG -ACGGAATAAGCCTTGGAGTGTGTG -ACGGAATAAGCCTTGGAGCTAGTG -ACGGAATAAGCCTTGGAGCATCTG -ACGGAATAAGCCTTGGAGGAGTTG -ACGGAATAAGCCTTGGAGAGACTG -ACGGAATAAGCCTTGGAGTCGGTA -ACGGAATAAGCCTTGGAGTGCCTA -ACGGAATAAGCCTTGGAGCCACTA -ACGGAATAAGCCTTGGAGGGAGTA -ACGGAATAAGCCTTGGAGTCGTCT -ACGGAATAAGCCTTGGAGTGCACT -ACGGAATAAGCCTTGGAGCTGACT -ACGGAATAAGCCTTGGAGCAACCT -ACGGAATAAGCCTTGGAGGCTACT -ACGGAATAAGCCTTGGAGGGATCT -ACGGAATAAGCCTTGGAGAAGGCT -ACGGAATAAGCCTTGGAGTCAACC -ACGGAATAAGCCTTGGAGTGTTCC -ACGGAATAAGCCTTGGAGATTCCC -ACGGAATAAGCCTTGGAGTTCTCG -ACGGAATAAGCCTTGGAGTAGACG -ACGGAATAAGCCTTGGAGGTAACG -ACGGAATAAGCCTTGGAGACTTCG -ACGGAATAAGCCTTGGAGTACGCA -ACGGAATAAGCCTTGGAGCTTGCA -ACGGAATAAGCCTTGGAGCGAACA -ACGGAATAAGCCTTGGAGCAGTCA -ACGGAATAAGCCTTGGAGGATCCA -ACGGAATAAGCCTTGGAGACGACA -ACGGAATAAGCCTTGGAGAGCTCA -ACGGAATAAGCCTTGGAGTCACGT -ACGGAATAAGCCTTGGAGCGTAGT -ACGGAATAAGCCTTGGAGGTCAGT -ACGGAATAAGCCTTGGAGGAAGGT -ACGGAATAAGCCTTGGAGAACCGT -ACGGAATAAGCCTTGGAGTTGTGC -ACGGAATAAGCCTTGGAGCTAAGC -ACGGAATAAGCCTTGGAGACTAGC -ACGGAATAAGCCTTGGAGAGATGC -ACGGAATAAGCCTTGGAGTGAAGG -ACGGAATAAGCCTTGGAGCAATGG -ACGGAATAAGCCTTGGAGATGAGG -ACGGAATAAGCCTTGGAGAATGGG -ACGGAATAAGCCTTGGAGTCCTGA -ACGGAATAAGCCTTGGAGTAGCGA -ACGGAATAAGCCTTGGAGCACAGA -ACGGAATAAGCCTTGGAGGCAAGA -ACGGAATAAGCCTTGGAGGGTTGA -ACGGAATAAGCCTTGGAGTCCGAT -ACGGAATAAGCCTTGGAGTGGCAT -ACGGAATAAGCCTTGGAGCGAGAT -ACGGAATAAGCCTTGGAGTACCAC -ACGGAATAAGCCTTGGAGCAGAAC -ACGGAATAAGCCTTGGAGGTCTAC -ACGGAATAAGCCTTGGAGACGTAC -ACGGAATAAGCCTTGGAGAGTGAC -ACGGAATAAGCCTTGGAGCTGTAG -ACGGAATAAGCCTTGGAGCCTAAG -ACGGAATAAGCCTTGGAGGTTCAG -ACGGAATAAGCCTTGGAGGCATAG -ACGGAATAAGCCTTGGAGGACAAG -ACGGAATAAGCCTTGGAGAAGCAG -ACGGAATAAGCCTTGGAGCGTCAA -ACGGAATAAGCCTTGGAGGCTGAA -ACGGAATAAGCCTTGGAGAGTACG -ACGGAATAAGCCTTGGAGATCCGA -ACGGAATAAGCCTTGGAGATGGGA -ACGGAATAAGCCTTGGAGGTGCAA -ACGGAATAAGCCTTGGAGGAGGAA -ACGGAATAAGCCTTGGAGCAGGTA -ACGGAATAAGCCTTGGAGGACTCT -ACGGAATAAGCCTTGGAGAGTCCT -ACGGAATAAGCCTTGGAGTAAGCC -ACGGAATAAGCCTTGGAGATAGCC -ACGGAATAAGCCTTGGAGTAACCG -ACGGAATAAGCCTTGGAGATGCCA -ACGGAATAAGCCCTGAGAGGAAAC -ACGGAATAAGCCCTGAGAAACACC -ACGGAATAAGCCCTGAGAATCGAG -ACGGAATAAGCCCTGAGACTCCTT -ACGGAATAAGCCCTGAGACCTGTT -ACGGAATAAGCCCTGAGACGGTTT -ACGGAATAAGCCCTGAGAGTGGTT -ACGGAATAAGCCCTGAGAGCCTTT -ACGGAATAAGCCCTGAGAGGTCTT -ACGGAATAAGCCCTGAGAACGCTT -ACGGAATAAGCCCTGAGAAGCGTT -ACGGAATAAGCCCTGAGATTCGTC -ACGGAATAAGCCCTGAGATCTCTC -ACGGAATAAGCCCTGAGATGGATC -ACGGAATAAGCCCTGAGACACTTC -ACGGAATAAGCCCTGAGAGTACTC -ACGGAATAAGCCCTGAGAGATGTC -ACGGAATAAGCCCTGAGAACAGTC -ACGGAATAAGCCCTGAGATTGCTG -ACGGAATAAGCCCTGAGATCCATG -ACGGAATAAGCCCTGAGATGTGTG -ACGGAATAAGCCCTGAGACTAGTG -ACGGAATAAGCCCTGAGACATCTG -ACGGAATAAGCCCTGAGAGAGTTG -ACGGAATAAGCCCTGAGAAGACTG -ACGGAATAAGCCCTGAGATCGGTA -ACGGAATAAGCCCTGAGATGCCTA -ACGGAATAAGCCCTGAGACCACTA -ACGGAATAAGCCCTGAGAGGAGTA -ACGGAATAAGCCCTGAGATCGTCT -ACGGAATAAGCCCTGAGATGCACT -ACGGAATAAGCCCTGAGACTGACT -ACGGAATAAGCCCTGAGACAACCT -ACGGAATAAGCCCTGAGAGCTACT -ACGGAATAAGCCCTGAGAGGATCT -ACGGAATAAGCCCTGAGAAAGGCT -ACGGAATAAGCCCTGAGATCAACC -ACGGAATAAGCCCTGAGATGTTCC -ACGGAATAAGCCCTGAGAATTCCC -ACGGAATAAGCCCTGAGATTCTCG -ACGGAATAAGCCCTGAGATAGACG -ACGGAATAAGCCCTGAGAGTAACG -ACGGAATAAGCCCTGAGAACTTCG -ACGGAATAAGCCCTGAGATACGCA -ACGGAATAAGCCCTGAGACTTGCA -ACGGAATAAGCCCTGAGACGAACA -ACGGAATAAGCCCTGAGACAGTCA -ACGGAATAAGCCCTGAGAGATCCA -ACGGAATAAGCCCTGAGAACGACA -ACGGAATAAGCCCTGAGAAGCTCA -ACGGAATAAGCCCTGAGATCACGT -ACGGAATAAGCCCTGAGACGTAGT -ACGGAATAAGCCCTGAGAGTCAGT -ACGGAATAAGCCCTGAGAGAAGGT -ACGGAATAAGCCCTGAGAAACCGT -ACGGAATAAGCCCTGAGATTGTGC -ACGGAATAAGCCCTGAGACTAAGC -ACGGAATAAGCCCTGAGAACTAGC -ACGGAATAAGCCCTGAGAAGATGC -ACGGAATAAGCCCTGAGATGAAGG -ACGGAATAAGCCCTGAGACAATGG -ACGGAATAAGCCCTGAGAATGAGG -ACGGAATAAGCCCTGAGAAATGGG -ACGGAATAAGCCCTGAGATCCTGA -ACGGAATAAGCCCTGAGATAGCGA -ACGGAATAAGCCCTGAGACACAGA -ACGGAATAAGCCCTGAGAGCAAGA -ACGGAATAAGCCCTGAGAGGTTGA -ACGGAATAAGCCCTGAGATCCGAT -ACGGAATAAGCCCTGAGATGGCAT -ACGGAATAAGCCCTGAGACGAGAT -ACGGAATAAGCCCTGAGATACCAC -ACGGAATAAGCCCTGAGACAGAAC -ACGGAATAAGCCCTGAGAGTCTAC -ACGGAATAAGCCCTGAGAACGTAC -ACGGAATAAGCCCTGAGAAGTGAC -ACGGAATAAGCCCTGAGACTGTAG -ACGGAATAAGCCCTGAGACCTAAG -ACGGAATAAGCCCTGAGAGTTCAG -ACGGAATAAGCCCTGAGAGCATAG -ACGGAATAAGCCCTGAGAGACAAG -ACGGAATAAGCCCTGAGAAAGCAG -ACGGAATAAGCCCTGAGACGTCAA -ACGGAATAAGCCCTGAGAGCTGAA -ACGGAATAAGCCCTGAGAAGTACG -ACGGAATAAGCCCTGAGAATCCGA -ACGGAATAAGCCCTGAGAATGGGA -ACGGAATAAGCCCTGAGAGTGCAA -ACGGAATAAGCCCTGAGAGAGGAA -ACGGAATAAGCCCTGAGACAGGTA -ACGGAATAAGCCCTGAGAGACTCT -ACGGAATAAGCCCTGAGAAGTCCT -ACGGAATAAGCCCTGAGATAAGCC -ACGGAATAAGCCCTGAGAATAGCC -ACGGAATAAGCCCTGAGATAACCG -ACGGAATAAGCCCTGAGAATGCCA -ACGGAATAAGCCGTATCGGGAAAC -ACGGAATAAGCCGTATCGAACACC -ACGGAATAAGCCGTATCGATCGAG -ACGGAATAAGCCGTATCGCTCCTT -ACGGAATAAGCCGTATCGCCTGTT -ACGGAATAAGCCGTATCGCGGTTT -ACGGAATAAGCCGTATCGGTGGTT -ACGGAATAAGCCGTATCGGCCTTT -ACGGAATAAGCCGTATCGGGTCTT -ACGGAATAAGCCGTATCGACGCTT -ACGGAATAAGCCGTATCGAGCGTT -ACGGAATAAGCCGTATCGTTCGTC -ACGGAATAAGCCGTATCGTCTCTC -ACGGAATAAGCCGTATCGTGGATC -ACGGAATAAGCCGTATCGCACTTC -ACGGAATAAGCCGTATCGGTACTC -ACGGAATAAGCCGTATCGGATGTC -ACGGAATAAGCCGTATCGACAGTC -ACGGAATAAGCCGTATCGTTGCTG -ACGGAATAAGCCGTATCGTCCATG -ACGGAATAAGCCGTATCGTGTGTG -ACGGAATAAGCCGTATCGCTAGTG -ACGGAATAAGCCGTATCGCATCTG -ACGGAATAAGCCGTATCGGAGTTG -ACGGAATAAGCCGTATCGAGACTG -ACGGAATAAGCCGTATCGTCGGTA -ACGGAATAAGCCGTATCGTGCCTA -ACGGAATAAGCCGTATCGCCACTA -ACGGAATAAGCCGTATCGGGAGTA -ACGGAATAAGCCGTATCGTCGTCT -ACGGAATAAGCCGTATCGTGCACT -ACGGAATAAGCCGTATCGCTGACT -ACGGAATAAGCCGTATCGCAACCT -ACGGAATAAGCCGTATCGGCTACT -ACGGAATAAGCCGTATCGGGATCT -ACGGAATAAGCCGTATCGAAGGCT -ACGGAATAAGCCGTATCGTCAACC -ACGGAATAAGCCGTATCGTGTTCC -ACGGAATAAGCCGTATCGATTCCC -ACGGAATAAGCCGTATCGTTCTCG -ACGGAATAAGCCGTATCGTAGACG -ACGGAATAAGCCGTATCGGTAACG -ACGGAATAAGCCGTATCGACTTCG -ACGGAATAAGCCGTATCGTACGCA -ACGGAATAAGCCGTATCGCTTGCA -ACGGAATAAGCCGTATCGCGAACA -ACGGAATAAGCCGTATCGCAGTCA -ACGGAATAAGCCGTATCGGATCCA -ACGGAATAAGCCGTATCGACGACA -ACGGAATAAGCCGTATCGAGCTCA -ACGGAATAAGCCGTATCGTCACGT -ACGGAATAAGCCGTATCGCGTAGT -ACGGAATAAGCCGTATCGGTCAGT -ACGGAATAAGCCGTATCGGAAGGT -ACGGAATAAGCCGTATCGAACCGT -ACGGAATAAGCCGTATCGTTGTGC -ACGGAATAAGCCGTATCGCTAAGC -ACGGAATAAGCCGTATCGACTAGC -ACGGAATAAGCCGTATCGAGATGC -ACGGAATAAGCCGTATCGTGAAGG -ACGGAATAAGCCGTATCGCAATGG -ACGGAATAAGCCGTATCGATGAGG -ACGGAATAAGCCGTATCGAATGGG -ACGGAATAAGCCGTATCGTCCTGA -ACGGAATAAGCCGTATCGTAGCGA -ACGGAATAAGCCGTATCGCACAGA -ACGGAATAAGCCGTATCGGCAAGA -ACGGAATAAGCCGTATCGGGTTGA -ACGGAATAAGCCGTATCGTCCGAT -ACGGAATAAGCCGTATCGTGGCAT -ACGGAATAAGCCGTATCGCGAGAT -ACGGAATAAGCCGTATCGTACCAC -ACGGAATAAGCCGTATCGCAGAAC -ACGGAATAAGCCGTATCGGTCTAC -ACGGAATAAGCCGTATCGACGTAC -ACGGAATAAGCCGTATCGAGTGAC -ACGGAATAAGCCGTATCGCTGTAG -ACGGAATAAGCCGTATCGCCTAAG -ACGGAATAAGCCGTATCGGTTCAG -ACGGAATAAGCCGTATCGGCATAG -ACGGAATAAGCCGTATCGGACAAG -ACGGAATAAGCCGTATCGAAGCAG -ACGGAATAAGCCGTATCGCGTCAA -ACGGAATAAGCCGTATCGGCTGAA -ACGGAATAAGCCGTATCGAGTACG -ACGGAATAAGCCGTATCGATCCGA -ACGGAATAAGCCGTATCGATGGGA -ACGGAATAAGCCGTATCGGTGCAA -ACGGAATAAGCCGTATCGGAGGAA -ACGGAATAAGCCGTATCGCAGGTA -ACGGAATAAGCCGTATCGGACTCT -ACGGAATAAGCCGTATCGAGTCCT -ACGGAATAAGCCGTATCGTAAGCC -ACGGAATAAGCCGTATCGATAGCC -ACGGAATAAGCCGTATCGTAACCG -ACGGAATAAGCCGTATCGATGCCA -ACGGAATAAGCCCTATGCGGAAAC -ACGGAATAAGCCCTATGCAACACC -ACGGAATAAGCCCTATGCATCGAG -ACGGAATAAGCCCTATGCCTCCTT -ACGGAATAAGCCCTATGCCCTGTT -ACGGAATAAGCCCTATGCCGGTTT -ACGGAATAAGCCCTATGCGTGGTT -ACGGAATAAGCCCTATGCGCCTTT -ACGGAATAAGCCCTATGCGGTCTT -ACGGAATAAGCCCTATGCACGCTT -ACGGAATAAGCCCTATGCAGCGTT -ACGGAATAAGCCCTATGCTTCGTC -ACGGAATAAGCCCTATGCTCTCTC -ACGGAATAAGCCCTATGCTGGATC -ACGGAATAAGCCCTATGCCACTTC -ACGGAATAAGCCCTATGCGTACTC -ACGGAATAAGCCCTATGCGATGTC -ACGGAATAAGCCCTATGCACAGTC -ACGGAATAAGCCCTATGCTTGCTG -ACGGAATAAGCCCTATGCTCCATG -ACGGAATAAGCCCTATGCTGTGTG -ACGGAATAAGCCCTATGCCTAGTG -ACGGAATAAGCCCTATGCCATCTG -ACGGAATAAGCCCTATGCGAGTTG -ACGGAATAAGCCCTATGCAGACTG -ACGGAATAAGCCCTATGCTCGGTA -ACGGAATAAGCCCTATGCTGCCTA -ACGGAATAAGCCCTATGCCCACTA -ACGGAATAAGCCCTATGCGGAGTA -ACGGAATAAGCCCTATGCTCGTCT -ACGGAATAAGCCCTATGCTGCACT -ACGGAATAAGCCCTATGCCTGACT -ACGGAATAAGCCCTATGCCAACCT -ACGGAATAAGCCCTATGCGCTACT -ACGGAATAAGCCCTATGCGGATCT -ACGGAATAAGCCCTATGCAAGGCT -ACGGAATAAGCCCTATGCTCAACC -ACGGAATAAGCCCTATGCTGTTCC -ACGGAATAAGCCCTATGCATTCCC -ACGGAATAAGCCCTATGCTTCTCG -ACGGAATAAGCCCTATGCTAGACG -ACGGAATAAGCCCTATGCGTAACG -ACGGAATAAGCCCTATGCACTTCG -ACGGAATAAGCCCTATGCTACGCA -ACGGAATAAGCCCTATGCCTTGCA -ACGGAATAAGCCCTATGCCGAACA -ACGGAATAAGCCCTATGCCAGTCA -ACGGAATAAGCCCTATGCGATCCA -ACGGAATAAGCCCTATGCACGACA -ACGGAATAAGCCCTATGCAGCTCA -ACGGAATAAGCCCTATGCTCACGT -ACGGAATAAGCCCTATGCCGTAGT -ACGGAATAAGCCCTATGCGTCAGT -ACGGAATAAGCCCTATGCGAAGGT -ACGGAATAAGCCCTATGCAACCGT -ACGGAATAAGCCCTATGCTTGTGC -ACGGAATAAGCCCTATGCCTAAGC -ACGGAATAAGCCCTATGCACTAGC -ACGGAATAAGCCCTATGCAGATGC -ACGGAATAAGCCCTATGCTGAAGG -ACGGAATAAGCCCTATGCCAATGG -ACGGAATAAGCCCTATGCATGAGG -ACGGAATAAGCCCTATGCAATGGG -ACGGAATAAGCCCTATGCTCCTGA -ACGGAATAAGCCCTATGCTAGCGA -ACGGAATAAGCCCTATGCCACAGA -ACGGAATAAGCCCTATGCGCAAGA -ACGGAATAAGCCCTATGCGGTTGA -ACGGAATAAGCCCTATGCTCCGAT -ACGGAATAAGCCCTATGCTGGCAT -ACGGAATAAGCCCTATGCCGAGAT -ACGGAATAAGCCCTATGCTACCAC -ACGGAATAAGCCCTATGCCAGAAC -ACGGAATAAGCCCTATGCGTCTAC -ACGGAATAAGCCCTATGCACGTAC -ACGGAATAAGCCCTATGCAGTGAC -ACGGAATAAGCCCTATGCCTGTAG -ACGGAATAAGCCCTATGCCCTAAG -ACGGAATAAGCCCTATGCGTTCAG -ACGGAATAAGCCCTATGCGCATAG -ACGGAATAAGCCCTATGCGACAAG -ACGGAATAAGCCCTATGCAAGCAG -ACGGAATAAGCCCTATGCCGTCAA -ACGGAATAAGCCCTATGCGCTGAA -ACGGAATAAGCCCTATGCAGTACG -ACGGAATAAGCCCTATGCATCCGA -ACGGAATAAGCCCTATGCATGGGA -ACGGAATAAGCCCTATGCGTGCAA -ACGGAATAAGCCCTATGCGAGGAA -ACGGAATAAGCCCTATGCCAGGTA -ACGGAATAAGCCCTATGCGACTCT -ACGGAATAAGCCCTATGCAGTCCT -ACGGAATAAGCCCTATGCTAAGCC -ACGGAATAAGCCCTATGCATAGCC -ACGGAATAAGCCCTATGCTAACCG -ACGGAATAAGCCCTATGCATGCCA -ACGGAATAAGCCCTACCAGGAAAC -ACGGAATAAGCCCTACCAAACACC -ACGGAATAAGCCCTACCAATCGAG -ACGGAATAAGCCCTACCACTCCTT -ACGGAATAAGCCCTACCACCTGTT -ACGGAATAAGCCCTACCACGGTTT -ACGGAATAAGCCCTACCAGTGGTT -ACGGAATAAGCCCTACCAGCCTTT -ACGGAATAAGCCCTACCAGGTCTT -ACGGAATAAGCCCTACCAACGCTT -ACGGAATAAGCCCTACCAAGCGTT -ACGGAATAAGCCCTACCATTCGTC -ACGGAATAAGCCCTACCATCTCTC -ACGGAATAAGCCCTACCATGGATC -ACGGAATAAGCCCTACCACACTTC -ACGGAATAAGCCCTACCAGTACTC -ACGGAATAAGCCCTACCAGATGTC -ACGGAATAAGCCCTACCAACAGTC -ACGGAATAAGCCCTACCATTGCTG -ACGGAATAAGCCCTACCATCCATG -ACGGAATAAGCCCTACCATGTGTG -ACGGAATAAGCCCTACCACTAGTG -ACGGAATAAGCCCTACCACATCTG -ACGGAATAAGCCCTACCAGAGTTG -ACGGAATAAGCCCTACCAAGACTG -ACGGAATAAGCCCTACCATCGGTA -ACGGAATAAGCCCTACCATGCCTA -ACGGAATAAGCCCTACCACCACTA -ACGGAATAAGCCCTACCAGGAGTA -ACGGAATAAGCCCTACCATCGTCT -ACGGAATAAGCCCTACCATGCACT -ACGGAATAAGCCCTACCACTGACT -ACGGAATAAGCCCTACCACAACCT -ACGGAATAAGCCCTACCAGCTACT -ACGGAATAAGCCCTACCAGGATCT -ACGGAATAAGCCCTACCAAAGGCT -ACGGAATAAGCCCTACCATCAACC -ACGGAATAAGCCCTACCATGTTCC -ACGGAATAAGCCCTACCAATTCCC -ACGGAATAAGCCCTACCATTCTCG -ACGGAATAAGCCCTACCATAGACG -ACGGAATAAGCCCTACCAGTAACG -ACGGAATAAGCCCTACCAACTTCG -ACGGAATAAGCCCTACCATACGCA -ACGGAATAAGCCCTACCACTTGCA -ACGGAATAAGCCCTACCACGAACA -ACGGAATAAGCCCTACCACAGTCA -ACGGAATAAGCCCTACCAGATCCA -ACGGAATAAGCCCTACCAACGACA -ACGGAATAAGCCCTACCAAGCTCA -ACGGAATAAGCCCTACCATCACGT -ACGGAATAAGCCCTACCACGTAGT -ACGGAATAAGCCCTACCAGTCAGT -ACGGAATAAGCCCTACCAGAAGGT -ACGGAATAAGCCCTACCAAACCGT -ACGGAATAAGCCCTACCATTGTGC -ACGGAATAAGCCCTACCACTAAGC -ACGGAATAAGCCCTACCAACTAGC -ACGGAATAAGCCCTACCAAGATGC -ACGGAATAAGCCCTACCATGAAGG -ACGGAATAAGCCCTACCACAATGG -ACGGAATAAGCCCTACCAATGAGG -ACGGAATAAGCCCTACCAAATGGG -ACGGAATAAGCCCTACCATCCTGA -ACGGAATAAGCCCTACCATAGCGA -ACGGAATAAGCCCTACCACACAGA -ACGGAATAAGCCCTACCAGCAAGA -ACGGAATAAGCCCTACCAGGTTGA -ACGGAATAAGCCCTACCATCCGAT -ACGGAATAAGCCCTACCATGGCAT -ACGGAATAAGCCCTACCACGAGAT -ACGGAATAAGCCCTACCATACCAC -ACGGAATAAGCCCTACCACAGAAC -ACGGAATAAGCCCTACCAGTCTAC -ACGGAATAAGCCCTACCAACGTAC -ACGGAATAAGCCCTACCAAGTGAC -ACGGAATAAGCCCTACCACTGTAG -ACGGAATAAGCCCTACCACCTAAG -ACGGAATAAGCCCTACCAGTTCAG -ACGGAATAAGCCCTACCAGCATAG -ACGGAATAAGCCCTACCAGACAAG -ACGGAATAAGCCCTACCAAAGCAG -ACGGAATAAGCCCTACCACGTCAA -ACGGAATAAGCCCTACCAGCTGAA -ACGGAATAAGCCCTACCAAGTACG -ACGGAATAAGCCCTACCAATCCGA -ACGGAATAAGCCCTACCAATGGGA -ACGGAATAAGCCCTACCAGTGCAA -ACGGAATAAGCCCTACCAGAGGAA -ACGGAATAAGCCCTACCACAGGTA -ACGGAATAAGCCCTACCAGACTCT -ACGGAATAAGCCCTACCAAGTCCT -ACGGAATAAGCCCTACCATAAGCC -ACGGAATAAGCCCTACCAATAGCC -ACGGAATAAGCCCTACCATAACCG -ACGGAATAAGCCCTACCAATGCCA -ACGGAATAAGCCGTAGGAGGAAAC -ACGGAATAAGCCGTAGGAAACACC -ACGGAATAAGCCGTAGGAATCGAG -ACGGAATAAGCCGTAGGACTCCTT -ACGGAATAAGCCGTAGGACCTGTT -ACGGAATAAGCCGTAGGACGGTTT -ACGGAATAAGCCGTAGGAGTGGTT -ACGGAATAAGCCGTAGGAGCCTTT -ACGGAATAAGCCGTAGGAGGTCTT -ACGGAATAAGCCGTAGGAACGCTT -ACGGAATAAGCCGTAGGAAGCGTT -ACGGAATAAGCCGTAGGATTCGTC -ACGGAATAAGCCGTAGGATCTCTC -ACGGAATAAGCCGTAGGATGGATC -ACGGAATAAGCCGTAGGACACTTC -ACGGAATAAGCCGTAGGAGTACTC -ACGGAATAAGCCGTAGGAGATGTC -ACGGAATAAGCCGTAGGAACAGTC -ACGGAATAAGCCGTAGGATTGCTG -ACGGAATAAGCCGTAGGATCCATG -ACGGAATAAGCCGTAGGATGTGTG -ACGGAATAAGCCGTAGGACTAGTG -ACGGAATAAGCCGTAGGACATCTG -ACGGAATAAGCCGTAGGAGAGTTG -ACGGAATAAGCCGTAGGAAGACTG -ACGGAATAAGCCGTAGGATCGGTA -ACGGAATAAGCCGTAGGATGCCTA -ACGGAATAAGCCGTAGGACCACTA -ACGGAATAAGCCGTAGGAGGAGTA -ACGGAATAAGCCGTAGGATCGTCT -ACGGAATAAGCCGTAGGATGCACT -ACGGAATAAGCCGTAGGACTGACT -ACGGAATAAGCCGTAGGACAACCT -ACGGAATAAGCCGTAGGAGCTACT -ACGGAATAAGCCGTAGGAGGATCT -ACGGAATAAGCCGTAGGAAAGGCT -ACGGAATAAGCCGTAGGATCAACC -ACGGAATAAGCCGTAGGATGTTCC -ACGGAATAAGCCGTAGGAATTCCC -ACGGAATAAGCCGTAGGATTCTCG -ACGGAATAAGCCGTAGGATAGACG -ACGGAATAAGCCGTAGGAGTAACG -ACGGAATAAGCCGTAGGAACTTCG -ACGGAATAAGCCGTAGGATACGCA -ACGGAATAAGCCGTAGGACTTGCA -ACGGAATAAGCCGTAGGACGAACA -ACGGAATAAGCCGTAGGACAGTCA -ACGGAATAAGCCGTAGGAGATCCA -ACGGAATAAGCCGTAGGAACGACA -ACGGAATAAGCCGTAGGAAGCTCA -ACGGAATAAGCCGTAGGATCACGT -ACGGAATAAGCCGTAGGACGTAGT -ACGGAATAAGCCGTAGGAGTCAGT -ACGGAATAAGCCGTAGGAGAAGGT -ACGGAATAAGCCGTAGGAAACCGT -ACGGAATAAGCCGTAGGATTGTGC -ACGGAATAAGCCGTAGGACTAAGC -ACGGAATAAGCCGTAGGAACTAGC -ACGGAATAAGCCGTAGGAAGATGC -ACGGAATAAGCCGTAGGATGAAGG -ACGGAATAAGCCGTAGGACAATGG -ACGGAATAAGCCGTAGGAATGAGG -ACGGAATAAGCCGTAGGAAATGGG -ACGGAATAAGCCGTAGGATCCTGA -ACGGAATAAGCCGTAGGATAGCGA -ACGGAATAAGCCGTAGGACACAGA -ACGGAATAAGCCGTAGGAGCAAGA -ACGGAATAAGCCGTAGGAGGTTGA -ACGGAATAAGCCGTAGGATCCGAT -ACGGAATAAGCCGTAGGATGGCAT -ACGGAATAAGCCGTAGGACGAGAT -ACGGAATAAGCCGTAGGATACCAC -ACGGAATAAGCCGTAGGACAGAAC -ACGGAATAAGCCGTAGGAGTCTAC -ACGGAATAAGCCGTAGGAACGTAC -ACGGAATAAGCCGTAGGAAGTGAC -ACGGAATAAGCCGTAGGACTGTAG -ACGGAATAAGCCGTAGGACCTAAG -ACGGAATAAGCCGTAGGAGTTCAG -ACGGAATAAGCCGTAGGAGCATAG -ACGGAATAAGCCGTAGGAGACAAG -ACGGAATAAGCCGTAGGAAAGCAG -ACGGAATAAGCCGTAGGACGTCAA -ACGGAATAAGCCGTAGGAGCTGAA -ACGGAATAAGCCGTAGGAAGTACG -ACGGAATAAGCCGTAGGAATCCGA -ACGGAATAAGCCGTAGGAATGGGA -ACGGAATAAGCCGTAGGAGTGCAA -ACGGAATAAGCCGTAGGAGAGGAA -ACGGAATAAGCCGTAGGACAGGTA -ACGGAATAAGCCGTAGGAGACTCT -ACGGAATAAGCCGTAGGAAGTCCT -ACGGAATAAGCCGTAGGATAAGCC -ACGGAATAAGCCGTAGGAATAGCC -ACGGAATAAGCCGTAGGATAACCG -ACGGAATAAGCCGTAGGAATGCCA -ACGGAATAAGCCTCTTCGGGAAAC -ACGGAATAAGCCTCTTCGAACACC -ACGGAATAAGCCTCTTCGATCGAG -ACGGAATAAGCCTCTTCGCTCCTT -ACGGAATAAGCCTCTTCGCCTGTT -ACGGAATAAGCCTCTTCGCGGTTT -ACGGAATAAGCCTCTTCGGTGGTT -ACGGAATAAGCCTCTTCGGCCTTT -ACGGAATAAGCCTCTTCGGGTCTT -ACGGAATAAGCCTCTTCGACGCTT -ACGGAATAAGCCTCTTCGAGCGTT -ACGGAATAAGCCTCTTCGTTCGTC -ACGGAATAAGCCTCTTCGTCTCTC -ACGGAATAAGCCTCTTCGTGGATC -ACGGAATAAGCCTCTTCGCACTTC -ACGGAATAAGCCTCTTCGGTACTC -ACGGAATAAGCCTCTTCGGATGTC -ACGGAATAAGCCTCTTCGACAGTC -ACGGAATAAGCCTCTTCGTTGCTG -ACGGAATAAGCCTCTTCGTCCATG -ACGGAATAAGCCTCTTCGTGTGTG -ACGGAATAAGCCTCTTCGCTAGTG -ACGGAATAAGCCTCTTCGCATCTG -ACGGAATAAGCCTCTTCGGAGTTG -ACGGAATAAGCCTCTTCGAGACTG -ACGGAATAAGCCTCTTCGTCGGTA -ACGGAATAAGCCTCTTCGTGCCTA -ACGGAATAAGCCTCTTCGCCACTA -ACGGAATAAGCCTCTTCGGGAGTA -ACGGAATAAGCCTCTTCGTCGTCT -ACGGAATAAGCCTCTTCGTGCACT -ACGGAATAAGCCTCTTCGCTGACT -ACGGAATAAGCCTCTTCGCAACCT -ACGGAATAAGCCTCTTCGGCTACT -ACGGAATAAGCCTCTTCGGGATCT -ACGGAATAAGCCTCTTCGAAGGCT -ACGGAATAAGCCTCTTCGTCAACC -ACGGAATAAGCCTCTTCGTGTTCC -ACGGAATAAGCCTCTTCGATTCCC -ACGGAATAAGCCTCTTCGTTCTCG -ACGGAATAAGCCTCTTCGTAGACG -ACGGAATAAGCCTCTTCGGTAACG -ACGGAATAAGCCTCTTCGACTTCG -ACGGAATAAGCCTCTTCGTACGCA -ACGGAATAAGCCTCTTCGCTTGCA -ACGGAATAAGCCTCTTCGCGAACA -ACGGAATAAGCCTCTTCGCAGTCA -ACGGAATAAGCCTCTTCGGATCCA -ACGGAATAAGCCTCTTCGACGACA -ACGGAATAAGCCTCTTCGAGCTCA -ACGGAATAAGCCTCTTCGTCACGT -ACGGAATAAGCCTCTTCGCGTAGT -ACGGAATAAGCCTCTTCGGTCAGT -ACGGAATAAGCCTCTTCGGAAGGT -ACGGAATAAGCCTCTTCGAACCGT -ACGGAATAAGCCTCTTCGTTGTGC -ACGGAATAAGCCTCTTCGCTAAGC -ACGGAATAAGCCTCTTCGACTAGC -ACGGAATAAGCCTCTTCGAGATGC -ACGGAATAAGCCTCTTCGTGAAGG -ACGGAATAAGCCTCTTCGCAATGG -ACGGAATAAGCCTCTTCGATGAGG -ACGGAATAAGCCTCTTCGAATGGG -ACGGAATAAGCCTCTTCGTCCTGA -ACGGAATAAGCCTCTTCGTAGCGA -ACGGAATAAGCCTCTTCGCACAGA -ACGGAATAAGCCTCTTCGGCAAGA -ACGGAATAAGCCTCTTCGGGTTGA -ACGGAATAAGCCTCTTCGTCCGAT -ACGGAATAAGCCTCTTCGTGGCAT -ACGGAATAAGCCTCTTCGCGAGAT -ACGGAATAAGCCTCTTCGTACCAC -ACGGAATAAGCCTCTTCGCAGAAC -ACGGAATAAGCCTCTTCGGTCTAC -ACGGAATAAGCCTCTTCGACGTAC -ACGGAATAAGCCTCTTCGAGTGAC -ACGGAATAAGCCTCTTCGCTGTAG -ACGGAATAAGCCTCTTCGCCTAAG -ACGGAATAAGCCTCTTCGGTTCAG -ACGGAATAAGCCTCTTCGGCATAG -ACGGAATAAGCCTCTTCGGACAAG -ACGGAATAAGCCTCTTCGAAGCAG -ACGGAATAAGCCTCTTCGCGTCAA -ACGGAATAAGCCTCTTCGGCTGAA -ACGGAATAAGCCTCTTCGAGTACG -ACGGAATAAGCCTCTTCGATCCGA -ACGGAATAAGCCTCTTCGATGGGA -ACGGAATAAGCCTCTTCGGTGCAA -ACGGAATAAGCCTCTTCGGAGGAA -ACGGAATAAGCCTCTTCGCAGGTA -ACGGAATAAGCCTCTTCGGACTCT -ACGGAATAAGCCTCTTCGAGTCCT -ACGGAATAAGCCTCTTCGTAAGCC -ACGGAATAAGCCTCTTCGATAGCC -ACGGAATAAGCCTCTTCGTAACCG -ACGGAATAAGCCTCTTCGATGCCA -ACGGAATAAGCCACTTGCGGAAAC -ACGGAATAAGCCACTTGCAACACC -ACGGAATAAGCCACTTGCATCGAG -ACGGAATAAGCCACTTGCCTCCTT -ACGGAATAAGCCACTTGCCCTGTT -ACGGAATAAGCCACTTGCCGGTTT -ACGGAATAAGCCACTTGCGTGGTT -ACGGAATAAGCCACTTGCGCCTTT -ACGGAATAAGCCACTTGCGGTCTT -ACGGAATAAGCCACTTGCACGCTT -ACGGAATAAGCCACTTGCAGCGTT -ACGGAATAAGCCACTTGCTTCGTC -ACGGAATAAGCCACTTGCTCTCTC -ACGGAATAAGCCACTTGCTGGATC -ACGGAATAAGCCACTTGCCACTTC -ACGGAATAAGCCACTTGCGTACTC -ACGGAATAAGCCACTTGCGATGTC -ACGGAATAAGCCACTTGCACAGTC -ACGGAATAAGCCACTTGCTTGCTG -ACGGAATAAGCCACTTGCTCCATG -ACGGAATAAGCCACTTGCTGTGTG -ACGGAATAAGCCACTTGCCTAGTG -ACGGAATAAGCCACTTGCCATCTG -ACGGAATAAGCCACTTGCGAGTTG -ACGGAATAAGCCACTTGCAGACTG -ACGGAATAAGCCACTTGCTCGGTA -ACGGAATAAGCCACTTGCTGCCTA -ACGGAATAAGCCACTTGCCCACTA -ACGGAATAAGCCACTTGCGGAGTA -ACGGAATAAGCCACTTGCTCGTCT -ACGGAATAAGCCACTTGCTGCACT -ACGGAATAAGCCACTTGCCTGACT -ACGGAATAAGCCACTTGCCAACCT -ACGGAATAAGCCACTTGCGCTACT -ACGGAATAAGCCACTTGCGGATCT -ACGGAATAAGCCACTTGCAAGGCT -ACGGAATAAGCCACTTGCTCAACC -ACGGAATAAGCCACTTGCTGTTCC -ACGGAATAAGCCACTTGCATTCCC -ACGGAATAAGCCACTTGCTTCTCG -ACGGAATAAGCCACTTGCTAGACG -ACGGAATAAGCCACTTGCGTAACG -ACGGAATAAGCCACTTGCACTTCG -ACGGAATAAGCCACTTGCTACGCA -ACGGAATAAGCCACTTGCCTTGCA -ACGGAATAAGCCACTTGCCGAACA -ACGGAATAAGCCACTTGCCAGTCA -ACGGAATAAGCCACTTGCGATCCA -ACGGAATAAGCCACTTGCACGACA -ACGGAATAAGCCACTTGCAGCTCA -ACGGAATAAGCCACTTGCTCACGT -ACGGAATAAGCCACTTGCCGTAGT -ACGGAATAAGCCACTTGCGTCAGT -ACGGAATAAGCCACTTGCGAAGGT -ACGGAATAAGCCACTTGCAACCGT -ACGGAATAAGCCACTTGCTTGTGC -ACGGAATAAGCCACTTGCCTAAGC -ACGGAATAAGCCACTTGCACTAGC -ACGGAATAAGCCACTTGCAGATGC -ACGGAATAAGCCACTTGCTGAAGG -ACGGAATAAGCCACTTGCCAATGG -ACGGAATAAGCCACTTGCATGAGG -ACGGAATAAGCCACTTGCAATGGG -ACGGAATAAGCCACTTGCTCCTGA -ACGGAATAAGCCACTTGCTAGCGA -ACGGAATAAGCCACTTGCCACAGA -ACGGAATAAGCCACTTGCGCAAGA -ACGGAATAAGCCACTTGCGGTTGA -ACGGAATAAGCCACTTGCTCCGAT -ACGGAATAAGCCACTTGCTGGCAT -ACGGAATAAGCCACTTGCCGAGAT -ACGGAATAAGCCACTTGCTACCAC -ACGGAATAAGCCACTTGCCAGAAC -ACGGAATAAGCCACTTGCGTCTAC -ACGGAATAAGCCACTTGCACGTAC -ACGGAATAAGCCACTTGCAGTGAC -ACGGAATAAGCCACTTGCCTGTAG -ACGGAATAAGCCACTTGCCCTAAG -ACGGAATAAGCCACTTGCGTTCAG -ACGGAATAAGCCACTTGCGCATAG -ACGGAATAAGCCACTTGCGACAAG -ACGGAATAAGCCACTTGCAAGCAG -ACGGAATAAGCCACTTGCCGTCAA -ACGGAATAAGCCACTTGCGCTGAA -ACGGAATAAGCCACTTGCAGTACG -ACGGAATAAGCCACTTGCATCCGA -ACGGAATAAGCCACTTGCATGGGA -ACGGAATAAGCCACTTGCGTGCAA -ACGGAATAAGCCACTTGCGAGGAA -ACGGAATAAGCCACTTGCCAGGTA -ACGGAATAAGCCACTTGCGACTCT -ACGGAATAAGCCACTTGCAGTCCT -ACGGAATAAGCCACTTGCTAAGCC -ACGGAATAAGCCACTTGCATAGCC -ACGGAATAAGCCACTTGCTAACCG -ACGGAATAAGCCACTTGCATGCCA -ACGGAATAAGCCACTCTGGGAAAC -ACGGAATAAGCCACTCTGAACACC -ACGGAATAAGCCACTCTGATCGAG -ACGGAATAAGCCACTCTGCTCCTT -ACGGAATAAGCCACTCTGCCTGTT -ACGGAATAAGCCACTCTGCGGTTT -ACGGAATAAGCCACTCTGGTGGTT -ACGGAATAAGCCACTCTGGCCTTT -ACGGAATAAGCCACTCTGGGTCTT -ACGGAATAAGCCACTCTGACGCTT -ACGGAATAAGCCACTCTGAGCGTT -ACGGAATAAGCCACTCTGTTCGTC -ACGGAATAAGCCACTCTGTCTCTC -ACGGAATAAGCCACTCTGTGGATC -ACGGAATAAGCCACTCTGCACTTC -ACGGAATAAGCCACTCTGGTACTC -ACGGAATAAGCCACTCTGGATGTC -ACGGAATAAGCCACTCTGACAGTC -ACGGAATAAGCCACTCTGTTGCTG -ACGGAATAAGCCACTCTGTCCATG -ACGGAATAAGCCACTCTGTGTGTG -ACGGAATAAGCCACTCTGCTAGTG -ACGGAATAAGCCACTCTGCATCTG -ACGGAATAAGCCACTCTGGAGTTG -ACGGAATAAGCCACTCTGAGACTG -ACGGAATAAGCCACTCTGTCGGTA -ACGGAATAAGCCACTCTGTGCCTA -ACGGAATAAGCCACTCTGCCACTA -ACGGAATAAGCCACTCTGGGAGTA -ACGGAATAAGCCACTCTGTCGTCT -ACGGAATAAGCCACTCTGTGCACT -ACGGAATAAGCCACTCTGCTGACT -ACGGAATAAGCCACTCTGCAACCT -ACGGAATAAGCCACTCTGGCTACT -ACGGAATAAGCCACTCTGGGATCT -ACGGAATAAGCCACTCTGAAGGCT -ACGGAATAAGCCACTCTGTCAACC -ACGGAATAAGCCACTCTGTGTTCC -ACGGAATAAGCCACTCTGATTCCC -ACGGAATAAGCCACTCTGTTCTCG -ACGGAATAAGCCACTCTGTAGACG -ACGGAATAAGCCACTCTGGTAACG -ACGGAATAAGCCACTCTGACTTCG -ACGGAATAAGCCACTCTGTACGCA -ACGGAATAAGCCACTCTGCTTGCA -ACGGAATAAGCCACTCTGCGAACA -ACGGAATAAGCCACTCTGCAGTCA -ACGGAATAAGCCACTCTGGATCCA -ACGGAATAAGCCACTCTGACGACA -ACGGAATAAGCCACTCTGAGCTCA -ACGGAATAAGCCACTCTGTCACGT -ACGGAATAAGCCACTCTGCGTAGT -ACGGAATAAGCCACTCTGGTCAGT -ACGGAATAAGCCACTCTGGAAGGT -ACGGAATAAGCCACTCTGAACCGT -ACGGAATAAGCCACTCTGTTGTGC -ACGGAATAAGCCACTCTGCTAAGC -ACGGAATAAGCCACTCTGACTAGC -ACGGAATAAGCCACTCTGAGATGC -ACGGAATAAGCCACTCTGTGAAGG -ACGGAATAAGCCACTCTGCAATGG -ACGGAATAAGCCACTCTGATGAGG -ACGGAATAAGCCACTCTGAATGGG -ACGGAATAAGCCACTCTGTCCTGA -ACGGAATAAGCCACTCTGTAGCGA -ACGGAATAAGCCACTCTGCACAGA -ACGGAATAAGCCACTCTGGCAAGA -ACGGAATAAGCCACTCTGGGTTGA -ACGGAATAAGCCACTCTGTCCGAT -ACGGAATAAGCCACTCTGTGGCAT -ACGGAATAAGCCACTCTGCGAGAT -ACGGAATAAGCCACTCTGTACCAC -ACGGAATAAGCCACTCTGCAGAAC -ACGGAATAAGCCACTCTGGTCTAC -ACGGAATAAGCCACTCTGACGTAC -ACGGAATAAGCCACTCTGAGTGAC -ACGGAATAAGCCACTCTGCTGTAG -ACGGAATAAGCCACTCTGCCTAAG -ACGGAATAAGCCACTCTGGTTCAG -ACGGAATAAGCCACTCTGGCATAG -ACGGAATAAGCCACTCTGGACAAG -ACGGAATAAGCCACTCTGAAGCAG -ACGGAATAAGCCACTCTGCGTCAA -ACGGAATAAGCCACTCTGGCTGAA -ACGGAATAAGCCACTCTGAGTACG -ACGGAATAAGCCACTCTGATCCGA -ACGGAATAAGCCACTCTGATGGGA -ACGGAATAAGCCACTCTGGTGCAA -ACGGAATAAGCCACTCTGGAGGAA -ACGGAATAAGCCACTCTGCAGGTA -ACGGAATAAGCCACTCTGGACTCT -ACGGAATAAGCCACTCTGAGTCCT -ACGGAATAAGCCACTCTGTAAGCC -ACGGAATAAGCCACTCTGATAGCC -ACGGAATAAGCCACTCTGTAACCG -ACGGAATAAGCCACTCTGATGCCA -ACGGAATAAGCCCCTCAAGGAAAC -ACGGAATAAGCCCCTCAAAACACC -ACGGAATAAGCCCCTCAAATCGAG -ACGGAATAAGCCCCTCAACTCCTT -ACGGAATAAGCCCCTCAACCTGTT -ACGGAATAAGCCCCTCAACGGTTT -ACGGAATAAGCCCCTCAAGTGGTT -ACGGAATAAGCCCCTCAAGCCTTT -ACGGAATAAGCCCCTCAAGGTCTT -ACGGAATAAGCCCCTCAAACGCTT -ACGGAATAAGCCCCTCAAAGCGTT -ACGGAATAAGCCCCTCAATTCGTC -ACGGAATAAGCCCCTCAATCTCTC -ACGGAATAAGCCCCTCAATGGATC -ACGGAATAAGCCCCTCAACACTTC -ACGGAATAAGCCCCTCAAGTACTC -ACGGAATAAGCCCCTCAAGATGTC -ACGGAATAAGCCCCTCAAACAGTC -ACGGAATAAGCCCCTCAATTGCTG -ACGGAATAAGCCCCTCAATCCATG -ACGGAATAAGCCCCTCAATGTGTG -ACGGAATAAGCCCCTCAACTAGTG -ACGGAATAAGCCCCTCAACATCTG -ACGGAATAAGCCCCTCAAGAGTTG -ACGGAATAAGCCCCTCAAAGACTG -ACGGAATAAGCCCCTCAATCGGTA -ACGGAATAAGCCCCTCAATGCCTA -ACGGAATAAGCCCCTCAACCACTA -ACGGAATAAGCCCCTCAAGGAGTA -ACGGAATAAGCCCCTCAATCGTCT -ACGGAATAAGCCCCTCAATGCACT -ACGGAATAAGCCCCTCAACTGACT -ACGGAATAAGCCCCTCAACAACCT -ACGGAATAAGCCCCTCAAGCTACT -ACGGAATAAGCCCCTCAAGGATCT -ACGGAATAAGCCCCTCAAAAGGCT -ACGGAATAAGCCCCTCAATCAACC -ACGGAATAAGCCCCTCAATGTTCC -ACGGAATAAGCCCCTCAAATTCCC -ACGGAATAAGCCCCTCAATTCTCG -ACGGAATAAGCCCCTCAATAGACG -ACGGAATAAGCCCCTCAAGTAACG -ACGGAATAAGCCCCTCAAACTTCG -ACGGAATAAGCCCCTCAATACGCA -ACGGAATAAGCCCCTCAACTTGCA -ACGGAATAAGCCCCTCAACGAACA -ACGGAATAAGCCCCTCAACAGTCA -ACGGAATAAGCCCCTCAAGATCCA -ACGGAATAAGCCCCTCAAACGACA -ACGGAATAAGCCCCTCAAAGCTCA -ACGGAATAAGCCCCTCAATCACGT -ACGGAATAAGCCCCTCAACGTAGT -ACGGAATAAGCCCCTCAAGTCAGT -ACGGAATAAGCCCCTCAAGAAGGT -ACGGAATAAGCCCCTCAAAACCGT -ACGGAATAAGCCCCTCAATTGTGC -ACGGAATAAGCCCCTCAACTAAGC -ACGGAATAAGCCCCTCAAACTAGC -ACGGAATAAGCCCCTCAAAGATGC -ACGGAATAAGCCCCTCAATGAAGG -ACGGAATAAGCCCCTCAACAATGG -ACGGAATAAGCCCCTCAAATGAGG -ACGGAATAAGCCCCTCAAAATGGG -ACGGAATAAGCCCCTCAATCCTGA -ACGGAATAAGCCCCTCAATAGCGA -ACGGAATAAGCCCCTCAACACAGA -ACGGAATAAGCCCCTCAAGCAAGA -ACGGAATAAGCCCCTCAAGGTTGA -ACGGAATAAGCCCCTCAATCCGAT -ACGGAATAAGCCCCTCAATGGCAT -ACGGAATAAGCCCCTCAACGAGAT -ACGGAATAAGCCCCTCAATACCAC -ACGGAATAAGCCCCTCAACAGAAC -ACGGAATAAGCCCCTCAAGTCTAC -ACGGAATAAGCCCCTCAAACGTAC -ACGGAATAAGCCCCTCAAAGTGAC -ACGGAATAAGCCCCTCAACTGTAG -ACGGAATAAGCCCCTCAACCTAAG -ACGGAATAAGCCCCTCAAGTTCAG -ACGGAATAAGCCCCTCAAGCATAG -ACGGAATAAGCCCCTCAAGACAAG -ACGGAATAAGCCCCTCAAAAGCAG -ACGGAATAAGCCCCTCAACGTCAA -ACGGAATAAGCCCCTCAAGCTGAA -ACGGAATAAGCCCCTCAAAGTACG -ACGGAATAAGCCCCTCAAATCCGA -ACGGAATAAGCCCCTCAAATGGGA -ACGGAATAAGCCCCTCAAGTGCAA -ACGGAATAAGCCCCTCAAGAGGAA -ACGGAATAAGCCCCTCAACAGGTA -ACGGAATAAGCCCCTCAAGACTCT -ACGGAATAAGCCCCTCAAAGTCCT -ACGGAATAAGCCCCTCAATAAGCC -ACGGAATAAGCCCCTCAAATAGCC -ACGGAATAAGCCCCTCAATAACCG -ACGGAATAAGCCCCTCAAATGCCA -ACGGAATAAGCCACTGCTGGAAAC -ACGGAATAAGCCACTGCTAACACC -ACGGAATAAGCCACTGCTATCGAG -ACGGAATAAGCCACTGCTCTCCTT -ACGGAATAAGCCACTGCTCCTGTT -ACGGAATAAGCCACTGCTCGGTTT -ACGGAATAAGCCACTGCTGTGGTT -ACGGAATAAGCCACTGCTGCCTTT -ACGGAATAAGCCACTGCTGGTCTT -ACGGAATAAGCCACTGCTACGCTT -ACGGAATAAGCCACTGCTAGCGTT -ACGGAATAAGCCACTGCTTTCGTC -ACGGAATAAGCCACTGCTTCTCTC -ACGGAATAAGCCACTGCTTGGATC -ACGGAATAAGCCACTGCTCACTTC -ACGGAATAAGCCACTGCTGTACTC -ACGGAATAAGCCACTGCTGATGTC -ACGGAATAAGCCACTGCTACAGTC -ACGGAATAAGCCACTGCTTTGCTG -ACGGAATAAGCCACTGCTTCCATG -ACGGAATAAGCCACTGCTTGTGTG -ACGGAATAAGCCACTGCTCTAGTG -ACGGAATAAGCCACTGCTCATCTG -ACGGAATAAGCCACTGCTGAGTTG -ACGGAATAAGCCACTGCTAGACTG -ACGGAATAAGCCACTGCTTCGGTA -ACGGAATAAGCCACTGCTTGCCTA -ACGGAATAAGCCACTGCTCCACTA -ACGGAATAAGCCACTGCTGGAGTA -ACGGAATAAGCCACTGCTTCGTCT -ACGGAATAAGCCACTGCTTGCACT -ACGGAATAAGCCACTGCTCTGACT -ACGGAATAAGCCACTGCTCAACCT -ACGGAATAAGCCACTGCTGCTACT -ACGGAATAAGCCACTGCTGGATCT -ACGGAATAAGCCACTGCTAAGGCT -ACGGAATAAGCCACTGCTTCAACC -ACGGAATAAGCCACTGCTTGTTCC -ACGGAATAAGCCACTGCTATTCCC -ACGGAATAAGCCACTGCTTTCTCG -ACGGAATAAGCCACTGCTTAGACG -ACGGAATAAGCCACTGCTGTAACG -ACGGAATAAGCCACTGCTACTTCG -ACGGAATAAGCCACTGCTTACGCA -ACGGAATAAGCCACTGCTCTTGCA -ACGGAATAAGCCACTGCTCGAACA -ACGGAATAAGCCACTGCTCAGTCA -ACGGAATAAGCCACTGCTGATCCA -ACGGAATAAGCCACTGCTACGACA -ACGGAATAAGCCACTGCTAGCTCA -ACGGAATAAGCCACTGCTTCACGT -ACGGAATAAGCCACTGCTCGTAGT -ACGGAATAAGCCACTGCTGTCAGT -ACGGAATAAGCCACTGCTGAAGGT -ACGGAATAAGCCACTGCTAACCGT -ACGGAATAAGCCACTGCTTTGTGC -ACGGAATAAGCCACTGCTCTAAGC -ACGGAATAAGCCACTGCTACTAGC -ACGGAATAAGCCACTGCTAGATGC -ACGGAATAAGCCACTGCTTGAAGG -ACGGAATAAGCCACTGCTCAATGG -ACGGAATAAGCCACTGCTATGAGG -ACGGAATAAGCCACTGCTAATGGG -ACGGAATAAGCCACTGCTTCCTGA -ACGGAATAAGCCACTGCTTAGCGA -ACGGAATAAGCCACTGCTCACAGA -ACGGAATAAGCCACTGCTGCAAGA -ACGGAATAAGCCACTGCTGGTTGA -ACGGAATAAGCCACTGCTTCCGAT -ACGGAATAAGCCACTGCTTGGCAT -ACGGAATAAGCCACTGCTCGAGAT -ACGGAATAAGCCACTGCTTACCAC -ACGGAATAAGCCACTGCTCAGAAC -ACGGAATAAGCCACTGCTGTCTAC -ACGGAATAAGCCACTGCTACGTAC -ACGGAATAAGCCACTGCTAGTGAC -ACGGAATAAGCCACTGCTCTGTAG -ACGGAATAAGCCACTGCTCCTAAG -ACGGAATAAGCCACTGCTGTTCAG -ACGGAATAAGCCACTGCTGCATAG -ACGGAATAAGCCACTGCTGACAAG -ACGGAATAAGCCACTGCTAAGCAG -ACGGAATAAGCCACTGCTCGTCAA -ACGGAATAAGCCACTGCTGCTGAA -ACGGAATAAGCCACTGCTAGTACG -ACGGAATAAGCCACTGCTATCCGA -ACGGAATAAGCCACTGCTATGGGA -ACGGAATAAGCCACTGCTGTGCAA -ACGGAATAAGCCACTGCTGAGGAA -ACGGAATAAGCCACTGCTCAGGTA -ACGGAATAAGCCACTGCTGACTCT -ACGGAATAAGCCACTGCTAGTCCT -ACGGAATAAGCCACTGCTTAAGCC -ACGGAATAAGCCACTGCTATAGCC -ACGGAATAAGCCACTGCTTAACCG -ACGGAATAAGCCACTGCTATGCCA -ACGGAATAAGCCTCTGGAGGAAAC -ACGGAATAAGCCTCTGGAAACACC -ACGGAATAAGCCTCTGGAATCGAG -ACGGAATAAGCCTCTGGACTCCTT -ACGGAATAAGCCTCTGGACCTGTT -ACGGAATAAGCCTCTGGACGGTTT -ACGGAATAAGCCTCTGGAGTGGTT -ACGGAATAAGCCTCTGGAGCCTTT -ACGGAATAAGCCTCTGGAGGTCTT -ACGGAATAAGCCTCTGGAACGCTT -ACGGAATAAGCCTCTGGAAGCGTT -ACGGAATAAGCCTCTGGATTCGTC -ACGGAATAAGCCTCTGGATCTCTC -ACGGAATAAGCCTCTGGATGGATC -ACGGAATAAGCCTCTGGACACTTC -ACGGAATAAGCCTCTGGAGTACTC -ACGGAATAAGCCTCTGGAGATGTC -ACGGAATAAGCCTCTGGAACAGTC -ACGGAATAAGCCTCTGGATTGCTG -ACGGAATAAGCCTCTGGATCCATG -ACGGAATAAGCCTCTGGATGTGTG -ACGGAATAAGCCTCTGGACTAGTG -ACGGAATAAGCCTCTGGACATCTG -ACGGAATAAGCCTCTGGAGAGTTG -ACGGAATAAGCCTCTGGAAGACTG -ACGGAATAAGCCTCTGGATCGGTA -ACGGAATAAGCCTCTGGATGCCTA -ACGGAATAAGCCTCTGGACCACTA -ACGGAATAAGCCTCTGGAGGAGTA -ACGGAATAAGCCTCTGGATCGTCT -ACGGAATAAGCCTCTGGATGCACT -ACGGAATAAGCCTCTGGACTGACT -ACGGAATAAGCCTCTGGACAACCT -ACGGAATAAGCCTCTGGAGCTACT -ACGGAATAAGCCTCTGGAGGATCT -ACGGAATAAGCCTCTGGAAAGGCT -ACGGAATAAGCCTCTGGATCAACC -ACGGAATAAGCCTCTGGATGTTCC -ACGGAATAAGCCTCTGGAATTCCC -ACGGAATAAGCCTCTGGATTCTCG -ACGGAATAAGCCTCTGGATAGACG -ACGGAATAAGCCTCTGGAGTAACG -ACGGAATAAGCCTCTGGAACTTCG -ACGGAATAAGCCTCTGGATACGCA -ACGGAATAAGCCTCTGGACTTGCA -ACGGAATAAGCCTCTGGACGAACA -ACGGAATAAGCCTCTGGACAGTCA -ACGGAATAAGCCTCTGGAGATCCA -ACGGAATAAGCCTCTGGAACGACA -ACGGAATAAGCCTCTGGAAGCTCA -ACGGAATAAGCCTCTGGATCACGT -ACGGAATAAGCCTCTGGACGTAGT -ACGGAATAAGCCTCTGGAGTCAGT -ACGGAATAAGCCTCTGGAGAAGGT -ACGGAATAAGCCTCTGGAAACCGT -ACGGAATAAGCCTCTGGATTGTGC -ACGGAATAAGCCTCTGGACTAAGC -ACGGAATAAGCCTCTGGAACTAGC -ACGGAATAAGCCTCTGGAAGATGC -ACGGAATAAGCCTCTGGATGAAGG -ACGGAATAAGCCTCTGGACAATGG -ACGGAATAAGCCTCTGGAATGAGG -ACGGAATAAGCCTCTGGAAATGGG -ACGGAATAAGCCTCTGGATCCTGA -ACGGAATAAGCCTCTGGATAGCGA -ACGGAATAAGCCTCTGGACACAGA -ACGGAATAAGCCTCTGGAGCAAGA -ACGGAATAAGCCTCTGGAGGTTGA -ACGGAATAAGCCTCTGGATCCGAT -ACGGAATAAGCCTCTGGATGGCAT -ACGGAATAAGCCTCTGGACGAGAT -ACGGAATAAGCCTCTGGATACCAC -ACGGAATAAGCCTCTGGACAGAAC -ACGGAATAAGCCTCTGGAGTCTAC -ACGGAATAAGCCTCTGGAACGTAC -ACGGAATAAGCCTCTGGAAGTGAC -ACGGAATAAGCCTCTGGACTGTAG -ACGGAATAAGCCTCTGGACCTAAG -ACGGAATAAGCCTCTGGAGTTCAG -ACGGAATAAGCCTCTGGAGCATAG -ACGGAATAAGCCTCTGGAGACAAG -ACGGAATAAGCCTCTGGAAAGCAG -ACGGAATAAGCCTCTGGACGTCAA -ACGGAATAAGCCTCTGGAGCTGAA -ACGGAATAAGCCTCTGGAAGTACG -ACGGAATAAGCCTCTGGAATCCGA -ACGGAATAAGCCTCTGGAATGGGA -ACGGAATAAGCCTCTGGAGTGCAA -ACGGAATAAGCCTCTGGAGAGGAA -ACGGAATAAGCCTCTGGACAGGTA -ACGGAATAAGCCTCTGGAGACTCT -ACGGAATAAGCCTCTGGAAGTCCT -ACGGAATAAGCCTCTGGATAAGCC -ACGGAATAAGCCTCTGGAATAGCC -ACGGAATAAGCCTCTGGATAACCG -ACGGAATAAGCCTCTGGAATGCCA -ACGGAATAAGCCGCTAAGGGAAAC -ACGGAATAAGCCGCTAAGAACACC -ACGGAATAAGCCGCTAAGATCGAG -ACGGAATAAGCCGCTAAGCTCCTT -ACGGAATAAGCCGCTAAGCCTGTT -ACGGAATAAGCCGCTAAGCGGTTT -ACGGAATAAGCCGCTAAGGTGGTT -ACGGAATAAGCCGCTAAGGCCTTT -ACGGAATAAGCCGCTAAGGGTCTT -ACGGAATAAGCCGCTAAGACGCTT -ACGGAATAAGCCGCTAAGAGCGTT -ACGGAATAAGCCGCTAAGTTCGTC -ACGGAATAAGCCGCTAAGTCTCTC -ACGGAATAAGCCGCTAAGTGGATC -ACGGAATAAGCCGCTAAGCACTTC -ACGGAATAAGCCGCTAAGGTACTC -ACGGAATAAGCCGCTAAGGATGTC -ACGGAATAAGCCGCTAAGACAGTC -ACGGAATAAGCCGCTAAGTTGCTG -ACGGAATAAGCCGCTAAGTCCATG -ACGGAATAAGCCGCTAAGTGTGTG -ACGGAATAAGCCGCTAAGCTAGTG -ACGGAATAAGCCGCTAAGCATCTG -ACGGAATAAGCCGCTAAGGAGTTG -ACGGAATAAGCCGCTAAGAGACTG -ACGGAATAAGCCGCTAAGTCGGTA -ACGGAATAAGCCGCTAAGTGCCTA -ACGGAATAAGCCGCTAAGCCACTA -ACGGAATAAGCCGCTAAGGGAGTA -ACGGAATAAGCCGCTAAGTCGTCT -ACGGAATAAGCCGCTAAGTGCACT -ACGGAATAAGCCGCTAAGCTGACT -ACGGAATAAGCCGCTAAGCAACCT -ACGGAATAAGCCGCTAAGGCTACT -ACGGAATAAGCCGCTAAGGGATCT -ACGGAATAAGCCGCTAAGAAGGCT -ACGGAATAAGCCGCTAAGTCAACC -ACGGAATAAGCCGCTAAGTGTTCC -ACGGAATAAGCCGCTAAGATTCCC -ACGGAATAAGCCGCTAAGTTCTCG -ACGGAATAAGCCGCTAAGTAGACG -ACGGAATAAGCCGCTAAGGTAACG -ACGGAATAAGCCGCTAAGACTTCG -ACGGAATAAGCCGCTAAGTACGCA -ACGGAATAAGCCGCTAAGCTTGCA -ACGGAATAAGCCGCTAAGCGAACA -ACGGAATAAGCCGCTAAGCAGTCA -ACGGAATAAGCCGCTAAGGATCCA -ACGGAATAAGCCGCTAAGACGACA -ACGGAATAAGCCGCTAAGAGCTCA -ACGGAATAAGCCGCTAAGTCACGT -ACGGAATAAGCCGCTAAGCGTAGT -ACGGAATAAGCCGCTAAGGTCAGT -ACGGAATAAGCCGCTAAGGAAGGT -ACGGAATAAGCCGCTAAGAACCGT -ACGGAATAAGCCGCTAAGTTGTGC -ACGGAATAAGCCGCTAAGCTAAGC -ACGGAATAAGCCGCTAAGACTAGC -ACGGAATAAGCCGCTAAGAGATGC -ACGGAATAAGCCGCTAAGTGAAGG -ACGGAATAAGCCGCTAAGCAATGG -ACGGAATAAGCCGCTAAGATGAGG -ACGGAATAAGCCGCTAAGAATGGG -ACGGAATAAGCCGCTAAGTCCTGA -ACGGAATAAGCCGCTAAGTAGCGA -ACGGAATAAGCCGCTAAGCACAGA -ACGGAATAAGCCGCTAAGGCAAGA -ACGGAATAAGCCGCTAAGGGTTGA -ACGGAATAAGCCGCTAAGTCCGAT -ACGGAATAAGCCGCTAAGTGGCAT -ACGGAATAAGCCGCTAAGCGAGAT -ACGGAATAAGCCGCTAAGTACCAC -ACGGAATAAGCCGCTAAGCAGAAC -ACGGAATAAGCCGCTAAGGTCTAC -ACGGAATAAGCCGCTAAGACGTAC -ACGGAATAAGCCGCTAAGAGTGAC -ACGGAATAAGCCGCTAAGCTGTAG -ACGGAATAAGCCGCTAAGCCTAAG -ACGGAATAAGCCGCTAAGGTTCAG -ACGGAATAAGCCGCTAAGGCATAG -ACGGAATAAGCCGCTAAGGACAAG -ACGGAATAAGCCGCTAAGAAGCAG -ACGGAATAAGCCGCTAAGCGTCAA -ACGGAATAAGCCGCTAAGGCTGAA -ACGGAATAAGCCGCTAAGAGTACG -ACGGAATAAGCCGCTAAGATCCGA -ACGGAATAAGCCGCTAAGATGGGA -ACGGAATAAGCCGCTAAGGTGCAA -ACGGAATAAGCCGCTAAGGAGGAA -ACGGAATAAGCCGCTAAGCAGGTA -ACGGAATAAGCCGCTAAGGACTCT -ACGGAATAAGCCGCTAAGAGTCCT -ACGGAATAAGCCGCTAAGTAAGCC -ACGGAATAAGCCGCTAAGATAGCC -ACGGAATAAGCCGCTAAGTAACCG -ACGGAATAAGCCGCTAAGATGCCA -ACGGAATAAGCCACCTCAGGAAAC -ACGGAATAAGCCACCTCAAACACC -ACGGAATAAGCCACCTCAATCGAG -ACGGAATAAGCCACCTCACTCCTT -ACGGAATAAGCCACCTCACCTGTT -ACGGAATAAGCCACCTCACGGTTT -ACGGAATAAGCCACCTCAGTGGTT -ACGGAATAAGCCACCTCAGCCTTT -ACGGAATAAGCCACCTCAGGTCTT -ACGGAATAAGCCACCTCAACGCTT -ACGGAATAAGCCACCTCAAGCGTT -ACGGAATAAGCCACCTCATTCGTC -ACGGAATAAGCCACCTCATCTCTC -ACGGAATAAGCCACCTCATGGATC -ACGGAATAAGCCACCTCACACTTC -ACGGAATAAGCCACCTCAGTACTC -ACGGAATAAGCCACCTCAGATGTC -ACGGAATAAGCCACCTCAACAGTC -ACGGAATAAGCCACCTCATTGCTG -ACGGAATAAGCCACCTCATCCATG -ACGGAATAAGCCACCTCATGTGTG -ACGGAATAAGCCACCTCACTAGTG -ACGGAATAAGCCACCTCACATCTG -ACGGAATAAGCCACCTCAGAGTTG -ACGGAATAAGCCACCTCAAGACTG -ACGGAATAAGCCACCTCATCGGTA -ACGGAATAAGCCACCTCATGCCTA -ACGGAATAAGCCACCTCACCACTA -ACGGAATAAGCCACCTCAGGAGTA -ACGGAATAAGCCACCTCATCGTCT -ACGGAATAAGCCACCTCATGCACT -ACGGAATAAGCCACCTCACTGACT -ACGGAATAAGCCACCTCACAACCT -ACGGAATAAGCCACCTCAGCTACT -ACGGAATAAGCCACCTCAGGATCT -ACGGAATAAGCCACCTCAAAGGCT -ACGGAATAAGCCACCTCATCAACC -ACGGAATAAGCCACCTCATGTTCC -ACGGAATAAGCCACCTCAATTCCC -ACGGAATAAGCCACCTCATTCTCG -ACGGAATAAGCCACCTCATAGACG -ACGGAATAAGCCACCTCAGTAACG -ACGGAATAAGCCACCTCAACTTCG -ACGGAATAAGCCACCTCATACGCA -ACGGAATAAGCCACCTCACTTGCA -ACGGAATAAGCCACCTCACGAACA -ACGGAATAAGCCACCTCACAGTCA -ACGGAATAAGCCACCTCAGATCCA -ACGGAATAAGCCACCTCAACGACA -ACGGAATAAGCCACCTCAAGCTCA -ACGGAATAAGCCACCTCATCACGT -ACGGAATAAGCCACCTCACGTAGT -ACGGAATAAGCCACCTCAGTCAGT -ACGGAATAAGCCACCTCAGAAGGT -ACGGAATAAGCCACCTCAAACCGT -ACGGAATAAGCCACCTCATTGTGC -ACGGAATAAGCCACCTCACTAAGC -ACGGAATAAGCCACCTCAACTAGC -ACGGAATAAGCCACCTCAAGATGC -ACGGAATAAGCCACCTCATGAAGG -ACGGAATAAGCCACCTCACAATGG -ACGGAATAAGCCACCTCAATGAGG -ACGGAATAAGCCACCTCAAATGGG -ACGGAATAAGCCACCTCATCCTGA -ACGGAATAAGCCACCTCATAGCGA -ACGGAATAAGCCACCTCACACAGA -ACGGAATAAGCCACCTCAGCAAGA -ACGGAATAAGCCACCTCAGGTTGA -ACGGAATAAGCCACCTCATCCGAT -ACGGAATAAGCCACCTCATGGCAT -ACGGAATAAGCCACCTCACGAGAT -ACGGAATAAGCCACCTCATACCAC -ACGGAATAAGCCACCTCACAGAAC -ACGGAATAAGCCACCTCAGTCTAC -ACGGAATAAGCCACCTCAACGTAC -ACGGAATAAGCCACCTCAAGTGAC -ACGGAATAAGCCACCTCACTGTAG -ACGGAATAAGCCACCTCACCTAAG -ACGGAATAAGCCACCTCAGTTCAG -ACGGAATAAGCCACCTCAGCATAG -ACGGAATAAGCCACCTCAGACAAG -ACGGAATAAGCCACCTCAAAGCAG -ACGGAATAAGCCACCTCACGTCAA -ACGGAATAAGCCACCTCAGCTGAA -ACGGAATAAGCCACCTCAAGTACG -ACGGAATAAGCCACCTCAATCCGA -ACGGAATAAGCCACCTCAATGGGA -ACGGAATAAGCCACCTCAGTGCAA -ACGGAATAAGCCACCTCAGAGGAA -ACGGAATAAGCCACCTCACAGGTA -ACGGAATAAGCCACCTCAGACTCT -ACGGAATAAGCCACCTCAAGTCCT -ACGGAATAAGCCACCTCATAAGCC -ACGGAATAAGCCACCTCAATAGCC -ACGGAATAAGCCACCTCATAACCG -ACGGAATAAGCCACCTCAATGCCA -ACGGAATAAGCCTCCTGTGGAAAC -ACGGAATAAGCCTCCTGTAACACC -ACGGAATAAGCCTCCTGTATCGAG -ACGGAATAAGCCTCCTGTCTCCTT -ACGGAATAAGCCTCCTGTCCTGTT -ACGGAATAAGCCTCCTGTCGGTTT -ACGGAATAAGCCTCCTGTGTGGTT -ACGGAATAAGCCTCCTGTGCCTTT -ACGGAATAAGCCTCCTGTGGTCTT -ACGGAATAAGCCTCCTGTACGCTT -ACGGAATAAGCCTCCTGTAGCGTT -ACGGAATAAGCCTCCTGTTTCGTC -ACGGAATAAGCCTCCTGTTCTCTC -ACGGAATAAGCCTCCTGTTGGATC -ACGGAATAAGCCTCCTGTCACTTC -ACGGAATAAGCCTCCTGTGTACTC -ACGGAATAAGCCTCCTGTGATGTC -ACGGAATAAGCCTCCTGTACAGTC -ACGGAATAAGCCTCCTGTTTGCTG -ACGGAATAAGCCTCCTGTTCCATG -ACGGAATAAGCCTCCTGTTGTGTG -ACGGAATAAGCCTCCTGTCTAGTG -ACGGAATAAGCCTCCTGTCATCTG -ACGGAATAAGCCTCCTGTGAGTTG -ACGGAATAAGCCTCCTGTAGACTG -ACGGAATAAGCCTCCTGTTCGGTA -ACGGAATAAGCCTCCTGTTGCCTA -ACGGAATAAGCCTCCTGTCCACTA -ACGGAATAAGCCTCCTGTGGAGTA -ACGGAATAAGCCTCCTGTTCGTCT -ACGGAATAAGCCTCCTGTTGCACT -ACGGAATAAGCCTCCTGTCTGACT -ACGGAATAAGCCTCCTGTCAACCT -ACGGAATAAGCCTCCTGTGCTACT -ACGGAATAAGCCTCCTGTGGATCT -ACGGAATAAGCCTCCTGTAAGGCT -ACGGAATAAGCCTCCTGTTCAACC -ACGGAATAAGCCTCCTGTTGTTCC -ACGGAATAAGCCTCCTGTATTCCC -ACGGAATAAGCCTCCTGTTTCTCG -ACGGAATAAGCCTCCTGTTAGACG -ACGGAATAAGCCTCCTGTGTAACG -ACGGAATAAGCCTCCTGTACTTCG -ACGGAATAAGCCTCCTGTTACGCA -ACGGAATAAGCCTCCTGTCTTGCA -ACGGAATAAGCCTCCTGTCGAACA -ACGGAATAAGCCTCCTGTCAGTCA -ACGGAATAAGCCTCCTGTGATCCA -ACGGAATAAGCCTCCTGTACGACA -ACGGAATAAGCCTCCTGTAGCTCA -ACGGAATAAGCCTCCTGTTCACGT -ACGGAATAAGCCTCCTGTCGTAGT -ACGGAATAAGCCTCCTGTGTCAGT -ACGGAATAAGCCTCCTGTGAAGGT -ACGGAATAAGCCTCCTGTAACCGT -ACGGAATAAGCCTCCTGTTTGTGC -ACGGAATAAGCCTCCTGTCTAAGC -ACGGAATAAGCCTCCTGTACTAGC -ACGGAATAAGCCTCCTGTAGATGC -ACGGAATAAGCCTCCTGTTGAAGG -ACGGAATAAGCCTCCTGTCAATGG -ACGGAATAAGCCTCCTGTATGAGG -ACGGAATAAGCCTCCTGTAATGGG -ACGGAATAAGCCTCCTGTTCCTGA -ACGGAATAAGCCTCCTGTTAGCGA -ACGGAATAAGCCTCCTGTCACAGA -ACGGAATAAGCCTCCTGTGCAAGA -ACGGAATAAGCCTCCTGTGGTTGA -ACGGAATAAGCCTCCTGTTCCGAT -ACGGAATAAGCCTCCTGTTGGCAT -ACGGAATAAGCCTCCTGTCGAGAT -ACGGAATAAGCCTCCTGTTACCAC -ACGGAATAAGCCTCCTGTCAGAAC -ACGGAATAAGCCTCCTGTGTCTAC -ACGGAATAAGCCTCCTGTACGTAC -ACGGAATAAGCCTCCTGTAGTGAC -ACGGAATAAGCCTCCTGTCTGTAG -ACGGAATAAGCCTCCTGTCCTAAG -ACGGAATAAGCCTCCTGTGTTCAG -ACGGAATAAGCCTCCTGTGCATAG -ACGGAATAAGCCTCCTGTGACAAG -ACGGAATAAGCCTCCTGTAAGCAG -ACGGAATAAGCCTCCTGTCGTCAA -ACGGAATAAGCCTCCTGTGCTGAA -ACGGAATAAGCCTCCTGTAGTACG -ACGGAATAAGCCTCCTGTATCCGA -ACGGAATAAGCCTCCTGTATGGGA -ACGGAATAAGCCTCCTGTGTGCAA -ACGGAATAAGCCTCCTGTGAGGAA -ACGGAATAAGCCTCCTGTCAGGTA -ACGGAATAAGCCTCCTGTGACTCT -ACGGAATAAGCCTCCTGTAGTCCT -ACGGAATAAGCCTCCTGTTAAGCC -ACGGAATAAGCCTCCTGTATAGCC -ACGGAATAAGCCTCCTGTTAACCG -ACGGAATAAGCCTCCTGTATGCCA -ACGGAATAAGCCCCCATTGGAAAC -ACGGAATAAGCCCCCATTAACACC -ACGGAATAAGCCCCCATTATCGAG -ACGGAATAAGCCCCCATTCTCCTT -ACGGAATAAGCCCCCATTCCTGTT -ACGGAATAAGCCCCCATTCGGTTT -ACGGAATAAGCCCCCATTGTGGTT -ACGGAATAAGCCCCCATTGCCTTT -ACGGAATAAGCCCCCATTGGTCTT -ACGGAATAAGCCCCCATTACGCTT -ACGGAATAAGCCCCCATTAGCGTT -ACGGAATAAGCCCCCATTTTCGTC -ACGGAATAAGCCCCCATTTCTCTC -ACGGAATAAGCCCCCATTTGGATC -ACGGAATAAGCCCCCATTCACTTC -ACGGAATAAGCCCCCATTGTACTC -ACGGAATAAGCCCCCATTGATGTC -ACGGAATAAGCCCCCATTACAGTC -ACGGAATAAGCCCCCATTTTGCTG -ACGGAATAAGCCCCCATTTCCATG -ACGGAATAAGCCCCCATTTGTGTG -ACGGAATAAGCCCCCATTCTAGTG -ACGGAATAAGCCCCCATTCATCTG -ACGGAATAAGCCCCCATTGAGTTG -ACGGAATAAGCCCCCATTAGACTG -ACGGAATAAGCCCCCATTTCGGTA -ACGGAATAAGCCCCCATTTGCCTA -ACGGAATAAGCCCCCATTCCACTA -ACGGAATAAGCCCCCATTGGAGTA -ACGGAATAAGCCCCCATTTCGTCT -ACGGAATAAGCCCCCATTTGCACT -ACGGAATAAGCCCCCATTCTGACT -ACGGAATAAGCCCCCATTCAACCT -ACGGAATAAGCCCCCATTGCTACT -ACGGAATAAGCCCCCATTGGATCT -ACGGAATAAGCCCCCATTAAGGCT -ACGGAATAAGCCCCCATTTCAACC -ACGGAATAAGCCCCCATTTGTTCC -ACGGAATAAGCCCCCATTATTCCC -ACGGAATAAGCCCCCATTTTCTCG -ACGGAATAAGCCCCCATTTAGACG -ACGGAATAAGCCCCCATTGTAACG -ACGGAATAAGCCCCCATTACTTCG -ACGGAATAAGCCCCCATTTACGCA -ACGGAATAAGCCCCCATTCTTGCA -ACGGAATAAGCCCCCATTCGAACA -ACGGAATAAGCCCCCATTCAGTCA -ACGGAATAAGCCCCCATTGATCCA -ACGGAATAAGCCCCCATTACGACA -ACGGAATAAGCCCCCATTAGCTCA -ACGGAATAAGCCCCCATTTCACGT -ACGGAATAAGCCCCCATTCGTAGT -ACGGAATAAGCCCCCATTGTCAGT -ACGGAATAAGCCCCCATTGAAGGT -ACGGAATAAGCCCCCATTAACCGT -ACGGAATAAGCCCCCATTTTGTGC -ACGGAATAAGCCCCCATTCTAAGC -ACGGAATAAGCCCCCATTACTAGC -ACGGAATAAGCCCCCATTAGATGC -ACGGAATAAGCCCCCATTTGAAGG -ACGGAATAAGCCCCCATTCAATGG -ACGGAATAAGCCCCCATTATGAGG -ACGGAATAAGCCCCCATTAATGGG -ACGGAATAAGCCCCCATTTCCTGA -ACGGAATAAGCCCCCATTTAGCGA -ACGGAATAAGCCCCCATTCACAGA -ACGGAATAAGCCCCCATTGCAAGA -ACGGAATAAGCCCCCATTGGTTGA -ACGGAATAAGCCCCCATTTCCGAT -ACGGAATAAGCCCCCATTTGGCAT -ACGGAATAAGCCCCCATTCGAGAT -ACGGAATAAGCCCCCATTTACCAC -ACGGAATAAGCCCCCATTCAGAAC -ACGGAATAAGCCCCCATTGTCTAC -ACGGAATAAGCCCCCATTACGTAC -ACGGAATAAGCCCCCATTAGTGAC -ACGGAATAAGCCCCCATTCTGTAG -ACGGAATAAGCCCCCATTCCTAAG -ACGGAATAAGCCCCCATTGTTCAG -ACGGAATAAGCCCCCATTGCATAG -ACGGAATAAGCCCCCATTGACAAG -ACGGAATAAGCCCCCATTAAGCAG -ACGGAATAAGCCCCCATTCGTCAA -ACGGAATAAGCCCCCATTGCTGAA -ACGGAATAAGCCCCCATTAGTACG -ACGGAATAAGCCCCCATTATCCGA -ACGGAATAAGCCCCCATTATGGGA -ACGGAATAAGCCCCCATTGTGCAA -ACGGAATAAGCCCCCATTGAGGAA -ACGGAATAAGCCCCCATTCAGGTA -ACGGAATAAGCCCCCATTGACTCT -ACGGAATAAGCCCCCATTAGTCCT -ACGGAATAAGCCCCCATTTAAGCC -ACGGAATAAGCCCCCATTATAGCC -ACGGAATAAGCCCCCATTTAACCG -ACGGAATAAGCCCCCATTATGCCA -ACGGAATAAGCCTCGTTCGGAAAC -ACGGAATAAGCCTCGTTCAACACC -ACGGAATAAGCCTCGTTCATCGAG -ACGGAATAAGCCTCGTTCCTCCTT -ACGGAATAAGCCTCGTTCCCTGTT -ACGGAATAAGCCTCGTTCCGGTTT -ACGGAATAAGCCTCGTTCGTGGTT -ACGGAATAAGCCTCGTTCGCCTTT -ACGGAATAAGCCTCGTTCGGTCTT -ACGGAATAAGCCTCGTTCACGCTT -ACGGAATAAGCCTCGTTCAGCGTT -ACGGAATAAGCCTCGTTCTTCGTC -ACGGAATAAGCCTCGTTCTCTCTC -ACGGAATAAGCCTCGTTCTGGATC -ACGGAATAAGCCTCGTTCCACTTC -ACGGAATAAGCCTCGTTCGTACTC -ACGGAATAAGCCTCGTTCGATGTC -ACGGAATAAGCCTCGTTCACAGTC -ACGGAATAAGCCTCGTTCTTGCTG -ACGGAATAAGCCTCGTTCTCCATG -ACGGAATAAGCCTCGTTCTGTGTG -ACGGAATAAGCCTCGTTCCTAGTG -ACGGAATAAGCCTCGTTCCATCTG -ACGGAATAAGCCTCGTTCGAGTTG -ACGGAATAAGCCTCGTTCAGACTG -ACGGAATAAGCCTCGTTCTCGGTA -ACGGAATAAGCCTCGTTCTGCCTA -ACGGAATAAGCCTCGTTCCCACTA -ACGGAATAAGCCTCGTTCGGAGTA -ACGGAATAAGCCTCGTTCTCGTCT -ACGGAATAAGCCTCGTTCTGCACT -ACGGAATAAGCCTCGTTCCTGACT -ACGGAATAAGCCTCGTTCCAACCT -ACGGAATAAGCCTCGTTCGCTACT -ACGGAATAAGCCTCGTTCGGATCT -ACGGAATAAGCCTCGTTCAAGGCT -ACGGAATAAGCCTCGTTCTCAACC -ACGGAATAAGCCTCGTTCTGTTCC -ACGGAATAAGCCTCGTTCATTCCC -ACGGAATAAGCCTCGTTCTTCTCG -ACGGAATAAGCCTCGTTCTAGACG -ACGGAATAAGCCTCGTTCGTAACG -ACGGAATAAGCCTCGTTCACTTCG -ACGGAATAAGCCTCGTTCTACGCA -ACGGAATAAGCCTCGTTCCTTGCA -ACGGAATAAGCCTCGTTCCGAACA -ACGGAATAAGCCTCGTTCCAGTCA -ACGGAATAAGCCTCGTTCGATCCA -ACGGAATAAGCCTCGTTCACGACA -ACGGAATAAGCCTCGTTCAGCTCA -ACGGAATAAGCCTCGTTCTCACGT -ACGGAATAAGCCTCGTTCCGTAGT -ACGGAATAAGCCTCGTTCGTCAGT -ACGGAATAAGCCTCGTTCGAAGGT -ACGGAATAAGCCTCGTTCAACCGT -ACGGAATAAGCCTCGTTCTTGTGC -ACGGAATAAGCCTCGTTCCTAAGC -ACGGAATAAGCCTCGTTCACTAGC -ACGGAATAAGCCTCGTTCAGATGC -ACGGAATAAGCCTCGTTCTGAAGG -ACGGAATAAGCCTCGTTCCAATGG -ACGGAATAAGCCTCGTTCATGAGG -ACGGAATAAGCCTCGTTCAATGGG -ACGGAATAAGCCTCGTTCTCCTGA -ACGGAATAAGCCTCGTTCTAGCGA -ACGGAATAAGCCTCGTTCCACAGA -ACGGAATAAGCCTCGTTCGCAAGA -ACGGAATAAGCCTCGTTCGGTTGA -ACGGAATAAGCCTCGTTCTCCGAT -ACGGAATAAGCCTCGTTCTGGCAT -ACGGAATAAGCCTCGTTCCGAGAT -ACGGAATAAGCCTCGTTCTACCAC -ACGGAATAAGCCTCGTTCCAGAAC -ACGGAATAAGCCTCGTTCGTCTAC -ACGGAATAAGCCTCGTTCACGTAC -ACGGAATAAGCCTCGTTCAGTGAC -ACGGAATAAGCCTCGTTCCTGTAG -ACGGAATAAGCCTCGTTCCCTAAG -ACGGAATAAGCCTCGTTCGTTCAG -ACGGAATAAGCCTCGTTCGCATAG -ACGGAATAAGCCTCGTTCGACAAG -ACGGAATAAGCCTCGTTCAAGCAG -ACGGAATAAGCCTCGTTCCGTCAA -ACGGAATAAGCCTCGTTCGCTGAA -ACGGAATAAGCCTCGTTCAGTACG -ACGGAATAAGCCTCGTTCATCCGA -ACGGAATAAGCCTCGTTCATGGGA -ACGGAATAAGCCTCGTTCGTGCAA -ACGGAATAAGCCTCGTTCGAGGAA -ACGGAATAAGCCTCGTTCCAGGTA -ACGGAATAAGCCTCGTTCGACTCT -ACGGAATAAGCCTCGTTCAGTCCT -ACGGAATAAGCCTCGTTCTAAGCC -ACGGAATAAGCCTCGTTCATAGCC -ACGGAATAAGCCTCGTTCTAACCG -ACGGAATAAGCCTCGTTCATGCCA -ACGGAATAAGCCACGTAGGGAAAC -ACGGAATAAGCCACGTAGAACACC -ACGGAATAAGCCACGTAGATCGAG -ACGGAATAAGCCACGTAGCTCCTT -ACGGAATAAGCCACGTAGCCTGTT -ACGGAATAAGCCACGTAGCGGTTT -ACGGAATAAGCCACGTAGGTGGTT -ACGGAATAAGCCACGTAGGCCTTT -ACGGAATAAGCCACGTAGGGTCTT -ACGGAATAAGCCACGTAGACGCTT -ACGGAATAAGCCACGTAGAGCGTT -ACGGAATAAGCCACGTAGTTCGTC -ACGGAATAAGCCACGTAGTCTCTC -ACGGAATAAGCCACGTAGTGGATC -ACGGAATAAGCCACGTAGCACTTC -ACGGAATAAGCCACGTAGGTACTC -ACGGAATAAGCCACGTAGGATGTC -ACGGAATAAGCCACGTAGACAGTC -ACGGAATAAGCCACGTAGTTGCTG -ACGGAATAAGCCACGTAGTCCATG -ACGGAATAAGCCACGTAGTGTGTG -ACGGAATAAGCCACGTAGCTAGTG -ACGGAATAAGCCACGTAGCATCTG -ACGGAATAAGCCACGTAGGAGTTG -ACGGAATAAGCCACGTAGAGACTG -ACGGAATAAGCCACGTAGTCGGTA -ACGGAATAAGCCACGTAGTGCCTA -ACGGAATAAGCCACGTAGCCACTA -ACGGAATAAGCCACGTAGGGAGTA -ACGGAATAAGCCACGTAGTCGTCT -ACGGAATAAGCCACGTAGTGCACT -ACGGAATAAGCCACGTAGCTGACT -ACGGAATAAGCCACGTAGCAACCT -ACGGAATAAGCCACGTAGGCTACT -ACGGAATAAGCCACGTAGGGATCT -ACGGAATAAGCCACGTAGAAGGCT -ACGGAATAAGCCACGTAGTCAACC -ACGGAATAAGCCACGTAGTGTTCC -ACGGAATAAGCCACGTAGATTCCC -ACGGAATAAGCCACGTAGTTCTCG -ACGGAATAAGCCACGTAGTAGACG -ACGGAATAAGCCACGTAGGTAACG -ACGGAATAAGCCACGTAGACTTCG -ACGGAATAAGCCACGTAGTACGCA -ACGGAATAAGCCACGTAGCTTGCA -ACGGAATAAGCCACGTAGCGAACA -ACGGAATAAGCCACGTAGCAGTCA -ACGGAATAAGCCACGTAGGATCCA -ACGGAATAAGCCACGTAGACGACA -ACGGAATAAGCCACGTAGAGCTCA -ACGGAATAAGCCACGTAGTCACGT -ACGGAATAAGCCACGTAGCGTAGT -ACGGAATAAGCCACGTAGGTCAGT -ACGGAATAAGCCACGTAGGAAGGT -ACGGAATAAGCCACGTAGAACCGT -ACGGAATAAGCCACGTAGTTGTGC -ACGGAATAAGCCACGTAGCTAAGC -ACGGAATAAGCCACGTAGACTAGC -ACGGAATAAGCCACGTAGAGATGC -ACGGAATAAGCCACGTAGTGAAGG -ACGGAATAAGCCACGTAGCAATGG -ACGGAATAAGCCACGTAGATGAGG -ACGGAATAAGCCACGTAGAATGGG -ACGGAATAAGCCACGTAGTCCTGA -ACGGAATAAGCCACGTAGTAGCGA -ACGGAATAAGCCACGTAGCACAGA -ACGGAATAAGCCACGTAGGCAAGA -ACGGAATAAGCCACGTAGGGTTGA -ACGGAATAAGCCACGTAGTCCGAT -ACGGAATAAGCCACGTAGTGGCAT -ACGGAATAAGCCACGTAGCGAGAT -ACGGAATAAGCCACGTAGTACCAC -ACGGAATAAGCCACGTAGCAGAAC -ACGGAATAAGCCACGTAGGTCTAC -ACGGAATAAGCCACGTAGACGTAC -ACGGAATAAGCCACGTAGAGTGAC -ACGGAATAAGCCACGTAGCTGTAG -ACGGAATAAGCCACGTAGCCTAAG -ACGGAATAAGCCACGTAGGTTCAG -ACGGAATAAGCCACGTAGGCATAG -ACGGAATAAGCCACGTAGGACAAG -ACGGAATAAGCCACGTAGAAGCAG -ACGGAATAAGCCACGTAGCGTCAA -ACGGAATAAGCCACGTAGGCTGAA -ACGGAATAAGCCACGTAGAGTACG -ACGGAATAAGCCACGTAGATCCGA -ACGGAATAAGCCACGTAGATGGGA -ACGGAATAAGCCACGTAGGTGCAA -ACGGAATAAGCCACGTAGGAGGAA -ACGGAATAAGCCACGTAGCAGGTA -ACGGAATAAGCCACGTAGGACTCT -ACGGAATAAGCCACGTAGAGTCCT -ACGGAATAAGCCACGTAGTAAGCC -ACGGAATAAGCCACGTAGATAGCC -ACGGAATAAGCCACGTAGTAACCG -ACGGAATAAGCCACGTAGATGCCA -ACGGAATAAGCCACGGTAGGAAAC -ACGGAATAAGCCACGGTAAACACC -ACGGAATAAGCCACGGTAATCGAG -ACGGAATAAGCCACGGTACTCCTT -ACGGAATAAGCCACGGTACCTGTT -ACGGAATAAGCCACGGTACGGTTT -ACGGAATAAGCCACGGTAGTGGTT -ACGGAATAAGCCACGGTAGCCTTT -ACGGAATAAGCCACGGTAGGTCTT -ACGGAATAAGCCACGGTAACGCTT -ACGGAATAAGCCACGGTAAGCGTT -ACGGAATAAGCCACGGTATTCGTC -ACGGAATAAGCCACGGTATCTCTC -ACGGAATAAGCCACGGTATGGATC -ACGGAATAAGCCACGGTACACTTC -ACGGAATAAGCCACGGTAGTACTC -ACGGAATAAGCCACGGTAGATGTC -ACGGAATAAGCCACGGTAACAGTC -ACGGAATAAGCCACGGTATTGCTG -ACGGAATAAGCCACGGTATCCATG -ACGGAATAAGCCACGGTATGTGTG -ACGGAATAAGCCACGGTACTAGTG -ACGGAATAAGCCACGGTACATCTG -ACGGAATAAGCCACGGTAGAGTTG -ACGGAATAAGCCACGGTAAGACTG -ACGGAATAAGCCACGGTATCGGTA -ACGGAATAAGCCACGGTATGCCTA -ACGGAATAAGCCACGGTACCACTA -ACGGAATAAGCCACGGTAGGAGTA -ACGGAATAAGCCACGGTATCGTCT -ACGGAATAAGCCACGGTATGCACT -ACGGAATAAGCCACGGTACTGACT -ACGGAATAAGCCACGGTACAACCT -ACGGAATAAGCCACGGTAGCTACT -ACGGAATAAGCCACGGTAGGATCT -ACGGAATAAGCCACGGTAAAGGCT -ACGGAATAAGCCACGGTATCAACC -ACGGAATAAGCCACGGTATGTTCC -ACGGAATAAGCCACGGTAATTCCC -ACGGAATAAGCCACGGTATTCTCG -ACGGAATAAGCCACGGTATAGACG -ACGGAATAAGCCACGGTAGTAACG -ACGGAATAAGCCACGGTAACTTCG -ACGGAATAAGCCACGGTATACGCA -ACGGAATAAGCCACGGTACTTGCA -ACGGAATAAGCCACGGTACGAACA -ACGGAATAAGCCACGGTACAGTCA -ACGGAATAAGCCACGGTAGATCCA -ACGGAATAAGCCACGGTAACGACA -ACGGAATAAGCCACGGTAAGCTCA -ACGGAATAAGCCACGGTATCACGT -ACGGAATAAGCCACGGTACGTAGT -ACGGAATAAGCCACGGTAGTCAGT -ACGGAATAAGCCACGGTAGAAGGT -ACGGAATAAGCCACGGTAAACCGT -ACGGAATAAGCCACGGTATTGTGC -ACGGAATAAGCCACGGTACTAAGC -ACGGAATAAGCCACGGTAACTAGC -ACGGAATAAGCCACGGTAAGATGC -ACGGAATAAGCCACGGTATGAAGG -ACGGAATAAGCCACGGTACAATGG -ACGGAATAAGCCACGGTAATGAGG -ACGGAATAAGCCACGGTAAATGGG -ACGGAATAAGCCACGGTATCCTGA -ACGGAATAAGCCACGGTATAGCGA -ACGGAATAAGCCACGGTACACAGA -ACGGAATAAGCCACGGTAGCAAGA -ACGGAATAAGCCACGGTAGGTTGA -ACGGAATAAGCCACGGTATCCGAT -ACGGAATAAGCCACGGTATGGCAT -ACGGAATAAGCCACGGTACGAGAT -ACGGAATAAGCCACGGTATACCAC -ACGGAATAAGCCACGGTACAGAAC -ACGGAATAAGCCACGGTAGTCTAC -ACGGAATAAGCCACGGTAACGTAC -ACGGAATAAGCCACGGTAAGTGAC -ACGGAATAAGCCACGGTACTGTAG -ACGGAATAAGCCACGGTACCTAAG -ACGGAATAAGCCACGGTAGTTCAG -ACGGAATAAGCCACGGTAGCATAG -ACGGAATAAGCCACGGTAGACAAG -ACGGAATAAGCCACGGTAAAGCAG -ACGGAATAAGCCACGGTACGTCAA -ACGGAATAAGCCACGGTAGCTGAA -ACGGAATAAGCCACGGTAAGTACG -ACGGAATAAGCCACGGTAATCCGA -ACGGAATAAGCCACGGTAATGGGA -ACGGAATAAGCCACGGTAGTGCAA -ACGGAATAAGCCACGGTAGAGGAA -ACGGAATAAGCCACGGTACAGGTA -ACGGAATAAGCCACGGTAGACTCT -ACGGAATAAGCCACGGTAAGTCCT -ACGGAATAAGCCACGGTATAAGCC -ACGGAATAAGCCACGGTAATAGCC -ACGGAATAAGCCACGGTATAACCG -ACGGAATAAGCCACGGTAATGCCA -ACGGAATAAGCCTCGACTGGAAAC -ACGGAATAAGCCTCGACTAACACC -ACGGAATAAGCCTCGACTATCGAG -ACGGAATAAGCCTCGACTCTCCTT -ACGGAATAAGCCTCGACTCCTGTT -ACGGAATAAGCCTCGACTCGGTTT -ACGGAATAAGCCTCGACTGTGGTT -ACGGAATAAGCCTCGACTGCCTTT -ACGGAATAAGCCTCGACTGGTCTT -ACGGAATAAGCCTCGACTACGCTT -ACGGAATAAGCCTCGACTAGCGTT -ACGGAATAAGCCTCGACTTTCGTC -ACGGAATAAGCCTCGACTTCTCTC -ACGGAATAAGCCTCGACTTGGATC -ACGGAATAAGCCTCGACTCACTTC -ACGGAATAAGCCTCGACTGTACTC -ACGGAATAAGCCTCGACTGATGTC -ACGGAATAAGCCTCGACTACAGTC -ACGGAATAAGCCTCGACTTTGCTG -ACGGAATAAGCCTCGACTTCCATG -ACGGAATAAGCCTCGACTTGTGTG -ACGGAATAAGCCTCGACTCTAGTG -ACGGAATAAGCCTCGACTCATCTG -ACGGAATAAGCCTCGACTGAGTTG -ACGGAATAAGCCTCGACTAGACTG -ACGGAATAAGCCTCGACTTCGGTA -ACGGAATAAGCCTCGACTTGCCTA -ACGGAATAAGCCTCGACTCCACTA -ACGGAATAAGCCTCGACTGGAGTA -ACGGAATAAGCCTCGACTTCGTCT -ACGGAATAAGCCTCGACTTGCACT -ACGGAATAAGCCTCGACTCTGACT -ACGGAATAAGCCTCGACTCAACCT -ACGGAATAAGCCTCGACTGCTACT -ACGGAATAAGCCTCGACTGGATCT -ACGGAATAAGCCTCGACTAAGGCT -ACGGAATAAGCCTCGACTTCAACC -ACGGAATAAGCCTCGACTTGTTCC -ACGGAATAAGCCTCGACTATTCCC -ACGGAATAAGCCTCGACTTTCTCG -ACGGAATAAGCCTCGACTTAGACG -ACGGAATAAGCCTCGACTGTAACG -ACGGAATAAGCCTCGACTACTTCG -ACGGAATAAGCCTCGACTTACGCA -ACGGAATAAGCCTCGACTCTTGCA -ACGGAATAAGCCTCGACTCGAACA -ACGGAATAAGCCTCGACTCAGTCA -ACGGAATAAGCCTCGACTGATCCA -ACGGAATAAGCCTCGACTACGACA -ACGGAATAAGCCTCGACTAGCTCA -ACGGAATAAGCCTCGACTTCACGT -ACGGAATAAGCCTCGACTCGTAGT -ACGGAATAAGCCTCGACTGTCAGT -ACGGAATAAGCCTCGACTGAAGGT -ACGGAATAAGCCTCGACTAACCGT -ACGGAATAAGCCTCGACTTTGTGC -ACGGAATAAGCCTCGACTCTAAGC -ACGGAATAAGCCTCGACTACTAGC -ACGGAATAAGCCTCGACTAGATGC -ACGGAATAAGCCTCGACTTGAAGG -ACGGAATAAGCCTCGACTCAATGG -ACGGAATAAGCCTCGACTATGAGG -ACGGAATAAGCCTCGACTAATGGG -ACGGAATAAGCCTCGACTTCCTGA -ACGGAATAAGCCTCGACTTAGCGA -ACGGAATAAGCCTCGACTCACAGA -ACGGAATAAGCCTCGACTGCAAGA -ACGGAATAAGCCTCGACTGGTTGA -ACGGAATAAGCCTCGACTTCCGAT -ACGGAATAAGCCTCGACTTGGCAT -ACGGAATAAGCCTCGACTCGAGAT -ACGGAATAAGCCTCGACTTACCAC -ACGGAATAAGCCTCGACTCAGAAC -ACGGAATAAGCCTCGACTGTCTAC -ACGGAATAAGCCTCGACTACGTAC -ACGGAATAAGCCTCGACTAGTGAC -ACGGAATAAGCCTCGACTCTGTAG -ACGGAATAAGCCTCGACTCCTAAG -ACGGAATAAGCCTCGACTGTTCAG -ACGGAATAAGCCTCGACTGCATAG -ACGGAATAAGCCTCGACTGACAAG -ACGGAATAAGCCTCGACTAAGCAG -ACGGAATAAGCCTCGACTCGTCAA -ACGGAATAAGCCTCGACTGCTGAA -ACGGAATAAGCCTCGACTAGTACG -ACGGAATAAGCCTCGACTATCCGA -ACGGAATAAGCCTCGACTATGGGA -ACGGAATAAGCCTCGACTGTGCAA -ACGGAATAAGCCTCGACTGAGGAA -ACGGAATAAGCCTCGACTCAGGTA -ACGGAATAAGCCTCGACTGACTCT -ACGGAATAAGCCTCGACTAGTCCT -ACGGAATAAGCCTCGACTTAAGCC -ACGGAATAAGCCTCGACTATAGCC -ACGGAATAAGCCTCGACTTAACCG -ACGGAATAAGCCTCGACTATGCCA -ACGGAATAAGCCGCATACGGAAAC -ACGGAATAAGCCGCATACAACACC -ACGGAATAAGCCGCATACATCGAG -ACGGAATAAGCCGCATACCTCCTT -ACGGAATAAGCCGCATACCCTGTT -ACGGAATAAGCCGCATACCGGTTT -ACGGAATAAGCCGCATACGTGGTT -ACGGAATAAGCCGCATACGCCTTT -ACGGAATAAGCCGCATACGGTCTT -ACGGAATAAGCCGCATACACGCTT -ACGGAATAAGCCGCATACAGCGTT -ACGGAATAAGCCGCATACTTCGTC -ACGGAATAAGCCGCATACTCTCTC -ACGGAATAAGCCGCATACTGGATC -ACGGAATAAGCCGCATACCACTTC -ACGGAATAAGCCGCATACGTACTC -ACGGAATAAGCCGCATACGATGTC -ACGGAATAAGCCGCATACACAGTC -ACGGAATAAGCCGCATACTTGCTG -ACGGAATAAGCCGCATACTCCATG -ACGGAATAAGCCGCATACTGTGTG -ACGGAATAAGCCGCATACCTAGTG -ACGGAATAAGCCGCATACCATCTG -ACGGAATAAGCCGCATACGAGTTG -ACGGAATAAGCCGCATACAGACTG -ACGGAATAAGCCGCATACTCGGTA -ACGGAATAAGCCGCATACTGCCTA -ACGGAATAAGCCGCATACCCACTA -ACGGAATAAGCCGCATACGGAGTA -ACGGAATAAGCCGCATACTCGTCT -ACGGAATAAGCCGCATACTGCACT -ACGGAATAAGCCGCATACCTGACT -ACGGAATAAGCCGCATACCAACCT -ACGGAATAAGCCGCATACGCTACT -ACGGAATAAGCCGCATACGGATCT -ACGGAATAAGCCGCATACAAGGCT -ACGGAATAAGCCGCATACTCAACC -ACGGAATAAGCCGCATACTGTTCC -ACGGAATAAGCCGCATACATTCCC -ACGGAATAAGCCGCATACTTCTCG -ACGGAATAAGCCGCATACTAGACG -ACGGAATAAGCCGCATACGTAACG -ACGGAATAAGCCGCATACACTTCG -ACGGAATAAGCCGCATACTACGCA -ACGGAATAAGCCGCATACCTTGCA -ACGGAATAAGCCGCATACCGAACA -ACGGAATAAGCCGCATACCAGTCA -ACGGAATAAGCCGCATACGATCCA -ACGGAATAAGCCGCATACACGACA -ACGGAATAAGCCGCATACAGCTCA -ACGGAATAAGCCGCATACTCACGT -ACGGAATAAGCCGCATACCGTAGT -ACGGAATAAGCCGCATACGTCAGT -ACGGAATAAGCCGCATACGAAGGT -ACGGAATAAGCCGCATACAACCGT -ACGGAATAAGCCGCATACTTGTGC -ACGGAATAAGCCGCATACCTAAGC -ACGGAATAAGCCGCATACACTAGC -ACGGAATAAGCCGCATACAGATGC -ACGGAATAAGCCGCATACTGAAGG -ACGGAATAAGCCGCATACCAATGG -ACGGAATAAGCCGCATACATGAGG -ACGGAATAAGCCGCATACAATGGG -ACGGAATAAGCCGCATACTCCTGA -ACGGAATAAGCCGCATACTAGCGA -ACGGAATAAGCCGCATACCACAGA -ACGGAATAAGCCGCATACGCAAGA -ACGGAATAAGCCGCATACGGTTGA -ACGGAATAAGCCGCATACTCCGAT -ACGGAATAAGCCGCATACTGGCAT -ACGGAATAAGCCGCATACCGAGAT -ACGGAATAAGCCGCATACTACCAC -ACGGAATAAGCCGCATACCAGAAC -ACGGAATAAGCCGCATACGTCTAC -ACGGAATAAGCCGCATACACGTAC -ACGGAATAAGCCGCATACAGTGAC -ACGGAATAAGCCGCATACCTGTAG -ACGGAATAAGCCGCATACCCTAAG -ACGGAATAAGCCGCATACGTTCAG -ACGGAATAAGCCGCATACGCATAG -ACGGAATAAGCCGCATACGACAAG -ACGGAATAAGCCGCATACAAGCAG -ACGGAATAAGCCGCATACCGTCAA -ACGGAATAAGCCGCATACGCTGAA -ACGGAATAAGCCGCATACAGTACG -ACGGAATAAGCCGCATACATCCGA -ACGGAATAAGCCGCATACATGGGA -ACGGAATAAGCCGCATACGTGCAA -ACGGAATAAGCCGCATACGAGGAA -ACGGAATAAGCCGCATACCAGGTA -ACGGAATAAGCCGCATACGACTCT -ACGGAATAAGCCGCATACAGTCCT -ACGGAATAAGCCGCATACTAAGCC -ACGGAATAAGCCGCATACATAGCC -ACGGAATAAGCCGCATACTAACCG -ACGGAATAAGCCGCATACATGCCA -ACGGAATAAGCCGCACTTGGAAAC -ACGGAATAAGCCGCACTTAACACC -ACGGAATAAGCCGCACTTATCGAG -ACGGAATAAGCCGCACTTCTCCTT -ACGGAATAAGCCGCACTTCCTGTT -ACGGAATAAGCCGCACTTCGGTTT -ACGGAATAAGCCGCACTTGTGGTT -ACGGAATAAGCCGCACTTGCCTTT -ACGGAATAAGCCGCACTTGGTCTT -ACGGAATAAGCCGCACTTACGCTT -ACGGAATAAGCCGCACTTAGCGTT -ACGGAATAAGCCGCACTTTTCGTC -ACGGAATAAGCCGCACTTTCTCTC -ACGGAATAAGCCGCACTTTGGATC -ACGGAATAAGCCGCACTTCACTTC -ACGGAATAAGCCGCACTTGTACTC -ACGGAATAAGCCGCACTTGATGTC -ACGGAATAAGCCGCACTTACAGTC -ACGGAATAAGCCGCACTTTTGCTG -ACGGAATAAGCCGCACTTTCCATG -ACGGAATAAGCCGCACTTTGTGTG -ACGGAATAAGCCGCACTTCTAGTG -ACGGAATAAGCCGCACTTCATCTG -ACGGAATAAGCCGCACTTGAGTTG -ACGGAATAAGCCGCACTTAGACTG -ACGGAATAAGCCGCACTTTCGGTA -ACGGAATAAGCCGCACTTTGCCTA -ACGGAATAAGCCGCACTTCCACTA -ACGGAATAAGCCGCACTTGGAGTA -ACGGAATAAGCCGCACTTTCGTCT -ACGGAATAAGCCGCACTTTGCACT -ACGGAATAAGCCGCACTTCTGACT -ACGGAATAAGCCGCACTTCAACCT -ACGGAATAAGCCGCACTTGCTACT -ACGGAATAAGCCGCACTTGGATCT -ACGGAATAAGCCGCACTTAAGGCT -ACGGAATAAGCCGCACTTTCAACC -ACGGAATAAGCCGCACTTTGTTCC -ACGGAATAAGCCGCACTTATTCCC -ACGGAATAAGCCGCACTTTTCTCG -ACGGAATAAGCCGCACTTTAGACG -ACGGAATAAGCCGCACTTGTAACG -ACGGAATAAGCCGCACTTACTTCG -ACGGAATAAGCCGCACTTTACGCA -ACGGAATAAGCCGCACTTCTTGCA -ACGGAATAAGCCGCACTTCGAACA -ACGGAATAAGCCGCACTTCAGTCA -ACGGAATAAGCCGCACTTGATCCA -ACGGAATAAGCCGCACTTACGACA -ACGGAATAAGCCGCACTTAGCTCA -ACGGAATAAGCCGCACTTTCACGT -ACGGAATAAGCCGCACTTCGTAGT -ACGGAATAAGCCGCACTTGTCAGT -ACGGAATAAGCCGCACTTGAAGGT -ACGGAATAAGCCGCACTTAACCGT -ACGGAATAAGCCGCACTTTTGTGC -ACGGAATAAGCCGCACTTCTAAGC -ACGGAATAAGCCGCACTTACTAGC -ACGGAATAAGCCGCACTTAGATGC -ACGGAATAAGCCGCACTTTGAAGG -ACGGAATAAGCCGCACTTCAATGG -ACGGAATAAGCCGCACTTATGAGG -ACGGAATAAGCCGCACTTAATGGG -ACGGAATAAGCCGCACTTTCCTGA -ACGGAATAAGCCGCACTTTAGCGA -ACGGAATAAGCCGCACTTCACAGA -ACGGAATAAGCCGCACTTGCAAGA -ACGGAATAAGCCGCACTTGGTTGA -ACGGAATAAGCCGCACTTTCCGAT -ACGGAATAAGCCGCACTTTGGCAT -ACGGAATAAGCCGCACTTCGAGAT -ACGGAATAAGCCGCACTTTACCAC -ACGGAATAAGCCGCACTTCAGAAC -ACGGAATAAGCCGCACTTGTCTAC -ACGGAATAAGCCGCACTTACGTAC -ACGGAATAAGCCGCACTTAGTGAC -ACGGAATAAGCCGCACTTCTGTAG -ACGGAATAAGCCGCACTTCCTAAG -ACGGAATAAGCCGCACTTGTTCAG -ACGGAATAAGCCGCACTTGCATAG -ACGGAATAAGCCGCACTTGACAAG -ACGGAATAAGCCGCACTTAAGCAG -ACGGAATAAGCCGCACTTCGTCAA -ACGGAATAAGCCGCACTTGCTGAA -ACGGAATAAGCCGCACTTAGTACG -ACGGAATAAGCCGCACTTATCCGA -ACGGAATAAGCCGCACTTATGGGA -ACGGAATAAGCCGCACTTGTGCAA -ACGGAATAAGCCGCACTTGAGGAA -ACGGAATAAGCCGCACTTCAGGTA -ACGGAATAAGCCGCACTTGACTCT -ACGGAATAAGCCGCACTTAGTCCT -ACGGAATAAGCCGCACTTTAAGCC -ACGGAATAAGCCGCACTTATAGCC -ACGGAATAAGCCGCACTTTAACCG -ACGGAATAAGCCGCACTTATGCCA -ACGGAATAAGCCACACGAGGAAAC -ACGGAATAAGCCACACGAAACACC -ACGGAATAAGCCACACGAATCGAG -ACGGAATAAGCCACACGACTCCTT -ACGGAATAAGCCACACGACCTGTT -ACGGAATAAGCCACACGACGGTTT -ACGGAATAAGCCACACGAGTGGTT -ACGGAATAAGCCACACGAGCCTTT -ACGGAATAAGCCACACGAGGTCTT -ACGGAATAAGCCACACGAACGCTT -ACGGAATAAGCCACACGAAGCGTT -ACGGAATAAGCCACACGATTCGTC -ACGGAATAAGCCACACGATCTCTC -ACGGAATAAGCCACACGATGGATC -ACGGAATAAGCCACACGACACTTC -ACGGAATAAGCCACACGAGTACTC -ACGGAATAAGCCACACGAGATGTC -ACGGAATAAGCCACACGAACAGTC -ACGGAATAAGCCACACGATTGCTG -ACGGAATAAGCCACACGATCCATG -ACGGAATAAGCCACACGATGTGTG -ACGGAATAAGCCACACGACTAGTG -ACGGAATAAGCCACACGACATCTG -ACGGAATAAGCCACACGAGAGTTG -ACGGAATAAGCCACACGAAGACTG -ACGGAATAAGCCACACGATCGGTA -ACGGAATAAGCCACACGATGCCTA -ACGGAATAAGCCACACGACCACTA -ACGGAATAAGCCACACGAGGAGTA -ACGGAATAAGCCACACGATCGTCT -ACGGAATAAGCCACACGATGCACT -ACGGAATAAGCCACACGACTGACT -ACGGAATAAGCCACACGACAACCT -ACGGAATAAGCCACACGAGCTACT -ACGGAATAAGCCACACGAGGATCT -ACGGAATAAGCCACACGAAAGGCT -ACGGAATAAGCCACACGATCAACC -ACGGAATAAGCCACACGATGTTCC -ACGGAATAAGCCACACGAATTCCC -ACGGAATAAGCCACACGATTCTCG -ACGGAATAAGCCACACGATAGACG -ACGGAATAAGCCACACGAGTAACG -ACGGAATAAGCCACACGAACTTCG -ACGGAATAAGCCACACGATACGCA -ACGGAATAAGCCACACGACTTGCA -ACGGAATAAGCCACACGACGAACA -ACGGAATAAGCCACACGACAGTCA -ACGGAATAAGCCACACGAGATCCA -ACGGAATAAGCCACACGAACGACA -ACGGAATAAGCCACACGAAGCTCA -ACGGAATAAGCCACACGATCACGT -ACGGAATAAGCCACACGACGTAGT -ACGGAATAAGCCACACGAGTCAGT -ACGGAATAAGCCACACGAGAAGGT -ACGGAATAAGCCACACGAAACCGT -ACGGAATAAGCCACACGATTGTGC -ACGGAATAAGCCACACGACTAAGC -ACGGAATAAGCCACACGAACTAGC -ACGGAATAAGCCACACGAAGATGC -ACGGAATAAGCCACACGATGAAGG -ACGGAATAAGCCACACGACAATGG -ACGGAATAAGCCACACGAATGAGG -ACGGAATAAGCCACACGAAATGGG -ACGGAATAAGCCACACGATCCTGA -ACGGAATAAGCCACACGATAGCGA -ACGGAATAAGCCACACGACACAGA -ACGGAATAAGCCACACGAGCAAGA -ACGGAATAAGCCACACGAGGTTGA -ACGGAATAAGCCACACGATCCGAT -ACGGAATAAGCCACACGATGGCAT -ACGGAATAAGCCACACGACGAGAT -ACGGAATAAGCCACACGATACCAC -ACGGAATAAGCCACACGACAGAAC -ACGGAATAAGCCACACGAGTCTAC -ACGGAATAAGCCACACGAACGTAC -ACGGAATAAGCCACACGAAGTGAC -ACGGAATAAGCCACACGACTGTAG -ACGGAATAAGCCACACGACCTAAG -ACGGAATAAGCCACACGAGTTCAG -ACGGAATAAGCCACACGAGCATAG -ACGGAATAAGCCACACGAGACAAG -ACGGAATAAGCCACACGAAAGCAG -ACGGAATAAGCCACACGACGTCAA -ACGGAATAAGCCACACGAGCTGAA -ACGGAATAAGCCACACGAAGTACG -ACGGAATAAGCCACACGAATCCGA -ACGGAATAAGCCACACGAATGGGA -ACGGAATAAGCCACACGAGTGCAA -ACGGAATAAGCCACACGAGAGGAA -ACGGAATAAGCCACACGACAGGTA -ACGGAATAAGCCACACGAGACTCT -ACGGAATAAGCCACACGAAGTCCT -ACGGAATAAGCCACACGATAAGCC -ACGGAATAAGCCACACGAATAGCC -ACGGAATAAGCCACACGATAACCG -ACGGAATAAGCCACACGAATGCCA -ACGGAATAAGCCTCACAGGGAAAC -ACGGAATAAGCCTCACAGAACACC -ACGGAATAAGCCTCACAGATCGAG -ACGGAATAAGCCTCACAGCTCCTT -ACGGAATAAGCCTCACAGCCTGTT -ACGGAATAAGCCTCACAGCGGTTT -ACGGAATAAGCCTCACAGGTGGTT -ACGGAATAAGCCTCACAGGCCTTT -ACGGAATAAGCCTCACAGGGTCTT -ACGGAATAAGCCTCACAGACGCTT -ACGGAATAAGCCTCACAGAGCGTT -ACGGAATAAGCCTCACAGTTCGTC -ACGGAATAAGCCTCACAGTCTCTC -ACGGAATAAGCCTCACAGTGGATC -ACGGAATAAGCCTCACAGCACTTC -ACGGAATAAGCCTCACAGGTACTC -ACGGAATAAGCCTCACAGGATGTC -ACGGAATAAGCCTCACAGACAGTC -ACGGAATAAGCCTCACAGTTGCTG -ACGGAATAAGCCTCACAGTCCATG -ACGGAATAAGCCTCACAGTGTGTG -ACGGAATAAGCCTCACAGCTAGTG -ACGGAATAAGCCTCACAGCATCTG -ACGGAATAAGCCTCACAGGAGTTG -ACGGAATAAGCCTCACAGAGACTG -ACGGAATAAGCCTCACAGTCGGTA -ACGGAATAAGCCTCACAGTGCCTA -ACGGAATAAGCCTCACAGCCACTA -ACGGAATAAGCCTCACAGGGAGTA -ACGGAATAAGCCTCACAGTCGTCT -ACGGAATAAGCCTCACAGTGCACT -ACGGAATAAGCCTCACAGCTGACT -ACGGAATAAGCCTCACAGCAACCT -ACGGAATAAGCCTCACAGGCTACT -ACGGAATAAGCCTCACAGGGATCT -ACGGAATAAGCCTCACAGAAGGCT -ACGGAATAAGCCTCACAGTCAACC -ACGGAATAAGCCTCACAGTGTTCC -ACGGAATAAGCCTCACAGATTCCC -ACGGAATAAGCCTCACAGTTCTCG -ACGGAATAAGCCTCACAGTAGACG -ACGGAATAAGCCTCACAGGTAACG -ACGGAATAAGCCTCACAGACTTCG -ACGGAATAAGCCTCACAGTACGCA -ACGGAATAAGCCTCACAGCTTGCA -ACGGAATAAGCCTCACAGCGAACA -ACGGAATAAGCCTCACAGCAGTCA -ACGGAATAAGCCTCACAGGATCCA -ACGGAATAAGCCTCACAGACGACA -ACGGAATAAGCCTCACAGAGCTCA -ACGGAATAAGCCTCACAGTCACGT -ACGGAATAAGCCTCACAGCGTAGT -ACGGAATAAGCCTCACAGGTCAGT -ACGGAATAAGCCTCACAGGAAGGT -ACGGAATAAGCCTCACAGAACCGT -ACGGAATAAGCCTCACAGTTGTGC -ACGGAATAAGCCTCACAGCTAAGC -ACGGAATAAGCCTCACAGACTAGC -ACGGAATAAGCCTCACAGAGATGC -ACGGAATAAGCCTCACAGTGAAGG -ACGGAATAAGCCTCACAGCAATGG -ACGGAATAAGCCTCACAGATGAGG -ACGGAATAAGCCTCACAGAATGGG -ACGGAATAAGCCTCACAGTCCTGA -ACGGAATAAGCCTCACAGTAGCGA -ACGGAATAAGCCTCACAGCACAGA -ACGGAATAAGCCTCACAGGCAAGA -ACGGAATAAGCCTCACAGGGTTGA -ACGGAATAAGCCTCACAGTCCGAT -ACGGAATAAGCCTCACAGTGGCAT -ACGGAATAAGCCTCACAGCGAGAT -ACGGAATAAGCCTCACAGTACCAC -ACGGAATAAGCCTCACAGCAGAAC -ACGGAATAAGCCTCACAGGTCTAC -ACGGAATAAGCCTCACAGACGTAC -ACGGAATAAGCCTCACAGAGTGAC -ACGGAATAAGCCTCACAGCTGTAG -ACGGAATAAGCCTCACAGCCTAAG -ACGGAATAAGCCTCACAGGTTCAG -ACGGAATAAGCCTCACAGGCATAG -ACGGAATAAGCCTCACAGGACAAG -ACGGAATAAGCCTCACAGAAGCAG -ACGGAATAAGCCTCACAGCGTCAA -ACGGAATAAGCCTCACAGGCTGAA -ACGGAATAAGCCTCACAGAGTACG -ACGGAATAAGCCTCACAGATCCGA -ACGGAATAAGCCTCACAGATGGGA -ACGGAATAAGCCTCACAGGTGCAA -ACGGAATAAGCCTCACAGGAGGAA -ACGGAATAAGCCTCACAGCAGGTA -ACGGAATAAGCCTCACAGGACTCT -ACGGAATAAGCCTCACAGAGTCCT -ACGGAATAAGCCTCACAGTAAGCC -ACGGAATAAGCCTCACAGATAGCC -ACGGAATAAGCCTCACAGTAACCG -ACGGAATAAGCCTCACAGATGCCA -ACGGAATAAGCCCCAGATGGAAAC -ACGGAATAAGCCCCAGATAACACC -ACGGAATAAGCCCCAGATATCGAG -ACGGAATAAGCCCCAGATCTCCTT -ACGGAATAAGCCCCAGATCCTGTT -ACGGAATAAGCCCCAGATCGGTTT -ACGGAATAAGCCCCAGATGTGGTT -ACGGAATAAGCCCCAGATGCCTTT -ACGGAATAAGCCCCAGATGGTCTT -ACGGAATAAGCCCCAGATACGCTT -ACGGAATAAGCCCCAGATAGCGTT -ACGGAATAAGCCCCAGATTTCGTC -ACGGAATAAGCCCCAGATTCTCTC -ACGGAATAAGCCCCAGATTGGATC -ACGGAATAAGCCCCAGATCACTTC -ACGGAATAAGCCCCAGATGTACTC -ACGGAATAAGCCCCAGATGATGTC -ACGGAATAAGCCCCAGATACAGTC -ACGGAATAAGCCCCAGATTTGCTG -ACGGAATAAGCCCCAGATTCCATG -ACGGAATAAGCCCCAGATTGTGTG -ACGGAATAAGCCCCAGATCTAGTG -ACGGAATAAGCCCCAGATCATCTG -ACGGAATAAGCCCCAGATGAGTTG -ACGGAATAAGCCCCAGATAGACTG -ACGGAATAAGCCCCAGATTCGGTA -ACGGAATAAGCCCCAGATTGCCTA -ACGGAATAAGCCCCAGATCCACTA -ACGGAATAAGCCCCAGATGGAGTA -ACGGAATAAGCCCCAGATTCGTCT -ACGGAATAAGCCCCAGATTGCACT -ACGGAATAAGCCCCAGATCTGACT -ACGGAATAAGCCCCAGATCAACCT -ACGGAATAAGCCCCAGATGCTACT -ACGGAATAAGCCCCAGATGGATCT -ACGGAATAAGCCCCAGATAAGGCT -ACGGAATAAGCCCCAGATTCAACC -ACGGAATAAGCCCCAGATTGTTCC -ACGGAATAAGCCCCAGATATTCCC -ACGGAATAAGCCCCAGATTTCTCG -ACGGAATAAGCCCCAGATTAGACG -ACGGAATAAGCCCCAGATGTAACG -ACGGAATAAGCCCCAGATACTTCG -ACGGAATAAGCCCCAGATTACGCA -ACGGAATAAGCCCCAGATCTTGCA -ACGGAATAAGCCCCAGATCGAACA -ACGGAATAAGCCCCAGATCAGTCA -ACGGAATAAGCCCCAGATGATCCA -ACGGAATAAGCCCCAGATACGACA -ACGGAATAAGCCCCAGATAGCTCA -ACGGAATAAGCCCCAGATTCACGT -ACGGAATAAGCCCCAGATCGTAGT -ACGGAATAAGCCCCAGATGTCAGT -ACGGAATAAGCCCCAGATGAAGGT -ACGGAATAAGCCCCAGATAACCGT -ACGGAATAAGCCCCAGATTTGTGC -ACGGAATAAGCCCCAGATCTAAGC -ACGGAATAAGCCCCAGATACTAGC -ACGGAATAAGCCCCAGATAGATGC -ACGGAATAAGCCCCAGATTGAAGG -ACGGAATAAGCCCCAGATCAATGG -ACGGAATAAGCCCCAGATATGAGG -ACGGAATAAGCCCCAGATAATGGG -ACGGAATAAGCCCCAGATTCCTGA -ACGGAATAAGCCCCAGATTAGCGA -ACGGAATAAGCCCCAGATCACAGA -ACGGAATAAGCCCCAGATGCAAGA -ACGGAATAAGCCCCAGATGGTTGA -ACGGAATAAGCCCCAGATTCCGAT -ACGGAATAAGCCCCAGATTGGCAT -ACGGAATAAGCCCCAGATCGAGAT -ACGGAATAAGCCCCAGATTACCAC -ACGGAATAAGCCCCAGATCAGAAC -ACGGAATAAGCCCCAGATGTCTAC -ACGGAATAAGCCCCAGATACGTAC -ACGGAATAAGCCCCAGATAGTGAC -ACGGAATAAGCCCCAGATCTGTAG -ACGGAATAAGCCCCAGATCCTAAG -ACGGAATAAGCCCCAGATGTTCAG -ACGGAATAAGCCCCAGATGCATAG -ACGGAATAAGCCCCAGATGACAAG -ACGGAATAAGCCCCAGATAAGCAG -ACGGAATAAGCCCCAGATCGTCAA -ACGGAATAAGCCCCAGATGCTGAA -ACGGAATAAGCCCCAGATAGTACG -ACGGAATAAGCCCCAGATATCCGA -ACGGAATAAGCCCCAGATATGGGA -ACGGAATAAGCCCCAGATGTGCAA -ACGGAATAAGCCCCAGATGAGGAA -ACGGAATAAGCCCCAGATCAGGTA -ACGGAATAAGCCCCAGATGACTCT -ACGGAATAAGCCCCAGATAGTCCT -ACGGAATAAGCCCCAGATTAAGCC -ACGGAATAAGCCCCAGATATAGCC -ACGGAATAAGCCCCAGATTAACCG -ACGGAATAAGCCCCAGATATGCCA -ACGGAATAAGCCACAACGGGAAAC -ACGGAATAAGCCACAACGAACACC -ACGGAATAAGCCACAACGATCGAG -ACGGAATAAGCCACAACGCTCCTT -ACGGAATAAGCCACAACGCCTGTT -ACGGAATAAGCCACAACGCGGTTT -ACGGAATAAGCCACAACGGTGGTT -ACGGAATAAGCCACAACGGCCTTT -ACGGAATAAGCCACAACGGGTCTT -ACGGAATAAGCCACAACGACGCTT -ACGGAATAAGCCACAACGAGCGTT -ACGGAATAAGCCACAACGTTCGTC -ACGGAATAAGCCACAACGTCTCTC -ACGGAATAAGCCACAACGTGGATC -ACGGAATAAGCCACAACGCACTTC -ACGGAATAAGCCACAACGGTACTC -ACGGAATAAGCCACAACGGATGTC -ACGGAATAAGCCACAACGACAGTC -ACGGAATAAGCCACAACGTTGCTG -ACGGAATAAGCCACAACGTCCATG -ACGGAATAAGCCACAACGTGTGTG -ACGGAATAAGCCACAACGCTAGTG -ACGGAATAAGCCACAACGCATCTG -ACGGAATAAGCCACAACGGAGTTG -ACGGAATAAGCCACAACGAGACTG -ACGGAATAAGCCACAACGTCGGTA -ACGGAATAAGCCACAACGTGCCTA -ACGGAATAAGCCACAACGCCACTA -ACGGAATAAGCCACAACGGGAGTA -ACGGAATAAGCCACAACGTCGTCT -ACGGAATAAGCCACAACGTGCACT -ACGGAATAAGCCACAACGCTGACT -ACGGAATAAGCCACAACGCAACCT -ACGGAATAAGCCACAACGGCTACT -ACGGAATAAGCCACAACGGGATCT -ACGGAATAAGCCACAACGAAGGCT -ACGGAATAAGCCACAACGTCAACC -ACGGAATAAGCCACAACGTGTTCC -ACGGAATAAGCCACAACGATTCCC -ACGGAATAAGCCACAACGTTCTCG -ACGGAATAAGCCACAACGTAGACG -ACGGAATAAGCCACAACGGTAACG -ACGGAATAAGCCACAACGACTTCG -ACGGAATAAGCCACAACGTACGCA -ACGGAATAAGCCACAACGCTTGCA -ACGGAATAAGCCACAACGCGAACA -ACGGAATAAGCCACAACGCAGTCA -ACGGAATAAGCCACAACGGATCCA -ACGGAATAAGCCACAACGACGACA -ACGGAATAAGCCACAACGAGCTCA -ACGGAATAAGCCACAACGTCACGT -ACGGAATAAGCCACAACGCGTAGT -ACGGAATAAGCCACAACGGTCAGT -ACGGAATAAGCCACAACGGAAGGT -ACGGAATAAGCCACAACGAACCGT -ACGGAATAAGCCACAACGTTGTGC -ACGGAATAAGCCACAACGCTAAGC -ACGGAATAAGCCACAACGACTAGC -ACGGAATAAGCCACAACGAGATGC -ACGGAATAAGCCACAACGTGAAGG -ACGGAATAAGCCACAACGCAATGG -ACGGAATAAGCCACAACGATGAGG -ACGGAATAAGCCACAACGAATGGG -ACGGAATAAGCCACAACGTCCTGA -ACGGAATAAGCCACAACGTAGCGA -ACGGAATAAGCCACAACGCACAGA -ACGGAATAAGCCACAACGGCAAGA -ACGGAATAAGCCACAACGGGTTGA -ACGGAATAAGCCACAACGTCCGAT -ACGGAATAAGCCACAACGTGGCAT -ACGGAATAAGCCACAACGCGAGAT -ACGGAATAAGCCACAACGTACCAC -ACGGAATAAGCCACAACGCAGAAC -ACGGAATAAGCCACAACGGTCTAC -ACGGAATAAGCCACAACGACGTAC -ACGGAATAAGCCACAACGAGTGAC -ACGGAATAAGCCACAACGCTGTAG -ACGGAATAAGCCACAACGCCTAAG -ACGGAATAAGCCACAACGGTTCAG -ACGGAATAAGCCACAACGGCATAG -ACGGAATAAGCCACAACGGACAAG -ACGGAATAAGCCACAACGAAGCAG -ACGGAATAAGCCACAACGCGTCAA -ACGGAATAAGCCACAACGGCTGAA -ACGGAATAAGCCACAACGAGTACG -ACGGAATAAGCCACAACGATCCGA -ACGGAATAAGCCACAACGATGGGA -ACGGAATAAGCCACAACGGTGCAA -ACGGAATAAGCCACAACGGAGGAA -ACGGAATAAGCCACAACGCAGGTA -ACGGAATAAGCCACAACGGACTCT -ACGGAATAAGCCACAACGAGTCCT -ACGGAATAAGCCACAACGTAAGCC -ACGGAATAAGCCACAACGATAGCC -ACGGAATAAGCCACAACGTAACCG -ACGGAATAAGCCACAACGATGCCA -ACGGAATAAGCCTCAAGCGGAAAC -ACGGAATAAGCCTCAAGCAACACC -ACGGAATAAGCCTCAAGCATCGAG -ACGGAATAAGCCTCAAGCCTCCTT -ACGGAATAAGCCTCAAGCCCTGTT -ACGGAATAAGCCTCAAGCCGGTTT -ACGGAATAAGCCTCAAGCGTGGTT -ACGGAATAAGCCTCAAGCGCCTTT -ACGGAATAAGCCTCAAGCGGTCTT -ACGGAATAAGCCTCAAGCACGCTT -ACGGAATAAGCCTCAAGCAGCGTT -ACGGAATAAGCCTCAAGCTTCGTC -ACGGAATAAGCCTCAAGCTCTCTC -ACGGAATAAGCCTCAAGCTGGATC -ACGGAATAAGCCTCAAGCCACTTC -ACGGAATAAGCCTCAAGCGTACTC -ACGGAATAAGCCTCAAGCGATGTC -ACGGAATAAGCCTCAAGCACAGTC -ACGGAATAAGCCTCAAGCTTGCTG -ACGGAATAAGCCTCAAGCTCCATG -ACGGAATAAGCCTCAAGCTGTGTG -ACGGAATAAGCCTCAAGCCTAGTG -ACGGAATAAGCCTCAAGCCATCTG -ACGGAATAAGCCTCAAGCGAGTTG -ACGGAATAAGCCTCAAGCAGACTG -ACGGAATAAGCCTCAAGCTCGGTA -ACGGAATAAGCCTCAAGCTGCCTA -ACGGAATAAGCCTCAAGCCCACTA -ACGGAATAAGCCTCAAGCGGAGTA -ACGGAATAAGCCTCAAGCTCGTCT -ACGGAATAAGCCTCAAGCTGCACT -ACGGAATAAGCCTCAAGCCTGACT -ACGGAATAAGCCTCAAGCCAACCT -ACGGAATAAGCCTCAAGCGCTACT -ACGGAATAAGCCTCAAGCGGATCT -ACGGAATAAGCCTCAAGCAAGGCT -ACGGAATAAGCCTCAAGCTCAACC -ACGGAATAAGCCTCAAGCTGTTCC -ACGGAATAAGCCTCAAGCATTCCC -ACGGAATAAGCCTCAAGCTTCTCG -ACGGAATAAGCCTCAAGCTAGACG -ACGGAATAAGCCTCAAGCGTAACG -ACGGAATAAGCCTCAAGCACTTCG -ACGGAATAAGCCTCAAGCTACGCA -ACGGAATAAGCCTCAAGCCTTGCA -ACGGAATAAGCCTCAAGCCGAACA -ACGGAATAAGCCTCAAGCCAGTCA -ACGGAATAAGCCTCAAGCGATCCA -ACGGAATAAGCCTCAAGCACGACA -ACGGAATAAGCCTCAAGCAGCTCA -ACGGAATAAGCCTCAAGCTCACGT -ACGGAATAAGCCTCAAGCCGTAGT -ACGGAATAAGCCTCAAGCGTCAGT -ACGGAATAAGCCTCAAGCGAAGGT -ACGGAATAAGCCTCAAGCAACCGT -ACGGAATAAGCCTCAAGCTTGTGC -ACGGAATAAGCCTCAAGCCTAAGC -ACGGAATAAGCCTCAAGCACTAGC -ACGGAATAAGCCTCAAGCAGATGC -ACGGAATAAGCCTCAAGCTGAAGG -ACGGAATAAGCCTCAAGCCAATGG -ACGGAATAAGCCTCAAGCATGAGG -ACGGAATAAGCCTCAAGCAATGGG -ACGGAATAAGCCTCAAGCTCCTGA -ACGGAATAAGCCTCAAGCTAGCGA -ACGGAATAAGCCTCAAGCCACAGA -ACGGAATAAGCCTCAAGCGCAAGA -ACGGAATAAGCCTCAAGCGGTTGA -ACGGAATAAGCCTCAAGCTCCGAT -ACGGAATAAGCCTCAAGCTGGCAT -ACGGAATAAGCCTCAAGCCGAGAT -ACGGAATAAGCCTCAAGCTACCAC -ACGGAATAAGCCTCAAGCCAGAAC -ACGGAATAAGCCTCAAGCGTCTAC -ACGGAATAAGCCTCAAGCACGTAC -ACGGAATAAGCCTCAAGCAGTGAC -ACGGAATAAGCCTCAAGCCTGTAG -ACGGAATAAGCCTCAAGCCCTAAG -ACGGAATAAGCCTCAAGCGTTCAG -ACGGAATAAGCCTCAAGCGCATAG -ACGGAATAAGCCTCAAGCGACAAG -ACGGAATAAGCCTCAAGCAAGCAG -ACGGAATAAGCCTCAAGCCGTCAA -ACGGAATAAGCCTCAAGCGCTGAA -ACGGAATAAGCCTCAAGCAGTACG -ACGGAATAAGCCTCAAGCATCCGA -ACGGAATAAGCCTCAAGCATGGGA -ACGGAATAAGCCTCAAGCGTGCAA -ACGGAATAAGCCTCAAGCGAGGAA -ACGGAATAAGCCTCAAGCCAGGTA -ACGGAATAAGCCTCAAGCGACTCT -ACGGAATAAGCCTCAAGCAGTCCT -ACGGAATAAGCCTCAAGCTAAGCC -ACGGAATAAGCCTCAAGCATAGCC -ACGGAATAAGCCTCAAGCTAACCG -ACGGAATAAGCCTCAAGCATGCCA -ACGGAATAAGCCCGTTCAGGAAAC -ACGGAATAAGCCCGTTCAAACACC -ACGGAATAAGCCCGTTCAATCGAG -ACGGAATAAGCCCGTTCACTCCTT -ACGGAATAAGCCCGTTCACCTGTT -ACGGAATAAGCCCGTTCACGGTTT -ACGGAATAAGCCCGTTCAGTGGTT -ACGGAATAAGCCCGTTCAGCCTTT -ACGGAATAAGCCCGTTCAGGTCTT -ACGGAATAAGCCCGTTCAACGCTT -ACGGAATAAGCCCGTTCAAGCGTT -ACGGAATAAGCCCGTTCATTCGTC -ACGGAATAAGCCCGTTCATCTCTC -ACGGAATAAGCCCGTTCATGGATC -ACGGAATAAGCCCGTTCACACTTC -ACGGAATAAGCCCGTTCAGTACTC -ACGGAATAAGCCCGTTCAGATGTC -ACGGAATAAGCCCGTTCAACAGTC -ACGGAATAAGCCCGTTCATTGCTG -ACGGAATAAGCCCGTTCATCCATG -ACGGAATAAGCCCGTTCATGTGTG -ACGGAATAAGCCCGTTCACTAGTG -ACGGAATAAGCCCGTTCACATCTG -ACGGAATAAGCCCGTTCAGAGTTG -ACGGAATAAGCCCGTTCAAGACTG -ACGGAATAAGCCCGTTCATCGGTA -ACGGAATAAGCCCGTTCATGCCTA -ACGGAATAAGCCCGTTCACCACTA -ACGGAATAAGCCCGTTCAGGAGTA -ACGGAATAAGCCCGTTCATCGTCT -ACGGAATAAGCCCGTTCATGCACT -ACGGAATAAGCCCGTTCACTGACT -ACGGAATAAGCCCGTTCACAACCT -ACGGAATAAGCCCGTTCAGCTACT -ACGGAATAAGCCCGTTCAGGATCT -ACGGAATAAGCCCGTTCAAAGGCT -ACGGAATAAGCCCGTTCATCAACC -ACGGAATAAGCCCGTTCATGTTCC -ACGGAATAAGCCCGTTCAATTCCC -ACGGAATAAGCCCGTTCATTCTCG -ACGGAATAAGCCCGTTCATAGACG -ACGGAATAAGCCCGTTCAGTAACG -ACGGAATAAGCCCGTTCAACTTCG -ACGGAATAAGCCCGTTCATACGCA -ACGGAATAAGCCCGTTCACTTGCA -ACGGAATAAGCCCGTTCACGAACA -ACGGAATAAGCCCGTTCACAGTCA -ACGGAATAAGCCCGTTCAGATCCA -ACGGAATAAGCCCGTTCAACGACA -ACGGAATAAGCCCGTTCAAGCTCA -ACGGAATAAGCCCGTTCATCACGT -ACGGAATAAGCCCGTTCACGTAGT -ACGGAATAAGCCCGTTCAGTCAGT -ACGGAATAAGCCCGTTCAGAAGGT -ACGGAATAAGCCCGTTCAAACCGT -ACGGAATAAGCCCGTTCATTGTGC -ACGGAATAAGCCCGTTCACTAAGC -ACGGAATAAGCCCGTTCAACTAGC -ACGGAATAAGCCCGTTCAAGATGC -ACGGAATAAGCCCGTTCATGAAGG -ACGGAATAAGCCCGTTCACAATGG -ACGGAATAAGCCCGTTCAATGAGG -ACGGAATAAGCCCGTTCAAATGGG -ACGGAATAAGCCCGTTCATCCTGA -ACGGAATAAGCCCGTTCATAGCGA -ACGGAATAAGCCCGTTCACACAGA -ACGGAATAAGCCCGTTCAGCAAGA -ACGGAATAAGCCCGTTCAGGTTGA -ACGGAATAAGCCCGTTCATCCGAT -ACGGAATAAGCCCGTTCATGGCAT -ACGGAATAAGCCCGTTCACGAGAT -ACGGAATAAGCCCGTTCATACCAC -ACGGAATAAGCCCGTTCACAGAAC -ACGGAATAAGCCCGTTCAGTCTAC -ACGGAATAAGCCCGTTCAACGTAC -ACGGAATAAGCCCGTTCAAGTGAC -ACGGAATAAGCCCGTTCACTGTAG -ACGGAATAAGCCCGTTCACCTAAG -ACGGAATAAGCCCGTTCAGTTCAG -ACGGAATAAGCCCGTTCAGCATAG -ACGGAATAAGCCCGTTCAGACAAG -ACGGAATAAGCCCGTTCAAAGCAG -ACGGAATAAGCCCGTTCACGTCAA -ACGGAATAAGCCCGTTCAGCTGAA -ACGGAATAAGCCCGTTCAAGTACG -ACGGAATAAGCCCGTTCAATCCGA -ACGGAATAAGCCCGTTCAATGGGA -ACGGAATAAGCCCGTTCAGTGCAA -ACGGAATAAGCCCGTTCAGAGGAA -ACGGAATAAGCCCGTTCACAGGTA -ACGGAATAAGCCCGTTCAGACTCT -ACGGAATAAGCCCGTTCAAGTCCT -ACGGAATAAGCCCGTTCATAAGCC -ACGGAATAAGCCCGTTCAATAGCC -ACGGAATAAGCCCGTTCATAACCG -ACGGAATAAGCCCGTTCAATGCCA -ACGGAATAAGCCAGTCGTGGAAAC -ACGGAATAAGCCAGTCGTAACACC -ACGGAATAAGCCAGTCGTATCGAG -ACGGAATAAGCCAGTCGTCTCCTT -ACGGAATAAGCCAGTCGTCCTGTT -ACGGAATAAGCCAGTCGTCGGTTT -ACGGAATAAGCCAGTCGTGTGGTT -ACGGAATAAGCCAGTCGTGCCTTT -ACGGAATAAGCCAGTCGTGGTCTT -ACGGAATAAGCCAGTCGTACGCTT -ACGGAATAAGCCAGTCGTAGCGTT -ACGGAATAAGCCAGTCGTTTCGTC -ACGGAATAAGCCAGTCGTTCTCTC -ACGGAATAAGCCAGTCGTTGGATC -ACGGAATAAGCCAGTCGTCACTTC -ACGGAATAAGCCAGTCGTGTACTC -ACGGAATAAGCCAGTCGTGATGTC -ACGGAATAAGCCAGTCGTACAGTC -ACGGAATAAGCCAGTCGTTTGCTG -ACGGAATAAGCCAGTCGTTCCATG -ACGGAATAAGCCAGTCGTTGTGTG -ACGGAATAAGCCAGTCGTCTAGTG -ACGGAATAAGCCAGTCGTCATCTG -ACGGAATAAGCCAGTCGTGAGTTG -ACGGAATAAGCCAGTCGTAGACTG -ACGGAATAAGCCAGTCGTTCGGTA -ACGGAATAAGCCAGTCGTTGCCTA -ACGGAATAAGCCAGTCGTCCACTA -ACGGAATAAGCCAGTCGTGGAGTA -ACGGAATAAGCCAGTCGTTCGTCT -ACGGAATAAGCCAGTCGTTGCACT -ACGGAATAAGCCAGTCGTCTGACT -ACGGAATAAGCCAGTCGTCAACCT -ACGGAATAAGCCAGTCGTGCTACT -ACGGAATAAGCCAGTCGTGGATCT -ACGGAATAAGCCAGTCGTAAGGCT -ACGGAATAAGCCAGTCGTTCAACC -ACGGAATAAGCCAGTCGTTGTTCC -ACGGAATAAGCCAGTCGTATTCCC -ACGGAATAAGCCAGTCGTTTCTCG -ACGGAATAAGCCAGTCGTTAGACG -ACGGAATAAGCCAGTCGTGTAACG -ACGGAATAAGCCAGTCGTACTTCG -ACGGAATAAGCCAGTCGTTACGCA -ACGGAATAAGCCAGTCGTCTTGCA -ACGGAATAAGCCAGTCGTCGAACA -ACGGAATAAGCCAGTCGTCAGTCA -ACGGAATAAGCCAGTCGTGATCCA -ACGGAATAAGCCAGTCGTACGACA -ACGGAATAAGCCAGTCGTAGCTCA -ACGGAATAAGCCAGTCGTTCACGT -ACGGAATAAGCCAGTCGTCGTAGT -ACGGAATAAGCCAGTCGTGTCAGT -ACGGAATAAGCCAGTCGTGAAGGT -ACGGAATAAGCCAGTCGTAACCGT -ACGGAATAAGCCAGTCGTTTGTGC -ACGGAATAAGCCAGTCGTCTAAGC -ACGGAATAAGCCAGTCGTACTAGC -ACGGAATAAGCCAGTCGTAGATGC -ACGGAATAAGCCAGTCGTTGAAGG -ACGGAATAAGCCAGTCGTCAATGG -ACGGAATAAGCCAGTCGTATGAGG -ACGGAATAAGCCAGTCGTAATGGG -ACGGAATAAGCCAGTCGTTCCTGA -ACGGAATAAGCCAGTCGTTAGCGA -ACGGAATAAGCCAGTCGTCACAGA -ACGGAATAAGCCAGTCGTGCAAGA -ACGGAATAAGCCAGTCGTGGTTGA -ACGGAATAAGCCAGTCGTTCCGAT -ACGGAATAAGCCAGTCGTTGGCAT -ACGGAATAAGCCAGTCGTCGAGAT -ACGGAATAAGCCAGTCGTTACCAC -ACGGAATAAGCCAGTCGTCAGAAC -ACGGAATAAGCCAGTCGTGTCTAC -ACGGAATAAGCCAGTCGTACGTAC -ACGGAATAAGCCAGTCGTAGTGAC -ACGGAATAAGCCAGTCGTCTGTAG -ACGGAATAAGCCAGTCGTCCTAAG -ACGGAATAAGCCAGTCGTGTTCAG -ACGGAATAAGCCAGTCGTGCATAG -ACGGAATAAGCCAGTCGTGACAAG -ACGGAATAAGCCAGTCGTAAGCAG -ACGGAATAAGCCAGTCGTCGTCAA -ACGGAATAAGCCAGTCGTGCTGAA -ACGGAATAAGCCAGTCGTAGTACG -ACGGAATAAGCCAGTCGTATCCGA -ACGGAATAAGCCAGTCGTATGGGA -ACGGAATAAGCCAGTCGTGTGCAA -ACGGAATAAGCCAGTCGTGAGGAA -ACGGAATAAGCCAGTCGTCAGGTA -ACGGAATAAGCCAGTCGTGACTCT -ACGGAATAAGCCAGTCGTAGTCCT -ACGGAATAAGCCAGTCGTTAAGCC -ACGGAATAAGCCAGTCGTATAGCC -ACGGAATAAGCCAGTCGTTAACCG -ACGGAATAAGCCAGTCGTATGCCA -ACGGAATAAGCCAGTGTCGGAAAC -ACGGAATAAGCCAGTGTCAACACC -ACGGAATAAGCCAGTGTCATCGAG -ACGGAATAAGCCAGTGTCCTCCTT -ACGGAATAAGCCAGTGTCCCTGTT -ACGGAATAAGCCAGTGTCCGGTTT -ACGGAATAAGCCAGTGTCGTGGTT -ACGGAATAAGCCAGTGTCGCCTTT -ACGGAATAAGCCAGTGTCGGTCTT -ACGGAATAAGCCAGTGTCACGCTT -ACGGAATAAGCCAGTGTCAGCGTT -ACGGAATAAGCCAGTGTCTTCGTC -ACGGAATAAGCCAGTGTCTCTCTC -ACGGAATAAGCCAGTGTCTGGATC -ACGGAATAAGCCAGTGTCCACTTC -ACGGAATAAGCCAGTGTCGTACTC -ACGGAATAAGCCAGTGTCGATGTC -ACGGAATAAGCCAGTGTCACAGTC -ACGGAATAAGCCAGTGTCTTGCTG -ACGGAATAAGCCAGTGTCTCCATG -ACGGAATAAGCCAGTGTCTGTGTG -ACGGAATAAGCCAGTGTCCTAGTG -ACGGAATAAGCCAGTGTCCATCTG -ACGGAATAAGCCAGTGTCGAGTTG -ACGGAATAAGCCAGTGTCAGACTG -ACGGAATAAGCCAGTGTCTCGGTA -ACGGAATAAGCCAGTGTCTGCCTA -ACGGAATAAGCCAGTGTCCCACTA -ACGGAATAAGCCAGTGTCGGAGTA -ACGGAATAAGCCAGTGTCTCGTCT -ACGGAATAAGCCAGTGTCTGCACT -ACGGAATAAGCCAGTGTCCTGACT -ACGGAATAAGCCAGTGTCCAACCT -ACGGAATAAGCCAGTGTCGCTACT -ACGGAATAAGCCAGTGTCGGATCT -ACGGAATAAGCCAGTGTCAAGGCT -ACGGAATAAGCCAGTGTCTCAACC -ACGGAATAAGCCAGTGTCTGTTCC -ACGGAATAAGCCAGTGTCATTCCC -ACGGAATAAGCCAGTGTCTTCTCG -ACGGAATAAGCCAGTGTCTAGACG -ACGGAATAAGCCAGTGTCGTAACG -ACGGAATAAGCCAGTGTCACTTCG -ACGGAATAAGCCAGTGTCTACGCA -ACGGAATAAGCCAGTGTCCTTGCA -ACGGAATAAGCCAGTGTCCGAACA -ACGGAATAAGCCAGTGTCCAGTCA -ACGGAATAAGCCAGTGTCGATCCA -ACGGAATAAGCCAGTGTCACGACA -ACGGAATAAGCCAGTGTCAGCTCA -ACGGAATAAGCCAGTGTCTCACGT -ACGGAATAAGCCAGTGTCCGTAGT -ACGGAATAAGCCAGTGTCGTCAGT -ACGGAATAAGCCAGTGTCGAAGGT -ACGGAATAAGCCAGTGTCAACCGT -ACGGAATAAGCCAGTGTCTTGTGC -ACGGAATAAGCCAGTGTCCTAAGC -ACGGAATAAGCCAGTGTCACTAGC -ACGGAATAAGCCAGTGTCAGATGC -ACGGAATAAGCCAGTGTCTGAAGG -ACGGAATAAGCCAGTGTCCAATGG -ACGGAATAAGCCAGTGTCATGAGG -ACGGAATAAGCCAGTGTCAATGGG -ACGGAATAAGCCAGTGTCTCCTGA -ACGGAATAAGCCAGTGTCTAGCGA -ACGGAATAAGCCAGTGTCCACAGA -ACGGAATAAGCCAGTGTCGCAAGA -ACGGAATAAGCCAGTGTCGGTTGA -ACGGAATAAGCCAGTGTCTCCGAT -ACGGAATAAGCCAGTGTCTGGCAT -ACGGAATAAGCCAGTGTCCGAGAT -ACGGAATAAGCCAGTGTCTACCAC -ACGGAATAAGCCAGTGTCCAGAAC -ACGGAATAAGCCAGTGTCGTCTAC -ACGGAATAAGCCAGTGTCACGTAC -ACGGAATAAGCCAGTGTCAGTGAC -ACGGAATAAGCCAGTGTCCTGTAG -ACGGAATAAGCCAGTGTCCCTAAG -ACGGAATAAGCCAGTGTCGTTCAG -ACGGAATAAGCCAGTGTCGCATAG -ACGGAATAAGCCAGTGTCGACAAG -ACGGAATAAGCCAGTGTCAAGCAG -ACGGAATAAGCCAGTGTCCGTCAA -ACGGAATAAGCCAGTGTCGCTGAA -ACGGAATAAGCCAGTGTCAGTACG -ACGGAATAAGCCAGTGTCATCCGA -ACGGAATAAGCCAGTGTCATGGGA -ACGGAATAAGCCAGTGTCGTGCAA -ACGGAATAAGCCAGTGTCGAGGAA -ACGGAATAAGCCAGTGTCCAGGTA -ACGGAATAAGCCAGTGTCGACTCT -ACGGAATAAGCCAGTGTCAGTCCT -ACGGAATAAGCCAGTGTCTAAGCC -ACGGAATAAGCCAGTGTCATAGCC -ACGGAATAAGCCAGTGTCTAACCG -ACGGAATAAGCCAGTGTCATGCCA -ACGGAATAAGCCGGTGAAGGAAAC -ACGGAATAAGCCGGTGAAAACACC -ACGGAATAAGCCGGTGAAATCGAG -ACGGAATAAGCCGGTGAACTCCTT -ACGGAATAAGCCGGTGAACCTGTT -ACGGAATAAGCCGGTGAACGGTTT -ACGGAATAAGCCGGTGAAGTGGTT -ACGGAATAAGCCGGTGAAGCCTTT -ACGGAATAAGCCGGTGAAGGTCTT -ACGGAATAAGCCGGTGAAACGCTT -ACGGAATAAGCCGGTGAAAGCGTT -ACGGAATAAGCCGGTGAATTCGTC -ACGGAATAAGCCGGTGAATCTCTC -ACGGAATAAGCCGGTGAATGGATC -ACGGAATAAGCCGGTGAACACTTC -ACGGAATAAGCCGGTGAAGTACTC -ACGGAATAAGCCGGTGAAGATGTC -ACGGAATAAGCCGGTGAAACAGTC -ACGGAATAAGCCGGTGAATTGCTG -ACGGAATAAGCCGGTGAATCCATG -ACGGAATAAGCCGGTGAATGTGTG -ACGGAATAAGCCGGTGAACTAGTG -ACGGAATAAGCCGGTGAACATCTG -ACGGAATAAGCCGGTGAAGAGTTG -ACGGAATAAGCCGGTGAAAGACTG -ACGGAATAAGCCGGTGAATCGGTA -ACGGAATAAGCCGGTGAATGCCTA -ACGGAATAAGCCGGTGAACCACTA -ACGGAATAAGCCGGTGAAGGAGTA -ACGGAATAAGCCGGTGAATCGTCT -ACGGAATAAGCCGGTGAATGCACT -ACGGAATAAGCCGGTGAACTGACT -ACGGAATAAGCCGGTGAACAACCT -ACGGAATAAGCCGGTGAAGCTACT -ACGGAATAAGCCGGTGAAGGATCT -ACGGAATAAGCCGGTGAAAAGGCT -ACGGAATAAGCCGGTGAATCAACC -ACGGAATAAGCCGGTGAATGTTCC -ACGGAATAAGCCGGTGAAATTCCC -ACGGAATAAGCCGGTGAATTCTCG -ACGGAATAAGCCGGTGAATAGACG -ACGGAATAAGCCGGTGAAGTAACG -ACGGAATAAGCCGGTGAAACTTCG -ACGGAATAAGCCGGTGAATACGCA -ACGGAATAAGCCGGTGAACTTGCA -ACGGAATAAGCCGGTGAACGAACA -ACGGAATAAGCCGGTGAACAGTCA -ACGGAATAAGCCGGTGAAGATCCA -ACGGAATAAGCCGGTGAAACGACA -ACGGAATAAGCCGGTGAAAGCTCA -ACGGAATAAGCCGGTGAATCACGT -ACGGAATAAGCCGGTGAACGTAGT -ACGGAATAAGCCGGTGAAGTCAGT -ACGGAATAAGCCGGTGAAGAAGGT -ACGGAATAAGCCGGTGAAAACCGT -ACGGAATAAGCCGGTGAATTGTGC -ACGGAATAAGCCGGTGAACTAAGC -ACGGAATAAGCCGGTGAAACTAGC -ACGGAATAAGCCGGTGAAAGATGC -ACGGAATAAGCCGGTGAATGAAGG -ACGGAATAAGCCGGTGAACAATGG -ACGGAATAAGCCGGTGAAATGAGG -ACGGAATAAGCCGGTGAAAATGGG -ACGGAATAAGCCGGTGAATCCTGA -ACGGAATAAGCCGGTGAATAGCGA -ACGGAATAAGCCGGTGAACACAGA -ACGGAATAAGCCGGTGAAGCAAGA -ACGGAATAAGCCGGTGAAGGTTGA -ACGGAATAAGCCGGTGAATCCGAT -ACGGAATAAGCCGGTGAATGGCAT -ACGGAATAAGCCGGTGAACGAGAT -ACGGAATAAGCCGGTGAATACCAC -ACGGAATAAGCCGGTGAACAGAAC -ACGGAATAAGCCGGTGAAGTCTAC -ACGGAATAAGCCGGTGAAACGTAC -ACGGAATAAGCCGGTGAAAGTGAC -ACGGAATAAGCCGGTGAACTGTAG -ACGGAATAAGCCGGTGAACCTAAG -ACGGAATAAGCCGGTGAAGTTCAG -ACGGAATAAGCCGGTGAAGCATAG -ACGGAATAAGCCGGTGAAGACAAG -ACGGAATAAGCCGGTGAAAAGCAG -ACGGAATAAGCCGGTGAACGTCAA -ACGGAATAAGCCGGTGAAGCTGAA -ACGGAATAAGCCGGTGAAAGTACG -ACGGAATAAGCCGGTGAAATCCGA -ACGGAATAAGCCGGTGAAATGGGA -ACGGAATAAGCCGGTGAAGTGCAA -ACGGAATAAGCCGGTGAAGAGGAA -ACGGAATAAGCCGGTGAACAGGTA -ACGGAATAAGCCGGTGAAGACTCT -ACGGAATAAGCCGGTGAAAGTCCT -ACGGAATAAGCCGGTGAATAAGCC -ACGGAATAAGCCGGTGAAATAGCC -ACGGAATAAGCCGGTGAATAACCG -ACGGAATAAGCCGGTGAAATGCCA -ACGGAATAAGCCCGTAACGGAAAC -ACGGAATAAGCCCGTAACAACACC -ACGGAATAAGCCCGTAACATCGAG -ACGGAATAAGCCCGTAACCTCCTT -ACGGAATAAGCCCGTAACCCTGTT -ACGGAATAAGCCCGTAACCGGTTT -ACGGAATAAGCCCGTAACGTGGTT -ACGGAATAAGCCCGTAACGCCTTT -ACGGAATAAGCCCGTAACGGTCTT -ACGGAATAAGCCCGTAACACGCTT -ACGGAATAAGCCCGTAACAGCGTT -ACGGAATAAGCCCGTAACTTCGTC -ACGGAATAAGCCCGTAACTCTCTC -ACGGAATAAGCCCGTAACTGGATC -ACGGAATAAGCCCGTAACCACTTC -ACGGAATAAGCCCGTAACGTACTC -ACGGAATAAGCCCGTAACGATGTC -ACGGAATAAGCCCGTAACACAGTC -ACGGAATAAGCCCGTAACTTGCTG -ACGGAATAAGCCCGTAACTCCATG -ACGGAATAAGCCCGTAACTGTGTG -ACGGAATAAGCCCGTAACCTAGTG -ACGGAATAAGCCCGTAACCATCTG -ACGGAATAAGCCCGTAACGAGTTG -ACGGAATAAGCCCGTAACAGACTG -ACGGAATAAGCCCGTAACTCGGTA -ACGGAATAAGCCCGTAACTGCCTA -ACGGAATAAGCCCGTAACCCACTA -ACGGAATAAGCCCGTAACGGAGTA -ACGGAATAAGCCCGTAACTCGTCT -ACGGAATAAGCCCGTAACTGCACT -ACGGAATAAGCCCGTAACCTGACT -ACGGAATAAGCCCGTAACCAACCT -ACGGAATAAGCCCGTAACGCTACT -ACGGAATAAGCCCGTAACGGATCT -ACGGAATAAGCCCGTAACAAGGCT -ACGGAATAAGCCCGTAACTCAACC -ACGGAATAAGCCCGTAACTGTTCC -ACGGAATAAGCCCGTAACATTCCC -ACGGAATAAGCCCGTAACTTCTCG -ACGGAATAAGCCCGTAACTAGACG -ACGGAATAAGCCCGTAACGTAACG -ACGGAATAAGCCCGTAACACTTCG -ACGGAATAAGCCCGTAACTACGCA -ACGGAATAAGCCCGTAACCTTGCA -ACGGAATAAGCCCGTAACCGAACA -ACGGAATAAGCCCGTAACCAGTCA -ACGGAATAAGCCCGTAACGATCCA -ACGGAATAAGCCCGTAACACGACA -ACGGAATAAGCCCGTAACAGCTCA -ACGGAATAAGCCCGTAACTCACGT -ACGGAATAAGCCCGTAACCGTAGT -ACGGAATAAGCCCGTAACGTCAGT -ACGGAATAAGCCCGTAACGAAGGT -ACGGAATAAGCCCGTAACAACCGT -ACGGAATAAGCCCGTAACTTGTGC -ACGGAATAAGCCCGTAACCTAAGC -ACGGAATAAGCCCGTAACACTAGC -ACGGAATAAGCCCGTAACAGATGC -ACGGAATAAGCCCGTAACTGAAGG -ACGGAATAAGCCCGTAACCAATGG -ACGGAATAAGCCCGTAACATGAGG -ACGGAATAAGCCCGTAACAATGGG -ACGGAATAAGCCCGTAACTCCTGA -ACGGAATAAGCCCGTAACTAGCGA -ACGGAATAAGCCCGTAACCACAGA -ACGGAATAAGCCCGTAACGCAAGA -ACGGAATAAGCCCGTAACGGTTGA -ACGGAATAAGCCCGTAACTCCGAT -ACGGAATAAGCCCGTAACTGGCAT -ACGGAATAAGCCCGTAACCGAGAT -ACGGAATAAGCCCGTAACTACCAC -ACGGAATAAGCCCGTAACCAGAAC -ACGGAATAAGCCCGTAACGTCTAC -ACGGAATAAGCCCGTAACACGTAC -ACGGAATAAGCCCGTAACAGTGAC -ACGGAATAAGCCCGTAACCTGTAG -ACGGAATAAGCCCGTAACCCTAAG -ACGGAATAAGCCCGTAACGTTCAG -ACGGAATAAGCCCGTAACGCATAG -ACGGAATAAGCCCGTAACGACAAG -ACGGAATAAGCCCGTAACAAGCAG -ACGGAATAAGCCCGTAACCGTCAA -ACGGAATAAGCCCGTAACGCTGAA -ACGGAATAAGCCCGTAACAGTACG -ACGGAATAAGCCCGTAACATCCGA -ACGGAATAAGCCCGTAACATGGGA -ACGGAATAAGCCCGTAACGTGCAA -ACGGAATAAGCCCGTAACGAGGAA -ACGGAATAAGCCCGTAACCAGGTA -ACGGAATAAGCCCGTAACGACTCT -ACGGAATAAGCCCGTAACAGTCCT -ACGGAATAAGCCCGTAACTAAGCC -ACGGAATAAGCCCGTAACATAGCC -ACGGAATAAGCCCGTAACTAACCG -ACGGAATAAGCCCGTAACATGCCA -ACGGAATAAGCCTGCTTGGGAAAC -ACGGAATAAGCCTGCTTGAACACC -ACGGAATAAGCCTGCTTGATCGAG -ACGGAATAAGCCTGCTTGCTCCTT -ACGGAATAAGCCTGCTTGCCTGTT -ACGGAATAAGCCTGCTTGCGGTTT -ACGGAATAAGCCTGCTTGGTGGTT -ACGGAATAAGCCTGCTTGGCCTTT -ACGGAATAAGCCTGCTTGGGTCTT -ACGGAATAAGCCTGCTTGACGCTT -ACGGAATAAGCCTGCTTGAGCGTT -ACGGAATAAGCCTGCTTGTTCGTC -ACGGAATAAGCCTGCTTGTCTCTC -ACGGAATAAGCCTGCTTGTGGATC -ACGGAATAAGCCTGCTTGCACTTC -ACGGAATAAGCCTGCTTGGTACTC -ACGGAATAAGCCTGCTTGGATGTC -ACGGAATAAGCCTGCTTGACAGTC -ACGGAATAAGCCTGCTTGTTGCTG -ACGGAATAAGCCTGCTTGTCCATG -ACGGAATAAGCCTGCTTGTGTGTG -ACGGAATAAGCCTGCTTGCTAGTG -ACGGAATAAGCCTGCTTGCATCTG -ACGGAATAAGCCTGCTTGGAGTTG -ACGGAATAAGCCTGCTTGAGACTG -ACGGAATAAGCCTGCTTGTCGGTA -ACGGAATAAGCCTGCTTGTGCCTA -ACGGAATAAGCCTGCTTGCCACTA -ACGGAATAAGCCTGCTTGGGAGTA -ACGGAATAAGCCTGCTTGTCGTCT -ACGGAATAAGCCTGCTTGTGCACT -ACGGAATAAGCCTGCTTGCTGACT -ACGGAATAAGCCTGCTTGCAACCT -ACGGAATAAGCCTGCTTGGCTACT -ACGGAATAAGCCTGCTTGGGATCT -ACGGAATAAGCCTGCTTGAAGGCT -ACGGAATAAGCCTGCTTGTCAACC -ACGGAATAAGCCTGCTTGTGTTCC -ACGGAATAAGCCTGCTTGATTCCC -ACGGAATAAGCCTGCTTGTTCTCG -ACGGAATAAGCCTGCTTGTAGACG -ACGGAATAAGCCTGCTTGGTAACG -ACGGAATAAGCCTGCTTGACTTCG -ACGGAATAAGCCTGCTTGTACGCA -ACGGAATAAGCCTGCTTGCTTGCA -ACGGAATAAGCCTGCTTGCGAACA -ACGGAATAAGCCTGCTTGCAGTCA -ACGGAATAAGCCTGCTTGGATCCA -ACGGAATAAGCCTGCTTGACGACA -ACGGAATAAGCCTGCTTGAGCTCA -ACGGAATAAGCCTGCTTGTCACGT -ACGGAATAAGCCTGCTTGCGTAGT -ACGGAATAAGCCTGCTTGGTCAGT -ACGGAATAAGCCTGCTTGGAAGGT -ACGGAATAAGCCTGCTTGAACCGT -ACGGAATAAGCCTGCTTGTTGTGC -ACGGAATAAGCCTGCTTGCTAAGC -ACGGAATAAGCCTGCTTGACTAGC -ACGGAATAAGCCTGCTTGAGATGC -ACGGAATAAGCCTGCTTGTGAAGG -ACGGAATAAGCCTGCTTGCAATGG -ACGGAATAAGCCTGCTTGATGAGG -ACGGAATAAGCCTGCTTGAATGGG -ACGGAATAAGCCTGCTTGTCCTGA -ACGGAATAAGCCTGCTTGTAGCGA -ACGGAATAAGCCTGCTTGCACAGA -ACGGAATAAGCCTGCTTGGCAAGA -ACGGAATAAGCCTGCTTGGGTTGA -ACGGAATAAGCCTGCTTGTCCGAT -ACGGAATAAGCCTGCTTGTGGCAT -ACGGAATAAGCCTGCTTGCGAGAT -ACGGAATAAGCCTGCTTGTACCAC -ACGGAATAAGCCTGCTTGCAGAAC -ACGGAATAAGCCTGCTTGGTCTAC -ACGGAATAAGCCTGCTTGACGTAC -ACGGAATAAGCCTGCTTGAGTGAC -ACGGAATAAGCCTGCTTGCTGTAG -ACGGAATAAGCCTGCTTGCCTAAG -ACGGAATAAGCCTGCTTGGTTCAG -ACGGAATAAGCCTGCTTGGCATAG -ACGGAATAAGCCTGCTTGGACAAG -ACGGAATAAGCCTGCTTGAAGCAG -ACGGAATAAGCCTGCTTGCGTCAA -ACGGAATAAGCCTGCTTGGCTGAA -ACGGAATAAGCCTGCTTGAGTACG -ACGGAATAAGCCTGCTTGATCCGA -ACGGAATAAGCCTGCTTGATGGGA -ACGGAATAAGCCTGCTTGGTGCAA -ACGGAATAAGCCTGCTTGGAGGAA -ACGGAATAAGCCTGCTTGCAGGTA -ACGGAATAAGCCTGCTTGGACTCT -ACGGAATAAGCCTGCTTGAGTCCT -ACGGAATAAGCCTGCTTGTAAGCC -ACGGAATAAGCCTGCTTGATAGCC -ACGGAATAAGCCTGCTTGTAACCG -ACGGAATAAGCCTGCTTGATGCCA -ACGGAATAAGCCAGCCTAGGAAAC -ACGGAATAAGCCAGCCTAAACACC -ACGGAATAAGCCAGCCTAATCGAG -ACGGAATAAGCCAGCCTACTCCTT -ACGGAATAAGCCAGCCTACCTGTT -ACGGAATAAGCCAGCCTACGGTTT -ACGGAATAAGCCAGCCTAGTGGTT -ACGGAATAAGCCAGCCTAGCCTTT -ACGGAATAAGCCAGCCTAGGTCTT -ACGGAATAAGCCAGCCTAACGCTT -ACGGAATAAGCCAGCCTAAGCGTT -ACGGAATAAGCCAGCCTATTCGTC -ACGGAATAAGCCAGCCTATCTCTC -ACGGAATAAGCCAGCCTATGGATC -ACGGAATAAGCCAGCCTACACTTC -ACGGAATAAGCCAGCCTAGTACTC -ACGGAATAAGCCAGCCTAGATGTC -ACGGAATAAGCCAGCCTAACAGTC -ACGGAATAAGCCAGCCTATTGCTG -ACGGAATAAGCCAGCCTATCCATG -ACGGAATAAGCCAGCCTATGTGTG -ACGGAATAAGCCAGCCTACTAGTG -ACGGAATAAGCCAGCCTACATCTG -ACGGAATAAGCCAGCCTAGAGTTG -ACGGAATAAGCCAGCCTAAGACTG -ACGGAATAAGCCAGCCTATCGGTA -ACGGAATAAGCCAGCCTATGCCTA -ACGGAATAAGCCAGCCTACCACTA -ACGGAATAAGCCAGCCTAGGAGTA -ACGGAATAAGCCAGCCTATCGTCT -ACGGAATAAGCCAGCCTATGCACT -ACGGAATAAGCCAGCCTACTGACT -ACGGAATAAGCCAGCCTACAACCT -ACGGAATAAGCCAGCCTAGCTACT -ACGGAATAAGCCAGCCTAGGATCT -ACGGAATAAGCCAGCCTAAAGGCT -ACGGAATAAGCCAGCCTATCAACC -ACGGAATAAGCCAGCCTATGTTCC -ACGGAATAAGCCAGCCTAATTCCC -ACGGAATAAGCCAGCCTATTCTCG -ACGGAATAAGCCAGCCTATAGACG -ACGGAATAAGCCAGCCTAGTAACG -ACGGAATAAGCCAGCCTAACTTCG -ACGGAATAAGCCAGCCTATACGCA -ACGGAATAAGCCAGCCTACTTGCA -ACGGAATAAGCCAGCCTACGAACA -ACGGAATAAGCCAGCCTACAGTCA -ACGGAATAAGCCAGCCTAGATCCA -ACGGAATAAGCCAGCCTAACGACA -ACGGAATAAGCCAGCCTAAGCTCA -ACGGAATAAGCCAGCCTATCACGT -ACGGAATAAGCCAGCCTACGTAGT -ACGGAATAAGCCAGCCTAGTCAGT -ACGGAATAAGCCAGCCTAGAAGGT -ACGGAATAAGCCAGCCTAAACCGT -ACGGAATAAGCCAGCCTATTGTGC -ACGGAATAAGCCAGCCTACTAAGC -ACGGAATAAGCCAGCCTAACTAGC -ACGGAATAAGCCAGCCTAAGATGC -ACGGAATAAGCCAGCCTATGAAGG -ACGGAATAAGCCAGCCTACAATGG -ACGGAATAAGCCAGCCTAATGAGG -ACGGAATAAGCCAGCCTAAATGGG -ACGGAATAAGCCAGCCTATCCTGA -ACGGAATAAGCCAGCCTATAGCGA -ACGGAATAAGCCAGCCTACACAGA -ACGGAATAAGCCAGCCTAGCAAGA -ACGGAATAAGCCAGCCTAGGTTGA -ACGGAATAAGCCAGCCTATCCGAT -ACGGAATAAGCCAGCCTATGGCAT -ACGGAATAAGCCAGCCTACGAGAT -ACGGAATAAGCCAGCCTATACCAC -ACGGAATAAGCCAGCCTACAGAAC -ACGGAATAAGCCAGCCTAGTCTAC -ACGGAATAAGCCAGCCTAACGTAC -ACGGAATAAGCCAGCCTAAGTGAC -ACGGAATAAGCCAGCCTACTGTAG -ACGGAATAAGCCAGCCTACCTAAG -ACGGAATAAGCCAGCCTAGTTCAG -ACGGAATAAGCCAGCCTAGCATAG -ACGGAATAAGCCAGCCTAGACAAG -ACGGAATAAGCCAGCCTAAAGCAG -ACGGAATAAGCCAGCCTACGTCAA -ACGGAATAAGCCAGCCTAGCTGAA -ACGGAATAAGCCAGCCTAAGTACG -ACGGAATAAGCCAGCCTAATCCGA -ACGGAATAAGCCAGCCTAATGGGA -ACGGAATAAGCCAGCCTAGTGCAA -ACGGAATAAGCCAGCCTAGAGGAA -ACGGAATAAGCCAGCCTACAGGTA -ACGGAATAAGCCAGCCTAGACTCT -ACGGAATAAGCCAGCCTAAGTCCT -ACGGAATAAGCCAGCCTATAAGCC -ACGGAATAAGCCAGCCTAATAGCC -ACGGAATAAGCCAGCCTATAACCG -ACGGAATAAGCCAGCCTAATGCCA -ACGGAATAAGCCAGCACTGGAAAC -ACGGAATAAGCCAGCACTAACACC -ACGGAATAAGCCAGCACTATCGAG -ACGGAATAAGCCAGCACTCTCCTT -ACGGAATAAGCCAGCACTCCTGTT -ACGGAATAAGCCAGCACTCGGTTT -ACGGAATAAGCCAGCACTGTGGTT -ACGGAATAAGCCAGCACTGCCTTT -ACGGAATAAGCCAGCACTGGTCTT -ACGGAATAAGCCAGCACTACGCTT -ACGGAATAAGCCAGCACTAGCGTT -ACGGAATAAGCCAGCACTTTCGTC -ACGGAATAAGCCAGCACTTCTCTC -ACGGAATAAGCCAGCACTTGGATC -ACGGAATAAGCCAGCACTCACTTC -ACGGAATAAGCCAGCACTGTACTC -ACGGAATAAGCCAGCACTGATGTC -ACGGAATAAGCCAGCACTACAGTC -ACGGAATAAGCCAGCACTTTGCTG -ACGGAATAAGCCAGCACTTCCATG -ACGGAATAAGCCAGCACTTGTGTG -ACGGAATAAGCCAGCACTCTAGTG -ACGGAATAAGCCAGCACTCATCTG -ACGGAATAAGCCAGCACTGAGTTG -ACGGAATAAGCCAGCACTAGACTG -ACGGAATAAGCCAGCACTTCGGTA -ACGGAATAAGCCAGCACTTGCCTA -ACGGAATAAGCCAGCACTCCACTA -ACGGAATAAGCCAGCACTGGAGTA -ACGGAATAAGCCAGCACTTCGTCT -ACGGAATAAGCCAGCACTTGCACT -ACGGAATAAGCCAGCACTCTGACT -ACGGAATAAGCCAGCACTCAACCT -ACGGAATAAGCCAGCACTGCTACT -ACGGAATAAGCCAGCACTGGATCT -ACGGAATAAGCCAGCACTAAGGCT -ACGGAATAAGCCAGCACTTCAACC -ACGGAATAAGCCAGCACTTGTTCC -ACGGAATAAGCCAGCACTATTCCC -ACGGAATAAGCCAGCACTTTCTCG -ACGGAATAAGCCAGCACTTAGACG -ACGGAATAAGCCAGCACTGTAACG -ACGGAATAAGCCAGCACTACTTCG -ACGGAATAAGCCAGCACTTACGCA -ACGGAATAAGCCAGCACTCTTGCA -ACGGAATAAGCCAGCACTCGAACA -ACGGAATAAGCCAGCACTCAGTCA -ACGGAATAAGCCAGCACTGATCCA -ACGGAATAAGCCAGCACTACGACA -ACGGAATAAGCCAGCACTAGCTCA -ACGGAATAAGCCAGCACTTCACGT -ACGGAATAAGCCAGCACTCGTAGT -ACGGAATAAGCCAGCACTGTCAGT -ACGGAATAAGCCAGCACTGAAGGT -ACGGAATAAGCCAGCACTAACCGT -ACGGAATAAGCCAGCACTTTGTGC -ACGGAATAAGCCAGCACTCTAAGC -ACGGAATAAGCCAGCACTACTAGC -ACGGAATAAGCCAGCACTAGATGC -ACGGAATAAGCCAGCACTTGAAGG -ACGGAATAAGCCAGCACTCAATGG -ACGGAATAAGCCAGCACTATGAGG -ACGGAATAAGCCAGCACTAATGGG -ACGGAATAAGCCAGCACTTCCTGA -ACGGAATAAGCCAGCACTTAGCGA -ACGGAATAAGCCAGCACTCACAGA -ACGGAATAAGCCAGCACTGCAAGA -ACGGAATAAGCCAGCACTGGTTGA -ACGGAATAAGCCAGCACTTCCGAT -ACGGAATAAGCCAGCACTTGGCAT -ACGGAATAAGCCAGCACTCGAGAT -ACGGAATAAGCCAGCACTTACCAC -ACGGAATAAGCCAGCACTCAGAAC -ACGGAATAAGCCAGCACTGTCTAC -ACGGAATAAGCCAGCACTACGTAC -ACGGAATAAGCCAGCACTAGTGAC -ACGGAATAAGCCAGCACTCTGTAG -ACGGAATAAGCCAGCACTCCTAAG -ACGGAATAAGCCAGCACTGTTCAG -ACGGAATAAGCCAGCACTGCATAG -ACGGAATAAGCCAGCACTGACAAG -ACGGAATAAGCCAGCACTAAGCAG -ACGGAATAAGCCAGCACTCGTCAA -ACGGAATAAGCCAGCACTGCTGAA -ACGGAATAAGCCAGCACTAGTACG -ACGGAATAAGCCAGCACTATCCGA -ACGGAATAAGCCAGCACTATGGGA -ACGGAATAAGCCAGCACTGTGCAA -ACGGAATAAGCCAGCACTGAGGAA -ACGGAATAAGCCAGCACTCAGGTA -ACGGAATAAGCCAGCACTGACTCT -ACGGAATAAGCCAGCACTAGTCCT -ACGGAATAAGCCAGCACTTAAGCC -ACGGAATAAGCCAGCACTATAGCC -ACGGAATAAGCCAGCACTTAACCG -ACGGAATAAGCCAGCACTATGCCA -ACGGAATAAGCCTGCAGAGGAAAC -ACGGAATAAGCCTGCAGAAACACC -ACGGAATAAGCCTGCAGAATCGAG -ACGGAATAAGCCTGCAGACTCCTT -ACGGAATAAGCCTGCAGACCTGTT -ACGGAATAAGCCTGCAGACGGTTT -ACGGAATAAGCCTGCAGAGTGGTT -ACGGAATAAGCCTGCAGAGCCTTT -ACGGAATAAGCCTGCAGAGGTCTT -ACGGAATAAGCCTGCAGAACGCTT -ACGGAATAAGCCTGCAGAAGCGTT -ACGGAATAAGCCTGCAGATTCGTC -ACGGAATAAGCCTGCAGATCTCTC -ACGGAATAAGCCTGCAGATGGATC -ACGGAATAAGCCTGCAGACACTTC -ACGGAATAAGCCTGCAGAGTACTC -ACGGAATAAGCCTGCAGAGATGTC -ACGGAATAAGCCTGCAGAACAGTC -ACGGAATAAGCCTGCAGATTGCTG -ACGGAATAAGCCTGCAGATCCATG -ACGGAATAAGCCTGCAGATGTGTG -ACGGAATAAGCCTGCAGACTAGTG -ACGGAATAAGCCTGCAGACATCTG -ACGGAATAAGCCTGCAGAGAGTTG -ACGGAATAAGCCTGCAGAAGACTG -ACGGAATAAGCCTGCAGATCGGTA -ACGGAATAAGCCTGCAGATGCCTA -ACGGAATAAGCCTGCAGACCACTA -ACGGAATAAGCCTGCAGAGGAGTA -ACGGAATAAGCCTGCAGATCGTCT -ACGGAATAAGCCTGCAGATGCACT -ACGGAATAAGCCTGCAGACTGACT -ACGGAATAAGCCTGCAGACAACCT -ACGGAATAAGCCTGCAGAGCTACT -ACGGAATAAGCCTGCAGAGGATCT -ACGGAATAAGCCTGCAGAAAGGCT -ACGGAATAAGCCTGCAGATCAACC -ACGGAATAAGCCTGCAGATGTTCC -ACGGAATAAGCCTGCAGAATTCCC -ACGGAATAAGCCTGCAGATTCTCG -ACGGAATAAGCCTGCAGATAGACG -ACGGAATAAGCCTGCAGAGTAACG -ACGGAATAAGCCTGCAGAACTTCG -ACGGAATAAGCCTGCAGATACGCA -ACGGAATAAGCCTGCAGACTTGCA -ACGGAATAAGCCTGCAGACGAACA -ACGGAATAAGCCTGCAGACAGTCA -ACGGAATAAGCCTGCAGAGATCCA -ACGGAATAAGCCTGCAGAACGACA -ACGGAATAAGCCTGCAGAAGCTCA -ACGGAATAAGCCTGCAGATCACGT -ACGGAATAAGCCTGCAGACGTAGT -ACGGAATAAGCCTGCAGAGTCAGT -ACGGAATAAGCCTGCAGAGAAGGT -ACGGAATAAGCCTGCAGAAACCGT -ACGGAATAAGCCTGCAGATTGTGC -ACGGAATAAGCCTGCAGACTAAGC -ACGGAATAAGCCTGCAGAACTAGC -ACGGAATAAGCCTGCAGAAGATGC -ACGGAATAAGCCTGCAGATGAAGG -ACGGAATAAGCCTGCAGACAATGG -ACGGAATAAGCCTGCAGAATGAGG -ACGGAATAAGCCTGCAGAAATGGG -ACGGAATAAGCCTGCAGATCCTGA -ACGGAATAAGCCTGCAGATAGCGA -ACGGAATAAGCCTGCAGACACAGA -ACGGAATAAGCCTGCAGAGCAAGA -ACGGAATAAGCCTGCAGAGGTTGA -ACGGAATAAGCCTGCAGATCCGAT -ACGGAATAAGCCTGCAGATGGCAT -ACGGAATAAGCCTGCAGACGAGAT -ACGGAATAAGCCTGCAGATACCAC -ACGGAATAAGCCTGCAGACAGAAC -ACGGAATAAGCCTGCAGAGTCTAC -ACGGAATAAGCCTGCAGAACGTAC -ACGGAATAAGCCTGCAGAAGTGAC -ACGGAATAAGCCTGCAGACTGTAG -ACGGAATAAGCCTGCAGACCTAAG -ACGGAATAAGCCTGCAGAGTTCAG -ACGGAATAAGCCTGCAGAGCATAG -ACGGAATAAGCCTGCAGAGACAAG -ACGGAATAAGCCTGCAGAAAGCAG -ACGGAATAAGCCTGCAGACGTCAA -ACGGAATAAGCCTGCAGAGCTGAA -ACGGAATAAGCCTGCAGAAGTACG -ACGGAATAAGCCTGCAGAATCCGA -ACGGAATAAGCCTGCAGAATGGGA -ACGGAATAAGCCTGCAGAGTGCAA -ACGGAATAAGCCTGCAGAGAGGAA -ACGGAATAAGCCTGCAGACAGGTA -ACGGAATAAGCCTGCAGAGACTCT -ACGGAATAAGCCTGCAGAAGTCCT -ACGGAATAAGCCTGCAGATAAGCC -ACGGAATAAGCCTGCAGAATAGCC -ACGGAATAAGCCTGCAGATAACCG -ACGGAATAAGCCTGCAGAATGCCA -ACGGAATAAGCCAGGTGAGGAAAC -ACGGAATAAGCCAGGTGAAACACC -ACGGAATAAGCCAGGTGAATCGAG -ACGGAATAAGCCAGGTGACTCCTT -ACGGAATAAGCCAGGTGACCTGTT -ACGGAATAAGCCAGGTGACGGTTT -ACGGAATAAGCCAGGTGAGTGGTT -ACGGAATAAGCCAGGTGAGCCTTT -ACGGAATAAGCCAGGTGAGGTCTT -ACGGAATAAGCCAGGTGAACGCTT -ACGGAATAAGCCAGGTGAAGCGTT -ACGGAATAAGCCAGGTGATTCGTC -ACGGAATAAGCCAGGTGATCTCTC -ACGGAATAAGCCAGGTGATGGATC -ACGGAATAAGCCAGGTGACACTTC -ACGGAATAAGCCAGGTGAGTACTC -ACGGAATAAGCCAGGTGAGATGTC -ACGGAATAAGCCAGGTGAACAGTC -ACGGAATAAGCCAGGTGATTGCTG -ACGGAATAAGCCAGGTGATCCATG -ACGGAATAAGCCAGGTGATGTGTG -ACGGAATAAGCCAGGTGACTAGTG -ACGGAATAAGCCAGGTGACATCTG -ACGGAATAAGCCAGGTGAGAGTTG -ACGGAATAAGCCAGGTGAAGACTG -ACGGAATAAGCCAGGTGATCGGTA -ACGGAATAAGCCAGGTGATGCCTA -ACGGAATAAGCCAGGTGACCACTA -ACGGAATAAGCCAGGTGAGGAGTA -ACGGAATAAGCCAGGTGATCGTCT -ACGGAATAAGCCAGGTGATGCACT -ACGGAATAAGCCAGGTGACTGACT -ACGGAATAAGCCAGGTGACAACCT -ACGGAATAAGCCAGGTGAGCTACT -ACGGAATAAGCCAGGTGAGGATCT -ACGGAATAAGCCAGGTGAAAGGCT -ACGGAATAAGCCAGGTGATCAACC -ACGGAATAAGCCAGGTGATGTTCC -ACGGAATAAGCCAGGTGAATTCCC -ACGGAATAAGCCAGGTGATTCTCG -ACGGAATAAGCCAGGTGATAGACG -ACGGAATAAGCCAGGTGAGTAACG -ACGGAATAAGCCAGGTGAACTTCG -ACGGAATAAGCCAGGTGATACGCA -ACGGAATAAGCCAGGTGACTTGCA -ACGGAATAAGCCAGGTGACGAACA -ACGGAATAAGCCAGGTGACAGTCA -ACGGAATAAGCCAGGTGAGATCCA -ACGGAATAAGCCAGGTGAACGACA -ACGGAATAAGCCAGGTGAAGCTCA -ACGGAATAAGCCAGGTGATCACGT -ACGGAATAAGCCAGGTGACGTAGT -ACGGAATAAGCCAGGTGAGTCAGT -ACGGAATAAGCCAGGTGAGAAGGT -ACGGAATAAGCCAGGTGAAACCGT -ACGGAATAAGCCAGGTGATTGTGC -ACGGAATAAGCCAGGTGACTAAGC -ACGGAATAAGCCAGGTGAACTAGC -ACGGAATAAGCCAGGTGAAGATGC -ACGGAATAAGCCAGGTGATGAAGG -ACGGAATAAGCCAGGTGACAATGG -ACGGAATAAGCCAGGTGAATGAGG -ACGGAATAAGCCAGGTGAAATGGG -ACGGAATAAGCCAGGTGATCCTGA -ACGGAATAAGCCAGGTGATAGCGA -ACGGAATAAGCCAGGTGACACAGA -ACGGAATAAGCCAGGTGAGCAAGA -ACGGAATAAGCCAGGTGAGGTTGA -ACGGAATAAGCCAGGTGATCCGAT -ACGGAATAAGCCAGGTGATGGCAT -ACGGAATAAGCCAGGTGACGAGAT -ACGGAATAAGCCAGGTGATACCAC -ACGGAATAAGCCAGGTGACAGAAC -ACGGAATAAGCCAGGTGAGTCTAC -ACGGAATAAGCCAGGTGAACGTAC -ACGGAATAAGCCAGGTGAAGTGAC -ACGGAATAAGCCAGGTGACTGTAG -ACGGAATAAGCCAGGTGACCTAAG -ACGGAATAAGCCAGGTGAGTTCAG -ACGGAATAAGCCAGGTGAGCATAG -ACGGAATAAGCCAGGTGAGACAAG -ACGGAATAAGCCAGGTGAAAGCAG -ACGGAATAAGCCAGGTGACGTCAA -ACGGAATAAGCCAGGTGAGCTGAA -ACGGAATAAGCCAGGTGAAGTACG -ACGGAATAAGCCAGGTGAATCCGA -ACGGAATAAGCCAGGTGAATGGGA -ACGGAATAAGCCAGGTGAGTGCAA -ACGGAATAAGCCAGGTGAGAGGAA -ACGGAATAAGCCAGGTGACAGGTA -ACGGAATAAGCCAGGTGAGACTCT -ACGGAATAAGCCAGGTGAAGTCCT -ACGGAATAAGCCAGGTGATAAGCC -ACGGAATAAGCCAGGTGAATAGCC -ACGGAATAAGCCAGGTGATAACCG -ACGGAATAAGCCAGGTGAATGCCA -ACGGAATAAGCCTGGCAAGGAAAC -ACGGAATAAGCCTGGCAAAACACC -ACGGAATAAGCCTGGCAAATCGAG -ACGGAATAAGCCTGGCAACTCCTT -ACGGAATAAGCCTGGCAACCTGTT -ACGGAATAAGCCTGGCAACGGTTT -ACGGAATAAGCCTGGCAAGTGGTT -ACGGAATAAGCCTGGCAAGCCTTT -ACGGAATAAGCCTGGCAAGGTCTT -ACGGAATAAGCCTGGCAAACGCTT -ACGGAATAAGCCTGGCAAAGCGTT -ACGGAATAAGCCTGGCAATTCGTC -ACGGAATAAGCCTGGCAATCTCTC -ACGGAATAAGCCTGGCAATGGATC -ACGGAATAAGCCTGGCAACACTTC -ACGGAATAAGCCTGGCAAGTACTC -ACGGAATAAGCCTGGCAAGATGTC -ACGGAATAAGCCTGGCAAACAGTC -ACGGAATAAGCCTGGCAATTGCTG -ACGGAATAAGCCTGGCAATCCATG -ACGGAATAAGCCTGGCAATGTGTG -ACGGAATAAGCCTGGCAACTAGTG -ACGGAATAAGCCTGGCAACATCTG -ACGGAATAAGCCTGGCAAGAGTTG -ACGGAATAAGCCTGGCAAAGACTG -ACGGAATAAGCCTGGCAATCGGTA -ACGGAATAAGCCTGGCAATGCCTA -ACGGAATAAGCCTGGCAACCACTA -ACGGAATAAGCCTGGCAAGGAGTA -ACGGAATAAGCCTGGCAATCGTCT -ACGGAATAAGCCTGGCAATGCACT -ACGGAATAAGCCTGGCAACTGACT -ACGGAATAAGCCTGGCAACAACCT -ACGGAATAAGCCTGGCAAGCTACT -ACGGAATAAGCCTGGCAAGGATCT -ACGGAATAAGCCTGGCAAAAGGCT -ACGGAATAAGCCTGGCAATCAACC -ACGGAATAAGCCTGGCAATGTTCC -ACGGAATAAGCCTGGCAAATTCCC -ACGGAATAAGCCTGGCAATTCTCG -ACGGAATAAGCCTGGCAATAGACG -ACGGAATAAGCCTGGCAAGTAACG -ACGGAATAAGCCTGGCAAACTTCG -ACGGAATAAGCCTGGCAATACGCA -ACGGAATAAGCCTGGCAACTTGCA -ACGGAATAAGCCTGGCAACGAACA -ACGGAATAAGCCTGGCAACAGTCA -ACGGAATAAGCCTGGCAAGATCCA -ACGGAATAAGCCTGGCAAACGACA -ACGGAATAAGCCTGGCAAAGCTCA -ACGGAATAAGCCTGGCAATCACGT -ACGGAATAAGCCTGGCAACGTAGT -ACGGAATAAGCCTGGCAAGTCAGT -ACGGAATAAGCCTGGCAAGAAGGT -ACGGAATAAGCCTGGCAAAACCGT -ACGGAATAAGCCTGGCAATTGTGC -ACGGAATAAGCCTGGCAACTAAGC -ACGGAATAAGCCTGGCAAACTAGC -ACGGAATAAGCCTGGCAAAGATGC -ACGGAATAAGCCTGGCAATGAAGG -ACGGAATAAGCCTGGCAACAATGG -ACGGAATAAGCCTGGCAAATGAGG -ACGGAATAAGCCTGGCAAAATGGG -ACGGAATAAGCCTGGCAATCCTGA -ACGGAATAAGCCTGGCAATAGCGA -ACGGAATAAGCCTGGCAACACAGA -ACGGAATAAGCCTGGCAAGCAAGA -ACGGAATAAGCCTGGCAAGGTTGA -ACGGAATAAGCCTGGCAATCCGAT -ACGGAATAAGCCTGGCAATGGCAT -ACGGAATAAGCCTGGCAACGAGAT -ACGGAATAAGCCTGGCAATACCAC -ACGGAATAAGCCTGGCAACAGAAC -ACGGAATAAGCCTGGCAAGTCTAC -ACGGAATAAGCCTGGCAAACGTAC -ACGGAATAAGCCTGGCAAAGTGAC -ACGGAATAAGCCTGGCAACTGTAG -ACGGAATAAGCCTGGCAACCTAAG -ACGGAATAAGCCTGGCAAGTTCAG -ACGGAATAAGCCTGGCAAGCATAG -ACGGAATAAGCCTGGCAAGACAAG -ACGGAATAAGCCTGGCAAAAGCAG -ACGGAATAAGCCTGGCAACGTCAA -ACGGAATAAGCCTGGCAAGCTGAA -ACGGAATAAGCCTGGCAAAGTACG -ACGGAATAAGCCTGGCAAATCCGA -ACGGAATAAGCCTGGCAAATGGGA -ACGGAATAAGCCTGGCAAGTGCAA -ACGGAATAAGCCTGGCAAGAGGAA -ACGGAATAAGCCTGGCAACAGGTA -ACGGAATAAGCCTGGCAAGACTCT -ACGGAATAAGCCTGGCAAAGTCCT -ACGGAATAAGCCTGGCAATAAGCC -ACGGAATAAGCCTGGCAAATAGCC -ACGGAATAAGCCTGGCAATAACCG -ACGGAATAAGCCTGGCAAATGCCA -ACGGAATAAGCCAGGATGGGAAAC -ACGGAATAAGCCAGGATGAACACC -ACGGAATAAGCCAGGATGATCGAG -ACGGAATAAGCCAGGATGCTCCTT -ACGGAATAAGCCAGGATGCCTGTT -ACGGAATAAGCCAGGATGCGGTTT -ACGGAATAAGCCAGGATGGTGGTT -ACGGAATAAGCCAGGATGGCCTTT -ACGGAATAAGCCAGGATGGGTCTT -ACGGAATAAGCCAGGATGACGCTT -ACGGAATAAGCCAGGATGAGCGTT -ACGGAATAAGCCAGGATGTTCGTC -ACGGAATAAGCCAGGATGTCTCTC -ACGGAATAAGCCAGGATGTGGATC -ACGGAATAAGCCAGGATGCACTTC -ACGGAATAAGCCAGGATGGTACTC -ACGGAATAAGCCAGGATGGATGTC -ACGGAATAAGCCAGGATGACAGTC -ACGGAATAAGCCAGGATGTTGCTG -ACGGAATAAGCCAGGATGTCCATG -ACGGAATAAGCCAGGATGTGTGTG -ACGGAATAAGCCAGGATGCTAGTG -ACGGAATAAGCCAGGATGCATCTG -ACGGAATAAGCCAGGATGGAGTTG -ACGGAATAAGCCAGGATGAGACTG -ACGGAATAAGCCAGGATGTCGGTA -ACGGAATAAGCCAGGATGTGCCTA -ACGGAATAAGCCAGGATGCCACTA -ACGGAATAAGCCAGGATGGGAGTA -ACGGAATAAGCCAGGATGTCGTCT -ACGGAATAAGCCAGGATGTGCACT -ACGGAATAAGCCAGGATGCTGACT -ACGGAATAAGCCAGGATGCAACCT -ACGGAATAAGCCAGGATGGCTACT -ACGGAATAAGCCAGGATGGGATCT -ACGGAATAAGCCAGGATGAAGGCT -ACGGAATAAGCCAGGATGTCAACC -ACGGAATAAGCCAGGATGTGTTCC -ACGGAATAAGCCAGGATGATTCCC -ACGGAATAAGCCAGGATGTTCTCG -ACGGAATAAGCCAGGATGTAGACG -ACGGAATAAGCCAGGATGGTAACG -ACGGAATAAGCCAGGATGACTTCG -ACGGAATAAGCCAGGATGTACGCA -ACGGAATAAGCCAGGATGCTTGCA -ACGGAATAAGCCAGGATGCGAACA -ACGGAATAAGCCAGGATGCAGTCA -ACGGAATAAGCCAGGATGGATCCA -ACGGAATAAGCCAGGATGACGACA -ACGGAATAAGCCAGGATGAGCTCA -ACGGAATAAGCCAGGATGTCACGT -ACGGAATAAGCCAGGATGCGTAGT -ACGGAATAAGCCAGGATGGTCAGT -ACGGAATAAGCCAGGATGGAAGGT -ACGGAATAAGCCAGGATGAACCGT -ACGGAATAAGCCAGGATGTTGTGC -ACGGAATAAGCCAGGATGCTAAGC -ACGGAATAAGCCAGGATGACTAGC -ACGGAATAAGCCAGGATGAGATGC -ACGGAATAAGCCAGGATGTGAAGG -ACGGAATAAGCCAGGATGCAATGG -ACGGAATAAGCCAGGATGATGAGG -ACGGAATAAGCCAGGATGAATGGG -ACGGAATAAGCCAGGATGTCCTGA -ACGGAATAAGCCAGGATGTAGCGA -ACGGAATAAGCCAGGATGCACAGA -ACGGAATAAGCCAGGATGGCAAGA -ACGGAATAAGCCAGGATGGGTTGA -ACGGAATAAGCCAGGATGTCCGAT -ACGGAATAAGCCAGGATGTGGCAT -ACGGAATAAGCCAGGATGCGAGAT -ACGGAATAAGCCAGGATGTACCAC -ACGGAATAAGCCAGGATGCAGAAC -ACGGAATAAGCCAGGATGGTCTAC -ACGGAATAAGCCAGGATGACGTAC -ACGGAATAAGCCAGGATGAGTGAC -ACGGAATAAGCCAGGATGCTGTAG -ACGGAATAAGCCAGGATGCCTAAG -ACGGAATAAGCCAGGATGGTTCAG -ACGGAATAAGCCAGGATGGCATAG -ACGGAATAAGCCAGGATGGACAAG -ACGGAATAAGCCAGGATGAAGCAG -ACGGAATAAGCCAGGATGCGTCAA -ACGGAATAAGCCAGGATGGCTGAA -ACGGAATAAGCCAGGATGAGTACG -ACGGAATAAGCCAGGATGATCCGA -ACGGAATAAGCCAGGATGATGGGA -ACGGAATAAGCCAGGATGGTGCAA -ACGGAATAAGCCAGGATGGAGGAA -ACGGAATAAGCCAGGATGCAGGTA -ACGGAATAAGCCAGGATGGACTCT -ACGGAATAAGCCAGGATGAGTCCT -ACGGAATAAGCCAGGATGTAAGCC -ACGGAATAAGCCAGGATGATAGCC -ACGGAATAAGCCAGGATGTAACCG -ACGGAATAAGCCAGGATGATGCCA -ACGGAATAAGCCGGGAATGGAAAC -ACGGAATAAGCCGGGAATAACACC -ACGGAATAAGCCGGGAATATCGAG -ACGGAATAAGCCGGGAATCTCCTT -ACGGAATAAGCCGGGAATCCTGTT -ACGGAATAAGCCGGGAATCGGTTT -ACGGAATAAGCCGGGAATGTGGTT -ACGGAATAAGCCGGGAATGCCTTT -ACGGAATAAGCCGGGAATGGTCTT -ACGGAATAAGCCGGGAATACGCTT -ACGGAATAAGCCGGGAATAGCGTT -ACGGAATAAGCCGGGAATTTCGTC -ACGGAATAAGCCGGGAATTCTCTC -ACGGAATAAGCCGGGAATTGGATC -ACGGAATAAGCCGGGAATCACTTC -ACGGAATAAGCCGGGAATGTACTC -ACGGAATAAGCCGGGAATGATGTC -ACGGAATAAGCCGGGAATACAGTC -ACGGAATAAGCCGGGAATTTGCTG -ACGGAATAAGCCGGGAATTCCATG -ACGGAATAAGCCGGGAATTGTGTG -ACGGAATAAGCCGGGAATCTAGTG -ACGGAATAAGCCGGGAATCATCTG -ACGGAATAAGCCGGGAATGAGTTG -ACGGAATAAGCCGGGAATAGACTG -ACGGAATAAGCCGGGAATTCGGTA -ACGGAATAAGCCGGGAATTGCCTA -ACGGAATAAGCCGGGAATCCACTA -ACGGAATAAGCCGGGAATGGAGTA -ACGGAATAAGCCGGGAATTCGTCT -ACGGAATAAGCCGGGAATTGCACT -ACGGAATAAGCCGGGAATCTGACT -ACGGAATAAGCCGGGAATCAACCT -ACGGAATAAGCCGGGAATGCTACT -ACGGAATAAGCCGGGAATGGATCT -ACGGAATAAGCCGGGAATAAGGCT -ACGGAATAAGCCGGGAATTCAACC -ACGGAATAAGCCGGGAATTGTTCC -ACGGAATAAGCCGGGAATATTCCC -ACGGAATAAGCCGGGAATTTCTCG -ACGGAATAAGCCGGGAATTAGACG -ACGGAATAAGCCGGGAATGTAACG -ACGGAATAAGCCGGGAATACTTCG -ACGGAATAAGCCGGGAATTACGCA -ACGGAATAAGCCGGGAATCTTGCA -ACGGAATAAGCCGGGAATCGAACA -ACGGAATAAGCCGGGAATCAGTCA -ACGGAATAAGCCGGGAATGATCCA -ACGGAATAAGCCGGGAATACGACA -ACGGAATAAGCCGGGAATAGCTCA -ACGGAATAAGCCGGGAATTCACGT -ACGGAATAAGCCGGGAATCGTAGT -ACGGAATAAGCCGGGAATGTCAGT -ACGGAATAAGCCGGGAATGAAGGT -ACGGAATAAGCCGGGAATAACCGT -ACGGAATAAGCCGGGAATTTGTGC -ACGGAATAAGCCGGGAATCTAAGC -ACGGAATAAGCCGGGAATACTAGC -ACGGAATAAGCCGGGAATAGATGC -ACGGAATAAGCCGGGAATTGAAGG -ACGGAATAAGCCGGGAATCAATGG -ACGGAATAAGCCGGGAATATGAGG -ACGGAATAAGCCGGGAATAATGGG -ACGGAATAAGCCGGGAATTCCTGA -ACGGAATAAGCCGGGAATTAGCGA -ACGGAATAAGCCGGGAATCACAGA -ACGGAATAAGCCGGGAATGCAAGA -ACGGAATAAGCCGGGAATGGTTGA -ACGGAATAAGCCGGGAATTCCGAT -ACGGAATAAGCCGGGAATTGGCAT -ACGGAATAAGCCGGGAATCGAGAT -ACGGAATAAGCCGGGAATTACCAC -ACGGAATAAGCCGGGAATCAGAAC -ACGGAATAAGCCGGGAATGTCTAC -ACGGAATAAGCCGGGAATACGTAC -ACGGAATAAGCCGGGAATAGTGAC -ACGGAATAAGCCGGGAATCTGTAG -ACGGAATAAGCCGGGAATCCTAAG -ACGGAATAAGCCGGGAATGTTCAG -ACGGAATAAGCCGGGAATGCATAG -ACGGAATAAGCCGGGAATGACAAG -ACGGAATAAGCCGGGAATAAGCAG -ACGGAATAAGCCGGGAATCGTCAA -ACGGAATAAGCCGGGAATGCTGAA -ACGGAATAAGCCGGGAATAGTACG -ACGGAATAAGCCGGGAATATCCGA -ACGGAATAAGCCGGGAATATGGGA -ACGGAATAAGCCGGGAATGTGCAA -ACGGAATAAGCCGGGAATGAGGAA -ACGGAATAAGCCGGGAATCAGGTA -ACGGAATAAGCCGGGAATGACTCT -ACGGAATAAGCCGGGAATAGTCCT -ACGGAATAAGCCGGGAATTAAGCC -ACGGAATAAGCCGGGAATATAGCC -ACGGAATAAGCCGGGAATTAACCG -ACGGAATAAGCCGGGAATATGCCA -ACGGAATAAGCCTGATCCGGAAAC -ACGGAATAAGCCTGATCCAACACC -ACGGAATAAGCCTGATCCATCGAG -ACGGAATAAGCCTGATCCCTCCTT -ACGGAATAAGCCTGATCCCCTGTT -ACGGAATAAGCCTGATCCCGGTTT -ACGGAATAAGCCTGATCCGTGGTT -ACGGAATAAGCCTGATCCGCCTTT -ACGGAATAAGCCTGATCCGGTCTT -ACGGAATAAGCCTGATCCACGCTT -ACGGAATAAGCCTGATCCAGCGTT -ACGGAATAAGCCTGATCCTTCGTC -ACGGAATAAGCCTGATCCTCTCTC -ACGGAATAAGCCTGATCCTGGATC -ACGGAATAAGCCTGATCCCACTTC -ACGGAATAAGCCTGATCCGTACTC -ACGGAATAAGCCTGATCCGATGTC -ACGGAATAAGCCTGATCCACAGTC -ACGGAATAAGCCTGATCCTTGCTG -ACGGAATAAGCCTGATCCTCCATG -ACGGAATAAGCCTGATCCTGTGTG -ACGGAATAAGCCTGATCCCTAGTG -ACGGAATAAGCCTGATCCCATCTG -ACGGAATAAGCCTGATCCGAGTTG -ACGGAATAAGCCTGATCCAGACTG -ACGGAATAAGCCTGATCCTCGGTA -ACGGAATAAGCCTGATCCTGCCTA -ACGGAATAAGCCTGATCCCCACTA -ACGGAATAAGCCTGATCCGGAGTA -ACGGAATAAGCCTGATCCTCGTCT -ACGGAATAAGCCTGATCCTGCACT -ACGGAATAAGCCTGATCCCTGACT -ACGGAATAAGCCTGATCCCAACCT -ACGGAATAAGCCTGATCCGCTACT -ACGGAATAAGCCTGATCCGGATCT -ACGGAATAAGCCTGATCCAAGGCT -ACGGAATAAGCCTGATCCTCAACC -ACGGAATAAGCCTGATCCTGTTCC -ACGGAATAAGCCTGATCCATTCCC -ACGGAATAAGCCTGATCCTTCTCG -ACGGAATAAGCCTGATCCTAGACG -ACGGAATAAGCCTGATCCGTAACG -ACGGAATAAGCCTGATCCACTTCG -ACGGAATAAGCCTGATCCTACGCA -ACGGAATAAGCCTGATCCCTTGCA -ACGGAATAAGCCTGATCCCGAACA -ACGGAATAAGCCTGATCCCAGTCA -ACGGAATAAGCCTGATCCGATCCA -ACGGAATAAGCCTGATCCACGACA -ACGGAATAAGCCTGATCCAGCTCA -ACGGAATAAGCCTGATCCTCACGT -ACGGAATAAGCCTGATCCCGTAGT -ACGGAATAAGCCTGATCCGTCAGT -ACGGAATAAGCCTGATCCGAAGGT -ACGGAATAAGCCTGATCCAACCGT -ACGGAATAAGCCTGATCCTTGTGC -ACGGAATAAGCCTGATCCCTAAGC -ACGGAATAAGCCTGATCCACTAGC -ACGGAATAAGCCTGATCCAGATGC -ACGGAATAAGCCTGATCCTGAAGG -ACGGAATAAGCCTGATCCCAATGG -ACGGAATAAGCCTGATCCATGAGG -ACGGAATAAGCCTGATCCAATGGG -ACGGAATAAGCCTGATCCTCCTGA -ACGGAATAAGCCTGATCCTAGCGA -ACGGAATAAGCCTGATCCCACAGA -ACGGAATAAGCCTGATCCGCAAGA -ACGGAATAAGCCTGATCCGGTTGA -ACGGAATAAGCCTGATCCTCCGAT -ACGGAATAAGCCTGATCCTGGCAT -ACGGAATAAGCCTGATCCCGAGAT -ACGGAATAAGCCTGATCCTACCAC -ACGGAATAAGCCTGATCCCAGAAC -ACGGAATAAGCCTGATCCGTCTAC -ACGGAATAAGCCTGATCCACGTAC -ACGGAATAAGCCTGATCCAGTGAC -ACGGAATAAGCCTGATCCCTGTAG -ACGGAATAAGCCTGATCCCCTAAG -ACGGAATAAGCCTGATCCGTTCAG -ACGGAATAAGCCTGATCCGCATAG -ACGGAATAAGCCTGATCCGACAAG -ACGGAATAAGCCTGATCCAAGCAG -ACGGAATAAGCCTGATCCCGTCAA -ACGGAATAAGCCTGATCCGCTGAA -ACGGAATAAGCCTGATCCAGTACG -ACGGAATAAGCCTGATCCATCCGA -ACGGAATAAGCCTGATCCATGGGA -ACGGAATAAGCCTGATCCGTGCAA -ACGGAATAAGCCTGATCCGAGGAA -ACGGAATAAGCCTGATCCCAGGTA -ACGGAATAAGCCTGATCCGACTCT -ACGGAATAAGCCTGATCCAGTCCT -ACGGAATAAGCCTGATCCTAAGCC -ACGGAATAAGCCTGATCCATAGCC -ACGGAATAAGCCTGATCCTAACCG -ACGGAATAAGCCTGATCCATGCCA -ACGGAATAAGCCCGATAGGGAAAC -ACGGAATAAGCCCGATAGAACACC -ACGGAATAAGCCCGATAGATCGAG -ACGGAATAAGCCCGATAGCTCCTT -ACGGAATAAGCCCGATAGCCTGTT -ACGGAATAAGCCCGATAGCGGTTT -ACGGAATAAGCCCGATAGGTGGTT -ACGGAATAAGCCCGATAGGCCTTT -ACGGAATAAGCCCGATAGGGTCTT -ACGGAATAAGCCCGATAGACGCTT -ACGGAATAAGCCCGATAGAGCGTT -ACGGAATAAGCCCGATAGTTCGTC -ACGGAATAAGCCCGATAGTCTCTC -ACGGAATAAGCCCGATAGTGGATC -ACGGAATAAGCCCGATAGCACTTC -ACGGAATAAGCCCGATAGGTACTC -ACGGAATAAGCCCGATAGGATGTC -ACGGAATAAGCCCGATAGACAGTC -ACGGAATAAGCCCGATAGTTGCTG -ACGGAATAAGCCCGATAGTCCATG -ACGGAATAAGCCCGATAGTGTGTG -ACGGAATAAGCCCGATAGCTAGTG -ACGGAATAAGCCCGATAGCATCTG -ACGGAATAAGCCCGATAGGAGTTG -ACGGAATAAGCCCGATAGAGACTG -ACGGAATAAGCCCGATAGTCGGTA -ACGGAATAAGCCCGATAGTGCCTA -ACGGAATAAGCCCGATAGCCACTA -ACGGAATAAGCCCGATAGGGAGTA -ACGGAATAAGCCCGATAGTCGTCT -ACGGAATAAGCCCGATAGTGCACT -ACGGAATAAGCCCGATAGCTGACT -ACGGAATAAGCCCGATAGCAACCT -ACGGAATAAGCCCGATAGGCTACT -ACGGAATAAGCCCGATAGGGATCT -ACGGAATAAGCCCGATAGAAGGCT -ACGGAATAAGCCCGATAGTCAACC -ACGGAATAAGCCCGATAGTGTTCC -ACGGAATAAGCCCGATAGATTCCC -ACGGAATAAGCCCGATAGTTCTCG -ACGGAATAAGCCCGATAGTAGACG -ACGGAATAAGCCCGATAGGTAACG -ACGGAATAAGCCCGATAGACTTCG -ACGGAATAAGCCCGATAGTACGCA -ACGGAATAAGCCCGATAGCTTGCA -ACGGAATAAGCCCGATAGCGAACA -ACGGAATAAGCCCGATAGCAGTCA -ACGGAATAAGCCCGATAGGATCCA -ACGGAATAAGCCCGATAGACGACA -ACGGAATAAGCCCGATAGAGCTCA -ACGGAATAAGCCCGATAGTCACGT -ACGGAATAAGCCCGATAGCGTAGT -ACGGAATAAGCCCGATAGGTCAGT -ACGGAATAAGCCCGATAGGAAGGT -ACGGAATAAGCCCGATAGAACCGT -ACGGAATAAGCCCGATAGTTGTGC -ACGGAATAAGCCCGATAGCTAAGC -ACGGAATAAGCCCGATAGACTAGC -ACGGAATAAGCCCGATAGAGATGC -ACGGAATAAGCCCGATAGTGAAGG -ACGGAATAAGCCCGATAGCAATGG -ACGGAATAAGCCCGATAGATGAGG -ACGGAATAAGCCCGATAGAATGGG -ACGGAATAAGCCCGATAGTCCTGA -ACGGAATAAGCCCGATAGTAGCGA -ACGGAATAAGCCCGATAGCACAGA -ACGGAATAAGCCCGATAGGCAAGA -ACGGAATAAGCCCGATAGGGTTGA -ACGGAATAAGCCCGATAGTCCGAT -ACGGAATAAGCCCGATAGTGGCAT -ACGGAATAAGCCCGATAGCGAGAT -ACGGAATAAGCCCGATAGTACCAC -ACGGAATAAGCCCGATAGCAGAAC -ACGGAATAAGCCCGATAGGTCTAC -ACGGAATAAGCCCGATAGACGTAC -ACGGAATAAGCCCGATAGAGTGAC -ACGGAATAAGCCCGATAGCTGTAG -ACGGAATAAGCCCGATAGCCTAAG -ACGGAATAAGCCCGATAGGTTCAG -ACGGAATAAGCCCGATAGGCATAG -ACGGAATAAGCCCGATAGGACAAG -ACGGAATAAGCCCGATAGAAGCAG -ACGGAATAAGCCCGATAGCGTCAA -ACGGAATAAGCCCGATAGGCTGAA -ACGGAATAAGCCCGATAGAGTACG -ACGGAATAAGCCCGATAGATCCGA -ACGGAATAAGCCCGATAGATGGGA -ACGGAATAAGCCCGATAGGTGCAA -ACGGAATAAGCCCGATAGGAGGAA -ACGGAATAAGCCCGATAGCAGGTA -ACGGAATAAGCCCGATAGGACTCT -ACGGAATAAGCCCGATAGAGTCCT -ACGGAATAAGCCCGATAGTAAGCC -ACGGAATAAGCCCGATAGATAGCC -ACGGAATAAGCCCGATAGTAACCG -ACGGAATAAGCCCGATAGATGCCA -ACGGAATAAGCCAGACACGGAAAC -ACGGAATAAGCCAGACACAACACC -ACGGAATAAGCCAGACACATCGAG -ACGGAATAAGCCAGACACCTCCTT -ACGGAATAAGCCAGACACCCTGTT -ACGGAATAAGCCAGACACCGGTTT -ACGGAATAAGCCAGACACGTGGTT -ACGGAATAAGCCAGACACGCCTTT -ACGGAATAAGCCAGACACGGTCTT -ACGGAATAAGCCAGACACACGCTT -ACGGAATAAGCCAGACACAGCGTT -ACGGAATAAGCCAGACACTTCGTC -ACGGAATAAGCCAGACACTCTCTC -ACGGAATAAGCCAGACACTGGATC -ACGGAATAAGCCAGACACCACTTC -ACGGAATAAGCCAGACACGTACTC -ACGGAATAAGCCAGACACGATGTC -ACGGAATAAGCCAGACACACAGTC -ACGGAATAAGCCAGACACTTGCTG -ACGGAATAAGCCAGACACTCCATG -ACGGAATAAGCCAGACACTGTGTG -ACGGAATAAGCCAGACACCTAGTG -ACGGAATAAGCCAGACACCATCTG -ACGGAATAAGCCAGACACGAGTTG -ACGGAATAAGCCAGACACAGACTG -ACGGAATAAGCCAGACACTCGGTA -ACGGAATAAGCCAGACACTGCCTA -ACGGAATAAGCCAGACACCCACTA -ACGGAATAAGCCAGACACGGAGTA -ACGGAATAAGCCAGACACTCGTCT -ACGGAATAAGCCAGACACTGCACT -ACGGAATAAGCCAGACACCTGACT -ACGGAATAAGCCAGACACCAACCT -ACGGAATAAGCCAGACACGCTACT -ACGGAATAAGCCAGACACGGATCT -ACGGAATAAGCCAGACACAAGGCT -ACGGAATAAGCCAGACACTCAACC -ACGGAATAAGCCAGACACTGTTCC -ACGGAATAAGCCAGACACATTCCC -ACGGAATAAGCCAGACACTTCTCG -ACGGAATAAGCCAGACACTAGACG -ACGGAATAAGCCAGACACGTAACG -ACGGAATAAGCCAGACACACTTCG -ACGGAATAAGCCAGACACTACGCA -ACGGAATAAGCCAGACACCTTGCA -ACGGAATAAGCCAGACACCGAACA -ACGGAATAAGCCAGACACCAGTCA -ACGGAATAAGCCAGACACGATCCA -ACGGAATAAGCCAGACACACGACA -ACGGAATAAGCCAGACACAGCTCA -ACGGAATAAGCCAGACACTCACGT -ACGGAATAAGCCAGACACCGTAGT -ACGGAATAAGCCAGACACGTCAGT -ACGGAATAAGCCAGACACGAAGGT -ACGGAATAAGCCAGACACAACCGT -ACGGAATAAGCCAGACACTTGTGC -ACGGAATAAGCCAGACACCTAAGC -ACGGAATAAGCCAGACACACTAGC -ACGGAATAAGCCAGACACAGATGC -ACGGAATAAGCCAGACACTGAAGG -ACGGAATAAGCCAGACACCAATGG -ACGGAATAAGCCAGACACATGAGG -ACGGAATAAGCCAGACACAATGGG -ACGGAATAAGCCAGACACTCCTGA -ACGGAATAAGCCAGACACTAGCGA -ACGGAATAAGCCAGACACCACAGA -ACGGAATAAGCCAGACACGCAAGA -ACGGAATAAGCCAGACACGGTTGA -ACGGAATAAGCCAGACACTCCGAT -ACGGAATAAGCCAGACACTGGCAT -ACGGAATAAGCCAGACACCGAGAT -ACGGAATAAGCCAGACACTACCAC -ACGGAATAAGCCAGACACCAGAAC -ACGGAATAAGCCAGACACGTCTAC -ACGGAATAAGCCAGACACACGTAC -ACGGAATAAGCCAGACACAGTGAC -ACGGAATAAGCCAGACACCTGTAG -ACGGAATAAGCCAGACACCCTAAG -ACGGAATAAGCCAGACACGTTCAG -ACGGAATAAGCCAGACACGCATAG -ACGGAATAAGCCAGACACGACAAG -ACGGAATAAGCCAGACACAAGCAG -ACGGAATAAGCCAGACACCGTCAA -ACGGAATAAGCCAGACACGCTGAA -ACGGAATAAGCCAGACACAGTACG -ACGGAATAAGCCAGACACATCCGA -ACGGAATAAGCCAGACACATGGGA -ACGGAATAAGCCAGACACGTGCAA -ACGGAATAAGCCAGACACGAGGAA -ACGGAATAAGCCAGACACCAGGTA -ACGGAATAAGCCAGACACGACTCT -ACGGAATAAGCCAGACACAGTCCT -ACGGAATAAGCCAGACACTAAGCC -ACGGAATAAGCCAGACACATAGCC -ACGGAATAAGCCAGACACTAACCG -ACGGAATAAGCCAGACACATGCCA -ACGGAATAAGCCAGAGCAGGAAAC -ACGGAATAAGCCAGAGCAAACACC -ACGGAATAAGCCAGAGCAATCGAG -ACGGAATAAGCCAGAGCACTCCTT -ACGGAATAAGCCAGAGCACCTGTT -ACGGAATAAGCCAGAGCACGGTTT -ACGGAATAAGCCAGAGCAGTGGTT -ACGGAATAAGCCAGAGCAGCCTTT -ACGGAATAAGCCAGAGCAGGTCTT -ACGGAATAAGCCAGAGCAACGCTT -ACGGAATAAGCCAGAGCAAGCGTT -ACGGAATAAGCCAGAGCATTCGTC -ACGGAATAAGCCAGAGCATCTCTC -ACGGAATAAGCCAGAGCATGGATC -ACGGAATAAGCCAGAGCACACTTC -ACGGAATAAGCCAGAGCAGTACTC -ACGGAATAAGCCAGAGCAGATGTC -ACGGAATAAGCCAGAGCAACAGTC -ACGGAATAAGCCAGAGCATTGCTG -ACGGAATAAGCCAGAGCATCCATG -ACGGAATAAGCCAGAGCATGTGTG -ACGGAATAAGCCAGAGCACTAGTG -ACGGAATAAGCCAGAGCACATCTG -ACGGAATAAGCCAGAGCAGAGTTG -ACGGAATAAGCCAGAGCAAGACTG -ACGGAATAAGCCAGAGCATCGGTA -ACGGAATAAGCCAGAGCATGCCTA -ACGGAATAAGCCAGAGCACCACTA -ACGGAATAAGCCAGAGCAGGAGTA -ACGGAATAAGCCAGAGCATCGTCT -ACGGAATAAGCCAGAGCATGCACT -ACGGAATAAGCCAGAGCACTGACT -ACGGAATAAGCCAGAGCACAACCT -ACGGAATAAGCCAGAGCAGCTACT -ACGGAATAAGCCAGAGCAGGATCT -ACGGAATAAGCCAGAGCAAAGGCT -ACGGAATAAGCCAGAGCATCAACC -ACGGAATAAGCCAGAGCATGTTCC -ACGGAATAAGCCAGAGCAATTCCC -ACGGAATAAGCCAGAGCATTCTCG -ACGGAATAAGCCAGAGCATAGACG -ACGGAATAAGCCAGAGCAGTAACG -ACGGAATAAGCCAGAGCAACTTCG -ACGGAATAAGCCAGAGCATACGCA -ACGGAATAAGCCAGAGCACTTGCA -ACGGAATAAGCCAGAGCACGAACA -ACGGAATAAGCCAGAGCACAGTCA -ACGGAATAAGCCAGAGCAGATCCA -ACGGAATAAGCCAGAGCAACGACA -ACGGAATAAGCCAGAGCAAGCTCA -ACGGAATAAGCCAGAGCATCACGT -ACGGAATAAGCCAGAGCACGTAGT -ACGGAATAAGCCAGAGCAGTCAGT -ACGGAATAAGCCAGAGCAGAAGGT -ACGGAATAAGCCAGAGCAAACCGT -ACGGAATAAGCCAGAGCATTGTGC -ACGGAATAAGCCAGAGCACTAAGC -ACGGAATAAGCCAGAGCAACTAGC -ACGGAATAAGCCAGAGCAAGATGC -ACGGAATAAGCCAGAGCATGAAGG -ACGGAATAAGCCAGAGCACAATGG -ACGGAATAAGCCAGAGCAATGAGG -ACGGAATAAGCCAGAGCAAATGGG -ACGGAATAAGCCAGAGCATCCTGA -ACGGAATAAGCCAGAGCATAGCGA -ACGGAATAAGCCAGAGCACACAGA -ACGGAATAAGCCAGAGCAGCAAGA -ACGGAATAAGCCAGAGCAGGTTGA -ACGGAATAAGCCAGAGCATCCGAT -ACGGAATAAGCCAGAGCATGGCAT -ACGGAATAAGCCAGAGCACGAGAT -ACGGAATAAGCCAGAGCATACCAC -ACGGAATAAGCCAGAGCACAGAAC -ACGGAATAAGCCAGAGCAGTCTAC -ACGGAATAAGCCAGAGCAACGTAC -ACGGAATAAGCCAGAGCAAGTGAC -ACGGAATAAGCCAGAGCACTGTAG -ACGGAATAAGCCAGAGCACCTAAG -ACGGAATAAGCCAGAGCAGTTCAG -ACGGAATAAGCCAGAGCAGCATAG -ACGGAATAAGCCAGAGCAGACAAG -ACGGAATAAGCCAGAGCAAAGCAG -ACGGAATAAGCCAGAGCACGTCAA -ACGGAATAAGCCAGAGCAGCTGAA -ACGGAATAAGCCAGAGCAAGTACG -ACGGAATAAGCCAGAGCAATCCGA -ACGGAATAAGCCAGAGCAATGGGA -ACGGAATAAGCCAGAGCAGTGCAA -ACGGAATAAGCCAGAGCAGAGGAA -ACGGAATAAGCCAGAGCACAGGTA -ACGGAATAAGCCAGAGCAGACTCT -ACGGAATAAGCCAGAGCAAGTCCT -ACGGAATAAGCCAGAGCATAAGCC -ACGGAATAAGCCAGAGCAATAGCC -ACGGAATAAGCCAGAGCATAACCG -ACGGAATAAGCCAGAGCAATGCCA -ACGGAATAAGCCTGAGGTGGAAAC -ACGGAATAAGCCTGAGGTAACACC -ACGGAATAAGCCTGAGGTATCGAG -ACGGAATAAGCCTGAGGTCTCCTT -ACGGAATAAGCCTGAGGTCCTGTT -ACGGAATAAGCCTGAGGTCGGTTT -ACGGAATAAGCCTGAGGTGTGGTT -ACGGAATAAGCCTGAGGTGCCTTT -ACGGAATAAGCCTGAGGTGGTCTT -ACGGAATAAGCCTGAGGTACGCTT -ACGGAATAAGCCTGAGGTAGCGTT -ACGGAATAAGCCTGAGGTTTCGTC -ACGGAATAAGCCTGAGGTTCTCTC -ACGGAATAAGCCTGAGGTTGGATC -ACGGAATAAGCCTGAGGTCACTTC -ACGGAATAAGCCTGAGGTGTACTC -ACGGAATAAGCCTGAGGTGATGTC -ACGGAATAAGCCTGAGGTACAGTC -ACGGAATAAGCCTGAGGTTTGCTG -ACGGAATAAGCCTGAGGTTCCATG -ACGGAATAAGCCTGAGGTTGTGTG -ACGGAATAAGCCTGAGGTCTAGTG -ACGGAATAAGCCTGAGGTCATCTG -ACGGAATAAGCCTGAGGTGAGTTG -ACGGAATAAGCCTGAGGTAGACTG -ACGGAATAAGCCTGAGGTTCGGTA -ACGGAATAAGCCTGAGGTTGCCTA -ACGGAATAAGCCTGAGGTCCACTA -ACGGAATAAGCCTGAGGTGGAGTA -ACGGAATAAGCCTGAGGTTCGTCT -ACGGAATAAGCCTGAGGTTGCACT -ACGGAATAAGCCTGAGGTCTGACT -ACGGAATAAGCCTGAGGTCAACCT -ACGGAATAAGCCTGAGGTGCTACT -ACGGAATAAGCCTGAGGTGGATCT -ACGGAATAAGCCTGAGGTAAGGCT -ACGGAATAAGCCTGAGGTTCAACC -ACGGAATAAGCCTGAGGTTGTTCC -ACGGAATAAGCCTGAGGTATTCCC -ACGGAATAAGCCTGAGGTTTCTCG -ACGGAATAAGCCTGAGGTTAGACG -ACGGAATAAGCCTGAGGTGTAACG -ACGGAATAAGCCTGAGGTACTTCG -ACGGAATAAGCCTGAGGTTACGCA -ACGGAATAAGCCTGAGGTCTTGCA -ACGGAATAAGCCTGAGGTCGAACA -ACGGAATAAGCCTGAGGTCAGTCA -ACGGAATAAGCCTGAGGTGATCCA -ACGGAATAAGCCTGAGGTACGACA -ACGGAATAAGCCTGAGGTAGCTCA -ACGGAATAAGCCTGAGGTTCACGT -ACGGAATAAGCCTGAGGTCGTAGT -ACGGAATAAGCCTGAGGTGTCAGT -ACGGAATAAGCCTGAGGTGAAGGT -ACGGAATAAGCCTGAGGTAACCGT -ACGGAATAAGCCTGAGGTTTGTGC -ACGGAATAAGCCTGAGGTCTAAGC -ACGGAATAAGCCTGAGGTACTAGC -ACGGAATAAGCCTGAGGTAGATGC -ACGGAATAAGCCTGAGGTTGAAGG -ACGGAATAAGCCTGAGGTCAATGG -ACGGAATAAGCCTGAGGTATGAGG -ACGGAATAAGCCTGAGGTAATGGG -ACGGAATAAGCCTGAGGTTCCTGA -ACGGAATAAGCCTGAGGTTAGCGA -ACGGAATAAGCCTGAGGTCACAGA -ACGGAATAAGCCTGAGGTGCAAGA -ACGGAATAAGCCTGAGGTGGTTGA -ACGGAATAAGCCTGAGGTTCCGAT -ACGGAATAAGCCTGAGGTTGGCAT -ACGGAATAAGCCTGAGGTCGAGAT -ACGGAATAAGCCTGAGGTTACCAC -ACGGAATAAGCCTGAGGTCAGAAC -ACGGAATAAGCCTGAGGTGTCTAC -ACGGAATAAGCCTGAGGTACGTAC -ACGGAATAAGCCTGAGGTAGTGAC -ACGGAATAAGCCTGAGGTCTGTAG -ACGGAATAAGCCTGAGGTCCTAAG -ACGGAATAAGCCTGAGGTGTTCAG -ACGGAATAAGCCTGAGGTGCATAG -ACGGAATAAGCCTGAGGTGACAAG -ACGGAATAAGCCTGAGGTAAGCAG -ACGGAATAAGCCTGAGGTCGTCAA -ACGGAATAAGCCTGAGGTGCTGAA -ACGGAATAAGCCTGAGGTAGTACG -ACGGAATAAGCCTGAGGTATCCGA -ACGGAATAAGCCTGAGGTATGGGA -ACGGAATAAGCCTGAGGTGTGCAA -ACGGAATAAGCCTGAGGTGAGGAA -ACGGAATAAGCCTGAGGTCAGGTA -ACGGAATAAGCCTGAGGTGACTCT -ACGGAATAAGCCTGAGGTAGTCCT -ACGGAATAAGCCTGAGGTTAAGCC -ACGGAATAAGCCTGAGGTATAGCC -ACGGAATAAGCCTGAGGTTAACCG -ACGGAATAAGCCTGAGGTATGCCA -ACGGAATAAGCCGATTCCGGAAAC -ACGGAATAAGCCGATTCCAACACC -ACGGAATAAGCCGATTCCATCGAG -ACGGAATAAGCCGATTCCCTCCTT -ACGGAATAAGCCGATTCCCCTGTT -ACGGAATAAGCCGATTCCCGGTTT -ACGGAATAAGCCGATTCCGTGGTT -ACGGAATAAGCCGATTCCGCCTTT -ACGGAATAAGCCGATTCCGGTCTT -ACGGAATAAGCCGATTCCACGCTT -ACGGAATAAGCCGATTCCAGCGTT -ACGGAATAAGCCGATTCCTTCGTC -ACGGAATAAGCCGATTCCTCTCTC -ACGGAATAAGCCGATTCCTGGATC -ACGGAATAAGCCGATTCCCACTTC -ACGGAATAAGCCGATTCCGTACTC -ACGGAATAAGCCGATTCCGATGTC -ACGGAATAAGCCGATTCCACAGTC -ACGGAATAAGCCGATTCCTTGCTG -ACGGAATAAGCCGATTCCTCCATG -ACGGAATAAGCCGATTCCTGTGTG -ACGGAATAAGCCGATTCCCTAGTG -ACGGAATAAGCCGATTCCCATCTG -ACGGAATAAGCCGATTCCGAGTTG -ACGGAATAAGCCGATTCCAGACTG -ACGGAATAAGCCGATTCCTCGGTA -ACGGAATAAGCCGATTCCTGCCTA -ACGGAATAAGCCGATTCCCCACTA -ACGGAATAAGCCGATTCCGGAGTA -ACGGAATAAGCCGATTCCTCGTCT -ACGGAATAAGCCGATTCCTGCACT -ACGGAATAAGCCGATTCCCTGACT -ACGGAATAAGCCGATTCCCAACCT -ACGGAATAAGCCGATTCCGCTACT -ACGGAATAAGCCGATTCCGGATCT -ACGGAATAAGCCGATTCCAAGGCT -ACGGAATAAGCCGATTCCTCAACC -ACGGAATAAGCCGATTCCTGTTCC -ACGGAATAAGCCGATTCCATTCCC -ACGGAATAAGCCGATTCCTTCTCG -ACGGAATAAGCCGATTCCTAGACG -ACGGAATAAGCCGATTCCGTAACG -ACGGAATAAGCCGATTCCACTTCG -ACGGAATAAGCCGATTCCTACGCA -ACGGAATAAGCCGATTCCCTTGCA -ACGGAATAAGCCGATTCCCGAACA -ACGGAATAAGCCGATTCCCAGTCA -ACGGAATAAGCCGATTCCGATCCA -ACGGAATAAGCCGATTCCACGACA -ACGGAATAAGCCGATTCCAGCTCA -ACGGAATAAGCCGATTCCTCACGT -ACGGAATAAGCCGATTCCCGTAGT -ACGGAATAAGCCGATTCCGTCAGT -ACGGAATAAGCCGATTCCGAAGGT -ACGGAATAAGCCGATTCCAACCGT -ACGGAATAAGCCGATTCCTTGTGC -ACGGAATAAGCCGATTCCCTAAGC -ACGGAATAAGCCGATTCCACTAGC -ACGGAATAAGCCGATTCCAGATGC -ACGGAATAAGCCGATTCCTGAAGG -ACGGAATAAGCCGATTCCCAATGG -ACGGAATAAGCCGATTCCATGAGG -ACGGAATAAGCCGATTCCAATGGG -ACGGAATAAGCCGATTCCTCCTGA -ACGGAATAAGCCGATTCCTAGCGA -ACGGAATAAGCCGATTCCCACAGA -ACGGAATAAGCCGATTCCGCAAGA -ACGGAATAAGCCGATTCCGGTTGA -ACGGAATAAGCCGATTCCTCCGAT -ACGGAATAAGCCGATTCCTGGCAT -ACGGAATAAGCCGATTCCCGAGAT -ACGGAATAAGCCGATTCCTACCAC -ACGGAATAAGCCGATTCCCAGAAC -ACGGAATAAGCCGATTCCGTCTAC -ACGGAATAAGCCGATTCCACGTAC -ACGGAATAAGCCGATTCCAGTGAC -ACGGAATAAGCCGATTCCCTGTAG -ACGGAATAAGCCGATTCCCCTAAG -ACGGAATAAGCCGATTCCGTTCAG -ACGGAATAAGCCGATTCCGCATAG -ACGGAATAAGCCGATTCCGACAAG -ACGGAATAAGCCGATTCCAAGCAG -ACGGAATAAGCCGATTCCCGTCAA -ACGGAATAAGCCGATTCCGCTGAA -ACGGAATAAGCCGATTCCAGTACG -ACGGAATAAGCCGATTCCATCCGA -ACGGAATAAGCCGATTCCATGGGA -ACGGAATAAGCCGATTCCGTGCAA -ACGGAATAAGCCGATTCCGAGGAA -ACGGAATAAGCCGATTCCCAGGTA -ACGGAATAAGCCGATTCCGACTCT -ACGGAATAAGCCGATTCCAGTCCT -ACGGAATAAGCCGATTCCTAAGCC -ACGGAATAAGCCGATTCCATAGCC -ACGGAATAAGCCGATTCCTAACCG -ACGGAATAAGCCGATTCCATGCCA -ACGGAATAAGCCCATTGGGGAAAC -ACGGAATAAGCCCATTGGAACACC -ACGGAATAAGCCCATTGGATCGAG -ACGGAATAAGCCCATTGGCTCCTT -ACGGAATAAGCCCATTGGCCTGTT -ACGGAATAAGCCCATTGGCGGTTT -ACGGAATAAGCCCATTGGGTGGTT -ACGGAATAAGCCCATTGGGCCTTT -ACGGAATAAGCCCATTGGGGTCTT -ACGGAATAAGCCCATTGGACGCTT -ACGGAATAAGCCCATTGGAGCGTT -ACGGAATAAGCCCATTGGTTCGTC -ACGGAATAAGCCCATTGGTCTCTC -ACGGAATAAGCCCATTGGTGGATC -ACGGAATAAGCCCATTGGCACTTC -ACGGAATAAGCCCATTGGGTACTC -ACGGAATAAGCCCATTGGGATGTC -ACGGAATAAGCCCATTGGACAGTC -ACGGAATAAGCCCATTGGTTGCTG -ACGGAATAAGCCCATTGGTCCATG -ACGGAATAAGCCCATTGGTGTGTG -ACGGAATAAGCCCATTGGCTAGTG -ACGGAATAAGCCCATTGGCATCTG -ACGGAATAAGCCCATTGGGAGTTG -ACGGAATAAGCCCATTGGAGACTG -ACGGAATAAGCCCATTGGTCGGTA -ACGGAATAAGCCCATTGGTGCCTA -ACGGAATAAGCCCATTGGCCACTA -ACGGAATAAGCCCATTGGGGAGTA -ACGGAATAAGCCCATTGGTCGTCT -ACGGAATAAGCCCATTGGTGCACT -ACGGAATAAGCCCATTGGCTGACT -ACGGAATAAGCCCATTGGCAACCT -ACGGAATAAGCCCATTGGGCTACT -ACGGAATAAGCCCATTGGGGATCT -ACGGAATAAGCCCATTGGAAGGCT -ACGGAATAAGCCCATTGGTCAACC -ACGGAATAAGCCCATTGGTGTTCC -ACGGAATAAGCCCATTGGATTCCC -ACGGAATAAGCCCATTGGTTCTCG -ACGGAATAAGCCCATTGGTAGACG -ACGGAATAAGCCCATTGGGTAACG -ACGGAATAAGCCCATTGGACTTCG -ACGGAATAAGCCCATTGGTACGCA -ACGGAATAAGCCCATTGGCTTGCA -ACGGAATAAGCCCATTGGCGAACA -ACGGAATAAGCCCATTGGCAGTCA -ACGGAATAAGCCCATTGGGATCCA -ACGGAATAAGCCCATTGGACGACA -ACGGAATAAGCCCATTGGAGCTCA -ACGGAATAAGCCCATTGGTCACGT -ACGGAATAAGCCCATTGGCGTAGT -ACGGAATAAGCCCATTGGGTCAGT -ACGGAATAAGCCCATTGGGAAGGT -ACGGAATAAGCCCATTGGAACCGT -ACGGAATAAGCCCATTGGTTGTGC -ACGGAATAAGCCCATTGGCTAAGC -ACGGAATAAGCCCATTGGACTAGC -ACGGAATAAGCCCATTGGAGATGC -ACGGAATAAGCCCATTGGTGAAGG -ACGGAATAAGCCCATTGGCAATGG -ACGGAATAAGCCCATTGGATGAGG -ACGGAATAAGCCCATTGGAATGGG -ACGGAATAAGCCCATTGGTCCTGA -ACGGAATAAGCCCATTGGTAGCGA -ACGGAATAAGCCCATTGGCACAGA -ACGGAATAAGCCCATTGGGCAAGA -ACGGAATAAGCCCATTGGGGTTGA -ACGGAATAAGCCCATTGGTCCGAT -ACGGAATAAGCCCATTGGTGGCAT -ACGGAATAAGCCCATTGGCGAGAT -ACGGAATAAGCCCATTGGTACCAC -ACGGAATAAGCCCATTGGCAGAAC -ACGGAATAAGCCCATTGGGTCTAC -ACGGAATAAGCCCATTGGACGTAC -ACGGAATAAGCCCATTGGAGTGAC -ACGGAATAAGCCCATTGGCTGTAG -ACGGAATAAGCCCATTGGCCTAAG -ACGGAATAAGCCCATTGGGTTCAG -ACGGAATAAGCCCATTGGGCATAG -ACGGAATAAGCCCATTGGGACAAG -ACGGAATAAGCCCATTGGAAGCAG -ACGGAATAAGCCCATTGGCGTCAA -ACGGAATAAGCCCATTGGGCTGAA -ACGGAATAAGCCCATTGGAGTACG -ACGGAATAAGCCCATTGGATCCGA -ACGGAATAAGCCCATTGGATGGGA -ACGGAATAAGCCCATTGGGTGCAA -ACGGAATAAGCCCATTGGGAGGAA -ACGGAATAAGCCCATTGGCAGGTA -ACGGAATAAGCCCATTGGGACTCT -ACGGAATAAGCCCATTGGAGTCCT -ACGGAATAAGCCCATTGGTAAGCC -ACGGAATAAGCCCATTGGATAGCC -ACGGAATAAGCCCATTGGTAACCG -ACGGAATAAGCCCATTGGATGCCA -ACGGAATAAGCCGATCGAGGAAAC -ACGGAATAAGCCGATCGAAACACC -ACGGAATAAGCCGATCGAATCGAG -ACGGAATAAGCCGATCGACTCCTT -ACGGAATAAGCCGATCGACCTGTT -ACGGAATAAGCCGATCGACGGTTT -ACGGAATAAGCCGATCGAGTGGTT -ACGGAATAAGCCGATCGAGCCTTT -ACGGAATAAGCCGATCGAGGTCTT -ACGGAATAAGCCGATCGAACGCTT -ACGGAATAAGCCGATCGAAGCGTT -ACGGAATAAGCCGATCGATTCGTC -ACGGAATAAGCCGATCGATCTCTC -ACGGAATAAGCCGATCGATGGATC -ACGGAATAAGCCGATCGACACTTC -ACGGAATAAGCCGATCGAGTACTC -ACGGAATAAGCCGATCGAGATGTC -ACGGAATAAGCCGATCGAACAGTC -ACGGAATAAGCCGATCGATTGCTG -ACGGAATAAGCCGATCGATCCATG -ACGGAATAAGCCGATCGATGTGTG -ACGGAATAAGCCGATCGACTAGTG -ACGGAATAAGCCGATCGACATCTG -ACGGAATAAGCCGATCGAGAGTTG -ACGGAATAAGCCGATCGAAGACTG -ACGGAATAAGCCGATCGATCGGTA -ACGGAATAAGCCGATCGATGCCTA -ACGGAATAAGCCGATCGACCACTA -ACGGAATAAGCCGATCGAGGAGTA -ACGGAATAAGCCGATCGATCGTCT -ACGGAATAAGCCGATCGATGCACT -ACGGAATAAGCCGATCGACTGACT -ACGGAATAAGCCGATCGACAACCT -ACGGAATAAGCCGATCGAGCTACT -ACGGAATAAGCCGATCGAGGATCT -ACGGAATAAGCCGATCGAAAGGCT -ACGGAATAAGCCGATCGATCAACC -ACGGAATAAGCCGATCGATGTTCC -ACGGAATAAGCCGATCGAATTCCC -ACGGAATAAGCCGATCGATTCTCG -ACGGAATAAGCCGATCGATAGACG -ACGGAATAAGCCGATCGAGTAACG -ACGGAATAAGCCGATCGAACTTCG -ACGGAATAAGCCGATCGATACGCA -ACGGAATAAGCCGATCGACTTGCA -ACGGAATAAGCCGATCGACGAACA -ACGGAATAAGCCGATCGACAGTCA -ACGGAATAAGCCGATCGAGATCCA -ACGGAATAAGCCGATCGAACGACA -ACGGAATAAGCCGATCGAAGCTCA -ACGGAATAAGCCGATCGATCACGT -ACGGAATAAGCCGATCGACGTAGT -ACGGAATAAGCCGATCGAGTCAGT -ACGGAATAAGCCGATCGAGAAGGT -ACGGAATAAGCCGATCGAAACCGT -ACGGAATAAGCCGATCGATTGTGC -ACGGAATAAGCCGATCGACTAAGC -ACGGAATAAGCCGATCGAACTAGC -ACGGAATAAGCCGATCGAAGATGC -ACGGAATAAGCCGATCGATGAAGG -ACGGAATAAGCCGATCGACAATGG -ACGGAATAAGCCGATCGAATGAGG -ACGGAATAAGCCGATCGAAATGGG -ACGGAATAAGCCGATCGATCCTGA -ACGGAATAAGCCGATCGATAGCGA -ACGGAATAAGCCGATCGACACAGA -ACGGAATAAGCCGATCGAGCAAGA -ACGGAATAAGCCGATCGAGGTTGA -ACGGAATAAGCCGATCGATCCGAT -ACGGAATAAGCCGATCGATGGCAT -ACGGAATAAGCCGATCGACGAGAT -ACGGAATAAGCCGATCGATACCAC -ACGGAATAAGCCGATCGACAGAAC -ACGGAATAAGCCGATCGAGTCTAC -ACGGAATAAGCCGATCGAACGTAC -ACGGAATAAGCCGATCGAAGTGAC -ACGGAATAAGCCGATCGACTGTAG -ACGGAATAAGCCGATCGACCTAAG -ACGGAATAAGCCGATCGAGTTCAG -ACGGAATAAGCCGATCGAGCATAG -ACGGAATAAGCCGATCGAGACAAG -ACGGAATAAGCCGATCGAAAGCAG -ACGGAATAAGCCGATCGACGTCAA -ACGGAATAAGCCGATCGAGCTGAA -ACGGAATAAGCCGATCGAAGTACG -ACGGAATAAGCCGATCGAATCCGA -ACGGAATAAGCCGATCGAATGGGA -ACGGAATAAGCCGATCGAGTGCAA -ACGGAATAAGCCGATCGAGAGGAA -ACGGAATAAGCCGATCGACAGGTA -ACGGAATAAGCCGATCGAGACTCT -ACGGAATAAGCCGATCGAAGTCCT -ACGGAATAAGCCGATCGATAAGCC -ACGGAATAAGCCGATCGAATAGCC -ACGGAATAAGCCGATCGATAACCG -ACGGAATAAGCCGATCGAATGCCA -ACGGAATAAGCCCACTACGGAAAC -ACGGAATAAGCCCACTACAACACC -ACGGAATAAGCCCACTACATCGAG -ACGGAATAAGCCCACTACCTCCTT -ACGGAATAAGCCCACTACCCTGTT -ACGGAATAAGCCCACTACCGGTTT -ACGGAATAAGCCCACTACGTGGTT -ACGGAATAAGCCCACTACGCCTTT -ACGGAATAAGCCCACTACGGTCTT -ACGGAATAAGCCCACTACACGCTT -ACGGAATAAGCCCACTACAGCGTT -ACGGAATAAGCCCACTACTTCGTC -ACGGAATAAGCCCACTACTCTCTC -ACGGAATAAGCCCACTACTGGATC -ACGGAATAAGCCCACTACCACTTC -ACGGAATAAGCCCACTACGTACTC -ACGGAATAAGCCCACTACGATGTC -ACGGAATAAGCCCACTACACAGTC -ACGGAATAAGCCCACTACTTGCTG -ACGGAATAAGCCCACTACTCCATG -ACGGAATAAGCCCACTACTGTGTG -ACGGAATAAGCCCACTACCTAGTG -ACGGAATAAGCCCACTACCATCTG -ACGGAATAAGCCCACTACGAGTTG -ACGGAATAAGCCCACTACAGACTG -ACGGAATAAGCCCACTACTCGGTA -ACGGAATAAGCCCACTACTGCCTA -ACGGAATAAGCCCACTACCCACTA -ACGGAATAAGCCCACTACGGAGTA -ACGGAATAAGCCCACTACTCGTCT -ACGGAATAAGCCCACTACTGCACT -ACGGAATAAGCCCACTACCTGACT -ACGGAATAAGCCCACTACCAACCT -ACGGAATAAGCCCACTACGCTACT -ACGGAATAAGCCCACTACGGATCT -ACGGAATAAGCCCACTACAAGGCT -ACGGAATAAGCCCACTACTCAACC -ACGGAATAAGCCCACTACTGTTCC -ACGGAATAAGCCCACTACATTCCC -ACGGAATAAGCCCACTACTTCTCG -ACGGAATAAGCCCACTACTAGACG -ACGGAATAAGCCCACTACGTAACG -ACGGAATAAGCCCACTACACTTCG -ACGGAATAAGCCCACTACTACGCA -ACGGAATAAGCCCACTACCTTGCA -ACGGAATAAGCCCACTACCGAACA -ACGGAATAAGCCCACTACCAGTCA -ACGGAATAAGCCCACTACGATCCA -ACGGAATAAGCCCACTACACGACA -ACGGAATAAGCCCACTACAGCTCA -ACGGAATAAGCCCACTACTCACGT -ACGGAATAAGCCCACTACCGTAGT -ACGGAATAAGCCCACTACGTCAGT -ACGGAATAAGCCCACTACGAAGGT -ACGGAATAAGCCCACTACAACCGT -ACGGAATAAGCCCACTACTTGTGC -ACGGAATAAGCCCACTACCTAAGC -ACGGAATAAGCCCACTACACTAGC -ACGGAATAAGCCCACTACAGATGC -ACGGAATAAGCCCACTACTGAAGG -ACGGAATAAGCCCACTACCAATGG -ACGGAATAAGCCCACTACATGAGG -ACGGAATAAGCCCACTACAATGGG -ACGGAATAAGCCCACTACTCCTGA -ACGGAATAAGCCCACTACTAGCGA -ACGGAATAAGCCCACTACCACAGA -ACGGAATAAGCCCACTACGCAAGA -ACGGAATAAGCCCACTACGGTTGA -ACGGAATAAGCCCACTACTCCGAT -ACGGAATAAGCCCACTACTGGCAT -ACGGAATAAGCCCACTACCGAGAT -ACGGAATAAGCCCACTACTACCAC -ACGGAATAAGCCCACTACCAGAAC -ACGGAATAAGCCCACTACGTCTAC -ACGGAATAAGCCCACTACACGTAC -ACGGAATAAGCCCACTACAGTGAC -ACGGAATAAGCCCACTACCTGTAG -ACGGAATAAGCCCACTACCCTAAG -ACGGAATAAGCCCACTACGTTCAG -ACGGAATAAGCCCACTACGCATAG -ACGGAATAAGCCCACTACGACAAG -ACGGAATAAGCCCACTACAAGCAG -ACGGAATAAGCCCACTACCGTCAA -ACGGAATAAGCCCACTACGCTGAA -ACGGAATAAGCCCACTACAGTACG -ACGGAATAAGCCCACTACATCCGA -ACGGAATAAGCCCACTACATGGGA -ACGGAATAAGCCCACTACGTGCAA -ACGGAATAAGCCCACTACGAGGAA -ACGGAATAAGCCCACTACCAGGTA -ACGGAATAAGCCCACTACGACTCT -ACGGAATAAGCCCACTACAGTCCT -ACGGAATAAGCCCACTACTAAGCC -ACGGAATAAGCCCACTACATAGCC -ACGGAATAAGCCCACTACTAACCG -ACGGAATAAGCCCACTACATGCCA -ACGGAATAAGCCAACCAGGGAAAC -ACGGAATAAGCCAACCAGAACACC -ACGGAATAAGCCAACCAGATCGAG -ACGGAATAAGCCAACCAGCTCCTT -ACGGAATAAGCCAACCAGCCTGTT -ACGGAATAAGCCAACCAGCGGTTT -ACGGAATAAGCCAACCAGGTGGTT -ACGGAATAAGCCAACCAGGCCTTT -ACGGAATAAGCCAACCAGGGTCTT -ACGGAATAAGCCAACCAGACGCTT -ACGGAATAAGCCAACCAGAGCGTT -ACGGAATAAGCCAACCAGTTCGTC -ACGGAATAAGCCAACCAGTCTCTC -ACGGAATAAGCCAACCAGTGGATC -ACGGAATAAGCCAACCAGCACTTC -ACGGAATAAGCCAACCAGGTACTC -ACGGAATAAGCCAACCAGGATGTC -ACGGAATAAGCCAACCAGACAGTC -ACGGAATAAGCCAACCAGTTGCTG -ACGGAATAAGCCAACCAGTCCATG -ACGGAATAAGCCAACCAGTGTGTG -ACGGAATAAGCCAACCAGCTAGTG -ACGGAATAAGCCAACCAGCATCTG -ACGGAATAAGCCAACCAGGAGTTG -ACGGAATAAGCCAACCAGAGACTG -ACGGAATAAGCCAACCAGTCGGTA -ACGGAATAAGCCAACCAGTGCCTA -ACGGAATAAGCCAACCAGCCACTA -ACGGAATAAGCCAACCAGGGAGTA -ACGGAATAAGCCAACCAGTCGTCT -ACGGAATAAGCCAACCAGTGCACT -ACGGAATAAGCCAACCAGCTGACT -ACGGAATAAGCCAACCAGCAACCT -ACGGAATAAGCCAACCAGGCTACT -ACGGAATAAGCCAACCAGGGATCT -ACGGAATAAGCCAACCAGAAGGCT -ACGGAATAAGCCAACCAGTCAACC -ACGGAATAAGCCAACCAGTGTTCC -ACGGAATAAGCCAACCAGATTCCC -ACGGAATAAGCCAACCAGTTCTCG -ACGGAATAAGCCAACCAGTAGACG -ACGGAATAAGCCAACCAGGTAACG -ACGGAATAAGCCAACCAGACTTCG -ACGGAATAAGCCAACCAGTACGCA -ACGGAATAAGCCAACCAGCTTGCA -ACGGAATAAGCCAACCAGCGAACA -ACGGAATAAGCCAACCAGCAGTCA -ACGGAATAAGCCAACCAGGATCCA -ACGGAATAAGCCAACCAGACGACA -ACGGAATAAGCCAACCAGAGCTCA -ACGGAATAAGCCAACCAGTCACGT -ACGGAATAAGCCAACCAGCGTAGT -ACGGAATAAGCCAACCAGGTCAGT -ACGGAATAAGCCAACCAGGAAGGT -ACGGAATAAGCCAACCAGAACCGT -ACGGAATAAGCCAACCAGTTGTGC -ACGGAATAAGCCAACCAGCTAAGC -ACGGAATAAGCCAACCAGACTAGC -ACGGAATAAGCCAACCAGAGATGC -ACGGAATAAGCCAACCAGTGAAGG -ACGGAATAAGCCAACCAGCAATGG -ACGGAATAAGCCAACCAGATGAGG -ACGGAATAAGCCAACCAGAATGGG -ACGGAATAAGCCAACCAGTCCTGA -ACGGAATAAGCCAACCAGTAGCGA -ACGGAATAAGCCAACCAGCACAGA -ACGGAATAAGCCAACCAGGCAAGA -ACGGAATAAGCCAACCAGGGTTGA -ACGGAATAAGCCAACCAGTCCGAT -ACGGAATAAGCCAACCAGTGGCAT -ACGGAATAAGCCAACCAGCGAGAT -ACGGAATAAGCCAACCAGTACCAC -ACGGAATAAGCCAACCAGCAGAAC -ACGGAATAAGCCAACCAGGTCTAC -ACGGAATAAGCCAACCAGACGTAC -ACGGAATAAGCCAACCAGAGTGAC -ACGGAATAAGCCAACCAGCTGTAG -ACGGAATAAGCCAACCAGCCTAAG -ACGGAATAAGCCAACCAGGTTCAG -ACGGAATAAGCCAACCAGGCATAG -ACGGAATAAGCCAACCAGGACAAG -ACGGAATAAGCCAACCAGAAGCAG -ACGGAATAAGCCAACCAGCGTCAA -ACGGAATAAGCCAACCAGGCTGAA -ACGGAATAAGCCAACCAGAGTACG -ACGGAATAAGCCAACCAGATCCGA -ACGGAATAAGCCAACCAGATGGGA -ACGGAATAAGCCAACCAGGTGCAA -ACGGAATAAGCCAACCAGGAGGAA -ACGGAATAAGCCAACCAGCAGGTA -ACGGAATAAGCCAACCAGGACTCT -ACGGAATAAGCCAACCAGAGTCCT -ACGGAATAAGCCAACCAGTAAGCC -ACGGAATAAGCCAACCAGATAGCC -ACGGAATAAGCCAACCAGTAACCG -ACGGAATAAGCCAACCAGATGCCA -ACGGAATAAGCCTACGTCGGAAAC -ACGGAATAAGCCTACGTCAACACC -ACGGAATAAGCCTACGTCATCGAG -ACGGAATAAGCCTACGTCCTCCTT -ACGGAATAAGCCTACGTCCCTGTT -ACGGAATAAGCCTACGTCCGGTTT -ACGGAATAAGCCTACGTCGTGGTT -ACGGAATAAGCCTACGTCGCCTTT -ACGGAATAAGCCTACGTCGGTCTT -ACGGAATAAGCCTACGTCACGCTT -ACGGAATAAGCCTACGTCAGCGTT -ACGGAATAAGCCTACGTCTTCGTC -ACGGAATAAGCCTACGTCTCTCTC -ACGGAATAAGCCTACGTCTGGATC -ACGGAATAAGCCTACGTCCACTTC -ACGGAATAAGCCTACGTCGTACTC -ACGGAATAAGCCTACGTCGATGTC -ACGGAATAAGCCTACGTCACAGTC -ACGGAATAAGCCTACGTCTTGCTG -ACGGAATAAGCCTACGTCTCCATG -ACGGAATAAGCCTACGTCTGTGTG -ACGGAATAAGCCTACGTCCTAGTG -ACGGAATAAGCCTACGTCCATCTG -ACGGAATAAGCCTACGTCGAGTTG -ACGGAATAAGCCTACGTCAGACTG -ACGGAATAAGCCTACGTCTCGGTA -ACGGAATAAGCCTACGTCTGCCTA -ACGGAATAAGCCTACGTCCCACTA -ACGGAATAAGCCTACGTCGGAGTA -ACGGAATAAGCCTACGTCTCGTCT -ACGGAATAAGCCTACGTCTGCACT -ACGGAATAAGCCTACGTCCTGACT -ACGGAATAAGCCTACGTCCAACCT -ACGGAATAAGCCTACGTCGCTACT -ACGGAATAAGCCTACGTCGGATCT -ACGGAATAAGCCTACGTCAAGGCT -ACGGAATAAGCCTACGTCTCAACC -ACGGAATAAGCCTACGTCTGTTCC -ACGGAATAAGCCTACGTCATTCCC -ACGGAATAAGCCTACGTCTTCTCG -ACGGAATAAGCCTACGTCTAGACG -ACGGAATAAGCCTACGTCGTAACG -ACGGAATAAGCCTACGTCACTTCG -ACGGAATAAGCCTACGTCTACGCA -ACGGAATAAGCCTACGTCCTTGCA -ACGGAATAAGCCTACGTCCGAACA -ACGGAATAAGCCTACGTCCAGTCA -ACGGAATAAGCCTACGTCGATCCA -ACGGAATAAGCCTACGTCACGACA -ACGGAATAAGCCTACGTCAGCTCA -ACGGAATAAGCCTACGTCTCACGT -ACGGAATAAGCCTACGTCCGTAGT -ACGGAATAAGCCTACGTCGTCAGT -ACGGAATAAGCCTACGTCGAAGGT -ACGGAATAAGCCTACGTCAACCGT -ACGGAATAAGCCTACGTCTTGTGC -ACGGAATAAGCCTACGTCCTAAGC -ACGGAATAAGCCTACGTCACTAGC -ACGGAATAAGCCTACGTCAGATGC -ACGGAATAAGCCTACGTCTGAAGG -ACGGAATAAGCCTACGTCCAATGG -ACGGAATAAGCCTACGTCATGAGG -ACGGAATAAGCCTACGTCAATGGG -ACGGAATAAGCCTACGTCTCCTGA -ACGGAATAAGCCTACGTCTAGCGA -ACGGAATAAGCCTACGTCCACAGA -ACGGAATAAGCCTACGTCGCAAGA -ACGGAATAAGCCTACGTCGGTTGA -ACGGAATAAGCCTACGTCTCCGAT -ACGGAATAAGCCTACGTCTGGCAT -ACGGAATAAGCCTACGTCCGAGAT -ACGGAATAAGCCTACGTCTACCAC -ACGGAATAAGCCTACGTCCAGAAC -ACGGAATAAGCCTACGTCGTCTAC -ACGGAATAAGCCTACGTCACGTAC -ACGGAATAAGCCTACGTCAGTGAC -ACGGAATAAGCCTACGTCCTGTAG -ACGGAATAAGCCTACGTCCCTAAG -ACGGAATAAGCCTACGTCGTTCAG -ACGGAATAAGCCTACGTCGCATAG -ACGGAATAAGCCTACGTCGACAAG -ACGGAATAAGCCTACGTCAAGCAG -ACGGAATAAGCCTACGTCCGTCAA -ACGGAATAAGCCTACGTCGCTGAA -ACGGAATAAGCCTACGTCAGTACG -ACGGAATAAGCCTACGTCATCCGA -ACGGAATAAGCCTACGTCATGGGA -ACGGAATAAGCCTACGTCGTGCAA -ACGGAATAAGCCTACGTCGAGGAA -ACGGAATAAGCCTACGTCCAGGTA -ACGGAATAAGCCTACGTCGACTCT -ACGGAATAAGCCTACGTCAGTCCT -ACGGAATAAGCCTACGTCTAAGCC -ACGGAATAAGCCTACGTCATAGCC -ACGGAATAAGCCTACGTCTAACCG -ACGGAATAAGCCTACGTCATGCCA -ACGGAATAAGCCTACACGGGAAAC -ACGGAATAAGCCTACACGAACACC -ACGGAATAAGCCTACACGATCGAG -ACGGAATAAGCCTACACGCTCCTT -ACGGAATAAGCCTACACGCCTGTT -ACGGAATAAGCCTACACGCGGTTT -ACGGAATAAGCCTACACGGTGGTT -ACGGAATAAGCCTACACGGCCTTT -ACGGAATAAGCCTACACGGGTCTT -ACGGAATAAGCCTACACGACGCTT -ACGGAATAAGCCTACACGAGCGTT -ACGGAATAAGCCTACACGTTCGTC -ACGGAATAAGCCTACACGTCTCTC -ACGGAATAAGCCTACACGTGGATC -ACGGAATAAGCCTACACGCACTTC -ACGGAATAAGCCTACACGGTACTC -ACGGAATAAGCCTACACGGATGTC -ACGGAATAAGCCTACACGACAGTC -ACGGAATAAGCCTACACGTTGCTG -ACGGAATAAGCCTACACGTCCATG -ACGGAATAAGCCTACACGTGTGTG -ACGGAATAAGCCTACACGCTAGTG -ACGGAATAAGCCTACACGCATCTG -ACGGAATAAGCCTACACGGAGTTG -ACGGAATAAGCCTACACGAGACTG -ACGGAATAAGCCTACACGTCGGTA -ACGGAATAAGCCTACACGTGCCTA -ACGGAATAAGCCTACACGCCACTA -ACGGAATAAGCCTACACGGGAGTA -ACGGAATAAGCCTACACGTCGTCT -ACGGAATAAGCCTACACGTGCACT -ACGGAATAAGCCTACACGCTGACT -ACGGAATAAGCCTACACGCAACCT -ACGGAATAAGCCTACACGGCTACT -ACGGAATAAGCCTACACGGGATCT -ACGGAATAAGCCTACACGAAGGCT -ACGGAATAAGCCTACACGTCAACC -ACGGAATAAGCCTACACGTGTTCC -ACGGAATAAGCCTACACGATTCCC -ACGGAATAAGCCTACACGTTCTCG -ACGGAATAAGCCTACACGTAGACG -ACGGAATAAGCCTACACGGTAACG -ACGGAATAAGCCTACACGACTTCG -ACGGAATAAGCCTACACGTACGCA -ACGGAATAAGCCTACACGCTTGCA -ACGGAATAAGCCTACACGCGAACA -ACGGAATAAGCCTACACGCAGTCA -ACGGAATAAGCCTACACGGATCCA -ACGGAATAAGCCTACACGACGACA -ACGGAATAAGCCTACACGAGCTCA -ACGGAATAAGCCTACACGTCACGT -ACGGAATAAGCCTACACGCGTAGT -ACGGAATAAGCCTACACGGTCAGT -ACGGAATAAGCCTACACGGAAGGT -ACGGAATAAGCCTACACGAACCGT -ACGGAATAAGCCTACACGTTGTGC -ACGGAATAAGCCTACACGCTAAGC -ACGGAATAAGCCTACACGACTAGC -ACGGAATAAGCCTACACGAGATGC -ACGGAATAAGCCTACACGTGAAGG -ACGGAATAAGCCTACACGCAATGG -ACGGAATAAGCCTACACGATGAGG -ACGGAATAAGCCTACACGAATGGG -ACGGAATAAGCCTACACGTCCTGA -ACGGAATAAGCCTACACGTAGCGA -ACGGAATAAGCCTACACGCACAGA -ACGGAATAAGCCTACACGGCAAGA -ACGGAATAAGCCTACACGGGTTGA -ACGGAATAAGCCTACACGTCCGAT -ACGGAATAAGCCTACACGTGGCAT -ACGGAATAAGCCTACACGCGAGAT -ACGGAATAAGCCTACACGTACCAC -ACGGAATAAGCCTACACGCAGAAC -ACGGAATAAGCCTACACGGTCTAC -ACGGAATAAGCCTACACGACGTAC -ACGGAATAAGCCTACACGAGTGAC -ACGGAATAAGCCTACACGCTGTAG -ACGGAATAAGCCTACACGCCTAAG -ACGGAATAAGCCTACACGGTTCAG -ACGGAATAAGCCTACACGGCATAG -ACGGAATAAGCCTACACGGACAAG -ACGGAATAAGCCTACACGAAGCAG -ACGGAATAAGCCTACACGCGTCAA -ACGGAATAAGCCTACACGGCTGAA -ACGGAATAAGCCTACACGAGTACG -ACGGAATAAGCCTACACGATCCGA -ACGGAATAAGCCTACACGATGGGA -ACGGAATAAGCCTACACGGTGCAA -ACGGAATAAGCCTACACGGAGGAA -ACGGAATAAGCCTACACGCAGGTA -ACGGAATAAGCCTACACGGACTCT -ACGGAATAAGCCTACACGAGTCCT -ACGGAATAAGCCTACACGTAAGCC -ACGGAATAAGCCTACACGATAGCC -ACGGAATAAGCCTACACGTAACCG -ACGGAATAAGCCTACACGATGCCA -ACGGAATAAGCCGACAGTGGAAAC -ACGGAATAAGCCGACAGTAACACC -ACGGAATAAGCCGACAGTATCGAG -ACGGAATAAGCCGACAGTCTCCTT -ACGGAATAAGCCGACAGTCCTGTT -ACGGAATAAGCCGACAGTCGGTTT -ACGGAATAAGCCGACAGTGTGGTT -ACGGAATAAGCCGACAGTGCCTTT -ACGGAATAAGCCGACAGTGGTCTT -ACGGAATAAGCCGACAGTACGCTT -ACGGAATAAGCCGACAGTAGCGTT -ACGGAATAAGCCGACAGTTTCGTC -ACGGAATAAGCCGACAGTTCTCTC -ACGGAATAAGCCGACAGTTGGATC -ACGGAATAAGCCGACAGTCACTTC -ACGGAATAAGCCGACAGTGTACTC -ACGGAATAAGCCGACAGTGATGTC -ACGGAATAAGCCGACAGTACAGTC -ACGGAATAAGCCGACAGTTTGCTG -ACGGAATAAGCCGACAGTTCCATG -ACGGAATAAGCCGACAGTTGTGTG -ACGGAATAAGCCGACAGTCTAGTG -ACGGAATAAGCCGACAGTCATCTG -ACGGAATAAGCCGACAGTGAGTTG -ACGGAATAAGCCGACAGTAGACTG -ACGGAATAAGCCGACAGTTCGGTA -ACGGAATAAGCCGACAGTTGCCTA -ACGGAATAAGCCGACAGTCCACTA -ACGGAATAAGCCGACAGTGGAGTA -ACGGAATAAGCCGACAGTTCGTCT -ACGGAATAAGCCGACAGTTGCACT -ACGGAATAAGCCGACAGTCTGACT -ACGGAATAAGCCGACAGTCAACCT -ACGGAATAAGCCGACAGTGCTACT -ACGGAATAAGCCGACAGTGGATCT -ACGGAATAAGCCGACAGTAAGGCT -ACGGAATAAGCCGACAGTTCAACC -ACGGAATAAGCCGACAGTTGTTCC -ACGGAATAAGCCGACAGTATTCCC -ACGGAATAAGCCGACAGTTTCTCG -ACGGAATAAGCCGACAGTTAGACG -ACGGAATAAGCCGACAGTGTAACG -ACGGAATAAGCCGACAGTACTTCG -ACGGAATAAGCCGACAGTTACGCA -ACGGAATAAGCCGACAGTCTTGCA -ACGGAATAAGCCGACAGTCGAACA -ACGGAATAAGCCGACAGTCAGTCA -ACGGAATAAGCCGACAGTGATCCA -ACGGAATAAGCCGACAGTACGACA -ACGGAATAAGCCGACAGTAGCTCA -ACGGAATAAGCCGACAGTTCACGT -ACGGAATAAGCCGACAGTCGTAGT -ACGGAATAAGCCGACAGTGTCAGT -ACGGAATAAGCCGACAGTGAAGGT -ACGGAATAAGCCGACAGTAACCGT -ACGGAATAAGCCGACAGTTTGTGC -ACGGAATAAGCCGACAGTCTAAGC -ACGGAATAAGCCGACAGTACTAGC -ACGGAATAAGCCGACAGTAGATGC -ACGGAATAAGCCGACAGTTGAAGG -ACGGAATAAGCCGACAGTCAATGG -ACGGAATAAGCCGACAGTATGAGG -ACGGAATAAGCCGACAGTAATGGG -ACGGAATAAGCCGACAGTTCCTGA -ACGGAATAAGCCGACAGTTAGCGA -ACGGAATAAGCCGACAGTCACAGA -ACGGAATAAGCCGACAGTGCAAGA -ACGGAATAAGCCGACAGTGGTTGA -ACGGAATAAGCCGACAGTTCCGAT -ACGGAATAAGCCGACAGTTGGCAT -ACGGAATAAGCCGACAGTCGAGAT -ACGGAATAAGCCGACAGTTACCAC -ACGGAATAAGCCGACAGTCAGAAC -ACGGAATAAGCCGACAGTGTCTAC -ACGGAATAAGCCGACAGTACGTAC -ACGGAATAAGCCGACAGTAGTGAC -ACGGAATAAGCCGACAGTCTGTAG -ACGGAATAAGCCGACAGTCCTAAG -ACGGAATAAGCCGACAGTGTTCAG -ACGGAATAAGCCGACAGTGCATAG -ACGGAATAAGCCGACAGTGACAAG -ACGGAATAAGCCGACAGTAAGCAG -ACGGAATAAGCCGACAGTCGTCAA -ACGGAATAAGCCGACAGTGCTGAA -ACGGAATAAGCCGACAGTAGTACG -ACGGAATAAGCCGACAGTATCCGA -ACGGAATAAGCCGACAGTATGGGA -ACGGAATAAGCCGACAGTGTGCAA -ACGGAATAAGCCGACAGTGAGGAA -ACGGAATAAGCCGACAGTCAGGTA -ACGGAATAAGCCGACAGTGACTCT -ACGGAATAAGCCGACAGTAGTCCT -ACGGAATAAGCCGACAGTTAAGCC -ACGGAATAAGCCGACAGTATAGCC -ACGGAATAAGCCGACAGTTAACCG -ACGGAATAAGCCGACAGTATGCCA -ACGGAATAAGCCTAGCTGGGAAAC -ACGGAATAAGCCTAGCTGAACACC -ACGGAATAAGCCTAGCTGATCGAG -ACGGAATAAGCCTAGCTGCTCCTT -ACGGAATAAGCCTAGCTGCCTGTT -ACGGAATAAGCCTAGCTGCGGTTT -ACGGAATAAGCCTAGCTGGTGGTT -ACGGAATAAGCCTAGCTGGCCTTT -ACGGAATAAGCCTAGCTGGGTCTT -ACGGAATAAGCCTAGCTGACGCTT -ACGGAATAAGCCTAGCTGAGCGTT -ACGGAATAAGCCTAGCTGTTCGTC -ACGGAATAAGCCTAGCTGTCTCTC -ACGGAATAAGCCTAGCTGTGGATC -ACGGAATAAGCCTAGCTGCACTTC -ACGGAATAAGCCTAGCTGGTACTC -ACGGAATAAGCCTAGCTGGATGTC -ACGGAATAAGCCTAGCTGACAGTC -ACGGAATAAGCCTAGCTGTTGCTG -ACGGAATAAGCCTAGCTGTCCATG -ACGGAATAAGCCTAGCTGTGTGTG -ACGGAATAAGCCTAGCTGCTAGTG -ACGGAATAAGCCTAGCTGCATCTG -ACGGAATAAGCCTAGCTGGAGTTG -ACGGAATAAGCCTAGCTGAGACTG -ACGGAATAAGCCTAGCTGTCGGTA -ACGGAATAAGCCTAGCTGTGCCTA -ACGGAATAAGCCTAGCTGCCACTA -ACGGAATAAGCCTAGCTGGGAGTA -ACGGAATAAGCCTAGCTGTCGTCT -ACGGAATAAGCCTAGCTGTGCACT -ACGGAATAAGCCTAGCTGCTGACT -ACGGAATAAGCCTAGCTGCAACCT -ACGGAATAAGCCTAGCTGGCTACT -ACGGAATAAGCCTAGCTGGGATCT -ACGGAATAAGCCTAGCTGAAGGCT -ACGGAATAAGCCTAGCTGTCAACC -ACGGAATAAGCCTAGCTGTGTTCC -ACGGAATAAGCCTAGCTGATTCCC -ACGGAATAAGCCTAGCTGTTCTCG -ACGGAATAAGCCTAGCTGTAGACG -ACGGAATAAGCCTAGCTGGTAACG -ACGGAATAAGCCTAGCTGACTTCG -ACGGAATAAGCCTAGCTGTACGCA -ACGGAATAAGCCTAGCTGCTTGCA -ACGGAATAAGCCTAGCTGCGAACA -ACGGAATAAGCCTAGCTGCAGTCA -ACGGAATAAGCCTAGCTGGATCCA -ACGGAATAAGCCTAGCTGACGACA -ACGGAATAAGCCTAGCTGAGCTCA -ACGGAATAAGCCTAGCTGTCACGT -ACGGAATAAGCCTAGCTGCGTAGT -ACGGAATAAGCCTAGCTGGTCAGT -ACGGAATAAGCCTAGCTGGAAGGT -ACGGAATAAGCCTAGCTGAACCGT -ACGGAATAAGCCTAGCTGTTGTGC -ACGGAATAAGCCTAGCTGCTAAGC -ACGGAATAAGCCTAGCTGACTAGC -ACGGAATAAGCCTAGCTGAGATGC -ACGGAATAAGCCTAGCTGTGAAGG -ACGGAATAAGCCTAGCTGCAATGG -ACGGAATAAGCCTAGCTGATGAGG -ACGGAATAAGCCTAGCTGAATGGG -ACGGAATAAGCCTAGCTGTCCTGA -ACGGAATAAGCCTAGCTGTAGCGA -ACGGAATAAGCCTAGCTGCACAGA -ACGGAATAAGCCTAGCTGGCAAGA -ACGGAATAAGCCTAGCTGGGTTGA -ACGGAATAAGCCTAGCTGTCCGAT -ACGGAATAAGCCTAGCTGTGGCAT -ACGGAATAAGCCTAGCTGCGAGAT -ACGGAATAAGCCTAGCTGTACCAC -ACGGAATAAGCCTAGCTGCAGAAC -ACGGAATAAGCCTAGCTGGTCTAC -ACGGAATAAGCCTAGCTGACGTAC -ACGGAATAAGCCTAGCTGAGTGAC -ACGGAATAAGCCTAGCTGCTGTAG -ACGGAATAAGCCTAGCTGCCTAAG -ACGGAATAAGCCTAGCTGGTTCAG -ACGGAATAAGCCTAGCTGGCATAG -ACGGAATAAGCCTAGCTGGACAAG -ACGGAATAAGCCTAGCTGAAGCAG -ACGGAATAAGCCTAGCTGCGTCAA -ACGGAATAAGCCTAGCTGGCTGAA -ACGGAATAAGCCTAGCTGAGTACG -ACGGAATAAGCCTAGCTGATCCGA -ACGGAATAAGCCTAGCTGATGGGA -ACGGAATAAGCCTAGCTGGTGCAA -ACGGAATAAGCCTAGCTGGAGGAA -ACGGAATAAGCCTAGCTGCAGGTA -ACGGAATAAGCCTAGCTGGACTCT -ACGGAATAAGCCTAGCTGAGTCCT -ACGGAATAAGCCTAGCTGTAAGCC -ACGGAATAAGCCTAGCTGATAGCC -ACGGAATAAGCCTAGCTGTAACCG -ACGGAATAAGCCTAGCTGATGCCA -ACGGAATAAGCCAAGCCTGGAAAC -ACGGAATAAGCCAAGCCTAACACC -ACGGAATAAGCCAAGCCTATCGAG -ACGGAATAAGCCAAGCCTCTCCTT -ACGGAATAAGCCAAGCCTCCTGTT -ACGGAATAAGCCAAGCCTCGGTTT -ACGGAATAAGCCAAGCCTGTGGTT -ACGGAATAAGCCAAGCCTGCCTTT -ACGGAATAAGCCAAGCCTGGTCTT -ACGGAATAAGCCAAGCCTACGCTT -ACGGAATAAGCCAAGCCTAGCGTT -ACGGAATAAGCCAAGCCTTTCGTC -ACGGAATAAGCCAAGCCTTCTCTC -ACGGAATAAGCCAAGCCTTGGATC -ACGGAATAAGCCAAGCCTCACTTC -ACGGAATAAGCCAAGCCTGTACTC -ACGGAATAAGCCAAGCCTGATGTC -ACGGAATAAGCCAAGCCTACAGTC -ACGGAATAAGCCAAGCCTTTGCTG -ACGGAATAAGCCAAGCCTTCCATG -ACGGAATAAGCCAAGCCTTGTGTG -ACGGAATAAGCCAAGCCTCTAGTG -ACGGAATAAGCCAAGCCTCATCTG -ACGGAATAAGCCAAGCCTGAGTTG -ACGGAATAAGCCAAGCCTAGACTG -ACGGAATAAGCCAAGCCTTCGGTA -ACGGAATAAGCCAAGCCTTGCCTA -ACGGAATAAGCCAAGCCTCCACTA -ACGGAATAAGCCAAGCCTGGAGTA -ACGGAATAAGCCAAGCCTTCGTCT -ACGGAATAAGCCAAGCCTTGCACT -ACGGAATAAGCCAAGCCTCTGACT -ACGGAATAAGCCAAGCCTCAACCT -ACGGAATAAGCCAAGCCTGCTACT -ACGGAATAAGCCAAGCCTGGATCT -ACGGAATAAGCCAAGCCTAAGGCT -ACGGAATAAGCCAAGCCTTCAACC -ACGGAATAAGCCAAGCCTTGTTCC -ACGGAATAAGCCAAGCCTATTCCC -ACGGAATAAGCCAAGCCTTTCTCG -ACGGAATAAGCCAAGCCTTAGACG -ACGGAATAAGCCAAGCCTGTAACG -ACGGAATAAGCCAAGCCTACTTCG -ACGGAATAAGCCAAGCCTTACGCA -ACGGAATAAGCCAAGCCTCTTGCA -ACGGAATAAGCCAAGCCTCGAACA -ACGGAATAAGCCAAGCCTCAGTCA -ACGGAATAAGCCAAGCCTGATCCA -ACGGAATAAGCCAAGCCTACGACA -ACGGAATAAGCCAAGCCTAGCTCA -ACGGAATAAGCCAAGCCTTCACGT -ACGGAATAAGCCAAGCCTCGTAGT -ACGGAATAAGCCAAGCCTGTCAGT -ACGGAATAAGCCAAGCCTGAAGGT -ACGGAATAAGCCAAGCCTAACCGT -ACGGAATAAGCCAAGCCTTTGTGC -ACGGAATAAGCCAAGCCTCTAAGC -ACGGAATAAGCCAAGCCTACTAGC -ACGGAATAAGCCAAGCCTAGATGC -ACGGAATAAGCCAAGCCTTGAAGG -ACGGAATAAGCCAAGCCTCAATGG -ACGGAATAAGCCAAGCCTATGAGG -ACGGAATAAGCCAAGCCTAATGGG -ACGGAATAAGCCAAGCCTTCCTGA -ACGGAATAAGCCAAGCCTTAGCGA -ACGGAATAAGCCAAGCCTCACAGA -ACGGAATAAGCCAAGCCTGCAAGA -ACGGAATAAGCCAAGCCTGGTTGA -ACGGAATAAGCCAAGCCTTCCGAT -ACGGAATAAGCCAAGCCTTGGCAT -ACGGAATAAGCCAAGCCTCGAGAT -ACGGAATAAGCCAAGCCTTACCAC -ACGGAATAAGCCAAGCCTCAGAAC -ACGGAATAAGCCAAGCCTGTCTAC -ACGGAATAAGCCAAGCCTACGTAC -ACGGAATAAGCCAAGCCTAGTGAC -ACGGAATAAGCCAAGCCTCTGTAG -ACGGAATAAGCCAAGCCTCCTAAG -ACGGAATAAGCCAAGCCTGTTCAG -ACGGAATAAGCCAAGCCTGCATAG -ACGGAATAAGCCAAGCCTGACAAG -ACGGAATAAGCCAAGCCTAAGCAG -ACGGAATAAGCCAAGCCTCGTCAA -ACGGAATAAGCCAAGCCTGCTGAA -ACGGAATAAGCCAAGCCTAGTACG -ACGGAATAAGCCAAGCCTATCCGA -ACGGAATAAGCCAAGCCTATGGGA -ACGGAATAAGCCAAGCCTGTGCAA -ACGGAATAAGCCAAGCCTGAGGAA -ACGGAATAAGCCAAGCCTCAGGTA -ACGGAATAAGCCAAGCCTGACTCT -ACGGAATAAGCCAAGCCTAGTCCT -ACGGAATAAGCCAAGCCTTAAGCC -ACGGAATAAGCCAAGCCTATAGCC -ACGGAATAAGCCAAGCCTTAACCG -ACGGAATAAGCCAAGCCTATGCCA -ACGGAATAAGCCCAGGTTGGAAAC -ACGGAATAAGCCCAGGTTAACACC -ACGGAATAAGCCCAGGTTATCGAG -ACGGAATAAGCCCAGGTTCTCCTT -ACGGAATAAGCCCAGGTTCCTGTT -ACGGAATAAGCCCAGGTTCGGTTT -ACGGAATAAGCCCAGGTTGTGGTT -ACGGAATAAGCCCAGGTTGCCTTT -ACGGAATAAGCCCAGGTTGGTCTT -ACGGAATAAGCCCAGGTTACGCTT -ACGGAATAAGCCCAGGTTAGCGTT -ACGGAATAAGCCCAGGTTTTCGTC -ACGGAATAAGCCCAGGTTTCTCTC -ACGGAATAAGCCCAGGTTTGGATC -ACGGAATAAGCCCAGGTTCACTTC -ACGGAATAAGCCCAGGTTGTACTC -ACGGAATAAGCCCAGGTTGATGTC -ACGGAATAAGCCCAGGTTACAGTC -ACGGAATAAGCCCAGGTTTTGCTG -ACGGAATAAGCCCAGGTTTCCATG -ACGGAATAAGCCCAGGTTTGTGTG -ACGGAATAAGCCCAGGTTCTAGTG -ACGGAATAAGCCCAGGTTCATCTG -ACGGAATAAGCCCAGGTTGAGTTG -ACGGAATAAGCCCAGGTTAGACTG -ACGGAATAAGCCCAGGTTTCGGTA -ACGGAATAAGCCCAGGTTTGCCTA -ACGGAATAAGCCCAGGTTCCACTA -ACGGAATAAGCCCAGGTTGGAGTA -ACGGAATAAGCCCAGGTTTCGTCT -ACGGAATAAGCCCAGGTTTGCACT -ACGGAATAAGCCCAGGTTCTGACT -ACGGAATAAGCCCAGGTTCAACCT -ACGGAATAAGCCCAGGTTGCTACT -ACGGAATAAGCCCAGGTTGGATCT -ACGGAATAAGCCCAGGTTAAGGCT -ACGGAATAAGCCCAGGTTTCAACC -ACGGAATAAGCCCAGGTTTGTTCC -ACGGAATAAGCCCAGGTTATTCCC -ACGGAATAAGCCCAGGTTTTCTCG -ACGGAATAAGCCCAGGTTTAGACG -ACGGAATAAGCCCAGGTTGTAACG -ACGGAATAAGCCCAGGTTACTTCG -ACGGAATAAGCCCAGGTTTACGCA -ACGGAATAAGCCCAGGTTCTTGCA -ACGGAATAAGCCCAGGTTCGAACA -ACGGAATAAGCCCAGGTTCAGTCA -ACGGAATAAGCCCAGGTTGATCCA -ACGGAATAAGCCCAGGTTACGACA -ACGGAATAAGCCCAGGTTAGCTCA -ACGGAATAAGCCCAGGTTTCACGT -ACGGAATAAGCCCAGGTTCGTAGT -ACGGAATAAGCCCAGGTTGTCAGT -ACGGAATAAGCCCAGGTTGAAGGT -ACGGAATAAGCCCAGGTTAACCGT -ACGGAATAAGCCCAGGTTTTGTGC -ACGGAATAAGCCCAGGTTCTAAGC -ACGGAATAAGCCCAGGTTACTAGC -ACGGAATAAGCCCAGGTTAGATGC -ACGGAATAAGCCCAGGTTTGAAGG -ACGGAATAAGCCCAGGTTCAATGG -ACGGAATAAGCCCAGGTTATGAGG -ACGGAATAAGCCCAGGTTAATGGG -ACGGAATAAGCCCAGGTTTCCTGA -ACGGAATAAGCCCAGGTTTAGCGA -ACGGAATAAGCCCAGGTTCACAGA -ACGGAATAAGCCCAGGTTGCAAGA -ACGGAATAAGCCCAGGTTGGTTGA -ACGGAATAAGCCCAGGTTTCCGAT -ACGGAATAAGCCCAGGTTTGGCAT -ACGGAATAAGCCCAGGTTCGAGAT -ACGGAATAAGCCCAGGTTTACCAC -ACGGAATAAGCCCAGGTTCAGAAC -ACGGAATAAGCCCAGGTTGTCTAC -ACGGAATAAGCCCAGGTTACGTAC -ACGGAATAAGCCCAGGTTAGTGAC -ACGGAATAAGCCCAGGTTCTGTAG -ACGGAATAAGCCCAGGTTCCTAAG -ACGGAATAAGCCCAGGTTGTTCAG -ACGGAATAAGCCCAGGTTGCATAG -ACGGAATAAGCCCAGGTTGACAAG -ACGGAATAAGCCCAGGTTAAGCAG -ACGGAATAAGCCCAGGTTCGTCAA -ACGGAATAAGCCCAGGTTGCTGAA -ACGGAATAAGCCCAGGTTAGTACG -ACGGAATAAGCCCAGGTTATCCGA -ACGGAATAAGCCCAGGTTATGGGA -ACGGAATAAGCCCAGGTTGTGCAA -ACGGAATAAGCCCAGGTTGAGGAA -ACGGAATAAGCCCAGGTTCAGGTA -ACGGAATAAGCCCAGGTTGACTCT -ACGGAATAAGCCCAGGTTAGTCCT -ACGGAATAAGCCCAGGTTTAAGCC -ACGGAATAAGCCCAGGTTATAGCC -ACGGAATAAGCCCAGGTTTAACCG -ACGGAATAAGCCCAGGTTATGCCA -ACGGAATAAGCCTAGGCAGGAAAC -ACGGAATAAGCCTAGGCAAACACC -ACGGAATAAGCCTAGGCAATCGAG -ACGGAATAAGCCTAGGCACTCCTT -ACGGAATAAGCCTAGGCACCTGTT -ACGGAATAAGCCTAGGCACGGTTT -ACGGAATAAGCCTAGGCAGTGGTT -ACGGAATAAGCCTAGGCAGCCTTT -ACGGAATAAGCCTAGGCAGGTCTT -ACGGAATAAGCCTAGGCAACGCTT -ACGGAATAAGCCTAGGCAAGCGTT -ACGGAATAAGCCTAGGCATTCGTC -ACGGAATAAGCCTAGGCATCTCTC -ACGGAATAAGCCTAGGCATGGATC -ACGGAATAAGCCTAGGCACACTTC -ACGGAATAAGCCTAGGCAGTACTC -ACGGAATAAGCCTAGGCAGATGTC -ACGGAATAAGCCTAGGCAACAGTC -ACGGAATAAGCCTAGGCATTGCTG -ACGGAATAAGCCTAGGCATCCATG -ACGGAATAAGCCTAGGCATGTGTG -ACGGAATAAGCCTAGGCACTAGTG -ACGGAATAAGCCTAGGCACATCTG -ACGGAATAAGCCTAGGCAGAGTTG -ACGGAATAAGCCTAGGCAAGACTG -ACGGAATAAGCCTAGGCATCGGTA -ACGGAATAAGCCTAGGCATGCCTA -ACGGAATAAGCCTAGGCACCACTA -ACGGAATAAGCCTAGGCAGGAGTA -ACGGAATAAGCCTAGGCATCGTCT -ACGGAATAAGCCTAGGCATGCACT -ACGGAATAAGCCTAGGCACTGACT -ACGGAATAAGCCTAGGCACAACCT -ACGGAATAAGCCTAGGCAGCTACT -ACGGAATAAGCCTAGGCAGGATCT -ACGGAATAAGCCTAGGCAAAGGCT -ACGGAATAAGCCTAGGCATCAACC -ACGGAATAAGCCTAGGCATGTTCC -ACGGAATAAGCCTAGGCAATTCCC -ACGGAATAAGCCTAGGCATTCTCG -ACGGAATAAGCCTAGGCATAGACG -ACGGAATAAGCCTAGGCAGTAACG -ACGGAATAAGCCTAGGCAACTTCG -ACGGAATAAGCCTAGGCATACGCA -ACGGAATAAGCCTAGGCACTTGCA -ACGGAATAAGCCTAGGCACGAACA -ACGGAATAAGCCTAGGCACAGTCA -ACGGAATAAGCCTAGGCAGATCCA -ACGGAATAAGCCTAGGCAACGACA -ACGGAATAAGCCTAGGCAAGCTCA -ACGGAATAAGCCTAGGCATCACGT -ACGGAATAAGCCTAGGCACGTAGT -ACGGAATAAGCCTAGGCAGTCAGT -ACGGAATAAGCCTAGGCAGAAGGT -ACGGAATAAGCCTAGGCAAACCGT -ACGGAATAAGCCTAGGCATTGTGC -ACGGAATAAGCCTAGGCACTAAGC -ACGGAATAAGCCTAGGCAACTAGC -ACGGAATAAGCCTAGGCAAGATGC -ACGGAATAAGCCTAGGCATGAAGG -ACGGAATAAGCCTAGGCACAATGG -ACGGAATAAGCCTAGGCAATGAGG -ACGGAATAAGCCTAGGCAAATGGG -ACGGAATAAGCCTAGGCATCCTGA -ACGGAATAAGCCTAGGCATAGCGA -ACGGAATAAGCCTAGGCACACAGA -ACGGAATAAGCCTAGGCAGCAAGA -ACGGAATAAGCCTAGGCAGGTTGA -ACGGAATAAGCCTAGGCATCCGAT -ACGGAATAAGCCTAGGCATGGCAT -ACGGAATAAGCCTAGGCACGAGAT -ACGGAATAAGCCTAGGCATACCAC -ACGGAATAAGCCTAGGCACAGAAC -ACGGAATAAGCCTAGGCAGTCTAC -ACGGAATAAGCCTAGGCAACGTAC -ACGGAATAAGCCTAGGCAAGTGAC -ACGGAATAAGCCTAGGCACTGTAG -ACGGAATAAGCCTAGGCACCTAAG -ACGGAATAAGCCTAGGCAGTTCAG -ACGGAATAAGCCTAGGCAGCATAG -ACGGAATAAGCCTAGGCAGACAAG -ACGGAATAAGCCTAGGCAAAGCAG -ACGGAATAAGCCTAGGCACGTCAA -ACGGAATAAGCCTAGGCAGCTGAA -ACGGAATAAGCCTAGGCAAGTACG -ACGGAATAAGCCTAGGCAATCCGA -ACGGAATAAGCCTAGGCAATGGGA -ACGGAATAAGCCTAGGCAGTGCAA -ACGGAATAAGCCTAGGCAGAGGAA -ACGGAATAAGCCTAGGCACAGGTA -ACGGAATAAGCCTAGGCAGACTCT -ACGGAATAAGCCTAGGCAAGTCCT -ACGGAATAAGCCTAGGCATAAGCC -ACGGAATAAGCCTAGGCAATAGCC -ACGGAATAAGCCTAGGCATAACCG -ACGGAATAAGCCTAGGCAATGCCA -ACGGAATAAGCCAAGGACGGAAAC -ACGGAATAAGCCAAGGACAACACC -ACGGAATAAGCCAAGGACATCGAG -ACGGAATAAGCCAAGGACCTCCTT -ACGGAATAAGCCAAGGACCCTGTT -ACGGAATAAGCCAAGGACCGGTTT -ACGGAATAAGCCAAGGACGTGGTT -ACGGAATAAGCCAAGGACGCCTTT -ACGGAATAAGCCAAGGACGGTCTT -ACGGAATAAGCCAAGGACACGCTT -ACGGAATAAGCCAAGGACAGCGTT -ACGGAATAAGCCAAGGACTTCGTC -ACGGAATAAGCCAAGGACTCTCTC -ACGGAATAAGCCAAGGACTGGATC -ACGGAATAAGCCAAGGACCACTTC -ACGGAATAAGCCAAGGACGTACTC -ACGGAATAAGCCAAGGACGATGTC -ACGGAATAAGCCAAGGACACAGTC -ACGGAATAAGCCAAGGACTTGCTG -ACGGAATAAGCCAAGGACTCCATG -ACGGAATAAGCCAAGGACTGTGTG -ACGGAATAAGCCAAGGACCTAGTG -ACGGAATAAGCCAAGGACCATCTG -ACGGAATAAGCCAAGGACGAGTTG -ACGGAATAAGCCAAGGACAGACTG -ACGGAATAAGCCAAGGACTCGGTA -ACGGAATAAGCCAAGGACTGCCTA -ACGGAATAAGCCAAGGACCCACTA -ACGGAATAAGCCAAGGACGGAGTA -ACGGAATAAGCCAAGGACTCGTCT -ACGGAATAAGCCAAGGACTGCACT -ACGGAATAAGCCAAGGACCTGACT -ACGGAATAAGCCAAGGACCAACCT -ACGGAATAAGCCAAGGACGCTACT -ACGGAATAAGCCAAGGACGGATCT -ACGGAATAAGCCAAGGACAAGGCT -ACGGAATAAGCCAAGGACTCAACC -ACGGAATAAGCCAAGGACTGTTCC -ACGGAATAAGCCAAGGACATTCCC -ACGGAATAAGCCAAGGACTTCTCG -ACGGAATAAGCCAAGGACTAGACG -ACGGAATAAGCCAAGGACGTAACG -ACGGAATAAGCCAAGGACACTTCG -ACGGAATAAGCCAAGGACTACGCA -ACGGAATAAGCCAAGGACCTTGCA -ACGGAATAAGCCAAGGACCGAACA -ACGGAATAAGCCAAGGACCAGTCA -ACGGAATAAGCCAAGGACGATCCA -ACGGAATAAGCCAAGGACACGACA -ACGGAATAAGCCAAGGACAGCTCA -ACGGAATAAGCCAAGGACTCACGT -ACGGAATAAGCCAAGGACCGTAGT -ACGGAATAAGCCAAGGACGTCAGT -ACGGAATAAGCCAAGGACGAAGGT -ACGGAATAAGCCAAGGACAACCGT -ACGGAATAAGCCAAGGACTTGTGC -ACGGAATAAGCCAAGGACCTAAGC -ACGGAATAAGCCAAGGACACTAGC -ACGGAATAAGCCAAGGACAGATGC -ACGGAATAAGCCAAGGACTGAAGG -ACGGAATAAGCCAAGGACCAATGG -ACGGAATAAGCCAAGGACATGAGG -ACGGAATAAGCCAAGGACAATGGG -ACGGAATAAGCCAAGGACTCCTGA -ACGGAATAAGCCAAGGACTAGCGA -ACGGAATAAGCCAAGGACCACAGA -ACGGAATAAGCCAAGGACGCAAGA -ACGGAATAAGCCAAGGACGGTTGA -ACGGAATAAGCCAAGGACTCCGAT -ACGGAATAAGCCAAGGACTGGCAT -ACGGAATAAGCCAAGGACCGAGAT -ACGGAATAAGCCAAGGACTACCAC -ACGGAATAAGCCAAGGACCAGAAC -ACGGAATAAGCCAAGGACGTCTAC -ACGGAATAAGCCAAGGACACGTAC -ACGGAATAAGCCAAGGACAGTGAC -ACGGAATAAGCCAAGGACCTGTAG -ACGGAATAAGCCAAGGACCCTAAG -ACGGAATAAGCCAAGGACGTTCAG -ACGGAATAAGCCAAGGACGCATAG -ACGGAATAAGCCAAGGACGACAAG -ACGGAATAAGCCAAGGACAAGCAG -ACGGAATAAGCCAAGGACCGTCAA -ACGGAATAAGCCAAGGACGCTGAA -ACGGAATAAGCCAAGGACAGTACG -ACGGAATAAGCCAAGGACATCCGA -ACGGAATAAGCCAAGGACATGGGA -ACGGAATAAGCCAAGGACGTGCAA -ACGGAATAAGCCAAGGACGAGGAA -ACGGAATAAGCCAAGGACCAGGTA -ACGGAATAAGCCAAGGACGACTCT -ACGGAATAAGCCAAGGACAGTCCT -ACGGAATAAGCCAAGGACTAAGCC -ACGGAATAAGCCAAGGACATAGCC -ACGGAATAAGCCAAGGACTAACCG -ACGGAATAAGCCAAGGACATGCCA -ACGGAATAAGCCCAGAAGGGAAAC -ACGGAATAAGCCCAGAAGAACACC -ACGGAATAAGCCCAGAAGATCGAG -ACGGAATAAGCCCAGAAGCTCCTT -ACGGAATAAGCCCAGAAGCCTGTT -ACGGAATAAGCCCAGAAGCGGTTT -ACGGAATAAGCCCAGAAGGTGGTT -ACGGAATAAGCCCAGAAGGCCTTT -ACGGAATAAGCCCAGAAGGGTCTT -ACGGAATAAGCCCAGAAGACGCTT -ACGGAATAAGCCCAGAAGAGCGTT -ACGGAATAAGCCCAGAAGTTCGTC -ACGGAATAAGCCCAGAAGTCTCTC -ACGGAATAAGCCCAGAAGTGGATC -ACGGAATAAGCCCAGAAGCACTTC -ACGGAATAAGCCCAGAAGGTACTC -ACGGAATAAGCCCAGAAGGATGTC -ACGGAATAAGCCCAGAAGACAGTC -ACGGAATAAGCCCAGAAGTTGCTG -ACGGAATAAGCCCAGAAGTCCATG -ACGGAATAAGCCCAGAAGTGTGTG -ACGGAATAAGCCCAGAAGCTAGTG -ACGGAATAAGCCCAGAAGCATCTG -ACGGAATAAGCCCAGAAGGAGTTG -ACGGAATAAGCCCAGAAGAGACTG -ACGGAATAAGCCCAGAAGTCGGTA -ACGGAATAAGCCCAGAAGTGCCTA -ACGGAATAAGCCCAGAAGCCACTA -ACGGAATAAGCCCAGAAGGGAGTA -ACGGAATAAGCCCAGAAGTCGTCT -ACGGAATAAGCCCAGAAGTGCACT -ACGGAATAAGCCCAGAAGCTGACT -ACGGAATAAGCCCAGAAGCAACCT -ACGGAATAAGCCCAGAAGGCTACT -ACGGAATAAGCCCAGAAGGGATCT -ACGGAATAAGCCCAGAAGAAGGCT -ACGGAATAAGCCCAGAAGTCAACC -ACGGAATAAGCCCAGAAGTGTTCC -ACGGAATAAGCCCAGAAGATTCCC -ACGGAATAAGCCCAGAAGTTCTCG -ACGGAATAAGCCCAGAAGTAGACG -ACGGAATAAGCCCAGAAGGTAACG -ACGGAATAAGCCCAGAAGACTTCG -ACGGAATAAGCCCAGAAGTACGCA -ACGGAATAAGCCCAGAAGCTTGCA -ACGGAATAAGCCCAGAAGCGAACA -ACGGAATAAGCCCAGAAGCAGTCA -ACGGAATAAGCCCAGAAGGATCCA -ACGGAATAAGCCCAGAAGACGACA -ACGGAATAAGCCCAGAAGAGCTCA -ACGGAATAAGCCCAGAAGTCACGT -ACGGAATAAGCCCAGAAGCGTAGT -ACGGAATAAGCCCAGAAGGTCAGT -ACGGAATAAGCCCAGAAGGAAGGT -ACGGAATAAGCCCAGAAGAACCGT -ACGGAATAAGCCCAGAAGTTGTGC -ACGGAATAAGCCCAGAAGCTAAGC -ACGGAATAAGCCCAGAAGACTAGC -ACGGAATAAGCCCAGAAGAGATGC -ACGGAATAAGCCCAGAAGTGAAGG -ACGGAATAAGCCCAGAAGCAATGG -ACGGAATAAGCCCAGAAGATGAGG -ACGGAATAAGCCCAGAAGAATGGG -ACGGAATAAGCCCAGAAGTCCTGA -ACGGAATAAGCCCAGAAGTAGCGA -ACGGAATAAGCCCAGAAGCACAGA -ACGGAATAAGCCCAGAAGGCAAGA -ACGGAATAAGCCCAGAAGGGTTGA -ACGGAATAAGCCCAGAAGTCCGAT -ACGGAATAAGCCCAGAAGTGGCAT -ACGGAATAAGCCCAGAAGCGAGAT -ACGGAATAAGCCCAGAAGTACCAC -ACGGAATAAGCCCAGAAGCAGAAC -ACGGAATAAGCCCAGAAGGTCTAC -ACGGAATAAGCCCAGAAGACGTAC -ACGGAATAAGCCCAGAAGAGTGAC -ACGGAATAAGCCCAGAAGCTGTAG -ACGGAATAAGCCCAGAAGCCTAAG -ACGGAATAAGCCCAGAAGGTTCAG -ACGGAATAAGCCCAGAAGGCATAG -ACGGAATAAGCCCAGAAGGACAAG -ACGGAATAAGCCCAGAAGAAGCAG -ACGGAATAAGCCCAGAAGCGTCAA -ACGGAATAAGCCCAGAAGGCTGAA -ACGGAATAAGCCCAGAAGAGTACG -ACGGAATAAGCCCAGAAGATCCGA -ACGGAATAAGCCCAGAAGATGGGA -ACGGAATAAGCCCAGAAGGTGCAA -ACGGAATAAGCCCAGAAGGAGGAA -ACGGAATAAGCCCAGAAGCAGGTA -ACGGAATAAGCCCAGAAGGACTCT -ACGGAATAAGCCCAGAAGAGTCCT -ACGGAATAAGCCCAGAAGTAAGCC -ACGGAATAAGCCCAGAAGATAGCC -ACGGAATAAGCCCAGAAGTAACCG -ACGGAATAAGCCCAGAAGATGCCA -ACGGAATAAGCCCAACGTGGAAAC -ACGGAATAAGCCCAACGTAACACC -ACGGAATAAGCCCAACGTATCGAG -ACGGAATAAGCCCAACGTCTCCTT -ACGGAATAAGCCCAACGTCCTGTT -ACGGAATAAGCCCAACGTCGGTTT -ACGGAATAAGCCCAACGTGTGGTT -ACGGAATAAGCCCAACGTGCCTTT -ACGGAATAAGCCCAACGTGGTCTT -ACGGAATAAGCCCAACGTACGCTT -ACGGAATAAGCCCAACGTAGCGTT -ACGGAATAAGCCCAACGTTTCGTC -ACGGAATAAGCCCAACGTTCTCTC -ACGGAATAAGCCCAACGTTGGATC -ACGGAATAAGCCCAACGTCACTTC -ACGGAATAAGCCCAACGTGTACTC -ACGGAATAAGCCCAACGTGATGTC -ACGGAATAAGCCCAACGTACAGTC -ACGGAATAAGCCCAACGTTTGCTG -ACGGAATAAGCCCAACGTTCCATG -ACGGAATAAGCCCAACGTTGTGTG -ACGGAATAAGCCCAACGTCTAGTG -ACGGAATAAGCCCAACGTCATCTG -ACGGAATAAGCCCAACGTGAGTTG -ACGGAATAAGCCCAACGTAGACTG -ACGGAATAAGCCCAACGTTCGGTA -ACGGAATAAGCCCAACGTTGCCTA -ACGGAATAAGCCCAACGTCCACTA -ACGGAATAAGCCCAACGTGGAGTA -ACGGAATAAGCCCAACGTTCGTCT -ACGGAATAAGCCCAACGTTGCACT -ACGGAATAAGCCCAACGTCTGACT -ACGGAATAAGCCCAACGTCAACCT -ACGGAATAAGCCCAACGTGCTACT -ACGGAATAAGCCCAACGTGGATCT -ACGGAATAAGCCCAACGTAAGGCT -ACGGAATAAGCCCAACGTTCAACC -ACGGAATAAGCCCAACGTTGTTCC -ACGGAATAAGCCCAACGTATTCCC -ACGGAATAAGCCCAACGTTTCTCG -ACGGAATAAGCCCAACGTTAGACG -ACGGAATAAGCCCAACGTGTAACG -ACGGAATAAGCCCAACGTACTTCG -ACGGAATAAGCCCAACGTTACGCA -ACGGAATAAGCCCAACGTCTTGCA -ACGGAATAAGCCCAACGTCGAACA -ACGGAATAAGCCCAACGTCAGTCA -ACGGAATAAGCCCAACGTGATCCA -ACGGAATAAGCCCAACGTACGACA -ACGGAATAAGCCCAACGTAGCTCA -ACGGAATAAGCCCAACGTTCACGT -ACGGAATAAGCCCAACGTCGTAGT -ACGGAATAAGCCCAACGTGTCAGT -ACGGAATAAGCCCAACGTGAAGGT -ACGGAATAAGCCCAACGTAACCGT -ACGGAATAAGCCCAACGTTTGTGC -ACGGAATAAGCCCAACGTCTAAGC -ACGGAATAAGCCCAACGTACTAGC -ACGGAATAAGCCCAACGTAGATGC -ACGGAATAAGCCCAACGTTGAAGG -ACGGAATAAGCCCAACGTCAATGG -ACGGAATAAGCCCAACGTATGAGG -ACGGAATAAGCCCAACGTAATGGG -ACGGAATAAGCCCAACGTTCCTGA -ACGGAATAAGCCCAACGTTAGCGA -ACGGAATAAGCCCAACGTCACAGA -ACGGAATAAGCCCAACGTGCAAGA -ACGGAATAAGCCCAACGTGGTTGA -ACGGAATAAGCCCAACGTTCCGAT -ACGGAATAAGCCCAACGTTGGCAT -ACGGAATAAGCCCAACGTCGAGAT -ACGGAATAAGCCCAACGTTACCAC -ACGGAATAAGCCCAACGTCAGAAC -ACGGAATAAGCCCAACGTGTCTAC -ACGGAATAAGCCCAACGTACGTAC -ACGGAATAAGCCCAACGTAGTGAC -ACGGAATAAGCCCAACGTCTGTAG -ACGGAATAAGCCCAACGTCCTAAG -ACGGAATAAGCCCAACGTGTTCAG -ACGGAATAAGCCCAACGTGCATAG -ACGGAATAAGCCCAACGTGACAAG -ACGGAATAAGCCCAACGTAAGCAG -ACGGAATAAGCCCAACGTCGTCAA -ACGGAATAAGCCCAACGTGCTGAA -ACGGAATAAGCCCAACGTAGTACG -ACGGAATAAGCCCAACGTATCCGA -ACGGAATAAGCCCAACGTATGGGA -ACGGAATAAGCCCAACGTGTGCAA -ACGGAATAAGCCCAACGTGAGGAA -ACGGAATAAGCCCAACGTCAGGTA -ACGGAATAAGCCCAACGTGACTCT -ACGGAATAAGCCCAACGTAGTCCT -ACGGAATAAGCCCAACGTTAAGCC -ACGGAATAAGCCCAACGTATAGCC -ACGGAATAAGCCCAACGTTAACCG -ACGGAATAAGCCCAACGTATGCCA -ACGGAATAAGCCGAAGCTGGAAAC -ACGGAATAAGCCGAAGCTAACACC -ACGGAATAAGCCGAAGCTATCGAG -ACGGAATAAGCCGAAGCTCTCCTT -ACGGAATAAGCCGAAGCTCCTGTT -ACGGAATAAGCCGAAGCTCGGTTT -ACGGAATAAGCCGAAGCTGTGGTT -ACGGAATAAGCCGAAGCTGCCTTT -ACGGAATAAGCCGAAGCTGGTCTT -ACGGAATAAGCCGAAGCTACGCTT -ACGGAATAAGCCGAAGCTAGCGTT -ACGGAATAAGCCGAAGCTTTCGTC -ACGGAATAAGCCGAAGCTTCTCTC -ACGGAATAAGCCGAAGCTTGGATC -ACGGAATAAGCCGAAGCTCACTTC -ACGGAATAAGCCGAAGCTGTACTC -ACGGAATAAGCCGAAGCTGATGTC -ACGGAATAAGCCGAAGCTACAGTC -ACGGAATAAGCCGAAGCTTTGCTG -ACGGAATAAGCCGAAGCTTCCATG -ACGGAATAAGCCGAAGCTTGTGTG -ACGGAATAAGCCGAAGCTCTAGTG -ACGGAATAAGCCGAAGCTCATCTG -ACGGAATAAGCCGAAGCTGAGTTG -ACGGAATAAGCCGAAGCTAGACTG -ACGGAATAAGCCGAAGCTTCGGTA -ACGGAATAAGCCGAAGCTTGCCTA -ACGGAATAAGCCGAAGCTCCACTA -ACGGAATAAGCCGAAGCTGGAGTA -ACGGAATAAGCCGAAGCTTCGTCT -ACGGAATAAGCCGAAGCTTGCACT -ACGGAATAAGCCGAAGCTCTGACT -ACGGAATAAGCCGAAGCTCAACCT -ACGGAATAAGCCGAAGCTGCTACT -ACGGAATAAGCCGAAGCTGGATCT -ACGGAATAAGCCGAAGCTAAGGCT -ACGGAATAAGCCGAAGCTTCAACC -ACGGAATAAGCCGAAGCTTGTTCC -ACGGAATAAGCCGAAGCTATTCCC -ACGGAATAAGCCGAAGCTTTCTCG -ACGGAATAAGCCGAAGCTTAGACG -ACGGAATAAGCCGAAGCTGTAACG -ACGGAATAAGCCGAAGCTACTTCG -ACGGAATAAGCCGAAGCTTACGCA -ACGGAATAAGCCGAAGCTCTTGCA -ACGGAATAAGCCGAAGCTCGAACA -ACGGAATAAGCCGAAGCTCAGTCA -ACGGAATAAGCCGAAGCTGATCCA -ACGGAATAAGCCGAAGCTACGACA -ACGGAATAAGCCGAAGCTAGCTCA -ACGGAATAAGCCGAAGCTTCACGT -ACGGAATAAGCCGAAGCTCGTAGT -ACGGAATAAGCCGAAGCTGTCAGT -ACGGAATAAGCCGAAGCTGAAGGT -ACGGAATAAGCCGAAGCTAACCGT -ACGGAATAAGCCGAAGCTTTGTGC -ACGGAATAAGCCGAAGCTCTAAGC -ACGGAATAAGCCGAAGCTACTAGC -ACGGAATAAGCCGAAGCTAGATGC -ACGGAATAAGCCGAAGCTTGAAGG -ACGGAATAAGCCGAAGCTCAATGG -ACGGAATAAGCCGAAGCTATGAGG -ACGGAATAAGCCGAAGCTAATGGG -ACGGAATAAGCCGAAGCTTCCTGA -ACGGAATAAGCCGAAGCTTAGCGA -ACGGAATAAGCCGAAGCTCACAGA -ACGGAATAAGCCGAAGCTGCAAGA -ACGGAATAAGCCGAAGCTGGTTGA -ACGGAATAAGCCGAAGCTTCCGAT -ACGGAATAAGCCGAAGCTTGGCAT -ACGGAATAAGCCGAAGCTCGAGAT -ACGGAATAAGCCGAAGCTTACCAC -ACGGAATAAGCCGAAGCTCAGAAC -ACGGAATAAGCCGAAGCTGTCTAC -ACGGAATAAGCCGAAGCTACGTAC -ACGGAATAAGCCGAAGCTAGTGAC -ACGGAATAAGCCGAAGCTCTGTAG -ACGGAATAAGCCGAAGCTCCTAAG -ACGGAATAAGCCGAAGCTGTTCAG -ACGGAATAAGCCGAAGCTGCATAG -ACGGAATAAGCCGAAGCTGACAAG -ACGGAATAAGCCGAAGCTAAGCAG -ACGGAATAAGCCGAAGCTCGTCAA -ACGGAATAAGCCGAAGCTGCTGAA -ACGGAATAAGCCGAAGCTAGTACG -ACGGAATAAGCCGAAGCTATCCGA -ACGGAATAAGCCGAAGCTATGGGA -ACGGAATAAGCCGAAGCTGTGCAA -ACGGAATAAGCCGAAGCTGAGGAA -ACGGAATAAGCCGAAGCTCAGGTA -ACGGAATAAGCCGAAGCTGACTCT -ACGGAATAAGCCGAAGCTAGTCCT -ACGGAATAAGCCGAAGCTTAAGCC -ACGGAATAAGCCGAAGCTATAGCC -ACGGAATAAGCCGAAGCTTAACCG -ACGGAATAAGCCGAAGCTATGCCA -ACGGAATAAGCCACGAGTGGAAAC -ACGGAATAAGCCACGAGTAACACC -ACGGAATAAGCCACGAGTATCGAG -ACGGAATAAGCCACGAGTCTCCTT -ACGGAATAAGCCACGAGTCCTGTT -ACGGAATAAGCCACGAGTCGGTTT -ACGGAATAAGCCACGAGTGTGGTT -ACGGAATAAGCCACGAGTGCCTTT -ACGGAATAAGCCACGAGTGGTCTT -ACGGAATAAGCCACGAGTACGCTT -ACGGAATAAGCCACGAGTAGCGTT -ACGGAATAAGCCACGAGTTTCGTC -ACGGAATAAGCCACGAGTTCTCTC -ACGGAATAAGCCACGAGTTGGATC -ACGGAATAAGCCACGAGTCACTTC -ACGGAATAAGCCACGAGTGTACTC -ACGGAATAAGCCACGAGTGATGTC -ACGGAATAAGCCACGAGTACAGTC -ACGGAATAAGCCACGAGTTTGCTG -ACGGAATAAGCCACGAGTTCCATG -ACGGAATAAGCCACGAGTTGTGTG -ACGGAATAAGCCACGAGTCTAGTG -ACGGAATAAGCCACGAGTCATCTG -ACGGAATAAGCCACGAGTGAGTTG -ACGGAATAAGCCACGAGTAGACTG -ACGGAATAAGCCACGAGTTCGGTA -ACGGAATAAGCCACGAGTTGCCTA -ACGGAATAAGCCACGAGTCCACTA -ACGGAATAAGCCACGAGTGGAGTA -ACGGAATAAGCCACGAGTTCGTCT -ACGGAATAAGCCACGAGTTGCACT -ACGGAATAAGCCACGAGTCTGACT -ACGGAATAAGCCACGAGTCAACCT -ACGGAATAAGCCACGAGTGCTACT -ACGGAATAAGCCACGAGTGGATCT -ACGGAATAAGCCACGAGTAAGGCT -ACGGAATAAGCCACGAGTTCAACC -ACGGAATAAGCCACGAGTTGTTCC -ACGGAATAAGCCACGAGTATTCCC -ACGGAATAAGCCACGAGTTTCTCG -ACGGAATAAGCCACGAGTTAGACG -ACGGAATAAGCCACGAGTGTAACG -ACGGAATAAGCCACGAGTACTTCG -ACGGAATAAGCCACGAGTTACGCA -ACGGAATAAGCCACGAGTCTTGCA -ACGGAATAAGCCACGAGTCGAACA -ACGGAATAAGCCACGAGTCAGTCA -ACGGAATAAGCCACGAGTGATCCA -ACGGAATAAGCCACGAGTACGACA -ACGGAATAAGCCACGAGTAGCTCA -ACGGAATAAGCCACGAGTTCACGT -ACGGAATAAGCCACGAGTCGTAGT -ACGGAATAAGCCACGAGTGTCAGT -ACGGAATAAGCCACGAGTGAAGGT -ACGGAATAAGCCACGAGTAACCGT -ACGGAATAAGCCACGAGTTTGTGC -ACGGAATAAGCCACGAGTCTAAGC -ACGGAATAAGCCACGAGTACTAGC -ACGGAATAAGCCACGAGTAGATGC -ACGGAATAAGCCACGAGTTGAAGG -ACGGAATAAGCCACGAGTCAATGG -ACGGAATAAGCCACGAGTATGAGG -ACGGAATAAGCCACGAGTAATGGG -ACGGAATAAGCCACGAGTTCCTGA -ACGGAATAAGCCACGAGTTAGCGA -ACGGAATAAGCCACGAGTCACAGA -ACGGAATAAGCCACGAGTGCAAGA -ACGGAATAAGCCACGAGTGGTTGA -ACGGAATAAGCCACGAGTTCCGAT -ACGGAATAAGCCACGAGTTGGCAT -ACGGAATAAGCCACGAGTCGAGAT -ACGGAATAAGCCACGAGTTACCAC -ACGGAATAAGCCACGAGTCAGAAC -ACGGAATAAGCCACGAGTGTCTAC -ACGGAATAAGCCACGAGTACGTAC -ACGGAATAAGCCACGAGTAGTGAC -ACGGAATAAGCCACGAGTCTGTAG -ACGGAATAAGCCACGAGTCCTAAG -ACGGAATAAGCCACGAGTGTTCAG -ACGGAATAAGCCACGAGTGCATAG -ACGGAATAAGCCACGAGTGACAAG -ACGGAATAAGCCACGAGTAAGCAG -ACGGAATAAGCCACGAGTCGTCAA -ACGGAATAAGCCACGAGTGCTGAA -ACGGAATAAGCCACGAGTAGTACG -ACGGAATAAGCCACGAGTATCCGA -ACGGAATAAGCCACGAGTATGGGA -ACGGAATAAGCCACGAGTGTGCAA -ACGGAATAAGCCACGAGTGAGGAA -ACGGAATAAGCCACGAGTCAGGTA -ACGGAATAAGCCACGAGTGACTCT -ACGGAATAAGCCACGAGTAGTCCT -ACGGAATAAGCCACGAGTTAAGCC -ACGGAATAAGCCACGAGTATAGCC -ACGGAATAAGCCACGAGTTAACCG -ACGGAATAAGCCACGAGTATGCCA -ACGGAATAAGCCCGAATCGGAAAC -ACGGAATAAGCCCGAATCAACACC -ACGGAATAAGCCCGAATCATCGAG -ACGGAATAAGCCCGAATCCTCCTT -ACGGAATAAGCCCGAATCCCTGTT -ACGGAATAAGCCCGAATCCGGTTT -ACGGAATAAGCCCGAATCGTGGTT -ACGGAATAAGCCCGAATCGCCTTT -ACGGAATAAGCCCGAATCGGTCTT -ACGGAATAAGCCCGAATCACGCTT -ACGGAATAAGCCCGAATCAGCGTT -ACGGAATAAGCCCGAATCTTCGTC -ACGGAATAAGCCCGAATCTCTCTC -ACGGAATAAGCCCGAATCTGGATC -ACGGAATAAGCCCGAATCCACTTC -ACGGAATAAGCCCGAATCGTACTC -ACGGAATAAGCCCGAATCGATGTC -ACGGAATAAGCCCGAATCACAGTC -ACGGAATAAGCCCGAATCTTGCTG -ACGGAATAAGCCCGAATCTCCATG -ACGGAATAAGCCCGAATCTGTGTG -ACGGAATAAGCCCGAATCCTAGTG -ACGGAATAAGCCCGAATCCATCTG -ACGGAATAAGCCCGAATCGAGTTG -ACGGAATAAGCCCGAATCAGACTG -ACGGAATAAGCCCGAATCTCGGTA -ACGGAATAAGCCCGAATCTGCCTA -ACGGAATAAGCCCGAATCCCACTA -ACGGAATAAGCCCGAATCGGAGTA -ACGGAATAAGCCCGAATCTCGTCT -ACGGAATAAGCCCGAATCTGCACT -ACGGAATAAGCCCGAATCCTGACT -ACGGAATAAGCCCGAATCCAACCT -ACGGAATAAGCCCGAATCGCTACT -ACGGAATAAGCCCGAATCGGATCT -ACGGAATAAGCCCGAATCAAGGCT -ACGGAATAAGCCCGAATCTCAACC -ACGGAATAAGCCCGAATCTGTTCC -ACGGAATAAGCCCGAATCATTCCC -ACGGAATAAGCCCGAATCTTCTCG -ACGGAATAAGCCCGAATCTAGACG -ACGGAATAAGCCCGAATCGTAACG -ACGGAATAAGCCCGAATCACTTCG -ACGGAATAAGCCCGAATCTACGCA -ACGGAATAAGCCCGAATCCTTGCA -ACGGAATAAGCCCGAATCCGAACA -ACGGAATAAGCCCGAATCCAGTCA -ACGGAATAAGCCCGAATCGATCCA -ACGGAATAAGCCCGAATCACGACA -ACGGAATAAGCCCGAATCAGCTCA -ACGGAATAAGCCCGAATCTCACGT -ACGGAATAAGCCCGAATCCGTAGT -ACGGAATAAGCCCGAATCGTCAGT -ACGGAATAAGCCCGAATCGAAGGT -ACGGAATAAGCCCGAATCAACCGT -ACGGAATAAGCCCGAATCTTGTGC -ACGGAATAAGCCCGAATCCTAAGC -ACGGAATAAGCCCGAATCACTAGC -ACGGAATAAGCCCGAATCAGATGC -ACGGAATAAGCCCGAATCTGAAGG -ACGGAATAAGCCCGAATCCAATGG -ACGGAATAAGCCCGAATCATGAGG -ACGGAATAAGCCCGAATCAATGGG -ACGGAATAAGCCCGAATCTCCTGA -ACGGAATAAGCCCGAATCTAGCGA -ACGGAATAAGCCCGAATCCACAGA -ACGGAATAAGCCCGAATCGCAAGA -ACGGAATAAGCCCGAATCGGTTGA -ACGGAATAAGCCCGAATCTCCGAT -ACGGAATAAGCCCGAATCTGGCAT -ACGGAATAAGCCCGAATCCGAGAT -ACGGAATAAGCCCGAATCTACCAC -ACGGAATAAGCCCGAATCCAGAAC -ACGGAATAAGCCCGAATCGTCTAC -ACGGAATAAGCCCGAATCACGTAC -ACGGAATAAGCCCGAATCAGTGAC -ACGGAATAAGCCCGAATCCTGTAG -ACGGAATAAGCCCGAATCCCTAAG -ACGGAATAAGCCCGAATCGTTCAG -ACGGAATAAGCCCGAATCGCATAG -ACGGAATAAGCCCGAATCGACAAG -ACGGAATAAGCCCGAATCAAGCAG -ACGGAATAAGCCCGAATCCGTCAA -ACGGAATAAGCCCGAATCGCTGAA -ACGGAATAAGCCCGAATCAGTACG -ACGGAATAAGCCCGAATCATCCGA -ACGGAATAAGCCCGAATCATGGGA -ACGGAATAAGCCCGAATCGTGCAA -ACGGAATAAGCCCGAATCGAGGAA -ACGGAATAAGCCCGAATCCAGGTA -ACGGAATAAGCCCGAATCGACTCT -ACGGAATAAGCCCGAATCAGTCCT -ACGGAATAAGCCCGAATCTAAGCC -ACGGAATAAGCCCGAATCATAGCC -ACGGAATAAGCCCGAATCTAACCG -ACGGAATAAGCCCGAATCATGCCA -ACGGAATAAGCCGGAATGGGAAAC -ACGGAATAAGCCGGAATGAACACC -ACGGAATAAGCCGGAATGATCGAG -ACGGAATAAGCCGGAATGCTCCTT -ACGGAATAAGCCGGAATGCCTGTT -ACGGAATAAGCCGGAATGCGGTTT -ACGGAATAAGCCGGAATGGTGGTT -ACGGAATAAGCCGGAATGGCCTTT -ACGGAATAAGCCGGAATGGGTCTT -ACGGAATAAGCCGGAATGACGCTT -ACGGAATAAGCCGGAATGAGCGTT -ACGGAATAAGCCGGAATGTTCGTC -ACGGAATAAGCCGGAATGTCTCTC -ACGGAATAAGCCGGAATGTGGATC -ACGGAATAAGCCGGAATGCACTTC -ACGGAATAAGCCGGAATGGTACTC -ACGGAATAAGCCGGAATGGATGTC -ACGGAATAAGCCGGAATGACAGTC -ACGGAATAAGCCGGAATGTTGCTG -ACGGAATAAGCCGGAATGTCCATG -ACGGAATAAGCCGGAATGTGTGTG -ACGGAATAAGCCGGAATGCTAGTG -ACGGAATAAGCCGGAATGCATCTG -ACGGAATAAGCCGGAATGGAGTTG -ACGGAATAAGCCGGAATGAGACTG -ACGGAATAAGCCGGAATGTCGGTA -ACGGAATAAGCCGGAATGTGCCTA -ACGGAATAAGCCGGAATGCCACTA -ACGGAATAAGCCGGAATGGGAGTA -ACGGAATAAGCCGGAATGTCGTCT -ACGGAATAAGCCGGAATGTGCACT -ACGGAATAAGCCGGAATGCTGACT -ACGGAATAAGCCGGAATGCAACCT -ACGGAATAAGCCGGAATGGCTACT -ACGGAATAAGCCGGAATGGGATCT -ACGGAATAAGCCGGAATGAAGGCT -ACGGAATAAGCCGGAATGTCAACC -ACGGAATAAGCCGGAATGTGTTCC -ACGGAATAAGCCGGAATGATTCCC -ACGGAATAAGCCGGAATGTTCTCG -ACGGAATAAGCCGGAATGTAGACG -ACGGAATAAGCCGGAATGGTAACG -ACGGAATAAGCCGGAATGACTTCG -ACGGAATAAGCCGGAATGTACGCA -ACGGAATAAGCCGGAATGCTTGCA -ACGGAATAAGCCGGAATGCGAACA -ACGGAATAAGCCGGAATGCAGTCA -ACGGAATAAGCCGGAATGGATCCA -ACGGAATAAGCCGGAATGACGACA -ACGGAATAAGCCGGAATGAGCTCA -ACGGAATAAGCCGGAATGTCACGT -ACGGAATAAGCCGGAATGCGTAGT -ACGGAATAAGCCGGAATGGTCAGT -ACGGAATAAGCCGGAATGGAAGGT -ACGGAATAAGCCGGAATGAACCGT -ACGGAATAAGCCGGAATGTTGTGC -ACGGAATAAGCCGGAATGCTAAGC -ACGGAATAAGCCGGAATGACTAGC -ACGGAATAAGCCGGAATGAGATGC -ACGGAATAAGCCGGAATGTGAAGG -ACGGAATAAGCCGGAATGCAATGG -ACGGAATAAGCCGGAATGATGAGG -ACGGAATAAGCCGGAATGAATGGG -ACGGAATAAGCCGGAATGTCCTGA -ACGGAATAAGCCGGAATGTAGCGA -ACGGAATAAGCCGGAATGCACAGA -ACGGAATAAGCCGGAATGGCAAGA -ACGGAATAAGCCGGAATGGGTTGA -ACGGAATAAGCCGGAATGTCCGAT -ACGGAATAAGCCGGAATGTGGCAT -ACGGAATAAGCCGGAATGCGAGAT -ACGGAATAAGCCGGAATGTACCAC -ACGGAATAAGCCGGAATGCAGAAC -ACGGAATAAGCCGGAATGGTCTAC -ACGGAATAAGCCGGAATGACGTAC -ACGGAATAAGCCGGAATGAGTGAC -ACGGAATAAGCCGGAATGCTGTAG -ACGGAATAAGCCGGAATGCCTAAG -ACGGAATAAGCCGGAATGGTTCAG -ACGGAATAAGCCGGAATGGCATAG -ACGGAATAAGCCGGAATGGACAAG -ACGGAATAAGCCGGAATGAAGCAG -ACGGAATAAGCCGGAATGCGTCAA -ACGGAATAAGCCGGAATGGCTGAA -ACGGAATAAGCCGGAATGAGTACG -ACGGAATAAGCCGGAATGATCCGA -ACGGAATAAGCCGGAATGATGGGA -ACGGAATAAGCCGGAATGGTGCAA -ACGGAATAAGCCGGAATGGAGGAA -ACGGAATAAGCCGGAATGCAGGTA -ACGGAATAAGCCGGAATGGACTCT -ACGGAATAAGCCGGAATGAGTCCT -ACGGAATAAGCCGGAATGTAAGCC -ACGGAATAAGCCGGAATGATAGCC -ACGGAATAAGCCGGAATGTAACCG -ACGGAATAAGCCGGAATGATGCCA -ACGGAATAAGCCCAAGTGGGAAAC -ACGGAATAAGCCCAAGTGAACACC -ACGGAATAAGCCCAAGTGATCGAG -ACGGAATAAGCCCAAGTGCTCCTT -ACGGAATAAGCCCAAGTGCCTGTT -ACGGAATAAGCCCAAGTGCGGTTT -ACGGAATAAGCCCAAGTGGTGGTT -ACGGAATAAGCCCAAGTGGCCTTT -ACGGAATAAGCCCAAGTGGGTCTT -ACGGAATAAGCCCAAGTGACGCTT -ACGGAATAAGCCCAAGTGAGCGTT -ACGGAATAAGCCCAAGTGTTCGTC -ACGGAATAAGCCCAAGTGTCTCTC -ACGGAATAAGCCCAAGTGTGGATC -ACGGAATAAGCCCAAGTGCACTTC -ACGGAATAAGCCCAAGTGGTACTC -ACGGAATAAGCCCAAGTGGATGTC -ACGGAATAAGCCCAAGTGACAGTC -ACGGAATAAGCCCAAGTGTTGCTG -ACGGAATAAGCCCAAGTGTCCATG -ACGGAATAAGCCCAAGTGTGTGTG -ACGGAATAAGCCCAAGTGCTAGTG -ACGGAATAAGCCCAAGTGCATCTG -ACGGAATAAGCCCAAGTGGAGTTG -ACGGAATAAGCCCAAGTGAGACTG -ACGGAATAAGCCCAAGTGTCGGTA -ACGGAATAAGCCCAAGTGTGCCTA -ACGGAATAAGCCCAAGTGCCACTA -ACGGAATAAGCCCAAGTGGGAGTA -ACGGAATAAGCCCAAGTGTCGTCT -ACGGAATAAGCCCAAGTGTGCACT -ACGGAATAAGCCCAAGTGCTGACT -ACGGAATAAGCCCAAGTGCAACCT -ACGGAATAAGCCCAAGTGGCTACT -ACGGAATAAGCCCAAGTGGGATCT -ACGGAATAAGCCCAAGTGAAGGCT -ACGGAATAAGCCCAAGTGTCAACC -ACGGAATAAGCCCAAGTGTGTTCC -ACGGAATAAGCCCAAGTGATTCCC -ACGGAATAAGCCCAAGTGTTCTCG -ACGGAATAAGCCCAAGTGTAGACG -ACGGAATAAGCCCAAGTGGTAACG -ACGGAATAAGCCCAAGTGACTTCG -ACGGAATAAGCCCAAGTGTACGCA -ACGGAATAAGCCCAAGTGCTTGCA -ACGGAATAAGCCCAAGTGCGAACA -ACGGAATAAGCCCAAGTGCAGTCA -ACGGAATAAGCCCAAGTGGATCCA -ACGGAATAAGCCCAAGTGACGACA -ACGGAATAAGCCCAAGTGAGCTCA -ACGGAATAAGCCCAAGTGTCACGT -ACGGAATAAGCCCAAGTGCGTAGT -ACGGAATAAGCCCAAGTGGTCAGT -ACGGAATAAGCCCAAGTGGAAGGT -ACGGAATAAGCCCAAGTGAACCGT -ACGGAATAAGCCCAAGTGTTGTGC -ACGGAATAAGCCCAAGTGCTAAGC -ACGGAATAAGCCCAAGTGACTAGC -ACGGAATAAGCCCAAGTGAGATGC -ACGGAATAAGCCCAAGTGTGAAGG -ACGGAATAAGCCCAAGTGCAATGG -ACGGAATAAGCCCAAGTGATGAGG -ACGGAATAAGCCCAAGTGAATGGG -ACGGAATAAGCCCAAGTGTCCTGA -ACGGAATAAGCCCAAGTGTAGCGA -ACGGAATAAGCCCAAGTGCACAGA -ACGGAATAAGCCCAAGTGGCAAGA -ACGGAATAAGCCCAAGTGGGTTGA -ACGGAATAAGCCCAAGTGTCCGAT -ACGGAATAAGCCCAAGTGTGGCAT -ACGGAATAAGCCCAAGTGCGAGAT -ACGGAATAAGCCCAAGTGTACCAC -ACGGAATAAGCCCAAGTGCAGAAC -ACGGAATAAGCCCAAGTGGTCTAC -ACGGAATAAGCCCAAGTGACGTAC -ACGGAATAAGCCCAAGTGAGTGAC -ACGGAATAAGCCCAAGTGCTGTAG -ACGGAATAAGCCCAAGTGCCTAAG -ACGGAATAAGCCCAAGTGGTTCAG -ACGGAATAAGCCCAAGTGGCATAG -ACGGAATAAGCCCAAGTGGACAAG -ACGGAATAAGCCCAAGTGAAGCAG -ACGGAATAAGCCCAAGTGCGTCAA -ACGGAATAAGCCCAAGTGGCTGAA -ACGGAATAAGCCCAAGTGAGTACG -ACGGAATAAGCCCAAGTGATCCGA -ACGGAATAAGCCCAAGTGATGGGA -ACGGAATAAGCCCAAGTGGTGCAA -ACGGAATAAGCCCAAGTGGAGGAA -ACGGAATAAGCCCAAGTGCAGGTA -ACGGAATAAGCCCAAGTGGACTCT -ACGGAATAAGCCCAAGTGAGTCCT -ACGGAATAAGCCCAAGTGTAAGCC -ACGGAATAAGCCCAAGTGATAGCC -ACGGAATAAGCCCAAGTGTAACCG -ACGGAATAAGCCCAAGTGATGCCA -ACGGAATAAGCCGAAGAGGGAAAC -ACGGAATAAGCCGAAGAGAACACC -ACGGAATAAGCCGAAGAGATCGAG -ACGGAATAAGCCGAAGAGCTCCTT -ACGGAATAAGCCGAAGAGCCTGTT -ACGGAATAAGCCGAAGAGCGGTTT -ACGGAATAAGCCGAAGAGGTGGTT -ACGGAATAAGCCGAAGAGGCCTTT -ACGGAATAAGCCGAAGAGGGTCTT -ACGGAATAAGCCGAAGAGACGCTT -ACGGAATAAGCCGAAGAGAGCGTT -ACGGAATAAGCCGAAGAGTTCGTC -ACGGAATAAGCCGAAGAGTCTCTC -ACGGAATAAGCCGAAGAGTGGATC -ACGGAATAAGCCGAAGAGCACTTC -ACGGAATAAGCCGAAGAGGTACTC -ACGGAATAAGCCGAAGAGGATGTC -ACGGAATAAGCCGAAGAGACAGTC -ACGGAATAAGCCGAAGAGTTGCTG -ACGGAATAAGCCGAAGAGTCCATG -ACGGAATAAGCCGAAGAGTGTGTG -ACGGAATAAGCCGAAGAGCTAGTG -ACGGAATAAGCCGAAGAGCATCTG -ACGGAATAAGCCGAAGAGGAGTTG -ACGGAATAAGCCGAAGAGAGACTG -ACGGAATAAGCCGAAGAGTCGGTA -ACGGAATAAGCCGAAGAGTGCCTA -ACGGAATAAGCCGAAGAGCCACTA -ACGGAATAAGCCGAAGAGGGAGTA -ACGGAATAAGCCGAAGAGTCGTCT -ACGGAATAAGCCGAAGAGTGCACT -ACGGAATAAGCCGAAGAGCTGACT -ACGGAATAAGCCGAAGAGCAACCT -ACGGAATAAGCCGAAGAGGCTACT -ACGGAATAAGCCGAAGAGGGATCT -ACGGAATAAGCCGAAGAGAAGGCT -ACGGAATAAGCCGAAGAGTCAACC -ACGGAATAAGCCGAAGAGTGTTCC -ACGGAATAAGCCGAAGAGATTCCC -ACGGAATAAGCCGAAGAGTTCTCG -ACGGAATAAGCCGAAGAGTAGACG -ACGGAATAAGCCGAAGAGGTAACG -ACGGAATAAGCCGAAGAGACTTCG -ACGGAATAAGCCGAAGAGTACGCA -ACGGAATAAGCCGAAGAGCTTGCA -ACGGAATAAGCCGAAGAGCGAACA -ACGGAATAAGCCGAAGAGCAGTCA -ACGGAATAAGCCGAAGAGGATCCA -ACGGAATAAGCCGAAGAGACGACA -ACGGAATAAGCCGAAGAGAGCTCA -ACGGAATAAGCCGAAGAGTCACGT -ACGGAATAAGCCGAAGAGCGTAGT -ACGGAATAAGCCGAAGAGGTCAGT -ACGGAATAAGCCGAAGAGGAAGGT -ACGGAATAAGCCGAAGAGAACCGT -ACGGAATAAGCCGAAGAGTTGTGC -ACGGAATAAGCCGAAGAGCTAAGC -ACGGAATAAGCCGAAGAGACTAGC -ACGGAATAAGCCGAAGAGAGATGC -ACGGAATAAGCCGAAGAGTGAAGG -ACGGAATAAGCCGAAGAGCAATGG -ACGGAATAAGCCGAAGAGATGAGG -ACGGAATAAGCCGAAGAGAATGGG -ACGGAATAAGCCGAAGAGTCCTGA -ACGGAATAAGCCGAAGAGTAGCGA -ACGGAATAAGCCGAAGAGCACAGA -ACGGAATAAGCCGAAGAGGCAAGA -ACGGAATAAGCCGAAGAGGGTTGA -ACGGAATAAGCCGAAGAGTCCGAT -ACGGAATAAGCCGAAGAGTGGCAT -ACGGAATAAGCCGAAGAGCGAGAT -ACGGAATAAGCCGAAGAGTACCAC -ACGGAATAAGCCGAAGAGCAGAAC -ACGGAATAAGCCGAAGAGGTCTAC -ACGGAATAAGCCGAAGAGACGTAC -ACGGAATAAGCCGAAGAGAGTGAC -ACGGAATAAGCCGAAGAGCTGTAG -ACGGAATAAGCCGAAGAGCCTAAG -ACGGAATAAGCCGAAGAGGTTCAG -ACGGAATAAGCCGAAGAGGCATAG -ACGGAATAAGCCGAAGAGGACAAG -ACGGAATAAGCCGAAGAGAAGCAG -ACGGAATAAGCCGAAGAGCGTCAA -ACGGAATAAGCCGAAGAGGCTGAA -ACGGAATAAGCCGAAGAGAGTACG -ACGGAATAAGCCGAAGAGATCCGA -ACGGAATAAGCCGAAGAGATGGGA -ACGGAATAAGCCGAAGAGGTGCAA -ACGGAATAAGCCGAAGAGGAGGAA -ACGGAATAAGCCGAAGAGCAGGTA -ACGGAATAAGCCGAAGAGGACTCT -ACGGAATAAGCCGAAGAGAGTCCT -ACGGAATAAGCCGAAGAGTAAGCC -ACGGAATAAGCCGAAGAGATAGCC -ACGGAATAAGCCGAAGAGTAACCG -ACGGAATAAGCCGAAGAGATGCCA -ACGGAATAAGCCGTACAGGGAAAC -ACGGAATAAGCCGTACAGAACACC -ACGGAATAAGCCGTACAGATCGAG -ACGGAATAAGCCGTACAGCTCCTT -ACGGAATAAGCCGTACAGCCTGTT -ACGGAATAAGCCGTACAGCGGTTT -ACGGAATAAGCCGTACAGGTGGTT -ACGGAATAAGCCGTACAGGCCTTT -ACGGAATAAGCCGTACAGGGTCTT -ACGGAATAAGCCGTACAGACGCTT -ACGGAATAAGCCGTACAGAGCGTT -ACGGAATAAGCCGTACAGTTCGTC -ACGGAATAAGCCGTACAGTCTCTC -ACGGAATAAGCCGTACAGTGGATC -ACGGAATAAGCCGTACAGCACTTC -ACGGAATAAGCCGTACAGGTACTC -ACGGAATAAGCCGTACAGGATGTC -ACGGAATAAGCCGTACAGACAGTC -ACGGAATAAGCCGTACAGTTGCTG -ACGGAATAAGCCGTACAGTCCATG -ACGGAATAAGCCGTACAGTGTGTG -ACGGAATAAGCCGTACAGCTAGTG -ACGGAATAAGCCGTACAGCATCTG -ACGGAATAAGCCGTACAGGAGTTG -ACGGAATAAGCCGTACAGAGACTG -ACGGAATAAGCCGTACAGTCGGTA -ACGGAATAAGCCGTACAGTGCCTA -ACGGAATAAGCCGTACAGCCACTA -ACGGAATAAGCCGTACAGGGAGTA -ACGGAATAAGCCGTACAGTCGTCT -ACGGAATAAGCCGTACAGTGCACT -ACGGAATAAGCCGTACAGCTGACT -ACGGAATAAGCCGTACAGCAACCT -ACGGAATAAGCCGTACAGGCTACT -ACGGAATAAGCCGTACAGGGATCT -ACGGAATAAGCCGTACAGAAGGCT -ACGGAATAAGCCGTACAGTCAACC -ACGGAATAAGCCGTACAGTGTTCC -ACGGAATAAGCCGTACAGATTCCC -ACGGAATAAGCCGTACAGTTCTCG -ACGGAATAAGCCGTACAGTAGACG -ACGGAATAAGCCGTACAGGTAACG -ACGGAATAAGCCGTACAGACTTCG -ACGGAATAAGCCGTACAGTACGCA -ACGGAATAAGCCGTACAGCTTGCA -ACGGAATAAGCCGTACAGCGAACA -ACGGAATAAGCCGTACAGCAGTCA -ACGGAATAAGCCGTACAGGATCCA -ACGGAATAAGCCGTACAGACGACA -ACGGAATAAGCCGTACAGAGCTCA -ACGGAATAAGCCGTACAGTCACGT -ACGGAATAAGCCGTACAGCGTAGT -ACGGAATAAGCCGTACAGGTCAGT -ACGGAATAAGCCGTACAGGAAGGT -ACGGAATAAGCCGTACAGAACCGT -ACGGAATAAGCCGTACAGTTGTGC -ACGGAATAAGCCGTACAGCTAAGC -ACGGAATAAGCCGTACAGACTAGC -ACGGAATAAGCCGTACAGAGATGC -ACGGAATAAGCCGTACAGTGAAGG -ACGGAATAAGCCGTACAGCAATGG -ACGGAATAAGCCGTACAGATGAGG -ACGGAATAAGCCGTACAGAATGGG -ACGGAATAAGCCGTACAGTCCTGA -ACGGAATAAGCCGTACAGTAGCGA -ACGGAATAAGCCGTACAGCACAGA -ACGGAATAAGCCGTACAGGCAAGA -ACGGAATAAGCCGTACAGGGTTGA -ACGGAATAAGCCGTACAGTCCGAT -ACGGAATAAGCCGTACAGTGGCAT -ACGGAATAAGCCGTACAGCGAGAT -ACGGAATAAGCCGTACAGTACCAC -ACGGAATAAGCCGTACAGCAGAAC -ACGGAATAAGCCGTACAGGTCTAC -ACGGAATAAGCCGTACAGACGTAC -ACGGAATAAGCCGTACAGAGTGAC -ACGGAATAAGCCGTACAGCTGTAG -ACGGAATAAGCCGTACAGCCTAAG -ACGGAATAAGCCGTACAGGTTCAG -ACGGAATAAGCCGTACAGGCATAG -ACGGAATAAGCCGTACAGGACAAG -ACGGAATAAGCCGTACAGAAGCAG -ACGGAATAAGCCGTACAGCGTCAA -ACGGAATAAGCCGTACAGGCTGAA -ACGGAATAAGCCGTACAGAGTACG -ACGGAATAAGCCGTACAGATCCGA -ACGGAATAAGCCGTACAGATGGGA -ACGGAATAAGCCGTACAGGTGCAA -ACGGAATAAGCCGTACAGGAGGAA -ACGGAATAAGCCGTACAGCAGGTA -ACGGAATAAGCCGTACAGGACTCT -ACGGAATAAGCCGTACAGAGTCCT -ACGGAATAAGCCGTACAGTAAGCC -ACGGAATAAGCCGTACAGATAGCC -ACGGAATAAGCCGTACAGTAACCG -ACGGAATAAGCCGTACAGATGCCA -ACGGAATAAGCCTCTGACGGAAAC -ACGGAATAAGCCTCTGACAACACC -ACGGAATAAGCCTCTGACATCGAG -ACGGAATAAGCCTCTGACCTCCTT -ACGGAATAAGCCTCTGACCCTGTT -ACGGAATAAGCCTCTGACCGGTTT -ACGGAATAAGCCTCTGACGTGGTT -ACGGAATAAGCCTCTGACGCCTTT -ACGGAATAAGCCTCTGACGGTCTT -ACGGAATAAGCCTCTGACACGCTT -ACGGAATAAGCCTCTGACAGCGTT -ACGGAATAAGCCTCTGACTTCGTC -ACGGAATAAGCCTCTGACTCTCTC -ACGGAATAAGCCTCTGACTGGATC -ACGGAATAAGCCTCTGACCACTTC -ACGGAATAAGCCTCTGACGTACTC -ACGGAATAAGCCTCTGACGATGTC -ACGGAATAAGCCTCTGACACAGTC -ACGGAATAAGCCTCTGACTTGCTG -ACGGAATAAGCCTCTGACTCCATG -ACGGAATAAGCCTCTGACTGTGTG -ACGGAATAAGCCTCTGACCTAGTG -ACGGAATAAGCCTCTGACCATCTG -ACGGAATAAGCCTCTGACGAGTTG -ACGGAATAAGCCTCTGACAGACTG -ACGGAATAAGCCTCTGACTCGGTA -ACGGAATAAGCCTCTGACTGCCTA -ACGGAATAAGCCTCTGACCCACTA -ACGGAATAAGCCTCTGACGGAGTA -ACGGAATAAGCCTCTGACTCGTCT -ACGGAATAAGCCTCTGACTGCACT -ACGGAATAAGCCTCTGACCTGACT -ACGGAATAAGCCTCTGACCAACCT -ACGGAATAAGCCTCTGACGCTACT -ACGGAATAAGCCTCTGACGGATCT -ACGGAATAAGCCTCTGACAAGGCT -ACGGAATAAGCCTCTGACTCAACC -ACGGAATAAGCCTCTGACTGTTCC -ACGGAATAAGCCTCTGACATTCCC -ACGGAATAAGCCTCTGACTTCTCG -ACGGAATAAGCCTCTGACTAGACG -ACGGAATAAGCCTCTGACGTAACG -ACGGAATAAGCCTCTGACACTTCG -ACGGAATAAGCCTCTGACTACGCA -ACGGAATAAGCCTCTGACCTTGCA -ACGGAATAAGCCTCTGACCGAACA -ACGGAATAAGCCTCTGACCAGTCA -ACGGAATAAGCCTCTGACGATCCA -ACGGAATAAGCCTCTGACACGACA -ACGGAATAAGCCTCTGACAGCTCA -ACGGAATAAGCCTCTGACTCACGT -ACGGAATAAGCCTCTGACCGTAGT -ACGGAATAAGCCTCTGACGTCAGT -ACGGAATAAGCCTCTGACGAAGGT -ACGGAATAAGCCTCTGACAACCGT -ACGGAATAAGCCTCTGACTTGTGC -ACGGAATAAGCCTCTGACCTAAGC -ACGGAATAAGCCTCTGACACTAGC -ACGGAATAAGCCTCTGACAGATGC -ACGGAATAAGCCTCTGACTGAAGG -ACGGAATAAGCCTCTGACCAATGG -ACGGAATAAGCCTCTGACATGAGG -ACGGAATAAGCCTCTGACAATGGG -ACGGAATAAGCCTCTGACTCCTGA -ACGGAATAAGCCTCTGACTAGCGA -ACGGAATAAGCCTCTGACCACAGA -ACGGAATAAGCCTCTGACGCAAGA -ACGGAATAAGCCTCTGACGGTTGA -ACGGAATAAGCCTCTGACTCCGAT -ACGGAATAAGCCTCTGACTGGCAT -ACGGAATAAGCCTCTGACCGAGAT -ACGGAATAAGCCTCTGACTACCAC -ACGGAATAAGCCTCTGACCAGAAC -ACGGAATAAGCCTCTGACGTCTAC -ACGGAATAAGCCTCTGACACGTAC -ACGGAATAAGCCTCTGACAGTGAC -ACGGAATAAGCCTCTGACCTGTAG -ACGGAATAAGCCTCTGACCCTAAG -ACGGAATAAGCCTCTGACGTTCAG -ACGGAATAAGCCTCTGACGCATAG -ACGGAATAAGCCTCTGACGACAAG -ACGGAATAAGCCTCTGACAAGCAG -ACGGAATAAGCCTCTGACCGTCAA -ACGGAATAAGCCTCTGACGCTGAA -ACGGAATAAGCCTCTGACAGTACG -ACGGAATAAGCCTCTGACATCCGA -ACGGAATAAGCCTCTGACATGGGA -ACGGAATAAGCCTCTGACGTGCAA -ACGGAATAAGCCTCTGACGAGGAA -ACGGAATAAGCCTCTGACCAGGTA -ACGGAATAAGCCTCTGACGACTCT -ACGGAATAAGCCTCTGACAGTCCT -ACGGAATAAGCCTCTGACTAAGCC -ACGGAATAAGCCTCTGACATAGCC -ACGGAATAAGCCTCTGACTAACCG -ACGGAATAAGCCTCTGACATGCCA -ACGGAATAAGCCCCTAGTGGAAAC -ACGGAATAAGCCCCTAGTAACACC -ACGGAATAAGCCCCTAGTATCGAG -ACGGAATAAGCCCCTAGTCTCCTT -ACGGAATAAGCCCCTAGTCCTGTT -ACGGAATAAGCCCCTAGTCGGTTT -ACGGAATAAGCCCCTAGTGTGGTT -ACGGAATAAGCCCCTAGTGCCTTT -ACGGAATAAGCCCCTAGTGGTCTT -ACGGAATAAGCCCCTAGTACGCTT -ACGGAATAAGCCCCTAGTAGCGTT -ACGGAATAAGCCCCTAGTTTCGTC -ACGGAATAAGCCCCTAGTTCTCTC -ACGGAATAAGCCCCTAGTTGGATC -ACGGAATAAGCCCCTAGTCACTTC -ACGGAATAAGCCCCTAGTGTACTC -ACGGAATAAGCCCCTAGTGATGTC -ACGGAATAAGCCCCTAGTACAGTC -ACGGAATAAGCCCCTAGTTTGCTG -ACGGAATAAGCCCCTAGTTCCATG -ACGGAATAAGCCCCTAGTTGTGTG -ACGGAATAAGCCCCTAGTCTAGTG -ACGGAATAAGCCCCTAGTCATCTG -ACGGAATAAGCCCCTAGTGAGTTG -ACGGAATAAGCCCCTAGTAGACTG -ACGGAATAAGCCCCTAGTTCGGTA -ACGGAATAAGCCCCTAGTTGCCTA -ACGGAATAAGCCCCTAGTCCACTA -ACGGAATAAGCCCCTAGTGGAGTA -ACGGAATAAGCCCCTAGTTCGTCT -ACGGAATAAGCCCCTAGTTGCACT -ACGGAATAAGCCCCTAGTCTGACT -ACGGAATAAGCCCCTAGTCAACCT -ACGGAATAAGCCCCTAGTGCTACT -ACGGAATAAGCCCCTAGTGGATCT -ACGGAATAAGCCCCTAGTAAGGCT -ACGGAATAAGCCCCTAGTTCAACC -ACGGAATAAGCCCCTAGTTGTTCC -ACGGAATAAGCCCCTAGTATTCCC -ACGGAATAAGCCCCTAGTTTCTCG -ACGGAATAAGCCCCTAGTTAGACG -ACGGAATAAGCCCCTAGTGTAACG -ACGGAATAAGCCCCTAGTACTTCG -ACGGAATAAGCCCCTAGTTACGCA -ACGGAATAAGCCCCTAGTCTTGCA -ACGGAATAAGCCCCTAGTCGAACA -ACGGAATAAGCCCCTAGTCAGTCA -ACGGAATAAGCCCCTAGTGATCCA -ACGGAATAAGCCCCTAGTACGACA -ACGGAATAAGCCCCTAGTAGCTCA -ACGGAATAAGCCCCTAGTTCACGT -ACGGAATAAGCCCCTAGTCGTAGT -ACGGAATAAGCCCCTAGTGTCAGT -ACGGAATAAGCCCCTAGTGAAGGT -ACGGAATAAGCCCCTAGTAACCGT -ACGGAATAAGCCCCTAGTTTGTGC -ACGGAATAAGCCCCTAGTCTAAGC -ACGGAATAAGCCCCTAGTACTAGC -ACGGAATAAGCCCCTAGTAGATGC -ACGGAATAAGCCCCTAGTTGAAGG -ACGGAATAAGCCCCTAGTCAATGG -ACGGAATAAGCCCCTAGTATGAGG -ACGGAATAAGCCCCTAGTAATGGG -ACGGAATAAGCCCCTAGTTCCTGA -ACGGAATAAGCCCCTAGTTAGCGA -ACGGAATAAGCCCCTAGTCACAGA -ACGGAATAAGCCCCTAGTGCAAGA -ACGGAATAAGCCCCTAGTGGTTGA -ACGGAATAAGCCCCTAGTTCCGAT -ACGGAATAAGCCCCTAGTTGGCAT -ACGGAATAAGCCCCTAGTCGAGAT -ACGGAATAAGCCCCTAGTTACCAC -ACGGAATAAGCCCCTAGTCAGAAC -ACGGAATAAGCCCCTAGTGTCTAC -ACGGAATAAGCCCCTAGTACGTAC -ACGGAATAAGCCCCTAGTAGTGAC -ACGGAATAAGCCCCTAGTCTGTAG -ACGGAATAAGCCCCTAGTCCTAAG -ACGGAATAAGCCCCTAGTGTTCAG -ACGGAATAAGCCCCTAGTGCATAG -ACGGAATAAGCCCCTAGTGACAAG -ACGGAATAAGCCCCTAGTAAGCAG -ACGGAATAAGCCCCTAGTCGTCAA -ACGGAATAAGCCCCTAGTGCTGAA -ACGGAATAAGCCCCTAGTAGTACG -ACGGAATAAGCCCCTAGTATCCGA -ACGGAATAAGCCCCTAGTATGGGA -ACGGAATAAGCCCCTAGTGTGCAA -ACGGAATAAGCCCCTAGTGAGGAA -ACGGAATAAGCCCCTAGTCAGGTA -ACGGAATAAGCCCCTAGTGACTCT -ACGGAATAAGCCCCTAGTAGTCCT -ACGGAATAAGCCCCTAGTTAAGCC -ACGGAATAAGCCCCTAGTATAGCC -ACGGAATAAGCCCCTAGTTAACCG -ACGGAATAAGCCCCTAGTATGCCA -ACGGAATAAGCCGCCTAAGGAAAC -ACGGAATAAGCCGCCTAAAACACC -ACGGAATAAGCCGCCTAAATCGAG -ACGGAATAAGCCGCCTAACTCCTT -ACGGAATAAGCCGCCTAACCTGTT -ACGGAATAAGCCGCCTAACGGTTT -ACGGAATAAGCCGCCTAAGTGGTT -ACGGAATAAGCCGCCTAAGCCTTT -ACGGAATAAGCCGCCTAAGGTCTT -ACGGAATAAGCCGCCTAAACGCTT -ACGGAATAAGCCGCCTAAAGCGTT -ACGGAATAAGCCGCCTAATTCGTC -ACGGAATAAGCCGCCTAATCTCTC -ACGGAATAAGCCGCCTAATGGATC -ACGGAATAAGCCGCCTAACACTTC -ACGGAATAAGCCGCCTAAGTACTC -ACGGAATAAGCCGCCTAAGATGTC -ACGGAATAAGCCGCCTAAACAGTC -ACGGAATAAGCCGCCTAATTGCTG -ACGGAATAAGCCGCCTAATCCATG -ACGGAATAAGCCGCCTAATGTGTG -ACGGAATAAGCCGCCTAACTAGTG -ACGGAATAAGCCGCCTAACATCTG -ACGGAATAAGCCGCCTAAGAGTTG -ACGGAATAAGCCGCCTAAAGACTG -ACGGAATAAGCCGCCTAATCGGTA -ACGGAATAAGCCGCCTAATGCCTA -ACGGAATAAGCCGCCTAACCACTA -ACGGAATAAGCCGCCTAAGGAGTA -ACGGAATAAGCCGCCTAATCGTCT -ACGGAATAAGCCGCCTAATGCACT -ACGGAATAAGCCGCCTAACTGACT -ACGGAATAAGCCGCCTAACAACCT -ACGGAATAAGCCGCCTAAGCTACT -ACGGAATAAGCCGCCTAAGGATCT -ACGGAATAAGCCGCCTAAAAGGCT -ACGGAATAAGCCGCCTAATCAACC -ACGGAATAAGCCGCCTAATGTTCC -ACGGAATAAGCCGCCTAAATTCCC -ACGGAATAAGCCGCCTAATTCTCG -ACGGAATAAGCCGCCTAATAGACG -ACGGAATAAGCCGCCTAAGTAACG -ACGGAATAAGCCGCCTAAACTTCG -ACGGAATAAGCCGCCTAATACGCA -ACGGAATAAGCCGCCTAACTTGCA -ACGGAATAAGCCGCCTAACGAACA -ACGGAATAAGCCGCCTAACAGTCA -ACGGAATAAGCCGCCTAAGATCCA -ACGGAATAAGCCGCCTAAACGACA -ACGGAATAAGCCGCCTAAAGCTCA -ACGGAATAAGCCGCCTAATCACGT -ACGGAATAAGCCGCCTAACGTAGT -ACGGAATAAGCCGCCTAAGTCAGT -ACGGAATAAGCCGCCTAAGAAGGT -ACGGAATAAGCCGCCTAAAACCGT -ACGGAATAAGCCGCCTAATTGTGC -ACGGAATAAGCCGCCTAACTAAGC -ACGGAATAAGCCGCCTAAACTAGC -ACGGAATAAGCCGCCTAAAGATGC -ACGGAATAAGCCGCCTAATGAAGG -ACGGAATAAGCCGCCTAACAATGG -ACGGAATAAGCCGCCTAAATGAGG -ACGGAATAAGCCGCCTAAAATGGG -ACGGAATAAGCCGCCTAATCCTGA -ACGGAATAAGCCGCCTAATAGCGA -ACGGAATAAGCCGCCTAACACAGA -ACGGAATAAGCCGCCTAAGCAAGA -ACGGAATAAGCCGCCTAAGGTTGA -ACGGAATAAGCCGCCTAATCCGAT -ACGGAATAAGCCGCCTAATGGCAT -ACGGAATAAGCCGCCTAACGAGAT -ACGGAATAAGCCGCCTAATACCAC -ACGGAATAAGCCGCCTAACAGAAC -ACGGAATAAGCCGCCTAAGTCTAC -ACGGAATAAGCCGCCTAAACGTAC -ACGGAATAAGCCGCCTAAAGTGAC -ACGGAATAAGCCGCCTAACTGTAG -ACGGAATAAGCCGCCTAACCTAAG -ACGGAATAAGCCGCCTAAGTTCAG -ACGGAATAAGCCGCCTAAGCATAG -ACGGAATAAGCCGCCTAAGACAAG -ACGGAATAAGCCGCCTAAAAGCAG -ACGGAATAAGCCGCCTAACGTCAA -ACGGAATAAGCCGCCTAAGCTGAA -ACGGAATAAGCCGCCTAAAGTACG -ACGGAATAAGCCGCCTAAATCCGA -ACGGAATAAGCCGCCTAAATGGGA -ACGGAATAAGCCGCCTAAGTGCAA -ACGGAATAAGCCGCCTAAGAGGAA -ACGGAATAAGCCGCCTAACAGGTA -ACGGAATAAGCCGCCTAAGACTCT -ACGGAATAAGCCGCCTAAAGTCCT -ACGGAATAAGCCGCCTAATAAGCC -ACGGAATAAGCCGCCTAAATAGCC -ACGGAATAAGCCGCCTAATAACCG -ACGGAATAAGCCGCCTAAATGCCA -ACGGAATAAGCCGCCATAGGAAAC -ACGGAATAAGCCGCCATAAACACC -ACGGAATAAGCCGCCATAATCGAG -ACGGAATAAGCCGCCATACTCCTT -ACGGAATAAGCCGCCATACCTGTT -ACGGAATAAGCCGCCATACGGTTT -ACGGAATAAGCCGCCATAGTGGTT -ACGGAATAAGCCGCCATAGCCTTT -ACGGAATAAGCCGCCATAGGTCTT -ACGGAATAAGCCGCCATAACGCTT -ACGGAATAAGCCGCCATAAGCGTT -ACGGAATAAGCCGCCATATTCGTC -ACGGAATAAGCCGCCATATCTCTC -ACGGAATAAGCCGCCATATGGATC -ACGGAATAAGCCGCCATACACTTC -ACGGAATAAGCCGCCATAGTACTC -ACGGAATAAGCCGCCATAGATGTC -ACGGAATAAGCCGCCATAACAGTC -ACGGAATAAGCCGCCATATTGCTG -ACGGAATAAGCCGCCATATCCATG -ACGGAATAAGCCGCCATATGTGTG -ACGGAATAAGCCGCCATACTAGTG -ACGGAATAAGCCGCCATACATCTG -ACGGAATAAGCCGCCATAGAGTTG -ACGGAATAAGCCGCCATAAGACTG -ACGGAATAAGCCGCCATATCGGTA -ACGGAATAAGCCGCCATATGCCTA -ACGGAATAAGCCGCCATACCACTA -ACGGAATAAGCCGCCATAGGAGTA -ACGGAATAAGCCGCCATATCGTCT -ACGGAATAAGCCGCCATATGCACT -ACGGAATAAGCCGCCATACTGACT -ACGGAATAAGCCGCCATACAACCT -ACGGAATAAGCCGCCATAGCTACT -ACGGAATAAGCCGCCATAGGATCT -ACGGAATAAGCCGCCATAAAGGCT -ACGGAATAAGCCGCCATATCAACC -ACGGAATAAGCCGCCATATGTTCC -ACGGAATAAGCCGCCATAATTCCC -ACGGAATAAGCCGCCATATTCTCG -ACGGAATAAGCCGCCATATAGACG -ACGGAATAAGCCGCCATAGTAACG -ACGGAATAAGCCGCCATAACTTCG -ACGGAATAAGCCGCCATATACGCA -ACGGAATAAGCCGCCATACTTGCA -ACGGAATAAGCCGCCATACGAACA -ACGGAATAAGCCGCCATACAGTCA -ACGGAATAAGCCGCCATAGATCCA -ACGGAATAAGCCGCCATAACGACA -ACGGAATAAGCCGCCATAAGCTCA -ACGGAATAAGCCGCCATATCACGT -ACGGAATAAGCCGCCATACGTAGT -ACGGAATAAGCCGCCATAGTCAGT -ACGGAATAAGCCGCCATAGAAGGT -ACGGAATAAGCCGCCATAAACCGT -ACGGAATAAGCCGCCATATTGTGC -ACGGAATAAGCCGCCATACTAAGC -ACGGAATAAGCCGCCATAACTAGC -ACGGAATAAGCCGCCATAAGATGC -ACGGAATAAGCCGCCATATGAAGG -ACGGAATAAGCCGCCATACAATGG -ACGGAATAAGCCGCCATAATGAGG -ACGGAATAAGCCGCCATAAATGGG -ACGGAATAAGCCGCCATATCCTGA -ACGGAATAAGCCGCCATATAGCGA -ACGGAATAAGCCGCCATACACAGA -ACGGAATAAGCCGCCATAGCAAGA -ACGGAATAAGCCGCCATAGGTTGA -ACGGAATAAGCCGCCATATCCGAT -ACGGAATAAGCCGCCATATGGCAT -ACGGAATAAGCCGCCATACGAGAT -ACGGAATAAGCCGCCATATACCAC -ACGGAATAAGCCGCCATACAGAAC -ACGGAATAAGCCGCCATAGTCTAC -ACGGAATAAGCCGCCATAACGTAC -ACGGAATAAGCCGCCATAAGTGAC -ACGGAATAAGCCGCCATACTGTAG -ACGGAATAAGCCGCCATACCTAAG -ACGGAATAAGCCGCCATAGTTCAG -ACGGAATAAGCCGCCATAGCATAG -ACGGAATAAGCCGCCATAGACAAG -ACGGAATAAGCCGCCATAAAGCAG -ACGGAATAAGCCGCCATACGTCAA -ACGGAATAAGCCGCCATAGCTGAA -ACGGAATAAGCCGCCATAAGTACG -ACGGAATAAGCCGCCATAATCCGA -ACGGAATAAGCCGCCATAATGGGA -ACGGAATAAGCCGCCATAGTGCAA -ACGGAATAAGCCGCCATAGAGGAA -ACGGAATAAGCCGCCATACAGGTA -ACGGAATAAGCCGCCATAGACTCT -ACGGAATAAGCCGCCATAAGTCCT -ACGGAATAAGCCGCCATATAAGCC -ACGGAATAAGCCGCCATAATAGCC -ACGGAATAAGCCGCCATATAACCG -ACGGAATAAGCCGCCATAATGCCA -ACGGAATAAGCCCCGTAAGGAAAC -ACGGAATAAGCCCCGTAAAACACC -ACGGAATAAGCCCCGTAAATCGAG -ACGGAATAAGCCCCGTAACTCCTT -ACGGAATAAGCCCCGTAACCTGTT -ACGGAATAAGCCCCGTAACGGTTT -ACGGAATAAGCCCCGTAAGTGGTT -ACGGAATAAGCCCCGTAAGCCTTT -ACGGAATAAGCCCCGTAAGGTCTT -ACGGAATAAGCCCCGTAAACGCTT -ACGGAATAAGCCCCGTAAAGCGTT -ACGGAATAAGCCCCGTAATTCGTC -ACGGAATAAGCCCCGTAATCTCTC -ACGGAATAAGCCCCGTAATGGATC -ACGGAATAAGCCCCGTAACACTTC -ACGGAATAAGCCCCGTAAGTACTC -ACGGAATAAGCCCCGTAAGATGTC -ACGGAATAAGCCCCGTAAACAGTC -ACGGAATAAGCCCCGTAATTGCTG -ACGGAATAAGCCCCGTAATCCATG -ACGGAATAAGCCCCGTAATGTGTG -ACGGAATAAGCCCCGTAACTAGTG -ACGGAATAAGCCCCGTAACATCTG -ACGGAATAAGCCCCGTAAGAGTTG -ACGGAATAAGCCCCGTAAAGACTG -ACGGAATAAGCCCCGTAATCGGTA -ACGGAATAAGCCCCGTAATGCCTA -ACGGAATAAGCCCCGTAACCACTA -ACGGAATAAGCCCCGTAAGGAGTA -ACGGAATAAGCCCCGTAATCGTCT -ACGGAATAAGCCCCGTAATGCACT -ACGGAATAAGCCCCGTAACTGACT -ACGGAATAAGCCCCGTAACAACCT -ACGGAATAAGCCCCGTAAGCTACT -ACGGAATAAGCCCCGTAAGGATCT -ACGGAATAAGCCCCGTAAAAGGCT -ACGGAATAAGCCCCGTAATCAACC -ACGGAATAAGCCCCGTAATGTTCC -ACGGAATAAGCCCCGTAAATTCCC -ACGGAATAAGCCCCGTAATTCTCG -ACGGAATAAGCCCCGTAATAGACG -ACGGAATAAGCCCCGTAAGTAACG -ACGGAATAAGCCCCGTAAACTTCG -ACGGAATAAGCCCCGTAATACGCA -ACGGAATAAGCCCCGTAACTTGCA -ACGGAATAAGCCCCGTAACGAACA -ACGGAATAAGCCCCGTAACAGTCA -ACGGAATAAGCCCCGTAAGATCCA -ACGGAATAAGCCCCGTAAACGACA -ACGGAATAAGCCCCGTAAAGCTCA -ACGGAATAAGCCCCGTAATCACGT -ACGGAATAAGCCCCGTAACGTAGT -ACGGAATAAGCCCCGTAAGTCAGT -ACGGAATAAGCCCCGTAAGAAGGT -ACGGAATAAGCCCCGTAAAACCGT -ACGGAATAAGCCCCGTAATTGTGC -ACGGAATAAGCCCCGTAACTAAGC -ACGGAATAAGCCCCGTAAACTAGC -ACGGAATAAGCCCCGTAAAGATGC -ACGGAATAAGCCCCGTAATGAAGG -ACGGAATAAGCCCCGTAACAATGG -ACGGAATAAGCCCCGTAAATGAGG -ACGGAATAAGCCCCGTAAAATGGG -ACGGAATAAGCCCCGTAATCCTGA -ACGGAATAAGCCCCGTAATAGCGA -ACGGAATAAGCCCCGTAACACAGA -ACGGAATAAGCCCCGTAAGCAAGA -ACGGAATAAGCCCCGTAAGGTTGA -ACGGAATAAGCCCCGTAATCCGAT -ACGGAATAAGCCCCGTAATGGCAT -ACGGAATAAGCCCCGTAACGAGAT -ACGGAATAAGCCCCGTAATACCAC -ACGGAATAAGCCCCGTAACAGAAC -ACGGAATAAGCCCCGTAAGTCTAC -ACGGAATAAGCCCCGTAAACGTAC -ACGGAATAAGCCCCGTAAAGTGAC -ACGGAATAAGCCCCGTAACTGTAG -ACGGAATAAGCCCCGTAACCTAAG -ACGGAATAAGCCCCGTAAGTTCAG -ACGGAATAAGCCCCGTAAGCATAG -ACGGAATAAGCCCCGTAAGACAAG -ACGGAATAAGCCCCGTAAAAGCAG -ACGGAATAAGCCCCGTAACGTCAA -ACGGAATAAGCCCCGTAAGCTGAA -ACGGAATAAGCCCCGTAAAGTACG -ACGGAATAAGCCCCGTAAATCCGA -ACGGAATAAGCCCCGTAAATGGGA -ACGGAATAAGCCCCGTAAGTGCAA -ACGGAATAAGCCCCGTAAGAGGAA -ACGGAATAAGCCCCGTAACAGGTA -ACGGAATAAGCCCCGTAAGACTCT -ACGGAATAAGCCCCGTAAAGTCCT -ACGGAATAAGCCCCGTAATAAGCC -ACGGAATAAGCCCCGTAAATAGCC -ACGGAATAAGCCCCGTAATAACCG -ACGGAATAAGCCCCGTAAATGCCA -ACGGAATAAGCCCCAATGGGAAAC -ACGGAATAAGCCCCAATGAACACC -ACGGAATAAGCCCCAATGATCGAG -ACGGAATAAGCCCCAATGCTCCTT -ACGGAATAAGCCCCAATGCCTGTT -ACGGAATAAGCCCCAATGCGGTTT -ACGGAATAAGCCCCAATGGTGGTT -ACGGAATAAGCCCCAATGGCCTTT -ACGGAATAAGCCCCAATGGGTCTT -ACGGAATAAGCCCCAATGACGCTT -ACGGAATAAGCCCCAATGAGCGTT -ACGGAATAAGCCCCAATGTTCGTC -ACGGAATAAGCCCCAATGTCTCTC -ACGGAATAAGCCCCAATGTGGATC -ACGGAATAAGCCCCAATGCACTTC -ACGGAATAAGCCCCAATGGTACTC -ACGGAATAAGCCCCAATGGATGTC -ACGGAATAAGCCCCAATGACAGTC -ACGGAATAAGCCCCAATGTTGCTG -ACGGAATAAGCCCCAATGTCCATG -ACGGAATAAGCCCCAATGTGTGTG -ACGGAATAAGCCCCAATGCTAGTG -ACGGAATAAGCCCCAATGCATCTG -ACGGAATAAGCCCCAATGGAGTTG -ACGGAATAAGCCCCAATGAGACTG -ACGGAATAAGCCCCAATGTCGGTA -ACGGAATAAGCCCCAATGTGCCTA -ACGGAATAAGCCCCAATGCCACTA -ACGGAATAAGCCCCAATGGGAGTA -ACGGAATAAGCCCCAATGTCGTCT -ACGGAATAAGCCCCAATGTGCACT -ACGGAATAAGCCCCAATGCTGACT -ACGGAATAAGCCCCAATGCAACCT -ACGGAATAAGCCCCAATGGCTACT -ACGGAATAAGCCCCAATGGGATCT -ACGGAATAAGCCCCAATGAAGGCT -ACGGAATAAGCCCCAATGTCAACC -ACGGAATAAGCCCCAATGTGTTCC -ACGGAATAAGCCCCAATGATTCCC -ACGGAATAAGCCCCAATGTTCTCG -ACGGAATAAGCCCCAATGTAGACG -ACGGAATAAGCCCCAATGGTAACG -ACGGAATAAGCCCCAATGACTTCG -ACGGAATAAGCCCCAATGTACGCA -ACGGAATAAGCCCCAATGCTTGCA -ACGGAATAAGCCCCAATGCGAACA -ACGGAATAAGCCCCAATGCAGTCA -ACGGAATAAGCCCCAATGGATCCA -ACGGAATAAGCCCCAATGACGACA -ACGGAATAAGCCCCAATGAGCTCA -ACGGAATAAGCCCCAATGTCACGT -ACGGAATAAGCCCCAATGCGTAGT -ACGGAATAAGCCCCAATGGTCAGT -ACGGAATAAGCCCCAATGGAAGGT -ACGGAATAAGCCCCAATGAACCGT -ACGGAATAAGCCCCAATGTTGTGC -ACGGAATAAGCCCCAATGCTAAGC -ACGGAATAAGCCCCAATGACTAGC -ACGGAATAAGCCCCAATGAGATGC -ACGGAATAAGCCCCAATGTGAAGG -ACGGAATAAGCCCCAATGCAATGG -ACGGAATAAGCCCCAATGATGAGG -ACGGAATAAGCCCCAATGAATGGG -ACGGAATAAGCCCCAATGTCCTGA -ACGGAATAAGCCCCAATGTAGCGA -ACGGAATAAGCCCCAATGCACAGA -ACGGAATAAGCCCCAATGGCAAGA -ACGGAATAAGCCCCAATGGGTTGA -ACGGAATAAGCCCCAATGTCCGAT -ACGGAATAAGCCCCAATGTGGCAT -ACGGAATAAGCCCCAATGCGAGAT -ACGGAATAAGCCCCAATGTACCAC -ACGGAATAAGCCCCAATGCAGAAC -ACGGAATAAGCCCCAATGGTCTAC -ACGGAATAAGCCCCAATGACGTAC -ACGGAATAAGCCCCAATGAGTGAC -ACGGAATAAGCCCCAATGCTGTAG -ACGGAATAAGCCCCAATGCCTAAG -ACGGAATAAGCCCCAATGGTTCAG -ACGGAATAAGCCCCAATGGCATAG -ACGGAATAAGCCCCAATGGACAAG -ACGGAATAAGCCCCAATGAAGCAG -ACGGAATAAGCCCCAATGCGTCAA -ACGGAATAAGCCCCAATGGCTGAA -ACGGAATAAGCCCCAATGAGTACG -ACGGAATAAGCCCCAATGATCCGA -ACGGAATAAGCCCCAATGATGGGA -ACGGAATAAGCCCCAATGGTGCAA -ACGGAATAAGCCCCAATGGAGGAA -ACGGAATAAGCCCCAATGCAGGTA -ACGGAATAAGCCCCAATGGACTCT -ACGGAATAAGCCCCAATGAGTCCT -ACGGAATAAGCCCCAATGTAAGCC -ACGGAATAAGCCCCAATGATAGCC -ACGGAATAAGCCCCAATGTAACCG -ACGGAATAAGCCCCAATGATGCCA -ACGGAACTAGCAAACGGAGGAAAC -ACGGAACTAGCAAACGGAAACACC -ACGGAACTAGCAAACGGAATCGAG -ACGGAACTAGCAAACGGACTCCTT -ACGGAACTAGCAAACGGACCTGTT -ACGGAACTAGCAAACGGACGGTTT -ACGGAACTAGCAAACGGAGTGGTT -ACGGAACTAGCAAACGGAGCCTTT -ACGGAACTAGCAAACGGAGGTCTT -ACGGAACTAGCAAACGGAACGCTT -ACGGAACTAGCAAACGGAAGCGTT -ACGGAACTAGCAAACGGATTCGTC -ACGGAACTAGCAAACGGATCTCTC -ACGGAACTAGCAAACGGATGGATC -ACGGAACTAGCAAACGGACACTTC -ACGGAACTAGCAAACGGAGTACTC -ACGGAACTAGCAAACGGAGATGTC -ACGGAACTAGCAAACGGAACAGTC -ACGGAACTAGCAAACGGATTGCTG -ACGGAACTAGCAAACGGATCCATG -ACGGAACTAGCAAACGGATGTGTG -ACGGAACTAGCAAACGGACTAGTG -ACGGAACTAGCAAACGGACATCTG -ACGGAACTAGCAAACGGAGAGTTG -ACGGAACTAGCAAACGGAAGACTG -ACGGAACTAGCAAACGGATCGGTA -ACGGAACTAGCAAACGGATGCCTA -ACGGAACTAGCAAACGGACCACTA -ACGGAACTAGCAAACGGAGGAGTA -ACGGAACTAGCAAACGGATCGTCT -ACGGAACTAGCAAACGGATGCACT -ACGGAACTAGCAAACGGACTGACT -ACGGAACTAGCAAACGGACAACCT -ACGGAACTAGCAAACGGAGCTACT -ACGGAACTAGCAAACGGAGGATCT -ACGGAACTAGCAAACGGAAAGGCT -ACGGAACTAGCAAACGGATCAACC -ACGGAACTAGCAAACGGATGTTCC -ACGGAACTAGCAAACGGAATTCCC -ACGGAACTAGCAAACGGATTCTCG -ACGGAACTAGCAAACGGATAGACG -ACGGAACTAGCAAACGGAGTAACG -ACGGAACTAGCAAACGGAACTTCG -ACGGAACTAGCAAACGGATACGCA -ACGGAACTAGCAAACGGACTTGCA -ACGGAACTAGCAAACGGACGAACA -ACGGAACTAGCAAACGGACAGTCA -ACGGAACTAGCAAACGGAGATCCA -ACGGAACTAGCAAACGGAACGACA -ACGGAACTAGCAAACGGAAGCTCA -ACGGAACTAGCAAACGGATCACGT -ACGGAACTAGCAAACGGACGTAGT -ACGGAACTAGCAAACGGAGTCAGT -ACGGAACTAGCAAACGGAGAAGGT -ACGGAACTAGCAAACGGAAACCGT -ACGGAACTAGCAAACGGATTGTGC -ACGGAACTAGCAAACGGACTAAGC -ACGGAACTAGCAAACGGAACTAGC -ACGGAACTAGCAAACGGAAGATGC -ACGGAACTAGCAAACGGATGAAGG -ACGGAACTAGCAAACGGACAATGG -ACGGAACTAGCAAACGGAATGAGG -ACGGAACTAGCAAACGGAAATGGG -ACGGAACTAGCAAACGGATCCTGA -ACGGAACTAGCAAACGGATAGCGA -ACGGAACTAGCAAACGGACACAGA -ACGGAACTAGCAAACGGAGCAAGA -ACGGAACTAGCAAACGGAGGTTGA -ACGGAACTAGCAAACGGATCCGAT -ACGGAACTAGCAAACGGATGGCAT -ACGGAACTAGCAAACGGACGAGAT -ACGGAACTAGCAAACGGATACCAC -ACGGAACTAGCAAACGGACAGAAC -ACGGAACTAGCAAACGGAGTCTAC -ACGGAACTAGCAAACGGAACGTAC -ACGGAACTAGCAAACGGAAGTGAC -ACGGAACTAGCAAACGGACTGTAG -ACGGAACTAGCAAACGGACCTAAG -ACGGAACTAGCAAACGGAGTTCAG -ACGGAACTAGCAAACGGAGCATAG -ACGGAACTAGCAAACGGAGACAAG -ACGGAACTAGCAAACGGAAAGCAG -ACGGAACTAGCAAACGGACGTCAA -ACGGAACTAGCAAACGGAGCTGAA -ACGGAACTAGCAAACGGAAGTACG -ACGGAACTAGCAAACGGAATCCGA -ACGGAACTAGCAAACGGAATGGGA -ACGGAACTAGCAAACGGAGTGCAA -ACGGAACTAGCAAACGGAGAGGAA -ACGGAACTAGCAAACGGACAGGTA -ACGGAACTAGCAAACGGAGACTCT -ACGGAACTAGCAAACGGAAGTCCT -ACGGAACTAGCAAACGGATAAGCC -ACGGAACTAGCAAACGGAATAGCC -ACGGAACTAGCAAACGGATAACCG -ACGGAACTAGCAAACGGAATGCCA -ACGGAACTAGCAACCAACGGAAAC -ACGGAACTAGCAACCAACAACACC -ACGGAACTAGCAACCAACATCGAG -ACGGAACTAGCAACCAACCTCCTT -ACGGAACTAGCAACCAACCCTGTT -ACGGAACTAGCAACCAACCGGTTT -ACGGAACTAGCAACCAACGTGGTT -ACGGAACTAGCAACCAACGCCTTT -ACGGAACTAGCAACCAACGGTCTT -ACGGAACTAGCAACCAACACGCTT -ACGGAACTAGCAACCAACAGCGTT -ACGGAACTAGCAACCAACTTCGTC -ACGGAACTAGCAACCAACTCTCTC -ACGGAACTAGCAACCAACTGGATC -ACGGAACTAGCAACCAACCACTTC -ACGGAACTAGCAACCAACGTACTC -ACGGAACTAGCAACCAACGATGTC -ACGGAACTAGCAACCAACACAGTC -ACGGAACTAGCAACCAACTTGCTG -ACGGAACTAGCAACCAACTCCATG -ACGGAACTAGCAACCAACTGTGTG -ACGGAACTAGCAACCAACCTAGTG -ACGGAACTAGCAACCAACCATCTG -ACGGAACTAGCAACCAACGAGTTG -ACGGAACTAGCAACCAACAGACTG -ACGGAACTAGCAACCAACTCGGTA -ACGGAACTAGCAACCAACTGCCTA -ACGGAACTAGCAACCAACCCACTA -ACGGAACTAGCAACCAACGGAGTA -ACGGAACTAGCAACCAACTCGTCT -ACGGAACTAGCAACCAACTGCACT -ACGGAACTAGCAACCAACCTGACT -ACGGAACTAGCAACCAACCAACCT -ACGGAACTAGCAACCAACGCTACT -ACGGAACTAGCAACCAACGGATCT -ACGGAACTAGCAACCAACAAGGCT -ACGGAACTAGCAACCAACTCAACC -ACGGAACTAGCAACCAACTGTTCC -ACGGAACTAGCAACCAACATTCCC -ACGGAACTAGCAACCAACTTCTCG -ACGGAACTAGCAACCAACTAGACG -ACGGAACTAGCAACCAACGTAACG -ACGGAACTAGCAACCAACACTTCG -ACGGAACTAGCAACCAACTACGCA -ACGGAACTAGCAACCAACCTTGCA -ACGGAACTAGCAACCAACCGAACA -ACGGAACTAGCAACCAACCAGTCA -ACGGAACTAGCAACCAACGATCCA -ACGGAACTAGCAACCAACACGACA -ACGGAACTAGCAACCAACAGCTCA -ACGGAACTAGCAACCAACTCACGT -ACGGAACTAGCAACCAACCGTAGT -ACGGAACTAGCAACCAACGTCAGT -ACGGAACTAGCAACCAACGAAGGT -ACGGAACTAGCAACCAACAACCGT -ACGGAACTAGCAACCAACTTGTGC -ACGGAACTAGCAACCAACCTAAGC -ACGGAACTAGCAACCAACACTAGC -ACGGAACTAGCAACCAACAGATGC -ACGGAACTAGCAACCAACTGAAGG -ACGGAACTAGCAACCAACCAATGG -ACGGAACTAGCAACCAACATGAGG -ACGGAACTAGCAACCAACAATGGG -ACGGAACTAGCAACCAACTCCTGA -ACGGAACTAGCAACCAACTAGCGA -ACGGAACTAGCAACCAACCACAGA -ACGGAACTAGCAACCAACGCAAGA -ACGGAACTAGCAACCAACGGTTGA -ACGGAACTAGCAACCAACTCCGAT -ACGGAACTAGCAACCAACTGGCAT -ACGGAACTAGCAACCAACCGAGAT -ACGGAACTAGCAACCAACTACCAC -ACGGAACTAGCAACCAACCAGAAC -ACGGAACTAGCAACCAACGTCTAC -ACGGAACTAGCAACCAACACGTAC -ACGGAACTAGCAACCAACAGTGAC -ACGGAACTAGCAACCAACCTGTAG -ACGGAACTAGCAACCAACCCTAAG -ACGGAACTAGCAACCAACGTTCAG -ACGGAACTAGCAACCAACGCATAG -ACGGAACTAGCAACCAACGACAAG -ACGGAACTAGCAACCAACAAGCAG -ACGGAACTAGCAACCAACCGTCAA -ACGGAACTAGCAACCAACGCTGAA -ACGGAACTAGCAACCAACAGTACG -ACGGAACTAGCAACCAACATCCGA -ACGGAACTAGCAACCAACATGGGA -ACGGAACTAGCAACCAACGTGCAA -ACGGAACTAGCAACCAACGAGGAA -ACGGAACTAGCAACCAACCAGGTA -ACGGAACTAGCAACCAACGACTCT -ACGGAACTAGCAACCAACAGTCCT -ACGGAACTAGCAACCAACTAAGCC -ACGGAACTAGCAACCAACATAGCC -ACGGAACTAGCAACCAACTAACCG -ACGGAACTAGCAACCAACATGCCA -ACGGAACTAGCAGAGATCGGAAAC -ACGGAACTAGCAGAGATCAACACC -ACGGAACTAGCAGAGATCATCGAG -ACGGAACTAGCAGAGATCCTCCTT -ACGGAACTAGCAGAGATCCCTGTT -ACGGAACTAGCAGAGATCCGGTTT -ACGGAACTAGCAGAGATCGTGGTT -ACGGAACTAGCAGAGATCGCCTTT -ACGGAACTAGCAGAGATCGGTCTT -ACGGAACTAGCAGAGATCACGCTT -ACGGAACTAGCAGAGATCAGCGTT -ACGGAACTAGCAGAGATCTTCGTC -ACGGAACTAGCAGAGATCTCTCTC -ACGGAACTAGCAGAGATCTGGATC -ACGGAACTAGCAGAGATCCACTTC -ACGGAACTAGCAGAGATCGTACTC -ACGGAACTAGCAGAGATCGATGTC -ACGGAACTAGCAGAGATCACAGTC -ACGGAACTAGCAGAGATCTTGCTG -ACGGAACTAGCAGAGATCTCCATG -ACGGAACTAGCAGAGATCTGTGTG -ACGGAACTAGCAGAGATCCTAGTG -ACGGAACTAGCAGAGATCCATCTG -ACGGAACTAGCAGAGATCGAGTTG -ACGGAACTAGCAGAGATCAGACTG -ACGGAACTAGCAGAGATCTCGGTA -ACGGAACTAGCAGAGATCTGCCTA -ACGGAACTAGCAGAGATCCCACTA -ACGGAACTAGCAGAGATCGGAGTA -ACGGAACTAGCAGAGATCTCGTCT -ACGGAACTAGCAGAGATCTGCACT -ACGGAACTAGCAGAGATCCTGACT -ACGGAACTAGCAGAGATCCAACCT -ACGGAACTAGCAGAGATCGCTACT -ACGGAACTAGCAGAGATCGGATCT -ACGGAACTAGCAGAGATCAAGGCT -ACGGAACTAGCAGAGATCTCAACC -ACGGAACTAGCAGAGATCTGTTCC -ACGGAACTAGCAGAGATCATTCCC -ACGGAACTAGCAGAGATCTTCTCG -ACGGAACTAGCAGAGATCTAGACG -ACGGAACTAGCAGAGATCGTAACG -ACGGAACTAGCAGAGATCACTTCG -ACGGAACTAGCAGAGATCTACGCA -ACGGAACTAGCAGAGATCCTTGCA -ACGGAACTAGCAGAGATCCGAACA -ACGGAACTAGCAGAGATCCAGTCA -ACGGAACTAGCAGAGATCGATCCA -ACGGAACTAGCAGAGATCACGACA -ACGGAACTAGCAGAGATCAGCTCA -ACGGAACTAGCAGAGATCTCACGT -ACGGAACTAGCAGAGATCCGTAGT -ACGGAACTAGCAGAGATCGTCAGT -ACGGAACTAGCAGAGATCGAAGGT -ACGGAACTAGCAGAGATCAACCGT -ACGGAACTAGCAGAGATCTTGTGC -ACGGAACTAGCAGAGATCCTAAGC -ACGGAACTAGCAGAGATCACTAGC -ACGGAACTAGCAGAGATCAGATGC -ACGGAACTAGCAGAGATCTGAAGG -ACGGAACTAGCAGAGATCCAATGG -ACGGAACTAGCAGAGATCATGAGG -ACGGAACTAGCAGAGATCAATGGG -ACGGAACTAGCAGAGATCTCCTGA -ACGGAACTAGCAGAGATCTAGCGA -ACGGAACTAGCAGAGATCCACAGA -ACGGAACTAGCAGAGATCGCAAGA -ACGGAACTAGCAGAGATCGGTTGA -ACGGAACTAGCAGAGATCTCCGAT -ACGGAACTAGCAGAGATCTGGCAT -ACGGAACTAGCAGAGATCCGAGAT -ACGGAACTAGCAGAGATCTACCAC -ACGGAACTAGCAGAGATCCAGAAC -ACGGAACTAGCAGAGATCGTCTAC -ACGGAACTAGCAGAGATCACGTAC -ACGGAACTAGCAGAGATCAGTGAC -ACGGAACTAGCAGAGATCCTGTAG -ACGGAACTAGCAGAGATCCCTAAG -ACGGAACTAGCAGAGATCGTTCAG -ACGGAACTAGCAGAGATCGCATAG -ACGGAACTAGCAGAGATCGACAAG -ACGGAACTAGCAGAGATCAAGCAG -ACGGAACTAGCAGAGATCCGTCAA -ACGGAACTAGCAGAGATCGCTGAA -ACGGAACTAGCAGAGATCAGTACG -ACGGAACTAGCAGAGATCATCCGA -ACGGAACTAGCAGAGATCATGGGA -ACGGAACTAGCAGAGATCGTGCAA -ACGGAACTAGCAGAGATCGAGGAA -ACGGAACTAGCAGAGATCCAGGTA -ACGGAACTAGCAGAGATCGACTCT -ACGGAACTAGCAGAGATCAGTCCT -ACGGAACTAGCAGAGATCTAAGCC -ACGGAACTAGCAGAGATCATAGCC -ACGGAACTAGCAGAGATCTAACCG -ACGGAACTAGCAGAGATCATGCCA -ACGGAACTAGCACTTCTCGGAAAC -ACGGAACTAGCACTTCTCAACACC -ACGGAACTAGCACTTCTCATCGAG -ACGGAACTAGCACTTCTCCTCCTT -ACGGAACTAGCACTTCTCCCTGTT -ACGGAACTAGCACTTCTCCGGTTT -ACGGAACTAGCACTTCTCGTGGTT -ACGGAACTAGCACTTCTCGCCTTT -ACGGAACTAGCACTTCTCGGTCTT -ACGGAACTAGCACTTCTCACGCTT -ACGGAACTAGCACTTCTCAGCGTT -ACGGAACTAGCACTTCTCTTCGTC -ACGGAACTAGCACTTCTCTCTCTC -ACGGAACTAGCACTTCTCTGGATC -ACGGAACTAGCACTTCTCCACTTC -ACGGAACTAGCACTTCTCGTACTC -ACGGAACTAGCACTTCTCGATGTC -ACGGAACTAGCACTTCTCACAGTC -ACGGAACTAGCACTTCTCTTGCTG -ACGGAACTAGCACTTCTCTCCATG -ACGGAACTAGCACTTCTCTGTGTG -ACGGAACTAGCACTTCTCCTAGTG -ACGGAACTAGCACTTCTCCATCTG -ACGGAACTAGCACTTCTCGAGTTG -ACGGAACTAGCACTTCTCAGACTG -ACGGAACTAGCACTTCTCTCGGTA -ACGGAACTAGCACTTCTCTGCCTA -ACGGAACTAGCACTTCTCCCACTA -ACGGAACTAGCACTTCTCGGAGTA -ACGGAACTAGCACTTCTCTCGTCT -ACGGAACTAGCACTTCTCTGCACT -ACGGAACTAGCACTTCTCCTGACT -ACGGAACTAGCACTTCTCCAACCT -ACGGAACTAGCACTTCTCGCTACT -ACGGAACTAGCACTTCTCGGATCT -ACGGAACTAGCACTTCTCAAGGCT -ACGGAACTAGCACTTCTCTCAACC -ACGGAACTAGCACTTCTCTGTTCC -ACGGAACTAGCACTTCTCATTCCC -ACGGAACTAGCACTTCTCTTCTCG -ACGGAACTAGCACTTCTCTAGACG -ACGGAACTAGCACTTCTCGTAACG -ACGGAACTAGCACTTCTCACTTCG -ACGGAACTAGCACTTCTCTACGCA -ACGGAACTAGCACTTCTCCTTGCA -ACGGAACTAGCACTTCTCCGAACA -ACGGAACTAGCACTTCTCCAGTCA -ACGGAACTAGCACTTCTCGATCCA -ACGGAACTAGCACTTCTCACGACA -ACGGAACTAGCACTTCTCAGCTCA -ACGGAACTAGCACTTCTCTCACGT -ACGGAACTAGCACTTCTCCGTAGT -ACGGAACTAGCACTTCTCGTCAGT -ACGGAACTAGCACTTCTCGAAGGT -ACGGAACTAGCACTTCTCAACCGT -ACGGAACTAGCACTTCTCTTGTGC -ACGGAACTAGCACTTCTCCTAAGC -ACGGAACTAGCACTTCTCACTAGC -ACGGAACTAGCACTTCTCAGATGC -ACGGAACTAGCACTTCTCTGAAGG -ACGGAACTAGCACTTCTCCAATGG -ACGGAACTAGCACTTCTCATGAGG -ACGGAACTAGCACTTCTCAATGGG -ACGGAACTAGCACTTCTCTCCTGA -ACGGAACTAGCACTTCTCTAGCGA -ACGGAACTAGCACTTCTCCACAGA -ACGGAACTAGCACTTCTCGCAAGA -ACGGAACTAGCACTTCTCGGTTGA -ACGGAACTAGCACTTCTCTCCGAT -ACGGAACTAGCACTTCTCTGGCAT -ACGGAACTAGCACTTCTCCGAGAT -ACGGAACTAGCACTTCTCTACCAC -ACGGAACTAGCACTTCTCCAGAAC -ACGGAACTAGCACTTCTCGTCTAC -ACGGAACTAGCACTTCTCACGTAC -ACGGAACTAGCACTTCTCAGTGAC -ACGGAACTAGCACTTCTCCTGTAG -ACGGAACTAGCACTTCTCCCTAAG -ACGGAACTAGCACTTCTCGTTCAG -ACGGAACTAGCACTTCTCGCATAG -ACGGAACTAGCACTTCTCGACAAG -ACGGAACTAGCACTTCTCAAGCAG -ACGGAACTAGCACTTCTCCGTCAA -ACGGAACTAGCACTTCTCGCTGAA -ACGGAACTAGCACTTCTCAGTACG -ACGGAACTAGCACTTCTCATCCGA -ACGGAACTAGCACTTCTCATGGGA -ACGGAACTAGCACTTCTCGTGCAA -ACGGAACTAGCACTTCTCGAGGAA -ACGGAACTAGCACTTCTCCAGGTA -ACGGAACTAGCACTTCTCGACTCT -ACGGAACTAGCACTTCTCAGTCCT -ACGGAACTAGCACTTCTCTAAGCC -ACGGAACTAGCACTTCTCATAGCC -ACGGAACTAGCACTTCTCTAACCG -ACGGAACTAGCACTTCTCATGCCA -ACGGAACTAGCAGTTCCTGGAAAC -ACGGAACTAGCAGTTCCTAACACC -ACGGAACTAGCAGTTCCTATCGAG -ACGGAACTAGCAGTTCCTCTCCTT -ACGGAACTAGCAGTTCCTCCTGTT -ACGGAACTAGCAGTTCCTCGGTTT -ACGGAACTAGCAGTTCCTGTGGTT -ACGGAACTAGCAGTTCCTGCCTTT -ACGGAACTAGCAGTTCCTGGTCTT -ACGGAACTAGCAGTTCCTACGCTT -ACGGAACTAGCAGTTCCTAGCGTT -ACGGAACTAGCAGTTCCTTTCGTC -ACGGAACTAGCAGTTCCTTCTCTC -ACGGAACTAGCAGTTCCTTGGATC -ACGGAACTAGCAGTTCCTCACTTC -ACGGAACTAGCAGTTCCTGTACTC -ACGGAACTAGCAGTTCCTGATGTC -ACGGAACTAGCAGTTCCTACAGTC -ACGGAACTAGCAGTTCCTTTGCTG -ACGGAACTAGCAGTTCCTTCCATG -ACGGAACTAGCAGTTCCTTGTGTG -ACGGAACTAGCAGTTCCTCTAGTG -ACGGAACTAGCAGTTCCTCATCTG -ACGGAACTAGCAGTTCCTGAGTTG -ACGGAACTAGCAGTTCCTAGACTG -ACGGAACTAGCAGTTCCTTCGGTA -ACGGAACTAGCAGTTCCTTGCCTA -ACGGAACTAGCAGTTCCTCCACTA -ACGGAACTAGCAGTTCCTGGAGTA -ACGGAACTAGCAGTTCCTTCGTCT -ACGGAACTAGCAGTTCCTTGCACT -ACGGAACTAGCAGTTCCTCTGACT -ACGGAACTAGCAGTTCCTCAACCT -ACGGAACTAGCAGTTCCTGCTACT -ACGGAACTAGCAGTTCCTGGATCT -ACGGAACTAGCAGTTCCTAAGGCT -ACGGAACTAGCAGTTCCTTCAACC -ACGGAACTAGCAGTTCCTTGTTCC -ACGGAACTAGCAGTTCCTATTCCC -ACGGAACTAGCAGTTCCTTTCTCG -ACGGAACTAGCAGTTCCTTAGACG -ACGGAACTAGCAGTTCCTGTAACG -ACGGAACTAGCAGTTCCTACTTCG -ACGGAACTAGCAGTTCCTTACGCA -ACGGAACTAGCAGTTCCTCTTGCA -ACGGAACTAGCAGTTCCTCGAACA -ACGGAACTAGCAGTTCCTCAGTCA -ACGGAACTAGCAGTTCCTGATCCA -ACGGAACTAGCAGTTCCTACGACA -ACGGAACTAGCAGTTCCTAGCTCA -ACGGAACTAGCAGTTCCTTCACGT -ACGGAACTAGCAGTTCCTCGTAGT -ACGGAACTAGCAGTTCCTGTCAGT -ACGGAACTAGCAGTTCCTGAAGGT -ACGGAACTAGCAGTTCCTAACCGT -ACGGAACTAGCAGTTCCTTTGTGC -ACGGAACTAGCAGTTCCTCTAAGC -ACGGAACTAGCAGTTCCTACTAGC -ACGGAACTAGCAGTTCCTAGATGC -ACGGAACTAGCAGTTCCTTGAAGG -ACGGAACTAGCAGTTCCTCAATGG -ACGGAACTAGCAGTTCCTATGAGG -ACGGAACTAGCAGTTCCTAATGGG -ACGGAACTAGCAGTTCCTTCCTGA -ACGGAACTAGCAGTTCCTTAGCGA -ACGGAACTAGCAGTTCCTCACAGA -ACGGAACTAGCAGTTCCTGCAAGA -ACGGAACTAGCAGTTCCTGGTTGA -ACGGAACTAGCAGTTCCTTCCGAT -ACGGAACTAGCAGTTCCTTGGCAT -ACGGAACTAGCAGTTCCTCGAGAT -ACGGAACTAGCAGTTCCTTACCAC -ACGGAACTAGCAGTTCCTCAGAAC -ACGGAACTAGCAGTTCCTGTCTAC -ACGGAACTAGCAGTTCCTACGTAC -ACGGAACTAGCAGTTCCTAGTGAC -ACGGAACTAGCAGTTCCTCTGTAG -ACGGAACTAGCAGTTCCTCCTAAG -ACGGAACTAGCAGTTCCTGTTCAG -ACGGAACTAGCAGTTCCTGCATAG -ACGGAACTAGCAGTTCCTGACAAG -ACGGAACTAGCAGTTCCTAAGCAG -ACGGAACTAGCAGTTCCTCGTCAA -ACGGAACTAGCAGTTCCTGCTGAA -ACGGAACTAGCAGTTCCTAGTACG -ACGGAACTAGCAGTTCCTATCCGA -ACGGAACTAGCAGTTCCTATGGGA -ACGGAACTAGCAGTTCCTGTGCAA -ACGGAACTAGCAGTTCCTGAGGAA -ACGGAACTAGCAGTTCCTCAGGTA -ACGGAACTAGCAGTTCCTGACTCT -ACGGAACTAGCAGTTCCTAGTCCT -ACGGAACTAGCAGTTCCTTAAGCC -ACGGAACTAGCAGTTCCTATAGCC -ACGGAACTAGCAGTTCCTTAACCG -ACGGAACTAGCAGTTCCTATGCCA -ACGGAACTAGCATTTCGGGGAAAC -ACGGAACTAGCATTTCGGAACACC -ACGGAACTAGCATTTCGGATCGAG -ACGGAACTAGCATTTCGGCTCCTT -ACGGAACTAGCATTTCGGCCTGTT -ACGGAACTAGCATTTCGGCGGTTT -ACGGAACTAGCATTTCGGGTGGTT -ACGGAACTAGCATTTCGGGCCTTT -ACGGAACTAGCATTTCGGGGTCTT -ACGGAACTAGCATTTCGGACGCTT -ACGGAACTAGCATTTCGGAGCGTT -ACGGAACTAGCATTTCGGTTCGTC -ACGGAACTAGCATTTCGGTCTCTC -ACGGAACTAGCATTTCGGTGGATC -ACGGAACTAGCATTTCGGCACTTC -ACGGAACTAGCATTTCGGGTACTC -ACGGAACTAGCATTTCGGGATGTC -ACGGAACTAGCATTTCGGACAGTC -ACGGAACTAGCATTTCGGTTGCTG -ACGGAACTAGCATTTCGGTCCATG -ACGGAACTAGCATTTCGGTGTGTG -ACGGAACTAGCATTTCGGCTAGTG -ACGGAACTAGCATTTCGGCATCTG -ACGGAACTAGCATTTCGGGAGTTG -ACGGAACTAGCATTTCGGAGACTG -ACGGAACTAGCATTTCGGTCGGTA -ACGGAACTAGCATTTCGGTGCCTA -ACGGAACTAGCATTTCGGCCACTA -ACGGAACTAGCATTTCGGGGAGTA -ACGGAACTAGCATTTCGGTCGTCT -ACGGAACTAGCATTTCGGTGCACT -ACGGAACTAGCATTTCGGCTGACT -ACGGAACTAGCATTTCGGCAACCT -ACGGAACTAGCATTTCGGGCTACT -ACGGAACTAGCATTTCGGGGATCT -ACGGAACTAGCATTTCGGAAGGCT -ACGGAACTAGCATTTCGGTCAACC -ACGGAACTAGCATTTCGGTGTTCC -ACGGAACTAGCATTTCGGATTCCC -ACGGAACTAGCATTTCGGTTCTCG -ACGGAACTAGCATTTCGGTAGACG -ACGGAACTAGCATTTCGGGTAACG -ACGGAACTAGCATTTCGGACTTCG -ACGGAACTAGCATTTCGGTACGCA -ACGGAACTAGCATTTCGGCTTGCA -ACGGAACTAGCATTTCGGCGAACA -ACGGAACTAGCATTTCGGCAGTCA -ACGGAACTAGCATTTCGGGATCCA -ACGGAACTAGCATTTCGGACGACA -ACGGAACTAGCATTTCGGAGCTCA -ACGGAACTAGCATTTCGGTCACGT -ACGGAACTAGCATTTCGGCGTAGT -ACGGAACTAGCATTTCGGGTCAGT -ACGGAACTAGCATTTCGGGAAGGT -ACGGAACTAGCATTTCGGAACCGT -ACGGAACTAGCATTTCGGTTGTGC -ACGGAACTAGCATTTCGGCTAAGC -ACGGAACTAGCATTTCGGACTAGC -ACGGAACTAGCATTTCGGAGATGC -ACGGAACTAGCATTTCGGTGAAGG -ACGGAACTAGCATTTCGGCAATGG -ACGGAACTAGCATTTCGGATGAGG -ACGGAACTAGCATTTCGGAATGGG -ACGGAACTAGCATTTCGGTCCTGA -ACGGAACTAGCATTTCGGTAGCGA -ACGGAACTAGCATTTCGGCACAGA -ACGGAACTAGCATTTCGGGCAAGA -ACGGAACTAGCATTTCGGGGTTGA -ACGGAACTAGCATTTCGGTCCGAT -ACGGAACTAGCATTTCGGTGGCAT -ACGGAACTAGCATTTCGGCGAGAT -ACGGAACTAGCATTTCGGTACCAC -ACGGAACTAGCATTTCGGCAGAAC -ACGGAACTAGCATTTCGGGTCTAC -ACGGAACTAGCATTTCGGACGTAC -ACGGAACTAGCATTTCGGAGTGAC -ACGGAACTAGCATTTCGGCTGTAG -ACGGAACTAGCATTTCGGCCTAAG -ACGGAACTAGCATTTCGGGTTCAG -ACGGAACTAGCATTTCGGGCATAG -ACGGAACTAGCATTTCGGGACAAG -ACGGAACTAGCATTTCGGAAGCAG -ACGGAACTAGCATTTCGGCGTCAA -ACGGAACTAGCATTTCGGGCTGAA -ACGGAACTAGCATTTCGGAGTACG -ACGGAACTAGCATTTCGGATCCGA -ACGGAACTAGCATTTCGGATGGGA -ACGGAACTAGCATTTCGGGTGCAA -ACGGAACTAGCATTTCGGGAGGAA -ACGGAACTAGCATTTCGGCAGGTA -ACGGAACTAGCATTTCGGGACTCT -ACGGAACTAGCATTTCGGAGTCCT -ACGGAACTAGCATTTCGGTAAGCC -ACGGAACTAGCATTTCGGATAGCC -ACGGAACTAGCATTTCGGTAACCG -ACGGAACTAGCATTTCGGATGCCA -ACGGAACTAGCAGTTGTGGGAAAC -ACGGAACTAGCAGTTGTGAACACC -ACGGAACTAGCAGTTGTGATCGAG -ACGGAACTAGCAGTTGTGCTCCTT -ACGGAACTAGCAGTTGTGCCTGTT -ACGGAACTAGCAGTTGTGCGGTTT -ACGGAACTAGCAGTTGTGGTGGTT -ACGGAACTAGCAGTTGTGGCCTTT -ACGGAACTAGCAGTTGTGGGTCTT -ACGGAACTAGCAGTTGTGACGCTT -ACGGAACTAGCAGTTGTGAGCGTT -ACGGAACTAGCAGTTGTGTTCGTC -ACGGAACTAGCAGTTGTGTCTCTC -ACGGAACTAGCAGTTGTGTGGATC -ACGGAACTAGCAGTTGTGCACTTC -ACGGAACTAGCAGTTGTGGTACTC -ACGGAACTAGCAGTTGTGGATGTC -ACGGAACTAGCAGTTGTGACAGTC -ACGGAACTAGCAGTTGTGTTGCTG -ACGGAACTAGCAGTTGTGTCCATG -ACGGAACTAGCAGTTGTGTGTGTG -ACGGAACTAGCAGTTGTGCTAGTG -ACGGAACTAGCAGTTGTGCATCTG -ACGGAACTAGCAGTTGTGGAGTTG -ACGGAACTAGCAGTTGTGAGACTG -ACGGAACTAGCAGTTGTGTCGGTA -ACGGAACTAGCAGTTGTGTGCCTA -ACGGAACTAGCAGTTGTGCCACTA -ACGGAACTAGCAGTTGTGGGAGTA -ACGGAACTAGCAGTTGTGTCGTCT -ACGGAACTAGCAGTTGTGTGCACT -ACGGAACTAGCAGTTGTGCTGACT -ACGGAACTAGCAGTTGTGCAACCT -ACGGAACTAGCAGTTGTGGCTACT -ACGGAACTAGCAGTTGTGGGATCT -ACGGAACTAGCAGTTGTGAAGGCT -ACGGAACTAGCAGTTGTGTCAACC -ACGGAACTAGCAGTTGTGTGTTCC -ACGGAACTAGCAGTTGTGATTCCC -ACGGAACTAGCAGTTGTGTTCTCG -ACGGAACTAGCAGTTGTGTAGACG -ACGGAACTAGCAGTTGTGGTAACG -ACGGAACTAGCAGTTGTGACTTCG -ACGGAACTAGCAGTTGTGTACGCA -ACGGAACTAGCAGTTGTGCTTGCA -ACGGAACTAGCAGTTGTGCGAACA -ACGGAACTAGCAGTTGTGCAGTCA -ACGGAACTAGCAGTTGTGGATCCA -ACGGAACTAGCAGTTGTGACGACA -ACGGAACTAGCAGTTGTGAGCTCA -ACGGAACTAGCAGTTGTGTCACGT -ACGGAACTAGCAGTTGTGCGTAGT -ACGGAACTAGCAGTTGTGGTCAGT -ACGGAACTAGCAGTTGTGGAAGGT -ACGGAACTAGCAGTTGTGAACCGT -ACGGAACTAGCAGTTGTGTTGTGC -ACGGAACTAGCAGTTGTGCTAAGC -ACGGAACTAGCAGTTGTGACTAGC -ACGGAACTAGCAGTTGTGAGATGC -ACGGAACTAGCAGTTGTGTGAAGG -ACGGAACTAGCAGTTGTGCAATGG -ACGGAACTAGCAGTTGTGATGAGG -ACGGAACTAGCAGTTGTGAATGGG -ACGGAACTAGCAGTTGTGTCCTGA -ACGGAACTAGCAGTTGTGTAGCGA -ACGGAACTAGCAGTTGTGCACAGA -ACGGAACTAGCAGTTGTGGCAAGA -ACGGAACTAGCAGTTGTGGGTTGA -ACGGAACTAGCAGTTGTGTCCGAT -ACGGAACTAGCAGTTGTGTGGCAT -ACGGAACTAGCAGTTGTGCGAGAT -ACGGAACTAGCAGTTGTGTACCAC -ACGGAACTAGCAGTTGTGCAGAAC -ACGGAACTAGCAGTTGTGGTCTAC -ACGGAACTAGCAGTTGTGACGTAC -ACGGAACTAGCAGTTGTGAGTGAC -ACGGAACTAGCAGTTGTGCTGTAG -ACGGAACTAGCAGTTGTGCCTAAG -ACGGAACTAGCAGTTGTGGTTCAG -ACGGAACTAGCAGTTGTGGCATAG -ACGGAACTAGCAGTTGTGGACAAG -ACGGAACTAGCAGTTGTGAAGCAG -ACGGAACTAGCAGTTGTGCGTCAA -ACGGAACTAGCAGTTGTGGCTGAA -ACGGAACTAGCAGTTGTGAGTACG -ACGGAACTAGCAGTTGTGATCCGA -ACGGAACTAGCAGTTGTGATGGGA -ACGGAACTAGCAGTTGTGGTGCAA -ACGGAACTAGCAGTTGTGGAGGAA -ACGGAACTAGCAGTTGTGCAGGTA -ACGGAACTAGCAGTTGTGGACTCT -ACGGAACTAGCAGTTGTGAGTCCT -ACGGAACTAGCAGTTGTGTAAGCC -ACGGAACTAGCAGTTGTGATAGCC -ACGGAACTAGCAGTTGTGTAACCG -ACGGAACTAGCAGTTGTGATGCCA -ACGGAACTAGCATTTGCCGGAAAC -ACGGAACTAGCATTTGCCAACACC -ACGGAACTAGCATTTGCCATCGAG -ACGGAACTAGCATTTGCCCTCCTT -ACGGAACTAGCATTTGCCCCTGTT -ACGGAACTAGCATTTGCCCGGTTT -ACGGAACTAGCATTTGCCGTGGTT -ACGGAACTAGCATTTGCCGCCTTT -ACGGAACTAGCATTTGCCGGTCTT -ACGGAACTAGCATTTGCCACGCTT -ACGGAACTAGCATTTGCCAGCGTT -ACGGAACTAGCATTTGCCTTCGTC -ACGGAACTAGCATTTGCCTCTCTC -ACGGAACTAGCATTTGCCTGGATC -ACGGAACTAGCATTTGCCCACTTC -ACGGAACTAGCATTTGCCGTACTC -ACGGAACTAGCATTTGCCGATGTC -ACGGAACTAGCATTTGCCACAGTC -ACGGAACTAGCATTTGCCTTGCTG -ACGGAACTAGCATTTGCCTCCATG -ACGGAACTAGCATTTGCCTGTGTG -ACGGAACTAGCATTTGCCCTAGTG -ACGGAACTAGCATTTGCCCATCTG -ACGGAACTAGCATTTGCCGAGTTG -ACGGAACTAGCATTTGCCAGACTG -ACGGAACTAGCATTTGCCTCGGTA -ACGGAACTAGCATTTGCCTGCCTA -ACGGAACTAGCATTTGCCCCACTA -ACGGAACTAGCATTTGCCGGAGTA -ACGGAACTAGCATTTGCCTCGTCT -ACGGAACTAGCATTTGCCTGCACT -ACGGAACTAGCATTTGCCCTGACT -ACGGAACTAGCATTTGCCCAACCT -ACGGAACTAGCATTTGCCGCTACT -ACGGAACTAGCATTTGCCGGATCT -ACGGAACTAGCATTTGCCAAGGCT -ACGGAACTAGCATTTGCCTCAACC -ACGGAACTAGCATTTGCCTGTTCC -ACGGAACTAGCATTTGCCATTCCC -ACGGAACTAGCATTTGCCTTCTCG -ACGGAACTAGCATTTGCCTAGACG -ACGGAACTAGCATTTGCCGTAACG -ACGGAACTAGCATTTGCCACTTCG -ACGGAACTAGCATTTGCCTACGCA -ACGGAACTAGCATTTGCCCTTGCA -ACGGAACTAGCATTTGCCCGAACA -ACGGAACTAGCATTTGCCCAGTCA -ACGGAACTAGCATTTGCCGATCCA -ACGGAACTAGCATTTGCCACGACA -ACGGAACTAGCATTTGCCAGCTCA -ACGGAACTAGCATTTGCCTCACGT -ACGGAACTAGCATTTGCCCGTAGT -ACGGAACTAGCATTTGCCGTCAGT -ACGGAACTAGCATTTGCCGAAGGT -ACGGAACTAGCATTTGCCAACCGT -ACGGAACTAGCATTTGCCTTGTGC -ACGGAACTAGCATTTGCCCTAAGC -ACGGAACTAGCATTTGCCACTAGC -ACGGAACTAGCATTTGCCAGATGC -ACGGAACTAGCATTTGCCTGAAGG -ACGGAACTAGCATTTGCCCAATGG -ACGGAACTAGCATTTGCCATGAGG -ACGGAACTAGCATTTGCCAATGGG -ACGGAACTAGCATTTGCCTCCTGA -ACGGAACTAGCATTTGCCTAGCGA -ACGGAACTAGCATTTGCCCACAGA -ACGGAACTAGCATTTGCCGCAAGA -ACGGAACTAGCATTTGCCGGTTGA -ACGGAACTAGCATTTGCCTCCGAT -ACGGAACTAGCATTTGCCTGGCAT -ACGGAACTAGCATTTGCCCGAGAT -ACGGAACTAGCATTTGCCTACCAC -ACGGAACTAGCATTTGCCCAGAAC -ACGGAACTAGCATTTGCCGTCTAC -ACGGAACTAGCATTTGCCACGTAC -ACGGAACTAGCATTTGCCAGTGAC -ACGGAACTAGCATTTGCCCTGTAG -ACGGAACTAGCATTTGCCCCTAAG -ACGGAACTAGCATTTGCCGTTCAG -ACGGAACTAGCATTTGCCGCATAG -ACGGAACTAGCATTTGCCGACAAG -ACGGAACTAGCATTTGCCAAGCAG -ACGGAACTAGCATTTGCCCGTCAA -ACGGAACTAGCATTTGCCGCTGAA -ACGGAACTAGCATTTGCCAGTACG -ACGGAACTAGCATTTGCCATCCGA -ACGGAACTAGCATTTGCCATGGGA -ACGGAACTAGCATTTGCCGTGCAA -ACGGAACTAGCATTTGCCGAGGAA -ACGGAACTAGCATTTGCCCAGGTA -ACGGAACTAGCATTTGCCGACTCT -ACGGAACTAGCATTTGCCAGTCCT -ACGGAACTAGCATTTGCCTAAGCC -ACGGAACTAGCATTTGCCATAGCC -ACGGAACTAGCATTTGCCTAACCG -ACGGAACTAGCATTTGCCATGCCA -ACGGAACTAGCACTTGGTGGAAAC -ACGGAACTAGCACTTGGTAACACC -ACGGAACTAGCACTTGGTATCGAG -ACGGAACTAGCACTTGGTCTCCTT -ACGGAACTAGCACTTGGTCCTGTT -ACGGAACTAGCACTTGGTCGGTTT -ACGGAACTAGCACTTGGTGTGGTT -ACGGAACTAGCACTTGGTGCCTTT -ACGGAACTAGCACTTGGTGGTCTT -ACGGAACTAGCACTTGGTACGCTT -ACGGAACTAGCACTTGGTAGCGTT -ACGGAACTAGCACTTGGTTTCGTC -ACGGAACTAGCACTTGGTTCTCTC -ACGGAACTAGCACTTGGTTGGATC -ACGGAACTAGCACTTGGTCACTTC -ACGGAACTAGCACTTGGTGTACTC -ACGGAACTAGCACTTGGTGATGTC -ACGGAACTAGCACTTGGTACAGTC -ACGGAACTAGCACTTGGTTTGCTG -ACGGAACTAGCACTTGGTTCCATG -ACGGAACTAGCACTTGGTTGTGTG -ACGGAACTAGCACTTGGTCTAGTG -ACGGAACTAGCACTTGGTCATCTG -ACGGAACTAGCACTTGGTGAGTTG -ACGGAACTAGCACTTGGTAGACTG -ACGGAACTAGCACTTGGTTCGGTA -ACGGAACTAGCACTTGGTTGCCTA -ACGGAACTAGCACTTGGTCCACTA -ACGGAACTAGCACTTGGTGGAGTA -ACGGAACTAGCACTTGGTTCGTCT -ACGGAACTAGCACTTGGTTGCACT -ACGGAACTAGCACTTGGTCTGACT -ACGGAACTAGCACTTGGTCAACCT -ACGGAACTAGCACTTGGTGCTACT -ACGGAACTAGCACTTGGTGGATCT -ACGGAACTAGCACTTGGTAAGGCT -ACGGAACTAGCACTTGGTTCAACC -ACGGAACTAGCACTTGGTTGTTCC -ACGGAACTAGCACTTGGTATTCCC -ACGGAACTAGCACTTGGTTTCTCG -ACGGAACTAGCACTTGGTTAGACG -ACGGAACTAGCACTTGGTGTAACG -ACGGAACTAGCACTTGGTACTTCG -ACGGAACTAGCACTTGGTTACGCA -ACGGAACTAGCACTTGGTCTTGCA -ACGGAACTAGCACTTGGTCGAACA -ACGGAACTAGCACTTGGTCAGTCA -ACGGAACTAGCACTTGGTGATCCA -ACGGAACTAGCACTTGGTACGACA -ACGGAACTAGCACTTGGTAGCTCA -ACGGAACTAGCACTTGGTTCACGT -ACGGAACTAGCACTTGGTCGTAGT -ACGGAACTAGCACTTGGTGTCAGT -ACGGAACTAGCACTTGGTGAAGGT -ACGGAACTAGCACTTGGTAACCGT -ACGGAACTAGCACTTGGTTTGTGC -ACGGAACTAGCACTTGGTCTAAGC -ACGGAACTAGCACTTGGTACTAGC -ACGGAACTAGCACTTGGTAGATGC -ACGGAACTAGCACTTGGTTGAAGG -ACGGAACTAGCACTTGGTCAATGG -ACGGAACTAGCACTTGGTATGAGG -ACGGAACTAGCACTTGGTAATGGG -ACGGAACTAGCACTTGGTTCCTGA -ACGGAACTAGCACTTGGTTAGCGA -ACGGAACTAGCACTTGGTCACAGA -ACGGAACTAGCACTTGGTGCAAGA -ACGGAACTAGCACTTGGTGGTTGA -ACGGAACTAGCACTTGGTTCCGAT -ACGGAACTAGCACTTGGTTGGCAT -ACGGAACTAGCACTTGGTCGAGAT -ACGGAACTAGCACTTGGTTACCAC -ACGGAACTAGCACTTGGTCAGAAC -ACGGAACTAGCACTTGGTGTCTAC -ACGGAACTAGCACTTGGTACGTAC -ACGGAACTAGCACTTGGTAGTGAC -ACGGAACTAGCACTTGGTCTGTAG -ACGGAACTAGCACTTGGTCCTAAG -ACGGAACTAGCACTTGGTGTTCAG -ACGGAACTAGCACTTGGTGCATAG -ACGGAACTAGCACTTGGTGACAAG -ACGGAACTAGCACTTGGTAAGCAG -ACGGAACTAGCACTTGGTCGTCAA -ACGGAACTAGCACTTGGTGCTGAA -ACGGAACTAGCACTTGGTAGTACG -ACGGAACTAGCACTTGGTATCCGA -ACGGAACTAGCACTTGGTATGGGA -ACGGAACTAGCACTTGGTGTGCAA -ACGGAACTAGCACTTGGTGAGGAA -ACGGAACTAGCACTTGGTCAGGTA -ACGGAACTAGCACTTGGTGACTCT -ACGGAACTAGCACTTGGTAGTCCT -ACGGAACTAGCACTTGGTTAAGCC -ACGGAACTAGCACTTGGTATAGCC -ACGGAACTAGCACTTGGTTAACCG -ACGGAACTAGCACTTGGTATGCCA -ACGGAACTAGCACTTACGGGAAAC -ACGGAACTAGCACTTACGAACACC -ACGGAACTAGCACTTACGATCGAG -ACGGAACTAGCACTTACGCTCCTT -ACGGAACTAGCACTTACGCCTGTT -ACGGAACTAGCACTTACGCGGTTT -ACGGAACTAGCACTTACGGTGGTT -ACGGAACTAGCACTTACGGCCTTT -ACGGAACTAGCACTTACGGGTCTT -ACGGAACTAGCACTTACGACGCTT -ACGGAACTAGCACTTACGAGCGTT -ACGGAACTAGCACTTACGTTCGTC -ACGGAACTAGCACTTACGTCTCTC -ACGGAACTAGCACTTACGTGGATC -ACGGAACTAGCACTTACGCACTTC -ACGGAACTAGCACTTACGGTACTC -ACGGAACTAGCACTTACGGATGTC -ACGGAACTAGCACTTACGACAGTC -ACGGAACTAGCACTTACGTTGCTG -ACGGAACTAGCACTTACGTCCATG -ACGGAACTAGCACTTACGTGTGTG -ACGGAACTAGCACTTACGCTAGTG -ACGGAACTAGCACTTACGCATCTG -ACGGAACTAGCACTTACGGAGTTG -ACGGAACTAGCACTTACGAGACTG -ACGGAACTAGCACTTACGTCGGTA -ACGGAACTAGCACTTACGTGCCTA -ACGGAACTAGCACTTACGCCACTA -ACGGAACTAGCACTTACGGGAGTA -ACGGAACTAGCACTTACGTCGTCT -ACGGAACTAGCACTTACGTGCACT -ACGGAACTAGCACTTACGCTGACT -ACGGAACTAGCACTTACGCAACCT -ACGGAACTAGCACTTACGGCTACT -ACGGAACTAGCACTTACGGGATCT -ACGGAACTAGCACTTACGAAGGCT -ACGGAACTAGCACTTACGTCAACC -ACGGAACTAGCACTTACGTGTTCC -ACGGAACTAGCACTTACGATTCCC -ACGGAACTAGCACTTACGTTCTCG -ACGGAACTAGCACTTACGTAGACG -ACGGAACTAGCACTTACGGTAACG -ACGGAACTAGCACTTACGACTTCG -ACGGAACTAGCACTTACGTACGCA -ACGGAACTAGCACTTACGCTTGCA -ACGGAACTAGCACTTACGCGAACA -ACGGAACTAGCACTTACGCAGTCA -ACGGAACTAGCACTTACGGATCCA -ACGGAACTAGCACTTACGACGACA -ACGGAACTAGCACTTACGAGCTCA -ACGGAACTAGCACTTACGTCACGT -ACGGAACTAGCACTTACGCGTAGT -ACGGAACTAGCACTTACGGTCAGT -ACGGAACTAGCACTTACGGAAGGT -ACGGAACTAGCACTTACGAACCGT -ACGGAACTAGCACTTACGTTGTGC -ACGGAACTAGCACTTACGCTAAGC -ACGGAACTAGCACTTACGACTAGC -ACGGAACTAGCACTTACGAGATGC -ACGGAACTAGCACTTACGTGAAGG -ACGGAACTAGCACTTACGCAATGG -ACGGAACTAGCACTTACGATGAGG -ACGGAACTAGCACTTACGAATGGG -ACGGAACTAGCACTTACGTCCTGA -ACGGAACTAGCACTTACGTAGCGA -ACGGAACTAGCACTTACGCACAGA -ACGGAACTAGCACTTACGGCAAGA -ACGGAACTAGCACTTACGGGTTGA -ACGGAACTAGCACTTACGTCCGAT -ACGGAACTAGCACTTACGTGGCAT -ACGGAACTAGCACTTACGCGAGAT -ACGGAACTAGCACTTACGTACCAC -ACGGAACTAGCACTTACGCAGAAC -ACGGAACTAGCACTTACGGTCTAC -ACGGAACTAGCACTTACGACGTAC -ACGGAACTAGCACTTACGAGTGAC -ACGGAACTAGCACTTACGCTGTAG -ACGGAACTAGCACTTACGCCTAAG -ACGGAACTAGCACTTACGGTTCAG -ACGGAACTAGCACTTACGGCATAG -ACGGAACTAGCACTTACGGACAAG -ACGGAACTAGCACTTACGAAGCAG -ACGGAACTAGCACTTACGCGTCAA -ACGGAACTAGCACTTACGGCTGAA -ACGGAACTAGCACTTACGAGTACG -ACGGAACTAGCACTTACGATCCGA -ACGGAACTAGCACTTACGATGGGA -ACGGAACTAGCACTTACGGTGCAA -ACGGAACTAGCACTTACGGAGGAA -ACGGAACTAGCACTTACGCAGGTA -ACGGAACTAGCACTTACGGACTCT -ACGGAACTAGCACTTACGAGTCCT -ACGGAACTAGCACTTACGTAAGCC -ACGGAACTAGCACTTACGATAGCC -ACGGAACTAGCACTTACGTAACCG -ACGGAACTAGCACTTACGATGCCA -ACGGAACTAGCAGTTAGCGGAAAC -ACGGAACTAGCAGTTAGCAACACC -ACGGAACTAGCAGTTAGCATCGAG -ACGGAACTAGCAGTTAGCCTCCTT -ACGGAACTAGCAGTTAGCCCTGTT -ACGGAACTAGCAGTTAGCCGGTTT -ACGGAACTAGCAGTTAGCGTGGTT -ACGGAACTAGCAGTTAGCGCCTTT -ACGGAACTAGCAGTTAGCGGTCTT -ACGGAACTAGCAGTTAGCACGCTT -ACGGAACTAGCAGTTAGCAGCGTT -ACGGAACTAGCAGTTAGCTTCGTC -ACGGAACTAGCAGTTAGCTCTCTC -ACGGAACTAGCAGTTAGCTGGATC -ACGGAACTAGCAGTTAGCCACTTC -ACGGAACTAGCAGTTAGCGTACTC -ACGGAACTAGCAGTTAGCGATGTC -ACGGAACTAGCAGTTAGCACAGTC -ACGGAACTAGCAGTTAGCTTGCTG -ACGGAACTAGCAGTTAGCTCCATG -ACGGAACTAGCAGTTAGCTGTGTG -ACGGAACTAGCAGTTAGCCTAGTG -ACGGAACTAGCAGTTAGCCATCTG -ACGGAACTAGCAGTTAGCGAGTTG -ACGGAACTAGCAGTTAGCAGACTG -ACGGAACTAGCAGTTAGCTCGGTA -ACGGAACTAGCAGTTAGCTGCCTA -ACGGAACTAGCAGTTAGCCCACTA -ACGGAACTAGCAGTTAGCGGAGTA -ACGGAACTAGCAGTTAGCTCGTCT -ACGGAACTAGCAGTTAGCTGCACT -ACGGAACTAGCAGTTAGCCTGACT -ACGGAACTAGCAGTTAGCCAACCT -ACGGAACTAGCAGTTAGCGCTACT -ACGGAACTAGCAGTTAGCGGATCT -ACGGAACTAGCAGTTAGCAAGGCT -ACGGAACTAGCAGTTAGCTCAACC -ACGGAACTAGCAGTTAGCTGTTCC -ACGGAACTAGCAGTTAGCATTCCC -ACGGAACTAGCAGTTAGCTTCTCG -ACGGAACTAGCAGTTAGCTAGACG -ACGGAACTAGCAGTTAGCGTAACG -ACGGAACTAGCAGTTAGCACTTCG -ACGGAACTAGCAGTTAGCTACGCA -ACGGAACTAGCAGTTAGCCTTGCA -ACGGAACTAGCAGTTAGCCGAACA -ACGGAACTAGCAGTTAGCCAGTCA -ACGGAACTAGCAGTTAGCGATCCA -ACGGAACTAGCAGTTAGCACGACA -ACGGAACTAGCAGTTAGCAGCTCA -ACGGAACTAGCAGTTAGCTCACGT -ACGGAACTAGCAGTTAGCCGTAGT -ACGGAACTAGCAGTTAGCGTCAGT -ACGGAACTAGCAGTTAGCGAAGGT -ACGGAACTAGCAGTTAGCAACCGT -ACGGAACTAGCAGTTAGCTTGTGC -ACGGAACTAGCAGTTAGCCTAAGC -ACGGAACTAGCAGTTAGCACTAGC -ACGGAACTAGCAGTTAGCAGATGC -ACGGAACTAGCAGTTAGCTGAAGG -ACGGAACTAGCAGTTAGCCAATGG -ACGGAACTAGCAGTTAGCATGAGG -ACGGAACTAGCAGTTAGCAATGGG -ACGGAACTAGCAGTTAGCTCCTGA -ACGGAACTAGCAGTTAGCTAGCGA -ACGGAACTAGCAGTTAGCCACAGA -ACGGAACTAGCAGTTAGCGCAAGA -ACGGAACTAGCAGTTAGCGGTTGA -ACGGAACTAGCAGTTAGCTCCGAT -ACGGAACTAGCAGTTAGCTGGCAT -ACGGAACTAGCAGTTAGCCGAGAT -ACGGAACTAGCAGTTAGCTACCAC -ACGGAACTAGCAGTTAGCCAGAAC -ACGGAACTAGCAGTTAGCGTCTAC -ACGGAACTAGCAGTTAGCACGTAC -ACGGAACTAGCAGTTAGCAGTGAC -ACGGAACTAGCAGTTAGCCTGTAG -ACGGAACTAGCAGTTAGCCCTAAG -ACGGAACTAGCAGTTAGCGTTCAG -ACGGAACTAGCAGTTAGCGCATAG -ACGGAACTAGCAGTTAGCGACAAG -ACGGAACTAGCAGTTAGCAAGCAG -ACGGAACTAGCAGTTAGCCGTCAA -ACGGAACTAGCAGTTAGCGCTGAA -ACGGAACTAGCAGTTAGCAGTACG -ACGGAACTAGCAGTTAGCATCCGA -ACGGAACTAGCAGTTAGCATGGGA -ACGGAACTAGCAGTTAGCGTGCAA -ACGGAACTAGCAGTTAGCGAGGAA -ACGGAACTAGCAGTTAGCCAGGTA -ACGGAACTAGCAGTTAGCGACTCT -ACGGAACTAGCAGTTAGCAGTCCT -ACGGAACTAGCAGTTAGCTAAGCC -ACGGAACTAGCAGTTAGCATAGCC -ACGGAACTAGCAGTTAGCTAACCG -ACGGAACTAGCAGTTAGCATGCCA -ACGGAACTAGCAGTCTTCGGAAAC -ACGGAACTAGCAGTCTTCAACACC -ACGGAACTAGCAGTCTTCATCGAG -ACGGAACTAGCAGTCTTCCTCCTT -ACGGAACTAGCAGTCTTCCCTGTT -ACGGAACTAGCAGTCTTCCGGTTT -ACGGAACTAGCAGTCTTCGTGGTT -ACGGAACTAGCAGTCTTCGCCTTT -ACGGAACTAGCAGTCTTCGGTCTT -ACGGAACTAGCAGTCTTCACGCTT -ACGGAACTAGCAGTCTTCAGCGTT -ACGGAACTAGCAGTCTTCTTCGTC -ACGGAACTAGCAGTCTTCTCTCTC -ACGGAACTAGCAGTCTTCTGGATC -ACGGAACTAGCAGTCTTCCACTTC -ACGGAACTAGCAGTCTTCGTACTC -ACGGAACTAGCAGTCTTCGATGTC -ACGGAACTAGCAGTCTTCACAGTC -ACGGAACTAGCAGTCTTCTTGCTG -ACGGAACTAGCAGTCTTCTCCATG -ACGGAACTAGCAGTCTTCTGTGTG -ACGGAACTAGCAGTCTTCCTAGTG -ACGGAACTAGCAGTCTTCCATCTG -ACGGAACTAGCAGTCTTCGAGTTG -ACGGAACTAGCAGTCTTCAGACTG -ACGGAACTAGCAGTCTTCTCGGTA -ACGGAACTAGCAGTCTTCTGCCTA -ACGGAACTAGCAGTCTTCCCACTA -ACGGAACTAGCAGTCTTCGGAGTA -ACGGAACTAGCAGTCTTCTCGTCT -ACGGAACTAGCAGTCTTCTGCACT -ACGGAACTAGCAGTCTTCCTGACT -ACGGAACTAGCAGTCTTCCAACCT -ACGGAACTAGCAGTCTTCGCTACT -ACGGAACTAGCAGTCTTCGGATCT -ACGGAACTAGCAGTCTTCAAGGCT -ACGGAACTAGCAGTCTTCTCAACC -ACGGAACTAGCAGTCTTCTGTTCC -ACGGAACTAGCAGTCTTCATTCCC -ACGGAACTAGCAGTCTTCTTCTCG -ACGGAACTAGCAGTCTTCTAGACG -ACGGAACTAGCAGTCTTCGTAACG -ACGGAACTAGCAGTCTTCACTTCG -ACGGAACTAGCAGTCTTCTACGCA -ACGGAACTAGCAGTCTTCCTTGCA -ACGGAACTAGCAGTCTTCCGAACA -ACGGAACTAGCAGTCTTCCAGTCA -ACGGAACTAGCAGTCTTCGATCCA -ACGGAACTAGCAGTCTTCACGACA -ACGGAACTAGCAGTCTTCAGCTCA -ACGGAACTAGCAGTCTTCTCACGT -ACGGAACTAGCAGTCTTCCGTAGT -ACGGAACTAGCAGTCTTCGTCAGT -ACGGAACTAGCAGTCTTCGAAGGT -ACGGAACTAGCAGTCTTCAACCGT -ACGGAACTAGCAGTCTTCTTGTGC -ACGGAACTAGCAGTCTTCCTAAGC -ACGGAACTAGCAGTCTTCACTAGC -ACGGAACTAGCAGTCTTCAGATGC -ACGGAACTAGCAGTCTTCTGAAGG -ACGGAACTAGCAGTCTTCCAATGG -ACGGAACTAGCAGTCTTCATGAGG -ACGGAACTAGCAGTCTTCAATGGG -ACGGAACTAGCAGTCTTCTCCTGA -ACGGAACTAGCAGTCTTCTAGCGA -ACGGAACTAGCAGTCTTCCACAGA -ACGGAACTAGCAGTCTTCGCAAGA -ACGGAACTAGCAGTCTTCGGTTGA -ACGGAACTAGCAGTCTTCTCCGAT -ACGGAACTAGCAGTCTTCTGGCAT -ACGGAACTAGCAGTCTTCCGAGAT -ACGGAACTAGCAGTCTTCTACCAC -ACGGAACTAGCAGTCTTCCAGAAC -ACGGAACTAGCAGTCTTCGTCTAC -ACGGAACTAGCAGTCTTCACGTAC -ACGGAACTAGCAGTCTTCAGTGAC -ACGGAACTAGCAGTCTTCCTGTAG -ACGGAACTAGCAGTCTTCCCTAAG -ACGGAACTAGCAGTCTTCGTTCAG -ACGGAACTAGCAGTCTTCGCATAG -ACGGAACTAGCAGTCTTCGACAAG -ACGGAACTAGCAGTCTTCAAGCAG -ACGGAACTAGCAGTCTTCCGTCAA -ACGGAACTAGCAGTCTTCGCTGAA -ACGGAACTAGCAGTCTTCAGTACG -ACGGAACTAGCAGTCTTCATCCGA -ACGGAACTAGCAGTCTTCATGGGA -ACGGAACTAGCAGTCTTCGTGCAA -ACGGAACTAGCAGTCTTCGAGGAA -ACGGAACTAGCAGTCTTCCAGGTA -ACGGAACTAGCAGTCTTCGACTCT -ACGGAACTAGCAGTCTTCAGTCCT -ACGGAACTAGCAGTCTTCTAAGCC -ACGGAACTAGCAGTCTTCATAGCC -ACGGAACTAGCAGTCTTCTAACCG -ACGGAACTAGCAGTCTTCATGCCA -ACGGAACTAGCACTCTCTGGAAAC -ACGGAACTAGCACTCTCTAACACC -ACGGAACTAGCACTCTCTATCGAG -ACGGAACTAGCACTCTCTCTCCTT -ACGGAACTAGCACTCTCTCCTGTT -ACGGAACTAGCACTCTCTCGGTTT -ACGGAACTAGCACTCTCTGTGGTT -ACGGAACTAGCACTCTCTGCCTTT -ACGGAACTAGCACTCTCTGGTCTT -ACGGAACTAGCACTCTCTACGCTT -ACGGAACTAGCACTCTCTAGCGTT -ACGGAACTAGCACTCTCTTTCGTC -ACGGAACTAGCACTCTCTTCTCTC -ACGGAACTAGCACTCTCTTGGATC -ACGGAACTAGCACTCTCTCACTTC -ACGGAACTAGCACTCTCTGTACTC -ACGGAACTAGCACTCTCTGATGTC -ACGGAACTAGCACTCTCTACAGTC -ACGGAACTAGCACTCTCTTTGCTG -ACGGAACTAGCACTCTCTTCCATG -ACGGAACTAGCACTCTCTTGTGTG -ACGGAACTAGCACTCTCTCTAGTG -ACGGAACTAGCACTCTCTCATCTG -ACGGAACTAGCACTCTCTGAGTTG -ACGGAACTAGCACTCTCTAGACTG -ACGGAACTAGCACTCTCTTCGGTA -ACGGAACTAGCACTCTCTTGCCTA -ACGGAACTAGCACTCTCTCCACTA -ACGGAACTAGCACTCTCTGGAGTA -ACGGAACTAGCACTCTCTTCGTCT -ACGGAACTAGCACTCTCTTGCACT -ACGGAACTAGCACTCTCTCTGACT -ACGGAACTAGCACTCTCTCAACCT -ACGGAACTAGCACTCTCTGCTACT -ACGGAACTAGCACTCTCTGGATCT -ACGGAACTAGCACTCTCTAAGGCT -ACGGAACTAGCACTCTCTTCAACC -ACGGAACTAGCACTCTCTTGTTCC -ACGGAACTAGCACTCTCTATTCCC -ACGGAACTAGCACTCTCTTTCTCG -ACGGAACTAGCACTCTCTTAGACG -ACGGAACTAGCACTCTCTGTAACG -ACGGAACTAGCACTCTCTACTTCG -ACGGAACTAGCACTCTCTTACGCA -ACGGAACTAGCACTCTCTCTTGCA -ACGGAACTAGCACTCTCTCGAACA -ACGGAACTAGCACTCTCTCAGTCA -ACGGAACTAGCACTCTCTGATCCA -ACGGAACTAGCACTCTCTACGACA -ACGGAACTAGCACTCTCTAGCTCA -ACGGAACTAGCACTCTCTTCACGT -ACGGAACTAGCACTCTCTCGTAGT -ACGGAACTAGCACTCTCTGTCAGT -ACGGAACTAGCACTCTCTGAAGGT -ACGGAACTAGCACTCTCTAACCGT -ACGGAACTAGCACTCTCTTTGTGC -ACGGAACTAGCACTCTCTCTAAGC -ACGGAACTAGCACTCTCTACTAGC -ACGGAACTAGCACTCTCTAGATGC -ACGGAACTAGCACTCTCTTGAAGG -ACGGAACTAGCACTCTCTCAATGG -ACGGAACTAGCACTCTCTATGAGG -ACGGAACTAGCACTCTCTAATGGG -ACGGAACTAGCACTCTCTTCCTGA -ACGGAACTAGCACTCTCTTAGCGA -ACGGAACTAGCACTCTCTCACAGA -ACGGAACTAGCACTCTCTGCAAGA -ACGGAACTAGCACTCTCTGGTTGA -ACGGAACTAGCACTCTCTTCCGAT -ACGGAACTAGCACTCTCTTGGCAT -ACGGAACTAGCACTCTCTCGAGAT -ACGGAACTAGCACTCTCTTACCAC -ACGGAACTAGCACTCTCTCAGAAC -ACGGAACTAGCACTCTCTGTCTAC -ACGGAACTAGCACTCTCTACGTAC -ACGGAACTAGCACTCTCTAGTGAC -ACGGAACTAGCACTCTCTCTGTAG -ACGGAACTAGCACTCTCTCCTAAG -ACGGAACTAGCACTCTCTGTTCAG -ACGGAACTAGCACTCTCTGCATAG -ACGGAACTAGCACTCTCTGACAAG -ACGGAACTAGCACTCTCTAAGCAG -ACGGAACTAGCACTCTCTCGTCAA -ACGGAACTAGCACTCTCTGCTGAA -ACGGAACTAGCACTCTCTAGTACG -ACGGAACTAGCACTCTCTATCCGA -ACGGAACTAGCACTCTCTATGGGA -ACGGAACTAGCACTCTCTGTGCAA -ACGGAACTAGCACTCTCTGAGGAA -ACGGAACTAGCACTCTCTCAGGTA -ACGGAACTAGCACTCTCTGACTCT -ACGGAACTAGCACTCTCTAGTCCT -ACGGAACTAGCACTCTCTTAAGCC -ACGGAACTAGCACTCTCTATAGCC -ACGGAACTAGCACTCTCTTAACCG -ACGGAACTAGCACTCTCTATGCCA -ACGGAACTAGCAATCTGGGGAAAC -ACGGAACTAGCAATCTGGAACACC -ACGGAACTAGCAATCTGGATCGAG -ACGGAACTAGCAATCTGGCTCCTT -ACGGAACTAGCAATCTGGCCTGTT -ACGGAACTAGCAATCTGGCGGTTT -ACGGAACTAGCAATCTGGGTGGTT -ACGGAACTAGCAATCTGGGCCTTT -ACGGAACTAGCAATCTGGGGTCTT -ACGGAACTAGCAATCTGGACGCTT -ACGGAACTAGCAATCTGGAGCGTT -ACGGAACTAGCAATCTGGTTCGTC -ACGGAACTAGCAATCTGGTCTCTC -ACGGAACTAGCAATCTGGTGGATC -ACGGAACTAGCAATCTGGCACTTC -ACGGAACTAGCAATCTGGGTACTC -ACGGAACTAGCAATCTGGGATGTC -ACGGAACTAGCAATCTGGACAGTC -ACGGAACTAGCAATCTGGTTGCTG -ACGGAACTAGCAATCTGGTCCATG -ACGGAACTAGCAATCTGGTGTGTG -ACGGAACTAGCAATCTGGCTAGTG -ACGGAACTAGCAATCTGGCATCTG -ACGGAACTAGCAATCTGGGAGTTG -ACGGAACTAGCAATCTGGAGACTG -ACGGAACTAGCAATCTGGTCGGTA -ACGGAACTAGCAATCTGGTGCCTA -ACGGAACTAGCAATCTGGCCACTA -ACGGAACTAGCAATCTGGGGAGTA -ACGGAACTAGCAATCTGGTCGTCT -ACGGAACTAGCAATCTGGTGCACT -ACGGAACTAGCAATCTGGCTGACT -ACGGAACTAGCAATCTGGCAACCT -ACGGAACTAGCAATCTGGGCTACT -ACGGAACTAGCAATCTGGGGATCT -ACGGAACTAGCAATCTGGAAGGCT -ACGGAACTAGCAATCTGGTCAACC -ACGGAACTAGCAATCTGGTGTTCC -ACGGAACTAGCAATCTGGATTCCC -ACGGAACTAGCAATCTGGTTCTCG -ACGGAACTAGCAATCTGGTAGACG -ACGGAACTAGCAATCTGGGTAACG -ACGGAACTAGCAATCTGGACTTCG -ACGGAACTAGCAATCTGGTACGCA -ACGGAACTAGCAATCTGGCTTGCA -ACGGAACTAGCAATCTGGCGAACA -ACGGAACTAGCAATCTGGCAGTCA -ACGGAACTAGCAATCTGGGATCCA -ACGGAACTAGCAATCTGGACGACA -ACGGAACTAGCAATCTGGAGCTCA -ACGGAACTAGCAATCTGGTCACGT -ACGGAACTAGCAATCTGGCGTAGT -ACGGAACTAGCAATCTGGGTCAGT -ACGGAACTAGCAATCTGGGAAGGT -ACGGAACTAGCAATCTGGAACCGT -ACGGAACTAGCAATCTGGTTGTGC -ACGGAACTAGCAATCTGGCTAAGC -ACGGAACTAGCAATCTGGACTAGC -ACGGAACTAGCAATCTGGAGATGC -ACGGAACTAGCAATCTGGTGAAGG -ACGGAACTAGCAATCTGGCAATGG -ACGGAACTAGCAATCTGGATGAGG -ACGGAACTAGCAATCTGGAATGGG -ACGGAACTAGCAATCTGGTCCTGA -ACGGAACTAGCAATCTGGTAGCGA -ACGGAACTAGCAATCTGGCACAGA -ACGGAACTAGCAATCTGGGCAAGA -ACGGAACTAGCAATCTGGGGTTGA -ACGGAACTAGCAATCTGGTCCGAT -ACGGAACTAGCAATCTGGTGGCAT -ACGGAACTAGCAATCTGGCGAGAT -ACGGAACTAGCAATCTGGTACCAC -ACGGAACTAGCAATCTGGCAGAAC -ACGGAACTAGCAATCTGGGTCTAC -ACGGAACTAGCAATCTGGACGTAC -ACGGAACTAGCAATCTGGAGTGAC -ACGGAACTAGCAATCTGGCTGTAG -ACGGAACTAGCAATCTGGCCTAAG -ACGGAACTAGCAATCTGGGTTCAG -ACGGAACTAGCAATCTGGGCATAG -ACGGAACTAGCAATCTGGGACAAG -ACGGAACTAGCAATCTGGAAGCAG -ACGGAACTAGCAATCTGGCGTCAA -ACGGAACTAGCAATCTGGGCTGAA -ACGGAACTAGCAATCTGGAGTACG -ACGGAACTAGCAATCTGGATCCGA -ACGGAACTAGCAATCTGGATGGGA -ACGGAACTAGCAATCTGGGTGCAA -ACGGAACTAGCAATCTGGGAGGAA -ACGGAACTAGCAATCTGGCAGGTA -ACGGAACTAGCAATCTGGGACTCT -ACGGAACTAGCAATCTGGAGTCCT -ACGGAACTAGCAATCTGGTAAGCC -ACGGAACTAGCAATCTGGATAGCC -ACGGAACTAGCAATCTGGTAACCG -ACGGAACTAGCAATCTGGATGCCA -ACGGAACTAGCATTCCACGGAAAC -ACGGAACTAGCATTCCACAACACC -ACGGAACTAGCATTCCACATCGAG -ACGGAACTAGCATTCCACCTCCTT -ACGGAACTAGCATTCCACCCTGTT -ACGGAACTAGCATTCCACCGGTTT -ACGGAACTAGCATTCCACGTGGTT -ACGGAACTAGCATTCCACGCCTTT -ACGGAACTAGCATTCCACGGTCTT -ACGGAACTAGCATTCCACACGCTT -ACGGAACTAGCATTCCACAGCGTT -ACGGAACTAGCATTCCACTTCGTC -ACGGAACTAGCATTCCACTCTCTC -ACGGAACTAGCATTCCACTGGATC -ACGGAACTAGCATTCCACCACTTC -ACGGAACTAGCATTCCACGTACTC -ACGGAACTAGCATTCCACGATGTC -ACGGAACTAGCATTCCACACAGTC -ACGGAACTAGCATTCCACTTGCTG -ACGGAACTAGCATTCCACTCCATG -ACGGAACTAGCATTCCACTGTGTG -ACGGAACTAGCATTCCACCTAGTG -ACGGAACTAGCATTCCACCATCTG -ACGGAACTAGCATTCCACGAGTTG -ACGGAACTAGCATTCCACAGACTG -ACGGAACTAGCATTCCACTCGGTA -ACGGAACTAGCATTCCACTGCCTA -ACGGAACTAGCATTCCACCCACTA -ACGGAACTAGCATTCCACGGAGTA -ACGGAACTAGCATTCCACTCGTCT -ACGGAACTAGCATTCCACTGCACT -ACGGAACTAGCATTCCACCTGACT -ACGGAACTAGCATTCCACCAACCT -ACGGAACTAGCATTCCACGCTACT -ACGGAACTAGCATTCCACGGATCT -ACGGAACTAGCATTCCACAAGGCT -ACGGAACTAGCATTCCACTCAACC -ACGGAACTAGCATTCCACTGTTCC -ACGGAACTAGCATTCCACATTCCC -ACGGAACTAGCATTCCACTTCTCG -ACGGAACTAGCATTCCACTAGACG -ACGGAACTAGCATTCCACGTAACG -ACGGAACTAGCATTCCACACTTCG -ACGGAACTAGCATTCCACTACGCA -ACGGAACTAGCATTCCACCTTGCA -ACGGAACTAGCATTCCACCGAACA -ACGGAACTAGCATTCCACCAGTCA -ACGGAACTAGCATTCCACGATCCA -ACGGAACTAGCATTCCACACGACA -ACGGAACTAGCATTCCACAGCTCA -ACGGAACTAGCATTCCACTCACGT -ACGGAACTAGCATTCCACCGTAGT -ACGGAACTAGCATTCCACGTCAGT -ACGGAACTAGCATTCCACGAAGGT -ACGGAACTAGCATTCCACAACCGT -ACGGAACTAGCATTCCACTTGTGC -ACGGAACTAGCATTCCACCTAAGC -ACGGAACTAGCATTCCACACTAGC -ACGGAACTAGCATTCCACAGATGC -ACGGAACTAGCATTCCACTGAAGG -ACGGAACTAGCATTCCACCAATGG -ACGGAACTAGCATTCCACATGAGG -ACGGAACTAGCATTCCACAATGGG -ACGGAACTAGCATTCCACTCCTGA -ACGGAACTAGCATTCCACTAGCGA -ACGGAACTAGCATTCCACCACAGA -ACGGAACTAGCATTCCACGCAAGA -ACGGAACTAGCATTCCACGGTTGA -ACGGAACTAGCATTCCACTCCGAT -ACGGAACTAGCATTCCACTGGCAT -ACGGAACTAGCATTCCACCGAGAT -ACGGAACTAGCATTCCACTACCAC -ACGGAACTAGCATTCCACCAGAAC -ACGGAACTAGCATTCCACGTCTAC -ACGGAACTAGCATTCCACACGTAC -ACGGAACTAGCATTCCACAGTGAC -ACGGAACTAGCATTCCACCTGTAG -ACGGAACTAGCATTCCACCCTAAG -ACGGAACTAGCATTCCACGTTCAG -ACGGAACTAGCATTCCACGCATAG -ACGGAACTAGCATTCCACGACAAG -ACGGAACTAGCATTCCACAAGCAG -ACGGAACTAGCATTCCACCGTCAA -ACGGAACTAGCATTCCACGCTGAA -ACGGAACTAGCATTCCACAGTACG -ACGGAACTAGCATTCCACATCCGA -ACGGAACTAGCATTCCACATGGGA -ACGGAACTAGCATTCCACGTGCAA -ACGGAACTAGCATTCCACGAGGAA -ACGGAACTAGCATTCCACCAGGTA -ACGGAACTAGCATTCCACGACTCT -ACGGAACTAGCATTCCACAGTCCT -ACGGAACTAGCATTCCACTAAGCC -ACGGAACTAGCATTCCACATAGCC -ACGGAACTAGCATTCCACTAACCG -ACGGAACTAGCATTCCACATGCCA -ACGGAACTAGCACTCGTAGGAAAC -ACGGAACTAGCACTCGTAAACACC -ACGGAACTAGCACTCGTAATCGAG -ACGGAACTAGCACTCGTACTCCTT -ACGGAACTAGCACTCGTACCTGTT -ACGGAACTAGCACTCGTACGGTTT -ACGGAACTAGCACTCGTAGTGGTT -ACGGAACTAGCACTCGTAGCCTTT -ACGGAACTAGCACTCGTAGGTCTT -ACGGAACTAGCACTCGTAACGCTT -ACGGAACTAGCACTCGTAAGCGTT -ACGGAACTAGCACTCGTATTCGTC -ACGGAACTAGCACTCGTATCTCTC -ACGGAACTAGCACTCGTATGGATC -ACGGAACTAGCACTCGTACACTTC -ACGGAACTAGCACTCGTAGTACTC -ACGGAACTAGCACTCGTAGATGTC -ACGGAACTAGCACTCGTAACAGTC -ACGGAACTAGCACTCGTATTGCTG -ACGGAACTAGCACTCGTATCCATG -ACGGAACTAGCACTCGTATGTGTG -ACGGAACTAGCACTCGTACTAGTG -ACGGAACTAGCACTCGTACATCTG -ACGGAACTAGCACTCGTAGAGTTG -ACGGAACTAGCACTCGTAAGACTG -ACGGAACTAGCACTCGTATCGGTA -ACGGAACTAGCACTCGTATGCCTA -ACGGAACTAGCACTCGTACCACTA -ACGGAACTAGCACTCGTAGGAGTA -ACGGAACTAGCACTCGTATCGTCT -ACGGAACTAGCACTCGTATGCACT -ACGGAACTAGCACTCGTACTGACT -ACGGAACTAGCACTCGTACAACCT -ACGGAACTAGCACTCGTAGCTACT -ACGGAACTAGCACTCGTAGGATCT -ACGGAACTAGCACTCGTAAAGGCT -ACGGAACTAGCACTCGTATCAACC -ACGGAACTAGCACTCGTATGTTCC -ACGGAACTAGCACTCGTAATTCCC -ACGGAACTAGCACTCGTATTCTCG -ACGGAACTAGCACTCGTATAGACG -ACGGAACTAGCACTCGTAGTAACG -ACGGAACTAGCACTCGTAACTTCG -ACGGAACTAGCACTCGTATACGCA -ACGGAACTAGCACTCGTACTTGCA -ACGGAACTAGCACTCGTACGAACA -ACGGAACTAGCACTCGTACAGTCA -ACGGAACTAGCACTCGTAGATCCA -ACGGAACTAGCACTCGTAACGACA -ACGGAACTAGCACTCGTAAGCTCA -ACGGAACTAGCACTCGTATCACGT -ACGGAACTAGCACTCGTACGTAGT -ACGGAACTAGCACTCGTAGTCAGT -ACGGAACTAGCACTCGTAGAAGGT -ACGGAACTAGCACTCGTAAACCGT -ACGGAACTAGCACTCGTATTGTGC -ACGGAACTAGCACTCGTACTAAGC -ACGGAACTAGCACTCGTAACTAGC -ACGGAACTAGCACTCGTAAGATGC -ACGGAACTAGCACTCGTATGAAGG -ACGGAACTAGCACTCGTACAATGG -ACGGAACTAGCACTCGTAATGAGG -ACGGAACTAGCACTCGTAAATGGG -ACGGAACTAGCACTCGTATCCTGA -ACGGAACTAGCACTCGTATAGCGA -ACGGAACTAGCACTCGTACACAGA -ACGGAACTAGCACTCGTAGCAAGA -ACGGAACTAGCACTCGTAGGTTGA -ACGGAACTAGCACTCGTATCCGAT -ACGGAACTAGCACTCGTATGGCAT -ACGGAACTAGCACTCGTACGAGAT -ACGGAACTAGCACTCGTATACCAC -ACGGAACTAGCACTCGTACAGAAC -ACGGAACTAGCACTCGTAGTCTAC -ACGGAACTAGCACTCGTAACGTAC -ACGGAACTAGCACTCGTAAGTGAC -ACGGAACTAGCACTCGTACTGTAG -ACGGAACTAGCACTCGTACCTAAG -ACGGAACTAGCACTCGTAGTTCAG -ACGGAACTAGCACTCGTAGCATAG -ACGGAACTAGCACTCGTAGACAAG -ACGGAACTAGCACTCGTAAAGCAG -ACGGAACTAGCACTCGTACGTCAA -ACGGAACTAGCACTCGTAGCTGAA -ACGGAACTAGCACTCGTAAGTACG -ACGGAACTAGCACTCGTAATCCGA -ACGGAACTAGCACTCGTAATGGGA -ACGGAACTAGCACTCGTAGTGCAA -ACGGAACTAGCACTCGTAGAGGAA -ACGGAACTAGCACTCGTACAGGTA -ACGGAACTAGCACTCGTAGACTCT -ACGGAACTAGCACTCGTAAGTCCT -ACGGAACTAGCACTCGTATAAGCC -ACGGAACTAGCACTCGTAATAGCC -ACGGAACTAGCACTCGTATAACCG -ACGGAACTAGCACTCGTAATGCCA -ACGGAACTAGCAGTCGATGGAAAC -ACGGAACTAGCAGTCGATAACACC -ACGGAACTAGCAGTCGATATCGAG -ACGGAACTAGCAGTCGATCTCCTT -ACGGAACTAGCAGTCGATCCTGTT -ACGGAACTAGCAGTCGATCGGTTT -ACGGAACTAGCAGTCGATGTGGTT -ACGGAACTAGCAGTCGATGCCTTT -ACGGAACTAGCAGTCGATGGTCTT -ACGGAACTAGCAGTCGATACGCTT -ACGGAACTAGCAGTCGATAGCGTT -ACGGAACTAGCAGTCGATTTCGTC -ACGGAACTAGCAGTCGATTCTCTC -ACGGAACTAGCAGTCGATTGGATC -ACGGAACTAGCAGTCGATCACTTC -ACGGAACTAGCAGTCGATGTACTC -ACGGAACTAGCAGTCGATGATGTC -ACGGAACTAGCAGTCGATACAGTC -ACGGAACTAGCAGTCGATTTGCTG -ACGGAACTAGCAGTCGATTCCATG -ACGGAACTAGCAGTCGATTGTGTG -ACGGAACTAGCAGTCGATCTAGTG -ACGGAACTAGCAGTCGATCATCTG -ACGGAACTAGCAGTCGATGAGTTG -ACGGAACTAGCAGTCGATAGACTG -ACGGAACTAGCAGTCGATTCGGTA -ACGGAACTAGCAGTCGATTGCCTA -ACGGAACTAGCAGTCGATCCACTA -ACGGAACTAGCAGTCGATGGAGTA -ACGGAACTAGCAGTCGATTCGTCT -ACGGAACTAGCAGTCGATTGCACT -ACGGAACTAGCAGTCGATCTGACT -ACGGAACTAGCAGTCGATCAACCT -ACGGAACTAGCAGTCGATGCTACT -ACGGAACTAGCAGTCGATGGATCT -ACGGAACTAGCAGTCGATAAGGCT -ACGGAACTAGCAGTCGATTCAACC -ACGGAACTAGCAGTCGATTGTTCC -ACGGAACTAGCAGTCGATATTCCC -ACGGAACTAGCAGTCGATTTCTCG -ACGGAACTAGCAGTCGATTAGACG -ACGGAACTAGCAGTCGATGTAACG -ACGGAACTAGCAGTCGATACTTCG -ACGGAACTAGCAGTCGATTACGCA -ACGGAACTAGCAGTCGATCTTGCA -ACGGAACTAGCAGTCGATCGAACA -ACGGAACTAGCAGTCGATCAGTCA -ACGGAACTAGCAGTCGATGATCCA -ACGGAACTAGCAGTCGATACGACA -ACGGAACTAGCAGTCGATAGCTCA -ACGGAACTAGCAGTCGATTCACGT -ACGGAACTAGCAGTCGATCGTAGT -ACGGAACTAGCAGTCGATGTCAGT -ACGGAACTAGCAGTCGATGAAGGT -ACGGAACTAGCAGTCGATAACCGT -ACGGAACTAGCAGTCGATTTGTGC -ACGGAACTAGCAGTCGATCTAAGC -ACGGAACTAGCAGTCGATACTAGC -ACGGAACTAGCAGTCGATAGATGC -ACGGAACTAGCAGTCGATTGAAGG -ACGGAACTAGCAGTCGATCAATGG -ACGGAACTAGCAGTCGATATGAGG -ACGGAACTAGCAGTCGATAATGGG -ACGGAACTAGCAGTCGATTCCTGA -ACGGAACTAGCAGTCGATTAGCGA -ACGGAACTAGCAGTCGATCACAGA -ACGGAACTAGCAGTCGATGCAAGA -ACGGAACTAGCAGTCGATGGTTGA -ACGGAACTAGCAGTCGATTCCGAT -ACGGAACTAGCAGTCGATTGGCAT -ACGGAACTAGCAGTCGATCGAGAT -ACGGAACTAGCAGTCGATTACCAC -ACGGAACTAGCAGTCGATCAGAAC -ACGGAACTAGCAGTCGATGTCTAC -ACGGAACTAGCAGTCGATACGTAC -ACGGAACTAGCAGTCGATAGTGAC -ACGGAACTAGCAGTCGATCTGTAG -ACGGAACTAGCAGTCGATCCTAAG -ACGGAACTAGCAGTCGATGTTCAG -ACGGAACTAGCAGTCGATGCATAG -ACGGAACTAGCAGTCGATGACAAG -ACGGAACTAGCAGTCGATAAGCAG -ACGGAACTAGCAGTCGATCGTCAA -ACGGAACTAGCAGTCGATGCTGAA -ACGGAACTAGCAGTCGATAGTACG -ACGGAACTAGCAGTCGATATCCGA -ACGGAACTAGCAGTCGATATGGGA -ACGGAACTAGCAGTCGATGTGCAA -ACGGAACTAGCAGTCGATGAGGAA -ACGGAACTAGCAGTCGATCAGGTA -ACGGAACTAGCAGTCGATGACTCT -ACGGAACTAGCAGTCGATAGTCCT -ACGGAACTAGCAGTCGATTAAGCC -ACGGAACTAGCAGTCGATATAGCC -ACGGAACTAGCAGTCGATTAACCG -ACGGAACTAGCAGTCGATATGCCA -ACGGAACTAGCAGTCACAGGAAAC -ACGGAACTAGCAGTCACAAACACC -ACGGAACTAGCAGTCACAATCGAG -ACGGAACTAGCAGTCACACTCCTT -ACGGAACTAGCAGTCACACCTGTT -ACGGAACTAGCAGTCACACGGTTT -ACGGAACTAGCAGTCACAGTGGTT -ACGGAACTAGCAGTCACAGCCTTT -ACGGAACTAGCAGTCACAGGTCTT -ACGGAACTAGCAGTCACAACGCTT -ACGGAACTAGCAGTCACAAGCGTT -ACGGAACTAGCAGTCACATTCGTC -ACGGAACTAGCAGTCACATCTCTC -ACGGAACTAGCAGTCACATGGATC -ACGGAACTAGCAGTCACACACTTC -ACGGAACTAGCAGTCACAGTACTC -ACGGAACTAGCAGTCACAGATGTC -ACGGAACTAGCAGTCACAACAGTC -ACGGAACTAGCAGTCACATTGCTG -ACGGAACTAGCAGTCACATCCATG -ACGGAACTAGCAGTCACATGTGTG -ACGGAACTAGCAGTCACACTAGTG -ACGGAACTAGCAGTCACACATCTG -ACGGAACTAGCAGTCACAGAGTTG -ACGGAACTAGCAGTCACAAGACTG -ACGGAACTAGCAGTCACATCGGTA -ACGGAACTAGCAGTCACATGCCTA -ACGGAACTAGCAGTCACACCACTA -ACGGAACTAGCAGTCACAGGAGTA -ACGGAACTAGCAGTCACATCGTCT -ACGGAACTAGCAGTCACATGCACT -ACGGAACTAGCAGTCACACTGACT -ACGGAACTAGCAGTCACACAACCT -ACGGAACTAGCAGTCACAGCTACT -ACGGAACTAGCAGTCACAGGATCT -ACGGAACTAGCAGTCACAAAGGCT -ACGGAACTAGCAGTCACATCAACC -ACGGAACTAGCAGTCACATGTTCC -ACGGAACTAGCAGTCACAATTCCC -ACGGAACTAGCAGTCACATTCTCG -ACGGAACTAGCAGTCACATAGACG -ACGGAACTAGCAGTCACAGTAACG -ACGGAACTAGCAGTCACAACTTCG -ACGGAACTAGCAGTCACATACGCA -ACGGAACTAGCAGTCACACTTGCA -ACGGAACTAGCAGTCACACGAACA -ACGGAACTAGCAGTCACACAGTCA -ACGGAACTAGCAGTCACAGATCCA -ACGGAACTAGCAGTCACAACGACA -ACGGAACTAGCAGTCACAAGCTCA -ACGGAACTAGCAGTCACATCACGT -ACGGAACTAGCAGTCACACGTAGT -ACGGAACTAGCAGTCACAGTCAGT -ACGGAACTAGCAGTCACAGAAGGT -ACGGAACTAGCAGTCACAAACCGT -ACGGAACTAGCAGTCACATTGTGC -ACGGAACTAGCAGTCACACTAAGC -ACGGAACTAGCAGTCACAACTAGC -ACGGAACTAGCAGTCACAAGATGC -ACGGAACTAGCAGTCACATGAAGG -ACGGAACTAGCAGTCACACAATGG -ACGGAACTAGCAGTCACAATGAGG -ACGGAACTAGCAGTCACAAATGGG -ACGGAACTAGCAGTCACATCCTGA -ACGGAACTAGCAGTCACATAGCGA -ACGGAACTAGCAGTCACACACAGA -ACGGAACTAGCAGTCACAGCAAGA -ACGGAACTAGCAGTCACAGGTTGA -ACGGAACTAGCAGTCACATCCGAT -ACGGAACTAGCAGTCACATGGCAT -ACGGAACTAGCAGTCACACGAGAT -ACGGAACTAGCAGTCACATACCAC -ACGGAACTAGCAGTCACACAGAAC -ACGGAACTAGCAGTCACAGTCTAC -ACGGAACTAGCAGTCACAACGTAC -ACGGAACTAGCAGTCACAAGTGAC -ACGGAACTAGCAGTCACACTGTAG -ACGGAACTAGCAGTCACACCTAAG -ACGGAACTAGCAGTCACAGTTCAG -ACGGAACTAGCAGTCACAGCATAG -ACGGAACTAGCAGTCACAGACAAG -ACGGAACTAGCAGTCACAAAGCAG -ACGGAACTAGCAGTCACACGTCAA -ACGGAACTAGCAGTCACAGCTGAA -ACGGAACTAGCAGTCACAAGTACG -ACGGAACTAGCAGTCACAATCCGA -ACGGAACTAGCAGTCACAATGGGA -ACGGAACTAGCAGTCACAGTGCAA -ACGGAACTAGCAGTCACAGAGGAA -ACGGAACTAGCAGTCACACAGGTA -ACGGAACTAGCAGTCACAGACTCT -ACGGAACTAGCAGTCACAAGTCCT -ACGGAACTAGCAGTCACATAAGCC -ACGGAACTAGCAGTCACAATAGCC -ACGGAACTAGCAGTCACATAACCG -ACGGAACTAGCAGTCACAATGCCA -ACGGAACTAGCACTGTTGGGAAAC -ACGGAACTAGCACTGTTGAACACC -ACGGAACTAGCACTGTTGATCGAG -ACGGAACTAGCACTGTTGCTCCTT -ACGGAACTAGCACTGTTGCCTGTT -ACGGAACTAGCACTGTTGCGGTTT -ACGGAACTAGCACTGTTGGTGGTT -ACGGAACTAGCACTGTTGGCCTTT -ACGGAACTAGCACTGTTGGGTCTT -ACGGAACTAGCACTGTTGACGCTT -ACGGAACTAGCACTGTTGAGCGTT -ACGGAACTAGCACTGTTGTTCGTC -ACGGAACTAGCACTGTTGTCTCTC -ACGGAACTAGCACTGTTGTGGATC -ACGGAACTAGCACTGTTGCACTTC -ACGGAACTAGCACTGTTGGTACTC -ACGGAACTAGCACTGTTGGATGTC -ACGGAACTAGCACTGTTGACAGTC -ACGGAACTAGCACTGTTGTTGCTG -ACGGAACTAGCACTGTTGTCCATG -ACGGAACTAGCACTGTTGTGTGTG -ACGGAACTAGCACTGTTGCTAGTG -ACGGAACTAGCACTGTTGCATCTG -ACGGAACTAGCACTGTTGGAGTTG -ACGGAACTAGCACTGTTGAGACTG -ACGGAACTAGCACTGTTGTCGGTA -ACGGAACTAGCACTGTTGTGCCTA -ACGGAACTAGCACTGTTGCCACTA -ACGGAACTAGCACTGTTGGGAGTA -ACGGAACTAGCACTGTTGTCGTCT -ACGGAACTAGCACTGTTGTGCACT -ACGGAACTAGCACTGTTGCTGACT -ACGGAACTAGCACTGTTGCAACCT -ACGGAACTAGCACTGTTGGCTACT -ACGGAACTAGCACTGTTGGGATCT -ACGGAACTAGCACTGTTGAAGGCT -ACGGAACTAGCACTGTTGTCAACC -ACGGAACTAGCACTGTTGTGTTCC -ACGGAACTAGCACTGTTGATTCCC -ACGGAACTAGCACTGTTGTTCTCG -ACGGAACTAGCACTGTTGTAGACG -ACGGAACTAGCACTGTTGGTAACG -ACGGAACTAGCACTGTTGACTTCG -ACGGAACTAGCACTGTTGTACGCA -ACGGAACTAGCACTGTTGCTTGCA -ACGGAACTAGCACTGTTGCGAACA -ACGGAACTAGCACTGTTGCAGTCA -ACGGAACTAGCACTGTTGGATCCA -ACGGAACTAGCACTGTTGACGACA -ACGGAACTAGCACTGTTGAGCTCA -ACGGAACTAGCACTGTTGTCACGT -ACGGAACTAGCACTGTTGCGTAGT -ACGGAACTAGCACTGTTGGTCAGT -ACGGAACTAGCACTGTTGGAAGGT -ACGGAACTAGCACTGTTGAACCGT -ACGGAACTAGCACTGTTGTTGTGC -ACGGAACTAGCACTGTTGCTAAGC -ACGGAACTAGCACTGTTGACTAGC -ACGGAACTAGCACTGTTGAGATGC -ACGGAACTAGCACTGTTGTGAAGG -ACGGAACTAGCACTGTTGCAATGG -ACGGAACTAGCACTGTTGATGAGG -ACGGAACTAGCACTGTTGAATGGG -ACGGAACTAGCACTGTTGTCCTGA -ACGGAACTAGCACTGTTGTAGCGA -ACGGAACTAGCACTGTTGCACAGA -ACGGAACTAGCACTGTTGGCAAGA -ACGGAACTAGCACTGTTGGGTTGA -ACGGAACTAGCACTGTTGTCCGAT -ACGGAACTAGCACTGTTGTGGCAT -ACGGAACTAGCACTGTTGCGAGAT -ACGGAACTAGCACTGTTGTACCAC -ACGGAACTAGCACTGTTGCAGAAC -ACGGAACTAGCACTGTTGGTCTAC -ACGGAACTAGCACTGTTGACGTAC -ACGGAACTAGCACTGTTGAGTGAC -ACGGAACTAGCACTGTTGCTGTAG -ACGGAACTAGCACTGTTGCCTAAG -ACGGAACTAGCACTGTTGGTTCAG -ACGGAACTAGCACTGTTGGCATAG -ACGGAACTAGCACTGTTGGACAAG -ACGGAACTAGCACTGTTGAAGCAG -ACGGAACTAGCACTGTTGCGTCAA -ACGGAACTAGCACTGTTGGCTGAA -ACGGAACTAGCACTGTTGAGTACG -ACGGAACTAGCACTGTTGATCCGA -ACGGAACTAGCACTGTTGATGGGA -ACGGAACTAGCACTGTTGGTGCAA -ACGGAACTAGCACTGTTGGAGGAA -ACGGAACTAGCACTGTTGCAGGTA -ACGGAACTAGCACTGTTGGACTCT -ACGGAACTAGCACTGTTGAGTCCT -ACGGAACTAGCACTGTTGTAAGCC -ACGGAACTAGCACTGTTGATAGCC -ACGGAACTAGCACTGTTGTAACCG -ACGGAACTAGCACTGTTGATGCCA -ACGGAACTAGCAATGTCCGGAAAC -ACGGAACTAGCAATGTCCAACACC -ACGGAACTAGCAATGTCCATCGAG -ACGGAACTAGCAATGTCCCTCCTT -ACGGAACTAGCAATGTCCCCTGTT -ACGGAACTAGCAATGTCCCGGTTT -ACGGAACTAGCAATGTCCGTGGTT -ACGGAACTAGCAATGTCCGCCTTT -ACGGAACTAGCAATGTCCGGTCTT -ACGGAACTAGCAATGTCCACGCTT -ACGGAACTAGCAATGTCCAGCGTT -ACGGAACTAGCAATGTCCTTCGTC -ACGGAACTAGCAATGTCCTCTCTC -ACGGAACTAGCAATGTCCTGGATC -ACGGAACTAGCAATGTCCCACTTC -ACGGAACTAGCAATGTCCGTACTC -ACGGAACTAGCAATGTCCGATGTC -ACGGAACTAGCAATGTCCACAGTC -ACGGAACTAGCAATGTCCTTGCTG -ACGGAACTAGCAATGTCCTCCATG -ACGGAACTAGCAATGTCCTGTGTG -ACGGAACTAGCAATGTCCCTAGTG -ACGGAACTAGCAATGTCCCATCTG -ACGGAACTAGCAATGTCCGAGTTG -ACGGAACTAGCAATGTCCAGACTG -ACGGAACTAGCAATGTCCTCGGTA -ACGGAACTAGCAATGTCCTGCCTA -ACGGAACTAGCAATGTCCCCACTA -ACGGAACTAGCAATGTCCGGAGTA -ACGGAACTAGCAATGTCCTCGTCT -ACGGAACTAGCAATGTCCTGCACT -ACGGAACTAGCAATGTCCCTGACT -ACGGAACTAGCAATGTCCCAACCT -ACGGAACTAGCAATGTCCGCTACT -ACGGAACTAGCAATGTCCGGATCT -ACGGAACTAGCAATGTCCAAGGCT -ACGGAACTAGCAATGTCCTCAACC -ACGGAACTAGCAATGTCCTGTTCC -ACGGAACTAGCAATGTCCATTCCC -ACGGAACTAGCAATGTCCTTCTCG -ACGGAACTAGCAATGTCCTAGACG -ACGGAACTAGCAATGTCCGTAACG -ACGGAACTAGCAATGTCCACTTCG -ACGGAACTAGCAATGTCCTACGCA -ACGGAACTAGCAATGTCCCTTGCA -ACGGAACTAGCAATGTCCCGAACA -ACGGAACTAGCAATGTCCCAGTCA -ACGGAACTAGCAATGTCCGATCCA -ACGGAACTAGCAATGTCCACGACA -ACGGAACTAGCAATGTCCAGCTCA -ACGGAACTAGCAATGTCCTCACGT -ACGGAACTAGCAATGTCCCGTAGT -ACGGAACTAGCAATGTCCGTCAGT -ACGGAACTAGCAATGTCCGAAGGT -ACGGAACTAGCAATGTCCAACCGT -ACGGAACTAGCAATGTCCTTGTGC -ACGGAACTAGCAATGTCCCTAAGC -ACGGAACTAGCAATGTCCACTAGC -ACGGAACTAGCAATGTCCAGATGC -ACGGAACTAGCAATGTCCTGAAGG -ACGGAACTAGCAATGTCCCAATGG -ACGGAACTAGCAATGTCCATGAGG -ACGGAACTAGCAATGTCCAATGGG -ACGGAACTAGCAATGTCCTCCTGA -ACGGAACTAGCAATGTCCTAGCGA -ACGGAACTAGCAATGTCCCACAGA -ACGGAACTAGCAATGTCCGCAAGA -ACGGAACTAGCAATGTCCGGTTGA -ACGGAACTAGCAATGTCCTCCGAT -ACGGAACTAGCAATGTCCTGGCAT -ACGGAACTAGCAATGTCCCGAGAT -ACGGAACTAGCAATGTCCTACCAC -ACGGAACTAGCAATGTCCCAGAAC -ACGGAACTAGCAATGTCCGTCTAC -ACGGAACTAGCAATGTCCACGTAC -ACGGAACTAGCAATGTCCAGTGAC -ACGGAACTAGCAATGTCCCTGTAG -ACGGAACTAGCAATGTCCCCTAAG -ACGGAACTAGCAATGTCCGTTCAG -ACGGAACTAGCAATGTCCGCATAG -ACGGAACTAGCAATGTCCGACAAG -ACGGAACTAGCAATGTCCAAGCAG -ACGGAACTAGCAATGTCCCGTCAA -ACGGAACTAGCAATGTCCGCTGAA -ACGGAACTAGCAATGTCCAGTACG -ACGGAACTAGCAATGTCCATCCGA -ACGGAACTAGCAATGTCCATGGGA -ACGGAACTAGCAATGTCCGTGCAA -ACGGAACTAGCAATGTCCGAGGAA -ACGGAACTAGCAATGTCCCAGGTA -ACGGAACTAGCAATGTCCGACTCT -ACGGAACTAGCAATGTCCAGTCCT -ACGGAACTAGCAATGTCCTAAGCC -ACGGAACTAGCAATGTCCATAGCC -ACGGAACTAGCAATGTCCTAACCG -ACGGAACTAGCAATGTCCATGCCA -ACGGAACTAGCAGTGTGTGGAAAC -ACGGAACTAGCAGTGTGTAACACC -ACGGAACTAGCAGTGTGTATCGAG -ACGGAACTAGCAGTGTGTCTCCTT -ACGGAACTAGCAGTGTGTCCTGTT -ACGGAACTAGCAGTGTGTCGGTTT -ACGGAACTAGCAGTGTGTGTGGTT -ACGGAACTAGCAGTGTGTGCCTTT -ACGGAACTAGCAGTGTGTGGTCTT -ACGGAACTAGCAGTGTGTACGCTT -ACGGAACTAGCAGTGTGTAGCGTT -ACGGAACTAGCAGTGTGTTTCGTC -ACGGAACTAGCAGTGTGTTCTCTC -ACGGAACTAGCAGTGTGTTGGATC -ACGGAACTAGCAGTGTGTCACTTC -ACGGAACTAGCAGTGTGTGTACTC -ACGGAACTAGCAGTGTGTGATGTC -ACGGAACTAGCAGTGTGTACAGTC -ACGGAACTAGCAGTGTGTTTGCTG -ACGGAACTAGCAGTGTGTTCCATG -ACGGAACTAGCAGTGTGTTGTGTG -ACGGAACTAGCAGTGTGTCTAGTG -ACGGAACTAGCAGTGTGTCATCTG -ACGGAACTAGCAGTGTGTGAGTTG -ACGGAACTAGCAGTGTGTAGACTG -ACGGAACTAGCAGTGTGTTCGGTA -ACGGAACTAGCAGTGTGTTGCCTA -ACGGAACTAGCAGTGTGTCCACTA -ACGGAACTAGCAGTGTGTGGAGTA -ACGGAACTAGCAGTGTGTTCGTCT -ACGGAACTAGCAGTGTGTTGCACT -ACGGAACTAGCAGTGTGTCTGACT -ACGGAACTAGCAGTGTGTCAACCT -ACGGAACTAGCAGTGTGTGCTACT -ACGGAACTAGCAGTGTGTGGATCT -ACGGAACTAGCAGTGTGTAAGGCT -ACGGAACTAGCAGTGTGTTCAACC -ACGGAACTAGCAGTGTGTTGTTCC -ACGGAACTAGCAGTGTGTATTCCC -ACGGAACTAGCAGTGTGTTTCTCG -ACGGAACTAGCAGTGTGTTAGACG -ACGGAACTAGCAGTGTGTGTAACG -ACGGAACTAGCAGTGTGTACTTCG -ACGGAACTAGCAGTGTGTTACGCA -ACGGAACTAGCAGTGTGTCTTGCA -ACGGAACTAGCAGTGTGTCGAACA -ACGGAACTAGCAGTGTGTCAGTCA -ACGGAACTAGCAGTGTGTGATCCA -ACGGAACTAGCAGTGTGTACGACA -ACGGAACTAGCAGTGTGTAGCTCA -ACGGAACTAGCAGTGTGTTCACGT -ACGGAACTAGCAGTGTGTCGTAGT -ACGGAACTAGCAGTGTGTGTCAGT -ACGGAACTAGCAGTGTGTGAAGGT -ACGGAACTAGCAGTGTGTAACCGT -ACGGAACTAGCAGTGTGTTTGTGC -ACGGAACTAGCAGTGTGTCTAAGC -ACGGAACTAGCAGTGTGTACTAGC -ACGGAACTAGCAGTGTGTAGATGC -ACGGAACTAGCAGTGTGTTGAAGG -ACGGAACTAGCAGTGTGTCAATGG -ACGGAACTAGCAGTGTGTATGAGG -ACGGAACTAGCAGTGTGTAATGGG -ACGGAACTAGCAGTGTGTTCCTGA -ACGGAACTAGCAGTGTGTTAGCGA -ACGGAACTAGCAGTGTGTCACAGA -ACGGAACTAGCAGTGTGTGCAAGA -ACGGAACTAGCAGTGTGTGGTTGA -ACGGAACTAGCAGTGTGTTCCGAT -ACGGAACTAGCAGTGTGTTGGCAT -ACGGAACTAGCAGTGTGTCGAGAT -ACGGAACTAGCAGTGTGTTACCAC -ACGGAACTAGCAGTGTGTCAGAAC -ACGGAACTAGCAGTGTGTGTCTAC -ACGGAACTAGCAGTGTGTACGTAC -ACGGAACTAGCAGTGTGTAGTGAC -ACGGAACTAGCAGTGTGTCTGTAG -ACGGAACTAGCAGTGTGTCCTAAG -ACGGAACTAGCAGTGTGTGTTCAG -ACGGAACTAGCAGTGTGTGCATAG -ACGGAACTAGCAGTGTGTGACAAG -ACGGAACTAGCAGTGTGTAAGCAG -ACGGAACTAGCAGTGTGTCGTCAA -ACGGAACTAGCAGTGTGTGCTGAA -ACGGAACTAGCAGTGTGTAGTACG -ACGGAACTAGCAGTGTGTATCCGA -ACGGAACTAGCAGTGTGTATGGGA -ACGGAACTAGCAGTGTGTGTGCAA -ACGGAACTAGCAGTGTGTGAGGAA -ACGGAACTAGCAGTGTGTCAGGTA -ACGGAACTAGCAGTGTGTGACTCT -ACGGAACTAGCAGTGTGTAGTCCT -ACGGAACTAGCAGTGTGTTAAGCC -ACGGAACTAGCAGTGTGTATAGCC -ACGGAACTAGCAGTGTGTTAACCG -ACGGAACTAGCAGTGTGTATGCCA -ACGGAACTAGCAGTGCTAGGAAAC -ACGGAACTAGCAGTGCTAAACACC -ACGGAACTAGCAGTGCTAATCGAG -ACGGAACTAGCAGTGCTACTCCTT -ACGGAACTAGCAGTGCTACCTGTT -ACGGAACTAGCAGTGCTACGGTTT -ACGGAACTAGCAGTGCTAGTGGTT -ACGGAACTAGCAGTGCTAGCCTTT -ACGGAACTAGCAGTGCTAGGTCTT -ACGGAACTAGCAGTGCTAACGCTT -ACGGAACTAGCAGTGCTAAGCGTT -ACGGAACTAGCAGTGCTATTCGTC -ACGGAACTAGCAGTGCTATCTCTC -ACGGAACTAGCAGTGCTATGGATC -ACGGAACTAGCAGTGCTACACTTC -ACGGAACTAGCAGTGCTAGTACTC -ACGGAACTAGCAGTGCTAGATGTC -ACGGAACTAGCAGTGCTAACAGTC -ACGGAACTAGCAGTGCTATTGCTG -ACGGAACTAGCAGTGCTATCCATG -ACGGAACTAGCAGTGCTATGTGTG -ACGGAACTAGCAGTGCTACTAGTG -ACGGAACTAGCAGTGCTACATCTG -ACGGAACTAGCAGTGCTAGAGTTG -ACGGAACTAGCAGTGCTAAGACTG -ACGGAACTAGCAGTGCTATCGGTA -ACGGAACTAGCAGTGCTATGCCTA -ACGGAACTAGCAGTGCTACCACTA -ACGGAACTAGCAGTGCTAGGAGTA -ACGGAACTAGCAGTGCTATCGTCT -ACGGAACTAGCAGTGCTATGCACT -ACGGAACTAGCAGTGCTACTGACT -ACGGAACTAGCAGTGCTACAACCT -ACGGAACTAGCAGTGCTAGCTACT -ACGGAACTAGCAGTGCTAGGATCT -ACGGAACTAGCAGTGCTAAAGGCT -ACGGAACTAGCAGTGCTATCAACC -ACGGAACTAGCAGTGCTATGTTCC -ACGGAACTAGCAGTGCTAATTCCC -ACGGAACTAGCAGTGCTATTCTCG -ACGGAACTAGCAGTGCTATAGACG -ACGGAACTAGCAGTGCTAGTAACG -ACGGAACTAGCAGTGCTAACTTCG -ACGGAACTAGCAGTGCTATACGCA -ACGGAACTAGCAGTGCTACTTGCA -ACGGAACTAGCAGTGCTACGAACA -ACGGAACTAGCAGTGCTACAGTCA -ACGGAACTAGCAGTGCTAGATCCA -ACGGAACTAGCAGTGCTAACGACA -ACGGAACTAGCAGTGCTAAGCTCA -ACGGAACTAGCAGTGCTATCACGT -ACGGAACTAGCAGTGCTACGTAGT -ACGGAACTAGCAGTGCTAGTCAGT -ACGGAACTAGCAGTGCTAGAAGGT -ACGGAACTAGCAGTGCTAAACCGT -ACGGAACTAGCAGTGCTATTGTGC -ACGGAACTAGCAGTGCTACTAAGC -ACGGAACTAGCAGTGCTAACTAGC -ACGGAACTAGCAGTGCTAAGATGC -ACGGAACTAGCAGTGCTATGAAGG -ACGGAACTAGCAGTGCTACAATGG -ACGGAACTAGCAGTGCTAATGAGG -ACGGAACTAGCAGTGCTAAATGGG -ACGGAACTAGCAGTGCTATCCTGA -ACGGAACTAGCAGTGCTATAGCGA -ACGGAACTAGCAGTGCTACACAGA -ACGGAACTAGCAGTGCTAGCAAGA -ACGGAACTAGCAGTGCTAGGTTGA -ACGGAACTAGCAGTGCTATCCGAT -ACGGAACTAGCAGTGCTATGGCAT -ACGGAACTAGCAGTGCTACGAGAT -ACGGAACTAGCAGTGCTATACCAC -ACGGAACTAGCAGTGCTACAGAAC -ACGGAACTAGCAGTGCTAGTCTAC -ACGGAACTAGCAGTGCTAACGTAC -ACGGAACTAGCAGTGCTAAGTGAC -ACGGAACTAGCAGTGCTACTGTAG -ACGGAACTAGCAGTGCTACCTAAG -ACGGAACTAGCAGTGCTAGTTCAG -ACGGAACTAGCAGTGCTAGCATAG -ACGGAACTAGCAGTGCTAGACAAG -ACGGAACTAGCAGTGCTAAAGCAG -ACGGAACTAGCAGTGCTACGTCAA -ACGGAACTAGCAGTGCTAGCTGAA -ACGGAACTAGCAGTGCTAAGTACG -ACGGAACTAGCAGTGCTAATCCGA -ACGGAACTAGCAGTGCTAATGGGA -ACGGAACTAGCAGTGCTAGTGCAA -ACGGAACTAGCAGTGCTAGAGGAA -ACGGAACTAGCAGTGCTACAGGTA -ACGGAACTAGCAGTGCTAGACTCT -ACGGAACTAGCAGTGCTAAGTCCT -ACGGAACTAGCAGTGCTATAAGCC -ACGGAACTAGCAGTGCTAATAGCC -ACGGAACTAGCAGTGCTATAACCG -ACGGAACTAGCAGTGCTAATGCCA -ACGGAACTAGCACTGCATGGAAAC -ACGGAACTAGCACTGCATAACACC -ACGGAACTAGCACTGCATATCGAG -ACGGAACTAGCACTGCATCTCCTT -ACGGAACTAGCACTGCATCCTGTT -ACGGAACTAGCACTGCATCGGTTT -ACGGAACTAGCACTGCATGTGGTT -ACGGAACTAGCACTGCATGCCTTT -ACGGAACTAGCACTGCATGGTCTT -ACGGAACTAGCACTGCATACGCTT -ACGGAACTAGCACTGCATAGCGTT -ACGGAACTAGCACTGCATTTCGTC -ACGGAACTAGCACTGCATTCTCTC -ACGGAACTAGCACTGCATTGGATC -ACGGAACTAGCACTGCATCACTTC -ACGGAACTAGCACTGCATGTACTC -ACGGAACTAGCACTGCATGATGTC -ACGGAACTAGCACTGCATACAGTC -ACGGAACTAGCACTGCATTTGCTG -ACGGAACTAGCACTGCATTCCATG -ACGGAACTAGCACTGCATTGTGTG -ACGGAACTAGCACTGCATCTAGTG -ACGGAACTAGCACTGCATCATCTG -ACGGAACTAGCACTGCATGAGTTG -ACGGAACTAGCACTGCATAGACTG -ACGGAACTAGCACTGCATTCGGTA -ACGGAACTAGCACTGCATTGCCTA -ACGGAACTAGCACTGCATCCACTA -ACGGAACTAGCACTGCATGGAGTA -ACGGAACTAGCACTGCATTCGTCT -ACGGAACTAGCACTGCATTGCACT -ACGGAACTAGCACTGCATCTGACT -ACGGAACTAGCACTGCATCAACCT -ACGGAACTAGCACTGCATGCTACT -ACGGAACTAGCACTGCATGGATCT -ACGGAACTAGCACTGCATAAGGCT -ACGGAACTAGCACTGCATTCAACC -ACGGAACTAGCACTGCATTGTTCC -ACGGAACTAGCACTGCATATTCCC -ACGGAACTAGCACTGCATTTCTCG -ACGGAACTAGCACTGCATTAGACG -ACGGAACTAGCACTGCATGTAACG -ACGGAACTAGCACTGCATACTTCG -ACGGAACTAGCACTGCATTACGCA -ACGGAACTAGCACTGCATCTTGCA -ACGGAACTAGCACTGCATCGAACA -ACGGAACTAGCACTGCATCAGTCA -ACGGAACTAGCACTGCATGATCCA -ACGGAACTAGCACTGCATACGACA -ACGGAACTAGCACTGCATAGCTCA -ACGGAACTAGCACTGCATTCACGT -ACGGAACTAGCACTGCATCGTAGT -ACGGAACTAGCACTGCATGTCAGT -ACGGAACTAGCACTGCATGAAGGT -ACGGAACTAGCACTGCATAACCGT -ACGGAACTAGCACTGCATTTGTGC -ACGGAACTAGCACTGCATCTAAGC -ACGGAACTAGCACTGCATACTAGC -ACGGAACTAGCACTGCATAGATGC -ACGGAACTAGCACTGCATTGAAGG -ACGGAACTAGCACTGCATCAATGG -ACGGAACTAGCACTGCATATGAGG -ACGGAACTAGCACTGCATAATGGG -ACGGAACTAGCACTGCATTCCTGA -ACGGAACTAGCACTGCATTAGCGA -ACGGAACTAGCACTGCATCACAGA -ACGGAACTAGCACTGCATGCAAGA -ACGGAACTAGCACTGCATGGTTGA -ACGGAACTAGCACTGCATTCCGAT -ACGGAACTAGCACTGCATTGGCAT -ACGGAACTAGCACTGCATCGAGAT -ACGGAACTAGCACTGCATTACCAC -ACGGAACTAGCACTGCATCAGAAC -ACGGAACTAGCACTGCATGTCTAC -ACGGAACTAGCACTGCATACGTAC -ACGGAACTAGCACTGCATAGTGAC -ACGGAACTAGCACTGCATCTGTAG -ACGGAACTAGCACTGCATCCTAAG -ACGGAACTAGCACTGCATGTTCAG -ACGGAACTAGCACTGCATGCATAG -ACGGAACTAGCACTGCATGACAAG -ACGGAACTAGCACTGCATAAGCAG -ACGGAACTAGCACTGCATCGTCAA -ACGGAACTAGCACTGCATGCTGAA -ACGGAACTAGCACTGCATAGTACG -ACGGAACTAGCACTGCATATCCGA -ACGGAACTAGCACTGCATATGGGA -ACGGAACTAGCACTGCATGTGCAA -ACGGAACTAGCACTGCATGAGGAA -ACGGAACTAGCACTGCATCAGGTA -ACGGAACTAGCACTGCATGACTCT -ACGGAACTAGCACTGCATAGTCCT -ACGGAACTAGCACTGCATTAAGCC -ACGGAACTAGCACTGCATATAGCC -ACGGAACTAGCACTGCATTAACCG -ACGGAACTAGCACTGCATATGCCA -ACGGAACTAGCATTGGAGGGAAAC -ACGGAACTAGCATTGGAGAACACC -ACGGAACTAGCATTGGAGATCGAG -ACGGAACTAGCATTGGAGCTCCTT -ACGGAACTAGCATTGGAGCCTGTT -ACGGAACTAGCATTGGAGCGGTTT -ACGGAACTAGCATTGGAGGTGGTT -ACGGAACTAGCATTGGAGGCCTTT -ACGGAACTAGCATTGGAGGGTCTT -ACGGAACTAGCATTGGAGACGCTT -ACGGAACTAGCATTGGAGAGCGTT -ACGGAACTAGCATTGGAGTTCGTC -ACGGAACTAGCATTGGAGTCTCTC -ACGGAACTAGCATTGGAGTGGATC -ACGGAACTAGCATTGGAGCACTTC -ACGGAACTAGCATTGGAGGTACTC -ACGGAACTAGCATTGGAGGATGTC -ACGGAACTAGCATTGGAGACAGTC -ACGGAACTAGCATTGGAGTTGCTG -ACGGAACTAGCATTGGAGTCCATG -ACGGAACTAGCATTGGAGTGTGTG -ACGGAACTAGCATTGGAGCTAGTG -ACGGAACTAGCATTGGAGCATCTG -ACGGAACTAGCATTGGAGGAGTTG -ACGGAACTAGCATTGGAGAGACTG -ACGGAACTAGCATTGGAGTCGGTA -ACGGAACTAGCATTGGAGTGCCTA -ACGGAACTAGCATTGGAGCCACTA -ACGGAACTAGCATTGGAGGGAGTA -ACGGAACTAGCATTGGAGTCGTCT -ACGGAACTAGCATTGGAGTGCACT -ACGGAACTAGCATTGGAGCTGACT -ACGGAACTAGCATTGGAGCAACCT -ACGGAACTAGCATTGGAGGCTACT -ACGGAACTAGCATTGGAGGGATCT -ACGGAACTAGCATTGGAGAAGGCT -ACGGAACTAGCATTGGAGTCAACC -ACGGAACTAGCATTGGAGTGTTCC -ACGGAACTAGCATTGGAGATTCCC -ACGGAACTAGCATTGGAGTTCTCG -ACGGAACTAGCATTGGAGTAGACG -ACGGAACTAGCATTGGAGGTAACG -ACGGAACTAGCATTGGAGACTTCG -ACGGAACTAGCATTGGAGTACGCA -ACGGAACTAGCATTGGAGCTTGCA -ACGGAACTAGCATTGGAGCGAACA -ACGGAACTAGCATTGGAGCAGTCA -ACGGAACTAGCATTGGAGGATCCA -ACGGAACTAGCATTGGAGACGACA -ACGGAACTAGCATTGGAGAGCTCA -ACGGAACTAGCATTGGAGTCACGT -ACGGAACTAGCATTGGAGCGTAGT -ACGGAACTAGCATTGGAGGTCAGT -ACGGAACTAGCATTGGAGGAAGGT -ACGGAACTAGCATTGGAGAACCGT -ACGGAACTAGCATTGGAGTTGTGC -ACGGAACTAGCATTGGAGCTAAGC -ACGGAACTAGCATTGGAGACTAGC -ACGGAACTAGCATTGGAGAGATGC -ACGGAACTAGCATTGGAGTGAAGG -ACGGAACTAGCATTGGAGCAATGG -ACGGAACTAGCATTGGAGATGAGG -ACGGAACTAGCATTGGAGAATGGG -ACGGAACTAGCATTGGAGTCCTGA -ACGGAACTAGCATTGGAGTAGCGA -ACGGAACTAGCATTGGAGCACAGA -ACGGAACTAGCATTGGAGGCAAGA -ACGGAACTAGCATTGGAGGGTTGA -ACGGAACTAGCATTGGAGTCCGAT -ACGGAACTAGCATTGGAGTGGCAT -ACGGAACTAGCATTGGAGCGAGAT -ACGGAACTAGCATTGGAGTACCAC -ACGGAACTAGCATTGGAGCAGAAC -ACGGAACTAGCATTGGAGGTCTAC -ACGGAACTAGCATTGGAGACGTAC -ACGGAACTAGCATTGGAGAGTGAC -ACGGAACTAGCATTGGAGCTGTAG -ACGGAACTAGCATTGGAGCCTAAG -ACGGAACTAGCATTGGAGGTTCAG -ACGGAACTAGCATTGGAGGCATAG -ACGGAACTAGCATTGGAGGACAAG -ACGGAACTAGCATTGGAGAAGCAG -ACGGAACTAGCATTGGAGCGTCAA -ACGGAACTAGCATTGGAGGCTGAA -ACGGAACTAGCATTGGAGAGTACG -ACGGAACTAGCATTGGAGATCCGA -ACGGAACTAGCATTGGAGATGGGA -ACGGAACTAGCATTGGAGGTGCAA -ACGGAACTAGCATTGGAGGAGGAA -ACGGAACTAGCATTGGAGCAGGTA -ACGGAACTAGCATTGGAGGACTCT -ACGGAACTAGCATTGGAGAGTCCT -ACGGAACTAGCATTGGAGTAAGCC -ACGGAACTAGCATTGGAGATAGCC -ACGGAACTAGCATTGGAGTAACCG -ACGGAACTAGCATTGGAGATGCCA -ACGGAACTAGCACTGAGAGGAAAC -ACGGAACTAGCACTGAGAAACACC -ACGGAACTAGCACTGAGAATCGAG -ACGGAACTAGCACTGAGACTCCTT -ACGGAACTAGCACTGAGACCTGTT -ACGGAACTAGCACTGAGACGGTTT -ACGGAACTAGCACTGAGAGTGGTT -ACGGAACTAGCACTGAGAGCCTTT -ACGGAACTAGCACTGAGAGGTCTT -ACGGAACTAGCACTGAGAACGCTT -ACGGAACTAGCACTGAGAAGCGTT -ACGGAACTAGCACTGAGATTCGTC -ACGGAACTAGCACTGAGATCTCTC -ACGGAACTAGCACTGAGATGGATC -ACGGAACTAGCACTGAGACACTTC -ACGGAACTAGCACTGAGAGTACTC -ACGGAACTAGCACTGAGAGATGTC -ACGGAACTAGCACTGAGAACAGTC -ACGGAACTAGCACTGAGATTGCTG -ACGGAACTAGCACTGAGATCCATG -ACGGAACTAGCACTGAGATGTGTG -ACGGAACTAGCACTGAGACTAGTG -ACGGAACTAGCACTGAGACATCTG -ACGGAACTAGCACTGAGAGAGTTG -ACGGAACTAGCACTGAGAAGACTG -ACGGAACTAGCACTGAGATCGGTA -ACGGAACTAGCACTGAGATGCCTA -ACGGAACTAGCACTGAGACCACTA -ACGGAACTAGCACTGAGAGGAGTA -ACGGAACTAGCACTGAGATCGTCT -ACGGAACTAGCACTGAGATGCACT -ACGGAACTAGCACTGAGACTGACT -ACGGAACTAGCACTGAGACAACCT -ACGGAACTAGCACTGAGAGCTACT -ACGGAACTAGCACTGAGAGGATCT -ACGGAACTAGCACTGAGAAAGGCT -ACGGAACTAGCACTGAGATCAACC -ACGGAACTAGCACTGAGATGTTCC -ACGGAACTAGCACTGAGAATTCCC -ACGGAACTAGCACTGAGATTCTCG -ACGGAACTAGCACTGAGATAGACG -ACGGAACTAGCACTGAGAGTAACG -ACGGAACTAGCACTGAGAACTTCG -ACGGAACTAGCACTGAGATACGCA -ACGGAACTAGCACTGAGACTTGCA -ACGGAACTAGCACTGAGACGAACA -ACGGAACTAGCACTGAGACAGTCA -ACGGAACTAGCACTGAGAGATCCA -ACGGAACTAGCACTGAGAACGACA -ACGGAACTAGCACTGAGAAGCTCA -ACGGAACTAGCACTGAGATCACGT -ACGGAACTAGCACTGAGACGTAGT -ACGGAACTAGCACTGAGAGTCAGT -ACGGAACTAGCACTGAGAGAAGGT -ACGGAACTAGCACTGAGAAACCGT -ACGGAACTAGCACTGAGATTGTGC -ACGGAACTAGCACTGAGACTAAGC -ACGGAACTAGCACTGAGAACTAGC -ACGGAACTAGCACTGAGAAGATGC -ACGGAACTAGCACTGAGATGAAGG -ACGGAACTAGCACTGAGACAATGG -ACGGAACTAGCACTGAGAATGAGG -ACGGAACTAGCACTGAGAAATGGG -ACGGAACTAGCACTGAGATCCTGA -ACGGAACTAGCACTGAGATAGCGA -ACGGAACTAGCACTGAGACACAGA -ACGGAACTAGCACTGAGAGCAAGA -ACGGAACTAGCACTGAGAGGTTGA -ACGGAACTAGCACTGAGATCCGAT -ACGGAACTAGCACTGAGATGGCAT -ACGGAACTAGCACTGAGACGAGAT -ACGGAACTAGCACTGAGATACCAC -ACGGAACTAGCACTGAGACAGAAC -ACGGAACTAGCACTGAGAGTCTAC -ACGGAACTAGCACTGAGAACGTAC -ACGGAACTAGCACTGAGAAGTGAC -ACGGAACTAGCACTGAGACTGTAG -ACGGAACTAGCACTGAGACCTAAG -ACGGAACTAGCACTGAGAGTTCAG -ACGGAACTAGCACTGAGAGCATAG -ACGGAACTAGCACTGAGAGACAAG -ACGGAACTAGCACTGAGAAAGCAG -ACGGAACTAGCACTGAGACGTCAA -ACGGAACTAGCACTGAGAGCTGAA -ACGGAACTAGCACTGAGAAGTACG -ACGGAACTAGCACTGAGAATCCGA -ACGGAACTAGCACTGAGAATGGGA -ACGGAACTAGCACTGAGAGTGCAA -ACGGAACTAGCACTGAGAGAGGAA -ACGGAACTAGCACTGAGACAGGTA -ACGGAACTAGCACTGAGAGACTCT -ACGGAACTAGCACTGAGAAGTCCT -ACGGAACTAGCACTGAGATAAGCC -ACGGAACTAGCACTGAGAATAGCC -ACGGAACTAGCACTGAGATAACCG -ACGGAACTAGCACTGAGAATGCCA -ACGGAACTAGCAGTATCGGGAAAC -ACGGAACTAGCAGTATCGAACACC -ACGGAACTAGCAGTATCGATCGAG -ACGGAACTAGCAGTATCGCTCCTT -ACGGAACTAGCAGTATCGCCTGTT -ACGGAACTAGCAGTATCGCGGTTT -ACGGAACTAGCAGTATCGGTGGTT -ACGGAACTAGCAGTATCGGCCTTT -ACGGAACTAGCAGTATCGGGTCTT -ACGGAACTAGCAGTATCGACGCTT -ACGGAACTAGCAGTATCGAGCGTT -ACGGAACTAGCAGTATCGTTCGTC -ACGGAACTAGCAGTATCGTCTCTC -ACGGAACTAGCAGTATCGTGGATC -ACGGAACTAGCAGTATCGCACTTC -ACGGAACTAGCAGTATCGGTACTC -ACGGAACTAGCAGTATCGGATGTC -ACGGAACTAGCAGTATCGACAGTC -ACGGAACTAGCAGTATCGTTGCTG -ACGGAACTAGCAGTATCGTCCATG -ACGGAACTAGCAGTATCGTGTGTG -ACGGAACTAGCAGTATCGCTAGTG -ACGGAACTAGCAGTATCGCATCTG -ACGGAACTAGCAGTATCGGAGTTG -ACGGAACTAGCAGTATCGAGACTG -ACGGAACTAGCAGTATCGTCGGTA -ACGGAACTAGCAGTATCGTGCCTA -ACGGAACTAGCAGTATCGCCACTA -ACGGAACTAGCAGTATCGGGAGTA -ACGGAACTAGCAGTATCGTCGTCT -ACGGAACTAGCAGTATCGTGCACT -ACGGAACTAGCAGTATCGCTGACT -ACGGAACTAGCAGTATCGCAACCT -ACGGAACTAGCAGTATCGGCTACT -ACGGAACTAGCAGTATCGGGATCT -ACGGAACTAGCAGTATCGAAGGCT -ACGGAACTAGCAGTATCGTCAACC -ACGGAACTAGCAGTATCGTGTTCC -ACGGAACTAGCAGTATCGATTCCC -ACGGAACTAGCAGTATCGTTCTCG -ACGGAACTAGCAGTATCGTAGACG -ACGGAACTAGCAGTATCGGTAACG -ACGGAACTAGCAGTATCGACTTCG -ACGGAACTAGCAGTATCGTACGCA -ACGGAACTAGCAGTATCGCTTGCA -ACGGAACTAGCAGTATCGCGAACA -ACGGAACTAGCAGTATCGCAGTCA -ACGGAACTAGCAGTATCGGATCCA -ACGGAACTAGCAGTATCGACGACA -ACGGAACTAGCAGTATCGAGCTCA -ACGGAACTAGCAGTATCGTCACGT -ACGGAACTAGCAGTATCGCGTAGT -ACGGAACTAGCAGTATCGGTCAGT -ACGGAACTAGCAGTATCGGAAGGT -ACGGAACTAGCAGTATCGAACCGT -ACGGAACTAGCAGTATCGTTGTGC -ACGGAACTAGCAGTATCGCTAAGC -ACGGAACTAGCAGTATCGACTAGC -ACGGAACTAGCAGTATCGAGATGC -ACGGAACTAGCAGTATCGTGAAGG -ACGGAACTAGCAGTATCGCAATGG -ACGGAACTAGCAGTATCGATGAGG -ACGGAACTAGCAGTATCGAATGGG -ACGGAACTAGCAGTATCGTCCTGA -ACGGAACTAGCAGTATCGTAGCGA -ACGGAACTAGCAGTATCGCACAGA -ACGGAACTAGCAGTATCGGCAAGA -ACGGAACTAGCAGTATCGGGTTGA -ACGGAACTAGCAGTATCGTCCGAT -ACGGAACTAGCAGTATCGTGGCAT -ACGGAACTAGCAGTATCGCGAGAT -ACGGAACTAGCAGTATCGTACCAC -ACGGAACTAGCAGTATCGCAGAAC -ACGGAACTAGCAGTATCGGTCTAC -ACGGAACTAGCAGTATCGACGTAC -ACGGAACTAGCAGTATCGAGTGAC -ACGGAACTAGCAGTATCGCTGTAG -ACGGAACTAGCAGTATCGCCTAAG -ACGGAACTAGCAGTATCGGTTCAG -ACGGAACTAGCAGTATCGGCATAG -ACGGAACTAGCAGTATCGGACAAG -ACGGAACTAGCAGTATCGAAGCAG -ACGGAACTAGCAGTATCGCGTCAA -ACGGAACTAGCAGTATCGGCTGAA -ACGGAACTAGCAGTATCGAGTACG -ACGGAACTAGCAGTATCGATCCGA -ACGGAACTAGCAGTATCGATGGGA -ACGGAACTAGCAGTATCGGTGCAA -ACGGAACTAGCAGTATCGGAGGAA -ACGGAACTAGCAGTATCGCAGGTA -ACGGAACTAGCAGTATCGGACTCT -ACGGAACTAGCAGTATCGAGTCCT -ACGGAACTAGCAGTATCGTAAGCC -ACGGAACTAGCAGTATCGATAGCC -ACGGAACTAGCAGTATCGTAACCG -ACGGAACTAGCAGTATCGATGCCA -ACGGAACTAGCACTATGCGGAAAC -ACGGAACTAGCACTATGCAACACC -ACGGAACTAGCACTATGCATCGAG -ACGGAACTAGCACTATGCCTCCTT -ACGGAACTAGCACTATGCCCTGTT -ACGGAACTAGCACTATGCCGGTTT -ACGGAACTAGCACTATGCGTGGTT -ACGGAACTAGCACTATGCGCCTTT -ACGGAACTAGCACTATGCGGTCTT -ACGGAACTAGCACTATGCACGCTT -ACGGAACTAGCACTATGCAGCGTT -ACGGAACTAGCACTATGCTTCGTC -ACGGAACTAGCACTATGCTCTCTC -ACGGAACTAGCACTATGCTGGATC -ACGGAACTAGCACTATGCCACTTC -ACGGAACTAGCACTATGCGTACTC -ACGGAACTAGCACTATGCGATGTC -ACGGAACTAGCACTATGCACAGTC -ACGGAACTAGCACTATGCTTGCTG -ACGGAACTAGCACTATGCTCCATG -ACGGAACTAGCACTATGCTGTGTG -ACGGAACTAGCACTATGCCTAGTG -ACGGAACTAGCACTATGCCATCTG -ACGGAACTAGCACTATGCGAGTTG -ACGGAACTAGCACTATGCAGACTG -ACGGAACTAGCACTATGCTCGGTA -ACGGAACTAGCACTATGCTGCCTA -ACGGAACTAGCACTATGCCCACTA -ACGGAACTAGCACTATGCGGAGTA -ACGGAACTAGCACTATGCTCGTCT -ACGGAACTAGCACTATGCTGCACT -ACGGAACTAGCACTATGCCTGACT -ACGGAACTAGCACTATGCCAACCT -ACGGAACTAGCACTATGCGCTACT -ACGGAACTAGCACTATGCGGATCT -ACGGAACTAGCACTATGCAAGGCT -ACGGAACTAGCACTATGCTCAACC -ACGGAACTAGCACTATGCTGTTCC -ACGGAACTAGCACTATGCATTCCC -ACGGAACTAGCACTATGCTTCTCG -ACGGAACTAGCACTATGCTAGACG -ACGGAACTAGCACTATGCGTAACG -ACGGAACTAGCACTATGCACTTCG -ACGGAACTAGCACTATGCTACGCA -ACGGAACTAGCACTATGCCTTGCA -ACGGAACTAGCACTATGCCGAACA -ACGGAACTAGCACTATGCCAGTCA -ACGGAACTAGCACTATGCGATCCA -ACGGAACTAGCACTATGCACGACA -ACGGAACTAGCACTATGCAGCTCA -ACGGAACTAGCACTATGCTCACGT -ACGGAACTAGCACTATGCCGTAGT -ACGGAACTAGCACTATGCGTCAGT -ACGGAACTAGCACTATGCGAAGGT -ACGGAACTAGCACTATGCAACCGT -ACGGAACTAGCACTATGCTTGTGC -ACGGAACTAGCACTATGCCTAAGC -ACGGAACTAGCACTATGCACTAGC -ACGGAACTAGCACTATGCAGATGC -ACGGAACTAGCACTATGCTGAAGG -ACGGAACTAGCACTATGCCAATGG -ACGGAACTAGCACTATGCATGAGG -ACGGAACTAGCACTATGCAATGGG -ACGGAACTAGCACTATGCTCCTGA -ACGGAACTAGCACTATGCTAGCGA -ACGGAACTAGCACTATGCCACAGA -ACGGAACTAGCACTATGCGCAAGA -ACGGAACTAGCACTATGCGGTTGA -ACGGAACTAGCACTATGCTCCGAT -ACGGAACTAGCACTATGCTGGCAT -ACGGAACTAGCACTATGCCGAGAT -ACGGAACTAGCACTATGCTACCAC -ACGGAACTAGCACTATGCCAGAAC -ACGGAACTAGCACTATGCGTCTAC -ACGGAACTAGCACTATGCACGTAC -ACGGAACTAGCACTATGCAGTGAC -ACGGAACTAGCACTATGCCTGTAG -ACGGAACTAGCACTATGCCCTAAG -ACGGAACTAGCACTATGCGTTCAG -ACGGAACTAGCACTATGCGCATAG -ACGGAACTAGCACTATGCGACAAG -ACGGAACTAGCACTATGCAAGCAG -ACGGAACTAGCACTATGCCGTCAA -ACGGAACTAGCACTATGCGCTGAA -ACGGAACTAGCACTATGCAGTACG -ACGGAACTAGCACTATGCATCCGA -ACGGAACTAGCACTATGCATGGGA -ACGGAACTAGCACTATGCGTGCAA -ACGGAACTAGCACTATGCGAGGAA -ACGGAACTAGCACTATGCCAGGTA -ACGGAACTAGCACTATGCGACTCT -ACGGAACTAGCACTATGCAGTCCT -ACGGAACTAGCACTATGCTAAGCC -ACGGAACTAGCACTATGCATAGCC -ACGGAACTAGCACTATGCTAACCG -ACGGAACTAGCACTATGCATGCCA -ACGGAACTAGCACTACCAGGAAAC -ACGGAACTAGCACTACCAAACACC -ACGGAACTAGCACTACCAATCGAG -ACGGAACTAGCACTACCACTCCTT -ACGGAACTAGCACTACCACCTGTT -ACGGAACTAGCACTACCACGGTTT -ACGGAACTAGCACTACCAGTGGTT -ACGGAACTAGCACTACCAGCCTTT -ACGGAACTAGCACTACCAGGTCTT -ACGGAACTAGCACTACCAACGCTT -ACGGAACTAGCACTACCAAGCGTT -ACGGAACTAGCACTACCATTCGTC -ACGGAACTAGCACTACCATCTCTC -ACGGAACTAGCACTACCATGGATC -ACGGAACTAGCACTACCACACTTC -ACGGAACTAGCACTACCAGTACTC -ACGGAACTAGCACTACCAGATGTC -ACGGAACTAGCACTACCAACAGTC -ACGGAACTAGCACTACCATTGCTG -ACGGAACTAGCACTACCATCCATG -ACGGAACTAGCACTACCATGTGTG -ACGGAACTAGCACTACCACTAGTG -ACGGAACTAGCACTACCACATCTG -ACGGAACTAGCACTACCAGAGTTG -ACGGAACTAGCACTACCAAGACTG -ACGGAACTAGCACTACCATCGGTA -ACGGAACTAGCACTACCATGCCTA -ACGGAACTAGCACTACCACCACTA -ACGGAACTAGCACTACCAGGAGTA -ACGGAACTAGCACTACCATCGTCT -ACGGAACTAGCACTACCATGCACT -ACGGAACTAGCACTACCACTGACT -ACGGAACTAGCACTACCACAACCT -ACGGAACTAGCACTACCAGCTACT -ACGGAACTAGCACTACCAGGATCT -ACGGAACTAGCACTACCAAAGGCT -ACGGAACTAGCACTACCATCAACC -ACGGAACTAGCACTACCATGTTCC -ACGGAACTAGCACTACCAATTCCC -ACGGAACTAGCACTACCATTCTCG -ACGGAACTAGCACTACCATAGACG -ACGGAACTAGCACTACCAGTAACG -ACGGAACTAGCACTACCAACTTCG -ACGGAACTAGCACTACCATACGCA -ACGGAACTAGCACTACCACTTGCA -ACGGAACTAGCACTACCACGAACA -ACGGAACTAGCACTACCACAGTCA -ACGGAACTAGCACTACCAGATCCA -ACGGAACTAGCACTACCAACGACA -ACGGAACTAGCACTACCAAGCTCA -ACGGAACTAGCACTACCATCACGT -ACGGAACTAGCACTACCACGTAGT -ACGGAACTAGCACTACCAGTCAGT -ACGGAACTAGCACTACCAGAAGGT -ACGGAACTAGCACTACCAAACCGT -ACGGAACTAGCACTACCATTGTGC -ACGGAACTAGCACTACCACTAAGC -ACGGAACTAGCACTACCAACTAGC -ACGGAACTAGCACTACCAAGATGC -ACGGAACTAGCACTACCATGAAGG -ACGGAACTAGCACTACCACAATGG -ACGGAACTAGCACTACCAATGAGG -ACGGAACTAGCACTACCAAATGGG -ACGGAACTAGCACTACCATCCTGA -ACGGAACTAGCACTACCATAGCGA -ACGGAACTAGCACTACCACACAGA -ACGGAACTAGCACTACCAGCAAGA -ACGGAACTAGCACTACCAGGTTGA -ACGGAACTAGCACTACCATCCGAT -ACGGAACTAGCACTACCATGGCAT -ACGGAACTAGCACTACCACGAGAT -ACGGAACTAGCACTACCATACCAC -ACGGAACTAGCACTACCACAGAAC -ACGGAACTAGCACTACCAGTCTAC -ACGGAACTAGCACTACCAACGTAC -ACGGAACTAGCACTACCAAGTGAC -ACGGAACTAGCACTACCACTGTAG -ACGGAACTAGCACTACCACCTAAG -ACGGAACTAGCACTACCAGTTCAG -ACGGAACTAGCACTACCAGCATAG -ACGGAACTAGCACTACCAGACAAG -ACGGAACTAGCACTACCAAAGCAG -ACGGAACTAGCACTACCACGTCAA -ACGGAACTAGCACTACCAGCTGAA -ACGGAACTAGCACTACCAAGTACG -ACGGAACTAGCACTACCAATCCGA -ACGGAACTAGCACTACCAATGGGA -ACGGAACTAGCACTACCAGTGCAA -ACGGAACTAGCACTACCAGAGGAA -ACGGAACTAGCACTACCACAGGTA -ACGGAACTAGCACTACCAGACTCT -ACGGAACTAGCACTACCAAGTCCT -ACGGAACTAGCACTACCATAAGCC -ACGGAACTAGCACTACCAATAGCC -ACGGAACTAGCACTACCATAACCG -ACGGAACTAGCACTACCAATGCCA -ACGGAACTAGCAGTAGGAGGAAAC -ACGGAACTAGCAGTAGGAAACACC -ACGGAACTAGCAGTAGGAATCGAG -ACGGAACTAGCAGTAGGACTCCTT -ACGGAACTAGCAGTAGGACCTGTT -ACGGAACTAGCAGTAGGACGGTTT -ACGGAACTAGCAGTAGGAGTGGTT -ACGGAACTAGCAGTAGGAGCCTTT -ACGGAACTAGCAGTAGGAGGTCTT -ACGGAACTAGCAGTAGGAACGCTT -ACGGAACTAGCAGTAGGAAGCGTT -ACGGAACTAGCAGTAGGATTCGTC -ACGGAACTAGCAGTAGGATCTCTC -ACGGAACTAGCAGTAGGATGGATC -ACGGAACTAGCAGTAGGACACTTC -ACGGAACTAGCAGTAGGAGTACTC -ACGGAACTAGCAGTAGGAGATGTC -ACGGAACTAGCAGTAGGAACAGTC -ACGGAACTAGCAGTAGGATTGCTG -ACGGAACTAGCAGTAGGATCCATG -ACGGAACTAGCAGTAGGATGTGTG -ACGGAACTAGCAGTAGGACTAGTG -ACGGAACTAGCAGTAGGACATCTG -ACGGAACTAGCAGTAGGAGAGTTG -ACGGAACTAGCAGTAGGAAGACTG -ACGGAACTAGCAGTAGGATCGGTA -ACGGAACTAGCAGTAGGATGCCTA -ACGGAACTAGCAGTAGGACCACTA -ACGGAACTAGCAGTAGGAGGAGTA -ACGGAACTAGCAGTAGGATCGTCT -ACGGAACTAGCAGTAGGATGCACT -ACGGAACTAGCAGTAGGACTGACT -ACGGAACTAGCAGTAGGACAACCT -ACGGAACTAGCAGTAGGAGCTACT -ACGGAACTAGCAGTAGGAGGATCT -ACGGAACTAGCAGTAGGAAAGGCT -ACGGAACTAGCAGTAGGATCAACC -ACGGAACTAGCAGTAGGATGTTCC -ACGGAACTAGCAGTAGGAATTCCC -ACGGAACTAGCAGTAGGATTCTCG -ACGGAACTAGCAGTAGGATAGACG -ACGGAACTAGCAGTAGGAGTAACG -ACGGAACTAGCAGTAGGAACTTCG -ACGGAACTAGCAGTAGGATACGCA -ACGGAACTAGCAGTAGGACTTGCA -ACGGAACTAGCAGTAGGACGAACA -ACGGAACTAGCAGTAGGACAGTCA -ACGGAACTAGCAGTAGGAGATCCA -ACGGAACTAGCAGTAGGAACGACA -ACGGAACTAGCAGTAGGAAGCTCA -ACGGAACTAGCAGTAGGATCACGT -ACGGAACTAGCAGTAGGACGTAGT -ACGGAACTAGCAGTAGGAGTCAGT -ACGGAACTAGCAGTAGGAGAAGGT -ACGGAACTAGCAGTAGGAAACCGT -ACGGAACTAGCAGTAGGATTGTGC -ACGGAACTAGCAGTAGGACTAAGC -ACGGAACTAGCAGTAGGAACTAGC -ACGGAACTAGCAGTAGGAAGATGC -ACGGAACTAGCAGTAGGATGAAGG -ACGGAACTAGCAGTAGGACAATGG -ACGGAACTAGCAGTAGGAATGAGG -ACGGAACTAGCAGTAGGAAATGGG -ACGGAACTAGCAGTAGGATCCTGA -ACGGAACTAGCAGTAGGATAGCGA -ACGGAACTAGCAGTAGGACACAGA -ACGGAACTAGCAGTAGGAGCAAGA -ACGGAACTAGCAGTAGGAGGTTGA -ACGGAACTAGCAGTAGGATCCGAT -ACGGAACTAGCAGTAGGATGGCAT -ACGGAACTAGCAGTAGGACGAGAT -ACGGAACTAGCAGTAGGATACCAC -ACGGAACTAGCAGTAGGACAGAAC -ACGGAACTAGCAGTAGGAGTCTAC -ACGGAACTAGCAGTAGGAACGTAC -ACGGAACTAGCAGTAGGAAGTGAC -ACGGAACTAGCAGTAGGACTGTAG -ACGGAACTAGCAGTAGGACCTAAG -ACGGAACTAGCAGTAGGAGTTCAG -ACGGAACTAGCAGTAGGAGCATAG -ACGGAACTAGCAGTAGGAGACAAG -ACGGAACTAGCAGTAGGAAAGCAG -ACGGAACTAGCAGTAGGACGTCAA -ACGGAACTAGCAGTAGGAGCTGAA -ACGGAACTAGCAGTAGGAAGTACG -ACGGAACTAGCAGTAGGAATCCGA -ACGGAACTAGCAGTAGGAATGGGA -ACGGAACTAGCAGTAGGAGTGCAA -ACGGAACTAGCAGTAGGAGAGGAA -ACGGAACTAGCAGTAGGACAGGTA -ACGGAACTAGCAGTAGGAGACTCT -ACGGAACTAGCAGTAGGAAGTCCT -ACGGAACTAGCAGTAGGATAAGCC -ACGGAACTAGCAGTAGGAATAGCC -ACGGAACTAGCAGTAGGATAACCG -ACGGAACTAGCAGTAGGAATGCCA -ACGGAACTAGCATCTTCGGGAAAC -ACGGAACTAGCATCTTCGAACACC -ACGGAACTAGCATCTTCGATCGAG -ACGGAACTAGCATCTTCGCTCCTT -ACGGAACTAGCATCTTCGCCTGTT -ACGGAACTAGCATCTTCGCGGTTT -ACGGAACTAGCATCTTCGGTGGTT -ACGGAACTAGCATCTTCGGCCTTT -ACGGAACTAGCATCTTCGGGTCTT -ACGGAACTAGCATCTTCGACGCTT -ACGGAACTAGCATCTTCGAGCGTT -ACGGAACTAGCATCTTCGTTCGTC -ACGGAACTAGCATCTTCGTCTCTC -ACGGAACTAGCATCTTCGTGGATC -ACGGAACTAGCATCTTCGCACTTC -ACGGAACTAGCATCTTCGGTACTC -ACGGAACTAGCATCTTCGGATGTC -ACGGAACTAGCATCTTCGACAGTC -ACGGAACTAGCATCTTCGTTGCTG -ACGGAACTAGCATCTTCGTCCATG -ACGGAACTAGCATCTTCGTGTGTG -ACGGAACTAGCATCTTCGCTAGTG -ACGGAACTAGCATCTTCGCATCTG -ACGGAACTAGCATCTTCGGAGTTG -ACGGAACTAGCATCTTCGAGACTG -ACGGAACTAGCATCTTCGTCGGTA -ACGGAACTAGCATCTTCGTGCCTA -ACGGAACTAGCATCTTCGCCACTA -ACGGAACTAGCATCTTCGGGAGTA -ACGGAACTAGCATCTTCGTCGTCT -ACGGAACTAGCATCTTCGTGCACT -ACGGAACTAGCATCTTCGCTGACT -ACGGAACTAGCATCTTCGCAACCT -ACGGAACTAGCATCTTCGGCTACT -ACGGAACTAGCATCTTCGGGATCT -ACGGAACTAGCATCTTCGAAGGCT -ACGGAACTAGCATCTTCGTCAACC -ACGGAACTAGCATCTTCGTGTTCC -ACGGAACTAGCATCTTCGATTCCC -ACGGAACTAGCATCTTCGTTCTCG -ACGGAACTAGCATCTTCGTAGACG -ACGGAACTAGCATCTTCGGTAACG -ACGGAACTAGCATCTTCGACTTCG -ACGGAACTAGCATCTTCGTACGCA -ACGGAACTAGCATCTTCGCTTGCA -ACGGAACTAGCATCTTCGCGAACA -ACGGAACTAGCATCTTCGCAGTCA -ACGGAACTAGCATCTTCGGATCCA -ACGGAACTAGCATCTTCGACGACA -ACGGAACTAGCATCTTCGAGCTCA -ACGGAACTAGCATCTTCGTCACGT -ACGGAACTAGCATCTTCGCGTAGT -ACGGAACTAGCATCTTCGGTCAGT -ACGGAACTAGCATCTTCGGAAGGT -ACGGAACTAGCATCTTCGAACCGT -ACGGAACTAGCATCTTCGTTGTGC -ACGGAACTAGCATCTTCGCTAAGC -ACGGAACTAGCATCTTCGACTAGC -ACGGAACTAGCATCTTCGAGATGC -ACGGAACTAGCATCTTCGTGAAGG -ACGGAACTAGCATCTTCGCAATGG -ACGGAACTAGCATCTTCGATGAGG -ACGGAACTAGCATCTTCGAATGGG -ACGGAACTAGCATCTTCGTCCTGA -ACGGAACTAGCATCTTCGTAGCGA -ACGGAACTAGCATCTTCGCACAGA -ACGGAACTAGCATCTTCGGCAAGA -ACGGAACTAGCATCTTCGGGTTGA -ACGGAACTAGCATCTTCGTCCGAT -ACGGAACTAGCATCTTCGTGGCAT -ACGGAACTAGCATCTTCGCGAGAT -ACGGAACTAGCATCTTCGTACCAC -ACGGAACTAGCATCTTCGCAGAAC -ACGGAACTAGCATCTTCGGTCTAC -ACGGAACTAGCATCTTCGACGTAC -ACGGAACTAGCATCTTCGAGTGAC -ACGGAACTAGCATCTTCGCTGTAG -ACGGAACTAGCATCTTCGCCTAAG -ACGGAACTAGCATCTTCGGTTCAG -ACGGAACTAGCATCTTCGGCATAG -ACGGAACTAGCATCTTCGGACAAG -ACGGAACTAGCATCTTCGAAGCAG -ACGGAACTAGCATCTTCGCGTCAA -ACGGAACTAGCATCTTCGGCTGAA -ACGGAACTAGCATCTTCGAGTACG -ACGGAACTAGCATCTTCGATCCGA -ACGGAACTAGCATCTTCGATGGGA -ACGGAACTAGCATCTTCGGTGCAA -ACGGAACTAGCATCTTCGGAGGAA -ACGGAACTAGCATCTTCGCAGGTA -ACGGAACTAGCATCTTCGGACTCT -ACGGAACTAGCATCTTCGAGTCCT -ACGGAACTAGCATCTTCGTAAGCC -ACGGAACTAGCATCTTCGATAGCC -ACGGAACTAGCATCTTCGTAACCG -ACGGAACTAGCATCTTCGATGCCA -ACGGAACTAGCAACTTGCGGAAAC -ACGGAACTAGCAACTTGCAACACC -ACGGAACTAGCAACTTGCATCGAG -ACGGAACTAGCAACTTGCCTCCTT -ACGGAACTAGCAACTTGCCCTGTT -ACGGAACTAGCAACTTGCCGGTTT -ACGGAACTAGCAACTTGCGTGGTT -ACGGAACTAGCAACTTGCGCCTTT -ACGGAACTAGCAACTTGCGGTCTT -ACGGAACTAGCAACTTGCACGCTT -ACGGAACTAGCAACTTGCAGCGTT -ACGGAACTAGCAACTTGCTTCGTC -ACGGAACTAGCAACTTGCTCTCTC -ACGGAACTAGCAACTTGCTGGATC -ACGGAACTAGCAACTTGCCACTTC -ACGGAACTAGCAACTTGCGTACTC -ACGGAACTAGCAACTTGCGATGTC -ACGGAACTAGCAACTTGCACAGTC -ACGGAACTAGCAACTTGCTTGCTG -ACGGAACTAGCAACTTGCTCCATG -ACGGAACTAGCAACTTGCTGTGTG -ACGGAACTAGCAACTTGCCTAGTG -ACGGAACTAGCAACTTGCCATCTG -ACGGAACTAGCAACTTGCGAGTTG -ACGGAACTAGCAACTTGCAGACTG -ACGGAACTAGCAACTTGCTCGGTA -ACGGAACTAGCAACTTGCTGCCTA -ACGGAACTAGCAACTTGCCCACTA -ACGGAACTAGCAACTTGCGGAGTA -ACGGAACTAGCAACTTGCTCGTCT -ACGGAACTAGCAACTTGCTGCACT -ACGGAACTAGCAACTTGCCTGACT -ACGGAACTAGCAACTTGCCAACCT -ACGGAACTAGCAACTTGCGCTACT -ACGGAACTAGCAACTTGCGGATCT -ACGGAACTAGCAACTTGCAAGGCT -ACGGAACTAGCAACTTGCTCAACC -ACGGAACTAGCAACTTGCTGTTCC -ACGGAACTAGCAACTTGCATTCCC -ACGGAACTAGCAACTTGCTTCTCG -ACGGAACTAGCAACTTGCTAGACG -ACGGAACTAGCAACTTGCGTAACG -ACGGAACTAGCAACTTGCACTTCG -ACGGAACTAGCAACTTGCTACGCA -ACGGAACTAGCAACTTGCCTTGCA -ACGGAACTAGCAACTTGCCGAACA -ACGGAACTAGCAACTTGCCAGTCA -ACGGAACTAGCAACTTGCGATCCA -ACGGAACTAGCAACTTGCACGACA -ACGGAACTAGCAACTTGCAGCTCA -ACGGAACTAGCAACTTGCTCACGT -ACGGAACTAGCAACTTGCCGTAGT -ACGGAACTAGCAACTTGCGTCAGT -ACGGAACTAGCAACTTGCGAAGGT -ACGGAACTAGCAACTTGCAACCGT -ACGGAACTAGCAACTTGCTTGTGC -ACGGAACTAGCAACTTGCCTAAGC -ACGGAACTAGCAACTTGCACTAGC -ACGGAACTAGCAACTTGCAGATGC -ACGGAACTAGCAACTTGCTGAAGG -ACGGAACTAGCAACTTGCCAATGG -ACGGAACTAGCAACTTGCATGAGG -ACGGAACTAGCAACTTGCAATGGG -ACGGAACTAGCAACTTGCTCCTGA -ACGGAACTAGCAACTTGCTAGCGA -ACGGAACTAGCAACTTGCCACAGA -ACGGAACTAGCAACTTGCGCAAGA -ACGGAACTAGCAACTTGCGGTTGA -ACGGAACTAGCAACTTGCTCCGAT -ACGGAACTAGCAACTTGCTGGCAT -ACGGAACTAGCAACTTGCCGAGAT -ACGGAACTAGCAACTTGCTACCAC -ACGGAACTAGCAACTTGCCAGAAC -ACGGAACTAGCAACTTGCGTCTAC -ACGGAACTAGCAACTTGCACGTAC -ACGGAACTAGCAACTTGCAGTGAC -ACGGAACTAGCAACTTGCCTGTAG -ACGGAACTAGCAACTTGCCCTAAG -ACGGAACTAGCAACTTGCGTTCAG -ACGGAACTAGCAACTTGCGCATAG -ACGGAACTAGCAACTTGCGACAAG -ACGGAACTAGCAACTTGCAAGCAG -ACGGAACTAGCAACTTGCCGTCAA -ACGGAACTAGCAACTTGCGCTGAA -ACGGAACTAGCAACTTGCAGTACG -ACGGAACTAGCAACTTGCATCCGA -ACGGAACTAGCAACTTGCATGGGA -ACGGAACTAGCAACTTGCGTGCAA -ACGGAACTAGCAACTTGCGAGGAA -ACGGAACTAGCAACTTGCCAGGTA -ACGGAACTAGCAACTTGCGACTCT -ACGGAACTAGCAACTTGCAGTCCT -ACGGAACTAGCAACTTGCTAAGCC -ACGGAACTAGCAACTTGCATAGCC -ACGGAACTAGCAACTTGCTAACCG -ACGGAACTAGCAACTTGCATGCCA -ACGGAACTAGCAACTCTGGGAAAC -ACGGAACTAGCAACTCTGAACACC -ACGGAACTAGCAACTCTGATCGAG -ACGGAACTAGCAACTCTGCTCCTT -ACGGAACTAGCAACTCTGCCTGTT -ACGGAACTAGCAACTCTGCGGTTT -ACGGAACTAGCAACTCTGGTGGTT -ACGGAACTAGCAACTCTGGCCTTT -ACGGAACTAGCAACTCTGGGTCTT -ACGGAACTAGCAACTCTGACGCTT -ACGGAACTAGCAACTCTGAGCGTT -ACGGAACTAGCAACTCTGTTCGTC -ACGGAACTAGCAACTCTGTCTCTC -ACGGAACTAGCAACTCTGTGGATC -ACGGAACTAGCAACTCTGCACTTC -ACGGAACTAGCAACTCTGGTACTC -ACGGAACTAGCAACTCTGGATGTC -ACGGAACTAGCAACTCTGACAGTC -ACGGAACTAGCAACTCTGTTGCTG -ACGGAACTAGCAACTCTGTCCATG -ACGGAACTAGCAACTCTGTGTGTG -ACGGAACTAGCAACTCTGCTAGTG -ACGGAACTAGCAACTCTGCATCTG -ACGGAACTAGCAACTCTGGAGTTG -ACGGAACTAGCAACTCTGAGACTG -ACGGAACTAGCAACTCTGTCGGTA -ACGGAACTAGCAACTCTGTGCCTA -ACGGAACTAGCAACTCTGCCACTA -ACGGAACTAGCAACTCTGGGAGTA -ACGGAACTAGCAACTCTGTCGTCT -ACGGAACTAGCAACTCTGTGCACT -ACGGAACTAGCAACTCTGCTGACT -ACGGAACTAGCAACTCTGCAACCT -ACGGAACTAGCAACTCTGGCTACT -ACGGAACTAGCAACTCTGGGATCT -ACGGAACTAGCAACTCTGAAGGCT -ACGGAACTAGCAACTCTGTCAACC -ACGGAACTAGCAACTCTGTGTTCC -ACGGAACTAGCAACTCTGATTCCC -ACGGAACTAGCAACTCTGTTCTCG -ACGGAACTAGCAACTCTGTAGACG -ACGGAACTAGCAACTCTGGTAACG -ACGGAACTAGCAACTCTGACTTCG -ACGGAACTAGCAACTCTGTACGCA -ACGGAACTAGCAACTCTGCTTGCA -ACGGAACTAGCAACTCTGCGAACA -ACGGAACTAGCAACTCTGCAGTCA -ACGGAACTAGCAACTCTGGATCCA -ACGGAACTAGCAACTCTGACGACA -ACGGAACTAGCAACTCTGAGCTCA -ACGGAACTAGCAACTCTGTCACGT -ACGGAACTAGCAACTCTGCGTAGT -ACGGAACTAGCAACTCTGGTCAGT -ACGGAACTAGCAACTCTGGAAGGT -ACGGAACTAGCAACTCTGAACCGT -ACGGAACTAGCAACTCTGTTGTGC -ACGGAACTAGCAACTCTGCTAAGC -ACGGAACTAGCAACTCTGACTAGC -ACGGAACTAGCAACTCTGAGATGC -ACGGAACTAGCAACTCTGTGAAGG -ACGGAACTAGCAACTCTGCAATGG -ACGGAACTAGCAACTCTGATGAGG -ACGGAACTAGCAACTCTGAATGGG -ACGGAACTAGCAACTCTGTCCTGA -ACGGAACTAGCAACTCTGTAGCGA -ACGGAACTAGCAACTCTGCACAGA -ACGGAACTAGCAACTCTGGCAAGA -ACGGAACTAGCAACTCTGGGTTGA -ACGGAACTAGCAACTCTGTCCGAT -ACGGAACTAGCAACTCTGTGGCAT -ACGGAACTAGCAACTCTGCGAGAT -ACGGAACTAGCAACTCTGTACCAC -ACGGAACTAGCAACTCTGCAGAAC -ACGGAACTAGCAACTCTGGTCTAC -ACGGAACTAGCAACTCTGACGTAC -ACGGAACTAGCAACTCTGAGTGAC -ACGGAACTAGCAACTCTGCTGTAG -ACGGAACTAGCAACTCTGCCTAAG -ACGGAACTAGCAACTCTGGTTCAG -ACGGAACTAGCAACTCTGGCATAG -ACGGAACTAGCAACTCTGGACAAG -ACGGAACTAGCAACTCTGAAGCAG -ACGGAACTAGCAACTCTGCGTCAA -ACGGAACTAGCAACTCTGGCTGAA -ACGGAACTAGCAACTCTGAGTACG -ACGGAACTAGCAACTCTGATCCGA -ACGGAACTAGCAACTCTGATGGGA -ACGGAACTAGCAACTCTGGTGCAA -ACGGAACTAGCAACTCTGGAGGAA -ACGGAACTAGCAACTCTGCAGGTA -ACGGAACTAGCAACTCTGGACTCT -ACGGAACTAGCAACTCTGAGTCCT -ACGGAACTAGCAACTCTGTAAGCC -ACGGAACTAGCAACTCTGATAGCC -ACGGAACTAGCAACTCTGTAACCG -ACGGAACTAGCAACTCTGATGCCA -ACGGAACTAGCACCTCAAGGAAAC -ACGGAACTAGCACCTCAAAACACC -ACGGAACTAGCACCTCAAATCGAG -ACGGAACTAGCACCTCAACTCCTT -ACGGAACTAGCACCTCAACCTGTT -ACGGAACTAGCACCTCAACGGTTT -ACGGAACTAGCACCTCAAGTGGTT -ACGGAACTAGCACCTCAAGCCTTT -ACGGAACTAGCACCTCAAGGTCTT -ACGGAACTAGCACCTCAAACGCTT -ACGGAACTAGCACCTCAAAGCGTT -ACGGAACTAGCACCTCAATTCGTC -ACGGAACTAGCACCTCAATCTCTC -ACGGAACTAGCACCTCAATGGATC -ACGGAACTAGCACCTCAACACTTC -ACGGAACTAGCACCTCAAGTACTC -ACGGAACTAGCACCTCAAGATGTC -ACGGAACTAGCACCTCAAACAGTC -ACGGAACTAGCACCTCAATTGCTG -ACGGAACTAGCACCTCAATCCATG -ACGGAACTAGCACCTCAATGTGTG -ACGGAACTAGCACCTCAACTAGTG -ACGGAACTAGCACCTCAACATCTG -ACGGAACTAGCACCTCAAGAGTTG -ACGGAACTAGCACCTCAAAGACTG -ACGGAACTAGCACCTCAATCGGTA -ACGGAACTAGCACCTCAATGCCTA -ACGGAACTAGCACCTCAACCACTA -ACGGAACTAGCACCTCAAGGAGTA -ACGGAACTAGCACCTCAATCGTCT -ACGGAACTAGCACCTCAATGCACT -ACGGAACTAGCACCTCAACTGACT -ACGGAACTAGCACCTCAACAACCT -ACGGAACTAGCACCTCAAGCTACT -ACGGAACTAGCACCTCAAGGATCT -ACGGAACTAGCACCTCAAAAGGCT -ACGGAACTAGCACCTCAATCAACC -ACGGAACTAGCACCTCAATGTTCC -ACGGAACTAGCACCTCAAATTCCC -ACGGAACTAGCACCTCAATTCTCG -ACGGAACTAGCACCTCAATAGACG -ACGGAACTAGCACCTCAAGTAACG -ACGGAACTAGCACCTCAAACTTCG -ACGGAACTAGCACCTCAATACGCA -ACGGAACTAGCACCTCAACTTGCA -ACGGAACTAGCACCTCAACGAACA -ACGGAACTAGCACCTCAACAGTCA -ACGGAACTAGCACCTCAAGATCCA -ACGGAACTAGCACCTCAAACGACA -ACGGAACTAGCACCTCAAAGCTCA -ACGGAACTAGCACCTCAATCACGT -ACGGAACTAGCACCTCAACGTAGT -ACGGAACTAGCACCTCAAGTCAGT -ACGGAACTAGCACCTCAAGAAGGT -ACGGAACTAGCACCTCAAAACCGT -ACGGAACTAGCACCTCAATTGTGC -ACGGAACTAGCACCTCAACTAAGC -ACGGAACTAGCACCTCAAACTAGC -ACGGAACTAGCACCTCAAAGATGC -ACGGAACTAGCACCTCAATGAAGG -ACGGAACTAGCACCTCAACAATGG -ACGGAACTAGCACCTCAAATGAGG -ACGGAACTAGCACCTCAAAATGGG -ACGGAACTAGCACCTCAATCCTGA -ACGGAACTAGCACCTCAATAGCGA -ACGGAACTAGCACCTCAACACAGA -ACGGAACTAGCACCTCAAGCAAGA -ACGGAACTAGCACCTCAAGGTTGA -ACGGAACTAGCACCTCAATCCGAT -ACGGAACTAGCACCTCAATGGCAT -ACGGAACTAGCACCTCAACGAGAT -ACGGAACTAGCACCTCAATACCAC -ACGGAACTAGCACCTCAACAGAAC -ACGGAACTAGCACCTCAAGTCTAC -ACGGAACTAGCACCTCAAACGTAC -ACGGAACTAGCACCTCAAAGTGAC -ACGGAACTAGCACCTCAACTGTAG -ACGGAACTAGCACCTCAACCTAAG -ACGGAACTAGCACCTCAAGTTCAG -ACGGAACTAGCACCTCAAGCATAG -ACGGAACTAGCACCTCAAGACAAG -ACGGAACTAGCACCTCAAAAGCAG -ACGGAACTAGCACCTCAACGTCAA -ACGGAACTAGCACCTCAAGCTGAA -ACGGAACTAGCACCTCAAAGTACG -ACGGAACTAGCACCTCAAATCCGA -ACGGAACTAGCACCTCAAATGGGA -ACGGAACTAGCACCTCAAGTGCAA -ACGGAACTAGCACCTCAAGAGGAA -ACGGAACTAGCACCTCAACAGGTA -ACGGAACTAGCACCTCAAGACTCT -ACGGAACTAGCACCTCAAAGTCCT -ACGGAACTAGCACCTCAATAAGCC -ACGGAACTAGCACCTCAAATAGCC -ACGGAACTAGCACCTCAATAACCG -ACGGAACTAGCACCTCAAATGCCA -ACGGAACTAGCAACTGCTGGAAAC -ACGGAACTAGCAACTGCTAACACC -ACGGAACTAGCAACTGCTATCGAG -ACGGAACTAGCAACTGCTCTCCTT -ACGGAACTAGCAACTGCTCCTGTT -ACGGAACTAGCAACTGCTCGGTTT -ACGGAACTAGCAACTGCTGTGGTT -ACGGAACTAGCAACTGCTGCCTTT -ACGGAACTAGCAACTGCTGGTCTT -ACGGAACTAGCAACTGCTACGCTT -ACGGAACTAGCAACTGCTAGCGTT -ACGGAACTAGCAACTGCTTTCGTC -ACGGAACTAGCAACTGCTTCTCTC -ACGGAACTAGCAACTGCTTGGATC -ACGGAACTAGCAACTGCTCACTTC -ACGGAACTAGCAACTGCTGTACTC -ACGGAACTAGCAACTGCTGATGTC -ACGGAACTAGCAACTGCTACAGTC -ACGGAACTAGCAACTGCTTTGCTG -ACGGAACTAGCAACTGCTTCCATG -ACGGAACTAGCAACTGCTTGTGTG -ACGGAACTAGCAACTGCTCTAGTG -ACGGAACTAGCAACTGCTCATCTG -ACGGAACTAGCAACTGCTGAGTTG -ACGGAACTAGCAACTGCTAGACTG -ACGGAACTAGCAACTGCTTCGGTA -ACGGAACTAGCAACTGCTTGCCTA -ACGGAACTAGCAACTGCTCCACTA -ACGGAACTAGCAACTGCTGGAGTA -ACGGAACTAGCAACTGCTTCGTCT -ACGGAACTAGCAACTGCTTGCACT -ACGGAACTAGCAACTGCTCTGACT -ACGGAACTAGCAACTGCTCAACCT -ACGGAACTAGCAACTGCTGCTACT -ACGGAACTAGCAACTGCTGGATCT -ACGGAACTAGCAACTGCTAAGGCT -ACGGAACTAGCAACTGCTTCAACC -ACGGAACTAGCAACTGCTTGTTCC -ACGGAACTAGCAACTGCTATTCCC -ACGGAACTAGCAACTGCTTTCTCG -ACGGAACTAGCAACTGCTTAGACG -ACGGAACTAGCAACTGCTGTAACG -ACGGAACTAGCAACTGCTACTTCG -ACGGAACTAGCAACTGCTTACGCA -ACGGAACTAGCAACTGCTCTTGCA -ACGGAACTAGCAACTGCTCGAACA -ACGGAACTAGCAACTGCTCAGTCA -ACGGAACTAGCAACTGCTGATCCA -ACGGAACTAGCAACTGCTACGACA -ACGGAACTAGCAACTGCTAGCTCA -ACGGAACTAGCAACTGCTTCACGT -ACGGAACTAGCAACTGCTCGTAGT -ACGGAACTAGCAACTGCTGTCAGT -ACGGAACTAGCAACTGCTGAAGGT -ACGGAACTAGCAACTGCTAACCGT -ACGGAACTAGCAACTGCTTTGTGC -ACGGAACTAGCAACTGCTCTAAGC -ACGGAACTAGCAACTGCTACTAGC -ACGGAACTAGCAACTGCTAGATGC -ACGGAACTAGCAACTGCTTGAAGG -ACGGAACTAGCAACTGCTCAATGG -ACGGAACTAGCAACTGCTATGAGG -ACGGAACTAGCAACTGCTAATGGG -ACGGAACTAGCAACTGCTTCCTGA -ACGGAACTAGCAACTGCTTAGCGA -ACGGAACTAGCAACTGCTCACAGA -ACGGAACTAGCAACTGCTGCAAGA -ACGGAACTAGCAACTGCTGGTTGA -ACGGAACTAGCAACTGCTTCCGAT -ACGGAACTAGCAACTGCTTGGCAT -ACGGAACTAGCAACTGCTCGAGAT -ACGGAACTAGCAACTGCTTACCAC -ACGGAACTAGCAACTGCTCAGAAC -ACGGAACTAGCAACTGCTGTCTAC -ACGGAACTAGCAACTGCTACGTAC -ACGGAACTAGCAACTGCTAGTGAC -ACGGAACTAGCAACTGCTCTGTAG -ACGGAACTAGCAACTGCTCCTAAG -ACGGAACTAGCAACTGCTGTTCAG -ACGGAACTAGCAACTGCTGCATAG -ACGGAACTAGCAACTGCTGACAAG -ACGGAACTAGCAACTGCTAAGCAG -ACGGAACTAGCAACTGCTCGTCAA -ACGGAACTAGCAACTGCTGCTGAA -ACGGAACTAGCAACTGCTAGTACG -ACGGAACTAGCAACTGCTATCCGA -ACGGAACTAGCAACTGCTATGGGA -ACGGAACTAGCAACTGCTGTGCAA -ACGGAACTAGCAACTGCTGAGGAA -ACGGAACTAGCAACTGCTCAGGTA -ACGGAACTAGCAACTGCTGACTCT -ACGGAACTAGCAACTGCTAGTCCT -ACGGAACTAGCAACTGCTTAAGCC -ACGGAACTAGCAACTGCTATAGCC -ACGGAACTAGCAACTGCTTAACCG -ACGGAACTAGCAACTGCTATGCCA -ACGGAACTAGCATCTGGAGGAAAC -ACGGAACTAGCATCTGGAAACACC -ACGGAACTAGCATCTGGAATCGAG -ACGGAACTAGCATCTGGACTCCTT -ACGGAACTAGCATCTGGACCTGTT -ACGGAACTAGCATCTGGACGGTTT -ACGGAACTAGCATCTGGAGTGGTT -ACGGAACTAGCATCTGGAGCCTTT -ACGGAACTAGCATCTGGAGGTCTT -ACGGAACTAGCATCTGGAACGCTT -ACGGAACTAGCATCTGGAAGCGTT -ACGGAACTAGCATCTGGATTCGTC -ACGGAACTAGCATCTGGATCTCTC -ACGGAACTAGCATCTGGATGGATC -ACGGAACTAGCATCTGGACACTTC -ACGGAACTAGCATCTGGAGTACTC -ACGGAACTAGCATCTGGAGATGTC -ACGGAACTAGCATCTGGAACAGTC -ACGGAACTAGCATCTGGATTGCTG -ACGGAACTAGCATCTGGATCCATG -ACGGAACTAGCATCTGGATGTGTG -ACGGAACTAGCATCTGGACTAGTG -ACGGAACTAGCATCTGGACATCTG -ACGGAACTAGCATCTGGAGAGTTG -ACGGAACTAGCATCTGGAAGACTG -ACGGAACTAGCATCTGGATCGGTA -ACGGAACTAGCATCTGGATGCCTA -ACGGAACTAGCATCTGGACCACTA -ACGGAACTAGCATCTGGAGGAGTA -ACGGAACTAGCATCTGGATCGTCT -ACGGAACTAGCATCTGGATGCACT -ACGGAACTAGCATCTGGACTGACT -ACGGAACTAGCATCTGGACAACCT -ACGGAACTAGCATCTGGAGCTACT -ACGGAACTAGCATCTGGAGGATCT -ACGGAACTAGCATCTGGAAAGGCT -ACGGAACTAGCATCTGGATCAACC -ACGGAACTAGCATCTGGATGTTCC -ACGGAACTAGCATCTGGAATTCCC -ACGGAACTAGCATCTGGATTCTCG -ACGGAACTAGCATCTGGATAGACG -ACGGAACTAGCATCTGGAGTAACG -ACGGAACTAGCATCTGGAACTTCG -ACGGAACTAGCATCTGGATACGCA -ACGGAACTAGCATCTGGACTTGCA -ACGGAACTAGCATCTGGACGAACA -ACGGAACTAGCATCTGGACAGTCA -ACGGAACTAGCATCTGGAGATCCA -ACGGAACTAGCATCTGGAACGACA -ACGGAACTAGCATCTGGAAGCTCA -ACGGAACTAGCATCTGGATCACGT -ACGGAACTAGCATCTGGACGTAGT -ACGGAACTAGCATCTGGAGTCAGT -ACGGAACTAGCATCTGGAGAAGGT -ACGGAACTAGCATCTGGAAACCGT -ACGGAACTAGCATCTGGATTGTGC -ACGGAACTAGCATCTGGACTAAGC -ACGGAACTAGCATCTGGAACTAGC -ACGGAACTAGCATCTGGAAGATGC -ACGGAACTAGCATCTGGATGAAGG -ACGGAACTAGCATCTGGACAATGG -ACGGAACTAGCATCTGGAATGAGG -ACGGAACTAGCATCTGGAAATGGG -ACGGAACTAGCATCTGGATCCTGA -ACGGAACTAGCATCTGGATAGCGA -ACGGAACTAGCATCTGGACACAGA -ACGGAACTAGCATCTGGAGCAAGA -ACGGAACTAGCATCTGGAGGTTGA -ACGGAACTAGCATCTGGATCCGAT -ACGGAACTAGCATCTGGATGGCAT -ACGGAACTAGCATCTGGACGAGAT -ACGGAACTAGCATCTGGATACCAC -ACGGAACTAGCATCTGGACAGAAC -ACGGAACTAGCATCTGGAGTCTAC -ACGGAACTAGCATCTGGAACGTAC -ACGGAACTAGCATCTGGAAGTGAC -ACGGAACTAGCATCTGGACTGTAG -ACGGAACTAGCATCTGGACCTAAG -ACGGAACTAGCATCTGGAGTTCAG -ACGGAACTAGCATCTGGAGCATAG -ACGGAACTAGCATCTGGAGACAAG -ACGGAACTAGCATCTGGAAAGCAG -ACGGAACTAGCATCTGGACGTCAA -ACGGAACTAGCATCTGGAGCTGAA -ACGGAACTAGCATCTGGAAGTACG -ACGGAACTAGCATCTGGAATCCGA -ACGGAACTAGCATCTGGAATGGGA -ACGGAACTAGCATCTGGAGTGCAA -ACGGAACTAGCATCTGGAGAGGAA -ACGGAACTAGCATCTGGACAGGTA -ACGGAACTAGCATCTGGAGACTCT -ACGGAACTAGCATCTGGAAGTCCT -ACGGAACTAGCATCTGGATAAGCC -ACGGAACTAGCATCTGGAATAGCC -ACGGAACTAGCATCTGGATAACCG -ACGGAACTAGCATCTGGAATGCCA -ACGGAACTAGCAGCTAAGGGAAAC -ACGGAACTAGCAGCTAAGAACACC -ACGGAACTAGCAGCTAAGATCGAG -ACGGAACTAGCAGCTAAGCTCCTT -ACGGAACTAGCAGCTAAGCCTGTT -ACGGAACTAGCAGCTAAGCGGTTT -ACGGAACTAGCAGCTAAGGTGGTT -ACGGAACTAGCAGCTAAGGCCTTT -ACGGAACTAGCAGCTAAGGGTCTT -ACGGAACTAGCAGCTAAGACGCTT -ACGGAACTAGCAGCTAAGAGCGTT -ACGGAACTAGCAGCTAAGTTCGTC -ACGGAACTAGCAGCTAAGTCTCTC -ACGGAACTAGCAGCTAAGTGGATC -ACGGAACTAGCAGCTAAGCACTTC -ACGGAACTAGCAGCTAAGGTACTC -ACGGAACTAGCAGCTAAGGATGTC -ACGGAACTAGCAGCTAAGACAGTC -ACGGAACTAGCAGCTAAGTTGCTG -ACGGAACTAGCAGCTAAGTCCATG -ACGGAACTAGCAGCTAAGTGTGTG -ACGGAACTAGCAGCTAAGCTAGTG -ACGGAACTAGCAGCTAAGCATCTG -ACGGAACTAGCAGCTAAGGAGTTG -ACGGAACTAGCAGCTAAGAGACTG -ACGGAACTAGCAGCTAAGTCGGTA -ACGGAACTAGCAGCTAAGTGCCTA -ACGGAACTAGCAGCTAAGCCACTA -ACGGAACTAGCAGCTAAGGGAGTA -ACGGAACTAGCAGCTAAGTCGTCT -ACGGAACTAGCAGCTAAGTGCACT -ACGGAACTAGCAGCTAAGCTGACT -ACGGAACTAGCAGCTAAGCAACCT -ACGGAACTAGCAGCTAAGGCTACT -ACGGAACTAGCAGCTAAGGGATCT -ACGGAACTAGCAGCTAAGAAGGCT -ACGGAACTAGCAGCTAAGTCAACC -ACGGAACTAGCAGCTAAGTGTTCC -ACGGAACTAGCAGCTAAGATTCCC -ACGGAACTAGCAGCTAAGTTCTCG -ACGGAACTAGCAGCTAAGTAGACG -ACGGAACTAGCAGCTAAGGTAACG -ACGGAACTAGCAGCTAAGACTTCG -ACGGAACTAGCAGCTAAGTACGCA -ACGGAACTAGCAGCTAAGCTTGCA -ACGGAACTAGCAGCTAAGCGAACA -ACGGAACTAGCAGCTAAGCAGTCA -ACGGAACTAGCAGCTAAGGATCCA -ACGGAACTAGCAGCTAAGACGACA -ACGGAACTAGCAGCTAAGAGCTCA -ACGGAACTAGCAGCTAAGTCACGT -ACGGAACTAGCAGCTAAGCGTAGT -ACGGAACTAGCAGCTAAGGTCAGT -ACGGAACTAGCAGCTAAGGAAGGT -ACGGAACTAGCAGCTAAGAACCGT -ACGGAACTAGCAGCTAAGTTGTGC -ACGGAACTAGCAGCTAAGCTAAGC -ACGGAACTAGCAGCTAAGACTAGC -ACGGAACTAGCAGCTAAGAGATGC -ACGGAACTAGCAGCTAAGTGAAGG -ACGGAACTAGCAGCTAAGCAATGG -ACGGAACTAGCAGCTAAGATGAGG -ACGGAACTAGCAGCTAAGAATGGG -ACGGAACTAGCAGCTAAGTCCTGA -ACGGAACTAGCAGCTAAGTAGCGA -ACGGAACTAGCAGCTAAGCACAGA -ACGGAACTAGCAGCTAAGGCAAGA -ACGGAACTAGCAGCTAAGGGTTGA -ACGGAACTAGCAGCTAAGTCCGAT -ACGGAACTAGCAGCTAAGTGGCAT -ACGGAACTAGCAGCTAAGCGAGAT -ACGGAACTAGCAGCTAAGTACCAC -ACGGAACTAGCAGCTAAGCAGAAC -ACGGAACTAGCAGCTAAGGTCTAC -ACGGAACTAGCAGCTAAGACGTAC -ACGGAACTAGCAGCTAAGAGTGAC -ACGGAACTAGCAGCTAAGCTGTAG -ACGGAACTAGCAGCTAAGCCTAAG -ACGGAACTAGCAGCTAAGGTTCAG -ACGGAACTAGCAGCTAAGGCATAG -ACGGAACTAGCAGCTAAGGACAAG -ACGGAACTAGCAGCTAAGAAGCAG -ACGGAACTAGCAGCTAAGCGTCAA -ACGGAACTAGCAGCTAAGGCTGAA -ACGGAACTAGCAGCTAAGAGTACG -ACGGAACTAGCAGCTAAGATCCGA -ACGGAACTAGCAGCTAAGATGGGA -ACGGAACTAGCAGCTAAGGTGCAA -ACGGAACTAGCAGCTAAGGAGGAA -ACGGAACTAGCAGCTAAGCAGGTA -ACGGAACTAGCAGCTAAGGACTCT -ACGGAACTAGCAGCTAAGAGTCCT -ACGGAACTAGCAGCTAAGTAAGCC -ACGGAACTAGCAGCTAAGATAGCC -ACGGAACTAGCAGCTAAGTAACCG -ACGGAACTAGCAGCTAAGATGCCA -ACGGAACTAGCAACCTCAGGAAAC -ACGGAACTAGCAACCTCAAACACC -ACGGAACTAGCAACCTCAATCGAG -ACGGAACTAGCAACCTCACTCCTT -ACGGAACTAGCAACCTCACCTGTT -ACGGAACTAGCAACCTCACGGTTT -ACGGAACTAGCAACCTCAGTGGTT -ACGGAACTAGCAACCTCAGCCTTT -ACGGAACTAGCAACCTCAGGTCTT -ACGGAACTAGCAACCTCAACGCTT -ACGGAACTAGCAACCTCAAGCGTT -ACGGAACTAGCAACCTCATTCGTC -ACGGAACTAGCAACCTCATCTCTC -ACGGAACTAGCAACCTCATGGATC -ACGGAACTAGCAACCTCACACTTC -ACGGAACTAGCAACCTCAGTACTC -ACGGAACTAGCAACCTCAGATGTC -ACGGAACTAGCAACCTCAACAGTC -ACGGAACTAGCAACCTCATTGCTG -ACGGAACTAGCAACCTCATCCATG -ACGGAACTAGCAACCTCATGTGTG -ACGGAACTAGCAACCTCACTAGTG -ACGGAACTAGCAACCTCACATCTG -ACGGAACTAGCAACCTCAGAGTTG -ACGGAACTAGCAACCTCAAGACTG -ACGGAACTAGCAACCTCATCGGTA -ACGGAACTAGCAACCTCATGCCTA -ACGGAACTAGCAACCTCACCACTA -ACGGAACTAGCAACCTCAGGAGTA -ACGGAACTAGCAACCTCATCGTCT -ACGGAACTAGCAACCTCATGCACT -ACGGAACTAGCAACCTCACTGACT -ACGGAACTAGCAACCTCACAACCT -ACGGAACTAGCAACCTCAGCTACT -ACGGAACTAGCAACCTCAGGATCT -ACGGAACTAGCAACCTCAAAGGCT -ACGGAACTAGCAACCTCATCAACC -ACGGAACTAGCAACCTCATGTTCC -ACGGAACTAGCAACCTCAATTCCC -ACGGAACTAGCAACCTCATTCTCG -ACGGAACTAGCAACCTCATAGACG -ACGGAACTAGCAACCTCAGTAACG -ACGGAACTAGCAACCTCAACTTCG -ACGGAACTAGCAACCTCATACGCA -ACGGAACTAGCAACCTCACTTGCA -ACGGAACTAGCAACCTCACGAACA -ACGGAACTAGCAACCTCACAGTCA -ACGGAACTAGCAACCTCAGATCCA -ACGGAACTAGCAACCTCAACGACA -ACGGAACTAGCAACCTCAAGCTCA -ACGGAACTAGCAACCTCATCACGT -ACGGAACTAGCAACCTCACGTAGT -ACGGAACTAGCAACCTCAGTCAGT -ACGGAACTAGCAACCTCAGAAGGT -ACGGAACTAGCAACCTCAAACCGT -ACGGAACTAGCAACCTCATTGTGC -ACGGAACTAGCAACCTCACTAAGC -ACGGAACTAGCAACCTCAACTAGC -ACGGAACTAGCAACCTCAAGATGC -ACGGAACTAGCAACCTCATGAAGG -ACGGAACTAGCAACCTCACAATGG -ACGGAACTAGCAACCTCAATGAGG -ACGGAACTAGCAACCTCAAATGGG -ACGGAACTAGCAACCTCATCCTGA -ACGGAACTAGCAACCTCATAGCGA -ACGGAACTAGCAACCTCACACAGA -ACGGAACTAGCAACCTCAGCAAGA -ACGGAACTAGCAACCTCAGGTTGA -ACGGAACTAGCAACCTCATCCGAT -ACGGAACTAGCAACCTCATGGCAT -ACGGAACTAGCAACCTCACGAGAT -ACGGAACTAGCAACCTCATACCAC -ACGGAACTAGCAACCTCACAGAAC -ACGGAACTAGCAACCTCAGTCTAC -ACGGAACTAGCAACCTCAACGTAC -ACGGAACTAGCAACCTCAAGTGAC -ACGGAACTAGCAACCTCACTGTAG -ACGGAACTAGCAACCTCACCTAAG -ACGGAACTAGCAACCTCAGTTCAG -ACGGAACTAGCAACCTCAGCATAG -ACGGAACTAGCAACCTCAGACAAG -ACGGAACTAGCAACCTCAAAGCAG -ACGGAACTAGCAACCTCACGTCAA -ACGGAACTAGCAACCTCAGCTGAA -ACGGAACTAGCAACCTCAAGTACG -ACGGAACTAGCAACCTCAATCCGA -ACGGAACTAGCAACCTCAATGGGA -ACGGAACTAGCAACCTCAGTGCAA -ACGGAACTAGCAACCTCAGAGGAA -ACGGAACTAGCAACCTCACAGGTA -ACGGAACTAGCAACCTCAGACTCT -ACGGAACTAGCAACCTCAAGTCCT -ACGGAACTAGCAACCTCATAAGCC -ACGGAACTAGCAACCTCAATAGCC -ACGGAACTAGCAACCTCATAACCG -ACGGAACTAGCAACCTCAATGCCA -ACGGAACTAGCATCCTGTGGAAAC -ACGGAACTAGCATCCTGTAACACC -ACGGAACTAGCATCCTGTATCGAG -ACGGAACTAGCATCCTGTCTCCTT -ACGGAACTAGCATCCTGTCCTGTT -ACGGAACTAGCATCCTGTCGGTTT -ACGGAACTAGCATCCTGTGTGGTT -ACGGAACTAGCATCCTGTGCCTTT -ACGGAACTAGCATCCTGTGGTCTT -ACGGAACTAGCATCCTGTACGCTT -ACGGAACTAGCATCCTGTAGCGTT -ACGGAACTAGCATCCTGTTTCGTC -ACGGAACTAGCATCCTGTTCTCTC -ACGGAACTAGCATCCTGTTGGATC -ACGGAACTAGCATCCTGTCACTTC -ACGGAACTAGCATCCTGTGTACTC -ACGGAACTAGCATCCTGTGATGTC -ACGGAACTAGCATCCTGTACAGTC -ACGGAACTAGCATCCTGTTTGCTG -ACGGAACTAGCATCCTGTTCCATG -ACGGAACTAGCATCCTGTTGTGTG -ACGGAACTAGCATCCTGTCTAGTG -ACGGAACTAGCATCCTGTCATCTG -ACGGAACTAGCATCCTGTGAGTTG -ACGGAACTAGCATCCTGTAGACTG -ACGGAACTAGCATCCTGTTCGGTA -ACGGAACTAGCATCCTGTTGCCTA -ACGGAACTAGCATCCTGTCCACTA -ACGGAACTAGCATCCTGTGGAGTA -ACGGAACTAGCATCCTGTTCGTCT -ACGGAACTAGCATCCTGTTGCACT -ACGGAACTAGCATCCTGTCTGACT -ACGGAACTAGCATCCTGTCAACCT -ACGGAACTAGCATCCTGTGCTACT -ACGGAACTAGCATCCTGTGGATCT -ACGGAACTAGCATCCTGTAAGGCT -ACGGAACTAGCATCCTGTTCAACC -ACGGAACTAGCATCCTGTTGTTCC -ACGGAACTAGCATCCTGTATTCCC -ACGGAACTAGCATCCTGTTTCTCG -ACGGAACTAGCATCCTGTTAGACG -ACGGAACTAGCATCCTGTGTAACG -ACGGAACTAGCATCCTGTACTTCG -ACGGAACTAGCATCCTGTTACGCA -ACGGAACTAGCATCCTGTCTTGCA -ACGGAACTAGCATCCTGTCGAACA -ACGGAACTAGCATCCTGTCAGTCA -ACGGAACTAGCATCCTGTGATCCA -ACGGAACTAGCATCCTGTACGACA -ACGGAACTAGCATCCTGTAGCTCA -ACGGAACTAGCATCCTGTTCACGT -ACGGAACTAGCATCCTGTCGTAGT -ACGGAACTAGCATCCTGTGTCAGT -ACGGAACTAGCATCCTGTGAAGGT -ACGGAACTAGCATCCTGTAACCGT -ACGGAACTAGCATCCTGTTTGTGC -ACGGAACTAGCATCCTGTCTAAGC -ACGGAACTAGCATCCTGTACTAGC -ACGGAACTAGCATCCTGTAGATGC -ACGGAACTAGCATCCTGTTGAAGG -ACGGAACTAGCATCCTGTCAATGG -ACGGAACTAGCATCCTGTATGAGG -ACGGAACTAGCATCCTGTAATGGG -ACGGAACTAGCATCCTGTTCCTGA -ACGGAACTAGCATCCTGTTAGCGA -ACGGAACTAGCATCCTGTCACAGA -ACGGAACTAGCATCCTGTGCAAGA -ACGGAACTAGCATCCTGTGGTTGA -ACGGAACTAGCATCCTGTTCCGAT -ACGGAACTAGCATCCTGTTGGCAT -ACGGAACTAGCATCCTGTCGAGAT -ACGGAACTAGCATCCTGTTACCAC -ACGGAACTAGCATCCTGTCAGAAC -ACGGAACTAGCATCCTGTGTCTAC -ACGGAACTAGCATCCTGTACGTAC -ACGGAACTAGCATCCTGTAGTGAC -ACGGAACTAGCATCCTGTCTGTAG -ACGGAACTAGCATCCTGTCCTAAG -ACGGAACTAGCATCCTGTGTTCAG -ACGGAACTAGCATCCTGTGCATAG -ACGGAACTAGCATCCTGTGACAAG -ACGGAACTAGCATCCTGTAAGCAG -ACGGAACTAGCATCCTGTCGTCAA -ACGGAACTAGCATCCTGTGCTGAA -ACGGAACTAGCATCCTGTAGTACG -ACGGAACTAGCATCCTGTATCCGA -ACGGAACTAGCATCCTGTATGGGA -ACGGAACTAGCATCCTGTGTGCAA -ACGGAACTAGCATCCTGTGAGGAA -ACGGAACTAGCATCCTGTCAGGTA -ACGGAACTAGCATCCTGTGACTCT -ACGGAACTAGCATCCTGTAGTCCT -ACGGAACTAGCATCCTGTTAAGCC -ACGGAACTAGCATCCTGTATAGCC -ACGGAACTAGCATCCTGTTAACCG -ACGGAACTAGCATCCTGTATGCCA -ACGGAACTAGCACCCATTGGAAAC -ACGGAACTAGCACCCATTAACACC -ACGGAACTAGCACCCATTATCGAG -ACGGAACTAGCACCCATTCTCCTT -ACGGAACTAGCACCCATTCCTGTT -ACGGAACTAGCACCCATTCGGTTT -ACGGAACTAGCACCCATTGTGGTT -ACGGAACTAGCACCCATTGCCTTT -ACGGAACTAGCACCCATTGGTCTT -ACGGAACTAGCACCCATTACGCTT -ACGGAACTAGCACCCATTAGCGTT -ACGGAACTAGCACCCATTTTCGTC -ACGGAACTAGCACCCATTTCTCTC -ACGGAACTAGCACCCATTTGGATC -ACGGAACTAGCACCCATTCACTTC -ACGGAACTAGCACCCATTGTACTC -ACGGAACTAGCACCCATTGATGTC -ACGGAACTAGCACCCATTACAGTC -ACGGAACTAGCACCCATTTTGCTG -ACGGAACTAGCACCCATTTCCATG -ACGGAACTAGCACCCATTTGTGTG -ACGGAACTAGCACCCATTCTAGTG -ACGGAACTAGCACCCATTCATCTG -ACGGAACTAGCACCCATTGAGTTG -ACGGAACTAGCACCCATTAGACTG -ACGGAACTAGCACCCATTTCGGTA -ACGGAACTAGCACCCATTTGCCTA -ACGGAACTAGCACCCATTCCACTA -ACGGAACTAGCACCCATTGGAGTA -ACGGAACTAGCACCCATTTCGTCT -ACGGAACTAGCACCCATTTGCACT -ACGGAACTAGCACCCATTCTGACT -ACGGAACTAGCACCCATTCAACCT -ACGGAACTAGCACCCATTGCTACT -ACGGAACTAGCACCCATTGGATCT -ACGGAACTAGCACCCATTAAGGCT -ACGGAACTAGCACCCATTTCAACC -ACGGAACTAGCACCCATTTGTTCC -ACGGAACTAGCACCCATTATTCCC -ACGGAACTAGCACCCATTTTCTCG -ACGGAACTAGCACCCATTTAGACG -ACGGAACTAGCACCCATTGTAACG -ACGGAACTAGCACCCATTACTTCG -ACGGAACTAGCACCCATTTACGCA -ACGGAACTAGCACCCATTCTTGCA -ACGGAACTAGCACCCATTCGAACA -ACGGAACTAGCACCCATTCAGTCA -ACGGAACTAGCACCCATTGATCCA -ACGGAACTAGCACCCATTACGACA -ACGGAACTAGCACCCATTAGCTCA -ACGGAACTAGCACCCATTTCACGT -ACGGAACTAGCACCCATTCGTAGT -ACGGAACTAGCACCCATTGTCAGT -ACGGAACTAGCACCCATTGAAGGT -ACGGAACTAGCACCCATTAACCGT -ACGGAACTAGCACCCATTTTGTGC -ACGGAACTAGCACCCATTCTAAGC -ACGGAACTAGCACCCATTACTAGC -ACGGAACTAGCACCCATTAGATGC -ACGGAACTAGCACCCATTTGAAGG -ACGGAACTAGCACCCATTCAATGG -ACGGAACTAGCACCCATTATGAGG -ACGGAACTAGCACCCATTAATGGG -ACGGAACTAGCACCCATTTCCTGA -ACGGAACTAGCACCCATTTAGCGA -ACGGAACTAGCACCCATTCACAGA -ACGGAACTAGCACCCATTGCAAGA -ACGGAACTAGCACCCATTGGTTGA -ACGGAACTAGCACCCATTTCCGAT -ACGGAACTAGCACCCATTTGGCAT -ACGGAACTAGCACCCATTCGAGAT -ACGGAACTAGCACCCATTTACCAC -ACGGAACTAGCACCCATTCAGAAC -ACGGAACTAGCACCCATTGTCTAC -ACGGAACTAGCACCCATTACGTAC -ACGGAACTAGCACCCATTAGTGAC -ACGGAACTAGCACCCATTCTGTAG -ACGGAACTAGCACCCATTCCTAAG -ACGGAACTAGCACCCATTGTTCAG -ACGGAACTAGCACCCATTGCATAG -ACGGAACTAGCACCCATTGACAAG -ACGGAACTAGCACCCATTAAGCAG -ACGGAACTAGCACCCATTCGTCAA -ACGGAACTAGCACCCATTGCTGAA -ACGGAACTAGCACCCATTAGTACG -ACGGAACTAGCACCCATTATCCGA -ACGGAACTAGCACCCATTATGGGA -ACGGAACTAGCACCCATTGTGCAA -ACGGAACTAGCACCCATTGAGGAA -ACGGAACTAGCACCCATTCAGGTA -ACGGAACTAGCACCCATTGACTCT -ACGGAACTAGCACCCATTAGTCCT -ACGGAACTAGCACCCATTTAAGCC -ACGGAACTAGCACCCATTATAGCC -ACGGAACTAGCACCCATTTAACCG -ACGGAACTAGCACCCATTATGCCA -ACGGAACTAGCATCGTTCGGAAAC -ACGGAACTAGCATCGTTCAACACC -ACGGAACTAGCATCGTTCATCGAG -ACGGAACTAGCATCGTTCCTCCTT -ACGGAACTAGCATCGTTCCCTGTT -ACGGAACTAGCATCGTTCCGGTTT -ACGGAACTAGCATCGTTCGTGGTT -ACGGAACTAGCATCGTTCGCCTTT -ACGGAACTAGCATCGTTCGGTCTT -ACGGAACTAGCATCGTTCACGCTT -ACGGAACTAGCATCGTTCAGCGTT -ACGGAACTAGCATCGTTCTTCGTC -ACGGAACTAGCATCGTTCTCTCTC -ACGGAACTAGCATCGTTCTGGATC -ACGGAACTAGCATCGTTCCACTTC -ACGGAACTAGCATCGTTCGTACTC -ACGGAACTAGCATCGTTCGATGTC -ACGGAACTAGCATCGTTCACAGTC -ACGGAACTAGCATCGTTCTTGCTG -ACGGAACTAGCATCGTTCTCCATG -ACGGAACTAGCATCGTTCTGTGTG -ACGGAACTAGCATCGTTCCTAGTG -ACGGAACTAGCATCGTTCCATCTG -ACGGAACTAGCATCGTTCGAGTTG -ACGGAACTAGCATCGTTCAGACTG -ACGGAACTAGCATCGTTCTCGGTA -ACGGAACTAGCATCGTTCTGCCTA -ACGGAACTAGCATCGTTCCCACTA -ACGGAACTAGCATCGTTCGGAGTA -ACGGAACTAGCATCGTTCTCGTCT -ACGGAACTAGCATCGTTCTGCACT -ACGGAACTAGCATCGTTCCTGACT -ACGGAACTAGCATCGTTCCAACCT -ACGGAACTAGCATCGTTCGCTACT -ACGGAACTAGCATCGTTCGGATCT -ACGGAACTAGCATCGTTCAAGGCT -ACGGAACTAGCATCGTTCTCAACC -ACGGAACTAGCATCGTTCTGTTCC -ACGGAACTAGCATCGTTCATTCCC -ACGGAACTAGCATCGTTCTTCTCG -ACGGAACTAGCATCGTTCTAGACG -ACGGAACTAGCATCGTTCGTAACG -ACGGAACTAGCATCGTTCACTTCG -ACGGAACTAGCATCGTTCTACGCA -ACGGAACTAGCATCGTTCCTTGCA -ACGGAACTAGCATCGTTCCGAACA -ACGGAACTAGCATCGTTCCAGTCA -ACGGAACTAGCATCGTTCGATCCA -ACGGAACTAGCATCGTTCACGACA -ACGGAACTAGCATCGTTCAGCTCA -ACGGAACTAGCATCGTTCTCACGT -ACGGAACTAGCATCGTTCCGTAGT -ACGGAACTAGCATCGTTCGTCAGT -ACGGAACTAGCATCGTTCGAAGGT -ACGGAACTAGCATCGTTCAACCGT -ACGGAACTAGCATCGTTCTTGTGC -ACGGAACTAGCATCGTTCCTAAGC -ACGGAACTAGCATCGTTCACTAGC -ACGGAACTAGCATCGTTCAGATGC -ACGGAACTAGCATCGTTCTGAAGG -ACGGAACTAGCATCGTTCCAATGG -ACGGAACTAGCATCGTTCATGAGG -ACGGAACTAGCATCGTTCAATGGG -ACGGAACTAGCATCGTTCTCCTGA -ACGGAACTAGCATCGTTCTAGCGA -ACGGAACTAGCATCGTTCCACAGA -ACGGAACTAGCATCGTTCGCAAGA -ACGGAACTAGCATCGTTCGGTTGA -ACGGAACTAGCATCGTTCTCCGAT -ACGGAACTAGCATCGTTCTGGCAT -ACGGAACTAGCATCGTTCCGAGAT -ACGGAACTAGCATCGTTCTACCAC -ACGGAACTAGCATCGTTCCAGAAC -ACGGAACTAGCATCGTTCGTCTAC -ACGGAACTAGCATCGTTCACGTAC -ACGGAACTAGCATCGTTCAGTGAC -ACGGAACTAGCATCGTTCCTGTAG -ACGGAACTAGCATCGTTCCCTAAG -ACGGAACTAGCATCGTTCGTTCAG -ACGGAACTAGCATCGTTCGCATAG -ACGGAACTAGCATCGTTCGACAAG -ACGGAACTAGCATCGTTCAAGCAG -ACGGAACTAGCATCGTTCCGTCAA -ACGGAACTAGCATCGTTCGCTGAA -ACGGAACTAGCATCGTTCAGTACG -ACGGAACTAGCATCGTTCATCCGA -ACGGAACTAGCATCGTTCATGGGA -ACGGAACTAGCATCGTTCGTGCAA -ACGGAACTAGCATCGTTCGAGGAA -ACGGAACTAGCATCGTTCCAGGTA -ACGGAACTAGCATCGTTCGACTCT -ACGGAACTAGCATCGTTCAGTCCT -ACGGAACTAGCATCGTTCTAAGCC -ACGGAACTAGCATCGTTCATAGCC -ACGGAACTAGCATCGTTCTAACCG -ACGGAACTAGCATCGTTCATGCCA -ACGGAACTAGCAACGTAGGGAAAC -ACGGAACTAGCAACGTAGAACACC -ACGGAACTAGCAACGTAGATCGAG -ACGGAACTAGCAACGTAGCTCCTT -ACGGAACTAGCAACGTAGCCTGTT -ACGGAACTAGCAACGTAGCGGTTT -ACGGAACTAGCAACGTAGGTGGTT -ACGGAACTAGCAACGTAGGCCTTT -ACGGAACTAGCAACGTAGGGTCTT -ACGGAACTAGCAACGTAGACGCTT -ACGGAACTAGCAACGTAGAGCGTT -ACGGAACTAGCAACGTAGTTCGTC -ACGGAACTAGCAACGTAGTCTCTC -ACGGAACTAGCAACGTAGTGGATC -ACGGAACTAGCAACGTAGCACTTC -ACGGAACTAGCAACGTAGGTACTC -ACGGAACTAGCAACGTAGGATGTC -ACGGAACTAGCAACGTAGACAGTC -ACGGAACTAGCAACGTAGTTGCTG -ACGGAACTAGCAACGTAGTCCATG -ACGGAACTAGCAACGTAGTGTGTG -ACGGAACTAGCAACGTAGCTAGTG -ACGGAACTAGCAACGTAGCATCTG -ACGGAACTAGCAACGTAGGAGTTG -ACGGAACTAGCAACGTAGAGACTG -ACGGAACTAGCAACGTAGTCGGTA -ACGGAACTAGCAACGTAGTGCCTA -ACGGAACTAGCAACGTAGCCACTA -ACGGAACTAGCAACGTAGGGAGTA -ACGGAACTAGCAACGTAGTCGTCT -ACGGAACTAGCAACGTAGTGCACT -ACGGAACTAGCAACGTAGCTGACT -ACGGAACTAGCAACGTAGCAACCT -ACGGAACTAGCAACGTAGGCTACT -ACGGAACTAGCAACGTAGGGATCT -ACGGAACTAGCAACGTAGAAGGCT -ACGGAACTAGCAACGTAGTCAACC -ACGGAACTAGCAACGTAGTGTTCC -ACGGAACTAGCAACGTAGATTCCC -ACGGAACTAGCAACGTAGTTCTCG -ACGGAACTAGCAACGTAGTAGACG -ACGGAACTAGCAACGTAGGTAACG -ACGGAACTAGCAACGTAGACTTCG -ACGGAACTAGCAACGTAGTACGCA -ACGGAACTAGCAACGTAGCTTGCA -ACGGAACTAGCAACGTAGCGAACA -ACGGAACTAGCAACGTAGCAGTCA -ACGGAACTAGCAACGTAGGATCCA -ACGGAACTAGCAACGTAGACGACA -ACGGAACTAGCAACGTAGAGCTCA -ACGGAACTAGCAACGTAGTCACGT -ACGGAACTAGCAACGTAGCGTAGT -ACGGAACTAGCAACGTAGGTCAGT -ACGGAACTAGCAACGTAGGAAGGT -ACGGAACTAGCAACGTAGAACCGT -ACGGAACTAGCAACGTAGTTGTGC -ACGGAACTAGCAACGTAGCTAAGC -ACGGAACTAGCAACGTAGACTAGC -ACGGAACTAGCAACGTAGAGATGC -ACGGAACTAGCAACGTAGTGAAGG -ACGGAACTAGCAACGTAGCAATGG -ACGGAACTAGCAACGTAGATGAGG -ACGGAACTAGCAACGTAGAATGGG -ACGGAACTAGCAACGTAGTCCTGA -ACGGAACTAGCAACGTAGTAGCGA -ACGGAACTAGCAACGTAGCACAGA -ACGGAACTAGCAACGTAGGCAAGA -ACGGAACTAGCAACGTAGGGTTGA -ACGGAACTAGCAACGTAGTCCGAT -ACGGAACTAGCAACGTAGTGGCAT -ACGGAACTAGCAACGTAGCGAGAT -ACGGAACTAGCAACGTAGTACCAC -ACGGAACTAGCAACGTAGCAGAAC -ACGGAACTAGCAACGTAGGTCTAC -ACGGAACTAGCAACGTAGACGTAC -ACGGAACTAGCAACGTAGAGTGAC -ACGGAACTAGCAACGTAGCTGTAG -ACGGAACTAGCAACGTAGCCTAAG -ACGGAACTAGCAACGTAGGTTCAG -ACGGAACTAGCAACGTAGGCATAG -ACGGAACTAGCAACGTAGGACAAG -ACGGAACTAGCAACGTAGAAGCAG -ACGGAACTAGCAACGTAGCGTCAA -ACGGAACTAGCAACGTAGGCTGAA -ACGGAACTAGCAACGTAGAGTACG -ACGGAACTAGCAACGTAGATCCGA -ACGGAACTAGCAACGTAGATGGGA -ACGGAACTAGCAACGTAGGTGCAA -ACGGAACTAGCAACGTAGGAGGAA -ACGGAACTAGCAACGTAGCAGGTA -ACGGAACTAGCAACGTAGGACTCT -ACGGAACTAGCAACGTAGAGTCCT -ACGGAACTAGCAACGTAGTAAGCC -ACGGAACTAGCAACGTAGATAGCC -ACGGAACTAGCAACGTAGTAACCG -ACGGAACTAGCAACGTAGATGCCA -ACGGAACTAGCAACGGTAGGAAAC -ACGGAACTAGCAACGGTAAACACC -ACGGAACTAGCAACGGTAATCGAG -ACGGAACTAGCAACGGTACTCCTT -ACGGAACTAGCAACGGTACCTGTT -ACGGAACTAGCAACGGTACGGTTT -ACGGAACTAGCAACGGTAGTGGTT -ACGGAACTAGCAACGGTAGCCTTT -ACGGAACTAGCAACGGTAGGTCTT -ACGGAACTAGCAACGGTAACGCTT -ACGGAACTAGCAACGGTAAGCGTT -ACGGAACTAGCAACGGTATTCGTC -ACGGAACTAGCAACGGTATCTCTC -ACGGAACTAGCAACGGTATGGATC -ACGGAACTAGCAACGGTACACTTC -ACGGAACTAGCAACGGTAGTACTC -ACGGAACTAGCAACGGTAGATGTC -ACGGAACTAGCAACGGTAACAGTC -ACGGAACTAGCAACGGTATTGCTG -ACGGAACTAGCAACGGTATCCATG -ACGGAACTAGCAACGGTATGTGTG -ACGGAACTAGCAACGGTACTAGTG -ACGGAACTAGCAACGGTACATCTG -ACGGAACTAGCAACGGTAGAGTTG -ACGGAACTAGCAACGGTAAGACTG -ACGGAACTAGCAACGGTATCGGTA -ACGGAACTAGCAACGGTATGCCTA -ACGGAACTAGCAACGGTACCACTA -ACGGAACTAGCAACGGTAGGAGTA -ACGGAACTAGCAACGGTATCGTCT -ACGGAACTAGCAACGGTATGCACT -ACGGAACTAGCAACGGTACTGACT -ACGGAACTAGCAACGGTACAACCT -ACGGAACTAGCAACGGTAGCTACT -ACGGAACTAGCAACGGTAGGATCT -ACGGAACTAGCAACGGTAAAGGCT -ACGGAACTAGCAACGGTATCAACC -ACGGAACTAGCAACGGTATGTTCC -ACGGAACTAGCAACGGTAATTCCC -ACGGAACTAGCAACGGTATTCTCG -ACGGAACTAGCAACGGTATAGACG -ACGGAACTAGCAACGGTAGTAACG -ACGGAACTAGCAACGGTAACTTCG -ACGGAACTAGCAACGGTATACGCA -ACGGAACTAGCAACGGTACTTGCA -ACGGAACTAGCAACGGTACGAACA -ACGGAACTAGCAACGGTACAGTCA -ACGGAACTAGCAACGGTAGATCCA -ACGGAACTAGCAACGGTAACGACA -ACGGAACTAGCAACGGTAAGCTCA -ACGGAACTAGCAACGGTATCACGT -ACGGAACTAGCAACGGTACGTAGT -ACGGAACTAGCAACGGTAGTCAGT -ACGGAACTAGCAACGGTAGAAGGT -ACGGAACTAGCAACGGTAAACCGT -ACGGAACTAGCAACGGTATTGTGC -ACGGAACTAGCAACGGTACTAAGC -ACGGAACTAGCAACGGTAACTAGC -ACGGAACTAGCAACGGTAAGATGC -ACGGAACTAGCAACGGTATGAAGG -ACGGAACTAGCAACGGTACAATGG -ACGGAACTAGCAACGGTAATGAGG -ACGGAACTAGCAACGGTAAATGGG -ACGGAACTAGCAACGGTATCCTGA -ACGGAACTAGCAACGGTATAGCGA -ACGGAACTAGCAACGGTACACAGA -ACGGAACTAGCAACGGTAGCAAGA -ACGGAACTAGCAACGGTAGGTTGA -ACGGAACTAGCAACGGTATCCGAT -ACGGAACTAGCAACGGTATGGCAT -ACGGAACTAGCAACGGTACGAGAT -ACGGAACTAGCAACGGTATACCAC -ACGGAACTAGCAACGGTACAGAAC -ACGGAACTAGCAACGGTAGTCTAC -ACGGAACTAGCAACGGTAACGTAC -ACGGAACTAGCAACGGTAAGTGAC -ACGGAACTAGCAACGGTACTGTAG -ACGGAACTAGCAACGGTACCTAAG -ACGGAACTAGCAACGGTAGTTCAG -ACGGAACTAGCAACGGTAGCATAG -ACGGAACTAGCAACGGTAGACAAG -ACGGAACTAGCAACGGTAAAGCAG -ACGGAACTAGCAACGGTACGTCAA -ACGGAACTAGCAACGGTAGCTGAA -ACGGAACTAGCAACGGTAAGTACG -ACGGAACTAGCAACGGTAATCCGA -ACGGAACTAGCAACGGTAATGGGA -ACGGAACTAGCAACGGTAGTGCAA -ACGGAACTAGCAACGGTAGAGGAA -ACGGAACTAGCAACGGTACAGGTA -ACGGAACTAGCAACGGTAGACTCT -ACGGAACTAGCAACGGTAAGTCCT -ACGGAACTAGCAACGGTATAAGCC -ACGGAACTAGCAACGGTAATAGCC -ACGGAACTAGCAACGGTATAACCG -ACGGAACTAGCAACGGTAATGCCA -ACGGAACTAGCATCGACTGGAAAC -ACGGAACTAGCATCGACTAACACC -ACGGAACTAGCATCGACTATCGAG -ACGGAACTAGCATCGACTCTCCTT -ACGGAACTAGCATCGACTCCTGTT -ACGGAACTAGCATCGACTCGGTTT -ACGGAACTAGCATCGACTGTGGTT -ACGGAACTAGCATCGACTGCCTTT -ACGGAACTAGCATCGACTGGTCTT -ACGGAACTAGCATCGACTACGCTT -ACGGAACTAGCATCGACTAGCGTT -ACGGAACTAGCATCGACTTTCGTC -ACGGAACTAGCATCGACTTCTCTC -ACGGAACTAGCATCGACTTGGATC -ACGGAACTAGCATCGACTCACTTC -ACGGAACTAGCATCGACTGTACTC -ACGGAACTAGCATCGACTGATGTC -ACGGAACTAGCATCGACTACAGTC -ACGGAACTAGCATCGACTTTGCTG -ACGGAACTAGCATCGACTTCCATG -ACGGAACTAGCATCGACTTGTGTG -ACGGAACTAGCATCGACTCTAGTG -ACGGAACTAGCATCGACTCATCTG -ACGGAACTAGCATCGACTGAGTTG -ACGGAACTAGCATCGACTAGACTG -ACGGAACTAGCATCGACTTCGGTA -ACGGAACTAGCATCGACTTGCCTA -ACGGAACTAGCATCGACTCCACTA -ACGGAACTAGCATCGACTGGAGTA -ACGGAACTAGCATCGACTTCGTCT -ACGGAACTAGCATCGACTTGCACT -ACGGAACTAGCATCGACTCTGACT -ACGGAACTAGCATCGACTCAACCT -ACGGAACTAGCATCGACTGCTACT -ACGGAACTAGCATCGACTGGATCT -ACGGAACTAGCATCGACTAAGGCT -ACGGAACTAGCATCGACTTCAACC -ACGGAACTAGCATCGACTTGTTCC -ACGGAACTAGCATCGACTATTCCC -ACGGAACTAGCATCGACTTTCTCG -ACGGAACTAGCATCGACTTAGACG -ACGGAACTAGCATCGACTGTAACG -ACGGAACTAGCATCGACTACTTCG -ACGGAACTAGCATCGACTTACGCA -ACGGAACTAGCATCGACTCTTGCA -ACGGAACTAGCATCGACTCGAACA -ACGGAACTAGCATCGACTCAGTCA -ACGGAACTAGCATCGACTGATCCA -ACGGAACTAGCATCGACTACGACA -ACGGAACTAGCATCGACTAGCTCA -ACGGAACTAGCATCGACTTCACGT -ACGGAACTAGCATCGACTCGTAGT -ACGGAACTAGCATCGACTGTCAGT -ACGGAACTAGCATCGACTGAAGGT -ACGGAACTAGCATCGACTAACCGT -ACGGAACTAGCATCGACTTTGTGC -ACGGAACTAGCATCGACTCTAAGC -ACGGAACTAGCATCGACTACTAGC -ACGGAACTAGCATCGACTAGATGC -ACGGAACTAGCATCGACTTGAAGG -ACGGAACTAGCATCGACTCAATGG -ACGGAACTAGCATCGACTATGAGG -ACGGAACTAGCATCGACTAATGGG -ACGGAACTAGCATCGACTTCCTGA -ACGGAACTAGCATCGACTTAGCGA -ACGGAACTAGCATCGACTCACAGA -ACGGAACTAGCATCGACTGCAAGA -ACGGAACTAGCATCGACTGGTTGA -ACGGAACTAGCATCGACTTCCGAT -ACGGAACTAGCATCGACTTGGCAT -ACGGAACTAGCATCGACTCGAGAT -ACGGAACTAGCATCGACTTACCAC -ACGGAACTAGCATCGACTCAGAAC -ACGGAACTAGCATCGACTGTCTAC -ACGGAACTAGCATCGACTACGTAC -ACGGAACTAGCATCGACTAGTGAC -ACGGAACTAGCATCGACTCTGTAG -ACGGAACTAGCATCGACTCCTAAG -ACGGAACTAGCATCGACTGTTCAG -ACGGAACTAGCATCGACTGCATAG -ACGGAACTAGCATCGACTGACAAG -ACGGAACTAGCATCGACTAAGCAG -ACGGAACTAGCATCGACTCGTCAA -ACGGAACTAGCATCGACTGCTGAA -ACGGAACTAGCATCGACTAGTACG -ACGGAACTAGCATCGACTATCCGA -ACGGAACTAGCATCGACTATGGGA -ACGGAACTAGCATCGACTGTGCAA -ACGGAACTAGCATCGACTGAGGAA -ACGGAACTAGCATCGACTCAGGTA -ACGGAACTAGCATCGACTGACTCT -ACGGAACTAGCATCGACTAGTCCT -ACGGAACTAGCATCGACTTAAGCC -ACGGAACTAGCATCGACTATAGCC -ACGGAACTAGCATCGACTTAACCG -ACGGAACTAGCATCGACTATGCCA -ACGGAACTAGCAGCATACGGAAAC -ACGGAACTAGCAGCATACAACACC -ACGGAACTAGCAGCATACATCGAG -ACGGAACTAGCAGCATACCTCCTT -ACGGAACTAGCAGCATACCCTGTT -ACGGAACTAGCAGCATACCGGTTT -ACGGAACTAGCAGCATACGTGGTT -ACGGAACTAGCAGCATACGCCTTT -ACGGAACTAGCAGCATACGGTCTT -ACGGAACTAGCAGCATACACGCTT -ACGGAACTAGCAGCATACAGCGTT -ACGGAACTAGCAGCATACTTCGTC -ACGGAACTAGCAGCATACTCTCTC -ACGGAACTAGCAGCATACTGGATC -ACGGAACTAGCAGCATACCACTTC -ACGGAACTAGCAGCATACGTACTC -ACGGAACTAGCAGCATACGATGTC -ACGGAACTAGCAGCATACACAGTC -ACGGAACTAGCAGCATACTTGCTG -ACGGAACTAGCAGCATACTCCATG -ACGGAACTAGCAGCATACTGTGTG -ACGGAACTAGCAGCATACCTAGTG -ACGGAACTAGCAGCATACCATCTG -ACGGAACTAGCAGCATACGAGTTG -ACGGAACTAGCAGCATACAGACTG -ACGGAACTAGCAGCATACTCGGTA -ACGGAACTAGCAGCATACTGCCTA -ACGGAACTAGCAGCATACCCACTA -ACGGAACTAGCAGCATACGGAGTA -ACGGAACTAGCAGCATACTCGTCT -ACGGAACTAGCAGCATACTGCACT -ACGGAACTAGCAGCATACCTGACT -ACGGAACTAGCAGCATACCAACCT -ACGGAACTAGCAGCATACGCTACT -ACGGAACTAGCAGCATACGGATCT -ACGGAACTAGCAGCATACAAGGCT -ACGGAACTAGCAGCATACTCAACC -ACGGAACTAGCAGCATACTGTTCC -ACGGAACTAGCAGCATACATTCCC -ACGGAACTAGCAGCATACTTCTCG -ACGGAACTAGCAGCATACTAGACG -ACGGAACTAGCAGCATACGTAACG -ACGGAACTAGCAGCATACACTTCG -ACGGAACTAGCAGCATACTACGCA -ACGGAACTAGCAGCATACCTTGCA -ACGGAACTAGCAGCATACCGAACA -ACGGAACTAGCAGCATACCAGTCA -ACGGAACTAGCAGCATACGATCCA -ACGGAACTAGCAGCATACACGACA -ACGGAACTAGCAGCATACAGCTCA -ACGGAACTAGCAGCATACTCACGT -ACGGAACTAGCAGCATACCGTAGT -ACGGAACTAGCAGCATACGTCAGT -ACGGAACTAGCAGCATACGAAGGT -ACGGAACTAGCAGCATACAACCGT -ACGGAACTAGCAGCATACTTGTGC -ACGGAACTAGCAGCATACCTAAGC -ACGGAACTAGCAGCATACACTAGC -ACGGAACTAGCAGCATACAGATGC -ACGGAACTAGCAGCATACTGAAGG -ACGGAACTAGCAGCATACCAATGG -ACGGAACTAGCAGCATACATGAGG -ACGGAACTAGCAGCATACAATGGG -ACGGAACTAGCAGCATACTCCTGA -ACGGAACTAGCAGCATACTAGCGA -ACGGAACTAGCAGCATACCACAGA -ACGGAACTAGCAGCATACGCAAGA -ACGGAACTAGCAGCATACGGTTGA -ACGGAACTAGCAGCATACTCCGAT -ACGGAACTAGCAGCATACTGGCAT -ACGGAACTAGCAGCATACCGAGAT -ACGGAACTAGCAGCATACTACCAC -ACGGAACTAGCAGCATACCAGAAC -ACGGAACTAGCAGCATACGTCTAC -ACGGAACTAGCAGCATACACGTAC -ACGGAACTAGCAGCATACAGTGAC -ACGGAACTAGCAGCATACCTGTAG -ACGGAACTAGCAGCATACCCTAAG -ACGGAACTAGCAGCATACGTTCAG -ACGGAACTAGCAGCATACGCATAG -ACGGAACTAGCAGCATACGACAAG -ACGGAACTAGCAGCATACAAGCAG -ACGGAACTAGCAGCATACCGTCAA -ACGGAACTAGCAGCATACGCTGAA -ACGGAACTAGCAGCATACAGTACG -ACGGAACTAGCAGCATACATCCGA -ACGGAACTAGCAGCATACATGGGA -ACGGAACTAGCAGCATACGTGCAA -ACGGAACTAGCAGCATACGAGGAA -ACGGAACTAGCAGCATACCAGGTA -ACGGAACTAGCAGCATACGACTCT -ACGGAACTAGCAGCATACAGTCCT -ACGGAACTAGCAGCATACTAAGCC -ACGGAACTAGCAGCATACATAGCC -ACGGAACTAGCAGCATACTAACCG -ACGGAACTAGCAGCATACATGCCA -ACGGAACTAGCAGCACTTGGAAAC -ACGGAACTAGCAGCACTTAACACC -ACGGAACTAGCAGCACTTATCGAG -ACGGAACTAGCAGCACTTCTCCTT -ACGGAACTAGCAGCACTTCCTGTT -ACGGAACTAGCAGCACTTCGGTTT -ACGGAACTAGCAGCACTTGTGGTT -ACGGAACTAGCAGCACTTGCCTTT -ACGGAACTAGCAGCACTTGGTCTT -ACGGAACTAGCAGCACTTACGCTT -ACGGAACTAGCAGCACTTAGCGTT -ACGGAACTAGCAGCACTTTTCGTC -ACGGAACTAGCAGCACTTTCTCTC -ACGGAACTAGCAGCACTTTGGATC -ACGGAACTAGCAGCACTTCACTTC -ACGGAACTAGCAGCACTTGTACTC -ACGGAACTAGCAGCACTTGATGTC -ACGGAACTAGCAGCACTTACAGTC -ACGGAACTAGCAGCACTTTTGCTG -ACGGAACTAGCAGCACTTTCCATG -ACGGAACTAGCAGCACTTTGTGTG -ACGGAACTAGCAGCACTTCTAGTG -ACGGAACTAGCAGCACTTCATCTG -ACGGAACTAGCAGCACTTGAGTTG -ACGGAACTAGCAGCACTTAGACTG -ACGGAACTAGCAGCACTTTCGGTA -ACGGAACTAGCAGCACTTTGCCTA -ACGGAACTAGCAGCACTTCCACTA -ACGGAACTAGCAGCACTTGGAGTA -ACGGAACTAGCAGCACTTTCGTCT -ACGGAACTAGCAGCACTTTGCACT -ACGGAACTAGCAGCACTTCTGACT -ACGGAACTAGCAGCACTTCAACCT -ACGGAACTAGCAGCACTTGCTACT -ACGGAACTAGCAGCACTTGGATCT -ACGGAACTAGCAGCACTTAAGGCT -ACGGAACTAGCAGCACTTTCAACC -ACGGAACTAGCAGCACTTTGTTCC -ACGGAACTAGCAGCACTTATTCCC -ACGGAACTAGCAGCACTTTTCTCG -ACGGAACTAGCAGCACTTTAGACG -ACGGAACTAGCAGCACTTGTAACG -ACGGAACTAGCAGCACTTACTTCG -ACGGAACTAGCAGCACTTTACGCA -ACGGAACTAGCAGCACTTCTTGCA -ACGGAACTAGCAGCACTTCGAACA -ACGGAACTAGCAGCACTTCAGTCA -ACGGAACTAGCAGCACTTGATCCA -ACGGAACTAGCAGCACTTACGACA -ACGGAACTAGCAGCACTTAGCTCA -ACGGAACTAGCAGCACTTTCACGT -ACGGAACTAGCAGCACTTCGTAGT -ACGGAACTAGCAGCACTTGTCAGT -ACGGAACTAGCAGCACTTGAAGGT -ACGGAACTAGCAGCACTTAACCGT -ACGGAACTAGCAGCACTTTTGTGC -ACGGAACTAGCAGCACTTCTAAGC -ACGGAACTAGCAGCACTTACTAGC -ACGGAACTAGCAGCACTTAGATGC -ACGGAACTAGCAGCACTTTGAAGG -ACGGAACTAGCAGCACTTCAATGG -ACGGAACTAGCAGCACTTATGAGG -ACGGAACTAGCAGCACTTAATGGG -ACGGAACTAGCAGCACTTTCCTGA -ACGGAACTAGCAGCACTTTAGCGA -ACGGAACTAGCAGCACTTCACAGA -ACGGAACTAGCAGCACTTGCAAGA -ACGGAACTAGCAGCACTTGGTTGA -ACGGAACTAGCAGCACTTTCCGAT -ACGGAACTAGCAGCACTTTGGCAT -ACGGAACTAGCAGCACTTCGAGAT -ACGGAACTAGCAGCACTTTACCAC -ACGGAACTAGCAGCACTTCAGAAC -ACGGAACTAGCAGCACTTGTCTAC -ACGGAACTAGCAGCACTTACGTAC -ACGGAACTAGCAGCACTTAGTGAC -ACGGAACTAGCAGCACTTCTGTAG -ACGGAACTAGCAGCACTTCCTAAG -ACGGAACTAGCAGCACTTGTTCAG -ACGGAACTAGCAGCACTTGCATAG -ACGGAACTAGCAGCACTTGACAAG -ACGGAACTAGCAGCACTTAAGCAG -ACGGAACTAGCAGCACTTCGTCAA -ACGGAACTAGCAGCACTTGCTGAA -ACGGAACTAGCAGCACTTAGTACG -ACGGAACTAGCAGCACTTATCCGA -ACGGAACTAGCAGCACTTATGGGA -ACGGAACTAGCAGCACTTGTGCAA -ACGGAACTAGCAGCACTTGAGGAA -ACGGAACTAGCAGCACTTCAGGTA -ACGGAACTAGCAGCACTTGACTCT -ACGGAACTAGCAGCACTTAGTCCT -ACGGAACTAGCAGCACTTTAAGCC -ACGGAACTAGCAGCACTTATAGCC -ACGGAACTAGCAGCACTTTAACCG -ACGGAACTAGCAGCACTTATGCCA -ACGGAACTAGCAACACGAGGAAAC -ACGGAACTAGCAACACGAAACACC -ACGGAACTAGCAACACGAATCGAG -ACGGAACTAGCAACACGACTCCTT -ACGGAACTAGCAACACGACCTGTT -ACGGAACTAGCAACACGACGGTTT -ACGGAACTAGCAACACGAGTGGTT -ACGGAACTAGCAACACGAGCCTTT -ACGGAACTAGCAACACGAGGTCTT -ACGGAACTAGCAACACGAACGCTT -ACGGAACTAGCAACACGAAGCGTT -ACGGAACTAGCAACACGATTCGTC -ACGGAACTAGCAACACGATCTCTC -ACGGAACTAGCAACACGATGGATC -ACGGAACTAGCAACACGACACTTC -ACGGAACTAGCAACACGAGTACTC -ACGGAACTAGCAACACGAGATGTC -ACGGAACTAGCAACACGAACAGTC -ACGGAACTAGCAACACGATTGCTG -ACGGAACTAGCAACACGATCCATG -ACGGAACTAGCAACACGATGTGTG -ACGGAACTAGCAACACGACTAGTG -ACGGAACTAGCAACACGACATCTG -ACGGAACTAGCAACACGAGAGTTG -ACGGAACTAGCAACACGAAGACTG -ACGGAACTAGCAACACGATCGGTA -ACGGAACTAGCAACACGATGCCTA -ACGGAACTAGCAACACGACCACTA -ACGGAACTAGCAACACGAGGAGTA -ACGGAACTAGCAACACGATCGTCT -ACGGAACTAGCAACACGATGCACT -ACGGAACTAGCAACACGACTGACT -ACGGAACTAGCAACACGACAACCT -ACGGAACTAGCAACACGAGCTACT -ACGGAACTAGCAACACGAGGATCT -ACGGAACTAGCAACACGAAAGGCT -ACGGAACTAGCAACACGATCAACC -ACGGAACTAGCAACACGATGTTCC -ACGGAACTAGCAACACGAATTCCC -ACGGAACTAGCAACACGATTCTCG -ACGGAACTAGCAACACGATAGACG -ACGGAACTAGCAACACGAGTAACG -ACGGAACTAGCAACACGAACTTCG -ACGGAACTAGCAACACGATACGCA -ACGGAACTAGCAACACGACTTGCA -ACGGAACTAGCAACACGACGAACA -ACGGAACTAGCAACACGACAGTCA -ACGGAACTAGCAACACGAGATCCA -ACGGAACTAGCAACACGAACGACA -ACGGAACTAGCAACACGAAGCTCA -ACGGAACTAGCAACACGATCACGT -ACGGAACTAGCAACACGACGTAGT -ACGGAACTAGCAACACGAGTCAGT -ACGGAACTAGCAACACGAGAAGGT -ACGGAACTAGCAACACGAAACCGT -ACGGAACTAGCAACACGATTGTGC -ACGGAACTAGCAACACGACTAAGC -ACGGAACTAGCAACACGAACTAGC -ACGGAACTAGCAACACGAAGATGC -ACGGAACTAGCAACACGATGAAGG -ACGGAACTAGCAACACGACAATGG -ACGGAACTAGCAACACGAATGAGG -ACGGAACTAGCAACACGAAATGGG -ACGGAACTAGCAACACGATCCTGA -ACGGAACTAGCAACACGATAGCGA -ACGGAACTAGCAACACGACACAGA -ACGGAACTAGCAACACGAGCAAGA -ACGGAACTAGCAACACGAGGTTGA -ACGGAACTAGCAACACGATCCGAT -ACGGAACTAGCAACACGATGGCAT -ACGGAACTAGCAACACGACGAGAT -ACGGAACTAGCAACACGATACCAC -ACGGAACTAGCAACACGACAGAAC -ACGGAACTAGCAACACGAGTCTAC -ACGGAACTAGCAACACGAACGTAC -ACGGAACTAGCAACACGAAGTGAC -ACGGAACTAGCAACACGACTGTAG -ACGGAACTAGCAACACGACCTAAG -ACGGAACTAGCAACACGAGTTCAG -ACGGAACTAGCAACACGAGCATAG -ACGGAACTAGCAACACGAGACAAG -ACGGAACTAGCAACACGAAAGCAG -ACGGAACTAGCAACACGACGTCAA -ACGGAACTAGCAACACGAGCTGAA -ACGGAACTAGCAACACGAAGTACG -ACGGAACTAGCAACACGAATCCGA -ACGGAACTAGCAACACGAATGGGA -ACGGAACTAGCAACACGAGTGCAA -ACGGAACTAGCAACACGAGAGGAA -ACGGAACTAGCAACACGACAGGTA -ACGGAACTAGCAACACGAGACTCT -ACGGAACTAGCAACACGAAGTCCT -ACGGAACTAGCAACACGATAAGCC -ACGGAACTAGCAACACGAATAGCC -ACGGAACTAGCAACACGATAACCG -ACGGAACTAGCAACACGAATGCCA -ACGGAACTAGCATCACAGGGAAAC -ACGGAACTAGCATCACAGAACACC -ACGGAACTAGCATCACAGATCGAG -ACGGAACTAGCATCACAGCTCCTT -ACGGAACTAGCATCACAGCCTGTT -ACGGAACTAGCATCACAGCGGTTT -ACGGAACTAGCATCACAGGTGGTT -ACGGAACTAGCATCACAGGCCTTT -ACGGAACTAGCATCACAGGGTCTT -ACGGAACTAGCATCACAGACGCTT -ACGGAACTAGCATCACAGAGCGTT -ACGGAACTAGCATCACAGTTCGTC -ACGGAACTAGCATCACAGTCTCTC -ACGGAACTAGCATCACAGTGGATC -ACGGAACTAGCATCACAGCACTTC -ACGGAACTAGCATCACAGGTACTC -ACGGAACTAGCATCACAGGATGTC -ACGGAACTAGCATCACAGACAGTC -ACGGAACTAGCATCACAGTTGCTG -ACGGAACTAGCATCACAGTCCATG -ACGGAACTAGCATCACAGTGTGTG -ACGGAACTAGCATCACAGCTAGTG -ACGGAACTAGCATCACAGCATCTG -ACGGAACTAGCATCACAGGAGTTG -ACGGAACTAGCATCACAGAGACTG -ACGGAACTAGCATCACAGTCGGTA -ACGGAACTAGCATCACAGTGCCTA -ACGGAACTAGCATCACAGCCACTA -ACGGAACTAGCATCACAGGGAGTA -ACGGAACTAGCATCACAGTCGTCT -ACGGAACTAGCATCACAGTGCACT -ACGGAACTAGCATCACAGCTGACT -ACGGAACTAGCATCACAGCAACCT -ACGGAACTAGCATCACAGGCTACT -ACGGAACTAGCATCACAGGGATCT -ACGGAACTAGCATCACAGAAGGCT -ACGGAACTAGCATCACAGTCAACC -ACGGAACTAGCATCACAGTGTTCC -ACGGAACTAGCATCACAGATTCCC -ACGGAACTAGCATCACAGTTCTCG -ACGGAACTAGCATCACAGTAGACG -ACGGAACTAGCATCACAGGTAACG -ACGGAACTAGCATCACAGACTTCG -ACGGAACTAGCATCACAGTACGCA -ACGGAACTAGCATCACAGCTTGCA -ACGGAACTAGCATCACAGCGAACA -ACGGAACTAGCATCACAGCAGTCA -ACGGAACTAGCATCACAGGATCCA -ACGGAACTAGCATCACAGACGACA -ACGGAACTAGCATCACAGAGCTCA -ACGGAACTAGCATCACAGTCACGT -ACGGAACTAGCATCACAGCGTAGT -ACGGAACTAGCATCACAGGTCAGT -ACGGAACTAGCATCACAGGAAGGT -ACGGAACTAGCATCACAGAACCGT -ACGGAACTAGCATCACAGTTGTGC -ACGGAACTAGCATCACAGCTAAGC -ACGGAACTAGCATCACAGACTAGC -ACGGAACTAGCATCACAGAGATGC -ACGGAACTAGCATCACAGTGAAGG -ACGGAACTAGCATCACAGCAATGG -ACGGAACTAGCATCACAGATGAGG -ACGGAACTAGCATCACAGAATGGG -ACGGAACTAGCATCACAGTCCTGA -ACGGAACTAGCATCACAGTAGCGA -ACGGAACTAGCATCACAGCACAGA -ACGGAACTAGCATCACAGGCAAGA -ACGGAACTAGCATCACAGGGTTGA -ACGGAACTAGCATCACAGTCCGAT -ACGGAACTAGCATCACAGTGGCAT -ACGGAACTAGCATCACAGCGAGAT -ACGGAACTAGCATCACAGTACCAC -ACGGAACTAGCATCACAGCAGAAC -ACGGAACTAGCATCACAGGTCTAC -ACGGAACTAGCATCACAGACGTAC -ACGGAACTAGCATCACAGAGTGAC -ACGGAACTAGCATCACAGCTGTAG -ACGGAACTAGCATCACAGCCTAAG -ACGGAACTAGCATCACAGGTTCAG -ACGGAACTAGCATCACAGGCATAG -ACGGAACTAGCATCACAGGACAAG -ACGGAACTAGCATCACAGAAGCAG -ACGGAACTAGCATCACAGCGTCAA -ACGGAACTAGCATCACAGGCTGAA -ACGGAACTAGCATCACAGAGTACG -ACGGAACTAGCATCACAGATCCGA -ACGGAACTAGCATCACAGATGGGA -ACGGAACTAGCATCACAGGTGCAA -ACGGAACTAGCATCACAGGAGGAA -ACGGAACTAGCATCACAGCAGGTA -ACGGAACTAGCATCACAGGACTCT -ACGGAACTAGCATCACAGAGTCCT -ACGGAACTAGCATCACAGTAAGCC -ACGGAACTAGCATCACAGATAGCC -ACGGAACTAGCATCACAGTAACCG -ACGGAACTAGCATCACAGATGCCA -ACGGAACTAGCACCAGATGGAAAC -ACGGAACTAGCACCAGATAACACC -ACGGAACTAGCACCAGATATCGAG -ACGGAACTAGCACCAGATCTCCTT -ACGGAACTAGCACCAGATCCTGTT -ACGGAACTAGCACCAGATCGGTTT -ACGGAACTAGCACCAGATGTGGTT -ACGGAACTAGCACCAGATGCCTTT -ACGGAACTAGCACCAGATGGTCTT -ACGGAACTAGCACCAGATACGCTT -ACGGAACTAGCACCAGATAGCGTT -ACGGAACTAGCACCAGATTTCGTC -ACGGAACTAGCACCAGATTCTCTC -ACGGAACTAGCACCAGATTGGATC -ACGGAACTAGCACCAGATCACTTC -ACGGAACTAGCACCAGATGTACTC -ACGGAACTAGCACCAGATGATGTC -ACGGAACTAGCACCAGATACAGTC -ACGGAACTAGCACCAGATTTGCTG -ACGGAACTAGCACCAGATTCCATG -ACGGAACTAGCACCAGATTGTGTG -ACGGAACTAGCACCAGATCTAGTG -ACGGAACTAGCACCAGATCATCTG -ACGGAACTAGCACCAGATGAGTTG -ACGGAACTAGCACCAGATAGACTG -ACGGAACTAGCACCAGATTCGGTA -ACGGAACTAGCACCAGATTGCCTA -ACGGAACTAGCACCAGATCCACTA -ACGGAACTAGCACCAGATGGAGTA -ACGGAACTAGCACCAGATTCGTCT -ACGGAACTAGCACCAGATTGCACT -ACGGAACTAGCACCAGATCTGACT -ACGGAACTAGCACCAGATCAACCT -ACGGAACTAGCACCAGATGCTACT -ACGGAACTAGCACCAGATGGATCT -ACGGAACTAGCACCAGATAAGGCT -ACGGAACTAGCACCAGATTCAACC -ACGGAACTAGCACCAGATTGTTCC -ACGGAACTAGCACCAGATATTCCC -ACGGAACTAGCACCAGATTTCTCG -ACGGAACTAGCACCAGATTAGACG -ACGGAACTAGCACCAGATGTAACG -ACGGAACTAGCACCAGATACTTCG -ACGGAACTAGCACCAGATTACGCA -ACGGAACTAGCACCAGATCTTGCA -ACGGAACTAGCACCAGATCGAACA -ACGGAACTAGCACCAGATCAGTCA -ACGGAACTAGCACCAGATGATCCA -ACGGAACTAGCACCAGATACGACA -ACGGAACTAGCACCAGATAGCTCA -ACGGAACTAGCACCAGATTCACGT -ACGGAACTAGCACCAGATCGTAGT -ACGGAACTAGCACCAGATGTCAGT -ACGGAACTAGCACCAGATGAAGGT -ACGGAACTAGCACCAGATAACCGT -ACGGAACTAGCACCAGATTTGTGC -ACGGAACTAGCACCAGATCTAAGC -ACGGAACTAGCACCAGATACTAGC -ACGGAACTAGCACCAGATAGATGC -ACGGAACTAGCACCAGATTGAAGG -ACGGAACTAGCACCAGATCAATGG -ACGGAACTAGCACCAGATATGAGG -ACGGAACTAGCACCAGATAATGGG -ACGGAACTAGCACCAGATTCCTGA -ACGGAACTAGCACCAGATTAGCGA -ACGGAACTAGCACCAGATCACAGA -ACGGAACTAGCACCAGATGCAAGA -ACGGAACTAGCACCAGATGGTTGA -ACGGAACTAGCACCAGATTCCGAT -ACGGAACTAGCACCAGATTGGCAT -ACGGAACTAGCACCAGATCGAGAT -ACGGAACTAGCACCAGATTACCAC -ACGGAACTAGCACCAGATCAGAAC -ACGGAACTAGCACCAGATGTCTAC -ACGGAACTAGCACCAGATACGTAC -ACGGAACTAGCACCAGATAGTGAC -ACGGAACTAGCACCAGATCTGTAG -ACGGAACTAGCACCAGATCCTAAG -ACGGAACTAGCACCAGATGTTCAG -ACGGAACTAGCACCAGATGCATAG -ACGGAACTAGCACCAGATGACAAG -ACGGAACTAGCACCAGATAAGCAG -ACGGAACTAGCACCAGATCGTCAA -ACGGAACTAGCACCAGATGCTGAA -ACGGAACTAGCACCAGATAGTACG -ACGGAACTAGCACCAGATATCCGA -ACGGAACTAGCACCAGATATGGGA -ACGGAACTAGCACCAGATGTGCAA -ACGGAACTAGCACCAGATGAGGAA -ACGGAACTAGCACCAGATCAGGTA -ACGGAACTAGCACCAGATGACTCT -ACGGAACTAGCACCAGATAGTCCT -ACGGAACTAGCACCAGATTAAGCC -ACGGAACTAGCACCAGATATAGCC -ACGGAACTAGCACCAGATTAACCG -ACGGAACTAGCACCAGATATGCCA -ACGGAACTAGCAACAACGGGAAAC -ACGGAACTAGCAACAACGAACACC -ACGGAACTAGCAACAACGATCGAG -ACGGAACTAGCAACAACGCTCCTT -ACGGAACTAGCAACAACGCCTGTT -ACGGAACTAGCAACAACGCGGTTT -ACGGAACTAGCAACAACGGTGGTT -ACGGAACTAGCAACAACGGCCTTT -ACGGAACTAGCAACAACGGGTCTT -ACGGAACTAGCAACAACGACGCTT -ACGGAACTAGCAACAACGAGCGTT -ACGGAACTAGCAACAACGTTCGTC -ACGGAACTAGCAACAACGTCTCTC -ACGGAACTAGCAACAACGTGGATC -ACGGAACTAGCAACAACGCACTTC -ACGGAACTAGCAACAACGGTACTC -ACGGAACTAGCAACAACGGATGTC -ACGGAACTAGCAACAACGACAGTC -ACGGAACTAGCAACAACGTTGCTG -ACGGAACTAGCAACAACGTCCATG -ACGGAACTAGCAACAACGTGTGTG -ACGGAACTAGCAACAACGCTAGTG -ACGGAACTAGCAACAACGCATCTG -ACGGAACTAGCAACAACGGAGTTG -ACGGAACTAGCAACAACGAGACTG -ACGGAACTAGCAACAACGTCGGTA -ACGGAACTAGCAACAACGTGCCTA -ACGGAACTAGCAACAACGCCACTA -ACGGAACTAGCAACAACGGGAGTA -ACGGAACTAGCAACAACGTCGTCT -ACGGAACTAGCAACAACGTGCACT -ACGGAACTAGCAACAACGCTGACT -ACGGAACTAGCAACAACGCAACCT -ACGGAACTAGCAACAACGGCTACT -ACGGAACTAGCAACAACGGGATCT -ACGGAACTAGCAACAACGAAGGCT -ACGGAACTAGCAACAACGTCAACC -ACGGAACTAGCAACAACGTGTTCC -ACGGAACTAGCAACAACGATTCCC -ACGGAACTAGCAACAACGTTCTCG -ACGGAACTAGCAACAACGTAGACG -ACGGAACTAGCAACAACGGTAACG -ACGGAACTAGCAACAACGACTTCG -ACGGAACTAGCAACAACGTACGCA -ACGGAACTAGCAACAACGCTTGCA -ACGGAACTAGCAACAACGCGAACA -ACGGAACTAGCAACAACGCAGTCA -ACGGAACTAGCAACAACGGATCCA -ACGGAACTAGCAACAACGACGACA -ACGGAACTAGCAACAACGAGCTCA -ACGGAACTAGCAACAACGTCACGT -ACGGAACTAGCAACAACGCGTAGT -ACGGAACTAGCAACAACGGTCAGT -ACGGAACTAGCAACAACGGAAGGT -ACGGAACTAGCAACAACGAACCGT -ACGGAACTAGCAACAACGTTGTGC -ACGGAACTAGCAACAACGCTAAGC -ACGGAACTAGCAACAACGACTAGC -ACGGAACTAGCAACAACGAGATGC -ACGGAACTAGCAACAACGTGAAGG -ACGGAACTAGCAACAACGCAATGG -ACGGAACTAGCAACAACGATGAGG -ACGGAACTAGCAACAACGAATGGG -ACGGAACTAGCAACAACGTCCTGA -ACGGAACTAGCAACAACGTAGCGA -ACGGAACTAGCAACAACGCACAGA -ACGGAACTAGCAACAACGGCAAGA -ACGGAACTAGCAACAACGGGTTGA -ACGGAACTAGCAACAACGTCCGAT -ACGGAACTAGCAACAACGTGGCAT -ACGGAACTAGCAACAACGCGAGAT -ACGGAACTAGCAACAACGTACCAC -ACGGAACTAGCAACAACGCAGAAC -ACGGAACTAGCAACAACGGTCTAC -ACGGAACTAGCAACAACGACGTAC -ACGGAACTAGCAACAACGAGTGAC -ACGGAACTAGCAACAACGCTGTAG -ACGGAACTAGCAACAACGCCTAAG -ACGGAACTAGCAACAACGGTTCAG -ACGGAACTAGCAACAACGGCATAG -ACGGAACTAGCAACAACGGACAAG -ACGGAACTAGCAACAACGAAGCAG -ACGGAACTAGCAACAACGCGTCAA -ACGGAACTAGCAACAACGGCTGAA -ACGGAACTAGCAACAACGAGTACG -ACGGAACTAGCAACAACGATCCGA -ACGGAACTAGCAACAACGATGGGA -ACGGAACTAGCAACAACGGTGCAA -ACGGAACTAGCAACAACGGAGGAA -ACGGAACTAGCAACAACGCAGGTA -ACGGAACTAGCAACAACGGACTCT -ACGGAACTAGCAACAACGAGTCCT -ACGGAACTAGCAACAACGTAAGCC -ACGGAACTAGCAACAACGATAGCC -ACGGAACTAGCAACAACGTAACCG -ACGGAACTAGCAACAACGATGCCA -ACGGAACTAGCATCAAGCGGAAAC -ACGGAACTAGCATCAAGCAACACC -ACGGAACTAGCATCAAGCATCGAG -ACGGAACTAGCATCAAGCCTCCTT -ACGGAACTAGCATCAAGCCCTGTT -ACGGAACTAGCATCAAGCCGGTTT -ACGGAACTAGCATCAAGCGTGGTT -ACGGAACTAGCATCAAGCGCCTTT -ACGGAACTAGCATCAAGCGGTCTT -ACGGAACTAGCATCAAGCACGCTT -ACGGAACTAGCATCAAGCAGCGTT -ACGGAACTAGCATCAAGCTTCGTC -ACGGAACTAGCATCAAGCTCTCTC -ACGGAACTAGCATCAAGCTGGATC -ACGGAACTAGCATCAAGCCACTTC -ACGGAACTAGCATCAAGCGTACTC -ACGGAACTAGCATCAAGCGATGTC -ACGGAACTAGCATCAAGCACAGTC -ACGGAACTAGCATCAAGCTTGCTG -ACGGAACTAGCATCAAGCTCCATG -ACGGAACTAGCATCAAGCTGTGTG -ACGGAACTAGCATCAAGCCTAGTG -ACGGAACTAGCATCAAGCCATCTG -ACGGAACTAGCATCAAGCGAGTTG -ACGGAACTAGCATCAAGCAGACTG -ACGGAACTAGCATCAAGCTCGGTA -ACGGAACTAGCATCAAGCTGCCTA -ACGGAACTAGCATCAAGCCCACTA -ACGGAACTAGCATCAAGCGGAGTA -ACGGAACTAGCATCAAGCTCGTCT -ACGGAACTAGCATCAAGCTGCACT -ACGGAACTAGCATCAAGCCTGACT -ACGGAACTAGCATCAAGCCAACCT -ACGGAACTAGCATCAAGCGCTACT -ACGGAACTAGCATCAAGCGGATCT -ACGGAACTAGCATCAAGCAAGGCT -ACGGAACTAGCATCAAGCTCAACC -ACGGAACTAGCATCAAGCTGTTCC -ACGGAACTAGCATCAAGCATTCCC -ACGGAACTAGCATCAAGCTTCTCG -ACGGAACTAGCATCAAGCTAGACG -ACGGAACTAGCATCAAGCGTAACG -ACGGAACTAGCATCAAGCACTTCG -ACGGAACTAGCATCAAGCTACGCA -ACGGAACTAGCATCAAGCCTTGCA -ACGGAACTAGCATCAAGCCGAACA -ACGGAACTAGCATCAAGCCAGTCA -ACGGAACTAGCATCAAGCGATCCA -ACGGAACTAGCATCAAGCACGACA -ACGGAACTAGCATCAAGCAGCTCA -ACGGAACTAGCATCAAGCTCACGT -ACGGAACTAGCATCAAGCCGTAGT -ACGGAACTAGCATCAAGCGTCAGT -ACGGAACTAGCATCAAGCGAAGGT -ACGGAACTAGCATCAAGCAACCGT -ACGGAACTAGCATCAAGCTTGTGC -ACGGAACTAGCATCAAGCCTAAGC -ACGGAACTAGCATCAAGCACTAGC -ACGGAACTAGCATCAAGCAGATGC -ACGGAACTAGCATCAAGCTGAAGG -ACGGAACTAGCATCAAGCCAATGG -ACGGAACTAGCATCAAGCATGAGG -ACGGAACTAGCATCAAGCAATGGG -ACGGAACTAGCATCAAGCTCCTGA -ACGGAACTAGCATCAAGCTAGCGA -ACGGAACTAGCATCAAGCCACAGA -ACGGAACTAGCATCAAGCGCAAGA -ACGGAACTAGCATCAAGCGGTTGA -ACGGAACTAGCATCAAGCTCCGAT -ACGGAACTAGCATCAAGCTGGCAT -ACGGAACTAGCATCAAGCCGAGAT -ACGGAACTAGCATCAAGCTACCAC -ACGGAACTAGCATCAAGCCAGAAC -ACGGAACTAGCATCAAGCGTCTAC -ACGGAACTAGCATCAAGCACGTAC -ACGGAACTAGCATCAAGCAGTGAC -ACGGAACTAGCATCAAGCCTGTAG -ACGGAACTAGCATCAAGCCCTAAG -ACGGAACTAGCATCAAGCGTTCAG -ACGGAACTAGCATCAAGCGCATAG -ACGGAACTAGCATCAAGCGACAAG -ACGGAACTAGCATCAAGCAAGCAG -ACGGAACTAGCATCAAGCCGTCAA -ACGGAACTAGCATCAAGCGCTGAA -ACGGAACTAGCATCAAGCAGTACG -ACGGAACTAGCATCAAGCATCCGA -ACGGAACTAGCATCAAGCATGGGA -ACGGAACTAGCATCAAGCGTGCAA -ACGGAACTAGCATCAAGCGAGGAA -ACGGAACTAGCATCAAGCCAGGTA -ACGGAACTAGCATCAAGCGACTCT -ACGGAACTAGCATCAAGCAGTCCT -ACGGAACTAGCATCAAGCTAAGCC -ACGGAACTAGCATCAAGCATAGCC -ACGGAACTAGCATCAAGCTAACCG -ACGGAACTAGCATCAAGCATGCCA -ACGGAACTAGCACGTTCAGGAAAC -ACGGAACTAGCACGTTCAAACACC -ACGGAACTAGCACGTTCAATCGAG -ACGGAACTAGCACGTTCACTCCTT -ACGGAACTAGCACGTTCACCTGTT -ACGGAACTAGCACGTTCACGGTTT -ACGGAACTAGCACGTTCAGTGGTT -ACGGAACTAGCACGTTCAGCCTTT -ACGGAACTAGCACGTTCAGGTCTT -ACGGAACTAGCACGTTCAACGCTT -ACGGAACTAGCACGTTCAAGCGTT -ACGGAACTAGCACGTTCATTCGTC -ACGGAACTAGCACGTTCATCTCTC -ACGGAACTAGCACGTTCATGGATC -ACGGAACTAGCACGTTCACACTTC -ACGGAACTAGCACGTTCAGTACTC -ACGGAACTAGCACGTTCAGATGTC -ACGGAACTAGCACGTTCAACAGTC -ACGGAACTAGCACGTTCATTGCTG -ACGGAACTAGCACGTTCATCCATG -ACGGAACTAGCACGTTCATGTGTG -ACGGAACTAGCACGTTCACTAGTG -ACGGAACTAGCACGTTCACATCTG -ACGGAACTAGCACGTTCAGAGTTG -ACGGAACTAGCACGTTCAAGACTG -ACGGAACTAGCACGTTCATCGGTA -ACGGAACTAGCACGTTCATGCCTA -ACGGAACTAGCACGTTCACCACTA -ACGGAACTAGCACGTTCAGGAGTA -ACGGAACTAGCACGTTCATCGTCT -ACGGAACTAGCACGTTCATGCACT -ACGGAACTAGCACGTTCACTGACT -ACGGAACTAGCACGTTCACAACCT -ACGGAACTAGCACGTTCAGCTACT -ACGGAACTAGCACGTTCAGGATCT -ACGGAACTAGCACGTTCAAAGGCT -ACGGAACTAGCACGTTCATCAACC -ACGGAACTAGCACGTTCATGTTCC -ACGGAACTAGCACGTTCAATTCCC -ACGGAACTAGCACGTTCATTCTCG -ACGGAACTAGCACGTTCATAGACG -ACGGAACTAGCACGTTCAGTAACG -ACGGAACTAGCACGTTCAACTTCG -ACGGAACTAGCACGTTCATACGCA -ACGGAACTAGCACGTTCACTTGCA -ACGGAACTAGCACGTTCACGAACA -ACGGAACTAGCACGTTCACAGTCA -ACGGAACTAGCACGTTCAGATCCA -ACGGAACTAGCACGTTCAACGACA -ACGGAACTAGCACGTTCAAGCTCA -ACGGAACTAGCACGTTCATCACGT -ACGGAACTAGCACGTTCACGTAGT -ACGGAACTAGCACGTTCAGTCAGT -ACGGAACTAGCACGTTCAGAAGGT -ACGGAACTAGCACGTTCAAACCGT -ACGGAACTAGCACGTTCATTGTGC -ACGGAACTAGCACGTTCACTAAGC -ACGGAACTAGCACGTTCAACTAGC -ACGGAACTAGCACGTTCAAGATGC -ACGGAACTAGCACGTTCATGAAGG -ACGGAACTAGCACGTTCACAATGG -ACGGAACTAGCACGTTCAATGAGG -ACGGAACTAGCACGTTCAAATGGG -ACGGAACTAGCACGTTCATCCTGA -ACGGAACTAGCACGTTCATAGCGA -ACGGAACTAGCACGTTCACACAGA -ACGGAACTAGCACGTTCAGCAAGA -ACGGAACTAGCACGTTCAGGTTGA -ACGGAACTAGCACGTTCATCCGAT -ACGGAACTAGCACGTTCATGGCAT -ACGGAACTAGCACGTTCACGAGAT -ACGGAACTAGCACGTTCATACCAC -ACGGAACTAGCACGTTCACAGAAC -ACGGAACTAGCACGTTCAGTCTAC -ACGGAACTAGCACGTTCAACGTAC -ACGGAACTAGCACGTTCAAGTGAC -ACGGAACTAGCACGTTCACTGTAG -ACGGAACTAGCACGTTCACCTAAG -ACGGAACTAGCACGTTCAGTTCAG -ACGGAACTAGCACGTTCAGCATAG -ACGGAACTAGCACGTTCAGACAAG -ACGGAACTAGCACGTTCAAAGCAG -ACGGAACTAGCACGTTCACGTCAA -ACGGAACTAGCACGTTCAGCTGAA -ACGGAACTAGCACGTTCAAGTACG -ACGGAACTAGCACGTTCAATCCGA -ACGGAACTAGCACGTTCAATGGGA -ACGGAACTAGCACGTTCAGTGCAA -ACGGAACTAGCACGTTCAGAGGAA -ACGGAACTAGCACGTTCACAGGTA -ACGGAACTAGCACGTTCAGACTCT -ACGGAACTAGCACGTTCAAGTCCT -ACGGAACTAGCACGTTCATAAGCC -ACGGAACTAGCACGTTCAATAGCC -ACGGAACTAGCACGTTCATAACCG -ACGGAACTAGCACGTTCAATGCCA -ACGGAACTAGCAAGTCGTGGAAAC -ACGGAACTAGCAAGTCGTAACACC -ACGGAACTAGCAAGTCGTATCGAG -ACGGAACTAGCAAGTCGTCTCCTT -ACGGAACTAGCAAGTCGTCCTGTT -ACGGAACTAGCAAGTCGTCGGTTT -ACGGAACTAGCAAGTCGTGTGGTT -ACGGAACTAGCAAGTCGTGCCTTT -ACGGAACTAGCAAGTCGTGGTCTT -ACGGAACTAGCAAGTCGTACGCTT -ACGGAACTAGCAAGTCGTAGCGTT -ACGGAACTAGCAAGTCGTTTCGTC -ACGGAACTAGCAAGTCGTTCTCTC -ACGGAACTAGCAAGTCGTTGGATC -ACGGAACTAGCAAGTCGTCACTTC -ACGGAACTAGCAAGTCGTGTACTC -ACGGAACTAGCAAGTCGTGATGTC -ACGGAACTAGCAAGTCGTACAGTC -ACGGAACTAGCAAGTCGTTTGCTG -ACGGAACTAGCAAGTCGTTCCATG -ACGGAACTAGCAAGTCGTTGTGTG -ACGGAACTAGCAAGTCGTCTAGTG -ACGGAACTAGCAAGTCGTCATCTG -ACGGAACTAGCAAGTCGTGAGTTG -ACGGAACTAGCAAGTCGTAGACTG -ACGGAACTAGCAAGTCGTTCGGTA -ACGGAACTAGCAAGTCGTTGCCTA -ACGGAACTAGCAAGTCGTCCACTA -ACGGAACTAGCAAGTCGTGGAGTA -ACGGAACTAGCAAGTCGTTCGTCT -ACGGAACTAGCAAGTCGTTGCACT -ACGGAACTAGCAAGTCGTCTGACT -ACGGAACTAGCAAGTCGTCAACCT -ACGGAACTAGCAAGTCGTGCTACT -ACGGAACTAGCAAGTCGTGGATCT -ACGGAACTAGCAAGTCGTAAGGCT -ACGGAACTAGCAAGTCGTTCAACC -ACGGAACTAGCAAGTCGTTGTTCC -ACGGAACTAGCAAGTCGTATTCCC -ACGGAACTAGCAAGTCGTTTCTCG -ACGGAACTAGCAAGTCGTTAGACG -ACGGAACTAGCAAGTCGTGTAACG -ACGGAACTAGCAAGTCGTACTTCG -ACGGAACTAGCAAGTCGTTACGCA -ACGGAACTAGCAAGTCGTCTTGCA -ACGGAACTAGCAAGTCGTCGAACA -ACGGAACTAGCAAGTCGTCAGTCA -ACGGAACTAGCAAGTCGTGATCCA -ACGGAACTAGCAAGTCGTACGACA -ACGGAACTAGCAAGTCGTAGCTCA -ACGGAACTAGCAAGTCGTTCACGT -ACGGAACTAGCAAGTCGTCGTAGT -ACGGAACTAGCAAGTCGTGTCAGT -ACGGAACTAGCAAGTCGTGAAGGT -ACGGAACTAGCAAGTCGTAACCGT -ACGGAACTAGCAAGTCGTTTGTGC -ACGGAACTAGCAAGTCGTCTAAGC -ACGGAACTAGCAAGTCGTACTAGC -ACGGAACTAGCAAGTCGTAGATGC -ACGGAACTAGCAAGTCGTTGAAGG -ACGGAACTAGCAAGTCGTCAATGG -ACGGAACTAGCAAGTCGTATGAGG -ACGGAACTAGCAAGTCGTAATGGG -ACGGAACTAGCAAGTCGTTCCTGA -ACGGAACTAGCAAGTCGTTAGCGA -ACGGAACTAGCAAGTCGTCACAGA -ACGGAACTAGCAAGTCGTGCAAGA -ACGGAACTAGCAAGTCGTGGTTGA -ACGGAACTAGCAAGTCGTTCCGAT -ACGGAACTAGCAAGTCGTTGGCAT -ACGGAACTAGCAAGTCGTCGAGAT -ACGGAACTAGCAAGTCGTTACCAC -ACGGAACTAGCAAGTCGTCAGAAC -ACGGAACTAGCAAGTCGTGTCTAC -ACGGAACTAGCAAGTCGTACGTAC -ACGGAACTAGCAAGTCGTAGTGAC -ACGGAACTAGCAAGTCGTCTGTAG -ACGGAACTAGCAAGTCGTCCTAAG -ACGGAACTAGCAAGTCGTGTTCAG -ACGGAACTAGCAAGTCGTGCATAG -ACGGAACTAGCAAGTCGTGACAAG -ACGGAACTAGCAAGTCGTAAGCAG -ACGGAACTAGCAAGTCGTCGTCAA -ACGGAACTAGCAAGTCGTGCTGAA -ACGGAACTAGCAAGTCGTAGTACG -ACGGAACTAGCAAGTCGTATCCGA -ACGGAACTAGCAAGTCGTATGGGA -ACGGAACTAGCAAGTCGTGTGCAA -ACGGAACTAGCAAGTCGTGAGGAA -ACGGAACTAGCAAGTCGTCAGGTA -ACGGAACTAGCAAGTCGTGACTCT -ACGGAACTAGCAAGTCGTAGTCCT -ACGGAACTAGCAAGTCGTTAAGCC -ACGGAACTAGCAAGTCGTATAGCC -ACGGAACTAGCAAGTCGTTAACCG -ACGGAACTAGCAAGTCGTATGCCA -ACGGAACTAGCAAGTGTCGGAAAC -ACGGAACTAGCAAGTGTCAACACC -ACGGAACTAGCAAGTGTCATCGAG -ACGGAACTAGCAAGTGTCCTCCTT -ACGGAACTAGCAAGTGTCCCTGTT -ACGGAACTAGCAAGTGTCCGGTTT -ACGGAACTAGCAAGTGTCGTGGTT -ACGGAACTAGCAAGTGTCGCCTTT -ACGGAACTAGCAAGTGTCGGTCTT -ACGGAACTAGCAAGTGTCACGCTT -ACGGAACTAGCAAGTGTCAGCGTT -ACGGAACTAGCAAGTGTCTTCGTC -ACGGAACTAGCAAGTGTCTCTCTC -ACGGAACTAGCAAGTGTCTGGATC -ACGGAACTAGCAAGTGTCCACTTC -ACGGAACTAGCAAGTGTCGTACTC -ACGGAACTAGCAAGTGTCGATGTC -ACGGAACTAGCAAGTGTCACAGTC -ACGGAACTAGCAAGTGTCTTGCTG -ACGGAACTAGCAAGTGTCTCCATG -ACGGAACTAGCAAGTGTCTGTGTG -ACGGAACTAGCAAGTGTCCTAGTG -ACGGAACTAGCAAGTGTCCATCTG -ACGGAACTAGCAAGTGTCGAGTTG -ACGGAACTAGCAAGTGTCAGACTG -ACGGAACTAGCAAGTGTCTCGGTA -ACGGAACTAGCAAGTGTCTGCCTA -ACGGAACTAGCAAGTGTCCCACTA -ACGGAACTAGCAAGTGTCGGAGTA -ACGGAACTAGCAAGTGTCTCGTCT -ACGGAACTAGCAAGTGTCTGCACT -ACGGAACTAGCAAGTGTCCTGACT -ACGGAACTAGCAAGTGTCCAACCT -ACGGAACTAGCAAGTGTCGCTACT -ACGGAACTAGCAAGTGTCGGATCT -ACGGAACTAGCAAGTGTCAAGGCT -ACGGAACTAGCAAGTGTCTCAACC -ACGGAACTAGCAAGTGTCTGTTCC -ACGGAACTAGCAAGTGTCATTCCC -ACGGAACTAGCAAGTGTCTTCTCG -ACGGAACTAGCAAGTGTCTAGACG -ACGGAACTAGCAAGTGTCGTAACG -ACGGAACTAGCAAGTGTCACTTCG -ACGGAACTAGCAAGTGTCTACGCA -ACGGAACTAGCAAGTGTCCTTGCA -ACGGAACTAGCAAGTGTCCGAACA -ACGGAACTAGCAAGTGTCCAGTCA -ACGGAACTAGCAAGTGTCGATCCA -ACGGAACTAGCAAGTGTCACGACA -ACGGAACTAGCAAGTGTCAGCTCA -ACGGAACTAGCAAGTGTCTCACGT -ACGGAACTAGCAAGTGTCCGTAGT -ACGGAACTAGCAAGTGTCGTCAGT -ACGGAACTAGCAAGTGTCGAAGGT -ACGGAACTAGCAAGTGTCAACCGT -ACGGAACTAGCAAGTGTCTTGTGC -ACGGAACTAGCAAGTGTCCTAAGC -ACGGAACTAGCAAGTGTCACTAGC -ACGGAACTAGCAAGTGTCAGATGC -ACGGAACTAGCAAGTGTCTGAAGG -ACGGAACTAGCAAGTGTCCAATGG -ACGGAACTAGCAAGTGTCATGAGG -ACGGAACTAGCAAGTGTCAATGGG -ACGGAACTAGCAAGTGTCTCCTGA -ACGGAACTAGCAAGTGTCTAGCGA -ACGGAACTAGCAAGTGTCCACAGA -ACGGAACTAGCAAGTGTCGCAAGA -ACGGAACTAGCAAGTGTCGGTTGA -ACGGAACTAGCAAGTGTCTCCGAT -ACGGAACTAGCAAGTGTCTGGCAT -ACGGAACTAGCAAGTGTCCGAGAT -ACGGAACTAGCAAGTGTCTACCAC -ACGGAACTAGCAAGTGTCCAGAAC -ACGGAACTAGCAAGTGTCGTCTAC -ACGGAACTAGCAAGTGTCACGTAC -ACGGAACTAGCAAGTGTCAGTGAC -ACGGAACTAGCAAGTGTCCTGTAG -ACGGAACTAGCAAGTGTCCCTAAG -ACGGAACTAGCAAGTGTCGTTCAG -ACGGAACTAGCAAGTGTCGCATAG -ACGGAACTAGCAAGTGTCGACAAG -ACGGAACTAGCAAGTGTCAAGCAG -ACGGAACTAGCAAGTGTCCGTCAA -ACGGAACTAGCAAGTGTCGCTGAA -ACGGAACTAGCAAGTGTCAGTACG -ACGGAACTAGCAAGTGTCATCCGA -ACGGAACTAGCAAGTGTCATGGGA -ACGGAACTAGCAAGTGTCGTGCAA -ACGGAACTAGCAAGTGTCGAGGAA -ACGGAACTAGCAAGTGTCCAGGTA -ACGGAACTAGCAAGTGTCGACTCT -ACGGAACTAGCAAGTGTCAGTCCT -ACGGAACTAGCAAGTGTCTAAGCC -ACGGAACTAGCAAGTGTCATAGCC -ACGGAACTAGCAAGTGTCTAACCG -ACGGAACTAGCAAGTGTCATGCCA -ACGGAACTAGCAGGTGAAGGAAAC -ACGGAACTAGCAGGTGAAAACACC -ACGGAACTAGCAGGTGAAATCGAG -ACGGAACTAGCAGGTGAACTCCTT -ACGGAACTAGCAGGTGAACCTGTT -ACGGAACTAGCAGGTGAACGGTTT -ACGGAACTAGCAGGTGAAGTGGTT -ACGGAACTAGCAGGTGAAGCCTTT -ACGGAACTAGCAGGTGAAGGTCTT -ACGGAACTAGCAGGTGAAACGCTT -ACGGAACTAGCAGGTGAAAGCGTT -ACGGAACTAGCAGGTGAATTCGTC -ACGGAACTAGCAGGTGAATCTCTC -ACGGAACTAGCAGGTGAATGGATC -ACGGAACTAGCAGGTGAACACTTC -ACGGAACTAGCAGGTGAAGTACTC -ACGGAACTAGCAGGTGAAGATGTC -ACGGAACTAGCAGGTGAAACAGTC -ACGGAACTAGCAGGTGAATTGCTG -ACGGAACTAGCAGGTGAATCCATG -ACGGAACTAGCAGGTGAATGTGTG -ACGGAACTAGCAGGTGAACTAGTG -ACGGAACTAGCAGGTGAACATCTG -ACGGAACTAGCAGGTGAAGAGTTG -ACGGAACTAGCAGGTGAAAGACTG -ACGGAACTAGCAGGTGAATCGGTA -ACGGAACTAGCAGGTGAATGCCTA -ACGGAACTAGCAGGTGAACCACTA -ACGGAACTAGCAGGTGAAGGAGTA -ACGGAACTAGCAGGTGAATCGTCT -ACGGAACTAGCAGGTGAATGCACT -ACGGAACTAGCAGGTGAACTGACT -ACGGAACTAGCAGGTGAACAACCT -ACGGAACTAGCAGGTGAAGCTACT -ACGGAACTAGCAGGTGAAGGATCT -ACGGAACTAGCAGGTGAAAAGGCT -ACGGAACTAGCAGGTGAATCAACC -ACGGAACTAGCAGGTGAATGTTCC -ACGGAACTAGCAGGTGAAATTCCC -ACGGAACTAGCAGGTGAATTCTCG -ACGGAACTAGCAGGTGAATAGACG -ACGGAACTAGCAGGTGAAGTAACG -ACGGAACTAGCAGGTGAAACTTCG -ACGGAACTAGCAGGTGAATACGCA -ACGGAACTAGCAGGTGAACTTGCA -ACGGAACTAGCAGGTGAACGAACA -ACGGAACTAGCAGGTGAACAGTCA -ACGGAACTAGCAGGTGAAGATCCA -ACGGAACTAGCAGGTGAAACGACA -ACGGAACTAGCAGGTGAAAGCTCA -ACGGAACTAGCAGGTGAATCACGT -ACGGAACTAGCAGGTGAACGTAGT -ACGGAACTAGCAGGTGAAGTCAGT -ACGGAACTAGCAGGTGAAGAAGGT -ACGGAACTAGCAGGTGAAAACCGT -ACGGAACTAGCAGGTGAATTGTGC -ACGGAACTAGCAGGTGAACTAAGC -ACGGAACTAGCAGGTGAAACTAGC -ACGGAACTAGCAGGTGAAAGATGC -ACGGAACTAGCAGGTGAATGAAGG -ACGGAACTAGCAGGTGAACAATGG -ACGGAACTAGCAGGTGAAATGAGG -ACGGAACTAGCAGGTGAAAATGGG -ACGGAACTAGCAGGTGAATCCTGA -ACGGAACTAGCAGGTGAATAGCGA -ACGGAACTAGCAGGTGAACACAGA -ACGGAACTAGCAGGTGAAGCAAGA -ACGGAACTAGCAGGTGAAGGTTGA -ACGGAACTAGCAGGTGAATCCGAT -ACGGAACTAGCAGGTGAATGGCAT -ACGGAACTAGCAGGTGAACGAGAT -ACGGAACTAGCAGGTGAATACCAC -ACGGAACTAGCAGGTGAACAGAAC -ACGGAACTAGCAGGTGAAGTCTAC -ACGGAACTAGCAGGTGAAACGTAC -ACGGAACTAGCAGGTGAAAGTGAC -ACGGAACTAGCAGGTGAACTGTAG -ACGGAACTAGCAGGTGAACCTAAG -ACGGAACTAGCAGGTGAAGTTCAG -ACGGAACTAGCAGGTGAAGCATAG -ACGGAACTAGCAGGTGAAGACAAG -ACGGAACTAGCAGGTGAAAAGCAG -ACGGAACTAGCAGGTGAACGTCAA -ACGGAACTAGCAGGTGAAGCTGAA -ACGGAACTAGCAGGTGAAAGTACG -ACGGAACTAGCAGGTGAAATCCGA -ACGGAACTAGCAGGTGAAATGGGA -ACGGAACTAGCAGGTGAAGTGCAA -ACGGAACTAGCAGGTGAAGAGGAA -ACGGAACTAGCAGGTGAACAGGTA -ACGGAACTAGCAGGTGAAGACTCT -ACGGAACTAGCAGGTGAAAGTCCT -ACGGAACTAGCAGGTGAATAAGCC -ACGGAACTAGCAGGTGAAATAGCC -ACGGAACTAGCAGGTGAATAACCG -ACGGAACTAGCAGGTGAAATGCCA -ACGGAACTAGCACGTAACGGAAAC -ACGGAACTAGCACGTAACAACACC -ACGGAACTAGCACGTAACATCGAG -ACGGAACTAGCACGTAACCTCCTT -ACGGAACTAGCACGTAACCCTGTT -ACGGAACTAGCACGTAACCGGTTT -ACGGAACTAGCACGTAACGTGGTT -ACGGAACTAGCACGTAACGCCTTT -ACGGAACTAGCACGTAACGGTCTT -ACGGAACTAGCACGTAACACGCTT -ACGGAACTAGCACGTAACAGCGTT -ACGGAACTAGCACGTAACTTCGTC -ACGGAACTAGCACGTAACTCTCTC -ACGGAACTAGCACGTAACTGGATC -ACGGAACTAGCACGTAACCACTTC -ACGGAACTAGCACGTAACGTACTC -ACGGAACTAGCACGTAACGATGTC -ACGGAACTAGCACGTAACACAGTC -ACGGAACTAGCACGTAACTTGCTG -ACGGAACTAGCACGTAACTCCATG -ACGGAACTAGCACGTAACTGTGTG -ACGGAACTAGCACGTAACCTAGTG -ACGGAACTAGCACGTAACCATCTG -ACGGAACTAGCACGTAACGAGTTG -ACGGAACTAGCACGTAACAGACTG -ACGGAACTAGCACGTAACTCGGTA -ACGGAACTAGCACGTAACTGCCTA -ACGGAACTAGCACGTAACCCACTA -ACGGAACTAGCACGTAACGGAGTA -ACGGAACTAGCACGTAACTCGTCT -ACGGAACTAGCACGTAACTGCACT -ACGGAACTAGCACGTAACCTGACT -ACGGAACTAGCACGTAACCAACCT -ACGGAACTAGCACGTAACGCTACT -ACGGAACTAGCACGTAACGGATCT -ACGGAACTAGCACGTAACAAGGCT -ACGGAACTAGCACGTAACTCAACC -ACGGAACTAGCACGTAACTGTTCC -ACGGAACTAGCACGTAACATTCCC -ACGGAACTAGCACGTAACTTCTCG -ACGGAACTAGCACGTAACTAGACG -ACGGAACTAGCACGTAACGTAACG -ACGGAACTAGCACGTAACACTTCG -ACGGAACTAGCACGTAACTACGCA -ACGGAACTAGCACGTAACCTTGCA -ACGGAACTAGCACGTAACCGAACA -ACGGAACTAGCACGTAACCAGTCA -ACGGAACTAGCACGTAACGATCCA -ACGGAACTAGCACGTAACACGACA -ACGGAACTAGCACGTAACAGCTCA -ACGGAACTAGCACGTAACTCACGT -ACGGAACTAGCACGTAACCGTAGT -ACGGAACTAGCACGTAACGTCAGT -ACGGAACTAGCACGTAACGAAGGT -ACGGAACTAGCACGTAACAACCGT -ACGGAACTAGCACGTAACTTGTGC -ACGGAACTAGCACGTAACCTAAGC -ACGGAACTAGCACGTAACACTAGC -ACGGAACTAGCACGTAACAGATGC -ACGGAACTAGCACGTAACTGAAGG -ACGGAACTAGCACGTAACCAATGG -ACGGAACTAGCACGTAACATGAGG -ACGGAACTAGCACGTAACAATGGG -ACGGAACTAGCACGTAACTCCTGA -ACGGAACTAGCACGTAACTAGCGA -ACGGAACTAGCACGTAACCACAGA -ACGGAACTAGCACGTAACGCAAGA -ACGGAACTAGCACGTAACGGTTGA -ACGGAACTAGCACGTAACTCCGAT -ACGGAACTAGCACGTAACTGGCAT -ACGGAACTAGCACGTAACCGAGAT -ACGGAACTAGCACGTAACTACCAC -ACGGAACTAGCACGTAACCAGAAC -ACGGAACTAGCACGTAACGTCTAC -ACGGAACTAGCACGTAACACGTAC -ACGGAACTAGCACGTAACAGTGAC -ACGGAACTAGCACGTAACCTGTAG -ACGGAACTAGCACGTAACCCTAAG -ACGGAACTAGCACGTAACGTTCAG -ACGGAACTAGCACGTAACGCATAG -ACGGAACTAGCACGTAACGACAAG -ACGGAACTAGCACGTAACAAGCAG -ACGGAACTAGCACGTAACCGTCAA -ACGGAACTAGCACGTAACGCTGAA -ACGGAACTAGCACGTAACAGTACG -ACGGAACTAGCACGTAACATCCGA -ACGGAACTAGCACGTAACATGGGA -ACGGAACTAGCACGTAACGTGCAA -ACGGAACTAGCACGTAACGAGGAA -ACGGAACTAGCACGTAACCAGGTA -ACGGAACTAGCACGTAACGACTCT -ACGGAACTAGCACGTAACAGTCCT -ACGGAACTAGCACGTAACTAAGCC -ACGGAACTAGCACGTAACATAGCC -ACGGAACTAGCACGTAACTAACCG -ACGGAACTAGCACGTAACATGCCA -ACGGAACTAGCATGCTTGGGAAAC -ACGGAACTAGCATGCTTGAACACC -ACGGAACTAGCATGCTTGATCGAG -ACGGAACTAGCATGCTTGCTCCTT -ACGGAACTAGCATGCTTGCCTGTT -ACGGAACTAGCATGCTTGCGGTTT -ACGGAACTAGCATGCTTGGTGGTT -ACGGAACTAGCATGCTTGGCCTTT -ACGGAACTAGCATGCTTGGGTCTT -ACGGAACTAGCATGCTTGACGCTT -ACGGAACTAGCATGCTTGAGCGTT -ACGGAACTAGCATGCTTGTTCGTC -ACGGAACTAGCATGCTTGTCTCTC -ACGGAACTAGCATGCTTGTGGATC -ACGGAACTAGCATGCTTGCACTTC -ACGGAACTAGCATGCTTGGTACTC -ACGGAACTAGCATGCTTGGATGTC -ACGGAACTAGCATGCTTGACAGTC -ACGGAACTAGCATGCTTGTTGCTG -ACGGAACTAGCATGCTTGTCCATG -ACGGAACTAGCATGCTTGTGTGTG -ACGGAACTAGCATGCTTGCTAGTG -ACGGAACTAGCATGCTTGCATCTG -ACGGAACTAGCATGCTTGGAGTTG -ACGGAACTAGCATGCTTGAGACTG -ACGGAACTAGCATGCTTGTCGGTA -ACGGAACTAGCATGCTTGTGCCTA -ACGGAACTAGCATGCTTGCCACTA -ACGGAACTAGCATGCTTGGGAGTA -ACGGAACTAGCATGCTTGTCGTCT -ACGGAACTAGCATGCTTGTGCACT -ACGGAACTAGCATGCTTGCTGACT -ACGGAACTAGCATGCTTGCAACCT -ACGGAACTAGCATGCTTGGCTACT -ACGGAACTAGCATGCTTGGGATCT -ACGGAACTAGCATGCTTGAAGGCT -ACGGAACTAGCATGCTTGTCAACC -ACGGAACTAGCATGCTTGTGTTCC -ACGGAACTAGCATGCTTGATTCCC -ACGGAACTAGCATGCTTGTTCTCG -ACGGAACTAGCATGCTTGTAGACG -ACGGAACTAGCATGCTTGGTAACG -ACGGAACTAGCATGCTTGACTTCG -ACGGAACTAGCATGCTTGTACGCA -ACGGAACTAGCATGCTTGCTTGCA -ACGGAACTAGCATGCTTGCGAACA -ACGGAACTAGCATGCTTGCAGTCA -ACGGAACTAGCATGCTTGGATCCA -ACGGAACTAGCATGCTTGACGACA -ACGGAACTAGCATGCTTGAGCTCA -ACGGAACTAGCATGCTTGTCACGT -ACGGAACTAGCATGCTTGCGTAGT -ACGGAACTAGCATGCTTGGTCAGT -ACGGAACTAGCATGCTTGGAAGGT -ACGGAACTAGCATGCTTGAACCGT -ACGGAACTAGCATGCTTGTTGTGC -ACGGAACTAGCATGCTTGCTAAGC -ACGGAACTAGCATGCTTGACTAGC -ACGGAACTAGCATGCTTGAGATGC -ACGGAACTAGCATGCTTGTGAAGG -ACGGAACTAGCATGCTTGCAATGG -ACGGAACTAGCATGCTTGATGAGG -ACGGAACTAGCATGCTTGAATGGG -ACGGAACTAGCATGCTTGTCCTGA -ACGGAACTAGCATGCTTGTAGCGA -ACGGAACTAGCATGCTTGCACAGA -ACGGAACTAGCATGCTTGGCAAGA -ACGGAACTAGCATGCTTGGGTTGA -ACGGAACTAGCATGCTTGTCCGAT -ACGGAACTAGCATGCTTGTGGCAT -ACGGAACTAGCATGCTTGCGAGAT -ACGGAACTAGCATGCTTGTACCAC -ACGGAACTAGCATGCTTGCAGAAC -ACGGAACTAGCATGCTTGGTCTAC -ACGGAACTAGCATGCTTGACGTAC -ACGGAACTAGCATGCTTGAGTGAC -ACGGAACTAGCATGCTTGCTGTAG -ACGGAACTAGCATGCTTGCCTAAG -ACGGAACTAGCATGCTTGGTTCAG -ACGGAACTAGCATGCTTGGCATAG -ACGGAACTAGCATGCTTGGACAAG -ACGGAACTAGCATGCTTGAAGCAG -ACGGAACTAGCATGCTTGCGTCAA -ACGGAACTAGCATGCTTGGCTGAA -ACGGAACTAGCATGCTTGAGTACG -ACGGAACTAGCATGCTTGATCCGA -ACGGAACTAGCATGCTTGATGGGA -ACGGAACTAGCATGCTTGGTGCAA -ACGGAACTAGCATGCTTGGAGGAA -ACGGAACTAGCATGCTTGCAGGTA -ACGGAACTAGCATGCTTGGACTCT -ACGGAACTAGCATGCTTGAGTCCT -ACGGAACTAGCATGCTTGTAAGCC -ACGGAACTAGCATGCTTGATAGCC -ACGGAACTAGCATGCTTGTAACCG -ACGGAACTAGCATGCTTGATGCCA -ACGGAACTAGCAAGCCTAGGAAAC -ACGGAACTAGCAAGCCTAAACACC -ACGGAACTAGCAAGCCTAATCGAG -ACGGAACTAGCAAGCCTACTCCTT -ACGGAACTAGCAAGCCTACCTGTT -ACGGAACTAGCAAGCCTACGGTTT -ACGGAACTAGCAAGCCTAGTGGTT -ACGGAACTAGCAAGCCTAGCCTTT -ACGGAACTAGCAAGCCTAGGTCTT -ACGGAACTAGCAAGCCTAACGCTT -ACGGAACTAGCAAGCCTAAGCGTT -ACGGAACTAGCAAGCCTATTCGTC -ACGGAACTAGCAAGCCTATCTCTC -ACGGAACTAGCAAGCCTATGGATC -ACGGAACTAGCAAGCCTACACTTC -ACGGAACTAGCAAGCCTAGTACTC -ACGGAACTAGCAAGCCTAGATGTC -ACGGAACTAGCAAGCCTAACAGTC -ACGGAACTAGCAAGCCTATTGCTG -ACGGAACTAGCAAGCCTATCCATG -ACGGAACTAGCAAGCCTATGTGTG -ACGGAACTAGCAAGCCTACTAGTG -ACGGAACTAGCAAGCCTACATCTG -ACGGAACTAGCAAGCCTAGAGTTG -ACGGAACTAGCAAGCCTAAGACTG -ACGGAACTAGCAAGCCTATCGGTA -ACGGAACTAGCAAGCCTATGCCTA -ACGGAACTAGCAAGCCTACCACTA -ACGGAACTAGCAAGCCTAGGAGTA -ACGGAACTAGCAAGCCTATCGTCT -ACGGAACTAGCAAGCCTATGCACT -ACGGAACTAGCAAGCCTACTGACT -ACGGAACTAGCAAGCCTACAACCT -ACGGAACTAGCAAGCCTAGCTACT -ACGGAACTAGCAAGCCTAGGATCT -ACGGAACTAGCAAGCCTAAAGGCT -ACGGAACTAGCAAGCCTATCAACC -ACGGAACTAGCAAGCCTATGTTCC -ACGGAACTAGCAAGCCTAATTCCC -ACGGAACTAGCAAGCCTATTCTCG -ACGGAACTAGCAAGCCTATAGACG -ACGGAACTAGCAAGCCTAGTAACG -ACGGAACTAGCAAGCCTAACTTCG -ACGGAACTAGCAAGCCTATACGCA -ACGGAACTAGCAAGCCTACTTGCA -ACGGAACTAGCAAGCCTACGAACA -ACGGAACTAGCAAGCCTACAGTCA -ACGGAACTAGCAAGCCTAGATCCA -ACGGAACTAGCAAGCCTAACGACA -ACGGAACTAGCAAGCCTAAGCTCA -ACGGAACTAGCAAGCCTATCACGT -ACGGAACTAGCAAGCCTACGTAGT -ACGGAACTAGCAAGCCTAGTCAGT -ACGGAACTAGCAAGCCTAGAAGGT -ACGGAACTAGCAAGCCTAAACCGT -ACGGAACTAGCAAGCCTATTGTGC -ACGGAACTAGCAAGCCTACTAAGC -ACGGAACTAGCAAGCCTAACTAGC -ACGGAACTAGCAAGCCTAAGATGC -ACGGAACTAGCAAGCCTATGAAGG -ACGGAACTAGCAAGCCTACAATGG -ACGGAACTAGCAAGCCTAATGAGG -ACGGAACTAGCAAGCCTAAATGGG -ACGGAACTAGCAAGCCTATCCTGA -ACGGAACTAGCAAGCCTATAGCGA -ACGGAACTAGCAAGCCTACACAGA -ACGGAACTAGCAAGCCTAGCAAGA -ACGGAACTAGCAAGCCTAGGTTGA -ACGGAACTAGCAAGCCTATCCGAT -ACGGAACTAGCAAGCCTATGGCAT -ACGGAACTAGCAAGCCTACGAGAT -ACGGAACTAGCAAGCCTATACCAC -ACGGAACTAGCAAGCCTACAGAAC -ACGGAACTAGCAAGCCTAGTCTAC -ACGGAACTAGCAAGCCTAACGTAC -ACGGAACTAGCAAGCCTAAGTGAC -ACGGAACTAGCAAGCCTACTGTAG -ACGGAACTAGCAAGCCTACCTAAG -ACGGAACTAGCAAGCCTAGTTCAG -ACGGAACTAGCAAGCCTAGCATAG -ACGGAACTAGCAAGCCTAGACAAG -ACGGAACTAGCAAGCCTAAAGCAG -ACGGAACTAGCAAGCCTACGTCAA -ACGGAACTAGCAAGCCTAGCTGAA -ACGGAACTAGCAAGCCTAAGTACG -ACGGAACTAGCAAGCCTAATCCGA -ACGGAACTAGCAAGCCTAATGGGA -ACGGAACTAGCAAGCCTAGTGCAA -ACGGAACTAGCAAGCCTAGAGGAA -ACGGAACTAGCAAGCCTACAGGTA -ACGGAACTAGCAAGCCTAGACTCT -ACGGAACTAGCAAGCCTAAGTCCT -ACGGAACTAGCAAGCCTATAAGCC -ACGGAACTAGCAAGCCTAATAGCC -ACGGAACTAGCAAGCCTATAACCG -ACGGAACTAGCAAGCCTAATGCCA -ACGGAACTAGCAAGCACTGGAAAC -ACGGAACTAGCAAGCACTAACACC -ACGGAACTAGCAAGCACTATCGAG -ACGGAACTAGCAAGCACTCTCCTT -ACGGAACTAGCAAGCACTCCTGTT -ACGGAACTAGCAAGCACTCGGTTT -ACGGAACTAGCAAGCACTGTGGTT -ACGGAACTAGCAAGCACTGCCTTT -ACGGAACTAGCAAGCACTGGTCTT -ACGGAACTAGCAAGCACTACGCTT -ACGGAACTAGCAAGCACTAGCGTT -ACGGAACTAGCAAGCACTTTCGTC -ACGGAACTAGCAAGCACTTCTCTC -ACGGAACTAGCAAGCACTTGGATC -ACGGAACTAGCAAGCACTCACTTC -ACGGAACTAGCAAGCACTGTACTC -ACGGAACTAGCAAGCACTGATGTC -ACGGAACTAGCAAGCACTACAGTC -ACGGAACTAGCAAGCACTTTGCTG -ACGGAACTAGCAAGCACTTCCATG -ACGGAACTAGCAAGCACTTGTGTG -ACGGAACTAGCAAGCACTCTAGTG -ACGGAACTAGCAAGCACTCATCTG -ACGGAACTAGCAAGCACTGAGTTG -ACGGAACTAGCAAGCACTAGACTG -ACGGAACTAGCAAGCACTTCGGTA -ACGGAACTAGCAAGCACTTGCCTA -ACGGAACTAGCAAGCACTCCACTA -ACGGAACTAGCAAGCACTGGAGTA -ACGGAACTAGCAAGCACTTCGTCT -ACGGAACTAGCAAGCACTTGCACT -ACGGAACTAGCAAGCACTCTGACT -ACGGAACTAGCAAGCACTCAACCT -ACGGAACTAGCAAGCACTGCTACT -ACGGAACTAGCAAGCACTGGATCT -ACGGAACTAGCAAGCACTAAGGCT -ACGGAACTAGCAAGCACTTCAACC -ACGGAACTAGCAAGCACTTGTTCC -ACGGAACTAGCAAGCACTATTCCC -ACGGAACTAGCAAGCACTTTCTCG -ACGGAACTAGCAAGCACTTAGACG -ACGGAACTAGCAAGCACTGTAACG -ACGGAACTAGCAAGCACTACTTCG -ACGGAACTAGCAAGCACTTACGCA -ACGGAACTAGCAAGCACTCTTGCA -ACGGAACTAGCAAGCACTCGAACA -ACGGAACTAGCAAGCACTCAGTCA -ACGGAACTAGCAAGCACTGATCCA -ACGGAACTAGCAAGCACTACGACA -ACGGAACTAGCAAGCACTAGCTCA -ACGGAACTAGCAAGCACTTCACGT -ACGGAACTAGCAAGCACTCGTAGT -ACGGAACTAGCAAGCACTGTCAGT -ACGGAACTAGCAAGCACTGAAGGT -ACGGAACTAGCAAGCACTAACCGT -ACGGAACTAGCAAGCACTTTGTGC -ACGGAACTAGCAAGCACTCTAAGC -ACGGAACTAGCAAGCACTACTAGC -ACGGAACTAGCAAGCACTAGATGC -ACGGAACTAGCAAGCACTTGAAGG -ACGGAACTAGCAAGCACTCAATGG -ACGGAACTAGCAAGCACTATGAGG -ACGGAACTAGCAAGCACTAATGGG -ACGGAACTAGCAAGCACTTCCTGA -ACGGAACTAGCAAGCACTTAGCGA -ACGGAACTAGCAAGCACTCACAGA -ACGGAACTAGCAAGCACTGCAAGA -ACGGAACTAGCAAGCACTGGTTGA -ACGGAACTAGCAAGCACTTCCGAT -ACGGAACTAGCAAGCACTTGGCAT -ACGGAACTAGCAAGCACTCGAGAT -ACGGAACTAGCAAGCACTTACCAC -ACGGAACTAGCAAGCACTCAGAAC -ACGGAACTAGCAAGCACTGTCTAC -ACGGAACTAGCAAGCACTACGTAC -ACGGAACTAGCAAGCACTAGTGAC -ACGGAACTAGCAAGCACTCTGTAG -ACGGAACTAGCAAGCACTCCTAAG -ACGGAACTAGCAAGCACTGTTCAG -ACGGAACTAGCAAGCACTGCATAG -ACGGAACTAGCAAGCACTGACAAG -ACGGAACTAGCAAGCACTAAGCAG -ACGGAACTAGCAAGCACTCGTCAA -ACGGAACTAGCAAGCACTGCTGAA -ACGGAACTAGCAAGCACTAGTACG -ACGGAACTAGCAAGCACTATCCGA -ACGGAACTAGCAAGCACTATGGGA -ACGGAACTAGCAAGCACTGTGCAA -ACGGAACTAGCAAGCACTGAGGAA -ACGGAACTAGCAAGCACTCAGGTA -ACGGAACTAGCAAGCACTGACTCT -ACGGAACTAGCAAGCACTAGTCCT -ACGGAACTAGCAAGCACTTAAGCC -ACGGAACTAGCAAGCACTATAGCC -ACGGAACTAGCAAGCACTTAACCG -ACGGAACTAGCAAGCACTATGCCA -ACGGAACTAGCATGCAGAGGAAAC -ACGGAACTAGCATGCAGAAACACC -ACGGAACTAGCATGCAGAATCGAG -ACGGAACTAGCATGCAGACTCCTT -ACGGAACTAGCATGCAGACCTGTT -ACGGAACTAGCATGCAGACGGTTT -ACGGAACTAGCATGCAGAGTGGTT -ACGGAACTAGCATGCAGAGCCTTT -ACGGAACTAGCATGCAGAGGTCTT -ACGGAACTAGCATGCAGAACGCTT -ACGGAACTAGCATGCAGAAGCGTT -ACGGAACTAGCATGCAGATTCGTC -ACGGAACTAGCATGCAGATCTCTC -ACGGAACTAGCATGCAGATGGATC -ACGGAACTAGCATGCAGACACTTC -ACGGAACTAGCATGCAGAGTACTC -ACGGAACTAGCATGCAGAGATGTC -ACGGAACTAGCATGCAGAACAGTC -ACGGAACTAGCATGCAGATTGCTG -ACGGAACTAGCATGCAGATCCATG -ACGGAACTAGCATGCAGATGTGTG -ACGGAACTAGCATGCAGACTAGTG -ACGGAACTAGCATGCAGACATCTG -ACGGAACTAGCATGCAGAGAGTTG -ACGGAACTAGCATGCAGAAGACTG -ACGGAACTAGCATGCAGATCGGTA -ACGGAACTAGCATGCAGATGCCTA -ACGGAACTAGCATGCAGACCACTA -ACGGAACTAGCATGCAGAGGAGTA -ACGGAACTAGCATGCAGATCGTCT -ACGGAACTAGCATGCAGATGCACT -ACGGAACTAGCATGCAGACTGACT -ACGGAACTAGCATGCAGACAACCT -ACGGAACTAGCATGCAGAGCTACT -ACGGAACTAGCATGCAGAGGATCT -ACGGAACTAGCATGCAGAAAGGCT -ACGGAACTAGCATGCAGATCAACC -ACGGAACTAGCATGCAGATGTTCC -ACGGAACTAGCATGCAGAATTCCC -ACGGAACTAGCATGCAGATTCTCG -ACGGAACTAGCATGCAGATAGACG -ACGGAACTAGCATGCAGAGTAACG -ACGGAACTAGCATGCAGAACTTCG -ACGGAACTAGCATGCAGATACGCA -ACGGAACTAGCATGCAGACTTGCA -ACGGAACTAGCATGCAGACGAACA -ACGGAACTAGCATGCAGACAGTCA -ACGGAACTAGCATGCAGAGATCCA -ACGGAACTAGCATGCAGAACGACA -ACGGAACTAGCATGCAGAAGCTCA -ACGGAACTAGCATGCAGATCACGT -ACGGAACTAGCATGCAGACGTAGT -ACGGAACTAGCATGCAGAGTCAGT -ACGGAACTAGCATGCAGAGAAGGT -ACGGAACTAGCATGCAGAAACCGT -ACGGAACTAGCATGCAGATTGTGC -ACGGAACTAGCATGCAGACTAAGC -ACGGAACTAGCATGCAGAACTAGC -ACGGAACTAGCATGCAGAAGATGC -ACGGAACTAGCATGCAGATGAAGG -ACGGAACTAGCATGCAGACAATGG -ACGGAACTAGCATGCAGAATGAGG -ACGGAACTAGCATGCAGAAATGGG -ACGGAACTAGCATGCAGATCCTGA -ACGGAACTAGCATGCAGATAGCGA -ACGGAACTAGCATGCAGACACAGA -ACGGAACTAGCATGCAGAGCAAGA -ACGGAACTAGCATGCAGAGGTTGA -ACGGAACTAGCATGCAGATCCGAT -ACGGAACTAGCATGCAGATGGCAT -ACGGAACTAGCATGCAGACGAGAT -ACGGAACTAGCATGCAGATACCAC -ACGGAACTAGCATGCAGACAGAAC -ACGGAACTAGCATGCAGAGTCTAC -ACGGAACTAGCATGCAGAACGTAC -ACGGAACTAGCATGCAGAAGTGAC -ACGGAACTAGCATGCAGACTGTAG -ACGGAACTAGCATGCAGACCTAAG -ACGGAACTAGCATGCAGAGTTCAG -ACGGAACTAGCATGCAGAGCATAG -ACGGAACTAGCATGCAGAGACAAG -ACGGAACTAGCATGCAGAAAGCAG -ACGGAACTAGCATGCAGACGTCAA -ACGGAACTAGCATGCAGAGCTGAA -ACGGAACTAGCATGCAGAAGTACG -ACGGAACTAGCATGCAGAATCCGA -ACGGAACTAGCATGCAGAATGGGA -ACGGAACTAGCATGCAGAGTGCAA -ACGGAACTAGCATGCAGAGAGGAA -ACGGAACTAGCATGCAGACAGGTA -ACGGAACTAGCATGCAGAGACTCT -ACGGAACTAGCATGCAGAAGTCCT -ACGGAACTAGCATGCAGATAAGCC -ACGGAACTAGCATGCAGAATAGCC -ACGGAACTAGCATGCAGATAACCG -ACGGAACTAGCATGCAGAATGCCA -ACGGAACTAGCAAGGTGAGGAAAC -ACGGAACTAGCAAGGTGAAACACC -ACGGAACTAGCAAGGTGAATCGAG -ACGGAACTAGCAAGGTGACTCCTT -ACGGAACTAGCAAGGTGACCTGTT -ACGGAACTAGCAAGGTGACGGTTT -ACGGAACTAGCAAGGTGAGTGGTT -ACGGAACTAGCAAGGTGAGCCTTT -ACGGAACTAGCAAGGTGAGGTCTT -ACGGAACTAGCAAGGTGAACGCTT -ACGGAACTAGCAAGGTGAAGCGTT -ACGGAACTAGCAAGGTGATTCGTC -ACGGAACTAGCAAGGTGATCTCTC -ACGGAACTAGCAAGGTGATGGATC -ACGGAACTAGCAAGGTGACACTTC -ACGGAACTAGCAAGGTGAGTACTC -ACGGAACTAGCAAGGTGAGATGTC -ACGGAACTAGCAAGGTGAACAGTC -ACGGAACTAGCAAGGTGATTGCTG -ACGGAACTAGCAAGGTGATCCATG -ACGGAACTAGCAAGGTGATGTGTG -ACGGAACTAGCAAGGTGACTAGTG -ACGGAACTAGCAAGGTGACATCTG -ACGGAACTAGCAAGGTGAGAGTTG -ACGGAACTAGCAAGGTGAAGACTG -ACGGAACTAGCAAGGTGATCGGTA -ACGGAACTAGCAAGGTGATGCCTA -ACGGAACTAGCAAGGTGACCACTA -ACGGAACTAGCAAGGTGAGGAGTA -ACGGAACTAGCAAGGTGATCGTCT -ACGGAACTAGCAAGGTGATGCACT -ACGGAACTAGCAAGGTGACTGACT -ACGGAACTAGCAAGGTGACAACCT -ACGGAACTAGCAAGGTGAGCTACT -ACGGAACTAGCAAGGTGAGGATCT -ACGGAACTAGCAAGGTGAAAGGCT -ACGGAACTAGCAAGGTGATCAACC -ACGGAACTAGCAAGGTGATGTTCC -ACGGAACTAGCAAGGTGAATTCCC -ACGGAACTAGCAAGGTGATTCTCG -ACGGAACTAGCAAGGTGATAGACG -ACGGAACTAGCAAGGTGAGTAACG -ACGGAACTAGCAAGGTGAACTTCG -ACGGAACTAGCAAGGTGATACGCA -ACGGAACTAGCAAGGTGACTTGCA -ACGGAACTAGCAAGGTGACGAACA -ACGGAACTAGCAAGGTGACAGTCA -ACGGAACTAGCAAGGTGAGATCCA -ACGGAACTAGCAAGGTGAACGACA -ACGGAACTAGCAAGGTGAAGCTCA -ACGGAACTAGCAAGGTGATCACGT -ACGGAACTAGCAAGGTGACGTAGT -ACGGAACTAGCAAGGTGAGTCAGT -ACGGAACTAGCAAGGTGAGAAGGT -ACGGAACTAGCAAGGTGAAACCGT -ACGGAACTAGCAAGGTGATTGTGC -ACGGAACTAGCAAGGTGACTAAGC -ACGGAACTAGCAAGGTGAACTAGC -ACGGAACTAGCAAGGTGAAGATGC -ACGGAACTAGCAAGGTGATGAAGG -ACGGAACTAGCAAGGTGACAATGG -ACGGAACTAGCAAGGTGAATGAGG -ACGGAACTAGCAAGGTGAAATGGG -ACGGAACTAGCAAGGTGATCCTGA -ACGGAACTAGCAAGGTGATAGCGA -ACGGAACTAGCAAGGTGACACAGA -ACGGAACTAGCAAGGTGAGCAAGA -ACGGAACTAGCAAGGTGAGGTTGA -ACGGAACTAGCAAGGTGATCCGAT -ACGGAACTAGCAAGGTGATGGCAT -ACGGAACTAGCAAGGTGACGAGAT -ACGGAACTAGCAAGGTGATACCAC -ACGGAACTAGCAAGGTGACAGAAC -ACGGAACTAGCAAGGTGAGTCTAC -ACGGAACTAGCAAGGTGAACGTAC -ACGGAACTAGCAAGGTGAAGTGAC -ACGGAACTAGCAAGGTGACTGTAG -ACGGAACTAGCAAGGTGACCTAAG -ACGGAACTAGCAAGGTGAGTTCAG -ACGGAACTAGCAAGGTGAGCATAG -ACGGAACTAGCAAGGTGAGACAAG -ACGGAACTAGCAAGGTGAAAGCAG -ACGGAACTAGCAAGGTGACGTCAA -ACGGAACTAGCAAGGTGAGCTGAA -ACGGAACTAGCAAGGTGAAGTACG -ACGGAACTAGCAAGGTGAATCCGA -ACGGAACTAGCAAGGTGAATGGGA -ACGGAACTAGCAAGGTGAGTGCAA -ACGGAACTAGCAAGGTGAGAGGAA -ACGGAACTAGCAAGGTGACAGGTA -ACGGAACTAGCAAGGTGAGACTCT -ACGGAACTAGCAAGGTGAAGTCCT -ACGGAACTAGCAAGGTGATAAGCC -ACGGAACTAGCAAGGTGAATAGCC -ACGGAACTAGCAAGGTGATAACCG -ACGGAACTAGCAAGGTGAATGCCA -ACGGAACTAGCATGGCAAGGAAAC -ACGGAACTAGCATGGCAAAACACC -ACGGAACTAGCATGGCAAATCGAG -ACGGAACTAGCATGGCAACTCCTT -ACGGAACTAGCATGGCAACCTGTT -ACGGAACTAGCATGGCAACGGTTT -ACGGAACTAGCATGGCAAGTGGTT -ACGGAACTAGCATGGCAAGCCTTT -ACGGAACTAGCATGGCAAGGTCTT -ACGGAACTAGCATGGCAAACGCTT -ACGGAACTAGCATGGCAAAGCGTT -ACGGAACTAGCATGGCAATTCGTC -ACGGAACTAGCATGGCAATCTCTC -ACGGAACTAGCATGGCAATGGATC -ACGGAACTAGCATGGCAACACTTC -ACGGAACTAGCATGGCAAGTACTC -ACGGAACTAGCATGGCAAGATGTC -ACGGAACTAGCATGGCAAACAGTC -ACGGAACTAGCATGGCAATTGCTG -ACGGAACTAGCATGGCAATCCATG -ACGGAACTAGCATGGCAATGTGTG -ACGGAACTAGCATGGCAACTAGTG -ACGGAACTAGCATGGCAACATCTG -ACGGAACTAGCATGGCAAGAGTTG -ACGGAACTAGCATGGCAAAGACTG -ACGGAACTAGCATGGCAATCGGTA -ACGGAACTAGCATGGCAATGCCTA -ACGGAACTAGCATGGCAACCACTA -ACGGAACTAGCATGGCAAGGAGTA -ACGGAACTAGCATGGCAATCGTCT -ACGGAACTAGCATGGCAATGCACT -ACGGAACTAGCATGGCAACTGACT -ACGGAACTAGCATGGCAACAACCT -ACGGAACTAGCATGGCAAGCTACT -ACGGAACTAGCATGGCAAGGATCT -ACGGAACTAGCATGGCAAAAGGCT -ACGGAACTAGCATGGCAATCAACC -ACGGAACTAGCATGGCAATGTTCC -ACGGAACTAGCATGGCAAATTCCC -ACGGAACTAGCATGGCAATTCTCG -ACGGAACTAGCATGGCAATAGACG -ACGGAACTAGCATGGCAAGTAACG -ACGGAACTAGCATGGCAAACTTCG -ACGGAACTAGCATGGCAATACGCA -ACGGAACTAGCATGGCAACTTGCA -ACGGAACTAGCATGGCAACGAACA -ACGGAACTAGCATGGCAACAGTCA -ACGGAACTAGCATGGCAAGATCCA -ACGGAACTAGCATGGCAAACGACA -ACGGAACTAGCATGGCAAAGCTCA -ACGGAACTAGCATGGCAATCACGT -ACGGAACTAGCATGGCAACGTAGT -ACGGAACTAGCATGGCAAGTCAGT -ACGGAACTAGCATGGCAAGAAGGT -ACGGAACTAGCATGGCAAAACCGT -ACGGAACTAGCATGGCAATTGTGC -ACGGAACTAGCATGGCAACTAAGC -ACGGAACTAGCATGGCAAACTAGC -ACGGAACTAGCATGGCAAAGATGC -ACGGAACTAGCATGGCAATGAAGG -ACGGAACTAGCATGGCAACAATGG -ACGGAACTAGCATGGCAAATGAGG -ACGGAACTAGCATGGCAAAATGGG -ACGGAACTAGCATGGCAATCCTGA -ACGGAACTAGCATGGCAATAGCGA -ACGGAACTAGCATGGCAACACAGA -ACGGAACTAGCATGGCAAGCAAGA -ACGGAACTAGCATGGCAAGGTTGA -ACGGAACTAGCATGGCAATCCGAT -ACGGAACTAGCATGGCAATGGCAT -ACGGAACTAGCATGGCAACGAGAT -ACGGAACTAGCATGGCAATACCAC -ACGGAACTAGCATGGCAACAGAAC -ACGGAACTAGCATGGCAAGTCTAC -ACGGAACTAGCATGGCAAACGTAC -ACGGAACTAGCATGGCAAAGTGAC -ACGGAACTAGCATGGCAACTGTAG -ACGGAACTAGCATGGCAACCTAAG -ACGGAACTAGCATGGCAAGTTCAG -ACGGAACTAGCATGGCAAGCATAG -ACGGAACTAGCATGGCAAGACAAG -ACGGAACTAGCATGGCAAAAGCAG -ACGGAACTAGCATGGCAACGTCAA -ACGGAACTAGCATGGCAAGCTGAA -ACGGAACTAGCATGGCAAAGTACG -ACGGAACTAGCATGGCAAATCCGA -ACGGAACTAGCATGGCAAATGGGA -ACGGAACTAGCATGGCAAGTGCAA -ACGGAACTAGCATGGCAAGAGGAA -ACGGAACTAGCATGGCAACAGGTA -ACGGAACTAGCATGGCAAGACTCT -ACGGAACTAGCATGGCAAAGTCCT -ACGGAACTAGCATGGCAATAAGCC -ACGGAACTAGCATGGCAAATAGCC -ACGGAACTAGCATGGCAATAACCG -ACGGAACTAGCATGGCAAATGCCA -ACGGAACTAGCAAGGATGGGAAAC -ACGGAACTAGCAAGGATGAACACC -ACGGAACTAGCAAGGATGATCGAG -ACGGAACTAGCAAGGATGCTCCTT -ACGGAACTAGCAAGGATGCCTGTT -ACGGAACTAGCAAGGATGCGGTTT -ACGGAACTAGCAAGGATGGTGGTT -ACGGAACTAGCAAGGATGGCCTTT -ACGGAACTAGCAAGGATGGGTCTT -ACGGAACTAGCAAGGATGACGCTT -ACGGAACTAGCAAGGATGAGCGTT -ACGGAACTAGCAAGGATGTTCGTC -ACGGAACTAGCAAGGATGTCTCTC -ACGGAACTAGCAAGGATGTGGATC -ACGGAACTAGCAAGGATGCACTTC -ACGGAACTAGCAAGGATGGTACTC -ACGGAACTAGCAAGGATGGATGTC -ACGGAACTAGCAAGGATGACAGTC -ACGGAACTAGCAAGGATGTTGCTG -ACGGAACTAGCAAGGATGTCCATG -ACGGAACTAGCAAGGATGTGTGTG -ACGGAACTAGCAAGGATGCTAGTG -ACGGAACTAGCAAGGATGCATCTG -ACGGAACTAGCAAGGATGGAGTTG -ACGGAACTAGCAAGGATGAGACTG -ACGGAACTAGCAAGGATGTCGGTA -ACGGAACTAGCAAGGATGTGCCTA -ACGGAACTAGCAAGGATGCCACTA -ACGGAACTAGCAAGGATGGGAGTA -ACGGAACTAGCAAGGATGTCGTCT -ACGGAACTAGCAAGGATGTGCACT -ACGGAACTAGCAAGGATGCTGACT -ACGGAACTAGCAAGGATGCAACCT -ACGGAACTAGCAAGGATGGCTACT -ACGGAACTAGCAAGGATGGGATCT -ACGGAACTAGCAAGGATGAAGGCT -ACGGAACTAGCAAGGATGTCAACC -ACGGAACTAGCAAGGATGTGTTCC -ACGGAACTAGCAAGGATGATTCCC -ACGGAACTAGCAAGGATGTTCTCG -ACGGAACTAGCAAGGATGTAGACG -ACGGAACTAGCAAGGATGGTAACG -ACGGAACTAGCAAGGATGACTTCG -ACGGAACTAGCAAGGATGTACGCA -ACGGAACTAGCAAGGATGCTTGCA -ACGGAACTAGCAAGGATGCGAACA -ACGGAACTAGCAAGGATGCAGTCA -ACGGAACTAGCAAGGATGGATCCA -ACGGAACTAGCAAGGATGACGACA -ACGGAACTAGCAAGGATGAGCTCA -ACGGAACTAGCAAGGATGTCACGT -ACGGAACTAGCAAGGATGCGTAGT -ACGGAACTAGCAAGGATGGTCAGT -ACGGAACTAGCAAGGATGGAAGGT -ACGGAACTAGCAAGGATGAACCGT -ACGGAACTAGCAAGGATGTTGTGC -ACGGAACTAGCAAGGATGCTAAGC -ACGGAACTAGCAAGGATGACTAGC -ACGGAACTAGCAAGGATGAGATGC -ACGGAACTAGCAAGGATGTGAAGG -ACGGAACTAGCAAGGATGCAATGG -ACGGAACTAGCAAGGATGATGAGG -ACGGAACTAGCAAGGATGAATGGG -ACGGAACTAGCAAGGATGTCCTGA -ACGGAACTAGCAAGGATGTAGCGA -ACGGAACTAGCAAGGATGCACAGA -ACGGAACTAGCAAGGATGGCAAGA -ACGGAACTAGCAAGGATGGGTTGA -ACGGAACTAGCAAGGATGTCCGAT -ACGGAACTAGCAAGGATGTGGCAT -ACGGAACTAGCAAGGATGCGAGAT -ACGGAACTAGCAAGGATGTACCAC -ACGGAACTAGCAAGGATGCAGAAC -ACGGAACTAGCAAGGATGGTCTAC -ACGGAACTAGCAAGGATGACGTAC -ACGGAACTAGCAAGGATGAGTGAC -ACGGAACTAGCAAGGATGCTGTAG -ACGGAACTAGCAAGGATGCCTAAG -ACGGAACTAGCAAGGATGGTTCAG -ACGGAACTAGCAAGGATGGCATAG -ACGGAACTAGCAAGGATGGACAAG -ACGGAACTAGCAAGGATGAAGCAG -ACGGAACTAGCAAGGATGCGTCAA -ACGGAACTAGCAAGGATGGCTGAA -ACGGAACTAGCAAGGATGAGTACG -ACGGAACTAGCAAGGATGATCCGA -ACGGAACTAGCAAGGATGATGGGA -ACGGAACTAGCAAGGATGGTGCAA -ACGGAACTAGCAAGGATGGAGGAA -ACGGAACTAGCAAGGATGCAGGTA -ACGGAACTAGCAAGGATGGACTCT -ACGGAACTAGCAAGGATGAGTCCT -ACGGAACTAGCAAGGATGTAAGCC -ACGGAACTAGCAAGGATGATAGCC -ACGGAACTAGCAAGGATGTAACCG -ACGGAACTAGCAAGGATGATGCCA -ACGGAACTAGCAGGGAATGGAAAC -ACGGAACTAGCAGGGAATAACACC -ACGGAACTAGCAGGGAATATCGAG -ACGGAACTAGCAGGGAATCTCCTT -ACGGAACTAGCAGGGAATCCTGTT -ACGGAACTAGCAGGGAATCGGTTT -ACGGAACTAGCAGGGAATGTGGTT -ACGGAACTAGCAGGGAATGCCTTT -ACGGAACTAGCAGGGAATGGTCTT -ACGGAACTAGCAGGGAATACGCTT -ACGGAACTAGCAGGGAATAGCGTT -ACGGAACTAGCAGGGAATTTCGTC -ACGGAACTAGCAGGGAATTCTCTC -ACGGAACTAGCAGGGAATTGGATC -ACGGAACTAGCAGGGAATCACTTC -ACGGAACTAGCAGGGAATGTACTC -ACGGAACTAGCAGGGAATGATGTC -ACGGAACTAGCAGGGAATACAGTC -ACGGAACTAGCAGGGAATTTGCTG -ACGGAACTAGCAGGGAATTCCATG -ACGGAACTAGCAGGGAATTGTGTG -ACGGAACTAGCAGGGAATCTAGTG -ACGGAACTAGCAGGGAATCATCTG -ACGGAACTAGCAGGGAATGAGTTG -ACGGAACTAGCAGGGAATAGACTG -ACGGAACTAGCAGGGAATTCGGTA -ACGGAACTAGCAGGGAATTGCCTA -ACGGAACTAGCAGGGAATCCACTA -ACGGAACTAGCAGGGAATGGAGTA -ACGGAACTAGCAGGGAATTCGTCT -ACGGAACTAGCAGGGAATTGCACT -ACGGAACTAGCAGGGAATCTGACT -ACGGAACTAGCAGGGAATCAACCT -ACGGAACTAGCAGGGAATGCTACT -ACGGAACTAGCAGGGAATGGATCT -ACGGAACTAGCAGGGAATAAGGCT -ACGGAACTAGCAGGGAATTCAACC -ACGGAACTAGCAGGGAATTGTTCC -ACGGAACTAGCAGGGAATATTCCC -ACGGAACTAGCAGGGAATTTCTCG -ACGGAACTAGCAGGGAATTAGACG -ACGGAACTAGCAGGGAATGTAACG -ACGGAACTAGCAGGGAATACTTCG -ACGGAACTAGCAGGGAATTACGCA -ACGGAACTAGCAGGGAATCTTGCA -ACGGAACTAGCAGGGAATCGAACA -ACGGAACTAGCAGGGAATCAGTCA -ACGGAACTAGCAGGGAATGATCCA -ACGGAACTAGCAGGGAATACGACA -ACGGAACTAGCAGGGAATAGCTCA -ACGGAACTAGCAGGGAATTCACGT -ACGGAACTAGCAGGGAATCGTAGT -ACGGAACTAGCAGGGAATGTCAGT -ACGGAACTAGCAGGGAATGAAGGT -ACGGAACTAGCAGGGAATAACCGT -ACGGAACTAGCAGGGAATTTGTGC -ACGGAACTAGCAGGGAATCTAAGC -ACGGAACTAGCAGGGAATACTAGC -ACGGAACTAGCAGGGAATAGATGC -ACGGAACTAGCAGGGAATTGAAGG -ACGGAACTAGCAGGGAATCAATGG -ACGGAACTAGCAGGGAATATGAGG -ACGGAACTAGCAGGGAATAATGGG -ACGGAACTAGCAGGGAATTCCTGA -ACGGAACTAGCAGGGAATTAGCGA -ACGGAACTAGCAGGGAATCACAGA -ACGGAACTAGCAGGGAATGCAAGA -ACGGAACTAGCAGGGAATGGTTGA -ACGGAACTAGCAGGGAATTCCGAT -ACGGAACTAGCAGGGAATTGGCAT -ACGGAACTAGCAGGGAATCGAGAT -ACGGAACTAGCAGGGAATTACCAC -ACGGAACTAGCAGGGAATCAGAAC -ACGGAACTAGCAGGGAATGTCTAC -ACGGAACTAGCAGGGAATACGTAC -ACGGAACTAGCAGGGAATAGTGAC -ACGGAACTAGCAGGGAATCTGTAG -ACGGAACTAGCAGGGAATCCTAAG -ACGGAACTAGCAGGGAATGTTCAG -ACGGAACTAGCAGGGAATGCATAG -ACGGAACTAGCAGGGAATGACAAG -ACGGAACTAGCAGGGAATAAGCAG -ACGGAACTAGCAGGGAATCGTCAA -ACGGAACTAGCAGGGAATGCTGAA -ACGGAACTAGCAGGGAATAGTACG -ACGGAACTAGCAGGGAATATCCGA -ACGGAACTAGCAGGGAATATGGGA -ACGGAACTAGCAGGGAATGTGCAA -ACGGAACTAGCAGGGAATGAGGAA -ACGGAACTAGCAGGGAATCAGGTA -ACGGAACTAGCAGGGAATGACTCT -ACGGAACTAGCAGGGAATAGTCCT -ACGGAACTAGCAGGGAATTAAGCC -ACGGAACTAGCAGGGAATATAGCC -ACGGAACTAGCAGGGAATTAACCG -ACGGAACTAGCAGGGAATATGCCA -ACGGAACTAGCATGATCCGGAAAC -ACGGAACTAGCATGATCCAACACC -ACGGAACTAGCATGATCCATCGAG -ACGGAACTAGCATGATCCCTCCTT -ACGGAACTAGCATGATCCCCTGTT -ACGGAACTAGCATGATCCCGGTTT -ACGGAACTAGCATGATCCGTGGTT -ACGGAACTAGCATGATCCGCCTTT -ACGGAACTAGCATGATCCGGTCTT -ACGGAACTAGCATGATCCACGCTT -ACGGAACTAGCATGATCCAGCGTT -ACGGAACTAGCATGATCCTTCGTC -ACGGAACTAGCATGATCCTCTCTC -ACGGAACTAGCATGATCCTGGATC -ACGGAACTAGCATGATCCCACTTC -ACGGAACTAGCATGATCCGTACTC -ACGGAACTAGCATGATCCGATGTC -ACGGAACTAGCATGATCCACAGTC -ACGGAACTAGCATGATCCTTGCTG -ACGGAACTAGCATGATCCTCCATG -ACGGAACTAGCATGATCCTGTGTG -ACGGAACTAGCATGATCCCTAGTG -ACGGAACTAGCATGATCCCATCTG -ACGGAACTAGCATGATCCGAGTTG -ACGGAACTAGCATGATCCAGACTG -ACGGAACTAGCATGATCCTCGGTA -ACGGAACTAGCATGATCCTGCCTA -ACGGAACTAGCATGATCCCCACTA -ACGGAACTAGCATGATCCGGAGTA -ACGGAACTAGCATGATCCTCGTCT -ACGGAACTAGCATGATCCTGCACT -ACGGAACTAGCATGATCCCTGACT -ACGGAACTAGCATGATCCCAACCT -ACGGAACTAGCATGATCCGCTACT -ACGGAACTAGCATGATCCGGATCT -ACGGAACTAGCATGATCCAAGGCT -ACGGAACTAGCATGATCCTCAACC -ACGGAACTAGCATGATCCTGTTCC -ACGGAACTAGCATGATCCATTCCC -ACGGAACTAGCATGATCCTTCTCG -ACGGAACTAGCATGATCCTAGACG -ACGGAACTAGCATGATCCGTAACG -ACGGAACTAGCATGATCCACTTCG -ACGGAACTAGCATGATCCTACGCA -ACGGAACTAGCATGATCCCTTGCA -ACGGAACTAGCATGATCCCGAACA -ACGGAACTAGCATGATCCCAGTCA -ACGGAACTAGCATGATCCGATCCA -ACGGAACTAGCATGATCCACGACA -ACGGAACTAGCATGATCCAGCTCA -ACGGAACTAGCATGATCCTCACGT -ACGGAACTAGCATGATCCCGTAGT -ACGGAACTAGCATGATCCGTCAGT -ACGGAACTAGCATGATCCGAAGGT -ACGGAACTAGCATGATCCAACCGT -ACGGAACTAGCATGATCCTTGTGC -ACGGAACTAGCATGATCCCTAAGC -ACGGAACTAGCATGATCCACTAGC -ACGGAACTAGCATGATCCAGATGC -ACGGAACTAGCATGATCCTGAAGG -ACGGAACTAGCATGATCCCAATGG -ACGGAACTAGCATGATCCATGAGG -ACGGAACTAGCATGATCCAATGGG -ACGGAACTAGCATGATCCTCCTGA -ACGGAACTAGCATGATCCTAGCGA -ACGGAACTAGCATGATCCCACAGA -ACGGAACTAGCATGATCCGCAAGA -ACGGAACTAGCATGATCCGGTTGA -ACGGAACTAGCATGATCCTCCGAT -ACGGAACTAGCATGATCCTGGCAT -ACGGAACTAGCATGATCCCGAGAT -ACGGAACTAGCATGATCCTACCAC -ACGGAACTAGCATGATCCCAGAAC -ACGGAACTAGCATGATCCGTCTAC -ACGGAACTAGCATGATCCACGTAC -ACGGAACTAGCATGATCCAGTGAC -ACGGAACTAGCATGATCCCTGTAG -ACGGAACTAGCATGATCCCCTAAG -ACGGAACTAGCATGATCCGTTCAG -ACGGAACTAGCATGATCCGCATAG -ACGGAACTAGCATGATCCGACAAG -ACGGAACTAGCATGATCCAAGCAG -ACGGAACTAGCATGATCCCGTCAA -ACGGAACTAGCATGATCCGCTGAA -ACGGAACTAGCATGATCCAGTACG -ACGGAACTAGCATGATCCATCCGA -ACGGAACTAGCATGATCCATGGGA -ACGGAACTAGCATGATCCGTGCAA -ACGGAACTAGCATGATCCGAGGAA -ACGGAACTAGCATGATCCCAGGTA -ACGGAACTAGCATGATCCGACTCT -ACGGAACTAGCATGATCCAGTCCT -ACGGAACTAGCATGATCCTAAGCC -ACGGAACTAGCATGATCCATAGCC -ACGGAACTAGCATGATCCTAACCG -ACGGAACTAGCATGATCCATGCCA -ACGGAACTAGCACGATAGGGAAAC -ACGGAACTAGCACGATAGAACACC -ACGGAACTAGCACGATAGATCGAG -ACGGAACTAGCACGATAGCTCCTT -ACGGAACTAGCACGATAGCCTGTT -ACGGAACTAGCACGATAGCGGTTT -ACGGAACTAGCACGATAGGTGGTT -ACGGAACTAGCACGATAGGCCTTT -ACGGAACTAGCACGATAGGGTCTT -ACGGAACTAGCACGATAGACGCTT -ACGGAACTAGCACGATAGAGCGTT -ACGGAACTAGCACGATAGTTCGTC -ACGGAACTAGCACGATAGTCTCTC -ACGGAACTAGCACGATAGTGGATC -ACGGAACTAGCACGATAGCACTTC -ACGGAACTAGCACGATAGGTACTC -ACGGAACTAGCACGATAGGATGTC -ACGGAACTAGCACGATAGACAGTC -ACGGAACTAGCACGATAGTTGCTG -ACGGAACTAGCACGATAGTCCATG -ACGGAACTAGCACGATAGTGTGTG -ACGGAACTAGCACGATAGCTAGTG -ACGGAACTAGCACGATAGCATCTG -ACGGAACTAGCACGATAGGAGTTG -ACGGAACTAGCACGATAGAGACTG -ACGGAACTAGCACGATAGTCGGTA -ACGGAACTAGCACGATAGTGCCTA -ACGGAACTAGCACGATAGCCACTA -ACGGAACTAGCACGATAGGGAGTA -ACGGAACTAGCACGATAGTCGTCT -ACGGAACTAGCACGATAGTGCACT -ACGGAACTAGCACGATAGCTGACT -ACGGAACTAGCACGATAGCAACCT -ACGGAACTAGCACGATAGGCTACT -ACGGAACTAGCACGATAGGGATCT -ACGGAACTAGCACGATAGAAGGCT -ACGGAACTAGCACGATAGTCAACC -ACGGAACTAGCACGATAGTGTTCC -ACGGAACTAGCACGATAGATTCCC -ACGGAACTAGCACGATAGTTCTCG -ACGGAACTAGCACGATAGTAGACG -ACGGAACTAGCACGATAGGTAACG -ACGGAACTAGCACGATAGACTTCG -ACGGAACTAGCACGATAGTACGCA -ACGGAACTAGCACGATAGCTTGCA -ACGGAACTAGCACGATAGCGAACA -ACGGAACTAGCACGATAGCAGTCA -ACGGAACTAGCACGATAGGATCCA -ACGGAACTAGCACGATAGACGACA -ACGGAACTAGCACGATAGAGCTCA -ACGGAACTAGCACGATAGTCACGT -ACGGAACTAGCACGATAGCGTAGT -ACGGAACTAGCACGATAGGTCAGT -ACGGAACTAGCACGATAGGAAGGT -ACGGAACTAGCACGATAGAACCGT -ACGGAACTAGCACGATAGTTGTGC -ACGGAACTAGCACGATAGCTAAGC -ACGGAACTAGCACGATAGACTAGC -ACGGAACTAGCACGATAGAGATGC -ACGGAACTAGCACGATAGTGAAGG -ACGGAACTAGCACGATAGCAATGG -ACGGAACTAGCACGATAGATGAGG -ACGGAACTAGCACGATAGAATGGG -ACGGAACTAGCACGATAGTCCTGA -ACGGAACTAGCACGATAGTAGCGA -ACGGAACTAGCACGATAGCACAGA -ACGGAACTAGCACGATAGGCAAGA -ACGGAACTAGCACGATAGGGTTGA -ACGGAACTAGCACGATAGTCCGAT -ACGGAACTAGCACGATAGTGGCAT -ACGGAACTAGCACGATAGCGAGAT -ACGGAACTAGCACGATAGTACCAC -ACGGAACTAGCACGATAGCAGAAC -ACGGAACTAGCACGATAGGTCTAC -ACGGAACTAGCACGATAGACGTAC -ACGGAACTAGCACGATAGAGTGAC -ACGGAACTAGCACGATAGCTGTAG -ACGGAACTAGCACGATAGCCTAAG -ACGGAACTAGCACGATAGGTTCAG -ACGGAACTAGCACGATAGGCATAG -ACGGAACTAGCACGATAGGACAAG -ACGGAACTAGCACGATAGAAGCAG -ACGGAACTAGCACGATAGCGTCAA -ACGGAACTAGCACGATAGGCTGAA -ACGGAACTAGCACGATAGAGTACG -ACGGAACTAGCACGATAGATCCGA -ACGGAACTAGCACGATAGATGGGA -ACGGAACTAGCACGATAGGTGCAA -ACGGAACTAGCACGATAGGAGGAA -ACGGAACTAGCACGATAGCAGGTA -ACGGAACTAGCACGATAGGACTCT -ACGGAACTAGCACGATAGAGTCCT -ACGGAACTAGCACGATAGTAAGCC -ACGGAACTAGCACGATAGATAGCC -ACGGAACTAGCACGATAGTAACCG -ACGGAACTAGCACGATAGATGCCA -ACGGAACTAGCAAGACACGGAAAC -ACGGAACTAGCAAGACACAACACC -ACGGAACTAGCAAGACACATCGAG -ACGGAACTAGCAAGACACCTCCTT -ACGGAACTAGCAAGACACCCTGTT -ACGGAACTAGCAAGACACCGGTTT -ACGGAACTAGCAAGACACGTGGTT -ACGGAACTAGCAAGACACGCCTTT -ACGGAACTAGCAAGACACGGTCTT -ACGGAACTAGCAAGACACACGCTT -ACGGAACTAGCAAGACACAGCGTT -ACGGAACTAGCAAGACACTTCGTC -ACGGAACTAGCAAGACACTCTCTC -ACGGAACTAGCAAGACACTGGATC -ACGGAACTAGCAAGACACCACTTC -ACGGAACTAGCAAGACACGTACTC -ACGGAACTAGCAAGACACGATGTC -ACGGAACTAGCAAGACACACAGTC -ACGGAACTAGCAAGACACTTGCTG -ACGGAACTAGCAAGACACTCCATG -ACGGAACTAGCAAGACACTGTGTG -ACGGAACTAGCAAGACACCTAGTG -ACGGAACTAGCAAGACACCATCTG -ACGGAACTAGCAAGACACGAGTTG -ACGGAACTAGCAAGACACAGACTG -ACGGAACTAGCAAGACACTCGGTA -ACGGAACTAGCAAGACACTGCCTA -ACGGAACTAGCAAGACACCCACTA -ACGGAACTAGCAAGACACGGAGTA -ACGGAACTAGCAAGACACTCGTCT -ACGGAACTAGCAAGACACTGCACT -ACGGAACTAGCAAGACACCTGACT -ACGGAACTAGCAAGACACCAACCT -ACGGAACTAGCAAGACACGCTACT -ACGGAACTAGCAAGACACGGATCT -ACGGAACTAGCAAGACACAAGGCT -ACGGAACTAGCAAGACACTCAACC -ACGGAACTAGCAAGACACTGTTCC -ACGGAACTAGCAAGACACATTCCC -ACGGAACTAGCAAGACACTTCTCG -ACGGAACTAGCAAGACACTAGACG -ACGGAACTAGCAAGACACGTAACG -ACGGAACTAGCAAGACACACTTCG -ACGGAACTAGCAAGACACTACGCA -ACGGAACTAGCAAGACACCTTGCA -ACGGAACTAGCAAGACACCGAACA -ACGGAACTAGCAAGACACCAGTCA -ACGGAACTAGCAAGACACGATCCA -ACGGAACTAGCAAGACACACGACA -ACGGAACTAGCAAGACACAGCTCA -ACGGAACTAGCAAGACACTCACGT -ACGGAACTAGCAAGACACCGTAGT -ACGGAACTAGCAAGACACGTCAGT -ACGGAACTAGCAAGACACGAAGGT -ACGGAACTAGCAAGACACAACCGT -ACGGAACTAGCAAGACACTTGTGC -ACGGAACTAGCAAGACACCTAAGC -ACGGAACTAGCAAGACACACTAGC -ACGGAACTAGCAAGACACAGATGC -ACGGAACTAGCAAGACACTGAAGG -ACGGAACTAGCAAGACACCAATGG -ACGGAACTAGCAAGACACATGAGG -ACGGAACTAGCAAGACACAATGGG -ACGGAACTAGCAAGACACTCCTGA -ACGGAACTAGCAAGACACTAGCGA -ACGGAACTAGCAAGACACCACAGA -ACGGAACTAGCAAGACACGCAAGA -ACGGAACTAGCAAGACACGGTTGA -ACGGAACTAGCAAGACACTCCGAT -ACGGAACTAGCAAGACACTGGCAT -ACGGAACTAGCAAGACACCGAGAT -ACGGAACTAGCAAGACACTACCAC -ACGGAACTAGCAAGACACCAGAAC -ACGGAACTAGCAAGACACGTCTAC -ACGGAACTAGCAAGACACACGTAC -ACGGAACTAGCAAGACACAGTGAC -ACGGAACTAGCAAGACACCTGTAG -ACGGAACTAGCAAGACACCCTAAG -ACGGAACTAGCAAGACACGTTCAG -ACGGAACTAGCAAGACACGCATAG -ACGGAACTAGCAAGACACGACAAG -ACGGAACTAGCAAGACACAAGCAG -ACGGAACTAGCAAGACACCGTCAA -ACGGAACTAGCAAGACACGCTGAA -ACGGAACTAGCAAGACACAGTACG -ACGGAACTAGCAAGACACATCCGA -ACGGAACTAGCAAGACACATGGGA -ACGGAACTAGCAAGACACGTGCAA -ACGGAACTAGCAAGACACGAGGAA -ACGGAACTAGCAAGACACCAGGTA -ACGGAACTAGCAAGACACGACTCT -ACGGAACTAGCAAGACACAGTCCT -ACGGAACTAGCAAGACACTAAGCC -ACGGAACTAGCAAGACACATAGCC -ACGGAACTAGCAAGACACTAACCG -ACGGAACTAGCAAGACACATGCCA -ACGGAACTAGCAAGAGCAGGAAAC -ACGGAACTAGCAAGAGCAAACACC -ACGGAACTAGCAAGAGCAATCGAG -ACGGAACTAGCAAGAGCACTCCTT -ACGGAACTAGCAAGAGCACCTGTT -ACGGAACTAGCAAGAGCACGGTTT -ACGGAACTAGCAAGAGCAGTGGTT -ACGGAACTAGCAAGAGCAGCCTTT -ACGGAACTAGCAAGAGCAGGTCTT -ACGGAACTAGCAAGAGCAACGCTT -ACGGAACTAGCAAGAGCAAGCGTT -ACGGAACTAGCAAGAGCATTCGTC -ACGGAACTAGCAAGAGCATCTCTC -ACGGAACTAGCAAGAGCATGGATC -ACGGAACTAGCAAGAGCACACTTC -ACGGAACTAGCAAGAGCAGTACTC -ACGGAACTAGCAAGAGCAGATGTC -ACGGAACTAGCAAGAGCAACAGTC -ACGGAACTAGCAAGAGCATTGCTG -ACGGAACTAGCAAGAGCATCCATG -ACGGAACTAGCAAGAGCATGTGTG -ACGGAACTAGCAAGAGCACTAGTG -ACGGAACTAGCAAGAGCACATCTG -ACGGAACTAGCAAGAGCAGAGTTG -ACGGAACTAGCAAGAGCAAGACTG -ACGGAACTAGCAAGAGCATCGGTA -ACGGAACTAGCAAGAGCATGCCTA -ACGGAACTAGCAAGAGCACCACTA -ACGGAACTAGCAAGAGCAGGAGTA -ACGGAACTAGCAAGAGCATCGTCT -ACGGAACTAGCAAGAGCATGCACT -ACGGAACTAGCAAGAGCACTGACT -ACGGAACTAGCAAGAGCACAACCT -ACGGAACTAGCAAGAGCAGCTACT -ACGGAACTAGCAAGAGCAGGATCT -ACGGAACTAGCAAGAGCAAAGGCT -ACGGAACTAGCAAGAGCATCAACC -ACGGAACTAGCAAGAGCATGTTCC -ACGGAACTAGCAAGAGCAATTCCC -ACGGAACTAGCAAGAGCATTCTCG -ACGGAACTAGCAAGAGCATAGACG -ACGGAACTAGCAAGAGCAGTAACG -ACGGAACTAGCAAGAGCAACTTCG -ACGGAACTAGCAAGAGCATACGCA -ACGGAACTAGCAAGAGCACTTGCA -ACGGAACTAGCAAGAGCACGAACA -ACGGAACTAGCAAGAGCACAGTCA -ACGGAACTAGCAAGAGCAGATCCA -ACGGAACTAGCAAGAGCAACGACA -ACGGAACTAGCAAGAGCAAGCTCA -ACGGAACTAGCAAGAGCATCACGT -ACGGAACTAGCAAGAGCACGTAGT -ACGGAACTAGCAAGAGCAGTCAGT -ACGGAACTAGCAAGAGCAGAAGGT -ACGGAACTAGCAAGAGCAAACCGT -ACGGAACTAGCAAGAGCATTGTGC -ACGGAACTAGCAAGAGCACTAAGC -ACGGAACTAGCAAGAGCAACTAGC -ACGGAACTAGCAAGAGCAAGATGC -ACGGAACTAGCAAGAGCATGAAGG -ACGGAACTAGCAAGAGCACAATGG -ACGGAACTAGCAAGAGCAATGAGG -ACGGAACTAGCAAGAGCAAATGGG -ACGGAACTAGCAAGAGCATCCTGA -ACGGAACTAGCAAGAGCATAGCGA -ACGGAACTAGCAAGAGCACACAGA -ACGGAACTAGCAAGAGCAGCAAGA -ACGGAACTAGCAAGAGCAGGTTGA -ACGGAACTAGCAAGAGCATCCGAT -ACGGAACTAGCAAGAGCATGGCAT -ACGGAACTAGCAAGAGCACGAGAT -ACGGAACTAGCAAGAGCATACCAC -ACGGAACTAGCAAGAGCACAGAAC -ACGGAACTAGCAAGAGCAGTCTAC -ACGGAACTAGCAAGAGCAACGTAC -ACGGAACTAGCAAGAGCAAGTGAC -ACGGAACTAGCAAGAGCACTGTAG -ACGGAACTAGCAAGAGCACCTAAG -ACGGAACTAGCAAGAGCAGTTCAG -ACGGAACTAGCAAGAGCAGCATAG -ACGGAACTAGCAAGAGCAGACAAG -ACGGAACTAGCAAGAGCAAAGCAG -ACGGAACTAGCAAGAGCACGTCAA -ACGGAACTAGCAAGAGCAGCTGAA -ACGGAACTAGCAAGAGCAAGTACG -ACGGAACTAGCAAGAGCAATCCGA -ACGGAACTAGCAAGAGCAATGGGA -ACGGAACTAGCAAGAGCAGTGCAA -ACGGAACTAGCAAGAGCAGAGGAA -ACGGAACTAGCAAGAGCACAGGTA -ACGGAACTAGCAAGAGCAGACTCT -ACGGAACTAGCAAGAGCAAGTCCT -ACGGAACTAGCAAGAGCATAAGCC -ACGGAACTAGCAAGAGCAATAGCC -ACGGAACTAGCAAGAGCATAACCG -ACGGAACTAGCAAGAGCAATGCCA -ACGGAACTAGCATGAGGTGGAAAC -ACGGAACTAGCATGAGGTAACACC -ACGGAACTAGCATGAGGTATCGAG -ACGGAACTAGCATGAGGTCTCCTT -ACGGAACTAGCATGAGGTCCTGTT -ACGGAACTAGCATGAGGTCGGTTT -ACGGAACTAGCATGAGGTGTGGTT -ACGGAACTAGCATGAGGTGCCTTT -ACGGAACTAGCATGAGGTGGTCTT -ACGGAACTAGCATGAGGTACGCTT -ACGGAACTAGCATGAGGTAGCGTT -ACGGAACTAGCATGAGGTTTCGTC -ACGGAACTAGCATGAGGTTCTCTC -ACGGAACTAGCATGAGGTTGGATC -ACGGAACTAGCATGAGGTCACTTC -ACGGAACTAGCATGAGGTGTACTC -ACGGAACTAGCATGAGGTGATGTC -ACGGAACTAGCATGAGGTACAGTC -ACGGAACTAGCATGAGGTTTGCTG -ACGGAACTAGCATGAGGTTCCATG -ACGGAACTAGCATGAGGTTGTGTG -ACGGAACTAGCATGAGGTCTAGTG -ACGGAACTAGCATGAGGTCATCTG -ACGGAACTAGCATGAGGTGAGTTG -ACGGAACTAGCATGAGGTAGACTG -ACGGAACTAGCATGAGGTTCGGTA -ACGGAACTAGCATGAGGTTGCCTA -ACGGAACTAGCATGAGGTCCACTA -ACGGAACTAGCATGAGGTGGAGTA -ACGGAACTAGCATGAGGTTCGTCT -ACGGAACTAGCATGAGGTTGCACT -ACGGAACTAGCATGAGGTCTGACT -ACGGAACTAGCATGAGGTCAACCT -ACGGAACTAGCATGAGGTGCTACT -ACGGAACTAGCATGAGGTGGATCT -ACGGAACTAGCATGAGGTAAGGCT -ACGGAACTAGCATGAGGTTCAACC -ACGGAACTAGCATGAGGTTGTTCC -ACGGAACTAGCATGAGGTATTCCC -ACGGAACTAGCATGAGGTTTCTCG -ACGGAACTAGCATGAGGTTAGACG -ACGGAACTAGCATGAGGTGTAACG -ACGGAACTAGCATGAGGTACTTCG -ACGGAACTAGCATGAGGTTACGCA -ACGGAACTAGCATGAGGTCTTGCA -ACGGAACTAGCATGAGGTCGAACA -ACGGAACTAGCATGAGGTCAGTCA -ACGGAACTAGCATGAGGTGATCCA -ACGGAACTAGCATGAGGTACGACA -ACGGAACTAGCATGAGGTAGCTCA -ACGGAACTAGCATGAGGTTCACGT -ACGGAACTAGCATGAGGTCGTAGT -ACGGAACTAGCATGAGGTGTCAGT -ACGGAACTAGCATGAGGTGAAGGT -ACGGAACTAGCATGAGGTAACCGT -ACGGAACTAGCATGAGGTTTGTGC -ACGGAACTAGCATGAGGTCTAAGC -ACGGAACTAGCATGAGGTACTAGC -ACGGAACTAGCATGAGGTAGATGC -ACGGAACTAGCATGAGGTTGAAGG -ACGGAACTAGCATGAGGTCAATGG -ACGGAACTAGCATGAGGTATGAGG -ACGGAACTAGCATGAGGTAATGGG -ACGGAACTAGCATGAGGTTCCTGA -ACGGAACTAGCATGAGGTTAGCGA -ACGGAACTAGCATGAGGTCACAGA -ACGGAACTAGCATGAGGTGCAAGA -ACGGAACTAGCATGAGGTGGTTGA -ACGGAACTAGCATGAGGTTCCGAT -ACGGAACTAGCATGAGGTTGGCAT -ACGGAACTAGCATGAGGTCGAGAT -ACGGAACTAGCATGAGGTTACCAC -ACGGAACTAGCATGAGGTCAGAAC -ACGGAACTAGCATGAGGTGTCTAC -ACGGAACTAGCATGAGGTACGTAC -ACGGAACTAGCATGAGGTAGTGAC -ACGGAACTAGCATGAGGTCTGTAG -ACGGAACTAGCATGAGGTCCTAAG -ACGGAACTAGCATGAGGTGTTCAG -ACGGAACTAGCATGAGGTGCATAG -ACGGAACTAGCATGAGGTGACAAG -ACGGAACTAGCATGAGGTAAGCAG -ACGGAACTAGCATGAGGTCGTCAA -ACGGAACTAGCATGAGGTGCTGAA -ACGGAACTAGCATGAGGTAGTACG -ACGGAACTAGCATGAGGTATCCGA -ACGGAACTAGCATGAGGTATGGGA -ACGGAACTAGCATGAGGTGTGCAA -ACGGAACTAGCATGAGGTGAGGAA -ACGGAACTAGCATGAGGTCAGGTA -ACGGAACTAGCATGAGGTGACTCT -ACGGAACTAGCATGAGGTAGTCCT -ACGGAACTAGCATGAGGTTAAGCC -ACGGAACTAGCATGAGGTATAGCC -ACGGAACTAGCATGAGGTTAACCG -ACGGAACTAGCATGAGGTATGCCA -ACGGAACTAGCAGATTCCGGAAAC -ACGGAACTAGCAGATTCCAACACC -ACGGAACTAGCAGATTCCATCGAG -ACGGAACTAGCAGATTCCCTCCTT -ACGGAACTAGCAGATTCCCCTGTT -ACGGAACTAGCAGATTCCCGGTTT -ACGGAACTAGCAGATTCCGTGGTT -ACGGAACTAGCAGATTCCGCCTTT -ACGGAACTAGCAGATTCCGGTCTT -ACGGAACTAGCAGATTCCACGCTT -ACGGAACTAGCAGATTCCAGCGTT -ACGGAACTAGCAGATTCCTTCGTC -ACGGAACTAGCAGATTCCTCTCTC -ACGGAACTAGCAGATTCCTGGATC -ACGGAACTAGCAGATTCCCACTTC -ACGGAACTAGCAGATTCCGTACTC -ACGGAACTAGCAGATTCCGATGTC -ACGGAACTAGCAGATTCCACAGTC -ACGGAACTAGCAGATTCCTTGCTG -ACGGAACTAGCAGATTCCTCCATG -ACGGAACTAGCAGATTCCTGTGTG -ACGGAACTAGCAGATTCCCTAGTG -ACGGAACTAGCAGATTCCCATCTG -ACGGAACTAGCAGATTCCGAGTTG -ACGGAACTAGCAGATTCCAGACTG -ACGGAACTAGCAGATTCCTCGGTA -ACGGAACTAGCAGATTCCTGCCTA -ACGGAACTAGCAGATTCCCCACTA -ACGGAACTAGCAGATTCCGGAGTA -ACGGAACTAGCAGATTCCTCGTCT -ACGGAACTAGCAGATTCCTGCACT -ACGGAACTAGCAGATTCCCTGACT -ACGGAACTAGCAGATTCCCAACCT -ACGGAACTAGCAGATTCCGCTACT -ACGGAACTAGCAGATTCCGGATCT -ACGGAACTAGCAGATTCCAAGGCT -ACGGAACTAGCAGATTCCTCAACC -ACGGAACTAGCAGATTCCTGTTCC -ACGGAACTAGCAGATTCCATTCCC -ACGGAACTAGCAGATTCCTTCTCG -ACGGAACTAGCAGATTCCTAGACG -ACGGAACTAGCAGATTCCGTAACG -ACGGAACTAGCAGATTCCACTTCG -ACGGAACTAGCAGATTCCTACGCA -ACGGAACTAGCAGATTCCCTTGCA -ACGGAACTAGCAGATTCCCGAACA -ACGGAACTAGCAGATTCCCAGTCA -ACGGAACTAGCAGATTCCGATCCA -ACGGAACTAGCAGATTCCACGACA -ACGGAACTAGCAGATTCCAGCTCA -ACGGAACTAGCAGATTCCTCACGT -ACGGAACTAGCAGATTCCCGTAGT -ACGGAACTAGCAGATTCCGTCAGT -ACGGAACTAGCAGATTCCGAAGGT -ACGGAACTAGCAGATTCCAACCGT -ACGGAACTAGCAGATTCCTTGTGC -ACGGAACTAGCAGATTCCCTAAGC -ACGGAACTAGCAGATTCCACTAGC -ACGGAACTAGCAGATTCCAGATGC -ACGGAACTAGCAGATTCCTGAAGG -ACGGAACTAGCAGATTCCCAATGG -ACGGAACTAGCAGATTCCATGAGG -ACGGAACTAGCAGATTCCAATGGG -ACGGAACTAGCAGATTCCTCCTGA -ACGGAACTAGCAGATTCCTAGCGA -ACGGAACTAGCAGATTCCCACAGA -ACGGAACTAGCAGATTCCGCAAGA -ACGGAACTAGCAGATTCCGGTTGA -ACGGAACTAGCAGATTCCTCCGAT -ACGGAACTAGCAGATTCCTGGCAT -ACGGAACTAGCAGATTCCCGAGAT -ACGGAACTAGCAGATTCCTACCAC -ACGGAACTAGCAGATTCCCAGAAC -ACGGAACTAGCAGATTCCGTCTAC -ACGGAACTAGCAGATTCCACGTAC -ACGGAACTAGCAGATTCCAGTGAC -ACGGAACTAGCAGATTCCCTGTAG -ACGGAACTAGCAGATTCCCCTAAG -ACGGAACTAGCAGATTCCGTTCAG -ACGGAACTAGCAGATTCCGCATAG -ACGGAACTAGCAGATTCCGACAAG -ACGGAACTAGCAGATTCCAAGCAG -ACGGAACTAGCAGATTCCCGTCAA -ACGGAACTAGCAGATTCCGCTGAA -ACGGAACTAGCAGATTCCAGTACG -ACGGAACTAGCAGATTCCATCCGA -ACGGAACTAGCAGATTCCATGGGA -ACGGAACTAGCAGATTCCGTGCAA -ACGGAACTAGCAGATTCCGAGGAA -ACGGAACTAGCAGATTCCCAGGTA -ACGGAACTAGCAGATTCCGACTCT -ACGGAACTAGCAGATTCCAGTCCT -ACGGAACTAGCAGATTCCTAAGCC -ACGGAACTAGCAGATTCCATAGCC -ACGGAACTAGCAGATTCCTAACCG -ACGGAACTAGCAGATTCCATGCCA -ACGGAACTAGCACATTGGGGAAAC -ACGGAACTAGCACATTGGAACACC -ACGGAACTAGCACATTGGATCGAG -ACGGAACTAGCACATTGGCTCCTT -ACGGAACTAGCACATTGGCCTGTT -ACGGAACTAGCACATTGGCGGTTT -ACGGAACTAGCACATTGGGTGGTT -ACGGAACTAGCACATTGGGCCTTT -ACGGAACTAGCACATTGGGGTCTT -ACGGAACTAGCACATTGGACGCTT -ACGGAACTAGCACATTGGAGCGTT -ACGGAACTAGCACATTGGTTCGTC -ACGGAACTAGCACATTGGTCTCTC -ACGGAACTAGCACATTGGTGGATC -ACGGAACTAGCACATTGGCACTTC -ACGGAACTAGCACATTGGGTACTC -ACGGAACTAGCACATTGGGATGTC -ACGGAACTAGCACATTGGACAGTC -ACGGAACTAGCACATTGGTTGCTG -ACGGAACTAGCACATTGGTCCATG -ACGGAACTAGCACATTGGTGTGTG -ACGGAACTAGCACATTGGCTAGTG -ACGGAACTAGCACATTGGCATCTG -ACGGAACTAGCACATTGGGAGTTG -ACGGAACTAGCACATTGGAGACTG -ACGGAACTAGCACATTGGTCGGTA -ACGGAACTAGCACATTGGTGCCTA -ACGGAACTAGCACATTGGCCACTA -ACGGAACTAGCACATTGGGGAGTA -ACGGAACTAGCACATTGGTCGTCT -ACGGAACTAGCACATTGGTGCACT -ACGGAACTAGCACATTGGCTGACT -ACGGAACTAGCACATTGGCAACCT -ACGGAACTAGCACATTGGGCTACT -ACGGAACTAGCACATTGGGGATCT -ACGGAACTAGCACATTGGAAGGCT -ACGGAACTAGCACATTGGTCAACC -ACGGAACTAGCACATTGGTGTTCC -ACGGAACTAGCACATTGGATTCCC -ACGGAACTAGCACATTGGTTCTCG -ACGGAACTAGCACATTGGTAGACG -ACGGAACTAGCACATTGGGTAACG -ACGGAACTAGCACATTGGACTTCG -ACGGAACTAGCACATTGGTACGCA -ACGGAACTAGCACATTGGCTTGCA -ACGGAACTAGCACATTGGCGAACA -ACGGAACTAGCACATTGGCAGTCA -ACGGAACTAGCACATTGGGATCCA -ACGGAACTAGCACATTGGACGACA -ACGGAACTAGCACATTGGAGCTCA -ACGGAACTAGCACATTGGTCACGT -ACGGAACTAGCACATTGGCGTAGT -ACGGAACTAGCACATTGGGTCAGT -ACGGAACTAGCACATTGGGAAGGT -ACGGAACTAGCACATTGGAACCGT -ACGGAACTAGCACATTGGTTGTGC -ACGGAACTAGCACATTGGCTAAGC -ACGGAACTAGCACATTGGACTAGC -ACGGAACTAGCACATTGGAGATGC -ACGGAACTAGCACATTGGTGAAGG -ACGGAACTAGCACATTGGCAATGG -ACGGAACTAGCACATTGGATGAGG -ACGGAACTAGCACATTGGAATGGG -ACGGAACTAGCACATTGGTCCTGA -ACGGAACTAGCACATTGGTAGCGA -ACGGAACTAGCACATTGGCACAGA -ACGGAACTAGCACATTGGGCAAGA -ACGGAACTAGCACATTGGGGTTGA -ACGGAACTAGCACATTGGTCCGAT -ACGGAACTAGCACATTGGTGGCAT -ACGGAACTAGCACATTGGCGAGAT -ACGGAACTAGCACATTGGTACCAC -ACGGAACTAGCACATTGGCAGAAC -ACGGAACTAGCACATTGGGTCTAC -ACGGAACTAGCACATTGGACGTAC -ACGGAACTAGCACATTGGAGTGAC -ACGGAACTAGCACATTGGCTGTAG -ACGGAACTAGCACATTGGCCTAAG -ACGGAACTAGCACATTGGGTTCAG -ACGGAACTAGCACATTGGGCATAG -ACGGAACTAGCACATTGGGACAAG -ACGGAACTAGCACATTGGAAGCAG -ACGGAACTAGCACATTGGCGTCAA -ACGGAACTAGCACATTGGGCTGAA -ACGGAACTAGCACATTGGAGTACG -ACGGAACTAGCACATTGGATCCGA -ACGGAACTAGCACATTGGATGGGA -ACGGAACTAGCACATTGGGTGCAA -ACGGAACTAGCACATTGGGAGGAA -ACGGAACTAGCACATTGGCAGGTA -ACGGAACTAGCACATTGGGACTCT -ACGGAACTAGCACATTGGAGTCCT -ACGGAACTAGCACATTGGTAAGCC -ACGGAACTAGCACATTGGATAGCC -ACGGAACTAGCACATTGGTAACCG -ACGGAACTAGCACATTGGATGCCA -ACGGAACTAGCAGATCGAGGAAAC -ACGGAACTAGCAGATCGAAACACC -ACGGAACTAGCAGATCGAATCGAG -ACGGAACTAGCAGATCGACTCCTT -ACGGAACTAGCAGATCGACCTGTT -ACGGAACTAGCAGATCGACGGTTT -ACGGAACTAGCAGATCGAGTGGTT -ACGGAACTAGCAGATCGAGCCTTT -ACGGAACTAGCAGATCGAGGTCTT -ACGGAACTAGCAGATCGAACGCTT -ACGGAACTAGCAGATCGAAGCGTT -ACGGAACTAGCAGATCGATTCGTC -ACGGAACTAGCAGATCGATCTCTC -ACGGAACTAGCAGATCGATGGATC -ACGGAACTAGCAGATCGACACTTC -ACGGAACTAGCAGATCGAGTACTC -ACGGAACTAGCAGATCGAGATGTC -ACGGAACTAGCAGATCGAACAGTC -ACGGAACTAGCAGATCGATTGCTG -ACGGAACTAGCAGATCGATCCATG -ACGGAACTAGCAGATCGATGTGTG -ACGGAACTAGCAGATCGACTAGTG -ACGGAACTAGCAGATCGACATCTG -ACGGAACTAGCAGATCGAGAGTTG -ACGGAACTAGCAGATCGAAGACTG -ACGGAACTAGCAGATCGATCGGTA -ACGGAACTAGCAGATCGATGCCTA -ACGGAACTAGCAGATCGACCACTA -ACGGAACTAGCAGATCGAGGAGTA -ACGGAACTAGCAGATCGATCGTCT -ACGGAACTAGCAGATCGATGCACT -ACGGAACTAGCAGATCGACTGACT -ACGGAACTAGCAGATCGACAACCT -ACGGAACTAGCAGATCGAGCTACT -ACGGAACTAGCAGATCGAGGATCT -ACGGAACTAGCAGATCGAAAGGCT -ACGGAACTAGCAGATCGATCAACC -ACGGAACTAGCAGATCGATGTTCC -ACGGAACTAGCAGATCGAATTCCC -ACGGAACTAGCAGATCGATTCTCG -ACGGAACTAGCAGATCGATAGACG -ACGGAACTAGCAGATCGAGTAACG -ACGGAACTAGCAGATCGAACTTCG -ACGGAACTAGCAGATCGATACGCA -ACGGAACTAGCAGATCGACTTGCA -ACGGAACTAGCAGATCGACGAACA -ACGGAACTAGCAGATCGACAGTCA -ACGGAACTAGCAGATCGAGATCCA -ACGGAACTAGCAGATCGAACGACA -ACGGAACTAGCAGATCGAAGCTCA -ACGGAACTAGCAGATCGATCACGT -ACGGAACTAGCAGATCGACGTAGT -ACGGAACTAGCAGATCGAGTCAGT -ACGGAACTAGCAGATCGAGAAGGT -ACGGAACTAGCAGATCGAAACCGT -ACGGAACTAGCAGATCGATTGTGC -ACGGAACTAGCAGATCGACTAAGC -ACGGAACTAGCAGATCGAACTAGC -ACGGAACTAGCAGATCGAAGATGC -ACGGAACTAGCAGATCGATGAAGG -ACGGAACTAGCAGATCGACAATGG -ACGGAACTAGCAGATCGAATGAGG -ACGGAACTAGCAGATCGAAATGGG -ACGGAACTAGCAGATCGATCCTGA -ACGGAACTAGCAGATCGATAGCGA -ACGGAACTAGCAGATCGACACAGA -ACGGAACTAGCAGATCGAGCAAGA -ACGGAACTAGCAGATCGAGGTTGA -ACGGAACTAGCAGATCGATCCGAT -ACGGAACTAGCAGATCGATGGCAT -ACGGAACTAGCAGATCGACGAGAT -ACGGAACTAGCAGATCGATACCAC -ACGGAACTAGCAGATCGACAGAAC -ACGGAACTAGCAGATCGAGTCTAC -ACGGAACTAGCAGATCGAACGTAC -ACGGAACTAGCAGATCGAAGTGAC -ACGGAACTAGCAGATCGACTGTAG -ACGGAACTAGCAGATCGACCTAAG -ACGGAACTAGCAGATCGAGTTCAG -ACGGAACTAGCAGATCGAGCATAG -ACGGAACTAGCAGATCGAGACAAG -ACGGAACTAGCAGATCGAAAGCAG -ACGGAACTAGCAGATCGACGTCAA -ACGGAACTAGCAGATCGAGCTGAA -ACGGAACTAGCAGATCGAAGTACG -ACGGAACTAGCAGATCGAATCCGA -ACGGAACTAGCAGATCGAATGGGA -ACGGAACTAGCAGATCGAGTGCAA -ACGGAACTAGCAGATCGAGAGGAA -ACGGAACTAGCAGATCGACAGGTA -ACGGAACTAGCAGATCGAGACTCT -ACGGAACTAGCAGATCGAAGTCCT -ACGGAACTAGCAGATCGATAAGCC -ACGGAACTAGCAGATCGAATAGCC -ACGGAACTAGCAGATCGATAACCG -ACGGAACTAGCAGATCGAATGCCA -ACGGAACTAGCACACTACGGAAAC -ACGGAACTAGCACACTACAACACC -ACGGAACTAGCACACTACATCGAG -ACGGAACTAGCACACTACCTCCTT -ACGGAACTAGCACACTACCCTGTT -ACGGAACTAGCACACTACCGGTTT -ACGGAACTAGCACACTACGTGGTT -ACGGAACTAGCACACTACGCCTTT -ACGGAACTAGCACACTACGGTCTT -ACGGAACTAGCACACTACACGCTT -ACGGAACTAGCACACTACAGCGTT -ACGGAACTAGCACACTACTTCGTC -ACGGAACTAGCACACTACTCTCTC -ACGGAACTAGCACACTACTGGATC -ACGGAACTAGCACACTACCACTTC -ACGGAACTAGCACACTACGTACTC -ACGGAACTAGCACACTACGATGTC -ACGGAACTAGCACACTACACAGTC -ACGGAACTAGCACACTACTTGCTG -ACGGAACTAGCACACTACTCCATG -ACGGAACTAGCACACTACTGTGTG -ACGGAACTAGCACACTACCTAGTG -ACGGAACTAGCACACTACCATCTG -ACGGAACTAGCACACTACGAGTTG -ACGGAACTAGCACACTACAGACTG -ACGGAACTAGCACACTACTCGGTA -ACGGAACTAGCACACTACTGCCTA -ACGGAACTAGCACACTACCCACTA -ACGGAACTAGCACACTACGGAGTA -ACGGAACTAGCACACTACTCGTCT -ACGGAACTAGCACACTACTGCACT -ACGGAACTAGCACACTACCTGACT -ACGGAACTAGCACACTACCAACCT -ACGGAACTAGCACACTACGCTACT -ACGGAACTAGCACACTACGGATCT -ACGGAACTAGCACACTACAAGGCT -ACGGAACTAGCACACTACTCAACC -ACGGAACTAGCACACTACTGTTCC -ACGGAACTAGCACACTACATTCCC -ACGGAACTAGCACACTACTTCTCG -ACGGAACTAGCACACTACTAGACG -ACGGAACTAGCACACTACGTAACG -ACGGAACTAGCACACTACACTTCG -ACGGAACTAGCACACTACTACGCA -ACGGAACTAGCACACTACCTTGCA -ACGGAACTAGCACACTACCGAACA -ACGGAACTAGCACACTACCAGTCA -ACGGAACTAGCACACTACGATCCA -ACGGAACTAGCACACTACACGACA -ACGGAACTAGCACACTACAGCTCA -ACGGAACTAGCACACTACTCACGT -ACGGAACTAGCACACTACCGTAGT -ACGGAACTAGCACACTACGTCAGT -ACGGAACTAGCACACTACGAAGGT -ACGGAACTAGCACACTACAACCGT -ACGGAACTAGCACACTACTTGTGC -ACGGAACTAGCACACTACCTAAGC -ACGGAACTAGCACACTACACTAGC -ACGGAACTAGCACACTACAGATGC -ACGGAACTAGCACACTACTGAAGG -ACGGAACTAGCACACTACCAATGG -ACGGAACTAGCACACTACATGAGG -ACGGAACTAGCACACTACAATGGG -ACGGAACTAGCACACTACTCCTGA -ACGGAACTAGCACACTACTAGCGA -ACGGAACTAGCACACTACCACAGA -ACGGAACTAGCACACTACGCAAGA -ACGGAACTAGCACACTACGGTTGA -ACGGAACTAGCACACTACTCCGAT -ACGGAACTAGCACACTACTGGCAT -ACGGAACTAGCACACTACCGAGAT -ACGGAACTAGCACACTACTACCAC -ACGGAACTAGCACACTACCAGAAC -ACGGAACTAGCACACTACGTCTAC -ACGGAACTAGCACACTACACGTAC -ACGGAACTAGCACACTACAGTGAC -ACGGAACTAGCACACTACCTGTAG -ACGGAACTAGCACACTACCCTAAG -ACGGAACTAGCACACTACGTTCAG -ACGGAACTAGCACACTACGCATAG -ACGGAACTAGCACACTACGACAAG -ACGGAACTAGCACACTACAAGCAG -ACGGAACTAGCACACTACCGTCAA -ACGGAACTAGCACACTACGCTGAA -ACGGAACTAGCACACTACAGTACG -ACGGAACTAGCACACTACATCCGA -ACGGAACTAGCACACTACATGGGA -ACGGAACTAGCACACTACGTGCAA -ACGGAACTAGCACACTACGAGGAA -ACGGAACTAGCACACTACCAGGTA -ACGGAACTAGCACACTACGACTCT -ACGGAACTAGCACACTACAGTCCT -ACGGAACTAGCACACTACTAAGCC -ACGGAACTAGCACACTACATAGCC -ACGGAACTAGCACACTACTAACCG -ACGGAACTAGCACACTACATGCCA -ACGGAACTAGCAAACCAGGGAAAC -ACGGAACTAGCAAACCAGAACACC -ACGGAACTAGCAAACCAGATCGAG -ACGGAACTAGCAAACCAGCTCCTT -ACGGAACTAGCAAACCAGCCTGTT -ACGGAACTAGCAAACCAGCGGTTT -ACGGAACTAGCAAACCAGGTGGTT -ACGGAACTAGCAAACCAGGCCTTT -ACGGAACTAGCAAACCAGGGTCTT -ACGGAACTAGCAAACCAGACGCTT -ACGGAACTAGCAAACCAGAGCGTT -ACGGAACTAGCAAACCAGTTCGTC -ACGGAACTAGCAAACCAGTCTCTC -ACGGAACTAGCAAACCAGTGGATC -ACGGAACTAGCAAACCAGCACTTC -ACGGAACTAGCAAACCAGGTACTC -ACGGAACTAGCAAACCAGGATGTC -ACGGAACTAGCAAACCAGACAGTC -ACGGAACTAGCAAACCAGTTGCTG -ACGGAACTAGCAAACCAGTCCATG -ACGGAACTAGCAAACCAGTGTGTG -ACGGAACTAGCAAACCAGCTAGTG -ACGGAACTAGCAAACCAGCATCTG -ACGGAACTAGCAAACCAGGAGTTG -ACGGAACTAGCAAACCAGAGACTG -ACGGAACTAGCAAACCAGTCGGTA -ACGGAACTAGCAAACCAGTGCCTA -ACGGAACTAGCAAACCAGCCACTA -ACGGAACTAGCAAACCAGGGAGTA -ACGGAACTAGCAAACCAGTCGTCT -ACGGAACTAGCAAACCAGTGCACT -ACGGAACTAGCAAACCAGCTGACT -ACGGAACTAGCAAACCAGCAACCT -ACGGAACTAGCAAACCAGGCTACT -ACGGAACTAGCAAACCAGGGATCT -ACGGAACTAGCAAACCAGAAGGCT -ACGGAACTAGCAAACCAGTCAACC -ACGGAACTAGCAAACCAGTGTTCC -ACGGAACTAGCAAACCAGATTCCC -ACGGAACTAGCAAACCAGTTCTCG -ACGGAACTAGCAAACCAGTAGACG -ACGGAACTAGCAAACCAGGTAACG -ACGGAACTAGCAAACCAGACTTCG -ACGGAACTAGCAAACCAGTACGCA -ACGGAACTAGCAAACCAGCTTGCA -ACGGAACTAGCAAACCAGCGAACA -ACGGAACTAGCAAACCAGCAGTCA -ACGGAACTAGCAAACCAGGATCCA -ACGGAACTAGCAAACCAGACGACA -ACGGAACTAGCAAACCAGAGCTCA -ACGGAACTAGCAAACCAGTCACGT -ACGGAACTAGCAAACCAGCGTAGT -ACGGAACTAGCAAACCAGGTCAGT -ACGGAACTAGCAAACCAGGAAGGT -ACGGAACTAGCAAACCAGAACCGT -ACGGAACTAGCAAACCAGTTGTGC -ACGGAACTAGCAAACCAGCTAAGC -ACGGAACTAGCAAACCAGACTAGC -ACGGAACTAGCAAACCAGAGATGC -ACGGAACTAGCAAACCAGTGAAGG -ACGGAACTAGCAAACCAGCAATGG -ACGGAACTAGCAAACCAGATGAGG -ACGGAACTAGCAAACCAGAATGGG -ACGGAACTAGCAAACCAGTCCTGA -ACGGAACTAGCAAACCAGTAGCGA -ACGGAACTAGCAAACCAGCACAGA -ACGGAACTAGCAAACCAGGCAAGA -ACGGAACTAGCAAACCAGGGTTGA -ACGGAACTAGCAAACCAGTCCGAT -ACGGAACTAGCAAACCAGTGGCAT -ACGGAACTAGCAAACCAGCGAGAT -ACGGAACTAGCAAACCAGTACCAC -ACGGAACTAGCAAACCAGCAGAAC -ACGGAACTAGCAAACCAGGTCTAC -ACGGAACTAGCAAACCAGACGTAC -ACGGAACTAGCAAACCAGAGTGAC -ACGGAACTAGCAAACCAGCTGTAG -ACGGAACTAGCAAACCAGCCTAAG -ACGGAACTAGCAAACCAGGTTCAG -ACGGAACTAGCAAACCAGGCATAG -ACGGAACTAGCAAACCAGGACAAG -ACGGAACTAGCAAACCAGAAGCAG -ACGGAACTAGCAAACCAGCGTCAA -ACGGAACTAGCAAACCAGGCTGAA -ACGGAACTAGCAAACCAGAGTACG -ACGGAACTAGCAAACCAGATCCGA -ACGGAACTAGCAAACCAGATGGGA -ACGGAACTAGCAAACCAGGTGCAA -ACGGAACTAGCAAACCAGGAGGAA -ACGGAACTAGCAAACCAGCAGGTA -ACGGAACTAGCAAACCAGGACTCT -ACGGAACTAGCAAACCAGAGTCCT -ACGGAACTAGCAAACCAGTAAGCC -ACGGAACTAGCAAACCAGATAGCC -ACGGAACTAGCAAACCAGTAACCG -ACGGAACTAGCAAACCAGATGCCA -ACGGAACTAGCATACGTCGGAAAC -ACGGAACTAGCATACGTCAACACC -ACGGAACTAGCATACGTCATCGAG -ACGGAACTAGCATACGTCCTCCTT -ACGGAACTAGCATACGTCCCTGTT -ACGGAACTAGCATACGTCCGGTTT -ACGGAACTAGCATACGTCGTGGTT -ACGGAACTAGCATACGTCGCCTTT -ACGGAACTAGCATACGTCGGTCTT -ACGGAACTAGCATACGTCACGCTT -ACGGAACTAGCATACGTCAGCGTT -ACGGAACTAGCATACGTCTTCGTC -ACGGAACTAGCATACGTCTCTCTC -ACGGAACTAGCATACGTCTGGATC -ACGGAACTAGCATACGTCCACTTC -ACGGAACTAGCATACGTCGTACTC -ACGGAACTAGCATACGTCGATGTC -ACGGAACTAGCATACGTCACAGTC -ACGGAACTAGCATACGTCTTGCTG -ACGGAACTAGCATACGTCTCCATG -ACGGAACTAGCATACGTCTGTGTG -ACGGAACTAGCATACGTCCTAGTG -ACGGAACTAGCATACGTCCATCTG -ACGGAACTAGCATACGTCGAGTTG -ACGGAACTAGCATACGTCAGACTG -ACGGAACTAGCATACGTCTCGGTA -ACGGAACTAGCATACGTCTGCCTA -ACGGAACTAGCATACGTCCCACTA -ACGGAACTAGCATACGTCGGAGTA -ACGGAACTAGCATACGTCTCGTCT -ACGGAACTAGCATACGTCTGCACT -ACGGAACTAGCATACGTCCTGACT -ACGGAACTAGCATACGTCCAACCT -ACGGAACTAGCATACGTCGCTACT -ACGGAACTAGCATACGTCGGATCT -ACGGAACTAGCATACGTCAAGGCT -ACGGAACTAGCATACGTCTCAACC -ACGGAACTAGCATACGTCTGTTCC -ACGGAACTAGCATACGTCATTCCC -ACGGAACTAGCATACGTCTTCTCG -ACGGAACTAGCATACGTCTAGACG -ACGGAACTAGCATACGTCGTAACG -ACGGAACTAGCATACGTCACTTCG -ACGGAACTAGCATACGTCTACGCA -ACGGAACTAGCATACGTCCTTGCA -ACGGAACTAGCATACGTCCGAACA -ACGGAACTAGCATACGTCCAGTCA -ACGGAACTAGCATACGTCGATCCA -ACGGAACTAGCATACGTCACGACA -ACGGAACTAGCATACGTCAGCTCA -ACGGAACTAGCATACGTCTCACGT -ACGGAACTAGCATACGTCCGTAGT -ACGGAACTAGCATACGTCGTCAGT -ACGGAACTAGCATACGTCGAAGGT -ACGGAACTAGCATACGTCAACCGT -ACGGAACTAGCATACGTCTTGTGC -ACGGAACTAGCATACGTCCTAAGC -ACGGAACTAGCATACGTCACTAGC -ACGGAACTAGCATACGTCAGATGC -ACGGAACTAGCATACGTCTGAAGG -ACGGAACTAGCATACGTCCAATGG -ACGGAACTAGCATACGTCATGAGG -ACGGAACTAGCATACGTCAATGGG -ACGGAACTAGCATACGTCTCCTGA -ACGGAACTAGCATACGTCTAGCGA -ACGGAACTAGCATACGTCCACAGA -ACGGAACTAGCATACGTCGCAAGA -ACGGAACTAGCATACGTCGGTTGA -ACGGAACTAGCATACGTCTCCGAT -ACGGAACTAGCATACGTCTGGCAT -ACGGAACTAGCATACGTCCGAGAT -ACGGAACTAGCATACGTCTACCAC -ACGGAACTAGCATACGTCCAGAAC -ACGGAACTAGCATACGTCGTCTAC -ACGGAACTAGCATACGTCACGTAC -ACGGAACTAGCATACGTCAGTGAC -ACGGAACTAGCATACGTCCTGTAG -ACGGAACTAGCATACGTCCCTAAG -ACGGAACTAGCATACGTCGTTCAG -ACGGAACTAGCATACGTCGCATAG -ACGGAACTAGCATACGTCGACAAG -ACGGAACTAGCATACGTCAAGCAG -ACGGAACTAGCATACGTCCGTCAA -ACGGAACTAGCATACGTCGCTGAA -ACGGAACTAGCATACGTCAGTACG -ACGGAACTAGCATACGTCATCCGA -ACGGAACTAGCATACGTCATGGGA -ACGGAACTAGCATACGTCGTGCAA -ACGGAACTAGCATACGTCGAGGAA -ACGGAACTAGCATACGTCCAGGTA -ACGGAACTAGCATACGTCGACTCT -ACGGAACTAGCATACGTCAGTCCT -ACGGAACTAGCATACGTCTAAGCC -ACGGAACTAGCATACGTCATAGCC -ACGGAACTAGCATACGTCTAACCG -ACGGAACTAGCATACGTCATGCCA -ACGGAACTAGCATACACGGGAAAC -ACGGAACTAGCATACACGAACACC -ACGGAACTAGCATACACGATCGAG -ACGGAACTAGCATACACGCTCCTT -ACGGAACTAGCATACACGCCTGTT -ACGGAACTAGCATACACGCGGTTT -ACGGAACTAGCATACACGGTGGTT -ACGGAACTAGCATACACGGCCTTT -ACGGAACTAGCATACACGGGTCTT -ACGGAACTAGCATACACGACGCTT -ACGGAACTAGCATACACGAGCGTT -ACGGAACTAGCATACACGTTCGTC -ACGGAACTAGCATACACGTCTCTC -ACGGAACTAGCATACACGTGGATC -ACGGAACTAGCATACACGCACTTC -ACGGAACTAGCATACACGGTACTC -ACGGAACTAGCATACACGGATGTC -ACGGAACTAGCATACACGACAGTC -ACGGAACTAGCATACACGTTGCTG -ACGGAACTAGCATACACGTCCATG -ACGGAACTAGCATACACGTGTGTG -ACGGAACTAGCATACACGCTAGTG -ACGGAACTAGCATACACGCATCTG -ACGGAACTAGCATACACGGAGTTG -ACGGAACTAGCATACACGAGACTG -ACGGAACTAGCATACACGTCGGTA -ACGGAACTAGCATACACGTGCCTA -ACGGAACTAGCATACACGCCACTA -ACGGAACTAGCATACACGGGAGTA -ACGGAACTAGCATACACGTCGTCT -ACGGAACTAGCATACACGTGCACT -ACGGAACTAGCATACACGCTGACT -ACGGAACTAGCATACACGCAACCT -ACGGAACTAGCATACACGGCTACT -ACGGAACTAGCATACACGGGATCT -ACGGAACTAGCATACACGAAGGCT -ACGGAACTAGCATACACGTCAACC -ACGGAACTAGCATACACGTGTTCC -ACGGAACTAGCATACACGATTCCC -ACGGAACTAGCATACACGTTCTCG -ACGGAACTAGCATACACGTAGACG -ACGGAACTAGCATACACGGTAACG -ACGGAACTAGCATACACGACTTCG -ACGGAACTAGCATACACGTACGCA -ACGGAACTAGCATACACGCTTGCA -ACGGAACTAGCATACACGCGAACA -ACGGAACTAGCATACACGCAGTCA -ACGGAACTAGCATACACGGATCCA -ACGGAACTAGCATACACGACGACA -ACGGAACTAGCATACACGAGCTCA -ACGGAACTAGCATACACGTCACGT -ACGGAACTAGCATACACGCGTAGT -ACGGAACTAGCATACACGGTCAGT -ACGGAACTAGCATACACGGAAGGT -ACGGAACTAGCATACACGAACCGT -ACGGAACTAGCATACACGTTGTGC -ACGGAACTAGCATACACGCTAAGC -ACGGAACTAGCATACACGACTAGC -ACGGAACTAGCATACACGAGATGC -ACGGAACTAGCATACACGTGAAGG -ACGGAACTAGCATACACGCAATGG -ACGGAACTAGCATACACGATGAGG -ACGGAACTAGCATACACGAATGGG -ACGGAACTAGCATACACGTCCTGA -ACGGAACTAGCATACACGTAGCGA -ACGGAACTAGCATACACGCACAGA -ACGGAACTAGCATACACGGCAAGA -ACGGAACTAGCATACACGGGTTGA -ACGGAACTAGCATACACGTCCGAT -ACGGAACTAGCATACACGTGGCAT -ACGGAACTAGCATACACGCGAGAT -ACGGAACTAGCATACACGTACCAC -ACGGAACTAGCATACACGCAGAAC -ACGGAACTAGCATACACGGTCTAC -ACGGAACTAGCATACACGACGTAC -ACGGAACTAGCATACACGAGTGAC -ACGGAACTAGCATACACGCTGTAG -ACGGAACTAGCATACACGCCTAAG -ACGGAACTAGCATACACGGTTCAG -ACGGAACTAGCATACACGGCATAG -ACGGAACTAGCATACACGGACAAG -ACGGAACTAGCATACACGAAGCAG -ACGGAACTAGCATACACGCGTCAA -ACGGAACTAGCATACACGGCTGAA -ACGGAACTAGCATACACGAGTACG -ACGGAACTAGCATACACGATCCGA -ACGGAACTAGCATACACGATGGGA -ACGGAACTAGCATACACGGTGCAA -ACGGAACTAGCATACACGGAGGAA -ACGGAACTAGCATACACGCAGGTA -ACGGAACTAGCATACACGGACTCT -ACGGAACTAGCATACACGAGTCCT -ACGGAACTAGCATACACGTAAGCC -ACGGAACTAGCATACACGATAGCC -ACGGAACTAGCATACACGTAACCG -ACGGAACTAGCATACACGATGCCA -ACGGAACTAGCAGACAGTGGAAAC -ACGGAACTAGCAGACAGTAACACC -ACGGAACTAGCAGACAGTATCGAG -ACGGAACTAGCAGACAGTCTCCTT -ACGGAACTAGCAGACAGTCCTGTT -ACGGAACTAGCAGACAGTCGGTTT -ACGGAACTAGCAGACAGTGTGGTT -ACGGAACTAGCAGACAGTGCCTTT -ACGGAACTAGCAGACAGTGGTCTT -ACGGAACTAGCAGACAGTACGCTT -ACGGAACTAGCAGACAGTAGCGTT -ACGGAACTAGCAGACAGTTTCGTC -ACGGAACTAGCAGACAGTTCTCTC -ACGGAACTAGCAGACAGTTGGATC -ACGGAACTAGCAGACAGTCACTTC -ACGGAACTAGCAGACAGTGTACTC -ACGGAACTAGCAGACAGTGATGTC -ACGGAACTAGCAGACAGTACAGTC -ACGGAACTAGCAGACAGTTTGCTG -ACGGAACTAGCAGACAGTTCCATG -ACGGAACTAGCAGACAGTTGTGTG -ACGGAACTAGCAGACAGTCTAGTG -ACGGAACTAGCAGACAGTCATCTG -ACGGAACTAGCAGACAGTGAGTTG -ACGGAACTAGCAGACAGTAGACTG -ACGGAACTAGCAGACAGTTCGGTA -ACGGAACTAGCAGACAGTTGCCTA -ACGGAACTAGCAGACAGTCCACTA -ACGGAACTAGCAGACAGTGGAGTA -ACGGAACTAGCAGACAGTTCGTCT -ACGGAACTAGCAGACAGTTGCACT -ACGGAACTAGCAGACAGTCTGACT -ACGGAACTAGCAGACAGTCAACCT -ACGGAACTAGCAGACAGTGCTACT -ACGGAACTAGCAGACAGTGGATCT -ACGGAACTAGCAGACAGTAAGGCT -ACGGAACTAGCAGACAGTTCAACC -ACGGAACTAGCAGACAGTTGTTCC -ACGGAACTAGCAGACAGTATTCCC -ACGGAACTAGCAGACAGTTTCTCG -ACGGAACTAGCAGACAGTTAGACG -ACGGAACTAGCAGACAGTGTAACG -ACGGAACTAGCAGACAGTACTTCG -ACGGAACTAGCAGACAGTTACGCA -ACGGAACTAGCAGACAGTCTTGCA -ACGGAACTAGCAGACAGTCGAACA -ACGGAACTAGCAGACAGTCAGTCA -ACGGAACTAGCAGACAGTGATCCA -ACGGAACTAGCAGACAGTACGACA -ACGGAACTAGCAGACAGTAGCTCA -ACGGAACTAGCAGACAGTTCACGT -ACGGAACTAGCAGACAGTCGTAGT -ACGGAACTAGCAGACAGTGTCAGT -ACGGAACTAGCAGACAGTGAAGGT -ACGGAACTAGCAGACAGTAACCGT -ACGGAACTAGCAGACAGTTTGTGC -ACGGAACTAGCAGACAGTCTAAGC -ACGGAACTAGCAGACAGTACTAGC -ACGGAACTAGCAGACAGTAGATGC -ACGGAACTAGCAGACAGTTGAAGG -ACGGAACTAGCAGACAGTCAATGG -ACGGAACTAGCAGACAGTATGAGG -ACGGAACTAGCAGACAGTAATGGG -ACGGAACTAGCAGACAGTTCCTGA -ACGGAACTAGCAGACAGTTAGCGA -ACGGAACTAGCAGACAGTCACAGA -ACGGAACTAGCAGACAGTGCAAGA -ACGGAACTAGCAGACAGTGGTTGA -ACGGAACTAGCAGACAGTTCCGAT -ACGGAACTAGCAGACAGTTGGCAT -ACGGAACTAGCAGACAGTCGAGAT -ACGGAACTAGCAGACAGTTACCAC -ACGGAACTAGCAGACAGTCAGAAC -ACGGAACTAGCAGACAGTGTCTAC -ACGGAACTAGCAGACAGTACGTAC -ACGGAACTAGCAGACAGTAGTGAC -ACGGAACTAGCAGACAGTCTGTAG -ACGGAACTAGCAGACAGTCCTAAG -ACGGAACTAGCAGACAGTGTTCAG -ACGGAACTAGCAGACAGTGCATAG -ACGGAACTAGCAGACAGTGACAAG -ACGGAACTAGCAGACAGTAAGCAG -ACGGAACTAGCAGACAGTCGTCAA -ACGGAACTAGCAGACAGTGCTGAA -ACGGAACTAGCAGACAGTAGTACG -ACGGAACTAGCAGACAGTATCCGA -ACGGAACTAGCAGACAGTATGGGA -ACGGAACTAGCAGACAGTGTGCAA -ACGGAACTAGCAGACAGTGAGGAA -ACGGAACTAGCAGACAGTCAGGTA -ACGGAACTAGCAGACAGTGACTCT -ACGGAACTAGCAGACAGTAGTCCT -ACGGAACTAGCAGACAGTTAAGCC -ACGGAACTAGCAGACAGTATAGCC -ACGGAACTAGCAGACAGTTAACCG -ACGGAACTAGCAGACAGTATGCCA -ACGGAACTAGCATAGCTGGGAAAC -ACGGAACTAGCATAGCTGAACACC -ACGGAACTAGCATAGCTGATCGAG -ACGGAACTAGCATAGCTGCTCCTT -ACGGAACTAGCATAGCTGCCTGTT -ACGGAACTAGCATAGCTGCGGTTT -ACGGAACTAGCATAGCTGGTGGTT -ACGGAACTAGCATAGCTGGCCTTT -ACGGAACTAGCATAGCTGGGTCTT -ACGGAACTAGCATAGCTGACGCTT -ACGGAACTAGCATAGCTGAGCGTT -ACGGAACTAGCATAGCTGTTCGTC -ACGGAACTAGCATAGCTGTCTCTC -ACGGAACTAGCATAGCTGTGGATC -ACGGAACTAGCATAGCTGCACTTC -ACGGAACTAGCATAGCTGGTACTC -ACGGAACTAGCATAGCTGGATGTC -ACGGAACTAGCATAGCTGACAGTC -ACGGAACTAGCATAGCTGTTGCTG -ACGGAACTAGCATAGCTGTCCATG -ACGGAACTAGCATAGCTGTGTGTG -ACGGAACTAGCATAGCTGCTAGTG -ACGGAACTAGCATAGCTGCATCTG -ACGGAACTAGCATAGCTGGAGTTG -ACGGAACTAGCATAGCTGAGACTG -ACGGAACTAGCATAGCTGTCGGTA -ACGGAACTAGCATAGCTGTGCCTA -ACGGAACTAGCATAGCTGCCACTA -ACGGAACTAGCATAGCTGGGAGTA -ACGGAACTAGCATAGCTGTCGTCT -ACGGAACTAGCATAGCTGTGCACT -ACGGAACTAGCATAGCTGCTGACT -ACGGAACTAGCATAGCTGCAACCT -ACGGAACTAGCATAGCTGGCTACT -ACGGAACTAGCATAGCTGGGATCT -ACGGAACTAGCATAGCTGAAGGCT -ACGGAACTAGCATAGCTGTCAACC -ACGGAACTAGCATAGCTGTGTTCC -ACGGAACTAGCATAGCTGATTCCC -ACGGAACTAGCATAGCTGTTCTCG -ACGGAACTAGCATAGCTGTAGACG -ACGGAACTAGCATAGCTGGTAACG -ACGGAACTAGCATAGCTGACTTCG -ACGGAACTAGCATAGCTGTACGCA -ACGGAACTAGCATAGCTGCTTGCA -ACGGAACTAGCATAGCTGCGAACA -ACGGAACTAGCATAGCTGCAGTCA -ACGGAACTAGCATAGCTGGATCCA -ACGGAACTAGCATAGCTGACGACA -ACGGAACTAGCATAGCTGAGCTCA -ACGGAACTAGCATAGCTGTCACGT -ACGGAACTAGCATAGCTGCGTAGT -ACGGAACTAGCATAGCTGGTCAGT -ACGGAACTAGCATAGCTGGAAGGT -ACGGAACTAGCATAGCTGAACCGT -ACGGAACTAGCATAGCTGTTGTGC -ACGGAACTAGCATAGCTGCTAAGC -ACGGAACTAGCATAGCTGACTAGC -ACGGAACTAGCATAGCTGAGATGC -ACGGAACTAGCATAGCTGTGAAGG -ACGGAACTAGCATAGCTGCAATGG -ACGGAACTAGCATAGCTGATGAGG -ACGGAACTAGCATAGCTGAATGGG -ACGGAACTAGCATAGCTGTCCTGA -ACGGAACTAGCATAGCTGTAGCGA -ACGGAACTAGCATAGCTGCACAGA -ACGGAACTAGCATAGCTGGCAAGA -ACGGAACTAGCATAGCTGGGTTGA -ACGGAACTAGCATAGCTGTCCGAT -ACGGAACTAGCATAGCTGTGGCAT -ACGGAACTAGCATAGCTGCGAGAT -ACGGAACTAGCATAGCTGTACCAC -ACGGAACTAGCATAGCTGCAGAAC -ACGGAACTAGCATAGCTGGTCTAC -ACGGAACTAGCATAGCTGACGTAC -ACGGAACTAGCATAGCTGAGTGAC -ACGGAACTAGCATAGCTGCTGTAG -ACGGAACTAGCATAGCTGCCTAAG -ACGGAACTAGCATAGCTGGTTCAG -ACGGAACTAGCATAGCTGGCATAG -ACGGAACTAGCATAGCTGGACAAG -ACGGAACTAGCATAGCTGAAGCAG -ACGGAACTAGCATAGCTGCGTCAA -ACGGAACTAGCATAGCTGGCTGAA -ACGGAACTAGCATAGCTGAGTACG -ACGGAACTAGCATAGCTGATCCGA -ACGGAACTAGCATAGCTGATGGGA -ACGGAACTAGCATAGCTGGTGCAA -ACGGAACTAGCATAGCTGGAGGAA -ACGGAACTAGCATAGCTGCAGGTA -ACGGAACTAGCATAGCTGGACTCT -ACGGAACTAGCATAGCTGAGTCCT -ACGGAACTAGCATAGCTGTAAGCC -ACGGAACTAGCATAGCTGATAGCC -ACGGAACTAGCATAGCTGTAACCG -ACGGAACTAGCATAGCTGATGCCA -ACGGAACTAGCAAAGCCTGGAAAC -ACGGAACTAGCAAAGCCTAACACC -ACGGAACTAGCAAAGCCTATCGAG -ACGGAACTAGCAAAGCCTCTCCTT -ACGGAACTAGCAAAGCCTCCTGTT -ACGGAACTAGCAAAGCCTCGGTTT -ACGGAACTAGCAAAGCCTGTGGTT -ACGGAACTAGCAAAGCCTGCCTTT -ACGGAACTAGCAAAGCCTGGTCTT -ACGGAACTAGCAAAGCCTACGCTT -ACGGAACTAGCAAAGCCTAGCGTT -ACGGAACTAGCAAAGCCTTTCGTC -ACGGAACTAGCAAAGCCTTCTCTC -ACGGAACTAGCAAAGCCTTGGATC -ACGGAACTAGCAAAGCCTCACTTC -ACGGAACTAGCAAAGCCTGTACTC -ACGGAACTAGCAAAGCCTGATGTC -ACGGAACTAGCAAAGCCTACAGTC -ACGGAACTAGCAAAGCCTTTGCTG -ACGGAACTAGCAAAGCCTTCCATG -ACGGAACTAGCAAAGCCTTGTGTG -ACGGAACTAGCAAAGCCTCTAGTG -ACGGAACTAGCAAAGCCTCATCTG -ACGGAACTAGCAAAGCCTGAGTTG -ACGGAACTAGCAAAGCCTAGACTG -ACGGAACTAGCAAAGCCTTCGGTA -ACGGAACTAGCAAAGCCTTGCCTA -ACGGAACTAGCAAAGCCTCCACTA -ACGGAACTAGCAAAGCCTGGAGTA -ACGGAACTAGCAAAGCCTTCGTCT -ACGGAACTAGCAAAGCCTTGCACT -ACGGAACTAGCAAAGCCTCTGACT -ACGGAACTAGCAAAGCCTCAACCT -ACGGAACTAGCAAAGCCTGCTACT -ACGGAACTAGCAAAGCCTGGATCT -ACGGAACTAGCAAAGCCTAAGGCT -ACGGAACTAGCAAAGCCTTCAACC -ACGGAACTAGCAAAGCCTTGTTCC -ACGGAACTAGCAAAGCCTATTCCC -ACGGAACTAGCAAAGCCTTTCTCG -ACGGAACTAGCAAAGCCTTAGACG -ACGGAACTAGCAAAGCCTGTAACG -ACGGAACTAGCAAAGCCTACTTCG -ACGGAACTAGCAAAGCCTTACGCA -ACGGAACTAGCAAAGCCTCTTGCA -ACGGAACTAGCAAAGCCTCGAACA -ACGGAACTAGCAAAGCCTCAGTCA -ACGGAACTAGCAAAGCCTGATCCA -ACGGAACTAGCAAAGCCTACGACA -ACGGAACTAGCAAAGCCTAGCTCA -ACGGAACTAGCAAAGCCTTCACGT -ACGGAACTAGCAAAGCCTCGTAGT -ACGGAACTAGCAAAGCCTGTCAGT -ACGGAACTAGCAAAGCCTGAAGGT -ACGGAACTAGCAAAGCCTAACCGT -ACGGAACTAGCAAAGCCTTTGTGC -ACGGAACTAGCAAAGCCTCTAAGC -ACGGAACTAGCAAAGCCTACTAGC -ACGGAACTAGCAAAGCCTAGATGC -ACGGAACTAGCAAAGCCTTGAAGG -ACGGAACTAGCAAAGCCTCAATGG -ACGGAACTAGCAAAGCCTATGAGG -ACGGAACTAGCAAAGCCTAATGGG -ACGGAACTAGCAAAGCCTTCCTGA -ACGGAACTAGCAAAGCCTTAGCGA -ACGGAACTAGCAAAGCCTCACAGA -ACGGAACTAGCAAAGCCTGCAAGA -ACGGAACTAGCAAAGCCTGGTTGA -ACGGAACTAGCAAAGCCTTCCGAT -ACGGAACTAGCAAAGCCTTGGCAT -ACGGAACTAGCAAAGCCTCGAGAT -ACGGAACTAGCAAAGCCTTACCAC -ACGGAACTAGCAAAGCCTCAGAAC -ACGGAACTAGCAAAGCCTGTCTAC -ACGGAACTAGCAAAGCCTACGTAC -ACGGAACTAGCAAAGCCTAGTGAC -ACGGAACTAGCAAAGCCTCTGTAG -ACGGAACTAGCAAAGCCTCCTAAG -ACGGAACTAGCAAAGCCTGTTCAG -ACGGAACTAGCAAAGCCTGCATAG -ACGGAACTAGCAAAGCCTGACAAG -ACGGAACTAGCAAAGCCTAAGCAG -ACGGAACTAGCAAAGCCTCGTCAA -ACGGAACTAGCAAAGCCTGCTGAA -ACGGAACTAGCAAAGCCTAGTACG -ACGGAACTAGCAAAGCCTATCCGA -ACGGAACTAGCAAAGCCTATGGGA -ACGGAACTAGCAAAGCCTGTGCAA -ACGGAACTAGCAAAGCCTGAGGAA -ACGGAACTAGCAAAGCCTCAGGTA -ACGGAACTAGCAAAGCCTGACTCT -ACGGAACTAGCAAAGCCTAGTCCT -ACGGAACTAGCAAAGCCTTAAGCC -ACGGAACTAGCAAAGCCTATAGCC -ACGGAACTAGCAAAGCCTTAACCG -ACGGAACTAGCAAAGCCTATGCCA -ACGGAACTAGCACAGGTTGGAAAC -ACGGAACTAGCACAGGTTAACACC -ACGGAACTAGCACAGGTTATCGAG -ACGGAACTAGCACAGGTTCTCCTT -ACGGAACTAGCACAGGTTCCTGTT -ACGGAACTAGCACAGGTTCGGTTT -ACGGAACTAGCACAGGTTGTGGTT -ACGGAACTAGCACAGGTTGCCTTT -ACGGAACTAGCACAGGTTGGTCTT -ACGGAACTAGCACAGGTTACGCTT -ACGGAACTAGCACAGGTTAGCGTT -ACGGAACTAGCACAGGTTTTCGTC -ACGGAACTAGCACAGGTTTCTCTC -ACGGAACTAGCACAGGTTTGGATC -ACGGAACTAGCACAGGTTCACTTC -ACGGAACTAGCACAGGTTGTACTC -ACGGAACTAGCACAGGTTGATGTC -ACGGAACTAGCACAGGTTACAGTC -ACGGAACTAGCACAGGTTTTGCTG -ACGGAACTAGCACAGGTTTCCATG -ACGGAACTAGCACAGGTTTGTGTG -ACGGAACTAGCACAGGTTCTAGTG -ACGGAACTAGCACAGGTTCATCTG -ACGGAACTAGCACAGGTTGAGTTG -ACGGAACTAGCACAGGTTAGACTG -ACGGAACTAGCACAGGTTTCGGTA -ACGGAACTAGCACAGGTTTGCCTA -ACGGAACTAGCACAGGTTCCACTA -ACGGAACTAGCACAGGTTGGAGTA -ACGGAACTAGCACAGGTTTCGTCT -ACGGAACTAGCACAGGTTTGCACT -ACGGAACTAGCACAGGTTCTGACT -ACGGAACTAGCACAGGTTCAACCT -ACGGAACTAGCACAGGTTGCTACT -ACGGAACTAGCACAGGTTGGATCT -ACGGAACTAGCACAGGTTAAGGCT -ACGGAACTAGCACAGGTTTCAACC -ACGGAACTAGCACAGGTTTGTTCC -ACGGAACTAGCACAGGTTATTCCC -ACGGAACTAGCACAGGTTTTCTCG -ACGGAACTAGCACAGGTTTAGACG -ACGGAACTAGCACAGGTTGTAACG -ACGGAACTAGCACAGGTTACTTCG -ACGGAACTAGCACAGGTTTACGCA -ACGGAACTAGCACAGGTTCTTGCA -ACGGAACTAGCACAGGTTCGAACA -ACGGAACTAGCACAGGTTCAGTCA -ACGGAACTAGCACAGGTTGATCCA -ACGGAACTAGCACAGGTTACGACA -ACGGAACTAGCACAGGTTAGCTCA -ACGGAACTAGCACAGGTTTCACGT -ACGGAACTAGCACAGGTTCGTAGT -ACGGAACTAGCACAGGTTGTCAGT -ACGGAACTAGCACAGGTTGAAGGT -ACGGAACTAGCACAGGTTAACCGT -ACGGAACTAGCACAGGTTTTGTGC -ACGGAACTAGCACAGGTTCTAAGC -ACGGAACTAGCACAGGTTACTAGC -ACGGAACTAGCACAGGTTAGATGC -ACGGAACTAGCACAGGTTTGAAGG -ACGGAACTAGCACAGGTTCAATGG -ACGGAACTAGCACAGGTTATGAGG -ACGGAACTAGCACAGGTTAATGGG -ACGGAACTAGCACAGGTTTCCTGA -ACGGAACTAGCACAGGTTTAGCGA -ACGGAACTAGCACAGGTTCACAGA -ACGGAACTAGCACAGGTTGCAAGA -ACGGAACTAGCACAGGTTGGTTGA -ACGGAACTAGCACAGGTTTCCGAT -ACGGAACTAGCACAGGTTTGGCAT -ACGGAACTAGCACAGGTTCGAGAT -ACGGAACTAGCACAGGTTTACCAC -ACGGAACTAGCACAGGTTCAGAAC -ACGGAACTAGCACAGGTTGTCTAC -ACGGAACTAGCACAGGTTACGTAC -ACGGAACTAGCACAGGTTAGTGAC -ACGGAACTAGCACAGGTTCTGTAG -ACGGAACTAGCACAGGTTCCTAAG -ACGGAACTAGCACAGGTTGTTCAG -ACGGAACTAGCACAGGTTGCATAG -ACGGAACTAGCACAGGTTGACAAG -ACGGAACTAGCACAGGTTAAGCAG -ACGGAACTAGCACAGGTTCGTCAA -ACGGAACTAGCACAGGTTGCTGAA -ACGGAACTAGCACAGGTTAGTACG -ACGGAACTAGCACAGGTTATCCGA -ACGGAACTAGCACAGGTTATGGGA -ACGGAACTAGCACAGGTTGTGCAA -ACGGAACTAGCACAGGTTGAGGAA -ACGGAACTAGCACAGGTTCAGGTA -ACGGAACTAGCACAGGTTGACTCT -ACGGAACTAGCACAGGTTAGTCCT -ACGGAACTAGCACAGGTTTAAGCC -ACGGAACTAGCACAGGTTATAGCC -ACGGAACTAGCACAGGTTTAACCG -ACGGAACTAGCACAGGTTATGCCA -ACGGAACTAGCATAGGCAGGAAAC -ACGGAACTAGCATAGGCAAACACC -ACGGAACTAGCATAGGCAATCGAG -ACGGAACTAGCATAGGCACTCCTT -ACGGAACTAGCATAGGCACCTGTT -ACGGAACTAGCATAGGCACGGTTT -ACGGAACTAGCATAGGCAGTGGTT -ACGGAACTAGCATAGGCAGCCTTT -ACGGAACTAGCATAGGCAGGTCTT -ACGGAACTAGCATAGGCAACGCTT -ACGGAACTAGCATAGGCAAGCGTT -ACGGAACTAGCATAGGCATTCGTC -ACGGAACTAGCATAGGCATCTCTC -ACGGAACTAGCATAGGCATGGATC -ACGGAACTAGCATAGGCACACTTC -ACGGAACTAGCATAGGCAGTACTC -ACGGAACTAGCATAGGCAGATGTC -ACGGAACTAGCATAGGCAACAGTC -ACGGAACTAGCATAGGCATTGCTG -ACGGAACTAGCATAGGCATCCATG -ACGGAACTAGCATAGGCATGTGTG -ACGGAACTAGCATAGGCACTAGTG -ACGGAACTAGCATAGGCACATCTG -ACGGAACTAGCATAGGCAGAGTTG -ACGGAACTAGCATAGGCAAGACTG -ACGGAACTAGCATAGGCATCGGTA -ACGGAACTAGCATAGGCATGCCTA -ACGGAACTAGCATAGGCACCACTA -ACGGAACTAGCATAGGCAGGAGTA -ACGGAACTAGCATAGGCATCGTCT -ACGGAACTAGCATAGGCATGCACT -ACGGAACTAGCATAGGCACTGACT -ACGGAACTAGCATAGGCACAACCT -ACGGAACTAGCATAGGCAGCTACT -ACGGAACTAGCATAGGCAGGATCT -ACGGAACTAGCATAGGCAAAGGCT -ACGGAACTAGCATAGGCATCAACC -ACGGAACTAGCATAGGCATGTTCC -ACGGAACTAGCATAGGCAATTCCC -ACGGAACTAGCATAGGCATTCTCG -ACGGAACTAGCATAGGCATAGACG -ACGGAACTAGCATAGGCAGTAACG -ACGGAACTAGCATAGGCAACTTCG -ACGGAACTAGCATAGGCATACGCA -ACGGAACTAGCATAGGCACTTGCA -ACGGAACTAGCATAGGCACGAACA -ACGGAACTAGCATAGGCACAGTCA -ACGGAACTAGCATAGGCAGATCCA -ACGGAACTAGCATAGGCAACGACA -ACGGAACTAGCATAGGCAAGCTCA -ACGGAACTAGCATAGGCATCACGT -ACGGAACTAGCATAGGCACGTAGT -ACGGAACTAGCATAGGCAGTCAGT -ACGGAACTAGCATAGGCAGAAGGT -ACGGAACTAGCATAGGCAAACCGT -ACGGAACTAGCATAGGCATTGTGC -ACGGAACTAGCATAGGCACTAAGC -ACGGAACTAGCATAGGCAACTAGC -ACGGAACTAGCATAGGCAAGATGC -ACGGAACTAGCATAGGCATGAAGG -ACGGAACTAGCATAGGCACAATGG -ACGGAACTAGCATAGGCAATGAGG -ACGGAACTAGCATAGGCAAATGGG -ACGGAACTAGCATAGGCATCCTGA -ACGGAACTAGCATAGGCATAGCGA -ACGGAACTAGCATAGGCACACAGA -ACGGAACTAGCATAGGCAGCAAGA -ACGGAACTAGCATAGGCAGGTTGA -ACGGAACTAGCATAGGCATCCGAT -ACGGAACTAGCATAGGCATGGCAT -ACGGAACTAGCATAGGCACGAGAT -ACGGAACTAGCATAGGCATACCAC -ACGGAACTAGCATAGGCACAGAAC -ACGGAACTAGCATAGGCAGTCTAC -ACGGAACTAGCATAGGCAACGTAC -ACGGAACTAGCATAGGCAAGTGAC -ACGGAACTAGCATAGGCACTGTAG -ACGGAACTAGCATAGGCACCTAAG -ACGGAACTAGCATAGGCAGTTCAG -ACGGAACTAGCATAGGCAGCATAG -ACGGAACTAGCATAGGCAGACAAG -ACGGAACTAGCATAGGCAAAGCAG -ACGGAACTAGCATAGGCACGTCAA -ACGGAACTAGCATAGGCAGCTGAA -ACGGAACTAGCATAGGCAAGTACG -ACGGAACTAGCATAGGCAATCCGA -ACGGAACTAGCATAGGCAATGGGA -ACGGAACTAGCATAGGCAGTGCAA -ACGGAACTAGCATAGGCAGAGGAA -ACGGAACTAGCATAGGCACAGGTA -ACGGAACTAGCATAGGCAGACTCT -ACGGAACTAGCATAGGCAAGTCCT -ACGGAACTAGCATAGGCATAAGCC -ACGGAACTAGCATAGGCAATAGCC -ACGGAACTAGCATAGGCATAACCG -ACGGAACTAGCATAGGCAATGCCA -ACGGAACTAGCAAAGGACGGAAAC -ACGGAACTAGCAAAGGACAACACC -ACGGAACTAGCAAAGGACATCGAG -ACGGAACTAGCAAAGGACCTCCTT -ACGGAACTAGCAAAGGACCCTGTT -ACGGAACTAGCAAAGGACCGGTTT -ACGGAACTAGCAAAGGACGTGGTT -ACGGAACTAGCAAAGGACGCCTTT -ACGGAACTAGCAAAGGACGGTCTT -ACGGAACTAGCAAAGGACACGCTT -ACGGAACTAGCAAAGGACAGCGTT -ACGGAACTAGCAAAGGACTTCGTC -ACGGAACTAGCAAAGGACTCTCTC -ACGGAACTAGCAAAGGACTGGATC -ACGGAACTAGCAAAGGACCACTTC -ACGGAACTAGCAAAGGACGTACTC -ACGGAACTAGCAAAGGACGATGTC -ACGGAACTAGCAAAGGACACAGTC -ACGGAACTAGCAAAGGACTTGCTG -ACGGAACTAGCAAAGGACTCCATG -ACGGAACTAGCAAAGGACTGTGTG -ACGGAACTAGCAAAGGACCTAGTG -ACGGAACTAGCAAAGGACCATCTG -ACGGAACTAGCAAAGGACGAGTTG -ACGGAACTAGCAAAGGACAGACTG -ACGGAACTAGCAAAGGACTCGGTA -ACGGAACTAGCAAAGGACTGCCTA -ACGGAACTAGCAAAGGACCCACTA -ACGGAACTAGCAAAGGACGGAGTA -ACGGAACTAGCAAAGGACTCGTCT -ACGGAACTAGCAAAGGACTGCACT -ACGGAACTAGCAAAGGACCTGACT -ACGGAACTAGCAAAGGACCAACCT -ACGGAACTAGCAAAGGACGCTACT -ACGGAACTAGCAAAGGACGGATCT -ACGGAACTAGCAAAGGACAAGGCT -ACGGAACTAGCAAAGGACTCAACC -ACGGAACTAGCAAAGGACTGTTCC -ACGGAACTAGCAAAGGACATTCCC -ACGGAACTAGCAAAGGACTTCTCG -ACGGAACTAGCAAAGGACTAGACG -ACGGAACTAGCAAAGGACGTAACG -ACGGAACTAGCAAAGGACACTTCG -ACGGAACTAGCAAAGGACTACGCA -ACGGAACTAGCAAAGGACCTTGCA -ACGGAACTAGCAAAGGACCGAACA -ACGGAACTAGCAAAGGACCAGTCA -ACGGAACTAGCAAAGGACGATCCA -ACGGAACTAGCAAAGGACACGACA -ACGGAACTAGCAAAGGACAGCTCA -ACGGAACTAGCAAAGGACTCACGT -ACGGAACTAGCAAAGGACCGTAGT -ACGGAACTAGCAAAGGACGTCAGT -ACGGAACTAGCAAAGGACGAAGGT -ACGGAACTAGCAAAGGACAACCGT -ACGGAACTAGCAAAGGACTTGTGC -ACGGAACTAGCAAAGGACCTAAGC -ACGGAACTAGCAAAGGACACTAGC -ACGGAACTAGCAAAGGACAGATGC -ACGGAACTAGCAAAGGACTGAAGG -ACGGAACTAGCAAAGGACCAATGG -ACGGAACTAGCAAAGGACATGAGG -ACGGAACTAGCAAAGGACAATGGG -ACGGAACTAGCAAAGGACTCCTGA -ACGGAACTAGCAAAGGACTAGCGA -ACGGAACTAGCAAAGGACCACAGA -ACGGAACTAGCAAAGGACGCAAGA -ACGGAACTAGCAAAGGACGGTTGA -ACGGAACTAGCAAAGGACTCCGAT -ACGGAACTAGCAAAGGACTGGCAT -ACGGAACTAGCAAAGGACCGAGAT -ACGGAACTAGCAAAGGACTACCAC -ACGGAACTAGCAAAGGACCAGAAC -ACGGAACTAGCAAAGGACGTCTAC -ACGGAACTAGCAAAGGACACGTAC -ACGGAACTAGCAAAGGACAGTGAC -ACGGAACTAGCAAAGGACCTGTAG -ACGGAACTAGCAAAGGACCCTAAG -ACGGAACTAGCAAAGGACGTTCAG -ACGGAACTAGCAAAGGACGCATAG -ACGGAACTAGCAAAGGACGACAAG -ACGGAACTAGCAAAGGACAAGCAG -ACGGAACTAGCAAAGGACCGTCAA -ACGGAACTAGCAAAGGACGCTGAA -ACGGAACTAGCAAAGGACAGTACG -ACGGAACTAGCAAAGGACATCCGA -ACGGAACTAGCAAAGGACATGGGA -ACGGAACTAGCAAAGGACGTGCAA -ACGGAACTAGCAAAGGACGAGGAA -ACGGAACTAGCAAAGGACCAGGTA -ACGGAACTAGCAAAGGACGACTCT -ACGGAACTAGCAAAGGACAGTCCT -ACGGAACTAGCAAAGGACTAAGCC -ACGGAACTAGCAAAGGACATAGCC -ACGGAACTAGCAAAGGACTAACCG -ACGGAACTAGCAAAGGACATGCCA -ACGGAACTAGCACAGAAGGGAAAC -ACGGAACTAGCACAGAAGAACACC -ACGGAACTAGCACAGAAGATCGAG -ACGGAACTAGCACAGAAGCTCCTT -ACGGAACTAGCACAGAAGCCTGTT -ACGGAACTAGCACAGAAGCGGTTT -ACGGAACTAGCACAGAAGGTGGTT -ACGGAACTAGCACAGAAGGCCTTT -ACGGAACTAGCACAGAAGGGTCTT -ACGGAACTAGCACAGAAGACGCTT -ACGGAACTAGCACAGAAGAGCGTT -ACGGAACTAGCACAGAAGTTCGTC -ACGGAACTAGCACAGAAGTCTCTC -ACGGAACTAGCACAGAAGTGGATC -ACGGAACTAGCACAGAAGCACTTC -ACGGAACTAGCACAGAAGGTACTC -ACGGAACTAGCACAGAAGGATGTC -ACGGAACTAGCACAGAAGACAGTC -ACGGAACTAGCACAGAAGTTGCTG -ACGGAACTAGCACAGAAGTCCATG -ACGGAACTAGCACAGAAGTGTGTG -ACGGAACTAGCACAGAAGCTAGTG -ACGGAACTAGCACAGAAGCATCTG -ACGGAACTAGCACAGAAGGAGTTG -ACGGAACTAGCACAGAAGAGACTG -ACGGAACTAGCACAGAAGTCGGTA -ACGGAACTAGCACAGAAGTGCCTA -ACGGAACTAGCACAGAAGCCACTA -ACGGAACTAGCACAGAAGGGAGTA -ACGGAACTAGCACAGAAGTCGTCT -ACGGAACTAGCACAGAAGTGCACT -ACGGAACTAGCACAGAAGCTGACT -ACGGAACTAGCACAGAAGCAACCT -ACGGAACTAGCACAGAAGGCTACT -ACGGAACTAGCACAGAAGGGATCT -ACGGAACTAGCACAGAAGAAGGCT -ACGGAACTAGCACAGAAGTCAACC -ACGGAACTAGCACAGAAGTGTTCC -ACGGAACTAGCACAGAAGATTCCC -ACGGAACTAGCACAGAAGTTCTCG -ACGGAACTAGCACAGAAGTAGACG -ACGGAACTAGCACAGAAGGTAACG -ACGGAACTAGCACAGAAGACTTCG -ACGGAACTAGCACAGAAGTACGCA -ACGGAACTAGCACAGAAGCTTGCA -ACGGAACTAGCACAGAAGCGAACA -ACGGAACTAGCACAGAAGCAGTCA -ACGGAACTAGCACAGAAGGATCCA -ACGGAACTAGCACAGAAGACGACA -ACGGAACTAGCACAGAAGAGCTCA -ACGGAACTAGCACAGAAGTCACGT -ACGGAACTAGCACAGAAGCGTAGT -ACGGAACTAGCACAGAAGGTCAGT -ACGGAACTAGCACAGAAGGAAGGT -ACGGAACTAGCACAGAAGAACCGT -ACGGAACTAGCACAGAAGTTGTGC -ACGGAACTAGCACAGAAGCTAAGC -ACGGAACTAGCACAGAAGACTAGC -ACGGAACTAGCACAGAAGAGATGC -ACGGAACTAGCACAGAAGTGAAGG -ACGGAACTAGCACAGAAGCAATGG -ACGGAACTAGCACAGAAGATGAGG -ACGGAACTAGCACAGAAGAATGGG -ACGGAACTAGCACAGAAGTCCTGA -ACGGAACTAGCACAGAAGTAGCGA -ACGGAACTAGCACAGAAGCACAGA -ACGGAACTAGCACAGAAGGCAAGA -ACGGAACTAGCACAGAAGGGTTGA -ACGGAACTAGCACAGAAGTCCGAT -ACGGAACTAGCACAGAAGTGGCAT -ACGGAACTAGCACAGAAGCGAGAT -ACGGAACTAGCACAGAAGTACCAC -ACGGAACTAGCACAGAAGCAGAAC -ACGGAACTAGCACAGAAGGTCTAC -ACGGAACTAGCACAGAAGACGTAC -ACGGAACTAGCACAGAAGAGTGAC -ACGGAACTAGCACAGAAGCTGTAG -ACGGAACTAGCACAGAAGCCTAAG -ACGGAACTAGCACAGAAGGTTCAG -ACGGAACTAGCACAGAAGGCATAG -ACGGAACTAGCACAGAAGGACAAG -ACGGAACTAGCACAGAAGAAGCAG -ACGGAACTAGCACAGAAGCGTCAA -ACGGAACTAGCACAGAAGGCTGAA -ACGGAACTAGCACAGAAGAGTACG -ACGGAACTAGCACAGAAGATCCGA -ACGGAACTAGCACAGAAGATGGGA -ACGGAACTAGCACAGAAGGTGCAA -ACGGAACTAGCACAGAAGGAGGAA -ACGGAACTAGCACAGAAGCAGGTA -ACGGAACTAGCACAGAAGGACTCT -ACGGAACTAGCACAGAAGAGTCCT -ACGGAACTAGCACAGAAGTAAGCC -ACGGAACTAGCACAGAAGATAGCC -ACGGAACTAGCACAGAAGTAACCG -ACGGAACTAGCACAGAAGATGCCA -ACGGAACTAGCACAACGTGGAAAC -ACGGAACTAGCACAACGTAACACC -ACGGAACTAGCACAACGTATCGAG -ACGGAACTAGCACAACGTCTCCTT -ACGGAACTAGCACAACGTCCTGTT -ACGGAACTAGCACAACGTCGGTTT -ACGGAACTAGCACAACGTGTGGTT -ACGGAACTAGCACAACGTGCCTTT -ACGGAACTAGCACAACGTGGTCTT -ACGGAACTAGCACAACGTACGCTT -ACGGAACTAGCACAACGTAGCGTT -ACGGAACTAGCACAACGTTTCGTC -ACGGAACTAGCACAACGTTCTCTC -ACGGAACTAGCACAACGTTGGATC -ACGGAACTAGCACAACGTCACTTC -ACGGAACTAGCACAACGTGTACTC -ACGGAACTAGCACAACGTGATGTC -ACGGAACTAGCACAACGTACAGTC -ACGGAACTAGCACAACGTTTGCTG -ACGGAACTAGCACAACGTTCCATG -ACGGAACTAGCACAACGTTGTGTG -ACGGAACTAGCACAACGTCTAGTG -ACGGAACTAGCACAACGTCATCTG -ACGGAACTAGCACAACGTGAGTTG -ACGGAACTAGCACAACGTAGACTG -ACGGAACTAGCACAACGTTCGGTA -ACGGAACTAGCACAACGTTGCCTA -ACGGAACTAGCACAACGTCCACTA -ACGGAACTAGCACAACGTGGAGTA -ACGGAACTAGCACAACGTTCGTCT -ACGGAACTAGCACAACGTTGCACT -ACGGAACTAGCACAACGTCTGACT -ACGGAACTAGCACAACGTCAACCT -ACGGAACTAGCACAACGTGCTACT -ACGGAACTAGCACAACGTGGATCT -ACGGAACTAGCACAACGTAAGGCT -ACGGAACTAGCACAACGTTCAACC -ACGGAACTAGCACAACGTTGTTCC -ACGGAACTAGCACAACGTATTCCC -ACGGAACTAGCACAACGTTTCTCG -ACGGAACTAGCACAACGTTAGACG -ACGGAACTAGCACAACGTGTAACG -ACGGAACTAGCACAACGTACTTCG -ACGGAACTAGCACAACGTTACGCA -ACGGAACTAGCACAACGTCTTGCA -ACGGAACTAGCACAACGTCGAACA -ACGGAACTAGCACAACGTCAGTCA -ACGGAACTAGCACAACGTGATCCA -ACGGAACTAGCACAACGTACGACA -ACGGAACTAGCACAACGTAGCTCA -ACGGAACTAGCACAACGTTCACGT -ACGGAACTAGCACAACGTCGTAGT -ACGGAACTAGCACAACGTGTCAGT -ACGGAACTAGCACAACGTGAAGGT -ACGGAACTAGCACAACGTAACCGT -ACGGAACTAGCACAACGTTTGTGC -ACGGAACTAGCACAACGTCTAAGC -ACGGAACTAGCACAACGTACTAGC -ACGGAACTAGCACAACGTAGATGC -ACGGAACTAGCACAACGTTGAAGG -ACGGAACTAGCACAACGTCAATGG -ACGGAACTAGCACAACGTATGAGG -ACGGAACTAGCACAACGTAATGGG -ACGGAACTAGCACAACGTTCCTGA -ACGGAACTAGCACAACGTTAGCGA -ACGGAACTAGCACAACGTCACAGA -ACGGAACTAGCACAACGTGCAAGA -ACGGAACTAGCACAACGTGGTTGA -ACGGAACTAGCACAACGTTCCGAT -ACGGAACTAGCACAACGTTGGCAT -ACGGAACTAGCACAACGTCGAGAT -ACGGAACTAGCACAACGTTACCAC -ACGGAACTAGCACAACGTCAGAAC -ACGGAACTAGCACAACGTGTCTAC -ACGGAACTAGCACAACGTACGTAC -ACGGAACTAGCACAACGTAGTGAC -ACGGAACTAGCACAACGTCTGTAG -ACGGAACTAGCACAACGTCCTAAG -ACGGAACTAGCACAACGTGTTCAG -ACGGAACTAGCACAACGTGCATAG -ACGGAACTAGCACAACGTGACAAG -ACGGAACTAGCACAACGTAAGCAG -ACGGAACTAGCACAACGTCGTCAA -ACGGAACTAGCACAACGTGCTGAA -ACGGAACTAGCACAACGTAGTACG -ACGGAACTAGCACAACGTATCCGA -ACGGAACTAGCACAACGTATGGGA -ACGGAACTAGCACAACGTGTGCAA -ACGGAACTAGCACAACGTGAGGAA -ACGGAACTAGCACAACGTCAGGTA -ACGGAACTAGCACAACGTGACTCT -ACGGAACTAGCACAACGTAGTCCT -ACGGAACTAGCACAACGTTAAGCC -ACGGAACTAGCACAACGTATAGCC -ACGGAACTAGCACAACGTTAACCG -ACGGAACTAGCACAACGTATGCCA -ACGGAACTAGCAGAAGCTGGAAAC -ACGGAACTAGCAGAAGCTAACACC -ACGGAACTAGCAGAAGCTATCGAG -ACGGAACTAGCAGAAGCTCTCCTT -ACGGAACTAGCAGAAGCTCCTGTT -ACGGAACTAGCAGAAGCTCGGTTT -ACGGAACTAGCAGAAGCTGTGGTT -ACGGAACTAGCAGAAGCTGCCTTT -ACGGAACTAGCAGAAGCTGGTCTT -ACGGAACTAGCAGAAGCTACGCTT -ACGGAACTAGCAGAAGCTAGCGTT -ACGGAACTAGCAGAAGCTTTCGTC -ACGGAACTAGCAGAAGCTTCTCTC -ACGGAACTAGCAGAAGCTTGGATC -ACGGAACTAGCAGAAGCTCACTTC -ACGGAACTAGCAGAAGCTGTACTC -ACGGAACTAGCAGAAGCTGATGTC -ACGGAACTAGCAGAAGCTACAGTC -ACGGAACTAGCAGAAGCTTTGCTG -ACGGAACTAGCAGAAGCTTCCATG -ACGGAACTAGCAGAAGCTTGTGTG -ACGGAACTAGCAGAAGCTCTAGTG -ACGGAACTAGCAGAAGCTCATCTG -ACGGAACTAGCAGAAGCTGAGTTG -ACGGAACTAGCAGAAGCTAGACTG -ACGGAACTAGCAGAAGCTTCGGTA -ACGGAACTAGCAGAAGCTTGCCTA -ACGGAACTAGCAGAAGCTCCACTA -ACGGAACTAGCAGAAGCTGGAGTA -ACGGAACTAGCAGAAGCTTCGTCT -ACGGAACTAGCAGAAGCTTGCACT -ACGGAACTAGCAGAAGCTCTGACT -ACGGAACTAGCAGAAGCTCAACCT -ACGGAACTAGCAGAAGCTGCTACT -ACGGAACTAGCAGAAGCTGGATCT -ACGGAACTAGCAGAAGCTAAGGCT -ACGGAACTAGCAGAAGCTTCAACC -ACGGAACTAGCAGAAGCTTGTTCC -ACGGAACTAGCAGAAGCTATTCCC -ACGGAACTAGCAGAAGCTTTCTCG -ACGGAACTAGCAGAAGCTTAGACG -ACGGAACTAGCAGAAGCTGTAACG -ACGGAACTAGCAGAAGCTACTTCG -ACGGAACTAGCAGAAGCTTACGCA -ACGGAACTAGCAGAAGCTCTTGCA -ACGGAACTAGCAGAAGCTCGAACA -ACGGAACTAGCAGAAGCTCAGTCA -ACGGAACTAGCAGAAGCTGATCCA -ACGGAACTAGCAGAAGCTACGACA -ACGGAACTAGCAGAAGCTAGCTCA -ACGGAACTAGCAGAAGCTTCACGT -ACGGAACTAGCAGAAGCTCGTAGT -ACGGAACTAGCAGAAGCTGTCAGT -ACGGAACTAGCAGAAGCTGAAGGT -ACGGAACTAGCAGAAGCTAACCGT -ACGGAACTAGCAGAAGCTTTGTGC -ACGGAACTAGCAGAAGCTCTAAGC -ACGGAACTAGCAGAAGCTACTAGC -ACGGAACTAGCAGAAGCTAGATGC -ACGGAACTAGCAGAAGCTTGAAGG -ACGGAACTAGCAGAAGCTCAATGG -ACGGAACTAGCAGAAGCTATGAGG -ACGGAACTAGCAGAAGCTAATGGG -ACGGAACTAGCAGAAGCTTCCTGA -ACGGAACTAGCAGAAGCTTAGCGA -ACGGAACTAGCAGAAGCTCACAGA -ACGGAACTAGCAGAAGCTGCAAGA -ACGGAACTAGCAGAAGCTGGTTGA -ACGGAACTAGCAGAAGCTTCCGAT -ACGGAACTAGCAGAAGCTTGGCAT -ACGGAACTAGCAGAAGCTCGAGAT -ACGGAACTAGCAGAAGCTTACCAC -ACGGAACTAGCAGAAGCTCAGAAC -ACGGAACTAGCAGAAGCTGTCTAC -ACGGAACTAGCAGAAGCTACGTAC -ACGGAACTAGCAGAAGCTAGTGAC -ACGGAACTAGCAGAAGCTCTGTAG -ACGGAACTAGCAGAAGCTCCTAAG -ACGGAACTAGCAGAAGCTGTTCAG -ACGGAACTAGCAGAAGCTGCATAG -ACGGAACTAGCAGAAGCTGACAAG -ACGGAACTAGCAGAAGCTAAGCAG -ACGGAACTAGCAGAAGCTCGTCAA -ACGGAACTAGCAGAAGCTGCTGAA -ACGGAACTAGCAGAAGCTAGTACG -ACGGAACTAGCAGAAGCTATCCGA -ACGGAACTAGCAGAAGCTATGGGA -ACGGAACTAGCAGAAGCTGTGCAA -ACGGAACTAGCAGAAGCTGAGGAA -ACGGAACTAGCAGAAGCTCAGGTA -ACGGAACTAGCAGAAGCTGACTCT -ACGGAACTAGCAGAAGCTAGTCCT -ACGGAACTAGCAGAAGCTTAAGCC -ACGGAACTAGCAGAAGCTATAGCC -ACGGAACTAGCAGAAGCTTAACCG -ACGGAACTAGCAGAAGCTATGCCA -ACGGAACTAGCAACGAGTGGAAAC -ACGGAACTAGCAACGAGTAACACC -ACGGAACTAGCAACGAGTATCGAG -ACGGAACTAGCAACGAGTCTCCTT -ACGGAACTAGCAACGAGTCCTGTT -ACGGAACTAGCAACGAGTCGGTTT -ACGGAACTAGCAACGAGTGTGGTT -ACGGAACTAGCAACGAGTGCCTTT -ACGGAACTAGCAACGAGTGGTCTT -ACGGAACTAGCAACGAGTACGCTT -ACGGAACTAGCAACGAGTAGCGTT -ACGGAACTAGCAACGAGTTTCGTC -ACGGAACTAGCAACGAGTTCTCTC -ACGGAACTAGCAACGAGTTGGATC -ACGGAACTAGCAACGAGTCACTTC -ACGGAACTAGCAACGAGTGTACTC -ACGGAACTAGCAACGAGTGATGTC -ACGGAACTAGCAACGAGTACAGTC -ACGGAACTAGCAACGAGTTTGCTG -ACGGAACTAGCAACGAGTTCCATG -ACGGAACTAGCAACGAGTTGTGTG -ACGGAACTAGCAACGAGTCTAGTG -ACGGAACTAGCAACGAGTCATCTG -ACGGAACTAGCAACGAGTGAGTTG -ACGGAACTAGCAACGAGTAGACTG -ACGGAACTAGCAACGAGTTCGGTA -ACGGAACTAGCAACGAGTTGCCTA -ACGGAACTAGCAACGAGTCCACTA -ACGGAACTAGCAACGAGTGGAGTA -ACGGAACTAGCAACGAGTTCGTCT -ACGGAACTAGCAACGAGTTGCACT -ACGGAACTAGCAACGAGTCTGACT -ACGGAACTAGCAACGAGTCAACCT -ACGGAACTAGCAACGAGTGCTACT -ACGGAACTAGCAACGAGTGGATCT -ACGGAACTAGCAACGAGTAAGGCT -ACGGAACTAGCAACGAGTTCAACC -ACGGAACTAGCAACGAGTTGTTCC -ACGGAACTAGCAACGAGTATTCCC -ACGGAACTAGCAACGAGTTTCTCG -ACGGAACTAGCAACGAGTTAGACG -ACGGAACTAGCAACGAGTGTAACG -ACGGAACTAGCAACGAGTACTTCG -ACGGAACTAGCAACGAGTTACGCA -ACGGAACTAGCAACGAGTCTTGCA -ACGGAACTAGCAACGAGTCGAACA -ACGGAACTAGCAACGAGTCAGTCA -ACGGAACTAGCAACGAGTGATCCA -ACGGAACTAGCAACGAGTACGACA -ACGGAACTAGCAACGAGTAGCTCA -ACGGAACTAGCAACGAGTTCACGT -ACGGAACTAGCAACGAGTCGTAGT -ACGGAACTAGCAACGAGTGTCAGT -ACGGAACTAGCAACGAGTGAAGGT -ACGGAACTAGCAACGAGTAACCGT -ACGGAACTAGCAACGAGTTTGTGC -ACGGAACTAGCAACGAGTCTAAGC -ACGGAACTAGCAACGAGTACTAGC -ACGGAACTAGCAACGAGTAGATGC -ACGGAACTAGCAACGAGTTGAAGG -ACGGAACTAGCAACGAGTCAATGG -ACGGAACTAGCAACGAGTATGAGG -ACGGAACTAGCAACGAGTAATGGG -ACGGAACTAGCAACGAGTTCCTGA -ACGGAACTAGCAACGAGTTAGCGA -ACGGAACTAGCAACGAGTCACAGA -ACGGAACTAGCAACGAGTGCAAGA -ACGGAACTAGCAACGAGTGGTTGA -ACGGAACTAGCAACGAGTTCCGAT -ACGGAACTAGCAACGAGTTGGCAT -ACGGAACTAGCAACGAGTCGAGAT -ACGGAACTAGCAACGAGTTACCAC -ACGGAACTAGCAACGAGTCAGAAC -ACGGAACTAGCAACGAGTGTCTAC -ACGGAACTAGCAACGAGTACGTAC -ACGGAACTAGCAACGAGTAGTGAC -ACGGAACTAGCAACGAGTCTGTAG -ACGGAACTAGCAACGAGTCCTAAG -ACGGAACTAGCAACGAGTGTTCAG -ACGGAACTAGCAACGAGTGCATAG -ACGGAACTAGCAACGAGTGACAAG -ACGGAACTAGCAACGAGTAAGCAG -ACGGAACTAGCAACGAGTCGTCAA -ACGGAACTAGCAACGAGTGCTGAA -ACGGAACTAGCAACGAGTAGTACG -ACGGAACTAGCAACGAGTATCCGA -ACGGAACTAGCAACGAGTATGGGA -ACGGAACTAGCAACGAGTGTGCAA -ACGGAACTAGCAACGAGTGAGGAA -ACGGAACTAGCAACGAGTCAGGTA -ACGGAACTAGCAACGAGTGACTCT -ACGGAACTAGCAACGAGTAGTCCT -ACGGAACTAGCAACGAGTTAAGCC -ACGGAACTAGCAACGAGTATAGCC -ACGGAACTAGCAACGAGTTAACCG -ACGGAACTAGCAACGAGTATGCCA -ACGGAACTAGCACGAATCGGAAAC -ACGGAACTAGCACGAATCAACACC -ACGGAACTAGCACGAATCATCGAG -ACGGAACTAGCACGAATCCTCCTT -ACGGAACTAGCACGAATCCCTGTT -ACGGAACTAGCACGAATCCGGTTT -ACGGAACTAGCACGAATCGTGGTT -ACGGAACTAGCACGAATCGCCTTT -ACGGAACTAGCACGAATCGGTCTT -ACGGAACTAGCACGAATCACGCTT -ACGGAACTAGCACGAATCAGCGTT -ACGGAACTAGCACGAATCTTCGTC -ACGGAACTAGCACGAATCTCTCTC -ACGGAACTAGCACGAATCTGGATC -ACGGAACTAGCACGAATCCACTTC -ACGGAACTAGCACGAATCGTACTC -ACGGAACTAGCACGAATCGATGTC -ACGGAACTAGCACGAATCACAGTC -ACGGAACTAGCACGAATCTTGCTG -ACGGAACTAGCACGAATCTCCATG -ACGGAACTAGCACGAATCTGTGTG -ACGGAACTAGCACGAATCCTAGTG -ACGGAACTAGCACGAATCCATCTG -ACGGAACTAGCACGAATCGAGTTG -ACGGAACTAGCACGAATCAGACTG -ACGGAACTAGCACGAATCTCGGTA -ACGGAACTAGCACGAATCTGCCTA -ACGGAACTAGCACGAATCCCACTA -ACGGAACTAGCACGAATCGGAGTA -ACGGAACTAGCACGAATCTCGTCT -ACGGAACTAGCACGAATCTGCACT -ACGGAACTAGCACGAATCCTGACT -ACGGAACTAGCACGAATCCAACCT -ACGGAACTAGCACGAATCGCTACT -ACGGAACTAGCACGAATCGGATCT -ACGGAACTAGCACGAATCAAGGCT -ACGGAACTAGCACGAATCTCAACC -ACGGAACTAGCACGAATCTGTTCC -ACGGAACTAGCACGAATCATTCCC -ACGGAACTAGCACGAATCTTCTCG -ACGGAACTAGCACGAATCTAGACG -ACGGAACTAGCACGAATCGTAACG -ACGGAACTAGCACGAATCACTTCG -ACGGAACTAGCACGAATCTACGCA -ACGGAACTAGCACGAATCCTTGCA -ACGGAACTAGCACGAATCCGAACA -ACGGAACTAGCACGAATCCAGTCA -ACGGAACTAGCACGAATCGATCCA -ACGGAACTAGCACGAATCACGACA -ACGGAACTAGCACGAATCAGCTCA -ACGGAACTAGCACGAATCTCACGT -ACGGAACTAGCACGAATCCGTAGT -ACGGAACTAGCACGAATCGTCAGT -ACGGAACTAGCACGAATCGAAGGT -ACGGAACTAGCACGAATCAACCGT -ACGGAACTAGCACGAATCTTGTGC -ACGGAACTAGCACGAATCCTAAGC -ACGGAACTAGCACGAATCACTAGC -ACGGAACTAGCACGAATCAGATGC -ACGGAACTAGCACGAATCTGAAGG -ACGGAACTAGCACGAATCCAATGG -ACGGAACTAGCACGAATCATGAGG -ACGGAACTAGCACGAATCAATGGG -ACGGAACTAGCACGAATCTCCTGA -ACGGAACTAGCACGAATCTAGCGA -ACGGAACTAGCACGAATCCACAGA -ACGGAACTAGCACGAATCGCAAGA -ACGGAACTAGCACGAATCGGTTGA -ACGGAACTAGCACGAATCTCCGAT -ACGGAACTAGCACGAATCTGGCAT -ACGGAACTAGCACGAATCCGAGAT -ACGGAACTAGCACGAATCTACCAC -ACGGAACTAGCACGAATCCAGAAC -ACGGAACTAGCACGAATCGTCTAC -ACGGAACTAGCACGAATCACGTAC -ACGGAACTAGCACGAATCAGTGAC -ACGGAACTAGCACGAATCCTGTAG -ACGGAACTAGCACGAATCCCTAAG -ACGGAACTAGCACGAATCGTTCAG -ACGGAACTAGCACGAATCGCATAG -ACGGAACTAGCACGAATCGACAAG -ACGGAACTAGCACGAATCAAGCAG -ACGGAACTAGCACGAATCCGTCAA -ACGGAACTAGCACGAATCGCTGAA -ACGGAACTAGCACGAATCAGTACG -ACGGAACTAGCACGAATCATCCGA -ACGGAACTAGCACGAATCATGGGA -ACGGAACTAGCACGAATCGTGCAA -ACGGAACTAGCACGAATCGAGGAA -ACGGAACTAGCACGAATCCAGGTA -ACGGAACTAGCACGAATCGACTCT -ACGGAACTAGCACGAATCAGTCCT -ACGGAACTAGCACGAATCTAAGCC -ACGGAACTAGCACGAATCATAGCC -ACGGAACTAGCACGAATCTAACCG -ACGGAACTAGCACGAATCATGCCA -ACGGAACTAGCAGGAATGGGAAAC -ACGGAACTAGCAGGAATGAACACC -ACGGAACTAGCAGGAATGATCGAG -ACGGAACTAGCAGGAATGCTCCTT -ACGGAACTAGCAGGAATGCCTGTT -ACGGAACTAGCAGGAATGCGGTTT -ACGGAACTAGCAGGAATGGTGGTT -ACGGAACTAGCAGGAATGGCCTTT -ACGGAACTAGCAGGAATGGGTCTT -ACGGAACTAGCAGGAATGACGCTT -ACGGAACTAGCAGGAATGAGCGTT -ACGGAACTAGCAGGAATGTTCGTC -ACGGAACTAGCAGGAATGTCTCTC -ACGGAACTAGCAGGAATGTGGATC -ACGGAACTAGCAGGAATGCACTTC -ACGGAACTAGCAGGAATGGTACTC -ACGGAACTAGCAGGAATGGATGTC -ACGGAACTAGCAGGAATGACAGTC -ACGGAACTAGCAGGAATGTTGCTG -ACGGAACTAGCAGGAATGTCCATG -ACGGAACTAGCAGGAATGTGTGTG -ACGGAACTAGCAGGAATGCTAGTG -ACGGAACTAGCAGGAATGCATCTG -ACGGAACTAGCAGGAATGGAGTTG -ACGGAACTAGCAGGAATGAGACTG -ACGGAACTAGCAGGAATGTCGGTA -ACGGAACTAGCAGGAATGTGCCTA -ACGGAACTAGCAGGAATGCCACTA -ACGGAACTAGCAGGAATGGGAGTA -ACGGAACTAGCAGGAATGTCGTCT -ACGGAACTAGCAGGAATGTGCACT -ACGGAACTAGCAGGAATGCTGACT -ACGGAACTAGCAGGAATGCAACCT -ACGGAACTAGCAGGAATGGCTACT -ACGGAACTAGCAGGAATGGGATCT -ACGGAACTAGCAGGAATGAAGGCT -ACGGAACTAGCAGGAATGTCAACC -ACGGAACTAGCAGGAATGTGTTCC -ACGGAACTAGCAGGAATGATTCCC -ACGGAACTAGCAGGAATGTTCTCG -ACGGAACTAGCAGGAATGTAGACG -ACGGAACTAGCAGGAATGGTAACG -ACGGAACTAGCAGGAATGACTTCG -ACGGAACTAGCAGGAATGTACGCA -ACGGAACTAGCAGGAATGCTTGCA -ACGGAACTAGCAGGAATGCGAACA -ACGGAACTAGCAGGAATGCAGTCA -ACGGAACTAGCAGGAATGGATCCA -ACGGAACTAGCAGGAATGACGACA -ACGGAACTAGCAGGAATGAGCTCA -ACGGAACTAGCAGGAATGTCACGT -ACGGAACTAGCAGGAATGCGTAGT -ACGGAACTAGCAGGAATGGTCAGT -ACGGAACTAGCAGGAATGGAAGGT -ACGGAACTAGCAGGAATGAACCGT -ACGGAACTAGCAGGAATGTTGTGC -ACGGAACTAGCAGGAATGCTAAGC -ACGGAACTAGCAGGAATGACTAGC -ACGGAACTAGCAGGAATGAGATGC -ACGGAACTAGCAGGAATGTGAAGG -ACGGAACTAGCAGGAATGCAATGG -ACGGAACTAGCAGGAATGATGAGG -ACGGAACTAGCAGGAATGAATGGG -ACGGAACTAGCAGGAATGTCCTGA -ACGGAACTAGCAGGAATGTAGCGA -ACGGAACTAGCAGGAATGCACAGA -ACGGAACTAGCAGGAATGGCAAGA -ACGGAACTAGCAGGAATGGGTTGA -ACGGAACTAGCAGGAATGTCCGAT -ACGGAACTAGCAGGAATGTGGCAT -ACGGAACTAGCAGGAATGCGAGAT -ACGGAACTAGCAGGAATGTACCAC -ACGGAACTAGCAGGAATGCAGAAC -ACGGAACTAGCAGGAATGGTCTAC -ACGGAACTAGCAGGAATGACGTAC -ACGGAACTAGCAGGAATGAGTGAC -ACGGAACTAGCAGGAATGCTGTAG -ACGGAACTAGCAGGAATGCCTAAG -ACGGAACTAGCAGGAATGGTTCAG -ACGGAACTAGCAGGAATGGCATAG -ACGGAACTAGCAGGAATGGACAAG -ACGGAACTAGCAGGAATGAAGCAG -ACGGAACTAGCAGGAATGCGTCAA -ACGGAACTAGCAGGAATGGCTGAA -ACGGAACTAGCAGGAATGAGTACG -ACGGAACTAGCAGGAATGATCCGA -ACGGAACTAGCAGGAATGATGGGA -ACGGAACTAGCAGGAATGGTGCAA -ACGGAACTAGCAGGAATGGAGGAA -ACGGAACTAGCAGGAATGCAGGTA -ACGGAACTAGCAGGAATGGACTCT -ACGGAACTAGCAGGAATGAGTCCT -ACGGAACTAGCAGGAATGTAAGCC -ACGGAACTAGCAGGAATGATAGCC -ACGGAACTAGCAGGAATGTAACCG -ACGGAACTAGCAGGAATGATGCCA -ACGGAACTAGCACAAGTGGGAAAC -ACGGAACTAGCACAAGTGAACACC -ACGGAACTAGCACAAGTGATCGAG -ACGGAACTAGCACAAGTGCTCCTT -ACGGAACTAGCACAAGTGCCTGTT -ACGGAACTAGCACAAGTGCGGTTT -ACGGAACTAGCACAAGTGGTGGTT -ACGGAACTAGCACAAGTGGCCTTT -ACGGAACTAGCACAAGTGGGTCTT -ACGGAACTAGCACAAGTGACGCTT -ACGGAACTAGCACAAGTGAGCGTT -ACGGAACTAGCACAAGTGTTCGTC -ACGGAACTAGCACAAGTGTCTCTC -ACGGAACTAGCACAAGTGTGGATC -ACGGAACTAGCACAAGTGCACTTC -ACGGAACTAGCACAAGTGGTACTC -ACGGAACTAGCACAAGTGGATGTC -ACGGAACTAGCACAAGTGACAGTC -ACGGAACTAGCACAAGTGTTGCTG -ACGGAACTAGCACAAGTGTCCATG -ACGGAACTAGCACAAGTGTGTGTG -ACGGAACTAGCACAAGTGCTAGTG -ACGGAACTAGCACAAGTGCATCTG -ACGGAACTAGCACAAGTGGAGTTG -ACGGAACTAGCACAAGTGAGACTG -ACGGAACTAGCACAAGTGTCGGTA -ACGGAACTAGCACAAGTGTGCCTA -ACGGAACTAGCACAAGTGCCACTA -ACGGAACTAGCACAAGTGGGAGTA -ACGGAACTAGCACAAGTGTCGTCT -ACGGAACTAGCACAAGTGTGCACT -ACGGAACTAGCACAAGTGCTGACT -ACGGAACTAGCACAAGTGCAACCT -ACGGAACTAGCACAAGTGGCTACT -ACGGAACTAGCACAAGTGGGATCT -ACGGAACTAGCACAAGTGAAGGCT -ACGGAACTAGCACAAGTGTCAACC -ACGGAACTAGCACAAGTGTGTTCC -ACGGAACTAGCACAAGTGATTCCC -ACGGAACTAGCACAAGTGTTCTCG -ACGGAACTAGCACAAGTGTAGACG -ACGGAACTAGCACAAGTGGTAACG -ACGGAACTAGCACAAGTGACTTCG -ACGGAACTAGCACAAGTGTACGCA -ACGGAACTAGCACAAGTGCTTGCA -ACGGAACTAGCACAAGTGCGAACA -ACGGAACTAGCACAAGTGCAGTCA -ACGGAACTAGCACAAGTGGATCCA -ACGGAACTAGCACAAGTGACGACA -ACGGAACTAGCACAAGTGAGCTCA -ACGGAACTAGCACAAGTGTCACGT -ACGGAACTAGCACAAGTGCGTAGT -ACGGAACTAGCACAAGTGGTCAGT -ACGGAACTAGCACAAGTGGAAGGT -ACGGAACTAGCACAAGTGAACCGT -ACGGAACTAGCACAAGTGTTGTGC -ACGGAACTAGCACAAGTGCTAAGC -ACGGAACTAGCACAAGTGACTAGC -ACGGAACTAGCACAAGTGAGATGC -ACGGAACTAGCACAAGTGTGAAGG -ACGGAACTAGCACAAGTGCAATGG -ACGGAACTAGCACAAGTGATGAGG -ACGGAACTAGCACAAGTGAATGGG -ACGGAACTAGCACAAGTGTCCTGA -ACGGAACTAGCACAAGTGTAGCGA -ACGGAACTAGCACAAGTGCACAGA -ACGGAACTAGCACAAGTGGCAAGA -ACGGAACTAGCACAAGTGGGTTGA -ACGGAACTAGCACAAGTGTCCGAT -ACGGAACTAGCACAAGTGTGGCAT -ACGGAACTAGCACAAGTGCGAGAT -ACGGAACTAGCACAAGTGTACCAC -ACGGAACTAGCACAAGTGCAGAAC -ACGGAACTAGCACAAGTGGTCTAC -ACGGAACTAGCACAAGTGACGTAC -ACGGAACTAGCACAAGTGAGTGAC -ACGGAACTAGCACAAGTGCTGTAG -ACGGAACTAGCACAAGTGCCTAAG -ACGGAACTAGCACAAGTGGTTCAG -ACGGAACTAGCACAAGTGGCATAG -ACGGAACTAGCACAAGTGGACAAG -ACGGAACTAGCACAAGTGAAGCAG -ACGGAACTAGCACAAGTGCGTCAA -ACGGAACTAGCACAAGTGGCTGAA -ACGGAACTAGCACAAGTGAGTACG -ACGGAACTAGCACAAGTGATCCGA -ACGGAACTAGCACAAGTGATGGGA -ACGGAACTAGCACAAGTGGTGCAA -ACGGAACTAGCACAAGTGGAGGAA -ACGGAACTAGCACAAGTGCAGGTA -ACGGAACTAGCACAAGTGGACTCT -ACGGAACTAGCACAAGTGAGTCCT -ACGGAACTAGCACAAGTGTAAGCC -ACGGAACTAGCACAAGTGATAGCC -ACGGAACTAGCACAAGTGTAACCG -ACGGAACTAGCACAAGTGATGCCA -ACGGAACTAGCAGAAGAGGGAAAC -ACGGAACTAGCAGAAGAGAACACC -ACGGAACTAGCAGAAGAGATCGAG -ACGGAACTAGCAGAAGAGCTCCTT -ACGGAACTAGCAGAAGAGCCTGTT -ACGGAACTAGCAGAAGAGCGGTTT -ACGGAACTAGCAGAAGAGGTGGTT -ACGGAACTAGCAGAAGAGGCCTTT -ACGGAACTAGCAGAAGAGGGTCTT -ACGGAACTAGCAGAAGAGACGCTT -ACGGAACTAGCAGAAGAGAGCGTT -ACGGAACTAGCAGAAGAGTTCGTC -ACGGAACTAGCAGAAGAGTCTCTC -ACGGAACTAGCAGAAGAGTGGATC -ACGGAACTAGCAGAAGAGCACTTC -ACGGAACTAGCAGAAGAGGTACTC -ACGGAACTAGCAGAAGAGGATGTC -ACGGAACTAGCAGAAGAGACAGTC -ACGGAACTAGCAGAAGAGTTGCTG -ACGGAACTAGCAGAAGAGTCCATG -ACGGAACTAGCAGAAGAGTGTGTG -ACGGAACTAGCAGAAGAGCTAGTG -ACGGAACTAGCAGAAGAGCATCTG -ACGGAACTAGCAGAAGAGGAGTTG -ACGGAACTAGCAGAAGAGAGACTG -ACGGAACTAGCAGAAGAGTCGGTA -ACGGAACTAGCAGAAGAGTGCCTA -ACGGAACTAGCAGAAGAGCCACTA -ACGGAACTAGCAGAAGAGGGAGTA -ACGGAACTAGCAGAAGAGTCGTCT -ACGGAACTAGCAGAAGAGTGCACT -ACGGAACTAGCAGAAGAGCTGACT -ACGGAACTAGCAGAAGAGCAACCT -ACGGAACTAGCAGAAGAGGCTACT -ACGGAACTAGCAGAAGAGGGATCT -ACGGAACTAGCAGAAGAGAAGGCT -ACGGAACTAGCAGAAGAGTCAACC -ACGGAACTAGCAGAAGAGTGTTCC -ACGGAACTAGCAGAAGAGATTCCC -ACGGAACTAGCAGAAGAGTTCTCG -ACGGAACTAGCAGAAGAGTAGACG -ACGGAACTAGCAGAAGAGGTAACG -ACGGAACTAGCAGAAGAGACTTCG -ACGGAACTAGCAGAAGAGTACGCA -ACGGAACTAGCAGAAGAGCTTGCA -ACGGAACTAGCAGAAGAGCGAACA -ACGGAACTAGCAGAAGAGCAGTCA -ACGGAACTAGCAGAAGAGGATCCA -ACGGAACTAGCAGAAGAGACGACA -ACGGAACTAGCAGAAGAGAGCTCA -ACGGAACTAGCAGAAGAGTCACGT -ACGGAACTAGCAGAAGAGCGTAGT -ACGGAACTAGCAGAAGAGGTCAGT -ACGGAACTAGCAGAAGAGGAAGGT -ACGGAACTAGCAGAAGAGAACCGT -ACGGAACTAGCAGAAGAGTTGTGC -ACGGAACTAGCAGAAGAGCTAAGC -ACGGAACTAGCAGAAGAGACTAGC -ACGGAACTAGCAGAAGAGAGATGC -ACGGAACTAGCAGAAGAGTGAAGG -ACGGAACTAGCAGAAGAGCAATGG -ACGGAACTAGCAGAAGAGATGAGG -ACGGAACTAGCAGAAGAGAATGGG -ACGGAACTAGCAGAAGAGTCCTGA -ACGGAACTAGCAGAAGAGTAGCGA -ACGGAACTAGCAGAAGAGCACAGA -ACGGAACTAGCAGAAGAGGCAAGA -ACGGAACTAGCAGAAGAGGGTTGA -ACGGAACTAGCAGAAGAGTCCGAT -ACGGAACTAGCAGAAGAGTGGCAT -ACGGAACTAGCAGAAGAGCGAGAT -ACGGAACTAGCAGAAGAGTACCAC -ACGGAACTAGCAGAAGAGCAGAAC -ACGGAACTAGCAGAAGAGGTCTAC -ACGGAACTAGCAGAAGAGACGTAC -ACGGAACTAGCAGAAGAGAGTGAC -ACGGAACTAGCAGAAGAGCTGTAG -ACGGAACTAGCAGAAGAGCCTAAG -ACGGAACTAGCAGAAGAGGTTCAG -ACGGAACTAGCAGAAGAGGCATAG -ACGGAACTAGCAGAAGAGGACAAG -ACGGAACTAGCAGAAGAGAAGCAG -ACGGAACTAGCAGAAGAGCGTCAA -ACGGAACTAGCAGAAGAGGCTGAA -ACGGAACTAGCAGAAGAGAGTACG -ACGGAACTAGCAGAAGAGATCCGA -ACGGAACTAGCAGAAGAGATGGGA -ACGGAACTAGCAGAAGAGGTGCAA -ACGGAACTAGCAGAAGAGGAGGAA -ACGGAACTAGCAGAAGAGCAGGTA -ACGGAACTAGCAGAAGAGGACTCT -ACGGAACTAGCAGAAGAGAGTCCT -ACGGAACTAGCAGAAGAGTAAGCC -ACGGAACTAGCAGAAGAGATAGCC -ACGGAACTAGCAGAAGAGTAACCG -ACGGAACTAGCAGAAGAGATGCCA -ACGGAACTAGCAGTACAGGGAAAC -ACGGAACTAGCAGTACAGAACACC -ACGGAACTAGCAGTACAGATCGAG -ACGGAACTAGCAGTACAGCTCCTT -ACGGAACTAGCAGTACAGCCTGTT -ACGGAACTAGCAGTACAGCGGTTT -ACGGAACTAGCAGTACAGGTGGTT -ACGGAACTAGCAGTACAGGCCTTT -ACGGAACTAGCAGTACAGGGTCTT -ACGGAACTAGCAGTACAGACGCTT -ACGGAACTAGCAGTACAGAGCGTT -ACGGAACTAGCAGTACAGTTCGTC -ACGGAACTAGCAGTACAGTCTCTC -ACGGAACTAGCAGTACAGTGGATC -ACGGAACTAGCAGTACAGCACTTC -ACGGAACTAGCAGTACAGGTACTC -ACGGAACTAGCAGTACAGGATGTC -ACGGAACTAGCAGTACAGACAGTC -ACGGAACTAGCAGTACAGTTGCTG -ACGGAACTAGCAGTACAGTCCATG -ACGGAACTAGCAGTACAGTGTGTG -ACGGAACTAGCAGTACAGCTAGTG -ACGGAACTAGCAGTACAGCATCTG -ACGGAACTAGCAGTACAGGAGTTG -ACGGAACTAGCAGTACAGAGACTG -ACGGAACTAGCAGTACAGTCGGTA -ACGGAACTAGCAGTACAGTGCCTA -ACGGAACTAGCAGTACAGCCACTA -ACGGAACTAGCAGTACAGGGAGTA -ACGGAACTAGCAGTACAGTCGTCT -ACGGAACTAGCAGTACAGTGCACT -ACGGAACTAGCAGTACAGCTGACT -ACGGAACTAGCAGTACAGCAACCT -ACGGAACTAGCAGTACAGGCTACT -ACGGAACTAGCAGTACAGGGATCT -ACGGAACTAGCAGTACAGAAGGCT -ACGGAACTAGCAGTACAGTCAACC -ACGGAACTAGCAGTACAGTGTTCC -ACGGAACTAGCAGTACAGATTCCC -ACGGAACTAGCAGTACAGTTCTCG -ACGGAACTAGCAGTACAGTAGACG -ACGGAACTAGCAGTACAGGTAACG -ACGGAACTAGCAGTACAGACTTCG -ACGGAACTAGCAGTACAGTACGCA -ACGGAACTAGCAGTACAGCTTGCA -ACGGAACTAGCAGTACAGCGAACA -ACGGAACTAGCAGTACAGCAGTCA -ACGGAACTAGCAGTACAGGATCCA -ACGGAACTAGCAGTACAGACGACA -ACGGAACTAGCAGTACAGAGCTCA -ACGGAACTAGCAGTACAGTCACGT -ACGGAACTAGCAGTACAGCGTAGT -ACGGAACTAGCAGTACAGGTCAGT -ACGGAACTAGCAGTACAGGAAGGT -ACGGAACTAGCAGTACAGAACCGT -ACGGAACTAGCAGTACAGTTGTGC -ACGGAACTAGCAGTACAGCTAAGC -ACGGAACTAGCAGTACAGACTAGC -ACGGAACTAGCAGTACAGAGATGC -ACGGAACTAGCAGTACAGTGAAGG -ACGGAACTAGCAGTACAGCAATGG -ACGGAACTAGCAGTACAGATGAGG -ACGGAACTAGCAGTACAGAATGGG -ACGGAACTAGCAGTACAGTCCTGA -ACGGAACTAGCAGTACAGTAGCGA -ACGGAACTAGCAGTACAGCACAGA -ACGGAACTAGCAGTACAGGCAAGA -ACGGAACTAGCAGTACAGGGTTGA -ACGGAACTAGCAGTACAGTCCGAT -ACGGAACTAGCAGTACAGTGGCAT -ACGGAACTAGCAGTACAGCGAGAT -ACGGAACTAGCAGTACAGTACCAC -ACGGAACTAGCAGTACAGCAGAAC -ACGGAACTAGCAGTACAGGTCTAC -ACGGAACTAGCAGTACAGACGTAC -ACGGAACTAGCAGTACAGAGTGAC -ACGGAACTAGCAGTACAGCTGTAG -ACGGAACTAGCAGTACAGCCTAAG -ACGGAACTAGCAGTACAGGTTCAG -ACGGAACTAGCAGTACAGGCATAG -ACGGAACTAGCAGTACAGGACAAG -ACGGAACTAGCAGTACAGAAGCAG -ACGGAACTAGCAGTACAGCGTCAA -ACGGAACTAGCAGTACAGGCTGAA -ACGGAACTAGCAGTACAGAGTACG -ACGGAACTAGCAGTACAGATCCGA -ACGGAACTAGCAGTACAGATGGGA -ACGGAACTAGCAGTACAGGTGCAA -ACGGAACTAGCAGTACAGGAGGAA -ACGGAACTAGCAGTACAGCAGGTA -ACGGAACTAGCAGTACAGGACTCT -ACGGAACTAGCAGTACAGAGTCCT -ACGGAACTAGCAGTACAGTAAGCC -ACGGAACTAGCAGTACAGATAGCC -ACGGAACTAGCAGTACAGTAACCG -ACGGAACTAGCAGTACAGATGCCA -ACGGAACTAGCATCTGACGGAAAC -ACGGAACTAGCATCTGACAACACC -ACGGAACTAGCATCTGACATCGAG -ACGGAACTAGCATCTGACCTCCTT -ACGGAACTAGCATCTGACCCTGTT -ACGGAACTAGCATCTGACCGGTTT -ACGGAACTAGCATCTGACGTGGTT -ACGGAACTAGCATCTGACGCCTTT -ACGGAACTAGCATCTGACGGTCTT -ACGGAACTAGCATCTGACACGCTT -ACGGAACTAGCATCTGACAGCGTT -ACGGAACTAGCATCTGACTTCGTC -ACGGAACTAGCATCTGACTCTCTC -ACGGAACTAGCATCTGACTGGATC -ACGGAACTAGCATCTGACCACTTC -ACGGAACTAGCATCTGACGTACTC -ACGGAACTAGCATCTGACGATGTC -ACGGAACTAGCATCTGACACAGTC -ACGGAACTAGCATCTGACTTGCTG -ACGGAACTAGCATCTGACTCCATG -ACGGAACTAGCATCTGACTGTGTG -ACGGAACTAGCATCTGACCTAGTG -ACGGAACTAGCATCTGACCATCTG -ACGGAACTAGCATCTGACGAGTTG -ACGGAACTAGCATCTGACAGACTG -ACGGAACTAGCATCTGACTCGGTA -ACGGAACTAGCATCTGACTGCCTA -ACGGAACTAGCATCTGACCCACTA -ACGGAACTAGCATCTGACGGAGTA -ACGGAACTAGCATCTGACTCGTCT -ACGGAACTAGCATCTGACTGCACT -ACGGAACTAGCATCTGACCTGACT -ACGGAACTAGCATCTGACCAACCT -ACGGAACTAGCATCTGACGCTACT -ACGGAACTAGCATCTGACGGATCT -ACGGAACTAGCATCTGACAAGGCT -ACGGAACTAGCATCTGACTCAACC -ACGGAACTAGCATCTGACTGTTCC -ACGGAACTAGCATCTGACATTCCC -ACGGAACTAGCATCTGACTTCTCG -ACGGAACTAGCATCTGACTAGACG -ACGGAACTAGCATCTGACGTAACG -ACGGAACTAGCATCTGACACTTCG -ACGGAACTAGCATCTGACTACGCA -ACGGAACTAGCATCTGACCTTGCA -ACGGAACTAGCATCTGACCGAACA -ACGGAACTAGCATCTGACCAGTCA -ACGGAACTAGCATCTGACGATCCA -ACGGAACTAGCATCTGACACGACA -ACGGAACTAGCATCTGACAGCTCA -ACGGAACTAGCATCTGACTCACGT -ACGGAACTAGCATCTGACCGTAGT -ACGGAACTAGCATCTGACGTCAGT -ACGGAACTAGCATCTGACGAAGGT -ACGGAACTAGCATCTGACAACCGT -ACGGAACTAGCATCTGACTTGTGC -ACGGAACTAGCATCTGACCTAAGC -ACGGAACTAGCATCTGACACTAGC -ACGGAACTAGCATCTGACAGATGC -ACGGAACTAGCATCTGACTGAAGG -ACGGAACTAGCATCTGACCAATGG -ACGGAACTAGCATCTGACATGAGG -ACGGAACTAGCATCTGACAATGGG -ACGGAACTAGCATCTGACTCCTGA -ACGGAACTAGCATCTGACTAGCGA -ACGGAACTAGCATCTGACCACAGA -ACGGAACTAGCATCTGACGCAAGA -ACGGAACTAGCATCTGACGGTTGA -ACGGAACTAGCATCTGACTCCGAT -ACGGAACTAGCATCTGACTGGCAT -ACGGAACTAGCATCTGACCGAGAT -ACGGAACTAGCATCTGACTACCAC -ACGGAACTAGCATCTGACCAGAAC -ACGGAACTAGCATCTGACGTCTAC -ACGGAACTAGCATCTGACACGTAC -ACGGAACTAGCATCTGACAGTGAC -ACGGAACTAGCATCTGACCTGTAG -ACGGAACTAGCATCTGACCCTAAG -ACGGAACTAGCATCTGACGTTCAG -ACGGAACTAGCATCTGACGCATAG -ACGGAACTAGCATCTGACGACAAG -ACGGAACTAGCATCTGACAAGCAG -ACGGAACTAGCATCTGACCGTCAA -ACGGAACTAGCATCTGACGCTGAA -ACGGAACTAGCATCTGACAGTACG -ACGGAACTAGCATCTGACATCCGA -ACGGAACTAGCATCTGACATGGGA -ACGGAACTAGCATCTGACGTGCAA -ACGGAACTAGCATCTGACGAGGAA -ACGGAACTAGCATCTGACCAGGTA -ACGGAACTAGCATCTGACGACTCT -ACGGAACTAGCATCTGACAGTCCT -ACGGAACTAGCATCTGACTAAGCC -ACGGAACTAGCATCTGACATAGCC -ACGGAACTAGCATCTGACTAACCG -ACGGAACTAGCATCTGACATGCCA -ACGGAACTAGCACCTAGTGGAAAC -ACGGAACTAGCACCTAGTAACACC -ACGGAACTAGCACCTAGTATCGAG -ACGGAACTAGCACCTAGTCTCCTT -ACGGAACTAGCACCTAGTCCTGTT -ACGGAACTAGCACCTAGTCGGTTT -ACGGAACTAGCACCTAGTGTGGTT -ACGGAACTAGCACCTAGTGCCTTT -ACGGAACTAGCACCTAGTGGTCTT -ACGGAACTAGCACCTAGTACGCTT -ACGGAACTAGCACCTAGTAGCGTT -ACGGAACTAGCACCTAGTTTCGTC -ACGGAACTAGCACCTAGTTCTCTC -ACGGAACTAGCACCTAGTTGGATC -ACGGAACTAGCACCTAGTCACTTC -ACGGAACTAGCACCTAGTGTACTC -ACGGAACTAGCACCTAGTGATGTC -ACGGAACTAGCACCTAGTACAGTC -ACGGAACTAGCACCTAGTTTGCTG -ACGGAACTAGCACCTAGTTCCATG -ACGGAACTAGCACCTAGTTGTGTG -ACGGAACTAGCACCTAGTCTAGTG -ACGGAACTAGCACCTAGTCATCTG -ACGGAACTAGCACCTAGTGAGTTG -ACGGAACTAGCACCTAGTAGACTG -ACGGAACTAGCACCTAGTTCGGTA -ACGGAACTAGCACCTAGTTGCCTA -ACGGAACTAGCACCTAGTCCACTA -ACGGAACTAGCACCTAGTGGAGTA -ACGGAACTAGCACCTAGTTCGTCT -ACGGAACTAGCACCTAGTTGCACT -ACGGAACTAGCACCTAGTCTGACT -ACGGAACTAGCACCTAGTCAACCT -ACGGAACTAGCACCTAGTGCTACT -ACGGAACTAGCACCTAGTGGATCT -ACGGAACTAGCACCTAGTAAGGCT -ACGGAACTAGCACCTAGTTCAACC -ACGGAACTAGCACCTAGTTGTTCC -ACGGAACTAGCACCTAGTATTCCC -ACGGAACTAGCACCTAGTTTCTCG -ACGGAACTAGCACCTAGTTAGACG -ACGGAACTAGCACCTAGTGTAACG -ACGGAACTAGCACCTAGTACTTCG -ACGGAACTAGCACCTAGTTACGCA -ACGGAACTAGCACCTAGTCTTGCA -ACGGAACTAGCACCTAGTCGAACA -ACGGAACTAGCACCTAGTCAGTCA -ACGGAACTAGCACCTAGTGATCCA -ACGGAACTAGCACCTAGTACGACA -ACGGAACTAGCACCTAGTAGCTCA -ACGGAACTAGCACCTAGTTCACGT -ACGGAACTAGCACCTAGTCGTAGT -ACGGAACTAGCACCTAGTGTCAGT -ACGGAACTAGCACCTAGTGAAGGT -ACGGAACTAGCACCTAGTAACCGT -ACGGAACTAGCACCTAGTTTGTGC -ACGGAACTAGCACCTAGTCTAAGC -ACGGAACTAGCACCTAGTACTAGC -ACGGAACTAGCACCTAGTAGATGC -ACGGAACTAGCACCTAGTTGAAGG -ACGGAACTAGCACCTAGTCAATGG -ACGGAACTAGCACCTAGTATGAGG -ACGGAACTAGCACCTAGTAATGGG -ACGGAACTAGCACCTAGTTCCTGA -ACGGAACTAGCACCTAGTTAGCGA -ACGGAACTAGCACCTAGTCACAGA -ACGGAACTAGCACCTAGTGCAAGA -ACGGAACTAGCACCTAGTGGTTGA -ACGGAACTAGCACCTAGTTCCGAT -ACGGAACTAGCACCTAGTTGGCAT -ACGGAACTAGCACCTAGTCGAGAT -ACGGAACTAGCACCTAGTTACCAC -ACGGAACTAGCACCTAGTCAGAAC -ACGGAACTAGCACCTAGTGTCTAC -ACGGAACTAGCACCTAGTACGTAC -ACGGAACTAGCACCTAGTAGTGAC -ACGGAACTAGCACCTAGTCTGTAG -ACGGAACTAGCACCTAGTCCTAAG -ACGGAACTAGCACCTAGTGTTCAG -ACGGAACTAGCACCTAGTGCATAG -ACGGAACTAGCACCTAGTGACAAG -ACGGAACTAGCACCTAGTAAGCAG -ACGGAACTAGCACCTAGTCGTCAA -ACGGAACTAGCACCTAGTGCTGAA -ACGGAACTAGCACCTAGTAGTACG -ACGGAACTAGCACCTAGTATCCGA -ACGGAACTAGCACCTAGTATGGGA -ACGGAACTAGCACCTAGTGTGCAA -ACGGAACTAGCACCTAGTGAGGAA -ACGGAACTAGCACCTAGTCAGGTA -ACGGAACTAGCACCTAGTGACTCT -ACGGAACTAGCACCTAGTAGTCCT -ACGGAACTAGCACCTAGTTAAGCC -ACGGAACTAGCACCTAGTATAGCC -ACGGAACTAGCACCTAGTTAACCG -ACGGAACTAGCACCTAGTATGCCA -ACGGAACTAGCAGCCTAAGGAAAC -ACGGAACTAGCAGCCTAAAACACC -ACGGAACTAGCAGCCTAAATCGAG -ACGGAACTAGCAGCCTAACTCCTT -ACGGAACTAGCAGCCTAACCTGTT -ACGGAACTAGCAGCCTAACGGTTT -ACGGAACTAGCAGCCTAAGTGGTT -ACGGAACTAGCAGCCTAAGCCTTT -ACGGAACTAGCAGCCTAAGGTCTT -ACGGAACTAGCAGCCTAAACGCTT -ACGGAACTAGCAGCCTAAAGCGTT -ACGGAACTAGCAGCCTAATTCGTC -ACGGAACTAGCAGCCTAATCTCTC -ACGGAACTAGCAGCCTAATGGATC -ACGGAACTAGCAGCCTAACACTTC -ACGGAACTAGCAGCCTAAGTACTC -ACGGAACTAGCAGCCTAAGATGTC -ACGGAACTAGCAGCCTAAACAGTC -ACGGAACTAGCAGCCTAATTGCTG -ACGGAACTAGCAGCCTAATCCATG -ACGGAACTAGCAGCCTAATGTGTG -ACGGAACTAGCAGCCTAACTAGTG -ACGGAACTAGCAGCCTAACATCTG -ACGGAACTAGCAGCCTAAGAGTTG -ACGGAACTAGCAGCCTAAAGACTG -ACGGAACTAGCAGCCTAATCGGTA -ACGGAACTAGCAGCCTAATGCCTA -ACGGAACTAGCAGCCTAACCACTA -ACGGAACTAGCAGCCTAAGGAGTA -ACGGAACTAGCAGCCTAATCGTCT -ACGGAACTAGCAGCCTAATGCACT -ACGGAACTAGCAGCCTAACTGACT -ACGGAACTAGCAGCCTAACAACCT -ACGGAACTAGCAGCCTAAGCTACT -ACGGAACTAGCAGCCTAAGGATCT -ACGGAACTAGCAGCCTAAAAGGCT -ACGGAACTAGCAGCCTAATCAACC -ACGGAACTAGCAGCCTAATGTTCC -ACGGAACTAGCAGCCTAAATTCCC -ACGGAACTAGCAGCCTAATTCTCG -ACGGAACTAGCAGCCTAATAGACG -ACGGAACTAGCAGCCTAAGTAACG -ACGGAACTAGCAGCCTAAACTTCG -ACGGAACTAGCAGCCTAATACGCA -ACGGAACTAGCAGCCTAACTTGCA -ACGGAACTAGCAGCCTAACGAACA -ACGGAACTAGCAGCCTAACAGTCA -ACGGAACTAGCAGCCTAAGATCCA -ACGGAACTAGCAGCCTAAACGACA -ACGGAACTAGCAGCCTAAAGCTCA -ACGGAACTAGCAGCCTAATCACGT -ACGGAACTAGCAGCCTAACGTAGT -ACGGAACTAGCAGCCTAAGTCAGT -ACGGAACTAGCAGCCTAAGAAGGT -ACGGAACTAGCAGCCTAAAACCGT -ACGGAACTAGCAGCCTAATTGTGC -ACGGAACTAGCAGCCTAACTAAGC -ACGGAACTAGCAGCCTAAACTAGC -ACGGAACTAGCAGCCTAAAGATGC -ACGGAACTAGCAGCCTAATGAAGG -ACGGAACTAGCAGCCTAACAATGG -ACGGAACTAGCAGCCTAAATGAGG -ACGGAACTAGCAGCCTAAAATGGG -ACGGAACTAGCAGCCTAATCCTGA -ACGGAACTAGCAGCCTAATAGCGA -ACGGAACTAGCAGCCTAACACAGA -ACGGAACTAGCAGCCTAAGCAAGA -ACGGAACTAGCAGCCTAAGGTTGA -ACGGAACTAGCAGCCTAATCCGAT -ACGGAACTAGCAGCCTAATGGCAT -ACGGAACTAGCAGCCTAACGAGAT -ACGGAACTAGCAGCCTAATACCAC -ACGGAACTAGCAGCCTAACAGAAC -ACGGAACTAGCAGCCTAAGTCTAC -ACGGAACTAGCAGCCTAAACGTAC -ACGGAACTAGCAGCCTAAAGTGAC -ACGGAACTAGCAGCCTAACTGTAG -ACGGAACTAGCAGCCTAACCTAAG -ACGGAACTAGCAGCCTAAGTTCAG -ACGGAACTAGCAGCCTAAGCATAG -ACGGAACTAGCAGCCTAAGACAAG -ACGGAACTAGCAGCCTAAAAGCAG -ACGGAACTAGCAGCCTAACGTCAA -ACGGAACTAGCAGCCTAAGCTGAA -ACGGAACTAGCAGCCTAAAGTACG -ACGGAACTAGCAGCCTAAATCCGA -ACGGAACTAGCAGCCTAAATGGGA -ACGGAACTAGCAGCCTAAGTGCAA -ACGGAACTAGCAGCCTAAGAGGAA -ACGGAACTAGCAGCCTAACAGGTA -ACGGAACTAGCAGCCTAAGACTCT -ACGGAACTAGCAGCCTAAAGTCCT -ACGGAACTAGCAGCCTAATAAGCC -ACGGAACTAGCAGCCTAAATAGCC -ACGGAACTAGCAGCCTAATAACCG -ACGGAACTAGCAGCCTAAATGCCA -ACGGAACTAGCAGCCATAGGAAAC -ACGGAACTAGCAGCCATAAACACC -ACGGAACTAGCAGCCATAATCGAG -ACGGAACTAGCAGCCATACTCCTT -ACGGAACTAGCAGCCATACCTGTT -ACGGAACTAGCAGCCATACGGTTT -ACGGAACTAGCAGCCATAGTGGTT -ACGGAACTAGCAGCCATAGCCTTT -ACGGAACTAGCAGCCATAGGTCTT -ACGGAACTAGCAGCCATAACGCTT -ACGGAACTAGCAGCCATAAGCGTT -ACGGAACTAGCAGCCATATTCGTC -ACGGAACTAGCAGCCATATCTCTC -ACGGAACTAGCAGCCATATGGATC -ACGGAACTAGCAGCCATACACTTC -ACGGAACTAGCAGCCATAGTACTC -ACGGAACTAGCAGCCATAGATGTC -ACGGAACTAGCAGCCATAACAGTC -ACGGAACTAGCAGCCATATTGCTG -ACGGAACTAGCAGCCATATCCATG -ACGGAACTAGCAGCCATATGTGTG -ACGGAACTAGCAGCCATACTAGTG -ACGGAACTAGCAGCCATACATCTG -ACGGAACTAGCAGCCATAGAGTTG -ACGGAACTAGCAGCCATAAGACTG -ACGGAACTAGCAGCCATATCGGTA -ACGGAACTAGCAGCCATATGCCTA -ACGGAACTAGCAGCCATACCACTA -ACGGAACTAGCAGCCATAGGAGTA -ACGGAACTAGCAGCCATATCGTCT -ACGGAACTAGCAGCCATATGCACT -ACGGAACTAGCAGCCATACTGACT -ACGGAACTAGCAGCCATACAACCT -ACGGAACTAGCAGCCATAGCTACT -ACGGAACTAGCAGCCATAGGATCT -ACGGAACTAGCAGCCATAAAGGCT -ACGGAACTAGCAGCCATATCAACC -ACGGAACTAGCAGCCATATGTTCC -ACGGAACTAGCAGCCATAATTCCC -ACGGAACTAGCAGCCATATTCTCG -ACGGAACTAGCAGCCATATAGACG -ACGGAACTAGCAGCCATAGTAACG -ACGGAACTAGCAGCCATAACTTCG -ACGGAACTAGCAGCCATATACGCA -ACGGAACTAGCAGCCATACTTGCA -ACGGAACTAGCAGCCATACGAACA -ACGGAACTAGCAGCCATACAGTCA -ACGGAACTAGCAGCCATAGATCCA -ACGGAACTAGCAGCCATAACGACA -ACGGAACTAGCAGCCATAAGCTCA -ACGGAACTAGCAGCCATATCACGT -ACGGAACTAGCAGCCATACGTAGT -ACGGAACTAGCAGCCATAGTCAGT -ACGGAACTAGCAGCCATAGAAGGT -ACGGAACTAGCAGCCATAAACCGT -ACGGAACTAGCAGCCATATTGTGC -ACGGAACTAGCAGCCATACTAAGC -ACGGAACTAGCAGCCATAACTAGC -ACGGAACTAGCAGCCATAAGATGC -ACGGAACTAGCAGCCATATGAAGG -ACGGAACTAGCAGCCATACAATGG -ACGGAACTAGCAGCCATAATGAGG -ACGGAACTAGCAGCCATAAATGGG -ACGGAACTAGCAGCCATATCCTGA -ACGGAACTAGCAGCCATATAGCGA -ACGGAACTAGCAGCCATACACAGA -ACGGAACTAGCAGCCATAGCAAGA -ACGGAACTAGCAGCCATAGGTTGA -ACGGAACTAGCAGCCATATCCGAT -ACGGAACTAGCAGCCATATGGCAT -ACGGAACTAGCAGCCATACGAGAT -ACGGAACTAGCAGCCATATACCAC -ACGGAACTAGCAGCCATACAGAAC -ACGGAACTAGCAGCCATAGTCTAC -ACGGAACTAGCAGCCATAACGTAC -ACGGAACTAGCAGCCATAAGTGAC -ACGGAACTAGCAGCCATACTGTAG -ACGGAACTAGCAGCCATACCTAAG -ACGGAACTAGCAGCCATAGTTCAG -ACGGAACTAGCAGCCATAGCATAG -ACGGAACTAGCAGCCATAGACAAG -ACGGAACTAGCAGCCATAAAGCAG -ACGGAACTAGCAGCCATACGTCAA -ACGGAACTAGCAGCCATAGCTGAA -ACGGAACTAGCAGCCATAAGTACG -ACGGAACTAGCAGCCATAATCCGA -ACGGAACTAGCAGCCATAATGGGA -ACGGAACTAGCAGCCATAGTGCAA -ACGGAACTAGCAGCCATAGAGGAA -ACGGAACTAGCAGCCATACAGGTA -ACGGAACTAGCAGCCATAGACTCT -ACGGAACTAGCAGCCATAAGTCCT -ACGGAACTAGCAGCCATATAAGCC -ACGGAACTAGCAGCCATAATAGCC -ACGGAACTAGCAGCCATATAACCG -ACGGAACTAGCAGCCATAATGCCA -ACGGAACTAGCACCGTAAGGAAAC -ACGGAACTAGCACCGTAAAACACC -ACGGAACTAGCACCGTAAATCGAG -ACGGAACTAGCACCGTAACTCCTT -ACGGAACTAGCACCGTAACCTGTT -ACGGAACTAGCACCGTAACGGTTT -ACGGAACTAGCACCGTAAGTGGTT -ACGGAACTAGCACCGTAAGCCTTT -ACGGAACTAGCACCGTAAGGTCTT -ACGGAACTAGCACCGTAAACGCTT -ACGGAACTAGCACCGTAAAGCGTT -ACGGAACTAGCACCGTAATTCGTC -ACGGAACTAGCACCGTAATCTCTC -ACGGAACTAGCACCGTAATGGATC -ACGGAACTAGCACCGTAACACTTC -ACGGAACTAGCACCGTAAGTACTC -ACGGAACTAGCACCGTAAGATGTC -ACGGAACTAGCACCGTAAACAGTC -ACGGAACTAGCACCGTAATTGCTG -ACGGAACTAGCACCGTAATCCATG -ACGGAACTAGCACCGTAATGTGTG -ACGGAACTAGCACCGTAACTAGTG -ACGGAACTAGCACCGTAACATCTG -ACGGAACTAGCACCGTAAGAGTTG -ACGGAACTAGCACCGTAAAGACTG -ACGGAACTAGCACCGTAATCGGTA -ACGGAACTAGCACCGTAATGCCTA -ACGGAACTAGCACCGTAACCACTA -ACGGAACTAGCACCGTAAGGAGTA -ACGGAACTAGCACCGTAATCGTCT -ACGGAACTAGCACCGTAATGCACT -ACGGAACTAGCACCGTAACTGACT -ACGGAACTAGCACCGTAACAACCT -ACGGAACTAGCACCGTAAGCTACT -ACGGAACTAGCACCGTAAGGATCT -ACGGAACTAGCACCGTAAAAGGCT -ACGGAACTAGCACCGTAATCAACC -ACGGAACTAGCACCGTAATGTTCC -ACGGAACTAGCACCGTAAATTCCC -ACGGAACTAGCACCGTAATTCTCG -ACGGAACTAGCACCGTAATAGACG -ACGGAACTAGCACCGTAAGTAACG -ACGGAACTAGCACCGTAAACTTCG -ACGGAACTAGCACCGTAATACGCA -ACGGAACTAGCACCGTAACTTGCA -ACGGAACTAGCACCGTAACGAACA -ACGGAACTAGCACCGTAACAGTCA -ACGGAACTAGCACCGTAAGATCCA -ACGGAACTAGCACCGTAAACGACA -ACGGAACTAGCACCGTAAAGCTCA -ACGGAACTAGCACCGTAATCACGT -ACGGAACTAGCACCGTAACGTAGT -ACGGAACTAGCACCGTAAGTCAGT -ACGGAACTAGCACCGTAAGAAGGT -ACGGAACTAGCACCGTAAAACCGT -ACGGAACTAGCACCGTAATTGTGC -ACGGAACTAGCACCGTAACTAAGC -ACGGAACTAGCACCGTAAACTAGC -ACGGAACTAGCACCGTAAAGATGC -ACGGAACTAGCACCGTAATGAAGG -ACGGAACTAGCACCGTAACAATGG -ACGGAACTAGCACCGTAAATGAGG -ACGGAACTAGCACCGTAAAATGGG -ACGGAACTAGCACCGTAATCCTGA -ACGGAACTAGCACCGTAATAGCGA -ACGGAACTAGCACCGTAACACAGA -ACGGAACTAGCACCGTAAGCAAGA -ACGGAACTAGCACCGTAAGGTTGA -ACGGAACTAGCACCGTAATCCGAT -ACGGAACTAGCACCGTAATGGCAT -ACGGAACTAGCACCGTAACGAGAT -ACGGAACTAGCACCGTAATACCAC -ACGGAACTAGCACCGTAACAGAAC -ACGGAACTAGCACCGTAAGTCTAC -ACGGAACTAGCACCGTAAACGTAC -ACGGAACTAGCACCGTAAAGTGAC -ACGGAACTAGCACCGTAACTGTAG -ACGGAACTAGCACCGTAACCTAAG -ACGGAACTAGCACCGTAAGTTCAG -ACGGAACTAGCACCGTAAGCATAG -ACGGAACTAGCACCGTAAGACAAG -ACGGAACTAGCACCGTAAAAGCAG -ACGGAACTAGCACCGTAACGTCAA -ACGGAACTAGCACCGTAAGCTGAA -ACGGAACTAGCACCGTAAAGTACG -ACGGAACTAGCACCGTAAATCCGA -ACGGAACTAGCACCGTAAATGGGA -ACGGAACTAGCACCGTAAGTGCAA -ACGGAACTAGCACCGTAAGAGGAA -ACGGAACTAGCACCGTAACAGGTA -ACGGAACTAGCACCGTAAGACTCT -ACGGAACTAGCACCGTAAAGTCCT -ACGGAACTAGCACCGTAATAAGCC -ACGGAACTAGCACCGTAAATAGCC -ACGGAACTAGCACCGTAATAACCG -ACGGAACTAGCACCGTAAATGCCA -ACGGAACTAGCACCAATGGGAAAC -ACGGAACTAGCACCAATGAACACC -ACGGAACTAGCACCAATGATCGAG -ACGGAACTAGCACCAATGCTCCTT -ACGGAACTAGCACCAATGCCTGTT -ACGGAACTAGCACCAATGCGGTTT -ACGGAACTAGCACCAATGGTGGTT -ACGGAACTAGCACCAATGGCCTTT -ACGGAACTAGCACCAATGGGTCTT -ACGGAACTAGCACCAATGACGCTT -ACGGAACTAGCACCAATGAGCGTT -ACGGAACTAGCACCAATGTTCGTC -ACGGAACTAGCACCAATGTCTCTC -ACGGAACTAGCACCAATGTGGATC -ACGGAACTAGCACCAATGCACTTC -ACGGAACTAGCACCAATGGTACTC -ACGGAACTAGCACCAATGGATGTC -ACGGAACTAGCACCAATGACAGTC -ACGGAACTAGCACCAATGTTGCTG -ACGGAACTAGCACCAATGTCCATG -ACGGAACTAGCACCAATGTGTGTG -ACGGAACTAGCACCAATGCTAGTG -ACGGAACTAGCACCAATGCATCTG -ACGGAACTAGCACCAATGGAGTTG -ACGGAACTAGCACCAATGAGACTG -ACGGAACTAGCACCAATGTCGGTA -ACGGAACTAGCACCAATGTGCCTA -ACGGAACTAGCACCAATGCCACTA -ACGGAACTAGCACCAATGGGAGTA -ACGGAACTAGCACCAATGTCGTCT -ACGGAACTAGCACCAATGTGCACT -ACGGAACTAGCACCAATGCTGACT -ACGGAACTAGCACCAATGCAACCT -ACGGAACTAGCACCAATGGCTACT -ACGGAACTAGCACCAATGGGATCT -ACGGAACTAGCACCAATGAAGGCT -ACGGAACTAGCACCAATGTCAACC -ACGGAACTAGCACCAATGTGTTCC -ACGGAACTAGCACCAATGATTCCC -ACGGAACTAGCACCAATGTTCTCG -ACGGAACTAGCACCAATGTAGACG -ACGGAACTAGCACCAATGGTAACG -ACGGAACTAGCACCAATGACTTCG -ACGGAACTAGCACCAATGTACGCA -ACGGAACTAGCACCAATGCTTGCA -ACGGAACTAGCACCAATGCGAACA -ACGGAACTAGCACCAATGCAGTCA -ACGGAACTAGCACCAATGGATCCA -ACGGAACTAGCACCAATGACGACA -ACGGAACTAGCACCAATGAGCTCA -ACGGAACTAGCACCAATGTCACGT -ACGGAACTAGCACCAATGCGTAGT -ACGGAACTAGCACCAATGGTCAGT -ACGGAACTAGCACCAATGGAAGGT -ACGGAACTAGCACCAATGAACCGT -ACGGAACTAGCACCAATGTTGTGC -ACGGAACTAGCACCAATGCTAAGC -ACGGAACTAGCACCAATGACTAGC -ACGGAACTAGCACCAATGAGATGC -ACGGAACTAGCACCAATGTGAAGG -ACGGAACTAGCACCAATGCAATGG -ACGGAACTAGCACCAATGATGAGG -ACGGAACTAGCACCAATGAATGGG -ACGGAACTAGCACCAATGTCCTGA -ACGGAACTAGCACCAATGTAGCGA -ACGGAACTAGCACCAATGCACAGA -ACGGAACTAGCACCAATGGCAAGA -ACGGAACTAGCACCAATGGGTTGA -ACGGAACTAGCACCAATGTCCGAT -ACGGAACTAGCACCAATGTGGCAT -ACGGAACTAGCACCAATGCGAGAT -ACGGAACTAGCACCAATGTACCAC -ACGGAACTAGCACCAATGCAGAAC -ACGGAACTAGCACCAATGGTCTAC -ACGGAACTAGCACCAATGACGTAC -ACGGAACTAGCACCAATGAGTGAC -ACGGAACTAGCACCAATGCTGTAG -ACGGAACTAGCACCAATGCCTAAG -ACGGAACTAGCACCAATGGTTCAG -ACGGAACTAGCACCAATGGCATAG -ACGGAACTAGCACCAATGGACAAG -ACGGAACTAGCACCAATGAAGCAG -ACGGAACTAGCACCAATGCGTCAA -ACGGAACTAGCACCAATGGCTGAA -ACGGAACTAGCACCAATGAGTACG -ACGGAACTAGCACCAATGATCCGA -ACGGAACTAGCACCAATGATGGGA -ACGGAACTAGCACCAATGGTGCAA -ACGGAACTAGCACCAATGGAGGAA -ACGGAACTAGCACCAATGCAGGTA -ACGGAACTAGCACCAATGGACTCT -ACGGAACTAGCACCAATGAGTCCT -ACGGAACTAGCACCAATGTAAGCC -ACGGAACTAGCACCAATGATAGCC -ACGGAACTAGCACCAATGTAACCG -ACGGAACTAGCACCAATGATGCCA -ACGGAAGATGCAAACGGAGGAAAC -ACGGAAGATGCAAACGGAAACACC -ACGGAAGATGCAAACGGAATCGAG -ACGGAAGATGCAAACGGACTCCTT -ACGGAAGATGCAAACGGACCTGTT -ACGGAAGATGCAAACGGACGGTTT -ACGGAAGATGCAAACGGAGTGGTT -ACGGAAGATGCAAACGGAGCCTTT -ACGGAAGATGCAAACGGAGGTCTT -ACGGAAGATGCAAACGGAACGCTT -ACGGAAGATGCAAACGGAAGCGTT -ACGGAAGATGCAAACGGATTCGTC -ACGGAAGATGCAAACGGATCTCTC -ACGGAAGATGCAAACGGATGGATC -ACGGAAGATGCAAACGGACACTTC -ACGGAAGATGCAAACGGAGTACTC -ACGGAAGATGCAAACGGAGATGTC -ACGGAAGATGCAAACGGAACAGTC -ACGGAAGATGCAAACGGATTGCTG -ACGGAAGATGCAAACGGATCCATG -ACGGAAGATGCAAACGGATGTGTG -ACGGAAGATGCAAACGGACTAGTG -ACGGAAGATGCAAACGGACATCTG -ACGGAAGATGCAAACGGAGAGTTG -ACGGAAGATGCAAACGGAAGACTG -ACGGAAGATGCAAACGGATCGGTA -ACGGAAGATGCAAACGGATGCCTA -ACGGAAGATGCAAACGGACCACTA -ACGGAAGATGCAAACGGAGGAGTA -ACGGAAGATGCAAACGGATCGTCT -ACGGAAGATGCAAACGGATGCACT -ACGGAAGATGCAAACGGACTGACT -ACGGAAGATGCAAACGGACAACCT -ACGGAAGATGCAAACGGAGCTACT -ACGGAAGATGCAAACGGAGGATCT -ACGGAAGATGCAAACGGAAAGGCT -ACGGAAGATGCAAACGGATCAACC -ACGGAAGATGCAAACGGATGTTCC -ACGGAAGATGCAAACGGAATTCCC -ACGGAAGATGCAAACGGATTCTCG -ACGGAAGATGCAAACGGATAGACG -ACGGAAGATGCAAACGGAGTAACG -ACGGAAGATGCAAACGGAACTTCG -ACGGAAGATGCAAACGGATACGCA -ACGGAAGATGCAAACGGACTTGCA -ACGGAAGATGCAAACGGACGAACA -ACGGAAGATGCAAACGGACAGTCA -ACGGAAGATGCAAACGGAGATCCA -ACGGAAGATGCAAACGGAACGACA -ACGGAAGATGCAAACGGAAGCTCA -ACGGAAGATGCAAACGGATCACGT -ACGGAAGATGCAAACGGACGTAGT -ACGGAAGATGCAAACGGAGTCAGT -ACGGAAGATGCAAACGGAGAAGGT -ACGGAAGATGCAAACGGAAACCGT -ACGGAAGATGCAAACGGATTGTGC -ACGGAAGATGCAAACGGACTAAGC -ACGGAAGATGCAAACGGAACTAGC -ACGGAAGATGCAAACGGAAGATGC -ACGGAAGATGCAAACGGATGAAGG -ACGGAAGATGCAAACGGACAATGG -ACGGAAGATGCAAACGGAATGAGG -ACGGAAGATGCAAACGGAAATGGG -ACGGAAGATGCAAACGGATCCTGA -ACGGAAGATGCAAACGGATAGCGA -ACGGAAGATGCAAACGGACACAGA -ACGGAAGATGCAAACGGAGCAAGA -ACGGAAGATGCAAACGGAGGTTGA -ACGGAAGATGCAAACGGATCCGAT -ACGGAAGATGCAAACGGATGGCAT -ACGGAAGATGCAAACGGACGAGAT -ACGGAAGATGCAAACGGATACCAC -ACGGAAGATGCAAACGGACAGAAC -ACGGAAGATGCAAACGGAGTCTAC -ACGGAAGATGCAAACGGAACGTAC -ACGGAAGATGCAAACGGAAGTGAC -ACGGAAGATGCAAACGGACTGTAG -ACGGAAGATGCAAACGGACCTAAG -ACGGAAGATGCAAACGGAGTTCAG -ACGGAAGATGCAAACGGAGCATAG -ACGGAAGATGCAAACGGAGACAAG -ACGGAAGATGCAAACGGAAAGCAG -ACGGAAGATGCAAACGGACGTCAA -ACGGAAGATGCAAACGGAGCTGAA -ACGGAAGATGCAAACGGAAGTACG -ACGGAAGATGCAAACGGAATCCGA -ACGGAAGATGCAAACGGAATGGGA -ACGGAAGATGCAAACGGAGTGCAA -ACGGAAGATGCAAACGGAGAGGAA -ACGGAAGATGCAAACGGACAGGTA -ACGGAAGATGCAAACGGAGACTCT -ACGGAAGATGCAAACGGAAGTCCT -ACGGAAGATGCAAACGGATAAGCC -ACGGAAGATGCAAACGGAATAGCC -ACGGAAGATGCAAACGGATAACCG -ACGGAAGATGCAAACGGAATGCCA -ACGGAAGATGCAACCAACGGAAAC -ACGGAAGATGCAACCAACAACACC -ACGGAAGATGCAACCAACATCGAG -ACGGAAGATGCAACCAACCTCCTT -ACGGAAGATGCAACCAACCCTGTT -ACGGAAGATGCAACCAACCGGTTT -ACGGAAGATGCAACCAACGTGGTT -ACGGAAGATGCAACCAACGCCTTT -ACGGAAGATGCAACCAACGGTCTT -ACGGAAGATGCAACCAACACGCTT -ACGGAAGATGCAACCAACAGCGTT -ACGGAAGATGCAACCAACTTCGTC -ACGGAAGATGCAACCAACTCTCTC -ACGGAAGATGCAACCAACTGGATC -ACGGAAGATGCAACCAACCACTTC -ACGGAAGATGCAACCAACGTACTC -ACGGAAGATGCAACCAACGATGTC -ACGGAAGATGCAACCAACACAGTC -ACGGAAGATGCAACCAACTTGCTG -ACGGAAGATGCAACCAACTCCATG -ACGGAAGATGCAACCAACTGTGTG -ACGGAAGATGCAACCAACCTAGTG -ACGGAAGATGCAACCAACCATCTG -ACGGAAGATGCAACCAACGAGTTG -ACGGAAGATGCAACCAACAGACTG -ACGGAAGATGCAACCAACTCGGTA -ACGGAAGATGCAACCAACTGCCTA -ACGGAAGATGCAACCAACCCACTA -ACGGAAGATGCAACCAACGGAGTA -ACGGAAGATGCAACCAACTCGTCT -ACGGAAGATGCAACCAACTGCACT -ACGGAAGATGCAACCAACCTGACT -ACGGAAGATGCAACCAACCAACCT -ACGGAAGATGCAACCAACGCTACT -ACGGAAGATGCAACCAACGGATCT -ACGGAAGATGCAACCAACAAGGCT -ACGGAAGATGCAACCAACTCAACC -ACGGAAGATGCAACCAACTGTTCC -ACGGAAGATGCAACCAACATTCCC -ACGGAAGATGCAACCAACTTCTCG -ACGGAAGATGCAACCAACTAGACG -ACGGAAGATGCAACCAACGTAACG -ACGGAAGATGCAACCAACACTTCG -ACGGAAGATGCAACCAACTACGCA -ACGGAAGATGCAACCAACCTTGCA -ACGGAAGATGCAACCAACCGAACA -ACGGAAGATGCAACCAACCAGTCA -ACGGAAGATGCAACCAACGATCCA -ACGGAAGATGCAACCAACACGACA -ACGGAAGATGCAACCAACAGCTCA -ACGGAAGATGCAACCAACTCACGT -ACGGAAGATGCAACCAACCGTAGT -ACGGAAGATGCAACCAACGTCAGT -ACGGAAGATGCAACCAACGAAGGT -ACGGAAGATGCAACCAACAACCGT -ACGGAAGATGCAACCAACTTGTGC -ACGGAAGATGCAACCAACCTAAGC -ACGGAAGATGCAACCAACACTAGC -ACGGAAGATGCAACCAACAGATGC -ACGGAAGATGCAACCAACTGAAGG -ACGGAAGATGCAACCAACCAATGG -ACGGAAGATGCAACCAACATGAGG -ACGGAAGATGCAACCAACAATGGG -ACGGAAGATGCAACCAACTCCTGA -ACGGAAGATGCAACCAACTAGCGA -ACGGAAGATGCAACCAACCACAGA -ACGGAAGATGCAACCAACGCAAGA -ACGGAAGATGCAACCAACGGTTGA -ACGGAAGATGCAACCAACTCCGAT -ACGGAAGATGCAACCAACTGGCAT -ACGGAAGATGCAACCAACCGAGAT -ACGGAAGATGCAACCAACTACCAC -ACGGAAGATGCAACCAACCAGAAC -ACGGAAGATGCAACCAACGTCTAC -ACGGAAGATGCAACCAACACGTAC -ACGGAAGATGCAACCAACAGTGAC -ACGGAAGATGCAACCAACCTGTAG -ACGGAAGATGCAACCAACCCTAAG -ACGGAAGATGCAACCAACGTTCAG -ACGGAAGATGCAACCAACGCATAG -ACGGAAGATGCAACCAACGACAAG -ACGGAAGATGCAACCAACAAGCAG -ACGGAAGATGCAACCAACCGTCAA -ACGGAAGATGCAACCAACGCTGAA -ACGGAAGATGCAACCAACAGTACG -ACGGAAGATGCAACCAACATCCGA -ACGGAAGATGCAACCAACATGGGA -ACGGAAGATGCAACCAACGTGCAA -ACGGAAGATGCAACCAACGAGGAA -ACGGAAGATGCAACCAACCAGGTA -ACGGAAGATGCAACCAACGACTCT -ACGGAAGATGCAACCAACAGTCCT -ACGGAAGATGCAACCAACTAAGCC -ACGGAAGATGCAACCAACATAGCC -ACGGAAGATGCAACCAACTAACCG -ACGGAAGATGCAACCAACATGCCA -ACGGAAGATGCAGAGATCGGAAAC -ACGGAAGATGCAGAGATCAACACC -ACGGAAGATGCAGAGATCATCGAG -ACGGAAGATGCAGAGATCCTCCTT -ACGGAAGATGCAGAGATCCCTGTT -ACGGAAGATGCAGAGATCCGGTTT -ACGGAAGATGCAGAGATCGTGGTT -ACGGAAGATGCAGAGATCGCCTTT -ACGGAAGATGCAGAGATCGGTCTT -ACGGAAGATGCAGAGATCACGCTT -ACGGAAGATGCAGAGATCAGCGTT -ACGGAAGATGCAGAGATCTTCGTC -ACGGAAGATGCAGAGATCTCTCTC -ACGGAAGATGCAGAGATCTGGATC -ACGGAAGATGCAGAGATCCACTTC -ACGGAAGATGCAGAGATCGTACTC -ACGGAAGATGCAGAGATCGATGTC -ACGGAAGATGCAGAGATCACAGTC -ACGGAAGATGCAGAGATCTTGCTG -ACGGAAGATGCAGAGATCTCCATG -ACGGAAGATGCAGAGATCTGTGTG -ACGGAAGATGCAGAGATCCTAGTG -ACGGAAGATGCAGAGATCCATCTG -ACGGAAGATGCAGAGATCGAGTTG -ACGGAAGATGCAGAGATCAGACTG -ACGGAAGATGCAGAGATCTCGGTA -ACGGAAGATGCAGAGATCTGCCTA -ACGGAAGATGCAGAGATCCCACTA -ACGGAAGATGCAGAGATCGGAGTA -ACGGAAGATGCAGAGATCTCGTCT -ACGGAAGATGCAGAGATCTGCACT -ACGGAAGATGCAGAGATCCTGACT -ACGGAAGATGCAGAGATCCAACCT -ACGGAAGATGCAGAGATCGCTACT -ACGGAAGATGCAGAGATCGGATCT -ACGGAAGATGCAGAGATCAAGGCT -ACGGAAGATGCAGAGATCTCAACC -ACGGAAGATGCAGAGATCTGTTCC -ACGGAAGATGCAGAGATCATTCCC -ACGGAAGATGCAGAGATCTTCTCG -ACGGAAGATGCAGAGATCTAGACG -ACGGAAGATGCAGAGATCGTAACG -ACGGAAGATGCAGAGATCACTTCG -ACGGAAGATGCAGAGATCTACGCA -ACGGAAGATGCAGAGATCCTTGCA -ACGGAAGATGCAGAGATCCGAACA -ACGGAAGATGCAGAGATCCAGTCA -ACGGAAGATGCAGAGATCGATCCA -ACGGAAGATGCAGAGATCACGACA -ACGGAAGATGCAGAGATCAGCTCA -ACGGAAGATGCAGAGATCTCACGT -ACGGAAGATGCAGAGATCCGTAGT -ACGGAAGATGCAGAGATCGTCAGT -ACGGAAGATGCAGAGATCGAAGGT -ACGGAAGATGCAGAGATCAACCGT -ACGGAAGATGCAGAGATCTTGTGC -ACGGAAGATGCAGAGATCCTAAGC -ACGGAAGATGCAGAGATCACTAGC -ACGGAAGATGCAGAGATCAGATGC -ACGGAAGATGCAGAGATCTGAAGG -ACGGAAGATGCAGAGATCCAATGG -ACGGAAGATGCAGAGATCATGAGG -ACGGAAGATGCAGAGATCAATGGG -ACGGAAGATGCAGAGATCTCCTGA -ACGGAAGATGCAGAGATCTAGCGA -ACGGAAGATGCAGAGATCCACAGA -ACGGAAGATGCAGAGATCGCAAGA -ACGGAAGATGCAGAGATCGGTTGA -ACGGAAGATGCAGAGATCTCCGAT -ACGGAAGATGCAGAGATCTGGCAT -ACGGAAGATGCAGAGATCCGAGAT -ACGGAAGATGCAGAGATCTACCAC -ACGGAAGATGCAGAGATCCAGAAC -ACGGAAGATGCAGAGATCGTCTAC -ACGGAAGATGCAGAGATCACGTAC -ACGGAAGATGCAGAGATCAGTGAC -ACGGAAGATGCAGAGATCCTGTAG -ACGGAAGATGCAGAGATCCCTAAG -ACGGAAGATGCAGAGATCGTTCAG -ACGGAAGATGCAGAGATCGCATAG -ACGGAAGATGCAGAGATCGACAAG -ACGGAAGATGCAGAGATCAAGCAG -ACGGAAGATGCAGAGATCCGTCAA -ACGGAAGATGCAGAGATCGCTGAA -ACGGAAGATGCAGAGATCAGTACG -ACGGAAGATGCAGAGATCATCCGA -ACGGAAGATGCAGAGATCATGGGA -ACGGAAGATGCAGAGATCGTGCAA -ACGGAAGATGCAGAGATCGAGGAA -ACGGAAGATGCAGAGATCCAGGTA -ACGGAAGATGCAGAGATCGACTCT -ACGGAAGATGCAGAGATCAGTCCT -ACGGAAGATGCAGAGATCTAAGCC -ACGGAAGATGCAGAGATCATAGCC -ACGGAAGATGCAGAGATCTAACCG -ACGGAAGATGCAGAGATCATGCCA -ACGGAAGATGCACTTCTCGGAAAC -ACGGAAGATGCACTTCTCAACACC -ACGGAAGATGCACTTCTCATCGAG -ACGGAAGATGCACTTCTCCTCCTT -ACGGAAGATGCACTTCTCCCTGTT -ACGGAAGATGCACTTCTCCGGTTT -ACGGAAGATGCACTTCTCGTGGTT -ACGGAAGATGCACTTCTCGCCTTT -ACGGAAGATGCACTTCTCGGTCTT -ACGGAAGATGCACTTCTCACGCTT -ACGGAAGATGCACTTCTCAGCGTT -ACGGAAGATGCACTTCTCTTCGTC -ACGGAAGATGCACTTCTCTCTCTC -ACGGAAGATGCACTTCTCTGGATC -ACGGAAGATGCACTTCTCCACTTC -ACGGAAGATGCACTTCTCGTACTC -ACGGAAGATGCACTTCTCGATGTC -ACGGAAGATGCACTTCTCACAGTC -ACGGAAGATGCACTTCTCTTGCTG -ACGGAAGATGCACTTCTCTCCATG -ACGGAAGATGCACTTCTCTGTGTG -ACGGAAGATGCACTTCTCCTAGTG -ACGGAAGATGCACTTCTCCATCTG -ACGGAAGATGCACTTCTCGAGTTG -ACGGAAGATGCACTTCTCAGACTG -ACGGAAGATGCACTTCTCTCGGTA -ACGGAAGATGCACTTCTCTGCCTA -ACGGAAGATGCACTTCTCCCACTA -ACGGAAGATGCACTTCTCGGAGTA -ACGGAAGATGCACTTCTCTCGTCT -ACGGAAGATGCACTTCTCTGCACT -ACGGAAGATGCACTTCTCCTGACT -ACGGAAGATGCACTTCTCCAACCT -ACGGAAGATGCACTTCTCGCTACT -ACGGAAGATGCACTTCTCGGATCT -ACGGAAGATGCACTTCTCAAGGCT -ACGGAAGATGCACTTCTCTCAACC -ACGGAAGATGCACTTCTCTGTTCC -ACGGAAGATGCACTTCTCATTCCC -ACGGAAGATGCACTTCTCTTCTCG -ACGGAAGATGCACTTCTCTAGACG -ACGGAAGATGCACTTCTCGTAACG -ACGGAAGATGCACTTCTCACTTCG -ACGGAAGATGCACTTCTCTACGCA -ACGGAAGATGCACTTCTCCTTGCA -ACGGAAGATGCACTTCTCCGAACA -ACGGAAGATGCACTTCTCCAGTCA -ACGGAAGATGCACTTCTCGATCCA -ACGGAAGATGCACTTCTCACGACA -ACGGAAGATGCACTTCTCAGCTCA -ACGGAAGATGCACTTCTCTCACGT -ACGGAAGATGCACTTCTCCGTAGT -ACGGAAGATGCACTTCTCGTCAGT -ACGGAAGATGCACTTCTCGAAGGT -ACGGAAGATGCACTTCTCAACCGT -ACGGAAGATGCACTTCTCTTGTGC -ACGGAAGATGCACTTCTCCTAAGC -ACGGAAGATGCACTTCTCACTAGC -ACGGAAGATGCACTTCTCAGATGC -ACGGAAGATGCACTTCTCTGAAGG -ACGGAAGATGCACTTCTCCAATGG -ACGGAAGATGCACTTCTCATGAGG -ACGGAAGATGCACTTCTCAATGGG -ACGGAAGATGCACTTCTCTCCTGA -ACGGAAGATGCACTTCTCTAGCGA -ACGGAAGATGCACTTCTCCACAGA -ACGGAAGATGCACTTCTCGCAAGA -ACGGAAGATGCACTTCTCGGTTGA -ACGGAAGATGCACTTCTCTCCGAT -ACGGAAGATGCACTTCTCTGGCAT -ACGGAAGATGCACTTCTCCGAGAT -ACGGAAGATGCACTTCTCTACCAC -ACGGAAGATGCACTTCTCCAGAAC -ACGGAAGATGCACTTCTCGTCTAC -ACGGAAGATGCACTTCTCACGTAC -ACGGAAGATGCACTTCTCAGTGAC -ACGGAAGATGCACTTCTCCTGTAG -ACGGAAGATGCACTTCTCCCTAAG -ACGGAAGATGCACTTCTCGTTCAG -ACGGAAGATGCACTTCTCGCATAG -ACGGAAGATGCACTTCTCGACAAG -ACGGAAGATGCACTTCTCAAGCAG -ACGGAAGATGCACTTCTCCGTCAA -ACGGAAGATGCACTTCTCGCTGAA -ACGGAAGATGCACTTCTCAGTACG -ACGGAAGATGCACTTCTCATCCGA -ACGGAAGATGCACTTCTCATGGGA -ACGGAAGATGCACTTCTCGTGCAA -ACGGAAGATGCACTTCTCGAGGAA -ACGGAAGATGCACTTCTCCAGGTA -ACGGAAGATGCACTTCTCGACTCT -ACGGAAGATGCACTTCTCAGTCCT -ACGGAAGATGCACTTCTCTAAGCC -ACGGAAGATGCACTTCTCATAGCC -ACGGAAGATGCACTTCTCTAACCG -ACGGAAGATGCACTTCTCATGCCA -ACGGAAGATGCAGTTCCTGGAAAC -ACGGAAGATGCAGTTCCTAACACC -ACGGAAGATGCAGTTCCTATCGAG -ACGGAAGATGCAGTTCCTCTCCTT -ACGGAAGATGCAGTTCCTCCTGTT -ACGGAAGATGCAGTTCCTCGGTTT -ACGGAAGATGCAGTTCCTGTGGTT -ACGGAAGATGCAGTTCCTGCCTTT -ACGGAAGATGCAGTTCCTGGTCTT -ACGGAAGATGCAGTTCCTACGCTT -ACGGAAGATGCAGTTCCTAGCGTT -ACGGAAGATGCAGTTCCTTTCGTC -ACGGAAGATGCAGTTCCTTCTCTC -ACGGAAGATGCAGTTCCTTGGATC -ACGGAAGATGCAGTTCCTCACTTC -ACGGAAGATGCAGTTCCTGTACTC -ACGGAAGATGCAGTTCCTGATGTC -ACGGAAGATGCAGTTCCTACAGTC -ACGGAAGATGCAGTTCCTTTGCTG -ACGGAAGATGCAGTTCCTTCCATG -ACGGAAGATGCAGTTCCTTGTGTG -ACGGAAGATGCAGTTCCTCTAGTG -ACGGAAGATGCAGTTCCTCATCTG -ACGGAAGATGCAGTTCCTGAGTTG -ACGGAAGATGCAGTTCCTAGACTG -ACGGAAGATGCAGTTCCTTCGGTA -ACGGAAGATGCAGTTCCTTGCCTA -ACGGAAGATGCAGTTCCTCCACTA -ACGGAAGATGCAGTTCCTGGAGTA -ACGGAAGATGCAGTTCCTTCGTCT -ACGGAAGATGCAGTTCCTTGCACT -ACGGAAGATGCAGTTCCTCTGACT -ACGGAAGATGCAGTTCCTCAACCT -ACGGAAGATGCAGTTCCTGCTACT -ACGGAAGATGCAGTTCCTGGATCT -ACGGAAGATGCAGTTCCTAAGGCT -ACGGAAGATGCAGTTCCTTCAACC -ACGGAAGATGCAGTTCCTTGTTCC -ACGGAAGATGCAGTTCCTATTCCC -ACGGAAGATGCAGTTCCTTTCTCG -ACGGAAGATGCAGTTCCTTAGACG -ACGGAAGATGCAGTTCCTGTAACG -ACGGAAGATGCAGTTCCTACTTCG -ACGGAAGATGCAGTTCCTTACGCA -ACGGAAGATGCAGTTCCTCTTGCA -ACGGAAGATGCAGTTCCTCGAACA -ACGGAAGATGCAGTTCCTCAGTCA -ACGGAAGATGCAGTTCCTGATCCA -ACGGAAGATGCAGTTCCTACGACA -ACGGAAGATGCAGTTCCTAGCTCA -ACGGAAGATGCAGTTCCTTCACGT -ACGGAAGATGCAGTTCCTCGTAGT -ACGGAAGATGCAGTTCCTGTCAGT -ACGGAAGATGCAGTTCCTGAAGGT -ACGGAAGATGCAGTTCCTAACCGT -ACGGAAGATGCAGTTCCTTTGTGC -ACGGAAGATGCAGTTCCTCTAAGC -ACGGAAGATGCAGTTCCTACTAGC -ACGGAAGATGCAGTTCCTAGATGC -ACGGAAGATGCAGTTCCTTGAAGG -ACGGAAGATGCAGTTCCTCAATGG -ACGGAAGATGCAGTTCCTATGAGG -ACGGAAGATGCAGTTCCTAATGGG -ACGGAAGATGCAGTTCCTTCCTGA -ACGGAAGATGCAGTTCCTTAGCGA -ACGGAAGATGCAGTTCCTCACAGA -ACGGAAGATGCAGTTCCTGCAAGA -ACGGAAGATGCAGTTCCTGGTTGA -ACGGAAGATGCAGTTCCTTCCGAT -ACGGAAGATGCAGTTCCTTGGCAT -ACGGAAGATGCAGTTCCTCGAGAT -ACGGAAGATGCAGTTCCTTACCAC -ACGGAAGATGCAGTTCCTCAGAAC -ACGGAAGATGCAGTTCCTGTCTAC -ACGGAAGATGCAGTTCCTACGTAC -ACGGAAGATGCAGTTCCTAGTGAC -ACGGAAGATGCAGTTCCTCTGTAG -ACGGAAGATGCAGTTCCTCCTAAG -ACGGAAGATGCAGTTCCTGTTCAG -ACGGAAGATGCAGTTCCTGCATAG -ACGGAAGATGCAGTTCCTGACAAG -ACGGAAGATGCAGTTCCTAAGCAG -ACGGAAGATGCAGTTCCTCGTCAA -ACGGAAGATGCAGTTCCTGCTGAA -ACGGAAGATGCAGTTCCTAGTACG -ACGGAAGATGCAGTTCCTATCCGA -ACGGAAGATGCAGTTCCTATGGGA -ACGGAAGATGCAGTTCCTGTGCAA -ACGGAAGATGCAGTTCCTGAGGAA -ACGGAAGATGCAGTTCCTCAGGTA -ACGGAAGATGCAGTTCCTGACTCT -ACGGAAGATGCAGTTCCTAGTCCT -ACGGAAGATGCAGTTCCTTAAGCC -ACGGAAGATGCAGTTCCTATAGCC -ACGGAAGATGCAGTTCCTTAACCG -ACGGAAGATGCAGTTCCTATGCCA -ACGGAAGATGCATTTCGGGGAAAC -ACGGAAGATGCATTTCGGAACACC -ACGGAAGATGCATTTCGGATCGAG -ACGGAAGATGCATTTCGGCTCCTT -ACGGAAGATGCATTTCGGCCTGTT -ACGGAAGATGCATTTCGGCGGTTT -ACGGAAGATGCATTTCGGGTGGTT -ACGGAAGATGCATTTCGGGCCTTT -ACGGAAGATGCATTTCGGGGTCTT -ACGGAAGATGCATTTCGGACGCTT -ACGGAAGATGCATTTCGGAGCGTT -ACGGAAGATGCATTTCGGTTCGTC -ACGGAAGATGCATTTCGGTCTCTC -ACGGAAGATGCATTTCGGTGGATC -ACGGAAGATGCATTTCGGCACTTC -ACGGAAGATGCATTTCGGGTACTC -ACGGAAGATGCATTTCGGGATGTC -ACGGAAGATGCATTTCGGACAGTC -ACGGAAGATGCATTTCGGTTGCTG -ACGGAAGATGCATTTCGGTCCATG -ACGGAAGATGCATTTCGGTGTGTG -ACGGAAGATGCATTTCGGCTAGTG -ACGGAAGATGCATTTCGGCATCTG -ACGGAAGATGCATTTCGGGAGTTG -ACGGAAGATGCATTTCGGAGACTG -ACGGAAGATGCATTTCGGTCGGTA -ACGGAAGATGCATTTCGGTGCCTA -ACGGAAGATGCATTTCGGCCACTA -ACGGAAGATGCATTTCGGGGAGTA -ACGGAAGATGCATTTCGGTCGTCT -ACGGAAGATGCATTTCGGTGCACT -ACGGAAGATGCATTTCGGCTGACT -ACGGAAGATGCATTTCGGCAACCT -ACGGAAGATGCATTTCGGGCTACT -ACGGAAGATGCATTTCGGGGATCT -ACGGAAGATGCATTTCGGAAGGCT -ACGGAAGATGCATTTCGGTCAACC -ACGGAAGATGCATTTCGGTGTTCC -ACGGAAGATGCATTTCGGATTCCC -ACGGAAGATGCATTTCGGTTCTCG -ACGGAAGATGCATTTCGGTAGACG -ACGGAAGATGCATTTCGGGTAACG -ACGGAAGATGCATTTCGGACTTCG -ACGGAAGATGCATTTCGGTACGCA -ACGGAAGATGCATTTCGGCTTGCA -ACGGAAGATGCATTTCGGCGAACA -ACGGAAGATGCATTTCGGCAGTCA -ACGGAAGATGCATTTCGGGATCCA -ACGGAAGATGCATTTCGGACGACA -ACGGAAGATGCATTTCGGAGCTCA -ACGGAAGATGCATTTCGGTCACGT -ACGGAAGATGCATTTCGGCGTAGT -ACGGAAGATGCATTTCGGGTCAGT -ACGGAAGATGCATTTCGGGAAGGT -ACGGAAGATGCATTTCGGAACCGT -ACGGAAGATGCATTTCGGTTGTGC -ACGGAAGATGCATTTCGGCTAAGC -ACGGAAGATGCATTTCGGACTAGC -ACGGAAGATGCATTTCGGAGATGC -ACGGAAGATGCATTTCGGTGAAGG -ACGGAAGATGCATTTCGGCAATGG -ACGGAAGATGCATTTCGGATGAGG -ACGGAAGATGCATTTCGGAATGGG -ACGGAAGATGCATTTCGGTCCTGA -ACGGAAGATGCATTTCGGTAGCGA -ACGGAAGATGCATTTCGGCACAGA -ACGGAAGATGCATTTCGGGCAAGA -ACGGAAGATGCATTTCGGGGTTGA -ACGGAAGATGCATTTCGGTCCGAT -ACGGAAGATGCATTTCGGTGGCAT -ACGGAAGATGCATTTCGGCGAGAT -ACGGAAGATGCATTTCGGTACCAC -ACGGAAGATGCATTTCGGCAGAAC -ACGGAAGATGCATTTCGGGTCTAC -ACGGAAGATGCATTTCGGACGTAC -ACGGAAGATGCATTTCGGAGTGAC -ACGGAAGATGCATTTCGGCTGTAG -ACGGAAGATGCATTTCGGCCTAAG -ACGGAAGATGCATTTCGGGTTCAG -ACGGAAGATGCATTTCGGGCATAG -ACGGAAGATGCATTTCGGGACAAG -ACGGAAGATGCATTTCGGAAGCAG -ACGGAAGATGCATTTCGGCGTCAA -ACGGAAGATGCATTTCGGGCTGAA -ACGGAAGATGCATTTCGGAGTACG -ACGGAAGATGCATTTCGGATCCGA -ACGGAAGATGCATTTCGGATGGGA -ACGGAAGATGCATTTCGGGTGCAA -ACGGAAGATGCATTTCGGGAGGAA -ACGGAAGATGCATTTCGGCAGGTA -ACGGAAGATGCATTTCGGGACTCT -ACGGAAGATGCATTTCGGAGTCCT -ACGGAAGATGCATTTCGGTAAGCC -ACGGAAGATGCATTTCGGATAGCC -ACGGAAGATGCATTTCGGTAACCG -ACGGAAGATGCATTTCGGATGCCA -ACGGAAGATGCAGTTGTGGGAAAC -ACGGAAGATGCAGTTGTGAACACC -ACGGAAGATGCAGTTGTGATCGAG -ACGGAAGATGCAGTTGTGCTCCTT -ACGGAAGATGCAGTTGTGCCTGTT -ACGGAAGATGCAGTTGTGCGGTTT -ACGGAAGATGCAGTTGTGGTGGTT -ACGGAAGATGCAGTTGTGGCCTTT -ACGGAAGATGCAGTTGTGGGTCTT -ACGGAAGATGCAGTTGTGACGCTT -ACGGAAGATGCAGTTGTGAGCGTT -ACGGAAGATGCAGTTGTGTTCGTC -ACGGAAGATGCAGTTGTGTCTCTC -ACGGAAGATGCAGTTGTGTGGATC -ACGGAAGATGCAGTTGTGCACTTC -ACGGAAGATGCAGTTGTGGTACTC -ACGGAAGATGCAGTTGTGGATGTC -ACGGAAGATGCAGTTGTGACAGTC -ACGGAAGATGCAGTTGTGTTGCTG -ACGGAAGATGCAGTTGTGTCCATG -ACGGAAGATGCAGTTGTGTGTGTG -ACGGAAGATGCAGTTGTGCTAGTG -ACGGAAGATGCAGTTGTGCATCTG -ACGGAAGATGCAGTTGTGGAGTTG -ACGGAAGATGCAGTTGTGAGACTG -ACGGAAGATGCAGTTGTGTCGGTA -ACGGAAGATGCAGTTGTGTGCCTA -ACGGAAGATGCAGTTGTGCCACTA -ACGGAAGATGCAGTTGTGGGAGTA -ACGGAAGATGCAGTTGTGTCGTCT -ACGGAAGATGCAGTTGTGTGCACT -ACGGAAGATGCAGTTGTGCTGACT -ACGGAAGATGCAGTTGTGCAACCT -ACGGAAGATGCAGTTGTGGCTACT -ACGGAAGATGCAGTTGTGGGATCT -ACGGAAGATGCAGTTGTGAAGGCT -ACGGAAGATGCAGTTGTGTCAACC -ACGGAAGATGCAGTTGTGTGTTCC -ACGGAAGATGCAGTTGTGATTCCC -ACGGAAGATGCAGTTGTGTTCTCG -ACGGAAGATGCAGTTGTGTAGACG -ACGGAAGATGCAGTTGTGGTAACG -ACGGAAGATGCAGTTGTGACTTCG -ACGGAAGATGCAGTTGTGTACGCA -ACGGAAGATGCAGTTGTGCTTGCA -ACGGAAGATGCAGTTGTGCGAACA -ACGGAAGATGCAGTTGTGCAGTCA -ACGGAAGATGCAGTTGTGGATCCA -ACGGAAGATGCAGTTGTGACGACA -ACGGAAGATGCAGTTGTGAGCTCA -ACGGAAGATGCAGTTGTGTCACGT -ACGGAAGATGCAGTTGTGCGTAGT -ACGGAAGATGCAGTTGTGGTCAGT -ACGGAAGATGCAGTTGTGGAAGGT -ACGGAAGATGCAGTTGTGAACCGT -ACGGAAGATGCAGTTGTGTTGTGC -ACGGAAGATGCAGTTGTGCTAAGC -ACGGAAGATGCAGTTGTGACTAGC -ACGGAAGATGCAGTTGTGAGATGC -ACGGAAGATGCAGTTGTGTGAAGG -ACGGAAGATGCAGTTGTGCAATGG -ACGGAAGATGCAGTTGTGATGAGG -ACGGAAGATGCAGTTGTGAATGGG -ACGGAAGATGCAGTTGTGTCCTGA -ACGGAAGATGCAGTTGTGTAGCGA -ACGGAAGATGCAGTTGTGCACAGA -ACGGAAGATGCAGTTGTGGCAAGA -ACGGAAGATGCAGTTGTGGGTTGA -ACGGAAGATGCAGTTGTGTCCGAT -ACGGAAGATGCAGTTGTGTGGCAT -ACGGAAGATGCAGTTGTGCGAGAT -ACGGAAGATGCAGTTGTGTACCAC -ACGGAAGATGCAGTTGTGCAGAAC -ACGGAAGATGCAGTTGTGGTCTAC -ACGGAAGATGCAGTTGTGACGTAC -ACGGAAGATGCAGTTGTGAGTGAC -ACGGAAGATGCAGTTGTGCTGTAG -ACGGAAGATGCAGTTGTGCCTAAG -ACGGAAGATGCAGTTGTGGTTCAG -ACGGAAGATGCAGTTGTGGCATAG -ACGGAAGATGCAGTTGTGGACAAG -ACGGAAGATGCAGTTGTGAAGCAG -ACGGAAGATGCAGTTGTGCGTCAA -ACGGAAGATGCAGTTGTGGCTGAA -ACGGAAGATGCAGTTGTGAGTACG -ACGGAAGATGCAGTTGTGATCCGA -ACGGAAGATGCAGTTGTGATGGGA -ACGGAAGATGCAGTTGTGGTGCAA -ACGGAAGATGCAGTTGTGGAGGAA -ACGGAAGATGCAGTTGTGCAGGTA -ACGGAAGATGCAGTTGTGGACTCT -ACGGAAGATGCAGTTGTGAGTCCT -ACGGAAGATGCAGTTGTGTAAGCC -ACGGAAGATGCAGTTGTGATAGCC -ACGGAAGATGCAGTTGTGTAACCG -ACGGAAGATGCAGTTGTGATGCCA -ACGGAAGATGCATTTGCCGGAAAC -ACGGAAGATGCATTTGCCAACACC -ACGGAAGATGCATTTGCCATCGAG -ACGGAAGATGCATTTGCCCTCCTT -ACGGAAGATGCATTTGCCCCTGTT -ACGGAAGATGCATTTGCCCGGTTT -ACGGAAGATGCATTTGCCGTGGTT -ACGGAAGATGCATTTGCCGCCTTT -ACGGAAGATGCATTTGCCGGTCTT -ACGGAAGATGCATTTGCCACGCTT -ACGGAAGATGCATTTGCCAGCGTT -ACGGAAGATGCATTTGCCTTCGTC -ACGGAAGATGCATTTGCCTCTCTC -ACGGAAGATGCATTTGCCTGGATC -ACGGAAGATGCATTTGCCCACTTC -ACGGAAGATGCATTTGCCGTACTC -ACGGAAGATGCATTTGCCGATGTC -ACGGAAGATGCATTTGCCACAGTC -ACGGAAGATGCATTTGCCTTGCTG -ACGGAAGATGCATTTGCCTCCATG -ACGGAAGATGCATTTGCCTGTGTG -ACGGAAGATGCATTTGCCCTAGTG -ACGGAAGATGCATTTGCCCATCTG -ACGGAAGATGCATTTGCCGAGTTG -ACGGAAGATGCATTTGCCAGACTG -ACGGAAGATGCATTTGCCTCGGTA -ACGGAAGATGCATTTGCCTGCCTA -ACGGAAGATGCATTTGCCCCACTA -ACGGAAGATGCATTTGCCGGAGTA -ACGGAAGATGCATTTGCCTCGTCT -ACGGAAGATGCATTTGCCTGCACT -ACGGAAGATGCATTTGCCCTGACT -ACGGAAGATGCATTTGCCCAACCT -ACGGAAGATGCATTTGCCGCTACT -ACGGAAGATGCATTTGCCGGATCT -ACGGAAGATGCATTTGCCAAGGCT -ACGGAAGATGCATTTGCCTCAACC -ACGGAAGATGCATTTGCCTGTTCC -ACGGAAGATGCATTTGCCATTCCC -ACGGAAGATGCATTTGCCTTCTCG -ACGGAAGATGCATTTGCCTAGACG -ACGGAAGATGCATTTGCCGTAACG -ACGGAAGATGCATTTGCCACTTCG -ACGGAAGATGCATTTGCCTACGCA -ACGGAAGATGCATTTGCCCTTGCA -ACGGAAGATGCATTTGCCCGAACA -ACGGAAGATGCATTTGCCCAGTCA -ACGGAAGATGCATTTGCCGATCCA -ACGGAAGATGCATTTGCCACGACA -ACGGAAGATGCATTTGCCAGCTCA -ACGGAAGATGCATTTGCCTCACGT -ACGGAAGATGCATTTGCCCGTAGT -ACGGAAGATGCATTTGCCGTCAGT -ACGGAAGATGCATTTGCCGAAGGT -ACGGAAGATGCATTTGCCAACCGT -ACGGAAGATGCATTTGCCTTGTGC -ACGGAAGATGCATTTGCCCTAAGC -ACGGAAGATGCATTTGCCACTAGC -ACGGAAGATGCATTTGCCAGATGC -ACGGAAGATGCATTTGCCTGAAGG -ACGGAAGATGCATTTGCCCAATGG -ACGGAAGATGCATTTGCCATGAGG -ACGGAAGATGCATTTGCCAATGGG -ACGGAAGATGCATTTGCCTCCTGA -ACGGAAGATGCATTTGCCTAGCGA -ACGGAAGATGCATTTGCCCACAGA -ACGGAAGATGCATTTGCCGCAAGA -ACGGAAGATGCATTTGCCGGTTGA -ACGGAAGATGCATTTGCCTCCGAT -ACGGAAGATGCATTTGCCTGGCAT -ACGGAAGATGCATTTGCCCGAGAT -ACGGAAGATGCATTTGCCTACCAC -ACGGAAGATGCATTTGCCCAGAAC -ACGGAAGATGCATTTGCCGTCTAC -ACGGAAGATGCATTTGCCACGTAC -ACGGAAGATGCATTTGCCAGTGAC -ACGGAAGATGCATTTGCCCTGTAG -ACGGAAGATGCATTTGCCCCTAAG -ACGGAAGATGCATTTGCCGTTCAG -ACGGAAGATGCATTTGCCGCATAG -ACGGAAGATGCATTTGCCGACAAG -ACGGAAGATGCATTTGCCAAGCAG -ACGGAAGATGCATTTGCCCGTCAA -ACGGAAGATGCATTTGCCGCTGAA -ACGGAAGATGCATTTGCCAGTACG -ACGGAAGATGCATTTGCCATCCGA -ACGGAAGATGCATTTGCCATGGGA -ACGGAAGATGCATTTGCCGTGCAA -ACGGAAGATGCATTTGCCGAGGAA -ACGGAAGATGCATTTGCCCAGGTA -ACGGAAGATGCATTTGCCGACTCT -ACGGAAGATGCATTTGCCAGTCCT -ACGGAAGATGCATTTGCCTAAGCC -ACGGAAGATGCATTTGCCATAGCC -ACGGAAGATGCATTTGCCTAACCG -ACGGAAGATGCATTTGCCATGCCA -ACGGAAGATGCACTTGGTGGAAAC -ACGGAAGATGCACTTGGTAACACC -ACGGAAGATGCACTTGGTATCGAG -ACGGAAGATGCACTTGGTCTCCTT -ACGGAAGATGCACTTGGTCCTGTT -ACGGAAGATGCACTTGGTCGGTTT -ACGGAAGATGCACTTGGTGTGGTT -ACGGAAGATGCACTTGGTGCCTTT -ACGGAAGATGCACTTGGTGGTCTT -ACGGAAGATGCACTTGGTACGCTT -ACGGAAGATGCACTTGGTAGCGTT -ACGGAAGATGCACTTGGTTTCGTC -ACGGAAGATGCACTTGGTTCTCTC -ACGGAAGATGCACTTGGTTGGATC -ACGGAAGATGCACTTGGTCACTTC -ACGGAAGATGCACTTGGTGTACTC -ACGGAAGATGCACTTGGTGATGTC -ACGGAAGATGCACTTGGTACAGTC -ACGGAAGATGCACTTGGTTTGCTG -ACGGAAGATGCACTTGGTTCCATG -ACGGAAGATGCACTTGGTTGTGTG -ACGGAAGATGCACTTGGTCTAGTG -ACGGAAGATGCACTTGGTCATCTG -ACGGAAGATGCACTTGGTGAGTTG -ACGGAAGATGCACTTGGTAGACTG -ACGGAAGATGCACTTGGTTCGGTA -ACGGAAGATGCACTTGGTTGCCTA -ACGGAAGATGCACTTGGTCCACTA -ACGGAAGATGCACTTGGTGGAGTA -ACGGAAGATGCACTTGGTTCGTCT -ACGGAAGATGCACTTGGTTGCACT -ACGGAAGATGCACTTGGTCTGACT -ACGGAAGATGCACTTGGTCAACCT -ACGGAAGATGCACTTGGTGCTACT -ACGGAAGATGCACTTGGTGGATCT -ACGGAAGATGCACTTGGTAAGGCT -ACGGAAGATGCACTTGGTTCAACC -ACGGAAGATGCACTTGGTTGTTCC -ACGGAAGATGCACTTGGTATTCCC -ACGGAAGATGCACTTGGTTTCTCG -ACGGAAGATGCACTTGGTTAGACG -ACGGAAGATGCACTTGGTGTAACG -ACGGAAGATGCACTTGGTACTTCG -ACGGAAGATGCACTTGGTTACGCA -ACGGAAGATGCACTTGGTCTTGCA -ACGGAAGATGCACTTGGTCGAACA -ACGGAAGATGCACTTGGTCAGTCA -ACGGAAGATGCACTTGGTGATCCA -ACGGAAGATGCACTTGGTACGACA -ACGGAAGATGCACTTGGTAGCTCA -ACGGAAGATGCACTTGGTTCACGT -ACGGAAGATGCACTTGGTCGTAGT -ACGGAAGATGCACTTGGTGTCAGT -ACGGAAGATGCACTTGGTGAAGGT -ACGGAAGATGCACTTGGTAACCGT -ACGGAAGATGCACTTGGTTTGTGC -ACGGAAGATGCACTTGGTCTAAGC -ACGGAAGATGCACTTGGTACTAGC -ACGGAAGATGCACTTGGTAGATGC -ACGGAAGATGCACTTGGTTGAAGG -ACGGAAGATGCACTTGGTCAATGG -ACGGAAGATGCACTTGGTATGAGG -ACGGAAGATGCACTTGGTAATGGG -ACGGAAGATGCACTTGGTTCCTGA -ACGGAAGATGCACTTGGTTAGCGA -ACGGAAGATGCACTTGGTCACAGA -ACGGAAGATGCACTTGGTGCAAGA -ACGGAAGATGCACTTGGTGGTTGA -ACGGAAGATGCACTTGGTTCCGAT -ACGGAAGATGCACTTGGTTGGCAT -ACGGAAGATGCACTTGGTCGAGAT -ACGGAAGATGCACTTGGTTACCAC -ACGGAAGATGCACTTGGTCAGAAC -ACGGAAGATGCACTTGGTGTCTAC -ACGGAAGATGCACTTGGTACGTAC -ACGGAAGATGCACTTGGTAGTGAC -ACGGAAGATGCACTTGGTCTGTAG -ACGGAAGATGCACTTGGTCCTAAG -ACGGAAGATGCACTTGGTGTTCAG -ACGGAAGATGCACTTGGTGCATAG -ACGGAAGATGCACTTGGTGACAAG -ACGGAAGATGCACTTGGTAAGCAG -ACGGAAGATGCACTTGGTCGTCAA -ACGGAAGATGCACTTGGTGCTGAA -ACGGAAGATGCACTTGGTAGTACG -ACGGAAGATGCACTTGGTATCCGA -ACGGAAGATGCACTTGGTATGGGA -ACGGAAGATGCACTTGGTGTGCAA -ACGGAAGATGCACTTGGTGAGGAA -ACGGAAGATGCACTTGGTCAGGTA -ACGGAAGATGCACTTGGTGACTCT -ACGGAAGATGCACTTGGTAGTCCT -ACGGAAGATGCACTTGGTTAAGCC -ACGGAAGATGCACTTGGTATAGCC -ACGGAAGATGCACTTGGTTAACCG -ACGGAAGATGCACTTGGTATGCCA -ACGGAAGATGCACTTACGGGAAAC -ACGGAAGATGCACTTACGAACACC -ACGGAAGATGCACTTACGATCGAG -ACGGAAGATGCACTTACGCTCCTT -ACGGAAGATGCACTTACGCCTGTT -ACGGAAGATGCACTTACGCGGTTT -ACGGAAGATGCACTTACGGTGGTT -ACGGAAGATGCACTTACGGCCTTT -ACGGAAGATGCACTTACGGGTCTT -ACGGAAGATGCACTTACGACGCTT -ACGGAAGATGCACTTACGAGCGTT -ACGGAAGATGCACTTACGTTCGTC -ACGGAAGATGCACTTACGTCTCTC -ACGGAAGATGCACTTACGTGGATC -ACGGAAGATGCACTTACGCACTTC -ACGGAAGATGCACTTACGGTACTC -ACGGAAGATGCACTTACGGATGTC -ACGGAAGATGCACTTACGACAGTC -ACGGAAGATGCACTTACGTTGCTG -ACGGAAGATGCACTTACGTCCATG -ACGGAAGATGCACTTACGTGTGTG -ACGGAAGATGCACTTACGCTAGTG -ACGGAAGATGCACTTACGCATCTG -ACGGAAGATGCACTTACGGAGTTG -ACGGAAGATGCACTTACGAGACTG -ACGGAAGATGCACTTACGTCGGTA -ACGGAAGATGCACTTACGTGCCTA -ACGGAAGATGCACTTACGCCACTA -ACGGAAGATGCACTTACGGGAGTA -ACGGAAGATGCACTTACGTCGTCT -ACGGAAGATGCACTTACGTGCACT -ACGGAAGATGCACTTACGCTGACT -ACGGAAGATGCACTTACGCAACCT -ACGGAAGATGCACTTACGGCTACT -ACGGAAGATGCACTTACGGGATCT -ACGGAAGATGCACTTACGAAGGCT -ACGGAAGATGCACTTACGTCAACC -ACGGAAGATGCACTTACGTGTTCC -ACGGAAGATGCACTTACGATTCCC -ACGGAAGATGCACTTACGTTCTCG -ACGGAAGATGCACTTACGTAGACG -ACGGAAGATGCACTTACGGTAACG -ACGGAAGATGCACTTACGACTTCG -ACGGAAGATGCACTTACGTACGCA -ACGGAAGATGCACTTACGCTTGCA -ACGGAAGATGCACTTACGCGAACA -ACGGAAGATGCACTTACGCAGTCA -ACGGAAGATGCACTTACGGATCCA -ACGGAAGATGCACTTACGACGACA -ACGGAAGATGCACTTACGAGCTCA -ACGGAAGATGCACTTACGTCACGT -ACGGAAGATGCACTTACGCGTAGT -ACGGAAGATGCACTTACGGTCAGT -ACGGAAGATGCACTTACGGAAGGT -ACGGAAGATGCACTTACGAACCGT -ACGGAAGATGCACTTACGTTGTGC -ACGGAAGATGCACTTACGCTAAGC -ACGGAAGATGCACTTACGACTAGC -ACGGAAGATGCACTTACGAGATGC -ACGGAAGATGCACTTACGTGAAGG -ACGGAAGATGCACTTACGCAATGG -ACGGAAGATGCACTTACGATGAGG -ACGGAAGATGCACTTACGAATGGG -ACGGAAGATGCACTTACGTCCTGA -ACGGAAGATGCACTTACGTAGCGA -ACGGAAGATGCACTTACGCACAGA -ACGGAAGATGCACTTACGGCAAGA -ACGGAAGATGCACTTACGGGTTGA -ACGGAAGATGCACTTACGTCCGAT -ACGGAAGATGCACTTACGTGGCAT -ACGGAAGATGCACTTACGCGAGAT -ACGGAAGATGCACTTACGTACCAC -ACGGAAGATGCACTTACGCAGAAC -ACGGAAGATGCACTTACGGTCTAC -ACGGAAGATGCACTTACGACGTAC -ACGGAAGATGCACTTACGAGTGAC -ACGGAAGATGCACTTACGCTGTAG -ACGGAAGATGCACTTACGCCTAAG -ACGGAAGATGCACTTACGGTTCAG -ACGGAAGATGCACTTACGGCATAG -ACGGAAGATGCACTTACGGACAAG -ACGGAAGATGCACTTACGAAGCAG -ACGGAAGATGCACTTACGCGTCAA -ACGGAAGATGCACTTACGGCTGAA -ACGGAAGATGCACTTACGAGTACG -ACGGAAGATGCACTTACGATCCGA -ACGGAAGATGCACTTACGATGGGA -ACGGAAGATGCACTTACGGTGCAA -ACGGAAGATGCACTTACGGAGGAA -ACGGAAGATGCACTTACGCAGGTA -ACGGAAGATGCACTTACGGACTCT -ACGGAAGATGCACTTACGAGTCCT -ACGGAAGATGCACTTACGTAAGCC -ACGGAAGATGCACTTACGATAGCC -ACGGAAGATGCACTTACGTAACCG -ACGGAAGATGCACTTACGATGCCA -ACGGAAGATGCAGTTAGCGGAAAC -ACGGAAGATGCAGTTAGCAACACC -ACGGAAGATGCAGTTAGCATCGAG -ACGGAAGATGCAGTTAGCCTCCTT -ACGGAAGATGCAGTTAGCCCTGTT -ACGGAAGATGCAGTTAGCCGGTTT -ACGGAAGATGCAGTTAGCGTGGTT -ACGGAAGATGCAGTTAGCGCCTTT -ACGGAAGATGCAGTTAGCGGTCTT -ACGGAAGATGCAGTTAGCACGCTT -ACGGAAGATGCAGTTAGCAGCGTT -ACGGAAGATGCAGTTAGCTTCGTC -ACGGAAGATGCAGTTAGCTCTCTC -ACGGAAGATGCAGTTAGCTGGATC -ACGGAAGATGCAGTTAGCCACTTC -ACGGAAGATGCAGTTAGCGTACTC -ACGGAAGATGCAGTTAGCGATGTC -ACGGAAGATGCAGTTAGCACAGTC -ACGGAAGATGCAGTTAGCTTGCTG -ACGGAAGATGCAGTTAGCTCCATG -ACGGAAGATGCAGTTAGCTGTGTG -ACGGAAGATGCAGTTAGCCTAGTG -ACGGAAGATGCAGTTAGCCATCTG -ACGGAAGATGCAGTTAGCGAGTTG -ACGGAAGATGCAGTTAGCAGACTG -ACGGAAGATGCAGTTAGCTCGGTA -ACGGAAGATGCAGTTAGCTGCCTA -ACGGAAGATGCAGTTAGCCCACTA -ACGGAAGATGCAGTTAGCGGAGTA -ACGGAAGATGCAGTTAGCTCGTCT -ACGGAAGATGCAGTTAGCTGCACT -ACGGAAGATGCAGTTAGCCTGACT -ACGGAAGATGCAGTTAGCCAACCT -ACGGAAGATGCAGTTAGCGCTACT -ACGGAAGATGCAGTTAGCGGATCT -ACGGAAGATGCAGTTAGCAAGGCT -ACGGAAGATGCAGTTAGCTCAACC -ACGGAAGATGCAGTTAGCTGTTCC -ACGGAAGATGCAGTTAGCATTCCC -ACGGAAGATGCAGTTAGCTTCTCG -ACGGAAGATGCAGTTAGCTAGACG -ACGGAAGATGCAGTTAGCGTAACG -ACGGAAGATGCAGTTAGCACTTCG -ACGGAAGATGCAGTTAGCTACGCA -ACGGAAGATGCAGTTAGCCTTGCA -ACGGAAGATGCAGTTAGCCGAACA -ACGGAAGATGCAGTTAGCCAGTCA -ACGGAAGATGCAGTTAGCGATCCA -ACGGAAGATGCAGTTAGCACGACA -ACGGAAGATGCAGTTAGCAGCTCA -ACGGAAGATGCAGTTAGCTCACGT -ACGGAAGATGCAGTTAGCCGTAGT -ACGGAAGATGCAGTTAGCGTCAGT -ACGGAAGATGCAGTTAGCGAAGGT -ACGGAAGATGCAGTTAGCAACCGT -ACGGAAGATGCAGTTAGCTTGTGC -ACGGAAGATGCAGTTAGCCTAAGC -ACGGAAGATGCAGTTAGCACTAGC -ACGGAAGATGCAGTTAGCAGATGC -ACGGAAGATGCAGTTAGCTGAAGG -ACGGAAGATGCAGTTAGCCAATGG -ACGGAAGATGCAGTTAGCATGAGG -ACGGAAGATGCAGTTAGCAATGGG -ACGGAAGATGCAGTTAGCTCCTGA -ACGGAAGATGCAGTTAGCTAGCGA -ACGGAAGATGCAGTTAGCCACAGA -ACGGAAGATGCAGTTAGCGCAAGA -ACGGAAGATGCAGTTAGCGGTTGA -ACGGAAGATGCAGTTAGCTCCGAT -ACGGAAGATGCAGTTAGCTGGCAT -ACGGAAGATGCAGTTAGCCGAGAT -ACGGAAGATGCAGTTAGCTACCAC -ACGGAAGATGCAGTTAGCCAGAAC -ACGGAAGATGCAGTTAGCGTCTAC -ACGGAAGATGCAGTTAGCACGTAC -ACGGAAGATGCAGTTAGCAGTGAC -ACGGAAGATGCAGTTAGCCTGTAG -ACGGAAGATGCAGTTAGCCCTAAG -ACGGAAGATGCAGTTAGCGTTCAG -ACGGAAGATGCAGTTAGCGCATAG -ACGGAAGATGCAGTTAGCGACAAG -ACGGAAGATGCAGTTAGCAAGCAG -ACGGAAGATGCAGTTAGCCGTCAA -ACGGAAGATGCAGTTAGCGCTGAA -ACGGAAGATGCAGTTAGCAGTACG -ACGGAAGATGCAGTTAGCATCCGA -ACGGAAGATGCAGTTAGCATGGGA -ACGGAAGATGCAGTTAGCGTGCAA -ACGGAAGATGCAGTTAGCGAGGAA -ACGGAAGATGCAGTTAGCCAGGTA -ACGGAAGATGCAGTTAGCGACTCT -ACGGAAGATGCAGTTAGCAGTCCT -ACGGAAGATGCAGTTAGCTAAGCC -ACGGAAGATGCAGTTAGCATAGCC -ACGGAAGATGCAGTTAGCTAACCG -ACGGAAGATGCAGTTAGCATGCCA -ACGGAAGATGCAGTCTTCGGAAAC -ACGGAAGATGCAGTCTTCAACACC -ACGGAAGATGCAGTCTTCATCGAG -ACGGAAGATGCAGTCTTCCTCCTT -ACGGAAGATGCAGTCTTCCCTGTT -ACGGAAGATGCAGTCTTCCGGTTT -ACGGAAGATGCAGTCTTCGTGGTT -ACGGAAGATGCAGTCTTCGCCTTT -ACGGAAGATGCAGTCTTCGGTCTT -ACGGAAGATGCAGTCTTCACGCTT -ACGGAAGATGCAGTCTTCAGCGTT -ACGGAAGATGCAGTCTTCTTCGTC -ACGGAAGATGCAGTCTTCTCTCTC -ACGGAAGATGCAGTCTTCTGGATC -ACGGAAGATGCAGTCTTCCACTTC -ACGGAAGATGCAGTCTTCGTACTC -ACGGAAGATGCAGTCTTCGATGTC -ACGGAAGATGCAGTCTTCACAGTC -ACGGAAGATGCAGTCTTCTTGCTG -ACGGAAGATGCAGTCTTCTCCATG -ACGGAAGATGCAGTCTTCTGTGTG -ACGGAAGATGCAGTCTTCCTAGTG -ACGGAAGATGCAGTCTTCCATCTG -ACGGAAGATGCAGTCTTCGAGTTG -ACGGAAGATGCAGTCTTCAGACTG -ACGGAAGATGCAGTCTTCTCGGTA -ACGGAAGATGCAGTCTTCTGCCTA -ACGGAAGATGCAGTCTTCCCACTA -ACGGAAGATGCAGTCTTCGGAGTA -ACGGAAGATGCAGTCTTCTCGTCT -ACGGAAGATGCAGTCTTCTGCACT -ACGGAAGATGCAGTCTTCCTGACT -ACGGAAGATGCAGTCTTCCAACCT -ACGGAAGATGCAGTCTTCGCTACT -ACGGAAGATGCAGTCTTCGGATCT -ACGGAAGATGCAGTCTTCAAGGCT -ACGGAAGATGCAGTCTTCTCAACC -ACGGAAGATGCAGTCTTCTGTTCC -ACGGAAGATGCAGTCTTCATTCCC -ACGGAAGATGCAGTCTTCTTCTCG -ACGGAAGATGCAGTCTTCTAGACG -ACGGAAGATGCAGTCTTCGTAACG -ACGGAAGATGCAGTCTTCACTTCG -ACGGAAGATGCAGTCTTCTACGCA -ACGGAAGATGCAGTCTTCCTTGCA -ACGGAAGATGCAGTCTTCCGAACA -ACGGAAGATGCAGTCTTCCAGTCA -ACGGAAGATGCAGTCTTCGATCCA -ACGGAAGATGCAGTCTTCACGACA -ACGGAAGATGCAGTCTTCAGCTCA -ACGGAAGATGCAGTCTTCTCACGT -ACGGAAGATGCAGTCTTCCGTAGT -ACGGAAGATGCAGTCTTCGTCAGT -ACGGAAGATGCAGTCTTCGAAGGT -ACGGAAGATGCAGTCTTCAACCGT -ACGGAAGATGCAGTCTTCTTGTGC -ACGGAAGATGCAGTCTTCCTAAGC -ACGGAAGATGCAGTCTTCACTAGC -ACGGAAGATGCAGTCTTCAGATGC -ACGGAAGATGCAGTCTTCTGAAGG -ACGGAAGATGCAGTCTTCCAATGG -ACGGAAGATGCAGTCTTCATGAGG -ACGGAAGATGCAGTCTTCAATGGG -ACGGAAGATGCAGTCTTCTCCTGA -ACGGAAGATGCAGTCTTCTAGCGA -ACGGAAGATGCAGTCTTCCACAGA -ACGGAAGATGCAGTCTTCGCAAGA -ACGGAAGATGCAGTCTTCGGTTGA -ACGGAAGATGCAGTCTTCTCCGAT -ACGGAAGATGCAGTCTTCTGGCAT -ACGGAAGATGCAGTCTTCCGAGAT -ACGGAAGATGCAGTCTTCTACCAC -ACGGAAGATGCAGTCTTCCAGAAC -ACGGAAGATGCAGTCTTCGTCTAC -ACGGAAGATGCAGTCTTCACGTAC -ACGGAAGATGCAGTCTTCAGTGAC -ACGGAAGATGCAGTCTTCCTGTAG -ACGGAAGATGCAGTCTTCCCTAAG -ACGGAAGATGCAGTCTTCGTTCAG -ACGGAAGATGCAGTCTTCGCATAG -ACGGAAGATGCAGTCTTCGACAAG -ACGGAAGATGCAGTCTTCAAGCAG -ACGGAAGATGCAGTCTTCCGTCAA -ACGGAAGATGCAGTCTTCGCTGAA -ACGGAAGATGCAGTCTTCAGTACG -ACGGAAGATGCAGTCTTCATCCGA -ACGGAAGATGCAGTCTTCATGGGA -ACGGAAGATGCAGTCTTCGTGCAA -ACGGAAGATGCAGTCTTCGAGGAA -ACGGAAGATGCAGTCTTCCAGGTA -ACGGAAGATGCAGTCTTCGACTCT -ACGGAAGATGCAGTCTTCAGTCCT -ACGGAAGATGCAGTCTTCTAAGCC -ACGGAAGATGCAGTCTTCATAGCC -ACGGAAGATGCAGTCTTCTAACCG -ACGGAAGATGCAGTCTTCATGCCA -ACGGAAGATGCACTCTCTGGAAAC -ACGGAAGATGCACTCTCTAACACC -ACGGAAGATGCACTCTCTATCGAG -ACGGAAGATGCACTCTCTCTCCTT -ACGGAAGATGCACTCTCTCCTGTT -ACGGAAGATGCACTCTCTCGGTTT -ACGGAAGATGCACTCTCTGTGGTT -ACGGAAGATGCACTCTCTGCCTTT -ACGGAAGATGCACTCTCTGGTCTT -ACGGAAGATGCACTCTCTACGCTT -ACGGAAGATGCACTCTCTAGCGTT -ACGGAAGATGCACTCTCTTTCGTC -ACGGAAGATGCACTCTCTTCTCTC -ACGGAAGATGCACTCTCTTGGATC -ACGGAAGATGCACTCTCTCACTTC -ACGGAAGATGCACTCTCTGTACTC -ACGGAAGATGCACTCTCTGATGTC -ACGGAAGATGCACTCTCTACAGTC -ACGGAAGATGCACTCTCTTTGCTG -ACGGAAGATGCACTCTCTTCCATG -ACGGAAGATGCACTCTCTTGTGTG -ACGGAAGATGCACTCTCTCTAGTG -ACGGAAGATGCACTCTCTCATCTG -ACGGAAGATGCACTCTCTGAGTTG -ACGGAAGATGCACTCTCTAGACTG -ACGGAAGATGCACTCTCTTCGGTA -ACGGAAGATGCACTCTCTTGCCTA -ACGGAAGATGCACTCTCTCCACTA -ACGGAAGATGCACTCTCTGGAGTA -ACGGAAGATGCACTCTCTTCGTCT -ACGGAAGATGCACTCTCTTGCACT -ACGGAAGATGCACTCTCTCTGACT -ACGGAAGATGCACTCTCTCAACCT -ACGGAAGATGCACTCTCTGCTACT -ACGGAAGATGCACTCTCTGGATCT -ACGGAAGATGCACTCTCTAAGGCT -ACGGAAGATGCACTCTCTTCAACC -ACGGAAGATGCACTCTCTTGTTCC -ACGGAAGATGCACTCTCTATTCCC -ACGGAAGATGCACTCTCTTTCTCG -ACGGAAGATGCACTCTCTTAGACG -ACGGAAGATGCACTCTCTGTAACG -ACGGAAGATGCACTCTCTACTTCG -ACGGAAGATGCACTCTCTTACGCA -ACGGAAGATGCACTCTCTCTTGCA -ACGGAAGATGCACTCTCTCGAACA -ACGGAAGATGCACTCTCTCAGTCA -ACGGAAGATGCACTCTCTGATCCA -ACGGAAGATGCACTCTCTACGACA -ACGGAAGATGCACTCTCTAGCTCA -ACGGAAGATGCACTCTCTTCACGT -ACGGAAGATGCACTCTCTCGTAGT -ACGGAAGATGCACTCTCTGTCAGT -ACGGAAGATGCACTCTCTGAAGGT -ACGGAAGATGCACTCTCTAACCGT -ACGGAAGATGCACTCTCTTTGTGC -ACGGAAGATGCACTCTCTCTAAGC -ACGGAAGATGCACTCTCTACTAGC -ACGGAAGATGCACTCTCTAGATGC -ACGGAAGATGCACTCTCTTGAAGG -ACGGAAGATGCACTCTCTCAATGG -ACGGAAGATGCACTCTCTATGAGG -ACGGAAGATGCACTCTCTAATGGG -ACGGAAGATGCACTCTCTTCCTGA -ACGGAAGATGCACTCTCTTAGCGA -ACGGAAGATGCACTCTCTCACAGA -ACGGAAGATGCACTCTCTGCAAGA -ACGGAAGATGCACTCTCTGGTTGA -ACGGAAGATGCACTCTCTTCCGAT -ACGGAAGATGCACTCTCTTGGCAT -ACGGAAGATGCACTCTCTCGAGAT -ACGGAAGATGCACTCTCTTACCAC -ACGGAAGATGCACTCTCTCAGAAC -ACGGAAGATGCACTCTCTGTCTAC -ACGGAAGATGCACTCTCTACGTAC -ACGGAAGATGCACTCTCTAGTGAC -ACGGAAGATGCACTCTCTCTGTAG -ACGGAAGATGCACTCTCTCCTAAG -ACGGAAGATGCACTCTCTGTTCAG -ACGGAAGATGCACTCTCTGCATAG -ACGGAAGATGCACTCTCTGACAAG -ACGGAAGATGCACTCTCTAAGCAG -ACGGAAGATGCACTCTCTCGTCAA -ACGGAAGATGCACTCTCTGCTGAA -ACGGAAGATGCACTCTCTAGTACG -ACGGAAGATGCACTCTCTATCCGA -ACGGAAGATGCACTCTCTATGGGA -ACGGAAGATGCACTCTCTGTGCAA -ACGGAAGATGCACTCTCTGAGGAA -ACGGAAGATGCACTCTCTCAGGTA -ACGGAAGATGCACTCTCTGACTCT -ACGGAAGATGCACTCTCTAGTCCT -ACGGAAGATGCACTCTCTTAAGCC -ACGGAAGATGCACTCTCTATAGCC -ACGGAAGATGCACTCTCTTAACCG -ACGGAAGATGCACTCTCTATGCCA -ACGGAAGATGCAATCTGGGGAAAC -ACGGAAGATGCAATCTGGAACACC -ACGGAAGATGCAATCTGGATCGAG -ACGGAAGATGCAATCTGGCTCCTT -ACGGAAGATGCAATCTGGCCTGTT -ACGGAAGATGCAATCTGGCGGTTT -ACGGAAGATGCAATCTGGGTGGTT -ACGGAAGATGCAATCTGGGCCTTT -ACGGAAGATGCAATCTGGGGTCTT -ACGGAAGATGCAATCTGGACGCTT -ACGGAAGATGCAATCTGGAGCGTT -ACGGAAGATGCAATCTGGTTCGTC -ACGGAAGATGCAATCTGGTCTCTC -ACGGAAGATGCAATCTGGTGGATC -ACGGAAGATGCAATCTGGCACTTC -ACGGAAGATGCAATCTGGGTACTC -ACGGAAGATGCAATCTGGGATGTC -ACGGAAGATGCAATCTGGACAGTC -ACGGAAGATGCAATCTGGTTGCTG -ACGGAAGATGCAATCTGGTCCATG -ACGGAAGATGCAATCTGGTGTGTG -ACGGAAGATGCAATCTGGCTAGTG -ACGGAAGATGCAATCTGGCATCTG -ACGGAAGATGCAATCTGGGAGTTG -ACGGAAGATGCAATCTGGAGACTG -ACGGAAGATGCAATCTGGTCGGTA -ACGGAAGATGCAATCTGGTGCCTA -ACGGAAGATGCAATCTGGCCACTA -ACGGAAGATGCAATCTGGGGAGTA -ACGGAAGATGCAATCTGGTCGTCT -ACGGAAGATGCAATCTGGTGCACT -ACGGAAGATGCAATCTGGCTGACT -ACGGAAGATGCAATCTGGCAACCT -ACGGAAGATGCAATCTGGGCTACT -ACGGAAGATGCAATCTGGGGATCT -ACGGAAGATGCAATCTGGAAGGCT -ACGGAAGATGCAATCTGGTCAACC -ACGGAAGATGCAATCTGGTGTTCC -ACGGAAGATGCAATCTGGATTCCC -ACGGAAGATGCAATCTGGTTCTCG -ACGGAAGATGCAATCTGGTAGACG -ACGGAAGATGCAATCTGGGTAACG -ACGGAAGATGCAATCTGGACTTCG -ACGGAAGATGCAATCTGGTACGCA -ACGGAAGATGCAATCTGGCTTGCA -ACGGAAGATGCAATCTGGCGAACA -ACGGAAGATGCAATCTGGCAGTCA -ACGGAAGATGCAATCTGGGATCCA -ACGGAAGATGCAATCTGGACGACA -ACGGAAGATGCAATCTGGAGCTCA -ACGGAAGATGCAATCTGGTCACGT -ACGGAAGATGCAATCTGGCGTAGT -ACGGAAGATGCAATCTGGGTCAGT -ACGGAAGATGCAATCTGGGAAGGT -ACGGAAGATGCAATCTGGAACCGT -ACGGAAGATGCAATCTGGTTGTGC -ACGGAAGATGCAATCTGGCTAAGC -ACGGAAGATGCAATCTGGACTAGC -ACGGAAGATGCAATCTGGAGATGC -ACGGAAGATGCAATCTGGTGAAGG -ACGGAAGATGCAATCTGGCAATGG -ACGGAAGATGCAATCTGGATGAGG -ACGGAAGATGCAATCTGGAATGGG -ACGGAAGATGCAATCTGGTCCTGA -ACGGAAGATGCAATCTGGTAGCGA -ACGGAAGATGCAATCTGGCACAGA -ACGGAAGATGCAATCTGGGCAAGA -ACGGAAGATGCAATCTGGGGTTGA -ACGGAAGATGCAATCTGGTCCGAT -ACGGAAGATGCAATCTGGTGGCAT -ACGGAAGATGCAATCTGGCGAGAT -ACGGAAGATGCAATCTGGTACCAC -ACGGAAGATGCAATCTGGCAGAAC -ACGGAAGATGCAATCTGGGTCTAC -ACGGAAGATGCAATCTGGACGTAC -ACGGAAGATGCAATCTGGAGTGAC -ACGGAAGATGCAATCTGGCTGTAG -ACGGAAGATGCAATCTGGCCTAAG -ACGGAAGATGCAATCTGGGTTCAG -ACGGAAGATGCAATCTGGGCATAG -ACGGAAGATGCAATCTGGGACAAG -ACGGAAGATGCAATCTGGAAGCAG -ACGGAAGATGCAATCTGGCGTCAA -ACGGAAGATGCAATCTGGGCTGAA -ACGGAAGATGCAATCTGGAGTACG -ACGGAAGATGCAATCTGGATCCGA -ACGGAAGATGCAATCTGGATGGGA -ACGGAAGATGCAATCTGGGTGCAA -ACGGAAGATGCAATCTGGGAGGAA -ACGGAAGATGCAATCTGGCAGGTA -ACGGAAGATGCAATCTGGGACTCT -ACGGAAGATGCAATCTGGAGTCCT -ACGGAAGATGCAATCTGGTAAGCC -ACGGAAGATGCAATCTGGATAGCC -ACGGAAGATGCAATCTGGTAACCG -ACGGAAGATGCAATCTGGATGCCA -ACGGAAGATGCATTCCACGGAAAC -ACGGAAGATGCATTCCACAACACC -ACGGAAGATGCATTCCACATCGAG -ACGGAAGATGCATTCCACCTCCTT -ACGGAAGATGCATTCCACCCTGTT -ACGGAAGATGCATTCCACCGGTTT -ACGGAAGATGCATTCCACGTGGTT -ACGGAAGATGCATTCCACGCCTTT -ACGGAAGATGCATTCCACGGTCTT -ACGGAAGATGCATTCCACACGCTT -ACGGAAGATGCATTCCACAGCGTT -ACGGAAGATGCATTCCACTTCGTC -ACGGAAGATGCATTCCACTCTCTC -ACGGAAGATGCATTCCACTGGATC -ACGGAAGATGCATTCCACCACTTC -ACGGAAGATGCATTCCACGTACTC -ACGGAAGATGCATTCCACGATGTC -ACGGAAGATGCATTCCACACAGTC -ACGGAAGATGCATTCCACTTGCTG -ACGGAAGATGCATTCCACTCCATG -ACGGAAGATGCATTCCACTGTGTG -ACGGAAGATGCATTCCACCTAGTG -ACGGAAGATGCATTCCACCATCTG -ACGGAAGATGCATTCCACGAGTTG -ACGGAAGATGCATTCCACAGACTG -ACGGAAGATGCATTCCACTCGGTA -ACGGAAGATGCATTCCACTGCCTA -ACGGAAGATGCATTCCACCCACTA -ACGGAAGATGCATTCCACGGAGTA -ACGGAAGATGCATTCCACTCGTCT -ACGGAAGATGCATTCCACTGCACT -ACGGAAGATGCATTCCACCTGACT -ACGGAAGATGCATTCCACCAACCT -ACGGAAGATGCATTCCACGCTACT -ACGGAAGATGCATTCCACGGATCT -ACGGAAGATGCATTCCACAAGGCT -ACGGAAGATGCATTCCACTCAACC -ACGGAAGATGCATTCCACTGTTCC -ACGGAAGATGCATTCCACATTCCC -ACGGAAGATGCATTCCACTTCTCG -ACGGAAGATGCATTCCACTAGACG -ACGGAAGATGCATTCCACGTAACG -ACGGAAGATGCATTCCACACTTCG -ACGGAAGATGCATTCCACTACGCA -ACGGAAGATGCATTCCACCTTGCA -ACGGAAGATGCATTCCACCGAACA -ACGGAAGATGCATTCCACCAGTCA -ACGGAAGATGCATTCCACGATCCA -ACGGAAGATGCATTCCACACGACA -ACGGAAGATGCATTCCACAGCTCA -ACGGAAGATGCATTCCACTCACGT -ACGGAAGATGCATTCCACCGTAGT -ACGGAAGATGCATTCCACGTCAGT -ACGGAAGATGCATTCCACGAAGGT -ACGGAAGATGCATTCCACAACCGT -ACGGAAGATGCATTCCACTTGTGC -ACGGAAGATGCATTCCACCTAAGC -ACGGAAGATGCATTCCACACTAGC -ACGGAAGATGCATTCCACAGATGC -ACGGAAGATGCATTCCACTGAAGG -ACGGAAGATGCATTCCACCAATGG -ACGGAAGATGCATTCCACATGAGG -ACGGAAGATGCATTCCACAATGGG -ACGGAAGATGCATTCCACTCCTGA -ACGGAAGATGCATTCCACTAGCGA -ACGGAAGATGCATTCCACCACAGA -ACGGAAGATGCATTCCACGCAAGA -ACGGAAGATGCATTCCACGGTTGA -ACGGAAGATGCATTCCACTCCGAT -ACGGAAGATGCATTCCACTGGCAT -ACGGAAGATGCATTCCACCGAGAT -ACGGAAGATGCATTCCACTACCAC -ACGGAAGATGCATTCCACCAGAAC -ACGGAAGATGCATTCCACGTCTAC -ACGGAAGATGCATTCCACACGTAC -ACGGAAGATGCATTCCACAGTGAC -ACGGAAGATGCATTCCACCTGTAG -ACGGAAGATGCATTCCACCCTAAG -ACGGAAGATGCATTCCACGTTCAG -ACGGAAGATGCATTCCACGCATAG -ACGGAAGATGCATTCCACGACAAG -ACGGAAGATGCATTCCACAAGCAG -ACGGAAGATGCATTCCACCGTCAA -ACGGAAGATGCATTCCACGCTGAA -ACGGAAGATGCATTCCACAGTACG -ACGGAAGATGCATTCCACATCCGA -ACGGAAGATGCATTCCACATGGGA -ACGGAAGATGCATTCCACGTGCAA -ACGGAAGATGCATTCCACGAGGAA -ACGGAAGATGCATTCCACCAGGTA -ACGGAAGATGCATTCCACGACTCT -ACGGAAGATGCATTCCACAGTCCT -ACGGAAGATGCATTCCACTAAGCC -ACGGAAGATGCATTCCACATAGCC -ACGGAAGATGCATTCCACTAACCG -ACGGAAGATGCATTCCACATGCCA -ACGGAAGATGCACTCGTAGGAAAC -ACGGAAGATGCACTCGTAAACACC -ACGGAAGATGCACTCGTAATCGAG -ACGGAAGATGCACTCGTACTCCTT -ACGGAAGATGCACTCGTACCTGTT -ACGGAAGATGCACTCGTACGGTTT -ACGGAAGATGCACTCGTAGTGGTT -ACGGAAGATGCACTCGTAGCCTTT -ACGGAAGATGCACTCGTAGGTCTT -ACGGAAGATGCACTCGTAACGCTT -ACGGAAGATGCACTCGTAAGCGTT -ACGGAAGATGCACTCGTATTCGTC -ACGGAAGATGCACTCGTATCTCTC -ACGGAAGATGCACTCGTATGGATC -ACGGAAGATGCACTCGTACACTTC -ACGGAAGATGCACTCGTAGTACTC -ACGGAAGATGCACTCGTAGATGTC -ACGGAAGATGCACTCGTAACAGTC -ACGGAAGATGCACTCGTATTGCTG -ACGGAAGATGCACTCGTATCCATG -ACGGAAGATGCACTCGTATGTGTG -ACGGAAGATGCACTCGTACTAGTG -ACGGAAGATGCACTCGTACATCTG -ACGGAAGATGCACTCGTAGAGTTG -ACGGAAGATGCACTCGTAAGACTG -ACGGAAGATGCACTCGTATCGGTA -ACGGAAGATGCACTCGTATGCCTA -ACGGAAGATGCACTCGTACCACTA -ACGGAAGATGCACTCGTAGGAGTA -ACGGAAGATGCACTCGTATCGTCT -ACGGAAGATGCACTCGTATGCACT -ACGGAAGATGCACTCGTACTGACT -ACGGAAGATGCACTCGTACAACCT -ACGGAAGATGCACTCGTAGCTACT -ACGGAAGATGCACTCGTAGGATCT -ACGGAAGATGCACTCGTAAAGGCT -ACGGAAGATGCACTCGTATCAACC -ACGGAAGATGCACTCGTATGTTCC -ACGGAAGATGCACTCGTAATTCCC -ACGGAAGATGCACTCGTATTCTCG -ACGGAAGATGCACTCGTATAGACG -ACGGAAGATGCACTCGTAGTAACG -ACGGAAGATGCACTCGTAACTTCG -ACGGAAGATGCACTCGTATACGCA -ACGGAAGATGCACTCGTACTTGCA -ACGGAAGATGCACTCGTACGAACA -ACGGAAGATGCACTCGTACAGTCA -ACGGAAGATGCACTCGTAGATCCA -ACGGAAGATGCACTCGTAACGACA -ACGGAAGATGCACTCGTAAGCTCA -ACGGAAGATGCACTCGTATCACGT -ACGGAAGATGCACTCGTACGTAGT -ACGGAAGATGCACTCGTAGTCAGT -ACGGAAGATGCACTCGTAGAAGGT -ACGGAAGATGCACTCGTAAACCGT -ACGGAAGATGCACTCGTATTGTGC -ACGGAAGATGCACTCGTACTAAGC -ACGGAAGATGCACTCGTAACTAGC -ACGGAAGATGCACTCGTAAGATGC -ACGGAAGATGCACTCGTATGAAGG -ACGGAAGATGCACTCGTACAATGG -ACGGAAGATGCACTCGTAATGAGG -ACGGAAGATGCACTCGTAAATGGG -ACGGAAGATGCACTCGTATCCTGA -ACGGAAGATGCACTCGTATAGCGA -ACGGAAGATGCACTCGTACACAGA -ACGGAAGATGCACTCGTAGCAAGA -ACGGAAGATGCACTCGTAGGTTGA -ACGGAAGATGCACTCGTATCCGAT -ACGGAAGATGCACTCGTATGGCAT -ACGGAAGATGCACTCGTACGAGAT -ACGGAAGATGCACTCGTATACCAC -ACGGAAGATGCACTCGTACAGAAC -ACGGAAGATGCACTCGTAGTCTAC -ACGGAAGATGCACTCGTAACGTAC -ACGGAAGATGCACTCGTAAGTGAC -ACGGAAGATGCACTCGTACTGTAG -ACGGAAGATGCACTCGTACCTAAG -ACGGAAGATGCACTCGTAGTTCAG -ACGGAAGATGCACTCGTAGCATAG -ACGGAAGATGCACTCGTAGACAAG -ACGGAAGATGCACTCGTAAAGCAG -ACGGAAGATGCACTCGTACGTCAA -ACGGAAGATGCACTCGTAGCTGAA -ACGGAAGATGCACTCGTAAGTACG -ACGGAAGATGCACTCGTAATCCGA -ACGGAAGATGCACTCGTAATGGGA -ACGGAAGATGCACTCGTAGTGCAA -ACGGAAGATGCACTCGTAGAGGAA -ACGGAAGATGCACTCGTACAGGTA -ACGGAAGATGCACTCGTAGACTCT -ACGGAAGATGCACTCGTAAGTCCT -ACGGAAGATGCACTCGTATAAGCC -ACGGAAGATGCACTCGTAATAGCC -ACGGAAGATGCACTCGTATAACCG -ACGGAAGATGCACTCGTAATGCCA -ACGGAAGATGCAGTCGATGGAAAC -ACGGAAGATGCAGTCGATAACACC -ACGGAAGATGCAGTCGATATCGAG -ACGGAAGATGCAGTCGATCTCCTT -ACGGAAGATGCAGTCGATCCTGTT -ACGGAAGATGCAGTCGATCGGTTT -ACGGAAGATGCAGTCGATGTGGTT -ACGGAAGATGCAGTCGATGCCTTT -ACGGAAGATGCAGTCGATGGTCTT -ACGGAAGATGCAGTCGATACGCTT -ACGGAAGATGCAGTCGATAGCGTT -ACGGAAGATGCAGTCGATTTCGTC -ACGGAAGATGCAGTCGATTCTCTC -ACGGAAGATGCAGTCGATTGGATC -ACGGAAGATGCAGTCGATCACTTC -ACGGAAGATGCAGTCGATGTACTC -ACGGAAGATGCAGTCGATGATGTC -ACGGAAGATGCAGTCGATACAGTC -ACGGAAGATGCAGTCGATTTGCTG -ACGGAAGATGCAGTCGATTCCATG -ACGGAAGATGCAGTCGATTGTGTG -ACGGAAGATGCAGTCGATCTAGTG -ACGGAAGATGCAGTCGATCATCTG -ACGGAAGATGCAGTCGATGAGTTG -ACGGAAGATGCAGTCGATAGACTG -ACGGAAGATGCAGTCGATTCGGTA -ACGGAAGATGCAGTCGATTGCCTA -ACGGAAGATGCAGTCGATCCACTA -ACGGAAGATGCAGTCGATGGAGTA -ACGGAAGATGCAGTCGATTCGTCT -ACGGAAGATGCAGTCGATTGCACT -ACGGAAGATGCAGTCGATCTGACT -ACGGAAGATGCAGTCGATCAACCT -ACGGAAGATGCAGTCGATGCTACT -ACGGAAGATGCAGTCGATGGATCT -ACGGAAGATGCAGTCGATAAGGCT -ACGGAAGATGCAGTCGATTCAACC -ACGGAAGATGCAGTCGATTGTTCC -ACGGAAGATGCAGTCGATATTCCC -ACGGAAGATGCAGTCGATTTCTCG -ACGGAAGATGCAGTCGATTAGACG -ACGGAAGATGCAGTCGATGTAACG -ACGGAAGATGCAGTCGATACTTCG -ACGGAAGATGCAGTCGATTACGCA -ACGGAAGATGCAGTCGATCTTGCA -ACGGAAGATGCAGTCGATCGAACA -ACGGAAGATGCAGTCGATCAGTCA -ACGGAAGATGCAGTCGATGATCCA -ACGGAAGATGCAGTCGATACGACA -ACGGAAGATGCAGTCGATAGCTCA -ACGGAAGATGCAGTCGATTCACGT -ACGGAAGATGCAGTCGATCGTAGT -ACGGAAGATGCAGTCGATGTCAGT -ACGGAAGATGCAGTCGATGAAGGT -ACGGAAGATGCAGTCGATAACCGT -ACGGAAGATGCAGTCGATTTGTGC -ACGGAAGATGCAGTCGATCTAAGC -ACGGAAGATGCAGTCGATACTAGC -ACGGAAGATGCAGTCGATAGATGC -ACGGAAGATGCAGTCGATTGAAGG -ACGGAAGATGCAGTCGATCAATGG -ACGGAAGATGCAGTCGATATGAGG -ACGGAAGATGCAGTCGATAATGGG -ACGGAAGATGCAGTCGATTCCTGA -ACGGAAGATGCAGTCGATTAGCGA -ACGGAAGATGCAGTCGATCACAGA -ACGGAAGATGCAGTCGATGCAAGA -ACGGAAGATGCAGTCGATGGTTGA -ACGGAAGATGCAGTCGATTCCGAT -ACGGAAGATGCAGTCGATTGGCAT -ACGGAAGATGCAGTCGATCGAGAT -ACGGAAGATGCAGTCGATTACCAC -ACGGAAGATGCAGTCGATCAGAAC -ACGGAAGATGCAGTCGATGTCTAC -ACGGAAGATGCAGTCGATACGTAC -ACGGAAGATGCAGTCGATAGTGAC -ACGGAAGATGCAGTCGATCTGTAG -ACGGAAGATGCAGTCGATCCTAAG -ACGGAAGATGCAGTCGATGTTCAG -ACGGAAGATGCAGTCGATGCATAG -ACGGAAGATGCAGTCGATGACAAG -ACGGAAGATGCAGTCGATAAGCAG -ACGGAAGATGCAGTCGATCGTCAA -ACGGAAGATGCAGTCGATGCTGAA -ACGGAAGATGCAGTCGATAGTACG -ACGGAAGATGCAGTCGATATCCGA -ACGGAAGATGCAGTCGATATGGGA -ACGGAAGATGCAGTCGATGTGCAA -ACGGAAGATGCAGTCGATGAGGAA -ACGGAAGATGCAGTCGATCAGGTA -ACGGAAGATGCAGTCGATGACTCT -ACGGAAGATGCAGTCGATAGTCCT -ACGGAAGATGCAGTCGATTAAGCC -ACGGAAGATGCAGTCGATATAGCC -ACGGAAGATGCAGTCGATTAACCG -ACGGAAGATGCAGTCGATATGCCA -ACGGAAGATGCAGTCACAGGAAAC -ACGGAAGATGCAGTCACAAACACC -ACGGAAGATGCAGTCACAATCGAG -ACGGAAGATGCAGTCACACTCCTT -ACGGAAGATGCAGTCACACCTGTT -ACGGAAGATGCAGTCACACGGTTT -ACGGAAGATGCAGTCACAGTGGTT -ACGGAAGATGCAGTCACAGCCTTT -ACGGAAGATGCAGTCACAGGTCTT -ACGGAAGATGCAGTCACAACGCTT -ACGGAAGATGCAGTCACAAGCGTT -ACGGAAGATGCAGTCACATTCGTC -ACGGAAGATGCAGTCACATCTCTC -ACGGAAGATGCAGTCACATGGATC -ACGGAAGATGCAGTCACACACTTC -ACGGAAGATGCAGTCACAGTACTC -ACGGAAGATGCAGTCACAGATGTC -ACGGAAGATGCAGTCACAACAGTC -ACGGAAGATGCAGTCACATTGCTG -ACGGAAGATGCAGTCACATCCATG -ACGGAAGATGCAGTCACATGTGTG -ACGGAAGATGCAGTCACACTAGTG -ACGGAAGATGCAGTCACACATCTG -ACGGAAGATGCAGTCACAGAGTTG -ACGGAAGATGCAGTCACAAGACTG -ACGGAAGATGCAGTCACATCGGTA -ACGGAAGATGCAGTCACATGCCTA -ACGGAAGATGCAGTCACACCACTA -ACGGAAGATGCAGTCACAGGAGTA -ACGGAAGATGCAGTCACATCGTCT -ACGGAAGATGCAGTCACATGCACT -ACGGAAGATGCAGTCACACTGACT -ACGGAAGATGCAGTCACACAACCT -ACGGAAGATGCAGTCACAGCTACT -ACGGAAGATGCAGTCACAGGATCT -ACGGAAGATGCAGTCACAAAGGCT -ACGGAAGATGCAGTCACATCAACC -ACGGAAGATGCAGTCACATGTTCC -ACGGAAGATGCAGTCACAATTCCC -ACGGAAGATGCAGTCACATTCTCG -ACGGAAGATGCAGTCACATAGACG -ACGGAAGATGCAGTCACAGTAACG -ACGGAAGATGCAGTCACAACTTCG -ACGGAAGATGCAGTCACATACGCA -ACGGAAGATGCAGTCACACTTGCA -ACGGAAGATGCAGTCACACGAACA -ACGGAAGATGCAGTCACACAGTCA -ACGGAAGATGCAGTCACAGATCCA -ACGGAAGATGCAGTCACAACGACA -ACGGAAGATGCAGTCACAAGCTCA -ACGGAAGATGCAGTCACATCACGT -ACGGAAGATGCAGTCACACGTAGT -ACGGAAGATGCAGTCACAGTCAGT -ACGGAAGATGCAGTCACAGAAGGT -ACGGAAGATGCAGTCACAAACCGT -ACGGAAGATGCAGTCACATTGTGC -ACGGAAGATGCAGTCACACTAAGC -ACGGAAGATGCAGTCACAACTAGC -ACGGAAGATGCAGTCACAAGATGC -ACGGAAGATGCAGTCACATGAAGG -ACGGAAGATGCAGTCACACAATGG -ACGGAAGATGCAGTCACAATGAGG -ACGGAAGATGCAGTCACAAATGGG -ACGGAAGATGCAGTCACATCCTGA -ACGGAAGATGCAGTCACATAGCGA -ACGGAAGATGCAGTCACACACAGA -ACGGAAGATGCAGTCACAGCAAGA -ACGGAAGATGCAGTCACAGGTTGA -ACGGAAGATGCAGTCACATCCGAT -ACGGAAGATGCAGTCACATGGCAT -ACGGAAGATGCAGTCACACGAGAT -ACGGAAGATGCAGTCACATACCAC -ACGGAAGATGCAGTCACACAGAAC -ACGGAAGATGCAGTCACAGTCTAC -ACGGAAGATGCAGTCACAACGTAC -ACGGAAGATGCAGTCACAAGTGAC -ACGGAAGATGCAGTCACACTGTAG -ACGGAAGATGCAGTCACACCTAAG -ACGGAAGATGCAGTCACAGTTCAG -ACGGAAGATGCAGTCACAGCATAG -ACGGAAGATGCAGTCACAGACAAG -ACGGAAGATGCAGTCACAAAGCAG -ACGGAAGATGCAGTCACACGTCAA -ACGGAAGATGCAGTCACAGCTGAA -ACGGAAGATGCAGTCACAAGTACG -ACGGAAGATGCAGTCACAATCCGA -ACGGAAGATGCAGTCACAATGGGA -ACGGAAGATGCAGTCACAGTGCAA -ACGGAAGATGCAGTCACAGAGGAA -ACGGAAGATGCAGTCACACAGGTA -ACGGAAGATGCAGTCACAGACTCT -ACGGAAGATGCAGTCACAAGTCCT -ACGGAAGATGCAGTCACATAAGCC -ACGGAAGATGCAGTCACAATAGCC -ACGGAAGATGCAGTCACATAACCG -ACGGAAGATGCAGTCACAATGCCA -ACGGAAGATGCACTGTTGGGAAAC -ACGGAAGATGCACTGTTGAACACC -ACGGAAGATGCACTGTTGATCGAG -ACGGAAGATGCACTGTTGCTCCTT -ACGGAAGATGCACTGTTGCCTGTT -ACGGAAGATGCACTGTTGCGGTTT -ACGGAAGATGCACTGTTGGTGGTT -ACGGAAGATGCACTGTTGGCCTTT -ACGGAAGATGCACTGTTGGGTCTT -ACGGAAGATGCACTGTTGACGCTT -ACGGAAGATGCACTGTTGAGCGTT -ACGGAAGATGCACTGTTGTTCGTC -ACGGAAGATGCACTGTTGTCTCTC -ACGGAAGATGCACTGTTGTGGATC -ACGGAAGATGCACTGTTGCACTTC -ACGGAAGATGCACTGTTGGTACTC -ACGGAAGATGCACTGTTGGATGTC -ACGGAAGATGCACTGTTGACAGTC -ACGGAAGATGCACTGTTGTTGCTG -ACGGAAGATGCACTGTTGTCCATG -ACGGAAGATGCACTGTTGTGTGTG -ACGGAAGATGCACTGTTGCTAGTG -ACGGAAGATGCACTGTTGCATCTG -ACGGAAGATGCACTGTTGGAGTTG -ACGGAAGATGCACTGTTGAGACTG -ACGGAAGATGCACTGTTGTCGGTA -ACGGAAGATGCACTGTTGTGCCTA -ACGGAAGATGCACTGTTGCCACTA -ACGGAAGATGCACTGTTGGGAGTA -ACGGAAGATGCACTGTTGTCGTCT -ACGGAAGATGCACTGTTGTGCACT -ACGGAAGATGCACTGTTGCTGACT -ACGGAAGATGCACTGTTGCAACCT -ACGGAAGATGCACTGTTGGCTACT -ACGGAAGATGCACTGTTGGGATCT -ACGGAAGATGCACTGTTGAAGGCT -ACGGAAGATGCACTGTTGTCAACC -ACGGAAGATGCACTGTTGTGTTCC -ACGGAAGATGCACTGTTGATTCCC -ACGGAAGATGCACTGTTGTTCTCG -ACGGAAGATGCACTGTTGTAGACG -ACGGAAGATGCACTGTTGGTAACG -ACGGAAGATGCACTGTTGACTTCG -ACGGAAGATGCACTGTTGTACGCA -ACGGAAGATGCACTGTTGCTTGCA -ACGGAAGATGCACTGTTGCGAACA -ACGGAAGATGCACTGTTGCAGTCA -ACGGAAGATGCACTGTTGGATCCA -ACGGAAGATGCACTGTTGACGACA -ACGGAAGATGCACTGTTGAGCTCA -ACGGAAGATGCACTGTTGTCACGT -ACGGAAGATGCACTGTTGCGTAGT -ACGGAAGATGCACTGTTGGTCAGT -ACGGAAGATGCACTGTTGGAAGGT -ACGGAAGATGCACTGTTGAACCGT -ACGGAAGATGCACTGTTGTTGTGC -ACGGAAGATGCACTGTTGCTAAGC -ACGGAAGATGCACTGTTGACTAGC -ACGGAAGATGCACTGTTGAGATGC -ACGGAAGATGCACTGTTGTGAAGG -ACGGAAGATGCACTGTTGCAATGG -ACGGAAGATGCACTGTTGATGAGG -ACGGAAGATGCACTGTTGAATGGG -ACGGAAGATGCACTGTTGTCCTGA -ACGGAAGATGCACTGTTGTAGCGA -ACGGAAGATGCACTGTTGCACAGA -ACGGAAGATGCACTGTTGGCAAGA -ACGGAAGATGCACTGTTGGGTTGA -ACGGAAGATGCACTGTTGTCCGAT -ACGGAAGATGCACTGTTGTGGCAT -ACGGAAGATGCACTGTTGCGAGAT -ACGGAAGATGCACTGTTGTACCAC -ACGGAAGATGCACTGTTGCAGAAC -ACGGAAGATGCACTGTTGGTCTAC -ACGGAAGATGCACTGTTGACGTAC -ACGGAAGATGCACTGTTGAGTGAC -ACGGAAGATGCACTGTTGCTGTAG -ACGGAAGATGCACTGTTGCCTAAG -ACGGAAGATGCACTGTTGGTTCAG -ACGGAAGATGCACTGTTGGCATAG -ACGGAAGATGCACTGTTGGACAAG -ACGGAAGATGCACTGTTGAAGCAG -ACGGAAGATGCACTGTTGCGTCAA -ACGGAAGATGCACTGTTGGCTGAA -ACGGAAGATGCACTGTTGAGTACG -ACGGAAGATGCACTGTTGATCCGA -ACGGAAGATGCACTGTTGATGGGA -ACGGAAGATGCACTGTTGGTGCAA -ACGGAAGATGCACTGTTGGAGGAA -ACGGAAGATGCACTGTTGCAGGTA -ACGGAAGATGCACTGTTGGACTCT -ACGGAAGATGCACTGTTGAGTCCT -ACGGAAGATGCACTGTTGTAAGCC -ACGGAAGATGCACTGTTGATAGCC -ACGGAAGATGCACTGTTGTAACCG -ACGGAAGATGCACTGTTGATGCCA -ACGGAAGATGCAATGTCCGGAAAC -ACGGAAGATGCAATGTCCAACACC -ACGGAAGATGCAATGTCCATCGAG -ACGGAAGATGCAATGTCCCTCCTT -ACGGAAGATGCAATGTCCCCTGTT -ACGGAAGATGCAATGTCCCGGTTT -ACGGAAGATGCAATGTCCGTGGTT -ACGGAAGATGCAATGTCCGCCTTT -ACGGAAGATGCAATGTCCGGTCTT -ACGGAAGATGCAATGTCCACGCTT -ACGGAAGATGCAATGTCCAGCGTT -ACGGAAGATGCAATGTCCTTCGTC -ACGGAAGATGCAATGTCCTCTCTC -ACGGAAGATGCAATGTCCTGGATC -ACGGAAGATGCAATGTCCCACTTC -ACGGAAGATGCAATGTCCGTACTC -ACGGAAGATGCAATGTCCGATGTC -ACGGAAGATGCAATGTCCACAGTC -ACGGAAGATGCAATGTCCTTGCTG -ACGGAAGATGCAATGTCCTCCATG -ACGGAAGATGCAATGTCCTGTGTG -ACGGAAGATGCAATGTCCCTAGTG -ACGGAAGATGCAATGTCCCATCTG -ACGGAAGATGCAATGTCCGAGTTG -ACGGAAGATGCAATGTCCAGACTG -ACGGAAGATGCAATGTCCTCGGTA -ACGGAAGATGCAATGTCCTGCCTA -ACGGAAGATGCAATGTCCCCACTA -ACGGAAGATGCAATGTCCGGAGTA -ACGGAAGATGCAATGTCCTCGTCT -ACGGAAGATGCAATGTCCTGCACT -ACGGAAGATGCAATGTCCCTGACT -ACGGAAGATGCAATGTCCCAACCT -ACGGAAGATGCAATGTCCGCTACT -ACGGAAGATGCAATGTCCGGATCT -ACGGAAGATGCAATGTCCAAGGCT -ACGGAAGATGCAATGTCCTCAACC -ACGGAAGATGCAATGTCCTGTTCC -ACGGAAGATGCAATGTCCATTCCC -ACGGAAGATGCAATGTCCTTCTCG -ACGGAAGATGCAATGTCCTAGACG -ACGGAAGATGCAATGTCCGTAACG -ACGGAAGATGCAATGTCCACTTCG -ACGGAAGATGCAATGTCCTACGCA -ACGGAAGATGCAATGTCCCTTGCA -ACGGAAGATGCAATGTCCCGAACA -ACGGAAGATGCAATGTCCCAGTCA -ACGGAAGATGCAATGTCCGATCCA -ACGGAAGATGCAATGTCCACGACA -ACGGAAGATGCAATGTCCAGCTCA -ACGGAAGATGCAATGTCCTCACGT -ACGGAAGATGCAATGTCCCGTAGT -ACGGAAGATGCAATGTCCGTCAGT -ACGGAAGATGCAATGTCCGAAGGT -ACGGAAGATGCAATGTCCAACCGT -ACGGAAGATGCAATGTCCTTGTGC -ACGGAAGATGCAATGTCCCTAAGC -ACGGAAGATGCAATGTCCACTAGC -ACGGAAGATGCAATGTCCAGATGC -ACGGAAGATGCAATGTCCTGAAGG -ACGGAAGATGCAATGTCCCAATGG -ACGGAAGATGCAATGTCCATGAGG -ACGGAAGATGCAATGTCCAATGGG -ACGGAAGATGCAATGTCCTCCTGA -ACGGAAGATGCAATGTCCTAGCGA -ACGGAAGATGCAATGTCCCACAGA -ACGGAAGATGCAATGTCCGCAAGA -ACGGAAGATGCAATGTCCGGTTGA -ACGGAAGATGCAATGTCCTCCGAT -ACGGAAGATGCAATGTCCTGGCAT -ACGGAAGATGCAATGTCCCGAGAT -ACGGAAGATGCAATGTCCTACCAC -ACGGAAGATGCAATGTCCCAGAAC -ACGGAAGATGCAATGTCCGTCTAC -ACGGAAGATGCAATGTCCACGTAC -ACGGAAGATGCAATGTCCAGTGAC -ACGGAAGATGCAATGTCCCTGTAG -ACGGAAGATGCAATGTCCCCTAAG -ACGGAAGATGCAATGTCCGTTCAG -ACGGAAGATGCAATGTCCGCATAG -ACGGAAGATGCAATGTCCGACAAG -ACGGAAGATGCAATGTCCAAGCAG -ACGGAAGATGCAATGTCCCGTCAA -ACGGAAGATGCAATGTCCGCTGAA -ACGGAAGATGCAATGTCCAGTACG -ACGGAAGATGCAATGTCCATCCGA -ACGGAAGATGCAATGTCCATGGGA -ACGGAAGATGCAATGTCCGTGCAA -ACGGAAGATGCAATGTCCGAGGAA -ACGGAAGATGCAATGTCCCAGGTA -ACGGAAGATGCAATGTCCGACTCT -ACGGAAGATGCAATGTCCAGTCCT -ACGGAAGATGCAATGTCCTAAGCC -ACGGAAGATGCAATGTCCATAGCC -ACGGAAGATGCAATGTCCTAACCG -ACGGAAGATGCAATGTCCATGCCA -ACGGAAGATGCAGTGTGTGGAAAC -ACGGAAGATGCAGTGTGTAACACC -ACGGAAGATGCAGTGTGTATCGAG -ACGGAAGATGCAGTGTGTCTCCTT -ACGGAAGATGCAGTGTGTCCTGTT -ACGGAAGATGCAGTGTGTCGGTTT -ACGGAAGATGCAGTGTGTGTGGTT -ACGGAAGATGCAGTGTGTGCCTTT -ACGGAAGATGCAGTGTGTGGTCTT -ACGGAAGATGCAGTGTGTACGCTT -ACGGAAGATGCAGTGTGTAGCGTT -ACGGAAGATGCAGTGTGTTTCGTC -ACGGAAGATGCAGTGTGTTCTCTC -ACGGAAGATGCAGTGTGTTGGATC -ACGGAAGATGCAGTGTGTCACTTC -ACGGAAGATGCAGTGTGTGTACTC -ACGGAAGATGCAGTGTGTGATGTC -ACGGAAGATGCAGTGTGTACAGTC -ACGGAAGATGCAGTGTGTTTGCTG -ACGGAAGATGCAGTGTGTTCCATG -ACGGAAGATGCAGTGTGTTGTGTG -ACGGAAGATGCAGTGTGTCTAGTG -ACGGAAGATGCAGTGTGTCATCTG -ACGGAAGATGCAGTGTGTGAGTTG -ACGGAAGATGCAGTGTGTAGACTG -ACGGAAGATGCAGTGTGTTCGGTA -ACGGAAGATGCAGTGTGTTGCCTA -ACGGAAGATGCAGTGTGTCCACTA -ACGGAAGATGCAGTGTGTGGAGTA -ACGGAAGATGCAGTGTGTTCGTCT -ACGGAAGATGCAGTGTGTTGCACT -ACGGAAGATGCAGTGTGTCTGACT -ACGGAAGATGCAGTGTGTCAACCT -ACGGAAGATGCAGTGTGTGCTACT -ACGGAAGATGCAGTGTGTGGATCT -ACGGAAGATGCAGTGTGTAAGGCT -ACGGAAGATGCAGTGTGTTCAACC -ACGGAAGATGCAGTGTGTTGTTCC -ACGGAAGATGCAGTGTGTATTCCC -ACGGAAGATGCAGTGTGTTTCTCG -ACGGAAGATGCAGTGTGTTAGACG -ACGGAAGATGCAGTGTGTGTAACG -ACGGAAGATGCAGTGTGTACTTCG -ACGGAAGATGCAGTGTGTTACGCA -ACGGAAGATGCAGTGTGTCTTGCA -ACGGAAGATGCAGTGTGTCGAACA -ACGGAAGATGCAGTGTGTCAGTCA -ACGGAAGATGCAGTGTGTGATCCA -ACGGAAGATGCAGTGTGTACGACA -ACGGAAGATGCAGTGTGTAGCTCA -ACGGAAGATGCAGTGTGTTCACGT -ACGGAAGATGCAGTGTGTCGTAGT -ACGGAAGATGCAGTGTGTGTCAGT -ACGGAAGATGCAGTGTGTGAAGGT -ACGGAAGATGCAGTGTGTAACCGT -ACGGAAGATGCAGTGTGTTTGTGC -ACGGAAGATGCAGTGTGTCTAAGC -ACGGAAGATGCAGTGTGTACTAGC -ACGGAAGATGCAGTGTGTAGATGC -ACGGAAGATGCAGTGTGTTGAAGG -ACGGAAGATGCAGTGTGTCAATGG -ACGGAAGATGCAGTGTGTATGAGG -ACGGAAGATGCAGTGTGTAATGGG -ACGGAAGATGCAGTGTGTTCCTGA -ACGGAAGATGCAGTGTGTTAGCGA -ACGGAAGATGCAGTGTGTCACAGA -ACGGAAGATGCAGTGTGTGCAAGA -ACGGAAGATGCAGTGTGTGGTTGA -ACGGAAGATGCAGTGTGTTCCGAT -ACGGAAGATGCAGTGTGTTGGCAT -ACGGAAGATGCAGTGTGTCGAGAT -ACGGAAGATGCAGTGTGTTACCAC -ACGGAAGATGCAGTGTGTCAGAAC -ACGGAAGATGCAGTGTGTGTCTAC -ACGGAAGATGCAGTGTGTACGTAC -ACGGAAGATGCAGTGTGTAGTGAC -ACGGAAGATGCAGTGTGTCTGTAG -ACGGAAGATGCAGTGTGTCCTAAG -ACGGAAGATGCAGTGTGTGTTCAG -ACGGAAGATGCAGTGTGTGCATAG -ACGGAAGATGCAGTGTGTGACAAG -ACGGAAGATGCAGTGTGTAAGCAG -ACGGAAGATGCAGTGTGTCGTCAA -ACGGAAGATGCAGTGTGTGCTGAA -ACGGAAGATGCAGTGTGTAGTACG -ACGGAAGATGCAGTGTGTATCCGA -ACGGAAGATGCAGTGTGTATGGGA -ACGGAAGATGCAGTGTGTGTGCAA -ACGGAAGATGCAGTGTGTGAGGAA -ACGGAAGATGCAGTGTGTCAGGTA -ACGGAAGATGCAGTGTGTGACTCT -ACGGAAGATGCAGTGTGTAGTCCT -ACGGAAGATGCAGTGTGTTAAGCC -ACGGAAGATGCAGTGTGTATAGCC -ACGGAAGATGCAGTGTGTTAACCG -ACGGAAGATGCAGTGTGTATGCCA -ACGGAAGATGCAGTGCTAGGAAAC -ACGGAAGATGCAGTGCTAAACACC -ACGGAAGATGCAGTGCTAATCGAG -ACGGAAGATGCAGTGCTACTCCTT -ACGGAAGATGCAGTGCTACCTGTT -ACGGAAGATGCAGTGCTACGGTTT -ACGGAAGATGCAGTGCTAGTGGTT -ACGGAAGATGCAGTGCTAGCCTTT -ACGGAAGATGCAGTGCTAGGTCTT -ACGGAAGATGCAGTGCTAACGCTT -ACGGAAGATGCAGTGCTAAGCGTT -ACGGAAGATGCAGTGCTATTCGTC -ACGGAAGATGCAGTGCTATCTCTC -ACGGAAGATGCAGTGCTATGGATC -ACGGAAGATGCAGTGCTACACTTC -ACGGAAGATGCAGTGCTAGTACTC -ACGGAAGATGCAGTGCTAGATGTC -ACGGAAGATGCAGTGCTAACAGTC -ACGGAAGATGCAGTGCTATTGCTG -ACGGAAGATGCAGTGCTATCCATG -ACGGAAGATGCAGTGCTATGTGTG -ACGGAAGATGCAGTGCTACTAGTG -ACGGAAGATGCAGTGCTACATCTG -ACGGAAGATGCAGTGCTAGAGTTG -ACGGAAGATGCAGTGCTAAGACTG -ACGGAAGATGCAGTGCTATCGGTA -ACGGAAGATGCAGTGCTATGCCTA -ACGGAAGATGCAGTGCTACCACTA -ACGGAAGATGCAGTGCTAGGAGTA -ACGGAAGATGCAGTGCTATCGTCT -ACGGAAGATGCAGTGCTATGCACT -ACGGAAGATGCAGTGCTACTGACT -ACGGAAGATGCAGTGCTACAACCT -ACGGAAGATGCAGTGCTAGCTACT -ACGGAAGATGCAGTGCTAGGATCT -ACGGAAGATGCAGTGCTAAAGGCT -ACGGAAGATGCAGTGCTATCAACC -ACGGAAGATGCAGTGCTATGTTCC -ACGGAAGATGCAGTGCTAATTCCC -ACGGAAGATGCAGTGCTATTCTCG -ACGGAAGATGCAGTGCTATAGACG -ACGGAAGATGCAGTGCTAGTAACG -ACGGAAGATGCAGTGCTAACTTCG -ACGGAAGATGCAGTGCTATACGCA -ACGGAAGATGCAGTGCTACTTGCA -ACGGAAGATGCAGTGCTACGAACA -ACGGAAGATGCAGTGCTACAGTCA -ACGGAAGATGCAGTGCTAGATCCA -ACGGAAGATGCAGTGCTAACGACA -ACGGAAGATGCAGTGCTAAGCTCA -ACGGAAGATGCAGTGCTATCACGT -ACGGAAGATGCAGTGCTACGTAGT -ACGGAAGATGCAGTGCTAGTCAGT -ACGGAAGATGCAGTGCTAGAAGGT -ACGGAAGATGCAGTGCTAAACCGT -ACGGAAGATGCAGTGCTATTGTGC -ACGGAAGATGCAGTGCTACTAAGC -ACGGAAGATGCAGTGCTAACTAGC -ACGGAAGATGCAGTGCTAAGATGC -ACGGAAGATGCAGTGCTATGAAGG -ACGGAAGATGCAGTGCTACAATGG -ACGGAAGATGCAGTGCTAATGAGG -ACGGAAGATGCAGTGCTAAATGGG -ACGGAAGATGCAGTGCTATCCTGA -ACGGAAGATGCAGTGCTATAGCGA -ACGGAAGATGCAGTGCTACACAGA -ACGGAAGATGCAGTGCTAGCAAGA -ACGGAAGATGCAGTGCTAGGTTGA -ACGGAAGATGCAGTGCTATCCGAT -ACGGAAGATGCAGTGCTATGGCAT -ACGGAAGATGCAGTGCTACGAGAT -ACGGAAGATGCAGTGCTATACCAC -ACGGAAGATGCAGTGCTACAGAAC -ACGGAAGATGCAGTGCTAGTCTAC -ACGGAAGATGCAGTGCTAACGTAC -ACGGAAGATGCAGTGCTAAGTGAC -ACGGAAGATGCAGTGCTACTGTAG -ACGGAAGATGCAGTGCTACCTAAG -ACGGAAGATGCAGTGCTAGTTCAG -ACGGAAGATGCAGTGCTAGCATAG -ACGGAAGATGCAGTGCTAGACAAG -ACGGAAGATGCAGTGCTAAAGCAG -ACGGAAGATGCAGTGCTACGTCAA -ACGGAAGATGCAGTGCTAGCTGAA -ACGGAAGATGCAGTGCTAAGTACG -ACGGAAGATGCAGTGCTAATCCGA -ACGGAAGATGCAGTGCTAATGGGA -ACGGAAGATGCAGTGCTAGTGCAA -ACGGAAGATGCAGTGCTAGAGGAA -ACGGAAGATGCAGTGCTACAGGTA -ACGGAAGATGCAGTGCTAGACTCT -ACGGAAGATGCAGTGCTAAGTCCT -ACGGAAGATGCAGTGCTATAAGCC -ACGGAAGATGCAGTGCTAATAGCC -ACGGAAGATGCAGTGCTATAACCG -ACGGAAGATGCAGTGCTAATGCCA -ACGGAAGATGCACTGCATGGAAAC -ACGGAAGATGCACTGCATAACACC -ACGGAAGATGCACTGCATATCGAG -ACGGAAGATGCACTGCATCTCCTT -ACGGAAGATGCACTGCATCCTGTT -ACGGAAGATGCACTGCATCGGTTT -ACGGAAGATGCACTGCATGTGGTT -ACGGAAGATGCACTGCATGCCTTT -ACGGAAGATGCACTGCATGGTCTT -ACGGAAGATGCACTGCATACGCTT -ACGGAAGATGCACTGCATAGCGTT -ACGGAAGATGCACTGCATTTCGTC -ACGGAAGATGCACTGCATTCTCTC -ACGGAAGATGCACTGCATTGGATC -ACGGAAGATGCACTGCATCACTTC -ACGGAAGATGCACTGCATGTACTC -ACGGAAGATGCACTGCATGATGTC -ACGGAAGATGCACTGCATACAGTC -ACGGAAGATGCACTGCATTTGCTG -ACGGAAGATGCACTGCATTCCATG -ACGGAAGATGCACTGCATTGTGTG -ACGGAAGATGCACTGCATCTAGTG -ACGGAAGATGCACTGCATCATCTG -ACGGAAGATGCACTGCATGAGTTG -ACGGAAGATGCACTGCATAGACTG -ACGGAAGATGCACTGCATTCGGTA -ACGGAAGATGCACTGCATTGCCTA -ACGGAAGATGCACTGCATCCACTA -ACGGAAGATGCACTGCATGGAGTA -ACGGAAGATGCACTGCATTCGTCT -ACGGAAGATGCACTGCATTGCACT -ACGGAAGATGCACTGCATCTGACT -ACGGAAGATGCACTGCATCAACCT -ACGGAAGATGCACTGCATGCTACT -ACGGAAGATGCACTGCATGGATCT -ACGGAAGATGCACTGCATAAGGCT -ACGGAAGATGCACTGCATTCAACC -ACGGAAGATGCACTGCATTGTTCC -ACGGAAGATGCACTGCATATTCCC -ACGGAAGATGCACTGCATTTCTCG -ACGGAAGATGCACTGCATTAGACG -ACGGAAGATGCACTGCATGTAACG -ACGGAAGATGCACTGCATACTTCG -ACGGAAGATGCACTGCATTACGCA -ACGGAAGATGCACTGCATCTTGCA -ACGGAAGATGCACTGCATCGAACA -ACGGAAGATGCACTGCATCAGTCA -ACGGAAGATGCACTGCATGATCCA -ACGGAAGATGCACTGCATACGACA -ACGGAAGATGCACTGCATAGCTCA -ACGGAAGATGCACTGCATTCACGT -ACGGAAGATGCACTGCATCGTAGT -ACGGAAGATGCACTGCATGTCAGT -ACGGAAGATGCACTGCATGAAGGT -ACGGAAGATGCACTGCATAACCGT -ACGGAAGATGCACTGCATTTGTGC -ACGGAAGATGCACTGCATCTAAGC -ACGGAAGATGCACTGCATACTAGC -ACGGAAGATGCACTGCATAGATGC -ACGGAAGATGCACTGCATTGAAGG -ACGGAAGATGCACTGCATCAATGG -ACGGAAGATGCACTGCATATGAGG -ACGGAAGATGCACTGCATAATGGG -ACGGAAGATGCACTGCATTCCTGA -ACGGAAGATGCACTGCATTAGCGA -ACGGAAGATGCACTGCATCACAGA -ACGGAAGATGCACTGCATGCAAGA -ACGGAAGATGCACTGCATGGTTGA -ACGGAAGATGCACTGCATTCCGAT -ACGGAAGATGCACTGCATTGGCAT -ACGGAAGATGCACTGCATCGAGAT -ACGGAAGATGCACTGCATTACCAC -ACGGAAGATGCACTGCATCAGAAC -ACGGAAGATGCACTGCATGTCTAC -ACGGAAGATGCACTGCATACGTAC -ACGGAAGATGCACTGCATAGTGAC -ACGGAAGATGCACTGCATCTGTAG -ACGGAAGATGCACTGCATCCTAAG -ACGGAAGATGCACTGCATGTTCAG -ACGGAAGATGCACTGCATGCATAG -ACGGAAGATGCACTGCATGACAAG -ACGGAAGATGCACTGCATAAGCAG -ACGGAAGATGCACTGCATCGTCAA -ACGGAAGATGCACTGCATGCTGAA -ACGGAAGATGCACTGCATAGTACG -ACGGAAGATGCACTGCATATCCGA -ACGGAAGATGCACTGCATATGGGA -ACGGAAGATGCACTGCATGTGCAA -ACGGAAGATGCACTGCATGAGGAA -ACGGAAGATGCACTGCATCAGGTA -ACGGAAGATGCACTGCATGACTCT -ACGGAAGATGCACTGCATAGTCCT -ACGGAAGATGCACTGCATTAAGCC -ACGGAAGATGCACTGCATATAGCC -ACGGAAGATGCACTGCATTAACCG -ACGGAAGATGCACTGCATATGCCA -ACGGAAGATGCATTGGAGGGAAAC -ACGGAAGATGCATTGGAGAACACC -ACGGAAGATGCATTGGAGATCGAG -ACGGAAGATGCATTGGAGCTCCTT -ACGGAAGATGCATTGGAGCCTGTT -ACGGAAGATGCATTGGAGCGGTTT -ACGGAAGATGCATTGGAGGTGGTT -ACGGAAGATGCATTGGAGGCCTTT -ACGGAAGATGCATTGGAGGGTCTT -ACGGAAGATGCATTGGAGACGCTT -ACGGAAGATGCATTGGAGAGCGTT -ACGGAAGATGCATTGGAGTTCGTC -ACGGAAGATGCATTGGAGTCTCTC -ACGGAAGATGCATTGGAGTGGATC -ACGGAAGATGCATTGGAGCACTTC -ACGGAAGATGCATTGGAGGTACTC -ACGGAAGATGCATTGGAGGATGTC -ACGGAAGATGCATTGGAGACAGTC -ACGGAAGATGCATTGGAGTTGCTG -ACGGAAGATGCATTGGAGTCCATG -ACGGAAGATGCATTGGAGTGTGTG -ACGGAAGATGCATTGGAGCTAGTG -ACGGAAGATGCATTGGAGCATCTG -ACGGAAGATGCATTGGAGGAGTTG -ACGGAAGATGCATTGGAGAGACTG -ACGGAAGATGCATTGGAGTCGGTA -ACGGAAGATGCATTGGAGTGCCTA -ACGGAAGATGCATTGGAGCCACTA -ACGGAAGATGCATTGGAGGGAGTA -ACGGAAGATGCATTGGAGTCGTCT -ACGGAAGATGCATTGGAGTGCACT -ACGGAAGATGCATTGGAGCTGACT -ACGGAAGATGCATTGGAGCAACCT -ACGGAAGATGCATTGGAGGCTACT -ACGGAAGATGCATTGGAGGGATCT -ACGGAAGATGCATTGGAGAAGGCT -ACGGAAGATGCATTGGAGTCAACC -ACGGAAGATGCATTGGAGTGTTCC -ACGGAAGATGCATTGGAGATTCCC -ACGGAAGATGCATTGGAGTTCTCG -ACGGAAGATGCATTGGAGTAGACG -ACGGAAGATGCATTGGAGGTAACG -ACGGAAGATGCATTGGAGACTTCG -ACGGAAGATGCATTGGAGTACGCA -ACGGAAGATGCATTGGAGCTTGCA -ACGGAAGATGCATTGGAGCGAACA -ACGGAAGATGCATTGGAGCAGTCA -ACGGAAGATGCATTGGAGGATCCA -ACGGAAGATGCATTGGAGACGACA -ACGGAAGATGCATTGGAGAGCTCA -ACGGAAGATGCATTGGAGTCACGT -ACGGAAGATGCATTGGAGCGTAGT -ACGGAAGATGCATTGGAGGTCAGT -ACGGAAGATGCATTGGAGGAAGGT -ACGGAAGATGCATTGGAGAACCGT -ACGGAAGATGCATTGGAGTTGTGC -ACGGAAGATGCATTGGAGCTAAGC -ACGGAAGATGCATTGGAGACTAGC -ACGGAAGATGCATTGGAGAGATGC -ACGGAAGATGCATTGGAGTGAAGG -ACGGAAGATGCATTGGAGCAATGG -ACGGAAGATGCATTGGAGATGAGG -ACGGAAGATGCATTGGAGAATGGG -ACGGAAGATGCATTGGAGTCCTGA -ACGGAAGATGCATTGGAGTAGCGA -ACGGAAGATGCATTGGAGCACAGA -ACGGAAGATGCATTGGAGGCAAGA -ACGGAAGATGCATTGGAGGGTTGA -ACGGAAGATGCATTGGAGTCCGAT -ACGGAAGATGCATTGGAGTGGCAT -ACGGAAGATGCATTGGAGCGAGAT -ACGGAAGATGCATTGGAGTACCAC -ACGGAAGATGCATTGGAGCAGAAC -ACGGAAGATGCATTGGAGGTCTAC -ACGGAAGATGCATTGGAGACGTAC -ACGGAAGATGCATTGGAGAGTGAC -ACGGAAGATGCATTGGAGCTGTAG -ACGGAAGATGCATTGGAGCCTAAG -ACGGAAGATGCATTGGAGGTTCAG -ACGGAAGATGCATTGGAGGCATAG -ACGGAAGATGCATTGGAGGACAAG -ACGGAAGATGCATTGGAGAAGCAG -ACGGAAGATGCATTGGAGCGTCAA -ACGGAAGATGCATTGGAGGCTGAA -ACGGAAGATGCATTGGAGAGTACG -ACGGAAGATGCATTGGAGATCCGA -ACGGAAGATGCATTGGAGATGGGA -ACGGAAGATGCATTGGAGGTGCAA -ACGGAAGATGCATTGGAGGAGGAA -ACGGAAGATGCATTGGAGCAGGTA -ACGGAAGATGCATTGGAGGACTCT -ACGGAAGATGCATTGGAGAGTCCT -ACGGAAGATGCATTGGAGTAAGCC -ACGGAAGATGCATTGGAGATAGCC -ACGGAAGATGCATTGGAGTAACCG -ACGGAAGATGCATTGGAGATGCCA -ACGGAAGATGCACTGAGAGGAAAC -ACGGAAGATGCACTGAGAAACACC -ACGGAAGATGCACTGAGAATCGAG -ACGGAAGATGCACTGAGACTCCTT -ACGGAAGATGCACTGAGACCTGTT -ACGGAAGATGCACTGAGACGGTTT -ACGGAAGATGCACTGAGAGTGGTT -ACGGAAGATGCACTGAGAGCCTTT -ACGGAAGATGCACTGAGAGGTCTT -ACGGAAGATGCACTGAGAACGCTT -ACGGAAGATGCACTGAGAAGCGTT -ACGGAAGATGCACTGAGATTCGTC -ACGGAAGATGCACTGAGATCTCTC -ACGGAAGATGCACTGAGATGGATC -ACGGAAGATGCACTGAGACACTTC -ACGGAAGATGCACTGAGAGTACTC -ACGGAAGATGCACTGAGAGATGTC -ACGGAAGATGCACTGAGAACAGTC -ACGGAAGATGCACTGAGATTGCTG -ACGGAAGATGCACTGAGATCCATG -ACGGAAGATGCACTGAGATGTGTG -ACGGAAGATGCACTGAGACTAGTG -ACGGAAGATGCACTGAGACATCTG -ACGGAAGATGCACTGAGAGAGTTG -ACGGAAGATGCACTGAGAAGACTG -ACGGAAGATGCACTGAGATCGGTA -ACGGAAGATGCACTGAGATGCCTA -ACGGAAGATGCACTGAGACCACTA -ACGGAAGATGCACTGAGAGGAGTA -ACGGAAGATGCACTGAGATCGTCT -ACGGAAGATGCACTGAGATGCACT -ACGGAAGATGCACTGAGACTGACT -ACGGAAGATGCACTGAGACAACCT -ACGGAAGATGCACTGAGAGCTACT -ACGGAAGATGCACTGAGAGGATCT -ACGGAAGATGCACTGAGAAAGGCT -ACGGAAGATGCACTGAGATCAACC -ACGGAAGATGCACTGAGATGTTCC -ACGGAAGATGCACTGAGAATTCCC -ACGGAAGATGCACTGAGATTCTCG -ACGGAAGATGCACTGAGATAGACG -ACGGAAGATGCACTGAGAGTAACG -ACGGAAGATGCACTGAGAACTTCG -ACGGAAGATGCACTGAGATACGCA -ACGGAAGATGCACTGAGACTTGCA -ACGGAAGATGCACTGAGACGAACA -ACGGAAGATGCACTGAGACAGTCA -ACGGAAGATGCACTGAGAGATCCA -ACGGAAGATGCACTGAGAACGACA -ACGGAAGATGCACTGAGAAGCTCA -ACGGAAGATGCACTGAGATCACGT -ACGGAAGATGCACTGAGACGTAGT -ACGGAAGATGCACTGAGAGTCAGT -ACGGAAGATGCACTGAGAGAAGGT -ACGGAAGATGCACTGAGAAACCGT -ACGGAAGATGCACTGAGATTGTGC -ACGGAAGATGCACTGAGACTAAGC -ACGGAAGATGCACTGAGAACTAGC -ACGGAAGATGCACTGAGAAGATGC -ACGGAAGATGCACTGAGATGAAGG -ACGGAAGATGCACTGAGACAATGG -ACGGAAGATGCACTGAGAATGAGG -ACGGAAGATGCACTGAGAAATGGG -ACGGAAGATGCACTGAGATCCTGA -ACGGAAGATGCACTGAGATAGCGA -ACGGAAGATGCACTGAGACACAGA -ACGGAAGATGCACTGAGAGCAAGA -ACGGAAGATGCACTGAGAGGTTGA -ACGGAAGATGCACTGAGATCCGAT -ACGGAAGATGCACTGAGATGGCAT -ACGGAAGATGCACTGAGACGAGAT -ACGGAAGATGCACTGAGATACCAC -ACGGAAGATGCACTGAGACAGAAC -ACGGAAGATGCACTGAGAGTCTAC -ACGGAAGATGCACTGAGAACGTAC -ACGGAAGATGCACTGAGAAGTGAC -ACGGAAGATGCACTGAGACTGTAG -ACGGAAGATGCACTGAGACCTAAG -ACGGAAGATGCACTGAGAGTTCAG -ACGGAAGATGCACTGAGAGCATAG -ACGGAAGATGCACTGAGAGACAAG -ACGGAAGATGCACTGAGAAAGCAG -ACGGAAGATGCACTGAGACGTCAA -ACGGAAGATGCACTGAGAGCTGAA -ACGGAAGATGCACTGAGAAGTACG -ACGGAAGATGCACTGAGAATCCGA -ACGGAAGATGCACTGAGAATGGGA -ACGGAAGATGCACTGAGAGTGCAA -ACGGAAGATGCACTGAGAGAGGAA -ACGGAAGATGCACTGAGACAGGTA -ACGGAAGATGCACTGAGAGACTCT -ACGGAAGATGCACTGAGAAGTCCT -ACGGAAGATGCACTGAGATAAGCC -ACGGAAGATGCACTGAGAATAGCC -ACGGAAGATGCACTGAGATAACCG -ACGGAAGATGCACTGAGAATGCCA -ACGGAAGATGCAGTATCGGGAAAC -ACGGAAGATGCAGTATCGAACACC -ACGGAAGATGCAGTATCGATCGAG -ACGGAAGATGCAGTATCGCTCCTT -ACGGAAGATGCAGTATCGCCTGTT -ACGGAAGATGCAGTATCGCGGTTT -ACGGAAGATGCAGTATCGGTGGTT -ACGGAAGATGCAGTATCGGCCTTT -ACGGAAGATGCAGTATCGGGTCTT -ACGGAAGATGCAGTATCGACGCTT -ACGGAAGATGCAGTATCGAGCGTT -ACGGAAGATGCAGTATCGTTCGTC -ACGGAAGATGCAGTATCGTCTCTC -ACGGAAGATGCAGTATCGTGGATC -ACGGAAGATGCAGTATCGCACTTC -ACGGAAGATGCAGTATCGGTACTC -ACGGAAGATGCAGTATCGGATGTC -ACGGAAGATGCAGTATCGACAGTC -ACGGAAGATGCAGTATCGTTGCTG -ACGGAAGATGCAGTATCGTCCATG -ACGGAAGATGCAGTATCGTGTGTG -ACGGAAGATGCAGTATCGCTAGTG -ACGGAAGATGCAGTATCGCATCTG -ACGGAAGATGCAGTATCGGAGTTG -ACGGAAGATGCAGTATCGAGACTG -ACGGAAGATGCAGTATCGTCGGTA -ACGGAAGATGCAGTATCGTGCCTA -ACGGAAGATGCAGTATCGCCACTA -ACGGAAGATGCAGTATCGGGAGTA -ACGGAAGATGCAGTATCGTCGTCT -ACGGAAGATGCAGTATCGTGCACT -ACGGAAGATGCAGTATCGCTGACT -ACGGAAGATGCAGTATCGCAACCT -ACGGAAGATGCAGTATCGGCTACT -ACGGAAGATGCAGTATCGGGATCT -ACGGAAGATGCAGTATCGAAGGCT -ACGGAAGATGCAGTATCGTCAACC -ACGGAAGATGCAGTATCGTGTTCC -ACGGAAGATGCAGTATCGATTCCC -ACGGAAGATGCAGTATCGTTCTCG -ACGGAAGATGCAGTATCGTAGACG -ACGGAAGATGCAGTATCGGTAACG -ACGGAAGATGCAGTATCGACTTCG -ACGGAAGATGCAGTATCGTACGCA -ACGGAAGATGCAGTATCGCTTGCA -ACGGAAGATGCAGTATCGCGAACA -ACGGAAGATGCAGTATCGCAGTCA -ACGGAAGATGCAGTATCGGATCCA -ACGGAAGATGCAGTATCGACGACA -ACGGAAGATGCAGTATCGAGCTCA -ACGGAAGATGCAGTATCGTCACGT -ACGGAAGATGCAGTATCGCGTAGT -ACGGAAGATGCAGTATCGGTCAGT -ACGGAAGATGCAGTATCGGAAGGT -ACGGAAGATGCAGTATCGAACCGT -ACGGAAGATGCAGTATCGTTGTGC -ACGGAAGATGCAGTATCGCTAAGC -ACGGAAGATGCAGTATCGACTAGC -ACGGAAGATGCAGTATCGAGATGC -ACGGAAGATGCAGTATCGTGAAGG -ACGGAAGATGCAGTATCGCAATGG -ACGGAAGATGCAGTATCGATGAGG -ACGGAAGATGCAGTATCGAATGGG -ACGGAAGATGCAGTATCGTCCTGA -ACGGAAGATGCAGTATCGTAGCGA -ACGGAAGATGCAGTATCGCACAGA -ACGGAAGATGCAGTATCGGCAAGA -ACGGAAGATGCAGTATCGGGTTGA -ACGGAAGATGCAGTATCGTCCGAT -ACGGAAGATGCAGTATCGTGGCAT -ACGGAAGATGCAGTATCGCGAGAT -ACGGAAGATGCAGTATCGTACCAC -ACGGAAGATGCAGTATCGCAGAAC -ACGGAAGATGCAGTATCGGTCTAC -ACGGAAGATGCAGTATCGACGTAC -ACGGAAGATGCAGTATCGAGTGAC -ACGGAAGATGCAGTATCGCTGTAG -ACGGAAGATGCAGTATCGCCTAAG -ACGGAAGATGCAGTATCGGTTCAG -ACGGAAGATGCAGTATCGGCATAG -ACGGAAGATGCAGTATCGGACAAG -ACGGAAGATGCAGTATCGAAGCAG -ACGGAAGATGCAGTATCGCGTCAA -ACGGAAGATGCAGTATCGGCTGAA -ACGGAAGATGCAGTATCGAGTACG -ACGGAAGATGCAGTATCGATCCGA -ACGGAAGATGCAGTATCGATGGGA -ACGGAAGATGCAGTATCGGTGCAA -ACGGAAGATGCAGTATCGGAGGAA -ACGGAAGATGCAGTATCGCAGGTA -ACGGAAGATGCAGTATCGGACTCT -ACGGAAGATGCAGTATCGAGTCCT -ACGGAAGATGCAGTATCGTAAGCC -ACGGAAGATGCAGTATCGATAGCC -ACGGAAGATGCAGTATCGTAACCG -ACGGAAGATGCAGTATCGATGCCA -ACGGAAGATGCACTATGCGGAAAC -ACGGAAGATGCACTATGCAACACC -ACGGAAGATGCACTATGCATCGAG -ACGGAAGATGCACTATGCCTCCTT -ACGGAAGATGCACTATGCCCTGTT -ACGGAAGATGCACTATGCCGGTTT -ACGGAAGATGCACTATGCGTGGTT -ACGGAAGATGCACTATGCGCCTTT -ACGGAAGATGCACTATGCGGTCTT -ACGGAAGATGCACTATGCACGCTT -ACGGAAGATGCACTATGCAGCGTT -ACGGAAGATGCACTATGCTTCGTC -ACGGAAGATGCACTATGCTCTCTC -ACGGAAGATGCACTATGCTGGATC -ACGGAAGATGCACTATGCCACTTC -ACGGAAGATGCACTATGCGTACTC -ACGGAAGATGCACTATGCGATGTC -ACGGAAGATGCACTATGCACAGTC -ACGGAAGATGCACTATGCTTGCTG -ACGGAAGATGCACTATGCTCCATG -ACGGAAGATGCACTATGCTGTGTG -ACGGAAGATGCACTATGCCTAGTG -ACGGAAGATGCACTATGCCATCTG -ACGGAAGATGCACTATGCGAGTTG -ACGGAAGATGCACTATGCAGACTG -ACGGAAGATGCACTATGCTCGGTA -ACGGAAGATGCACTATGCTGCCTA -ACGGAAGATGCACTATGCCCACTA -ACGGAAGATGCACTATGCGGAGTA -ACGGAAGATGCACTATGCTCGTCT -ACGGAAGATGCACTATGCTGCACT -ACGGAAGATGCACTATGCCTGACT -ACGGAAGATGCACTATGCCAACCT -ACGGAAGATGCACTATGCGCTACT -ACGGAAGATGCACTATGCGGATCT -ACGGAAGATGCACTATGCAAGGCT -ACGGAAGATGCACTATGCTCAACC -ACGGAAGATGCACTATGCTGTTCC -ACGGAAGATGCACTATGCATTCCC -ACGGAAGATGCACTATGCTTCTCG -ACGGAAGATGCACTATGCTAGACG -ACGGAAGATGCACTATGCGTAACG -ACGGAAGATGCACTATGCACTTCG -ACGGAAGATGCACTATGCTACGCA -ACGGAAGATGCACTATGCCTTGCA -ACGGAAGATGCACTATGCCGAACA -ACGGAAGATGCACTATGCCAGTCA -ACGGAAGATGCACTATGCGATCCA -ACGGAAGATGCACTATGCACGACA -ACGGAAGATGCACTATGCAGCTCA -ACGGAAGATGCACTATGCTCACGT -ACGGAAGATGCACTATGCCGTAGT -ACGGAAGATGCACTATGCGTCAGT -ACGGAAGATGCACTATGCGAAGGT -ACGGAAGATGCACTATGCAACCGT -ACGGAAGATGCACTATGCTTGTGC -ACGGAAGATGCACTATGCCTAAGC -ACGGAAGATGCACTATGCACTAGC -ACGGAAGATGCACTATGCAGATGC -ACGGAAGATGCACTATGCTGAAGG -ACGGAAGATGCACTATGCCAATGG -ACGGAAGATGCACTATGCATGAGG -ACGGAAGATGCACTATGCAATGGG -ACGGAAGATGCACTATGCTCCTGA -ACGGAAGATGCACTATGCTAGCGA -ACGGAAGATGCACTATGCCACAGA -ACGGAAGATGCACTATGCGCAAGA -ACGGAAGATGCACTATGCGGTTGA -ACGGAAGATGCACTATGCTCCGAT -ACGGAAGATGCACTATGCTGGCAT -ACGGAAGATGCACTATGCCGAGAT -ACGGAAGATGCACTATGCTACCAC -ACGGAAGATGCACTATGCCAGAAC -ACGGAAGATGCACTATGCGTCTAC -ACGGAAGATGCACTATGCACGTAC -ACGGAAGATGCACTATGCAGTGAC -ACGGAAGATGCACTATGCCTGTAG -ACGGAAGATGCACTATGCCCTAAG -ACGGAAGATGCACTATGCGTTCAG -ACGGAAGATGCACTATGCGCATAG -ACGGAAGATGCACTATGCGACAAG -ACGGAAGATGCACTATGCAAGCAG -ACGGAAGATGCACTATGCCGTCAA -ACGGAAGATGCACTATGCGCTGAA -ACGGAAGATGCACTATGCAGTACG -ACGGAAGATGCACTATGCATCCGA -ACGGAAGATGCACTATGCATGGGA -ACGGAAGATGCACTATGCGTGCAA -ACGGAAGATGCACTATGCGAGGAA -ACGGAAGATGCACTATGCCAGGTA -ACGGAAGATGCACTATGCGACTCT -ACGGAAGATGCACTATGCAGTCCT -ACGGAAGATGCACTATGCTAAGCC -ACGGAAGATGCACTATGCATAGCC -ACGGAAGATGCACTATGCTAACCG -ACGGAAGATGCACTATGCATGCCA -ACGGAAGATGCACTACCAGGAAAC -ACGGAAGATGCACTACCAAACACC -ACGGAAGATGCACTACCAATCGAG -ACGGAAGATGCACTACCACTCCTT -ACGGAAGATGCACTACCACCTGTT -ACGGAAGATGCACTACCACGGTTT -ACGGAAGATGCACTACCAGTGGTT -ACGGAAGATGCACTACCAGCCTTT -ACGGAAGATGCACTACCAGGTCTT -ACGGAAGATGCACTACCAACGCTT -ACGGAAGATGCACTACCAAGCGTT -ACGGAAGATGCACTACCATTCGTC -ACGGAAGATGCACTACCATCTCTC -ACGGAAGATGCACTACCATGGATC -ACGGAAGATGCACTACCACACTTC -ACGGAAGATGCACTACCAGTACTC -ACGGAAGATGCACTACCAGATGTC -ACGGAAGATGCACTACCAACAGTC -ACGGAAGATGCACTACCATTGCTG -ACGGAAGATGCACTACCATCCATG -ACGGAAGATGCACTACCATGTGTG -ACGGAAGATGCACTACCACTAGTG -ACGGAAGATGCACTACCACATCTG -ACGGAAGATGCACTACCAGAGTTG -ACGGAAGATGCACTACCAAGACTG -ACGGAAGATGCACTACCATCGGTA -ACGGAAGATGCACTACCATGCCTA -ACGGAAGATGCACTACCACCACTA -ACGGAAGATGCACTACCAGGAGTA -ACGGAAGATGCACTACCATCGTCT -ACGGAAGATGCACTACCATGCACT -ACGGAAGATGCACTACCACTGACT -ACGGAAGATGCACTACCACAACCT -ACGGAAGATGCACTACCAGCTACT -ACGGAAGATGCACTACCAGGATCT -ACGGAAGATGCACTACCAAAGGCT -ACGGAAGATGCACTACCATCAACC -ACGGAAGATGCACTACCATGTTCC -ACGGAAGATGCACTACCAATTCCC -ACGGAAGATGCACTACCATTCTCG -ACGGAAGATGCACTACCATAGACG -ACGGAAGATGCACTACCAGTAACG -ACGGAAGATGCACTACCAACTTCG -ACGGAAGATGCACTACCATACGCA -ACGGAAGATGCACTACCACTTGCA -ACGGAAGATGCACTACCACGAACA -ACGGAAGATGCACTACCACAGTCA -ACGGAAGATGCACTACCAGATCCA -ACGGAAGATGCACTACCAACGACA -ACGGAAGATGCACTACCAAGCTCA -ACGGAAGATGCACTACCATCACGT -ACGGAAGATGCACTACCACGTAGT -ACGGAAGATGCACTACCAGTCAGT -ACGGAAGATGCACTACCAGAAGGT -ACGGAAGATGCACTACCAAACCGT -ACGGAAGATGCACTACCATTGTGC -ACGGAAGATGCACTACCACTAAGC -ACGGAAGATGCACTACCAACTAGC -ACGGAAGATGCACTACCAAGATGC -ACGGAAGATGCACTACCATGAAGG -ACGGAAGATGCACTACCACAATGG -ACGGAAGATGCACTACCAATGAGG -ACGGAAGATGCACTACCAAATGGG -ACGGAAGATGCACTACCATCCTGA -ACGGAAGATGCACTACCATAGCGA -ACGGAAGATGCACTACCACACAGA -ACGGAAGATGCACTACCAGCAAGA -ACGGAAGATGCACTACCAGGTTGA -ACGGAAGATGCACTACCATCCGAT -ACGGAAGATGCACTACCATGGCAT -ACGGAAGATGCACTACCACGAGAT -ACGGAAGATGCACTACCATACCAC -ACGGAAGATGCACTACCACAGAAC -ACGGAAGATGCACTACCAGTCTAC -ACGGAAGATGCACTACCAACGTAC -ACGGAAGATGCACTACCAAGTGAC -ACGGAAGATGCACTACCACTGTAG -ACGGAAGATGCACTACCACCTAAG -ACGGAAGATGCACTACCAGTTCAG -ACGGAAGATGCACTACCAGCATAG -ACGGAAGATGCACTACCAGACAAG -ACGGAAGATGCACTACCAAAGCAG -ACGGAAGATGCACTACCACGTCAA -ACGGAAGATGCACTACCAGCTGAA -ACGGAAGATGCACTACCAAGTACG -ACGGAAGATGCACTACCAATCCGA -ACGGAAGATGCACTACCAATGGGA -ACGGAAGATGCACTACCAGTGCAA -ACGGAAGATGCACTACCAGAGGAA -ACGGAAGATGCACTACCACAGGTA -ACGGAAGATGCACTACCAGACTCT -ACGGAAGATGCACTACCAAGTCCT -ACGGAAGATGCACTACCATAAGCC -ACGGAAGATGCACTACCAATAGCC -ACGGAAGATGCACTACCATAACCG -ACGGAAGATGCACTACCAATGCCA -ACGGAAGATGCAGTAGGAGGAAAC -ACGGAAGATGCAGTAGGAAACACC -ACGGAAGATGCAGTAGGAATCGAG -ACGGAAGATGCAGTAGGACTCCTT -ACGGAAGATGCAGTAGGACCTGTT -ACGGAAGATGCAGTAGGACGGTTT -ACGGAAGATGCAGTAGGAGTGGTT -ACGGAAGATGCAGTAGGAGCCTTT -ACGGAAGATGCAGTAGGAGGTCTT -ACGGAAGATGCAGTAGGAACGCTT -ACGGAAGATGCAGTAGGAAGCGTT -ACGGAAGATGCAGTAGGATTCGTC -ACGGAAGATGCAGTAGGATCTCTC -ACGGAAGATGCAGTAGGATGGATC -ACGGAAGATGCAGTAGGACACTTC -ACGGAAGATGCAGTAGGAGTACTC -ACGGAAGATGCAGTAGGAGATGTC -ACGGAAGATGCAGTAGGAACAGTC -ACGGAAGATGCAGTAGGATTGCTG -ACGGAAGATGCAGTAGGATCCATG -ACGGAAGATGCAGTAGGATGTGTG -ACGGAAGATGCAGTAGGACTAGTG -ACGGAAGATGCAGTAGGACATCTG -ACGGAAGATGCAGTAGGAGAGTTG -ACGGAAGATGCAGTAGGAAGACTG -ACGGAAGATGCAGTAGGATCGGTA -ACGGAAGATGCAGTAGGATGCCTA -ACGGAAGATGCAGTAGGACCACTA -ACGGAAGATGCAGTAGGAGGAGTA -ACGGAAGATGCAGTAGGATCGTCT -ACGGAAGATGCAGTAGGATGCACT -ACGGAAGATGCAGTAGGACTGACT -ACGGAAGATGCAGTAGGACAACCT -ACGGAAGATGCAGTAGGAGCTACT -ACGGAAGATGCAGTAGGAGGATCT -ACGGAAGATGCAGTAGGAAAGGCT -ACGGAAGATGCAGTAGGATCAACC -ACGGAAGATGCAGTAGGATGTTCC -ACGGAAGATGCAGTAGGAATTCCC -ACGGAAGATGCAGTAGGATTCTCG -ACGGAAGATGCAGTAGGATAGACG -ACGGAAGATGCAGTAGGAGTAACG -ACGGAAGATGCAGTAGGAACTTCG -ACGGAAGATGCAGTAGGATACGCA -ACGGAAGATGCAGTAGGACTTGCA -ACGGAAGATGCAGTAGGACGAACA -ACGGAAGATGCAGTAGGACAGTCA -ACGGAAGATGCAGTAGGAGATCCA -ACGGAAGATGCAGTAGGAACGACA -ACGGAAGATGCAGTAGGAAGCTCA -ACGGAAGATGCAGTAGGATCACGT -ACGGAAGATGCAGTAGGACGTAGT -ACGGAAGATGCAGTAGGAGTCAGT -ACGGAAGATGCAGTAGGAGAAGGT -ACGGAAGATGCAGTAGGAAACCGT -ACGGAAGATGCAGTAGGATTGTGC -ACGGAAGATGCAGTAGGACTAAGC -ACGGAAGATGCAGTAGGAACTAGC -ACGGAAGATGCAGTAGGAAGATGC -ACGGAAGATGCAGTAGGATGAAGG -ACGGAAGATGCAGTAGGACAATGG -ACGGAAGATGCAGTAGGAATGAGG -ACGGAAGATGCAGTAGGAAATGGG -ACGGAAGATGCAGTAGGATCCTGA -ACGGAAGATGCAGTAGGATAGCGA -ACGGAAGATGCAGTAGGACACAGA -ACGGAAGATGCAGTAGGAGCAAGA -ACGGAAGATGCAGTAGGAGGTTGA -ACGGAAGATGCAGTAGGATCCGAT -ACGGAAGATGCAGTAGGATGGCAT -ACGGAAGATGCAGTAGGACGAGAT -ACGGAAGATGCAGTAGGATACCAC -ACGGAAGATGCAGTAGGACAGAAC -ACGGAAGATGCAGTAGGAGTCTAC -ACGGAAGATGCAGTAGGAACGTAC -ACGGAAGATGCAGTAGGAAGTGAC -ACGGAAGATGCAGTAGGACTGTAG -ACGGAAGATGCAGTAGGACCTAAG -ACGGAAGATGCAGTAGGAGTTCAG -ACGGAAGATGCAGTAGGAGCATAG -ACGGAAGATGCAGTAGGAGACAAG -ACGGAAGATGCAGTAGGAAAGCAG -ACGGAAGATGCAGTAGGACGTCAA -ACGGAAGATGCAGTAGGAGCTGAA -ACGGAAGATGCAGTAGGAAGTACG -ACGGAAGATGCAGTAGGAATCCGA -ACGGAAGATGCAGTAGGAATGGGA -ACGGAAGATGCAGTAGGAGTGCAA -ACGGAAGATGCAGTAGGAGAGGAA -ACGGAAGATGCAGTAGGACAGGTA -ACGGAAGATGCAGTAGGAGACTCT -ACGGAAGATGCAGTAGGAAGTCCT -ACGGAAGATGCAGTAGGATAAGCC -ACGGAAGATGCAGTAGGAATAGCC -ACGGAAGATGCAGTAGGATAACCG -ACGGAAGATGCAGTAGGAATGCCA -ACGGAAGATGCATCTTCGGGAAAC -ACGGAAGATGCATCTTCGAACACC -ACGGAAGATGCATCTTCGATCGAG -ACGGAAGATGCATCTTCGCTCCTT -ACGGAAGATGCATCTTCGCCTGTT -ACGGAAGATGCATCTTCGCGGTTT -ACGGAAGATGCATCTTCGGTGGTT -ACGGAAGATGCATCTTCGGCCTTT -ACGGAAGATGCATCTTCGGGTCTT -ACGGAAGATGCATCTTCGACGCTT -ACGGAAGATGCATCTTCGAGCGTT -ACGGAAGATGCATCTTCGTTCGTC -ACGGAAGATGCATCTTCGTCTCTC -ACGGAAGATGCATCTTCGTGGATC -ACGGAAGATGCATCTTCGCACTTC -ACGGAAGATGCATCTTCGGTACTC -ACGGAAGATGCATCTTCGGATGTC -ACGGAAGATGCATCTTCGACAGTC -ACGGAAGATGCATCTTCGTTGCTG -ACGGAAGATGCATCTTCGTCCATG -ACGGAAGATGCATCTTCGTGTGTG -ACGGAAGATGCATCTTCGCTAGTG -ACGGAAGATGCATCTTCGCATCTG -ACGGAAGATGCATCTTCGGAGTTG -ACGGAAGATGCATCTTCGAGACTG -ACGGAAGATGCATCTTCGTCGGTA -ACGGAAGATGCATCTTCGTGCCTA -ACGGAAGATGCATCTTCGCCACTA -ACGGAAGATGCATCTTCGGGAGTA -ACGGAAGATGCATCTTCGTCGTCT -ACGGAAGATGCATCTTCGTGCACT -ACGGAAGATGCATCTTCGCTGACT -ACGGAAGATGCATCTTCGCAACCT -ACGGAAGATGCATCTTCGGCTACT -ACGGAAGATGCATCTTCGGGATCT -ACGGAAGATGCATCTTCGAAGGCT -ACGGAAGATGCATCTTCGTCAACC -ACGGAAGATGCATCTTCGTGTTCC -ACGGAAGATGCATCTTCGATTCCC -ACGGAAGATGCATCTTCGTTCTCG -ACGGAAGATGCATCTTCGTAGACG -ACGGAAGATGCATCTTCGGTAACG -ACGGAAGATGCATCTTCGACTTCG -ACGGAAGATGCATCTTCGTACGCA -ACGGAAGATGCATCTTCGCTTGCA -ACGGAAGATGCATCTTCGCGAACA -ACGGAAGATGCATCTTCGCAGTCA -ACGGAAGATGCATCTTCGGATCCA -ACGGAAGATGCATCTTCGACGACA -ACGGAAGATGCATCTTCGAGCTCA -ACGGAAGATGCATCTTCGTCACGT -ACGGAAGATGCATCTTCGCGTAGT -ACGGAAGATGCATCTTCGGTCAGT -ACGGAAGATGCATCTTCGGAAGGT -ACGGAAGATGCATCTTCGAACCGT -ACGGAAGATGCATCTTCGTTGTGC -ACGGAAGATGCATCTTCGCTAAGC -ACGGAAGATGCATCTTCGACTAGC -ACGGAAGATGCATCTTCGAGATGC -ACGGAAGATGCATCTTCGTGAAGG -ACGGAAGATGCATCTTCGCAATGG -ACGGAAGATGCATCTTCGATGAGG -ACGGAAGATGCATCTTCGAATGGG -ACGGAAGATGCATCTTCGTCCTGA -ACGGAAGATGCATCTTCGTAGCGA -ACGGAAGATGCATCTTCGCACAGA -ACGGAAGATGCATCTTCGGCAAGA -ACGGAAGATGCATCTTCGGGTTGA -ACGGAAGATGCATCTTCGTCCGAT -ACGGAAGATGCATCTTCGTGGCAT -ACGGAAGATGCATCTTCGCGAGAT -ACGGAAGATGCATCTTCGTACCAC -ACGGAAGATGCATCTTCGCAGAAC -ACGGAAGATGCATCTTCGGTCTAC -ACGGAAGATGCATCTTCGACGTAC -ACGGAAGATGCATCTTCGAGTGAC -ACGGAAGATGCATCTTCGCTGTAG -ACGGAAGATGCATCTTCGCCTAAG -ACGGAAGATGCATCTTCGGTTCAG -ACGGAAGATGCATCTTCGGCATAG -ACGGAAGATGCATCTTCGGACAAG -ACGGAAGATGCATCTTCGAAGCAG -ACGGAAGATGCATCTTCGCGTCAA -ACGGAAGATGCATCTTCGGCTGAA -ACGGAAGATGCATCTTCGAGTACG -ACGGAAGATGCATCTTCGATCCGA -ACGGAAGATGCATCTTCGATGGGA -ACGGAAGATGCATCTTCGGTGCAA -ACGGAAGATGCATCTTCGGAGGAA -ACGGAAGATGCATCTTCGCAGGTA -ACGGAAGATGCATCTTCGGACTCT -ACGGAAGATGCATCTTCGAGTCCT -ACGGAAGATGCATCTTCGTAAGCC -ACGGAAGATGCATCTTCGATAGCC -ACGGAAGATGCATCTTCGTAACCG -ACGGAAGATGCATCTTCGATGCCA -ACGGAAGATGCAACTTGCGGAAAC -ACGGAAGATGCAACTTGCAACACC -ACGGAAGATGCAACTTGCATCGAG -ACGGAAGATGCAACTTGCCTCCTT -ACGGAAGATGCAACTTGCCCTGTT -ACGGAAGATGCAACTTGCCGGTTT -ACGGAAGATGCAACTTGCGTGGTT -ACGGAAGATGCAACTTGCGCCTTT -ACGGAAGATGCAACTTGCGGTCTT -ACGGAAGATGCAACTTGCACGCTT -ACGGAAGATGCAACTTGCAGCGTT -ACGGAAGATGCAACTTGCTTCGTC -ACGGAAGATGCAACTTGCTCTCTC -ACGGAAGATGCAACTTGCTGGATC -ACGGAAGATGCAACTTGCCACTTC -ACGGAAGATGCAACTTGCGTACTC -ACGGAAGATGCAACTTGCGATGTC -ACGGAAGATGCAACTTGCACAGTC -ACGGAAGATGCAACTTGCTTGCTG -ACGGAAGATGCAACTTGCTCCATG -ACGGAAGATGCAACTTGCTGTGTG -ACGGAAGATGCAACTTGCCTAGTG -ACGGAAGATGCAACTTGCCATCTG -ACGGAAGATGCAACTTGCGAGTTG -ACGGAAGATGCAACTTGCAGACTG -ACGGAAGATGCAACTTGCTCGGTA -ACGGAAGATGCAACTTGCTGCCTA -ACGGAAGATGCAACTTGCCCACTA -ACGGAAGATGCAACTTGCGGAGTA -ACGGAAGATGCAACTTGCTCGTCT -ACGGAAGATGCAACTTGCTGCACT -ACGGAAGATGCAACTTGCCTGACT -ACGGAAGATGCAACTTGCCAACCT -ACGGAAGATGCAACTTGCGCTACT -ACGGAAGATGCAACTTGCGGATCT -ACGGAAGATGCAACTTGCAAGGCT -ACGGAAGATGCAACTTGCTCAACC -ACGGAAGATGCAACTTGCTGTTCC -ACGGAAGATGCAACTTGCATTCCC -ACGGAAGATGCAACTTGCTTCTCG -ACGGAAGATGCAACTTGCTAGACG -ACGGAAGATGCAACTTGCGTAACG -ACGGAAGATGCAACTTGCACTTCG -ACGGAAGATGCAACTTGCTACGCA -ACGGAAGATGCAACTTGCCTTGCA -ACGGAAGATGCAACTTGCCGAACA -ACGGAAGATGCAACTTGCCAGTCA -ACGGAAGATGCAACTTGCGATCCA -ACGGAAGATGCAACTTGCACGACA -ACGGAAGATGCAACTTGCAGCTCA -ACGGAAGATGCAACTTGCTCACGT -ACGGAAGATGCAACTTGCCGTAGT -ACGGAAGATGCAACTTGCGTCAGT -ACGGAAGATGCAACTTGCGAAGGT -ACGGAAGATGCAACTTGCAACCGT -ACGGAAGATGCAACTTGCTTGTGC -ACGGAAGATGCAACTTGCCTAAGC -ACGGAAGATGCAACTTGCACTAGC -ACGGAAGATGCAACTTGCAGATGC -ACGGAAGATGCAACTTGCTGAAGG -ACGGAAGATGCAACTTGCCAATGG -ACGGAAGATGCAACTTGCATGAGG -ACGGAAGATGCAACTTGCAATGGG -ACGGAAGATGCAACTTGCTCCTGA -ACGGAAGATGCAACTTGCTAGCGA -ACGGAAGATGCAACTTGCCACAGA -ACGGAAGATGCAACTTGCGCAAGA -ACGGAAGATGCAACTTGCGGTTGA -ACGGAAGATGCAACTTGCTCCGAT -ACGGAAGATGCAACTTGCTGGCAT -ACGGAAGATGCAACTTGCCGAGAT -ACGGAAGATGCAACTTGCTACCAC -ACGGAAGATGCAACTTGCCAGAAC -ACGGAAGATGCAACTTGCGTCTAC -ACGGAAGATGCAACTTGCACGTAC -ACGGAAGATGCAACTTGCAGTGAC -ACGGAAGATGCAACTTGCCTGTAG -ACGGAAGATGCAACTTGCCCTAAG -ACGGAAGATGCAACTTGCGTTCAG -ACGGAAGATGCAACTTGCGCATAG -ACGGAAGATGCAACTTGCGACAAG -ACGGAAGATGCAACTTGCAAGCAG -ACGGAAGATGCAACTTGCCGTCAA -ACGGAAGATGCAACTTGCGCTGAA -ACGGAAGATGCAACTTGCAGTACG -ACGGAAGATGCAACTTGCATCCGA -ACGGAAGATGCAACTTGCATGGGA -ACGGAAGATGCAACTTGCGTGCAA -ACGGAAGATGCAACTTGCGAGGAA -ACGGAAGATGCAACTTGCCAGGTA -ACGGAAGATGCAACTTGCGACTCT -ACGGAAGATGCAACTTGCAGTCCT -ACGGAAGATGCAACTTGCTAAGCC -ACGGAAGATGCAACTTGCATAGCC -ACGGAAGATGCAACTTGCTAACCG -ACGGAAGATGCAACTTGCATGCCA -ACGGAAGATGCAACTCTGGGAAAC -ACGGAAGATGCAACTCTGAACACC -ACGGAAGATGCAACTCTGATCGAG -ACGGAAGATGCAACTCTGCTCCTT -ACGGAAGATGCAACTCTGCCTGTT -ACGGAAGATGCAACTCTGCGGTTT -ACGGAAGATGCAACTCTGGTGGTT -ACGGAAGATGCAACTCTGGCCTTT -ACGGAAGATGCAACTCTGGGTCTT -ACGGAAGATGCAACTCTGACGCTT -ACGGAAGATGCAACTCTGAGCGTT -ACGGAAGATGCAACTCTGTTCGTC -ACGGAAGATGCAACTCTGTCTCTC -ACGGAAGATGCAACTCTGTGGATC -ACGGAAGATGCAACTCTGCACTTC -ACGGAAGATGCAACTCTGGTACTC -ACGGAAGATGCAACTCTGGATGTC -ACGGAAGATGCAACTCTGACAGTC -ACGGAAGATGCAACTCTGTTGCTG -ACGGAAGATGCAACTCTGTCCATG -ACGGAAGATGCAACTCTGTGTGTG -ACGGAAGATGCAACTCTGCTAGTG -ACGGAAGATGCAACTCTGCATCTG -ACGGAAGATGCAACTCTGGAGTTG -ACGGAAGATGCAACTCTGAGACTG -ACGGAAGATGCAACTCTGTCGGTA -ACGGAAGATGCAACTCTGTGCCTA -ACGGAAGATGCAACTCTGCCACTA -ACGGAAGATGCAACTCTGGGAGTA -ACGGAAGATGCAACTCTGTCGTCT -ACGGAAGATGCAACTCTGTGCACT -ACGGAAGATGCAACTCTGCTGACT -ACGGAAGATGCAACTCTGCAACCT -ACGGAAGATGCAACTCTGGCTACT -ACGGAAGATGCAACTCTGGGATCT -ACGGAAGATGCAACTCTGAAGGCT -ACGGAAGATGCAACTCTGTCAACC -ACGGAAGATGCAACTCTGTGTTCC -ACGGAAGATGCAACTCTGATTCCC -ACGGAAGATGCAACTCTGTTCTCG -ACGGAAGATGCAACTCTGTAGACG -ACGGAAGATGCAACTCTGGTAACG -ACGGAAGATGCAACTCTGACTTCG -ACGGAAGATGCAACTCTGTACGCA -ACGGAAGATGCAACTCTGCTTGCA -ACGGAAGATGCAACTCTGCGAACA -ACGGAAGATGCAACTCTGCAGTCA -ACGGAAGATGCAACTCTGGATCCA -ACGGAAGATGCAACTCTGACGACA -ACGGAAGATGCAACTCTGAGCTCA -ACGGAAGATGCAACTCTGTCACGT -ACGGAAGATGCAACTCTGCGTAGT -ACGGAAGATGCAACTCTGGTCAGT -ACGGAAGATGCAACTCTGGAAGGT -ACGGAAGATGCAACTCTGAACCGT -ACGGAAGATGCAACTCTGTTGTGC -ACGGAAGATGCAACTCTGCTAAGC -ACGGAAGATGCAACTCTGACTAGC -ACGGAAGATGCAACTCTGAGATGC -ACGGAAGATGCAACTCTGTGAAGG -ACGGAAGATGCAACTCTGCAATGG -ACGGAAGATGCAACTCTGATGAGG -ACGGAAGATGCAACTCTGAATGGG -ACGGAAGATGCAACTCTGTCCTGA -ACGGAAGATGCAACTCTGTAGCGA -ACGGAAGATGCAACTCTGCACAGA -ACGGAAGATGCAACTCTGGCAAGA -ACGGAAGATGCAACTCTGGGTTGA -ACGGAAGATGCAACTCTGTCCGAT -ACGGAAGATGCAACTCTGTGGCAT -ACGGAAGATGCAACTCTGCGAGAT -ACGGAAGATGCAACTCTGTACCAC -ACGGAAGATGCAACTCTGCAGAAC -ACGGAAGATGCAACTCTGGTCTAC -ACGGAAGATGCAACTCTGACGTAC -ACGGAAGATGCAACTCTGAGTGAC -ACGGAAGATGCAACTCTGCTGTAG -ACGGAAGATGCAACTCTGCCTAAG -ACGGAAGATGCAACTCTGGTTCAG -ACGGAAGATGCAACTCTGGCATAG -ACGGAAGATGCAACTCTGGACAAG -ACGGAAGATGCAACTCTGAAGCAG -ACGGAAGATGCAACTCTGCGTCAA -ACGGAAGATGCAACTCTGGCTGAA -ACGGAAGATGCAACTCTGAGTACG -ACGGAAGATGCAACTCTGATCCGA -ACGGAAGATGCAACTCTGATGGGA -ACGGAAGATGCAACTCTGGTGCAA -ACGGAAGATGCAACTCTGGAGGAA -ACGGAAGATGCAACTCTGCAGGTA -ACGGAAGATGCAACTCTGGACTCT -ACGGAAGATGCAACTCTGAGTCCT -ACGGAAGATGCAACTCTGTAAGCC -ACGGAAGATGCAACTCTGATAGCC -ACGGAAGATGCAACTCTGTAACCG -ACGGAAGATGCAACTCTGATGCCA -ACGGAAGATGCACCTCAAGGAAAC -ACGGAAGATGCACCTCAAAACACC -ACGGAAGATGCACCTCAAATCGAG -ACGGAAGATGCACCTCAACTCCTT -ACGGAAGATGCACCTCAACCTGTT -ACGGAAGATGCACCTCAACGGTTT -ACGGAAGATGCACCTCAAGTGGTT -ACGGAAGATGCACCTCAAGCCTTT -ACGGAAGATGCACCTCAAGGTCTT -ACGGAAGATGCACCTCAAACGCTT -ACGGAAGATGCACCTCAAAGCGTT -ACGGAAGATGCACCTCAATTCGTC -ACGGAAGATGCACCTCAATCTCTC -ACGGAAGATGCACCTCAATGGATC -ACGGAAGATGCACCTCAACACTTC -ACGGAAGATGCACCTCAAGTACTC -ACGGAAGATGCACCTCAAGATGTC -ACGGAAGATGCACCTCAAACAGTC -ACGGAAGATGCACCTCAATTGCTG -ACGGAAGATGCACCTCAATCCATG -ACGGAAGATGCACCTCAATGTGTG -ACGGAAGATGCACCTCAACTAGTG -ACGGAAGATGCACCTCAACATCTG -ACGGAAGATGCACCTCAAGAGTTG -ACGGAAGATGCACCTCAAAGACTG -ACGGAAGATGCACCTCAATCGGTA -ACGGAAGATGCACCTCAATGCCTA -ACGGAAGATGCACCTCAACCACTA -ACGGAAGATGCACCTCAAGGAGTA -ACGGAAGATGCACCTCAATCGTCT -ACGGAAGATGCACCTCAATGCACT -ACGGAAGATGCACCTCAACTGACT -ACGGAAGATGCACCTCAACAACCT -ACGGAAGATGCACCTCAAGCTACT -ACGGAAGATGCACCTCAAGGATCT -ACGGAAGATGCACCTCAAAAGGCT -ACGGAAGATGCACCTCAATCAACC -ACGGAAGATGCACCTCAATGTTCC -ACGGAAGATGCACCTCAAATTCCC -ACGGAAGATGCACCTCAATTCTCG -ACGGAAGATGCACCTCAATAGACG -ACGGAAGATGCACCTCAAGTAACG -ACGGAAGATGCACCTCAAACTTCG -ACGGAAGATGCACCTCAATACGCA -ACGGAAGATGCACCTCAACTTGCA -ACGGAAGATGCACCTCAACGAACA -ACGGAAGATGCACCTCAACAGTCA -ACGGAAGATGCACCTCAAGATCCA -ACGGAAGATGCACCTCAAACGACA -ACGGAAGATGCACCTCAAAGCTCA -ACGGAAGATGCACCTCAATCACGT -ACGGAAGATGCACCTCAACGTAGT -ACGGAAGATGCACCTCAAGTCAGT -ACGGAAGATGCACCTCAAGAAGGT -ACGGAAGATGCACCTCAAAACCGT -ACGGAAGATGCACCTCAATTGTGC -ACGGAAGATGCACCTCAACTAAGC -ACGGAAGATGCACCTCAAACTAGC -ACGGAAGATGCACCTCAAAGATGC -ACGGAAGATGCACCTCAATGAAGG -ACGGAAGATGCACCTCAACAATGG -ACGGAAGATGCACCTCAAATGAGG -ACGGAAGATGCACCTCAAAATGGG -ACGGAAGATGCACCTCAATCCTGA -ACGGAAGATGCACCTCAATAGCGA -ACGGAAGATGCACCTCAACACAGA -ACGGAAGATGCACCTCAAGCAAGA -ACGGAAGATGCACCTCAAGGTTGA -ACGGAAGATGCACCTCAATCCGAT -ACGGAAGATGCACCTCAATGGCAT -ACGGAAGATGCACCTCAACGAGAT -ACGGAAGATGCACCTCAATACCAC -ACGGAAGATGCACCTCAACAGAAC -ACGGAAGATGCACCTCAAGTCTAC -ACGGAAGATGCACCTCAAACGTAC -ACGGAAGATGCACCTCAAAGTGAC -ACGGAAGATGCACCTCAACTGTAG -ACGGAAGATGCACCTCAACCTAAG -ACGGAAGATGCACCTCAAGTTCAG -ACGGAAGATGCACCTCAAGCATAG -ACGGAAGATGCACCTCAAGACAAG -ACGGAAGATGCACCTCAAAAGCAG -ACGGAAGATGCACCTCAACGTCAA -ACGGAAGATGCACCTCAAGCTGAA -ACGGAAGATGCACCTCAAAGTACG -ACGGAAGATGCACCTCAAATCCGA -ACGGAAGATGCACCTCAAATGGGA -ACGGAAGATGCACCTCAAGTGCAA -ACGGAAGATGCACCTCAAGAGGAA -ACGGAAGATGCACCTCAACAGGTA -ACGGAAGATGCACCTCAAGACTCT -ACGGAAGATGCACCTCAAAGTCCT -ACGGAAGATGCACCTCAATAAGCC -ACGGAAGATGCACCTCAAATAGCC -ACGGAAGATGCACCTCAATAACCG -ACGGAAGATGCACCTCAAATGCCA -ACGGAAGATGCAACTGCTGGAAAC -ACGGAAGATGCAACTGCTAACACC -ACGGAAGATGCAACTGCTATCGAG -ACGGAAGATGCAACTGCTCTCCTT -ACGGAAGATGCAACTGCTCCTGTT -ACGGAAGATGCAACTGCTCGGTTT -ACGGAAGATGCAACTGCTGTGGTT -ACGGAAGATGCAACTGCTGCCTTT -ACGGAAGATGCAACTGCTGGTCTT -ACGGAAGATGCAACTGCTACGCTT -ACGGAAGATGCAACTGCTAGCGTT -ACGGAAGATGCAACTGCTTTCGTC -ACGGAAGATGCAACTGCTTCTCTC -ACGGAAGATGCAACTGCTTGGATC -ACGGAAGATGCAACTGCTCACTTC -ACGGAAGATGCAACTGCTGTACTC -ACGGAAGATGCAACTGCTGATGTC -ACGGAAGATGCAACTGCTACAGTC -ACGGAAGATGCAACTGCTTTGCTG -ACGGAAGATGCAACTGCTTCCATG -ACGGAAGATGCAACTGCTTGTGTG -ACGGAAGATGCAACTGCTCTAGTG -ACGGAAGATGCAACTGCTCATCTG -ACGGAAGATGCAACTGCTGAGTTG -ACGGAAGATGCAACTGCTAGACTG -ACGGAAGATGCAACTGCTTCGGTA -ACGGAAGATGCAACTGCTTGCCTA -ACGGAAGATGCAACTGCTCCACTA -ACGGAAGATGCAACTGCTGGAGTA -ACGGAAGATGCAACTGCTTCGTCT -ACGGAAGATGCAACTGCTTGCACT -ACGGAAGATGCAACTGCTCTGACT -ACGGAAGATGCAACTGCTCAACCT -ACGGAAGATGCAACTGCTGCTACT -ACGGAAGATGCAACTGCTGGATCT -ACGGAAGATGCAACTGCTAAGGCT -ACGGAAGATGCAACTGCTTCAACC -ACGGAAGATGCAACTGCTTGTTCC -ACGGAAGATGCAACTGCTATTCCC -ACGGAAGATGCAACTGCTTTCTCG -ACGGAAGATGCAACTGCTTAGACG -ACGGAAGATGCAACTGCTGTAACG -ACGGAAGATGCAACTGCTACTTCG -ACGGAAGATGCAACTGCTTACGCA -ACGGAAGATGCAACTGCTCTTGCA -ACGGAAGATGCAACTGCTCGAACA -ACGGAAGATGCAACTGCTCAGTCA -ACGGAAGATGCAACTGCTGATCCA -ACGGAAGATGCAACTGCTACGACA -ACGGAAGATGCAACTGCTAGCTCA -ACGGAAGATGCAACTGCTTCACGT -ACGGAAGATGCAACTGCTCGTAGT -ACGGAAGATGCAACTGCTGTCAGT -ACGGAAGATGCAACTGCTGAAGGT -ACGGAAGATGCAACTGCTAACCGT -ACGGAAGATGCAACTGCTTTGTGC -ACGGAAGATGCAACTGCTCTAAGC -ACGGAAGATGCAACTGCTACTAGC -ACGGAAGATGCAACTGCTAGATGC -ACGGAAGATGCAACTGCTTGAAGG -ACGGAAGATGCAACTGCTCAATGG -ACGGAAGATGCAACTGCTATGAGG -ACGGAAGATGCAACTGCTAATGGG -ACGGAAGATGCAACTGCTTCCTGA -ACGGAAGATGCAACTGCTTAGCGA -ACGGAAGATGCAACTGCTCACAGA -ACGGAAGATGCAACTGCTGCAAGA -ACGGAAGATGCAACTGCTGGTTGA -ACGGAAGATGCAACTGCTTCCGAT -ACGGAAGATGCAACTGCTTGGCAT -ACGGAAGATGCAACTGCTCGAGAT -ACGGAAGATGCAACTGCTTACCAC -ACGGAAGATGCAACTGCTCAGAAC -ACGGAAGATGCAACTGCTGTCTAC -ACGGAAGATGCAACTGCTACGTAC -ACGGAAGATGCAACTGCTAGTGAC -ACGGAAGATGCAACTGCTCTGTAG -ACGGAAGATGCAACTGCTCCTAAG -ACGGAAGATGCAACTGCTGTTCAG -ACGGAAGATGCAACTGCTGCATAG -ACGGAAGATGCAACTGCTGACAAG -ACGGAAGATGCAACTGCTAAGCAG -ACGGAAGATGCAACTGCTCGTCAA -ACGGAAGATGCAACTGCTGCTGAA -ACGGAAGATGCAACTGCTAGTACG -ACGGAAGATGCAACTGCTATCCGA -ACGGAAGATGCAACTGCTATGGGA -ACGGAAGATGCAACTGCTGTGCAA -ACGGAAGATGCAACTGCTGAGGAA -ACGGAAGATGCAACTGCTCAGGTA -ACGGAAGATGCAACTGCTGACTCT -ACGGAAGATGCAACTGCTAGTCCT -ACGGAAGATGCAACTGCTTAAGCC -ACGGAAGATGCAACTGCTATAGCC -ACGGAAGATGCAACTGCTTAACCG -ACGGAAGATGCAACTGCTATGCCA -ACGGAAGATGCATCTGGAGGAAAC -ACGGAAGATGCATCTGGAAACACC -ACGGAAGATGCATCTGGAATCGAG -ACGGAAGATGCATCTGGACTCCTT -ACGGAAGATGCATCTGGACCTGTT -ACGGAAGATGCATCTGGACGGTTT -ACGGAAGATGCATCTGGAGTGGTT -ACGGAAGATGCATCTGGAGCCTTT -ACGGAAGATGCATCTGGAGGTCTT -ACGGAAGATGCATCTGGAACGCTT -ACGGAAGATGCATCTGGAAGCGTT -ACGGAAGATGCATCTGGATTCGTC -ACGGAAGATGCATCTGGATCTCTC -ACGGAAGATGCATCTGGATGGATC -ACGGAAGATGCATCTGGACACTTC -ACGGAAGATGCATCTGGAGTACTC -ACGGAAGATGCATCTGGAGATGTC -ACGGAAGATGCATCTGGAACAGTC -ACGGAAGATGCATCTGGATTGCTG -ACGGAAGATGCATCTGGATCCATG -ACGGAAGATGCATCTGGATGTGTG -ACGGAAGATGCATCTGGACTAGTG -ACGGAAGATGCATCTGGACATCTG -ACGGAAGATGCATCTGGAGAGTTG -ACGGAAGATGCATCTGGAAGACTG -ACGGAAGATGCATCTGGATCGGTA -ACGGAAGATGCATCTGGATGCCTA -ACGGAAGATGCATCTGGACCACTA -ACGGAAGATGCATCTGGAGGAGTA -ACGGAAGATGCATCTGGATCGTCT -ACGGAAGATGCATCTGGATGCACT -ACGGAAGATGCATCTGGACTGACT -ACGGAAGATGCATCTGGACAACCT -ACGGAAGATGCATCTGGAGCTACT -ACGGAAGATGCATCTGGAGGATCT -ACGGAAGATGCATCTGGAAAGGCT -ACGGAAGATGCATCTGGATCAACC -ACGGAAGATGCATCTGGATGTTCC -ACGGAAGATGCATCTGGAATTCCC -ACGGAAGATGCATCTGGATTCTCG -ACGGAAGATGCATCTGGATAGACG -ACGGAAGATGCATCTGGAGTAACG -ACGGAAGATGCATCTGGAACTTCG -ACGGAAGATGCATCTGGATACGCA -ACGGAAGATGCATCTGGACTTGCA -ACGGAAGATGCATCTGGACGAACA -ACGGAAGATGCATCTGGACAGTCA -ACGGAAGATGCATCTGGAGATCCA -ACGGAAGATGCATCTGGAACGACA -ACGGAAGATGCATCTGGAAGCTCA -ACGGAAGATGCATCTGGATCACGT -ACGGAAGATGCATCTGGACGTAGT -ACGGAAGATGCATCTGGAGTCAGT -ACGGAAGATGCATCTGGAGAAGGT -ACGGAAGATGCATCTGGAAACCGT -ACGGAAGATGCATCTGGATTGTGC -ACGGAAGATGCATCTGGACTAAGC -ACGGAAGATGCATCTGGAACTAGC -ACGGAAGATGCATCTGGAAGATGC -ACGGAAGATGCATCTGGATGAAGG -ACGGAAGATGCATCTGGACAATGG -ACGGAAGATGCATCTGGAATGAGG -ACGGAAGATGCATCTGGAAATGGG -ACGGAAGATGCATCTGGATCCTGA -ACGGAAGATGCATCTGGATAGCGA -ACGGAAGATGCATCTGGACACAGA -ACGGAAGATGCATCTGGAGCAAGA -ACGGAAGATGCATCTGGAGGTTGA -ACGGAAGATGCATCTGGATCCGAT -ACGGAAGATGCATCTGGATGGCAT -ACGGAAGATGCATCTGGACGAGAT -ACGGAAGATGCATCTGGATACCAC -ACGGAAGATGCATCTGGACAGAAC -ACGGAAGATGCATCTGGAGTCTAC -ACGGAAGATGCATCTGGAACGTAC -ACGGAAGATGCATCTGGAAGTGAC -ACGGAAGATGCATCTGGACTGTAG -ACGGAAGATGCATCTGGACCTAAG -ACGGAAGATGCATCTGGAGTTCAG -ACGGAAGATGCATCTGGAGCATAG -ACGGAAGATGCATCTGGAGACAAG -ACGGAAGATGCATCTGGAAAGCAG -ACGGAAGATGCATCTGGACGTCAA -ACGGAAGATGCATCTGGAGCTGAA -ACGGAAGATGCATCTGGAAGTACG -ACGGAAGATGCATCTGGAATCCGA -ACGGAAGATGCATCTGGAATGGGA -ACGGAAGATGCATCTGGAGTGCAA -ACGGAAGATGCATCTGGAGAGGAA -ACGGAAGATGCATCTGGACAGGTA -ACGGAAGATGCATCTGGAGACTCT -ACGGAAGATGCATCTGGAAGTCCT -ACGGAAGATGCATCTGGATAAGCC -ACGGAAGATGCATCTGGAATAGCC -ACGGAAGATGCATCTGGATAACCG -ACGGAAGATGCATCTGGAATGCCA -ACGGAAGATGCAGCTAAGGGAAAC -ACGGAAGATGCAGCTAAGAACACC -ACGGAAGATGCAGCTAAGATCGAG -ACGGAAGATGCAGCTAAGCTCCTT -ACGGAAGATGCAGCTAAGCCTGTT -ACGGAAGATGCAGCTAAGCGGTTT -ACGGAAGATGCAGCTAAGGTGGTT -ACGGAAGATGCAGCTAAGGCCTTT -ACGGAAGATGCAGCTAAGGGTCTT -ACGGAAGATGCAGCTAAGACGCTT -ACGGAAGATGCAGCTAAGAGCGTT -ACGGAAGATGCAGCTAAGTTCGTC -ACGGAAGATGCAGCTAAGTCTCTC -ACGGAAGATGCAGCTAAGTGGATC -ACGGAAGATGCAGCTAAGCACTTC -ACGGAAGATGCAGCTAAGGTACTC -ACGGAAGATGCAGCTAAGGATGTC -ACGGAAGATGCAGCTAAGACAGTC -ACGGAAGATGCAGCTAAGTTGCTG -ACGGAAGATGCAGCTAAGTCCATG -ACGGAAGATGCAGCTAAGTGTGTG -ACGGAAGATGCAGCTAAGCTAGTG -ACGGAAGATGCAGCTAAGCATCTG -ACGGAAGATGCAGCTAAGGAGTTG -ACGGAAGATGCAGCTAAGAGACTG -ACGGAAGATGCAGCTAAGTCGGTA -ACGGAAGATGCAGCTAAGTGCCTA -ACGGAAGATGCAGCTAAGCCACTA -ACGGAAGATGCAGCTAAGGGAGTA -ACGGAAGATGCAGCTAAGTCGTCT -ACGGAAGATGCAGCTAAGTGCACT -ACGGAAGATGCAGCTAAGCTGACT -ACGGAAGATGCAGCTAAGCAACCT -ACGGAAGATGCAGCTAAGGCTACT -ACGGAAGATGCAGCTAAGGGATCT -ACGGAAGATGCAGCTAAGAAGGCT -ACGGAAGATGCAGCTAAGTCAACC -ACGGAAGATGCAGCTAAGTGTTCC -ACGGAAGATGCAGCTAAGATTCCC -ACGGAAGATGCAGCTAAGTTCTCG -ACGGAAGATGCAGCTAAGTAGACG -ACGGAAGATGCAGCTAAGGTAACG -ACGGAAGATGCAGCTAAGACTTCG -ACGGAAGATGCAGCTAAGTACGCA -ACGGAAGATGCAGCTAAGCTTGCA -ACGGAAGATGCAGCTAAGCGAACA -ACGGAAGATGCAGCTAAGCAGTCA -ACGGAAGATGCAGCTAAGGATCCA -ACGGAAGATGCAGCTAAGACGACA -ACGGAAGATGCAGCTAAGAGCTCA -ACGGAAGATGCAGCTAAGTCACGT -ACGGAAGATGCAGCTAAGCGTAGT -ACGGAAGATGCAGCTAAGGTCAGT -ACGGAAGATGCAGCTAAGGAAGGT -ACGGAAGATGCAGCTAAGAACCGT -ACGGAAGATGCAGCTAAGTTGTGC -ACGGAAGATGCAGCTAAGCTAAGC -ACGGAAGATGCAGCTAAGACTAGC -ACGGAAGATGCAGCTAAGAGATGC -ACGGAAGATGCAGCTAAGTGAAGG -ACGGAAGATGCAGCTAAGCAATGG -ACGGAAGATGCAGCTAAGATGAGG -ACGGAAGATGCAGCTAAGAATGGG -ACGGAAGATGCAGCTAAGTCCTGA -ACGGAAGATGCAGCTAAGTAGCGA -ACGGAAGATGCAGCTAAGCACAGA -ACGGAAGATGCAGCTAAGGCAAGA -ACGGAAGATGCAGCTAAGGGTTGA -ACGGAAGATGCAGCTAAGTCCGAT -ACGGAAGATGCAGCTAAGTGGCAT -ACGGAAGATGCAGCTAAGCGAGAT -ACGGAAGATGCAGCTAAGTACCAC -ACGGAAGATGCAGCTAAGCAGAAC -ACGGAAGATGCAGCTAAGGTCTAC -ACGGAAGATGCAGCTAAGACGTAC -ACGGAAGATGCAGCTAAGAGTGAC -ACGGAAGATGCAGCTAAGCTGTAG -ACGGAAGATGCAGCTAAGCCTAAG -ACGGAAGATGCAGCTAAGGTTCAG -ACGGAAGATGCAGCTAAGGCATAG -ACGGAAGATGCAGCTAAGGACAAG -ACGGAAGATGCAGCTAAGAAGCAG -ACGGAAGATGCAGCTAAGCGTCAA -ACGGAAGATGCAGCTAAGGCTGAA -ACGGAAGATGCAGCTAAGAGTACG -ACGGAAGATGCAGCTAAGATCCGA -ACGGAAGATGCAGCTAAGATGGGA -ACGGAAGATGCAGCTAAGGTGCAA -ACGGAAGATGCAGCTAAGGAGGAA -ACGGAAGATGCAGCTAAGCAGGTA -ACGGAAGATGCAGCTAAGGACTCT -ACGGAAGATGCAGCTAAGAGTCCT -ACGGAAGATGCAGCTAAGTAAGCC -ACGGAAGATGCAGCTAAGATAGCC -ACGGAAGATGCAGCTAAGTAACCG -ACGGAAGATGCAGCTAAGATGCCA -ACGGAAGATGCAACCTCAGGAAAC -ACGGAAGATGCAACCTCAAACACC -ACGGAAGATGCAACCTCAATCGAG -ACGGAAGATGCAACCTCACTCCTT -ACGGAAGATGCAACCTCACCTGTT -ACGGAAGATGCAACCTCACGGTTT -ACGGAAGATGCAACCTCAGTGGTT -ACGGAAGATGCAACCTCAGCCTTT -ACGGAAGATGCAACCTCAGGTCTT -ACGGAAGATGCAACCTCAACGCTT -ACGGAAGATGCAACCTCAAGCGTT -ACGGAAGATGCAACCTCATTCGTC -ACGGAAGATGCAACCTCATCTCTC -ACGGAAGATGCAACCTCATGGATC -ACGGAAGATGCAACCTCACACTTC -ACGGAAGATGCAACCTCAGTACTC -ACGGAAGATGCAACCTCAGATGTC -ACGGAAGATGCAACCTCAACAGTC -ACGGAAGATGCAACCTCATTGCTG -ACGGAAGATGCAACCTCATCCATG -ACGGAAGATGCAACCTCATGTGTG -ACGGAAGATGCAACCTCACTAGTG -ACGGAAGATGCAACCTCACATCTG -ACGGAAGATGCAACCTCAGAGTTG -ACGGAAGATGCAACCTCAAGACTG -ACGGAAGATGCAACCTCATCGGTA -ACGGAAGATGCAACCTCATGCCTA -ACGGAAGATGCAACCTCACCACTA -ACGGAAGATGCAACCTCAGGAGTA -ACGGAAGATGCAACCTCATCGTCT -ACGGAAGATGCAACCTCATGCACT -ACGGAAGATGCAACCTCACTGACT -ACGGAAGATGCAACCTCACAACCT -ACGGAAGATGCAACCTCAGCTACT -ACGGAAGATGCAACCTCAGGATCT -ACGGAAGATGCAACCTCAAAGGCT -ACGGAAGATGCAACCTCATCAACC -ACGGAAGATGCAACCTCATGTTCC -ACGGAAGATGCAACCTCAATTCCC -ACGGAAGATGCAACCTCATTCTCG -ACGGAAGATGCAACCTCATAGACG -ACGGAAGATGCAACCTCAGTAACG -ACGGAAGATGCAACCTCAACTTCG -ACGGAAGATGCAACCTCATACGCA -ACGGAAGATGCAACCTCACTTGCA -ACGGAAGATGCAACCTCACGAACA -ACGGAAGATGCAACCTCACAGTCA -ACGGAAGATGCAACCTCAGATCCA -ACGGAAGATGCAACCTCAACGACA -ACGGAAGATGCAACCTCAAGCTCA -ACGGAAGATGCAACCTCATCACGT -ACGGAAGATGCAACCTCACGTAGT -ACGGAAGATGCAACCTCAGTCAGT -ACGGAAGATGCAACCTCAGAAGGT -ACGGAAGATGCAACCTCAAACCGT -ACGGAAGATGCAACCTCATTGTGC -ACGGAAGATGCAACCTCACTAAGC -ACGGAAGATGCAACCTCAACTAGC -ACGGAAGATGCAACCTCAAGATGC -ACGGAAGATGCAACCTCATGAAGG -ACGGAAGATGCAACCTCACAATGG -ACGGAAGATGCAACCTCAATGAGG -ACGGAAGATGCAACCTCAAATGGG -ACGGAAGATGCAACCTCATCCTGA -ACGGAAGATGCAACCTCATAGCGA -ACGGAAGATGCAACCTCACACAGA -ACGGAAGATGCAACCTCAGCAAGA -ACGGAAGATGCAACCTCAGGTTGA -ACGGAAGATGCAACCTCATCCGAT -ACGGAAGATGCAACCTCATGGCAT -ACGGAAGATGCAACCTCACGAGAT -ACGGAAGATGCAACCTCATACCAC -ACGGAAGATGCAACCTCACAGAAC -ACGGAAGATGCAACCTCAGTCTAC -ACGGAAGATGCAACCTCAACGTAC -ACGGAAGATGCAACCTCAAGTGAC -ACGGAAGATGCAACCTCACTGTAG -ACGGAAGATGCAACCTCACCTAAG -ACGGAAGATGCAACCTCAGTTCAG -ACGGAAGATGCAACCTCAGCATAG -ACGGAAGATGCAACCTCAGACAAG -ACGGAAGATGCAACCTCAAAGCAG -ACGGAAGATGCAACCTCACGTCAA -ACGGAAGATGCAACCTCAGCTGAA -ACGGAAGATGCAACCTCAAGTACG -ACGGAAGATGCAACCTCAATCCGA -ACGGAAGATGCAACCTCAATGGGA -ACGGAAGATGCAACCTCAGTGCAA -ACGGAAGATGCAACCTCAGAGGAA -ACGGAAGATGCAACCTCACAGGTA -ACGGAAGATGCAACCTCAGACTCT -ACGGAAGATGCAACCTCAAGTCCT -ACGGAAGATGCAACCTCATAAGCC -ACGGAAGATGCAACCTCAATAGCC -ACGGAAGATGCAACCTCATAACCG -ACGGAAGATGCAACCTCAATGCCA -ACGGAAGATGCATCCTGTGGAAAC -ACGGAAGATGCATCCTGTAACACC -ACGGAAGATGCATCCTGTATCGAG -ACGGAAGATGCATCCTGTCTCCTT -ACGGAAGATGCATCCTGTCCTGTT -ACGGAAGATGCATCCTGTCGGTTT -ACGGAAGATGCATCCTGTGTGGTT -ACGGAAGATGCATCCTGTGCCTTT -ACGGAAGATGCATCCTGTGGTCTT -ACGGAAGATGCATCCTGTACGCTT -ACGGAAGATGCATCCTGTAGCGTT -ACGGAAGATGCATCCTGTTTCGTC -ACGGAAGATGCATCCTGTTCTCTC -ACGGAAGATGCATCCTGTTGGATC -ACGGAAGATGCATCCTGTCACTTC -ACGGAAGATGCATCCTGTGTACTC -ACGGAAGATGCATCCTGTGATGTC -ACGGAAGATGCATCCTGTACAGTC -ACGGAAGATGCATCCTGTTTGCTG -ACGGAAGATGCATCCTGTTCCATG -ACGGAAGATGCATCCTGTTGTGTG -ACGGAAGATGCATCCTGTCTAGTG -ACGGAAGATGCATCCTGTCATCTG -ACGGAAGATGCATCCTGTGAGTTG -ACGGAAGATGCATCCTGTAGACTG -ACGGAAGATGCATCCTGTTCGGTA -ACGGAAGATGCATCCTGTTGCCTA -ACGGAAGATGCATCCTGTCCACTA -ACGGAAGATGCATCCTGTGGAGTA -ACGGAAGATGCATCCTGTTCGTCT -ACGGAAGATGCATCCTGTTGCACT -ACGGAAGATGCATCCTGTCTGACT -ACGGAAGATGCATCCTGTCAACCT -ACGGAAGATGCATCCTGTGCTACT -ACGGAAGATGCATCCTGTGGATCT -ACGGAAGATGCATCCTGTAAGGCT -ACGGAAGATGCATCCTGTTCAACC -ACGGAAGATGCATCCTGTTGTTCC -ACGGAAGATGCATCCTGTATTCCC -ACGGAAGATGCATCCTGTTTCTCG -ACGGAAGATGCATCCTGTTAGACG -ACGGAAGATGCATCCTGTGTAACG -ACGGAAGATGCATCCTGTACTTCG -ACGGAAGATGCATCCTGTTACGCA -ACGGAAGATGCATCCTGTCTTGCA -ACGGAAGATGCATCCTGTCGAACA -ACGGAAGATGCATCCTGTCAGTCA -ACGGAAGATGCATCCTGTGATCCA -ACGGAAGATGCATCCTGTACGACA -ACGGAAGATGCATCCTGTAGCTCA -ACGGAAGATGCATCCTGTTCACGT -ACGGAAGATGCATCCTGTCGTAGT -ACGGAAGATGCATCCTGTGTCAGT -ACGGAAGATGCATCCTGTGAAGGT -ACGGAAGATGCATCCTGTAACCGT -ACGGAAGATGCATCCTGTTTGTGC -ACGGAAGATGCATCCTGTCTAAGC -ACGGAAGATGCATCCTGTACTAGC -ACGGAAGATGCATCCTGTAGATGC -ACGGAAGATGCATCCTGTTGAAGG -ACGGAAGATGCATCCTGTCAATGG -ACGGAAGATGCATCCTGTATGAGG -ACGGAAGATGCATCCTGTAATGGG -ACGGAAGATGCATCCTGTTCCTGA -ACGGAAGATGCATCCTGTTAGCGA -ACGGAAGATGCATCCTGTCACAGA -ACGGAAGATGCATCCTGTGCAAGA -ACGGAAGATGCATCCTGTGGTTGA -ACGGAAGATGCATCCTGTTCCGAT -ACGGAAGATGCATCCTGTTGGCAT -ACGGAAGATGCATCCTGTCGAGAT -ACGGAAGATGCATCCTGTTACCAC -ACGGAAGATGCATCCTGTCAGAAC -ACGGAAGATGCATCCTGTGTCTAC -ACGGAAGATGCATCCTGTACGTAC -ACGGAAGATGCATCCTGTAGTGAC -ACGGAAGATGCATCCTGTCTGTAG -ACGGAAGATGCATCCTGTCCTAAG -ACGGAAGATGCATCCTGTGTTCAG -ACGGAAGATGCATCCTGTGCATAG -ACGGAAGATGCATCCTGTGACAAG -ACGGAAGATGCATCCTGTAAGCAG -ACGGAAGATGCATCCTGTCGTCAA -ACGGAAGATGCATCCTGTGCTGAA -ACGGAAGATGCATCCTGTAGTACG -ACGGAAGATGCATCCTGTATCCGA -ACGGAAGATGCATCCTGTATGGGA -ACGGAAGATGCATCCTGTGTGCAA -ACGGAAGATGCATCCTGTGAGGAA -ACGGAAGATGCATCCTGTCAGGTA -ACGGAAGATGCATCCTGTGACTCT -ACGGAAGATGCATCCTGTAGTCCT -ACGGAAGATGCATCCTGTTAAGCC -ACGGAAGATGCATCCTGTATAGCC -ACGGAAGATGCATCCTGTTAACCG -ACGGAAGATGCATCCTGTATGCCA -ACGGAAGATGCACCCATTGGAAAC -ACGGAAGATGCACCCATTAACACC -ACGGAAGATGCACCCATTATCGAG -ACGGAAGATGCACCCATTCTCCTT -ACGGAAGATGCACCCATTCCTGTT -ACGGAAGATGCACCCATTCGGTTT -ACGGAAGATGCACCCATTGTGGTT -ACGGAAGATGCACCCATTGCCTTT -ACGGAAGATGCACCCATTGGTCTT -ACGGAAGATGCACCCATTACGCTT -ACGGAAGATGCACCCATTAGCGTT -ACGGAAGATGCACCCATTTTCGTC -ACGGAAGATGCACCCATTTCTCTC -ACGGAAGATGCACCCATTTGGATC -ACGGAAGATGCACCCATTCACTTC -ACGGAAGATGCACCCATTGTACTC -ACGGAAGATGCACCCATTGATGTC -ACGGAAGATGCACCCATTACAGTC -ACGGAAGATGCACCCATTTTGCTG -ACGGAAGATGCACCCATTTCCATG -ACGGAAGATGCACCCATTTGTGTG -ACGGAAGATGCACCCATTCTAGTG -ACGGAAGATGCACCCATTCATCTG -ACGGAAGATGCACCCATTGAGTTG -ACGGAAGATGCACCCATTAGACTG -ACGGAAGATGCACCCATTTCGGTA -ACGGAAGATGCACCCATTTGCCTA -ACGGAAGATGCACCCATTCCACTA -ACGGAAGATGCACCCATTGGAGTA -ACGGAAGATGCACCCATTTCGTCT -ACGGAAGATGCACCCATTTGCACT -ACGGAAGATGCACCCATTCTGACT -ACGGAAGATGCACCCATTCAACCT -ACGGAAGATGCACCCATTGCTACT -ACGGAAGATGCACCCATTGGATCT -ACGGAAGATGCACCCATTAAGGCT -ACGGAAGATGCACCCATTTCAACC -ACGGAAGATGCACCCATTTGTTCC -ACGGAAGATGCACCCATTATTCCC -ACGGAAGATGCACCCATTTTCTCG -ACGGAAGATGCACCCATTTAGACG -ACGGAAGATGCACCCATTGTAACG -ACGGAAGATGCACCCATTACTTCG -ACGGAAGATGCACCCATTTACGCA -ACGGAAGATGCACCCATTCTTGCA -ACGGAAGATGCACCCATTCGAACA -ACGGAAGATGCACCCATTCAGTCA -ACGGAAGATGCACCCATTGATCCA -ACGGAAGATGCACCCATTACGACA -ACGGAAGATGCACCCATTAGCTCA -ACGGAAGATGCACCCATTTCACGT -ACGGAAGATGCACCCATTCGTAGT -ACGGAAGATGCACCCATTGTCAGT -ACGGAAGATGCACCCATTGAAGGT -ACGGAAGATGCACCCATTAACCGT -ACGGAAGATGCACCCATTTTGTGC -ACGGAAGATGCACCCATTCTAAGC -ACGGAAGATGCACCCATTACTAGC -ACGGAAGATGCACCCATTAGATGC -ACGGAAGATGCACCCATTTGAAGG -ACGGAAGATGCACCCATTCAATGG -ACGGAAGATGCACCCATTATGAGG -ACGGAAGATGCACCCATTAATGGG -ACGGAAGATGCACCCATTTCCTGA -ACGGAAGATGCACCCATTTAGCGA -ACGGAAGATGCACCCATTCACAGA -ACGGAAGATGCACCCATTGCAAGA -ACGGAAGATGCACCCATTGGTTGA -ACGGAAGATGCACCCATTTCCGAT -ACGGAAGATGCACCCATTTGGCAT -ACGGAAGATGCACCCATTCGAGAT -ACGGAAGATGCACCCATTTACCAC -ACGGAAGATGCACCCATTCAGAAC -ACGGAAGATGCACCCATTGTCTAC -ACGGAAGATGCACCCATTACGTAC -ACGGAAGATGCACCCATTAGTGAC -ACGGAAGATGCACCCATTCTGTAG -ACGGAAGATGCACCCATTCCTAAG -ACGGAAGATGCACCCATTGTTCAG -ACGGAAGATGCACCCATTGCATAG -ACGGAAGATGCACCCATTGACAAG -ACGGAAGATGCACCCATTAAGCAG -ACGGAAGATGCACCCATTCGTCAA -ACGGAAGATGCACCCATTGCTGAA -ACGGAAGATGCACCCATTAGTACG -ACGGAAGATGCACCCATTATCCGA -ACGGAAGATGCACCCATTATGGGA -ACGGAAGATGCACCCATTGTGCAA -ACGGAAGATGCACCCATTGAGGAA -ACGGAAGATGCACCCATTCAGGTA -ACGGAAGATGCACCCATTGACTCT -ACGGAAGATGCACCCATTAGTCCT -ACGGAAGATGCACCCATTTAAGCC -ACGGAAGATGCACCCATTATAGCC -ACGGAAGATGCACCCATTTAACCG -ACGGAAGATGCACCCATTATGCCA -ACGGAAGATGCATCGTTCGGAAAC -ACGGAAGATGCATCGTTCAACACC -ACGGAAGATGCATCGTTCATCGAG -ACGGAAGATGCATCGTTCCTCCTT -ACGGAAGATGCATCGTTCCCTGTT -ACGGAAGATGCATCGTTCCGGTTT -ACGGAAGATGCATCGTTCGTGGTT -ACGGAAGATGCATCGTTCGCCTTT -ACGGAAGATGCATCGTTCGGTCTT -ACGGAAGATGCATCGTTCACGCTT -ACGGAAGATGCATCGTTCAGCGTT -ACGGAAGATGCATCGTTCTTCGTC -ACGGAAGATGCATCGTTCTCTCTC -ACGGAAGATGCATCGTTCTGGATC -ACGGAAGATGCATCGTTCCACTTC -ACGGAAGATGCATCGTTCGTACTC -ACGGAAGATGCATCGTTCGATGTC -ACGGAAGATGCATCGTTCACAGTC -ACGGAAGATGCATCGTTCTTGCTG -ACGGAAGATGCATCGTTCTCCATG -ACGGAAGATGCATCGTTCTGTGTG -ACGGAAGATGCATCGTTCCTAGTG -ACGGAAGATGCATCGTTCCATCTG -ACGGAAGATGCATCGTTCGAGTTG -ACGGAAGATGCATCGTTCAGACTG -ACGGAAGATGCATCGTTCTCGGTA -ACGGAAGATGCATCGTTCTGCCTA -ACGGAAGATGCATCGTTCCCACTA -ACGGAAGATGCATCGTTCGGAGTA -ACGGAAGATGCATCGTTCTCGTCT -ACGGAAGATGCATCGTTCTGCACT -ACGGAAGATGCATCGTTCCTGACT -ACGGAAGATGCATCGTTCCAACCT -ACGGAAGATGCATCGTTCGCTACT -ACGGAAGATGCATCGTTCGGATCT -ACGGAAGATGCATCGTTCAAGGCT -ACGGAAGATGCATCGTTCTCAACC -ACGGAAGATGCATCGTTCTGTTCC -ACGGAAGATGCATCGTTCATTCCC -ACGGAAGATGCATCGTTCTTCTCG -ACGGAAGATGCATCGTTCTAGACG -ACGGAAGATGCATCGTTCGTAACG -ACGGAAGATGCATCGTTCACTTCG -ACGGAAGATGCATCGTTCTACGCA -ACGGAAGATGCATCGTTCCTTGCA -ACGGAAGATGCATCGTTCCGAACA -ACGGAAGATGCATCGTTCCAGTCA -ACGGAAGATGCATCGTTCGATCCA -ACGGAAGATGCATCGTTCACGACA -ACGGAAGATGCATCGTTCAGCTCA -ACGGAAGATGCATCGTTCTCACGT -ACGGAAGATGCATCGTTCCGTAGT -ACGGAAGATGCATCGTTCGTCAGT -ACGGAAGATGCATCGTTCGAAGGT -ACGGAAGATGCATCGTTCAACCGT -ACGGAAGATGCATCGTTCTTGTGC -ACGGAAGATGCATCGTTCCTAAGC -ACGGAAGATGCATCGTTCACTAGC -ACGGAAGATGCATCGTTCAGATGC -ACGGAAGATGCATCGTTCTGAAGG -ACGGAAGATGCATCGTTCCAATGG -ACGGAAGATGCATCGTTCATGAGG -ACGGAAGATGCATCGTTCAATGGG -ACGGAAGATGCATCGTTCTCCTGA -ACGGAAGATGCATCGTTCTAGCGA -ACGGAAGATGCATCGTTCCACAGA -ACGGAAGATGCATCGTTCGCAAGA -ACGGAAGATGCATCGTTCGGTTGA -ACGGAAGATGCATCGTTCTCCGAT -ACGGAAGATGCATCGTTCTGGCAT -ACGGAAGATGCATCGTTCCGAGAT -ACGGAAGATGCATCGTTCTACCAC -ACGGAAGATGCATCGTTCCAGAAC -ACGGAAGATGCATCGTTCGTCTAC -ACGGAAGATGCATCGTTCACGTAC -ACGGAAGATGCATCGTTCAGTGAC -ACGGAAGATGCATCGTTCCTGTAG -ACGGAAGATGCATCGTTCCCTAAG -ACGGAAGATGCATCGTTCGTTCAG -ACGGAAGATGCATCGTTCGCATAG -ACGGAAGATGCATCGTTCGACAAG -ACGGAAGATGCATCGTTCAAGCAG -ACGGAAGATGCATCGTTCCGTCAA -ACGGAAGATGCATCGTTCGCTGAA -ACGGAAGATGCATCGTTCAGTACG -ACGGAAGATGCATCGTTCATCCGA -ACGGAAGATGCATCGTTCATGGGA -ACGGAAGATGCATCGTTCGTGCAA -ACGGAAGATGCATCGTTCGAGGAA -ACGGAAGATGCATCGTTCCAGGTA -ACGGAAGATGCATCGTTCGACTCT -ACGGAAGATGCATCGTTCAGTCCT -ACGGAAGATGCATCGTTCTAAGCC -ACGGAAGATGCATCGTTCATAGCC -ACGGAAGATGCATCGTTCTAACCG -ACGGAAGATGCATCGTTCATGCCA -ACGGAAGATGCAACGTAGGGAAAC -ACGGAAGATGCAACGTAGAACACC -ACGGAAGATGCAACGTAGATCGAG -ACGGAAGATGCAACGTAGCTCCTT -ACGGAAGATGCAACGTAGCCTGTT -ACGGAAGATGCAACGTAGCGGTTT -ACGGAAGATGCAACGTAGGTGGTT -ACGGAAGATGCAACGTAGGCCTTT -ACGGAAGATGCAACGTAGGGTCTT -ACGGAAGATGCAACGTAGACGCTT -ACGGAAGATGCAACGTAGAGCGTT -ACGGAAGATGCAACGTAGTTCGTC -ACGGAAGATGCAACGTAGTCTCTC -ACGGAAGATGCAACGTAGTGGATC -ACGGAAGATGCAACGTAGCACTTC -ACGGAAGATGCAACGTAGGTACTC -ACGGAAGATGCAACGTAGGATGTC -ACGGAAGATGCAACGTAGACAGTC -ACGGAAGATGCAACGTAGTTGCTG -ACGGAAGATGCAACGTAGTCCATG -ACGGAAGATGCAACGTAGTGTGTG -ACGGAAGATGCAACGTAGCTAGTG -ACGGAAGATGCAACGTAGCATCTG -ACGGAAGATGCAACGTAGGAGTTG -ACGGAAGATGCAACGTAGAGACTG -ACGGAAGATGCAACGTAGTCGGTA -ACGGAAGATGCAACGTAGTGCCTA -ACGGAAGATGCAACGTAGCCACTA -ACGGAAGATGCAACGTAGGGAGTA -ACGGAAGATGCAACGTAGTCGTCT -ACGGAAGATGCAACGTAGTGCACT -ACGGAAGATGCAACGTAGCTGACT -ACGGAAGATGCAACGTAGCAACCT -ACGGAAGATGCAACGTAGGCTACT -ACGGAAGATGCAACGTAGGGATCT -ACGGAAGATGCAACGTAGAAGGCT -ACGGAAGATGCAACGTAGTCAACC -ACGGAAGATGCAACGTAGTGTTCC -ACGGAAGATGCAACGTAGATTCCC -ACGGAAGATGCAACGTAGTTCTCG -ACGGAAGATGCAACGTAGTAGACG -ACGGAAGATGCAACGTAGGTAACG -ACGGAAGATGCAACGTAGACTTCG -ACGGAAGATGCAACGTAGTACGCA -ACGGAAGATGCAACGTAGCTTGCA -ACGGAAGATGCAACGTAGCGAACA -ACGGAAGATGCAACGTAGCAGTCA -ACGGAAGATGCAACGTAGGATCCA -ACGGAAGATGCAACGTAGACGACA -ACGGAAGATGCAACGTAGAGCTCA -ACGGAAGATGCAACGTAGTCACGT -ACGGAAGATGCAACGTAGCGTAGT -ACGGAAGATGCAACGTAGGTCAGT -ACGGAAGATGCAACGTAGGAAGGT -ACGGAAGATGCAACGTAGAACCGT -ACGGAAGATGCAACGTAGTTGTGC -ACGGAAGATGCAACGTAGCTAAGC -ACGGAAGATGCAACGTAGACTAGC -ACGGAAGATGCAACGTAGAGATGC -ACGGAAGATGCAACGTAGTGAAGG -ACGGAAGATGCAACGTAGCAATGG -ACGGAAGATGCAACGTAGATGAGG -ACGGAAGATGCAACGTAGAATGGG -ACGGAAGATGCAACGTAGTCCTGA -ACGGAAGATGCAACGTAGTAGCGA -ACGGAAGATGCAACGTAGCACAGA -ACGGAAGATGCAACGTAGGCAAGA -ACGGAAGATGCAACGTAGGGTTGA -ACGGAAGATGCAACGTAGTCCGAT -ACGGAAGATGCAACGTAGTGGCAT -ACGGAAGATGCAACGTAGCGAGAT -ACGGAAGATGCAACGTAGTACCAC -ACGGAAGATGCAACGTAGCAGAAC -ACGGAAGATGCAACGTAGGTCTAC -ACGGAAGATGCAACGTAGACGTAC -ACGGAAGATGCAACGTAGAGTGAC -ACGGAAGATGCAACGTAGCTGTAG -ACGGAAGATGCAACGTAGCCTAAG -ACGGAAGATGCAACGTAGGTTCAG -ACGGAAGATGCAACGTAGGCATAG -ACGGAAGATGCAACGTAGGACAAG -ACGGAAGATGCAACGTAGAAGCAG -ACGGAAGATGCAACGTAGCGTCAA -ACGGAAGATGCAACGTAGGCTGAA -ACGGAAGATGCAACGTAGAGTACG -ACGGAAGATGCAACGTAGATCCGA -ACGGAAGATGCAACGTAGATGGGA -ACGGAAGATGCAACGTAGGTGCAA -ACGGAAGATGCAACGTAGGAGGAA -ACGGAAGATGCAACGTAGCAGGTA -ACGGAAGATGCAACGTAGGACTCT -ACGGAAGATGCAACGTAGAGTCCT -ACGGAAGATGCAACGTAGTAAGCC -ACGGAAGATGCAACGTAGATAGCC -ACGGAAGATGCAACGTAGTAACCG -ACGGAAGATGCAACGTAGATGCCA -ACGGAAGATGCAACGGTAGGAAAC -ACGGAAGATGCAACGGTAAACACC -ACGGAAGATGCAACGGTAATCGAG -ACGGAAGATGCAACGGTACTCCTT -ACGGAAGATGCAACGGTACCTGTT -ACGGAAGATGCAACGGTACGGTTT -ACGGAAGATGCAACGGTAGTGGTT -ACGGAAGATGCAACGGTAGCCTTT -ACGGAAGATGCAACGGTAGGTCTT -ACGGAAGATGCAACGGTAACGCTT -ACGGAAGATGCAACGGTAAGCGTT -ACGGAAGATGCAACGGTATTCGTC -ACGGAAGATGCAACGGTATCTCTC -ACGGAAGATGCAACGGTATGGATC -ACGGAAGATGCAACGGTACACTTC -ACGGAAGATGCAACGGTAGTACTC -ACGGAAGATGCAACGGTAGATGTC -ACGGAAGATGCAACGGTAACAGTC -ACGGAAGATGCAACGGTATTGCTG -ACGGAAGATGCAACGGTATCCATG -ACGGAAGATGCAACGGTATGTGTG -ACGGAAGATGCAACGGTACTAGTG -ACGGAAGATGCAACGGTACATCTG -ACGGAAGATGCAACGGTAGAGTTG -ACGGAAGATGCAACGGTAAGACTG -ACGGAAGATGCAACGGTATCGGTA -ACGGAAGATGCAACGGTATGCCTA -ACGGAAGATGCAACGGTACCACTA -ACGGAAGATGCAACGGTAGGAGTA -ACGGAAGATGCAACGGTATCGTCT -ACGGAAGATGCAACGGTATGCACT -ACGGAAGATGCAACGGTACTGACT -ACGGAAGATGCAACGGTACAACCT -ACGGAAGATGCAACGGTAGCTACT -ACGGAAGATGCAACGGTAGGATCT -ACGGAAGATGCAACGGTAAAGGCT -ACGGAAGATGCAACGGTATCAACC -ACGGAAGATGCAACGGTATGTTCC -ACGGAAGATGCAACGGTAATTCCC -ACGGAAGATGCAACGGTATTCTCG -ACGGAAGATGCAACGGTATAGACG -ACGGAAGATGCAACGGTAGTAACG -ACGGAAGATGCAACGGTAACTTCG -ACGGAAGATGCAACGGTATACGCA -ACGGAAGATGCAACGGTACTTGCA -ACGGAAGATGCAACGGTACGAACA -ACGGAAGATGCAACGGTACAGTCA -ACGGAAGATGCAACGGTAGATCCA -ACGGAAGATGCAACGGTAACGACA -ACGGAAGATGCAACGGTAAGCTCA -ACGGAAGATGCAACGGTATCACGT -ACGGAAGATGCAACGGTACGTAGT -ACGGAAGATGCAACGGTAGTCAGT -ACGGAAGATGCAACGGTAGAAGGT -ACGGAAGATGCAACGGTAAACCGT -ACGGAAGATGCAACGGTATTGTGC -ACGGAAGATGCAACGGTACTAAGC -ACGGAAGATGCAACGGTAACTAGC -ACGGAAGATGCAACGGTAAGATGC -ACGGAAGATGCAACGGTATGAAGG -ACGGAAGATGCAACGGTACAATGG -ACGGAAGATGCAACGGTAATGAGG -ACGGAAGATGCAACGGTAAATGGG -ACGGAAGATGCAACGGTATCCTGA -ACGGAAGATGCAACGGTATAGCGA -ACGGAAGATGCAACGGTACACAGA -ACGGAAGATGCAACGGTAGCAAGA -ACGGAAGATGCAACGGTAGGTTGA -ACGGAAGATGCAACGGTATCCGAT -ACGGAAGATGCAACGGTATGGCAT -ACGGAAGATGCAACGGTACGAGAT -ACGGAAGATGCAACGGTATACCAC -ACGGAAGATGCAACGGTACAGAAC -ACGGAAGATGCAACGGTAGTCTAC -ACGGAAGATGCAACGGTAACGTAC -ACGGAAGATGCAACGGTAAGTGAC -ACGGAAGATGCAACGGTACTGTAG -ACGGAAGATGCAACGGTACCTAAG -ACGGAAGATGCAACGGTAGTTCAG -ACGGAAGATGCAACGGTAGCATAG -ACGGAAGATGCAACGGTAGACAAG -ACGGAAGATGCAACGGTAAAGCAG -ACGGAAGATGCAACGGTACGTCAA -ACGGAAGATGCAACGGTAGCTGAA -ACGGAAGATGCAACGGTAAGTACG -ACGGAAGATGCAACGGTAATCCGA -ACGGAAGATGCAACGGTAATGGGA -ACGGAAGATGCAACGGTAGTGCAA -ACGGAAGATGCAACGGTAGAGGAA -ACGGAAGATGCAACGGTACAGGTA -ACGGAAGATGCAACGGTAGACTCT -ACGGAAGATGCAACGGTAAGTCCT -ACGGAAGATGCAACGGTATAAGCC -ACGGAAGATGCAACGGTAATAGCC -ACGGAAGATGCAACGGTATAACCG -ACGGAAGATGCAACGGTAATGCCA -ACGGAAGATGCATCGACTGGAAAC -ACGGAAGATGCATCGACTAACACC -ACGGAAGATGCATCGACTATCGAG -ACGGAAGATGCATCGACTCTCCTT -ACGGAAGATGCATCGACTCCTGTT -ACGGAAGATGCATCGACTCGGTTT -ACGGAAGATGCATCGACTGTGGTT -ACGGAAGATGCATCGACTGCCTTT -ACGGAAGATGCATCGACTGGTCTT -ACGGAAGATGCATCGACTACGCTT -ACGGAAGATGCATCGACTAGCGTT -ACGGAAGATGCATCGACTTTCGTC -ACGGAAGATGCATCGACTTCTCTC -ACGGAAGATGCATCGACTTGGATC -ACGGAAGATGCATCGACTCACTTC -ACGGAAGATGCATCGACTGTACTC -ACGGAAGATGCATCGACTGATGTC -ACGGAAGATGCATCGACTACAGTC -ACGGAAGATGCATCGACTTTGCTG -ACGGAAGATGCATCGACTTCCATG -ACGGAAGATGCATCGACTTGTGTG -ACGGAAGATGCATCGACTCTAGTG -ACGGAAGATGCATCGACTCATCTG -ACGGAAGATGCATCGACTGAGTTG -ACGGAAGATGCATCGACTAGACTG -ACGGAAGATGCATCGACTTCGGTA -ACGGAAGATGCATCGACTTGCCTA -ACGGAAGATGCATCGACTCCACTA -ACGGAAGATGCATCGACTGGAGTA -ACGGAAGATGCATCGACTTCGTCT -ACGGAAGATGCATCGACTTGCACT -ACGGAAGATGCATCGACTCTGACT -ACGGAAGATGCATCGACTCAACCT -ACGGAAGATGCATCGACTGCTACT -ACGGAAGATGCATCGACTGGATCT -ACGGAAGATGCATCGACTAAGGCT -ACGGAAGATGCATCGACTTCAACC -ACGGAAGATGCATCGACTTGTTCC -ACGGAAGATGCATCGACTATTCCC -ACGGAAGATGCATCGACTTTCTCG -ACGGAAGATGCATCGACTTAGACG -ACGGAAGATGCATCGACTGTAACG -ACGGAAGATGCATCGACTACTTCG -ACGGAAGATGCATCGACTTACGCA -ACGGAAGATGCATCGACTCTTGCA -ACGGAAGATGCATCGACTCGAACA -ACGGAAGATGCATCGACTCAGTCA -ACGGAAGATGCATCGACTGATCCA -ACGGAAGATGCATCGACTACGACA -ACGGAAGATGCATCGACTAGCTCA -ACGGAAGATGCATCGACTTCACGT -ACGGAAGATGCATCGACTCGTAGT -ACGGAAGATGCATCGACTGTCAGT -ACGGAAGATGCATCGACTGAAGGT -ACGGAAGATGCATCGACTAACCGT -ACGGAAGATGCATCGACTTTGTGC -ACGGAAGATGCATCGACTCTAAGC -ACGGAAGATGCATCGACTACTAGC -ACGGAAGATGCATCGACTAGATGC -ACGGAAGATGCATCGACTTGAAGG -ACGGAAGATGCATCGACTCAATGG -ACGGAAGATGCATCGACTATGAGG -ACGGAAGATGCATCGACTAATGGG -ACGGAAGATGCATCGACTTCCTGA -ACGGAAGATGCATCGACTTAGCGA -ACGGAAGATGCATCGACTCACAGA -ACGGAAGATGCATCGACTGCAAGA -ACGGAAGATGCATCGACTGGTTGA -ACGGAAGATGCATCGACTTCCGAT -ACGGAAGATGCATCGACTTGGCAT -ACGGAAGATGCATCGACTCGAGAT -ACGGAAGATGCATCGACTTACCAC -ACGGAAGATGCATCGACTCAGAAC -ACGGAAGATGCATCGACTGTCTAC -ACGGAAGATGCATCGACTACGTAC -ACGGAAGATGCATCGACTAGTGAC -ACGGAAGATGCATCGACTCTGTAG -ACGGAAGATGCATCGACTCCTAAG -ACGGAAGATGCATCGACTGTTCAG -ACGGAAGATGCATCGACTGCATAG -ACGGAAGATGCATCGACTGACAAG -ACGGAAGATGCATCGACTAAGCAG -ACGGAAGATGCATCGACTCGTCAA -ACGGAAGATGCATCGACTGCTGAA -ACGGAAGATGCATCGACTAGTACG -ACGGAAGATGCATCGACTATCCGA -ACGGAAGATGCATCGACTATGGGA -ACGGAAGATGCATCGACTGTGCAA -ACGGAAGATGCATCGACTGAGGAA -ACGGAAGATGCATCGACTCAGGTA -ACGGAAGATGCATCGACTGACTCT -ACGGAAGATGCATCGACTAGTCCT -ACGGAAGATGCATCGACTTAAGCC -ACGGAAGATGCATCGACTATAGCC -ACGGAAGATGCATCGACTTAACCG -ACGGAAGATGCATCGACTATGCCA -ACGGAAGATGCAGCATACGGAAAC -ACGGAAGATGCAGCATACAACACC -ACGGAAGATGCAGCATACATCGAG -ACGGAAGATGCAGCATACCTCCTT -ACGGAAGATGCAGCATACCCTGTT -ACGGAAGATGCAGCATACCGGTTT -ACGGAAGATGCAGCATACGTGGTT -ACGGAAGATGCAGCATACGCCTTT -ACGGAAGATGCAGCATACGGTCTT -ACGGAAGATGCAGCATACACGCTT -ACGGAAGATGCAGCATACAGCGTT -ACGGAAGATGCAGCATACTTCGTC -ACGGAAGATGCAGCATACTCTCTC -ACGGAAGATGCAGCATACTGGATC -ACGGAAGATGCAGCATACCACTTC -ACGGAAGATGCAGCATACGTACTC -ACGGAAGATGCAGCATACGATGTC -ACGGAAGATGCAGCATACACAGTC -ACGGAAGATGCAGCATACTTGCTG -ACGGAAGATGCAGCATACTCCATG -ACGGAAGATGCAGCATACTGTGTG -ACGGAAGATGCAGCATACCTAGTG -ACGGAAGATGCAGCATACCATCTG -ACGGAAGATGCAGCATACGAGTTG -ACGGAAGATGCAGCATACAGACTG -ACGGAAGATGCAGCATACTCGGTA -ACGGAAGATGCAGCATACTGCCTA -ACGGAAGATGCAGCATACCCACTA -ACGGAAGATGCAGCATACGGAGTA -ACGGAAGATGCAGCATACTCGTCT -ACGGAAGATGCAGCATACTGCACT -ACGGAAGATGCAGCATACCTGACT -ACGGAAGATGCAGCATACCAACCT -ACGGAAGATGCAGCATACGCTACT -ACGGAAGATGCAGCATACGGATCT -ACGGAAGATGCAGCATACAAGGCT -ACGGAAGATGCAGCATACTCAACC -ACGGAAGATGCAGCATACTGTTCC -ACGGAAGATGCAGCATACATTCCC -ACGGAAGATGCAGCATACTTCTCG -ACGGAAGATGCAGCATACTAGACG -ACGGAAGATGCAGCATACGTAACG -ACGGAAGATGCAGCATACACTTCG -ACGGAAGATGCAGCATACTACGCA -ACGGAAGATGCAGCATACCTTGCA -ACGGAAGATGCAGCATACCGAACA -ACGGAAGATGCAGCATACCAGTCA -ACGGAAGATGCAGCATACGATCCA -ACGGAAGATGCAGCATACACGACA -ACGGAAGATGCAGCATACAGCTCA -ACGGAAGATGCAGCATACTCACGT -ACGGAAGATGCAGCATACCGTAGT -ACGGAAGATGCAGCATACGTCAGT -ACGGAAGATGCAGCATACGAAGGT -ACGGAAGATGCAGCATACAACCGT -ACGGAAGATGCAGCATACTTGTGC -ACGGAAGATGCAGCATACCTAAGC -ACGGAAGATGCAGCATACACTAGC -ACGGAAGATGCAGCATACAGATGC -ACGGAAGATGCAGCATACTGAAGG -ACGGAAGATGCAGCATACCAATGG -ACGGAAGATGCAGCATACATGAGG -ACGGAAGATGCAGCATACAATGGG -ACGGAAGATGCAGCATACTCCTGA -ACGGAAGATGCAGCATACTAGCGA -ACGGAAGATGCAGCATACCACAGA -ACGGAAGATGCAGCATACGCAAGA -ACGGAAGATGCAGCATACGGTTGA -ACGGAAGATGCAGCATACTCCGAT -ACGGAAGATGCAGCATACTGGCAT -ACGGAAGATGCAGCATACCGAGAT -ACGGAAGATGCAGCATACTACCAC -ACGGAAGATGCAGCATACCAGAAC -ACGGAAGATGCAGCATACGTCTAC -ACGGAAGATGCAGCATACACGTAC -ACGGAAGATGCAGCATACAGTGAC -ACGGAAGATGCAGCATACCTGTAG -ACGGAAGATGCAGCATACCCTAAG -ACGGAAGATGCAGCATACGTTCAG -ACGGAAGATGCAGCATACGCATAG -ACGGAAGATGCAGCATACGACAAG -ACGGAAGATGCAGCATACAAGCAG -ACGGAAGATGCAGCATACCGTCAA -ACGGAAGATGCAGCATACGCTGAA -ACGGAAGATGCAGCATACAGTACG -ACGGAAGATGCAGCATACATCCGA -ACGGAAGATGCAGCATACATGGGA -ACGGAAGATGCAGCATACGTGCAA -ACGGAAGATGCAGCATACGAGGAA -ACGGAAGATGCAGCATACCAGGTA -ACGGAAGATGCAGCATACGACTCT -ACGGAAGATGCAGCATACAGTCCT -ACGGAAGATGCAGCATACTAAGCC -ACGGAAGATGCAGCATACATAGCC -ACGGAAGATGCAGCATACTAACCG -ACGGAAGATGCAGCATACATGCCA -ACGGAAGATGCAGCACTTGGAAAC -ACGGAAGATGCAGCACTTAACACC -ACGGAAGATGCAGCACTTATCGAG -ACGGAAGATGCAGCACTTCTCCTT -ACGGAAGATGCAGCACTTCCTGTT -ACGGAAGATGCAGCACTTCGGTTT -ACGGAAGATGCAGCACTTGTGGTT -ACGGAAGATGCAGCACTTGCCTTT -ACGGAAGATGCAGCACTTGGTCTT -ACGGAAGATGCAGCACTTACGCTT -ACGGAAGATGCAGCACTTAGCGTT -ACGGAAGATGCAGCACTTTTCGTC -ACGGAAGATGCAGCACTTTCTCTC -ACGGAAGATGCAGCACTTTGGATC -ACGGAAGATGCAGCACTTCACTTC -ACGGAAGATGCAGCACTTGTACTC -ACGGAAGATGCAGCACTTGATGTC -ACGGAAGATGCAGCACTTACAGTC -ACGGAAGATGCAGCACTTTTGCTG -ACGGAAGATGCAGCACTTTCCATG -ACGGAAGATGCAGCACTTTGTGTG -ACGGAAGATGCAGCACTTCTAGTG -ACGGAAGATGCAGCACTTCATCTG -ACGGAAGATGCAGCACTTGAGTTG -ACGGAAGATGCAGCACTTAGACTG -ACGGAAGATGCAGCACTTTCGGTA -ACGGAAGATGCAGCACTTTGCCTA -ACGGAAGATGCAGCACTTCCACTA -ACGGAAGATGCAGCACTTGGAGTA -ACGGAAGATGCAGCACTTTCGTCT -ACGGAAGATGCAGCACTTTGCACT -ACGGAAGATGCAGCACTTCTGACT -ACGGAAGATGCAGCACTTCAACCT -ACGGAAGATGCAGCACTTGCTACT -ACGGAAGATGCAGCACTTGGATCT -ACGGAAGATGCAGCACTTAAGGCT -ACGGAAGATGCAGCACTTTCAACC -ACGGAAGATGCAGCACTTTGTTCC -ACGGAAGATGCAGCACTTATTCCC -ACGGAAGATGCAGCACTTTTCTCG -ACGGAAGATGCAGCACTTTAGACG -ACGGAAGATGCAGCACTTGTAACG -ACGGAAGATGCAGCACTTACTTCG -ACGGAAGATGCAGCACTTTACGCA -ACGGAAGATGCAGCACTTCTTGCA -ACGGAAGATGCAGCACTTCGAACA -ACGGAAGATGCAGCACTTCAGTCA -ACGGAAGATGCAGCACTTGATCCA -ACGGAAGATGCAGCACTTACGACA -ACGGAAGATGCAGCACTTAGCTCA -ACGGAAGATGCAGCACTTTCACGT -ACGGAAGATGCAGCACTTCGTAGT -ACGGAAGATGCAGCACTTGTCAGT -ACGGAAGATGCAGCACTTGAAGGT -ACGGAAGATGCAGCACTTAACCGT -ACGGAAGATGCAGCACTTTTGTGC -ACGGAAGATGCAGCACTTCTAAGC -ACGGAAGATGCAGCACTTACTAGC -ACGGAAGATGCAGCACTTAGATGC -ACGGAAGATGCAGCACTTTGAAGG -ACGGAAGATGCAGCACTTCAATGG -ACGGAAGATGCAGCACTTATGAGG -ACGGAAGATGCAGCACTTAATGGG -ACGGAAGATGCAGCACTTTCCTGA -ACGGAAGATGCAGCACTTTAGCGA -ACGGAAGATGCAGCACTTCACAGA -ACGGAAGATGCAGCACTTGCAAGA -ACGGAAGATGCAGCACTTGGTTGA -ACGGAAGATGCAGCACTTTCCGAT -ACGGAAGATGCAGCACTTTGGCAT -ACGGAAGATGCAGCACTTCGAGAT -ACGGAAGATGCAGCACTTTACCAC -ACGGAAGATGCAGCACTTCAGAAC -ACGGAAGATGCAGCACTTGTCTAC -ACGGAAGATGCAGCACTTACGTAC -ACGGAAGATGCAGCACTTAGTGAC -ACGGAAGATGCAGCACTTCTGTAG -ACGGAAGATGCAGCACTTCCTAAG -ACGGAAGATGCAGCACTTGTTCAG -ACGGAAGATGCAGCACTTGCATAG -ACGGAAGATGCAGCACTTGACAAG -ACGGAAGATGCAGCACTTAAGCAG -ACGGAAGATGCAGCACTTCGTCAA -ACGGAAGATGCAGCACTTGCTGAA -ACGGAAGATGCAGCACTTAGTACG -ACGGAAGATGCAGCACTTATCCGA -ACGGAAGATGCAGCACTTATGGGA -ACGGAAGATGCAGCACTTGTGCAA -ACGGAAGATGCAGCACTTGAGGAA -ACGGAAGATGCAGCACTTCAGGTA -ACGGAAGATGCAGCACTTGACTCT -ACGGAAGATGCAGCACTTAGTCCT -ACGGAAGATGCAGCACTTTAAGCC -ACGGAAGATGCAGCACTTATAGCC -ACGGAAGATGCAGCACTTTAACCG -ACGGAAGATGCAGCACTTATGCCA -ACGGAAGATGCAACACGAGGAAAC -ACGGAAGATGCAACACGAAACACC -ACGGAAGATGCAACACGAATCGAG -ACGGAAGATGCAACACGACTCCTT -ACGGAAGATGCAACACGACCTGTT -ACGGAAGATGCAACACGACGGTTT -ACGGAAGATGCAACACGAGTGGTT -ACGGAAGATGCAACACGAGCCTTT -ACGGAAGATGCAACACGAGGTCTT -ACGGAAGATGCAACACGAACGCTT -ACGGAAGATGCAACACGAAGCGTT -ACGGAAGATGCAACACGATTCGTC -ACGGAAGATGCAACACGATCTCTC -ACGGAAGATGCAACACGATGGATC -ACGGAAGATGCAACACGACACTTC -ACGGAAGATGCAACACGAGTACTC -ACGGAAGATGCAACACGAGATGTC -ACGGAAGATGCAACACGAACAGTC -ACGGAAGATGCAACACGATTGCTG -ACGGAAGATGCAACACGATCCATG -ACGGAAGATGCAACACGATGTGTG -ACGGAAGATGCAACACGACTAGTG -ACGGAAGATGCAACACGACATCTG -ACGGAAGATGCAACACGAGAGTTG -ACGGAAGATGCAACACGAAGACTG -ACGGAAGATGCAACACGATCGGTA -ACGGAAGATGCAACACGATGCCTA -ACGGAAGATGCAACACGACCACTA -ACGGAAGATGCAACACGAGGAGTA -ACGGAAGATGCAACACGATCGTCT -ACGGAAGATGCAACACGATGCACT -ACGGAAGATGCAACACGACTGACT -ACGGAAGATGCAACACGACAACCT -ACGGAAGATGCAACACGAGCTACT -ACGGAAGATGCAACACGAGGATCT -ACGGAAGATGCAACACGAAAGGCT -ACGGAAGATGCAACACGATCAACC -ACGGAAGATGCAACACGATGTTCC -ACGGAAGATGCAACACGAATTCCC -ACGGAAGATGCAACACGATTCTCG -ACGGAAGATGCAACACGATAGACG -ACGGAAGATGCAACACGAGTAACG -ACGGAAGATGCAACACGAACTTCG -ACGGAAGATGCAACACGATACGCA -ACGGAAGATGCAACACGACTTGCA -ACGGAAGATGCAACACGACGAACA -ACGGAAGATGCAACACGACAGTCA -ACGGAAGATGCAACACGAGATCCA -ACGGAAGATGCAACACGAACGACA -ACGGAAGATGCAACACGAAGCTCA -ACGGAAGATGCAACACGATCACGT -ACGGAAGATGCAACACGACGTAGT -ACGGAAGATGCAACACGAGTCAGT -ACGGAAGATGCAACACGAGAAGGT -ACGGAAGATGCAACACGAAACCGT -ACGGAAGATGCAACACGATTGTGC -ACGGAAGATGCAACACGACTAAGC -ACGGAAGATGCAACACGAACTAGC -ACGGAAGATGCAACACGAAGATGC -ACGGAAGATGCAACACGATGAAGG -ACGGAAGATGCAACACGACAATGG -ACGGAAGATGCAACACGAATGAGG -ACGGAAGATGCAACACGAAATGGG -ACGGAAGATGCAACACGATCCTGA -ACGGAAGATGCAACACGATAGCGA -ACGGAAGATGCAACACGACACAGA -ACGGAAGATGCAACACGAGCAAGA -ACGGAAGATGCAACACGAGGTTGA -ACGGAAGATGCAACACGATCCGAT -ACGGAAGATGCAACACGATGGCAT -ACGGAAGATGCAACACGACGAGAT -ACGGAAGATGCAACACGATACCAC -ACGGAAGATGCAACACGACAGAAC -ACGGAAGATGCAACACGAGTCTAC -ACGGAAGATGCAACACGAACGTAC -ACGGAAGATGCAACACGAAGTGAC -ACGGAAGATGCAACACGACTGTAG -ACGGAAGATGCAACACGACCTAAG -ACGGAAGATGCAACACGAGTTCAG -ACGGAAGATGCAACACGAGCATAG -ACGGAAGATGCAACACGAGACAAG -ACGGAAGATGCAACACGAAAGCAG -ACGGAAGATGCAACACGACGTCAA -ACGGAAGATGCAACACGAGCTGAA -ACGGAAGATGCAACACGAAGTACG -ACGGAAGATGCAACACGAATCCGA -ACGGAAGATGCAACACGAATGGGA -ACGGAAGATGCAACACGAGTGCAA -ACGGAAGATGCAACACGAGAGGAA -ACGGAAGATGCAACACGACAGGTA -ACGGAAGATGCAACACGAGACTCT -ACGGAAGATGCAACACGAAGTCCT -ACGGAAGATGCAACACGATAAGCC -ACGGAAGATGCAACACGAATAGCC -ACGGAAGATGCAACACGATAACCG -ACGGAAGATGCAACACGAATGCCA -ACGGAAGATGCATCACAGGGAAAC -ACGGAAGATGCATCACAGAACACC -ACGGAAGATGCATCACAGATCGAG -ACGGAAGATGCATCACAGCTCCTT -ACGGAAGATGCATCACAGCCTGTT -ACGGAAGATGCATCACAGCGGTTT -ACGGAAGATGCATCACAGGTGGTT -ACGGAAGATGCATCACAGGCCTTT -ACGGAAGATGCATCACAGGGTCTT -ACGGAAGATGCATCACAGACGCTT -ACGGAAGATGCATCACAGAGCGTT -ACGGAAGATGCATCACAGTTCGTC -ACGGAAGATGCATCACAGTCTCTC -ACGGAAGATGCATCACAGTGGATC -ACGGAAGATGCATCACAGCACTTC -ACGGAAGATGCATCACAGGTACTC -ACGGAAGATGCATCACAGGATGTC -ACGGAAGATGCATCACAGACAGTC -ACGGAAGATGCATCACAGTTGCTG -ACGGAAGATGCATCACAGTCCATG -ACGGAAGATGCATCACAGTGTGTG -ACGGAAGATGCATCACAGCTAGTG -ACGGAAGATGCATCACAGCATCTG -ACGGAAGATGCATCACAGGAGTTG -ACGGAAGATGCATCACAGAGACTG -ACGGAAGATGCATCACAGTCGGTA -ACGGAAGATGCATCACAGTGCCTA -ACGGAAGATGCATCACAGCCACTA -ACGGAAGATGCATCACAGGGAGTA -ACGGAAGATGCATCACAGTCGTCT -ACGGAAGATGCATCACAGTGCACT -ACGGAAGATGCATCACAGCTGACT -ACGGAAGATGCATCACAGCAACCT -ACGGAAGATGCATCACAGGCTACT -ACGGAAGATGCATCACAGGGATCT -ACGGAAGATGCATCACAGAAGGCT -ACGGAAGATGCATCACAGTCAACC -ACGGAAGATGCATCACAGTGTTCC -ACGGAAGATGCATCACAGATTCCC -ACGGAAGATGCATCACAGTTCTCG -ACGGAAGATGCATCACAGTAGACG -ACGGAAGATGCATCACAGGTAACG -ACGGAAGATGCATCACAGACTTCG -ACGGAAGATGCATCACAGTACGCA -ACGGAAGATGCATCACAGCTTGCA -ACGGAAGATGCATCACAGCGAACA -ACGGAAGATGCATCACAGCAGTCA -ACGGAAGATGCATCACAGGATCCA -ACGGAAGATGCATCACAGACGACA -ACGGAAGATGCATCACAGAGCTCA -ACGGAAGATGCATCACAGTCACGT -ACGGAAGATGCATCACAGCGTAGT -ACGGAAGATGCATCACAGGTCAGT -ACGGAAGATGCATCACAGGAAGGT -ACGGAAGATGCATCACAGAACCGT -ACGGAAGATGCATCACAGTTGTGC -ACGGAAGATGCATCACAGCTAAGC -ACGGAAGATGCATCACAGACTAGC -ACGGAAGATGCATCACAGAGATGC -ACGGAAGATGCATCACAGTGAAGG -ACGGAAGATGCATCACAGCAATGG -ACGGAAGATGCATCACAGATGAGG -ACGGAAGATGCATCACAGAATGGG -ACGGAAGATGCATCACAGTCCTGA -ACGGAAGATGCATCACAGTAGCGA -ACGGAAGATGCATCACAGCACAGA -ACGGAAGATGCATCACAGGCAAGA -ACGGAAGATGCATCACAGGGTTGA -ACGGAAGATGCATCACAGTCCGAT -ACGGAAGATGCATCACAGTGGCAT -ACGGAAGATGCATCACAGCGAGAT -ACGGAAGATGCATCACAGTACCAC -ACGGAAGATGCATCACAGCAGAAC -ACGGAAGATGCATCACAGGTCTAC -ACGGAAGATGCATCACAGACGTAC -ACGGAAGATGCATCACAGAGTGAC -ACGGAAGATGCATCACAGCTGTAG -ACGGAAGATGCATCACAGCCTAAG -ACGGAAGATGCATCACAGGTTCAG -ACGGAAGATGCATCACAGGCATAG -ACGGAAGATGCATCACAGGACAAG -ACGGAAGATGCATCACAGAAGCAG -ACGGAAGATGCATCACAGCGTCAA -ACGGAAGATGCATCACAGGCTGAA -ACGGAAGATGCATCACAGAGTACG -ACGGAAGATGCATCACAGATCCGA -ACGGAAGATGCATCACAGATGGGA -ACGGAAGATGCATCACAGGTGCAA -ACGGAAGATGCATCACAGGAGGAA -ACGGAAGATGCATCACAGCAGGTA -ACGGAAGATGCATCACAGGACTCT -ACGGAAGATGCATCACAGAGTCCT -ACGGAAGATGCATCACAGTAAGCC -ACGGAAGATGCATCACAGATAGCC -ACGGAAGATGCATCACAGTAACCG -ACGGAAGATGCATCACAGATGCCA -ACGGAAGATGCACCAGATGGAAAC -ACGGAAGATGCACCAGATAACACC -ACGGAAGATGCACCAGATATCGAG -ACGGAAGATGCACCAGATCTCCTT -ACGGAAGATGCACCAGATCCTGTT -ACGGAAGATGCACCAGATCGGTTT -ACGGAAGATGCACCAGATGTGGTT -ACGGAAGATGCACCAGATGCCTTT -ACGGAAGATGCACCAGATGGTCTT -ACGGAAGATGCACCAGATACGCTT -ACGGAAGATGCACCAGATAGCGTT -ACGGAAGATGCACCAGATTTCGTC -ACGGAAGATGCACCAGATTCTCTC -ACGGAAGATGCACCAGATTGGATC -ACGGAAGATGCACCAGATCACTTC -ACGGAAGATGCACCAGATGTACTC -ACGGAAGATGCACCAGATGATGTC -ACGGAAGATGCACCAGATACAGTC -ACGGAAGATGCACCAGATTTGCTG -ACGGAAGATGCACCAGATTCCATG -ACGGAAGATGCACCAGATTGTGTG -ACGGAAGATGCACCAGATCTAGTG -ACGGAAGATGCACCAGATCATCTG -ACGGAAGATGCACCAGATGAGTTG -ACGGAAGATGCACCAGATAGACTG -ACGGAAGATGCACCAGATTCGGTA -ACGGAAGATGCACCAGATTGCCTA -ACGGAAGATGCACCAGATCCACTA -ACGGAAGATGCACCAGATGGAGTA -ACGGAAGATGCACCAGATTCGTCT -ACGGAAGATGCACCAGATTGCACT -ACGGAAGATGCACCAGATCTGACT -ACGGAAGATGCACCAGATCAACCT -ACGGAAGATGCACCAGATGCTACT -ACGGAAGATGCACCAGATGGATCT -ACGGAAGATGCACCAGATAAGGCT -ACGGAAGATGCACCAGATTCAACC -ACGGAAGATGCACCAGATTGTTCC -ACGGAAGATGCACCAGATATTCCC -ACGGAAGATGCACCAGATTTCTCG -ACGGAAGATGCACCAGATTAGACG -ACGGAAGATGCACCAGATGTAACG -ACGGAAGATGCACCAGATACTTCG -ACGGAAGATGCACCAGATTACGCA -ACGGAAGATGCACCAGATCTTGCA -ACGGAAGATGCACCAGATCGAACA -ACGGAAGATGCACCAGATCAGTCA -ACGGAAGATGCACCAGATGATCCA -ACGGAAGATGCACCAGATACGACA -ACGGAAGATGCACCAGATAGCTCA -ACGGAAGATGCACCAGATTCACGT -ACGGAAGATGCACCAGATCGTAGT -ACGGAAGATGCACCAGATGTCAGT -ACGGAAGATGCACCAGATGAAGGT -ACGGAAGATGCACCAGATAACCGT -ACGGAAGATGCACCAGATTTGTGC -ACGGAAGATGCACCAGATCTAAGC -ACGGAAGATGCACCAGATACTAGC -ACGGAAGATGCACCAGATAGATGC -ACGGAAGATGCACCAGATTGAAGG -ACGGAAGATGCACCAGATCAATGG -ACGGAAGATGCACCAGATATGAGG -ACGGAAGATGCACCAGATAATGGG -ACGGAAGATGCACCAGATTCCTGA -ACGGAAGATGCACCAGATTAGCGA -ACGGAAGATGCACCAGATCACAGA -ACGGAAGATGCACCAGATGCAAGA -ACGGAAGATGCACCAGATGGTTGA -ACGGAAGATGCACCAGATTCCGAT -ACGGAAGATGCACCAGATTGGCAT -ACGGAAGATGCACCAGATCGAGAT -ACGGAAGATGCACCAGATTACCAC -ACGGAAGATGCACCAGATCAGAAC -ACGGAAGATGCACCAGATGTCTAC -ACGGAAGATGCACCAGATACGTAC -ACGGAAGATGCACCAGATAGTGAC -ACGGAAGATGCACCAGATCTGTAG -ACGGAAGATGCACCAGATCCTAAG -ACGGAAGATGCACCAGATGTTCAG -ACGGAAGATGCACCAGATGCATAG -ACGGAAGATGCACCAGATGACAAG -ACGGAAGATGCACCAGATAAGCAG -ACGGAAGATGCACCAGATCGTCAA -ACGGAAGATGCACCAGATGCTGAA -ACGGAAGATGCACCAGATAGTACG -ACGGAAGATGCACCAGATATCCGA -ACGGAAGATGCACCAGATATGGGA -ACGGAAGATGCACCAGATGTGCAA -ACGGAAGATGCACCAGATGAGGAA -ACGGAAGATGCACCAGATCAGGTA -ACGGAAGATGCACCAGATGACTCT -ACGGAAGATGCACCAGATAGTCCT -ACGGAAGATGCACCAGATTAAGCC -ACGGAAGATGCACCAGATATAGCC -ACGGAAGATGCACCAGATTAACCG -ACGGAAGATGCACCAGATATGCCA -ACGGAAGATGCAACAACGGGAAAC -ACGGAAGATGCAACAACGAACACC -ACGGAAGATGCAACAACGATCGAG -ACGGAAGATGCAACAACGCTCCTT -ACGGAAGATGCAACAACGCCTGTT -ACGGAAGATGCAACAACGCGGTTT -ACGGAAGATGCAACAACGGTGGTT -ACGGAAGATGCAACAACGGCCTTT -ACGGAAGATGCAACAACGGGTCTT -ACGGAAGATGCAACAACGACGCTT -ACGGAAGATGCAACAACGAGCGTT -ACGGAAGATGCAACAACGTTCGTC -ACGGAAGATGCAACAACGTCTCTC -ACGGAAGATGCAACAACGTGGATC -ACGGAAGATGCAACAACGCACTTC -ACGGAAGATGCAACAACGGTACTC -ACGGAAGATGCAACAACGGATGTC -ACGGAAGATGCAACAACGACAGTC -ACGGAAGATGCAACAACGTTGCTG -ACGGAAGATGCAACAACGTCCATG -ACGGAAGATGCAACAACGTGTGTG -ACGGAAGATGCAACAACGCTAGTG -ACGGAAGATGCAACAACGCATCTG -ACGGAAGATGCAACAACGGAGTTG -ACGGAAGATGCAACAACGAGACTG -ACGGAAGATGCAACAACGTCGGTA -ACGGAAGATGCAACAACGTGCCTA -ACGGAAGATGCAACAACGCCACTA -ACGGAAGATGCAACAACGGGAGTA -ACGGAAGATGCAACAACGTCGTCT -ACGGAAGATGCAACAACGTGCACT -ACGGAAGATGCAACAACGCTGACT -ACGGAAGATGCAACAACGCAACCT -ACGGAAGATGCAACAACGGCTACT -ACGGAAGATGCAACAACGGGATCT -ACGGAAGATGCAACAACGAAGGCT -ACGGAAGATGCAACAACGTCAACC -ACGGAAGATGCAACAACGTGTTCC -ACGGAAGATGCAACAACGATTCCC -ACGGAAGATGCAACAACGTTCTCG -ACGGAAGATGCAACAACGTAGACG -ACGGAAGATGCAACAACGGTAACG -ACGGAAGATGCAACAACGACTTCG -ACGGAAGATGCAACAACGTACGCA -ACGGAAGATGCAACAACGCTTGCA -ACGGAAGATGCAACAACGCGAACA -ACGGAAGATGCAACAACGCAGTCA -ACGGAAGATGCAACAACGGATCCA -ACGGAAGATGCAACAACGACGACA -ACGGAAGATGCAACAACGAGCTCA -ACGGAAGATGCAACAACGTCACGT -ACGGAAGATGCAACAACGCGTAGT -ACGGAAGATGCAACAACGGTCAGT -ACGGAAGATGCAACAACGGAAGGT -ACGGAAGATGCAACAACGAACCGT -ACGGAAGATGCAACAACGTTGTGC -ACGGAAGATGCAACAACGCTAAGC -ACGGAAGATGCAACAACGACTAGC -ACGGAAGATGCAACAACGAGATGC -ACGGAAGATGCAACAACGTGAAGG -ACGGAAGATGCAACAACGCAATGG -ACGGAAGATGCAACAACGATGAGG -ACGGAAGATGCAACAACGAATGGG -ACGGAAGATGCAACAACGTCCTGA -ACGGAAGATGCAACAACGTAGCGA -ACGGAAGATGCAACAACGCACAGA -ACGGAAGATGCAACAACGGCAAGA -ACGGAAGATGCAACAACGGGTTGA -ACGGAAGATGCAACAACGTCCGAT -ACGGAAGATGCAACAACGTGGCAT -ACGGAAGATGCAACAACGCGAGAT -ACGGAAGATGCAACAACGTACCAC -ACGGAAGATGCAACAACGCAGAAC -ACGGAAGATGCAACAACGGTCTAC -ACGGAAGATGCAACAACGACGTAC -ACGGAAGATGCAACAACGAGTGAC -ACGGAAGATGCAACAACGCTGTAG -ACGGAAGATGCAACAACGCCTAAG -ACGGAAGATGCAACAACGGTTCAG -ACGGAAGATGCAACAACGGCATAG -ACGGAAGATGCAACAACGGACAAG -ACGGAAGATGCAACAACGAAGCAG -ACGGAAGATGCAACAACGCGTCAA -ACGGAAGATGCAACAACGGCTGAA -ACGGAAGATGCAACAACGAGTACG -ACGGAAGATGCAACAACGATCCGA -ACGGAAGATGCAACAACGATGGGA -ACGGAAGATGCAACAACGGTGCAA -ACGGAAGATGCAACAACGGAGGAA -ACGGAAGATGCAACAACGCAGGTA -ACGGAAGATGCAACAACGGACTCT -ACGGAAGATGCAACAACGAGTCCT -ACGGAAGATGCAACAACGTAAGCC -ACGGAAGATGCAACAACGATAGCC -ACGGAAGATGCAACAACGTAACCG -ACGGAAGATGCAACAACGATGCCA -ACGGAAGATGCATCAAGCGGAAAC -ACGGAAGATGCATCAAGCAACACC -ACGGAAGATGCATCAAGCATCGAG -ACGGAAGATGCATCAAGCCTCCTT -ACGGAAGATGCATCAAGCCCTGTT -ACGGAAGATGCATCAAGCCGGTTT -ACGGAAGATGCATCAAGCGTGGTT -ACGGAAGATGCATCAAGCGCCTTT -ACGGAAGATGCATCAAGCGGTCTT -ACGGAAGATGCATCAAGCACGCTT -ACGGAAGATGCATCAAGCAGCGTT -ACGGAAGATGCATCAAGCTTCGTC -ACGGAAGATGCATCAAGCTCTCTC -ACGGAAGATGCATCAAGCTGGATC -ACGGAAGATGCATCAAGCCACTTC -ACGGAAGATGCATCAAGCGTACTC -ACGGAAGATGCATCAAGCGATGTC -ACGGAAGATGCATCAAGCACAGTC -ACGGAAGATGCATCAAGCTTGCTG -ACGGAAGATGCATCAAGCTCCATG -ACGGAAGATGCATCAAGCTGTGTG -ACGGAAGATGCATCAAGCCTAGTG -ACGGAAGATGCATCAAGCCATCTG -ACGGAAGATGCATCAAGCGAGTTG -ACGGAAGATGCATCAAGCAGACTG -ACGGAAGATGCATCAAGCTCGGTA -ACGGAAGATGCATCAAGCTGCCTA -ACGGAAGATGCATCAAGCCCACTA -ACGGAAGATGCATCAAGCGGAGTA -ACGGAAGATGCATCAAGCTCGTCT -ACGGAAGATGCATCAAGCTGCACT -ACGGAAGATGCATCAAGCCTGACT -ACGGAAGATGCATCAAGCCAACCT -ACGGAAGATGCATCAAGCGCTACT -ACGGAAGATGCATCAAGCGGATCT -ACGGAAGATGCATCAAGCAAGGCT -ACGGAAGATGCATCAAGCTCAACC -ACGGAAGATGCATCAAGCTGTTCC -ACGGAAGATGCATCAAGCATTCCC -ACGGAAGATGCATCAAGCTTCTCG -ACGGAAGATGCATCAAGCTAGACG -ACGGAAGATGCATCAAGCGTAACG -ACGGAAGATGCATCAAGCACTTCG -ACGGAAGATGCATCAAGCTACGCA -ACGGAAGATGCATCAAGCCTTGCA -ACGGAAGATGCATCAAGCCGAACA -ACGGAAGATGCATCAAGCCAGTCA -ACGGAAGATGCATCAAGCGATCCA -ACGGAAGATGCATCAAGCACGACA -ACGGAAGATGCATCAAGCAGCTCA -ACGGAAGATGCATCAAGCTCACGT -ACGGAAGATGCATCAAGCCGTAGT -ACGGAAGATGCATCAAGCGTCAGT -ACGGAAGATGCATCAAGCGAAGGT -ACGGAAGATGCATCAAGCAACCGT -ACGGAAGATGCATCAAGCTTGTGC -ACGGAAGATGCATCAAGCCTAAGC -ACGGAAGATGCATCAAGCACTAGC -ACGGAAGATGCATCAAGCAGATGC -ACGGAAGATGCATCAAGCTGAAGG -ACGGAAGATGCATCAAGCCAATGG -ACGGAAGATGCATCAAGCATGAGG -ACGGAAGATGCATCAAGCAATGGG -ACGGAAGATGCATCAAGCTCCTGA -ACGGAAGATGCATCAAGCTAGCGA -ACGGAAGATGCATCAAGCCACAGA -ACGGAAGATGCATCAAGCGCAAGA -ACGGAAGATGCATCAAGCGGTTGA -ACGGAAGATGCATCAAGCTCCGAT -ACGGAAGATGCATCAAGCTGGCAT -ACGGAAGATGCATCAAGCCGAGAT -ACGGAAGATGCATCAAGCTACCAC -ACGGAAGATGCATCAAGCCAGAAC -ACGGAAGATGCATCAAGCGTCTAC -ACGGAAGATGCATCAAGCACGTAC -ACGGAAGATGCATCAAGCAGTGAC -ACGGAAGATGCATCAAGCCTGTAG -ACGGAAGATGCATCAAGCCCTAAG -ACGGAAGATGCATCAAGCGTTCAG -ACGGAAGATGCATCAAGCGCATAG -ACGGAAGATGCATCAAGCGACAAG -ACGGAAGATGCATCAAGCAAGCAG -ACGGAAGATGCATCAAGCCGTCAA -ACGGAAGATGCATCAAGCGCTGAA -ACGGAAGATGCATCAAGCAGTACG -ACGGAAGATGCATCAAGCATCCGA -ACGGAAGATGCATCAAGCATGGGA -ACGGAAGATGCATCAAGCGTGCAA -ACGGAAGATGCATCAAGCGAGGAA -ACGGAAGATGCATCAAGCCAGGTA -ACGGAAGATGCATCAAGCGACTCT -ACGGAAGATGCATCAAGCAGTCCT -ACGGAAGATGCATCAAGCTAAGCC -ACGGAAGATGCATCAAGCATAGCC -ACGGAAGATGCATCAAGCTAACCG -ACGGAAGATGCATCAAGCATGCCA -ACGGAAGATGCACGTTCAGGAAAC -ACGGAAGATGCACGTTCAAACACC -ACGGAAGATGCACGTTCAATCGAG -ACGGAAGATGCACGTTCACTCCTT -ACGGAAGATGCACGTTCACCTGTT -ACGGAAGATGCACGTTCACGGTTT -ACGGAAGATGCACGTTCAGTGGTT -ACGGAAGATGCACGTTCAGCCTTT -ACGGAAGATGCACGTTCAGGTCTT -ACGGAAGATGCACGTTCAACGCTT -ACGGAAGATGCACGTTCAAGCGTT -ACGGAAGATGCACGTTCATTCGTC -ACGGAAGATGCACGTTCATCTCTC -ACGGAAGATGCACGTTCATGGATC -ACGGAAGATGCACGTTCACACTTC -ACGGAAGATGCACGTTCAGTACTC -ACGGAAGATGCACGTTCAGATGTC -ACGGAAGATGCACGTTCAACAGTC -ACGGAAGATGCACGTTCATTGCTG -ACGGAAGATGCACGTTCATCCATG -ACGGAAGATGCACGTTCATGTGTG -ACGGAAGATGCACGTTCACTAGTG -ACGGAAGATGCACGTTCACATCTG -ACGGAAGATGCACGTTCAGAGTTG -ACGGAAGATGCACGTTCAAGACTG -ACGGAAGATGCACGTTCATCGGTA -ACGGAAGATGCACGTTCATGCCTA -ACGGAAGATGCACGTTCACCACTA -ACGGAAGATGCACGTTCAGGAGTA -ACGGAAGATGCACGTTCATCGTCT -ACGGAAGATGCACGTTCATGCACT -ACGGAAGATGCACGTTCACTGACT -ACGGAAGATGCACGTTCACAACCT -ACGGAAGATGCACGTTCAGCTACT -ACGGAAGATGCACGTTCAGGATCT -ACGGAAGATGCACGTTCAAAGGCT -ACGGAAGATGCACGTTCATCAACC -ACGGAAGATGCACGTTCATGTTCC -ACGGAAGATGCACGTTCAATTCCC -ACGGAAGATGCACGTTCATTCTCG -ACGGAAGATGCACGTTCATAGACG -ACGGAAGATGCACGTTCAGTAACG -ACGGAAGATGCACGTTCAACTTCG -ACGGAAGATGCACGTTCATACGCA -ACGGAAGATGCACGTTCACTTGCA -ACGGAAGATGCACGTTCACGAACA -ACGGAAGATGCACGTTCACAGTCA -ACGGAAGATGCACGTTCAGATCCA -ACGGAAGATGCACGTTCAACGACA -ACGGAAGATGCACGTTCAAGCTCA -ACGGAAGATGCACGTTCATCACGT -ACGGAAGATGCACGTTCACGTAGT -ACGGAAGATGCACGTTCAGTCAGT -ACGGAAGATGCACGTTCAGAAGGT -ACGGAAGATGCACGTTCAAACCGT -ACGGAAGATGCACGTTCATTGTGC -ACGGAAGATGCACGTTCACTAAGC -ACGGAAGATGCACGTTCAACTAGC -ACGGAAGATGCACGTTCAAGATGC -ACGGAAGATGCACGTTCATGAAGG -ACGGAAGATGCACGTTCACAATGG -ACGGAAGATGCACGTTCAATGAGG -ACGGAAGATGCACGTTCAAATGGG -ACGGAAGATGCACGTTCATCCTGA -ACGGAAGATGCACGTTCATAGCGA -ACGGAAGATGCACGTTCACACAGA -ACGGAAGATGCACGTTCAGCAAGA -ACGGAAGATGCACGTTCAGGTTGA -ACGGAAGATGCACGTTCATCCGAT -ACGGAAGATGCACGTTCATGGCAT -ACGGAAGATGCACGTTCACGAGAT -ACGGAAGATGCACGTTCATACCAC -ACGGAAGATGCACGTTCACAGAAC -ACGGAAGATGCACGTTCAGTCTAC -ACGGAAGATGCACGTTCAACGTAC -ACGGAAGATGCACGTTCAAGTGAC -ACGGAAGATGCACGTTCACTGTAG -ACGGAAGATGCACGTTCACCTAAG -ACGGAAGATGCACGTTCAGTTCAG -ACGGAAGATGCACGTTCAGCATAG -ACGGAAGATGCACGTTCAGACAAG -ACGGAAGATGCACGTTCAAAGCAG -ACGGAAGATGCACGTTCACGTCAA -ACGGAAGATGCACGTTCAGCTGAA -ACGGAAGATGCACGTTCAAGTACG -ACGGAAGATGCACGTTCAATCCGA -ACGGAAGATGCACGTTCAATGGGA -ACGGAAGATGCACGTTCAGTGCAA -ACGGAAGATGCACGTTCAGAGGAA -ACGGAAGATGCACGTTCACAGGTA -ACGGAAGATGCACGTTCAGACTCT -ACGGAAGATGCACGTTCAAGTCCT -ACGGAAGATGCACGTTCATAAGCC -ACGGAAGATGCACGTTCAATAGCC -ACGGAAGATGCACGTTCATAACCG -ACGGAAGATGCACGTTCAATGCCA -ACGGAAGATGCAAGTCGTGGAAAC -ACGGAAGATGCAAGTCGTAACACC -ACGGAAGATGCAAGTCGTATCGAG -ACGGAAGATGCAAGTCGTCTCCTT -ACGGAAGATGCAAGTCGTCCTGTT -ACGGAAGATGCAAGTCGTCGGTTT -ACGGAAGATGCAAGTCGTGTGGTT -ACGGAAGATGCAAGTCGTGCCTTT -ACGGAAGATGCAAGTCGTGGTCTT -ACGGAAGATGCAAGTCGTACGCTT -ACGGAAGATGCAAGTCGTAGCGTT -ACGGAAGATGCAAGTCGTTTCGTC -ACGGAAGATGCAAGTCGTTCTCTC -ACGGAAGATGCAAGTCGTTGGATC -ACGGAAGATGCAAGTCGTCACTTC -ACGGAAGATGCAAGTCGTGTACTC -ACGGAAGATGCAAGTCGTGATGTC -ACGGAAGATGCAAGTCGTACAGTC -ACGGAAGATGCAAGTCGTTTGCTG -ACGGAAGATGCAAGTCGTTCCATG -ACGGAAGATGCAAGTCGTTGTGTG -ACGGAAGATGCAAGTCGTCTAGTG -ACGGAAGATGCAAGTCGTCATCTG -ACGGAAGATGCAAGTCGTGAGTTG -ACGGAAGATGCAAGTCGTAGACTG -ACGGAAGATGCAAGTCGTTCGGTA -ACGGAAGATGCAAGTCGTTGCCTA -ACGGAAGATGCAAGTCGTCCACTA -ACGGAAGATGCAAGTCGTGGAGTA -ACGGAAGATGCAAGTCGTTCGTCT -ACGGAAGATGCAAGTCGTTGCACT -ACGGAAGATGCAAGTCGTCTGACT -ACGGAAGATGCAAGTCGTCAACCT -ACGGAAGATGCAAGTCGTGCTACT -ACGGAAGATGCAAGTCGTGGATCT -ACGGAAGATGCAAGTCGTAAGGCT -ACGGAAGATGCAAGTCGTTCAACC -ACGGAAGATGCAAGTCGTTGTTCC -ACGGAAGATGCAAGTCGTATTCCC -ACGGAAGATGCAAGTCGTTTCTCG -ACGGAAGATGCAAGTCGTTAGACG -ACGGAAGATGCAAGTCGTGTAACG -ACGGAAGATGCAAGTCGTACTTCG -ACGGAAGATGCAAGTCGTTACGCA -ACGGAAGATGCAAGTCGTCTTGCA -ACGGAAGATGCAAGTCGTCGAACA -ACGGAAGATGCAAGTCGTCAGTCA -ACGGAAGATGCAAGTCGTGATCCA -ACGGAAGATGCAAGTCGTACGACA -ACGGAAGATGCAAGTCGTAGCTCA -ACGGAAGATGCAAGTCGTTCACGT -ACGGAAGATGCAAGTCGTCGTAGT -ACGGAAGATGCAAGTCGTGTCAGT -ACGGAAGATGCAAGTCGTGAAGGT -ACGGAAGATGCAAGTCGTAACCGT -ACGGAAGATGCAAGTCGTTTGTGC -ACGGAAGATGCAAGTCGTCTAAGC -ACGGAAGATGCAAGTCGTACTAGC -ACGGAAGATGCAAGTCGTAGATGC -ACGGAAGATGCAAGTCGTTGAAGG -ACGGAAGATGCAAGTCGTCAATGG -ACGGAAGATGCAAGTCGTATGAGG -ACGGAAGATGCAAGTCGTAATGGG -ACGGAAGATGCAAGTCGTTCCTGA -ACGGAAGATGCAAGTCGTTAGCGA -ACGGAAGATGCAAGTCGTCACAGA -ACGGAAGATGCAAGTCGTGCAAGA -ACGGAAGATGCAAGTCGTGGTTGA -ACGGAAGATGCAAGTCGTTCCGAT -ACGGAAGATGCAAGTCGTTGGCAT -ACGGAAGATGCAAGTCGTCGAGAT -ACGGAAGATGCAAGTCGTTACCAC -ACGGAAGATGCAAGTCGTCAGAAC -ACGGAAGATGCAAGTCGTGTCTAC -ACGGAAGATGCAAGTCGTACGTAC -ACGGAAGATGCAAGTCGTAGTGAC -ACGGAAGATGCAAGTCGTCTGTAG -ACGGAAGATGCAAGTCGTCCTAAG -ACGGAAGATGCAAGTCGTGTTCAG -ACGGAAGATGCAAGTCGTGCATAG -ACGGAAGATGCAAGTCGTGACAAG -ACGGAAGATGCAAGTCGTAAGCAG -ACGGAAGATGCAAGTCGTCGTCAA -ACGGAAGATGCAAGTCGTGCTGAA -ACGGAAGATGCAAGTCGTAGTACG -ACGGAAGATGCAAGTCGTATCCGA -ACGGAAGATGCAAGTCGTATGGGA -ACGGAAGATGCAAGTCGTGTGCAA -ACGGAAGATGCAAGTCGTGAGGAA -ACGGAAGATGCAAGTCGTCAGGTA -ACGGAAGATGCAAGTCGTGACTCT -ACGGAAGATGCAAGTCGTAGTCCT -ACGGAAGATGCAAGTCGTTAAGCC -ACGGAAGATGCAAGTCGTATAGCC -ACGGAAGATGCAAGTCGTTAACCG -ACGGAAGATGCAAGTCGTATGCCA -ACGGAAGATGCAAGTGTCGGAAAC -ACGGAAGATGCAAGTGTCAACACC -ACGGAAGATGCAAGTGTCATCGAG -ACGGAAGATGCAAGTGTCCTCCTT -ACGGAAGATGCAAGTGTCCCTGTT -ACGGAAGATGCAAGTGTCCGGTTT -ACGGAAGATGCAAGTGTCGTGGTT -ACGGAAGATGCAAGTGTCGCCTTT -ACGGAAGATGCAAGTGTCGGTCTT -ACGGAAGATGCAAGTGTCACGCTT -ACGGAAGATGCAAGTGTCAGCGTT -ACGGAAGATGCAAGTGTCTTCGTC -ACGGAAGATGCAAGTGTCTCTCTC -ACGGAAGATGCAAGTGTCTGGATC -ACGGAAGATGCAAGTGTCCACTTC -ACGGAAGATGCAAGTGTCGTACTC -ACGGAAGATGCAAGTGTCGATGTC -ACGGAAGATGCAAGTGTCACAGTC -ACGGAAGATGCAAGTGTCTTGCTG -ACGGAAGATGCAAGTGTCTCCATG -ACGGAAGATGCAAGTGTCTGTGTG -ACGGAAGATGCAAGTGTCCTAGTG -ACGGAAGATGCAAGTGTCCATCTG -ACGGAAGATGCAAGTGTCGAGTTG -ACGGAAGATGCAAGTGTCAGACTG -ACGGAAGATGCAAGTGTCTCGGTA -ACGGAAGATGCAAGTGTCTGCCTA -ACGGAAGATGCAAGTGTCCCACTA -ACGGAAGATGCAAGTGTCGGAGTA -ACGGAAGATGCAAGTGTCTCGTCT -ACGGAAGATGCAAGTGTCTGCACT -ACGGAAGATGCAAGTGTCCTGACT -ACGGAAGATGCAAGTGTCCAACCT -ACGGAAGATGCAAGTGTCGCTACT -ACGGAAGATGCAAGTGTCGGATCT -ACGGAAGATGCAAGTGTCAAGGCT -ACGGAAGATGCAAGTGTCTCAACC -ACGGAAGATGCAAGTGTCTGTTCC -ACGGAAGATGCAAGTGTCATTCCC -ACGGAAGATGCAAGTGTCTTCTCG -ACGGAAGATGCAAGTGTCTAGACG -ACGGAAGATGCAAGTGTCGTAACG -ACGGAAGATGCAAGTGTCACTTCG -ACGGAAGATGCAAGTGTCTACGCA -ACGGAAGATGCAAGTGTCCTTGCA -ACGGAAGATGCAAGTGTCCGAACA -ACGGAAGATGCAAGTGTCCAGTCA -ACGGAAGATGCAAGTGTCGATCCA -ACGGAAGATGCAAGTGTCACGACA -ACGGAAGATGCAAGTGTCAGCTCA -ACGGAAGATGCAAGTGTCTCACGT -ACGGAAGATGCAAGTGTCCGTAGT -ACGGAAGATGCAAGTGTCGTCAGT -ACGGAAGATGCAAGTGTCGAAGGT -ACGGAAGATGCAAGTGTCAACCGT -ACGGAAGATGCAAGTGTCTTGTGC -ACGGAAGATGCAAGTGTCCTAAGC -ACGGAAGATGCAAGTGTCACTAGC -ACGGAAGATGCAAGTGTCAGATGC -ACGGAAGATGCAAGTGTCTGAAGG -ACGGAAGATGCAAGTGTCCAATGG -ACGGAAGATGCAAGTGTCATGAGG -ACGGAAGATGCAAGTGTCAATGGG -ACGGAAGATGCAAGTGTCTCCTGA -ACGGAAGATGCAAGTGTCTAGCGA -ACGGAAGATGCAAGTGTCCACAGA -ACGGAAGATGCAAGTGTCGCAAGA -ACGGAAGATGCAAGTGTCGGTTGA -ACGGAAGATGCAAGTGTCTCCGAT -ACGGAAGATGCAAGTGTCTGGCAT -ACGGAAGATGCAAGTGTCCGAGAT -ACGGAAGATGCAAGTGTCTACCAC -ACGGAAGATGCAAGTGTCCAGAAC -ACGGAAGATGCAAGTGTCGTCTAC -ACGGAAGATGCAAGTGTCACGTAC -ACGGAAGATGCAAGTGTCAGTGAC -ACGGAAGATGCAAGTGTCCTGTAG -ACGGAAGATGCAAGTGTCCCTAAG -ACGGAAGATGCAAGTGTCGTTCAG -ACGGAAGATGCAAGTGTCGCATAG -ACGGAAGATGCAAGTGTCGACAAG -ACGGAAGATGCAAGTGTCAAGCAG -ACGGAAGATGCAAGTGTCCGTCAA -ACGGAAGATGCAAGTGTCGCTGAA -ACGGAAGATGCAAGTGTCAGTACG -ACGGAAGATGCAAGTGTCATCCGA -ACGGAAGATGCAAGTGTCATGGGA -ACGGAAGATGCAAGTGTCGTGCAA -ACGGAAGATGCAAGTGTCGAGGAA -ACGGAAGATGCAAGTGTCCAGGTA -ACGGAAGATGCAAGTGTCGACTCT -ACGGAAGATGCAAGTGTCAGTCCT -ACGGAAGATGCAAGTGTCTAAGCC -ACGGAAGATGCAAGTGTCATAGCC -ACGGAAGATGCAAGTGTCTAACCG -ACGGAAGATGCAAGTGTCATGCCA -ACGGAAGATGCAGGTGAAGGAAAC -ACGGAAGATGCAGGTGAAAACACC -ACGGAAGATGCAGGTGAAATCGAG -ACGGAAGATGCAGGTGAACTCCTT -ACGGAAGATGCAGGTGAACCTGTT -ACGGAAGATGCAGGTGAACGGTTT -ACGGAAGATGCAGGTGAAGTGGTT -ACGGAAGATGCAGGTGAAGCCTTT -ACGGAAGATGCAGGTGAAGGTCTT -ACGGAAGATGCAGGTGAAACGCTT -ACGGAAGATGCAGGTGAAAGCGTT -ACGGAAGATGCAGGTGAATTCGTC -ACGGAAGATGCAGGTGAATCTCTC -ACGGAAGATGCAGGTGAATGGATC -ACGGAAGATGCAGGTGAACACTTC -ACGGAAGATGCAGGTGAAGTACTC -ACGGAAGATGCAGGTGAAGATGTC -ACGGAAGATGCAGGTGAAACAGTC -ACGGAAGATGCAGGTGAATTGCTG -ACGGAAGATGCAGGTGAATCCATG -ACGGAAGATGCAGGTGAATGTGTG -ACGGAAGATGCAGGTGAACTAGTG -ACGGAAGATGCAGGTGAACATCTG -ACGGAAGATGCAGGTGAAGAGTTG -ACGGAAGATGCAGGTGAAAGACTG -ACGGAAGATGCAGGTGAATCGGTA -ACGGAAGATGCAGGTGAATGCCTA -ACGGAAGATGCAGGTGAACCACTA -ACGGAAGATGCAGGTGAAGGAGTA -ACGGAAGATGCAGGTGAATCGTCT -ACGGAAGATGCAGGTGAATGCACT -ACGGAAGATGCAGGTGAACTGACT -ACGGAAGATGCAGGTGAACAACCT -ACGGAAGATGCAGGTGAAGCTACT -ACGGAAGATGCAGGTGAAGGATCT -ACGGAAGATGCAGGTGAAAAGGCT -ACGGAAGATGCAGGTGAATCAACC -ACGGAAGATGCAGGTGAATGTTCC -ACGGAAGATGCAGGTGAAATTCCC -ACGGAAGATGCAGGTGAATTCTCG -ACGGAAGATGCAGGTGAATAGACG -ACGGAAGATGCAGGTGAAGTAACG -ACGGAAGATGCAGGTGAAACTTCG -ACGGAAGATGCAGGTGAATACGCA -ACGGAAGATGCAGGTGAACTTGCA -ACGGAAGATGCAGGTGAACGAACA -ACGGAAGATGCAGGTGAACAGTCA -ACGGAAGATGCAGGTGAAGATCCA -ACGGAAGATGCAGGTGAAACGACA -ACGGAAGATGCAGGTGAAAGCTCA -ACGGAAGATGCAGGTGAATCACGT -ACGGAAGATGCAGGTGAACGTAGT -ACGGAAGATGCAGGTGAAGTCAGT -ACGGAAGATGCAGGTGAAGAAGGT -ACGGAAGATGCAGGTGAAAACCGT -ACGGAAGATGCAGGTGAATTGTGC -ACGGAAGATGCAGGTGAACTAAGC -ACGGAAGATGCAGGTGAAACTAGC -ACGGAAGATGCAGGTGAAAGATGC -ACGGAAGATGCAGGTGAATGAAGG -ACGGAAGATGCAGGTGAACAATGG -ACGGAAGATGCAGGTGAAATGAGG -ACGGAAGATGCAGGTGAAAATGGG -ACGGAAGATGCAGGTGAATCCTGA -ACGGAAGATGCAGGTGAATAGCGA -ACGGAAGATGCAGGTGAACACAGA -ACGGAAGATGCAGGTGAAGCAAGA -ACGGAAGATGCAGGTGAAGGTTGA -ACGGAAGATGCAGGTGAATCCGAT -ACGGAAGATGCAGGTGAATGGCAT -ACGGAAGATGCAGGTGAACGAGAT -ACGGAAGATGCAGGTGAATACCAC -ACGGAAGATGCAGGTGAACAGAAC -ACGGAAGATGCAGGTGAAGTCTAC -ACGGAAGATGCAGGTGAAACGTAC -ACGGAAGATGCAGGTGAAAGTGAC -ACGGAAGATGCAGGTGAACTGTAG -ACGGAAGATGCAGGTGAACCTAAG -ACGGAAGATGCAGGTGAAGTTCAG -ACGGAAGATGCAGGTGAAGCATAG -ACGGAAGATGCAGGTGAAGACAAG -ACGGAAGATGCAGGTGAAAAGCAG -ACGGAAGATGCAGGTGAACGTCAA -ACGGAAGATGCAGGTGAAGCTGAA -ACGGAAGATGCAGGTGAAAGTACG -ACGGAAGATGCAGGTGAAATCCGA -ACGGAAGATGCAGGTGAAATGGGA -ACGGAAGATGCAGGTGAAGTGCAA -ACGGAAGATGCAGGTGAAGAGGAA -ACGGAAGATGCAGGTGAACAGGTA -ACGGAAGATGCAGGTGAAGACTCT -ACGGAAGATGCAGGTGAAAGTCCT -ACGGAAGATGCAGGTGAATAAGCC -ACGGAAGATGCAGGTGAAATAGCC -ACGGAAGATGCAGGTGAATAACCG -ACGGAAGATGCAGGTGAAATGCCA -ACGGAAGATGCACGTAACGGAAAC -ACGGAAGATGCACGTAACAACACC -ACGGAAGATGCACGTAACATCGAG -ACGGAAGATGCACGTAACCTCCTT -ACGGAAGATGCACGTAACCCTGTT -ACGGAAGATGCACGTAACCGGTTT -ACGGAAGATGCACGTAACGTGGTT -ACGGAAGATGCACGTAACGCCTTT -ACGGAAGATGCACGTAACGGTCTT -ACGGAAGATGCACGTAACACGCTT -ACGGAAGATGCACGTAACAGCGTT -ACGGAAGATGCACGTAACTTCGTC -ACGGAAGATGCACGTAACTCTCTC -ACGGAAGATGCACGTAACTGGATC -ACGGAAGATGCACGTAACCACTTC -ACGGAAGATGCACGTAACGTACTC -ACGGAAGATGCACGTAACGATGTC -ACGGAAGATGCACGTAACACAGTC -ACGGAAGATGCACGTAACTTGCTG -ACGGAAGATGCACGTAACTCCATG -ACGGAAGATGCACGTAACTGTGTG -ACGGAAGATGCACGTAACCTAGTG -ACGGAAGATGCACGTAACCATCTG -ACGGAAGATGCACGTAACGAGTTG -ACGGAAGATGCACGTAACAGACTG -ACGGAAGATGCACGTAACTCGGTA -ACGGAAGATGCACGTAACTGCCTA -ACGGAAGATGCACGTAACCCACTA -ACGGAAGATGCACGTAACGGAGTA -ACGGAAGATGCACGTAACTCGTCT -ACGGAAGATGCACGTAACTGCACT -ACGGAAGATGCACGTAACCTGACT -ACGGAAGATGCACGTAACCAACCT -ACGGAAGATGCACGTAACGCTACT -ACGGAAGATGCACGTAACGGATCT -ACGGAAGATGCACGTAACAAGGCT -ACGGAAGATGCACGTAACTCAACC -ACGGAAGATGCACGTAACTGTTCC -ACGGAAGATGCACGTAACATTCCC -ACGGAAGATGCACGTAACTTCTCG -ACGGAAGATGCACGTAACTAGACG -ACGGAAGATGCACGTAACGTAACG -ACGGAAGATGCACGTAACACTTCG -ACGGAAGATGCACGTAACTACGCA -ACGGAAGATGCACGTAACCTTGCA -ACGGAAGATGCACGTAACCGAACA -ACGGAAGATGCACGTAACCAGTCA -ACGGAAGATGCACGTAACGATCCA -ACGGAAGATGCACGTAACACGACA -ACGGAAGATGCACGTAACAGCTCA -ACGGAAGATGCACGTAACTCACGT -ACGGAAGATGCACGTAACCGTAGT -ACGGAAGATGCACGTAACGTCAGT -ACGGAAGATGCACGTAACGAAGGT -ACGGAAGATGCACGTAACAACCGT -ACGGAAGATGCACGTAACTTGTGC -ACGGAAGATGCACGTAACCTAAGC -ACGGAAGATGCACGTAACACTAGC -ACGGAAGATGCACGTAACAGATGC -ACGGAAGATGCACGTAACTGAAGG -ACGGAAGATGCACGTAACCAATGG -ACGGAAGATGCACGTAACATGAGG -ACGGAAGATGCACGTAACAATGGG -ACGGAAGATGCACGTAACTCCTGA -ACGGAAGATGCACGTAACTAGCGA -ACGGAAGATGCACGTAACCACAGA -ACGGAAGATGCACGTAACGCAAGA -ACGGAAGATGCACGTAACGGTTGA -ACGGAAGATGCACGTAACTCCGAT -ACGGAAGATGCACGTAACTGGCAT -ACGGAAGATGCACGTAACCGAGAT -ACGGAAGATGCACGTAACTACCAC -ACGGAAGATGCACGTAACCAGAAC -ACGGAAGATGCACGTAACGTCTAC -ACGGAAGATGCACGTAACACGTAC -ACGGAAGATGCACGTAACAGTGAC -ACGGAAGATGCACGTAACCTGTAG -ACGGAAGATGCACGTAACCCTAAG -ACGGAAGATGCACGTAACGTTCAG -ACGGAAGATGCACGTAACGCATAG -ACGGAAGATGCACGTAACGACAAG -ACGGAAGATGCACGTAACAAGCAG -ACGGAAGATGCACGTAACCGTCAA -ACGGAAGATGCACGTAACGCTGAA -ACGGAAGATGCACGTAACAGTACG -ACGGAAGATGCACGTAACATCCGA -ACGGAAGATGCACGTAACATGGGA -ACGGAAGATGCACGTAACGTGCAA -ACGGAAGATGCACGTAACGAGGAA -ACGGAAGATGCACGTAACCAGGTA -ACGGAAGATGCACGTAACGACTCT -ACGGAAGATGCACGTAACAGTCCT -ACGGAAGATGCACGTAACTAAGCC -ACGGAAGATGCACGTAACATAGCC -ACGGAAGATGCACGTAACTAACCG -ACGGAAGATGCACGTAACATGCCA -ACGGAAGATGCATGCTTGGGAAAC -ACGGAAGATGCATGCTTGAACACC -ACGGAAGATGCATGCTTGATCGAG -ACGGAAGATGCATGCTTGCTCCTT -ACGGAAGATGCATGCTTGCCTGTT -ACGGAAGATGCATGCTTGCGGTTT -ACGGAAGATGCATGCTTGGTGGTT -ACGGAAGATGCATGCTTGGCCTTT -ACGGAAGATGCATGCTTGGGTCTT -ACGGAAGATGCATGCTTGACGCTT -ACGGAAGATGCATGCTTGAGCGTT -ACGGAAGATGCATGCTTGTTCGTC -ACGGAAGATGCATGCTTGTCTCTC -ACGGAAGATGCATGCTTGTGGATC -ACGGAAGATGCATGCTTGCACTTC -ACGGAAGATGCATGCTTGGTACTC -ACGGAAGATGCATGCTTGGATGTC -ACGGAAGATGCATGCTTGACAGTC -ACGGAAGATGCATGCTTGTTGCTG -ACGGAAGATGCATGCTTGTCCATG -ACGGAAGATGCATGCTTGTGTGTG -ACGGAAGATGCATGCTTGCTAGTG -ACGGAAGATGCATGCTTGCATCTG -ACGGAAGATGCATGCTTGGAGTTG -ACGGAAGATGCATGCTTGAGACTG -ACGGAAGATGCATGCTTGTCGGTA -ACGGAAGATGCATGCTTGTGCCTA -ACGGAAGATGCATGCTTGCCACTA -ACGGAAGATGCATGCTTGGGAGTA -ACGGAAGATGCATGCTTGTCGTCT -ACGGAAGATGCATGCTTGTGCACT -ACGGAAGATGCATGCTTGCTGACT -ACGGAAGATGCATGCTTGCAACCT -ACGGAAGATGCATGCTTGGCTACT -ACGGAAGATGCATGCTTGGGATCT -ACGGAAGATGCATGCTTGAAGGCT -ACGGAAGATGCATGCTTGTCAACC -ACGGAAGATGCATGCTTGTGTTCC -ACGGAAGATGCATGCTTGATTCCC -ACGGAAGATGCATGCTTGTTCTCG -ACGGAAGATGCATGCTTGTAGACG -ACGGAAGATGCATGCTTGGTAACG -ACGGAAGATGCATGCTTGACTTCG -ACGGAAGATGCATGCTTGTACGCA -ACGGAAGATGCATGCTTGCTTGCA -ACGGAAGATGCATGCTTGCGAACA -ACGGAAGATGCATGCTTGCAGTCA -ACGGAAGATGCATGCTTGGATCCA -ACGGAAGATGCATGCTTGACGACA -ACGGAAGATGCATGCTTGAGCTCA -ACGGAAGATGCATGCTTGTCACGT -ACGGAAGATGCATGCTTGCGTAGT -ACGGAAGATGCATGCTTGGTCAGT -ACGGAAGATGCATGCTTGGAAGGT -ACGGAAGATGCATGCTTGAACCGT -ACGGAAGATGCATGCTTGTTGTGC -ACGGAAGATGCATGCTTGCTAAGC -ACGGAAGATGCATGCTTGACTAGC -ACGGAAGATGCATGCTTGAGATGC -ACGGAAGATGCATGCTTGTGAAGG -ACGGAAGATGCATGCTTGCAATGG -ACGGAAGATGCATGCTTGATGAGG -ACGGAAGATGCATGCTTGAATGGG -ACGGAAGATGCATGCTTGTCCTGA -ACGGAAGATGCATGCTTGTAGCGA -ACGGAAGATGCATGCTTGCACAGA -ACGGAAGATGCATGCTTGGCAAGA -ACGGAAGATGCATGCTTGGGTTGA -ACGGAAGATGCATGCTTGTCCGAT -ACGGAAGATGCATGCTTGTGGCAT -ACGGAAGATGCATGCTTGCGAGAT -ACGGAAGATGCATGCTTGTACCAC -ACGGAAGATGCATGCTTGCAGAAC -ACGGAAGATGCATGCTTGGTCTAC -ACGGAAGATGCATGCTTGACGTAC -ACGGAAGATGCATGCTTGAGTGAC -ACGGAAGATGCATGCTTGCTGTAG -ACGGAAGATGCATGCTTGCCTAAG -ACGGAAGATGCATGCTTGGTTCAG -ACGGAAGATGCATGCTTGGCATAG -ACGGAAGATGCATGCTTGGACAAG -ACGGAAGATGCATGCTTGAAGCAG -ACGGAAGATGCATGCTTGCGTCAA -ACGGAAGATGCATGCTTGGCTGAA -ACGGAAGATGCATGCTTGAGTACG -ACGGAAGATGCATGCTTGATCCGA -ACGGAAGATGCATGCTTGATGGGA -ACGGAAGATGCATGCTTGGTGCAA -ACGGAAGATGCATGCTTGGAGGAA -ACGGAAGATGCATGCTTGCAGGTA -ACGGAAGATGCATGCTTGGACTCT -ACGGAAGATGCATGCTTGAGTCCT -ACGGAAGATGCATGCTTGTAAGCC -ACGGAAGATGCATGCTTGATAGCC -ACGGAAGATGCATGCTTGTAACCG -ACGGAAGATGCATGCTTGATGCCA -ACGGAAGATGCAAGCCTAGGAAAC -ACGGAAGATGCAAGCCTAAACACC -ACGGAAGATGCAAGCCTAATCGAG -ACGGAAGATGCAAGCCTACTCCTT -ACGGAAGATGCAAGCCTACCTGTT -ACGGAAGATGCAAGCCTACGGTTT -ACGGAAGATGCAAGCCTAGTGGTT -ACGGAAGATGCAAGCCTAGCCTTT -ACGGAAGATGCAAGCCTAGGTCTT -ACGGAAGATGCAAGCCTAACGCTT -ACGGAAGATGCAAGCCTAAGCGTT -ACGGAAGATGCAAGCCTATTCGTC -ACGGAAGATGCAAGCCTATCTCTC -ACGGAAGATGCAAGCCTATGGATC -ACGGAAGATGCAAGCCTACACTTC -ACGGAAGATGCAAGCCTAGTACTC -ACGGAAGATGCAAGCCTAGATGTC -ACGGAAGATGCAAGCCTAACAGTC -ACGGAAGATGCAAGCCTATTGCTG -ACGGAAGATGCAAGCCTATCCATG -ACGGAAGATGCAAGCCTATGTGTG -ACGGAAGATGCAAGCCTACTAGTG -ACGGAAGATGCAAGCCTACATCTG -ACGGAAGATGCAAGCCTAGAGTTG -ACGGAAGATGCAAGCCTAAGACTG -ACGGAAGATGCAAGCCTATCGGTA -ACGGAAGATGCAAGCCTATGCCTA -ACGGAAGATGCAAGCCTACCACTA -ACGGAAGATGCAAGCCTAGGAGTA -ACGGAAGATGCAAGCCTATCGTCT -ACGGAAGATGCAAGCCTATGCACT -ACGGAAGATGCAAGCCTACTGACT -ACGGAAGATGCAAGCCTACAACCT -ACGGAAGATGCAAGCCTAGCTACT -ACGGAAGATGCAAGCCTAGGATCT -ACGGAAGATGCAAGCCTAAAGGCT -ACGGAAGATGCAAGCCTATCAACC -ACGGAAGATGCAAGCCTATGTTCC -ACGGAAGATGCAAGCCTAATTCCC -ACGGAAGATGCAAGCCTATTCTCG -ACGGAAGATGCAAGCCTATAGACG -ACGGAAGATGCAAGCCTAGTAACG -ACGGAAGATGCAAGCCTAACTTCG -ACGGAAGATGCAAGCCTATACGCA -ACGGAAGATGCAAGCCTACTTGCA -ACGGAAGATGCAAGCCTACGAACA -ACGGAAGATGCAAGCCTACAGTCA -ACGGAAGATGCAAGCCTAGATCCA -ACGGAAGATGCAAGCCTAACGACA -ACGGAAGATGCAAGCCTAAGCTCA -ACGGAAGATGCAAGCCTATCACGT -ACGGAAGATGCAAGCCTACGTAGT -ACGGAAGATGCAAGCCTAGTCAGT -ACGGAAGATGCAAGCCTAGAAGGT -ACGGAAGATGCAAGCCTAAACCGT -ACGGAAGATGCAAGCCTATTGTGC -ACGGAAGATGCAAGCCTACTAAGC -ACGGAAGATGCAAGCCTAACTAGC -ACGGAAGATGCAAGCCTAAGATGC -ACGGAAGATGCAAGCCTATGAAGG -ACGGAAGATGCAAGCCTACAATGG -ACGGAAGATGCAAGCCTAATGAGG -ACGGAAGATGCAAGCCTAAATGGG -ACGGAAGATGCAAGCCTATCCTGA -ACGGAAGATGCAAGCCTATAGCGA -ACGGAAGATGCAAGCCTACACAGA -ACGGAAGATGCAAGCCTAGCAAGA -ACGGAAGATGCAAGCCTAGGTTGA -ACGGAAGATGCAAGCCTATCCGAT -ACGGAAGATGCAAGCCTATGGCAT -ACGGAAGATGCAAGCCTACGAGAT -ACGGAAGATGCAAGCCTATACCAC -ACGGAAGATGCAAGCCTACAGAAC -ACGGAAGATGCAAGCCTAGTCTAC -ACGGAAGATGCAAGCCTAACGTAC -ACGGAAGATGCAAGCCTAAGTGAC -ACGGAAGATGCAAGCCTACTGTAG -ACGGAAGATGCAAGCCTACCTAAG -ACGGAAGATGCAAGCCTAGTTCAG -ACGGAAGATGCAAGCCTAGCATAG -ACGGAAGATGCAAGCCTAGACAAG -ACGGAAGATGCAAGCCTAAAGCAG -ACGGAAGATGCAAGCCTACGTCAA -ACGGAAGATGCAAGCCTAGCTGAA -ACGGAAGATGCAAGCCTAAGTACG -ACGGAAGATGCAAGCCTAATCCGA -ACGGAAGATGCAAGCCTAATGGGA -ACGGAAGATGCAAGCCTAGTGCAA -ACGGAAGATGCAAGCCTAGAGGAA -ACGGAAGATGCAAGCCTACAGGTA -ACGGAAGATGCAAGCCTAGACTCT -ACGGAAGATGCAAGCCTAAGTCCT -ACGGAAGATGCAAGCCTATAAGCC -ACGGAAGATGCAAGCCTAATAGCC -ACGGAAGATGCAAGCCTATAACCG -ACGGAAGATGCAAGCCTAATGCCA -ACGGAAGATGCAAGCACTGGAAAC -ACGGAAGATGCAAGCACTAACACC -ACGGAAGATGCAAGCACTATCGAG -ACGGAAGATGCAAGCACTCTCCTT -ACGGAAGATGCAAGCACTCCTGTT -ACGGAAGATGCAAGCACTCGGTTT -ACGGAAGATGCAAGCACTGTGGTT -ACGGAAGATGCAAGCACTGCCTTT -ACGGAAGATGCAAGCACTGGTCTT -ACGGAAGATGCAAGCACTACGCTT -ACGGAAGATGCAAGCACTAGCGTT -ACGGAAGATGCAAGCACTTTCGTC -ACGGAAGATGCAAGCACTTCTCTC -ACGGAAGATGCAAGCACTTGGATC -ACGGAAGATGCAAGCACTCACTTC -ACGGAAGATGCAAGCACTGTACTC -ACGGAAGATGCAAGCACTGATGTC -ACGGAAGATGCAAGCACTACAGTC -ACGGAAGATGCAAGCACTTTGCTG -ACGGAAGATGCAAGCACTTCCATG -ACGGAAGATGCAAGCACTTGTGTG -ACGGAAGATGCAAGCACTCTAGTG -ACGGAAGATGCAAGCACTCATCTG -ACGGAAGATGCAAGCACTGAGTTG -ACGGAAGATGCAAGCACTAGACTG -ACGGAAGATGCAAGCACTTCGGTA -ACGGAAGATGCAAGCACTTGCCTA -ACGGAAGATGCAAGCACTCCACTA -ACGGAAGATGCAAGCACTGGAGTA -ACGGAAGATGCAAGCACTTCGTCT -ACGGAAGATGCAAGCACTTGCACT -ACGGAAGATGCAAGCACTCTGACT -ACGGAAGATGCAAGCACTCAACCT -ACGGAAGATGCAAGCACTGCTACT -ACGGAAGATGCAAGCACTGGATCT -ACGGAAGATGCAAGCACTAAGGCT -ACGGAAGATGCAAGCACTTCAACC -ACGGAAGATGCAAGCACTTGTTCC -ACGGAAGATGCAAGCACTATTCCC -ACGGAAGATGCAAGCACTTTCTCG -ACGGAAGATGCAAGCACTTAGACG -ACGGAAGATGCAAGCACTGTAACG -ACGGAAGATGCAAGCACTACTTCG -ACGGAAGATGCAAGCACTTACGCA -ACGGAAGATGCAAGCACTCTTGCA -ACGGAAGATGCAAGCACTCGAACA -ACGGAAGATGCAAGCACTCAGTCA -ACGGAAGATGCAAGCACTGATCCA -ACGGAAGATGCAAGCACTACGACA -ACGGAAGATGCAAGCACTAGCTCA -ACGGAAGATGCAAGCACTTCACGT -ACGGAAGATGCAAGCACTCGTAGT -ACGGAAGATGCAAGCACTGTCAGT -ACGGAAGATGCAAGCACTGAAGGT -ACGGAAGATGCAAGCACTAACCGT -ACGGAAGATGCAAGCACTTTGTGC -ACGGAAGATGCAAGCACTCTAAGC -ACGGAAGATGCAAGCACTACTAGC -ACGGAAGATGCAAGCACTAGATGC -ACGGAAGATGCAAGCACTTGAAGG -ACGGAAGATGCAAGCACTCAATGG -ACGGAAGATGCAAGCACTATGAGG -ACGGAAGATGCAAGCACTAATGGG -ACGGAAGATGCAAGCACTTCCTGA -ACGGAAGATGCAAGCACTTAGCGA -ACGGAAGATGCAAGCACTCACAGA -ACGGAAGATGCAAGCACTGCAAGA -ACGGAAGATGCAAGCACTGGTTGA -ACGGAAGATGCAAGCACTTCCGAT -ACGGAAGATGCAAGCACTTGGCAT -ACGGAAGATGCAAGCACTCGAGAT -ACGGAAGATGCAAGCACTTACCAC -ACGGAAGATGCAAGCACTCAGAAC -ACGGAAGATGCAAGCACTGTCTAC -ACGGAAGATGCAAGCACTACGTAC -ACGGAAGATGCAAGCACTAGTGAC -ACGGAAGATGCAAGCACTCTGTAG -ACGGAAGATGCAAGCACTCCTAAG -ACGGAAGATGCAAGCACTGTTCAG -ACGGAAGATGCAAGCACTGCATAG -ACGGAAGATGCAAGCACTGACAAG -ACGGAAGATGCAAGCACTAAGCAG -ACGGAAGATGCAAGCACTCGTCAA -ACGGAAGATGCAAGCACTGCTGAA -ACGGAAGATGCAAGCACTAGTACG -ACGGAAGATGCAAGCACTATCCGA -ACGGAAGATGCAAGCACTATGGGA -ACGGAAGATGCAAGCACTGTGCAA -ACGGAAGATGCAAGCACTGAGGAA -ACGGAAGATGCAAGCACTCAGGTA -ACGGAAGATGCAAGCACTGACTCT -ACGGAAGATGCAAGCACTAGTCCT -ACGGAAGATGCAAGCACTTAAGCC -ACGGAAGATGCAAGCACTATAGCC -ACGGAAGATGCAAGCACTTAACCG -ACGGAAGATGCAAGCACTATGCCA -ACGGAAGATGCATGCAGAGGAAAC -ACGGAAGATGCATGCAGAAACACC -ACGGAAGATGCATGCAGAATCGAG -ACGGAAGATGCATGCAGACTCCTT -ACGGAAGATGCATGCAGACCTGTT -ACGGAAGATGCATGCAGACGGTTT -ACGGAAGATGCATGCAGAGTGGTT -ACGGAAGATGCATGCAGAGCCTTT -ACGGAAGATGCATGCAGAGGTCTT -ACGGAAGATGCATGCAGAACGCTT -ACGGAAGATGCATGCAGAAGCGTT -ACGGAAGATGCATGCAGATTCGTC -ACGGAAGATGCATGCAGATCTCTC -ACGGAAGATGCATGCAGATGGATC -ACGGAAGATGCATGCAGACACTTC -ACGGAAGATGCATGCAGAGTACTC -ACGGAAGATGCATGCAGAGATGTC -ACGGAAGATGCATGCAGAACAGTC -ACGGAAGATGCATGCAGATTGCTG -ACGGAAGATGCATGCAGATCCATG -ACGGAAGATGCATGCAGATGTGTG -ACGGAAGATGCATGCAGACTAGTG -ACGGAAGATGCATGCAGACATCTG -ACGGAAGATGCATGCAGAGAGTTG -ACGGAAGATGCATGCAGAAGACTG -ACGGAAGATGCATGCAGATCGGTA -ACGGAAGATGCATGCAGATGCCTA -ACGGAAGATGCATGCAGACCACTA -ACGGAAGATGCATGCAGAGGAGTA -ACGGAAGATGCATGCAGATCGTCT -ACGGAAGATGCATGCAGATGCACT -ACGGAAGATGCATGCAGACTGACT -ACGGAAGATGCATGCAGACAACCT -ACGGAAGATGCATGCAGAGCTACT -ACGGAAGATGCATGCAGAGGATCT -ACGGAAGATGCATGCAGAAAGGCT -ACGGAAGATGCATGCAGATCAACC -ACGGAAGATGCATGCAGATGTTCC -ACGGAAGATGCATGCAGAATTCCC -ACGGAAGATGCATGCAGATTCTCG -ACGGAAGATGCATGCAGATAGACG -ACGGAAGATGCATGCAGAGTAACG -ACGGAAGATGCATGCAGAACTTCG -ACGGAAGATGCATGCAGATACGCA -ACGGAAGATGCATGCAGACTTGCA -ACGGAAGATGCATGCAGACGAACA -ACGGAAGATGCATGCAGACAGTCA -ACGGAAGATGCATGCAGAGATCCA -ACGGAAGATGCATGCAGAACGACA -ACGGAAGATGCATGCAGAAGCTCA -ACGGAAGATGCATGCAGATCACGT -ACGGAAGATGCATGCAGACGTAGT -ACGGAAGATGCATGCAGAGTCAGT -ACGGAAGATGCATGCAGAGAAGGT -ACGGAAGATGCATGCAGAAACCGT -ACGGAAGATGCATGCAGATTGTGC -ACGGAAGATGCATGCAGACTAAGC -ACGGAAGATGCATGCAGAACTAGC -ACGGAAGATGCATGCAGAAGATGC -ACGGAAGATGCATGCAGATGAAGG -ACGGAAGATGCATGCAGACAATGG -ACGGAAGATGCATGCAGAATGAGG -ACGGAAGATGCATGCAGAAATGGG -ACGGAAGATGCATGCAGATCCTGA -ACGGAAGATGCATGCAGATAGCGA -ACGGAAGATGCATGCAGACACAGA -ACGGAAGATGCATGCAGAGCAAGA -ACGGAAGATGCATGCAGAGGTTGA -ACGGAAGATGCATGCAGATCCGAT -ACGGAAGATGCATGCAGATGGCAT -ACGGAAGATGCATGCAGACGAGAT -ACGGAAGATGCATGCAGATACCAC -ACGGAAGATGCATGCAGACAGAAC -ACGGAAGATGCATGCAGAGTCTAC -ACGGAAGATGCATGCAGAACGTAC -ACGGAAGATGCATGCAGAAGTGAC -ACGGAAGATGCATGCAGACTGTAG -ACGGAAGATGCATGCAGACCTAAG -ACGGAAGATGCATGCAGAGTTCAG -ACGGAAGATGCATGCAGAGCATAG -ACGGAAGATGCATGCAGAGACAAG -ACGGAAGATGCATGCAGAAAGCAG -ACGGAAGATGCATGCAGACGTCAA -ACGGAAGATGCATGCAGAGCTGAA -ACGGAAGATGCATGCAGAAGTACG -ACGGAAGATGCATGCAGAATCCGA -ACGGAAGATGCATGCAGAATGGGA -ACGGAAGATGCATGCAGAGTGCAA -ACGGAAGATGCATGCAGAGAGGAA -ACGGAAGATGCATGCAGACAGGTA -ACGGAAGATGCATGCAGAGACTCT -ACGGAAGATGCATGCAGAAGTCCT -ACGGAAGATGCATGCAGATAAGCC -ACGGAAGATGCATGCAGAATAGCC -ACGGAAGATGCATGCAGATAACCG -ACGGAAGATGCATGCAGAATGCCA -ACGGAAGATGCAAGGTGAGGAAAC -ACGGAAGATGCAAGGTGAAACACC -ACGGAAGATGCAAGGTGAATCGAG -ACGGAAGATGCAAGGTGACTCCTT -ACGGAAGATGCAAGGTGACCTGTT -ACGGAAGATGCAAGGTGACGGTTT -ACGGAAGATGCAAGGTGAGTGGTT -ACGGAAGATGCAAGGTGAGCCTTT -ACGGAAGATGCAAGGTGAGGTCTT -ACGGAAGATGCAAGGTGAACGCTT -ACGGAAGATGCAAGGTGAAGCGTT -ACGGAAGATGCAAGGTGATTCGTC -ACGGAAGATGCAAGGTGATCTCTC -ACGGAAGATGCAAGGTGATGGATC -ACGGAAGATGCAAGGTGACACTTC -ACGGAAGATGCAAGGTGAGTACTC -ACGGAAGATGCAAGGTGAGATGTC -ACGGAAGATGCAAGGTGAACAGTC -ACGGAAGATGCAAGGTGATTGCTG -ACGGAAGATGCAAGGTGATCCATG -ACGGAAGATGCAAGGTGATGTGTG -ACGGAAGATGCAAGGTGACTAGTG -ACGGAAGATGCAAGGTGACATCTG -ACGGAAGATGCAAGGTGAGAGTTG -ACGGAAGATGCAAGGTGAAGACTG -ACGGAAGATGCAAGGTGATCGGTA -ACGGAAGATGCAAGGTGATGCCTA -ACGGAAGATGCAAGGTGACCACTA -ACGGAAGATGCAAGGTGAGGAGTA -ACGGAAGATGCAAGGTGATCGTCT -ACGGAAGATGCAAGGTGATGCACT -ACGGAAGATGCAAGGTGACTGACT -ACGGAAGATGCAAGGTGACAACCT -ACGGAAGATGCAAGGTGAGCTACT -ACGGAAGATGCAAGGTGAGGATCT -ACGGAAGATGCAAGGTGAAAGGCT -ACGGAAGATGCAAGGTGATCAACC -ACGGAAGATGCAAGGTGATGTTCC -ACGGAAGATGCAAGGTGAATTCCC -ACGGAAGATGCAAGGTGATTCTCG -ACGGAAGATGCAAGGTGATAGACG -ACGGAAGATGCAAGGTGAGTAACG -ACGGAAGATGCAAGGTGAACTTCG -ACGGAAGATGCAAGGTGATACGCA -ACGGAAGATGCAAGGTGACTTGCA -ACGGAAGATGCAAGGTGACGAACA -ACGGAAGATGCAAGGTGACAGTCA -ACGGAAGATGCAAGGTGAGATCCA -ACGGAAGATGCAAGGTGAACGACA -ACGGAAGATGCAAGGTGAAGCTCA -ACGGAAGATGCAAGGTGATCACGT -ACGGAAGATGCAAGGTGACGTAGT -ACGGAAGATGCAAGGTGAGTCAGT -ACGGAAGATGCAAGGTGAGAAGGT -ACGGAAGATGCAAGGTGAAACCGT -ACGGAAGATGCAAGGTGATTGTGC -ACGGAAGATGCAAGGTGACTAAGC -ACGGAAGATGCAAGGTGAACTAGC -ACGGAAGATGCAAGGTGAAGATGC -ACGGAAGATGCAAGGTGATGAAGG -ACGGAAGATGCAAGGTGACAATGG -ACGGAAGATGCAAGGTGAATGAGG -ACGGAAGATGCAAGGTGAAATGGG -ACGGAAGATGCAAGGTGATCCTGA -ACGGAAGATGCAAGGTGATAGCGA -ACGGAAGATGCAAGGTGACACAGA -ACGGAAGATGCAAGGTGAGCAAGA -ACGGAAGATGCAAGGTGAGGTTGA -ACGGAAGATGCAAGGTGATCCGAT -ACGGAAGATGCAAGGTGATGGCAT -ACGGAAGATGCAAGGTGACGAGAT -ACGGAAGATGCAAGGTGATACCAC -ACGGAAGATGCAAGGTGACAGAAC -ACGGAAGATGCAAGGTGAGTCTAC -ACGGAAGATGCAAGGTGAACGTAC -ACGGAAGATGCAAGGTGAAGTGAC -ACGGAAGATGCAAGGTGACTGTAG -ACGGAAGATGCAAGGTGACCTAAG -ACGGAAGATGCAAGGTGAGTTCAG -ACGGAAGATGCAAGGTGAGCATAG -ACGGAAGATGCAAGGTGAGACAAG -ACGGAAGATGCAAGGTGAAAGCAG -ACGGAAGATGCAAGGTGACGTCAA -ACGGAAGATGCAAGGTGAGCTGAA -ACGGAAGATGCAAGGTGAAGTACG -ACGGAAGATGCAAGGTGAATCCGA -ACGGAAGATGCAAGGTGAATGGGA -ACGGAAGATGCAAGGTGAGTGCAA -ACGGAAGATGCAAGGTGAGAGGAA -ACGGAAGATGCAAGGTGACAGGTA -ACGGAAGATGCAAGGTGAGACTCT -ACGGAAGATGCAAGGTGAAGTCCT -ACGGAAGATGCAAGGTGATAAGCC -ACGGAAGATGCAAGGTGAATAGCC -ACGGAAGATGCAAGGTGATAACCG -ACGGAAGATGCAAGGTGAATGCCA -ACGGAAGATGCATGGCAAGGAAAC -ACGGAAGATGCATGGCAAAACACC -ACGGAAGATGCATGGCAAATCGAG -ACGGAAGATGCATGGCAACTCCTT -ACGGAAGATGCATGGCAACCTGTT -ACGGAAGATGCATGGCAACGGTTT -ACGGAAGATGCATGGCAAGTGGTT -ACGGAAGATGCATGGCAAGCCTTT -ACGGAAGATGCATGGCAAGGTCTT -ACGGAAGATGCATGGCAAACGCTT -ACGGAAGATGCATGGCAAAGCGTT -ACGGAAGATGCATGGCAATTCGTC -ACGGAAGATGCATGGCAATCTCTC -ACGGAAGATGCATGGCAATGGATC -ACGGAAGATGCATGGCAACACTTC -ACGGAAGATGCATGGCAAGTACTC -ACGGAAGATGCATGGCAAGATGTC -ACGGAAGATGCATGGCAAACAGTC -ACGGAAGATGCATGGCAATTGCTG -ACGGAAGATGCATGGCAATCCATG -ACGGAAGATGCATGGCAATGTGTG -ACGGAAGATGCATGGCAACTAGTG -ACGGAAGATGCATGGCAACATCTG -ACGGAAGATGCATGGCAAGAGTTG -ACGGAAGATGCATGGCAAAGACTG -ACGGAAGATGCATGGCAATCGGTA -ACGGAAGATGCATGGCAATGCCTA -ACGGAAGATGCATGGCAACCACTA -ACGGAAGATGCATGGCAAGGAGTA -ACGGAAGATGCATGGCAATCGTCT -ACGGAAGATGCATGGCAATGCACT -ACGGAAGATGCATGGCAACTGACT -ACGGAAGATGCATGGCAACAACCT -ACGGAAGATGCATGGCAAGCTACT -ACGGAAGATGCATGGCAAGGATCT -ACGGAAGATGCATGGCAAAAGGCT -ACGGAAGATGCATGGCAATCAACC -ACGGAAGATGCATGGCAATGTTCC -ACGGAAGATGCATGGCAAATTCCC -ACGGAAGATGCATGGCAATTCTCG -ACGGAAGATGCATGGCAATAGACG -ACGGAAGATGCATGGCAAGTAACG -ACGGAAGATGCATGGCAAACTTCG -ACGGAAGATGCATGGCAATACGCA -ACGGAAGATGCATGGCAACTTGCA -ACGGAAGATGCATGGCAACGAACA -ACGGAAGATGCATGGCAACAGTCA -ACGGAAGATGCATGGCAAGATCCA -ACGGAAGATGCATGGCAAACGACA -ACGGAAGATGCATGGCAAAGCTCA -ACGGAAGATGCATGGCAATCACGT -ACGGAAGATGCATGGCAACGTAGT -ACGGAAGATGCATGGCAAGTCAGT -ACGGAAGATGCATGGCAAGAAGGT -ACGGAAGATGCATGGCAAAACCGT -ACGGAAGATGCATGGCAATTGTGC -ACGGAAGATGCATGGCAACTAAGC -ACGGAAGATGCATGGCAAACTAGC -ACGGAAGATGCATGGCAAAGATGC -ACGGAAGATGCATGGCAATGAAGG -ACGGAAGATGCATGGCAACAATGG -ACGGAAGATGCATGGCAAATGAGG -ACGGAAGATGCATGGCAAAATGGG -ACGGAAGATGCATGGCAATCCTGA -ACGGAAGATGCATGGCAATAGCGA -ACGGAAGATGCATGGCAACACAGA -ACGGAAGATGCATGGCAAGCAAGA -ACGGAAGATGCATGGCAAGGTTGA -ACGGAAGATGCATGGCAATCCGAT -ACGGAAGATGCATGGCAATGGCAT -ACGGAAGATGCATGGCAACGAGAT -ACGGAAGATGCATGGCAATACCAC -ACGGAAGATGCATGGCAACAGAAC -ACGGAAGATGCATGGCAAGTCTAC -ACGGAAGATGCATGGCAAACGTAC -ACGGAAGATGCATGGCAAAGTGAC -ACGGAAGATGCATGGCAACTGTAG -ACGGAAGATGCATGGCAACCTAAG -ACGGAAGATGCATGGCAAGTTCAG -ACGGAAGATGCATGGCAAGCATAG -ACGGAAGATGCATGGCAAGACAAG -ACGGAAGATGCATGGCAAAAGCAG -ACGGAAGATGCATGGCAACGTCAA -ACGGAAGATGCATGGCAAGCTGAA -ACGGAAGATGCATGGCAAAGTACG -ACGGAAGATGCATGGCAAATCCGA -ACGGAAGATGCATGGCAAATGGGA -ACGGAAGATGCATGGCAAGTGCAA -ACGGAAGATGCATGGCAAGAGGAA -ACGGAAGATGCATGGCAACAGGTA -ACGGAAGATGCATGGCAAGACTCT -ACGGAAGATGCATGGCAAAGTCCT -ACGGAAGATGCATGGCAATAAGCC -ACGGAAGATGCATGGCAAATAGCC -ACGGAAGATGCATGGCAATAACCG -ACGGAAGATGCATGGCAAATGCCA -ACGGAAGATGCAAGGATGGGAAAC -ACGGAAGATGCAAGGATGAACACC -ACGGAAGATGCAAGGATGATCGAG -ACGGAAGATGCAAGGATGCTCCTT -ACGGAAGATGCAAGGATGCCTGTT -ACGGAAGATGCAAGGATGCGGTTT -ACGGAAGATGCAAGGATGGTGGTT -ACGGAAGATGCAAGGATGGCCTTT -ACGGAAGATGCAAGGATGGGTCTT -ACGGAAGATGCAAGGATGACGCTT -ACGGAAGATGCAAGGATGAGCGTT -ACGGAAGATGCAAGGATGTTCGTC -ACGGAAGATGCAAGGATGTCTCTC -ACGGAAGATGCAAGGATGTGGATC -ACGGAAGATGCAAGGATGCACTTC -ACGGAAGATGCAAGGATGGTACTC -ACGGAAGATGCAAGGATGGATGTC -ACGGAAGATGCAAGGATGACAGTC -ACGGAAGATGCAAGGATGTTGCTG -ACGGAAGATGCAAGGATGTCCATG -ACGGAAGATGCAAGGATGTGTGTG -ACGGAAGATGCAAGGATGCTAGTG -ACGGAAGATGCAAGGATGCATCTG -ACGGAAGATGCAAGGATGGAGTTG -ACGGAAGATGCAAGGATGAGACTG -ACGGAAGATGCAAGGATGTCGGTA -ACGGAAGATGCAAGGATGTGCCTA -ACGGAAGATGCAAGGATGCCACTA -ACGGAAGATGCAAGGATGGGAGTA -ACGGAAGATGCAAGGATGTCGTCT -ACGGAAGATGCAAGGATGTGCACT -ACGGAAGATGCAAGGATGCTGACT -ACGGAAGATGCAAGGATGCAACCT -ACGGAAGATGCAAGGATGGCTACT -ACGGAAGATGCAAGGATGGGATCT -ACGGAAGATGCAAGGATGAAGGCT -ACGGAAGATGCAAGGATGTCAACC -ACGGAAGATGCAAGGATGTGTTCC -ACGGAAGATGCAAGGATGATTCCC -ACGGAAGATGCAAGGATGTTCTCG -ACGGAAGATGCAAGGATGTAGACG -ACGGAAGATGCAAGGATGGTAACG -ACGGAAGATGCAAGGATGACTTCG -ACGGAAGATGCAAGGATGTACGCA -ACGGAAGATGCAAGGATGCTTGCA -ACGGAAGATGCAAGGATGCGAACA -ACGGAAGATGCAAGGATGCAGTCA -ACGGAAGATGCAAGGATGGATCCA -ACGGAAGATGCAAGGATGACGACA -ACGGAAGATGCAAGGATGAGCTCA -ACGGAAGATGCAAGGATGTCACGT -ACGGAAGATGCAAGGATGCGTAGT -ACGGAAGATGCAAGGATGGTCAGT -ACGGAAGATGCAAGGATGGAAGGT -ACGGAAGATGCAAGGATGAACCGT -ACGGAAGATGCAAGGATGTTGTGC -ACGGAAGATGCAAGGATGCTAAGC -ACGGAAGATGCAAGGATGACTAGC -ACGGAAGATGCAAGGATGAGATGC -ACGGAAGATGCAAGGATGTGAAGG -ACGGAAGATGCAAGGATGCAATGG -ACGGAAGATGCAAGGATGATGAGG -ACGGAAGATGCAAGGATGAATGGG -ACGGAAGATGCAAGGATGTCCTGA -ACGGAAGATGCAAGGATGTAGCGA -ACGGAAGATGCAAGGATGCACAGA -ACGGAAGATGCAAGGATGGCAAGA -ACGGAAGATGCAAGGATGGGTTGA -ACGGAAGATGCAAGGATGTCCGAT -ACGGAAGATGCAAGGATGTGGCAT -ACGGAAGATGCAAGGATGCGAGAT -ACGGAAGATGCAAGGATGTACCAC -ACGGAAGATGCAAGGATGCAGAAC -ACGGAAGATGCAAGGATGGTCTAC -ACGGAAGATGCAAGGATGACGTAC -ACGGAAGATGCAAGGATGAGTGAC -ACGGAAGATGCAAGGATGCTGTAG -ACGGAAGATGCAAGGATGCCTAAG -ACGGAAGATGCAAGGATGGTTCAG -ACGGAAGATGCAAGGATGGCATAG -ACGGAAGATGCAAGGATGGACAAG -ACGGAAGATGCAAGGATGAAGCAG -ACGGAAGATGCAAGGATGCGTCAA -ACGGAAGATGCAAGGATGGCTGAA -ACGGAAGATGCAAGGATGAGTACG -ACGGAAGATGCAAGGATGATCCGA -ACGGAAGATGCAAGGATGATGGGA -ACGGAAGATGCAAGGATGGTGCAA -ACGGAAGATGCAAGGATGGAGGAA -ACGGAAGATGCAAGGATGCAGGTA -ACGGAAGATGCAAGGATGGACTCT -ACGGAAGATGCAAGGATGAGTCCT -ACGGAAGATGCAAGGATGTAAGCC -ACGGAAGATGCAAGGATGATAGCC -ACGGAAGATGCAAGGATGTAACCG -ACGGAAGATGCAAGGATGATGCCA -ACGGAAGATGCAGGGAATGGAAAC -ACGGAAGATGCAGGGAATAACACC -ACGGAAGATGCAGGGAATATCGAG -ACGGAAGATGCAGGGAATCTCCTT -ACGGAAGATGCAGGGAATCCTGTT -ACGGAAGATGCAGGGAATCGGTTT -ACGGAAGATGCAGGGAATGTGGTT -ACGGAAGATGCAGGGAATGCCTTT -ACGGAAGATGCAGGGAATGGTCTT -ACGGAAGATGCAGGGAATACGCTT -ACGGAAGATGCAGGGAATAGCGTT -ACGGAAGATGCAGGGAATTTCGTC -ACGGAAGATGCAGGGAATTCTCTC -ACGGAAGATGCAGGGAATTGGATC -ACGGAAGATGCAGGGAATCACTTC -ACGGAAGATGCAGGGAATGTACTC -ACGGAAGATGCAGGGAATGATGTC -ACGGAAGATGCAGGGAATACAGTC -ACGGAAGATGCAGGGAATTTGCTG -ACGGAAGATGCAGGGAATTCCATG -ACGGAAGATGCAGGGAATTGTGTG -ACGGAAGATGCAGGGAATCTAGTG -ACGGAAGATGCAGGGAATCATCTG -ACGGAAGATGCAGGGAATGAGTTG -ACGGAAGATGCAGGGAATAGACTG -ACGGAAGATGCAGGGAATTCGGTA -ACGGAAGATGCAGGGAATTGCCTA -ACGGAAGATGCAGGGAATCCACTA -ACGGAAGATGCAGGGAATGGAGTA -ACGGAAGATGCAGGGAATTCGTCT -ACGGAAGATGCAGGGAATTGCACT -ACGGAAGATGCAGGGAATCTGACT -ACGGAAGATGCAGGGAATCAACCT -ACGGAAGATGCAGGGAATGCTACT -ACGGAAGATGCAGGGAATGGATCT -ACGGAAGATGCAGGGAATAAGGCT -ACGGAAGATGCAGGGAATTCAACC -ACGGAAGATGCAGGGAATTGTTCC -ACGGAAGATGCAGGGAATATTCCC -ACGGAAGATGCAGGGAATTTCTCG -ACGGAAGATGCAGGGAATTAGACG -ACGGAAGATGCAGGGAATGTAACG -ACGGAAGATGCAGGGAATACTTCG -ACGGAAGATGCAGGGAATTACGCA -ACGGAAGATGCAGGGAATCTTGCA -ACGGAAGATGCAGGGAATCGAACA -ACGGAAGATGCAGGGAATCAGTCA -ACGGAAGATGCAGGGAATGATCCA -ACGGAAGATGCAGGGAATACGACA -ACGGAAGATGCAGGGAATAGCTCA -ACGGAAGATGCAGGGAATTCACGT -ACGGAAGATGCAGGGAATCGTAGT -ACGGAAGATGCAGGGAATGTCAGT -ACGGAAGATGCAGGGAATGAAGGT -ACGGAAGATGCAGGGAATAACCGT -ACGGAAGATGCAGGGAATTTGTGC -ACGGAAGATGCAGGGAATCTAAGC -ACGGAAGATGCAGGGAATACTAGC -ACGGAAGATGCAGGGAATAGATGC -ACGGAAGATGCAGGGAATTGAAGG -ACGGAAGATGCAGGGAATCAATGG -ACGGAAGATGCAGGGAATATGAGG -ACGGAAGATGCAGGGAATAATGGG -ACGGAAGATGCAGGGAATTCCTGA -ACGGAAGATGCAGGGAATTAGCGA -ACGGAAGATGCAGGGAATCACAGA -ACGGAAGATGCAGGGAATGCAAGA -ACGGAAGATGCAGGGAATGGTTGA -ACGGAAGATGCAGGGAATTCCGAT -ACGGAAGATGCAGGGAATTGGCAT -ACGGAAGATGCAGGGAATCGAGAT -ACGGAAGATGCAGGGAATTACCAC -ACGGAAGATGCAGGGAATCAGAAC -ACGGAAGATGCAGGGAATGTCTAC -ACGGAAGATGCAGGGAATACGTAC -ACGGAAGATGCAGGGAATAGTGAC -ACGGAAGATGCAGGGAATCTGTAG -ACGGAAGATGCAGGGAATCCTAAG -ACGGAAGATGCAGGGAATGTTCAG -ACGGAAGATGCAGGGAATGCATAG -ACGGAAGATGCAGGGAATGACAAG -ACGGAAGATGCAGGGAATAAGCAG -ACGGAAGATGCAGGGAATCGTCAA -ACGGAAGATGCAGGGAATGCTGAA -ACGGAAGATGCAGGGAATAGTACG -ACGGAAGATGCAGGGAATATCCGA -ACGGAAGATGCAGGGAATATGGGA -ACGGAAGATGCAGGGAATGTGCAA -ACGGAAGATGCAGGGAATGAGGAA -ACGGAAGATGCAGGGAATCAGGTA -ACGGAAGATGCAGGGAATGACTCT -ACGGAAGATGCAGGGAATAGTCCT -ACGGAAGATGCAGGGAATTAAGCC -ACGGAAGATGCAGGGAATATAGCC -ACGGAAGATGCAGGGAATTAACCG -ACGGAAGATGCAGGGAATATGCCA -ACGGAAGATGCATGATCCGGAAAC -ACGGAAGATGCATGATCCAACACC -ACGGAAGATGCATGATCCATCGAG -ACGGAAGATGCATGATCCCTCCTT -ACGGAAGATGCATGATCCCCTGTT -ACGGAAGATGCATGATCCCGGTTT -ACGGAAGATGCATGATCCGTGGTT -ACGGAAGATGCATGATCCGCCTTT -ACGGAAGATGCATGATCCGGTCTT -ACGGAAGATGCATGATCCACGCTT -ACGGAAGATGCATGATCCAGCGTT -ACGGAAGATGCATGATCCTTCGTC -ACGGAAGATGCATGATCCTCTCTC -ACGGAAGATGCATGATCCTGGATC -ACGGAAGATGCATGATCCCACTTC -ACGGAAGATGCATGATCCGTACTC -ACGGAAGATGCATGATCCGATGTC -ACGGAAGATGCATGATCCACAGTC -ACGGAAGATGCATGATCCTTGCTG -ACGGAAGATGCATGATCCTCCATG -ACGGAAGATGCATGATCCTGTGTG -ACGGAAGATGCATGATCCCTAGTG -ACGGAAGATGCATGATCCCATCTG -ACGGAAGATGCATGATCCGAGTTG -ACGGAAGATGCATGATCCAGACTG -ACGGAAGATGCATGATCCTCGGTA -ACGGAAGATGCATGATCCTGCCTA -ACGGAAGATGCATGATCCCCACTA -ACGGAAGATGCATGATCCGGAGTA -ACGGAAGATGCATGATCCTCGTCT -ACGGAAGATGCATGATCCTGCACT -ACGGAAGATGCATGATCCCTGACT -ACGGAAGATGCATGATCCCAACCT -ACGGAAGATGCATGATCCGCTACT -ACGGAAGATGCATGATCCGGATCT -ACGGAAGATGCATGATCCAAGGCT -ACGGAAGATGCATGATCCTCAACC -ACGGAAGATGCATGATCCTGTTCC -ACGGAAGATGCATGATCCATTCCC -ACGGAAGATGCATGATCCTTCTCG -ACGGAAGATGCATGATCCTAGACG -ACGGAAGATGCATGATCCGTAACG -ACGGAAGATGCATGATCCACTTCG -ACGGAAGATGCATGATCCTACGCA -ACGGAAGATGCATGATCCCTTGCA -ACGGAAGATGCATGATCCCGAACA -ACGGAAGATGCATGATCCCAGTCA -ACGGAAGATGCATGATCCGATCCA -ACGGAAGATGCATGATCCACGACA -ACGGAAGATGCATGATCCAGCTCA -ACGGAAGATGCATGATCCTCACGT -ACGGAAGATGCATGATCCCGTAGT -ACGGAAGATGCATGATCCGTCAGT -ACGGAAGATGCATGATCCGAAGGT -ACGGAAGATGCATGATCCAACCGT -ACGGAAGATGCATGATCCTTGTGC -ACGGAAGATGCATGATCCCTAAGC -ACGGAAGATGCATGATCCACTAGC -ACGGAAGATGCATGATCCAGATGC -ACGGAAGATGCATGATCCTGAAGG -ACGGAAGATGCATGATCCCAATGG -ACGGAAGATGCATGATCCATGAGG -ACGGAAGATGCATGATCCAATGGG -ACGGAAGATGCATGATCCTCCTGA -ACGGAAGATGCATGATCCTAGCGA -ACGGAAGATGCATGATCCCACAGA -ACGGAAGATGCATGATCCGCAAGA -ACGGAAGATGCATGATCCGGTTGA -ACGGAAGATGCATGATCCTCCGAT -ACGGAAGATGCATGATCCTGGCAT -ACGGAAGATGCATGATCCCGAGAT -ACGGAAGATGCATGATCCTACCAC -ACGGAAGATGCATGATCCCAGAAC -ACGGAAGATGCATGATCCGTCTAC -ACGGAAGATGCATGATCCACGTAC -ACGGAAGATGCATGATCCAGTGAC -ACGGAAGATGCATGATCCCTGTAG -ACGGAAGATGCATGATCCCCTAAG -ACGGAAGATGCATGATCCGTTCAG -ACGGAAGATGCATGATCCGCATAG -ACGGAAGATGCATGATCCGACAAG -ACGGAAGATGCATGATCCAAGCAG -ACGGAAGATGCATGATCCCGTCAA -ACGGAAGATGCATGATCCGCTGAA -ACGGAAGATGCATGATCCAGTACG -ACGGAAGATGCATGATCCATCCGA -ACGGAAGATGCATGATCCATGGGA -ACGGAAGATGCATGATCCGTGCAA -ACGGAAGATGCATGATCCGAGGAA -ACGGAAGATGCATGATCCCAGGTA -ACGGAAGATGCATGATCCGACTCT -ACGGAAGATGCATGATCCAGTCCT -ACGGAAGATGCATGATCCTAAGCC -ACGGAAGATGCATGATCCATAGCC -ACGGAAGATGCATGATCCTAACCG -ACGGAAGATGCATGATCCATGCCA -ACGGAAGATGCACGATAGGGAAAC -ACGGAAGATGCACGATAGAACACC -ACGGAAGATGCACGATAGATCGAG -ACGGAAGATGCACGATAGCTCCTT -ACGGAAGATGCACGATAGCCTGTT -ACGGAAGATGCACGATAGCGGTTT -ACGGAAGATGCACGATAGGTGGTT -ACGGAAGATGCACGATAGGCCTTT -ACGGAAGATGCACGATAGGGTCTT -ACGGAAGATGCACGATAGACGCTT -ACGGAAGATGCACGATAGAGCGTT -ACGGAAGATGCACGATAGTTCGTC -ACGGAAGATGCACGATAGTCTCTC -ACGGAAGATGCACGATAGTGGATC -ACGGAAGATGCACGATAGCACTTC -ACGGAAGATGCACGATAGGTACTC -ACGGAAGATGCACGATAGGATGTC -ACGGAAGATGCACGATAGACAGTC -ACGGAAGATGCACGATAGTTGCTG -ACGGAAGATGCACGATAGTCCATG -ACGGAAGATGCACGATAGTGTGTG -ACGGAAGATGCACGATAGCTAGTG -ACGGAAGATGCACGATAGCATCTG -ACGGAAGATGCACGATAGGAGTTG -ACGGAAGATGCACGATAGAGACTG -ACGGAAGATGCACGATAGTCGGTA -ACGGAAGATGCACGATAGTGCCTA -ACGGAAGATGCACGATAGCCACTA -ACGGAAGATGCACGATAGGGAGTA -ACGGAAGATGCACGATAGTCGTCT -ACGGAAGATGCACGATAGTGCACT -ACGGAAGATGCACGATAGCTGACT -ACGGAAGATGCACGATAGCAACCT -ACGGAAGATGCACGATAGGCTACT -ACGGAAGATGCACGATAGGGATCT -ACGGAAGATGCACGATAGAAGGCT -ACGGAAGATGCACGATAGTCAACC -ACGGAAGATGCACGATAGTGTTCC -ACGGAAGATGCACGATAGATTCCC -ACGGAAGATGCACGATAGTTCTCG -ACGGAAGATGCACGATAGTAGACG -ACGGAAGATGCACGATAGGTAACG -ACGGAAGATGCACGATAGACTTCG -ACGGAAGATGCACGATAGTACGCA -ACGGAAGATGCACGATAGCTTGCA -ACGGAAGATGCACGATAGCGAACA -ACGGAAGATGCACGATAGCAGTCA -ACGGAAGATGCACGATAGGATCCA -ACGGAAGATGCACGATAGACGACA -ACGGAAGATGCACGATAGAGCTCA -ACGGAAGATGCACGATAGTCACGT -ACGGAAGATGCACGATAGCGTAGT -ACGGAAGATGCACGATAGGTCAGT -ACGGAAGATGCACGATAGGAAGGT -ACGGAAGATGCACGATAGAACCGT -ACGGAAGATGCACGATAGTTGTGC -ACGGAAGATGCACGATAGCTAAGC -ACGGAAGATGCACGATAGACTAGC -ACGGAAGATGCACGATAGAGATGC -ACGGAAGATGCACGATAGTGAAGG -ACGGAAGATGCACGATAGCAATGG -ACGGAAGATGCACGATAGATGAGG -ACGGAAGATGCACGATAGAATGGG -ACGGAAGATGCACGATAGTCCTGA -ACGGAAGATGCACGATAGTAGCGA -ACGGAAGATGCACGATAGCACAGA -ACGGAAGATGCACGATAGGCAAGA -ACGGAAGATGCACGATAGGGTTGA -ACGGAAGATGCACGATAGTCCGAT -ACGGAAGATGCACGATAGTGGCAT -ACGGAAGATGCACGATAGCGAGAT -ACGGAAGATGCACGATAGTACCAC -ACGGAAGATGCACGATAGCAGAAC -ACGGAAGATGCACGATAGGTCTAC -ACGGAAGATGCACGATAGACGTAC -ACGGAAGATGCACGATAGAGTGAC -ACGGAAGATGCACGATAGCTGTAG -ACGGAAGATGCACGATAGCCTAAG -ACGGAAGATGCACGATAGGTTCAG -ACGGAAGATGCACGATAGGCATAG -ACGGAAGATGCACGATAGGACAAG -ACGGAAGATGCACGATAGAAGCAG -ACGGAAGATGCACGATAGCGTCAA -ACGGAAGATGCACGATAGGCTGAA -ACGGAAGATGCACGATAGAGTACG -ACGGAAGATGCACGATAGATCCGA -ACGGAAGATGCACGATAGATGGGA -ACGGAAGATGCACGATAGGTGCAA -ACGGAAGATGCACGATAGGAGGAA -ACGGAAGATGCACGATAGCAGGTA -ACGGAAGATGCACGATAGGACTCT -ACGGAAGATGCACGATAGAGTCCT -ACGGAAGATGCACGATAGTAAGCC -ACGGAAGATGCACGATAGATAGCC -ACGGAAGATGCACGATAGTAACCG -ACGGAAGATGCACGATAGATGCCA -ACGGAAGATGCAAGACACGGAAAC -ACGGAAGATGCAAGACACAACACC -ACGGAAGATGCAAGACACATCGAG -ACGGAAGATGCAAGACACCTCCTT -ACGGAAGATGCAAGACACCCTGTT -ACGGAAGATGCAAGACACCGGTTT -ACGGAAGATGCAAGACACGTGGTT -ACGGAAGATGCAAGACACGCCTTT -ACGGAAGATGCAAGACACGGTCTT -ACGGAAGATGCAAGACACACGCTT -ACGGAAGATGCAAGACACAGCGTT -ACGGAAGATGCAAGACACTTCGTC -ACGGAAGATGCAAGACACTCTCTC -ACGGAAGATGCAAGACACTGGATC -ACGGAAGATGCAAGACACCACTTC -ACGGAAGATGCAAGACACGTACTC -ACGGAAGATGCAAGACACGATGTC -ACGGAAGATGCAAGACACACAGTC -ACGGAAGATGCAAGACACTTGCTG -ACGGAAGATGCAAGACACTCCATG -ACGGAAGATGCAAGACACTGTGTG -ACGGAAGATGCAAGACACCTAGTG -ACGGAAGATGCAAGACACCATCTG -ACGGAAGATGCAAGACACGAGTTG -ACGGAAGATGCAAGACACAGACTG -ACGGAAGATGCAAGACACTCGGTA -ACGGAAGATGCAAGACACTGCCTA -ACGGAAGATGCAAGACACCCACTA -ACGGAAGATGCAAGACACGGAGTA -ACGGAAGATGCAAGACACTCGTCT -ACGGAAGATGCAAGACACTGCACT -ACGGAAGATGCAAGACACCTGACT -ACGGAAGATGCAAGACACCAACCT -ACGGAAGATGCAAGACACGCTACT -ACGGAAGATGCAAGACACGGATCT -ACGGAAGATGCAAGACACAAGGCT -ACGGAAGATGCAAGACACTCAACC -ACGGAAGATGCAAGACACTGTTCC -ACGGAAGATGCAAGACACATTCCC -ACGGAAGATGCAAGACACTTCTCG -ACGGAAGATGCAAGACACTAGACG -ACGGAAGATGCAAGACACGTAACG -ACGGAAGATGCAAGACACACTTCG -ACGGAAGATGCAAGACACTACGCA -ACGGAAGATGCAAGACACCTTGCA -ACGGAAGATGCAAGACACCGAACA -ACGGAAGATGCAAGACACCAGTCA -ACGGAAGATGCAAGACACGATCCA -ACGGAAGATGCAAGACACACGACA -ACGGAAGATGCAAGACACAGCTCA -ACGGAAGATGCAAGACACTCACGT -ACGGAAGATGCAAGACACCGTAGT -ACGGAAGATGCAAGACACGTCAGT -ACGGAAGATGCAAGACACGAAGGT -ACGGAAGATGCAAGACACAACCGT -ACGGAAGATGCAAGACACTTGTGC -ACGGAAGATGCAAGACACCTAAGC -ACGGAAGATGCAAGACACACTAGC -ACGGAAGATGCAAGACACAGATGC -ACGGAAGATGCAAGACACTGAAGG -ACGGAAGATGCAAGACACCAATGG -ACGGAAGATGCAAGACACATGAGG -ACGGAAGATGCAAGACACAATGGG -ACGGAAGATGCAAGACACTCCTGA -ACGGAAGATGCAAGACACTAGCGA -ACGGAAGATGCAAGACACCACAGA -ACGGAAGATGCAAGACACGCAAGA -ACGGAAGATGCAAGACACGGTTGA -ACGGAAGATGCAAGACACTCCGAT -ACGGAAGATGCAAGACACTGGCAT -ACGGAAGATGCAAGACACCGAGAT -ACGGAAGATGCAAGACACTACCAC -ACGGAAGATGCAAGACACCAGAAC -ACGGAAGATGCAAGACACGTCTAC -ACGGAAGATGCAAGACACACGTAC -ACGGAAGATGCAAGACACAGTGAC -ACGGAAGATGCAAGACACCTGTAG -ACGGAAGATGCAAGACACCCTAAG -ACGGAAGATGCAAGACACGTTCAG -ACGGAAGATGCAAGACACGCATAG -ACGGAAGATGCAAGACACGACAAG -ACGGAAGATGCAAGACACAAGCAG -ACGGAAGATGCAAGACACCGTCAA -ACGGAAGATGCAAGACACGCTGAA -ACGGAAGATGCAAGACACAGTACG -ACGGAAGATGCAAGACACATCCGA -ACGGAAGATGCAAGACACATGGGA -ACGGAAGATGCAAGACACGTGCAA -ACGGAAGATGCAAGACACGAGGAA -ACGGAAGATGCAAGACACCAGGTA -ACGGAAGATGCAAGACACGACTCT -ACGGAAGATGCAAGACACAGTCCT -ACGGAAGATGCAAGACACTAAGCC -ACGGAAGATGCAAGACACATAGCC -ACGGAAGATGCAAGACACTAACCG -ACGGAAGATGCAAGACACATGCCA -ACGGAAGATGCAAGAGCAGGAAAC -ACGGAAGATGCAAGAGCAAACACC -ACGGAAGATGCAAGAGCAATCGAG -ACGGAAGATGCAAGAGCACTCCTT -ACGGAAGATGCAAGAGCACCTGTT -ACGGAAGATGCAAGAGCACGGTTT -ACGGAAGATGCAAGAGCAGTGGTT -ACGGAAGATGCAAGAGCAGCCTTT -ACGGAAGATGCAAGAGCAGGTCTT -ACGGAAGATGCAAGAGCAACGCTT -ACGGAAGATGCAAGAGCAAGCGTT -ACGGAAGATGCAAGAGCATTCGTC -ACGGAAGATGCAAGAGCATCTCTC -ACGGAAGATGCAAGAGCATGGATC -ACGGAAGATGCAAGAGCACACTTC -ACGGAAGATGCAAGAGCAGTACTC -ACGGAAGATGCAAGAGCAGATGTC -ACGGAAGATGCAAGAGCAACAGTC -ACGGAAGATGCAAGAGCATTGCTG -ACGGAAGATGCAAGAGCATCCATG -ACGGAAGATGCAAGAGCATGTGTG -ACGGAAGATGCAAGAGCACTAGTG -ACGGAAGATGCAAGAGCACATCTG -ACGGAAGATGCAAGAGCAGAGTTG -ACGGAAGATGCAAGAGCAAGACTG -ACGGAAGATGCAAGAGCATCGGTA -ACGGAAGATGCAAGAGCATGCCTA -ACGGAAGATGCAAGAGCACCACTA -ACGGAAGATGCAAGAGCAGGAGTA -ACGGAAGATGCAAGAGCATCGTCT -ACGGAAGATGCAAGAGCATGCACT -ACGGAAGATGCAAGAGCACTGACT -ACGGAAGATGCAAGAGCACAACCT -ACGGAAGATGCAAGAGCAGCTACT -ACGGAAGATGCAAGAGCAGGATCT -ACGGAAGATGCAAGAGCAAAGGCT -ACGGAAGATGCAAGAGCATCAACC -ACGGAAGATGCAAGAGCATGTTCC -ACGGAAGATGCAAGAGCAATTCCC -ACGGAAGATGCAAGAGCATTCTCG -ACGGAAGATGCAAGAGCATAGACG -ACGGAAGATGCAAGAGCAGTAACG -ACGGAAGATGCAAGAGCAACTTCG -ACGGAAGATGCAAGAGCATACGCA -ACGGAAGATGCAAGAGCACTTGCA -ACGGAAGATGCAAGAGCACGAACA -ACGGAAGATGCAAGAGCACAGTCA -ACGGAAGATGCAAGAGCAGATCCA -ACGGAAGATGCAAGAGCAACGACA -ACGGAAGATGCAAGAGCAAGCTCA -ACGGAAGATGCAAGAGCATCACGT -ACGGAAGATGCAAGAGCACGTAGT -ACGGAAGATGCAAGAGCAGTCAGT -ACGGAAGATGCAAGAGCAGAAGGT -ACGGAAGATGCAAGAGCAAACCGT -ACGGAAGATGCAAGAGCATTGTGC -ACGGAAGATGCAAGAGCACTAAGC -ACGGAAGATGCAAGAGCAACTAGC -ACGGAAGATGCAAGAGCAAGATGC -ACGGAAGATGCAAGAGCATGAAGG -ACGGAAGATGCAAGAGCACAATGG -ACGGAAGATGCAAGAGCAATGAGG -ACGGAAGATGCAAGAGCAAATGGG -ACGGAAGATGCAAGAGCATCCTGA -ACGGAAGATGCAAGAGCATAGCGA -ACGGAAGATGCAAGAGCACACAGA -ACGGAAGATGCAAGAGCAGCAAGA -ACGGAAGATGCAAGAGCAGGTTGA -ACGGAAGATGCAAGAGCATCCGAT -ACGGAAGATGCAAGAGCATGGCAT -ACGGAAGATGCAAGAGCACGAGAT -ACGGAAGATGCAAGAGCATACCAC -ACGGAAGATGCAAGAGCACAGAAC -ACGGAAGATGCAAGAGCAGTCTAC -ACGGAAGATGCAAGAGCAACGTAC -ACGGAAGATGCAAGAGCAAGTGAC -ACGGAAGATGCAAGAGCACTGTAG -ACGGAAGATGCAAGAGCACCTAAG -ACGGAAGATGCAAGAGCAGTTCAG -ACGGAAGATGCAAGAGCAGCATAG -ACGGAAGATGCAAGAGCAGACAAG -ACGGAAGATGCAAGAGCAAAGCAG -ACGGAAGATGCAAGAGCACGTCAA -ACGGAAGATGCAAGAGCAGCTGAA -ACGGAAGATGCAAGAGCAAGTACG -ACGGAAGATGCAAGAGCAATCCGA -ACGGAAGATGCAAGAGCAATGGGA -ACGGAAGATGCAAGAGCAGTGCAA -ACGGAAGATGCAAGAGCAGAGGAA -ACGGAAGATGCAAGAGCACAGGTA -ACGGAAGATGCAAGAGCAGACTCT -ACGGAAGATGCAAGAGCAAGTCCT -ACGGAAGATGCAAGAGCATAAGCC -ACGGAAGATGCAAGAGCAATAGCC -ACGGAAGATGCAAGAGCATAACCG -ACGGAAGATGCAAGAGCAATGCCA -ACGGAAGATGCATGAGGTGGAAAC -ACGGAAGATGCATGAGGTAACACC -ACGGAAGATGCATGAGGTATCGAG -ACGGAAGATGCATGAGGTCTCCTT -ACGGAAGATGCATGAGGTCCTGTT -ACGGAAGATGCATGAGGTCGGTTT -ACGGAAGATGCATGAGGTGTGGTT -ACGGAAGATGCATGAGGTGCCTTT -ACGGAAGATGCATGAGGTGGTCTT -ACGGAAGATGCATGAGGTACGCTT -ACGGAAGATGCATGAGGTAGCGTT -ACGGAAGATGCATGAGGTTTCGTC -ACGGAAGATGCATGAGGTTCTCTC -ACGGAAGATGCATGAGGTTGGATC -ACGGAAGATGCATGAGGTCACTTC -ACGGAAGATGCATGAGGTGTACTC -ACGGAAGATGCATGAGGTGATGTC -ACGGAAGATGCATGAGGTACAGTC -ACGGAAGATGCATGAGGTTTGCTG -ACGGAAGATGCATGAGGTTCCATG -ACGGAAGATGCATGAGGTTGTGTG -ACGGAAGATGCATGAGGTCTAGTG -ACGGAAGATGCATGAGGTCATCTG -ACGGAAGATGCATGAGGTGAGTTG -ACGGAAGATGCATGAGGTAGACTG -ACGGAAGATGCATGAGGTTCGGTA -ACGGAAGATGCATGAGGTTGCCTA -ACGGAAGATGCATGAGGTCCACTA -ACGGAAGATGCATGAGGTGGAGTA -ACGGAAGATGCATGAGGTTCGTCT -ACGGAAGATGCATGAGGTTGCACT -ACGGAAGATGCATGAGGTCTGACT -ACGGAAGATGCATGAGGTCAACCT -ACGGAAGATGCATGAGGTGCTACT -ACGGAAGATGCATGAGGTGGATCT -ACGGAAGATGCATGAGGTAAGGCT -ACGGAAGATGCATGAGGTTCAACC -ACGGAAGATGCATGAGGTTGTTCC -ACGGAAGATGCATGAGGTATTCCC -ACGGAAGATGCATGAGGTTTCTCG -ACGGAAGATGCATGAGGTTAGACG -ACGGAAGATGCATGAGGTGTAACG -ACGGAAGATGCATGAGGTACTTCG -ACGGAAGATGCATGAGGTTACGCA -ACGGAAGATGCATGAGGTCTTGCA -ACGGAAGATGCATGAGGTCGAACA -ACGGAAGATGCATGAGGTCAGTCA -ACGGAAGATGCATGAGGTGATCCA -ACGGAAGATGCATGAGGTACGACA -ACGGAAGATGCATGAGGTAGCTCA -ACGGAAGATGCATGAGGTTCACGT -ACGGAAGATGCATGAGGTCGTAGT -ACGGAAGATGCATGAGGTGTCAGT -ACGGAAGATGCATGAGGTGAAGGT -ACGGAAGATGCATGAGGTAACCGT -ACGGAAGATGCATGAGGTTTGTGC -ACGGAAGATGCATGAGGTCTAAGC -ACGGAAGATGCATGAGGTACTAGC -ACGGAAGATGCATGAGGTAGATGC -ACGGAAGATGCATGAGGTTGAAGG -ACGGAAGATGCATGAGGTCAATGG -ACGGAAGATGCATGAGGTATGAGG -ACGGAAGATGCATGAGGTAATGGG -ACGGAAGATGCATGAGGTTCCTGA -ACGGAAGATGCATGAGGTTAGCGA -ACGGAAGATGCATGAGGTCACAGA -ACGGAAGATGCATGAGGTGCAAGA -ACGGAAGATGCATGAGGTGGTTGA -ACGGAAGATGCATGAGGTTCCGAT -ACGGAAGATGCATGAGGTTGGCAT -ACGGAAGATGCATGAGGTCGAGAT -ACGGAAGATGCATGAGGTTACCAC -ACGGAAGATGCATGAGGTCAGAAC -ACGGAAGATGCATGAGGTGTCTAC -ACGGAAGATGCATGAGGTACGTAC -ACGGAAGATGCATGAGGTAGTGAC -ACGGAAGATGCATGAGGTCTGTAG -ACGGAAGATGCATGAGGTCCTAAG -ACGGAAGATGCATGAGGTGTTCAG -ACGGAAGATGCATGAGGTGCATAG -ACGGAAGATGCATGAGGTGACAAG -ACGGAAGATGCATGAGGTAAGCAG -ACGGAAGATGCATGAGGTCGTCAA -ACGGAAGATGCATGAGGTGCTGAA -ACGGAAGATGCATGAGGTAGTACG -ACGGAAGATGCATGAGGTATCCGA -ACGGAAGATGCATGAGGTATGGGA -ACGGAAGATGCATGAGGTGTGCAA -ACGGAAGATGCATGAGGTGAGGAA -ACGGAAGATGCATGAGGTCAGGTA -ACGGAAGATGCATGAGGTGACTCT -ACGGAAGATGCATGAGGTAGTCCT -ACGGAAGATGCATGAGGTTAAGCC -ACGGAAGATGCATGAGGTATAGCC -ACGGAAGATGCATGAGGTTAACCG -ACGGAAGATGCATGAGGTATGCCA -ACGGAAGATGCAGATTCCGGAAAC -ACGGAAGATGCAGATTCCAACACC -ACGGAAGATGCAGATTCCATCGAG -ACGGAAGATGCAGATTCCCTCCTT -ACGGAAGATGCAGATTCCCCTGTT -ACGGAAGATGCAGATTCCCGGTTT -ACGGAAGATGCAGATTCCGTGGTT -ACGGAAGATGCAGATTCCGCCTTT -ACGGAAGATGCAGATTCCGGTCTT -ACGGAAGATGCAGATTCCACGCTT -ACGGAAGATGCAGATTCCAGCGTT -ACGGAAGATGCAGATTCCTTCGTC -ACGGAAGATGCAGATTCCTCTCTC -ACGGAAGATGCAGATTCCTGGATC -ACGGAAGATGCAGATTCCCACTTC -ACGGAAGATGCAGATTCCGTACTC -ACGGAAGATGCAGATTCCGATGTC -ACGGAAGATGCAGATTCCACAGTC -ACGGAAGATGCAGATTCCTTGCTG -ACGGAAGATGCAGATTCCTCCATG -ACGGAAGATGCAGATTCCTGTGTG -ACGGAAGATGCAGATTCCCTAGTG -ACGGAAGATGCAGATTCCCATCTG -ACGGAAGATGCAGATTCCGAGTTG -ACGGAAGATGCAGATTCCAGACTG -ACGGAAGATGCAGATTCCTCGGTA -ACGGAAGATGCAGATTCCTGCCTA -ACGGAAGATGCAGATTCCCCACTA -ACGGAAGATGCAGATTCCGGAGTA -ACGGAAGATGCAGATTCCTCGTCT -ACGGAAGATGCAGATTCCTGCACT -ACGGAAGATGCAGATTCCCTGACT -ACGGAAGATGCAGATTCCCAACCT -ACGGAAGATGCAGATTCCGCTACT -ACGGAAGATGCAGATTCCGGATCT -ACGGAAGATGCAGATTCCAAGGCT -ACGGAAGATGCAGATTCCTCAACC -ACGGAAGATGCAGATTCCTGTTCC -ACGGAAGATGCAGATTCCATTCCC -ACGGAAGATGCAGATTCCTTCTCG -ACGGAAGATGCAGATTCCTAGACG -ACGGAAGATGCAGATTCCGTAACG -ACGGAAGATGCAGATTCCACTTCG -ACGGAAGATGCAGATTCCTACGCA -ACGGAAGATGCAGATTCCCTTGCA -ACGGAAGATGCAGATTCCCGAACA -ACGGAAGATGCAGATTCCCAGTCA -ACGGAAGATGCAGATTCCGATCCA -ACGGAAGATGCAGATTCCACGACA -ACGGAAGATGCAGATTCCAGCTCA -ACGGAAGATGCAGATTCCTCACGT -ACGGAAGATGCAGATTCCCGTAGT -ACGGAAGATGCAGATTCCGTCAGT -ACGGAAGATGCAGATTCCGAAGGT -ACGGAAGATGCAGATTCCAACCGT -ACGGAAGATGCAGATTCCTTGTGC -ACGGAAGATGCAGATTCCCTAAGC -ACGGAAGATGCAGATTCCACTAGC -ACGGAAGATGCAGATTCCAGATGC -ACGGAAGATGCAGATTCCTGAAGG -ACGGAAGATGCAGATTCCCAATGG -ACGGAAGATGCAGATTCCATGAGG -ACGGAAGATGCAGATTCCAATGGG -ACGGAAGATGCAGATTCCTCCTGA -ACGGAAGATGCAGATTCCTAGCGA -ACGGAAGATGCAGATTCCCACAGA -ACGGAAGATGCAGATTCCGCAAGA -ACGGAAGATGCAGATTCCGGTTGA -ACGGAAGATGCAGATTCCTCCGAT -ACGGAAGATGCAGATTCCTGGCAT -ACGGAAGATGCAGATTCCCGAGAT -ACGGAAGATGCAGATTCCTACCAC -ACGGAAGATGCAGATTCCCAGAAC -ACGGAAGATGCAGATTCCGTCTAC -ACGGAAGATGCAGATTCCACGTAC -ACGGAAGATGCAGATTCCAGTGAC -ACGGAAGATGCAGATTCCCTGTAG -ACGGAAGATGCAGATTCCCCTAAG -ACGGAAGATGCAGATTCCGTTCAG -ACGGAAGATGCAGATTCCGCATAG -ACGGAAGATGCAGATTCCGACAAG -ACGGAAGATGCAGATTCCAAGCAG -ACGGAAGATGCAGATTCCCGTCAA -ACGGAAGATGCAGATTCCGCTGAA -ACGGAAGATGCAGATTCCAGTACG -ACGGAAGATGCAGATTCCATCCGA -ACGGAAGATGCAGATTCCATGGGA -ACGGAAGATGCAGATTCCGTGCAA -ACGGAAGATGCAGATTCCGAGGAA -ACGGAAGATGCAGATTCCCAGGTA -ACGGAAGATGCAGATTCCGACTCT -ACGGAAGATGCAGATTCCAGTCCT -ACGGAAGATGCAGATTCCTAAGCC -ACGGAAGATGCAGATTCCATAGCC -ACGGAAGATGCAGATTCCTAACCG -ACGGAAGATGCAGATTCCATGCCA -ACGGAAGATGCACATTGGGGAAAC -ACGGAAGATGCACATTGGAACACC -ACGGAAGATGCACATTGGATCGAG -ACGGAAGATGCACATTGGCTCCTT -ACGGAAGATGCACATTGGCCTGTT -ACGGAAGATGCACATTGGCGGTTT -ACGGAAGATGCACATTGGGTGGTT -ACGGAAGATGCACATTGGGCCTTT -ACGGAAGATGCACATTGGGGTCTT -ACGGAAGATGCACATTGGACGCTT -ACGGAAGATGCACATTGGAGCGTT -ACGGAAGATGCACATTGGTTCGTC -ACGGAAGATGCACATTGGTCTCTC -ACGGAAGATGCACATTGGTGGATC -ACGGAAGATGCACATTGGCACTTC -ACGGAAGATGCACATTGGGTACTC -ACGGAAGATGCACATTGGGATGTC -ACGGAAGATGCACATTGGACAGTC -ACGGAAGATGCACATTGGTTGCTG -ACGGAAGATGCACATTGGTCCATG -ACGGAAGATGCACATTGGTGTGTG -ACGGAAGATGCACATTGGCTAGTG -ACGGAAGATGCACATTGGCATCTG -ACGGAAGATGCACATTGGGAGTTG -ACGGAAGATGCACATTGGAGACTG -ACGGAAGATGCACATTGGTCGGTA -ACGGAAGATGCACATTGGTGCCTA -ACGGAAGATGCACATTGGCCACTA -ACGGAAGATGCACATTGGGGAGTA -ACGGAAGATGCACATTGGTCGTCT -ACGGAAGATGCACATTGGTGCACT -ACGGAAGATGCACATTGGCTGACT -ACGGAAGATGCACATTGGCAACCT -ACGGAAGATGCACATTGGGCTACT -ACGGAAGATGCACATTGGGGATCT -ACGGAAGATGCACATTGGAAGGCT -ACGGAAGATGCACATTGGTCAACC -ACGGAAGATGCACATTGGTGTTCC -ACGGAAGATGCACATTGGATTCCC -ACGGAAGATGCACATTGGTTCTCG -ACGGAAGATGCACATTGGTAGACG -ACGGAAGATGCACATTGGGTAACG -ACGGAAGATGCACATTGGACTTCG -ACGGAAGATGCACATTGGTACGCA -ACGGAAGATGCACATTGGCTTGCA -ACGGAAGATGCACATTGGCGAACA -ACGGAAGATGCACATTGGCAGTCA -ACGGAAGATGCACATTGGGATCCA -ACGGAAGATGCACATTGGACGACA -ACGGAAGATGCACATTGGAGCTCA -ACGGAAGATGCACATTGGTCACGT -ACGGAAGATGCACATTGGCGTAGT -ACGGAAGATGCACATTGGGTCAGT -ACGGAAGATGCACATTGGGAAGGT -ACGGAAGATGCACATTGGAACCGT -ACGGAAGATGCACATTGGTTGTGC -ACGGAAGATGCACATTGGCTAAGC -ACGGAAGATGCACATTGGACTAGC -ACGGAAGATGCACATTGGAGATGC -ACGGAAGATGCACATTGGTGAAGG -ACGGAAGATGCACATTGGCAATGG -ACGGAAGATGCACATTGGATGAGG -ACGGAAGATGCACATTGGAATGGG -ACGGAAGATGCACATTGGTCCTGA -ACGGAAGATGCACATTGGTAGCGA -ACGGAAGATGCACATTGGCACAGA -ACGGAAGATGCACATTGGGCAAGA -ACGGAAGATGCACATTGGGGTTGA -ACGGAAGATGCACATTGGTCCGAT -ACGGAAGATGCACATTGGTGGCAT -ACGGAAGATGCACATTGGCGAGAT -ACGGAAGATGCACATTGGTACCAC -ACGGAAGATGCACATTGGCAGAAC -ACGGAAGATGCACATTGGGTCTAC -ACGGAAGATGCACATTGGACGTAC -ACGGAAGATGCACATTGGAGTGAC -ACGGAAGATGCACATTGGCTGTAG -ACGGAAGATGCACATTGGCCTAAG -ACGGAAGATGCACATTGGGTTCAG -ACGGAAGATGCACATTGGGCATAG -ACGGAAGATGCACATTGGGACAAG -ACGGAAGATGCACATTGGAAGCAG -ACGGAAGATGCACATTGGCGTCAA -ACGGAAGATGCACATTGGGCTGAA -ACGGAAGATGCACATTGGAGTACG -ACGGAAGATGCACATTGGATCCGA -ACGGAAGATGCACATTGGATGGGA -ACGGAAGATGCACATTGGGTGCAA -ACGGAAGATGCACATTGGGAGGAA -ACGGAAGATGCACATTGGCAGGTA -ACGGAAGATGCACATTGGGACTCT -ACGGAAGATGCACATTGGAGTCCT -ACGGAAGATGCACATTGGTAAGCC -ACGGAAGATGCACATTGGATAGCC -ACGGAAGATGCACATTGGTAACCG -ACGGAAGATGCACATTGGATGCCA -ACGGAAGATGCAGATCGAGGAAAC -ACGGAAGATGCAGATCGAAACACC -ACGGAAGATGCAGATCGAATCGAG -ACGGAAGATGCAGATCGACTCCTT -ACGGAAGATGCAGATCGACCTGTT -ACGGAAGATGCAGATCGACGGTTT -ACGGAAGATGCAGATCGAGTGGTT -ACGGAAGATGCAGATCGAGCCTTT -ACGGAAGATGCAGATCGAGGTCTT -ACGGAAGATGCAGATCGAACGCTT -ACGGAAGATGCAGATCGAAGCGTT -ACGGAAGATGCAGATCGATTCGTC -ACGGAAGATGCAGATCGATCTCTC -ACGGAAGATGCAGATCGATGGATC -ACGGAAGATGCAGATCGACACTTC -ACGGAAGATGCAGATCGAGTACTC -ACGGAAGATGCAGATCGAGATGTC -ACGGAAGATGCAGATCGAACAGTC -ACGGAAGATGCAGATCGATTGCTG -ACGGAAGATGCAGATCGATCCATG -ACGGAAGATGCAGATCGATGTGTG -ACGGAAGATGCAGATCGACTAGTG -ACGGAAGATGCAGATCGACATCTG -ACGGAAGATGCAGATCGAGAGTTG -ACGGAAGATGCAGATCGAAGACTG -ACGGAAGATGCAGATCGATCGGTA -ACGGAAGATGCAGATCGATGCCTA -ACGGAAGATGCAGATCGACCACTA -ACGGAAGATGCAGATCGAGGAGTA -ACGGAAGATGCAGATCGATCGTCT -ACGGAAGATGCAGATCGATGCACT -ACGGAAGATGCAGATCGACTGACT -ACGGAAGATGCAGATCGACAACCT -ACGGAAGATGCAGATCGAGCTACT -ACGGAAGATGCAGATCGAGGATCT -ACGGAAGATGCAGATCGAAAGGCT -ACGGAAGATGCAGATCGATCAACC -ACGGAAGATGCAGATCGATGTTCC -ACGGAAGATGCAGATCGAATTCCC -ACGGAAGATGCAGATCGATTCTCG -ACGGAAGATGCAGATCGATAGACG -ACGGAAGATGCAGATCGAGTAACG -ACGGAAGATGCAGATCGAACTTCG -ACGGAAGATGCAGATCGATACGCA -ACGGAAGATGCAGATCGACTTGCA -ACGGAAGATGCAGATCGACGAACA -ACGGAAGATGCAGATCGACAGTCA -ACGGAAGATGCAGATCGAGATCCA -ACGGAAGATGCAGATCGAACGACA -ACGGAAGATGCAGATCGAAGCTCA -ACGGAAGATGCAGATCGATCACGT -ACGGAAGATGCAGATCGACGTAGT -ACGGAAGATGCAGATCGAGTCAGT -ACGGAAGATGCAGATCGAGAAGGT -ACGGAAGATGCAGATCGAAACCGT -ACGGAAGATGCAGATCGATTGTGC -ACGGAAGATGCAGATCGACTAAGC -ACGGAAGATGCAGATCGAACTAGC -ACGGAAGATGCAGATCGAAGATGC -ACGGAAGATGCAGATCGATGAAGG -ACGGAAGATGCAGATCGACAATGG -ACGGAAGATGCAGATCGAATGAGG -ACGGAAGATGCAGATCGAAATGGG -ACGGAAGATGCAGATCGATCCTGA -ACGGAAGATGCAGATCGATAGCGA -ACGGAAGATGCAGATCGACACAGA -ACGGAAGATGCAGATCGAGCAAGA -ACGGAAGATGCAGATCGAGGTTGA -ACGGAAGATGCAGATCGATCCGAT -ACGGAAGATGCAGATCGATGGCAT -ACGGAAGATGCAGATCGACGAGAT -ACGGAAGATGCAGATCGATACCAC -ACGGAAGATGCAGATCGACAGAAC -ACGGAAGATGCAGATCGAGTCTAC -ACGGAAGATGCAGATCGAACGTAC -ACGGAAGATGCAGATCGAAGTGAC -ACGGAAGATGCAGATCGACTGTAG -ACGGAAGATGCAGATCGACCTAAG -ACGGAAGATGCAGATCGAGTTCAG -ACGGAAGATGCAGATCGAGCATAG -ACGGAAGATGCAGATCGAGACAAG -ACGGAAGATGCAGATCGAAAGCAG -ACGGAAGATGCAGATCGACGTCAA -ACGGAAGATGCAGATCGAGCTGAA -ACGGAAGATGCAGATCGAAGTACG -ACGGAAGATGCAGATCGAATCCGA -ACGGAAGATGCAGATCGAATGGGA -ACGGAAGATGCAGATCGAGTGCAA -ACGGAAGATGCAGATCGAGAGGAA -ACGGAAGATGCAGATCGACAGGTA -ACGGAAGATGCAGATCGAGACTCT -ACGGAAGATGCAGATCGAAGTCCT -ACGGAAGATGCAGATCGATAAGCC -ACGGAAGATGCAGATCGAATAGCC -ACGGAAGATGCAGATCGATAACCG -ACGGAAGATGCAGATCGAATGCCA -ACGGAAGATGCACACTACGGAAAC -ACGGAAGATGCACACTACAACACC -ACGGAAGATGCACACTACATCGAG -ACGGAAGATGCACACTACCTCCTT -ACGGAAGATGCACACTACCCTGTT -ACGGAAGATGCACACTACCGGTTT -ACGGAAGATGCACACTACGTGGTT -ACGGAAGATGCACACTACGCCTTT -ACGGAAGATGCACACTACGGTCTT -ACGGAAGATGCACACTACACGCTT -ACGGAAGATGCACACTACAGCGTT -ACGGAAGATGCACACTACTTCGTC -ACGGAAGATGCACACTACTCTCTC -ACGGAAGATGCACACTACTGGATC -ACGGAAGATGCACACTACCACTTC -ACGGAAGATGCACACTACGTACTC -ACGGAAGATGCACACTACGATGTC -ACGGAAGATGCACACTACACAGTC -ACGGAAGATGCACACTACTTGCTG -ACGGAAGATGCACACTACTCCATG -ACGGAAGATGCACACTACTGTGTG -ACGGAAGATGCACACTACCTAGTG -ACGGAAGATGCACACTACCATCTG -ACGGAAGATGCACACTACGAGTTG -ACGGAAGATGCACACTACAGACTG -ACGGAAGATGCACACTACTCGGTA -ACGGAAGATGCACACTACTGCCTA -ACGGAAGATGCACACTACCCACTA -ACGGAAGATGCACACTACGGAGTA -ACGGAAGATGCACACTACTCGTCT -ACGGAAGATGCACACTACTGCACT -ACGGAAGATGCACACTACCTGACT -ACGGAAGATGCACACTACCAACCT -ACGGAAGATGCACACTACGCTACT -ACGGAAGATGCACACTACGGATCT -ACGGAAGATGCACACTACAAGGCT -ACGGAAGATGCACACTACTCAACC -ACGGAAGATGCACACTACTGTTCC -ACGGAAGATGCACACTACATTCCC -ACGGAAGATGCACACTACTTCTCG -ACGGAAGATGCACACTACTAGACG -ACGGAAGATGCACACTACGTAACG -ACGGAAGATGCACACTACACTTCG -ACGGAAGATGCACACTACTACGCA -ACGGAAGATGCACACTACCTTGCA -ACGGAAGATGCACACTACCGAACA -ACGGAAGATGCACACTACCAGTCA -ACGGAAGATGCACACTACGATCCA -ACGGAAGATGCACACTACACGACA -ACGGAAGATGCACACTACAGCTCA -ACGGAAGATGCACACTACTCACGT -ACGGAAGATGCACACTACCGTAGT -ACGGAAGATGCACACTACGTCAGT -ACGGAAGATGCACACTACGAAGGT -ACGGAAGATGCACACTACAACCGT -ACGGAAGATGCACACTACTTGTGC -ACGGAAGATGCACACTACCTAAGC -ACGGAAGATGCACACTACACTAGC -ACGGAAGATGCACACTACAGATGC -ACGGAAGATGCACACTACTGAAGG -ACGGAAGATGCACACTACCAATGG -ACGGAAGATGCACACTACATGAGG -ACGGAAGATGCACACTACAATGGG -ACGGAAGATGCACACTACTCCTGA -ACGGAAGATGCACACTACTAGCGA -ACGGAAGATGCACACTACCACAGA -ACGGAAGATGCACACTACGCAAGA -ACGGAAGATGCACACTACGGTTGA -ACGGAAGATGCACACTACTCCGAT -ACGGAAGATGCACACTACTGGCAT -ACGGAAGATGCACACTACCGAGAT -ACGGAAGATGCACACTACTACCAC -ACGGAAGATGCACACTACCAGAAC -ACGGAAGATGCACACTACGTCTAC -ACGGAAGATGCACACTACACGTAC -ACGGAAGATGCACACTACAGTGAC -ACGGAAGATGCACACTACCTGTAG -ACGGAAGATGCACACTACCCTAAG -ACGGAAGATGCACACTACGTTCAG -ACGGAAGATGCACACTACGCATAG -ACGGAAGATGCACACTACGACAAG -ACGGAAGATGCACACTACAAGCAG -ACGGAAGATGCACACTACCGTCAA -ACGGAAGATGCACACTACGCTGAA -ACGGAAGATGCACACTACAGTACG -ACGGAAGATGCACACTACATCCGA -ACGGAAGATGCACACTACATGGGA -ACGGAAGATGCACACTACGTGCAA -ACGGAAGATGCACACTACGAGGAA -ACGGAAGATGCACACTACCAGGTA -ACGGAAGATGCACACTACGACTCT -ACGGAAGATGCACACTACAGTCCT -ACGGAAGATGCACACTACTAAGCC -ACGGAAGATGCACACTACATAGCC -ACGGAAGATGCACACTACTAACCG -ACGGAAGATGCACACTACATGCCA -ACGGAAGATGCAAACCAGGGAAAC -ACGGAAGATGCAAACCAGAACACC -ACGGAAGATGCAAACCAGATCGAG -ACGGAAGATGCAAACCAGCTCCTT -ACGGAAGATGCAAACCAGCCTGTT -ACGGAAGATGCAAACCAGCGGTTT -ACGGAAGATGCAAACCAGGTGGTT -ACGGAAGATGCAAACCAGGCCTTT -ACGGAAGATGCAAACCAGGGTCTT -ACGGAAGATGCAAACCAGACGCTT -ACGGAAGATGCAAACCAGAGCGTT -ACGGAAGATGCAAACCAGTTCGTC -ACGGAAGATGCAAACCAGTCTCTC -ACGGAAGATGCAAACCAGTGGATC -ACGGAAGATGCAAACCAGCACTTC -ACGGAAGATGCAAACCAGGTACTC -ACGGAAGATGCAAACCAGGATGTC -ACGGAAGATGCAAACCAGACAGTC -ACGGAAGATGCAAACCAGTTGCTG -ACGGAAGATGCAAACCAGTCCATG -ACGGAAGATGCAAACCAGTGTGTG -ACGGAAGATGCAAACCAGCTAGTG -ACGGAAGATGCAAACCAGCATCTG -ACGGAAGATGCAAACCAGGAGTTG -ACGGAAGATGCAAACCAGAGACTG -ACGGAAGATGCAAACCAGTCGGTA -ACGGAAGATGCAAACCAGTGCCTA -ACGGAAGATGCAAACCAGCCACTA -ACGGAAGATGCAAACCAGGGAGTA -ACGGAAGATGCAAACCAGTCGTCT -ACGGAAGATGCAAACCAGTGCACT -ACGGAAGATGCAAACCAGCTGACT -ACGGAAGATGCAAACCAGCAACCT -ACGGAAGATGCAAACCAGGCTACT -ACGGAAGATGCAAACCAGGGATCT -ACGGAAGATGCAAACCAGAAGGCT -ACGGAAGATGCAAACCAGTCAACC -ACGGAAGATGCAAACCAGTGTTCC -ACGGAAGATGCAAACCAGATTCCC -ACGGAAGATGCAAACCAGTTCTCG -ACGGAAGATGCAAACCAGTAGACG -ACGGAAGATGCAAACCAGGTAACG -ACGGAAGATGCAAACCAGACTTCG -ACGGAAGATGCAAACCAGTACGCA -ACGGAAGATGCAAACCAGCTTGCA -ACGGAAGATGCAAACCAGCGAACA -ACGGAAGATGCAAACCAGCAGTCA -ACGGAAGATGCAAACCAGGATCCA -ACGGAAGATGCAAACCAGACGACA -ACGGAAGATGCAAACCAGAGCTCA -ACGGAAGATGCAAACCAGTCACGT -ACGGAAGATGCAAACCAGCGTAGT -ACGGAAGATGCAAACCAGGTCAGT -ACGGAAGATGCAAACCAGGAAGGT -ACGGAAGATGCAAACCAGAACCGT -ACGGAAGATGCAAACCAGTTGTGC -ACGGAAGATGCAAACCAGCTAAGC -ACGGAAGATGCAAACCAGACTAGC -ACGGAAGATGCAAACCAGAGATGC -ACGGAAGATGCAAACCAGTGAAGG -ACGGAAGATGCAAACCAGCAATGG -ACGGAAGATGCAAACCAGATGAGG -ACGGAAGATGCAAACCAGAATGGG -ACGGAAGATGCAAACCAGTCCTGA -ACGGAAGATGCAAACCAGTAGCGA -ACGGAAGATGCAAACCAGCACAGA -ACGGAAGATGCAAACCAGGCAAGA -ACGGAAGATGCAAACCAGGGTTGA -ACGGAAGATGCAAACCAGTCCGAT -ACGGAAGATGCAAACCAGTGGCAT -ACGGAAGATGCAAACCAGCGAGAT -ACGGAAGATGCAAACCAGTACCAC -ACGGAAGATGCAAACCAGCAGAAC -ACGGAAGATGCAAACCAGGTCTAC -ACGGAAGATGCAAACCAGACGTAC -ACGGAAGATGCAAACCAGAGTGAC -ACGGAAGATGCAAACCAGCTGTAG -ACGGAAGATGCAAACCAGCCTAAG -ACGGAAGATGCAAACCAGGTTCAG -ACGGAAGATGCAAACCAGGCATAG -ACGGAAGATGCAAACCAGGACAAG -ACGGAAGATGCAAACCAGAAGCAG -ACGGAAGATGCAAACCAGCGTCAA -ACGGAAGATGCAAACCAGGCTGAA -ACGGAAGATGCAAACCAGAGTACG -ACGGAAGATGCAAACCAGATCCGA -ACGGAAGATGCAAACCAGATGGGA -ACGGAAGATGCAAACCAGGTGCAA -ACGGAAGATGCAAACCAGGAGGAA -ACGGAAGATGCAAACCAGCAGGTA -ACGGAAGATGCAAACCAGGACTCT -ACGGAAGATGCAAACCAGAGTCCT -ACGGAAGATGCAAACCAGTAAGCC -ACGGAAGATGCAAACCAGATAGCC -ACGGAAGATGCAAACCAGTAACCG -ACGGAAGATGCAAACCAGATGCCA -ACGGAAGATGCATACGTCGGAAAC -ACGGAAGATGCATACGTCAACACC -ACGGAAGATGCATACGTCATCGAG -ACGGAAGATGCATACGTCCTCCTT -ACGGAAGATGCATACGTCCCTGTT -ACGGAAGATGCATACGTCCGGTTT -ACGGAAGATGCATACGTCGTGGTT -ACGGAAGATGCATACGTCGCCTTT -ACGGAAGATGCATACGTCGGTCTT -ACGGAAGATGCATACGTCACGCTT -ACGGAAGATGCATACGTCAGCGTT -ACGGAAGATGCATACGTCTTCGTC -ACGGAAGATGCATACGTCTCTCTC -ACGGAAGATGCATACGTCTGGATC -ACGGAAGATGCATACGTCCACTTC -ACGGAAGATGCATACGTCGTACTC -ACGGAAGATGCATACGTCGATGTC -ACGGAAGATGCATACGTCACAGTC -ACGGAAGATGCATACGTCTTGCTG -ACGGAAGATGCATACGTCTCCATG -ACGGAAGATGCATACGTCTGTGTG -ACGGAAGATGCATACGTCCTAGTG -ACGGAAGATGCATACGTCCATCTG -ACGGAAGATGCATACGTCGAGTTG -ACGGAAGATGCATACGTCAGACTG -ACGGAAGATGCATACGTCTCGGTA -ACGGAAGATGCATACGTCTGCCTA -ACGGAAGATGCATACGTCCCACTA -ACGGAAGATGCATACGTCGGAGTA -ACGGAAGATGCATACGTCTCGTCT -ACGGAAGATGCATACGTCTGCACT -ACGGAAGATGCATACGTCCTGACT -ACGGAAGATGCATACGTCCAACCT -ACGGAAGATGCATACGTCGCTACT -ACGGAAGATGCATACGTCGGATCT -ACGGAAGATGCATACGTCAAGGCT -ACGGAAGATGCATACGTCTCAACC -ACGGAAGATGCATACGTCTGTTCC -ACGGAAGATGCATACGTCATTCCC -ACGGAAGATGCATACGTCTTCTCG -ACGGAAGATGCATACGTCTAGACG -ACGGAAGATGCATACGTCGTAACG -ACGGAAGATGCATACGTCACTTCG -ACGGAAGATGCATACGTCTACGCA -ACGGAAGATGCATACGTCCTTGCA -ACGGAAGATGCATACGTCCGAACA -ACGGAAGATGCATACGTCCAGTCA -ACGGAAGATGCATACGTCGATCCA -ACGGAAGATGCATACGTCACGACA -ACGGAAGATGCATACGTCAGCTCA -ACGGAAGATGCATACGTCTCACGT -ACGGAAGATGCATACGTCCGTAGT -ACGGAAGATGCATACGTCGTCAGT -ACGGAAGATGCATACGTCGAAGGT -ACGGAAGATGCATACGTCAACCGT -ACGGAAGATGCATACGTCTTGTGC -ACGGAAGATGCATACGTCCTAAGC -ACGGAAGATGCATACGTCACTAGC -ACGGAAGATGCATACGTCAGATGC -ACGGAAGATGCATACGTCTGAAGG -ACGGAAGATGCATACGTCCAATGG -ACGGAAGATGCATACGTCATGAGG -ACGGAAGATGCATACGTCAATGGG -ACGGAAGATGCATACGTCTCCTGA -ACGGAAGATGCATACGTCTAGCGA -ACGGAAGATGCATACGTCCACAGA -ACGGAAGATGCATACGTCGCAAGA -ACGGAAGATGCATACGTCGGTTGA -ACGGAAGATGCATACGTCTCCGAT -ACGGAAGATGCATACGTCTGGCAT -ACGGAAGATGCATACGTCCGAGAT -ACGGAAGATGCATACGTCTACCAC -ACGGAAGATGCATACGTCCAGAAC -ACGGAAGATGCATACGTCGTCTAC -ACGGAAGATGCATACGTCACGTAC -ACGGAAGATGCATACGTCAGTGAC -ACGGAAGATGCATACGTCCTGTAG -ACGGAAGATGCATACGTCCCTAAG -ACGGAAGATGCATACGTCGTTCAG -ACGGAAGATGCATACGTCGCATAG -ACGGAAGATGCATACGTCGACAAG -ACGGAAGATGCATACGTCAAGCAG -ACGGAAGATGCATACGTCCGTCAA -ACGGAAGATGCATACGTCGCTGAA -ACGGAAGATGCATACGTCAGTACG -ACGGAAGATGCATACGTCATCCGA -ACGGAAGATGCATACGTCATGGGA -ACGGAAGATGCATACGTCGTGCAA -ACGGAAGATGCATACGTCGAGGAA -ACGGAAGATGCATACGTCCAGGTA -ACGGAAGATGCATACGTCGACTCT -ACGGAAGATGCATACGTCAGTCCT -ACGGAAGATGCATACGTCTAAGCC -ACGGAAGATGCATACGTCATAGCC -ACGGAAGATGCATACGTCTAACCG -ACGGAAGATGCATACGTCATGCCA -ACGGAAGATGCATACACGGGAAAC -ACGGAAGATGCATACACGAACACC -ACGGAAGATGCATACACGATCGAG -ACGGAAGATGCATACACGCTCCTT -ACGGAAGATGCATACACGCCTGTT -ACGGAAGATGCATACACGCGGTTT -ACGGAAGATGCATACACGGTGGTT -ACGGAAGATGCATACACGGCCTTT -ACGGAAGATGCATACACGGGTCTT -ACGGAAGATGCATACACGACGCTT -ACGGAAGATGCATACACGAGCGTT -ACGGAAGATGCATACACGTTCGTC -ACGGAAGATGCATACACGTCTCTC -ACGGAAGATGCATACACGTGGATC -ACGGAAGATGCATACACGCACTTC -ACGGAAGATGCATACACGGTACTC -ACGGAAGATGCATACACGGATGTC -ACGGAAGATGCATACACGACAGTC -ACGGAAGATGCATACACGTTGCTG -ACGGAAGATGCATACACGTCCATG -ACGGAAGATGCATACACGTGTGTG -ACGGAAGATGCATACACGCTAGTG -ACGGAAGATGCATACACGCATCTG -ACGGAAGATGCATACACGGAGTTG -ACGGAAGATGCATACACGAGACTG -ACGGAAGATGCATACACGTCGGTA -ACGGAAGATGCATACACGTGCCTA -ACGGAAGATGCATACACGCCACTA -ACGGAAGATGCATACACGGGAGTA -ACGGAAGATGCATACACGTCGTCT -ACGGAAGATGCATACACGTGCACT -ACGGAAGATGCATACACGCTGACT -ACGGAAGATGCATACACGCAACCT -ACGGAAGATGCATACACGGCTACT -ACGGAAGATGCATACACGGGATCT -ACGGAAGATGCATACACGAAGGCT -ACGGAAGATGCATACACGTCAACC -ACGGAAGATGCATACACGTGTTCC -ACGGAAGATGCATACACGATTCCC -ACGGAAGATGCATACACGTTCTCG -ACGGAAGATGCATACACGTAGACG -ACGGAAGATGCATACACGGTAACG -ACGGAAGATGCATACACGACTTCG -ACGGAAGATGCATACACGTACGCA -ACGGAAGATGCATACACGCTTGCA -ACGGAAGATGCATACACGCGAACA -ACGGAAGATGCATACACGCAGTCA -ACGGAAGATGCATACACGGATCCA -ACGGAAGATGCATACACGACGACA -ACGGAAGATGCATACACGAGCTCA -ACGGAAGATGCATACACGTCACGT -ACGGAAGATGCATACACGCGTAGT -ACGGAAGATGCATACACGGTCAGT -ACGGAAGATGCATACACGGAAGGT -ACGGAAGATGCATACACGAACCGT -ACGGAAGATGCATACACGTTGTGC -ACGGAAGATGCATACACGCTAAGC -ACGGAAGATGCATACACGACTAGC -ACGGAAGATGCATACACGAGATGC -ACGGAAGATGCATACACGTGAAGG -ACGGAAGATGCATACACGCAATGG -ACGGAAGATGCATACACGATGAGG -ACGGAAGATGCATACACGAATGGG -ACGGAAGATGCATACACGTCCTGA -ACGGAAGATGCATACACGTAGCGA -ACGGAAGATGCATACACGCACAGA -ACGGAAGATGCATACACGGCAAGA -ACGGAAGATGCATACACGGGTTGA -ACGGAAGATGCATACACGTCCGAT -ACGGAAGATGCATACACGTGGCAT -ACGGAAGATGCATACACGCGAGAT -ACGGAAGATGCATACACGTACCAC -ACGGAAGATGCATACACGCAGAAC -ACGGAAGATGCATACACGGTCTAC -ACGGAAGATGCATACACGACGTAC -ACGGAAGATGCATACACGAGTGAC -ACGGAAGATGCATACACGCTGTAG -ACGGAAGATGCATACACGCCTAAG -ACGGAAGATGCATACACGGTTCAG -ACGGAAGATGCATACACGGCATAG -ACGGAAGATGCATACACGGACAAG -ACGGAAGATGCATACACGAAGCAG -ACGGAAGATGCATACACGCGTCAA -ACGGAAGATGCATACACGGCTGAA -ACGGAAGATGCATACACGAGTACG -ACGGAAGATGCATACACGATCCGA -ACGGAAGATGCATACACGATGGGA -ACGGAAGATGCATACACGGTGCAA -ACGGAAGATGCATACACGGAGGAA -ACGGAAGATGCATACACGCAGGTA -ACGGAAGATGCATACACGGACTCT -ACGGAAGATGCATACACGAGTCCT -ACGGAAGATGCATACACGTAAGCC -ACGGAAGATGCATACACGATAGCC -ACGGAAGATGCATACACGTAACCG -ACGGAAGATGCATACACGATGCCA -ACGGAAGATGCAGACAGTGGAAAC -ACGGAAGATGCAGACAGTAACACC -ACGGAAGATGCAGACAGTATCGAG -ACGGAAGATGCAGACAGTCTCCTT -ACGGAAGATGCAGACAGTCCTGTT -ACGGAAGATGCAGACAGTCGGTTT -ACGGAAGATGCAGACAGTGTGGTT -ACGGAAGATGCAGACAGTGCCTTT -ACGGAAGATGCAGACAGTGGTCTT -ACGGAAGATGCAGACAGTACGCTT -ACGGAAGATGCAGACAGTAGCGTT -ACGGAAGATGCAGACAGTTTCGTC -ACGGAAGATGCAGACAGTTCTCTC -ACGGAAGATGCAGACAGTTGGATC -ACGGAAGATGCAGACAGTCACTTC -ACGGAAGATGCAGACAGTGTACTC -ACGGAAGATGCAGACAGTGATGTC -ACGGAAGATGCAGACAGTACAGTC -ACGGAAGATGCAGACAGTTTGCTG -ACGGAAGATGCAGACAGTTCCATG -ACGGAAGATGCAGACAGTTGTGTG -ACGGAAGATGCAGACAGTCTAGTG -ACGGAAGATGCAGACAGTCATCTG -ACGGAAGATGCAGACAGTGAGTTG -ACGGAAGATGCAGACAGTAGACTG -ACGGAAGATGCAGACAGTTCGGTA -ACGGAAGATGCAGACAGTTGCCTA -ACGGAAGATGCAGACAGTCCACTA -ACGGAAGATGCAGACAGTGGAGTA -ACGGAAGATGCAGACAGTTCGTCT -ACGGAAGATGCAGACAGTTGCACT -ACGGAAGATGCAGACAGTCTGACT -ACGGAAGATGCAGACAGTCAACCT -ACGGAAGATGCAGACAGTGCTACT -ACGGAAGATGCAGACAGTGGATCT -ACGGAAGATGCAGACAGTAAGGCT -ACGGAAGATGCAGACAGTTCAACC -ACGGAAGATGCAGACAGTTGTTCC -ACGGAAGATGCAGACAGTATTCCC -ACGGAAGATGCAGACAGTTTCTCG -ACGGAAGATGCAGACAGTTAGACG -ACGGAAGATGCAGACAGTGTAACG -ACGGAAGATGCAGACAGTACTTCG -ACGGAAGATGCAGACAGTTACGCA -ACGGAAGATGCAGACAGTCTTGCA -ACGGAAGATGCAGACAGTCGAACA -ACGGAAGATGCAGACAGTCAGTCA -ACGGAAGATGCAGACAGTGATCCA -ACGGAAGATGCAGACAGTACGACA -ACGGAAGATGCAGACAGTAGCTCA -ACGGAAGATGCAGACAGTTCACGT -ACGGAAGATGCAGACAGTCGTAGT -ACGGAAGATGCAGACAGTGTCAGT -ACGGAAGATGCAGACAGTGAAGGT -ACGGAAGATGCAGACAGTAACCGT -ACGGAAGATGCAGACAGTTTGTGC -ACGGAAGATGCAGACAGTCTAAGC -ACGGAAGATGCAGACAGTACTAGC -ACGGAAGATGCAGACAGTAGATGC -ACGGAAGATGCAGACAGTTGAAGG -ACGGAAGATGCAGACAGTCAATGG -ACGGAAGATGCAGACAGTATGAGG -ACGGAAGATGCAGACAGTAATGGG -ACGGAAGATGCAGACAGTTCCTGA -ACGGAAGATGCAGACAGTTAGCGA -ACGGAAGATGCAGACAGTCACAGA -ACGGAAGATGCAGACAGTGCAAGA -ACGGAAGATGCAGACAGTGGTTGA -ACGGAAGATGCAGACAGTTCCGAT -ACGGAAGATGCAGACAGTTGGCAT -ACGGAAGATGCAGACAGTCGAGAT -ACGGAAGATGCAGACAGTTACCAC -ACGGAAGATGCAGACAGTCAGAAC -ACGGAAGATGCAGACAGTGTCTAC -ACGGAAGATGCAGACAGTACGTAC -ACGGAAGATGCAGACAGTAGTGAC -ACGGAAGATGCAGACAGTCTGTAG -ACGGAAGATGCAGACAGTCCTAAG -ACGGAAGATGCAGACAGTGTTCAG -ACGGAAGATGCAGACAGTGCATAG -ACGGAAGATGCAGACAGTGACAAG -ACGGAAGATGCAGACAGTAAGCAG -ACGGAAGATGCAGACAGTCGTCAA -ACGGAAGATGCAGACAGTGCTGAA -ACGGAAGATGCAGACAGTAGTACG -ACGGAAGATGCAGACAGTATCCGA -ACGGAAGATGCAGACAGTATGGGA -ACGGAAGATGCAGACAGTGTGCAA -ACGGAAGATGCAGACAGTGAGGAA -ACGGAAGATGCAGACAGTCAGGTA -ACGGAAGATGCAGACAGTGACTCT -ACGGAAGATGCAGACAGTAGTCCT -ACGGAAGATGCAGACAGTTAAGCC -ACGGAAGATGCAGACAGTATAGCC -ACGGAAGATGCAGACAGTTAACCG -ACGGAAGATGCAGACAGTATGCCA -ACGGAAGATGCATAGCTGGGAAAC -ACGGAAGATGCATAGCTGAACACC -ACGGAAGATGCATAGCTGATCGAG -ACGGAAGATGCATAGCTGCTCCTT -ACGGAAGATGCATAGCTGCCTGTT -ACGGAAGATGCATAGCTGCGGTTT -ACGGAAGATGCATAGCTGGTGGTT -ACGGAAGATGCATAGCTGGCCTTT -ACGGAAGATGCATAGCTGGGTCTT -ACGGAAGATGCATAGCTGACGCTT -ACGGAAGATGCATAGCTGAGCGTT -ACGGAAGATGCATAGCTGTTCGTC -ACGGAAGATGCATAGCTGTCTCTC -ACGGAAGATGCATAGCTGTGGATC -ACGGAAGATGCATAGCTGCACTTC -ACGGAAGATGCATAGCTGGTACTC -ACGGAAGATGCATAGCTGGATGTC -ACGGAAGATGCATAGCTGACAGTC -ACGGAAGATGCATAGCTGTTGCTG -ACGGAAGATGCATAGCTGTCCATG -ACGGAAGATGCATAGCTGTGTGTG -ACGGAAGATGCATAGCTGCTAGTG -ACGGAAGATGCATAGCTGCATCTG -ACGGAAGATGCATAGCTGGAGTTG -ACGGAAGATGCATAGCTGAGACTG -ACGGAAGATGCATAGCTGTCGGTA -ACGGAAGATGCATAGCTGTGCCTA -ACGGAAGATGCATAGCTGCCACTA -ACGGAAGATGCATAGCTGGGAGTA -ACGGAAGATGCATAGCTGTCGTCT -ACGGAAGATGCATAGCTGTGCACT -ACGGAAGATGCATAGCTGCTGACT -ACGGAAGATGCATAGCTGCAACCT -ACGGAAGATGCATAGCTGGCTACT -ACGGAAGATGCATAGCTGGGATCT -ACGGAAGATGCATAGCTGAAGGCT -ACGGAAGATGCATAGCTGTCAACC -ACGGAAGATGCATAGCTGTGTTCC -ACGGAAGATGCATAGCTGATTCCC -ACGGAAGATGCATAGCTGTTCTCG -ACGGAAGATGCATAGCTGTAGACG -ACGGAAGATGCATAGCTGGTAACG -ACGGAAGATGCATAGCTGACTTCG -ACGGAAGATGCATAGCTGTACGCA -ACGGAAGATGCATAGCTGCTTGCA -ACGGAAGATGCATAGCTGCGAACA -ACGGAAGATGCATAGCTGCAGTCA -ACGGAAGATGCATAGCTGGATCCA -ACGGAAGATGCATAGCTGACGACA -ACGGAAGATGCATAGCTGAGCTCA -ACGGAAGATGCATAGCTGTCACGT -ACGGAAGATGCATAGCTGCGTAGT -ACGGAAGATGCATAGCTGGTCAGT -ACGGAAGATGCATAGCTGGAAGGT -ACGGAAGATGCATAGCTGAACCGT -ACGGAAGATGCATAGCTGTTGTGC -ACGGAAGATGCATAGCTGCTAAGC -ACGGAAGATGCATAGCTGACTAGC -ACGGAAGATGCATAGCTGAGATGC -ACGGAAGATGCATAGCTGTGAAGG -ACGGAAGATGCATAGCTGCAATGG -ACGGAAGATGCATAGCTGATGAGG -ACGGAAGATGCATAGCTGAATGGG -ACGGAAGATGCATAGCTGTCCTGA -ACGGAAGATGCATAGCTGTAGCGA -ACGGAAGATGCATAGCTGCACAGA -ACGGAAGATGCATAGCTGGCAAGA -ACGGAAGATGCATAGCTGGGTTGA -ACGGAAGATGCATAGCTGTCCGAT -ACGGAAGATGCATAGCTGTGGCAT -ACGGAAGATGCATAGCTGCGAGAT -ACGGAAGATGCATAGCTGTACCAC -ACGGAAGATGCATAGCTGCAGAAC -ACGGAAGATGCATAGCTGGTCTAC -ACGGAAGATGCATAGCTGACGTAC -ACGGAAGATGCATAGCTGAGTGAC -ACGGAAGATGCATAGCTGCTGTAG -ACGGAAGATGCATAGCTGCCTAAG -ACGGAAGATGCATAGCTGGTTCAG -ACGGAAGATGCATAGCTGGCATAG -ACGGAAGATGCATAGCTGGACAAG -ACGGAAGATGCATAGCTGAAGCAG -ACGGAAGATGCATAGCTGCGTCAA -ACGGAAGATGCATAGCTGGCTGAA -ACGGAAGATGCATAGCTGAGTACG -ACGGAAGATGCATAGCTGATCCGA -ACGGAAGATGCATAGCTGATGGGA -ACGGAAGATGCATAGCTGGTGCAA -ACGGAAGATGCATAGCTGGAGGAA -ACGGAAGATGCATAGCTGCAGGTA -ACGGAAGATGCATAGCTGGACTCT -ACGGAAGATGCATAGCTGAGTCCT -ACGGAAGATGCATAGCTGTAAGCC -ACGGAAGATGCATAGCTGATAGCC -ACGGAAGATGCATAGCTGTAACCG -ACGGAAGATGCATAGCTGATGCCA -ACGGAAGATGCAAAGCCTGGAAAC -ACGGAAGATGCAAAGCCTAACACC -ACGGAAGATGCAAAGCCTATCGAG -ACGGAAGATGCAAAGCCTCTCCTT -ACGGAAGATGCAAAGCCTCCTGTT -ACGGAAGATGCAAAGCCTCGGTTT -ACGGAAGATGCAAAGCCTGTGGTT -ACGGAAGATGCAAAGCCTGCCTTT -ACGGAAGATGCAAAGCCTGGTCTT -ACGGAAGATGCAAAGCCTACGCTT -ACGGAAGATGCAAAGCCTAGCGTT -ACGGAAGATGCAAAGCCTTTCGTC -ACGGAAGATGCAAAGCCTTCTCTC -ACGGAAGATGCAAAGCCTTGGATC -ACGGAAGATGCAAAGCCTCACTTC -ACGGAAGATGCAAAGCCTGTACTC -ACGGAAGATGCAAAGCCTGATGTC -ACGGAAGATGCAAAGCCTACAGTC -ACGGAAGATGCAAAGCCTTTGCTG -ACGGAAGATGCAAAGCCTTCCATG -ACGGAAGATGCAAAGCCTTGTGTG -ACGGAAGATGCAAAGCCTCTAGTG -ACGGAAGATGCAAAGCCTCATCTG -ACGGAAGATGCAAAGCCTGAGTTG -ACGGAAGATGCAAAGCCTAGACTG -ACGGAAGATGCAAAGCCTTCGGTA -ACGGAAGATGCAAAGCCTTGCCTA -ACGGAAGATGCAAAGCCTCCACTA -ACGGAAGATGCAAAGCCTGGAGTA -ACGGAAGATGCAAAGCCTTCGTCT -ACGGAAGATGCAAAGCCTTGCACT -ACGGAAGATGCAAAGCCTCTGACT -ACGGAAGATGCAAAGCCTCAACCT -ACGGAAGATGCAAAGCCTGCTACT -ACGGAAGATGCAAAGCCTGGATCT -ACGGAAGATGCAAAGCCTAAGGCT -ACGGAAGATGCAAAGCCTTCAACC -ACGGAAGATGCAAAGCCTTGTTCC -ACGGAAGATGCAAAGCCTATTCCC -ACGGAAGATGCAAAGCCTTTCTCG -ACGGAAGATGCAAAGCCTTAGACG -ACGGAAGATGCAAAGCCTGTAACG -ACGGAAGATGCAAAGCCTACTTCG -ACGGAAGATGCAAAGCCTTACGCA -ACGGAAGATGCAAAGCCTCTTGCA -ACGGAAGATGCAAAGCCTCGAACA -ACGGAAGATGCAAAGCCTCAGTCA -ACGGAAGATGCAAAGCCTGATCCA -ACGGAAGATGCAAAGCCTACGACA -ACGGAAGATGCAAAGCCTAGCTCA -ACGGAAGATGCAAAGCCTTCACGT -ACGGAAGATGCAAAGCCTCGTAGT -ACGGAAGATGCAAAGCCTGTCAGT -ACGGAAGATGCAAAGCCTGAAGGT -ACGGAAGATGCAAAGCCTAACCGT -ACGGAAGATGCAAAGCCTTTGTGC -ACGGAAGATGCAAAGCCTCTAAGC -ACGGAAGATGCAAAGCCTACTAGC -ACGGAAGATGCAAAGCCTAGATGC -ACGGAAGATGCAAAGCCTTGAAGG -ACGGAAGATGCAAAGCCTCAATGG -ACGGAAGATGCAAAGCCTATGAGG -ACGGAAGATGCAAAGCCTAATGGG -ACGGAAGATGCAAAGCCTTCCTGA -ACGGAAGATGCAAAGCCTTAGCGA -ACGGAAGATGCAAAGCCTCACAGA -ACGGAAGATGCAAAGCCTGCAAGA -ACGGAAGATGCAAAGCCTGGTTGA -ACGGAAGATGCAAAGCCTTCCGAT -ACGGAAGATGCAAAGCCTTGGCAT -ACGGAAGATGCAAAGCCTCGAGAT -ACGGAAGATGCAAAGCCTTACCAC -ACGGAAGATGCAAAGCCTCAGAAC -ACGGAAGATGCAAAGCCTGTCTAC -ACGGAAGATGCAAAGCCTACGTAC -ACGGAAGATGCAAAGCCTAGTGAC -ACGGAAGATGCAAAGCCTCTGTAG -ACGGAAGATGCAAAGCCTCCTAAG -ACGGAAGATGCAAAGCCTGTTCAG -ACGGAAGATGCAAAGCCTGCATAG -ACGGAAGATGCAAAGCCTGACAAG -ACGGAAGATGCAAAGCCTAAGCAG -ACGGAAGATGCAAAGCCTCGTCAA -ACGGAAGATGCAAAGCCTGCTGAA -ACGGAAGATGCAAAGCCTAGTACG -ACGGAAGATGCAAAGCCTATCCGA -ACGGAAGATGCAAAGCCTATGGGA -ACGGAAGATGCAAAGCCTGTGCAA -ACGGAAGATGCAAAGCCTGAGGAA -ACGGAAGATGCAAAGCCTCAGGTA -ACGGAAGATGCAAAGCCTGACTCT -ACGGAAGATGCAAAGCCTAGTCCT -ACGGAAGATGCAAAGCCTTAAGCC -ACGGAAGATGCAAAGCCTATAGCC -ACGGAAGATGCAAAGCCTTAACCG -ACGGAAGATGCAAAGCCTATGCCA -ACGGAAGATGCACAGGTTGGAAAC -ACGGAAGATGCACAGGTTAACACC -ACGGAAGATGCACAGGTTATCGAG -ACGGAAGATGCACAGGTTCTCCTT -ACGGAAGATGCACAGGTTCCTGTT -ACGGAAGATGCACAGGTTCGGTTT -ACGGAAGATGCACAGGTTGTGGTT -ACGGAAGATGCACAGGTTGCCTTT -ACGGAAGATGCACAGGTTGGTCTT -ACGGAAGATGCACAGGTTACGCTT -ACGGAAGATGCACAGGTTAGCGTT -ACGGAAGATGCACAGGTTTTCGTC -ACGGAAGATGCACAGGTTTCTCTC -ACGGAAGATGCACAGGTTTGGATC -ACGGAAGATGCACAGGTTCACTTC -ACGGAAGATGCACAGGTTGTACTC -ACGGAAGATGCACAGGTTGATGTC -ACGGAAGATGCACAGGTTACAGTC -ACGGAAGATGCACAGGTTTTGCTG -ACGGAAGATGCACAGGTTTCCATG -ACGGAAGATGCACAGGTTTGTGTG -ACGGAAGATGCACAGGTTCTAGTG -ACGGAAGATGCACAGGTTCATCTG -ACGGAAGATGCACAGGTTGAGTTG -ACGGAAGATGCACAGGTTAGACTG -ACGGAAGATGCACAGGTTTCGGTA -ACGGAAGATGCACAGGTTTGCCTA -ACGGAAGATGCACAGGTTCCACTA -ACGGAAGATGCACAGGTTGGAGTA -ACGGAAGATGCACAGGTTTCGTCT -ACGGAAGATGCACAGGTTTGCACT -ACGGAAGATGCACAGGTTCTGACT -ACGGAAGATGCACAGGTTCAACCT -ACGGAAGATGCACAGGTTGCTACT -ACGGAAGATGCACAGGTTGGATCT -ACGGAAGATGCACAGGTTAAGGCT -ACGGAAGATGCACAGGTTTCAACC -ACGGAAGATGCACAGGTTTGTTCC -ACGGAAGATGCACAGGTTATTCCC -ACGGAAGATGCACAGGTTTTCTCG -ACGGAAGATGCACAGGTTTAGACG -ACGGAAGATGCACAGGTTGTAACG -ACGGAAGATGCACAGGTTACTTCG -ACGGAAGATGCACAGGTTTACGCA -ACGGAAGATGCACAGGTTCTTGCA -ACGGAAGATGCACAGGTTCGAACA -ACGGAAGATGCACAGGTTCAGTCA -ACGGAAGATGCACAGGTTGATCCA -ACGGAAGATGCACAGGTTACGACA -ACGGAAGATGCACAGGTTAGCTCA -ACGGAAGATGCACAGGTTTCACGT -ACGGAAGATGCACAGGTTCGTAGT -ACGGAAGATGCACAGGTTGTCAGT -ACGGAAGATGCACAGGTTGAAGGT -ACGGAAGATGCACAGGTTAACCGT -ACGGAAGATGCACAGGTTTTGTGC -ACGGAAGATGCACAGGTTCTAAGC -ACGGAAGATGCACAGGTTACTAGC -ACGGAAGATGCACAGGTTAGATGC -ACGGAAGATGCACAGGTTTGAAGG -ACGGAAGATGCACAGGTTCAATGG -ACGGAAGATGCACAGGTTATGAGG -ACGGAAGATGCACAGGTTAATGGG -ACGGAAGATGCACAGGTTTCCTGA -ACGGAAGATGCACAGGTTTAGCGA -ACGGAAGATGCACAGGTTCACAGA -ACGGAAGATGCACAGGTTGCAAGA -ACGGAAGATGCACAGGTTGGTTGA -ACGGAAGATGCACAGGTTTCCGAT -ACGGAAGATGCACAGGTTTGGCAT -ACGGAAGATGCACAGGTTCGAGAT -ACGGAAGATGCACAGGTTTACCAC -ACGGAAGATGCACAGGTTCAGAAC -ACGGAAGATGCACAGGTTGTCTAC -ACGGAAGATGCACAGGTTACGTAC -ACGGAAGATGCACAGGTTAGTGAC -ACGGAAGATGCACAGGTTCTGTAG -ACGGAAGATGCACAGGTTCCTAAG -ACGGAAGATGCACAGGTTGTTCAG -ACGGAAGATGCACAGGTTGCATAG -ACGGAAGATGCACAGGTTGACAAG -ACGGAAGATGCACAGGTTAAGCAG -ACGGAAGATGCACAGGTTCGTCAA -ACGGAAGATGCACAGGTTGCTGAA -ACGGAAGATGCACAGGTTAGTACG -ACGGAAGATGCACAGGTTATCCGA -ACGGAAGATGCACAGGTTATGGGA -ACGGAAGATGCACAGGTTGTGCAA -ACGGAAGATGCACAGGTTGAGGAA -ACGGAAGATGCACAGGTTCAGGTA -ACGGAAGATGCACAGGTTGACTCT -ACGGAAGATGCACAGGTTAGTCCT -ACGGAAGATGCACAGGTTTAAGCC -ACGGAAGATGCACAGGTTATAGCC -ACGGAAGATGCACAGGTTTAACCG -ACGGAAGATGCACAGGTTATGCCA -ACGGAAGATGCATAGGCAGGAAAC -ACGGAAGATGCATAGGCAAACACC -ACGGAAGATGCATAGGCAATCGAG -ACGGAAGATGCATAGGCACTCCTT -ACGGAAGATGCATAGGCACCTGTT -ACGGAAGATGCATAGGCACGGTTT -ACGGAAGATGCATAGGCAGTGGTT -ACGGAAGATGCATAGGCAGCCTTT -ACGGAAGATGCATAGGCAGGTCTT -ACGGAAGATGCATAGGCAACGCTT -ACGGAAGATGCATAGGCAAGCGTT -ACGGAAGATGCATAGGCATTCGTC -ACGGAAGATGCATAGGCATCTCTC -ACGGAAGATGCATAGGCATGGATC -ACGGAAGATGCATAGGCACACTTC -ACGGAAGATGCATAGGCAGTACTC -ACGGAAGATGCATAGGCAGATGTC -ACGGAAGATGCATAGGCAACAGTC -ACGGAAGATGCATAGGCATTGCTG -ACGGAAGATGCATAGGCATCCATG -ACGGAAGATGCATAGGCATGTGTG -ACGGAAGATGCATAGGCACTAGTG -ACGGAAGATGCATAGGCACATCTG -ACGGAAGATGCATAGGCAGAGTTG -ACGGAAGATGCATAGGCAAGACTG -ACGGAAGATGCATAGGCATCGGTA -ACGGAAGATGCATAGGCATGCCTA -ACGGAAGATGCATAGGCACCACTA -ACGGAAGATGCATAGGCAGGAGTA -ACGGAAGATGCATAGGCATCGTCT -ACGGAAGATGCATAGGCATGCACT -ACGGAAGATGCATAGGCACTGACT -ACGGAAGATGCATAGGCACAACCT -ACGGAAGATGCATAGGCAGCTACT -ACGGAAGATGCATAGGCAGGATCT -ACGGAAGATGCATAGGCAAAGGCT -ACGGAAGATGCATAGGCATCAACC -ACGGAAGATGCATAGGCATGTTCC -ACGGAAGATGCATAGGCAATTCCC -ACGGAAGATGCATAGGCATTCTCG -ACGGAAGATGCATAGGCATAGACG -ACGGAAGATGCATAGGCAGTAACG -ACGGAAGATGCATAGGCAACTTCG -ACGGAAGATGCATAGGCATACGCA -ACGGAAGATGCATAGGCACTTGCA -ACGGAAGATGCATAGGCACGAACA -ACGGAAGATGCATAGGCACAGTCA -ACGGAAGATGCATAGGCAGATCCA -ACGGAAGATGCATAGGCAACGACA -ACGGAAGATGCATAGGCAAGCTCA -ACGGAAGATGCATAGGCATCACGT -ACGGAAGATGCATAGGCACGTAGT -ACGGAAGATGCATAGGCAGTCAGT -ACGGAAGATGCATAGGCAGAAGGT -ACGGAAGATGCATAGGCAAACCGT -ACGGAAGATGCATAGGCATTGTGC -ACGGAAGATGCATAGGCACTAAGC -ACGGAAGATGCATAGGCAACTAGC -ACGGAAGATGCATAGGCAAGATGC -ACGGAAGATGCATAGGCATGAAGG -ACGGAAGATGCATAGGCACAATGG -ACGGAAGATGCATAGGCAATGAGG -ACGGAAGATGCATAGGCAAATGGG -ACGGAAGATGCATAGGCATCCTGA -ACGGAAGATGCATAGGCATAGCGA -ACGGAAGATGCATAGGCACACAGA -ACGGAAGATGCATAGGCAGCAAGA -ACGGAAGATGCATAGGCAGGTTGA -ACGGAAGATGCATAGGCATCCGAT -ACGGAAGATGCATAGGCATGGCAT -ACGGAAGATGCATAGGCACGAGAT -ACGGAAGATGCATAGGCATACCAC -ACGGAAGATGCATAGGCACAGAAC -ACGGAAGATGCATAGGCAGTCTAC -ACGGAAGATGCATAGGCAACGTAC -ACGGAAGATGCATAGGCAAGTGAC -ACGGAAGATGCATAGGCACTGTAG -ACGGAAGATGCATAGGCACCTAAG -ACGGAAGATGCATAGGCAGTTCAG -ACGGAAGATGCATAGGCAGCATAG -ACGGAAGATGCATAGGCAGACAAG -ACGGAAGATGCATAGGCAAAGCAG -ACGGAAGATGCATAGGCACGTCAA -ACGGAAGATGCATAGGCAGCTGAA -ACGGAAGATGCATAGGCAAGTACG -ACGGAAGATGCATAGGCAATCCGA -ACGGAAGATGCATAGGCAATGGGA -ACGGAAGATGCATAGGCAGTGCAA -ACGGAAGATGCATAGGCAGAGGAA -ACGGAAGATGCATAGGCACAGGTA -ACGGAAGATGCATAGGCAGACTCT -ACGGAAGATGCATAGGCAAGTCCT -ACGGAAGATGCATAGGCATAAGCC -ACGGAAGATGCATAGGCAATAGCC -ACGGAAGATGCATAGGCATAACCG -ACGGAAGATGCATAGGCAATGCCA -ACGGAAGATGCAAAGGACGGAAAC -ACGGAAGATGCAAAGGACAACACC -ACGGAAGATGCAAAGGACATCGAG -ACGGAAGATGCAAAGGACCTCCTT -ACGGAAGATGCAAAGGACCCTGTT -ACGGAAGATGCAAAGGACCGGTTT -ACGGAAGATGCAAAGGACGTGGTT -ACGGAAGATGCAAAGGACGCCTTT -ACGGAAGATGCAAAGGACGGTCTT -ACGGAAGATGCAAAGGACACGCTT -ACGGAAGATGCAAAGGACAGCGTT -ACGGAAGATGCAAAGGACTTCGTC -ACGGAAGATGCAAAGGACTCTCTC -ACGGAAGATGCAAAGGACTGGATC -ACGGAAGATGCAAAGGACCACTTC -ACGGAAGATGCAAAGGACGTACTC -ACGGAAGATGCAAAGGACGATGTC -ACGGAAGATGCAAAGGACACAGTC -ACGGAAGATGCAAAGGACTTGCTG -ACGGAAGATGCAAAGGACTCCATG -ACGGAAGATGCAAAGGACTGTGTG -ACGGAAGATGCAAAGGACCTAGTG -ACGGAAGATGCAAAGGACCATCTG -ACGGAAGATGCAAAGGACGAGTTG -ACGGAAGATGCAAAGGACAGACTG -ACGGAAGATGCAAAGGACTCGGTA -ACGGAAGATGCAAAGGACTGCCTA -ACGGAAGATGCAAAGGACCCACTA -ACGGAAGATGCAAAGGACGGAGTA -ACGGAAGATGCAAAGGACTCGTCT -ACGGAAGATGCAAAGGACTGCACT -ACGGAAGATGCAAAGGACCTGACT -ACGGAAGATGCAAAGGACCAACCT -ACGGAAGATGCAAAGGACGCTACT -ACGGAAGATGCAAAGGACGGATCT -ACGGAAGATGCAAAGGACAAGGCT -ACGGAAGATGCAAAGGACTCAACC -ACGGAAGATGCAAAGGACTGTTCC -ACGGAAGATGCAAAGGACATTCCC -ACGGAAGATGCAAAGGACTTCTCG -ACGGAAGATGCAAAGGACTAGACG -ACGGAAGATGCAAAGGACGTAACG -ACGGAAGATGCAAAGGACACTTCG -ACGGAAGATGCAAAGGACTACGCA -ACGGAAGATGCAAAGGACCTTGCA -ACGGAAGATGCAAAGGACCGAACA -ACGGAAGATGCAAAGGACCAGTCA -ACGGAAGATGCAAAGGACGATCCA -ACGGAAGATGCAAAGGACACGACA -ACGGAAGATGCAAAGGACAGCTCA -ACGGAAGATGCAAAGGACTCACGT -ACGGAAGATGCAAAGGACCGTAGT -ACGGAAGATGCAAAGGACGTCAGT -ACGGAAGATGCAAAGGACGAAGGT -ACGGAAGATGCAAAGGACAACCGT -ACGGAAGATGCAAAGGACTTGTGC -ACGGAAGATGCAAAGGACCTAAGC -ACGGAAGATGCAAAGGACACTAGC -ACGGAAGATGCAAAGGACAGATGC -ACGGAAGATGCAAAGGACTGAAGG -ACGGAAGATGCAAAGGACCAATGG -ACGGAAGATGCAAAGGACATGAGG -ACGGAAGATGCAAAGGACAATGGG -ACGGAAGATGCAAAGGACTCCTGA -ACGGAAGATGCAAAGGACTAGCGA -ACGGAAGATGCAAAGGACCACAGA -ACGGAAGATGCAAAGGACGCAAGA -ACGGAAGATGCAAAGGACGGTTGA -ACGGAAGATGCAAAGGACTCCGAT -ACGGAAGATGCAAAGGACTGGCAT -ACGGAAGATGCAAAGGACCGAGAT -ACGGAAGATGCAAAGGACTACCAC -ACGGAAGATGCAAAGGACCAGAAC -ACGGAAGATGCAAAGGACGTCTAC -ACGGAAGATGCAAAGGACACGTAC -ACGGAAGATGCAAAGGACAGTGAC -ACGGAAGATGCAAAGGACCTGTAG -ACGGAAGATGCAAAGGACCCTAAG -ACGGAAGATGCAAAGGACGTTCAG -ACGGAAGATGCAAAGGACGCATAG -ACGGAAGATGCAAAGGACGACAAG -ACGGAAGATGCAAAGGACAAGCAG -ACGGAAGATGCAAAGGACCGTCAA -ACGGAAGATGCAAAGGACGCTGAA -ACGGAAGATGCAAAGGACAGTACG -ACGGAAGATGCAAAGGACATCCGA -ACGGAAGATGCAAAGGACATGGGA -ACGGAAGATGCAAAGGACGTGCAA -ACGGAAGATGCAAAGGACGAGGAA -ACGGAAGATGCAAAGGACCAGGTA -ACGGAAGATGCAAAGGACGACTCT -ACGGAAGATGCAAAGGACAGTCCT -ACGGAAGATGCAAAGGACTAAGCC -ACGGAAGATGCAAAGGACATAGCC -ACGGAAGATGCAAAGGACTAACCG -ACGGAAGATGCAAAGGACATGCCA -ACGGAAGATGCACAGAAGGGAAAC -ACGGAAGATGCACAGAAGAACACC -ACGGAAGATGCACAGAAGATCGAG -ACGGAAGATGCACAGAAGCTCCTT -ACGGAAGATGCACAGAAGCCTGTT -ACGGAAGATGCACAGAAGCGGTTT -ACGGAAGATGCACAGAAGGTGGTT -ACGGAAGATGCACAGAAGGCCTTT -ACGGAAGATGCACAGAAGGGTCTT -ACGGAAGATGCACAGAAGACGCTT -ACGGAAGATGCACAGAAGAGCGTT -ACGGAAGATGCACAGAAGTTCGTC -ACGGAAGATGCACAGAAGTCTCTC -ACGGAAGATGCACAGAAGTGGATC -ACGGAAGATGCACAGAAGCACTTC -ACGGAAGATGCACAGAAGGTACTC -ACGGAAGATGCACAGAAGGATGTC -ACGGAAGATGCACAGAAGACAGTC -ACGGAAGATGCACAGAAGTTGCTG -ACGGAAGATGCACAGAAGTCCATG -ACGGAAGATGCACAGAAGTGTGTG -ACGGAAGATGCACAGAAGCTAGTG -ACGGAAGATGCACAGAAGCATCTG -ACGGAAGATGCACAGAAGGAGTTG -ACGGAAGATGCACAGAAGAGACTG -ACGGAAGATGCACAGAAGTCGGTA -ACGGAAGATGCACAGAAGTGCCTA -ACGGAAGATGCACAGAAGCCACTA -ACGGAAGATGCACAGAAGGGAGTA -ACGGAAGATGCACAGAAGTCGTCT -ACGGAAGATGCACAGAAGTGCACT -ACGGAAGATGCACAGAAGCTGACT -ACGGAAGATGCACAGAAGCAACCT -ACGGAAGATGCACAGAAGGCTACT -ACGGAAGATGCACAGAAGGGATCT -ACGGAAGATGCACAGAAGAAGGCT -ACGGAAGATGCACAGAAGTCAACC -ACGGAAGATGCACAGAAGTGTTCC -ACGGAAGATGCACAGAAGATTCCC -ACGGAAGATGCACAGAAGTTCTCG -ACGGAAGATGCACAGAAGTAGACG -ACGGAAGATGCACAGAAGGTAACG -ACGGAAGATGCACAGAAGACTTCG -ACGGAAGATGCACAGAAGTACGCA -ACGGAAGATGCACAGAAGCTTGCA -ACGGAAGATGCACAGAAGCGAACA -ACGGAAGATGCACAGAAGCAGTCA -ACGGAAGATGCACAGAAGGATCCA -ACGGAAGATGCACAGAAGACGACA -ACGGAAGATGCACAGAAGAGCTCA -ACGGAAGATGCACAGAAGTCACGT -ACGGAAGATGCACAGAAGCGTAGT -ACGGAAGATGCACAGAAGGTCAGT -ACGGAAGATGCACAGAAGGAAGGT -ACGGAAGATGCACAGAAGAACCGT -ACGGAAGATGCACAGAAGTTGTGC -ACGGAAGATGCACAGAAGCTAAGC -ACGGAAGATGCACAGAAGACTAGC -ACGGAAGATGCACAGAAGAGATGC -ACGGAAGATGCACAGAAGTGAAGG -ACGGAAGATGCACAGAAGCAATGG -ACGGAAGATGCACAGAAGATGAGG -ACGGAAGATGCACAGAAGAATGGG -ACGGAAGATGCACAGAAGTCCTGA -ACGGAAGATGCACAGAAGTAGCGA -ACGGAAGATGCACAGAAGCACAGA -ACGGAAGATGCACAGAAGGCAAGA -ACGGAAGATGCACAGAAGGGTTGA -ACGGAAGATGCACAGAAGTCCGAT -ACGGAAGATGCACAGAAGTGGCAT -ACGGAAGATGCACAGAAGCGAGAT -ACGGAAGATGCACAGAAGTACCAC -ACGGAAGATGCACAGAAGCAGAAC -ACGGAAGATGCACAGAAGGTCTAC -ACGGAAGATGCACAGAAGACGTAC -ACGGAAGATGCACAGAAGAGTGAC -ACGGAAGATGCACAGAAGCTGTAG -ACGGAAGATGCACAGAAGCCTAAG -ACGGAAGATGCACAGAAGGTTCAG -ACGGAAGATGCACAGAAGGCATAG -ACGGAAGATGCACAGAAGGACAAG -ACGGAAGATGCACAGAAGAAGCAG -ACGGAAGATGCACAGAAGCGTCAA -ACGGAAGATGCACAGAAGGCTGAA -ACGGAAGATGCACAGAAGAGTACG -ACGGAAGATGCACAGAAGATCCGA -ACGGAAGATGCACAGAAGATGGGA -ACGGAAGATGCACAGAAGGTGCAA -ACGGAAGATGCACAGAAGGAGGAA -ACGGAAGATGCACAGAAGCAGGTA -ACGGAAGATGCACAGAAGGACTCT -ACGGAAGATGCACAGAAGAGTCCT -ACGGAAGATGCACAGAAGTAAGCC -ACGGAAGATGCACAGAAGATAGCC -ACGGAAGATGCACAGAAGTAACCG -ACGGAAGATGCACAGAAGATGCCA -ACGGAAGATGCACAACGTGGAAAC -ACGGAAGATGCACAACGTAACACC -ACGGAAGATGCACAACGTATCGAG -ACGGAAGATGCACAACGTCTCCTT -ACGGAAGATGCACAACGTCCTGTT -ACGGAAGATGCACAACGTCGGTTT -ACGGAAGATGCACAACGTGTGGTT -ACGGAAGATGCACAACGTGCCTTT -ACGGAAGATGCACAACGTGGTCTT -ACGGAAGATGCACAACGTACGCTT -ACGGAAGATGCACAACGTAGCGTT -ACGGAAGATGCACAACGTTTCGTC -ACGGAAGATGCACAACGTTCTCTC -ACGGAAGATGCACAACGTTGGATC -ACGGAAGATGCACAACGTCACTTC -ACGGAAGATGCACAACGTGTACTC -ACGGAAGATGCACAACGTGATGTC -ACGGAAGATGCACAACGTACAGTC -ACGGAAGATGCACAACGTTTGCTG -ACGGAAGATGCACAACGTTCCATG -ACGGAAGATGCACAACGTTGTGTG -ACGGAAGATGCACAACGTCTAGTG -ACGGAAGATGCACAACGTCATCTG -ACGGAAGATGCACAACGTGAGTTG -ACGGAAGATGCACAACGTAGACTG -ACGGAAGATGCACAACGTTCGGTA -ACGGAAGATGCACAACGTTGCCTA -ACGGAAGATGCACAACGTCCACTA -ACGGAAGATGCACAACGTGGAGTA -ACGGAAGATGCACAACGTTCGTCT -ACGGAAGATGCACAACGTTGCACT -ACGGAAGATGCACAACGTCTGACT -ACGGAAGATGCACAACGTCAACCT -ACGGAAGATGCACAACGTGCTACT -ACGGAAGATGCACAACGTGGATCT -ACGGAAGATGCACAACGTAAGGCT -ACGGAAGATGCACAACGTTCAACC -ACGGAAGATGCACAACGTTGTTCC -ACGGAAGATGCACAACGTATTCCC -ACGGAAGATGCACAACGTTTCTCG -ACGGAAGATGCACAACGTTAGACG -ACGGAAGATGCACAACGTGTAACG -ACGGAAGATGCACAACGTACTTCG -ACGGAAGATGCACAACGTTACGCA -ACGGAAGATGCACAACGTCTTGCA -ACGGAAGATGCACAACGTCGAACA -ACGGAAGATGCACAACGTCAGTCA -ACGGAAGATGCACAACGTGATCCA -ACGGAAGATGCACAACGTACGACA -ACGGAAGATGCACAACGTAGCTCA -ACGGAAGATGCACAACGTTCACGT -ACGGAAGATGCACAACGTCGTAGT -ACGGAAGATGCACAACGTGTCAGT -ACGGAAGATGCACAACGTGAAGGT -ACGGAAGATGCACAACGTAACCGT -ACGGAAGATGCACAACGTTTGTGC -ACGGAAGATGCACAACGTCTAAGC -ACGGAAGATGCACAACGTACTAGC -ACGGAAGATGCACAACGTAGATGC -ACGGAAGATGCACAACGTTGAAGG -ACGGAAGATGCACAACGTCAATGG -ACGGAAGATGCACAACGTATGAGG -ACGGAAGATGCACAACGTAATGGG -ACGGAAGATGCACAACGTTCCTGA -ACGGAAGATGCACAACGTTAGCGA -ACGGAAGATGCACAACGTCACAGA -ACGGAAGATGCACAACGTGCAAGA -ACGGAAGATGCACAACGTGGTTGA -ACGGAAGATGCACAACGTTCCGAT -ACGGAAGATGCACAACGTTGGCAT -ACGGAAGATGCACAACGTCGAGAT -ACGGAAGATGCACAACGTTACCAC -ACGGAAGATGCACAACGTCAGAAC -ACGGAAGATGCACAACGTGTCTAC -ACGGAAGATGCACAACGTACGTAC -ACGGAAGATGCACAACGTAGTGAC -ACGGAAGATGCACAACGTCTGTAG -ACGGAAGATGCACAACGTCCTAAG -ACGGAAGATGCACAACGTGTTCAG -ACGGAAGATGCACAACGTGCATAG -ACGGAAGATGCACAACGTGACAAG -ACGGAAGATGCACAACGTAAGCAG -ACGGAAGATGCACAACGTCGTCAA -ACGGAAGATGCACAACGTGCTGAA -ACGGAAGATGCACAACGTAGTACG -ACGGAAGATGCACAACGTATCCGA -ACGGAAGATGCACAACGTATGGGA -ACGGAAGATGCACAACGTGTGCAA -ACGGAAGATGCACAACGTGAGGAA -ACGGAAGATGCACAACGTCAGGTA -ACGGAAGATGCACAACGTGACTCT -ACGGAAGATGCACAACGTAGTCCT -ACGGAAGATGCACAACGTTAAGCC -ACGGAAGATGCACAACGTATAGCC -ACGGAAGATGCACAACGTTAACCG -ACGGAAGATGCACAACGTATGCCA -ACGGAAGATGCAGAAGCTGGAAAC -ACGGAAGATGCAGAAGCTAACACC -ACGGAAGATGCAGAAGCTATCGAG -ACGGAAGATGCAGAAGCTCTCCTT -ACGGAAGATGCAGAAGCTCCTGTT -ACGGAAGATGCAGAAGCTCGGTTT -ACGGAAGATGCAGAAGCTGTGGTT -ACGGAAGATGCAGAAGCTGCCTTT -ACGGAAGATGCAGAAGCTGGTCTT -ACGGAAGATGCAGAAGCTACGCTT -ACGGAAGATGCAGAAGCTAGCGTT -ACGGAAGATGCAGAAGCTTTCGTC -ACGGAAGATGCAGAAGCTTCTCTC -ACGGAAGATGCAGAAGCTTGGATC -ACGGAAGATGCAGAAGCTCACTTC -ACGGAAGATGCAGAAGCTGTACTC -ACGGAAGATGCAGAAGCTGATGTC -ACGGAAGATGCAGAAGCTACAGTC -ACGGAAGATGCAGAAGCTTTGCTG -ACGGAAGATGCAGAAGCTTCCATG -ACGGAAGATGCAGAAGCTTGTGTG -ACGGAAGATGCAGAAGCTCTAGTG -ACGGAAGATGCAGAAGCTCATCTG -ACGGAAGATGCAGAAGCTGAGTTG -ACGGAAGATGCAGAAGCTAGACTG -ACGGAAGATGCAGAAGCTTCGGTA -ACGGAAGATGCAGAAGCTTGCCTA -ACGGAAGATGCAGAAGCTCCACTA -ACGGAAGATGCAGAAGCTGGAGTA -ACGGAAGATGCAGAAGCTTCGTCT -ACGGAAGATGCAGAAGCTTGCACT -ACGGAAGATGCAGAAGCTCTGACT -ACGGAAGATGCAGAAGCTCAACCT -ACGGAAGATGCAGAAGCTGCTACT -ACGGAAGATGCAGAAGCTGGATCT -ACGGAAGATGCAGAAGCTAAGGCT -ACGGAAGATGCAGAAGCTTCAACC -ACGGAAGATGCAGAAGCTTGTTCC -ACGGAAGATGCAGAAGCTATTCCC -ACGGAAGATGCAGAAGCTTTCTCG -ACGGAAGATGCAGAAGCTTAGACG -ACGGAAGATGCAGAAGCTGTAACG -ACGGAAGATGCAGAAGCTACTTCG -ACGGAAGATGCAGAAGCTTACGCA -ACGGAAGATGCAGAAGCTCTTGCA -ACGGAAGATGCAGAAGCTCGAACA -ACGGAAGATGCAGAAGCTCAGTCA -ACGGAAGATGCAGAAGCTGATCCA -ACGGAAGATGCAGAAGCTACGACA -ACGGAAGATGCAGAAGCTAGCTCA -ACGGAAGATGCAGAAGCTTCACGT -ACGGAAGATGCAGAAGCTCGTAGT -ACGGAAGATGCAGAAGCTGTCAGT -ACGGAAGATGCAGAAGCTGAAGGT -ACGGAAGATGCAGAAGCTAACCGT -ACGGAAGATGCAGAAGCTTTGTGC -ACGGAAGATGCAGAAGCTCTAAGC -ACGGAAGATGCAGAAGCTACTAGC -ACGGAAGATGCAGAAGCTAGATGC -ACGGAAGATGCAGAAGCTTGAAGG -ACGGAAGATGCAGAAGCTCAATGG -ACGGAAGATGCAGAAGCTATGAGG -ACGGAAGATGCAGAAGCTAATGGG -ACGGAAGATGCAGAAGCTTCCTGA -ACGGAAGATGCAGAAGCTTAGCGA -ACGGAAGATGCAGAAGCTCACAGA -ACGGAAGATGCAGAAGCTGCAAGA -ACGGAAGATGCAGAAGCTGGTTGA -ACGGAAGATGCAGAAGCTTCCGAT -ACGGAAGATGCAGAAGCTTGGCAT -ACGGAAGATGCAGAAGCTCGAGAT -ACGGAAGATGCAGAAGCTTACCAC -ACGGAAGATGCAGAAGCTCAGAAC -ACGGAAGATGCAGAAGCTGTCTAC -ACGGAAGATGCAGAAGCTACGTAC -ACGGAAGATGCAGAAGCTAGTGAC -ACGGAAGATGCAGAAGCTCTGTAG -ACGGAAGATGCAGAAGCTCCTAAG -ACGGAAGATGCAGAAGCTGTTCAG -ACGGAAGATGCAGAAGCTGCATAG -ACGGAAGATGCAGAAGCTGACAAG -ACGGAAGATGCAGAAGCTAAGCAG -ACGGAAGATGCAGAAGCTCGTCAA -ACGGAAGATGCAGAAGCTGCTGAA -ACGGAAGATGCAGAAGCTAGTACG -ACGGAAGATGCAGAAGCTATCCGA -ACGGAAGATGCAGAAGCTATGGGA -ACGGAAGATGCAGAAGCTGTGCAA -ACGGAAGATGCAGAAGCTGAGGAA -ACGGAAGATGCAGAAGCTCAGGTA -ACGGAAGATGCAGAAGCTGACTCT -ACGGAAGATGCAGAAGCTAGTCCT -ACGGAAGATGCAGAAGCTTAAGCC -ACGGAAGATGCAGAAGCTATAGCC -ACGGAAGATGCAGAAGCTTAACCG -ACGGAAGATGCAGAAGCTATGCCA -ACGGAAGATGCAACGAGTGGAAAC -ACGGAAGATGCAACGAGTAACACC -ACGGAAGATGCAACGAGTATCGAG -ACGGAAGATGCAACGAGTCTCCTT -ACGGAAGATGCAACGAGTCCTGTT -ACGGAAGATGCAACGAGTCGGTTT -ACGGAAGATGCAACGAGTGTGGTT -ACGGAAGATGCAACGAGTGCCTTT -ACGGAAGATGCAACGAGTGGTCTT -ACGGAAGATGCAACGAGTACGCTT -ACGGAAGATGCAACGAGTAGCGTT -ACGGAAGATGCAACGAGTTTCGTC -ACGGAAGATGCAACGAGTTCTCTC -ACGGAAGATGCAACGAGTTGGATC -ACGGAAGATGCAACGAGTCACTTC -ACGGAAGATGCAACGAGTGTACTC -ACGGAAGATGCAACGAGTGATGTC -ACGGAAGATGCAACGAGTACAGTC -ACGGAAGATGCAACGAGTTTGCTG -ACGGAAGATGCAACGAGTTCCATG -ACGGAAGATGCAACGAGTTGTGTG -ACGGAAGATGCAACGAGTCTAGTG -ACGGAAGATGCAACGAGTCATCTG -ACGGAAGATGCAACGAGTGAGTTG -ACGGAAGATGCAACGAGTAGACTG -ACGGAAGATGCAACGAGTTCGGTA -ACGGAAGATGCAACGAGTTGCCTA -ACGGAAGATGCAACGAGTCCACTA -ACGGAAGATGCAACGAGTGGAGTA -ACGGAAGATGCAACGAGTTCGTCT -ACGGAAGATGCAACGAGTTGCACT -ACGGAAGATGCAACGAGTCTGACT -ACGGAAGATGCAACGAGTCAACCT -ACGGAAGATGCAACGAGTGCTACT -ACGGAAGATGCAACGAGTGGATCT -ACGGAAGATGCAACGAGTAAGGCT -ACGGAAGATGCAACGAGTTCAACC -ACGGAAGATGCAACGAGTTGTTCC -ACGGAAGATGCAACGAGTATTCCC -ACGGAAGATGCAACGAGTTTCTCG -ACGGAAGATGCAACGAGTTAGACG -ACGGAAGATGCAACGAGTGTAACG -ACGGAAGATGCAACGAGTACTTCG -ACGGAAGATGCAACGAGTTACGCA -ACGGAAGATGCAACGAGTCTTGCA -ACGGAAGATGCAACGAGTCGAACA -ACGGAAGATGCAACGAGTCAGTCA -ACGGAAGATGCAACGAGTGATCCA -ACGGAAGATGCAACGAGTACGACA -ACGGAAGATGCAACGAGTAGCTCA -ACGGAAGATGCAACGAGTTCACGT -ACGGAAGATGCAACGAGTCGTAGT -ACGGAAGATGCAACGAGTGTCAGT -ACGGAAGATGCAACGAGTGAAGGT -ACGGAAGATGCAACGAGTAACCGT -ACGGAAGATGCAACGAGTTTGTGC -ACGGAAGATGCAACGAGTCTAAGC -ACGGAAGATGCAACGAGTACTAGC -ACGGAAGATGCAACGAGTAGATGC -ACGGAAGATGCAACGAGTTGAAGG -ACGGAAGATGCAACGAGTCAATGG -ACGGAAGATGCAACGAGTATGAGG -ACGGAAGATGCAACGAGTAATGGG -ACGGAAGATGCAACGAGTTCCTGA -ACGGAAGATGCAACGAGTTAGCGA -ACGGAAGATGCAACGAGTCACAGA -ACGGAAGATGCAACGAGTGCAAGA -ACGGAAGATGCAACGAGTGGTTGA -ACGGAAGATGCAACGAGTTCCGAT -ACGGAAGATGCAACGAGTTGGCAT -ACGGAAGATGCAACGAGTCGAGAT -ACGGAAGATGCAACGAGTTACCAC -ACGGAAGATGCAACGAGTCAGAAC -ACGGAAGATGCAACGAGTGTCTAC -ACGGAAGATGCAACGAGTACGTAC -ACGGAAGATGCAACGAGTAGTGAC -ACGGAAGATGCAACGAGTCTGTAG -ACGGAAGATGCAACGAGTCCTAAG -ACGGAAGATGCAACGAGTGTTCAG -ACGGAAGATGCAACGAGTGCATAG -ACGGAAGATGCAACGAGTGACAAG -ACGGAAGATGCAACGAGTAAGCAG -ACGGAAGATGCAACGAGTCGTCAA -ACGGAAGATGCAACGAGTGCTGAA -ACGGAAGATGCAACGAGTAGTACG -ACGGAAGATGCAACGAGTATCCGA -ACGGAAGATGCAACGAGTATGGGA -ACGGAAGATGCAACGAGTGTGCAA -ACGGAAGATGCAACGAGTGAGGAA -ACGGAAGATGCAACGAGTCAGGTA -ACGGAAGATGCAACGAGTGACTCT -ACGGAAGATGCAACGAGTAGTCCT -ACGGAAGATGCAACGAGTTAAGCC -ACGGAAGATGCAACGAGTATAGCC -ACGGAAGATGCAACGAGTTAACCG -ACGGAAGATGCAACGAGTATGCCA -ACGGAAGATGCACGAATCGGAAAC -ACGGAAGATGCACGAATCAACACC -ACGGAAGATGCACGAATCATCGAG -ACGGAAGATGCACGAATCCTCCTT -ACGGAAGATGCACGAATCCCTGTT -ACGGAAGATGCACGAATCCGGTTT -ACGGAAGATGCACGAATCGTGGTT -ACGGAAGATGCACGAATCGCCTTT -ACGGAAGATGCACGAATCGGTCTT -ACGGAAGATGCACGAATCACGCTT -ACGGAAGATGCACGAATCAGCGTT -ACGGAAGATGCACGAATCTTCGTC -ACGGAAGATGCACGAATCTCTCTC -ACGGAAGATGCACGAATCTGGATC -ACGGAAGATGCACGAATCCACTTC -ACGGAAGATGCACGAATCGTACTC -ACGGAAGATGCACGAATCGATGTC -ACGGAAGATGCACGAATCACAGTC -ACGGAAGATGCACGAATCTTGCTG -ACGGAAGATGCACGAATCTCCATG -ACGGAAGATGCACGAATCTGTGTG -ACGGAAGATGCACGAATCCTAGTG -ACGGAAGATGCACGAATCCATCTG -ACGGAAGATGCACGAATCGAGTTG -ACGGAAGATGCACGAATCAGACTG -ACGGAAGATGCACGAATCTCGGTA -ACGGAAGATGCACGAATCTGCCTA -ACGGAAGATGCACGAATCCCACTA -ACGGAAGATGCACGAATCGGAGTA -ACGGAAGATGCACGAATCTCGTCT -ACGGAAGATGCACGAATCTGCACT -ACGGAAGATGCACGAATCCTGACT -ACGGAAGATGCACGAATCCAACCT -ACGGAAGATGCACGAATCGCTACT -ACGGAAGATGCACGAATCGGATCT -ACGGAAGATGCACGAATCAAGGCT -ACGGAAGATGCACGAATCTCAACC -ACGGAAGATGCACGAATCTGTTCC -ACGGAAGATGCACGAATCATTCCC -ACGGAAGATGCACGAATCTTCTCG -ACGGAAGATGCACGAATCTAGACG -ACGGAAGATGCACGAATCGTAACG -ACGGAAGATGCACGAATCACTTCG -ACGGAAGATGCACGAATCTACGCA -ACGGAAGATGCACGAATCCTTGCA -ACGGAAGATGCACGAATCCGAACA -ACGGAAGATGCACGAATCCAGTCA -ACGGAAGATGCACGAATCGATCCA -ACGGAAGATGCACGAATCACGACA -ACGGAAGATGCACGAATCAGCTCA -ACGGAAGATGCACGAATCTCACGT -ACGGAAGATGCACGAATCCGTAGT -ACGGAAGATGCACGAATCGTCAGT -ACGGAAGATGCACGAATCGAAGGT -ACGGAAGATGCACGAATCAACCGT -ACGGAAGATGCACGAATCTTGTGC -ACGGAAGATGCACGAATCCTAAGC -ACGGAAGATGCACGAATCACTAGC -ACGGAAGATGCACGAATCAGATGC -ACGGAAGATGCACGAATCTGAAGG -ACGGAAGATGCACGAATCCAATGG -ACGGAAGATGCACGAATCATGAGG -ACGGAAGATGCACGAATCAATGGG -ACGGAAGATGCACGAATCTCCTGA -ACGGAAGATGCACGAATCTAGCGA -ACGGAAGATGCACGAATCCACAGA -ACGGAAGATGCACGAATCGCAAGA -ACGGAAGATGCACGAATCGGTTGA -ACGGAAGATGCACGAATCTCCGAT -ACGGAAGATGCACGAATCTGGCAT -ACGGAAGATGCACGAATCCGAGAT -ACGGAAGATGCACGAATCTACCAC -ACGGAAGATGCACGAATCCAGAAC -ACGGAAGATGCACGAATCGTCTAC -ACGGAAGATGCACGAATCACGTAC -ACGGAAGATGCACGAATCAGTGAC -ACGGAAGATGCACGAATCCTGTAG -ACGGAAGATGCACGAATCCCTAAG -ACGGAAGATGCACGAATCGTTCAG -ACGGAAGATGCACGAATCGCATAG -ACGGAAGATGCACGAATCGACAAG -ACGGAAGATGCACGAATCAAGCAG -ACGGAAGATGCACGAATCCGTCAA -ACGGAAGATGCACGAATCGCTGAA -ACGGAAGATGCACGAATCAGTACG -ACGGAAGATGCACGAATCATCCGA -ACGGAAGATGCACGAATCATGGGA -ACGGAAGATGCACGAATCGTGCAA -ACGGAAGATGCACGAATCGAGGAA -ACGGAAGATGCACGAATCCAGGTA -ACGGAAGATGCACGAATCGACTCT -ACGGAAGATGCACGAATCAGTCCT -ACGGAAGATGCACGAATCTAAGCC -ACGGAAGATGCACGAATCATAGCC -ACGGAAGATGCACGAATCTAACCG -ACGGAAGATGCACGAATCATGCCA -ACGGAAGATGCAGGAATGGGAAAC -ACGGAAGATGCAGGAATGAACACC -ACGGAAGATGCAGGAATGATCGAG -ACGGAAGATGCAGGAATGCTCCTT -ACGGAAGATGCAGGAATGCCTGTT -ACGGAAGATGCAGGAATGCGGTTT -ACGGAAGATGCAGGAATGGTGGTT -ACGGAAGATGCAGGAATGGCCTTT -ACGGAAGATGCAGGAATGGGTCTT -ACGGAAGATGCAGGAATGACGCTT -ACGGAAGATGCAGGAATGAGCGTT -ACGGAAGATGCAGGAATGTTCGTC -ACGGAAGATGCAGGAATGTCTCTC -ACGGAAGATGCAGGAATGTGGATC -ACGGAAGATGCAGGAATGCACTTC -ACGGAAGATGCAGGAATGGTACTC -ACGGAAGATGCAGGAATGGATGTC -ACGGAAGATGCAGGAATGACAGTC -ACGGAAGATGCAGGAATGTTGCTG -ACGGAAGATGCAGGAATGTCCATG -ACGGAAGATGCAGGAATGTGTGTG -ACGGAAGATGCAGGAATGCTAGTG -ACGGAAGATGCAGGAATGCATCTG -ACGGAAGATGCAGGAATGGAGTTG -ACGGAAGATGCAGGAATGAGACTG -ACGGAAGATGCAGGAATGTCGGTA -ACGGAAGATGCAGGAATGTGCCTA -ACGGAAGATGCAGGAATGCCACTA -ACGGAAGATGCAGGAATGGGAGTA -ACGGAAGATGCAGGAATGTCGTCT -ACGGAAGATGCAGGAATGTGCACT -ACGGAAGATGCAGGAATGCTGACT -ACGGAAGATGCAGGAATGCAACCT -ACGGAAGATGCAGGAATGGCTACT -ACGGAAGATGCAGGAATGGGATCT -ACGGAAGATGCAGGAATGAAGGCT -ACGGAAGATGCAGGAATGTCAACC -ACGGAAGATGCAGGAATGTGTTCC -ACGGAAGATGCAGGAATGATTCCC -ACGGAAGATGCAGGAATGTTCTCG -ACGGAAGATGCAGGAATGTAGACG -ACGGAAGATGCAGGAATGGTAACG -ACGGAAGATGCAGGAATGACTTCG -ACGGAAGATGCAGGAATGTACGCA -ACGGAAGATGCAGGAATGCTTGCA -ACGGAAGATGCAGGAATGCGAACA -ACGGAAGATGCAGGAATGCAGTCA -ACGGAAGATGCAGGAATGGATCCA -ACGGAAGATGCAGGAATGACGACA -ACGGAAGATGCAGGAATGAGCTCA -ACGGAAGATGCAGGAATGTCACGT -ACGGAAGATGCAGGAATGCGTAGT -ACGGAAGATGCAGGAATGGTCAGT -ACGGAAGATGCAGGAATGGAAGGT -ACGGAAGATGCAGGAATGAACCGT -ACGGAAGATGCAGGAATGTTGTGC -ACGGAAGATGCAGGAATGCTAAGC -ACGGAAGATGCAGGAATGACTAGC -ACGGAAGATGCAGGAATGAGATGC -ACGGAAGATGCAGGAATGTGAAGG -ACGGAAGATGCAGGAATGCAATGG -ACGGAAGATGCAGGAATGATGAGG -ACGGAAGATGCAGGAATGAATGGG -ACGGAAGATGCAGGAATGTCCTGA -ACGGAAGATGCAGGAATGTAGCGA -ACGGAAGATGCAGGAATGCACAGA -ACGGAAGATGCAGGAATGGCAAGA -ACGGAAGATGCAGGAATGGGTTGA -ACGGAAGATGCAGGAATGTCCGAT -ACGGAAGATGCAGGAATGTGGCAT -ACGGAAGATGCAGGAATGCGAGAT -ACGGAAGATGCAGGAATGTACCAC -ACGGAAGATGCAGGAATGCAGAAC -ACGGAAGATGCAGGAATGGTCTAC -ACGGAAGATGCAGGAATGACGTAC -ACGGAAGATGCAGGAATGAGTGAC -ACGGAAGATGCAGGAATGCTGTAG -ACGGAAGATGCAGGAATGCCTAAG -ACGGAAGATGCAGGAATGGTTCAG -ACGGAAGATGCAGGAATGGCATAG -ACGGAAGATGCAGGAATGGACAAG -ACGGAAGATGCAGGAATGAAGCAG -ACGGAAGATGCAGGAATGCGTCAA -ACGGAAGATGCAGGAATGGCTGAA -ACGGAAGATGCAGGAATGAGTACG -ACGGAAGATGCAGGAATGATCCGA -ACGGAAGATGCAGGAATGATGGGA -ACGGAAGATGCAGGAATGGTGCAA -ACGGAAGATGCAGGAATGGAGGAA -ACGGAAGATGCAGGAATGCAGGTA -ACGGAAGATGCAGGAATGGACTCT -ACGGAAGATGCAGGAATGAGTCCT -ACGGAAGATGCAGGAATGTAAGCC -ACGGAAGATGCAGGAATGATAGCC -ACGGAAGATGCAGGAATGTAACCG -ACGGAAGATGCAGGAATGATGCCA -ACGGAAGATGCACAAGTGGGAAAC -ACGGAAGATGCACAAGTGAACACC -ACGGAAGATGCACAAGTGATCGAG -ACGGAAGATGCACAAGTGCTCCTT -ACGGAAGATGCACAAGTGCCTGTT -ACGGAAGATGCACAAGTGCGGTTT -ACGGAAGATGCACAAGTGGTGGTT -ACGGAAGATGCACAAGTGGCCTTT -ACGGAAGATGCACAAGTGGGTCTT -ACGGAAGATGCACAAGTGACGCTT -ACGGAAGATGCACAAGTGAGCGTT -ACGGAAGATGCACAAGTGTTCGTC -ACGGAAGATGCACAAGTGTCTCTC -ACGGAAGATGCACAAGTGTGGATC -ACGGAAGATGCACAAGTGCACTTC -ACGGAAGATGCACAAGTGGTACTC -ACGGAAGATGCACAAGTGGATGTC -ACGGAAGATGCACAAGTGACAGTC -ACGGAAGATGCACAAGTGTTGCTG -ACGGAAGATGCACAAGTGTCCATG -ACGGAAGATGCACAAGTGTGTGTG -ACGGAAGATGCACAAGTGCTAGTG -ACGGAAGATGCACAAGTGCATCTG -ACGGAAGATGCACAAGTGGAGTTG -ACGGAAGATGCACAAGTGAGACTG -ACGGAAGATGCACAAGTGTCGGTA -ACGGAAGATGCACAAGTGTGCCTA -ACGGAAGATGCACAAGTGCCACTA -ACGGAAGATGCACAAGTGGGAGTA -ACGGAAGATGCACAAGTGTCGTCT -ACGGAAGATGCACAAGTGTGCACT -ACGGAAGATGCACAAGTGCTGACT -ACGGAAGATGCACAAGTGCAACCT -ACGGAAGATGCACAAGTGGCTACT -ACGGAAGATGCACAAGTGGGATCT -ACGGAAGATGCACAAGTGAAGGCT -ACGGAAGATGCACAAGTGTCAACC -ACGGAAGATGCACAAGTGTGTTCC -ACGGAAGATGCACAAGTGATTCCC -ACGGAAGATGCACAAGTGTTCTCG -ACGGAAGATGCACAAGTGTAGACG -ACGGAAGATGCACAAGTGGTAACG -ACGGAAGATGCACAAGTGACTTCG -ACGGAAGATGCACAAGTGTACGCA -ACGGAAGATGCACAAGTGCTTGCA -ACGGAAGATGCACAAGTGCGAACA -ACGGAAGATGCACAAGTGCAGTCA -ACGGAAGATGCACAAGTGGATCCA -ACGGAAGATGCACAAGTGACGACA -ACGGAAGATGCACAAGTGAGCTCA -ACGGAAGATGCACAAGTGTCACGT -ACGGAAGATGCACAAGTGCGTAGT -ACGGAAGATGCACAAGTGGTCAGT -ACGGAAGATGCACAAGTGGAAGGT -ACGGAAGATGCACAAGTGAACCGT -ACGGAAGATGCACAAGTGTTGTGC -ACGGAAGATGCACAAGTGCTAAGC -ACGGAAGATGCACAAGTGACTAGC -ACGGAAGATGCACAAGTGAGATGC -ACGGAAGATGCACAAGTGTGAAGG -ACGGAAGATGCACAAGTGCAATGG -ACGGAAGATGCACAAGTGATGAGG -ACGGAAGATGCACAAGTGAATGGG -ACGGAAGATGCACAAGTGTCCTGA -ACGGAAGATGCACAAGTGTAGCGA -ACGGAAGATGCACAAGTGCACAGA -ACGGAAGATGCACAAGTGGCAAGA -ACGGAAGATGCACAAGTGGGTTGA -ACGGAAGATGCACAAGTGTCCGAT -ACGGAAGATGCACAAGTGTGGCAT -ACGGAAGATGCACAAGTGCGAGAT -ACGGAAGATGCACAAGTGTACCAC -ACGGAAGATGCACAAGTGCAGAAC -ACGGAAGATGCACAAGTGGTCTAC -ACGGAAGATGCACAAGTGACGTAC -ACGGAAGATGCACAAGTGAGTGAC -ACGGAAGATGCACAAGTGCTGTAG -ACGGAAGATGCACAAGTGCCTAAG -ACGGAAGATGCACAAGTGGTTCAG -ACGGAAGATGCACAAGTGGCATAG -ACGGAAGATGCACAAGTGGACAAG -ACGGAAGATGCACAAGTGAAGCAG -ACGGAAGATGCACAAGTGCGTCAA -ACGGAAGATGCACAAGTGGCTGAA -ACGGAAGATGCACAAGTGAGTACG -ACGGAAGATGCACAAGTGATCCGA -ACGGAAGATGCACAAGTGATGGGA -ACGGAAGATGCACAAGTGGTGCAA -ACGGAAGATGCACAAGTGGAGGAA -ACGGAAGATGCACAAGTGCAGGTA -ACGGAAGATGCACAAGTGGACTCT -ACGGAAGATGCACAAGTGAGTCCT -ACGGAAGATGCACAAGTGTAAGCC -ACGGAAGATGCACAAGTGATAGCC -ACGGAAGATGCACAAGTGTAACCG -ACGGAAGATGCACAAGTGATGCCA -ACGGAAGATGCAGAAGAGGGAAAC -ACGGAAGATGCAGAAGAGAACACC -ACGGAAGATGCAGAAGAGATCGAG -ACGGAAGATGCAGAAGAGCTCCTT -ACGGAAGATGCAGAAGAGCCTGTT -ACGGAAGATGCAGAAGAGCGGTTT -ACGGAAGATGCAGAAGAGGTGGTT -ACGGAAGATGCAGAAGAGGCCTTT -ACGGAAGATGCAGAAGAGGGTCTT -ACGGAAGATGCAGAAGAGACGCTT -ACGGAAGATGCAGAAGAGAGCGTT -ACGGAAGATGCAGAAGAGTTCGTC -ACGGAAGATGCAGAAGAGTCTCTC -ACGGAAGATGCAGAAGAGTGGATC -ACGGAAGATGCAGAAGAGCACTTC -ACGGAAGATGCAGAAGAGGTACTC -ACGGAAGATGCAGAAGAGGATGTC -ACGGAAGATGCAGAAGAGACAGTC -ACGGAAGATGCAGAAGAGTTGCTG -ACGGAAGATGCAGAAGAGTCCATG -ACGGAAGATGCAGAAGAGTGTGTG -ACGGAAGATGCAGAAGAGCTAGTG -ACGGAAGATGCAGAAGAGCATCTG -ACGGAAGATGCAGAAGAGGAGTTG -ACGGAAGATGCAGAAGAGAGACTG -ACGGAAGATGCAGAAGAGTCGGTA -ACGGAAGATGCAGAAGAGTGCCTA -ACGGAAGATGCAGAAGAGCCACTA -ACGGAAGATGCAGAAGAGGGAGTA -ACGGAAGATGCAGAAGAGTCGTCT -ACGGAAGATGCAGAAGAGTGCACT -ACGGAAGATGCAGAAGAGCTGACT -ACGGAAGATGCAGAAGAGCAACCT -ACGGAAGATGCAGAAGAGGCTACT -ACGGAAGATGCAGAAGAGGGATCT -ACGGAAGATGCAGAAGAGAAGGCT -ACGGAAGATGCAGAAGAGTCAACC -ACGGAAGATGCAGAAGAGTGTTCC -ACGGAAGATGCAGAAGAGATTCCC -ACGGAAGATGCAGAAGAGTTCTCG -ACGGAAGATGCAGAAGAGTAGACG -ACGGAAGATGCAGAAGAGGTAACG -ACGGAAGATGCAGAAGAGACTTCG -ACGGAAGATGCAGAAGAGTACGCA -ACGGAAGATGCAGAAGAGCTTGCA -ACGGAAGATGCAGAAGAGCGAACA -ACGGAAGATGCAGAAGAGCAGTCA -ACGGAAGATGCAGAAGAGGATCCA -ACGGAAGATGCAGAAGAGACGACA -ACGGAAGATGCAGAAGAGAGCTCA -ACGGAAGATGCAGAAGAGTCACGT -ACGGAAGATGCAGAAGAGCGTAGT -ACGGAAGATGCAGAAGAGGTCAGT -ACGGAAGATGCAGAAGAGGAAGGT -ACGGAAGATGCAGAAGAGAACCGT -ACGGAAGATGCAGAAGAGTTGTGC -ACGGAAGATGCAGAAGAGCTAAGC -ACGGAAGATGCAGAAGAGACTAGC -ACGGAAGATGCAGAAGAGAGATGC -ACGGAAGATGCAGAAGAGTGAAGG -ACGGAAGATGCAGAAGAGCAATGG -ACGGAAGATGCAGAAGAGATGAGG -ACGGAAGATGCAGAAGAGAATGGG -ACGGAAGATGCAGAAGAGTCCTGA -ACGGAAGATGCAGAAGAGTAGCGA -ACGGAAGATGCAGAAGAGCACAGA -ACGGAAGATGCAGAAGAGGCAAGA -ACGGAAGATGCAGAAGAGGGTTGA -ACGGAAGATGCAGAAGAGTCCGAT -ACGGAAGATGCAGAAGAGTGGCAT -ACGGAAGATGCAGAAGAGCGAGAT -ACGGAAGATGCAGAAGAGTACCAC -ACGGAAGATGCAGAAGAGCAGAAC -ACGGAAGATGCAGAAGAGGTCTAC -ACGGAAGATGCAGAAGAGACGTAC -ACGGAAGATGCAGAAGAGAGTGAC -ACGGAAGATGCAGAAGAGCTGTAG -ACGGAAGATGCAGAAGAGCCTAAG -ACGGAAGATGCAGAAGAGGTTCAG -ACGGAAGATGCAGAAGAGGCATAG -ACGGAAGATGCAGAAGAGGACAAG -ACGGAAGATGCAGAAGAGAAGCAG -ACGGAAGATGCAGAAGAGCGTCAA -ACGGAAGATGCAGAAGAGGCTGAA -ACGGAAGATGCAGAAGAGAGTACG -ACGGAAGATGCAGAAGAGATCCGA -ACGGAAGATGCAGAAGAGATGGGA -ACGGAAGATGCAGAAGAGGTGCAA -ACGGAAGATGCAGAAGAGGAGGAA -ACGGAAGATGCAGAAGAGCAGGTA -ACGGAAGATGCAGAAGAGGACTCT -ACGGAAGATGCAGAAGAGAGTCCT -ACGGAAGATGCAGAAGAGTAAGCC -ACGGAAGATGCAGAAGAGATAGCC -ACGGAAGATGCAGAAGAGTAACCG -ACGGAAGATGCAGAAGAGATGCCA -ACGGAAGATGCAGTACAGGGAAAC -ACGGAAGATGCAGTACAGAACACC -ACGGAAGATGCAGTACAGATCGAG -ACGGAAGATGCAGTACAGCTCCTT -ACGGAAGATGCAGTACAGCCTGTT -ACGGAAGATGCAGTACAGCGGTTT -ACGGAAGATGCAGTACAGGTGGTT -ACGGAAGATGCAGTACAGGCCTTT -ACGGAAGATGCAGTACAGGGTCTT -ACGGAAGATGCAGTACAGACGCTT -ACGGAAGATGCAGTACAGAGCGTT -ACGGAAGATGCAGTACAGTTCGTC -ACGGAAGATGCAGTACAGTCTCTC -ACGGAAGATGCAGTACAGTGGATC -ACGGAAGATGCAGTACAGCACTTC -ACGGAAGATGCAGTACAGGTACTC -ACGGAAGATGCAGTACAGGATGTC -ACGGAAGATGCAGTACAGACAGTC -ACGGAAGATGCAGTACAGTTGCTG -ACGGAAGATGCAGTACAGTCCATG -ACGGAAGATGCAGTACAGTGTGTG -ACGGAAGATGCAGTACAGCTAGTG -ACGGAAGATGCAGTACAGCATCTG -ACGGAAGATGCAGTACAGGAGTTG -ACGGAAGATGCAGTACAGAGACTG -ACGGAAGATGCAGTACAGTCGGTA -ACGGAAGATGCAGTACAGTGCCTA -ACGGAAGATGCAGTACAGCCACTA -ACGGAAGATGCAGTACAGGGAGTA -ACGGAAGATGCAGTACAGTCGTCT -ACGGAAGATGCAGTACAGTGCACT -ACGGAAGATGCAGTACAGCTGACT -ACGGAAGATGCAGTACAGCAACCT -ACGGAAGATGCAGTACAGGCTACT -ACGGAAGATGCAGTACAGGGATCT -ACGGAAGATGCAGTACAGAAGGCT -ACGGAAGATGCAGTACAGTCAACC -ACGGAAGATGCAGTACAGTGTTCC -ACGGAAGATGCAGTACAGATTCCC -ACGGAAGATGCAGTACAGTTCTCG -ACGGAAGATGCAGTACAGTAGACG -ACGGAAGATGCAGTACAGGTAACG -ACGGAAGATGCAGTACAGACTTCG -ACGGAAGATGCAGTACAGTACGCA -ACGGAAGATGCAGTACAGCTTGCA -ACGGAAGATGCAGTACAGCGAACA -ACGGAAGATGCAGTACAGCAGTCA -ACGGAAGATGCAGTACAGGATCCA -ACGGAAGATGCAGTACAGACGACA -ACGGAAGATGCAGTACAGAGCTCA -ACGGAAGATGCAGTACAGTCACGT -ACGGAAGATGCAGTACAGCGTAGT -ACGGAAGATGCAGTACAGGTCAGT -ACGGAAGATGCAGTACAGGAAGGT -ACGGAAGATGCAGTACAGAACCGT -ACGGAAGATGCAGTACAGTTGTGC -ACGGAAGATGCAGTACAGCTAAGC -ACGGAAGATGCAGTACAGACTAGC -ACGGAAGATGCAGTACAGAGATGC -ACGGAAGATGCAGTACAGTGAAGG -ACGGAAGATGCAGTACAGCAATGG -ACGGAAGATGCAGTACAGATGAGG -ACGGAAGATGCAGTACAGAATGGG -ACGGAAGATGCAGTACAGTCCTGA -ACGGAAGATGCAGTACAGTAGCGA -ACGGAAGATGCAGTACAGCACAGA -ACGGAAGATGCAGTACAGGCAAGA -ACGGAAGATGCAGTACAGGGTTGA -ACGGAAGATGCAGTACAGTCCGAT -ACGGAAGATGCAGTACAGTGGCAT -ACGGAAGATGCAGTACAGCGAGAT -ACGGAAGATGCAGTACAGTACCAC -ACGGAAGATGCAGTACAGCAGAAC -ACGGAAGATGCAGTACAGGTCTAC -ACGGAAGATGCAGTACAGACGTAC -ACGGAAGATGCAGTACAGAGTGAC -ACGGAAGATGCAGTACAGCTGTAG -ACGGAAGATGCAGTACAGCCTAAG -ACGGAAGATGCAGTACAGGTTCAG -ACGGAAGATGCAGTACAGGCATAG -ACGGAAGATGCAGTACAGGACAAG -ACGGAAGATGCAGTACAGAAGCAG -ACGGAAGATGCAGTACAGCGTCAA -ACGGAAGATGCAGTACAGGCTGAA -ACGGAAGATGCAGTACAGAGTACG -ACGGAAGATGCAGTACAGATCCGA -ACGGAAGATGCAGTACAGATGGGA -ACGGAAGATGCAGTACAGGTGCAA -ACGGAAGATGCAGTACAGGAGGAA -ACGGAAGATGCAGTACAGCAGGTA -ACGGAAGATGCAGTACAGGACTCT -ACGGAAGATGCAGTACAGAGTCCT -ACGGAAGATGCAGTACAGTAAGCC -ACGGAAGATGCAGTACAGATAGCC -ACGGAAGATGCAGTACAGTAACCG -ACGGAAGATGCAGTACAGATGCCA -ACGGAAGATGCATCTGACGGAAAC -ACGGAAGATGCATCTGACAACACC -ACGGAAGATGCATCTGACATCGAG -ACGGAAGATGCATCTGACCTCCTT -ACGGAAGATGCATCTGACCCTGTT -ACGGAAGATGCATCTGACCGGTTT -ACGGAAGATGCATCTGACGTGGTT -ACGGAAGATGCATCTGACGCCTTT -ACGGAAGATGCATCTGACGGTCTT -ACGGAAGATGCATCTGACACGCTT -ACGGAAGATGCATCTGACAGCGTT -ACGGAAGATGCATCTGACTTCGTC -ACGGAAGATGCATCTGACTCTCTC -ACGGAAGATGCATCTGACTGGATC -ACGGAAGATGCATCTGACCACTTC -ACGGAAGATGCATCTGACGTACTC -ACGGAAGATGCATCTGACGATGTC -ACGGAAGATGCATCTGACACAGTC -ACGGAAGATGCATCTGACTTGCTG -ACGGAAGATGCATCTGACTCCATG -ACGGAAGATGCATCTGACTGTGTG -ACGGAAGATGCATCTGACCTAGTG -ACGGAAGATGCATCTGACCATCTG -ACGGAAGATGCATCTGACGAGTTG -ACGGAAGATGCATCTGACAGACTG -ACGGAAGATGCATCTGACTCGGTA -ACGGAAGATGCATCTGACTGCCTA -ACGGAAGATGCATCTGACCCACTA -ACGGAAGATGCATCTGACGGAGTA -ACGGAAGATGCATCTGACTCGTCT -ACGGAAGATGCATCTGACTGCACT -ACGGAAGATGCATCTGACCTGACT -ACGGAAGATGCATCTGACCAACCT -ACGGAAGATGCATCTGACGCTACT -ACGGAAGATGCATCTGACGGATCT -ACGGAAGATGCATCTGACAAGGCT -ACGGAAGATGCATCTGACTCAACC -ACGGAAGATGCATCTGACTGTTCC -ACGGAAGATGCATCTGACATTCCC -ACGGAAGATGCATCTGACTTCTCG -ACGGAAGATGCATCTGACTAGACG -ACGGAAGATGCATCTGACGTAACG -ACGGAAGATGCATCTGACACTTCG -ACGGAAGATGCATCTGACTACGCA -ACGGAAGATGCATCTGACCTTGCA -ACGGAAGATGCATCTGACCGAACA -ACGGAAGATGCATCTGACCAGTCA -ACGGAAGATGCATCTGACGATCCA -ACGGAAGATGCATCTGACACGACA -ACGGAAGATGCATCTGACAGCTCA -ACGGAAGATGCATCTGACTCACGT -ACGGAAGATGCATCTGACCGTAGT -ACGGAAGATGCATCTGACGTCAGT -ACGGAAGATGCATCTGACGAAGGT -ACGGAAGATGCATCTGACAACCGT -ACGGAAGATGCATCTGACTTGTGC -ACGGAAGATGCATCTGACCTAAGC -ACGGAAGATGCATCTGACACTAGC -ACGGAAGATGCATCTGACAGATGC -ACGGAAGATGCATCTGACTGAAGG -ACGGAAGATGCATCTGACCAATGG -ACGGAAGATGCATCTGACATGAGG -ACGGAAGATGCATCTGACAATGGG -ACGGAAGATGCATCTGACTCCTGA -ACGGAAGATGCATCTGACTAGCGA -ACGGAAGATGCATCTGACCACAGA -ACGGAAGATGCATCTGACGCAAGA -ACGGAAGATGCATCTGACGGTTGA -ACGGAAGATGCATCTGACTCCGAT -ACGGAAGATGCATCTGACTGGCAT -ACGGAAGATGCATCTGACCGAGAT -ACGGAAGATGCATCTGACTACCAC -ACGGAAGATGCATCTGACCAGAAC -ACGGAAGATGCATCTGACGTCTAC -ACGGAAGATGCATCTGACACGTAC -ACGGAAGATGCATCTGACAGTGAC -ACGGAAGATGCATCTGACCTGTAG -ACGGAAGATGCATCTGACCCTAAG -ACGGAAGATGCATCTGACGTTCAG -ACGGAAGATGCATCTGACGCATAG -ACGGAAGATGCATCTGACGACAAG -ACGGAAGATGCATCTGACAAGCAG -ACGGAAGATGCATCTGACCGTCAA -ACGGAAGATGCATCTGACGCTGAA -ACGGAAGATGCATCTGACAGTACG -ACGGAAGATGCATCTGACATCCGA -ACGGAAGATGCATCTGACATGGGA -ACGGAAGATGCATCTGACGTGCAA -ACGGAAGATGCATCTGACGAGGAA -ACGGAAGATGCATCTGACCAGGTA -ACGGAAGATGCATCTGACGACTCT -ACGGAAGATGCATCTGACAGTCCT -ACGGAAGATGCATCTGACTAAGCC -ACGGAAGATGCATCTGACATAGCC -ACGGAAGATGCATCTGACTAACCG -ACGGAAGATGCATCTGACATGCCA -ACGGAAGATGCACCTAGTGGAAAC -ACGGAAGATGCACCTAGTAACACC -ACGGAAGATGCACCTAGTATCGAG -ACGGAAGATGCACCTAGTCTCCTT -ACGGAAGATGCACCTAGTCCTGTT -ACGGAAGATGCACCTAGTCGGTTT -ACGGAAGATGCACCTAGTGTGGTT -ACGGAAGATGCACCTAGTGCCTTT -ACGGAAGATGCACCTAGTGGTCTT -ACGGAAGATGCACCTAGTACGCTT -ACGGAAGATGCACCTAGTAGCGTT -ACGGAAGATGCACCTAGTTTCGTC -ACGGAAGATGCACCTAGTTCTCTC -ACGGAAGATGCACCTAGTTGGATC -ACGGAAGATGCACCTAGTCACTTC -ACGGAAGATGCACCTAGTGTACTC -ACGGAAGATGCACCTAGTGATGTC -ACGGAAGATGCACCTAGTACAGTC -ACGGAAGATGCACCTAGTTTGCTG -ACGGAAGATGCACCTAGTTCCATG -ACGGAAGATGCACCTAGTTGTGTG -ACGGAAGATGCACCTAGTCTAGTG -ACGGAAGATGCACCTAGTCATCTG -ACGGAAGATGCACCTAGTGAGTTG -ACGGAAGATGCACCTAGTAGACTG -ACGGAAGATGCACCTAGTTCGGTA -ACGGAAGATGCACCTAGTTGCCTA -ACGGAAGATGCACCTAGTCCACTA -ACGGAAGATGCACCTAGTGGAGTA -ACGGAAGATGCACCTAGTTCGTCT -ACGGAAGATGCACCTAGTTGCACT -ACGGAAGATGCACCTAGTCTGACT -ACGGAAGATGCACCTAGTCAACCT -ACGGAAGATGCACCTAGTGCTACT -ACGGAAGATGCACCTAGTGGATCT -ACGGAAGATGCACCTAGTAAGGCT -ACGGAAGATGCACCTAGTTCAACC -ACGGAAGATGCACCTAGTTGTTCC -ACGGAAGATGCACCTAGTATTCCC -ACGGAAGATGCACCTAGTTTCTCG -ACGGAAGATGCACCTAGTTAGACG -ACGGAAGATGCACCTAGTGTAACG -ACGGAAGATGCACCTAGTACTTCG -ACGGAAGATGCACCTAGTTACGCA -ACGGAAGATGCACCTAGTCTTGCA -ACGGAAGATGCACCTAGTCGAACA -ACGGAAGATGCACCTAGTCAGTCA -ACGGAAGATGCACCTAGTGATCCA -ACGGAAGATGCACCTAGTACGACA -ACGGAAGATGCACCTAGTAGCTCA -ACGGAAGATGCACCTAGTTCACGT -ACGGAAGATGCACCTAGTCGTAGT -ACGGAAGATGCACCTAGTGTCAGT -ACGGAAGATGCACCTAGTGAAGGT -ACGGAAGATGCACCTAGTAACCGT -ACGGAAGATGCACCTAGTTTGTGC -ACGGAAGATGCACCTAGTCTAAGC -ACGGAAGATGCACCTAGTACTAGC -ACGGAAGATGCACCTAGTAGATGC -ACGGAAGATGCACCTAGTTGAAGG -ACGGAAGATGCACCTAGTCAATGG -ACGGAAGATGCACCTAGTATGAGG -ACGGAAGATGCACCTAGTAATGGG -ACGGAAGATGCACCTAGTTCCTGA -ACGGAAGATGCACCTAGTTAGCGA -ACGGAAGATGCACCTAGTCACAGA -ACGGAAGATGCACCTAGTGCAAGA -ACGGAAGATGCACCTAGTGGTTGA -ACGGAAGATGCACCTAGTTCCGAT -ACGGAAGATGCACCTAGTTGGCAT -ACGGAAGATGCACCTAGTCGAGAT -ACGGAAGATGCACCTAGTTACCAC -ACGGAAGATGCACCTAGTCAGAAC -ACGGAAGATGCACCTAGTGTCTAC -ACGGAAGATGCACCTAGTACGTAC -ACGGAAGATGCACCTAGTAGTGAC -ACGGAAGATGCACCTAGTCTGTAG -ACGGAAGATGCACCTAGTCCTAAG -ACGGAAGATGCACCTAGTGTTCAG -ACGGAAGATGCACCTAGTGCATAG -ACGGAAGATGCACCTAGTGACAAG -ACGGAAGATGCACCTAGTAAGCAG -ACGGAAGATGCACCTAGTCGTCAA -ACGGAAGATGCACCTAGTGCTGAA -ACGGAAGATGCACCTAGTAGTACG -ACGGAAGATGCACCTAGTATCCGA -ACGGAAGATGCACCTAGTATGGGA -ACGGAAGATGCACCTAGTGTGCAA -ACGGAAGATGCACCTAGTGAGGAA -ACGGAAGATGCACCTAGTCAGGTA -ACGGAAGATGCACCTAGTGACTCT -ACGGAAGATGCACCTAGTAGTCCT -ACGGAAGATGCACCTAGTTAAGCC -ACGGAAGATGCACCTAGTATAGCC -ACGGAAGATGCACCTAGTTAACCG -ACGGAAGATGCACCTAGTATGCCA -ACGGAAGATGCAGCCTAAGGAAAC -ACGGAAGATGCAGCCTAAAACACC -ACGGAAGATGCAGCCTAAATCGAG -ACGGAAGATGCAGCCTAACTCCTT -ACGGAAGATGCAGCCTAACCTGTT -ACGGAAGATGCAGCCTAACGGTTT -ACGGAAGATGCAGCCTAAGTGGTT -ACGGAAGATGCAGCCTAAGCCTTT -ACGGAAGATGCAGCCTAAGGTCTT -ACGGAAGATGCAGCCTAAACGCTT -ACGGAAGATGCAGCCTAAAGCGTT -ACGGAAGATGCAGCCTAATTCGTC -ACGGAAGATGCAGCCTAATCTCTC -ACGGAAGATGCAGCCTAATGGATC -ACGGAAGATGCAGCCTAACACTTC -ACGGAAGATGCAGCCTAAGTACTC -ACGGAAGATGCAGCCTAAGATGTC -ACGGAAGATGCAGCCTAAACAGTC -ACGGAAGATGCAGCCTAATTGCTG -ACGGAAGATGCAGCCTAATCCATG -ACGGAAGATGCAGCCTAATGTGTG -ACGGAAGATGCAGCCTAACTAGTG -ACGGAAGATGCAGCCTAACATCTG -ACGGAAGATGCAGCCTAAGAGTTG -ACGGAAGATGCAGCCTAAAGACTG -ACGGAAGATGCAGCCTAATCGGTA -ACGGAAGATGCAGCCTAATGCCTA -ACGGAAGATGCAGCCTAACCACTA -ACGGAAGATGCAGCCTAAGGAGTA -ACGGAAGATGCAGCCTAATCGTCT -ACGGAAGATGCAGCCTAATGCACT -ACGGAAGATGCAGCCTAACTGACT -ACGGAAGATGCAGCCTAACAACCT -ACGGAAGATGCAGCCTAAGCTACT -ACGGAAGATGCAGCCTAAGGATCT -ACGGAAGATGCAGCCTAAAAGGCT -ACGGAAGATGCAGCCTAATCAACC -ACGGAAGATGCAGCCTAATGTTCC -ACGGAAGATGCAGCCTAAATTCCC -ACGGAAGATGCAGCCTAATTCTCG -ACGGAAGATGCAGCCTAATAGACG -ACGGAAGATGCAGCCTAAGTAACG -ACGGAAGATGCAGCCTAAACTTCG -ACGGAAGATGCAGCCTAATACGCA -ACGGAAGATGCAGCCTAACTTGCA -ACGGAAGATGCAGCCTAACGAACA -ACGGAAGATGCAGCCTAACAGTCA -ACGGAAGATGCAGCCTAAGATCCA -ACGGAAGATGCAGCCTAAACGACA -ACGGAAGATGCAGCCTAAAGCTCA -ACGGAAGATGCAGCCTAATCACGT -ACGGAAGATGCAGCCTAACGTAGT -ACGGAAGATGCAGCCTAAGTCAGT -ACGGAAGATGCAGCCTAAGAAGGT -ACGGAAGATGCAGCCTAAAACCGT -ACGGAAGATGCAGCCTAATTGTGC -ACGGAAGATGCAGCCTAACTAAGC -ACGGAAGATGCAGCCTAAACTAGC -ACGGAAGATGCAGCCTAAAGATGC -ACGGAAGATGCAGCCTAATGAAGG -ACGGAAGATGCAGCCTAACAATGG -ACGGAAGATGCAGCCTAAATGAGG -ACGGAAGATGCAGCCTAAAATGGG -ACGGAAGATGCAGCCTAATCCTGA -ACGGAAGATGCAGCCTAATAGCGA -ACGGAAGATGCAGCCTAACACAGA -ACGGAAGATGCAGCCTAAGCAAGA -ACGGAAGATGCAGCCTAAGGTTGA -ACGGAAGATGCAGCCTAATCCGAT -ACGGAAGATGCAGCCTAATGGCAT -ACGGAAGATGCAGCCTAACGAGAT -ACGGAAGATGCAGCCTAATACCAC -ACGGAAGATGCAGCCTAACAGAAC -ACGGAAGATGCAGCCTAAGTCTAC -ACGGAAGATGCAGCCTAAACGTAC -ACGGAAGATGCAGCCTAAAGTGAC -ACGGAAGATGCAGCCTAACTGTAG -ACGGAAGATGCAGCCTAACCTAAG -ACGGAAGATGCAGCCTAAGTTCAG -ACGGAAGATGCAGCCTAAGCATAG -ACGGAAGATGCAGCCTAAGACAAG -ACGGAAGATGCAGCCTAAAAGCAG -ACGGAAGATGCAGCCTAACGTCAA -ACGGAAGATGCAGCCTAAGCTGAA -ACGGAAGATGCAGCCTAAAGTACG -ACGGAAGATGCAGCCTAAATCCGA -ACGGAAGATGCAGCCTAAATGGGA -ACGGAAGATGCAGCCTAAGTGCAA -ACGGAAGATGCAGCCTAAGAGGAA -ACGGAAGATGCAGCCTAACAGGTA -ACGGAAGATGCAGCCTAAGACTCT -ACGGAAGATGCAGCCTAAAGTCCT -ACGGAAGATGCAGCCTAATAAGCC -ACGGAAGATGCAGCCTAAATAGCC -ACGGAAGATGCAGCCTAATAACCG -ACGGAAGATGCAGCCTAAATGCCA -ACGGAAGATGCAGCCATAGGAAAC -ACGGAAGATGCAGCCATAAACACC -ACGGAAGATGCAGCCATAATCGAG -ACGGAAGATGCAGCCATACTCCTT -ACGGAAGATGCAGCCATACCTGTT -ACGGAAGATGCAGCCATACGGTTT -ACGGAAGATGCAGCCATAGTGGTT -ACGGAAGATGCAGCCATAGCCTTT -ACGGAAGATGCAGCCATAGGTCTT -ACGGAAGATGCAGCCATAACGCTT -ACGGAAGATGCAGCCATAAGCGTT -ACGGAAGATGCAGCCATATTCGTC -ACGGAAGATGCAGCCATATCTCTC -ACGGAAGATGCAGCCATATGGATC -ACGGAAGATGCAGCCATACACTTC -ACGGAAGATGCAGCCATAGTACTC -ACGGAAGATGCAGCCATAGATGTC -ACGGAAGATGCAGCCATAACAGTC -ACGGAAGATGCAGCCATATTGCTG -ACGGAAGATGCAGCCATATCCATG -ACGGAAGATGCAGCCATATGTGTG -ACGGAAGATGCAGCCATACTAGTG -ACGGAAGATGCAGCCATACATCTG -ACGGAAGATGCAGCCATAGAGTTG -ACGGAAGATGCAGCCATAAGACTG -ACGGAAGATGCAGCCATATCGGTA -ACGGAAGATGCAGCCATATGCCTA -ACGGAAGATGCAGCCATACCACTA -ACGGAAGATGCAGCCATAGGAGTA -ACGGAAGATGCAGCCATATCGTCT -ACGGAAGATGCAGCCATATGCACT -ACGGAAGATGCAGCCATACTGACT -ACGGAAGATGCAGCCATACAACCT -ACGGAAGATGCAGCCATAGCTACT -ACGGAAGATGCAGCCATAGGATCT -ACGGAAGATGCAGCCATAAAGGCT -ACGGAAGATGCAGCCATATCAACC -ACGGAAGATGCAGCCATATGTTCC -ACGGAAGATGCAGCCATAATTCCC -ACGGAAGATGCAGCCATATTCTCG -ACGGAAGATGCAGCCATATAGACG -ACGGAAGATGCAGCCATAGTAACG -ACGGAAGATGCAGCCATAACTTCG -ACGGAAGATGCAGCCATATACGCA -ACGGAAGATGCAGCCATACTTGCA -ACGGAAGATGCAGCCATACGAACA -ACGGAAGATGCAGCCATACAGTCA -ACGGAAGATGCAGCCATAGATCCA -ACGGAAGATGCAGCCATAACGACA -ACGGAAGATGCAGCCATAAGCTCA -ACGGAAGATGCAGCCATATCACGT -ACGGAAGATGCAGCCATACGTAGT -ACGGAAGATGCAGCCATAGTCAGT -ACGGAAGATGCAGCCATAGAAGGT -ACGGAAGATGCAGCCATAAACCGT -ACGGAAGATGCAGCCATATTGTGC -ACGGAAGATGCAGCCATACTAAGC -ACGGAAGATGCAGCCATAACTAGC -ACGGAAGATGCAGCCATAAGATGC -ACGGAAGATGCAGCCATATGAAGG -ACGGAAGATGCAGCCATACAATGG -ACGGAAGATGCAGCCATAATGAGG -ACGGAAGATGCAGCCATAAATGGG -ACGGAAGATGCAGCCATATCCTGA -ACGGAAGATGCAGCCATATAGCGA -ACGGAAGATGCAGCCATACACAGA -ACGGAAGATGCAGCCATAGCAAGA -ACGGAAGATGCAGCCATAGGTTGA -ACGGAAGATGCAGCCATATCCGAT -ACGGAAGATGCAGCCATATGGCAT -ACGGAAGATGCAGCCATACGAGAT -ACGGAAGATGCAGCCATATACCAC -ACGGAAGATGCAGCCATACAGAAC -ACGGAAGATGCAGCCATAGTCTAC -ACGGAAGATGCAGCCATAACGTAC -ACGGAAGATGCAGCCATAAGTGAC -ACGGAAGATGCAGCCATACTGTAG -ACGGAAGATGCAGCCATACCTAAG -ACGGAAGATGCAGCCATAGTTCAG -ACGGAAGATGCAGCCATAGCATAG -ACGGAAGATGCAGCCATAGACAAG -ACGGAAGATGCAGCCATAAAGCAG -ACGGAAGATGCAGCCATACGTCAA -ACGGAAGATGCAGCCATAGCTGAA -ACGGAAGATGCAGCCATAAGTACG -ACGGAAGATGCAGCCATAATCCGA -ACGGAAGATGCAGCCATAATGGGA -ACGGAAGATGCAGCCATAGTGCAA -ACGGAAGATGCAGCCATAGAGGAA -ACGGAAGATGCAGCCATACAGGTA -ACGGAAGATGCAGCCATAGACTCT -ACGGAAGATGCAGCCATAAGTCCT -ACGGAAGATGCAGCCATATAAGCC -ACGGAAGATGCAGCCATAATAGCC -ACGGAAGATGCAGCCATATAACCG -ACGGAAGATGCAGCCATAATGCCA -ACGGAAGATGCACCGTAAGGAAAC -ACGGAAGATGCACCGTAAAACACC -ACGGAAGATGCACCGTAAATCGAG -ACGGAAGATGCACCGTAACTCCTT -ACGGAAGATGCACCGTAACCTGTT -ACGGAAGATGCACCGTAACGGTTT -ACGGAAGATGCACCGTAAGTGGTT -ACGGAAGATGCACCGTAAGCCTTT -ACGGAAGATGCACCGTAAGGTCTT -ACGGAAGATGCACCGTAAACGCTT -ACGGAAGATGCACCGTAAAGCGTT -ACGGAAGATGCACCGTAATTCGTC -ACGGAAGATGCACCGTAATCTCTC -ACGGAAGATGCACCGTAATGGATC -ACGGAAGATGCACCGTAACACTTC -ACGGAAGATGCACCGTAAGTACTC -ACGGAAGATGCACCGTAAGATGTC -ACGGAAGATGCACCGTAAACAGTC -ACGGAAGATGCACCGTAATTGCTG -ACGGAAGATGCACCGTAATCCATG -ACGGAAGATGCACCGTAATGTGTG -ACGGAAGATGCACCGTAACTAGTG -ACGGAAGATGCACCGTAACATCTG -ACGGAAGATGCACCGTAAGAGTTG -ACGGAAGATGCACCGTAAAGACTG -ACGGAAGATGCACCGTAATCGGTA -ACGGAAGATGCACCGTAATGCCTA -ACGGAAGATGCACCGTAACCACTA -ACGGAAGATGCACCGTAAGGAGTA -ACGGAAGATGCACCGTAATCGTCT -ACGGAAGATGCACCGTAATGCACT -ACGGAAGATGCACCGTAACTGACT -ACGGAAGATGCACCGTAACAACCT -ACGGAAGATGCACCGTAAGCTACT -ACGGAAGATGCACCGTAAGGATCT -ACGGAAGATGCACCGTAAAAGGCT -ACGGAAGATGCACCGTAATCAACC -ACGGAAGATGCACCGTAATGTTCC -ACGGAAGATGCACCGTAAATTCCC -ACGGAAGATGCACCGTAATTCTCG -ACGGAAGATGCACCGTAATAGACG -ACGGAAGATGCACCGTAAGTAACG -ACGGAAGATGCACCGTAAACTTCG -ACGGAAGATGCACCGTAATACGCA -ACGGAAGATGCACCGTAACTTGCA -ACGGAAGATGCACCGTAACGAACA -ACGGAAGATGCACCGTAACAGTCA -ACGGAAGATGCACCGTAAGATCCA -ACGGAAGATGCACCGTAAACGACA -ACGGAAGATGCACCGTAAAGCTCA -ACGGAAGATGCACCGTAATCACGT -ACGGAAGATGCACCGTAACGTAGT -ACGGAAGATGCACCGTAAGTCAGT -ACGGAAGATGCACCGTAAGAAGGT -ACGGAAGATGCACCGTAAAACCGT -ACGGAAGATGCACCGTAATTGTGC -ACGGAAGATGCACCGTAACTAAGC -ACGGAAGATGCACCGTAAACTAGC -ACGGAAGATGCACCGTAAAGATGC -ACGGAAGATGCACCGTAATGAAGG -ACGGAAGATGCACCGTAACAATGG -ACGGAAGATGCACCGTAAATGAGG -ACGGAAGATGCACCGTAAAATGGG -ACGGAAGATGCACCGTAATCCTGA -ACGGAAGATGCACCGTAATAGCGA -ACGGAAGATGCACCGTAACACAGA -ACGGAAGATGCACCGTAAGCAAGA -ACGGAAGATGCACCGTAAGGTTGA -ACGGAAGATGCACCGTAATCCGAT -ACGGAAGATGCACCGTAATGGCAT -ACGGAAGATGCACCGTAACGAGAT -ACGGAAGATGCACCGTAATACCAC -ACGGAAGATGCACCGTAACAGAAC -ACGGAAGATGCACCGTAAGTCTAC -ACGGAAGATGCACCGTAAACGTAC -ACGGAAGATGCACCGTAAAGTGAC -ACGGAAGATGCACCGTAACTGTAG -ACGGAAGATGCACCGTAACCTAAG -ACGGAAGATGCACCGTAAGTTCAG -ACGGAAGATGCACCGTAAGCATAG -ACGGAAGATGCACCGTAAGACAAG -ACGGAAGATGCACCGTAAAAGCAG -ACGGAAGATGCACCGTAACGTCAA -ACGGAAGATGCACCGTAAGCTGAA -ACGGAAGATGCACCGTAAAGTACG -ACGGAAGATGCACCGTAAATCCGA -ACGGAAGATGCACCGTAAATGGGA -ACGGAAGATGCACCGTAAGTGCAA -ACGGAAGATGCACCGTAAGAGGAA -ACGGAAGATGCACCGTAACAGGTA -ACGGAAGATGCACCGTAAGACTCT -ACGGAAGATGCACCGTAAAGTCCT -ACGGAAGATGCACCGTAATAAGCC -ACGGAAGATGCACCGTAAATAGCC -ACGGAAGATGCACCGTAATAACCG -ACGGAAGATGCACCGTAAATGCCA -ACGGAAGATGCACCAATGGGAAAC -ACGGAAGATGCACCAATGAACACC -ACGGAAGATGCACCAATGATCGAG -ACGGAAGATGCACCAATGCTCCTT -ACGGAAGATGCACCAATGCCTGTT -ACGGAAGATGCACCAATGCGGTTT -ACGGAAGATGCACCAATGGTGGTT -ACGGAAGATGCACCAATGGCCTTT -ACGGAAGATGCACCAATGGGTCTT -ACGGAAGATGCACCAATGACGCTT -ACGGAAGATGCACCAATGAGCGTT -ACGGAAGATGCACCAATGTTCGTC -ACGGAAGATGCACCAATGTCTCTC -ACGGAAGATGCACCAATGTGGATC -ACGGAAGATGCACCAATGCACTTC -ACGGAAGATGCACCAATGGTACTC -ACGGAAGATGCACCAATGGATGTC -ACGGAAGATGCACCAATGACAGTC -ACGGAAGATGCACCAATGTTGCTG -ACGGAAGATGCACCAATGTCCATG -ACGGAAGATGCACCAATGTGTGTG -ACGGAAGATGCACCAATGCTAGTG -ACGGAAGATGCACCAATGCATCTG -ACGGAAGATGCACCAATGGAGTTG -ACGGAAGATGCACCAATGAGACTG -ACGGAAGATGCACCAATGTCGGTA -ACGGAAGATGCACCAATGTGCCTA -ACGGAAGATGCACCAATGCCACTA -ACGGAAGATGCACCAATGGGAGTA -ACGGAAGATGCACCAATGTCGTCT -ACGGAAGATGCACCAATGTGCACT -ACGGAAGATGCACCAATGCTGACT -ACGGAAGATGCACCAATGCAACCT -ACGGAAGATGCACCAATGGCTACT -ACGGAAGATGCACCAATGGGATCT -ACGGAAGATGCACCAATGAAGGCT -ACGGAAGATGCACCAATGTCAACC -ACGGAAGATGCACCAATGTGTTCC -ACGGAAGATGCACCAATGATTCCC -ACGGAAGATGCACCAATGTTCTCG -ACGGAAGATGCACCAATGTAGACG -ACGGAAGATGCACCAATGGTAACG -ACGGAAGATGCACCAATGACTTCG -ACGGAAGATGCACCAATGTACGCA -ACGGAAGATGCACCAATGCTTGCA -ACGGAAGATGCACCAATGCGAACA -ACGGAAGATGCACCAATGCAGTCA -ACGGAAGATGCACCAATGGATCCA -ACGGAAGATGCACCAATGACGACA -ACGGAAGATGCACCAATGAGCTCA -ACGGAAGATGCACCAATGTCACGT -ACGGAAGATGCACCAATGCGTAGT -ACGGAAGATGCACCAATGGTCAGT -ACGGAAGATGCACCAATGGAAGGT -ACGGAAGATGCACCAATGAACCGT -ACGGAAGATGCACCAATGTTGTGC -ACGGAAGATGCACCAATGCTAAGC -ACGGAAGATGCACCAATGACTAGC -ACGGAAGATGCACCAATGAGATGC -ACGGAAGATGCACCAATGTGAAGG -ACGGAAGATGCACCAATGCAATGG -ACGGAAGATGCACCAATGATGAGG -ACGGAAGATGCACCAATGAATGGG -ACGGAAGATGCACCAATGTCCTGA -ACGGAAGATGCACCAATGTAGCGA -ACGGAAGATGCACCAATGCACAGA -ACGGAAGATGCACCAATGGCAAGA -ACGGAAGATGCACCAATGGGTTGA -ACGGAAGATGCACCAATGTCCGAT -ACGGAAGATGCACCAATGTGGCAT -ACGGAAGATGCACCAATGCGAGAT -ACGGAAGATGCACCAATGTACCAC -ACGGAAGATGCACCAATGCAGAAC -ACGGAAGATGCACCAATGGTCTAC -ACGGAAGATGCACCAATGACGTAC -ACGGAAGATGCACCAATGAGTGAC -ACGGAAGATGCACCAATGCTGTAG -ACGGAAGATGCACCAATGCCTAAG -ACGGAAGATGCACCAATGGTTCAG -ACGGAAGATGCACCAATGGCATAG -ACGGAAGATGCACCAATGGACAAG -ACGGAAGATGCACCAATGAAGCAG -ACGGAAGATGCACCAATGCGTCAA -ACGGAAGATGCACCAATGGCTGAA -ACGGAAGATGCACCAATGAGTACG -ACGGAAGATGCACCAATGATCCGA -ACGGAAGATGCACCAATGATGGGA -ACGGAAGATGCACCAATGGTGCAA -ACGGAAGATGCACCAATGGAGGAA -ACGGAAGATGCACCAATGCAGGTA -ACGGAAGATGCACCAATGGACTCT -ACGGAAGATGCACCAATGAGTCCT -ACGGAAGATGCACCAATGTAAGCC -ACGGAAGATGCACCAATGATAGCC -ACGGAAGATGCACCAATGTAACCG -ACGGAAGATGCACCAATGATGCCA -ACGGAAGAAGGTAACGGAGGAAAC -ACGGAAGAAGGTAACGGAAACACC -ACGGAAGAAGGTAACGGAATCGAG -ACGGAAGAAGGTAACGGACTCCTT -ACGGAAGAAGGTAACGGACCTGTT -ACGGAAGAAGGTAACGGACGGTTT -ACGGAAGAAGGTAACGGAGTGGTT -ACGGAAGAAGGTAACGGAGCCTTT -ACGGAAGAAGGTAACGGAGGTCTT -ACGGAAGAAGGTAACGGAACGCTT -ACGGAAGAAGGTAACGGAAGCGTT -ACGGAAGAAGGTAACGGATTCGTC -ACGGAAGAAGGTAACGGATCTCTC -ACGGAAGAAGGTAACGGATGGATC -ACGGAAGAAGGTAACGGACACTTC -ACGGAAGAAGGTAACGGAGTACTC -ACGGAAGAAGGTAACGGAGATGTC -ACGGAAGAAGGTAACGGAACAGTC -ACGGAAGAAGGTAACGGATTGCTG -ACGGAAGAAGGTAACGGATCCATG -ACGGAAGAAGGTAACGGATGTGTG -ACGGAAGAAGGTAACGGACTAGTG -ACGGAAGAAGGTAACGGACATCTG -ACGGAAGAAGGTAACGGAGAGTTG -ACGGAAGAAGGTAACGGAAGACTG -ACGGAAGAAGGTAACGGATCGGTA -ACGGAAGAAGGTAACGGATGCCTA -ACGGAAGAAGGTAACGGACCACTA -ACGGAAGAAGGTAACGGAGGAGTA -ACGGAAGAAGGTAACGGATCGTCT -ACGGAAGAAGGTAACGGATGCACT -ACGGAAGAAGGTAACGGACTGACT -ACGGAAGAAGGTAACGGACAACCT -ACGGAAGAAGGTAACGGAGCTACT -ACGGAAGAAGGTAACGGAGGATCT -ACGGAAGAAGGTAACGGAAAGGCT -ACGGAAGAAGGTAACGGATCAACC -ACGGAAGAAGGTAACGGATGTTCC -ACGGAAGAAGGTAACGGAATTCCC -ACGGAAGAAGGTAACGGATTCTCG -ACGGAAGAAGGTAACGGATAGACG -ACGGAAGAAGGTAACGGAGTAACG -ACGGAAGAAGGTAACGGAACTTCG -ACGGAAGAAGGTAACGGATACGCA -ACGGAAGAAGGTAACGGACTTGCA -ACGGAAGAAGGTAACGGACGAACA -ACGGAAGAAGGTAACGGACAGTCA -ACGGAAGAAGGTAACGGAGATCCA -ACGGAAGAAGGTAACGGAACGACA -ACGGAAGAAGGTAACGGAAGCTCA -ACGGAAGAAGGTAACGGATCACGT -ACGGAAGAAGGTAACGGACGTAGT -ACGGAAGAAGGTAACGGAGTCAGT -ACGGAAGAAGGTAACGGAGAAGGT -ACGGAAGAAGGTAACGGAAACCGT -ACGGAAGAAGGTAACGGATTGTGC -ACGGAAGAAGGTAACGGACTAAGC -ACGGAAGAAGGTAACGGAACTAGC -ACGGAAGAAGGTAACGGAAGATGC -ACGGAAGAAGGTAACGGATGAAGG -ACGGAAGAAGGTAACGGACAATGG -ACGGAAGAAGGTAACGGAATGAGG -ACGGAAGAAGGTAACGGAAATGGG -ACGGAAGAAGGTAACGGATCCTGA -ACGGAAGAAGGTAACGGATAGCGA -ACGGAAGAAGGTAACGGACACAGA -ACGGAAGAAGGTAACGGAGCAAGA -ACGGAAGAAGGTAACGGAGGTTGA -ACGGAAGAAGGTAACGGATCCGAT -ACGGAAGAAGGTAACGGATGGCAT -ACGGAAGAAGGTAACGGACGAGAT -ACGGAAGAAGGTAACGGATACCAC -ACGGAAGAAGGTAACGGACAGAAC -ACGGAAGAAGGTAACGGAGTCTAC -ACGGAAGAAGGTAACGGAACGTAC -ACGGAAGAAGGTAACGGAAGTGAC -ACGGAAGAAGGTAACGGACTGTAG -ACGGAAGAAGGTAACGGACCTAAG -ACGGAAGAAGGTAACGGAGTTCAG -ACGGAAGAAGGTAACGGAGCATAG -ACGGAAGAAGGTAACGGAGACAAG -ACGGAAGAAGGTAACGGAAAGCAG -ACGGAAGAAGGTAACGGACGTCAA -ACGGAAGAAGGTAACGGAGCTGAA -ACGGAAGAAGGTAACGGAAGTACG -ACGGAAGAAGGTAACGGAATCCGA -ACGGAAGAAGGTAACGGAATGGGA -ACGGAAGAAGGTAACGGAGTGCAA -ACGGAAGAAGGTAACGGAGAGGAA -ACGGAAGAAGGTAACGGACAGGTA -ACGGAAGAAGGTAACGGAGACTCT -ACGGAAGAAGGTAACGGAAGTCCT -ACGGAAGAAGGTAACGGATAAGCC -ACGGAAGAAGGTAACGGAATAGCC -ACGGAAGAAGGTAACGGATAACCG -ACGGAAGAAGGTAACGGAATGCCA -ACGGAAGAAGGTACCAACGGAAAC -ACGGAAGAAGGTACCAACAACACC -ACGGAAGAAGGTACCAACATCGAG -ACGGAAGAAGGTACCAACCTCCTT -ACGGAAGAAGGTACCAACCCTGTT -ACGGAAGAAGGTACCAACCGGTTT -ACGGAAGAAGGTACCAACGTGGTT -ACGGAAGAAGGTACCAACGCCTTT -ACGGAAGAAGGTACCAACGGTCTT -ACGGAAGAAGGTACCAACACGCTT -ACGGAAGAAGGTACCAACAGCGTT -ACGGAAGAAGGTACCAACTTCGTC -ACGGAAGAAGGTACCAACTCTCTC -ACGGAAGAAGGTACCAACTGGATC -ACGGAAGAAGGTACCAACCACTTC -ACGGAAGAAGGTACCAACGTACTC -ACGGAAGAAGGTACCAACGATGTC -ACGGAAGAAGGTACCAACACAGTC -ACGGAAGAAGGTACCAACTTGCTG -ACGGAAGAAGGTACCAACTCCATG -ACGGAAGAAGGTACCAACTGTGTG -ACGGAAGAAGGTACCAACCTAGTG -ACGGAAGAAGGTACCAACCATCTG -ACGGAAGAAGGTACCAACGAGTTG -ACGGAAGAAGGTACCAACAGACTG -ACGGAAGAAGGTACCAACTCGGTA -ACGGAAGAAGGTACCAACTGCCTA -ACGGAAGAAGGTACCAACCCACTA -ACGGAAGAAGGTACCAACGGAGTA -ACGGAAGAAGGTACCAACTCGTCT -ACGGAAGAAGGTACCAACTGCACT -ACGGAAGAAGGTACCAACCTGACT -ACGGAAGAAGGTACCAACCAACCT -ACGGAAGAAGGTACCAACGCTACT -ACGGAAGAAGGTACCAACGGATCT -ACGGAAGAAGGTACCAACAAGGCT -ACGGAAGAAGGTACCAACTCAACC -ACGGAAGAAGGTACCAACTGTTCC -ACGGAAGAAGGTACCAACATTCCC -ACGGAAGAAGGTACCAACTTCTCG -ACGGAAGAAGGTACCAACTAGACG -ACGGAAGAAGGTACCAACGTAACG -ACGGAAGAAGGTACCAACACTTCG -ACGGAAGAAGGTACCAACTACGCA -ACGGAAGAAGGTACCAACCTTGCA -ACGGAAGAAGGTACCAACCGAACA -ACGGAAGAAGGTACCAACCAGTCA -ACGGAAGAAGGTACCAACGATCCA -ACGGAAGAAGGTACCAACACGACA -ACGGAAGAAGGTACCAACAGCTCA -ACGGAAGAAGGTACCAACTCACGT -ACGGAAGAAGGTACCAACCGTAGT -ACGGAAGAAGGTACCAACGTCAGT -ACGGAAGAAGGTACCAACGAAGGT -ACGGAAGAAGGTACCAACAACCGT -ACGGAAGAAGGTACCAACTTGTGC -ACGGAAGAAGGTACCAACCTAAGC -ACGGAAGAAGGTACCAACACTAGC -ACGGAAGAAGGTACCAACAGATGC -ACGGAAGAAGGTACCAACTGAAGG -ACGGAAGAAGGTACCAACCAATGG -ACGGAAGAAGGTACCAACATGAGG -ACGGAAGAAGGTACCAACAATGGG -ACGGAAGAAGGTACCAACTCCTGA -ACGGAAGAAGGTACCAACTAGCGA -ACGGAAGAAGGTACCAACCACAGA -ACGGAAGAAGGTACCAACGCAAGA -ACGGAAGAAGGTACCAACGGTTGA -ACGGAAGAAGGTACCAACTCCGAT -ACGGAAGAAGGTACCAACTGGCAT -ACGGAAGAAGGTACCAACCGAGAT -ACGGAAGAAGGTACCAACTACCAC -ACGGAAGAAGGTACCAACCAGAAC -ACGGAAGAAGGTACCAACGTCTAC -ACGGAAGAAGGTACCAACACGTAC -ACGGAAGAAGGTACCAACAGTGAC -ACGGAAGAAGGTACCAACCTGTAG -ACGGAAGAAGGTACCAACCCTAAG -ACGGAAGAAGGTACCAACGTTCAG -ACGGAAGAAGGTACCAACGCATAG -ACGGAAGAAGGTACCAACGACAAG -ACGGAAGAAGGTACCAACAAGCAG -ACGGAAGAAGGTACCAACCGTCAA -ACGGAAGAAGGTACCAACGCTGAA -ACGGAAGAAGGTACCAACAGTACG -ACGGAAGAAGGTACCAACATCCGA -ACGGAAGAAGGTACCAACATGGGA -ACGGAAGAAGGTACCAACGTGCAA -ACGGAAGAAGGTACCAACGAGGAA -ACGGAAGAAGGTACCAACCAGGTA -ACGGAAGAAGGTACCAACGACTCT -ACGGAAGAAGGTACCAACAGTCCT -ACGGAAGAAGGTACCAACTAAGCC -ACGGAAGAAGGTACCAACATAGCC -ACGGAAGAAGGTACCAACTAACCG -ACGGAAGAAGGTACCAACATGCCA -ACGGAAGAAGGTGAGATCGGAAAC -ACGGAAGAAGGTGAGATCAACACC -ACGGAAGAAGGTGAGATCATCGAG -ACGGAAGAAGGTGAGATCCTCCTT -ACGGAAGAAGGTGAGATCCCTGTT -ACGGAAGAAGGTGAGATCCGGTTT -ACGGAAGAAGGTGAGATCGTGGTT -ACGGAAGAAGGTGAGATCGCCTTT -ACGGAAGAAGGTGAGATCGGTCTT -ACGGAAGAAGGTGAGATCACGCTT -ACGGAAGAAGGTGAGATCAGCGTT -ACGGAAGAAGGTGAGATCTTCGTC -ACGGAAGAAGGTGAGATCTCTCTC -ACGGAAGAAGGTGAGATCTGGATC -ACGGAAGAAGGTGAGATCCACTTC -ACGGAAGAAGGTGAGATCGTACTC -ACGGAAGAAGGTGAGATCGATGTC -ACGGAAGAAGGTGAGATCACAGTC -ACGGAAGAAGGTGAGATCTTGCTG -ACGGAAGAAGGTGAGATCTCCATG -ACGGAAGAAGGTGAGATCTGTGTG -ACGGAAGAAGGTGAGATCCTAGTG -ACGGAAGAAGGTGAGATCCATCTG -ACGGAAGAAGGTGAGATCGAGTTG -ACGGAAGAAGGTGAGATCAGACTG -ACGGAAGAAGGTGAGATCTCGGTA -ACGGAAGAAGGTGAGATCTGCCTA -ACGGAAGAAGGTGAGATCCCACTA -ACGGAAGAAGGTGAGATCGGAGTA -ACGGAAGAAGGTGAGATCTCGTCT -ACGGAAGAAGGTGAGATCTGCACT -ACGGAAGAAGGTGAGATCCTGACT -ACGGAAGAAGGTGAGATCCAACCT -ACGGAAGAAGGTGAGATCGCTACT -ACGGAAGAAGGTGAGATCGGATCT -ACGGAAGAAGGTGAGATCAAGGCT -ACGGAAGAAGGTGAGATCTCAACC -ACGGAAGAAGGTGAGATCTGTTCC -ACGGAAGAAGGTGAGATCATTCCC -ACGGAAGAAGGTGAGATCTTCTCG -ACGGAAGAAGGTGAGATCTAGACG -ACGGAAGAAGGTGAGATCGTAACG -ACGGAAGAAGGTGAGATCACTTCG -ACGGAAGAAGGTGAGATCTACGCA -ACGGAAGAAGGTGAGATCCTTGCA -ACGGAAGAAGGTGAGATCCGAACA -ACGGAAGAAGGTGAGATCCAGTCA -ACGGAAGAAGGTGAGATCGATCCA -ACGGAAGAAGGTGAGATCACGACA -ACGGAAGAAGGTGAGATCAGCTCA -ACGGAAGAAGGTGAGATCTCACGT -ACGGAAGAAGGTGAGATCCGTAGT -ACGGAAGAAGGTGAGATCGTCAGT -ACGGAAGAAGGTGAGATCGAAGGT -ACGGAAGAAGGTGAGATCAACCGT -ACGGAAGAAGGTGAGATCTTGTGC -ACGGAAGAAGGTGAGATCCTAAGC -ACGGAAGAAGGTGAGATCACTAGC -ACGGAAGAAGGTGAGATCAGATGC -ACGGAAGAAGGTGAGATCTGAAGG -ACGGAAGAAGGTGAGATCCAATGG -ACGGAAGAAGGTGAGATCATGAGG -ACGGAAGAAGGTGAGATCAATGGG -ACGGAAGAAGGTGAGATCTCCTGA -ACGGAAGAAGGTGAGATCTAGCGA -ACGGAAGAAGGTGAGATCCACAGA -ACGGAAGAAGGTGAGATCGCAAGA -ACGGAAGAAGGTGAGATCGGTTGA -ACGGAAGAAGGTGAGATCTCCGAT -ACGGAAGAAGGTGAGATCTGGCAT -ACGGAAGAAGGTGAGATCCGAGAT -ACGGAAGAAGGTGAGATCTACCAC -ACGGAAGAAGGTGAGATCCAGAAC -ACGGAAGAAGGTGAGATCGTCTAC -ACGGAAGAAGGTGAGATCACGTAC -ACGGAAGAAGGTGAGATCAGTGAC -ACGGAAGAAGGTGAGATCCTGTAG -ACGGAAGAAGGTGAGATCCCTAAG -ACGGAAGAAGGTGAGATCGTTCAG -ACGGAAGAAGGTGAGATCGCATAG -ACGGAAGAAGGTGAGATCGACAAG -ACGGAAGAAGGTGAGATCAAGCAG -ACGGAAGAAGGTGAGATCCGTCAA -ACGGAAGAAGGTGAGATCGCTGAA -ACGGAAGAAGGTGAGATCAGTACG -ACGGAAGAAGGTGAGATCATCCGA -ACGGAAGAAGGTGAGATCATGGGA -ACGGAAGAAGGTGAGATCGTGCAA -ACGGAAGAAGGTGAGATCGAGGAA -ACGGAAGAAGGTGAGATCCAGGTA -ACGGAAGAAGGTGAGATCGACTCT -ACGGAAGAAGGTGAGATCAGTCCT -ACGGAAGAAGGTGAGATCTAAGCC -ACGGAAGAAGGTGAGATCATAGCC -ACGGAAGAAGGTGAGATCTAACCG -ACGGAAGAAGGTGAGATCATGCCA -ACGGAAGAAGGTCTTCTCGGAAAC -ACGGAAGAAGGTCTTCTCAACACC -ACGGAAGAAGGTCTTCTCATCGAG -ACGGAAGAAGGTCTTCTCCTCCTT -ACGGAAGAAGGTCTTCTCCCTGTT -ACGGAAGAAGGTCTTCTCCGGTTT -ACGGAAGAAGGTCTTCTCGTGGTT -ACGGAAGAAGGTCTTCTCGCCTTT -ACGGAAGAAGGTCTTCTCGGTCTT -ACGGAAGAAGGTCTTCTCACGCTT -ACGGAAGAAGGTCTTCTCAGCGTT -ACGGAAGAAGGTCTTCTCTTCGTC -ACGGAAGAAGGTCTTCTCTCTCTC -ACGGAAGAAGGTCTTCTCTGGATC -ACGGAAGAAGGTCTTCTCCACTTC -ACGGAAGAAGGTCTTCTCGTACTC -ACGGAAGAAGGTCTTCTCGATGTC -ACGGAAGAAGGTCTTCTCACAGTC -ACGGAAGAAGGTCTTCTCTTGCTG -ACGGAAGAAGGTCTTCTCTCCATG -ACGGAAGAAGGTCTTCTCTGTGTG -ACGGAAGAAGGTCTTCTCCTAGTG -ACGGAAGAAGGTCTTCTCCATCTG -ACGGAAGAAGGTCTTCTCGAGTTG -ACGGAAGAAGGTCTTCTCAGACTG -ACGGAAGAAGGTCTTCTCTCGGTA -ACGGAAGAAGGTCTTCTCTGCCTA -ACGGAAGAAGGTCTTCTCCCACTA -ACGGAAGAAGGTCTTCTCGGAGTA -ACGGAAGAAGGTCTTCTCTCGTCT -ACGGAAGAAGGTCTTCTCTGCACT -ACGGAAGAAGGTCTTCTCCTGACT -ACGGAAGAAGGTCTTCTCCAACCT -ACGGAAGAAGGTCTTCTCGCTACT -ACGGAAGAAGGTCTTCTCGGATCT -ACGGAAGAAGGTCTTCTCAAGGCT -ACGGAAGAAGGTCTTCTCTCAACC -ACGGAAGAAGGTCTTCTCTGTTCC -ACGGAAGAAGGTCTTCTCATTCCC -ACGGAAGAAGGTCTTCTCTTCTCG -ACGGAAGAAGGTCTTCTCTAGACG -ACGGAAGAAGGTCTTCTCGTAACG -ACGGAAGAAGGTCTTCTCACTTCG -ACGGAAGAAGGTCTTCTCTACGCA -ACGGAAGAAGGTCTTCTCCTTGCA -ACGGAAGAAGGTCTTCTCCGAACA -ACGGAAGAAGGTCTTCTCCAGTCA -ACGGAAGAAGGTCTTCTCGATCCA -ACGGAAGAAGGTCTTCTCACGACA -ACGGAAGAAGGTCTTCTCAGCTCA -ACGGAAGAAGGTCTTCTCTCACGT -ACGGAAGAAGGTCTTCTCCGTAGT -ACGGAAGAAGGTCTTCTCGTCAGT -ACGGAAGAAGGTCTTCTCGAAGGT -ACGGAAGAAGGTCTTCTCAACCGT -ACGGAAGAAGGTCTTCTCTTGTGC -ACGGAAGAAGGTCTTCTCCTAAGC -ACGGAAGAAGGTCTTCTCACTAGC -ACGGAAGAAGGTCTTCTCAGATGC -ACGGAAGAAGGTCTTCTCTGAAGG -ACGGAAGAAGGTCTTCTCCAATGG -ACGGAAGAAGGTCTTCTCATGAGG -ACGGAAGAAGGTCTTCTCAATGGG -ACGGAAGAAGGTCTTCTCTCCTGA -ACGGAAGAAGGTCTTCTCTAGCGA -ACGGAAGAAGGTCTTCTCCACAGA -ACGGAAGAAGGTCTTCTCGCAAGA -ACGGAAGAAGGTCTTCTCGGTTGA -ACGGAAGAAGGTCTTCTCTCCGAT -ACGGAAGAAGGTCTTCTCTGGCAT -ACGGAAGAAGGTCTTCTCCGAGAT -ACGGAAGAAGGTCTTCTCTACCAC -ACGGAAGAAGGTCTTCTCCAGAAC -ACGGAAGAAGGTCTTCTCGTCTAC -ACGGAAGAAGGTCTTCTCACGTAC -ACGGAAGAAGGTCTTCTCAGTGAC -ACGGAAGAAGGTCTTCTCCTGTAG -ACGGAAGAAGGTCTTCTCCCTAAG -ACGGAAGAAGGTCTTCTCGTTCAG -ACGGAAGAAGGTCTTCTCGCATAG -ACGGAAGAAGGTCTTCTCGACAAG -ACGGAAGAAGGTCTTCTCAAGCAG -ACGGAAGAAGGTCTTCTCCGTCAA -ACGGAAGAAGGTCTTCTCGCTGAA -ACGGAAGAAGGTCTTCTCAGTACG -ACGGAAGAAGGTCTTCTCATCCGA -ACGGAAGAAGGTCTTCTCATGGGA -ACGGAAGAAGGTCTTCTCGTGCAA -ACGGAAGAAGGTCTTCTCGAGGAA -ACGGAAGAAGGTCTTCTCCAGGTA -ACGGAAGAAGGTCTTCTCGACTCT -ACGGAAGAAGGTCTTCTCAGTCCT -ACGGAAGAAGGTCTTCTCTAAGCC -ACGGAAGAAGGTCTTCTCATAGCC -ACGGAAGAAGGTCTTCTCTAACCG -ACGGAAGAAGGTCTTCTCATGCCA -ACGGAAGAAGGTGTTCCTGGAAAC -ACGGAAGAAGGTGTTCCTAACACC -ACGGAAGAAGGTGTTCCTATCGAG -ACGGAAGAAGGTGTTCCTCTCCTT -ACGGAAGAAGGTGTTCCTCCTGTT -ACGGAAGAAGGTGTTCCTCGGTTT -ACGGAAGAAGGTGTTCCTGTGGTT -ACGGAAGAAGGTGTTCCTGCCTTT -ACGGAAGAAGGTGTTCCTGGTCTT -ACGGAAGAAGGTGTTCCTACGCTT -ACGGAAGAAGGTGTTCCTAGCGTT -ACGGAAGAAGGTGTTCCTTTCGTC -ACGGAAGAAGGTGTTCCTTCTCTC -ACGGAAGAAGGTGTTCCTTGGATC -ACGGAAGAAGGTGTTCCTCACTTC -ACGGAAGAAGGTGTTCCTGTACTC -ACGGAAGAAGGTGTTCCTGATGTC -ACGGAAGAAGGTGTTCCTACAGTC -ACGGAAGAAGGTGTTCCTTTGCTG -ACGGAAGAAGGTGTTCCTTCCATG -ACGGAAGAAGGTGTTCCTTGTGTG -ACGGAAGAAGGTGTTCCTCTAGTG -ACGGAAGAAGGTGTTCCTCATCTG -ACGGAAGAAGGTGTTCCTGAGTTG -ACGGAAGAAGGTGTTCCTAGACTG -ACGGAAGAAGGTGTTCCTTCGGTA -ACGGAAGAAGGTGTTCCTTGCCTA -ACGGAAGAAGGTGTTCCTCCACTA -ACGGAAGAAGGTGTTCCTGGAGTA -ACGGAAGAAGGTGTTCCTTCGTCT -ACGGAAGAAGGTGTTCCTTGCACT -ACGGAAGAAGGTGTTCCTCTGACT -ACGGAAGAAGGTGTTCCTCAACCT -ACGGAAGAAGGTGTTCCTGCTACT -ACGGAAGAAGGTGTTCCTGGATCT -ACGGAAGAAGGTGTTCCTAAGGCT -ACGGAAGAAGGTGTTCCTTCAACC -ACGGAAGAAGGTGTTCCTTGTTCC -ACGGAAGAAGGTGTTCCTATTCCC -ACGGAAGAAGGTGTTCCTTTCTCG -ACGGAAGAAGGTGTTCCTTAGACG -ACGGAAGAAGGTGTTCCTGTAACG -ACGGAAGAAGGTGTTCCTACTTCG -ACGGAAGAAGGTGTTCCTTACGCA -ACGGAAGAAGGTGTTCCTCTTGCA -ACGGAAGAAGGTGTTCCTCGAACA -ACGGAAGAAGGTGTTCCTCAGTCA -ACGGAAGAAGGTGTTCCTGATCCA -ACGGAAGAAGGTGTTCCTACGACA -ACGGAAGAAGGTGTTCCTAGCTCA -ACGGAAGAAGGTGTTCCTTCACGT -ACGGAAGAAGGTGTTCCTCGTAGT -ACGGAAGAAGGTGTTCCTGTCAGT -ACGGAAGAAGGTGTTCCTGAAGGT -ACGGAAGAAGGTGTTCCTAACCGT -ACGGAAGAAGGTGTTCCTTTGTGC -ACGGAAGAAGGTGTTCCTCTAAGC -ACGGAAGAAGGTGTTCCTACTAGC -ACGGAAGAAGGTGTTCCTAGATGC -ACGGAAGAAGGTGTTCCTTGAAGG -ACGGAAGAAGGTGTTCCTCAATGG -ACGGAAGAAGGTGTTCCTATGAGG -ACGGAAGAAGGTGTTCCTAATGGG -ACGGAAGAAGGTGTTCCTTCCTGA -ACGGAAGAAGGTGTTCCTTAGCGA -ACGGAAGAAGGTGTTCCTCACAGA -ACGGAAGAAGGTGTTCCTGCAAGA -ACGGAAGAAGGTGTTCCTGGTTGA -ACGGAAGAAGGTGTTCCTTCCGAT -ACGGAAGAAGGTGTTCCTTGGCAT -ACGGAAGAAGGTGTTCCTCGAGAT -ACGGAAGAAGGTGTTCCTTACCAC -ACGGAAGAAGGTGTTCCTCAGAAC -ACGGAAGAAGGTGTTCCTGTCTAC -ACGGAAGAAGGTGTTCCTACGTAC -ACGGAAGAAGGTGTTCCTAGTGAC -ACGGAAGAAGGTGTTCCTCTGTAG -ACGGAAGAAGGTGTTCCTCCTAAG -ACGGAAGAAGGTGTTCCTGTTCAG -ACGGAAGAAGGTGTTCCTGCATAG -ACGGAAGAAGGTGTTCCTGACAAG -ACGGAAGAAGGTGTTCCTAAGCAG -ACGGAAGAAGGTGTTCCTCGTCAA -ACGGAAGAAGGTGTTCCTGCTGAA -ACGGAAGAAGGTGTTCCTAGTACG -ACGGAAGAAGGTGTTCCTATCCGA -ACGGAAGAAGGTGTTCCTATGGGA -ACGGAAGAAGGTGTTCCTGTGCAA -ACGGAAGAAGGTGTTCCTGAGGAA -ACGGAAGAAGGTGTTCCTCAGGTA -ACGGAAGAAGGTGTTCCTGACTCT -ACGGAAGAAGGTGTTCCTAGTCCT -ACGGAAGAAGGTGTTCCTTAAGCC -ACGGAAGAAGGTGTTCCTATAGCC -ACGGAAGAAGGTGTTCCTTAACCG -ACGGAAGAAGGTGTTCCTATGCCA -ACGGAAGAAGGTTTTCGGGGAAAC -ACGGAAGAAGGTTTTCGGAACACC -ACGGAAGAAGGTTTTCGGATCGAG -ACGGAAGAAGGTTTTCGGCTCCTT -ACGGAAGAAGGTTTTCGGCCTGTT -ACGGAAGAAGGTTTTCGGCGGTTT -ACGGAAGAAGGTTTTCGGGTGGTT -ACGGAAGAAGGTTTTCGGGCCTTT -ACGGAAGAAGGTTTTCGGGGTCTT -ACGGAAGAAGGTTTTCGGACGCTT -ACGGAAGAAGGTTTTCGGAGCGTT -ACGGAAGAAGGTTTTCGGTTCGTC -ACGGAAGAAGGTTTTCGGTCTCTC -ACGGAAGAAGGTTTTCGGTGGATC -ACGGAAGAAGGTTTTCGGCACTTC -ACGGAAGAAGGTTTTCGGGTACTC -ACGGAAGAAGGTTTTCGGGATGTC -ACGGAAGAAGGTTTTCGGACAGTC -ACGGAAGAAGGTTTTCGGTTGCTG -ACGGAAGAAGGTTTTCGGTCCATG -ACGGAAGAAGGTTTTCGGTGTGTG -ACGGAAGAAGGTTTTCGGCTAGTG -ACGGAAGAAGGTTTTCGGCATCTG -ACGGAAGAAGGTTTTCGGGAGTTG -ACGGAAGAAGGTTTTCGGAGACTG -ACGGAAGAAGGTTTTCGGTCGGTA -ACGGAAGAAGGTTTTCGGTGCCTA -ACGGAAGAAGGTTTTCGGCCACTA -ACGGAAGAAGGTTTTCGGGGAGTA -ACGGAAGAAGGTTTTCGGTCGTCT -ACGGAAGAAGGTTTTCGGTGCACT -ACGGAAGAAGGTTTTCGGCTGACT -ACGGAAGAAGGTTTTCGGCAACCT -ACGGAAGAAGGTTTTCGGGCTACT -ACGGAAGAAGGTTTTCGGGGATCT -ACGGAAGAAGGTTTTCGGAAGGCT -ACGGAAGAAGGTTTTCGGTCAACC -ACGGAAGAAGGTTTTCGGTGTTCC -ACGGAAGAAGGTTTTCGGATTCCC -ACGGAAGAAGGTTTTCGGTTCTCG -ACGGAAGAAGGTTTTCGGTAGACG -ACGGAAGAAGGTTTTCGGGTAACG -ACGGAAGAAGGTTTTCGGACTTCG -ACGGAAGAAGGTTTTCGGTACGCA -ACGGAAGAAGGTTTTCGGCTTGCA -ACGGAAGAAGGTTTTCGGCGAACA -ACGGAAGAAGGTTTTCGGCAGTCA -ACGGAAGAAGGTTTTCGGGATCCA -ACGGAAGAAGGTTTTCGGACGACA -ACGGAAGAAGGTTTTCGGAGCTCA -ACGGAAGAAGGTTTTCGGTCACGT -ACGGAAGAAGGTTTTCGGCGTAGT -ACGGAAGAAGGTTTTCGGGTCAGT -ACGGAAGAAGGTTTTCGGGAAGGT -ACGGAAGAAGGTTTTCGGAACCGT -ACGGAAGAAGGTTTTCGGTTGTGC -ACGGAAGAAGGTTTTCGGCTAAGC -ACGGAAGAAGGTTTTCGGACTAGC -ACGGAAGAAGGTTTTCGGAGATGC -ACGGAAGAAGGTTTTCGGTGAAGG -ACGGAAGAAGGTTTTCGGCAATGG -ACGGAAGAAGGTTTTCGGATGAGG -ACGGAAGAAGGTTTTCGGAATGGG -ACGGAAGAAGGTTTTCGGTCCTGA -ACGGAAGAAGGTTTTCGGTAGCGA -ACGGAAGAAGGTTTTCGGCACAGA -ACGGAAGAAGGTTTTCGGGCAAGA -ACGGAAGAAGGTTTTCGGGGTTGA -ACGGAAGAAGGTTTTCGGTCCGAT -ACGGAAGAAGGTTTTCGGTGGCAT -ACGGAAGAAGGTTTTCGGCGAGAT -ACGGAAGAAGGTTTTCGGTACCAC -ACGGAAGAAGGTTTTCGGCAGAAC -ACGGAAGAAGGTTTTCGGGTCTAC -ACGGAAGAAGGTTTTCGGACGTAC -ACGGAAGAAGGTTTTCGGAGTGAC -ACGGAAGAAGGTTTTCGGCTGTAG -ACGGAAGAAGGTTTTCGGCCTAAG -ACGGAAGAAGGTTTTCGGGTTCAG -ACGGAAGAAGGTTTTCGGGCATAG -ACGGAAGAAGGTTTTCGGGACAAG -ACGGAAGAAGGTTTTCGGAAGCAG -ACGGAAGAAGGTTTTCGGCGTCAA -ACGGAAGAAGGTTTTCGGGCTGAA -ACGGAAGAAGGTTTTCGGAGTACG -ACGGAAGAAGGTTTTCGGATCCGA -ACGGAAGAAGGTTTTCGGATGGGA -ACGGAAGAAGGTTTTCGGGTGCAA -ACGGAAGAAGGTTTTCGGGAGGAA -ACGGAAGAAGGTTTTCGGCAGGTA -ACGGAAGAAGGTTTTCGGGACTCT -ACGGAAGAAGGTTTTCGGAGTCCT -ACGGAAGAAGGTTTTCGGTAAGCC -ACGGAAGAAGGTTTTCGGATAGCC -ACGGAAGAAGGTTTTCGGTAACCG -ACGGAAGAAGGTTTTCGGATGCCA -ACGGAAGAAGGTGTTGTGGGAAAC -ACGGAAGAAGGTGTTGTGAACACC -ACGGAAGAAGGTGTTGTGATCGAG -ACGGAAGAAGGTGTTGTGCTCCTT -ACGGAAGAAGGTGTTGTGCCTGTT -ACGGAAGAAGGTGTTGTGCGGTTT -ACGGAAGAAGGTGTTGTGGTGGTT -ACGGAAGAAGGTGTTGTGGCCTTT -ACGGAAGAAGGTGTTGTGGGTCTT -ACGGAAGAAGGTGTTGTGACGCTT -ACGGAAGAAGGTGTTGTGAGCGTT -ACGGAAGAAGGTGTTGTGTTCGTC -ACGGAAGAAGGTGTTGTGTCTCTC -ACGGAAGAAGGTGTTGTGTGGATC -ACGGAAGAAGGTGTTGTGCACTTC -ACGGAAGAAGGTGTTGTGGTACTC -ACGGAAGAAGGTGTTGTGGATGTC -ACGGAAGAAGGTGTTGTGACAGTC -ACGGAAGAAGGTGTTGTGTTGCTG -ACGGAAGAAGGTGTTGTGTCCATG -ACGGAAGAAGGTGTTGTGTGTGTG -ACGGAAGAAGGTGTTGTGCTAGTG -ACGGAAGAAGGTGTTGTGCATCTG -ACGGAAGAAGGTGTTGTGGAGTTG -ACGGAAGAAGGTGTTGTGAGACTG -ACGGAAGAAGGTGTTGTGTCGGTA -ACGGAAGAAGGTGTTGTGTGCCTA -ACGGAAGAAGGTGTTGTGCCACTA -ACGGAAGAAGGTGTTGTGGGAGTA -ACGGAAGAAGGTGTTGTGTCGTCT -ACGGAAGAAGGTGTTGTGTGCACT -ACGGAAGAAGGTGTTGTGCTGACT -ACGGAAGAAGGTGTTGTGCAACCT -ACGGAAGAAGGTGTTGTGGCTACT -ACGGAAGAAGGTGTTGTGGGATCT -ACGGAAGAAGGTGTTGTGAAGGCT -ACGGAAGAAGGTGTTGTGTCAACC -ACGGAAGAAGGTGTTGTGTGTTCC -ACGGAAGAAGGTGTTGTGATTCCC -ACGGAAGAAGGTGTTGTGTTCTCG -ACGGAAGAAGGTGTTGTGTAGACG -ACGGAAGAAGGTGTTGTGGTAACG -ACGGAAGAAGGTGTTGTGACTTCG -ACGGAAGAAGGTGTTGTGTACGCA -ACGGAAGAAGGTGTTGTGCTTGCA -ACGGAAGAAGGTGTTGTGCGAACA -ACGGAAGAAGGTGTTGTGCAGTCA -ACGGAAGAAGGTGTTGTGGATCCA -ACGGAAGAAGGTGTTGTGACGACA -ACGGAAGAAGGTGTTGTGAGCTCA -ACGGAAGAAGGTGTTGTGTCACGT -ACGGAAGAAGGTGTTGTGCGTAGT -ACGGAAGAAGGTGTTGTGGTCAGT -ACGGAAGAAGGTGTTGTGGAAGGT -ACGGAAGAAGGTGTTGTGAACCGT -ACGGAAGAAGGTGTTGTGTTGTGC -ACGGAAGAAGGTGTTGTGCTAAGC -ACGGAAGAAGGTGTTGTGACTAGC -ACGGAAGAAGGTGTTGTGAGATGC -ACGGAAGAAGGTGTTGTGTGAAGG -ACGGAAGAAGGTGTTGTGCAATGG -ACGGAAGAAGGTGTTGTGATGAGG -ACGGAAGAAGGTGTTGTGAATGGG -ACGGAAGAAGGTGTTGTGTCCTGA -ACGGAAGAAGGTGTTGTGTAGCGA -ACGGAAGAAGGTGTTGTGCACAGA -ACGGAAGAAGGTGTTGTGGCAAGA -ACGGAAGAAGGTGTTGTGGGTTGA -ACGGAAGAAGGTGTTGTGTCCGAT -ACGGAAGAAGGTGTTGTGTGGCAT -ACGGAAGAAGGTGTTGTGCGAGAT -ACGGAAGAAGGTGTTGTGTACCAC -ACGGAAGAAGGTGTTGTGCAGAAC -ACGGAAGAAGGTGTTGTGGTCTAC -ACGGAAGAAGGTGTTGTGACGTAC -ACGGAAGAAGGTGTTGTGAGTGAC -ACGGAAGAAGGTGTTGTGCTGTAG -ACGGAAGAAGGTGTTGTGCCTAAG -ACGGAAGAAGGTGTTGTGGTTCAG -ACGGAAGAAGGTGTTGTGGCATAG -ACGGAAGAAGGTGTTGTGGACAAG -ACGGAAGAAGGTGTTGTGAAGCAG -ACGGAAGAAGGTGTTGTGCGTCAA -ACGGAAGAAGGTGTTGTGGCTGAA -ACGGAAGAAGGTGTTGTGAGTACG -ACGGAAGAAGGTGTTGTGATCCGA -ACGGAAGAAGGTGTTGTGATGGGA -ACGGAAGAAGGTGTTGTGGTGCAA -ACGGAAGAAGGTGTTGTGGAGGAA -ACGGAAGAAGGTGTTGTGCAGGTA -ACGGAAGAAGGTGTTGTGGACTCT -ACGGAAGAAGGTGTTGTGAGTCCT -ACGGAAGAAGGTGTTGTGTAAGCC -ACGGAAGAAGGTGTTGTGATAGCC -ACGGAAGAAGGTGTTGTGTAACCG -ACGGAAGAAGGTGTTGTGATGCCA -ACGGAAGAAGGTTTTGCCGGAAAC -ACGGAAGAAGGTTTTGCCAACACC -ACGGAAGAAGGTTTTGCCATCGAG -ACGGAAGAAGGTTTTGCCCTCCTT -ACGGAAGAAGGTTTTGCCCCTGTT -ACGGAAGAAGGTTTTGCCCGGTTT -ACGGAAGAAGGTTTTGCCGTGGTT -ACGGAAGAAGGTTTTGCCGCCTTT -ACGGAAGAAGGTTTTGCCGGTCTT -ACGGAAGAAGGTTTTGCCACGCTT -ACGGAAGAAGGTTTTGCCAGCGTT -ACGGAAGAAGGTTTTGCCTTCGTC -ACGGAAGAAGGTTTTGCCTCTCTC -ACGGAAGAAGGTTTTGCCTGGATC -ACGGAAGAAGGTTTTGCCCACTTC -ACGGAAGAAGGTTTTGCCGTACTC -ACGGAAGAAGGTTTTGCCGATGTC -ACGGAAGAAGGTTTTGCCACAGTC -ACGGAAGAAGGTTTTGCCTTGCTG -ACGGAAGAAGGTTTTGCCTCCATG -ACGGAAGAAGGTTTTGCCTGTGTG -ACGGAAGAAGGTTTTGCCCTAGTG -ACGGAAGAAGGTTTTGCCCATCTG -ACGGAAGAAGGTTTTGCCGAGTTG -ACGGAAGAAGGTTTTGCCAGACTG -ACGGAAGAAGGTTTTGCCTCGGTA -ACGGAAGAAGGTTTTGCCTGCCTA -ACGGAAGAAGGTTTTGCCCCACTA -ACGGAAGAAGGTTTTGCCGGAGTA -ACGGAAGAAGGTTTTGCCTCGTCT -ACGGAAGAAGGTTTTGCCTGCACT -ACGGAAGAAGGTTTTGCCCTGACT -ACGGAAGAAGGTTTTGCCCAACCT -ACGGAAGAAGGTTTTGCCGCTACT -ACGGAAGAAGGTTTTGCCGGATCT -ACGGAAGAAGGTTTTGCCAAGGCT -ACGGAAGAAGGTTTTGCCTCAACC -ACGGAAGAAGGTTTTGCCTGTTCC -ACGGAAGAAGGTTTTGCCATTCCC -ACGGAAGAAGGTTTTGCCTTCTCG -ACGGAAGAAGGTTTTGCCTAGACG -ACGGAAGAAGGTTTTGCCGTAACG -ACGGAAGAAGGTTTTGCCACTTCG -ACGGAAGAAGGTTTTGCCTACGCA -ACGGAAGAAGGTTTTGCCCTTGCA -ACGGAAGAAGGTTTTGCCCGAACA -ACGGAAGAAGGTTTTGCCCAGTCA -ACGGAAGAAGGTTTTGCCGATCCA -ACGGAAGAAGGTTTTGCCACGACA -ACGGAAGAAGGTTTTGCCAGCTCA -ACGGAAGAAGGTTTTGCCTCACGT -ACGGAAGAAGGTTTTGCCCGTAGT -ACGGAAGAAGGTTTTGCCGTCAGT -ACGGAAGAAGGTTTTGCCGAAGGT -ACGGAAGAAGGTTTTGCCAACCGT -ACGGAAGAAGGTTTTGCCTTGTGC -ACGGAAGAAGGTTTTGCCCTAAGC -ACGGAAGAAGGTTTTGCCACTAGC -ACGGAAGAAGGTTTTGCCAGATGC -ACGGAAGAAGGTTTTGCCTGAAGG -ACGGAAGAAGGTTTTGCCCAATGG -ACGGAAGAAGGTTTTGCCATGAGG -ACGGAAGAAGGTTTTGCCAATGGG -ACGGAAGAAGGTTTTGCCTCCTGA -ACGGAAGAAGGTTTTGCCTAGCGA -ACGGAAGAAGGTTTTGCCCACAGA -ACGGAAGAAGGTTTTGCCGCAAGA -ACGGAAGAAGGTTTTGCCGGTTGA -ACGGAAGAAGGTTTTGCCTCCGAT -ACGGAAGAAGGTTTTGCCTGGCAT -ACGGAAGAAGGTTTTGCCCGAGAT -ACGGAAGAAGGTTTTGCCTACCAC -ACGGAAGAAGGTTTTGCCCAGAAC -ACGGAAGAAGGTTTTGCCGTCTAC -ACGGAAGAAGGTTTTGCCACGTAC -ACGGAAGAAGGTTTTGCCAGTGAC -ACGGAAGAAGGTTTTGCCCTGTAG -ACGGAAGAAGGTTTTGCCCCTAAG -ACGGAAGAAGGTTTTGCCGTTCAG -ACGGAAGAAGGTTTTGCCGCATAG -ACGGAAGAAGGTTTTGCCGACAAG -ACGGAAGAAGGTTTTGCCAAGCAG -ACGGAAGAAGGTTTTGCCCGTCAA -ACGGAAGAAGGTTTTGCCGCTGAA -ACGGAAGAAGGTTTTGCCAGTACG -ACGGAAGAAGGTTTTGCCATCCGA -ACGGAAGAAGGTTTTGCCATGGGA -ACGGAAGAAGGTTTTGCCGTGCAA -ACGGAAGAAGGTTTTGCCGAGGAA -ACGGAAGAAGGTTTTGCCCAGGTA -ACGGAAGAAGGTTTTGCCGACTCT -ACGGAAGAAGGTTTTGCCAGTCCT -ACGGAAGAAGGTTTTGCCTAAGCC -ACGGAAGAAGGTTTTGCCATAGCC -ACGGAAGAAGGTTTTGCCTAACCG -ACGGAAGAAGGTTTTGCCATGCCA -ACGGAAGAAGGTCTTGGTGGAAAC -ACGGAAGAAGGTCTTGGTAACACC -ACGGAAGAAGGTCTTGGTATCGAG -ACGGAAGAAGGTCTTGGTCTCCTT -ACGGAAGAAGGTCTTGGTCCTGTT -ACGGAAGAAGGTCTTGGTCGGTTT -ACGGAAGAAGGTCTTGGTGTGGTT -ACGGAAGAAGGTCTTGGTGCCTTT -ACGGAAGAAGGTCTTGGTGGTCTT -ACGGAAGAAGGTCTTGGTACGCTT -ACGGAAGAAGGTCTTGGTAGCGTT -ACGGAAGAAGGTCTTGGTTTCGTC -ACGGAAGAAGGTCTTGGTTCTCTC -ACGGAAGAAGGTCTTGGTTGGATC -ACGGAAGAAGGTCTTGGTCACTTC -ACGGAAGAAGGTCTTGGTGTACTC -ACGGAAGAAGGTCTTGGTGATGTC -ACGGAAGAAGGTCTTGGTACAGTC -ACGGAAGAAGGTCTTGGTTTGCTG -ACGGAAGAAGGTCTTGGTTCCATG -ACGGAAGAAGGTCTTGGTTGTGTG -ACGGAAGAAGGTCTTGGTCTAGTG -ACGGAAGAAGGTCTTGGTCATCTG -ACGGAAGAAGGTCTTGGTGAGTTG -ACGGAAGAAGGTCTTGGTAGACTG -ACGGAAGAAGGTCTTGGTTCGGTA -ACGGAAGAAGGTCTTGGTTGCCTA -ACGGAAGAAGGTCTTGGTCCACTA -ACGGAAGAAGGTCTTGGTGGAGTA -ACGGAAGAAGGTCTTGGTTCGTCT -ACGGAAGAAGGTCTTGGTTGCACT -ACGGAAGAAGGTCTTGGTCTGACT -ACGGAAGAAGGTCTTGGTCAACCT -ACGGAAGAAGGTCTTGGTGCTACT -ACGGAAGAAGGTCTTGGTGGATCT -ACGGAAGAAGGTCTTGGTAAGGCT -ACGGAAGAAGGTCTTGGTTCAACC -ACGGAAGAAGGTCTTGGTTGTTCC -ACGGAAGAAGGTCTTGGTATTCCC -ACGGAAGAAGGTCTTGGTTTCTCG -ACGGAAGAAGGTCTTGGTTAGACG -ACGGAAGAAGGTCTTGGTGTAACG -ACGGAAGAAGGTCTTGGTACTTCG -ACGGAAGAAGGTCTTGGTTACGCA -ACGGAAGAAGGTCTTGGTCTTGCA -ACGGAAGAAGGTCTTGGTCGAACA -ACGGAAGAAGGTCTTGGTCAGTCA -ACGGAAGAAGGTCTTGGTGATCCA -ACGGAAGAAGGTCTTGGTACGACA -ACGGAAGAAGGTCTTGGTAGCTCA -ACGGAAGAAGGTCTTGGTTCACGT -ACGGAAGAAGGTCTTGGTCGTAGT -ACGGAAGAAGGTCTTGGTGTCAGT -ACGGAAGAAGGTCTTGGTGAAGGT -ACGGAAGAAGGTCTTGGTAACCGT -ACGGAAGAAGGTCTTGGTTTGTGC -ACGGAAGAAGGTCTTGGTCTAAGC -ACGGAAGAAGGTCTTGGTACTAGC -ACGGAAGAAGGTCTTGGTAGATGC -ACGGAAGAAGGTCTTGGTTGAAGG -ACGGAAGAAGGTCTTGGTCAATGG -ACGGAAGAAGGTCTTGGTATGAGG -ACGGAAGAAGGTCTTGGTAATGGG -ACGGAAGAAGGTCTTGGTTCCTGA -ACGGAAGAAGGTCTTGGTTAGCGA -ACGGAAGAAGGTCTTGGTCACAGA -ACGGAAGAAGGTCTTGGTGCAAGA -ACGGAAGAAGGTCTTGGTGGTTGA -ACGGAAGAAGGTCTTGGTTCCGAT -ACGGAAGAAGGTCTTGGTTGGCAT -ACGGAAGAAGGTCTTGGTCGAGAT -ACGGAAGAAGGTCTTGGTTACCAC -ACGGAAGAAGGTCTTGGTCAGAAC -ACGGAAGAAGGTCTTGGTGTCTAC -ACGGAAGAAGGTCTTGGTACGTAC -ACGGAAGAAGGTCTTGGTAGTGAC -ACGGAAGAAGGTCTTGGTCTGTAG -ACGGAAGAAGGTCTTGGTCCTAAG -ACGGAAGAAGGTCTTGGTGTTCAG -ACGGAAGAAGGTCTTGGTGCATAG -ACGGAAGAAGGTCTTGGTGACAAG -ACGGAAGAAGGTCTTGGTAAGCAG -ACGGAAGAAGGTCTTGGTCGTCAA -ACGGAAGAAGGTCTTGGTGCTGAA -ACGGAAGAAGGTCTTGGTAGTACG -ACGGAAGAAGGTCTTGGTATCCGA -ACGGAAGAAGGTCTTGGTATGGGA -ACGGAAGAAGGTCTTGGTGTGCAA -ACGGAAGAAGGTCTTGGTGAGGAA -ACGGAAGAAGGTCTTGGTCAGGTA -ACGGAAGAAGGTCTTGGTGACTCT -ACGGAAGAAGGTCTTGGTAGTCCT -ACGGAAGAAGGTCTTGGTTAAGCC -ACGGAAGAAGGTCTTGGTATAGCC -ACGGAAGAAGGTCTTGGTTAACCG -ACGGAAGAAGGTCTTGGTATGCCA -ACGGAAGAAGGTCTTACGGGAAAC -ACGGAAGAAGGTCTTACGAACACC -ACGGAAGAAGGTCTTACGATCGAG -ACGGAAGAAGGTCTTACGCTCCTT -ACGGAAGAAGGTCTTACGCCTGTT -ACGGAAGAAGGTCTTACGCGGTTT -ACGGAAGAAGGTCTTACGGTGGTT -ACGGAAGAAGGTCTTACGGCCTTT -ACGGAAGAAGGTCTTACGGGTCTT -ACGGAAGAAGGTCTTACGACGCTT -ACGGAAGAAGGTCTTACGAGCGTT -ACGGAAGAAGGTCTTACGTTCGTC -ACGGAAGAAGGTCTTACGTCTCTC -ACGGAAGAAGGTCTTACGTGGATC -ACGGAAGAAGGTCTTACGCACTTC -ACGGAAGAAGGTCTTACGGTACTC -ACGGAAGAAGGTCTTACGGATGTC -ACGGAAGAAGGTCTTACGACAGTC -ACGGAAGAAGGTCTTACGTTGCTG -ACGGAAGAAGGTCTTACGTCCATG -ACGGAAGAAGGTCTTACGTGTGTG -ACGGAAGAAGGTCTTACGCTAGTG -ACGGAAGAAGGTCTTACGCATCTG -ACGGAAGAAGGTCTTACGGAGTTG -ACGGAAGAAGGTCTTACGAGACTG -ACGGAAGAAGGTCTTACGTCGGTA -ACGGAAGAAGGTCTTACGTGCCTA -ACGGAAGAAGGTCTTACGCCACTA -ACGGAAGAAGGTCTTACGGGAGTA -ACGGAAGAAGGTCTTACGTCGTCT -ACGGAAGAAGGTCTTACGTGCACT -ACGGAAGAAGGTCTTACGCTGACT -ACGGAAGAAGGTCTTACGCAACCT -ACGGAAGAAGGTCTTACGGCTACT -ACGGAAGAAGGTCTTACGGGATCT -ACGGAAGAAGGTCTTACGAAGGCT -ACGGAAGAAGGTCTTACGTCAACC -ACGGAAGAAGGTCTTACGTGTTCC -ACGGAAGAAGGTCTTACGATTCCC -ACGGAAGAAGGTCTTACGTTCTCG -ACGGAAGAAGGTCTTACGTAGACG -ACGGAAGAAGGTCTTACGGTAACG -ACGGAAGAAGGTCTTACGACTTCG -ACGGAAGAAGGTCTTACGTACGCA -ACGGAAGAAGGTCTTACGCTTGCA -ACGGAAGAAGGTCTTACGCGAACA -ACGGAAGAAGGTCTTACGCAGTCA -ACGGAAGAAGGTCTTACGGATCCA -ACGGAAGAAGGTCTTACGACGACA -ACGGAAGAAGGTCTTACGAGCTCA -ACGGAAGAAGGTCTTACGTCACGT -ACGGAAGAAGGTCTTACGCGTAGT -ACGGAAGAAGGTCTTACGGTCAGT -ACGGAAGAAGGTCTTACGGAAGGT -ACGGAAGAAGGTCTTACGAACCGT -ACGGAAGAAGGTCTTACGTTGTGC -ACGGAAGAAGGTCTTACGCTAAGC -ACGGAAGAAGGTCTTACGACTAGC -ACGGAAGAAGGTCTTACGAGATGC -ACGGAAGAAGGTCTTACGTGAAGG -ACGGAAGAAGGTCTTACGCAATGG -ACGGAAGAAGGTCTTACGATGAGG -ACGGAAGAAGGTCTTACGAATGGG -ACGGAAGAAGGTCTTACGTCCTGA -ACGGAAGAAGGTCTTACGTAGCGA -ACGGAAGAAGGTCTTACGCACAGA -ACGGAAGAAGGTCTTACGGCAAGA -ACGGAAGAAGGTCTTACGGGTTGA -ACGGAAGAAGGTCTTACGTCCGAT -ACGGAAGAAGGTCTTACGTGGCAT -ACGGAAGAAGGTCTTACGCGAGAT -ACGGAAGAAGGTCTTACGTACCAC -ACGGAAGAAGGTCTTACGCAGAAC -ACGGAAGAAGGTCTTACGGTCTAC -ACGGAAGAAGGTCTTACGACGTAC -ACGGAAGAAGGTCTTACGAGTGAC -ACGGAAGAAGGTCTTACGCTGTAG -ACGGAAGAAGGTCTTACGCCTAAG -ACGGAAGAAGGTCTTACGGTTCAG -ACGGAAGAAGGTCTTACGGCATAG -ACGGAAGAAGGTCTTACGGACAAG -ACGGAAGAAGGTCTTACGAAGCAG -ACGGAAGAAGGTCTTACGCGTCAA -ACGGAAGAAGGTCTTACGGCTGAA -ACGGAAGAAGGTCTTACGAGTACG -ACGGAAGAAGGTCTTACGATCCGA -ACGGAAGAAGGTCTTACGATGGGA -ACGGAAGAAGGTCTTACGGTGCAA -ACGGAAGAAGGTCTTACGGAGGAA -ACGGAAGAAGGTCTTACGCAGGTA -ACGGAAGAAGGTCTTACGGACTCT -ACGGAAGAAGGTCTTACGAGTCCT -ACGGAAGAAGGTCTTACGTAAGCC -ACGGAAGAAGGTCTTACGATAGCC -ACGGAAGAAGGTCTTACGTAACCG -ACGGAAGAAGGTCTTACGATGCCA -ACGGAAGAAGGTGTTAGCGGAAAC -ACGGAAGAAGGTGTTAGCAACACC -ACGGAAGAAGGTGTTAGCATCGAG -ACGGAAGAAGGTGTTAGCCTCCTT -ACGGAAGAAGGTGTTAGCCCTGTT -ACGGAAGAAGGTGTTAGCCGGTTT -ACGGAAGAAGGTGTTAGCGTGGTT -ACGGAAGAAGGTGTTAGCGCCTTT -ACGGAAGAAGGTGTTAGCGGTCTT -ACGGAAGAAGGTGTTAGCACGCTT -ACGGAAGAAGGTGTTAGCAGCGTT -ACGGAAGAAGGTGTTAGCTTCGTC -ACGGAAGAAGGTGTTAGCTCTCTC -ACGGAAGAAGGTGTTAGCTGGATC -ACGGAAGAAGGTGTTAGCCACTTC -ACGGAAGAAGGTGTTAGCGTACTC -ACGGAAGAAGGTGTTAGCGATGTC -ACGGAAGAAGGTGTTAGCACAGTC -ACGGAAGAAGGTGTTAGCTTGCTG -ACGGAAGAAGGTGTTAGCTCCATG -ACGGAAGAAGGTGTTAGCTGTGTG -ACGGAAGAAGGTGTTAGCCTAGTG -ACGGAAGAAGGTGTTAGCCATCTG -ACGGAAGAAGGTGTTAGCGAGTTG -ACGGAAGAAGGTGTTAGCAGACTG -ACGGAAGAAGGTGTTAGCTCGGTA -ACGGAAGAAGGTGTTAGCTGCCTA -ACGGAAGAAGGTGTTAGCCCACTA -ACGGAAGAAGGTGTTAGCGGAGTA -ACGGAAGAAGGTGTTAGCTCGTCT -ACGGAAGAAGGTGTTAGCTGCACT -ACGGAAGAAGGTGTTAGCCTGACT -ACGGAAGAAGGTGTTAGCCAACCT -ACGGAAGAAGGTGTTAGCGCTACT -ACGGAAGAAGGTGTTAGCGGATCT -ACGGAAGAAGGTGTTAGCAAGGCT -ACGGAAGAAGGTGTTAGCTCAACC -ACGGAAGAAGGTGTTAGCTGTTCC -ACGGAAGAAGGTGTTAGCATTCCC -ACGGAAGAAGGTGTTAGCTTCTCG -ACGGAAGAAGGTGTTAGCTAGACG -ACGGAAGAAGGTGTTAGCGTAACG -ACGGAAGAAGGTGTTAGCACTTCG -ACGGAAGAAGGTGTTAGCTACGCA -ACGGAAGAAGGTGTTAGCCTTGCA -ACGGAAGAAGGTGTTAGCCGAACA -ACGGAAGAAGGTGTTAGCCAGTCA -ACGGAAGAAGGTGTTAGCGATCCA -ACGGAAGAAGGTGTTAGCACGACA -ACGGAAGAAGGTGTTAGCAGCTCA -ACGGAAGAAGGTGTTAGCTCACGT -ACGGAAGAAGGTGTTAGCCGTAGT -ACGGAAGAAGGTGTTAGCGTCAGT -ACGGAAGAAGGTGTTAGCGAAGGT -ACGGAAGAAGGTGTTAGCAACCGT -ACGGAAGAAGGTGTTAGCTTGTGC -ACGGAAGAAGGTGTTAGCCTAAGC -ACGGAAGAAGGTGTTAGCACTAGC -ACGGAAGAAGGTGTTAGCAGATGC -ACGGAAGAAGGTGTTAGCTGAAGG -ACGGAAGAAGGTGTTAGCCAATGG -ACGGAAGAAGGTGTTAGCATGAGG -ACGGAAGAAGGTGTTAGCAATGGG -ACGGAAGAAGGTGTTAGCTCCTGA -ACGGAAGAAGGTGTTAGCTAGCGA -ACGGAAGAAGGTGTTAGCCACAGA -ACGGAAGAAGGTGTTAGCGCAAGA -ACGGAAGAAGGTGTTAGCGGTTGA -ACGGAAGAAGGTGTTAGCTCCGAT -ACGGAAGAAGGTGTTAGCTGGCAT -ACGGAAGAAGGTGTTAGCCGAGAT -ACGGAAGAAGGTGTTAGCTACCAC -ACGGAAGAAGGTGTTAGCCAGAAC -ACGGAAGAAGGTGTTAGCGTCTAC -ACGGAAGAAGGTGTTAGCACGTAC -ACGGAAGAAGGTGTTAGCAGTGAC -ACGGAAGAAGGTGTTAGCCTGTAG -ACGGAAGAAGGTGTTAGCCCTAAG -ACGGAAGAAGGTGTTAGCGTTCAG -ACGGAAGAAGGTGTTAGCGCATAG -ACGGAAGAAGGTGTTAGCGACAAG -ACGGAAGAAGGTGTTAGCAAGCAG -ACGGAAGAAGGTGTTAGCCGTCAA -ACGGAAGAAGGTGTTAGCGCTGAA -ACGGAAGAAGGTGTTAGCAGTACG -ACGGAAGAAGGTGTTAGCATCCGA -ACGGAAGAAGGTGTTAGCATGGGA -ACGGAAGAAGGTGTTAGCGTGCAA -ACGGAAGAAGGTGTTAGCGAGGAA -ACGGAAGAAGGTGTTAGCCAGGTA -ACGGAAGAAGGTGTTAGCGACTCT -ACGGAAGAAGGTGTTAGCAGTCCT -ACGGAAGAAGGTGTTAGCTAAGCC -ACGGAAGAAGGTGTTAGCATAGCC -ACGGAAGAAGGTGTTAGCTAACCG -ACGGAAGAAGGTGTTAGCATGCCA -ACGGAAGAAGGTGTCTTCGGAAAC -ACGGAAGAAGGTGTCTTCAACACC -ACGGAAGAAGGTGTCTTCATCGAG -ACGGAAGAAGGTGTCTTCCTCCTT -ACGGAAGAAGGTGTCTTCCCTGTT -ACGGAAGAAGGTGTCTTCCGGTTT -ACGGAAGAAGGTGTCTTCGTGGTT -ACGGAAGAAGGTGTCTTCGCCTTT -ACGGAAGAAGGTGTCTTCGGTCTT -ACGGAAGAAGGTGTCTTCACGCTT -ACGGAAGAAGGTGTCTTCAGCGTT -ACGGAAGAAGGTGTCTTCTTCGTC -ACGGAAGAAGGTGTCTTCTCTCTC -ACGGAAGAAGGTGTCTTCTGGATC -ACGGAAGAAGGTGTCTTCCACTTC -ACGGAAGAAGGTGTCTTCGTACTC -ACGGAAGAAGGTGTCTTCGATGTC -ACGGAAGAAGGTGTCTTCACAGTC -ACGGAAGAAGGTGTCTTCTTGCTG -ACGGAAGAAGGTGTCTTCTCCATG -ACGGAAGAAGGTGTCTTCTGTGTG -ACGGAAGAAGGTGTCTTCCTAGTG -ACGGAAGAAGGTGTCTTCCATCTG -ACGGAAGAAGGTGTCTTCGAGTTG -ACGGAAGAAGGTGTCTTCAGACTG -ACGGAAGAAGGTGTCTTCTCGGTA -ACGGAAGAAGGTGTCTTCTGCCTA -ACGGAAGAAGGTGTCTTCCCACTA -ACGGAAGAAGGTGTCTTCGGAGTA -ACGGAAGAAGGTGTCTTCTCGTCT -ACGGAAGAAGGTGTCTTCTGCACT -ACGGAAGAAGGTGTCTTCCTGACT -ACGGAAGAAGGTGTCTTCCAACCT -ACGGAAGAAGGTGTCTTCGCTACT -ACGGAAGAAGGTGTCTTCGGATCT -ACGGAAGAAGGTGTCTTCAAGGCT -ACGGAAGAAGGTGTCTTCTCAACC -ACGGAAGAAGGTGTCTTCTGTTCC -ACGGAAGAAGGTGTCTTCATTCCC -ACGGAAGAAGGTGTCTTCTTCTCG -ACGGAAGAAGGTGTCTTCTAGACG -ACGGAAGAAGGTGTCTTCGTAACG -ACGGAAGAAGGTGTCTTCACTTCG -ACGGAAGAAGGTGTCTTCTACGCA -ACGGAAGAAGGTGTCTTCCTTGCA -ACGGAAGAAGGTGTCTTCCGAACA -ACGGAAGAAGGTGTCTTCCAGTCA -ACGGAAGAAGGTGTCTTCGATCCA -ACGGAAGAAGGTGTCTTCACGACA -ACGGAAGAAGGTGTCTTCAGCTCA -ACGGAAGAAGGTGTCTTCTCACGT -ACGGAAGAAGGTGTCTTCCGTAGT -ACGGAAGAAGGTGTCTTCGTCAGT -ACGGAAGAAGGTGTCTTCGAAGGT -ACGGAAGAAGGTGTCTTCAACCGT -ACGGAAGAAGGTGTCTTCTTGTGC -ACGGAAGAAGGTGTCTTCCTAAGC -ACGGAAGAAGGTGTCTTCACTAGC -ACGGAAGAAGGTGTCTTCAGATGC -ACGGAAGAAGGTGTCTTCTGAAGG -ACGGAAGAAGGTGTCTTCCAATGG -ACGGAAGAAGGTGTCTTCATGAGG -ACGGAAGAAGGTGTCTTCAATGGG -ACGGAAGAAGGTGTCTTCTCCTGA -ACGGAAGAAGGTGTCTTCTAGCGA -ACGGAAGAAGGTGTCTTCCACAGA -ACGGAAGAAGGTGTCTTCGCAAGA -ACGGAAGAAGGTGTCTTCGGTTGA -ACGGAAGAAGGTGTCTTCTCCGAT -ACGGAAGAAGGTGTCTTCTGGCAT -ACGGAAGAAGGTGTCTTCCGAGAT -ACGGAAGAAGGTGTCTTCTACCAC -ACGGAAGAAGGTGTCTTCCAGAAC -ACGGAAGAAGGTGTCTTCGTCTAC -ACGGAAGAAGGTGTCTTCACGTAC -ACGGAAGAAGGTGTCTTCAGTGAC -ACGGAAGAAGGTGTCTTCCTGTAG -ACGGAAGAAGGTGTCTTCCCTAAG -ACGGAAGAAGGTGTCTTCGTTCAG -ACGGAAGAAGGTGTCTTCGCATAG -ACGGAAGAAGGTGTCTTCGACAAG -ACGGAAGAAGGTGTCTTCAAGCAG -ACGGAAGAAGGTGTCTTCCGTCAA -ACGGAAGAAGGTGTCTTCGCTGAA -ACGGAAGAAGGTGTCTTCAGTACG -ACGGAAGAAGGTGTCTTCATCCGA -ACGGAAGAAGGTGTCTTCATGGGA -ACGGAAGAAGGTGTCTTCGTGCAA -ACGGAAGAAGGTGTCTTCGAGGAA -ACGGAAGAAGGTGTCTTCCAGGTA -ACGGAAGAAGGTGTCTTCGACTCT -ACGGAAGAAGGTGTCTTCAGTCCT -ACGGAAGAAGGTGTCTTCTAAGCC -ACGGAAGAAGGTGTCTTCATAGCC -ACGGAAGAAGGTGTCTTCTAACCG -ACGGAAGAAGGTGTCTTCATGCCA -ACGGAAGAAGGTCTCTCTGGAAAC -ACGGAAGAAGGTCTCTCTAACACC -ACGGAAGAAGGTCTCTCTATCGAG -ACGGAAGAAGGTCTCTCTCTCCTT -ACGGAAGAAGGTCTCTCTCCTGTT -ACGGAAGAAGGTCTCTCTCGGTTT -ACGGAAGAAGGTCTCTCTGTGGTT -ACGGAAGAAGGTCTCTCTGCCTTT -ACGGAAGAAGGTCTCTCTGGTCTT -ACGGAAGAAGGTCTCTCTACGCTT -ACGGAAGAAGGTCTCTCTAGCGTT -ACGGAAGAAGGTCTCTCTTTCGTC -ACGGAAGAAGGTCTCTCTTCTCTC -ACGGAAGAAGGTCTCTCTTGGATC -ACGGAAGAAGGTCTCTCTCACTTC -ACGGAAGAAGGTCTCTCTGTACTC -ACGGAAGAAGGTCTCTCTGATGTC -ACGGAAGAAGGTCTCTCTACAGTC -ACGGAAGAAGGTCTCTCTTTGCTG -ACGGAAGAAGGTCTCTCTTCCATG -ACGGAAGAAGGTCTCTCTTGTGTG -ACGGAAGAAGGTCTCTCTCTAGTG -ACGGAAGAAGGTCTCTCTCATCTG -ACGGAAGAAGGTCTCTCTGAGTTG -ACGGAAGAAGGTCTCTCTAGACTG -ACGGAAGAAGGTCTCTCTTCGGTA -ACGGAAGAAGGTCTCTCTTGCCTA -ACGGAAGAAGGTCTCTCTCCACTA -ACGGAAGAAGGTCTCTCTGGAGTA -ACGGAAGAAGGTCTCTCTTCGTCT -ACGGAAGAAGGTCTCTCTTGCACT -ACGGAAGAAGGTCTCTCTCTGACT -ACGGAAGAAGGTCTCTCTCAACCT -ACGGAAGAAGGTCTCTCTGCTACT -ACGGAAGAAGGTCTCTCTGGATCT -ACGGAAGAAGGTCTCTCTAAGGCT -ACGGAAGAAGGTCTCTCTTCAACC -ACGGAAGAAGGTCTCTCTTGTTCC -ACGGAAGAAGGTCTCTCTATTCCC -ACGGAAGAAGGTCTCTCTTTCTCG -ACGGAAGAAGGTCTCTCTTAGACG -ACGGAAGAAGGTCTCTCTGTAACG -ACGGAAGAAGGTCTCTCTACTTCG -ACGGAAGAAGGTCTCTCTTACGCA -ACGGAAGAAGGTCTCTCTCTTGCA -ACGGAAGAAGGTCTCTCTCGAACA -ACGGAAGAAGGTCTCTCTCAGTCA -ACGGAAGAAGGTCTCTCTGATCCA -ACGGAAGAAGGTCTCTCTACGACA -ACGGAAGAAGGTCTCTCTAGCTCA -ACGGAAGAAGGTCTCTCTTCACGT -ACGGAAGAAGGTCTCTCTCGTAGT -ACGGAAGAAGGTCTCTCTGTCAGT -ACGGAAGAAGGTCTCTCTGAAGGT -ACGGAAGAAGGTCTCTCTAACCGT -ACGGAAGAAGGTCTCTCTTTGTGC -ACGGAAGAAGGTCTCTCTCTAAGC -ACGGAAGAAGGTCTCTCTACTAGC -ACGGAAGAAGGTCTCTCTAGATGC -ACGGAAGAAGGTCTCTCTTGAAGG -ACGGAAGAAGGTCTCTCTCAATGG -ACGGAAGAAGGTCTCTCTATGAGG -ACGGAAGAAGGTCTCTCTAATGGG -ACGGAAGAAGGTCTCTCTTCCTGA -ACGGAAGAAGGTCTCTCTTAGCGA -ACGGAAGAAGGTCTCTCTCACAGA -ACGGAAGAAGGTCTCTCTGCAAGA -ACGGAAGAAGGTCTCTCTGGTTGA -ACGGAAGAAGGTCTCTCTTCCGAT -ACGGAAGAAGGTCTCTCTTGGCAT -ACGGAAGAAGGTCTCTCTCGAGAT -ACGGAAGAAGGTCTCTCTTACCAC -ACGGAAGAAGGTCTCTCTCAGAAC -ACGGAAGAAGGTCTCTCTGTCTAC -ACGGAAGAAGGTCTCTCTACGTAC -ACGGAAGAAGGTCTCTCTAGTGAC -ACGGAAGAAGGTCTCTCTCTGTAG -ACGGAAGAAGGTCTCTCTCCTAAG -ACGGAAGAAGGTCTCTCTGTTCAG -ACGGAAGAAGGTCTCTCTGCATAG -ACGGAAGAAGGTCTCTCTGACAAG -ACGGAAGAAGGTCTCTCTAAGCAG -ACGGAAGAAGGTCTCTCTCGTCAA -ACGGAAGAAGGTCTCTCTGCTGAA -ACGGAAGAAGGTCTCTCTAGTACG -ACGGAAGAAGGTCTCTCTATCCGA -ACGGAAGAAGGTCTCTCTATGGGA -ACGGAAGAAGGTCTCTCTGTGCAA -ACGGAAGAAGGTCTCTCTGAGGAA -ACGGAAGAAGGTCTCTCTCAGGTA -ACGGAAGAAGGTCTCTCTGACTCT -ACGGAAGAAGGTCTCTCTAGTCCT -ACGGAAGAAGGTCTCTCTTAAGCC -ACGGAAGAAGGTCTCTCTATAGCC -ACGGAAGAAGGTCTCTCTTAACCG -ACGGAAGAAGGTCTCTCTATGCCA -ACGGAAGAAGGTATCTGGGGAAAC -ACGGAAGAAGGTATCTGGAACACC -ACGGAAGAAGGTATCTGGATCGAG -ACGGAAGAAGGTATCTGGCTCCTT -ACGGAAGAAGGTATCTGGCCTGTT -ACGGAAGAAGGTATCTGGCGGTTT -ACGGAAGAAGGTATCTGGGTGGTT -ACGGAAGAAGGTATCTGGGCCTTT -ACGGAAGAAGGTATCTGGGGTCTT -ACGGAAGAAGGTATCTGGACGCTT -ACGGAAGAAGGTATCTGGAGCGTT -ACGGAAGAAGGTATCTGGTTCGTC -ACGGAAGAAGGTATCTGGTCTCTC -ACGGAAGAAGGTATCTGGTGGATC -ACGGAAGAAGGTATCTGGCACTTC -ACGGAAGAAGGTATCTGGGTACTC -ACGGAAGAAGGTATCTGGGATGTC -ACGGAAGAAGGTATCTGGACAGTC -ACGGAAGAAGGTATCTGGTTGCTG -ACGGAAGAAGGTATCTGGTCCATG -ACGGAAGAAGGTATCTGGTGTGTG -ACGGAAGAAGGTATCTGGCTAGTG -ACGGAAGAAGGTATCTGGCATCTG -ACGGAAGAAGGTATCTGGGAGTTG -ACGGAAGAAGGTATCTGGAGACTG -ACGGAAGAAGGTATCTGGTCGGTA -ACGGAAGAAGGTATCTGGTGCCTA -ACGGAAGAAGGTATCTGGCCACTA -ACGGAAGAAGGTATCTGGGGAGTA -ACGGAAGAAGGTATCTGGTCGTCT -ACGGAAGAAGGTATCTGGTGCACT -ACGGAAGAAGGTATCTGGCTGACT -ACGGAAGAAGGTATCTGGCAACCT -ACGGAAGAAGGTATCTGGGCTACT -ACGGAAGAAGGTATCTGGGGATCT -ACGGAAGAAGGTATCTGGAAGGCT -ACGGAAGAAGGTATCTGGTCAACC -ACGGAAGAAGGTATCTGGTGTTCC -ACGGAAGAAGGTATCTGGATTCCC -ACGGAAGAAGGTATCTGGTTCTCG -ACGGAAGAAGGTATCTGGTAGACG -ACGGAAGAAGGTATCTGGGTAACG -ACGGAAGAAGGTATCTGGACTTCG -ACGGAAGAAGGTATCTGGTACGCA -ACGGAAGAAGGTATCTGGCTTGCA -ACGGAAGAAGGTATCTGGCGAACA -ACGGAAGAAGGTATCTGGCAGTCA -ACGGAAGAAGGTATCTGGGATCCA -ACGGAAGAAGGTATCTGGACGACA -ACGGAAGAAGGTATCTGGAGCTCA -ACGGAAGAAGGTATCTGGTCACGT -ACGGAAGAAGGTATCTGGCGTAGT -ACGGAAGAAGGTATCTGGGTCAGT -ACGGAAGAAGGTATCTGGGAAGGT -ACGGAAGAAGGTATCTGGAACCGT -ACGGAAGAAGGTATCTGGTTGTGC -ACGGAAGAAGGTATCTGGCTAAGC -ACGGAAGAAGGTATCTGGACTAGC -ACGGAAGAAGGTATCTGGAGATGC -ACGGAAGAAGGTATCTGGTGAAGG -ACGGAAGAAGGTATCTGGCAATGG -ACGGAAGAAGGTATCTGGATGAGG -ACGGAAGAAGGTATCTGGAATGGG -ACGGAAGAAGGTATCTGGTCCTGA -ACGGAAGAAGGTATCTGGTAGCGA -ACGGAAGAAGGTATCTGGCACAGA -ACGGAAGAAGGTATCTGGGCAAGA -ACGGAAGAAGGTATCTGGGGTTGA -ACGGAAGAAGGTATCTGGTCCGAT -ACGGAAGAAGGTATCTGGTGGCAT -ACGGAAGAAGGTATCTGGCGAGAT -ACGGAAGAAGGTATCTGGTACCAC -ACGGAAGAAGGTATCTGGCAGAAC -ACGGAAGAAGGTATCTGGGTCTAC -ACGGAAGAAGGTATCTGGACGTAC -ACGGAAGAAGGTATCTGGAGTGAC -ACGGAAGAAGGTATCTGGCTGTAG -ACGGAAGAAGGTATCTGGCCTAAG -ACGGAAGAAGGTATCTGGGTTCAG -ACGGAAGAAGGTATCTGGGCATAG -ACGGAAGAAGGTATCTGGGACAAG -ACGGAAGAAGGTATCTGGAAGCAG -ACGGAAGAAGGTATCTGGCGTCAA -ACGGAAGAAGGTATCTGGGCTGAA -ACGGAAGAAGGTATCTGGAGTACG -ACGGAAGAAGGTATCTGGATCCGA -ACGGAAGAAGGTATCTGGATGGGA -ACGGAAGAAGGTATCTGGGTGCAA -ACGGAAGAAGGTATCTGGGAGGAA -ACGGAAGAAGGTATCTGGCAGGTA -ACGGAAGAAGGTATCTGGGACTCT -ACGGAAGAAGGTATCTGGAGTCCT -ACGGAAGAAGGTATCTGGTAAGCC -ACGGAAGAAGGTATCTGGATAGCC -ACGGAAGAAGGTATCTGGTAACCG -ACGGAAGAAGGTATCTGGATGCCA -ACGGAAGAAGGTTTCCACGGAAAC -ACGGAAGAAGGTTTCCACAACACC -ACGGAAGAAGGTTTCCACATCGAG -ACGGAAGAAGGTTTCCACCTCCTT -ACGGAAGAAGGTTTCCACCCTGTT -ACGGAAGAAGGTTTCCACCGGTTT -ACGGAAGAAGGTTTCCACGTGGTT -ACGGAAGAAGGTTTCCACGCCTTT -ACGGAAGAAGGTTTCCACGGTCTT -ACGGAAGAAGGTTTCCACACGCTT -ACGGAAGAAGGTTTCCACAGCGTT -ACGGAAGAAGGTTTCCACTTCGTC -ACGGAAGAAGGTTTCCACTCTCTC -ACGGAAGAAGGTTTCCACTGGATC -ACGGAAGAAGGTTTCCACCACTTC -ACGGAAGAAGGTTTCCACGTACTC -ACGGAAGAAGGTTTCCACGATGTC -ACGGAAGAAGGTTTCCACACAGTC -ACGGAAGAAGGTTTCCACTTGCTG -ACGGAAGAAGGTTTCCACTCCATG -ACGGAAGAAGGTTTCCACTGTGTG -ACGGAAGAAGGTTTCCACCTAGTG -ACGGAAGAAGGTTTCCACCATCTG -ACGGAAGAAGGTTTCCACGAGTTG -ACGGAAGAAGGTTTCCACAGACTG -ACGGAAGAAGGTTTCCACTCGGTA -ACGGAAGAAGGTTTCCACTGCCTA -ACGGAAGAAGGTTTCCACCCACTA -ACGGAAGAAGGTTTCCACGGAGTA -ACGGAAGAAGGTTTCCACTCGTCT -ACGGAAGAAGGTTTCCACTGCACT -ACGGAAGAAGGTTTCCACCTGACT -ACGGAAGAAGGTTTCCACCAACCT -ACGGAAGAAGGTTTCCACGCTACT -ACGGAAGAAGGTTTCCACGGATCT -ACGGAAGAAGGTTTCCACAAGGCT -ACGGAAGAAGGTTTCCACTCAACC -ACGGAAGAAGGTTTCCACTGTTCC -ACGGAAGAAGGTTTCCACATTCCC -ACGGAAGAAGGTTTCCACTTCTCG -ACGGAAGAAGGTTTCCACTAGACG -ACGGAAGAAGGTTTCCACGTAACG -ACGGAAGAAGGTTTCCACACTTCG -ACGGAAGAAGGTTTCCACTACGCA -ACGGAAGAAGGTTTCCACCTTGCA -ACGGAAGAAGGTTTCCACCGAACA -ACGGAAGAAGGTTTCCACCAGTCA -ACGGAAGAAGGTTTCCACGATCCA -ACGGAAGAAGGTTTCCACACGACA -ACGGAAGAAGGTTTCCACAGCTCA -ACGGAAGAAGGTTTCCACTCACGT -ACGGAAGAAGGTTTCCACCGTAGT -ACGGAAGAAGGTTTCCACGTCAGT -ACGGAAGAAGGTTTCCACGAAGGT -ACGGAAGAAGGTTTCCACAACCGT -ACGGAAGAAGGTTTCCACTTGTGC -ACGGAAGAAGGTTTCCACCTAAGC -ACGGAAGAAGGTTTCCACACTAGC -ACGGAAGAAGGTTTCCACAGATGC -ACGGAAGAAGGTTTCCACTGAAGG -ACGGAAGAAGGTTTCCACCAATGG -ACGGAAGAAGGTTTCCACATGAGG -ACGGAAGAAGGTTTCCACAATGGG -ACGGAAGAAGGTTTCCACTCCTGA -ACGGAAGAAGGTTTCCACTAGCGA -ACGGAAGAAGGTTTCCACCACAGA -ACGGAAGAAGGTTTCCACGCAAGA -ACGGAAGAAGGTTTCCACGGTTGA -ACGGAAGAAGGTTTCCACTCCGAT -ACGGAAGAAGGTTTCCACTGGCAT -ACGGAAGAAGGTTTCCACCGAGAT -ACGGAAGAAGGTTTCCACTACCAC -ACGGAAGAAGGTTTCCACCAGAAC -ACGGAAGAAGGTTTCCACGTCTAC -ACGGAAGAAGGTTTCCACACGTAC -ACGGAAGAAGGTTTCCACAGTGAC -ACGGAAGAAGGTTTCCACCTGTAG -ACGGAAGAAGGTTTCCACCCTAAG -ACGGAAGAAGGTTTCCACGTTCAG -ACGGAAGAAGGTTTCCACGCATAG -ACGGAAGAAGGTTTCCACGACAAG -ACGGAAGAAGGTTTCCACAAGCAG -ACGGAAGAAGGTTTCCACCGTCAA -ACGGAAGAAGGTTTCCACGCTGAA -ACGGAAGAAGGTTTCCACAGTACG -ACGGAAGAAGGTTTCCACATCCGA -ACGGAAGAAGGTTTCCACATGGGA -ACGGAAGAAGGTTTCCACGTGCAA -ACGGAAGAAGGTTTCCACGAGGAA -ACGGAAGAAGGTTTCCACCAGGTA -ACGGAAGAAGGTTTCCACGACTCT -ACGGAAGAAGGTTTCCACAGTCCT -ACGGAAGAAGGTTTCCACTAAGCC -ACGGAAGAAGGTTTCCACATAGCC -ACGGAAGAAGGTTTCCACTAACCG -ACGGAAGAAGGTTTCCACATGCCA -ACGGAAGAAGGTCTCGTAGGAAAC -ACGGAAGAAGGTCTCGTAAACACC -ACGGAAGAAGGTCTCGTAATCGAG -ACGGAAGAAGGTCTCGTACTCCTT -ACGGAAGAAGGTCTCGTACCTGTT -ACGGAAGAAGGTCTCGTACGGTTT -ACGGAAGAAGGTCTCGTAGTGGTT -ACGGAAGAAGGTCTCGTAGCCTTT -ACGGAAGAAGGTCTCGTAGGTCTT -ACGGAAGAAGGTCTCGTAACGCTT -ACGGAAGAAGGTCTCGTAAGCGTT -ACGGAAGAAGGTCTCGTATTCGTC -ACGGAAGAAGGTCTCGTATCTCTC -ACGGAAGAAGGTCTCGTATGGATC -ACGGAAGAAGGTCTCGTACACTTC -ACGGAAGAAGGTCTCGTAGTACTC -ACGGAAGAAGGTCTCGTAGATGTC -ACGGAAGAAGGTCTCGTAACAGTC -ACGGAAGAAGGTCTCGTATTGCTG -ACGGAAGAAGGTCTCGTATCCATG -ACGGAAGAAGGTCTCGTATGTGTG -ACGGAAGAAGGTCTCGTACTAGTG -ACGGAAGAAGGTCTCGTACATCTG -ACGGAAGAAGGTCTCGTAGAGTTG -ACGGAAGAAGGTCTCGTAAGACTG -ACGGAAGAAGGTCTCGTATCGGTA -ACGGAAGAAGGTCTCGTATGCCTA -ACGGAAGAAGGTCTCGTACCACTA -ACGGAAGAAGGTCTCGTAGGAGTA -ACGGAAGAAGGTCTCGTATCGTCT -ACGGAAGAAGGTCTCGTATGCACT -ACGGAAGAAGGTCTCGTACTGACT -ACGGAAGAAGGTCTCGTACAACCT -ACGGAAGAAGGTCTCGTAGCTACT -ACGGAAGAAGGTCTCGTAGGATCT -ACGGAAGAAGGTCTCGTAAAGGCT -ACGGAAGAAGGTCTCGTATCAACC -ACGGAAGAAGGTCTCGTATGTTCC -ACGGAAGAAGGTCTCGTAATTCCC -ACGGAAGAAGGTCTCGTATTCTCG -ACGGAAGAAGGTCTCGTATAGACG -ACGGAAGAAGGTCTCGTAGTAACG -ACGGAAGAAGGTCTCGTAACTTCG -ACGGAAGAAGGTCTCGTATACGCA -ACGGAAGAAGGTCTCGTACTTGCA -ACGGAAGAAGGTCTCGTACGAACA -ACGGAAGAAGGTCTCGTACAGTCA -ACGGAAGAAGGTCTCGTAGATCCA -ACGGAAGAAGGTCTCGTAACGACA -ACGGAAGAAGGTCTCGTAAGCTCA -ACGGAAGAAGGTCTCGTATCACGT -ACGGAAGAAGGTCTCGTACGTAGT -ACGGAAGAAGGTCTCGTAGTCAGT -ACGGAAGAAGGTCTCGTAGAAGGT -ACGGAAGAAGGTCTCGTAAACCGT -ACGGAAGAAGGTCTCGTATTGTGC -ACGGAAGAAGGTCTCGTACTAAGC -ACGGAAGAAGGTCTCGTAACTAGC -ACGGAAGAAGGTCTCGTAAGATGC -ACGGAAGAAGGTCTCGTATGAAGG -ACGGAAGAAGGTCTCGTACAATGG -ACGGAAGAAGGTCTCGTAATGAGG -ACGGAAGAAGGTCTCGTAAATGGG -ACGGAAGAAGGTCTCGTATCCTGA -ACGGAAGAAGGTCTCGTATAGCGA -ACGGAAGAAGGTCTCGTACACAGA -ACGGAAGAAGGTCTCGTAGCAAGA -ACGGAAGAAGGTCTCGTAGGTTGA -ACGGAAGAAGGTCTCGTATCCGAT -ACGGAAGAAGGTCTCGTATGGCAT -ACGGAAGAAGGTCTCGTACGAGAT -ACGGAAGAAGGTCTCGTATACCAC -ACGGAAGAAGGTCTCGTACAGAAC -ACGGAAGAAGGTCTCGTAGTCTAC -ACGGAAGAAGGTCTCGTAACGTAC -ACGGAAGAAGGTCTCGTAAGTGAC -ACGGAAGAAGGTCTCGTACTGTAG -ACGGAAGAAGGTCTCGTACCTAAG -ACGGAAGAAGGTCTCGTAGTTCAG -ACGGAAGAAGGTCTCGTAGCATAG -ACGGAAGAAGGTCTCGTAGACAAG -ACGGAAGAAGGTCTCGTAAAGCAG -ACGGAAGAAGGTCTCGTACGTCAA -ACGGAAGAAGGTCTCGTAGCTGAA -ACGGAAGAAGGTCTCGTAAGTACG -ACGGAAGAAGGTCTCGTAATCCGA -ACGGAAGAAGGTCTCGTAATGGGA -ACGGAAGAAGGTCTCGTAGTGCAA -ACGGAAGAAGGTCTCGTAGAGGAA -ACGGAAGAAGGTCTCGTACAGGTA -ACGGAAGAAGGTCTCGTAGACTCT -ACGGAAGAAGGTCTCGTAAGTCCT -ACGGAAGAAGGTCTCGTATAAGCC -ACGGAAGAAGGTCTCGTAATAGCC -ACGGAAGAAGGTCTCGTATAACCG -ACGGAAGAAGGTCTCGTAATGCCA -ACGGAAGAAGGTGTCGATGGAAAC -ACGGAAGAAGGTGTCGATAACACC -ACGGAAGAAGGTGTCGATATCGAG -ACGGAAGAAGGTGTCGATCTCCTT -ACGGAAGAAGGTGTCGATCCTGTT -ACGGAAGAAGGTGTCGATCGGTTT -ACGGAAGAAGGTGTCGATGTGGTT -ACGGAAGAAGGTGTCGATGCCTTT -ACGGAAGAAGGTGTCGATGGTCTT -ACGGAAGAAGGTGTCGATACGCTT -ACGGAAGAAGGTGTCGATAGCGTT -ACGGAAGAAGGTGTCGATTTCGTC -ACGGAAGAAGGTGTCGATTCTCTC -ACGGAAGAAGGTGTCGATTGGATC -ACGGAAGAAGGTGTCGATCACTTC -ACGGAAGAAGGTGTCGATGTACTC -ACGGAAGAAGGTGTCGATGATGTC -ACGGAAGAAGGTGTCGATACAGTC -ACGGAAGAAGGTGTCGATTTGCTG -ACGGAAGAAGGTGTCGATTCCATG -ACGGAAGAAGGTGTCGATTGTGTG -ACGGAAGAAGGTGTCGATCTAGTG -ACGGAAGAAGGTGTCGATCATCTG -ACGGAAGAAGGTGTCGATGAGTTG -ACGGAAGAAGGTGTCGATAGACTG -ACGGAAGAAGGTGTCGATTCGGTA -ACGGAAGAAGGTGTCGATTGCCTA -ACGGAAGAAGGTGTCGATCCACTA -ACGGAAGAAGGTGTCGATGGAGTA -ACGGAAGAAGGTGTCGATTCGTCT -ACGGAAGAAGGTGTCGATTGCACT -ACGGAAGAAGGTGTCGATCTGACT -ACGGAAGAAGGTGTCGATCAACCT -ACGGAAGAAGGTGTCGATGCTACT -ACGGAAGAAGGTGTCGATGGATCT -ACGGAAGAAGGTGTCGATAAGGCT -ACGGAAGAAGGTGTCGATTCAACC -ACGGAAGAAGGTGTCGATTGTTCC -ACGGAAGAAGGTGTCGATATTCCC -ACGGAAGAAGGTGTCGATTTCTCG -ACGGAAGAAGGTGTCGATTAGACG -ACGGAAGAAGGTGTCGATGTAACG -ACGGAAGAAGGTGTCGATACTTCG -ACGGAAGAAGGTGTCGATTACGCA -ACGGAAGAAGGTGTCGATCTTGCA -ACGGAAGAAGGTGTCGATCGAACA -ACGGAAGAAGGTGTCGATCAGTCA -ACGGAAGAAGGTGTCGATGATCCA -ACGGAAGAAGGTGTCGATACGACA -ACGGAAGAAGGTGTCGATAGCTCA -ACGGAAGAAGGTGTCGATTCACGT -ACGGAAGAAGGTGTCGATCGTAGT -ACGGAAGAAGGTGTCGATGTCAGT -ACGGAAGAAGGTGTCGATGAAGGT -ACGGAAGAAGGTGTCGATAACCGT -ACGGAAGAAGGTGTCGATTTGTGC -ACGGAAGAAGGTGTCGATCTAAGC -ACGGAAGAAGGTGTCGATACTAGC -ACGGAAGAAGGTGTCGATAGATGC -ACGGAAGAAGGTGTCGATTGAAGG -ACGGAAGAAGGTGTCGATCAATGG -ACGGAAGAAGGTGTCGATATGAGG -ACGGAAGAAGGTGTCGATAATGGG -ACGGAAGAAGGTGTCGATTCCTGA -ACGGAAGAAGGTGTCGATTAGCGA -ACGGAAGAAGGTGTCGATCACAGA -ACGGAAGAAGGTGTCGATGCAAGA -ACGGAAGAAGGTGTCGATGGTTGA -ACGGAAGAAGGTGTCGATTCCGAT -ACGGAAGAAGGTGTCGATTGGCAT -ACGGAAGAAGGTGTCGATCGAGAT -ACGGAAGAAGGTGTCGATTACCAC -ACGGAAGAAGGTGTCGATCAGAAC -ACGGAAGAAGGTGTCGATGTCTAC -ACGGAAGAAGGTGTCGATACGTAC -ACGGAAGAAGGTGTCGATAGTGAC -ACGGAAGAAGGTGTCGATCTGTAG -ACGGAAGAAGGTGTCGATCCTAAG -ACGGAAGAAGGTGTCGATGTTCAG -ACGGAAGAAGGTGTCGATGCATAG -ACGGAAGAAGGTGTCGATGACAAG -ACGGAAGAAGGTGTCGATAAGCAG -ACGGAAGAAGGTGTCGATCGTCAA -ACGGAAGAAGGTGTCGATGCTGAA -ACGGAAGAAGGTGTCGATAGTACG -ACGGAAGAAGGTGTCGATATCCGA -ACGGAAGAAGGTGTCGATATGGGA -ACGGAAGAAGGTGTCGATGTGCAA -ACGGAAGAAGGTGTCGATGAGGAA -ACGGAAGAAGGTGTCGATCAGGTA -ACGGAAGAAGGTGTCGATGACTCT -ACGGAAGAAGGTGTCGATAGTCCT -ACGGAAGAAGGTGTCGATTAAGCC -ACGGAAGAAGGTGTCGATATAGCC -ACGGAAGAAGGTGTCGATTAACCG -ACGGAAGAAGGTGTCGATATGCCA -ACGGAAGAAGGTGTCACAGGAAAC -ACGGAAGAAGGTGTCACAAACACC -ACGGAAGAAGGTGTCACAATCGAG -ACGGAAGAAGGTGTCACACTCCTT -ACGGAAGAAGGTGTCACACCTGTT -ACGGAAGAAGGTGTCACACGGTTT -ACGGAAGAAGGTGTCACAGTGGTT -ACGGAAGAAGGTGTCACAGCCTTT -ACGGAAGAAGGTGTCACAGGTCTT -ACGGAAGAAGGTGTCACAACGCTT -ACGGAAGAAGGTGTCACAAGCGTT -ACGGAAGAAGGTGTCACATTCGTC -ACGGAAGAAGGTGTCACATCTCTC -ACGGAAGAAGGTGTCACATGGATC -ACGGAAGAAGGTGTCACACACTTC -ACGGAAGAAGGTGTCACAGTACTC -ACGGAAGAAGGTGTCACAGATGTC -ACGGAAGAAGGTGTCACAACAGTC -ACGGAAGAAGGTGTCACATTGCTG -ACGGAAGAAGGTGTCACATCCATG -ACGGAAGAAGGTGTCACATGTGTG -ACGGAAGAAGGTGTCACACTAGTG -ACGGAAGAAGGTGTCACACATCTG -ACGGAAGAAGGTGTCACAGAGTTG -ACGGAAGAAGGTGTCACAAGACTG -ACGGAAGAAGGTGTCACATCGGTA -ACGGAAGAAGGTGTCACATGCCTA -ACGGAAGAAGGTGTCACACCACTA -ACGGAAGAAGGTGTCACAGGAGTA -ACGGAAGAAGGTGTCACATCGTCT -ACGGAAGAAGGTGTCACATGCACT -ACGGAAGAAGGTGTCACACTGACT -ACGGAAGAAGGTGTCACACAACCT -ACGGAAGAAGGTGTCACAGCTACT -ACGGAAGAAGGTGTCACAGGATCT -ACGGAAGAAGGTGTCACAAAGGCT -ACGGAAGAAGGTGTCACATCAACC -ACGGAAGAAGGTGTCACATGTTCC -ACGGAAGAAGGTGTCACAATTCCC -ACGGAAGAAGGTGTCACATTCTCG -ACGGAAGAAGGTGTCACATAGACG -ACGGAAGAAGGTGTCACAGTAACG -ACGGAAGAAGGTGTCACAACTTCG -ACGGAAGAAGGTGTCACATACGCA -ACGGAAGAAGGTGTCACACTTGCA -ACGGAAGAAGGTGTCACACGAACA -ACGGAAGAAGGTGTCACACAGTCA -ACGGAAGAAGGTGTCACAGATCCA -ACGGAAGAAGGTGTCACAACGACA -ACGGAAGAAGGTGTCACAAGCTCA -ACGGAAGAAGGTGTCACATCACGT -ACGGAAGAAGGTGTCACACGTAGT -ACGGAAGAAGGTGTCACAGTCAGT -ACGGAAGAAGGTGTCACAGAAGGT -ACGGAAGAAGGTGTCACAAACCGT -ACGGAAGAAGGTGTCACATTGTGC -ACGGAAGAAGGTGTCACACTAAGC -ACGGAAGAAGGTGTCACAACTAGC -ACGGAAGAAGGTGTCACAAGATGC -ACGGAAGAAGGTGTCACATGAAGG -ACGGAAGAAGGTGTCACACAATGG -ACGGAAGAAGGTGTCACAATGAGG -ACGGAAGAAGGTGTCACAAATGGG -ACGGAAGAAGGTGTCACATCCTGA -ACGGAAGAAGGTGTCACATAGCGA -ACGGAAGAAGGTGTCACACACAGA -ACGGAAGAAGGTGTCACAGCAAGA -ACGGAAGAAGGTGTCACAGGTTGA -ACGGAAGAAGGTGTCACATCCGAT -ACGGAAGAAGGTGTCACATGGCAT -ACGGAAGAAGGTGTCACACGAGAT -ACGGAAGAAGGTGTCACATACCAC -ACGGAAGAAGGTGTCACACAGAAC -ACGGAAGAAGGTGTCACAGTCTAC -ACGGAAGAAGGTGTCACAACGTAC -ACGGAAGAAGGTGTCACAAGTGAC -ACGGAAGAAGGTGTCACACTGTAG -ACGGAAGAAGGTGTCACACCTAAG -ACGGAAGAAGGTGTCACAGTTCAG -ACGGAAGAAGGTGTCACAGCATAG -ACGGAAGAAGGTGTCACAGACAAG -ACGGAAGAAGGTGTCACAAAGCAG -ACGGAAGAAGGTGTCACACGTCAA -ACGGAAGAAGGTGTCACAGCTGAA -ACGGAAGAAGGTGTCACAAGTACG -ACGGAAGAAGGTGTCACAATCCGA -ACGGAAGAAGGTGTCACAATGGGA -ACGGAAGAAGGTGTCACAGTGCAA -ACGGAAGAAGGTGTCACAGAGGAA -ACGGAAGAAGGTGTCACACAGGTA -ACGGAAGAAGGTGTCACAGACTCT -ACGGAAGAAGGTGTCACAAGTCCT -ACGGAAGAAGGTGTCACATAAGCC -ACGGAAGAAGGTGTCACAATAGCC -ACGGAAGAAGGTGTCACATAACCG -ACGGAAGAAGGTGTCACAATGCCA -ACGGAAGAAGGTCTGTTGGGAAAC -ACGGAAGAAGGTCTGTTGAACACC -ACGGAAGAAGGTCTGTTGATCGAG -ACGGAAGAAGGTCTGTTGCTCCTT -ACGGAAGAAGGTCTGTTGCCTGTT -ACGGAAGAAGGTCTGTTGCGGTTT -ACGGAAGAAGGTCTGTTGGTGGTT -ACGGAAGAAGGTCTGTTGGCCTTT -ACGGAAGAAGGTCTGTTGGGTCTT -ACGGAAGAAGGTCTGTTGACGCTT -ACGGAAGAAGGTCTGTTGAGCGTT -ACGGAAGAAGGTCTGTTGTTCGTC -ACGGAAGAAGGTCTGTTGTCTCTC -ACGGAAGAAGGTCTGTTGTGGATC -ACGGAAGAAGGTCTGTTGCACTTC -ACGGAAGAAGGTCTGTTGGTACTC -ACGGAAGAAGGTCTGTTGGATGTC -ACGGAAGAAGGTCTGTTGACAGTC -ACGGAAGAAGGTCTGTTGTTGCTG -ACGGAAGAAGGTCTGTTGTCCATG -ACGGAAGAAGGTCTGTTGTGTGTG -ACGGAAGAAGGTCTGTTGCTAGTG -ACGGAAGAAGGTCTGTTGCATCTG -ACGGAAGAAGGTCTGTTGGAGTTG -ACGGAAGAAGGTCTGTTGAGACTG -ACGGAAGAAGGTCTGTTGTCGGTA -ACGGAAGAAGGTCTGTTGTGCCTA -ACGGAAGAAGGTCTGTTGCCACTA -ACGGAAGAAGGTCTGTTGGGAGTA -ACGGAAGAAGGTCTGTTGTCGTCT -ACGGAAGAAGGTCTGTTGTGCACT -ACGGAAGAAGGTCTGTTGCTGACT -ACGGAAGAAGGTCTGTTGCAACCT -ACGGAAGAAGGTCTGTTGGCTACT -ACGGAAGAAGGTCTGTTGGGATCT -ACGGAAGAAGGTCTGTTGAAGGCT -ACGGAAGAAGGTCTGTTGTCAACC -ACGGAAGAAGGTCTGTTGTGTTCC -ACGGAAGAAGGTCTGTTGATTCCC -ACGGAAGAAGGTCTGTTGTTCTCG -ACGGAAGAAGGTCTGTTGTAGACG -ACGGAAGAAGGTCTGTTGGTAACG -ACGGAAGAAGGTCTGTTGACTTCG -ACGGAAGAAGGTCTGTTGTACGCA -ACGGAAGAAGGTCTGTTGCTTGCA -ACGGAAGAAGGTCTGTTGCGAACA -ACGGAAGAAGGTCTGTTGCAGTCA -ACGGAAGAAGGTCTGTTGGATCCA -ACGGAAGAAGGTCTGTTGACGACA -ACGGAAGAAGGTCTGTTGAGCTCA -ACGGAAGAAGGTCTGTTGTCACGT -ACGGAAGAAGGTCTGTTGCGTAGT -ACGGAAGAAGGTCTGTTGGTCAGT -ACGGAAGAAGGTCTGTTGGAAGGT -ACGGAAGAAGGTCTGTTGAACCGT -ACGGAAGAAGGTCTGTTGTTGTGC -ACGGAAGAAGGTCTGTTGCTAAGC -ACGGAAGAAGGTCTGTTGACTAGC -ACGGAAGAAGGTCTGTTGAGATGC -ACGGAAGAAGGTCTGTTGTGAAGG -ACGGAAGAAGGTCTGTTGCAATGG -ACGGAAGAAGGTCTGTTGATGAGG -ACGGAAGAAGGTCTGTTGAATGGG -ACGGAAGAAGGTCTGTTGTCCTGA -ACGGAAGAAGGTCTGTTGTAGCGA -ACGGAAGAAGGTCTGTTGCACAGA -ACGGAAGAAGGTCTGTTGGCAAGA -ACGGAAGAAGGTCTGTTGGGTTGA -ACGGAAGAAGGTCTGTTGTCCGAT -ACGGAAGAAGGTCTGTTGTGGCAT -ACGGAAGAAGGTCTGTTGCGAGAT -ACGGAAGAAGGTCTGTTGTACCAC -ACGGAAGAAGGTCTGTTGCAGAAC -ACGGAAGAAGGTCTGTTGGTCTAC -ACGGAAGAAGGTCTGTTGACGTAC -ACGGAAGAAGGTCTGTTGAGTGAC -ACGGAAGAAGGTCTGTTGCTGTAG -ACGGAAGAAGGTCTGTTGCCTAAG -ACGGAAGAAGGTCTGTTGGTTCAG -ACGGAAGAAGGTCTGTTGGCATAG -ACGGAAGAAGGTCTGTTGGACAAG -ACGGAAGAAGGTCTGTTGAAGCAG -ACGGAAGAAGGTCTGTTGCGTCAA -ACGGAAGAAGGTCTGTTGGCTGAA -ACGGAAGAAGGTCTGTTGAGTACG -ACGGAAGAAGGTCTGTTGATCCGA -ACGGAAGAAGGTCTGTTGATGGGA -ACGGAAGAAGGTCTGTTGGTGCAA -ACGGAAGAAGGTCTGTTGGAGGAA -ACGGAAGAAGGTCTGTTGCAGGTA -ACGGAAGAAGGTCTGTTGGACTCT -ACGGAAGAAGGTCTGTTGAGTCCT -ACGGAAGAAGGTCTGTTGTAAGCC -ACGGAAGAAGGTCTGTTGATAGCC -ACGGAAGAAGGTCTGTTGTAACCG -ACGGAAGAAGGTCTGTTGATGCCA -ACGGAAGAAGGTATGTCCGGAAAC -ACGGAAGAAGGTATGTCCAACACC -ACGGAAGAAGGTATGTCCATCGAG -ACGGAAGAAGGTATGTCCCTCCTT -ACGGAAGAAGGTATGTCCCCTGTT -ACGGAAGAAGGTATGTCCCGGTTT -ACGGAAGAAGGTATGTCCGTGGTT -ACGGAAGAAGGTATGTCCGCCTTT -ACGGAAGAAGGTATGTCCGGTCTT -ACGGAAGAAGGTATGTCCACGCTT -ACGGAAGAAGGTATGTCCAGCGTT -ACGGAAGAAGGTATGTCCTTCGTC -ACGGAAGAAGGTATGTCCTCTCTC -ACGGAAGAAGGTATGTCCTGGATC -ACGGAAGAAGGTATGTCCCACTTC -ACGGAAGAAGGTATGTCCGTACTC -ACGGAAGAAGGTATGTCCGATGTC -ACGGAAGAAGGTATGTCCACAGTC -ACGGAAGAAGGTATGTCCTTGCTG -ACGGAAGAAGGTATGTCCTCCATG -ACGGAAGAAGGTATGTCCTGTGTG -ACGGAAGAAGGTATGTCCCTAGTG -ACGGAAGAAGGTATGTCCCATCTG -ACGGAAGAAGGTATGTCCGAGTTG -ACGGAAGAAGGTATGTCCAGACTG -ACGGAAGAAGGTATGTCCTCGGTA -ACGGAAGAAGGTATGTCCTGCCTA -ACGGAAGAAGGTATGTCCCCACTA -ACGGAAGAAGGTATGTCCGGAGTA -ACGGAAGAAGGTATGTCCTCGTCT -ACGGAAGAAGGTATGTCCTGCACT -ACGGAAGAAGGTATGTCCCTGACT -ACGGAAGAAGGTATGTCCCAACCT -ACGGAAGAAGGTATGTCCGCTACT -ACGGAAGAAGGTATGTCCGGATCT -ACGGAAGAAGGTATGTCCAAGGCT -ACGGAAGAAGGTATGTCCTCAACC -ACGGAAGAAGGTATGTCCTGTTCC -ACGGAAGAAGGTATGTCCATTCCC -ACGGAAGAAGGTATGTCCTTCTCG -ACGGAAGAAGGTATGTCCTAGACG -ACGGAAGAAGGTATGTCCGTAACG -ACGGAAGAAGGTATGTCCACTTCG -ACGGAAGAAGGTATGTCCTACGCA -ACGGAAGAAGGTATGTCCCTTGCA -ACGGAAGAAGGTATGTCCCGAACA -ACGGAAGAAGGTATGTCCCAGTCA -ACGGAAGAAGGTATGTCCGATCCA -ACGGAAGAAGGTATGTCCACGACA -ACGGAAGAAGGTATGTCCAGCTCA -ACGGAAGAAGGTATGTCCTCACGT -ACGGAAGAAGGTATGTCCCGTAGT -ACGGAAGAAGGTATGTCCGTCAGT -ACGGAAGAAGGTATGTCCGAAGGT -ACGGAAGAAGGTATGTCCAACCGT -ACGGAAGAAGGTATGTCCTTGTGC -ACGGAAGAAGGTATGTCCCTAAGC -ACGGAAGAAGGTATGTCCACTAGC -ACGGAAGAAGGTATGTCCAGATGC -ACGGAAGAAGGTATGTCCTGAAGG -ACGGAAGAAGGTATGTCCCAATGG -ACGGAAGAAGGTATGTCCATGAGG -ACGGAAGAAGGTATGTCCAATGGG -ACGGAAGAAGGTATGTCCTCCTGA -ACGGAAGAAGGTATGTCCTAGCGA -ACGGAAGAAGGTATGTCCCACAGA -ACGGAAGAAGGTATGTCCGCAAGA -ACGGAAGAAGGTATGTCCGGTTGA -ACGGAAGAAGGTATGTCCTCCGAT -ACGGAAGAAGGTATGTCCTGGCAT -ACGGAAGAAGGTATGTCCCGAGAT -ACGGAAGAAGGTATGTCCTACCAC -ACGGAAGAAGGTATGTCCCAGAAC -ACGGAAGAAGGTATGTCCGTCTAC -ACGGAAGAAGGTATGTCCACGTAC -ACGGAAGAAGGTATGTCCAGTGAC -ACGGAAGAAGGTATGTCCCTGTAG -ACGGAAGAAGGTATGTCCCCTAAG -ACGGAAGAAGGTATGTCCGTTCAG -ACGGAAGAAGGTATGTCCGCATAG -ACGGAAGAAGGTATGTCCGACAAG -ACGGAAGAAGGTATGTCCAAGCAG -ACGGAAGAAGGTATGTCCCGTCAA -ACGGAAGAAGGTATGTCCGCTGAA -ACGGAAGAAGGTATGTCCAGTACG -ACGGAAGAAGGTATGTCCATCCGA -ACGGAAGAAGGTATGTCCATGGGA -ACGGAAGAAGGTATGTCCGTGCAA -ACGGAAGAAGGTATGTCCGAGGAA -ACGGAAGAAGGTATGTCCCAGGTA -ACGGAAGAAGGTATGTCCGACTCT -ACGGAAGAAGGTATGTCCAGTCCT -ACGGAAGAAGGTATGTCCTAAGCC -ACGGAAGAAGGTATGTCCATAGCC -ACGGAAGAAGGTATGTCCTAACCG -ACGGAAGAAGGTATGTCCATGCCA -ACGGAAGAAGGTGTGTGTGGAAAC -ACGGAAGAAGGTGTGTGTAACACC -ACGGAAGAAGGTGTGTGTATCGAG -ACGGAAGAAGGTGTGTGTCTCCTT -ACGGAAGAAGGTGTGTGTCCTGTT -ACGGAAGAAGGTGTGTGTCGGTTT -ACGGAAGAAGGTGTGTGTGTGGTT -ACGGAAGAAGGTGTGTGTGCCTTT -ACGGAAGAAGGTGTGTGTGGTCTT -ACGGAAGAAGGTGTGTGTACGCTT -ACGGAAGAAGGTGTGTGTAGCGTT -ACGGAAGAAGGTGTGTGTTTCGTC -ACGGAAGAAGGTGTGTGTTCTCTC -ACGGAAGAAGGTGTGTGTTGGATC -ACGGAAGAAGGTGTGTGTCACTTC -ACGGAAGAAGGTGTGTGTGTACTC -ACGGAAGAAGGTGTGTGTGATGTC -ACGGAAGAAGGTGTGTGTACAGTC -ACGGAAGAAGGTGTGTGTTTGCTG -ACGGAAGAAGGTGTGTGTTCCATG -ACGGAAGAAGGTGTGTGTTGTGTG -ACGGAAGAAGGTGTGTGTCTAGTG -ACGGAAGAAGGTGTGTGTCATCTG -ACGGAAGAAGGTGTGTGTGAGTTG -ACGGAAGAAGGTGTGTGTAGACTG -ACGGAAGAAGGTGTGTGTTCGGTA -ACGGAAGAAGGTGTGTGTTGCCTA -ACGGAAGAAGGTGTGTGTCCACTA -ACGGAAGAAGGTGTGTGTGGAGTA -ACGGAAGAAGGTGTGTGTTCGTCT -ACGGAAGAAGGTGTGTGTTGCACT -ACGGAAGAAGGTGTGTGTCTGACT -ACGGAAGAAGGTGTGTGTCAACCT -ACGGAAGAAGGTGTGTGTGCTACT -ACGGAAGAAGGTGTGTGTGGATCT -ACGGAAGAAGGTGTGTGTAAGGCT -ACGGAAGAAGGTGTGTGTTCAACC -ACGGAAGAAGGTGTGTGTTGTTCC -ACGGAAGAAGGTGTGTGTATTCCC -ACGGAAGAAGGTGTGTGTTTCTCG -ACGGAAGAAGGTGTGTGTTAGACG -ACGGAAGAAGGTGTGTGTGTAACG -ACGGAAGAAGGTGTGTGTACTTCG -ACGGAAGAAGGTGTGTGTTACGCA -ACGGAAGAAGGTGTGTGTCTTGCA -ACGGAAGAAGGTGTGTGTCGAACA -ACGGAAGAAGGTGTGTGTCAGTCA -ACGGAAGAAGGTGTGTGTGATCCA -ACGGAAGAAGGTGTGTGTACGACA -ACGGAAGAAGGTGTGTGTAGCTCA -ACGGAAGAAGGTGTGTGTTCACGT -ACGGAAGAAGGTGTGTGTCGTAGT -ACGGAAGAAGGTGTGTGTGTCAGT -ACGGAAGAAGGTGTGTGTGAAGGT -ACGGAAGAAGGTGTGTGTAACCGT -ACGGAAGAAGGTGTGTGTTTGTGC -ACGGAAGAAGGTGTGTGTCTAAGC -ACGGAAGAAGGTGTGTGTACTAGC -ACGGAAGAAGGTGTGTGTAGATGC -ACGGAAGAAGGTGTGTGTTGAAGG -ACGGAAGAAGGTGTGTGTCAATGG -ACGGAAGAAGGTGTGTGTATGAGG -ACGGAAGAAGGTGTGTGTAATGGG -ACGGAAGAAGGTGTGTGTTCCTGA -ACGGAAGAAGGTGTGTGTTAGCGA -ACGGAAGAAGGTGTGTGTCACAGA -ACGGAAGAAGGTGTGTGTGCAAGA -ACGGAAGAAGGTGTGTGTGGTTGA -ACGGAAGAAGGTGTGTGTTCCGAT -ACGGAAGAAGGTGTGTGTTGGCAT -ACGGAAGAAGGTGTGTGTCGAGAT -ACGGAAGAAGGTGTGTGTTACCAC -ACGGAAGAAGGTGTGTGTCAGAAC -ACGGAAGAAGGTGTGTGTGTCTAC -ACGGAAGAAGGTGTGTGTACGTAC -ACGGAAGAAGGTGTGTGTAGTGAC -ACGGAAGAAGGTGTGTGTCTGTAG -ACGGAAGAAGGTGTGTGTCCTAAG -ACGGAAGAAGGTGTGTGTGTTCAG -ACGGAAGAAGGTGTGTGTGCATAG -ACGGAAGAAGGTGTGTGTGACAAG -ACGGAAGAAGGTGTGTGTAAGCAG -ACGGAAGAAGGTGTGTGTCGTCAA -ACGGAAGAAGGTGTGTGTGCTGAA -ACGGAAGAAGGTGTGTGTAGTACG -ACGGAAGAAGGTGTGTGTATCCGA -ACGGAAGAAGGTGTGTGTATGGGA -ACGGAAGAAGGTGTGTGTGTGCAA -ACGGAAGAAGGTGTGTGTGAGGAA -ACGGAAGAAGGTGTGTGTCAGGTA -ACGGAAGAAGGTGTGTGTGACTCT -ACGGAAGAAGGTGTGTGTAGTCCT -ACGGAAGAAGGTGTGTGTTAAGCC -ACGGAAGAAGGTGTGTGTATAGCC -ACGGAAGAAGGTGTGTGTTAACCG -ACGGAAGAAGGTGTGTGTATGCCA -ACGGAAGAAGGTGTGCTAGGAAAC -ACGGAAGAAGGTGTGCTAAACACC -ACGGAAGAAGGTGTGCTAATCGAG -ACGGAAGAAGGTGTGCTACTCCTT -ACGGAAGAAGGTGTGCTACCTGTT -ACGGAAGAAGGTGTGCTACGGTTT -ACGGAAGAAGGTGTGCTAGTGGTT -ACGGAAGAAGGTGTGCTAGCCTTT -ACGGAAGAAGGTGTGCTAGGTCTT -ACGGAAGAAGGTGTGCTAACGCTT -ACGGAAGAAGGTGTGCTAAGCGTT -ACGGAAGAAGGTGTGCTATTCGTC -ACGGAAGAAGGTGTGCTATCTCTC -ACGGAAGAAGGTGTGCTATGGATC -ACGGAAGAAGGTGTGCTACACTTC -ACGGAAGAAGGTGTGCTAGTACTC -ACGGAAGAAGGTGTGCTAGATGTC -ACGGAAGAAGGTGTGCTAACAGTC -ACGGAAGAAGGTGTGCTATTGCTG -ACGGAAGAAGGTGTGCTATCCATG -ACGGAAGAAGGTGTGCTATGTGTG -ACGGAAGAAGGTGTGCTACTAGTG -ACGGAAGAAGGTGTGCTACATCTG -ACGGAAGAAGGTGTGCTAGAGTTG -ACGGAAGAAGGTGTGCTAAGACTG -ACGGAAGAAGGTGTGCTATCGGTA -ACGGAAGAAGGTGTGCTATGCCTA -ACGGAAGAAGGTGTGCTACCACTA -ACGGAAGAAGGTGTGCTAGGAGTA -ACGGAAGAAGGTGTGCTATCGTCT -ACGGAAGAAGGTGTGCTATGCACT -ACGGAAGAAGGTGTGCTACTGACT -ACGGAAGAAGGTGTGCTACAACCT -ACGGAAGAAGGTGTGCTAGCTACT -ACGGAAGAAGGTGTGCTAGGATCT -ACGGAAGAAGGTGTGCTAAAGGCT -ACGGAAGAAGGTGTGCTATCAACC -ACGGAAGAAGGTGTGCTATGTTCC -ACGGAAGAAGGTGTGCTAATTCCC -ACGGAAGAAGGTGTGCTATTCTCG -ACGGAAGAAGGTGTGCTATAGACG -ACGGAAGAAGGTGTGCTAGTAACG -ACGGAAGAAGGTGTGCTAACTTCG -ACGGAAGAAGGTGTGCTATACGCA -ACGGAAGAAGGTGTGCTACTTGCA -ACGGAAGAAGGTGTGCTACGAACA -ACGGAAGAAGGTGTGCTACAGTCA -ACGGAAGAAGGTGTGCTAGATCCA -ACGGAAGAAGGTGTGCTAACGACA -ACGGAAGAAGGTGTGCTAAGCTCA -ACGGAAGAAGGTGTGCTATCACGT -ACGGAAGAAGGTGTGCTACGTAGT -ACGGAAGAAGGTGTGCTAGTCAGT -ACGGAAGAAGGTGTGCTAGAAGGT -ACGGAAGAAGGTGTGCTAAACCGT -ACGGAAGAAGGTGTGCTATTGTGC -ACGGAAGAAGGTGTGCTACTAAGC -ACGGAAGAAGGTGTGCTAACTAGC -ACGGAAGAAGGTGTGCTAAGATGC -ACGGAAGAAGGTGTGCTATGAAGG -ACGGAAGAAGGTGTGCTACAATGG -ACGGAAGAAGGTGTGCTAATGAGG -ACGGAAGAAGGTGTGCTAAATGGG -ACGGAAGAAGGTGTGCTATCCTGA -ACGGAAGAAGGTGTGCTATAGCGA -ACGGAAGAAGGTGTGCTACACAGA -ACGGAAGAAGGTGTGCTAGCAAGA -ACGGAAGAAGGTGTGCTAGGTTGA -ACGGAAGAAGGTGTGCTATCCGAT -ACGGAAGAAGGTGTGCTATGGCAT -ACGGAAGAAGGTGTGCTACGAGAT -ACGGAAGAAGGTGTGCTATACCAC -ACGGAAGAAGGTGTGCTACAGAAC -ACGGAAGAAGGTGTGCTAGTCTAC -ACGGAAGAAGGTGTGCTAACGTAC -ACGGAAGAAGGTGTGCTAAGTGAC -ACGGAAGAAGGTGTGCTACTGTAG -ACGGAAGAAGGTGTGCTACCTAAG -ACGGAAGAAGGTGTGCTAGTTCAG -ACGGAAGAAGGTGTGCTAGCATAG -ACGGAAGAAGGTGTGCTAGACAAG -ACGGAAGAAGGTGTGCTAAAGCAG -ACGGAAGAAGGTGTGCTACGTCAA -ACGGAAGAAGGTGTGCTAGCTGAA -ACGGAAGAAGGTGTGCTAAGTACG -ACGGAAGAAGGTGTGCTAATCCGA -ACGGAAGAAGGTGTGCTAATGGGA -ACGGAAGAAGGTGTGCTAGTGCAA -ACGGAAGAAGGTGTGCTAGAGGAA -ACGGAAGAAGGTGTGCTACAGGTA -ACGGAAGAAGGTGTGCTAGACTCT -ACGGAAGAAGGTGTGCTAAGTCCT -ACGGAAGAAGGTGTGCTATAAGCC -ACGGAAGAAGGTGTGCTAATAGCC -ACGGAAGAAGGTGTGCTATAACCG -ACGGAAGAAGGTGTGCTAATGCCA -ACGGAAGAAGGTCTGCATGGAAAC -ACGGAAGAAGGTCTGCATAACACC -ACGGAAGAAGGTCTGCATATCGAG -ACGGAAGAAGGTCTGCATCTCCTT -ACGGAAGAAGGTCTGCATCCTGTT -ACGGAAGAAGGTCTGCATCGGTTT -ACGGAAGAAGGTCTGCATGTGGTT -ACGGAAGAAGGTCTGCATGCCTTT -ACGGAAGAAGGTCTGCATGGTCTT -ACGGAAGAAGGTCTGCATACGCTT -ACGGAAGAAGGTCTGCATAGCGTT -ACGGAAGAAGGTCTGCATTTCGTC -ACGGAAGAAGGTCTGCATTCTCTC -ACGGAAGAAGGTCTGCATTGGATC -ACGGAAGAAGGTCTGCATCACTTC -ACGGAAGAAGGTCTGCATGTACTC -ACGGAAGAAGGTCTGCATGATGTC -ACGGAAGAAGGTCTGCATACAGTC -ACGGAAGAAGGTCTGCATTTGCTG -ACGGAAGAAGGTCTGCATTCCATG -ACGGAAGAAGGTCTGCATTGTGTG -ACGGAAGAAGGTCTGCATCTAGTG -ACGGAAGAAGGTCTGCATCATCTG -ACGGAAGAAGGTCTGCATGAGTTG -ACGGAAGAAGGTCTGCATAGACTG -ACGGAAGAAGGTCTGCATTCGGTA -ACGGAAGAAGGTCTGCATTGCCTA -ACGGAAGAAGGTCTGCATCCACTA -ACGGAAGAAGGTCTGCATGGAGTA -ACGGAAGAAGGTCTGCATTCGTCT -ACGGAAGAAGGTCTGCATTGCACT -ACGGAAGAAGGTCTGCATCTGACT -ACGGAAGAAGGTCTGCATCAACCT -ACGGAAGAAGGTCTGCATGCTACT -ACGGAAGAAGGTCTGCATGGATCT -ACGGAAGAAGGTCTGCATAAGGCT -ACGGAAGAAGGTCTGCATTCAACC -ACGGAAGAAGGTCTGCATTGTTCC -ACGGAAGAAGGTCTGCATATTCCC -ACGGAAGAAGGTCTGCATTTCTCG -ACGGAAGAAGGTCTGCATTAGACG -ACGGAAGAAGGTCTGCATGTAACG -ACGGAAGAAGGTCTGCATACTTCG -ACGGAAGAAGGTCTGCATTACGCA -ACGGAAGAAGGTCTGCATCTTGCA -ACGGAAGAAGGTCTGCATCGAACA -ACGGAAGAAGGTCTGCATCAGTCA -ACGGAAGAAGGTCTGCATGATCCA -ACGGAAGAAGGTCTGCATACGACA -ACGGAAGAAGGTCTGCATAGCTCA -ACGGAAGAAGGTCTGCATTCACGT -ACGGAAGAAGGTCTGCATCGTAGT -ACGGAAGAAGGTCTGCATGTCAGT -ACGGAAGAAGGTCTGCATGAAGGT -ACGGAAGAAGGTCTGCATAACCGT -ACGGAAGAAGGTCTGCATTTGTGC -ACGGAAGAAGGTCTGCATCTAAGC -ACGGAAGAAGGTCTGCATACTAGC -ACGGAAGAAGGTCTGCATAGATGC -ACGGAAGAAGGTCTGCATTGAAGG -ACGGAAGAAGGTCTGCATCAATGG -ACGGAAGAAGGTCTGCATATGAGG -ACGGAAGAAGGTCTGCATAATGGG -ACGGAAGAAGGTCTGCATTCCTGA -ACGGAAGAAGGTCTGCATTAGCGA -ACGGAAGAAGGTCTGCATCACAGA -ACGGAAGAAGGTCTGCATGCAAGA -ACGGAAGAAGGTCTGCATGGTTGA -ACGGAAGAAGGTCTGCATTCCGAT -ACGGAAGAAGGTCTGCATTGGCAT -ACGGAAGAAGGTCTGCATCGAGAT -ACGGAAGAAGGTCTGCATTACCAC -ACGGAAGAAGGTCTGCATCAGAAC -ACGGAAGAAGGTCTGCATGTCTAC -ACGGAAGAAGGTCTGCATACGTAC -ACGGAAGAAGGTCTGCATAGTGAC -ACGGAAGAAGGTCTGCATCTGTAG -ACGGAAGAAGGTCTGCATCCTAAG -ACGGAAGAAGGTCTGCATGTTCAG -ACGGAAGAAGGTCTGCATGCATAG -ACGGAAGAAGGTCTGCATGACAAG -ACGGAAGAAGGTCTGCATAAGCAG -ACGGAAGAAGGTCTGCATCGTCAA -ACGGAAGAAGGTCTGCATGCTGAA -ACGGAAGAAGGTCTGCATAGTACG -ACGGAAGAAGGTCTGCATATCCGA -ACGGAAGAAGGTCTGCATATGGGA -ACGGAAGAAGGTCTGCATGTGCAA -ACGGAAGAAGGTCTGCATGAGGAA -ACGGAAGAAGGTCTGCATCAGGTA -ACGGAAGAAGGTCTGCATGACTCT -ACGGAAGAAGGTCTGCATAGTCCT -ACGGAAGAAGGTCTGCATTAAGCC -ACGGAAGAAGGTCTGCATATAGCC -ACGGAAGAAGGTCTGCATTAACCG -ACGGAAGAAGGTCTGCATATGCCA -ACGGAAGAAGGTTTGGAGGGAAAC -ACGGAAGAAGGTTTGGAGAACACC -ACGGAAGAAGGTTTGGAGATCGAG -ACGGAAGAAGGTTTGGAGCTCCTT -ACGGAAGAAGGTTTGGAGCCTGTT -ACGGAAGAAGGTTTGGAGCGGTTT -ACGGAAGAAGGTTTGGAGGTGGTT -ACGGAAGAAGGTTTGGAGGCCTTT -ACGGAAGAAGGTTTGGAGGGTCTT -ACGGAAGAAGGTTTGGAGACGCTT -ACGGAAGAAGGTTTGGAGAGCGTT -ACGGAAGAAGGTTTGGAGTTCGTC -ACGGAAGAAGGTTTGGAGTCTCTC -ACGGAAGAAGGTTTGGAGTGGATC -ACGGAAGAAGGTTTGGAGCACTTC -ACGGAAGAAGGTTTGGAGGTACTC -ACGGAAGAAGGTTTGGAGGATGTC -ACGGAAGAAGGTTTGGAGACAGTC -ACGGAAGAAGGTTTGGAGTTGCTG -ACGGAAGAAGGTTTGGAGTCCATG -ACGGAAGAAGGTTTGGAGTGTGTG -ACGGAAGAAGGTTTGGAGCTAGTG -ACGGAAGAAGGTTTGGAGCATCTG -ACGGAAGAAGGTTTGGAGGAGTTG -ACGGAAGAAGGTTTGGAGAGACTG -ACGGAAGAAGGTTTGGAGTCGGTA -ACGGAAGAAGGTTTGGAGTGCCTA -ACGGAAGAAGGTTTGGAGCCACTA -ACGGAAGAAGGTTTGGAGGGAGTA -ACGGAAGAAGGTTTGGAGTCGTCT -ACGGAAGAAGGTTTGGAGTGCACT -ACGGAAGAAGGTTTGGAGCTGACT -ACGGAAGAAGGTTTGGAGCAACCT -ACGGAAGAAGGTTTGGAGGCTACT -ACGGAAGAAGGTTTGGAGGGATCT -ACGGAAGAAGGTTTGGAGAAGGCT -ACGGAAGAAGGTTTGGAGTCAACC -ACGGAAGAAGGTTTGGAGTGTTCC -ACGGAAGAAGGTTTGGAGATTCCC -ACGGAAGAAGGTTTGGAGTTCTCG -ACGGAAGAAGGTTTGGAGTAGACG -ACGGAAGAAGGTTTGGAGGTAACG -ACGGAAGAAGGTTTGGAGACTTCG -ACGGAAGAAGGTTTGGAGTACGCA -ACGGAAGAAGGTTTGGAGCTTGCA -ACGGAAGAAGGTTTGGAGCGAACA -ACGGAAGAAGGTTTGGAGCAGTCA -ACGGAAGAAGGTTTGGAGGATCCA -ACGGAAGAAGGTTTGGAGACGACA -ACGGAAGAAGGTTTGGAGAGCTCA -ACGGAAGAAGGTTTGGAGTCACGT -ACGGAAGAAGGTTTGGAGCGTAGT -ACGGAAGAAGGTTTGGAGGTCAGT -ACGGAAGAAGGTTTGGAGGAAGGT -ACGGAAGAAGGTTTGGAGAACCGT -ACGGAAGAAGGTTTGGAGTTGTGC -ACGGAAGAAGGTTTGGAGCTAAGC -ACGGAAGAAGGTTTGGAGACTAGC -ACGGAAGAAGGTTTGGAGAGATGC -ACGGAAGAAGGTTTGGAGTGAAGG -ACGGAAGAAGGTTTGGAGCAATGG -ACGGAAGAAGGTTTGGAGATGAGG -ACGGAAGAAGGTTTGGAGAATGGG -ACGGAAGAAGGTTTGGAGTCCTGA -ACGGAAGAAGGTTTGGAGTAGCGA -ACGGAAGAAGGTTTGGAGCACAGA -ACGGAAGAAGGTTTGGAGGCAAGA -ACGGAAGAAGGTTTGGAGGGTTGA -ACGGAAGAAGGTTTGGAGTCCGAT -ACGGAAGAAGGTTTGGAGTGGCAT -ACGGAAGAAGGTTTGGAGCGAGAT -ACGGAAGAAGGTTTGGAGTACCAC -ACGGAAGAAGGTTTGGAGCAGAAC -ACGGAAGAAGGTTTGGAGGTCTAC -ACGGAAGAAGGTTTGGAGACGTAC -ACGGAAGAAGGTTTGGAGAGTGAC -ACGGAAGAAGGTTTGGAGCTGTAG -ACGGAAGAAGGTTTGGAGCCTAAG -ACGGAAGAAGGTTTGGAGGTTCAG -ACGGAAGAAGGTTTGGAGGCATAG -ACGGAAGAAGGTTTGGAGGACAAG -ACGGAAGAAGGTTTGGAGAAGCAG -ACGGAAGAAGGTTTGGAGCGTCAA -ACGGAAGAAGGTTTGGAGGCTGAA -ACGGAAGAAGGTTTGGAGAGTACG -ACGGAAGAAGGTTTGGAGATCCGA -ACGGAAGAAGGTTTGGAGATGGGA -ACGGAAGAAGGTTTGGAGGTGCAA -ACGGAAGAAGGTTTGGAGGAGGAA -ACGGAAGAAGGTTTGGAGCAGGTA -ACGGAAGAAGGTTTGGAGGACTCT -ACGGAAGAAGGTTTGGAGAGTCCT -ACGGAAGAAGGTTTGGAGTAAGCC -ACGGAAGAAGGTTTGGAGATAGCC -ACGGAAGAAGGTTTGGAGTAACCG -ACGGAAGAAGGTTTGGAGATGCCA -ACGGAAGAAGGTCTGAGAGGAAAC -ACGGAAGAAGGTCTGAGAAACACC -ACGGAAGAAGGTCTGAGAATCGAG -ACGGAAGAAGGTCTGAGACTCCTT -ACGGAAGAAGGTCTGAGACCTGTT -ACGGAAGAAGGTCTGAGACGGTTT -ACGGAAGAAGGTCTGAGAGTGGTT -ACGGAAGAAGGTCTGAGAGCCTTT -ACGGAAGAAGGTCTGAGAGGTCTT -ACGGAAGAAGGTCTGAGAACGCTT -ACGGAAGAAGGTCTGAGAAGCGTT -ACGGAAGAAGGTCTGAGATTCGTC -ACGGAAGAAGGTCTGAGATCTCTC -ACGGAAGAAGGTCTGAGATGGATC -ACGGAAGAAGGTCTGAGACACTTC -ACGGAAGAAGGTCTGAGAGTACTC -ACGGAAGAAGGTCTGAGAGATGTC -ACGGAAGAAGGTCTGAGAACAGTC -ACGGAAGAAGGTCTGAGATTGCTG -ACGGAAGAAGGTCTGAGATCCATG -ACGGAAGAAGGTCTGAGATGTGTG -ACGGAAGAAGGTCTGAGACTAGTG -ACGGAAGAAGGTCTGAGACATCTG -ACGGAAGAAGGTCTGAGAGAGTTG -ACGGAAGAAGGTCTGAGAAGACTG -ACGGAAGAAGGTCTGAGATCGGTA -ACGGAAGAAGGTCTGAGATGCCTA -ACGGAAGAAGGTCTGAGACCACTA -ACGGAAGAAGGTCTGAGAGGAGTA -ACGGAAGAAGGTCTGAGATCGTCT -ACGGAAGAAGGTCTGAGATGCACT -ACGGAAGAAGGTCTGAGACTGACT -ACGGAAGAAGGTCTGAGACAACCT -ACGGAAGAAGGTCTGAGAGCTACT -ACGGAAGAAGGTCTGAGAGGATCT -ACGGAAGAAGGTCTGAGAAAGGCT -ACGGAAGAAGGTCTGAGATCAACC -ACGGAAGAAGGTCTGAGATGTTCC -ACGGAAGAAGGTCTGAGAATTCCC -ACGGAAGAAGGTCTGAGATTCTCG -ACGGAAGAAGGTCTGAGATAGACG -ACGGAAGAAGGTCTGAGAGTAACG -ACGGAAGAAGGTCTGAGAACTTCG -ACGGAAGAAGGTCTGAGATACGCA -ACGGAAGAAGGTCTGAGACTTGCA -ACGGAAGAAGGTCTGAGACGAACA -ACGGAAGAAGGTCTGAGACAGTCA -ACGGAAGAAGGTCTGAGAGATCCA -ACGGAAGAAGGTCTGAGAACGACA -ACGGAAGAAGGTCTGAGAAGCTCA -ACGGAAGAAGGTCTGAGATCACGT -ACGGAAGAAGGTCTGAGACGTAGT -ACGGAAGAAGGTCTGAGAGTCAGT -ACGGAAGAAGGTCTGAGAGAAGGT -ACGGAAGAAGGTCTGAGAAACCGT -ACGGAAGAAGGTCTGAGATTGTGC -ACGGAAGAAGGTCTGAGACTAAGC -ACGGAAGAAGGTCTGAGAACTAGC -ACGGAAGAAGGTCTGAGAAGATGC -ACGGAAGAAGGTCTGAGATGAAGG -ACGGAAGAAGGTCTGAGACAATGG -ACGGAAGAAGGTCTGAGAATGAGG -ACGGAAGAAGGTCTGAGAAATGGG -ACGGAAGAAGGTCTGAGATCCTGA -ACGGAAGAAGGTCTGAGATAGCGA -ACGGAAGAAGGTCTGAGACACAGA -ACGGAAGAAGGTCTGAGAGCAAGA -ACGGAAGAAGGTCTGAGAGGTTGA -ACGGAAGAAGGTCTGAGATCCGAT -ACGGAAGAAGGTCTGAGATGGCAT -ACGGAAGAAGGTCTGAGACGAGAT -ACGGAAGAAGGTCTGAGATACCAC -ACGGAAGAAGGTCTGAGACAGAAC -ACGGAAGAAGGTCTGAGAGTCTAC -ACGGAAGAAGGTCTGAGAACGTAC -ACGGAAGAAGGTCTGAGAAGTGAC -ACGGAAGAAGGTCTGAGACTGTAG -ACGGAAGAAGGTCTGAGACCTAAG -ACGGAAGAAGGTCTGAGAGTTCAG -ACGGAAGAAGGTCTGAGAGCATAG -ACGGAAGAAGGTCTGAGAGACAAG -ACGGAAGAAGGTCTGAGAAAGCAG -ACGGAAGAAGGTCTGAGACGTCAA -ACGGAAGAAGGTCTGAGAGCTGAA -ACGGAAGAAGGTCTGAGAAGTACG -ACGGAAGAAGGTCTGAGAATCCGA -ACGGAAGAAGGTCTGAGAATGGGA -ACGGAAGAAGGTCTGAGAGTGCAA -ACGGAAGAAGGTCTGAGAGAGGAA -ACGGAAGAAGGTCTGAGACAGGTA -ACGGAAGAAGGTCTGAGAGACTCT -ACGGAAGAAGGTCTGAGAAGTCCT -ACGGAAGAAGGTCTGAGATAAGCC -ACGGAAGAAGGTCTGAGAATAGCC -ACGGAAGAAGGTCTGAGATAACCG -ACGGAAGAAGGTCTGAGAATGCCA -ACGGAAGAAGGTGTATCGGGAAAC -ACGGAAGAAGGTGTATCGAACACC -ACGGAAGAAGGTGTATCGATCGAG -ACGGAAGAAGGTGTATCGCTCCTT -ACGGAAGAAGGTGTATCGCCTGTT -ACGGAAGAAGGTGTATCGCGGTTT -ACGGAAGAAGGTGTATCGGTGGTT -ACGGAAGAAGGTGTATCGGCCTTT -ACGGAAGAAGGTGTATCGGGTCTT -ACGGAAGAAGGTGTATCGACGCTT -ACGGAAGAAGGTGTATCGAGCGTT -ACGGAAGAAGGTGTATCGTTCGTC -ACGGAAGAAGGTGTATCGTCTCTC -ACGGAAGAAGGTGTATCGTGGATC -ACGGAAGAAGGTGTATCGCACTTC -ACGGAAGAAGGTGTATCGGTACTC -ACGGAAGAAGGTGTATCGGATGTC -ACGGAAGAAGGTGTATCGACAGTC -ACGGAAGAAGGTGTATCGTTGCTG -ACGGAAGAAGGTGTATCGTCCATG -ACGGAAGAAGGTGTATCGTGTGTG -ACGGAAGAAGGTGTATCGCTAGTG -ACGGAAGAAGGTGTATCGCATCTG -ACGGAAGAAGGTGTATCGGAGTTG -ACGGAAGAAGGTGTATCGAGACTG -ACGGAAGAAGGTGTATCGTCGGTA -ACGGAAGAAGGTGTATCGTGCCTA -ACGGAAGAAGGTGTATCGCCACTA -ACGGAAGAAGGTGTATCGGGAGTA -ACGGAAGAAGGTGTATCGTCGTCT -ACGGAAGAAGGTGTATCGTGCACT -ACGGAAGAAGGTGTATCGCTGACT -ACGGAAGAAGGTGTATCGCAACCT -ACGGAAGAAGGTGTATCGGCTACT -ACGGAAGAAGGTGTATCGGGATCT -ACGGAAGAAGGTGTATCGAAGGCT -ACGGAAGAAGGTGTATCGTCAACC -ACGGAAGAAGGTGTATCGTGTTCC -ACGGAAGAAGGTGTATCGATTCCC -ACGGAAGAAGGTGTATCGTTCTCG -ACGGAAGAAGGTGTATCGTAGACG -ACGGAAGAAGGTGTATCGGTAACG -ACGGAAGAAGGTGTATCGACTTCG -ACGGAAGAAGGTGTATCGTACGCA -ACGGAAGAAGGTGTATCGCTTGCA -ACGGAAGAAGGTGTATCGCGAACA -ACGGAAGAAGGTGTATCGCAGTCA -ACGGAAGAAGGTGTATCGGATCCA -ACGGAAGAAGGTGTATCGACGACA -ACGGAAGAAGGTGTATCGAGCTCA -ACGGAAGAAGGTGTATCGTCACGT -ACGGAAGAAGGTGTATCGCGTAGT -ACGGAAGAAGGTGTATCGGTCAGT -ACGGAAGAAGGTGTATCGGAAGGT -ACGGAAGAAGGTGTATCGAACCGT -ACGGAAGAAGGTGTATCGTTGTGC -ACGGAAGAAGGTGTATCGCTAAGC -ACGGAAGAAGGTGTATCGACTAGC -ACGGAAGAAGGTGTATCGAGATGC -ACGGAAGAAGGTGTATCGTGAAGG -ACGGAAGAAGGTGTATCGCAATGG -ACGGAAGAAGGTGTATCGATGAGG -ACGGAAGAAGGTGTATCGAATGGG -ACGGAAGAAGGTGTATCGTCCTGA -ACGGAAGAAGGTGTATCGTAGCGA -ACGGAAGAAGGTGTATCGCACAGA -ACGGAAGAAGGTGTATCGGCAAGA -ACGGAAGAAGGTGTATCGGGTTGA -ACGGAAGAAGGTGTATCGTCCGAT -ACGGAAGAAGGTGTATCGTGGCAT -ACGGAAGAAGGTGTATCGCGAGAT -ACGGAAGAAGGTGTATCGTACCAC -ACGGAAGAAGGTGTATCGCAGAAC -ACGGAAGAAGGTGTATCGGTCTAC -ACGGAAGAAGGTGTATCGACGTAC -ACGGAAGAAGGTGTATCGAGTGAC -ACGGAAGAAGGTGTATCGCTGTAG -ACGGAAGAAGGTGTATCGCCTAAG -ACGGAAGAAGGTGTATCGGTTCAG -ACGGAAGAAGGTGTATCGGCATAG -ACGGAAGAAGGTGTATCGGACAAG -ACGGAAGAAGGTGTATCGAAGCAG -ACGGAAGAAGGTGTATCGCGTCAA -ACGGAAGAAGGTGTATCGGCTGAA -ACGGAAGAAGGTGTATCGAGTACG -ACGGAAGAAGGTGTATCGATCCGA -ACGGAAGAAGGTGTATCGATGGGA -ACGGAAGAAGGTGTATCGGTGCAA -ACGGAAGAAGGTGTATCGGAGGAA -ACGGAAGAAGGTGTATCGCAGGTA -ACGGAAGAAGGTGTATCGGACTCT -ACGGAAGAAGGTGTATCGAGTCCT -ACGGAAGAAGGTGTATCGTAAGCC -ACGGAAGAAGGTGTATCGATAGCC -ACGGAAGAAGGTGTATCGTAACCG -ACGGAAGAAGGTGTATCGATGCCA -ACGGAAGAAGGTCTATGCGGAAAC -ACGGAAGAAGGTCTATGCAACACC -ACGGAAGAAGGTCTATGCATCGAG -ACGGAAGAAGGTCTATGCCTCCTT -ACGGAAGAAGGTCTATGCCCTGTT -ACGGAAGAAGGTCTATGCCGGTTT -ACGGAAGAAGGTCTATGCGTGGTT -ACGGAAGAAGGTCTATGCGCCTTT -ACGGAAGAAGGTCTATGCGGTCTT -ACGGAAGAAGGTCTATGCACGCTT -ACGGAAGAAGGTCTATGCAGCGTT -ACGGAAGAAGGTCTATGCTTCGTC -ACGGAAGAAGGTCTATGCTCTCTC -ACGGAAGAAGGTCTATGCTGGATC -ACGGAAGAAGGTCTATGCCACTTC -ACGGAAGAAGGTCTATGCGTACTC -ACGGAAGAAGGTCTATGCGATGTC -ACGGAAGAAGGTCTATGCACAGTC -ACGGAAGAAGGTCTATGCTTGCTG -ACGGAAGAAGGTCTATGCTCCATG -ACGGAAGAAGGTCTATGCTGTGTG -ACGGAAGAAGGTCTATGCCTAGTG -ACGGAAGAAGGTCTATGCCATCTG -ACGGAAGAAGGTCTATGCGAGTTG -ACGGAAGAAGGTCTATGCAGACTG -ACGGAAGAAGGTCTATGCTCGGTA -ACGGAAGAAGGTCTATGCTGCCTA -ACGGAAGAAGGTCTATGCCCACTA -ACGGAAGAAGGTCTATGCGGAGTA -ACGGAAGAAGGTCTATGCTCGTCT -ACGGAAGAAGGTCTATGCTGCACT -ACGGAAGAAGGTCTATGCCTGACT -ACGGAAGAAGGTCTATGCCAACCT -ACGGAAGAAGGTCTATGCGCTACT -ACGGAAGAAGGTCTATGCGGATCT -ACGGAAGAAGGTCTATGCAAGGCT -ACGGAAGAAGGTCTATGCTCAACC -ACGGAAGAAGGTCTATGCTGTTCC -ACGGAAGAAGGTCTATGCATTCCC -ACGGAAGAAGGTCTATGCTTCTCG -ACGGAAGAAGGTCTATGCTAGACG -ACGGAAGAAGGTCTATGCGTAACG -ACGGAAGAAGGTCTATGCACTTCG -ACGGAAGAAGGTCTATGCTACGCA -ACGGAAGAAGGTCTATGCCTTGCA -ACGGAAGAAGGTCTATGCCGAACA -ACGGAAGAAGGTCTATGCCAGTCA -ACGGAAGAAGGTCTATGCGATCCA -ACGGAAGAAGGTCTATGCACGACA -ACGGAAGAAGGTCTATGCAGCTCA -ACGGAAGAAGGTCTATGCTCACGT -ACGGAAGAAGGTCTATGCCGTAGT -ACGGAAGAAGGTCTATGCGTCAGT -ACGGAAGAAGGTCTATGCGAAGGT -ACGGAAGAAGGTCTATGCAACCGT -ACGGAAGAAGGTCTATGCTTGTGC -ACGGAAGAAGGTCTATGCCTAAGC -ACGGAAGAAGGTCTATGCACTAGC -ACGGAAGAAGGTCTATGCAGATGC -ACGGAAGAAGGTCTATGCTGAAGG -ACGGAAGAAGGTCTATGCCAATGG -ACGGAAGAAGGTCTATGCATGAGG -ACGGAAGAAGGTCTATGCAATGGG -ACGGAAGAAGGTCTATGCTCCTGA -ACGGAAGAAGGTCTATGCTAGCGA -ACGGAAGAAGGTCTATGCCACAGA -ACGGAAGAAGGTCTATGCGCAAGA -ACGGAAGAAGGTCTATGCGGTTGA -ACGGAAGAAGGTCTATGCTCCGAT -ACGGAAGAAGGTCTATGCTGGCAT -ACGGAAGAAGGTCTATGCCGAGAT -ACGGAAGAAGGTCTATGCTACCAC -ACGGAAGAAGGTCTATGCCAGAAC -ACGGAAGAAGGTCTATGCGTCTAC -ACGGAAGAAGGTCTATGCACGTAC -ACGGAAGAAGGTCTATGCAGTGAC -ACGGAAGAAGGTCTATGCCTGTAG -ACGGAAGAAGGTCTATGCCCTAAG -ACGGAAGAAGGTCTATGCGTTCAG -ACGGAAGAAGGTCTATGCGCATAG -ACGGAAGAAGGTCTATGCGACAAG -ACGGAAGAAGGTCTATGCAAGCAG -ACGGAAGAAGGTCTATGCCGTCAA -ACGGAAGAAGGTCTATGCGCTGAA -ACGGAAGAAGGTCTATGCAGTACG -ACGGAAGAAGGTCTATGCATCCGA -ACGGAAGAAGGTCTATGCATGGGA -ACGGAAGAAGGTCTATGCGTGCAA -ACGGAAGAAGGTCTATGCGAGGAA -ACGGAAGAAGGTCTATGCCAGGTA -ACGGAAGAAGGTCTATGCGACTCT -ACGGAAGAAGGTCTATGCAGTCCT -ACGGAAGAAGGTCTATGCTAAGCC -ACGGAAGAAGGTCTATGCATAGCC -ACGGAAGAAGGTCTATGCTAACCG -ACGGAAGAAGGTCTATGCATGCCA -ACGGAAGAAGGTCTACCAGGAAAC -ACGGAAGAAGGTCTACCAAACACC -ACGGAAGAAGGTCTACCAATCGAG -ACGGAAGAAGGTCTACCACTCCTT -ACGGAAGAAGGTCTACCACCTGTT -ACGGAAGAAGGTCTACCACGGTTT -ACGGAAGAAGGTCTACCAGTGGTT -ACGGAAGAAGGTCTACCAGCCTTT -ACGGAAGAAGGTCTACCAGGTCTT -ACGGAAGAAGGTCTACCAACGCTT -ACGGAAGAAGGTCTACCAAGCGTT -ACGGAAGAAGGTCTACCATTCGTC -ACGGAAGAAGGTCTACCATCTCTC -ACGGAAGAAGGTCTACCATGGATC -ACGGAAGAAGGTCTACCACACTTC -ACGGAAGAAGGTCTACCAGTACTC -ACGGAAGAAGGTCTACCAGATGTC -ACGGAAGAAGGTCTACCAACAGTC -ACGGAAGAAGGTCTACCATTGCTG -ACGGAAGAAGGTCTACCATCCATG -ACGGAAGAAGGTCTACCATGTGTG -ACGGAAGAAGGTCTACCACTAGTG -ACGGAAGAAGGTCTACCACATCTG -ACGGAAGAAGGTCTACCAGAGTTG -ACGGAAGAAGGTCTACCAAGACTG -ACGGAAGAAGGTCTACCATCGGTA -ACGGAAGAAGGTCTACCATGCCTA -ACGGAAGAAGGTCTACCACCACTA -ACGGAAGAAGGTCTACCAGGAGTA -ACGGAAGAAGGTCTACCATCGTCT -ACGGAAGAAGGTCTACCATGCACT -ACGGAAGAAGGTCTACCACTGACT -ACGGAAGAAGGTCTACCACAACCT -ACGGAAGAAGGTCTACCAGCTACT -ACGGAAGAAGGTCTACCAGGATCT -ACGGAAGAAGGTCTACCAAAGGCT -ACGGAAGAAGGTCTACCATCAACC -ACGGAAGAAGGTCTACCATGTTCC -ACGGAAGAAGGTCTACCAATTCCC -ACGGAAGAAGGTCTACCATTCTCG -ACGGAAGAAGGTCTACCATAGACG -ACGGAAGAAGGTCTACCAGTAACG -ACGGAAGAAGGTCTACCAACTTCG -ACGGAAGAAGGTCTACCATACGCA -ACGGAAGAAGGTCTACCACTTGCA -ACGGAAGAAGGTCTACCACGAACA -ACGGAAGAAGGTCTACCACAGTCA -ACGGAAGAAGGTCTACCAGATCCA -ACGGAAGAAGGTCTACCAACGACA -ACGGAAGAAGGTCTACCAAGCTCA -ACGGAAGAAGGTCTACCATCACGT -ACGGAAGAAGGTCTACCACGTAGT -ACGGAAGAAGGTCTACCAGTCAGT -ACGGAAGAAGGTCTACCAGAAGGT -ACGGAAGAAGGTCTACCAAACCGT -ACGGAAGAAGGTCTACCATTGTGC -ACGGAAGAAGGTCTACCACTAAGC -ACGGAAGAAGGTCTACCAACTAGC -ACGGAAGAAGGTCTACCAAGATGC -ACGGAAGAAGGTCTACCATGAAGG -ACGGAAGAAGGTCTACCACAATGG -ACGGAAGAAGGTCTACCAATGAGG -ACGGAAGAAGGTCTACCAAATGGG -ACGGAAGAAGGTCTACCATCCTGA -ACGGAAGAAGGTCTACCATAGCGA -ACGGAAGAAGGTCTACCACACAGA -ACGGAAGAAGGTCTACCAGCAAGA -ACGGAAGAAGGTCTACCAGGTTGA -ACGGAAGAAGGTCTACCATCCGAT -ACGGAAGAAGGTCTACCATGGCAT -ACGGAAGAAGGTCTACCACGAGAT -ACGGAAGAAGGTCTACCATACCAC -ACGGAAGAAGGTCTACCACAGAAC -ACGGAAGAAGGTCTACCAGTCTAC -ACGGAAGAAGGTCTACCAACGTAC -ACGGAAGAAGGTCTACCAAGTGAC -ACGGAAGAAGGTCTACCACTGTAG -ACGGAAGAAGGTCTACCACCTAAG -ACGGAAGAAGGTCTACCAGTTCAG -ACGGAAGAAGGTCTACCAGCATAG -ACGGAAGAAGGTCTACCAGACAAG -ACGGAAGAAGGTCTACCAAAGCAG -ACGGAAGAAGGTCTACCACGTCAA -ACGGAAGAAGGTCTACCAGCTGAA -ACGGAAGAAGGTCTACCAAGTACG -ACGGAAGAAGGTCTACCAATCCGA -ACGGAAGAAGGTCTACCAATGGGA -ACGGAAGAAGGTCTACCAGTGCAA -ACGGAAGAAGGTCTACCAGAGGAA -ACGGAAGAAGGTCTACCACAGGTA -ACGGAAGAAGGTCTACCAGACTCT -ACGGAAGAAGGTCTACCAAGTCCT -ACGGAAGAAGGTCTACCATAAGCC -ACGGAAGAAGGTCTACCAATAGCC -ACGGAAGAAGGTCTACCATAACCG -ACGGAAGAAGGTCTACCAATGCCA -ACGGAAGAAGGTGTAGGAGGAAAC -ACGGAAGAAGGTGTAGGAAACACC -ACGGAAGAAGGTGTAGGAATCGAG -ACGGAAGAAGGTGTAGGACTCCTT -ACGGAAGAAGGTGTAGGACCTGTT -ACGGAAGAAGGTGTAGGACGGTTT -ACGGAAGAAGGTGTAGGAGTGGTT -ACGGAAGAAGGTGTAGGAGCCTTT -ACGGAAGAAGGTGTAGGAGGTCTT -ACGGAAGAAGGTGTAGGAACGCTT -ACGGAAGAAGGTGTAGGAAGCGTT -ACGGAAGAAGGTGTAGGATTCGTC -ACGGAAGAAGGTGTAGGATCTCTC -ACGGAAGAAGGTGTAGGATGGATC -ACGGAAGAAGGTGTAGGACACTTC -ACGGAAGAAGGTGTAGGAGTACTC -ACGGAAGAAGGTGTAGGAGATGTC -ACGGAAGAAGGTGTAGGAACAGTC -ACGGAAGAAGGTGTAGGATTGCTG -ACGGAAGAAGGTGTAGGATCCATG -ACGGAAGAAGGTGTAGGATGTGTG -ACGGAAGAAGGTGTAGGACTAGTG -ACGGAAGAAGGTGTAGGACATCTG -ACGGAAGAAGGTGTAGGAGAGTTG -ACGGAAGAAGGTGTAGGAAGACTG -ACGGAAGAAGGTGTAGGATCGGTA -ACGGAAGAAGGTGTAGGATGCCTA -ACGGAAGAAGGTGTAGGACCACTA -ACGGAAGAAGGTGTAGGAGGAGTA -ACGGAAGAAGGTGTAGGATCGTCT -ACGGAAGAAGGTGTAGGATGCACT -ACGGAAGAAGGTGTAGGACTGACT -ACGGAAGAAGGTGTAGGACAACCT -ACGGAAGAAGGTGTAGGAGCTACT -ACGGAAGAAGGTGTAGGAGGATCT -ACGGAAGAAGGTGTAGGAAAGGCT -ACGGAAGAAGGTGTAGGATCAACC -ACGGAAGAAGGTGTAGGATGTTCC -ACGGAAGAAGGTGTAGGAATTCCC -ACGGAAGAAGGTGTAGGATTCTCG -ACGGAAGAAGGTGTAGGATAGACG -ACGGAAGAAGGTGTAGGAGTAACG -ACGGAAGAAGGTGTAGGAACTTCG -ACGGAAGAAGGTGTAGGATACGCA -ACGGAAGAAGGTGTAGGACTTGCA -ACGGAAGAAGGTGTAGGACGAACA -ACGGAAGAAGGTGTAGGACAGTCA -ACGGAAGAAGGTGTAGGAGATCCA -ACGGAAGAAGGTGTAGGAACGACA -ACGGAAGAAGGTGTAGGAAGCTCA -ACGGAAGAAGGTGTAGGATCACGT -ACGGAAGAAGGTGTAGGACGTAGT -ACGGAAGAAGGTGTAGGAGTCAGT -ACGGAAGAAGGTGTAGGAGAAGGT -ACGGAAGAAGGTGTAGGAAACCGT -ACGGAAGAAGGTGTAGGATTGTGC -ACGGAAGAAGGTGTAGGACTAAGC -ACGGAAGAAGGTGTAGGAACTAGC -ACGGAAGAAGGTGTAGGAAGATGC -ACGGAAGAAGGTGTAGGATGAAGG -ACGGAAGAAGGTGTAGGACAATGG -ACGGAAGAAGGTGTAGGAATGAGG -ACGGAAGAAGGTGTAGGAAATGGG -ACGGAAGAAGGTGTAGGATCCTGA -ACGGAAGAAGGTGTAGGATAGCGA -ACGGAAGAAGGTGTAGGACACAGA -ACGGAAGAAGGTGTAGGAGCAAGA -ACGGAAGAAGGTGTAGGAGGTTGA -ACGGAAGAAGGTGTAGGATCCGAT -ACGGAAGAAGGTGTAGGATGGCAT -ACGGAAGAAGGTGTAGGACGAGAT -ACGGAAGAAGGTGTAGGATACCAC -ACGGAAGAAGGTGTAGGACAGAAC -ACGGAAGAAGGTGTAGGAGTCTAC -ACGGAAGAAGGTGTAGGAACGTAC -ACGGAAGAAGGTGTAGGAAGTGAC -ACGGAAGAAGGTGTAGGACTGTAG -ACGGAAGAAGGTGTAGGACCTAAG -ACGGAAGAAGGTGTAGGAGTTCAG -ACGGAAGAAGGTGTAGGAGCATAG -ACGGAAGAAGGTGTAGGAGACAAG -ACGGAAGAAGGTGTAGGAAAGCAG -ACGGAAGAAGGTGTAGGACGTCAA -ACGGAAGAAGGTGTAGGAGCTGAA -ACGGAAGAAGGTGTAGGAAGTACG -ACGGAAGAAGGTGTAGGAATCCGA -ACGGAAGAAGGTGTAGGAATGGGA -ACGGAAGAAGGTGTAGGAGTGCAA -ACGGAAGAAGGTGTAGGAGAGGAA -ACGGAAGAAGGTGTAGGACAGGTA -ACGGAAGAAGGTGTAGGAGACTCT -ACGGAAGAAGGTGTAGGAAGTCCT -ACGGAAGAAGGTGTAGGATAAGCC -ACGGAAGAAGGTGTAGGAATAGCC -ACGGAAGAAGGTGTAGGATAACCG -ACGGAAGAAGGTGTAGGAATGCCA -ACGGAAGAAGGTTCTTCGGGAAAC -ACGGAAGAAGGTTCTTCGAACACC -ACGGAAGAAGGTTCTTCGATCGAG -ACGGAAGAAGGTTCTTCGCTCCTT -ACGGAAGAAGGTTCTTCGCCTGTT -ACGGAAGAAGGTTCTTCGCGGTTT -ACGGAAGAAGGTTCTTCGGTGGTT -ACGGAAGAAGGTTCTTCGGCCTTT -ACGGAAGAAGGTTCTTCGGGTCTT -ACGGAAGAAGGTTCTTCGACGCTT -ACGGAAGAAGGTTCTTCGAGCGTT -ACGGAAGAAGGTTCTTCGTTCGTC -ACGGAAGAAGGTTCTTCGTCTCTC -ACGGAAGAAGGTTCTTCGTGGATC -ACGGAAGAAGGTTCTTCGCACTTC -ACGGAAGAAGGTTCTTCGGTACTC -ACGGAAGAAGGTTCTTCGGATGTC -ACGGAAGAAGGTTCTTCGACAGTC -ACGGAAGAAGGTTCTTCGTTGCTG -ACGGAAGAAGGTTCTTCGTCCATG -ACGGAAGAAGGTTCTTCGTGTGTG -ACGGAAGAAGGTTCTTCGCTAGTG -ACGGAAGAAGGTTCTTCGCATCTG -ACGGAAGAAGGTTCTTCGGAGTTG -ACGGAAGAAGGTTCTTCGAGACTG -ACGGAAGAAGGTTCTTCGTCGGTA -ACGGAAGAAGGTTCTTCGTGCCTA -ACGGAAGAAGGTTCTTCGCCACTA -ACGGAAGAAGGTTCTTCGGGAGTA -ACGGAAGAAGGTTCTTCGTCGTCT -ACGGAAGAAGGTTCTTCGTGCACT -ACGGAAGAAGGTTCTTCGCTGACT -ACGGAAGAAGGTTCTTCGCAACCT -ACGGAAGAAGGTTCTTCGGCTACT -ACGGAAGAAGGTTCTTCGGGATCT -ACGGAAGAAGGTTCTTCGAAGGCT -ACGGAAGAAGGTTCTTCGTCAACC -ACGGAAGAAGGTTCTTCGTGTTCC -ACGGAAGAAGGTTCTTCGATTCCC -ACGGAAGAAGGTTCTTCGTTCTCG -ACGGAAGAAGGTTCTTCGTAGACG -ACGGAAGAAGGTTCTTCGGTAACG -ACGGAAGAAGGTTCTTCGACTTCG -ACGGAAGAAGGTTCTTCGTACGCA -ACGGAAGAAGGTTCTTCGCTTGCA -ACGGAAGAAGGTTCTTCGCGAACA -ACGGAAGAAGGTTCTTCGCAGTCA -ACGGAAGAAGGTTCTTCGGATCCA -ACGGAAGAAGGTTCTTCGACGACA -ACGGAAGAAGGTTCTTCGAGCTCA -ACGGAAGAAGGTTCTTCGTCACGT -ACGGAAGAAGGTTCTTCGCGTAGT -ACGGAAGAAGGTTCTTCGGTCAGT -ACGGAAGAAGGTTCTTCGGAAGGT -ACGGAAGAAGGTTCTTCGAACCGT -ACGGAAGAAGGTTCTTCGTTGTGC -ACGGAAGAAGGTTCTTCGCTAAGC -ACGGAAGAAGGTTCTTCGACTAGC -ACGGAAGAAGGTTCTTCGAGATGC -ACGGAAGAAGGTTCTTCGTGAAGG -ACGGAAGAAGGTTCTTCGCAATGG -ACGGAAGAAGGTTCTTCGATGAGG -ACGGAAGAAGGTTCTTCGAATGGG -ACGGAAGAAGGTTCTTCGTCCTGA -ACGGAAGAAGGTTCTTCGTAGCGA -ACGGAAGAAGGTTCTTCGCACAGA -ACGGAAGAAGGTTCTTCGGCAAGA -ACGGAAGAAGGTTCTTCGGGTTGA -ACGGAAGAAGGTTCTTCGTCCGAT -ACGGAAGAAGGTTCTTCGTGGCAT -ACGGAAGAAGGTTCTTCGCGAGAT -ACGGAAGAAGGTTCTTCGTACCAC -ACGGAAGAAGGTTCTTCGCAGAAC -ACGGAAGAAGGTTCTTCGGTCTAC -ACGGAAGAAGGTTCTTCGACGTAC -ACGGAAGAAGGTTCTTCGAGTGAC -ACGGAAGAAGGTTCTTCGCTGTAG -ACGGAAGAAGGTTCTTCGCCTAAG -ACGGAAGAAGGTTCTTCGGTTCAG -ACGGAAGAAGGTTCTTCGGCATAG -ACGGAAGAAGGTTCTTCGGACAAG -ACGGAAGAAGGTTCTTCGAAGCAG -ACGGAAGAAGGTTCTTCGCGTCAA -ACGGAAGAAGGTTCTTCGGCTGAA -ACGGAAGAAGGTTCTTCGAGTACG -ACGGAAGAAGGTTCTTCGATCCGA -ACGGAAGAAGGTTCTTCGATGGGA -ACGGAAGAAGGTTCTTCGGTGCAA -ACGGAAGAAGGTTCTTCGGAGGAA -ACGGAAGAAGGTTCTTCGCAGGTA -ACGGAAGAAGGTTCTTCGGACTCT -ACGGAAGAAGGTTCTTCGAGTCCT -ACGGAAGAAGGTTCTTCGTAAGCC -ACGGAAGAAGGTTCTTCGATAGCC -ACGGAAGAAGGTTCTTCGTAACCG -ACGGAAGAAGGTTCTTCGATGCCA -ACGGAAGAAGGTACTTGCGGAAAC -ACGGAAGAAGGTACTTGCAACACC -ACGGAAGAAGGTACTTGCATCGAG -ACGGAAGAAGGTACTTGCCTCCTT -ACGGAAGAAGGTACTTGCCCTGTT -ACGGAAGAAGGTACTTGCCGGTTT -ACGGAAGAAGGTACTTGCGTGGTT -ACGGAAGAAGGTACTTGCGCCTTT -ACGGAAGAAGGTACTTGCGGTCTT -ACGGAAGAAGGTACTTGCACGCTT -ACGGAAGAAGGTACTTGCAGCGTT -ACGGAAGAAGGTACTTGCTTCGTC -ACGGAAGAAGGTACTTGCTCTCTC -ACGGAAGAAGGTACTTGCTGGATC -ACGGAAGAAGGTACTTGCCACTTC -ACGGAAGAAGGTACTTGCGTACTC -ACGGAAGAAGGTACTTGCGATGTC -ACGGAAGAAGGTACTTGCACAGTC -ACGGAAGAAGGTACTTGCTTGCTG -ACGGAAGAAGGTACTTGCTCCATG -ACGGAAGAAGGTACTTGCTGTGTG -ACGGAAGAAGGTACTTGCCTAGTG -ACGGAAGAAGGTACTTGCCATCTG -ACGGAAGAAGGTACTTGCGAGTTG -ACGGAAGAAGGTACTTGCAGACTG -ACGGAAGAAGGTACTTGCTCGGTA -ACGGAAGAAGGTACTTGCTGCCTA -ACGGAAGAAGGTACTTGCCCACTA -ACGGAAGAAGGTACTTGCGGAGTA -ACGGAAGAAGGTACTTGCTCGTCT -ACGGAAGAAGGTACTTGCTGCACT -ACGGAAGAAGGTACTTGCCTGACT -ACGGAAGAAGGTACTTGCCAACCT -ACGGAAGAAGGTACTTGCGCTACT -ACGGAAGAAGGTACTTGCGGATCT -ACGGAAGAAGGTACTTGCAAGGCT -ACGGAAGAAGGTACTTGCTCAACC -ACGGAAGAAGGTACTTGCTGTTCC -ACGGAAGAAGGTACTTGCATTCCC -ACGGAAGAAGGTACTTGCTTCTCG -ACGGAAGAAGGTACTTGCTAGACG -ACGGAAGAAGGTACTTGCGTAACG -ACGGAAGAAGGTACTTGCACTTCG -ACGGAAGAAGGTACTTGCTACGCA -ACGGAAGAAGGTACTTGCCTTGCA -ACGGAAGAAGGTACTTGCCGAACA -ACGGAAGAAGGTACTTGCCAGTCA -ACGGAAGAAGGTACTTGCGATCCA -ACGGAAGAAGGTACTTGCACGACA -ACGGAAGAAGGTACTTGCAGCTCA -ACGGAAGAAGGTACTTGCTCACGT -ACGGAAGAAGGTACTTGCCGTAGT -ACGGAAGAAGGTACTTGCGTCAGT -ACGGAAGAAGGTACTTGCGAAGGT -ACGGAAGAAGGTACTTGCAACCGT -ACGGAAGAAGGTACTTGCTTGTGC -ACGGAAGAAGGTACTTGCCTAAGC -ACGGAAGAAGGTACTTGCACTAGC -ACGGAAGAAGGTACTTGCAGATGC -ACGGAAGAAGGTACTTGCTGAAGG -ACGGAAGAAGGTACTTGCCAATGG -ACGGAAGAAGGTACTTGCATGAGG -ACGGAAGAAGGTACTTGCAATGGG -ACGGAAGAAGGTACTTGCTCCTGA -ACGGAAGAAGGTACTTGCTAGCGA -ACGGAAGAAGGTACTTGCCACAGA -ACGGAAGAAGGTACTTGCGCAAGA -ACGGAAGAAGGTACTTGCGGTTGA -ACGGAAGAAGGTACTTGCTCCGAT -ACGGAAGAAGGTACTTGCTGGCAT -ACGGAAGAAGGTACTTGCCGAGAT -ACGGAAGAAGGTACTTGCTACCAC -ACGGAAGAAGGTACTTGCCAGAAC -ACGGAAGAAGGTACTTGCGTCTAC -ACGGAAGAAGGTACTTGCACGTAC -ACGGAAGAAGGTACTTGCAGTGAC -ACGGAAGAAGGTACTTGCCTGTAG -ACGGAAGAAGGTACTTGCCCTAAG -ACGGAAGAAGGTACTTGCGTTCAG -ACGGAAGAAGGTACTTGCGCATAG -ACGGAAGAAGGTACTTGCGACAAG -ACGGAAGAAGGTACTTGCAAGCAG -ACGGAAGAAGGTACTTGCCGTCAA -ACGGAAGAAGGTACTTGCGCTGAA -ACGGAAGAAGGTACTTGCAGTACG -ACGGAAGAAGGTACTTGCATCCGA -ACGGAAGAAGGTACTTGCATGGGA -ACGGAAGAAGGTACTTGCGTGCAA -ACGGAAGAAGGTACTTGCGAGGAA -ACGGAAGAAGGTACTTGCCAGGTA -ACGGAAGAAGGTACTTGCGACTCT -ACGGAAGAAGGTACTTGCAGTCCT -ACGGAAGAAGGTACTTGCTAAGCC -ACGGAAGAAGGTACTTGCATAGCC -ACGGAAGAAGGTACTTGCTAACCG -ACGGAAGAAGGTACTTGCATGCCA -ACGGAAGAAGGTACTCTGGGAAAC -ACGGAAGAAGGTACTCTGAACACC -ACGGAAGAAGGTACTCTGATCGAG -ACGGAAGAAGGTACTCTGCTCCTT -ACGGAAGAAGGTACTCTGCCTGTT -ACGGAAGAAGGTACTCTGCGGTTT -ACGGAAGAAGGTACTCTGGTGGTT -ACGGAAGAAGGTACTCTGGCCTTT -ACGGAAGAAGGTACTCTGGGTCTT -ACGGAAGAAGGTACTCTGACGCTT -ACGGAAGAAGGTACTCTGAGCGTT -ACGGAAGAAGGTACTCTGTTCGTC -ACGGAAGAAGGTACTCTGTCTCTC -ACGGAAGAAGGTACTCTGTGGATC -ACGGAAGAAGGTACTCTGCACTTC -ACGGAAGAAGGTACTCTGGTACTC -ACGGAAGAAGGTACTCTGGATGTC -ACGGAAGAAGGTACTCTGACAGTC -ACGGAAGAAGGTACTCTGTTGCTG -ACGGAAGAAGGTACTCTGTCCATG -ACGGAAGAAGGTACTCTGTGTGTG -ACGGAAGAAGGTACTCTGCTAGTG -ACGGAAGAAGGTACTCTGCATCTG -ACGGAAGAAGGTACTCTGGAGTTG -ACGGAAGAAGGTACTCTGAGACTG -ACGGAAGAAGGTACTCTGTCGGTA -ACGGAAGAAGGTACTCTGTGCCTA -ACGGAAGAAGGTACTCTGCCACTA -ACGGAAGAAGGTACTCTGGGAGTA -ACGGAAGAAGGTACTCTGTCGTCT -ACGGAAGAAGGTACTCTGTGCACT -ACGGAAGAAGGTACTCTGCTGACT -ACGGAAGAAGGTACTCTGCAACCT -ACGGAAGAAGGTACTCTGGCTACT -ACGGAAGAAGGTACTCTGGGATCT -ACGGAAGAAGGTACTCTGAAGGCT -ACGGAAGAAGGTACTCTGTCAACC -ACGGAAGAAGGTACTCTGTGTTCC -ACGGAAGAAGGTACTCTGATTCCC -ACGGAAGAAGGTACTCTGTTCTCG -ACGGAAGAAGGTACTCTGTAGACG -ACGGAAGAAGGTACTCTGGTAACG -ACGGAAGAAGGTACTCTGACTTCG -ACGGAAGAAGGTACTCTGTACGCA -ACGGAAGAAGGTACTCTGCTTGCA -ACGGAAGAAGGTACTCTGCGAACA -ACGGAAGAAGGTACTCTGCAGTCA -ACGGAAGAAGGTACTCTGGATCCA -ACGGAAGAAGGTACTCTGACGACA -ACGGAAGAAGGTACTCTGAGCTCA -ACGGAAGAAGGTACTCTGTCACGT -ACGGAAGAAGGTACTCTGCGTAGT -ACGGAAGAAGGTACTCTGGTCAGT -ACGGAAGAAGGTACTCTGGAAGGT -ACGGAAGAAGGTACTCTGAACCGT -ACGGAAGAAGGTACTCTGTTGTGC -ACGGAAGAAGGTACTCTGCTAAGC -ACGGAAGAAGGTACTCTGACTAGC -ACGGAAGAAGGTACTCTGAGATGC -ACGGAAGAAGGTACTCTGTGAAGG -ACGGAAGAAGGTACTCTGCAATGG -ACGGAAGAAGGTACTCTGATGAGG -ACGGAAGAAGGTACTCTGAATGGG -ACGGAAGAAGGTACTCTGTCCTGA -ACGGAAGAAGGTACTCTGTAGCGA -ACGGAAGAAGGTACTCTGCACAGA -ACGGAAGAAGGTACTCTGGCAAGA -ACGGAAGAAGGTACTCTGGGTTGA -ACGGAAGAAGGTACTCTGTCCGAT -ACGGAAGAAGGTACTCTGTGGCAT -ACGGAAGAAGGTACTCTGCGAGAT -ACGGAAGAAGGTACTCTGTACCAC -ACGGAAGAAGGTACTCTGCAGAAC -ACGGAAGAAGGTACTCTGGTCTAC -ACGGAAGAAGGTACTCTGACGTAC -ACGGAAGAAGGTACTCTGAGTGAC -ACGGAAGAAGGTACTCTGCTGTAG -ACGGAAGAAGGTACTCTGCCTAAG -ACGGAAGAAGGTACTCTGGTTCAG -ACGGAAGAAGGTACTCTGGCATAG -ACGGAAGAAGGTACTCTGGACAAG -ACGGAAGAAGGTACTCTGAAGCAG -ACGGAAGAAGGTACTCTGCGTCAA -ACGGAAGAAGGTACTCTGGCTGAA -ACGGAAGAAGGTACTCTGAGTACG -ACGGAAGAAGGTACTCTGATCCGA -ACGGAAGAAGGTACTCTGATGGGA -ACGGAAGAAGGTACTCTGGTGCAA -ACGGAAGAAGGTACTCTGGAGGAA -ACGGAAGAAGGTACTCTGCAGGTA -ACGGAAGAAGGTACTCTGGACTCT -ACGGAAGAAGGTACTCTGAGTCCT -ACGGAAGAAGGTACTCTGTAAGCC -ACGGAAGAAGGTACTCTGATAGCC -ACGGAAGAAGGTACTCTGTAACCG -ACGGAAGAAGGTACTCTGATGCCA -ACGGAAGAAGGTCCTCAAGGAAAC -ACGGAAGAAGGTCCTCAAAACACC -ACGGAAGAAGGTCCTCAAATCGAG -ACGGAAGAAGGTCCTCAACTCCTT -ACGGAAGAAGGTCCTCAACCTGTT -ACGGAAGAAGGTCCTCAACGGTTT -ACGGAAGAAGGTCCTCAAGTGGTT -ACGGAAGAAGGTCCTCAAGCCTTT -ACGGAAGAAGGTCCTCAAGGTCTT -ACGGAAGAAGGTCCTCAAACGCTT -ACGGAAGAAGGTCCTCAAAGCGTT -ACGGAAGAAGGTCCTCAATTCGTC -ACGGAAGAAGGTCCTCAATCTCTC -ACGGAAGAAGGTCCTCAATGGATC -ACGGAAGAAGGTCCTCAACACTTC -ACGGAAGAAGGTCCTCAAGTACTC -ACGGAAGAAGGTCCTCAAGATGTC -ACGGAAGAAGGTCCTCAAACAGTC -ACGGAAGAAGGTCCTCAATTGCTG -ACGGAAGAAGGTCCTCAATCCATG -ACGGAAGAAGGTCCTCAATGTGTG -ACGGAAGAAGGTCCTCAACTAGTG -ACGGAAGAAGGTCCTCAACATCTG -ACGGAAGAAGGTCCTCAAGAGTTG -ACGGAAGAAGGTCCTCAAAGACTG -ACGGAAGAAGGTCCTCAATCGGTA -ACGGAAGAAGGTCCTCAATGCCTA -ACGGAAGAAGGTCCTCAACCACTA -ACGGAAGAAGGTCCTCAAGGAGTA -ACGGAAGAAGGTCCTCAATCGTCT -ACGGAAGAAGGTCCTCAATGCACT -ACGGAAGAAGGTCCTCAACTGACT -ACGGAAGAAGGTCCTCAACAACCT -ACGGAAGAAGGTCCTCAAGCTACT -ACGGAAGAAGGTCCTCAAGGATCT -ACGGAAGAAGGTCCTCAAAAGGCT -ACGGAAGAAGGTCCTCAATCAACC -ACGGAAGAAGGTCCTCAATGTTCC -ACGGAAGAAGGTCCTCAAATTCCC -ACGGAAGAAGGTCCTCAATTCTCG -ACGGAAGAAGGTCCTCAATAGACG -ACGGAAGAAGGTCCTCAAGTAACG -ACGGAAGAAGGTCCTCAAACTTCG -ACGGAAGAAGGTCCTCAATACGCA -ACGGAAGAAGGTCCTCAACTTGCA -ACGGAAGAAGGTCCTCAACGAACA -ACGGAAGAAGGTCCTCAACAGTCA -ACGGAAGAAGGTCCTCAAGATCCA -ACGGAAGAAGGTCCTCAAACGACA -ACGGAAGAAGGTCCTCAAAGCTCA -ACGGAAGAAGGTCCTCAATCACGT -ACGGAAGAAGGTCCTCAACGTAGT -ACGGAAGAAGGTCCTCAAGTCAGT -ACGGAAGAAGGTCCTCAAGAAGGT -ACGGAAGAAGGTCCTCAAAACCGT -ACGGAAGAAGGTCCTCAATTGTGC -ACGGAAGAAGGTCCTCAACTAAGC -ACGGAAGAAGGTCCTCAAACTAGC -ACGGAAGAAGGTCCTCAAAGATGC -ACGGAAGAAGGTCCTCAATGAAGG -ACGGAAGAAGGTCCTCAACAATGG -ACGGAAGAAGGTCCTCAAATGAGG -ACGGAAGAAGGTCCTCAAAATGGG -ACGGAAGAAGGTCCTCAATCCTGA -ACGGAAGAAGGTCCTCAATAGCGA -ACGGAAGAAGGTCCTCAACACAGA -ACGGAAGAAGGTCCTCAAGCAAGA -ACGGAAGAAGGTCCTCAAGGTTGA -ACGGAAGAAGGTCCTCAATCCGAT -ACGGAAGAAGGTCCTCAATGGCAT -ACGGAAGAAGGTCCTCAACGAGAT -ACGGAAGAAGGTCCTCAATACCAC -ACGGAAGAAGGTCCTCAACAGAAC -ACGGAAGAAGGTCCTCAAGTCTAC -ACGGAAGAAGGTCCTCAAACGTAC -ACGGAAGAAGGTCCTCAAAGTGAC -ACGGAAGAAGGTCCTCAACTGTAG -ACGGAAGAAGGTCCTCAACCTAAG -ACGGAAGAAGGTCCTCAAGTTCAG -ACGGAAGAAGGTCCTCAAGCATAG -ACGGAAGAAGGTCCTCAAGACAAG -ACGGAAGAAGGTCCTCAAAAGCAG -ACGGAAGAAGGTCCTCAACGTCAA -ACGGAAGAAGGTCCTCAAGCTGAA -ACGGAAGAAGGTCCTCAAAGTACG -ACGGAAGAAGGTCCTCAAATCCGA -ACGGAAGAAGGTCCTCAAATGGGA -ACGGAAGAAGGTCCTCAAGTGCAA -ACGGAAGAAGGTCCTCAAGAGGAA -ACGGAAGAAGGTCCTCAACAGGTA -ACGGAAGAAGGTCCTCAAGACTCT -ACGGAAGAAGGTCCTCAAAGTCCT -ACGGAAGAAGGTCCTCAATAAGCC -ACGGAAGAAGGTCCTCAAATAGCC -ACGGAAGAAGGTCCTCAATAACCG -ACGGAAGAAGGTCCTCAAATGCCA -ACGGAAGAAGGTACTGCTGGAAAC -ACGGAAGAAGGTACTGCTAACACC -ACGGAAGAAGGTACTGCTATCGAG -ACGGAAGAAGGTACTGCTCTCCTT -ACGGAAGAAGGTACTGCTCCTGTT -ACGGAAGAAGGTACTGCTCGGTTT -ACGGAAGAAGGTACTGCTGTGGTT -ACGGAAGAAGGTACTGCTGCCTTT -ACGGAAGAAGGTACTGCTGGTCTT -ACGGAAGAAGGTACTGCTACGCTT -ACGGAAGAAGGTACTGCTAGCGTT -ACGGAAGAAGGTACTGCTTTCGTC -ACGGAAGAAGGTACTGCTTCTCTC -ACGGAAGAAGGTACTGCTTGGATC -ACGGAAGAAGGTACTGCTCACTTC -ACGGAAGAAGGTACTGCTGTACTC -ACGGAAGAAGGTACTGCTGATGTC -ACGGAAGAAGGTACTGCTACAGTC -ACGGAAGAAGGTACTGCTTTGCTG -ACGGAAGAAGGTACTGCTTCCATG -ACGGAAGAAGGTACTGCTTGTGTG -ACGGAAGAAGGTACTGCTCTAGTG -ACGGAAGAAGGTACTGCTCATCTG -ACGGAAGAAGGTACTGCTGAGTTG -ACGGAAGAAGGTACTGCTAGACTG -ACGGAAGAAGGTACTGCTTCGGTA -ACGGAAGAAGGTACTGCTTGCCTA -ACGGAAGAAGGTACTGCTCCACTA -ACGGAAGAAGGTACTGCTGGAGTA -ACGGAAGAAGGTACTGCTTCGTCT -ACGGAAGAAGGTACTGCTTGCACT -ACGGAAGAAGGTACTGCTCTGACT -ACGGAAGAAGGTACTGCTCAACCT -ACGGAAGAAGGTACTGCTGCTACT -ACGGAAGAAGGTACTGCTGGATCT -ACGGAAGAAGGTACTGCTAAGGCT -ACGGAAGAAGGTACTGCTTCAACC -ACGGAAGAAGGTACTGCTTGTTCC -ACGGAAGAAGGTACTGCTATTCCC -ACGGAAGAAGGTACTGCTTTCTCG -ACGGAAGAAGGTACTGCTTAGACG -ACGGAAGAAGGTACTGCTGTAACG -ACGGAAGAAGGTACTGCTACTTCG -ACGGAAGAAGGTACTGCTTACGCA -ACGGAAGAAGGTACTGCTCTTGCA -ACGGAAGAAGGTACTGCTCGAACA -ACGGAAGAAGGTACTGCTCAGTCA -ACGGAAGAAGGTACTGCTGATCCA -ACGGAAGAAGGTACTGCTACGACA -ACGGAAGAAGGTACTGCTAGCTCA -ACGGAAGAAGGTACTGCTTCACGT -ACGGAAGAAGGTACTGCTCGTAGT -ACGGAAGAAGGTACTGCTGTCAGT -ACGGAAGAAGGTACTGCTGAAGGT -ACGGAAGAAGGTACTGCTAACCGT -ACGGAAGAAGGTACTGCTTTGTGC -ACGGAAGAAGGTACTGCTCTAAGC -ACGGAAGAAGGTACTGCTACTAGC -ACGGAAGAAGGTACTGCTAGATGC -ACGGAAGAAGGTACTGCTTGAAGG -ACGGAAGAAGGTACTGCTCAATGG -ACGGAAGAAGGTACTGCTATGAGG -ACGGAAGAAGGTACTGCTAATGGG -ACGGAAGAAGGTACTGCTTCCTGA -ACGGAAGAAGGTACTGCTTAGCGA -ACGGAAGAAGGTACTGCTCACAGA -ACGGAAGAAGGTACTGCTGCAAGA -ACGGAAGAAGGTACTGCTGGTTGA -ACGGAAGAAGGTACTGCTTCCGAT -ACGGAAGAAGGTACTGCTTGGCAT -ACGGAAGAAGGTACTGCTCGAGAT -ACGGAAGAAGGTACTGCTTACCAC -ACGGAAGAAGGTACTGCTCAGAAC -ACGGAAGAAGGTACTGCTGTCTAC -ACGGAAGAAGGTACTGCTACGTAC -ACGGAAGAAGGTACTGCTAGTGAC -ACGGAAGAAGGTACTGCTCTGTAG -ACGGAAGAAGGTACTGCTCCTAAG -ACGGAAGAAGGTACTGCTGTTCAG -ACGGAAGAAGGTACTGCTGCATAG -ACGGAAGAAGGTACTGCTGACAAG -ACGGAAGAAGGTACTGCTAAGCAG -ACGGAAGAAGGTACTGCTCGTCAA -ACGGAAGAAGGTACTGCTGCTGAA -ACGGAAGAAGGTACTGCTAGTACG -ACGGAAGAAGGTACTGCTATCCGA -ACGGAAGAAGGTACTGCTATGGGA -ACGGAAGAAGGTACTGCTGTGCAA -ACGGAAGAAGGTACTGCTGAGGAA -ACGGAAGAAGGTACTGCTCAGGTA -ACGGAAGAAGGTACTGCTGACTCT -ACGGAAGAAGGTACTGCTAGTCCT -ACGGAAGAAGGTACTGCTTAAGCC -ACGGAAGAAGGTACTGCTATAGCC -ACGGAAGAAGGTACTGCTTAACCG -ACGGAAGAAGGTACTGCTATGCCA -ACGGAAGAAGGTTCTGGAGGAAAC -ACGGAAGAAGGTTCTGGAAACACC -ACGGAAGAAGGTTCTGGAATCGAG -ACGGAAGAAGGTTCTGGACTCCTT -ACGGAAGAAGGTTCTGGACCTGTT -ACGGAAGAAGGTTCTGGACGGTTT -ACGGAAGAAGGTTCTGGAGTGGTT -ACGGAAGAAGGTTCTGGAGCCTTT -ACGGAAGAAGGTTCTGGAGGTCTT -ACGGAAGAAGGTTCTGGAACGCTT -ACGGAAGAAGGTTCTGGAAGCGTT -ACGGAAGAAGGTTCTGGATTCGTC -ACGGAAGAAGGTTCTGGATCTCTC -ACGGAAGAAGGTTCTGGATGGATC -ACGGAAGAAGGTTCTGGACACTTC -ACGGAAGAAGGTTCTGGAGTACTC -ACGGAAGAAGGTTCTGGAGATGTC -ACGGAAGAAGGTTCTGGAACAGTC -ACGGAAGAAGGTTCTGGATTGCTG -ACGGAAGAAGGTTCTGGATCCATG -ACGGAAGAAGGTTCTGGATGTGTG -ACGGAAGAAGGTTCTGGACTAGTG -ACGGAAGAAGGTTCTGGACATCTG -ACGGAAGAAGGTTCTGGAGAGTTG -ACGGAAGAAGGTTCTGGAAGACTG -ACGGAAGAAGGTTCTGGATCGGTA -ACGGAAGAAGGTTCTGGATGCCTA -ACGGAAGAAGGTTCTGGACCACTA -ACGGAAGAAGGTTCTGGAGGAGTA -ACGGAAGAAGGTTCTGGATCGTCT -ACGGAAGAAGGTTCTGGATGCACT -ACGGAAGAAGGTTCTGGACTGACT -ACGGAAGAAGGTTCTGGACAACCT -ACGGAAGAAGGTTCTGGAGCTACT -ACGGAAGAAGGTTCTGGAGGATCT -ACGGAAGAAGGTTCTGGAAAGGCT -ACGGAAGAAGGTTCTGGATCAACC -ACGGAAGAAGGTTCTGGATGTTCC -ACGGAAGAAGGTTCTGGAATTCCC -ACGGAAGAAGGTTCTGGATTCTCG -ACGGAAGAAGGTTCTGGATAGACG -ACGGAAGAAGGTTCTGGAGTAACG -ACGGAAGAAGGTTCTGGAACTTCG -ACGGAAGAAGGTTCTGGATACGCA -ACGGAAGAAGGTTCTGGACTTGCA -ACGGAAGAAGGTTCTGGACGAACA -ACGGAAGAAGGTTCTGGACAGTCA -ACGGAAGAAGGTTCTGGAGATCCA -ACGGAAGAAGGTTCTGGAACGACA -ACGGAAGAAGGTTCTGGAAGCTCA -ACGGAAGAAGGTTCTGGATCACGT -ACGGAAGAAGGTTCTGGACGTAGT -ACGGAAGAAGGTTCTGGAGTCAGT -ACGGAAGAAGGTTCTGGAGAAGGT -ACGGAAGAAGGTTCTGGAAACCGT -ACGGAAGAAGGTTCTGGATTGTGC -ACGGAAGAAGGTTCTGGACTAAGC -ACGGAAGAAGGTTCTGGAACTAGC -ACGGAAGAAGGTTCTGGAAGATGC -ACGGAAGAAGGTTCTGGATGAAGG -ACGGAAGAAGGTTCTGGACAATGG -ACGGAAGAAGGTTCTGGAATGAGG -ACGGAAGAAGGTTCTGGAAATGGG -ACGGAAGAAGGTTCTGGATCCTGA -ACGGAAGAAGGTTCTGGATAGCGA -ACGGAAGAAGGTTCTGGACACAGA -ACGGAAGAAGGTTCTGGAGCAAGA -ACGGAAGAAGGTTCTGGAGGTTGA -ACGGAAGAAGGTTCTGGATCCGAT -ACGGAAGAAGGTTCTGGATGGCAT -ACGGAAGAAGGTTCTGGACGAGAT -ACGGAAGAAGGTTCTGGATACCAC -ACGGAAGAAGGTTCTGGACAGAAC -ACGGAAGAAGGTTCTGGAGTCTAC -ACGGAAGAAGGTTCTGGAACGTAC -ACGGAAGAAGGTTCTGGAAGTGAC -ACGGAAGAAGGTTCTGGACTGTAG -ACGGAAGAAGGTTCTGGACCTAAG -ACGGAAGAAGGTTCTGGAGTTCAG -ACGGAAGAAGGTTCTGGAGCATAG -ACGGAAGAAGGTTCTGGAGACAAG -ACGGAAGAAGGTTCTGGAAAGCAG -ACGGAAGAAGGTTCTGGACGTCAA -ACGGAAGAAGGTTCTGGAGCTGAA -ACGGAAGAAGGTTCTGGAAGTACG -ACGGAAGAAGGTTCTGGAATCCGA -ACGGAAGAAGGTTCTGGAATGGGA -ACGGAAGAAGGTTCTGGAGTGCAA -ACGGAAGAAGGTTCTGGAGAGGAA -ACGGAAGAAGGTTCTGGACAGGTA -ACGGAAGAAGGTTCTGGAGACTCT -ACGGAAGAAGGTTCTGGAAGTCCT -ACGGAAGAAGGTTCTGGATAAGCC -ACGGAAGAAGGTTCTGGAATAGCC -ACGGAAGAAGGTTCTGGATAACCG -ACGGAAGAAGGTTCTGGAATGCCA -ACGGAAGAAGGTGCTAAGGGAAAC -ACGGAAGAAGGTGCTAAGAACACC -ACGGAAGAAGGTGCTAAGATCGAG -ACGGAAGAAGGTGCTAAGCTCCTT -ACGGAAGAAGGTGCTAAGCCTGTT -ACGGAAGAAGGTGCTAAGCGGTTT -ACGGAAGAAGGTGCTAAGGTGGTT -ACGGAAGAAGGTGCTAAGGCCTTT -ACGGAAGAAGGTGCTAAGGGTCTT -ACGGAAGAAGGTGCTAAGACGCTT -ACGGAAGAAGGTGCTAAGAGCGTT -ACGGAAGAAGGTGCTAAGTTCGTC -ACGGAAGAAGGTGCTAAGTCTCTC -ACGGAAGAAGGTGCTAAGTGGATC -ACGGAAGAAGGTGCTAAGCACTTC -ACGGAAGAAGGTGCTAAGGTACTC -ACGGAAGAAGGTGCTAAGGATGTC -ACGGAAGAAGGTGCTAAGACAGTC -ACGGAAGAAGGTGCTAAGTTGCTG -ACGGAAGAAGGTGCTAAGTCCATG -ACGGAAGAAGGTGCTAAGTGTGTG -ACGGAAGAAGGTGCTAAGCTAGTG -ACGGAAGAAGGTGCTAAGCATCTG -ACGGAAGAAGGTGCTAAGGAGTTG -ACGGAAGAAGGTGCTAAGAGACTG -ACGGAAGAAGGTGCTAAGTCGGTA -ACGGAAGAAGGTGCTAAGTGCCTA -ACGGAAGAAGGTGCTAAGCCACTA -ACGGAAGAAGGTGCTAAGGGAGTA -ACGGAAGAAGGTGCTAAGTCGTCT -ACGGAAGAAGGTGCTAAGTGCACT -ACGGAAGAAGGTGCTAAGCTGACT -ACGGAAGAAGGTGCTAAGCAACCT -ACGGAAGAAGGTGCTAAGGCTACT -ACGGAAGAAGGTGCTAAGGGATCT -ACGGAAGAAGGTGCTAAGAAGGCT -ACGGAAGAAGGTGCTAAGTCAACC -ACGGAAGAAGGTGCTAAGTGTTCC -ACGGAAGAAGGTGCTAAGATTCCC -ACGGAAGAAGGTGCTAAGTTCTCG -ACGGAAGAAGGTGCTAAGTAGACG -ACGGAAGAAGGTGCTAAGGTAACG -ACGGAAGAAGGTGCTAAGACTTCG -ACGGAAGAAGGTGCTAAGTACGCA -ACGGAAGAAGGTGCTAAGCTTGCA -ACGGAAGAAGGTGCTAAGCGAACA -ACGGAAGAAGGTGCTAAGCAGTCA -ACGGAAGAAGGTGCTAAGGATCCA -ACGGAAGAAGGTGCTAAGACGACA -ACGGAAGAAGGTGCTAAGAGCTCA -ACGGAAGAAGGTGCTAAGTCACGT -ACGGAAGAAGGTGCTAAGCGTAGT -ACGGAAGAAGGTGCTAAGGTCAGT -ACGGAAGAAGGTGCTAAGGAAGGT -ACGGAAGAAGGTGCTAAGAACCGT -ACGGAAGAAGGTGCTAAGTTGTGC -ACGGAAGAAGGTGCTAAGCTAAGC -ACGGAAGAAGGTGCTAAGACTAGC -ACGGAAGAAGGTGCTAAGAGATGC -ACGGAAGAAGGTGCTAAGTGAAGG -ACGGAAGAAGGTGCTAAGCAATGG -ACGGAAGAAGGTGCTAAGATGAGG -ACGGAAGAAGGTGCTAAGAATGGG -ACGGAAGAAGGTGCTAAGTCCTGA -ACGGAAGAAGGTGCTAAGTAGCGA -ACGGAAGAAGGTGCTAAGCACAGA -ACGGAAGAAGGTGCTAAGGCAAGA -ACGGAAGAAGGTGCTAAGGGTTGA -ACGGAAGAAGGTGCTAAGTCCGAT -ACGGAAGAAGGTGCTAAGTGGCAT -ACGGAAGAAGGTGCTAAGCGAGAT -ACGGAAGAAGGTGCTAAGTACCAC -ACGGAAGAAGGTGCTAAGCAGAAC -ACGGAAGAAGGTGCTAAGGTCTAC -ACGGAAGAAGGTGCTAAGACGTAC -ACGGAAGAAGGTGCTAAGAGTGAC -ACGGAAGAAGGTGCTAAGCTGTAG -ACGGAAGAAGGTGCTAAGCCTAAG -ACGGAAGAAGGTGCTAAGGTTCAG -ACGGAAGAAGGTGCTAAGGCATAG -ACGGAAGAAGGTGCTAAGGACAAG -ACGGAAGAAGGTGCTAAGAAGCAG -ACGGAAGAAGGTGCTAAGCGTCAA -ACGGAAGAAGGTGCTAAGGCTGAA -ACGGAAGAAGGTGCTAAGAGTACG -ACGGAAGAAGGTGCTAAGATCCGA -ACGGAAGAAGGTGCTAAGATGGGA -ACGGAAGAAGGTGCTAAGGTGCAA -ACGGAAGAAGGTGCTAAGGAGGAA -ACGGAAGAAGGTGCTAAGCAGGTA -ACGGAAGAAGGTGCTAAGGACTCT -ACGGAAGAAGGTGCTAAGAGTCCT -ACGGAAGAAGGTGCTAAGTAAGCC -ACGGAAGAAGGTGCTAAGATAGCC -ACGGAAGAAGGTGCTAAGTAACCG -ACGGAAGAAGGTGCTAAGATGCCA -ACGGAAGAAGGTACCTCAGGAAAC -ACGGAAGAAGGTACCTCAAACACC -ACGGAAGAAGGTACCTCAATCGAG -ACGGAAGAAGGTACCTCACTCCTT -ACGGAAGAAGGTACCTCACCTGTT -ACGGAAGAAGGTACCTCACGGTTT -ACGGAAGAAGGTACCTCAGTGGTT -ACGGAAGAAGGTACCTCAGCCTTT -ACGGAAGAAGGTACCTCAGGTCTT -ACGGAAGAAGGTACCTCAACGCTT -ACGGAAGAAGGTACCTCAAGCGTT -ACGGAAGAAGGTACCTCATTCGTC -ACGGAAGAAGGTACCTCATCTCTC -ACGGAAGAAGGTACCTCATGGATC -ACGGAAGAAGGTACCTCACACTTC -ACGGAAGAAGGTACCTCAGTACTC -ACGGAAGAAGGTACCTCAGATGTC -ACGGAAGAAGGTACCTCAACAGTC -ACGGAAGAAGGTACCTCATTGCTG -ACGGAAGAAGGTACCTCATCCATG -ACGGAAGAAGGTACCTCATGTGTG -ACGGAAGAAGGTACCTCACTAGTG -ACGGAAGAAGGTACCTCACATCTG -ACGGAAGAAGGTACCTCAGAGTTG -ACGGAAGAAGGTACCTCAAGACTG -ACGGAAGAAGGTACCTCATCGGTA -ACGGAAGAAGGTACCTCATGCCTA -ACGGAAGAAGGTACCTCACCACTA -ACGGAAGAAGGTACCTCAGGAGTA -ACGGAAGAAGGTACCTCATCGTCT -ACGGAAGAAGGTACCTCATGCACT -ACGGAAGAAGGTACCTCACTGACT -ACGGAAGAAGGTACCTCACAACCT -ACGGAAGAAGGTACCTCAGCTACT -ACGGAAGAAGGTACCTCAGGATCT -ACGGAAGAAGGTACCTCAAAGGCT -ACGGAAGAAGGTACCTCATCAACC -ACGGAAGAAGGTACCTCATGTTCC -ACGGAAGAAGGTACCTCAATTCCC -ACGGAAGAAGGTACCTCATTCTCG -ACGGAAGAAGGTACCTCATAGACG -ACGGAAGAAGGTACCTCAGTAACG -ACGGAAGAAGGTACCTCAACTTCG -ACGGAAGAAGGTACCTCATACGCA -ACGGAAGAAGGTACCTCACTTGCA -ACGGAAGAAGGTACCTCACGAACA -ACGGAAGAAGGTACCTCACAGTCA -ACGGAAGAAGGTACCTCAGATCCA -ACGGAAGAAGGTACCTCAACGACA -ACGGAAGAAGGTACCTCAAGCTCA -ACGGAAGAAGGTACCTCATCACGT -ACGGAAGAAGGTACCTCACGTAGT -ACGGAAGAAGGTACCTCAGTCAGT -ACGGAAGAAGGTACCTCAGAAGGT -ACGGAAGAAGGTACCTCAAACCGT -ACGGAAGAAGGTACCTCATTGTGC -ACGGAAGAAGGTACCTCACTAAGC -ACGGAAGAAGGTACCTCAACTAGC -ACGGAAGAAGGTACCTCAAGATGC -ACGGAAGAAGGTACCTCATGAAGG -ACGGAAGAAGGTACCTCACAATGG -ACGGAAGAAGGTACCTCAATGAGG -ACGGAAGAAGGTACCTCAAATGGG -ACGGAAGAAGGTACCTCATCCTGA -ACGGAAGAAGGTACCTCATAGCGA -ACGGAAGAAGGTACCTCACACAGA -ACGGAAGAAGGTACCTCAGCAAGA -ACGGAAGAAGGTACCTCAGGTTGA -ACGGAAGAAGGTACCTCATCCGAT -ACGGAAGAAGGTACCTCATGGCAT -ACGGAAGAAGGTACCTCACGAGAT -ACGGAAGAAGGTACCTCATACCAC -ACGGAAGAAGGTACCTCACAGAAC -ACGGAAGAAGGTACCTCAGTCTAC -ACGGAAGAAGGTACCTCAACGTAC -ACGGAAGAAGGTACCTCAAGTGAC -ACGGAAGAAGGTACCTCACTGTAG -ACGGAAGAAGGTACCTCACCTAAG -ACGGAAGAAGGTACCTCAGTTCAG -ACGGAAGAAGGTACCTCAGCATAG -ACGGAAGAAGGTACCTCAGACAAG -ACGGAAGAAGGTACCTCAAAGCAG -ACGGAAGAAGGTACCTCACGTCAA -ACGGAAGAAGGTACCTCAGCTGAA -ACGGAAGAAGGTACCTCAAGTACG -ACGGAAGAAGGTACCTCAATCCGA -ACGGAAGAAGGTACCTCAATGGGA -ACGGAAGAAGGTACCTCAGTGCAA -ACGGAAGAAGGTACCTCAGAGGAA -ACGGAAGAAGGTACCTCACAGGTA -ACGGAAGAAGGTACCTCAGACTCT -ACGGAAGAAGGTACCTCAAGTCCT -ACGGAAGAAGGTACCTCATAAGCC -ACGGAAGAAGGTACCTCAATAGCC -ACGGAAGAAGGTACCTCATAACCG -ACGGAAGAAGGTACCTCAATGCCA -ACGGAAGAAGGTTCCTGTGGAAAC -ACGGAAGAAGGTTCCTGTAACACC -ACGGAAGAAGGTTCCTGTATCGAG -ACGGAAGAAGGTTCCTGTCTCCTT -ACGGAAGAAGGTTCCTGTCCTGTT -ACGGAAGAAGGTTCCTGTCGGTTT -ACGGAAGAAGGTTCCTGTGTGGTT -ACGGAAGAAGGTTCCTGTGCCTTT -ACGGAAGAAGGTTCCTGTGGTCTT -ACGGAAGAAGGTTCCTGTACGCTT -ACGGAAGAAGGTTCCTGTAGCGTT -ACGGAAGAAGGTTCCTGTTTCGTC -ACGGAAGAAGGTTCCTGTTCTCTC -ACGGAAGAAGGTTCCTGTTGGATC -ACGGAAGAAGGTTCCTGTCACTTC -ACGGAAGAAGGTTCCTGTGTACTC -ACGGAAGAAGGTTCCTGTGATGTC -ACGGAAGAAGGTTCCTGTACAGTC -ACGGAAGAAGGTTCCTGTTTGCTG -ACGGAAGAAGGTTCCTGTTCCATG -ACGGAAGAAGGTTCCTGTTGTGTG -ACGGAAGAAGGTTCCTGTCTAGTG -ACGGAAGAAGGTTCCTGTCATCTG -ACGGAAGAAGGTTCCTGTGAGTTG -ACGGAAGAAGGTTCCTGTAGACTG -ACGGAAGAAGGTTCCTGTTCGGTA -ACGGAAGAAGGTTCCTGTTGCCTA -ACGGAAGAAGGTTCCTGTCCACTA -ACGGAAGAAGGTTCCTGTGGAGTA -ACGGAAGAAGGTTCCTGTTCGTCT -ACGGAAGAAGGTTCCTGTTGCACT -ACGGAAGAAGGTTCCTGTCTGACT -ACGGAAGAAGGTTCCTGTCAACCT -ACGGAAGAAGGTTCCTGTGCTACT -ACGGAAGAAGGTTCCTGTGGATCT -ACGGAAGAAGGTTCCTGTAAGGCT -ACGGAAGAAGGTTCCTGTTCAACC -ACGGAAGAAGGTTCCTGTTGTTCC -ACGGAAGAAGGTTCCTGTATTCCC -ACGGAAGAAGGTTCCTGTTTCTCG -ACGGAAGAAGGTTCCTGTTAGACG -ACGGAAGAAGGTTCCTGTGTAACG -ACGGAAGAAGGTTCCTGTACTTCG -ACGGAAGAAGGTTCCTGTTACGCA -ACGGAAGAAGGTTCCTGTCTTGCA -ACGGAAGAAGGTTCCTGTCGAACA -ACGGAAGAAGGTTCCTGTCAGTCA -ACGGAAGAAGGTTCCTGTGATCCA -ACGGAAGAAGGTTCCTGTACGACA -ACGGAAGAAGGTTCCTGTAGCTCA -ACGGAAGAAGGTTCCTGTTCACGT -ACGGAAGAAGGTTCCTGTCGTAGT -ACGGAAGAAGGTTCCTGTGTCAGT -ACGGAAGAAGGTTCCTGTGAAGGT -ACGGAAGAAGGTTCCTGTAACCGT -ACGGAAGAAGGTTCCTGTTTGTGC -ACGGAAGAAGGTTCCTGTCTAAGC -ACGGAAGAAGGTTCCTGTACTAGC -ACGGAAGAAGGTTCCTGTAGATGC -ACGGAAGAAGGTTCCTGTTGAAGG -ACGGAAGAAGGTTCCTGTCAATGG -ACGGAAGAAGGTTCCTGTATGAGG -ACGGAAGAAGGTTCCTGTAATGGG -ACGGAAGAAGGTTCCTGTTCCTGA -ACGGAAGAAGGTTCCTGTTAGCGA -ACGGAAGAAGGTTCCTGTCACAGA -ACGGAAGAAGGTTCCTGTGCAAGA -ACGGAAGAAGGTTCCTGTGGTTGA -ACGGAAGAAGGTTCCTGTTCCGAT -ACGGAAGAAGGTTCCTGTTGGCAT -ACGGAAGAAGGTTCCTGTCGAGAT -ACGGAAGAAGGTTCCTGTTACCAC -ACGGAAGAAGGTTCCTGTCAGAAC -ACGGAAGAAGGTTCCTGTGTCTAC -ACGGAAGAAGGTTCCTGTACGTAC -ACGGAAGAAGGTTCCTGTAGTGAC -ACGGAAGAAGGTTCCTGTCTGTAG -ACGGAAGAAGGTTCCTGTCCTAAG -ACGGAAGAAGGTTCCTGTGTTCAG -ACGGAAGAAGGTTCCTGTGCATAG -ACGGAAGAAGGTTCCTGTGACAAG -ACGGAAGAAGGTTCCTGTAAGCAG -ACGGAAGAAGGTTCCTGTCGTCAA -ACGGAAGAAGGTTCCTGTGCTGAA -ACGGAAGAAGGTTCCTGTAGTACG -ACGGAAGAAGGTTCCTGTATCCGA -ACGGAAGAAGGTTCCTGTATGGGA -ACGGAAGAAGGTTCCTGTGTGCAA -ACGGAAGAAGGTTCCTGTGAGGAA -ACGGAAGAAGGTTCCTGTCAGGTA -ACGGAAGAAGGTTCCTGTGACTCT -ACGGAAGAAGGTTCCTGTAGTCCT -ACGGAAGAAGGTTCCTGTTAAGCC -ACGGAAGAAGGTTCCTGTATAGCC -ACGGAAGAAGGTTCCTGTTAACCG -ACGGAAGAAGGTTCCTGTATGCCA -ACGGAAGAAGGTCCCATTGGAAAC -ACGGAAGAAGGTCCCATTAACACC -ACGGAAGAAGGTCCCATTATCGAG -ACGGAAGAAGGTCCCATTCTCCTT -ACGGAAGAAGGTCCCATTCCTGTT -ACGGAAGAAGGTCCCATTCGGTTT -ACGGAAGAAGGTCCCATTGTGGTT -ACGGAAGAAGGTCCCATTGCCTTT -ACGGAAGAAGGTCCCATTGGTCTT -ACGGAAGAAGGTCCCATTACGCTT -ACGGAAGAAGGTCCCATTAGCGTT -ACGGAAGAAGGTCCCATTTTCGTC -ACGGAAGAAGGTCCCATTTCTCTC -ACGGAAGAAGGTCCCATTTGGATC -ACGGAAGAAGGTCCCATTCACTTC -ACGGAAGAAGGTCCCATTGTACTC -ACGGAAGAAGGTCCCATTGATGTC -ACGGAAGAAGGTCCCATTACAGTC -ACGGAAGAAGGTCCCATTTTGCTG -ACGGAAGAAGGTCCCATTTCCATG -ACGGAAGAAGGTCCCATTTGTGTG -ACGGAAGAAGGTCCCATTCTAGTG -ACGGAAGAAGGTCCCATTCATCTG -ACGGAAGAAGGTCCCATTGAGTTG -ACGGAAGAAGGTCCCATTAGACTG -ACGGAAGAAGGTCCCATTTCGGTA -ACGGAAGAAGGTCCCATTTGCCTA -ACGGAAGAAGGTCCCATTCCACTA -ACGGAAGAAGGTCCCATTGGAGTA -ACGGAAGAAGGTCCCATTTCGTCT -ACGGAAGAAGGTCCCATTTGCACT -ACGGAAGAAGGTCCCATTCTGACT -ACGGAAGAAGGTCCCATTCAACCT -ACGGAAGAAGGTCCCATTGCTACT -ACGGAAGAAGGTCCCATTGGATCT -ACGGAAGAAGGTCCCATTAAGGCT -ACGGAAGAAGGTCCCATTTCAACC -ACGGAAGAAGGTCCCATTTGTTCC -ACGGAAGAAGGTCCCATTATTCCC -ACGGAAGAAGGTCCCATTTTCTCG -ACGGAAGAAGGTCCCATTTAGACG -ACGGAAGAAGGTCCCATTGTAACG -ACGGAAGAAGGTCCCATTACTTCG -ACGGAAGAAGGTCCCATTTACGCA -ACGGAAGAAGGTCCCATTCTTGCA -ACGGAAGAAGGTCCCATTCGAACA -ACGGAAGAAGGTCCCATTCAGTCA -ACGGAAGAAGGTCCCATTGATCCA -ACGGAAGAAGGTCCCATTACGACA -ACGGAAGAAGGTCCCATTAGCTCA -ACGGAAGAAGGTCCCATTTCACGT -ACGGAAGAAGGTCCCATTCGTAGT -ACGGAAGAAGGTCCCATTGTCAGT -ACGGAAGAAGGTCCCATTGAAGGT -ACGGAAGAAGGTCCCATTAACCGT -ACGGAAGAAGGTCCCATTTTGTGC -ACGGAAGAAGGTCCCATTCTAAGC -ACGGAAGAAGGTCCCATTACTAGC -ACGGAAGAAGGTCCCATTAGATGC -ACGGAAGAAGGTCCCATTTGAAGG -ACGGAAGAAGGTCCCATTCAATGG -ACGGAAGAAGGTCCCATTATGAGG -ACGGAAGAAGGTCCCATTAATGGG -ACGGAAGAAGGTCCCATTTCCTGA -ACGGAAGAAGGTCCCATTTAGCGA -ACGGAAGAAGGTCCCATTCACAGA -ACGGAAGAAGGTCCCATTGCAAGA -ACGGAAGAAGGTCCCATTGGTTGA -ACGGAAGAAGGTCCCATTTCCGAT -ACGGAAGAAGGTCCCATTTGGCAT -ACGGAAGAAGGTCCCATTCGAGAT -ACGGAAGAAGGTCCCATTTACCAC -ACGGAAGAAGGTCCCATTCAGAAC -ACGGAAGAAGGTCCCATTGTCTAC -ACGGAAGAAGGTCCCATTACGTAC -ACGGAAGAAGGTCCCATTAGTGAC -ACGGAAGAAGGTCCCATTCTGTAG -ACGGAAGAAGGTCCCATTCCTAAG -ACGGAAGAAGGTCCCATTGTTCAG -ACGGAAGAAGGTCCCATTGCATAG -ACGGAAGAAGGTCCCATTGACAAG -ACGGAAGAAGGTCCCATTAAGCAG -ACGGAAGAAGGTCCCATTCGTCAA -ACGGAAGAAGGTCCCATTGCTGAA -ACGGAAGAAGGTCCCATTAGTACG -ACGGAAGAAGGTCCCATTATCCGA -ACGGAAGAAGGTCCCATTATGGGA -ACGGAAGAAGGTCCCATTGTGCAA -ACGGAAGAAGGTCCCATTGAGGAA -ACGGAAGAAGGTCCCATTCAGGTA -ACGGAAGAAGGTCCCATTGACTCT -ACGGAAGAAGGTCCCATTAGTCCT -ACGGAAGAAGGTCCCATTTAAGCC -ACGGAAGAAGGTCCCATTATAGCC -ACGGAAGAAGGTCCCATTTAACCG -ACGGAAGAAGGTCCCATTATGCCA -ACGGAAGAAGGTTCGTTCGGAAAC -ACGGAAGAAGGTTCGTTCAACACC -ACGGAAGAAGGTTCGTTCATCGAG -ACGGAAGAAGGTTCGTTCCTCCTT -ACGGAAGAAGGTTCGTTCCCTGTT -ACGGAAGAAGGTTCGTTCCGGTTT -ACGGAAGAAGGTTCGTTCGTGGTT -ACGGAAGAAGGTTCGTTCGCCTTT -ACGGAAGAAGGTTCGTTCGGTCTT -ACGGAAGAAGGTTCGTTCACGCTT -ACGGAAGAAGGTTCGTTCAGCGTT -ACGGAAGAAGGTTCGTTCTTCGTC -ACGGAAGAAGGTTCGTTCTCTCTC -ACGGAAGAAGGTTCGTTCTGGATC -ACGGAAGAAGGTTCGTTCCACTTC -ACGGAAGAAGGTTCGTTCGTACTC -ACGGAAGAAGGTTCGTTCGATGTC -ACGGAAGAAGGTTCGTTCACAGTC -ACGGAAGAAGGTTCGTTCTTGCTG -ACGGAAGAAGGTTCGTTCTCCATG -ACGGAAGAAGGTTCGTTCTGTGTG -ACGGAAGAAGGTTCGTTCCTAGTG -ACGGAAGAAGGTTCGTTCCATCTG -ACGGAAGAAGGTTCGTTCGAGTTG -ACGGAAGAAGGTTCGTTCAGACTG -ACGGAAGAAGGTTCGTTCTCGGTA -ACGGAAGAAGGTTCGTTCTGCCTA -ACGGAAGAAGGTTCGTTCCCACTA -ACGGAAGAAGGTTCGTTCGGAGTA -ACGGAAGAAGGTTCGTTCTCGTCT -ACGGAAGAAGGTTCGTTCTGCACT -ACGGAAGAAGGTTCGTTCCTGACT -ACGGAAGAAGGTTCGTTCCAACCT -ACGGAAGAAGGTTCGTTCGCTACT -ACGGAAGAAGGTTCGTTCGGATCT -ACGGAAGAAGGTTCGTTCAAGGCT -ACGGAAGAAGGTTCGTTCTCAACC -ACGGAAGAAGGTTCGTTCTGTTCC -ACGGAAGAAGGTTCGTTCATTCCC -ACGGAAGAAGGTTCGTTCTTCTCG -ACGGAAGAAGGTTCGTTCTAGACG -ACGGAAGAAGGTTCGTTCGTAACG -ACGGAAGAAGGTTCGTTCACTTCG -ACGGAAGAAGGTTCGTTCTACGCA -ACGGAAGAAGGTTCGTTCCTTGCA -ACGGAAGAAGGTTCGTTCCGAACA -ACGGAAGAAGGTTCGTTCCAGTCA -ACGGAAGAAGGTTCGTTCGATCCA -ACGGAAGAAGGTTCGTTCACGACA -ACGGAAGAAGGTTCGTTCAGCTCA -ACGGAAGAAGGTTCGTTCTCACGT -ACGGAAGAAGGTTCGTTCCGTAGT -ACGGAAGAAGGTTCGTTCGTCAGT -ACGGAAGAAGGTTCGTTCGAAGGT -ACGGAAGAAGGTTCGTTCAACCGT -ACGGAAGAAGGTTCGTTCTTGTGC -ACGGAAGAAGGTTCGTTCCTAAGC -ACGGAAGAAGGTTCGTTCACTAGC -ACGGAAGAAGGTTCGTTCAGATGC -ACGGAAGAAGGTTCGTTCTGAAGG -ACGGAAGAAGGTTCGTTCCAATGG -ACGGAAGAAGGTTCGTTCATGAGG -ACGGAAGAAGGTTCGTTCAATGGG -ACGGAAGAAGGTTCGTTCTCCTGA -ACGGAAGAAGGTTCGTTCTAGCGA -ACGGAAGAAGGTTCGTTCCACAGA -ACGGAAGAAGGTTCGTTCGCAAGA -ACGGAAGAAGGTTCGTTCGGTTGA -ACGGAAGAAGGTTCGTTCTCCGAT -ACGGAAGAAGGTTCGTTCTGGCAT -ACGGAAGAAGGTTCGTTCCGAGAT -ACGGAAGAAGGTTCGTTCTACCAC -ACGGAAGAAGGTTCGTTCCAGAAC -ACGGAAGAAGGTTCGTTCGTCTAC -ACGGAAGAAGGTTCGTTCACGTAC -ACGGAAGAAGGTTCGTTCAGTGAC -ACGGAAGAAGGTTCGTTCCTGTAG -ACGGAAGAAGGTTCGTTCCCTAAG -ACGGAAGAAGGTTCGTTCGTTCAG -ACGGAAGAAGGTTCGTTCGCATAG -ACGGAAGAAGGTTCGTTCGACAAG -ACGGAAGAAGGTTCGTTCAAGCAG -ACGGAAGAAGGTTCGTTCCGTCAA -ACGGAAGAAGGTTCGTTCGCTGAA -ACGGAAGAAGGTTCGTTCAGTACG -ACGGAAGAAGGTTCGTTCATCCGA -ACGGAAGAAGGTTCGTTCATGGGA -ACGGAAGAAGGTTCGTTCGTGCAA -ACGGAAGAAGGTTCGTTCGAGGAA -ACGGAAGAAGGTTCGTTCCAGGTA -ACGGAAGAAGGTTCGTTCGACTCT -ACGGAAGAAGGTTCGTTCAGTCCT -ACGGAAGAAGGTTCGTTCTAAGCC -ACGGAAGAAGGTTCGTTCATAGCC -ACGGAAGAAGGTTCGTTCTAACCG -ACGGAAGAAGGTTCGTTCATGCCA -ACGGAAGAAGGTACGTAGGGAAAC -ACGGAAGAAGGTACGTAGAACACC -ACGGAAGAAGGTACGTAGATCGAG -ACGGAAGAAGGTACGTAGCTCCTT -ACGGAAGAAGGTACGTAGCCTGTT -ACGGAAGAAGGTACGTAGCGGTTT -ACGGAAGAAGGTACGTAGGTGGTT -ACGGAAGAAGGTACGTAGGCCTTT -ACGGAAGAAGGTACGTAGGGTCTT -ACGGAAGAAGGTACGTAGACGCTT -ACGGAAGAAGGTACGTAGAGCGTT -ACGGAAGAAGGTACGTAGTTCGTC -ACGGAAGAAGGTACGTAGTCTCTC -ACGGAAGAAGGTACGTAGTGGATC -ACGGAAGAAGGTACGTAGCACTTC -ACGGAAGAAGGTACGTAGGTACTC -ACGGAAGAAGGTACGTAGGATGTC -ACGGAAGAAGGTACGTAGACAGTC -ACGGAAGAAGGTACGTAGTTGCTG -ACGGAAGAAGGTACGTAGTCCATG -ACGGAAGAAGGTACGTAGTGTGTG -ACGGAAGAAGGTACGTAGCTAGTG -ACGGAAGAAGGTACGTAGCATCTG -ACGGAAGAAGGTACGTAGGAGTTG -ACGGAAGAAGGTACGTAGAGACTG -ACGGAAGAAGGTACGTAGTCGGTA -ACGGAAGAAGGTACGTAGTGCCTA -ACGGAAGAAGGTACGTAGCCACTA -ACGGAAGAAGGTACGTAGGGAGTA -ACGGAAGAAGGTACGTAGTCGTCT -ACGGAAGAAGGTACGTAGTGCACT -ACGGAAGAAGGTACGTAGCTGACT -ACGGAAGAAGGTACGTAGCAACCT -ACGGAAGAAGGTACGTAGGCTACT -ACGGAAGAAGGTACGTAGGGATCT -ACGGAAGAAGGTACGTAGAAGGCT -ACGGAAGAAGGTACGTAGTCAACC -ACGGAAGAAGGTACGTAGTGTTCC -ACGGAAGAAGGTACGTAGATTCCC -ACGGAAGAAGGTACGTAGTTCTCG -ACGGAAGAAGGTACGTAGTAGACG -ACGGAAGAAGGTACGTAGGTAACG -ACGGAAGAAGGTACGTAGACTTCG -ACGGAAGAAGGTACGTAGTACGCA -ACGGAAGAAGGTACGTAGCTTGCA -ACGGAAGAAGGTACGTAGCGAACA -ACGGAAGAAGGTACGTAGCAGTCA -ACGGAAGAAGGTACGTAGGATCCA -ACGGAAGAAGGTACGTAGACGACA -ACGGAAGAAGGTACGTAGAGCTCA -ACGGAAGAAGGTACGTAGTCACGT -ACGGAAGAAGGTACGTAGCGTAGT -ACGGAAGAAGGTACGTAGGTCAGT -ACGGAAGAAGGTACGTAGGAAGGT -ACGGAAGAAGGTACGTAGAACCGT -ACGGAAGAAGGTACGTAGTTGTGC -ACGGAAGAAGGTACGTAGCTAAGC -ACGGAAGAAGGTACGTAGACTAGC -ACGGAAGAAGGTACGTAGAGATGC -ACGGAAGAAGGTACGTAGTGAAGG -ACGGAAGAAGGTACGTAGCAATGG -ACGGAAGAAGGTACGTAGATGAGG -ACGGAAGAAGGTACGTAGAATGGG -ACGGAAGAAGGTACGTAGTCCTGA -ACGGAAGAAGGTACGTAGTAGCGA -ACGGAAGAAGGTACGTAGCACAGA -ACGGAAGAAGGTACGTAGGCAAGA -ACGGAAGAAGGTACGTAGGGTTGA -ACGGAAGAAGGTACGTAGTCCGAT -ACGGAAGAAGGTACGTAGTGGCAT -ACGGAAGAAGGTACGTAGCGAGAT -ACGGAAGAAGGTACGTAGTACCAC -ACGGAAGAAGGTACGTAGCAGAAC -ACGGAAGAAGGTACGTAGGTCTAC -ACGGAAGAAGGTACGTAGACGTAC -ACGGAAGAAGGTACGTAGAGTGAC -ACGGAAGAAGGTACGTAGCTGTAG -ACGGAAGAAGGTACGTAGCCTAAG -ACGGAAGAAGGTACGTAGGTTCAG -ACGGAAGAAGGTACGTAGGCATAG -ACGGAAGAAGGTACGTAGGACAAG -ACGGAAGAAGGTACGTAGAAGCAG -ACGGAAGAAGGTACGTAGCGTCAA -ACGGAAGAAGGTACGTAGGCTGAA -ACGGAAGAAGGTACGTAGAGTACG -ACGGAAGAAGGTACGTAGATCCGA -ACGGAAGAAGGTACGTAGATGGGA -ACGGAAGAAGGTACGTAGGTGCAA -ACGGAAGAAGGTACGTAGGAGGAA -ACGGAAGAAGGTACGTAGCAGGTA -ACGGAAGAAGGTACGTAGGACTCT -ACGGAAGAAGGTACGTAGAGTCCT -ACGGAAGAAGGTACGTAGTAAGCC -ACGGAAGAAGGTACGTAGATAGCC -ACGGAAGAAGGTACGTAGTAACCG -ACGGAAGAAGGTACGTAGATGCCA -ACGGAAGAAGGTACGGTAGGAAAC -ACGGAAGAAGGTACGGTAAACACC -ACGGAAGAAGGTACGGTAATCGAG -ACGGAAGAAGGTACGGTACTCCTT -ACGGAAGAAGGTACGGTACCTGTT -ACGGAAGAAGGTACGGTACGGTTT -ACGGAAGAAGGTACGGTAGTGGTT -ACGGAAGAAGGTACGGTAGCCTTT -ACGGAAGAAGGTACGGTAGGTCTT -ACGGAAGAAGGTACGGTAACGCTT -ACGGAAGAAGGTACGGTAAGCGTT -ACGGAAGAAGGTACGGTATTCGTC -ACGGAAGAAGGTACGGTATCTCTC -ACGGAAGAAGGTACGGTATGGATC -ACGGAAGAAGGTACGGTACACTTC -ACGGAAGAAGGTACGGTAGTACTC -ACGGAAGAAGGTACGGTAGATGTC -ACGGAAGAAGGTACGGTAACAGTC -ACGGAAGAAGGTACGGTATTGCTG -ACGGAAGAAGGTACGGTATCCATG -ACGGAAGAAGGTACGGTATGTGTG -ACGGAAGAAGGTACGGTACTAGTG -ACGGAAGAAGGTACGGTACATCTG -ACGGAAGAAGGTACGGTAGAGTTG -ACGGAAGAAGGTACGGTAAGACTG -ACGGAAGAAGGTACGGTATCGGTA -ACGGAAGAAGGTACGGTATGCCTA -ACGGAAGAAGGTACGGTACCACTA -ACGGAAGAAGGTACGGTAGGAGTA -ACGGAAGAAGGTACGGTATCGTCT -ACGGAAGAAGGTACGGTATGCACT -ACGGAAGAAGGTACGGTACTGACT -ACGGAAGAAGGTACGGTACAACCT -ACGGAAGAAGGTACGGTAGCTACT -ACGGAAGAAGGTACGGTAGGATCT -ACGGAAGAAGGTACGGTAAAGGCT -ACGGAAGAAGGTACGGTATCAACC -ACGGAAGAAGGTACGGTATGTTCC -ACGGAAGAAGGTACGGTAATTCCC -ACGGAAGAAGGTACGGTATTCTCG -ACGGAAGAAGGTACGGTATAGACG -ACGGAAGAAGGTACGGTAGTAACG -ACGGAAGAAGGTACGGTAACTTCG -ACGGAAGAAGGTACGGTATACGCA -ACGGAAGAAGGTACGGTACTTGCA -ACGGAAGAAGGTACGGTACGAACA -ACGGAAGAAGGTACGGTACAGTCA -ACGGAAGAAGGTACGGTAGATCCA -ACGGAAGAAGGTACGGTAACGACA -ACGGAAGAAGGTACGGTAAGCTCA -ACGGAAGAAGGTACGGTATCACGT -ACGGAAGAAGGTACGGTACGTAGT -ACGGAAGAAGGTACGGTAGTCAGT -ACGGAAGAAGGTACGGTAGAAGGT -ACGGAAGAAGGTACGGTAAACCGT -ACGGAAGAAGGTACGGTATTGTGC -ACGGAAGAAGGTACGGTACTAAGC -ACGGAAGAAGGTACGGTAACTAGC -ACGGAAGAAGGTACGGTAAGATGC -ACGGAAGAAGGTACGGTATGAAGG -ACGGAAGAAGGTACGGTACAATGG -ACGGAAGAAGGTACGGTAATGAGG -ACGGAAGAAGGTACGGTAAATGGG -ACGGAAGAAGGTACGGTATCCTGA -ACGGAAGAAGGTACGGTATAGCGA -ACGGAAGAAGGTACGGTACACAGA -ACGGAAGAAGGTACGGTAGCAAGA -ACGGAAGAAGGTACGGTAGGTTGA -ACGGAAGAAGGTACGGTATCCGAT -ACGGAAGAAGGTACGGTATGGCAT -ACGGAAGAAGGTACGGTACGAGAT -ACGGAAGAAGGTACGGTATACCAC -ACGGAAGAAGGTACGGTACAGAAC -ACGGAAGAAGGTACGGTAGTCTAC -ACGGAAGAAGGTACGGTAACGTAC -ACGGAAGAAGGTACGGTAAGTGAC -ACGGAAGAAGGTACGGTACTGTAG -ACGGAAGAAGGTACGGTACCTAAG -ACGGAAGAAGGTACGGTAGTTCAG -ACGGAAGAAGGTACGGTAGCATAG -ACGGAAGAAGGTACGGTAGACAAG -ACGGAAGAAGGTACGGTAAAGCAG -ACGGAAGAAGGTACGGTACGTCAA -ACGGAAGAAGGTACGGTAGCTGAA -ACGGAAGAAGGTACGGTAAGTACG -ACGGAAGAAGGTACGGTAATCCGA -ACGGAAGAAGGTACGGTAATGGGA -ACGGAAGAAGGTACGGTAGTGCAA -ACGGAAGAAGGTACGGTAGAGGAA -ACGGAAGAAGGTACGGTACAGGTA -ACGGAAGAAGGTACGGTAGACTCT -ACGGAAGAAGGTACGGTAAGTCCT -ACGGAAGAAGGTACGGTATAAGCC -ACGGAAGAAGGTACGGTAATAGCC -ACGGAAGAAGGTACGGTATAACCG -ACGGAAGAAGGTACGGTAATGCCA -ACGGAAGAAGGTTCGACTGGAAAC -ACGGAAGAAGGTTCGACTAACACC -ACGGAAGAAGGTTCGACTATCGAG -ACGGAAGAAGGTTCGACTCTCCTT -ACGGAAGAAGGTTCGACTCCTGTT -ACGGAAGAAGGTTCGACTCGGTTT -ACGGAAGAAGGTTCGACTGTGGTT -ACGGAAGAAGGTTCGACTGCCTTT -ACGGAAGAAGGTTCGACTGGTCTT -ACGGAAGAAGGTTCGACTACGCTT -ACGGAAGAAGGTTCGACTAGCGTT -ACGGAAGAAGGTTCGACTTTCGTC -ACGGAAGAAGGTTCGACTTCTCTC -ACGGAAGAAGGTTCGACTTGGATC -ACGGAAGAAGGTTCGACTCACTTC -ACGGAAGAAGGTTCGACTGTACTC -ACGGAAGAAGGTTCGACTGATGTC -ACGGAAGAAGGTTCGACTACAGTC -ACGGAAGAAGGTTCGACTTTGCTG -ACGGAAGAAGGTTCGACTTCCATG -ACGGAAGAAGGTTCGACTTGTGTG -ACGGAAGAAGGTTCGACTCTAGTG -ACGGAAGAAGGTTCGACTCATCTG -ACGGAAGAAGGTTCGACTGAGTTG -ACGGAAGAAGGTTCGACTAGACTG -ACGGAAGAAGGTTCGACTTCGGTA -ACGGAAGAAGGTTCGACTTGCCTA -ACGGAAGAAGGTTCGACTCCACTA -ACGGAAGAAGGTTCGACTGGAGTA -ACGGAAGAAGGTTCGACTTCGTCT -ACGGAAGAAGGTTCGACTTGCACT -ACGGAAGAAGGTTCGACTCTGACT -ACGGAAGAAGGTTCGACTCAACCT -ACGGAAGAAGGTTCGACTGCTACT -ACGGAAGAAGGTTCGACTGGATCT -ACGGAAGAAGGTTCGACTAAGGCT -ACGGAAGAAGGTTCGACTTCAACC -ACGGAAGAAGGTTCGACTTGTTCC -ACGGAAGAAGGTTCGACTATTCCC -ACGGAAGAAGGTTCGACTTTCTCG -ACGGAAGAAGGTTCGACTTAGACG -ACGGAAGAAGGTTCGACTGTAACG -ACGGAAGAAGGTTCGACTACTTCG -ACGGAAGAAGGTTCGACTTACGCA -ACGGAAGAAGGTTCGACTCTTGCA -ACGGAAGAAGGTTCGACTCGAACA -ACGGAAGAAGGTTCGACTCAGTCA -ACGGAAGAAGGTTCGACTGATCCA -ACGGAAGAAGGTTCGACTACGACA -ACGGAAGAAGGTTCGACTAGCTCA -ACGGAAGAAGGTTCGACTTCACGT -ACGGAAGAAGGTTCGACTCGTAGT -ACGGAAGAAGGTTCGACTGTCAGT -ACGGAAGAAGGTTCGACTGAAGGT -ACGGAAGAAGGTTCGACTAACCGT -ACGGAAGAAGGTTCGACTTTGTGC -ACGGAAGAAGGTTCGACTCTAAGC -ACGGAAGAAGGTTCGACTACTAGC -ACGGAAGAAGGTTCGACTAGATGC -ACGGAAGAAGGTTCGACTTGAAGG -ACGGAAGAAGGTTCGACTCAATGG -ACGGAAGAAGGTTCGACTATGAGG -ACGGAAGAAGGTTCGACTAATGGG -ACGGAAGAAGGTTCGACTTCCTGA -ACGGAAGAAGGTTCGACTTAGCGA -ACGGAAGAAGGTTCGACTCACAGA -ACGGAAGAAGGTTCGACTGCAAGA -ACGGAAGAAGGTTCGACTGGTTGA -ACGGAAGAAGGTTCGACTTCCGAT -ACGGAAGAAGGTTCGACTTGGCAT -ACGGAAGAAGGTTCGACTCGAGAT -ACGGAAGAAGGTTCGACTTACCAC -ACGGAAGAAGGTTCGACTCAGAAC -ACGGAAGAAGGTTCGACTGTCTAC -ACGGAAGAAGGTTCGACTACGTAC -ACGGAAGAAGGTTCGACTAGTGAC -ACGGAAGAAGGTTCGACTCTGTAG -ACGGAAGAAGGTTCGACTCCTAAG -ACGGAAGAAGGTTCGACTGTTCAG -ACGGAAGAAGGTTCGACTGCATAG -ACGGAAGAAGGTTCGACTGACAAG -ACGGAAGAAGGTTCGACTAAGCAG -ACGGAAGAAGGTTCGACTCGTCAA -ACGGAAGAAGGTTCGACTGCTGAA -ACGGAAGAAGGTTCGACTAGTACG -ACGGAAGAAGGTTCGACTATCCGA -ACGGAAGAAGGTTCGACTATGGGA -ACGGAAGAAGGTTCGACTGTGCAA -ACGGAAGAAGGTTCGACTGAGGAA -ACGGAAGAAGGTTCGACTCAGGTA -ACGGAAGAAGGTTCGACTGACTCT -ACGGAAGAAGGTTCGACTAGTCCT -ACGGAAGAAGGTTCGACTTAAGCC -ACGGAAGAAGGTTCGACTATAGCC -ACGGAAGAAGGTTCGACTTAACCG -ACGGAAGAAGGTTCGACTATGCCA -ACGGAAGAAGGTGCATACGGAAAC -ACGGAAGAAGGTGCATACAACACC -ACGGAAGAAGGTGCATACATCGAG -ACGGAAGAAGGTGCATACCTCCTT -ACGGAAGAAGGTGCATACCCTGTT -ACGGAAGAAGGTGCATACCGGTTT -ACGGAAGAAGGTGCATACGTGGTT -ACGGAAGAAGGTGCATACGCCTTT -ACGGAAGAAGGTGCATACGGTCTT -ACGGAAGAAGGTGCATACACGCTT -ACGGAAGAAGGTGCATACAGCGTT -ACGGAAGAAGGTGCATACTTCGTC -ACGGAAGAAGGTGCATACTCTCTC -ACGGAAGAAGGTGCATACTGGATC -ACGGAAGAAGGTGCATACCACTTC -ACGGAAGAAGGTGCATACGTACTC -ACGGAAGAAGGTGCATACGATGTC -ACGGAAGAAGGTGCATACACAGTC -ACGGAAGAAGGTGCATACTTGCTG -ACGGAAGAAGGTGCATACTCCATG -ACGGAAGAAGGTGCATACTGTGTG -ACGGAAGAAGGTGCATACCTAGTG -ACGGAAGAAGGTGCATACCATCTG -ACGGAAGAAGGTGCATACGAGTTG -ACGGAAGAAGGTGCATACAGACTG -ACGGAAGAAGGTGCATACTCGGTA -ACGGAAGAAGGTGCATACTGCCTA -ACGGAAGAAGGTGCATACCCACTA -ACGGAAGAAGGTGCATACGGAGTA -ACGGAAGAAGGTGCATACTCGTCT -ACGGAAGAAGGTGCATACTGCACT -ACGGAAGAAGGTGCATACCTGACT -ACGGAAGAAGGTGCATACCAACCT -ACGGAAGAAGGTGCATACGCTACT -ACGGAAGAAGGTGCATACGGATCT -ACGGAAGAAGGTGCATACAAGGCT -ACGGAAGAAGGTGCATACTCAACC -ACGGAAGAAGGTGCATACTGTTCC -ACGGAAGAAGGTGCATACATTCCC -ACGGAAGAAGGTGCATACTTCTCG -ACGGAAGAAGGTGCATACTAGACG -ACGGAAGAAGGTGCATACGTAACG -ACGGAAGAAGGTGCATACACTTCG -ACGGAAGAAGGTGCATACTACGCA -ACGGAAGAAGGTGCATACCTTGCA -ACGGAAGAAGGTGCATACCGAACA -ACGGAAGAAGGTGCATACCAGTCA -ACGGAAGAAGGTGCATACGATCCA -ACGGAAGAAGGTGCATACACGACA -ACGGAAGAAGGTGCATACAGCTCA -ACGGAAGAAGGTGCATACTCACGT -ACGGAAGAAGGTGCATACCGTAGT -ACGGAAGAAGGTGCATACGTCAGT -ACGGAAGAAGGTGCATACGAAGGT -ACGGAAGAAGGTGCATACAACCGT -ACGGAAGAAGGTGCATACTTGTGC -ACGGAAGAAGGTGCATACCTAAGC -ACGGAAGAAGGTGCATACACTAGC -ACGGAAGAAGGTGCATACAGATGC -ACGGAAGAAGGTGCATACTGAAGG -ACGGAAGAAGGTGCATACCAATGG -ACGGAAGAAGGTGCATACATGAGG -ACGGAAGAAGGTGCATACAATGGG -ACGGAAGAAGGTGCATACTCCTGA -ACGGAAGAAGGTGCATACTAGCGA -ACGGAAGAAGGTGCATACCACAGA -ACGGAAGAAGGTGCATACGCAAGA -ACGGAAGAAGGTGCATACGGTTGA -ACGGAAGAAGGTGCATACTCCGAT -ACGGAAGAAGGTGCATACTGGCAT -ACGGAAGAAGGTGCATACCGAGAT -ACGGAAGAAGGTGCATACTACCAC -ACGGAAGAAGGTGCATACCAGAAC -ACGGAAGAAGGTGCATACGTCTAC -ACGGAAGAAGGTGCATACACGTAC -ACGGAAGAAGGTGCATACAGTGAC -ACGGAAGAAGGTGCATACCTGTAG -ACGGAAGAAGGTGCATACCCTAAG -ACGGAAGAAGGTGCATACGTTCAG -ACGGAAGAAGGTGCATACGCATAG -ACGGAAGAAGGTGCATACGACAAG -ACGGAAGAAGGTGCATACAAGCAG -ACGGAAGAAGGTGCATACCGTCAA -ACGGAAGAAGGTGCATACGCTGAA -ACGGAAGAAGGTGCATACAGTACG -ACGGAAGAAGGTGCATACATCCGA -ACGGAAGAAGGTGCATACATGGGA -ACGGAAGAAGGTGCATACGTGCAA -ACGGAAGAAGGTGCATACGAGGAA -ACGGAAGAAGGTGCATACCAGGTA -ACGGAAGAAGGTGCATACGACTCT -ACGGAAGAAGGTGCATACAGTCCT -ACGGAAGAAGGTGCATACTAAGCC -ACGGAAGAAGGTGCATACATAGCC -ACGGAAGAAGGTGCATACTAACCG -ACGGAAGAAGGTGCATACATGCCA -ACGGAAGAAGGTGCACTTGGAAAC -ACGGAAGAAGGTGCACTTAACACC -ACGGAAGAAGGTGCACTTATCGAG -ACGGAAGAAGGTGCACTTCTCCTT -ACGGAAGAAGGTGCACTTCCTGTT -ACGGAAGAAGGTGCACTTCGGTTT -ACGGAAGAAGGTGCACTTGTGGTT -ACGGAAGAAGGTGCACTTGCCTTT -ACGGAAGAAGGTGCACTTGGTCTT -ACGGAAGAAGGTGCACTTACGCTT -ACGGAAGAAGGTGCACTTAGCGTT -ACGGAAGAAGGTGCACTTTTCGTC -ACGGAAGAAGGTGCACTTTCTCTC -ACGGAAGAAGGTGCACTTTGGATC -ACGGAAGAAGGTGCACTTCACTTC -ACGGAAGAAGGTGCACTTGTACTC -ACGGAAGAAGGTGCACTTGATGTC -ACGGAAGAAGGTGCACTTACAGTC -ACGGAAGAAGGTGCACTTTTGCTG -ACGGAAGAAGGTGCACTTTCCATG -ACGGAAGAAGGTGCACTTTGTGTG -ACGGAAGAAGGTGCACTTCTAGTG -ACGGAAGAAGGTGCACTTCATCTG -ACGGAAGAAGGTGCACTTGAGTTG -ACGGAAGAAGGTGCACTTAGACTG -ACGGAAGAAGGTGCACTTTCGGTA -ACGGAAGAAGGTGCACTTTGCCTA -ACGGAAGAAGGTGCACTTCCACTA -ACGGAAGAAGGTGCACTTGGAGTA -ACGGAAGAAGGTGCACTTTCGTCT -ACGGAAGAAGGTGCACTTTGCACT -ACGGAAGAAGGTGCACTTCTGACT -ACGGAAGAAGGTGCACTTCAACCT -ACGGAAGAAGGTGCACTTGCTACT -ACGGAAGAAGGTGCACTTGGATCT -ACGGAAGAAGGTGCACTTAAGGCT -ACGGAAGAAGGTGCACTTTCAACC -ACGGAAGAAGGTGCACTTTGTTCC -ACGGAAGAAGGTGCACTTATTCCC -ACGGAAGAAGGTGCACTTTTCTCG -ACGGAAGAAGGTGCACTTTAGACG -ACGGAAGAAGGTGCACTTGTAACG -ACGGAAGAAGGTGCACTTACTTCG -ACGGAAGAAGGTGCACTTTACGCA -ACGGAAGAAGGTGCACTTCTTGCA -ACGGAAGAAGGTGCACTTCGAACA -ACGGAAGAAGGTGCACTTCAGTCA -ACGGAAGAAGGTGCACTTGATCCA -ACGGAAGAAGGTGCACTTACGACA -ACGGAAGAAGGTGCACTTAGCTCA -ACGGAAGAAGGTGCACTTTCACGT -ACGGAAGAAGGTGCACTTCGTAGT -ACGGAAGAAGGTGCACTTGTCAGT -ACGGAAGAAGGTGCACTTGAAGGT -ACGGAAGAAGGTGCACTTAACCGT -ACGGAAGAAGGTGCACTTTTGTGC -ACGGAAGAAGGTGCACTTCTAAGC -ACGGAAGAAGGTGCACTTACTAGC -ACGGAAGAAGGTGCACTTAGATGC -ACGGAAGAAGGTGCACTTTGAAGG -ACGGAAGAAGGTGCACTTCAATGG -ACGGAAGAAGGTGCACTTATGAGG -ACGGAAGAAGGTGCACTTAATGGG -ACGGAAGAAGGTGCACTTTCCTGA -ACGGAAGAAGGTGCACTTTAGCGA -ACGGAAGAAGGTGCACTTCACAGA -ACGGAAGAAGGTGCACTTGCAAGA -ACGGAAGAAGGTGCACTTGGTTGA -ACGGAAGAAGGTGCACTTTCCGAT -ACGGAAGAAGGTGCACTTTGGCAT -ACGGAAGAAGGTGCACTTCGAGAT -ACGGAAGAAGGTGCACTTTACCAC -ACGGAAGAAGGTGCACTTCAGAAC -ACGGAAGAAGGTGCACTTGTCTAC -ACGGAAGAAGGTGCACTTACGTAC -ACGGAAGAAGGTGCACTTAGTGAC -ACGGAAGAAGGTGCACTTCTGTAG -ACGGAAGAAGGTGCACTTCCTAAG -ACGGAAGAAGGTGCACTTGTTCAG -ACGGAAGAAGGTGCACTTGCATAG -ACGGAAGAAGGTGCACTTGACAAG -ACGGAAGAAGGTGCACTTAAGCAG -ACGGAAGAAGGTGCACTTCGTCAA -ACGGAAGAAGGTGCACTTGCTGAA -ACGGAAGAAGGTGCACTTAGTACG -ACGGAAGAAGGTGCACTTATCCGA -ACGGAAGAAGGTGCACTTATGGGA -ACGGAAGAAGGTGCACTTGTGCAA -ACGGAAGAAGGTGCACTTGAGGAA -ACGGAAGAAGGTGCACTTCAGGTA -ACGGAAGAAGGTGCACTTGACTCT -ACGGAAGAAGGTGCACTTAGTCCT -ACGGAAGAAGGTGCACTTTAAGCC -ACGGAAGAAGGTGCACTTATAGCC -ACGGAAGAAGGTGCACTTTAACCG -ACGGAAGAAGGTGCACTTATGCCA -ACGGAAGAAGGTACACGAGGAAAC -ACGGAAGAAGGTACACGAAACACC -ACGGAAGAAGGTACACGAATCGAG -ACGGAAGAAGGTACACGACTCCTT -ACGGAAGAAGGTACACGACCTGTT -ACGGAAGAAGGTACACGACGGTTT -ACGGAAGAAGGTACACGAGTGGTT -ACGGAAGAAGGTACACGAGCCTTT -ACGGAAGAAGGTACACGAGGTCTT -ACGGAAGAAGGTACACGAACGCTT -ACGGAAGAAGGTACACGAAGCGTT -ACGGAAGAAGGTACACGATTCGTC -ACGGAAGAAGGTACACGATCTCTC -ACGGAAGAAGGTACACGATGGATC -ACGGAAGAAGGTACACGACACTTC -ACGGAAGAAGGTACACGAGTACTC -ACGGAAGAAGGTACACGAGATGTC -ACGGAAGAAGGTACACGAACAGTC -ACGGAAGAAGGTACACGATTGCTG -ACGGAAGAAGGTACACGATCCATG -ACGGAAGAAGGTACACGATGTGTG -ACGGAAGAAGGTACACGACTAGTG -ACGGAAGAAGGTACACGACATCTG -ACGGAAGAAGGTACACGAGAGTTG -ACGGAAGAAGGTACACGAAGACTG -ACGGAAGAAGGTACACGATCGGTA -ACGGAAGAAGGTACACGATGCCTA -ACGGAAGAAGGTACACGACCACTA -ACGGAAGAAGGTACACGAGGAGTA -ACGGAAGAAGGTACACGATCGTCT -ACGGAAGAAGGTACACGATGCACT -ACGGAAGAAGGTACACGACTGACT -ACGGAAGAAGGTACACGACAACCT -ACGGAAGAAGGTACACGAGCTACT -ACGGAAGAAGGTACACGAGGATCT -ACGGAAGAAGGTACACGAAAGGCT -ACGGAAGAAGGTACACGATCAACC -ACGGAAGAAGGTACACGATGTTCC -ACGGAAGAAGGTACACGAATTCCC -ACGGAAGAAGGTACACGATTCTCG -ACGGAAGAAGGTACACGATAGACG -ACGGAAGAAGGTACACGAGTAACG -ACGGAAGAAGGTACACGAACTTCG -ACGGAAGAAGGTACACGATACGCA -ACGGAAGAAGGTACACGACTTGCA -ACGGAAGAAGGTACACGACGAACA -ACGGAAGAAGGTACACGACAGTCA -ACGGAAGAAGGTACACGAGATCCA -ACGGAAGAAGGTACACGAACGACA -ACGGAAGAAGGTACACGAAGCTCA -ACGGAAGAAGGTACACGATCACGT -ACGGAAGAAGGTACACGACGTAGT -ACGGAAGAAGGTACACGAGTCAGT -ACGGAAGAAGGTACACGAGAAGGT -ACGGAAGAAGGTACACGAAACCGT -ACGGAAGAAGGTACACGATTGTGC -ACGGAAGAAGGTACACGACTAAGC -ACGGAAGAAGGTACACGAACTAGC -ACGGAAGAAGGTACACGAAGATGC -ACGGAAGAAGGTACACGATGAAGG -ACGGAAGAAGGTACACGACAATGG -ACGGAAGAAGGTACACGAATGAGG -ACGGAAGAAGGTACACGAAATGGG -ACGGAAGAAGGTACACGATCCTGA -ACGGAAGAAGGTACACGATAGCGA -ACGGAAGAAGGTACACGACACAGA -ACGGAAGAAGGTACACGAGCAAGA -ACGGAAGAAGGTACACGAGGTTGA -ACGGAAGAAGGTACACGATCCGAT -ACGGAAGAAGGTACACGATGGCAT -ACGGAAGAAGGTACACGACGAGAT -ACGGAAGAAGGTACACGATACCAC -ACGGAAGAAGGTACACGACAGAAC -ACGGAAGAAGGTACACGAGTCTAC -ACGGAAGAAGGTACACGAACGTAC -ACGGAAGAAGGTACACGAAGTGAC -ACGGAAGAAGGTACACGACTGTAG -ACGGAAGAAGGTACACGACCTAAG -ACGGAAGAAGGTACACGAGTTCAG -ACGGAAGAAGGTACACGAGCATAG -ACGGAAGAAGGTACACGAGACAAG -ACGGAAGAAGGTACACGAAAGCAG -ACGGAAGAAGGTACACGACGTCAA -ACGGAAGAAGGTACACGAGCTGAA -ACGGAAGAAGGTACACGAAGTACG -ACGGAAGAAGGTACACGAATCCGA -ACGGAAGAAGGTACACGAATGGGA -ACGGAAGAAGGTACACGAGTGCAA -ACGGAAGAAGGTACACGAGAGGAA -ACGGAAGAAGGTACACGACAGGTA -ACGGAAGAAGGTACACGAGACTCT -ACGGAAGAAGGTACACGAAGTCCT -ACGGAAGAAGGTACACGATAAGCC -ACGGAAGAAGGTACACGAATAGCC -ACGGAAGAAGGTACACGATAACCG -ACGGAAGAAGGTACACGAATGCCA -ACGGAAGAAGGTTCACAGGGAAAC -ACGGAAGAAGGTTCACAGAACACC -ACGGAAGAAGGTTCACAGATCGAG -ACGGAAGAAGGTTCACAGCTCCTT -ACGGAAGAAGGTTCACAGCCTGTT -ACGGAAGAAGGTTCACAGCGGTTT -ACGGAAGAAGGTTCACAGGTGGTT -ACGGAAGAAGGTTCACAGGCCTTT -ACGGAAGAAGGTTCACAGGGTCTT -ACGGAAGAAGGTTCACAGACGCTT -ACGGAAGAAGGTTCACAGAGCGTT -ACGGAAGAAGGTTCACAGTTCGTC -ACGGAAGAAGGTTCACAGTCTCTC -ACGGAAGAAGGTTCACAGTGGATC -ACGGAAGAAGGTTCACAGCACTTC -ACGGAAGAAGGTTCACAGGTACTC -ACGGAAGAAGGTTCACAGGATGTC -ACGGAAGAAGGTTCACAGACAGTC -ACGGAAGAAGGTTCACAGTTGCTG -ACGGAAGAAGGTTCACAGTCCATG -ACGGAAGAAGGTTCACAGTGTGTG -ACGGAAGAAGGTTCACAGCTAGTG -ACGGAAGAAGGTTCACAGCATCTG -ACGGAAGAAGGTTCACAGGAGTTG -ACGGAAGAAGGTTCACAGAGACTG -ACGGAAGAAGGTTCACAGTCGGTA -ACGGAAGAAGGTTCACAGTGCCTA -ACGGAAGAAGGTTCACAGCCACTA -ACGGAAGAAGGTTCACAGGGAGTA -ACGGAAGAAGGTTCACAGTCGTCT -ACGGAAGAAGGTTCACAGTGCACT -ACGGAAGAAGGTTCACAGCTGACT -ACGGAAGAAGGTTCACAGCAACCT -ACGGAAGAAGGTTCACAGGCTACT -ACGGAAGAAGGTTCACAGGGATCT -ACGGAAGAAGGTTCACAGAAGGCT -ACGGAAGAAGGTTCACAGTCAACC -ACGGAAGAAGGTTCACAGTGTTCC -ACGGAAGAAGGTTCACAGATTCCC -ACGGAAGAAGGTTCACAGTTCTCG -ACGGAAGAAGGTTCACAGTAGACG -ACGGAAGAAGGTTCACAGGTAACG -ACGGAAGAAGGTTCACAGACTTCG -ACGGAAGAAGGTTCACAGTACGCA -ACGGAAGAAGGTTCACAGCTTGCA -ACGGAAGAAGGTTCACAGCGAACA -ACGGAAGAAGGTTCACAGCAGTCA -ACGGAAGAAGGTTCACAGGATCCA -ACGGAAGAAGGTTCACAGACGACA -ACGGAAGAAGGTTCACAGAGCTCA -ACGGAAGAAGGTTCACAGTCACGT -ACGGAAGAAGGTTCACAGCGTAGT -ACGGAAGAAGGTTCACAGGTCAGT -ACGGAAGAAGGTTCACAGGAAGGT -ACGGAAGAAGGTTCACAGAACCGT -ACGGAAGAAGGTTCACAGTTGTGC -ACGGAAGAAGGTTCACAGCTAAGC -ACGGAAGAAGGTTCACAGACTAGC -ACGGAAGAAGGTTCACAGAGATGC -ACGGAAGAAGGTTCACAGTGAAGG -ACGGAAGAAGGTTCACAGCAATGG -ACGGAAGAAGGTTCACAGATGAGG -ACGGAAGAAGGTTCACAGAATGGG -ACGGAAGAAGGTTCACAGTCCTGA -ACGGAAGAAGGTTCACAGTAGCGA -ACGGAAGAAGGTTCACAGCACAGA -ACGGAAGAAGGTTCACAGGCAAGA -ACGGAAGAAGGTTCACAGGGTTGA -ACGGAAGAAGGTTCACAGTCCGAT -ACGGAAGAAGGTTCACAGTGGCAT -ACGGAAGAAGGTTCACAGCGAGAT -ACGGAAGAAGGTTCACAGTACCAC -ACGGAAGAAGGTTCACAGCAGAAC -ACGGAAGAAGGTTCACAGGTCTAC -ACGGAAGAAGGTTCACAGACGTAC -ACGGAAGAAGGTTCACAGAGTGAC -ACGGAAGAAGGTTCACAGCTGTAG -ACGGAAGAAGGTTCACAGCCTAAG -ACGGAAGAAGGTTCACAGGTTCAG -ACGGAAGAAGGTTCACAGGCATAG -ACGGAAGAAGGTTCACAGGACAAG -ACGGAAGAAGGTTCACAGAAGCAG -ACGGAAGAAGGTTCACAGCGTCAA -ACGGAAGAAGGTTCACAGGCTGAA -ACGGAAGAAGGTTCACAGAGTACG -ACGGAAGAAGGTTCACAGATCCGA -ACGGAAGAAGGTTCACAGATGGGA -ACGGAAGAAGGTTCACAGGTGCAA -ACGGAAGAAGGTTCACAGGAGGAA -ACGGAAGAAGGTTCACAGCAGGTA -ACGGAAGAAGGTTCACAGGACTCT -ACGGAAGAAGGTTCACAGAGTCCT -ACGGAAGAAGGTTCACAGTAAGCC -ACGGAAGAAGGTTCACAGATAGCC -ACGGAAGAAGGTTCACAGTAACCG -ACGGAAGAAGGTTCACAGATGCCA -ACGGAAGAAGGTCCAGATGGAAAC -ACGGAAGAAGGTCCAGATAACACC -ACGGAAGAAGGTCCAGATATCGAG -ACGGAAGAAGGTCCAGATCTCCTT -ACGGAAGAAGGTCCAGATCCTGTT -ACGGAAGAAGGTCCAGATCGGTTT -ACGGAAGAAGGTCCAGATGTGGTT -ACGGAAGAAGGTCCAGATGCCTTT -ACGGAAGAAGGTCCAGATGGTCTT -ACGGAAGAAGGTCCAGATACGCTT -ACGGAAGAAGGTCCAGATAGCGTT -ACGGAAGAAGGTCCAGATTTCGTC -ACGGAAGAAGGTCCAGATTCTCTC -ACGGAAGAAGGTCCAGATTGGATC -ACGGAAGAAGGTCCAGATCACTTC -ACGGAAGAAGGTCCAGATGTACTC -ACGGAAGAAGGTCCAGATGATGTC -ACGGAAGAAGGTCCAGATACAGTC -ACGGAAGAAGGTCCAGATTTGCTG -ACGGAAGAAGGTCCAGATTCCATG -ACGGAAGAAGGTCCAGATTGTGTG -ACGGAAGAAGGTCCAGATCTAGTG -ACGGAAGAAGGTCCAGATCATCTG -ACGGAAGAAGGTCCAGATGAGTTG -ACGGAAGAAGGTCCAGATAGACTG -ACGGAAGAAGGTCCAGATTCGGTA -ACGGAAGAAGGTCCAGATTGCCTA -ACGGAAGAAGGTCCAGATCCACTA -ACGGAAGAAGGTCCAGATGGAGTA -ACGGAAGAAGGTCCAGATTCGTCT -ACGGAAGAAGGTCCAGATTGCACT -ACGGAAGAAGGTCCAGATCTGACT -ACGGAAGAAGGTCCAGATCAACCT -ACGGAAGAAGGTCCAGATGCTACT -ACGGAAGAAGGTCCAGATGGATCT -ACGGAAGAAGGTCCAGATAAGGCT -ACGGAAGAAGGTCCAGATTCAACC -ACGGAAGAAGGTCCAGATTGTTCC -ACGGAAGAAGGTCCAGATATTCCC -ACGGAAGAAGGTCCAGATTTCTCG -ACGGAAGAAGGTCCAGATTAGACG -ACGGAAGAAGGTCCAGATGTAACG -ACGGAAGAAGGTCCAGATACTTCG -ACGGAAGAAGGTCCAGATTACGCA -ACGGAAGAAGGTCCAGATCTTGCA -ACGGAAGAAGGTCCAGATCGAACA -ACGGAAGAAGGTCCAGATCAGTCA -ACGGAAGAAGGTCCAGATGATCCA -ACGGAAGAAGGTCCAGATACGACA -ACGGAAGAAGGTCCAGATAGCTCA -ACGGAAGAAGGTCCAGATTCACGT -ACGGAAGAAGGTCCAGATCGTAGT -ACGGAAGAAGGTCCAGATGTCAGT -ACGGAAGAAGGTCCAGATGAAGGT -ACGGAAGAAGGTCCAGATAACCGT -ACGGAAGAAGGTCCAGATTTGTGC -ACGGAAGAAGGTCCAGATCTAAGC -ACGGAAGAAGGTCCAGATACTAGC -ACGGAAGAAGGTCCAGATAGATGC -ACGGAAGAAGGTCCAGATTGAAGG -ACGGAAGAAGGTCCAGATCAATGG -ACGGAAGAAGGTCCAGATATGAGG -ACGGAAGAAGGTCCAGATAATGGG -ACGGAAGAAGGTCCAGATTCCTGA -ACGGAAGAAGGTCCAGATTAGCGA -ACGGAAGAAGGTCCAGATCACAGA -ACGGAAGAAGGTCCAGATGCAAGA -ACGGAAGAAGGTCCAGATGGTTGA -ACGGAAGAAGGTCCAGATTCCGAT -ACGGAAGAAGGTCCAGATTGGCAT -ACGGAAGAAGGTCCAGATCGAGAT -ACGGAAGAAGGTCCAGATTACCAC -ACGGAAGAAGGTCCAGATCAGAAC -ACGGAAGAAGGTCCAGATGTCTAC -ACGGAAGAAGGTCCAGATACGTAC -ACGGAAGAAGGTCCAGATAGTGAC -ACGGAAGAAGGTCCAGATCTGTAG -ACGGAAGAAGGTCCAGATCCTAAG -ACGGAAGAAGGTCCAGATGTTCAG -ACGGAAGAAGGTCCAGATGCATAG -ACGGAAGAAGGTCCAGATGACAAG -ACGGAAGAAGGTCCAGATAAGCAG -ACGGAAGAAGGTCCAGATCGTCAA -ACGGAAGAAGGTCCAGATGCTGAA -ACGGAAGAAGGTCCAGATAGTACG -ACGGAAGAAGGTCCAGATATCCGA -ACGGAAGAAGGTCCAGATATGGGA -ACGGAAGAAGGTCCAGATGTGCAA -ACGGAAGAAGGTCCAGATGAGGAA -ACGGAAGAAGGTCCAGATCAGGTA -ACGGAAGAAGGTCCAGATGACTCT -ACGGAAGAAGGTCCAGATAGTCCT -ACGGAAGAAGGTCCAGATTAAGCC -ACGGAAGAAGGTCCAGATATAGCC -ACGGAAGAAGGTCCAGATTAACCG -ACGGAAGAAGGTCCAGATATGCCA -ACGGAAGAAGGTACAACGGGAAAC -ACGGAAGAAGGTACAACGAACACC -ACGGAAGAAGGTACAACGATCGAG -ACGGAAGAAGGTACAACGCTCCTT -ACGGAAGAAGGTACAACGCCTGTT -ACGGAAGAAGGTACAACGCGGTTT -ACGGAAGAAGGTACAACGGTGGTT -ACGGAAGAAGGTACAACGGCCTTT -ACGGAAGAAGGTACAACGGGTCTT -ACGGAAGAAGGTACAACGACGCTT -ACGGAAGAAGGTACAACGAGCGTT -ACGGAAGAAGGTACAACGTTCGTC -ACGGAAGAAGGTACAACGTCTCTC -ACGGAAGAAGGTACAACGTGGATC -ACGGAAGAAGGTACAACGCACTTC -ACGGAAGAAGGTACAACGGTACTC -ACGGAAGAAGGTACAACGGATGTC -ACGGAAGAAGGTACAACGACAGTC -ACGGAAGAAGGTACAACGTTGCTG -ACGGAAGAAGGTACAACGTCCATG -ACGGAAGAAGGTACAACGTGTGTG -ACGGAAGAAGGTACAACGCTAGTG -ACGGAAGAAGGTACAACGCATCTG -ACGGAAGAAGGTACAACGGAGTTG -ACGGAAGAAGGTACAACGAGACTG -ACGGAAGAAGGTACAACGTCGGTA -ACGGAAGAAGGTACAACGTGCCTA -ACGGAAGAAGGTACAACGCCACTA -ACGGAAGAAGGTACAACGGGAGTA -ACGGAAGAAGGTACAACGTCGTCT -ACGGAAGAAGGTACAACGTGCACT -ACGGAAGAAGGTACAACGCTGACT -ACGGAAGAAGGTACAACGCAACCT -ACGGAAGAAGGTACAACGGCTACT -ACGGAAGAAGGTACAACGGGATCT -ACGGAAGAAGGTACAACGAAGGCT -ACGGAAGAAGGTACAACGTCAACC -ACGGAAGAAGGTACAACGTGTTCC -ACGGAAGAAGGTACAACGATTCCC -ACGGAAGAAGGTACAACGTTCTCG -ACGGAAGAAGGTACAACGTAGACG -ACGGAAGAAGGTACAACGGTAACG -ACGGAAGAAGGTACAACGACTTCG -ACGGAAGAAGGTACAACGTACGCA -ACGGAAGAAGGTACAACGCTTGCA -ACGGAAGAAGGTACAACGCGAACA -ACGGAAGAAGGTACAACGCAGTCA -ACGGAAGAAGGTACAACGGATCCA -ACGGAAGAAGGTACAACGACGACA -ACGGAAGAAGGTACAACGAGCTCA -ACGGAAGAAGGTACAACGTCACGT -ACGGAAGAAGGTACAACGCGTAGT -ACGGAAGAAGGTACAACGGTCAGT -ACGGAAGAAGGTACAACGGAAGGT -ACGGAAGAAGGTACAACGAACCGT -ACGGAAGAAGGTACAACGTTGTGC -ACGGAAGAAGGTACAACGCTAAGC -ACGGAAGAAGGTACAACGACTAGC -ACGGAAGAAGGTACAACGAGATGC -ACGGAAGAAGGTACAACGTGAAGG -ACGGAAGAAGGTACAACGCAATGG -ACGGAAGAAGGTACAACGATGAGG -ACGGAAGAAGGTACAACGAATGGG -ACGGAAGAAGGTACAACGTCCTGA -ACGGAAGAAGGTACAACGTAGCGA -ACGGAAGAAGGTACAACGCACAGA -ACGGAAGAAGGTACAACGGCAAGA -ACGGAAGAAGGTACAACGGGTTGA -ACGGAAGAAGGTACAACGTCCGAT -ACGGAAGAAGGTACAACGTGGCAT -ACGGAAGAAGGTACAACGCGAGAT -ACGGAAGAAGGTACAACGTACCAC -ACGGAAGAAGGTACAACGCAGAAC -ACGGAAGAAGGTACAACGGTCTAC -ACGGAAGAAGGTACAACGACGTAC -ACGGAAGAAGGTACAACGAGTGAC -ACGGAAGAAGGTACAACGCTGTAG -ACGGAAGAAGGTACAACGCCTAAG -ACGGAAGAAGGTACAACGGTTCAG -ACGGAAGAAGGTACAACGGCATAG -ACGGAAGAAGGTACAACGGACAAG -ACGGAAGAAGGTACAACGAAGCAG -ACGGAAGAAGGTACAACGCGTCAA -ACGGAAGAAGGTACAACGGCTGAA -ACGGAAGAAGGTACAACGAGTACG -ACGGAAGAAGGTACAACGATCCGA -ACGGAAGAAGGTACAACGATGGGA -ACGGAAGAAGGTACAACGGTGCAA -ACGGAAGAAGGTACAACGGAGGAA -ACGGAAGAAGGTACAACGCAGGTA -ACGGAAGAAGGTACAACGGACTCT -ACGGAAGAAGGTACAACGAGTCCT -ACGGAAGAAGGTACAACGTAAGCC -ACGGAAGAAGGTACAACGATAGCC -ACGGAAGAAGGTACAACGTAACCG -ACGGAAGAAGGTACAACGATGCCA -ACGGAAGAAGGTTCAAGCGGAAAC -ACGGAAGAAGGTTCAAGCAACACC -ACGGAAGAAGGTTCAAGCATCGAG -ACGGAAGAAGGTTCAAGCCTCCTT -ACGGAAGAAGGTTCAAGCCCTGTT -ACGGAAGAAGGTTCAAGCCGGTTT -ACGGAAGAAGGTTCAAGCGTGGTT -ACGGAAGAAGGTTCAAGCGCCTTT -ACGGAAGAAGGTTCAAGCGGTCTT -ACGGAAGAAGGTTCAAGCACGCTT -ACGGAAGAAGGTTCAAGCAGCGTT -ACGGAAGAAGGTTCAAGCTTCGTC -ACGGAAGAAGGTTCAAGCTCTCTC -ACGGAAGAAGGTTCAAGCTGGATC -ACGGAAGAAGGTTCAAGCCACTTC -ACGGAAGAAGGTTCAAGCGTACTC -ACGGAAGAAGGTTCAAGCGATGTC -ACGGAAGAAGGTTCAAGCACAGTC -ACGGAAGAAGGTTCAAGCTTGCTG -ACGGAAGAAGGTTCAAGCTCCATG -ACGGAAGAAGGTTCAAGCTGTGTG -ACGGAAGAAGGTTCAAGCCTAGTG -ACGGAAGAAGGTTCAAGCCATCTG -ACGGAAGAAGGTTCAAGCGAGTTG -ACGGAAGAAGGTTCAAGCAGACTG -ACGGAAGAAGGTTCAAGCTCGGTA -ACGGAAGAAGGTTCAAGCTGCCTA -ACGGAAGAAGGTTCAAGCCCACTA -ACGGAAGAAGGTTCAAGCGGAGTA -ACGGAAGAAGGTTCAAGCTCGTCT -ACGGAAGAAGGTTCAAGCTGCACT -ACGGAAGAAGGTTCAAGCCTGACT -ACGGAAGAAGGTTCAAGCCAACCT -ACGGAAGAAGGTTCAAGCGCTACT -ACGGAAGAAGGTTCAAGCGGATCT -ACGGAAGAAGGTTCAAGCAAGGCT -ACGGAAGAAGGTTCAAGCTCAACC -ACGGAAGAAGGTTCAAGCTGTTCC -ACGGAAGAAGGTTCAAGCATTCCC -ACGGAAGAAGGTTCAAGCTTCTCG -ACGGAAGAAGGTTCAAGCTAGACG -ACGGAAGAAGGTTCAAGCGTAACG -ACGGAAGAAGGTTCAAGCACTTCG -ACGGAAGAAGGTTCAAGCTACGCA -ACGGAAGAAGGTTCAAGCCTTGCA -ACGGAAGAAGGTTCAAGCCGAACA -ACGGAAGAAGGTTCAAGCCAGTCA -ACGGAAGAAGGTTCAAGCGATCCA -ACGGAAGAAGGTTCAAGCACGACA -ACGGAAGAAGGTTCAAGCAGCTCA -ACGGAAGAAGGTTCAAGCTCACGT -ACGGAAGAAGGTTCAAGCCGTAGT -ACGGAAGAAGGTTCAAGCGTCAGT -ACGGAAGAAGGTTCAAGCGAAGGT -ACGGAAGAAGGTTCAAGCAACCGT -ACGGAAGAAGGTTCAAGCTTGTGC -ACGGAAGAAGGTTCAAGCCTAAGC -ACGGAAGAAGGTTCAAGCACTAGC -ACGGAAGAAGGTTCAAGCAGATGC -ACGGAAGAAGGTTCAAGCTGAAGG -ACGGAAGAAGGTTCAAGCCAATGG -ACGGAAGAAGGTTCAAGCATGAGG -ACGGAAGAAGGTTCAAGCAATGGG -ACGGAAGAAGGTTCAAGCTCCTGA -ACGGAAGAAGGTTCAAGCTAGCGA -ACGGAAGAAGGTTCAAGCCACAGA -ACGGAAGAAGGTTCAAGCGCAAGA -ACGGAAGAAGGTTCAAGCGGTTGA -ACGGAAGAAGGTTCAAGCTCCGAT -ACGGAAGAAGGTTCAAGCTGGCAT -ACGGAAGAAGGTTCAAGCCGAGAT -ACGGAAGAAGGTTCAAGCTACCAC -ACGGAAGAAGGTTCAAGCCAGAAC -ACGGAAGAAGGTTCAAGCGTCTAC -ACGGAAGAAGGTTCAAGCACGTAC -ACGGAAGAAGGTTCAAGCAGTGAC -ACGGAAGAAGGTTCAAGCCTGTAG -ACGGAAGAAGGTTCAAGCCCTAAG -ACGGAAGAAGGTTCAAGCGTTCAG -ACGGAAGAAGGTTCAAGCGCATAG -ACGGAAGAAGGTTCAAGCGACAAG -ACGGAAGAAGGTTCAAGCAAGCAG -ACGGAAGAAGGTTCAAGCCGTCAA -ACGGAAGAAGGTTCAAGCGCTGAA -ACGGAAGAAGGTTCAAGCAGTACG -ACGGAAGAAGGTTCAAGCATCCGA -ACGGAAGAAGGTTCAAGCATGGGA -ACGGAAGAAGGTTCAAGCGTGCAA -ACGGAAGAAGGTTCAAGCGAGGAA -ACGGAAGAAGGTTCAAGCCAGGTA -ACGGAAGAAGGTTCAAGCGACTCT -ACGGAAGAAGGTTCAAGCAGTCCT -ACGGAAGAAGGTTCAAGCTAAGCC -ACGGAAGAAGGTTCAAGCATAGCC -ACGGAAGAAGGTTCAAGCTAACCG -ACGGAAGAAGGTTCAAGCATGCCA -ACGGAAGAAGGTCGTTCAGGAAAC -ACGGAAGAAGGTCGTTCAAACACC -ACGGAAGAAGGTCGTTCAATCGAG -ACGGAAGAAGGTCGTTCACTCCTT -ACGGAAGAAGGTCGTTCACCTGTT -ACGGAAGAAGGTCGTTCACGGTTT -ACGGAAGAAGGTCGTTCAGTGGTT -ACGGAAGAAGGTCGTTCAGCCTTT -ACGGAAGAAGGTCGTTCAGGTCTT -ACGGAAGAAGGTCGTTCAACGCTT -ACGGAAGAAGGTCGTTCAAGCGTT -ACGGAAGAAGGTCGTTCATTCGTC -ACGGAAGAAGGTCGTTCATCTCTC -ACGGAAGAAGGTCGTTCATGGATC -ACGGAAGAAGGTCGTTCACACTTC -ACGGAAGAAGGTCGTTCAGTACTC -ACGGAAGAAGGTCGTTCAGATGTC -ACGGAAGAAGGTCGTTCAACAGTC -ACGGAAGAAGGTCGTTCATTGCTG -ACGGAAGAAGGTCGTTCATCCATG -ACGGAAGAAGGTCGTTCATGTGTG -ACGGAAGAAGGTCGTTCACTAGTG -ACGGAAGAAGGTCGTTCACATCTG -ACGGAAGAAGGTCGTTCAGAGTTG -ACGGAAGAAGGTCGTTCAAGACTG -ACGGAAGAAGGTCGTTCATCGGTA -ACGGAAGAAGGTCGTTCATGCCTA -ACGGAAGAAGGTCGTTCACCACTA -ACGGAAGAAGGTCGTTCAGGAGTA -ACGGAAGAAGGTCGTTCATCGTCT -ACGGAAGAAGGTCGTTCATGCACT -ACGGAAGAAGGTCGTTCACTGACT -ACGGAAGAAGGTCGTTCACAACCT -ACGGAAGAAGGTCGTTCAGCTACT -ACGGAAGAAGGTCGTTCAGGATCT -ACGGAAGAAGGTCGTTCAAAGGCT -ACGGAAGAAGGTCGTTCATCAACC -ACGGAAGAAGGTCGTTCATGTTCC -ACGGAAGAAGGTCGTTCAATTCCC -ACGGAAGAAGGTCGTTCATTCTCG -ACGGAAGAAGGTCGTTCATAGACG -ACGGAAGAAGGTCGTTCAGTAACG -ACGGAAGAAGGTCGTTCAACTTCG -ACGGAAGAAGGTCGTTCATACGCA -ACGGAAGAAGGTCGTTCACTTGCA -ACGGAAGAAGGTCGTTCACGAACA -ACGGAAGAAGGTCGTTCACAGTCA -ACGGAAGAAGGTCGTTCAGATCCA -ACGGAAGAAGGTCGTTCAACGACA -ACGGAAGAAGGTCGTTCAAGCTCA -ACGGAAGAAGGTCGTTCATCACGT -ACGGAAGAAGGTCGTTCACGTAGT -ACGGAAGAAGGTCGTTCAGTCAGT -ACGGAAGAAGGTCGTTCAGAAGGT -ACGGAAGAAGGTCGTTCAAACCGT -ACGGAAGAAGGTCGTTCATTGTGC -ACGGAAGAAGGTCGTTCACTAAGC -ACGGAAGAAGGTCGTTCAACTAGC -ACGGAAGAAGGTCGTTCAAGATGC -ACGGAAGAAGGTCGTTCATGAAGG -ACGGAAGAAGGTCGTTCACAATGG -ACGGAAGAAGGTCGTTCAATGAGG -ACGGAAGAAGGTCGTTCAAATGGG -ACGGAAGAAGGTCGTTCATCCTGA -ACGGAAGAAGGTCGTTCATAGCGA -ACGGAAGAAGGTCGTTCACACAGA -ACGGAAGAAGGTCGTTCAGCAAGA -ACGGAAGAAGGTCGTTCAGGTTGA -ACGGAAGAAGGTCGTTCATCCGAT -ACGGAAGAAGGTCGTTCATGGCAT -ACGGAAGAAGGTCGTTCACGAGAT -ACGGAAGAAGGTCGTTCATACCAC -ACGGAAGAAGGTCGTTCACAGAAC -ACGGAAGAAGGTCGTTCAGTCTAC -ACGGAAGAAGGTCGTTCAACGTAC -ACGGAAGAAGGTCGTTCAAGTGAC -ACGGAAGAAGGTCGTTCACTGTAG -ACGGAAGAAGGTCGTTCACCTAAG -ACGGAAGAAGGTCGTTCAGTTCAG -ACGGAAGAAGGTCGTTCAGCATAG -ACGGAAGAAGGTCGTTCAGACAAG -ACGGAAGAAGGTCGTTCAAAGCAG -ACGGAAGAAGGTCGTTCACGTCAA -ACGGAAGAAGGTCGTTCAGCTGAA -ACGGAAGAAGGTCGTTCAAGTACG -ACGGAAGAAGGTCGTTCAATCCGA -ACGGAAGAAGGTCGTTCAATGGGA -ACGGAAGAAGGTCGTTCAGTGCAA -ACGGAAGAAGGTCGTTCAGAGGAA -ACGGAAGAAGGTCGTTCACAGGTA -ACGGAAGAAGGTCGTTCAGACTCT -ACGGAAGAAGGTCGTTCAAGTCCT -ACGGAAGAAGGTCGTTCATAAGCC -ACGGAAGAAGGTCGTTCAATAGCC -ACGGAAGAAGGTCGTTCATAACCG -ACGGAAGAAGGTCGTTCAATGCCA -ACGGAAGAAGGTAGTCGTGGAAAC -ACGGAAGAAGGTAGTCGTAACACC -ACGGAAGAAGGTAGTCGTATCGAG -ACGGAAGAAGGTAGTCGTCTCCTT -ACGGAAGAAGGTAGTCGTCCTGTT -ACGGAAGAAGGTAGTCGTCGGTTT -ACGGAAGAAGGTAGTCGTGTGGTT -ACGGAAGAAGGTAGTCGTGCCTTT -ACGGAAGAAGGTAGTCGTGGTCTT -ACGGAAGAAGGTAGTCGTACGCTT -ACGGAAGAAGGTAGTCGTAGCGTT -ACGGAAGAAGGTAGTCGTTTCGTC -ACGGAAGAAGGTAGTCGTTCTCTC -ACGGAAGAAGGTAGTCGTTGGATC -ACGGAAGAAGGTAGTCGTCACTTC -ACGGAAGAAGGTAGTCGTGTACTC -ACGGAAGAAGGTAGTCGTGATGTC -ACGGAAGAAGGTAGTCGTACAGTC -ACGGAAGAAGGTAGTCGTTTGCTG -ACGGAAGAAGGTAGTCGTTCCATG -ACGGAAGAAGGTAGTCGTTGTGTG -ACGGAAGAAGGTAGTCGTCTAGTG -ACGGAAGAAGGTAGTCGTCATCTG -ACGGAAGAAGGTAGTCGTGAGTTG -ACGGAAGAAGGTAGTCGTAGACTG -ACGGAAGAAGGTAGTCGTTCGGTA -ACGGAAGAAGGTAGTCGTTGCCTA -ACGGAAGAAGGTAGTCGTCCACTA -ACGGAAGAAGGTAGTCGTGGAGTA -ACGGAAGAAGGTAGTCGTTCGTCT -ACGGAAGAAGGTAGTCGTTGCACT -ACGGAAGAAGGTAGTCGTCTGACT -ACGGAAGAAGGTAGTCGTCAACCT -ACGGAAGAAGGTAGTCGTGCTACT -ACGGAAGAAGGTAGTCGTGGATCT -ACGGAAGAAGGTAGTCGTAAGGCT -ACGGAAGAAGGTAGTCGTTCAACC -ACGGAAGAAGGTAGTCGTTGTTCC -ACGGAAGAAGGTAGTCGTATTCCC -ACGGAAGAAGGTAGTCGTTTCTCG -ACGGAAGAAGGTAGTCGTTAGACG -ACGGAAGAAGGTAGTCGTGTAACG -ACGGAAGAAGGTAGTCGTACTTCG -ACGGAAGAAGGTAGTCGTTACGCA -ACGGAAGAAGGTAGTCGTCTTGCA -ACGGAAGAAGGTAGTCGTCGAACA -ACGGAAGAAGGTAGTCGTCAGTCA -ACGGAAGAAGGTAGTCGTGATCCA -ACGGAAGAAGGTAGTCGTACGACA -ACGGAAGAAGGTAGTCGTAGCTCA -ACGGAAGAAGGTAGTCGTTCACGT -ACGGAAGAAGGTAGTCGTCGTAGT -ACGGAAGAAGGTAGTCGTGTCAGT -ACGGAAGAAGGTAGTCGTGAAGGT -ACGGAAGAAGGTAGTCGTAACCGT -ACGGAAGAAGGTAGTCGTTTGTGC -ACGGAAGAAGGTAGTCGTCTAAGC -ACGGAAGAAGGTAGTCGTACTAGC -ACGGAAGAAGGTAGTCGTAGATGC -ACGGAAGAAGGTAGTCGTTGAAGG -ACGGAAGAAGGTAGTCGTCAATGG -ACGGAAGAAGGTAGTCGTATGAGG -ACGGAAGAAGGTAGTCGTAATGGG -ACGGAAGAAGGTAGTCGTTCCTGA -ACGGAAGAAGGTAGTCGTTAGCGA -ACGGAAGAAGGTAGTCGTCACAGA -ACGGAAGAAGGTAGTCGTGCAAGA -ACGGAAGAAGGTAGTCGTGGTTGA -ACGGAAGAAGGTAGTCGTTCCGAT -ACGGAAGAAGGTAGTCGTTGGCAT -ACGGAAGAAGGTAGTCGTCGAGAT -ACGGAAGAAGGTAGTCGTTACCAC -ACGGAAGAAGGTAGTCGTCAGAAC -ACGGAAGAAGGTAGTCGTGTCTAC -ACGGAAGAAGGTAGTCGTACGTAC -ACGGAAGAAGGTAGTCGTAGTGAC -ACGGAAGAAGGTAGTCGTCTGTAG -ACGGAAGAAGGTAGTCGTCCTAAG -ACGGAAGAAGGTAGTCGTGTTCAG -ACGGAAGAAGGTAGTCGTGCATAG -ACGGAAGAAGGTAGTCGTGACAAG -ACGGAAGAAGGTAGTCGTAAGCAG -ACGGAAGAAGGTAGTCGTCGTCAA -ACGGAAGAAGGTAGTCGTGCTGAA -ACGGAAGAAGGTAGTCGTAGTACG -ACGGAAGAAGGTAGTCGTATCCGA -ACGGAAGAAGGTAGTCGTATGGGA -ACGGAAGAAGGTAGTCGTGTGCAA -ACGGAAGAAGGTAGTCGTGAGGAA -ACGGAAGAAGGTAGTCGTCAGGTA -ACGGAAGAAGGTAGTCGTGACTCT -ACGGAAGAAGGTAGTCGTAGTCCT -ACGGAAGAAGGTAGTCGTTAAGCC -ACGGAAGAAGGTAGTCGTATAGCC -ACGGAAGAAGGTAGTCGTTAACCG -ACGGAAGAAGGTAGTCGTATGCCA -ACGGAAGAAGGTAGTGTCGGAAAC -ACGGAAGAAGGTAGTGTCAACACC -ACGGAAGAAGGTAGTGTCATCGAG -ACGGAAGAAGGTAGTGTCCTCCTT -ACGGAAGAAGGTAGTGTCCCTGTT -ACGGAAGAAGGTAGTGTCCGGTTT -ACGGAAGAAGGTAGTGTCGTGGTT -ACGGAAGAAGGTAGTGTCGCCTTT -ACGGAAGAAGGTAGTGTCGGTCTT -ACGGAAGAAGGTAGTGTCACGCTT -ACGGAAGAAGGTAGTGTCAGCGTT -ACGGAAGAAGGTAGTGTCTTCGTC -ACGGAAGAAGGTAGTGTCTCTCTC -ACGGAAGAAGGTAGTGTCTGGATC -ACGGAAGAAGGTAGTGTCCACTTC -ACGGAAGAAGGTAGTGTCGTACTC -ACGGAAGAAGGTAGTGTCGATGTC -ACGGAAGAAGGTAGTGTCACAGTC -ACGGAAGAAGGTAGTGTCTTGCTG -ACGGAAGAAGGTAGTGTCTCCATG -ACGGAAGAAGGTAGTGTCTGTGTG -ACGGAAGAAGGTAGTGTCCTAGTG -ACGGAAGAAGGTAGTGTCCATCTG -ACGGAAGAAGGTAGTGTCGAGTTG -ACGGAAGAAGGTAGTGTCAGACTG -ACGGAAGAAGGTAGTGTCTCGGTA -ACGGAAGAAGGTAGTGTCTGCCTA -ACGGAAGAAGGTAGTGTCCCACTA -ACGGAAGAAGGTAGTGTCGGAGTA -ACGGAAGAAGGTAGTGTCTCGTCT -ACGGAAGAAGGTAGTGTCTGCACT -ACGGAAGAAGGTAGTGTCCTGACT -ACGGAAGAAGGTAGTGTCCAACCT -ACGGAAGAAGGTAGTGTCGCTACT -ACGGAAGAAGGTAGTGTCGGATCT -ACGGAAGAAGGTAGTGTCAAGGCT -ACGGAAGAAGGTAGTGTCTCAACC -ACGGAAGAAGGTAGTGTCTGTTCC -ACGGAAGAAGGTAGTGTCATTCCC -ACGGAAGAAGGTAGTGTCTTCTCG -ACGGAAGAAGGTAGTGTCTAGACG -ACGGAAGAAGGTAGTGTCGTAACG -ACGGAAGAAGGTAGTGTCACTTCG -ACGGAAGAAGGTAGTGTCTACGCA -ACGGAAGAAGGTAGTGTCCTTGCA -ACGGAAGAAGGTAGTGTCCGAACA -ACGGAAGAAGGTAGTGTCCAGTCA -ACGGAAGAAGGTAGTGTCGATCCA -ACGGAAGAAGGTAGTGTCACGACA -ACGGAAGAAGGTAGTGTCAGCTCA -ACGGAAGAAGGTAGTGTCTCACGT -ACGGAAGAAGGTAGTGTCCGTAGT -ACGGAAGAAGGTAGTGTCGTCAGT -ACGGAAGAAGGTAGTGTCGAAGGT -ACGGAAGAAGGTAGTGTCAACCGT -ACGGAAGAAGGTAGTGTCTTGTGC -ACGGAAGAAGGTAGTGTCCTAAGC -ACGGAAGAAGGTAGTGTCACTAGC -ACGGAAGAAGGTAGTGTCAGATGC -ACGGAAGAAGGTAGTGTCTGAAGG -ACGGAAGAAGGTAGTGTCCAATGG -ACGGAAGAAGGTAGTGTCATGAGG -ACGGAAGAAGGTAGTGTCAATGGG -ACGGAAGAAGGTAGTGTCTCCTGA -ACGGAAGAAGGTAGTGTCTAGCGA -ACGGAAGAAGGTAGTGTCCACAGA -ACGGAAGAAGGTAGTGTCGCAAGA -ACGGAAGAAGGTAGTGTCGGTTGA -ACGGAAGAAGGTAGTGTCTCCGAT -ACGGAAGAAGGTAGTGTCTGGCAT -ACGGAAGAAGGTAGTGTCCGAGAT -ACGGAAGAAGGTAGTGTCTACCAC -ACGGAAGAAGGTAGTGTCCAGAAC -ACGGAAGAAGGTAGTGTCGTCTAC -ACGGAAGAAGGTAGTGTCACGTAC -ACGGAAGAAGGTAGTGTCAGTGAC -ACGGAAGAAGGTAGTGTCCTGTAG -ACGGAAGAAGGTAGTGTCCCTAAG -ACGGAAGAAGGTAGTGTCGTTCAG -ACGGAAGAAGGTAGTGTCGCATAG -ACGGAAGAAGGTAGTGTCGACAAG -ACGGAAGAAGGTAGTGTCAAGCAG -ACGGAAGAAGGTAGTGTCCGTCAA -ACGGAAGAAGGTAGTGTCGCTGAA -ACGGAAGAAGGTAGTGTCAGTACG -ACGGAAGAAGGTAGTGTCATCCGA -ACGGAAGAAGGTAGTGTCATGGGA -ACGGAAGAAGGTAGTGTCGTGCAA -ACGGAAGAAGGTAGTGTCGAGGAA -ACGGAAGAAGGTAGTGTCCAGGTA -ACGGAAGAAGGTAGTGTCGACTCT -ACGGAAGAAGGTAGTGTCAGTCCT -ACGGAAGAAGGTAGTGTCTAAGCC -ACGGAAGAAGGTAGTGTCATAGCC -ACGGAAGAAGGTAGTGTCTAACCG -ACGGAAGAAGGTAGTGTCATGCCA -ACGGAAGAAGGTGGTGAAGGAAAC -ACGGAAGAAGGTGGTGAAAACACC -ACGGAAGAAGGTGGTGAAATCGAG -ACGGAAGAAGGTGGTGAACTCCTT -ACGGAAGAAGGTGGTGAACCTGTT -ACGGAAGAAGGTGGTGAACGGTTT -ACGGAAGAAGGTGGTGAAGTGGTT -ACGGAAGAAGGTGGTGAAGCCTTT -ACGGAAGAAGGTGGTGAAGGTCTT -ACGGAAGAAGGTGGTGAAACGCTT -ACGGAAGAAGGTGGTGAAAGCGTT -ACGGAAGAAGGTGGTGAATTCGTC -ACGGAAGAAGGTGGTGAATCTCTC -ACGGAAGAAGGTGGTGAATGGATC -ACGGAAGAAGGTGGTGAACACTTC -ACGGAAGAAGGTGGTGAAGTACTC -ACGGAAGAAGGTGGTGAAGATGTC -ACGGAAGAAGGTGGTGAAACAGTC -ACGGAAGAAGGTGGTGAATTGCTG -ACGGAAGAAGGTGGTGAATCCATG -ACGGAAGAAGGTGGTGAATGTGTG -ACGGAAGAAGGTGGTGAACTAGTG -ACGGAAGAAGGTGGTGAACATCTG -ACGGAAGAAGGTGGTGAAGAGTTG -ACGGAAGAAGGTGGTGAAAGACTG -ACGGAAGAAGGTGGTGAATCGGTA -ACGGAAGAAGGTGGTGAATGCCTA -ACGGAAGAAGGTGGTGAACCACTA -ACGGAAGAAGGTGGTGAAGGAGTA -ACGGAAGAAGGTGGTGAATCGTCT -ACGGAAGAAGGTGGTGAATGCACT -ACGGAAGAAGGTGGTGAACTGACT -ACGGAAGAAGGTGGTGAACAACCT -ACGGAAGAAGGTGGTGAAGCTACT -ACGGAAGAAGGTGGTGAAGGATCT -ACGGAAGAAGGTGGTGAAAAGGCT -ACGGAAGAAGGTGGTGAATCAACC -ACGGAAGAAGGTGGTGAATGTTCC -ACGGAAGAAGGTGGTGAAATTCCC -ACGGAAGAAGGTGGTGAATTCTCG -ACGGAAGAAGGTGGTGAATAGACG -ACGGAAGAAGGTGGTGAAGTAACG -ACGGAAGAAGGTGGTGAAACTTCG -ACGGAAGAAGGTGGTGAATACGCA -ACGGAAGAAGGTGGTGAACTTGCA -ACGGAAGAAGGTGGTGAACGAACA -ACGGAAGAAGGTGGTGAACAGTCA -ACGGAAGAAGGTGGTGAAGATCCA -ACGGAAGAAGGTGGTGAAACGACA -ACGGAAGAAGGTGGTGAAAGCTCA -ACGGAAGAAGGTGGTGAATCACGT -ACGGAAGAAGGTGGTGAACGTAGT -ACGGAAGAAGGTGGTGAAGTCAGT -ACGGAAGAAGGTGGTGAAGAAGGT -ACGGAAGAAGGTGGTGAAAACCGT -ACGGAAGAAGGTGGTGAATTGTGC -ACGGAAGAAGGTGGTGAACTAAGC -ACGGAAGAAGGTGGTGAAACTAGC -ACGGAAGAAGGTGGTGAAAGATGC -ACGGAAGAAGGTGGTGAATGAAGG -ACGGAAGAAGGTGGTGAACAATGG -ACGGAAGAAGGTGGTGAAATGAGG -ACGGAAGAAGGTGGTGAAAATGGG -ACGGAAGAAGGTGGTGAATCCTGA -ACGGAAGAAGGTGGTGAATAGCGA -ACGGAAGAAGGTGGTGAACACAGA -ACGGAAGAAGGTGGTGAAGCAAGA -ACGGAAGAAGGTGGTGAAGGTTGA -ACGGAAGAAGGTGGTGAATCCGAT -ACGGAAGAAGGTGGTGAATGGCAT -ACGGAAGAAGGTGGTGAACGAGAT -ACGGAAGAAGGTGGTGAATACCAC -ACGGAAGAAGGTGGTGAACAGAAC -ACGGAAGAAGGTGGTGAAGTCTAC -ACGGAAGAAGGTGGTGAAACGTAC -ACGGAAGAAGGTGGTGAAAGTGAC -ACGGAAGAAGGTGGTGAACTGTAG -ACGGAAGAAGGTGGTGAACCTAAG -ACGGAAGAAGGTGGTGAAGTTCAG -ACGGAAGAAGGTGGTGAAGCATAG -ACGGAAGAAGGTGGTGAAGACAAG -ACGGAAGAAGGTGGTGAAAAGCAG -ACGGAAGAAGGTGGTGAACGTCAA -ACGGAAGAAGGTGGTGAAGCTGAA -ACGGAAGAAGGTGGTGAAAGTACG -ACGGAAGAAGGTGGTGAAATCCGA -ACGGAAGAAGGTGGTGAAATGGGA -ACGGAAGAAGGTGGTGAAGTGCAA -ACGGAAGAAGGTGGTGAAGAGGAA -ACGGAAGAAGGTGGTGAACAGGTA -ACGGAAGAAGGTGGTGAAGACTCT -ACGGAAGAAGGTGGTGAAAGTCCT -ACGGAAGAAGGTGGTGAATAAGCC -ACGGAAGAAGGTGGTGAAATAGCC -ACGGAAGAAGGTGGTGAATAACCG -ACGGAAGAAGGTGGTGAAATGCCA -ACGGAAGAAGGTCGTAACGGAAAC -ACGGAAGAAGGTCGTAACAACACC -ACGGAAGAAGGTCGTAACATCGAG -ACGGAAGAAGGTCGTAACCTCCTT -ACGGAAGAAGGTCGTAACCCTGTT -ACGGAAGAAGGTCGTAACCGGTTT -ACGGAAGAAGGTCGTAACGTGGTT -ACGGAAGAAGGTCGTAACGCCTTT -ACGGAAGAAGGTCGTAACGGTCTT -ACGGAAGAAGGTCGTAACACGCTT -ACGGAAGAAGGTCGTAACAGCGTT -ACGGAAGAAGGTCGTAACTTCGTC -ACGGAAGAAGGTCGTAACTCTCTC -ACGGAAGAAGGTCGTAACTGGATC -ACGGAAGAAGGTCGTAACCACTTC -ACGGAAGAAGGTCGTAACGTACTC -ACGGAAGAAGGTCGTAACGATGTC -ACGGAAGAAGGTCGTAACACAGTC -ACGGAAGAAGGTCGTAACTTGCTG -ACGGAAGAAGGTCGTAACTCCATG -ACGGAAGAAGGTCGTAACTGTGTG -ACGGAAGAAGGTCGTAACCTAGTG -ACGGAAGAAGGTCGTAACCATCTG -ACGGAAGAAGGTCGTAACGAGTTG -ACGGAAGAAGGTCGTAACAGACTG -ACGGAAGAAGGTCGTAACTCGGTA -ACGGAAGAAGGTCGTAACTGCCTA -ACGGAAGAAGGTCGTAACCCACTA -ACGGAAGAAGGTCGTAACGGAGTA -ACGGAAGAAGGTCGTAACTCGTCT -ACGGAAGAAGGTCGTAACTGCACT -ACGGAAGAAGGTCGTAACCTGACT -ACGGAAGAAGGTCGTAACCAACCT -ACGGAAGAAGGTCGTAACGCTACT -ACGGAAGAAGGTCGTAACGGATCT -ACGGAAGAAGGTCGTAACAAGGCT -ACGGAAGAAGGTCGTAACTCAACC -ACGGAAGAAGGTCGTAACTGTTCC -ACGGAAGAAGGTCGTAACATTCCC -ACGGAAGAAGGTCGTAACTTCTCG -ACGGAAGAAGGTCGTAACTAGACG -ACGGAAGAAGGTCGTAACGTAACG -ACGGAAGAAGGTCGTAACACTTCG -ACGGAAGAAGGTCGTAACTACGCA -ACGGAAGAAGGTCGTAACCTTGCA -ACGGAAGAAGGTCGTAACCGAACA -ACGGAAGAAGGTCGTAACCAGTCA -ACGGAAGAAGGTCGTAACGATCCA -ACGGAAGAAGGTCGTAACACGACA -ACGGAAGAAGGTCGTAACAGCTCA -ACGGAAGAAGGTCGTAACTCACGT -ACGGAAGAAGGTCGTAACCGTAGT -ACGGAAGAAGGTCGTAACGTCAGT -ACGGAAGAAGGTCGTAACGAAGGT -ACGGAAGAAGGTCGTAACAACCGT -ACGGAAGAAGGTCGTAACTTGTGC -ACGGAAGAAGGTCGTAACCTAAGC -ACGGAAGAAGGTCGTAACACTAGC -ACGGAAGAAGGTCGTAACAGATGC -ACGGAAGAAGGTCGTAACTGAAGG -ACGGAAGAAGGTCGTAACCAATGG -ACGGAAGAAGGTCGTAACATGAGG -ACGGAAGAAGGTCGTAACAATGGG -ACGGAAGAAGGTCGTAACTCCTGA -ACGGAAGAAGGTCGTAACTAGCGA -ACGGAAGAAGGTCGTAACCACAGA -ACGGAAGAAGGTCGTAACGCAAGA -ACGGAAGAAGGTCGTAACGGTTGA -ACGGAAGAAGGTCGTAACTCCGAT -ACGGAAGAAGGTCGTAACTGGCAT -ACGGAAGAAGGTCGTAACCGAGAT -ACGGAAGAAGGTCGTAACTACCAC -ACGGAAGAAGGTCGTAACCAGAAC -ACGGAAGAAGGTCGTAACGTCTAC -ACGGAAGAAGGTCGTAACACGTAC -ACGGAAGAAGGTCGTAACAGTGAC -ACGGAAGAAGGTCGTAACCTGTAG -ACGGAAGAAGGTCGTAACCCTAAG -ACGGAAGAAGGTCGTAACGTTCAG -ACGGAAGAAGGTCGTAACGCATAG -ACGGAAGAAGGTCGTAACGACAAG -ACGGAAGAAGGTCGTAACAAGCAG -ACGGAAGAAGGTCGTAACCGTCAA -ACGGAAGAAGGTCGTAACGCTGAA -ACGGAAGAAGGTCGTAACAGTACG -ACGGAAGAAGGTCGTAACATCCGA -ACGGAAGAAGGTCGTAACATGGGA -ACGGAAGAAGGTCGTAACGTGCAA -ACGGAAGAAGGTCGTAACGAGGAA -ACGGAAGAAGGTCGTAACCAGGTA -ACGGAAGAAGGTCGTAACGACTCT -ACGGAAGAAGGTCGTAACAGTCCT -ACGGAAGAAGGTCGTAACTAAGCC -ACGGAAGAAGGTCGTAACATAGCC -ACGGAAGAAGGTCGTAACTAACCG -ACGGAAGAAGGTCGTAACATGCCA -ACGGAAGAAGGTTGCTTGGGAAAC -ACGGAAGAAGGTTGCTTGAACACC -ACGGAAGAAGGTTGCTTGATCGAG -ACGGAAGAAGGTTGCTTGCTCCTT -ACGGAAGAAGGTTGCTTGCCTGTT -ACGGAAGAAGGTTGCTTGCGGTTT -ACGGAAGAAGGTTGCTTGGTGGTT -ACGGAAGAAGGTTGCTTGGCCTTT -ACGGAAGAAGGTTGCTTGGGTCTT -ACGGAAGAAGGTTGCTTGACGCTT -ACGGAAGAAGGTTGCTTGAGCGTT -ACGGAAGAAGGTTGCTTGTTCGTC -ACGGAAGAAGGTTGCTTGTCTCTC -ACGGAAGAAGGTTGCTTGTGGATC -ACGGAAGAAGGTTGCTTGCACTTC -ACGGAAGAAGGTTGCTTGGTACTC -ACGGAAGAAGGTTGCTTGGATGTC -ACGGAAGAAGGTTGCTTGACAGTC -ACGGAAGAAGGTTGCTTGTTGCTG -ACGGAAGAAGGTTGCTTGTCCATG -ACGGAAGAAGGTTGCTTGTGTGTG -ACGGAAGAAGGTTGCTTGCTAGTG -ACGGAAGAAGGTTGCTTGCATCTG -ACGGAAGAAGGTTGCTTGGAGTTG -ACGGAAGAAGGTTGCTTGAGACTG -ACGGAAGAAGGTTGCTTGTCGGTA -ACGGAAGAAGGTTGCTTGTGCCTA -ACGGAAGAAGGTTGCTTGCCACTA -ACGGAAGAAGGTTGCTTGGGAGTA -ACGGAAGAAGGTTGCTTGTCGTCT -ACGGAAGAAGGTTGCTTGTGCACT -ACGGAAGAAGGTTGCTTGCTGACT -ACGGAAGAAGGTTGCTTGCAACCT -ACGGAAGAAGGTTGCTTGGCTACT -ACGGAAGAAGGTTGCTTGGGATCT -ACGGAAGAAGGTTGCTTGAAGGCT -ACGGAAGAAGGTTGCTTGTCAACC -ACGGAAGAAGGTTGCTTGTGTTCC -ACGGAAGAAGGTTGCTTGATTCCC -ACGGAAGAAGGTTGCTTGTTCTCG -ACGGAAGAAGGTTGCTTGTAGACG -ACGGAAGAAGGTTGCTTGGTAACG -ACGGAAGAAGGTTGCTTGACTTCG -ACGGAAGAAGGTTGCTTGTACGCA -ACGGAAGAAGGTTGCTTGCTTGCA -ACGGAAGAAGGTTGCTTGCGAACA -ACGGAAGAAGGTTGCTTGCAGTCA -ACGGAAGAAGGTTGCTTGGATCCA -ACGGAAGAAGGTTGCTTGACGACA -ACGGAAGAAGGTTGCTTGAGCTCA -ACGGAAGAAGGTTGCTTGTCACGT -ACGGAAGAAGGTTGCTTGCGTAGT -ACGGAAGAAGGTTGCTTGGTCAGT -ACGGAAGAAGGTTGCTTGGAAGGT -ACGGAAGAAGGTTGCTTGAACCGT -ACGGAAGAAGGTTGCTTGTTGTGC -ACGGAAGAAGGTTGCTTGCTAAGC -ACGGAAGAAGGTTGCTTGACTAGC -ACGGAAGAAGGTTGCTTGAGATGC -ACGGAAGAAGGTTGCTTGTGAAGG -ACGGAAGAAGGTTGCTTGCAATGG -ACGGAAGAAGGTTGCTTGATGAGG -ACGGAAGAAGGTTGCTTGAATGGG -ACGGAAGAAGGTTGCTTGTCCTGA -ACGGAAGAAGGTTGCTTGTAGCGA -ACGGAAGAAGGTTGCTTGCACAGA -ACGGAAGAAGGTTGCTTGGCAAGA -ACGGAAGAAGGTTGCTTGGGTTGA -ACGGAAGAAGGTTGCTTGTCCGAT -ACGGAAGAAGGTTGCTTGTGGCAT -ACGGAAGAAGGTTGCTTGCGAGAT -ACGGAAGAAGGTTGCTTGTACCAC -ACGGAAGAAGGTTGCTTGCAGAAC -ACGGAAGAAGGTTGCTTGGTCTAC -ACGGAAGAAGGTTGCTTGACGTAC -ACGGAAGAAGGTTGCTTGAGTGAC -ACGGAAGAAGGTTGCTTGCTGTAG -ACGGAAGAAGGTTGCTTGCCTAAG -ACGGAAGAAGGTTGCTTGGTTCAG -ACGGAAGAAGGTTGCTTGGCATAG -ACGGAAGAAGGTTGCTTGGACAAG -ACGGAAGAAGGTTGCTTGAAGCAG -ACGGAAGAAGGTTGCTTGCGTCAA -ACGGAAGAAGGTTGCTTGGCTGAA -ACGGAAGAAGGTTGCTTGAGTACG -ACGGAAGAAGGTTGCTTGATCCGA -ACGGAAGAAGGTTGCTTGATGGGA -ACGGAAGAAGGTTGCTTGGTGCAA -ACGGAAGAAGGTTGCTTGGAGGAA -ACGGAAGAAGGTTGCTTGCAGGTA -ACGGAAGAAGGTTGCTTGGACTCT -ACGGAAGAAGGTTGCTTGAGTCCT -ACGGAAGAAGGTTGCTTGTAAGCC -ACGGAAGAAGGTTGCTTGATAGCC -ACGGAAGAAGGTTGCTTGTAACCG -ACGGAAGAAGGTTGCTTGATGCCA -ACGGAAGAAGGTAGCCTAGGAAAC -ACGGAAGAAGGTAGCCTAAACACC -ACGGAAGAAGGTAGCCTAATCGAG -ACGGAAGAAGGTAGCCTACTCCTT -ACGGAAGAAGGTAGCCTACCTGTT -ACGGAAGAAGGTAGCCTACGGTTT -ACGGAAGAAGGTAGCCTAGTGGTT -ACGGAAGAAGGTAGCCTAGCCTTT -ACGGAAGAAGGTAGCCTAGGTCTT -ACGGAAGAAGGTAGCCTAACGCTT -ACGGAAGAAGGTAGCCTAAGCGTT -ACGGAAGAAGGTAGCCTATTCGTC -ACGGAAGAAGGTAGCCTATCTCTC -ACGGAAGAAGGTAGCCTATGGATC -ACGGAAGAAGGTAGCCTACACTTC -ACGGAAGAAGGTAGCCTAGTACTC -ACGGAAGAAGGTAGCCTAGATGTC -ACGGAAGAAGGTAGCCTAACAGTC -ACGGAAGAAGGTAGCCTATTGCTG -ACGGAAGAAGGTAGCCTATCCATG -ACGGAAGAAGGTAGCCTATGTGTG -ACGGAAGAAGGTAGCCTACTAGTG -ACGGAAGAAGGTAGCCTACATCTG -ACGGAAGAAGGTAGCCTAGAGTTG -ACGGAAGAAGGTAGCCTAAGACTG -ACGGAAGAAGGTAGCCTATCGGTA -ACGGAAGAAGGTAGCCTATGCCTA -ACGGAAGAAGGTAGCCTACCACTA -ACGGAAGAAGGTAGCCTAGGAGTA -ACGGAAGAAGGTAGCCTATCGTCT -ACGGAAGAAGGTAGCCTATGCACT -ACGGAAGAAGGTAGCCTACTGACT -ACGGAAGAAGGTAGCCTACAACCT -ACGGAAGAAGGTAGCCTAGCTACT -ACGGAAGAAGGTAGCCTAGGATCT -ACGGAAGAAGGTAGCCTAAAGGCT -ACGGAAGAAGGTAGCCTATCAACC -ACGGAAGAAGGTAGCCTATGTTCC -ACGGAAGAAGGTAGCCTAATTCCC -ACGGAAGAAGGTAGCCTATTCTCG -ACGGAAGAAGGTAGCCTATAGACG -ACGGAAGAAGGTAGCCTAGTAACG -ACGGAAGAAGGTAGCCTAACTTCG -ACGGAAGAAGGTAGCCTATACGCA -ACGGAAGAAGGTAGCCTACTTGCA -ACGGAAGAAGGTAGCCTACGAACA -ACGGAAGAAGGTAGCCTACAGTCA -ACGGAAGAAGGTAGCCTAGATCCA -ACGGAAGAAGGTAGCCTAACGACA -ACGGAAGAAGGTAGCCTAAGCTCA -ACGGAAGAAGGTAGCCTATCACGT -ACGGAAGAAGGTAGCCTACGTAGT -ACGGAAGAAGGTAGCCTAGTCAGT -ACGGAAGAAGGTAGCCTAGAAGGT -ACGGAAGAAGGTAGCCTAAACCGT -ACGGAAGAAGGTAGCCTATTGTGC -ACGGAAGAAGGTAGCCTACTAAGC -ACGGAAGAAGGTAGCCTAACTAGC -ACGGAAGAAGGTAGCCTAAGATGC -ACGGAAGAAGGTAGCCTATGAAGG -ACGGAAGAAGGTAGCCTACAATGG -ACGGAAGAAGGTAGCCTAATGAGG -ACGGAAGAAGGTAGCCTAAATGGG -ACGGAAGAAGGTAGCCTATCCTGA -ACGGAAGAAGGTAGCCTATAGCGA -ACGGAAGAAGGTAGCCTACACAGA -ACGGAAGAAGGTAGCCTAGCAAGA -ACGGAAGAAGGTAGCCTAGGTTGA -ACGGAAGAAGGTAGCCTATCCGAT -ACGGAAGAAGGTAGCCTATGGCAT -ACGGAAGAAGGTAGCCTACGAGAT -ACGGAAGAAGGTAGCCTATACCAC -ACGGAAGAAGGTAGCCTACAGAAC -ACGGAAGAAGGTAGCCTAGTCTAC -ACGGAAGAAGGTAGCCTAACGTAC -ACGGAAGAAGGTAGCCTAAGTGAC -ACGGAAGAAGGTAGCCTACTGTAG -ACGGAAGAAGGTAGCCTACCTAAG -ACGGAAGAAGGTAGCCTAGTTCAG -ACGGAAGAAGGTAGCCTAGCATAG -ACGGAAGAAGGTAGCCTAGACAAG -ACGGAAGAAGGTAGCCTAAAGCAG -ACGGAAGAAGGTAGCCTACGTCAA -ACGGAAGAAGGTAGCCTAGCTGAA -ACGGAAGAAGGTAGCCTAAGTACG -ACGGAAGAAGGTAGCCTAATCCGA -ACGGAAGAAGGTAGCCTAATGGGA -ACGGAAGAAGGTAGCCTAGTGCAA -ACGGAAGAAGGTAGCCTAGAGGAA -ACGGAAGAAGGTAGCCTACAGGTA -ACGGAAGAAGGTAGCCTAGACTCT -ACGGAAGAAGGTAGCCTAAGTCCT -ACGGAAGAAGGTAGCCTATAAGCC -ACGGAAGAAGGTAGCCTAATAGCC -ACGGAAGAAGGTAGCCTATAACCG -ACGGAAGAAGGTAGCCTAATGCCA -ACGGAAGAAGGTAGCACTGGAAAC -ACGGAAGAAGGTAGCACTAACACC -ACGGAAGAAGGTAGCACTATCGAG -ACGGAAGAAGGTAGCACTCTCCTT -ACGGAAGAAGGTAGCACTCCTGTT -ACGGAAGAAGGTAGCACTCGGTTT -ACGGAAGAAGGTAGCACTGTGGTT -ACGGAAGAAGGTAGCACTGCCTTT -ACGGAAGAAGGTAGCACTGGTCTT -ACGGAAGAAGGTAGCACTACGCTT -ACGGAAGAAGGTAGCACTAGCGTT -ACGGAAGAAGGTAGCACTTTCGTC -ACGGAAGAAGGTAGCACTTCTCTC -ACGGAAGAAGGTAGCACTTGGATC -ACGGAAGAAGGTAGCACTCACTTC -ACGGAAGAAGGTAGCACTGTACTC -ACGGAAGAAGGTAGCACTGATGTC -ACGGAAGAAGGTAGCACTACAGTC -ACGGAAGAAGGTAGCACTTTGCTG -ACGGAAGAAGGTAGCACTTCCATG -ACGGAAGAAGGTAGCACTTGTGTG -ACGGAAGAAGGTAGCACTCTAGTG -ACGGAAGAAGGTAGCACTCATCTG -ACGGAAGAAGGTAGCACTGAGTTG -ACGGAAGAAGGTAGCACTAGACTG -ACGGAAGAAGGTAGCACTTCGGTA -ACGGAAGAAGGTAGCACTTGCCTA -ACGGAAGAAGGTAGCACTCCACTA -ACGGAAGAAGGTAGCACTGGAGTA -ACGGAAGAAGGTAGCACTTCGTCT -ACGGAAGAAGGTAGCACTTGCACT -ACGGAAGAAGGTAGCACTCTGACT -ACGGAAGAAGGTAGCACTCAACCT -ACGGAAGAAGGTAGCACTGCTACT -ACGGAAGAAGGTAGCACTGGATCT -ACGGAAGAAGGTAGCACTAAGGCT -ACGGAAGAAGGTAGCACTTCAACC -ACGGAAGAAGGTAGCACTTGTTCC -ACGGAAGAAGGTAGCACTATTCCC -ACGGAAGAAGGTAGCACTTTCTCG -ACGGAAGAAGGTAGCACTTAGACG -ACGGAAGAAGGTAGCACTGTAACG -ACGGAAGAAGGTAGCACTACTTCG -ACGGAAGAAGGTAGCACTTACGCA -ACGGAAGAAGGTAGCACTCTTGCA -ACGGAAGAAGGTAGCACTCGAACA -ACGGAAGAAGGTAGCACTCAGTCA -ACGGAAGAAGGTAGCACTGATCCA -ACGGAAGAAGGTAGCACTACGACA -ACGGAAGAAGGTAGCACTAGCTCA -ACGGAAGAAGGTAGCACTTCACGT -ACGGAAGAAGGTAGCACTCGTAGT -ACGGAAGAAGGTAGCACTGTCAGT -ACGGAAGAAGGTAGCACTGAAGGT -ACGGAAGAAGGTAGCACTAACCGT -ACGGAAGAAGGTAGCACTTTGTGC -ACGGAAGAAGGTAGCACTCTAAGC -ACGGAAGAAGGTAGCACTACTAGC -ACGGAAGAAGGTAGCACTAGATGC -ACGGAAGAAGGTAGCACTTGAAGG -ACGGAAGAAGGTAGCACTCAATGG -ACGGAAGAAGGTAGCACTATGAGG -ACGGAAGAAGGTAGCACTAATGGG -ACGGAAGAAGGTAGCACTTCCTGA -ACGGAAGAAGGTAGCACTTAGCGA -ACGGAAGAAGGTAGCACTCACAGA -ACGGAAGAAGGTAGCACTGCAAGA -ACGGAAGAAGGTAGCACTGGTTGA -ACGGAAGAAGGTAGCACTTCCGAT -ACGGAAGAAGGTAGCACTTGGCAT -ACGGAAGAAGGTAGCACTCGAGAT -ACGGAAGAAGGTAGCACTTACCAC -ACGGAAGAAGGTAGCACTCAGAAC -ACGGAAGAAGGTAGCACTGTCTAC -ACGGAAGAAGGTAGCACTACGTAC -ACGGAAGAAGGTAGCACTAGTGAC -ACGGAAGAAGGTAGCACTCTGTAG -ACGGAAGAAGGTAGCACTCCTAAG -ACGGAAGAAGGTAGCACTGTTCAG -ACGGAAGAAGGTAGCACTGCATAG -ACGGAAGAAGGTAGCACTGACAAG -ACGGAAGAAGGTAGCACTAAGCAG -ACGGAAGAAGGTAGCACTCGTCAA -ACGGAAGAAGGTAGCACTGCTGAA -ACGGAAGAAGGTAGCACTAGTACG -ACGGAAGAAGGTAGCACTATCCGA -ACGGAAGAAGGTAGCACTATGGGA -ACGGAAGAAGGTAGCACTGTGCAA -ACGGAAGAAGGTAGCACTGAGGAA -ACGGAAGAAGGTAGCACTCAGGTA -ACGGAAGAAGGTAGCACTGACTCT -ACGGAAGAAGGTAGCACTAGTCCT -ACGGAAGAAGGTAGCACTTAAGCC -ACGGAAGAAGGTAGCACTATAGCC -ACGGAAGAAGGTAGCACTTAACCG -ACGGAAGAAGGTAGCACTATGCCA -ACGGAAGAAGGTTGCAGAGGAAAC -ACGGAAGAAGGTTGCAGAAACACC -ACGGAAGAAGGTTGCAGAATCGAG -ACGGAAGAAGGTTGCAGACTCCTT -ACGGAAGAAGGTTGCAGACCTGTT -ACGGAAGAAGGTTGCAGACGGTTT -ACGGAAGAAGGTTGCAGAGTGGTT -ACGGAAGAAGGTTGCAGAGCCTTT -ACGGAAGAAGGTTGCAGAGGTCTT -ACGGAAGAAGGTTGCAGAACGCTT -ACGGAAGAAGGTTGCAGAAGCGTT -ACGGAAGAAGGTTGCAGATTCGTC -ACGGAAGAAGGTTGCAGATCTCTC -ACGGAAGAAGGTTGCAGATGGATC -ACGGAAGAAGGTTGCAGACACTTC -ACGGAAGAAGGTTGCAGAGTACTC -ACGGAAGAAGGTTGCAGAGATGTC -ACGGAAGAAGGTTGCAGAACAGTC -ACGGAAGAAGGTTGCAGATTGCTG -ACGGAAGAAGGTTGCAGATCCATG -ACGGAAGAAGGTTGCAGATGTGTG -ACGGAAGAAGGTTGCAGACTAGTG -ACGGAAGAAGGTTGCAGACATCTG -ACGGAAGAAGGTTGCAGAGAGTTG -ACGGAAGAAGGTTGCAGAAGACTG -ACGGAAGAAGGTTGCAGATCGGTA -ACGGAAGAAGGTTGCAGATGCCTA -ACGGAAGAAGGTTGCAGACCACTA -ACGGAAGAAGGTTGCAGAGGAGTA -ACGGAAGAAGGTTGCAGATCGTCT -ACGGAAGAAGGTTGCAGATGCACT -ACGGAAGAAGGTTGCAGACTGACT -ACGGAAGAAGGTTGCAGACAACCT -ACGGAAGAAGGTTGCAGAGCTACT -ACGGAAGAAGGTTGCAGAGGATCT -ACGGAAGAAGGTTGCAGAAAGGCT -ACGGAAGAAGGTTGCAGATCAACC -ACGGAAGAAGGTTGCAGATGTTCC -ACGGAAGAAGGTTGCAGAATTCCC -ACGGAAGAAGGTTGCAGATTCTCG -ACGGAAGAAGGTTGCAGATAGACG -ACGGAAGAAGGTTGCAGAGTAACG -ACGGAAGAAGGTTGCAGAACTTCG -ACGGAAGAAGGTTGCAGATACGCA -ACGGAAGAAGGTTGCAGACTTGCA -ACGGAAGAAGGTTGCAGACGAACA -ACGGAAGAAGGTTGCAGACAGTCA -ACGGAAGAAGGTTGCAGAGATCCA -ACGGAAGAAGGTTGCAGAACGACA -ACGGAAGAAGGTTGCAGAAGCTCA -ACGGAAGAAGGTTGCAGATCACGT -ACGGAAGAAGGTTGCAGACGTAGT -ACGGAAGAAGGTTGCAGAGTCAGT -ACGGAAGAAGGTTGCAGAGAAGGT -ACGGAAGAAGGTTGCAGAAACCGT -ACGGAAGAAGGTTGCAGATTGTGC -ACGGAAGAAGGTTGCAGACTAAGC -ACGGAAGAAGGTTGCAGAACTAGC -ACGGAAGAAGGTTGCAGAAGATGC -ACGGAAGAAGGTTGCAGATGAAGG -ACGGAAGAAGGTTGCAGACAATGG -ACGGAAGAAGGTTGCAGAATGAGG -ACGGAAGAAGGTTGCAGAAATGGG -ACGGAAGAAGGTTGCAGATCCTGA -ACGGAAGAAGGTTGCAGATAGCGA -ACGGAAGAAGGTTGCAGACACAGA -ACGGAAGAAGGTTGCAGAGCAAGA -ACGGAAGAAGGTTGCAGAGGTTGA -ACGGAAGAAGGTTGCAGATCCGAT -ACGGAAGAAGGTTGCAGATGGCAT -ACGGAAGAAGGTTGCAGACGAGAT -ACGGAAGAAGGTTGCAGATACCAC -ACGGAAGAAGGTTGCAGACAGAAC -ACGGAAGAAGGTTGCAGAGTCTAC -ACGGAAGAAGGTTGCAGAACGTAC -ACGGAAGAAGGTTGCAGAAGTGAC -ACGGAAGAAGGTTGCAGACTGTAG -ACGGAAGAAGGTTGCAGACCTAAG -ACGGAAGAAGGTTGCAGAGTTCAG -ACGGAAGAAGGTTGCAGAGCATAG -ACGGAAGAAGGTTGCAGAGACAAG -ACGGAAGAAGGTTGCAGAAAGCAG -ACGGAAGAAGGTTGCAGACGTCAA -ACGGAAGAAGGTTGCAGAGCTGAA -ACGGAAGAAGGTTGCAGAAGTACG -ACGGAAGAAGGTTGCAGAATCCGA -ACGGAAGAAGGTTGCAGAATGGGA -ACGGAAGAAGGTTGCAGAGTGCAA -ACGGAAGAAGGTTGCAGAGAGGAA -ACGGAAGAAGGTTGCAGACAGGTA -ACGGAAGAAGGTTGCAGAGACTCT -ACGGAAGAAGGTTGCAGAAGTCCT -ACGGAAGAAGGTTGCAGATAAGCC -ACGGAAGAAGGTTGCAGAATAGCC -ACGGAAGAAGGTTGCAGATAACCG -ACGGAAGAAGGTTGCAGAATGCCA -ACGGAAGAAGGTAGGTGAGGAAAC -ACGGAAGAAGGTAGGTGAAACACC -ACGGAAGAAGGTAGGTGAATCGAG -ACGGAAGAAGGTAGGTGACTCCTT -ACGGAAGAAGGTAGGTGACCTGTT -ACGGAAGAAGGTAGGTGACGGTTT -ACGGAAGAAGGTAGGTGAGTGGTT -ACGGAAGAAGGTAGGTGAGCCTTT -ACGGAAGAAGGTAGGTGAGGTCTT -ACGGAAGAAGGTAGGTGAACGCTT -ACGGAAGAAGGTAGGTGAAGCGTT -ACGGAAGAAGGTAGGTGATTCGTC -ACGGAAGAAGGTAGGTGATCTCTC -ACGGAAGAAGGTAGGTGATGGATC -ACGGAAGAAGGTAGGTGACACTTC -ACGGAAGAAGGTAGGTGAGTACTC -ACGGAAGAAGGTAGGTGAGATGTC -ACGGAAGAAGGTAGGTGAACAGTC -ACGGAAGAAGGTAGGTGATTGCTG -ACGGAAGAAGGTAGGTGATCCATG -ACGGAAGAAGGTAGGTGATGTGTG -ACGGAAGAAGGTAGGTGACTAGTG -ACGGAAGAAGGTAGGTGACATCTG -ACGGAAGAAGGTAGGTGAGAGTTG -ACGGAAGAAGGTAGGTGAAGACTG -ACGGAAGAAGGTAGGTGATCGGTA -ACGGAAGAAGGTAGGTGATGCCTA -ACGGAAGAAGGTAGGTGACCACTA -ACGGAAGAAGGTAGGTGAGGAGTA -ACGGAAGAAGGTAGGTGATCGTCT -ACGGAAGAAGGTAGGTGATGCACT -ACGGAAGAAGGTAGGTGACTGACT -ACGGAAGAAGGTAGGTGACAACCT -ACGGAAGAAGGTAGGTGAGCTACT -ACGGAAGAAGGTAGGTGAGGATCT -ACGGAAGAAGGTAGGTGAAAGGCT -ACGGAAGAAGGTAGGTGATCAACC -ACGGAAGAAGGTAGGTGATGTTCC -ACGGAAGAAGGTAGGTGAATTCCC -ACGGAAGAAGGTAGGTGATTCTCG -ACGGAAGAAGGTAGGTGATAGACG -ACGGAAGAAGGTAGGTGAGTAACG -ACGGAAGAAGGTAGGTGAACTTCG -ACGGAAGAAGGTAGGTGATACGCA -ACGGAAGAAGGTAGGTGACTTGCA -ACGGAAGAAGGTAGGTGACGAACA -ACGGAAGAAGGTAGGTGACAGTCA -ACGGAAGAAGGTAGGTGAGATCCA -ACGGAAGAAGGTAGGTGAACGACA -ACGGAAGAAGGTAGGTGAAGCTCA -ACGGAAGAAGGTAGGTGATCACGT -ACGGAAGAAGGTAGGTGACGTAGT -ACGGAAGAAGGTAGGTGAGTCAGT -ACGGAAGAAGGTAGGTGAGAAGGT -ACGGAAGAAGGTAGGTGAAACCGT -ACGGAAGAAGGTAGGTGATTGTGC -ACGGAAGAAGGTAGGTGACTAAGC -ACGGAAGAAGGTAGGTGAACTAGC -ACGGAAGAAGGTAGGTGAAGATGC -ACGGAAGAAGGTAGGTGATGAAGG -ACGGAAGAAGGTAGGTGACAATGG -ACGGAAGAAGGTAGGTGAATGAGG -ACGGAAGAAGGTAGGTGAAATGGG -ACGGAAGAAGGTAGGTGATCCTGA -ACGGAAGAAGGTAGGTGATAGCGA -ACGGAAGAAGGTAGGTGACACAGA -ACGGAAGAAGGTAGGTGAGCAAGA -ACGGAAGAAGGTAGGTGAGGTTGA -ACGGAAGAAGGTAGGTGATCCGAT -ACGGAAGAAGGTAGGTGATGGCAT -ACGGAAGAAGGTAGGTGACGAGAT -ACGGAAGAAGGTAGGTGATACCAC -ACGGAAGAAGGTAGGTGACAGAAC -ACGGAAGAAGGTAGGTGAGTCTAC -ACGGAAGAAGGTAGGTGAACGTAC -ACGGAAGAAGGTAGGTGAAGTGAC -ACGGAAGAAGGTAGGTGACTGTAG -ACGGAAGAAGGTAGGTGACCTAAG -ACGGAAGAAGGTAGGTGAGTTCAG -ACGGAAGAAGGTAGGTGAGCATAG -ACGGAAGAAGGTAGGTGAGACAAG -ACGGAAGAAGGTAGGTGAAAGCAG -ACGGAAGAAGGTAGGTGACGTCAA -ACGGAAGAAGGTAGGTGAGCTGAA -ACGGAAGAAGGTAGGTGAAGTACG -ACGGAAGAAGGTAGGTGAATCCGA -ACGGAAGAAGGTAGGTGAATGGGA -ACGGAAGAAGGTAGGTGAGTGCAA -ACGGAAGAAGGTAGGTGAGAGGAA -ACGGAAGAAGGTAGGTGACAGGTA -ACGGAAGAAGGTAGGTGAGACTCT -ACGGAAGAAGGTAGGTGAAGTCCT -ACGGAAGAAGGTAGGTGATAAGCC -ACGGAAGAAGGTAGGTGAATAGCC -ACGGAAGAAGGTAGGTGATAACCG -ACGGAAGAAGGTAGGTGAATGCCA -ACGGAAGAAGGTTGGCAAGGAAAC -ACGGAAGAAGGTTGGCAAAACACC -ACGGAAGAAGGTTGGCAAATCGAG -ACGGAAGAAGGTTGGCAACTCCTT -ACGGAAGAAGGTTGGCAACCTGTT -ACGGAAGAAGGTTGGCAACGGTTT -ACGGAAGAAGGTTGGCAAGTGGTT -ACGGAAGAAGGTTGGCAAGCCTTT -ACGGAAGAAGGTTGGCAAGGTCTT -ACGGAAGAAGGTTGGCAAACGCTT -ACGGAAGAAGGTTGGCAAAGCGTT -ACGGAAGAAGGTTGGCAATTCGTC -ACGGAAGAAGGTTGGCAATCTCTC -ACGGAAGAAGGTTGGCAATGGATC -ACGGAAGAAGGTTGGCAACACTTC -ACGGAAGAAGGTTGGCAAGTACTC -ACGGAAGAAGGTTGGCAAGATGTC -ACGGAAGAAGGTTGGCAAACAGTC -ACGGAAGAAGGTTGGCAATTGCTG -ACGGAAGAAGGTTGGCAATCCATG -ACGGAAGAAGGTTGGCAATGTGTG -ACGGAAGAAGGTTGGCAACTAGTG -ACGGAAGAAGGTTGGCAACATCTG -ACGGAAGAAGGTTGGCAAGAGTTG -ACGGAAGAAGGTTGGCAAAGACTG -ACGGAAGAAGGTTGGCAATCGGTA -ACGGAAGAAGGTTGGCAATGCCTA -ACGGAAGAAGGTTGGCAACCACTA -ACGGAAGAAGGTTGGCAAGGAGTA -ACGGAAGAAGGTTGGCAATCGTCT -ACGGAAGAAGGTTGGCAATGCACT -ACGGAAGAAGGTTGGCAACTGACT -ACGGAAGAAGGTTGGCAACAACCT -ACGGAAGAAGGTTGGCAAGCTACT -ACGGAAGAAGGTTGGCAAGGATCT -ACGGAAGAAGGTTGGCAAAAGGCT -ACGGAAGAAGGTTGGCAATCAACC -ACGGAAGAAGGTTGGCAATGTTCC -ACGGAAGAAGGTTGGCAAATTCCC -ACGGAAGAAGGTTGGCAATTCTCG -ACGGAAGAAGGTTGGCAATAGACG -ACGGAAGAAGGTTGGCAAGTAACG -ACGGAAGAAGGTTGGCAAACTTCG -ACGGAAGAAGGTTGGCAATACGCA -ACGGAAGAAGGTTGGCAACTTGCA -ACGGAAGAAGGTTGGCAACGAACA -ACGGAAGAAGGTTGGCAACAGTCA -ACGGAAGAAGGTTGGCAAGATCCA -ACGGAAGAAGGTTGGCAAACGACA -ACGGAAGAAGGTTGGCAAAGCTCA -ACGGAAGAAGGTTGGCAATCACGT -ACGGAAGAAGGTTGGCAACGTAGT -ACGGAAGAAGGTTGGCAAGTCAGT -ACGGAAGAAGGTTGGCAAGAAGGT -ACGGAAGAAGGTTGGCAAAACCGT -ACGGAAGAAGGTTGGCAATTGTGC -ACGGAAGAAGGTTGGCAACTAAGC -ACGGAAGAAGGTTGGCAAACTAGC -ACGGAAGAAGGTTGGCAAAGATGC -ACGGAAGAAGGTTGGCAATGAAGG -ACGGAAGAAGGTTGGCAACAATGG -ACGGAAGAAGGTTGGCAAATGAGG -ACGGAAGAAGGTTGGCAAAATGGG -ACGGAAGAAGGTTGGCAATCCTGA -ACGGAAGAAGGTTGGCAATAGCGA -ACGGAAGAAGGTTGGCAACACAGA -ACGGAAGAAGGTTGGCAAGCAAGA -ACGGAAGAAGGTTGGCAAGGTTGA -ACGGAAGAAGGTTGGCAATCCGAT -ACGGAAGAAGGTTGGCAATGGCAT -ACGGAAGAAGGTTGGCAACGAGAT -ACGGAAGAAGGTTGGCAATACCAC -ACGGAAGAAGGTTGGCAACAGAAC -ACGGAAGAAGGTTGGCAAGTCTAC -ACGGAAGAAGGTTGGCAAACGTAC -ACGGAAGAAGGTTGGCAAAGTGAC -ACGGAAGAAGGTTGGCAACTGTAG -ACGGAAGAAGGTTGGCAACCTAAG -ACGGAAGAAGGTTGGCAAGTTCAG -ACGGAAGAAGGTTGGCAAGCATAG -ACGGAAGAAGGTTGGCAAGACAAG -ACGGAAGAAGGTTGGCAAAAGCAG -ACGGAAGAAGGTTGGCAACGTCAA -ACGGAAGAAGGTTGGCAAGCTGAA -ACGGAAGAAGGTTGGCAAAGTACG -ACGGAAGAAGGTTGGCAAATCCGA -ACGGAAGAAGGTTGGCAAATGGGA -ACGGAAGAAGGTTGGCAAGTGCAA -ACGGAAGAAGGTTGGCAAGAGGAA -ACGGAAGAAGGTTGGCAACAGGTA -ACGGAAGAAGGTTGGCAAGACTCT -ACGGAAGAAGGTTGGCAAAGTCCT -ACGGAAGAAGGTTGGCAATAAGCC -ACGGAAGAAGGTTGGCAAATAGCC -ACGGAAGAAGGTTGGCAATAACCG -ACGGAAGAAGGTTGGCAAATGCCA -ACGGAAGAAGGTAGGATGGGAAAC -ACGGAAGAAGGTAGGATGAACACC -ACGGAAGAAGGTAGGATGATCGAG -ACGGAAGAAGGTAGGATGCTCCTT -ACGGAAGAAGGTAGGATGCCTGTT -ACGGAAGAAGGTAGGATGCGGTTT -ACGGAAGAAGGTAGGATGGTGGTT -ACGGAAGAAGGTAGGATGGCCTTT -ACGGAAGAAGGTAGGATGGGTCTT -ACGGAAGAAGGTAGGATGACGCTT -ACGGAAGAAGGTAGGATGAGCGTT -ACGGAAGAAGGTAGGATGTTCGTC -ACGGAAGAAGGTAGGATGTCTCTC -ACGGAAGAAGGTAGGATGTGGATC -ACGGAAGAAGGTAGGATGCACTTC -ACGGAAGAAGGTAGGATGGTACTC -ACGGAAGAAGGTAGGATGGATGTC -ACGGAAGAAGGTAGGATGACAGTC -ACGGAAGAAGGTAGGATGTTGCTG -ACGGAAGAAGGTAGGATGTCCATG -ACGGAAGAAGGTAGGATGTGTGTG -ACGGAAGAAGGTAGGATGCTAGTG -ACGGAAGAAGGTAGGATGCATCTG -ACGGAAGAAGGTAGGATGGAGTTG -ACGGAAGAAGGTAGGATGAGACTG -ACGGAAGAAGGTAGGATGTCGGTA -ACGGAAGAAGGTAGGATGTGCCTA -ACGGAAGAAGGTAGGATGCCACTA -ACGGAAGAAGGTAGGATGGGAGTA -ACGGAAGAAGGTAGGATGTCGTCT -ACGGAAGAAGGTAGGATGTGCACT -ACGGAAGAAGGTAGGATGCTGACT -ACGGAAGAAGGTAGGATGCAACCT -ACGGAAGAAGGTAGGATGGCTACT -ACGGAAGAAGGTAGGATGGGATCT -ACGGAAGAAGGTAGGATGAAGGCT -ACGGAAGAAGGTAGGATGTCAACC -ACGGAAGAAGGTAGGATGTGTTCC -ACGGAAGAAGGTAGGATGATTCCC -ACGGAAGAAGGTAGGATGTTCTCG -ACGGAAGAAGGTAGGATGTAGACG -ACGGAAGAAGGTAGGATGGTAACG -ACGGAAGAAGGTAGGATGACTTCG -ACGGAAGAAGGTAGGATGTACGCA -ACGGAAGAAGGTAGGATGCTTGCA -ACGGAAGAAGGTAGGATGCGAACA -ACGGAAGAAGGTAGGATGCAGTCA -ACGGAAGAAGGTAGGATGGATCCA -ACGGAAGAAGGTAGGATGACGACA -ACGGAAGAAGGTAGGATGAGCTCA -ACGGAAGAAGGTAGGATGTCACGT -ACGGAAGAAGGTAGGATGCGTAGT -ACGGAAGAAGGTAGGATGGTCAGT -ACGGAAGAAGGTAGGATGGAAGGT -ACGGAAGAAGGTAGGATGAACCGT -ACGGAAGAAGGTAGGATGTTGTGC -ACGGAAGAAGGTAGGATGCTAAGC -ACGGAAGAAGGTAGGATGACTAGC -ACGGAAGAAGGTAGGATGAGATGC -ACGGAAGAAGGTAGGATGTGAAGG -ACGGAAGAAGGTAGGATGCAATGG -ACGGAAGAAGGTAGGATGATGAGG -ACGGAAGAAGGTAGGATGAATGGG -ACGGAAGAAGGTAGGATGTCCTGA -ACGGAAGAAGGTAGGATGTAGCGA -ACGGAAGAAGGTAGGATGCACAGA -ACGGAAGAAGGTAGGATGGCAAGA -ACGGAAGAAGGTAGGATGGGTTGA -ACGGAAGAAGGTAGGATGTCCGAT -ACGGAAGAAGGTAGGATGTGGCAT -ACGGAAGAAGGTAGGATGCGAGAT -ACGGAAGAAGGTAGGATGTACCAC -ACGGAAGAAGGTAGGATGCAGAAC -ACGGAAGAAGGTAGGATGGTCTAC -ACGGAAGAAGGTAGGATGACGTAC -ACGGAAGAAGGTAGGATGAGTGAC -ACGGAAGAAGGTAGGATGCTGTAG -ACGGAAGAAGGTAGGATGCCTAAG -ACGGAAGAAGGTAGGATGGTTCAG -ACGGAAGAAGGTAGGATGGCATAG -ACGGAAGAAGGTAGGATGGACAAG -ACGGAAGAAGGTAGGATGAAGCAG -ACGGAAGAAGGTAGGATGCGTCAA -ACGGAAGAAGGTAGGATGGCTGAA -ACGGAAGAAGGTAGGATGAGTACG -ACGGAAGAAGGTAGGATGATCCGA -ACGGAAGAAGGTAGGATGATGGGA -ACGGAAGAAGGTAGGATGGTGCAA -ACGGAAGAAGGTAGGATGGAGGAA -ACGGAAGAAGGTAGGATGCAGGTA -ACGGAAGAAGGTAGGATGGACTCT -ACGGAAGAAGGTAGGATGAGTCCT -ACGGAAGAAGGTAGGATGTAAGCC -ACGGAAGAAGGTAGGATGATAGCC -ACGGAAGAAGGTAGGATGTAACCG -ACGGAAGAAGGTAGGATGATGCCA -ACGGAAGAAGGTGGGAATGGAAAC -ACGGAAGAAGGTGGGAATAACACC -ACGGAAGAAGGTGGGAATATCGAG -ACGGAAGAAGGTGGGAATCTCCTT -ACGGAAGAAGGTGGGAATCCTGTT -ACGGAAGAAGGTGGGAATCGGTTT -ACGGAAGAAGGTGGGAATGTGGTT -ACGGAAGAAGGTGGGAATGCCTTT -ACGGAAGAAGGTGGGAATGGTCTT -ACGGAAGAAGGTGGGAATACGCTT -ACGGAAGAAGGTGGGAATAGCGTT -ACGGAAGAAGGTGGGAATTTCGTC -ACGGAAGAAGGTGGGAATTCTCTC -ACGGAAGAAGGTGGGAATTGGATC -ACGGAAGAAGGTGGGAATCACTTC -ACGGAAGAAGGTGGGAATGTACTC -ACGGAAGAAGGTGGGAATGATGTC -ACGGAAGAAGGTGGGAATACAGTC -ACGGAAGAAGGTGGGAATTTGCTG -ACGGAAGAAGGTGGGAATTCCATG -ACGGAAGAAGGTGGGAATTGTGTG -ACGGAAGAAGGTGGGAATCTAGTG -ACGGAAGAAGGTGGGAATCATCTG -ACGGAAGAAGGTGGGAATGAGTTG -ACGGAAGAAGGTGGGAATAGACTG -ACGGAAGAAGGTGGGAATTCGGTA -ACGGAAGAAGGTGGGAATTGCCTA -ACGGAAGAAGGTGGGAATCCACTA -ACGGAAGAAGGTGGGAATGGAGTA -ACGGAAGAAGGTGGGAATTCGTCT -ACGGAAGAAGGTGGGAATTGCACT -ACGGAAGAAGGTGGGAATCTGACT -ACGGAAGAAGGTGGGAATCAACCT -ACGGAAGAAGGTGGGAATGCTACT -ACGGAAGAAGGTGGGAATGGATCT -ACGGAAGAAGGTGGGAATAAGGCT -ACGGAAGAAGGTGGGAATTCAACC -ACGGAAGAAGGTGGGAATTGTTCC -ACGGAAGAAGGTGGGAATATTCCC -ACGGAAGAAGGTGGGAATTTCTCG -ACGGAAGAAGGTGGGAATTAGACG -ACGGAAGAAGGTGGGAATGTAACG -ACGGAAGAAGGTGGGAATACTTCG -ACGGAAGAAGGTGGGAATTACGCA -ACGGAAGAAGGTGGGAATCTTGCA -ACGGAAGAAGGTGGGAATCGAACA -ACGGAAGAAGGTGGGAATCAGTCA -ACGGAAGAAGGTGGGAATGATCCA -ACGGAAGAAGGTGGGAATACGACA -ACGGAAGAAGGTGGGAATAGCTCA -ACGGAAGAAGGTGGGAATTCACGT -ACGGAAGAAGGTGGGAATCGTAGT -ACGGAAGAAGGTGGGAATGTCAGT -ACGGAAGAAGGTGGGAATGAAGGT -ACGGAAGAAGGTGGGAATAACCGT -ACGGAAGAAGGTGGGAATTTGTGC -ACGGAAGAAGGTGGGAATCTAAGC -ACGGAAGAAGGTGGGAATACTAGC -ACGGAAGAAGGTGGGAATAGATGC -ACGGAAGAAGGTGGGAATTGAAGG -ACGGAAGAAGGTGGGAATCAATGG -ACGGAAGAAGGTGGGAATATGAGG -ACGGAAGAAGGTGGGAATAATGGG -ACGGAAGAAGGTGGGAATTCCTGA -ACGGAAGAAGGTGGGAATTAGCGA -ACGGAAGAAGGTGGGAATCACAGA -ACGGAAGAAGGTGGGAATGCAAGA -ACGGAAGAAGGTGGGAATGGTTGA -ACGGAAGAAGGTGGGAATTCCGAT -ACGGAAGAAGGTGGGAATTGGCAT -ACGGAAGAAGGTGGGAATCGAGAT -ACGGAAGAAGGTGGGAATTACCAC -ACGGAAGAAGGTGGGAATCAGAAC -ACGGAAGAAGGTGGGAATGTCTAC -ACGGAAGAAGGTGGGAATACGTAC -ACGGAAGAAGGTGGGAATAGTGAC -ACGGAAGAAGGTGGGAATCTGTAG -ACGGAAGAAGGTGGGAATCCTAAG -ACGGAAGAAGGTGGGAATGTTCAG -ACGGAAGAAGGTGGGAATGCATAG -ACGGAAGAAGGTGGGAATGACAAG -ACGGAAGAAGGTGGGAATAAGCAG -ACGGAAGAAGGTGGGAATCGTCAA -ACGGAAGAAGGTGGGAATGCTGAA -ACGGAAGAAGGTGGGAATAGTACG -ACGGAAGAAGGTGGGAATATCCGA -ACGGAAGAAGGTGGGAATATGGGA -ACGGAAGAAGGTGGGAATGTGCAA -ACGGAAGAAGGTGGGAATGAGGAA -ACGGAAGAAGGTGGGAATCAGGTA -ACGGAAGAAGGTGGGAATGACTCT -ACGGAAGAAGGTGGGAATAGTCCT -ACGGAAGAAGGTGGGAATTAAGCC -ACGGAAGAAGGTGGGAATATAGCC -ACGGAAGAAGGTGGGAATTAACCG -ACGGAAGAAGGTGGGAATATGCCA -ACGGAAGAAGGTTGATCCGGAAAC -ACGGAAGAAGGTTGATCCAACACC -ACGGAAGAAGGTTGATCCATCGAG -ACGGAAGAAGGTTGATCCCTCCTT -ACGGAAGAAGGTTGATCCCCTGTT -ACGGAAGAAGGTTGATCCCGGTTT -ACGGAAGAAGGTTGATCCGTGGTT -ACGGAAGAAGGTTGATCCGCCTTT -ACGGAAGAAGGTTGATCCGGTCTT -ACGGAAGAAGGTTGATCCACGCTT -ACGGAAGAAGGTTGATCCAGCGTT -ACGGAAGAAGGTTGATCCTTCGTC -ACGGAAGAAGGTTGATCCTCTCTC -ACGGAAGAAGGTTGATCCTGGATC -ACGGAAGAAGGTTGATCCCACTTC -ACGGAAGAAGGTTGATCCGTACTC -ACGGAAGAAGGTTGATCCGATGTC -ACGGAAGAAGGTTGATCCACAGTC -ACGGAAGAAGGTTGATCCTTGCTG -ACGGAAGAAGGTTGATCCTCCATG -ACGGAAGAAGGTTGATCCTGTGTG -ACGGAAGAAGGTTGATCCCTAGTG -ACGGAAGAAGGTTGATCCCATCTG -ACGGAAGAAGGTTGATCCGAGTTG -ACGGAAGAAGGTTGATCCAGACTG -ACGGAAGAAGGTTGATCCTCGGTA -ACGGAAGAAGGTTGATCCTGCCTA -ACGGAAGAAGGTTGATCCCCACTA -ACGGAAGAAGGTTGATCCGGAGTA -ACGGAAGAAGGTTGATCCTCGTCT -ACGGAAGAAGGTTGATCCTGCACT -ACGGAAGAAGGTTGATCCCTGACT -ACGGAAGAAGGTTGATCCCAACCT -ACGGAAGAAGGTTGATCCGCTACT -ACGGAAGAAGGTTGATCCGGATCT -ACGGAAGAAGGTTGATCCAAGGCT -ACGGAAGAAGGTTGATCCTCAACC -ACGGAAGAAGGTTGATCCTGTTCC -ACGGAAGAAGGTTGATCCATTCCC -ACGGAAGAAGGTTGATCCTTCTCG -ACGGAAGAAGGTTGATCCTAGACG -ACGGAAGAAGGTTGATCCGTAACG -ACGGAAGAAGGTTGATCCACTTCG -ACGGAAGAAGGTTGATCCTACGCA -ACGGAAGAAGGTTGATCCCTTGCA -ACGGAAGAAGGTTGATCCCGAACA -ACGGAAGAAGGTTGATCCCAGTCA -ACGGAAGAAGGTTGATCCGATCCA -ACGGAAGAAGGTTGATCCACGACA -ACGGAAGAAGGTTGATCCAGCTCA -ACGGAAGAAGGTTGATCCTCACGT -ACGGAAGAAGGTTGATCCCGTAGT -ACGGAAGAAGGTTGATCCGTCAGT -ACGGAAGAAGGTTGATCCGAAGGT -ACGGAAGAAGGTTGATCCAACCGT -ACGGAAGAAGGTTGATCCTTGTGC -ACGGAAGAAGGTTGATCCCTAAGC -ACGGAAGAAGGTTGATCCACTAGC -ACGGAAGAAGGTTGATCCAGATGC -ACGGAAGAAGGTTGATCCTGAAGG -ACGGAAGAAGGTTGATCCCAATGG -ACGGAAGAAGGTTGATCCATGAGG -ACGGAAGAAGGTTGATCCAATGGG -ACGGAAGAAGGTTGATCCTCCTGA -ACGGAAGAAGGTTGATCCTAGCGA -ACGGAAGAAGGTTGATCCCACAGA -ACGGAAGAAGGTTGATCCGCAAGA -ACGGAAGAAGGTTGATCCGGTTGA -ACGGAAGAAGGTTGATCCTCCGAT -ACGGAAGAAGGTTGATCCTGGCAT -ACGGAAGAAGGTTGATCCCGAGAT -ACGGAAGAAGGTTGATCCTACCAC -ACGGAAGAAGGTTGATCCCAGAAC -ACGGAAGAAGGTTGATCCGTCTAC -ACGGAAGAAGGTTGATCCACGTAC -ACGGAAGAAGGTTGATCCAGTGAC -ACGGAAGAAGGTTGATCCCTGTAG -ACGGAAGAAGGTTGATCCCCTAAG -ACGGAAGAAGGTTGATCCGTTCAG -ACGGAAGAAGGTTGATCCGCATAG -ACGGAAGAAGGTTGATCCGACAAG -ACGGAAGAAGGTTGATCCAAGCAG -ACGGAAGAAGGTTGATCCCGTCAA -ACGGAAGAAGGTTGATCCGCTGAA -ACGGAAGAAGGTTGATCCAGTACG -ACGGAAGAAGGTTGATCCATCCGA -ACGGAAGAAGGTTGATCCATGGGA -ACGGAAGAAGGTTGATCCGTGCAA -ACGGAAGAAGGTTGATCCGAGGAA -ACGGAAGAAGGTTGATCCCAGGTA -ACGGAAGAAGGTTGATCCGACTCT -ACGGAAGAAGGTTGATCCAGTCCT -ACGGAAGAAGGTTGATCCTAAGCC -ACGGAAGAAGGTTGATCCATAGCC -ACGGAAGAAGGTTGATCCTAACCG -ACGGAAGAAGGTTGATCCATGCCA -ACGGAAGAAGGTCGATAGGGAAAC -ACGGAAGAAGGTCGATAGAACACC -ACGGAAGAAGGTCGATAGATCGAG -ACGGAAGAAGGTCGATAGCTCCTT -ACGGAAGAAGGTCGATAGCCTGTT -ACGGAAGAAGGTCGATAGCGGTTT -ACGGAAGAAGGTCGATAGGTGGTT -ACGGAAGAAGGTCGATAGGCCTTT -ACGGAAGAAGGTCGATAGGGTCTT -ACGGAAGAAGGTCGATAGACGCTT -ACGGAAGAAGGTCGATAGAGCGTT -ACGGAAGAAGGTCGATAGTTCGTC -ACGGAAGAAGGTCGATAGTCTCTC -ACGGAAGAAGGTCGATAGTGGATC -ACGGAAGAAGGTCGATAGCACTTC -ACGGAAGAAGGTCGATAGGTACTC -ACGGAAGAAGGTCGATAGGATGTC -ACGGAAGAAGGTCGATAGACAGTC -ACGGAAGAAGGTCGATAGTTGCTG -ACGGAAGAAGGTCGATAGTCCATG -ACGGAAGAAGGTCGATAGTGTGTG -ACGGAAGAAGGTCGATAGCTAGTG -ACGGAAGAAGGTCGATAGCATCTG -ACGGAAGAAGGTCGATAGGAGTTG -ACGGAAGAAGGTCGATAGAGACTG -ACGGAAGAAGGTCGATAGTCGGTA -ACGGAAGAAGGTCGATAGTGCCTA -ACGGAAGAAGGTCGATAGCCACTA -ACGGAAGAAGGTCGATAGGGAGTA -ACGGAAGAAGGTCGATAGTCGTCT -ACGGAAGAAGGTCGATAGTGCACT -ACGGAAGAAGGTCGATAGCTGACT -ACGGAAGAAGGTCGATAGCAACCT -ACGGAAGAAGGTCGATAGGCTACT -ACGGAAGAAGGTCGATAGGGATCT -ACGGAAGAAGGTCGATAGAAGGCT -ACGGAAGAAGGTCGATAGTCAACC -ACGGAAGAAGGTCGATAGTGTTCC -ACGGAAGAAGGTCGATAGATTCCC -ACGGAAGAAGGTCGATAGTTCTCG -ACGGAAGAAGGTCGATAGTAGACG -ACGGAAGAAGGTCGATAGGTAACG -ACGGAAGAAGGTCGATAGACTTCG -ACGGAAGAAGGTCGATAGTACGCA -ACGGAAGAAGGTCGATAGCTTGCA -ACGGAAGAAGGTCGATAGCGAACA -ACGGAAGAAGGTCGATAGCAGTCA -ACGGAAGAAGGTCGATAGGATCCA -ACGGAAGAAGGTCGATAGACGACA -ACGGAAGAAGGTCGATAGAGCTCA -ACGGAAGAAGGTCGATAGTCACGT -ACGGAAGAAGGTCGATAGCGTAGT -ACGGAAGAAGGTCGATAGGTCAGT -ACGGAAGAAGGTCGATAGGAAGGT -ACGGAAGAAGGTCGATAGAACCGT -ACGGAAGAAGGTCGATAGTTGTGC -ACGGAAGAAGGTCGATAGCTAAGC -ACGGAAGAAGGTCGATAGACTAGC -ACGGAAGAAGGTCGATAGAGATGC -ACGGAAGAAGGTCGATAGTGAAGG -ACGGAAGAAGGTCGATAGCAATGG -ACGGAAGAAGGTCGATAGATGAGG -ACGGAAGAAGGTCGATAGAATGGG -ACGGAAGAAGGTCGATAGTCCTGA -ACGGAAGAAGGTCGATAGTAGCGA -ACGGAAGAAGGTCGATAGCACAGA -ACGGAAGAAGGTCGATAGGCAAGA -ACGGAAGAAGGTCGATAGGGTTGA -ACGGAAGAAGGTCGATAGTCCGAT -ACGGAAGAAGGTCGATAGTGGCAT -ACGGAAGAAGGTCGATAGCGAGAT -ACGGAAGAAGGTCGATAGTACCAC -ACGGAAGAAGGTCGATAGCAGAAC -ACGGAAGAAGGTCGATAGGTCTAC -ACGGAAGAAGGTCGATAGACGTAC -ACGGAAGAAGGTCGATAGAGTGAC -ACGGAAGAAGGTCGATAGCTGTAG -ACGGAAGAAGGTCGATAGCCTAAG -ACGGAAGAAGGTCGATAGGTTCAG -ACGGAAGAAGGTCGATAGGCATAG -ACGGAAGAAGGTCGATAGGACAAG -ACGGAAGAAGGTCGATAGAAGCAG -ACGGAAGAAGGTCGATAGCGTCAA -ACGGAAGAAGGTCGATAGGCTGAA -ACGGAAGAAGGTCGATAGAGTACG -ACGGAAGAAGGTCGATAGATCCGA -ACGGAAGAAGGTCGATAGATGGGA -ACGGAAGAAGGTCGATAGGTGCAA -ACGGAAGAAGGTCGATAGGAGGAA -ACGGAAGAAGGTCGATAGCAGGTA -ACGGAAGAAGGTCGATAGGACTCT -ACGGAAGAAGGTCGATAGAGTCCT -ACGGAAGAAGGTCGATAGTAAGCC -ACGGAAGAAGGTCGATAGATAGCC -ACGGAAGAAGGTCGATAGTAACCG -ACGGAAGAAGGTCGATAGATGCCA -ACGGAAGAAGGTAGACACGGAAAC -ACGGAAGAAGGTAGACACAACACC -ACGGAAGAAGGTAGACACATCGAG -ACGGAAGAAGGTAGACACCTCCTT -ACGGAAGAAGGTAGACACCCTGTT -ACGGAAGAAGGTAGACACCGGTTT -ACGGAAGAAGGTAGACACGTGGTT -ACGGAAGAAGGTAGACACGCCTTT -ACGGAAGAAGGTAGACACGGTCTT -ACGGAAGAAGGTAGACACACGCTT -ACGGAAGAAGGTAGACACAGCGTT -ACGGAAGAAGGTAGACACTTCGTC -ACGGAAGAAGGTAGACACTCTCTC -ACGGAAGAAGGTAGACACTGGATC -ACGGAAGAAGGTAGACACCACTTC -ACGGAAGAAGGTAGACACGTACTC -ACGGAAGAAGGTAGACACGATGTC -ACGGAAGAAGGTAGACACACAGTC -ACGGAAGAAGGTAGACACTTGCTG -ACGGAAGAAGGTAGACACTCCATG -ACGGAAGAAGGTAGACACTGTGTG -ACGGAAGAAGGTAGACACCTAGTG -ACGGAAGAAGGTAGACACCATCTG -ACGGAAGAAGGTAGACACGAGTTG -ACGGAAGAAGGTAGACACAGACTG -ACGGAAGAAGGTAGACACTCGGTA -ACGGAAGAAGGTAGACACTGCCTA -ACGGAAGAAGGTAGACACCCACTA -ACGGAAGAAGGTAGACACGGAGTA -ACGGAAGAAGGTAGACACTCGTCT -ACGGAAGAAGGTAGACACTGCACT -ACGGAAGAAGGTAGACACCTGACT -ACGGAAGAAGGTAGACACCAACCT -ACGGAAGAAGGTAGACACGCTACT -ACGGAAGAAGGTAGACACGGATCT -ACGGAAGAAGGTAGACACAAGGCT -ACGGAAGAAGGTAGACACTCAACC -ACGGAAGAAGGTAGACACTGTTCC -ACGGAAGAAGGTAGACACATTCCC -ACGGAAGAAGGTAGACACTTCTCG -ACGGAAGAAGGTAGACACTAGACG -ACGGAAGAAGGTAGACACGTAACG -ACGGAAGAAGGTAGACACACTTCG -ACGGAAGAAGGTAGACACTACGCA -ACGGAAGAAGGTAGACACCTTGCA -ACGGAAGAAGGTAGACACCGAACA -ACGGAAGAAGGTAGACACCAGTCA -ACGGAAGAAGGTAGACACGATCCA -ACGGAAGAAGGTAGACACACGACA -ACGGAAGAAGGTAGACACAGCTCA -ACGGAAGAAGGTAGACACTCACGT -ACGGAAGAAGGTAGACACCGTAGT -ACGGAAGAAGGTAGACACGTCAGT -ACGGAAGAAGGTAGACACGAAGGT -ACGGAAGAAGGTAGACACAACCGT -ACGGAAGAAGGTAGACACTTGTGC -ACGGAAGAAGGTAGACACCTAAGC -ACGGAAGAAGGTAGACACACTAGC -ACGGAAGAAGGTAGACACAGATGC -ACGGAAGAAGGTAGACACTGAAGG -ACGGAAGAAGGTAGACACCAATGG -ACGGAAGAAGGTAGACACATGAGG -ACGGAAGAAGGTAGACACAATGGG -ACGGAAGAAGGTAGACACTCCTGA -ACGGAAGAAGGTAGACACTAGCGA -ACGGAAGAAGGTAGACACCACAGA -ACGGAAGAAGGTAGACACGCAAGA -ACGGAAGAAGGTAGACACGGTTGA -ACGGAAGAAGGTAGACACTCCGAT -ACGGAAGAAGGTAGACACTGGCAT -ACGGAAGAAGGTAGACACCGAGAT -ACGGAAGAAGGTAGACACTACCAC -ACGGAAGAAGGTAGACACCAGAAC -ACGGAAGAAGGTAGACACGTCTAC -ACGGAAGAAGGTAGACACACGTAC -ACGGAAGAAGGTAGACACAGTGAC -ACGGAAGAAGGTAGACACCTGTAG -ACGGAAGAAGGTAGACACCCTAAG -ACGGAAGAAGGTAGACACGTTCAG -ACGGAAGAAGGTAGACACGCATAG -ACGGAAGAAGGTAGACACGACAAG -ACGGAAGAAGGTAGACACAAGCAG -ACGGAAGAAGGTAGACACCGTCAA -ACGGAAGAAGGTAGACACGCTGAA -ACGGAAGAAGGTAGACACAGTACG -ACGGAAGAAGGTAGACACATCCGA -ACGGAAGAAGGTAGACACATGGGA -ACGGAAGAAGGTAGACACGTGCAA -ACGGAAGAAGGTAGACACGAGGAA -ACGGAAGAAGGTAGACACCAGGTA -ACGGAAGAAGGTAGACACGACTCT -ACGGAAGAAGGTAGACACAGTCCT -ACGGAAGAAGGTAGACACTAAGCC -ACGGAAGAAGGTAGACACATAGCC -ACGGAAGAAGGTAGACACTAACCG -ACGGAAGAAGGTAGACACATGCCA -ACGGAAGAAGGTAGAGCAGGAAAC -ACGGAAGAAGGTAGAGCAAACACC -ACGGAAGAAGGTAGAGCAATCGAG -ACGGAAGAAGGTAGAGCACTCCTT -ACGGAAGAAGGTAGAGCACCTGTT -ACGGAAGAAGGTAGAGCACGGTTT -ACGGAAGAAGGTAGAGCAGTGGTT -ACGGAAGAAGGTAGAGCAGCCTTT -ACGGAAGAAGGTAGAGCAGGTCTT -ACGGAAGAAGGTAGAGCAACGCTT -ACGGAAGAAGGTAGAGCAAGCGTT -ACGGAAGAAGGTAGAGCATTCGTC -ACGGAAGAAGGTAGAGCATCTCTC -ACGGAAGAAGGTAGAGCATGGATC -ACGGAAGAAGGTAGAGCACACTTC -ACGGAAGAAGGTAGAGCAGTACTC -ACGGAAGAAGGTAGAGCAGATGTC -ACGGAAGAAGGTAGAGCAACAGTC -ACGGAAGAAGGTAGAGCATTGCTG -ACGGAAGAAGGTAGAGCATCCATG -ACGGAAGAAGGTAGAGCATGTGTG -ACGGAAGAAGGTAGAGCACTAGTG -ACGGAAGAAGGTAGAGCACATCTG -ACGGAAGAAGGTAGAGCAGAGTTG -ACGGAAGAAGGTAGAGCAAGACTG -ACGGAAGAAGGTAGAGCATCGGTA -ACGGAAGAAGGTAGAGCATGCCTA -ACGGAAGAAGGTAGAGCACCACTA -ACGGAAGAAGGTAGAGCAGGAGTA -ACGGAAGAAGGTAGAGCATCGTCT -ACGGAAGAAGGTAGAGCATGCACT -ACGGAAGAAGGTAGAGCACTGACT -ACGGAAGAAGGTAGAGCACAACCT -ACGGAAGAAGGTAGAGCAGCTACT -ACGGAAGAAGGTAGAGCAGGATCT -ACGGAAGAAGGTAGAGCAAAGGCT -ACGGAAGAAGGTAGAGCATCAACC -ACGGAAGAAGGTAGAGCATGTTCC -ACGGAAGAAGGTAGAGCAATTCCC -ACGGAAGAAGGTAGAGCATTCTCG -ACGGAAGAAGGTAGAGCATAGACG -ACGGAAGAAGGTAGAGCAGTAACG -ACGGAAGAAGGTAGAGCAACTTCG -ACGGAAGAAGGTAGAGCATACGCA -ACGGAAGAAGGTAGAGCACTTGCA -ACGGAAGAAGGTAGAGCACGAACA -ACGGAAGAAGGTAGAGCACAGTCA -ACGGAAGAAGGTAGAGCAGATCCA -ACGGAAGAAGGTAGAGCAACGACA -ACGGAAGAAGGTAGAGCAAGCTCA -ACGGAAGAAGGTAGAGCATCACGT -ACGGAAGAAGGTAGAGCACGTAGT -ACGGAAGAAGGTAGAGCAGTCAGT -ACGGAAGAAGGTAGAGCAGAAGGT -ACGGAAGAAGGTAGAGCAAACCGT -ACGGAAGAAGGTAGAGCATTGTGC -ACGGAAGAAGGTAGAGCACTAAGC -ACGGAAGAAGGTAGAGCAACTAGC -ACGGAAGAAGGTAGAGCAAGATGC -ACGGAAGAAGGTAGAGCATGAAGG -ACGGAAGAAGGTAGAGCACAATGG -ACGGAAGAAGGTAGAGCAATGAGG -ACGGAAGAAGGTAGAGCAAATGGG -ACGGAAGAAGGTAGAGCATCCTGA -ACGGAAGAAGGTAGAGCATAGCGA -ACGGAAGAAGGTAGAGCACACAGA -ACGGAAGAAGGTAGAGCAGCAAGA -ACGGAAGAAGGTAGAGCAGGTTGA -ACGGAAGAAGGTAGAGCATCCGAT -ACGGAAGAAGGTAGAGCATGGCAT -ACGGAAGAAGGTAGAGCACGAGAT -ACGGAAGAAGGTAGAGCATACCAC -ACGGAAGAAGGTAGAGCACAGAAC -ACGGAAGAAGGTAGAGCAGTCTAC -ACGGAAGAAGGTAGAGCAACGTAC -ACGGAAGAAGGTAGAGCAAGTGAC -ACGGAAGAAGGTAGAGCACTGTAG -ACGGAAGAAGGTAGAGCACCTAAG -ACGGAAGAAGGTAGAGCAGTTCAG -ACGGAAGAAGGTAGAGCAGCATAG -ACGGAAGAAGGTAGAGCAGACAAG -ACGGAAGAAGGTAGAGCAAAGCAG -ACGGAAGAAGGTAGAGCACGTCAA -ACGGAAGAAGGTAGAGCAGCTGAA -ACGGAAGAAGGTAGAGCAAGTACG -ACGGAAGAAGGTAGAGCAATCCGA -ACGGAAGAAGGTAGAGCAATGGGA -ACGGAAGAAGGTAGAGCAGTGCAA -ACGGAAGAAGGTAGAGCAGAGGAA -ACGGAAGAAGGTAGAGCACAGGTA -ACGGAAGAAGGTAGAGCAGACTCT -ACGGAAGAAGGTAGAGCAAGTCCT -ACGGAAGAAGGTAGAGCATAAGCC -ACGGAAGAAGGTAGAGCAATAGCC -ACGGAAGAAGGTAGAGCATAACCG -ACGGAAGAAGGTAGAGCAATGCCA -ACGGAAGAAGGTTGAGGTGGAAAC -ACGGAAGAAGGTTGAGGTAACACC -ACGGAAGAAGGTTGAGGTATCGAG -ACGGAAGAAGGTTGAGGTCTCCTT -ACGGAAGAAGGTTGAGGTCCTGTT -ACGGAAGAAGGTTGAGGTCGGTTT -ACGGAAGAAGGTTGAGGTGTGGTT -ACGGAAGAAGGTTGAGGTGCCTTT -ACGGAAGAAGGTTGAGGTGGTCTT -ACGGAAGAAGGTTGAGGTACGCTT -ACGGAAGAAGGTTGAGGTAGCGTT -ACGGAAGAAGGTTGAGGTTTCGTC -ACGGAAGAAGGTTGAGGTTCTCTC -ACGGAAGAAGGTTGAGGTTGGATC -ACGGAAGAAGGTTGAGGTCACTTC -ACGGAAGAAGGTTGAGGTGTACTC -ACGGAAGAAGGTTGAGGTGATGTC -ACGGAAGAAGGTTGAGGTACAGTC -ACGGAAGAAGGTTGAGGTTTGCTG -ACGGAAGAAGGTTGAGGTTCCATG -ACGGAAGAAGGTTGAGGTTGTGTG -ACGGAAGAAGGTTGAGGTCTAGTG -ACGGAAGAAGGTTGAGGTCATCTG -ACGGAAGAAGGTTGAGGTGAGTTG -ACGGAAGAAGGTTGAGGTAGACTG -ACGGAAGAAGGTTGAGGTTCGGTA -ACGGAAGAAGGTTGAGGTTGCCTA -ACGGAAGAAGGTTGAGGTCCACTA -ACGGAAGAAGGTTGAGGTGGAGTA -ACGGAAGAAGGTTGAGGTTCGTCT -ACGGAAGAAGGTTGAGGTTGCACT -ACGGAAGAAGGTTGAGGTCTGACT -ACGGAAGAAGGTTGAGGTCAACCT -ACGGAAGAAGGTTGAGGTGCTACT -ACGGAAGAAGGTTGAGGTGGATCT -ACGGAAGAAGGTTGAGGTAAGGCT -ACGGAAGAAGGTTGAGGTTCAACC -ACGGAAGAAGGTTGAGGTTGTTCC -ACGGAAGAAGGTTGAGGTATTCCC -ACGGAAGAAGGTTGAGGTTTCTCG -ACGGAAGAAGGTTGAGGTTAGACG -ACGGAAGAAGGTTGAGGTGTAACG -ACGGAAGAAGGTTGAGGTACTTCG -ACGGAAGAAGGTTGAGGTTACGCA -ACGGAAGAAGGTTGAGGTCTTGCA -ACGGAAGAAGGTTGAGGTCGAACA -ACGGAAGAAGGTTGAGGTCAGTCA -ACGGAAGAAGGTTGAGGTGATCCA -ACGGAAGAAGGTTGAGGTACGACA -ACGGAAGAAGGTTGAGGTAGCTCA -ACGGAAGAAGGTTGAGGTTCACGT -ACGGAAGAAGGTTGAGGTCGTAGT -ACGGAAGAAGGTTGAGGTGTCAGT -ACGGAAGAAGGTTGAGGTGAAGGT -ACGGAAGAAGGTTGAGGTAACCGT -ACGGAAGAAGGTTGAGGTTTGTGC -ACGGAAGAAGGTTGAGGTCTAAGC -ACGGAAGAAGGTTGAGGTACTAGC -ACGGAAGAAGGTTGAGGTAGATGC -ACGGAAGAAGGTTGAGGTTGAAGG -ACGGAAGAAGGTTGAGGTCAATGG -ACGGAAGAAGGTTGAGGTATGAGG -ACGGAAGAAGGTTGAGGTAATGGG -ACGGAAGAAGGTTGAGGTTCCTGA -ACGGAAGAAGGTTGAGGTTAGCGA -ACGGAAGAAGGTTGAGGTCACAGA -ACGGAAGAAGGTTGAGGTGCAAGA -ACGGAAGAAGGTTGAGGTGGTTGA -ACGGAAGAAGGTTGAGGTTCCGAT -ACGGAAGAAGGTTGAGGTTGGCAT -ACGGAAGAAGGTTGAGGTCGAGAT -ACGGAAGAAGGTTGAGGTTACCAC -ACGGAAGAAGGTTGAGGTCAGAAC -ACGGAAGAAGGTTGAGGTGTCTAC -ACGGAAGAAGGTTGAGGTACGTAC -ACGGAAGAAGGTTGAGGTAGTGAC -ACGGAAGAAGGTTGAGGTCTGTAG -ACGGAAGAAGGTTGAGGTCCTAAG -ACGGAAGAAGGTTGAGGTGTTCAG -ACGGAAGAAGGTTGAGGTGCATAG -ACGGAAGAAGGTTGAGGTGACAAG -ACGGAAGAAGGTTGAGGTAAGCAG -ACGGAAGAAGGTTGAGGTCGTCAA -ACGGAAGAAGGTTGAGGTGCTGAA -ACGGAAGAAGGTTGAGGTAGTACG -ACGGAAGAAGGTTGAGGTATCCGA -ACGGAAGAAGGTTGAGGTATGGGA -ACGGAAGAAGGTTGAGGTGTGCAA -ACGGAAGAAGGTTGAGGTGAGGAA -ACGGAAGAAGGTTGAGGTCAGGTA -ACGGAAGAAGGTTGAGGTGACTCT -ACGGAAGAAGGTTGAGGTAGTCCT -ACGGAAGAAGGTTGAGGTTAAGCC -ACGGAAGAAGGTTGAGGTATAGCC -ACGGAAGAAGGTTGAGGTTAACCG -ACGGAAGAAGGTTGAGGTATGCCA -ACGGAAGAAGGTGATTCCGGAAAC -ACGGAAGAAGGTGATTCCAACACC -ACGGAAGAAGGTGATTCCATCGAG -ACGGAAGAAGGTGATTCCCTCCTT -ACGGAAGAAGGTGATTCCCCTGTT -ACGGAAGAAGGTGATTCCCGGTTT -ACGGAAGAAGGTGATTCCGTGGTT -ACGGAAGAAGGTGATTCCGCCTTT -ACGGAAGAAGGTGATTCCGGTCTT -ACGGAAGAAGGTGATTCCACGCTT -ACGGAAGAAGGTGATTCCAGCGTT -ACGGAAGAAGGTGATTCCTTCGTC -ACGGAAGAAGGTGATTCCTCTCTC -ACGGAAGAAGGTGATTCCTGGATC -ACGGAAGAAGGTGATTCCCACTTC -ACGGAAGAAGGTGATTCCGTACTC -ACGGAAGAAGGTGATTCCGATGTC -ACGGAAGAAGGTGATTCCACAGTC -ACGGAAGAAGGTGATTCCTTGCTG -ACGGAAGAAGGTGATTCCTCCATG -ACGGAAGAAGGTGATTCCTGTGTG -ACGGAAGAAGGTGATTCCCTAGTG -ACGGAAGAAGGTGATTCCCATCTG -ACGGAAGAAGGTGATTCCGAGTTG -ACGGAAGAAGGTGATTCCAGACTG -ACGGAAGAAGGTGATTCCTCGGTA -ACGGAAGAAGGTGATTCCTGCCTA -ACGGAAGAAGGTGATTCCCCACTA -ACGGAAGAAGGTGATTCCGGAGTA -ACGGAAGAAGGTGATTCCTCGTCT -ACGGAAGAAGGTGATTCCTGCACT -ACGGAAGAAGGTGATTCCCTGACT -ACGGAAGAAGGTGATTCCCAACCT -ACGGAAGAAGGTGATTCCGCTACT -ACGGAAGAAGGTGATTCCGGATCT -ACGGAAGAAGGTGATTCCAAGGCT -ACGGAAGAAGGTGATTCCTCAACC -ACGGAAGAAGGTGATTCCTGTTCC -ACGGAAGAAGGTGATTCCATTCCC -ACGGAAGAAGGTGATTCCTTCTCG -ACGGAAGAAGGTGATTCCTAGACG -ACGGAAGAAGGTGATTCCGTAACG -ACGGAAGAAGGTGATTCCACTTCG -ACGGAAGAAGGTGATTCCTACGCA -ACGGAAGAAGGTGATTCCCTTGCA -ACGGAAGAAGGTGATTCCCGAACA -ACGGAAGAAGGTGATTCCCAGTCA -ACGGAAGAAGGTGATTCCGATCCA -ACGGAAGAAGGTGATTCCACGACA -ACGGAAGAAGGTGATTCCAGCTCA -ACGGAAGAAGGTGATTCCTCACGT -ACGGAAGAAGGTGATTCCCGTAGT -ACGGAAGAAGGTGATTCCGTCAGT -ACGGAAGAAGGTGATTCCGAAGGT -ACGGAAGAAGGTGATTCCAACCGT -ACGGAAGAAGGTGATTCCTTGTGC -ACGGAAGAAGGTGATTCCCTAAGC -ACGGAAGAAGGTGATTCCACTAGC -ACGGAAGAAGGTGATTCCAGATGC -ACGGAAGAAGGTGATTCCTGAAGG -ACGGAAGAAGGTGATTCCCAATGG -ACGGAAGAAGGTGATTCCATGAGG -ACGGAAGAAGGTGATTCCAATGGG -ACGGAAGAAGGTGATTCCTCCTGA -ACGGAAGAAGGTGATTCCTAGCGA -ACGGAAGAAGGTGATTCCCACAGA -ACGGAAGAAGGTGATTCCGCAAGA -ACGGAAGAAGGTGATTCCGGTTGA -ACGGAAGAAGGTGATTCCTCCGAT -ACGGAAGAAGGTGATTCCTGGCAT -ACGGAAGAAGGTGATTCCCGAGAT -ACGGAAGAAGGTGATTCCTACCAC -ACGGAAGAAGGTGATTCCCAGAAC -ACGGAAGAAGGTGATTCCGTCTAC -ACGGAAGAAGGTGATTCCACGTAC -ACGGAAGAAGGTGATTCCAGTGAC -ACGGAAGAAGGTGATTCCCTGTAG -ACGGAAGAAGGTGATTCCCCTAAG -ACGGAAGAAGGTGATTCCGTTCAG -ACGGAAGAAGGTGATTCCGCATAG -ACGGAAGAAGGTGATTCCGACAAG -ACGGAAGAAGGTGATTCCAAGCAG -ACGGAAGAAGGTGATTCCCGTCAA -ACGGAAGAAGGTGATTCCGCTGAA -ACGGAAGAAGGTGATTCCAGTACG -ACGGAAGAAGGTGATTCCATCCGA -ACGGAAGAAGGTGATTCCATGGGA -ACGGAAGAAGGTGATTCCGTGCAA -ACGGAAGAAGGTGATTCCGAGGAA -ACGGAAGAAGGTGATTCCCAGGTA -ACGGAAGAAGGTGATTCCGACTCT -ACGGAAGAAGGTGATTCCAGTCCT -ACGGAAGAAGGTGATTCCTAAGCC -ACGGAAGAAGGTGATTCCATAGCC -ACGGAAGAAGGTGATTCCTAACCG -ACGGAAGAAGGTGATTCCATGCCA -ACGGAAGAAGGTCATTGGGGAAAC -ACGGAAGAAGGTCATTGGAACACC -ACGGAAGAAGGTCATTGGATCGAG -ACGGAAGAAGGTCATTGGCTCCTT -ACGGAAGAAGGTCATTGGCCTGTT -ACGGAAGAAGGTCATTGGCGGTTT -ACGGAAGAAGGTCATTGGGTGGTT -ACGGAAGAAGGTCATTGGGCCTTT -ACGGAAGAAGGTCATTGGGGTCTT -ACGGAAGAAGGTCATTGGACGCTT -ACGGAAGAAGGTCATTGGAGCGTT -ACGGAAGAAGGTCATTGGTTCGTC -ACGGAAGAAGGTCATTGGTCTCTC -ACGGAAGAAGGTCATTGGTGGATC -ACGGAAGAAGGTCATTGGCACTTC -ACGGAAGAAGGTCATTGGGTACTC -ACGGAAGAAGGTCATTGGGATGTC -ACGGAAGAAGGTCATTGGACAGTC -ACGGAAGAAGGTCATTGGTTGCTG -ACGGAAGAAGGTCATTGGTCCATG -ACGGAAGAAGGTCATTGGTGTGTG -ACGGAAGAAGGTCATTGGCTAGTG -ACGGAAGAAGGTCATTGGCATCTG -ACGGAAGAAGGTCATTGGGAGTTG -ACGGAAGAAGGTCATTGGAGACTG -ACGGAAGAAGGTCATTGGTCGGTA -ACGGAAGAAGGTCATTGGTGCCTA -ACGGAAGAAGGTCATTGGCCACTA -ACGGAAGAAGGTCATTGGGGAGTA -ACGGAAGAAGGTCATTGGTCGTCT -ACGGAAGAAGGTCATTGGTGCACT -ACGGAAGAAGGTCATTGGCTGACT -ACGGAAGAAGGTCATTGGCAACCT -ACGGAAGAAGGTCATTGGGCTACT -ACGGAAGAAGGTCATTGGGGATCT -ACGGAAGAAGGTCATTGGAAGGCT -ACGGAAGAAGGTCATTGGTCAACC -ACGGAAGAAGGTCATTGGTGTTCC -ACGGAAGAAGGTCATTGGATTCCC -ACGGAAGAAGGTCATTGGTTCTCG -ACGGAAGAAGGTCATTGGTAGACG -ACGGAAGAAGGTCATTGGGTAACG -ACGGAAGAAGGTCATTGGACTTCG -ACGGAAGAAGGTCATTGGTACGCA -ACGGAAGAAGGTCATTGGCTTGCA -ACGGAAGAAGGTCATTGGCGAACA -ACGGAAGAAGGTCATTGGCAGTCA -ACGGAAGAAGGTCATTGGGATCCA -ACGGAAGAAGGTCATTGGACGACA -ACGGAAGAAGGTCATTGGAGCTCA -ACGGAAGAAGGTCATTGGTCACGT -ACGGAAGAAGGTCATTGGCGTAGT -ACGGAAGAAGGTCATTGGGTCAGT -ACGGAAGAAGGTCATTGGGAAGGT -ACGGAAGAAGGTCATTGGAACCGT -ACGGAAGAAGGTCATTGGTTGTGC -ACGGAAGAAGGTCATTGGCTAAGC -ACGGAAGAAGGTCATTGGACTAGC -ACGGAAGAAGGTCATTGGAGATGC -ACGGAAGAAGGTCATTGGTGAAGG -ACGGAAGAAGGTCATTGGCAATGG -ACGGAAGAAGGTCATTGGATGAGG -ACGGAAGAAGGTCATTGGAATGGG -ACGGAAGAAGGTCATTGGTCCTGA -ACGGAAGAAGGTCATTGGTAGCGA -ACGGAAGAAGGTCATTGGCACAGA -ACGGAAGAAGGTCATTGGGCAAGA -ACGGAAGAAGGTCATTGGGGTTGA -ACGGAAGAAGGTCATTGGTCCGAT -ACGGAAGAAGGTCATTGGTGGCAT -ACGGAAGAAGGTCATTGGCGAGAT -ACGGAAGAAGGTCATTGGTACCAC -ACGGAAGAAGGTCATTGGCAGAAC -ACGGAAGAAGGTCATTGGGTCTAC -ACGGAAGAAGGTCATTGGACGTAC -ACGGAAGAAGGTCATTGGAGTGAC -ACGGAAGAAGGTCATTGGCTGTAG -ACGGAAGAAGGTCATTGGCCTAAG -ACGGAAGAAGGTCATTGGGTTCAG -ACGGAAGAAGGTCATTGGGCATAG -ACGGAAGAAGGTCATTGGGACAAG -ACGGAAGAAGGTCATTGGAAGCAG -ACGGAAGAAGGTCATTGGCGTCAA -ACGGAAGAAGGTCATTGGGCTGAA -ACGGAAGAAGGTCATTGGAGTACG -ACGGAAGAAGGTCATTGGATCCGA -ACGGAAGAAGGTCATTGGATGGGA -ACGGAAGAAGGTCATTGGGTGCAA -ACGGAAGAAGGTCATTGGGAGGAA -ACGGAAGAAGGTCATTGGCAGGTA -ACGGAAGAAGGTCATTGGGACTCT -ACGGAAGAAGGTCATTGGAGTCCT -ACGGAAGAAGGTCATTGGTAAGCC -ACGGAAGAAGGTCATTGGATAGCC -ACGGAAGAAGGTCATTGGTAACCG -ACGGAAGAAGGTCATTGGATGCCA -ACGGAAGAAGGTGATCGAGGAAAC -ACGGAAGAAGGTGATCGAAACACC -ACGGAAGAAGGTGATCGAATCGAG -ACGGAAGAAGGTGATCGACTCCTT -ACGGAAGAAGGTGATCGACCTGTT -ACGGAAGAAGGTGATCGACGGTTT -ACGGAAGAAGGTGATCGAGTGGTT -ACGGAAGAAGGTGATCGAGCCTTT -ACGGAAGAAGGTGATCGAGGTCTT -ACGGAAGAAGGTGATCGAACGCTT -ACGGAAGAAGGTGATCGAAGCGTT -ACGGAAGAAGGTGATCGATTCGTC -ACGGAAGAAGGTGATCGATCTCTC -ACGGAAGAAGGTGATCGATGGATC -ACGGAAGAAGGTGATCGACACTTC -ACGGAAGAAGGTGATCGAGTACTC -ACGGAAGAAGGTGATCGAGATGTC -ACGGAAGAAGGTGATCGAACAGTC -ACGGAAGAAGGTGATCGATTGCTG -ACGGAAGAAGGTGATCGATCCATG -ACGGAAGAAGGTGATCGATGTGTG -ACGGAAGAAGGTGATCGACTAGTG -ACGGAAGAAGGTGATCGACATCTG -ACGGAAGAAGGTGATCGAGAGTTG -ACGGAAGAAGGTGATCGAAGACTG -ACGGAAGAAGGTGATCGATCGGTA -ACGGAAGAAGGTGATCGATGCCTA -ACGGAAGAAGGTGATCGACCACTA -ACGGAAGAAGGTGATCGAGGAGTA -ACGGAAGAAGGTGATCGATCGTCT -ACGGAAGAAGGTGATCGATGCACT -ACGGAAGAAGGTGATCGACTGACT -ACGGAAGAAGGTGATCGACAACCT -ACGGAAGAAGGTGATCGAGCTACT -ACGGAAGAAGGTGATCGAGGATCT -ACGGAAGAAGGTGATCGAAAGGCT -ACGGAAGAAGGTGATCGATCAACC -ACGGAAGAAGGTGATCGATGTTCC -ACGGAAGAAGGTGATCGAATTCCC -ACGGAAGAAGGTGATCGATTCTCG -ACGGAAGAAGGTGATCGATAGACG -ACGGAAGAAGGTGATCGAGTAACG -ACGGAAGAAGGTGATCGAACTTCG -ACGGAAGAAGGTGATCGATACGCA -ACGGAAGAAGGTGATCGACTTGCA -ACGGAAGAAGGTGATCGACGAACA -ACGGAAGAAGGTGATCGACAGTCA -ACGGAAGAAGGTGATCGAGATCCA -ACGGAAGAAGGTGATCGAACGACA -ACGGAAGAAGGTGATCGAAGCTCA -ACGGAAGAAGGTGATCGATCACGT -ACGGAAGAAGGTGATCGACGTAGT -ACGGAAGAAGGTGATCGAGTCAGT -ACGGAAGAAGGTGATCGAGAAGGT -ACGGAAGAAGGTGATCGAAACCGT -ACGGAAGAAGGTGATCGATTGTGC -ACGGAAGAAGGTGATCGACTAAGC -ACGGAAGAAGGTGATCGAACTAGC -ACGGAAGAAGGTGATCGAAGATGC -ACGGAAGAAGGTGATCGATGAAGG -ACGGAAGAAGGTGATCGACAATGG -ACGGAAGAAGGTGATCGAATGAGG -ACGGAAGAAGGTGATCGAAATGGG -ACGGAAGAAGGTGATCGATCCTGA -ACGGAAGAAGGTGATCGATAGCGA -ACGGAAGAAGGTGATCGACACAGA -ACGGAAGAAGGTGATCGAGCAAGA -ACGGAAGAAGGTGATCGAGGTTGA -ACGGAAGAAGGTGATCGATCCGAT -ACGGAAGAAGGTGATCGATGGCAT -ACGGAAGAAGGTGATCGACGAGAT -ACGGAAGAAGGTGATCGATACCAC -ACGGAAGAAGGTGATCGACAGAAC -ACGGAAGAAGGTGATCGAGTCTAC -ACGGAAGAAGGTGATCGAACGTAC -ACGGAAGAAGGTGATCGAAGTGAC -ACGGAAGAAGGTGATCGACTGTAG -ACGGAAGAAGGTGATCGACCTAAG -ACGGAAGAAGGTGATCGAGTTCAG -ACGGAAGAAGGTGATCGAGCATAG -ACGGAAGAAGGTGATCGAGACAAG -ACGGAAGAAGGTGATCGAAAGCAG -ACGGAAGAAGGTGATCGACGTCAA -ACGGAAGAAGGTGATCGAGCTGAA -ACGGAAGAAGGTGATCGAAGTACG -ACGGAAGAAGGTGATCGAATCCGA -ACGGAAGAAGGTGATCGAATGGGA -ACGGAAGAAGGTGATCGAGTGCAA -ACGGAAGAAGGTGATCGAGAGGAA -ACGGAAGAAGGTGATCGACAGGTA -ACGGAAGAAGGTGATCGAGACTCT -ACGGAAGAAGGTGATCGAAGTCCT -ACGGAAGAAGGTGATCGATAAGCC -ACGGAAGAAGGTGATCGAATAGCC -ACGGAAGAAGGTGATCGATAACCG -ACGGAAGAAGGTGATCGAATGCCA -ACGGAAGAAGGTCACTACGGAAAC -ACGGAAGAAGGTCACTACAACACC -ACGGAAGAAGGTCACTACATCGAG -ACGGAAGAAGGTCACTACCTCCTT -ACGGAAGAAGGTCACTACCCTGTT -ACGGAAGAAGGTCACTACCGGTTT -ACGGAAGAAGGTCACTACGTGGTT -ACGGAAGAAGGTCACTACGCCTTT -ACGGAAGAAGGTCACTACGGTCTT -ACGGAAGAAGGTCACTACACGCTT -ACGGAAGAAGGTCACTACAGCGTT -ACGGAAGAAGGTCACTACTTCGTC -ACGGAAGAAGGTCACTACTCTCTC -ACGGAAGAAGGTCACTACTGGATC -ACGGAAGAAGGTCACTACCACTTC -ACGGAAGAAGGTCACTACGTACTC -ACGGAAGAAGGTCACTACGATGTC -ACGGAAGAAGGTCACTACACAGTC -ACGGAAGAAGGTCACTACTTGCTG -ACGGAAGAAGGTCACTACTCCATG -ACGGAAGAAGGTCACTACTGTGTG -ACGGAAGAAGGTCACTACCTAGTG -ACGGAAGAAGGTCACTACCATCTG -ACGGAAGAAGGTCACTACGAGTTG -ACGGAAGAAGGTCACTACAGACTG -ACGGAAGAAGGTCACTACTCGGTA -ACGGAAGAAGGTCACTACTGCCTA -ACGGAAGAAGGTCACTACCCACTA -ACGGAAGAAGGTCACTACGGAGTA -ACGGAAGAAGGTCACTACTCGTCT -ACGGAAGAAGGTCACTACTGCACT -ACGGAAGAAGGTCACTACCTGACT -ACGGAAGAAGGTCACTACCAACCT -ACGGAAGAAGGTCACTACGCTACT -ACGGAAGAAGGTCACTACGGATCT -ACGGAAGAAGGTCACTACAAGGCT -ACGGAAGAAGGTCACTACTCAACC -ACGGAAGAAGGTCACTACTGTTCC -ACGGAAGAAGGTCACTACATTCCC -ACGGAAGAAGGTCACTACTTCTCG -ACGGAAGAAGGTCACTACTAGACG -ACGGAAGAAGGTCACTACGTAACG -ACGGAAGAAGGTCACTACACTTCG -ACGGAAGAAGGTCACTACTACGCA -ACGGAAGAAGGTCACTACCTTGCA -ACGGAAGAAGGTCACTACCGAACA -ACGGAAGAAGGTCACTACCAGTCA -ACGGAAGAAGGTCACTACGATCCA -ACGGAAGAAGGTCACTACACGACA -ACGGAAGAAGGTCACTACAGCTCA -ACGGAAGAAGGTCACTACTCACGT -ACGGAAGAAGGTCACTACCGTAGT -ACGGAAGAAGGTCACTACGTCAGT -ACGGAAGAAGGTCACTACGAAGGT -ACGGAAGAAGGTCACTACAACCGT -ACGGAAGAAGGTCACTACTTGTGC -ACGGAAGAAGGTCACTACCTAAGC -ACGGAAGAAGGTCACTACACTAGC -ACGGAAGAAGGTCACTACAGATGC -ACGGAAGAAGGTCACTACTGAAGG -ACGGAAGAAGGTCACTACCAATGG -ACGGAAGAAGGTCACTACATGAGG -ACGGAAGAAGGTCACTACAATGGG -ACGGAAGAAGGTCACTACTCCTGA -ACGGAAGAAGGTCACTACTAGCGA -ACGGAAGAAGGTCACTACCACAGA -ACGGAAGAAGGTCACTACGCAAGA -ACGGAAGAAGGTCACTACGGTTGA -ACGGAAGAAGGTCACTACTCCGAT -ACGGAAGAAGGTCACTACTGGCAT -ACGGAAGAAGGTCACTACCGAGAT -ACGGAAGAAGGTCACTACTACCAC -ACGGAAGAAGGTCACTACCAGAAC -ACGGAAGAAGGTCACTACGTCTAC -ACGGAAGAAGGTCACTACACGTAC -ACGGAAGAAGGTCACTACAGTGAC -ACGGAAGAAGGTCACTACCTGTAG -ACGGAAGAAGGTCACTACCCTAAG -ACGGAAGAAGGTCACTACGTTCAG -ACGGAAGAAGGTCACTACGCATAG -ACGGAAGAAGGTCACTACGACAAG -ACGGAAGAAGGTCACTACAAGCAG -ACGGAAGAAGGTCACTACCGTCAA -ACGGAAGAAGGTCACTACGCTGAA -ACGGAAGAAGGTCACTACAGTACG -ACGGAAGAAGGTCACTACATCCGA -ACGGAAGAAGGTCACTACATGGGA -ACGGAAGAAGGTCACTACGTGCAA -ACGGAAGAAGGTCACTACGAGGAA -ACGGAAGAAGGTCACTACCAGGTA -ACGGAAGAAGGTCACTACGACTCT -ACGGAAGAAGGTCACTACAGTCCT -ACGGAAGAAGGTCACTACTAAGCC -ACGGAAGAAGGTCACTACATAGCC -ACGGAAGAAGGTCACTACTAACCG -ACGGAAGAAGGTCACTACATGCCA -ACGGAAGAAGGTAACCAGGGAAAC -ACGGAAGAAGGTAACCAGAACACC -ACGGAAGAAGGTAACCAGATCGAG -ACGGAAGAAGGTAACCAGCTCCTT -ACGGAAGAAGGTAACCAGCCTGTT -ACGGAAGAAGGTAACCAGCGGTTT -ACGGAAGAAGGTAACCAGGTGGTT -ACGGAAGAAGGTAACCAGGCCTTT -ACGGAAGAAGGTAACCAGGGTCTT -ACGGAAGAAGGTAACCAGACGCTT -ACGGAAGAAGGTAACCAGAGCGTT -ACGGAAGAAGGTAACCAGTTCGTC -ACGGAAGAAGGTAACCAGTCTCTC -ACGGAAGAAGGTAACCAGTGGATC -ACGGAAGAAGGTAACCAGCACTTC -ACGGAAGAAGGTAACCAGGTACTC -ACGGAAGAAGGTAACCAGGATGTC -ACGGAAGAAGGTAACCAGACAGTC -ACGGAAGAAGGTAACCAGTTGCTG -ACGGAAGAAGGTAACCAGTCCATG -ACGGAAGAAGGTAACCAGTGTGTG -ACGGAAGAAGGTAACCAGCTAGTG -ACGGAAGAAGGTAACCAGCATCTG -ACGGAAGAAGGTAACCAGGAGTTG -ACGGAAGAAGGTAACCAGAGACTG -ACGGAAGAAGGTAACCAGTCGGTA -ACGGAAGAAGGTAACCAGTGCCTA -ACGGAAGAAGGTAACCAGCCACTA -ACGGAAGAAGGTAACCAGGGAGTA -ACGGAAGAAGGTAACCAGTCGTCT -ACGGAAGAAGGTAACCAGTGCACT -ACGGAAGAAGGTAACCAGCTGACT -ACGGAAGAAGGTAACCAGCAACCT -ACGGAAGAAGGTAACCAGGCTACT -ACGGAAGAAGGTAACCAGGGATCT -ACGGAAGAAGGTAACCAGAAGGCT -ACGGAAGAAGGTAACCAGTCAACC -ACGGAAGAAGGTAACCAGTGTTCC -ACGGAAGAAGGTAACCAGATTCCC -ACGGAAGAAGGTAACCAGTTCTCG -ACGGAAGAAGGTAACCAGTAGACG -ACGGAAGAAGGTAACCAGGTAACG -ACGGAAGAAGGTAACCAGACTTCG -ACGGAAGAAGGTAACCAGTACGCA -ACGGAAGAAGGTAACCAGCTTGCA -ACGGAAGAAGGTAACCAGCGAACA -ACGGAAGAAGGTAACCAGCAGTCA -ACGGAAGAAGGTAACCAGGATCCA -ACGGAAGAAGGTAACCAGACGACA -ACGGAAGAAGGTAACCAGAGCTCA -ACGGAAGAAGGTAACCAGTCACGT -ACGGAAGAAGGTAACCAGCGTAGT -ACGGAAGAAGGTAACCAGGTCAGT -ACGGAAGAAGGTAACCAGGAAGGT -ACGGAAGAAGGTAACCAGAACCGT -ACGGAAGAAGGTAACCAGTTGTGC -ACGGAAGAAGGTAACCAGCTAAGC -ACGGAAGAAGGTAACCAGACTAGC -ACGGAAGAAGGTAACCAGAGATGC -ACGGAAGAAGGTAACCAGTGAAGG -ACGGAAGAAGGTAACCAGCAATGG -ACGGAAGAAGGTAACCAGATGAGG -ACGGAAGAAGGTAACCAGAATGGG -ACGGAAGAAGGTAACCAGTCCTGA -ACGGAAGAAGGTAACCAGTAGCGA -ACGGAAGAAGGTAACCAGCACAGA -ACGGAAGAAGGTAACCAGGCAAGA -ACGGAAGAAGGTAACCAGGGTTGA -ACGGAAGAAGGTAACCAGTCCGAT -ACGGAAGAAGGTAACCAGTGGCAT -ACGGAAGAAGGTAACCAGCGAGAT -ACGGAAGAAGGTAACCAGTACCAC -ACGGAAGAAGGTAACCAGCAGAAC -ACGGAAGAAGGTAACCAGGTCTAC -ACGGAAGAAGGTAACCAGACGTAC -ACGGAAGAAGGTAACCAGAGTGAC -ACGGAAGAAGGTAACCAGCTGTAG -ACGGAAGAAGGTAACCAGCCTAAG -ACGGAAGAAGGTAACCAGGTTCAG -ACGGAAGAAGGTAACCAGGCATAG -ACGGAAGAAGGTAACCAGGACAAG -ACGGAAGAAGGTAACCAGAAGCAG -ACGGAAGAAGGTAACCAGCGTCAA -ACGGAAGAAGGTAACCAGGCTGAA -ACGGAAGAAGGTAACCAGAGTACG -ACGGAAGAAGGTAACCAGATCCGA -ACGGAAGAAGGTAACCAGATGGGA -ACGGAAGAAGGTAACCAGGTGCAA -ACGGAAGAAGGTAACCAGGAGGAA -ACGGAAGAAGGTAACCAGCAGGTA -ACGGAAGAAGGTAACCAGGACTCT -ACGGAAGAAGGTAACCAGAGTCCT -ACGGAAGAAGGTAACCAGTAAGCC -ACGGAAGAAGGTAACCAGATAGCC -ACGGAAGAAGGTAACCAGTAACCG -ACGGAAGAAGGTAACCAGATGCCA -ACGGAAGAAGGTTACGTCGGAAAC -ACGGAAGAAGGTTACGTCAACACC -ACGGAAGAAGGTTACGTCATCGAG -ACGGAAGAAGGTTACGTCCTCCTT -ACGGAAGAAGGTTACGTCCCTGTT -ACGGAAGAAGGTTACGTCCGGTTT -ACGGAAGAAGGTTACGTCGTGGTT -ACGGAAGAAGGTTACGTCGCCTTT -ACGGAAGAAGGTTACGTCGGTCTT -ACGGAAGAAGGTTACGTCACGCTT -ACGGAAGAAGGTTACGTCAGCGTT -ACGGAAGAAGGTTACGTCTTCGTC -ACGGAAGAAGGTTACGTCTCTCTC -ACGGAAGAAGGTTACGTCTGGATC -ACGGAAGAAGGTTACGTCCACTTC -ACGGAAGAAGGTTACGTCGTACTC -ACGGAAGAAGGTTACGTCGATGTC -ACGGAAGAAGGTTACGTCACAGTC -ACGGAAGAAGGTTACGTCTTGCTG -ACGGAAGAAGGTTACGTCTCCATG -ACGGAAGAAGGTTACGTCTGTGTG -ACGGAAGAAGGTTACGTCCTAGTG -ACGGAAGAAGGTTACGTCCATCTG -ACGGAAGAAGGTTACGTCGAGTTG -ACGGAAGAAGGTTACGTCAGACTG -ACGGAAGAAGGTTACGTCTCGGTA -ACGGAAGAAGGTTACGTCTGCCTA -ACGGAAGAAGGTTACGTCCCACTA -ACGGAAGAAGGTTACGTCGGAGTA -ACGGAAGAAGGTTACGTCTCGTCT -ACGGAAGAAGGTTACGTCTGCACT -ACGGAAGAAGGTTACGTCCTGACT -ACGGAAGAAGGTTACGTCCAACCT -ACGGAAGAAGGTTACGTCGCTACT -ACGGAAGAAGGTTACGTCGGATCT -ACGGAAGAAGGTTACGTCAAGGCT -ACGGAAGAAGGTTACGTCTCAACC -ACGGAAGAAGGTTACGTCTGTTCC -ACGGAAGAAGGTTACGTCATTCCC -ACGGAAGAAGGTTACGTCTTCTCG -ACGGAAGAAGGTTACGTCTAGACG -ACGGAAGAAGGTTACGTCGTAACG -ACGGAAGAAGGTTACGTCACTTCG -ACGGAAGAAGGTTACGTCTACGCA -ACGGAAGAAGGTTACGTCCTTGCA -ACGGAAGAAGGTTACGTCCGAACA -ACGGAAGAAGGTTACGTCCAGTCA -ACGGAAGAAGGTTACGTCGATCCA -ACGGAAGAAGGTTACGTCACGACA -ACGGAAGAAGGTTACGTCAGCTCA -ACGGAAGAAGGTTACGTCTCACGT -ACGGAAGAAGGTTACGTCCGTAGT -ACGGAAGAAGGTTACGTCGTCAGT -ACGGAAGAAGGTTACGTCGAAGGT -ACGGAAGAAGGTTACGTCAACCGT -ACGGAAGAAGGTTACGTCTTGTGC -ACGGAAGAAGGTTACGTCCTAAGC -ACGGAAGAAGGTTACGTCACTAGC -ACGGAAGAAGGTTACGTCAGATGC -ACGGAAGAAGGTTACGTCTGAAGG -ACGGAAGAAGGTTACGTCCAATGG -ACGGAAGAAGGTTACGTCATGAGG -ACGGAAGAAGGTTACGTCAATGGG -ACGGAAGAAGGTTACGTCTCCTGA -ACGGAAGAAGGTTACGTCTAGCGA -ACGGAAGAAGGTTACGTCCACAGA -ACGGAAGAAGGTTACGTCGCAAGA -ACGGAAGAAGGTTACGTCGGTTGA -ACGGAAGAAGGTTACGTCTCCGAT -ACGGAAGAAGGTTACGTCTGGCAT -ACGGAAGAAGGTTACGTCCGAGAT -ACGGAAGAAGGTTACGTCTACCAC -ACGGAAGAAGGTTACGTCCAGAAC -ACGGAAGAAGGTTACGTCGTCTAC -ACGGAAGAAGGTTACGTCACGTAC -ACGGAAGAAGGTTACGTCAGTGAC -ACGGAAGAAGGTTACGTCCTGTAG -ACGGAAGAAGGTTACGTCCCTAAG -ACGGAAGAAGGTTACGTCGTTCAG -ACGGAAGAAGGTTACGTCGCATAG -ACGGAAGAAGGTTACGTCGACAAG -ACGGAAGAAGGTTACGTCAAGCAG -ACGGAAGAAGGTTACGTCCGTCAA -ACGGAAGAAGGTTACGTCGCTGAA -ACGGAAGAAGGTTACGTCAGTACG -ACGGAAGAAGGTTACGTCATCCGA -ACGGAAGAAGGTTACGTCATGGGA -ACGGAAGAAGGTTACGTCGTGCAA -ACGGAAGAAGGTTACGTCGAGGAA -ACGGAAGAAGGTTACGTCCAGGTA -ACGGAAGAAGGTTACGTCGACTCT -ACGGAAGAAGGTTACGTCAGTCCT -ACGGAAGAAGGTTACGTCTAAGCC -ACGGAAGAAGGTTACGTCATAGCC -ACGGAAGAAGGTTACGTCTAACCG -ACGGAAGAAGGTTACGTCATGCCA -ACGGAAGAAGGTTACACGGGAAAC -ACGGAAGAAGGTTACACGAACACC -ACGGAAGAAGGTTACACGATCGAG -ACGGAAGAAGGTTACACGCTCCTT -ACGGAAGAAGGTTACACGCCTGTT -ACGGAAGAAGGTTACACGCGGTTT -ACGGAAGAAGGTTACACGGTGGTT -ACGGAAGAAGGTTACACGGCCTTT -ACGGAAGAAGGTTACACGGGTCTT -ACGGAAGAAGGTTACACGACGCTT -ACGGAAGAAGGTTACACGAGCGTT -ACGGAAGAAGGTTACACGTTCGTC -ACGGAAGAAGGTTACACGTCTCTC -ACGGAAGAAGGTTACACGTGGATC -ACGGAAGAAGGTTACACGCACTTC -ACGGAAGAAGGTTACACGGTACTC -ACGGAAGAAGGTTACACGGATGTC -ACGGAAGAAGGTTACACGACAGTC -ACGGAAGAAGGTTACACGTTGCTG -ACGGAAGAAGGTTACACGTCCATG -ACGGAAGAAGGTTACACGTGTGTG -ACGGAAGAAGGTTACACGCTAGTG -ACGGAAGAAGGTTACACGCATCTG -ACGGAAGAAGGTTACACGGAGTTG -ACGGAAGAAGGTTACACGAGACTG -ACGGAAGAAGGTTACACGTCGGTA -ACGGAAGAAGGTTACACGTGCCTA -ACGGAAGAAGGTTACACGCCACTA -ACGGAAGAAGGTTACACGGGAGTA -ACGGAAGAAGGTTACACGTCGTCT -ACGGAAGAAGGTTACACGTGCACT -ACGGAAGAAGGTTACACGCTGACT -ACGGAAGAAGGTTACACGCAACCT -ACGGAAGAAGGTTACACGGCTACT -ACGGAAGAAGGTTACACGGGATCT -ACGGAAGAAGGTTACACGAAGGCT -ACGGAAGAAGGTTACACGTCAACC -ACGGAAGAAGGTTACACGTGTTCC -ACGGAAGAAGGTTACACGATTCCC -ACGGAAGAAGGTTACACGTTCTCG -ACGGAAGAAGGTTACACGTAGACG -ACGGAAGAAGGTTACACGGTAACG -ACGGAAGAAGGTTACACGACTTCG -ACGGAAGAAGGTTACACGTACGCA -ACGGAAGAAGGTTACACGCTTGCA -ACGGAAGAAGGTTACACGCGAACA -ACGGAAGAAGGTTACACGCAGTCA -ACGGAAGAAGGTTACACGGATCCA -ACGGAAGAAGGTTACACGACGACA -ACGGAAGAAGGTTACACGAGCTCA -ACGGAAGAAGGTTACACGTCACGT -ACGGAAGAAGGTTACACGCGTAGT -ACGGAAGAAGGTTACACGGTCAGT -ACGGAAGAAGGTTACACGGAAGGT -ACGGAAGAAGGTTACACGAACCGT -ACGGAAGAAGGTTACACGTTGTGC -ACGGAAGAAGGTTACACGCTAAGC -ACGGAAGAAGGTTACACGACTAGC -ACGGAAGAAGGTTACACGAGATGC -ACGGAAGAAGGTTACACGTGAAGG -ACGGAAGAAGGTTACACGCAATGG -ACGGAAGAAGGTTACACGATGAGG -ACGGAAGAAGGTTACACGAATGGG -ACGGAAGAAGGTTACACGTCCTGA -ACGGAAGAAGGTTACACGTAGCGA -ACGGAAGAAGGTTACACGCACAGA -ACGGAAGAAGGTTACACGGCAAGA -ACGGAAGAAGGTTACACGGGTTGA -ACGGAAGAAGGTTACACGTCCGAT -ACGGAAGAAGGTTACACGTGGCAT -ACGGAAGAAGGTTACACGCGAGAT -ACGGAAGAAGGTTACACGTACCAC -ACGGAAGAAGGTTACACGCAGAAC -ACGGAAGAAGGTTACACGGTCTAC -ACGGAAGAAGGTTACACGACGTAC -ACGGAAGAAGGTTACACGAGTGAC -ACGGAAGAAGGTTACACGCTGTAG -ACGGAAGAAGGTTACACGCCTAAG -ACGGAAGAAGGTTACACGGTTCAG -ACGGAAGAAGGTTACACGGCATAG -ACGGAAGAAGGTTACACGGACAAG -ACGGAAGAAGGTTACACGAAGCAG -ACGGAAGAAGGTTACACGCGTCAA -ACGGAAGAAGGTTACACGGCTGAA -ACGGAAGAAGGTTACACGAGTACG -ACGGAAGAAGGTTACACGATCCGA -ACGGAAGAAGGTTACACGATGGGA -ACGGAAGAAGGTTACACGGTGCAA -ACGGAAGAAGGTTACACGGAGGAA -ACGGAAGAAGGTTACACGCAGGTA -ACGGAAGAAGGTTACACGGACTCT -ACGGAAGAAGGTTACACGAGTCCT -ACGGAAGAAGGTTACACGTAAGCC -ACGGAAGAAGGTTACACGATAGCC -ACGGAAGAAGGTTACACGTAACCG -ACGGAAGAAGGTTACACGATGCCA -ACGGAAGAAGGTGACAGTGGAAAC -ACGGAAGAAGGTGACAGTAACACC -ACGGAAGAAGGTGACAGTATCGAG -ACGGAAGAAGGTGACAGTCTCCTT -ACGGAAGAAGGTGACAGTCCTGTT -ACGGAAGAAGGTGACAGTCGGTTT -ACGGAAGAAGGTGACAGTGTGGTT -ACGGAAGAAGGTGACAGTGCCTTT -ACGGAAGAAGGTGACAGTGGTCTT -ACGGAAGAAGGTGACAGTACGCTT -ACGGAAGAAGGTGACAGTAGCGTT -ACGGAAGAAGGTGACAGTTTCGTC -ACGGAAGAAGGTGACAGTTCTCTC -ACGGAAGAAGGTGACAGTTGGATC -ACGGAAGAAGGTGACAGTCACTTC -ACGGAAGAAGGTGACAGTGTACTC -ACGGAAGAAGGTGACAGTGATGTC -ACGGAAGAAGGTGACAGTACAGTC -ACGGAAGAAGGTGACAGTTTGCTG -ACGGAAGAAGGTGACAGTTCCATG -ACGGAAGAAGGTGACAGTTGTGTG -ACGGAAGAAGGTGACAGTCTAGTG -ACGGAAGAAGGTGACAGTCATCTG -ACGGAAGAAGGTGACAGTGAGTTG -ACGGAAGAAGGTGACAGTAGACTG -ACGGAAGAAGGTGACAGTTCGGTA -ACGGAAGAAGGTGACAGTTGCCTA -ACGGAAGAAGGTGACAGTCCACTA -ACGGAAGAAGGTGACAGTGGAGTA -ACGGAAGAAGGTGACAGTTCGTCT -ACGGAAGAAGGTGACAGTTGCACT -ACGGAAGAAGGTGACAGTCTGACT -ACGGAAGAAGGTGACAGTCAACCT -ACGGAAGAAGGTGACAGTGCTACT -ACGGAAGAAGGTGACAGTGGATCT -ACGGAAGAAGGTGACAGTAAGGCT -ACGGAAGAAGGTGACAGTTCAACC -ACGGAAGAAGGTGACAGTTGTTCC -ACGGAAGAAGGTGACAGTATTCCC -ACGGAAGAAGGTGACAGTTTCTCG -ACGGAAGAAGGTGACAGTTAGACG -ACGGAAGAAGGTGACAGTGTAACG -ACGGAAGAAGGTGACAGTACTTCG -ACGGAAGAAGGTGACAGTTACGCA -ACGGAAGAAGGTGACAGTCTTGCA -ACGGAAGAAGGTGACAGTCGAACA -ACGGAAGAAGGTGACAGTCAGTCA -ACGGAAGAAGGTGACAGTGATCCA -ACGGAAGAAGGTGACAGTACGACA -ACGGAAGAAGGTGACAGTAGCTCA -ACGGAAGAAGGTGACAGTTCACGT -ACGGAAGAAGGTGACAGTCGTAGT -ACGGAAGAAGGTGACAGTGTCAGT -ACGGAAGAAGGTGACAGTGAAGGT -ACGGAAGAAGGTGACAGTAACCGT -ACGGAAGAAGGTGACAGTTTGTGC -ACGGAAGAAGGTGACAGTCTAAGC -ACGGAAGAAGGTGACAGTACTAGC -ACGGAAGAAGGTGACAGTAGATGC -ACGGAAGAAGGTGACAGTTGAAGG -ACGGAAGAAGGTGACAGTCAATGG -ACGGAAGAAGGTGACAGTATGAGG -ACGGAAGAAGGTGACAGTAATGGG -ACGGAAGAAGGTGACAGTTCCTGA -ACGGAAGAAGGTGACAGTTAGCGA -ACGGAAGAAGGTGACAGTCACAGA -ACGGAAGAAGGTGACAGTGCAAGA -ACGGAAGAAGGTGACAGTGGTTGA -ACGGAAGAAGGTGACAGTTCCGAT -ACGGAAGAAGGTGACAGTTGGCAT -ACGGAAGAAGGTGACAGTCGAGAT -ACGGAAGAAGGTGACAGTTACCAC -ACGGAAGAAGGTGACAGTCAGAAC -ACGGAAGAAGGTGACAGTGTCTAC -ACGGAAGAAGGTGACAGTACGTAC -ACGGAAGAAGGTGACAGTAGTGAC -ACGGAAGAAGGTGACAGTCTGTAG -ACGGAAGAAGGTGACAGTCCTAAG -ACGGAAGAAGGTGACAGTGTTCAG -ACGGAAGAAGGTGACAGTGCATAG -ACGGAAGAAGGTGACAGTGACAAG -ACGGAAGAAGGTGACAGTAAGCAG -ACGGAAGAAGGTGACAGTCGTCAA -ACGGAAGAAGGTGACAGTGCTGAA -ACGGAAGAAGGTGACAGTAGTACG -ACGGAAGAAGGTGACAGTATCCGA -ACGGAAGAAGGTGACAGTATGGGA -ACGGAAGAAGGTGACAGTGTGCAA -ACGGAAGAAGGTGACAGTGAGGAA -ACGGAAGAAGGTGACAGTCAGGTA -ACGGAAGAAGGTGACAGTGACTCT -ACGGAAGAAGGTGACAGTAGTCCT -ACGGAAGAAGGTGACAGTTAAGCC -ACGGAAGAAGGTGACAGTATAGCC -ACGGAAGAAGGTGACAGTTAACCG -ACGGAAGAAGGTGACAGTATGCCA -ACGGAAGAAGGTTAGCTGGGAAAC -ACGGAAGAAGGTTAGCTGAACACC -ACGGAAGAAGGTTAGCTGATCGAG -ACGGAAGAAGGTTAGCTGCTCCTT -ACGGAAGAAGGTTAGCTGCCTGTT -ACGGAAGAAGGTTAGCTGCGGTTT -ACGGAAGAAGGTTAGCTGGTGGTT -ACGGAAGAAGGTTAGCTGGCCTTT -ACGGAAGAAGGTTAGCTGGGTCTT -ACGGAAGAAGGTTAGCTGACGCTT -ACGGAAGAAGGTTAGCTGAGCGTT -ACGGAAGAAGGTTAGCTGTTCGTC -ACGGAAGAAGGTTAGCTGTCTCTC -ACGGAAGAAGGTTAGCTGTGGATC -ACGGAAGAAGGTTAGCTGCACTTC -ACGGAAGAAGGTTAGCTGGTACTC -ACGGAAGAAGGTTAGCTGGATGTC -ACGGAAGAAGGTTAGCTGACAGTC -ACGGAAGAAGGTTAGCTGTTGCTG -ACGGAAGAAGGTTAGCTGTCCATG -ACGGAAGAAGGTTAGCTGTGTGTG -ACGGAAGAAGGTTAGCTGCTAGTG -ACGGAAGAAGGTTAGCTGCATCTG -ACGGAAGAAGGTTAGCTGGAGTTG -ACGGAAGAAGGTTAGCTGAGACTG -ACGGAAGAAGGTTAGCTGTCGGTA -ACGGAAGAAGGTTAGCTGTGCCTA -ACGGAAGAAGGTTAGCTGCCACTA -ACGGAAGAAGGTTAGCTGGGAGTA -ACGGAAGAAGGTTAGCTGTCGTCT -ACGGAAGAAGGTTAGCTGTGCACT -ACGGAAGAAGGTTAGCTGCTGACT -ACGGAAGAAGGTTAGCTGCAACCT -ACGGAAGAAGGTTAGCTGGCTACT -ACGGAAGAAGGTTAGCTGGGATCT -ACGGAAGAAGGTTAGCTGAAGGCT -ACGGAAGAAGGTTAGCTGTCAACC -ACGGAAGAAGGTTAGCTGTGTTCC -ACGGAAGAAGGTTAGCTGATTCCC -ACGGAAGAAGGTTAGCTGTTCTCG -ACGGAAGAAGGTTAGCTGTAGACG -ACGGAAGAAGGTTAGCTGGTAACG -ACGGAAGAAGGTTAGCTGACTTCG -ACGGAAGAAGGTTAGCTGTACGCA -ACGGAAGAAGGTTAGCTGCTTGCA -ACGGAAGAAGGTTAGCTGCGAACA -ACGGAAGAAGGTTAGCTGCAGTCA -ACGGAAGAAGGTTAGCTGGATCCA -ACGGAAGAAGGTTAGCTGACGACA -ACGGAAGAAGGTTAGCTGAGCTCA -ACGGAAGAAGGTTAGCTGTCACGT -ACGGAAGAAGGTTAGCTGCGTAGT -ACGGAAGAAGGTTAGCTGGTCAGT -ACGGAAGAAGGTTAGCTGGAAGGT -ACGGAAGAAGGTTAGCTGAACCGT -ACGGAAGAAGGTTAGCTGTTGTGC -ACGGAAGAAGGTTAGCTGCTAAGC -ACGGAAGAAGGTTAGCTGACTAGC -ACGGAAGAAGGTTAGCTGAGATGC -ACGGAAGAAGGTTAGCTGTGAAGG -ACGGAAGAAGGTTAGCTGCAATGG -ACGGAAGAAGGTTAGCTGATGAGG -ACGGAAGAAGGTTAGCTGAATGGG -ACGGAAGAAGGTTAGCTGTCCTGA -ACGGAAGAAGGTTAGCTGTAGCGA -ACGGAAGAAGGTTAGCTGCACAGA -ACGGAAGAAGGTTAGCTGGCAAGA -ACGGAAGAAGGTTAGCTGGGTTGA -ACGGAAGAAGGTTAGCTGTCCGAT -ACGGAAGAAGGTTAGCTGTGGCAT -ACGGAAGAAGGTTAGCTGCGAGAT -ACGGAAGAAGGTTAGCTGTACCAC -ACGGAAGAAGGTTAGCTGCAGAAC -ACGGAAGAAGGTTAGCTGGTCTAC -ACGGAAGAAGGTTAGCTGACGTAC -ACGGAAGAAGGTTAGCTGAGTGAC -ACGGAAGAAGGTTAGCTGCTGTAG -ACGGAAGAAGGTTAGCTGCCTAAG -ACGGAAGAAGGTTAGCTGGTTCAG -ACGGAAGAAGGTTAGCTGGCATAG -ACGGAAGAAGGTTAGCTGGACAAG -ACGGAAGAAGGTTAGCTGAAGCAG -ACGGAAGAAGGTTAGCTGCGTCAA -ACGGAAGAAGGTTAGCTGGCTGAA -ACGGAAGAAGGTTAGCTGAGTACG -ACGGAAGAAGGTTAGCTGATCCGA -ACGGAAGAAGGTTAGCTGATGGGA -ACGGAAGAAGGTTAGCTGGTGCAA -ACGGAAGAAGGTTAGCTGGAGGAA -ACGGAAGAAGGTTAGCTGCAGGTA -ACGGAAGAAGGTTAGCTGGACTCT -ACGGAAGAAGGTTAGCTGAGTCCT -ACGGAAGAAGGTTAGCTGTAAGCC -ACGGAAGAAGGTTAGCTGATAGCC -ACGGAAGAAGGTTAGCTGTAACCG -ACGGAAGAAGGTTAGCTGATGCCA -ACGGAAGAAGGTAAGCCTGGAAAC -ACGGAAGAAGGTAAGCCTAACACC -ACGGAAGAAGGTAAGCCTATCGAG -ACGGAAGAAGGTAAGCCTCTCCTT -ACGGAAGAAGGTAAGCCTCCTGTT -ACGGAAGAAGGTAAGCCTCGGTTT -ACGGAAGAAGGTAAGCCTGTGGTT -ACGGAAGAAGGTAAGCCTGCCTTT -ACGGAAGAAGGTAAGCCTGGTCTT -ACGGAAGAAGGTAAGCCTACGCTT -ACGGAAGAAGGTAAGCCTAGCGTT -ACGGAAGAAGGTAAGCCTTTCGTC -ACGGAAGAAGGTAAGCCTTCTCTC -ACGGAAGAAGGTAAGCCTTGGATC -ACGGAAGAAGGTAAGCCTCACTTC -ACGGAAGAAGGTAAGCCTGTACTC -ACGGAAGAAGGTAAGCCTGATGTC -ACGGAAGAAGGTAAGCCTACAGTC -ACGGAAGAAGGTAAGCCTTTGCTG -ACGGAAGAAGGTAAGCCTTCCATG -ACGGAAGAAGGTAAGCCTTGTGTG -ACGGAAGAAGGTAAGCCTCTAGTG -ACGGAAGAAGGTAAGCCTCATCTG -ACGGAAGAAGGTAAGCCTGAGTTG -ACGGAAGAAGGTAAGCCTAGACTG -ACGGAAGAAGGTAAGCCTTCGGTA -ACGGAAGAAGGTAAGCCTTGCCTA -ACGGAAGAAGGTAAGCCTCCACTA -ACGGAAGAAGGTAAGCCTGGAGTA -ACGGAAGAAGGTAAGCCTTCGTCT -ACGGAAGAAGGTAAGCCTTGCACT -ACGGAAGAAGGTAAGCCTCTGACT -ACGGAAGAAGGTAAGCCTCAACCT -ACGGAAGAAGGTAAGCCTGCTACT -ACGGAAGAAGGTAAGCCTGGATCT -ACGGAAGAAGGTAAGCCTAAGGCT -ACGGAAGAAGGTAAGCCTTCAACC -ACGGAAGAAGGTAAGCCTTGTTCC -ACGGAAGAAGGTAAGCCTATTCCC -ACGGAAGAAGGTAAGCCTTTCTCG -ACGGAAGAAGGTAAGCCTTAGACG -ACGGAAGAAGGTAAGCCTGTAACG -ACGGAAGAAGGTAAGCCTACTTCG -ACGGAAGAAGGTAAGCCTTACGCA -ACGGAAGAAGGTAAGCCTCTTGCA -ACGGAAGAAGGTAAGCCTCGAACA -ACGGAAGAAGGTAAGCCTCAGTCA -ACGGAAGAAGGTAAGCCTGATCCA -ACGGAAGAAGGTAAGCCTACGACA -ACGGAAGAAGGTAAGCCTAGCTCA -ACGGAAGAAGGTAAGCCTTCACGT -ACGGAAGAAGGTAAGCCTCGTAGT -ACGGAAGAAGGTAAGCCTGTCAGT -ACGGAAGAAGGTAAGCCTGAAGGT -ACGGAAGAAGGTAAGCCTAACCGT -ACGGAAGAAGGTAAGCCTTTGTGC -ACGGAAGAAGGTAAGCCTCTAAGC -ACGGAAGAAGGTAAGCCTACTAGC -ACGGAAGAAGGTAAGCCTAGATGC -ACGGAAGAAGGTAAGCCTTGAAGG -ACGGAAGAAGGTAAGCCTCAATGG -ACGGAAGAAGGTAAGCCTATGAGG -ACGGAAGAAGGTAAGCCTAATGGG -ACGGAAGAAGGTAAGCCTTCCTGA -ACGGAAGAAGGTAAGCCTTAGCGA -ACGGAAGAAGGTAAGCCTCACAGA -ACGGAAGAAGGTAAGCCTGCAAGA -ACGGAAGAAGGTAAGCCTGGTTGA -ACGGAAGAAGGTAAGCCTTCCGAT -ACGGAAGAAGGTAAGCCTTGGCAT -ACGGAAGAAGGTAAGCCTCGAGAT -ACGGAAGAAGGTAAGCCTTACCAC -ACGGAAGAAGGTAAGCCTCAGAAC -ACGGAAGAAGGTAAGCCTGTCTAC -ACGGAAGAAGGTAAGCCTACGTAC -ACGGAAGAAGGTAAGCCTAGTGAC -ACGGAAGAAGGTAAGCCTCTGTAG -ACGGAAGAAGGTAAGCCTCCTAAG -ACGGAAGAAGGTAAGCCTGTTCAG -ACGGAAGAAGGTAAGCCTGCATAG -ACGGAAGAAGGTAAGCCTGACAAG -ACGGAAGAAGGTAAGCCTAAGCAG -ACGGAAGAAGGTAAGCCTCGTCAA -ACGGAAGAAGGTAAGCCTGCTGAA -ACGGAAGAAGGTAAGCCTAGTACG -ACGGAAGAAGGTAAGCCTATCCGA -ACGGAAGAAGGTAAGCCTATGGGA -ACGGAAGAAGGTAAGCCTGTGCAA -ACGGAAGAAGGTAAGCCTGAGGAA -ACGGAAGAAGGTAAGCCTCAGGTA -ACGGAAGAAGGTAAGCCTGACTCT -ACGGAAGAAGGTAAGCCTAGTCCT -ACGGAAGAAGGTAAGCCTTAAGCC -ACGGAAGAAGGTAAGCCTATAGCC -ACGGAAGAAGGTAAGCCTTAACCG -ACGGAAGAAGGTAAGCCTATGCCA -ACGGAAGAAGGTCAGGTTGGAAAC -ACGGAAGAAGGTCAGGTTAACACC -ACGGAAGAAGGTCAGGTTATCGAG -ACGGAAGAAGGTCAGGTTCTCCTT -ACGGAAGAAGGTCAGGTTCCTGTT -ACGGAAGAAGGTCAGGTTCGGTTT -ACGGAAGAAGGTCAGGTTGTGGTT -ACGGAAGAAGGTCAGGTTGCCTTT -ACGGAAGAAGGTCAGGTTGGTCTT -ACGGAAGAAGGTCAGGTTACGCTT -ACGGAAGAAGGTCAGGTTAGCGTT -ACGGAAGAAGGTCAGGTTTTCGTC -ACGGAAGAAGGTCAGGTTTCTCTC -ACGGAAGAAGGTCAGGTTTGGATC -ACGGAAGAAGGTCAGGTTCACTTC -ACGGAAGAAGGTCAGGTTGTACTC -ACGGAAGAAGGTCAGGTTGATGTC -ACGGAAGAAGGTCAGGTTACAGTC -ACGGAAGAAGGTCAGGTTTTGCTG -ACGGAAGAAGGTCAGGTTTCCATG -ACGGAAGAAGGTCAGGTTTGTGTG -ACGGAAGAAGGTCAGGTTCTAGTG -ACGGAAGAAGGTCAGGTTCATCTG -ACGGAAGAAGGTCAGGTTGAGTTG -ACGGAAGAAGGTCAGGTTAGACTG -ACGGAAGAAGGTCAGGTTTCGGTA -ACGGAAGAAGGTCAGGTTTGCCTA -ACGGAAGAAGGTCAGGTTCCACTA -ACGGAAGAAGGTCAGGTTGGAGTA -ACGGAAGAAGGTCAGGTTTCGTCT -ACGGAAGAAGGTCAGGTTTGCACT -ACGGAAGAAGGTCAGGTTCTGACT -ACGGAAGAAGGTCAGGTTCAACCT -ACGGAAGAAGGTCAGGTTGCTACT -ACGGAAGAAGGTCAGGTTGGATCT -ACGGAAGAAGGTCAGGTTAAGGCT -ACGGAAGAAGGTCAGGTTTCAACC -ACGGAAGAAGGTCAGGTTTGTTCC -ACGGAAGAAGGTCAGGTTATTCCC -ACGGAAGAAGGTCAGGTTTTCTCG -ACGGAAGAAGGTCAGGTTTAGACG -ACGGAAGAAGGTCAGGTTGTAACG -ACGGAAGAAGGTCAGGTTACTTCG -ACGGAAGAAGGTCAGGTTTACGCA -ACGGAAGAAGGTCAGGTTCTTGCA -ACGGAAGAAGGTCAGGTTCGAACA -ACGGAAGAAGGTCAGGTTCAGTCA -ACGGAAGAAGGTCAGGTTGATCCA -ACGGAAGAAGGTCAGGTTACGACA -ACGGAAGAAGGTCAGGTTAGCTCA -ACGGAAGAAGGTCAGGTTTCACGT -ACGGAAGAAGGTCAGGTTCGTAGT -ACGGAAGAAGGTCAGGTTGTCAGT -ACGGAAGAAGGTCAGGTTGAAGGT -ACGGAAGAAGGTCAGGTTAACCGT -ACGGAAGAAGGTCAGGTTTTGTGC -ACGGAAGAAGGTCAGGTTCTAAGC -ACGGAAGAAGGTCAGGTTACTAGC -ACGGAAGAAGGTCAGGTTAGATGC -ACGGAAGAAGGTCAGGTTTGAAGG -ACGGAAGAAGGTCAGGTTCAATGG -ACGGAAGAAGGTCAGGTTATGAGG -ACGGAAGAAGGTCAGGTTAATGGG -ACGGAAGAAGGTCAGGTTTCCTGA -ACGGAAGAAGGTCAGGTTTAGCGA -ACGGAAGAAGGTCAGGTTCACAGA -ACGGAAGAAGGTCAGGTTGCAAGA -ACGGAAGAAGGTCAGGTTGGTTGA -ACGGAAGAAGGTCAGGTTTCCGAT -ACGGAAGAAGGTCAGGTTTGGCAT -ACGGAAGAAGGTCAGGTTCGAGAT -ACGGAAGAAGGTCAGGTTTACCAC -ACGGAAGAAGGTCAGGTTCAGAAC -ACGGAAGAAGGTCAGGTTGTCTAC -ACGGAAGAAGGTCAGGTTACGTAC -ACGGAAGAAGGTCAGGTTAGTGAC -ACGGAAGAAGGTCAGGTTCTGTAG -ACGGAAGAAGGTCAGGTTCCTAAG -ACGGAAGAAGGTCAGGTTGTTCAG -ACGGAAGAAGGTCAGGTTGCATAG -ACGGAAGAAGGTCAGGTTGACAAG -ACGGAAGAAGGTCAGGTTAAGCAG -ACGGAAGAAGGTCAGGTTCGTCAA -ACGGAAGAAGGTCAGGTTGCTGAA -ACGGAAGAAGGTCAGGTTAGTACG -ACGGAAGAAGGTCAGGTTATCCGA -ACGGAAGAAGGTCAGGTTATGGGA -ACGGAAGAAGGTCAGGTTGTGCAA -ACGGAAGAAGGTCAGGTTGAGGAA -ACGGAAGAAGGTCAGGTTCAGGTA -ACGGAAGAAGGTCAGGTTGACTCT -ACGGAAGAAGGTCAGGTTAGTCCT -ACGGAAGAAGGTCAGGTTTAAGCC -ACGGAAGAAGGTCAGGTTATAGCC -ACGGAAGAAGGTCAGGTTTAACCG -ACGGAAGAAGGTCAGGTTATGCCA -ACGGAAGAAGGTTAGGCAGGAAAC -ACGGAAGAAGGTTAGGCAAACACC -ACGGAAGAAGGTTAGGCAATCGAG -ACGGAAGAAGGTTAGGCACTCCTT -ACGGAAGAAGGTTAGGCACCTGTT -ACGGAAGAAGGTTAGGCACGGTTT -ACGGAAGAAGGTTAGGCAGTGGTT -ACGGAAGAAGGTTAGGCAGCCTTT -ACGGAAGAAGGTTAGGCAGGTCTT -ACGGAAGAAGGTTAGGCAACGCTT -ACGGAAGAAGGTTAGGCAAGCGTT -ACGGAAGAAGGTTAGGCATTCGTC -ACGGAAGAAGGTTAGGCATCTCTC -ACGGAAGAAGGTTAGGCATGGATC -ACGGAAGAAGGTTAGGCACACTTC -ACGGAAGAAGGTTAGGCAGTACTC -ACGGAAGAAGGTTAGGCAGATGTC -ACGGAAGAAGGTTAGGCAACAGTC -ACGGAAGAAGGTTAGGCATTGCTG -ACGGAAGAAGGTTAGGCATCCATG -ACGGAAGAAGGTTAGGCATGTGTG -ACGGAAGAAGGTTAGGCACTAGTG -ACGGAAGAAGGTTAGGCACATCTG -ACGGAAGAAGGTTAGGCAGAGTTG -ACGGAAGAAGGTTAGGCAAGACTG -ACGGAAGAAGGTTAGGCATCGGTA -ACGGAAGAAGGTTAGGCATGCCTA -ACGGAAGAAGGTTAGGCACCACTA -ACGGAAGAAGGTTAGGCAGGAGTA -ACGGAAGAAGGTTAGGCATCGTCT -ACGGAAGAAGGTTAGGCATGCACT -ACGGAAGAAGGTTAGGCACTGACT -ACGGAAGAAGGTTAGGCACAACCT -ACGGAAGAAGGTTAGGCAGCTACT -ACGGAAGAAGGTTAGGCAGGATCT -ACGGAAGAAGGTTAGGCAAAGGCT -ACGGAAGAAGGTTAGGCATCAACC -ACGGAAGAAGGTTAGGCATGTTCC -ACGGAAGAAGGTTAGGCAATTCCC -ACGGAAGAAGGTTAGGCATTCTCG -ACGGAAGAAGGTTAGGCATAGACG -ACGGAAGAAGGTTAGGCAGTAACG -ACGGAAGAAGGTTAGGCAACTTCG -ACGGAAGAAGGTTAGGCATACGCA -ACGGAAGAAGGTTAGGCACTTGCA -ACGGAAGAAGGTTAGGCACGAACA -ACGGAAGAAGGTTAGGCACAGTCA -ACGGAAGAAGGTTAGGCAGATCCA -ACGGAAGAAGGTTAGGCAACGACA -ACGGAAGAAGGTTAGGCAAGCTCA -ACGGAAGAAGGTTAGGCATCACGT -ACGGAAGAAGGTTAGGCACGTAGT -ACGGAAGAAGGTTAGGCAGTCAGT -ACGGAAGAAGGTTAGGCAGAAGGT -ACGGAAGAAGGTTAGGCAAACCGT -ACGGAAGAAGGTTAGGCATTGTGC -ACGGAAGAAGGTTAGGCACTAAGC -ACGGAAGAAGGTTAGGCAACTAGC -ACGGAAGAAGGTTAGGCAAGATGC -ACGGAAGAAGGTTAGGCATGAAGG -ACGGAAGAAGGTTAGGCACAATGG -ACGGAAGAAGGTTAGGCAATGAGG -ACGGAAGAAGGTTAGGCAAATGGG -ACGGAAGAAGGTTAGGCATCCTGA -ACGGAAGAAGGTTAGGCATAGCGA -ACGGAAGAAGGTTAGGCACACAGA -ACGGAAGAAGGTTAGGCAGCAAGA -ACGGAAGAAGGTTAGGCAGGTTGA -ACGGAAGAAGGTTAGGCATCCGAT -ACGGAAGAAGGTTAGGCATGGCAT -ACGGAAGAAGGTTAGGCACGAGAT -ACGGAAGAAGGTTAGGCATACCAC -ACGGAAGAAGGTTAGGCACAGAAC -ACGGAAGAAGGTTAGGCAGTCTAC -ACGGAAGAAGGTTAGGCAACGTAC -ACGGAAGAAGGTTAGGCAAGTGAC -ACGGAAGAAGGTTAGGCACTGTAG -ACGGAAGAAGGTTAGGCACCTAAG -ACGGAAGAAGGTTAGGCAGTTCAG -ACGGAAGAAGGTTAGGCAGCATAG -ACGGAAGAAGGTTAGGCAGACAAG -ACGGAAGAAGGTTAGGCAAAGCAG -ACGGAAGAAGGTTAGGCACGTCAA -ACGGAAGAAGGTTAGGCAGCTGAA -ACGGAAGAAGGTTAGGCAAGTACG -ACGGAAGAAGGTTAGGCAATCCGA -ACGGAAGAAGGTTAGGCAATGGGA -ACGGAAGAAGGTTAGGCAGTGCAA -ACGGAAGAAGGTTAGGCAGAGGAA -ACGGAAGAAGGTTAGGCACAGGTA -ACGGAAGAAGGTTAGGCAGACTCT -ACGGAAGAAGGTTAGGCAAGTCCT -ACGGAAGAAGGTTAGGCATAAGCC -ACGGAAGAAGGTTAGGCAATAGCC -ACGGAAGAAGGTTAGGCATAACCG -ACGGAAGAAGGTTAGGCAATGCCA -ACGGAAGAAGGTAAGGACGGAAAC -ACGGAAGAAGGTAAGGACAACACC -ACGGAAGAAGGTAAGGACATCGAG -ACGGAAGAAGGTAAGGACCTCCTT -ACGGAAGAAGGTAAGGACCCTGTT -ACGGAAGAAGGTAAGGACCGGTTT -ACGGAAGAAGGTAAGGACGTGGTT -ACGGAAGAAGGTAAGGACGCCTTT -ACGGAAGAAGGTAAGGACGGTCTT -ACGGAAGAAGGTAAGGACACGCTT -ACGGAAGAAGGTAAGGACAGCGTT -ACGGAAGAAGGTAAGGACTTCGTC -ACGGAAGAAGGTAAGGACTCTCTC -ACGGAAGAAGGTAAGGACTGGATC -ACGGAAGAAGGTAAGGACCACTTC -ACGGAAGAAGGTAAGGACGTACTC -ACGGAAGAAGGTAAGGACGATGTC -ACGGAAGAAGGTAAGGACACAGTC -ACGGAAGAAGGTAAGGACTTGCTG -ACGGAAGAAGGTAAGGACTCCATG -ACGGAAGAAGGTAAGGACTGTGTG -ACGGAAGAAGGTAAGGACCTAGTG -ACGGAAGAAGGTAAGGACCATCTG -ACGGAAGAAGGTAAGGACGAGTTG -ACGGAAGAAGGTAAGGACAGACTG -ACGGAAGAAGGTAAGGACTCGGTA -ACGGAAGAAGGTAAGGACTGCCTA -ACGGAAGAAGGTAAGGACCCACTA -ACGGAAGAAGGTAAGGACGGAGTA -ACGGAAGAAGGTAAGGACTCGTCT -ACGGAAGAAGGTAAGGACTGCACT -ACGGAAGAAGGTAAGGACCTGACT -ACGGAAGAAGGTAAGGACCAACCT -ACGGAAGAAGGTAAGGACGCTACT -ACGGAAGAAGGTAAGGACGGATCT -ACGGAAGAAGGTAAGGACAAGGCT -ACGGAAGAAGGTAAGGACTCAACC -ACGGAAGAAGGTAAGGACTGTTCC -ACGGAAGAAGGTAAGGACATTCCC -ACGGAAGAAGGTAAGGACTTCTCG -ACGGAAGAAGGTAAGGACTAGACG -ACGGAAGAAGGTAAGGACGTAACG -ACGGAAGAAGGTAAGGACACTTCG -ACGGAAGAAGGTAAGGACTACGCA -ACGGAAGAAGGTAAGGACCTTGCA -ACGGAAGAAGGTAAGGACCGAACA -ACGGAAGAAGGTAAGGACCAGTCA -ACGGAAGAAGGTAAGGACGATCCA -ACGGAAGAAGGTAAGGACACGACA -ACGGAAGAAGGTAAGGACAGCTCA -ACGGAAGAAGGTAAGGACTCACGT -ACGGAAGAAGGTAAGGACCGTAGT -ACGGAAGAAGGTAAGGACGTCAGT -ACGGAAGAAGGTAAGGACGAAGGT -ACGGAAGAAGGTAAGGACAACCGT -ACGGAAGAAGGTAAGGACTTGTGC -ACGGAAGAAGGTAAGGACCTAAGC -ACGGAAGAAGGTAAGGACACTAGC -ACGGAAGAAGGTAAGGACAGATGC -ACGGAAGAAGGTAAGGACTGAAGG -ACGGAAGAAGGTAAGGACCAATGG -ACGGAAGAAGGTAAGGACATGAGG -ACGGAAGAAGGTAAGGACAATGGG -ACGGAAGAAGGTAAGGACTCCTGA -ACGGAAGAAGGTAAGGACTAGCGA -ACGGAAGAAGGTAAGGACCACAGA -ACGGAAGAAGGTAAGGACGCAAGA -ACGGAAGAAGGTAAGGACGGTTGA -ACGGAAGAAGGTAAGGACTCCGAT -ACGGAAGAAGGTAAGGACTGGCAT -ACGGAAGAAGGTAAGGACCGAGAT -ACGGAAGAAGGTAAGGACTACCAC -ACGGAAGAAGGTAAGGACCAGAAC -ACGGAAGAAGGTAAGGACGTCTAC -ACGGAAGAAGGTAAGGACACGTAC -ACGGAAGAAGGTAAGGACAGTGAC -ACGGAAGAAGGTAAGGACCTGTAG -ACGGAAGAAGGTAAGGACCCTAAG -ACGGAAGAAGGTAAGGACGTTCAG -ACGGAAGAAGGTAAGGACGCATAG -ACGGAAGAAGGTAAGGACGACAAG -ACGGAAGAAGGTAAGGACAAGCAG -ACGGAAGAAGGTAAGGACCGTCAA -ACGGAAGAAGGTAAGGACGCTGAA -ACGGAAGAAGGTAAGGACAGTACG -ACGGAAGAAGGTAAGGACATCCGA -ACGGAAGAAGGTAAGGACATGGGA -ACGGAAGAAGGTAAGGACGTGCAA -ACGGAAGAAGGTAAGGACGAGGAA -ACGGAAGAAGGTAAGGACCAGGTA -ACGGAAGAAGGTAAGGACGACTCT -ACGGAAGAAGGTAAGGACAGTCCT -ACGGAAGAAGGTAAGGACTAAGCC -ACGGAAGAAGGTAAGGACATAGCC -ACGGAAGAAGGTAAGGACTAACCG -ACGGAAGAAGGTAAGGACATGCCA -ACGGAAGAAGGTCAGAAGGGAAAC -ACGGAAGAAGGTCAGAAGAACACC -ACGGAAGAAGGTCAGAAGATCGAG -ACGGAAGAAGGTCAGAAGCTCCTT -ACGGAAGAAGGTCAGAAGCCTGTT -ACGGAAGAAGGTCAGAAGCGGTTT -ACGGAAGAAGGTCAGAAGGTGGTT -ACGGAAGAAGGTCAGAAGGCCTTT -ACGGAAGAAGGTCAGAAGGGTCTT -ACGGAAGAAGGTCAGAAGACGCTT -ACGGAAGAAGGTCAGAAGAGCGTT -ACGGAAGAAGGTCAGAAGTTCGTC -ACGGAAGAAGGTCAGAAGTCTCTC -ACGGAAGAAGGTCAGAAGTGGATC -ACGGAAGAAGGTCAGAAGCACTTC -ACGGAAGAAGGTCAGAAGGTACTC -ACGGAAGAAGGTCAGAAGGATGTC -ACGGAAGAAGGTCAGAAGACAGTC -ACGGAAGAAGGTCAGAAGTTGCTG -ACGGAAGAAGGTCAGAAGTCCATG -ACGGAAGAAGGTCAGAAGTGTGTG -ACGGAAGAAGGTCAGAAGCTAGTG -ACGGAAGAAGGTCAGAAGCATCTG -ACGGAAGAAGGTCAGAAGGAGTTG -ACGGAAGAAGGTCAGAAGAGACTG -ACGGAAGAAGGTCAGAAGTCGGTA -ACGGAAGAAGGTCAGAAGTGCCTA -ACGGAAGAAGGTCAGAAGCCACTA -ACGGAAGAAGGTCAGAAGGGAGTA -ACGGAAGAAGGTCAGAAGTCGTCT -ACGGAAGAAGGTCAGAAGTGCACT -ACGGAAGAAGGTCAGAAGCTGACT -ACGGAAGAAGGTCAGAAGCAACCT -ACGGAAGAAGGTCAGAAGGCTACT -ACGGAAGAAGGTCAGAAGGGATCT -ACGGAAGAAGGTCAGAAGAAGGCT -ACGGAAGAAGGTCAGAAGTCAACC -ACGGAAGAAGGTCAGAAGTGTTCC -ACGGAAGAAGGTCAGAAGATTCCC -ACGGAAGAAGGTCAGAAGTTCTCG -ACGGAAGAAGGTCAGAAGTAGACG -ACGGAAGAAGGTCAGAAGGTAACG -ACGGAAGAAGGTCAGAAGACTTCG -ACGGAAGAAGGTCAGAAGTACGCA -ACGGAAGAAGGTCAGAAGCTTGCA -ACGGAAGAAGGTCAGAAGCGAACA -ACGGAAGAAGGTCAGAAGCAGTCA -ACGGAAGAAGGTCAGAAGGATCCA -ACGGAAGAAGGTCAGAAGACGACA -ACGGAAGAAGGTCAGAAGAGCTCA -ACGGAAGAAGGTCAGAAGTCACGT -ACGGAAGAAGGTCAGAAGCGTAGT -ACGGAAGAAGGTCAGAAGGTCAGT -ACGGAAGAAGGTCAGAAGGAAGGT -ACGGAAGAAGGTCAGAAGAACCGT -ACGGAAGAAGGTCAGAAGTTGTGC -ACGGAAGAAGGTCAGAAGCTAAGC -ACGGAAGAAGGTCAGAAGACTAGC -ACGGAAGAAGGTCAGAAGAGATGC -ACGGAAGAAGGTCAGAAGTGAAGG -ACGGAAGAAGGTCAGAAGCAATGG -ACGGAAGAAGGTCAGAAGATGAGG -ACGGAAGAAGGTCAGAAGAATGGG -ACGGAAGAAGGTCAGAAGTCCTGA -ACGGAAGAAGGTCAGAAGTAGCGA -ACGGAAGAAGGTCAGAAGCACAGA -ACGGAAGAAGGTCAGAAGGCAAGA -ACGGAAGAAGGTCAGAAGGGTTGA -ACGGAAGAAGGTCAGAAGTCCGAT -ACGGAAGAAGGTCAGAAGTGGCAT -ACGGAAGAAGGTCAGAAGCGAGAT -ACGGAAGAAGGTCAGAAGTACCAC -ACGGAAGAAGGTCAGAAGCAGAAC -ACGGAAGAAGGTCAGAAGGTCTAC -ACGGAAGAAGGTCAGAAGACGTAC -ACGGAAGAAGGTCAGAAGAGTGAC -ACGGAAGAAGGTCAGAAGCTGTAG -ACGGAAGAAGGTCAGAAGCCTAAG -ACGGAAGAAGGTCAGAAGGTTCAG -ACGGAAGAAGGTCAGAAGGCATAG -ACGGAAGAAGGTCAGAAGGACAAG -ACGGAAGAAGGTCAGAAGAAGCAG -ACGGAAGAAGGTCAGAAGCGTCAA -ACGGAAGAAGGTCAGAAGGCTGAA -ACGGAAGAAGGTCAGAAGAGTACG -ACGGAAGAAGGTCAGAAGATCCGA -ACGGAAGAAGGTCAGAAGATGGGA -ACGGAAGAAGGTCAGAAGGTGCAA -ACGGAAGAAGGTCAGAAGGAGGAA -ACGGAAGAAGGTCAGAAGCAGGTA -ACGGAAGAAGGTCAGAAGGACTCT -ACGGAAGAAGGTCAGAAGAGTCCT -ACGGAAGAAGGTCAGAAGTAAGCC -ACGGAAGAAGGTCAGAAGATAGCC -ACGGAAGAAGGTCAGAAGTAACCG -ACGGAAGAAGGTCAGAAGATGCCA -ACGGAAGAAGGTCAACGTGGAAAC -ACGGAAGAAGGTCAACGTAACACC -ACGGAAGAAGGTCAACGTATCGAG -ACGGAAGAAGGTCAACGTCTCCTT -ACGGAAGAAGGTCAACGTCCTGTT -ACGGAAGAAGGTCAACGTCGGTTT -ACGGAAGAAGGTCAACGTGTGGTT -ACGGAAGAAGGTCAACGTGCCTTT -ACGGAAGAAGGTCAACGTGGTCTT -ACGGAAGAAGGTCAACGTACGCTT -ACGGAAGAAGGTCAACGTAGCGTT -ACGGAAGAAGGTCAACGTTTCGTC -ACGGAAGAAGGTCAACGTTCTCTC -ACGGAAGAAGGTCAACGTTGGATC -ACGGAAGAAGGTCAACGTCACTTC -ACGGAAGAAGGTCAACGTGTACTC -ACGGAAGAAGGTCAACGTGATGTC -ACGGAAGAAGGTCAACGTACAGTC -ACGGAAGAAGGTCAACGTTTGCTG -ACGGAAGAAGGTCAACGTTCCATG -ACGGAAGAAGGTCAACGTTGTGTG -ACGGAAGAAGGTCAACGTCTAGTG -ACGGAAGAAGGTCAACGTCATCTG -ACGGAAGAAGGTCAACGTGAGTTG -ACGGAAGAAGGTCAACGTAGACTG -ACGGAAGAAGGTCAACGTTCGGTA -ACGGAAGAAGGTCAACGTTGCCTA -ACGGAAGAAGGTCAACGTCCACTA -ACGGAAGAAGGTCAACGTGGAGTA -ACGGAAGAAGGTCAACGTTCGTCT -ACGGAAGAAGGTCAACGTTGCACT -ACGGAAGAAGGTCAACGTCTGACT -ACGGAAGAAGGTCAACGTCAACCT -ACGGAAGAAGGTCAACGTGCTACT -ACGGAAGAAGGTCAACGTGGATCT -ACGGAAGAAGGTCAACGTAAGGCT -ACGGAAGAAGGTCAACGTTCAACC -ACGGAAGAAGGTCAACGTTGTTCC -ACGGAAGAAGGTCAACGTATTCCC -ACGGAAGAAGGTCAACGTTTCTCG -ACGGAAGAAGGTCAACGTTAGACG -ACGGAAGAAGGTCAACGTGTAACG -ACGGAAGAAGGTCAACGTACTTCG -ACGGAAGAAGGTCAACGTTACGCA -ACGGAAGAAGGTCAACGTCTTGCA -ACGGAAGAAGGTCAACGTCGAACA -ACGGAAGAAGGTCAACGTCAGTCA -ACGGAAGAAGGTCAACGTGATCCA -ACGGAAGAAGGTCAACGTACGACA -ACGGAAGAAGGTCAACGTAGCTCA -ACGGAAGAAGGTCAACGTTCACGT -ACGGAAGAAGGTCAACGTCGTAGT -ACGGAAGAAGGTCAACGTGTCAGT -ACGGAAGAAGGTCAACGTGAAGGT -ACGGAAGAAGGTCAACGTAACCGT -ACGGAAGAAGGTCAACGTTTGTGC -ACGGAAGAAGGTCAACGTCTAAGC -ACGGAAGAAGGTCAACGTACTAGC -ACGGAAGAAGGTCAACGTAGATGC -ACGGAAGAAGGTCAACGTTGAAGG -ACGGAAGAAGGTCAACGTCAATGG -ACGGAAGAAGGTCAACGTATGAGG -ACGGAAGAAGGTCAACGTAATGGG -ACGGAAGAAGGTCAACGTTCCTGA -ACGGAAGAAGGTCAACGTTAGCGA -ACGGAAGAAGGTCAACGTCACAGA -ACGGAAGAAGGTCAACGTGCAAGA -ACGGAAGAAGGTCAACGTGGTTGA -ACGGAAGAAGGTCAACGTTCCGAT -ACGGAAGAAGGTCAACGTTGGCAT -ACGGAAGAAGGTCAACGTCGAGAT -ACGGAAGAAGGTCAACGTTACCAC -ACGGAAGAAGGTCAACGTCAGAAC -ACGGAAGAAGGTCAACGTGTCTAC -ACGGAAGAAGGTCAACGTACGTAC -ACGGAAGAAGGTCAACGTAGTGAC -ACGGAAGAAGGTCAACGTCTGTAG -ACGGAAGAAGGTCAACGTCCTAAG -ACGGAAGAAGGTCAACGTGTTCAG -ACGGAAGAAGGTCAACGTGCATAG -ACGGAAGAAGGTCAACGTGACAAG -ACGGAAGAAGGTCAACGTAAGCAG -ACGGAAGAAGGTCAACGTCGTCAA -ACGGAAGAAGGTCAACGTGCTGAA -ACGGAAGAAGGTCAACGTAGTACG -ACGGAAGAAGGTCAACGTATCCGA -ACGGAAGAAGGTCAACGTATGGGA -ACGGAAGAAGGTCAACGTGTGCAA -ACGGAAGAAGGTCAACGTGAGGAA -ACGGAAGAAGGTCAACGTCAGGTA -ACGGAAGAAGGTCAACGTGACTCT -ACGGAAGAAGGTCAACGTAGTCCT -ACGGAAGAAGGTCAACGTTAAGCC -ACGGAAGAAGGTCAACGTATAGCC -ACGGAAGAAGGTCAACGTTAACCG -ACGGAAGAAGGTCAACGTATGCCA -ACGGAAGAAGGTGAAGCTGGAAAC -ACGGAAGAAGGTGAAGCTAACACC -ACGGAAGAAGGTGAAGCTATCGAG -ACGGAAGAAGGTGAAGCTCTCCTT -ACGGAAGAAGGTGAAGCTCCTGTT -ACGGAAGAAGGTGAAGCTCGGTTT -ACGGAAGAAGGTGAAGCTGTGGTT -ACGGAAGAAGGTGAAGCTGCCTTT -ACGGAAGAAGGTGAAGCTGGTCTT -ACGGAAGAAGGTGAAGCTACGCTT -ACGGAAGAAGGTGAAGCTAGCGTT -ACGGAAGAAGGTGAAGCTTTCGTC -ACGGAAGAAGGTGAAGCTTCTCTC -ACGGAAGAAGGTGAAGCTTGGATC -ACGGAAGAAGGTGAAGCTCACTTC -ACGGAAGAAGGTGAAGCTGTACTC -ACGGAAGAAGGTGAAGCTGATGTC -ACGGAAGAAGGTGAAGCTACAGTC -ACGGAAGAAGGTGAAGCTTTGCTG -ACGGAAGAAGGTGAAGCTTCCATG -ACGGAAGAAGGTGAAGCTTGTGTG -ACGGAAGAAGGTGAAGCTCTAGTG -ACGGAAGAAGGTGAAGCTCATCTG -ACGGAAGAAGGTGAAGCTGAGTTG -ACGGAAGAAGGTGAAGCTAGACTG -ACGGAAGAAGGTGAAGCTTCGGTA -ACGGAAGAAGGTGAAGCTTGCCTA -ACGGAAGAAGGTGAAGCTCCACTA -ACGGAAGAAGGTGAAGCTGGAGTA -ACGGAAGAAGGTGAAGCTTCGTCT -ACGGAAGAAGGTGAAGCTTGCACT -ACGGAAGAAGGTGAAGCTCTGACT -ACGGAAGAAGGTGAAGCTCAACCT -ACGGAAGAAGGTGAAGCTGCTACT -ACGGAAGAAGGTGAAGCTGGATCT -ACGGAAGAAGGTGAAGCTAAGGCT -ACGGAAGAAGGTGAAGCTTCAACC -ACGGAAGAAGGTGAAGCTTGTTCC -ACGGAAGAAGGTGAAGCTATTCCC -ACGGAAGAAGGTGAAGCTTTCTCG -ACGGAAGAAGGTGAAGCTTAGACG -ACGGAAGAAGGTGAAGCTGTAACG -ACGGAAGAAGGTGAAGCTACTTCG -ACGGAAGAAGGTGAAGCTTACGCA -ACGGAAGAAGGTGAAGCTCTTGCA -ACGGAAGAAGGTGAAGCTCGAACA -ACGGAAGAAGGTGAAGCTCAGTCA -ACGGAAGAAGGTGAAGCTGATCCA -ACGGAAGAAGGTGAAGCTACGACA -ACGGAAGAAGGTGAAGCTAGCTCA -ACGGAAGAAGGTGAAGCTTCACGT -ACGGAAGAAGGTGAAGCTCGTAGT -ACGGAAGAAGGTGAAGCTGTCAGT -ACGGAAGAAGGTGAAGCTGAAGGT -ACGGAAGAAGGTGAAGCTAACCGT -ACGGAAGAAGGTGAAGCTTTGTGC -ACGGAAGAAGGTGAAGCTCTAAGC -ACGGAAGAAGGTGAAGCTACTAGC -ACGGAAGAAGGTGAAGCTAGATGC -ACGGAAGAAGGTGAAGCTTGAAGG -ACGGAAGAAGGTGAAGCTCAATGG -ACGGAAGAAGGTGAAGCTATGAGG -ACGGAAGAAGGTGAAGCTAATGGG -ACGGAAGAAGGTGAAGCTTCCTGA -ACGGAAGAAGGTGAAGCTTAGCGA -ACGGAAGAAGGTGAAGCTCACAGA -ACGGAAGAAGGTGAAGCTGCAAGA -ACGGAAGAAGGTGAAGCTGGTTGA -ACGGAAGAAGGTGAAGCTTCCGAT -ACGGAAGAAGGTGAAGCTTGGCAT -ACGGAAGAAGGTGAAGCTCGAGAT -ACGGAAGAAGGTGAAGCTTACCAC -ACGGAAGAAGGTGAAGCTCAGAAC -ACGGAAGAAGGTGAAGCTGTCTAC -ACGGAAGAAGGTGAAGCTACGTAC -ACGGAAGAAGGTGAAGCTAGTGAC -ACGGAAGAAGGTGAAGCTCTGTAG -ACGGAAGAAGGTGAAGCTCCTAAG -ACGGAAGAAGGTGAAGCTGTTCAG -ACGGAAGAAGGTGAAGCTGCATAG -ACGGAAGAAGGTGAAGCTGACAAG -ACGGAAGAAGGTGAAGCTAAGCAG -ACGGAAGAAGGTGAAGCTCGTCAA -ACGGAAGAAGGTGAAGCTGCTGAA -ACGGAAGAAGGTGAAGCTAGTACG -ACGGAAGAAGGTGAAGCTATCCGA -ACGGAAGAAGGTGAAGCTATGGGA -ACGGAAGAAGGTGAAGCTGTGCAA -ACGGAAGAAGGTGAAGCTGAGGAA -ACGGAAGAAGGTGAAGCTCAGGTA -ACGGAAGAAGGTGAAGCTGACTCT -ACGGAAGAAGGTGAAGCTAGTCCT -ACGGAAGAAGGTGAAGCTTAAGCC -ACGGAAGAAGGTGAAGCTATAGCC -ACGGAAGAAGGTGAAGCTTAACCG -ACGGAAGAAGGTGAAGCTATGCCA -ACGGAAGAAGGTACGAGTGGAAAC -ACGGAAGAAGGTACGAGTAACACC -ACGGAAGAAGGTACGAGTATCGAG -ACGGAAGAAGGTACGAGTCTCCTT -ACGGAAGAAGGTACGAGTCCTGTT -ACGGAAGAAGGTACGAGTCGGTTT -ACGGAAGAAGGTACGAGTGTGGTT -ACGGAAGAAGGTACGAGTGCCTTT -ACGGAAGAAGGTACGAGTGGTCTT -ACGGAAGAAGGTACGAGTACGCTT -ACGGAAGAAGGTACGAGTAGCGTT -ACGGAAGAAGGTACGAGTTTCGTC -ACGGAAGAAGGTACGAGTTCTCTC -ACGGAAGAAGGTACGAGTTGGATC -ACGGAAGAAGGTACGAGTCACTTC -ACGGAAGAAGGTACGAGTGTACTC -ACGGAAGAAGGTACGAGTGATGTC -ACGGAAGAAGGTACGAGTACAGTC -ACGGAAGAAGGTACGAGTTTGCTG -ACGGAAGAAGGTACGAGTTCCATG -ACGGAAGAAGGTACGAGTTGTGTG -ACGGAAGAAGGTACGAGTCTAGTG -ACGGAAGAAGGTACGAGTCATCTG -ACGGAAGAAGGTACGAGTGAGTTG -ACGGAAGAAGGTACGAGTAGACTG -ACGGAAGAAGGTACGAGTTCGGTA -ACGGAAGAAGGTACGAGTTGCCTA -ACGGAAGAAGGTACGAGTCCACTA -ACGGAAGAAGGTACGAGTGGAGTA -ACGGAAGAAGGTACGAGTTCGTCT -ACGGAAGAAGGTACGAGTTGCACT -ACGGAAGAAGGTACGAGTCTGACT -ACGGAAGAAGGTACGAGTCAACCT -ACGGAAGAAGGTACGAGTGCTACT -ACGGAAGAAGGTACGAGTGGATCT -ACGGAAGAAGGTACGAGTAAGGCT -ACGGAAGAAGGTACGAGTTCAACC -ACGGAAGAAGGTACGAGTTGTTCC -ACGGAAGAAGGTACGAGTATTCCC -ACGGAAGAAGGTACGAGTTTCTCG -ACGGAAGAAGGTACGAGTTAGACG -ACGGAAGAAGGTACGAGTGTAACG -ACGGAAGAAGGTACGAGTACTTCG -ACGGAAGAAGGTACGAGTTACGCA -ACGGAAGAAGGTACGAGTCTTGCA -ACGGAAGAAGGTACGAGTCGAACA -ACGGAAGAAGGTACGAGTCAGTCA -ACGGAAGAAGGTACGAGTGATCCA -ACGGAAGAAGGTACGAGTACGACA -ACGGAAGAAGGTACGAGTAGCTCA -ACGGAAGAAGGTACGAGTTCACGT -ACGGAAGAAGGTACGAGTCGTAGT -ACGGAAGAAGGTACGAGTGTCAGT -ACGGAAGAAGGTACGAGTGAAGGT -ACGGAAGAAGGTACGAGTAACCGT -ACGGAAGAAGGTACGAGTTTGTGC -ACGGAAGAAGGTACGAGTCTAAGC -ACGGAAGAAGGTACGAGTACTAGC -ACGGAAGAAGGTACGAGTAGATGC -ACGGAAGAAGGTACGAGTTGAAGG -ACGGAAGAAGGTACGAGTCAATGG -ACGGAAGAAGGTACGAGTATGAGG -ACGGAAGAAGGTACGAGTAATGGG -ACGGAAGAAGGTACGAGTTCCTGA -ACGGAAGAAGGTACGAGTTAGCGA -ACGGAAGAAGGTACGAGTCACAGA -ACGGAAGAAGGTACGAGTGCAAGA -ACGGAAGAAGGTACGAGTGGTTGA -ACGGAAGAAGGTACGAGTTCCGAT -ACGGAAGAAGGTACGAGTTGGCAT -ACGGAAGAAGGTACGAGTCGAGAT -ACGGAAGAAGGTACGAGTTACCAC -ACGGAAGAAGGTACGAGTCAGAAC -ACGGAAGAAGGTACGAGTGTCTAC -ACGGAAGAAGGTACGAGTACGTAC -ACGGAAGAAGGTACGAGTAGTGAC -ACGGAAGAAGGTACGAGTCTGTAG -ACGGAAGAAGGTACGAGTCCTAAG -ACGGAAGAAGGTACGAGTGTTCAG -ACGGAAGAAGGTACGAGTGCATAG -ACGGAAGAAGGTACGAGTGACAAG -ACGGAAGAAGGTACGAGTAAGCAG -ACGGAAGAAGGTACGAGTCGTCAA -ACGGAAGAAGGTACGAGTGCTGAA -ACGGAAGAAGGTACGAGTAGTACG -ACGGAAGAAGGTACGAGTATCCGA -ACGGAAGAAGGTACGAGTATGGGA -ACGGAAGAAGGTACGAGTGTGCAA -ACGGAAGAAGGTACGAGTGAGGAA -ACGGAAGAAGGTACGAGTCAGGTA -ACGGAAGAAGGTACGAGTGACTCT -ACGGAAGAAGGTACGAGTAGTCCT -ACGGAAGAAGGTACGAGTTAAGCC -ACGGAAGAAGGTACGAGTATAGCC -ACGGAAGAAGGTACGAGTTAACCG -ACGGAAGAAGGTACGAGTATGCCA -ACGGAAGAAGGTCGAATCGGAAAC -ACGGAAGAAGGTCGAATCAACACC -ACGGAAGAAGGTCGAATCATCGAG -ACGGAAGAAGGTCGAATCCTCCTT -ACGGAAGAAGGTCGAATCCCTGTT -ACGGAAGAAGGTCGAATCCGGTTT -ACGGAAGAAGGTCGAATCGTGGTT -ACGGAAGAAGGTCGAATCGCCTTT -ACGGAAGAAGGTCGAATCGGTCTT -ACGGAAGAAGGTCGAATCACGCTT -ACGGAAGAAGGTCGAATCAGCGTT -ACGGAAGAAGGTCGAATCTTCGTC -ACGGAAGAAGGTCGAATCTCTCTC -ACGGAAGAAGGTCGAATCTGGATC -ACGGAAGAAGGTCGAATCCACTTC -ACGGAAGAAGGTCGAATCGTACTC -ACGGAAGAAGGTCGAATCGATGTC -ACGGAAGAAGGTCGAATCACAGTC -ACGGAAGAAGGTCGAATCTTGCTG -ACGGAAGAAGGTCGAATCTCCATG -ACGGAAGAAGGTCGAATCTGTGTG -ACGGAAGAAGGTCGAATCCTAGTG -ACGGAAGAAGGTCGAATCCATCTG -ACGGAAGAAGGTCGAATCGAGTTG -ACGGAAGAAGGTCGAATCAGACTG -ACGGAAGAAGGTCGAATCTCGGTA -ACGGAAGAAGGTCGAATCTGCCTA -ACGGAAGAAGGTCGAATCCCACTA -ACGGAAGAAGGTCGAATCGGAGTA -ACGGAAGAAGGTCGAATCTCGTCT -ACGGAAGAAGGTCGAATCTGCACT -ACGGAAGAAGGTCGAATCCTGACT -ACGGAAGAAGGTCGAATCCAACCT -ACGGAAGAAGGTCGAATCGCTACT -ACGGAAGAAGGTCGAATCGGATCT -ACGGAAGAAGGTCGAATCAAGGCT -ACGGAAGAAGGTCGAATCTCAACC -ACGGAAGAAGGTCGAATCTGTTCC -ACGGAAGAAGGTCGAATCATTCCC -ACGGAAGAAGGTCGAATCTTCTCG -ACGGAAGAAGGTCGAATCTAGACG -ACGGAAGAAGGTCGAATCGTAACG -ACGGAAGAAGGTCGAATCACTTCG -ACGGAAGAAGGTCGAATCTACGCA -ACGGAAGAAGGTCGAATCCTTGCA -ACGGAAGAAGGTCGAATCCGAACA -ACGGAAGAAGGTCGAATCCAGTCA -ACGGAAGAAGGTCGAATCGATCCA -ACGGAAGAAGGTCGAATCACGACA -ACGGAAGAAGGTCGAATCAGCTCA -ACGGAAGAAGGTCGAATCTCACGT -ACGGAAGAAGGTCGAATCCGTAGT -ACGGAAGAAGGTCGAATCGTCAGT -ACGGAAGAAGGTCGAATCGAAGGT -ACGGAAGAAGGTCGAATCAACCGT -ACGGAAGAAGGTCGAATCTTGTGC -ACGGAAGAAGGTCGAATCCTAAGC -ACGGAAGAAGGTCGAATCACTAGC -ACGGAAGAAGGTCGAATCAGATGC -ACGGAAGAAGGTCGAATCTGAAGG -ACGGAAGAAGGTCGAATCCAATGG -ACGGAAGAAGGTCGAATCATGAGG -ACGGAAGAAGGTCGAATCAATGGG -ACGGAAGAAGGTCGAATCTCCTGA -ACGGAAGAAGGTCGAATCTAGCGA -ACGGAAGAAGGTCGAATCCACAGA -ACGGAAGAAGGTCGAATCGCAAGA -ACGGAAGAAGGTCGAATCGGTTGA -ACGGAAGAAGGTCGAATCTCCGAT -ACGGAAGAAGGTCGAATCTGGCAT -ACGGAAGAAGGTCGAATCCGAGAT -ACGGAAGAAGGTCGAATCTACCAC -ACGGAAGAAGGTCGAATCCAGAAC -ACGGAAGAAGGTCGAATCGTCTAC -ACGGAAGAAGGTCGAATCACGTAC -ACGGAAGAAGGTCGAATCAGTGAC -ACGGAAGAAGGTCGAATCCTGTAG -ACGGAAGAAGGTCGAATCCCTAAG -ACGGAAGAAGGTCGAATCGTTCAG -ACGGAAGAAGGTCGAATCGCATAG -ACGGAAGAAGGTCGAATCGACAAG -ACGGAAGAAGGTCGAATCAAGCAG -ACGGAAGAAGGTCGAATCCGTCAA -ACGGAAGAAGGTCGAATCGCTGAA -ACGGAAGAAGGTCGAATCAGTACG -ACGGAAGAAGGTCGAATCATCCGA -ACGGAAGAAGGTCGAATCATGGGA -ACGGAAGAAGGTCGAATCGTGCAA -ACGGAAGAAGGTCGAATCGAGGAA -ACGGAAGAAGGTCGAATCCAGGTA -ACGGAAGAAGGTCGAATCGACTCT -ACGGAAGAAGGTCGAATCAGTCCT -ACGGAAGAAGGTCGAATCTAAGCC -ACGGAAGAAGGTCGAATCATAGCC -ACGGAAGAAGGTCGAATCTAACCG -ACGGAAGAAGGTCGAATCATGCCA -ACGGAAGAAGGTGGAATGGGAAAC -ACGGAAGAAGGTGGAATGAACACC -ACGGAAGAAGGTGGAATGATCGAG -ACGGAAGAAGGTGGAATGCTCCTT -ACGGAAGAAGGTGGAATGCCTGTT -ACGGAAGAAGGTGGAATGCGGTTT -ACGGAAGAAGGTGGAATGGTGGTT -ACGGAAGAAGGTGGAATGGCCTTT -ACGGAAGAAGGTGGAATGGGTCTT -ACGGAAGAAGGTGGAATGACGCTT -ACGGAAGAAGGTGGAATGAGCGTT -ACGGAAGAAGGTGGAATGTTCGTC -ACGGAAGAAGGTGGAATGTCTCTC -ACGGAAGAAGGTGGAATGTGGATC -ACGGAAGAAGGTGGAATGCACTTC -ACGGAAGAAGGTGGAATGGTACTC -ACGGAAGAAGGTGGAATGGATGTC -ACGGAAGAAGGTGGAATGACAGTC -ACGGAAGAAGGTGGAATGTTGCTG -ACGGAAGAAGGTGGAATGTCCATG -ACGGAAGAAGGTGGAATGTGTGTG -ACGGAAGAAGGTGGAATGCTAGTG -ACGGAAGAAGGTGGAATGCATCTG -ACGGAAGAAGGTGGAATGGAGTTG -ACGGAAGAAGGTGGAATGAGACTG -ACGGAAGAAGGTGGAATGTCGGTA -ACGGAAGAAGGTGGAATGTGCCTA -ACGGAAGAAGGTGGAATGCCACTA -ACGGAAGAAGGTGGAATGGGAGTA -ACGGAAGAAGGTGGAATGTCGTCT -ACGGAAGAAGGTGGAATGTGCACT -ACGGAAGAAGGTGGAATGCTGACT -ACGGAAGAAGGTGGAATGCAACCT -ACGGAAGAAGGTGGAATGGCTACT -ACGGAAGAAGGTGGAATGGGATCT -ACGGAAGAAGGTGGAATGAAGGCT -ACGGAAGAAGGTGGAATGTCAACC -ACGGAAGAAGGTGGAATGTGTTCC -ACGGAAGAAGGTGGAATGATTCCC -ACGGAAGAAGGTGGAATGTTCTCG -ACGGAAGAAGGTGGAATGTAGACG -ACGGAAGAAGGTGGAATGGTAACG -ACGGAAGAAGGTGGAATGACTTCG -ACGGAAGAAGGTGGAATGTACGCA -ACGGAAGAAGGTGGAATGCTTGCA -ACGGAAGAAGGTGGAATGCGAACA -ACGGAAGAAGGTGGAATGCAGTCA -ACGGAAGAAGGTGGAATGGATCCA -ACGGAAGAAGGTGGAATGACGACA -ACGGAAGAAGGTGGAATGAGCTCA -ACGGAAGAAGGTGGAATGTCACGT -ACGGAAGAAGGTGGAATGCGTAGT -ACGGAAGAAGGTGGAATGGTCAGT -ACGGAAGAAGGTGGAATGGAAGGT -ACGGAAGAAGGTGGAATGAACCGT -ACGGAAGAAGGTGGAATGTTGTGC -ACGGAAGAAGGTGGAATGCTAAGC -ACGGAAGAAGGTGGAATGACTAGC -ACGGAAGAAGGTGGAATGAGATGC -ACGGAAGAAGGTGGAATGTGAAGG -ACGGAAGAAGGTGGAATGCAATGG -ACGGAAGAAGGTGGAATGATGAGG -ACGGAAGAAGGTGGAATGAATGGG -ACGGAAGAAGGTGGAATGTCCTGA -ACGGAAGAAGGTGGAATGTAGCGA -ACGGAAGAAGGTGGAATGCACAGA -ACGGAAGAAGGTGGAATGGCAAGA -ACGGAAGAAGGTGGAATGGGTTGA -ACGGAAGAAGGTGGAATGTCCGAT -ACGGAAGAAGGTGGAATGTGGCAT -ACGGAAGAAGGTGGAATGCGAGAT -ACGGAAGAAGGTGGAATGTACCAC -ACGGAAGAAGGTGGAATGCAGAAC -ACGGAAGAAGGTGGAATGGTCTAC -ACGGAAGAAGGTGGAATGACGTAC -ACGGAAGAAGGTGGAATGAGTGAC -ACGGAAGAAGGTGGAATGCTGTAG -ACGGAAGAAGGTGGAATGCCTAAG -ACGGAAGAAGGTGGAATGGTTCAG -ACGGAAGAAGGTGGAATGGCATAG -ACGGAAGAAGGTGGAATGGACAAG -ACGGAAGAAGGTGGAATGAAGCAG -ACGGAAGAAGGTGGAATGCGTCAA -ACGGAAGAAGGTGGAATGGCTGAA -ACGGAAGAAGGTGGAATGAGTACG -ACGGAAGAAGGTGGAATGATCCGA -ACGGAAGAAGGTGGAATGATGGGA -ACGGAAGAAGGTGGAATGGTGCAA -ACGGAAGAAGGTGGAATGGAGGAA -ACGGAAGAAGGTGGAATGCAGGTA -ACGGAAGAAGGTGGAATGGACTCT -ACGGAAGAAGGTGGAATGAGTCCT -ACGGAAGAAGGTGGAATGTAAGCC -ACGGAAGAAGGTGGAATGATAGCC -ACGGAAGAAGGTGGAATGTAACCG -ACGGAAGAAGGTGGAATGATGCCA -ACGGAAGAAGGTCAAGTGGGAAAC -ACGGAAGAAGGTCAAGTGAACACC -ACGGAAGAAGGTCAAGTGATCGAG -ACGGAAGAAGGTCAAGTGCTCCTT -ACGGAAGAAGGTCAAGTGCCTGTT -ACGGAAGAAGGTCAAGTGCGGTTT -ACGGAAGAAGGTCAAGTGGTGGTT -ACGGAAGAAGGTCAAGTGGCCTTT -ACGGAAGAAGGTCAAGTGGGTCTT -ACGGAAGAAGGTCAAGTGACGCTT -ACGGAAGAAGGTCAAGTGAGCGTT -ACGGAAGAAGGTCAAGTGTTCGTC -ACGGAAGAAGGTCAAGTGTCTCTC -ACGGAAGAAGGTCAAGTGTGGATC -ACGGAAGAAGGTCAAGTGCACTTC -ACGGAAGAAGGTCAAGTGGTACTC -ACGGAAGAAGGTCAAGTGGATGTC -ACGGAAGAAGGTCAAGTGACAGTC -ACGGAAGAAGGTCAAGTGTTGCTG -ACGGAAGAAGGTCAAGTGTCCATG -ACGGAAGAAGGTCAAGTGTGTGTG -ACGGAAGAAGGTCAAGTGCTAGTG -ACGGAAGAAGGTCAAGTGCATCTG -ACGGAAGAAGGTCAAGTGGAGTTG -ACGGAAGAAGGTCAAGTGAGACTG -ACGGAAGAAGGTCAAGTGTCGGTA -ACGGAAGAAGGTCAAGTGTGCCTA -ACGGAAGAAGGTCAAGTGCCACTA -ACGGAAGAAGGTCAAGTGGGAGTA -ACGGAAGAAGGTCAAGTGTCGTCT -ACGGAAGAAGGTCAAGTGTGCACT -ACGGAAGAAGGTCAAGTGCTGACT -ACGGAAGAAGGTCAAGTGCAACCT -ACGGAAGAAGGTCAAGTGGCTACT -ACGGAAGAAGGTCAAGTGGGATCT -ACGGAAGAAGGTCAAGTGAAGGCT -ACGGAAGAAGGTCAAGTGTCAACC -ACGGAAGAAGGTCAAGTGTGTTCC -ACGGAAGAAGGTCAAGTGATTCCC -ACGGAAGAAGGTCAAGTGTTCTCG -ACGGAAGAAGGTCAAGTGTAGACG -ACGGAAGAAGGTCAAGTGGTAACG -ACGGAAGAAGGTCAAGTGACTTCG -ACGGAAGAAGGTCAAGTGTACGCA -ACGGAAGAAGGTCAAGTGCTTGCA -ACGGAAGAAGGTCAAGTGCGAACA -ACGGAAGAAGGTCAAGTGCAGTCA -ACGGAAGAAGGTCAAGTGGATCCA -ACGGAAGAAGGTCAAGTGACGACA -ACGGAAGAAGGTCAAGTGAGCTCA -ACGGAAGAAGGTCAAGTGTCACGT -ACGGAAGAAGGTCAAGTGCGTAGT -ACGGAAGAAGGTCAAGTGGTCAGT -ACGGAAGAAGGTCAAGTGGAAGGT -ACGGAAGAAGGTCAAGTGAACCGT -ACGGAAGAAGGTCAAGTGTTGTGC -ACGGAAGAAGGTCAAGTGCTAAGC -ACGGAAGAAGGTCAAGTGACTAGC -ACGGAAGAAGGTCAAGTGAGATGC -ACGGAAGAAGGTCAAGTGTGAAGG -ACGGAAGAAGGTCAAGTGCAATGG -ACGGAAGAAGGTCAAGTGATGAGG -ACGGAAGAAGGTCAAGTGAATGGG -ACGGAAGAAGGTCAAGTGTCCTGA -ACGGAAGAAGGTCAAGTGTAGCGA -ACGGAAGAAGGTCAAGTGCACAGA -ACGGAAGAAGGTCAAGTGGCAAGA -ACGGAAGAAGGTCAAGTGGGTTGA -ACGGAAGAAGGTCAAGTGTCCGAT -ACGGAAGAAGGTCAAGTGTGGCAT -ACGGAAGAAGGTCAAGTGCGAGAT -ACGGAAGAAGGTCAAGTGTACCAC -ACGGAAGAAGGTCAAGTGCAGAAC -ACGGAAGAAGGTCAAGTGGTCTAC -ACGGAAGAAGGTCAAGTGACGTAC -ACGGAAGAAGGTCAAGTGAGTGAC -ACGGAAGAAGGTCAAGTGCTGTAG -ACGGAAGAAGGTCAAGTGCCTAAG -ACGGAAGAAGGTCAAGTGGTTCAG -ACGGAAGAAGGTCAAGTGGCATAG -ACGGAAGAAGGTCAAGTGGACAAG -ACGGAAGAAGGTCAAGTGAAGCAG -ACGGAAGAAGGTCAAGTGCGTCAA -ACGGAAGAAGGTCAAGTGGCTGAA -ACGGAAGAAGGTCAAGTGAGTACG -ACGGAAGAAGGTCAAGTGATCCGA -ACGGAAGAAGGTCAAGTGATGGGA -ACGGAAGAAGGTCAAGTGGTGCAA -ACGGAAGAAGGTCAAGTGGAGGAA -ACGGAAGAAGGTCAAGTGCAGGTA -ACGGAAGAAGGTCAAGTGGACTCT -ACGGAAGAAGGTCAAGTGAGTCCT -ACGGAAGAAGGTCAAGTGTAAGCC -ACGGAAGAAGGTCAAGTGATAGCC -ACGGAAGAAGGTCAAGTGTAACCG -ACGGAAGAAGGTCAAGTGATGCCA -ACGGAAGAAGGTGAAGAGGGAAAC -ACGGAAGAAGGTGAAGAGAACACC -ACGGAAGAAGGTGAAGAGATCGAG -ACGGAAGAAGGTGAAGAGCTCCTT -ACGGAAGAAGGTGAAGAGCCTGTT -ACGGAAGAAGGTGAAGAGCGGTTT -ACGGAAGAAGGTGAAGAGGTGGTT -ACGGAAGAAGGTGAAGAGGCCTTT -ACGGAAGAAGGTGAAGAGGGTCTT -ACGGAAGAAGGTGAAGAGACGCTT -ACGGAAGAAGGTGAAGAGAGCGTT -ACGGAAGAAGGTGAAGAGTTCGTC -ACGGAAGAAGGTGAAGAGTCTCTC -ACGGAAGAAGGTGAAGAGTGGATC -ACGGAAGAAGGTGAAGAGCACTTC -ACGGAAGAAGGTGAAGAGGTACTC -ACGGAAGAAGGTGAAGAGGATGTC -ACGGAAGAAGGTGAAGAGACAGTC -ACGGAAGAAGGTGAAGAGTTGCTG -ACGGAAGAAGGTGAAGAGTCCATG -ACGGAAGAAGGTGAAGAGTGTGTG -ACGGAAGAAGGTGAAGAGCTAGTG -ACGGAAGAAGGTGAAGAGCATCTG -ACGGAAGAAGGTGAAGAGGAGTTG -ACGGAAGAAGGTGAAGAGAGACTG -ACGGAAGAAGGTGAAGAGTCGGTA -ACGGAAGAAGGTGAAGAGTGCCTA -ACGGAAGAAGGTGAAGAGCCACTA -ACGGAAGAAGGTGAAGAGGGAGTA -ACGGAAGAAGGTGAAGAGTCGTCT -ACGGAAGAAGGTGAAGAGTGCACT -ACGGAAGAAGGTGAAGAGCTGACT -ACGGAAGAAGGTGAAGAGCAACCT -ACGGAAGAAGGTGAAGAGGCTACT -ACGGAAGAAGGTGAAGAGGGATCT -ACGGAAGAAGGTGAAGAGAAGGCT -ACGGAAGAAGGTGAAGAGTCAACC -ACGGAAGAAGGTGAAGAGTGTTCC -ACGGAAGAAGGTGAAGAGATTCCC -ACGGAAGAAGGTGAAGAGTTCTCG -ACGGAAGAAGGTGAAGAGTAGACG -ACGGAAGAAGGTGAAGAGGTAACG -ACGGAAGAAGGTGAAGAGACTTCG -ACGGAAGAAGGTGAAGAGTACGCA -ACGGAAGAAGGTGAAGAGCTTGCA -ACGGAAGAAGGTGAAGAGCGAACA -ACGGAAGAAGGTGAAGAGCAGTCA -ACGGAAGAAGGTGAAGAGGATCCA -ACGGAAGAAGGTGAAGAGACGACA -ACGGAAGAAGGTGAAGAGAGCTCA -ACGGAAGAAGGTGAAGAGTCACGT -ACGGAAGAAGGTGAAGAGCGTAGT -ACGGAAGAAGGTGAAGAGGTCAGT -ACGGAAGAAGGTGAAGAGGAAGGT -ACGGAAGAAGGTGAAGAGAACCGT -ACGGAAGAAGGTGAAGAGTTGTGC -ACGGAAGAAGGTGAAGAGCTAAGC -ACGGAAGAAGGTGAAGAGACTAGC -ACGGAAGAAGGTGAAGAGAGATGC -ACGGAAGAAGGTGAAGAGTGAAGG -ACGGAAGAAGGTGAAGAGCAATGG -ACGGAAGAAGGTGAAGAGATGAGG -ACGGAAGAAGGTGAAGAGAATGGG -ACGGAAGAAGGTGAAGAGTCCTGA -ACGGAAGAAGGTGAAGAGTAGCGA -ACGGAAGAAGGTGAAGAGCACAGA -ACGGAAGAAGGTGAAGAGGCAAGA -ACGGAAGAAGGTGAAGAGGGTTGA -ACGGAAGAAGGTGAAGAGTCCGAT -ACGGAAGAAGGTGAAGAGTGGCAT -ACGGAAGAAGGTGAAGAGCGAGAT -ACGGAAGAAGGTGAAGAGTACCAC -ACGGAAGAAGGTGAAGAGCAGAAC -ACGGAAGAAGGTGAAGAGGTCTAC -ACGGAAGAAGGTGAAGAGACGTAC -ACGGAAGAAGGTGAAGAGAGTGAC -ACGGAAGAAGGTGAAGAGCTGTAG -ACGGAAGAAGGTGAAGAGCCTAAG -ACGGAAGAAGGTGAAGAGGTTCAG -ACGGAAGAAGGTGAAGAGGCATAG -ACGGAAGAAGGTGAAGAGGACAAG -ACGGAAGAAGGTGAAGAGAAGCAG -ACGGAAGAAGGTGAAGAGCGTCAA -ACGGAAGAAGGTGAAGAGGCTGAA -ACGGAAGAAGGTGAAGAGAGTACG -ACGGAAGAAGGTGAAGAGATCCGA -ACGGAAGAAGGTGAAGAGATGGGA -ACGGAAGAAGGTGAAGAGGTGCAA -ACGGAAGAAGGTGAAGAGGAGGAA -ACGGAAGAAGGTGAAGAGCAGGTA -ACGGAAGAAGGTGAAGAGGACTCT -ACGGAAGAAGGTGAAGAGAGTCCT -ACGGAAGAAGGTGAAGAGTAAGCC -ACGGAAGAAGGTGAAGAGATAGCC -ACGGAAGAAGGTGAAGAGTAACCG -ACGGAAGAAGGTGAAGAGATGCCA -ACGGAAGAAGGTGTACAGGGAAAC -ACGGAAGAAGGTGTACAGAACACC -ACGGAAGAAGGTGTACAGATCGAG -ACGGAAGAAGGTGTACAGCTCCTT -ACGGAAGAAGGTGTACAGCCTGTT -ACGGAAGAAGGTGTACAGCGGTTT -ACGGAAGAAGGTGTACAGGTGGTT -ACGGAAGAAGGTGTACAGGCCTTT -ACGGAAGAAGGTGTACAGGGTCTT -ACGGAAGAAGGTGTACAGACGCTT -ACGGAAGAAGGTGTACAGAGCGTT -ACGGAAGAAGGTGTACAGTTCGTC -ACGGAAGAAGGTGTACAGTCTCTC -ACGGAAGAAGGTGTACAGTGGATC -ACGGAAGAAGGTGTACAGCACTTC -ACGGAAGAAGGTGTACAGGTACTC -ACGGAAGAAGGTGTACAGGATGTC -ACGGAAGAAGGTGTACAGACAGTC -ACGGAAGAAGGTGTACAGTTGCTG -ACGGAAGAAGGTGTACAGTCCATG -ACGGAAGAAGGTGTACAGTGTGTG -ACGGAAGAAGGTGTACAGCTAGTG -ACGGAAGAAGGTGTACAGCATCTG -ACGGAAGAAGGTGTACAGGAGTTG -ACGGAAGAAGGTGTACAGAGACTG -ACGGAAGAAGGTGTACAGTCGGTA -ACGGAAGAAGGTGTACAGTGCCTA -ACGGAAGAAGGTGTACAGCCACTA -ACGGAAGAAGGTGTACAGGGAGTA -ACGGAAGAAGGTGTACAGTCGTCT -ACGGAAGAAGGTGTACAGTGCACT -ACGGAAGAAGGTGTACAGCTGACT -ACGGAAGAAGGTGTACAGCAACCT -ACGGAAGAAGGTGTACAGGCTACT -ACGGAAGAAGGTGTACAGGGATCT -ACGGAAGAAGGTGTACAGAAGGCT -ACGGAAGAAGGTGTACAGTCAACC -ACGGAAGAAGGTGTACAGTGTTCC -ACGGAAGAAGGTGTACAGATTCCC -ACGGAAGAAGGTGTACAGTTCTCG -ACGGAAGAAGGTGTACAGTAGACG -ACGGAAGAAGGTGTACAGGTAACG -ACGGAAGAAGGTGTACAGACTTCG -ACGGAAGAAGGTGTACAGTACGCA -ACGGAAGAAGGTGTACAGCTTGCA -ACGGAAGAAGGTGTACAGCGAACA -ACGGAAGAAGGTGTACAGCAGTCA -ACGGAAGAAGGTGTACAGGATCCA -ACGGAAGAAGGTGTACAGACGACA -ACGGAAGAAGGTGTACAGAGCTCA -ACGGAAGAAGGTGTACAGTCACGT -ACGGAAGAAGGTGTACAGCGTAGT -ACGGAAGAAGGTGTACAGGTCAGT -ACGGAAGAAGGTGTACAGGAAGGT -ACGGAAGAAGGTGTACAGAACCGT -ACGGAAGAAGGTGTACAGTTGTGC -ACGGAAGAAGGTGTACAGCTAAGC -ACGGAAGAAGGTGTACAGACTAGC -ACGGAAGAAGGTGTACAGAGATGC -ACGGAAGAAGGTGTACAGTGAAGG -ACGGAAGAAGGTGTACAGCAATGG -ACGGAAGAAGGTGTACAGATGAGG -ACGGAAGAAGGTGTACAGAATGGG -ACGGAAGAAGGTGTACAGTCCTGA -ACGGAAGAAGGTGTACAGTAGCGA -ACGGAAGAAGGTGTACAGCACAGA -ACGGAAGAAGGTGTACAGGCAAGA -ACGGAAGAAGGTGTACAGGGTTGA -ACGGAAGAAGGTGTACAGTCCGAT -ACGGAAGAAGGTGTACAGTGGCAT -ACGGAAGAAGGTGTACAGCGAGAT -ACGGAAGAAGGTGTACAGTACCAC -ACGGAAGAAGGTGTACAGCAGAAC -ACGGAAGAAGGTGTACAGGTCTAC -ACGGAAGAAGGTGTACAGACGTAC -ACGGAAGAAGGTGTACAGAGTGAC -ACGGAAGAAGGTGTACAGCTGTAG -ACGGAAGAAGGTGTACAGCCTAAG -ACGGAAGAAGGTGTACAGGTTCAG -ACGGAAGAAGGTGTACAGGCATAG -ACGGAAGAAGGTGTACAGGACAAG -ACGGAAGAAGGTGTACAGAAGCAG -ACGGAAGAAGGTGTACAGCGTCAA -ACGGAAGAAGGTGTACAGGCTGAA -ACGGAAGAAGGTGTACAGAGTACG -ACGGAAGAAGGTGTACAGATCCGA -ACGGAAGAAGGTGTACAGATGGGA -ACGGAAGAAGGTGTACAGGTGCAA -ACGGAAGAAGGTGTACAGGAGGAA -ACGGAAGAAGGTGTACAGCAGGTA -ACGGAAGAAGGTGTACAGGACTCT -ACGGAAGAAGGTGTACAGAGTCCT -ACGGAAGAAGGTGTACAGTAAGCC -ACGGAAGAAGGTGTACAGATAGCC -ACGGAAGAAGGTGTACAGTAACCG -ACGGAAGAAGGTGTACAGATGCCA -ACGGAAGAAGGTTCTGACGGAAAC -ACGGAAGAAGGTTCTGACAACACC -ACGGAAGAAGGTTCTGACATCGAG -ACGGAAGAAGGTTCTGACCTCCTT -ACGGAAGAAGGTTCTGACCCTGTT -ACGGAAGAAGGTTCTGACCGGTTT -ACGGAAGAAGGTTCTGACGTGGTT -ACGGAAGAAGGTTCTGACGCCTTT -ACGGAAGAAGGTTCTGACGGTCTT -ACGGAAGAAGGTTCTGACACGCTT -ACGGAAGAAGGTTCTGACAGCGTT -ACGGAAGAAGGTTCTGACTTCGTC -ACGGAAGAAGGTTCTGACTCTCTC -ACGGAAGAAGGTTCTGACTGGATC -ACGGAAGAAGGTTCTGACCACTTC -ACGGAAGAAGGTTCTGACGTACTC -ACGGAAGAAGGTTCTGACGATGTC -ACGGAAGAAGGTTCTGACACAGTC -ACGGAAGAAGGTTCTGACTTGCTG -ACGGAAGAAGGTTCTGACTCCATG -ACGGAAGAAGGTTCTGACTGTGTG -ACGGAAGAAGGTTCTGACCTAGTG -ACGGAAGAAGGTTCTGACCATCTG -ACGGAAGAAGGTTCTGACGAGTTG -ACGGAAGAAGGTTCTGACAGACTG -ACGGAAGAAGGTTCTGACTCGGTA -ACGGAAGAAGGTTCTGACTGCCTA -ACGGAAGAAGGTTCTGACCCACTA -ACGGAAGAAGGTTCTGACGGAGTA -ACGGAAGAAGGTTCTGACTCGTCT -ACGGAAGAAGGTTCTGACTGCACT -ACGGAAGAAGGTTCTGACCTGACT -ACGGAAGAAGGTTCTGACCAACCT -ACGGAAGAAGGTTCTGACGCTACT -ACGGAAGAAGGTTCTGACGGATCT -ACGGAAGAAGGTTCTGACAAGGCT -ACGGAAGAAGGTTCTGACTCAACC -ACGGAAGAAGGTTCTGACTGTTCC -ACGGAAGAAGGTTCTGACATTCCC -ACGGAAGAAGGTTCTGACTTCTCG -ACGGAAGAAGGTTCTGACTAGACG -ACGGAAGAAGGTTCTGACGTAACG -ACGGAAGAAGGTTCTGACACTTCG -ACGGAAGAAGGTTCTGACTACGCA -ACGGAAGAAGGTTCTGACCTTGCA -ACGGAAGAAGGTTCTGACCGAACA -ACGGAAGAAGGTTCTGACCAGTCA -ACGGAAGAAGGTTCTGACGATCCA -ACGGAAGAAGGTTCTGACACGACA -ACGGAAGAAGGTTCTGACAGCTCA -ACGGAAGAAGGTTCTGACTCACGT -ACGGAAGAAGGTTCTGACCGTAGT -ACGGAAGAAGGTTCTGACGTCAGT -ACGGAAGAAGGTTCTGACGAAGGT -ACGGAAGAAGGTTCTGACAACCGT -ACGGAAGAAGGTTCTGACTTGTGC -ACGGAAGAAGGTTCTGACCTAAGC -ACGGAAGAAGGTTCTGACACTAGC -ACGGAAGAAGGTTCTGACAGATGC -ACGGAAGAAGGTTCTGACTGAAGG -ACGGAAGAAGGTTCTGACCAATGG -ACGGAAGAAGGTTCTGACATGAGG -ACGGAAGAAGGTTCTGACAATGGG -ACGGAAGAAGGTTCTGACTCCTGA -ACGGAAGAAGGTTCTGACTAGCGA -ACGGAAGAAGGTTCTGACCACAGA -ACGGAAGAAGGTTCTGACGCAAGA -ACGGAAGAAGGTTCTGACGGTTGA -ACGGAAGAAGGTTCTGACTCCGAT -ACGGAAGAAGGTTCTGACTGGCAT -ACGGAAGAAGGTTCTGACCGAGAT -ACGGAAGAAGGTTCTGACTACCAC -ACGGAAGAAGGTTCTGACCAGAAC -ACGGAAGAAGGTTCTGACGTCTAC -ACGGAAGAAGGTTCTGACACGTAC -ACGGAAGAAGGTTCTGACAGTGAC -ACGGAAGAAGGTTCTGACCTGTAG -ACGGAAGAAGGTTCTGACCCTAAG -ACGGAAGAAGGTTCTGACGTTCAG -ACGGAAGAAGGTTCTGACGCATAG -ACGGAAGAAGGTTCTGACGACAAG -ACGGAAGAAGGTTCTGACAAGCAG -ACGGAAGAAGGTTCTGACCGTCAA -ACGGAAGAAGGTTCTGACGCTGAA -ACGGAAGAAGGTTCTGACAGTACG -ACGGAAGAAGGTTCTGACATCCGA -ACGGAAGAAGGTTCTGACATGGGA -ACGGAAGAAGGTTCTGACGTGCAA -ACGGAAGAAGGTTCTGACGAGGAA -ACGGAAGAAGGTTCTGACCAGGTA -ACGGAAGAAGGTTCTGACGACTCT -ACGGAAGAAGGTTCTGACAGTCCT -ACGGAAGAAGGTTCTGACTAAGCC -ACGGAAGAAGGTTCTGACATAGCC -ACGGAAGAAGGTTCTGACTAACCG -ACGGAAGAAGGTTCTGACATGCCA -ACGGAAGAAGGTCCTAGTGGAAAC -ACGGAAGAAGGTCCTAGTAACACC -ACGGAAGAAGGTCCTAGTATCGAG -ACGGAAGAAGGTCCTAGTCTCCTT -ACGGAAGAAGGTCCTAGTCCTGTT -ACGGAAGAAGGTCCTAGTCGGTTT -ACGGAAGAAGGTCCTAGTGTGGTT -ACGGAAGAAGGTCCTAGTGCCTTT -ACGGAAGAAGGTCCTAGTGGTCTT -ACGGAAGAAGGTCCTAGTACGCTT -ACGGAAGAAGGTCCTAGTAGCGTT -ACGGAAGAAGGTCCTAGTTTCGTC -ACGGAAGAAGGTCCTAGTTCTCTC -ACGGAAGAAGGTCCTAGTTGGATC -ACGGAAGAAGGTCCTAGTCACTTC -ACGGAAGAAGGTCCTAGTGTACTC -ACGGAAGAAGGTCCTAGTGATGTC -ACGGAAGAAGGTCCTAGTACAGTC -ACGGAAGAAGGTCCTAGTTTGCTG -ACGGAAGAAGGTCCTAGTTCCATG -ACGGAAGAAGGTCCTAGTTGTGTG -ACGGAAGAAGGTCCTAGTCTAGTG -ACGGAAGAAGGTCCTAGTCATCTG -ACGGAAGAAGGTCCTAGTGAGTTG -ACGGAAGAAGGTCCTAGTAGACTG -ACGGAAGAAGGTCCTAGTTCGGTA -ACGGAAGAAGGTCCTAGTTGCCTA -ACGGAAGAAGGTCCTAGTCCACTA -ACGGAAGAAGGTCCTAGTGGAGTA -ACGGAAGAAGGTCCTAGTTCGTCT -ACGGAAGAAGGTCCTAGTTGCACT -ACGGAAGAAGGTCCTAGTCTGACT -ACGGAAGAAGGTCCTAGTCAACCT -ACGGAAGAAGGTCCTAGTGCTACT -ACGGAAGAAGGTCCTAGTGGATCT -ACGGAAGAAGGTCCTAGTAAGGCT -ACGGAAGAAGGTCCTAGTTCAACC -ACGGAAGAAGGTCCTAGTTGTTCC -ACGGAAGAAGGTCCTAGTATTCCC -ACGGAAGAAGGTCCTAGTTTCTCG -ACGGAAGAAGGTCCTAGTTAGACG -ACGGAAGAAGGTCCTAGTGTAACG -ACGGAAGAAGGTCCTAGTACTTCG -ACGGAAGAAGGTCCTAGTTACGCA -ACGGAAGAAGGTCCTAGTCTTGCA -ACGGAAGAAGGTCCTAGTCGAACA -ACGGAAGAAGGTCCTAGTCAGTCA -ACGGAAGAAGGTCCTAGTGATCCA -ACGGAAGAAGGTCCTAGTACGACA -ACGGAAGAAGGTCCTAGTAGCTCA -ACGGAAGAAGGTCCTAGTTCACGT -ACGGAAGAAGGTCCTAGTCGTAGT -ACGGAAGAAGGTCCTAGTGTCAGT -ACGGAAGAAGGTCCTAGTGAAGGT -ACGGAAGAAGGTCCTAGTAACCGT -ACGGAAGAAGGTCCTAGTTTGTGC -ACGGAAGAAGGTCCTAGTCTAAGC -ACGGAAGAAGGTCCTAGTACTAGC -ACGGAAGAAGGTCCTAGTAGATGC -ACGGAAGAAGGTCCTAGTTGAAGG -ACGGAAGAAGGTCCTAGTCAATGG -ACGGAAGAAGGTCCTAGTATGAGG -ACGGAAGAAGGTCCTAGTAATGGG -ACGGAAGAAGGTCCTAGTTCCTGA -ACGGAAGAAGGTCCTAGTTAGCGA -ACGGAAGAAGGTCCTAGTCACAGA -ACGGAAGAAGGTCCTAGTGCAAGA -ACGGAAGAAGGTCCTAGTGGTTGA -ACGGAAGAAGGTCCTAGTTCCGAT -ACGGAAGAAGGTCCTAGTTGGCAT -ACGGAAGAAGGTCCTAGTCGAGAT -ACGGAAGAAGGTCCTAGTTACCAC -ACGGAAGAAGGTCCTAGTCAGAAC -ACGGAAGAAGGTCCTAGTGTCTAC -ACGGAAGAAGGTCCTAGTACGTAC -ACGGAAGAAGGTCCTAGTAGTGAC -ACGGAAGAAGGTCCTAGTCTGTAG -ACGGAAGAAGGTCCTAGTCCTAAG -ACGGAAGAAGGTCCTAGTGTTCAG -ACGGAAGAAGGTCCTAGTGCATAG -ACGGAAGAAGGTCCTAGTGACAAG -ACGGAAGAAGGTCCTAGTAAGCAG -ACGGAAGAAGGTCCTAGTCGTCAA -ACGGAAGAAGGTCCTAGTGCTGAA -ACGGAAGAAGGTCCTAGTAGTACG -ACGGAAGAAGGTCCTAGTATCCGA -ACGGAAGAAGGTCCTAGTATGGGA -ACGGAAGAAGGTCCTAGTGTGCAA -ACGGAAGAAGGTCCTAGTGAGGAA -ACGGAAGAAGGTCCTAGTCAGGTA -ACGGAAGAAGGTCCTAGTGACTCT -ACGGAAGAAGGTCCTAGTAGTCCT -ACGGAAGAAGGTCCTAGTTAAGCC -ACGGAAGAAGGTCCTAGTATAGCC -ACGGAAGAAGGTCCTAGTTAACCG -ACGGAAGAAGGTCCTAGTATGCCA -ACGGAAGAAGGTGCCTAAGGAAAC -ACGGAAGAAGGTGCCTAAAACACC -ACGGAAGAAGGTGCCTAAATCGAG -ACGGAAGAAGGTGCCTAACTCCTT -ACGGAAGAAGGTGCCTAACCTGTT -ACGGAAGAAGGTGCCTAACGGTTT -ACGGAAGAAGGTGCCTAAGTGGTT -ACGGAAGAAGGTGCCTAAGCCTTT -ACGGAAGAAGGTGCCTAAGGTCTT -ACGGAAGAAGGTGCCTAAACGCTT -ACGGAAGAAGGTGCCTAAAGCGTT -ACGGAAGAAGGTGCCTAATTCGTC -ACGGAAGAAGGTGCCTAATCTCTC -ACGGAAGAAGGTGCCTAATGGATC -ACGGAAGAAGGTGCCTAACACTTC -ACGGAAGAAGGTGCCTAAGTACTC -ACGGAAGAAGGTGCCTAAGATGTC -ACGGAAGAAGGTGCCTAAACAGTC -ACGGAAGAAGGTGCCTAATTGCTG -ACGGAAGAAGGTGCCTAATCCATG -ACGGAAGAAGGTGCCTAATGTGTG -ACGGAAGAAGGTGCCTAACTAGTG -ACGGAAGAAGGTGCCTAACATCTG -ACGGAAGAAGGTGCCTAAGAGTTG -ACGGAAGAAGGTGCCTAAAGACTG -ACGGAAGAAGGTGCCTAATCGGTA -ACGGAAGAAGGTGCCTAATGCCTA -ACGGAAGAAGGTGCCTAACCACTA -ACGGAAGAAGGTGCCTAAGGAGTA -ACGGAAGAAGGTGCCTAATCGTCT -ACGGAAGAAGGTGCCTAATGCACT -ACGGAAGAAGGTGCCTAACTGACT -ACGGAAGAAGGTGCCTAACAACCT -ACGGAAGAAGGTGCCTAAGCTACT -ACGGAAGAAGGTGCCTAAGGATCT -ACGGAAGAAGGTGCCTAAAAGGCT -ACGGAAGAAGGTGCCTAATCAACC -ACGGAAGAAGGTGCCTAATGTTCC -ACGGAAGAAGGTGCCTAAATTCCC -ACGGAAGAAGGTGCCTAATTCTCG -ACGGAAGAAGGTGCCTAATAGACG -ACGGAAGAAGGTGCCTAAGTAACG -ACGGAAGAAGGTGCCTAAACTTCG -ACGGAAGAAGGTGCCTAATACGCA -ACGGAAGAAGGTGCCTAACTTGCA -ACGGAAGAAGGTGCCTAACGAACA -ACGGAAGAAGGTGCCTAACAGTCA -ACGGAAGAAGGTGCCTAAGATCCA -ACGGAAGAAGGTGCCTAAACGACA -ACGGAAGAAGGTGCCTAAAGCTCA -ACGGAAGAAGGTGCCTAATCACGT -ACGGAAGAAGGTGCCTAACGTAGT -ACGGAAGAAGGTGCCTAAGTCAGT -ACGGAAGAAGGTGCCTAAGAAGGT -ACGGAAGAAGGTGCCTAAAACCGT -ACGGAAGAAGGTGCCTAATTGTGC -ACGGAAGAAGGTGCCTAACTAAGC -ACGGAAGAAGGTGCCTAAACTAGC -ACGGAAGAAGGTGCCTAAAGATGC -ACGGAAGAAGGTGCCTAATGAAGG -ACGGAAGAAGGTGCCTAACAATGG -ACGGAAGAAGGTGCCTAAATGAGG -ACGGAAGAAGGTGCCTAAAATGGG -ACGGAAGAAGGTGCCTAATCCTGA -ACGGAAGAAGGTGCCTAATAGCGA -ACGGAAGAAGGTGCCTAACACAGA -ACGGAAGAAGGTGCCTAAGCAAGA -ACGGAAGAAGGTGCCTAAGGTTGA -ACGGAAGAAGGTGCCTAATCCGAT -ACGGAAGAAGGTGCCTAATGGCAT -ACGGAAGAAGGTGCCTAACGAGAT -ACGGAAGAAGGTGCCTAATACCAC -ACGGAAGAAGGTGCCTAACAGAAC -ACGGAAGAAGGTGCCTAAGTCTAC -ACGGAAGAAGGTGCCTAAACGTAC -ACGGAAGAAGGTGCCTAAAGTGAC -ACGGAAGAAGGTGCCTAACTGTAG -ACGGAAGAAGGTGCCTAACCTAAG -ACGGAAGAAGGTGCCTAAGTTCAG -ACGGAAGAAGGTGCCTAAGCATAG -ACGGAAGAAGGTGCCTAAGACAAG -ACGGAAGAAGGTGCCTAAAAGCAG -ACGGAAGAAGGTGCCTAACGTCAA -ACGGAAGAAGGTGCCTAAGCTGAA -ACGGAAGAAGGTGCCTAAAGTACG -ACGGAAGAAGGTGCCTAAATCCGA -ACGGAAGAAGGTGCCTAAATGGGA -ACGGAAGAAGGTGCCTAAGTGCAA -ACGGAAGAAGGTGCCTAAGAGGAA -ACGGAAGAAGGTGCCTAACAGGTA -ACGGAAGAAGGTGCCTAAGACTCT -ACGGAAGAAGGTGCCTAAAGTCCT -ACGGAAGAAGGTGCCTAATAAGCC -ACGGAAGAAGGTGCCTAAATAGCC -ACGGAAGAAGGTGCCTAATAACCG -ACGGAAGAAGGTGCCTAAATGCCA -ACGGAAGAAGGTGCCATAGGAAAC -ACGGAAGAAGGTGCCATAAACACC -ACGGAAGAAGGTGCCATAATCGAG -ACGGAAGAAGGTGCCATACTCCTT -ACGGAAGAAGGTGCCATACCTGTT -ACGGAAGAAGGTGCCATACGGTTT -ACGGAAGAAGGTGCCATAGTGGTT -ACGGAAGAAGGTGCCATAGCCTTT -ACGGAAGAAGGTGCCATAGGTCTT -ACGGAAGAAGGTGCCATAACGCTT -ACGGAAGAAGGTGCCATAAGCGTT -ACGGAAGAAGGTGCCATATTCGTC -ACGGAAGAAGGTGCCATATCTCTC -ACGGAAGAAGGTGCCATATGGATC -ACGGAAGAAGGTGCCATACACTTC -ACGGAAGAAGGTGCCATAGTACTC -ACGGAAGAAGGTGCCATAGATGTC -ACGGAAGAAGGTGCCATAACAGTC -ACGGAAGAAGGTGCCATATTGCTG -ACGGAAGAAGGTGCCATATCCATG -ACGGAAGAAGGTGCCATATGTGTG -ACGGAAGAAGGTGCCATACTAGTG -ACGGAAGAAGGTGCCATACATCTG -ACGGAAGAAGGTGCCATAGAGTTG -ACGGAAGAAGGTGCCATAAGACTG -ACGGAAGAAGGTGCCATATCGGTA -ACGGAAGAAGGTGCCATATGCCTA -ACGGAAGAAGGTGCCATACCACTA -ACGGAAGAAGGTGCCATAGGAGTA -ACGGAAGAAGGTGCCATATCGTCT -ACGGAAGAAGGTGCCATATGCACT -ACGGAAGAAGGTGCCATACTGACT -ACGGAAGAAGGTGCCATACAACCT -ACGGAAGAAGGTGCCATAGCTACT -ACGGAAGAAGGTGCCATAGGATCT -ACGGAAGAAGGTGCCATAAAGGCT -ACGGAAGAAGGTGCCATATCAACC -ACGGAAGAAGGTGCCATATGTTCC -ACGGAAGAAGGTGCCATAATTCCC -ACGGAAGAAGGTGCCATATTCTCG -ACGGAAGAAGGTGCCATATAGACG -ACGGAAGAAGGTGCCATAGTAACG -ACGGAAGAAGGTGCCATAACTTCG -ACGGAAGAAGGTGCCATATACGCA -ACGGAAGAAGGTGCCATACTTGCA -ACGGAAGAAGGTGCCATACGAACA -ACGGAAGAAGGTGCCATACAGTCA -ACGGAAGAAGGTGCCATAGATCCA -ACGGAAGAAGGTGCCATAACGACA -ACGGAAGAAGGTGCCATAAGCTCA -ACGGAAGAAGGTGCCATATCACGT -ACGGAAGAAGGTGCCATACGTAGT -ACGGAAGAAGGTGCCATAGTCAGT -ACGGAAGAAGGTGCCATAGAAGGT -ACGGAAGAAGGTGCCATAAACCGT -ACGGAAGAAGGTGCCATATTGTGC -ACGGAAGAAGGTGCCATACTAAGC -ACGGAAGAAGGTGCCATAACTAGC -ACGGAAGAAGGTGCCATAAGATGC -ACGGAAGAAGGTGCCATATGAAGG -ACGGAAGAAGGTGCCATACAATGG -ACGGAAGAAGGTGCCATAATGAGG -ACGGAAGAAGGTGCCATAAATGGG -ACGGAAGAAGGTGCCATATCCTGA -ACGGAAGAAGGTGCCATATAGCGA -ACGGAAGAAGGTGCCATACACAGA -ACGGAAGAAGGTGCCATAGCAAGA -ACGGAAGAAGGTGCCATAGGTTGA -ACGGAAGAAGGTGCCATATCCGAT -ACGGAAGAAGGTGCCATATGGCAT -ACGGAAGAAGGTGCCATACGAGAT -ACGGAAGAAGGTGCCATATACCAC -ACGGAAGAAGGTGCCATACAGAAC -ACGGAAGAAGGTGCCATAGTCTAC -ACGGAAGAAGGTGCCATAACGTAC -ACGGAAGAAGGTGCCATAAGTGAC -ACGGAAGAAGGTGCCATACTGTAG -ACGGAAGAAGGTGCCATACCTAAG -ACGGAAGAAGGTGCCATAGTTCAG -ACGGAAGAAGGTGCCATAGCATAG -ACGGAAGAAGGTGCCATAGACAAG -ACGGAAGAAGGTGCCATAAAGCAG -ACGGAAGAAGGTGCCATACGTCAA -ACGGAAGAAGGTGCCATAGCTGAA -ACGGAAGAAGGTGCCATAAGTACG -ACGGAAGAAGGTGCCATAATCCGA -ACGGAAGAAGGTGCCATAATGGGA -ACGGAAGAAGGTGCCATAGTGCAA -ACGGAAGAAGGTGCCATAGAGGAA -ACGGAAGAAGGTGCCATACAGGTA -ACGGAAGAAGGTGCCATAGACTCT -ACGGAAGAAGGTGCCATAAGTCCT -ACGGAAGAAGGTGCCATATAAGCC -ACGGAAGAAGGTGCCATAATAGCC -ACGGAAGAAGGTGCCATATAACCG -ACGGAAGAAGGTGCCATAATGCCA -ACGGAAGAAGGTCCGTAAGGAAAC -ACGGAAGAAGGTCCGTAAAACACC -ACGGAAGAAGGTCCGTAAATCGAG -ACGGAAGAAGGTCCGTAACTCCTT -ACGGAAGAAGGTCCGTAACCTGTT -ACGGAAGAAGGTCCGTAACGGTTT -ACGGAAGAAGGTCCGTAAGTGGTT -ACGGAAGAAGGTCCGTAAGCCTTT -ACGGAAGAAGGTCCGTAAGGTCTT -ACGGAAGAAGGTCCGTAAACGCTT -ACGGAAGAAGGTCCGTAAAGCGTT -ACGGAAGAAGGTCCGTAATTCGTC -ACGGAAGAAGGTCCGTAATCTCTC -ACGGAAGAAGGTCCGTAATGGATC -ACGGAAGAAGGTCCGTAACACTTC -ACGGAAGAAGGTCCGTAAGTACTC -ACGGAAGAAGGTCCGTAAGATGTC -ACGGAAGAAGGTCCGTAAACAGTC -ACGGAAGAAGGTCCGTAATTGCTG -ACGGAAGAAGGTCCGTAATCCATG -ACGGAAGAAGGTCCGTAATGTGTG -ACGGAAGAAGGTCCGTAACTAGTG -ACGGAAGAAGGTCCGTAACATCTG -ACGGAAGAAGGTCCGTAAGAGTTG -ACGGAAGAAGGTCCGTAAAGACTG -ACGGAAGAAGGTCCGTAATCGGTA -ACGGAAGAAGGTCCGTAATGCCTA -ACGGAAGAAGGTCCGTAACCACTA -ACGGAAGAAGGTCCGTAAGGAGTA -ACGGAAGAAGGTCCGTAATCGTCT -ACGGAAGAAGGTCCGTAATGCACT -ACGGAAGAAGGTCCGTAACTGACT -ACGGAAGAAGGTCCGTAACAACCT -ACGGAAGAAGGTCCGTAAGCTACT -ACGGAAGAAGGTCCGTAAGGATCT -ACGGAAGAAGGTCCGTAAAAGGCT -ACGGAAGAAGGTCCGTAATCAACC -ACGGAAGAAGGTCCGTAATGTTCC -ACGGAAGAAGGTCCGTAAATTCCC -ACGGAAGAAGGTCCGTAATTCTCG -ACGGAAGAAGGTCCGTAATAGACG -ACGGAAGAAGGTCCGTAAGTAACG -ACGGAAGAAGGTCCGTAAACTTCG -ACGGAAGAAGGTCCGTAATACGCA -ACGGAAGAAGGTCCGTAACTTGCA -ACGGAAGAAGGTCCGTAACGAACA -ACGGAAGAAGGTCCGTAACAGTCA -ACGGAAGAAGGTCCGTAAGATCCA -ACGGAAGAAGGTCCGTAAACGACA -ACGGAAGAAGGTCCGTAAAGCTCA -ACGGAAGAAGGTCCGTAATCACGT -ACGGAAGAAGGTCCGTAACGTAGT -ACGGAAGAAGGTCCGTAAGTCAGT -ACGGAAGAAGGTCCGTAAGAAGGT -ACGGAAGAAGGTCCGTAAAACCGT -ACGGAAGAAGGTCCGTAATTGTGC -ACGGAAGAAGGTCCGTAACTAAGC -ACGGAAGAAGGTCCGTAAACTAGC -ACGGAAGAAGGTCCGTAAAGATGC -ACGGAAGAAGGTCCGTAATGAAGG -ACGGAAGAAGGTCCGTAACAATGG -ACGGAAGAAGGTCCGTAAATGAGG -ACGGAAGAAGGTCCGTAAAATGGG -ACGGAAGAAGGTCCGTAATCCTGA -ACGGAAGAAGGTCCGTAATAGCGA -ACGGAAGAAGGTCCGTAACACAGA -ACGGAAGAAGGTCCGTAAGCAAGA -ACGGAAGAAGGTCCGTAAGGTTGA -ACGGAAGAAGGTCCGTAATCCGAT -ACGGAAGAAGGTCCGTAATGGCAT -ACGGAAGAAGGTCCGTAACGAGAT -ACGGAAGAAGGTCCGTAATACCAC -ACGGAAGAAGGTCCGTAACAGAAC -ACGGAAGAAGGTCCGTAAGTCTAC -ACGGAAGAAGGTCCGTAAACGTAC -ACGGAAGAAGGTCCGTAAAGTGAC -ACGGAAGAAGGTCCGTAACTGTAG -ACGGAAGAAGGTCCGTAACCTAAG -ACGGAAGAAGGTCCGTAAGTTCAG -ACGGAAGAAGGTCCGTAAGCATAG -ACGGAAGAAGGTCCGTAAGACAAG -ACGGAAGAAGGTCCGTAAAAGCAG -ACGGAAGAAGGTCCGTAACGTCAA -ACGGAAGAAGGTCCGTAAGCTGAA -ACGGAAGAAGGTCCGTAAAGTACG -ACGGAAGAAGGTCCGTAAATCCGA -ACGGAAGAAGGTCCGTAAATGGGA -ACGGAAGAAGGTCCGTAAGTGCAA -ACGGAAGAAGGTCCGTAAGAGGAA -ACGGAAGAAGGTCCGTAACAGGTA -ACGGAAGAAGGTCCGTAAGACTCT -ACGGAAGAAGGTCCGTAAAGTCCT -ACGGAAGAAGGTCCGTAATAAGCC -ACGGAAGAAGGTCCGTAAATAGCC -ACGGAAGAAGGTCCGTAATAACCG -ACGGAAGAAGGTCCGTAAATGCCA -ACGGAAGAAGGTCCAATGGGAAAC -ACGGAAGAAGGTCCAATGAACACC -ACGGAAGAAGGTCCAATGATCGAG -ACGGAAGAAGGTCCAATGCTCCTT -ACGGAAGAAGGTCCAATGCCTGTT -ACGGAAGAAGGTCCAATGCGGTTT -ACGGAAGAAGGTCCAATGGTGGTT -ACGGAAGAAGGTCCAATGGCCTTT -ACGGAAGAAGGTCCAATGGGTCTT -ACGGAAGAAGGTCCAATGACGCTT -ACGGAAGAAGGTCCAATGAGCGTT -ACGGAAGAAGGTCCAATGTTCGTC -ACGGAAGAAGGTCCAATGTCTCTC -ACGGAAGAAGGTCCAATGTGGATC -ACGGAAGAAGGTCCAATGCACTTC -ACGGAAGAAGGTCCAATGGTACTC -ACGGAAGAAGGTCCAATGGATGTC -ACGGAAGAAGGTCCAATGACAGTC -ACGGAAGAAGGTCCAATGTTGCTG -ACGGAAGAAGGTCCAATGTCCATG -ACGGAAGAAGGTCCAATGTGTGTG -ACGGAAGAAGGTCCAATGCTAGTG -ACGGAAGAAGGTCCAATGCATCTG -ACGGAAGAAGGTCCAATGGAGTTG -ACGGAAGAAGGTCCAATGAGACTG -ACGGAAGAAGGTCCAATGTCGGTA -ACGGAAGAAGGTCCAATGTGCCTA -ACGGAAGAAGGTCCAATGCCACTA -ACGGAAGAAGGTCCAATGGGAGTA -ACGGAAGAAGGTCCAATGTCGTCT -ACGGAAGAAGGTCCAATGTGCACT -ACGGAAGAAGGTCCAATGCTGACT -ACGGAAGAAGGTCCAATGCAACCT -ACGGAAGAAGGTCCAATGGCTACT -ACGGAAGAAGGTCCAATGGGATCT -ACGGAAGAAGGTCCAATGAAGGCT -ACGGAAGAAGGTCCAATGTCAACC -ACGGAAGAAGGTCCAATGTGTTCC -ACGGAAGAAGGTCCAATGATTCCC -ACGGAAGAAGGTCCAATGTTCTCG -ACGGAAGAAGGTCCAATGTAGACG -ACGGAAGAAGGTCCAATGGTAACG -ACGGAAGAAGGTCCAATGACTTCG -ACGGAAGAAGGTCCAATGTACGCA -ACGGAAGAAGGTCCAATGCTTGCA -ACGGAAGAAGGTCCAATGCGAACA -ACGGAAGAAGGTCCAATGCAGTCA -ACGGAAGAAGGTCCAATGGATCCA -ACGGAAGAAGGTCCAATGACGACA -ACGGAAGAAGGTCCAATGAGCTCA -ACGGAAGAAGGTCCAATGTCACGT -ACGGAAGAAGGTCCAATGCGTAGT -ACGGAAGAAGGTCCAATGGTCAGT -ACGGAAGAAGGTCCAATGGAAGGT -ACGGAAGAAGGTCCAATGAACCGT -ACGGAAGAAGGTCCAATGTTGTGC -ACGGAAGAAGGTCCAATGCTAAGC -ACGGAAGAAGGTCCAATGACTAGC -ACGGAAGAAGGTCCAATGAGATGC -ACGGAAGAAGGTCCAATGTGAAGG -ACGGAAGAAGGTCCAATGCAATGG -ACGGAAGAAGGTCCAATGATGAGG -ACGGAAGAAGGTCCAATGAATGGG -ACGGAAGAAGGTCCAATGTCCTGA -ACGGAAGAAGGTCCAATGTAGCGA -ACGGAAGAAGGTCCAATGCACAGA -ACGGAAGAAGGTCCAATGGCAAGA -ACGGAAGAAGGTCCAATGGGTTGA -ACGGAAGAAGGTCCAATGTCCGAT -ACGGAAGAAGGTCCAATGTGGCAT -ACGGAAGAAGGTCCAATGCGAGAT -ACGGAAGAAGGTCCAATGTACCAC -ACGGAAGAAGGTCCAATGCAGAAC -ACGGAAGAAGGTCCAATGGTCTAC -ACGGAAGAAGGTCCAATGACGTAC -ACGGAAGAAGGTCCAATGAGTGAC -ACGGAAGAAGGTCCAATGCTGTAG -ACGGAAGAAGGTCCAATGCCTAAG -ACGGAAGAAGGTCCAATGGTTCAG -ACGGAAGAAGGTCCAATGGCATAG -ACGGAAGAAGGTCCAATGGACAAG -ACGGAAGAAGGTCCAATGAAGCAG -ACGGAAGAAGGTCCAATGCGTCAA -ACGGAAGAAGGTCCAATGGCTGAA -ACGGAAGAAGGTCCAATGAGTACG -ACGGAAGAAGGTCCAATGATCCGA -ACGGAAGAAGGTCCAATGATGGGA -ACGGAAGAAGGTCCAATGGTGCAA -ACGGAAGAAGGTCCAATGGAGGAA -ACGGAAGAAGGTCCAATGCAGGTA -ACGGAAGAAGGTCCAATGGACTCT -ACGGAAGAAGGTCCAATGAGTCCT -ACGGAAGAAGGTCCAATGTAAGCC -ACGGAAGAAGGTCCAATGATAGCC -ACGGAAGAAGGTCCAATGTAACCG -ACGGAAGAAGGTCCAATGATGCCA -ACGGAAAATGGCAACGGAGGAAAC -ACGGAAAATGGCAACGGAAACACC -ACGGAAAATGGCAACGGAATCGAG -ACGGAAAATGGCAACGGACTCCTT -ACGGAAAATGGCAACGGACCTGTT -ACGGAAAATGGCAACGGACGGTTT -ACGGAAAATGGCAACGGAGTGGTT -ACGGAAAATGGCAACGGAGCCTTT -ACGGAAAATGGCAACGGAGGTCTT -ACGGAAAATGGCAACGGAACGCTT -ACGGAAAATGGCAACGGAAGCGTT -ACGGAAAATGGCAACGGATTCGTC -ACGGAAAATGGCAACGGATCTCTC -ACGGAAAATGGCAACGGATGGATC -ACGGAAAATGGCAACGGACACTTC -ACGGAAAATGGCAACGGAGTACTC -ACGGAAAATGGCAACGGAGATGTC -ACGGAAAATGGCAACGGAACAGTC -ACGGAAAATGGCAACGGATTGCTG -ACGGAAAATGGCAACGGATCCATG -ACGGAAAATGGCAACGGATGTGTG -ACGGAAAATGGCAACGGACTAGTG -ACGGAAAATGGCAACGGACATCTG -ACGGAAAATGGCAACGGAGAGTTG -ACGGAAAATGGCAACGGAAGACTG -ACGGAAAATGGCAACGGATCGGTA -ACGGAAAATGGCAACGGATGCCTA -ACGGAAAATGGCAACGGACCACTA -ACGGAAAATGGCAACGGAGGAGTA -ACGGAAAATGGCAACGGATCGTCT -ACGGAAAATGGCAACGGATGCACT -ACGGAAAATGGCAACGGACTGACT -ACGGAAAATGGCAACGGACAACCT -ACGGAAAATGGCAACGGAGCTACT -ACGGAAAATGGCAACGGAGGATCT -ACGGAAAATGGCAACGGAAAGGCT -ACGGAAAATGGCAACGGATCAACC -ACGGAAAATGGCAACGGATGTTCC -ACGGAAAATGGCAACGGAATTCCC -ACGGAAAATGGCAACGGATTCTCG -ACGGAAAATGGCAACGGATAGACG -ACGGAAAATGGCAACGGAGTAACG -ACGGAAAATGGCAACGGAACTTCG -ACGGAAAATGGCAACGGATACGCA -ACGGAAAATGGCAACGGACTTGCA -ACGGAAAATGGCAACGGACGAACA -ACGGAAAATGGCAACGGACAGTCA -ACGGAAAATGGCAACGGAGATCCA -ACGGAAAATGGCAACGGAACGACA -ACGGAAAATGGCAACGGAAGCTCA -ACGGAAAATGGCAACGGATCACGT -ACGGAAAATGGCAACGGACGTAGT -ACGGAAAATGGCAACGGAGTCAGT -ACGGAAAATGGCAACGGAGAAGGT -ACGGAAAATGGCAACGGAAACCGT -ACGGAAAATGGCAACGGATTGTGC -ACGGAAAATGGCAACGGACTAAGC -ACGGAAAATGGCAACGGAACTAGC -ACGGAAAATGGCAACGGAAGATGC -ACGGAAAATGGCAACGGATGAAGG -ACGGAAAATGGCAACGGACAATGG -ACGGAAAATGGCAACGGAATGAGG -ACGGAAAATGGCAACGGAAATGGG -ACGGAAAATGGCAACGGATCCTGA -ACGGAAAATGGCAACGGATAGCGA -ACGGAAAATGGCAACGGACACAGA -ACGGAAAATGGCAACGGAGCAAGA -ACGGAAAATGGCAACGGAGGTTGA -ACGGAAAATGGCAACGGATCCGAT -ACGGAAAATGGCAACGGATGGCAT -ACGGAAAATGGCAACGGACGAGAT -ACGGAAAATGGCAACGGATACCAC -ACGGAAAATGGCAACGGACAGAAC -ACGGAAAATGGCAACGGAGTCTAC -ACGGAAAATGGCAACGGAACGTAC -ACGGAAAATGGCAACGGAAGTGAC -ACGGAAAATGGCAACGGACTGTAG -ACGGAAAATGGCAACGGACCTAAG -ACGGAAAATGGCAACGGAGTTCAG -ACGGAAAATGGCAACGGAGCATAG -ACGGAAAATGGCAACGGAGACAAG -ACGGAAAATGGCAACGGAAAGCAG -ACGGAAAATGGCAACGGACGTCAA -ACGGAAAATGGCAACGGAGCTGAA -ACGGAAAATGGCAACGGAAGTACG -ACGGAAAATGGCAACGGAATCCGA -ACGGAAAATGGCAACGGAATGGGA -ACGGAAAATGGCAACGGAGTGCAA -ACGGAAAATGGCAACGGAGAGGAA -ACGGAAAATGGCAACGGACAGGTA -ACGGAAAATGGCAACGGAGACTCT -ACGGAAAATGGCAACGGAAGTCCT -ACGGAAAATGGCAACGGATAAGCC -ACGGAAAATGGCAACGGAATAGCC -ACGGAAAATGGCAACGGATAACCG -ACGGAAAATGGCAACGGAATGCCA -ACGGAAAATGGCACCAACGGAAAC -ACGGAAAATGGCACCAACAACACC -ACGGAAAATGGCACCAACATCGAG -ACGGAAAATGGCACCAACCTCCTT -ACGGAAAATGGCACCAACCCTGTT -ACGGAAAATGGCACCAACCGGTTT -ACGGAAAATGGCACCAACGTGGTT -ACGGAAAATGGCACCAACGCCTTT -ACGGAAAATGGCACCAACGGTCTT -ACGGAAAATGGCACCAACACGCTT -ACGGAAAATGGCACCAACAGCGTT -ACGGAAAATGGCACCAACTTCGTC -ACGGAAAATGGCACCAACTCTCTC -ACGGAAAATGGCACCAACTGGATC -ACGGAAAATGGCACCAACCACTTC -ACGGAAAATGGCACCAACGTACTC -ACGGAAAATGGCACCAACGATGTC -ACGGAAAATGGCACCAACACAGTC -ACGGAAAATGGCACCAACTTGCTG -ACGGAAAATGGCACCAACTCCATG -ACGGAAAATGGCACCAACTGTGTG -ACGGAAAATGGCACCAACCTAGTG -ACGGAAAATGGCACCAACCATCTG -ACGGAAAATGGCACCAACGAGTTG -ACGGAAAATGGCACCAACAGACTG -ACGGAAAATGGCACCAACTCGGTA -ACGGAAAATGGCACCAACTGCCTA -ACGGAAAATGGCACCAACCCACTA -ACGGAAAATGGCACCAACGGAGTA -ACGGAAAATGGCACCAACTCGTCT -ACGGAAAATGGCACCAACTGCACT -ACGGAAAATGGCACCAACCTGACT -ACGGAAAATGGCACCAACCAACCT -ACGGAAAATGGCACCAACGCTACT -ACGGAAAATGGCACCAACGGATCT -ACGGAAAATGGCACCAACAAGGCT -ACGGAAAATGGCACCAACTCAACC -ACGGAAAATGGCACCAACTGTTCC -ACGGAAAATGGCACCAACATTCCC -ACGGAAAATGGCACCAACTTCTCG -ACGGAAAATGGCACCAACTAGACG -ACGGAAAATGGCACCAACGTAACG -ACGGAAAATGGCACCAACACTTCG -ACGGAAAATGGCACCAACTACGCA -ACGGAAAATGGCACCAACCTTGCA -ACGGAAAATGGCACCAACCGAACA -ACGGAAAATGGCACCAACCAGTCA -ACGGAAAATGGCACCAACGATCCA -ACGGAAAATGGCACCAACACGACA -ACGGAAAATGGCACCAACAGCTCA -ACGGAAAATGGCACCAACTCACGT -ACGGAAAATGGCACCAACCGTAGT -ACGGAAAATGGCACCAACGTCAGT -ACGGAAAATGGCACCAACGAAGGT -ACGGAAAATGGCACCAACAACCGT -ACGGAAAATGGCACCAACTTGTGC -ACGGAAAATGGCACCAACCTAAGC -ACGGAAAATGGCACCAACACTAGC -ACGGAAAATGGCACCAACAGATGC -ACGGAAAATGGCACCAACTGAAGG -ACGGAAAATGGCACCAACCAATGG -ACGGAAAATGGCACCAACATGAGG -ACGGAAAATGGCACCAACAATGGG -ACGGAAAATGGCACCAACTCCTGA -ACGGAAAATGGCACCAACTAGCGA -ACGGAAAATGGCACCAACCACAGA -ACGGAAAATGGCACCAACGCAAGA -ACGGAAAATGGCACCAACGGTTGA -ACGGAAAATGGCACCAACTCCGAT -ACGGAAAATGGCACCAACTGGCAT -ACGGAAAATGGCACCAACCGAGAT -ACGGAAAATGGCACCAACTACCAC -ACGGAAAATGGCACCAACCAGAAC -ACGGAAAATGGCACCAACGTCTAC -ACGGAAAATGGCACCAACACGTAC -ACGGAAAATGGCACCAACAGTGAC -ACGGAAAATGGCACCAACCTGTAG -ACGGAAAATGGCACCAACCCTAAG -ACGGAAAATGGCACCAACGTTCAG -ACGGAAAATGGCACCAACGCATAG -ACGGAAAATGGCACCAACGACAAG -ACGGAAAATGGCACCAACAAGCAG -ACGGAAAATGGCACCAACCGTCAA -ACGGAAAATGGCACCAACGCTGAA -ACGGAAAATGGCACCAACAGTACG -ACGGAAAATGGCACCAACATCCGA -ACGGAAAATGGCACCAACATGGGA -ACGGAAAATGGCACCAACGTGCAA -ACGGAAAATGGCACCAACGAGGAA -ACGGAAAATGGCACCAACCAGGTA -ACGGAAAATGGCACCAACGACTCT -ACGGAAAATGGCACCAACAGTCCT -ACGGAAAATGGCACCAACTAAGCC -ACGGAAAATGGCACCAACATAGCC -ACGGAAAATGGCACCAACTAACCG -ACGGAAAATGGCACCAACATGCCA -ACGGAAAATGGCGAGATCGGAAAC -ACGGAAAATGGCGAGATCAACACC -ACGGAAAATGGCGAGATCATCGAG -ACGGAAAATGGCGAGATCCTCCTT -ACGGAAAATGGCGAGATCCCTGTT -ACGGAAAATGGCGAGATCCGGTTT -ACGGAAAATGGCGAGATCGTGGTT -ACGGAAAATGGCGAGATCGCCTTT -ACGGAAAATGGCGAGATCGGTCTT -ACGGAAAATGGCGAGATCACGCTT -ACGGAAAATGGCGAGATCAGCGTT -ACGGAAAATGGCGAGATCTTCGTC -ACGGAAAATGGCGAGATCTCTCTC -ACGGAAAATGGCGAGATCTGGATC -ACGGAAAATGGCGAGATCCACTTC -ACGGAAAATGGCGAGATCGTACTC -ACGGAAAATGGCGAGATCGATGTC -ACGGAAAATGGCGAGATCACAGTC -ACGGAAAATGGCGAGATCTTGCTG -ACGGAAAATGGCGAGATCTCCATG -ACGGAAAATGGCGAGATCTGTGTG -ACGGAAAATGGCGAGATCCTAGTG -ACGGAAAATGGCGAGATCCATCTG -ACGGAAAATGGCGAGATCGAGTTG -ACGGAAAATGGCGAGATCAGACTG -ACGGAAAATGGCGAGATCTCGGTA -ACGGAAAATGGCGAGATCTGCCTA -ACGGAAAATGGCGAGATCCCACTA -ACGGAAAATGGCGAGATCGGAGTA -ACGGAAAATGGCGAGATCTCGTCT -ACGGAAAATGGCGAGATCTGCACT -ACGGAAAATGGCGAGATCCTGACT -ACGGAAAATGGCGAGATCCAACCT -ACGGAAAATGGCGAGATCGCTACT -ACGGAAAATGGCGAGATCGGATCT -ACGGAAAATGGCGAGATCAAGGCT -ACGGAAAATGGCGAGATCTCAACC -ACGGAAAATGGCGAGATCTGTTCC -ACGGAAAATGGCGAGATCATTCCC -ACGGAAAATGGCGAGATCTTCTCG -ACGGAAAATGGCGAGATCTAGACG -ACGGAAAATGGCGAGATCGTAACG -ACGGAAAATGGCGAGATCACTTCG -ACGGAAAATGGCGAGATCTACGCA -ACGGAAAATGGCGAGATCCTTGCA -ACGGAAAATGGCGAGATCCGAACA -ACGGAAAATGGCGAGATCCAGTCA -ACGGAAAATGGCGAGATCGATCCA -ACGGAAAATGGCGAGATCACGACA -ACGGAAAATGGCGAGATCAGCTCA -ACGGAAAATGGCGAGATCTCACGT -ACGGAAAATGGCGAGATCCGTAGT -ACGGAAAATGGCGAGATCGTCAGT -ACGGAAAATGGCGAGATCGAAGGT -ACGGAAAATGGCGAGATCAACCGT -ACGGAAAATGGCGAGATCTTGTGC -ACGGAAAATGGCGAGATCCTAAGC -ACGGAAAATGGCGAGATCACTAGC -ACGGAAAATGGCGAGATCAGATGC -ACGGAAAATGGCGAGATCTGAAGG -ACGGAAAATGGCGAGATCCAATGG -ACGGAAAATGGCGAGATCATGAGG -ACGGAAAATGGCGAGATCAATGGG -ACGGAAAATGGCGAGATCTCCTGA -ACGGAAAATGGCGAGATCTAGCGA -ACGGAAAATGGCGAGATCCACAGA -ACGGAAAATGGCGAGATCGCAAGA -ACGGAAAATGGCGAGATCGGTTGA -ACGGAAAATGGCGAGATCTCCGAT -ACGGAAAATGGCGAGATCTGGCAT -ACGGAAAATGGCGAGATCCGAGAT -ACGGAAAATGGCGAGATCTACCAC -ACGGAAAATGGCGAGATCCAGAAC -ACGGAAAATGGCGAGATCGTCTAC -ACGGAAAATGGCGAGATCACGTAC -ACGGAAAATGGCGAGATCAGTGAC -ACGGAAAATGGCGAGATCCTGTAG -ACGGAAAATGGCGAGATCCCTAAG -ACGGAAAATGGCGAGATCGTTCAG -ACGGAAAATGGCGAGATCGCATAG -ACGGAAAATGGCGAGATCGACAAG -ACGGAAAATGGCGAGATCAAGCAG -ACGGAAAATGGCGAGATCCGTCAA -ACGGAAAATGGCGAGATCGCTGAA -ACGGAAAATGGCGAGATCAGTACG -ACGGAAAATGGCGAGATCATCCGA -ACGGAAAATGGCGAGATCATGGGA -ACGGAAAATGGCGAGATCGTGCAA -ACGGAAAATGGCGAGATCGAGGAA -ACGGAAAATGGCGAGATCCAGGTA -ACGGAAAATGGCGAGATCGACTCT -ACGGAAAATGGCGAGATCAGTCCT -ACGGAAAATGGCGAGATCTAAGCC -ACGGAAAATGGCGAGATCATAGCC -ACGGAAAATGGCGAGATCTAACCG -ACGGAAAATGGCGAGATCATGCCA -ACGGAAAATGGCCTTCTCGGAAAC -ACGGAAAATGGCCTTCTCAACACC -ACGGAAAATGGCCTTCTCATCGAG -ACGGAAAATGGCCTTCTCCTCCTT -ACGGAAAATGGCCTTCTCCCTGTT -ACGGAAAATGGCCTTCTCCGGTTT -ACGGAAAATGGCCTTCTCGTGGTT -ACGGAAAATGGCCTTCTCGCCTTT -ACGGAAAATGGCCTTCTCGGTCTT -ACGGAAAATGGCCTTCTCACGCTT -ACGGAAAATGGCCTTCTCAGCGTT -ACGGAAAATGGCCTTCTCTTCGTC -ACGGAAAATGGCCTTCTCTCTCTC -ACGGAAAATGGCCTTCTCTGGATC -ACGGAAAATGGCCTTCTCCACTTC -ACGGAAAATGGCCTTCTCGTACTC -ACGGAAAATGGCCTTCTCGATGTC -ACGGAAAATGGCCTTCTCACAGTC -ACGGAAAATGGCCTTCTCTTGCTG -ACGGAAAATGGCCTTCTCTCCATG -ACGGAAAATGGCCTTCTCTGTGTG -ACGGAAAATGGCCTTCTCCTAGTG -ACGGAAAATGGCCTTCTCCATCTG -ACGGAAAATGGCCTTCTCGAGTTG -ACGGAAAATGGCCTTCTCAGACTG -ACGGAAAATGGCCTTCTCTCGGTA -ACGGAAAATGGCCTTCTCTGCCTA -ACGGAAAATGGCCTTCTCCCACTA -ACGGAAAATGGCCTTCTCGGAGTA -ACGGAAAATGGCCTTCTCTCGTCT -ACGGAAAATGGCCTTCTCTGCACT -ACGGAAAATGGCCTTCTCCTGACT -ACGGAAAATGGCCTTCTCCAACCT -ACGGAAAATGGCCTTCTCGCTACT -ACGGAAAATGGCCTTCTCGGATCT -ACGGAAAATGGCCTTCTCAAGGCT -ACGGAAAATGGCCTTCTCTCAACC -ACGGAAAATGGCCTTCTCTGTTCC -ACGGAAAATGGCCTTCTCATTCCC -ACGGAAAATGGCCTTCTCTTCTCG -ACGGAAAATGGCCTTCTCTAGACG -ACGGAAAATGGCCTTCTCGTAACG -ACGGAAAATGGCCTTCTCACTTCG -ACGGAAAATGGCCTTCTCTACGCA -ACGGAAAATGGCCTTCTCCTTGCA -ACGGAAAATGGCCTTCTCCGAACA -ACGGAAAATGGCCTTCTCCAGTCA -ACGGAAAATGGCCTTCTCGATCCA -ACGGAAAATGGCCTTCTCACGACA -ACGGAAAATGGCCTTCTCAGCTCA -ACGGAAAATGGCCTTCTCTCACGT -ACGGAAAATGGCCTTCTCCGTAGT -ACGGAAAATGGCCTTCTCGTCAGT -ACGGAAAATGGCCTTCTCGAAGGT -ACGGAAAATGGCCTTCTCAACCGT -ACGGAAAATGGCCTTCTCTTGTGC -ACGGAAAATGGCCTTCTCCTAAGC -ACGGAAAATGGCCTTCTCACTAGC -ACGGAAAATGGCCTTCTCAGATGC -ACGGAAAATGGCCTTCTCTGAAGG -ACGGAAAATGGCCTTCTCCAATGG -ACGGAAAATGGCCTTCTCATGAGG -ACGGAAAATGGCCTTCTCAATGGG -ACGGAAAATGGCCTTCTCTCCTGA -ACGGAAAATGGCCTTCTCTAGCGA -ACGGAAAATGGCCTTCTCCACAGA -ACGGAAAATGGCCTTCTCGCAAGA -ACGGAAAATGGCCTTCTCGGTTGA -ACGGAAAATGGCCTTCTCTCCGAT -ACGGAAAATGGCCTTCTCTGGCAT -ACGGAAAATGGCCTTCTCCGAGAT -ACGGAAAATGGCCTTCTCTACCAC -ACGGAAAATGGCCTTCTCCAGAAC -ACGGAAAATGGCCTTCTCGTCTAC -ACGGAAAATGGCCTTCTCACGTAC -ACGGAAAATGGCCTTCTCAGTGAC -ACGGAAAATGGCCTTCTCCTGTAG -ACGGAAAATGGCCTTCTCCCTAAG -ACGGAAAATGGCCTTCTCGTTCAG -ACGGAAAATGGCCTTCTCGCATAG -ACGGAAAATGGCCTTCTCGACAAG -ACGGAAAATGGCCTTCTCAAGCAG -ACGGAAAATGGCCTTCTCCGTCAA -ACGGAAAATGGCCTTCTCGCTGAA -ACGGAAAATGGCCTTCTCAGTACG -ACGGAAAATGGCCTTCTCATCCGA -ACGGAAAATGGCCTTCTCATGGGA -ACGGAAAATGGCCTTCTCGTGCAA -ACGGAAAATGGCCTTCTCGAGGAA -ACGGAAAATGGCCTTCTCCAGGTA -ACGGAAAATGGCCTTCTCGACTCT -ACGGAAAATGGCCTTCTCAGTCCT -ACGGAAAATGGCCTTCTCTAAGCC -ACGGAAAATGGCCTTCTCATAGCC -ACGGAAAATGGCCTTCTCTAACCG -ACGGAAAATGGCCTTCTCATGCCA -ACGGAAAATGGCGTTCCTGGAAAC -ACGGAAAATGGCGTTCCTAACACC -ACGGAAAATGGCGTTCCTATCGAG -ACGGAAAATGGCGTTCCTCTCCTT -ACGGAAAATGGCGTTCCTCCTGTT -ACGGAAAATGGCGTTCCTCGGTTT -ACGGAAAATGGCGTTCCTGTGGTT -ACGGAAAATGGCGTTCCTGCCTTT -ACGGAAAATGGCGTTCCTGGTCTT -ACGGAAAATGGCGTTCCTACGCTT -ACGGAAAATGGCGTTCCTAGCGTT -ACGGAAAATGGCGTTCCTTTCGTC -ACGGAAAATGGCGTTCCTTCTCTC -ACGGAAAATGGCGTTCCTTGGATC -ACGGAAAATGGCGTTCCTCACTTC -ACGGAAAATGGCGTTCCTGTACTC -ACGGAAAATGGCGTTCCTGATGTC -ACGGAAAATGGCGTTCCTACAGTC -ACGGAAAATGGCGTTCCTTTGCTG -ACGGAAAATGGCGTTCCTTCCATG -ACGGAAAATGGCGTTCCTTGTGTG -ACGGAAAATGGCGTTCCTCTAGTG -ACGGAAAATGGCGTTCCTCATCTG -ACGGAAAATGGCGTTCCTGAGTTG -ACGGAAAATGGCGTTCCTAGACTG -ACGGAAAATGGCGTTCCTTCGGTA -ACGGAAAATGGCGTTCCTTGCCTA -ACGGAAAATGGCGTTCCTCCACTA -ACGGAAAATGGCGTTCCTGGAGTA -ACGGAAAATGGCGTTCCTTCGTCT -ACGGAAAATGGCGTTCCTTGCACT -ACGGAAAATGGCGTTCCTCTGACT -ACGGAAAATGGCGTTCCTCAACCT -ACGGAAAATGGCGTTCCTGCTACT -ACGGAAAATGGCGTTCCTGGATCT -ACGGAAAATGGCGTTCCTAAGGCT -ACGGAAAATGGCGTTCCTTCAACC -ACGGAAAATGGCGTTCCTTGTTCC -ACGGAAAATGGCGTTCCTATTCCC -ACGGAAAATGGCGTTCCTTTCTCG -ACGGAAAATGGCGTTCCTTAGACG -ACGGAAAATGGCGTTCCTGTAACG -ACGGAAAATGGCGTTCCTACTTCG -ACGGAAAATGGCGTTCCTTACGCA -ACGGAAAATGGCGTTCCTCTTGCA -ACGGAAAATGGCGTTCCTCGAACA -ACGGAAAATGGCGTTCCTCAGTCA -ACGGAAAATGGCGTTCCTGATCCA -ACGGAAAATGGCGTTCCTACGACA -ACGGAAAATGGCGTTCCTAGCTCA -ACGGAAAATGGCGTTCCTTCACGT -ACGGAAAATGGCGTTCCTCGTAGT -ACGGAAAATGGCGTTCCTGTCAGT -ACGGAAAATGGCGTTCCTGAAGGT -ACGGAAAATGGCGTTCCTAACCGT -ACGGAAAATGGCGTTCCTTTGTGC -ACGGAAAATGGCGTTCCTCTAAGC -ACGGAAAATGGCGTTCCTACTAGC -ACGGAAAATGGCGTTCCTAGATGC -ACGGAAAATGGCGTTCCTTGAAGG -ACGGAAAATGGCGTTCCTCAATGG -ACGGAAAATGGCGTTCCTATGAGG -ACGGAAAATGGCGTTCCTAATGGG -ACGGAAAATGGCGTTCCTTCCTGA -ACGGAAAATGGCGTTCCTTAGCGA -ACGGAAAATGGCGTTCCTCACAGA -ACGGAAAATGGCGTTCCTGCAAGA -ACGGAAAATGGCGTTCCTGGTTGA -ACGGAAAATGGCGTTCCTTCCGAT -ACGGAAAATGGCGTTCCTTGGCAT -ACGGAAAATGGCGTTCCTCGAGAT -ACGGAAAATGGCGTTCCTTACCAC -ACGGAAAATGGCGTTCCTCAGAAC -ACGGAAAATGGCGTTCCTGTCTAC -ACGGAAAATGGCGTTCCTACGTAC -ACGGAAAATGGCGTTCCTAGTGAC -ACGGAAAATGGCGTTCCTCTGTAG -ACGGAAAATGGCGTTCCTCCTAAG -ACGGAAAATGGCGTTCCTGTTCAG -ACGGAAAATGGCGTTCCTGCATAG -ACGGAAAATGGCGTTCCTGACAAG -ACGGAAAATGGCGTTCCTAAGCAG -ACGGAAAATGGCGTTCCTCGTCAA -ACGGAAAATGGCGTTCCTGCTGAA -ACGGAAAATGGCGTTCCTAGTACG -ACGGAAAATGGCGTTCCTATCCGA -ACGGAAAATGGCGTTCCTATGGGA -ACGGAAAATGGCGTTCCTGTGCAA -ACGGAAAATGGCGTTCCTGAGGAA -ACGGAAAATGGCGTTCCTCAGGTA -ACGGAAAATGGCGTTCCTGACTCT -ACGGAAAATGGCGTTCCTAGTCCT -ACGGAAAATGGCGTTCCTTAAGCC -ACGGAAAATGGCGTTCCTATAGCC -ACGGAAAATGGCGTTCCTTAACCG -ACGGAAAATGGCGTTCCTATGCCA -ACGGAAAATGGCTTTCGGGGAAAC -ACGGAAAATGGCTTTCGGAACACC -ACGGAAAATGGCTTTCGGATCGAG -ACGGAAAATGGCTTTCGGCTCCTT -ACGGAAAATGGCTTTCGGCCTGTT -ACGGAAAATGGCTTTCGGCGGTTT -ACGGAAAATGGCTTTCGGGTGGTT -ACGGAAAATGGCTTTCGGGCCTTT -ACGGAAAATGGCTTTCGGGGTCTT -ACGGAAAATGGCTTTCGGACGCTT -ACGGAAAATGGCTTTCGGAGCGTT -ACGGAAAATGGCTTTCGGTTCGTC -ACGGAAAATGGCTTTCGGTCTCTC -ACGGAAAATGGCTTTCGGTGGATC -ACGGAAAATGGCTTTCGGCACTTC -ACGGAAAATGGCTTTCGGGTACTC -ACGGAAAATGGCTTTCGGGATGTC -ACGGAAAATGGCTTTCGGACAGTC -ACGGAAAATGGCTTTCGGTTGCTG -ACGGAAAATGGCTTTCGGTCCATG -ACGGAAAATGGCTTTCGGTGTGTG -ACGGAAAATGGCTTTCGGCTAGTG -ACGGAAAATGGCTTTCGGCATCTG -ACGGAAAATGGCTTTCGGGAGTTG -ACGGAAAATGGCTTTCGGAGACTG -ACGGAAAATGGCTTTCGGTCGGTA -ACGGAAAATGGCTTTCGGTGCCTA -ACGGAAAATGGCTTTCGGCCACTA -ACGGAAAATGGCTTTCGGGGAGTA -ACGGAAAATGGCTTTCGGTCGTCT -ACGGAAAATGGCTTTCGGTGCACT -ACGGAAAATGGCTTTCGGCTGACT -ACGGAAAATGGCTTTCGGCAACCT -ACGGAAAATGGCTTTCGGGCTACT -ACGGAAAATGGCTTTCGGGGATCT -ACGGAAAATGGCTTTCGGAAGGCT -ACGGAAAATGGCTTTCGGTCAACC -ACGGAAAATGGCTTTCGGTGTTCC -ACGGAAAATGGCTTTCGGATTCCC -ACGGAAAATGGCTTTCGGTTCTCG -ACGGAAAATGGCTTTCGGTAGACG -ACGGAAAATGGCTTTCGGGTAACG -ACGGAAAATGGCTTTCGGACTTCG -ACGGAAAATGGCTTTCGGTACGCA -ACGGAAAATGGCTTTCGGCTTGCA -ACGGAAAATGGCTTTCGGCGAACA -ACGGAAAATGGCTTTCGGCAGTCA -ACGGAAAATGGCTTTCGGGATCCA -ACGGAAAATGGCTTTCGGACGACA -ACGGAAAATGGCTTTCGGAGCTCA -ACGGAAAATGGCTTTCGGTCACGT -ACGGAAAATGGCTTTCGGCGTAGT -ACGGAAAATGGCTTTCGGGTCAGT -ACGGAAAATGGCTTTCGGGAAGGT -ACGGAAAATGGCTTTCGGAACCGT -ACGGAAAATGGCTTTCGGTTGTGC -ACGGAAAATGGCTTTCGGCTAAGC -ACGGAAAATGGCTTTCGGACTAGC -ACGGAAAATGGCTTTCGGAGATGC -ACGGAAAATGGCTTTCGGTGAAGG -ACGGAAAATGGCTTTCGGCAATGG -ACGGAAAATGGCTTTCGGATGAGG -ACGGAAAATGGCTTTCGGAATGGG -ACGGAAAATGGCTTTCGGTCCTGA -ACGGAAAATGGCTTTCGGTAGCGA -ACGGAAAATGGCTTTCGGCACAGA -ACGGAAAATGGCTTTCGGGCAAGA -ACGGAAAATGGCTTTCGGGGTTGA -ACGGAAAATGGCTTTCGGTCCGAT -ACGGAAAATGGCTTTCGGTGGCAT -ACGGAAAATGGCTTTCGGCGAGAT -ACGGAAAATGGCTTTCGGTACCAC -ACGGAAAATGGCTTTCGGCAGAAC -ACGGAAAATGGCTTTCGGGTCTAC -ACGGAAAATGGCTTTCGGACGTAC -ACGGAAAATGGCTTTCGGAGTGAC -ACGGAAAATGGCTTTCGGCTGTAG -ACGGAAAATGGCTTTCGGCCTAAG -ACGGAAAATGGCTTTCGGGTTCAG -ACGGAAAATGGCTTTCGGGCATAG -ACGGAAAATGGCTTTCGGGACAAG -ACGGAAAATGGCTTTCGGAAGCAG -ACGGAAAATGGCTTTCGGCGTCAA -ACGGAAAATGGCTTTCGGGCTGAA -ACGGAAAATGGCTTTCGGAGTACG -ACGGAAAATGGCTTTCGGATCCGA -ACGGAAAATGGCTTTCGGATGGGA -ACGGAAAATGGCTTTCGGGTGCAA -ACGGAAAATGGCTTTCGGGAGGAA -ACGGAAAATGGCTTTCGGCAGGTA -ACGGAAAATGGCTTTCGGGACTCT -ACGGAAAATGGCTTTCGGAGTCCT -ACGGAAAATGGCTTTCGGTAAGCC -ACGGAAAATGGCTTTCGGATAGCC -ACGGAAAATGGCTTTCGGTAACCG -ACGGAAAATGGCTTTCGGATGCCA -ACGGAAAATGGCGTTGTGGGAAAC -ACGGAAAATGGCGTTGTGAACACC -ACGGAAAATGGCGTTGTGATCGAG -ACGGAAAATGGCGTTGTGCTCCTT -ACGGAAAATGGCGTTGTGCCTGTT -ACGGAAAATGGCGTTGTGCGGTTT -ACGGAAAATGGCGTTGTGGTGGTT -ACGGAAAATGGCGTTGTGGCCTTT -ACGGAAAATGGCGTTGTGGGTCTT -ACGGAAAATGGCGTTGTGACGCTT -ACGGAAAATGGCGTTGTGAGCGTT -ACGGAAAATGGCGTTGTGTTCGTC -ACGGAAAATGGCGTTGTGTCTCTC -ACGGAAAATGGCGTTGTGTGGATC -ACGGAAAATGGCGTTGTGCACTTC -ACGGAAAATGGCGTTGTGGTACTC -ACGGAAAATGGCGTTGTGGATGTC -ACGGAAAATGGCGTTGTGACAGTC -ACGGAAAATGGCGTTGTGTTGCTG -ACGGAAAATGGCGTTGTGTCCATG -ACGGAAAATGGCGTTGTGTGTGTG -ACGGAAAATGGCGTTGTGCTAGTG -ACGGAAAATGGCGTTGTGCATCTG -ACGGAAAATGGCGTTGTGGAGTTG -ACGGAAAATGGCGTTGTGAGACTG -ACGGAAAATGGCGTTGTGTCGGTA -ACGGAAAATGGCGTTGTGTGCCTA -ACGGAAAATGGCGTTGTGCCACTA -ACGGAAAATGGCGTTGTGGGAGTA -ACGGAAAATGGCGTTGTGTCGTCT -ACGGAAAATGGCGTTGTGTGCACT -ACGGAAAATGGCGTTGTGCTGACT -ACGGAAAATGGCGTTGTGCAACCT -ACGGAAAATGGCGTTGTGGCTACT -ACGGAAAATGGCGTTGTGGGATCT -ACGGAAAATGGCGTTGTGAAGGCT -ACGGAAAATGGCGTTGTGTCAACC -ACGGAAAATGGCGTTGTGTGTTCC -ACGGAAAATGGCGTTGTGATTCCC -ACGGAAAATGGCGTTGTGTTCTCG -ACGGAAAATGGCGTTGTGTAGACG -ACGGAAAATGGCGTTGTGGTAACG -ACGGAAAATGGCGTTGTGACTTCG -ACGGAAAATGGCGTTGTGTACGCA -ACGGAAAATGGCGTTGTGCTTGCA -ACGGAAAATGGCGTTGTGCGAACA -ACGGAAAATGGCGTTGTGCAGTCA -ACGGAAAATGGCGTTGTGGATCCA -ACGGAAAATGGCGTTGTGACGACA -ACGGAAAATGGCGTTGTGAGCTCA -ACGGAAAATGGCGTTGTGTCACGT -ACGGAAAATGGCGTTGTGCGTAGT -ACGGAAAATGGCGTTGTGGTCAGT -ACGGAAAATGGCGTTGTGGAAGGT -ACGGAAAATGGCGTTGTGAACCGT -ACGGAAAATGGCGTTGTGTTGTGC -ACGGAAAATGGCGTTGTGCTAAGC -ACGGAAAATGGCGTTGTGACTAGC -ACGGAAAATGGCGTTGTGAGATGC -ACGGAAAATGGCGTTGTGTGAAGG -ACGGAAAATGGCGTTGTGCAATGG -ACGGAAAATGGCGTTGTGATGAGG -ACGGAAAATGGCGTTGTGAATGGG -ACGGAAAATGGCGTTGTGTCCTGA -ACGGAAAATGGCGTTGTGTAGCGA -ACGGAAAATGGCGTTGTGCACAGA -ACGGAAAATGGCGTTGTGGCAAGA -ACGGAAAATGGCGTTGTGGGTTGA -ACGGAAAATGGCGTTGTGTCCGAT -ACGGAAAATGGCGTTGTGTGGCAT -ACGGAAAATGGCGTTGTGCGAGAT -ACGGAAAATGGCGTTGTGTACCAC -ACGGAAAATGGCGTTGTGCAGAAC -ACGGAAAATGGCGTTGTGGTCTAC -ACGGAAAATGGCGTTGTGACGTAC -ACGGAAAATGGCGTTGTGAGTGAC -ACGGAAAATGGCGTTGTGCTGTAG -ACGGAAAATGGCGTTGTGCCTAAG -ACGGAAAATGGCGTTGTGGTTCAG -ACGGAAAATGGCGTTGTGGCATAG -ACGGAAAATGGCGTTGTGGACAAG -ACGGAAAATGGCGTTGTGAAGCAG -ACGGAAAATGGCGTTGTGCGTCAA -ACGGAAAATGGCGTTGTGGCTGAA -ACGGAAAATGGCGTTGTGAGTACG -ACGGAAAATGGCGTTGTGATCCGA -ACGGAAAATGGCGTTGTGATGGGA -ACGGAAAATGGCGTTGTGGTGCAA -ACGGAAAATGGCGTTGTGGAGGAA -ACGGAAAATGGCGTTGTGCAGGTA -ACGGAAAATGGCGTTGTGGACTCT -ACGGAAAATGGCGTTGTGAGTCCT -ACGGAAAATGGCGTTGTGTAAGCC -ACGGAAAATGGCGTTGTGATAGCC -ACGGAAAATGGCGTTGTGTAACCG -ACGGAAAATGGCGTTGTGATGCCA -ACGGAAAATGGCTTTGCCGGAAAC -ACGGAAAATGGCTTTGCCAACACC -ACGGAAAATGGCTTTGCCATCGAG -ACGGAAAATGGCTTTGCCCTCCTT -ACGGAAAATGGCTTTGCCCCTGTT -ACGGAAAATGGCTTTGCCCGGTTT -ACGGAAAATGGCTTTGCCGTGGTT -ACGGAAAATGGCTTTGCCGCCTTT -ACGGAAAATGGCTTTGCCGGTCTT -ACGGAAAATGGCTTTGCCACGCTT -ACGGAAAATGGCTTTGCCAGCGTT -ACGGAAAATGGCTTTGCCTTCGTC -ACGGAAAATGGCTTTGCCTCTCTC -ACGGAAAATGGCTTTGCCTGGATC -ACGGAAAATGGCTTTGCCCACTTC -ACGGAAAATGGCTTTGCCGTACTC -ACGGAAAATGGCTTTGCCGATGTC -ACGGAAAATGGCTTTGCCACAGTC -ACGGAAAATGGCTTTGCCTTGCTG -ACGGAAAATGGCTTTGCCTCCATG -ACGGAAAATGGCTTTGCCTGTGTG -ACGGAAAATGGCTTTGCCCTAGTG -ACGGAAAATGGCTTTGCCCATCTG -ACGGAAAATGGCTTTGCCGAGTTG -ACGGAAAATGGCTTTGCCAGACTG -ACGGAAAATGGCTTTGCCTCGGTA -ACGGAAAATGGCTTTGCCTGCCTA -ACGGAAAATGGCTTTGCCCCACTA -ACGGAAAATGGCTTTGCCGGAGTA -ACGGAAAATGGCTTTGCCTCGTCT -ACGGAAAATGGCTTTGCCTGCACT -ACGGAAAATGGCTTTGCCCTGACT -ACGGAAAATGGCTTTGCCCAACCT -ACGGAAAATGGCTTTGCCGCTACT -ACGGAAAATGGCTTTGCCGGATCT -ACGGAAAATGGCTTTGCCAAGGCT -ACGGAAAATGGCTTTGCCTCAACC -ACGGAAAATGGCTTTGCCTGTTCC -ACGGAAAATGGCTTTGCCATTCCC -ACGGAAAATGGCTTTGCCTTCTCG -ACGGAAAATGGCTTTGCCTAGACG -ACGGAAAATGGCTTTGCCGTAACG -ACGGAAAATGGCTTTGCCACTTCG -ACGGAAAATGGCTTTGCCTACGCA -ACGGAAAATGGCTTTGCCCTTGCA -ACGGAAAATGGCTTTGCCCGAACA -ACGGAAAATGGCTTTGCCCAGTCA -ACGGAAAATGGCTTTGCCGATCCA -ACGGAAAATGGCTTTGCCACGACA -ACGGAAAATGGCTTTGCCAGCTCA -ACGGAAAATGGCTTTGCCTCACGT -ACGGAAAATGGCTTTGCCCGTAGT -ACGGAAAATGGCTTTGCCGTCAGT -ACGGAAAATGGCTTTGCCGAAGGT -ACGGAAAATGGCTTTGCCAACCGT -ACGGAAAATGGCTTTGCCTTGTGC -ACGGAAAATGGCTTTGCCCTAAGC -ACGGAAAATGGCTTTGCCACTAGC -ACGGAAAATGGCTTTGCCAGATGC -ACGGAAAATGGCTTTGCCTGAAGG -ACGGAAAATGGCTTTGCCCAATGG -ACGGAAAATGGCTTTGCCATGAGG -ACGGAAAATGGCTTTGCCAATGGG -ACGGAAAATGGCTTTGCCTCCTGA -ACGGAAAATGGCTTTGCCTAGCGA -ACGGAAAATGGCTTTGCCCACAGA -ACGGAAAATGGCTTTGCCGCAAGA -ACGGAAAATGGCTTTGCCGGTTGA -ACGGAAAATGGCTTTGCCTCCGAT -ACGGAAAATGGCTTTGCCTGGCAT -ACGGAAAATGGCTTTGCCCGAGAT -ACGGAAAATGGCTTTGCCTACCAC -ACGGAAAATGGCTTTGCCCAGAAC -ACGGAAAATGGCTTTGCCGTCTAC -ACGGAAAATGGCTTTGCCACGTAC -ACGGAAAATGGCTTTGCCAGTGAC -ACGGAAAATGGCTTTGCCCTGTAG -ACGGAAAATGGCTTTGCCCCTAAG -ACGGAAAATGGCTTTGCCGTTCAG -ACGGAAAATGGCTTTGCCGCATAG -ACGGAAAATGGCTTTGCCGACAAG -ACGGAAAATGGCTTTGCCAAGCAG -ACGGAAAATGGCTTTGCCCGTCAA -ACGGAAAATGGCTTTGCCGCTGAA -ACGGAAAATGGCTTTGCCAGTACG -ACGGAAAATGGCTTTGCCATCCGA -ACGGAAAATGGCTTTGCCATGGGA -ACGGAAAATGGCTTTGCCGTGCAA -ACGGAAAATGGCTTTGCCGAGGAA -ACGGAAAATGGCTTTGCCCAGGTA -ACGGAAAATGGCTTTGCCGACTCT -ACGGAAAATGGCTTTGCCAGTCCT -ACGGAAAATGGCTTTGCCTAAGCC -ACGGAAAATGGCTTTGCCATAGCC -ACGGAAAATGGCTTTGCCTAACCG -ACGGAAAATGGCTTTGCCATGCCA -ACGGAAAATGGCCTTGGTGGAAAC -ACGGAAAATGGCCTTGGTAACACC -ACGGAAAATGGCCTTGGTATCGAG -ACGGAAAATGGCCTTGGTCTCCTT -ACGGAAAATGGCCTTGGTCCTGTT -ACGGAAAATGGCCTTGGTCGGTTT -ACGGAAAATGGCCTTGGTGTGGTT -ACGGAAAATGGCCTTGGTGCCTTT -ACGGAAAATGGCCTTGGTGGTCTT -ACGGAAAATGGCCTTGGTACGCTT -ACGGAAAATGGCCTTGGTAGCGTT -ACGGAAAATGGCCTTGGTTTCGTC -ACGGAAAATGGCCTTGGTTCTCTC -ACGGAAAATGGCCTTGGTTGGATC -ACGGAAAATGGCCTTGGTCACTTC -ACGGAAAATGGCCTTGGTGTACTC -ACGGAAAATGGCCTTGGTGATGTC -ACGGAAAATGGCCTTGGTACAGTC -ACGGAAAATGGCCTTGGTTTGCTG -ACGGAAAATGGCCTTGGTTCCATG -ACGGAAAATGGCCTTGGTTGTGTG -ACGGAAAATGGCCTTGGTCTAGTG -ACGGAAAATGGCCTTGGTCATCTG -ACGGAAAATGGCCTTGGTGAGTTG -ACGGAAAATGGCCTTGGTAGACTG -ACGGAAAATGGCCTTGGTTCGGTA -ACGGAAAATGGCCTTGGTTGCCTA -ACGGAAAATGGCCTTGGTCCACTA -ACGGAAAATGGCCTTGGTGGAGTA -ACGGAAAATGGCCTTGGTTCGTCT -ACGGAAAATGGCCTTGGTTGCACT -ACGGAAAATGGCCTTGGTCTGACT -ACGGAAAATGGCCTTGGTCAACCT -ACGGAAAATGGCCTTGGTGCTACT -ACGGAAAATGGCCTTGGTGGATCT -ACGGAAAATGGCCTTGGTAAGGCT -ACGGAAAATGGCCTTGGTTCAACC -ACGGAAAATGGCCTTGGTTGTTCC -ACGGAAAATGGCCTTGGTATTCCC -ACGGAAAATGGCCTTGGTTTCTCG -ACGGAAAATGGCCTTGGTTAGACG -ACGGAAAATGGCCTTGGTGTAACG -ACGGAAAATGGCCTTGGTACTTCG -ACGGAAAATGGCCTTGGTTACGCA -ACGGAAAATGGCCTTGGTCTTGCA -ACGGAAAATGGCCTTGGTCGAACA -ACGGAAAATGGCCTTGGTCAGTCA -ACGGAAAATGGCCTTGGTGATCCA -ACGGAAAATGGCCTTGGTACGACA -ACGGAAAATGGCCTTGGTAGCTCA -ACGGAAAATGGCCTTGGTTCACGT -ACGGAAAATGGCCTTGGTCGTAGT -ACGGAAAATGGCCTTGGTGTCAGT -ACGGAAAATGGCCTTGGTGAAGGT -ACGGAAAATGGCCTTGGTAACCGT -ACGGAAAATGGCCTTGGTTTGTGC -ACGGAAAATGGCCTTGGTCTAAGC -ACGGAAAATGGCCTTGGTACTAGC -ACGGAAAATGGCCTTGGTAGATGC -ACGGAAAATGGCCTTGGTTGAAGG -ACGGAAAATGGCCTTGGTCAATGG -ACGGAAAATGGCCTTGGTATGAGG -ACGGAAAATGGCCTTGGTAATGGG -ACGGAAAATGGCCTTGGTTCCTGA -ACGGAAAATGGCCTTGGTTAGCGA -ACGGAAAATGGCCTTGGTCACAGA -ACGGAAAATGGCCTTGGTGCAAGA -ACGGAAAATGGCCTTGGTGGTTGA -ACGGAAAATGGCCTTGGTTCCGAT -ACGGAAAATGGCCTTGGTTGGCAT -ACGGAAAATGGCCTTGGTCGAGAT -ACGGAAAATGGCCTTGGTTACCAC -ACGGAAAATGGCCTTGGTCAGAAC -ACGGAAAATGGCCTTGGTGTCTAC -ACGGAAAATGGCCTTGGTACGTAC -ACGGAAAATGGCCTTGGTAGTGAC -ACGGAAAATGGCCTTGGTCTGTAG -ACGGAAAATGGCCTTGGTCCTAAG -ACGGAAAATGGCCTTGGTGTTCAG -ACGGAAAATGGCCTTGGTGCATAG -ACGGAAAATGGCCTTGGTGACAAG -ACGGAAAATGGCCTTGGTAAGCAG -ACGGAAAATGGCCTTGGTCGTCAA -ACGGAAAATGGCCTTGGTGCTGAA -ACGGAAAATGGCCTTGGTAGTACG -ACGGAAAATGGCCTTGGTATCCGA -ACGGAAAATGGCCTTGGTATGGGA -ACGGAAAATGGCCTTGGTGTGCAA -ACGGAAAATGGCCTTGGTGAGGAA -ACGGAAAATGGCCTTGGTCAGGTA -ACGGAAAATGGCCTTGGTGACTCT -ACGGAAAATGGCCTTGGTAGTCCT -ACGGAAAATGGCCTTGGTTAAGCC -ACGGAAAATGGCCTTGGTATAGCC -ACGGAAAATGGCCTTGGTTAACCG -ACGGAAAATGGCCTTGGTATGCCA -ACGGAAAATGGCCTTACGGGAAAC -ACGGAAAATGGCCTTACGAACACC -ACGGAAAATGGCCTTACGATCGAG -ACGGAAAATGGCCTTACGCTCCTT -ACGGAAAATGGCCTTACGCCTGTT -ACGGAAAATGGCCTTACGCGGTTT -ACGGAAAATGGCCTTACGGTGGTT -ACGGAAAATGGCCTTACGGCCTTT -ACGGAAAATGGCCTTACGGGTCTT -ACGGAAAATGGCCTTACGACGCTT -ACGGAAAATGGCCTTACGAGCGTT -ACGGAAAATGGCCTTACGTTCGTC -ACGGAAAATGGCCTTACGTCTCTC -ACGGAAAATGGCCTTACGTGGATC -ACGGAAAATGGCCTTACGCACTTC -ACGGAAAATGGCCTTACGGTACTC -ACGGAAAATGGCCTTACGGATGTC -ACGGAAAATGGCCTTACGACAGTC -ACGGAAAATGGCCTTACGTTGCTG -ACGGAAAATGGCCTTACGTCCATG -ACGGAAAATGGCCTTACGTGTGTG -ACGGAAAATGGCCTTACGCTAGTG -ACGGAAAATGGCCTTACGCATCTG -ACGGAAAATGGCCTTACGGAGTTG -ACGGAAAATGGCCTTACGAGACTG -ACGGAAAATGGCCTTACGTCGGTA -ACGGAAAATGGCCTTACGTGCCTA -ACGGAAAATGGCCTTACGCCACTA -ACGGAAAATGGCCTTACGGGAGTA -ACGGAAAATGGCCTTACGTCGTCT -ACGGAAAATGGCCTTACGTGCACT -ACGGAAAATGGCCTTACGCTGACT -ACGGAAAATGGCCTTACGCAACCT -ACGGAAAATGGCCTTACGGCTACT -ACGGAAAATGGCCTTACGGGATCT -ACGGAAAATGGCCTTACGAAGGCT -ACGGAAAATGGCCTTACGTCAACC -ACGGAAAATGGCCTTACGTGTTCC -ACGGAAAATGGCCTTACGATTCCC -ACGGAAAATGGCCTTACGTTCTCG -ACGGAAAATGGCCTTACGTAGACG -ACGGAAAATGGCCTTACGGTAACG -ACGGAAAATGGCCTTACGACTTCG -ACGGAAAATGGCCTTACGTACGCA -ACGGAAAATGGCCTTACGCTTGCA -ACGGAAAATGGCCTTACGCGAACA -ACGGAAAATGGCCTTACGCAGTCA -ACGGAAAATGGCCTTACGGATCCA -ACGGAAAATGGCCTTACGACGACA -ACGGAAAATGGCCTTACGAGCTCA -ACGGAAAATGGCCTTACGTCACGT -ACGGAAAATGGCCTTACGCGTAGT -ACGGAAAATGGCCTTACGGTCAGT -ACGGAAAATGGCCTTACGGAAGGT -ACGGAAAATGGCCTTACGAACCGT -ACGGAAAATGGCCTTACGTTGTGC -ACGGAAAATGGCCTTACGCTAAGC -ACGGAAAATGGCCTTACGACTAGC -ACGGAAAATGGCCTTACGAGATGC -ACGGAAAATGGCCTTACGTGAAGG -ACGGAAAATGGCCTTACGCAATGG -ACGGAAAATGGCCTTACGATGAGG -ACGGAAAATGGCCTTACGAATGGG -ACGGAAAATGGCCTTACGTCCTGA -ACGGAAAATGGCCTTACGTAGCGA -ACGGAAAATGGCCTTACGCACAGA -ACGGAAAATGGCCTTACGGCAAGA -ACGGAAAATGGCCTTACGGGTTGA -ACGGAAAATGGCCTTACGTCCGAT -ACGGAAAATGGCCTTACGTGGCAT -ACGGAAAATGGCCTTACGCGAGAT -ACGGAAAATGGCCTTACGTACCAC -ACGGAAAATGGCCTTACGCAGAAC -ACGGAAAATGGCCTTACGGTCTAC -ACGGAAAATGGCCTTACGACGTAC -ACGGAAAATGGCCTTACGAGTGAC -ACGGAAAATGGCCTTACGCTGTAG -ACGGAAAATGGCCTTACGCCTAAG -ACGGAAAATGGCCTTACGGTTCAG -ACGGAAAATGGCCTTACGGCATAG -ACGGAAAATGGCCTTACGGACAAG -ACGGAAAATGGCCTTACGAAGCAG -ACGGAAAATGGCCTTACGCGTCAA -ACGGAAAATGGCCTTACGGCTGAA -ACGGAAAATGGCCTTACGAGTACG -ACGGAAAATGGCCTTACGATCCGA -ACGGAAAATGGCCTTACGATGGGA -ACGGAAAATGGCCTTACGGTGCAA -ACGGAAAATGGCCTTACGGAGGAA -ACGGAAAATGGCCTTACGCAGGTA -ACGGAAAATGGCCTTACGGACTCT -ACGGAAAATGGCCTTACGAGTCCT -ACGGAAAATGGCCTTACGTAAGCC -ACGGAAAATGGCCTTACGATAGCC -ACGGAAAATGGCCTTACGTAACCG -ACGGAAAATGGCCTTACGATGCCA -ACGGAAAATGGCGTTAGCGGAAAC -ACGGAAAATGGCGTTAGCAACACC -ACGGAAAATGGCGTTAGCATCGAG -ACGGAAAATGGCGTTAGCCTCCTT -ACGGAAAATGGCGTTAGCCCTGTT -ACGGAAAATGGCGTTAGCCGGTTT -ACGGAAAATGGCGTTAGCGTGGTT -ACGGAAAATGGCGTTAGCGCCTTT -ACGGAAAATGGCGTTAGCGGTCTT -ACGGAAAATGGCGTTAGCACGCTT -ACGGAAAATGGCGTTAGCAGCGTT -ACGGAAAATGGCGTTAGCTTCGTC -ACGGAAAATGGCGTTAGCTCTCTC -ACGGAAAATGGCGTTAGCTGGATC -ACGGAAAATGGCGTTAGCCACTTC -ACGGAAAATGGCGTTAGCGTACTC -ACGGAAAATGGCGTTAGCGATGTC -ACGGAAAATGGCGTTAGCACAGTC -ACGGAAAATGGCGTTAGCTTGCTG -ACGGAAAATGGCGTTAGCTCCATG -ACGGAAAATGGCGTTAGCTGTGTG -ACGGAAAATGGCGTTAGCCTAGTG -ACGGAAAATGGCGTTAGCCATCTG -ACGGAAAATGGCGTTAGCGAGTTG -ACGGAAAATGGCGTTAGCAGACTG -ACGGAAAATGGCGTTAGCTCGGTA -ACGGAAAATGGCGTTAGCTGCCTA -ACGGAAAATGGCGTTAGCCCACTA -ACGGAAAATGGCGTTAGCGGAGTA -ACGGAAAATGGCGTTAGCTCGTCT -ACGGAAAATGGCGTTAGCTGCACT -ACGGAAAATGGCGTTAGCCTGACT -ACGGAAAATGGCGTTAGCCAACCT -ACGGAAAATGGCGTTAGCGCTACT -ACGGAAAATGGCGTTAGCGGATCT -ACGGAAAATGGCGTTAGCAAGGCT -ACGGAAAATGGCGTTAGCTCAACC -ACGGAAAATGGCGTTAGCTGTTCC -ACGGAAAATGGCGTTAGCATTCCC -ACGGAAAATGGCGTTAGCTTCTCG -ACGGAAAATGGCGTTAGCTAGACG -ACGGAAAATGGCGTTAGCGTAACG -ACGGAAAATGGCGTTAGCACTTCG -ACGGAAAATGGCGTTAGCTACGCA -ACGGAAAATGGCGTTAGCCTTGCA -ACGGAAAATGGCGTTAGCCGAACA -ACGGAAAATGGCGTTAGCCAGTCA -ACGGAAAATGGCGTTAGCGATCCA -ACGGAAAATGGCGTTAGCACGACA -ACGGAAAATGGCGTTAGCAGCTCA -ACGGAAAATGGCGTTAGCTCACGT -ACGGAAAATGGCGTTAGCCGTAGT -ACGGAAAATGGCGTTAGCGTCAGT -ACGGAAAATGGCGTTAGCGAAGGT -ACGGAAAATGGCGTTAGCAACCGT -ACGGAAAATGGCGTTAGCTTGTGC -ACGGAAAATGGCGTTAGCCTAAGC -ACGGAAAATGGCGTTAGCACTAGC -ACGGAAAATGGCGTTAGCAGATGC -ACGGAAAATGGCGTTAGCTGAAGG -ACGGAAAATGGCGTTAGCCAATGG -ACGGAAAATGGCGTTAGCATGAGG -ACGGAAAATGGCGTTAGCAATGGG -ACGGAAAATGGCGTTAGCTCCTGA -ACGGAAAATGGCGTTAGCTAGCGA -ACGGAAAATGGCGTTAGCCACAGA -ACGGAAAATGGCGTTAGCGCAAGA -ACGGAAAATGGCGTTAGCGGTTGA -ACGGAAAATGGCGTTAGCTCCGAT -ACGGAAAATGGCGTTAGCTGGCAT -ACGGAAAATGGCGTTAGCCGAGAT -ACGGAAAATGGCGTTAGCTACCAC -ACGGAAAATGGCGTTAGCCAGAAC -ACGGAAAATGGCGTTAGCGTCTAC -ACGGAAAATGGCGTTAGCACGTAC -ACGGAAAATGGCGTTAGCAGTGAC -ACGGAAAATGGCGTTAGCCTGTAG -ACGGAAAATGGCGTTAGCCCTAAG -ACGGAAAATGGCGTTAGCGTTCAG -ACGGAAAATGGCGTTAGCGCATAG -ACGGAAAATGGCGTTAGCGACAAG -ACGGAAAATGGCGTTAGCAAGCAG -ACGGAAAATGGCGTTAGCCGTCAA -ACGGAAAATGGCGTTAGCGCTGAA -ACGGAAAATGGCGTTAGCAGTACG -ACGGAAAATGGCGTTAGCATCCGA -ACGGAAAATGGCGTTAGCATGGGA -ACGGAAAATGGCGTTAGCGTGCAA -ACGGAAAATGGCGTTAGCGAGGAA -ACGGAAAATGGCGTTAGCCAGGTA -ACGGAAAATGGCGTTAGCGACTCT -ACGGAAAATGGCGTTAGCAGTCCT -ACGGAAAATGGCGTTAGCTAAGCC -ACGGAAAATGGCGTTAGCATAGCC -ACGGAAAATGGCGTTAGCTAACCG -ACGGAAAATGGCGTTAGCATGCCA -ACGGAAAATGGCGTCTTCGGAAAC -ACGGAAAATGGCGTCTTCAACACC -ACGGAAAATGGCGTCTTCATCGAG -ACGGAAAATGGCGTCTTCCTCCTT -ACGGAAAATGGCGTCTTCCCTGTT -ACGGAAAATGGCGTCTTCCGGTTT -ACGGAAAATGGCGTCTTCGTGGTT -ACGGAAAATGGCGTCTTCGCCTTT -ACGGAAAATGGCGTCTTCGGTCTT -ACGGAAAATGGCGTCTTCACGCTT -ACGGAAAATGGCGTCTTCAGCGTT -ACGGAAAATGGCGTCTTCTTCGTC -ACGGAAAATGGCGTCTTCTCTCTC -ACGGAAAATGGCGTCTTCTGGATC -ACGGAAAATGGCGTCTTCCACTTC -ACGGAAAATGGCGTCTTCGTACTC -ACGGAAAATGGCGTCTTCGATGTC -ACGGAAAATGGCGTCTTCACAGTC -ACGGAAAATGGCGTCTTCTTGCTG -ACGGAAAATGGCGTCTTCTCCATG -ACGGAAAATGGCGTCTTCTGTGTG -ACGGAAAATGGCGTCTTCCTAGTG -ACGGAAAATGGCGTCTTCCATCTG -ACGGAAAATGGCGTCTTCGAGTTG -ACGGAAAATGGCGTCTTCAGACTG -ACGGAAAATGGCGTCTTCTCGGTA -ACGGAAAATGGCGTCTTCTGCCTA -ACGGAAAATGGCGTCTTCCCACTA -ACGGAAAATGGCGTCTTCGGAGTA -ACGGAAAATGGCGTCTTCTCGTCT -ACGGAAAATGGCGTCTTCTGCACT -ACGGAAAATGGCGTCTTCCTGACT -ACGGAAAATGGCGTCTTCCAACCT -ACGGAAAATGGCGTCTTCGCTACT -ACGGAAAATGGCGTCTTCGGATCT -ACGGAAAATGGCGTCTTCAAGGCT -ACGGAAAATGGCGTCTTCTCAACC -ACGGAAAATGGCGTCTTCTGTTCC -ACGGAAAATGGCGTCTTCATTCCC -ACGGAAAATGGCGTCTTCTTCTCG -ACGGAAAATGGCGTCTTCTAGACG -ACGGAAAATGGCGTCTTCGTAACG -ACGGAAAATGGCGTCTTCACTTCG -ACGGAAAATGGCGTCTTCTACGCA -ACGGAAAATGGCGTCTTCCTTGCA -ACGGAAAATGGCGTCTTCCGAACA -ACGGAAAATGGCGTCTTCCAGTCA -ACGGAAAATGGCGTCTTCGATCCA -ACGGAAAATGGCGTCTTCACGACA -ACGGAAAATGGCGTCTTCAGCTCA -ACGGAAAATGGCGTCTTCTCACGT -ACGGAAAATGGCGTCTTCCGTAGT -ACGGAAAATGGCGTCTTCGTCAGT -ACGGAAAATGGCGTCTTCGAAGGT -ACGGAAAATGGCGTCTTCAACCGT -ACGGAAAATGGCGTCTTCTTGTGC -ACGGAAAATGGCGTCTTCCTAAGC -ACGGAAAATGGCGTCTTCACTAGC -ACGGAAAATGGCGTCTTCAGATGC -ACGGAAAATGGCGTCTTCTGAAGG -ACGGAAAATGGCGTCTTCCAATGG -ACGGAAAATGGCGTCTTCATGAGG -ACGGAAAATGGCGTCTTCAATGGG -ACGGAAAATGGCGTCTTCTCCTGA -ACGGAAAATGGCGTCTTCTAGCGA -ACGGAAAATGGCGTCTTCCACAGA -ACGGAAAATGGCGTCTTCGCAAGA -ACGGAAAATGGCGTCTTCGGTTGA -ACGGAAAATGGCGTCTTCTCCGAT -ACGGAAAATGGCGTCTTCTGGCAT -ACGGAAAATGGCGTCTTCCGAGAT -ACGGAAAATGGCGTCTTCTACCAC -ACGGAAAATGGCGTCTTCCAGAAC -ACGGAAAATGGCGTCTTCGTCTAC -ACGGAAAATGGCGTCTTCACGTAC -ACGGAAAATGGCGTCTTCAGTGAC -ACGGAAAATGGCGTCTTCCTGTAG -ACGGAAAATGGCGTCTTCCCTAAG -ACGGAAAATGGCGTCTTCGTTCAG -ACGGAAAATGGCGTCTTCGCATAG -ACGGAAAATGGCGTCTTCGACAAG -ACGGAAAATGGCGTCTTCAAGCAG -ACGGAAAATGGCGTCTTCCGTCAA -ACGGAAAATGGCGTCTTCGCTGAA -ACGGAAAATGGCGTCTTCAGTACG -ACGGAAAATGGCGTCTTCATCCGA -ACGGAAAATGGCGTCTTCATGGGA -ACGGAAAATGGCGTCTTCGTGCAA -ACGGAAAATGGCGTCTTCGAGGAA -ACGGAAAATGGCGTCTTCCAGGTA -ACGGAAAATGGCGTCTTCGACTCT -ACGGAAAATGGCGTCTTCAGTCCT -ACGGAAAATGGCGTCTTCTAAGCC -ACGGAAAATGGCGTCTTCATAGCC -ACGGAAAATGGCGTCTTCTAACCG -ACGGAAAATGGCGTCTTCATGCCA -ACGGAAAATGGCCTCTCTGGAAAC -ACGGAAAATGGCCTCTCTAACACC -ACGGAAAATGGCCTCTCTATCGAG -ACGGAAAATGGCCTCTCTCTCCTT -ACGGAAAATGGCCTCTCTCCTGTT -ACGGAAAATGGCCTCTCTCGGTTT -ACGGAAAATGGCCTCTCTGTGGTT -ACGGAAAATGGCCTCTCTGCCTTT -ACGGAAAATGGCCTCTCTGGTCTT -ACGGAAAATGGCCTCTCTACGCTT -ACGGAAAATGGCCTCTCTAGCGTT -ACGGAAAATGGCCTCTCTTTCGTC -ACGGAAAATGGCCTCTCTTCTCTC -ACGGAAAATGGCCTCTCTTGGATC -ACGGAAAATGGCCTCTCTCACTTC -ACGGAAAATGGCCTCTCTGTACTC -ACGGAAAATGGCCTCTCTGATGTC -ACGGAAAATGGCCTCTCTACAGTC -ACGGAAAATGGCCTCTCTTTGCTG -ACGGAAAATGGCCTCTCTTCCATG -ACGGAAAATGGCCTCTCTTGTGTG -ACGGAAAATGGCCTCTCTCTAGTG -ACGGAAAATGGCCTCTCTCATCTG -ACGGAAAATGGCCTCTCTGAGTTG -ACGGAAAATGGCCTCTCTAGACTG -ACGGAAAATGGCCTCTCTTCGGTA -ACGGAAAATGGCCTCTCTTGCCTA -ACGGAAAATGGCCTCTCTCCACTA -ACGGAAAATGGCCTCTCTGGAGTA -ACGGAAAATGGCCTCTCTTCGTCT -ACGGAAAATGGCCTCTCTTGCACT -ACGGAAAATGGCCTCTCTCTGACT -ACGGAAAATGGCCTCTCTCAACCT -ACGGAAAATGGCCTCTCTGCTACT -ACGGAAAATGGCCTCTCTGGATCT -ACGGAAAATGGCCTCTCTAAGGCT -ACGGAAAATGGCCTCTCTTCAACC -ACGGAAAATGGCCTCTCTTGTTCC -ACGGAAAATGGCCTCTCTATTCCC -ACGGAAAATGGCCTCTCTTTCTCG -ACGGAAAATGGCCTCTCTTAGACG -ACGGAAAATGGCCTCTCTGTAACG -ACGGAAAATGGCCTCTCTACTTCG -ACGGAAAATGGCCTCTCTTACGCA -ACGGAAAATGGCCTCTCTCTTGCA -ACGGAAAATGGCCTCTCTCGAACA -ACGGAAAATGGCCTCTCTCAGTCA -ACGGAAAATGGCCTCTCTGATCCA -ACGGAAAATGGCCTCTCTACGACA -ACGGAAAATGGCCTCTCTAGCTCA -ACGGAAAATGGCCTCTCTTCACGT -ACGGAAAATGGCCTCTCTCGTAGT -ACGGAAAATGGCCTCTCTGTCAGT -ACGGAAAATGGCCTCTCTGAAGGT -ACGGAAAATGGCCTCTCTAACCGT -ACGGAAAATGGCCTCTCTTTGTGC -ACGGAAAATGGCCTCTCTCTAAGC -ACGGAAAATGGCCTCTCTACTAGC -ACGGAAAATGGCCTCTCTAGATGC -ACGGAAAATGGCCTCTCTTGAAGG -ACGGAAAATGGCCTCTCTCAATGG -ACGGAAAATGGCCTCTCTATGAGG -ACGGAAAATGGCCTCTCTAATGGG -ACGGAAAATGGCCTCTCTTCCTGA -ACGGAAAATGGCCTCTCTTAGCGA -ACGGAAAATGGCCTCTCTCACAGA -ACGGAAAATGGCCTCTCTGCAAGA -ACGGAAAATGGCCTCTCTGGTTGA -ACGGAAAATGGCCTCTCTTCCGAT -ACGGAAAATGGCCTCTCTTGGCAT -ACGGAAAATGGCCTCTCTCGAGAT -ACGGAAAATGGCCTCTCTTACCAC -ACGGAAAATGGCCTCTCTCAGAAC -ACGGAAAATGGCCTCTCTGTCTAC -ACGGAAAATGGCCTCTCTACGTAC -ACGGAAAATGGCCTCTCTAGTGAC -ACGGAAAATGGCCTCTCTCTGTAG -ACGGAAAATGGCCTCTCTCCTAAG -ACGGAAAATGGCCTCTCTGTTCAG -ACGGAAAATGGCCTCTCTGCATAG -ACGGAAAATGGCCTCTCTGACAAG -ACGGAAAATGGCCTCTCTAAGCAG -ACGGAAAATGGCCTCTCTCGTCAA -ACGGAAAATGGCCTCTCTGCTGAA -ACGGAAAATGGCCTCTCTAGTACG -ACGGAAAATGGCCTCTCTATCCGA -ACGGAAAATGGCCTCTCTATGGGA -ACGGAAAATGGCCTCTCTGTGCAA -ACGGAAAATGGCCTCTCTGAGGAA -ACGGAAAATGGCCTCTCTCAGGTA -ACGGAAAATGGCCTCTCTGACTCT -ACGGAAAATGGCCTCTCTAGTCCT -ACGGAAAATGGCCTCTCTTAAGCC -ACGGAAAATGGCCTCTCTATAGCC -ACGGAAAATGGCCTCTCTTAACCG -ACGGAAAATGGCCTCTCTATGCCA -ACGGAAAATGGCATCTGGGGAAAC -ACGGAAAATGGCATCTGGAACACC -ACGGAAAATGGCATCTGGATCGAG -ACGGAAAATGGCATCTGGCTCCTT -ACGGAAAATGGCATCTGGCCTGTT -ACGGAAAATGGCATCTGGCGGTTT -ACGGAAAATGGCATCTGGGTGGTT -ACGGAAAATGGCATCTGGGCCTTT -ACGGAAAATGGCATCTGGGGTCTT -ACGGAAAATGGCATCTGGACGCTT -ACGGAAAATGGCATCTGGAGCGTT -ACGGAAAATGGCATCTGGTTCGTC -ACGGAAAATGGCATCTGGTCTCTC -ACGGAAAATGGCATCTGGTGGATC -ACGGAAAATGGCATCTGGCACTTC -ACGGAAAATGGCATCTGGGTACTC -ACGGAAAATGGCATCTGGGATGTC -ACGGAAAATGGCATCTGGACAGTC -ACGGAAAATGGCATCTGGTTGCTG -ACGGAAAATGGCATCTGGTCCATG -ACGGAAAATGGCATCTGGTGTGTG -ACGGAAAATGGCATCTGGCTAGTG -ACGGAAAATGGCATCTGGCATCTG -ACGGAAAATGGCATCTGGGAGTTG -ACGGAAAATGGCATCTGGAGACTG -ACGGAAAATGGCATCTGGTCGGTA -ACGGAAAATGGCATCTGGTGCCTA -ACGGAAAATGGCATCTGGCCACTA -ACGGAAAATGGCATCTGGGGAGTA -ACGGAAAATGGCATCTGGTCGTCT -ACGGAAAATGGCATCTGGTGCACT -ACGGAAAATGGCATCTGGCTGACT -ACGGAAAATGGCATCTGGCAACCT -ACGGAAAATGGCATCTGGGCTACT -ACGGAAAATGGCATCTGGGGATCT -ACGGAAAATGGCATCTGGAAGGCT -ACGGAAAATGGCATCTGGTCAACC -ACGGAAAATGGCATCTGGTGTTCC -ACGGAAAATGGCATCTGGATTCCC -ACGGAAAATGGCATCTGGTTCTCG -ACGGAAAATGGCATCTGGTAGACG -ACGGAAAATGGCATCTGGGTAACG -ACGGAAAATGGCATCTGGACTTCG -ACGGAAAATGGCATCTGGTACGCA -ACGGAAAATGGCATCTGGCTTGCA -ACGGAAAATGGCATCTGGCGAACA -ACGGAAAATGGCATCTGGCAGTCA -ACGGAAAATGGCATCTGGGATCCA -ACGGAAAATGGCATCTGGACGACA -ACGGAAAATGGCATCTGGAGCTCA -ACGGAAAATGGCATCTGGTCACGT -ACGGAAAATGGCATCTGGCGTAGT -ACGGAAAATGGCATCTGGGTCAGT -ACGGAAAATGGCATCTGGGAAGGT -ACGGAAAATGGCATCTGGAACCGT -ACGGAAAATGGCATCTGGTTGTGC -ACGGAAAATGGCATCTGGCTAAGC -ACGGAAAATGGCATCTGGACTAGC -ACGGAAAATGGCATCTGGAGATGC -ACGGAAAATGGCATCTGGTGAAGG -ACGGAAAATGGCATCTGGCAATGG -ACGGAAAATGGCATCTGGATGAGG -ACGGAAAATGGCATCTGGAATGGG -ACGGAAAATGGCATCTGGTCCTGA -ACGGAAAATGGCATCTGGTAGCGA -ACGGAAAATGGCATCTGGCACAGA -ACGGAAAATGGCATCTGGGCAAGA -ACGGAAAATGGCATCTGGGGTTGA -ACGGAAAATGGCATCTGGTCCGAT -ACGGAAAATGGCATCTGGTGGCAT -ACGGAAAATGGCATCTGGCGAGAT -ACGGAAAATGGCATCTGGTACCAC -ACGGAAAATGGCATCTGGCAGAAC -ACGGAAAATGGCATCTGGGTCTAC -ACGGAAAATGGCATCTGGACGTAC -ACGGAAAATGGCATCTGGAGTGAC -ACGGAAAATGGCATCTGGCTGTAG -ACGGAAAATGGCATCTGGCCTAAG -ACGGAAAATGGCATCTGGGTTCAG -ACGGAAAATGGCATCTGGGCATAG -ACGGAAAATGGCATCTGGGACAAG -ACGGAAAATGGCATCTGGAAGCAG -ACGGAAAATGGCATCTGGCGTCAA -ACGGAAAATGGCATCTGGGCTGAA -ACGGAAAATGGCATCTGGAGTACG -ACGGAAAATGGCATCTGGATCCGA -ACGGAAAATGGCATCTGGATGGGA -ACGGAAAATGGCATCTGGGTGCAA -ACGGAAAATGGCATCTGGGAGGAA -ACGGAAAATGGCATCTGGCAGGTA -ACGGAAAATGGCATCTGGGACTCT -ACGGAAAATGGCATCTGGAGTCCT -ACGGAAAATGGCATCTGGTAAGCC -ACGGAAAATGGCATCTGGATAGCC -ACGGAAAATGGCATCTGGTAACCG -ACGGAAAATGGCATCTGGATGCCA -ACGGAAAATGGCTTCCACGGAAAC -ACGGAAAATGGCTTCCACAACACC -ACGGAAAATGGCTTCCACATCGAG -ACGGAAAATGGCTTCCACCTCCTT -ACGGAAAATGGCTTCCACCCTGTT -ACGGAAAATGGCTTCCACCGGTTT -ACGGAAAATGGCTTCCACGTGGTT -ACGGAAAATGGCTTCCACGCCTTT -ACGGAAAATGGCTTCCACGGTCTT -ACGGAAAATGGCTTCCACACGCTT -ACGGAAAATGGCTTCCACAGCGTT -ACGGAAAATGGCTTCCACTTCGTC -ACGGAAAATGGCTTCCACTCTCTC -ACGGAAAATGGCTTCCACTGGATC -ACGGAAAATGGCTTCCACCACTTC -ACGGAAAATGGCTTCCACGTACTC -ACGGAAAATGGCTTCCACGATGTC -ACGGAAAATGGCTTCCACACAGTC -ACGGAAAATGGCTTCCACTTGCTG -ACGGAAAATGGCTTCCACTCCATG -ACGGAAAATGGCTTCCACTGTGTG -ACGGAAAATGGCTTCCACCTAGTG -ACGGAAAATGGCTTCCACCATCTG -ACGGAAAATGGCTTCCACGAGTTG -ACGGAAAATGGCTTCCACAGACTG -ACGGAAAATGGCTTCCACTCGGTA -ACGGAAAATGGCTTCCACTGCCTA -ACGGAAAATGGCTTCCACCCACTA -ACGGAAAATGGCTTCCACGGAGTA -ACGGAAAATGGCTTCCACTCGTCT -ACGGAAAATGGCTTCCACTGCACT -ACGGAAAATGGCTTCCACCTGACT -ACGGAAAATGGCTTCCACCAACCT -ACGGAAAATGGCTTCCACGCTACT -ACGGAAAATGGCTTCCACGGATCT -ACGGAAAATGGCTTCCACAAGGCT -ACGGAAAATGGCTTCCACTCAACC -ACGGAAAATGGCTTCCACTGTTCC -ACGGAAAATGGCTTCCACATTCCC -ACGGAAAATGGCTTCCACTTCTCG -ACGGAAAATGGCTTCCACTAGACG -ACGGAAAATGGCTTCCACGTAACG -ACGGAAAATGGCTTCCACACTTCG -ACGGAAAATGGCTTCCACTACGCA -ACGGAAAATGGCTTCCACCTTGCA -ACGGAAAATGGCTTCCACCGAACA -ACGGAAAATGGCTTCCACCAGTCA -ACGGAAAATGGCTTCCACGATCCA -ACGGAAAATGGCTTCCACACGACA -ACGGAAAATGGCTTCCACAGCTCA -ACGGAAAATGGCTTCCACTCACGT -ACGGAAAATGGCTTCCACCGTAGT -ACGGAAAATGGCTTCCACGTCAGT -ACGGAAAATGGCTTCCACGAAGGT -ACGGAAAATGGCTTCCACAACCGT -ACGGAAAATGGCTTCCACTTGTGC -ACGGAAAATGGCTTCCACCTAAGC -ACGGAAAATGGCTTCCACACTAGC -ACGGAAAATGGCTTCCACAGATGC -ACGGAAAATGGCTTCCACTGAAGG -ACGGAAAATGGCTTCCACCAATGG -ACGGAAAATGGCTTCCACATGAGG -ACGGAAAATGGCTTCCACAATGGG -ACGGAAAATGGCTTCCACTCCTGA -ACGGAAAATGGCTTCCACTAGCGA -ACGGAAAATGGCTTCCACCACAGA -ACGGAAAATGGCTTCCACGCAAGA -ACGGAAAATGGCTTCCACGGTTGA -ACGGAAAATGGCTTCCACTCCGAT -ACGGAAAATGGCTTCCACTGGCAT -ACGGAAAATGGCTTCCACCGAGAT -ACGGAAAATGGCTTCCACTACCAC -ACGGAAAATGGCTTCCACCAGAAC -ACGGAAAATGGCTTCCACGTCTAC -ACGGAAAATGGCTTCCACACGTAC -ACGGAAAATGGCTTCCACAGTGAC -ACGGAAAATGGCTTCCACCTGTAG -ACGGAAAATGGCTTCCACCCTAAG -ACGGAAAATGGCTTCCACGTTCAG -ACGGAAAATGGCTTCCACGCATAG -ACGGAAAATGGCTTCCACGACAAG -ACGGAAAATGGCTTCCACAAGCAG -ACGGAAAATGGCTTCCACCGTCAA -ACGGAAAATGGCTTCCACGCTGAA -ACGGAAAATGGCTTCCACAGTACG -ACGGAAAATGGCTTCCACATCCGA -ACGGAAAATGGCTTCCACATGGGA -ACGGAAAATGGCTTCCACGTGCAA -ACGGAAAATGGCTTCCACGAGGAA -ACGGAAAATGGCTTCCACCAGGTA -ACGGAAAATGGCTTCCACGACTCT -ACGGAAAATGGCTTCCACAGTCCT -ACGGAAAATGGCTTCCACTAAGCC -ACGGAAAATGGCTTCCACATAGCC -ACGGAAAATGGCTTCCACTAACCG -ACGGAAAATGGCTTCCACATGCCA -ACGGAAAATGGCCTCGTAGGAAAC -ACGGAAAATGGCCTCGTAAACACC -ACGGAAAATGGCCTCGTAATCGAG -ACGGAAAATGGCCTCGTACTCCTT -ACGGAAAATGGCCTCGTACCTGTT -ACGGAAAATGGCCTCGTACGGTTT -ACGGAAAATGGCCTCGTAGTGGTT -ACGGAAAATGGCCTCGTAGCCTTT -ACGGAAAATGGCCTCGTAGGTCTT -ACGGAAAATGGCCTCGTAACGCTT -ACGGAAAATGGCCTCGTAAGCGTT -ACGGAAAATGGCCTCGTATTCGTC -ACGGAAAATGGCCTCGTATCTCTC -ACGGAAAATGGCCTCGTATGGATC -ACGGAAAATGGCCTCGTACACTTC -ACGGAAAATGGCCTCGTAGTACTC -ACGGAAAATGGCCTCGTAGATGTC -ACGGAAAATGGCCTCGTAACAGTC -ACGGAAAATGGCCTCGTATTGCTG -ACGGAAAATGGCCTCGTATCCATG -ACGGAAAATGGCCTCGTATGTGTG -ACGGAAAATGGCCTCGTACTAGTG -ACGGAAAATGGCCTCGTACATCTG -ACGGAAAATGGCCTCGTAGAGTTG -ACGGAAAATGGCCTCGTAAGACTG -ACGGAAAATGGCCTCGTATCGGTA -ACGGAAAATGGCCTCGTATGCCTA -ACGGAAAATGGCCTCGTACCACTA -ACGGAAAATGGCCTCGTAGGAGTA -ACGGAAAATGGCCTCGTATCGTCT -ACGGAAAATGGCCTCGTATGCACT -ACGGAAAATGGCCTCGTACTGACT -ACGGAAAATGGCCTCGTACAACCT -ACGGAAAATGGCCTCGTAGCTACT -ACGGAAAATGGCCTCGTAGGATCT -ACGGAAAATGGCCTCGTAAAGGCT -ACGGAAAATGGCCTCGTATCAACC -ACGGAAAATGGCCTCGTATGTTCC -ACGGAAAATGGCCTCGTAATTCCC -ACGGAAAATGGCCTCGTATTCTCG -ACGGAAAATGGCCTCGTATAGACG -ACGGAAAATGGCCTCGTAGTAACG -ACGGAAAATGGCCTCGTAACTTCG -ACGGAAAATGGCCTCGTATACGCA -ACGGAAAATGGCCTCGTACTTGCA -ACGGAAAATGGCCTCGTACGAACA -ACGGAAAATGGCCTCGTACAGTCA -ACGGAAAATGGCCTCGTAGATCCA -ACGGAAAATGGCCTCGTAACGACA -ACGGAAAATGGCCTCGTAAGCTCA -ACGGAAAATGGCCTCGTATCACGT -ACGGAAAATGGCCTCGTACGTAGT -ACGGAAAATGGCCTCGTAGTCAGT -ACGGAAAATGGCCTCGTAGAAGGT -ACGGAAAATGGCCTCGTAAACCGT -ACGGAAAATGGCCTCGTATTGTGC -ACGGAAAATGGCCTCGTACTAAGC -ACGGAAAATGGCCTCGTAACTAGC -ACGGAAAATGGCCTCGTAAGATGC -ACGGAAAATGGCCTCGTATGAAGG -ACGGAAAATGGCCTCGTACAATGG -ACGGAAAATGGCCTCGTAATGAGG -ACGGAAAATGGCCTCGTAAATGGG -ACGGAAAATGGCCTCGTATCCTGA -ACGGAAAATGGCCTCGTATAGCGA -ACGGAAAATGGCCTCGTACACAGA -ACGGAAAATGGCCTCGTAGCAAGA -ACGGAAAATGGCCTCGTAGGTTGA -ACGGAAAATGGCCTCGTATCCGAT -ACGGAAAATGGCCTCGTATGGCAT -ACGGAAAATGGCCTCGTACGAGAT -ACGGAAAATGGCCTCGTATACCAC -ACGGAAAATGGCCTCGTACAGAAC -ACGGAAAATGGCCTCGTAGTCTAC -ACGGAAAATGGCCTCGTAACGTAC -ACGGAAAATGGCCTCGTAAGTGAC -ACGGAAAATGGCCTCGTACTGTAG -ACGGAAAATGGCCTCGTACCTAAG -ACGGAAAATGGCCTCGTAGTTCAG -ACGGAAAATGGCCTCGTAGCATAG -ACGGAAAATGGCCTCGTAGACAAG -ACGGAAAATGGCCTCGTAAAGCAG -ACGGAAAATGGCCTCGTACGTCAA -ACGGAAAATGGCCTCGTAGCTGAA -ACGGAAAATGGCCTCGTAAGTACG -ACGGAAAATGGCCTCGTAATCCGA -ACGGAAAATGGCCTCGTAATGGGA -ACGGAAAATGGCCTCGTAGTGCAA -ACGGAAAATGGCCTCGTAGAGGAA -ACGGAAAATGGCCTCGTACAGGTA -ACGGAAAATGGCCTCGTAGACTCT -ACGGAAAATGGCCTCGTAAGTCCT -ACGGAAAATGGCCTCGTATAAGCC -ACGGAAAATGGCCTCGTAATAGCC -ACGGAAAATGGCCTCGTATAACCG -ACGGAAAATGGCCTCGTAATGCCA -ACGGAAAATGGCGTCGATGGAAAC -ACGGAAAATGGCGTCGATAACACC -ACGGAAAATGGCGTCGATATCGAG -ACGGAAAATGGCGTCGATCTCCTT -ACGGAAAATGGCGTCGATCCTGTT -ACGGAAAATGGCGTCGATCGGTTT -ACGGAAAATGGCGTCGATGTGGTT -ACGGAAAATGGCGTCGATGCCTTT -ACGGAAAATGGCGTCGATGGTCTT -ACGGAAAATGGCGTCGATACGCTT -ACGGAAAATGGCGTCGATAGCGTT -ACGGAAAATGGCGTCGATTTCGTC -ACGGAAAATGGCGTCGATTCTCTC -ACGGAAAATGGCGTCGATTGGATC -ACGGAAAATGGCGTCGATCACTTC -ACGGAAAATGGCGTCGATGTACTC -ACGGAAAATGGCGTCGATGATGTC -ACGGAAAATGGCGTCGATACAGTC -ACGGAAAATGGCGTCGATTTGCTG -ACGGAAAATGGCGTCGATTCCATG -ACGGAAAATGGCGTCGATTGTGTG -ACGGAAAATGGCGTCGATCTAGTG -ACGGAAAATGGCGTCGATCATCTG -ACGGAAAATGGCGTCGATGAGTTG -ACGGAAAATGGCGTCGATAGACTG -ACGGAAAATGGCGTCGATTCGGTA -ACGGAAAATGGCGTCGATTGCCTA -ACGGAAAATGGCGTCGATCCACTA -ACGGAAAATGGCGTCGATGGAGTA -ACGGAAAATGGCGTCGATTCGTCT -ACGGAAAATGGCGTCGATTGCACT -ACGGAAAATGGCGTCGATCTGACT -ACGGAAAATGGCGTCGATCAACCT -ACGGAAAATGGCGTCGATGCTACT -ACGGAAAATGGCGTCGATGGATCT -ACGGAAAATGGCGTCGATAAGGCT -ACGGAAAATGGCGTCGATTCAACC -ACGGAAAATGGCGTCGATTGTTCC -ACGGAAAATGGCGTCGATATTCCC -ACGGAAAATGGCGTCGATTTCTCG -ACGGAAAATGGCGTCGATTAGACG -ACGGAAAATGGCGTCGATGTAACG -ACGGAAAATGGCGTCGATACTTCG -ACGGAAAATGGCGTCGATTACGCA -ACGGAAAATGGCGTCGATCTTGCA -ACGGAAAATGGCGTCGATCGAACA -ACGGAAAATGGCGTCGATCAGTCA -ACGGAAAATGGCGTCGATGATCCA -ACGGAAAATGGCGTCGATACGACA -ACGGAAAATGGCGTCGATAGCTCA -ACGGAAAATGGCGTCGATTCACGT -ACGGAAAATGGCGTCGATCGTAGT -ACGGAAAATGGCGTCGATGTCAGT -ACGGAAAATGGCGTCGATGAAGGT -ACGGAAAATGGCGTCGATAACCGT -ACGGAAAATGGCGTCGATTTGTGC -ACGGAAAATGGCGTCGATCTAAGC -ACGGAAAATGGCGTCGATACTAGC -ACGGAAAATGGCGTCGATAGATGC -ACGGAAAATGGCGTCGATTGAAGG -ACGGAAAATGGCGTCGATCAATGG -ACGGAAAATGGCGTCGATATGAGG -ACGGAAAATGGCGTCGATAATGGG -ACGGAAAATGGCGTCGATTCCTGA -ACGGAAAATGGCGTCGATTAGCGA -ACGGAAAATGGCGTCGATCACAGA -ACGGAAAATGGCGTCGATGCAAGA -ACGGAAAATGGCGTCGATGGTTGA -ACGGAAAATGGCGTCGATTCCGAT -ACGGAAAATGGCGTCGATTGGCAT -ACGGAAAATGGCGTCGATCGAGAT -ACGGAAAATGGCGTCGATTACCAC -ACGGAAAATGGCGTCGATCAGAAC -ACGGAAAATGGCGTCGATGTCTAC -ACGGAAAATGGCGTCGATACGTAC -ACGGAAAATGGCGTCGATAGTGAC -ACGGAAAATGGCGTCGATCTGTAG -ACGGAAAATGGCGTCGATCCTAAG -ACGGAAAATGGCGTCGATGTTCAG -ACGGAAAATGGCGTCGATGCATAG -ACGGAAAATGGCGTCGATGACAAG -ACGGAAAATGGCGTCGATAAGCAG -ACGGAAAATGGCGTCGATCGTCAA -ACGGAAAATGGCGTCGATGCTGAA -ACGGAAAATGGCGTCGATAGTACG -ACGGAAAATGGCGTCGATATCCGA -ACGGAAAATGGCGTCGATATGGGA -ACGGAAAATGGCGTCGATGTGCAA -ACGGAAAATGGCGTCGATGAGGAA -ACGGAAAATGGCGTCGATCAGGTA -ACGGAAAATGGCGTCGATGACTCT -ACGGAAAATGGCGTCGATAGTCCT -ACGGAAAATGGCGTCGATTAAGCC -ACGGAAAATGGCGTCGATATAGCC -ACGGAAAATGGCGTCGATTAACCG -ACGGAAAATGGCGTCGATATGCCA -ACGGAAAATGGCGTCACAGGAAAC -ACGGAAAATGGCGTCACAAACACC -ACGGAAAATGGCGTCACAATCGAG -ACGGAAAATGGCGTCACACTCCTT -ACGGAAAATGGCGTCACACCTGTT -ACGGAAAATGGCGTCACACGGTTT -ACGGAAAATGGCGTCACAGTGGTT -ACGGAAAATGGCGTCACAGCCTTT -ACGGAAAATGGCGTCACAGGTCTT -ACGGAAAATGGCGTCACAACGCTT -ACGGAAAATGGCGTCACAAGCGTT -ACGGAAAATGGCGTCACATTCGTC -ACGGAAAATGGCGTCACATCTCTC -ACGGAAAATGGCGTCACATGGATC -ACGGAAAATGGCGTCACACACTTC -ACGGAAAATGGCGTCACAGTACTC -ACGGAAAATGGCGTCACAGATGTC -ACGGAAAATGGCGTCACAACAGTC -ACGGAAAATGGCGTCACATTGCTG -ACGGAAAATGGCGTCACATCCATG -ACGGAAAATGGCGTCACATGTGTG -ACGGAAAATGGCGTCACACTAGTG -ACGGAAAATGGCGTCACACATCTG -ACGGAAAATGGCGTCACAGAGTTG -ACGGAAAATGGCGTCACAAGACTG -ACGGAAAATGGCGTCACATCGGTA -ACGGAAAATGGCGTCACATGCCTA -ACGGAAAATGGCGTCACACCACTA -ACGGAAAATGGCGTCACAGGAGTA -ACGGAAAATGGCGTCACATCGTCT -ACGGAAAATGGCGTCACATGCACT -ACGGAAAATGGCGTCACACTGACT -ACGGAAAATGGCGTCACACAACCT -ACGGAAAATGGCGTCACAGCTACT -ACGGAAAATGGCGTCACAGGATCT -ACGGAAAATGGCGTCACAAAGGCT -ACGGAAAATGGCGTCACATCAACC -ACGGAAAATGGCGTCACATGTTCC -ACGGAAAATGGCGTCACAATTCCC -ACGGAAAATGGCGTCACATTCTCG -ACGGAAAATGGCGTCACATAGACG -ACGGAAAATGGCGTCACAGTAACG -ACGGAAAATGGCGTCACAACTTCG -ACGGAAAATGGCGTCACATACGCA -ACGGAAAATGGCGTCACACTTGCA -ACGGAAAATGGCGTCACACGAACA -ACGGAAAATGGCGTCACACAGTCA -ACGGAAAATGGCGTCACAGATCCA -ACGGAAAATGGCGTCACAACGACA -ACGGAAAATGGCGTCACAAGCTCA -ACGGAAAATGGCGTCACATCACGT -ACGGAAAATGGCGTCACACGTAGT -ACGGAAAATGGCGTCACAGTCAGT -ACGGAAAATGGCGTCACAGAAGGT -ACGGAAAATGGCGTCACAAACCGT -ACGGAAAATGGCGTCACATTGTGC -ACGGAAAATGGCGTCACACTAAGC -ACGGAAAATGGCGTCACAACTAGC -ACGGAAAATGGCGTCACAAGATGC -ACGGAAAATGGCGTCACATGAAGG -ACGGAAAATGGCGTCACACAATGG -ACGGAAAATGGCGTCACAATGAGG -ACGGAAAATGGCGTCACAAATGGG -ACGGAAAATGGCGTCACATCCTGA -ACGGAAAATGGCGTCACATAGCGA -ACGGAAAATGGCGTCACACACAGA -ACGGAAAATGGCGTCACAGCAAGA -ACGGAAAATGGCGTCACAGGTTGA -ACGGAAAATGGCGTCACATCCGAT -ACGGAAAATGGCGTCACATGGCAT -ACGGAAAATGGCGTCACACGAGAT -ACGGAAAATGGCGTCACATACCAC -ACGGAAAATGGCGTCACACAGAAC -ACGGAAAATGGCGTCACAGTCTAC -ACGGAAAATGGCGTCACAACGTAC -ACGGAAAATGGCGTCACAAGTGAC -ACGGAAAATGGCGTCACACTGTAG -ACGGAAAATGGCGTCACACCTAAG -ACGGAAAATGGCGTCACAGTTCAG -ACGGAAAATGGCGTCACAGCATAG -ACGGAAAATGGCGTCACAGACAAG -ACGGAAAATGGCGTCACAAAGCAG -ACGGAAAATGGCGTCACACGTCAA -ACGGAAAATGGCGTCACAGCTGAA -ACGGAAAATGGCGTCACAAGTACG -ACGGAAAATGGCGTCACAATCCGA -ACGGAAAATGGCGTCACAATGGGA -ACGGAAAATGGCGTCACAGTGCAA -ACGGAAAATGGCGTCACAGAGGAA -ACGGAAAATGGCGTCACACAGGTA -ACGGAAAATGGCGTCACAGACTCT -ACGGAAAATGGCGTCACAAGTCCT -ACGGAAAATGGCGTCACATAAGCC -ACGGAAAATGGCGTCACAATAGCC -ACGGAAAATGGCGTCACATAACCG -ACGGAAAATGGCGTCACAATGCCA -ACGGAAAATGGCCTGTTGGGAAAC -ACGGAAAATGGCCTGTTGAACACC -ACGGAAAATGGCCTGTTGATCGAG -ACGGAAAATGGCCTGTTGCTCCTT -ACGGAAAATGGCCTGTTGCCTGTT -ACGGAAAATGGCCTGTTGCGGTTT -ACGGAAAATGGCCTGTTGGTGGTT -ACGGAAAATGGCCTGTTGGCCTTT -ACGGAAAATGGCCTGTTGGGTCTT -ACGGAAAATGGCCTGTTGACGCTT -ACGGAAAATGGCCTGTTGAGCGTT -ACGGAAAATGGCCTGTTGTTCGTC -ACGGAAAATGGCCTGTTGTCTCTC -ACGGAAAATGGCCTGTTGTGGATC -ACGGAAAATGGCCTGTTGCACTTC -ACGGAAAATGGCCTGTTGGTACTC -ACGGAAAATGGCCTGTTGGATGTC -ACGGAAAATGGCCTGTTGACAGTC -ACGGAAAATGGCCTGTTGTTGCTG -ACGGAAAATGGCCTGTTGTCCATG -ACGGAAAATGGCCTGTTGTGTGTG -ACGGAAAATGGCCTGTTGCTAGTG -ACGGAAAATGGCCTGTTGCATCTG -ACGGAAAATGGCCTGTTGGAGTTG -ACGGAAAATGGCCTGTTGAGACTG -ACGGAAAATGGCCTGTTGTCGGTA -ACGGAAAATGGCCTGTTGTGCCTA -ACGGAAAATGGCCTGTTGCCACTA -ACGGAAAATGGCCTGTTGGGAGTA -ACGGAAAATGGCCTGTTGTCGTCT -ACGGAAAATGGCCTGTTGTGCACT -ACGGAAAATGGCCTGTTGCTGACT -ACGGAAAATGGCCTGTTGCAACCT -ACGGAAAATGGCCTGTTGGCTACT -ACGGAAAATGGCCTGTTGGGATCT -ACGGAAAATGGCCTGTTGAAGGCT -ACGGAAAATGGCCTGTTGTCAACC -ACGGAAAATGGCCTGTTGTGTTCC -ACGGAAAATGGCCTGTTGATTCCC -ACGGAAAATGGCCTGTTGTTCTCG -ACGGAAAATGGCCTGTTGTAGACG -ACGGAAAATGGCCTGTTGGTAACG -ACGGAAAATGGCCTGTTGACTTCG -ACGGAAAATGGCCTGTTGTACGCA -ACGGAAAATGGCCTGTTGCTTGCA -ACGGAAAATGGCCTGTTGCGAACA -ACGGAAAATGGCCTGTTGCAGTCA -ACGGAAAATGGCCTGTTGGATCCA -ACGGAAAATGGCCTGTTGACGACA -ACGGAAAATGGCCTGTTGAGCTCA -ACGGAAAATGGCCTGTTGTCACGT -ACGGAAAATGGCCTGTTGCGTAGT -ACGGAAAATGGCCTGTTGGTCAGT -ACGGAAAATGGCCTGTTGGAAGGT -ACGGAAAATGGCCTGTTGAACCGT -ACGGAAAATGGCCTGTTGTTGTGC -ACGGAAAATGGCCTGTTGCTAAGC -ACGGAAAATGGCCTGTTGACTAGC -ACGGAAAATGGCCTGTTGAGATGC -ACGGAAAATGGCCTGTTGTGAAGG -ACGGAAAATGGCCTGTTGCAATGG -ACGGAAAATGGCCTGTTGATGAGG -ACGGAAAATGGCCTGTTGAATGGG -ACGGAAAATGGCCTGTTGTCCTGA -ACGGAAAATGGCCTGTTGTAGCGA -ACGGAAAATGGCCTGTTGCACAGA -ACGGAAAATGGCCTGTTGGCAAGA -ACGGAAAATGGCCTGTTGGGTTGA -ACGGAAAATGGCCTGTTGTCCGAT -ACGGAAAATGGCCTGTTGTGGCAT -ACGGAAAATGGCCTGTTGCGAGAT -ACGGAAAATGGCCTGTTGTACCAC -ACGGAAAATGGCCTGTTGCAGAAC -ACGGAAAATGGCCTGTTGGTCTAC -ACGGAAAATGGCCTGTTGACGTAC -ACGGAAAATGGCCTGTTGAGTGAC -ACGGAAAATGGCCTGTTGCTGTAG -ACGGAAAATGGCCTGTTGCCTAAG -ACGGAAAATGGCCTGTTGGTTCAG -ACGGAAAATGGCCTGTTGGCATAG -ACGGAAAATGGCCTGTTGGACAAG -ACGGAAAATGGCCTGTTGAAGCAG -ACGGAAAATGGCCTGTTGCGTCAA -ACGGAAAATGGCCTGTTGGCTGAA -ACGGAAAATGGCCTGTTGAGTACG -ACGGAAAATGGCCTGTTGATCCGA -ACGGAAAATGGCCTGTTGATGGGA -ACGGAAAATGGCCTGTTGGTGCAA -ACGGAAAATGGCCTGTTGGAGGAA -ACGGAAAATGGCCTGTTGCAGGTA -ACGGAAAATGGCCTGTTGGACTCT -ACGGAAAATGGCCTGTTGAGTCCT -ACGGAAAATGGCCTGTTGTAAGCC -ACGGAAAATGGCCTGTTGATAGCC -ACGGAAAATGGCCTGTTGTAACCG -ACGGAAAATGGCCTGTTGATGCCA -ACGGAAAATGGCATGTCCGGAAAC -ACGGAAAATGGCATGTCCAACACC -ACGGAAAATGGCATGTCCATCGAG -ACGGAAAATGGCATGTCCCTCCTT -ACGGAAAATGGCATGTCCCCTGTT -ACGGAAAATGGCATGTCCCGGTTT -ACGGAAAATGGCATGTCCGTGGTT -ACGGAAAATGGCATGTCCGCCTTT -ACGGAAAATGGCATGTCCGGTCTT -ACGGAAAATGGCATGTCCACGCTT -ACGGAAAATGGCATGTCCAGCGTT -ACGGAAAATGGCATGTCCTTCGTC -ACGGAAAATGGCATGTCCTCTCTC -ACGGAAAATGGCATGTCCTGGATC -ACGGAAAATGGCATGTCCCACTTC -ACGGAAAATGGCATGTCCGTACTC -ACGGAAAATGGCATGTCCGATGTC -ACGGAAAATGGCATGTCCACAGTC -ACGGAAAATGGCATGTCCTTGCTG -ACGGAAAATGGCATGTCCTCCATG -ACGGAAAATGGCATGTCCTGTGTG -ACGGAAAATGGCATGTCCCTAGTG -ACGGAAAATGGCATGTCCCATCTG -ACGGAAAATGGCATGTCCGAGTTG -ACGGAAAATGGCATGTCCAGACTG -ACGGAAAATGGCATGTCCTCGGTA -ACGGAAAATGGCATGTCCTGCCTA -ACGGAAAATGGCATGTCCCCACTA -ACGGAAAATGGCATGTCCGGAGTA -ACGGAAAATGGCATGTCCTCGTCT -ACGGAAAATGGCATGTCCTGCACT -ACGGAAAATGGCATGTCCCTGACT -ACGGAAAATGGCATGTCCCAACCT -ACGGAAAATGGCATGTCCGCTACT -ACGGAAAATGGCATGTCCGGATCT -ACGGAAAATGGCATGTCCAAGGCT -ACGGAAAATGGCATGTCCTCAACC -ACGGAAAATGGCATGTCCTGTTCC -ACGGAAAATGGCATGTCCATTCCC -ACGGAAAATGGCATGTCCTTCTCG -ACGGAAAATGGCATGTCCTAGACG -ACGGAAAATGGCATGTCCGTAACG -ACGGAAAATGGCATGTCCACTTCG -ACGGAAAATGGCATGTCCTACGCA -ACGGAAAATGGCATGTCCCTTGCA -ACGGAAAATGGCATGTCCCGAACA -ACGGAAAATGGCATGTCCCAGTCA -ACGGAAAATGGCATGTCCGATCCA -ACGGAAAATGGCATGTCCACGACA -ACGGAAAATGGCATGTCCAGCTCA -ACGGAAAATGGCATGTCCTCACGT -ACGGAAAATGGCATGTCCCGTAGT -ACGGAAAATGGCATGTCCGTCAGT -ACGGAAAATGGCATGTCCGAAGGT -ACGGAAAATGGCATGTCCAACCGT -ACGGAAAATGGCATGTCCTTGTGC -ACGGAAAATGGCATGTCCCTAAGC -ACGGAAAATGGCATGTCCACTAGC -ACGGAAAATGGCATGTCCAGATGC -ACGGAAAATGGCATGTCCTGAAGG -ACGGAAAATGGCATGTCCCAATGG -ACGGAAAATGGCATGTCCATGAGG -ACGGAAAATGGCATGTCCAATGGG -ACGGAAAATGGCATGTCCTCCTGA -ACGGAAAATGGCATGTCCTAGCGA -ACGGAAAATGGCATGTCCCACAGA -ACGGAAAATGGCATGTCCGCAAGA -ACGGAAAATGGCATGTCCGGTTGA -ACGGAAAATGGCATGTCCTCCGAT -ACGGAAAATGGCATGTCCTGGCAT -ACGGAAAATGGCATGTCCCGAGAT -ACGGAAAATGGCATGTCCTACCAC -ACGGAAAATGGCATGTCCCAGAAC -ACGGAAAATGGCATGTCCGTCTAC -ACGGAAAATGGCATGTCCACGTAC -ACGGAAAATGGCATGTCCAGTGAC -ACGGAAAATGGCATGTCCCTGTAG -ACGGAAAATGGCATGTCCCCTAAG -ACGGAAAATGGCATGTCCGTTCAG -ACGGAAAATGGCATGTCCGCATAG -ACGGAAAATGGCATGTCCGACAAG -ACGGAAAATGGCATGTCCAAGCAG -ACGGAAAATGGCATGTCCCGTCAA -ACGGAAAATGGCATGTCCGCTGAA -ACGGAAAATGGCATGTCCAGTACG -ACGGAAAATGGCATGTCCATCCGA -ACGGAAAATGGCATGTCCATGGGA -ACGGAAAATGGCATGTCCGTGCAA -ACGGAAAATGGCATGTCCGAGGAA -ACGGAAAATGGCATGTCCCAGGTA -ACGGAAAATGGCATGTCCGACTCT -ACGGAAAATGGCATGTCCAGTCCT -ACGGAAAATGGCATGTCCTAAGCC -ACGGAAAATGGCATGTCCATAGCC -ACGGAAAATGGCATGTCCTAACCG -ACGGAAAATGGCATGTCCATGCCA -ACGGAAAATGGCGTGTGTGGAAAC -ACGGAAAATGGCGTGTGTAACACC -ACGGAAAATGGCGTGTGTATCGAG -ACGGAAAATGGCGTGTGTCTCCTT -ACGGAAAATGGCGTGTGTCCTGTT -ACGGAAAATGGCGTGTGTCGGTTT -ACGGAAAATGGCGTGTGTGTGGTT -ACGGAAAATGGCGTGTGTGCCTTT -ACGGAAAATGGCGTGTGTGGTCTT -ACGGAAAATGGCGTGTGTACGCTT -ACGGAAAATGGCGTGTGTAGCGTT -ACGGAAAATGGCGTGTGTTTCGTC -ACGGAAAATGGCGTGTGTTCTCTC -ACGGAAAATGGCGTGTGTTGGATC -ACGGAAAATGGCGTGTGTCACTTC -ACGGAAAATGGCGTGTGTGTACTC -ACGGAAAATGGCGTGTGTGATGTC -ACGGAAAATGGCGTGTGTACAGTC -ACGGAAAATGGCGTGTGTTTGCTG -ACGGAAAATGGCGTGTGTTCCATG -ACGGAAAATGGCGTGTGTTGTGTG -ACGGAAAATGGCGTGTGTCTAGTG -ACGGAAAATGGCGTGTGTCATCTG -ACGGAAAATGGCGTGTGTGAGTTG -ACGGAAAATGGCGTGTGTAGACTG -ACGGAAAATGGCGTGTGTTCGGTA -ACGGAAAATGGCGTGTGTTGCCTA -ACGGAAAATGGCGTGTGTCCACTA -ACGGAAAATGGCGTGTGTGGAGTA -ACGGAAAATGGCGTGTGTTCGTCT -ACGGAAAATGGCGTGTGTTGCACT -ACGGAAAATGGCGTGTGTCTGACT -ACGGAAAATGGCGTGTGTCAACCT -ACGGAAAATGGCGTGTGTGCTACT -ACGGAAAATGGCGTGTGTGGATCT -ACGGAAAATGGCGTGTGTAAGGCT -ACGGAAAATGGCGTGTGTTCAACC -ACGGAAAATGGCGTGTGTTGTTCC -ACGGAAAATGGCGTGTGTATTCCC -ACGGAAAATGGCGTGTGTTTCTCG -ACGGAAAATGGCGTGTGTTAGACG -ACGGAAAATGGCGTGTGTGTAACG -ACGGAAAATGGCGTGTGTACTTCG -ACGGAAAATGGCGTGTGTTACGCA -ACGGAAAATGGCGTGTGTCTTGCA -ACGGAAAATGGCGTGTGTCGAACA -ACGGAAAATGGCGTGTGTCAGTCA -ACGGAAAATGGCGTGTGTGATCCA -ACGGAAAATGGCGTGTGTACGACA -ACGGAAAATGGCGTGTGTAGCTCA -ACGGAAAATGGCGTGTGTTCACGT -ACGGAAAATGGCGTGTGTCGTAGT -ACGGAAAATGGCGTGTGTGTCAGT -ACGGAAAATGGCGTGTGTGAAGGT -ACGGAAAATGGCGTGTGTAACCGT -ACGGAAAATGGCGTGTGTTTGTGC -ACGGAAAATGGCGTGTGTCTAAGC -ACGGAAAATGGCGTGTGTACTAGC -ACGGAAAATGGCGTGTGTAGATGC -ACGGAAAATGGCGTGTGTTGAAGG -ACGGAAAATGGCGTGTGTCAATGG -ACGGAAAATGGCGTGTGTATGAGG -ACGGAAAATGGCGTGTGTAATGGG -ACGGAAAATGGCGTGTGTTCCTGA -ACGGAAAATGGCGTGTGTTAGCGA -ACGGAAAATGGCGTGTGTCACAGA -ACGGAAAATGGCGTGTGTGCAAGA -ACGGAAAATGGCGTGTGTGGTTGA -ACGGAAAATGGCGTGTGTTCCGAT -ACGGAAAATGGCGTGTGTTGGCAT -ACGGAAAATGGCGTGTGTCGAGAT -ACGGAAAATGGCGTGTGTTACCAC -ACGGAAAATGGCGTGTGTCAGAAC -ACGGAAAATGGCGTGTGTGTCTAC -ACGGAAAATGGCGTGTGTACGTAC -ACGGAAAATGGCGTGTGTAGTGAC -ACGGAAAATGGCGTGTGTCTGTAG -ACGGAAAATGGCGTGTGTCCTAAG -ACGGAAAATGGCGTGTGTGTTCAG -ACGGAAAATGGCGTGTGTGCATAG -ACGGAAAATGGCGTGTGTGACAAG -ACGGAAAATGGCGTGTGTAAGCAG -ACGGAAAATGGCGTGTGTCGTCAA -ACGGAAAATGGCGTGTGTGCTGAA -ACGGAAAATGGCGTGTGTAGTACG -ACGGAAAATGGCGTGTGTATCCGA -ACGGAAAATGGCGTGTGTATGGGA -ACGGAAAATGGCGTGTGTGTGCAA -ACGGAAAATGGCGTGTGTGAGGAA -ACGGAAAATGGCGTGTGTCAGGTA -ACGGAAAATGGCGTGTGTGACTCT -ACGGAAAATGGCGTGTGTAGTCCT -ACGGAAAATGGCGTGTGTTAAGCC -ACGGAAAATGGCGTGTGTATAGCC -ACGGAAAATGGCGTGTGTTAACCG -ACGGAAAATGGCGTGTGTATGCCA -ACGGAAAATGGCGTGCTAGGAAAC -ACGGAAAATGGCGTGCTAAACACC -ACGGAAAATGGCGTGCTAATCGAG -ACGGAAAATGGCGTGCTACTCCTT -ACGGAAAATGGCGTGCTACCTGTT -ACGGAAAATGGCGTGCTACGGTTT -ACGGAAAATGGCGTGCTAGTGGTT -ACGGAAAATGGCGTGCTAGCCTTT -ACGGAAAATGGCGTGCTAGGTCTT -ACGGAAAATGGCGTGCTAACGCTT -ACGGAAAATGGCGTGCTAAGCGTT -ACGGAAAATGGCGTGCTATTCGTC -ACGGAAAATGGCGTGCTATCTCTC -ACGGAAAATGGCGTGCTATGGATC -ACGGAAAATGGCGTGCTACACTTC -ACGGAAAATGGCGTGCTAGTACTC -ACGGAAAATGGCGTGCTAGATGTC -ACGGAAAATGGCGTGCTAACAGTC -ACGGAAAATGGCGTGCTATTGCTG -ACGGAAAATGGCGTGCTATCCATG -ACGGAAAATGGCGTGCTATGTGTG -ACGGAAAATGGCGTGCTACTAGTG -ACGGAAAATGGCGTGCTACATCTG -ACGGAAAATGGCGTGCTAGAGTTG -ACGGAAAATGGCGTGCTAAGACTG -ACGGAAAATGGCGTGCTATCGGTA -ACGGAAAATGGCGTGCTATGCCTA -ACGGAAAATGGCGTGCTACCACTA -ACGGAAAATGGCGTGCTAGGAGTA -ACGGAAAATGGCGTGCTATCGTCT -ACGGAAAATGGCGTGCTATGCACT -ACGGAAAATGGCGTGCTACTGACT -ACGGAAAATGGCGTGCTACAACCT -ACGGAAAATGGCGTGCTAGCTACT -ACGGAAAATGGCGTGCTAGGATCT -ACGGAAAATGGCGTGCTAAAGGCT -ACGGAAAATGGCGTGCTATCAACC -ACGGAAAATGGCGTGCTATGTTCC -ACGGAAAATGGCGTGCTAATTCCC -ACGGAAAATGGCGTGCTATTCTCG -ACGGAAAATGGCGTGCTATAGACG -ACGGAAAATGGCGTGCTAGTAACG -ACGGAAAATGGCGTGCTAACTTCG -ACGGAAAATGGCGTGCTATACGCA -ACGGAAAATGGCGTGCTACTTGCA -ACGGAAAATGGCGTGCTACGAACA -ACGGAAAATGGCGTGCTACAGTCA -ACGGAAAATGGCGTGCTAGATCCA -ACGGAAAATGGCGTGCTAACGACA -ACGGAAAATGGCGTGCTAAGCTCA -ACGGAAAATGGCGTGCTATCACGT -ACGGAAAATGGCGTGCTACGTAGT -ACGGAAAATGGCGTGCTAGTCAGT -ACGGAAAATGGCGTGCTAGAAGGT -ACGGAAAATGGCGTGCTAAACCGT -ACGGAAAATGGCGTGCTATTGTGC -ACGGAAAATGGCGTGCTACTAAGC -ACGGAAAATGGCGTGCTAACTAGC -ACGGAAAATGGCGTGCTAAGATGC -ACGGAAAATGGCGTGCTATGAAGG -ACGGAAAATGGCGTGCTACAATGG -ACGGAAAATGGCGTGCTAATGAGG -ACGGAAAATGGCGTGCTAAATGGG -ACGGAAAATGGCGTGCTATCCTGA -ACGGAAAATGGCGTGCTATAGCGA -ACGGAAAATGGCGTGCTACACAGA -ACGGAAAATGGCGTGCTAGCAAGA -ACGGAAAATGGCGTGCTAGGTTGA -ACGGAAAATGGCGTGCTATCCGAT -ACGGAAAATGGCGTGCTATGGCAT -ACGGAAAATGGCGTGCTACGAGAT -ACGGAAAATGGCGTGCTATACCAC -ACGGAAAATGGCGTGCTACAGAAC -ACGGAAAATGGCGTGCTAGTCTAC -ACGGAAAATGGCGTGCTAACGTAC -ACGGAAAATGGCGTGCTAAGTGAC -ACGGAAAATGGCGTGCTACTGTAG -ACGGAAAATGGCGTGCTACCTAAG -ACGGAAAATGGCGTGCTAGTTCAG -ACGGAAAATGGCGTGCTAGCATAG -ACGGAAAATGGCGTGCTAGACAAG -ACGGAAAATGGCGTGCTAAAGCAG -ACGGAAAATGGCGTGCTACGTCAA -ACGGAAAATGGCGTGCTAGCTGAA -ACGGAAAATGGCGTGCTAAGTACG -ACGGAAAATGGCGTGCTAATCCGA -ACGGAAAATGGCGTGCTAATGGGA -ACGGAAAATGGCGTGCTAGTGCAA -ACGGAAAATGGCGTGCTAGAGGAA -ACGGAAAATGGCGTGCTACAGGTA -ACGGAAAATGGCGTGCTAGACTCT -ACGGAAAATGGCGTGCTAAGTCCT -ACGGAAAATGGCGTGCTATAAGCC -ACGGAAAATGGCGTGCTAATAGCC -ACGGAAAATGGCGTGCTATAACCG -ACGGAAAATGGCGTGCTAATGCCA -ACGGAAAATGGCCTGCATGGAAAC -ACGGAAAATGGCCTGCATAACACC -ACGGAAAATGGCCTGCATATCGAG -ACGGAAAATGGCCTGCATCTCCTT -ACGGAAAATGGCCTGCATCCTGTT -ACGGAAAATGGCCTGCATCGGTTT -ACGGAAAATGGCCTGCATGTGGTT -ACGGAAAATGGCCTGCATGCCTTT -ACGGAAAATGGCCTGCATGGTCTT -ACGGAAAATGGCCTGCATACGCTT -ACGGAAAATGGCCTGCATAGCGTT -ACGGAAAATGGCCTGCATTTCGTC -ACGGAAAATGGCCTGCATTCTCTC -ACGGAAAATGGCCTGCATTGGATC -ACGGAAAATGGCCTGCATCACTTC -ACGGAAAATGGCCTGCATGTACTC -ACGGAAAATGGCCTGCATGATGTC -ACGGAAAATGGCCTGCATACAGTC -ACGGAAAATGGCCTGCATTTGCTG -ACGGAAAATGGCCTGCATTCCATG -ACGGAAAATGGCCTGCATTGTGTG -ACGGAAAATGGCCTGCATCTAGTG -ACGGAAAATGGCCTGCATCATCTG -ACGGAAAATGGCCTGCATGAGTTG -ACGGAAAATGGCCTGCATAGACTG -ACGGAAAATGGCCTGCATTCGGTA -ACGGAAAATGGCCTGCATTGCCTA -ACGGAAAATGGCCTGCATCCACTA -ACGGAAAATGGCCTGCATGGAGTA -ACGGAAAATGGCCTGCATTCGTCT -ACGGAAAATGGCCTGCATTGCACT -ACGGAAAATGGCCTGCATCTGACT -ACGGAAAATGGCCTGCATCAACCT -ACGGAAAATGGCCTGCATGCTACT -ACGGAAAATGGCCTGCATGGATCT -ACGGAAAATGGCCTGCATAAGGCT -ACGGAAAATGGCCTGCATTCAACC -ACGGAAAATGGCCTGCATTGTTCC -ACGGAAAATGGCCTGCATATTCCC -ACGGAAAATGGCCTGCATTTCTCG -ACGGAAAATGGCCTGCATTAGACG -ACGGAAAATGGCCTGCATGTAACG -ACGGAAAATGGCCTGCATACTTCG -ACGGAAAATGGCCTGCATTACGCA -ACGGAAAATGGCCTGCATCTTGCA -ACGGAAAATGGCCTGCATCGAACA -ACGGAAAATGGCCTGCATCAGTCA -ACGGAAAATGGCCTGCATGATCCA -ACGGAAAATGGCCTGCATACGACA -ACGGAAAATGGCCTGCATAGCTCA -ACGGAAAATGGCCTGCATTCACGT -ACGGAAAATGGCCTGCATCGTAGT -ACGGAAAATGGCCTGCATGTCAGT -ACGGAAAATGGCCTGCATGAAGGT -ACGGAAAATGGCCTGCATAACCGT -ACGGAAAATGGCCTGCATTTGTGC -ACGGAAAATGGCCTGCATCTAAGC -ACGGAAAATGGCCTGCATACTAGC -ACGGAAAATGGCCTGCATAGATGC -ACGGAAAATGGCCTGCATTGAAGG -ACGGAAAATGGCCTGCATCAATGG -ACGGAAAATGGCCTGCATATGAGG -ACGGAAAATGGCCTGCATAATGGG -ACGGAAAATGGCCTGCATTCCTGA -ACGGAAAATGGCCTGCATTAGCGA -ACGGAAAATGGCCTGCATCACAGA -ACGGAAAATGGCCTGCATGCAAGA -ACGGAAAATGGCCTGCATGGTTGA -ACGGAAAATGGCCTGCATTCCGAT -ACGGAAAATGGCCTGCATTGGCAT -ACGGAAAATGGCCTGCATCGAGAT -ACGGAAAATGGCCTGCATTACCAC -ACGGAAAATGGCCTGCATCAGAAC -ACGGAAAATGGCCTGCATGTCTAC -ACGGAAAATGGCCTGCATACGTAC -ACGGAAAATGGCCTGCATAGTGAC -ACGGAAAATGGCCTGCATCTGTAG -ACGGAAAATGGCCTGCATCCTAAG -ACGGAAAATGGCCTGCATGTTCAG -ACGGAAAATGGCCTGCATGCATAG -ACGGAAAATGGCCTGCATGACAAG -ACGGAAAATGGCCTGCATAAGCAG -ACGGAAAATGGCCTGCATCGTCAA -ACGGAAAATGGCCTGCATGCTGAA -ACGGAAAATGGCCTGCATAGTACG -ACGGAAAATGGCCTGCATATCCGA -ACGGAAAATGGCCTGCATATGGGA -ACGGAAAATGGCCTGCATGTGCAA -ACGGAAAATGGCCTGCATGAGGAA -ACGGAAAATGGCCTGCATCAGGTA -ACGGAAAATGGCCTGCATGACTCT -ACGGAAAATGGCCTGCATAGTCCT -ACGGAAAATGGCCTGCATTAAGCC -ACGGAAAATGGCCTGCATATAGCC -ACGGAAAATGGCCTGCATTAACCG -ACGGAAAATGGCCTGCATATGCCA -ACGGAAAATGGCTTGGAGGGAAAC -ACGGAAAATGGCTTGGAGAACACC -ACGGAAAATGGCTTGGAGATCGAG -ACGGAAAATGGCTTGGAGCTCCTT -ACGGAAAATGGCTTGGAGCCTGTT -ACGGAAAATGGCTTGGAGCGGTTT -ACGGAAAATGGCTTGGAGGTGGTT -ACGGAAAATGGCTTGGAGGCCTTT -ACGGAAAATGGCTTGGAGGGTCTT -ACGGAAAATGGCTTGGAGACGCTT -ACGGAAAATGGCTTGGAGAGCGTT -ACGGAAAATGGCTTGGAGTTCGTC -ACGGAAAATGGCTTGGAGTCTCTC -ACGGAAAATGGCTTGGAGTGGATC -ACGGAAAATGGCTTGGAGCACTTC -ACGGAAAATGGCTTGGAGGTACTC -ACGGAAAATGGCTTGGAGGATGTC -ACGGAAAATGGCTTGGAGACAGTC -ACGGAAAATGGCTTGGAGTTGCTG -ACGGAAAATGGCTTGGAGTCCATG -ACGGAAAATGGCTTGGAGTGTGTG -ACGGAAAATGGCTTGGAGCTAGTG -ACGGAAAATGGCTTGGAGCATCTG -ACGGAAAATGGCTTGGAGGAGTTG -ACGGAAAATGGCTTGGAGAGACTG -ACGGAAAATGGCTTGGAGTCGGTA -ACGGAAAATGGCTTGGAGTGCCTA -ACGGAAAATGGCTTGGAGCCACTA -ACGGAAAATGGCTTGGAGGGAGTA -ACGGAAAATGGCTTGGAGTCGTCT -ACGGAAAATGGCTTGGAGTGCACT -ACGGAAAATGGCTTGGAGCTGACT -ACGGAAAATGGCTTGGAGCAACCT -ACGGAAAATGGCTTGGAGGCTACT -ACGGAAAATGGCTTGGAGGGATCT -ACGGAAAATGGCTTGGAGAAGGCT -ACGGAAAATGGCTTGGAGTCAACC -ACGGAAAATGGCTTGGAGTGTTCC -ACGGAAAATGGCTTGGAGATTCCC -ACGGAAAATGGCTTGGAGTTCTCG -ACGGAAAATGGCTTGGAGTAGACG -ACGGAAAATGGCTTGGAGGTAACG -ACGGAAAATGGCTTGGAGACTTCG -ACGGAAAATGGCTTGGAGTACGCA -ACGGAAAATGGCTTGGAGCTTGCA -ACGGAAAATGGCTTGGAGCGAACA -ACGGAAAATGGCTTGGAGCAGTCA -ACGGAAAATGGCTTGGAGGATCCA -ACGGAAAATGGCTTGGAGACGACA -ACGGAAAATGGCTTGGAGAGCTCA -ACGGAAAATGGCTTGGAGTCACGT -ACGGAAAATGGCTTGGAGCGTAGT -ACGGAAAATGGCTTGGAGGTCAGT -ACGGAAAATGGCTTGGAGGAAGGT -ACGGAAAATGGCTTGGAGAACCGT -ACGGAAAATGGCTTGGAGTTGTGC -ACGGAAAATGGCTTGGAGCTAAGC -ACGGAAAATGGCTTGGAGACTAGC -ACGGAAAATGGCTTGGAGAGATGC -ACGGAAAATGGCTTGGAGTGAAGG -ACGGAAAATGGCTTGGAGCAATGG -ACGGAAAATGGCTTGGAGATGAGG -ACGGAAAATGGCTTGGAGAATGGG -ACGGAAAATGGCTTGGAGTCCTGA -ACGGAAAATGGCTTGGAGTAGCGA -ACGGAAAATGGCTTGGAGCACAGA -ACGGAAAATGGCTTGGAGGCAAGA -ACGGAAAATGGCTTGGAGGGTTGA -ACGGAAAATGGCTTGGAGTCCGAT -ACGGAAAATGGCTTGGAGTGGCAT -ACGGAAAATGGCTTGGAGCGAGAT -ACGGAAAATGGCTTGGAGTACCAC -ACGGAAAATGGCTTGGAGCAGAAC -ACGGAAAATGGCTTGGAGGTCTAC -ACGGAAAATGGCTTGGAGACGTAC -ACGGAAAATGGCTTGGAGAGTGAC -ACGGAAAATGGCTTGGAGCTGTAG -ACGGAAAATGGCTTGGAGCCTAAG -ACGGAAAATGGCTTGGAGGTTCAG -ACGGAAAATGGCTTGGAGGCATAG -ACGGAAAATGGCTTGGAGGACAAG -ACGGAAAATGGCTTGGAGAAGCAG -ACGGAAAATGGCTTGGAGCGTCAA -ACGGAAAATGGCTTGGAGGCTGAA -ACGGAAAATGGCTTGGAGAGTACG -ACGGAAAATGGCTTGGAGATCCGA -ACGGAAAATGGCTTGGAGATGGGA -ACGGAAAATGGCTTGGAGGTGCAA -ACGGAAAATGGCTTGGAGGAGGAA -ACGGAAAATGGCTTGGAGCAGGTA -ACGGAAAATGGCTTGGAGGACTCT -ACGGAAAATGGCTTGGAGAGTCCT -ACGGAAAATGGCTTGGAGTAAGCC -ACGGAAAATGGCTTGGAGATAGCC -ACGGAAAATGGCTTGGAGTAACCG -ACGGAAAATGGCTTGGAGATGCCA -ACGGAAAATGGCCTGAGAGGAAAC -ACGGAAAATGGCCTGAGAAACACC -ACGGAAAATGGCCTGAGAATCGAG -ACGGAAAATGGCCTGAGACTCCTT -ACGGAAAATGGCCTGAGACCTGTT -ACGGAAAATGGCCTGAGACGGTTT -ACGGAAAATGGCCTGAGAGTGGTT -ACGGAAAATGGCCTGAGAGCCTTT -ACGGAAAATGGCCTGAGAGGTCTT -ACGGAAAATGGCCTGAGAACGCTT -ACGGAAAATGGCCTGAGAAGCGTT -ACGGAAAATGGCCTGAGATTCGTC -ACGGAAAATGGCCTGAGATCTCTC -ACGGAAAATGGCCTGAGATGGATC -ACGGAAAATGGCCTGAGACACTTC -ACGGAAAATGGCCTGAGAGTACTC -ACGGAAAATGGCCTGAGAGATGTC -ACGGAAAATGGCCTGAGAACAGTC -ACGGAAAATGGCCTGAGATTGCTG -ACGGAAAATGGCCTGAGATCCATG -ACGGAAAATGGCCTGAGATGTGTG -ACGGAAAATGGCCTGAGACTAGTG -ACGGAAAATGGCCTGAGACATCTG -ACGGAAAATGGCCTGAGAGAGTTG -ACGGAAAATGGCCTGAGAAGACTG -ACGGAAAATGGCCTGAGATCGGTA -ACGGAAAATGGCCTGAGATGCCTA -ACGGAAAATGGCCTGAGACCACTA -ACGGAAAATGGCCTGAGAGGAGTA -ACGGAAAATGGCCTGAGATCGTCT -ACGGAAAATGGCCTGAGATGCACT -ACGGAAAATGGCCTGAGACTGACT -ACGGAAAATGGCCTGAGACAACCT -ACGGAAAATGGCCTGAGAGCTACT -ACGGAAAATGGCCTGAGAGGATCT -ACGGAAAATGGCCTGAGAAAGGCT -ACGGAAAATGGCCTGAGATCAACC -ACGGAAAATGGCCTGAGATGTTCC -ACGGAAAATGGCCTGAGAATTCCC -ACGGAAAATGGCCTGAGATTCTCG -ACGGAAAATGGCCTGAGATAGACG -ACGGAAAATGGCCTGAGAGTAACG -ACGGAAAATGGCCTGAGAACTTCG -ACGGAAAATGGCCTGAGATACGCA -ACGGAAAATGGCCTGAGACTTGCA -ACGGAAAATGGCCTGAGACGAACA -ACGGAAAATGGCCTGAGACAGTCA -ACGGAAAATGGCCTGAGAGATCCA -ACGGAAAATGGCCTGAGAACGACA -ACGGAAAATGGCCTGAGAAGCTCA -ACGGAAAATGGCCTGAGATCACGT -ACGGAAAATGGCCTGAGACGTAGT -ACGGAAAATGGCCTGAGAGTCAGT -ACGGAAAATGGCCTGAGAGAAGGT -ACGGAAAATGGCCTGAGAAACCGT -ACGGAAAATGGCCTGAGATTGTGC -ACGGAAAATGGCCTGAGACTAAGC -ACGGAAAATGGCCTGAGAACTAGC -ACGGAAAATGGCCTGAGAAGATGC -ACGGAAAATGGCCTGAGATGAAGG -ACGGAAAATGGCCTGAGACAATGG -ACGGAAAATGGCCTGAGAATGAGG -ACGGAAAATGGCCTGAGAAATGGG -ACGGAAAATGGCCTGAGATCCTGA -ACGGAAAATGGCCTGAGATAGCGA -ACGGAAAATGGCCTGAGACACAGA -ACGGAAAATGGCCTGAGAGCAAGA -ACGGAAAATGGCCTGAGAGGTTGA -ACGGAAAATGGCCTGAGATCCGAT -ACGGAAAATGGCCTGAGATGGCAT -ACGGAAAATGGCCTGAGACGAGAT -ACGGAAAATGGCCTGAGATACCAC -ACGGAAAATGGCCTGAGACAGAAC -ACGGAAAATGGCCTGAGAGTCTAC -ACGGAAAATGGCCTGAGAACGTAC -ACGGAAAATGGCCTGAGAAGTGAC -ACGGAAAATGGCCTGAGACTGTAG -ACGGAAAATGGCCTGAGACCTAAG -ACGGAAAATGGCCTGAGAGTTCAG -ACGGAAAATGGCCTGAGAGCATAG -ACGGAAAATGGCCTGAGAGACAAG -ACGGAAAATGGCCTGAGAAAGCAG -ACGGAAAATGGCCTGAGACGTCAA -ACGGAAAATGGCCTGAGAGCTGAA -ACGGAAAATGGCCTGAGAAGTACG -ACGGAAAATGGCCTGAGAATCCGA -ACGGAAAATGGCCTGAGAATGGGA -ACGGAAAATGGCCTGAGAGTGCAA -ACGGAAAATGGCCTGAGAGAGGAA -ACGGAAAATGGCCTGAGACAGGTA -ACGGAAAATGGCCTGAGAGACTCT -ACGGAAAATGGCCTGAGAAGTCCT -ACGGAAAATGGCCTGAGATAAGCC -ACGGAAAATGGCCTGAGAATAGCC -ACGGAAAATGGCCTGAGATAACCG -ACGGAAAATGGCCTGAGAATGCCA -ACGGAAAATGGCGTATCGGGAAAC -ACGGAAAATGGCGTATCGAACACC -ACGGAAAATGGCGTATCGATCGAG -ACGGAAAATGGCGTATCGCTCCTT -ACGGAAAATGGCGTATCGCCTGTT -ACGGAAAATGGCGTATCGCGGTTT -ACGGAAAATGGCGTATCGGTGGTT -ACGGAAAATGGCGTATCGGCCTTT -ACGGAAAATGGCGTATCGGGTCTT -ACGGAAAATGGCGTATCGACGCTT -ACGGAAAATGGCGTATCGAGCGTT -ACGGAAAATGGCGTATCGTTCGTC -ACGGAAAATGGCGTATCGTCTCTC -ACGGAAAATGGCGTATCGTGGATC -ACGGAAAATGGCGTATCGCACTTC -ACGGAAAATGGCGTATCGGTACTC -ACGGAAAATGGCGTATCGGATGTC -ACGGAAAATGGCGTATCGACAGTC -ACGGAAAATGGCGTATCGTTGCTG -ACGGAAAATGGCGTATCGTCCATG -ACGGAAAATGGCGTATCGTGTGTG -ACGGAAAATGGCGTATCGCTAGTG -ACGGAAAATGGCGTATCGCATCTG -ACGGAAAATGGCGTATCGGAGTTG -ACGGAAAATGGCGTATCGAGACTG -ACGGAAAATGGCGTATCGTCGGTA -ACGGAAAATGGCGTATCGTGCCTA -ACGGAAAATGGCGTATCGCCACTA -ACGGAAAATGGCGTATCGGGAGTA -ACGGAAAATGGCGTATCGTCGTCT -ACGGAAAATGGCGTATCGTGCACT -ACGGAAAATGGCGTATCGCTGACT -ACGGAAAATGGCGTATCGCAACCT -ACGGAAAATGGCGTATCGGCTACT -ACGGAAAATGGCGTATCGGGATCT -ACGGAAAATGGCGTATCGAAGGCT -ACGGAAAATGGCGTATCGTCAACC -ACGGAAAATGGCGTATCGTGTTCC -ACGGAAAATGGCGTATCGATTCCC -ACGGAAAATGGCGTATCGTTCTCG -ACGGAAAATGGCGTATCGTAGACG -ACGGAAAATGGCGTATCGGTAACG -ACGGAAAATGGCGTATCGACTTCG -ACGGAAAATGGCGTATCGTACGCA -ACGGAAAATGGCGTATCGCTTGCA -ACGGAAAATGGCGTATCGCGAACA -ACGGAAAATGGCGTATCGCAGTCA -ACGGAAAATGGCGTATCGGATCCA -ACGGAAAATGGCGTATCGACGACA -ACGGAAAATGGCGTATCGAGCTCA -ACGGAAAATGGCGTATCGTCACGT -ACGGAAAATGGCGTATCGCGTAGT -ACGGAAAATGGCGTATCGGTCAGT -ACGGAAAATGGCGTATCGGAAGGT -ACGGAAAATGGCGTATCGAACCGT -ACGGAAAATGGCGTATCGTTGTGC -ACGGAAAATGGCGTATCGCTAAGC -ACGGAAAATGGCGTATCGACTAGC -ACGGAAAATGGCGTATCGAGATGC -ACGGAAAATGGCGTATCGTGAAGG -ACGGAAAATGGCGTATCGCAATGG -ACGGAAAATGGCGTATCGATGAGG -ACGGAAAATGGCGTATCGAATGGG -ACGGAAAATGGCGTATCGTCCTGA -ACGGAAAATGGCGTATCGTAGCGA -ACGGAAAATGGCGTATCGCACAGA -ACGGAAAATGGCGTATCGGCAAGA -ACGGAAAATGGCGTATCGGGTTGA -ACGGAAAATGGCGTATCGTCCGAT -ACGGAAAATGGCGTATCGTGGCAT -ACGGAAAATGGCGTATCGCGAGAT -ACGGAAAATGGCGTATCGTACCAC -ACGGAAAATGGCGTATCGCAGAAC -ACGGAAAATGGCGTATCGGTCTAC -ACGGAAAATGGCGTATCGACGTAC -ACGGAAAATGGCGTATCGAGTGAC -ACGGAAAATGGCGTATCGCTGTAG -ACGGAAAATGGCGTATCGCCTAAG -ACGGAAAATGGCGTATCGGTTCAG -ACGGAAAATGGCGTATCGGCATAG -ACGGAAAATGGCGTATCGGACAAG -ACGGAAAATGGCGTATCGAAGCAG -ACGGAAAATGGCGTATCGCGTCAA -ACGGAAAATGGCGTATCGGCTGAA -ACGGAAAATGGCGTATCGAGTACG -ACGGAAAATGGCGTATCGATCCGA -ACGGAAAATGGCGTATCGATGGGA -ACGGAAAATGGCGTATCGGTGCAA -ACGGAAAATGGCGTATCGGAGGAA -ACGGAAAATGGCGTATCGCAGGTA -ACGGAAAATGGCGTATCGGACTCT -ACGGAAAATGGCGTATCGAGTCCT -ACGGAAAATGGCGTATCGTAAGCC -ACGGAAAATGGCGTATCGATAGCC -ACGGAAAATGGCGTATCGTAACCG -ACGGAAAATGGCGTATCGATGCCA -ACGGAAAATGGCCTATGCGGAAAC -ACGGAAAATGGCCTATGCAACACC -ACGGAAAATGGCCTATGCATCGAG -ACGGAAAATGGCCTATGCCTCCTT -ACGGAAAATGGCCTATGCCCTGTT -ACGGAAAATGGCCTATGCCGGTTT -ACGGAAAATGGCCTATGCGTGGTT -ACGGAAAATGGCCTATGCGCCTTT -ACGGAAAATGGCCTATGCGGTCTT -ACGGAAAATGGCCTATGCACGCTT -ACGGAAAATGGCCTATGCAGCGTT -ACGGAAAATGGCCTATGCTTCGTC -ACGGAAAATGGCCTATGCTCTCTC -ACGGAAAATGGCCTATGCTGGATC -ACGGAAAATGGCCTATGCCACTTC -ACGGAAAATGGCCTATGCGTACTC -ACGGAAAATGGCCTATGCGATGTC -ACGGAAAATGGCCTATGCACAGTC -ACGGAAAATGGCCTATGCTTGCTG -ACGGAAAATGGCCTATGCTCCATG -ACGGAAAATGGCCTATGCTGTGTG -ACGGAAAATGGCCTATGCCTAGTG -ACGGAAAATGGCCTATGCCATCTG -ACGGAAAATGGCCTATGCGAGTTG -ACGGAAAATGGCCTATGCAGACTG -ACGGAAAATGGCCTATGCTCGGTA -ACGGAAAATGGCCTATGCTGCCTA -ACGGAAAATGGCCTATGCCCACTA -ACGGAAAATGGCCTATGCGGAGTA -ACGGAAAATGGCCTATGCTCGTCT -ACGGAAAATGGCCTATGCTGCACT -ACGGAAAATGGCCTATGCCTGACT -ACGGAAAATGGCCTATGCCAACCT -ACGGAAAATGGCCTATGCGCTACT -ACGGAAAATGGCCTATGCGGATCT -ACGGAAAATGGCCTATGCAAGGCT -ACGGAAAATGGCCTATGCTCAACC -ACGGAAAATGGCCTATGCTGTTCC -ACGGAAAATGGCCTATGCATTCCC -ACGGAAAATGGCCTATGCTTCTCG -ACGGAAAATGGCCTATGCTAGACG -ACGGAAAATGGCCTATGCGTAACG -ACGGAAAATGGCCTATGCACTTCG -ACGGAAAATGGCCTATGCTACGCA -ACGGAAAATGGCCTATGCCTTGCA -ACGGAAAATGGCCTATGCCGAACA -ACGGAAAATGGCCTATGCCAGTCA -ACGGAAAATGGCCTATGCGATCCA -ACGGAAAATGGCCTATGCACGACA -ACGGAAAATGGCCTATGCAGCTCA -ACGGAAAATGGCCTATGCTCACGT -ACGGAAAATGGCCTATGCCGTAGT -ACGGAAAATGGCCTATGCGTCAGT -ACGGAAAATGGCCTATGCGAAGGT -ACGGAAAATGGCCTATGCAACCGT -ACGGAAAATGGCCTATGCTTGTGC -ACGGAAAATGGCCTATGCCTAAGC -ACGGAAAATGGCCTATGCACTAGC -ACGGAAAATGGCCTATGCAGATGC -ACGGAAAATGGCCTATGCTGAAGG -ACGGAAAATGGCCTATGCCAATGG -ACGGAAAATGGCCTATGCATGAGG -ACGGAAAATGGCCTATGCAATGGG -ACGGAAAATGGCCTATGCTCCTGA -ACGGAAAATGGCCTATGCTAGCGA -ACGGAAAATGGCCTATGCCACAGA -ACGGAAAATGGCCTATGCGCAAGA -ACGGAAAATGGCCTATGCGGTTGA -ACGGAAAATGGCCTATGCTCCGAT -ACGGAAAATGGCCTATGCTGGCAT -ACGGAAAATGGCCTATGCCGAGAT -ACGGAAAATGGCCTATGCTACCAC -ACGGAAAATGGCCTATGCCAGAAC -ACGGAAAATGGCCTATGCGTCTAC -ACGGAAAATGGCCTATGCACGTAC -ACGGAAAATGGCCTATGCAGTGAC -ACGGAAAATGGCCTATGCCTGTAG -ACGGAAAATGGCCTATGCCCTAAG -ACGGAAAATGGCCTATGCGTTCAG -ACGGAAAATGGCCTATGCGCATAG -ACGGAAAATGGCCTATGCGACAAG -ACGGAAAATGGCCTATGCAAGCAG -ACGGAAAATGGCCTATGCCGTCAA -ACGGAAAATGGCCTATGCGCTGAA -ACGGAAAATGGCCTATGCAGTACG -ACGGAAAATGGCCTATGCATCCGA -ACGGAAAATGGCCTATGCATGGGA -ACGGAAAATGGCCTATGCGTGCAA -ACGGAAAATGGCCTATGCGAGGAA -ACGGAAAATGGCCTATGCCAGGTA -ACGGAAAATGGCCTATGCGACTCT -ACGGAAAATGGCCTATGCAGTCCT -ACGGAAAATGGCCTATGCTAAGCC -ACGGAAAATGGCCTATGCATAGCC -ACGGAAAATGGCCTATGCTAACCG -ACGGAAAATGGCCTATGCATGCCA -ACGGAAAATGGCCTACCAGGAAAC -ACGGAAAATGGCCTACCAAACACC -ACGGAAAATGGCCTACCAATCGAG -ACGGAAAATGGCCTACCACTCCTT -ACGGAAAATGGCCTACCACCTGTT -ACGGAAAATGGCCTACCACGGTTT -ACGGAAAATGGCCTACCAGTGGTT -ACGGAAAATGGCCTACCAGCCTTT -ACGGAAAATGGCCTACCAGGTCTT -ACGGAAAATGGCCTACCAACGCTT -ACGGAAAATGGCCTACCAAGCGTT -ACGGAAAATGGCCTACCATTCGTC -ACGGAAAATGGCCTACCATCTCTC -ACGGAAAATGGCCTACCATGGATC -ACGGAAAATGGCCTACCACACTTC -ACGGAAAATGGCCTACCAGTACTC -ACGGAAAATGGCCTACCAGATGTC -ACGGAAAATGGCCTACCAACAGTC -ACGGAAAATGGCCTACCATTGCTG -ACGGAAAATGGCCTACCATCCATG -ACGGAAAATGGCCTACCATGTGTG -ACGGAAAATGGCCTACCACTAGTG -ACGGAAAATGGCCTACCACATCTG -ACGGAAAATGGCCTACCAGAGTTG -ACGGAAAATGGCCTACCAAGACTG -ACGGAAAATGGCCTACCATCGGTA -ACGGAAAATGGCCTACCATGCCTA -ACGGAAAATGGCCTACCACCACTA -ACGGAAAATGGCCTACCAGGAGTA -ACGGAAAATGGCCTACCATCGTCT -ACGGAAAATGGCCTACCATGCACT -ACGGAAAATGGCCTACCACTGACT -ACGGAAAATGGCCTACCACAACCT -ACGGAAAATGGCCTACCAGCTACT -ACGGAAAATGGCCTACCAGGATCT -ACGGAAAATGGCCTACCAAAGGCT -ACGGAAAATGGCCTACCATCAACC -ACGGAAAATGGCCTACCATGTTCC -ACGGAAAATGGCCTACCAATTCCC -ACGGAAAATGGCCTACCATTCTCG -ACGGAAAATGGCCTACCATAGACG -ACGGAAAATGGCCTACCAGTAACG -ACGGAAAATGGCCTACCAACTTCG -ACGGAAAATGGCCTACCATACGCA -ACGGAAAATGGCCTACCACTTGCA -ACGGAAAATGGCCTACCACGAACA -ACGGAAAATGGCCTACCACAGTCA -ACGGAAAATGGCCTACCAGATCCA -ACGGAAAATGGCCTACCAACGACA -ACGGAAAATGGCCTACCAAGCTCA -ACGGAAAATGGCCTACCATCACGT -ACGGAAAATGGCCTACCACGTAGT -ACGGAAAATGGCCTACCAGTCAGT -ACGGAAAATGGCCTACCAGAAGGT -ACGGAAAATGGCCTACCAAACCGT -ACGGAAAATGGCCTACCATTGTGC -ACGGAAAATGGCCTACCACTAAGC -ACGGAAAATGGCCTACCAACTAGC -ACGGAAAATGGCCTACCAAGATGC -ACGGAAAATGGCCTACCATGAAGG -ACGGAAAATGGCCTACCACAATGG -ACGGAAAATGGCCTACCAATGAGG -ACGGAAAATGGCCTACCAAATGGG -ACGGAAAATGGCCTACCATCCTGA -ACGGAAAATGGCCTACCATAGCGA -ACGGAAAATGGCCTACCACACAGA -ACGGAAAATGGCCTACCAGCAAGA -ACGGAAAATGGCCTACCAGGTTGA -ACGGAAAATGGCCTACCATCCGAT -ACGGAAAATGGCCTACCATGGCAT -ACGGAAAATGGCCTACCACGAGAT -ACGGAAAATGGCCTACCATACCAC -ACGGAAAATGGCCTACCACAGAAC -ACGGAAAATGGCCTACCAGTCTAC -ACGGAAAATGGCCTACCAACGTAC -ACGGAAAATGGCCTACCAAGTGAC -ACGGAAAATGGCCTACCACTGTAG -ACGGAAAATGGCCTACCACCTAAG -ACGGAAAATGGCCTACCAGTTCAG -ACGGAAAATGGCCTACCAGCATAG -ACGGAAAATGGCCTACCAGACAAG -ACGGAAAATGGCCTACCAAAGCAG -ACGGAAAATGGCCTACCACGTCAA -ACGGAAAATGGCCTACCAGCTGAA -ACGGAAAATGGCCTACCAAGTACG -ACGGAAAATGGCCTACCAATCCGA -ACGGAAAATGGCCTACCAATGGGA -ACGGAAAATGGCCTACCAGTGCAA -ACGGAAAATGGCCTACCAGAGGAA -ACGGAAAATGGCCTACCACAGGTA -ACGGAAAATGGCCTACCAGACTCT -ACGGAAAATGGCCTACCAAGTCCT -ACGGAAAATGGCCTACCATAAGCC -ACGGAAAATGGCCTACCAATAGCC -ACGGAAAATGGCCTACCATAACCG -ACGGAAAATGGCCTACCAATGCCA -ACGGAAAATGGCGTAGGAGGAAAC -ACGGAAAATGGCGTAGGAAACACC -ACGGAAAATGGCGTAGGAATCGAG -ACGGAAAATGGCGTAGGACTCCTT -ACGGAAAATGGCGTAGGACCTGTT -ACGGAAAATGGCGTAGGACGGTTT -ACGGAAAATGGCGTAGGAGTGGTT -ACGGAAAATGGCGTAGGAGCCTTT -ACGGAAAATGGCGTAGGAGGTCTT -ACGGAAAATGGCGTAGGAACGCTT -ACGGAAAATGGCGTAGGAAGCGTT -ACGGAAAATGGCGTAGGATTCGTC -ACGGAAAATGGCGTAGGATCTCTC -ACGGAAAATGGCGTAGGATGGATC -ACGGAAAATGGCGTAGGACACTTC -ACGGAAAATGGCGTAGGAGTACTC -ACGGAAAATGGCGTAGGAGATGTC -ACGGAAAATGGCGTAGGAACAGTC -ACGGAAAATGGCGTAGGATTGCTG -ACGGAAAATGGCGTAGGATCCATG -ACGGAAAATGGCGTAGGATGTGTG -ACGGAAAATGGCGTAGGACTAGTG -ACGGAAAATGGCGTAGGACATCTG -ACGGAAAATGGCGTAGGAGAGTTG -ACGGAAAATGGCGTAGGAAGACTG -ACGGAAAATGGCGTAGGATCGGTA -ACGGAAAATGGCGTAGGATGCCTA -ACGGAAAATGGCGTAGGACCACTA -ACGGAAAATGGCGTAGGAGGAGTA -ACGGAAAATGGCGTAGGATCGTCT -ACGGAAAATGGCGTAGGATGCACT -ACGGAAAATGGCGTAGGACTGACT -ACGGAAAATGGCGTAGGACAACCT -ACGGAAAATGGCGTAGGAGCTACT -ACGGAAAATGGCGTAGGAGGATCT -ACGGAAAATGGCGTAGGAAAGGCT -ACGGAAAATGGCGTAGGATCAACC -ACGGAAAATGGCGTAGGATGTTCC -ACGGAAAATGGCGTAGGAATTCCC -ACGGAAAATGGCGTAGGATTCTCG -ACGGAAAATGGCGTAGGATAGACG -ACGGAAAATGGCGTAGGAGTAACG -ACGGAAAATGGCGTAGGAACTTCG -ACGGAAAATGGCGTAGGATACGCA -ACGGAAAATGGCGTAGGACTTGCA -ACGGAAAATGGCGTAGGACGAACA -ACGGAAAATGGCGTAGGACAGTCA -ACGGAAAATGGCGTAGGAGATCCA -ACGGAAAATGGCGTAGGAACGACA -ACGGAAAATGGCGTAGGAAGCTCA -ACGGAAAATGGCGTAGGATCACGT -ACGGAAAATGGCGTAGGACGTAGT -ACGGAAAATGGCGTAGGAGTCAGT -ACGGAAAATGGCGTAGGAGAAGGT -ACGGAAAATGGCGTAGGAAACCGT -ACGGAAAATGGCGTAGGATTGTGC -ACGGAAAATGGCGTAGGACTAAGC -ACGGAAAATGGCGTAGGAACTAGC -ACGGAAAATGGCGTAGGAAGATGC -ACGGAAAATGGCGTAGGATGAAGG -ACGGAAAATGGCGTAGGACAATGG -ACGGAAAATGGCGTAGGAATGAGG -ACGGAAAATGGCGTAGGAAATGGG -ACGGAAAATGGCGTAGGATCCTGA -ACGGAAAATGGCGTAGGATAGCGA -ACGGAAAATGGCGTAGGACACAGA -ACGGAAAATGGCGTAGGAGCAAGA -ACGGAAAATGGCGTAGGAGGTTGA -ACGGAAAATGGCGTAGGATCCGAT -ACGGAAAATGGCGTAGGATGGCAT -ACGGAAAATGGCGTAGGACGAGAT -ACGGAAAATGGCGTAGGATACCAC -ACGGAAAATGGCGTAGGACAGAAC -ACGGAAAATGGCGTAGGAGTCTAC -ACGGAAAATGGCGTAGGAACGTAC -ACGGAAAATGGCGTAGGAAGTGAC -ACGGAAAATGGCGTAGGACTGTAG -ACGGAAAATGGCGTAGGACCTAAG -ACGGAAAATGGCGTAGGAGTTCAG -ACGGAAAATGGCGTAGGAGCATAG -ACGGAAAATGGCGTAGGAGACAAG -ACGGAAAATGGCGTAGGAAAGCAG -ACGGAAAATGGCGTAGGACGTCAA -ACGGAAAATGGCGTAGGAGCTGAA -ACGGAAAATGGCGTAGGAAGTACG -ACGGAAAATGGCGTAGGAATCCGA -ACGGAAAATGGCGTAGGAATGGGA -ACGGAAAATGGCGTAGGAGTGCAA -ACGGAAAATGGCGTAGGAGAGGAA -ACGGAAAATGGCGTAGGACAGGTA -ACGGAAAATGGCGTAGGAGACTCT -ACGGAAAATGGCGTAGGAAGTCCT -ACGGAAAATGGCGTAGGATAAGCC -ACGGAAAATGGCGTAGGAATAGCC -ACGGAAAATGGCGTAGGATAACCG -ACGGAAAATGGCGTAGGAATGCCA -ACGGAAAATGGCTCTTCGGGAAAC -ACGGAAAATGGCTCTTCGAACACC -ACGGAAAATGGCTCTTCGATCGAG -ACGGAAAATGGCTCTTCGCTCCTT -ACGGAAAATGGCTCTTCGCCTGTT -ACGGAAAATGGCTCTTCGCGGTTT -ACGGAAAATGGCTCTTCGGTGGTT -ACGGAAAATGGCTCTTCGGCCTTT -ACGGAAAATGGCTCTTCGGGTCTT -ACGGAAAATGGCTCTTCGACGCTT -ACGGAAAATGGCTCTTCGAGCGTT -ACGGAAAATGGCTCTTCGTTCGTC -ACGGAAAATGGCTCTTCGTCTCTC -ACGGAAAATGGCTCTTCGTGGATC -ACGGAAAATGGCTCTTCGCACTTC -ACGGAAAATGGCTCTTCGGTACTC -ACGGAAAATGGCTCTTCGGATGTC -ACGGAAAATGGCTCTTCGACAGTC -ACGGAAAATGGCTCTTCGTTGCTG -ACGGAAAATGGCTCTTCGTCCATG -ACGGAAAATGGCTCTTCGTGTGTG -ACGGAAAATGGCTCTTCGCTAGTG -ACGGAAAATGGCTCTTCGCATCTG -ACGGAAAATGGCTCTTCGGAGTTG -ACGGAAAATGGCTCTTCGAGACTG -ACGGAAAATGGCTCTTCGTCGGTA -ACGGAAAATGGCTCTTCGTGCCTA -ACGGAAAATGGCTCTTCGCCACTA -ACGGAAAATGGCTCTTCGGGAGTA -ACGGAAAATGGCTCTTCGTCGTCT -ACGGAAAATGGCTCTTCGTGCACT -ACGGAAAATGGCTCTTCGCTGACT -ACGGAAAATGGCTCTTCGCAACCT -ACGGAAAATGGCTCTTCGGCTACT -ACGGAAAATGGCTCTTCGGGATCT -ACGGAAAATGGCTCTTCGAAGGCT -ACGGAAAATGGCTCTTCGTCAACC -ACGGAAAATGGCTCTTCGTGTTCC -ACGGAAAATGGCTCTTCGATTCCC -ACGGAAAATGGCTCTTCGTTCTCG -ACGGAAAATGGCTCTTCGTAGACG -ACGGAAAATGGCTCTTCGGTAACG -ACGGAAAATGGCTCTTCGACTTCG -ACGGAAAATGGCTCTTCGTACGCA -ACGGAAAATGGCTCTTCGCTTGCA -ACGGAAAATGGCTCTTCGCGAACA -ACGGAAAATGGCTCTTCGCAGTCA -ACGGAAAATGGCTCTTCGGATCCA -ACGGAAAATGGCTCTTCGACGACA -ACGGAAAATGGCTCTTCGAGCTCA -ACGGAAAATGGCTCTTCGTCACGT -ACGGAAAATGGCTCTTCGCGTAGT -ACGGAAAATGGCTCTTCGGTCAGT -ACGGAAAATGGCTCTTCGGAAGGT -ACGGAAAATGGCTCTTCGAACCGT -ACGGAAAATGGCTCTTCGTTGTGC -ACGGAAAATGGCTCTTCGCTAAGC -ACGGAAAATGGCTCTTCGACTAGC -ACGGAAAATGGCTCTTCGAGATGC -ACGGAAAATGGCTCTTCGTGAAGG -ACGGAAAATGGCTCTTCGCAATGG -ACGGAAAATGGCTCTTCGATGAGG -ACGGAAAATGGCTCTTCGAATGGG -ACGGAAAATGGCTCTTCGTCCTGA -ACGGAAAATGGCTCTTCGTAGCGA -ACGGAAAATGGCTCTTCGCACAGA -ACGGAAAATGGCTCTTCGGCAAGA -ACGGAAAATGGCTCTTCGGGTTGA -ACGGAAAATGGCTCTTCGTCCGAT -ACGGAAAATGGCTCTTCGTGGCAT -ACGGAAAATGGCTCTTCGCGAGAT -ACGGAAAATGGCTCTTCGTACCAC -ACGGAAAATGGCTCTTCGCAGAAC -ACGGAAAATGGCTCTTCGGTCTAC -ACGGAAAATGGCTCTTCGACGTAC -ACGGAAAATGGCTCTTCGAGTGAC -ACGGAAAATGGCTCTTCGCTGTAG -ACGGAAAATGGCTCTTCGCCTAAG -ACGGAAAATGGCTCTTCGGTTCAG -ACGGAAAATGGCTCTTCGGCATAG -ACGGAAAATGGCTCTTCGGACAAG -ACGGAAAATGGCTCTTCGAAGCAG -ACGGAAAATGGCTCTTCGCGTCAA -ACGGAAAATGGCTCTTCGGCTGAA -ACGGAAAATGGCTCTTCGAGTACG -ACGGAAAATGGCTCTTCGATCCGA -ACGGAAAATGGCTCTTCGATGGGA -ACGGAAAATGGCTCTTCGGTGCAA -ACGGAAAATGGCTCTTCGGAGGAA -ACGGAAAATGGCTCTTCGCAGGTA -ACGGAAAATGGCTCTTCGGACTCT -ACGGAAAATGGCTCTTCGAGTCCT -ACGGAAAATGGCTCTTCGTAAGCC -ACGGAAAATGGCTCTTCGATAGCC -ACGGAAAATGGCTCTTCGTAACCG -ACGGAAAATGGCTCTTCGATGCCA -ACGGAAAATGGCACTTGCGGAAAC -ACGGAAAATGGCACTTGCAACACC -ACGGAAAATGGCACTTGCATCGAG -ACGGAAAATGGCACTTGCCTCCTT -ACGGAAAATGGCACTTGCCCTGTT -ACGGAAAATGGCACTTGCCGGTTT -ACGGAAAATGGCACTTGCGTGGTT -ACGGAAAATGGCACTTGCGCCTTT -ACGGAAAATGGCACTTGCGGTCTT -ACGGAAAATGGCACTTGCACGCTT -ACGGAAAATGGCACTTGCAGCGTT -ACGGAAAATGGCACTTGCTTCGTC -ACGGAAAATGGCACTTGCTCTCTC -ACGGAAAATGGCACTTGCTGGATC -ACGGAAAATGGCACTTGCCACTTC -ACGGAAAATGGCACTTGCGTACTC -ACGGAAAATGGCACTTGCGATGTC -ACGGAAAATGGCACTTGCACAGTC -ACGGAAAATGGCACTTGCTTGCTG -ACGGAAAATGGCACTTGCTCCATG -ACGGAAAATGGCACTTGCTGTGTG -ACGGAAAATGGCACTTGCCTAGTG -ACGGAAAATGGCACTTGCCATCTG -ACGGAAAATGGCACTTGCGAGTTG -ACGGAAAATGGCACTTGCAGACTG -ACGGAAAATGGCACTTGCTCGGTA -ACGGAAAATGGCACTTGCTGCCTA -ACGGAAAATGGCACTTGCCCACTA -ACGGAAAATGGCACTTGCGGAGTA -ACGGAAAATGGCACTTGCTCGTCT -ACGGAAAATGGCACTTGCTGCACT -ACGGAAAATGGCACTTGCCTGACT -ACGGAAAATGGCACTTGCCAACCT -ACGGAAAATGGCACTTGCGCTACT -ACGGAAAATGGCACTTGCGGATCT -ACGGAAAATGGCACTTGCAAGGCT -ACGGAAAATGGCACTTGCTCAACC -ACGGAAAATGGCACTTGCTGTTCC -ACGGAAAATGGCACTTGCATTCCC -ACGGAAAATGGCACTTGCTTCTCG -ACGGAAAATGGCACTTGCTAGACG -ACGGAAAATGGCACTTGCGTAACG -ACGGAAAATGGCACTTGCACTTCG -ACGGAAAATGGCACTTGCTACGCA -ACGGAAAATGGCACTTGCCTTGCA -ACGGAAAATGGCACTTGCCGAACA -ACGGAAAATGGCACTTGCCAGTCA -ACGGAAAATGGCACTTGCGATCCA -ACGGAAAATGGCACTTGCACGACA -ACGGAAAATGGCACTTGCAGCTCA -ACGGAAAATGGCACTTGCTCACGT -ACGGAAAATGGCACTTGCCGTAGT -ACGGAAAATGGCACTTGCGTCAGT -ACGGAAAATGGCACTTGCGAAGGT -ACGGAAAATGGCACTTGCAACCGT -ACGGAAAATGGCACTTGCTTGTGC -ACGGAAAATGGCACTTGCCTAAGC -ACGGAAAATGGCACTTGCACTAGC -ACGGAAAATGGCACTTGCAGATGC -ACGGAAAATGGCACTTGCTGAAGG -ACGGAAAATGGCACTTGCCAATGG -ACGGAAAATGGCACTTGCATGAGG -ACGGAAAATGGCACTTGCAATGGG -ACGGAAAATGGCACTTGCTCCTGA -ACGGAAAATGGCACTTGCTAGCGA -ACGGAAAATGGCACTTGCCACAGA -ACGGAAAATGGCACTTGCGCAAGA -ACGGAAAATGGCACTTGCGGTTGA -ACGGAAAATGGCACTTGCTCCGAT -ACGGAAAATGGCACTTGCTGGCAT -ACGGAAAATGGCACTTGCCGAGAT -ACGGAAAATGGCACTTGCTACCAC -ACGGAAAATGGCACTTGCCAGAAC -ACGGAAAATGGCACTTGCGTCTAC -ACGGAAAATGGCACTTGCACGTAC -ACGGAAAATGGCACTTGCAGTGAC -ACGGAAAATGGCACTTGCCTGTAG -ACGGAAAATGGCACTTGCCCTAAG -ACGGAAAATGGCACTTGCGTTCAG -ACGGAAAATGGCACTTGCGCATAG -ACGGAAAATGGCACTTGCGACAAG -ACGGAAAATGGCACTTGCAAGCAG -ACGGAAAATGGCACTTGCCGTCAA -ACGGAAAATGGCACTTGCGCTGAA -ACGGAAAATGGCACTTGCAGTACG -ACGGAAAATGGCACTTGCATCCGA -ACGGAAAATGGCACTTGCATGGGA -ACGGAAAATGGCACTTGCGTGCAA -ACGGAAAATGGCACTTGCGAGGAA -ACGGAAAATGGCACTTGCCAGGTA -ACGGAAAATGGCACTTGCGACTCT -ACGGAAAATGGCACTTGCAGTCCT -ACGGAAAATGGCACTTGCTAAGCC -ACGGAAAATGGCACTTGCATAGCC -ACGGAAAATGGCACTTGCTAACCG -ACGGAAAATGGCACTTGCATGCCA -ACGGAAAATGGCACTCTGGGAAAC -ACGGAAAATGGCACTCTGAACACC -ACGGAAAATGGCACTCTGATCGAG -ACGGAAAATGGCACTCTGCTCCTT -ACGGAAAATGGCACTCTGCCTGTT -ACGGAAAATGGCACTCTGCGGTTT -ACGGAAAATGGCACTCTGGTGGTT -ACGGAAAATGGCACTCTGGCCTTT -ACGGAAAATGGCACTCTGGGTCTT -ACGGAAAATGGCACTCTGACGCTT -ACGGAAAATGGCACTCTGAGCGTT -ACGGAAAATGGCACTCTGTTCGTC -ACGGAAAATGGCACTCTGTCTCTC -ACGGAAAATGGCACTCTGTGGATC -ACGGAAAATGGCACTCTGCACTTC -ACGGAAAATGGCACTCTGGTACTC -ACGGAAAATGGCACTCTGGATGTC -ACGGAAAATGGCACTCTGACAGTC -ACGGAAAATGGCACTCTGTTGCTG -ACGGAAAATGGCACTCTGTCCATG -ACGGAAAATGGCACTCTGTGTGTG -ACGGAAAATGGCACTCTGCTAGTG -ACGGAAAATGGCACTCTGCATCTG -ACGGAAAATGGCACTCTGGAGTTG -ACGGAAAATGGCACTCTGAGACTG -ACGGAAAATGGCACTCTGTCGGTA -ACGGAAAATGGCACTCTGTGCCTA -ACGGAAAATGGCACTCTGCCACTA -ACGGAAAATGGCACTCTGGGAGTA -ACGGAAAATGGCACTCTGTCGTCT -ACGGAAAATGGCACTCTGTGCACT -ACGGAAAATGGCACTCTGCTGACT -ACGGAAAATGGCACTCTGCAACCT -ACGGAAAATGGCACTCTGGCTACT -ACGGAAAATGGCACTCTGGGATCT -ACGGAAAATGGCACTCTGAAGGCT -ACGGAAAATGGCACTCTGTCAACC -ACGGAAAATGGCACTCTGTGTTCC -ACGGAAAATGGCACTCTGATTCCC -ACGGAAAATGGCACTCTGTTCTCG -ACGGAAAATGGCACTCTGTAGACG -ACGGAAAATGGCACTCTGGTAACG -ACGGAAAATGGCACTCTGACTTCG -ACGGAAAATGGCACTCTGTACGCA -ACGGAAAATGGCACTCTGCTTGCA -ACGGAAAATGGCACTCTGCGAACA -ACGGAAAATGGCACTCTGCAGTCA -ACGGAAAATGGCACTCTGGATCCA -ACGGAAAATGGCACTCTGACGACA -ACGGAAAATGGCACTCTGAGCTCA -ACGGAAAATGGCACTCTGTCACGT -ACGGAAAATGGCACTCTGCGTAGT -ACGGAAAATGGCACTCTGGTCAGT -ACGGAAAATGGCACTCTGGAAGGT -ACGGAAAATGGCACTCTGAACCGT -ACGGAAAATGGCACTCTGTTGTGC -ACGGAAAATGGCACTCTGCTAAGC -ACGGAAAATGGCACTCTGACTAGC -ACGGAAAATGGCACTCTGAGATGC -ACGGAAAATGGCACTCTGTGAAGG -ACGGAAAATGGCACTCTGCAATGG -ACGGAAAATGGCACTCTGATGAGG -ACGGAAAATGGCACTCTGAATGGG -ACGGAAAATGGCACTCTGTCCTGA -ACGGAAAATGGCACTCTGTAGCGA -ACGGAAAATGGCACTCTGCACAGA -ACGGAAAATGGCACTCTGGCAAGA -ACGGAAAATGGCACTCTGGGTTGA -ACGGAAAATGGCACTCTGTCCGAT -ACGGAAAATGGCACTCTGTGGCAT -ACGGAAAATGGCACTCTGCGAGAT -ACGGAAAATGGCACTCTGTACCAC -ACGGAAAATGGCACTCTGCAGAAC -ACGGAAAATGGCACTCTGGTCTAC -ACGGAAAATGGCACTCTGACGTAC -ACGGAAAATGGCACTCTGAGTGAC -ACGGAAAATGGCACTCTGCTGTAG -ACGGAAAATGGCACTCTGCCTAAG -ACGGAAAATGGCACTCTGGTTCAG -ACGGAAAATGGCACTCTGGCATAG -ACGGAAAATGGCACTCTGGACAAG -ACGGAAAATGGCACTCTGAAGCAG -ACGGAAAATGGCACTCTGCGTCAA -ACGGAAAATGGCACTCTGGCTGAA -ACGGAAAATGGCACTCTGAGTACG -ACGGAAAATGGCACTCTGATCCGA -ACGGAAAATGGCACTCTGATGGGA -ACGGAAAATGGCACTCTGGTGCAA -ACGGAAAATGGCACTCTGGAGGAA -ACGGAAAATGGCACTCTGCAGGTA -ACGGAAAATGGCACTCTGGACTCT -ACGGAAAATGGCACTCTGAGTCCT -ACGGAAAATGGCACTCTGTAAGCC -ACGGAAAATGGCACTCTGATAGCC -ACGGAAAATGGCACTCTGTAACCG -ACGGAAAATGGCACTCTGATGCCA -ACGGAAAATGGCCCTCAAGGAAAC -ACGGAAAATGGCCCTCAAAACACC -ACGGAAAATGGCCCTCAAATCGAG -ACGGAAAATGGCCCTCAACTCCTT -ACGGAAAATGGCCCTCAACCTGTT -ACGGAAAATGGCCCTCAACGGTTT -ACGGAAAATGGCCCTCAAGTGGTT -ACGGAAAATGGCCCTCAAGCCTTT -ACGGAAAATGGCCCTCAAGGTCTT -ACGGAAAATGGCCCTCAAACGCTT -ACGGAAAATGGCCCTCAAAGCGTT -ACGGAAAATGGCCCTCAATTCGTC -ACGGAAAATGGCCCTCAATCTCTC -ACGGAAAATGGCCCTCAATGGATC -ACGGAAAATGGCCCTCAACACTTC -ACGGAAAATGGCCCTCAAGTACTC -ACGGAAAATGGCCCTCAAGATGTC -ACGGAAAATGGCCCTCAAACAGTC -ACGGAAAATGGCCCTCAATTGCTG -ACGGAAAATGGCCCTCAATCCATG -ACGGAAAATGGCCCTCAATGTGTG -ACGGAAAATGGCCCTCAACTAGTG -ACGGAAAATGGCCCTCAACATCTG -ACGGAAAATGGCCCTCAAGAGTTG -ACGGAAAATGGCCCTCAAAGACTG -ACGGAAAATGGCCCTCAATCGGTA -ACGGAAAATGGCCCTCAATGCCTA -ACGGAAAATGGCCCTCAACCACTA -ACGGAAAATGGCCCTCAAGGAGTA -ACGGAAAATGGCCCTCAATCGTCT -ACGGAAAATGGCCCTCAATGCACT -ACGGAAAATGGCCCTCAACTGACT -ACGGAAAATGGCCCTCAACAACCT -ACGGAAAATGGCCCTCAAGCTACT -ACGGAAAATGGCCCTCAAGGATCT -ACGGAAAATGGCCCTCAAAAGGCT -ACGGAAAATGGCCCTCAATCAACC -ACGGAAAATGGCCCTCAATGTTCC -ACGGAAAATGGCCCTCAAATTCCC -ACGGAAAATGGCCCTCAATTCTCG -ACGGAAAATGGCCCTCAATAGACG -ACGGAAAATGGCCCTCAAGTAACG -ACGGAAAATGGCCCTCAAACTTCG -ACGGAAAATGGCCCTCAATACGCA -ACGGAAAATGGCCCTCAACTTGCA -ACGGAAAATGGCCCTCAACGAACA -ACGGAAAATGGCCCTCAACAGTCA -ACGGAAAATGGCCCTCAAGATCCA -ACGGAAAATGGCCCTCAAACGACA -ACGGAAAATGGCCCTCAAAGCTCA -ACGGAAAATGGCCCTCAATCACGT -ACGGAAAATGGCCCTCAACGTAGT -ACGGAAAATGGCCCTCAAGTCAGT -ACGGAAAATGGCCCTCAAGAAGGT -ACGGAAAATGGCCCTCAAAACCGT -ACGGAAAATGGCCCTCAATTGTGC -ACGGAAAATGGCCCTCAACTAAGC -ACGGAAAATGGCCCTCAAACTAGC -ACGGAAAATGGCCCTCAAAGATGC -ACGGAAAATGGCCCTCAATGAAGG -ACGGAAAATGGCCCTCAACAATGG -ACGGAAAATGGCCCTCAAATGAGG -ACGGAAAATGGCCCTCAAAATGGG -ACGGAAAATGGCCCTCAATCCTGA -ACGGAAAATGGCCCTCAATAGCGA -ACGGAAAATGGCCCTCAACACAGA -ACGGAAAATGGCCCTCAAGCAAGA -ACGGAAAATGGCCCTCAAGGTTGA -ACGGAAAATGGCCCTCAATCCGAT -ACGGAAAATGGCCCTCAATGGCAT -ACGGAAAATGGCCCTCAACGAGAT -ACGGAAAATGGCCCTCAATACCAC -ACGGAAAATGGCCCTCAACAGAAC -ACGGAAAATGGCCCTCAAGTCTAC -ACGGAAAATGGCCCTCAAACGTAC -ACGGAAAATGGCCCTCAAAGTGAC -ACGGAAAATGGCCCTCAACTGTAG -ACGGAAAATGGCCCTCAACCTAAG -ACGGAAAATGGCCCTCAAGTTCAG -ACGGAAAATGGCCCTCAAGCATAG -ACGGAAAATGGCCCTCAAGACAAG -ACGGAAAATGGCCCTCAAAAGCAG -ACGGAAAATGGCCCTCAACGTCAA -ACGGAAAATGGCCCTCAAGCTGAA -ACGGAAAATGGCCCTCAAAGTACG -ACGGAAAATGGCCCTCAAATCCGA -ACGGAAAATGGCCCTCAAATGGGA -ACGGAAAATGGCCCTCAAGTGCAA -ACGGAAAATGGCCCTCAAGAGGAA -ACGGAAAATGGCCCTCAACAGGTA -ACGGAAAATGGCCCTCAAGACTCT -ACGGAAAATGGCCCTCAAAGTCCT -ACGGAAAATGGCCCTCAATAAGCC -ACGGAAAATGGCCCTCAAATAGCC -ACGGAAAATGGCCCTCAATAACCG -ACGGAAAATGGCCCTCAAATGCCA -ACGGAAAATGGCACTGCTGGAAAC -ACGGAAAATGGCACTGCTAACACC -ACGGAAAATGGCACTGCTATCGAG -ACGGAAAATGGCACTGCTCTCCTT -ACGGAAAATGGCACTGCTCCTGTT -ACGGAAAATGGCACTGCTCGGTTT -ACGGAAAATGGCACTGCTGTGGTT -ACGGAAAATGGCACTGCTGCCTTT -ACGGAAAATGGCACTGCTGGTCTT -ACGGAAAATGGCACTGCTACGCTT -ACGGAAAATGGCACTGCTAGCGTT -ACGGAAAATGGCACTGCTTTCGTC -ACGGAAAATGGCACTGCTTCTCTC -ACGGAAAATGGCACTGCTTGGATC -ACGGAAAATGGCACTGCTCACTTC -ACGGAAAATGGCACTGCTGTACTC -ACGGAAAATGGCACTGCTGATGTC -ACGGAAAATGGCACTGCTACAGTC -ACGGAAAATGGCACTGCTTTGCTG -ACGGAAAATGGCACTGCTTCCATG -ACGGAAAATGGCACTGCTTGTGTG -ACGGAAAATGGCACTGCTCTAGTG -ACGGAAAATGGCACTGCTCATCTG -ACGGAAAATGGCACTGCTGAGTTG -ACGGAAAATGGCACTGCTAGACTG -ACGGAAAATGGCACTGCTTCGGTA -ACGGAAAATGGCACTGCTTGCCTA -ACGGAAAATGGCACTGCTCCACTA -ACGGAAAATGGCACTGCTGGAGTA -ACGGAAAATGGCACTGCTTCGTCT -ACGGAAAATGGCACTGCTTGCACT -ACGGAAAATGGCACTGCTCTGACT -ACGGAAAATGGCACTGCTCAACCT -ACGGAAAATGGCACTGCTGCTACT -ACGGAAAATGGCACTGCTGGATCT -ACGGAAAATGGCACTGCTAAGGCT -ACGGAAAATGGCACTGCTTCAACC -ACGGAAAATGGCACTGCTTGTTCC -ACGGAAAATGGCACTGCTATTCCC -ACGGAAAATGGCACTGCTTTCTCG -ACGGAAAATGGCACTGCTTAGACG -ACGGAAAATGGCACTGCTGTAACG -ACGGAAAATGGCACTGCTACTTCG -ACGGAAAATGGCACTGCTTACGCA -ACGGAAAATGGCACTGCTCTTGCA -ACGGAAAATGGCACTGCTCGAACA -ACGGAAAATGGCACTGCTCAGTCA -ACGGAAAATGGCACTGCTGATCCA -ACGGAAAATGGCACTGCTACGACA -ACGGAAAATGGCACTGCTAGCTCA -ACGGAAAATGGCACTGCTTCACGT -ACGGAAAATGGCACTGCTCGTAGT -ACGGAAAATGGCACTGCTGTCAGT -ACGGAAAATGGCACTGCTGAAGGT -ACGGAAAATGGCACTGCTAACCGT -ACGGAAAATGGCACTGCTTTGTGC -ACGGAAAATGGCACTGCTCTAAGC -ACGGAAAATGGCACTGCTACTAGC -ACGGAAAATGGCACTGCTAGATGC -ACGGAAAATGGCACTGCTTGAAGG -ACGGAAAATGGCACTGCTCAATGG -ACGGAAAATGGCACTGCTATGAGG -ACGGAAAATGGCACTGCTAATGGG -ACGGAAAATGGCACTGCTTCCTGA -ACGGAAAATGGCACTGCTTAGCGA -ACGGAAAATGGCACTGCTCACAGA -ACGGAAAATGGCACTGCTGCAAGA -ACGGAAAATGGCACTGCTGGTTGA -ACGGAAAATGGCACTGCTTCCGAT -ACGGAAAATGGCACTGCTTGGCAT -ACGGAAAATGGCACTGCTCGAGAT -ACGGAAAATGGCACTGCTTACCAC -ACGGAAAATGGCACTGCTCAGAAC -ACGGAAAATGGCACTGCTGTCTAC -ACGGAAAATGGCACTGCTACGTAC -ACGGAAAATGGCACTGCTAGTGAC -ACGGAAAATGGCACTGCTCTGTAG -ACGGAAAATGGCACTGCTCCTAAG -ACGGAAAATGGCACTGCTGTTCAG -ACGGAAAATGGCACTGCTGCATAG -ACGGAAAATGGCACTGCTGACAAG -ACGGAAAATGGCACTGCTAAGCAG -ACGGAAAATGGCACTGCTCGTCAA -ACGGAAAATGGCACTGCTGCTGAA -ACGGAAAATGGCACTGCTAGTACG -ACGGAAAATGGCACTGCTATCCGA -ACGGAAAATGGCACTGCTATGGGA -ACGGAAAATGGCACTGCTGTGCAA -ACGGAAAATGGCACTGCTGAGGAA -ACGGAAAATGGCACTGCTCAGGTA -ACGGAAAATGGCACTGCTGACTCT -ACGGAAAATGGCACTGCTAGTCCT -ACGGAAAATGGCACTGCTTAAGCC -ACGGAAAATGGCACTGCTATAGCC -ACGGAAAATGGCACTGCTTAACCG -ACGGAAAATGGCACTGCTATGCCA -ACGGAAAATGGCTCTGGAGGAAAC -ACGGAAAATGGCTCTGGAAACACC -ACGGAAAATGGCTCTGGAATCGAG -ACGGAAAATGGCTCTGGACTCCTT -ACGGAAAATGGCTCTGGACCTGTT -ACGGAAAATGGCTCTGGACGGTTT -ACGGAAAATGGCTCTGGAGTGGTT -ACGGAAAATGGCTCTGGAGCCTTT -ACGGAAAATGGCTCTGGAGGTCTT -ACGGAAAATGGCTCTGGAACGCTT -ACGGAAAATGGCTCTGGAAGCGTT -ACGGAAAATGGCTCTGGATTCGTC -ACGGAAAATGGCTCTGGATCTCTC -ACGGAAAATGGCTCTGGATGGATC -ACGGAAAATGGCTCTGGACACTTC -ACGGAAAATGGCTCTGGAGTACTC -ACGGAAAATGGCTCTGGAGATGTC -ACGGAAAATGGCTCTGGAACAGTC -ACGGAAAATGGCTCTGGATTGCTG -ACGGAAAATGGCTCTGGATCCATG -ACGGAAAATGGCTCTGGATGTGTG -ACGGAAAATGGCTCTGGACTAGTG -ACGGAAAATGGCTCTGGACATCTG -ACGGAAAATGGCTCTGGAGAGTTG -ACGGAAAATGGCTCTGGAAGACTG -ACGGAAAATGGCTCTGGATCGGTA -ACGGAAAATGGCTCTGGATGCCTA -ACGGAAAATGGCTCTGGACCACTA -ACGGAAAATGGCTCTGGAGGAGTA -ACGGAAAATGGCTCTGGATCGTCT -ACGGAAAATGGCTCTGGATGCACT -ACGGAAAATGGCTCTGGACTGACT -ACGGAAAATGGCTCTGGACAACCT -ACGGAAAATGGCTCTGGAGCTACT -ACGGAAAATGGCTCTGGAGGATCT -ACGGAAAATGGCTCTGGAAAGGCT -ACGGAAAATGGCTCTGGATCAACC -ACGGAAAATGGCTCTGGATGTTCC -ACGGAAAATGGCTCTGGAATTCCC -ACGGAAAATGGCTCTGGATTCTCG -ACGGAAAATGGCTCTGGATAGACG -ACGGAAAATGGCTCTGGAGTAACG -ACGGAAAATGGCTCTGGAACTTCG -ACGGAAAATGGCTCTGGATACGCA -ACGGAAAATGGCTCTGGACTTGCA -ACGGAAAATGGCTCTGGACGAACA -ACGGAAAATGGCTCTGGACAGTCA -ACGGAAAATGGCTCTGGAGATCCA -ACGGAAAATGGCTCTGGAACGACA -ACGGAAAATGGCTCTGGAAGCTCA -ACGGAAAATGGCTCTGGATCACGT -ACGGAAAATGGCTCTGGACGTAGT -ACGGAAAATGGCTCTGGAGTCAGT -ACGGAAAATGGCTCTGGAGAAGGT -ACGGAAAATGGCTCTGGAAACCGT -ACGGAAAATGGCTCTGGATTGTGC -ACGGAAAATGGCTCTGGACTAAGC -ACGGAAAATGGCTCTGGAACTAGC -ACGGAAAATGGCTCTGGAAGATGC -ACGGAAAATGGCTCTGGATGAAGG -ACGGAAAATGGCTCTGGACAATGG -ACGGAAAATGGCTCTGGAATGAGG -ACGGAAAATGGCTCTGGAAATGGG -ACGGAAAATGGCTCTGGATCCTGA -ACGGAAAATGGCTCTGGATAGCGA -ACGGAAAATGGCTCTGGACACAGA -ACGGAAAATGGCTCTGGAGCAAGA -ACGGAAAATGGCTCTGGAGGTTGA -ACGGAAAATGGCTCTGGATCCGAT -ACGGAAAATGGCTCTGGATGGCAT -ACGGAAAATGGCTCTGGACGAGAT -ACGGAAAATGGCTCTGGATACCAC -ACGGAAAATGGCTCTGGACAGAAC -ACGGAAAATGGCTCTGGAGTCTAC -ACGGAAAATGGCTCTGGAACGTAC -ACGGAAAATGGCTCTGGAAGTGAC -ACGGAAAATGGCTCTGGACTGTAG -ACGGAAAATGGCTCTGGACCTAAG -ACGGAAAATGGCTCTGGAGTTCAG -ACGGAAAATGGCTCTGGAGCATAG -ACGGAAAATGGCTCTGGAGACAAG -ACGGAAAATGGCTCTGGAAAGCAG -ACGGAAAATGGCTCTGGACGTCAA -ACGGAAAATGGCTCTGGAGCTGAA -ACGGAAAATGGCTCTGGAAGTACG -ACGGAAAATGGCTCTGGAATCCGA -ACGGAAAATGGCTCTGGAATGGGA -ACGGAAAATGGCTCTGGAGTGCAA -ACGGAAAATGGCTCTGGAGAGGAA -ACGGAAAATGGCTCTGGACAGGTA -ACGGAAAATGGCTCTGGAGACTCT -ACGGAAAATGGCTCTGGAAGTCCT -ACGGAAAATGGCTCTGGATAAGCC -ACGGAAAATGGCTCTGGAATAGCC -ACGGAAAATGGCTCTGGATAACCG -ACGGAAAATGGCTCTGGAATGCCA -ACGGAAAATGGCGCTAAGGGAAAC -ACGGAAAATGGCGCTAAGAACACC -ACGGAAAATGGCGCTAAGATCGAG -ACGGAAAATGGCGCTAAGCTCCTT -ACGGAAAATGGCGCTAAGCCTGTT -ACGGAAAATGGCGCTAAGCGGTTT -ACGGAAAATGGCGCTAAGGTGGTT -ACGGAAAATGGCGCTAAGGCCTTT -ACGGAAAATGGCGCTAAGGGTCTT -ACGGAAAATGGCGCTAAGACGCTT -ACGGAAAATGGCGCTAAGAGCGTT -ACGGAAAATGGCGCTAAGTTCGTC -ACGGAAAATGGCGCTAAGTCTCTC -ACGGAAAATGGCGCTAAGTGGATC -ACGGAAAATGGCGCTAAGCACTTC -ACGGAAAATGGCGCTAAGGTACTC -ACGGAAAATGGCGCTAAGGATGTC -ACGGAAAATGGCGCTAAGACAGTC -ACGGAAAATGGCGCTAAGTTGCTG -ACGGAAAATGGCGCTAAGTCCATG -ACGGAAAATGGCGCTAAGTGTGTG -ACGGAAAATGGCGCTAAGCTAGTG -ACGGAAAATGGCGCTAAGCATCTG -ACGGAAAATGGCGCTAAGGAGTTG -ACGGAAAATGGCGCTAAGAGACTG -ACGGAAAATGGCGCTAAGTCGGTA -ACGGAAAATGGCGCTAAGTGCCTA -ACGGAAAATGGCGCTAAGCCACTA -ACGGAAAATGGCGCTAAGGGAGTA -ACGGAAAATGGCGCTAAGTCGTCT -ACGGAAAATGGCGCTAAGTGCACT -ACGGAAAATGGCGCTAAGCTGACT -ACGGAAAATGGCGCTAAGCAACCT -ACGGAAAATGGCGCTAAGGCTACT -ACGGAAAATGGCGCTAAGGGATCT -ACGGAAAATGGCGCTAAGAAGGCT -ACGGAAAATGGCGCTAAGTCAACC -ACGGAAAATGGCGCTAAGTGTTCC -ACGGAAAATGGCGCTAAGATTCCC -ACGGAAAATGGCGCTAAGTTCTCG -ACGGAAAATGGCGCTAAGTAGACG -ACGGAAAATGGCGCTAAGGTAACG -ACGGAAAATGGCGCTAAGACTTCG -ACGGAAAATGGCGCTAAGTACGCA -ACGGAAAATGGCGCTAAGCTTGCA -ACGGAAAATGGCGCTAAGCGAACA -ACGGAAAATGGCGCTAAGCAGTCA -ACGGAAAATGGCGCTAAGGATCCA -ACGGAAAATGGCGCTAAGACGACA -ACGGAAAATGGCGCTAAGAGCTCA -ACGGAAAATGGCGCTAAGTCACGT -ACGGAAAATGGCGCTAAGCGTAGT -ACGGAAAATGGCGCTAAGGTCAGT -ACGGAAAATGGCGCTAAGGAAGGT -ACGGAAAATGGCGCTAAGAACCGT -ACGGAAAATGGCGCTAAGTTGTGC -ACGGAAAATGGCGCTAAGCTAAGC -ACGGAAAATGGCGCTAAGACTAGC -ACGGAAAATGGCGCTAAGAGATGC -ACGGAAAATGGCGCTAAGTGAAGG -ACGGAAAATGGCGCTAAGCAATGG -ACGGAAAATGGCGCTAAGATGAGG -ACGGAAAATGGCGCTAAGAATGGG -ACGGAAAATGGCGCTAAGTCCTGA -ACGGAAAATGGCGCTAAGTAGCGA -ACGGAAAATGGCGCTAAGCACAGA -ACGGAAAATGGCGCTAAGGCAAGA -ACGGAAAATGGCGCTAAGGGTTGA -ACGGAAAATGGCGCTAAGTCCGAT -ACGGAAAATGGCGCTAAGTGGCAT -ACGGAAAATGGCGCTAAGCGAGAT -ACGGAAAATGGCGCTAAGTACCAC -ACGGAAAATGGCGCTAAGCAGAAC -ACGGAAAATGGCGCTAAGGTCTAC -ACGGAAAATGGCGCTAAGACGTAC -ACGGAAAATGGCGCTAAGAGTGAC -ACGGAAAATGGCGCTAAGCTGTAG -ACGGAAAATGGCGCTAAGCCTAAG -ACGGAAAATGGCGCTAAGGTTCAG -ACGGAAAATGGCGCTAAGGCATAG -ACGGAAAATGGCGCTAAGGACAAG -ACGGAAAATGGCGCTAAGAAGCAG -ACGGAAAATGGCGCTAAGCGTCAA -ACGGAAAATGGCGCTAAGGCTGAA -ACGGAAAATGGCGCTAAGAGTACG -ACGGAAAATGGCGCTAAGATCCGA -ACGGAAAATGGCGCTAAGATGGGA -ACGGAAAATGGCGCTAAGGTGCAA -ACGGAAAATGGCGCTAAGGAGGAA -ACGGAAAATGGCGCTAAGCAGGTA -ACGGAAAATGGCGCTAAGGACTCT -ACGGAAAATGGCGCTAAGAGTCCT -ACGGAAAATGGCGCTAAGTAAGCC -ACGGAAAATGGCGCTAAGATAGCC -ACGGAAAATGGCGCTAAGTAACCG -ACGGAAAATGGCGCTAAGATGCCA -ACGGAAAATGGCACCTCAGGAAAC -ACGGAAAATGGCACCTCAAACACC -ACGGAAAATGGCACCTCAATCGAG -ACGGAAAATGGCACCTCACTCCTT -ACGGAAAATGGCACCTCACCTGTT -ACGGAAAATGGCACCTCACGGTTT -ACGGAAAATGGCACCTCAGTGGTT -ACGGAAAATGGCACCTCAGCCTTT -ACGGAAAATGGCACCTCAGGTCTT -ACGGAAAATGGCACCTCAACGCTT -ACGGAAAATGGCACCTCAAGCGTT -ACGGAAAATGGCACCTCATTCGTC -ACGGAAAATGGCACCTCATCTCTC -ACGGAAAATGGCACCTCATGGATC -ACGGAAAATGGCACCTCACACTTC -ACGGAAAATGGCACCTCAGTACTC -ACGGAAAATGGCACCTCAGATGTC -ACGGAAAATGGCACCTCAACAGTC -ACGGAAAATGGCACCTCATTGCTG -ACGGAAAATGGCACCTCATCCATG -ACGGAAAATGGCACCTCATGTGTG -ACGGAAAATGGCACCTCACTAGTG -ACGGAAAATGGCACCTCACATCTG -ACGGAAAATGGCACCTCAGAGTTG -ACGGAAAATGGCACCTCAAGACTG -ACGGAAAATGGCACCTCATCGGTA -ACGGAAAATGGCACCTCATGCCTA -ACGGAAAATGGCACCTCACCACTA -ACGGAAAATGGCACCTCAGGAGTA -ACGGAAAATGGCACCTCATCGTCT -ACGGAAAATGGCACCTCATGCACT -ACGGAAAATGGCACCTCACTGACT -ACGGAAAATGGCACCTCACAACCT -ACGGAAAATGGCACCTCAGCTACT -ACGGAAAATGGCACCTCAGGATCT -ACGGAAAATGGCACCTCAAAGGCT -ACGGAAAATGGCACCTCATCAACC -ACGGAAAATGGCACCTCATGTTCC -ACGGAAAATGGCACCTCAATTCCC -ACGGAAAATGGCACCTCATTCTCG -ACGGAAAATGGCACCTCATAGACG -ACGGAAAATGGCACCTCAGTAACG -ACGGAAAATGGCACCTCAACTTCG -ACGGAAAATGGCACCTCATACGCA -ACGGAAAATGGCACCTCACTTGCA -ACGGAAAATGGCACCTCACGAACA -ACGGAAAATGGCACCTCACAGTCA -ACGGAAAATGGCACCTCAGATCCA -ACGGAAAATGGCACCTCAACGACA -ACGGAAAATGGCACCTCAAGCTCA -ACGGAAAATGGCACCTCATCACGT -ACGGAAAATGGCACCTCACGTAGT -ACGGAAAATGGCACCTCAGTCAGT -ACGGAAAATGGCACCTCAGAAGGT -ACGGAAAATGGCACCTCAAACCGT -ACGGAAAATGGCACCTCATTGTGC -ACGGAAAATGGCACCTCACTAAGC -ACGGAAAATGGCACCTCAACTAGC -ACGGAAAATGGCACCTCAAGATGC -ACGGAAAATGGCACCTCATGAAGG -ACGGAAAATGGCACCTCACAATGG -ACGGAAAATGGCACCTCAATGAGG -ACGGAAAATGGCACCTCAAATGGG -ACGGAAAATGGCACCTCATCCTGA -ACGGAAAATGGCACCTCATAGCGA -ACGGAAAATGGCACCTCACACAGA -ACGGAAAATGGCACCTCAGCAAGA -ACGGAAAATGGCACCTCAGGTTGA -ACGGAAAATGGCACCTCATCCGAT -ACGGAAAATGGCACCTCATGGCAT -ACGGAAAATGGCACCTCACGAGAT -ACGGAAAATGGCACCTCATACCAC -ACGGAAAATGGCACCTCACAGAAC -ACGGAAAATGGCACCTCAGTCTAC -ACGGAAAATGGCACCTCAACGTAC -ACGGAAAATGGCACCTCAAGTGAC -ACGGAAAATGGCACCTCACTGTAG -ACGGAAAATGGCACCTCACCTAAG -ACGGAAAATGGCACCTCAGTTCAG -ACGGAAAATGGCACCTCAGCATAG -ACGGAAAATGGCACCTCAGACAAG -ACGGAAAATGGCACCTCAAAGCAG -ACGGAAAATGGCACCTCACGTCAA -ACGGAAAATGGCACCTCAGCTGAA -ACGGAAAATGGCACCTCAAGTACG -ACGGAAAATGGCACCTCAATCCGA -ACGGAAAATGGCACCTCAATGGGA -ACGGAAAATGGCACCTCAGTGCAA -ACGGAAAATGGCACCTCAGAGGAA -ACGGAAAATGGCACCTCACAGGTA -ACGGAAAATGGCACCTCAGACTCT -ACGGAAAATGGCACCTCAAGTCCT -ACGGAAAATGGCACCTCATAAGCC -ACGGAAAATGGCACCTCAATAGCC -ACGGAAAATGGCACCTCATAACCG -ACGGAAAATGGCACCTCAATGCCA -ACGGAAAATGGCTCCTGTGGAAAC -ACGGAAAATGGCTCCTGTAACACC -ACGGAAAATGGCTCCTGTATCGAG -ACGGAAAATGGCTCCTGTCTCCTT -ACGGAAAATGGCTCCTGTCCTGTT -ACGGAAAATGGCTCCTGTCGGTTT -ACGGAAAATGGCTCCTGTGTGGTT -ACGGAAAATGGCTCCTGTGCCTTT -ACGGAAAATGGCTCCTGTGGTCTT -ACGGAAAATGGCTCCTGTACGCTT -ACGGAAAATGGCTCCTGTAGCGTT -ACGGAAAATGGCTCCTGTTTCGTC -ACGGAAAATGGCTCCTGTTCTCTC -ACGGAAAATGGCTCCTGTTGGATC -ACGGAAAATGGCTCCTGTCACTTC -ACGGAAAATGGCTCCTGTGTACTC -ACGGAAAATGGCTCCTGTGATGTC -ACGGAAAATGGCTCCTGTACAGTC -ACGGAAAATGGCTCCTGTTTGCTG -ACGGAAAATGGCTCCTGTTCCATG -ACGGAAAATGGCTCCTGTTGTGTG -ACGGAAAATGGCTCCTGTCTAGTG -ACGGAAAATGGCTCCTGTCATCTG -ACGGAAAATGGCTCCTGTGAGTTG -ACGGAAAATGGCTCCTGTAGACTG -ACGGAAAATGGCTCCTGTTCGGTA -ACGGAAAATGGCTCCTGTTGCCTA -ACGGAAAATGGCTCCTGTCCACTA -ACGGAAAATGGCTCCTGTGGAGTA -ACGGAAAATGGCTCCTGTTCGTCT -ACGGAAAATGGCTCCTGTTGCACT -ACGGAAAATGGCTCCTGTCTGACT -ACGGAAAATGGCTCCTGTCAACCT -ACGGAAAATGGCTCCTGTGCTACT -ACGGAAAATGGCTCCTGTGGATCT -ACGGAAAATGGCTCCTGTAAGGCT -ACGGAAAATGGCTCCTGTTCAACC -ACGGAAAATGGCTCCTGTTGTTCC -ACGGAAAATGGCTCCTGTATTCCC -ACGGAAAATGGCTCCTGTTTCTCG -ACGGAAAATGGCTCCTGTTAGACG -ACGGAAAATGGCTCCTGTGTAACG -ACGGAAAATGGCTCCTGTACTTCG -ACGGAAAATGGCTCCTGTTACGCA -ACGGAAAATGGCTCCTGTCTTGCA -ACGGAAAATGGCTCCTGTCGAACA -ACGGAAAATGGCTCCTGTCAGTCA -ACGGAAAATGGCTCCTGTGATCCA -ACGGAAAATGGCTCCTGTACGACA -ACGGAAAATGGCTCCTGTAGCTCA -ACGGAAAATGGCTCCTGTTCACGT -ACGGAAAATGGCTCCTGTCGTAGT -ACGGAAAATGGCTCCTGTGTCAGT -ACGGAAAATGGCTCCTGTGAAGGT -ACGGAAAATGGCTCCTGTAACCGT -ACGGAAAATGGCTCCTGTTTGTGC -ACGGAAAATGGCTCCTGTCTAAGC -ACGGAAAATGGCTCCTGTACTAGC -ACGGAAAATGGCTCCTGTAGATGC -ACGGAAAATGGCTCCTGTTGAAGG -ACGGAAAATGGCTCCTGTCAATGG -ACGGAAAATGGCTCCTGTATGAGG -ACGGAAAATGGCTCCTGTAATGGG -ACGGAAAATGGCTCCTGTTCCTGA -ACGGAAAATGGCTCCTGTTAGCGA -ACGGAAAATGGCTCCTGTCACAGA -ACGGAAAATGGCTCCTGTGCAAGA -ACGGAAAATGGCTCCTGTGGTTGA -ACGGAAAATGGCTCCTGTTCCGAT -ACGGAAAATGGCTCCTGTTGGCAT -ACGGAAAATGGCTCCTGTCGAGAT -ACGGAAAATGGCTCCTGTTACCAC -ACGGAAAATGGCTCCTGTCAGAAC -ACGGAAAATGGCTCCTGTGTCTAC -ACGGAAAATGGCTCCTGTACGTAC -ACGGAAAATGGCTCCTGTAGTGAC -ACGGAAAATGGCTCCTGTCTGTAG -ACGGAAAATGGCTCCTGTCCTAAG -ACGGAAAATGGCTCCTGTGTTCAG -ACGGAAAATGGCTCCTGTGCATAG -ACGGAAAATGGCTCCTGTGACAAG -ACGGAAAATGGCTCCTGTAAGCAG -ACGGAAAATGGCTCCTGTCGTCAA -ACGGAAAATGGCTCCTGTGCTGAA -ACGGAAAATGGCTCCTGTAGTACG -ACGGAAAATGGCTCCTGTATCCGA -ACGGAAAATGGCTCCTGTATGGGA -ACGGAAAATGGCTCCTGTGTGCAA -ACGGAAAATGGCTCCTGTGAGGAA -ACGGAAAATGGCTCCTGTCAGGTA -ACGGAAAATGGCTCCTGTGACTCT -ACGGAAAATGGCTCCTGTAGTCCT -ACGGAAAATGGCTCCTGTTAAGCC -ACGGAAAATGGCTCCTGTATAGCC -ACGGAAAATGGCTCCTGTTAACCG -ACGGAAAATGGCTCCTGTATGCCA -ACGGAAAATGGCCCCATTGGAAAC -ACGGAAAATGGCCCCATTAACACC -ACGGAAAATGGCCCCATTATCGAG -ACGGAAAATGGCCCCATTCTCCTT -ACGGAAAATGGCCCCATTCCTGTT -ACGGAAAATGGCCCCATTCGGTTT -ACGGAAAATGGCCCCATTGTGGTT -ACGGAAAATGGCCCCATTGCCTTT -ACGGAAAATGGCCCCATTGGTCTT -ACGGAAAATGGCCCCATTACGCTT -ACGGAAAATGGCCCCATTAGCGTT -ACGGAAAATGGCCCCATTTTCGTC -ACGGAAAATGGCCCCATTTCTCTC -ACGGAAAATGGCCCCATTTGGATC -ACGGAAAATGGCCCCATTCACTTC -ACGGAAAATGGCCCCATTGTACTC -ACGGAAAATGGCCCCATTGATGTC -ACGGAAAATGGCCCCATTACAGTC -ACGGAAAATGGCCCCATTTTGCTG -ACGGAAAATGGCCCCATTTCCATG -ACGGAAAATGGCCCCATTTGTGTG -ACGGAAAATGGCCCCATTCTAGTG -ACGGAAAATGGCCCCATTCATCTG -ACGGAAAATGGCCCCATTGAGTTG -ACGGAAAATGGCCCCATTAGACTG -ACGGAAAATGGCCCCATTTCGGTA -ACGGAAAATGGCCCCATTTGCCTA -ACGGAAAATGGCCCCATTCCACTA -ACGGAAAATGGCCCCATTGGAGTA -ACGGAAAATGGCCCCATTTCGTCT -ACGGAAAATGGCCCCATTTGCACT -ACGGAAAATGGCCCCATTCTGACT -ACGGAAAATGGCCCCATTCAACCT -ACGGAAAATGGCCCCATTGCTACT -ACGGAAAATGGCCCCATTGGATCT -ACGGAAAATGGCCCCATTAAGGCT -ACGGAAAATGGCCCCATTTCAACC -ACGGAAAATGGCCCCATTTGTTCC -ACGGAAAATGGCCCCATTATTCCC -ACGGAAAATGGCCCCATTTTCTCG -ACGGAAAATGGCCCCATTTAGACG -ACGGAAAATGGCCCCATTGTAACG -ACGGAAAATGGCCCCATTACTTCG -ACGGAAAATGGCCCCATTTACGCA -ACGGAAAATGGCCCCATTCTTGCA -ACGGAAAATGGCCCCATTCGAACA -ACGGAAAATGGCCCCATTCAGTCA -ACGGAAAATGGCCCCATTGATCCA -ACGGAAAATGGCCCCATTACGACA -ACGGAAAATGGCCCCATTAGCTCA -ACGGAAAATGGCCCCATTTCACGT -ACGGAAAATGGCCCCATTCGTAGT -ACGGAAAATGGCCCCATTGTCAGT -ACGGAAAATGGCCCCATTGAAGGT -ACGGAAAATGGCCCCATTAACCGT -ACGGAAAATGGCCCCATTTTGTGC -ACGGAAAATGGCCCCATTCTAAGC -ACGGAAAATGGCCCCATTACTAGC -ACGGAAAATGGCCCCATTAGATGC -ACGGAAAATGGCCCCATTTGAAGG -ACGGAAAATGGCCCCATTCAATGG -ACGGAAAATGGCCCCATTATGAGG -ACGGAAAATGGCCCCATTAATGGG -ACGGAAAATGGCCCCATTTCCTGA -ACGGAAAATGGCCCCATTTAGCGA -ACGGAAAATGGCCCCATTCACAGA -ACGGAAAATGGCCCCATTGCAAGA -ACGGAAAATGGCCCCATTGGTTGA -ACGGAAAATGGCCCCATTTCCGAT -ACGGAAAATGGCCCCATTTGGCAT -ACGGAAAATGGCCCCATTCGAGAT -ACGGAAAATGGCCCCATTTACCAC -ACGGAAAATGGCCCCATTCAGAAC -ACGGAAAATGGCCCCATTGTCTAC -ACGGAAAATGGCCCCATTACGTAC -ACGGAAAATGGCCCCATTAGTGAC -ACGGAAAATGGCCCCATTCTGTAG -ACGGAAAATGGCCCCATTCCTAAG -ACGGAAAATGGCCCCATTGTTCAG -ACGGAAAATGGCCCCATTGCATAG -ACGGAAAATGGCCCCATTGACAAG -ACGGAAAATGGCCCCATTAAGCAG -ACGGAAAATGGCCCCATTCGTCAA -ACGGAAAATGGCCCCATTGCTGAA -ACGGAAAATGGCCCCATTAGTACG -ACGGAAAATGGCCCCATTATCCGA -ACGGAAAATGGCCCCATTATGGGA -ACGGAAAATGGCCCCATTGTGCAA -ACGGAAAATGGCCCCATTGAGGAA -ACGGAAAATGGCCCCATTCAGGTA -ACGGAAAATGGCCCCATTGACTCT -ACGGAAAATGGCCCCATTAGTCCT -ACGGAAAATGGCCCCATTTAAGCC -ACGGAAAATGGCCCCATTATAGCC -ACGGAAAATGGCCCCATTTAACCG -ACGGAAAATGGCCCCATTATGCCA -ACGGAAAATGGCTCGTTCGGAAAC -ACGGAAAATGGCTCGTTCAACACC -ACGGAAAATGGCTCGTTCATCGAG -ACGGAAAATGGCTCGTTCCTCCTT -ACGGAAAATGGCTCGTTCCCTGTT -ACGGAAAATGGCTCGTTCCGGTTT -ACGGAAAATGGCTCGTTCGTGGTT -ACGGAAAATGGCTCGTTCGCCTTT -ACGGAAAATGGCTCGTTCGGTCTT -ACGGAAAATGGCTCGTTCACGCTT -ACGGAAAATGGCTCGTTCAGCGTT -ACGGAAAATGGCTCGTTCTTCGTC -ACGGAAAATGGCTCGTTCTCTCTC -ACGGAAAATGGCTCGTTCTGGATC -ACGGAAAATGGCTCGTTCCACTTC -ACGGAAAATGGCTCGTTCGTACTC -ACGGAAAATGGCTCGTTCGATGTC -ACGGAAAATGGCTCGTTCACAGTC -ACGGAAAATGGCTCGTTCTTGCTG -ACGGAAAATGGCTCGTTCTCCATG -ACGGAAAATGGCTCGTTCTGTGTG -ACGGAAAATGGCTCGTTCCTAGTG -ACGGAAAATGGCTCGTTCCATCTG -ACGGAAAATGGCTCGTTCGAGTTG -ACGGAAAATGGCTCGTTCAGACTG -ACGGAAAATGGCTCGTTCTCGGTA -ACGGAAAATGGCTCGTTCTGCCTA -ACGGAAAATGGCTCGTTCCCACTA -ACGGAAAATGGCTCGTTCGGAGTA -ACGGAAAATGGCTCGTTCTCGTCT -ACGGAAAATGGCTCGTTCTGCACT -ACGGAAAATGGCTCGTTCCTGACT -ACGGAAAATGGCTCGTTCCAACCT -ACGGAAAATGGCTCGTTCGCTACT -ACGGAAAATGGCTCGTTCGGATCT -ACGGAAAATGGCTCGTTCAAGGCT -ACGGAAAATGGCTCGTTCTCAACC -ACGGAAAATGGCTCGTTCTGTTCC -ACGGAAAATGGCTCGTTCATTCCC -ACGGAAAATGGCTCGTTCTTCTCG -ACGGAAAATGGCTCGTTCTAGACG -ACGGAAAATGGCTCGTTCGTAACG -ACGGAAAATGGCTCGTTCACTTCG -ACGGAAAATGGCTCGTTCTACGCA -ACGGAAAATGGCTCGTTCCTTGCA -ACGGAAAATGGCTCGTTCCGAACA -ACGGAAAATGGCTCGTTCCAGTCA -ACGGAAAATGGCTCGTTCGATCCA -ACGGAAAATGGCTCGTTCACGACA -ACGGAAAATGGCTCGTTCAGCTCA -ACGGAAAATGGCTCGTTCTCACGT -ACGGAAAATGGCTCGTTCCGTAGT -ACGGAAAATGGCTCGTTCGTCAGT -ACGGAAAATGGCTCGTTCGAAGGT -ACGGAAAATGGCTCGTTCAACCGT -ACGGAAAATGGCTCGTTCTTGTGC -ACGGAAAATGGCTCGTTCCTAAGC -ACGGAAAATGGCTCGTTCACTAGC -ACGGAAAATGGCTCGTTCAGATGC -ACGGAAAATGGCTCGTTCTGAAGG -ACGGAAAATGGCTCGTTCCAATGG -ACGGAAAATGGCTCGTTCATGAGG -ACGGAAAATGGCTCGTTCAATGGG -ACGGAAAATGGCTCGTTCTCCTGA -ACGGAAAATGGCTCGTTCTAGCGA -ACGGAAAATGGCTCGTTCCACAGA -ACGGAAAATGGCTCGTTCGCAAGA -ACGGAAAATGGCTCGTTCGGTTGA -ACGGAAAATGGCTCGTTCTCCGAT -ACGGAAAATGGCTCGTTCTGGCAT -ACGGAAAATGGCTCGTTCCGAGAT -ACGGAAAATGGCTCGTTCTACCAC -ACGGAAAATGGCTCGTTCCAGAAC -ACGGAAAATGGCTCGTTCGTCTAC -ACGGAAAATGGCTCGTTCACGTAC -ACGGAAAATGGCTCGTTCAGTGAC -ACGGAAAATGGCTCGTTCCTGTAG -ACGGAAAATGGCTCGTTCCCTAAG -ACGGAAAATGGCTCGTTCGTTCAG -ACGGAAAATGGCTCGTTCGCATAG -ACGGAAAATGGCTCGTTCGACAAG -ACGGAAAATGGCTCGTTCAAGCAG -ACGGAAAATGGCTCGTTCCGTCAA -ACGGAAAATGGCTCGTTCGCTGAA -ACGGAAAATGGCTCGTTCAGTACG -ACGGAAAATGGCTCGTTCATCCGA -ACGGAAAATGGCTCGTTCATGGGA -ACGGAAAATGGCTCGTTCGTGCAA -ACGGAAAATGGCTCGTTCGAGGAA -ACGGAAAATGGCTCGTTCCAGGTA -ACGGAAAATGGCTCGTTCGACTCT -ACGGAAAATGGCTCGTTCAGTCCT -ACGGAAAATGGCTCGTTCTAAGCC -ACGGAAAATGGCTCGTTCATAGCC -ACGGAAAATGGCTCGTTCTAACCG -ACGGAAAATGGCTCGTTCATGCCA -ACGGAAAATGGCACGTAGGGAAAC -ACGGAAAATGGCACGTAGAACACC -ACGGAAAATGGCACGTAGATCGAG -ACGGAAAATGGCACGTAGCTCCTT -ACGGAAAATGGCACGTAGCCTGTT -ACGGAAAATGGCACGTAGCGGTTT -ACGGAAAATGGCACGTAGGTGGTT -ACGGAAAATGGCACGTAGGCCTTT -ACGGAAAATGGCACGTAGGGTCTT -ACGGAAAATGGCACGTAGACGCTT -ACGGAAAATGGCACGTAGAGCGTT -ACGGAAAATGGCACGTAGTTCGTC -ACGGAAAATGGCACGTAGTCTCTC -ACGGAAAATGGCACGTAGTGGATC -ACGGAAAATGGCACGTAGCACTTC -ACGGAAAATGGCACGTAGGTACTC -ACGGAAAATGGCACGTAGGATGTC -ACGGAAAATGGCACGTAGACAGTC -ACGGAAAATGGCACGTAGTTGCTG -ACGGAAAATGGCACGTAGTCCATG -ACGGAAAATGGCACGTAGTGTGTG -ACGGAAAATGGCACGTAGCTAGTG -ACGGAAAATGGCACGTAGCATCTG -ACGGAAAATGGCACGTAGGAGTTG -ACGGAAAATGGCACGTAGAGACTG -ACGGAAAATGGCACGTAGTCGGTA -ACGGAAAATGGCACGTAGTGCCTA -ACGGAAAATGGCACGTAGCCACTA -ACGGAAAATGGCACGTAGGGAGTA -ACGGAAAATGGCACGTAGTCGTCT -ACGGAAAATGGCACGTAGTGCACT -ACGGAAAATGGCACGTAGCTGACT -ACGGAAAATGGCACGTAGCAACCT -ACGGAAAATGGCACGTAGGCTACT -ACGGAAAATGGCACGTAGGGATCT -ACGGAAAATGGCACGTAGAAGGCT -ACGGAAAATGGCACGTAGTCAACC -ACGGAAAATGGCACGTAGTGTTCC -ACGGAAAATGGCACGTAGATTCCC -ACGGAAAATGGCACGTAGTTCTCG -ACGGAAAATGGCACGTAGTAGACG -ACGGAAAATGGCACGTAGGTAACG -ACGGAAAATGGCACGTAGACTTCG -ACGGAAAATGGCACGTAGTACGCA -ACGGAAAATGGCACGTAGCTTGCA -ACGGAAAATGGCACGTAGCGAACA -ACGGAAAATGGCACGTAGCAGTCA -ACGGAAAATGGCACGTAGGATCCA -ACGGAAAATGGCACGTAGACGACA -ACGGAAAATGGCACGTAGAGCTCA -ACGGAAAATGGCACGTAGTCACGT -ACGGAAAATGGCACGTAGCGTAGT -ACGGAAAATGGCACGTAGGTCAGT -ACGGAAAATGGCACGTAGGAAGGT -ACGGAAAATGGCACGTAGAACCGT -ACGGAAAATGGCACGTAGTTGTGC -ACGGAAAATGGCACGTAGCTAAGC -ACGGAAAATGGCACGTAGACTAGC -ACGGAAAATGGCACGTAGAGATGC -ACGGAAAATGGCACGTAGTGAAGG -ACGGAAAATGGCACGTAGCAATGG -ACGGAAAATGGCACGTAGATGAGG -ACGGAAAATGGCACGTAGAATGGG -ACGGAAAATGGCACGTAGTCCTGA -ACGGAAAATGGCACGTAGTAGCGA -ACGGAAAATGGCACGTAGCACAGA -ACGGAAAATGGCACGTAGGCAAGA -ACGGAAAATGGCACGTAGGGTTGA -ACGGAAAATGGCACGTAGTCCGAT -ACGGAAAATGGCACGTAGTGGCAT -ACGGAAAATGGCACGTAGCGAGAT -ACGGAAAATGGCACGTAGTACCAC -ACGGAAAATGGCACGTAGCAGAAC -ACGGAAAATGGCACGTAGGTCTAC -ACGGAAAATGGCACGTAGACGTAC -ACGGAAAATGGCACGTAGAGTGAC -ACGGAAAATGGCACGTAGCTGTAG -ACGGAAAATGGCACGTAGCCTAAG -ACGGAAAATGGCACGTAGGTTCAG -ACGGAAAATGGCACGTAGGCATAG -ACGGAAAATGGCACGTAGGACAAG -ACGGAAAATGGCACGTAGAAGCAG -ACGGAAAATGGCACGTAGCGTCAA -ACGGAAAATGGCACGTAGGCTGAA -ACGGAAAATGGCACGTAGAGTACG -ACGGAAAATGGCACGTAGATCCGA -ACGGAAAATGGCACGTAGATGGGA -ACGGAAAATGGCACGTAGGTGCAA -ACGGAAAATGGCACGTAGGAGGAA -ACGGAAAATGGCACGTAGCAGGTA -ACGGAAAATGGCACGTAGGACTCT -ACGGAAAATGGCACGTAGAGTCCT -ACGGAAAATGGCACGTAGTAAGCC -ACGGAAAATGGCACGTAGATAGCC -ACGGAAAATGGCACGTAGTAACCG -ACGGAAAATGGCACGTAGATGCCA -ACGGAAAATGGCACGGTAGGAAAC -ACGGAAAATGGCACGGTAAACACC -ACGGAAAATGGCACGGTAATCGAG -ACGGAAAATGGCACGGTACTCCTT -ACGGAAAATGGCACGGTACCTGTT -ACGGAAAATGGCACGGTACGGTTT -ACGGAAAATGGCACGGTAGTGGTT -ACGGAAAATGGCACGGTAGCCTTT -ACGGAAAATGGCACGGTAGGTCTT -ACGGAAAATGGCACGGTAACGCTT -ACGGAAAATGGCACGGTAAGCGTT -ACGGAAAATGGCACGGTATTCGTC -ACGGAAAATGGCACGGTATCTCTC -ACGGAAAATGGCACGGTATGGATC -ACGGAAAATGGCACGGTACACTTC -ACGGAAAATGGCACGGTAGTACTC -ACGGAAAATGGCACGGTAGATGTC -ACGGAAAATGGCACGGTAACAGTC -ACGGAAAATGGCACGGTATTGCTG -ACGGAAAATGGCACGGTATCCATG -ACGGAAAATGGCACGGTATGTGTG -ACGGAAAATGGCACGGTACTAGTG -ACGGAAAATGGCACGGTACATCTG -ACGGAAAATGGCACGGTAGAGTTG -ACGGAAAATGGCACGGTAAGACTG -ACGGAAAATGGCACGGTATCGGTA -ACGGAAAATGGCACGGTATGCCTA -ACGGAAAATGGCACGGTACCACTA -ACGGAAAATGGCACGGTAGGAGTA -ACGGAAAATGGCACGGTATCGTCT -ACGGAAAATGGCACGGTATGCACT -ACGGAAAATGGCACGGTACTGACT -ACGGAAAATGGCACGGTACAACCT -ACGGAAAATGGCACGGTAGCTACT -ACGGAAAATGGCACGGTAGGATCT -ACGGAAAATGGCACGGTAAAGGCT -ACGGAAAATGGCACGGTATCAACC -ACGGAAAATGGCACGGTATGTTCC -ACGGAAAATGGCACGGTAATTCCC -ACGGAAAATGGCACGGTATTCTCG -ACGGAAAATGGCACGGTATAGACG -ACGGAAAATGGCACGGTAGTAACG -ACGGAAAATGGCACGGTAACTTCG -ACGGAAAATGGCACGGTATACGCA -ACGGAAAATGGCACGGTACTTGCA -ACGGAAAATGGCACGGTACGAACA -ACGGAAAATGGCACGGTACAGTCA -ACGGAAAATGGCACGGTAGATCCA -ACGGAAAATGGCACGGTAACGACA -ACGGAAAATGGCACGGTAAGCTCA -ACGGAAAATGGCACGGTATCACGT -ACGGAAAATGGCACGGTACGTAGT -ACGGAAAATGGCACGGTAGTCAGT -ACGGAAAATGGCACGGTAGAAGGT -ACGGAAAATGGCACGGTAAACCGT -ACGGAAAATGGCACGGTATTGTGC -ACGGAAAATGGCACGGTACTAAGC -ACGGAAAATGGCACGGTAACTAGC -ACGGAAAATGGCACGGTAAGATGC -ACGGAAAATGGCACGGTATGAAGG -ACGGAAAATGGCACGGTACAATGG -ACGGAAAATGGCACGGTAATGAGG -ACGGAAAATGGCACGGTAAATGGG -ACGGAAAATGGCACGGTATCCTGA -ACGGAAAATGGCACGGTATAGCGA -ACGGAAAATGGCACGGTACACAGA -ACGGAAAATGGCACGGTAGCAAGA -ACGGAAAATGGCACGGTAGGTTGA -ACGGAAAATGGCACGGTATCCGAT -ACGGAAAATGGCACGGTATGGCAT -ACGGAAAATGGCACGGTACGAGAT -ACGGAAAATGGCACGGTATACCAC -ACGGAAAATGGCACGGTACAGAAC -ACGGAAAATGGCACGGTAGTCTAC -ACGGAAAATGGCACGGTAACGTAC -ACGGAAAATGGCACGGTAAGTGAC -ACGGAAAATGGCACGGTACTGTAG -ACGGAAAATGGCACGGTACCTAAG -ACGGAAAATGGCACGGTAGTTCAG -ACGGAAAATGGCACGGTAGCATAG -ACGGAAAATGGCACGGTAGACAAG -ACGGAAAATGGCACGGTAAAGCAG -ACGGAAAATGGCACGGTACGTCAA -ACGGAAAATGGCACGGTAGCTGAA -ACGGAAAATGGCACGGTAAGTACG -ACGGAAAATGGCACGGTAATCCGA -ACGGAAAATGGCACGGTAATGGGA -ACGGAAAATGGCACGGTAGTGCAA -ACGGAAAATGGCACGGTAGAGGAA -ACGGAAAATGGCACGGTACAGGTA -ACGGAAAATGGCACGGTAGACTCT -ACGGAAAATGGCACGGTAAGTCCT -ACGGAAAATGGCACGGTATAAGCC -ACGGAAAATGGCACGGTAATAGCC -ACGGAAAATGGCACGGTATAACCG -ACGGAAAATGGCACGGTAATGCCA -ACGGAAAATGGCTCGACTGGAAAC -ACGGAAAATGGCTCGACTAACACC -ACGGAAAATGGCTCGACTATCGAG -ACGGAAAATGGCTCGACTCTCCTT -ACGGAAAATGGCTCGACTCCTGTT -ACGGAAAATGGCTCGACTCGGTTT -ACGGAAAATGGCTCGACTGTGGTT -ACGGAAAATGGCTCGACTGCCTTT -ACGGAAAATGGCTCGACTGGTCTT -ACGGAAAATGGCTCGACTACGCTT -ACGGAAAATGGCTCGACTAGCGTT -ACGGAAAATGGCTCGACTTTCGTC -ACGGAAAATGGCTCGACTTCTCTC -ACGGAAAATGGCTCGACTTGGATC -ACGGAAAATGGCTCGACTCACTTC -ACGGAAAATGGCTCGACTGTACTC -ACGGAAAATGGCTCGACTGATGTC -ACGGAAAATGGCTCGACTACAGTC -ACGGAAAATGGCTCGACTTTGCTG -ACGGAAAATGGCTCGACTTCCATG -ACGGAAAATGGCTCGACTTGTGTG -ACGGAAAATGGCTCGACTCTAGTG -ACGGAAAATGGCTCGACTCATCTG -ACGGAAAATGGCTCGACTGAGTTG -ACGGAAAATGGCTCGACTAGACTG -ACGGAAAATGGCTCGACTTCGGTA -ACGGAAAATGGCTCGACTTGCCTA -ACGGAAAATGGCTCGACTCCACTA -ACGGAAAATGGCTCGACTGGAGTA -ACGGAAAATGGCTCGACTTCGTCT -ACGGAAAATGGCTCGACTTGCACT -ACGGAAAATGGCTCGACTCTGACT -ACGGAAAATGGCTCGACTCAACCT -ACGGAAAATGGCTCGACTGCTACT -ACGGAAAATGGCTCGACTGGATCT -ACGGAAAATGGCTCGACTAAGGCT -ACGGAAAATGGCTCGACTTCAACC -ACGGAAAATGGCTCGACTTGTTCC -ACGGAAAATGGCTCGACTATTCCC -ACGGAAAATGGCTCGACTTTCTCG -ACGGAAAATGGCTCGACTTAGACG -ACGGAAAATGGCTCGACTGTAACG -ACGGAAAATGGCTCGACTACTTCG -ACGGAAAATGGCTCGACTTACGCA -ACGGAAAATGGCTCGACTCTTGCA -ACGGAAAATGGCTCGACTCGAACA -ACGGAAAATGGCTCGACTCAGTCA -ACGGAAAATGGCTCGACTGATCCA -ACGGAAAATGGCTCGACTACGACA -ACGGAAAATGGCTCGACTAGCTCA -ACGGAAAATGGCTCGACTTCACGT -ACGGAAAATGGCTCGACTCGTAGT -ACGGAAAATGGCTCGACTGTCAGT -ACGGAAAATGGCTCGACTGAAGGT -ACGGAAAATGGCTCGACTAACCGT -ACGGAAAATGGCTCGACTTTGTGC -ACGGAAAATGGCTCGACTCTAAGC -ACGGAAAATGGCTCGACTACTAGC -ACGGAAAATGGCTCGACTAGATGC -ACGGAAAATGGCTCGACTTGAAGG -ACGGAAAATGGCTCGACTCAATGG -ACGGAAAATGGCTCGACTATGAGG -ACGGAAAATGGCTCGACTAATGGG -ACGGAAAATGGCTCGACTTCCTGA -ACGGAAAATGGCTCGACTTAGCGA -ACGGAAAATGGCTCGACTCACAGA -ACGGAAAATGGCTCGACTGCAAGA -ACGGAAAATGGCTCGACTGGTTGA -ACGGAAAATGGCTCGACTTCCGAT -ACGGAAAATGGCTCGACTTGGCAT -ACGGAAAATGGCTCGACTCGAGAT -ACGGAAAATGGCTCGACTTACCAC -ACGGAAAATGGCTCGACTCAGAAC -ACGGAAAATGGCTCGACTGTCTAC -ACGGAAAATGGCTCGACTACGTAC -ACGGAAAATGGCTCGACTAGTGAC -ACGGAAAATGGCTCGACTCTGTAG -ACGGAAAATGGCTCGACTCCTAAG -ACGGAAAATGGCTCGACTGTTCAG -ACGGAAAATGGCTCGACTGCATAG -ACGGAAAATGGCTCGACTGACAAG -ACGGAAAATGGCTCGACTAAGCAG -ACGGAAAATGGCTCGACTCGTCAA -ACGGAAAATGGCTCGACTGCTGAA -ACGGAAAATGGCTCGACTAGTACG -ACGGAAAATGGCTCGACTATCCGA -ACGGAAAATGGCTCGACTATGGGA -ACGGAAAATGGCTCGACTGTGCAA -ACGGAAAATGGCTCGACTGAGGAA -ACGGAAAATGGCTCGACTCAGGTA -ACGGAAAATGGCTCGACTGACTCT -ACGGAAAATGGCTCGACTAGTCCT -ACGGAAAATGGCTCGACTTAAGCC -ACGGAAAATGGCTCGACTATAGCC -ACGGAAAATGGCTCGACTTAACCG -ACGGAAAATGGCTCGACTATGCCA -ACGGAAAATGGCGCATACGGAAAC -ACGGAAAATGGCGCATACAACACC -ACGGAAAATGGCGCATACATCGAG -ACGGAAAATGGCGCATACCTCCTT -ACGGAAAATGGCGCATACCCTGTT -ACGGAAAATGGCGCATACCGGTTT -ACGGAAAATGGCGCATACGTGGTT -ACGGAAAATGGCGCATACGCCTTT -ACGGAAAATGGCGCATACGGTCTT -ACGGAAAATGGCGCATACACGCTT -ACGGAAAATGGCGCATACAGCGTT -ACGGAAAATGGCGCATACTTCGTC -ACGGAAAATGGCGCATACTCTCTC -ACGGAAAATGGCGCATACTGGATC -ACGGAAAATGGCGCATACCACTTC -ACGGAAAATGGCGCATACGTACTC -ACGGAAAATGGCGCATACGATGTC -ACGGAAAATGGCGCATACACAGTC -ACGGAAAATGGCGCATACTTGCTG -ACGGAAAATGGCGCATACTCCATG -ACGGAAAATGGCGCATACTGTGTG -ACGGAAAATGGCGCATACCTAGTG -ACGGAAAATGGCGCATACCATCTG -ACGGAAAATGGCGCATACGAGTTG -ACGGAAAATGGCGCATACAGACTG -ACGGAAAATGGCGCATACTCGGTA -ACGGAAAATGGCGCATACTGCCTA -ACGGAAAATGGCGCATACCCACTA -ACGGAAAATGGCGCATACGGAGTA -ACGGAAAATGGCGCATACTCGTCT -ACGGAAAATGGCGCATACTGCACT -ACGGAAAATGGCGCATACCTGACT -ACGGAAAATGGCGCATACCAACCT -ACGGAAAATGGCGCATACGCTACT -ACGGAAAATGGCGCATACGGATCT -ACGGAAAATGGCGCATACAAGGCT -ACGGAAAATGGCGCATACTCAACC -ACGGAAAATGGCGCATACTGTTCC -ACGGAAAATGGCGCATACATTCCC -ACGGAAAATGGCGCATACTTCTCG -ACGGAAAATGGCGCATACTAGACG -ACGGAAAATGGCGCATACGTAACG -ACGGAAAATGGCGCATACACTTCG -ACGGAAAATGGCGCATACTACGCA -ACGGAAAATGGCGCATACCTTGCA -ACGGAAAATGGCGCATACCGAACA -ACGGAAAATGGCGCATACCAGTCA -ACGGAAAATGGCGCATACGATCCA -ACGGAAAATGGCGCATACACGACA -ACGGAAAATGGCGCATACAGCTCA -ACGGAAAATGGCGCATACTCACGT -ACGGAAAATGGCGCATACCGTAGT -ACGGAAAATGGCGCATACGTCAGT -ACGGAAAATGGCGCATACGAAGGT -ACGGAAAATGGCGCATACAACCGT -ACGGAAAATGGCGCATACTTGTGC -ACGGAAAATGGCGCATACCTAAGC -ACGGAAAATGGCGCATACACTAGC -ACGGAAAATGGCGCATACAGATGC -ACGGAAAATGGCGCATACTGAAGG -ACGGAAAATGGCGCATACCAATGG -ACGGAAAATGGCGCATACATGAGG -ACGGAAAATGGCGCATACAATGGG -ACGGAAAATGGCGCATACTCCTGA -ACGGAAAATGGCGCATACTAGCGA -ACGGAAAATGGCGCATACCACAGA -ACGGAAAATGGCGCATACGCAAGA -ACGGAAAATGGCGCATACGGTTGA -ACGGAAAATGGCGCATACTCCGAT -ACGGAAAATGGCGCATACTGGCAT -ACGGAAAATGGCGCATACCGAGAT -ACGGAAAATGGCGCATACTACCAC -ACGGAAAATGGCGCATACCAGAAC -ACGGAAAATGGCGCATACGTCTAC -ACGGAAAATGGCGCATACACGTAC -ACGGAAAATGGCGCATACAGTGAC -ACGGAAAATGGCGCATACCTGTAG -ACGGAAAATGGCGCATACCCTAAG -ACGGAAAATGGCGCATACGTTCAG -ACGGAAAATGGCGCATACGCATAG -ACGGAAAATGGCGCATACGACAAG -ACGGAAAATGGCGCATACAAGCAG -ACGGAAAATGGCGCATACCGTCAA -ACGGAAAATGGCGCATACGCTGAA -ACGGAAAATGGCGCATACAGTACG -ACGGAAAATGGCGCATACATCCGA -ACGGAAAATGGCGCATACATGGGA -ACGGAAAATGGCGCATACGTGCAA -ACGGAAAATGGCGCATACGAGGAA -ACGGAAAATGGCGCATACCAGGTA -ACGGAAAATGGCGCATACGACTCT -ACGGAAAATGGCGCATACAGTCCT -ACGGAAAATGGCGCATACTAAGCC -ACGGAAAATGGCGCATACATAGCC -ACGGAAAATGGCGCATACTAACCG -ACGGAAAATGGCGCATACATGCCA -ACGGAAAATGGCGCACTTGGAAAC -ACGGAAAATGGCGCACTTAACACC -ACGGAAAATGGCGCACTTATCGAG -ACGGAAAATGGCGCACTTCTCCTT -ACGGAAAATGGCGCACTTCCTGTT -ACGGAAAATGGCGCACTTCGGTTT -ACGGAAAATGGCGCACTTGTGGTT -ACGGAAAATGGCGCACTTGCCTTT -ACGGAAAATGGCGCACTTGGTCTT -ACGGAAAATGGCGCACTTACGCTT -ACGGAAAATGGCGCACTTAGCGTT -ACGGAAAATGGCGCACTTTTCGTC -ACGGAAAATGGCGCACTTTCTCTC -ACGGAAAATGGCGCACTTTGGATC -ACGGAAAATGGCGCACTTCACTTC -ACGGAAAATGGCGCACTTGTACTC -ACGGAAAATGGCGCACTTGATGTC -ACGGAAAATGGCGCACTTACAGTC -ACGGAAAATGGCGCACTTTTGCTG -ACGGAAAATGGCGCACTTTCCATG -ACGGAAAATGGCGCACTTTGTGTG -ACGGAAAATGGCGCACTTCTAGTG -ACGGAAAATGGCGCACTTCATCTG -ACGGAAAATGGCGCACTTGAGTTG -ACGGAAAATGGCGCACTTAGACTG -ACGGAAAATGGCGCACTTTCGGTA -ACGGAAAATGGCGCACTTTGCCTA -ACGGAAAATGGCGCACTTCCACTA -ACGGAAAATGGCGCACTTGGAGTA -ACGGAAAATGGCGCACTTTCGTCT -ACGGAAAATGGCGCACTTTGCACT -ACGGAAAATGGCGCACTTCTGACT -ACGGAAAATGGCGCACTTCAACCT -ACGGAAAATGGCGCACTTGCTACT -ACGGAAAATGGCGCACTTGGATCT -ACGGAAAATGGCGCACTTAAGGCT -ACGGAAAATGGCGCACTTTCAACC -ACGGAAAATGGCGCACTTTGTTCC -ACGGAAAATGGCGCACTTATTCCC -ACGGAAAATGGCGCACTTTTCTCG -ACGGAAAATGGCGCACTTTAGACG -ACGGAAAATGGCGCACTTGTAACG -ACGGAAAATGGCGCACTTACTTCG -ACGGAAAATGGCGCACTTTACGCA -ACGGAAAATGGCGCACTTCTTGCA -ACGGAAAATGGCGCACTTCGAACA -ACGGAAAATGGCGCACTTCAGTCA -ACGGAAAATGGCGCACTTGATCCA -ACGGAAAATGGCGCACTTACGACA -ACGGAAAATGGCGCACTTAGCTCA -ACGGAAAATGGCGCACTTTCACGT -ACGGAAAATGGCGCACTTCGTAGT -ACGGAAAATGGCGCACTTGTCAGT -ACGGAAAATGGCGCACTTGAAGGT -ACGGAAAATGGCGCACTTAACCGT -ACGGAAAATGGCGCACTTTTGTGC -ACGGAAAATGGCGCACTTCTAAGC -ACGGAAAATGGCGCACTTACTAGC -ACGGAAAATGGCGCACTTAGATGC -ACGGAAAATGGCGCACTTTGAAGG -ACGGAAAATGGCGCACTTCAATGG -ACGGAAAATGGCGCACTTATGAGG -ACGGAAAATGGCGCACTTAATGGG -ACGGAAAATGGCGCACTTTCCTGA -ACGGAAAATGGCGCACTTTAGCGA -ACGGAAAATGGCGCACTTCACAGA -ACGGAAAATGGCGCACTTGCAAGA -ACGGAAAATGGCGCACTTGGTTGA -ACGGAAAATGGCGCACTTTCCGAT -ACGGAAAATGGCGCACTTTGGCAT -ACGGAAAATGGCGCACTTCGAGAT -ACGGAAAATGGCGCACTTTACCAC -ACGGAAAATGGCGCACTTCAGAAC -ACGGAAAATGGCGCACTTGTCTAC -ACGGAAAATGGCGCACTTACGTAC -ACGGAAAATGGCGCACTTAGTGAC -ACGGAAAATGGCGCACTTCTGTAG -ACGGAAAATGGCGCACTTCCTAAG -ACGGAAAATGGCGCACTTGTTCAG -ACGGAAAATGGCGCACTTGCATAG -ACGGAAAATGGCGCACTTGACAAG -ACGGAAAATGGCGCACTTAAGCAG -ACGGAAAATGGCGCACTTCGTCAA -ACGGAAAATGGCGCACTTGCTGAA -ACGGAAAATGGCGCACTTAGTACG -ACGGAAAATGGCGCACTTATCCGA -ACGGAAAATGGCGCACTTATGGGA -ACGGAAAATGGCGCACTTGTGCAA -ACGGAAAATGGCGCACTTGAGGAA -ACGGAAAATGGCGCACTTCAGGTA -ACGGAAAATGGCGCACTTGACTCT -ACGGAAAATGGCGCACTTAGTCCT -ACGGAAAATGGCGCACTTTAAGCC -ACGGAAAATGGCGCACTTATAGCC -ACGGAAAATGGCGCACTTTAACCG -ACGGAAAATGGCGCACTTATGCCA -ACGGAAAATGGCACACGAGGAAAC -ACGGAAAATGGCACACGAAACACC -ACGGAAAATGGCACACGAATCGAG -ACGGAAAATGGCACACGACTCCTT -ACGGAAAATGGCACACGACCTGTT -ACGGAAAATGGCACACGACGGTTT -ACGGAAAATGGCACACGAGTGGTT -ACGGAAAATGGCACACGAGCCTTT -ACGGAAAATGGCACACGAGGTCTT -ACGGAAAATGGCACACGAACGCTT -ACGGAAAATGGCACACGAAGCGTT -ACGGAAAATGGCACACGATTCGTC -ACGGAAAATGGCACACGATCTCTC -ACGGAAAATGGCACACGATGGATC -ACGGAAAATGGCACACGACACTTC -ACGGAAAATGGCACACGAGTACTC -ACGGAAAATGGCACACGAGATGTC -ACGGAAAATGGCACACGAACAGTC -ACGGAAAATGGCACACGATTGCTG -ACGGAAAATGGCACACGATCCATG -ACGGAAAATGGCACACGATGTGTG -ACGGAAAATGGCACACGACTAGTG -ACGGAAAATGGCACACGACATCTG -ACGGAAAATGGCACACGAGAGTTG -ACGGAAAATGGCACACGAAGACTG -ACGGAAAATGGCACACGATCGGTA -ACGGAAAATGGCACACGATGCCTA -ACGGAAAATGGCACACGACCACTA -ACGGAAAATGGCACACGAGGAGTA -ACGGAAAATGGCACACGATCGTCT -ACGGAAAATGGCACACGATGCACT -ACGGAAAATGGCACACGACTGACT -ACGGAAAATGGCACACGACAACCT -ACGGAAAATGGCACACGAGCTACT -ACGGAAAATGGCACACGAGGATCT -ACGGAAAATGGCACACGAAAGGCT -ACGGAAAATGGCACACGATCAACC -ACGGAAAATGGCACACGATGTTCC -ACGGAAAATGGCACACGAATTCCC -ACGGAAAATGGCACACGATTCTCG -ACGGAAAATGGCACACGATAGACG -ACGGAAAATGGCACACGAGTAACG -ACGGAAAATGGCACACGAACTTCG -ACGGAAAATGGCACACGATACGCA -ACGGAAAATGGCACACGACTTGCA -ACGGAAAATGGCACACGACGAACA -ACGGAAAATGGCACACGACAGTCA -ACGGAAAATGGCACACGAGATCCA -ACGGAAAATGGCACACGAACGACA -ACGGAAAATGGCACACGAAGCTCA -ACGGAAAATGGCACACGATCACGT -ACGGAAAATGGCACACGACGTAGT -ACGGAAAATGGCACACGAGTCAGT -ACGGAAAATGGCACACGAGAAGGT -ACGGAAAATGGCACACGAAACCGT -ACGGAAAATGGCACACGATTGTGC -ACGGAAAATGGCACACGACTAAGC -ACGGAAAATGGCACACGAACTAGC -ACGGAAAATGGCACACGAAGATGC -ACGGAAAATGGCACACGATGAAGG -ACGGAAAATGGCACACGACAATGG -ACGGAAAATGGCACACGAATGAGG -ACGGAAAATGGCACACGAAATGGG -ACGGAAAATGGCACACGATCCTGA -ACGGAAAATGGCACACGATAGCGA -ACGGAAAATGGCACACGACACAGA -ACGGAAAATGGCACACGAGCAAGA -ACGGAAAATGGCACACGAGGTTGA -ACGGAAAATGGCACACGATCCGAT -ACGGAAAATGGCACACGATGGCAT -ACGGAAAATGGCACACGACGAGAT -ACGGAAAATGGCACACGATACCAC -ACGGAAAATGGCACACGACAGAAC -ACGGAAAATGGCACACGAGTCTAC -ACGGAAAATGGCACACGAACGTAC -ACGGAAAATGGCACACGAAGTGAC -ACGGAAAATGGCACACGACTGTAG -ACGGAAAATGGCACACGACCTAAG -ACGGAAAATGGCACACGAGTTCAG -ACGGAAAATGGCACACGAGCATAG -ACGGAAAATGGCACACGAGACAAG -ACGGAAAATGGCACACGAAAGCAG -ACGGAAAATGGCACACGACGTCAA -ACGGAAAATGGCACACGAGCTGAA -ACGGAAAATGGCACACGAAGTACG -ACGGAAAATGGCACACGAATCCGA -ACGGAAAATGGCACACGAATGGGA -ACGGAAAATGGCACACGAGTGCAA -ACGGAAAATGGCACACGAGAGGAA -ACGGAAAATGGCACACGACAGGTA -ACGGAAAATGGCACACGAGACTCT -ACGGAAAATGGCACACGAAGTCCT -ACGGAAAATGGCACACGATAAGCC -ACGGAAAATGGCACACGAATAGCC -ACGGAAAATGGCACACGATAACCG -ACGGAAAATGGCACACGAATGCCA -ACGGAAAATGGCTCACAGGGAAAC -ACGGAAAATGGCTCACAGAACACC -ACGGAAAATGGCTCACAGATCGAG -ACGGAAAATGGCTCACAGCTCCTT -ACGGAAAATGGCTCACAGCCTGTT -ACGGAAAATGGCTCACAGCGGTTT -ACGGAAAATGGCTCACAGGTGGTT -ACGGAAAATGGCTCACAGGCCTTT -ACGGAAAATGGCTCACAGGGTCTT -ACGGAAAATGGCTCACAGACGCTT -ACGGAAAATGGCTCACAGAGCGTT -ACGGAAAATGGCTCACAGTTCGTC -ACGGAAAATGGCTCACAGTCTCTC -ACGGAAAATGGCTCACAGTGGATC -ACGGAAAATGGCTCACAGCACTTC -ACGGAAAATGGCTCACAGGTACTC -ACGGAAAATGGCTCACAGGATGTC -ACGGAAAATGGCTCACAGACAGTC -ACGGAAAATGGCTCACAGTTGCTG -ACGGAAAATGGCTCACAGTCCATG -ACGGAAAATGGCTCACAGTGTGTG -ACGGAAAATGGCTCACAGCTAGTG -ACGGAAAATGGCTCACAGCATCTG -ACGGAAAATGGCTCACAGGAGTTG -ACGGAAAATGGCTCACAGAGACTG -ACGGAAAATGGCTCACAGTCGGTA -ACGGAAAATGGCTCACAGTGCCTA -ACGGAAAATGGCTCACAGCCACTA -ACGGAAAATGGCTCACAGGGAGTA -ACGGAAAATGGCTCACAGTCGTCT -ACGGAAAATGGCTCACAGTGCACT -ACGGAAAATGGCTCACAGCTGACT -ACGGAAAATGGCTCACAGCAACCT -ACGGAAAATGGCTCACAGGCTACT -ACGGAAAATGGCTCACAGGGATCT -ACGGAAAATGGCTCACAGAAGGCT -ACGGAAAATGGCTCACAGTCAACC -ACGGAAAATGGCTCACAGTGTTCC -ACGGAAAATGGCTCACAGATTCCC -ACGGAAAATGGCTCACAGTTCTCG -ACGGAAAATGGCTCACAGTAGACG -ACGGAAAATGGCTCACAGGTAACG -ACGGAAAATGGCTCACAGACTTCG -ACGGAAAATGGCTCACAGTACGCA -ACGGAAAATGGCTCACAGCTTGCA -ACGGAAAATGGCTCACAGCGAACA -ACGGAAAATGGCTCACAGCAGTCA -ACGGAAAATGGCTCACAGGATCCA -ACGGAAAATGGCTCACAGACGACA -ACGGAAAATGGCTCACAGAGCTCA -ACGGAAAATGGCTCACAGTCACGT -ACGGAAAATGGCTCACAGCGTAGT -ACGGAAAATGGCTCACAGGTCAGT -ACGGAAAATGGCTCACAGGAAGGT -ACGGAAAATGGCTCACAGAACCGT -ACGGAAAATGGCTCACAGTTGTGC -ACGGAAAATGGCTCACAGCTAAGC -ACGGAAAATGGCTCACAGACTAGC -ACGGAAAATGGCTCACAGAGATGC -ACGGAAAATGGCTCACAGTGAAGG -ACGGAAAATGGCTCACAGCAATGG -ACGGAAAATGGCTCACAGATGAGG -ACGGAAAATGGCTCACAGAATGGG -ACGGAAAATGGCTCACAGTCCTGA -ACGGAAAATGGCTCACAGTAGCGA -ACGGAAAATGGCTCACAGCACAGA -ACGGAAAATGGCTCACAGGCAAGA -ACGGAAAATGGCTCACAGGGTTGA -ACGGAAAATGGCTCACAGTCCGAT -ACGGAAAATGGCTCACAGTGGCAT -ACGGAAAATGGCTCACAGCGAGAT -ACGGAAAATGGCTCACAGTACCAC -ACGGAAAATGGCTCACAGCAGAAC -ACGGAAAATGGCTCACAGGTCTAC -ACGGAAAATGGCTCACAGACGTAC -ACGGAAAATGGCTCACAGAGTGAC -ACGGAAAATGGCTCACAGCTGTAG -ACGGAAAATGGCTCACAGCCTAAG -ACGGAAAATGGCTCACAGGTTCAG -ACGGAAAATGGCTCACAGGCATAG -ACGGAAAATGGCTCACAGGACAAG -ACGGAAAATGGCTCACAGAAGCAG -ACGGAAAATGGCTCACAGCGTCAA -ACGGAAAATGGCTCACAGGCTGAA -ACGGAAAATGGCTCACAGAGTACG -ACGGAAAATGGCTCACAGATCCGA -ACGGAAAATGGCTCACAGATGGGA -ACGGAAAATGGCTCACAGGTGCAA -ACGGAAAATGGCTCACAGGAGGAA -ACGGAAAATGGCTCACAGCAGGTA -ACGGAAAATGGCTCACAGGACTCT -ACGGAAAATGGCTCACAGAGTCCT -ACGGAAAATGGCTCACAGTAAGCC -ACGGAAAATGGCTCACAGATAGCC -ACGGAAAATGGCTCACAGTAACCG -ACGGAAAATGGCTCACAGATGCCA -ACGGAAAATGGCCCAGATGGAAAC -ACGGAAAATGGCCCAGATAACACC -ACGGAAAATGGCCCAGATATCGAG -ACGGAAAATGGCCCAGATCTCCTT -ACGGAAAATGGCCCAGATCCTGTT -ACGGAAAATGGCCCAGATCGGTTT -ACGGAAAATGGCCCAGATGTGGTT -ACGGAAAATGGCCCAGATGCCTTT -ACGGAAAATGGCCCAGATGGTCTT -ACGGAAAATGGCCCAGATACGCTT -ACGGAAAATGGCCCAGATAGCGTT -ACGGAAAATGGCCCAGATTTCGTC -ACGGAAAATGGCCCAGATTCTCTC -ACGGAAAATGGCCCAGATTGGATC -ACGGAAAATGGCCCAGATCACTTC -ACGGAAAATGGCCCAGATGTACTC -ACGGAAAATGGCCCAGATGATGTC -ACGGAAAATGGCCCAGATACAGTC -ACGGAAAATGGCCCAGATTTGCTG -ACGGAAAATGGCCCAGATTCCATG -ACGGAAAATGGCCCAGATTGTGTG -ACGGAAAATGGCCCAGATCTAGTG -ACGGAAAATGGCCCAGATCATCTG -ACGGAAAATGGCCCAGATGAGTTG -ACGGAAAATGGCCCAGATAGACTG -ACGGAAAATGGCCCAGATTCGGTA -ACGGAAAATGGCCCAGATTGCCTA -ACGGAAAATGGCCCAGATCCACTA -ACGGAAAATGGCCCAGATGGAGTA -ACGGAAAATGGCCCAGATTCGTCT -ACGGAAAATGGCCCAGATTGCACT -ACGGAAAATGGCCCAGATCTGACT -ACGGAAAATGGCCCAGATCAACCT -ACGGAAAATGGCCCAGATGCTACT -ACGGAAAATGGCCCAGATGGATCT -ACGGAAAATGGCCCAGATAAGGCT -ACGGAAAATGGCCCAGATTCAACC -ACGGAAAATGGCCCAGATTGTTCC -ACGGAAAATGGCCCAGATATTCCC -ACGGAAAATGGCCCAGATTTCTCG -ACGGAAAATGGCCCAGATTAGACG -ACGGAAAATGGCCCAGATGTAACG -ACGGAAAATGGCCCAGATACTTCG -ACGGAAAATGGCCCAGATTACGCA -ACGGAAAATGGCCCAGATCTTGCA -ACGGAAAATGGCCCAGATCGAACA -ACGGAAAATGGCCCAGATCAGTCA -ACGGAAAATGGCCCAGATGATCCA -ACGGAAAATGGCCCAGATACGACA -ACGGAAAATGGCCCAGATAGCTCA -ACGGAAAATGGCCCAGATTCACGT -ACGGAAAATGGCCCAGATCGTAGT -ACGGAAAATGGCCCAGATGTCAGT -ACGGAAAATGGCCCAGATGAAGGT -ACGGAAAATGGCCCAGATAACCGT -ACGGAAAATGGCCCAGATTTGTGC -ACGGAAAATGGCCCAGATCTAAGC -ACGGAAAATGGCCCAGATACTAGC -ACGGAAAATGGCCCAGATAGATGC -ACGGAAAATGGCCCAGATTGAAGG -ACGGAAAATGGCCCAGATCAATGG -ACGGAAAATGGCCCAGATATGAGG -ACGGAAAATGGCCCAGATAATGGG -ACGGAAAATGGCCCAGATTCCTGA -ACGGAAAATGGCCCAGATTAGCGA -ACGGAAAATGGCCCAGATCACAGA -ACGGAAAATGGCCCAGATGCAAGA -ACGGAAAATGGCCCAGATGGTTGA -ACGGAAAATGGCCCAGATTCCGAT -ACGGAAAATGGCCCAGATTGGCAT -ACGGAAAATGGCCCAGATCGAGAT -ACGGAAAATGGCCCAGATTACCAC -ACGGAAAATGGCCCAGATCAGAAC -ACGGAAAATGGCCCAGATGTCTAC -ACGGAAAATGGCCCAGATACGTAC -ACGGAAAATGGCCCAGATAGTGAC -ACGGAAAATGGCCCAGATCTGTAG -ACGGAAAATGGCCCAGATCCTAAG -ACGGAAAATGGCCCAGATGTTCAG -ACGGAAAATGGCCCAGATGCATAG -ACGGAAAATGGCCCAGATGACAAG -ACGGAAAATGGCCCAGATAAGCAG -ACGGAAAATGGCCCAGATCGTCAA -ACGGAAAATGGCCCAGATGCTGAA -ACGGAAAATGGCCCAGATAGTACG -ACGGAAAATGGCCCAGATATCCGA -ACGGAAAATGGCCCAGATATGGGA -ACGGAAAATGGCCCAGATGTGCAA -ACGGAAAATGGCCCAGATGAGGAA -ACGGAAAATGGCCCAGATCAGGTA -ACGGAAAATGGCCCAGATGACTCT -ACGGAAAATGGCCCAGATAGTCCT -ACGGAAAATGGCCCAGATTAAGCC -ACGGAAAATGGCCCAGATATAGCC -ACGGAAAATGGCCCAGATTAACCG -ACGGAAAATGGCCCAGATATGCCA -ACGGAAAATGGCACAACGGGAAAC -ACGGAAAATGGCACAACGAACACC -ACGGAAAATGGCACAACGATCGAG -ACGGAAAATGGCACAACGCTCCTT -ACGGAAAATGGCACAACGCCTGTT -ACGGAAAATGGCACAACGCGGTTT -ACGGAAAATGGCACAACGGTGGTT -ACGGAAAATGGCACAACGGCCTTT -ACGGAAAATGGCACAACGGGTCTT -ACGGAAAATGGCACAACGACGCTT -ACGGAAAATGGCACAACGAGCGTT -ACGGAAAATGGCACAACGTTCGTC -ACGGAAAATGGCACAACGTCTCTC -ACGGAAAATGGCACAACGTGGATC -ACGGAAAATGGCACAACGCACTTC -ACGGAAAATGGCACAACGGTACTC -ACGGAAAATGGCACAACGGATGTC -ACGGAAAATGGCACAACGACAGTC -ACGGAAAATGGCACAACGTTGCTG -ACGGAAAATGGCACAACGTCCATG -ACGGAAAATGGCACAACGTGTGTG -ACGGAAAATGGCACAACGCTAGTG -ACGGAAAATGGCACAACGCATCTG -ACGGAAAATGGCACAACGGAGTTG -ACGGAAAATGGCACAACGAGACTG -ACGGAAAATGGCACAACGTCGGTA -ACGGAAAATGGCACAACGTGCCTA -ACGGAAAATGGCACAACGCCACTA -ACGGAAAATGGCACAACGGGAGTA -ACGGAAAATGGCACAACGTCGTCT -ACGGAAAATGGCACAACGTGCACT -ACGGAAAATGGCACAACGCTGACT -ACGGAAAATGGCACAACGCAACCT -ACGGAAAATGGCACAACGGCTACT -ACGGAAAATGGCACAACGGGATCT -ACGGAAAATGGCACAACGAAGGCT -ACGGAAAATGGCACAACGTCAACC -ACGGAAAATGGCACAACGTGTTCC -ACGGAAAATGGCACAACGATTCCC -ACGGAAAATGGCACAACGTTCTCG -ACGGAAAATGGCACAACGTAGACG -ACGGAAAATGGCACAACGGTAACG -ACGGAAAATGGCACAACGACTTCG -ACGGAAAATGGCACAACGTACGCA -ACGGAAAATGGCACAACGCTTGCA -ACGGAAAATGGCACAACGCGAACA -ACGGAAAATGGCACAACGCAGTCA -ACGGAAAATGGCACAACGGATCCA -ACGGAAAATGGCACAACGACGACA -ACGGAAAATGGCACAACGAGCTCA -ACGGAAAATGGCACAACGTCACGT -ACGGAAAATGGCACAACGCGTAGT -ACGGAAAATGGCACAACGGTCAGT -ACGGAAAATGGCACAACGGAAGGT -ACGGAAAATGGCACAACGAACCGT -ACGGAAAATGGCACAACGTTGTGC -ACGGAAAATGGCACAACGCTAAGC -ACGGAAAATGGCACAACGACTAGC -ACGGAAAATGGCACAACGAGATGC -ACGGAAAATGGCACAACGTGAAGG -ACGGAAAATGGCACAACGCAATGG -ACGGAAAATGGCACAACGATGAGG -ACGGAAAATGGCACAACGAATGGG -ACGGAAAATGGCACAACGTCCTGA -ACGGAAAATGGCACAACGTAGCGA -ACGGAAAATGGCACAACGCACAGA -ACGGAAAATGGCACAACGGCAAGA -ACGGAAAATGGCACAACGGGTTGA -ACGGAAAATGGCACAACGTCCGAT -ACGGAAAATGGCACAACGTGGCAT -ACGGAAAATGGCACAACGCGAGAT -ACGGAAAATGGCACAACGTACCAC -ACGGAAAATGGCACAACGCAGAAC -ACGGAAAATGGCACAACGGTCTAC -ACGGAAAATGGCACAACGACGTAC -ACGGAAAATGGCACAACGAGTGAC -ACGGAAAATGGCACAACGCTGTAG -ACGGAAAATGGCACAACGCCTAAG -ACGGAAAATGGCACAACGGTTCAG -ACGGAAAATGGCACAACGGCATAG -ACGGAAAATGGCACAACGGACAAG -ACGGAAAATGGCACAACGAAGCAG -ACGGAAAATGGCACAACGCGTCAA -ACGGAAAATGGCACAACGGCTGAA -ACGGAAAATGGCACAACGAGTACG -ACGGAAAATGGCACAACGATCCGA -ACGGAAAATGGCACAACGATGGGA -ACGGAAAATGGCACAACGGTGCAA -ACGGAAAATGGCACAACGGAGGAA -ACGGAAAATGGCACAACGCAGGTA -ACGGAAAATGGCACAACGGACTCT -ACGGAAAATGGCACAACGAGTCCT -ACGGAAAATGGCACAACGTAAGCC -ACGGAAAATGGCACAACGATAGCC -ACGGAAAATGGCACAACGTAACCG -ACGGAAAATGGCACAACGATGCCA -ACGGAAAATGGCTCAAGCGGAAAC -ACGGAAAATGGCTCAAGCAACACC -ACGGAAAATGGCTCAAGCATCGAG -ACGGAAAATGGCTCAAGCCTCCTT -ACGGAAAATGGCTCAAGCCCTGTT -ACGGAAAATGGCTCAAGCCGGTTT -ACGGAAAATGGCTCAAGCGTGGTT -ACGGAAAATGGCTCAAGCGCCTTT -ACGGAAAATGGCTCAAGCGGTCTT -ACGGAAAATGGCTCAAGCACGCTT -ACGGAAAATGGCTCAAGCAGCGTT -ACGGAAAATGGCTCAAGCTTCGTC -ACGGAAAATGGCTCAAGCTCTCTC -ACGGAAAATGGCTCAAGCTGGATC -ACGGAAAATGGCTCAAGCCACTTC -ACGGAAAATGGCTCAAGCGTACTC -ACGGAAAATGGCTCAAGCGATGTC -ACGGAAAATGGCTCAAGCACAGTC -ACGGAAAATGGCTCAAGCTTGCTG -ACGGAAAATGGCTCAAGCTCCATG -ACGGAAAATGGCTCAAGCTGTGTG -ACGGAAAATGGCTCAAGCCTAGTG -ACGGAAAATGGCTCAAGCCATCTG -ACGGAAAATGGCTCAAGCGAGTTG -ACGGAAAATGGCTCAAGCAGACTG -ACGGAAAATGGCTCAAGCTCGGTA -ACGGAAAATGGCTCAAGCTGCCTA -ACGGAAAATGGCTCAAGCCCACTA -ACGGAAAATGGCTCAAGCGGAGTA -ACGGAAAATGGCTCAAGCTCGTCT -ACGGAAAATGGCTCAAGCTGCACT -ACGGAAAATGGCTCAAGCCTGACT -ACGGAAAATGGCTCAAGCCAACCT -ACGGAAAATGGCTCAAGCGCTACT -ACGGAAAATGGCTCAAGCGGATCT -ACGGAAAATGGCTCAAGCAAGGCT -ACGGAAAATGGCTCAAGCTCAACC -ACGGAAAATGGCTCAAGCTGTTCC -ACGGAAAATGGCTCAAGCATTCCC -ACGGAAAATGGCTCAAGCTTCTCG -ACGGAAAATGGCTCAAGCTAGACG -ACGGAAAATGGCTCAAGCGTAACG -ACGGAAAATGGCTCAAGCACTTCG -ACGGAAAATGGCTCAAGCTACGCA -ACGGAAAATGGCTCAAGCCTTGCA -ACGGAAAATGGCTCAAGCCGAACA -ACGGAAAATGGCTCAAGCCAGTCA -ACGGAAAATGGCTCAAGCGATCCA -ACGGAAAATGGCTCAAGCACGACA -ACGGAAAATGGCTCAAGCAGCTCA -ACGGAAAATGGCTCAAGCTCACGT -ACGGAAAATGGCTCAAGCCGTAGT -ACGGAAAATGGCTCAAGCGTCAGT -ACGGAAAATGGCTCAAGCGAAGGT -ACGGAAAATGGCTCAAGCAACCGT -ACGGAAAATGGCTCAAGCTTGTGC -ACGGAAAATGGCTCAAGCCTAAGC -ACGGAAAATGGCTCAAGCACTAGC -ACGGAAAATGGCTCAAGCAGATGC -ACGGAAAATGGCTCAAGCTGAAGG -ACGGAAAATGGCTCAAGCCAATGG -ACGGAAAATGGCTCAAGCATGAGG -ACGGAAAATGGCTCAAGCAATGGG -ACGGAAAATGGCTCAAGCTCCTGA -ACGGAAAATGGCTCAAGCTAGCGA -ACGGAAAATGGCTCAAGCCACAGA -ACGGAAAATGGCTCAAGCGCAAGA -ACGGAAAATGGCTCAAGCGGTTGA -ACGGAAAATGGCTCAAGCTCCGAT -ACGGAAAATGGCTCAAGCTGGCAT -ACGGAAAATGGCTCAAGCCGAGAT -ACGGAAAATGGCTCAAGCTACCAC -ACGGAAAATGGCTCAAGCCAGAAC -ACGGAAAATGGCTCAAGCGTCTAC -ACGGAAAATGGCTCAAGCACGTAC -ACGGAAAATGGCTCAAGCAGTGAC -ACGGAAAATGGCTCAAGCCTGTAG -ACGGAAAATGGCTCAAGCCCTAAG -ACGGAAAATGGCTCAAGCGTTCAG -ACGGAAAATGGCTCAAGCGCATAG -ACGGAAAATGGCTCAAGCGACAAG -ACGGAAAATGGCTCAAGCAAGCAG -ACGGAAAATGGCTCAAGCCGTCAA -ACGGAAAATGGCTCAAGCGCTGAA -ACGGAAAATGGCTCAAGCAGTACG -ACGGAAAATGGCTCAAGCATCCGA -ACGGAAAATGGCTCAAGCATGGGA -ACGGAAAATGGCTCAAGCGTGCAA -ACGGAAAATGGCTCAAGCGAGGAA -ACGGAAAATGGCTCAAGCCAGGTA -ACGGAAAATGGCTCAAGCGACTCT -ACGGAAAATGGCTCAAGCAGTCCT -ACGGAAAATGGCTCAAGCTAAGCC -ACGGAAAATGGCTCAAGCATAGCC -ACGGAAAATGGCTCAAGCTAACCG -ACGGAAAATGGCTCAAGCATGCCA -ACGGAAAATGGCCGTTCAGGAAAC -ACGGAAAATGGCCGTTCAAACACC -ACGGAAAATGGCCGTTCAATCGAG -ACGGAAAATGGCCGTTCACTCCTT -ACGGAAAATGGCCGTTCACCTGTT -ACGGAAAATGGCCGTTCACGGTTT -ACGGAAAATGGCCGTTCAGTGGTT -ACGGAAAATGGCCGTTCAGCCTTT -ACGGAAAATGGCCGTTCAGGTCTT -ACGGAAAATGGCCGTTCAACGCTT -ACGGAAAATGGCCGTTCAAGCGTT -ACGGAAAATGGCCGTTCATTCGTC -ACGGAAAATGGCCGTTCATCTCTC -ACGGAAAATGGCCGTTCATGGATC -ACGGAAAATGGCCGTTCACACTTC -ACGGAAAATGGCCGTTCAGTACTC -ACGGAAAATGGCCGTTCAGATGTC -ACGGAAAATGGCCGTTCAACAGTC -ACGGAAAATGGCCGTTCATTGCTG -ACGGAAAATGGCCGTTCATCCATG -ACGGAAAATGGCCGTTCATGTGTG -ACGGAAAATGGCCGTTCACTAGTG -ACGGAAAATGGCCGTTCACATCTG -ACGGAAAATGGCCGTTCAGAGTTG -ACGGAAAATGGCCGTTCAAGACTG -ACGGAAAATGGCCGTTCATCGGTA -ACGGAAAATGGCCGTTCATGCCTA -ACGGAAAATGGCCGTTCACCACTA -ACGGAAAATGGCCGTTCAGGAGTA -ACGGAAAATGGCCGTTCATCGTCT -ACGGAAAATGGCCGTTCATGCACT -ACGGAAAATGGCCGTTCACTGACT -ACGGAAAATGGCCGTTCACAACCT -ACGGAAAATGGCCGTTCAGCTACT -ACGGAAAATGGCCGTTCAGGATCT -ACGGAAAATGGCCGTTCAAAGGCT -ACGGAAAATGGCCGTTCATCAACC -ACGGAAAATGGCCGTTCATGTTCC -ACGGAAAATGGCCGTTCAATTCCC -ACGGAAAATGGCCGTTCATTCTCG -ACGGAAAATGGCCGTTCATAGACG -ACGGAAAATGGCCGTTCAGTAACG -ACGGAAAATGGCCGTTCAACTTCG -ACGGAAAATGGCCGTTCATACGCA -ACGGAAAATGGCCGTTCACTTGCA -ACGGAAAATGGCCGTTCACGAACA -ACGGAAAATGGCCGTTCACAGTCA -ACGGAAAATGGCCGTTCAGATCCA -ACGGAAAATGGCCGTTCAACGACA -ACGGAAAATGGCCGTTCAAGCTCA -ACGGAAAATGGCCGTTCATCACGT -ACGGAAAATGGCCGTTCACGTAGT -ACGGAAAATGGCCGTTCAGTCAGT -ACGGAAAATGGCCGTTCAGAAGGT -ACGGAAAATGGCCGTTCAAACCGT -ACGGAAAATGGCCGTTCATTGTGC -ACGGAAAATGGCCGTTCACTAAGC -ACGGAAAATGGCCGTTCAACTAGC -ACGGAAAATGGCCGTTCAAGATGC -ACGGAAAATGGCCGTTCATGAAGG -ACGGAAAATGGCCGTTCACAATGG -ACGGAAAATGGCCGTTCAATGAGG -ACGGAAAATGGCCGTTCAAATGGG -ACGGAAAATGGCCGTTCATCCTGA -ACGGAAAATGGCCGTTCATAGCGA -ACGGAAAATGGCCGTTCACACAGA -ACGGAAAATGGCCGTTCAGCAAGA -ACGGAAAATGGCCGTTCAGGTTGA -ACGGAAAATGGCCGTTCATCCGAT -ACGGAAAATGGCCGTTCATGGCAT -ACGGAAAATGGCCGTTCACGAGAT -ACGGAAAATGGCCGTTCATACCAC -ACGGAAAATGGCCGTTCACAGAAC -ACGGAAAATGGCCGTTCAGTCTAC -ACGGAAAATGGCCGTTCAACGTAC -ACGGAAAATGGCCGTTCAAGTGAC -ACGGAAAATGGCCGTTCACTGTAG -ACGGAAAATGGCCGTTCACCTAAG -ACGGAAAATGGCCGTTCAGTTCAG -ACGGAAAATGGCCGTTCAGCATAG -ACGGAAAATGGCCGTTCAGACAAG -ACGGAAAATGGCCGTTCAAAGCAG -ACGGAAAATGGCCGTTCACGTCAA -ACGGAAAATGGCCGTTCAGCTGAA -ACGGAAAATGGCCGTTCAAGTACG -ACGGAAAATGGCCGTTCAATCCGA -ACGGAAAATGGCCGTTCAATGGGA -ACGGAAAATGGCCGTTCAGTGCAA -ACGGAAAATGGCCGTTCAGAGGAA -ACGGAAAATGGCCGTTCACAGGTA -ACGGAAAATGGCCGTTCAGACTCT -ACGGAAAATGGCCGTTCAAGTCCT -ACGGAAAATGGCCGTTCATAAGCC -ACGGAAAATGGCCGTTCAATAGCC -ACGGAAAATGGCCGTTCATAACCG -ACGGAAAATGGCCGTTCAATGCCA -ACGGAAAATGGCAGTCGTGGAAAC -ACGGAAAATGGCAGTCGTAACACC -ACGGAAAATGGCAGTCGTATCGAG -ACGGAAAATGGCAGTCGTCTCCTT -ACGGAAAATGGCAGTCGTCCTGTT -ACGGAAAATGGCAGTCGTCGGTTT -ACGGAAAATGGCAGTCGTGTGGTT -ACGGAAAATGGCAGTCGTGCCTTT -ACGGAAAATGGCAGTCGTGGTCTT -ACGGAAAATGGCAGTCGTACGCTT -ACGGAAAATGGCAGTCGTAGCGTT -ACGGAAAATGGCAGTCGTTTCGTC -ACGGAAAATGGCAGTCGTTCTCTC -ACGGAAAATGGCAGTCGTTGGATC -ACGGAAAATGGCAGTCGTCACTTC -ACGGAAAATGGCAGTCGTGTACTC -ACGGAAAATGGCAGTCGTGATGTC -ACGGAAAATGGCAGTCGTACAGTC -ACGGAAAATGGCAGTCGTTTGCTG -ACGGAAAATGGCAGTCGTTCCATG -ACGGAAAATGGCAGTCGTTGTGTG -ACGGAAAATGGCAGTCGTCTAGTG -ACGGAAAATGGCAGTCGTCATCTG -ACGGAAAATGGCAGTCGTGAGTTG -ACGGAAAATGGCAGTCGTAGACTG -ACGGAAAATGGCAGTCGTTCGGTA -ACGGAAAATGGCAGTCGTTGCCTA -ACGGAAAATGGCAGTCGTCCACTA -ACGGAAAATGGCAGTCGTGGAGTA -ACGGAAAATGGCAGTCGTTCGTCT -ACGGAAAATGGCAGTCGTTGCACT -ACGGAAAATGGCAGTCGTCTGACT -ACGGAAAATGGCAGTCGTCAACCT -ACGGAAAATGGCAGTCGTGCTACT -ACGGAAAATGGCAGTCGTGGATCT -ACGGAAAATGGCAGTCGTAAGGCT -ACGGAAAATGGCAGTCGTTCAACC -ACGGAAAATGGCAGTCGTTGTTCC -ACGGAAAATGGCAGTCGTATTCCC -ACGGAAAATGGCAGTCGTTTCTCG -ACGGAAAATGGCAGTCGTTAGACG -ACGGAAAATGGCAGTCGTGTAACG -ACGGAAAATGGCAGTCGTACTTCG -ACGGAAAATGGCAGTCGTTACGCA -ACGGAAAATGGCAGTCGTCTTGCA -ACGGAAAATGGCAGTCGTCGAACA -ACGGAAAATGGCAGTCGTCAGTCA -ACGGAAAATGGCAGTCGTGATCCA -ACGGAAAATGGCAGTCGTACGACA -ACGGAAAATGGCAGTCGTAGCTCA -ACGGAAAATGGCAGTCGTTCACGT -ACGGAAAATGGCAGTCGTCGTAGT -ACGGAAAATGGCAGTCGTGTCAGT -ACGGAAAATGGCAGTCGTGAAGGT -ACGGAAAATGGCAGTCGTAACCGT -ACGGAAAATGGCAGTCGTTTGTGC -ACGGAAAATGGCAGTCGTCTAAGC -ACGGAAAATGGCAGTCGTACTAGC -ACGGAAAATGGCAGTCGTAGATGC -ACGGAAAATGGCAGTCGTTGAAGG -ACGGAAAATGGCAGTCGTCAATGG -ACGGAAAATGGCAGTCGTATGAGG -ACGGAAAATGGCAGTCGTAATGGG -ACGGAAAATGGCAGTCGTTCCTGA -ACGGAAAATGGCAGTCGTTAGCGA -ACGGAAAATGGCAGTCGTCACAGA -ACGGAAAATGGCAGTCGTGCAAGA -ACGGAAAATGGCAGTCGTGGTTGA -ACGGAAAATGGCAGTCGTTCCGAT -ACGGAAAATGGCAGTCGTTGGCAT -ACGGAAAATGGCAGTCGTCGAGAT -ACGGAAAATGGCAGTCGTTACCAC -ACGGAAAATGGCAGTCGTCAGAAC -ACGGAAAATGGCAGTCGTGTCTAC -ACGGAAAATGGCAGTCGTACGTAC -ACGGAAAATGGCAGTCGTAGTGAC -ACGGAAAATGGCAGTCGTCTGTAG -ACGGAAAATGGCAGTCGTCCTAAG -ACGGAAAATGGCAGTCGTGTTCAG -ACGGAAAATGGCAGTCGTGCATAG -ACGGAAAATGGCAGTCGTGACAAG -ACGGAAAATGGCAGTCGTAAGCAG -ACGGAAAATGGCAGTCGTCGTCAA -ACGGAAAATGGCAGTCGTGCTGAA -ACGGAAAATGGCAGTCGTAGTACG -ACGGAAAATGGCAGTCGTATCCGA -ACGGAAAATGGCAGTCGTATGGGA -ACGGAAAATGGCAGTCGTGTGCAA -ACGGAAAATGGCAGTCGTGAGGAA -ACGGAAAATGGCAGTCGTCAGGTA -ACGGAAAATGGCAGTCGTGACTCT -ACGGAAAATGGCAGTCGTAGTCCT -ACGGAAAATGGCAGTCGTTAAGCC -ACGGAAAATGGCAGTCGTATAGCC -ACGGAAAATGGCAGTCGTTAACCG -ACGGAAAATGGCAGTCGTATGCCA -ACGGAAAATGGCAGTGTCGGAAAC -ACGGAAAATGGCAGTGTCAACACC -ACGGAAAATGGCAGTGTCATCGAG -ACGGAAAATGGCAGTGTCCTCCTT -ACGGAAAATGGCAGTGTCCCTGTT -ACGGAAAATGGCAGTGTCCGGTTT -ACGGAAAATGGCAGTGTCGTGGTT -ACGGAAAATGGCAGTGTCGCCTTT -ACGGAAAATGGCAGTGTCGGTCTT -ACGGAAAATGGCAGTGTCACGCTT -ACGGAAAATGGCAGTGTCAGCGTT -ACGGAAAATGGCAGTGTCTTCGTC -ACGGAAAATGGCAGTGTCTCTCTC -ACGGAAAATGGCAGTGTCTGGATC -ACGGAAAATGGCAGTGTCCACTTC -ACGGAAAATGGCAGTGTCGTACTC -ACGGAAAATGGCAGTGTCGATGTC -ACGGAAAATGGCAGTGTCACAGTC -ACGGAAAATGGCAGTGTCTTGCTG -ACGGAAAATGGCAGTGTCTCCATG -ACGGAAAATGGCAGTGTCTGTGTG -ACGGAAAATGGCAGTGTCCTAGTG -ACGGAAAATGGCAGTGTCCATCTG -ACGGAAAATGGCAGTGTCGAGTTG -ACGGAAAATGGCAGTGTCAGACTG -ACGGAAAATGGCAGTGTCTCGGTA -ACGGAAAATGGCAGTGTCTGCCTA -ACGGAAAATGGCAGTGTCCCACTA -ACGGAAAATGGCAGTGTCGGAGTA -ACGGAAAATGGCAGTGTCTCGTCT -ACGGAAAATGGCAGTGTCTGCACT -ACGGAAAATGGCAGTGTCCTGACT -ACGGAAAATGGCAGTGTCCAACCT -ACGGAAAATGGCAGTGTCGCTACT -ACGGAAAATGGCAGTGTCGGATCT -ACGGAAAATGGCAGTGTCAAGGCT -ACGGAAAATGGCAGTGTCTCAACC -ACGGAAAATGGCAGTGTCTGTTCC -ACGGAAAATGGCAGTGTCATTCCC -ACGGAAAATGGCAGTGTCTTCTCG -ACGGAAAATGGCAGTGTCTAGACG -ACGGAAAATGGCAGTGTCGTAACG -ACGGAAAATGGCAGTGTCACTTCG -ACGGAAAATGGCAGTGTCTACGCA -ACGGAAAATGGCAGTGTCCTTGCA -ACGGAAAATGGCAGTGTCCGAACA -ACGGAAAATGGCAGTGTCCAGTCA -ACGGAAAATGGCAGTGTCGATCCA -ACGGAAAATGGCAGTGTCACGACA -ACGGAAAATGGCAGTGTCAGCTCA -ACGGAAAATGGCAGTGTCTCACGT -ACGGAAAATGGCAGTGTCCGTAGT -ACGGAAAATGGCAGTGTCGTCAGT -ACGGAAAATGGCAGTGTCGAAGGT -ACGGAAAATGGCAGTGTCAACCGT -ACGGAAAATGGCAGTGTCTTGTGC -ACGGAAAATGGCAGTGTCCTAAGC -ACGGAAAATGGCAGTGTCACTAGC -ACGGAAAATGGCAGTGTCAGATGC -ACGGAAAATGGCAGTGTCTGAAGG -ACGGAAAATGGCAGTGTCCAATGG -ACGGAAAATGGCAGTGTCATGAGG -ACGGAAAATGGCAGTGTCAATGGG -ACGGAAAATGGCAGTGTCTCCTGA -ACGGAAAATGGCAGTGTCTAGCGA -ACGGAAAATGGCAGTGTCCACAGA -ACGGAAAATGGCAGTGTCGCAAGA -ACGGAAAATGGCAGTGTCGGTTGA -ACGGAAAATGGCAGTGTCTCCGAT -ACGGAAAATGGCAGTGTCTGGCAT -ACGGAAAATGGCAGTGTCCGAGAT -ACGGAAAATGGCAGTGTCTACCAC -ACGGAAAATGGCAGTGTCCAGAAC -ACGGAAAATGGCAGTGTCGTCTAC -ACGGAAAATGGCAGTGTCACGTAC -ACGGAAAATGGCAGTGTCAGTGAC -ACGGAAAATGGCAGTGTCCTGTAG -ACGGAAAATGGCAGTGTCCCTAAG -ACGGAAAATGGCAGTGTCGTTCAG -ACGGAAAATGGCAGTGTCGCATAG -ACGGAAAATGGCAGTGTCGACAAG -ACGGAAAATGGCAGTGTCAAGCAG -ACGGAAAATGGCAGTGTCCGTCAA -ACGGAAAATGGCAGTGTCGCTGAA -ACGGAAAATGGCAGTGTCAGTACG -ACGGAAAATGGCAGTGTCATCCGA -ACGGAAAATGGCAGTGTCATGGGA -ACGGAAAATGGCAGTGTCGTGCAA -ACGGAAAATGGCAGTGTCGAGGAA -ACGGAAAATGGCAGTGTCCAGGTA -ACGGAAAATGGCAGTGTCGACTCT -ACGGAAAATGGCAGTGTCAGTCCT -ACGGAAAATGGCAGTGTCTAAGCC -ACGGAAAATGGCAGTGTCATAGCC -ACGGAAAATGGCAGTGTCTAACCG -ACGGAAAATGGCAGTGTCATGCCA -ACGGAAAATGGCGGTGAAGGAAAC -ACGGAAAATGGCGGTGAAAACACC -ACGGAAAATGGCGGTGAAATCGAG -ACGGAAAATGGCGGTGAACTCCTT -ACGGAAAATGGCGGTGAACCTGTT -ACGGAAAATGGCGGTGAACGGTTT -ACGGAAAATGGCGGTGAAGTGGTT -ACGGAAAATGGCGGTGAAGCCTTT -ACGGAAAATGGCGGTGAAGGTCTT -ACGGAAAATGGCGGTGAAACGCTT -ACGGAAAATGGCGGTGAAAGCGTT -ACGGAAAATGGCGGTGAATTCGTC -ACGGAAAATGGCGGTGAATCTCTC -ACGGAAAATGGCGGTGAATGGATC -ACGGAAAATGGCGGTGAACACTTC -ACGGAAAATGGCGGTGAAGTACTC -ACGGAAAATGGCGGTGAAGATGTC -ACGGAAAATGGCGGTGAAACAGTC -ACGGAAAATGGCGGTGAATTGCTG -ACGGAAAATGGCGGTGAATCCATG -ACGGAAAATGGCGGTGAATGTGTG -ACGGAAAATGGCGGTGAACTAGTG -ACGGAAAATGGCGGTGAACATCTG -ACGGAAAATGGCGGTGAAGAGTTG -ACGGAAAATGGCGGTGAAAGACTG -ACGGAAAATGGCGGTGAATCGGTA -ACGGAAAATGGCGGTGAATGCCTA -ACGGAAAATGGCGGTGAACCACTA -ACGGAAAATGGCGGTGAAGGAGTA -ACGGAAAATGGCGGTGAATCGTCT -ACGGAAAATGGCGGTGAATGCACT -ACGGAAAATGGCGGTGAACTGACT -ACGGAAAATGGCGGTGAACAACCT -ACGGAAAATGGCGGTGAAGCTACT -ACGGAAAATGGCGGTGAAGGATCT -ACGGAAAATGGCGGTGAAAAGGCT -ACGGAAAATGGCGGTGAATCAACC -ACGGAAAATGGCGGTGAATGTTCC -ACGGAAAATGGCGGTGAAATTCCC -ACGGAAAATGGCGGTGAATTCTCG -ACGGAAAATGGCGGTGAATAGACG -ACGGAAAATGGCGGTGAAGTAACG -ACGGAAAATGGCGGTGAAACTTCG -ACGGAAAATGGCGGTGAATACGCA -ACGGAAAATGGCGGTGAACTTGCA -ACGGAAAATGGCGGTGAACGAACA -ACGGAAAATGGCGGTGAACAGTCA -ACGGAAAATGGCGGTGAAGATCCA -ACGGAAAATGGCGGTGAAACGACA -ACGGAAAATGGCGGTGAAAGCTCA -ACGGAAAATGGCGGTGAATCACGT -ACGGAAAATGGCGGTGAACGTAGT -ACGGAAAATGGCGGTGAAGTCAGT -ACGGAAAATGGCGGTGAAGAAGGT -ACGGAAAATGGCGGTGAAAACCGT -ACGGAAAATGGCGGTGAATTGTGC -ACGGAAAATGGCGGTGAACTAAGC -ACGGAAAATGGCGGTGAAACTAGC -ACGGAAAATGGCGGTGAAAGATGC -ACGGAAAATGGCGGTGAATGAAGG -ACGGAAAATGGCGGTGAACAATGG -ACGGAAAATGGCGGTGAAATGAGG -ACGGAAAATGGCGGTGAAAATGGG -ACGGAAAATGGCGGTGAATCCTGA -ACGGAAAATGGCGGTGAATAGCGA -ACGGAAAATGGCGGTGAACACAGA -ACGGAAAATGGCGGTGAAGCAAGA -ACGGAAAATGGCGGTGAAGGTTGA -ACGGAAAATGGCGGTGAATCCGAT -ACGGAAAATGGCGGTGAATGGCAT -ACGGAAAATGGCGGTGAACGAGAT -ACGGAAAATGGCGGTGAATACCAC -ACGGAAAATGGCGGTGAACAGAAC -ACGGAAAATGGCGGTGAAGTCTAC -ACGGAAAATGGCGGTGAAACGTAC -ACGGAAAATGGCGGTGAAAGTGAC -ACGGAAAATGGCGGTGAACTGTAG -ACGGAAAATGGCGGTGAACCTAAG -ACGGAAAATGGCGGTGAAGTTCAG -ACGGAAAATGGCGGTGAAGCATAG -ACGGAAAATGGCGGTGAAGACAAG -ACGGAAAATGGCGGTGAAAAGCAG -ACGGAAAATGGCGGTGAACGTCAA -ACGGAAAATGGCGGTGAAGCTGAA -ACGGAAAATGGCGGTGAAAGTACG -ACGGAAAATGGCGGTGAAATCCGA -ACGGAAAATGGCGGTGAAATGGGA -ACGGAAAATGGCGGTGAAGTGCAA -ACGGAAAATGGCGGTGAAGAGGAA -ACGGAAAATGGCGGTGAACAGGTA -ACGGAAAATGGCGGTGAAGACTCT -ACGGAAAATGGCGGTGAAAGTCCT -ACGGAAAATGGCGGTGAATAAGCC -ACGGAAAATGGCGGTGAAATAGCC -ACGGAAAATGGCGGTGAATAACCG -ACGGAAAATGGCGGTGAAATGCCA -ACGGAAAATGGCCGTAACGGAAAC -ACGGAAAATGGCCGTAACAACACC -ACGGAAAATGGCCGTAACATCGAG -ACGGAAAATGGCCGTAACCTCCTT -ACGGAAAATGGCCGTAACCCTGTT -ACGGAAAATGGCCGTAACCGGTTT -ACGGAAAATGGCCGTAACGTGGTT -ACGGAAAATGGCCGTAACGCCTTT -ACGGAAAATGGCCGTAACGGTCTT -ACGGAAAATGGCCGTAACACGCTT -ACGGAAAATGGCCGTAACAGCGTT -ACGGAAAATGGCCGTAACTTCGTC -ACGGAAAATGGCCGTAACTCTCTC -ACGGAAAATGGCCGTAACTGGATC -ACGGAAAATGGCCGTAACCACTTC -ACGGAAAATGGCCGTAACGTACTC -ACGGAAAATGGCCGTAACGATGTC -ACGGAAAATGGCCGTAACACAGTC -ACGGAAAATGGCCGTAACTTGCTG -ACGGAAAATGGCCGTAACTCCATG -ACGGAAAATGGCCGTAACTGTGTG -ACGGAAAATGGCCGTAACCTAGTG -ACGGAAAATGGCCGTAACCATCTG -ACGGAAAATGGCCGTAACGAGTTG -ACGGAAAATGGCCGTAACAGACTG -ACGGAAAATGGCCGTAACTCGGTA -ACGGAAAATGGCCGTAACTGCCTA -ACGGAAAATGGCCGTAACCCACTA -ACGGAAAATGGCCGTAACGGAGTA -ACGGAAAATGGCCGTAACTCGTCT -ACGGAAAATGGCCGTAACTGCACT -ACGGAAAATGGCCGTAACCTGACT -ACGGAAAATGGCCGTAACCAACCT -ACGGAAAATGGCCGTAACGCTACT -ACGGAAAATGGCCGTAACGGATCT -ACGGAAAATGGCCGTAACAAGGCT -ACGGAAAATGGCCGTAACTCAACC -ACGGAAAATGGCCGTAACTGTTCC -ACGGAAAATGGCCGTAACATTCCC -ACGGAAAATGGCCGTAACTTCTCG -ACGGAAAATGGCCGTAACTAGACG -ACGGAAAATGGCCGTAACGTAACG -ACGGAAAATGGCCGTAACACTTCG -ACGGAAAATGGCCGTAACTACGCA -ACGGAAAATGGCCGTAACCTTGCA -ACGGAAAATGGCCGTAACCGAACA -ACGGAAAATGGCCGTAACCAGTCA -ACGGAAAATGGCCGTAACGATCCA -ACGGAAAATGGCCGTAACACGACA -ACGGAAAATGGCCGTAACAGCTCA -ACGGAAAATGGCCGTAACTCACGT -ACGGAAAATGGCCGTAACCGTAGT -ACGGAAAATGGCCGTAACGTCAGT -ACGGAAAATGGCCGTAACGAAGGT -ACGGAAAATGGCCGTAACAACCGT -ACGGAAAATGGCCGTAACTTGTGC -ACGGAAAATGGCCGTAACCTAAGC -ACGGAAAATGGCCGTAACACTAGC -ACGGAAAATGGCCGTAACAGATGC -ACGGAAAATGGCCGTAACTGAAGG -ACGGAAAATGGCCGTAACCAATGG -ACGGAAAATGGCCGTAACATGAGG -ACGGAAAATGGCCGTAACAATGGG -ACGGAAAATGGCCGTAACTCCTGA -ACGGAAAATGGCCGTAACTAGCGA -ACGGAAAATGGCCGTAACCACAGA -ACGGAAAATGGCCGTAACGCAAGA -ACGGAAAATGGCCGTAACGGTTGA -ACGGAAAATGGCCGTAACTCCGAT -ACGGAAAATGGCCGTAACTGGCAT -ACGGAAAATGGCCGTAACCGAGAT -ACGGAAAATGGCCGTAACTACCAC -ACGGAAAATGGCCGTAACCAGAAC -ACGGAAAATGGCCGTAACGTCTAC -ACGGAAAATGGCCGTAACACGTAC -ACGGAAAATGGCCGTAACAGTGAC -ACGGAAAATGGCCGTAACCTGTAG -ACGGAAAATGGCCGTAACCCTAAG -ACGGAAAATGGCCGTAACGTTCAG -ACGGAAAATGGCCGTAACGCATAG -ACGGAAAATGGCCGTAACGACAAG -ACGGAAAATGGCCGTAACAAGCAG -ACGGAAAATGGCCGTAACCGTCAA -ACGGAAAATGGCCGTAACGCTGAA -ACGGAAAATGGCCGTAACAGTACG -ACGGAAAATGGCCGTAACATCCGA -ACGGAAAATGGCCGTAACATGGGA -ACGGAAAATGGCCGTAACGTGCAA -ACGGAAAATGGCCGTAACGAGGAA -ACGGAAAATGGCCGTAACCAGGTA -ACGGAAAATGGCCGTAACGACTCT -ACGGAAAATGGCCGTAACAGTCCT -ACGGAAAATGGCCGTAACTAAGCC -ACGGAAAATGGCCGTAACATAGCC -ACGGAAAATGGCCGTAACTAACCG -ACGGAAAATGGCCGTAACATGCCA -ACGGAAAATGGCTGCTTGGGAAAC -ACGGAAAATGGCTGCTTGAACACC -ACGGAAAATGGCTGCTTGATCGAG -ACGGAAAATGGCTGCTTGCTCCTT -ACGGAAAATGGCTGCTTGCCTGTT -ACGGAAAATGGCTGCTTGCGGTTT -ACGGAAAATGGCTGCTTGGTGGTT -ACGGAAAATGGCTGCTTGGCCTTT -ACGGAAAATGGCTGCTTGGGTCTT -ACGGAAAATGGCTGCTTGACGCTT -ACGGAAAATGGCTGCTTGAGCGTT -ACGGAAAATGGCTGCTTGTTCGTC -ACGGAAAATGGCTGCTTGTCTCTC -ACGGAAAATGGCTGCTTGTGGATC -ACGGAAAATGGCTGCTTGCACTTC -ACGGAAAATGGCTGCTTGGTACTC -ACGGAAAATGGCTGCTTGGATGTC -ACGGAAAATGGCTGCTTGACAGTC -ACGGAAAATGGCTGCTTGTTGCTG -ACGGAAAATGGCTGCTTGTCCATG -ACGGAAAATGGCTGCTTGTGTGTG -ACGGAAAATGGCTGCTTGCTAGTG -ACGGAAAATGGCTGCTTGCATCTG -ACGGAAAATGGCTGCTTGGAGTTG -ACGGAAAATGGCTGCTTGAGACTG -ACGGAAAATGGCTGCTTGTCGGTA -ACGGAAAATGGCTGCTTGTGCCTA -ACGGAAAATGGCTGCTTGCCACTA -ACGGAAAATGGCTGCTTGGGAGTA -ACGGAAAATGGCTGCTTGTCGTCT -ACGGAAAATGGCTGCTTGTGCACT -ACGGAAAATGGCTGCTTGCTGACT -ACGGAAAATGGCTGCTTGCAACCT -ACGGAAAATGGCTGCTTGGCTACT -ACGGAAAATGGCTGCTTGGGATCT -ACGGAAAATGGCTGCTTGAAGGCT -ACGGAAAATGGCTGCTTGTCAACC -ACGGAAAATGGCTGCTTGTGTTCC -ACGGAAAATGGCTGCTTGATTCCC -ACGGAAAATGGCTGCTTGTTCTCG -ACGGAAAATGGCTGCTTGTAGACG -ACGGAAAATGGCTGCTTGGTAACG -ACGGAAAATGGCTGCTTGACTTCG -ACGGAAAATGGCTGCTTGTACGCA -ACGGAAAATGGCTGCTTGCTTGCA -ACGGAAAATGGCTGCTTGCGAACA -ACGGAAAATGGCTGCTTGCAGTCA -ACGGAAAATGGCTGCTTGGATCCA -ACGGAAAATGGCTGCTTGACGACA -ACGGAAAATGGCTGCTTGAGCTCA -ACGGAAAATGGCTGCTTGTCACGT -ACGGAAAATGGCTGCTTGCGTAGT -ACGGAAAATGGCTGCTTGGTCAGT -ACGGAAAATGGCTGCTTGGAAGGT -ACGGAAAATGGCTGCTTGAACCGT -ACGGAAAATGGCTGCTTGTTGTGC -ACGGAAAATGGCTGCTTGCTAAGC -ACGGAAAATGGCTGCTTGACTAGC -ACGGAAAATGGCTGCTTGAGATGC -ACGGAAAATGGCTGCTTGTGAAGG -ACGGAAAATGGCTGCTTGCAATGG -ACGGAAAATGGCTGCTTGATGAGG -ACGGAAAATGGCTGCTTGAATGGG -ACGGAAAATGGCTGCTTGTCCTGA -ACGGAAAATGGCTGCTTGTAGCGA -ACGGAAAATGGCTGCTTGCACAGA -ACGGAAAATGGCTGCTTGGCAAGA -ACGGAAAATGGCTGCTTGGGTTGA -ACGGAAAATGGCTGCTTGTCCGAT -ACGGAAAATGGCTGCTTGTGGCAT -ACGGAAAATGGCTGCTTGCGAGAT -ACGGAAAATGGCTGCTTGTACCAC -ACGGAAAATGGCTGCTTGCAGAAC -ACGGAAAATGGCTGCTTGGTCTAC -ACGGAAAATGGCTGCTTGACGTAC -ACGGAAAATGGCTGCTTGAGTGAC -ACGGAAAATGGCTGCTTGCTGTAG -ACGGAAAATGGCTGCTTGCCTAAG -ACGGAAAATGGCTGCTTGGTTCAG -ACGGAAAATGGCTGCTTGGCATAG -ACGGAAAATGGCTGCTTGGACAAG -ACGGAAAATGGCTGCTTGAAGCAG -ACGGAAAATGGCTGCTTGCGTCAA -ACGGAAAATGGCTGCTTGGCTGAA -ACGGAAAATGGCTGCTTGAGTACG -ACGGAAAATGGCTGCTTGATCCGA -ACGGAAAATGGCTGCTTGATGGGA -ACGGAAAATGGCTGCTTGGTGCAA -ACGGAAAATGGCTGCTTGGAGGAA -ACGGAAAATGGCTGCTTGCAGGTA -ACGGAAAATGGCTGCTTGGACTCT -ACGGAAAATGGCTGCTTGAGTCCT -ACGGAAAATGGCTGCTTGTAAGCC -ACGGAAAATGGCTGCTTGATAGCC -ACGGAAAATGGCTGCTTGTAACCG -ACGGAAAATGGCTGCTTGATGCCA -ACGGAAAATGGCAGCCTAGGAAAC -ACGGAAAATGGCAGCCTAAACACC -ACGGAAAATGGCAGCCTAATCGAG -ACGGAAAATGGCAGCCTACTCCTT -ACGGAAAATGGCAGCCTACCTGTT -ACGGAAAATGGCAGCCTACGGTTT -ACGGAAAATGGCAGCCTAGTGGTT -ACGGAAAATGGCAGCCTAGCCTTT -ACGGAAAATGGCAGCCTAGGTCTT -ACGGAAAATGGCAGCCTAACGCTT -ACGGAAAATGGCAGCCTAAGCGTT -ACGGAAAATGGCAGCCTATTCGTC -ACGGAAAATGGCAGCCTATCTCTC -ACGGAAAATGGCAGCCTATGGATC -ACGGAAAATGGCAGCCTACACTTC -ACGGAAAATGGCAGCCTAGTACTC -ACGGAAAATGGCAGCCTAGATGTC -ACGGAAAATGGCAGCCTAACAGTC -ACGGAAAATGGCAGCCTATTGCTG -ACGGAAAATGGCAGCCTATCCATG -ACGGAAAATGGCAGCCTATGTGTG -ACGGAAAATGGCAGCCTACTAGTG -ACGGAAAATGGCAGCCTACATCTG -ACGGAAAATGGCAGCCTAGAGTTG -ACGGAAAATGGCAGCCTAAGACTG -ACGGAAAATGGCAGCCTATCGGTA -ACGGAAAATGGCAGCCTATGCCTA -ACGGAAAATGGCAGCCTACCACTA -ACGGAAAATGGCAGCCTAGGAGTA -ACGGAAAATGGCAGCCTATCGTCT -ACGGAAAATGGCAGCCTATGCACT -ACGGAAAATGGCAGCCTACTGACT -ACGGAAAATGGCAGCCTACAACCT -ACGGAAAATGGCAGCCTAGCTACT -ACGGAAAATGGCAGCCTAGGATCT -ACGGAAAATGGCAGCCTAAAGGCT -ACGGAAAATGGCAGCCTATCAACC -ACGGAAAATGGCAGCCTATGTTCC -ACGGAAAATGGCAGCCTAATTCCC -ACGGAAAATGGCAGCCTATTCTCG -ACGGAAAATGGCAGCCTATAGACG -ACGGAAAATGGCAGCCTAGTAACG -ACGGAAAATGGCAGCCTAACTTCG -ACGGAAAATGGCAGCCTATACGCA -ACGGAAAATGGCAGCCTACTTGCA -ACGGAAAATGGCAGCCTACGAACA -ACGGAAAATGGCAGCCTACAGTCA -ACGGAAAATGGCAGCCTAGATCCA -ACGGAAAATGGCAGCCTAACGACA -ACGGAAAATGGCAGCCTAAGCTCA -ACGGAAAATGGCAGCCTATCACGT -ACGGAAAATGGCAGCCTACGTAGT -ACGGAAAATGGCAGCCTAGTCAGT -ACGGAAAATGGCAGCCTAGAAGGT -ACGGAAAATGGCAGCCTAAACCGT -ACGGAAAATGGCAGCCTATTGTGC -ACGGAAAATGGCAGCCTACTAAGC -ACGGAAAATGGCAGCCTAACTAGC -ACGGAAAATGGCAGCCTAAGATGC -ACGGAAAATGGCAGCCTATGAAGG -ACGGAAAATGGCAGCCTACAATGG -ACGGAAAATGGCAGCCTAATGAGG -ACGGAAAATGGCAGCCTAAATGGG -ACGGAAAATGGCAGCCTATCCTGA -ACGGAAAATGGCAGCCTATAGCGA -ACGGAAAATGGCAGCCTACACAGA -ACGGAAAATGGCAGCCTAGCAAGA -ACGGAAAATGGCAGCCTAGGTTGA -ACGGAAAATGGCAGCCTATCCGAT -ACGGAAAATGGCAGCCTATGGCAT -ACGGAAAATGGCAGCCTACGAGAT -ACGGAAAATGGCAGCCTATACCAC -ACGGAAAATGGCAGCCTACAGAAC -ACGGAAAATGGCAGCCTAGTCTAC -ACGGAAAATGGCAGCCTAACGTAC -ACGGAAAATGGCAGCCTAAGTGAC -ACGGAAAATGGCAGCCTACTGTAG -ACGGAAAATGGCAGCCTACCTAAG -ACGGAAAATGGCAGCCTAGTTCAG -ACGGAAAATGGCAGCCTAGCATAG -ACGGAAAATGGCAGCCTAGACAAG -ACGGAAAATGGCAGCCTAAAGCAG -ACGGAAAATGGCAGCCTACGTCAA -ACGGAAAATGGCAGCCTAGCTGAA -ACGGAAAATGGCAGCCTAAGTACG -ACGGAAAATGGCAGCCTAATCCGA -ACGGAAAATGGCAGCCTAATGGGA -ACGGAAAATGGCAGCCTAGTGCAA -ACGGAAAATGGCAGCCTAGAGGAA -ACGGAAAATGGCAGCCTACAGGTA -ACGGAAAATGGCAGCCTAGACTCT -ACGGAAAATGGCAGCCTAAGTCCT -ACGGAAAATGGCAGCCTATAAGCC -ACGGAAAATGGCAGCCTAATAGCC -ACGGAAAATGGCAGCCTATAACCG -ACGGAAAATGGCAGCCTAATGCCA -ACGGAAAATGGCAGCACTGGAAAC -ACGGAAAATGGCAGCACTAACACC -ACGGAAAATGGCAGCACTATCGAG -ACGGAAAATGGCAGCACTCTCCTT -ACGGAAAATGGCAGCACTCCTGTT -ACGGAAAATGGCAGCACTCGGTTT -ACGGAAAATGGCAGCACTGTGGTT -ACGGAAAATGGCAGCACTGCCTTT -ACGGAAAATGGCAGCACTGGTCTT -ACGGAAAATGGCAGCACTACGCTT -ACGGAAAATGGCAGCACTAGCGTT -ACGGAAAATGGCAGCACTTTCGTC -ACGGAAAATGGCAGCACTTCTCTC -ACGGAAAATGGCAGCACTTGGATC -ACGGAAAATGGCAGCACTCACTTC -ACGGAAAATGGCAGCACTGTACTC -ACGGAAAATGGCAGCACTGATGTC -ACGGAAAATGGCAGCACTACAGTC -ACGGAAAATGGCAGCACTTTGCTG -ACGGAAAATGGCAGCACTTCCATG -ACGGAAAATGGCAGCACTTGTGTG -ACGGAAAATGGCAGCACTCTAGTG -ACGGAAAATGGCAGCACTCATCTG -ACGGAAAATGGCAGCACTGAGTTG -ACGGAAAATGGCAGCACTAGACTG -ACGGAAAATGGCAGCACTTCGGTA -ACGGAAAATGGCAGCACTTGCCTA -ACGGAAAATGGCAGCACTCCACTA -ACGGAAAATGGCAGCACTGGAGTA -ACGGAAAATGGCAGCACTTCGTCT -ACGGAAAATGGCAGCACTTGCACT -ACGGAAAATGGCAGCACTCTGACT -ACGGAAAATGGCAGCACTCAACCT -ACGGAAAATGGCAGCACTGCTACT -ACGGAAAATGGCAGCACTGGATCT -ACGGAAAATGGCAGCACTAAGGCT -ACGGAAAATGGCAGCACTTCAACC -ACGGAAAATGGCAGCACTTGTTCC -ACGGAAAATGGCAGCACTATTCCC -ACGGAAAATGGCAGCACTTTCTCG -ACGGAAAATGGCAGCACTTAGACG -ACGGAAAATGGCAGCACTGTAACG -ACGGAAAATGGCAGCACTACTTCG -ACGGAAAATGGCAGCACTTACGCA -ACGGAAAATGGCAGCACTCTTGCA -ACGGAAAATGGCAGCACTCGAACA -ACGGAAAATGGCAGCACTCAGTCA -ACGGAAAATGGCAGCACTGATCCA -ACGGAAAATGGCAGCACTACGACA -ACGGAAAATGGCAGCACTAGCTCA -ACGGAAAATGGCAGCACTTCACGT -ACGGAAAATGGCAGCACTCGTAGT -ACGGAAAATGGCAGCACTGTCAGT -ACGGAAAATGGCAGCACTGAAGGT -ACGGAAAATGGCAGCACTAACCGT -ACGGAAAATGGCAGCACTTTGTGC -ACGGAAAATGGCAGCACTCTAAGC -ACGGAAAATGGCAGCACTACTAGC -ACGGAAAATGGCAGCACTAGATGC -ACGGAAAATGGCAGCACTTGAAGG -ACGGAAAATGGCAGCACTCAATGG -ACGGAAAATGGCAGCACTATGAGG -ACGGAAAATGGCAGCACTAATGGG -ACGGAAAATGGCAGCACTTCCTGA -ACGGAAAATGGCAGCACTTAGCGA -ACGGAAAATGGCAGCACTCACAGA -ACGGAAAATGGCAGCACTGCAAGA -ACGGAAAATGGCAGCACTGGTTGA -ACGGAAAATGGCAGCACTTCCGAT -ACGGAAAATGGCAGCACTTGGCAT -ACGGAAAATGGCAGCACTCGAGAT -ACGGAAAATGGCAGCACTTACCAC -ACGGAAAATGGCAGCACTCAGAAC -ACGGAAAATGGCAGCACTGTCTAC -ACGGAAAATGGCAGCACTACGTAC -ACGGAAAATGGCAGCACTAGTGAC -ACGGAAAATGGCAGCACTCTGTAG -ACGGAAAATGGCAGCACTCCTAAG -ACGGAAAATGGCAGCACTGTTCAG -ACGGAAAATGGCAGCACTGCATAG -ACGGAAAATGGCAGCACTGACAAG -ACGGAAAATGGCAGCACTAAGCAG -ACGGAAAATGGCAGCACTCGTCAA -ACGGAAAATGGCAGCACTGCTGAA -ACGGAAAATGGCAGCACTAGTACG -ACGGAAAATGGCAGCACTATCCGA -ACGGAAAATGGCAGCACTATGGGA -ACGGAAAATGGCAGCACTGTGCAA -ACGGAAAATGGCAGCACTGAGGAA -ACGGAAAATGGCAGCACTCAGGTA -ACGGAAAATGGCAGCACTGACTCT -ACGGAAAATGGCAGCACTAGTCCT -ACGGAAAATGGCAGCACTTAAGCC -ACGGAAAATGGCAGCACTATAGCC -ACGGAAAATGGCAGCACTTAACCG -ACGGAAAATGGCAGCACTATGCCA -ACGGAAAATGGCTGCAGAGGAAAC -ACGGAAAATGGCTGCAGAAACACC -ACGGAAAATGGCTGCAGAATCGAG -ACGGAAAATGGCTGCAGACTCCTT -ACGGAAAATGGCTGCAGACCTGTT -ACGGAAAATGGCTGCAGACGGTTT -ACGGAAAATGGCTGCAGAGTGGTT -ACGGAAAATGGCTGCAGAGCCTTT -ACGGAAAATGGCTGCAGAGGTCTT -ACGGAAAATGGCTGCAGAACGCTT -ACGGAAAATGGCTGCAGAAGCGTT -ACGGAAAATGGCTGCAGATTCGTC -ACGGAAAATGGCTGCAGATCTCTC -ACGGAAAATGGCTGCAGATGGATC -ACGGAAAATGGCTGCAGACACTTC -ACGGAAAATGGCTGCAGAGTACTC -ACGGAAAATGGCTGCAGAGATGTC -ACGGAAAATGGCTGCAGAACAGTC -ACGGAAAATGGCTGCAGATTGCTG -ACGGAAAATGGCTGCAGATCCATG -ACGGAAAATGGCTGCAGATGTGTG -ACGGAAAATGGCTGCAGACTAGTG -ACGGAAAATGGCTGCAGACATCTG -ACGGAAAATGGCTGCAGAGAGTTG -ACGGAAAATGGCTGCAGAAGACTG -ACGGAAAATGGCTGCAGATCGGTA -ACGGAAAATGGCTGCAGATGCCTA -ACGGAAAATGGCTGCAGACCACTA -ACGGAAAATGGCTGCAGAGGAGTA -ACGGAAAATGGCTGCAGATCGTCT -ACGGAAAATGGCTGCAGATGCACT -ACGGAAAATGGCTGCAGACTGACT -ACGGAAAATGGCTGCAGACAACCT -ACGGAAAATGGCTGCAGAGCTACT -ACGGAAAATGGCTGCAGAGGATCT -ACGGAAAATGGCTGCAGAAAGGCT -ACGGAAAATGGCTGCAGATCAACC -ACGGAAAATGGCTGCAGATGTTCC -ACGGAAAATGGCTGCAGAATTCCC -ACGGAAAATGGCTGCAGATTCTCG -ACGGAAAATGGCTGCAGATAGACG -ACGGAAAATGGCTGCAGAGTAACG -ACGGAAAATGGCTGCAGAACTTCG -ACGGAAAATGGCTGCAGATACGCA -ACGGAAAATGGCTGCAGACTTGCA -ACGGAAAATGGCTGCAGACGAACA -ACGGAAAATGGCTGCAGACAGTCA -ACGGAAAATGGCTGCAGAGATCCA -ACGGAAAATGGCTGCAGAACGACA -ACGGAAAATGGCTGCAGAAGCTCA -ACGGAAAATGGCTGCAGATCACGT -ACGGAAAATGGCTGCAGACGTAGT -ACGGAAAATGGCTGCAGAGTCAGT -ACGGAAAATGGCTGCAGAGAAGGT -ACGGAAAATGGCTGCAGAAACCGT -ACGGAAAATGGCTGCAGATTGTGC -ACGGAAAATGGCTGCAGACTAAGC -ACGGAAAATGGCTGCAGAACTAGC -ACGGAAAATGGCTGCAGAAGATGC -ACGGAAAATGGCTGCAGATGAAGG -ACGGAAAATGGCTGCAGACAATGG -ACGGAAAATGGCTGCAGAATGAGG -ACGGAAAATGGCTGCAGAAATGGG -ACGGAAAATGGCTGCAGATCCTGA -ACGGAAAATGGCTGCAGATAGCGA -ACGGAAAATGGCTGCAGACACAGA -ACGGAAAATGGCTGCAGAGCAAGA -ACGGAAAATGGCTGCAGAGGTTGA -ACGGAAAATGGCTGCAGATCCGAT -ACGGAAAATGGCTGCAGATGGCAT -ACGGAAAATGGCTGCAGACGAGAT -ACGGAAAATGGCTGCAGATACCAC -ACGGAAAATGGCTGCAGACAGAAC -ACGGAAAATGGCTGCAGAGTCTAC -ACGGAAAATGGCTGCAGAACGTAC -ACGGAAAATGGCTGCAGAAGTGAC -ACGGAAAATGGCTGCAGACTGTAG -ACGGAAAATGGCTGCAGACCTAAG -ACGGAAAATGGCTGCAGAGTTCAG -ACGGAAAATGGCTGCAGAGCATAG -ACGGAAAATGGCTGCAGAGACAAG -ACGGAAAATGGCTGCAGAAAGCAG -ACGGAAAATGGCTGCAGACGTCAA -ACGGAAAATGGCTGCAGAGCTGAA -ACGGAAAATGGCTGCAGAAGTACG -ACGGAAAATGGCTGCAGAATCCGA -ACGGAAAATGGCTGCAGAATGGGA -ACGGAAAATGGCTGCAGAGTGCAA -ACGGAAAATGGCTGCAGAGAGGAA -ACGGAAAATGGCTGCAGACAGGTA -ACGGAAAATGGCTGCAGAGACTCT -ACGGAAAATGGCTGCAGAAGTCCT -ACGGAAAATGGCTGCAGATAAGCC -ACGGAAAATGGCTGCAGAATAGCC -ACGGAAAATGGCTGCAGATAACCG -ACGGAAAATGGCTGCAGAATGCCA -ACGGAAAATGGCAGGTGAGGAAAC -ACGGAAAATGGCAGGTGAAACACC -ACGGAAAATGGCAGGTGAATCGAG -ACGGAAAATGGCAGGTGACTCCTT -ACGGAAAATGGCAGGTGACCTGTT -ACGGAAAATGGCAGGTGACGGTTT -ACGGAAAATGGCAGGTGAGTGGTT -ACGGAAAATGGCAGGTGAGCCTTT -ACGGAAAATGGCAGGTGAGGTCTT -ACGGAAAATGGCAGGTGAACGCTT -ACGGAAAATGGCAGGTGAAGCGTT -ACGGAAAATGGCAGGTGATTCGTC -ACGGAAAATGGCAGGTGATCTCTC -ACGGAAAATGGCAGGTGATGGATC -ACGGAAAATGGCAGGTGACACTTC -ACGGAAAATGGCAGGTGAGTACTC -ACGGAAAATGGCAGGTGAGATGTC -ACGGAAAATGGCAGGTGAACAGTC -ACGGAAAATGGCAGGTGATTGCTG -ACGGAAAATGGCAGGTGATCCATG -ACGGAAAATGGCAGGTGATGTGTG -ACGGAAAATGGCAGGTGACTAGTG -ACGGAAAATGGCAGGTGACATCTG -ACGGAAAATGGCAGGTGAGAGTTG -ACGGAAAATGGCAGGTGAAGACTG -ACGGAAAATGGCAGGTGATCGGTA -ACGGAAAATGGCAGGTGATGCCTA -ACGGAAAATGGCAGGTGACCACTA -ACGGAAAATGGCAGGTGAGGAGTA -ACGGAAAATGGCAGGTGATCGTCT -ACGGAAAATGGCAGGTGATGCACT -ACGGAAAATGGCAGGTGACTGACT -ACGGAAAATGGCAGGTGACAACCT -ACGGAAAATGGCAGGTGAGCTACT -ACGGAAAATGGCAGGTGAGGATCT -ACGGAAAATGGCAGGTGAAAGGCT -ACGGAAAATGGCAGGTGATCAACC -ACGGAAAATGGCAGGTGATGTTCC -ACGGAAAATGGCAGGTGAATTCCC -ACGGAAAATGGCAGGTGATTCTCG -ACGGAAAATGGCAGGTGATAGACG -ACGGAAAATGGCAGGTGAGTAACG -ACGGAAAATGGCAGGTGAACTTCG -ACGGAAAATGGCAGGTGATACGCA -ACGGAAAATGGCAGGTGACTTGCA -ACGGAAAATGGCAGGTGACGAACA -ACGGAAAATGGCAGGTGACAGTCA -ACGGAAAATGGCAGGTGAGATCCA -ACGGAAAATGGCAGGTGAACGACA -ACGGAAAATGGCAGGTGAAGCTCA -ACGGAAAATGGCAGGTGATCACGT -ACGGAAAATGGCAGGTGACGTAGT -ACGGAAAATGGCAGGTGAGTCAGT -ACGGAAAATGGCAGGTGAGAAGGT -ACGGAAAATGGCAGGTGAAACCGT -ACGGAAAATGGCAGGTGATTGTGC -ACGGAAAATGGCAGGTGACTAAGC -ACGGAAAATGGCAGGTGAACTAGC -ACGGAAAATGGCAGGTGAAGATGC -ACGGAAAATGGCAGGTGATGAAGG -ACGGAAAATGGCAGGTGACAATGG -ACGGAAAATGGCAGGTGAATGAGG -ACGGAAAATGGCAGGTGAAATGGG -ACGGAAAATGGCAGGTGATCCTGA -ACGGAAAATGGCAGGTGATAGCGA -ACGGAAAATGGCAGGTGACACAGA -ACGGAAAATGGCAGGTGAGCAAGA -ACGGAAAATGGCAGGTGAGGTTGA -ACGGAAAATGGCAGGTGATCCGAT -ACGGAAAATGGCAGGTGATGGCAT -ACGGAAAATGGCAGGTGACGAGAT -ACGGAAAATGGCAGGTGATACCAC -ACGGAAAATGGCAGGTGACAGAAC -ACGGAAAATGGCAGGTGAGTCTAC -ACGGAAAATGGCAGGTGAACGTAC -ACGGAAAATGGCAGGTGAAGTGAC -ACGGAAAATGGCAGGTGACTGTAG -ACGGAAAATGGCAGGTGACCTAAG -ACGGAAAATGGCAGGTGAGTTCAG -ACGGAAAATGGCAGGTGAGCATAG -ACGGAAAATGGCAGGTGAGACAAG -ACGGAAAATGGCAGGTGAAAGCAG -ACGGAAAATGGCAGGTGACGTCAA -ACGGAAAATGGCAGGTGAGCTGAA -ACGGAAAATGGCAGGTGAAGTACG -ACGGAAAATGGCAGGTGAATCCGA -ACGGAAAATGGCAGGTGAATGGGA -ACGGAAAATGGCAGGTGAGTGCAA -ACGGAAAATGGCAGGTGAGAGGAA -ACGGAAAATGGCAGGTGACAGGTA -ACGGAAAATGGCAGGTGAGACTCT -ACGGAAAATGGCAGGTGAAGTCCT -ACGGAAAATGGCAGGTGATAAGCC -ACGGAAAATGGCAGGTGAATAGCC -ACGGAAAATGGCAGGTGATAACCG -ACGGAAAATGGCAGGTGAATGCCA -ACGGAAAATGGCTGGCAAGGAAAC -ACGGAAAATGGCTGGCAAAACACC -ACGGAAAATGGCTGGCAAATCGAG -ACGGAAAATGGCTGGCAACTCCTT -ACGGAAAATGGCTGGCAACCTGTT -ACGGAAAATGGCTGGCAACGGTTT -ACGGAAAATGGCTGGCAAGTGGTT -ACGGAAAATGGCTGGCAAGCCTTT -ACGGAAAATGGCTGGCAAGGTCTT -ACGGAAAATGGCTGGCAAACGCTT -ACGGAAAATGGCTGGCAAAGCGTT -ACGGAAAATGGCTGGCAATTCGTC -ACGGAAAATGGCTGGCAATCTCTC -ACGGAAAATGGCTGGCAATGGATC -ACGGAAAATGGCTGGCAACACTTC -ACGGAAAATGGCTGGCAAGTACTC -ACGGAAAATGGCTGGCAAGATGTC -ACGGAAAATGGCTGGCAAACAGTC -ACGGAAAATGGCTGGCAATTGCTG -ACGGAAAATGGCTGGCAATCCATG -ACGGAAAATGGCTGGCAATGTGTG -ACGGAAAATGGCTGGCAACTAGTG -ACGGAAAATGGCTGGCAACATCTG -ACGGAAAATGGCTGGCAAGAGTTG -ACGGAAAATGGCTGGCAAAGACTG -ACGGAAAATGGCTGGCAATCGGTA -ACGGAAAATGGCTGGCAATGCCTA -ACGGAAAATGGCTGGCAACCACTA -ACGGAAAATGGCTGGCAAGGAGTA -ACGGAAAATGGCTGGCAATCGTCT -ACGGAAAATGGCTGGCAATGCACT -ACGGAAAATGGCTGGCAACTGACT -ACGGAAAATGGCTGGCAACAACCT -ACGGAAAATGGCTGGCAAGCTACT -ACGGAAAATGGCTGGCAAGGATCT -ACGGAAAATGGCTGGCAAAAGGCT -ACGGAAAATGGCTGGCAATCAACC -ACGGAAAATGGCTGGCAATGTTCC -ACGGAAAATGGCTGGCAAATTCCC -ACGGAAAATGGCTGGCAATTCTCG -ACGGAAAATGGCTGGCAATAGACG -ACGGAAAATGGCTGGCAAGTAACG -ACGGAAAATGGCTGGCAAACTTCG -ACGGAAAATGGCTGGCAATACGCA -ACGGAAAATGGCTGGCAACTTGCA -ACGGAAAATGGCTGGCAACGAACA -ACGGAAAATGGCTGGCAACAGTCA -ACGGAAAATGGCTGGCAAGATCCA -ACGGAAAATGGCTGGCAAACGACA -ACGGAAAATGGCTGGCAAAGCTCA -ACGGAAAATGGCTGGCAATCACGT -ACGGAAAATGGCTGGCAACGTAGT -ACGGAAAATGGCTGGCAAGTCAGT -ACGGAAAATGGCTGGCAAGAAGGT -ACGGAAAATGGCTGGCAAAACCGT -ACGGAAAATGGCTGGCAATTGTGC -ACGGAAAATGGCTGGCAACTAAGC -ACGGAAAATGGCTGGCAAACTAGC -ACGGAAAATGGCTGGCAAAGATGC -ACGGAAAATGGCTGGCAATGAAGG -ACGGAAAATGGCTGGCAACAATGG -ACGGAAAATGGCTGGCAAATGAGG -ACGGAAAATGGCTGGCAAAATGGG -ACGGAAAATGGCTGGCAATCCTGA -ACGGAAAATGGCTGGCAATAGCGA -ACGGAAAATGGCTGGCAACACAGA -ACGGAAAATGGCTGGCAAGCAAGA -ACGGAAAATGGCTGGCAAGGTTGA -ACGGAAAATGGCTGGCAATCCGAT -ACGGAAAATGGCTGGCAATGGCAT -ACGGAAAATGGCTGGCAACGAGAT -ACGGAAAATGGCTGGCAATACCAC -ACGGAAAATGGCTGGCAACAGAAC -ACGGAAAATGGCTGGCAAGTCTAC -ACGGAAAATGGCTGGCAAACGTAC -ACGGAAAATGGCTGGCAAAGTGAC -ACGGAAAATGGCTGGCAACTGTAG -ACGGAAAATGGCTGGCAACCTAAG -ACGGAAAATGGCTGGCAAGTTCAG -ACGGAAAATGGCTGGCAAGCATAG -ACGGAAAATGGCTGGCAAGACAAG -ACGGAAAATGGCTGGCAAAAGCAG -ACGGAAAATGGCTGGCAACGTCAA -ACGGAAAATGGCTGGCAAGCTGAA -ACGGAAAATGGCTGGCAAAGTACG -ACGGAAAATGGCTGGCAAATCCGA -ACGGAAAATGGCTGGCAAATGGGA -ACGGAAAATGGCTGGCAAGTGCAA -ACGGAAAATGGCTGGCAAGAGGAA -ACGGAAAATGGCTGGCAACAGGTA -ACGGAAAATGGCTGGCAAGACTCT -ACGGAAAATGGCTGGCAAAGTCCT -ACGGAAAATGGCTGGCAATAAGCC -ACGGAAAATGGCTGGCAAATAGCC -ACGGAAAATGGCTGGCAATAACCG -ACGGAAAATGGCTGGCAAATGCCA -ACGGAAAATGGCAGGATGGGAAAC -ACGGAAAATGGCAGGATGAACACC -ACGGAAAATGGCAGGATGATCGAG -ACGGAAAATGGCAGGATGCTCCTT -ACGGAAAATGGCAGGATGCCTGTT -ACGGAAAATGGCAGGATGCGGTTT -ACGGAAAATGGCAGGATGGTGGTT -ACGGAAAATGGCAGGATGGCCTTT -ACGGAAAATGGCAGGATGGGTCTT -ACGGAAAATGGCAGGATGACGCTT -ACGGAAAATGGCAGGATGAGCGTT -ACGGAAAATGGCAGGATGTTCGTC -ACGGAAAATGGCAGGATGTCTCTC -ACGGAAAATGGCAGGATGTGGATC -ACGGAAAATGGCAGGATGCACTTC -ACGGAAAATGGCAGGATGGTACTC -ACGGAAAATGGCAGGATGGATGTC -ACGGAAAATGGCAGGATGACAGTC -ACGGAAAATGGCAGGATGTTGCTG -ACGGAAAATGGCAGGATGTCCATG -ACGGAAAATGGCAGGATGTGTGTG -ACGGAAAATGGCAGGATGCTAGTG -ACGGAAAATGGCAGGATGCATCTG -ACGGAAAATGGCAGGATGGAGTTG -ACGGAAAATGGCAGGATGAGACTG -ACGGAAAATGGCAGGATGTCGGTA -ACGGAAAATGGCAGGATGTGCCTA -ACGGAAAATGGCAGGATGCCACTA -ACGGAAAATGGCAGGATGGGAGTA -ACGGAAAATGGCAGGATGTCGTCT -ACGGAAAATGGCAGGATGTGCACT -ACGGAAAATGGCAGGATGCTGACT -ACGGAAAATGGCAGGATGCAACCT -ACGGAAAATGGCAGGATGGCTACT -ACGGAAAATGGCAGGATGGGATCT -ACGGAAAATGGCAGGATGAAGGCT -ACGGAAAATGGCAGGATGTCAACC -ACGGAAAATGGCAGGATGTGTTCC -ACGGAAAATGGCAGGATGATTCCC -ACGGAAAATGGCAGGATGTTCTCG -ACGGAAAATGGCAGGATGTAGACG -ACGGAAAATGGCAGGATGGTAACG -ACGGAAAATGGCAGGATGACTTCG -ACGGAAAATGGCAGGATGTACGCA -ACGGAAAATGGCAGGATGCTTGCA -ACGGAAAATGGCAGGATGCGAACA -ACGGAAAATGGCAGGATGCAGTCA -ACGGAAAATGGCAGGATGGATCCA -ACGGAAAATGGCAGGATGACGACA -ACGGAAAATGGCAGGATGAGCTCA -ACGGAAAATGGCAGGATGTCACGT -ACGGAAAATGGCAGGATGCGTAGT -ACGGAAAATGGCAGGATGGTCAGT -ACGGAAAATGGCAGGATGGAAGGT -ACGGAAAATGGCAGGATGAACCGT -ACGGAAAATGGCAGGATGTTGTGC -ACGGAAAATGGCAGGATGCTAAGC -ACGGAAAATGGCAGGATGACTAGC -ACGGAAAATGGCAGGATGAGATGC -ACGGAAAATGGCAGGATGTGAAGG -ACGGAAAATGGCAGGATGCAATGG -ACGGAAAATGGCAGGATGATGAGG -ACGGAAAATGGCAGGATGAATGGG -ACGGAAAATGGCAGGATGTCCTGA -ACGGAAAATGGCAGGATGTAGCGA -ACGGAAAATGGCAGGATGCACAGA -ACGGAAAATGGCAGGATGGCAAGA -ACGGAAAATGGCAGGATGGGTTGA -ACGGAAAATGGCAGGATGTCCGAT -ACGGAAAATGGCAGGATGTGGCAT -ACGGAAAATGGCAGGATGCGAGAT -ACGGAAAATGGCAGGATGTACCAC -ACGGAAAATGGCAGGATGCAGAAC -ACGGAAAATGGCAGGATGGTCTAC -ACGGAAAATGGCAGGATGACGTAC -ACGGAAAATGGCAGGATGAGTGAC -ACGGAAAATGGCAGGATGCTGTAG -ACGGAAAATGGCAGGATGCCTAAG -ACGGAAAATGGCAGGATGGTTCAG -ACGGAAAATGGCAGGATGGCATAG -ACGGAAAATGGCAGGATGGACAAG -ACGGAAAATGGCAGGATGAAGCAG -ACGGAAAATGGCAGGATGCGTCAA -ACGGAAAATGGCAGGATGGCTGAA -ACGGAAAATGGCAGGATGAGTACG -ACGGAAAATGGCAGGATGATCCGA -ACGGAAAATGGCAGGATGATGGGA -ACGGAAAATGGCAGGATGGTGCAA -ACGGAAAATGGCAGGATGGAGGAA -ACGGAAAATGGCAGGATGCAGGTA -ACGGAAAATGGCAGGATGGACTCT -ACGGAAAATGGCAGGATGAGTCCT -ACGGAAAATGGCAGGATGTAAGCC -ACGGAAAATGGCAGGATGATAGCC -ACGGAAAATGGCAGGATGTAACCG -ACGGAAAATGGCAGGATGATGCCA -ACGGAAAATGGCGGGAATGGAAAC -ACGGAAAATGGCGGGAATAACACC -ACGGAAAATGGCGGGAATATCGAG -ACGGAAAATGGCGGGAATCTCCTT -ACGGAAAATGGCGGGAATCCTGTT -ACGGAAAATGGCGGGAATCGGTTT -ACGGAAAATGGCGGGAATGTGGTT -ACGGAAAATGGCGGGAATGCCTTT -ACGGAAAATGGCGGGAATGGTCTT -ACGGAAAATGGCGGGAATACGCTT -ACGGAAAATGGCGGGAATAGCGTT -ACGGAAAATGGCGGGAATTTCGTC -ACGGAAAATGGCGGGAATTCTCTC -ACGGAAAATGGCGGGAATTGGATC -ACGGAAAATGGCGGGAATCACTTC -ACGGAAAATGGCGGGAATGTACTC -ACGGAAAATGGCGGGAATGATGTC -ACGGAAAATGGCGGGAATACAGTC -ACGGAAAATGGCGGGAATTTGCTG -ACGGAAAATGGCGGGAATTCCATG -ACGGAAAATGGCGGGAATTGTGTG -ACGGAAAATGGCGGGAATCTAGTG -ACGGAAAATGGCGGGAATCATCTG -ACGGAAAATGGCGGGAATGAGTTG -ACGGAAAATGGCGGGAATAGACTG -ACGGAAAATGGCGGGAATTCGGTA -ACGGAAAATGGCGGGAATTGCCTA -ACGGAAAATGGCGGGAATCCACTA -ACGGAAAATGGCGGGAATGGAGTA -ACGGAAAATGGCGGGAATTCGTCT -ACGGAAAATGGCGGGAATTGCACT -ACGGAAAATGGCGGGAATCTGACT -ACGGAAAATGGCGGGAATCAACCT -ACGGAAAATGGCGGGAATGCTACT -ACGGAAAATGGCGGGAATGGATCT -ACGGAAAATGGCGGGAATAAGGCT -ACGGAAAATGGCGGGAATTCAACC -ACGGAAAATGGCGGGAATTGTTCC -ACGGAAAATGGCGGGAATATTCCC -ACGGAAAATGGCGGGAATTTCTCG -ACGGAAAATGGCGGGAATTAGACG -ACGGAAAATGGCGGGAATGTAACG -ACGGAAAATGGCGGGAATACTTCG -ACGGAAAATGGCGGGAATTACGCA -ACGGAAAATGGCGGGAATCTTGCA -ACGGAAAATGGCGGGAATCGAACA -ACGGAAAATGGCGGGAATCAGTCA -ACGGAAAATGGCGGGAATGATCCA -ACGGAAAATGGCGGGAATACGACA -ACGGAAAATGGCGGGAATAGCTCA -ACGGAAAATGGCGGGAATTCACGT -ACGGAAAATGGCGGGAATCGTAGT -ACGGAAAATGGCGGGAATGTCAGT -ACGGAAAATGGCGGGAATGAAGGT -ACGGAAAATGGCGGGAATAACCGT -ACGGAAAATGGCGGGAATTTGTGC -ACGGAAAATGGCGGGAATCTAAGC -ACGGAAAATGGCGGGAATACTAGC -ACGGAAAATGGCGGGAATAGATGC -ACGGAAAATGGCGGGAATTGAAGG -ACGGAAAATGGCGGGAATCAATGG -ACGGAAAATGGCGGGAATATGAGG -ACGGAAAATGGCGGGAATAATGGG -ACGGAAAATGGCGGGAATTCCTGA -ACGGAAAATGGCGGGAATTAGCGA -ACGGAAAATGGCGGGAATCACAGA -ACGGAAAATGGCGGGAATGCAAGA -ACGGAAAATGGCGGGAATGGTTGA -ACGGAAAATGGCGGGAATTCCGAT -ACGGAAAATGGCGGGAATTGGCAT -ACGGAAAATGGCGGGAATCGAGAT -ACGGAAAATGGCGGGAATTACCAC -ACGGAAAATGGCGGGAATCAGAAC -ACGGAAAATGGCGGGAATGTCTAC -ACGGAAAATGGCGGGAATACGTAC -ACGGAAAATGGCGGGAATAGTGAC -ACGGAAAATGGCGGGAATCTGTAG -ACGGAAAATGGCGGGAATCCTAAG -ACGGAAAATGGCGGGAATGTTCAG -ACGGAAAATGGCGGGAATGCATAG -ACGGAAAATGGCGGGAATGACAAG -ACGGAAAATGGCGGGAATAAGCAG -ACGGAAAATGGCGGGAATCGTCAA -ACGGAAAATGGCGGGAATGCTGAA -ACGGAAAATGGCGGGAATAGTACG -ACGGAAAATGGCGGGAATATCCGA -ACGGAAAATGGCGGGAATATGGGA -ACGGAAAATGGCGGGAATGTGCAA -ACGGAAAATGGCGGGAATGAGGAA -ACGGAAAATGGCGGGAATCAGGTA -ACGGAAAATGGCGGGAATGACTCT -ACGGAAAATGGCGGGAATAGTCCT -ACGGAAAATGGCGGGAATTAAGCC -ACGGAAAATGGCGGGAATATAGCC -ACGGAAAATGGCGGGAATTAACCG -ACGGAAAATGGCGGGAATATGCCA -ACGGAAAATGGCTGATCCGGAAAC -ACGGAAAATGGCTGATCCAACACC -ACGGAAAATGGCTGATCCATCGAG -ACGGAAAATGGCTGATCCCTCCTT -ACGGAAAATGGCTGATCCCCTGTT -ACGGAAAATGGCTGATCCCGGTTT -ACGGAAAATGGCTGATCCGTGGTT -ACGGAAAATGGCTGATCCGCCTTT -ACGGAAAATGGCTGATCCGGTCTT -ACGGAAAATGGCTGATCCACGCTT -ACGGAAAATGGCTGATCCAGCGTT -ACGGAAAATGGCTGATCCTTCGTC -ACGGAAAATGGCTGATCCTCTCTC -ACGGAAAATGGCTGATCCTGGATC -ACGGAAAATGGCTGATCCCACTTC -ACGGAAAATGGCTGATCCGTACTC -ACGGAAAATGGCTGATCCGATGTC -ACGGAAAATGGCTGATCCACAGTC -ACGGAAAATGGCTGATCCTTGCTG -ACGGAAAATGGCTGATCCTCCATG -ACGGAAAATGGCTGATCCTGTGTG -ACGGAAAATGGCTGATCCCTAGTG -ACGGAAAATGGCTGATCCCATCTG -ACGGAAAATGGCTGATCCGAGTTG -ACGGAAAATGGCTGATCCAGACTG -ACGGAAAATGGCTGATCCTCGGTA -ACGGAAAATGGCTGATCCTGCCTA -ACGGAAAATGGCTGATCCCCACTA -ACGGAAAATGGCTGATCCGGAGTA -ACGGAAAATGGCTGATCCTCGTCT -ACGGAAAATGGCTGATCCTGCACT -ACGGAAAATGGCTGATCCCTGACT -ACGGAAAATGGCTGATCCCAACCT -ACGGAAAATGGCTGATCCGCTACT -ACGGAAAATGGCTGATCCGGATCT -ACGGAAAATGGCTGATCCAAGGCT -ACGGAAAATGGCTGATCCTCAACC -ACGGAAAATGGCTGATCCTGTTCC -ACGGAAAATGGCTGATCCATTCCC -ACGGAAAATGGCTGATCCTTCTCG -ACGGAAAATGGCTGATCCTAGACG -ACGGAAAATGGCTGATCCGTAACG -ACGGAAAATGGCTGATCCACTTCG -ACGGAAAATGGCTGATCCTACGCA -ACGGAAAATGGCTGATCCCTTGCA -ACGGAAAATGGCTGATCCCGAACA -ACGGAAAATGGCTGATCCCAGTCA -ACGGAAAATGGCTGATCCGATCCA -ACGGAAAATGGCTGATCCACGACA -ACGGAAAATGGCTGATCCAGCTCA -ACGGAAAATGGCTGATCCTCACGT -ACGGAAAATGGCTGATCCCGTAGT -ACGGAAAATGGCTGATCCGTCAGT -ACGGAAAATGGCTGATCCGAAGGT -ACGGAAAATGGCTGATCCAACCGT -ACGGAAAATGGCTGATCCTTGTGC -ACGGAAAATGGCTGATCCCTAAGC -ACGGAAAATGGCTGATCCACTAGC -ACGGAAAATGGCTGATCCAGATGC -ACGGAAAATGGCTGATCCTGAAGG -ACGGAAAATGGCTGATCCCAATGG -ACGGAAAATGGCTGATCCATGAGG -ACGGAAAATGGCTGATCCAATGGG -ACGGAAAATGGCTGATCCTCCTGA -ACGGAAAATGGCTGATCCTAGCGA -ACGGAAAATGGCTGATCCCACAGA -ACGGAAAATGGCTGATCCGCAAGA -ACGGAAAATGGCTGATCCGGTTGA -ACGGAAAATGGCTGATCCTCCGAT -ACGGAAAATGGCTGATCCTGGCAT -ACGGAAAATGGCTGATCCCGAGAT -ACGGAAAATGGCTGATCCTACCAC -ACGGAAAATGGCTGATCCCAGAAC -ACGGAAAATGGCTGATCCGTCTAC -ACGGAAAATGGCTGATCCACGTAC -ACGGAAAATGGCTGATCCAGTGAC -ACGGAAAATGGCTGATCCCTGTAG -ACGGAAAATGGCTGATCCCCTAAG -ACGGAAAATGGCTGATCCGTTCAG -ACGGAAAATGGCTGATCCGCATAG -ACGGAAAATGGCTGATCCGACAAG -ACGGAAAATGGCTGATCCAAGCAG -ACGGAAAATGGCTGATCCCGTCAA -ACGGAAAATGGCTGATCCGCTGAA -ACGGAAAATGGCTGATCCAGTACG -ACGGAAAATGGCTGATCCATCCGA -ACGGAAAATGGCTGATCCATGGGA -ACGGAAAATGGCTGATCCGTGCAA -ACGGAAAATGGCTGATCCGAGGAA -ACGGAAAATGGCTGATCCCAGGTA -ACGGAAAATGGCTGATCCGACTCT -ACGGAAAATGGCTGATCCAGTCCT -ACGGAAAATGGCTGATCCTAAGCC -ACGGAAAATGGCTGATCCATAGCC -ACGGAAAATGGCTGATCCTAACCG -ACGGAAAATGGCTGATCCATGCCA -ACGGAAAATGGCCGATAGGGAAAC -ACGGAAAATGGCCGATAGAACACC -ACGGAAAATGGCCGATAGATCGAG -ACGGAAAATGGCCGATAGCTCCTT -ACGGAAAATGGCCGATAGCCTGTT -ACGGAAAATGGCCGATAGCGGTTT -ACGGAAAATGGCCGATAGGTGGTT -ACGGAAAATGGCCGATAGGCCTTT -ACGGAAAATGGCCGATAGGGTCTT -ACGGAAAATGGCCGATAGACGCTT -ACGGAAAATGGCCGATAGAGCGTT -ACGGAAAATGGCCGATAGTTCGTC -ACGGAAAATGGCCGATAGTCTCTC -ACGGAAAATGGCCGATAGTGGATC -ACGGAAAATGGCCGATAGCACTTC -ACGGAAAATGGCCGATAGGTACTC -ACGGAAAATGGCCGATAGGATGTC -ACGGAAAATGGCCGATAGACAGTC -ACGGAAAATGGCCGATAGTTGCTG -ACGGAAAATGGCCGATAGTCCATG -ACGGAAAATGGCCGATAGTGTGTG -ACGGAAAATGGCCGATAGCTAGTG -ACGGAAAATGGCCGATAGCATCTG -ACGGAAAATGGCCGATAGGAGTTG -ACGGAAAATGGCCGATAGAGACTG -ACGGAAAATGGCCGATAGTCGGTA -ACGGAAAATGGCCGATAGTGCCTA -ACGGAAAATGGCCGATAGCCACTA -ACGGAAAATGGCCGATAGGGAGTA -ACGGAAAATGGCCGATAGTCGTCT -ACGGAAAATGGCCGATAGTGCACT -ACGGAAAATGGCCGATAGCTGACT -ACGGAAAATGGCCGATAGCAACCT -ACGGAAAATGGCCGATAGGCTACT -ACGGAAAATGGCCGATAGGGATCT -ACGGAAAATGGCCGATAGAAGGCT -ACGGAAAATGGCCGATAGTCAACC -ACGGAAAATGGCCGATAGTGTTCC -ACGGAAAATGGCCGATAGATTCCC -ACGGAAAATGGCCGATAGTTCTCG -ACGGAAAATGGCCGATAGTAGACG -ACGGAAAATGGCCGATAGGTAACG -ACGGAAAATGGCCGATAGACTTCG -ACGGAAAATGGCCGATAGTACGCA -ACGGAAAATGGCCGATAGCTTGCA -ACGGAAAATGGCCGATAGCGAACA -ACGGAAAATGGCCGATAGCAGTCA -ACGGAAAATGGCCGATAGGATCCA -ACGGAAAATGGCCGATAGACGACA -ACGGAAAATGGCCGATAGAGCTCA -ACGGAAAATGGCCGATAGTCACGT -ACGGAAAATGGCCGATAGCGTAGT -ACGGAAAATGGCCGATAGGTCAGT -ACGGAAAATGGCCGATAGGAAGGT -ACGGAAAATGGCCGATAGAACCGT -ACGGAAAATGGCCGATAGTTGTGC -ACGGAAAATGGCCGATAGCTAAGC -ACGGAAAATGGCCGATAGACTAGC -ACGGAAAATGGCCGATAGAGATGC -ACGGAAAATGGCCGATAGTGAAGG -ACGGAAAATGGCCGATAGCAATGG -ACGGAAAATGGCCGATAGATGAGG -ACGGAAAATGGCCGATAGAATGGG -ACGGAAAATGGCCGATAGTCCTGA -ACGGAAAATGGCCGATAGTAGCGA -ACGGAAAATGGCCGATAGCACAGA -ACGGAAAATGGCCGATAGGCAAGA -ACGGAAAATGGCCGATAGGGTTGA -ACGGAAAATGGCCGATAGTCCGAT -ACGGAAAATGGCCGATAGTGGCAT -ACGGAAAATGGCCGATAGCGAGAT -ACGGAAAATGGCCGATAGTACCAC -ACGGAAAATGGCCGATAGCAGAAC -ACGGAAAATGGCCGATAGGTCTAC -ACGGAAAATGGCCGATAGACGTAC -ACGGAAAATGGCCGATAGAGTGAC -ACGGAAAATGGCCGATAGCTGTAG -ACGGAAAATGGCCGATAGCCTAAG -ACGGAAAATGGCCGATAGGTTCAG -ACGGAAAATGGCCGATAGGCATAG -ACGGAAAATGGCCGATAGGACAAG -ACGGAAAATGGCCGATAGAAGCAG -ACGGAAAATGGCCGATAGCGTCAA -ACGGAAAATGGCCGATAGGCTGAA -ACGGAAAATGGCCGATAGAGTACG -ACGGAAAATGGCCGATAGATCCGA -ACGGAAAATGGCCGATAGATGGGA -ACGGAAAATGGCCGATAGGTGCAA -ACGGAAAATGGCCGATAGGAGGAA -ACGGAAAATGGCCGATAGCAGGTA -ACGGAAAATGGCCGATAGGACTCT -ACGGAAAATGGCCGATAGAGTCCT -ACGGAAAATGGCCGATAGTAAGCC -ACGGAAAATGGCCGATAGATAGCC -ACGGAAAATGGCCGATAGTAACCG -ACGGAAAATGGCCGATAGATGCCA -ACGGAAAATGGCAGACACGGAAAC -ACGGAAAATGGCAGACACAACACC -ACGGAAAATGGCAGACACATCGAG -ACGGAAAATGGCAGACACCTCCTT -ACGGAAAATGGCAGACACCCTGTT -ACGGAAAATGGCAGACACCGGTTT -ACGGAAAATGGCAGACACGTGGTT -ACGGAAAATGGCAGACACGCCTTT -ACGGAAAATGGCAGACACGGTCTT -ACGGAAAATGGCAGACACACGCTT -ACGGAAAATGGCAGACACAGCGTT -ACGGAAAATGGCAGACACTTCGTC -ACGGAAAATGGCAGACACTCTCTC -ACGGAAAATGGCAGACACTGGATC -ACGGAAAATGGCAGACACCACTTC -ACGGAAAATGGCAGACACGTACTC -ACGGAAAATGGCAGACACGATGTC -ACGGAAAATGGCAGACACACAGTC -ACGGAAAATGGCAGACACTTGCTG -ACGGAAAATGGCAGACACTCCATG -ACGGAAAATGGCAGACACTGTGTG -ACGGAAAATGGCAGACACCTAGTG -ACGGAAAATGGCAGACACCATCTG -ACGGAAAATGGCAGACACGAGTTG -ACGGAAAATGGCAGACACAGACTG -ACGGAAAATGGCAGACACTCGGTA -ACGGAAAATGGCAGACACTGCCTA -ACGGAAAATGGCAGACACCCACTA -ACGGAAAATGGCAGACACGGAGTA -ACGGAAAATGGCAGACACTCGTCT -ACGGAAAATGGCAGACACTGCACT -ACGGAAAATGGCAGACACCTGACT -ACGGAAAATGGCAGACACCAACCT -ACGGAAAATGGCAGACACGCTACT -ACGGAAAATGGCAGACACGGATCT -ACGGAAAATGGCAGACACAAGGCT -ACGGAAAATGGCAGACACTCAACC -ACGGAAAATGGCAGACACTGTTCC -ACGGAAAATGGCAGACACATTCCC -ACGGAAAATGGCAGACACTTCTCG -ACGGAAAATGGCAGACACTAGACG -ACGGAAAATGGCAGACACGTAACG -ACGGAAAATGGCAGACACACTTCG -ACGGAAAATGGCAGACACTACGCA -ACGGAAAATGGCAGACACCTTGCA -ACGGAAAATGGCAGACACCGAACA -ACGGAAAATGGCAGACACCAGTCA -ACGGAAAATGGCAGACACGATCCA -ACGGAAAATGGCAGACACACGACA -ACGGAAAATGGCAGACACAGCTCA -ACGGAAAATGGCAGACACTCACGT -ACGGAAAATGGCAGACACCGTAGT -ACGGAAAATGGCAGACACGTCAGT -ACGGAAAATGGCAGACACGAAGGT -ACGGAAAATGGCAGACACAACCGT -ACGGAAAATGGCAGACACTTGTGC -ACGGAAAATGGCAGACACCTAAGC -ACGGAAAATGGCAGACACACTAGC -ACGGAAAATGGCAGACACAGATGC -ACGGAAAATGGCAGACACTGAAGG -ACGGAAAATGGCAGACACCAATGG -ACGGAAAATGGCAGACACATGAGG -ACGGAAAATGGCAGACACAATGGG -ACGGAAAATGGCAGACACTCCTGA -ACGGAAAATGGCAGACACTAGCGA -ACGGAAAATGGCAGACACCACAGA -ACGGAAAATGGCAGACACGCAAGA -ACGGAAAATGGCAGACACGGTTGA -ACGGAAAATGGCAGACACTCCGAT -ACGGAAAATGGCAGACACTGGCAT -ACGGAAAATGGCAGACACCGAGAT -ACGGAAAATGGCAGACACTACCAC -ACGGAAAATGGCAGACACCAGAAC -ACGGAAAATGGCAGACACGTCTAC -ACGGAAAATGGCAGACACACGTAC -ACGGAAAATGGCAGACACAGTGAC -ACGGAAAATGGCAGACACCTGTAG -ACGGAAAATGGCAGACACCCTAAG -ACGGAAAATGGCAGACACGTTCAG -ACGGAAAATGGCAGACACGCATAG -ACGGAAAATGGCAGACACGACAAG -ACGGAAAATGGCAGACACAAGCAG -ACGGAAAATGGCAGACACCGTCAA -ACGGAAAATGGCAGACACGCTGAA -ACGGAAAATGGCAGACACAGTACG -ACGGAAAATGGCAGACACATCCGA -ACGGAAAATGGCAGACACATGGGA -ACGGAAAATGGCAGACACGTGCAA -ACGGAAAATGGCAGACACGAGGAA -ACGGAAAATGGCAGACACCAGGTA -ACGGAAAATGGCAGACACGACTCT -ACGGAAAATGGCAGACACAGTCCT -ACGGAAAATGGCAGACACTAAGCC -ACGGAAAATGGCAGACACATAGCC -ACGGAAAATGGCAGACACTAACCG -ACGGAAAATGGCAGACACATGCCA -ACGGAAAATGGCAGAGCAGGAAAC -ACGGAAAATGGCAGAGCAAACACC -ACGGAAAATGGCAGAGCAATCGAG -ACGGAAAATGGCAGAGCACTCCTT -ACGGAAAATGGCAGAGCACCTGTT -ACGGAAAATGGCAGAGCACGGTTT -ACGGAAAATGGCAGAGCAGTGGTT -ACGGAAAATGGCAGAGCAGCCTTT -ACGGAAAATGGCAGAGCAGGTCTT -ACGGAAAATGGCAGAGCAACGCTT -ACGGAAAATGGCAGAGCAAGCGTT -ACGGAAAATGGCAGAGCATTCGTC -ACGGAAAATGGCAGAGCATCTCTC -ACGGAAAATGGCAGAGCATGGATC -ACGGAAAATGGCAGAGCACACTTC -ACGGAAAATGGCAGAGCAGTACTC -ACGGAAAATGGCAGAGCAGATGTC -ACGGAAAATGGCAGAGCAACAGTC -ACGGAAAATGGCAGAGCATTGCTG -ACGGAAAATGGCAGAGCATCCATG -ACGGAAAATGGCAGAGCATGTGTG -ACGGAAAATGGCAGAGCACTAGTG -ACGGAAAATGGCAGAGCACATCTG -ACGGAAAATGGCAGAGCAGAGTTG -ACGGAAAATGGCAGAGCAAGACTG -ACGGAAAATGGCAGAGCATCGGTA -ACGGAAAATGGCAGAGCATGCCTA -ACGGAAAATGGCAGAGCACCACTA -ACGGAAAATGGCAGAGCAGGAGTA -ACGGAAAATGGCAGAGCATCGTCT -ACGGAAAATGGCAGAGCATGCACT -ACGGAAAATGGCAGAGCACTGACT -ACGGAAAATGGCAGAGCACAACCT -ACGGAAAATGGCAGAGCAGCTACT -ACGGAAAATGGCAGAGCAGGATCT -ACGGAAAATGGCAGAGCAAAGGCT -ACGGAAAATGGCAGAGCATCAACC -ACGGAAAATGGCAGAGCATGTTCC -ACGGAAAATGGCAGAGCAATTCCC -ACGGAAAATGGCAGAGCATTCTCG -ACGGAAAATGGCAGAGCATAGACG -ACGGAAAATGGCAGAGCAGTAACG -ACGGAAAATGGCAGAGCAACTTCG -ACGGAAAATGGCAGAGCATACGCA -ACGGAAAATGGCAGAGCACTTGCA -ACGGAAAATGGCAGAGCACGAACA -ACGGAAAATGGCAGAGCACAGTCA -ACGGAAAATGGCAGAGCAGATCCA -ACGGAAAATGGCAGAGCAACGACA -ACGGAAAATGGCAGAGCAAGCTCA -ACGGAAAATGGCAGAGCATCACGT -ACGGAAAATGGCAGAGCACGTAGT -ACGGAAAATGGCAGAGCAGTCAGT -ACGGAAAATGGCAGAGCAGAAGGT -ACGGAAAATGGCAGAGCAAACCGT -ACGGAAAATGGCAGAGCATTGTGC -ACGGAAAATGGCAGAGCACTAAGC -ACGGAAAATGGCAGAGCAACTAGC -ACGGAAAATGGCAGAGCAAGATGC -ACGGAAAATGGCAGAGCATGAAGG -ACGGAAAATGGCAGAGCACAATGG -ACGGAAAATGGCAGAGCAATGAGG -ACGGAAAATGGCAGAGCAAATGGG -ACGGAAAATGGCAGAGCATCCTGA -ACGGAAAATGGCAGAGCATAGCGA -ACGGAAAATGGCAGAGCACACAGA -ACGGAAAATGGCAGAGCAGCAAGA -ACGGAAAATGGCAGAGCAGGTTGA -ACGGAAAATGGCAGAGCATCCGAT -ACGGAAAATGGCAGAGCATGGCAT -ACGGAAAATGGCAGAGCACGAGAT -ACGGAAAATGGCAGAGCATACCAC -ACGGAAAATGGCAGAGCACAGAAC -ACGGAAAATGGCAGAGCAGTCTAC -ACGGAAAATGGCAGAGCAACGTAC -ACGGAAAATGGCAGAGCAAGTGAC -ACGGAAAATGGCAGAGCACTGTAG -ACGGAAAATGGCAGAGCACCTAAG -ACGGAAAATGGCAGAGCAGTTCAG -ACGGAAAATGGCAGAGCAGCATAG -ACGGAAAATGGCAGAGCAGACAAG -ACGGAAAATGGCAGAGCAAAGCAG -ACGGAAAATGGCAGAGCACGTCAA -ACGGAAAATGGCAGAGCAGCTGAA -ACGGAAAATGGCAGAGCAAGTACG -ACGGAAAATGGCAGAGCAATCCGA -ACGGAAAATGGCAGAGCAATGGGA -ACGGAAAATGGCAGAGCAGTGCAA -ACGGAAAATGGCAGAGCAGAGGAA -ACGGAAAATGGCAGAGCACAGGTA -ACGGAAAATGGCAGAGCAGACTCT -ACGGAAAATGGCAGAGCAAGTCCT -ACGGAAAATGGCAGAGCATAAGCC -ACGGAAAATGGCAGAGCAATAGCC -ACGGAAAATGGCAGAGCATAACCG -ACGGAAAATGGCAGAGCAATGCCA -ACGGAAAATGGCTGAGGTGGAAAC -ACGGAAAATGGCTGAGGTAACACC -ACGGAAAATGGCTGAGGTATCGAG -ACGGAAAATGGCTGAGGTCTCCTT -ACGGAAAATGGCTGAGGTCCTGTT -ACGGAAAATGGCTGAGGTCGGTTT -ACGGAAAATGGCTGAGGTGTGGTT -ACGGAAAATGGCTGAGGTGCCTTT -ACGGAAAATGGCTGAGGTGGTCTT -ACGGAAAATGGCTGAGGTACGCTT -ACGGAAAATGGCTGAGGTAGCGTT -ACGGAAAATGGCTGAGGTTTCGTC -ACGGAAAATGGCTGAGGTTCTCTC -ACGGAAAATGGCTGAGGTTGGATC -ACGGAAAATGGCTGAGGTCACTTC -ACGGAAAATGGCTGAGGTGTACTC -ACGGAAAATGGCTGAGGTGATGTC -ACGGAAAATGGCTGAGGTACAGTC -ACGGAAAATGGCTGAGGTTTGCTG -ACGGAAAATGGCTGAGGTTCCATG -ACGGAAAATGGCTGAGGTTGTGTG -ACGGAAAATGGCTGAGGTCTAGTG -ACGGAAAATGGCTGAGGTCATCTG -ACGGAAAATGGCTGAGGTGAGTTG -ACGGAAAATGGCTGAGGTAGACTG -ACGGAAAATGGCTGAGGTTCGGTA -ACGGAAAATGGCTGAGGTTGCCTA -ACGGAAAATGGCTGAGGTCCACTA -ACGGAAAATGGCTGAGGTGGAGTA -ACGGAAAATGGCTGAGGTTCGTCT -ACGGAAAATGGCTGAGGTTGCACT -ACGGAAAATGGCTGAGGTCTGACT -ACGGAAAATGGCTGAGGTCAACCT -ACGGAAAATGGCTGAGGTGCTACT -ACGGAAAATGGCTGAGGTGGATCT -ACGGAAAATGGCTGAGGTAAGGCT -ACGGAAAATGGCTGAGGTTCAACC -ACGGAAAATGGCTGAGGTTGTTCC -ACGGAAAATGGCTGAGGTATTCCC -ACGGAAAATGGCTGAGGTTTCTCG -ACGGAAAATGGCTGAGGTTAGACG -ACGGAAAATGGCTGAGGTGTAACG -ACGGAAAATGGCTGAGGTACTTCG -ACGGAAAATGGCTGAGGTTACGCA -ACGGAAAATGGCTGAGGTCTTGCA -ACGGAAAATGGCTGAGGTCGAACA -ACGGAAAATGGCTGAGGTCAGTCA -ACGGAAAATGGCTGAGGTGATCCA -ACGGAAAATGGCTGAGGTACGACA -ACGGAAAATGGCTGAGGTAGCTCA -ACGGAAAATGGCTGAGGTTCACGT -ACGGAAAATGGCTGAGGTCGTAGT -ACGGAAAATGGCTGAGGTGTCAGT -ACGGAAAATGGCTGAGGTGAAGGT -ACGGAAAATGGCTGAGGTAACCGT -ACGGAAAATGGCTGAGGTTTGTGC -ACGGAAAATGGCTGAGGTCTAAGC -ACGGAAAATGGCTGAGGTACTAGC -ACGGAAAATGGCTGAGGTAGATGC -ACGGAAAATGGCTGAGGTTGAAGG -ACGGAAAATGGCTGAGGTCAATGG -ACGGAAAATGGCTGAGGTATGAGG -ACGGAAAATGGCTGAGGTAATGGG -ACGGAAAATGGCTGAGGTTCCTGA -ACGGAAAATGGCTGAGGTTAGCGA -ACGGAAAATGGCTGAGGTCACAGA -ACGGAAAATGGCTGAGGTGCAAGA -ACGGAAAATGGCTGAGGTGGTTGA -ACGGAAAATGGCTGAGGTTCCGAT -ACGGAAAATGGCTGAGGTTGGCAT -ACGGAAAATGGCTGAGGTCGAGAT -ACGGAAAATGGCTGAGGTTACCAC -ACGGAAAATGGCTGAGGTCAGAAC -ACGGAAAATGGCTGAGGTGTCTAC -ACGGAAAATGGCTGAGGTACGTAC -ACGGAAAATGGCTGAGGTAGTGAC -ACGGAAAATGGCTGAGGTCTGTAG -ACGGAAAATGGCTGAGGTCCTAAG -ACGGAAAATGGCTGAGGTGTTCAG -ACGGAAAATGGCTGAGGTGCATAG -ACGGAAAATGGCTGAGGTGACAAG -ACGGAAAATGGCTGAGGTAAGCAG -ACGGAAAATGGCTGAGGTCGTCAA -ACGGAAAATGGCTGAGGTGCTGAA -ACGGAAAATGGCTGAGGTAGTACG -ACGGAAAATGGCTGAGGTATCCGA -ACGGAAAATGGCTGAGGTATGGGA -ACGGAAAATGGCTGAGGTGTGCAA -ACGGAAAATGGCTGAGGTGAGGAA -ACGGAAAATGGCTGAGGTCAGGTA -ACGGAAAATGGCTGAGGTGACTCT -ACGGAAAATGGCTGAGGTAGTCCT -ACGGAAAATGGCTGAGGTTAAGCC -ACGGAAAATGGCTGAGGTATAGCC -ACGGAAAATGGCTGAGGTTAACCG -ACGGAAAATGGCTGAGGTATGCCA -ACGGAAAATGGCGATTCCGGAAAC -ACGGAAAATGGCGATTCCAACACC -ACGGAAAATGGCGATTCCATCGAG -ACGGAAAATGGCGATTCCCTCCTT -ACGGAAAATGGCGATTCCCCTGTT -ACGGAAAATGGCGATTCCCGGTTT -ACGGAAAATGGCGATTCCGTGGTT -ACGGAAAATGGCGATTCCGCCTTT -ACGGAAAATGGCGATTCCGGTCTT -ACGGAAAATGGCGATTCCACGCTT -ACGGAAAATGGCGATTCCAGCGTT -ACGGAAAATGGCGATTCCTTCGTC -ACGGAAAATGGCGATTCCTCTCTC -ACGGAAAATGGCGATTCCTGGATC -ACGGAAAATGGCGATTCCCACTTC -ACGGAAAATGGCGATTCCGTACTC -ACGGAAAATGGCGATTCCGATGTC -ACGGAAAATGGCGATTCCACAGTC -ACGGAAAATGGCGATTCCTTGCTG -ACGGAAAATGGCGATTCCTCCATG -ACGGAAAATGGCGATTCCTGTGTG -ACGGAAAATGGCGATTCCCTAGTG -ACGGAAAATGGCGATTCCCATCTG -ACGGAAAATGGCGATTCCGAGTTG -ACGGAAAATGGCGATTCCAGACTG -ACGGAAAATGGCGATTCCTCGGTA -ACGGAAAATGGCGATTCCTGCCTA -ACGGAAAATGGCGATTCCCCACTA -ACGGAAAATGGCGATTCCGGAGTA -ACGGAAAATGGCGATTCCTCGTCT -ACGGAAAATGGCGATTCCTGCACT -ACGGAAAATGGCGATTCCCTGACT -ACGGAAAATGGCGATTCCCAACCT -ACGGAAAATGGCGATTCCGCTACT -ACGGAAAATGGCGATTCCGGATCT -ACGGAAAATGGCGATTCCAAGGCT -ACGGAAAATGGCGATTCCTCAACC -ACGGAAAATGGCGATTCCTGTTCC -ACGGAAAATGGCGATTCCATTCCC -ACGGAAAATGGCGATTCCTTCTCG -ACGGAAAATGGCGATTCCTAGACG -ACGGAAAATGGCGATTCCGTAACG -ACGGAAAATGGCGATTCCACTTCG -ACGGAAAATGGCGATTCCTACGCA -ACGGAAAATGGCGATTCCCTTGCA -ACGGAAAATGGCGATTCCCGAACA -ACGGAAAATGGCGATTCCCAGTCA -ACGGAAAATGGCGATTCCGATCCA -ACGGAAAATGGCGATTCCACGACA -ACGGAAAATGGCGATTCCAGCTCA -ACGGAAAATGGCGATTCCTCACGT -ACGGAAAATGGCGATTCCCGTAGT -ACGGAAAATGGCGATTCCGTCAGT -ACGGAAAATGGCGATTCCGAAGGT -ACGGAAAATGGCGATTCCAACCGT -ACGGAAAATGGCGATTCCTTGTGC -ACGGAAAATGGCGATTCCCTAAGC -ACGGAAAATGGCGATTCCACTAGC -ACGGAAAATGGCGATTCCAGATGC -ACGGAAAATGGCGATTCCTGAAGG -ACGGAAAATGGCGATTCCCAATGG -ACGGAAAATGGCGATTCCATGAGG -ACGGAAAATGGCGATTCCAATGGG -ACGGAAAATGGCGATTCCTCCTGA -ACGGAAAATGGCGATTCCTAGCGA -ACGGAAAATGGCGATTCCCACAGA -ACGGAAAATGGCGATTCCGCAAGA -ACGGAAAATGGCGATTCCGGTTGA -ACGGAAAATGGCGATTCCTCCGAT -ACGGAAAATGGCGATTCCTGGCAT -ACGGAAAATGGCGATTCCCGAGAT -ACGGAAAATGGCGATTCCTACCAC -ACGGAAAATGGCGATTCCCAGAAC -ACGGAAAATGGCGATTCCGTCTAC -ACGGAAAATGGCGATTCCACGTAC -ACGGAAAATGGCGATTCCAGTGAC -ACGGAAAATGGCGATTCCCTGTAG -ACGGAAAATGGCGATTCCCCTAAG -ACGGAAAATGGCGATTCCGTTCAG -ACGGAAAATGGCGATTCCGCATAG -ACGGAAAATGGCGATTCCGACAAG -ACGGAAAATGGCGATTCCAAGCAG -ACGGAAAATGGCGATTCCCGTCAA -ACGGAAAATGGCGATTCCGCTGAA -ACGGAAAATGGCGATTCCAGTACG -ACGGAAAATGGCGATTCCATCCGA -ACGGAAAATGGCGATTCCATGGGA -ACGGAAAATGGCGATTCCGTGCAA -ACGGAAAATGGCGATTCCGAGGAA -ACGGAAAATGGCGATTCCCAGGTA -ACGGAAAATGGCGATTCCGACTCT -ACGGAAAATGGCGATTCCAGTCCT -ACGGAAAATGGCGATTCCTAAGCC -ACGGAAAATGGCGATTCCATAGCC -ACGGAAAATGGCGATTCCTAACCG -ACGGAAAATGGCGATTCCATGCCA -ACGGAAAATGGCCATTGGGGAAAC -ACGGAAAATGGCCATTGGAACACC -ACGGAAAATGGCCATTGGATCGAG -ACGGAAAATGGCCATTGGCTCCTT -ACGGAAAATGGCCATTGGCCTGTT -ACGGAAAATGGCCATTGGCGGTTT -ACGGAAAATGGCCATTGGGTGGTT -ACGGAAAATGGCCATTGGGCCTTT -ACGGAAAATGGCCATTGGGGTCTT -ACGGAAAATGGCCATTGGACGCTT -ACGGAAAATGGCCATTGGAGCGTT -ACGGAAAATGGCCATTGGTTCGTC -ACGGAAAATGGCCATTGGTCTCTC -ACGGAAAATGGCCATTGGTGGATC -ACGGAAAATGGCCATTGGCACTTC -ACGGAAAATGGCCATTGGGTACTC -ACGGAAAATGGCCATTGGGATGTC -ACGGAAAATGGCCATTGGACAGTC -ACGGAAAATGGCCATTGGTTGCTG -ACGGAAAATGGCCATTGGTCCATG -ACGGAAAATGGCCATTGGTGTGTG -ACGGAAAATGGCCATTGGCTAGTG -ACGGAAAATGGCCATTGGCATCTG -ACGGAAAATGGCCATTGGGAGTTG -ACGGAAAATGGCCATTGGAGACTG -ACGGAAAATGGCCATTGGTCGGTA -ACGGAAAATGGCCATTGGTGCCTA -ACGGAAAATGGCCATTGGCCACTA -ACGGAAAATGGCCATTGGGGAGTA -ACGGAAAATGGCCATTGGTCGTCT -ACGGAAAATGGCCATTGGTGCACT -ACGGAAAATGGCCATTGGCTGACT -ACGGAAAATGGCCATTGGCAACCT -ACGGAAAATGGCCATTGGGCTACT -ACGGAAAATGGCCATTGGGGATCT -ACGGAAAATGGCCATTGGAAGGCT -ACGGAAAATGGCCATTGGTCAACC -ACGGAAAATGGCCATTGGTGTTCC -ACGGAAAATGGCCATTGGATTCCC -ACGGAAAATGGCCATTGGTTCTCG -ACGGAAAATGGCCATTGGTAGACG -ACGGAAAATGGCCATTGGGTAACG -ACGGAAAATGGCCATTGGACTTCG -ACGGAAAATGGCCATTGGTACGCA -ACGGAAAATGGCCATTGGCTTGCA -ACGGAAAATGGCCATTGGCGAACA -ACGGAAAATGGCCATTGGCAGTCA -ACGGAAAATGGCCATTGGGATCCA -ACGGAAAATGGCCATTGGACGACA -ACGGAAAATGGCCATTGGAGCTCA -ACGGAAAATGGCCATTGGTCACGT -ACGGAAAATGGCCATTGGCGTAGT -ACGGAAAATGGCCATTGGGTCAGT -ACGGAAAATGGCCATTGGGAAGGT -ACGGAAAATGGCCATTGGAACCGT -ACGGAAAATGGCCATTGGTTGTGC -ACGGAAAATGGCCATTGGCTAAGC -ACGGAAAATGGCCATTGGACTAGC -ACGGAAAATGGCCATTGGAGATGC -ACGGAAAATGGCCATTGGTGAAGG -ACGGAAAATGGCCATTGGCAATGG -ACGGAAAATGGCCATTGGATGAGG -ACGGAAAATGGCCATTGGAATGGG -ACGGAAAATGGCCATTGGTCCTGA -ACGGAAAATGGCCATTGGTAGCGA -ACGGAAAATGGCCATTGGCACAGA -ACGGAAAATGGCCATTGGGCAAGA -ACGGAAAATGGCCATTGGGGTTGA -ACGGAAAATGGCCATTGGTCCGAT -ACGGAAAATGGCCATTGGTGGCAT -ACGGAAAATGGCCATTGGCGAGAT -ACGGAAAATGGCCATTGGTACCAC -ACGGAAAATGGCCATTGGCAGAAC -ACGGAAAATGGCCATTGGGTCTAC -ACGGAAAATGGCCATTGGACGTAC -ACGGAAAATGGCCATTGGAGTGAC -ACGGAAAATGGCCATTGGCTGTAG -ACGGAAAATGGCCATTGGCCTAAG -ACGGAAAATGGCCATTGGGTTCAG -ACGGAAAATGGCCATTGGGCATAG -ACGGAAAATGGCCATTGGGACAAG -ACGGAAAATGGCCATTGGAAGCAG -ACGGAAAATGGCCATTGGCGTCAA -ACGGAAAATGGCCATTGGGCTGAA -ACGGAAAATGGCCATTGGAGTACG -ACGGAAAATGGCCATTGGATCCGA -ACGGAAAATGGCCATTGGATGGGA -ACGGAAAATGGCCATTGGGTGCAA -ACGGAAAATGGCCATTGGGAGGAA -ACGGAAAATGGCCATTGGCAGGTA -ACGGAAAATGGCCATTGGGACTCT -ACGGAAAATGGCCATTGGAGTCCT -ACGGAAAATGGCCATTGGTAAGCC -ACGGAAAATGGCCATTGGATAGCC -ACGGAAAATGGCCATTGGTAACCG -ACGGAAAATGGCCATTGGATGCCA -ACGGAAAATGGCGATCGAGGAAAC -ACGGAAAATGGCGATCGAAACACC -ACGGAAAATGGCGATCGAATCGAG -ACGGAAAATGGCGATCGACTCCTT -ACGGAAAATGGCGATCGACCTGTT -ACGGAAAATGGCGATCGACGGTTT -ACGGAAAATGGCGATCGAGTGGTT -ACGGAAAATGGCGATCGAGCCTTT -ACGGAAAATGGCGATCGAGGTCTT -ACGGAAAATGGCGATCGAACGCTT -ACGGAAAATGGCGATCGAAGCGTT -ACGGAAAATGGCGATCGATTCGTC -ACGGAAAATGGCGATCGATCTCTC -ACGGAAAATGGCGATCGATGGATC -ACGGAAAATGGCGATCGACACTTC -ACGGAAAATGGCGATCGAGTACTC -ACGGAAAATGGCGATCGAGATGTC -ACGGAAAATGGCGATCGAACAGTC -ACGGAAAATGGCGATCGATTGCTG -ACGGAAAATGGCGATCGATCCATG -ACGGAAAATGGCGATCGATGTGTG -ACGGAAAATGGCGATCGACTAGTG -ACGGAAAATGGCGATCGACATCTG -ACGGAAAATGGCGATCGAGAGTTG -ACGGAAAATGGCGATCGAAGACTG -ACGGAAAATGGCGATCGATCGGTA -ACGGAAAATGGCGATCGATGCCTA -ACGGAAAATGGCGATCGACCACTA -ACGGAAAATGGCGATCGAGGAGTA -ACGGAAAATGGCGATCGATCGTCT -ACGGAAAATGGCGATCGATGCACT -ACGGAAAATGGCGATCGACTGACT -ACGGAAAATGGCGATCGACAACCT -ACGGAAAATGGCGATCGAGCTACT -ACGGAAAATGGCGATCGAGGATCT -ACGGAAAATGGCGATCGAAAGGCT -ACGGAAAATGGCGATCGATCAACC -ACGGAAAATGGCGATCGATGTTCC -ACGGAAAATGGCGATCGAATTCCC -ACGGAAAATGGCGATCGATTCTCG -ACGGAAAATGGCGATCGATAGACG -ACGGAAAATGGCGATCGAGTAACG -ACGGAAAATGGCGATCGAACTTCG -ACGGAAAATGGCGATCGATACGCA -ACGGAAAATGGCGATCGACTTGCA -ACGGAAAATGGCGATCGACGAACA -ACGGAAAATGGCGATCGACAGTCA -ACGGAAAATGGCGATCGAGATCCA -ACGGAAAATGGCGATCGAACGACA -ACGGAAAATGGCGATCGAAGCTCA -ACGGAAAATGGCGATCGATCACGT -ACGGAAAATGGCGATCGACGTAGT -ACGGAAAATGGCGATCGAGTCAGT -ACGGAAAATGGCGATCGAGAAGGT -ACGGAAAATGGCGATCGAAACCGT -ACGGAAAATGGCGATCGATTGTGC -ACGGAAAATGGCGATCGACTAAGC -ACGGAAAATGGCGATCGAACTAGC -ACGGAAAATGGCGATCGAAGATGC -ACGGAAAATGGCGATCGATGAAGG -ACGGAAAATGGCGATCGACAATGG -ACGGAAAATGGCGATCGAATGAGG -ACGGAAAATGGCGATCGAAATGGG -ACGGAAAATGGCGATCGATCCTGA -ACGGAAAATGGCGATCGATAGCGA -ACGGAAAATGGCGATCGACACAGA -ACGGAAAATGGCGATCGAGCAAGA -ACGGAAAATGGCGATCGAGGTTGA -ACGGAAAATGGCGATCGATCCGAT -ACGGAAAATGGCGATCGATGGCAT -ACGGAAAATGGCGATCGACGAGAT -ACGGAAAATGGCGATCGATACCAC -ACGGAAAATGGCGATCGACAGAAC -ACGGAAAATGGCGATCGAGTCTAC -ACGGAAAATGGCGATCGAACGTAC -ACGGAAAATGGCGATCGAAGTGAC -ACGGAAAATGGCGATCGACTGTAG -ACGGAAAATGGCGATCGACCTAAG -ACGGAAAATGGCGATCGAGTTCAG -ACGGAAAATGGCGATCGAGCATAG -ACGGAAAATGGCGATCGAGACAAG -ACGGAAAATGGCGATCGAAAGCAG -ACGGAAAATGGCGATCGACGTCAA -ACGGAAAATGGCGATCGAGCTGAA -ACGGAAAATGGCGATCGAAGTACG -ACGGAAAATGGCGATCGAATCCGA -ACGGAAAATGGCGATCGAATGGGA -ACGGAAAATGGCGATCGAGTGCAA -ACGGAAAATGGCGATCGAGAGGAA -ACGGAAAATGGCGATCGACAGGTA -ACGGAAAATGGCGATCGAGACTCT -ACGGAAAATGGCGATCGAAGTCCT -ACGGAAAATGGCGATCGATAAGCC -ACGGAAAATGGCGATCGAATAGCC -ACGGAAAATGGCGATCGATAACCG -ACGGAAAATGGCGATCGAATGCCA -ACGGAAAATGGCCACTACGGAAAC -ACGGAAAATGGCCACTACAACACC -ACGGAAAATGGCCACTACATCGAG -ACGGAAAATGGCCACTACCTCCTT -ACGGAAAATGGCCACTACCCTGTT -ACGGAAAATGGCCACTACCGGTTT -ACGGAAAATGGCCACTACGTGGTT -ACGGAAAATGGCCACTACGCCTTT -ACGGAAAATGGCCACTACGGTCTT -ACGGAAAATGGCCACTACACGCTT -ACGGAAAATGGCCACTACAGCGTT -ACGGAAAATGGCCACTACTTCGTC -ACGGAAAATGGCCACTACTCTCTC -ACGGAAAATGGCCACTACTGGATC -ACGGAAAATGGCCACTACCACTTC -ACGGAAAATGGCCACTACGTACTC -ACGGAAAATGGCCACTACGATGTC -ACGGAAAATGGCCACTACACAGTC -ACGGAAAATGGCCACTACTTGCTG -ACGGAAAATGGCCACTACTCCATG -ACGGAAAATGGCCACTACTGTGTG -ACGGAAAATGGCCACTACCTAGTG -ACGGAAAATGGCCACTACCATCTG -ACGGAAAATGGCCACTACGAGTTG -ACGGAAAATGGCCACTACAGACTG -ACGGAAAATGGCCACTACTCGGTA -ACGGAAAATGGCCACTACTGCCTA -ACGGAAAATGGCCACTACCCACTA -ACGGAAAATGGCCACTACGGAGTA -ACGGAAAATGGCCACTACTCGTCT -ACGGAAAATGGCCACTACTGCACT -ACGGAAAATGGCCACTACCTGACT -ACGGAAAATGGCCACTACCAACCT -ACGGAAAATGGCCACTACGCTACT -ACGGAAAATGGCCACTACGGATCT -ACGGAAAATGGCCACTACAAGGCT -ACGGAAAATGGCCACTACTCAACC -ACGGAAAATGGCCACTACTGTTCC -ACGGAAAATGGCCACTACATTCCC -ACGGAAAATGGCCACTACTTCTCG -ACGGAAAATGGCCACTACTAGACG -ACGGAAAATGGCCACTACGTAACG -ACGGAAAATGGCCACTACACTTCG -ACGGAAAATGGCCACTACTACGCA -ACGGAAAATGGCCACTACCTTGCA -ACGGAAAATGGCCACTACCGAACA -ACGGAAAATGGCCACTACCAGTCA -ACGGAAAATGGCCACTACGATCCA -ACGGAAAATGGCCACTACACGACA -ACGGAAAATGGCCACTACAGCTCA -ACGGAAAATGGCCACTACTCACGT -ACGGAAAATGGCCACTACCGTAGT -ACGGAAAATGGCCACTACGTCAGT -ACGGAAAATGGCCACTACGAAGGT -ACGGAAAATGGCCACTACAACCGT -ACGGAAAATGGCCACTACTTGTGC -ACGGAAAATGGCCACTACCTAAGC -ACGGAAAATGGCCACTACACTAGC -ACGGAAAATGGCCACTACAGATGC -ACGGAAAATGGCCACTACTGAAGG -ACGGAAAATGGCCACTACCAATGG -ACGGAAAATGGCCACTACATGAGG -ACGGAAAATGGCCACTACAATGGG -ACGGAAAATGGCCACTACTCCTGA -ACGGAAAATGGCCACTACTAGCGA -ACGGAAAATGGCCACTACCACAGA -ACGGAAAATGGCCACTACGCAAGA -ACGGAAAATGGCCACTACGGTTGA -ACGGAAAATGGCCACTACTCCGAT -ACGGAAAATGGCCACTACTGGCAT -ACGGAAAATGGCCACTACCGAGAT -ACGGAAAATGGCCACTACTACCAC -ACGGAAAATGGCCACTACCAGAAC -ACGGAAAATGGCCACTACGTCTAC -ACGGAAAATGGCCACTACACGTAC -ACGGAAAATGGCCACTACAGTGAC -ACGGAAAATGGCCACTACCTGTAG -ACGGAAAATGGCCACTACCCTAAG -ACGGAAAATGGCCACTACGTTCAG -ACGGAAAATGGCCACTACGCATAG -ACGGAAAATGGCCACTACGACAAG -ACGGAAAATGGCCACTACAAGCAG -ACGGAAAATGGCCACTACCGTCAA -ACGGAAAATGGCCACTACGCTGAA -ACGGAAAATGGCCACTACAGTACG -ACGGAAAATGGCCACTACATCCGA -ACGGAAAATGGCCACTACATGGGA -ACGGAAAATGGCCACTACGTGCAA -ACGGAAAATGGCCACTACGAGGAA -ACGGAAAATGGCCACTACCAGGTA -ACGGAAAATGGCCACTACGACTCT -ACGGAAAATGGCCACTACAGTCCT -ACGGAAAATGGCCACTACTAAGCC -ACGGAAAATGGCCACTACATAGCC -ACGGAAAATGGCCACTACTAACCG -ACGGAAAATGGCCACTACATGCCA -ACGGAAAATGGCAACCAGGGAAAC -ACGGAAAATGGCAACCAGAACACC -ACGGAAAATGGCAACCAGATCGAG -ACGGAAAATGGCAACCAGCTCCTT -ACGGAAAATGGCAACCAGCCTGTT -ACGGAAAATGGCAACCAGCGGTTT -ACGGAAAATGGCAACCAGGTGGTT -ACGGAAAATGGCAACCAGGCCTTT -ACGGAAAATGGCAACCAGGGTCTT -ACGGAAAATGGCAACCAGACGCTT -ACGGAAAATGGCAACCAGAGCGTT -ACGGAAAATGGCAACCAGTTCGTC -ACGGAAAATGGCAACCAGTCTCTC -ACGGAAAATGGCAACCAGTGGATC -ACGGAAAATGGCAACCAGCACTTC -ACGGAAAATGGCAACCAGGTACTC -ACGGAAAATGGCAACCAGGATGTC -ACGGAAAATGGCAACCAGACAGTC -ACGGAAAATGGCAACCAGTTGCTG -ACGGAAAATGGCAACCAGTCCATG -ACGGAAAATGGCAACCAGTGTGTG -ACGGAAAATGGCAACCAGCTAGTG -ACGGAAAATGGCAACCAGCATCTG -ACGGAAAATGGCAACCAGGAGTTG -ACGGAAAATGGCAACCAGAGACTG -ACGGAAAATGGCAACCAGTCGGTA -ACGGAAAATGGCAACCAGTGCCTA -ACGGAAAATGGCAACCAGCCACTA -ACGGAAAATGGCAACCAGGGAGTA -ACGGAAAATGGCAACCAGTCGTCT -ACGGAAAATGGCAACCAGTGCACT -ACGGAAAATGGCAACCAGCTGACT -ACGGAAAATGGCAACCAGCAACCT -ACGGAAAATGGCAACCAGGCTACT -ACGGAAAATGGCAACCAGGGATCT -ACGGAAAATGGCAACCAGAAGGCT -ACGGAAAATGGCAACCAGTCAACC -ACGGAAAATGGCAACCAGTGTTCC -ACGGAAAATGGCAACCAGATTCCC -ACGGAAAATGGCAACCAGTTCTCG -ACGGAAAATGGCAACCAGTAGACG -ACGGAAAATGGCAACCAGGTAACG -ACGGAAAATGGCAACCAGACTTCG -ACGGAAAATGGCAACCAGTACGCA -ACGGAAAATGGCAACCAGCTTGCA -ACGGAAAATGGCAACCAGCGAACA -ACGGAAAATGGCAACCAGCAGTCA -ACGGAAAATGGCAACCAGGATCCA -ACGGAAAATGGCAACCAGACGACA -ACGGAAAATGGCAACCAGAGCTCA -ACGGAAAATGGCAACCAGTCACGT -ACGGAAAATGGCAACCAGCGTAGT -ACGGAAAATGGCAACCAGGTCAGT -ACGGAAAATGGCAACCAGGAAGGT -ACGGAAAATGGCAACCAGAACCGT -ACGGAAAATGGCAACCAGTTGTGC -ACGGAAAATGGCAACCAGCTAAGC -ACGGAAAATGGCAACCAGACTAGC -ACGGAAAATGGCAACCAGAGATGC -ACGGAAAATGGCAACCAGTGAAGG -ACGGAAAATGGCAACCAGCAATGG -ACGGAAAATGGCAACCAGATGAGG -ACGGAAAATGGCAACCAGAATGGG -ACGGAAAATGGCAACCAGTCCTGA -ACGGAAAATGGCAACCAGTAGCGA -ACGGAAAATGGCAACCAGCACAGA -ACGGAAAATGGCAACCAGGCAAGA -ACGGAAAATGGCAACCAGGGTTGA -ACGGAAAATGGCAACCAGTCCGAT -ACGGAAAATGGCAACCAGTGGCAT -ACGGAAAATGGCAACCAGCGAGAT -ACGGAAAATGGCAACCAGTACCAC -ACGGAAAATGGCAACCAGCAGAAC -ACGGAAAATGGCAACCAGGTCTAC -ACGGAAAATGGCAACCAGACGTAC -ACGGAAAATGGCAACCAGAGTGAC -ACGGAAAATGGCAACCAGCTGTAG -ACGGAAAATGGCAACCAGCCTAAG -ACGGAAAATGGCAACCAGGTTCAG -ACGGAAAATGGCAACCAGGCATAG -ACGGAAAATGGCAACCAGGACAAG -ACGGAAAATGGCAACCAGAAGCAG -ACGGAAAATGGCAACCAGCGTCAA -ACGGAAAATGGCAACCAGGCTGAA -ACGGAAAATGGCAACCAGAGTACG -ACGGAAAATGGCAACCAGATCCGA -ACGGAAAATGGCAACCAGATGGGA -ACGGAAAATGGCAACCAGGTGCAA -ACGGAAAATGGCAACCAGGAGGAA -ACGGAAAATGGCAACCAGCAGGTA -ACGGAAAATGGCAACCAGGACTCT -ACGGAAAATGGCAACCAGAGTCCT -ACGGAAAATGGCAACCAGTAAGCC -ACGGAAAATGGCAACCAGATAGCC -ACGGAAAATGGCAACCAGTAACCG -ACGGAAAATGGCAACCAGATGCCA -ACGGAAAATGGCTACGTCGGAAAC -ACGGAAAATGGCTACGTCAACACC -ACGGAAAATGGCTACGTCATCGAG -ACGGAAAATGGCTACGTCCTCCTT -ACGGAAAATGGCTACGTCCCTGTT -ACGGAAAATGGCTACGTCCGGTTT -ACGGAAAATGGCTACGTCGTGGTT -ACGGAAAATGGCTACGTCGCCTTT -ACGGAAAATGGCTACGTCGGTCTT -ACGGAAAATGGCTACGTCACGCTT -ACGGAAAATGGCTACGTCAGCGTT -ACGGAAAATGGCTACGTCTTCGTC -ACGGAAAATGGCTACGTCTCTCTC -ACGGAAAATGGCTACGTCTGGATC -ACGGAAAATGGCTACGTCCACTTC -ACGGAAAATGGCTACGTCGTACTC -ACGGAAAATGGCTACGTCGATGTC -ACGGAAAATGGCTACGTCACAGTC -ACGGAAAATGGCTACGTCTTGCTG -ACGGAAAATGGCTACGTCTCCATG -ACGGAAAATGGCTACGTCTGTGTG -ACGGAAAATGGCTACGTCCTAGTG -ACGGAAAATGGCTACGTCCATCTG -ACGGAAAATGGCTACGTCGAGTTG -ACGGAAAATGGCTACGTCAGACTG -ACGGAAAATGGCTACGTCTCGGTA -ACGGAAAATGGCTACGTCTGCCTA -ACGGAAAATGGCTACGTCCCACTA -ACGGAAAATGGCTACGTCGGAGTA -ACGGAAAATGGCTACGTCTCGTCT -ACGGAAAATGGCTACGTCTGCACT -ACGGAAAATGGCTACGTCCTGACT -ACGGAAAATGGCTACGTCCAACCT -ACGGAAAATGGCTACGTCGCTACT -ACGGAAAATGGCTACGTCGGATCT -ACGGAAAATGGCTACGTCAAGGCT -ACGGAAAATGGCTACGTCTCAACC -ACGGAAAATGGCTACGTCTGTTCC -ACGGAAAATGGCTACGTCATTCCC -ACGGAAAATGGCTACGTCTTCTCG -ACGGAAAATGGCTACGTCTAGACG -ACGGAAAATGGCTACGTCGTAACG -ACGGAAAATGGCTACGTCACTTCG -ACGGAAAATGGCTACGTCTACGCA -ACGGAAAATGGCTACGTCCTTGCA -ACGGAAAATGGCTACGTCCGAACA -ACGGAAAATGGCTACGTCCAGTCA -ACGGAAAATGGCTACGTCGATCCA -ACGGAAAATGGCTACGTCACGACA -ACGGAAAATGGCTACGTCAGCTCA -ACGGAAAATGGCTACGTCTCACGT -ACGGAAAATGGCTACGTCCGTAGT -ACGGAAAATGGCTACGTCGTCAGT -ACGGAAAATGGCTACGTCGAAGGT -ACGGAAAATGGCTACGTCAACCGT -ACGGAAAATGGCTACGTCTTGTGC -ACGGAAAATGGCTACGTCCTAAGC -ACGGAAAATGGCTACGTCACTAGC -ACGGAAAATGGCTACGTCAGATGC -ACGGAAAATGGCTACGTCTGAAGG -ACGGAAAATGGCTACGTCCAATGG -ACGGAAAATGGCTACGTCATGAGG -ACGGAAAATGGCTACGTCAATGGG -ACGGAAAATGGCTACGTCTCCTGA -ACGGAAAATGGCTACGTCTAGCGA -ACGGAAAATGGCTACGTCCACAGA -ACGGAAAATGGCTACGTCGCAAGA -ACGGAAAATGGCTACGTCGGTTGA -ACGGAAAATGGCTACGTCTCCGAT -ACGGAAAATGGCTACGTCTGGCAT -ACGGAAAATGGCTACGTCCGAGAT -ACGGAAAATGGCTACGTCTACCAC -ACGGAAAATGGCTACGTCCAGAAC -ACGGAAAATGGCTACGTCGTCTAC -ACGGAAAATGGCTACGTCACGTAC -ACGGAAAATGGCTACGTCAGTGAC -ACGGAAAATGGCTACGTCCTGTAG -ACGGAAAATGGCTACGTCCCTAAG -ACGGAAAATGGCTACGTCGTTCAG -ACGGAAAATGGCTACGTCGCATAG -ACGGAAAATGGCTACGTCGACAAG -ACGGAAAATGGCTACGTCAAGCAG -ACGGAAAATGGCTACGTCCGTCAA -ACGGAAAATGGCTACGTCGCTGAA -ACGGAAAATGGCTACGTCAGTACG -ACGGAAAATGGCTACGTCATCCGA -ACGGAAAATGGCTACGTCATGGGA -ACGGAAAATGGCTACGTCGTGCAA -ACGGAAAATGGCTACGTCGAGGAA -ACGGAAAATGGCTACGTCCAGGTA -ACGGAAAATGGCTACGTCGACTCT -ACGGAAAATGGCTACGTCAGTCCT -ACGGAAAATGGCTACGTCTAAGCC -ACGGAAAATGGCTACGTCATAGCC -ACGGAAAATGGCTACGTCTAACCG -ACGGAAAATGGCTACGTCATGCCA -ACGGAAAATGGCTACACGGGAAAC -ACGGAAAATGGCTACACGAACACC -ACGGAAAATGGCTACACGATCGAG -ACGGAAAATGGCTACACGCTCCTT -ACGGAAAATGGCTACACGCCTGTT -ACGGAAAATGGCTACACGCGGTTT -ACGGAAAATGGCTACACGGTGGTT -ACGGAAAATGGCTACACGGCCTTT -ACGGAAAATGGCTACACGGGTCTT -ACGGAAAATGGCTACACGACGCTT -ACGGAAAATGGCTACACGAGCGTT -ACGGAAAATGGCTACACGTTCGTC -ACGGAAAATGGCTACACGTCTCTC -ACGGAAAATGGCTACACGTGGATC -ACGGAAAATGGCTACACGCACTTC -ACGGAAAATGGCTACACGGTACTC -ACGGAAAATGGCTACACGGATGTC -ACGGAAAATGGCTACACGACAGTC -ACGGAAAATGGCTACACGTTGCTG -ACGGAAAATGGCTACACGTCCATG -ACGGAAAATGGCTACACGTGTGTG -ACGGAAAATGGCTACACGCTAGTG -ACGGAAAATGGCTACACGCATCTG -ACGGAAAATGGCTACACGGAGTTG -ACGGAAAATGGCTACACGAGACTG -ACGGAAAATGGCTACACGTCGGTA -ACGGAAAATGGCTACACGTGCCTA -ACGGAAAATGGCTACACGCCACTA -ACGGAAAATGGCTACACGGGAGTA -ACGGAAAATGGCTACACGTCGTCT -ACGGAAAATGGCTACACGTGCACT -ACGGAAAATGGCTACACGCTGACT -ACGGAAAATGGCTACACGCAACCT -ACGGAAAATGGCTACACGGCTACT -ACGGAAAATGGCTACACGGGATCT -ACGGAAAATGGCTACACGAAGGCT -ACGGAAAATGGCTACACGTCAACC -ACGGAAAATGGCTACACGTGTTCC -ACGGAAAATGGCTACACGATTCCC -ACGGAAAATGGCTACACGTTCTCG -ACGGAAAATGGCTACACGTAGACG -ACGGAAAATGGCTACACGGTAACG -ACGGAAAATGGCTACACGACTTCG -ACGGAAAATGGCTACACGTACGCA -ACGGAAAATGGCTACACGCTTGCA -ACGGAAAATGGCTACACGCGAACA -ACGGAAAATGGCTACACGCAGTCA -ACGGAAAATGGCTACACGGATCCA -ACGGAAAATGGCTACACGACGACA -ACGGAAAATGGCTACACGAGCTCA -ACGGAAAATGGCTACACGTCACGT -ACGGAAAATGGCTACACGCGTAGT -ACGGAAAATGGCTACACGGTCAGT -ACGGAAAATGGCTACACGGAAGGT -ACGGAAAATGGCTACACGAACCGT -ACGGAAAATGGCTACACGTTGTGC -ACGGAAAATGGCTACACGCTAAGC -ACGGAAAATGGCTACACGACTAGC -ACGGAAAATGGCTACACGAGATGC -ACGGAAAATGGCTACACGTGAAGG -ACGGAAAATGGCTACACGCAATGG -ACGGAAAATGGCTACACGATGAGG -ACGGAAAATGGCTACACGAATGGG -ACGGAAAATGGCTACACGTCCTGA -ACGGAAAATGGCTACACGTAGCGA -ACGGAAAATGGCTACACGCACAGA -ACGGAAAATGGCTACACGGCAAGA -ACGGAAAATGGCTACACGGGTTGA -ACGGAAAATGGCTACACGTCCGAT -ACGGAAAATGGCTACACGTGGCAT -ACGGAAAATGGCTACACGCGAGAT -ACGGAAAATGGCTACACGTACCAC -ACGGAAAATGGCTACACGCAGAAC -ACGGAAAATGGCTACACGGTCTAC -ACGGAAAATGGCTACACGACGTAC -ACGGAAAATGGCTACACGAGTGAC -ACGGAAAATGGCTACACGCTGTAG -ACGGAAAATGGCTACACGCCTAAG -ACGGAAAATGGCTACACGGTTCAG -ACGGAAAATGGCTACACGGCATAG -ACGGAAAATGGCTACACGGACAAG -ACGGAAAATGGCTACACGAAGCAG -ACGGAAAATGGCTACACGCGTCAA -ACGGAAAATGGCTACACGGCTGAA -ACGGAAAATGGCTACACGAGTACG -ACGGAAAATGGCTACACGATCCGA -ACGGAAAATGGCTACACGATGGGA -ACGGAAAATGGCTACACGGTGCAA -ACGGAAAATGGCTACACGGAGGAA -ACGGAAAATGGCTACACGCAGGTA -ACGGAAAATGGCTACACGGACTCT -ACGGAAAATGGCTACACGAGTCCT -ACGGAAAATGGCTACACGTAAGCC -ACGGAAAATGGCTACACGATAGCC -ACGGAAAATGGCTACACGTAACCG -ACGGAAAATGGCTACACGATGCCA -ACGGAAAATGGCGACAGTGGAAAC -ACGGAAAATGGCGACAGTAACACC -ACGGAAAATGGCGACAGTATCGAG -ACGGAAAATGGCGACAGTCTCCTT -ACGGAAAATGGCGACAGTCCTGTT -ACGGAAAATGGCGACAGTCGGTTT -ACGGAAAATGGCGACAGTGTGGTT -ACGGAAAATGGCGACAGTGCCTTT -ACGGAAAATGGCGACAGTGGTCTT -ACGGAAAATGGCGACAGTACGCTT -ACGGAAAATGGCGACAGTAGCGTT -ACGGAAAATGGCGACAGTTTCGTC -ACGGAAAATGGCGACAGTTCTCTC -ACGGAAAATGGCGACAGTTGGATC -ACGGAAAATGGCGACAGTCACTTC -ACGGAAAATGGCGACAGTGTACTC -ACGGAAAATGGCGACAGTGATGTC -ACGGAAAATGGCGACAGTACAGTC -ACGGAAAATGGCGACAGTTTGCTG -ACGGAAAATGGCGACAGTTCCATG -ACGGAAAATGGCGACAGTTGTGTG -ACGGAAAATGGCGACAGTCTAGTG -ACGGAAAATGGCGACAGTCATCTG -ACGGAAAATGGCGACAGTGAGTTG -ACGGAAAATGGCGACAGTAGACTG -ACGGAAAATGGCGACAGTTCGGTA -ACGGAAAATGGCGACAGTTGCCTA -ACGGAAAATGGCGACAGTCCACTA -ACGGAAAATGGCGACAGTGGAGTA -ACGGAAAATGGCGACAGTTCGTCT -ACGGAAAATGGCGACAGTTGCACT -ACGGAAAATGGCGACAGTCTGACT -ACGGAAAATGGCGACAGTCAACCT -ACGGAAAATGGCGACAGTGCTACT -ACGGAAAATGGCGACAGTGGATCT -ACGGAAAATGGCGACAGTAAGGCT -ACGGAAAATGGCGACAGTTCAACC -ACGGAAAATGGCGACAGTTGTTCC -ACGGAAAATGGCGACAGTATTCCC -ACGGAAAATGGCGACAGTTTCTCG -ACGGAAAATGGCGACAGTTAGACG -ACGGAAAATGGCGACAGTGTAACG -ACGGAAAATGGCGACAGTACTTCG -ACGGAAAATGGCGACAGTTACGCA -ACGGAAAATGGCGACAGTCTTGCA -ACGGAAAATGGCGACAGTCGAACA -ACGGAAAATGGCGACAGTCAGTCA -ACGGAAAATGGCGACAGTGATCCA -ACGGAAAATGGCGACAGTACGACA -ACGGAAAATGGCGACAGTAGCTCA -ACGGAAAATGGCGACAGTTCACGT -ACGGAAAATGGCGACAGTCGTAGT -ACGGAAAATGGCGACAGTGTCAGT -ACGGAAAATGGCGACAGTGAAGGT -ACGGAAAATGGCGACAGTAACCGT -ACGGAAAATGGCGACAGTTTGTGC -ACGGAAAATGGCGACAGTCTAAGC -ACGGAAAATGGCGACAGTACTAGC -ACGGAAAATGGCGACAGTAGATGC -ACGGAAAATGGCGACAGTTGAAGG -ACGGAAAATGGCGACAGTCAATGG -ACGGAAAATGGCGACAGTATGAGG -ACGGAAAATGGCGACAGTAATGGG -ACGGAAAATGGCGACAGTTCCTGA -ACGGAAAATGGCGACAGTTAGCGA -ACGGAAAATGGCGACAGTCACAGA -ACGGAAAATGGCGACAGTGCAAGA -ACGGAAAATGGCGACAGTGGTTGA -ACGGAAAATGGCGACAGTTCCGAT -ACGGAAAATGGCGACAGTTGGCAT -ACGGAAAATGGCGACAGTCGAGAT -ACGGAAAATGGCGACAGTTACCAC -ACGGAAAATGGCGACAGTCAGAAC -ACGGAAAATGGCGACAGTGTCTAC -ACGGAAAATGGCGACAGTACGTAC -ACGGAAAATGGCGACAGTAGTGAC -ACGGAAAATGGCGACAGTCTGTAG -ACGGAAAATGGCGACAGTCCTAAG -ACGGAAAATGGCGACAGTGTTCAG -ACGGAAAATGGCGACAGTGCATAG -ACGGAAAATGGCGACAGTGACAAG -ACGGAAAATGGCGACAGTAAGCAG -ACGGAAAATGGCGACAGTCGTCAA -ACGGAAAATGGCGACAGTGCTGAA -ACGGAAAATGGCGACAGTAGTACG -ACGGAAAATGGCGACAGTATCCGA -ACGGAAAATGGCGACAGTATGGGA -ACGGAAAATGGCGACAGTGTGCAA -ACGGAAAATGGCGACAGTGAGGAA -ACGGAAAATGGCGACAGTCAGGTA -ACGGAAAATGGCGACAGTGACTCT -ACGGAAAATGGCGACAGTAGTCCT -ACGGAAAATGGCGACAGTTAAGCC -ACGGAAAATGGCGACAGTATAGCC -ACGGAAAATGGCGACAGTTAACCG -ACGGAAAATGGCGACAGTATGCCA -ACGGAAAATGGCTAGCTGGGAAAC -ACGGAAAATGGCTAGCTGAACACC -ACGGAAAATGGCTAGCTGATCGAG -ACGGAAAATGGCTAGCTGCTCCTT -ACGGAAAATGGCTAGCTGCCTGTT -ACGGAAAATGGCTAGCTGCGGTTT -ACGGAAAATGGCTAGCTGGTGGTT -ACGGAAAATGGCTAGCTGGCCTTT -ACGGAAAATGGCTAGCTGGGTCTT -ACGGAAAATGGCTAGCTGACGCTT -ACGGAAAATGGCTAGCTGAGCGTT -ACGGAAAATGGCTAGCTGTTCGTC -ACGGAAAATGGCTAGCTGTCTCTC -ACGGAAAATGGCTAGCTGTGGATC -ACGGAAAATGGCTAGCTGCACTTC -ACGGAAAATGGCTAGCTGGTACTC -ACGGAAAATGGCTAGCTGGATGTC -ACGGAAAATGGCTAGCTGACAGTC -ACGGAAAATGGCTAGCTGTTGCTG -ACGGAAAATGGCTAGCTGTCCATG -ACGGAAAATGGCTAGCTGTGTGTG -ACGGAAAATGGCTAGCTGCTAGTG -ACGGAAAATGGCTAGCTGCATCTG -ACGGAAAATGGCTAGCTGGAGTTG -ACGGAAAATGGCTAGCTGAGACTG -ACGGAAAATGGCTAGCTGTCGGTA -ACGGAAAATGGCTAGCTGTGCCTA -ACGGAAAATGGCTAGCTGCCACTA -ACGGAAAATGGCTAGCTGGGAGTA -ACGGAAAATGGCTAGCTGTCGTCT -ACGGAAAATGGCTAGCTGTGCACT -ACGGAAAATGGCTAGCTGCTGACT -ACGGAAAATGGCTAGCTGCAACCT -ACGGAAAATGGCTAGCTGGCTACT -ACGGAAAATGGCTAGCTGGGATCT -ACGGAAAATGGCTAGCTGAAGGCT -ACGGAAAATGGCTAGCTGTCAACC -ACGGAAAATGGCTAGCTGTGTTCC -ACGGAAAATGGCTAGCTGATTCCC -ACGGAAAATGGCTAGCTGTTCTCG -ACGGAAAATGGCTAGCTGTAGACG -ACGGAAAATGGCTAGCTGGTAACG -ACGGAAAATGGCTAGCTGACTTCG -ACGGAAAATGGCTAGCTGTACGCA -ACGGAAAATGGCTAGCTGCTTGCA -ACGGAAAATGGCTAGCTGCGAACA -ACGGAAAATGGCTAGCTGCAGTCA -ACGGAAAATGGCTAGCTGGATCCA -ACGGAAAATGGCTAGCTGACGACA -ACGGAAAATGGCTAGCTGAGCTCA -ACGGAAAATGGCTAGCTGTCACGT -ACGGAAAATGGCTAGCTGCGTAGT -ACGGAAAATGGCTAGCTGGTCAGT -ACGGAAAATGGCTAGCTGGAAGGT -ACGGAAAATGGCTAGCTGAACCGT -ACGGAAAATGGCTAGCTGTTGTGC -ACGGAAAATGGCTAGCTGCTAAGC -ACGGAAAATGGCTAGCTGACTAGC -ACGGAAAATGGCTAGCTGAGATGC -ACGGAAAATGGCTAGCTGTGAAGG -ACGGAAAATGGCTAGCTGCAATGG -ACGGAAAATGGCTAGCTGATGAGG -ACGGAAAATGGCTAGCTGAATGGG -ACGGAAAATGGCTAGCTGTCCTGA -ACGGAAAATGGCTAGCTGTAGCGA -ACGGAAAATGGCTAGCTGCACAGA -ACGGAAAATGGCTAGCTGGCAAGA -ACGGAAAATGGCTAGCTGGGTTGA -ACGGAAAATGGCTAGCTGTCCGAT -ACGGAAAATGGCTAGCTGTGGCAT -ACGGAAAATGGCTAGCTGCGAGAT -ACGGAAAATGGCTAGCTGTACCAC -ACGGAAAATGGCTAGCTGCAGAAC -ACGGAAAATGGCTAGCTGGTCTAC -ACGGAAAATGGCTAGCTGACGTAC -ACGGAAAATGGCTAGCTGAGTGAC -ACGGAAAATGGCTAGCTGCTGTAG -ACGGAAAATGGCTAGCTGCCTAAG -ACGGAAAATGGCTAGCTGGTTCAG -ACGGAAAATGGCTAGCTGGCATAG -ACGGAAAATGGCTAGCTGGACAAG -ACGGAAAATGGCTAGCTGAAGCAG -ACGGAAAATGGCTAGCTGCGTCAA -ACGGAAAATGGCTAGCTGGCTGAA -ACGGAAAATGGCTAGCTGAGTACG -ACGGAAAATGGCTAGCTGATCCGA -ACGGAAAATGGCTAGCTGATGGGA -ACGGAAAATGGCTAGCTGGTGCAA -ACGGAAAATGGCTAGCTGGAGGAA -ACGGAAAATGGCTAGCTGCAGGTA -ACGGAAAATGGCTAGCTGGACTCT -ACGGAAAATGGCTAGCTGAGTCCT -ACGGAAAATGGCTAGCTGTAAGCC -ACGGAAAATGGCTAGCTGATAGCC -ACGGAAAATGGCTAGCTGTAACCG -ACGGAAAATGGCTAGCTGATGCCA -ACGGAAAATGGCAAGCCTGGAAAC -ACGGAAAATGGCAAGCCTAACACC -ACGGAAAATGGCAAGCCTATCGAG -ACGGAAAATGGCAAGCCTCTCCTT -ACGGAAAATGGCAAGCCTCCTGTT -ACGGAAAATGGCAAGCCTCGGTTT -ACGGAAAATGGCAAGCCTGTGGTT -ACGGAAAATGGCAAGCCTGCCTTT -ACGGAAAATGGCAAGCCTGGTCTT -ACGGAAAATGGCAAGCCTACGCTT -ACGGAAAATGGCAAGCCTAGCGTT -ACGGAAAATGGCAAGCCTTTCGTC -ACGGAAAATGGCAAGCCTTCTCTC -ACGGAAAATGGCAAGCCTTGGATC -ACGGAAAATGGCAAGCCTCACTTC -ACGGAAAATGGCAAGCCTGTACTC -ACGGAAAATGGCAAGCCTGATGTC -ACGGAAAATGGCAAGCCTACAGTC -ACGGAAAATGGCAAGCCTTTGCTG -ACGGAAAATGGCAAGCCTTCCATG -ACGGAAAATGGCAAGCCTTGTGTG -ACGGAAAATGGCAAGCCTCTAGTG -ACGGAAAATGGCAAGCCTCATCTG -ACGGAAAATGGCAAGCCTGAGTTG -ACGGAAAATGGCAAGCCTAGACTG -ACGGAAAATGGCAAGCCTTCGGTA -ACGGAAAATGGCAAGCCTTGCCTA -ACGGAAAATGGCAAGCCTCCACTA -ACGGAAAATGGCAAGCCTGGAGTA -ACGGAAAATGGCAAGCCTTCGTCT -ACGGAAAATGGCAAGCCTTGCACT -ACGGAAAATGGCAAGCCTCTGACT -ACGGAAAATGGCAAGCCTCAACCT -ACGGAAAATGGCAAGCCTGCTACT -ACGGAAAATGGCAAGCCTGGATCT -ACGGAAAATGGCAAGCCTAAGGCT -ACGGAAAATGGCAAGCCTTCAACC -ACGGAAAATGGCAAGCCTTGTTCC -ACGGAAAATGGCAAGCCTATTCCC -ACGGAAAATGGCAAGCCTTTCTCG -ACGGAAAATGGCAAGCCTTAGACG -ACGGAAAATGGCAAGCCTGTAACG -ACGGAAAATGGCAAGCCTACTTCG -ACGGAAAATGGCAAGCCTTACGCA -ACGGAAAATGGCAAGCCTCTTGCA -ACGGAAAATGGCAAGCCTCGAACA -ACGGAAAATGGCAAGCCTCAGTCA -ACGGAAAATGGCAAGCCTGATCCA -ACGGAAAATGGCAAGCCTACGACA -ACGGAAAATGGCAAGCCTAGCTCA -ACGGAAAATGGCAAGCCTTCACGT -ACGGAAAATGGCAAGCCTCGTAGT -ACGGAAAATGGCAAGCCTGTCAGT -ACGGAAAATGGCAAGCCTGAAGGT -ACGGAAAATGGCAAGCCTAACCGT -ACGGAAAATGGCAAGCCTTTGTGC -ACGGAAAATGGCAAGCCTCTAAGC -ACGGAAAATGGCAAGCCTACTAGC -ACGGAAAATGGCAAGCCTAGATGC -ACGGAAAATGGCAAGCCTTGAAGG -ACGGAAAATGGCAAGCCTCAATGG -ACGGAAAATGGCAAGCCTATGAGG -ACGGAAAATGGCAAGCCTAATGGG -ACGGAAAATGGCAAGCCTTCCTGA -ACGGAAAATGGCAAGCCTTAGCGA -ACGGAAAATGGCAAGCCTCACAGA -ACGGAAAATGGCAAGCCTGCAAGA -ACGGAAAATGGCAAGCCTGGTTGA -ACGGAAAATGGCAAGCCTTCCGAT -ACGGAAAATGGCAAGCCTTGGCAT -ACGGAAAATGGCAAGCCTCGAGAT -ACGGAAAATGGCAAGCCTTACCAC -ACGGAAAATGGCAAGCCTCAGAAC -ACGGAAAATGGCAAGCCTGTCTAC -ACGGAAAATGGCAAGCCTACGTAC -ACGGAAAATGGCAAGCCTAGTGAC -ACGGAAAATGGCAAGCCTCTGTAG -ACGGAAAATGGCAAGCCTCCTAAG -ACGGAAAATGGCAAGCCTGTTCAG -ACGGAAAATGGCAAGCCTGCATAG -ACGGAAAATGGCAAGCCTGACAAG -ACGGAAAATGGCAAGCCTAAGCAG -ACGGAAAATGGCAAGCCTCGTCAA -ACGGAAAATGGCAAGCCTGCTGAA -ACGGAAAATGGCAAGCCTAGTACG -ACGGAAAATGGCAAGCCTATCCGA -ACGGAAAATGGCAAGCCTATGGGA -ACGGAAAATGGCAAGCCTGTGCAA -ACGGAAAATGGCAAGCCTGAGGAA -ACGGAAAATGGCAAGCCTCAGGTA -ACGGAAAATGGCAAGCCTGACTCT -ACGGAAAATGGCAAGCCTAGTCCT -ACGGAAAATGGCAAGCCTTAAGCC -ACGGAAAATGGCAAGCCTATAGCC -ACGGAAAATGGCAAGCCTTAACCG -ACGGAAAATGGCAAGCCTATGCCA -ACGGAAAATGGCCAGGTTGGAAAC -ACGGAAAATGGCCAGGTTAACACC -ACGGAAAATGGCCAGGTTATCGAG -ACGGAAAATGGCCAGGTTCTCCTT -ACGGAAAATGGCCAGGTTCCTGTT -ACGGAAAATGGCCAGGTTCGGTTT -ACGGAAAATGGCCAGGTTGTGGTT -ACGGAAAATGGCCAGGTTGCCTTT -ACGGAAAATGGCCAGGTTGGTCTT -ACGGAAAATGGCCAGGTTACGCTT -ACGGAAAATGGCCAGGTTAGCGTT -ACGGAAAATGGCCAGGTTTTCGTC -ACGGAAAATGGCCAGGTTTCTCTC -ACGGAAAATGGCCAGGTTTGGATC -ACGGAAAATGGCCAGGTTCACTTC -ACGGAAAATGGCCAGGTTGTACTC -ACGGAAAATGGCCAGGTTGATGTC -ACGGAAAATGGCCAGGTTACAGTC -ACGGAAAATGGCCAGGTTTTGCTG -ACGGAAAATGGCCAGGTTTCCATG -ACGGAAAATGGCCAGGTTTGTGTG -ACGGAAAATGGCCAGGTTCTAGTG -ACGGAAAATGGCCAGGTTCATCTG -ACGGAAAATGGCCAGGTTGAGTTG -ACGGAAAATGGCCAGGTTAGACTG -ACGGAAAATGGCCAGGTTTCGGTA -ACGGAAAATGGCCAGGTTTGCCTA -ACGGAAAATGGCCAGGTTCCACTA -ACGGAAAATGGCCAGGTTGGAGTA -ACGGAAAATGGCCAGGTTTCGTCT -ACGGAAAATGGCCAGGTTTGCACT -ACGGAAAATGGCCAGGTTCTGACT -ACGGAAAATGGCCAGGTTCAACCT -ACGGAAAATGGCCAGGTTGCTACT -ACGGAAAATGGCCAGGTTGGATCT -ACGGAAAATGGCCAGGTTAAGGCT -ACGGAAAATGGCCAGGTTTCAACC -ACGGAAAATGGCCAGGTTTGTTCC -ACGGAAAATGGCCAGGTTATTCCC -ACGGAAAATGGCCAGGTTTTCTCG -ACGGAAAATGGCCAGGTTTAGACG -ACGGAAAATGGCCAGGTTGTAACG -ACGGAAAATGGCCAGGTTACTTCG -ACGGAAAATGGCCAGGTTTACGCA -ACGGAAAATGGCCAGGTTCTTGCA -ACGGAAAATGGCCAGGTTCGAACA -ACGGAAAATGGCCAGGTTCAGTCA -ACGGAAAATGGCCAGGTTGATCCA -ACGGAAAATGGCCAGGTTACGACA -ACGGAAAATGGCCAGGTTAGCTCA -ACGGAAAATGGCCAGGTTTCACGT -ACGGAAAATGGCCAGGTTCGTAGT -ACGGAAAATGGCCAGGTTGTCAGT -ACGGAAAATGGCCAGGTTGAAGGT -ACGGAAAATGGCCAGGTTAACCGT -ACGGAAAATGGCCAGGTTTTGTGC -ACGGAAAATGGCCAGGTTCTAAGC -ACGGAAAATGGCCAGGTTACTAGC -ACGGAAAATGGCCAGGTTAGATGC -ACGGAAAATGGCCAGGTTTGAAGG -ACGGAAAATGGCCAGGTTCAATGG -ACGGAAAATGGCCAGGTTATGAGG -ACGGAAAATGGCCAGGTTAATGGG -ACGGAAAATGGCCAGGTTTCCTGA -ACGGAAAATGGCCAGGTTTAGCGA -ACGGAAAATGGCCAGGTTCACAGA -ACGGAAAATGGCCAGGTTGCAAGA -ACGGAAAATGGCCAGGTTGGTTGA -ACGGAAAATGGCCAGGTTTCCGAT -ACGGAAAATGGCCAGGTTTGGCAT -ACGGAAAATGGCCAGGTTCGAGAT -ACGGAAAATGGCCAGGTTTACCAC -ACGGAAAATGGCCAGGTTCAGAAC -ACGGAAAATGGCCAGGTTGTCTAC -ACGGAAAATGGCCAGGTTACGTAC -ACGGAAAATGGCCAGGTTAGTGAC -ACGGAAAATGGCCAGGTTCTGTAG -ACGGAAAATGGCCAGGTTCCTAAG -ACGGAAAATGGCCAGGTTGTTCAG -ACGGAAAATGGCCAGGTTGCATAG -ACGGAAAATGGCCAGGTTGACAAG -ACGGAAAATGGCCAGGTTAAGCAG -ACGGAAAATGGCCAGGTTCGTCAA -ACGGAAAATGGCCAGGTTGCTGAA -ACGGAAAATGGCCAGGTTAGTACG -ACGGAAAATGGCCAGGTTATCCGA -ACGGAAAATGGCCAGGTTATGGGA -ACGGAAAATGGCCAGGTTGTGCAA -ACGGAAAATGGCCAGGTTGAGGAA -ACGGAAAATGGCCAGGTTCAGGTA -ACGGAAAATGGCCAGGTTGACTCT -ACGGAAAATGGCCAGGTTAGTCCT -ACGGAAAATGGCCAGGTTTAAGCC -ACGGAAAATGGCCAGGTTATAGCC -ACGGAAAATGGCCAGGTTTAACCG -ACGGAAAATGGCCAGGTTATGCCA -ACGGAAAATGGCTAGGCAGGAAAC -ACGGAAAATGGCTAGGCAAACACC -ACGGAAAATGGCTAGGCAATCGAG -ACGGAAAATGGCTAGGCACTCCTT -ACGGAAAATGGCTAGGCACCTGTT -ACGGAAAATGGCTAGGCACGGTTT -ACGGAAAATGGCTAGGCAGTGGTT -ACGGAAAATGGCTAGGCAGCCTTT -ACGGAAAATGGCTAGGCAGGTCTT -ACGGAAAATGGCTAGGCAACGCTT -ACGGAAAATGGCTAGGCAAGCGTT -ACGGAAAATGGCTAGGCATTCGTC -ACGGAAAATGGCTAGGCATCTCTC -ACGGAAAATGGCTAGGCATGGATC -ACGGAAAATGGCTAGGCACACTTC -ACGGAAAATGGCTAGGCAGTACTC -ACGGAAAATGGCTAGGCAGATGTC -ACGGAAAATGGCTAGGCAACAGTC -ACGGAAAATGGCTAGGCATTGCTG -ACGGAAAATGGCTAGGCATCCATG -ACGGAAAATGGCTAGGCATGTGTG -ACGGAAAATGGCTAGGCACTAGTG -ACGGAAAATGGCTAGGCACATCTG -ACGGAAAATGGCTAGGCAGAGTTG -ACGGAAAATGGCTAGGCAAGACTG -ACGGAAAATGGCTAGGCATCGGTA -ACGGAAAATGGCTAGGCATGCCTA -ACGGAAAATGGCTAGGCACCACTA -ACGGAAAATGGCTAGGCAGGAGTA -ACGGAAAATGGCTAGGCATCGTCT -ACGGAAAATGGCTAGGCATGCACT -ACGGAAAATGGCTAGGCACTGACT -ACGGAAAATGGCTAGGCACAACCT -ACGGAAAATGGCTAGGCAGCTACT -ACGGAAAATGGCTAGGCAGGATCT -ACGGAAAATGGCTAGGCAAAGGCT -ACGGAAAATGGCTAGGCATCAACC -ACGGAAAATGGCTAGGCATGTTCC -ACGGAAAATGGCTAGGCAATTCCC -ACGGAAAATGGCTAGGCATTCTCG -ACGGAAAATGGCTAGGCATAGACG -ACGGAAAATGGCTAGGCAGTAACG -ACGGAAAATGGCTAGGCAACTTCG -ACGGAAAATGGCTAGGCATACGCA -ACGGAAAATGGCTAGGCACTTGCA -ACGGAAAATGGCTAGGCACGAACA -ACGGAAAATGGCTAGGCACAGTCA -ACGGAAAATGGCTAGGCAGATCCA -ACGGAAAATGGCTAGGCAACGACA -ACGGAAAATGGCTAGGCAAGCTCA -ACGGAAAATGGCTAGGCATCACGT -ACGGAAAATGGCTAGGCACGTAGT -ACGGAAAATGGCTAGGCAGTCAGT -ACGGAAAATGGCTAGGCAGAAGGT -ACGGAAAATGGCTAGGCAAACCGT -ACGGAAAATGGCTAGGCATTGTGC -ACGGAAAATGGCTAGGCACTAAGC -ACGGAAAATGGCTAGGCAACTAGC -ACGGAAAATGGCTAGGCAAGATGC -ACGGAAAATGGCTAGGCATGAAGG -ACGGAAAATGGCTAGGCACAATGG -ACGGAAAATGGCTAGGCAATGAGG -ACGGAAAATGGCTAGGCAAATGGG -ACGGAAAATGGCTAGGCATCCTGA -ACGGAAAATGGCTAGGCATAGCGA -ACGGAAAATGGCTAGGCACACAGA -ACGGAAAATGGCTAGGCAGCAAGA -ACGGAAAATGGCTAGGCAGGTTGA -ACGGAAAATGGCTAGGCATCCGAT -ACGGAAAATGGCTAGGCATGGCAT -ACGGAAAATGGCTAGGCACGAGAT -ACGGAAAATGGCTAGGCATACCAC -ACGGAAAATGGCTAGGCACAGAAC -ACGGAAAATGGCTAGGCAGTCTAC -ACGGAAAATGGCTAGGCAACGTAC -ACGGAAAATGGCTAGGCAAGTGAC -ACGGAAAATGGCTAGGCACTGTAG -ACGGAAAATGGCTAGGCACCTAAG -ACGGAAAATGGCTAGGCAGTTCAG -ACGGAAAATGGCTAGGCAGCATAG -ACGGAAAATGGCTAGGCAGACAAG -ACGGAAAATGGCTAGGCAAAGCAG -ACGGAAAATGGCTAGGCACGTCAA -ACGGAAAATGGCTAGGCAGCTGAA -ACGGAAAATGGCTAGGCAAGTACG -ACGGAAAATGGCTAGGCAATCCGA -ACGGAAAATGGCTAGGCAATGGGA -ACGGAAAATGGCTAGGCAGTGCAA -ACGGAAAATGGCTAGGCAGAGGAA -ACGGAAAATGGCTAGGCACAGGTA -ACGGAAAATGGCTAGGCAGACTCT -ACGGAAAATGGCTAGGCAAGTCCT -ACGGAAAATGGCTAGGCATAAGCC -ACGGAAAATGGCTAGGCAATAGCC -ACGGAAAATGGCTAGGCATAACCG -ACGGAAAATGGCTAGGCAATGCCA -ACGGAAAATGGCAAGGACGGAAAC -ACGGAAAATGGCAAGGACAACACC -ACGGAAAATGGCAAGGACATCGAG -ACGGAAAATGGCAAGGACCTCCTT -ACGGAAAATGGCAAGGACCCTGTT -ACGGAAAATGGCAAGGACCGGTTT -ACGGAAAATGGCAAGGACGTGGTT -ACGGAAAATGGCAAGGACGCCTTT -ACGGAAAATGGCAAGGACGGTCTT -ACGGAAAATGGCAAGGACACGCTT -ACGGAAAATGGCAAGGACAGCGTT -ACGGAAAATGGCAAGGACTTCGTC -ACGGAAAATGGCAAGGACTCTCTC -ACGGAAAATGGCAAGGACTGGATC -ACGGAAAATGGCAAGGACCACTTC -ACGGAAAATGGCAAGGACGTACTC -ACGGAAAATGGCAAGGACGATGTC -ACGGAAAATGGCAAGGACACAGTC -ACGGAAAATGGCAAGGACTTGCTG -ACGGAAAATGGCAAGGACTCCATG -ACGGAAAATGGCAAGGACTGTGTG -ACGGAAAATGGCAAGGACCTAGTG -ACGGAAAATGGCAAGGACCATCTG -ACGGAAAATGGCAAGGACGAGTTG -ACGGAAAATGGCAAGGACAGACTG -ACGGAAAATGGCAAGGACTCGGTA -ACGGAAAATGGCAAGGACTGCCTA -ACGGAAAATGGCAAGGACCCACTA -ACGGAAAATGGCAAGGACGGAGTA -ACGGAAAATGGCAAGGACTCGTCT -ACGGAAAATGGCAAGGACTGCACT -ACGGAAAATGGCAAGGACCTGACT -ACGGAAAATGGCAAGGACCAACCT -ACGGAAAATGGCAAGGACGCTACT -ACGGAAAATGGCAAGGACGGATCT -ACGGAAAATGGCAAGGACAAGGCT -ACGGAAAATGGCAAGGACTCAACC -ACGGAAAATGGCAAGGACTGTTCC -ACGGAAAATGGCAAGGACATTCCC -ACGGAAAATGGCAAGGACTTCTCG -ACGGAAAATGGCAAGGACTAGACG -ACGGAAAATGGCAAGGACGTAACG -ACGGAAAATGGCAAGGACACTTCG -ACGGAAAATGGCAAGGACTACGCA -ACGGAAAATGGCAAGGACCTTGCA -ACGGAAAATGGCAAGGACCGAACA -ACGGAAAATGGCAAGGACCAGTCA -ACGGAAAATGGCAAGGACGATCCA -ACGGAAAATGGCAAGGACACGACA -ACGGAAAATGGCAAGGACAGCTCA -ACGGAAAATGGCAAGGACTCACGT -ACGGAAAATGGCAAGGACCGTAGT -ACGGAAAATGGCAAGGACGTCAGT -ACGGAAAATGGCAAGGACGAAGGT -ACGGAAAATGGCAAGGACAACCGT -ACGGAAAATGGCAAGGACTTGTGC -ACGGAAAATGGCAAGGACCTAAGC -ACGGAAAATGGCAAGGACACTAGC -ACGGAAAATGGCAAGGACAGATGC -ACGGAAAATGGCAAGGACTGAAGG -ACGGAAAATGGCAAGGACCAATGG -ACGGAAAATGGCAAGGACATGAGG -ACGGAAAATGGCAAGGACAATGGG -ACGGAAAATGGCAAGGACTCCTGA -ACGGAAAATGGCAAGGACTAGCGA -ACGGAAAATGGCAAGGACCACAGA -ACGGAAAATGGCAAGGACGCAAGA -ACGGAAAATGGCAAGGACGGTTGA -ACGGAAAATGGCAAGGACTCCGAT -ACGGAAAATGGCAAGGACTGGCAT -ACGGAAAATGGCAAGGACCGAGAT -ACGGAAAATGGCAAGGACTACCAC -ACGGAAAATGGCAAGGACCAGAAC -ACGGAAAATGGCAAGGACGTCTAC -ACGGAAAATGGCAAGGACACGTAC -ACGGAAAATGGCAAGGACAGTGAC -ACGGAAAATGGCAAGGACCTGTAG -ACGGAAAATGGCAAGGACCCTAAG -ACGGAAAATGGCAAGGACGTTCAG -ACGGAAAATGGCAAGGACGCATAG -ACGGAAAATGGCAAGGACGACAAG -ACGGAAAATGGCAAGGACAAGCAG -ACGGAAAATGGCAAGGACCGTCAA -ACGGAAAATGGCAAGGACGCTGAA -ACGGAAAATGGCAAGGACAGTACG -ACGGAAAATGGCAAGGACATCCGA -ACGGAAAATGGCAAGGACATGGGA -ACGGAAAATGGCAAGGACGTGCAA -ACGGAAAATGGCAAGGACGAGGAA -ACGGAAAATGGCAAGGACCAGGTA -ACGGAAAATGGCAAGGACGACTCT -ACGGAAAATGGCAAGGACAGTCCT -ACGGAAAATGGCAAGGACTAAGCC -ACGGAAAATGGCAAGGACATAGCC -ACGGAAAATGGCAAGGACTAACCG -ACGGAAAATGGCAAGGACATGCCA -ACGGAAAATGGCCAGAAGGGAAAC -ACGGAAAATGGCCAGAAGAACACC -ACGGAAAATGGCCAGAAGATCGAG -ACGGAAAATGGCCAGAAGCTCCTT -ACGGAAAATGGCCAGAAGCCTGTT -ACGGAAAATGGCCAGAAGCGGTTT -ACGGAAAATGGCCAGAAGGTGGTT -ACGGAAAATGGCCAGAAGGCCTTT -ACGGAAAATGGCCAGAAGGGTCTT -ACGGAAAATGGCCAGAAGACGCTT -ACGGAAAATGGCCAGAAGAGCGTT -ACGGAAAATGGCCAGAAGTTCGTC -ACGGAAAATGGCCAGAAGTCTCTC -ACGGAAAATGGCCAGAAGTGGATC -ACGGAAAATGGCCAGAAGCACTTC -ACGGAAAATGGCCAGAAGGTACTC -ACGGAAAATGGCCAGAAGGATGTC -ACGGAAAATGGCCAGAAGACAGTC -ACGGAAAATGGCCAGAAGTTGCTG -ACGGAAAATGGCCAGAAGTCCATG -ACGGAAAATGGCCAGAAGTGTGTG -ACGGAAAATGGCCAGAAGCTAGTG -ACGGAAAATGGCCAGAAGCATCTG -ACGGAAAATGGCCAGAAGGAGTTG -ACGGAAAATGGCCAGAAGAGACTG -ACGGAAAATGGCCAGAAGTCGGTA -ACGGAAAATGGCCAGAAGTGCCTA -ACGGAAAATGGCCAGAAGCCACTA -ACGGAAAATGGCCAGAAGGGAGTA -ACGGAAAATGGCCAGAAGTCGTCT -ACGGAAAATGGCCAGAAGTGCACT -ACGGAAAATGGCCAGAAGCTGACT -ACGGAAAATGGCCAGAAGCAACCT -ACGGAAAATGGCCAGAAGGCTACT -ACGGAAAATGGCCAGAAGGGATCT -ACGGAAAATGGCCAGAAGAAGGCT -ACGGAAAATGGCCAGAAGTCAACC -ACGGAAAATGGCCAGAAGTGTTCC -ACGGAAAATGGCCAGAAGATTCCC -ACGGAAAATGGCCAGAAGTTCTCG -ACGGAAAATGGCCAGAAGTAGACG -ACGGAAAATGGCCAGAAGGTAACG -ACGGAAAATGGCCAGAAGACTTCG -ACGGAAAATGGCCAGAAGTACGCA -ACGGAAAATGGCCAGAAGCTTGCA -ACGGAAAATGGCCAGAAGCGAACA -ACGGAAAATGGCCAGAAGCAGTCA -ACGGAAAATGGCCAGAAGGATCCA -ACGGAAAATGGCCAGAAGACGACA -ACGGAAAATGGCCAGAAGAGCTCA -ACGGAAAATGGCCAGAAGTCACGT -ACGGAAAATGGCCAGAAGCGTAGT -ACGGAAAATGGCCAGAAGGTCAGT -ACGGAAAATGGCCAGAAGGAAGGT -ACGGAAAATGGCCAGAAGAACCGT -ACGGAAAATGGCCAGAAGTTGTGC -ACGGAAAATGGCCAGAAGCTAAGC -ACGGAAAATGGCCAGAAGACTAGC -ACGGAAAATGGCCAGAAGAGATGC -ACGGAAAATGGCCAGAAGTGAAGG -ACGGAAAATGGCCAGAAGCAATGG -ACGGAAAATGGCCAGAAGATGAGG -ACGGAAAATGGCCAGAAGAATGGG -ACGGAAAATGGCCAGAAGTCCTGA -ACGGAAAATGGCCAGAAGTAGCGA -ACGGAAAATGGCCAGAAGCACAGA -ACGGAAAATGGCCAGAAGGCAAGA -ACGGAAAATGGCCAGAAGGGTTGA -ACGGAAAATGGCCAGAAGTCCGAT -ACGGAAAATGGCCAGAAGTGGCAT -ACGGAAAATGGCCAGAAGCGAGAT -ACGGAAAATGGCCAGAAGTACCAC -ACGGAAAATGGCCAGAAGCAGAAC -ACGGAAAATGGCCAGAAGGTCTAC -ACGGAAAATGGCCAGAAGACGTAC -ACGGAAAATGGCCAGAAGAGTGAC -ACGGAAAATGGCCAGAAGCTGTAG -ACGGAAAATGGCCAGAAGCCTAAG -ACGGAAAATGGCCAGAAGGTTCAG -ACGGAAAATGGCCAGAAGGCATAG -ACGGAAAATGGCCAGAAGGACAAG -ACGGAAAATGGCCAGAAGAAGCAG -ACGGAAAATGGCCAGAAGCGTCAA -ACGGAAAATGGCCAGAAGGCTGAA -ACGGAAAATGGCCAGAAGAGTACG -ACGGAAAATGGCCAGAAGATCCGA -ACGGAAAATGGCCAGAAGATGGGA -ACGGAAAATGGCCAGAAGGTGCAA -ACGGAAAATGGCCAGAAGGAGGAA -ACGGAAAATGGCCAGAAGCAGGTA -ACGGAAAATGGCCAGAAGGACTCT -ACGGAAAATGGCCAGAAGAGTCCT -ACGGAAAATGGCCAGAAGTAAGCC -ACGGAAAATGGCCAGAAGATAGCC -ACGGAAAATGGCCAGAAGTAACCG -ACGGAAAATGGCCAGAAGATGCCA -ACGGAAAATGGCCAACGTGGAAAC -ACGGAAAATGGCCAACGTAACACC -ACGGAAAATGGCCAACGTATCGAG -ACGGAAAATGGCCAACGTCTCCTT -ACGGAAAATGGCCAACGTCCTGTT -ACGGAAAATGGCCAACGTCGGTTT -ACGGAAAATGGCCAACGTGTGGTT -ACGGAAAATGGCCAACGTGCCTTT -ACGGAAAATGGCCAACGTGGTCTT -ACGGAAAATGGCCAACGTACGCTT -ACGGAAAATGGCCAACGTAGCGTT -ACGGAAAATGGCCAACGTTTCGTC -ACGGAAAATGGCCAACGTTCTCTC -ACGGAAAATGGCCAACGTTGGATC -ACGGAAAATGGCCAACGTCACTTC -ACGGAAAATGGCCAACGTGTACTC -ACGGAAAATGGCCAACGTGATGTC -ACGGAAAATGGCCAACGTACAGTC -ACGGAAAATGGCCAACGTTTGCTG -ACGGAAAATGGCCAACGTTCCATG -ACGGAAAATGGCCAACGTTGTGTG -ACGGAAAATGGCCAACGTCTAGTG -ACGGAAAATGGCCAACGTCATCTG -ACGGAAAATGGCCAACGTGAGTTG -ACGGAAAATGGCCAACGTAGACTG -ACGGAAAATGGCCAACGTTCGGTA -ACGGAAAATGGCCAACGTTGCCTA -ACGGAAAATGGCCAACGTCCACTA -ACGGAAAATGGCCAACGTGGAGTA -ACGGAAAATGGCCAACGTTCGTCT -ACGGAAAATGGCCAACGTTGCACT -ACGGAAAATGGCCAACGTCTGACT -ACGGAAAATGGCCAACGTCAACCT -ACGGAAAATGGCCAACGTGCTACT -ACGGAAAATGGCCAACGTGGATCT -ACGGAAAATGGCCAACGTAAGGCT -ACGGAAAATGGCCAACGTTCAACC -ACGGAAAATGGCCAACGTTGTTCC -ACGGAAAATGGCCAACGTATTCCC -ACGGAAAATGGCCAACGTTTCTCG -ACGGAAAATGGCCAACGTTAGACG -ACGGAAAATGGCCAACGTGTAACG -ACGGAAAATGGCCAACGTACTTCG -ACGGAAAATGGCCAACGTTACGCA -ACGGAAAATGGCCAACGTCTTGCA -ACGGAAAATGGCCAACGTCGAACA -ACGGAAAATGGCCAACGTCAGTCA -ACGGAAAATGGCCAACGTGATCCA -ACGGAAAATGGCCAACGTACGACA -ACGGAAAATGGCCAACGTAGCTCA -ACGGAAAATGGCCAACGTTCACGT -ACGGAAAATGGCCAACGTCGTAGT -ACGGAAAATGGCCAACGTGTCAGT -ACGGAAAATGGCCAACGTGAAGGT -ACGGAAAATGGCCAACGTAACCGT -ACGGAAAATGGCCAACGTTTGTGC -ACGGAAAATGGCCAACGTCTAAGC -ACGGAAAATGGCCAACGTACTAGC -ACGGAAAATGGCCAACGTAGATGC -ACGGAAAATGGCCAACGTTGAAGG -ACGGAAAATGGCCAACGTCAATGG -ACGGAAAATGGCCAACGTATGAGG -ACGGAAAATGGCCAACGTAATGGG -ACGGAAAATGGCCAACGTTCCTGA -ACGGAAAATGGCCAACGTTAGCGA -ACGGAAAATGGCCAACGTCACAGA -ACGGAAAATGGCCAACGTGCAAGA -ACGGAAAATGGCCAACGTGGTTGA -ACGGAAAATGGCCAACGTTCCGAT -ACGGAAAATGGCCAACGTTGGCAT -ACGGAAAATGGCCAACGTCGAGAT -ACGGAAAATGGCCAACGTTACCAC -ACGGAAAATGGCCAACGTCAGAAC -ACGGAAAATGGCCAACGTGTCTAC -ACGGAAAATGGCCAACGTACGTAC -ACGGAAAATGGCCAACGTAGTGAC -ACGGAAAATGGCCAACGTCTGTAG -ACGGAAAATGGCCAACGTCCTAAG -ACGGAAAATGGCCAACGTGTTCAG -ACGGAAAATGGCCAACGTGCATAG -ACGGAAAATGGCCAACGTGACAAG -ACGGAAAATGGCCAACGTAAGCAG -ACGGAAAATGGCCAACGTCGTCAA -ACGGAAAATGGCCAACGTGCTGAA -ACGGAAAATGGCCAACGTAGTACG -ACGGAAAATGGCCAACGTATCCGA -ACGGAAAATGGCCAACGTATGGGA -ACGGAAAATGGCCAACGTGTGCAA -ACGGAAAATGGCCAACGTGAGGAA -ACGGAAAATGGCCAACGTCAGGTA -ACGGAAAATGGCCAACGTGACTCT -ACGGAAAATGGCCAACGTAGTCCT -ACGGAAAATGGCCAACGTTAAGCC -ACGGAAAATGGCCAACGTATAGCC -ACGGAAAATGGCCAACGTTAACCG -ACGGAAAATGGCCAACGTATGCCA -ACGGAAAATGGCGAAGCTGGAAAC -ACGGAAAATGGCGAAGCTAACACC -ACGGAAAATGGCGAAGCTATCGAG -ACGGAAAATGGCGAAGCTCTCCTT -ACGGAAAATGGCGAAGCTCCTGTT -ACGGAAAATGGCGAAGCTCGGTTT -ACGGAAAATGGCGAAGCTGTGGTT -ACGGAAAATGGCGAAGCTGCCTTT -ACGGAAAATGGCGAAGCTGGTCTT -ACGGAAAATGGCGAAGCTACGCTT -ACGGAAAATGGCGAAGCTAGCGTT -ACGGAAAATGGCGAAGCTTTCGTC -ACGGAAAATGGCGAAGCTTCTCTC -ACGGAAAATGGCGAAGCTTGGATC -ACGGAAAATGGCGAAGCTCACTTC -ACGGAAAATGGCGAAGCTGTACTC -ACGGAAAATGGCGAAGCTGATGTC -ACGGAAAATGGCGAAGCTACAGTC -ACGGAAAATGGCGAAGCTTTGCTG -ACGGAAAATGGCGAAGCTTCCATG -ACGGAAAATGGCGAAGCTTGTGTG -ACGGAAAATGGCGAAGCTCTAGTG -ACGGAAAATGGCGAAGCTCATCTG -ACGGAAAATGGCGAAGCTGAGTTG -ACGGAAAATGGCGAAGCTAGACTG -ACGGAAAATGGCGAAGCTTCGGTA -ACGGAAAATGGCGAAGCTTGCCTA -ACGGAAAATGGCGAAGCTCCACTA -ACGGAAAATGGCGAAGCTGGAGTA -ACGGAAAATGGCGAAGCTTCGTCT -ACGGAAAATGGCGAAGCTTGCACT -ACGGAAAATGGCGAAGCTCTGACT -ACGGAAAATGGCGAAGCTCAACCT -ACGGAAAATGGCGAAGCTGCTACT -ACGGAAAATGGCGAAGCTGGATCT -ACGGAAAATGGCGAAGCTAAGGCT -ACGGAAAATGGCGAAGCTTCAACC -ACGGAAAATGGCGAAGCTTGTTCC -ACGGAAAATGGCGAAGCTATTCCC -ACGGAAAATGGCGAAGCTTTCTCG -ACGGAAAATGGCGAAGCTTAGACG -ACGGAAAATGGCGAAGCTGTAACG -ACGGAAAATGGCGAAGCTACTTCG -ACGGAAAATGGCGAAGCTTACGCA -ACGGAAAATGGCGAAGCTCTTGCA -ACGGAAAATGGCGAAGCTCGAACA -ACGGAAAATGGCGAAGCTCAGTCA -ACGGAAAATGGCGAAGCTGATCCA -ACGGAAAATGGCGAAGCTACGACA -ACGGAAAATGGCGAAGCTAGCTCA -ACGGAAAATGGCGAAGCTTCACGT -ACGGAAAATGGCGAAGCTCGTAGT -ACGGAAAATGGCGAAGCTGTCAGT -ACGGAAAATGGCGAAGCTGAAGGT -ACGGAAAATGGCGAAGCTAACCGT -ACGGAAAATGGCGAAGCTTTGTGC -ACGGAAAATGGCGAAGCTCTAAGC -ACGGAAAATGGCGAAGCTACTAGC -ACGGAAAATGGCGAAGCTAGATGC -ACGGAAAATGGCGAAGCTTGAAGG -ACGGAAAATGGCGAAGCTCAATGG -ACGGAAAATGGCGAAGCTATGAGG -ACGGAAAATGGCGAAGCTAATGGG -ACGGAAAATGGCGAAGCTTCCTGA -ACGGAAAATGGCGAAGCTTAGCGA -ACGGAAAATGGCGAAGCTCACAGA -ACGGAAAATGGCGAAGCTGCAAGA -ACGGAAAATGGCGAAGCTGGTTGA -ACGGAAAATGGCGAAGCTTCCGAT -ACGGAAAATGGCGAAGCTTGGCAT -ACGGAAAATGGCGAAGCTCGAGAT -ACGGAAAATGGCGAAGCTTACCAC -ACGGAAAATGGCGAAGCTCAGAAC -ACGGAAAATGGCGAAGCTGTCTAC -ACGGAAAATGGCGAAGCTACGTAC -ACGGAAAATGGCGAAGCTAGTGAC -ACGGAAAATGGCGAAGCTCTGTAG -ACGGAAAATGGCGAAGCTCCTAAG -ACGGAAAATGGCGAAGCTGTTCAG -ACGGAAAATGGCGAAGCTGCATAG -ACGGAAAATGGCGAAGCTGACAAG -ACGGAAAATGGCGAAGCTAAGCAG -ACGGAAAATGGCGAAGCTCGTCAA -ACGGAAAATGGCGAAGCTGCTGAA -ACGGAAAATGGCGAAGCTAGTACG -ACGGAAAATGGCGAAGCTATCCGA -ACGGAAAATGGCGAAGCTATGGGA -ACGGAAAATGGCGAAGCTGTGCAA -ACGGAAAATGGCGAAGCTGAGGAA -ACGGAAAATGGCGAAGCTCAGGTA -ACGGAAAATGGCGAAGCTGACTCT -ACGGAAAATGGCGAAGCTAGTCCT -ACGGAAAATGGCGAAGCTTAAGCC -ACGGAAAATGGCGAAGCTATAGCC -ACGGAAAATGGCGAAGCTTAACCG -ACGGAAAATGGCGAAGCTATGCCA -ACGGAAAATGGCACGAGTGGAAAC -ACGGAAAATGGCACGAGTAACACC -ACGGAAAATGGCACGAGTATCGAG -ACGGAAAATGGCACGAGTCTCCTT -ACGGAAAATGGCACGAGTCCTGTT -ACGGAAAATGGCACGAGTCGGTTT -ACGGAAAATGGCACGAGTGTGGTT -ACGGAAAATGGCACGAGTGCCTTT -ACGGAAAATGGCACGAGTGGTCTT -ACGGAAAATGGCACGAGTACGCTT -ACGGAAAATGGCACGAGTAGCGTT -ACGGAAAATGGCACGAGTTTCGTC -ACGGAAAATGGCACGAGTTCTCTC -ACGGAAAATGGCACGAGTTGGATC -ACGGAAAATGGCACGAGTCACTTC -ACGGAAAATGGCACGAGTGTACTC -ACGGAAAATGGCACGAGTGATGTC -ACGGAAAATGGCACGAGTACAGTC -ACGGAAAATGGCACGAGTTTGCTG -ACGGAAAATGGCACGAGTTCCATG -ACGGAAAATGGCACGAGTTGTGTG -ACGGAAAATGGCACGAGTCTAGTG -ACGGAAAATGGCACGAGTCATCTG -ACGGAAAATGGCACGAGTGAGTTG -ACGGAAAATGGCACGAGTAGACTG -ACGGAAAATGGCACGAGTTCGGTA -ACGGAAAATGGCACGAGTTGCCTA -ACGGAAAATGGCACGAGTCCACTA -ACGGAAAATGGCACGAGTGGAGTA -ACGGAAAATGGCACGAGTTCGTCT -ACGGAAAATGGCACGAGTTGCACT -ACGGAAAATGGCACGAGTCTGACT -ACGGAAAATGGCACGAGTCAACCT -ACGGAAAATGGCACGAGTGCTACT -ACGGAAAATGGCACGAGTGGATCT -ACGGAAAATGGCACGAGTAAGGCT -ACGGAAAATGGCACGAGTTCAACC -ACGGAAAATGGCACGAGTTGTTCC -ACGGAAAATGGCACGAGTATTCCC -ACGGAAAATGGCACGAGTTTCTCG -ACGGAAAATGGCACGAGTTAGACG -ACGGAAAATGGCACGAGTGTAACG -ACGGAAAATGGCACGAGTACTTCG -ACGGAAAATGGCACGAGTTACGCA -ACGGAAAATGGCACGAGTCTTGCA -ACGGAAAATGGCACGAGTCGAACA -ACGGAAAATGGCACGAGTCAGTCA -ACGGAAAATGGCACGAGTGATCCA -ACGGAAAATGGCACGAGTACGACA -ACGGAAAATGGCACGAGTAGCTCA -ACGGAAAATGGCACGAGTTCACGT -ACGGAAAATGGCACGAGTCGTAGT -ACGGAAAATGGCACGAGTGTCAGT -ACGGAAAATGGCACGAGTGAAGGT -ACGGAAAATGGCACGAGTAACCGT -ACGGAAAATGGCACGAGTTTGTGC -ACGGAAAATGGCACGAGTCTAAGC -ACGGAAAATGGCACGAGTACTAGC -ACGGAAAATGGCACGAGTAGATGC -ACGGAAAATGGCACGAGTTGAAGG -ACGGAAAATGGCACGAGTCAATGG -ACGGAAAATGGCACGAGTATGAGG -ACGGAAAATGGCACGAGTAATGGG -ACGGAAAATGGCACGAGTTCCTGA -ACGGAAAATGGCACGAGTTAGCGA -ACGGAAAATGGCACGAGTCACAGA -ACGGAAAATGGCACGAGTGCAAGA -ACGGAAAATGGCACGAGTGGTTGA -ACGGAAAATGGCACGAGTTCCGAT -ACGGAAAATGGCACGAGTTGGCAT -ACGGAAAATGGCACGAGTCGAGAT -ACGGAAAATGGCACGAGTTACCAC -ACGGAAAATGGCACGAGTCAGAAC -ACGGAAAATGGCACGAGTGTCTAC -ACGGAAAATGGCACGAGTACGTAC -ACGGAAAATGGCACGAGTAGTGAC -ACGGAAAATGGCACGAGTCTGTAG -ACGGAAAATGGCACGAGTCCTAAG -ACGGAAAATGGCACGAGTGTTCAG -ACGGAAAATGGCACGAGTGCATAG -ACGGAAAATGGCACGAGTGACAAG -ACGGAAAATGGCACGAGTAAGCAG -ACGGAAAATGGCACGAGTCGTCAA -ACGGAAAATGGCACGAGTGCTGAA -ACGGAAAATGGCACGAGTAGTACG -ACGGAAAATGGCACGAGTATCCGA -ACGGAAAATGGCACGAGTATGGGA -ACGGAAAATGGCACGAGTGTGCAA -ACGGAAAATGGCACGAGTGAGGAA -ACGGAAAATGGCACGAGTCAGGTA -ACGGAAAATGGCACGAGTGACTCT -ACGGAAAATGGCACGAGTAGTCCT -ACGGAAAATGGCACGAGTTAAGCC -ACGGAAAATGGCACGAGTATAGCC -ACGGAAAATGGCACGAGTTAACCG -ACGGAAAATGGCACGAGTATGCCA -ACGGAAAATGGCCGAATCGGAAAC -ACGGAAAATGGCCGAATCAACACC -ACGGAAAATGGCCGAATCATCGAG -ACGGAAAATGGCCGAATCCTCCTT -ACGGAAAATGGCCGAATCCCTGTT -ACGGAAAATGGCCGAATCCGGTTT -ACGGAAAATGGCCGAATCGTGGTT -ACGGAAAATGGCCGAATCGCCTTT -ACGGAAAATGGCCGAATCGGTCTT -ACGGAAAATGGCCGAATCACGCTT -ACGGAAAATGGCCGAATCAGCGTT -ACGGAAAATGGCCGAATCTTCGTC -ACGGAAAATGGCCGAATCTCTCTC -ACGGAAAATGGCCGAATCTGGATC -ACGGAAAATGGCCGAATCCACTTC -ACGGAAAATGGCCGAATCGTACTC -ACGGAAAATGGCCGAATCGATGTC -ACGGAAAATGGCCGAATCACAGTC -ACGGAAAATGGCCGAATCTTGCTG -ACGGAAAATGGCCGAATCTCCATG -ACGGAAAATGGCCGAATCTGTGTG -ACGGAAAATGGCCGAATCCTAGTG -ACGGAAAATGGCCGAATCCATCTG -ACGGAAAATGGCCGAATCGAGTTG -ACGGAAAATGGCCGAATCAGACTG -ACGGAAAATGGCCGAATCTCGGTA -ACGGAAAATGGCCGAATCTGCCTA -ACGGAAAATGGCCGAATCCCACTA -ACGGAAAATGGCCGAATCGGAGTA -ACGGAAAATGGCCGAATCTCGTCT -ACGGAAAATGGCCGAATCTGCACT -ACGGAAAATGGCCGAATCCTGACT -ACGGAAAATGGCCGAATCCAACCT -ACGGAAAATGGCCGAATCGCTACT -ACGGAAAATGGCCGAATCGGATCT -ACGGAAAATGGCCGAATCAAGGCT -ACGGAAAATGGCCGAATCTCAACC -ACGGAAAATGGCCGAATCTGTTCC -ACGGAAAATGGCCGAATCATTCCC -ACGGAAAATGGCCGAATCTTCTCG -ACGGAAAATGGCCGAATCTAGACG -ACGGAAAATGGCCGAATCGTAACG -ACGGAAAATGGCCGAATCACTTCG -ACGGAAAATGGCCGAATCTACGCA -ACGGAAAATGGCCGAATCCTTGCA -ACGGAAAATGGCCGAATCCGAACA -ACGGAAAATGGCCGAATCCAGTCA -ACGGAAAATGGCCGAATCGATCCA -ACGGAAAATGGCCGAATCACGACA -ACGGAAAATGGCCGAATCAGCTCA -ACGGAAAATGGCCGAATCTCACGT -ACGGAAAATGGCCGAATCCGTAGT -ACGGAAAATGGCCGAATCGTCAGT -ACGGAAAATGGCCGAATCGAAGGT -ACGGAAAATGGCCGAATCAACCGT -ACGGAAAATGGCCGAATCTTGTGC -ACGGAAAATGGCCGAATCCTAAGC -ACGGAAAATGGCCGAATCACTAGC -ACGGAAAATGGCCGAATCAGATGC -ACGGAAAATGGCCGAATCTGAAGG -ACGGAAAATGGCCGAATCCAATGG -ACGGAAAATGGCCGAATCATGAGG -ACGGAAAATGGCCGAATCAATGGG -ACGGAAAATGGCCGAATCTCCTGA -ACGGAAAATGGCCGAATCTAGCGA -ACGGAAAATGGCCGAATCCACAGA -ACGGAAAATGGCCGAATCGCAAGA -ACGGAAAATGGCCGAATCGGTTGA -ACGGAAAATGGCCGAATCTCCGAT -ACGGAAAATGGCCGAATCTGGCAT -ACGGAAAATGGCCGAATCCGAGAT -ACGGAAAATGGCCGAATCTACCAC -ACGGAAAATGGCCGAATCCAGAAC -ACGGAAAATGGCCGAATCGTCTAC -ACGGAAAATGGCCGAATCACGTAC -ACGGAAAATGGCCGAATCAGTGAC -ACGGAAAATGGCCGAATCCTGTAG -ACGGAAAATGGCCGAATCCCTAAG -ACGGAAAATGGCCGAATCGTTCAG -ACGGAAAATGGCCGAATCGCATAG -ACGGAAAATGGCCGAATCGACAAG -ACGGAAAATGGCCGAATCAAGCAG -ACGGAAAATGGCCGAATCCGTCAA -ACGGAAAATGGCCGAATCGCTGAA -ACGGAAAATGGCCGAATCAGTACG -ACGGAAAATGGCCGAATCATCCGA -ACGGAAAATGGCCGAATCATGGGA -ACGGAAAATGGCCGAATCGTGCAA -ACGGAAAATGGCCGAATCGAGGAA -ACGGAAAATGGCCGAATCCAGGTA -ACGGAAAATGGCCGAATCGACTCT -ACGGAAAATGGCCGAATCAGTCCT -ACGGAAAATGGCCGAATCTAAGCC -ACGGAAAATGGCCGAATCATAGCC -ACGGAAAATGGCCGAATCTAACCG -ACGGAAAATGGCCGAATCATGCCA -ACGGAAAATGGCGGAATGGGAAAC -ACGGAAAATGGCGGAATGAACACC -ACGGAAAATGGCGGAATGATCGAG -ACGGAAAATGGCGGAATGCTCCTT -ACGGAAAATGGCGGAATGCCTGTT -ACGGAAAATGGCGGAATGCGGTTT -ACGGAAAATGGCGGAATGGTGGTT -ACGGAAAATGGCGGAATGGCCTTT -ACGGAAAATGGCGGAATGGGTCTT -ACGGAAAATGGCGGAATGACGCTT -ACGGAAAATGGCGGAATGAGCGTT -ACGGAAAATGGCGGAATGTTCGTC -ACGGAAAATGGCGGAATGTCTCTC -ACGGAAAATGGCGGAATGTGGATC -ACGGAAAATGGCGGAATGCACTTC -ACGGAAAATGGCGGAATGGTACTC -ACGGAAAATGGCGGAATGGATGTC -ACGGAAAATGGCGGAATGACAGTC -ACGGAAAATGGCGGAATGTTGCTG -ACGGAAAATGGCGGAATGTCCATG -ACGGAAAATGGCGGAATGTGTGTG -ACGGAAAATGGCGGAATGCTAGTG -ACGGAAAATGGCGGAATGCATCTG -ACGGAAAATGGCGGAATGGAGTTG -ACGGAAAATGGCGGAATGAGACTG -ACGGAAAATGGCGGAATGTCGGTA -ACGGAAAATGGCGGAATGTGCCTA -ACGGAAAATGGCGGAATGCCACTA -ACGGAAAATGGCGGAATGGGAGTA -ACGGAAAATGGCGGAATGTCGTCT -ACGGAAAATGGCGGAATGTGCACT -ACGGAAAATGGCGGAATGCTGACT -ACGGAAAATGGCGGAATGCAACCT -ACGGAAAATGGCGGAATGGCTACT -ACGGAAAATGGCGGAATGGGATCT -ACGGAAAATGGCGGAATGAAGGCT -ACGGAAAATGGCGGAATGTCAACC -ACGGAAAATGGCGGAATGTGTTCC -ACGGAAAATGGCGGAATGATTCCC -ACGGAAAATGGCGGAATGTTCTCG -ACGGAAAATGGCGGAATGTAGACG -ACGGAAAATGGCGGAATGGTAACG -ACGGAAAATGGCGGAATGACTTCG -ACGGAAAATGGCGGAATGTACGCA -ACGGAAAATGGCGGAATGCTTGCA -ACGGAAAATGGCGGAATGCGAACA -ACGGAAAATGGCGGAATGCAGTCA -ACGGAAAATGGCGGAATGGATCCA -ACGGAAAATGGCGGAATGACGACA -ACGGAAAATGGCGGAATGAGCTCA -ACGGAAAATGGCGGAATGTCACGT -ACGGAAAATGGCGGAATGCGTAGT -ACGGAAAATGGCGGAATGGTCAGT -ACGGAAAATGGCGGAATGGAAGGT -ACGGAAAATGGCGGAATGAACCGT -ACGGAAAATGGCGGAATGTTGTGC -ACGGAAAATGGCGGAATGCTAAGC -ACGGAAAATGGCGGAATGACTAGC -ACGGAAAATGGCGGAATGAGATGC -ACGGAAAATGGCGGAATGTGAAGG -ACGGAAAATGGCGGAATGCAATGG -ACGGAAAATGGCGGAATGATGAGG -ACGGAAAATGGCGGAATGAATGGG -ACGGAAAATGGCGGAATGTCCTGA -ACGGAAAATGGCGGAATGTAGCGA -ACGGAAAATGGCGGAATGCACAGA -ACGGAAAATGGCGGAATGGCAAGA -ACGGAAAATGGCGGAATGGGTTGA -ACGGAAAATGGCGGAATGTCCGAT -ACGGAAAATGGCGGAATGTGGCAT -ACGGAAAATGGCGGAATGCGAGAT -ACGGAAAATGGCGGAATGTACCAC -ACGGAAAATGGCGGAATGCAGAAC -ACGGAAAATGGCGGAATGGTCTAC -ACGGAAAATGGCGGAATGACGTAC -ACGGAAAATGGCGGAATGAGTGAC -ACGGAAAATGGCGGAATGCTGTAG -ACGGAAAATGGCGGAATGCCTAAG -ACGGAAAATGGCGGAATGGTTCAG -ACGGAAAATGGCGGAATGGCATAG -ACGGAAAATGGCGGAATGGACAAG -ACGGAAAATGGCGGAATGAAGCAG -ACGGAAAATGGCGGAATGCGTCAA -ACGGAAAATGGCGGAATGGCTGAA -ACGGAAAATGGCGGAATGAGTACG -ACGGAAAATGGCGGAATGATCCGA -ACGGAAAATGGCGGAATGATGGGA -ACGGAAAATGGCGGAATGGTGCAA -ACGGAAAATGGCGGAATGGAGGAA -ACGGAAAATGGCGGAATGCAGGTA -ACGGAAAATGGCGGAATGGACTCT -ACGGAAAATGGCGGAATGAGTCCT -ACGGAAAATGGCGGAATGTAAGCC -ACGGAAAATGGCGGAATGATAGCC -ACGGAAAATGGCGGAATGTAACCG -ACGGAAAATGGCGGAATGATGCCA -ACGGAAAATGGCCAAGTGGGAAAC -ACGGAAAATGGCCAAGTGAACACC -ACGGAAAATGGCCAAGTGATCGAG -ACGGAAAATGGCCAAGTGCTCCTT -ACGGAAAATGGCCAAGTGCCTGTT -ACGGAAAATGGCCAAGTGCGGTTT -ACGGAAAATGGCCAAGTGGTGGTT -ACGGAAAATGGCCAAGTGGCCTTT -ACGGAAAATGGCCAAGTGGGTCTT -ACGGAAAATGGCCAAGTGACGCTT -ACGGAAAATGGCCAAGTGAGCGTT -ACGGAAAATGGCCAAGTGTTCGTC -ACGGAAAATGGCCAAGTGTCTCTC -ACGGAAAATGGCCAAGTGTGGATC -ACGGAAAATGGCCAAGTGCACTTC -ACGGAAAATGGCCAAGTGGTACTC -ACGGAAAATGGCCAAGTGGATGTC -ACGGAAAATGGCCAAGTGACAGTC -ACGGAAAATGGCCAAGTGTTGCTG -ACGGAAAATGGCCAAGTGTCCATG -ACGGAAAATGGCCAAGTGTGTGTG -ACGGAAAATGGCCAAGTGCTAGTG -ACGGAAAATGGCCAAGTGCATCTG -ACGGAAAATGGCCAAGTGGAGTTG -ACGGAAAATGGCCAAGTGAGACTG -ACGGAAAATGGCCAAGTGTCGGTA -ACGGAAAATGGCCAAGTGTGCCTA -ACGGAAAATGGCCAAGTGCCACTA -ACGGAAAATGGCCAAGTGGGAGTA -ACGGAAAATGGCCAAGTGTCGTCT -ACGGAAAATGGCCAAGTGTGCACT -ACGGAAAATGGCCAAGTGCTGACT -ACGGAAAATGGCCAAGTGCAACCT -ACGGAAAATGGCCAAGTGGCTACT -ACGGAAAATGGCCAAGTGGGATCT -ACGGAAAATGGCCAAGTGAAGGCT -ACGGAAAATGGCCAAGTGTCAACC -ACGGAAAATGGCCAAGTGTGTTCC -ACGGAAAATGGCCAAGTGATTCCC -ACGGAAAATGGCCAAGTGTTCTCG -ACGGAAAATGGCCAAGTGTAGACG -ACGGAAAATGGCCAAGTGGTAACG -ACGGAAAATGGCCAAGTGACTTCG -ACGGAAAATGGCCAAGTGTACGCA -ACGGAAAATGGCCAAGTGCTTGCA -ACGGAAAATGGCCAAGTGCGAACA -ACGGAAAATGGCCAAGTGCAGTCA -ACGGAAAATGGCCAAGTGGATCCA -ACGGAAAATGGCCAAGTGACGACA -ACGGAAAATGGCCAAGTGAGCTCA -ACGGAAAATGGCCAAGTGTCACGT -ACGGAAAATGGCCAAGTGCGTAGT -ACGGAAAATGGCCAAGTGGTCAGT -ACGGAAAATGGCCAAGTGGAAGGT -ACGGAAAATGGCCAAGTGAACCGT -ACGGAAAATGGCCAAGTGTTGTGC -ACGGAAAATGGCCAAGTGCTAAGC -ACGGAAAATGGCCAAGTGACTAGC -ACGGAAAATGGCCAAGTGAGATGC -ACGGAAAATGGCCAAGTGTGAAGG -ACGGAAAATGGCCAAGTGCAATGG -ACGGAAAATGGCCAAGTGATGAGG -ACGGAAAATGGCCAAGTGAATGGG -ACGGAAAATGGCCAAGTGTCCTGA -ACGGAAAATGGCCAAGTGTAGCGA -ACGGAAAATGGCCAAGTGCACAGA -ACGGAAAATGGCCAAGTGGCAAGA -ACGGAAAATGGCCAAGTGGGTTGA -ACGGAAAATGGCCAAGTGTCCGAT -ACGGAAAATGGCCAAGTGTGGCAT -ACGGAAAATGGCCAAGTGCGAGAT -ACGGAAAATGGCCAAGTGTACCAC -ACGGAAAATGGCCAAGTGCAGAAC -ACGGAAAATGGCCAAGTGGTCTAC -ACGGAAAATGGCCAAGTGACGTAC -ACGGAAAATGGCCAAGTGAGTGAC -ACGGAAAATGGCCAAGTGCTGTAG -ACGGAAAATGGCCAAGTGCCTAAG -ACGGAAAATGGCCAAGTGGTTCAG -ACGGAAAATGGCCAAGTGGCATAG -ACGGAAAATGGCCAAGTGGACAAG -ACGGAAAATGGCCAAGTGAAGCAG -ACGGAAAATGGCCAAGTGCGTCAA -ACGGAAAATGGCCAAGTGGCTGAA -ACGGAAAATGGCCAAGTGAGTACG -ACGGAAAATGGCCAAGTGATCCGA -ACGGAAAATGGCCAAGTGATGGGA -ACGGAAAATGGCCAAGTGGTGCAA -ACGGAAAATGGCCAAGTGGAGGAA -ACGGAAAATGGCCAAGTGCAGGTA -ACGGAAAATGGCCAAGTGGACTCT -ACGGAAAATGGCCAAGTGAGTCCT -ACGGAAAATGGCCAAGTGTAAGCC -ACGGAAAATGGCCAAGTGATAGCC -ACGGAAAATGGCCAAGTGTAACCG -ACGGAAAATGGCCAAGTGATGCCA -ACGGAAAATGGCGAAGAGGGAAAC -ACGGAAAATGGCGAAGAGAACACC -ACGGAAAATGGCGAAGAGATCGAG -ACGGAAAATGGCGAAGAGCTCCTT -ACGGAAAATGGCGAAGAGCCTGTT -ACGGAAAATGGCGAAGAGCGGTTT -ACGGAAAATGGCGAAGAGGTGGTT -ACGGAAAATGGCGAAGAGGCCTTT -ACGGAAAATGGCGAAGAGGGTCTT -ACGGAAAATGGCGAAGAGACGCTT -ACGGAAAATGGCGAAGAGAGCGTT -ACGGAAAATGGCGAAGAGTTCGTC -ACGGAAAATGGCGAAGAGTCTCTC -ACGGAAAATGGCGAAGAGTGGATC -ACGGAAAATGGCGAAGAGCACTTC -ACGGAAAATGGCGAAGAGGTACTC -ACGGAAAATGGCGAAGAGGATGTC -ACGGAAAATGGCGAAGAGACAGTC -ACGGAAAATGGCGAAGAGTTGCTG -ACGGAAAATGGCGAAGAGTCCATG -ACGGAAAATGGCGAAGAGTGTGTG -ACGGAAAATGGCGAAGAGCTAGTG -ACGGAAAATGGCGAAGAGCATCTG -ACGGAAAATGGCGAAGAGGAGTTG -ACGGAAAATGGCGAAGAGAGACTG -ACGGAAAATGGCGAAGAGTCGGTA -ACGGAAAATGGCGAAGAGTGCCTA -ACGGAAAATGGCGAAGAGCCACTA -ACGGAAAATGGCGAAGAGGGAGTA -ACGGAAAATGGCGAAGAGTCGTCT -ACGGAAAATGGCGAAGAGTGCACT -ACGGAAAATGGCGAAGAGCTGACT -ACGGAAAATGGCGAAGAGCAACCT -ACGGAAAATGGCGAAGAGGCTACT -ACGGAAAATGGCGAAGAGGGATCT -ACGGAAAATGGCGAAGAGAAGGCT -ACGGAAAATGGCGAAGAGTCAACC -ACGGAAAATGGCGAAGAGTGTTCC -ACGGAAAATGGCGAAGAGATTCCC -ACGGAAAATGGCGAAGAGTTCTCG -ACGGAAAATGGCGAAGAGTAGACG -ACGGAAAATGGCGAAGAGGTAACG -ACGGAAAATGGCGAAGAGACTTCG -ACGGAAAATGGCGAAGAGTACGCA -ACGGAAAATGGCGAAGAGCTTGCA -ACGGAAAATGGCGAAGAGCGAACA -ACGGAAAATGGCGAAGAGCAGTCA -ACGGAAAATGGCGAAGAGGATCCA -ACGGAAAATGGCGAAGAGACGACA -ACGGAAAATGGCGAAGAGAGCTCA -ACGGAAAATGGCGAAGAGTCACGT -ACGGAAAATGGCGAAGAGCGTAGT -ACGGAAAATGGCGAAGAGGTCAGT -ACGGAAAATGGCGAAGAGGAAGGT -ACGGAAAATGGCGAAGAGAACCGT -ACGGAAAATGGCGAAGAGTTGTGC -ACGGAAAATGGCGAAGAGCTAAGC -ACGGAAAATGGCGAAGAGACTAGC -ACGGAAAATGGCGAAGAGAGATGC -ACGGAAAATGGCGAAGAGTGAAGG -ACGGAAAATGGCGAAGAGCAATGG -ACGGAAAATGGCGAAGAGATGAGG -ACGGAAAATGGCGAAGAGAATGGG -ACGGAAAATGGCGAAGAGTCCTGA -ACGGAAAATGGCGAAGAGTAGCGA -ACGGAAAATGGCGAAGAGCACAGA -ACGGAAAATGGCGAAGAGGCAAGA -ACGGAAAATGGCGAAGAGGGTTGA -ACGGAAAATGGCGAAGAGTCCGAT -ACGGAAAATGGCGAAGAGTGGCAT -ACGGAAAATGGCGAAGAGCGAGAT -ACGGAAAATGGCGAAGAGTACCAC -ACGGAAAATGGCGAAGAGCAGAAC -ACGGAAAATGGCGAAGAGGTCTAC -ACGGAAAATGGCGAAGAGACGTAC -ACGGAAAATGGCGAAGAGAGTGAC -ACGGAAAATGGCGAAGAGCTGTAG -ACGGAAAATGGCGAAGAGCCTAAG -ACGGAAAATGGCGAAGAGGTTCAG -ACGGAAAATGGCGAAGAGGCATAG -ACGGAAAATGGCGAAGAGGACAAG -ACGGAAAATGGCGAAGAGAAGCAG -ACGGAAAATGGCGAAGAGCGTCAA -ACGGAAAATGGCGAAGAGGCTGAA -ACGGAAAATGGCGAAGAGAGTACG -ACGGAAAATGGCGAAGAGATCCGA -ACGGAAAATGGCGAAGAGATGGGA -ACGGAAAATGGCGAAGAGGTGCAA -ACGGAAAATGGCGAAGAGGAGGAA -ACGGAAAATGGCGAAGAGCAGGTA -ACGGAAAATGGCGAAGAGGACTCT -ACGGAAAATGGCGAAGAGAGTCCT -ACGGAAAATGGCGAAGAGTAAGCC -ACGGAAAATGGCGAAGAGATAGCC -ACGGAAAATGGCGAAGAGTAACCG -ACGGAAAATGGCGAAGAGATGCCA -ACGGAAAATGGCGTACAGGGAAAC -ACGGAAAATGGCGTACAGAACACC -ACGGAAAATGGCGTACAGATCGAG -ACGGAAAATGGCGTACAGCTCCTT -ACGGAAAATGGCGTACAGCCTGTT -ACGGAAAATGGCGTACAGCGGTTT -ACGGAAAATGGCGTACAGGTGGTT -ACGGAAAATGGCGTACAGGCCTTT -ACGGAAAATGGCGTACAGGGTCTT -ACGGAAAATGGCGTACAGACGCTT -ACGGAAAATGGCGTACAGAGCGTT -ACGGAAAATGGCGTACAGTTCGTC -ACGGAAAATGGCGTACAGTCTCTC -ACGGAAAATGGCGTACAGTGGATC -ACGGAAAATGGCGTACAGCACTTC -ACGGAAAATGGCGTACAGGTACTC -ACGGAAAATGGCGTACAGGATGTC -ACGGAAAATGGCGTACAGACAGTC -ACGGAAAATGGCGTACAGTTGCTG -ACGGAAAATGGCGTACAGTCCATG -ACGGAAAATGGCGTACAGTGTGTG -ACGGAAAATGGCGTACAGCTAGTG -ACGGAAAATGGCGTACAGCATCTG -ACGGAAAATGGCGTACAGGAGTTG -ACGGAAAATGGCGTACAGAGACTG -ACGGAAAATGGCGTACAGTCGGTA -ACGGAAAATGGCGTACAGTGCCTA -ACGGAAAATGGCGTACAGCCACTA -ACGGAAAATGGCGTACAGGGAGTA -ACGGAAAATGGCGTACAGTCGTCT -ACGGAAAATGGCGTACAGTGCACT -ACGGAAAATGGCGTACAGCTGACT -ACGGAAAATGGCGTACAGCAACCT -ACGGAAAATGGCGTACAGGCTACT -ACGGAAAATGGCGTACAGGGATCT -ACGGAAAATGGCGTACAGAAGGCT -ACGGAAAATGGCGTACAGTCAACC -ACGGAAAATGGCGTACAGTGTTCC -ACGGAAAATGGCGTACAGATTCCC -ACGGAAAATGGCGTACAGTTCTCG -ACGGAAAATGGCGTACAGTAGACG -ACGGAAAATGGCGTACAGGTAACG -ACGGAAAATGGCGTACAGACTTCG -ACGGAAAATGGCGTACAGTACGCA -ACGGAAAATGGCGTACAGCTTGCA -ACGGAAAATGGCGTACAGCGAACA -ACGGAAAATGGCGTACAGCAGTCA -ACGGAAAATGGCGTACAGGATCCA -ACGGAAAATGGCGTACAGACGACA -ACGGAAAATGGCGTACAGAGCTCA -ACGGAAAATGGCGTACAGTCACGT -ACGGAAAATGGCGTACAGCGTAGT -ACGGAAAATGGCGTACAGGTCAGT -ACGGAAAATGGCGTACAGGAAGGT -ACGGAAAATGGCGTACAGAACCGT -ACGGAAAATGGCGTACAGTTGTGC -ACGGAAAATGGCGTACAGCTAAGC -ACGGAAAATGGCGTACAGACTAGC -ACGGAAAATGGCGTACAGAGATGC -ACGGAAAATGGCGTACAGTGAAGG -ACGGAAAATGGCGTACAGCAATGG -ACGGAAAATGGCGTACAGATGAGG -ACGGAAAATGGCGTACAGAATGGG -ACGGAAAATGGCGTACAGTCCTGA -ACGGAAAATGGCGTACAGTAGCGA -ACGGAAAATGGCGTACAGCACAGA -ACGGAAAATGGCGTACAGGCAAGA -ACGGAAAATGGCGTACAGGGTTGA -ACGGAAAATGGCGTACAGTCCGAT -ACGGAAAATGGCGTACAGTGGCAT -ACGGAAAATGGCGTACAGCGAGAT -ACGGAAAATGGCGTACAGTACCAC -ACGGAAAATGGCGTACAGCAGAAC -ACGGAAAATGGCGTACAGGTCTAC -ACGGAAAATGGCGTACAGACGTAC -ACGGAAAATGGCGTACAGAGTGAC -ACGGAAAATGGCGTACAGCTGTAG -ACGGAAAATGGCGTACAGCCTAAG -ACGGAAAATGGCGTACAGGTTCAG -ACGGAAAATGGCGTACAGGCATAG -ACGGAAAATGGCGTACAGGACAAG -ACGGAAAATGGCGTACAGAAGCAG -ACGGAAAATGGCGTACAGCGTCAA -ACGGAAAATGGCGTACAGGCTGAA -ACGGAAAATGGCGTACAGAGTACG -ACGGAAAATGGCGTACAGATCCGA -ACGGAAAATGGCGTACAGATGGGA -ACGGAAAATGGCGTACAGGTGCAA -ACGGAAAATGGCGTACAGGAGGAA -ACGGAAAATGGCGTACAGCAGGTA -ACGGAAAATGGCGTACAGGACTCT -ACGGAAAATGGCGTACAGAGTCCT -ACGGAAAATGGCGTACAGTAAGCC -ACGGAAAATGGCGTACAGATAGCC -ACGGAAAATGGCGTACAGTAACCG -ACGGAAAATGGCGTACAGATGCCA -ACGGAAAATGGCTCTGACGGAAAC -ACGGAAAATGGCTCTGACAACACC -ACGGAAAATGGCTCTGACATCGAG -ACGGAAAATGGCTCTGACCTCCTT -ACGGAAAATGGCTCTGACCCTGTT -ACGGAAAATGGCTCTGACCGGTTT -ACGGAAAATGGCTCTGACGTGGTT -ACGGAAAATGGCTCTGACGCCTTT -ACGGAAAATGGCTCTGACGGTCTT -ACGGAAAATGGCTCTGACACGCTT -ACGGAAAATGGCTCTGACAGCGTT -ACGGAAAATGGCTCTGACTTCGTC -ACGGAAAATGGCTCTGACTCTCTC -ACGGAAAATGGCTCTGACTGGATC -ACGGAAAATGGCTCTGACCACTTC -ACGGAAAATGGCTCTGACGTACTC -ACGGAAAATGGCTCTGACGATGTC -ACGGAAAATGGCTCTGACACAGTC -ACGGAAAATGGCTCTGACTTGCTG -ACGGAAAATGGCTCTGACTCCATG -ACGGAAAATGGCTCTGACTGTGTG -ACGGAAAATGGCTCTGACCTAGTG -ACGGAAAATGGCTCTGACCATCTG -ACGGAAAATGGCTCTGACGAGTTG -ACGGAAAATGGCTCTGACAGACTG -ACGGAAAATGGCTCTGACTCGGTA -ACGGAAAATGGCTCTGACTGCCTA -ACGGAAAATGGCTCTGACCCACTA -ACGGAAAATGGCTCTGACGGAGTA -ACGGAAAATGGCTCTGACTCGTCT -ACGGAAAATGGCTCTGACTGCACT -ACGGAAAATGGCTCTGACCTGACT -ACGGAAAATGGCTCTGACCAACCT -ACGGAAAATGGCTCTGACGCTACT -ACGGAAAATGGCTCTGACGGATCT -ACGGAAAATGGCTCTGACAAGGCT -ACGGAAAATGGCTCTGACTCAACC -ACGGAAAATGGCTCTGACTGTTCC -ACGGAAAATGGCTCTGACATTCCC -ACGGAAAATGGCTCTGACTTCTCG -ACGGAAAATGGCTCTGACTAGACG -ACGGAAAATGGCTCTGACGTAACG -ACGGAAAATGGCTCTGACACTTCG -ACGGAAAATGGCTCTGACTACGCA -ACGGAAAATGGCTCTGACCTTGCA -ACGGAAAATGGCTCTGACCGAACA -ACGGAAAATGGCTCTGACCAGTCA -ACGGAAAATGGCTCTGACGATCCA -ACGGAAAATGGCTCTGACACGACA -ACGGAAAATGGCTCTGACAGCTCA -ACGGAAAATGGCTCTGACTCACGT -ACGGAAAATGGCTCTGACCGTAGT -ACGGAAAATGGCTCTGACGTCAGT -ACGGAAAATGGCTCTGACGAAGGT -ACGGAAAATGGCTCTGACAACCGT -ACGGAAAATGGCTCTGACTTGTGC -ACGGAAAATGGCTCTGACCTAAGC -ACGGAAAATGGCTCTGACACTAGC -ACGGAAAATGGCTCTGACAGATGC -ACGGAAAATGGCTCTGACTGAAGG -ACGGAAAATGGCTCTGACCAATGG -ACGGAAAATGGCTCTGACATGAGG -ACGGAAAATGGCTCTGACAATGGG -ACGGAAAATGGCTCTGACTCCTGA -ACGGAAAATGGCTCTGACTAGCGA -ACGGAAAATGGCTCTGACCACAGA -ACGGAAAATGGCTCTGACGCAAGA -ACGGAAAATGGCTCTGACGGTTGA -ACGGAAAATGGCTCTGACTCCGAT -ACGGAAAATGGCTCTGACTGGCAT -ACGGAAAATGGCTCTGACCGAGAT -ACGGAAAATGGCTCTGACTACCAC -ACGGAAAATGGCTCTGACCAGAAC -ACGGAAAATGGCTCTGACGTCTAC -ACGGAAAATGGCTCTGACACGTAC -ACGGAAAATGGCTCTGACAGTGAC -ACGGAAAATGGCTCTGACCTGTAG -ACGGAAAATGGCTCTGACCCTAAG -ACGGAAAATGGCTCTGACGTTCAG -ACGGAAAATGGCTCTGACGCATAG -ACGGAAAATGGCTCTGACGACAAG -ACGGAAAATGGCTCTGACAAGCAG -ACGGAAAATGGCTCTGACCGTCAA -ACGGAAAATGGCTCTGACGCTGAA -ACGGAAAATGGCTCTGACAGTACG -ACGGAAAATGGCTCTGACATCCGA -ACGGAAAATGGCTCTGACATGGGA -ACGGAAAATGGCTCTGACGTGCAA -ACGGAAAATGGCTCTGACGAGGAA -ACGGAAAATGGCTCTGACCAGGTA -ACGGAAAATGGCTCTGACGACTCT -ACGGAAAATGGCTCTGACAGTCCT -ACGGAAAATGGCTCTGACTAAGCC -ACGGAAAATGGCTCTGACATAGCC -ACGGAAAATGGCTCTGACTAACCG -ACGGAAAATGGCTCTGACATGCCA -ACGGAAAATGGCCCTAGTGGAAAC -ACGGAAAATGGCCCTAGTAACACC -ACGGAAAATGGCCCTAGTATCGAG -ACGGAAAATGGCCCTAGTCTCCTT -ACGGAAAATGGCCCTAGTCCTGTT -ACGGAAAATGGCCCTAGTCGGTTT -ACGGAAAATGGCCCTAGTGTGGTT -ACGGAAAATGGCCCTAGTGCCTTT -ACGGAAAATGGCCCTAGTGGTCTT -ACGGAAAATGGCCCTAGTACGCTT -ACGGAAAATGGCCCTAGTAGCGTT -ACGGAAAATGGCCCTAGTTTCGTC -ACGGAAAATGGCCCTAGTTCTCTC -ACGGAAAATGGCCCTAGTTGGATC -ACGGAAAATGGCCCTAGTCACTTC -ACGGAAAATGGCCCTAGTGTACTC -ACGGAAAATGGCCCTAGTGATGTC -ACGGAAAATGGCCCTAGTACAGTC -ACGGAAAATGGCCCTAGTTTGCTG -ACGGAAAATGGCCCTAGTTCCATG -ACGGAAAATGGCCCTAGTTGTGTG -ACGGAAAATGGCCCTAGTCTAGTG -ACGGAAAATGGCCCTAGTCATCTG -ACGGAAAATGGCCCTAGTGAGTTG -ACGGAAAATGGCCCTAGTAGACTG -ACGGAAAATGGCCCTAGTTCGGTA -ACGGAAAATGGCCCTAGTTGCCTA -ACGGAAAATGGCCCTAGTCCACTA -ACGGAAAATGGCCCTAGTGGAGTA -ACGGAAAATGGCCCTAGTTCGTCT -ACGGAAAATGGCCCTAGTTGCACT -ACGGAAAATGGCCCTAGTCTGACT -ACGGAAAATGGCCCTAGTCAACCT -ACGGAAAATGGCCCTAGTGCTACT -ACGGAAAATGGCCCTAGTGGATCT -ACGGAAAATGGCCCTAGTAAGGCT -ACGGAAAATGGCCCTAGTTCAACC -ACGGAAAATGGCCCTAGTTGTTCC -ACGGAAAATGGCCCTAGTATTCCC -ACGGAAAATGGCCCTAGTTTCTCG -ACGGAAAATGGCCCTAGTTAGACG -ACGGAAAATGGCCCTAGTGTAACG -ACGGAAAATGGCCCTAGTACTTCG -ACGGAAAATGGCCCTAGTTACGCA -ACGGAAAATGGCCCTAGTCTTGCA -ACGGAAAATGGCCCTAGTCGAACA -ACGGAAAATGGCCCTAGTCAGTCA -ACGGAAAATGGCCCTAGTGATCCA -ACGGAAAATGGCCCTAGTACGACA -ACGGAAAATGGCCCTAGTAGCTCA -ACGGAAAATGGCCCTAGTTCACGT -ACGGAAAATGGCCCTAGTCGTAGT -ACGGAAAATGGCCCTAGTGTCAGT -ACGGAAAATGGCCCTAGTGAAGGT -ACGGAAAATGGCCCTAGTAACCGT -ACGGAAAATGGCCCTAGTTTGTGC -ACGGAAAATGGCCCTAGTCTAAGC -ACGGAAAATGGCCCTAGTACTAGC -ACGGAAAATGGCCCTAGTAGATGC -ACGGAAAATGGCCCTAGTTGAAGG -ACGGAAAATGGCCCTAGTCAATGG -ACGGAAAATGGCCCTAGTATGAGG -ACGGAAAATGGCCCTAGTAATGGG -ACGGAAAATGGCCCTAGTTCCTGA -ACGGAAAATGGCCCTAGTTAGCGA -ACGGAAAATGGCCCTAGTCACAGA -ACGGAAAATGGCCCTAGTGCAAGA -ACGGAAAATGGCCCTAGTGGTTGA -ACGGAAAATGGCCCTAGTTCCGAT -ACGGAAAATGGCCCTAGTTGGCAT -ACGGAAAATGGCCCTAGTCGAGAT -ACGGAAAATGGCCCTAGTTACCAC -ACGGAAAATGGCCCTAGTCAGAAC -ACGGAAAATGGCCCTAGTGTCTAC -ACGGAAAATGGCCCTAGTACGTAC -ACGGAAAATGGCCCTAGTAGTGAC -ACGGAAAATGGCCCTAGTCTGTAG -ACGGAAAATGGCCCTAGTCCTAAG -ACGGAAAATGGCCCTAGTGTTCAG -ACGGAAAATGGCCCTAGTGCATAG -ACGGAAAATGGCCCTAGTGACAAG -ACGGAAAATGGCCCTAGTAAGCAG -ACGGAAAATGGCCCTAGTCGTCAA -ACGGAAAATGGCCCTAGTGCTGAA -ACGGAAAATGGCCCTAGTAGTACG -ACGGAAAATGGCCCTAGTATCCGA -ACGGAAAATGGCCCTAGTATGGGA -ACGGAAAATGGCCCTAGTGTGCAA -ACGGAAAATGGCCCTAGTGAGGAA -ACGGAAAATGGCCCTAGTCAGGTA -ACGGAAAATGGCCCTAGTGACTCT -ACGGAAAATGGCCCTAGTAGTCCT -ACGGAAAATGGCCCTAGTTAAGCC -ACGGAAAATGGCCCTAGTATAGCC -ACGGAAAATGGCCCTAGTTAACCG -ACGGAAAATGGCCCTAGTATGCCA -ACGGAAAATGGCGCCTAAGGAAAC -ACGGAAAATGGCGCCTAAAACACC -ACGGAAAATGGCGCCTAAATCGAG -ACGGAAAATGGCGCCTAACTCCTT -ACGGAAAATGGCGCCTAACCTGTT -ACGGAAAATGGCGCCTAACGGTTT -ACGGAAAATGGCGCCTAAGTGGTT -ACGGAAAATGGCGCCTAAGCCTTT -ACGGAAAATGGCGCCTAAGGTCTT -ACGGAAAATGGCGCCTAAACGCTT -ACGGAAAATGGCGCCTAAAGCGTT -ACGGAAAATGGCGCCTAATTCGTC -ACGGAAAATGGCGCCTAATCTCTC -ACGGAAAATGGCGCCTAATGGATC -ACGGAAAATGGCGCCTAACACTTC -ACGGAAAATGGCGCCTAAGTACTC -ACGGAAAATGGCGCCTAAGATGTC -ACGGAAAATGGCGCCTAAACAGTC -ACGGAAAATGGCGCCTAATTGCTG -ACGGAAAATGGCGCCTAATCCATG -ACGGAAAATGGCGCCTAATGTGTG -ACGGAAAATGGCGCCTAACTAGTG -ACGGAAAATGGCGCCTAACATCTG -ACGGAAAATGGCGCCTAAGAGTTG -ACGGAAAATGGCGCCTAAAGACTG -ACGGAAAATGGCGCCTAATCGGTA -ACGGAAAATGGCGCCTAATGCCTA -ACGGAAAATGGCGCCTAACCACTA -ACGGAAAATGGCGCCTAAGGAGTA -ACGGAAAATGGCGCCTAATCGTCT -ACGGAAAATGGCGCCTAATGCACT -ACGGAAAATGGCGCCTAACTGACT -ACGGAAAATGGCGCCTAACAACCT -ACGGAAAATGGCGCCTAAGCTACT -ACGGAAAATGGCGCCTAAGGATCT -ACGGAAAATGGCGCCTAAAAGGCT -ACGGAAAATGGCGCCTAATCAACC -ACGGAAAATGGCGCCTAATGTTCC -ACGGAAAATGGCGCCTAAATTCCC -ACGGAAAATGGCGCCTAATTCTCG -ACGGAAAATGGCGCCTAATAGACG -ACGGAAAATGGCGCCTAAGTAACG -ACGGAAAATGGCGCCTAAACTTCG -ACGGAAAATGGCGCCTAATACGCA -ACGGAAAATGGCGCCTAACTTGCA -ACGGAAAATGGCGCCTAACGAACA -ACGGAAAATGGCGCCTAACAGTCA -ACGGAAAATGGCGCCTAAGATCCA -ACGGAAAATGGCGCCTAAACGACA -ACGGAAAATGGCGCCTAAAGCTCA -ACGGAAAATGGCGCCTAATCACGT -ACGGAAAATGGCGCCTAACGTAGT -ACGGAAAATGGCGCCTAAGTCAGT -ACGGAAAATGGCGCCTAAGAAGGT -ACGGAAAATGGCGCCTAAAACCGT -ACGGAAAATGGCGCCTAATTGTGC -ACGGAAAATGGCGCCTAACTAAGC -ACGGAAAATGGCGCCTAAACTAGC -ACGGAAAATGGCGCCTAAAGATGC -ACGGAAAATGGCGCCTAATGAAGG -ACGGAAAATGGCGCCTAACAATGG -ACGGAAAATGGCGCCTAAATGAGG -ACGGAAAATGGCGCCTAAAATGGG -ACGGAAAATGGCGCCTAATCCTGA -ACGGAAAATGGCGCCTAATAGCGA -ACGGAAAATGGCGCCTAACACAGA -ACGGAAAATGGCGCCTAAGCAAGA -ACGGAAAATGGCGCCTAAGGTTGA -ACGGAAAATGGCGCCTAATCCGAT -ACGGAAAATGGCGCCTAATGGCAT -ACGGAAAATGGCGCCTAACGAGAT -ACGGAAAATGGCGCCTAATACCAC -ACGGAAAATGGCGCCTAACAGAAC -ACGGAAAATGGCGCCTAAGTCTAC -ACGGAAAATGGCGCCTAAACGTAC -ACGGAAAATGGCGCCTAAAGTGAC -ACGGAAAATGGCGCCTAACTGTAG -ACGGAAAATGGCGCCTAACCTAAG -ACGGAAAATGGCGCCTAAGTTCAG -ACGGAAAATGGCGCCTAAGCATAG -ACGGAAAATGGCGCCTAAGACAAG -ACGGAAAATGGCGCCTAAAAGCAG -ACGGAAAATGGCGCCTAACGTCAA -ACGGAAAATGGCGCCTAAGCTGAA -ACGGAAAATGGCGCCTAAAGTACG -ACGGAAAATGGCGCCTAAATCCGA -ACGGAAAATGGCGCCTAAATGGGA -ACGGAAAATGGCGCCTAAGTGCAA -ACGGAAAATGGCGCCTAAGAGGAA -ACGGAAAATGGCGCCTAACAGGTA -ACGGAAAATGGCGCCTAAGACTCT -ACGGAAAATGGCGCCTAAAGTCCT -ACGGAAAATGGCGCCTAATAAGCC -ACGGAAAATGGCGCCTAAATAGCC -ACGGAAAATGGCGCCTAATAACCG -ACGGAAAATGGCGCCTAAATGCCA -ACGGAAAATGGCGCCATAGGAAAC -ACGGAAAATGGCGCCATAAACACC -ACGGAAAATGGCGCCATAATCGAG -ACGGAAAATGGCGCCATACTCCTT -ACGGAAAATGGCGCCATACCTGTT -ACGGAAAATGGCGCCATACGGTTT -ACGGAAAATGGCGCCATAGTGGTT -ACGGAAAATGGCGCCATAGCCTTT -ACGGAAAATGGCGCCATAGGTCTT -ACGGAAAATGGCGCCATAACGCTT -ACGGAAAATGGCGCCATAAGCGTT -ACGGAAAATGGCGCCATATTCGTC -ACGGAAAATGGCGCCATATCTCTC -ACGGAAAATGGCGCCATATGGATC -ACGGAAAATGGCGCCATACACTTC -ACGGAAAATGGCGCCATAGTACTC -ACGGAAAATGGCGCCATAGATGTC -ACGGAAAATGGCGCCATAACAGTC -ACGGAAAATGGCGCCATATTGCTG -ACGGAAAATGGCGCCATATCCATG -ACGGAAAATGGCGCCATATGTGTG -ACGGAAAATGGCGCCATACTAGTG -ACGGAAAATGGCGCCATACATCTG -ACGGAAAATGGCGCCATAGAGTTG -ACGGAAAATGGCGCCATAAGACTG -ACGGAAAATGGCGCCATATCGGTA -ACGGAAAATGGCGCCATATGCCTA -ACGGAAAATGGCGCCATACCACTA -ACGGAAAATGGCGCCATAGGAGTA -ACGGAAAATGGCGCCATATCGTCT -ACGGAAAATGGCGCCATATGCACT -ACGGAAAATGGCGCCATACTGACT -ACGGAAAATGGCGCCATACAACCT -ACGGAAAATGGCGCCATAGCTACT -ACGGAAAATGGCGCCATAGGATCT -ACGGAAAATGGCGCCATAAAGGCT -ACGGAAAATGGCGCCATATCAACC -ACGGAAAATGGCGCCATATGTTCC -ACGGAAAATGGCGCCATAATTCCC -ACGGAAAATGGCGCCATATTCTCG -ACGGAAAATGGCGCCATATAGACG -ACGGAAAATGGCGCCATAGTAACG -ACGGAAAATGGCGCCATAACTTCG -ACGGAAAATGGCGCCATATACGCA -ACGGAAAATGGCGCCATACTTGCA -ACGGAAAATGGCGCCATACGAACA -ACGGAAAATGGCGCCATACAGTCA -ACGGAAAATGGCGCCATAGATCCA -ACGGAAAATGGCGCCATAACGACA -ACGGAAAATGGCGCCATAAGCTCA -ACGGAAAATGGCGCCATATCACGT -ACGGAAAATGGCGCCATACGTAGT -ACGGAAAATGGCGCCATAGTCAGT -ACGGAAAATGGCGCCATAGAAGGT -ACGGAAAATGGCGCCATAAACCGT -ACGGAAAATGGCGCCATATTGTGC -ACGGAAAATGGCGCCATACTAAGC -ACGGAAAATGGCGCCATAACTAGC -ACGGAAAATGGCGCCATAAGATGC -ACGGAAAATGGCGCCATATGAAGG -ACGGAAAATGGCGCCATACAATGG -ACGGAAAATGGCGCCATAATGAGG -ACGGAAAATGGCGCCATAAATGGG -ACGGAAAATGGCGCCATATCCTGA -ACGGAAAATGGCGCCATATAGCGA -ACGGAAAATGGCGCCATACACAGA -ACGGAAAATGGCGCCATAGCAAGA -ACGGAAAATGGCGCCATAGGTTGA -ACGGAAAATGGCGCCATATCCGAT -ACGGAAAATGGCGCCATATGGCAT -ACGGAAAATGGCGCCATACGAGAT -ACGGAAAATGGCGCCATATACCAC -ACGGAAAATGGCGCCATACAGAAC -ACGGAAAATGGCGCCATAGTCTAC -ACGGAAAATGGCGCCATAACGTAC -ACGGAAAATGGCGCCATAAGTGAC -ACGGAAAATGGCGCCATACTGTAG -ACGGAAAATGGCGCCATACCTAAG -ACGGAAAATGGCGCCATAGTTCAG -ACGGAAAATGGCGCCATAGCATAG -ACGGAAAATGGCGCCATAGACAAG -ACGGAAAATGGCGCCATAAAGCAG -ACGGAAAATGGCGCCATACGTCAA -ACGGAAAATGGCGCCATAGCTGAA -ACGGAAAATGGCGCCATAAGTACG -ACGGAAAATGGCGCCATAATCCGA -ACGGAAAATGGCGCCATAATGGGA -ACGGAAAATGGCGCCATAGTGCAA -ACGGAAAATGGCGCCATAGAGGAA -ACGGAAAATGGCGCCATACAGGTA -ACGGAAAATGGCGCCATAGACTCT -ACGGAAAATGGCGCCATAAGTCCT -ACGGAAAATGGCGCCATATAAGCC -ACGGAAAATGGCGCCATAATAGCC -ACGGAAAATGGCGCCATATAACCG -ACGGAAAATGGCGCCATAATGCCA -ACGGAAAATGGCCCGTAAGGAAAC -ACGGAAAATGGCCCGTAAAACACC -ACGGAAAATGGCCCGTAAATCGAG -ACGGAAAATGGCCCGTAACTCCTT -ACGGAAAATGGCCCGTAACCTGTT -ACGGAAAATGGCCCGTAACGGTTT -ACGGAAAATGGCCCGTAAGTGGTT -ACGGAAAATGGCCCGTAAGCCTTT -ACGGAAAATGGCCCGTAAGGTCTT -ACGGAAAATGGCCCGTAAACGCTT -ACGGAAAATGGCCCGTAAAGCGTT -ACGGAAAATGGCCCGTAATTCGTC -ACGGAAAATGGCCCGTAATCTCTC -ACGGAAAATGGCCCGTAATGGATC -ACGGAAAATGGCCCGTAACACTTC -ACGGAAAATGGCCCGTAAGTACTC -ACGGAAAATGGCCCGTAAGATGTC -ACGGAAAATGGCCCGTAAACAGTC -ACGGAAAATGGCCCGTAATTGCTG -ACGGAAAATGGCCCGTAATCCATG -ACGGAAAATGGCCCGTAATGTGTG -ACGGAAAATGGCCCGTAACTAGTG -ACGGAAAATGGCCCGTAACATCTG -ACGGAAAATGGCCCGTAAGAGTTG -ACGGAAAATGGCCCGTAAAGACTG -ACGGAAAATGGCCCGTAATCGGTA -ACGGAAAATGGCCCGTAATGCCTA -ACGGAAAATGGCCCGTAACCACTA -ACGGAAAATGGCCCGTAAGGAGTA -ACGGAAAATGGCCCGTAATCGTCT -ACGGAAAATGGCCCGTAATGCACT -ACGGAAAATGGCCCGTAACTGACT -ACGGAAAATGGCCCGTAACAACCT -ACGGAAAATGGCCCGTAAGCTACT -ACGGAAAATGGCCCGTAAGGATCT -ACGGAAAATGGCCCGTAAAAGGCT -ACGGAAAATGGCCCGTAATCAACC -ACGGAAAATGGCCCGTAATGTTCC -ACGGAAAATGGCCCGTAAATTCCC -ACGGAAAATGGCCCGTAATTCTCG -ACGGAAAATGGCCCGTAATAGACG -ACGGAAAATGGCCCGTAAGTAACG -ACGGAAAATGGCCCGTAAACTTCG -ACGGAAAATGGCCCGTAATACGCA -ACGGAAAATGGCCCGTAACTTGCA -ACGGAAAATGGCCCGTAACGAACA -ACGGAAAATGGCCCGTAACAGTCA -ACGGAAAATGGCCCGTAAGATCCA -ACGGAAAATGGCCCGTAAACGACA -ACGGAAAATGGCCCGTAAAGCTCA -ACGGAAAATGGCCCGTAATCACGT -ACGGAAAATGGCCCGTAACGTAGT -ACGGAAAATGGCCCGTAAGTCAGT -ACGGAAAATGGCCCGTAAGAAGGT -ACGGAAAATGGCCCGTAAAACCGT -ACGGAAAATGGCCCGTAATTGTGC -ACGGAAAATGGCCCGTAACTAAGC -ACGGAAAATGGCCCGTAAACTAGC -ACGGAAAATGGCCCGTAAAGATGC -ACGGAAAATGGCCCGTAATGAAGG -ACGGAAAATGGCCCGTAACAATGG -ACGGAAAATGGCCCGTAAATGAGG -ACGGAAAATGGCCCGTAAAATGGG -ACGGAAAATGGCCCGTAATCCTGA -ACGGAAAATGGCCCGTAATAGCGA -ACGGAAAATGGCCCGTAACACAGA -ACGGAAAATGGCCCGTAAGCAAGA -ACGGAAAATGGCCCGTAAGGTTGA -ACGGAAAATGGCCCGTAATCCGAT -ACGGAAAATGGCCCGTAATGGCAT -ACGGAAAATGGCCCGTAACGAGAT -ACGGAAAATGGCCCGTAATACCAC -ACGGAAAATGGCCCGTAACAGAAC -ACGGAAAATGGCCCGTAAGTCTAC -ACGGAAAATGGCCCGTAAACGTAC -ACGGAAAATGGCCCGTAAAGTGAC -ACGGAAAATGGCCCGTAACTGTAG -ACGGAAAATGGCCCGTAACCTAAG -ACGGAAAATGGCCCGTAAGTTCAG -ACGGAAAATGGCCCGTAAGCATAG -ACGGAAAATGGCCCGTAAGACAAG -ACGGAAAATGGCCCGTAAAAGCAG -ACGGAAAATGGCCCGTAACGTCAA -ACGGAAAATGGCCCGTAAGCTGAA -ACGGAAAATGGCCCGTAAAGTACG -ACGGAAAATGGCCCGTAAATCCGA -ACGGAAAATGGCCCGTAAATGGGA -ACGGAAAATGGCCCGTAAGTGCAA -ACGGAAAATGGCCCGTAAGAGGAA -ACGGAAAATGGCCCGTAACAGGTA -ACGGAAAATGGCCCGTAAGACTCT -ACGGAAAATGGCCCGTAAAGTCCT -ACGGAAAATGGCCCGTAATAAGCC -ACGGAAAATGGCCCGTAAATAGCC -ACGGAAAATGGCCCGTAATAACCG -ACGGAAAATGGCCCGTAAATGCCA -ACGGAAAATGGCCCAATGGGAAAC -ACGGAAAATGGCCCAATGAACACC -ACGGAAAATGGCCCAATGATCGAG -ACGGAAAATGGCCCAATGCTCCTT -ACGGAAAATGGCCCAATGCCTGTT -ACGGAAAATGGCCCAATGCGGTTT -ACGGAAAATGGCCCAATGGTGGTT -ACGGAAAATGGCCCAATGGCCTTT -ACGGAAAATGGCCCAATGGGTCTT -ACGGAAAATGGCCCAATGACGCTT -ACGGAAAATGGCCCAATGAGCGTT -ACGGAAAATGGCCCAATGTTCGTC -ACGGAAAATGGCCCAATGTCTCTC -ACGGAAAATGGCCCAATGTGGATC -ACGGAAAATGGCCCAATGCACTTC -ACGGAAAATGGCCCAATGGTACTC -ACGGAAAATGGCCCAATGGATGTC -ACGGAAAATGGCCCAATGACAGTC -ACGGAAAATGGCCCAATGTTGCTG -ACGGAAAATGGCCCAATGTCCATG -ACGGAAAATGGCCCAATGTGTGTG -ACGGAAAATGGCCCAATGCTAGTG -ACGGAAAATGGCCCAATGCATCTG -ACGGAAAATGGCCCAATGGAGTTG -ACGGAAAATGGCCCAATGAGACTG -ACGGAAAATGGCCCAATGTCGGTA -ACGGAAAATGGCCCAATGTGCCTA -ACGGAAAATGGCCCAATGCCACTA -ACGGAAAATGGCCCAATGGGAGTA -ACGGAAAATGGCCCAATGTCGTCT -ACGGAAAATGGCCCAATGTGCACT -ACGGAAAATGGCCCAATGCTGACT -ACGGAAAATGGCCCAATGCAACCT -ACGGAAAATGGCCCAATGGCTACT -ACGGAAAATGGCCCAATGGGATCT -ACGGAAAATGGCCCAATGAAGGCT -ACGGAAAATGGCCCAATGTCAACC -ACGGAAAATGGCCCAATGTGTTCC -ACGGAAAATGGCCCAATGATTCCC -ACGGAAAATGGCCCAATGTTCTCG -ACGGAAAATGGCCCAATGTAGACG -ACGGAAAATGGCCCAATGGTAACG -ACGGAAAATGGCCCAATGACTTCG -ACGGAAAATGGCCCAATGTACGCA -ACGGAAAATGGCCCAATGCTTGCA -ACGGAAAATGGCCCAATGCGAACA -ACGGAAAATGGCCCAATGCAGTCA -ACGGAAAATGGCCCAATGGATCCA -ACGGAAAATGGCCCAATGACGACA -ACGGAAAATGGCCCAATGAGCTCA -ACGGAAAATGGCCCAATGTCACGT -ACGGAAAATGGCCCAATGCGTAGT -ACGGAAAATGGCCCAATGGTCAGT -ACGGAAAATGGCCCAATGGAAGGT -ACGGAAAATGGCCCAATGAACCGT -ACGGAAAATGGCCCAATGTTGTGC -ACGGAAAATGGCCCAATGCTAAGC -ACGGAAAATGGCCCAATGACTAGC -ACGGAAAATGGCCCAATGAGATGC -ACGGAAAATGGCCCAATGTGAAGG -ACGGAAAATGGCCCAATGCAATGG -ACGGAAAATGGCCCAATGATGAGG -ACGGAAAATGGCCCAATGAATGGG -ACGGAAAATGGCCCAATGTCCTGA -ACGGAAAATGGCCCAATGTAGCGA -ACGGAAAATGGCCCAATGCACAGA -ACGGAAAATGGCCCAATGGCAAGA -ACGGAAAATGGCCCAATGGGTTGA -ACGGAAAATGGCCCAATGTCCGAT -ACGGAAAATGGCCCAATGTGGCAT -ACGGAAAATGGCCCAATGCGAGAT -ACGGAAAATGGCCCAATGTACCAC -ACGGAAAATGGCCCAATGCAGAAC -ACGGAAAATGGCCCAATGGTCTAC -ACGGAAAATGGCCCAATGACGTAC -ACGGAAAATGGCCCAATGAGTGAC -ACGGAAAATGGCCCAATGCTGTAG -ACGGAAAATGGCCCAATGCCTAAG -ACGGAAAATGGCCCAATGGTTCAG -ACGGAAAATGGCCCAATGGCATAG -ACGGAAAATGGCCCAATGGACAAG -ACGGAAAATGGCCCAATGAAGCAG -ACGGAAAATGGCCCAATGCGTCAA -ACGGAAAATGGCCCAATGGCTGAA -ACGGAAAATGGCCCAATGAGTACG -ACGGAAAATGGCCCAATGATCCGA -ACGGAAAATGGCCCAATGATGGGA -ACGGAAAATGGCCCAATGGTGCAA -ACGGAAAATGGCCCAATGGAGGAA -ACGGAAAATGGCCCAATGCAGGTA -ACGGAAAATGGCCCAATGGACTCT -ACGGAAAATGGCCCAATGAGTCCT -ACGGAAAATGGCCCAATGTAAGCC -ACGGAAAATGGCCCAATGATAGCC -ACGGAAAATGGCCCAATGTAACCG -ACGGAAAATGGCCCAATGATGCCA -ACGGAATGAGGAAACGGAGGAAAC -ACGGAATGAGGAAACGGAAACACC -ACGGAATGAGGAAACGGAATCGAG -ACGGAATGAGGAAACGGACTCCTT -ACGGAATGAGGAAACGGACCTGTT -ACGGAATGAGGAAACGGACGGTTT -ACGGAATGAGGAAACGGAGTGGTT -ACGGAATGAGGAAACGGAGCCTTT -ACGGAATGAGGAAACGGAGGTCTT -ACGGAATGAGGAAACGGAACGCTT -ACGGAATGAGGAAACGGAAGCGTT -ACGGAATGAGGAAACGGATTCGTC -ACGGAATGAGGAAACGGATCTCTC -ACGGAATGAGGAAACGGATGGATC -ACGGAATGAGGAAACGGACACTTC -ACGGAATGAGGAAACGGAGTACTC -ACGGAATGAGGAAACGGAGATGTC -ACGGAATGAGGAAACGGAACAGTC -ACGGAATGAGGAAACGGATTGCTG -ACGGAATGAGGAAACGGATCCATG -ACGGAATGAGGAAACGGATGTGTG -ACGGAATGAGGAAACGGACTAGTG -ACGGAATGAGGAAACGGACATCTG -ACGGAATGAGGAAACGGAGAGTTG -ACGGAATGAGGAAACGGAAGACTG -ACGGAATGAGGAAACGGATCGGTA -ACGGAATGAGGAAACGGATGCCTA -ACGGAATGAGGAAACGGACCACTA -ACGGAATGAGGAAACGGAGGAGTA -ACGGAATGAGGAAACGGATCGTCT -ACGGAATGAGGAAACGGATGCACT -ACGGAATGAGGAAACGGACTGACT -ACGGAATGAGGAAACGGACAACCT -ACGGAATGAGGAAACGGAGCTACT -ACGGAATGAGGAAACGGAGGATCT -ACGGAATGAGGAAACGGAAAGGCT -ACGGAATGAGGAAACGGATCAACC -ACGGAATGAGGAAACGGATGTTCC -ACGGAATGAGGAAACGGAATTCCC -ACGGAATGAGGAAACGGATTCTCG -ACGGAATGAGGAAACGGATAGACG -ACGGAATGAGGAAACGGAGTAACG -ACGGAATGAGGAAACGGAACTTCG -ACGGAATGAGGAAACGGATACGCA -ACGGAATGAGGAAACGGACTTGCA -ACGGAATGAGGAAACGGACGAACA -ACGGAATGAGGAAACGGACAGTCA -ACGGAATGAGGAAACGGAGATCCA -ACGGAATGAGGAAACGGAACGACA -ACGGAATGAGGAAACGGAAGCTCA -ACGGAATGAGGAAACGGATCACGT -ACGGAATGAGGAAACGGACGTAGT -ACGGAATGAGGAAACGGAGTCAGT -ACGGAATGAGGAAACGGAGAAGGT -ACGGAATGAGGAAACGGAAACCGT -ACGGAATGAGGAAACGGATTGTGC -ACGGAATGAGGAAACGGACTAAGC -ACGGAATGAGGAAACGGAACTAGC -ACGGAATGAGGAAACGGAAGATGC -ACGGAATGAGGAAACGGATGAAGG -ACGGAATGAGGAAACGGACAATGG -ACGGAATGAGGAAACGGAATGAGG -ACGGAATGAGGAAACGGAAATGGG -ACGGAATGAGGAAACGGATCCTGA -ACGGAATGAGGAAACGGATAGCGA -ACGGAATGAGGAAACGGACACAGA -ACGGAATGAGGAAACGGAGCAAGA -ACGGAATGAGGAAACGGAGGTTGA -ACGGAATGAGGAAACGGATCCGAT -ACGGAATGAGGAAACGGATGGCAT -ACGGAATGAGGAAACGGACGAGAT -ACGGAATGAGGAAACGGATACCAC -ACGGAATGAGGAAACGGACAGAAC -ACGGAATGAGGAAACGGAGTCTAC -ACGGAATGAGGAAACGGAACGTAC -ACGGAATGAGGAAACGGAAGTGAC -ACGGAATGAGGAAACGGACTGTAG -ACGGAATGAGGAAACGGACCTAAG -ACGGAATGAGGAAACGGAGTTCAG -ACGGAATGAGGAAACGGAGCATAG -ACGGAATGAGGAAACGGAGACAAG -ACGGAATGAGGAAACGGAAAGCAG -ACGGAATGAGGAAACGGACGTCAA -ACGGAATGAGGAAACGGAGCTGAA -ACGGAATGAGGAAACGGAAGTACG -ACGGAATGAGGAAACGGAATCCGA -ACGGAATGAGGAAACGGAATGGGA -ACGGAATGAGGAAACGGAGTGCAA -ACGGAATGAGGAAACGGAGAGGAA -ACGGAATGAGGAAACGGACAGGTA -ACGGAATGAGGAAACGGAGACTCT -ACGGAATGAGGAAACGGAAGTCCT -ACGGAATGAGGAAACGGATAAGCC -ACGGAATGAGGAAACGGAATAGCC -ACGGAATGAGGAAACGGATAACCG -ACGGAATGAGGAAACGGAATGCCA -ACGGAATGAGGAACCAACGGAAAC -ACGGAATGAGGAACCAACAACACC -ACGGAATGAGGAACCAACATCGAG -ACGGAATGAGGAACCAACCTCCTT -ACGGAATGAGGAACCAACCCTGTT -ACGGAATGAGGAACCAACCGGTTT -ACGGAATGAGGAACCAACGTGGTT -ACGGAATGAGGAACCAACGCCTTT -ACGGAATGAGGAACCAACGGTCTT -ACGGAATGAGGAACCAACACGCTT -ACGGAATGAGGAACCAACAGCGTT -ACGGAATGAGGAACCAACTTCGTC -ACGGAATGAGGAACCAACTCTCTC -ACGGAATGAGGAACCAACTGGATC -ACGGAATGAGGAACCAACCACTTC -ACGGAATGAGGAACCAACGTACTC -ACGGAATGAGGAACCAACGATGTC -ACGGAATGAGGAACCAACACAGTC -ACGGAATGAGGAACCAACTTGCTG -ACGGAATGAGGAACCAACTCCATG -ACGGAATGAGGAACCAACTGTGTG -ACGGAATGAGGAACCAACCTAGTG -ACGGAATGAGGAACCAACCATCTG -ACGGAATGAGGAACCAACGAGTTG -ACGGAATGAGGAACCAACAGACTG -ACGGAATGAGGAACCAACTCGGTA -ACGGAATGAGGAACCAACTGCCTA -ACGGAATGAGGAACCAACCCACTA -ACGGAATGAGGAACCAACGGAGTA -ACGGAATGAGGAACCAACTCGTCT -ACGGAATGAGGAACCAACTGCACT -ACGGAATGAGGAACCAACCTGACT -ACGGAATGAGGAACCAACCAACCT -ACGGAATGAGGAACCAACGCTACT -ACGGAATGAGGAACCAACGGATCT -ACGGAATGAGGAACCAACAAGGCT -ACGGAATGAGGAACCAACTCAACC -ACGGAATGAGGAACCAACTGTTCC -ACGGAATGAGGAACCAACATTCCC -ACGGAATGAGGAACCAACTTCTCG -ACGGAATGAGGAACCAACTAGACG -ACGGAATGAGGAACCAACGTAACG -ACGGAATGAGGAACCAACACTTCG -ACGGAATGAGGAACCAACTACGCA -ACGGAATGAGGAACCAACCTTGCA -ACGGAATGAGGAACCAACCGAACA -ACGGAATGAGGAACCAACCAGTCA -ACGGAATGAGGAACCAACGATCCA -ACGGAATGAGGAACCAACACGACA -ACGGAATGAGGAACCAACAGCTCA -ACGGAATGAGGAACCAACTCACGT -ACGGAATGAGGAACCAACCGTAGT -ACGGAATGAGGAACCAACGTCAGT -ACGGAATGAGGAACCAACGAAGGT -ACGGAATGAGGAACCAACAACCGT -ACGGAATGAGGAACCAACTTGTGC -ACGGAATGAGGAACCAACCTAAGC -ACGGAATGAGGAACCAACACTAGC -ACGGAATGAGGAACCAACAGATGC -ACGGAATGAGGAACCAACTGAAGG -ACGGAATGAGGAACCAACCAATGG -ACGGAATGAGGAACCAACATGAGG -ACGGAATGAGGAACCAACAATGGG -ACGGAATGAGGAACCAACTCCTGA -ACGGAATGAGGAACCAACTAGCGA -ACGGAATGAGGAACCAACCACAGA -ACGGAATGAGGAACCAACGCAAGA -ACGGAATGAGGAACCAACGGTTGA -ACGGAATGAGGAACCAACTCCGAT -ACGGAATGAGGAACCAACTGGCAT -ACGGAATGAGGAACCAACCGAGAT -ACGGAATGAGGAACCAACTACCAC -ACGGAATGAGGAACCAACCAGAAC -ACGGAATGAGGAACCAACGTCTAC -ACGGAATGAGGAACCAACACGTAC -ACGGAATGAGGAACCAACAGTGAC -ACGGAATGAGGAACCAACCTGTAG -ACGGAATGAGGAACCAACCCTAAG -ACGGAATGAGGAACCAACGTTCAG -ACGGAATGAGGAACCAACGCATAG -ACGGAATGAGGAACCAACGACAAG -ACGGAATGAGGAACCAACAAGCAG -ACGGAATGAGGAACCAACCGTCAA -ACGGAATGAGGAACCAACGCTGAA -ACGGAATGAGGAACCAACAGTACG -ACGGAATGAGGAACCAACATCCGA -ACGGAATGAGGAACCAACATGGGA -ACGGAATGAGGAACCAACGTGCAA -ACGGAATGAGGAACCAACGAGGAA -ACGGAATGAGGAACCAACCAGGTA -ACGGAATGAGGAACCAACGACTCT -ACGGAATGAGGAACCAACAGTCCT -ACGGAATGAGGAACCAACTAAGCC -ACGGAATGAGGAACCAACATAGCC -ACGGAATGAGGAACCAACTAACCG -ACGGAATGAGGAACCAACATGCCA -ACGGAATGAGGAGAGATCGGAAAC -ACGGAATGAGGAGAGATCAACACC -ACGGAATGAGGAGAGATCATCGAG -ACGGAATGAGGAGAGATCCTCCTT -ACGGAATGAGGAGAGATCCCTGTT -ACGGAATGAGGAGAGATCCGGTTT -ACGGAATGAGGAGAGATCGTGGTT -ACGGAATGAGGAGAGATCGCCTTT -ACGGAATGAGGAGAGATCGGTCTT -ACGGAATGAGGAGAGATCACGCTT -ACGGAATGAGGAGAGATCAGCGTT -ACGGAATGAGGAGAGATCTTCGTC -ACGGAATGAGGAGAGATCTCTCTC -ACGGAATGAGGAGAGATCTGGATC -ACGGAATGAGGAGAGATCCACTTC -ACGGAATGAGGAGAGATCGTACTC -ACGGAATGAGGAGAGATCGATGTC -ACGGAATGAGGAGAGATCACAGTC -ACGGAATGAGGAGAGATCTTGCTG -ACGGAATGAGGAGAGATCTCCATG -ACGGAATGAGGAGAGATCTGTGTG -ACGGAATGAGGAGAGATCCTAGTG -ACGGAATGAGGAGAGATCCATCTG -ACGGAATGAGGAGAGATCGAGTTG -ACGGAATGAGGAGAGATCAGACTG -ACGGAATGAGGAGAGATCTCGGTA -ACGGAATGAGGAGAGATCTGCCTA -ACGGAATGAGGAGAGATCCCACTA -ACGGAATGAGGAGAGATCGGAGTA -ACGGAATGAGGAGAGATCTCGTCT -ACGGAATGAGGAGAGATCTGCACT -ACGGAATGAGGAGAGATCCTGACT -ACGGAATGAGGAGAGATCCAACCT -ACGGAATGAGGAGAGATCGCTACT -ACGGAATGAGGAGAGATCGGATCT -ACGGAATGAGGAGAGATCAAGGCT -ACGGAATGAGGAGAGATCTCAACC -ACGGAATGAGGAGAGATCTGTTCC -ACGGAATGAGGAGAGATCATTCCC -ACGGAATGAGGAGAGATCTTCTCG -ACGGAATGAGGAGAGATCTAGACG -ACGGAATGAGGAGAGATCGTAACG -ACGGAATGAGGAGAGATCACTTCG -ACGGAATGAGGAGAGATCTACGCA -ACGGAATGAGGAGAGATCCTTGCA -ACGGAATGAGGAGAGATCCGAACA -ACGGAATGAGGAGAGATCCAGTCA -ACGGAATGAGGAGAGATCGATCCA -ACGGAATGAGGAGAGATCACGACA -ACGGAATGAGGAGAGATCAGCTCA -ACGGAATGAGGAGAGATCTCACGT -ACGGAATGAGGAGAGATCCGTAGT -ACGGAATGAGGAGAGATCGTCAGT -ACGGAATGAGGAGAGATCGAAGGT -ACGGAATGAGGAGAGATCAACCGT -ACGGAATGAGGAGAGATCTTGTGC -ACGGAATGAGGAGAGATCCTAAGC -ACGGAATGAGGAGAGATCACTAGC -ACGGAATGAGGAGAGATCAGATGC -ACGGAATGAGGAGAGATCTGAAGG -ACGGAATGAGGAGAGATCCAATGG -ACGGAATGAGGAGAGATCATGAGG -ACGGAATGAGGAGAGATCAATGGG -ACGGAATGAGGAGAGATCTCCTGA -ACGGAATGAGGAGAGATCTAGCGA -ACGGAATGAGGAGAGATCCACAGA -ACGGAATGAGGAGAGATCGCAAGA -ACGGAATGAGGAGAGATCGGTTGA -ACGGAATGAGGAGAGATCTCCGAT -ACGGAATGAGGAGAGATCTGGCAT -ACGGAATGAGGAGAGATCCGAGAT -ACGGAATGAGGAGAGATCTACCAC -ACGGAATGAGGAGAGATCCAGAAC -ACGGAATGAGGAGAGATCGTCTAC -ACGGAATGAGGAGAGATCACGTAC -ACGGAATGAGGAGAGATCAGTGAC -ACGGAATGAGGAGAGATCCTGTAG -ACGGAATGAGGAGAGATCCCTAAG -ACGGAATGAGGAGAGATCGTTCAG -ACGGAATGAGGAGAGATCGCATAG -ACGGAATGAGGAGAGATCGACAAG -ACGGAATGAGGAGAGATCAAGCAG -ACGGAATGAGGAGAGATCCGTCAA -ACGGAATGAGGAGAGATCGCTGAA -ACGGAATGAGGAGAGATCAGTACG -ACGGAATGAGGAGAGATCATCCGA -ACGGAATGAGGAGAGATCATGGGA -ACGGAATGAGGAGAGATCGTGCAA -ACGGAATGAGGAGAGATCGAGGAA -ACGGAATGAGGAGAGATCCAGGTA -ACGGAATGAGGAGAGATCGACTCT -ACGGAATGAGGAGAGATCAGTCCT -ACGGAATGAGGAGAGATCTAAGCC -ACGGAATGAGGAGAGATCATAGCC -ACGGAATGAGGAGAGATCTAACCG -ACGGAATGAGGAGAGATCATGCCA -ACGGAATGAGGACTTCTCGGAAAC -ACGGAATGAGGACTTCTCAACACC -ACGGAATGAGGACTTCTCATCGAG -ACGGAATGAGGACTTCTCCTCCTT -ACGGAATGAGGACTTCTCCCTGTT -ACGGAATGAGGACTTCTCCGGTTT -ACGGAATGAGGACTTCTCGTGGTT -ACGGAATGAGGACTTCTCGCCTTT -ACGGAATGAGGACTTCTCGGTCTT -ACGGAATGAGGACTTCTCACGCTT -ACGGAATGAGGACTTCTCAGCGTT -ACGGAATGAGGACTTCTCTTCGTC -ACGGAATGAGGACTTCTCTCTCTC -ACGGAATGAGGACTTCTCTGGATC -ACGGAATGAGGACTTCTCCACTTC -ACGGAATGAGGACTTCTCGTACTC -ACGGAATGAGGACTTCTCGATGTC -ACGGAATGAGGACTTCTCACAGTC -ACGGAATGAGGACTTCTCTTGCTG -ACGGAATGAGGACTTCTCTCCATG -ACGGAATGAGGACTTCTCTGTGTG -ACGGAATGAGGACTTCTCCTAGTG -ACGGAATGAGGACTTCTCCATCTG -ACGGAATGAGGACTTCTCGAGTTG -ACGGAATGAGGACTTCTCAGACTG -ACGGAATGAGGACTTCTCTCGGTA -ACGGAATGAGGACTTCTCTGCCTA -ACGGAATGAGGACTTCTCCCACTA -ACGGAATGAGGACTTCTCGGAGTA -ACGGAATGAGGACTTCTCTCGTCT -ACGGAATGAGGACTTCTCTGCACT -ACGGAATGAGGACTTCTCCTGACT -ACGGAATGAGGACTTCTCCAACCT -ACGGAATGAGGACTTCTCGCTACT -ACGGAATGAGGACTTCTCGGATCT -ACGGAATGAGGACTTCTCAAGGCT -ACGGAATGAGGACTTCTCTCAACC -ACGGAATGAGGACTTCTCTGTTCC -ACGGAATGAGGACTTCTCATTCCC -ACGGAATGAGGACTTCTCTTCTCG -ACGGAATGAGGACTTCTCTAGACG -ACGGAATGAGGACTTCTCGTAACG -ACGGAATGAGGACTTCTCACTTCG -ACGGAATGAGGACTTCTCTACGCA -ACGGAATGAGGACTTCTCCTTGCA -ACGGAATGAGGACTTCTCCGAACA -ACGGAATGAGGACTTCTCCAGTCA -ACGGAATGAGGACTTCTCGATCCA -ACGGAATGAGGACTTCTCACGACA -ACGGAATGAGGACTTCTCAGCTCA -ACGGAATGAGGACTTCTCTCACGT -ACGGAATGAGGACTTCTCCGTAGT -ACGGAATGAGGACTTCTCGTCAGT -ACGGAATGAGGACTTCTCGAAGGT -ACGGAATGAGGACTTCTCAACCGT -ACGGAATGAGGACTTCTCTTGTGC -ACGGAATGAGGACTTCTCCTAAGC -ACGGAATGAGGACTTCTCACTAGC -ACGGAATGAGGACTTCTCAGATGC -ACGGAATGAGGACTTCTCTGAAGG -ACGGAATGAGGACTTCTCCAATGG -ACGGAATGAGGACTTCTCATGAGG -ACGGAATGAGGACTTCTCAATGGG -ACGGAATGAGGACTTCTCTCCTGA -ACGGAATGAGGACTTCTCTAGCGA -ACGGAATGAGGACTTCTCCACAGA -ACGGAATGAGGACTTCTCGCAAGA -ACGGAATGAGGACTTCTCGGTTGA -ACGGAATGAGGACTTCTCTCCGAT -ACGGAATGAGGACTTCTCTGGCAT -ACGGAATGAGGACTTCTCCGAGAT -ACGGAATGAGGACTTCTCTACCAC -ACGGAATGAGGACTTCTCCAGAAC -ACGGAATGAGGACTTCTCGTCTAC -ACGGAATGAGGACTTCTCACGTAC -ACGGAATGAGGACTTCTCAGTGAC -ACGGAATGAGGACTTCTCCTGTAG -ACGGAATGAGGACTTCTCCCTAAG -ACGGAATGAGGACTTCTCGTTCAG -ACGGAATGAGGACTTCTCGCATAG -ACGGAATGAGGACTTCTCGACAAG -ACGGAATGAGGACTTCTCAAGCAG -ACGGAATGAGGACTTCTCCGTCAA -ACGGAATGAGGACTTCTCGCTGAA -ACGGAATGAGGACTTCTCAGTACG -ACGGAATGAGGACTTCTCATCCGA -ACGGAATGAGGACTTCTCATGGGA -ACGGAATGAGGACTTCTCGTGCAA -ACGGAATGAGGACTTCTCGAGGAA -ACGGAATGAGGACTTCTCCAGGTA -ACGGAATGAGGACTTCTCGACTCT -ACGGAATGAGGACTTCTCAGTCCT -ACGGAATGAGGACTTCTCTAAGCC -ACGGAATGAGGACTTCTCATAGCC -ACGGAATGAGGACTTCTCTAACCG -ACGGAATGAGGACTTCTCATGCCA -ACGGAATGAGGAGTTCCTGGAAAC -ACGGAATGAGGAGTTCCTAACACC -ACGGAATGAGGAGTTCCTATCGAG -ACGGAATGAGGAGTTCCTCTCCTT -ACGGAATGAGGAGTTCCTCCTGTT -ACGGAATGAGGAGTTCCTCGGTTT -ACGGAATGAGGAGTTCCTGTGGTT -ACGGAATGAGGAGTTCCTGCCTTT -ACGGAATGAGGAGTTCCTGGTCTT -ACGGAATGAGGAGTTCCTACGCTT -ACGGAATGAGGAGTTCCTAGCGTT -ACGGAATGAGGAGTTCCTTTCGTC -ACGGAATGAGGAGTTCCTTCTCTC -ACGGAATGAGGAGTTCCTTGGATC -ACGGAATGAGGAGTTCCTCACTTC -ACGGAATGAGGAGTTCCTGTACTC -ACGGAATGAGGAGTTCCTGATGTC -ACGGAATGAGGAGTTCCTACAGTC -ACGGAATGAGGAGTTCCTTTGCTG -ACGGAATGAGGAGTTCCTTCCATG -ACGGAATGAGGAGTTCCTTGTGTG -ACGGAATGAGGAGTTCCTCTAGTG -ACGGAATGAGGAGTTCCTCATCTG -ACGGAATGAGGAGTTCCTGAGTTG -ACGGAATGAGGAGTTCCTAGACTG -ACGGAATGAGGAGTTCCTTCGGTA -ACGGAATGAGGAGTTCCTTGCCTA -ACGGAATGAGGAGTTCCTCCACTA -ACGGAATGAGGAGTTCCTGGAGTA -ACGGAATGAGGAGTTCCTTCGTCT -ACGGAATGAGGAGTTCCTTGCACT -ACGGAATGAGGAGTTCCTCTGACT -ACGGAATGAGGAGTTCCTCAACCT -ACGGAATGAGGAGTTCCTGCTACT -ACGGAATGAGGAGTTCCTGGATCT -ACGGAATGAGGAGTTCCTAAGGCT -ACGGAATGAGGAGTTCCTTCAACC -ACGGAATGAGGAGTTCCTTGTTCC -ACGGAATGAGGAGTTCCTATTCCC -ACGGAATGAGGAGTTCCTTTCTCG -ACGGAATGAGGAGTTCCTTAGACG -ACGGAATGAGGAGTTCCTGTAACG -ACGGAATGAGGAGTTCCTACTTCG -ACGGAATGAGGAGTTCCTTACGCA -ACGGAATGAGGAGTTCCTCTTGCA -ACGGAATGAGGAGTTCCTCGAACA -ACGGAATGAGGAGTTCCTCAGTCA -ACGGAATGAGGAGTTCCTGATCCA -ACGGAATGAGGAGTTCCTACGACA -ACGGAATGAGGAGTTCCTAGCTCA -ACGGAATGAGGAGTTCCTTCACGT -ACGGAATGAGGAGTTCCTCGTAGT -ACGGAATGAGGAGTTCCTGTCAGT -ACGGAATGAGGAGTTCCTGAAGGT -ACGGAATGAGGAGTTCCTAACCGT -ACGGAATGAGGAGTTCCTTTGTGC -ACGGAATGAGGAGTTCCTCTAAGC -ACGGAATGAGGAGTTCCTACTAGC -ACGGAATGAGGAGTTCCTAGATGC -ACGGAATGAGGAGTTCCTTGAAGG -ACGGAATGAGGAGTTCCTCAATGG -ACGGAATGAGGAGTTCCTATGAGG -ACGGAATGAGGAGTTCCTAATGGG -ACGGAATGAGGAGTTCCTTCCTGA -ACGGAATGAGGAGTTCCTTAGCGA -ACGGAATGAGGAGTTCCTCACAGA -ACGGAATGAGGAGTTCCTGCAAGA -ACGGAATGAGGAGTTCCTGGTTGA -ACGGAATGAGGAGTTCCTTCCGAT -ACGGAATGAGGAGTTCCTTGGCAT -ACGGAATGAGGAGTTCCTCGAGAT -ACGGAATGAGGAGTTCCTTACCAC -ACGGAATGAGGAGTTCCTCAGAAC -ACGGAATGAGGAGTTCCTGTCTAC -ACGGAATGAGGAGTTCCTACGTAC -ACGGAATGAGGAGTTCCTAGTGAC -ACGGAATGAGGAGTTCCTCTGTAG -ACGGAATGAGGAGTTCCTCCTAAG -ACGGAATGAGGAGTTCCTGTTCAG -ACGGAATGAGGAGTTCCTGCATAG -ACGGAATGAGGAGTTCCTGACAAG -ACGGAATGAGGAGTTCCTAAGCAG -ACGGAATGAGGAGTTCCTCGTCAA -ACGGAATGAGGAGTTCCTGCTGAA -ACGGAATGAGGAGTTCCTAGTACG -ACGGAATGAGGAGTTCCTATCCGA -ACGGAATGAGGAGTTCCTATGGGA -ACGGAATGAGGAGTTCCTGTGCAA -ACGGAATGAGGAGTTCCTGAGGAA -ACGGAATGAGGAGTTCCTCAGGTA -ACGGAATGAGGAGTTCCTGACTCT -ACGGAATGAGGAGTTCCTAGTCCT -ACGGAATGAGGAGTTCCTTAAGCC -ACGGAATGAGGAGTTCCTATAGCC -ACGGAATGAGGAGTTCCTTAACCG -ACGGAATGAGGAGTTCCTATGCCA -ACGGAATGAGGATTTCGGGGAAAC -ACGGAATGAGGATTTCGGAACACC -ACGGAATGAGGATTTCGGATCGAG -ACGGAATGAGGATTTCGGCTCCTT -ACGGAATGAGGATTTCGGCCTGTT -ACGGAATGAGGATTTCGGCGGTTT -ACGGAATGAGGATTTCGGGTGGTT -ACGGAATGAGGATTTCGGGCCTTT -ACGGAATGAGGATTTCGGGGTCTT -ACGGAATGAGGATTTCGGACGCTT -ACGGAATGAGGATTTCGGAGCGTT -ACGGAATGAGGATTTCGGTTCGTC -ACGGAATGAGGATTTCGGTCTCTC -ACGGAATGAGGATTTCGGTGGATC -ACGGAATGAGGATTTCGGCACTTC -ACGGAATGAGGATTTCGGGTACTC -ACGGAATGAGGATTTCGGGATGTC -ACGGAATGAGGATTTCGGACAGTC -ACGGAATGAGGATTTCGGTTGCTG -ACGGAATGAGGATTTCGGTCCATG -ACGGAATGAGGATTTCGGTGTGTG -ACGGAATGAGGATTTCGGCTAGTG -ACGGAATGAGGATTTCGGCATCTG -ACGGAATGAGGATTTCGGGAGTTG -ACGGAATGAGGATTTCGGAGACTG -ACGGAATGAGGATTTCGGTCGGTA -ACGGAATGAGGATTTCGGTGCCTA -ACGGAATGAGGATTTCGGCCACTA -ACGGAATGAGGATTTCGGGGAGTA -ACGGAATGAGGATTTCGGTCGTCT -ACGGAATGAGGATTTCGGTGCACT -ACGGAATGAGGATTTCGGCTGACT -ACGGAATGAGGATTTCGGCAACCT -ACGGAATGAGGATTTCGGGCTACT -ACGGAATGAGGATTTCGGGGATCT -ACGGAATGAGGATTTCGGAAGGCT -ACGGAATGAGGATTTCGGTCAACC -ACGGAATGAGGATTTCGGTGTTCC -ACGGAATGAGGATTTCGGATTCCC -ACGGAATGAGGATTTCGGTTCTCG -ACGGAATGAGGATTTCGGTAGACG -ACGGAATGAGGATTTCGGGTAACG -ACGGAATGAGGATTTCGGACTTCG -ACGGAATGAGGATTTCGGTACGCA -ACGGAATGAGGATTTCGGCTTGCA -ACGGAATGAGGATTTCGGCGAACA -ACGGAATGAGGATTTCGGCAGTCA -ACGGAATGAGGATTTCGGGATCCA -ACGGAATGAGGATTTCGGACGACA -ACGGAATGAGGATTTCGGAGCTCA -ACGGAATGAGGATTTCGGTCACGT -ACGGAATGAGGATTTCGGCGTAGT -ACGGAATGAGGATTTCGGGTCAGT -ACGGAATGAGGATTTCGGGAAGGT -ACGGAATGAGGATTTCGGAACCGT -ACGGAATGAGGATTTCGGTTGTGC -ACGGAATGAGGATTTCGGCTAAGC -ACGGAATGAGGATTTCGGACTAGC -ACGGAATGAGGATTTCGGAGATGC -ACGGAATGAGGATTTCGGTGAAGG -ACGGAATGAGGATTTCGGCAATGG -ACGGAATGAGGATTTCGGATGAGG -ACGGAATGAGGATTTCGGAATGGG -ACGGAATGAGGATTTCGGTCCTGA -ACGGAATGAGGATTTCGGTAGCGA -ACGGAATGAGGATTTCGGCACAGA -ACGGAATGAGGATTTCGGGCAAGA -ACGGAATGAGGATTTCGGGGTTGA -ACGGAATGAGGATTTCGGTCCGAT -ACGGAATGAGGATTTCGGTGGCAT -ACGGAATGAGGATTTCGGCGAGAT -ACGGAATGAGGATTTCGGTACCAC -ACGGAATGAGGATTTCGGCAGAAC -ACGGAATGAGGATTTCGGGTCTAC -ACGGAATGAGGATTTCGGACGTAC -ACGGAATGAGGATTTCGGAGTGAC -ACGGAATGAGGATTTCGGCTGTAG -ACGGAATGAGGATTTCGGCCTAAG -ACGGAATGAGGATTTCGGGTTCAG -ACGGAATGAGGATTTCGGGCATAG -ACGGAATGAGGATTTCGGGACAAG -ACGGAATGAGGATTTCGGAAGCAG -ACGGAATGAGGATTTCGGCGTCAA -ACGGAATGAGGATTTCGGGCTGAA -ACGGAATGAGGATTTCGGAGTACG -ACGGAATGAGGATTTCGGATCCGA -ACGGAATGAGGATTTCGGATGGGA -ACGGAATGAGGATTTCGGGTGCAA -ACGGAATGAGGATTTCGGGAGGAA -ACGGAATGAGGATTTCGGCAGGTA -ACGGAATGAGGATTTCGGGACTCT -ACGGAATGAGGATTTCGGAGTCCT -ACGGAATGAGGATTTCGGTAAGCC -ACGGAATGAGGATTTCGGATAGCC -ACGGAATGAGGATTTCGGTAACCG -ACGGAATGAGGATTTCGGATGCCA -ACGGAATGAGGAGTTGTGGGAAAC -ACGGAATGAGGAGTTGTGAACACC -ACGGAATGAGGAGTTGTGATCGAG -ACGGAATGAGGAGTTGTGCTCCTT -ACGGAATGAGGAGTTGTGCCTGTT -ACGGAATGAGGAGTTGTGCGGTTT -ACGGAATGAGGAGTTGTGGTGGTT -ACGGAATGAGGAGTTGTGGCCTTT -ACGGAATGAGGAGTTGTGGGTCTT -ACGGAATGAGGAGTTGTGACGCTT -ACGGAATGAGGAGTTGTGAGCGTT -ACGGAATGAGGAGTTGTGTTCGTC -ACGGAATGAGGAGTTGTGTCTCTC -ACGGAATGAGGAGTTGTGTGGATC -ACGGAATGAGGAGTTGTGCACTTC -ACGGAATGAGGAGTTGTGGTACTC -ACGGAATGAGGAGTTGTGGATGTC -ACGGAATGAGGAGTTGTGACAGTC -ACGGAATGAGGAGTTGTGTTGCTG -ACGGAATGAGGAGTTGTGTCCATG -ACGGAATGAGGAGTTGTGTGTGTG -ACGGAATGAGGAGTTGTGCTAGTG -ACGGAATGAGGAGTTGTGCATCTG -ACGGAATGAGGAGTTGTGGAGTTG -ACGGAATGAGGAGTTGTGAGACTG -ACGGAATGAGGAGTTGTGTCGGTA -ACGGAATGAGGAGTTGTGTGCCTA -ACGGAATGAGGAGTTGTGCCACTA -ACGGAATGAGGAGTTGTGGGAGTA -ACGGAATGAGGAGTTGTGTCGTCT -ACGGAATGAGGAGTTGTGTGCACT -ACGGAATGAGGAGTTGTGCTGACT -ACGGAATGAGGAGTTGTGCAACCT -ACGGAATGAGGAGTTGTGGCTACT -ACGGAATGAGGAGTTGTGGGATCT -ACGGAATGAGGAGTTGTGAAGGCT -ACGGAATGAGGAGTTGTGTCAACC -ACGGAATGAGGAGTTGTGTGTTCC -ACGGAATGAGGAGTTGTGATTCCC -ACGGAATGAGGAGTTGTGTTCTCG -ACGGAATGAGGAGTTGTGTAGACG -ACGGAATGAGGAGTTGTGGTAACG -ACGGAATGAGGAGTTGTGACTTCG -ACGGAATGAGGAGTTGTGTACGCA -ACGGAATGAGGAGTTGTGCTTGCA -ACGGAATGAGGAGTTGTGCGAACA -ACGGAATGAGGAGTTGTGCAGTCA -ACGGAATGAGGAGTTGTGGATCCA -ACGGAATGAGGAGTTGTGACGACA -ACGGAATGAGGAGTTGTGAGCTCA -ACGGAATGAGGAGTTGTGTCACGT -ACGGAATGAGGAGTTGTGCGTAGT -ACGGAATGAGGAGTTGTGGTCAGT -ACGGAATGAGGAGTTGTGGAAGGT -ACGGAATGAGGAGTTGTGAACCGT -ACGGAATGAGGAGTTGTGTTGTGC -ACGGAATGAGGAGTTGTGCTAAGC -ACGGAATGAGGAGTTGTGACTAGC -ACGGAATGAGGAGTTGTGAGATGC -ACGGAATGAGGAGTTGTGTGAAGG -ACGGAATGAGGAGTTGTGCAATGG -ACGGAATGAGGAGTTGTGATGAGG -ACGGAATGAGGAGTTGTGAATGGG -ACGGAATGAGGAGTTGTGTCCTGA -ACGGAATGAGGAGTTGTGTAGCGA -ACGGAATGAGGAGTTGTGCACAGA -ACGGAATGAGGAGTTGTGGCAAGA -ACGGAATGAGGAGTTGTGGGTTGA -ACGGAATGAGGAGTTGTGTCCGAT -ACGGAATGAGGAGTTGTGTGGCAT -ACGGAATGAGGAGTTGTGCGAGAT -ACGGAATGAGGAGTTGTGTACCAC -ACGGAATGAGGAGTTGTGCAGAAC -ACGGAATGAGGAGTTGTGGTCTAC -ACGGAATGAGGAGTTGTGACGTAC -ACGGAATGAGGAGTTGTGAGTGAC -ACGGAATGAGGAGTTGTGCTGTAG -ACGGAATGAGGAGTTGTGCCTAAG -ACGGAATGAGGAGTTGTGGTTCAG -ACGGAATGAGGAGTTGTGGCATAG -ACGGAATGAGGAGTTGTGGACAAG -ACGGAATGAGGAGTTGTGAAGCAG -ACGGAATGAGGAGTTGTGCGTCAA -ACGGAATGAGGAGTTGTGGCTGAA -ACGGAATGAGGAGTTGTGAGTACG -ACGGAATGAGGAGTTGTGATCCGA -ACGGAATGAGGAGTTGTGATGGGA -ACGGAATGAGGAGTTGTGGTGCAA -ACGGAATGAGGAGTTGTGGAGGAA -ACGGAATGAGGAGTTGTGCAGGTA -ACGGAATGAGGAGTTGTGGACTCT -ACGGAATGAGGAGTTGTGAGTCCT -ACGGAATGAGGAGTTGTGTAAGCC -ACGGAATGAGGAGTTGTGATAGCC -ACGGAATGAGGAGTTGTGTAACCG -ACGGAATGAGGAGTTGTGATGCCA -ACGGAATGAGGATTTGCCGGAAAC -ACGGAATGAGGATTTGCCAACACC -ACGGAATGAGGATTTGCCATCGAG -ACGGAATGAGGATTTGCCCTCCTT -ACGGAATGAGGATTTGCCCCTGTT -ACGGAATGAGGATTTGCCCGGTTT -ACGGAATGAGGATTTGCCGTGGTT -ACGGAATGAGGATTTGCCGCCTTT -ACGGAATGAGGATTTGCCGGTCTT -ACGGAATGAGGATTTGCCACGCTT -ACGGAATGAGGATTTGCCAGCGTT -ACGGAATGAGGATTTGCCTTCGTC -ACGGAATGAGGATTTGCCTCTCTC -ACGGAATGAGGATTTGCCTGGATC -ACGGAATGAGGATTTGCCCACTTC -ACGGAATGAGGATTTGCCGTACTC -ACGGAATGAGGATTTGCCGATGTC -ACGGAATGAGGATTTGCCACAGTC -ACGGAATGAGGATTTGCCTTGCTG -ACGGAATGAGGATTTGCCTCCATG -ACGGAATGAGGATTTGCCTGTGTG -ACGGAATGAGGATTTGCCCTAGTG -ACGGAATGAGGATTTGCCCATCTG -ACGGAATGAGGATTTGCCGAGTTG -ACGGAATGAGGATTTGCCAGACTG -ACGGAATGAGGATTTGCCTCGGTA -ACGGAATGAGGATTTGCCTGCCTA -ACGGAATGAGGATTTGCCCCACTA -ACGGAATGAGGATTTGCCGGAGTA -ACGGAATGAGGATTTGCCTCGTCT -ACGGAATGAGGATTTGCCTGCACT -ACGGAATGAGGATTTGCCCTGACT -ACGGAATGAGGATTTGCCCAACCT -ACGGAATGAGGATTTGCCGCTACT -ACGGAATGAGGATTTGCCGGATCT -ACGGAATGAGGATTTGCCAAGGCT -ACGGAATGAGGATTTGCCTCAACC -ACGGAATGAGGATTTGCCTGTTCC -ACGGAATGAGGATTTGCCATTCCC -ACGGAATGAGGATTTGCCTTCTCG -ACGGAATGAGGATTTGCCTAGACG -ACGGAATGAGGATTTGCCGTAACG -ACGGAATGAGGATTTGCCACTTCG -ACGGAATGAGGATTTGCCTACGCA -ACGGAATGAGGATTTGCCCTTGCA -ACGGAATGAGGATTTGCCCGAACA -ACGGAATGAGGATTTGCCCAGTCA -ACGGAATGAGGATTTGCCGATCCA -ACGGAATGAGGATTTGCCACGACA -ACGGAATGAGGATTTGCCAGCTCA -ACGGAATGAGGATTTGCCTCACGT -ACGGAATGAGGATTTGCCCGTAGT -ACGGAATGAGGATTTGCCGTCAGT -ACGGAATGAGGATTTGCCGAAGGT -ACGGAATGAGGATTTGCCAACCGT -ACGGAATGAGGATTTGCCTTGTGC -ACGGAATGAGGATTTGCCCTAAGC -ACGGAATGAGGATTTGCCACTAGC -ACGGAATGAGGATTTGCCAGATGC -ACGGAATGAGGATTTGCCTGAAGG -ACGGAATGAGGATTTGCCCAATGG -ACGGAATGAGGATTTGCCATGAGG -ACGGAATGAGGATTTGCCAATGGG -ACGGAATGAGGATTTGCCTCCTGA -ACGGAATGAGGATTTGCCTAGCGA -ACGGAATGAGGATTTGCCCACAGA -ACGGAATGAGGATTTGCCGCAAGA -ACGGAATGAGGATTTGCCGGTTGA -ACGGAATGAGGATTTGCCTCCGAT -ACGGAATGAGGATTTGCCTGGCAT -ACGGAATGAGGATTTGCCCGAGAT -ACGGAATGAGGATTTGCCTACCAC -ACGGAATGAGGATTTGCCCAGAAC -ACGGAATGAGGATTTGCCGTCTAC -ACGGAATGAGGATTTGCCACGTAC -ACGGAATGAGGATTTGCCAGTGAC -ACGGAATGAGGATTTGCCCTGTAG -ACGGAATGAGGATTTGCCCCTAAG -ACGGAATGAGGATTTGCCGTTCAG -ACGGAATGAGGATTTGCCGCATAG -ACGGAATGAGGATTTGCCGACAAG -ACGGAATGAGGATTTGCCAAGCAG -ACGGAATGAGGATTTGCCCGTCAA -ACGGAATGAGGATTTGCCGCTGAA -ACGGAATGAGGATTTGCCAGTACG -ACGGAATGAGGATTTGCCATCCGA -ACGGAATGAGGATTTGCCATGGGA -ACGGAATGAGGATTTGCCGTGCAA -ACGGAATGAGGATTTGCCGAGGAA -ACGGAATGAGGATTTGCCCAGGTA -ACGGAATGAGGATTTGCCGACTCT -ACGGAATGAGGATTTGCCAGTCCT -ACGGAATGAGGATTTGCCTAAGCC -ACGGAATGAGGATTTGCCATAGCC -ACGGAATGAGGATTTGCCTAACCG -ACGGAATGAGGATTTGCCATGCCA -ACGGAATGAGGACTTGGTGGAAAC -ACGGAATGAGGACTTGGTAACACC -ACGGAATGAGGACTTGGTATCGAG -ACGGAATGAGGACTTGGTCTCCTT -ACGGAATGAGGACTTGGTCCTGTT -ACGGAATGAGGACTTGGTCGGTTT -ACGGAATGAGGACTTGGTGTGGTT -ACGGAATGAGGACTTGGTGCCTTT -ACGGAATGAGGACTTGGTGGTCTT -ACGGAATGAGGACTTGGTACGCTT -ACGGAATGAGGACTTGGTAGCGTT -ACGGAATGAGGACTTGGTTTCGTC -ACGGAATGAGGACTTGGTTCTCTC -ACGGAATGAGGACTTGGTTGGATC -ACGGAATGAGGACTTGGTCACTTC -ACGGAATGAGGACTTGGTGTACTC -ACGGAATGAGGACTTGGTGATGTC -ACGGAATGAGGACTTGGTACAGTC -ACGGAATGAGGACTTGGTTTGCTG -ACGGAATGAGGACTTGGTTCCATG -ACGGAATGAGGACTTGGTTGTGTG -ACGGAATGAGGACTTGGTCTAGTG -ACGGAATGAGGACTTGGTCATCTG -ACGGAATGAGGACTTGGTGAGTTG -ACGGAATGAGGACTTGGTAGACTG -ACGGAATGAGGACTTGGTTCGGTA -ACGGAATGAGGACTTGGTTGCCTA -ACGGAATGAGGACTTGGTCCACTA -ACGGAATGAGGACTTGGTGGAGTA -ACGGAATGAGGACTTGGTTCGTCT -ACGGAATGAGGACTTGGTTGCACT -ACGGAATGAGGACTTGGTCTGACT -ACGGAATGAGGACTTGGTCAACCT -ACGGAATGAGGACTTGGTGCTACT -ACGGAATGAGGACTTGGTGGATCT -ACGGAATGAGGACTTGGTAAGGCT -ACGGAATGAGGACTTGGTTCAACC -ACGGAATGAGGACTTGGTTGTTCC -ACGGAATGAGGACTTGGTATTCCC -ACGGAATGAGGACTTGGTTTCTCG -ACGGAATGAGGACTTGGTTAGACG -ACGGAATGAGGACTTGGTGTAACG -ACGGAATGAGGACTTGGTACTTCG -ACGGAATGAGGACTTGGTTACGCA -ACGGAATGAGGACTTGGTCTTGCA -ACGGAATGAGGACTTGGTCGAACA -ACGGAATGAGGACTTGGTCAGTCA -ACGGAATGAGGACTTGGTGATCCA -ACGGAATGAGGACTTGGTACGACA -ACGGAATGAGGACTTGGTAGCTCA -ACGGAATGAGGACTTGGTTCACGT -ACGGAATGAGGACTTGGTCGTAGT -ACGGAATGAGGACTTGGTGTCAGT -ACGGAATGAGGACTTGGTGAAGGT -ACGGAATGAGGACTTGGTAACCGT -ACGGAATGAGGACTTGGTTTGTGC -ACGGAATGAGGACTTGGTCTAAGC -ACGGAATGAGGACTTGGTACTAGC -ACGGAATGAGGACTTGGTAGATGC -ACGGAATGAGGACTTGGTTGAAGG -ACGGAATGAGGACTTGGTCAATGG -ACGGAATGAGGACTTGGTATGAGG -ACGGAATGAGGACTTGGTAATGGG -ACGGAATGAGGACTTGGTTCCTGA -ACGGAATGAGGACTTGGTTAGCGA -ACGGAATGAGGACTTGGTCACAGA -ACGGAATGAGGACTTGGTGCAAGA -ACGGAATGAGGACTTGGTGGTTGA -ACGGAATGAGGACTTGGTTCCGAT -ACGGAATGAGGACTTGGTTGGCAT -ACGGAATGAGGACTTGGTCGAGAT -ACGGAATGAGGACTTGGTTACCAC -ACGGAATGAGGACTTGGTCAGAAC -ACGGAATGAGGACTTGGTGTCTAC -ACGGAATGAGGACTTGGTACGTAC -ACGGAATGAGGACTTGGTAGTGAC -ACGGAATGAGGACTTGGTCTGTAG -ACGGAATGAGGACTTGGTCCTAAG -ACGGAATGAGGACTTGGTGTTCAG -ACGGAATGAGGACTTGGTGCATAG -ACGGAATGAGGACTTGGTGACAAG -ACGGAATGAGGACTTGGTAAGCAG -ACGGAATGAGGACTTGGTCGTCAA -ACGGAATGAGGACTTGGTGCTGAA -ACGGAATGAGGACTTGGTAGTACG -ACGGAATGAGGACTTGGTATCCGA -ACGGAATGAGGACTTGGTATGGGA -ACGGAATGAGGACTTGGTGTGCAA -ACGGAATGAGGACTTGGTGAGGAA -ACGGAATGAGGACTTGGTCAGGTA -ACGGAATGAGGACTTGGTGACTCT -ACGGAATGAGGACTTGGTAGTCCT -ACGGAATGAGGACTTGGTTAAGCC -ACGGAATGAGGACTTGGTATAGCC -ACGGAATGAGGACTTGGTTAACCG -ACGGAATGAGGACTTGGTATGCCA -ACGGAATGAGGACTTACGGGAAAC -ACGGAATGAGGACTTACGAACACC -ACGGAATGAGGACTTACGATCGAG -ACGGAATGAGGACTTACGCTCCTT -ACGGAATGAGGACTTACGCCTGTT -ACGGAATGAGGACTTACGCGGTTT -ACGGAATGAGGACTTACGGTGGTT -ACGGAATGAGGACTTACGGCCTTT -ACGGAATGAGGACTTACGGGTCTT -ACGGAATGAGGACTTACGACGCTT -ACGGAATGAGGACTTACGAGCGTT -ACGGAATGAGGACTTACGTTCGTC -ACGGAATGAGGACTTACGTCTCTC -ACGGAATGAGGACTTACGTGGATC -ACGGAATGAGGACTTACGCACTTC -ACGGAATGAGGACTTACGGTACTC -ACGGAATGAGGACTTACGGATGTC -ACGGAATGAGGACTTACGACAGTC -ACGGAATGAGGACTTACGTTGCTG -ACGGAATGAGGACTTACGTCCATG -ACGGAATGAGGACTTACGTGTGTG -ACGGAATGAGGACTTACGCTAGTG -ACGGAATGAGGACTTACGCATCTG -ACGGAATGAGGACTTACGGAGTTG -ACGGAATGAGGACTTACGAGACTG -ACGGAATGAGGACTTACGTCGGTA -ACGGAATGAGGACTTACGTGCCTA -ACGGAATGAGGACTTACGCCACTA -ACGGAATGAGGACTTACGGGAGTA -ACGGAATGAGGACTTACGTCGTCT -ACGGAATGAGGACTTACGTGCACT -ACGGAATGAGGACTTACGCTGACT -ACGGAATGAGGACTTACGCAACCT -ACGGAATGAGGACTTACGGCTACT -ACGGAATGAGGACTTACGGGATCT -ACGGAATGAGGACTTACGAAGGCT -ACGGAATGAGGACTTACGTCAACC -ACGGAATGAGGACTTACGTGTTCC -ACGGAATGAGGACTTACGATTCCC -ACGGAATGAGGACTTACGTTCTCG -ACGGAATGAGGACTTACGTAGACG -ACGGAATGAGGACTTACGGTAACG -ACGGAATGAGGACTTACGACTTCG -ACGGAATGAGGACTTACGTACGCA -ACGGAATGAGGACTTACGCTTGCA -ACGGAATGAGGACTTACGCGAACA -ACGGAATGAGGACTTACGCAGTCA -ACGGAATGAGGACTTACGGATCCA -ACGGAATGAGGACTTACGACGACA -ACGGAATGAGGACTTACGAGCTCA -ACGGAATGAGGACTTACGTCACGT -ACGGAATGAGGACTTACGCGTAGT -ACGGAATGAGGACTTACGGTCAGT -ACGGAATGAGGACTTACGGAAGGT -ACGGAATGAGGACTTACGAACCGT -ACGGAATGAGGACTTACGTTGTGC -ACGGAATGAGGACTTACGCTAAGC -ACGGAATGAGGACTTACGACTAGC -ACGGAATGAGGACTTACGAGATGC -ACGGAATGAGGACTTACGTGAAGG -ACGGAATGAGGACTTACGCAATGG -ACGGAATGAGGACTTACGATGAGG -ACGGAATGAGGACTTACGAATGGG -ACGGAATGAGGACTTACGTCCTGA -ACGGAATGAGGACTTACGTAGCGA -ACGGAATGAGGACTTACGCACAGA -ACGGAATGAGGACTTACGGCAAGA -ACGGAATGAGGACTTACGGGTTGA -ACGGAATGAGGACTTACGTCCGAT -ACGGAATGAGGACTTACGTGGCAT -ACGGAATGAGGACTTACGCGAGAT -ACGGAATGAGGACTTACGTACCAC -ACGGAATGAGGACTTACGCAGAAC -ACGGAATGAGGACTTACGGTCTAC -ACGGAATGAGGACTTACGACGTAC -ACGGAATGAGGACTTACGAGTGAC -ACGGAATGAGGACTTACGCTGTAG -ACGGAATGAGGACTTACGCCTAAG -ACGGAATGAGGACTTACGGTTCAG -ACGGAATGAGGACTTACGGCATAG -ACGGAATGAGGACTTACGGACAAG -ACGGAATGAGGACTTACGAAGCAG -ACGGAATGAGGACTTACGCGTCAA -ACGGAATGAGGACTTACGGCTGAA -ACGGAATGAGGACTTACGAGTACG -ACGGAATGAGGACTTACGATCCGA -ACGGAATGAGGACTTACGATGGGA -ACGGAATGAGGACTTACGGTGCAA -ACGGAATGAGGACTTACGGAGGAA -ACGGAATGAGGACTTACGCAGGTA -ACGGAATGAGGACTTACGGACTCT -ACGGAATGAGGACTTACGAGTCCT -ACGGAATGAGGACTTACGTAAGCC -ACGGAATGAGGACTTACGATAGCC -ACGGAATGAGGACTTACGTAACCG -ACGGAATGAGGACTTACGATGCCA -ACGGAATGAGGAGTTAGCGGAAAC -ACGGAATGAGGAGTTAGCAACACC -ACGGAATGAGGAGTTAGCATCGAG -ACGGAATGAGGAGTTAGCCTCCTT -ACGGAATGAGGAGTTAGCCCTGTT -ACGGAATGAGGAGTTAGCCGGTTT -ACGGAATGAGGAGTTAGCGTGGTT -ACGGAATGAGGAGTTAGCGCCTTT -ACGGAATGAGGAGTTAGCGGTCTT -ACGGAATGAGGAGTTAGCACGCTT -ACGGAATGAGGAGTTAGCAGCGTT -ACGGAATGAGGAGTTAGCTTCGTC -ACGGAATGAGGAGTTAGCTCTCTC -ACGGAATGAGGAGTTAGCTGGATC -ACGGAATGAGGAGTTAGCCACTTC -ACGGAATGAGGAGTTAGCGTACTC -ACGGAATGAGGAGTTAGCGATGTC -ACGGAATGAGGAGTTAGCACAGTC -ACGGAATGAGGAGTTAGCTTGCTG -ACGGAATGAGGAGTTAGCTCCATG -ACGGAATGAGGAGTTAGCTGTGTG -ACGGAATGAGGAGTTAGCCTAGTG -ACGGAATGAGGAGTTAGCCATCTG -ACGGAATGAGGAGTTAGCGAGTTG -ACGGAATGAGGAGTTAGCAGACTG -ACGGAATGAGGAGTTAGCTCGGTA -ACGGAATGAGGAGTTAGCTGCCTA -ACGGAATGAGGAGTTAGCCCACTA -ACGGAATGAGGAGTTAGCGGAGTA -ACGGAATGAGGAGTTAGCTCGTCT -ACGGAATGAGGAGTTAGCTGCACT -ACGGAATGAGGAGTTAGCCTGACT -ACGGAATGAGGAGTTAGCCAACCT -ACGGAATGAGGAGTTAGCGCTACT -ACGGAATGAGGAGTTAGCGGATCT -ACGGAATGAGGAGTTAGCAAGGCT -ACGGAATGAGGAGTTAGCTCAACC -ACGGAATGAGGAGTTAGCTGTTCC -ACGGAATGAGGAGTTAGCATTCCC -ACGGAATGAGGAGTTAGCTTCTCG -ACGGAATGAGGAGTTAGCTAGACG -ACGGAATGAGGAGTTAGCGTAACG -ACGGAATGAGGAGTTAGCACTTCG -ACGGAATGAGGAGTTAGCTACGCA -ACGGAATGAGGAGTTAGCCTTGCA -ACGGAATGAGGAGTTAGCCGAACA -ACGGAATGAGGAGTTAGCCAGTCA -ACGGAATGAGGAGTTAGCGATCCA -ACGGAATGAGGAGTTAGCACGACA -ACGGAATGAGGAGTTAGCAGCTCA -ACGGAATGAGGAGTTAGCTCACGT -ACGGAATGAGGAGTTAGCCGTAGT -ACGGAATGAGGAGTTAGCGTCAGT -ACGGAATGAGGAGTTAGCGAAGGT -ACGGAATGAGGAGTTAGCAACCGT -ACGGAATGAGGAGTTAGCTTGTGC -ACGGAATGAGGAGTTAGCCTAAGC -ACGGAATGAGGAGTTAGCACTAGC -ACGGAATGAGGAGTTAGCAGATGC -ACGGAATGAGGAGTTAGCTGAAGG -ACGGAATGAGGAGTTAGCCAATGG -ACGGAATGAGGAGTTAGCATGAGG -ACGGAATGAGGAGTTAGCAATGGG -ACGGAATGAGGAGTTAGCTCCTGA -ACGGAATGAGGAGTTAGCTAGCGA -ACGGAATGAGGAGTTAGCCACAGA -ACGGAATGAGGAGTTAGCGCAAGA -ACGGAATGAGGAGTTAGCGGTTGA -ACGGAATGAGGAGTTAGCTCCGAT -ACGGAATGAGGAGTTAGCTGGCAT -ACGGAATGAGGAGTTAGCCGAGAT -ACGGAATGAGGAGTTAGCTACCAC -ACGGAATGAGGAGTTAGCCAGAAC -ACGGAATGAGGAGTTAGCGTCTAC -ACGGAATGAGGAGTTAGCACGTAC -ACGGAATGAGGAGTTAGCAGTGAC -ACGGAATGAGGAGTTAGCCTGTAG -ACGGAATGAGGAGTTAGCCCTAAG -ACGGAATGAGGAGTTAGCGTTCAG -ACGGAATGAGGAGTTAGCGCATAG -ACGGAATGAGGAGTTAGCGACAAG -ACGGAATGAGGAGTTAGCAAGCAG -ACGGAATGAGGAGTTAGCCGTCAA -ACGGAATGAGGAGTTAGCGCTGAA -ACGGAATGAGGAGTTAGCAGTACG -ACGGAATGAGGAGTTAGCATCCGA -ACGGAATGAGGAGTTAGCATGGGA -ACGGAATGAGGAGTTAGCGTGCAA -ACGGAATGAGGAGTTAGCGAGGAA -ACGGAATGAGGAGTTAGCCAGGTA -ACGGAATGAGGAGTTAGCGACTCT -ACGGAATGAGGAGTTAGCAGTCCT -ACGGAATGAGGAGTTAGCTAAGCC -ACGGAATGAGGAGTTAGCATAGCC -ACGGAATGAGGAGTTAGCTAACCG -ACGGAATGAGGAGTTAGCATGCCA -ACGGAATGAGGAGTCTTCGGAAAC -ACGGAATGAGGAGTCTTCAACACC -ACGGAATGAGGAGTCTTCATCGAG -ACGGAATGAGGAGTCTTCCTCCTT -ACGGAATGAGGAGTCTTCCCTGTT -ACGGAATGAGGAGTCTTCCGGTTT -ACGGAATGAGGAGTCTTCGTGGTT -ACGGAATGAGGAGTCTTCGCCTTT -ACGGAATGAGGAGTCTTCGGTCTT -ACGGAATGAGGAGTCTTCACGCTT -ACGGAATGAGGAGTCTTCAGCGTT -ACGGAATGAGGAGTCTTCTTCGTC -ACGGAATGAGGAGTCTTCTCTCTC -ACGGAATGAGGAGTCTTCTGGATC -ACGGAATGAGGAGTCTTCCACTTC -ACGGAATGAGGAGTCTTCGTACTC -ACGGAATGAGGAGTCTTCGATGTC -ACGGAATGAGGAGTCTTCACAGTC -ACGGAATGAGGAGTCTTCTTGCTG -ACGGAATGAGGAGTCTTCTCCATG -ACGGAATGAGGAGTCTTCTGTGTG -ACGGAATGAGGAGTCTTCCTAGTG -ACGGAATGAGGAGTCTTCCATCTG -ACGGAATGAGGAGTCTTCGAGTTG -ACGGAATGAGGAGTCTTCAGACTG -ACGGAATGAGGAGTCTTCTCGGTA -ACGGAATGAGGAGTCTTCTGCCTA -ACGGAATGAGGAGTCTTCCCACTA -ACGGAATGAGGAGTCTTCGGAGTA -ACGGAATGAGGAGTCTTCTCGTCT -ACGGAATGAGGAGTCTTCTGCACT -ACGGAATGAGGAGTCTTCCTGACT -ACGGAATGAGGAGTCTTCCAACCT -ACGGAATGAGGAGTCTTCGCTACT -ACGGAATGAGGAGTCTTCGGATCT -ACGGAATGAGGAGTCTTCAAGGCT -ACGGAATGAGGAGTCTTCTCAACC -ACGGAATGAGGAGTCTTCTGTTCC -ACGGAATGAGGAGTCTTCATTCCC -ACGGAATGAGGAGTCTTCTTCTCG -ACGGAATGAGGAGTCTTCTAGACG -ACGGAATGAGGAGTCTTCGTAACG -ACGGAATGAGGAGTCTTCACTTCG -ACGGAATGAGGAGTCTTCTACGCA -ACGGAATGAGGAGTCTTCCTTGCA -ACGGAATGAGGAGTCTTCCGAACA -ACGGAATGAGGAGTCTTCCAGTCA -ACGGAATGAGGAGTCTTCGATCCA -ACGGAATGAGGAGTCTTCACGACA -ACGGAATGAGGAGTCTTCAGCTCA -ACGGAATGAGGAGTCTTCTCACGT -ACGGAATGAGGAGTCTTCCGTAGT -ACGGAATGAGGAGTCTTCGTCAGT -ACGGAATGAGGAGTCTTCGAAGGT -ACGGAATGAGGAGTCTTCAACCGT -ACGGAATGAGGAGTCTTCTTGTGC -ACGGAATGAGGAGTCTTCCTAAGC -ACGGAATGAGGAGTCTTCACTAGC -ACGGAATGAGGAGTCTTCAGATGC -ACGGAATGAGGAGTCTTCTGAAGG -ACGGAATGAGGAGTCTTCCAATGG -ACGGAATGAGGAGTCTTCATGAGG -ACGGAATGAGGAGTCTTCAATGGG -ACGGAATGAGGAGTCTTCTCCTGA -ACGGAATGAGGAGTCTTCTAGCGA -ACGGAATGAGGAGTCTTCCACAGA -ACGGAATGAGGAGTCTTCGCAAGA -ACGGAATGAGGAGTCTTCGGTTGA -ACGGAATGAGGAGTCTTCTCCGAT -ACGGAATGAGGAGTCTTCTGGCAT -ACGGAATGAGGAGTCTTCCGAGAT -ACGGAATGAGGAGTCTTCTACCAC -ACGGAATGAGGAGTCTTCCAGAAC -ACGGAATGAGGAGTCTTCGTCTAC -ACGGAATGAGGAGTCTTCACGTAC -ACGGAATGAGGAGTCTTCAGTGAC -ACGGAATGAGGAGTCTTCCTGTAG -ACGGAATGAGGAGTCTTCCCTAAG -ACGGAATGAGGAGTCTTCGTTCAG -ACGGAATGAGGAGTCTTCGCATAG -ACGGAATGAGGAGTCTTCGACAAG -ACGGAATGAGGAGTCTTCAAGCAG -ACGGAATGAGGAGTCTTCCGTCAA -ACGGAATGAGGAGTCTTCGCTGAA -ACGGAATGAGGAGTCTTCAGTACG -ACGGAATGAGGAGTCTTCATCCGA -ACGGAATGAGGAGTCTTCATGGGA -ACGGAATGAGGAGTCTTCGTGCAA -ACGGAATGAGGAGTCTTCGAGGAA -ACGGAATGAGGAGTCTTCCAGGTA -ACGGAATGAGGAGTCTTCGACTCT -ACGGAATGAGGAGTCTTCAGTCCT -ACGGAATGAGGAGTCTTCTAAGCC -ACGGAATGAGGAGTCTTCATAGCC -ACGGAATGAGGAGTCTTCTAACCG -ACGGAATGAGGAGTCTTCATGCCA -ACGGAATGAGGACTCTCTGGAAAC -ACGGAATGAGGACTCTCTAACACC -ACGGAATGAGGACTCTCTATCGAG -ACGGAATGAGGACTCTCTCTCCTT -ACGGAATGAGGACTCTCTCCTGTT -ACGGAATGAGGACTCTCTCGGTTT -ACGGAATGAGGACTCTCTGTGGTT -ACGGAATGAGGACTCTCTGCCTTT -ACGGAATGAGGACTCTCTGGTCTT -ACGGAATGAGGACTCTCTACGCTT -ACGGAATGAGGACTCTCTAGCGTT -ACGGAATGAGGACTCTCTTTCGTC -ACGGAATGAGGACTCTCTTCTCTC -ACGGAATGAGGACTCTCTTGGATC -ACGGAATGAGGACTCTCTCACTTC -ACGGAATGAGGACTCTCTGTACTC -ACGGAATGAGGACTCTCTGATGTC -ACGGAATGAGGACTCTCTACAGTC -ACGGAATGAGGACTCTCTTTGCTG -ACGGAATGAGGACTCTCTTCCATG -ACGGAATGAGGACTCTCTTGTGTG -ACGGAATGAGGACTCTCTCTAGTG -ACGGAATGAGGACTCTCTCATCTG -ACGGAATGAGGACTCTCTGAGTTG -ACGGAATGAGGACTCTCTAGACTG -ACGGAATGAGGACTCTCTTCGGTA -ACGGAATGAGGACTCTCTTGCCTA -ACGGAATGAGGACTCTCTCCACTA -ACGGAATGAGGACTCTCTGGAGTA -ACGGAATGAGGACTCTCTTCGTCT -ACGGAATGAGGACTCTCTTGCACT -ACGGAATGAGGACTCTCTCTGACT -ACGGAATGAGGACTCTCTCAACCT -ACGGAATGAGGACTCTCTGCTACT -ACGGAATGAGGACTCTCTGGATCT -ACGGAATGAGGACTCTCTAAGGCT -ACGGAATGAGGACTCTCTTCAACC -ACGGAATGAGGACTCTCTTGTTCC -ACGGAATGAGGACTCTCTATTCCC -ACGGAATGAGGACTCTCTTTCTCG -ACGGAATGAGGACTCTCTTAGACG -ACGGAATGAGGACTCTCTGTAACG -ACGGAATGAGGACTCTCTACTTCG -ACGGAATGAGGACTCTCTTACGCA -ACGGAATGAGGACTCTCTCTTGCA -ACGGAATGAGGACTCTCTCGAACA -ACGGAATGAGGACTCTCTCAGTCA -ACGGAATGAGGACTCTCTGATCCA -ACGGAATGAGGACTCTCTACGACA -ACGGAATGAGGACTCTCTAGCTCA -ACGGAATGAGGACTCTCTTCACGT -ACGGAATGAGGACTCTCTCGTAGT -ACGGAATGAGGACTCTCTGTCAGT -ACGGAATGAGGACTCTCTGAAGGT -ACGGAATGAGGACTCTCTAACCGT -ACGGAATGAGGACTCTCTTTGTGC -ACGGAATGAGGACTCTCTCTAAGC -ACGGAATGAGGACTCTCTACTAGC -ACGGAATGAGGACTCTCTAGATGC -ACGGAATGAGGACTCTCTTGAAGG -ACGGAATGAGGACTCTCTCAATGG -ACGGAATGAGGACTCTCTATGAGG -ACGGAATGAGGACTCTCTAATGGG -ACGGAATGAGGACTCTCTTCCTGA -ACGGAATGAGGACTCTCTTAGCGA -ACGGAATGAGGACTCTCTCACAGA -ACGGAATGAGGACTCTCTGCAAGA -ACGGAATGAGGACTCTCTGGTTGA -ACGGAATGAGGACTCTCTTCCGAT -ACGGAATGAGGACTCTCTTGGCAT -ACGGAATGAGGACTCTCTCGAGAT -ACGGAATGAGGACTCTCTTACCAC -ACGGAATGAGGACTCTCTCAGAAC -ACGGAATGAGGACTCTCTGTCTAC -ACGGAATGAGGACTCTCTACGTAC -ACGGAATGAGGACTCTCTAGTGAC -ACGGAATGAGGACTCTCTCTGTAG -ACGGAATGAGGACTCTCTCCTAAG -ACGGAATGAGGACTCTCTGTTCAG -ACGGAATGAGGACTCTCTGCATAG -ACGGAATGAGGACTCTCTGACAAG -ACGGAATGAGGACTCTCTAAGCAG -ACGGAATGAGGACTCTCTCGTCAA -ACGGAATGAGGACTCTCTGCTGAA -ACGGAATGAGGACTCTCTAGTACG -ACGGAATGAGGACTCTCTATCCGA -ACGGAATGAGGACTCTCTATGGGA -ACGGAATGAGGACTCTCTGTGCAA -ACGGAATGAGGACTCTCTGAGGAA -ACGGAATGAGGACTCTCTCAGGTA -ACGGAATGAGGACTCTCTGACTCT -ACGGAATGAGGACTCTCTAGTCCT -ACGGAATGAGGACTCTCTTAAGCC -ACGGAATGAGGACTCTCTATAGCC -ACGGAATGAGGACTCTCTTAACCG -ACGGAATGAGGACTCTCTATGCCA -ACGGAATGAGGAATCTGGGGAAAC -ACGGAATGAGGAATCTGGAACACC -ACGGAATGAGGAATCTGGATCGAG -ACGGAATGAGGAATCTGGCTCCTT -ACGGAATGAGGAATCTGGCCTGTT -ACGGAATGAGGAATCTGGCGGTTT -ACGGAATGAGGAATCTGGGTGGTT -ACGGAATGAGGAATCTGGGCCTTT -ACGGAATGAGGAATCTGGGGTCTT -ACGGAATGAGGAATCTGGACGCTT -ACGGAATGAGGAATCTGGAGCGTT -ACGGAATGAGGAATCTGGTTCGTC -ACGGAATGAGGAATCTGGTCTCTC -ACGGAATGAGGAATCTGGTGGATC -ACGGAATGAGGAATCTGGCACTTC -ACGGAATGAGGAATCTGGGTACTC -ACGGAATGAGGAATCTGGGATGTC -ACGGAATGAGGAATCTGGACAGTC -ACGGAATGAGGAATCTGGTTGCTG -ACGGAATGAGGAATCTGGTCCATG -ACGGAATGAGGAATCTGGTGTGTG -ACGGAATGAGGAATCTGGCTAGTG -ACGGAATGAGGAATCTGGCATCTG -ACGGAATGAGGAATCTGGGAGTTG -ACGGAATGAGGAATCTGGAGACTG -ACGGAATGAGGAATCTGGTCGGTA -ACGGAATGAGGAATCTGGTGCCTA -ACGGAATGAGGAATCTGGCCACTA -ACGGAATGAGGAATCTGGGGAGTA -ACGGAATGAGGAATCTGGTCGTCT -ACGGAATGAGGAATCTGGTGCACT -ACGGAATGAGGAATCTGGCTGACT -ACGGAATGAGGAATCTGGCAACCT -ACGGAATGAGGAATCTGGGCTACT -ACGGAATGAGGAATCTGGGGATCT -ACGGAATGAGGAATCTGGAAGGCT -ACGGAATGAGGAATCTGGTCAACC -ACGGAATGAGGAATCTGGTGTTCC -ACGGAATGAGGAATCTGGATTCCC -ACGGAATGAGGAATCTGGTTCTCG -ACGGAATGAGGAATCTGGTAGACG -ACGGAATGAGGAATCTGGGTAACG -ACGGAATGAGGAATCTGGACTTCG -ACGGAATGAGGAATCTGGTACGCA -ACGGAATGAGGAATCTGGCTTGCA -ACGGAATGAGGAATCTGGCGAACA -ACGGAATGAGGAATCTGGCAGTCA -ACGGAATGAGGAATCTGGGATCCA -ACGGAATGAGGAATCTGGACGACA -ACGGAATGAGGAATCTGGAGCTCA -ACGGAATGAGGAATCTGGTCACGT -ACGGAATGAGGAATCTGGCGTAGT -ACGGAATGAGGAATCTGGGTCAGT -ACGGAATGAGGAATCTGGGAAGGT -ACGGAATGAGGAATCTGGAACCGT -ACGGAATGAGGAATCTGGTTGTGC -ACGGAATGAGGAATCTGGCTAAGC -ACGGAATGAGGAATCTGGACTAGC -ACGGAATGAGGAATCTGGAGATGC -ACGGAATGAGGAATCTGGTGAAGG -ACGGAATGAGGAATCTGGCAATGG -ACGGAATGAGGAATCTGGATGAGG -ACGGAATGAGGAATCTGGAATGGG -ACGGAATGAGGAATCTGGTCCTGA -ACGGAATGAGGAATCTGGTAGCGA -ACGGAATGAGGAATCTGGCACAGA -ACGGAATGAGGAATCTGGGCAAGA -ACGGAATGAGGAATCTGGGGTTGA -ACGGAATGAGGAATCTGGTCCGAT -ACGGAATGAGGAATCTGGTGGCAT -ACGGAATGAGGAATCTGGCGAGAT -ACGGAATGAGGAATCTGGTACCAC -ACGGAATGAGGAATCTGGCAGAAC -ACGGAATGAGGAATCTGGGTCTAC -ACGGAATGAGGAATCTGGACGTAC -ACGGAATGAGGAATCTGGAGTGAC -ACGGAATGAGGAATCTGGCTGTAG -ACGGAATGAGGAATCTGGCCTAAG -ACGGAATGAGGAATCTGGGTTCAG -ACGGAATGAGGAATCTGGGCATAG -ACGGAATGAGGAATCTGGGACAAG -ACGGAATGAGGAATCTGGAAGCAG -ACGGAATGAGGAATCTGGCGTCAA -ACGGAATGAGGAATCTGGGCTGAA -ACGGAATGAGGAATCTGGAGTACG -ACGGAATGAGGAATCTGGATCCGA -ACGGAATGAGGAATCTGGATGGGA -ACGGAATGAGGAATCTGGGTGCAA -ACGGAATGAGGAATCTGGGAGGAA -ACGGAATGAGGAATCTGGCAGGTA -ACGGAATGAGGAATCTGGGACTCT -ACGGAATGAGGAATCTGGAGTCCT -ACGGAATGAGGAATCTGGTAAGCC -ACGGAATGAGGAATCTGGATAGCC -ACGGAATGAGGAATCTGGTAACCG -ACGGAATGAGGAATCTGGATGCCA -ACGGAATGAGGATTCCACGGAAAC -ACGGAATGAGGATTCCACAACACC -ACGGAATGAGGATTCCACATCGAG -ACGGAATGAGGATTCCACCTCCTT -ACGGAATGAGGATTCCACCCTGTT -ACGGAATGAGGATTCCACCGGTTT -ACGGAATGAGGATTCCACGTGGTT -ACGGAATGAGGATTCCACGCCTTT -ACGGAATGAGGATTCCACGGTCTT -ACGGAATGAGGATTCCACACGCTT -ACGGAATGAGGATTCCACAGCGTT -ACGGAATGAGGATTCCACTTCGTC -ACGGAATGAGGATTCCACTCTCTC -ACGGAATGAGGATTCCACTGGATC -ACGGAATGAGGATTCCACCACTTC -ACGGAATGAGGATTCCACGTACTC -ACGGAATGAGGATTCCACGATGTC -ACGGAATGAGGATTCCACACAGTC -ACGGAATGAGGATTCCACTTGCTG -ACGGAATGAGGATTCCACTCCATG -ACGGAATGAGGATTCCACTGTGTG -ACGGAATGAGGATTCCACCTAGTG -ACGGAATGAGGATTCCACCATCTG -ACGGAATGAGGATTCCACGAGTTG -ACGGAATGAGGATTCCACAGACTG -ACGGAATGAGGATTCCACTCGGTA -ACGGAATGAGGATTCCACTGCCTA -ACGGAATGAGGATTCCACCCACTA -ACGGAATGAGGATTCCACGGAGTA -ACGGAATGAGGATTCCACTCGTCT -ACGGAATGAGGATTCCACTGCACT -ACGGAATGAGGATTCCACCTGACT -ACGGAATGAGGATTCCACCAACCT -ACGGAATGAGGATTCCACGCTACT -ACGGAATGAGGATTCCACGGATCT -ACGGAATGAGGATTCCACAAGGCT -ACGGAATGAGGATTCCACTCAACC -ACGGAATGAGGATTCCACTGTTCC -ACGGAATGAGGATTCCACATTCCC -ACGGAATGAGGATTCCACTTCTCG -ACGGAATGAGGATTCCACTAGACG -ACGGAATGAGGATTCCACGTAACG -ACGGAATGAGGATTCCACACTTCG -ACGGAATGAGGATTCCACTACGCA -ACGGAATGAGGATTCCACCTTGCA -ACGGAATGAGGATTCCACCGAACA -ACGGAATGAGGATTCCACCAGTCA -ACGGAATGAGGATTCCACGATCCA -ACGGAATGAGGATTCCACACGACA -ACGGAATGAGGATTCCACAGCTCA -ACGGAATGAGGATTCCACTCACGT -ACGGAATGAGGATTCCACCGTAGT -ACGGAATGAGGATTCCACGTCAGT -ACGGAATGAGGATTCCACGAAGGT -ACGGAATGAGGATTCCACAACCGT -ACGGAATGAGGATTCCACTTGTGC -ACGGAATGAGGATTCCACCTAAGC -ACGGAATGAGGATTCCACACTAGC -ACGGAATGAGGATTCCACAGATGC -ACGGAATGAGGATTCCACTGAAGG -ACGGAATGAGGATTCCACCAATGG -ACGGAATGAGGATTCCACATGAGG -ACGGAATGAGGATTCCACAATGGG -ACGGAATGAGGATTCCACTCCTGA -ACGGAATGAGGATTCCACTAGCGA -ACGGAATGAGGATTCCACCACAGA -ACGGAATGAGGATTCCACGCAAGA -ACGGAATGAGGATTCCACGGTTGA -ACGGAATGAGGATTCCACTCCGAT -ACGGAATGAGGATTCCACTGGCAT -ACGGAATGAGGATTCCACCGAGAT -ACGGAATGAGGATTCCACTACCAC -ACGGAATGAGGATTCCACCAGAAC -ACGGAATGAGGATTCCACGTCTAC -ACGGAATGAGGATTCCACACGTAC -ACGGAATGAGGATTCCACAGTGAC -ACGGAATGAGGATTCCACCTGTAG -ACGGAATGAGGATTCCACCCTAAG -ACGGAATGAGGATTCCACGTTCAG -ACGGAATGAGGATTCCACGCATAG -ACGGAATGAGGATTCCACGACAAG -ACGGAATGAGGATTCCACAAGCAG -ACGGAATGAGGATTCCACCGTCAA -ACGGAATGAGGATTCCACGCTGAA -ACGGAATGAGGATTCCACAGTACG -ACGGAATGAGGATTCCACATCCGA -ACGGAATGAGGATTCCACATGGGA -ACGGAATGAGGATTCCACGTGCAA -ACGGAATGAGGATTCCACGAGGAA -ACGGAATGAGGATTCCACCAGGTA -ACGGAATGAGGATTCCACGACTCT -ACGGAATGAGGATTCCACAGTCCT -ACGGAATGAGGATTCCACTAAGCC -ACGGAATGAGGATTCCACATAGCC -ACGGAATGAGGATTCCACTAACCG -ACGGAATGAGGATTCCACATGCCA -ACGGAATGAGGACTCGTAGGAAAC -ACGGAATGAGGACTCGTAAACACC -ACGGAATGAGGACTCGTAATCGAG -ACGGAATGAGGACTCGTACTCCTT -ACGGAATGAGGACTCGTACCTGTT -ACGGAATGAGGACTCGTACGGTTT -ACGGAATGAGGACTCGTAGTGGTT -ACGGAATGAGGACTCGTAGCCTTT -ACGGAATGAGGACTCGTAGGTCTT -ACGGAATGAGGACTCGTAACGCTT -ACGGAATGAGGACTCGTAAGCGTT -ACGGAATGAGGACTCGTATTCGTC -ACGGAATGAGGACTCGTATCTCTC -ACGGAATGAGGACTCGTATGGATC -ACGGAATGAGGACTCGTACACTTC -ACGGAATGAGGACTCGTAGTACTC -ACGGAATGAGGACTCGTAGATGTC -ACGGAATGAGGACTCGTAACAGTC -ACGGAATGAGGACTCGTATTGCTG -ACGGAATGAGGACTCGTATCCATG -ACGGAATGAGGACTCGTATGTGTG -ACGGAATGAGGACTCGTACTAGTG -ACGGAATGAGGACTCGTACATCTG -ACGGAATGAGGACTCGTAGAGTTG -ACGGAATGAGGACTCGTAAGACTG -ACGGAATGAGGACTCGTATCGGTA -ACGGAATGAGGACTCGTATGCCTA -ACGGAATGAGGACTCGTACCACTA -ACGGAATGAGGACTCGTAGGAGTA -ACGGAATGAGGACTCGTATCGTCT -ACGGAATGAGGACTCGTATGCACT -ACGGAATGAGGACTCGTACTGACT -ACGGAATGAGGACTCGTACAACCT -ACGGAATGAGGACTCGTAGCTACT -ACGGAATGAGGACTCGTAGGATCT -ACGGAATGAGGACTCGTAAAGGCT -ACGGAATGAGGACTCGTATCAACC -ACGGAATGAGGACTCGTATGTTCC -ACGGAATGAGGACTCGTAATTCCC -ACGGAATGAGGACTCGTATTCTCG -ACGGAATGAGGACTCGTATAGACG -ACGGAATGAGGACTCGTAGTAACG -ACGGAATGAGGACTCGTAACTTCG -ACGGAATGAGGACTCGTATACGCA -ACGGAATGAGGACTCGTACTTGCA -ACGGAATGAGGACTCGTACGAACA -ACGGAATGAGGACTCGTACAGTCA -ACGGAATGAGGACTCGTAGATCCA -ACGGAATGAGGACTCGTAACGACA -ACGGAATGAGGACTCGTAAGCTCA -ACGGAATGAGGACTCGTATCACGT -ACGGAATGAGGACTCGTACGTAGT -ACGGAATGAGGACTCGTAGTCAGT -ACGGAATGAGGACTCGTAGAAGGT -ACGGAATGAGGACTCGTAAACCGT -ACGGAATGAGGACTCGTATTGTGC -ACGGAATGAGGACTCGTACTAAGC -ACGGAATGAGGACTCGTAACTAGC -ACGGAATGAGGACTCGTAAGATGC -ACGGAATGAGGACTCGTATGAAGG -ACGGAATGAGGACTCGTACAATGG -ACGGAATGAGGACTCGTAATGAGG -ACGGAATGAGGACTCGTAAATGGG -ACGGAATGAGGACTCGTATCCTGA -ACGGAATGAGGACTCGTATAGCGA -ACGGAATGAGGACTCGTACACAGA -ACGGAATGAGGACTCGTAGCAAGA -ACGGAATGAGGACTCGTAGGTTGA -ACGGAATGAGGACTCGTATCCGAT -ACGGAATGAGGACTCGTATGGCAT -ACGGAATGAGGACTCGTACGAGAT -ACGGAATGAGGACTCGTATACCAC -ACGGAATGAGGACTCGTACAGAAC -ACGGAATGAGGACTCGTAGTCTAC -ACGGAATGAGGACTCGTAACGTAC -ACGGAATGAGGACTCGTAAGTGAC -ACGGAATGAGGACTCGTACTGTAG -ACGGAATGAGGACTCGTACCTAAG -ACGGAATGAGGACTCGTAGTTCAG -ACGGAATGAGGACTCGTAGCATAG -ACGGAATGAGGACTCGTAGACAAG -ACGGAATGAGGACTCGTAAAGCAG -ACGGAATGAGGACTCGTACGTCAA -ACGGAATGAGGACTCGTAGCTGAA -ACGGAATGAGGACTCGTAAGTACG -ACGGAATGAGGACTCGTAATCCGA -ACGGAATGAGGACTCGTAATGGGA -ACGGAATGAGGACTCGTAGTGCAA -ACGGAATGAGGACTCGTAGAGGAA -ACGGAATGAGGACTCGTACAGGTA -ACGGAATGAGGACTCGTAGACTCT -ACGGAATGAGGACTCGTAAGTCCT -ACGGAATGAGGACTCGTATAAGCC -ACGGAATGAGGACTCGTAATAGCC -ACGGAATGAGGACTCGTATAACCG -ACGGAATGAGGACTCGTAATGCCA -ACGGAATGAGGAGTCGATGGAAAC -ACGGAATGAGGAGTCGATAACACC -ACGGAATGAGGAGTCGATATCGAG -ACGGAATGAGGAGTCGATCTCCTT -ACGGAATGAGGAGTCGATCCTGTT -ACGGAATGAGGAGTCGATCGGTTT -ACGGAATGAGGAGTCGATGTGGTT -ACGGAATGAGGAGTCGATGCCTTT -ACGGAATGAGGAGTCGATGGTCTT -ACGGAATGAGGAGTCGATACGCTT -ACGGAATGAGGAGTCGATAGCGTT -ACGGAATGAGGAGTCGATTTCGTC -ACGGAATGAGGAGTCGATTCTCTC -ACGGAATGAGGAGTCGATTGGATC -ACGGAATGAGGAGTCGATCACTTC -ACGGAATGAGGAGTCGATGTACTC -ACGGAATGAGGAGTCGATGATGTC -ACGGAATGAGGAGTCGATACAGTC -ACGGAATGAGGAGTCGATTTGCTG -ACGGAATGAGGAGTCGATTCCATG -ACGGAATGAGGAGTCGATTGTGTG -ACGGAATGAGGAGTCGATCTAGTG -ACGGAATGAGGAGTCGATCATCTG -ACGGAATGAGGAGTCGATGAGTTG -ACGGAATGAGGAGTCGATAGACTG -ACGGAATGAGGAGTCGATTCGGTA -ACGGAATGAGGAGTCGATTGCCTA -ACGGAATGAGGAGTCGATCCACTA -ACGGAATGAGGAGTCGATGGAGTA -ACGGAATGAGGAGTCGATTCGTCT -ACGGAATGAGGAGTCGATTGCACT -ACGGAATGAGGAGTCGATCTGACT -ACGGAATGAGGAGTCGATCAACCT -ACGGAATGAGGAGTCGATGCTACT -ACGGAATGAGGAGTCGATGGATCT -ACGGAATGAGGAGTCGATAAGGCT -ACGGAATGAGGAGTCGATTCAACC -ACGGAATGAGGAGTCGATTGTTCC -ACGGAATGAGGAGTCGATATTCCC -ACGGAATGAGGAGTCGATTTCTCG -ACGGAATGAGGAGTCGATTAGACG -ACGGAATGAGGAGTCGATGTAACG -ACGGAATGAGGAGTCGATACTTCG -ACGGAATGAGGAGTCGATTACGCA -ACGGAATGAGGAGTCGATCTTGCA -ACGGAATGAGGAGTCGATCGAACA -ACGGAATGAGGAGTCGATCAGTCA -ACGGAATGAGGAGTCGATGATCCA -ACGGAATGAGGAGTCGATACGACA -ACGGAATGAGGAGTCGATAGCTCA -ACGGAATGAGGAGTCGATTCACGT -ACGGAATGAGGAGTCGATCGTAGT -ACGGAATGAGGAGTCGATGTCAGT -ACGGAATGAGGAGTCGATGAAGGT -ACGGAATGAGGAGTCGATAACCGT -ACGGAATGAGGAGTCGATTTGTGC -ACGGAATGAGGAGTCGATCTAAGC -ACGGAATGAGGAGTCGATACTAGC -ACGGAATGAGGAGTCGATAGATGC -ACGGAATGAGGAGTCGATTGAAGG -ACGGAATGAGGAGTCGATCAATGG -ACGGAATGAGGAGTCGATATGAGG -ACGGAATGAGGAGTCGATAATGGG -ACGGAATGAGGAGTCGATTCCTGA -ACGGAATGAGGAGTCGATTAGCGA -ACGGAATGAGGAGTCGATCACAGA -ACGGAATGAGGAGTCGATGCAAGA -ACGGAATGAGGAGTCGATGGTTGA -ACGGAATGAGGAGTCGATTCCGAT -ACGGAATGAGGAGTCGATTGGCAT -ACGGAATGAGGAGTCGATCGAGAT -ACGGAATGAGGAGTCGATTACCAC -ACGGAATGAGGAGTCGATCAGAAC -ACGGAATGAGGAGTCGATGTCTAC -ACGGAATGAGGAGTCGATACGTAC -ACGGAATGAGGAGTCGATAGTGAC -ACGGAATGAGGAGTCGATCTGTAG -ACGGAATGAGGAGTCGATCCTAAG -ACGGAATGAGGAGTCGATGTTCAG -ACGGAATGAGGAGTCGATGCATAG -ACGGAATGAGGAGTCGATGACAAG -ACGGAATGAGGAGTCGATAAGCAG -ACGGAATGAGGAGTCGATCGTCAA -ACGGAATGAGGAGTCGATGCTGAA -ACGGAATGAGGAGTCGATAGTACG -ACGGAATGAGGAGTCGATATCCGA -ACGGAATGAGGAGTCGATATGGGA -ACGGAATGAGGAGTCGATGTGCAA -ACGGAATGAGGAGTCGATGAGGAA -ACGGAATGAGGAGTCGATCAGGTA -ACGGAATGAGGAGTCGATGACTCT -ACGGAATGAGGAGTCGATAGTCCT -ACGGAATGAGGAGTCGATTAAGCC -ACGGAATGAGGAGTCGATATAGCC -ACGGAATGAGGAGTCGATTAACCG -ACGGAATGAGGAGTCGATATGCCA -ACGGAATGAGGAGTCACAGGAAAC -ACGGAATGAGGAGTCACAAACACC -ACGGAATGAGGAGTCACAATCGAG -ACGGAATGAGGAGTCACACTCCTT -ACGGAATGAGGAGTCACACCTGTT -ACGGAATGAGGAGTCACACGGTTT -ACGGAATGAGGAGTCACAGTGGTT -ACGGAATGAGGAGTCACAGCCTTT -ACGGAATGAGGAGTCACAGGTCTT -ACGGAATGAGGAGTCACAACGCTT -ACGGAATGAGGAGTCACAAGCGTT -ACGGAATGAGGAGTCACATTCGTC -ACGGAATGAGGAGTCACATCTCTC -ACGGAATGAGGAGTCACATGGATC -ACGGAATGAGGAGTCACACACTTC -ACGGAATGAGGAGTCACAGTACTC -ACGGAATGAGGAGTCACAGATGTC -ACGGAATGAGGAGTCACAACAGTC -ACGGAATGAGGAGTCACATTGCTG -ACGGAATGAGGAGTCACATCCATG -ACGGAATGAGGAGTCACATGTGTG -ACGGAATGAGGAGTCACACTAGTG -ACGGAATGAGGAGTCACACATCTG -ACGGAATGAGGAGTCACAGAGTTG -ACGGAATGAGGAGTCACAAGACTG -ACGGAATGAGGAGTCACATCGGTA -ACGGAATGAGGAGTCACATGCCTA -ACGGAATGAGGAGTCACACCACTA -ACGGAATGAGGAGTCACAGGAGTA -ACGGAATGAGGAGTCACATCGTCT -ACGGAATGAGGAGTCACATGCACT -ACGGAATGAGGAGTCACACTGACT -ACGGAATGAGGAGTCACACAACCT -ACGGAATGAGGAGTCACAGCTACT -ACGGAATGAGGAGTCACAGGATCT -ACGGAATGAGGAGTCACAAAGGCT -ACGGAATGAGGAGTCACATCAACC -ACGGAATGAGGAGTCACATGTTCC -ACGGAATGAGGAGTCACAATTCCC -ACGGAATGAGGAGTCACATTCTCG -ACGGAATGAGGAGTCACATAGACG -ACGGAATGAGGAGTCACAGTAACG -ACGGAATGAGGAGTCACAACTTCG -ACGGAATGAGGAGTCACATACGCA -ACGGAATGAGGAGTCACACTTGCA -ACGGAATGAGGAGTCACACGAACA -ACGGAATGAGGAGTCACACAGTCA -ACGGAATGAGGAGTCACAGATCCA -ACGGAATGAGGAGTCACAACGACA -ACGGAATGAGGAGTCACAAGCTCA -ACGGAATGAGGAGTCACATCACGT -ACGGAATGAGGAGTCACACGTAGT -ACGGAATGAGGAGTCACAGTCAGT -ACGGAATGAGGAGTCACAGAAGGT -ACGGAATGAGGAGTCACAAACCGT -ACGGAATGAGGAGTCACATTGTGC -ACGGAATGAGGAGTCACACTAAGC -ACGGAATGAGGAGTCACAACTAGC -ACGGAATGAGGAGTCACAAGATGC -ACGGAATGAGGAGTCACATGAAGG -ACGGAATGAGGAGTCACACAATGG -ACGGAATGAGGAGTCACAATGAGG -ACGGAATGAGGAGTCACAAATGGG -ACGGAATGAGGAGTCACATCCTGA -ACGGAATGAGGAGTCACATAGCGA -ACGGAATGAGGAGTCACACACAGA -ACGGAATGAGGAGTCACAGCAAGA -ACGGAATGAGGAGTCACAGGTTGA -ACGGAATGAGGAGTCACATCCGAT -ACGGAATGAGGAGTCACATGGCAT -ACGGAATGAGGAGTCACACGAGAT -ACGGAATGAGGAGTCACATACCAC -ACGGAATGAGGAGTCACACAGAAC -ACGGAATGAGGAGTCACAGTCTAC -ACGGAATGAGGAGTCACAACGTAC -ACGGAATGAGGAGTCACAAGTGAC -ACGGAATGAGGAGTCACACTGTAG -ACGGAATGAGGAGTCACACCTAAG -ACGGAATGAGGAGTCACAGTTCAG -ACGGAATGAGGAGTCACAGCATAG -ACGGAATGAGGAGTCACAGACAAG -ACGGAATGAGGAGTCACAAAGCAG -ACGGAATGAGGAGTCACACGTCAA -ACGGAATGAGGAGTCACAGCTGAA -ACGGAATGAGGAGTCACAAGTACG -ACGGAATGAGGAGTCACAATCCGA -ACGGAATGAGGAGTCACAATGGGA -ACGGAATGAGGAGTCACAGTGCAA -ACGGAATGAGGAGTCACAGAGGAA -ACGGAATGAGGAGTCACACAGGTA -ACGGAATGAGGAGTCACAGACTCT -ACGGAATGAGGAGTCACAAGTCCT -ACGGAATGAGGAGTCACATAAGCC -ACGGAATGAGGAGTCACAATAGCC -ACGGAATGAGGAGTCACATAACCG -ACGGAATGAGGAGTCACAATGCCA -ACGGAATGAGGACTGTTGGGAAAC -ACGGAATGAGGACTGTTGAACACC -ACGGAATGAGGACTGTTGATCGAG -ACGGAATGAGGACTGTTGCTCCTT -ACGGAATGAGGACTGTTGCCTGTT -ACGGAATGAGGACTGTTGCGGTTT -ACGGAATGAGGACTGTTGGTGGTT -ACGGAATGAGGACTGTTGGCCTTT -ACGGAATGAGGACTGTTGGGTCTT -ACGGAATGAGGACTGTTGACGCTT -ACGGAATGAGGACTGTTGAGCGTT -ACGGAATGAGGACTGTTGTTCGTC -ACGGAATGAGGACTGTTGTCTCTC -ACGGAATGAGGACTGTTGTGGATC -ACGGAATGAGGACTGTTGCACTTC -ACGGAATGAGGACTGTTGGTACTC -ACGGAATGAGGACTGTTGGATGTC -ACGGAATGAGGACTGTTGACAGTC -ACGGAATGAGGACTGTTGTTGCTG -ACGGAATGAGGACTGTTGTCCATG -ACGGAATGAGGACTGTTGTGTGTG -ACGGAATGAGGACTGTTGCTAGTG -ACGGAATGAGGACTGTTGCATCTG -ACGGAATGAGGACTGTTGGAGTTG -ACGGAATGAGGACTGTTGAGACTG -ACGGAATGAGGACTGTTGTCGGTA -ACGGAATGAGGACTGTTGTGCCTA -ACGGAATGAGGACTGTTGCCACTA -ACGGAATGAGGACTGTTGGGAGTA -ACGGAATGAGGACTGTTGTCGTCT -ACGGAATGAGGACTGTTGTGCACT -ACGGAATGAGGACTGTTGCTGACT -ACGGAATGAGGACTGTTGCAACCT -ACGGAATGAGGACTGTTGGCTACT -ACGGAATGAGGACTGTTGGGATCT -ACGGAATGAGGACTGTTGAAGGCT -ACGGAATGAGGACTGTTGTCAACC -ACGGAATGAGGACTGTTGTGTTCC -ACGGAATGAGGACTGTTGATTCCC -ACGGAATGAGGACTGTTGTTCTCG -ACGGAATGAGGACTGTTGTAGACG -ACGGAATGAGGACTGTTGGTAACG -ACGGAATGAGGACTGTTGACTTCG -ACGGAATGAGGACTGTTGTACGCA -ACGGAATGAGGACTGTTGCTTGCA -ACGGAATGAGGACTGTTGCGAACA -ACGGAATGAGGACTGTTGCAGTCA -ACGGAATGAGGACTGTTGGATCCA -ACGGAATGAGGACTGTTGACGACA -ACGGAATGAGGACTGTTGAGCTCA -ACGGAATGAGGACTGTTGTCACGT -ACGGAATGAGGACTGTTGCGTAGT -ACGGAATGAGGACTGTTGGTCAGT -ACGGAATGAGGACTGTTGGAAGGT -ACGGAATGAGGACTGTTGAACCGT -ACGGAATGAGGACTGTTGTTGTGC -ACGGAATGAGGACTGTTGCTAAGC -ACGGAATGAGGACTGTTGACTAGC -ACGGAATGAGGACTGTTGAGATGC -ACGGAATGAGGACTGTTGTGAAGG -ACGGAATGAGGACTGTTGCAATGG -ACGGAATGAGGACTGTTGATGAGG -ACGGAATGAGGACTGTTGAATGGG -ACGGAATGAGGACTGTTGTCCTGA -ACGGAATGAGGACTGTTGTAGCGA -ACGGAATGAGGACTGTTGCACAGA -ACGGAATGAGGACTGTTGGCAAGA -ACGGAATGAGGACTGTTGGGTTGA -ACGGAATGAGGACTGTTGTCCGAT -ACGGAATGAGGACTGTTGTGGCAT -ACGGAATGAGGACTGTTGCGAGAT -ACGGAATGAGGACTGTTGTACCAC -ACGGAATGAGGACTGTTGCAGAAC -ACGGAATGAGGACTGTTGGTCTAC -ACGGAATGAGGACTGTTGACGTAC -ACGGAATGAGGACTGTTGAGTGAC -ACGGAATGAGGACTGTTGCTGTAG -ACGGAATGAGGACTGTTGCCTAAG -ACGGAATGAGGACTGTTGGTTCAG -ACGGAATGAGGACTGTTGGCATAG -ACGGAATGAGGACTGTTGGACAAG -ACGGAATGAGGACTGTTGAAGCAG -ACGGAATGAGGACTGTTGCGTCAA -ACGGAATGAGGACTGTTGGCTGAA -ACGGAATGAGGACTGTTGAGTACG -ACGGAATGAGGACTGTTGATCCGA -ACGGAATGAGGACTGTTGATGGGA -ACGGAATGAGGACTGTTGGTGCAA -ACGGAATGAGGACTGTTGGAGGAA -ACGGAATGAGGACTGTTGCAGGTA -ACGGAATGAGGACTGTTGGACTCT -ACGGAATGAGGACTGTTGAGTCCT -ACGGAATGAGGACTGTTGTAAGCC -ACGGAATGAGGACTGTTGATAGCC -ACGGAATGAGGACTGTTGTAACCG -ACGGAATGAGGACTGTTGATGCCA -ACGGAATGAGGAATGTCCGGAAAC -ACGGAATGAGGAATGTCCAACACC -ACGGAATGAGGAATGTCCATCGAG -ACGGAATGAGGAATGTCCCTCCTT -ACGGAATGAGGAATGTCCCCTGTT -ACGGAATGAGGAATGTCCCGGTTT -ACGGAATGAGGAATGTCCGTGGTT -ACGGAATGAGGAATGTCCGCCTTT -ACGGAATGAGGAATGTCCGGTCTT -ACGGAATGAGGAATGTCCACGCTT -ACGGAATGAGGAATGTCCAGCGTT -ACGGAATGAGGAATGTCCTTCGTC -ACGGAATGAGGAATGTCCTCTCTC -ACGGAATGAGGAATGTCCTGGATC -ACGGAATGAGGAATGTCCCACTTC -ACGGAATGAGGAATGTCCGTACTC -ACGGAATGAGGAATGTCCGATGTC -ACGGAATGAGGAATGTCCACAGTC -ACGGAATGAGGAATGTCCTTGCTG -ACGGAATGAGGAATGTCCTCCATG -ACGGAATGAGGAATGTCCTGTGTG -ACGGAATGAGGAATGTCCCTAGTG -ACGGAATGAGGAATGTCCCATCTG -ACGGAATGAGGAATGTCCGAGTTG -ACGGAATGAGGAATGTCCAGACTG -ACGGAATGAGGAATGTCCTCGGTA -ACGGAATGAGGAATGTCCTGCCTA -ACGGAATGAGGAATGTCCCCACTA -ACGGAATGAGGAATGTCCGGAGTA -ACGGAATGAGGAATGTCCTCGTCT -ACGGAATGAGGAATGTCCTGCACT -ACGGAATGAGGAATGTCCCTGACT -ACGGAATGAGGAATGTCCCAACCT -ACGGAATGAGGAATGTCCGCTACT -ACGGAATGAGGAATGTCCGGATCT -ACGGAATGAGGAATGTCCAAGGCT -ACGGAATGAGGAATGTCCTCAACC -ACGGAATGAGGAATGTCCTGTTCC -ACGGAATGAGGAATGTCCATTCCC -ACGGAATGAGGAATGTCCTTCTCG -ACGGAATGAGGAATGTCCTAGACG -ACGGAATGAGGAATGTCCGTAACG -ACGGAATGAGGAATGTCCACTTCG -ACGGAATGAGGAATGTCCTACGCA -ACGGAATGAGGAATGTCCCTTGCA -ACGGAATGAGGAATGTCCCGAACA -ACGGAATGAGGAATGTCCCAGTCA -ACGGAATGAGGAATGTCCGATCCA -ACGGAATGAGGAATGTCCACGACA -ACGGAATGAGGAATGTCCAGCTCA -ACGGAATGAGGAATGTCCTCACGT -ACGGAATGAGGAATGTCCCGTAGT -ACGGAATGAGGAATGTCCGTCAGT -ACGGAATGAGGAATGTCCGAAGGT -ACGGAATGAGGAATGTCCAACCGT -ACGGAATGAGGAATGTCCTTGTGC -ACGGAATGAGGAATGTCCCTAAGC -ACGGAATGAGGAATGTCCACTAGC -ACGGAATGAGGAATGTCCAGATGC -ACGGAATGAGGAATGTCCTGAAGG -ACGGAATGAGGAATGTCCCAATGG -ACGGAATGAGGAATGTCCATGAGG -ACGGAATGAGGAATGTCCAATGGG -ACGGAATGAGGAATGTCCTCCTGA -ACGGAATGAGGAATGTCCTAGCGA -ACGGAATGAGGAATGTCCCACAGA -ACGGAATGAGGAATGTCCGCAAGA -ACGGAATGAGGAATGTCCGGTTGA -ACGGAATGAGGAATGTCCTCCGAT -ACGGAATGAGGAATGTCCTGGCAT -ACGGAATGAGGAATGTCCCGAGAT -ACGGAATGAGGAATGTCCTACCAC -ACGGAATGAGGAATGTCCCAGAAC -ACGGAATGAGGAATGTCCGTCTAC -ACGGAATGAGGAATGTCCACGTAC -ACGGAATGAGGAATGTCCAGTGAC -ACGGAATGAGGAATGTCCCTGTAG -ACGGAATGAGGAATGTCCCCTAAG -ACGGAATGAGGAATGTCCGTTCAG -ACGGAATGAGGAATGTCCGCATAG -ACGGAATGAGGAATGTCCGACAAG -ACGGAATGAGGAATGTCCAAGCAG -ACGGAATGAGGAATGTCCCGTCAA -ACGGAATGAGGAATGTCCGCTGAA -ACGGAATGAGGAATGTCCAGTACG -ACGGAATGAGGAATGTCCATCCGA -ACGGAATGAGGAATGTCCATGGGA -ACGGAATGAGGAATGTCCGTGCAA -ACGGAATGAGGAATGTCCGAGGAA -ACGGAATGAGGAATGTCCCAGGTA -ACGGAATGAGGAATGTCCGACTCT -ACGGAATGAGGAATGTCCAGTCCT -ACGGAATGAGGAATGTCCTAAGCC -ACGGAATGAGGAATGTCCATAGCC -ACGGAATGAGGAATGTCCTAACCG -ACGGAATGAGGAATGTCCATGCCA -ACGGAATGAGGAGTGTGTGGAAAC -ACGGAATGAGGAGTGTGTAACACC -ACGGAATGAGGAGTGTGTATCGAG -ACGGAATGAGGAGTGTGTCTCCTT -ACGGAATGAGGAGTGTGTCCTGTT -ACGGAATGAGGAGTGTGTCGGTTT -ACGGAATGAGGAGTGTGTGTGGTT -ACGGAATGAGGAGTGTGTGCCTTT -ACGGAATGAGGAGTGTGTGGTCTT -ACGGAATGAGGAGTGTGTACGCTT -ACGGAATGAGGAGTGTGTAGCGTT -ACGGAATGAGGAGTGTGTTTCGTC -ACGGAATGAGGAGTGTGTTCTCTC -ACGGAATGAGGAGTGTGTTGGATC -ACGGAATGAGGAGTGTGTCACTTC -ACGGAATGAGGAGTGTGTGTACTC -ACGGAATGAGGAGTGTGTGATGTC -ACGGAATGAGGAGTGTGTACAGTC -ACGGAATGAGGAGTGTGTTTGCTG -ACGGAATGAGGAGTGTGTTCCATG -ACGGAATGAGGAGTGTGTTGTGTG -ACGGAATGAGGAGTGTGTCTAGTG -ACGGAATGAGGAGTGTGTCATCTG -ACGGAATGAGGAGTGTGTGAGTTG -ACGGAATGAGGAGTGTGTAGACTG -ACGGAATGAGGAGTGTGTTCGGTA -ACGGAATGAGGAGTGTGTTGCCTA -ACGGAATGAGGAGTGTGTCCACTA -ACGGAATGAGGAGTGTGTGGAGTA -ACGGAATGAGGAGTGTGTTCGTCT -ACGGAATGAGGAGTGTGTTGCACT -ACGGAATGAGGAGTGTGTCTGACT -ACGGAATGAGGAGTGTGTCAACCT -ACGGAATGAGGAGTGTGTGCTACT -ACGGAATGAGGAGTGTGTGGATCT -ACGGAATGAGGAGTGTGTAAGGCT -ACGGAATGAGGAGTGTGTTCAACC -ACGGAATGAGGAGTGTGTTGTTCC -ACGGAATGAGGAGTGTGTATTCCC -ACGGAATGAGGAGTGTGTTTCTCG -ACGGAATGAGGAGTGTGTTAGACG -ACGGAATGAGGAGTGTGTGTAACG -ACGGAATGAGGAGTGTGTACTTCG -ACGGAATGAGGAGTGTGTTACGCA -ACGGAATGAGGAGTGTGTCTTGCA -ACGGAATGAGGAGTGTGTCGAACA -ACGGAATGAGGAGTGTGTCAGTCA -ACGGAATGAGGAGTGTGTGATCCA -ACGGAATGAGGAGTGTGTACGACA -ACGGAATGAGGAGTGTGTAGCTCA -ACGGAATGAGGAGTGTGTTCACGT -ACGGAATGAGGAGTGTGTCGTAGT -ACGGAATGAGGAGTGTGTGTCAGT -ACGGAATGAGGAGTGTGTGAAGGT -ACGGAATGAGGAGTGTGTAACCGT -ACGGAATGAGGAGTGTGTTTGTGC -ACGGAATGAGGAGTGTGTCTAAGC -ACGGAATGAGGAGTGTGTACTAGC -ACGGAATGAGGAGTGTGTAGATGC -ACGGAATGAGGAGTGTGTTGAAGG -ACGGAATGAGGAGTGTGTCAATGG -ACGGAATGAGGAGTGTGTATGAGG -ACGGAATGAGGAGTGTGTAATGGG -ACGGAATGAGGAGTGTGTTCCTGA -ACGGAATGAGGAGTGTGTTAGCGA -ACGGAATGAGGAGTGTGTCACAGA -ACGGAATGAGGAGTGTGTGCAAGA -ACGGAATGAGGAGTGTGTGGTTGA -ACGGAATGAGGAGTGTGTTCCGAT -ACGGAATGAGGAGTGTGTTGGCAT -ACGGAATGAGGAGTGTGTCGAGAT -ACGGAATGAGGAGTGTGTTACCAC -ACGGAATGAGGAGTGTGTCAGAAC -ACGGAATGAGGAGTGTGTGTCTAC -ACGGAATGAGGAGTGTGTACGTAC -ACGGAATGAGGAGTGTGTAGTGAC -ACGGAATGAGGAGTGTGTCTGTAG -ACGGAATGAGGAGTGTGTCCTAAG -ACGGAATGAGGAGTGTGTGTTCAG -ACGGAATGAGGAGTGTGTGCATAG -ACGGAATGAGGAGTGTGTGACAAG -ACGGAATGAGGAGTGTGTAAGCAG -ACGGAATGAGGAGTGTGTCGTCAA -ACGGAATGAGGAGTGTGTGCTGAA -ACGGAATGAGGAGTGTGTAGTACG -ACGGAATGAGGAGTGTGTATCCGA -ACGGAATGAGGAGTGTGTATGGGA -ACGGAATGAGGAGTGTGTGTGCAA -ACGGAATGAGGAGTGTGTGAGGAA -ACGGAATGAGGAGTGTGTCAGGTA -ACGGAATGAGGAGTGTGTGACTCT -ACGGAATGAGGAGTGTGTAGTCCT -ACGGAATGAGGAGTGTGTTAAGCC -ACGGAATGAGGAGTGTGTATAGCC -ACGGAATGAGGAGTGTGTTAACCG -ACGGAATGAGGAGTGTGTATGCCA -ACGGAATGAGGAGTGCTAGGAAAC -ACGGAATGAGGAGTGCTAAACACC -ACGGAATGAGGAGTGCTAATCGAG -ACGGAATGAGGAGTGCTACTCCTT -ACGGAATGAGGAGTGCTACCTGTT -ACGGAATGAGGAGTGCTACGGTTT -ACGGAATGAGGAGTGCTAGTGGTT -ACGGAATGAGGAGTGCTAGCCTTT -ACGGAATGAGGAGTGCTAGGTCTT -ACGGAATGAGGAGTGCTAACGCTT -ACGGAATGAGGAGTGCTAAGCGTT -ACGGAATGAGGAGTGCTATTCGTC -ACGGAATGAGGAGTGCTATCTCTC -ACGGAATGAGGAGTGCTATGGATC -ACGGAATGAGGAGTGCTACACTTC -ACGGAATGAGGAGTGCTAGTACTC -ACGGAATGAGGAGTGCTAGATGTC -ACGGAATGAGGAGTGCTAACAGTC -ACGGAATGAGGAGTGCTATTGCTG -ACGGAATGAGGAGTGCTATCCATG -ACGGAATGAGGAGTGCTATGTGTG -ACGGAATGAGGAGTGCTACTAGTG -ACGGAATGAGGAGTGCTACATCTG -ACGGAATGAGGAGTGCTAGAGTTG -ACGGAATGAGGAGTGCTAAGACTG -ACGGAATGAGGAGTGCTATCGGTA -ACGGAATGAGGAGTGCTATGCCTA -ACGGAATGAGGAGTGCTACCACTA -ACGGAATGAGGAGTGCTAGGAGTA -ACGGAATGAGGAGTGCTATCGTCT -ACGGAATGAGGAGTGCTATGCACT -ACGGAATGAGGAGTGCTACTGACT -ACGGAATGAGGAGTGCTACAACCT -ACGGAATGAGGAGTGCTAGCTACT -ACGGAATGAGGAGTGCTAGGATCT -ACGGAATGAGGAGTGCTAAAGGCT -ACGGAATGAGGAGTGCTATCAACC -ACGGAATGAGGAGTGCTATGTTCC -ACGGAATGAGGAGTGCTAATTCCC -ACGGAATGAGGAGTGCTATTCTCG -ACGGAATGAGGAGTGCTATAGACG -ACGGAATGAGGAGTGCTAGTAACG -ACGGAATGAGGAGTGCTAACTTCG -ACGGAATGAGGAGTGCTATACGCA -ACGGAATGAGGAGTGCTACTTGCA -ACGGAATGAGGAGTGCTACGAACA -ACGGAATGAGGAGTGCTACAGTCA -ACGGAATGAGGAGTGCTAGATCCA -ACGGAATGAGGAGTGCTAACGACA -ACGGAATGAGGAGTGCTAAGCTCA -ACGGAATGAGGAGTGCTATCACGT -ACGGAATGAGGAGTGCTACGTAGT -ACGGAATGAGGAGTGCTAGTCAGT -ACGGAATGAGGAGTGCTAGAAGGT -ACGGAATGAGGAGTGCTAAACCGT -ACGGAATGAGGAGTGCTATTGTGC -ACGGAATGAGGAGTGCTACTAAGC -ACGGAATGAGGAGTGCTAACTAGC -ACGGAATGAGGAGTGCTAAGATGC -ACGGAATGAGGAGTGCTATGAAGG -ACGGAATGAGGAGTGCTACAATGG -ACGGAATGAGGAGTGCTAATGAGG -ACGGAATGAGGAGTGCTAAATGGG -ACGGAATGAGGAGTGCTATCCTGA -ACGGAATGAGGAGTGCTATAGCGA -ACGGAATGAGGAGTGCTACACAGA -ACGGAATGAGGAGTGCTAGCAAGA -ACGGAATGAGGAGTGCTAGGTTGA -ACGGAATGAGGAGTGCTATCCGAT -ACGGAATGAGGAGTGCTATGGCAT -ACGGAATGAGGAGTGCTACGAGAT -ACGGAATGAGGAGTGCTATACCAC -ACGGAATGAGGAGTGCTACAGAAC -ACGGAATGAGGAGTGCTAGTCTAC -ACGGAATGAGGAGTGCTAACGTAC -ACGGAATGAGGAGTGCTAAGTGAC -ACGGAATGAGGAGTGCTACTGTAG -ACGGAATGAGGAGTGCTACCTAAG -ACGGAATGAGGAGTGCTAGTTCAG -ACGGAATGAGGAGTGCTAGCATAG -ACGGAATGAGGAGTGCTAGACAAG -ACGGAATGAGGAGTGCTAAAGCAG -ACGGAATGAGGAGTGCTACGTCAA -ACGGAATGAGGAGTGCTAGCTGAA -ACGGAATGAGGAGTGCTAAGTACG -ACGGAATGAGGAGTGCTAATCCGA -ACGGAATGAGGAGTGCTAATGGGA -ACGGAATGAGGAGTGCTAGTGCAA -ACGGAATGAGGAGTGCTAGAGGAA -ACGGAATGAGGAGTGCTACAGGTA -ACGGAATGAGGAGTGCTAGACTCT -ACGGAATGAGGAGTGCTAAGTCCT -ACGGAATGAGGAGTGCTATAAGCC -ACGGAATGAGGAGTGCTAATAGCC -ACGGAATGAGGAGTGCTATAACCG -ACGGAATGAGGAGTGCTAATGCCA -ACGGAATGAGGACTGCATGGAAAC -ACGGAATGAGGACTGCATAACACC -ACGGAATGAGGACTGCATATCGAG -ACGGAATGAGGACTGCATCTCCTT -ACGGAATGAGGACTGCATCCTGTT -ACGGAATGAGGACTGCATCGGTTT -ACGGAATGAGGACTGCATGTGGTT -ACGGAATGAGGACTGCATGCCTTT -ACGGAATGAGGACTGCATGGTCTT -ACGGAATGAGGACTGCATACGCTT -ACGGAATGAGGACTGCATAGCGTT -ACGGAATGAGGACTGCATTTCGTC -ACGGAATGAGGACTGCATTCTCTC -ACGGAATGAGGACTGCATTGGATC -ACGGAATGAGGACTGCATCACTTC -ACGGAATGAGGACTGCATGTACTC -ACGGAATGAGGACTGCATGATGTC -ACGGAATGAGGACTGCATACAGTC -ACGGAATGAGGACTGCATTTGCTG -ACGGAATGAGGACTGCATTCCATG -ACGGAATGAGGACTGCATTGTGTG -ACGGAATGAGGACTGCATCTAGTG -ACGGAATGAGGACTGCATCATCTG -ACGGAATGAGGACTGCATGAGTTG -ACGGAATGAGGACTGCATAGACTG -ACGGAATGAGGACTGCATTCGGTA -ACGGAATGAGGACTGCATTGCCTA -ACGGAATGAGGACTGCATCCACTA -ACGGAATGAGGACTGCATGGAGTA -ACGGAATGAGGACTGCATTCGTCT -ACGGAATGAGGACTGCATTGCACT -ACGGAATGAGGACTGCATCTGACT -ACGGAATGAGGACTGCATCAACCT -ACGGAATGAGGACTGCATGCTACT -ACGGAATGAGGACTGCATGGATCT -ACGGAATGAGGACTGCATAAGGCT -ACGGAATGAGGACTGCATTCAACC -ACGGAATGAGGACTGCATTGTTCC -ACGGAATGAGGACTGCATATTCCC -ACGGAATGAGGACTGCATTTCTCG -ACGGAATGAGGACTGCATTAGACG -ACGGAATGAGGACTGCATGTAACG -ACGGAATGAGGACTGCATACTTCG -ACGGAATGAGGACTGCATTACGCA -ACGGAATGAGGACTGCATCTTGCA -ACGGAATGAGGACTGCATCGAACA -ACGGAATGAGGACTGCATCAGTCA -ACGGAATGAGGACTGCATGATCCA -ACGGAATGAGGACTGCATACGACA -ACGGAATGAGGACTGCATAGCTCA -ACGGAATGAGGACTGCATTCACGT -ACGGAATGAGGACTGCATCGTAGT -ACGGAATGAGGACTGCATGTCAGT -ACGGAATGAGGACTGCATGAAGGT -ACGGAATGAGGACTGCATAACCGT -ACGGAATGAGGACTGCATTTGTGC -ACGGAATGAGGACTGCATCTAAGC -ACGGAATGAGGACTGCATACTAGC -ACGGAATGAGGACTGCATAGATGC -ACGGAATGAGGACTGCATTGAAGG -ACGGAATGAGGACTGCATCAATGG -ACGGAATGAGGACTGCATATGAGG -ACGGAATGAGGACTGCATAATGGG -ACGGAATGAGGACTGCATTCCTGA -ACGGAATGAGGACTGCATTAGCGA -ACGGAATGAGGACTGCATCACAGA -ACGGAATGAGGACTGCATGCAAGA -ACGGAATGAGGACTGCATGGTTGA -ACGGAATGAGGACTGCATTCCGAT -ACGGAATGAGGACTGCATTGGCAT -ACGGAATGAGGACTGCATCGAGAT -ACGGAATGAGGACTGCATTACCAC -ACGGAATGAGGACTGCATCAGAAC -ACGGAATGAGGACTGCATGTCTAC -ACGGAATGAGGACTGCATACGTAC -ACGGAATGAGGACTGCATAGTGAC -ACGGAATGAGGACTGCATCTGTAG -ACGGAATGAGGACTGCATCCTAAG -ACGGAATGAGGACTGCATGTTCAG -ACGGAATGAGGACTGCATGCATAG -ACGGAATGAGGACTGCATGACAAG -ACGGAATGAGGACTGCATAAGCAG -ACGGAATGAGGACTGCATCGTCAA -ACGGAATGAGGACTGCATGCTGAA -ACGGAATGAGGACTGCATAGTACG -ACGGAATGAGGACTGCATATCCGA -ACGGAATGAGGACTGCATATGGGA -ACGGAATGAGGACTGCATGTGCAA -ACGGAATGAGGACTGCATGAGGAA -ACGGAATGAGGACTGCATCAGGTA -ACGGAATGAGGACTGCATGACTCT -ACGGAATGAGGACTGCATAGTCCT -ACGGAATGAGGACTGCATTAAGCC -ACGGAATGAGGACTGCATATAGCC -ACGGAATGAGGACTGCATTAACCG -ACGGAATGAGGACTGCATATGCCA -ACGGAATGAGGATTGGAGGGAAAC -ACGGAATGAGGATTGGAGAACACC -ACGGAATGAGGATTGGAGATCGAG -ACGGAATGAGGATTGGAGCTCCTT -ACGGAATGAGGATTGGAGCCTGTT -ACGGAATGAGGATTGGAGCGGTTT -ACGGAATGAGGATTGGAGGTGGTT -ACGGAATGAGGATTGGAGGCCTTT -ACGGAATGAGGATTGGAGGGTCTT -ACGGAATGAGGATTGGAGACGCTT -ACGGAATGAGGATTGGAGAGCGTT -ACGGAATGAGGATTGGAGTTCGTC -ACGGAATGAGGATTGGAGTCTCTC -ACGGAATGAGGATTGGAGTGGATC -ACGGAATGAGGATTGGAGCACTTC -ACGGAATGAGGATTGGAGGTACTC -ACGGAATGAGGATTGGAGGATGTC -ACGGAATGAGGATTGGAGACAGTC -ACGGAATGAGGATTGGAGTTGCTG -ACGGAATGAGGATTGGAGTCCATG -ACGGAATGAGGATTGGAGTGTGTG -ACGGAATGAGGATTGGAGCTAGTG -ACGGAATGAGGATTGGAGCATCTG -ACGGAATGAGGATTGGAGGAGTTG -ACGGAATGAGGATTGGAGAGACTG -ACGGAATGAGGATTGGAGTCGGTA -ACGGAATGAGGATTGGAGTGCCTA -ACGGAATGAGGATTGGAGCCACTA -ACGGAATGAGGATTGGAGGGAGTA -ACGGAATGAGGATTGGAGTCGTCT -ACGGAATGAGGATTGGAGTGCACT -ACGGAATGAGGATTGGAGCTGACT -ACGGAATGAGGATTGGAGCAACCT -ACGGAATGAGGATTGGAGGCTACT -ACGGAATGAGGATTGGAGGGATCT -ACGGAATGAGGATTGGAGAAGGCT -ACGGAATGAGGATTGGAGTCAACC -ACGGAATGAGGATTGGAGTGTTCC -ACGGAATGAGGATTGGAGATTCCC -ACGGAATGAGGATTGGAGTTCTCG -ACGGAATGAGGATTGGAGTAGACG -ACGGAATGAGGATTGGAGGTAACG -ACGGAATGAGGATTGGAGACTTCG -ACGGAATGAGGATTGGAGTACGCA -ACGGAATGAGGATTGGAGCTTGCA -ACGGAATGAGGATTGGAGCGAACA -ACGGAATGAGGATTGGAGCAGTCA -ACGGAATGAGGATTGGAGGATCCA -ACGGAATGAGGATTGGAGACGACA -ACGGAATGAGGATTGGAGAGCTCA -ACGGAATGAGGATTGGAGTCACGT -ACGGAATGAGGATTGGAGCGTAGT -ACGGAATGAGGATTGGAGGTCAGT -ACGGAATGAGGATTGGAGGAAGGT -ACGGAATGAGGATTGGAGAACCGT -ACGGAATGAGGATTGGAGTTGTGC -ACGGAATGAGGATTGGAGCTAAGC -ACGGAATGAGGATTGGAGACTAGC -ACGGAATGAGGATTGGAGAGATGC -ACGGAATGAGGATTGGAGTGAAGG -ACGGAATGAGGATTGGAGCAATGG -ACGGAATGAGGATTGGAGATGAGG -ACGGAATGAGGATTGGAGAATGGG -ACGGAATGAGGATTGGAGTCCTGA -ACGGAATGAGGATTGGAGTAGCGA -ACGGAATGAGGATTGGAGCACAGA -ACGGAATGAGGATTGGAGGCAAGA -ACGGAATGAGGATTGGAGGGTTGA -ACGGAATGAGGATTGGAGTCCGAT -ACGGAATGAGGATTGGAGTGGCAT -ACGGAATGAGGATTGGAGCGAGAT -ACGGAATGAGGATTGGAGTACCAC -ACGGAATGAGGATTGGAGCAGAAC -ACGGAATGAGGATTGGAGGTCTAC -ACGGAATGAGGATTGGAGACGTAC -ACGGAATGAGGATTGGAGAGTGAC -ACGGAATGAGGATTGGAGCTGTAG -ACGGAATGAGGATTGGAGCCTAAG -ACGGAATGAGGATTGGAGGTTCAG -ACGGAATGAGGATTGGAGGCATAG -ACGGAATGAGGATTGGAGGACAAG -ACGGAATGAGGATTGGAGAAGCAG -ACGGAATGAGGATTGGAGCGTCAA -ACGGAATGAGGATTGGAGGCTGAA -ACGGAATGAGGATTGGAGAGTACG -ACGGAATGAGGATTGGAGATCCGA -ACGGAATGAGGATTGGAGATGGGA -ACGGAATGAGGATTGGAGGTGCAA -ACGGAATGAGGATTGGAGGAGGAA -ACGGAATGAGGATTGGAGCAGGTA -ACGGAATGAGGATTGGAGGACTCT -ACGGAATGAGGATTGGAGAGTCCT -ACGGAATGAGGATTGGAGTAAGCC -ACGGAATGAGGATTGGAGATAGCC -ACGGAATGAGGATTGGAGTAACCG -ACGGAATGAGGATTGGAGATGCCA -ACGGAATGAGGACTGAGAGGAAAC -ACGGAATGAGGACTGAGAAACACC -ACGGAATGAGGACTGAGAATCGAG -ACGGAATGAGGACTGAGACTCCTT -ACGGAATGAGGACTGAGACCTGTT -ACGGAATGAGGACTGAGACGGTTT -ACGGAATGAGGACTGAGAGTGGTT -ACGGAATGAGGACTGAGAGCCTTT -ACGGAATGAGGACTGAGAGGTCTT -ACGGAATGAGGACTGAGAACGCTT -ACGGAATGAGGACTGAGAAGCGTT -ACGGAATGAGGACTGAGATTCGTC -ACGGAATGAGGACTGAGATCTCTC -ACGGAATGAGGACTGAGATGGATC -ACGGAATGAGGACTGAGACACTTC -ACGGAATGAGGACTGAGAGTACTC -ACGGAATGAGGACTGAGAGATGTC -ACGGAATGAGGACTGAGAACAGTC -ACGGAATGAGGACTGAGATTGCTG -ACGGAATGAGGACTGAGATCCATG -ACGGAATGAGGACTGAGATGTGTG -ACGGAATGAGGACTGAGACTAGTG -ACGGAATGAGGACTGAGACATCTG -ACGGAATGAGGACTGAGAGAGTTG -ACGGAATGAGGACTGAGAAGACTG -ACGGAATGAGGACTGAGATCGGTA -ACGGAATGAGGACTGAGATGCCTA -ACGGAATGAGGACTGAGACCACTA -ACGGAATGAGGACTGAGAGGAGTA -ACGGAATGAGGACTGAGATCGTCT -ACGGAATGAGGACTGAGATGCACT -ACGGAATGAGGACTGAGACTGACT -ACGGAATGAGGACTGAGACAACCT -ACGGAATGAGGACTGAGAGCTACT -ACGGAATGAGGACTGAGAGGATCT -ACGGAATGAGGACTGAGAAAGGCT -ACGGAATGAGGACTGAGATCAACC -ACGGAATGAGGACTGAGATGTTCC -ACGGAATGAGGACTGAGAATTCCC -ACGGAATGAGGACTGAGATTCTCG -ACGGAATGAGGACTGAGATAGACG -ACGGAATGAGGACTGAGAGTAACG -ACGGAATGAGGACTGAGAACTTCG -ACGGAATGAGGACTGAGATACGCA -ACGGAATGAGGACTGAGACTTGCA -ACGGAATGAGGACTGAGACGAACA -ACGGAATGAGGACTGAGACAGTCA -ACGGAATGAGGACTGAGAGATCCA -ACGGAATGAGGACTGAGAACGACA -ACGGAATGAGGACTGAGAAGCTCA -ACGGAATGAGGACTGAGATCACGT -ACGGAATGAGGACTGAGACGTAGT -ACGGAATGAGGACTGAGAGTCAGT -ACGGAATGAGGACTGAGAGAAGGT -ACGGAATGAGGACTGAGAAACCGT -ACGGAATGAGGACTGAGATTGTGC -ACGGAATGAGGACTGAGACTAAGC -ACGGAATGAGGACTGAGAACTAGC -ACGGAATGAGGACTGAGAAGATGC -ACGGAATGAGGACTGAGATGAAGG -ACGGAATGAGGACTGAGACAATGG -ACGGAATGAGGACTGAGAATGAGG -ACGGAATGAGGACTGAGAAATGGG -ACGGAATGAGGACTGAGATCCTGA -ACGGAATGAGGACTGAGATAGCGA -ACGGAATGAGGACTGAGACACAGA -ACGGAATGAGGACTGAGAGCAAGA -ACGGAATGAGGACTGAGAGGTTGA -ACGGAATGAGGACTGAGATCCGAT -ACGGAATGAGGACTGAGATGGCAT -ACGGAATGAGGACTGAGACGAGAT -ACGGAATGAGGACTGAGATACCAC -ACGGAATGAGGACTGAGACAGAAC -ACGGAATGAGGACTGAGAGTCTAC -ACGGAATGAGGACTGAGAACGTAC -ACGGAATGAGGACTGAGAAGTGAC -ACGGAATGAGGACTGAGACTGTAG -ACGGAATGAGGACTGAGACCTAAG -ACGGAATGAGGACTGAGAGTTCAG -ACGGAATGAGGACTGAGAGCATAG -ACGGAATGAGGACTGAGAGACAAG -ACGGAATGAGGACTGAGAAAGCAG -ACGGAATGAGGACTGAGACGTCAA -ACGGAATGAGGACTGAGAGCTGAA -ACGGAATGAGGACTGAGAAGTACG -ACGGAATGAGGACTGAGAATCCGA -ACGGAATGAGGACTGAGAATGGGA -ACGGAATGAGGACTGAGAGTGCAA -ACGGAATGAGGACTGAGAGAGGAA -ACGGAATGAGGACTGAGACAGGTA -ACGGAATGAGGACTGAGAGACTCT -ACGGAATGAGGACTGAGAAGTCCT -ACGGAATGAGGACTGAGATAAGCC -ACGGAATGAGGACTGAGAATAGCC -ACGGAATGAGGACTGAGATAACCG -ACGGAATGAGGACTGAGAATGCCA -ACGGAATGAGGAGTATCGGGAAAC -ACGGAATGAGGAGTATCGAACACC -ACGGAATGAGGAGTATCGATCGAG -ACGGAATGAGGAGTATCGCTCCTT -ACGGAATGAGGAGTATCGCCTGTT -ACGGAATGAGGAGTATCGCGGTTT -ACGGAATGAGGAGTATCGGTGGTT -ACGGAATGAGGAGTATCGGCCTTT -ACGGAATGAGGAGTATCGGGTCTT -ACGGAATGAGGAGTATCGACGCTT -ACGGAATGAGGAGTATCGAGCGTT -ACGGAATGAGGAGTATCGTTCGTC -ACGGAATGAGGAGTATCGTCTCTC -ACGGAATGAGGAGTATCGTGGATC -ACGGAATGAGGAGTATCGCACTTC -ACGGAATGAGGAGTATCGGTACTC -ACGGAATGAGGAGTATCGGATGTC -ACGGAATGAGGAGTATCGACAGTC -ACGGAATGAGGAGTATCGTTGCTG -ACGGAATGAGGAGTATCGTCCATG -ACGGAATGAGGAGTATCGTGTGTG -ACGGAATGAGGAGTATCGCTAGTG -ACGGAATGAGGAGTATCGCATCTG -ACGGAATGAGGAGTATCGGAGTTG -ACGGAATGAGGAGTATCGAGACTG -ACGGAATGAGGAGTATCGTCGGTA -ACGGAATGAGGAGTATCGTGCCTA -ACGGAATGAGGAGTATCGCCACTA -ACGGAATGAGGAGTATCGGGAGTA -ACGGAATGAGGAGTATCGTCGTCT -ACGGAATGAGGAGTATCGTGCACT -ACGGAATGAGGAGTATCGCTGACT -ACGGAATGAGGAGTATCGCAACCT -ACGGAATGAGGAGTATCGGCTACT -ACGGAATGAGGAGTATCGGGATCT -ACGGAATGAGGAGTATCGAAGGCT -ACGGAATGAGGAGTATCGTCAACC -ACGGAATGAGGAGTATCGTGTTCC -ACGGAATGAGGAGTATCGATTCCC -ACGGAATGAGGAGTATCGTTCTCG -ACGGAATGAGGAGTATCGTAGACG -ACGGAATGAGGAGTATCGGTAACG -ACGGAATGAGGAGTATCGACTTCG -ACGGAATGAGGAGTATCGTACGCA -ACGGAATGAGGAGTATCGCTTGCA -ACGGAATGAGGAGTATCGCGAACA -ACGGAATGAGGAGTATCGCAGTCA -ACGGAATGAGGAGTATCGGATCCA -ACGGAATGAGGAGTATCGACGACA -ACGGAATGAGGAGTATCGAGCTCA -ACGGAATGAGGAGTATCGTCACGT -ACGGAATGAGGAGTATCGCGTAGT -ACGGAATGAGGAGTATCGGTCAGT -ACGGAATGAGGAGTATCGGAAGGT -ACGGAATGAGGAGTATCGAACCGT -ACGGAATGAGGAGTATCGTTGTGC -ACGGAATGAGGAGTATCGCTAAGC -ACGGAATGAGGAGTATCGACTAGC -ACGGAATGAGGAGTATCGAGATGC -ACGGAATGAGGAGTATCGTGAAGG -ACGGAATGAGGAGTATCGCAATGG -ACGGAATGAGGAGTATCGATGAGG -ACGGAATGAGGAGTATCGAATGGG -ACGGAATGAGGAGTATCGTCCTGA -ACGGAATGAGGAGTATCGTAGCGA -ACGGAATGAGGAGTATCGCACAGA -ACGGAATGAGGAGTATCGGCAAGA -ACGGAATGAGGAGTATCGGGTTGA -ACGGAATGAGGAGTATCGTCCGAT -ACGGAATGAGGAGTATCGTGGCAT -ACGGAATGAGGAGTATCGCGAGAT -ACGGAATGAGGAGTATCGTACCAC -ACGGAATGAGGAGTATCGCAGAAC -ACGGAATGAGGAGTATCGGTCTAC -ACGGAATGAGGAGTATCGACGTAC -ACGGAATGAGGAGTATCGAGTGAC -ACGGAATGAGGAGTATCGCTGTAG -ACGGAATGAGGAGTATCGCCTAAG -ACGGAATGAGGAGTATCGGTTCAG -ACGGAATGAGGAGTATCGGCATAG -ACGGAATGAGGAGTATCGGACAAG -ACGGAATGAGGAGTATCGAAGCAG -ACGGAATGAGGAGTATCGCGTCAA -ACGGAATGAGGAGTATCGGCTGAA -ACGGAATGAGGAGTATCGAGTACG -ACGGAATGAGGAGTATCGATCCGA -ACGGAATGAGGAGTATCGATGGGA -ACGGAATGAGGAGTATCGGTGCAA -ACGGAATGAGGAGTATCGGAGGAA -ACGGAATGAGGAGTATCGCAGGTA -ACGGAATGAGGAGTATCGGACTCT -ACGGAATGAGGAGTATCGAGTCCT -ACGGAATGAGGAGTATCGTAAGCC -ACGGAATGAGGAGTATCGATAGCC -ACGGAATGAGGAGTATCGTAACCG -ACGGAATGAGGAGTATCGATGCCA -ACGGAATGAGGACTATGCGGAAAC -ACGGAATGAGGACTATGCAACACC -ACGGAATGAGGACTATGCATCGAG -ACGGAATGAGGACTATGCCTCCTT -ACGGAATGAGGACTATGCCCTGTT -ACGGAATGAGGACTATGCCGGTTT -ACGGAATGAGGACTATGCGTGGTT -ACGGAATGAGGACTATGCGCCTTT -ACGGAATGAGGACTATGCGGTCTT -ACGGAATGAGGACTATGCACGCTT -ACGGAATGAGGACTATGCAGCGTT -ACGGAATGAGGACTATGCTTCGTC -ACGGAATGAGGACTATGCTCTCTC -ACGGAATGAGGACTATGCTGGATC -ACGGAATGAGGACTATGCCACTTC -ACGGAATGAGGACTATGCGTACTC -ACGGAATGAGGACTATGCGATGTC -ACGGAATGAGGACTATGCACAGTC -ACGGAATGAGGACTATGCTTGCTG -ACGGAATGAGGACTATGCTCCATG -ACGGAATGAGGACTATGCTGTGTG -ACGGAATGAGGACTATGCCTAGTG -ACGGAATGAGGACTATGCCATCTG -ACGGAATGAGGACTATGCGAGTTG -ACGGAATGAGGACTATGCAGACTG -ACGGAATGAGGACTATGCTCGGTA -ACGGAATGAGGACTATGCTGCCTA -ACGGAATGAGGACTATGCCCACTA -ACGGAATGAGGACTATGCGGAGTA -ACGGAATGAGGACTATGCTCGTCT -ACGGAATGAGGACTATGCTGCACT -ACGGAATGAGGACTATGCCTGACT -ACGGAATGAGGACTATGCCAACCT -ACGGAATGAGGACTATGCGCTACT -ACGGAATGAGGACTATGCGGATCT -ACGGAATGAGGACTATGCAAGGCT -ACGGAATGAGGACTATGCTCAACC -ACGGAATGAGGACTATGCTGTTCC -ACGGAATGAGGACTATGCATTCCC -ACGGAATGAGGACTATGCTTCTCG -ACGGAATGAGGACTATGCTAGACG -ACGGAATGAGGACTATGCGTAACG -ACGGAATGAGGACTATGCACTTCG -ACGGAATGAGGACTATGCTACGCA -ACGGAATGAGGACTATGCCTTGCA -ACGGAATGAGGACTATGCCGAACA -ACGGAATGAGGACTATGCCAGTCA -ACGGAATGAGGACTATGCGATCCA -ACGGAATGAGGACTATGCACGACA -ACGGAATGAGGACTATGCAGCTCA -ACGGAATGAGGACTATGCTCACGT -ACGGAATGAGGACTATGCCGTAGT -ACGGAATGAGGACTATGCGTCAGT -ACGGAATGAGGACTATGCGAAGGT -ACGGAATGAGGACTATGCAACCGT -ACGGAATGAGGACTATGCTTGTGC -ACGGAATGAGGACTATGCCTAAGC -ACGGAATGAGGACTATGCACTAGC -ACGGAATGAGGACTATGCAGATGC -ACGGAATGAGGACTATGCTGAAGG -ACGGAATGAGGACTATGCCAATGG -ACGGAATGAGGACTATGCATGAGG -ACGGAATGAGGACTATGCAATGGG -ACGGAATGAGGACTATGCTCCTGA -ACGGAATGAGGACTATGCTAGCGA -ACGGAATGAGGACTATGCCACAGA -ACGGAATGAGGACTATGCGCAAGA -ACGGAATGAGGACTATGCGGTTGA -ACGGAATGAGGACTATGCTCCGAT -ACGGAATGAGGACTATGCTGGCAT -ACGGAATGAGGACTATGCCGAGAT -ACGGAATGAGGACTATGCTACCAC -ACGGAATGAGGACTATGCCAGAAC -ACGGAATGAGGACTATGCGTCTAC -ACGGAATGAGGACTATGCACGTAC -ACGGAATGAGGACTATGCAGTGAC -ACGGAATGAGGACTATGCCTGTAG -ACGGAATGAGGACTATGCCCTAAG -ACGGAATGAGGACTATGCGTTCAG -ACGGAATGAGGACTATGCGCATAG -ACGGAATGAGGACTATGCGACAAG -ACGGAATGAGGACTATGCAAGCAG -ACGGAATGAGGACTATGCCGTCAA -ACGGAATGAGGACTATGCGCTGAA -ACGGAATGAGGACTATGCAGTACG -ACGGAATGAGGACTATGCATCCGA -ACGGAATGAGGACTATGCATGGGA -ACGGAATGAGGACTATGCGTGCAA -ACGGAATGAGGACTATGCGAGGAA -ACGGAATGAGGACTATGCCAGGTA -ACGGAATGAGGACTATGCGACTCT -ACGGAATGAGGACTATGCAGTCCT -ACGGAATGAGGACTATGCTAAGCC -ACGGAATGAGGACTATGCATAGCC -ACGGAATGAGGACTATGCTAACCG -ACGGAATGAGGACTATGCATGCCA -ACGGAATGAGGACTACCAGGAAAC -ACGGAATGAGGACTACCAAACACC -ACGGAATGAGGACTACCAATCGAG -ACGGAATGAGGACTACCACTCCTT -ACGGAATGAGGACTACCACCTGTT -ACGGAATGAGGACTACCACGGTTT -ACGGAATGAGGACTACCAGTGGTT -ACGGAATGAGGACTACCAGCCTTT -ACGGAATGAGGACTACCAGGTCTT -ACGGAATGAGGACTACCAACGCTT -ACGGAATGAGGACTACCAAGCGTT -ACGGAATGAGGACTACCATTCGTC -ACGGAATGAGGACTACCATCTCTC -ACGGAATGAGGACTACCATGGATC -ACGGAATGAGGACTACCACACTTC -ACGGAATGAGGACTACCAGTACTC -ACGGAATGAGGACTACCAGATGTC -ACGGAATGAGGACTACCAACAGTC -ACGGAATGAGGACTACCATTGCTG -ACGGAATGAGGACTACCATCCATG -ACGGAATGAGGACTACCATGTGTG -ACGGAATGAGGACTACCACTAGTG -ACGGAATGAGGACTACCACATCTG -ACGGAATGAGGACTACCAGAGTTG -ACGGAATGAGGACTACCAAGACTG -ACGGAATGAGGACTACCATCGGTA -ACGGAATGAGGACTACCATGCCTA -ACGGAATGAGGACTACCACCACTA -ACGGAATGAGGACTACCAGGAGTA -ACGGAATGAGGACTACCATCGTCT -ACGGAATGAGGACTACCATGCACT -ACGGAATGAGGACTACCACTGACT -ACGGAATGAGGACTACCACAACCT -ACGGAATGAGGACTACCAGCTACT -ACGGAATGAGGACTACCAGGATCT -ACGGAATGAGGACTACCAAAGGCT -ACGGAATGAGGACTACCATCAACC -ACGGAATGAGGACTACCATGTTCC -ACGGAATGAGGACTACCAATTCCC -ACGGAATGAGGACTACCATTCTCG -ACGGAATGAGGACTACCATAGACG -ACGGAATGAGGACTACCAGTAACG -ACGGAATGAGGACTACCAACTTCG -ACGGAATGAGGACTACCATACGCA -ACGGAATGAGGACTACCACTTGCA -ACGGAATGAGGACTACCACGAACA -ACGGAATGAGGACTACCACAGTCA -ACGGAATGAGGACTACCAGATCCA -ACGGAATGAGGACTACCAACGACA -ACGGAATGAGGACTACCAAGCTCA -ACGGAATGAGGACTACCATCACGT -ACGGAATGAGGACTACCACGTAGT -ACGGAATGAGGACTACCAGTCAGT -ACGGAATGAGGACTACCAGAAGGT -ACGGAATGAGGACTACCAAACCGT -ACGGAATGAGGACTACCATTGTGC -ACGGAATGAGGACTACCACTAAGC -ACGGAATGAGGACTACCAACTAGC -ACGGAATGAGGACTACCAAGATGC -ACGGAATGAGGACTACCATGAAGG -ACGGAATGAGGACTACCACAATGG -ACGGAATGAGGACTACCAATGAGG -ACGGAATGAGGACTACCAAATGGG -ACGGAATGAGGACTACCATCCTGA -ACGGAATGAGGACTACCATAGCGA -ACGGAATGAGGACTACCACACAGA -ACGGAATGAGGACTACCAGCAAGA -ACGGAATGAGGACTACCAGGTTGA -ACGGAATGAGGACTACCATCCGAT -ACGGAATGAGGACTACCATGGCAT -ACGGAATGAGGACTACCACGAGAT -ACGGAATGAGGACTACCATACCAC -ACGGAATGAGGACTACCACAGAAC -ACGGAATGAGGACTACCAGTCTAC -ACGGAATGAGGACTACCAACGTAC -ACGGAATGAGGACTACCAAGTGAC -ACGGAATGAGGACTACCACTGTAG -ACGGAATGAGGACTACCACCTAAG -ACGGAATGAGGACTACCAGTTCAG -ACGGAATGAGGACTACCAGCATAG -ACGGAATGAGGACTACCAGACAAG -ACGGAATGAGGACTACCAAAGCAG -ACGGAATGAGGACTACCACGTCAA -ACGGAATGAGGACTACCAGCTGAA -ACGGAATGAGGACTACCAAGTACG -ACGGAATGAGGACTACCAATCCGA -ACGGAATGAGGACTACCAATGGGA -ACGGAATGAGGACTACCAGTGCAA -ACGGAATGAGGACTACCAGAGGAA -ACGGAATGAGGACTACCACAGGTA -ACGGAATGAGGACTACCAGACTCT -ACGGAATGAGGACTACCAAGTCCT -ACGGAATGAGGACTACCATAAGCC -ACGGAATGAGGACTACCAATAGCC -ACGGAATGAGGACTACCATAACCG -ACGGAATGAGGACTACCAATGCCA -ACGGAATGAGGAGTAGGAGGAAAC -ACGGAATGAGGAGTAGGAAACACC -ACGGAATGAGGAGTAGGAATCGAG -ACGGAATGAGGAGTAGGACTCCTT -ACGGAATGAGGAGTAGGACCTGTT -ACGGAATGAGGAGTAGGACGGTTT -ACGGAATGAGGAGTAGGAGTGGTT -ACGGAATGAGGAGTAGGAGCCTTT -ACGGAATGAGGAGTAGGAGGTCTT -ACGGAATGAGGAGTAGGAACGCTT -ACGGAATGAGGAGTAGGAAGCGTT -ACGGAATGAGGAGTAGGATTCGTC -ACGGAATGAGGAGTAGGATCTCTC -ACGGAATGAGGAGTAGGATGGATC -ACGGAATGAGGAGTAGGACACTTC -ACGGAATGAGGAGTAGGAGTACTC -ACGGAATGAGGAGTAGGAGATGTC -ACGGAATGAGGAGTAGGAACAGTC -ACGGAATGAGGAGTAGGATTGCTG -ACGGAATGAGGAGTAGGATCCATG -ACGGAATGAGGAGTAGGATGTGTG -ACGGAATGAGGAGTAGGACTAGTG -ACGGAATGAGGAGTAGGACATCTG -ACGGAATGAGGAGTAGGAGAGTTG -ACGGAATGAGGAGTAGGAAGACTG -ACGGAATGAGGAGTAGGATCGGTA -ACGGAATGAGGAGTAGGATGCCTA -ACGGAATGAGGAGTAGGACCACTA -ACGGAATGAGGAGTAGGAGGAGTA -ACGGAATGAGGAGTAGGATCGTCT -ACGGAATGAGGAGTAGGATGCACT -ACGGAATGAGGAGTAGGACTGACT -ACGGAATGAGGAGTAGGACAACCT -ACGGAATGAGGAGTAGGAGCTACT -ACGGAATGAGGAGTAGGAGGATCT -ACGGAATGAGGAGTAGGAAAGGCT -ACGGAATGAGGAGTAGGATCAACC -ACGGAATGAGGAGTAGGATGTTCC -ACGGAATGAGGAGTAGGAATTCCC -ACGGAATGAGGAGTAGGATTCTCG -ACGGAATGAGGAGTAGGATAGACG -ACGGAATGAGGAGTAGGAGTAACG -ACGGAATGAGGAGTAGGAACTTCG -ACGGAATGAGGAGTAGGATACGCA -ACGGAATGAGGAGTAGGACTTGCA -ACGGAATGAGGAGTAGGACGAACA -ACGGAATGAGGAGTAGGACAGTCA -ACGGAATGAGGAGTAGGAGATCCA -ACGGAATGAGGAGTAGGAACGACA -ACGGAATGAGGAGTAGGAAGCTCA -ACGGAATGAGGAGTAGGATCACGT -ACGGAATGAGGAGTAGGACGTAGT -ACGGAATGAGGAGTAGGAGTCAGT -ACGGAATGAGGAGTAGGAGAAGGT -ACGGAATGAGGAGTAGGAAACCGT -ACGGAATGAGGAGTAGGATTGTGC -ACGGAATGAGGAGTAGGACTAAGC -ACGGAATGAGGAGTAGGAACTAGC -ACGGAATGAGGAGTAGGAAGATGC -ACGGAATGAGGAGTAGGATGAAGG -ACGGAATGAGGAGTAGGACAATGG -ACGGAATGAGGAGTAGGAATGAGG -ACGGAATGAGGAGTAGGAAATGGG -ACGGAATGAGGAGTAGGATCCTGA -ACGGAATGAGGAGTAGGATAGCGA -ACGGAATGAGGAGTAGGACACAGA -ACGGAATGAGGAGTAGGAGCAAGA -ACGGAATGAGGAGTAGGAGGTTGA -ACGGAATGAGGAGTAGGATCCGAT -ACGGAATGAGGAGTAGGATGGCAT -ACGGAATGAGGAGTAGGACGAGAT -ACGGAATGAGGAGTAGGATACCAC -ACGGAATGAGGAGTAGGACAGAAC -ACGGAATGAGGAGTAGGAGTCTAC -ACGGAATGAGGAGTAGGAACGTAC -ACGGAATGAGGAGTAGGAAGTGAC -ACGGAATGAGGAGTAGGACTGTAG -ACGGAATGAGGAGTAGGACCTAAG -ACGGAATGAGGAGTAGGAGTTCAG -ACGGAATGAGGAGTAGGAGCATAG -ACGGAATGAGGAGTAGGAGACAAG -ACGGAATGAGGAGTAGGAAAGCAG -ACGGAATGAGGAGTAGGACGTCAA -ACGGAATGAGGAGTAGGAGCTGAA -ACGGAATGAGGAGTAGGAAGTACG -ACGGAATGAGGAGTAGGAATCCGA -ACGGAATGAGGAGTAGGAATGGGA -ACGGAATGAGGAGTAGGAGTGCAA -ACGGAATGAGGAGTAGGAGAGGAA -ACGGAATGAGGAGTAGGACAGGTA -ACGGAATGAGGAGTAGGAGACTCT -ACGGAATGAGGAGTAGGAAGTCCT -ACGGAATGAGGAGTAGGATAAGCC -ACGGAATGAGGAGTAGGAATAGCC -ACGGAATGAGGAGTAGGATAACCG -ACGGAATGAGGAGTAGGAATGCCA -ACGGAATGAGGATCTTCGGGAAAC -ACGGAATGAGGATCTTCGAACACC -ACGGAATGAGGATCTTCGATCGAG -ACGGAATGAGGATCTTCGCTCCTT -ACGGAATGAGGATCTTCGCCTGTT -ACGGAATGAGGATCTTCGCGGTTT -ACGGAATGAGGATCTTCGGTGGTT -ACGGAATGAGGATCTTCGGCCTTT -ACGGAATGAGGATCTTCGGGTCTT -ACGGAATGAGGATCTTCGACGCTT -ACGGAATGAGGATCTTCGAGCGTT -ACGGAATGAGGATCTTCGTTCGTC -ACGGAATGAGGATCTTCGTCTCTC -ACGGAATGAGGATCTTCGTGGATC -ACGGAATGAGGATCTTCGCACTTC -ACGGAATGAGGATCTTCGGTACTC -ACGGAATGAGGATCTTCGGATGTC -ACGGAATGAGGATCTTCGACAGTC -ACGGAATGAGGATCTTCGTTGCTG -ACGGAATGAGGATCTTCGTCCATG -ACGGAATGAGGATCTTCGTGTGTG -ACGGAATGAGGATCTTCGCTAGTG -ACGGAATGAGGATCTTCGCATCTG -ACGGAATGAGGATCTTCGGAGTTG -ACGGAATGAGGATCTTCGAGACTG -ACGGAATGAGGATCTTCGTCGGTA -ACGGAATGAGGATCTTCGTGCCTA -ACGGAATGAGGATCTTCGCCACTA -ACGGAATGAGGATCTTCGGGAGTA -ACGGAATGAGGATCTTCGTCGTCT -ACGGAATGAGGATCTTCGTGCACT -ACGGAATGAGGATCTTCGCTGACT -ACGGAATGAGGATCTTCGCAACCT -ACGGAATGAGGATCTTCGGCTACT -ACGGAATGAGGATCTTCGGGATCT -ACGGAATGAGGATCTTCGAAGGCT -ACGGAATGAGGATCTTCGTCAACC -ACGGAATGAGGATCTTCGTGTTCC -ACGGAATGAGGATCTTCGATTCCC -ACGGAATGAGGATCTTCGTTCTCG -ACGGAATGAGGATCTTCGTAGACG -ACGGAATGAGGATCTTCGGTAACG -ACGGAATGAGGATCTTCGACTTCG -ACGGAATGAGGATCTTCGTACGCA -ACGGAATGAGGATCTTCGCTTGCA -ACGGAATGAGGATCTTCGCGAACA -ACGGAATGAGGATCTTCGCAGTCA -ACGGAATGAGGATCTTCGGATCCA -ACGGAATGAGGATCTTCGACGACA -ACGGAATGAGGATCTTCGAGCTCA -ACGGAATGAGGATCTTCGTCACGT -ACGGAATGAGGATCTTCGCGTAGT -ACGGAATGAGGATCTTCGGTCAGT -ACGGAATGAGGATCTTCGGAAGGT -ACGGAATGAGGATCTTCGAACCGT -ACGGAATGAGGATCTTCGTTGTGC -ACGGAATGAGGATCTTCGCTAAGC -ACGGAATGAGGATCTTCGACTAGC -ACGGAATGAGGATCTTCGAGATGC -ACGGAATGAGGATCTTCGTGAAGG -ACGGAATGAGGATCTTCGCAATGG -ACGGAATGAGGATCTTCGATGAGG -ACGGAATGAGGATCTTCGAATGGG -ACGGAATGAGGATCTTCGTCCTGA -ACGGAATGAGGATCTTCGTAGCGA -ACGGAATGAGGATCTTCGCACAGA -ACGGAATGAGGATCTTCGGCAAGA -ACGGAATGAGGATCTTCGGGTTGA -ACGGAATGAGGATCTTCGTCCGAT -ACGGAATGAGGATCTTCGTGGCAT -ACGGAATGAGGATCTTCGCGAGAT -ACGGAATGAGGATCTTCGTACCAC -ACGGAATGAGGATCTTCGCAGAAC -ACGGAATGAGGATCTTCGGTCTAC -ACGGAATGAGGATCTTCGACGTAC -ACGGAATGAGGATCTTCGAGTGAC -ACGGAATGAGGATCTTCGCTGTAG -ACGGAATGAGGATCTTCGCCTAAG -ACGGAATGAGGATCTTCGGTTCAG -ACGGAATGAGGATCTTCGGCATAG -ACGGAATGAGGATCTTCGGACAAG -ACGGAATGAGGATCTTCGAAGCAG -ACGGAATGAGGATCTTCGCGTCAA -ACGGAATGAGGATCTTCGGCTGAA -ACGGAATGAGGATCTTCGAGTACG -ACGGAATGAGGATCTTCGATCCGA -ACGGAATGAGGATCTTCGATGGGA -ACGGAATGAGGATCTTCGGTGCAA -ACGGAATGAGGATCTTCGGAGGAA -ACGGAATGAGGATCTTCGCAGGTA -ACGGAATGAGGATCTTCGGACTCT -ACGGAATGAGGATCTTCGAGTCCT -ACGGAATGAGGATCTTCGTAAGCC -ACGGAATGAGGATCTTCGATAGCC -ACGGAATGAGGATCTTCGTAACCG -ACGGAATGAGGATCTTCGATGCCA -ACGGAATGAGGAACTTGCGGAAAC -ACGGAATGAGGAACTTGCAACACC -ACGGAATGAGGAACTTGCATCGAG -ACGGAATGAGGAACTTGCCTCCTT -ACGGAATGAGGAACTTGCCCTGTT -ACGGAATGAGGAACTTGCCGGTTT -ACGGAATGAGGAACTTGCGTGGTT -ACGGAATGAGGAACTTGCGCCTTT -ACGGAATGAGGAACTTGCGGTCTT -ACGGAATGAGGAACTTGCACGCTT -ACGGAATGAGGAACTTGCAGCGTT -ACGGAATGAGGAACTTGCTTCGTC -ACGGAATGAGGAACTTGCTCTCTC -ACGGAATGAGGAACTTGCTGGATC -ACGGAATGAGGAACTTGCCACTTC -ACGGAATGAGGAACTTGCGTACTC -ACGGAATGAGGAACTTGCGATGTC -ACGGAATGAGGAACTTGCACAGTC -ACGGAATGAGGAACTTGCTTGCTG -ACGGAATGAGGAACTTGCTCCATG -ACGGAATGAGGAACTTGCTGTGTG -ACGGAATGAGGAACTTGCCTAGTG -ACGGAATGAGGAACTTGCCATCTG -ACGGAATGAGGAACTTGCGAGTTG -ACGGAATGAGGAACTTGCAGACTG -ACGGAATGAGGAACTTGCTCGGTA -ACGGAATGAGGAACTTGCTGCCTA -ACGGAATGAGGAACTTGCCCACTA -ACGGAATGAGGAACTTGCGGAGTA -ACGGAATGAGGAACTTGCTCGTCT -ACGGAATGAGGAACTTGCTGCACT -ACGGAATGAGGAACTTGCCTGACT -ACGGAATGAGGAACTTGCCAACCT -ACGGAATGAGGAACTTGCGCTACT -ACGGAATGAGGAACTTGCGGATCT -ACGGAATGAGGAACTTGCAAGGCT -ACGGAATGAGGAACTTGCTCAACC -ACGGAATGAGGAACTTGCTGTTCC -ACGGAATGAGGAACTTGCATTCCC -ACGGAATGAGGAACTTGCTTCTCG -ACGGAATGAGGAACTTGCTAGACG -ACGGAATGAGGAACTTGCGTAACG -ACGGAATGAGGAACTTGCACTTCG -ACGGAATGAGGAACTTGCTACGCA -ACGGAATGAGGAACTTGCCTTGCA -ACGGAATGAGGAACTTGCCGAACA -ACGGAATGAGGAACTTGCCAGTCA -ACGGAATGAGGAACTTGCGATCCA -ACGGAATGAGGAACTTGCACGACA -ACGGAATGAGGAACTTGCAGCTCA -ACGGAATGAGGAACTTGCTCACGT -ACGGAATGAGGAACTTGCCGTAGT -ACGGAATGAGGAACTTGCGTCAGT -ACGGAATGAGGAACTTGCGAAGGT -ACGGAATGAGGAACTTGCAACCGT -ACGGAATGAGGAACTTGCTTGTGC -ACGGAATGAGGAACTTGCCTAAGC -ACGGAATGAGGAACTTGCACTAGC -ACGGAATGAGGAACTTGCAGATGC -ACGGAATGAGGAACTTGCTGAAGG -ACGGAATGAGGAACTTGCCAATGG -ACGGAATGAGGAACTTGCATGAGG -ACGGAATGAGGAACTTGCAATGGG -ACGGAATGAGGAACTTGCTCCTGA -ACGGAATGAGGAACTTGCTAGCGA -ACGGAATGAGGAACTTGCCACAGA -ACGGAATGAGGAACTTGCGCAAGA -ACGGAATGAGGAACTTGCGGTTGA -ACGGAATGAGGAACTTGCTCCGAT -ACGGAATGAGGAACTTGCTGGCAT -ACGGAATGAGGAACTTGCCGAGAT -ACGGAATGAGGAACTTGCTACCAC -ACGGAATGAGGAACTTGCCAGAAC -ACGGAATGAGGAACTTGCGTCTAC -ACGGAATGAGGAACTTGCACGTAC -ACGGAATGAGGAACTTGCAGTGAC -ACGGAATGAGGAACTTGCCTGTAG -ACGGAATGAGGAACTTGCCCTAAG -ACGGAATGAGGAACTTGCGTTCAG -ACGGAATGAGGAACTTGCGCATAG -ACGGAATGAGGAACTTGCGACAAG -ACGGAATGAGGAACTTGCAAGCAG -ACGGAATGAGGAACTTGCCGTCAA -ACGGAATGAGGAACTTGCGCTGAA -ACGGAATGAGGAACTTGCAGTACG -ACGGAATGAGGAACTTGCATCCGA -ACGGAATGAGGAACTTGCATGGGA -ACGGAATGAGGAACTTGCGTGCAA -ACGGAATGAGGAACTTGCGAGGAA -ACGGAATGAGGAACTTGCCAGGTA -ACGGAATGAGGAACTTGCGACTCT -ACGGAATGAGGAACTTGCAGTCCT -ACGGAATGAGGAACTTGCTAAGCC -ACGGAATGAGGAACTTGCATAGCC -ACGGAATGAGGAACTTGCTAACCG -ACGGAATGAGGAACTTGCATGCCA -ACGGAATGAGGAACTCTGGGAAAC -ACGGAATGAGGAACTCTGAACACC -ACGGAATGAGGAACTCTGATCGAG -ACGGAATGAGGAACTCTGCTCCTT -ACGGAATGAGGAACTCTGCCTGTT -ACGGAATGAGGAACTCTGCGGTTT -ACGGAATGAGGAACTCTGGTGGTT -ACGGAATGAGGAACTCTGGCCTTT -ACGGAATGAGGAACTCTGGGTCTT -ACGGAATGAGGAACTCTGACGCTT -ACGGAATGAGGAACTCTGAGCGTT -ACGGAATGAGGAACTCTGTTCGTC -ACGGAATGAGGAACTCTGTCTCTC -ACGGAATGAGGAACTCTGTGGATC -ACGGAATGAGGAACTCTGCACTTC -ACGGAATGAGGAACTCTGGTACTC -ACGGAATGAGGAACTCTGGATGTC -ACGGAATGAGGAACTCTGACAGTC -ACGGAATGAGGAACTCTGTTGCTG -ACGGAATGAGGAACTCTGTCCATG -ACGGAATGAGGAACTCTGTGTGTG -ACGGAATGAGGAACTCTGCTAGTG -ACGGAATGAGGAACTCTGCATCTG -ACGGAATGAGGAACTCTGGAGTTG -ACGGAATGAGGAACTCTGAGACTG -ACGGAATGAGGAACTCTGTCGGTA -ACGGAATGAGGAACTCTGTGCCTA -ACGGAATGAGGAACTCTGCCACTA -ACGGAATGAGGAACTCTGGGAGTA -ACGGAATGAGGAACTCTGTCGTCT -ACGGAATGAGGAACTCTGTGCACT -ACGGAATGAGGAACTCTGCTGACT -ACGGAATGAGGAACTCTGCAACCT -ACGGAATGAGGAACTCTGGCTACT -ACGGAATGAGGAACTCTGGGATCT -ACGGAATGAGGAACTCTGAAGGCT -ACGGAATGAGGAACTCTGTCAACC -ACGGAATGAGGAACTCTGTGTTCC -ACGGAATGAGGAACTCTGATTCCC -ACGGAATGAGGAACTCTGTTCTCG -ACGGAATGAGGAACTCTGTAGACG -ACGGAATGAGGAACTCTGGTAACG -ACGGAATGAGGAACTCTGACTTCG -ACGGAATGAGGAACTCTGTACGCA -ACGGAATGAGGAACTCTGCTTGCA -ACGGAATGAGGAACTCTGCGAACA -ACGGAATGAGGAACTCTGCAGTCA -ACGGAATGAGGAACTCTGGATCCA -ACGGAATGAGGAACTCTGACGACA -ACGGAATGAGGAACTCTGAGCTCA -ACGGAATGAGGAACTCTGTCACGT -ACGGAATGAGGAACTCTGCGTAGT -ACGGAATGAGGAACTCTGGTCAGT -ACGGAATGAGGAACTCTGGAAGGT -ACGGAATGAGGAACTCTGAACCGT -ACGGAATGAGGAACTCTGTTGTGC -ACGGAATGAGGAACTCTGCTAAGC -ACGGAATGAGGAACTCTGACTAGC -ACGGAATGAGGAACTCTGAGATGC -ACGGAATGAGGAACTCTGTGAAGG -ACGGAATGAGGAACTCTGCAATGG -ACGGAATGAGGAACTCTGATGAGG -ACGGAATGAGGAACTCTGAATGGG -ACGGAATGAGGAACTCTGTCCTGA -ACGGAATGAGGAACTCTGTAGCGA -ACGGAATGAGGAACTCTGCACAGA -ACGGAATGAGGAACTCTGGCAAGA -ACGGAATGAGGAACTCTGGGTTGA -ACGGAATGAGGAACTCTGTCCGAT -ACGGAATGAGGAACTCTGTGGCAT -ACGGAATGAGGAACTCTGCGAGAT -ACGGAATGAGGAACTCTGTACCAC -ACGGAATGAGGAACTCTGCAGAAC -ACGGAATGAGGAACTCTGGTCTAC -ACGGAATGAGGAACTCTGACGTAC -ACGGAATGAGGAACTCTGAGTGAC -ACGGAATGAGGAACTCTGCTGTAG -ACGGAATGAGGAACTCTGCCTAAG -ACGGAATGAGGAACTCTGGTTCAG -ACGGAATGAGGAACTCTGGCATAG -ACGGAATGAGGAACTCTGGACAAG -ACGGAATGAGGAACTCTGAAGCAG -ACGGAATGAGGAACTCTGCGTCAA -ACGGAATGAGGAACTCTGGCTGAA -ACGGAATGAGGAACTCTGAGTACG -ACGGAATGAGGAACTCTGATCCGA -ACGGAATGAGGAACTCTGATGGGA -ACGGAATGAGGAACTCTGGTGCAA -ACGGAATGAGGAACTCTGGAGGAA -ACGGAATGAGGAACTCTGCAGGTA -ACGGAATGAGGAACTCTGGACTCT -ACGGAATGAGGAACTCTGAGTCCT -ACGGAATGAGGAACTCTGTAAGCC -ACGGAATGAGGAACTCTGATAGCC -ACGGAATGAGGAACTCTGTAACCG -ACGGAATGAGGAACTCTGATGCCA -ACGGAATGAGGACCTCAAGGAAAC -ACGGAATGAGGACCTCAAAACACC -ACGGAATGAGGACCTCAAATCGAG -ACGGAATGAGGACCTCAACTCCTT -ACGGAATGAGGACCTCAACCTGTT -ACGGAATGAGGACCTCAACGGTTT -ACGGAATGAGGACCTCAAGTGGTT -ACGGAATGAGGACCTCAAGCCTTT -ACGGAATGAGGACCTCAAGGTCTT -ACGGAATGAGGACCTCAAACGCTT -ACGGAATGAGGACCTCAAAGCGTT -ACGGAATGAGGACCTCAATTCGTC -ACGGAATGAGGACCTCAATCTCTC -ACGGAATGAGGACCTCAATGGATC -ACGGAATGAGGACCTCAACACTTC -ACGGAATGAGGACCTCAAGTACTC -ACGGAATGAGGACCTCAAGATGTC -ACGGAATGAGGACCTCAAACAGTC -ACGGAATGAGGACCTCAATTGCTG -ACGGAATGAGGACCTCAATCCATG -ACGGAATGAGGACCTCAATGTGTG -ACGGAATGAGGACCTCAACTAGTG -ACGGAATGAGGACCTCAACATCTG -ACGGAATGAGGACCTCAAGAGTTG -ACGGAATGAGGACCTCAAAGACTG -ACGGAATGAGGACCTCAATCGGTA -ACGGAATGAGGACCTCAATGCCTA -ACGGAATGAGGACCTCAACCACTA -ACGGAATGAGGACCTCAAGGAGTA -ACGGAATGAGGACCTCAATCGTCT -ACGGAATGAGGACCTCAATGCACT -ACGGAATGAGGACCTCAACTGACT -ACGGAATGAGGACCTCAACAACCT -ACGGAATGAGGACCTCAAGCTACT -ACGGAATGAGGACCTCAAGGATCT -ACGGAATGAGGACCTCAAAAGGCT -ACGGAATGAGGACCTCAATCAACC -ACGGAATGAGGACCTCAATGTTCC -ACGGAATGAGGACCTCAAATTCCC -ACGGAATGAGGACCTCAATTCTCG -ACGGAATGAGGACCTCAATAGACG -ACGGAATGAGGACCTCAAGTAACG -ACGGAATGAGGACCTCAAACTTCG -ACGGAATGAGGACCTCAATACGCA -ACGGAATGAGGACCTCAACTTGCA -ACGGAATGAGGACCTCAACGAACA -ACGGAATGAGGACCTCAACAGTCA -ACGGAATGAGGACCTCAAGATCCA -ACGGAATGAGGACCTCAAACGACA -ACGGAATGAGGACCTCAAAGCTCA -ACGGAATGAGGACCTCAATCACGT -ACGGAATGAGGACCTCAACGTAGT -ACGGAATGAGGACCTCAAGTCAGT -ACGGAATGAGGACCTCAAGAAGGT -ACGGAATGAGGACCTCAAAACCGT -ACGGAATGAGGACCTCAATTGTGC -ACGGAATGAGGACCTCAACTAAGC -ACGGAATGAGGACCTCAAACTAGC -ACGGAATGAGGACCTCAAAGATGC -ACGGAATGAGGACCTCAATGAAGG -ACGGAATGAGGACCTCAACAATGG -ACGGAATGAGGACCTCAAATGAGG -ACGGAATGAGGACCTCAAAATGGG -ACGGAATGAGGACCTCAATCCTGA -ACGGAATGAGGACCTCAATAGCGA -ACGGAATGAGGACCTCAACACAGA -ACGGAATGAGGACCTCAAGCAAGA -ACGGAATGAGGACCTCAAGGTTGA -ACGGAATGAGGACCTCAATCCGAT -ACGGAATGAGGACCTCAATGGCAT -ACGGAATGAGGACCTCAACGAGAT -ACGGAATGAGGACCTCAATACCAC -ACGGAATGAGGACCTCAACAGAAC -ACGGAATGAGGACCTCAAGTCTAC -ACGGAATGAGGACCTCAAACGTAC -ACGGAATGAGGACCTCAAAGTGAC -ACGGAATGAGGACCTCAACTGTAG -ACGGAATGAGGACCTCAACCTAAG -ACGGAATGAGGACCTCAAGTTCAG -ACGGAATGAGGACCTCAAGCATAG -ACGGAATGAGGACCTCAAGACAAG -ACGGAATGAGGACCTCAAAAGCAG -ACGGAATGAGGACCTCAACGTCAA -ACGGAATGAGGACCTCAAGCTGAA -ACGGAATGAGGACCTCAAAGTACG -ACGGAATGAGGACCTCAAATCCGA -ACGGAATGAGGACCTCAAATGGGA -ACGGAATGAGGACCTCAAGTGCAA -ACGGAATGAGGACCTCAAGAGGAA -ACGGAATGAGGACCTCAACAGGTA -ACGGAATGAGGACCTCAAGACTCT -ACGGAATGAGGACCTCAAAGTCCT -ACGGAATGAGGACCTCAATAAGCC -ACGGAATGAGGACCTCAAATAGCC -ACGGAATGAGGACCTCAATAACCG -ACGGAATGAGGACCTCAAATGCCA -ACGGAATGAGGAACTGCTGGAAAC -ACGGAATGAGGAACTGCTAACACC -ACGGAATGAGGAACTGCTATCGAG -ACGGAATGAGGAACTGCTCTCCTT -ACGGAATGAGGAACTGCTCCTGTT -ACGGAATGAGGAACTGCTCGGTTT -ACGGAATGAGGAACTGCTGTGGTT -ACGGAATGAGGAACTGCTGCCTTT -ACGGAATGAGGAACTGCTGGTCTT -ACGGAATGAGGAACTGCTACGCTT -ACGGAATGAGGAACTGCTAGCGTT -ACGGAATGAGGAACTGCTTTCGTC -ACGGAATGAGGAACTGCTTCTCTC -ACGGAATGAGGAACTGCTTGGATC -ACGGAATGAGGAACTGCTCACTTC -ACGGAATGAGGAACTGCTGTACTC -ACGGAATGAGGAACTGCTGATGTC -ACGGAATGAGGAACTGCTACAGTC -ACGGAATGAGGAACTGCTTTGCTG -ACGGAATGAGGAACTGCTTCCATG -ACGGAATGAGGAACTGCTTGTGTG -ACGGAATGAGGAACTGCTCTAGTG -ACGGAATGAGGAACTGCTCATCTG -ACGGAATGAGGAACTGCTGAGTTG -ACGGAATGAGGAACTGCTAGACTG -ACGGAATGAGGAACTGCTTCGGTA -ACGGAATGAGGAACTGCTTGCCTA -ACGGAATGAGGAACTGCTCCACTA -ACGGAATGAGGAACTGCTGGAGTA -ACGGAATGAGGAACTGCTTCGTCT -ACGGAATGAGGAACTGCTTGCACT -ACGGAATGAGGAACTGCTCTGACT -ACGGAATGAGGAACTGCTCAACCT -ACGGAATGAGGAACTGCTGCTACT -ACGGAATGAGGAACTGCTGGATCT -ACGGAATGAGGAACTGCTAAGGCT -ACGGAATGAGGAACTGCTTCAACC -ACGGAATGAGGAACTGCTTGTTCC -ACGGAATGAGGAACTGCTATTCCC -ACGGAATGAGGAACTGCTTTCTCG -ACGGAATGAGGAACTGCTTAGACG -ACGGAATGAGGAACTGCTGTAACG -ACGGAATGAGGAACTGCTACTTCG -ACGGAATGAGGAACTGCTTACGCA -ACGGAATGAGGAACTGCTCTTGCA -ACGGAATGAGGAACTGCTCGAACA -ACGGAATGAGGAACTGCTCAGTCA -ACGGAATGAGGAACTGCTGATCCA -ACGGAATGAGGAACTGCTACGACA -ACGGAATGAGGAACTGCTAGCTCA -ACGGAATGAGGAACTGCTTCACGT -ACGGAATGAGGAACTGCTCGTAGT -ACGGAATGAGGAACTGCTGTCAGT -ACGGAATGAGGAACTGCTGAAGGT -ACGGAATGAGGAACTGCTAACCGT -ACGGAATGAGGAACTGCTTTGTGC -ACGGAATGAGGAACTGCTCTAAGC -ACGGAATGAGGAACTGCTACTAGC -ACGGAATGAGGAACTGCTAGATGC -ACGGAATGAGGAACTGCTTGAAGG -ACGGAATGAGGAACTGCTCAATGG -ACGGAATGAGGAACTGCTATGAGG -ACGGAATGAGGAACTGCTAATGGG -ACGGAATGAGGAACTGCTTCCTGA -ACGGAATGAGGAACTGCTTAGCGA -ACGGAATGAGGAACTGCTCACAGA -ACGGAATGAGGAACTGCTGCAAGA -ACGGAATGAGGAACTGCTGGTTGA -ACGGAATGAGGAACTGCTTCCGAT -ACGGAATGAGGAACTGCTTGGCAT -ACGGAATGAGGAACTGCTCGAGAT -ACGGAATGAGGAACTGCTTACCAC -ACGGAATGAGGAACTGCTCAGAAC -ACGGAATGAGGAACTGCTGTCTAC -ACGGAATGAGGAACTGCTACGTAC -ACGGAATGAGGAACTGCTAGTGAC -ACGGAATGAGGAACTGCTCTGTAG -ACGGAATGAGGAACTGCTCCTAAG -ACGGAATGAGGAACTGCTGTTCAG -ACGGAATGAGGAACTGCTGCATAG -ACGGAATGAGGAACTGCTGACAAG -ACGGAATGAGGAACTGCTAAGCAG -ACGGAATGAGGAACTGCTCGTCAA -ACGGAATGAGGAACTGCTGCTGAA -ACGGAATGAGGAACTGCTAGTACG -ACGGAATGAGGAACTGCTATCCGA -ACGGAATGAGGAACTGCTATGGGA -ACGGAATGAGGAACTGCTGTGCAA -ACGGAATGAGGAACTGCTGAGGAA -ACGGAATGAGGAACTGCTCAGGTA -ACGGAATGAGGAACTGCTGACTCT -ACGGAATGAGGAACTGCTAGTCCT -ACGGAATGAGGAACTGCTTAAGCC -ACGGAATGAGGAACTGCTATAGCC -ACGGAATGAGGAACTGCTTAACCG -ACGGAATGAGGAACTGCTATGCCA -ACGGAATGAGGATCTGGAGGAAAC -ACGGAATGAGGATCTGGAAACACC -ACGGAATGAGGATCTGGAATCGAG -ACGGAATGAGGATCTGGACTCCTT -ACGGAATGAGGATCTGGACCTGTT -ACGGAATGAGGATCTGGACGGTTT -ACGGAATGAGGATCTGGAGTGGTT -ACGGAATGAGGATCTGGAGCCTTT -ACGGAATGAGGATCTGGAGGTCTT -ACGGAATGAGGATCTGGAACGCTT -ACGGAATGAGGATCTGGAAGCGTT -ACGGAATGAGGATCTGGATTCGTC -ACGGAATGAGGATCTGGATCTCTC -ACGGAATGAGGATCTGGATGGATC -ACGGAATGAGGATCTGGACACTTC -ACGGAATGAGGATCTGGAGTACTC -ACGGAATGAGGATCTGGAGATGTC -ACGGAATGAGGATCTGGAACAGTC -ACGGAATGAGGATCTGGATTGCTG -ACGGAATGAGGATCTGGATCCATG -ACGGAATGAGGATCTGGATGTGTG -ACGGAATGAGGATCTGGACTAGTG -ACGGAATGAGGATCTGGACATCTG -ACGGAATGAGGATCTGGAGAGTTG -ACGGAATGAGGATCTGGAAGACTG -ACGGAATGAGGATCTGGATCGGTA -ACGGAATGAGGATCTGGATGCCTA -ACGGAATGAGGATCTGGACCACTA -ACGGAATGAGGATCTGGAGGAGTA -ACGGAATGAGGATCTGGATCGTCT -ACGGAATGAGGATCTGGATGCACT -ACGGAATGAGGATCTGGACTGACT -ACGGAATGAGGATCTGGACAACCT -ACGGAATGAGGATCTGGAGCTACT -ACGGAATGAGGATCTGGAGGATCT -ACGGAATGAGGATCTGGAAAGGCT -ACGGAATGAGGATCTGGATCAACC -ACGGAATGAGGATCTGGATGTTCC -ACGGAATGAGGATCTGGAATTCCC -ACGGAATGAGGATCTGGATTCTCG -ACGGAATGAGGATCTGGATAGACG -ACGGAATGAGGATCTGGAGTAACG -ACGGAATGAGGATCTGGAACTTCG -ACGGAATGAGGATCTGGATACGCA -ACGGAATGAGGATCTGGACTTGCA -ACGGAATGAGGATCTGGACGAACA -ACGGAATGAGGATCTGGACAGTCA -ACGGAATGAGGATCTGGAGATCCA -ACGGAATGAGGATCTGGAACGACA -ACGGAATGAGGATCTGGAAGCTCA -ACGGAATGAGGATCTGGATCACGT -ACGGAATGAGGATCTGGACGTAGT -ACGGAATGAGGATCTGGAGTCAGT -ACGGAATGAGGATCTGGAGAAGGT -ACGGAATGAGGATCTGGAAACCGT -ACGGAATGAGGATCTGGATTGTGC -ACGGAATGAGGATCTGGACTAAGC -ACGGAATGAGGATCTGGAACTAGC -ACGGAATGAGGATCTGGAAGATGC -ACGGAATGAGGATCTGGATGAAGG -ACGGAATGAGGATCTGGACAATGG -ACGGAATGAGGATCTGGAATGAGG -ACGGAATGAGGATCTGGAAATGGG -ACGGAATGAGGATCTGGATCCTGA -ACGGAATGAGGATCTGGATAGCGA -ACGGAATGAGGATCTGGACACAGA -ACGGAATGAGGATCTGGAGCAAGA -ACGGAATGAGGATCTGGAGGTTGA -ACGGAATGAGGATCTGGATCCGAT -ACGGAATGAGGATCTGGATGGCAT -ACGGAATGAGGATCTGGACGAGAT -ACGGAATGAGGATCTGGATACCAC -ACGGAATGAGGATCTGGACAGAAC -ACGGAATGAGGATCTGGAGTCTAC -ACGGAATGAGGATCTGGAACGTAC -ACGGAATGAGGATCTGGAAGTGAC -ACGGAATGAGGATCTGGACTGTAG -ACGGAATGAGGATCTGGACCTAAG -ACGGAATGAGGATCTGGAGTTCAG -ACGGAATGAGGATCTGGAGCATAG -ACGGAATGAGGATCTGGAGACAAG -ACGGAATGAGGATCTGGAAAGCAG -ACGGAATGAGGATCTGGACGTCAA -ACGGAATGAGGATCTGGAGCTGAA -ACGGAATGAGGATCTGGAAGTACG -ACGGAATGAGGATCTGGAATCCGA -ACGGAATGAGGATCTGGAATGGGA -ACGGAATGAGGATCTGGAGTGCAA -ACGGAATGAGGATCTGGAGAGGAA -ACGGAATGAGGATCTGGACAGGTA -ACGGAATGAGGATCTGGAGACTCT -ACGGAATGAGGATCTGGAAGTCCT -ACGGAATGAGGATCTGGATAAGCC -ACGGAATGAGGATCTGGAATAGCC -ACGGAATGAGGATCTGGATAACCG -ACGGAATGAGGATCTGGAATGCCA -ACGGAATGAGGAGCTAAGGGAAAC -ACGGAATGAGGAGCTAAGAACACC -ACGGAATGAGGAGCTAAGATCGAG -ACGGAATGAGGAGCTAAGCTCCTT -ACGGAATGAGGAGCTAAGCCTGTT -ACGGAATGAGGAGCTAAGCGGTTT -ACGGAATGAGGAGCTAAGGTGGTT -ACGGAATGAGGAGCTAAGGCCTTT -ACGGAATGAGGAGCTAAGGGTCTT -ACGGAATGAGGAGCTAAGACGCTT -ACGGAATGAGGAGCTAAGAGCGTT -ACGGAATGAGGAGCTAAGTTCGTC -ACGGAATGAGGAGCTAAGTCTCTC -ACGGAATGAGGAGCTAAGTGGATC -ACGGAATGAGGAGCTAAGCACTTC -ACGGAATGAGGAGCTAAGGTACTC -ACGGAATGAGGAGCTAAGGATGTC -ACGGAATGAGGAGCTAAGACAGTC -ACGGAATGAGGAGCTAAGTTGCTG -ACGGAATGAGGAGCTAAGTCCATG -ACGGAATGAGGAGCTAAGTGTGTG -ACGGAATGAGGAGCTAAGCTAGTG -ACGGAATGAGGAGCTAAGCATCTG -ACGGAATGAGGAGCTAAGGAGTTG -ACGGAATGAGGAGCTAAGAGACTG -ACGGAATGAGGAGCTAAGTCGGTA -ACGGAATGAGGAGCTAAGTGCCTA -ACGGAATGAGGAGCTAAGCCACTA -ACGGAATGAGGAGCTAAGGGAGTA -ACGGAATGAGGAGCTAAGTCGTCT -ACGGAATGAGGAGCTAAGTGCACT -ACGGAATGAGGAGCTAAGCTGACT -ACGGAATGAGGAGCTAAGCAACCT -ACGGAATGAGGAGCTAAGGCTACT -ACGGAATGAGGAGCTAAGGGATCT -ACGGAATGAGGAGCTAAGAAGGCT -ACGGAATGAGGAGCTAAGTCAACC -ACGGAATGAGGAGCTAAGTGTTCC -ACGGAATGAGGAGCTAAGATTCCC -ACGGAATGAGGAGCTAAGTTCTCG -ACGGAATGAGGAGCTAAGTAGACG -ACGGAATGAGGAGCTAAGGTAACG -ACGGAATGAGGAGCTAAGACTTCG -ACGGAATGAGGAGCTAAGTACGCA -ACGGAATGAGGAGCTAAGCTTGCA -ACGGAATGAGGAGCTAAGCGAACA -ACGGAATGAGGAGCTAAGCAGTCA -ACGGAATGAGGAGCTAAGGATCCA -ACGGAATGAGGAGCTAAGACGACA -ACGGAATGAGGAGCTAAGAGCTCA -ACGGAATGAGGAGCTAAGTCACGT -ACGGAATGAGGAGCTAAGCGTAGT -ACGGAATGAGGAGCTAAGGTCAGT -ACGGAATGAGGAGCTAAGGAAGGT -ACGGAATGAGGAGCTAAGAACCGT -ACGGAATGAGGAGCTAAGTTGTGC -ACGGAATGAGGAGCTAAGCTAAGC -ACGGAATGAGGAGCTAAGACTAGC -ACGGAATGAGGAGCTAAGAGATGC -ACGGAATGAGGAGCTAAGTGAAGG -ACGGAATGAGGAGCTAAGCAATGG -ACGGAATGAGGAGCTAAGATGAGG -ACGGAATGAGGAGCTAAGAATGGG -ACGGAATGAGGAGCTAAGTCCTGA -ACGGAATGAGGAGCTAAGTAGCGA -ACGGAATGAGGAGCTAAGCACAGA -ACGGAATGAGGAGCTAAGGCAAGA -ACGGAATGAGGAGCTAAGGGTTGA -ACGGAATGAGGAGCTAAGTCCGAT -ACGGAATGAGGAGCTAAGTGGCAT -ACGGAATGAGGAGCTAAGCGAGAT -ACGGAATGAGGAGCTAAGTACCAC -ACGGAATGAGGAGCTAAGCAGAAC -ACGGAATGAGGAGCTAAGGTCTAC -ACGGAATGAGGAGCTAAGACGTAC -ACGGAATGAGGAGCTAAGAGTGAC -ACGGAATGAGGAGCTAAGCTGTAG -ACGGAATGAGGAGCTAAGCCTAAG -ACGGAATGAGGAGCTAAGGTTCAG -ACGGAATGAGGAGCTAAGGCATAG -ACGGAATGAGGAGCTAAGGACAAG -ACGGAATGAGGAGCTAAGAAGCAG -ACGGAATGAGGAGCTAAGCGTCAA -ACGGAATGAGGAGCTAAGGCTGAA -ACGGAATGAGGAGCTAAGAGTACG -ACGGAATGAGGAGCTAAGATCCGA -ACGGAATGAGGAGCTAAGATGGGA -ACGGAATGAGGAGCTAAGGTGCAA -ACGGAATGAGGAGCTAAGGAGGAA -ACGGAATGAGGAGCTAAGCAGGTA -ACGGAATGAGGAGCTAAGGACTCT -ACGGAATGAGGAGCTAAGAGTCCT -ACGGAATGAGGAGCTAAGTAAGCC -ACGGAATGAGGAGCTAAGATAGCC -ACGGAATGAGGAGCTAAGTAACCG -ACGGAATGAGGAGCTAAGATGCCA -ACGGAATGAGGAACCTCAGGAAAC -ACGGAATGAGGAACCTCAAACACC -ACGGAATGAGGAACCTCAATCGAG -ACGGAATGAGGAACCTCACTCCTT -ACGGAATGAGGAACCTCACCTGTT -ACGGAATGAGGAACCTCACGGTTT -ACGGAATGAGGAACCTCAGTGGTT -ACGGAATGAGGAACCTCAGCCTTT -ACGGAATGAGGAACCTCAGGTCTT -ACGGAATGAGGAACCTCAACGCTT -ACGGAATGAGGAACCTCAAGCGTT -ACGGAATGAGGAACCTCATTCGTC -ACGGAATGAGGAACCTCATCTCTC -ACGGAATGAGGAACCTCATGGATC -ACGGAATGAGGAACCTCACACTTC -ACGGAATGAGGAACCTCAGTACTC -ACGGAATGAGGAACCTCAGATGTC -ACGGAATGAGGAACCTCAACAGTC -ACGGAATGAGGAACCTCATTGCTG -ACGGAATGAGGAACCTCATCCATG -ACGGAATGAGGAACCTCATGTGTG -ACGGAATGAGGAACCTCACTAGTG -ACGGAATGAGGAACCTCACATCTG -ACGGAATGAGGAACCTCAGAGTTG -ACGGAATGAGGAACCTCAAGACTG -ACGGAATGAGGAACCTCATCGGTA -ACGGAATGAGGAACCTCATGCCTA -ACGGAATGAGGAACCTCACCACTA -ACGGAATGAGGAACCTCAGGAGTA -ACGGAATGAGGAACCTCATCGTCT -ACGGAATGAGGAACCTCATGCACT -ACGGAATGAGGAACCTCACTGACT -ACGGAATGAGGAACCTCACAACCT -ACGGAATGAGGAACCTCAGCTACT -ACGGAATGAGGAACCTCAGGATCT -ACGGAATGAGGAACCTCAAAGGCT -ACGGAATGAGGAACCTCATCAACC -ACGGAATGAGGAACCTCATGTTCC -ACGGAATGAGGAACCTCAATTCCC -ACGGAATGAGGAACCTCATTCTCG -ACGGAATGAGGAACCTCATAGACG -ACGGAATGAGGAACCTCAGTAACG -ACGGAATGAGGAACCTCAACTTCG -ACGGAATGAGGAACCTCATACGCA -ACGGAATGAGGAACCTCACTTGCA -ACGGAATGAGGAACCTCACGAACA -ACGGAATGAGGAACCTCACAGTCA -ACGGAATGAGGAACCTCAGATCCA -ACGGAATGAGGAACCTCAACGACA -ACGGAATGAGGAACCTCAAGCTCA -ACGGAATGAGGAACCTCATCACGT -ACGGAATGAGGAACCTCACGTAGT -ACGGAATGAGGAACCTCAGTCAGT -ACGGAATGAGGAACCTCAGAAGGT -ACGGAATGAGGAACCTCAAACCGT -ACGGAATGAGGAACCTCATTGTGC -ACGGAATGAGGAACCTCACTAAGC -ACGGAATGAGGAACCTCAACTAGC -ACGGAATGAGGAACCTCAAGATGC -ACGGAATGAGGAACCTCATGAAGG -ACGGAATGAGGAACCTCACAATGG -ACGGAATGAGGAACCTCAATGAGG -ACGGAATGAGGAACCTCAAATGGG -ACGGAATGAGGAACCTCATCCTGA -ACGGAATGAGGAACCTCATAGCGA -ACGGAATGAGGAACCTCACACAGA -ACGGAATGAGGAACCTCAGCAAGA -ACGGAATGAGGAACCTCAGGTTGA -ACGGAATGAGGAACCTCATCCGAT -ACGGAATGAGGAACCTCATGGCAT -ACGGAATGAGGAACCTCACGAGAT -ACGGAATGAGGAACCTCATACCAC -ACGGAATGAGGAACCTCACAGAAC -ACGGAATGAGGAACCTCAGTCTAC -ACGGAATGAGGAACCTCAACGTAC -ACGGAATGAGGAACCTCAAGTGAC -ACGGAATGAGGAACCTCACTGTAG -ACGGAATGAGGAACCTCACCTAAG -ACGGAATGAGGAACCTCAGTTCAG -ACGGAATGAGGAACCTCAGCATAG -ACGGAATGAGGAACCTCAGACAAG -ACGGAATGAGGAACCTCAAAGCAG -ACGGAATGAGGAACCTCACGTCAA -ACGGAATGAGGAACCTCAGCTGAA -ACGGAATGAGGAACCTCAAGTACG -ACGGAATGAGGAACCTCAATCCGA -ACGGAATGAGGAACCTCAATGGGA -ACGGAATGAGGAACCTCAGTGCAA -ACGGAATGAGGAACCTCAGAGGAA -ACGGAATGAGGAACCTCACAGGTA -ACGGAATGAGGAACCTCAGACTCT -ACGGAATGAGGAACCTCAAGTCCT -ACGGAATGAGGAACCTCATAAGCC -ACGGAATGAGGAACCTCAATAGCC -ACGGAATGAGGAACCTCATAACCG -ACGGAATGAGGAACCTCAATGCCA -ACGGAATGAGGATCCTGTGGAAAC -ACGGAATGAGGATCCTGTAACACC -ACGGAATGAGGATCCTGTATCGAG -ACGGAATGAGGATCCTGTCTCCTT -ACGGAATGAGGATCCTGTCCTGTT -ACGGAATGAGGATCCTGTCGGTTT -ACGGAATGAGGATCCTGTGTGGTT -ACGGAATGAGGATCCTGTGCCTTT -ACGGAATGAGGATCCTGTGGTCTT -ACGGAATGAGGATCCTGTACGCTT -ACGGAATGAGGATCCTGTAGCGTT -ACGGAATGAGGATCCTGTTTCGTC -ACGGAATGAGGATCCTGTTCTCTC -ACGGAATGAGGATCCTGTTGGATC -ACGGAATGAGGATCCTGTCACTTC -ACGGAATGAGGATCCTGTGTACTC -ACGGAATGAGGATCCTGTGATGTC -ACGGAATGAGGATCCTGTACAGTC -ACGGAATGAGGATCCTGTTTGCTG -ACGGAATGAGGATCCTGTTCCATG -ACGGAATGAGGATCCTGTTGTGTG -ACGGAATGAGGATCCTGTCTAGTG -ACGGAATGAGGATCCTGTCATCTG -ACGGAATGAGGATCCTGTGAGTTG -ACGGAATGAGGATCCTGTAGACTG -ACGGAATGAGGATCCTGTTCGGTA -ACGGAATGAGGATCCTGTTGCCTA -ACGGAATGAGGATCCTGTCCACTA -ACGGAATGAGGATCCTGTGGAGTA -ACGGAATGAGGATCCTGTTCGTCT -ACGGAATGAGGATCCTGTTGCACT -ACGGAATGAGGATCCTGTCTGACT -ACGGAATGAGGATCCTGTCAACCT -ACGGAATGAGGATCCTGTGCTACT -ACGGAATGAGGATCCTGTGGATCT -ACGGAATGAGGATCCTGTAAGGCT -ACGGAATGAGGATCCTGTTCAACC -ACGGAATGAGGATCCTGTTGTTCC -ACGGAATGAGGATCCTGTATTCCC -ACGGAATGAGGATCCTGTTTCTCG -ACGGAATGAGGATCCTGTTAGACG -ACGGAATGAGGATCCTGTGTAACG -ACGGAATGAGGATCCTGTACTTCG -ACGGAATGAGGATCCTGTTACGCA -ACGGAATGAGGATCCTGTCTTGCA -ACGGAATGAGGATCCTGTCGAACA -ACGGAATGAGGATCCTGTCAGTCA -ACGGAATGAGGATCCTGTGATCCA -ACGGAATGAGGATCCTGTACGACA -ACGGAATGAGGATCCTGTAGCTCA -ACGGAATGAGGATCCTGTTCACGT -ACGGAATGAGGATCCTGTCGTAGT -ACGGAATGAGGATCCTGTGTCAGT -ACGGAATGAGGATCCTGTGAAGGT -ACGGAATGAGGATCCTGTAACCGT -ACGGAATGAGGATCCTGTTTGTGC -ACGGAATGAGGATCCTGTCTAAGC -ACGGAATGAGGATCCTGTACTAGC -ACGGAATGAGGATCCTGTAGATGC -ACGGAATGAGGATCCTGTTGAAGG -ACGGAATGAGGATCCTGTCAATGG -ACGGAATGAGGATCCTGTATGAGG -ACGGAATGAGGATCCTGTAATGGG -ACGGAATGAGGATCCTGTTCCTGA -ACGGAATGAGGATCCTGTTAGCGA -ACGGAATGAGGATCCTGTCACAGA -ACGGAATGAGGATCCTGTGCAAGA -ACGGAATGAGGATCCTGTGGTTGA -ACGGAATGAGGATCCTGTTCCGAT -ACGGAATGAGGATCCTGTTGGCAT -ACGGAATGAGGATCCTGTCGAGAT -ACGGAATGAGGATCCTGTTACCAC -ACGGAATGAGGATCCTGTCAGAAC -ACGGAATGAGGATCCTGTGTCTAC -ACGGAATGAGGATCCTGTACGTAC -ACGGAATGAGGATCCTGTAGTGAC -ACGGAATGAGGATCCTGTCTGTAG -ACGGAATGAGGATCCTGTCCTAAG -ACGGAATGAGGATCCTGTGTTCAG -ACGGAATGAGGATCCTGTGCATAG -ACGGAATGAGGATCCTGTGACAAG -ACGGAATGAGGATCCTGTAAGCAG -ACGGAATGAGGATCCTGTCGTCAA -ACGGAATGAGGATCCTGTGCTGAA -ACGGAATGAGGATCCTGTAGTACG -ACGGAATGAGGATCCTGTATCCGA -ACGGAATGAGGATCCTGTATGGGA -ACGGAATGAGGATCCTGTGTGCAA -ACGGAATGAGGATCCTGTGAGGAA -ACGGAATGAGGATCCTGTCAGGTA -ACGGAATGAGGATCCTGTGACTCT -ACGGAATGAGGATCCTGTAGTCCT -ACGGAATGAGGATCCTGTTAAGCC -ACGGAATGAGGATCCTGTATAGCC -ACGGAATGAGGATCCTGTTAACCG -ACGGAATGAGGATCCTGTATGCCA -ACGGAATGAGGACCCATTGGAAAC -ACGGAATGAGGACCCATTAACACC -ACGGAATGAGGACCCATTATCGAG -ACGGAATGAGGACCCATTCTCCTT -ACGGAATGAGGACCCATTCCTGTT -ACGGAATGAGGACCCATTCGGTTT -ACGGAATGAGGACCCATTGTGGTT -ACGGAATGAGGACCCATTGCCTTT -ACGGAATGAGGACCCATTGGTCTT -ACGGAATGAGGACCCATTACGCTT -ACGGAATGAGGACCCATTAGCGTT -ACGGAATGAGGACCCATTTTCGTC -ACGGAATGAGGACCCATTTCTCTC -ACGGAATGAGGACCCATTTGGATC -ACGGAATGAGGACCCATTCACTTC -ACGGAATGAGGACCCATTGTACTC -ACGGAATGAGGACCCATTGATGTC -ACGGAATGAGGACCCATTACAGTC -ACGGAATGAGGACCCATTTTGCTG -ACGGAATGAGGACCCATTTCCATG -ACGGAATGAGGACCCATTTGTGTG -ACGGAATGAGGACCCATTCTAGTG -ACGGAATGAGGACCCATTCATCTG -ACGGAATGAGGACCCATTGAGTTG -ACGGAATGAGGACCCATTAGACTG -ACGGAATGAGGACCCATTTCGGTA -ACGGAATGAGGACCCATTTGCCTA -ACGGAATGAGGACCCATTCCACTA -ACGGAATGAGGACCCATTGGAGTA -ACGGAATGAGGACCCATTTCGTCT -ACGGAATGAGGACCCATTTGCACT -ACGGAATGAGGACCCATTCTGACT -ACGGAATGAGGACCCATTCAACCT -ACGGAATGAGGACCCATTGCTACT -ACGGAATGAGGACCCATTGGATCT -ACGGAATGAGGACCCATTAAGGCT -ACGGAATGAGGACCCATTTCAACC -ACGGAATGAGGACCCATTTGTTCC -ACGGAATGAGGACCCATTATTCCC -ACGGAATGAGGACCCATTTTCTCG -ACGGAATGAGGACCCATTTAGACG -ACGGAATGAGGACCCATTGTAACG -ACGGAATGAGGACCCATTACTTCG -ACGGAATGAGGACCCATTTACGCA -ACGGAATGAGGACCCATTCTTGCA -ACGGAATGAGGACCCATTCGAACA -ACGGAATGAGGACCCATTCAGTCA -ACGGAATGAGGACCCATTGATCCA -ACGGAATGAGGACCCATTACGACA -ACGGAATGAGGACCCATTAGCTCA -ACGGAATGAGGACCCATTTCACGT -ACGGAATGAGGACCCATTCGTAGT -ACGGAATGAGGACCCATTGTCAGT -ACGGAATGAGGACCCATTGAAGGT -ACGGAATGAGGACCCATTAACCGT -ACGGAATGAGGACCCATTTTGTGC -ACGGAATGAGGACCCATTCTAAGC -ACGGAATGAGGACCCATTACTAGC -ACGGAATGAGGACCCATTAGATGC -ACGGAATGAGGACCCATTTGAAGG -ACGGAATGAGGACCCATTCAATGG -ACGGAATGAGGACCCATTATGAGG -ACGGAATGAGGACCCATTAATGGG -ACGGAATGAGGACCCATTTCCTGA -ACGGAATGAGGACCCATTTAGCGA -ACGGAATGAGGACCCATTCACAGA -ACGGAATGAGGACCCATTGCAAGA -ACGGAATGAGGACCCATTGGTTGA -ACGGAATGAGGACCCATTTCCGAT -ACGGAATGAGGACCCATTTGGCAT -ACGGAATGAGGACCCATTCGAGAT -ACGGAATGAGGACCCATTTACCAC -ACGGAATGAGGACCCATTCAGAAC -ACGGAATGAGGACCCATTGTCTAC -ACGGAATGAGGACCCATTACGTAC -ACGGAATGAGGACCCATTAGTGAC -ACGGAATGAGGACCCATTCTGTAG -ACGGAATGAGGACCCATTCCTAAG -ACGGAATGAGGACCCATTGTTCAG -ACGGAATGAGGACCCATTGCATAG -ACGGAATGAGGACCCATTGACAAG -ACGGAATGAGGACCCATTAAGCAG -ACGGAATGAGGACCCATTCGTCAA -ACGGAATGAGGACCCATTGCTGAA -ACGGAATGAGGACCCATTAGTACG -ACGGAATGAGGACCCATTATCCGA -ACGGAATGAGGACCCATTATGGGA -ACGGAATGAGGACCCATTGTGCAA -ACGGAATGAGGACCCATTGAGGAA -ACGGAATGAGGACCCATTCAGGTA -ACGGAATGAGGACCCATTGACTCT -ACGGAATGAGGACCCATTAGTCCT -ACGGAATGAGGACCCATTTAAGCC -ACGGAATGAGGACCCATTATAGCC -ACGGAATGAGGACCCATTTAACCG -ACGGAATGAGGACCCATTATGCCA -ACGGAATGAGGATCGTTCGGAAAC -ACGGAATGAGGATCGTTCAACACC -ACGGAATGAGGATCGTTCATCGAG -ACGGAATGAGGATCGTTCCTCCTT -ACGGAATGAGGATCGTTCCCTGTT -ACGGAATGAGGATCGTTCCGGTTT -ACGGAATGAGGATCGTTCGTGGTT -ACGGAATGAGGATCGTTCGCCTTT -ACGGAATGAGGATCGTTCGGTCTT -ACGGAATGAGGATCGTTCACGCTT -ACGGAATGAGGATCGTTCAGCGTT -ACGGAATGAGGATCGTTCTTCGTC -ACGGAATGAGGATCGTTCTCTCTC -ACGGAATGAGGATCGTTCTGGATC -ACGGAATGAGGATCGTTCCACTTC -ACGGAATGAGGATCGTTCGTACTC -ACGGAATGAGGATCGTTCGATGTC -ACGGAATGAGGATCGTTCACAGTC -ACGGAATGAGGATCGTTCTTGCTG -ACGGAATGAGGATCGTTCTCCATG -ACGGAATGAGGATCGTTCTGTGTG -ACGGAATGAGGATCGTTCCTAGTG -ACGGAATGAGGATCGTTCCATCTG -ACGGAATGAGGATCGTTCGAGTTG -ACGGAATGAGGATCGTTCAGACTG -ACGGAATGAGGATCGTTCTCGGTA -ACGGAATGAGGATCGTTCTGCCTA -ACGGAATGAGGATCGTTCCCACTA -ACGGAATGAGGATCGTTCGGAGTA -ACGGAATGAGGATCGTTCTCGTCT -ACGGAATGAGGATCGTTCTGCACT -ACGGAATGAGGATCGTTCCTGACT -ACGGAATGAGGATCGTTCCAACCT -ACGGAATGAGGATCGTTCGCTACT -ACGGAATGAGGATCGTTCGGATCT -ACGGAATGAGGATCGTTCAAGGCT -ACGGAATGAGGATCGTTCTCAACC -ACGGAATGAGGATCGTTCTGTTCC -ACGGAATGAGGATCGTTCATTCCC -ACGGAATGAGGATCGTTCTTCTCG -ACGGAATGAGGATCGTTCTAGACG -ACGGAATGAGGATCGTTCGTAACG -ACGGAATGAGGATCGTTCACTTCG -ACGGAATGAGGATCGTTCTACGCA -ACGGAATGAGGATCGTTCCTTGCA -ACGGAATGAGGATCGTTCCGAACA -ACGGAATGAGGATCGTTCCAGTCA -ACGGAATGAGGATCGTTCGATCCA -ACGGAATGAGGATCGTTCACGACA -ACGGAATGAGGATCGTTCAGCTCA -ACGGAATGAGGATCGTTCTCACGT -ACGGAATGAGGATCGTTCCGTAGT -ACGGAATGAGGATCGTTCGTCAGT -ACGGAATGAGGATCGTTCGAAGGT -ACGGAATGAGGATCGTTCAACCGT -ACGGAATGAGGATCGTTCTTGTGC -ACGGAATGAGGATCGTTCCTAAGC -ACGGAATGAGGATCGTTCACTAGC -ACGGAATGAGGATCGTTCAGATGC -ACGGAATGAGGATCGTTCTGAAGG -ACGGAATGAGGATCGTTCCAATGG -ACGGAATGAGGATCGTTCATGAGG -ACGGAATGAGGATCGTTCAATGGG -ACGGAATGAGGATCGTTCTCCTGA -ACGGAATGAGGATCGTTCTAGCGA -ACGGAATGAGGATCGTTCCACAGA -ACGGAATGAGGATCGTTCGCAAGA -ACGGAATGAGGATCGTTCGGTTGA -ACGGAATGAGGATCGTTCTCCGAT -ACGGAATGAGGATCGTTCTGGCAT -ACGGAATGAGGATCGTTCCGAGAT -ACGGAATGAGGATCGTTCTACCAC -ACGGAATGAGGATCGTTCCAGAAC -ACGGAATGAGGATCGTTCGTCTAC -ACGGAATGAGGATCGTTCACGTAC -ACGGAATGAGGATCGTTCAGTGAC -ACGGAATGAGGATCGTTCCTGTAG -ACGGAATGAGGATCGTTCCCTAAG -ACGGAATGAGGATCGTTCGTTCAG -ACGGAATGAGGATCGTTCGCATAG -ACGGAATGAGGATCGTTCGACAAG -ACGGAATGAGGATCGTTCAAGCAG -ACGGAATGAGGATCGTTCCGTCAA -ACGGAATGAGGATCGTTCGCTGAA -ACGGAATGAGGATCGTTCAGTACG -ACGGAATGAGGATCGTTCATCCGA -ACGGAATGAGGATCGTTCATGGGA -ACGGAATGAGGATCGTTCGTGCAA -ACGGAATGAGGATCGTTCGAGGAA -ACGGAATGAGGATCGTTCCAGGTA -ACGGAATGAGGATCGTTCGACTCT -ACGGAATGAGGATCGTTCAGTCCT -ACGGAATGAGGATCGTTCTAAGCC -ACGGAATGAGGATCGTTCATAGCC -ACGGAATGAGGATCGTTCTAACCG -ACGGAATGAGGATCGTTCATGCCA -ACGGAATGAGGAACGTAGGGAAAC -ACGGAATGAGGAACGTAGAACACC -ACGGAATGAGGAACGTAGATCGAG -ACGGAATGAGGAACGTAGCTCCTT -ACGGAATGAGGAACGTAGCCTGTT -ACGGAATGAGGAACGTAGCGGTTT -ACGGAATGAGGAACGTAGGTGGTT -ACGGAATGAGGAACGTAGGCCTTT -ACGGAATGAGGAACGTAGGGTCTT -ACGGAATGAGGAACGTAGACGCTT -ACGGAATGAGGAACGTAGAGCGTT -ACGGAATGAGGAACGTAGTTCGTC -ACGGAATGAGGAACGTAGTCTCTC -ACGGAATGAGGAACGTAGTGGATC -ACGGAATGAGGAACGTAGCACTTC -ACGGAATGAGGAACGTAGGTACTC -ACGGAATGAGGAACGTAGGATGTC -ACGGAATGAGGAACGTAGACAGTC -ACGGAATGAGGAACGTAGTTGCTG -ACGGAATGAGGAACGTAGTCCATG -ACGGAATGAGGAACGTAGTGTGTG -ACGGAATGAGGAACGTAGCTAGTG -ACGGAATGAGGAACGTAGCATCTG -ACGGAATGAGGAACGTAGGAGTTG -ACGGAATGAGGAACGTAGAGACTG -ACGGAATGAGGAACGTAGTCGGTA -ACGGAATGAGGAACGTAGTGCCTA -ACGGAATGAGGAACGTAGCCACTA -ACGGAATGAGGAACGTAGGGAGTA -ACGGAATGAGGAACGTAGTCGTCT -ACGGAATGAGGAACGTAGTGCACT -ACGGAATGAGGAACGTAGCTGACT -ACGGAATGAGGAACGTAGCAACCT -ACGGAATGAGGAACGTAGGCTACT -ACGGAATGAGGAACGTAGGGATCT -ACGGAATGAGGAACGTAGAAGGCT -ACGGAATGAGGAACGTAGTCAACC -ACGGAATGAGGAACGTAGTGTTCC -ACGGAATGAGGAACGTAGATTCCC -ACGGAATGAGGAACGTAGTTCTCG -ACGGAATGAGGAACGTAGTAGACG -ACGGAATGAGGAACGTAGGTAACG -ACGGAATGAGGAACGTAGACTTCG -ACGGAATGAGGAACGTAGTACGCA -ACGGAATGAGGAACGTAGCTTGCA -ACGGAATGAGGAACGTAGCGAACA -ACGGAATGAGGAACGTAGCAGTCA -ACGGAATGAGGAACGTAGGATCCA -ACGGAATGAGGAACGTAGACGACA -ACGGAATGAGGAACGTAGAGCTCA -ACGGAATGAGGAACGTAGTCACGT -ACGGAATGAGGAACGTAGCGTAGT -ACGGAATGAGGAACGTAGGTCAGT -ACGGAATGAGGAACGTAGGAAGGT -ACGGAATGAGGAACGTAGAACCGT -ACGGAATGAGGAACGTAGTTGTGC -ACGGAATGAGGAACGTAGCTAAGC -ACGGAATGAGGAACGTAGACTAGC -ACGGAATGAGGAACGTAGAGATGC -ACGGAATGAGGAACGTAGTGAAGG -ACGGAATGAGGAACGTAGCAATGG -ACGGAATGAGGAACGTAGATGAGG -ACGGAATGAGGAACGTAGAATGGG -ACGGAATGAGGAACGTAGTCCTGA -ACGGAATGAGGAACGTAGTAGCGA -ACGGAATGAGGAACGTAGCACAGA -ACGGAATGAGGAACGTAGGCAAGA -ACGGAATGAGGAACGTAGGGTTGA -ACGGAATGAGGAACGTAGTCCGAT -ACGGAATGAGGAACGTAGTGGCAT -ACGGAATGAGGAACGTAGCGAGAT -ACGGAATGAGGAACGTAGTACCAC -ACGGAATGAGGAACGTAGCAGAAC -ACGGAATGAGGAACGTAGGTCTAC -ACGGAATGAGGAACGTAGACGTAC -ACGGAATGAGGAACGTAGAGTGAC -ACGGAATGAGGAACGTAGCTGTAG -ACGGAATGAGGAACGTAGCCTAAG -ACGGAATGAGGAACGTAGGTTCAG -ACGGAATGAGGAACGTAGGCATAG -ACGGAATGAGGAACGTAGGACAAG -ACGGAATGAGGAACGTAGAAGCAG -ACGGAATGAGGAACGTAGCGTCAA -ACGGAATGAGGAACGTAGGCTGAA -ACGGAATGAGGAACGTAGAGTACG -ACGGAATGAGGAACGTAGATCCGA -ACGGAATGAGGAACGTAGATGGGA -ACGGAATGAGGAACGTAGGTGCAA -ACGGAATGAGGAACGTAGGAGGAA -ACGGAATGAGGAACGTAGCAGGTA -ACGGAATGAGGAACGTAGGACTCT -ACGGAATGAGGAACGTAGAGTCCT -ACGGAATGAGGAACGTAGTAAGCC -ACGGAATGAGGAACGTAGATAGCC -ACGGAATGAGGAACGTAGTAACCG -ACGGAATGAGGAACGTAGATGCCA -ACGGAATGAGGAACGGTAGGAAAC -ACGGAATGAGGAACGGTAAACACC -ACGGAATGAGGAACGGTAATCGAG -ACGGAATGAGGAACGGTACTCCTT -ACGGAATGAGGAACGGTACCTGTT -ACGGAATGAGGAACGGTACGGTTT -ACGGAATGAGGAACGGTAGTGGTT -ACGGAATGAGGAACGGTAGCCTTT -ACGGAATGAGGAACGGTAGGTCTT -ACGGAATGAGGAACGGTAACGCTT -ACGGAATGAGGAACGGTAAGCGTT -ACGGAATGAGGAACGGTATTCGTC -ACGGAATGAGGAACGGTATCTCTC -ACGGAATGAGGAACGGTATGGATC -ACGGAATGAGGAACGGTACACTTC -ACGGAATGAGGAACGGTAGTACTC -ACGGAATGAGGAACGGTAGATGTC -ACGGAATGAGGAACGGTAACAGTC -ACGGAATGAGGAACGGTATTGCTG -ACGGAATGAGGAACGGTATCCATG -ACGGAATGAGGAACGGTATGTGTG -ACGGAATGAGGAACGGTACTAGTG -ACGGAATGAGGAACGGTACATCTG -ACGGAATGAGGAACGGTAGAGTTG -ACGGAATGAGGAACGGTAAGACTG -ACGGAATGAGGAACGGTATCGGTA -ACGGAATGAGGAACGGTATGCCTA -ACGGAATGAGGAACGGTACCACTA -ACGGAATGAGGAACGGTAGGAGTA -ACGGAATGAGGAACGGTATCGTCT -ACGGAATGAGGAACGGTATGCACT -ACGGAATGAGGAACGGTACTGACT -ACGGAATGAGGAACGGTACAACCT -ACGGAATGAGGAACGGTAGCTACT -ACGGAATGAGGAACGGTAGGATCT -ACGGAATGAGGAACGGTAAAGGCT -ACGGAATGAGGAACGGTATCAACC -ACGGAATGAGGAACGGTATGTTCC -ACGGAATGAGGAACGGTAATTCCC -ACGGAATGAGGAACGGTATTCTCG -ACGGAATGAGGAACGGTATAGACG -ACGGAATGAGGAACGGTAGTAACG -ACGGAATGAGGAACGGTAACTTCG -ACGGAATGAGGAACGGTATACGCA -ACGGAATGAGGAACGGTACTTGCA -ACGGAATGAGGAACGGTACGAACA -ACGGAATGAGGAACGGTACAGTCA -ACGGAATGAGGAACGGTAGATCCA -ACGGAATGAGGAACGGTAACGACA -ACGGAATGAGGAACGGTAAGCTCA -ACGGAATGAGGAACGGTATCACGT -ACGGAATGAGGAACGGTACGTAGT -ACGGAATGAGGAACGGTAGTCAGT -ACGGAATGAGGAACGGTAGAAGGT -ACGGAATGAGGAACGGTAAACCGT -ACGGAATGAGGAACGGTATTGTGC -ACGGAATGAGGAACGGTACTAAGC -ACGGAATGAGGAACGGTAACTAGC -ACGGAATGAGGAACGGTAAGATGC -ACGGAATGAGGAACGGTATGAAGG -ACGGAATGAGGAACGGTACAATGG -ACGGAATGAGGAACGGTAATGAGG -ACGGAATGAGGAACGGTAAATGGG -ACGGAATGAGGAACGGTATCCTGA -ACGGAATGAGGAACGGTATAGCGA -ACGGAATGAGGAACGGTACACAGA -ACGGAATGAGGAACGGTAGCAAGA -ACGGAATGAGGAACGGTAGGTTGA -ACGGAATGAGGAACGGTATCCGAT -ACGGAATGAGGAACGGTATGGCAT -ACGGAATGAGGAACGGTACGAGAT -ACGGAATGAGGAACGGTATACCAC -ACGGAATGAGGAACGGTACAGAAC -ACGGAATGAGGAACGGTAGTCTAC -ACGGAATGAGGAACGGTAACGTAC -ACGGAATGAGGAACGGTAAGTGAC -ACGGAATGAGGAACGGTACTGTAG -ACGGAATGAGGAACGGTACCTAAG -ACGGAATGAGGAACGGTAGTTCAG -ACGGAATGAGGAACGGTAGCATAG -ACGGAATGAGGAACGGTAGACAAG -ACGGAATGAGGAACGGTAAAGCAG -ACGGAATGAGGAACGGTACGTCAA -ACGGAATGAGGAACGGTAGCTGAA -ACGGAATGAGGAACGGTAAGTACG -ACGGAATGAGGAACGGTAATCCGA -ACGGAATGAGGAACGGTAATGGGA -ACGGAATGAGGAACGGTAGTGCAA -ACGGAATGAGGAACGGTAGAGGAA -ACGGAATGAGGAACGGTACAGGTA -ACGGAATGAGGAACGGTAGACTCT -ACGGAATGAGGAACGGTAAGTCCT -ACGGAATGAGGAACGGTATAAGCC -ACGGAATGAGGAACGGTAATAGCC -ACGGAATGAGGAACGGTATAACCG -ACGGAATGAGGAACGGTAATGCCA -ACGGAATGAGGATCGACTGGAAAC -ACGGAATGAGGATCGACTAACACC -ACGGAATGAGGATCGACTATCGAG -ACGGAATGAGGATCGACTCTCCTT -ACGGAATGAGGATCGACTCCTGTT -ACGGAATGAGGATCGACTCGGTTT -ACGGAATGAGGATCGACTGTGGTT -ACGGAATGAGGATCGACTGCCTTT -ACGGAATGAGGATCGACTGGTCTT -ACGGAATGAGGATCGACTACGCTT -ACGGAATGAGGATCGACTAGCGTT -ACGGAATGAGGATCGACTTTCGTC -ACGGAATGAGGATCGACTTCTCTC -ACGGAATGAGGATCGACTTGGATC -ACGGAATGAGGATCGACTCACTTC -ACGGAATGAGGATCGACTGTACTC -ACGGAATGAGGATCGACTGATGTC -ACGGAATGAGGATCGACTACAGTC -ACGGAATGAGGATCGACTTTGCTG -ACGGAATGAGGATCGACTTCCATG -ACGGAATGAGGATCGACTTGTGTG -ACGGAATGAGGATCGACTCTAGTG -ACGGAATGAGGATCGACTCATCTG -ACGGAATGAGGATCGACTGAGTTG -ACGGAATGAGGATCGACTAGACTG -ACGGAATGAGGATCGACTTCGGTA -ACGGAATGAGGATCGACTTGCCTA -ACGGAATGAGGATCGACTCCACTA -ACGGAATGAGGATCGACTGGAGTA -ACGGAATGAGGATCGACTTCGTCT -ACGGAATGAGGATCGACTTGCACT -ACGGAATGAGGATCGACTCTGACT -ACGGAATGAGGATCGACTCAACCT -ACGGAATGAGGATCGACTGCTACT -ACGGAATGAGGATCGACTGGATCT -ACGGAATGAGGATCGACTAAGGCT -ACGGAATGAGGATCGACTTCAACC -ACGGAATGAGGATCGACTTGTTCC -ACGGAATGAGGATCGACTATTCCC -ACGGAATGAGGATCGACTTTCTCG -ACGGAATGAGGATCGACTTAGACG -ACGGAATGAGGATCGACTGTAACG -ACGGAATGAGGATCGACTACTTCG -ACGGAATGAGGATCGACTTACGCA -ACGGAATGAGGATCGACTCTTGCA -ACGGAATGAGGATCGACTCGAACA -ACGGAATGAGGATCGACTCAGTCA -ACGGAATGAGGATCGACTGATCCA -ACGGAATGAGGATCGACTACGACA -ACGGAATGAGGATCGACTAGCTCA -ACGGAATGAGGATCGACTTCACGT -ACGGAATGAGGATCGACTCGTAGT -ACGGAATGAGGATCGACTGTCAGT -ACGGAATGAGGATCGACTGAAGGT -ACGGAATGAGGATCGACTAACCGT -ACGGAATGAGGATCGACTTTGTGC -ACGGAATGAGGATCGACTCTAAGC -ACGGAATGAGGATCGACTACTAGC -ACGGAATGAGGATCGACTAGATGC -ACGGAATGAGGATCGACTTGAAGG -ACGGAATGAGGATCGACTCAATGG -ACGGAATGAGGATCGACTATGAGG -ACGGAATGAGGATCGACTAATGGG -ACGGAATGAGGATCGACTTCCTGA -ACGGAATGAGGATCGACTTAGCGA -ACGGAATGAGGATCGACTCACAGA -ACGGAATGAGGATCGACTGCAAGA -ACGGAATGAGGATCGACTGGTTGA -ACGGAATGAGGATCGACTTCCGAT -ACGGAATGAGGATCGACTTGGCAT -ACGGAATGAGGATCGACTCGAGAT -ACGGAATGAGGATCGACTTACCAC -ACGGAATGAGGATCGACTCAGAAC -ACGGAATGAGGATCGACTGTCTAC -ACGGAATGAGGATCGACTACGTAC -ACGGAATGAGGATCGACTAGTGAC -ACGGAATGAGGATCGACTCTGTAG -ACGGAATGAGGATCGACTCCTAAG -ACGGAATGAGGATCGACTGTTCAG -ACGGAATGAGGATCGACTGCATAG -ACGGAATGAGGATCGACTGACAAG -ACGGAATGAGGATCGACTAAGCAG -ACGGAATGAGGATCGACTCGTCAA -ACGGAATGAGGATCGACTGCTGAA -ACGGAATGAGGATCGACTAGTACG -ACGGAATGAGGATCGACTATCCGA -ACGGAATGAGGATCGACTATGGGA -ACGGAATGAGGATCGACTGTGCAA -ACGGAATGAGGATCGACTGAGGAA -ACGGAATGAGGATCGACTCAGGTA -ACGGAATGAGGATCGACTGACTCT -ACGGAATGAGGATCGACTAGTCCT -ACGGAATGAGGATCGACTTAAGCC -ACGGAATGAGGATCGACTATAGCC -ACGGAATGAGGATCGACTTAACCG -ACGGAATGAGGATCGACTATGCCA -ACGGAATGAGGAGCATACGGAAAC -ACGGAATGAGGAGCATACAACACC -ACGGAATGAGGAGCATACATCGAG -ACGGAATGAGGAGCATACCTCCTT -ACGGAATGAGGAGCATACCCTGTT -ACGGAATGAGGAGCATACCGGTTT -ACGGAATGAGGAGCATACGTGGTT -ACGGAATGAGGAGCATACGCCTTT -ACGGAATGAGGAGCATACGGTCTT -ACGGAATGAGGAGCATACACGCTT -ACGGAATGAGGAGCATACAGCGTT -ACGGAATGAGGAGCATACTTCGTC -ACGGAATGAGGAGCATACTCTCTC -ACGGAATGAGGAGCATACTGGATC -ACGGAATGAGGAGCATACCACTTC -ACGGAATGAGGAGCATACGTACTC -ACGGAATGAGGAGCATACGATGTC -ACGGAATGAGGAGCATACACAGTC -ACGGAATGAGGAGCATACTTGCTG -ACGGAATGAGGAGCATACTCCATG -ACGGAATGAGGAGCATACTGTGTG -ACGGAATGAGGAGCATACCTAGTG -ACGGAATGAGGAGCATACCATCTG -ACGGAATGAGGAGCATACGAGTTG -ACGGAATGAGGAGCATACAGACTG -ACGGAATGAGGAGCATACTCGGTA -ACGGAATGAGGAGCATACTGCCTA -ACGGAATGAGGAGCATACCCACTA -ACGGAATGAGGAGCATACGGAGTA -ACGGAATGAGGAGCATACTCGTCT -ACGGAATGAGGAGCATACTGCACT -ACGGAATGAGGAGCATACCTGACT -ACGGAATGAGGAGCATACCAACCT -ACGGAATGAGGAGCATACGCTACT -ACGGAATGAGGAGCATACGGATCT -ACGGAATGAGGAGCATACAAGGCT -ACGGAATGAGGAGCATACTCAACC -ACGGAATGAGGAGCATACTGTTCC -ACGGAATGAGGAGCATACATTCCC -ACGGAATGAGGAGCATACTTCTCG -ACGGAATGAGGAGCATACTAGACG -ACGGAATGAGGAGCATACGTAACG -ACGGAATGAGGAGCATACACTTCG -ACGGAATGAGGAGCATACTACGCA -ACGGAATGAGGAGCATACCTTGCA -ACGGAATGAGGAGCATACCGAACA -ACGGAATGAGGAGCATACCAGTCA -ACGGAATGAGGAGCATACGATCCA -ACGGAATGAGGAGCATACACGACA -ACGGAATGAGGAGCATACAGCTCA -ACGGAATGAGGAGCATACTCACGT -ACGGAATGAGGAGCATACCGTAGT -ACGGAATGAGGAGCATACGTCAGT -ACGGAATGAGGAGCATACGAAGGT -ACGGAATGAGGAGCATACAACCGT -ACGGAATGAGGAGCATACTTGTGC -ACGGAATGAGGAGCATACCTAAGC -ACGGAATGAGGAGCATACACTAGC -ACGGAATGAGGAGCATACAGATGC -ACGGAATGAGGAGCATACTGAAGG -ACGGAATGAGGAGCATACCAATGG -ACGGAATGAGGAGCATACATGAGG -ACGGAATGAGGAGCATACAATGGG -ACGGAATGAGGAGCATACTCCTGA -ACGGAATGAGGAGCATACTAGCGA -ACGGAATGAGGAGCATACCACAGA -ACGGAATGAGGAGCATACGCAAGA -ACGGAATGAGGAGCATACGGTTGA -ACGGAATGAGGAGCATACTCCGAT -ACGGAATGAGGAGCATACTGGCAT -ACGGAATGAGGAGCATACCGAGAT -ACGGAATGAGGAGCATACTACCAC -ACGGAATGAGGAGCATACCAGAAC -ACGGAATGAGGAGCATACGTCTAC -ACGGAATGAGGAGCATACACGTAC -ACGGAATGAGGAGCATACAGTGAC -ACGGAATGAGGAGCATACCTGTAG -ACGGAATGAGGAGCATACCCTAAG -ACGGAATGAGGAGCATACGTTCAG -ACGGAATGAGGAGCATACGCATAG -ACGGAATGAGGAGCATACGACAAG -ACGGAATGAGGAGCATACAAGCAG -ACGGAATGAGGAGCATACCGTCAA -ACGGAATGAGGAGCATACGCTGAA -ACGGAATGAGGAGCATACAGTACG -ACGGAATGAGGAGCATACATCCGA -ACGGAATGAGGAGCATACATGGGA -ACGGAATGAGGAGCATACGTGCAA -ACGGAATGAGGAGCATACGAGGAA -ACGGAATGAGGAGCATACCAGGTA -ACGGAATGAGGAGCATACGACTCT -ACGGAATGAGGAGCATACAGTCCT -ACGGAATGAGGAGCATACTAAGCC -ACGGAATGAGGAGCATACATAGCC -ACGGAATGAGGAGCATACTAACCG -ACGGAATGAGGAGCATACATGCCA -ACGGAATGAGGAGCACTTGGAAAC -ACGGAATGAGGAGCACTTAACACC -ACGGAATGAGGAGCACTTATCGAG -ACGGAATGAGGAGCACTTCTCCTT -ACGGAATGAGGAGCACTTCCTGTT -ACGGAATGAGGAGCACTTCGGTTT -ACGGAATGAGGAGCACTTGTGGTT -ACGGAATGAGGAGCACTTGCCTTT -ACGGAATGAGGAGCACTTGGTCTT -ACGGAATGAGGAGCACTTACGCTT -ACGGAATGAGGAGCACTTAGCGTT -ACGGAATGAGGAGCACTTTTCGTC -ACGGAATGAGGAGCACTTTCTCTC -ACGGAATGAGGAGCACTTTGGATC -ACGGAATGAGGAGCACTTCACTTC -ACGGAATGAGGAGCACTTGTACTC -ACGGAATGAGGAGCACTTGATGTC -ACGGAATGAGGAGCACTTACAGTC -ACGGAATGAGGAGCACTTTTGCTG -ACGGAATGAGGAGCACTTTCCATG -ACGGAATGAGGAGCACTTTGTGTG -ACGGAATGAGGAGCACTTCTAGTG -ACGGAATGAGGAGCACTTCATCTG -ACGGAATGAGGAGCACTTGAGTTG -ACGGAATGAGGAGCACTTAGACTG -ACGGAATGAGGAGCACTTTCGGTA -ACGGAATGAGGAGCACTTTGCCTA -ACGGAATGAGGAGCACTTCCACTA -ACGGAATGAGGAGCACTTGGAGTA -ACGGAATGAGGAGCACTTTCGTCT -ACGGAATGAGGAGCACTTTGCACT -ACGGAATGAGGAGCACTTCTGACT -ACGGAATGAGGAGCACTTCAACCT -ACGGAATGAGGAGCACTTGCTACT -ACGGAATGAGGAGCACTTGGATCT -ACGGAATGAGGAGCACTTAAGGCT -ACGGAATGAGGAGCACTTTCAACC -ACGGAATGAGGAGCACTTTGTTCC -ACGGAATGAGGAGCACTTATTCCC -ACGGAATGAGGAGCACTTTTCTCG -ACGGAATGAGGAGCACTTTAGACG -ACGGAATGAGGAGCACTTGTAACG -ACGGAATGAGGAGCACTTACTTCG -ACGGAATGAGGAGCACTTTACGCA -ACGGAATGAGGAGCACTTCTTGCA -ACGGAATGAGGAGCACTTCGAACA -ACGGAATGAGGAGCACTTCAGTCA -ACGGAATGAGGAGCACTTGATCCA -ACGGAATGAGGAGCACTTACGACA -ACGGAATGAGGAGCACTTAGCTCA -ACGGAATGAGGAGCACTTTCACGT -ACGGAATGAGGAGCACTTCGTAGT -ACGGAATGAGGAGCACTTGTCAGT -ACGGAATGAGGAGCACTTGAAGGT -ACGGAATGAGGAGCACTTAACCGT -ACGGAATGAGGAGCACTTTTGTGC -ACGGAATGAGGAGCACTTCTAAGC -ACGGAATGAGGAGCACTTACTAGC -ACGGAATGAGGAGCACTTAGATGC -ACGGAATGAGGAGCACTTTGAAGG -ACGGAATGAGGAGCACTTCAATGG -ACGGAATGAGGAGCACTTATGAGG -ACGGAATGAGGAGCACTTAATGGG -ACGGAATGAGGAGCACTTTCCTGA -ACGGAATGAGGAGCACTTTAGCGA -ACGGAATGAGGAGCACTTCACAGA -ACGGAATGAGGAGCACTTGCAAGA -ACGGAATGAGGAGCACTTGGTTGA -ACGGAATGAGGAGCACTTTCCGAT -ACGGAATGAGGAGCACTTTGGCAT -ACGGAATGAGGAGCACTTCGAGAT -ACGGAATGAGGAGCACTTTACCAC -ACGGAATGAGGAGCACTTCAGAAC -ACGGAATGAGGAGCACTTGTCTAC -ACGGAATGAGGAGCACTTACGTAC -ACGGAATGAGGAGCACTTAGTGAC -ACGGAATGAGGAGCACTTCTGTAG -ACGGAATGAGGAGCACTTCCTAAG -ACGGAATGAGGAGCACTTGTTCAG -ACGGAATGAGGAGCACTTGCATAG -ACGGAATGAGGAGCACTTGACAAG -ACGGAATGAGGAGCACTTAAGCAG -ACGGAATGAGGAGCACTTCGTCAA -ACGGAATGAGGAGCACTTGCTGAA -ACGGAATGAGGAGCACTTAGTACG -ACGGAATGAGGAGCACTTATCCGA -ACGGAATGAGGAGCACTTATGGGA -ACGGAATGAGGAGCACTTGTGCAA -ACGGAATGAGGAGCACTTGAGGAA -ACGGAATGAGGAGCACTTCAGGTA -ACGGAATGAGGAGCACTTGACTCT -ACGGAATGAGGAGCACTTAGTCCT -ACGGAATGAGGAGCACTTTAAGCC -ACGGAATGAGGAGCACTTATAGCC -ACGGAATGAGGAGCACTTTAACCG -ACGGAATGAGGAGCACTTATGCCA -ACGGAATGAGGAACACGAGGAAAC -ACGGAATGAGGAACACGAAACACC -ACGGAATGAGGAACACGAATCGAG -ACGGAATGAGGAACACGACTCCTT -ACGGAATGAGGAACACGACCTGTT -ACGGAATGAGGAACACGACGGTTT -ACGGAATGAGGAACACGAGTGGTT -ACGGAATGAGGAACACGAGCCTTT -ACGGAATGAGGAACACGAGGTCTT -ACGGAATGAGGAACACGAACGCTT -ACGGAATGAGGAACACGAAGCGTT -ACGGAATGAGGAACACGATTCGTC -ACGGAATGAGGAACACGATCTCTC -ACGGAATGAGGAACACGATGGATC -ACGGAATGAGGAACACGACACTTC -ACGGAATGAGGAACACGAGTACTC -ACGGAATGAGGAACACGAGATGTC -ACGGAATGAGGAACACGAACAGTC -ACGGAATGAGGAACACGATTGCTG -ACGGAATGAGGAACACGATCCATG -ACGGAATGAGGAACACGATGTGTG -ACGGAATGAGGAACACGACTAGTG -ACGGAATGAGGAACACGACATCTG -ACGGAATGAGGAACACGAGAGTTG -ACGGAATGAGGAACACGAAGACTG -ACGGAATGAGGAACACGATCGGTA -ACGGAATGAGGAACACGATGCCTA -ACGGAATGAGGAACACGACCACTA -ACGGAATGAGGAACACGAGGAGTA -ACGGAATGAGGAACACGATCGTCT -ACGGAATGAGGAACACGATGCACT -ACGGAATGAGGAACACGACTGACT -ACGGAATGAGGAACACGACAACCT -ACGGAATGAGGAACACGAGCTACT -ACGGAATGAGGAACACGAGGATCT -ACGGAATGAGGAACACGAAAGGCT -ACGGAATGAGGAACACGATCAACC -ACGGAATGAGGAACACGATGTTCC -ACGGAATGAGGAACACGAATTCCC -ACGGAATGAGGAACACGATTCTCG -ACGGAATGAGGAACACGATAGACG -ACGGAATGAGGAACACGAGTAACG -ACGGAATGAGGAACACGAACTTCG -ACGGAATGAGGAACACGATACGCA -ACGGAATGAGGAACACGACTTGCA -ACGGAATGAGGAACACGACGAACA -ACGGAATGAGGAACACGACAGTCA -ACGGAATGAGGAACACGAGATCCA -ACGGAATGAGGAACACGAACGACA -ACGGAATGAGGAACACGAAGCTCA -ACGGAATGAGGAACACGATCACGT -ACGGAATGAGGAACACGACGTAGT -ACGGAATGAGGAACACGAGTCAGT -ACGGAATGAGGAACACGAGAAGGT -ACGGAATGAGGAACACGAAACCGT -ACGGAATGAGGAACACGATTGTGC -ACGGAATGAGGAACACGACTAAGC -ACGGAATGAGGAACACGAACTAGC -ACGGAATGAGGAACACGAAGATGC -ACGGAATGAGGAACACGATGAAGG -ACGGAATGAGGAACACGACAATGG -ACGGAATGAGGAACACGAATGAGG -ACGGAATGAGGAACACGAAATGGG -ACGGAATGAGGAACACGATCCTGA -ACGGAATGAGGAACACGATAGCGA -ACGGAATGAGGAACACGACACAGA -ACGGAATGAGGAACACGAGCAAGA -ACGGAATGAGGAACACGAGGTTGA -ACGGAATGAGGAACACGATCCGAT -ACGGAATGAGGAACACGATGGCAT -ACGGAATGAGGAACACGACGAGAT -ACGGAATGAGGAACACGATACCAC -ACGGAATGAGGAACACGACAGAAC -ACGGAATGAGGAACACGAGTCTAC -ACGGAATGAGGAACACGAACGTAC -ACGGAATGAGGAACACGAAGTGAC -ACGGAATGAGGAACACGACTGTAG -ACGGAATGAGGAACACGACCTAAG -ACGGAATGAGGAACACGAGTTCAG -ACGGAATGAGGAACACGAGCATAG -ACGGAATGAGGAACACGAGACAAG -ACGGAATGAGGAACACGAAAGCAG -ACGGAATGAGGAACACGACGTCAA -ACGGAATGAGGAACACGAGCTGAA -ACGGAATGAGGAACACGAAGTACG -ACGGAATGAGGAACACGAATCCGA -ACGGAATGAGGAACACGAATGGGA -ACGGAATGAGGAACACGAGTGCAA -ACGGAATGAGGAACACGAGAGGAA -ACGGAATGAGGAACACGACAGGTA -ACGGAATGAGGAACACGAGACTCT -ACGGAATGAGGAACACGAAGTCCT -ACGGAATGAGGAACACGATAAGCC -ACGGAATGAGGAACACGAATAGCC -ACGGAATGAGGAACACGATAACCG -ACGGAATGAGGAACACGAATGCCA -ACGGAATGAGGATCACAGGGAAAC -ACGGAATGAGGATCACAGAACACC -ACGGAATGAGGATCACAGATCGAG -ACGGAATGAGGATCACAGCTCCTT -ACGGAATGAGGATCACAGCCTGTT -ACGGAATGAGGATCACAGCGGTTT -ACGGAATGAGGATCACAGGTGGTT -ACGGAATGAGGATCACAGGCCTTT -ACGGAATGAGGATCACAGGGTCTT -ACGGAATGAGGATCACAGACGCTT -ACGGAATGAGGATCACAGAGCGTT -ACGGAATGAGGATCACAGTTCGTC -ACGGAATGAGGATCACAGTCTCTC -ACGGAATGAGGATCACAGTGGATC -ACGGAATGAGGATCACAGCACTTC -ACGGAATGAGGATCACAGGTACTC -ACGGAATGAGGATCACAGGATGTC -ACGGAATGAGGATCACAGACAGTC -ACGGAATGAGGATCACAGTTGCTG -ACGGAATGAGGATCACAGTCCATG -ACGGAATGAGGATCACAGTGTGTG -ACGGAATGAGGATCACAGCTAGTG -ACGGAATGAGGATCACAGCATCTG -ACGGAATGAGGATCACAGGAGTTG -ACGGAATGAGGATCACAGAGACTG -ACGGAATGAGGATCACAGTCGGTA -ACGGAATGAGGATCACAGTGCCTA -ACGGAATGAGGATCACAGCCACTA -ACGGAATGAGGATCACAGGGAGTA -ACGGAATGAGGATCACAGTCGTCT -ACGGAATGAGGATCACAGTGCACT -ACGGAATGAGGATCACAGCTGACT -ACGGAATGAGGATCACAGCAACCT -ACGGAATGAGGATCACAGGCTACT -ACGGAATGAGGATCACAGGGATCT -ACGGAATGAGGATCACAGAAGGCT -ACGGAATGAGGATCACAGTCAACC -ACGGAATGAGGATCACAGTGTTCC -ACGGAATGAGGATCACAGATTCCC -ACGGAATGAGGATCACAGTTCTCG -ACGGAATGAGGATCACAGTAGACG -ACGGAATGAGGATCACAGGTAACG -ACGGAATGAGGATCACAGACTTCG -ACGGAATGAGGATCACAGTACGCA -ACGGAATGAGGATCACAGCTTGCA -ACGGAATGAGGATCACAGCGAACA -ACGGAATGAGGATCACAGCAGTCA -ACGGAATGAGGATCACAGGATCCA -ACGGAATGAGGATCACAGACGACA -ACGGAATGAGGATCACAGAGCTCA -ACGGAATGAGGATCACAGTCACGT -ACGGAATGAGGATCACAGCGTAGT -ACGGAATGAGGATCACAGGTCAGT -ACGGAATGAGGATCACAGGAAGGT -ACGGAATGAGGATCACAGAACCGT -ACGGAATGAGGATCACAGTTGTGC -ACGGAATGAGGATCACAGCTAAGC -ACGGAATGAGGATCACAGACTAGC -ACGGAATGAGGATCACAGAGATGC -ACGGAATGAGGATCACAGTGAAGG -ACGGAATGAGGATCACAGCAATGG -ACGGAATGAGGATCACAGATGAGG -ACGGAATGAGGATCACAGAATGGG -ACGGAATGAGGATCACAGTCCTGA -ACGGAATGAGGATCACAGTAGCGA -ACGGAATGAGGATCACAGCACAGA -ACGGAATGAGGATCACAGGCAAGA -ACGGAATGAGGATCACAGGGTTGA -ACGGAATGAGGATCACAGTCCGAT -ACGGAATGAGGATCACAGTGGCAT -ACGGAATGAGGATCACAGCGAGAT -ACGGAATGAGGATCACAGTACCAC -ACGGAATGAGGATCACAGCAGAAC -ACGGAATGAGGATCACAGGTCTAC -ACGGAATGAGGATCACAGACGTAC -ACGGAATGAGGATCACAGAGTGAC -ACGGAATGAGGATCACAGCTGTAG -ACGGAATGAGGATCACAGCCTAAG -ACGGAATGAGGATCACAGGTTCAG -ACGGAATGAGGATCACAGGCATAG -ACGGAATGAGGATCACAGGACAAG -ACGGAATGAGGATCACAGAAGCAG -ACGGAATGAGGATCACAGCGTCAA -ACGGAATGAGGATCACAGGCTGAA -ACGGAATGAGGATCACAGAGTACG -ACGGAATGAGGATCACAGATCCGA -ACGGAATGAGGATCACAGATGGGA -ACGGAATGAGGATCACAGGTGCAA -ACGGAATGAGGATCACAGGAGGAA -ACGGAATGAGGATCACAGCAGGTA -ACGGAATGAGGATCACAGGACTCT -ACGGAATGAGGATCACAGAGTCCT -ACGGAATGAGGATCACAGTAAGCC -ACGGAATGAGGATCACAGATAGCC -ACGGAATGAGGATCACAGTAACCG -ACGGAATGAGGATCACAGATGCCA -ACGGAATGAGGACCAGATGGAAAC -ACGGAATGAGGACCAGATAACACC -ACGGAATGAGGACCAGATATCGAG -ACGGAATGAGGACCAGATCTCCTT -ACGGAATGAGGACCAGATCCTGTT -ACGGAATGAGGACCAGATCGGTTT -ACGGAATGAGGACCAGATGTGGTT -ACGGAATGAGGACCAGATGCCTTT -ACGGAATGAGGACCAGATGGTCTT -ACGGAATGAGGACCAGATACGCTT -ACGGAATGAGGACCAGATAGCGTT -ACGGAATGAGGACCAGATTTCGTC -ACGGAATGAGGACCAGATTCTCTC -ACGGAATGAGGACCAGATTGGATC -ACGGAATGAGGACCAGATCACTTC -ACGGAATGAGGACCAGATGTACTC -ACGGAATGAGGACCAGATGATGTC -ACGGAATGAGGACCAGATACAGTC -ACGGAATGAGGACCAGATTTGCTG -ACGGAATGAGGACCAGATTCCATG -ACGGAATGAGGACCAGATTGTGTG -ACGGAATGAGGACCAGATCTAGTG -ACGGAATGAGGACCAGATCATCTG -ACGGAATGAGGACCAGATGAGTTG -ACGGAATGAGGACCAGATAGACTG -ACGGAATGAGGACCAGATTCGGTA -ACGGAATGAGGACCAGATTGCCTA -ACGGAATGAGGACCAGATCCACTA -ACGGAATGAGGACCAGATGGAGTA -ACGGAATGAGGACCAGATTCGTCT -ACGGAATGAGGACCAGATTGCACT -ACGGAATGAGGACCAGATCTGACT -ACGGAATGAGGACCAGATCAACCT -ACGGAATGAGGACCAGATGCTACT -ACGGAATGAGGACCAGATGGATCT -ACGGAATGAGGACCAGATAAGGCT -ACGGAATGAGGACCAGATTCAACC -ACGGAATGAGGACCAGATTGTTCC -ACGGAATGAGGACCAGATATTCCC -ACGGAATGAGGACCAGATTTCTCG -ACGGAATGAGGACCAGATTAGACG -ACGGAATGAGGACCAGATGTAACG -ACGGAATGAGGACCAGATACTTCG -ACGGAATGAGGACCAGATTACGCA -ACGGAATGAGGACCAGATCTTGCA -ACGGAATGAGGACCAGATCGAACA -ACGGAATGAGGACCAGATCAGTCA -ACGGAATGAGGACCAGATGATCCA -ACGGAATGAGGACCAGATACGACA -ACGGAATGAGGACCAGATAGCTCA -ACGGAATGAGGACCAGATTCACGT -ACGGAATGAGGACCAGATCGTAGT -ACGGAATGAGGACCAGATGTCAGT -ACGGAATGAGGACCAGATGAAGGT -ACGGAATGAGGACCAGATAACCGT -ACGGAATGAGGACCAGATTTGTGC -ACGGAATGAGGACCAGATCTAAGC -ACGGAATGAGGACCAGATACTAGC -ACGGAATGAGGACCAGATAGATGC -ACGGAATGAGGACCAGATTGAAGG -ACGGAATGAGGACCAGATCAATGG -ACGGAATGAGGACCAGATATGAGG -ACGGAATGAGGACCAGATAATGGG -ACGGAATGAGGACCAGATTCCTGA -ACGGAATGAGGACCAGATTAGCGA -ACGGAATGAGGACCAGATCACAGA -ACGGAATGAGGACCAGATGCAAGA -ACGGAATGAGGACCAGATGGTTGA -ACGGAATGAGGACCAGATTCCGAT -ACGGAATGAGGACCAGATTGGCAT -ACGGAATGAGGACCAGATCGAGAT -ACGGAATGAGGACCAGATTACCAC -ACGGAATGAGGACCAGATCAGAAC -ACGGAATGAGGACCAGATGTCTAC -ACGGAATGAGGACCAGATACGTAC -ACGGAATGAGGACCAGATAGTGAC -ACGGAATGAGGACCAGATCTGTAG -ACGGAATGAGGACCAGATCCTAAG -ACGGAATGAGGACCAGATGTTCAG -ACGGAATGAGGACCAGATGCATAG -ACGGAATGAGGACCAGATGACAAG -ACGGAATGAGGACCAGATAAGCAG -ACGGAATGAGGACCAGATCGTCAA -ACGGAATGAGGACCAGATGCTGAA -ACGGAATGAGGACCAGATAGTACG -ACGGAATGAGGACCAGATATCCGA -ACGGAATGAGGACCAGATATGGGA -ACGGAATGAGGACCAGATGTGCAA -ACGGAATGAGGACCAGATGAGGAA -ACGGAATGAGGACCAGATCAGGTA -ACGGAATGAGGACCAGATGACTCT -ACGGAATGAGGACCAGATAGTCCT -ACGGAATGAGGACCAGATTAAGCC -ACGGAATGAGGACCAGATATAGCC -ACGGAATGAGGACCAGATTAACCG -ACGGAATGAGGACCAGATATGCCA -ACGGAATGAGGAACAACGGGAAAC -ACGGAATGAGGAACAACGAACACC -ACGGAATGAGGAACAACGATCGAG -ACGGAATGAGGAACAACGCTCCTT -ACGGAATGAGGAACAACGCCTGTT -ACGGAATGAGGAACAACGCGGTTT -ACGGAATGAGGAACAACGGTGGTT -ACGGAATGAGGAACAACGGCCTTT -ACGGAATGAGGAACAACGGGTCTT -ACGGAATGAGGAACAACGACGCTT -ACGGAATGAGGAACAACGAGCGTT -ACGGAATGAGGAACAACGTTCGTC -ACGGAATGAGGAACAACGTCTCTC -ACGGAATGAGGAACAACGTGGATC -ACGGAATGAGGAACAACGCACTTC -ACGGAATGAGGAACAACGGTACTC -ACGGAATGAGGAACAACGGATGTC -ACGGAATGAGGAACAACGACAGTC -ACGGAATGAGGAACAACGTTGCTG -ACGGAATGAGGAACAACGTCCATG -ACGGAATGAGGAACAACGTGTGTG -ACGGAATGAGGAACAACGCTAGTG -ACGGAATGAGGAACAACGCATCTG -ACGGAATGAGGAACAACGGAGTTG -ACGGAATGAGGAACAACGAGACTG -ACGGAATGAGGAACAACGTCGGTA -ACGGAATGAGGAACAACGTGCCTA -ACGGAATGAGGAACAACGCCACTA -ACGGAATGAGGAACAACGGGAGTA -ACGGAATGAGGAACAACGTCGTCT -ACGGAATGAGGAACAACGTGCACT -ACGGAATGAGGAACAACGCTGACT -ACGGAATGAGGAACAACGCAACCT -ACGGAATGAGGAACAACGGCTACT -ACGGAATGAGGAACAACGGGATCT -ACGGAATGAGGAACAACGAAGGCT -ACGGAATGAGGAACAACGTCAACC -ACGGAATGAGGAACAACGTGTTCC -ACGGAATGAGGAACAACGATTCCC -ACGGAATGAGGAACAACGTTCTCG -ACGGAATGAGGAACAACGTAGACG -ACGGAATGAGGAACAACGGTAACG -ACGGAATGAGGAACAACGACTTCG -ACGGAATGAGGAACAACGTACGCA -ACGGAATGAGGAACAACGCTTGCA -ACGGAATGAGGAACAACGCGAACA -ACGGAATGAGGAACAACGCAGTCA -ACGGAATGAGGAACAACGGATCCA -ACGGAATGAGGAACAACGACGACA -ACGGAATGAGGAACAACGAGCTCA -ACGGAATGAGGAACAACGTCACGT -ACGGAATGAGGAACAACGCGTAGT -ACGGAATGAGGAACAACGGTCAGT -ACGGAATGAGGAACAACGGAAGGT -ACGGAATGAGGAACAACGAACCGT -ACGGAATGAGGAACAACGTTGTGC -ACGGAATGAGGAACAACGCTAAGC -ACGGAATGAGGAACAACGACTAGC -ACGGAATGAGGAACAACGAGATGC -ACGGAATGAGGAACAACGTGAAGG -ACGGAATGAGGAACAACGCAATGG -ACGGAATGAGGAACAACGATGAGG -ACGGAATGAGGAACAACGAATGGG -ACGGAATGAGGAACAACGTCCTGA -ACGGAATGAGGAACAACGTAGCGA -ACGGAATGAGGAACAACGCACAGA -ACGGAATGAGGAACAACGGCAAGA -ACGGAATGAGGAACAACGGGTTGA -ACGGAATGAGGAACAACGTCCGAT -ACGGAATGAGGAACAACGTGGCAT -ACGGAATGAGGAACAACGCGAGAT -ACGGAATGAGGAACAACGTACCAC -ACGGAATGAGGAACAACGCAGAAC -ACGGAATGAGGAACAACGGTCTAC -ACGGAATGAGGAACAACGACGTAC -ACGGAATGAGGAACAACGAGTGAC -ACGGAATGAGGAACAACGCTGTAG -ACGGAATGAGGAACAACGCCTAAG -ACGGAATGAGGAACAACGGTTCAG -ACGGAATGAGGAACAACGGCATAG -ACGGAATGAGGAACAACGGACAAG -ACGGAATGAGGAACAACGAAGCAG -ACGGAATGAGGAACAACGCGTCAA -ACGGAATGAGGAACAACGGCTGAA -ACGGAATGAGGAACAACGAGTACG -ACGGAATGAGGAACAACGATCCGA -ACGGAATGAGGAACAACGATGGGA -ACGGAATGAGGAACAACGGTGCAA -ACGGAATGAGGAACAACGGAGGAA -ACGGAATGAGGAACAACGCAGGTA -ACGGAATGAGGAACAACGGACTCT -ACGGAATGAGGAACAACGAGTCCT -ACGGAATGAGGAACAACGTAAGCC -ACGGAATGAGGAACAACGATAGCC -ACGGAATGAGGAACAACGTAACCG -ACGGAATGAGGAACAACGATGCCA -ACGGAATGAGGATCAAGCGGAAAC -ACGGAATGAGGATCAAGCAACACC -ACGGAATGAGGATCAAGCATCGAG -ACGGAATGAGGATCAAGCCTCCTT -ACGGAATGAGGATCAAGCCCTGTT -ACGGAATGAGGATCAAGCCGGTTT -ACGGAATGAGGATCAAGCGTGGTT -ACGGAATGAGGATCAAGCGCCTTT -ACGGAATGAGGATCAAGCGGTCTT -ACGGAATGAGGATCAAGCACGCTT -ACGGAATGAGGATCAAGCAGCGTT -ACGGAATGAGGATCAAGCTTCGTC -ACGGAATGAGGATCAAGCTCTCTC -ACGGAATGAGGATCAAGCTGGATC -ACGGAATGAGGATCAAGCCACTTC -ACGGAATGAGGATCAAGCGTACTC -ACGGAATGAGGATCAAGCGATGTC -ACGGAATGAGGATCAAGCACAGTC -ACGGAATGAGGATCAAGCTTGCTG -ACGGAATGAGGATCAAGCTCCATG -ACGGAATGAGGATCAAGCTGTGTG -ACGGAATGAGGATCAAGCCTAGTG -ACGGAATGAGGATCAAGCCATCTG -ACGGAATGAGGATCAAGCGAGTTG -ACGGAATGAGGATCAAGCAGACTG -ACGGAATGAGGATCAAGCTCGGTA -ACGGAATGAGGATCAAGCTGCCTA -ACGGAATGAGGATCAAGCCCACTA -ACGGAATGAGGATCAAGCGGAGTA -ACGGAATGAGGATCAAGCTCGTCT -ACGGAATGAGGATCAAGCTGCACT -ACGGAATGAGGATCAAGCCTGACT -ACGGAATGAGGATCAAGCCAACCT -ACGGAATGAGGATCAAGCGCTACT -ACGGAATGAGGATCAAGCGGATCT -ACGGAATGAGGATCAAGCAAGGCT -ACGGAATGAGGATCAAGCTCAACC -ACGGAATGAGGATCAAGCTGTTCC -ACGGAATGAGGATCAAGCATTCCC -ACGGAATGAGGATCAAGCTTCTCG -ACGGAATGAGGATCAAGCTAGACG -ACGGAATGAGGATCAAGCGTAACG -ACGGAATGAGGATCAAGCACTTCG -ACGGAATGAGGATCAAGCTACGCA -ACGGAATGAGGATCAAGCCTTGCA -ACGGAATGAGGATCAAGCCGAACA -ACGGAATGAGGATCAAGCCAGTCA -ACGGAATGAGGATCAAGCGATCCA -ACGGAATGAGGATCAAGCACGACA -ACGGAATGAGGATCAAGCAGCTCA -ACGGAATGAGGATCAAGCTCACGT -ACGGAATGAGGATCAAGCCGTAGT -ACGGAATGAGGATCAAGCGTCAGT -ACGGAATGAGGATCAAGCGAAGGT -ACGGAATGAGGATCAAGCAACCGT -ACGGAATGAGGATCAAGCTTGTGC -ACGGAATGAGGATCAAGCCTAAGC -ACGGAATGAGGATCAAGCACTAGC -ACGGAATGAGGATCAAGCAGATGC -ACGGAATGAGGATCAAGCTGAAGG -ACGGAATGAGGATCAAGCCAATGG -ACGGAATGAGGATCAAGCATGAGG -ACGGAATGAGGATCAAGCAATGGG -ACGGAATGAGGATCAAGCTCCTGA -ACGGAATGAGGATCAAGCTAGCGA -ACGGAATGAGGATCAAGCCACAGA -ACGGAATGAGGATCAAGCGCAAGA -ACGGAATGAGGATCAAGCGGTTGA -ACGGAATGAGGATCAAGCTCCGAT -ACGGAATGAGGATCAAGCTGGCAT -ACGGAATGAGGATCAAGCCGAGAT -ACGGAATGAGGATCAAGCTACCAC -ACGGAATGAGGATCAAGCCAGAAC -ACGGAATGAGGATCAAGCGTCTAC -ACGGAATGAGGATCAAGCACGTAC -ACGGAATGAGGATCAAGCAGTGAC -ACGGAATGAGGATCAAGCCTGTAG -ACGGAATGAGGATCAAGCCCTAAG -ACGGAATGAGGATCAAGCGTTCAG -ACGGAATGAGGATCAAGCGCATAG -ACGGAATGAGGATCAAGCGACAAG -ACGGAATGAGGATCAAGCAAGCAG -ACGGAATGAGGATCAAGCCGTCAA -ACGGAATGAGGATCAAGCGCTGAA -ACGGAATGAGGATCAAGCAGTACG -ACGGAATGAGGATCAAGCATCCGA -ACGGAATGAGGATCAAGCATGGGA -ACGGAATGAGGATCAAGCGTGCAA -ACGGAATGAGGATCAAGCGAGGAA -ACGGAATGAGGATCAAGCCAGGTA -ACGGAATGAGGATCAAGCGACTCT -ACGGAATGAGGATCAAGCAGTCCT -ACGGAATGAGGATCAAGCTAAGCC -ACGGAATGAGGATCAAGCATAGCC -ACGGAATGAGGATCAAGCTAACCG -ACGGAATGAGGATCAAGCATGCCA -ACGGAATGAGGACGTTCAGGAAAC -ACGGAATGAGGACGTTCAAACACC -ACGGAATGAGGACGTTCAATCGAG -ACGGAATGAGGACGTTCACTCCTT -ACGGAATGAGGACGTTCACCTGTT -ACGGAATGAGGACGTTCACGGTTT -ACGGAATGAGGACGTTCAGTGGTT -ACGGAATGAGGACGTTCAGCCTTT -ACGGAATGAGGACGTTCAGGTCTT -ACGGAATGAGGACGTTCAACGCTT -ACGGAATGAGGACGTTCAAGCGTT -ACGGAATGAGGACGTTCATTCGTC -ACGGAATGAGGACGTTCATCTCTC -ACGGAATGAGGACGTTCATGGATC -ACGGAATGAGGACGTTCACACTTC -ACGGAATGAGGACGTTCAGTACTC -ACGGAATGAGGACGTTCAGATGTC -ACGGAATGAGGACGTTCAACAGTC -ACGGAATGAGGACGTTCATTGCTG -ACGGAATGAGGACGTTCATCCATG -ACGGAATGAGGACGTTCATGTGTG -ACGGAATGAGGACGTTCACTAGTG -ACGGAATGAGGACGTTCACATCTG -ACGGAATGAGGACGTTCAGAGTTG -ACGGAATGAGGACGTTCAAGACTG -ACGGAATGAGGACGTTCATCGGTA -ACGGAATGAGGACGTTCATGCCTA -ACGGAATGAGGACGTTCACCACTA -ACGGAATGAGGACGTTCAGGAGTA -ACGGAATGAGGACGTTCATCGTCT -ACGGAATGAGGACGTTCATGCACT -ACGGAATGAGGACGTTCACTGACT -ACGGAATGAGGACGTTCACAACCT -ACGGAATGAGGACGTTCAGCTACT -ACGGAATGAGGACGTTCAGGATCT -ACGGAATGAGGACGTTCAAAGGCT -ACGGAATGAGGACGTTCATCAACC -ACGGAATGAGGACGTTCATGTTCC -ACGGAATGAGGACGTTCAATTCCC -ACGGAATGAGGACGTTCATTCTCG -ACGGAATGAGGACGTTCATAGACG -ACGGAATGAGGACGTTCAGTAACG -ACGGAATGAGGACGTTCAACTTCG -ACGGAATGAGGACGTTCATACGCA -ACGGAATGAGGACGTTCACTTGCA -ACGGAATGAGGACGTTCACGAACA -ACGGAATGAGGACGTTCACAGTCA -ACGGAATGAGGACGTTCAGATCCA -ACGGAATGAGGACGTTCAACGACA -ACGGAATGAGGACGTTCAAGCTCA -ACGGAATGAGGACGTTCATCACGT -ACGGAATGAGGACGTTCACGTAGT -ACGGAATGAGGACGTTCAGTCAGT -ACGGAATGAGGACGTTCAGAAGGT -ACGGAATGAGGACGTTCAAACCGT -ACGGAATGAGGACGTTCATTGTGC -ACGGAATGAGGACGTTCACTAAGC -ACGGAATGAGGACGTTCAACTAGC -ACGGAATGAGGACGTTCAAGATGC -ACGGAATGAGGACGTTCATGAAGG -ACGGAATGAGGACGTTCACAATGG -ACGGAATGAGGACGTTCAATGAGG -ACGGAATGAGGACGTTCAAATGGG -ACGGAATGAGGACGTTCATCCTGA -ACGGAATGAGGACGTTCATAGCGA -ACGGAATGAGGACGTTCACACAGA -ACGGAATGAGGACGTTCAGCAAGA -ACGGAATGAGGACGTTCAGGTTGA -ACGGAATGAGGACGTTCATCCGAT -ACGGAATGAGGACGTTCATGGCAT -ACGGAATGAGGACGTTCACGAGAT -ACGGAATGAGGACGTTCATACCAC -ACGGAATGAGGACGTTCACAGAAC -ACGGAATGAGGACGTTCAGTCTAC -ACGGAATGAGGACGTTCAACGTAC -ACGGAATGAGGACGTTCAAGTGAC -ACGGAATGAGGACGTTCACTGTAG -ACGGAATGAGGACGTTCACCTAAG -ACGGAATGAGGACGTTCAGTTCAG -ACGGAATGAGGACGTTCAGCATAG -ACGGAATGAGGACGTTCAGACAAG -ACGGAATGAGGACGTTCAAAGCAG -ACGGAATGAGGACGTTCACGTCAA -ACGGAATGAGGACGTTCAGCTGAA -ACGGAATGAGGACGTTCAAGTACG -ACGGAATGAGGACGTTCAATCCGA -ACGGAATGAGGACGTTCAATGGGA -ACGGAATGAGGACGTTCAGTGCAA -ACGGAATGAGGACGTTCAGAGGAA -ACGGAATGAGGACGTTCACAGGTA -ACGGAATGAGGACGTTCAGACTCT -ACGGAATGAGGACGTTCAAGTCCT -ACGGAATGAGGACGTTCATAAGCC -ACGGAATGAGGACGTTCAATAGCC -ACGGAATGAGGACGTTCATAACCG -ACGGAATGAGGACGTTCAATGCCA -ACGGAATGAGGAAGTCGTGGAAAC -ACGGAATGAGGAAGTCGTAACACC -ACGGAATGAGGAAGTCGTATCGAG -ACGGAATGAGGAAGTCGTCTCCTT -ACGGAATGAGGAAGTCGTCCTGTT -ACGGAATGAGGAAGTCGTCGGTTT -ACGGAATGAGGAAGTCGTGTGGTT -ACGGAATGAGGAAGTCGTGCCTTT -ACGGAATGAGGAAGTCGTGGTCTT -ACGGAATGAGGAAGTCGTACGCTT -ACGGAATGAGGAAGTCGTAGCGTT -ACGGAATGAGGAAGTCGTTTCGTC -ACGGAATGAGGAAGTCGTTCTCTC -ACGGAATGAGGAAGTCGTTGGATC -ACGGAATGAGGAAGTCGTCACTTC -ACGGAATGAGGAAGTCGTGTACTC -ACGGAATGAGGAAGTCGTGATGTC -ACGGAATGAGGAAGTCGTACAGTC -ACGGAATGAGGAAGTCGTTTGCTG -ACGGAATGAGGAAGTCGTTCCATG -ACGGAATGAGGAAGTCGTTGTGTG -ACGGAATGAGGAAGTCGTCTAGTG -ACGGAATGAGGAAGTCGTCATCTG -ACGGAATGAGGAAGTCGTGAGTTG -ACGGAATGAGGAAGTCGTAGACTG -ACGGAATGAGGAAGTCGTTCGGTA -ACGGAATGAGGAAGTCGTTGCCTA -ACGGAATGAGGAAGTCGTCCACTA -ACGGAATGAGGAAGTCGTGGAGTA -ACGGAATGAGGAAGTCGTTCGTCT -ACGGAATGAGGAAGTCGTTGCACT -ACGGAATGAGGAAGTCGTCTGACT -ACGGAATGAGGAAGTCGTCAACCT -ACGGAATGAGGAAGTCGTGCTACT -ACGGAATGAGGAAGTCGTGGATCT -ACGGAATGAGGAAGTCGTAAGGCT -ACGGAATGAGGAAGTCGTTCAACC -ACGGAATGAGGAAGTCGTTGTTCC -ACGGAATGAGGAAGTCGTATTCCC -ACGGAATGAGGAAGTCGTTTCTCG -ACGGAATGAGGAAGTCGTTAGACG -ACGGAATGAGGAAGTCGTGTAACG -ACGGAATGAGGAAGTCGTACTTCG -ACGGAATGAGGAAGTCGTTACGCA -ACGGAATGAGGAAGTCGTCTTGCA -ACGGAATGAGGAAGTCGTCGAACA -ACGGAATGAGGAAGTCGTCAGTCA -ACGGAATGAGGAAGTCGTGATCCA -ACGGAATGAGGAAGTCGTACGACA -ACGGAATGAGGAAGTCGTAGCTCA -ACGGAATGAGGAAGTCGTTCACGT -ACGGAATGAGGAAGTCGTCGTAGT -ACGGAATGAGGAAGTCGTGTCAGT -ACGGAATGAGGAAGTCGTGAAGGT -ACGGAATGAGGAAGTCGTAACCGT -ACGGAATGAGGAAGTCGTTTGTGC -ACGGAATGAGGAAGTCGTCTAAGC -ACGGAATGAGGAAGTCGTACTAGC -ACGGAATGAGGAAGTCGTAGATGC -ACGGAATGAGGAAGTCGTTGAAGG -ACGGAATGAGGAAGTCGTCAATGG -ACGGAATGAGGAAGTCGTATGAGG -ACGGAATGAGGAAGTCGTAATGGG -ACGGAATGAGGAAGTCGTTCCTGA -ACGGAATGAGGAAGTCGTTAGCGA -ACGGAATGAGGAAGTCGTCACAGA -ACGGAATGAGGAAGTCGTGCAAGA -ACGGAATGAGGAAGTCGTGGTTGA -ACGGAATGAGGAAGTCGTTCCGAT -ACGGAATGAGGAAGTCGTTGGCAT -ACGGAATGAGGAAGTCGTCGAGAT -ACGGAATGAGGAAGTCGTTACCAC -ACGGAATGAGGAAGTCGTCAGAAC -ACGGAATGAGGAAGTCGTGTCTAC -ACGGAATGAGGAAGTCGTACGTAC -ACGGAATGAGGAAGTCGTAGTGAC -ACGGAATGAGGAAGTCGTCTGTAG -ACGGAATGAGGAAGTCGTCCTAAG -ACGGAATGAGGAAGTCGTGTTCAG -ACGGAATGAGGAAGTCGTGCATAG -ACGGAATGAGGAAGTCGTGACAAG -ACGGAATGAGGAAGTCGTAAGCAG -ACGGAATGAGGAAGTCGTCGTCAA -ACGGAATGAGGAAGTCGTGCTGAA -ACGGAATGAGGAAGTCGTAGTACG -ACGGAATGAGGAAGTCGTATCCGA -ACGGAATGAGGAAGTCGTATGGGA -ACGGAATGAGGAAGTCGTGTGCAA -ACGGAATGAGGAAGTCGTGAGGAA -ACGGAATGAGGAAGTCGTCAGGTA -ACGGAATGAGGAAGTCGTGACTCT -ACGGAATGAGGAAGTCGTAGTCCT -ACGGAATGAGGAAGTCGTTAAGCC -ACGGAATGAGGAAGTCGTATAGCC -ACGGAATGAGGAAGTCGTTAACCG -ACGGAATGAGGAAGTCGTATGCCA -ACGGAATGAGGAAGTGTCGGAAAC -ACGGAATGAGGAAGTGTCAACACC -ACGGAATGAGGAAGTGTCATCGAG -ACGGAATGAGGAAGTGTCCTCCTT -ACGGAATGAGGAAGTGTCCCTGTT -ACGGAATGAGGAAGTGTCCGGTTT -ACGGAATGAGGAAGTGTCGTGGTT -ACGGAATGAGGAAGTGTCGCCTTT -ACGGAATGAGGAAGTGTCGGTCTT -ACGGAATGAGGAAGTGTCACGCTT -ACGGAATGAGGAAGTGTCAGCGTT -ACGGAATGAGGAAGTGTCTTCGTC -ACGGAATGAGGAAGTGTCTCTCTC -ACGGAATGAGGAAGTGTCTGGATC -ACGGAATGAGGAAGTGTCCACTTC -ACGGAATGAGGAAGTGTCGTACTC -ACGGAATGAGGAAGTGTCGATGTC -ACGGAATGAGGAAGTGTCACAGTC -ACGGAATGAGGAAGTGTCTTGCTG -ACGGAATGAGGAAGTGTCTCCATG -ACGGAATGAGGAAGTGTCTGTGTG -ACGGAATGAGGAAGTGTCCTAGTG -ACGGAATGAGGAAGTGTCCATCTG -ACGGAATGAGGAAGTGTCGAGTTG -ACGGAATGAGGAAGTGTCAGACTG -ACGGAATGAGGAAGTGTCTCGGTA -ACGGAATGAGGAAGTGTCTGCCTA -ACGGAATGAGGAAGTGTCCCACTA -ACGGAATGAGGAAGTGTCGGAGTA -ACGGAATGAGGAAGTGTCTCGTCT -ACGGAATGAGGAAGTGTCTGCACT -ACGGAATGAGGAAGTGTCCTGACT -ACGGAATGAGGAAGTGTCCAACCT -ACGGAATGAGGAAGTGTCGCTACT -ACGGAATGAGGAAGTGTCGGATCT -ACGGAATGAGGAAGTGTCAAGGCT -ACGGAATGAGGAAGTGTCTCAACC -ACGGAATGAGGAAGTGTCTGTTCC -ACGGAATGAGGAAGTGTCATTCCC -ACGGAATGAGGAAGTGTCTTCTCG -ACGGAATGAGGAAGTGTCTAGACG -ACGGAATGAGGAAGTGTCGTAACG -ACGGAATGAGGAAGTGTCACTTCG -ACGGAATGAGGAAGTGTCTACGCA -ACGGAATGAGGAAGTGTCCTTGCA -ACGGAATGAGGAAGTGTCCGAACA -ACGGAATGAGGAAGTGTCCAGTCA -ACGGAATGAGGAAGTGTCGATCCA -ACGGAATGAGGAAGTGTCACGACA -ACGGAATGAGGAAGTGTCAGCTCA -ACGGAATGAGGAAGTGTCTCACGT -ACGGAATGAGGAAGTGTCCGTAGT -ACGGAATGAGGAAGTGTCGTCAGT -ACGGAATGAGGAAGTGTCGAAGGT -ACGGAATGAGGAAGTGTCAACCGT -ACGGAATGAGGAAGTGTCTTGTGC -ACGGAATGAGGAAGTGTCCTAAGC -ACGGAATGAGGAAGTGTCACTAGC -ACGGAATGAGGAAGTGTCAGATGC -ACGGAATGAGGAAGTGTCTGAAGG -ACGGAATGAGGAAGTGTCCAATGG -ACGGAATGAGGAAGTGTCATGAGG -ACGGAATGAGGAAGTGTCAATGGG -ACGGAATGAGGAAGTGTCTCCTGA -ACGGAATGAGGAAGTGTCTAGCGA -ACGGAATGAGGAAGTGTCCACAGA -ACGGAATGAGGAAGTGTCGCAAGA -ACGGAATGAGGAAGTGTCGGTTGA -ACGGAATGAGGAAGTGTCTCCGAT -ACGGAATGAGGAAGTGTCTGGCAT -ACGGAATGAGGAAGTGTCCGAGAT -ACGGAATGAGGAAGTGTCTACCAC -ACGGAATGAGGAAGTGTCCAGAAC -ACGGAATGAGGAAGTGTCGTCTAC -ACGGAATGAGGAAGTGTCACGTAC -ACGGAATGAGGAAGTGTCAGTGAC -ACGGAATGAGGAAGTGTCCTGTAG -ACGGAATGAGGAAGTGTCCCTAAG -ACGGAATGAGGAAGTGTCGTTCAG -ACGGAATGAGGAAGTGTCGCATAG -ACGGAATGAGGAAGTGTCGACAAG -ACGGAATGAGGAAGTGTCAAGCAG -ACGGAATGAGGAAGTGTCCGTCAA -ACGGAATGAGGAAGTGTCGCTGAA -ACGGAATGAGGAAGTGTCAGTACG -ACGGAATGAGGAAGTGTCATCCGA -ACGGAATGAGGAAGTGTCATGGGA -ACGGAATGAGGAAGTGTCGTGCAA -ACGGAATGAGGAAGTGTCGAGGAA -ACGGAATGAGGAAGTGTCCAGGTA -ACGGAATGAGGAAGTGTCGACTCT -ACGGAATGAGGAAGTGTCAGTCCT -ACGGAATGAGGAAGTGTCTAAGCC -ACGGAATGAGGAAGTGTCATAGCC -ACGGAATGAGGAAGTGTCTAACCG -ACGGAATGAGGAAGTGTCATGCCA -ACGGAATGAGGAGGTGAAGGAAAC -ACGGAATGAGGAGGTGAAAACACC -ACGGAATGAGGAGGTGAAATCGAG -ACGGAATGAGGAGGTGAACTCCTT -ACGGAATGAGGAGGTGAACCTGTT -ACGGAATGAGGAGGTGAACGGTTT -ACGGAATGAGGAGGTGAAGTGGTT -ACGGAATGAGGAGGTGAAGCCTTT -ACGGAATGAGGAGGTGAAGGTCTT -ACGGAATGAGGAGGTGAAACGCTT -ACGGAATGAGGAGGTGAAAGCGTT -ACGGAATGAGGAGGTGAATTCGTC -ACGGAATGAGGAGGTGAATCTCTC -ACGGAATGAGGAGGTGAATGGATC -ACGGAATGAGGAGGTGAACACTTC -ACGGAATGAGGAGGTGAAGTACTC -ACGGAATGAGGAGGTGAAGATGTC -ACGGAATGAGGAGGTGAAACAGTC -ACGGAATGAGGAGGTGAATTGCTG -ACGGAATGAGGAGGTGAATCCATG -ACGGAATGAGGAGGTGAATGTGTG -ACGGAATGAGGAGGTGAACTAGTG -ACGGAATGAGGAGGTGAACATCTG -ACGGAATGAGGAGGTGAAGAGTTG -ACGGAATGAGGAGGTGAAAGACTG -ACGGAATGAGGAGGTGAATCGGTA -ACGGAATGAGGAGGTGAATGCCTA -ACGGAATGAGGAGGTGAACCACTA -ACGGAATGAGGAGGTGAAGGAGTA -ACGGAATGAGGAGGTGAATCGTCT -ACGGAATGAGGAGGTGAATGCACT -ACGGAATGAGGAGGTGAACTGACT -ACGGAATGAGGAGGTGAACAACCT -ACGGAATGAGGAGGTGAAGCTACT -ACGGAATGAGGAGGTGAAGGATCT -ACGGAATGAGGAGGTGAAAAGGCT -ACGGAATGAGGAGGTGAATCAACC -ACGGAATGAGGAGGTGAATGTTCC -ACGGAATGAGGAGGTGAAATTCCC -ACGGAATGAGGAGGTGAATTCTCG -ACGGAATGAGGAGGTGAATAGACG -ACGGAATGAGGAGGTGAAGTAACG -ACGGAATGAGGAGGTGAAACTTCG -ACGGAATGAGGAGGTGAATACGCA -ACGGAATGAGGAGGTGAACTTGCA -ACGGAATGAGGAGGTGAACGAACA -ACGGAATGAGGAGGTGAACAGTCA -ACGGAATGAGGAGGTGAAGATCCA -ACGGAATGAGGAGGTGAAACGACA -ACGGAATGAGGAGGTGAAAGCTCA -ACGGAATGAGGAGGTGAATCACGT -ACGGAATGAGGAGGTGAACGTAGT -ACGGAATGAGGAGGTGAAGTCAGT -ACGGAATGAGGAGGTGAAGAAGGT -ACGGAATGAGGAGGTGAAAACCGT -ACGGAATGAGGAGGTGAATTGTGC -ACGGAATGAGGAGGTGAACTAAGC -ACGGAATGAGGAGGTGAAACTAGC -ACGGAATGAGGAGGTGAAAGATGC -ACGGAATGAGGAGGTGAATGAAGG -ACGGAATGAGGAGGTGAACAATGG -ACGGAATGAGGAGGTGAAATGAGG -ACGGAATGAGGAGGTGAAAATGGG -ACGGAATGAGGAGGTGAATCCTGA -ACGGAATGAGGAGGTGAATAGCGA -ACGGAATGAGGAGGTGAACACAGA -ACGGAATGAGGAGGTGAAGCAAGA -ACGGAATGAGGAGGTGAAGGTTGA -ACGGAATGAGGAGGTGAATCCGAT -ACGGAATGAGGAGGTGAATGGCAT -ACGGAATGAGGAGGTGAACGAGAT -ACGGAATGAGGAGGTGAATACCAC -ACGGAATGAGGAGGTGAACAGAAC -ACGGAATGAGGAGGTGAAGTCTAC -ACGGAATGAGGAGGTGAAACGTAC -ACGGAATGAGGAGGTGAAAGTGAC -ACGGAATGAGGAGGTGAACTGTAG -ACGGAATGAGGAGGTGAACCTAAG -ACGGAATGAGGAGGTGAAGTTCAG -ACGGAATGAGGAGGTGAAGCATAG -ACGGAATGAGGAGGTGAAGACAAG -ACGGAATGAGGAGGTGAAAAGCAG -ACGGAATGAGGAGGTGAACGTCAA -ACGGAATGAGGAGGTGAAGCTGAA -ACGGAATGAGGAGGTGAAAGTACG -ACGGAATGAGGAGGTGAAATCCGA -ACGGAATGAGGAGGTGAAATGGGA -ACGGAATGAGGAGGTGAAGTGCAA -ACGGAATGAGGAGGTGAAGAGGAA -ACGGAATGAGGAGGTGAACAGGTA -ACGGAATGAGGAGGTGAAGACTCT -ACGGAATGAGGAGGTGAAAGTCCT -ACGGAATGAGGAGGTGAATAAGCC -ACGGAATGAGGAGGTGAAATAGCC -ACGGAATGAGGAGGTGAATAACCG -ACGGAATGAGGAGGTGAAATGCCA -ACGGAATGAGGACGTAACGGAAAC -ACGGAATGAGGACGTAACAACACC -ACGGAATGAGGACGTAACATCGAG -ACGGAATGAGGACGTAACCTCCTT -ACGGAATGAGGACGTAACCCTGTT -ACGGAATGAGGACGTAACCGGTTT -ACGGAATGAGGACGTAACGTGGTT -ACGGAATGAGGACGTAACGCCTTT -ACGGAATGAGGACGTAACGGTCTT -ACGGAATGAGGACGTAACACGCTT -ACGGAATGAGGACGTAACAGCGTT -ACGGAATGAGGACGTAACTTCGTC -ACGGAATGAGGACGTAACTCTCTC -ACGGAATGAGGACGTAACTGGATC -ACGGAATGAGGACGTAACCACTTC -ACGGAATGAGGACGTAACGTACTC -ACGGAATGAGGACGTAACGATGTC -ACGGAATGAGGACGTAACACAGTC -ACGGAATGAGGACGTAACTTGCTG -ACGGAATGAGGACGTAACTCCATG -ACGGAATGAGGACGTAACTGTGTG -ACGGAATGAGGACGTAACCTAGTG -ACGGAATGAGGACGTAACCATCTG -ACGGAATGAGGACGTAACGAGTTG -ACGGAATGAGGACGTAACAGACTG -ACGGAATGAGGACGTAACTCGGTA -ACGGAATGAGGACGTAACTGCCTA -ACGGAATGAGGACGTAACCCACTA -ACGGAATGAGGACGTAACGGAGTA -ACGGAATGAGGACGTAACTCGTCT -ACGGAATGAGGACGTAACTGCACT -ACGGAATGAGGACGTAACCTGACT -ACGGAATGAGGACGTAACCAACCT -ACGGAATGAGGACGTAACGCTACT -ACGGAATGAGGACGTAACGGATCT -ACGGAATGAGGACGTAACAAGGCT -ACGGAATGAGGACGTAACTCAACC -ACGGAATGAGGACGTAACTGTTCC -ACGGAATGAGGACGTAACATTCCC -ACGGAATGAGGACGTAACTTCTCG -ACGGAATGAGGACGTAACTAGACG -ACGGAATGAGGACGTAACGTAACG -ACGGAATGAGGACGTAACACTTCG -ACGGAATGAGGACGTAACTACGCA -ACGGAATGAGGACGTAACCTTGCA -ACGGAATGAGGACGTAACCGAACA -ACGGAATGAGGACGTAACCAGTCA -ACGGAATGAGGACGTAACGATCCA -ACGGAATGAGGACGTAACACGACA -ACGGAATGAGGACGTAACAGCTCA -ACGGAATGAGGACGTAACTCACGT -ACGGAATGAGGACGTAACCGTAGT -ACGGAATGAGGACGTAACGTCAGT -ACGGAATGAGGACGTAACGAAGGT -ACGGAATGAGGACGTAACAACCGT -ACGGAATGAGGACGTAACTTGTGC -ACGGAATGAGGACGTAACCTAAGC -ACGGAATGAGGACGTAACACTAGC -ACGGAATGAGGACGTAACAGATGC -ACGGAATGAGGACGTAACTGAAGG -ACGGAATGAGGACGTAACCAATGG -ACGGAATGAGGACGTAACATGAGG -ACGGAATGAGGACGTAACAATGGG -ACGGAATGAGGACGTAACTCCTGA -ACGGAATGAGGACGTAACTAGCGA -ACGGAATGAGGACGTAACCACAGA -ACGGAATGAGGACGTAACGCAAGA -ACGGAATGAGGACGTAACGGTTGA -ACGGAATGAGGACGTAACTCCGAT -ACGGAATGAGGACGTAACTGGCAT -ACGGAATGAGGACGTAACCGAGAT -ACGGAATGAGGACGTAACTACCAC -ACGGAATGAGGACGTAACCAGAAC -ACGGAATGAGGACGTAACGTCTAC -ACGGAATGAGGACGTAACACGTAC -ACGGAATGAGGACGTAACAGTGAC -ACGGAATGAGGACGTAACCTGTAG -ACGGAATGAGGACGTAACCCTAAG -ACGGAATGAGGACGTAACGTTCAG -ACGGAATGAGGACGTAACGCATAG -ACGGAATGAGGACGTAACGACAAG -ACGGAATGAGGACGTAACAAGCAG -ACGGAATGAGGACGTAACCGTCAA -ACGGAATGAGGACGTAACGCTGAA -ACGGAATGAGGACGTAACAGTACG -ACGGAATGAGGACGTAACATCCGA -ACGGAATGAGGACGTAACATGGGA -ACGGAATGAGGACGTAACGTGCAA -ACGGAATGAGGACGTAACGAGGAA -ACGGAATGAGGACGTAACCAGGTA -ACGGAATGAGGACGTAACGACTCT -ACGGAATGAGGACGTAACAGTCCT -ACGGAATGAGGACGTAACTAAGCC -ACGGAATGAGGACGTAACATAGCC -ACGGAATGAGGACGTAACTAACCG -ACGGAATGAGGACGTAACATGCCA -ACGGAATGAGGATGCTTGGGAAAC -ACGGAATGAGGATGCTTGAACACC -ACGGAATGAGGATGCTTGATCGAG -ACGGAATGAGGATGCTTGCTCCTT -ACGGAATGAGGATGCTTGCCTGTT -ACGGAATGAGGATGCTTGCGGTTT -ACGGAATGAGGATGCTTGGTGGTT -ACGGAATGAGGATGCTTGGCCTTT -ACGGAATGAGGATGCTTGGGTCTT -ACGGAATGAGGATGCTTGACGCTT -ACGGAATGAGGATGCTTGAGCGTT -ACGGAATGAGGATGCTTGTTCGTC -ACGGAATGAGGATGCTTGTCTCTC -ACGGAATGAGGATGCTTGTGGATC -ACGGAATGAGGATGCTTGCACTTC -ACGGAATGAGGATGCTTGGTACTC -ACGGAATGAGGATGCTTGGATGTC -ACGGAATGAGGATGCTTGACAGTC -ACGGAATGAGGATGCTTGTTGCTG -ACGGAATGAGGATGCTTGTCCATG -ACGGAATGAGGATGCTTGTGTGTG -ACGGAATGAGGATGCTTGCTAGTG -ACGGAATGAGGATGCTTGCATCTG -ACGGAATGAGGATGCTTGGAGTTG -ACGGAATGAGGATGCTTGAGACTG -ACGGAATGAGGATGCTTGTCGGTA -ACGGAATGAGGATGCTTGTGCCTA -ACGGAATGAGGATGCTTGCCACTA -ACGGAATGAGGATGCTTGGGAGTA -ACGGAATGAGGATGCTTGTCGTCT -ACGGAATGAGGATGCTTGTGCACT -ACGGAATGAGGATGCTTGCTGACT -ACGGAATGAGGATGCTTGCAACCT -ACGGAATGAGGATGCTTGGCTACT -ACGGAATGAGGATGCTTGGGATCT -ACGGAATGAGGATGCTTGAAGGCT -ACGGAATGAGGATGCTTGTCAACC -ACGGAATGAGGATGCTTGTGTTCC -ACGGAATGAGGATGCTTGATTCCC -ACGGAATGAGGATGCTTGTTCTCG -ACGGAATGAGGATGCTTGTAGACG -ACGGAATGAGGATGCTTGGTAACG -ACGGAATGAGGATGCTTGACTTCG -ACGGAATGAGGATGCTTGTACGCA -ACGGAATGAGGATGCTTGCTTGCA -ACGGAATGAGGATGCTTGCGAACA -ACGGAATGAGGATGCTTGCAGTCA -ACGGAATGAGGATGCTTGGATCCA -ACGGAATGAGGATGCTTGACGACA -ACGGAATGAGGATGCTTGAGCTCA -ACGGAATGAGGATGCTTGTCACGT -ACGGAATGAGGATGCTTGCGTAGT -ACGGAATGAGGATGCTTGGTCAGT -ACGGAATGAGGATGCTTGGAAGGT -ACGGAATGAGGATGCTTGAACCGT -ACGGAATGAGGATGCTTGTTGTGC -ACGGAATGAGGATGCTTGCTAAGC -ACGGAATGAGGATGCTTGACTAGC -ACGGAATGAGGATGCTTGAGATGC -ACGGAATGAGGATGCTTGTGAAGG -ACGGAATGAGGATGCTTGCAATGG -ACGGAATGAGGATGCTTGATGAGG -ACGGAATGAGGATGCTTGAATGGG -ACGGAATGAGGATGCTTGTCCTGA -ACGGAATGAGGATGCTTGTAGCGA -ACGGAATGAGGATGCTTGCACAGA -ACGGAATGAGGATGCTTGGCAAGA -ACGGAATGAGGATGCTTGGGTTGA -ACGGAATGAGGATGCTTGTCCGAT -ACGGAATGAGGATGCTTGTGGCAT -ACGGAATGAGGATGCTTGCGAGAT -ACGGAATGAGGATGCTTGTACCAC -ACGGAATGAGGATGCTTGCAGAAC -ACGGAATGAGGATGCTTGGTCTAC -ACGGAATGAGGATGCTTGACGTAC -ACGGAATGAGGATGCTTGAGTGAC -ACGGAATGAGGATGCTTGCTGTAG -ACGGAATGAGGATGCTTGCCTAAG -ACGGAATGAGGATGCTTGGTTCAG -ACGGAATGAGGATGCTTGGCATAG -ACGGAATGAGGATGCTTGGACAAG -ACGGAATGAGGATGCTTGAAGCAG -ACGGAATGAGGATGCTTGCGTCAA -ACGGAATGAGGATGCTTGGCTGAA -ACGGAATGAGGATGCTTGAGTACG -ACGGAATGAGGATGCTTGATCCGA -ACGGAATGAGGATGCTTGATGGGA -ACGGAATGAGGATGCTTGGTGCAA -ACGGAATGAGGATGCTTGGAGGAA -ACGGAATGAGGATGCTTGCAGGTA -ACGGAATGAGGATGCTTGGACTCT -ACGGAATGAGGATGCTTGAGTCCT -ACGGAATGAGGATGCTTGTAAGCC -ACGGAATGAGGATGCTTGATAGCC -ACGGAATGAGGATGCTTGTAACCG -ACGGAATGAGGATGCTTGATGCCA -ACGGAATGAGGAAGCCTAGGAAAC -ACGGAATGAGGAAGCCTAAACACC -ACGGAATGAGGAAGCCTAATCGAG -ACGGAATGAGGAAGCCTACTCCTT -ACGGAATGAGGAAGCCTACCTGTT -ACGGAATGAGGAAGCCTACGGTTT -ACGGAATGAGGAAGCCTAGTGGTT -ACGGAATGAGGAAGCCTAGCCTTT -ACGGAATGAGGAAGCCTAGGTCTT -ACGGAATGAGGAAGCCTAACGCTT -ACGGAATGAGGAAGCCTAAGCGTT -ACGGAATGAGGAAGCCTATTCGTC -ACGGAATGAGGAAGCCTATCTCTC -ACGGAATGAGGAAGCCTATGGATC -ACGGAATGAGGAAGCCTACACTTC -ACGGAATGAGGAAGCCTAGTACTC -ACGGAATGAGGAAGCCTAGATGTC -ACGGAATGAGGAAGCCTAACAGTC -ACGGAATGAGGAAGCCTATTGCTG -ACGGAATGAGGAAGCCTATCCATG -ACGGAATGAGGAAGCCTATGTGTG -ACGGAATGAGGAAGCCTACTAGTG -ACGGAATGAGGAAGCCTACATCTG -ACGGAATGAGGAAGCCTAGAGTTG -ACGGAATGAGGAAGCCTAAGACTG -ACGGAATGAGGAAGCCTATCGGTA -ACGGAATGAGGAAGCCTATGCCTA -ACGGAATGAGGAAGCCTACCACTA -ACGGAATGAGGAAGCCTAGGAGTA -ACGGAATGAGGAAGCCTATCGTCT -ACGGAATGAGGAAGCCTATGCACT -ACGGAATGAGGAAGCCTACTGACT -ACGGAATGAGGAAGCCTACAACCT -ACGGAATGAGGAAGCCTAGCTACT -ACGGAATGAGGAAGCCTAGGATCT -ACGGAATGAGGAAGCCTAAAGGCT -ACGGAATGAGGAAGCCTATCAACC -ACGGAATGAGGAAGCCTATGTTCC -ACGGAATGAGGAAGCCTAATTCCC -ACGGAATGAGGAAGCCTATTCTCG -ACGGAATGAGGAAGCCTATAGACG -ACGGAATGAGGAAGCCTAGTAACG -ACGGAATGAGGAAGCCTAACTTCG -ACGGAATGAGGAAGCCTATACGCA -ACGGAATGAGGAAGCCTACTTGCA -ACGGAATGAGGAAGCCTACGAACA -ACGGAATGAGGAAGCCTACAGTCA -ACGGAATGAGGAAGCCTAGATCCA -ACGGAATGAGGAAGCCTAACGACA -ACGGAATGAGGAAGCCTAAGCTCA -ACGGAATGAGGAAGCCTATCACGT -ACGGAATGAGGAAGCCTACGTAGT -ACGGAATGAGGAAGCCTAGTCAGT -ACGGAATGAGGAAGCCTAGAAGGT -ACGGAATGAGGAAGCCTAAACCGT -ACGGAATGAGGAAGCCTATTGTGC -ACGGAATGAGGAAGCCTACTAAGC -ACGGAATGAGGAAGCCTAACTAGC -ACGGAATGAGGAAGCCTAAGATGC -ACGGAATGAGGAAGCCTATGAAGG -ACGGAATGAGGAAGCCTACAATGG -ACGGAATGAGGAAGCCTAATGAGG -ACGGAATGAGGAAGCCTAAATGGG -ACGGAATGAGGAAGCCTATCCTGA -ACGGAATGAGGAAGCCTATAGCGA -ACGGAATGAGGAAGCCTACACAGA -ACGGAATGAGGAAGCCTAGCAAGA -ACGGAATGAGGAAGCCTAGGTTGA -ACGGAATGAGGAAGCCTATCCGAT -ACGGAATGAGGAAGCCTATGGCAT -ACGGAATGAGGAAGCCTACGAGAT -ACGGAATGAGGAAGCCTATACCAC -ACGGAATGAGGAAGCCTACAGAAC -ACGGAATGAGGAAGCCTAGTCTAC -ACGGAATGAGGAAGCCTAACGTAC -ACGGAATGAGGAAGCCTAAGTGAC -ACGGAATGAGGAAGCCTACTGTAG -ACGGAATGAGGAAGCCTACCTAAG -ACGGAATGAGGAAGCCTAGTTCAG -ACGGAATGAGGAAGCCTAGCATAG -ACGGAATGAGGAAGCCTAGACAAG -ACGGAATGAGGAAGCCTAAAGCAG -ACGGAATGAGGAAGCCTACGTCAA -ACGGAATGAGGAAGCCTAGCTGAA -ACGGAATGAGGAAGCCTAAGTACG -ACGGAATGAGGAAGCCTAATCCGA -ACGGAATGAGGAAGCCTAATGGGA -ACGGAATGAGGAAGCCTAGTGCAA -ACGGAATGAGGAAGCCTAGAGGAA -ACGGAATGAGGAAGCCTACAGGTA -ACGGAATGAGGAAGCCTAGACTCT -ACGGAATGAGGAAGCCTAAGTCCT -ACGGAATGAGGAAGCCTATAAGCC -ACGGAATGAGGAAGCCTAATAGCC -ACGGAATGAGGAAGCCTATAACCG -ACGGAATGAGGAAGCCTAATGCCA -ACGGAATGAGGAAGCACTGGAAAC -ACGGAATGAGGAAGCACTAACACC -ACGGAATGAGGAAGCACTATCGAG -ACGGAATGAGGAAGCACTCTCCTT -ACGGAATGAGGAAGCACTCCTGTT -ACGGAATGAGGAAGCACTCGGTTT -ACGGAATGAGGAAGCACTGTGGTT -ACGGAATGAGGAAGCACTGCCTTT -ACGGAATGAGGAAGCACTGGTCTT -ACGGAATGAGGAAGCACTACGCTT -ACGGAATGAGGAAGCACTAGCGTT -ACGGAATGAGGAAGCACTTTCGTC -ACGGAATGAGGAAGCACTTCTCTC -ACGGAATGAGGAAGCACTTGGATC -ACGGAATGAGGAAGCACTCACTTC -ACGGAATGAGGAAGCACTGTACTC -ACGGAATGAGGAAGCACTGATGTC -ACGGAATGAGGAAGCACTACAGTC -ACGGAATGAGGAAGCACTTTGCTG -ACGGAATGAGGAAGCACTTCCATG -ACGGAATGAGGAAGCACTTGTGTG -ACGGAATGAGGAAGCACTCTAGTG -ACGGAATGAGGAAGCACTCATCTG -ACGGAATGAGGAAGCACTGAGTTG -ACGGAATGAGGAAGCACTAGACTG -ACGGAATGAGGAAGCACTTCGGTA -ACGGAATGAGGAAGCACTTGCCTA -ACGGAATGAGGAAGCACTCCACTA -ACGGAATGAGGAAGCACTGGAGTA -ACGGAATGAGGAAGCACTTCGTCT -ACGGAATGAGGAAGCACTTGCACT -ACGGAATGAGGAAGCACTCTGACT -ACGGAATGAGGAAGCACTCAACCT -ACGGAATGAGGAAGCACTGCTACT -ACGGAATGAGGAAGCACTGGATCT -ACGGAATGAGGAAGCACTAAGGCT -ACGGAATGAGGAAGCACTTCAACC -ACGGAATGAGGAAGCACTTGTTCC -ACGGAATGAGGAAGCACTATTCCC -ACGGAATGAGGAAGCACTTTCTCG -ACGGAATGAGGAAGCACTTAGACG -ACGGAATGAGGAAGCACTGTAACG -ACGGAATGAGGAAGCACTACTTCG -ACGGAATGAGGAAGCACTTACGCA -ACGGAATGAGGAAGCACTCTTGCA -ACGGAATGAGGAAGCACTCGAACA -ACGGAATGAGGAAGCACTCAGTCA -ACGGAATGAGGAAGCACTGATCCA -ACGGAATGAGGAAGCACTACGACA -ACGGAATGAGGAAGCACTAGCTCA -ACGGAATGAGGAAGCACTTCACGT -ACGGAATGAGGAAGCACTCGTAGT -ACGGAATGAGGAAGCACTGTCAGT -ACGGAATGAGGAAGCACTGAAGGT -ACGGAATGAGGAAGCACTAACCGT -ACGGAATGAGGAAGCACTTTGTGC -ACGGAATGAGGAAGCACTCTAAGC -ACGGAATGAGGAAGCACTACTAGC -ACGGAATGAGGAAGCACTAGATGC -ACGGAATGAGGAAGCACTTGAAGG -ACGGAATGAGGAAGCACTCAATGG -ACGGAATGAGGAAGCACTATGAGG -ACGGAATGAGGAAGCACTAATGGG -ACGGAATGAGGAAGCACTTCCTGA -ACGGAATGAGGAAGCACTTAGCGA -ACGGAATGAGGAAGCACTCACAGA -ACGGAATGAGGAAGCACTGCAAGA -ACGGAATGAGGAAGCACTGGTTGA -ACGGAATGAGGAAGCACTTCCGAT -ACGGAATGAGGAAGCACTTGGCAT -ACGGAATGAGGAAGCACTCGAGAT -ACGGAATGAGGAAGCACTTACCAC -ACGGAATGAGGAAGCACTCAGAAC -ACGGAATGAGGAAGCACTGTCTAC -ACGGAATGAGGAAGCACTACGTAC -ACGGAATGAGGAAGCACTAGTGAC -ACGGAATGAGGAAGCACTCTGTAG -ACGGAATGAGGAAGCACTCCTAAG -ACGGAATGAGGAAGCACTGTTCAG -ACGGAATGAGGAAGCACTGCATAG -ACGGAATGAGGAAGCACTGACAAG -ACGGAATGAGGAAGCACTAAGCAG -ACGGAATGAGGAAGCACTCGTCAA -ACGGAATGAGGAAGCACTGCTGAA -ACGGAATGAGGAAGCACTAGTACG -ACGGAATGAGGAAGCACTATCCGA -ACGGAATGAGGAAGCACTATGGGA -ACGGAATGAGGAAGCACTGTGCAA -ACGGAATGAGGAAGCACTGAGGAA -ACGGAATGAGGAAGCACTCAGGTA -ACGGAATGAGGAAGCACTGACTCT -ACGGAATGAGGAAGCACTAGTCCT -ACGGAATGAGGAAGCACTTAAGCC -ACGGAATGAGGAAGCACTATAGCC -ACGGAATGAGGAAGCACTTAACCG -ACGGAATGAGGAAGCACTATGCCA -ACGGAATGAGGATGCAGAGGAAAC -ACGGAATGAGGATGCAGAAACACC -ACGGAATGAGGATGCAGAATCGAG -ACGGAATGAGGATGCAGACTCCTT -ACGGAATGAGGATGCAGACCTGTT -ACGGAATGAGGATGCAGACGGTTT -ACGGAATGAGGATGCAGAGTGGTT -ACGGAATGAGGATGCAGAGCCTTT -ACGGAATGAGGATGCAGAGGTCTT -ACGGAATGAGGATGCAGAACGCTT -ACGGAATGAGGATGCAGAAGCGTT -ACGGAATGAGGATGCAGATTCGTC -ACGGAATGAGGATGCAGATCTCTC -ACGGAATGAGGATGCAGATGGATC -ACGGAATGAGGATGCAGACACTTC -ACGGAATGAGGATGCAGAGTACTC -ACGGAATGAGGATGCAGAGATGTC -ACGGAATGAGGATGCAGAACAGTC -ACGGAATGAGGATGCAGATTGCTG -ACGGAATGAGGATGCAGATCCATG -ACGGAATGAGGATGCAGATGTGTG -ACGGAATGAGGATGCAGACTAGTG -ACGGAATGAGGATGCAGACATCTG -ACGGAATGAGGATGCAGAGAGTTG -ACGGAATGAGGATGCAGAAGACTG -ACGGAATGAGGATGCAGATCGGTA -ACGGAATGAGGATGCAGATGCCTA -ACGGAATGAGGATGCAGACCACTA -ACGGAATGAGGATGCAGAGGAGTA -ACGGAATGAGGATGCAGATCGTCT -ACGGAATGAGGATGCAGATGCACT -ACGGAATGAGGATGCAGACTGACT -ACGGAATGAGGATGCAGACAACCT -ACGGAATGAGGATGCAGAGCTACT -ACGGAATGAGGATGCAGAGGATCT -ACGGAATGAGGATGCAGAAAGGCT -ACGGAATGAGGATGCAGATCAACC -ACGGAATGAGGATGCAGATGTTCC -ACGGAATGAGGATGCAGAATTCCC -ACGGAATGAGGATGCAGATTCTCG -ACGGAATGAGGATGCAGATAGACG -ACGGAATGAGGATGCAGAGTAACG -ACGGAATGAGGATGCAGAACTTCG -ACGGAATGAGGATGCAGATACGCA -ACGGAATGAGGATGCAGACTTGCA -ACGGAATGAGGATGCAGACGAACA -ACGGAATGAGGATGCAGACAGTCA -ACGGAATGAGGATGCAGAGATCCA -ACGGAATGAGGATGCAGAACGACA -ACGGAATGAGGATGCAGAAGCTCA -ACGGAATGAGGATGCAGATCACGT -ACGGAATGAGGATGCAGACGTAGT -ACGGAATGAGGATGCAGAGTCAGT -ACGGAATGAGGATGCAGAGAAGGT -ACGGAATGAGGATGCAGAAACCGT -ACGGAATGAGGATGCAGATTGTGC -ACGGAATGAGGATGCAGACTAAGC -ACGGAATGAGGATGCAGAACTAGC -ACGGAATGAGGATGCAGAAGATGC -ACGGAATGAGGATGCAGATGAAGG -ACGGAATGAGGATGCAGACAATGG -ACGGAATGAGGATGCAGAATGAGG -ACGGAATGAGGATGCAGAAATGGG -ACGGAATGAGGATGCAGATCCTGA -ACGGAATGAGGATGCAGATAGCGA -ACGGAATGAGGATGCAGACACAGA -ACGGAATGAGGATGCAGAGCAAGA -ACGGAATGAGGATGCAGAGGTTGA -ACGGAATGAGGATGCAGATCCGAT -ACGGAATGAGGATGCAGATGGCAT -ACGGAATGAGGATGCAGACGAGAT -ACGGAATGAGGATGCAGATACCAC -ACGGAATGAGGATGCAGACAGAAC -ACGGAATGAGGATGCAGAGTCTAC -ACGGAATGAGGATGCAGAACGTAC -ACGGAATGAGGATGCAGAAGTGAC -ACGGAATGAGGATGCAGACTGTAG -ACGGAATGAGGATGCAGACCTAAG -ACGGAATGAGGATGCAGAGTTCAG -ACGGAATGAGGATGCAGAGCATAG -ACGGAATGAGGATGCAGAGACAAG -ACGGAATGAGGATGCAGAAAGCAG -ACGGAATGAGGATGCAGACGTCAA -ACGGAATGAGGATGCAGAGCTGAA -ACGGAATGAGGATGCAGAAGTACG -ACGGAATGAGGATGCAGAATCCGA -ACGGAATGAGGATGCAGAATGGGA -ACGGAATGAGGATGCAGAGTGCAA -ACGGAATGAGGATGCAGAGAGGAA -ACGGAATGAGGATGCAGACAGGTA -ACGGAATGAGGATGCAGAGACTCT -ACGGAATGAGGATGCAGAAGTCCT -ACGGAATGAGGATGCAGATAAGCC -ACGGAATGAGGATGCAGAATAGCC -ACGGAATGAGGATGCAGATAACCG -ACGGAATGAGGATGCAGAATGCCA -ACGGAATGAGGAAGGTGAGGAAAC -ACGGAATGAGGAAGGTGAAACACC -ACGGAATGAGGAAGGTGAATCGAG -ACGGAATGAGGAAGGTGACTCCTT -ACGGAATGAGGAAGGTGACCTGTT -ACGGAATGAGGAAGGTGACGGTTT -ACGGAATGAGGAAGGTGAGTGGTT -ACGGAATGAGGAAGGTGAGCCTTT -ACGGAATGAGGAAGGTGAGGTCTT -ACGGAATGAGGAAGGTGAACGCTT -ACGGAATGAGGAAGGTGAAGCGTT -ACGGAATGAGGAAGGTGATTCGTC -ACGGAATGAGGAAGGTGATCTCTC -ACGGAATGAGGAAGGTGATGGATC -ACGGAATGAGGAAGGTGACACTTC -ACGGAATGAGGAAGGTGAGTACTC -ACGGAATGAGGAAGGTGAGATGTC -ACGGAATGAGGAAGGTGAACAGTC -ACGGAATGAGGAAGGTGATTGCTG -ACGGAATGAGGAAGGTGATCCATG -ACGGAATGAGGAAGGTGATGTGTG -ACGGAATGAGGAAGGTGACTAGTG -ACGGAATGAGGAAGGTGACATCTG -ACGGAATGAGGAAGGTGAGAGTTG -ACGGAATGAGGAAGGTGAAGACTG -ACGGAATGAGGAAGGTGATCGGTA -ACGGAATGAGGAAGGTGATGCCTA -ACGGAATGAGGAAGGTGACCACTA -ACGGAATGAGGAAGGTGAGGAGTA -ACGGAATGAGGAAGGTGATCGTCT -ACGGAATGAGGAAGGTGATGCACT -ACGGAATGAGGAAGGTGACTGACT -ACGGAATGAGGAAGGTGACAACCT -ACGGAATGAGGAAGGTGAGCTACT -ACGGAATGAGGAAGGTGAGGATCT -ACGGAATGAGGAAGGTGAAAGGCT -ACGGAATGAGGAAGGTGATCAACC -ACGGAATGAGGAAGGTGATGTTCC -ACGGAATGAGGAAGGTGAATTCCC -ACGGAATGAGGAAGGTGATTCTCG -ACGGAATGAGGAAGGTGATAGACG -ACGGAATGAGGAAGGTGAGTAACG -ACGGAATGAGGAAGGTGAACTTCG -ACGGAATGAGGAAGGTGATACGCA -ACGGAATGAGGAAGGTGACTTGCA -ACGGAATGAGGAAGGTGACGAACA -ACGGAATGAGGAAGGTGACAGTCA -ACGGAATGAGGAAGGTGAGATCCA -ACGGAATGAGGAAGGTGAACGACA -ACGGAATGAGGAAGGTGAAGCTCA -ACGGAATGAGGAAGGTGATCACGT -ACGGAATGAGGAAGGTGACGTAGT -ACGGAATGAGGAAGGTGAGTCAGT -ACGGAATGAGGAAGGTGAGAAGGT -ACGGAATGAGGAAGGTGAAACCGT -ACGGAATGAGGAAGGTGATTGTGC -ACGGAATGAGGAAGGTGACTAAGC -ACGGAATGAGGAAGGTGAACTAGC -ACGGAATGAGGAAGGTGAAGATGC -ACGGAATGAGGAAGGTGATGAAGG -ACGGAATGAGGAAGGTGACAATGG -ACGGAATGAGGAAGGTGAATGAGG -ACGGAATGAGGAAGGTGAAATGGG -ACGGAATGAGGAAGGTGATCCTGA -ACGGAATGAGGAAGGTGATAGCGA -ACGGAATGAGGAAGGTGACACAGA -ACGGAATGAGGAAGGTGAGCAAGA -ACGGAATGAGGAAGGTGAGGTTGA -ACGGAATGAGGAAGGTGATCCGAT -ACGGAATGAGGAAGGTGATGGCAT -ACGGAATGAGGAAGGTGACGAGAT -ACGGAATGAGGAAGGTGATACCAC -ACGGAATGAGGAAGGTGACAGAAC -ACGGAATGAGGAAGGTGAGTCTAC -ACGGAATGAGGAAGGTGAACGTAC -ACGGAATGAGGAAGGTGAAGTGAC -ACGGAATGAGGAAGGTGACTGTAG -ACGGAATGAGGAAGGTGACCTAAG -ACGGAATGAGGAAGGTGAGTTCAG -ACGGAATGAGGAAGGTGAGCATAG -ACGGAATGAGGAAGGTGAGACAAG -ACGGAATGAGGAAGGTGAAAGCAG -ACGGAATGAGGAAGGTGACGTCAA -ACGGAATGAGGAAGGTGAGCTGAA -ACGGAATGAGGAAGGTGAAGTACG -ACGGAATGAGGAAGGTGAATCCGA -ACGGAATGAGGAAGGTGAATGGGA -ACGGAATGAGGAAGGTGAGTGCAA -ACGGAATGAGGAAGGTGAGAGGAA -ACGGAATGAGGAAGGTGACAGGTA -ACGGAATGAGGAAGGTGAGACTCT -ACGGAATGAGGAAGGTGAAGTCCT -ACGGAATGAGGAAGGTGATAAGCC -ACGGAATGAGGAAGGTGAATAGCC -ACGGAATGAGGAAGGTGATAACCG -ACGGAATGAGGAAGGTGAATGCCA -ACGGAATGAGGATGGCAAGGAAAC -ACGGAATGAGGATGGCAAAACACC -ACGGAATGAGGATGGCAAATCGAG -ACGGAATGAGGATGGCAACTCCTT -ACGGAATGAGGATGGCAACCTGTT -ACGGAATGAGGATGGCAACGGTTT -ACGGAATGAGGATGGCAAGTGGTT -ACGGAATGAGGATGGCAAGCCTTT -ACGGAATGAGGATGGCAAGGTCTT -ACGGAATGAGGATGGCAAACGCTT -ACGGAATGAGGATGGCAAAGCGTT -ACGGAATGAGGATGGCAATTCGTC -ACGGAATGAGGATGGCAATCTCTC -ACGGAATGAGGATGGCAATGGATC -ACGGAATGAGGATGGCAACACTTC -ACGGAATGAGGATGGCAAGTACTC -ACGGAATGAGGATGGCAAGATGTC -ACGGAATGAGGATGGCAAACAGTC -ACGGAATGAGGATGGCAATTGCTG -ACGGAATGAGGATGGCAATCCATG -ACGGAATGAGGATGGCAATGTGTG -ACGGAATGAGGATGGCAACTAGTG -ACGGAATGAGGATGGCAACATCTG -ACGGAATGAGGATGGCAAGAGTTG -ACGGAATGAGGATGGCAAAGACTG -ACGGAATGAGGATGGCAATCGGTA -ACGGAATGAGGATGGCAATGCCTA -ACGGAATGAGGATGGCAACCACTA -ACGGAATGAGGATGGCAAGGAGTA -ACGGAATGAGGATGGCAATCGTCT -ACGGAATGAGGATGGCAATGCACT -ACGGAATGAGGATGGCAACTGACT -ACGGAATGAGGATGGCAACAACCT -ACGGAATGAGGATGGCAAGCTACT -ACGGAATGAGGATGGCAAGGATCT -ACGGAATGAGGATGGCAAAAGGCT -ACGGAATGAGGATGGCAATCAACC -ACGGAATGAGGATGGCAATGTTCC -ACGGAATGAGGATGGCAAATTCCC -ACGGAATGAGGATGGCAATTCTCG -ACGGAATGAGGATGGCAATAGACG -ACGGAATGAGGATGGCAAGTAACG -ACGGAATGAGGATGGCAAACTTCG -ACGGAATGAGGATGGCAATACGCA -ACGGAATGAGGATGGCAACTTGCA -ACGGAATGAGGATGGCAACGAACA -ACGGAATGAGGATGGCAACAGTCA -ACGGAATGAGGATGGCAAGATCCA -ACGGAATGAGGATGGCAAACGACA -ACGGAATGAGGATGGCAAAGCTCA -ACGGAATGAGGATGGCAATCACGT -ACGGAATGAGGATGGCAACGTAGT -ACGGAATGAGGATGGCAAGTCAGT -ACGGAATGAGGATGGCAAGAAGGT -ACGGAATGAGGATGGCAAAACCGT -ACGGAATGAGGATGGCAATTGTGC -ACGGAATGAGGATGGCAACTAAGC -ACGGAATGAGGATGGCAAACTAGC -ACGGAATGAGGATGGCAAAGATGC -ACGGAATGAGGATGGCAATGAAGG -ACGGAATGAGGATGGCAACAATGG -ACGGAATGAGGATGGCAAATGAGG -ACGGAATGAGGATGGCAAAATGGG -ACGGAATGAGGATGGCAATCCTGA -ACGGAATGAGGATGGCAATAGCGA -ACGGAATGAGGATGGCAACACAGA -ACGGAATGAGGATGGCAAGCAAGA -ACGGAATGAGGATGGCAAGGTTGA -ACGGAATGAGGATGGCAATCCGAT -ACGGAATGAGGATGGCAATGGCAT -ACGGAATGAGGATGGCAACGAGAT -ACGGAATGAGGATGGCAATACCAC -ACGGAATGAGGATGGCAACAGAAC -ACGGAATGAGGATGGCAAGTCTAC -ACGGAATGAGGATGGCAAACGTAC -ACGGAATGAGGATGGCAAAGTGAC -ACGGAATGAGGATGGCAACTGTAG -ACGGAATGAGGATGGCAACCTAAG -ACGGAATGAGGATGGCAAGTTCAG -ACGGAATGAGGATGGCAAGCATAG -ACGGAATGAGGATGGCAAGACAAG -ACGGAATGAGGATGGCAAAAGCAG -ACGGAATGAGGATGGCAACGTCAA -ACGGAATGAGGATGGCAAGCTGAA -ACGGAATGAGGATGGCAAAGTACG -ACGGAATGAGGATGGCAAATCCGA -ACGGAATGAGGATGGCAAATGGGA -ACGGAATGAGGATGGCAAGTGCAA -ACGGAATGAGGATGGCAAGAGGAA -ACGGAATGAGGATGGCAACAGGTA -ACGGAATGAGGATGGCAAGACTCT -ACGGAATGAGGATGGCAAAGTCCT -ACGGAATGAGGATGGCAATAAGCC -ACGGAATGAGGATGGCAAATAGCC -ACGGAATGAGGATGGCAATAACCG -ACGGAATGAGGATGGCAAATGCCA -ACGGAATGAGGAAGGATGGGAAAC -ACGGAATGAGGAAGGATGAACACC -ACGGAATGAGGAAGGATGATCGAG -ACGGAATGAGGAAGGATGCTCCTT -ACGGAATGAGGAAGGATGCCTGTT -ACGGAATGAGGAAGGATGCGGTTT -ACGGAATGAGGAAGGATGGTGGTT -ACGGAATGAGGAAGGATGGCCTTT -ACGGAATGAGGAAGGATGGGTCTT -ACGGAATGAGGAAGGATGACGCTT -ACGGAATGAGGAAGGATGAGCGTT -ACGGAATGAGGAAGGATGTTCGTC -ACGGAATGAGGAAGGATGTCTCTC -ACGGAATGAGGAAGGATGTGGATC -ACGGAATGAGGAAGGATGCACTTC -ACGGAATGAGGAAGGATGGTACTC -ACGGAATGAGGAAGGATGGATGTC -ACGGAATGAGGAAGGATGACAGTC -ACGGAATGAGGAAGGATGTTGCTG -ACGGAATGAGGAAGGATGTCCATG -ACGGAATGAGGAAGGATGTGTGTG -ACGGAATGAGGAAGGATGCTAGTG -ACGGAATGAGGAAGGATGCATCTG -ACGGAATGAGGAAGGATGGAGTTG -ACGGAATGAGGAAGGATGAGACTG -ACGGAATGAGGAAGGATGTCGGTA -ACGGAATGAGGAAGGATGTGCCTA -ACGGAATGAGGAAGGATGCCACTA -ACGGAATGAGGAAGGATGGGAGTA -ACGGAATGAGGAAGGATGTCGTCT -ACGGAATGAGGAAGGATGTGCACT -ACGGAATGAGGAAGGATGCTGACT -ACGGAATGAGGAAGGATGCAACCT -ACGGAATGAGGAAGGATGGCTACT -ACGGAATGAGGAAGGATGGGATCT -ACGGAATGAGGAAGGATGAAGGCT -ACGGAATGAGGAAGGATGTCAACC -ACGGAATGAGGAAGGATGTGTTCC -ACGGAATGAGGAAGGATGATTCCC -ACGGAATGAGGAAGGATGTTCTCG -ACGGAATGAGGAAGGATGTAGACG -ACGGAATGAGGAAGGATGGTAACG -ACGGAATGAGGAAGGATGACTTCG -ACGGAATGAGGAAGGATGTACGCA -ACGGAATGAGGAAGGATGCTTGCA -ACGGAATGAGGAAGGATGCGAACA -ACGGAATGAGGAAGGATGCAGTCA -ACGGAATGAGGAAGGATGGATCCA -ACGGAATGAGGAAGGATGACGACA -ACGGAATGAGGAAGGATGAGCTCA -ACGGAATGAGGAAGGATGTCACGT -ACGGAATGAGGAAGGATGCGTAGT -ACGGAATGAGGAAGGATGGTCAGT -ACGGAATGAGGAAGGATGGAAGGT -ACGGAATGAGGAAGGATGAACCGT -ACGGAATGAGGAAGGATGTTGTGC -ACGGAATGAGGAAGGATGCTAAGC -ACGGAATGAGGAAGGATGACTAGC -ACGGAATGAGGAAGGATGAGATGC -ACGGAATGAGGAAGGATGTGAAGG -ACGGAATGAGGAAGGATGCAATGG -ACGGAATGAGGAAGGATGATGAGG -ACGGAATGAGGAAGGATGAATGGG -ACGGAATGAGGAAGGATGTCCTGA -ACGGAATGAGGAAGGATGTAGCGA -ACGGAATGAGGAAGGATGCACAGA -ACGGAATGAGGAAGGATGGCAAGA -ACGGAATGAGGAAGGATGGGTTGA -ACGGAATGAGGAAGGATGTCCGAT -ACGGAATGAGGAAGGATGTGGCAT -ACGGAATGAGGAAGGATGCGAGAT -ACGGAATGAGGAAGGATGTACCAC -ACGGAATGAGGAAGGATGCAGAAC -ACGGAATGAGGAAGGATGGTCTAC -ACGGAATGAGGAAGGATGACGTAC -ACGGAATGAGGAAGGATGAGTGAC -ACGGAATGAGGAAGGATGCTGTAG -ACGGAATGAGGAAGGATGCCTAAG -ACGGAATGAGGAAGGATGGTTCAG -ACGGAATGAGGAAGGATGGCATAG -ACGGAATGAGGAAGGATGGACAAG -ACGGAATGAGGAAGGATGAAGCAG -ACGGAATGAGGAAGGATGCGTCAA -ACGGAATGAGGAAGGATGGCTGAA -ACGGAATGAGGAAGGATGAGTACG -ACGGAATGAGGAAGGATGATCCGA -ACGGAATGAGGAAGGATGATGGGA -ACGGAATGAGGAAGGATGGTGCAA -ACGGAATGAGGAAGGATGGAGGAA -ACGGAATGAGGAAGGATGCAGGTA -ACGGAATGAGGAAGGATGGACTCT -ACGGAATGAGGAAGGATGAGTCCT -ACGGAATGAGGAAGGATGTAAGCC -ACGGAATGAGGAAGGATGATAGCC -ACGGAATGAGGAAGGATGTAACCG -ACGGAATGAGGAAGGATGATGCCA -ACGGAATGAGGAGGGAATGGAAAC -ACGGAATGAGGAGGGAATAACACC -ACGGAATGAGGAGGGAATATCGAG -ACGGAATGAGGAGGGAATCTCCTT -ACGGAATGAGGAGGGAATCCTGTT -ACGGAATGAGGAGGGAATCGGTTT -ACGGAATGAGGAGGGAATGTGGTT -ACGGAATGAGGAGGGAATGCCTTT -ACGGAATGAGGAGGGAATGGTCTT -ACGGAATGAGGAGGGAATACGCTT -ACGGAATGAGGAGGGAATAGCGTT -ACGGAATGAGGAGGGAATTTCGTC -ACGGAATGAGGAGGGAATTCTCTC -ACGGAATGAGGAGGGAATTGGATC -ACGGAATGAGGAGGGAATCACTTC -ACGGAATGAGGAGGGAATGTACTC -ACGGAATGAGGAGGGAATGATGTC -ACGGAATGAGGAGGGAATACAGTC -ACGGAATGAGGAGGGAATTTGCTG -ACGGAATGAGGAGGGAATTCCATG -ACGGAATGAGGAGGGAATTGTGTG -ACGGAATGAGGAGGGAATCTAGTG -ACGGAATGAGGAGGGAATCATCTG -ACGGAATGAGGAGGGAATGAGTTG -ACGGAATGAGGAGGGAATAGACTG -ACGGAATGAGGAGGGAATTCGGTA -ACGGAATGAGGAGGGAATTGCCTA -ACGGAATGAGGAGGGAATCCACTA -ACGGAATGAGGAGGGAATGGAGTA -ACGGAATGAGGAGGGAATTCGTCT -ACGGAATGAGGAGGGAATTGCACT -ACGGAATGAGGAGGGAATCTGACT -ACGGAATGAGGAGGGAATCAACCT -ACGGAATGAGGAGGGAATGCTACT -ACGGAATGAGGAGGGAATGGATCT -ACGGAATGAGGAGGGAATAAGGCT -ACGGAATGAGGAGGGAATTCAACC -ACGGAATGAGGAGGGAATTGTTCC -ACGGAATGAGGAGGGAATATTCCC -ACGGAATGAGGAGGGAATTTCTCG -ACGGAATGAGGAGGGAATTAGACG -ACGGAATGAGGAGGGAATGTAACG -ACGGAATGAGGAGGGAATACTTCG -ACGGAATGAGGAGGGAATTACGCA -ACGGAATGAGGAGGGAATCTTGCA -ACGGAATGAGGAGGGAATCGAACA -ACGGAATGAGGAGGGAATCAGTCA -ACGGAATGAGGAGGGAATGATCCA -ACGGAATGAGGAGGGAATACGACA -ACGGAATGAGGAGGGAATAGCTCA -ACGGAATGAGGAGGGAATTCACGT -ACGGAATGAGGAGGGAATCGTAGT -ACGGAATGAGGAGGGAATGTCAGT -ACGGAATGAGGAGGGAATGAAGGT -ACGGAATGAGGAGGGAATAACCGT -ACGGAATGAGGAGGGAATTTGTGC -ACGGAATGAGGAGGGAATCTAAGC -ACGGAATGAGGAGGGAATACTAGC -ACGGAATGAGGAGGGAATAGATGC -ACGGAATGAGGAGGGAATTGAAGG -ACGGAATGAGGAGGGAATCAATGG -ACGGAATGAGGAGGGAATATGAGG -ACGGAATGAGGAGGGAATAATGGG -ACGGAATGAGGAGGGAATTCCTGA -ACGGAATGAGGAGGGAATTAGCGA -ACGGAATGAGGAGGGAATCACAGA -ACGGAATGAGGAGGGAATGCAAGA -ACGGAATGAGGAGGGAATGGTTGA -ACGGAATGAGGAGGGAATTCCGAT -ACGGAATGAGGAGGGAATTGGCAT -ACGGAATGAGGAGGGAATCGAGAT -ACGGAATGAGGAGGGAATTACCAC -ACGGAATGAGGAGGGAATCAGAAC -ACGGAATGAGGAGGGAATGTCTAC -ACGGAATGAGGAGGGAATACGTAC -ACGGAATGAGGAGGGAATAGTGAC -ACGGAATGAGGAGGGAATCTGTAG -ACGGAATGAGGAGGGAATCCTAAG -ACGGAATGAGGAGGGAATGTTCAG -ACGGAATGAGGAGGGAATGCATAG -ACGGAATGAGGAGGGAATGACAAG -ACGGAATGAGGAGGGAATAAGCAG -ACGGAATGAGGAGGGAATCGTCAA -ACGGAATGAGGAGGGAATGCTGAA -ACGGAATGAGGAGGGAATAGTACG -ACGGAATGAGGAGGGAATATCCGA -ACGGAATGAGGAGGGAATATGGGA -ACGGAATGAGGAGGGAATGTGCAA -ACGGAATGAGGAGGGAATGAGGAA -ACGGAATGAGGAGGGAATCAGGTA -ACGGAATGAGGAGGGAATGACTCT -ACGGAATGAGGAGGGAATAGTCCT -ACGGAATGAGGAGGGAATTAAGCC -ACGGAATGAGGAGGGAATATAGCC -ACGGAATGAGGAGGGAATTAACCG -ACGGAATGAGGAGGGAATATGCCA -ACGGAATGAGGATGATCCGGAAAC -ACGGAATGAGGATGATCCAACACC -ACGGAATGAGGATGATCCATCGAG -ACGGAATGAGGATGATCCCTCCTT -ACGGAATGAGGATGATCCCCTGTT -ACGGAATGAGGATGATCCCGGTTT -ACGGAATGAGGATGATCCGTGGTT -ACGGAATGAGGATGATCCGCCTTT -ACGGAATGAGGATGATCCGGTCTT -ACGGAATGAGGATGATCCACGCTT -ACGGAATGAGGATGATCCAGCGTT -ACGGAATGAGGATGATCCTTCGTC -ACGGAATGAGGATGATCCTCTCTC -ACGGAATGAGGATGATCCTGGATC -ACGGAATGAGGATGATCCCACTTC -ACGGAATGAGGATGATCCGTACTC -ACGGAATGAGGATGATCCGATGTC -ACGGAATGAGGATGATCCACAGTC -ACGGAATGAGGATGATCCTTGCTG -ACGGAATGAGGATGATCCTCCATG -ACGGAATGAGGATGATCCTGTGTG -ACGGAATGAGGATGATCCCTAGTG -ACGGAATGAGGATGATCCCATCTG -ACGGAATGAGGATGATCCGAGTTG -ACGGAATGAGGATGATCCAGACTG -ACGGAATGAGGATGATCCTCGGTA -ACGGAATGAGGATGATCCTGCCTA -ACGGAATGAGGATGATCCCCACTA -ACGGAATGAGGATGATCCGGAGTA -ACGGAATGAGGATGATCCTCGTCT -ACGGAATGAGGATGATCCTGCACT -ACGGAATGAGGATGATCCCTGACT -ACGGAATGAGGATGATCCCAACCT -ACGGAATGAGGATGATCCGCTACT -ACGGAATGAGGATGATCCGGATCT -ACGGAATGAGGATGATCCAAGGCT -ACGGAATGAGGATGATCCTCAACC -ACGGAATGAGGATGATCCTGTTCC -ACGGAATGAGGATGATCCATTCCC -ACGGAATGAGGATGATCCTTCTCG -ACGGAATGAGGATGATCCTAGACG -ACGGAATGAGGATGATCCGTAACG -ACGGAATGAGGATGATCCACTTCG -ACGGAATGAGGATGATCCTACGCA -ACGGAATGAGGATGATCCCTTGCA -ACGGAATGAGGATGATCCCGAACA -ACGGAATGAGGATGATCCCAGTCA -ACGGAATGAGGATGATCCGATCCA -ACGGAATGAGGATGATCCACGACA -ACGGAATGAGGATGATCCAGCTCA -ACGGAATGAGGATGATCCTCACGT -ACGGAATGAGGATGATCCCGTAGT -ACGGAATGAGGATGATCCGTCAGT -ACGGAATGAGGATGATCCGAAGGT -ACGGAATGAGGATGATCCAACCGT -ACGGAATGAGGATGATCCTTGTGC -ACGGAATGAGGATGATCCCTAAGC -ACGGAATGAGGATGATCCACTAGC -ACGGAATGAGGATGATCCAGATGC -ACGGAATGAGGATGATCCTGAAGG -ACGGAATGAGGATGATCCCAATGG -ACGGAATGAGGATGATCCATGAGG -ACGGAATGAGGATGATCCAATGGG -ACGGAATGAGGATGATCCTCCTGA -ACGGAATGAGGATGATCCTAGCGA -ACGGAATGAGGATGATCCCACAGA -ACGGAATGAGGATGATCCGCAAGA -ACGGAATGAGGATGATCCGGTTGA -ACGGAATGAGGATGATCCTCCGAT -ACGGAATGAGGATGATCCTGGCAT -ACGGAATGAGGATGATCCCGAGAT -ACGGAATGAGGATGATCCTACCAC -ACGGAATGAGGATGATCCCAGAAC -ACGGAATGAGGATGATCCGTCTAC -ACGGAATGAGGATGATCCACGTAC -ACGGAATGAGGATGATCCAGTGAC -ACGGAATGAGGATGATCCCTGTAG -ACGGAATGAGGATGATCCCCTAAG -ACGGAATGAGGATGATCCGTTCAG -ACGGAATGAGGATGATCCGCATAG -ACGGAATGAGGATGATCCGACAAG -ACGGAATGAGGATGATCCAAGCAG -ACGGAATGAGGATGATCCCGTCAA -ACGGAATGAGGATGATCCGCTGAA -ACGGAATGAGGATGATCCAGTACG -ACGGAATGAGGATGATCCATCCGA -ACGGAATGAGGATGATCCATGGGA -ACGGAATGAGGATGATCCGTGCAA -ACGGAATGAGGATGATCCGAGGAA -ACGGAATGAGGATGATCCCAGGTA -ACGGAATGAGGATGATCCGACTCT -ACGGAATGAGGATGATCCAGTCCT -ACGGAATGAGGATGATCCTAAGCC -ACGGAATGAGGATGATCCATAGCC -ACGGAATGAGGATGATCCTAACCG -ACGGAATGAGGATGATCCATGCCA -ACGGAATGAGGACGATAGGGAAAC -ACGGAATGAGGACGATAGAACACC -ACGGAATGAGGACGATAGATCGAG -ACGGAATGAGGACGATAGCTCCTT -ACGGAATGAGGACGATAGCCTGTT -ACGGAATGAGGACGATAGCGGTTT -ACGGAATGAGGACGATAGGTGGTT -ACGGAATGAGGACGATAGGCCTTT -ACGGAATGAGGACGATAGGGTCTT -ACGGAATGAGGACGATAGACGCTT -ACGGAATGAGGACGATAGAGCGTT -ACGGAATGAGGACGATAGTTCGTC -ACGGAATGAGGACGATAGTCTCTC -ACGGAATGAGGACGATAGTGGATC -ACGGAATGAGGACGATAGCACTTC -ACGGAATGAGGACGATAGGTACTC -ACGGAATGAGGACGATAGGATGTC -ACGGAATGAGGACGATAGACAGTC -ACGGAATGAGGACGATAGTTGCTG -ACGGAATGAGGACGATAGTCCATG -ACGGAATGAGGACGATAGTGTGTG -ACGGAATGAGGACGATAGCTAGTG -ACGGAATGAGGACGATAGCATCTG -ACGGAATGAGGACGATAGGAGTTG -ACGGAATGAGGACGATAGAGACTG -ACGGAATGAGGACGATAGTCGGTA -ACGGAATGAGGACGATAGTGCCTA -ACGGAATGAGGACGATAGCCACTA -ACGGAATGAGGACGATAGGGAGTA -ACGGAATGAGGACGATAGTCGTCT -ACGGAATGAGGACGATAGTGCACT -ACGGAATGAGGACGATAGCTGACT -ACGGAATGAGGACGATAGCAACCT -ACGGAATGAGGACGATAGGCTACT -ACGGAATGAGGACGATAGGGATCT -ACGGAATGAGGACGATAGAAGGCT -ACGGAATGAGGACGATAGTCAACC -ACGGAATGAGGACGATAGTGTTCC -ACGGAATGAGGACGATAGATTCCC -ACGGAATGAGGACGATAGTTCTCG -ACGGAATGAGGACGATAGTAGACG -ACGGAATGAGGACGATAGGTAACG -ACGGAATGAGGACGATAGACTTCG -ACGGAATGAGGACGATAGTACGCA -ACGGAATGAGGACGATAGCTTGCA -ACGGAATGAGGACGATAGCGAACA -ACGGAATGAGGACGATAGCAGTCA -ACGGAATGAGGACGATAGGATCCA -ACGGAATGAGGACGATAGACGACA -ACGGAATGAGGACGATAGAGCTCA -ACGGAATGAGGACGATAGTCACGT -ACGGAATGAGGACGATAGCGTAGT -ACGGAATGAGGACGATAGGTCAGT -ACGGAATGAGGACGATAGGAAGGT -ACGGAATGAGGACGATAGAACCGT -ACGGAATGAGGACGATAGTTGTGC -ACGGAATGAGGACGATAGCTAAGC -ACGGAATGAGGACGATAGACTAGC -ACGGAATGAGGACGATAGAGATGC -ACGGAATGAGGACGATAGTGAAGG -ACGGAATGAGGACGATAGCAATGG -ACGGAATGAGGACGATAGATGAGG -ACGGAATGAGGACGATAGAATGGG -ACGGAATGAGGACGATAGTCCTGA -ACGGAATGAGGACGATAGTAGCGA -ACGGAATGAGGACGATAGCACAGA -ACGGAATGAGGACGATAGGCAAGA -ACGGAATGAGGACGATAGGGTTGA -ACGGAATGAGGACGATAGTCCGAT -ACGGAATGAGGACGATAGTGGCAT -ACGGAATGAGGACGATAGCGAGAT -ACGGAATGAGGACGATAGTACCAC -ACGGAATGAGGACGATAGCAGAAC -ACGGAATGAGGACGATAGGTCTAC -ACGGAATGAGGACGATAGACGTAC -ACGGAATGAGGACGATAGAGTGAC -ACGGAATGAGGACGATAGCTGTAG -ACGGAATGAGGACGATAGCCTAAG -ACGGAATGAGGACGATAGGTTCAG -ACGGAATGAGGACGATAGGCATAG -ACGGAATGAGGACGATAGGACAAG -ACGGAATGAGGACGATAGAAGCAG -ACGGAATGAGGACGATAGCGTCAA -ACGGAATGAGGACGATAGGCTGAA -ACGGAATGAGGACGATAGAGTACG -ACGGAATGAGGACGATAGATCCGA -ACGGAATGAGGACGATAGATGGGA -ACGGAATGAGGACGATAGGTGCAA -ACGGAATGAGGACGATAGGAGGAA -ACGGAATGAGGACGATAGCAGGTA -ACGGAATGAGGACGATAGGACTCT -ACGGAATGAGGACGATAGAGTCCT -ACGGAATGAGGACGATAGTAAGCC -ACGGAATGAGGACGATAGATAGCC -ACGGAATGAGGACGATAGTAACCG -ACGGAATGAGGACGATAGATGCCA -ACGGAATGAGGAAGACACGGAAAC -ACGGAATGAGGAAGACACAACACC -ACGGAATGAGGAAGACACATCGAG -ACGGAATGAGGAAGACACCTCCTT -ACGGAATGAGGAAGACACCCTGTT -ACGGAATGAGGAAGACACCGGTTT -ACGGAATGAGGAAGACACGTGGTT -ACGGAATGAGGAAGACACGCCTTT -ACGGAATGAGGAAGACACGGTCTT -ACGGAATGAGGAAGACACACGCTT -ACGGAATGAGGAAGACACAGCGTT -ACGGAATGAGGAAGACACTTCGTC -ACGGAATGAGGAAGACACTCTCTC -ACGGAATGAGGAAGACACTGGATC -ACGGAATGAGGAAGACACCACTTC -ACGGAATGAGGAAGACACGTACTC -ACGGAATGAGGAAGACACGATGTC -ACGGAATGAGGAAGACACACAGTC -ACGGAATGAGGAAGACACTTGCTG -ACGGAATGAGGAAGACACTCCATG -ACGGAATGAGGAAGACACTGTGTG -ACGGAATGAGGAAGACACCTAGTG -ACGGAATGAGGAAGACACCATCTG -ACGGAATGAGGAAGACACGAGTTG -ACGGAATGAGGAAGACACAGACTG -ACGGAATGAGGAAGACACTCGGTA -ACGGAATGAGGAAGACACTGCCTA -ACGGAATGAGGAAGACACCCACTA -ACGGAATGAGGAAGACACGGAGTA -ACGGAATGAGGAAGACACTCGTCT -ACGGAATGAGGAAGACACTGCACT -ACGGAATGAGGAAGACACCTGACT -ACGGAATGAGGAAGACACCAACCT -ACGGAATGAGGAAGACACGCTACT -ACGGAATGAGGAAGACACGGATCT -ACGGAATGAGGAAGACACAAGGCT -ACGGAATGAGGAAGACACTCAACC -ACGGAATGAGGAAGACACTGTTCC -ACGGAATGAGGAAGACACATTCCC -ACGGAATGAGGAAGACACTTCTCG -ACGGAATGAGGAAGACACTAGACG -ACGGAATGAGGAAGACACGTAACG -ACGGAATGAGGAAGACACACTTCG -ACGGAATGAGGAAGACACTACGCA -ACGGAATGAGGAAGACACCTTGCA -ACGGAATGAGGAAGACACCGAACA -ACGGAATGAGGAAGACACCAGTCA -ACGGAATGAGGAAGACACGATCCA -ACGGAATGAGGAAGACACACGACA -ACGGAATGAGGAAGACACAGCTCA -ACGGAATGAGGAAGACACTCACGT -ACGGAATGAGGAAGACACCGTAGT -ACGGAATGAGGAAGACACGTCAGT -ACGGAATGAGGAAGACACGAAGGT -ACGGAATGAGGAAGACACAACCGT -ACGGAATGAGGAAGACACTTGTGC -ACGGAATGAGGAAGACACCTAAGC -ACGGAATGAGGAAGACACACTAGC -ACGGAATGAGGAAGACACAGATGC -ACGGAATGAGGAAGACACTGAAGG -ACGGAATGAGGAAGACACCAATGG -ACGGAATGAGGAAGACACATGAGG -ACGGAATGAGGAAGACACAATGGG -ACGGAATGAGGAAGACACTCCTGA -ACGGAATGAGGAAGACACTAGCGA -ACGGAATGAGGAAGACACCACAGA -ACGGAATGAGGAAGACACGCAAGA -ACGGAATGAGGAAGACACGGTTGA -ACGGAATGAGGAAGACACTCCGAT -ACGGAATGAGGAAGACACTGGCAT -ACGGAATGAGGAAGACACCGAGAT -ACGGAATGAGGAAGACACTACCAC -ACGGAATGAGGAAGACACCAGAAC -ACGGAATGAGGAAGACACGTCTAC -ACGGAATGAGGAAGACACACGTAC -ACGGAATGAGGAAGACACAGTGAC -ACGGAATGAGGAAGACACCTGTAG -ACGGAATGAGGAAGACACCCTAAG -ACGGAATGAGGAAGACACGTTCAG -ACGGAATGAGGAAGACACGCATAG -ACGGAATGAGGAAGACACGACAAG -ACGGAATGAGGAAGACACAAGCAG -ACGGAATGAGGAAGACACCGTCAA -ACGGAATGAGGAAGACACGCTGAA -ACGGAATGAGGAAGACACAGTACG -ACGGAATGAGGAAGACACATCCGA -ACGGAATGAGGAAGACACATGGGA -ACGGAATGAGGAAGACACGTGCAA -ACGGAATGAGGAAGACACGAGGAA -ACGGAATGAGGAAGACACCAGGTA -ACGGAATGAGGAAGACACGACTCT -ACGGAATGAGGAAGACACAGTCCT -ACGGAATGAGGAAGACACTAAGCC -ACGGAATGAGGAAGACACATAGCC -ACGGAATGAGGAAGACACTAACCG -ACGGAATGAGGAAGACACATGCCA -ACGGAATGAGGAAGAGCAGGAAAC -ACGGAATGAGGAAGAGCAAACACC -ACGGAATGAGGAAGAGCAATCGAG -ACGGAATGAGGAAGAGCACTCCTT -ACGGAATGAGGAAGAGCACCTGTT -ACGGAATGAGGAAGAGCACGGTTT -ACGGAATGAGGAAGAGCAGTGGTT -ACGGAATGAGGAAGAGCAGCCTTT -ACGGAATGAGGAAGAGCAGGTCTT -ACGGAATGAGGAAGAGCAACGCTT -ACGGAATGAGGAAGAGCAAGCGTT -ACGGAATGAGGAAGAGCATTCGTC -ACGGAATGAGGAAGAGCATCTCTC -ACGGAATGAGGAAGAGCATGGATC -ACGGAATGAGGAAGAGCACACTTC -ACGGAATGAGGAAGAGCAGTACTC -ACGGAATGAGGAAGAGCAGATGTC -ACGGAATGAGGAAGAGCAACAGTC -ACGGAATGAGGAAGAGCATTGCTG -ACGGAATGAGGAAGAGCATCCATG -ACGGAATGAGGAAGAGCATGTGTG -ACGGAATGAGGAAGAGCACTAGTG -ACGGAATGAGGAAGAGCACATCTG -ACGGAATGAGGAAGAGCAGAGTTG -ACGGAATGAGGAAGAGCAAGACTG -ACGGAATGAGGAAGAGCATCGGTA -ACGGAATGAGGAAGAGCATGCCTA -ACGGAATGAGGAAGAGCACCACTA -ACGGAATGAGGAAGAGCAGGAGTA -ACGGAATGAGGAAGAGCATCGTCT -ACGGAATGAGGAAGAGCATGCACT -ACGGAATGAGGAAGAGCACTGACT -ACGGAATGAGGAAGAGCACAACCT -ACGGAATGAGGAAGAGCAGCTACT -ACGGAATGAGGAAGAGCAGGATCT -ACGGAATGAGGAAGAGCAAAGGCT -ACGGAATGAGGAAGAGCATCAACC -ACGGAATGAGGAAGAGCATGTTCC -ACGGAATGAGGAAGAGCAATTCCC -ACGGAATGAGGAAGAGCATTCTCG -ACGGAATGAGGAAGAGCATAGACG -ACGGAATGAGGAAGAGCAGTAACG -ACGGAATGAGGAAGAGCAACTTCG -ACGGAATGAGGAAGAGCATACGCA -ACGGAATGAGGAAGAGCACTTGCA -ACGGAATGAGGAAGAGCACGAACA -ACGGAATGAGGAAGAGCACAGTCA -ACGGAATGAGGAAGAGCAGATCCA -ACGGAATGAGGAAGAGCAACGACA -ACGGAATGAGGAAGAGCAAGCTCA -ACGGAATGAGGAAGAGCATCACGT -ACGGAATGAGGAAGAGCACGTAGT -ACGGAATGAGGAAGAGCAGTCAGT -ACGGAATGAGGAAGAGCAGAAGGT -ACGGAATGAGGAAGAGCAAACCGT -ACGGAATGAGGAAGAGCATTGTGC -ACGGAATGAGGAAGAGCACTAAGC -ACGGAATGAGGAAGAGCAACTAGC -ACGGAATGAGGAAGAGCAAGATGC -ACGGAATGAGGAAGAGCATGAAGG -ACGGAATGAGGAAGAGCACAATGG -ACGGAATGAGGAAGAGCAATGAGG -ACGGAATGAGGAAGAGCAAATGGG -ACGGAATGAGGAAGAGCATCCTGA -ACGGAATGAGGAAGAGCATAGCGA -ACGGAATGAGGAAGAGCACACAGA -ACGGAATGAGGAAGAGCAGCAAGA -ACGGAATGAGGAAGAGCAGGTTGA -ACGGAATGAGGAAGAGCATCCGAT -ACGGAATGAGGAAGAGCATGGCAT -ACGGAATGAGGAAGAGCACGAGAT -ACGGAATGAGGAAGAGCATACCAC -ACGGAATGAGGAAGAGCACAGAAC -ACGGAATGAGGAAGAGCAGTCTAC -ACGGAATGAGGAAGAGCAACGTAC -ACGGAATGAGGAAGAGCAAGTGAC -ACGGAATGAGGAAGAGCACTGTAG -ACGGAATGAGGAAGAGCACCTAAG -ACGGAATGAGGAAGAGCAGTTCAG -ACGGAATGAGGAAGAGCAGCATAG -ACGGAATGAGGAAGAGCAGACAAG -ACGGAATGAGGAAGAGCAAAGCAG -ACGGAATGAGGAAGAGCACGTCAA -ACGGAATGAGGAAGAGCAGCTGAA -ACGGAATGAGGAAGAGCAAGTACG -ACGGAATGAGGAAGAGCAATCCGA -ACGGAATGAGGAAGAGCAATGGGA -ACGGAATGAGGAAGAGCAGTGCAA -ACGGAATGAGGAAGAGCAGAGGAA -ACGGAATGAGGAAGAGCACAGGTA -ACGGAATGAGGAAGAGCAGACTCT -ACGGAATGAGGAAGAGCAAGTCCT -ACGGAATGAGGAAGAGCATAAGCC -ACGGAATGAGGAAGAGCAATAGCC -ACGGAATGAGGAAGAGCATAACCG -ACGGAATGAGGAAGAGCAATGCCA -ACGGAATGAGGATGAGGTGGAAAC -ACGGAATGAGGATGAGGTAACACC -ACGGAATGAGGATGAGGTATCGAG -ACGGAATGAGGATGAGGTCTCCTT -ACGGAATGAGGATGAGGTCCTGTT -ACGGAATGAGGATGAGGTCGGTTT -ACGGAATGAGGATGAGGTGTGGTT -ACGGAATGAGGATGAGGTGCCTTT -ACGGAATGAGGATGAGGTGGTCTT -ACGGAATGAGGATGAGGTACGCTT -ACGGAATGAGGATGAGGTAGCGTT -ACGGAATGAGGATGAGGTTTCGTC -ACGGAATGAGGATGAGGTTCTCTC -ACGGAATGAGGATGAGGTTGGATC -ACGGAATGAGGATGAGGTCACTTC -ACGGAATGAGGATGAGGTGTACTC -ACGGAATGAGGATGAGGTGATGTC -ACGGAATGAGGATGAGGTACAGTC -ACGGAATGAGGATGAGGTTTGCTG -ACGGAATGAGGATGAGGTTCCATG -ACGGAATGAGGATGAGGTTGTGTG -ACGGAATGAGGATGAGGTCTAGTG -ACGGAATGAGGATGAGGTCATCTG -ACGGAATGAGGATGAGGTGAGTTG -ACGGAATGAGGATGAGGTAGACTG -ACGGAATGAGGATGAGGTTCGGTA -ACGGAATGAGGATGAGGTTGCCTA -ACGGAATGAGGATGAGGTCCACTA -ACGGAATGAGGATGAGGTGGAGTA -ACGGAATGAGGATGAGGTTCGTCT -ACGGAATGAGGATGAGGTTGCACT -ACGGAATGAGGATGAGGTCTGACT -ACGGAATGAGGATGAGGTCAACCT -ACGGAATGAGGATGAGGTGCTACT -ACGGAATGAGGATGAGGTGGATCT -ACGGAATGAGGATGAGGTAAGGCT -ACGGAATGAGGATGAGGTTCAACC -ACGGAATGAGGATGAGGTTGTTCC -ACGGAATGAGGATGAGGTATTCCC -ACGGAATGAGGATGAGGTTTCTCG -ACGGAATGAGGATGAGGTTAGACG -ACGGAATGAGGATGAGGTGTAACG -ACGGAATGAGGATGAGGTACTTCG -ACGGAATGAGGATGAGGTTACGCA -ACGGAATGAGGATGAGGTCTTGCA -ACGGAATGAGGATGAGGTCGAACA -ACGGAATGAGGATGAGGTCAGTCA -ACGGAATGAGGATGAGGTGATCCA -ACGGAATGAGGATGAGGTACGACA -ACGGAATGAGGATGAGGTAGCTCA -ACGGAATGAGGATGAGGTTCACGT -ACGGAATGAGGATGAGGTCGTAGT -ACGGAATGAGGATGAGGTGTCAGT -ACGGAATGAGGATGAGGTGAAGGT -ACGGAATGAGGATGAGGTAACCGT -ACGGAATGAGGATGAGGTTTGTGC -ACGGAATGAGGATGAGGTCTAAGC -ACGGAATGAGGATGAGGTACTAGC -ACGGAATGAGGATGAGGTAGATGC -ACGGAATGAGGATGAGGTTGAAGG -ACGGAATGAGGATGAGGTCAATGG -ACGGAATGAGGATGAGGTATGAGG -ACGGAATGAGGATGAGGTAATGGG -ACGGAATGAGGATGAGGTTCCTGA -ACGGAATGAGGATGAGGTTAGCGA -ACGGAATGAGGATGAGGTCACAGA -ACGGAATGAGGATGAGGTGCAAGA -ACGGAATGAGGATGAGGTGGTTGA -ACGGAATGAGGATGAGGTTCCGAT -ACGGAATGAGGATGAGGTTGGCAT -ACGGAATGAGGATGAGGTCGAGAT -ACGGAATGAGGATGAGGTTACCAC -ACGGAATGAGGATGAGGTCAGAAC -ACGGAATGAGGATGAGGTGTCTAC -ACGGAATGAGGATGAGGTACGTAC -ACGGAATGAGGATGAGGTAGTGAC -ACGGAATGAGGATGAGGTCTGTAG -ACGGAATGAGGATGAGGTCCTAAG -ACGGAATGAGGATGAGGTGTTCAG -ACGGAATGAGGATGAGGTGCATAG -ACGGAATGAGGATGAGGTGACAAG -ACGGAATGAGGATGAGGTAAGCAG -ACGGAATGAGGATGAGGTCGTCAA -ACGGAATGAGGATGAGGTGCTGAA -ACGGAATGAGGATGAGGTAGTACG -ACGGAATGAGGATGAGGTATCCGA -ACGGAATGAGGATGAGGTATGGGA -ACGGAATGAGGATGAGGTGTGCAA -ACGGAATGAGGATGAGGTGAGGAA -ACGGAATGAGGATGAGGTCAGGTA -ACGGAATGAGGATGAGGTGACTCT -ACGGAATGAGGATGAGGTAGTCCT -ACGGAATGAGGATGAGGTTAAGCC -ACGGAATGAGGATGAGGTATAGCC -ACGGAATGAGGATGAGGTTAACCG -ACGGAATGAGGATGAGGTATGCCA -ACGGAATGAGGAGATTCCGGAAAC -ACGGAATGAGGAGATTCCAACACC -ACGGAATGAGGAGATTCCATCGAG -ACGGAATGAGGAGATTCCCTCCTT -ACGGAATGAGGAGATTCCCCTGTT -ACGGAATGAGGAGATTCCCGGTTT -ACGGAATGAGGAGATTCCGTGGTT -ACGGAATGAGGAGATTCCGCCTTT -ACGGAATGAGGAGATTCCGGTCTT -ACGGAATGAGGAGATTCCACGCTT -ACGGAATGAGGAGATTCCAGCGTT -ACGGAATGAGGAGATTCCTTCGTC -ACGGAATGAGGAGATTCCTCTCTC -ACGGAATGAGGAGATTCCTGGATC -ACGGAATGAGGAGATTCCCACTTC -ACGGAATGAGGAGATTCCGTACTC -ACGGAATGAGGAGATTCCGATGTC -ACGGAATGAGGAGATTCCACAGTC -ACGGAATGAGGAGATTCCTTGCTG -ACGGAATGAGGAGATTCCTCCATG -ACGGAATGAGGAGATTCCTGTGTG -ACGGAATGAGGAGATTCCCTAGTG -ACGGAATGAGGAGATTCCCATCTG -ACGGAATGAGGAGATTCCGAGTTG -ACGGAATGAGGAGATTCCAGACTG -ACGGAATGAGGAGATTCCTCGGTA -ACGGAATGAGGAGATTCCTGCCTA -ACGGAATGAGGAGATTCCCCACTA -ACGGAATGAGGAGATTCCGGAGTA -ACGGAATGAGGAGATTCCTCGTCT -ACGGAATGAGGAGATTCCTGCACT -ACGGAATGAGGAGATTCCCTGACT -ACGGAATGAGGAGATTCCCAACCT -ACGGAATGAGGAGATTCCGCTACT -ACGGAATGAGGAGATTCCGGATCT -ACGGAATGAGGAGATTCCAAGGCT -ACGGAATGAGGAGATTCCTCAACC -ACGGAATGAGGAGATTCCTGTTCC -ACGGAATGAGGAGATTCCATTCCC -ACGGAATGAGGAGATTCCTTCTCG -ACGGAATGAGGAGATTCCTAGACG -ACGGAATGAGGAGATTCCGTAACG -ACGGAATGAGGAGATTCCACTTCG -ACGGAATGAGGAGATTCCTACGCA -ACGGAATGAGGAGATTCCCTTGCA -ACGGAATGAGGAGATTCCCGAACA -ACGGAATGAGGAGATTCCCAGTCA -ACGGAATGAGGAGATTCCGATCCA -ACGGAATGAGGAGATTCCACGACA -ACGGAATGAGGAGATTCCAGCTCA -ACGGAATGAGGAGATTCCTCACGT -ACGGAATGAGGAGATTCCCGTAGT -ACGGAATGAGGAGATTCCGTCAGT -ACGGAATGAGGAGATTCCGAAGGT -ACGGAATGAGGAGATTCCAACCGT -ACGGAATGAGGAGATTCCTTGTGC -ACGGAATGAGGAGATTCCCTAAGC -ACGGAATGAGGAGATTCCACTAGC -ACGGAATGAGGAGATTCCAGATGC -ACGGAATGAGGAGATTCCTGAAGG -ACGGAATGAGGAGATTCCCAATGG -ACGGAATGAGGAGATTCCATGAGG -ACGGAATGAGGAGATTCCAATGGG -ACGGAATGAGGAGATTCCTCCTGA -ACGGAATGAGGAGATTCCTAGCGA -ACGGAATGAGGAGATTCCCACAGA -ACGGAATGAGGAGATTCCGCAAGA -ACGGAATGAGGAGATTCCGGTTGA -ACGGAATGAGGAGATTCCTCCGAT -ACGGAATGAGGAGATTCCTGGCAT -ACGGAATGAGGAGATTCCCGAGAT -ACGGAATGAGGAGATTCCTACCAC -ACGGAATGAGGAGATTCCCAGAAC -ACGGAATGAGGAGATTCCGTCTAC -ACGGAATGAGGAGATTCCACGTAC -ACGGAATGAGGAGATTCCAGTGAC -ACGGAATGAGGAGATTCCCTGTAG -ACGGAATGAGGAGATTCCCCTAAG -ACGGAATGAGGAGATTCCGTTCAG -ACGGAATGAGGAGATTCCGCATAG -ACGGAATGAGGAGATTCCGACAAG -ACGGAATGAGGAGATTCCAAGCAG -ACGGAATGAGGAGATTCCCGTCAA -ACGGAATGAGGAGATTCCGCTGAA -ACGGAATGAGGAGATTCCAGTACG -ACGGAATGAGGAGATTCCATCCGA -ACGGAATGAGGAGATTCCATGGGA -ACGGAATGAGGAGATTCCGTGCAA -ACGGAATGAGGAGATTCCGAGGAA -ACGGAATGAGGAGATTCCCAGGTA -ACGGAATGAGGAGATTCCGACTCT -ACGGAATGAGGAGATTCCAGTCCT -ACGGAATGAGGAGATTCCTAAGCC -ACGGAATGAGGAGATTCCATAGCC -ACGGAATGAGGAGATTCCTAACCG -ACGGAATGAGGAGATTCCATGCCA -ACGGAATGAGGACATTGGGGAAAC -ACGGAATGAGGACATTGGAACACC -ACGGAATGAGGACATTGGATCGAG -ACGGAATGAGGACATTGGCTCCTT -ACGGAATGAGGACATTGGCCTGTT -ACGGAATGAGGACATTGGCGGTTT -ACGGAATGAGGACATTGGGTGGTT -ACGGAATGAGGACATTGGGCCTTT -ACGGAATGAGGACATTGGGGTCTT -ACGGAATGAGGACATTGGACGCTT -ACGGAATGAGGACATTGGAGCGTT -ACGGAATGAGGACATTGGTTCGTC -ACGGAATGAGGACATTGGTCTCTC -ACGGAATGAGGACATTGGTGGATC -ACGGAATGAGGACATTGGCACTTC -ACGGAATGAGGACATTGGGTACTC -ACGGAATGAGGACATTGGGATGTC -ACGGAATGAGGACATTGGACAGTC -ACGGAATGAGGACATTGGTTGCTG -ACGGAATGAGGACATTGGTCCATG -ACGGAATGAGGACATTGGTGTGTG -ACGGAATGAGGACATTGGCTAGTG -ACGGAATGAGGACATTGGCATCTG -ACGGAATGAGGACATTGGGAGTTG -ACGGAATGAGGACATTGGAGACTG -ACGGAATGAGGACATTGGTCGGTA -ACGGAATGAGGACATTGGTGCCTA -ACGGAATGAGGACATTGGCCACTA -ACGGAATGAGGACATTGGGGAGTA -ACGGAATGAGGACATTGGTCGTCT -ACGGAATGAGGACATTGGTGCACT -ACGGAATGAGGACATTGGCTGACT -ACGGAATGAGGACATTGGCAACCT -ACGGAATGAGGACATTGGGCTACT -ACGGAATGAGGACATTGGGGATCT -ACGGAATGAGGACATTGGAAGGCT -ACGGAATGAGGACATTGGTCAACC -ACGGAATGAGGACATTGGTGTTCC -ACGGAATGAGGACATTGGATTCCC -ACGGAATGAGGACATTGGTTCTCG -ACGGAATGAGGACATTGGTAGACG -ACGGAATGAGGACATTGGGTAACG -ACGGAATGAGGACATTGGACTTCG -ACGGAATGAGGACATTGGTACGCA -ACGGAATGAGGACATTGGCTTGCA -ACGGAATGAGGACATTGGCGAACA -ACGGAATGAGGACATTGGCAGTCA -ACGGAATGAGGACATTGGGATCCA -ACGGAATGAGGACATTGGACGACA -ACGGAATGAGGACATTGGAGCTCA -ACGGAATGAGGACATTGGTCACGT -ACGGAATGAGGACATTGGCGTAGT -ACGGAATGAGGACATTGGGTCAGT -ACGGAATGAGGACATTGGGAAGGT -ACGGAATGAGGACATTGGAACCGT -ACGGAATGAGGACATTGGTTGTGC -ACGGAATGAGGACATTGGCTAAGC -ACGGAATGAGGACATTGGACTAGC -ACGGAATGAGGACATTGGAGATGC -ACGGAATGAGGACATTGGTGAAGG -ACGGAATGAGGACATTGGCAATGG -ACGGAATGAGGACATTGGATGAGG -ACGGAATGAGGACATTGGAATGGG -ACGGAATGAGGACATTGGTCCTGA -ACGGAATGAGGACATTGGTAGCGA -ACGGAATGAGGACATTGGCACAGA -ACGGAATGAGGACATTGGGCAAGA -ACGGAATGAGGACATTGGGGTTGA -ACGGAATGAGGACATTGGTCCGAT -ACGGAATGAGGACATTGGTGGCAT -ACGGAATGAGGACATTGGCGAGAT -ACGGAATGAGGACATTGGTACCAC -ACGGAATGAGGACATTGGCAGAAC -ACGGAATGAGGACATTGGGTCTAC -ACGGAATGAGGACATTGGACGTAC -ACGGAATGAGGACATTGGAGTGAC -ACGGAATGAGGACATTGGCTGTAG -ACGGAATGAGGACATTGGCCTAAG -ACGGAATGAGGACATTGGGTTCAG -ACGGAATGAGGACATTGGGCATAG -ACGGAATGAGGACATTGGGACAAG -ACGGAATGAGGACATTGGAAGCAG -ACGGAATGAGGACATTGGCGTCAA -ACGGAATGAGGACATTGGGCTGAA -ACGGAATGAGGACATTGGAGTACG -ACGGAATGAGGACATTGGATCCGA -ACGGAATGAGGACATTGGATGGGA -ACGGAATGAGGACATTGGGTGCAA -ACGGAATGAGGACATTGGGAGGAA -ACGGAATGAGGACATTGGCAGGTA -ACGGAATGAGGACATTGGGACTCT -ACGGAATGAGGACATTGGAGTCCT -ACGGAATGAGGACATTGGTAAGCC -ACGGAATGAGGACATTGGATAGCC -ACGGAATGAGGACATTGGTAACCG -ACGGAATGAGGACATTGGATGCCA -ACGGAATGAGGAGATCGAGGAAAC -ACGGAATGAGGAGATCGAAACACC -ACGGAATGAGGAGATCGAATCGAG -ACGGAATGAGGAGATCGACTCCTT -ACGGAATGAGGAGATCGACCTGTT -ACGGAATGAGGAGATCGACGGTTT -ACGGAATGAGGAGATCGAGTGGTT -ACGGAATGAGGAGATCGAGCCTTT -ACGGAATGAGGAGATCGAGGTCTT -ACGGAATGAGGAGATCGAACGCTT -ACGGAATGAGGAGATCGAAGCGTT -ACGGAATGAGGAGATCGATTCGTC -ACGGAATGAGGAGATCGATCTCTC -ACGGAATGAGGAGATCGATGGATC -ACGGAATGAGGAGATCGACACTTC -ACGGAATGAGGAGATCGAGTACTC -ACGGAATGAGGAGATCGAGATGTC -ACGGAATGAGGAGATCGAACAGTC -ACGGAATGAGGAGATCGATTGCTG -ACGGAATGAGGAGATCGATCCATG -ACGGAATGAGGAGATCGATGTGTG -ACGGAATGAGGAGATCGACTAGTG -ACGGAATGAGGAGATCGACATCTG -ACGGAATGAGGAGATCGAGAGTTG -ACGGAATGAGGAGATCGAAGACTG -ACGGAATGAGGAGATCGATCGGTA -ACGGAATGAGGAGATCGATGCCTA -ACGGAATGAGGAGATCGACCACTA -ACGGAATGAGGAGATCGAGGAGTA -ACGGAATGAGGAGATCGATCGTCT -ACGGAATGAGGAGATCGATGCACT -ACGGAATGAGGAGATCGACTGACT -ACGGAATGAGGAGATCGACAACCT -ACGGAATGAGGAGATCGAGCTACT -ACGGAATGAGGAGATCGAGGATCT -ACGGAATGAGGAGATCGAAAGGCT -ACGGAATGAGGAGATCGATCAACC -ACGGAATGAGGAGATCGATGTTCC -ACGGAATGAGGAGATCGAATTCCC -ACGGAATGAGGAGATCGATTCTCG -ACGGAATGAGGAGATCGATAGACG -ACGGAATGAGGAGATCGAGTAACG -ACGGAATGAGGAGATCGAACTTCG -ACGGAATGAGGAGATCGATACGCA -ACGGAATGAGGAGATCGACTTGCA -ACGGAATGAGGAGATCGACGAACA -ACGGAATGAGGAGATCGACAGTCA -ACGGAATGAGGAGATCGAGATCCA -ACGGAATGAGGAGATCGAACGACA -ACGGAATGAGGAGATCGAAGCTCA -ACGGAATGAGGAGATCGATCACGT -ACGGAATGAGGAGATCGACGTAGT -ACGGAATGAGGAGATCGAGTCAGT -ACGGAATGAGGAGATCGAGAAGGT -ACGGAATGAGGAGATCGAAACCGT -ACGGAATGAGGAGATCGATTGTGC -ACGGAATGAGGAGATCGACTAAGC -ACGGAATGAGGAGATCGAACTAGC -ACGGAATGAGGAGATCGAAGATGC -ACGGAATGAGGAGATCGATGAAGG -ACGGAATGAGGAGATCGACAATGG -ACGGAATGAGGAGATCGAATGAGG -ACGGAATGAGGAGATCGAAATGGG -ACGGAATGAGGAGATCGATCCTGA -ACGGAATGAGGAGATCGATAGCGA -ACGGAATGAGGAGATCGACACAGA -ACGGAATGAGGAGATCGAGCAAGA -ACGGAATGAGGAGATCGAGGTTGA -ACGGAATGAGGAGATCGATCCGAT -ACGGAATGAGGAGATCGATGGCAT -ACGGAATGAGGAGATCGACGAGAT -ACGGAATGAGGAGATCGATACCAC -ACGGAATGAGGAGATCGACAGAAC -ACGGAATGAGGAGATCGAGTCTAC -ACGGAATGAGGAGATCGAACGTAC -ACGGAATGAGGAGATCGAAGTGAC -ACGGAATGAGGAGATCGACTGTAG -ACGGAATGAGGAGATCGACCTAAG -ACGGAATGAGGAGATCGAGTTCAG -ACGGAATGAGGAGATCGAGCATAG -ACGGAATGAGGAGATCGAGACAAG -ACGGAATGAGGAGATCGAAAGCAG -ACGGAATGAGGAGATCGACGTCAA -ACGGAATGAGGAGATCGAGCTGAA -ACGGAATGAGGAGATCGAAGTACG -ACGGAATGAGGAGATCGAATCCGA -ACGGAATGAGGAGATCGAATGGGA -ACGGAATGAGGAGATCGAGTGCAA -ACGGAATGAGGAGATCGAGAGGAA -ACGGAATGAGGAGATCGACAGGTA -ACGGAATGAGGAGATCGAGACTCT -ACGGAATGAGGAGATCGAAGTCCT -ACGGAATGAGGAGATCGATAAGCC -ACGGAATGAGGAGATCGAATAGCC -ACGGAATGAGGAGATCGATAACCG -ACGGAATGAGGAGATCGAATGCCA -ACGGAATGAGGACACTACGGAAAC -ACGGAATGAGGACACTACAACACC -ACGGAATGAGGACACTACATCGAG -ACGGAATGAGGACACTACCTCCTT -ACGGAATGAGGACACTACCCTGTT -ACGGAATGAGGACACTACCGGTTT -ACGGAATGAGGACACTACGTGGTT -ACGGAATGAGGACACTACGCCTTT -ACGGAATGAGGACACTACGGTCTT -ACGGAATGAGGACACTACACGCTT -ACGGAATGAGGACACTACAGCGTT -ACGGAATGAGGACACTACTTCGTC -ACGGAATGAGGACACTACTCTCTC -ACGGAATGAGGACACTACTGGATC -ACGGAATGAGGACACTACCACTTC -ACGGAATGAGGACACTACGTACTC -ACGGAATGAGGACACTACGATGTC -ACGGAATGAGGACACTACACAGTC -ACGGAATGAGGACACTACTTGCTG -ACGGAATGAGGACACTACTCCATG -ACGGAATGAGGACACTACTGTGTG -ACGGAATGAGGACACTACCTAGTG -ACGGAATGAGGACACTACCATCTG -ACGGAATGAGGACACTACGAGTTG -ACGGAATGAGGACACTACAGACTG -ACGGAATGAGGACACTACTCGGTA -ACGGAATGAGGACACTACTGCCTA -ACGGAATGAGGACACTACCCACTA -ACGGAATGAGGACACTACGGAGTA -ACGGAATGAGGACACTACTCGTCT -ACGGAATGAGGACACTACTGCACT -ACGGAATGAGGACACTACCTGACT -ACGGAATGAGGACACTACCAACCT -ACGGAATGAGGACACTACGCTACT -ACGGAATGAGGACACTACGGATCT -ACGGAATGAGGACACTACAAGGCT -ACGGAATGAGGACACTACTCAACC -ACGGAATGAGGACACTACTGTTCC -ACGGAATGAGGACACTACATTCCC -ACGGAATGAGGACACTACTTCTCG -ACGGAATGAGGACACTACTAGACG -ACGGAATGAGGACACTACGTAACG -ACGGAATGAGGACACTACACTTCG -ACGGAATGAGGACACTACTACGCA -ACGGAATGAGGACACTACCTTGCA -ACGGAATGAGGACACTACCGAACA -ACGGAATGAGGACACTACCAGTCA -ACGGAATGAGGACACTACGATCCA -ACGGAATGAGGACACTACACGACA -ACGGAATGAGGACACTACAGCTCA -ACGGAATGAGGACACTACTCACGT -ACGGAATGAGGACACTACCGTAGT -ACGGAATGAGGACACTACGTCAGT -ACGGAATGAGGACACTACGAAGGT -ACGGAATGAGGACACTACAACCGT -ACGGAATGAGGACACTACTTGTGC -ACGGAATGAGGACACTACCTAAGC -ACGGAATGAGGACACTACACTAGC -ACGGAATGAGGACACTACAGATGC -ACGGAATGAGGACACTACTGAAGG -ACGGAATGAGGACACTACCAATGG -ACGGAATGAGGACACTACATGAGG -ACGGAATGAGGACACTACAATGGG -ACGGAATGAGGACACTACTCCTGA -ACGGAATGAGGACACTACTAGCGA -ACGGAATGAGGACACTACCACAGA -ACGGAATGAGGACACTACGCAAGA -ACGGAATGAGGACACTACGGTTGA -ACGGAATGAGGACACTACTCCGAT -ACGGAATGAGGACACTACTGGCAT -ACGGAATGAGGACACTACCGAGAT -ACGGAATGAGGACACTACTACCAC -ACGGAATGAGGACACTACCAGAAC -ACGGAATGAGGACACTACGTCTAC -ACGGAATGAGGACACTACACGTAC -ACGGAATGAGGACACTACAGTGAC -ACGGAATGAGGACACTACCTGTAG -ACGGAATGAGGACACTACCCTAAG -ACGGAATGAGGACACTACGTTCAG -ACGGAATGAGGACACTACGCATAG -ACGGAATGAGGACACTACGACAAG -ACGGAATGAGGACACTACAAGCAG -ACGGAATGAGGACACTACCGTCAA -ACGGAATGAGGACACTACGCTGAA -ACGGAATGAGGACACTACAGTACG -ACGGAATGAGGACACTACATCCGA -ACGGAATGAGGACACTACATGGGA -ACGGAATGAGGACACTACGTGCAA -ACGGAATGAGGACACTACGAGGAA -ACGGAATGAGGACACTACCAGGTA -ACGGAATGAGGACACTACGACTCT -ACGGAATGAGGACACTACAGTCCT -ACGGAATGAGGACACTACTAAGCC -ACGGAATGAGGACACTACATAGCC -ACGGAATGAGGACACTACTAACCG -ACGGAATGAGGACACTACATGCCA -ACGGAATGAGGAAACCAGGGAAAC -ACGGAATGAGGAAACCAGAACACC -ACGGAATGAGGAAACCAGATCGAG -ACGGAATGAGGAAACCAGCTCCTT -ACGGAATGAGGAAACCAGCCTGTT -ACGGAATGAGGAAACCAGCGGTTT -ACGGAATGAGGAAACCAGGTGGTT -ACGGAATGAGGAAACCAGGCCTTT -ACGGAATGAGGAAACCAGGGTCTT -ACGGAATGAGGAAACCAGACGCTT -ACGGAATGAGGAAACCAGAGCGTT -ACGGAATGAGGAAACCAGTTCGTC -ACGGAATGAGGAAACCAGTCTCTC -ACGGAATGAGGAAACCAGTGGATC -ACGGAATGAGGAAACCAGCACTTC -ACGGAATGAGGAAACCAGGTACTC -ACGGAATGAGGAAACCAGGATGTC -ACGGAATGAGGAAACCAGACAGTC -ACGGAATGAGGAAACCAGTTGCTG -ACGGAATGAGGAAACCAGTCCATG -ACGGAATGAGGAAACCAGTGTGTG -ACGGAATGAGGAAACCAGCTAGTG -ACGGAATGAGGAAACCAGCATCTG -ACGGAATGAGGAAACCAGGAGTTG -ACGGAATGAGGAAACCAGAGACTG -ACGGAATGAGGAAACCAGTCGGTA -ACGGAATGAGGAAACCAGTGCCTA -ACGGAATGAGGAAACCAGCCACTA -ACGGAATGAGGAAACCAGGGAGTA -ACGGAATGAGGAAACCAGTCGTCT -ACGGAATGAGGAAACCAGTGCACT -ACGGAATGAGGAAACCAGCTGACT -ACGGAATGAGGAAACCAGCAACCT -ACGGAATGAGGAAACCAGGCTACT -ACGGAATGAGGAAACCAGGGATCT -ACGGAATGAGGAAACCAGAAGGCT -ACGGAATGAGGAAACCAGTCAACC -ACGGAATGAGGAAACCAGTGTTCC -ACGGAATGAGGAAACCAGATTCCC -ACGGAATGAGGAAACCAGTTCTCG -ACGGAATGAGGAAACCAGTAGACG -ACGGAATGAGGAAACCAGGTAACG -ACGGAATGAGGAAACCAGACTTCG -ACGGAATGAGGAAACCAGTACGCA -ACGGAATGAGGAAACCAGCTTGCA -ACGGAATGAGGAAACCAGCGAACA -ACGGAATGAGGAAACCAGCAGTCA -ACGGAATGAGGAAACCAGGATCCA -ACGGAATGAGGAAACCAGACGACA -ACGGAATGAGGAAACCAGAGCTCA -ACGGAATGAGGAAACCAGTCACGT -ACGGAATGAGGAAACCAGCGTAGT -ACGGAATGAGGAAACCAGGTCAGT -ACGGAATGAGGAAACCAGGAAGGT -ACGGAATGAGGAAACCAGAACCGT -ACGGAATGAGGAAACCAGTTGTGC -ACGGAATGAGGAAACCAGCTAAGC -ACGGAATGAGGAAACCAGACTAGC -ACGGAATGAGGAAACCAGAGATGC -ACGGAATGAGGAAACCAGTGAAGG -ACGGAATGAGGAAACCAGCAATGG -ACGGAATGAGGAAACCAGATGAGG -ACGGAATGAGGAAACCAGAATGGG -ACGGAATGAGGAAACCAGTCCTGA -ACGGAATGAGGAAACCAGTAGCGA -ACGGAATGAGGAAACCAGCACAGA -ACGGAATGAGGAAACCAGGCAAGA -ACGGAATGAGGAAACCAGGGTTGA -ACGGAATGAGGAAACCAGTCCGAT -ACGGAATGAGGAAACCAGTGGCAT -ACGGAATGAGGAAACCAGCGAGAT -ACGGAATGAGGAAACCAGTACCAC -ACGGAATGAGGAAACCAGCAGAAC -ACGGAATGAGGAAACCAGGTCTAC -ACGGAATGAGGAAACCAGACGTAC -ACGGAATGAGGAAACCAGAGTGAC -ACGGAATGAGGAAACCAGCTGTAG -ACGGAATGAGGAAACCAGCCTAAG -ACGGAATGAGGAAACCAGGTTCAG -ACGGAATGAGGAAACCAGGCATAG -ACGGAATGAGGAAACCAGGACAAG -ACGGAATGAGGAAACCAGAAGCAG -ACGGAATGAGGAAACCAGCGTCAA -ACGGAATGAGGAAACCAGGCTGAA -ACGGAATGAGGAAACCAGAGTACG -ACGGAATGAGGAAACCAGATCCGA -ACGGAATGAGGAAACCAGATGGGA -ACGGAATGAGGAAACCAGGTGCAA -ACGGAATGAGGAAACCAGGAGGAA -ACGGAATGAGGAAACCAGCAGGTA -ACGGAATGAGGAAACCAGGACTCT -ACGGAATGAGGAAACCAGAGTCCT -ACGGAATGAGGAAACCAGTAAGCC -ACGGAATGAGGAAACCAGATAGCC -ACGGAATGAGGAAACCAGTAACCG -ACGGAATGAGGAAACCAGATGCCA -ACGGAATGAGGATACGTCGGAAAC -ACGGAATGAGGATACGTCAACACC -ACGGAATGAGGATACGTCATCGAG -ACGGAATGAGGATACGTCCTCCTT -ACGGAATGAGGATACGTCCCTGTT -ACGGAATGAGGATACGTCCGGTTT -ACGGAATGAGGATACGTCGTGGTT -ACGGAATGAGGATACGTCGCCTTT -ACGGAATGAGGATACGTCGGTCTT -ACGGAATGAGGATACGTCACGCTT -ACGGAATGAGGATACGTCAGCGTT -ACGGAATGAGGATACGTCTTCGTC -ACGGAATGAGGATACGTCTCTCTC -ACGGAATGAGGATACGTCTGGATC -ACGGAATGAGGATACGTCCACTTC -ACGGAATGAGGATACGTCGTACTC -ACGGAATGAGGATACGTCGATGTC -ACGGAATGAGGATACGTCACAGTC -ACGGAATGAGGATACGTCTTGCTG -ACGGAATGAGGATACGTCTCCATG -ACGGAATGAGGATACGTCTGTGTG -ACGGAATGAGGATACGTCCTAGTG -ACGGAATGAGGATACGTCCATCTG -ACGGAATGAGGATACGTCGAGTTG -ACGGAATGAGGATACGTCAGACTG -ACGGAATGAGGATACGTCTCGGTA -ACGGAATGAGGATACGTCTGCCTA -ACGGAATGAGGATACGTCCCACTA -ACGGAATGAGGATACGTCGGAGTA -ACGGAATGAGGATACGTCTCGTCT -ACGGAATGAGGATACGTCTGCACT -ACGGAATGAGGATACGTCCTGACT -ACGGAATGAGGATACGTCCAACCT -ACGGAATGAGGATACGTCGCTACT -ACGGAATGAGGATACGTCGGATCT -ACGGAATGAGGATACGTCAAGGCT -ACGGAATGAGGATACGTCTCAACC -ACGGAATGAGGATACGTCTGTTCC -ACGGAATGAGGATACGTCATTCCC -ACGGAATGAGGATACGTCTTCTCG -ACGGAATGAGGATACGTCTAGACG -ACGGAATGAGGATACGTCGTAACG -ACGGAATGAGGATACGTCACTTCG -ACGGAATGAGGATACGTCTACGCA -ACGGAATGAGGATACGTCCTTGCA -ACGGAATGAGGATACGTCCGAACA -ACGGAATGAGGATACGTCCAGTCA -ACGGAATGAGGATACGTCGATCCA -ACGGAATGAGGATACGTCACGACA -ACGGAATGAGGATACGTCAGCTCA -ACGGAATGAGGATACGTCTCACGT -ACGGAATGAGGATACGTCCGTAGT -ACGGAATGAGGATACGTCGTCAGT -ACGGAATGAGGATACGTCGAAGGT -ACGGAATGAGGATACGTCAACCGT -ACGGAATGAGGATACGTCTTGTGC -ACGGAATGAGGATACGTCCTAAGC -ACGGAATGAGGATACGTCACTAGC -ACGGAATGAGGATACGTCAGATGC -ACGGAATGAGGATACGTCTGAAGG -ACGGAATGAGGATACGTCCAATGG -ACGGAATGAGGATACGTCATGAGG -ACGGAATGAGGATACGTCAATGGG -ACGGAATGAGGATACGTCTCCTGA -ACGGAATGAGGATACGTCTAGCGA -ACGGAATGAGGATACGTCCACAGA -ACGGAATGAGGATACGTCGCAAGA -ACGGAATGAGGATACGTCGGTTGA -ACGGAATGAGGATACGTCTCCGAT -ACGGAATGAGGATACGTCTGGCAT -ACGGAATGAGGATACGTCCGAGAT -ACGGAATGAGGATACGTCTACCAC -ACGGAATGAGGATACGTCCAGAAC -ACGGAATGAGGATACGTCGTCTAC -ACGGAATGAGGATACGTCACGTAC -ACGGAATGAGGATACGTCAGTGAC -ACGGAATGAGGATACGTCCTGTAG -ACGGAATGAGGATACGTCCCTAAG -ACGGAATGAGGATACGTCGTTCAG -ACGGAATGAGGATACGTCGCATAG -ACGGAATGAGGATACGTCGACAAG -ACGGAATGAGGATACGTCAAGCAG -ACGGAATGAGGATACGTCCGTCAA -ACGGAATGAGGATACGTCGCTGAA -ACGGAATGAGGATACGTCAGTACG -ACGGAATGAGGATACGTCATCCGA -ACGGAATGAGGATACGTCATGGGA -ACGGAATGAGGATACGTCGTGCAA -ACGGAATGAGGATACGTCGAGGAA -ACGGAATGAGGATACGTCCAGGTA -ACGGAATGAGGATACGTCGACTCT -ACGGAATGAGGATACGTCAGTCCT -ACGGAATGAGGATACGTCTAAGCC -ACGGAATGAGGATACGTCATAGCC -ACGGAATGAGGATACGTCTAACCG -ACGGAATGAGGATACGTCATGCCA -ACGGAATGAGGATACACGGGAAAC -ACGGAATGAGGATACACGAACACC -ACGGAATGAGGATACACGATCGAG -ACGGAATGAGGATACACGCTCCTT -ACGGAATGAGGATACACGCCTGTT -ACGGAATGAGGATACACGCGGTTT -ACGGAATGAGGATACACGGTGGTT -ACGGAATGAGGATACACGGCCTTT -ACGGAATGAGGATACACGGGTCTT -ACGGAATGAGGATACACGACGCTT -ACGGAATGAGGATACACGAGCGTT -ACGGAATGAGGATACACGTTCGTC -ACGGAATGAGGATACACGTCTCTC -ACGGAATGAGGATACACGTGGATC -ACGGAATGAGGATACACGCACTTC -ACGGAATGAGGATACACGGTACTC -ACGGAATGAGGATACACGGATGTC -ACGGAATGAGGATACACGACAGTC -ACGGAATGAGGATACACGTTGCTG -ACGGAATGAGGATACACGTCCATG -ACGGAATGAGGATACACGTGTGTG -ACGGAATGAGGATACACGCTAGTG -ACGGAATGAGGATACACGCATCTG -ACGGAATGAGGATACACGGAGTTG -ACGGAATGAGGATACACGAGACTG -ACGGAATGAGGATACACGTCGGTA -ACGGAATGAGGATACACGTGCCTA -ACGGAATGAGGATACACGCCACTA -ACGGAATGAGGATACACGGGAGTA -ACGGAATGAGGATACACGTCGTCT -ACGGAATGAGGATACACGTGCACT -ACGGAATGAGGATACACGCTGACT -ACGGAATGAGGATACACGCAACCT -ACGGAATGAGGATACACGGCTACT -ACGGAATGAGGATACACGGGATCT -ACGGAATGAGGATACACGAAGGCT -ACGGAATGAGGATACACGTCAACC -ACGGAATGAGGATACACGTGTTCC -ACGGAATGAGGATACACGATTCCC -ACGGAATGAGGATACACGTTCTCG -ACGGAATGAGGATACACGTAGACG -ACGGAATGAGGATACACGGTAACG -ACGGAATGAGGATACACGACTTCG -ACGGAATGAGGATACACGTACGCA -ACGGAATGAGGATACACGCTTGCA -ACGGAATGAGGATACACGCGAACA -ACGGAATGAGGATACACGCAGTCA -ACGGAATGAGGATACACGGATCCA -ACGGAATGAGGATACACGACGACA -ACGGAATGAGGATACACGAGCTCA -ACGGAATGAGGATACACGTCACGT -ACGGAATGAGGATACACGCGTAGT -ACGGAATGAGGATACACGGTCAGT -ACGGAATGAGGATACACGGAAGGT -ACGGAATGAGGATACACGAACCGT -ACGGAATGAGGATACACGTTGTGC -ACGGAATGAGGATACACGCTAAGC -ACGGAATGAGGATACACGACTAGC -ACGGAATGAGGATACACGAGATGC -ACGGAATGAGGATACACGTGAAGG -ACGGAATGAGGATACACGCAATGG -ACGGAATGAGGATACACGATGAGG -ACGGAATGAGGATACACGAATGGG -ACGGAATGAGGATACACGTCCTGA -ACGGAATGAGGATACACGTAGCGA -ACGGAATGAGGATACACGCACAGA -ACGGAATGAGGATACACGGCAAGA -ACGGAATGAGGATACACGGGTTGA -ACGGAATGAGGATACACGTCCGAT -ACGGAATGAGGATACACGTGGCAT -ACGGAATGAGGATACACGCGAGAT -ACGGAATGAGGATACACGTACCAC -ACGGAATGAGGATACACGCAGAAC -ACGGAATGAGGATACACGGTCTAC -ACGGAATGAGGATACACGACGTAC -ACGGAATGAGGATACACGAGTGAC -ACGGAATGAGGATACACGCTGTAG -ACGGAATGAGGATACACGCCTAAG -ACGGAATGAGGATACACGGTTCAG -ACGGAATGAGGATACACGGCATAG -ACGGAATGAGGATACACGGACAAG -ACGGAATGAGGATACACGAAGCAG -ACGGAATGAGGATACACGCGTCAA -ACGGAATGAGGATACACGGCTGAA -ACGGAATGAGGATACACGAGTACG -ACGGAATGAGGATACACGATCCGA -ACGGAATGAGGATACACGATGGGA -ACGGAATGAGGATACACGGTGCAA -ACGGAATGAGGATACACGGAGGAA -ACGGAATGAGGATACACGCAGGTA -ACGGAATGAGGATACACGGACTCT -ACGGAATGAGGATACACGAGTCCT -ACGGAATGAGGATACACGTAAGCC -ACGGAATGAGGATACACGATAGCC -ACGGAATGAGGATACACGTAACCG -ACGGAATGAGGATACACGATGCCA -ACGGAATGAGGAGACAGTGGAAAC -ACGGAATGAGGAGACAGTAACACC -ACGGAATGAGGAGACAGTATCGAG -ACGGAATGAGGAGACAGTCTCCTT -ACGGAATGAGGAGACAGTCCTGTT -ACGGAATGAGGAGACAGTCGGTTT -ACGGAATGAGGAGACAGTGTGGTT -ACGGAATGAGGAGACAGTGCCTTT -ACGGAATGAGGAGACAGTGGTCTT -ACGGAATGAGGAGACAGTACGCTT -ACGGAATGAGGAGACAGTAGCGTT -ACGGAATGAGGAGACAGTTTCGTC -ACGGAATGAGGAGACAGTTCTCTC -ACGGAATGAGGAGACAGTTGGATC -ACGGAATGAGGAGACAGTCACTTC -ACGGAATGAGGAGACAGTGTACTC -ACGGAATGAGGAGACAGTGATGTC -ACGGAATGAGGAGACAGTACAGTC -ACGGAATGAGGAGACAGTTTGCTG -ACGGAATGAGGAGACAGTTCCATG -ACGGAATGAGGAGACAGTTGTGTG -ACGGAATGAGGAGACAGTCTAGTG -ACGGAATGAGGAGACAGTCATCTG -ACGGAATGAGGAGACAGTGAGTTG -ACGGAATGAGGAGACAGTAGACTG -ACGGAATGAGGAGACAGTTCGGTA -ACGGAATGAGGAGACAGTTGCCTA -ACGGAATGAGGAGACAGTCCACTA -ACGGAATGAGGAGACAGTGGAGTA -ACGGAATGAGGAGACAGTTCGTCT -ACGGAATGAGGAGACAGTTGCACT -ACGGAATGAGGAGACAGTCTGACT -ACGGAATGAGGAGACAGTCAACCT -ACGGAATGAGGAGACAGTGCTACT -ACGGAATGAGGAGACAGTGGATCT -ACGGAATGAGGAGACAGTAAGGCT -ACGGAATGAGGAGACAGTTCAACC -ACGGAATGAGGAGACAGTTGTTCC -ACGGAATGAGGAGACAGTATTCCC -ACGGAATGAGGAGACAGTTTCTCG -ACGGAATGAGGAGACAGTTAGACG -ACGGAATGAGGAGACAGTGTAACG -ACGGAATGAGGAGACAGTACTTCG -ACGGAATGAGGAGACAGTTACGCA -ACGGAATGAGGAGACAGTCTTGCA -ACGGAATGAGGAGACAGTCGAACA -ACGGAATGAGGAGACAGTCAGTCA -ACGGAATGAGGAGACAGTGATCCA -ACGGAATGAGGAGACAGTACGACA -ACGGAATGAGGAGACAGTAGCTCA -ACGGAATGAGGAGACAGTTCACGT -ACGGAATGAGGAGACAGTCGTAGT -ACGGAATGAGGAGACAGTGTCAGT -ACGGAATGAGGAGACAGTGAAGGT -ACGGAATGAGGAGACAGTAACCGT -ACGGAATGAGGAGACAGTTTGTGC -ACGGAATGAGGAGACAGTCTAAGC -ACGGAATGAGGAGACAGTACTAGC -ACGGAATGAGGAGACAGTAGATGC -ACGGAATGAGGAGACAGTTGAAGG -ACGGAATGAGGAGACAGTCAATGG -ACGGAATGAGGAGACAGTATGAGG -ACGGAATGAGGAGACAGTAATGGG -ACGGAATGAGGAGACAGTTCCTGA -ACGGAATGAGGAGACAGTTAGCGA -ACGGAATGAGGAGACAGTCACAGA -ACGGAATGAGGAGACAGTGCAAGA -ACGGAATGAGGAGACAGTGGTTGA -ACGGAATGAGGAGACAGTTCCGAT -ACGGAATGAGGAGACAGTTGGCAT -ACGGAATGAGGAGACAGTCGAGAT -ACGGAATGAGGAGACAGTTACCAC -ACGGAATGAGGAGACAGTCAGAAC -ACGGAATGAGGAGACAGTGTCTAC -ACGGAATGAGGAGACAGTACGTAC -ACGGAATGAGGAGACAGTAGTGAC -ACGGAATGAGGAGACAGTCTGTAG -ACGGAATGAGGAGACAGTCCTAAG -ACGGAATGAGGAGACAGTGTTCAG -ACGGAATGAGGAGACAGTGCATAG -ACGGAATGAGGAGACAGTGACAAG -ACGGAATGAGGAGACAGTAAGCAG -ACGGAATGAGGAGACAGTCGTCAA -ACGGAATGAGGAGACAGTGCTGAA -ACGGAATGAGGAGACAGTAGTACG -ACGGAATGAGGAGACAGTATCCGA -ACGGAATGAGGAGACAGTATGGGA -ACGGAATGAGGAGACAGTGTGCAA -ACGGAATGAGGAGACAGTGAGGAA -ACGGAATGAGGAGACAGTCAGGTA -ACGGAATGAGGAGACAGTGACTCT -ACGGAATGAGGAGACAGTAGTCCT -ACGGAATGAGGAGACAGTTAAGCC -ACGGAATGAGGAGACAGTATAGCC -ACGGAATGAGGAGACAGTTAACCG -ACGGAATGAGGAGACAGTATGCCA -ACGGAATGAGGATAGCTGGGAAAC -ACGGAATGAGGATAGCTGAACACC -ACGGAATGAGGATAGCTGATCGAG -ACGGAATGAGGATAGCTGCTCCTT -ACGGAATGAGGATAGCTGCCTGTT -ACGGAATGAGGATAGCTGCGGTTT -ACGGAATGAGGATAGCTGGTGGTT -ACGGAATGAGGATAGCTGGCCTTT -ACGGAATGAGGATAGCTGGGTCTT -ACGGAATGAGGATAGCTGACGCTT -ACGGAATGAGGATAGCTGAGCGTT -ACGGAATGAGGATAGCTGTTCGTC -ACGGAATGAGGATAGCTGTCTCTC -ACGGAATGAGGATAGCTGTGGATC -ACGGAATGAGGATAGCTGCACTTC -ACGGAATGAGGATAGCTGGTACTC -ACGGAATGAGGATAGCTGGATGTC -ACGGAATGAGGATAGCTGACAGTC -ACGGAATGAGGATAGCTGTTGCTG -ACGGAATGAGGATAGCTGTCCATG -ACGGAATGAGGATAGCTGTGTGTG -ACGGAATGAGGATAGCTGCTAGTG -ACGGAATGAGGATAGCTGCATCTG -ACGGAATGAGGATAGCTGGAGTTG -ACGGAATGAGGATAGCTGAGACTG -ACGGAATGAGGATAGCTGTCGGTA -ACGGAATGAGGATAGCTGTGCCTA -ACGGAATGAGGATAGCTGCCACTA -ACGGAATGAGGATAGCTGGGAGTA -ACGGAATGAGGATAGCTGTCGTCT -ACGGAATGAGGATAGCTGTGCACT -ACGGAATGAGGATAGCTGCTGACT -ACGGAATGAGGATAGCTGCAACCT -ACGGAATGAGGATAGCTGGCTACT -ACGGAATGAGGATAGCTGGGATCT -ACGGAATGAGGATAGCTGAAGGCT -ACGGAATGAGGATAGCTGTCAACC -ACGGAATGAGGATAGCTGTGTTCC -ACGGAATGAGGATAGCTGATTCCC -ACGGAATGAGGATAGCTGTTCTCG -ACGGAATGAGGATAGCTGTAGACG -ACGGAATGAGGATAGCTGGTAACG -ACGGAATGAGGATAGCTGACTTCG -ACGGAATGAGGATAGCTGTACGCA -ACGGAATGAGGATAGCTGCTTGCA -ACGGAATGAGGATAGCTGCGAACA -ACGGAATGAGGATAGCTGCAGTCA -ACGGAATGAGGATAGCTGGATCCA -ACGGAATGAGGATAGCTGACGACA -ACGGAATGAGGATAGCTGAGCTCA -ACGGAATGAGGATAGCTGTCACGT -ACGGAATGAGGATAGCTGCGTAGT -ACGGAATGAGGATAGCTGGTCAGT -ACGGAATGAGGATAGCTGGAAGGT -ACGGAATGAGGATAGCTGAACCGT -ACGGAATGAGGATAGCTGTTGTGC -ACGGAATGAGGATAGCTGCTAAGC -ACGGAATGAGGATAGCTGACTAGC -ACGGAATGAGGATAGCTGAGATGC -ACGGAATGAGGATAGCTGTGAAGG -ACGGAATGAGGATAGCTGCAATGG -ACGGAATGAGGATAGCTGATGAGG -ACGGAATGAGGATAGCTGAATGGG -ACGGAATGAGGATAGCTGTCCTGA -ACGGAATGAGGATAGCTGTAGCGA -ACGGAATGAGGATAGCTGCACAGA -ACGGAATGAGGATAGCTGGCAAGA -ACGGAATGAGGATAGCTGGGTTGA -ACGGAATGAGGATAGCTGTCCGAT -ACGGAATGAGGATAGCTGTGGCAT -ACGGAATGAGGATAGCTGCGAGAT -ACGGAATGAGGATAGCTGTACCAC -ACGGAATGAGGATAGCTGCAGAAC -ACGGAATGAGGATAGCTGGTCTAC -ACGGAATGAGGATAGCTGACGTAC -ACGGAATGAGGATAGCTGAGTGAC -ACGGAATGAGGATAGCTGCTGTAG -ACGGAATGAGGATAGCTGCCTAAG -ACGGAATGAGGATAGCTGGTTCAG -ACGGAATGAGGATAGCTGGCATAG -ACGGAATGAGGATAGCTGGACAAG -ACGGAATGAGGATAGCTGAAGCAG -ACGGAATGAGGATAGCTGCGTCAA -ACGGAATGAGGATAGCTGGCTGAA -ACGGAATGAGGATAGCTGAGTACG -ACGGAATGAGGATAGCTGATCCGA -ACGGAATGAGGATAGCTGATGGGA -ACGGAATGAGGATAGCTGGTGCAA -ACGGAATGAGGATAGCTGGAGGAA -ACGGAATGAGGATAGCTGCAGGTA -ACGGAATGAGGATAGCTGGACTCT -ACGGAATGAGGATAGCTGAGTCCT -ACGGAATGAGGATAGCTGTAAGCC -ACGGAATGAGGATAGCTGATAGCC -ACGGAATGAGGATAGCTGTAACCG -ACGGAATGAGGATAGCTGATGCCA -ACGGAATGAGGAAAGCCTGGAAAC -ACGGAATGAGGAAAGCCTAACACC -ACGGAATGAGGAAAGCCTATCGAG -ACGGAATGAGGAAAGCCTCTCCTT -ACGGAATGAGGAAAGCCTCCTGTT -ACGGAATGAGGAAAGCCTCGGTTT -ACGGAATGAGGAAAGCCTGTGGTT -ACGGAATGAGGAAAGCCTGCCTTT -ACGGAATGAGGAAAGCCTGGTCTT -ACGGAATGAGGAAAGCCTACGCTT -ACGGAATGAGGAAAGCCTAGCGTT -ACGGAATGAGGAAAGCCTTTCGTC -ACGGAATGAGGAAAGCCTTCTCTC -ACGGAATGAGGAAAGCCTTGGATC -ACGGAATGAGGAAAGCCTCACTTC -ACGGAATGAGGAAAGCCTGTACTC -ACGGAATGAGGAAAGCCTGATGTC -ACGGAATGAGGAAAGCCTACAGTC -ACGGAATGAGGAAAGCCTTTGCTG -ACGGAATGAGGAAAGCCTTCCATG -ACGGAATGAGGAAAGCCTTGTGTG -ACGGAATGAGGAAAGCCTCTAGTG -ACGGAATGAGGAAAGCCTCATCTG -ACGGAATGAGGAAAGCCTGAGTTG -ACGGAATGAGGAAAGCCTAGACTG -ACGGAATGAGGAAAGCCTTCGGTA -ACGGAATGAGGAAAGCCTTGCCTA -ACGGAATGAGGAAAGCCTCCACTA -ACGGAATGAGGAAAGCCTGGAGTA -ACGGAATGAGGAAAGCCTTCGTCT -ACGGAATGAGGAAAGCCTTGCACT -ACGGAATGAGGAAAGCCTCTGACT -ACGGAATGAGGAAAGCCTCAACCT -ACGGAATGAGGAAAGCCTGCTACT -ACGGAATGAGGAAAGCCTGGATCT -ACGGAATGAGGAAAGCCTAAGGCT -ACGGAATGAGGAAAGCCTTCAACC -ACGGAATGAGGAAAGCCTTGTTCC -ACGGAATGAGGAAAGCCTATTCCC -ACGGAATGAGGAAAGCCTTTCTCG -ACGGAATGAGGAAAGCCTTAGACG -ACGGAATGAGGAAAGCCTGTAACG -ACGGAATGAGGAAAGCCTACTTCG -ACGGAATGAGGAAAGCCTTACGCA -ACGGAATGAGGAAAGCCTCTTGCA -ACGGAATGAGGAAAGCCTCGAACA -ACGGAATGAGGAAAGCCTCAGTCA -ACGGAATGAGGAAAGCCTGATCCA -ACGGAATGAGGAAAGCCTACGACA -ACGGAATGAGGAAAGCCTAGCTCA -ACGGAATGAGGAAAGCCTTCACGT -ACGGAATGAGGAAAGCCTCGTAGT -ACGGAATGAGGAAAGCCTGTCAGT -ACGGAATGAGGAAAGCCTGAAGGT -ACGGAATGAGGAAAGCCTAACCGT -ACGGAATGAGGAAAGCCTTTGTGC -ACGGAATGAGGAAAGCCTCTAAGC -ACGGAATGAGGAAAGCCTACTAGC -ACGGAATGAGGAAAGCCTAGATGC -ACGGAATGAGGAAAGCCTTGAAGG -ACGGAATGAGGAAAGCCTCAATGG -ACGGAATGAGGAAAGCCTATGAGG -ACGGAATGAGGAAAGCCTAATGGG -ACGGAATGAGGAAAGCCTTCCTGA -ACGGAATGAGGAAAGCCTTAGCGA -ACGGAATGAGGAAAGCCTCACAGA -ACGGAATGAGGAAAGCCTGCAAGA -ACGGAATGAGGAAAGCCTGGTTGA -ACGGAATGAGGAAAGCCTTCCGAT -ACGGAATGAGGAAAGCCTTGGCAT -ACGGAATGAGGAAAGCCTCGAGAT -ACGGAATGAGGAAAGCCTTACCAC -ACGGAATGAGGAAAGCCTCAGAAC -ACGGAATGAGGAAAGCCTGTCTAC -ACGGAATGAGGAAAGCCTACGTAC -ACGGAATGAGGAAAGCCTAGTGAC -ACGGAATGAGGAAAGCCTCTGTAG -ACGGAATGAGGAAAGCCTCCTAAG -ACGGAATGAGGAAAGCCTGTTCAG -ACGGAATGAGGAAAGCCTGCATAG -ACGGAATGAGGAAAGCCTGACAAG -ACGGAATGAGGAAAGCCTAAGCAG -ACGGAATGAGGAAAGCCTCGTCAA -ACGGAATGAGGAAAGCCTGCTGAA -ACGGAATGAGGAAAGCCTAGTACG -ACGGAATGAGGAAAGCCTATCCGA -ACGGAATGAGGAAAGCCTATGGGA -ACGGAATGAGGAAAGCCTGTGCAA -ACGGAATGAGGAAAGCCTGAGGAA -ACGGAATGAGGAAAGCCTCAGGTA -ACGGAATGAGGAAAGCCTGACTCT -ACGGAATGAGGAAAGCCTAGTCCT -ACGGAATGAGGAAAGCCTTAAGCC -ACGGAATGAGGAAAGCCTATAGCC -ACGGAATGAGGAAAGCCTTAACCG -ACGGAATGAGGAAAGCCTATGCCA -ACGGAATGAGGACAGGTTGGAAAC -ACGGAATGAGGACAGGTTAACACC -ACGGAATGAGGACAGGTTATCGAG -ACGGAATGAGGACAGGTTCTCCTT -ACGGAATGAGGACAGGTTCCTGTT -ACGGAATGAGGACAGGTTCGGTTT -ACGGAATGAGGACAGGTTGTGGTT -ACGGAATGAGGACAGGTTGCCTTT -ACGGAATGAGGACAGGTTGGTCTT -ACGGAATGAGGACAGGTTACGCTT -ACGGAATGAGGACAGGTTAGCGTT -ACGGAATGAGGACAGGTTTTCGTC -ACGGAATGAGGACAGGTTTCTCTC -ACGGAATGAGGACAGGTTTGGATC -ACGGAATGAGGACAGGTTCACTTC -ACGGAATGAGGACAGGTTGTACTC -ACGGAATGAGGACAGGTTGATGTC -ACGGAATGAGGACAGGTTACAGTC -ACGGAATGAGGACAGGTTTTGCTG -ACGGAATGAGGACAGGTTTCCATG -ACGGAATGAGGACAGGTTTGTGTG -ACGGAATGAGGACAGGTTCTAGTG -ACGGAATGAGGACAGGTTCATCTG -ACGGAATGAGGACAGGTTGAGTTG -ACGGAATGAGGACAGGTTAGACTG -ACGGAATGAGGACAGGTTTCGGTA -ACGGAATGAGGACAGGTTTGCCTA -ACGGAATGAGGACAGGTTCCACTA -ACGGAATGAGGACAGGTTGGAGTA -ACGGAATGAGGACAGGTTTCGTCT -ACGGAATGAGGACAGGTTTGCACT -ACGGAATGAGGACAGGTTCTGACT -ACGGAATGAGGACAGGTTCAACCT -ACGGAATGAGGACAGGTTGCTACT -ACGGAATGAGGACAGGTTGGATCT -ACGGAATGAGGACAGGTTAAGGCT -ACGGAATGAGGACAGGTTTCAACC -ACGGAATGAGGACAGGTTTGTTCC -ACGGAATGAGGACAGGTTATTCCC -ACGGAATGAGGACAGGTTTTCTCG -ACGGAATGAGGACAGGTTTAGACG -ACGGAATGAGGACAGGTTGTAACG -ACGGAATGAGGACAGGTTACTTCG -ACGGAATGAGGACAGGTTTACGCA -ACGGAATGAGGACAGGTTCTTGCA -ACGGAATGAGGACAGGTTCGAACA -ACGGAATGAGGACAGGTTCAGTCA -ACGGAATGAGGACAGGTTGATCCA -ACGGAATGAGGACAGGTTACGACA -ACGGAATGAGGACAGGTTAGCTCA -ACGGAATGAGGACAGGTTTCACGT -ACGGAATGAGGACAGGTTCGTAGT -ACGGAATGAGGACAGGTTGTCAGT -ACGGAATGAGGACAGGTTGAAGGT -ACGGAATGAGGACAGGTTAACCGT -ACGGAATGAGGACAGGTTTTGTGC -ACGGAATGAGGACAGGTTCTAAGC -ACGGAATGAGGACAGGTTACTAGC -ACGGAATGAGGACAGGTTAGATGC -ACGGAATGAGGACAGGTTTGAAGG -ACGGAATGAGGACAGGTTCAATGG -ACGGAATGAGGACAGGTTATGAGG -ACGGAATGAGGACAGGTTAATGGG -ACGGAATGAGGACAGGTTTCCTGA -ACGGAATGAGGACAGGTTTAGCGA -ACGGAATGAGGACAGGTTCACAGA -ACGGAATGAGGACAGGTTGCAAGA -ACGGAATGAGGACAGGTTGGTTGA -ACGGAATGAGGACAGGTTTCCGAT -ACGGAATGAGGACAGGTTTGGCAT -ACGGAATGAGGACAGGTTCGAGAT -ACGGAATGAGGACAGGTTTACCAC -ACGGAATGAGGACAGGTTCAGAAC -ACGGAATGAGGACAGGTTGTCTAC -ACGGAATGAGGACAGGTTACGTAC -ACGGAATGAGGACAGGTTAGTGAC -ACGGAATGAGGACAGGTTCTGTAG -ACGGAATGAGGACAGGTTCCTAAG -ACGGAATGAGGACAGGTTGTTCAG -ACGGAATGAGGACAGGTTGCATAG -ACGGAATGAGGACAGGTTGACAAG -ACGGAATGAGGACAGGTTAAGCAG -ACGGAATGAGGACAGGTTCGTCAA -ACGGAATGAGGACAGGTTGCTGAA -ACGGAATGAGGACAGGTTAGTACG -ACGGAATGAGGACAGGTTATCCGA -ACGGAATGAGGACAGGTTATGGGA -ACGGAATGAGGACAGGTTGTGCAA -ACGGAATGAGGACAGGTTGAGGAA -ACGGAATGAGGACAGGTTCAGGTA -ACGGAATGAGGACAGGTTGACTCT -ACGGAATGAGGACAGGTTAGTCCT -ACGGAATGAGGACAGGTTTAAGCC -ACGGAATGAGGACAGGTTATAGCC -ACGGAATGAGGACAGGTTTAACCG -ACGGAATGAGGACAGGTTATGCCA -ACGGAATGAGGATAGGCAGGAAAC -ACGGAATGAGGATAGGCAAACACC -ACGGAATGAGGATAGGCAATCGAG -ACGGAATGAGGATAGGCACTCCTT -ACGGAATGAGGATAGGCACCTGTT -ACGGAATGAGGATAGGCACGGTTT -ACGGAATGAGGATAGGCAGTGGTT -ACGGAATGAGGATAGGCAGCCTTT -ACGGAATGAGGATAGGCAGGTCTT -ACGGAATGAGGATAGGCAACGCTT -ACGGAATGAGGATAGGCAAGCGTT -ACGGAATGAGGATAGGCATTCGTC -ACGGAATGAGGATAGGCATCTCTC -ACGGAATGAGGATAGGCATGGATC -ACGGAATGAGGATAGGCACACTTC -ACGGAATGAGGATAGGCAGTACTC -ACGGAATGAGGATAGGCAGATGTC -ACGGAATGAGGATAGGCAACAGTC -ACGGAATGAGGATAGGCATTGCTG -ACGGAATGAGGATAGGCATCCATG -ACGGAATGAGGATAGGCATGTGTG -ACGGAATGAGGATAGGCACTAGTG -ACGGAATGAGGATAGGCACATCTG -ACGGAATGAGGATAGGCAGAGTTG -ACGGAATGAGGATAGGCAAGACTG -ACGGAATGAGGATAGGCATCGGTA -ACGGAATGAGGATAGGCATGCCTA -ACGGAATGAGGATAGGCACCACTA -ACGGAATGAGGATAGGCAGGAGTA -ACGGAATGAGGATAGGCATCGTCT -ACGGAATGAGGATAGGCATGCACT -ACGGAATGAGGATAGGCACTGACT -ACGGAATGAGGATAGGCACAACCT -ACGGAATGAGGATAGGCAGCTACT -ACGGAATGAGGATAGGCAGGATCT -ACGGAATGAGGATAGGCAAAGGCT -ACGGAATGAGGATAGGCATCAACC -ACGGAATGAGGATAGGCATGTTCC -ACGGAATGAGGATAGGCAATTCCC -ACGGAATGAGGATAGGCATTCTCG -ACGGAATGAGGATAGGCATAGACG -ACGGAATGAGGATAGGCAGTAACG -ACGGAATGAGGATAGGCAACTTCG -ACGGAATGAGGATAGGCATACGCA -ACGGAATGAGGATAGGCACTTGCA -ACGGAATGAGGATAGGCACGAACA -ACGGAATGAGGATAGGCACAGTCA -ACGGAATGAGGATAGGCAGATCCA -ACGGAATGAGGATAGGCAACGACA -ACGGAATGAGGATAGGCAAGCTCA -ACGGAATGAGGATAGGCATCACGT -ACGGAATGAGGATAGGCACGTAGT -ACGGAATGAGGATAGGCAGTCAGT -ACGGAATGAGGATAGGCAGAAGGT -ACGGAATGAGGATAGGCAAACCGT -ACGGAATGAGGATAGGCATTGTGC -ACGGAATGAGGATAGGCACTAAGC -ACGGAATGAGGATAGGCAACTAGC -ACGGAATGAGGATAGGCAAGATGC -ACGGAATGAGGATAGGCATGAAGG -ACGGAATGAGGATAGGCACAATGG -ACGGAATGAGGATAGGCAATGAGG -ACGGAATGAGGATAGGCAAATGGG -ACGGAATGAGGATAGGCATCCTGA -ACGGAATGAGGATAGGCATAGCGA -ACGGAATGAGGATAGGCACACAGA -ACGGAATGAGGATAGGCAGCAAGA -ACGGAATGAGGATAGGCAGGTTGA -ACGGAATGAGGATAGGCATCCGAT -ACGGAATGAGGATAGGCATGGCAT -ACGGAATGAGGATAGGCACGAGAT -ACGGAATGAGGATAGGCATACCAC -ACGGAATGAGGATAGGCACAGAAC -ACGGAATGAGGATAGGCAGTCTAC -ACGGAATGAGGATAGGCAACGTAC -ACGGAATGAGGATAGGCAAGTGAC -ACGGAATGAGGATAGGCACTGTAG -ACGGAATGAGGATAGGCACCTAAG -ACGGAATGAGGATAGGCAGTTCAG -ACGGAATGAGGATAGGCAGCATAG -ACGGAATGAGGATAGGCAGACAAG -ACGGAATGAGGATAGGCAAAGCAG -ACGGAATGAGGATAGGCACGTCAA -ACGGAATGAGGATAGGCAGCTGAA -ACGGAATGAGGATAGGCAAGTACG -ACGGAATGAGGATAGGCAATCCGA -ACGGAATGAGGATAGGCAATGGGA -ACGGAATGAGGATAGGCAGTGCAA -ACGGAATGAGGATAGGCAGAGGAA -ACGGAATGAGGATAGGCACAGGTA -ACGGAATGAGGATAGGCAGACTCT -ACGGAATGAGGATAGGCAAGTCCT -ACGGAATGAGGATAGGCATAAGCC -ACGGAATGAGGATAGGCAATAGCC -ACGGAATGAGGATAGGCATAACCG -ACGGAATGAGGATAGGCAATGCCA -ACGGAATGAGGAAAGGACGGAAAC -ACGGAATGAGGAAAGGACAACACC -ACGGAATGAGGAAAGGACATCGAG -ACGGAATGAGGAAAGGACCTCCTT -ACGGAATGAGGAAAGGACCCTGTT -ACGGAATGAGGAAAGGACCGGTTT -ACGGAATGAGGAAAGGACGTGGTT -ACGGAATGAGGAAAGGACGCCTTT -ACGGAATGAGGAAAGGACGGTCTT -ACGGAATGAGGAAAGGACACGCTT -ACGGAATGAGGAAAGGACAGCGTT -ACGGAATGAGGAAAGGACTTCGTC -ACGGAATGAGGAAAGGACTCTCTC -ACGGAATGAGGAAAGGACTGGATC -ACGGAATGAGGAAAGGACCACTTC -ACGGAATGAGGAAAGGACGTACTC -ACGGAATGAGGAAAGGACGATGTC -ACGGAATGAGGAAAGGACACAGTC -ACGGAATGAGGAAAGGACTTGCTG -ACGGAATGAGGAAAGGACTCCATG -ACGGAATGAGGAAAGGACTGTGTG -ACGGAATGAGGAAAGGACCTAGTG -ACGGAATGAGGAAAGGACCATCTG -ACGGAATGAGGAAAGGACGAGTTG -ACGGAATGAGGAAAGGACAGACTG -ACGGAATGAGGAAAGGACTCGGTA -ACGGAATGAGGAAAGGACTGCCTA -ACGGAATGAGGAAAGGACCCACTA -ACGGAATGAGGAAAGGACGGAGTA -ACGGAATGAGGAAAGGACTCGTCT -ACGGAATGAGGAAAGGACTGCACT -ACGGAATGAGGAAAGGACCTGACT -ACGGAATGAGGAAAGGACCAACCT -ACGGAATGAGGAAAGGACGCTACT -ACGGAATGAGGAAAGGACGGATCT -ACGGAATGAGGAAAGGACAAGGCT -ACGGAATGAGGAAAGGACTCAACC -ACGGAATGAGGAAAGGACTGTTCC -ACGGAATGAGGAAAGGACATTCCC -ACGGAATGAGGAAAGGACTTCTCG -ACGGAATGAGGAAAGGACTAGACG -ACGGAATGAGGAAAGGACGTAACG -ACGGAATGAGGAAAGGACACTTCG -ACGGAATGAGGAAAGGACTACGCA -ACGGAATGAGGAAAGGACCTTGCA -ACGGAATGAGGAAAGGACCGAACA -ACGGAATGAGGAAAGGACCAGTCA -ACGGAATGAGGAAAGGACGATCCA -ACGGAATGAGGAAAGGACACGACA -ACGGAATGAGGAAAGGACAGCTCA -ACGGAATGAGGAAAGGACTCACGT -ACGGAATGAGGAAAGGACCGTAGT -ACGGAATGAGGAAAGGACGTCAGT -ACGGAATGAGGAAAGGACGAAGGT -ACGGAATGAGGAAAGGACAACCGT -ACGGAATGAGGAAAGGACTTGTGC -ACGGAATGAGGAAAGGACCTAAGC -ACGGAATGAGGAAAGGACACTAGC -ACGGAATGAGGAAAGGACAGATGC -ACGGAATGAGGAAAGGACTGAAGG -ACGGAATGAGGAAAGGACCAATGG -ACGGAATGAGGAAAGGACATGAGG -ACGGAATGAGGAAAGGACAATGGG -ACGGAATGAGGAAAGGACTCCTGA -ACGGAATGAGGAAAGGACTAGCGA -ACGGAATGAGGAAAGGACCACAGA -ACGGAATGAGGAAAGGACGCAAGA -ACGGAATGAGGAAAGGACGGTTGA -ACGGAATGAGGAAAGGACTCCGAT -ACGGAATGAGGAAAGGACTGGCAT -ACGGAATGAGGAAAGGACCGAGAT -ACGGAATGAGGAAAGGACTACCAC -ACGGAATGAGGAAAGGACCAGAAC -ACGGAATGAGGAAAGGACGTCTAC -ACGGAATGAGGAAAGGACACGTAC -ACGGAATGAGGAAAGGACAGTGAC -ACGGAATGAGGAAAGGACCTGTAG -ACGGAATGAGGAAAGGACCCTAAG -ACGGAATGAGGAAAGGACGTTCAG -ACGGAATGAGGAAAGGACGCATAG -ACGGAATGAGGAAAGGACGACAAG -ACGGAATGAGGAAAGGACAAGCAG -ACGGAATGAGGAAAGGACCGTCAA -ACGGAATGAGGAAAGGACGCTGAA -ACGGAATGAGGAAAGGACAGTACG -ACGGAATGAGGAAAGGACATCCGA -ACGGAATGAGGAAAGGACATGGGA -ACGGAATGAGGAAAGGACGTGCAA -ACGGAATGAGGAAAGGACGAGGAA -ACGGAATGAGGAAAGGACCAGGTA -ACGGAATGAGGAAAGGACGACTCT -ACGGAATGAGGAAAGGACAGTCCT -ACGGAATGAGGAAAGGACTAAGCC -ACGGAATGAGGAAAGGACATAGCC -ACGGAATGAGGAAAGGACTAACCG -ACGGAATGAGGAAAGGACATGCCA -ACGGAATGAGGACAGAAGGGAAAC -ACGGAATGAGGACAGAAGAACACC -ACGGAATGAGGACAGAAGATCGAG -ACGGAATGAGGACAGAAGCTCCTT -ACGGAATGAGGACAGAAGCCTGTT -ACGGAATGAGGACAGAAGCGGTTT -ACGGAATGAGGACAGAAGGTGGTT -ACGGAATGAGGACAGAAGGCCTTT -ACGGAATGAGGACAGAAGGGTCTT -ACGGAATGAGGACAGAAGACGCTT -ACGGAATGAGGACAGAAGAGCGTT -ACGGAATGAGGACAGAAGTTCGTC -ACGGAATGAGGACAGAAGTCTCTC -ACGGAATGAGGACAGAAGTGGATC -ACGGAATGAGGACAGAAGCACTTC -ACGGAATGAGGACAGAAGGTACTC -ACGGAATGAGGACAGAAGGATGTC -ACGGAATGAGGACAGAAGACAGTC -ACGGAATGAGGACAGAAGTTGCTG -ACGGAATGAGGACAGAAGTCCATG -ACGGAATGAGGACAGAAGTGTGTG -ACGGAATGAGGACAGAAGCTAGTG -ACGGAATGAGGACAGAAGCATCTG -ACGGAATGAGGACAGAAGGAGTTG -ACGGAATGAGGACAGAAGAGACTG -ACGGAATGAGGACAGAAGTCGGTA -ACGGAATGAGGACAGAAGTGCCTA -ACGGAATGAGGACAGAAGCCACTA -ACGGAATGAGGACAGAAGGGAGTA -ACGGAATGAGGACAGAAGTCGTCT -ACGGAATGAGGACAGAAGTGCACT -ACGGAATGAGGACAGAAGCTGACT -ACGGAATGAGGACAGAAGCAACCT -ACGGAATGAGGACAGAAGGCTACT -ACGGAATGAGGACAGAAGGGATCT -ACGGAATGAGGACAGAAGAAGGCT -ACGGAATGAGGACAGAAGTCAACC -ACGGAATGAGGACAGAAGTGTTCC -ACGGAATGAGGACAGAAGATTCCC -ACGGAATGAGGACAGAAGTTCTCG -ACGGAATGAGGACAGAAGTAGACG -ACGGAATGAGGACAGAAGGTAACG -ACGGAATGAGGACAGAAGACTTCG -ACGGAATGAGGACAGAAGTACGCA -ACGGAATGAGGACAGAAGCTTGCA -ACGGAATGAGGACAGAAGCGAACA -ACGGAATGAGGACAGAAGCAGTCA -ACGGAATGAGGACAGAAGGATCCA -ACGGAATGAGGACAGAAGACGACA -ACGGAATGAGGACAGAAGAGCTCA -ACGGAATGAGGACAGAAGTCACGT -ACGGAATGAGGACAGAAGCGTAGT -ACGGAATGAGGACAGAAGGTCAGT -ACGGAATGAGGACAGAAGGAAGGT -ACGGAATGAGGACAGAAGAACCGT -ACGGAATGAGGACAGAAGTTGTGC -ACGGAATGAGGACAGAAGCTAAGC -ACGGAATGAGGACAGAAGACTAGC -ACGGAATGAGGACAGAAGAGATGC -ACGGAATGAGGACAGAAGTGAAGG -ACGGAATGAGGACAGAAGCAATGG -ACGGAATGAGGACAGAAGATGAGG -ACGGAATGAGGACAGAAGAATGGG -ACGGAATGAGGACAGAAGTCCTGA -ACGGAATGAGGACAGAAGTAGCGA -ACGGAATGAGGACAGAAGCACAGA -ACGGAATGAGGACAGAAGGCAAGA -ACGGAATGAGGACAGAAGGGTTGA -ACGGAATGAGGACAGAAGTCCGAT -ACGGAATGAGGACAGAAGTGGCAT -ACGGAATGAGGACAGAAGCGAGAT -ACGGAATGAGGACAGAAGTACCAC -ACGGAATGAGGACAGAAGCAGAAC -ACGGAATGAGGACAGAAGGTCTAC -ACGGAATGAGGACAGAAGACGTAC -ACGGAATGAGGACAGAAGAGTGAC -ACGGAATGAGGACAGAAGCTGTAG -ACGGAATGAGGACAGAAGCCTAAG -ACGGAATGAGGACAGAAGGTTCAG -ACGGAATGAGGACAGAAGGCATAG -ACGGAATGAGGACAGAAGGACAAG -ACGGAATGAGGACAGAAGAAGCAG -ACGGAATGAGGACAGAAGCGTCAA -ACGGAATGAGGACAGAAGGCTGAA -ACGGAATGAGGACAGAAGAGTACG -ACGGAATGAGGACAGAAGATCCGA -ACGGAATGAGGACAGAAGATGGGA -ACGGAATGAGGACAGAAGGTGCAA -ACGGAATGAGGACAGAAGGAGGAA -ACGGAATGAGGACAGAAGCAGGTA -ACGGAATGAGGACAGAAGGACTCT -ACGGAATGAGGACAGAAGAGTCCT -ACGGAATGAGGACAGAAGTAAGCC -ACGGAATGAGGACAGAAGATAGCC -ACGGAATGAGGACAGAAGTAACCG -ACGGAATGAGGACAGAAGATGCCA -ACGGAATGAGGACAACGTGGAAAC -ACGGAATGAGGACAACGTAACACC -ACGGAATGAGGACAACGTATCGAG -ACGGAATGAGGACAACGTCTCCTT -ACGGAATGAGGACAACGTCCTGTT -ACGGAATGAGGACAACGTCGGTTT -ACGGAATGAGGACAACGTGTGGTT -ACGGAATGAGGACAACGTGCCTTT -ACGGAATGAGGACAACGTGGTCTT -ACGGAATGAGGACAACGTACGCTT -ACGGAATGAGGACAACGTAGCGTT -ACGGAATGAGGACAACGTTTCGTC -ACGGAATGAGGACAACGTTCTCTC -ACGGAATGAGGACAACGTTGGATC -ACGGAATGAGGACAACGTCACTTC -ACGGAATGAGGACAACGTGTACTC -ACGGAATGAGGACAACGTGATGTC -ACGGAATGAGGACAACGTACAGTC -ACGGAATGAGGACAACGTTTGCTG -ACGGAATGAGGACAACGTTCCATG -ACGGAATGAGGACAACGTTGTGTG -ACGGAATGAGGACAACGTCTAGTG -ACGGAATGAGGACAACGTCATCTG -ACGGAATGAGGACAACGTGAGTTG -ACGGAATGAGGACAACGTAGACTG -ACGGAATGAGGACAACGTTCGGTA -ACGGAATGAGGACAACGTTGCCTA -ACGGAATGAGGACAACGTCCACTA -ACGGAATGAGGACAACGTGGAGTA -ACGGAATGAGGACAACGTTCGTCT -ACGGAATGAGGACAACGTTGCACT -ACGGAATGAGGACAACGTCTGACT -ACGGAATGAGGACAACGTCAACCT -ACGGAATGAGGACAACGTGCTACT -ACGGAATGAGGACAACGTGGATCT -ACGGAATGAGGACAACGTAAGGCT -ACGGAATGAGGACAACGTTCAACC -ACGGAATGAGGACAACGTTGTTCC -ACGGAATGAGGACAACGTATTCCC -ACGGAATGAGGACAACGTTTCTCG -ACGGAATGAGGACAACGTTAGACG -ACGGAATGAGGACAACGTGTAACG -ACGGAATGAGGACAACGTACTTCG -ACGGAATGAGGACAACGTTACGCA -ACGGAATGAGGACAACGTCTTGCA -ACGGAATGAGGACAACGTCGAACA -ACGGAATGAGGACAACGTCAGTCA -ACGGAATGAGGACAACGTGATCCA -ACGGAATGAGGACAACGTACGACA -ACGGAATGAGGACAACGTAGCTCA -ACGGAATGAGGACAACGTTCACGT -ACGGAATGAGGACAACGTCGTAGT -ACGGAATGAGGACAACGTGTCAGT -ACGGAATGAGGACAACGTGAAGGT -ACGGAATGAGGACAACGTAACCGT -ACGGAATGAGGACAACGTTTGTGC -ACGGAATGAGGACAACGTCTAAGC -ACGGAATGAGGACAACGTACTAGC -ACGGAATGAGGACAACGTAGATGC -ACGGAATGAGGACAACGTTGAAGG -ACGGAATGAGGACAACGTCAATGG -ACGGAATGAGGACAACGTATGAGG -ACGGAATGAGGACAACGTAATGGG -ACGGAATGAGGACAACGTTCCTGA -ACGGAATGAGGACAACGTTAGCGA -ACGGAATGAGGACAACGTCACAGA -ACGGAATGAGGACAACGTGCAAGA -ACGGAATGAGGACAACGTGGTTGA -ACGGAATGAGGACAACGTTCCGAT -ACGGAATGAGGACAACGTTGGCAT -ACGGAATGAGGACAACGTCGAGAT -ACGGAATGAGGACAACGTTACCAC -ACGGAATGAGGACAACGTCAGAAC -ACGGAATGAGGACAACGTGTCTAC -ACGGAATGAGGACAACGTACGTAC -ACGGAATGAGGACAACGTAGTGAC -ACGGAATGAGGACAACGTCTGTAG -ACGGAATGAGGACAACGTCCTAAG -ACGGAATGAGGACAACGTGTTCAG -ACGGAATGAGGACAACGTGCATAG -ACGGAATGAGGACAACGTGACAAG -ACGGAATGAGGACAACGTAAGCAG -ACGGAATGAGGACAACGTCGTCAA -ACGGAATGAGGACAACGTGCTGAA -ACGGAATGAGGACAACGTAGTACG -ACGGAATGAGGACAACGTATCCGA -ACGGAATGAGGACAACGTATGGGA -ACGGAATGAGGACAACGTGTGCAA -ACGGAATGAGGACAACGTGAGGAA -ACGGAATGAGGACAACGTCAGGTA -ACGGAATGAGGACAACGTGACTCT -ACGGAATGAGGACAACGTAGTCCT -ACGGAATGAGGACAACGTTAAGCC -ACGGAATGAGGACAACGTATAGCC -ACGGAATGAGGACAACGTTAACCG -ACGGAATGAGGACAACGTATGCCA -ACGGAATGAGGAGAAGCTGGAAAC -ACGGAATGAGGAGAAGCTAACACC -ACGGAATGAGGAGAAGCTATCGAG -ACGGAATGAGGAGAAGCTCTCCTT -ACGGAATGAGGAGAAGCTCCTGTT -ACGGAATGAGGAGAAGCTCGGTTT -ACGGAATGAGGAGAAGCTGTGGTT -ACGGAATGAGGAGAAGCTGCCTTT -ACGGAATGAGGAGAAGCTGGTCTT -ACGGAATGAGGAGAAGCTACGCTT -ACGGAATGAGGAGAAGCTAGCGTT -ACGGAATGAGGAGAAGCTTTCGTC -ACGGAATGAGGAGAAGCTTCTCTC -ACGGAATGAGGAGAAGCTTGGATC -ACGGAATGAGGAGAAGCTCACTTC -ACGGAATGAGGAGAAGCTGTACTC -ACGGAATGAGGAGAAGCTGATGTC -ACGGAATGAGGAGAAGCTACAGTC -ACGGAATGAGGAGAAGCTTTGCTG -ACGGAATGAGGAGAAGCTTCCATG -ACGGAATGAGGAGAAGCTTGTGTG -ACGGAATGAGGAGAAGCTCTAGTG -ACGGAATGAGGAGAAGCTCATCTG -ACGGAATGAGGAGAAGCTGAGTTG -ACGGAATGAGGAGAAGCTAGACTG -ACGGAATGAGGAGAAGCTTCGGTA -ACGGAATGAGGAGAAGCTTGCCTA -ACGGAATGAGGAGAAGCTCCACTA -ACGGAATGAGGAGAAGCTGGAGTA -ACGGAATGAGGAGAAGCTTCGTCT -ACGGAATGAGGAGAAGCTTGCACT -ACGGAATGAGGAGAAGCTCTGACT -ACGGAATGAGGAGAAGCTCAACCT -ACGGAATGAGGAGAAGCTGCTACT -ACGGAATGAGGAGAAGCTGGATCT -ACGGAATGAGGAGAAGCTAAGGCT -ACGGAATGAGGAGAAGCTTCAACC -ACGGAATGAGGAGAAGCTTGTTCC -ACGGAATGAGGAGAAGCTATTCCC -ACGGAATGAGGAGAAGCTTTCTCG -ACGGAATGAGGAGAAGCTTAGACG -ACGGAATGAGGAGAAGCTGTAACG -ACGGAATGAGGAGAAGCTACTTCG -ACGGAATGAGGAGAAGCTTACGCA -ACGGAATGAGGAGAAGCTCTTGCA -ACGGAATGAGGAGAAGCTCGAACA -ACGGAATGAGGAGAAGCTCAGTCA -ACGGAATGAGGAGAAGCTGATCCA -ACGGAATGAGGAGAAGCTACGACA -ACGGAATGAGGAGAAGCTAGCTCA -ACGGAATGAGGAGAAGCTTCACGT -ACGGAATGAGGAGAAGCTCGTAGT -ACGGAATGAGGAGAAGCTGTCAGT -ACGGAATGAGGAGAAGCTGAAGGT -ACGGAATGAGGAGAAGCTAACCGT -ACGGAATGAGGAGAAGCTTTGTGC -ACGGAATGAGGAGAAGCTCTAAGC -ACGGAATGAGGAGAAGCTACTAGC -ACGGAATGAGGAGAAGCTAGATGC -ACGGAATGAGGAGAAGCTTGAAGG -ACGGAATGAGGAGAAGCTCAATGG -ACGGAATGAGGAGAAGCTATGAGG -ACGGAATGAGGAGAAGCTAATGGG -ACGGAATGAGGAGAAGCTTCCTGA -ACGGAATGAGGAGAAGCTTAGCGA -ACGGAATGAGGAGAAGCTCACAGA -ACGGAATGAGGAGAAGCTGCAAGA -ACGGAATGAGGAGAAGCTGGTTGA -ACGGAATGAGGAGAAGCTTCCGAT -ACGGAATGAGGAGAAGCTTGGCAT -ACGGAATGAGGAGAAGCTCGAGAT -ACGGAATGAGGAGAAGCTTACCAC -ACGGAATGAGGAGAAGCTCAGAAC -ACGGAATGAGGAGAAGCTGTCTAC -ACGGAATGAGGAGAAGCTACGTAC -ACGGAATGAGGAGAAGCTAGTGAC -ACGGAATGAGGAGAAGCTCTGTAG -ACGGAATGAGGAGAAGCTCCTAAG -ACGGAATGAGGAGAAGCTGTTCAG -ACGGAATGAGGAGAAGCTGCATAG -ACGGAATGAGGAGAAGCTGACAAG -ACGGAATGAGGAGAAGCTAAGCAG -ACGGAATGAGGAGAAGCTCGTCAA -ACGGAATGAGGAGAAGCTGCTGAA -ACGGAATGAGGAGAAGCTAGTACG -ACGGAATGAGGAGAAGCTATCCGA -ACGGAATGAGGAGAAGCTATGGGA -ACGGAATGAGGAGAAGCTGTGCAA -ACGGAATGAGGAGAAGCTGAGGAA -ACGGAATGAGGAGAAGCTCAGGTA -ACGGAATGAGGAGAAGCTGACTCT -ACGGAATGAGGAGAAGCTAGTCCT -ACGGAATGAGGAGAAGCTTAAGCC -ACGGAATGAGGAGAAGCTATAGCC -ACGGAATGAGGAGAAGCTTAACCG -ACGGAATGAGGAGAAGCTATGCCA -ACGGAATGAGGAACGAGTGGAAAC -ACGGAATGAGGAACGAGTAACACC -ACGGAATGAGGAACGAGTATCGAG -ACGGAATGAGGAACGAGTCTCCTT -ACGGAATGAGGAACGAGTCCTGTT -ACGGAATGAGGAACGAGTCGGTTT -ACGGAATGAGGAACGAGTGTGGTT -ACGGAATGAGGAACGAGTGCCTTT -ACGGAATGAGGAACGAGTGGTCTT -ACGGAATGAGGAACGAGTACGCTT -ACGGAATGAGGAACGAGTAGCGTT -ACGGAATGAGGAACGAGTTTCGTC -ACGGAATGAGGAACGAGTTCTCTC -ACGGAATGAGGAACGAGTTGGATC -ACGGAATGAGGAACGAGTCACTTC -ACGGAATGAGGAACGAGTGTACTC -ACGGAATGAGGAACGAGTGATGTC -ACGGAATGAGGAACGAGTACAGTC -ACGGAATGAGGAACGAGTTTGCTG -ACGGAATGAGGAACGAGTTCCATG -ACGGAATGAGGAACGAGTTGTGTG -ACGGAATGAGGAACGAGTCTAGTG -ACGGAATGAGGAACGAGTCATCTG -ACGGAATGAGGAACGAGTGAGTTG -ACGGAATGAGGAACGAGTAGACTG -ACGGAATGAGGAACGAGTTCGGTA -ACGGAATGAGGAACGAGTTGCCTA -ACGGAATGAGGAACGAGTCCACTA -ACGGAATGAGGAACGAGTGGAGTA -ACGGAATGAGGAACGAGTTCGTCT -ACGGAATGAGGAACGAGTTGCACT -ACGGAATGAGGAACGAGTCTGACT -ACGGAATGAGGAACGAGTCAACCT -ACGGAATGAGGAACGAGTGCTACT -ACGGAATGAGGAACGAGTGGATCT -ACGGAATGAGGAACGAGTAAGGCT -ACGGAATGAGGAACGAGTTCAACC -ACGGAATGAGGAACGAGTTGTTCC -ACGGAATGAGGAACGAGTATTCCC -ACGGAATGAGGAACGAGTTTCTCG -ACGGAATGAGGAACGAGTTAGACG -ACGGAATGAGGAACGAGTGTAACG -ACGGAATGAGGAACGAGTACTTCG -ACGGAATGAGGAACGAGTTACGCA -ACGGAATGAGGAACGAGTCTTGCA -ACGGAATGAGGAACGAGTCGAACA -ACGGAATGAGGAACGAGTCAGTCA -ACGGAATGAGGAACGAGTGATCCA -ACGGAATGAGGAACGAGTACGACA -ACGGAATGAGGAACGAGTAGCTCA -ACGGAATGAGGAACGAGTTCACGT -ACGGAATGAGGAACGAGTCGTAGT -ACGGAATGAGGAACGAGTGTCAGT -ACGGAATGAGGAACGAGTGAAGGT -ACGGAATGAGGAACGAGTAACCGT -ACGGAATGAGGAACGAGTTTGTGC -ACGGAATGAGGAACGAGTCTAAGC -ACGGAATGAGGAACGAGTACTAGC -ACGGAATGAGGAACGAGTAGATGC -ACGGAATGAGGAACGAGTTGAAGG -ACGGAATGAGGAACGAGTCAATGG -ACGGAATGAGGAACGAGTATGAGG -ACGGAATGAGGAACGAGTAATGGG -ACGGAATGAGGAACGAGTTCCTGA -ACGGAATGAGGAACGAGTTAGCGA -ACGGAATGAGGAACGAGTCACAGA -ACGGAATGAGGAACGAGTGCAAGA -ACGGAATGAGGAACGAGTGGTTGA -ACGGAATGAGGAACGAGTTCCGAT -ACGGAATGAGGAACGAGTTGGCAT -ACGGAATGAGGAACGAGTCGAGAT -ACGGAATGAGGAACGAGTTACCAC -ACGGAATGAGGAACGAGTCAGAAC -ACGGAATGAGGAACGAGTGTCTAC -ACGGAATGAGGAACGAGTACGTAC -ACGGAATGAGGAACGAGTAGTGAC -ACGGAATGAGGAACGAGTCTGTAG -ACGGAATGAGGAACGAGTCCTAAG -ACGGAATGAGGAACGAGTGTTCAG -ACGGAATGAGGAACGAGTGCATAG -ACGGAATGAGGAACGAGTGACAAG -ACGGAATGAGGAACGAGTAAGCAG -ACGGAATGAGGAACGAGTCGTCAA -ACGGAATGAGGAACGAGTGCTGAA -ACGGAATGAGGAACGAGTAGTACG -ACGGAATGAGGAACGAGTATCCGA -ACGGAATGAGGAACGAGTATGGGA -ACGGAATGAGGAACGAGTGTGCAA -ACGGAATGAGGAACGAGTGAGGAA -ACGGAATGAGGAACGAGTCAGGTA -ACGGAATGAGGAACGAGTGACTCT -ACGGAATGAGGAACGAGTAGTCCT -ACGGAATGAGGAACGAGTTAAGCC -ACGGAATGAGGAACGAGTATAGCC -ACGGAATGAGGAACGAGTTAACCG -ACGGAATGAGGAACGAGTATGCCA -ACGGAATGAGGACGAATCGGAAAC -ACGGAATGAGGACGAATCAACACC -ACGGAATGAGGACGAATCATCGAG -ACGGAATGAGGACGAATCCTCCTT -ACGGAATGAGGACGAATCCCTGTT -ACGGAATGAGGACGAATCCGGTTT -ACGGAATGAGGACGAATCGTGGTT -ACGGAATGAGGACGAATCGCCTTT -ACGGAATGAGGACGAATCGGTCTT -ACGGAATGAGGACGAATCACGCTT -ACGGAATGAGGACGAATCAGCGTT -ACGGAATGAGGACGAATCTTCGTC -ACGGAATGAGGACGAATCTCTCTC -ACGGAATGAGGACGAATCTGGATC -ACGGAATGAGGACGAATCCACTTC -ACGGAATGAGGACGAATCGTACTC -ACGGAATGAGGACGAATCGATGTC -ACGGAATGAGGACGAATCACAGTC -ACGGAATGAGGACGAATCTTGCTG -ACGGAATGAGGACGAATCTCCATG -ACGGAATGAGGACGAATCTGTGTG -ACGGAATGAGGACGAATCCTAGTG -ACGGAATGAGGACGAATCCATCTG -ACGGAATGAGGACGAATCGAGTTG -ACGGAATGAGGACGAATCAGACTG -ACGGAATGAGGACGAATCTCGGTA -ACGGAATGAGGACGAATCTGCCTA -ACGGAATGAGGACGAATCCCACTA -ACGGAATGAGGACGAATCGGAGTA -ACGGAATGAGGACGAATCTCGTCT -ACGGAATGAGGACGAATCTGCACT -ACGGAATGAGGACGAATCCTGACT -ACGGAATGAGGACGAATCCAACCT -ACGGAATGAGGACGAATCGCTACT -ACGGAATGAGGACGAATCGGATCT -ACGGAATGAGGACGAATCAAGGCT -ACGGAATGAGGACGAATCTCAACC -ACGGAATGAGGACGAATCTGTTCC -ACGGAATGAGGACGAATCATTCCC -ACGGAATGAGGACGAATCTTCTCG -ACGGAATGAGGACGAATCTAGACG -ACGGAATGAGGACGAATCGTAACG -ACGGAATGAGGACGAATCACTTCG -ACGGAATGAGGACGAATCTACGCA -ACGGAATGAGGACGAATCCTTGCA -ACGGAATGAGGACGAATCCGAACA -ACGGAATGAGGACGAATCCAGTCA -ACGGAATGAGGACGAATCGATCCA -ACGGAATGAGGACGAATCACGACA -ACGGAATGAGGACGAATCAGCTCA -ACGGAATGAGGACGAATCTCACGT -ACGGAATGAGGACGAATCCGTAGT -ACGGAATGAGGACGAATCGTCAGT -ACGGAATGAGGACGAATCGAAGGT -ACGGAATGAGGACGAATCAACCGT -ACGGAATGAGGACGAATCTTGTGC -ACGGAATGAGGACGAATCCTAAGC -ACGGAATGAGGACGAATCACTAGC -ACGGAATGAGGACGAATCAGATGC -ACGGAATGAGGACGAATCTGAAGG -ACGGAATGAGGACGAATCCAATGG -ACGGAATGAGGACGAATCATGAGG -ACGGAATGAGGACGAATCAATGGG -ACGGAATGAGGACGAATCTCCTGA -ACGGAATGAGGACGAATCTAGCGA -ACGGAATGAGGACGAATCCACAGA -ACGGAATGAGGACGAATCGCAAGA -ACGGAATGAGGACGAATCGGTTGA -ACGGAATGAGGACGAATCTCCGAT -ACGGAATGAGGACGAATCTGGCAT -ACGGAATGAGGACGAATCCGAGAT -ACGGAATGAGGACGAATCTACCAC -ACGGAATGAGGACGAATCCAGAAC -ACGGAATGAGGACGAATCGTCTAC -ACGGAATGAGGACGAATCACGTAC -ACGGAATGAGGACGAATCAGTGAC -ACGGAATGAGGACGAATCCTGTAG -ACGGAATGAGGACGAATCCCTAAG -ACGGAATGAGGACGAATCGTTCAG -ACGGAATGAGGACGAATCGCATAG -ACGGAATGAGGACGAATCGACAAG -ACGGAATGAGGACGAATCAAGCAG -ACGGAATGAGGACGAATCCGTCAA -ACGGAATGAGGACGAATCGCTGAA -ACGGAATGAGGACGAATCAGTACG -ACGGAATGAGGACGAATCATCCGA -ACGGAATGAGGACGAATCATGGGA -ACGGAATGAGGACGAATCGTGCAA -ACGGAATGAGGACGAATCGAGGAA -ACGGAATGAGGACGAATCCAGGTA -ACGGAATGAGGACGAATCGACTCT -ACGGAATGAGGACGAATCAGTCCT -ACGGAATGAGGACGAATCTAAGCC -ACGGAATGAGGACGAATCATAGCC -ACGGAATGAGGACGAATCTAACCG -ACGGAATGAGGACGAATCATGCCA -ACGGAATGAGGAGGAATGGGAAAC -ACGGAATGAGGAGGAATGAACACC -ACGGAATGAGGAGGAATGATCGAG -ACGGAATGAGGAGGAATGCTCCTT -ACGGAATGAGGAGGAATGCCTGTT -ACGGAATGAGGAGGAATGCGGTTT -ACGGAATGAGGAGGAATGGTGGTT -ACGGAATGAGGAGGAATGGCCTTT -ACGGAATGAGGAGGAATGGGTCTT -ACGGAATGAGGAGGAATGACGCTT -ACGGAATGAGGAGGAATGAGCGTT -ACGGAATGAGGAGGAATGTTCGTC -ACGGAATGAGGAGGAATGTCTCTC -ACGGAATGAGGAGGAATGTGGATC -ACGGAATGAGGAGGAATGCACTTC -ACGGAATGAGGAGGAATGGTACTC -ACGGAATGAGGAGGAATGGATGTC -ACGGAATGAGGAGGAATGACAGTC -ACGGAATGAGGAGGAATGTTGCTG -ACGGAATGAGGAGGAATGTCCATG -ACGGAATGAGGAGGAATGTGTGTG -ACGGAATGAGGAGGAATGCTAGTG -ACGGAATGAGGAGGAATGCATCTG -ACGGAATGAGGAGGAATGGAGTTG -ACGGAATGAGGAGGAATGAGACTG -ACGGAATGAGGAGGAATGTCGGTA -ACGGAATGAGGAGGAATGTGCCTA -ACGGAATGAGGAGGAATGCCACTA -ACGGAATGAGGAGGAATGGGAGTA -ACGGAATGAGGAGGAATGTCGTCT -ACGGAATGAGGAGGAATGTGCACT -ACGGAATGAGGAGGAATGCTGACT -ACGGAATGAGGAGGAATGCAACCT -ACGGAATGAGGAGGAATGGCTACT -ACGGAATGAGGAGGAATGGGATCT -ACGGAATGAGGAGGAATGAAGGCT -ACGGAATGAGGAGGAATGTCAACC -ACGGAATGAGGAGGAATGTGTTCC -ACGGAATGAGGAGGAATGATTCCC -ACGGAATGAGGAGGAATGTTCTCG -ACGGAATGAGGAGGAATGTAGACG -ACGGAATGAGGAGGAATGGTAACG -ACGGAATGAGGAGGAATGACTTCG -ACGGAATGAGGAGGAATGTACGCA -ACGGAATGAGGAGGAATGCTTGCA -ACGGAATGAGGAGGAATGCGAACA -ACGGAATGAGGAGGAATGCAGTCA -ACGGAATGAGGAGGAATGGATCCA -ACGGAATGAGGAGGAATGACGACA -ACGGAATGAGGAGGAATGAGCTCA -ACGGAATGAGGAGGAATGTCACGT -ACGGAATGAGGAGGAATGCGTAGT -ACGGAATGAGGAGGAATGGTCAGT -ACGGAATGAGGAGGAATGGAAGGT -ACGGAATGAGGAGGAATGAACCGT -ACGGAATGAGGAGGAATGTTGTGC -ACGGAATGAGGAGGAATGCTAAGC -ACGGAATGAGGAGGAATGACTAGC -ACGGAATGAGGAGGAATGAGATGC -ACGGAATGAGGAGGAATGTGAAGG -ACGGAATGAGGAGGAATGCAATGG -ACGGAATGAGGAGGAATGATGAGG -ACGGAATGAGGAGGAATGAATGGG -ACGGAATGAGGAGGAATGTCCTGA -ACGGAATGAGGAGGAATGTAGCGA -ACGGAATGAGGAGGAATGCACAGA -ACGGAATGAGGAGGAATGGCAAGA -ACGGAATGAGGAGGAATGGGTTGA -ACGGAATGAGGAGGAATGTCCGAT -ACGGAATGAGGAGGAATGTGGCAT -ACGGAATGAGGAGGAATGCGAGAT -ACGGAATGAGGAGGAATGTACCAC -ACGGAATGAGGAGGAATGCAGAAC -ACGGAATGAGGAGGAATGGTCTAC -ACGGAATGAGGAGGAATGACGTAC -ACGGAATGAGGAGGAATGAGTGAC -ACGGAATGAGGAGGAATGCTGTAG -ACGGAATGAGGAGGAATGCCTAAG -ACGGAATGAGGAGGAATGGTTCAG -ACGGAATGAGGAGGAATGGCATAG -ACGGAATGAGGAGGAATGGACAAG -ACGGAATGAGGAGGAATGAAGCAG -ACGGAATGAGGAGGAATGCGTCAA -ACGGAATGAGGAGGAATGGCTGAA -ACGGAATGAGGAGGAATGAGTACG -ACGGAATGAGGAGGAATGATCCGA -ACGGAATGAGGAGGAATGATGGGA -ACGGAATGAGGAGGAATGGTGCAA -ACGGAATGAGGAGGAATGGAGGAA -ACGGAATGAGGAGGAATGCAGGTA -ACGGAATGAGGAGGAATGGACTCT -ACGGAATGAGGAGGAATGAGTCCT -ACGGAATGAGGAGGAATGTAAGCC -ACGGAATGAGGAGGAATGATAGCC -ACGGAATGAGGAGGAATGTAACCG -ACGGAATGAGGAGGAATGATGCCA -ACGGAATGAGGACAAGTGGGAAAC -ACGGAATGAGGACAAGTGAACACC -ACGGAATGAGGACAAGTGATCGAG -ACGGAATGAGGACAAGTGCTCCTT -ACGGAATGAGGACAAGTGCCTGTT -ACGGAATGAGGACAAGTGCGGTTT -ACGGAATGAGGACAAGTGGTGGTT -ACGGAATGAGGACAAGTGGCCTTT -ACGGAATGAGGACAAGTGGGTCTT -ACGGAATGAGGACAAGTGACGCTT -ACGGAATGAGGACAAGTGAGCGTT -ACGGAATGAGGACAAGTGTTCGTC -ACGGAATGAGGACAAGTGTCTCTC -ACGGAATGAGGACAAGTGTGGATC -ACGGAATGAGGACAAGTGCACTTC -ACGGAATGAGGACAAGTGGTACTC -ACGGAATGAGGACAAGTGGATGTC -ACGGAATGAGGACAAGTGACAGTC -ACGGAATGAGGACAAGTGTTGCTG -ACGGAATGAGGACAAGTGTCCATG -ACGGAATGAGGACAAGTGTGTGTG -ACGGAATGAGGACAAGTGCTAGTG -ACGGAATGAGGACAAGTGCATCTG -ACGGAATGAGGACAAGTGGAGTTG -ACGGAATGAGGACAAGTGAGACTG -ACGGAATGAGGACAAGTGTCGGTA -ACGGAATGAGGACAAGTGTGCCTA -ACGGAATGAGGACAAGTGCCACTA -ACGGAATGAGGACAAGTGGGAGTA -ACGGAATGAGGACAAGTGTCGTCT -ACGGAATGAGGACAAGTGTGCACT -ACGGAATGAGGACAAGTGCTGACT -ACGGAATGAGGACAAGTGCAACCT -ACGGAATGAGGACAAGTGGCTACT -ACGGAATGAGGACAAGTGGGATCT -ACGGAATGAGGACAAGTGAAGGCT -ACGGAATGAGGACAAGTGTCAACC -ACGGAATGAGGACAAGTGTGTTCC -ACGGAATGAGGACAAGTGATTCCC -ACGGAATGAGGACAAGTGTTCTCG -ACGGAATGAGGACAAGTGTAGACG -ACGGAATGAGGACAAGTGGTAACG -ACGGAATGAGGACAAGTGACTTCG -ACGGAATGAGGACAAGTGTACGCA -ACGGAATGAGGACAAGTGCTTGCA -ACGGAATGAGGACAAGTGCGAACA -ACGGAATGAGGACAAGTGCAGTCA -ACGGAATGAGGACAAGTGGATCCA -ACGGAATGAGGACAAGTGACGACA -ACGGAATGAGGACAAGTGAGCTCA -ACGGAATGAGGACAAGTGTCACGT -ACGGAATGAGGACAAGTGCGTAGT -ACGGAATGAGGACAAGTGGTCAGT -ACGGAATGAGGACAAGTGGAAGGT -ACGGAATGAGGACAAGTGAACCGT -ACGGAATGAGGACAAGTGTTGTGC -ACGGAATGAGGACAAGTGCTAAGC -ACGGAATGAGGACAAGTGACTAGC -ACGGAATGAGGACAAGTGAGATGC -ACGGAATGAGGACAAGTGTGAAGG -ACGGAATGAGGACAAGTGCAATGG -ACGGAATGAGGACAAGTGATGAGG -ACGGAATGAGGACAAGTGAATGGG -ACGGAATGAGGACAAGTGTCCTGA -ACGGAATGAGGACAAGTGTAGCGA -ACGGAATGAGGACAAGTGCACAGA -ACGGAATGAGGACAAGTGGCAAGA -ACGGAATGAGGACAAGTGGGTTGA -ACGGAATGAGGACAAGTGTCCGAT -ACGGAATGAGGACAAGTGTGGCAT -ACGGAATGAGGACAAGTGCGAGAT -ACGGAATGAGGACAAGTGTACCAC -ACGGAATGAGGACAAGTGCAGAAC -ACGGAATGAGGACAAGTGGTCTAC -ACGGAATGAGGACAAGTGACGTAC -ACGGAATGAGGACAAGTGAGTGAC -ACGGAATGAGGACAAGTGCTGTAG -ACGGAATGAGGACAAGTGCCTAAG -ACGGAATGAGGACAAGTGGTTCAG -ACGGAATGAGGACAAGTGGCATAG -ACGGAATGAGGACAAGTGGACAAG -ACGGAATGAGGACAAGTGAAGCAG -ACGGAATGAGGACAAGTGCGTCAA -ACGGAATGAGGACAAGTGGCTGAA -ACGGAATGAGGACAAGTGAGTACG -ACGGAATGAGGACAAGTGATCCGA -ACGGAATGAGGACAAGTGATGGGA -ACGGAATGAGGACAAGTGGTGCAA -ACGGAATGAGGACAAGTGGAGGAA -ACGGAATGAGGACAAGTGCAGGTA -ACGGAATGAGGACAAGTGGACTCT -ACGGAATGAGGACAAGTGAGTCCT -ACGGAATGAGGACAAGTGTAAGCC -ACGGAATGAGGACAAGTGATAGCC -ACGGAATGAGGACAAGTGTAACCG -ACGGAATGAGGACAAGTGATGCCA -ACGGAATGAGGAGAAGAGGGAAAC -ACGGAATGAGGAGAAGAGAACACC -ACGGAATGAGGAGAAGAGATCGAG -ACGGAATGAGGAGAAGAGCTCCTT -ACGGAATGAGGAGAAGAGCCTGTT -ACGGAATGAGGAGAAGAGCGGTTT -ACGGAATGAGGAGAAGAGGTGGTT -ACGGAATGAGGAGAAGAGGCCTTT -ACGGAATGAGGAGAAGAGGGTCTT -ACGGAATGAGGAGAAGAGACGCTT -ACGGAATGAGGAGAAGAGAGCGTT -ACGGAATGAGGAGAAGAGTTCGTC -ACGGAATGAGGAGAAGAGTCTCTC -ACGGAATGAGGAGAAGAGTGGATC -ACGGAATGAGGAGAAGAGCACTTC -ACGGAATGAGGAGAAGAGGTACTC -ACGGAATGAGGAGAAGAGGATGTC -ACGGAATGAGGAGAAGAGACAGTC -ACGGAATGAGGAGAAGAGTTGCTG -ACGGAATGAGGAGAAGAGTCCATG -ACGGAATGAGGAGAAGAGTGTGTG -ACGGAATGAGGAGAAGAGCTAGTG -ACGGAATGAGGAGAAGAGCATCTG -ACGGAATGAGGAGAAGAGGAGTTG -ACGGAATGAGGAGAAGAGAGACTG -ACGGAATGAGGAGAAGAGTCGGTA -ACGGAATGAGGAGAAGAGTGCCTA -ACGGAATGAGGAGAAGAGCCACTA -ACGGAATGAGGAGAAGAGGGAGTA -ACGGAATGAGGAGAAGAGTCGTCT -ACGGAATGAGGAGAAGAGTGCACT -ACGGAATGAGGAGAAGAGCTGACT -ACGGAATGAGGAGAAGAGCAACCT -ACGGAATGAGGAGAAGAGGCTACT -ACGGAATGAGGAGAAGAGGGATCT -ACGGAATGAGGAGAAGAGAAGGCT -ACGGAATGAGGAGAAGAGTCAACC -ACGGAATGAGGAGAAGAGTGTTCC -ACGGAATGAGGAGAAGAGATTCCC -ACGGAATGAGGAGAAGAGTTCTCG -ACGGAATGAGGAGAAGAGTAGACG -ACGGAATGAGGAGAAGAGGTAACG -ACGGAATGAGGAGAAGAGACTTCG -ACGGAATGAGGAGAAGAGTACGCA -ACGGAATGAGGAGAAGAGCTTGCA -ACGGAATGAGGAGAAGAGCGAACA -ACGGAATGAGGAGAAGAGCAGTCA -ACGGAATGAGGAGAAGAGGATCCA -ACGGAATGAGGAGAAGAGACGACA -ACGGAATGAGGAGAAGAGAGCTCA -ACGGAATGAGGAGAAGAGTCACGT -ACGGAATGAGGAGAAGAGCGTAGT -ACGGAATGAGGAGAAGAGGTCAGT -ACGGAATGAGGAGAAGAGGAAGGT -ACGGAATGAGGAGAAGAGAACCGT -ACGGAATGAGGAGAAGAGTTGTGC -ACGGAATGAGGAGAAGAGCTAAGC -ACGGAATGAGGAGAAGAGACTAGC -ACGGAATGAGGAGAAGAGAGATGC -ACGGAATGAGGAGAAGAGTGAAGG -ACGGAATGAGGAGAAGAGCAATGG -ACGGAATGAGGAGAAGAGATGAGG -ACGGAATGAGGAGAAGAGAATGGG -ACGGAATGAGGAGAAGAGTCCTGA -ACGGAATGAGGAGAAGAGTAGCGA -ACGGAATGAGGAGAAGAGCACAGA -ACGGAATGAGGAGAAGAGGCAAGA -ACGGAATGAGGAGAAGAGGGTTGA -ACGGAATGAGGAGAAGAGTCCGAT -ACGGAATGAGGAGAAGAGTGGCAT -ACGGAATGAGGAGAAGAGCGAGAT -ACGGAATGAGGAGAAGAGTACCAC -ACGGAATGAGGAGAAGAGCAGAAC -ACGGAATGAGGAGAAGAGGTCTAC -ACGGAATGAGGAGAAGAGACGTAC -ACGGAATGAGGAGAAGAGAGTGAC -ACGGAATGAGGAGAAGAGCTGTAG -ACGGAATGAGGAGAAGAGCCTAAG -ACGGAATGAGGAGAAGAGGTTCAG -ACGGAATGAGGAGAAGAGGCATAG -ACGGAATGAGGAGAAGAGGACAAG -ACGGAATGAGGAGAAGAGAAGCAG -ACGGAATGAGGAGAAGAGCGTCAA -ACGGAATGAGGAGAAGAGGCTGAA -ACGGAATGAGGAGAAGAGAGTACG -ACGGAATGAGGAGAAGAGATCCGA -ACGGAATGAGGAGAAGAGATGGGA -ACGGAATGAGGAGAAGAGGTGCAA -ACGGAATGAGGAGAAGAGGAGGAA -ACGGAATGAGGAGAAGAGCAGGTA -ACGGAATGAGGAGAAGAGGACTCT -ACGGAATGAGGAGAAGAGAGTCCT -ACGGAATGAGGAGAAGAGTAAGCC -ACGGAATGAGGAGAAGAGATAGCC -ACGGAATGAGGAGAAGAGTAACCG -ACGGAATGAGGAGAAGAGATGCCA -ACGGAATGAGGAGTACAGGGAAAC -ACGGAATGAGGAGTACAGAACACC -ACGGAATGAGGAGTACAGATCGAG -ACGGAATGAGGAGTACAGCTCCTT -ACGGAATGAGGAGTACAGCCTGTT -ACGGAATGAGGAGTACAGCGGTTT -ACGGAATGAGGAGTACAGGTGGTT -ACGGAATGAGGAGTACAGGCCTTT -ACGGAATGAGGAGTACAGGGTCTT -ACGGAATGAGGAGTACAGACGCTT -ACGGAATGAGGAGTACAGAGCGTT -ACGGAATGAGGAGTACAGTTCGTC -ACGGAATGAGGAGTACAGTCTCTC -ACGGAATGAGGAGTACAGTGGATC -ACGGAATGAGGAGTACAGCACTTC -ACGGAATGAGGAGTACAGGTACTC -ACGGAATGAGGAGTACAGGATGTC -ACGGAATGAGGAGTACAGACAGTC -ACGGAATGAGGAGTACAGTTGCTG -ACGGAATGAGGAGTACAGTCCATG -ACGGAATGAGGAGTACAGTGTGTG -ACGGAATGAGGAGTACAGCTAGTG -ACGGAATGAGGAGTACAGCATCTG -ACGGAATGAGGAGTACAGGAGTTG -ACGGAATGAGGAGTACAGAGACTG -ACGGAATGAGGAGTACAGTCGGTA -ACGGAATGAGGAGTACAGTGCCTA -ACGGAATGAGGAGTACAGCCACTA -ACGGAATGAGGAGTACAGGGAGTA -ACGGAATGAGGAGTACAGTCGTCT -ACGGAATGAGGAGTACAGTGCACT -ACGGAATGAGGAGTACAGCTGACT -ACGGAATGAGGAGTACAGCAACCT -ACGGAATGAGGAGTACAGGCTACT -ACGGAATGAGGAGTACAGGGATCT -ACGGAATGAGGAGTACAGAAGGCT -ACGGAATGAGGAGTACAGTCAACC -ACGGAATGAGGAGTACAGTGTTCC -ACGGAATGAGGAGTACAGATTCCC -ACGGAATGAGGAGTACAGTTCTCG -ACGGAATGAGGAGTACAGTAGACG -ACGGAATGAGGAGTACAGGTAACG -ACGGAATGAGGAGTACAGACTTCG -ACGGAATGAGGAGTACAGTACGCA -ACGGAATGAGGAGTACAGCTTGCA -ACGGAATGAGGAGTACAGCGAACA -ACGGAATGAGGAGTACAGCAGTCA -ACGGAATGAGGAGTACAGGATCCA -ACGGAATGAGGAGTACAGACGACA -ACGGAATGAGGAGTACAGAGCTCA -ACGGAATGAGGAGTACAGTCACGT -ACGGAATGAGGAGTACAGCGTAGT -ACGGAATGAGGAGTACAGGTCAGT -ACGGAATGAGGAGTACAGGAAGGT -ACGGAATGAGGAGTACAGAACCGT -ACGGAATGAGGAGTACAGTTGTGC -ACGGAATGAGGAGTACAGCTAAGC -ACGGAATGAGGAGTACAGACTAGC -ACGGAATGAGGAGTACAGAGATGC -ACGGAATGAGGAGTACAGTGAAGG -ACGGAATGAGGAGTACAGCAATGG -ACGGAATGAGGAGTACAGATGAGG -ACGGAATGAGGAGTACAGAATGGG -ACGGAATGAGGAGTACAGTCCTGA -ACGGAATGAGGAGTACAGTAGCGA -ACGGAATGAGGAGTACAGCACAGA -ACGGAATGAGGAGTACAGGCAAGA -ACGGAATGAGGAGTACAGGGTTGA -ACGGAATGAGGAGTACAGTCCGAT -ACGGAATGAGGAGTACAGTGGCAT -ACGGAATGAGGAGTACAGCGAGAT -ACGGAATGAGGAGTACAGTACCAC -ACGGAATGAGGAGTACAGCAGAAC -ACGGAATGAGGAGTACAGGTCTAC -ACGGAATGAGGAGTACAGACGTAC -ACGGAATGAGGAGTACAGAGTGAC -ACGGAATGAGGAGTACAGCTGTAG -ACGGAATGAGGAGTACAGCCTAAG -ACGGAATGAGGAGTACAGGTTCAG -ACGGAATGAGGAGTACAGGCATAG -ACGGAATGAGGAGTACAGGACAAG -ACGGAATGAGGAGTACAGAAGCAG -ACGGAATGAGGAGTACAGCGTCAA -ACGGAATGAGGAGTACAGGCTGAA -ACGGAATGAGGAGTACAGAGTACG -ACGGAATGAGGAGTACAGATCCGA -ACGGAATGAGGAGTACAGATGGGA -ACGGAATGAGGAGTACAGGTGCAA -ACGGAATGAGGAGTACAGGAGGAA -ACGGAATGAGGAGTACAGCAGGTA -ACGGAATGAGGAGTACAGGACTCT -ACGGAATGAGGAGTACAGAGTCCT -ACGGAATGAGGAGTACAGTAAGCC -ACGGAATGAGGAGTACAGATAGCC -ACGGAATGAGGAGTACAGTAACCG -ACGGAATGAGGAGTACAGATGCCA -ACGGAATGAGGATCTGACGGAAAC -ACGGAATGAGGATCTGACAACACC -ACGGAATGAGGATCTGACATCGAG -ACGGAATGAGGATCTGACCTCCTT -ACGGAATGAGGATCTGACCCTGTT -ACGGAATGAGGATCTGACCGGTTT -ACGGAATGAGGATCTGACGTGGTT -ACGGAATGAGGATCTGACGCCTTT -ACGGAATGAGGATCTGACGGTCTT -ACGGAATGAGGATCTGACACGCTT -ACGGAATGAGGATCTGACAGCGTT -ACGGAATGAGGATCTGACTTCGTC -ACGGAATGAGGATCTGACTCTCTC -ACGGAATGAGGATCTGACTGGATC -ACGGAATGAGGATCTGACCACTTC -ACGGAATGAGGATCTGACGTACTC -ACGGAATGAGGATCTGACGATGTC -ACGGAATGAGGATCTGACACAGTC -ACGGAATGAGGATCTGACTTGCTG -ACGGAATGAGGATCTGACTCCATG -ACGGAATGAGGATCTGACTGTGTG -ACGGAATGAGGATCTGACCTAGTG -ACGGAATGAGGATCTGACCATCTG -ACGGAATGAGGATCTGACGAGTTG -ACGGAATGAGGATCTGACAGACTG -ACGGAATGAGGATCTGACTCGGTA -ACGGAATGAGGATCTGACTGCCTA -ACGGAATGAGGATCTGACCCACTA -ACGGAATGAGGATCTGACGGAGTA -ACGGAATGAGGATCTGACTCGTCT -ACGGAATGAGGATCTGACTGCACT -ACGGAATGAGGATCTGACCTGACT -ACGGAATGAGGATCTGACCAACCT -ACGGAATGAGGATCTGACGCTACT -ACGGAATGAGGATCTGACGGATCT -ACGGAATGAGGATCTGACAAGGCT -ACGGAATGAGGATCTGACTCAACC -ACGGAATGAGGATCTGACTGTTCC -ACGGAATGAGGATCTGACATTCCC -ACGGAATGAGGATCTGACTTCTCG -ACGGAATGAGGATCTGACTAGACG -ACGGAATGAGGATCTGACGTAACG -ACGGAATGAGGATCTGACACTTCG -ACGGAATGAGGATCTGACTACGCA -ACGGAATGAGGATCTGACCTTGCA -ACGGAATGAGGATCTGACCGAACA -ACGGAATGAGGATCTGACCAGTCA -ACGGAATGAGGATCTGACGATCCA -ACGGAATGAGGATCTGACACGACA -ACGGAATGAGGATCTGACAGCTCA -ACGGAATGAGGATCTGACTCACGT -ACGGAATGAGGATCTGACCGTAGT -ACGGAATGAGGATCTGACGTCAGT -ACGGAATGAGGATCTGACGAAGGT -ACGGAATGAGGATCTGACAACCGT -ACGGAATGAGGATCTGACTTGTGC -ACGGAATGAGGATCTGACCTAAGC -ACGGAATGAGGATCTGACACTAGC -ACGGAATGAGGATCTGACAGATGC -ACGGAATGAGGATCTGACTGAAGG -ACGGAATGAGGATCTGACCAATGG -ACGGAATGAGGATCTGACATGAGG -ACGGAATGAGGATCTGACAATGGG -ACGGAATGAGGATCTGACTCCTGA -ACGGAATGAGGATCTGACTAGCGA -ACGGAATGAGGATCTGACCACAGA -ACGGAATGAGGATCTGACGCAAGA -ACGGAATGAGGATCTGACGGTTGA -ACGGAATGAGGATCTGACTCCGAT -ACGGAATGAGGATCTGACTGGCAT -ACGGAATGAGGATCTGACCGAGAT -ACGGAATGAGGATCTGACTACCAC -ACGGAATGAGGATCTGACCAGAAC -ACGGAATGAGGATCTGACGTCTAC -ACGGAATGAGGATCTGACACGTAC -ACGGAATGAGGATCTGACAGTGAC -ACGGAATGAGGATCTGACCTGTAG -ACGGAATGAGGATCTGACCCTAAG -ACGGAATGAGGATCTGACGTTCAG -ACGGAATGAGGATCTGACGCATAG -ACGGAATGAGGATCTGACGACAAG -ACGGAATGAGGATCTGACAAGCAG -ACGGAATGAGGATCTGACCGTCAA -ACGGAATGAGGATCTGACGCTGAA -ACGGAATGAGGATCTGACAGTACG -ACGGAATGAGGATCTGACATCCGA -ACGGAATGAGGATCTGACATGGGA -ACGGAATGAGGATCTGACGTGCAA -ACGGAATGAGGATCTGACGAGGAA -ACGGAATGAGGATCTGACCAGGTA -ACGGAATGAGGATCTGACGACTCT -ACGGAATGAGGATCTGACAGTCCT -ACGGAATGAGGATCTGACTAAGCC -ACGGAATGAGGATCTGACATAGCC -ACGGAATGAGGATCTGACTAACCG -ACGGAATGAGGATCTGACATGCCA -ACGGAATGAGGACCTAGTGGAAAC -ACGGAATGAGGACCTAGTAACACC -ACGGAATGAGGACCTAGTATCGAG -ACGGAATGAGGACCTAGTCTCCTT -ACGGAATGAGGACCTAGTCCTGTT -ACGGAATGAGGACCTAGTCGGTTT -ACGGAATGAGGACCTAGTGTGGTT -ACGGAATGAGGACCTAGTGCCTTT -ACGGAATGAGGACCTAGTGGTCTT -ACGGAATGAGGACCTAGTACGCTT -ACGGAATGAGGACCTAGTAGCGTT -ACGGAATGAGGACCTAGTTTCGTC -ACGGAATGAGGACCTAGTTCTCTC -ACGGAATGAGGACCTAGTTGGATC -ACGGAATGAGGACCTAGTCACTTC -ACGGAATGAGGACCTAGTGTACTC -ACGGAATGAGGACCTAGTGATGTC -ACGGAATGAGGACCTAGTACAGTC -ACGGAATGAGGACCTAGTTTGCTG -ACGGAATGAGGACCTAGTTCCATG -ACGGAATGAGGACCTAGTTGTGTG -ACGGAATGAGGACCTAGTCTAGTG -ACGGAATGAGGACCTAGTCATCTG -ACGGAATGAGGACCTAGTGAGTTG -ACGGAATGAGGACCTAGTAGACTG -ACGGAATGAGGACCTAGTTCGGTA -ACGGAATGAGGACCTAGTTGCCTA -ACGGAATGAGGACCTAGTCCACTA -ACGGAATGAGGACCTAGTGGAGTA -ACGGAATGAGGACCTAGTTCGTCT -ACGGAATGAGGACCTAGTTGCACT -ACGGAATGAGGACCTAGTCTGACT -ACGGAATGAGGACCTAGTCAACCT -ACGGAATGAGGACCTAGTGCTACT -ACGGAATGAGGACCTAGTGGATCT -ACGGAATGAGGACCTAGTAAGGCT -ACGGAATGAGGACCTAGTTCAACC -ACGGAATGAGGACCTAGTTGTTCC -ACGGAATGAGGACCTAGTATTCCC -ACGGAATGAGGACCTAGTTTCTCG -ACGGAATGAGGACCTAGTTAGACG -ACGGAATGAGGACCTAGTGTAACG -ACGGAATGAGGACCTAGTACTTCG -ACGGAATGAGGACCTAGTTACGCA -ACGGAATGAGGACCTAGTCTTGCA -ACGGAATGAGGACCTAGTCGAACA -ACGGAATGAGGACCTAGTCAGTCA -ACGGAATGAGGACCTAGTGATCCA -ACGGAATGAGGACCTAGTACGACA -ACGGAATGAGGACCTAGTAGCTCA -ACGGAATGAGGACCTAGTTCACGT -ACGGAATGAGGACCTAGTCGTAGT -ACGGAATGAGGACCTAGTGTCAGT -ACGGAATGAGGACCTAGTGAAGGT -ACGGAATGAGGACCTAGTAACCGT -ACGGAATGAGGACCTAGTTTGTGC -ACGGAATGAGGACCTAGTCTAAGC -ACGGAATGAGGACCTAGTACTAGC -ACGGAATGAGGACCTAGTAGATGC -ACGGAATGAGGACCTAGTTGAAGG -ACGGAATGAGGACCTAGTCAATGG -ACGGAATGAGGACCTAGTATGAGG -ACGGAATGAGGACCTAGTAATGGG -ACGGAATGAGGACCTAGTTCCTGA -ACGGAATGAGGACCTAGTTAGCGA -ACGGAATGAGGACCTAGTCACAGA -ACGGAATGAGGACCTAGTGCAAGA -ACGGAATGAGGACCTAGTGGTTGA -ACGGAATGAGGACCTAGTTCCGAT -ACGGAATGAGGACCTAGTTGGCAT -ACGGAATGAGGACCTAGTCGAGAT -ACGGAATGAGGACCTAGTTACCAC -ACGGAATGAGGACCTAGTCAGAAC -ACGGAATGAGGACCTAGTGTCTAC -ACGGAATGAGGACCTAGTACGTAC -ACGGAATGAGGACCTAGTAGTGAC -ACGGAATGAGGACCTAGTCTGTAG -ACGGAATGAGGACCTAGTCCTAAG -ACGGAATGAGGACCTAGTGTTCAG -ACGGAATGAGGACCTAGTGCATAG -ACGGAATGAGGACCTAGTGACAAG -ACGGAATGAGGACCTAGTAAGCAG -ACGGAATGAGGACCTAGTCGTCAA -ACGGAATGAGGACCTAGTGCTGAA -ACGGAATGAGGACCTAGTAGTACG -ACGGAATGAGGACCTAGTATCCGA -ACGGAATGAGGACCTAGTATGGGA -ACGGAATGAGGACCTAGTGTGCAA -ACGGAATGAGGACCTAGTGAGGAA -ACGGAATGAGGACCTAGTCAGGTA -ACGGAATGAGGACCTAGTGACTCT -ACGGAATGAGGACCTAGTAGTCCT -ACGGAATGAGGACCTAGTTAAGCC -ACGGAATGAGGACCTAGTATAGCC -ACGGAATGAGGACCTAGTTAACCG -ACGGAATGAGGACCTAGTATGCCA -ACGGAATGAGGAGCCTAAGGAAAC -ACGGAATGAGGAGCCTAAAACACC -ACGGAATGAGGAGCCTAAATCGAG -ACGGAATGAGGAGCCTAACTCCTT -ACGGAATGAGGAGCCTAACCTGTT -ACGGAATGAGGAGCCTAACGGTTT -ACGGAATGAGGAGCCTAAGTGGTT -ACGGAATGAGGAGCCTAAGCCTTT -ACGGAATGAGGAGCCTAAGGTCTT -ACGGAATGAGGAGCCTAAACGCTT -ACGGAATGAGGAGCCTAAAGCGTT -ACGGAATGAGGAGCCTAATTCGTC -ACGGAATGAGGAGCCTAATCTCTC -ACGGAATGAGGAGCCTAATGGATC -ACGGAATGAGGAGCCTAACACTTC -ACGGAATGAGGAGCCTAAGTACTC -ACGGAATGAGGAGCCTAAGATGTC -ACGGAATGAGGAGCCTAAACAGTC -ACGGAATGAGGAGCCTAATTGCTG -ACGGAATGAGGAGCCTAATCCATG -ACGGAATGAGGAGCCTAATGTGTG -ACGGAATGAGGAGCCTAACTAGTG -ACGGAATGAGGAGCCTAACATCTG -ACGGAATGAGGAGCCTAAGAGTTG -ACGGAATGAGGAGCCTAAAGACTG -ACGGAATGAGGAGCCTAATCGGTA -ACGGAATGAGGAGCCTAATGCCTA -ACGGAATGAGGAGCCTAACCACTA -ACGGAATGAGGAGCCTAAGGAGTA -ACGGAATGAGGAGCCTAATCGTCT -ACGGAATGAGGAGCCTAATGCACT -ACGGAATGAGGAGCCTAACTGACT -ACGGAATGAGGAGCCTAACAACCT -ACGGAATGAGGAGCCTAAGCTACT -ACGGAATGAGGAGCCTAAGGATCT -ACGGAATGAGGAGCCTAAAAGGCT -ACGGAATGAGGAGCCTAATCAACC -ACGGAATGAGGAGCCTAATGTTCC -ACGGAATGAGGAGCCTAAATTCCC -ACGGAATGAGGAGCCTAATTCTCG -ACGGAATGAGGAGCCTAATAGACG -ACGGAATGAGGAGCCTAAGTAACG -ACGGAATGAGGAGCCTAAACTTCG -ACGGAATGAGGAGCCTAATACGCA -ACGGAATGAGGAGCCTAACTTGCA -ACGGAATGAGGAGCCTAACGAACA -ACGGAATGAGGAGCCTAACAGTCA -ACGGAATGAGGAGCCTAAGATCCA -ACGGAATGAGGAGCCTAAACGACA -ACGGAATGAGGAGCCTAAAGCTCA -ACGGAATGAGGAGCCTAATCACGT -ACGGAATGAGGAGCCTAACGTAGT -ACGGAATGAGGAGCCTAAGTCAGT -ACGGAATGAGGAGCCTAAGAAGGT -ACGGAATGAGGAGCCTAAAACCGT -ACGGAATGAGGAGCCTAATTGTGC -ACGGAATGAGGAGCCTAACTAAGC -ACGGAATGAGGAGCCTAAACTAGC -ACGGAATGAGGAGCCTAAAGATGC -ACGGAATGAGGAGCCTAATGAAGG -ACGGAATGAGGAGCCTAACAATGG -ACGGAATGAGGAGCCTAAATGAGG -ACGGAATGAGGAGCCTAAAATGGG -ACGGAATGAGGAGCCTAATCCTGA -ACGGAATGAGGAGCCTAATAGCGA -ACGGAATGAGGAGCCTAACACAGA -ACGGAATGAGGAGCCTAAGCAAGA -ACGGAATGAGGAGCCTAAGGTTGA -ACGGAATGAGGAGCCTAATCCGAT -ACGGAATGAGGAGCCTAATGGCAT -ACGGAATGAGGAGCCTAACGAGAT -ACGGAATGAGGAGCCTAATACCAC -ACGGAATGAGGAGCCTAACAGAAC -ACGGAATGAGGAGCCTAAGTCTAC -ACGGAATGAGGAGCCTAAACGTAC -ACGGAATGAGGAGCCTAAAGTGAC -ACGGAATGAGGAGCCTAACTGTAG -ACGGAATGAGGAGCCTAACCTAAG -ACGGAATGAGGAGCCTAAGTTCAG -ACGGAATGAGGAGCCTAAGCATAG -ACGGAATGAGGAGCCTAAGACAAG -ACGGAATGAGGAGCCTAAAAGCAG -ACGGAATGAGGAGCCTAACGTCAA -ACGGAATGAGGAGCCTAAGCTGAA -ACGGAATGAGGAGCCTAAAGTACG -ACGGAATGAGGAGCCTAAATCCGA -ACGGAATGAGGAGCCTAAATGGGA -ACGGAATGAGGAGCCTAAGTGCAA -ACGGAATGAGGAGCCTAAGAGGAA -ACGGAATGAGGAGCCTAACAGGTA -ACGGAATGAGGAGCCTAAGACTCT -ACGGAATGAGGAGCCTAAAGTCCT -ACGGAATGAGGAGCCTAATAAGCC -ACGGAATGAGGAGCCTAAATAGCC -ACGGAATGAGGAGCCTAATAACCG -ACGGAATGAGGAGCCTAAATGCCA -ACGGAATGAGGAGCCATAGGAAAC -ACGGAATGAGGAGCCATAAACACC -ACGGAATGAGGAGCCATAATCGAG -ACGGAATGAGGAGCCATACTCCTT -ACGGAATGAGGAGCCATACCTGTT -ACGGAATGAGGAGCCATACGGTTT -ACGGAATGAGGAGCCATAGTGGTT -ACGGAATGAGGAGCCATAGCCTTT -ACGGAATGAGGAGCCATAGGTCTT -ACGGAATGAGGAGCCATAACGCTT -ACGGAATGAGGAGCCATAAGCGTT -ACGGAATGAGGAGCCATATTCGTC -ACGGAATGAGGAGCCATATCTCTC -ACGGAATGAGGAGCCATATGGATC -ACGGAATGAGGAGCCATACACTTC -ACGGAATGAGGAGCCATAGTACTC -ACGGAATGAGGAGCCATAGATGTC -ACGGAATGAGGAGCCATAACAGTC -ACGGAATGAGGAGCCATATTGCTG -ACGGAATGAGGAGCCATATCCATG -ACGGAATGAGGAGCCATATGTGTG -ACGGAATGAGGAGCCATACTAGTG -ACGGAATGAGGAGCCATACATCTG -ACGGAATGAGGAGCCATAGAGTTG -ACGGAATGAGGAGCCATAAGACTG -ACGGAATGAGGAGCCATATCGGTA -ACGGAATGAGGAGCCATATGCCTA -ACGGAATGAGGAGCCATACCACTA -ACGGAATGAGGAGCCATAGGAGTA -ACGGAATGAGGAGCCATATCGTCT -ACGGAATGAGGAGCCATATGCACT -ACGGAATGAGGAGCCATACTGACT -ACGGAATGAGGAGCCATACAACCT -ACGGAATGAGGAGCCATAGCTACT -ACGGAATGAGGAGCCATAGGATCT -ACGGAATGAGGAGCCATAAAGGCT -ACGGAATGAGGAGCCATATCAACC -ACGGAATGAGGAGCCATATGTTCC -ACGGAATGAGGAGCCATAATTCCC -ACGGAATGAGGAGCCATATTCTCG -ACGGAATGAGGAGCCATATAGACG -ACGGAATGAGGAGCCATAGTAACG -ACGGAATGAGGAGCCATAACTTCG -ACGGAATGAGGAGCCATATACGCA -ACGGAATGAGGAGCCATACTTGCA -ACGGAATGAGGAGCCATACGAACA -ACGGAATGAGGAGCCATACAGTCA -ACGGAATGAGGAGCCATAGATCCA -ACGGAATGAGGAGCCATAACGACA -ACGGAATGAGGAGCCATAAGCTCA -ACGGAATGAGGAGCCATATCACGT -ACGGAATGAGGAGCCATACGTAGT -ACGGAATGAGGAGCCATAGTCAGT -ACGGAATGAGGAGCCATAGAAGGT -ACGGAATGAGGAGCCATAAACCGT -ACGGAATGAGGAGCCATATTGTGC -ACGGAATGAGGAGCCATACTAAGC -ACGGAATGAGGAGCCATAACTAGC -ACGGAATGAGGAGCCATAAGATGC -ACGGAATGAGGAGCCATATGAAGG -ACGGAATGAGGAGCCATACAATGG -ACGGAATGAGGAGCCATAATGAGG -ACGGAATGAGGAGCCATAAATGGG -ACGGAATGAGGAGCCATATCCTGA -ACGGAATGAGGAGCCATATAGCGA -ACGGAATGAGGAGCCATACACAGA -ACGGAATGAGGAGCCATAGCAAGA -ACGGAATGAGGAGCCATAGGTTGA -ACGGAATGAGGAGCCATATCCGAT -ACGGAATGAGGAGCCATATGGCAT -ACGGAATGAGGAGCCATACGAGAT -ACGGAATGAGGAGCCATATACCAC -ACGGAATGAGGAGCCATACAGAAC -ACGGAATGAGGAGCCATAGTCTAC -ACGGAATGAGGAGCCATAACGTAC -ACGGAATGAGGAGCCATAAGTGAC -ACGGAATGAGGAGCCATACTGTAG -ACGGAATGAGGAGCCATACCTAAG -ACGGAATGAGGAGCCATAGTTCAG -ACGGAATGAGGAGCCATAGCATAG -ACGGAATGAGGAGCCATAGACAAG -ACGGAATGAGGAGCCATAAAGCAG -ACGGAATGAGGAGCCATACGTCAA -ACGGAATGAGGAGCCATAGCTGAA -ACGGAATGAGGAGCCATAAGTACG -ACGGAATGAGGAGCCATAATCCGA -ACGGAATGAGGAGCCATAATGGGA -ACGGAATGAGGAGCCATAGTGCAA -ACGGAATGAGGAGCCATAGAGGAA -ACGGAATGAGGAGCCATACAGGTA -ACGGAATGAGGAGCCATAGACTCT -ACGGAATGAGGAGCCATAAGTCCT -ACGGAATGAGGAGCCATATAAGCC -ACGGAATGAGGAGCCATAATAGCC -ACGGAATGAGGAGCCATATAACCG -ACGGAATGAGGAGCCATAATGCCA -ACGGAATGAGGACCGTAAGGAAAC -ACGGAATGAGGACCGTAAAACACC -ACGGAATGAGGACCGTAAATCGAG -ACGGAATGAGGACCGTAACTCCTT -ACGGAATGAGGACCGTAACCTGTT -ACGGAATGAGGACCGTAACGGTTT -ACGGAATGAGGACCGTAAGTGGTT -ACGGAATGAGGACCGTAAGCCTTT -ACGGAATGAGGACCGTAAGGTCTT -ACGGAATGAGGACCGTAAACGCTT -ACGGAATGAGGACCGTAAAGCGTT -ACGGAATGAGGACCGTAATTCGTC -ACGGAATGAGGACCGTAATCTCTC -ACGGAATGAGGACCGTAATGGATC -ACGGAATGAGGACCGTAACACTTC -ACGGAATGAGGACCGTAAGTACTC -ACGGAATGAGGACCGTAAGATGTC -ACGGAATGAGGACCGTAAACAGTC -ACGGAATGAGGACCGTAATTGCTG -ACGGAATGAGGACCGTAATCCATG -ACGGAATGAGGACCGTAATGTGTG -ACGGAATGAGGACCGTAACTAGTG -ACGGAATGAGGACCGTAACATCTG -ACGGAATGAGGACCGTAAGAGTTG -ACGGAATGAGGACCGTAAAGACTG -ACGGAATGAGGACCGTAATCGGTA -ACGGAATGAGGACCGTAATGCCTA -ACGGAATGAGGACCGTAACCACTA -ACGGAATGAGGACCGTAAGGAGTA -ACGGAATGAGGACCGTAATCGTCT -ACGGAATGAGGACCGTAATGCACT -ACGGAATGAGGACCGTAACTGACT -ACGGAATGAGGACCGTAACAACCT -ACGGAATGAGGACCGTAAGCTACT -ACGGAATGAGGACCGTAAGGATCT -ACGGAATGAGGACCGTAAAAGGCT -ACGGAATGAGGACCGTAATCAACC -ACGGAATGAGGACCGTAATGTTCC -ACGGAATGAGGACCGTAAATTCCC -ACGGAATGAGGACCGTAATTCTCG -ACGGAATGAGGACCGTAATAGACG -ACGGAATGAGGACCGTAAGTAACG -ACGGAATGAGGACCGTAAACTTCG -ACGGAATGAGGACCGTAATACGCA -ACGGAATGAGGACCGTAACTTGCA -ACGGAATGAGGACCGTAACGAACA -ACGGAATGAGGACCGTAACAGTCA -ACGGAATGAGGACCGTAAGATCCA -ACGGAATGAGGACCGTAAACGACA -ACGGAATGAGGACCGTAAAGCTCA -ACGGAATGAGGACCGTAATCACGT -ACGGAATGAGGACCGTAACGTAGT -ACGGAATGAGGACCGTAAGTCAGT -ACGGAATGAGGACCGTAAGAAGGT -ACGGAATGAGGACCGTAAAACCGT -ACGGAATGAGGACCGTAATTGTGC -ACGGAATGAGGACCGTAACTAAGC -ACGGAATGAGGACCGTAAACTAGC -ACGGAATGAGGACCGTAAAGATGC -ACGGAATGAGGACCGTAATGAAGG -ACGGAATGAGGACCGTAACAATGG -ACGGAATGAGGACCGTAAATGAGG -ACGGAATGAGGACCGTAAAATGGG -ACGGAATGAGGACCGTAATCCTGA -ACGGAATGAGGACCGTAATAGCGA -ACGGAATGAGGACCGTAACACAGA -ACGGAATGAGGACCGTAAGCAAGA -ACGGAATGAGGACCGTAAGGTTGA -ACGGAATGAGGACCGTAATCCGAT -ACGGAATGAGGACCGTAATGGCAT -ACGGAATGAGGACCGTAACGAGAT -ACGGAATGAGGACCGTAATACCAC -ACGGAATGAGGACCGTAACAGAAC -ACGGAATGAGGACCGTAAGTCTAC -ACGGAATGAGGACCGTAAACGTAC -ACGGAATGAGGACCGTAAAGTGAC -ACGGAATGAGGACCGTAACTGTAG -ACGGAATGAGGACCGTAACCTAAG -ACGGAATGAGGACCGTAAGTTCAG -ACGGAATGAGGACCGTAAGCATAG -ACGGAATGAGGACCGTAAGACAAG -ACGGAATGAGGACCGTAAAAGCAG -ACGGAATGAGGACCGTAACGTCAA -ACGGAATGAGGACCGTAAGCTGAA -ACGGAATGAGGACCGTAAAGTACG -ACGGAATGAGGACCGTAAATCCGA -ACGGAATGAGGACCGTAAATGGGA -ACGGAATGAGGACCGTAAGTGCAA -ACGGAATGAGGACCGTAAGAGGAA -ACGGAATGAGGACCGTAACAGGTA -ACGGAATGAGGACCGTAAGACTCT -ACGGAATGAGGACCGTAAAGTCCT -ACGGAATGAGGACCGTAATAAGCC -ACGGAATGAGGACCGTAAATAGCC -ACGGAATGAGGACCGTAATAACCG -ACGGAATGAGGACCGTAAATGCCA -ACGGAATGAGGACCAATGGGAAAC -ACGGAATGAGGACCAATGAACACC -ACGGAATGAGGACCAATGATCGAG -ACGGAATGAGGACCAATGCTCCTT -ACGGAATGAGGACCAATGCCTGTT -ACGGAATGAGGACCAATGCGGTTT -ACGGAATGAGGACCAATGGTGGTT -ACGGAATGAGGACCAATGGCCTTT -ACGGAATGAGGACCAATGGGTCTT -ACGGAATGAGGACCAATGACGCTT -ACGGAATGAGGACCAATGAGCGTT -ACGGAATGAGGACCAATGTTCGTC -ACGGAATGAGGACCAATGTCTCTC -ACGGAATGAGGACCAATGTGGATC -ACGGAATGAGGACCAATGCACTTC -ACGGAATGAGGACCAATGGTACTC -ACGGAATGAGGACCAATGGATGTC -ACGGAATGAGGACCAATGACAGTC -ACGGAATGAGGACCAATGTTGCTG -ACGGAATGAGGACCAATGTCCATG -ACGGAATGAGGACCAATGTGTGTG -ACGGAATGAGGACCAATGCTAGTG -ACGGAATGAGGACCAATGCATCTG -ACGGAATGAGGACCAATGGAGTTG -ACGGAATGAGGACCAATGAGACTG -ACGGAATGAGGACCAATGTCGGTA -ACGGAATGAGGACCAATGTGCCTA -ACGGAATGAGGACCAATGCCACTA -ACGGAATGAGGACCAATGGGAGTA -ACGGAATGAGGACCAATGTCGTCT -ACGGAATGAGGACCAATGTGCACT -ACGGAATGAGGACCAATGCTGACT -ACGGAATGAGGACCAATGCAACCT -ACGGAATGAGGACCAATGGCTACT -ACGGAATGAGGACCAATGGGATCT -ACGGAATGAGGACCAATGAAGGCT -ACGGAATGAGGACCAATGTCAACC -ACGGAATGAGGACCAATGTGTTCC -ACGGAATGAGGACCAATGATTCCC -ACGGAATGAGGACCAATGTTCTCG -ACGGAATGAGGACCAATGTAGACG -ACGGAATGAGGACCAATGGTAACG -ACGGAATGAGGACCAATGACTTCG -ACGGAATGAGGACCAATGTACGCA -ACGGAATGAGGACCAATGCTTGCA -ACGGAATGAGGACCAATGCGAACA -ACGGAATGAGGACCAATGCAGTCA -ACGGAATGAGGACCAATGGATCCA -ACGGAATGAGGACCAATGACGACA -ACGGAATGAGGACCAATGAGCTCA -ACGGAATGAGGACCAATGTCACGT -ACGGAATGAGGACCAATGCGTAGT -ACGGAATGAGGACCAATGGTCAGT -ACGGAATGAGGACCAATGGAAGGT -ACGGAATGAGGACCAATGAACCGT -ACGGAATGAGGACCAATGTTGTGC -ACGGAATGAGGACCAATGCTAAGC -ACGGAATGAGGACCAATGACTAGC -ACGGAATGAGGACCAATGAGATGC -ACGGAATGAGGACCAATGTGAAGG -ACGGAATGAGGACCAATGCAATGG -ACGGAATGAGGACCAATGATGAGG -ACGGAATGAGGACCAATGAATGGG -ACGGAATGAGGACCAATGTCCTGA -ACGGAATGAGGACCAATGTAGCGA -ACGGAATGAGGACCAATGCACAGA -ACGGAATGAGGACCAATGGCAAGA -ACGGAATGAGGACCAATGGGTTGA -ACGGAATGAGGACCAATGTCCGAT -ACGGAATGAGGACCAATGTGGCAT -ACGGAATGAGGACCAATGCGAGAT -ACGGAATGAGGACCAATGTACCAC -ACGGAATGAGGACCAATGCAGAAC -ACGGAATGAGGACCAATGGTCTAC -ACGGAATGAGGACCAATGACGTAC -ACGGAATGAGGACCAATGAGTGAC -ACGGAATGAGGACCAATGCTGTAG -ACGGAATGAGGACCAATGCCTAAG -ACGGAATGAGGACCAATGGTTCAG -ACGGAATGAGGACCAATGGCATAG -ACGGAATGAGGACCAATGGACAAG -ACGGAATGAGGACCAATGAAGCAG -ACGGAATGAGGACCAATGCGTCAA -ACGGAATGAGGACCAATGGCTGAA -ACGGAATGAGGACCAATGAGTACG -ACGGAATGAGGACCAATGATCCGA -ACGGAATGAGGACCAATGATGGGA -ACGGAATGAGGACCAATGGTGCAA -ACGGAATGAGGACCAATGGAGGAA -ACGGAATGAGGACCAATGCAGGTA -ACGGAATGAGGACCAATGGACTCT -ACGGAATGAGGACCAATGAGTCCT -ACGGAATGAGGACCAATGTAAGCC -ACGGAATGAGGACCAATGATAGCC -ACGGAATGAGGACCAATGTAACCG -ACGGAATGAGGACCAATGATGCCA -ACGGAAATGGGAAACGGAGGAAAC -ACGGAAATGGGAAACGGAAACACC -ACGGAAATGGGAAACGGAATCGAG -ACGGAAATGGGAAACGGACTCCTT -ACGGAAATGGGAAACGGACCTGTT -ACGGAAATGGGAAACGGACGGTTT -ACGGAAATGGGAAACGGAGTGGTT -ACGGAAATGGGAAACGGAGCCTTT -ACGGAAATGGGAAACGGAGGTCTT -ACGGAAATGGGAAACGGAACGCTT -ACGGAAATGGGAAACGGAAGCGTT -ACGGAAATGGGAAACGGATTCGTC -ACGGAAATGGGAAACGGATCTCTC -ACGGAAATGGGAAACGGATGGATC -ACGGAAATGGGAAACGGACACTTC -ACGGAAATGGGAAACGGAGTACTC -ACGGAAATGGGAAACGGAGATGTC -ACGGAAATGGGAAACGGAACAGTC -ACGGAAATGGGAAACGGATTGCTG -ACGGAAATGGGAAACGGATCCATG -ACGGAAATGGGAAACGGATGTGTG -ACGGAAATGGGAAACGGACTAGTG -ACGGAAATGGGAAACGGACATCTG -ACGGAAATGGGAAACGGAGAGTTG -ACGGAAATGGGAAACGGAAGACTG -ACGGAAATGGGAAACGGATCGGTA -ACGGAAATGGGAAACGGATGCCTA -ACGGAAATGGGAAACGGACCACTA -ACGGAAATGGGAAACGGAGGAGTA -ACGGAAATGGGAAACGGATCGTCT -ACGGAAATGGGAAACGGATGCACT -ACGGAAATGGGAAACGGACTGACT -ACGGAAATGGGAAACGGACAACCT -ACGGAAATGGGAAACGGAGCTACT -ACGGAAATGGGAAACGGAGGATCT -ACGGAAATGGGAAACGGAAAGGCT -ACGGAAATGGGAAACGGATCAACC -ACGGAAATGGGAAACGGATGTTCC -ACGGAAATGGGAAACGGAATTCCC -ACGGAAATGGGAAACGGATTCTCG -ACGGAAATGGGAAACGGATAGACG -ACGGAAATGGGAAACGGAGTAACG -ACGGAAATGGGAAACGGAACTTCG -ACGGAAATGGGAAACGGATACGCA -ACGGAAATGGGAAACGGACTTGCA -ACGGAAATGGGAAACGGACGAACA -ACGGAAATGGGAAACGGACAGTCA -ACGGAAATGGGAAACGGAGATCCA -ACGGAAATGGGAAACGGAACGACA -ACGGAAATGGGAAACGGAAGCTCA -ACGGAAATGGGAAACGGATCACGT -ACGGAAATGGGAAACGGACGTAGT -ACGGAAATGGGAAACGGAGTCAGT -ACGGAAATGGGAAACGGAGAAGGT -ACGGAAATGGGAAACGGAAACCGT -ACGGAAATGGGAAACGGATTGTGC -ACGGAAATGGGAAACGGACTAAGC -ACGGAAATGGGAAACGGAACTAGC -ACGGAAATGGGAAACGGAAGATGC -ACGGAAATGGGAAACGGATGAAGG -ACGGAAATGGGAAACGGACAATGG -ACGGAAATGGGAAACGGAATGAGG -ACGGAAATGGGAAACGGAAATGGG -ACGGAAATGGGAAACGGATCCTGA -ACGGAAATGGGAAACGGATAGCGA -ACGGAAATGGGAAACGGACACAGA -ACGGAAATGGGAAACGGAGCAAGA -ACGGAAATGGGAAACGGAGGTTGA -ACGGAAATGGGAAACGGATCCGAT -ACGGAAATGGGAAACGGATGGCAT -ACGGAAATGGGAAACGGACGAGAT -ACGGAAATGGGAAACGGATACCAC -ACGGAAATGGGAAACGGACAGAAC -ACGGAAATGGGAAACGGAGTCTAC -ACGGAAATGGGAAACGGAACGTAC -ACGGAAATGGGAAACGGAAGTGAC -ACGGAAATGGGAAACGGACTGTAG -ACGGAAATGGGAAACGGACCTAAG -ACGGAAATGGGAAACGGAGTTCAG -ACGGAAATGGGAAACGGAGCATAG -ACGGAAATGGGAAACGGAGACAAG -ACGGAAATGGGAAACGGAAAGCAG -ACGGAAATGGGAAACGGACGTCAA -ACGGAAATGGGAAACGGAGCTGAA -ACGGAAATGGGAAACGGAAGTACG -ACGGAAATGGGAAACGGAATCCGA -ACGGAAATGGGAAACGGAATGGGA -ACGGAAATGGGAAACGGAGTGCAA -ACGGAAATGGGAAACGGAGAGGAA -ACGGAAATGGGAAACGGACAGGTA -ACGGAAATGGGAAACGGAGACTCT -ACGGAAATGGGAAACGGAAGTCCT -ACGGAAATGGGAAACGGATAAGCC -ACGGAAATGGGAAACGGAATAGCC -ACGGAAATGGGAAACGGATAACCG -ACGGAAATGGGAAACGGAATGCCA -ACGGAAATGGGAACCAACGGAAAC -ACGGAAATGGGAACCAACAACACC -ACGGAAATGGGAACCAACATCGAG -ACGGAAATGGGAACCAACCTCCTT -ACGGAAATGGGAACCAACCCTGTT -ACGGAAATGGGAACCAACCGGTTT -ACGGAAATGGGAACCAACGTGGTT -ACGGAAATGGGAACCAACGCCTTT -ACGGAAATGGGAACCAACGGTCTT -ACGGAAATGGGAACCAACACGCTT -ACGGAAATGGGAACCAACAGCGTT -ACGGAAATGGGAACCAACTTCGTC -ACGGAAATGGGAACCAACTCTCTC -ACGGAAATGGGAACCAACTGGATC -ACGGAAATGGGAACCAACCACTTC -ACGGAAATGGGAACCAACGTACTC -ACGGAAATGGGAACCAACGATGTC -ACGGAAATGGGAACCAACACAGTC -ACGGAAATGGGAACCAACTTGCTG -ACGGAAATGGGAACCAACTCCATG -ACGGAAATGGGAACCAACTGTGTG -ACGGAAATGGGAACCAACCTAGTG -ACGGAAATGGGAACCAACCATCTG -ACGGAAATGGGAACCAACGAGTTG -ACGGAAATGGGAACCAACAGACTG -ACGGAAATGGGAACCAACTCGGTA -ACGGAAATGGGAACCAACTGCCTA -ACGGAAATGGGAACCAACCCACTA -ACGGAAATGGGAACCAACGGAGTA -ACGGAAATGGGAACCAACTCGTCT -ACGGAAATGGGAACCAACTGCACT -ACGGAAATGGGAACCAACCTGACT -ACGGAAATGGGAACCAACCAACCT -ACGGAAATGGGAACCAACGCTACT -ACGGAAATGGGAACCAACGGATCT -ACGGAAATGGGAACCAACAAGGCT -ACGGAAATGGGAACCAACTCAACC -ACGGAAATGGGAACCAACTGTTCC -ACGGAAATGGGAACCAACATTCCC -ACGGAAATGGGAACCAACTTCTCG -ACGGAAATGGGAACCAACTAGACG -ACGGAAATGGGAACCAACGTAACG -ACGGAAATGGGAACCAACACTTCG -ACGGAAATGGGAACCAACTACGCA -ACGGAAATGGGAACCAACCTTGCA -ACGGAAATGGGAACCAACCGAACA -ACGGAAATGGGAACCAACCAGTCA -ACGGAAATGGGAACCAACGATCCA -ACGGAAATGGGAACCAACACGACA -ACGGAAATGGGAACCAACAGCTCA -ACGGAAATGGGAACCAACTCACGT -ACGGAAATGGGAACCAACCGTAGT -ACGGAAATGGGAACCAACGTCAGT -ACGGAAATGGGAACCAACGAAGGT -ACGGAAATGGGAACCAACAACCGT -ACGGAAATGGGAACCAACTTGTGC -ACGGAAATGGGAACCAACCTAAGC -ACGGAAATGGGAACCAACACTAGC -ACGGAAATGGGAACCAACAGATGC -ACGGAAATGGGAACCAACTGAAGG -ACGGAAATGGGAACCAACCAATGG -ACGGAAATGGGAACCAACATGAGG -ACGGAAATGGGAACCAACAATGGG -ACGGAAATGGGAACCAACTCCTGA -ACGGAAATGGGAACCAACTAGCGA -ACGGAAATGGGAACCAACCACAGA -ACGGAAATGGGAACCAACGCAAGA -ACGGAAATGGGAACCAACGGTTGA -ACGGAAATGGGAACCAACTCCGAT -ACGGAAATGGGAACCAACTGGCAT -ACGGAAATGGGAACCAACCGAGAT -ACGGAAATGGGAACCAACTACCAC -ACGGAAATGGGAACCAACCAGAAC -ACGGAAATGGGAACCAACGTCTAC -ACGGAAATGGGAACCAACACGTAC -ACGGAAATGGGAACCAACAGTGAC -ACGGAAATGGGAACCAACCTGTAG -ACGGAAATGGGAACCAACCCTAAG -ACGGAAATGGGAACCAACGTTCAG -ACGGAAATGGGAACCAACGCATAG -ACGGAAATGGGAACCAACGACAAG -ACGGAAATGGGAACCAACAAGCAG -ACGGAAATGGGAACCAACCGTCAA -ACGGAAATGGGAACCAACGCTGAA -ACGGAAATGGGAACCAACAGTACG -ACGGAAATGGGAACCAACATCCGA -ACGGAAATGGGAACCAACATGGGA -ACGGAAATGGGAACCAACGTGCAA -ACGGAAATGGGAACCAACGAGGAA -ACGGAAATGGGAACCAACCAGGTA -ACGGAAATGGGAACCAACGACTCT -ACGGAAATGGGAACCAACAGTCCT -ACGGAAATGGGAACCAACTAAGCC -ACGGAAATGGGAACCAACATAGCC -ACGGAAATGGGAACCAACTAACCG -ACGGAAATGGGAACCAACATGCCA -ACGGAAATGGGAGAGATCGGAAAC -ACGGAAATGGGAGAGATCAACACC -ACGGAAATGGGAGAGATCATCGAG -ACGGAAATGGGAGAGATCCTCCTT -ACGGAAATGGGAGAGATCCCTGTT -ACGGAAATGGGAGAGATCCGGTTT -ACGGAAATGGGAGAGATCGTGGTT -ACGGAAATGGGAGAGATCGCCTTT -ACGGAAATGGGAGAGATCGGTCTT -ACGGAAATGGGAGAGATCACGCTT -ACGGAAATGGGAGAGATCAGCGTT -ACGGAAATGGGAGAGATCTTCGTC -ACGGAAATGGGAGAGATCTCTCTC -ACGGAAATGGGAGAGATCTGGATC -ACGGAAATGGGAGAGATCCACTTC -ACGGAAATGGGAGAGATCGTACTC -ACGGAAATGGGAGAGATCGATGTC -ACGGAAATGGGAGAGATCACAGTC -ACGGAAATGGGAGAGATCTTGCTG -ACGGAAATGGGAGAGATCTCCATG -ACGGAAATGGGAGAGATCTGTGTG -ACGGAAATGGGAGAGATCCTAGTG -ACGGAAATGGGAGAGATCCATCTG -ACGGAAATGGGAGAGATCGAGTTG -ACGGAAATGGGAGAGATCAGACTG -ACGGAAATGGGAGAGATCTCGGTA -ACGGAAATGGGAGAGATCTGCCTA -ACGGAAATGGGAGAGATCCCACTA -ACGGAAATGGGAGAGATCGGAGTA -ACGGAAATGGGAGAGATCTCGTCT -ACGGAAATGGGAGAGATCTGCACT -ACGGAAATGGGAGAGATCCTGACT -ACGGAAATGGGAGAGATCCAACCT -ACGGAAATGGGAGAGATCGCTACT -ACGGAAATGGGAGAGATCGGATCT -ACGGAAATGGGAGAGATCAAGGCT -ACGGAAATGGGAGAGATCTCAACC -ACGGAAATGGGAGAGATCTGTTCC -ACGGAAATGGGAGAGATCATTCCC -ACGGAAATGGGAGAGATCTTCTCG -ACGGAAATGGGAGAGATCTAGACG -ACGGAAATGGGAGAGATCGTAACG -ACGGAAATGGGAGAGATCACTTCG -ACGGAAATGGGAGAGATCTACGCA -ACGGAAATGGGAGAGATCCTTGCA -ACGGAAATGGGAGAGATCCGAACA -ACGGAAATGGGAGAGATCCAGTCA -ACGGAAATGGGAGAGATCGATCCA -ACGGAAATGGGAGAGATCACGACA -ACGGAAATGGGAGAGATCAGCTCA -ACGGAAATGGGAGAGATCTCACGT -ACGGAAATGGGAGAGATCCGTAGT -ACGGAAATGGGAGAGATCGTCAGT -ACGGAAATGGGAGAGATCGAAGGT -ACGGAAATGGGAGAGATCAACCGT -ACGGAAATGGGAGAGATCTTGTGC -ACGGAAATGGGAGAGATCCTAAGC -ACGGAAATGGGAGAGATCACTAGC -ACGGAAATGGGAGAGATCAGATGC -ACGGAAATGGGAGAGATCTGAAGG -ACGGAAATGGGAGAGATCCAATGG -ACGGAAATGGGAGAGATCATGAGG -ACGGAAATGGGAGAGATCAATGGG -ACGGAAATGGGAGAGATCTCCTGA -ACGGAAATGGGAGAGATCTAGCGA -ACGGAAATGGGAGAGATCCACAGA -ACGGAAATGGGAGAGATCGCAAGA -ACGGAAATGGGAGAGATCGGTTGA -ACGGAAATGGGAGAGATCTCCGAT -ACGGAAATGGGAGAGATCTGGCAT -ACGGAAATGGGAGAGATCCGAGAT -ACGGAAATGGGAGAGATCTACCAC -ACGGAAATGGGAGAGATCCAGAAC -ACGGAAATGGGAGAGATCGTCTAC -ACGGAAATGGGAGAGATCACGTAC -ACGGAAATGGGAGAGATCAGTGAC -ACGGAAATGGGAGAGATCCTGTAG -ACGGAAATGGGAGAGATCCCTAAG -ACGGAAATGGGAGAGATCGTTCAG -ACGGAAATGGGAGAGATCGCATAG -ACGGAAATGGGAGAGATCGACAAG -ACGGAAATGGGAGAGATCAAGCAG -ACGGAAATGGGAGAGATCCGTCAA -ACGGAAATGGGAGAGATCGCTGAA -ACGGAAATGGGAGAGATCAGTACG -ACGGAAATGGGAGAGATCATCCGA -ACGGAAATGGGAGAGATCATGGGA -ACGGAAATGGGAGAGATCGTGCAA -ACGGAAATGGGAGAGATCGAGGAA -ACGGAAATGGGAGAGATCCAGGTA -ACGGAAATGGGAGAGATCGACTCT -ACGGAAATGGGAGAGATCAGTCCT -ACGGAAATGGGAGAGATCTAAGCC -ACGGAAATGGGAGAGATCATAGCC -ACGGAAATGGGAGAGATCTAACCG -ACGGAAATGGGAGAGATCATGCCA -ACGGAAATGGGACTTCTCGGAAAC -ACGGAAATGGGACTTCTCAACACC -ACGGAAATGGGACTTCTCATCGAG -ACGGAAATGGGACTTCTCCTCCTT -ACGGAAATGGGACTTCTCCCTGTT -ACGGAAATGGGACTTCTCCGGTTT -ACGGAAATGGGACTTCTCGTGGTT -ACGGAAATGGGACTTCTCGCCTTT -ACGGAAATGGGACTTCTCGGTCTT -ACGGAAATGGGACTTCTCACGCTT -ACGGAAATGGGACTTCTCAGCGTT -ACGGAAATGGGACTTCTCTTCGTC -ACGGAAATGGGACTTCTCTCTCTC -ACGGAAATGGGACTTCTCTGGATC -ACGGAAATGGGACTTCTCCACTTC -ACGGAAATGGGACTTCTCGTACTC -ACGGAAATGGGACTTCTCGATGTC -ACGGAAATGGGACTTCTCACAGTC -ACGGAAATGGGACTTCTCTTGCTG -ACGGAAATGGGACTTCTCTCCATG -ACGGAAATGGGACTTCTCTGTGTG -ACGGAAATGGGACTTCTCCTAGTG -ACGGAAATGGGACTTCTCCATCTG -ACGGAAATGGGACTTCTCGAGTTG -ACGGAAATGGGACTTCTCAGACTG -ACGGAAATGGGACTTCTCTCGGTA -ACGGAAATGGGACTTCTCTGCCTA -ACGGAAATGGGACTTCTCCCACTA -ACGGAAATGGGACTTCTCGGAGTA -ACGGAAATGGGACTTCTCTCGTCT -ACGGAAATGGGACTTCTCTGCACT -ACGGAAATGGGACTTCTCCTGACT -ACGGAAATGGGACTTCTCCAACCT -ACGGAAATGGGACTTCTCGCTACT -ACGGAAATGGGACTTCTCGGATCT -ACGGAAATGGGACTTCTCAAGGCT -ACGGAAATGGGACTTCTCTCAACC -ACGGAAATGGGACTTCTCTGTTCC -ACGGAAATGGGACTTCTCATTCCC -ACGGAAATGGGACTTCTCTTCTCG -ACGGAAATGGGACTTCTCTAGACG -ACGGAAATGGGACTTCTCGTAACG -ACGGAAATGGGACTTCTCACTTCG -ACGGAAATGGGACTTCTCTACGCA -ACGGAAATGGGACTTCTCCTTGCA -ACGGAAATGGGACTTCTCCGAACA -ACGGAAATGGGACTTCTCCAGTCA -ACGGAAATGGGACTTCTCGATCCA -ACGGAAATGGGACTTCTCACGACA -ACGGAAATGGGACTTCTCAGCTCA -ACGGAAATGGGACTTCTCTCACGT -ACGGAAATGGGACTTCTCCGTAGT -ACGGAAATGGGACTTCTCGTCAGT -ACGGAAATGGGACTTCTCGAAGGT -ACGGAAATGGGACTTCTCAACCGT -ACGGAAATGGGACTTCTCTTGTGC -ACGGAAATGGGACTTCTCCTAAGC -ACGGAAATGGGACTTCTCACTAGC -ACGGAAATGGGACTTCTCAGATGC -ACGGAAATGGGACTTCTCTGAAGG -ACGGAAATGGGACTTCTCCAATGG -ACGGAAATGGGACTTCTCATGAGG -ACGGAAATGGGACTTCTCAATGGG -ACGGAAATGGGACTTCTCTCCTGA -ACGGAAATGGGACTTCTCTAGCGA -ACGGAAATGGGACTTCTCCACAGA -ACGGAAATGGGACTTCTCGCAAGA -ACGGAAATGGGACTTCTCGGTTGA -ACGGAAATGGGACTTCTCTCCGAT -ACGGAAATGGGACTTCTCTGGCAT -ACGGAAATGGGACTTCTCCGAGAT -ACGGAAATGGGACTTCTCTACCAC -ACGGAAATGGGACTTCTCCAGAAC -ACGGAAATGGGACTTCTCGTCTAC -ACGGAAATGGGACTTCTCACGTAC -ACGGAAATGGGACTTCTCAGTGAC -ACGGAAATGGGACTTCTCCTGTAG -ACGGAAATGGGACTTCTCCCTAAG -ACGGAAATGGGACTTCTCGTTCAG -ACGGAAATGGGACTTCTCGCATAG -ACGGAAATGGGACTTCTCGACAAG -ACGGAAATGGGACTTCTCAAGCAG -ACGGAAATGGGACTTCTCCGTCAA -ACGGAAATGGGACTTCTCGCTGAA -ACGGAAATGGGACTTCTCAGTACG -ACGGAAATGGGACTTCTCATCCGA -ACGGAAATGGGACTTCTCATGGGA -ACGGAAATGGGACTTCTCGTGCAA -ACGGAAATGGGACTTCTCGAGGAA -ACGGAAATGGGACTTCTCCAGGTA -ACGGAAATGGGACTTCTCGACTCT -ACGGAAATGGGACTTCTCAGTCCT -ACGGAAATGGGACTTCTCTAAGCC -ACGGAAATGGGACTTCTCATAGCC -ACGGAAATGGGACTTCTCTAACCG -ACGGAAATGGGACTTCTCATGCCA -ACGGAAATGGGAGTTCCTGGAAAC -ACGGAAATGGGAGTTCCTAACACC -ACGGAAATGGGAGTTCCTATCGAG -ACGGAAATGGGAGTTCCTCTCCTT -ACGGAAATGGGAGTTCCTCCTGTT -ACGGAAATGGGAGTTCCTCGGTTT -ACGGAAATGGGAGTTCCTGTGGTT -ACGGAAATGGGAGTTCCTGCCTTT -ACGGAAATGGGAGTTCCTGGTCTT -ACGGAAATGGGAGTTCCTACGCTT -ACGGAAATGGGAGTTCCTAGCGTT -ACGGAAATGGGAGTTCCTTTCGTC -ACGGAAATGGGAGTTCCTTCTCTC -ACGGAAATGGGAGTTCCTTGGATC -ACGGAAATGGGAGTTCCTCACTTC -ACGGAAATGGGAGTTCCTGTACTC -ACGGAAATGGGAGTTCCTGATGTC -ACGGAAATGGGAGTTCCTACAGTC -ACGGAAATGGGAGTTCCTTTGCTG -ACGGAAATGGGAGTTCCTTCCATG -ACGGAAATGGGAGTTCCTTGTGTG -ACGGAAATGGGAGTTCCTCTAGTG -ACGGAAATGGGAGTTCCTCATCTG -ACGGAAATGGGAGTTCCTGAGTTG -ACGGAAATGGGAGTTCCTAGACTG -ACGGAAATGGGAGTTCCTTCGGTA -ACGGAAATGGGAGTTCCTTGCCTA -ACGGAAATGGGAGTTCCTCCACTA -ACGGAAATGGGAGTTCCTGGAGTA -ACGGAAATGGGAGTTCCTTCGTCT -ACGGAAATGGGAGTTCCTTGCACT -ACGGAAATGGGAGTTCCTCTGACT -ACGGAAATGGGAGTTCCTCAACCT -ACGGAAATGGGAGTTCCTGCTACT -ACGGAAATGGGAGTTCCTGGATCT -ACGGAAATGGGAGTTCCTAAGGCT -ACGGAAATGGGAGTTCCTTCAACC -ACGGAAATGGGAGTTCCTTGTTCC -ACGGAAATGGGAGTTCCTATTCCC -ACGGAAATGGGAGTTCCTTTCTCG -ACGGAAATGGGAGTTCCTTAGACG -ACGGAAATGGGAGTTCCTGTAACG -ACGGAAATGGGAGTTCCTACTTCG -ACGGAAATGGGAGTTCCTTACGCA -ACGGAAATGGGAGTTCCTCTTGCA -ACGGAAATGGGAGTTCCTCGAACA -ACGGAAATGGGAGTTCCTCAGTCA -ACGGAAATGGGAGTTCCTGATCCA -ACGGAAATGGGAGTTCCTACGACA -ACGGAAATGGGAGTTCCTAGCTCA -ACGGAAATGGGAGTTCCTTCACGT -ACGGAAATGGGAGTTCCTCGTAGT -ACGGAAATGGGAGTTCCTGTCAGT -ACGGAAATGGGAGTTCCTGAAGGT -ACGGAAATGGGAGTTCCTAACCGT -ACGGAAATGGGAGTTCCTTTGTGC -ACGGAAATGGGAGTTCCTCTAAGC -ACGGAAATGGGAGTTCCTACTAGC -ACGGAAATGGGAGTTCCTAGATGC -ACGGAAATGGGAGTTCCTTGAAGG -ACGGAAATGGGAGTTCCTCAATGG -ACGGAAATGGGAGTTCCTATGAGG -ACGGAAATGGGAGTTCCTAATGGG -ACGGAAATGGGAGTTCCTTCCTGA -ACGGAAATGGGAGTTCCTTAGCGA -ACGGAAATGGGAGTTCCTCACAGA -ACGGAAATGGGAGTTCCTGCAAGA -ACGGAAATGGGAGTTCCTGGTTGA -ACGGAAATGGGAGTTCCTTCCGAT -ACGGAAATGGGAGTTCCTTGGCAT -ACGGAAATGGGAGTTCCTCGAGAT -ACGGAAATGGGAGTTCCTTACCAC -ACGGAAATGGGAGTTCCTCAGAAC -ACGGAAATGGGAGTTCCTGTCTAC -ACGGAAATGGGAGTTCCTACGTAC -ACGGAAATGGGAGTTCCTAGTGAC -ACGGAAATGGGAGTTCCTCTGTAG -ACGGAAATGGGAGTTCCTCCTAAG -ACGGAAATGGGAGTTCCTGTTCAG -ACGGAAATGGGAGTTCCTGCATAG -ACGGAAATGGGAGTTCCTGACAAG -ACGGAAATGGGAGTTCCTAAGCAG -ACGGAAATGGGAGTTCCTCGTCAA -ACGGAAATGGGAGTTCCTGCTGAA -ACGGAAATGGGAGTTCCTAGTACG -ACGGAAATGGGAGTTCCTATCCGA -ACGGAAATGGGAGTTCCTATGGGA -ACGGAAATGGGAGTTCCTGTGCAA -ACGGAAATGGGAGTTCCTGAGGAA -ACGGAAATGGGAGTTCCTCAGGTA -ACGGAAATGGGAGTTCCTGACTCT -ACGGAAATGGGAGTTCCTAGTCCT -ACGGAAATGGGAGTTCCTTAAGCC -ACGGAAATGGGAGTTCCTATAGCC -ACGGAAATGGGAGTTCCTTAACCG -ACGGAAATGGGAGTTCCTATGCCA -ACGGAAATGGGATTTCGGGGAAAC -ACGGAAATGGGATTTCGGAACACC -ACGGAAATGGGATTTCGGATCGAG -ACGGAAATGGGATTTCGGCTCCTT -ACGGAAATGGGATTTCGGCCTGTT -ACGGAAATGGGATTTCGGCGGTTT -ACGGAAATGGGATTTCGGGTGGTT -ACGGAAATGGGATTTCGGGCCTTT -ACGGAAATGGGATTTCGGGGTCTT -ACGGAAATGGGATTTCGGACGCTT -ACGGAAATGGGATTTCGGAGCGTT -ACGGAAATGGGATTTCGGTTCGTC -ACGGAAATGGGATTTCGGTCTCTC -ACGGAAATGGGATTTCGGTGGATC -ACGGAAATGGGATTTCGGCACTTC -ACGGAAATGGGATTTCGGGTACTC -ACGGAAATGGGATTTCGGGATGTC -ACGGAAATGGGATTTCGGACAGTC -ACGGAAATGGGATTTCGGTTGCTG -ACGGAAATGGGATTTCGGTCCATG -ACGGAAATGGGATTTCGGTGTGTG -ACGGAAATGGGATTTCGGCTAGTG -ACGGAAATGGGATTTCGGCATCTG -ACGGAAATGGGATTTCGGGAGTTG -ACGGAAATGGGATTTCGGAGACTG -ACGGAAATGGGATTTCGGTCGGTA -ACGGAAATGGGATTTCGGTGCCTA -ACGGAAATGGGATTTCGGCCACTA -ACGGAAATGGGATTTCGGGGAGTA -ACGGAAATGGGATTTCGGTCGTCT -ACGGAAATGGGATTTCGGTGCACT -ACGGAAATGGGATTTCGGCTGACT -ACGGAAATGGGATTTCGGCAACCT -ACGGAAATGGGATTTCGGGCTACT -ACGGAAATGGGATTTCGGGGATCT -ACGGAAATGGGATTTCGGAAGGCT -ACGGAAATGGGATTTCGGTCAACC -ACGGAAATGGGATTTCGGTGTTCC -ACGGAAATGGGATTTCGGATTCCC -ACGGAAATGGGATTTCGGTTCTCG -ACGGAAATGGGATTTCGGTAGACG -ACGGAAATGGGATTTCGGGTAACG -ACGGAAATGGGATTTCGGACTTCG -ACGGAAATGGGATTTCGGTACGCA -ACGGAAATGGGATTTCGGCTTGCA -ACGGAAATGGGATTTCGGCGAACA -ACGGAAATGGGATTTCGGCAGTCA -ACGGAAATGGGATTTCGGGATCCA -ACGGAAATGGGATTTCGGACGACA -ACGGAAATGGGATTTCGGAGCTCA -ACGGAAATGGGATTTCGGTCACGT -ACGGAAATGGGATTTCGGCGTAGT -ACGGAAATGGGATTTCGGGTCAGT -ACGGAAATGGGATTTCGGGAAGGT -ACGGAAATGGGATTTCGGAACCGT -ACGGAAATGGGATTTCGGTTGTGC -ACGGAAATGGGATTTCGGCTAAGC -ACGGAAATGGGATTTCGGACTAGC -ACGGAAATGGGATTTCGGAGATGC -ACGGAAATGGGATTTCGGTGAAGG -ACGGAAATGGGATTTCGGCAATGG -ACGGAAATGGGATTTCGGATGAGG -ACGGAAATGGGATTTCGGAATGGG -ACGGAAATGGGATTTCGGTCCTGA -ACGGAAATGGGATTTCGGTAGCGA -ACGGAAATGGGATTTCGGCACAGA -ACGGAAATGGGATTTCGGGCAAGA -ACGGAAATGGGATTTCGGGGTTGA -ACGGAAATGGGATTTCGGTCCGAT -ACGGAAATGGGATTTCGGTGGCAT -ACGGAAATGGGATTTCGGCGAGAT -ACGGAAATGGGATTTCGGTACCAC -ACGGAAATGGGATTTCGGCAGAAC -ACGGAAATGGGATTTCGGGTCTAC -ACGGAAATGGGATTTCGGACGTAC -ACGGAAATGGGATTTCGGAGTGAC -ACGGAAATGGGATTTCGGCTGTAG -ACGGAAATGGGATTTCGGCCTAAG -ACGGAAATGGGATTTCGGGTTCAG -ACGGAAATGGGATTTCGGGCATAG -ACGGAAATGGGATTTCGGGACAAG -ACGGAAATGGGATTTCGGAAGCAG -ACGGAAATGGGATTTCGGCGTCAA -ACGGAAATGGGATTTCGGGCTGAA -ACGGAAATGGGATTTCGGAGTACG -ACGGAAATGGGATTTCGGATCCGA -ACGGAAATGGGATTTCGGATGGGA -ACGGAAATGGGATTTCGGGTGCAA -ACGGAAATGGGATTTCGGGAGGAA -ACGGAAATGGGATTTCGGCAGGTA -ACGGAAATGGGATTTCGGGACTCT -ACGGAAATGGGATTTCGGAGTCCT -ACGGAAATGGGATTTCGGTAAGCC -ACGGAAATGGGATTTCGGATAGCC -ACGGAAATGGGATTTCGGTAACCG -ACGGAAATGGGATTTCGGATGCCA -ACGGAAATGGGAGTTGTGGGAAAC -ACGGAAATGGGAGTTGTGAACACC -ACGGAAATGGGAGTTGTGATCGAG -ACGGAAATGGGAGTTGTGCTCCTT -ACGGAAATGGGAGTTGTGCCTGTT -ACGGAAATGGGAGTTGTGCGGTTT -ACGGAAATGGGAGTTGTGGTGGTT -ACGGAAATGGGAGTTGTGGCCTTT -ACGGAAATGGGAGTTGTGGGTCTT -ACGGAAATGGGAGTTGTGACGCTT -ACGGAAATGGGAGTTGTGAGCGTT -ACGGAAATGGGAGTTGTGTTCGTC -ACGGAAATGGGAGTTGTGTCTCTC -ACGGAAATGGGAGTTGTGTGGATC -ACGGAAATGGGAGTTGTGCACTTC -ACGGAAATGGGAGTTGTGGTACTC -ACGGAAATGGGAGTTGTGGATGTC -ACGGAAATGGGAGTTGTGACAGTC -ACGGAAATGGGAGTTGTGTTGCTG -ACGGAAATGGGAGTTGTGTCCATG -ACGGAAATGGGAGTTGTGTGTGTG -ACGGAAATGGGAGTTGTGCTAGTG -ACGGAAATGGGAGTTGTGCATCTG -ACGGAAATGGGAGTTGTGGAGTTG -ACGGAAATGGGAGTTGTGAGACTG -ACGGAAATGGGAGTTGTGTCGGTA -ACGGAAATGGGAGTTGTGTGCCTA -ACGGAAATGGGAGTTGTGCCACTA -ACGGAAATGGGAGTTGTGGGAGTA -ACGGAAATGGGAGTTGTGTCGTCT -ACGGAAATGGGAGTTGTGTGCACT -ACGGAAATGGGAGTTGTGCTGACT -ACGGAAATGGGAGTTGTGCAACCT -ACGGAAATGGGAGTTGTGGCTACT -ACGGAAATGGGAGTTGTGGGATCT -ACGGAAATGGGAGTTGTGAAGGCT -ACGGAAATGGGAGTTGTGTCAACC -ACGGAAATGGGAGTTGTGTGTTCC -ACGGAAATGGGAGTTGTGATTCCC -ACGGAAATGGGAGTTGTGTTCTCG -ACGGAAATGGGAGTTGTGTAGACG -ACGGAAATGGGAGTTGTGGTAACG -ACGGAAATGGGAGTTGTGACTTCG -ACGGAAATGGGAGTTGTGTACGCA -ACGGAAATGGGAGTTGTGCTTGCA -ACGGAAATGGGAGTTGTGCGAACA -ACGGAAATGGGAGTTGTGCAGTCA -ACGGAAATGGGAGTTGTGGATCCA -ACGGAAATGGGAGTTGTGACGACA -ACGGAAATGGGAGTTGTGAGCTCA -ACGGAAATGGGAGTTGTGTCACGT -ACGGAAATGGGAGTTGTGCGTAGT -ACGGAAATGGGAGTTGTGGTCAGT -ACGGAAATGGGAGTTGTGGAAGGT -ACGGAAATGGGAGTTGTGAACCGT -ACGGAAATGGGAGTTGTGTTGTGC -ACGGAAATGGGAGTTGTGCTAAGC -ACGGAAATGGGAGTTGTGACTAGC -ACGGAAATGGGAGTTGTGAGATGC -ACGGAAATGGGAGTTGTGTGAAGG -ACGGAAATGGGAGTTGTGCAATGG -ACGGAAATGGGAGTTGTGATGAGG -ACGGAAATGGGAGTTGTGAATGGG -ACGGAAATGGGAGTTGTGTCCTGA -ACGGAAATGGGAGTTGTGTAGCGA -ACGGAAATGGGAGTTGTGCACAGA -ACGGAAATGGGAGTTGTGGCAAGA -ACGGAAATGGGAGTTGTGGGTTGA -ACGGAAATGGGAGTTGTGTCCGAT -ACGGAAATGGGAGTTGTGTGGCAT -ACGGAAATGGGAGTTGTGCGAGAT -ACGGAAATGGGAGTTGTGTACCAC -ACGGAAATGGGAGTTGTGCAGAAC -ACGGAAATGGGAGTTGTGGTCTAC -ACGGAAATGGGAGTTGTGACGTAC -ACGGAAATGGGAGTTGTGAGTGAC -ACGGAAATGGGAGTTGTGCTGTAG -ACGGAAATGGGAGTTGTGCCTAAG -ACGGAAATGGGAGTTGTGGTTCAG -ACGGAAATGGGAGTTGTGGCATAG -ACGGAAATGGGAGTTGTGGACAAG -ACGGAAATGGGAGTTGTGAAGCAG -ACGGAAATGGGAGTTGTGCGTCAA -ACGGAAATGGGAGTTGTGGCTGAA -ACGGAAATGGGAGTTGTGAGTACG -ACGGAAATGGGAGTTGTGATCCGA -ACGGAAATGGGAGTTGTGATGGGA -ACGGAAATGGGAGTTGTGGTGCAA -ACGGAAATGGGAGTTGTGGAGGAA -ACGGAAATGGGAGTTGTGCAGGTA -ACGGAAATGGGAGTTGTGGACTCT -ACGGAAATGGGAGTTGTGAGTCCT -ACGGAAATGGGAGTTGTGTAAGCC -ACGGAAATGGGAGTTGTGATAGCC -ACGGAAATGGGAGTTGTGTAACCG -ACGGAAATGGGAGTTGTGATGCCA -ACGGAAATGGGATTTGCCGGAAAC -ACGGAAATGGGATTTGCCAACACC -ACGGAAATGGGATTTGCCATCGAG -ACGGAAATGGGATTTGCCCTCCTT -ACGGAAATGGGATTTGCCCCTGTT -ACGGAAATGGGATTTGCCCGGTTT -ACGGAAATGGGATTTGCCGTGGTT -ACGGAAATGGGATTTGCCGCCTTT -ACGGAAATGGGATTTGCCGGTCTT -ACGGAAATGGGATTTGCCACGCTT -ACGGAAATGGGATTTGCCAGCGTT -ACGGAAATGGGATTTGCCTTCGTC -ACGGAAATGGGATTTGCCTCTCTC -ACGGAAATGGGATTTGCCTGGATC -ACGGAAATGGGATTTGCCCACTTC -ACGGAAATGGGATTTGCCGTACTC -ACGGAAATGGGATTTGCCGATGTC -ACGGAAATGGGATTTGCCACAGTC -ACGGAAATGGGATTTGCCTTGCTG -ACGGAAATGGGATTTGCCTCCATG -ACGGAAATGGGATTTGCCTGTGTG -ACGGAAATGGGATTTGCCCTAGTG -ACGGAAATGGGATTTGCCCATCTG -ACGGAAATGGGATTTGCCGAGTTG -ACGGAAATGGGATTTGCCAGACTG -ACGGAAATGGGATTTGCCTCGGTA -ACGGAAATGGGATTTGCCTGCCTA -ACGGAAATGGGATTTGCCCCACTA -ACGGAAATGGGATTTGCCGGAGTA -ACGGAAATGGGATTTGCCTCGTCT -ACGGAAATGGGATTTGCCTGCACT -ACGGAAATGGGATTTGCCCTGACT -ACGGAAATGGGATTTGCCCAACCT -ACGGAAATGGGATTTGCCGCTACT -ACGGAAATGGGATTTGCCGGATCT -ACGGAAATGGGATTTGCCAAGGCT -ACGGAAATGGGATTTGCCTCAACC -ACGGAAATGGGATTTGCCTGTTCC -ACGGAAATGGGATTTGCCATTCCC -ACGGAAATGGGATTTGCCTTCTCG -ACGGAAATGGGATTTGCCTAGACG -ACGGAAATGGGATTTGCCGTAACG -ACGGAAATGGGATTTGCCACTTCG -ACGGAAATGGGATTTGCCTACGCA -ACGGAAATGGGATTTGCCCTTGCA -ACGGAAATGGGATTTGCCCGAACA -ACGGAAATGGGATTTGCCCAGTCA -ACGGAAATGGGATTTGCCGATCCA -ACGGAAATGGGATTTGCCACGACA -ACGGAAATGGGATTTGCCAGCTCA -ACGGAAATGGGATTTGCCTCACGT -ACGGAAATGGGATTTGCCCGTAGT -ACGGAAATGGGATTTGCCGTCAGT -ACGGAAATGGGATTTGCCGAAGGT -ACGGAAATGGGATTTGCCAACCGT -ACGGAAATGGGATTTGCCTTGTGC -ACGGAAATGGGATTTGCCCTAAGC -ACGGAAATGGGATTTGCCACTAGC -ACGGAAATGGGATTTGCCAGATGC -ACGGAAATGGGATTTGCCTGAAGG -ACGGAAATGGGATTTGCCCAATGG -ACGGAAATGGGATTTGCCATGAGG -ACGGAAATGGGATTTGCCAATGGG -ACGGAAATGGGATTTGCCTCCTGA -ACGGAAATGGGATTTGCCTAGCGA -ACGGAAATGGGATTTGCCCACAGA -ACGGAAATGGGATTTGCCGCAAGA -ACGGAAATGGGATTTGCCGGTTGA -ACGGAAATGGGATTTGCCTCCGAT -ACGGAAATGGGATTTGCCTGGCAT -ACGGAAATGGGATTTGCCCGAGAT -ACGGAAATGGGATTTGCCTACCAC -ACGGAAATGGGATTTGCCCAGAAC -ACGGAAATGGGATTTGCCGTCTAC -ACGGAAATGGGATTTGCCACGTAC -ACGGAAATGGGATTTGCCAGTGAC -ACGGAAATGGGATTTGCCCTGTAG -ACGGAAATGGGATTTGCCCCTAAG -ACGGAAATGGGATTTGCCGTTCAG -ACGGAAATGGGATTTGCCGCATAG -ACGGAAATGGGATTTGCCGACAAG -ACGGAAATGGGATTTGCCAAGCAG -ACGGAAATGGGATTTGCCCGTCAA -ACGGAAATGGGATTTGCCGCTGAA -ACGGAAATGGGATTTGCCAGTACG -ACGGAAATGGGATTTGCCATCCGA -ACGGAAATGGGATTTGCCATGGGA -ACGGAAATGGGATTTGCCGTGCAA -ACGGAAATGGGATTTGCCGAGGAA -ACGGAAATGGGATTTGCCCAGGTA -ACGGAAATGGGATTTGCCGACTCT -ACGGAAATGGGATTTGCCAGTCCT -ACGGAAATGGGATTTGCCTAAGCC -ACGGAAATGGGATTTGCCATAGCC -ACGGAAATGGGATTTGCCTAACCG -ACGGAAATGGGATTTGCCATGCCA -ACGGAAATGGGACTTGGTGGAAAC -ACGGAAATGGGACTTGGTAACACC -ACGGAAATGGGACTTGGTATCGAG -ACGGAAATGGGACTTGGTCTCCTT -ACGGAAATGGGACTTGGTCCTGTT -ACGGAAATGGGACTTGGTCGGTTT -ACGGAAATGGGACTTGGTGTGGTT -ACGGAAATGGGACTTGGTGCCTTT -ACGGAAATGGGACTTGGTGGTCTT -ACGGAAATGGGACTTGGTACGCTT -ACGGAAATGGGACTTGGTAGCGTT -ACGGAAATGGGACTTGGTTTCGTC -ACGGAAATGGGACTTGGTTCTCTC -ACGGAAATGGGACTTGGTTGGATC -ACGGAAATGGGACTTGGTCACTTC -ACGGAAATGGGACTTGGTGTACTC -ACGGAAATGGGACTTGGTGATGTC -ACGGAAATGGGACTTGGTACAGTC -ACGGAAATGGGACTTGGTTTGCTG -ACGGAAATGGGACTTGGTTCCATG -ACGGAAATGGGACTTGGTTGTGTG -ACGGAAATGGGACTTGGTCTAGTG -ACGGAAATGGGACTTGGTCATCTG -ACGGAAATGGGACTTGGTGAGTTG -ACGGAAATGGGACTTGGTAGACTG -ACGGAAATGGGACTTGGTTCGGTA -ACGGAAATGGGACTTGGTTGCCTA -ACGGAAATGGGACTTGGTCCACTA -ACGGAAATGGGACTTGGTGGAGTA -ACGGAAATGGGACTTGGTTCGTCT -ACGGAAATGGGACTTGGTTGCACT -ACGGAAATGGGACTTGGTCTGACT -ACGGAAATGGGACTTGGTCAACCT -ACGGAAATGGGACTTGGTGCTACT -ACGGAAATGGGACTTGGTGGATCT -ACGGAAATGGGACTTGGTAAGGCT -ACGGAAATGGGACTTGGTTCAACC -ACGGAAATGGGACTTGGTTGTTCC -ACGGAAATGGGACTTGGTATTCCC -ACGGAAATGGGACTTGGTTTCTCG -ACGGAAATGGGACTTGGTTAGACG -ACGGAAATGGGACTTGGTGTAACG -ACGGAAATGGGACTTGGTACTTCG -ACGGAAATGGGACTTGGTTACGCA -ACGGAAATGGGACTTGGTCTTGCA -ACGGAAATGGGACTTGGTCGAACA -ACGGAAATGGGACTTGGTCAGTCA -ACGGAAATGGGACTTGGTGATCCA -ACGGAAATGGGACTTGGTACGACA -ACGGAAATGGGACTTGGTAGCTCA -ACGGAAATGGGACTTGGTTCACGT -ACGGAAATGGGACTTGGTCGTAGT -ACGGAAATGGGACTTGGTGTCAGT -ACGGAAATGGGACTTGGTGAAGGT -ACGGAAATGGGACTTGGTAACCGT -ACGGAAATGGGACTTGGTTTGTGC -ACGGAAATGGGACTTGGTCTAAGC -ACGGAAATGGGACTTGGTACTAGC -ACGGAAATGGGACTTGGTAGATGC -ACGGAAATGGGACTTGGTTGAAGG -ACGGAAATGGGACTTGGTCAATGG -ACGGAAATGGGACTTGGTATGAGG -ACGGAAATGGGACTTGGTAATGGG -ACGGAAATGGGACTTGGTTCCTGA -ACGGAAATGGGACTTGGTTAGCGA -ACGGAAATGGGACTTGGTCACAGA -ACGGAAATGGGACTTGGTGCAAGA -ACGGAAATGGGACTTGGTGGTTGA -ACGGAAATGGGACTTGGTTCCGAT -ACGGAAATGGGACTTGGTTGGCAT -ACGGAAATGGGACTTGGTCGAGAT -ACGGAAATGGGACTTGGTTACCAC -ACGGAAATGGGACTTGGTCAGAAC -ACGGAAATGGGACTTGGTGTCTAC -ACGGAAATGGGACTTGGTACGTAC -ACGGAAATGGGACTTGGTAGTGAC -ACGGAAATGGGACTTGGTCTGTAG -ACGGAAATGGGACTTGGTCCTAAG -ACGGAAATGGGACTTGGTGTTCAG -ACGGAAATGGGACTTGGTGCATAG -ACGGAAATGGGACTTGGTGACAAG -ACGGAAATGGGACTTGGTAAGCAG -ACGGAAATGGGACTTGGTCGTCAA -ACGGAAATGGGACTTGGTGCTGAA -ACGGAAATGGGACTTGGTAGTACG -ACGGAAATGGGACTTGGTATCCGA -ACGGAAATGGGACTTGGTATGGGA -ACGGAAATGGGACTTGGTGTGCAA -ACGGAAATGGGACTTGGTGAGGAA -ACGGAAATGGGACTTGGTCAGGTA -ACGGAAATGGGACTTGGTGACTCT -ACGGAAATGGGACTTGGTAGTCCT -ACGGAAATGGGACTTGGTTAAGCC -ACGGAAATGGGACTTGGTATAGCC -ACGGAAATGGGACTTGGTTAACCG -ACGGAAATGGGACTTGGTATGCCA -ACGGAAATGGGACTTACGGGAAAC -ACGGAAATGGGACTTACGAACACC -ACGGAAATGGGACTTACGATCGAG -ACGGAAATGGGACTTACGCTCCTT -ACGGAAATGGGACTTACGCCTGTT -ACGGAAATGGGACTTACGCGGTTT -ACGGAAATGGGACTTACGGTGGTT -ACGGAAATGGGACTTACGGCCTTT -ACGGAAATGGGACTTACGGGTCTT -ACGGAAATGGGACTTACGACGCTT -ACGGAAATGGGACTTACGAGCGTT -ACGGAAATGGGACTTACGTTCGTC -ACGGAAATGGGACTTACGTCTCTC -ACGGAAATGGGACTTACGTGGATC -ACGGAAATGGGACTTACGCACTTC -ACGGAAATGGGACTTACGGTACTC -ACGGAAATGGGACTTACGGATGTC -ACGGAAATGGGACTTACGACAGTC -ACGGAAATGGGACTTACGTTGCTG -ACGGAAATGGGACTTACGTCCATG -ACGGAAATGGGACTTACGTGTGTG -ACGGAAATGGGACTTACGCTAGTG -ACGGAAATGGGACTTACGCATCTG -ACGGAAATGGGACTTACGGAGTTG -ACGGAAATGGGACTTACGAGACTG -ACGGAAATGGGACTTACGTCGGTA -ACGGAAATGGGACTTACGTGCCTA -ACGGAAATGGGACTTACGCCACTA -ACGGAAATGGGACTTACGGGAGTA -ACGGAAATGGGACTTACGTCGTCT -ACGGAAATGGGACTTACGTGCACT -ACGGAAATGGGACTTACGCTGACT -ACGGAAATGGGACTTACGCAACCT -ACGGAAATGGGACTTACGGCTACT -ACGGAAATGGGACTTACGGGATCT -ACGGAAATGGGACTTACGAAGGCT -ACGGAAATGGGACTTACGTCAACC -ACGGAAATGGGACTTACGTGTTCC -ACGGAAATGGGACTTACGATTCCC -ACGGAAATGGGACTTACGTTCTCG -ACGGAAATGGGACTTACGTAGACG -ACGGAAATGGGACTTACGGTAACG -ACGGAAATGGGACTTACGACTTCG -ACGGAAATGGGACTTACGTACGCA -ACGGAAATGGGACTTACGCTTGCA -ACGGAAATGGGACTTACGCGAACA -ACGGAAATGGGACTTACGCAGTCA -ACGGAAATGGGACTTACGGATCCA -ACGGAAATGGGACTTACGACGACA -ACGGAAATGGGACTTACGAGCTCA -ACGGAAATGGGACTTACGTCACGT -ACGGAAATGGGACTTACGCGTAGT -ACGGAAATGGGACTTACGGTCAGT -ACGGAAATGGGACTTACGGAAGGT -ACGGAAATGGGACTTACGAACCGT -ACGGAAATGGGACTTACGTTGTGC -ACGGAAATGGGACTTACGCTAAGC -ACGGAAATGGGACTTACGACTAGC -ACGGAAATGGGACTTACGAGATGC -ACGGAAATGGGACTTACGTGAAGG -ACGGAAATGGGACTTACGCAATGG -ACGGAAATGGGACTTACGATGAGG -ACGGAAATGGGACTTACGAATGGG -ACGGAAATGGGACTTACGTCCTGA -ACGGAAATGGGACTTACGTAGCGA -ACGGAAATGGGACTTACGCACAGA -ACGGAAATGGGACTTACGGCAAGA -ACGGAAATGGGACTTACGGGTTGA -ACGGAAATGGGACTTACGTCCGAT -ACGGAAATGGGACTTACGTGGCAT -ACGGAAATGGGACTTACGCGAGAT -ACGGAAATGGGACTTACGTACCAC -ACGGAAATGGGACTTACGCAGAAC -ACGGAAATGGGACTTACGGTCTAC -ACGGAAATGGGACTTACGACGTAC -ACGGAAATGGGACTTACGAGTGAC -ACGGAAATGGGACTTACGCTGTAG -ACGGAAATGGGACTTACGCCTAAG -ACGGAAATGGGACTTACGGTTCAG -ACGGAAATGGGACTTACGGCATAG -ACGGAAATGGGACTTACGGACAAG -ACGGAAATGGGACTTACGAAGCAG -ACGGAAATGGGACTTACGCGTCAA -ACGGAAATGGGACTTACGGCTGAA -ACGGAAATGGGACTTACGAGTACG -ACGGAAATGGGACTTACGATCCGA -ACGGAAATGGGACTTACGATGGGA -ACGGAAATGGGACTTACGGTGCAA -ACGGAAATGGGACTTACGGAGGAA -ACGGAAATGGGACTTACGCAGGTA -ACGGAAATGGGACTTACGGACTCT -ACGGAAATGGGACTTACGAGTCCT -ACGGAAATGGGACTTACGTAAGCC -ACGGAAATGGGACTTACGATAGCC -ACGGAAATGGGACTTACGTAACCG -ACGGAAATGGGACTTACGATGCCA -ACGGAAATGGGAGTTAGCGGAAAC -ACGGAAATGGGAGTTAGCAACACC -ACGGAAATGGGAGTTAGCATCGAG -ACGGAAATGGGAGTTAGCCTCCTT -ACGGAAATGGGAGTTAGCCCTGTT -ACGGAAATGGGAGTTAGCCGGTTT -ACGGAAATGGGAGTTAGCGTGGTT -ACGGAAATGGGAGTTAGCGCCTTT -ACGGAAATGGGAGTTAGCGGTCTT -ACGGAAATGGGAGTTAGCACGCTT -ACGGAAATGGGAGTTAGCAGCGTT -ACGGAAATGGGAGTTAGCTTCGTC -ACGGAAATGGGAGTTAGCTCTCTC -ACGGAAATGGGAGTTAGCTGGATC -ACGGAAATGGGAGTTAGCCACTTC -ACGGAAATGGGAGTTAGCGTACTC -ACGGAAATGGGAGTTAGCGATGTC -ACGGAAATGGGAGTTAGCACAGTC -ACGGAAATGGGAGTTAGCTTGCTG -ACGGAAATGGGAGTTAGCTCCATG -ACGGAAATGGGAGTTAGCTGTGTG -ACGGAAATGGGAGTTAGCCTAGTG -ACGGAAATGGGAGTTAGCCATCTG -ACGGAAATGGGAGTTAGCGAGTTG -ACGGAAATGGGAGTTAGCAGACTG -ACGGAAATGGGAGTTAGCTCGGTA -ACGGAAATGGGAGTTAGCTGCCTA -ACGGAAATGGGAGTTAGCCCACTA -ACGGAAATGGGAGTTAGCGGAGTA -ACGGAAATGGGAGTTAGCTCGTCT -ACGGAAATGGGAGTTAGCTGCACT -ACGGAAATGGGAGTTAGCCTGACT -ACGGAAATGGGAGTTAGCCAACCT -ACGGAAATGGGAGTTAGCGCTACT -ACGGAAATGGGAGTTAGCGGATCT -ACGGAAATGGGAGTTAGCAAGGCT -ACGGAAATGGGAGTTAGCTCAACC -ACGGAAATGGGAGTTAGCTGTTCC -ACGGAAATGGGAGTTAGCATTCCC -ACGGAAATGGGAGTTAGCTTCTCG -ACGGAAATGGGAGTTAGCTAGACG -ACGGAAATGGGAGTTAGCGTAACG -ACGGAAATGGGAGTTAGCACTTCG -ACGGAAATGGGAGTTAGCTACGCA -ACGGAAATGGGAGTTAGCCTTGCA -ACGGAAATGGGAGTTAGCCGAACA -ACGGAAATGGGAGTTAGCCAGTCA -ACGGAAATGGGAGTTAGCGATCCA -ACGGAAATGGGAGTTAGCACGACA -ACGGAAATGGGAGTTAGCAGCTCA -ACGGAAATGGGAGTTAGCTCACGT -ACGGAAATGGGAGTTAGCCGTAGT -ACGGAAATGGGAGTTAGCGTCAGT -ACGGAAATGGGAGTTAGCGAAGGT -ACGGAAATGGGAGTTAGCAACCGT -ACGGAAATGGGAGTTAGCTTGTGC -ACGGAAATGGGAGTTAGCCTAAGC -ACGGAAATGGGAGTTAGCACTAGC -ACGGAAATGGGAGTTAGCAGATGC -ACGGAAATGGGAGTTAGCTGAAGG -ACGGAAATGGGAGTTAGCCAATGG -ACGGAAATGGGAGTTAGCATGAGG -ACGGAAATGGGAGTTAGCAATGGG -ACGGAAATGGGAGTTAGCTCCTGA -ACGGAAATGGGAGTTAGCTAGCGA -ACGGAAATGGGAGTTAGCCACAGA -ACGGAAATGGGAGTTAGCGCAAGA -ACGGAAATGGGAGTTAGCGGTTGA -ACGGAAATGGGAGTTAGCTCCGAT -ACGGAAATGGGAGTTAGCTGGCAT -ACGGAAATGGGAGTTAGCCGAGAT -ACGGAAATGGGAGTTAGCTACCAC -ACGGAAATGGGAGTTAGCCAGAAC -ACGGAAATGGGAGTTAGCGTCTAC -ACGGAAATGGGAGTTAGCACGTAC -ACGGAAATGGGAGTTAGCAGTGAC -ACGGAAATGGGAGTTAGCCTGTAG -ACGGAAATGGGAGTTAGCCCTAAG -ACGGAAATGGGAGTTAGCGTTCAG -ACGGAAATGGGAGTTAGCGCATAG -ACGGAAATGGGAGTTAGCGACAAG -ACGGAAATGGGAGTTAGCAAGCAG -ACGGAAATGGGAGTTAGCCGTCAA -ACGGAAATGGGAGTTAGCGCTGAA -ACGGAAATGGGAGTTAGCAGTACG -ACGGAAATGGGAGTTAGCATCCGA -ACGGAAATGGGAGTTAGCATGGGA -ACGGAAATGGGAGTTAGCGTGCAA -ACGGAAATGGGAGTTAGCGAGGAA -ACGGAAATGGGAGTTAGCCAGGTA -ACGGAAATGGGAGTTAGCGACTCT -ACGGAAATGGGAGTTAGCAGTCCT -ACGGAAATGGGAGTTAGCTAAGCC -ACGGAAATGGGAGTTAGCATAGCC -ACGGAAATGGGAGTTAGCTAACCG -ACGGAAATGGGAGTTAGCATGCCA -ACGGAAATGGGAGTCTTCGGAAAC -ACGGAAATGGGAGTCTTCAACACC -ACGGAAATGGGAGTCTTCATCGAG -ACGGAAATGGGAGTCTTCCTCCTT -ACGGAAATGGGAGTCTTCCCTGTT -ACGGAAATGGGAGTCTTCCGGTTT -ACGGAAATGGGAGTCTTCGTGGTT -ACGGAAATGGGAGTCTTCGCCTTT -ACGGAAATGGGAGTCTTCGGTCTT -ACGGAAATGGGAGTCTTCACGCTT -ACGGAAATGGGAGTCTTCAGCGTT -ACGGAAATGGGAGTCTTCTTCGTC -ACGGAAATGGGAGTCTTCTCTCTC -ACGGAAATGGGAGTCTTCTGGATC -ACGGAAATGGGAGTCTTCCACTTC -ACGGAAATGGGAGTCTTCGTACTC -ACGGAAATGGGAGTCTTCGATGTC -ACGGAAATGGGAGTCTTCACAGTC -ACGGAAATGGGAGTCTTCTTGCTG -ACGGAAATGGGAGTCTTCTCCATG -ACGGAAATGGGAGTCTTCTGTGTG -ACGGAAATGGGAGTCTTCCTAGTG -ACGGAAATGGGAGTCTTCCATCTG -ACGGAAATGGGAGTCTTCGAGTTG -ACGGAAATGGGAGTCTTCAGACTG -ACGGAAATGGGAGTCTTCTCGGTA -ACGGAAATGGGAGTCTTCTGCCTA -ACGGAAATGGGAGTCTTCCCACTA -ACGGAAATGGGAGTCTTCGGAGTA -ACGGAAATGGGAGTCTTCTCGTCT -ACGGAAATGGGAGTCTTCTGCACT -ACGGAAATGGGAGTCTTCCTGACT -ACGGAAATGGGAGTCTTCCAACCT -ACGGAAATGGGAGTCTTCGCTACT -ACGGAAATGGGAGTCTTCGGATCT -ACGGAAATGGGAGTCTTCAAGGCT -ACGGAAATGGGAGTCTTCTCAACC -ACGGAAATGGGAGTCTTCTGTTCC -ACGGAAATGGGAGTCTTCATTCCC -ACGGAAATGGGAGTCTTCTTCTCG -ACGGAAATGGGAGTCTTCTAGACG -ACGGAAATGGGAGTCTTCGTAACG -ACGGAAATGGGAGTCTTCACTTCG -ACGGAAATGGGAGTCTTCTACGCA -ACGGAAATGGGAGTCTTCCTTGCA -ACGGAAATGGGAGTCTTCCGAACA -ACGGAAATGGGAGTCTTCCAGTCA -ACGGAAATGGGAGTCTTCGATCCA -ACGGAAATGGGAGTCTTCACGACA -ACGGAAATGGGAGTCTTCAGCTCA -ACGGAAATGGGAGTCTTCTCACGT -ACGGAAATGGGAGTCTTCCGTAGT -ACGGAAATGGGAGTCTTCGTCAGT -ACGGAAATGGGAGTCTTCGAAGGT -ACGGAAATGGGAGTCTTCAACCGT -ACGGAAATGGGAGTCTTCTTGTGC -ACGGAAATGGGAGTCTTCCTAAGC -ACGGAAATGGGAGTCTTCACTAGC -ACGGAAATGGGAGTCTTCAGATGC -ACGGAAATGGGAGTCTTCTGAAGG -ACGGAAATGGGAGTCTTCCAATGG -ACGGAAATGGGAGTCTTCATGAGG -ACGGAAATGGGAGTCTTCAATGGG -ACGGAAATGGGAGTCTTCTCCTGA -ACGGAAATGGGAGTCTTCTAGCGA -ACGGAAATGGGAGTCTTCCACAGA -ACGGAAATGGGAGTCTTCGCAAGA -ACGGAAATGGGAGTCTTCGGTTGA -ACGGAAATGGGAGTCTTCTCCGAT -ACGGAAATGGGAGTCTTCTGGCAT -ACGGAAATGGGAGTCTTCCGAGAT -ACGGAAATGGGAGTCTTCTACCAC -ACGGAAATGGGAGTCTTCCAGAAC -ACGGAAATGGGAGTCTTCGTCTAC -ACGGAAATGGGAGTCTTCACGTAC -ACGGAAATGGGAGTCTTCAGTGAC -ACGGAAATGGGAGTCTTCCTGTAG -ACGGAAATGGGAGTCTTCCCTAAG -ACGGAAATGGGAGTCTTCGTTCAG -ACGGAAATGGGAGTCTTCGCATAG -ACGGAAATGGGAGTCTTCGACAAG -ACGGAAATGGGAGTCTTCAAGCAG -ACGGAAATGGGAGTCTTCCGTCAA -ACGGAAATGGGAGTCTTCGCTGAA -ACGGAAATGGGAGTCTTCAGTACG -ACGGAAATGGGAGTCTTCATCCGA -ACGGAAATGGGAGTCTTCATGGGA -ACGGAAATGGGAGTCTTCGTGCAA -ACGGAAATGGGAGTCTTCGAGGAA -ACGGAAATGGGAGTCTTCCAGGTA -ACGGAAATGGGAGTCTTCGACTCT -ACGGAAATGGGAGTCTTCAGTCCT -ACGGAAATGGGAGTCTTCTAAGCC -ACGGAAATGGGAGTCTTCATAGCC -ACGGAAATGGGAGTCTTCTAACCG -ACGGAAATGGGAGTCTTCATGCCA -ACGGAAATGGGACTCTCTGGAAAC -ACGGAAATGGGACTCTCTAACACC -ACGGAAATGGGACTCTCTATCGAG -ACGGAAATGGGACTCTCTCTCCTT -ACGGAAATGGGACTCTCTCCTGTT -ACGGAAATGGGACTCTCTCGGTTT -ACGGAAATGGGACTCTCTGTGGTT -ACGGAAATGGGACTCTCTGCCTTT -ACGGAAATGGGACTCTCTGGTCTT -ACGGAAATGGGACTCTCTACGCTT -ACGGAAATGGGACTCTCTAGCGTT -ACGGAAATGGGACTCTCTTTCGTC -ACGGAAATGGGACTCTCTTCTCTC -ACGGAAATGGGACTCTCTTGGATC -ACGGAAATGGGACTCTCTCACTTC -ACGGAAATGGGACTCTCTGTACTC -ACGGAAATGGGACTCTCTGATGTC -ACGGAAATGGGACTCTCTACAGTC -ACGGAAATGGGACTCTCTTTGCTG -ACGGAAATGGGACTCTCTTCCATG -ACGGAAATGGGACTCTCTTGTGTG -ACGGAAATGGGACTCTCTCTAGTG -ACGGAAATGGGACTCTCTCATCTG -ACGGAAATGGGACTCTCTGAGTTG -ACGGAAATGGGACTCTCTAGACTG -ACGGAAATGGGACTCTCTTCGGTA -ACGGAAATGGGACTCTCTTGCCTA -ACGGAAATGGGACTCTCTCCACTA -ACGGAAATGGGACTCTCTGGAGTA -ACGGAAATGGGACTCTCTTCGTCT -ACGGAAATGGGACTCTCTTGCACT -ACGGAAATGGGACTCTCTCTGACT -ACGGAAATGGGACTCTCTCAACCT -ACGGAAATGGGACTCTCTGCTACT -ACGGAAATGGGACTCTCTGGATCT -ACGGAAATGGGACTCTCTAAGGCT -ACGGAAATGGGACTCTCTTCAACC -ACGGAAATGGGACTCTCTTGTTCC -ACGGAAATGGGACTCTCTATTCCC -ACGGAAATGGGACTCTCTTTCTCG -ACGGAAATGGGACTCTCTTAGACG -ACGGAAATGGGACTCTCTGTAACG -ACGGAAATGGGACTCTCTACTTCG -ACGGAAATGGGACTCTCTTACGCA -ACGGAAATGGGACTCTCTCTTGCA -ACGGAAATGGGACTCTCTCGAACA -ACGGAAATGGGACTCTCTCAGTCA -ACGGAAATGGGACTCTCTGATCCA -ACGGAAATGGGACTCTCTACGACA -ACGGAAATGGGACTCTCTAGCTCA -ACGGAAATGGGACTCTCTTCACGT -ACGGAAATGGGACTCTCTCGTAGT -ACGGAAATGGGACTCTCTGTCAGT -ACGGAAATGGGACTCTCTGAAGGT -ACGGAAATGGGACTCTCTAACCGT -ACGGAAATGGGACTCTCTTTGTGC -ACGGAAATGGGACTCTCTCTAAGC -ACGGAAATGGGACTCTCTACTAGC -ACGGAAATGGGACTCTCTAGATGC -ACGGAAATGGGACTCTCTTGAAGG -ACGGAAATGGGACTCTCTCAATGG -ACGGAAATGGGACTCTCTATGAGG -ACGGAAATGGGACTCTCTAATGGG -ACGGAAATGGGACTCTCTTCCTGA -ACGGAAATGGGACTCTCTTAGCGA -ACGGAAATGGGACTCTCTCACAGA -ACGGAAATGGGACTCTCTGCAAGA -ACGGAAATGGGACTCTCTGGTTGA -ACGGAAATGGGACTCTCTTCCGAT -ACGGAAATGGGACTCTCTTGGCAT -ACGGAAATGGGACTCTCTCGAGAT -ACGGAAATGGGACTCTCTTACCAC -ACGGAAATGGGACTCTCTCAGAAC -ACGGAAATGGGACTCTCTGTCTAC -ACGGAAATGGGACTCTCTACGTAC -ACGGAAATGGGACTCTCTAGTGAC -ACGGAAATGGGACTCTCTCTGTAG -ACGGAAATGGGACTCTCTCCTAAG -ACGGAAATGGGACTCTCTGTTCAG -ACGGAAATGGGACTCTCTGCATAG -ACGGAAATGGGACTCTCTGACAAG -ACGGAAATGGGACTCTCTAAGCAG -ACGGAAATGGGACTCTCTCGTCAA -ACGGAAATGGGACTCTCTGCTGAA -ACGGAAATGGGACTCTCTAGTACG -ACGGAAATGGGACTCTCTATCCGA -ACGGAAATGGGACTCTCTATGGGA -ACGGAAATGGGACTCTCTGTGCAA -ACGGAAATGGGACTCTCTGAGGAA -ACGGAAATGGGACTCTCTCAGGTA -ACGGAAATGGGACTCTCTGACTCT -ACGGAAATGGGACTCTCTAGTCCT -ACGGAAATGGGACTCTCTTAAGCC -ACGGAAATGGGACTCTCTATAGCC -ACGGAAATGGGACTCTCTTAACCG -ACGGAAATGGGACTCTCTATGCCA -ACGGAAATGGGAATCTGGGGAAAC -ACGGAAATGGGAATCTGGAACACC -ACGGAAATGGGAATCTGGATCGAG -ACGGAAATGGGAATCTGGCTCCTT -ACGGAAATGGGAATCTGGCCTGTT -ACGGAAATGGGAATCTGGCGGTTT -ACGGAAATGGGAATCTGGGTGGTT -ACGGAAATGGGAATCTGGGCCTTT -ACGGAAATGGGAATCTGGGGTCTT -ACGGAAATGGGAATCTGGACGCTT -ACGGAAATGGGAATCTGGAGCGTT -ACGGAAATGGGAATCTGGTTCGTC -ACGGAAATGGGAATCTGGTCTCTC -ACGGAAATGGGAATCTGGTGGATC -ACGGAAATGGGAATCTGGCACTTC -ACGGAAATGGGAATCTGGGTACTC -ACGGAAATGGGAATCTGGGATGTC -ACGGAAATGGGAATCTGGACAGTC -ACGGAAATGGGAATCTGGTTGCTG -ACGGAAATGGGAATCTGGTCCATG -ACGGAAATGGGAATCTGGTGTGTG -ACGGAAATGGGAATCTGGCTAGTG -ACGGAAATGGGAATCTGGCATCTG -ACGGAAATGGGAATCTGGGAGTTG -ACGGAAATGGGAATCTGGAGACTG -ACGGAAATGGGAATCTGGTCGGTA -ACGGAAATGGGAATCTGGTGCCTA -ACGGAAATGGGAATCTGGCCACTA -ACGGAAATGGGAATCTGGGGAGTA -ACGGAAATGGGAATCTGGTCGTCT -ACGGAAATGGGAATCTGGTGCACT -ACGGAAATGGGAATCTGGCTGACT -ACGGAAATGGGAATCTGGCAACCT -ACGGAAATGGGAATCTGGGCTACT -ACGGAAATGGGAATCTGGGGATCT -ACGGAAATGGGAATCTGGAAGGCT -ACGGAAATGGGAATCTGGTCAACC -ACGGAAATGGGAATCTGGTGTTCC -ACGGAAATGGGAATCTGGATTCCC -ACGGAAATGGGAATCTGGTTCTCG -ACGGAAATGGGAATCTGGTAGACG -ACGGAAATGGGAATCTGGGTAACG -ACGGAAATGGGAATCTGGACTTCG -ACGGAAATGGGAATCTGGTACGCA -ACGGAAATGGGAATCTGGCTTGCA -ACGGAAATGGGAATCTGGCGAACA -ACGGAAATGGGAATCTGGCAGTCA -ACGGAAATGGGAATCTGGGATCCA -ACGGAAATGGGAATCTGGACGACA -ACGGAAATGGGAATCTGGAGCTCA -ACGGAAATGGGAATCTGGTCACGT -ACGGAAATGGGAATCTGGCGTAGT -ACGGAAATGGGAATCTGGGTCAGT -ACGGAAATGGGAATCTGGGAAGGT -ACGGAAATGGGAATCTGGAACCGT -ACGGAAATGGGAATCTGGTTGTGC -ACGGAAATGGGAATCTGGCTAAGC -ACGGAAATGGGAATCTGGACTAGC -ACGGAAATGGGAATCTGGAGATGC -ACGGAAATGGGAATCTGGTGAAGG -ACGGAAATGGGAATCTGGCAATGG -ACGGAAATGGGAATCTGGATGAGG -ACGGAAATGGGAATCTGGAATGGG -ACGGAAATGGGAATCTGGTCCTGA -ACGGAAATGGGAATCTGGTAGCGA -ACGGAAATGGGAATCTGGCACAGA -ACGGAAATGGGAATCTGGGCAAGA -ACGGAAATGGGAATCTGGGGTTGA -ACGGAAATGGGAATCTGGTCCGAT -ACGGAAATGGGAATCTGGTGGCAT -ACGGAAATGGGAATCTGGCGAGAT -ACGGAAATGGGAATCTGGTACCAC -ACGGAAATGGGAATCTGGCAGAAC -ACGGAAATGGGAATCTGGGTCTAC -ACGGAAATGGGAATCTGGACGTAC -ACGGAAATGGGAATCTGGAGTGAC -ACGGAAATGGGAATCTGGCTGTAG -ACGGAAATGGGAATCTGGCCTAAG -ACGGAAATGGGAATCTGGGTTCAG -ACGGAAATGGGAATCTGGGCATAG -ACGGAAATGGGAATCTGGGACAAG -ACGGAAATGGGAATCTGGAAGCAG -ACGGAAATGGGAATCTGGCGTCAA -ACGGAAATGGGAATCTGGGCTGAA -ACGGAAATGGGAATCTGGAGTACG -ACGGAAATGGGAATCTGGATCCGA -ACGGAAATGGGAATCTGGATGGGA -ACGGAAATGGGAATCTGGGTGCAA -ACGGAAATGGGAATCTGGGAGGAA -ACGGAAATGGGAATCTGGCAGGTA -ACGGAAATGGGAATCTGGGACTCT -ACGGAAATGGGAATCTGGAGTCCT -ACGGAAATGGGAATCTGGTAAGCC -ACGGAAATGGGAATCTGGATAGCC -ACGGAAATGGGAATCTGGTAACCG -ACGGAAATGGGAATCTGGATGCCA -ACGGAAATGGGATTCCACGGAAAC -ACGGAAATGGGATTCCACAACACC -ACGGAAATGGGATTCCACATCGAG -ACGGAAATGGGATTCCACCTCCTT -ACGGAAATGGGATTCCACCCTGTT -ACGGAAATGGGATTCCACCGGTTT -ACGGAAATGGGATTCCACGTGGTT -ACGGAAATGGGATTCCACGCCTTT -ACGGAAATGGGATTCCACGGTCTT -ACGGAAATGGGATTCCACACGCTT -ACGGAAATGGGATTCCACAGCGTT -ACGGAAATGGGATTCCACTTCGTC -ACGGAAATGGGATTCCACTCTCTC -ACGGAAATGGGATTCCACTGGATC -ACGGAAATGGGATTCCACCACTTC -ACGGAAATGGGATTCCACGTACTC -ACGGAAATGGGATTCCACGATGTC -ACGGAAATGGGATTCCACACAGTC -ACGGAAATGGGATTCCACTTGCTG -ACGGAAATGGGATTCCACTCCATG -ACGGAAATGGGATTCCACTGTGTG -ACGGAAATGGGATTCCACCTAGTG -ACGGAAATGGGATTCCACCATCTG -ACGGAAATGGGATTCCACGAGTTG -ACGGAAATGGGATTCCACAGACTG -ACGGAAATGGGATTCCACTCGGTA -ACGGAAATGGGATTCCACTGCCTA -ACGGAAATGGGATTCCACCCACTA -ACGGAAATGGGATTCCACGGAGTA -ACGGAAATGGGATTCCACTCGTCT -ACGGAAATGGGATTCCACTGCACT -ACGGAAATGGGATTCCACCTGACT -ACGGAAATGGGATTCCACCAACCT -ACGGAAATGGGATTCCACGCTACT -ACGGAAATGGGATTCCACGGATCT -ACGGAAATGGGATTCCACAAGGCT -ACGGAAATGGGATTCCACTCAACC -ACGGAAATGGGATTCCACTGTTCC -ACGGAAATGGGATTCCACATTCCC -ACGGAAATGGGATTCCACTTCTCG -ACGGAAATGGGATTCCACTAGACG -ACGGAAATGGGATTCCACGTAACG -ACGGAAATGGGATTCCACACTTCG -ACGGAAATGGGATTCCACTACGCA -ACGGAAATGGGATTCCACCTTGCA -ACGGAAATGGGATTCCACCGAACA -ACGGAAATGGGATTCCACCAGTCA -ACGGAAATGGGATTCCACGATCCA -ACGGAAATGGGATTCCACACGACA -ACGGAAATGGGATTCCACAGCTCA -ACGGAAATGGGATTCCACTCACGT -ACGGAAATGGGATTCCACCGTAGT -ACGGAAATGGGATTCCACGTCAGT -ACGGAAATGGGATTCCACGAAGGT -ACGGAAATGGGATTCCACAACCGT -ACGGAAATGGGATTCCACTTGTGC -ACGGAAATGGGATTCCACCTAAGC -ACGGAAATGGGATTCCACACTAGC -ACGGAAATGGGATTCCACAGATGC -ACGGAAATGGGATTCCACTGAAGG -ACGGAAATGGGATTCCACCAATGG -ACGGAAATGGGATTCCACATGAGG -ACGGAAATGGGATTCCACAATGGG -ACGGAAATGGGATTCCACTCCTGA -ACGGAAATGGGATTCCACTAGCGA -ACGGAAATGGGATTCCACCACAGA -ACGGAAATGGGATTCCACGCAAGA -ACGGAAATGGGATTCCACGGTTGA -ACGGAAATGGGATTCCACTCCGAT -ACGGAAATGGGATTCCACTGGCAT -ACGGAAATGGGATTCCACCGAGAT -ACGGAAATGGGATTCCACTACCAC -ACGGAAATGGGATTCCACCAGAAC -ACGGAAATGGGATTCCACGTCTAC -ACGGAAATGGGATTCCACACGTAC -ACGGAAATGGGATTCCACAGTGAC -ACGGAAATGGGATTCCACCTGTAG -ACGGAAATGGGATTCCACCCTAAG -ACGGAAATGGGATTCCACGTTCAG -ACGGAAATGGGATTCCACGCATAG -ACGGAAATGGGATTCCACGACAAG -ACGGAAATGGGATTCCACAAGCAG -ACGGAAATGGGATTCCACCGTCAA -ACGGAAATGGGATTCCACGCTGAA -ACGGAAATGGGATTCCACAGTACG -ACGGAAATGGGATTCCACATCCGA -ACGGAAATGGGATTCCACATGGGA -ACGGAAATGGGATTCCACGTGCAA -ACGGAAATGGGATTCCACGAGGAA -ACGGAAATGGGATTCCACCAGGTA -ACGGAAATGGGATTCCACGACTCT -ACGGAAATGGGATTCCACAGTCCT -ACGGAAATGGGATTCCACTAAGCC -ACGGAAATGGGATTCCACATAGCC -ACGGAAATGGGATTCCACTAACCG -ACGGAAATGGGATTCCACATGCCA -ACGGAAATGGGACTCGTAGGAAAC -ACGGAAATGGGACTCGTAAACACC -ACGGAAATGGGACTCGTAATCGAG -ACGGAAATGGGACTCGTACTCCTT -ACGGAAATGGGACTCGTACCTGTT -ACGGAAATGGGACTCGTACGGTTT -ACGGAAATGGGACTCGTAGTGGTT -ACGGAAATGGGACTCGTAGCCTTT -ACGGAAATGGGACTCGTAGGTCTT -ACGGAAATGGGACTCGTAACGCTT -ACGGAAATGGGACTCGTAAGCGTT -ACGGAAATGGGACTCGTATTCGTC -ACGGAAATGGGACTCGTATCTCTC -ACGGAAATGGGACTCGTATGGATC -ACGGAAATGGGACTCGTACACTTC -ACGGAAATGGGACTCGTAGTACTC -ACGGAAATGGGACTCGTAGATGTC -ACGGAAATGGGACTCGTAACAGTC -ACGGAAATGGGACTCGTATTGCTG -ACGGAAATGGGACTCGTATCCATG -ACGGAAATGGGACTCGTATGTGTG -ACGGAAATGGGACTCGTACTAGTG -ACGGAAATGGGACTCGTACATCTG -ACGGAAATGGGACTCGTAGAGTTG -ACGGAAATGGGACTCGTAAGACTG -ACGGAAATGGGACTCGTATCGGTA -ACGGAAATGGGACTCGTATGCCTA -ACGGAAATGGGACTCGTACCACTA -ACGGAAATGGGACTCGTAGGAGTA -ACGGAAATGGGACTCGTATCGTCT -ACGGAAATGGGACTCGTATGCACT -ACGGAAATGGGACTCGTACTGACT -ACGGAAATGGGACTCGTACAACCT -ACGGAAATGGGACTCGTAGCTACT -ACGGAAATGGGACTCGTAGGATCT -ACGGAAATGGGACTCGTAAAGGCT -ACGGAAATGGGACTCGTATCAACC -ACGGAAATGGGACTCGTATGTTCC -ACGGAAATGGGACTCGTAATTCCC -ACGGAAATGGGACTCGTATTCTCG -ACGGAAATGGGACTCGTATAGACG -ACGGAAATGGGACTCGTAGTAACG -ACGGAAATGGGACTCGTAACTTCG -ACGGAAATGGGACTCGTATACGCA -ACGGAAATGGGACTCGTACTTGCA -ACGGAAATGGGACTCGTACGAACA -ACGGAAATGGGACTCGTACAGTCA -ACGGAAATGGGACTCGTAGATCCA -ACGGAAATGGGACTCGTAACGACA -ACGGAAATGGGACTCGTAAGCTCA -ACGGAAATGGGACTCGTATCACGT -ACGGAAATGGGACTCGTACGTAGT -ACGGAAATGGGACTCGTAGTCAGT -ACGGAAATGGGACTCGTAGAAGGT -ACGGAAATGGGACTCGTAAACCGT -ACGGAAATGGGACTCGTATTGTGC -ACGGAAATGGGACTCGTACTAAGC -ACGGAAATGGGACTCGTAACTAGC -ACGGAAATGGGACTCGTAAGATGC -ACGGAAATGGGACTCGTATGAAGG -ACGGAAATGGGACTCGTACAATGG -ACGGAAATGGGACTCGTAATGAGG -ACGGAAATGGGACTCGTAAATGGG -ACGGAAATGGGACTCGTATCCTGA -ACGGAAATGGGACTCGTATAGCGA -ACGGAAATGGGACTCGTACACAGA -ACGGAAATGGGACTCGTAGCAAGA -ACGGAAATGGGACTCGTAGGTTGA -ACGGAAATGGGACTCGTATCCGAT -ACGGAAATGGGACTCGTATGGCAT -ACGGAAATGGGACTCGTACGAGAT -ACGGAAATGGGACTCGTATACCAC -ACGGAAATGGGACTCGTACAGAAC -ACGGAAATGGGACTCGTAGTCTAC -ACGGAAATGGGACTCGTAACGTAC -ACGGAAATGGGACTCGTAAGTGAC -ACGGAAATGGGACTCGTACTGTAG -ACGGAAATGGGACTCGTACCTAAG -ACGGAAATGGGACTCGTAGTTCAG -ACGGAAATGGGACTCGTAGCATAG -ACGGAAATGGGACTCGTAGACAAG -ACGGAAATGGGACTCGTAAAGCAG -ACGGAAATGGGACTCGTACGTCAA -ACGGAAATGGGACTCGTAGCTGAA -ACGGAAATGGGACTCGTAAGTACG -ACGGAAATGGGACTCGTAATCCGA -ACGGAAATGGGACTCGTAATGGGA -ACGGAAATGGGACTCGTAGTGCAA -ACGGAAATGGGACTCGTAGAGGAA -ACGGAAATGGGACTCGTACAGGTA -ACGGAAATGGGACTCGTAGACTCT -ACGGAAATGGGACTCGTAAGTCCT -ACGGAAATGGGACTCGTATAAGCC -ACGGAAATGGGACTCGTAATAGCC -ACGGAAATGGGACTCGTATAACCG -ACGGAAATGGGACTCGTAATGCCA -ACGGAAATGGGAGTCGATGGAAAC -ACGGAAATGGGAGTCGATAACACC -ACGGAAATGGGAGTCGATATCGAG -ACGGAAATGGGAGTCGATCTCCTT -ACGGAAATGGGAGTCGATCCTGTT -ACGGAAATGGGAGTCGATCGGTTT -ACGGAAATGGGAGTCGATGTGGTT -ACGGAAATGGGAGTCGATGCCTTT -ACGGAAATGGGAGTCGATGGTCTT -ACGGAAATGGGAGTCGATACGCTT -ACGGAAATGGGAGTCGATAGCGTT -ACGGAAATGGGAGTCGATTTCGTC -ACGGAAATGGGAGTCGATTCTCTC -ACGGAAATGGGAGTCGATTGGATC -ACGGAAATGGGAGTCGATCACTTC -ACGGAAATGGGAGTCGATGTACTC -ACGGAAATGGGAGTCGATGATGTC -ACGGAAATGGGAGTCGATACAGTC -ACGGAAATGGGAGTCGATTTGCTG -ACGGAAATGGGAGTCGATTCCATG -ACGGAAATGGGAGTCGATTGTGTG -ACGGAAATGGGAGTCGATCTAGTG -ACGGAAATGGGAGTCGATCATCTG -ACGGAAATGGGAGTCGATGAGTTG -ACGGAAATGGGAGTCGATAGACTG -ACGGAAATGGGAGTCGATTCGGTA -ACGGAAATGGGAGTCGATTGCCTA -ACGGAAATGGGAGTCGATCCACTA -ACGGAAATGGGAGTCGATGGAGTA -ACGGAAATGGGAGTCGATTCGTCT -ACGGAAATGGGAGTCGATTGCACT -ACGGAAATGGGAGTCGATCTGACT -ACGGAAATGGGAGTCGATCAACCT -ACGGAAATGGGAGTCGATGCTACT -ACGGAAATGGGAGTCGATGGATCT -ACGGAAATGGGAGTCGATAAGGCT -ACGGAAATGGGAGTCGATTCAACC -ACGGAAATGGGAGTCGATTGTTCC -ACGGAAATGGGAGTCGATATTCCC -ACGGAAATGGGAGTCGATTTCTCG -ACGGAAATGGGAGTCGATTAGACG -ACGGAAATGGGAGTCGATGTAACG -ACGGAAATGGGAGTCGATACTTCG -ACGGAAATGGGAGTCGATTACGCA -ACGGAAATGGGAGTCGATCTTGCA -ACGGAAATGGGAGTCGATCGAACA -ACGGAAATGGGAGTCGATCAGTCA -ACGGAAATGGGAGTCGATGATCCA -ACGGAAATGGGAGTCGATACGACA -ACGGAAATGGGAGTCGATAGCTCA -ACGGAAATGGGAGTCGATTCACGT -ACGGAAATGGGAGTCGATCGTAGT -ACGGAAATGGGAGTCGATGTCAGT -ACGGAAATGGGAGTCGATGAAGGT -ACGGAAATGGGAGTCGATAACCGT -ACGGAAATGGGAGTCGATTTGTGC -ACGGAAATGGGAGTCGATCTAAGC -ACGGAAATGGGAGTCGATACTAGC -ACGGAAATGGGAGTCGATAGATGC -ACGGAAATGGGAGTCGATTGAAGG -ACGGAAATGGGAGTCGATCAATGG -ACGGAAATGGGAGTCGATATGAGG -ACGGAAATGGGAGTCGATAATGGG -ACGGAAATGGGAGTCGATTCCTGA -ACGGAAATGGGAGTCGATTAGCGA -ACGGAAATGGGAGTCGATCACAGA -ACGGAAATGGGAGTCGATGCAAGA -ACGGAAATGGGAGTCGATGGTTGA -ACGGAAATGGGAGTCGATTCCGAT -ACGGAAATGGGAGTCGATTGGCAT -ACGGAAATGGGAGTCGATCGAGAT -ACGGAAATGGGAGTCGATTACCAC -ACGGAAATGGGAGTCGATCAGAAC -ACGGAAATGGGAGTCGATGTCTAC -ACGGAAATGGGAGTCGATACGTAC -ACGGAAATGGGAGTCGATAGTGAC -ACGGAAATGGGAGTCGATCTGTAG -ACGGAAATGGGAGTCGATCCTAAG -ACGGAAATGGGAGTCGATGTTCAG -ACGGAAATGGGAGTCGATGCATAG -ACGGAAATGGGAGTCGATGACAAG -ACGGAAATGGGAGTCGATAAGCAG -ACGGAAATGGGAGTCGATCGTCAA -ACGGAAATGGGAGTCGATGCTGAA -ACGGAAATGGGAGTCGATAGTACG -ACGGAAATGGGAGTCGATATCCGA -ACGGAAATGGGAGTCGATATGGGA -ACGGAAATGGGAGTCGATGTGCAA -ACGGAAATGGGAGTCGATGAGGAA -ACGGAAATGGGAGTCGATCAGGTA -ACGGAAATGGGAGTCGATGACTCT -ACGGAAATGGGAGTCGATAGTCCT -ACGGAAATGGGAGTCGATTAAGCC -ACGGAAATGGGAGTCGATATAGCC -ACGGAAATGGGAGTCGATTAACCG -ACGGAAATGGGAGTCGATATGCCA -ACGGAAATGGGAGTCACAGGAAAC -ACGGAAATGGGAGTCACAAACACC -ACGGAAATGGGAGTCACAATCGAG -ACGGAAATGGGAGTCACACTCCTT -ACGGAAATGGGAGTCACACCTGTT -ACGGAAATGGGAGTCACACGGTTT -ACGGAAATGGGAGTCACAGTGGTT -ACGGAAATGGGAGTCACAGCCTTT -ACGGAAATGGGAGTCACAGGTCTT -ACGGAAATGGGAGTCACAACGCTT -ACGGAAATGGGAGTCACAAGCGTT -ACGGAAATGGGAGTCACATTCGTC -ACGGAAATGGGAGTCACATCTCTC -ACGGAAATGGGAGTCACATGGATC -ACGGAAATGGGAGTCACACACTTC -ACGGAAATGGGAGTCACAGTACTC -ACGGAAATGGGAGTCACAGATGTC -ACGGAAATGGGAGTCACAACAGTC -ACGGAAATGGGAGTCACATTGCTG -ACGGAAATGGGAGTCACATCCATG -ACGGAAATGGGAGTCACATGTGTG -ACGGAAATGGGAGTCACACTAGTG -ACGGAAATGGGAGTCACACATCTG -ACGGAAATGGGAGTCACAGAGTTG -ACGGAAATGGGAGTCACAAGACTG -ACGGAAATGGGAGTCACATCGGTA -ACGGAAATGGGAGTCACATGCCTA -ACGGAAATGGGAGTCACACCACTA -ACGGAAATGGGAGTCACAGGAGTA -ACGGAAATGGGAGTCACATCGTCT -ACGGAAATGGGAGTCACATGCACT -ACGGAAATGGGAGTCACACTGACT -ACGGAAATGGGAGTCACACAACCT -ACGGAAATGGGAGTCACAGCTACT -ACGGAAATGGGAGTCACAGGATCT -ACGGAAATGGGAGTCACAAAGGCT -ACGGAAATGGGAGTCACATCAACC -ACGGAAATGGGAGTCACATGTTCC -ACGGAAATGGGAGTCACAATTCCC -ACGGAAATGGGAGTCACATTCTCG -ACGGAAATGGGAGTCACATAGACG -ACGGAAATGGGAGTCACAGTAACG -ACGGAAATGGGAGTCACAACTTCG -ACGGAAATGGGAGTCACATACGCA -ACGGAAATGGGAGTCACACTTGCA -ACGGAAATGGGAGTCACACGAACA -ACGGAAATGGGAGTCACACAGTCA -ACGGAAATGGGAGTCACAGATCCA -ACGGAAATGGGAGTCACAACGACA -ACGGAAATGGGAGTCACAAGCTCA -ACGGAAATGGGAGTCACATCACGT -ACGGAAATGGGAGTCACACGTAGT -ACGGAAATGGGAGTCACAGTCAGT -ACGGAAATGGGAGTCACAGAAGGT -ACGGAAATGGGAGTCACAAACCGT -ACGGAAATGGGAGTCACATTGTGC -ACGGAAATGGGAGTCACACTAAGC -ACGGAAATGGGAGTCACAACTAGC -ACGGAAATGGGAGTCACAAGATGC -ACGGAAATGGGAGTCACATGAAGG -ACGGAAATGGGAGTCACACAATGG -ACGGAAATGGGAGTCACAATGAGG -ACGGAAATGGGAGTCACAAATGGG -ACGGAAATGGGAGTCACATCCTGA -ACGGAAATGGGAGTCACATAGCGA -ACGGAAATGGGAGTCACACACAGA -ACGGAAATGGGAGTCACAGCAAGA -ACGGAAATGGGAGTCACAGGTTGA -ACGGAAATGGGAGTCACATCCGAT -ACGGAAATGGGAGTCACATGGCAT -ACGGAAATGGGAGTCACACGAGAT -ACGGAAATGGGAGTCACATACCAC -ACGGAAATGGGAGTCACACAGAAC -ACGGAAATGGGAGTCACAGTCTAC -ACGGAAATGGGAGTCACAACGTAC -ACGGAAATGGGAGTCACAAGTGAC -ACGGAAATGGGAGTCACACTGTAG -ACGGAAATGGGAGTCACACCTAAG -ACGGAAATGGGAGTCACAGTTCAG -ACGGAAATGGGAGTCACAGCATAG -ACGGAAATGGGAGTCACAGACAAG -ACGGAAATGGGAGTCACAAAGCAG -ACGGAAATGGGAGTCACACGTCAA -ACGGAAATGGGAGTCACAGCTGAA -ACGGAAATGGGAGTCACAAGTACG -ACGGAAATGGGAGTCACAATCCGA -ACGGAAATGGGAGTCACAATGGGA -ACGGAAATGGGAGTCACAGTGCAA -ACGGAAATGGGAGTCACAGAGGAA -ACGGAAATGGGAGTCACACAGGTA -ACGGAAATGGGAGTCACAGACTCT -ACGGAAATGGGAGTCACAAGTCCT -ACGGAAATGGGAGTCACATAAGCC -ACGGAAATGGGAGTCACAATAGCC -ACGGAAATGGGAGTCACATAACCG -ACGGAAATGGGAGTCACAATGCCA -ACGGAAATGGGACTGTTGGGAAAC -ACGGAAATGGGACTGTTGAACACC -ACGGAAATGGGACTGTTGATCGAG -ACGGAAATGGGACTGTTGCTCCTT -ACGGAAATGGGACTGTTGCCTGTT -ACGGAAATGGGACTGTTGCGGTTT -ACGGAAATGGGACTGTTGGTGGTT -ACGGAAATGGGACTGTTGGCCTTT -ACGGAAATGGGACTGTTGGGTCTT -ACGGAAATGGGACTGTTGACGCTT -ACGGAAATGGGACTGTTGAGCGTT -ACGGAAATGGGACTGTTGTTCGTC -ACGGAAATGGGACTGTTGTCTCTC -ACGGAAATGGGACTGTTGTGGATC -ACGGAAATGGGACTGTTGCACTTC -ACGGAAATGGGACTGTTGGTACTC -ACGGAAATGGGACTGTTGGATGTC -ACGGAAATGGGACTGTTGACAGTC -ACGGAAATGGGACTGTTGTTGCTG -ACGGAAATGGGACTGTTGTCCATG -ACGGAAATGGGACTGTTGTGTGTG -ACGGAAATGGGACTGTTGCTAGTG -ACGGAAATGGGACTGTTGCATCTG -ACGGAAATGGGACTGTTGGAGTTG -ACGGAAATGGGACTGTTGAGACTG -ACGGAAATGGGACTGTTGTCGGTA -ACGGAAATGGGACTGTTGTGCCTA -ACGGAAATGGGACTGTTGCCACTA -ACGGAAATGGGACTGTTGGGAGTA -ACGGAAATGGGACTGTTGTCGTCT -ACGGAAATGGGACTGTTGTGCACT -ACGGAAATGGGACTGTTGCTGACT -ACGGAAATGGGACTGTTGCAACCT -ACGGAAATGGGACTGTTGGCTACT -ACGGAAATGGGACTGTTGGGATCT -ACGGAAATGGGACTGTTGAAGGCT -ACGGAAATGGGACTGTTGTCAACC -ACGGAAATGGGACTGTTGTGTTCC -ACGGAAATGGGACTGTTGATTCCC -ACGGAAATGGGACTGTTGTTCTCG -ACGGAAATGGGACTGTTGTAGACG -ACGGAAATGGGACTGTTGGTAACG -ACGGAAATGGGACTGTTGACTTCG -ACGGAAATGGGACTGTTGTACGCA -ACGGAAATGGGACTGTTGCTTGCA -ACGGAAATGGGACTGTTGCGAACA -ACGGAAATGGGACTGTTGCAGTCA -ACGGAAATGGGACTGTTGGATCCA -ACGGAAATGGGACTGTTGACGACA -ACGGAAATGGGACTGTTGAGCTCA -ACGGAAATGGGACTGTTGTCACGT -ACGGAAATGGGACTGTTGCGTAGT -ACGGAAATGGGACTGTTGGTCAGT -ACGGAAATGGGACTGTTGGAAGGT -ACGGAAATGGGACTGTTGAACCGT -ACGGAAATGGGACTGTTGTTGTGC -ACGGAAATGGGACTGTTGCTAAGC -ACGGAAATGGGACTGTTGACTAGC -ACGGAAATGGGACTGTTGAGATGC -ACGGAAATGGGACTGTTGTGAAGG -ACGGAAATGGGACTGTTGCAATGG -ACGGAAATGGGACTGTTGATGAGG -ACGGAAATGGGACTGTTGAATGGG -ACGGAAATGGGACTGTTGTCCTGA -ACGGAAATGGGACTGTTGTAGCGA -ACGGAAATGGGACTGTTGCACAGA -ACGGAAATGGGACTGTTGGCAAGA -ACGGAAATGGGACTGTTGGGTTGA -ACGGAAATGGGACTGTTGTCCGAT -ACGGAAATGGGACTGTTGTGGCAT -ACGGAAATGGGACTGTTGCGAGAT -ACGGAAATGGGACTGTTGTACCAC -ACGGAAATGGGACTGTTGCAGAAC -ACGGAAATGGGACTGTTGGTCTAC -ACGGAAATGGGACTGTTGACGTAC -ACGGAAATGGGACTGTTGAGTGAC -ACGGAAATGGGACTGTTGCTGTAG -ACGGAAATGGGACTGTTGCCTAAG -ACGGAAATGGGACTGTTGGTTCAG -ACGGAAATGGGACTGTTGGCATAG -ACGGAAATGGGACTGTTGGACAAG -ACGGAAATGGGACTGTTGAAGCAG -ACGGAAATGGGACTGTTGCGTCAA -ACGGAAATGGGACTGTTGGCTGAA -ACGGAAATGGGACTGTTGAGTACG -ACGGAAATGGGACTGTTGATCCGA -ACGGAAATGGGACTGTTGATGGGA -ACGGAAATGGGACTGTTGGTGCAA -ACGGAAATGGGACTGTTGGAGGAA -ACGGAAATGGGACTGTTGCAGGTA -ACGGAAATGGGACTGTTGGACTCT -ACGGAAATGGGACTGTTGAGTCCT -ACGGAAATGGGACTGTTGTAAGCC -ACGGAAATGGGACTGTTGATAGCC -ACGGAAATGGGACTGTTGTAACCG -ACGGAAATGGGACTGTTGATGCCA -ACGGAAATGGGAATGTCCGGAAAC -ACGGAAATGGGAATGTCCAACACC -ACGGAAATGGGAATGTCCATCGAG -ACGGAAATGGGAATGTCCCTCCTT -ACGGAAATGGGAATGTCCCCTGTT -ACGGAAATGGGAATGTCCCGGTTT -ACGGAAATGGGAATGTCCGTGGTT -ACGGAAATGGGAATGTCCGCCTTT -ACGGAAATGGGAATGTCCGGTCTT -ACGGAAATGGGAATGTCCACGCTT -ACGGAAATGGGAATGTCCAGCGTT -ACGGAAATGGGAATGTCCTTCGTC -ACGGAAATGGGAATGTCCTCTCTC -ACGGAAATGGGAATGTCCTGGATC -ACGGAAATGGGAATGTCCCACTTC -ACGGAAATGGGAATGTCCGTACTC -ACGGAAATGGGAATGTCCGATGTC -ACGGAAATGGGAATGTCCACAGTC -ACGGAAATGGGAATGTCCTTGCTG -ACGGAAATGGGAATGTCCTCCATG -ACGGAAATGGGAATGTCCTGTGTG -ACGGAAATGGGAATGTCCCTAGTG -ACGGAAATGGGAATGTCCCATCTG -ACGGAAATGGGAATGTCCGAGTTG -ACGGAAATGGGAATGTCCAGACTG -ACGGAAATGGGAATGTCCTCGGTA -ACGGAAATGGGAATGTCCTGCCTA -ACGGAAATGGGAATGTCCCCACTA -ACGGAAATGGGAATGTCCGGAGTA -ACGGAAATGGGAATGTCCTCGTCT -ACGGAAATGGGAATGTCCTGCACT -ACGGAAATGGGAATGTCCCTGACT -ACGGAAATGGGAATGTCCCAACCT -ACGGAAATGGGAATGTCCGCTACT -ACGGAAATGGGAATGTCCGGATCT -ACGGAAATGGGAATGTCCAAGGCT -ACGGAAATGGGAATGTCCTCAACC -ACGGAAATGGGAATGTCCTGTTCC -ACGGAAATGGGAATGTCCATTCCC -ACGGAAATGGGAATGTCCTTCTCG -ACGGAAATGGGAATGTCCTAGACG -ACGGAAATGGGAATGTCCGTAACG -ACGGAAATGGGAATGTCCACTTCG -ACGGAAATGGGAATGTCCTACGCA -ACGGAAATGGGAATGTCCCTTGCA -ACGGAAATGGGAATGTCCCGAACA -ACGGAAATGGGAATGTCCCAGTCA -ACGGAAATGGGAATGTCCGATCCA -ACGGAAATGGGAATGTCCACGACA -ACGGAAATGGGAATGTCCAGCTCA -ACGGAAATGGGAATGTCCTCACGT -ACGGAAATGGGAATGTCCCGTAGT -ACGGAAATGGGAATGTCCGTCAGT -ACGGAAATGGGAATGTCCGAAGGT -ACGGAAATGGGAATGTCCAACCGT -ACGGAAATGGGAATGTCCTTGTGC -ACGGAAATGGGAATGTCCCTAAGC -ACGGAAATGGGAATGTCCACTAGC -ACGGAAATGGGAATGTCCAGATGC -ACGGAAATGGGAATGTCCTGAAGG -ACGGAAATGGGAATGTCCCAATGG -ACGGAAATGGGAATGTCCATGAGG -ACGGAAATGGGAATGTCCAATGGG -ACGGAAATGGGAATGTCCTCCTGA -ACGGAAATGGGAATGTCCTAGCGA -ACGGAAATGGGAATGTCCCACAGA -ACGGAAATGGGAATGTCCGCAAGA -ACGGAAATGGGAATGTCCGGTTGA -ACGGAAATGGGAATGTCCTCCGAT -ACGGAAATGGGAATGTCCTGGCAT -ACGGAAATGGGAATGTCCCGAGAT -ACGGAAATGGGAATGTCCTACCAC -ACGGAAATGGGAATGTCCCAGAAC -ACGGAAATGGGAATGTCCGTCTAC -ACGGAAATGGGAATGTCCACGTAC -ACGGAAATGGGAATGTCCAGTGAC -ACGGAAATGGGAATGTCCCTGTAG -ACGGAAATGGGAATGTCCCCTAAG -ACGGAAATGGGAATGTCCGTTCAG -ACGGAAATGGGAATGTCCGCATAG -ACGGAAATGGGAATGTCCGACAAG -ACGGAAATGGGAATGTCCAAGCAG -ACGGAAATGGGAATGTCCCGTCAA -ACGGAAATGGGAATGTCCGCTGAA -ACGGAAATGGGAATGTCCAGTACG -ACGGAAATGGGAATGTCCATCCGA -ACGGAAATGGGAATGTCCATGGGA -ACGGAAATGGGAATGTCCGTGCAA -ACGGAAATGGGAATGTCCGAGGAA -ACGGAAATGGGAATGTCCCAGGTA -ACGGAAATGGGAATGTCCGACTCT -ACGGAAATGGGAATGTCCAGTCCT -ACGGAAATGGGAATGTCCTAAGCC -ACGGAAATGGGAATGTCCATAGCC -ACGGAAATGGGAATGTCCTAACCG -ACGGAAATGGGAATGTCCATGCCA -ACGGAAATGGGAGTGTGTGGAAAC -ACGGAAATGGGAGTGTGTAACACC -ACGGAAATGGGAGTGTGTATCGAG -ACGGAAATGGGAGTGTGTCTCCTT -ACGGAAATGGGAGTGTGTCCTGTT -ACGGAAATGGGAGTGTGTCGGTTT -ACGGAAATGGGAGTGTGTGTGGTT -ACGGAAATGGGAGTGTGTGCCTTT -ACGGAAATGGGAGTGTGTGGTCTT -ACGGAAATGGGAGTGTGTACGCTT -ACGGAAATGGGAGTGTGTAGCGTT -ACGGAAATGGGAGTGTGTTTCGTC -ACGGAAATGGGAGTGTGTTCTCTC -ACGGAAATGGGAGTGTGTTGGATC -ACGGAAATGGGAGTGTGTCACTTC -ACGGAAATGGGAGTGTGTGTACTC -ACGGAAATGGGAGTGTGTGATGTC -ACGGAAATGGGAGTGTGTACAGTC -ACGGAAATGGGAGTGTGTTTGCTG -ACGGAAATGGGAGTGTGTTCCATG -ACGGAAATGGGAGTGTGTTGTGTG -ACGGAAATGGGAGTGTGTCTAGTG -ACGGAAATGGGAGTGTGTCATCTG -ACGGAAATGGGAGTGTGTGAGTTG -ACGGAAATGGGAGTGTGTAGACTG -ACGGAAATGGGAGTGTGTTCGGTA -ACGGAAATGGGAGTGTGTTGCCTA -ACGGAAATGGGAGTGTGTCCACTA -ACGGAAATGGGAGTGTGTGGAGTA -ACGGAAATGGGAGTGTGTTCGTCT -ACGGAAATGGGAGTGTGTTGCACT -ACGGAAATGGGAGTGTGTCTGACT -ACGGAAATGGGAGTGTGTCAACCT -ACGGAAATGGGAGTGTGTGCTACT -ACGGAAATGGGAGTGTGTGGATCT -ACGGAAATGGGAGTGTGTAAGGCT -ACGGAAATGGGAGTGTGTTCAACC -ACGGAAATGGGAGTGTGTTGTTCC -ACGGAAATGGGAGTGTGTATTCCC -ACGGAAATGGGAGTGTGTTTCTCG -ACGGAAATGGGAGTGTGTTAGACG -ACGGAAATGGGAGTGTGTGTAACG -ACGGAAATGGGAGTGTGTACTTCG -ACGGAAATGGGAGTGTGTTACGCA -ACGGAAATGGGAGTGTGTCTTGCA -ACGGAAATGGGAGTGTGTCGAACA -ACGGAAATGGGAGTGTGTCAGTCA -ACGGAAATGGGAGTGTGTGATCCA -ACGGAAATGGGAGTGTGTACGACA -ACGGAAATGGGAGTGTGTAGCTCA -ACGGAAATGGGAGTGTGTTCACGT -ACGGAAATGGGAGTGTGTCGTAGT -ACGGAAATGGGAGTGTGTGTCAGT -ACGGAAATGGGAGTGTGTGAAGGT -ACGGAAATGGGAGTGTGTAACCGT -ACGGAAATGGGAGTGTGTTTGTGC -ACGGAAATGGGAGTGTGTCTAAGC -ACGGAAATGGGAGTGTGTACTAGC -ACGGAAATGGGAGTGTGTAGATGC -ACGGAAATGGGAGTGTGTTGAAGG -ACGGAAATGGGAGTGTGTCAATGG -ACGGAAATGGGAGTGTGTATGAGG -ACGGAAATGGGAGTGTGTAATGGG -ACGGAAATGGGAGTGTGTTCCTGA -ACGGAAATGGGAGTGTGTTAGCGA -ACGGAAATGGGAGTGTGTCACAGA -ACGGAAATGGGAGTGTGTGCAAGA -ACGGAAATGGGAGTGTGTGGTTGA -ACGGAAATGGGAGTGTGTTCCGAT -ACGGAAATGGGAGTGTGTTGGCAT -ACGGAAATGGGAGTGTGTCGAGAT -ACGGAAATGGGAGTGTGTTACCAC -ACGGAAATGGGAGTGTGTCAGAAC -ACGGAAATGGGAGTGTGTGTCTAC -ACGGAAATGGGAGTGTGTACGTAC -ACGGAAATGGGAGTGTGTAGTGAC -ACGGAAATGGGAGTGTGTCTGTAG -ACGGAAATGGGAGTGTGTCCTAAG -ACGGAAATGGGAGTGTGTGTTCAG -ACGGAAATGGGAGTGTGTGCATAG -ACGGAAATGGGAGTGTGTGACAAG -ACGGAAATGGGAGTGTGTAAGCAG -ACGGAAATGGGAGTGTGTCGTCAA -ACGGAAATGGGAGTGTGTGCTGAA -ACGGAAATGGGAGTGTGTAGTACG -ACGGAAATGGGAGTGTGTATCCGA -ACGGAAATGGGAGTGTGTATGGGA -ACGGAAATGGGAGTGTGTGTGCAA -ACGGAAATGGGAGTGTGTGAGGAA -ACGGAAATGGGAGTGTGTCAGGTA -ACGGAAATGGGAGTGTGTGACTCT -ACGGAAATGGGAGTGTGTAGTCCT -ACGGAAATGGGAGTGTGTTAAGCC -ACGGAAATGGGAGTGTGTATAGCC -ACGGAAATGGGAGTGTGTTAACCG -ACGGAAATGGGAGTGTGTATGCCA -ACGGAAATGGGAGTGCTAGGAAAC -ACGGAAATGGGAGTGCTAAACACC -ACGGAAATGGGAGTGCTAATCGAG -ACGGAAATGGGAGTGCTACTCCTT -ACGGAAATGGGAGTGCTACCTGTT -ACGGAAATGGGAGTGCTACGGTTT -ACGGAAATGGGAGTGCTAGTGGTT -ACGGAAATGGGAGTGCTAGCCTTT -ACGGAAATGGGAGTGCTAGGTCTT -ACGGAAATGGGAGTGCTAACGCTT -ACGGAAATGGGAGTGCTAAGCGTT -ACGGAAATGGGAGTGCTATTCGTC -ACGGAAATGGGAGTGCTATCTCTC -ACGGAAATGGGAGTGCTATGGATC -ACGGAAATGGGAGTGCTACACTTC -ACGGAAATGGGAGTGCTAGTACTC -ACGGAAATGGGAGTGCTAGATGTC -ACGGAAATGGGAGTGCTAACAGTC -ACGGAAATGGGAGTGCTATTGCTG -ACGGAAATGGGAGTGCTATCCATG -ACGGAAATGGGAGTGCTATGTGTG -ACGGAAATGGGAGTGCTACTAGTG -ACGGAAATGGGAGTGCTACATCTG -ACGGAAATGGGAGTGCTAGAGTTG -ACGGAAATGGGAGTGCTAAGACTG -ACGGAAATGGGAGTGCTATCGGTA -ACGGAAATGGGAGTGCTATGCCTA -ACGGAAATGGGAGTGCTACCACTA -ACGGAAATGGGAGTGCTAGGAGTA -ACGGAAATGGGAGTGCTATCGTCT -ACGGAAATGGGAGTGCTATGCACT -ACGGAAATGGGAGTGCTACTGACT -ACGGAAATGGGAGTGCTACAACCT -ACGGAAATGGGAGTGCTAGCTACT -ACGGAAATGGGAGTGCTAGGATCT -ACGGAAATGGGAGTGCTAAAGGCT -ACGGAAATGGGAGTGCTATCAACC -ACGGAAATGGGAGTGCTATGTTCC -ACGGAAATGGGAGTGCTAATTCCC -ACGGAAATGGGAGTGCTATTCTCG -ACGGAAATGGGAGTGCTATAGACG -ACGGAAATGGGAGTGCTAGTAACG -ACGGAAATGGGAGTGCTAACTTCG -ACGGAAATGGGAGTGCTATACGCA -ACGGAAATGGGAGTGCTACTTGCA -ACGGAAATGGGAGTGCTACGAACA -ACGGAAATGGGAGTGCTACAGTCA -ACGGAAATGGGAGTGCTAGATCCA -ACGGAAATGGGAGTGCTAACGACA -ACGGAAATGGGAGTGCTAAGCTCA -ACGGAAATGGGAGTGCTATCACGT -ACGGAAATGGGAGTGCTACGTAGT -ACGGAAATGGGAGTGCTAGTCAGT -ACGGAAATGGGAGTGCTAGAAGGT -ACGGAAATGGGAGTGCTAAACCGT -ACGGAAATGGGAGTGCTATTGTGC -ACGGAAATGGGAGTGCTACTAAGC -ACGGAAATGGGAGTGCTAACTAGC -ACGGAAATGGGAGTGCTAAGATGC -ACGGAAATGGGAGTGCTATGAAGG -ACGGAAATGGGAGTGCTACAATGG -ACGGAAATGGGAGTGCTAATGAGG -ACGGAAATGGGAGTGCTAAATGGG -ACGGAAATGGGAGTGCTATCCTGA -ACGGAAATGGGAGTGCTATAGCGA -ACGGAAATGGGAGTGCTACACAGA -ACGGAAATGGGAGTGCTAGCAAGA -ACGGAAATGGGAGTGCTAGGTTGA -ACGGAAATGGGAGTGCTATCCGAT -ACGGAAATGGGAGTGCTATGGCAT -ACGGAAATGGGAGTGCTACGAGAT -ACGGAAATGGGAGTGCTATACCAC -ACGGAAATGGGAGTGCTACAGAAC -ACGGAAATGGGAGTGCTAGTCTAC -ACGGAAATGGGAGTGCTAACGTAC -ACGGAAATGGGAGTGCTAAGTGAC -ACGGAAATGGGAGTGCTACTGTAG -ACGGAAATGGGAGTGCTACCTAAG -ACGGAAATGGGAGTGCTAGTTCAG -ACGGAAATGGGAGTGCTAGCATAG -ACGGAAATGGGAGTGCTAGACAAG -ACGGAAATGGGAGTGCTAAAGCAG -ACGGAAATGGGAGTGCTACGTCAA -ACGGAAATGGGAGTGCTAGCTGAA -ACGGAAATGGGAGTGCTAAGTACG -ACGGAAATGGGAGTGCTAATCCGA -ACGGAAATGGGAGTGCTAATGGGA -ACGGAAATGGGAGTGCTAGTGCAA -ACGGAAATGGGAGTGCTAGAGGAA -ACGGAAATGGGAGTGCTACAGGTA -ACGGAAATGGGAGTGCTAGACTCT -ACGGAAATGGGAGTGCTAAGTCCT -ACGGAAATGGGAGTGCTATAAGCC -ACGGAAATGGGAGTGCTAATAGCC -ACGGAAATGGGAGTGCTATAACCG -ACGGAAATGGGAGTGCTAATGCCA -ACGGAAATGGGACTGCATGGAAAC -ACGGAAATGGGACTGCATAACACC -ACGGAAATGGGACTGCATATCGAG -ACGGAAATGGGACTGCATCTCCTT -ACGGAAATGGGACTGCATCCTGTT -ACGGAAATGGGACTGCATCGGTTT -ACGGAAATGGGACTGCATGTGGTT -ACGGAAATGGGACTGCATGCCTTT -ACGGAAATGGGACTGCATGGTCTT -ACGGAAATGGGACTGCATACGCTT -ACGGAAATGGGACTGCATAGCGTT -ACGGAAATGGGACTGCATTTCGTC -ACGGAAATGGGACTGCATTCTCTC -ACGGAAATGGGACTGCATTGGATC -ACGGAAATGGGACTGCATCACTTC -ACGGAAATGGGACTGCATGTACTC -ACGGAAATGGGACTGCATGATGTC -ACGGAAATGGGACTGCATACAGTC -ACGGAAATGGGACTGCATTTGCTG -ACGGAAATGGGACTGCATTCCATG -ACGGAAATGGGACTGCATTGTGTG -ACGGAAATGGGACTGCATCTAGTG -ACGGAAATGGGACTGCATCATCTG -ACGGAAATGGGACTGCATGAGTTG -ACGGAAATGGGACTGCATAGACTG -ACGGAAATGGGACTGCATTCGGTA -ACGGAAATGGGACTGCATTGCCTA -ACGGAAATGGGACTGCATCCACTA -ACGGAAATGGGACTGCATGGAGTA -ACGGAAATGGGACTGCATTCGTCT -ACGGAAATGGGACTGCATTGCACT -ACGGAAATGGGACTGCATCTGACT -ACGGAAATGGGACTGCATCAACCT -ACGGAAATGGGACTGCATGCTACT -ACGGAAATGGGACTGCATGGATCT -ACGGAAATGGGACTGCATAAGGCT -ACGGAAATGGGACTGCATTCAACC -ACGGAAATGGGACTGCATTGTTCC -ACGGAAATGGGACTGCATATTCCC -ACGGAAATGGGACTGCATTTCTCG -ACGGAAATGGGACTGCATTAGACG -ACGGAAATGGGACTGCATGTAACG -ACGGAAATGGGACTGCATACTTCG -ACGGAAATGGGACTGCATTACGCA -ACGGAAATGGGACTGCATCTTGCA -ACGGAAATGGGACTGCATCGAACA -ACGGAAATGGGACTGCATCAGTCA -ACGGAAATGGGACTGCATGATCCA -ACGGAAATGGGACTGCATACGACA -ACGGAAATGGGACTGCATAGCTCA -ACGGAAATGGGACTGCATTCACGT -ACGGAAATGGGACTGCATCGTAGT -ACGGAAATGGGACTGCATGTCAGT -ACGGAAATGGGACTGCATGAAGGT -ACGGAAATGGGACTGCATAACCGT -ACGGAAATGGGACTGCATTTGTGC -ACGGAAATGGGACTGCATCTAAGC -ACGGAAATGGGACTGCATACTAGC -ACGGAAATGGGACTGCATAGATGC -ACGGAAATGGGACTGCATTGAAGG -ACGGAAATGGGACTGCATCAATGG -ACGGAAATGGGACTGCATATGAGG -ACGGAAATGGGACTGCATAATGGG -ACGGAAATGGGACTGCATTCCTGA -ACGGAAATGGGACTGCATTAGCGA -ACGGAAATGGGACTGCATCACAGA -ACGGAAATGGGACTGCATGCAAGA -ACGGAAATGGGACTGCATGGTTGA -ACGGAAATGGGACTGCATTCCGAT -ACGGAAATGGGACTGCATTGGCAT -ACGGAAATGGGACTGCATCGAGAT -ACGGAAATGGGACTGCATTACCAC -ACGGAAATGGGACTGCATCAGAAC -ACGGAAATGGGACTGCATGTCTAC -ACGGAAATGGGACTGCATACGTAC -ACGGAAATGGGACTGCATAGTGAC -ACGGAAATGGGACTGCATCTGTAG -ACGGAAATGGGACTGCATCCTAAG -ACGGAAATGGGACTGCATGTTCAG -ACGGAAATGGGACTGCATGCATAG -ACGGAAATGGGACTGCATGACAAG -ACGGAAATGGGACTGCATAAGCAG -ACGGAAATGGGACTGCATCGTCAA -ACGGAAATGGGACTGCATGCTGAA -ACGGAAATGGGACTGCATAGTACG -ACGGAAATGGGACTGCATATCCGA -ACGGAAATGGGACTGCATATGGGA -ACGGAAATGGGACTGCATGTGCAA -ACGGAAATGGGACTGCATGAGGAA -ACGGAAATGGGACTGCATCAGGTA -ACGGAAATGGGACTGCATGACTCT -ACGGAAATGGGACTGCATAGTCCT -ACGGAAATGGGACTGCATTAAGCC -ACGGAAATGGGACTGCATATAGCC -ACGGAAATGGGACTGCATTAACCG -ACGGAAATGGGACTGCATATGCCA -ACGGAAATGGGATTGGAGGGAAAC -ACGGAAATGGGATTGGAGAACACC -ACGGAAATGGGATTGGAGATCGAG -ACGGAAATGGGATTGGAGCTCCTT -ACGGAAATGGGATTGGAGCCTGTT -ACGGAAATGGGATTGGAGCGGTTT -ACGGAAATGGGATTGGAGGTGGTT -ACGGAAATGGGATTGGAGGCCTTT -ACGGAAATGGGATTGGAGGGTCTT -ACGGAAATGGGATTGGAGACGCTT -ACGGAAATGGGATTGGAGAGCGTT -ACGGAAATGGGATTGGAGTTCGTC -ACGGAAATGGGATTGGAGTCTCTC -ACGGAAATGGGATTGGAGTGGATC -ACGGAAATGGGATTGGAGCACTTC -ACGGAAATGGGATTGGAGGTACTC -ACGGAAATGGGATTGGAGGATGTC -ACGGAAATGGGATTGGAGACAGTC -ACGGAAATGGGATTGGAGTTGCTG -ACGGAAATGGGATTGGAGTCCATG -ACGGAAATGGGATTGGAGTGTGTG -ACGGAAATGGGATTGGAGCTAGTG -ACGGAAATGGGATTGGAGCATCTG -ACGGAAATGGGATTGGAGGAGTTG -ACGGAAATGGGATTGGAGAGACTG -ACGGAAATGGGATTGGAGTCGGTA -ACGGAAATGGGATTGGAGTGCCTA -ACGGAAATGGGATTGGAGCCACTA -ACGGAAATGGGATTGGAGGGAGTA -ACGGAAATGGGATTGGAGTCGTCT -ACGGAAATGGGATTGGAGTGCACT -ACGGAAATGGGATTGGAGCTGACT -ACGGAAATGGGATTGGAGCAACCT -ACGGAAATGGGATTGGAGGCTACT -ACGGAAATGGGATTGGAGGGATCT -ACGGAAATGGGATTGGAGAAGGCT -ACGGAAATGGGATTGGAGTCAACC -ACGGAAATGGGATTGGAGTGTTCC -ACGGAAATGGGATTGGAGATTCCC -ACGGAAATGGGATTGGAGTTCTCG -ACGGAAATGGGATTGGAGTAGACG -ACGGAAATGGGATTGGAGGTAACG -ACGGAAATGGGATTGGAGACTTCG -ACGGAAATGGGATTGGAGTACGCA -ACGGAAATGGGATTGGAGCTTGCA -ACGGAAATGGGATTGGAGCGAACA -ACGGAAATGGGATTGGAGCAGTCA -ACGGAAATGGGATTGGAGGATCCA -ACGGAAATGGGATTGGAGACGACA -ACGGAAATGGGATTGGAGAGCTCA -ACGGAAATGGGATTGGAGTCACGT -ACGGAAATGGGATTGGAGCGTAGT -ACGGAAATGGGATTGGAGGTCAGT -ACGGAAATGGGATTGGAGGAAGGT -ACGGAAATGGGATTGGAGAACCGT -ACGGAAATGGGATTGGAGTTGTGC -ACGGAAATGGGATTGGAGCTAAGC -ACGGAAATGGGATTGGAGACTAGC -ACGGAAATGGGATTGGAGAGATGC -ACGGAAATGGGATTGGAGTGAAGG -ACGGAAATGGGATTGGAGCAATGG -ACGGAAATGGGATTGGAGATGAGG -ACGGAAATGGGATTGGAGAATGGG -ACGGAAATGGGATTGGAGTCCTGA -ACGGAAATGGGATTGGAGTAGCGA -ACGGAAATGGGATTGGAGCACAGA -ACGGAAATGGGATTGGAGGCAAGA -ACGGAAATGGGATTGGAGGGTTGA -ACGGAAATGGGATTGGAGTCCGAT -ACGGAAATGGGATTGGAGTGGCAT -ACGGAAATGGGATTGGAGCGAGAT -ACGGAAATGGGATTGGAGTACCAC -ACGGAAATGGGATTGGAGCAGAAC -ACGGAAATGGGATTGGAGGTCTAC -ACGGAAATGGGATTGGAGACGTAC -ACGGAAATGGGATTGGAGAGTGAC -ACGGAAATGGGATTGGAGCTGTAG -ACGGAAATGGGATTGGAGCCTAAG -ACGGAAATGGGATTGGAGGTTCAG -ACGGAAATGGGATTGGAGGCATAG -ACGGAAATGGGATTGGAGGACAAG -ACGGAAATGGGATTGGAGAAGCAG -ACGGAAATGGGATTGGAGCGTCAA -ACGGAAATGGGATTGGAGGCTGAA -ACGGAAATGGGATTGGAGAGTACG -ACGGAAATGGGATTGGAGATCCGA -ACGGAAATGGGATTGGAGATGGGA -ACGGAAATGGGATTGGAGGTGCAA -ACGGAAATGGGATTGGAGGAGGAA -ACGGAAATGGGATTGGAGCAGGTA -ACGGAAATGGGATTGGAGGACTCT -ACGGAAATGGGATTGGAGAGTCCT -ACGGAAATGGGATTGGAGTAAGCC -ACGGAAATGGGATTGGAGATAGCC -ACGGAAATGGGATTGGAGTAACCG -ACGGAAATGGGATTGGAGATGCCA -ACGGAAATGGGACTGAGAGGAAAC -ACGGAAATGGGACTGAGAAACACC -ACGGAAATGGGACTGAGAATCGAG -ACGGAAATGGGACTGAGACTCCTT -ACGGAAATGGGACTGAGACCTGTT -ACGGAAATGGGACTGAGACGGTTT -ACGGAAATGGGACTGAGAGTGGTT -ACGGAAATGGGACTGAGAGCCTTT -ACGGAAATGGGACTGAGAGGTCTT -ACGGAAATGGGACTGAGAACGCTT -ACGGAAATGGGACTGAGAAGCGTT -ACGGAAATGGGACTGAGATTCGTC -ACGGAAATGGGACTGAGATCTCTC -ACGGAAATGGGACTGAGATGGATC -ACGGAAATGGGACTGAGACACTTC -ACGGAAATGGGACTGAGAGTACTC -ACGGAAATGGGACTGAGAGATGTC -ACGGAAATGGGACTGAGAACAGTC -ACGGAAATGGGACTGAGATTGCTG -ACGGAAATGGGACTGAGATCCATG -ACGGAAATGGGACTGAGATGTGTG -ACGGAAATGGGACTGAGACTAGTG -ACGGAAATGGGACTGAGACATCTG -ACGGAAATGGGACTGAGAGAGTTG -ACGGAAATGGGACTGAGAAGACTG -ACGGAAATGGGACTGAGATCGGTA -ACGGAAATGGGACTGAGATGCCTA -ACGGAAATGGGACTGAGACCACTA -ACGGAAATGGGACTGAGAGGAGTA -ACGGAAATGGGACTGAGATCGTCT -ACGGAAATGGGACTGAGATGCACT -ACGGAAATGGGACTGAGACTGACT -ACGGAAATGGGACTGAGACAACCT -ACGGAAATGGGACTGAGAGCTACT -ACGGAAATGGGACTGAGAGGATCT -ACGGAAATGGGACTGAGAAAGGCT -ACGGAAATGGGACTGAGATCAACC -ACGGAAATGGGACTGAGATGTTCC -ACGGAAATGGGACTGAGAATTCCC -ACGGAAATGGGACTGAGATTCTCG -ACGGAAATGGGACTGAGATAGACG -ACGGAAATGGGACTGAGAGTAACG -ACGGAAATGGGACTGAGAACTTCG -ACGGAAATGGGACTGAGATACGCA -ACGGAAATGGGACTGAGACTTGCA -ACGGAAATGGGACTGAGACGAACA -ACGGAAATGGGACTGAGACAGTCA -ACGGAAATGGGACTGAGAGATCCA -ACGGAAATGGGACTGAGAACGACA -ACGGAAATGGGACTGAGAAGCTCA -ACGGAAATGGGACTGAGATCACGT -ACGGAAATGGGACTGAGACGTAGT -ACGGAAATGGGACTGAGAGTCAGT -ACGGAAATGGGACTGAGAGAAGGT -ACGGAAATGGGACTGAGAAACCGT -ACGGAAATGGGACTGAGATTGTGC -ACGGAAATGGGACTGAGACTAAGC -ACGGAAATGGGACTGAGAACTAGC -ACGGAAATGGGACTGAGAAGATGC -ACGGAAATGGGACTGAGATGAAGG -ACGGAAATGGGACTGAGACAATGG -ACGGAAATGGGACTGAGAATGAGG -ACGGAAATGGGACTGAGAAATGGG -ACGGAAATGGGACTGAGATCCTGA -ACGGAAATGGGACTGAGATAGCGA -ACGGAAATGGGACTGAGACACAGA -ACGGAAATGGGACTGAGAGCAAGA -ACGGAAATGGGACTGAGAGGTTGA -ACGGAAATGGGACTGAGATCCGAT -ACGGAAATGGGACTGAGATGGCAT -ACGGAAATGGGACTGAGACGAGAT -ACGGAAATGGGACTGAGATACCAC -ACGGAAATGGGACTGAGACAGAAC -ACGGAAATGGGACTGAGAGTCTAC -ACGGAAATGGGACTGAGAACGTAC -ACGGAAATGGGACTGAGAAGTGAC -ACGGAAATGGGACTGAGACTGTAG -ACGGAAATGGGACTGAGACCTAAG -ACGGAAATGGGACTGAGAGTTCAG -ACGGAAATGGGACTGAGAGCATAG -ACGGAAATGGGACTGAGAGACAAG -ACGGAAATGGGACTGAGAAAGCAG -ACGGAAATGGGACTGAGACGTCAA -ACGGAAATGGGACTGAGAGCTGAA -ACGGAAATGGGACTGAGAAGTACG -ACGGAAATGGGACTGAGAATCCGA -ACGGAAATGGGACTGAGAATGGGA -ACGGAAATGGGACTGAGAGTGCAA -ACGGAAATGGGACTGAGAGAGGAA -ACGGAAATGGGACTGAGACAGGTA -ACGGAAATGGGACTGAGAGACTCT -ACGGAAATGGGACTGAGAAGTCCT -ACGGAAATGGGACTGAGATAAGCC -ACGGAAATGGGACTGAGAATAGCC -ACGGAAATGGGACTGAGATAACCG -ACGGAAATGGGACTGAGAATGCCA -ACGGAAATGGGAGTATCGGGAAAC -ACGGAAATGGGAGTATCGAACACC -ACGGAAATGGGAGTATCGATCGAG -ACGGAAATGGGAGTATCGCTCCTT -ACGGAAATGGGAGTATCGCCTGTT -ACGGAAATGGGAGTATCGCGGTTT -ACGGAAATGGGAGTATCGGTGGTT -ACGGAAATGGGAGTATCGGCCTTT -ACGGAAATGGGAGTATCGGGTCTT -ACGGAAATGGGAGTATCGACGCTT -ACGGAAATGGGAGTATCGAGCGTT -ACGGAAATGGGAGTATCGTTCGTC -ACGGAAATGGGAGTATCGTCTCTC -ACGGAAATGGGAGTATCGTGGATC -ACGGAAATGGGAGTATCGCACTTC -ACGGAAATGGGAGTATCGGTACTC -ACGGAAATGGGAGTATCGGATGTC -ACGGAAATGGGAGTATCGACAGTC -ACGGAAATGGGAGTATCGTTGCTG -ACGGAAATGGGAGTATCGTCCATG -ACGGAAATGGGAGTATCGTGTGTG -ACGGAAATGGGAGTATCGCTAGTG -ACGGAAATGGGAGTATCGCATCTG -ACGGAAATGGGAGTATCGGAGTTG -ACGGAAATGGGAGTATCGAGACTG -ACGGAAATGGGAGTATCGTCGGTA -ACGGAAATGGGAGTATCGTGCCTA -ACGGAAATGGGAGTATCGCCACTA -ACGGAAATGGGAGTATCGGGAGTA -ACGGAAATGGGAGTATCGTCGTCT -ACGGAAATGGGAGTATCGTGCACT -ACGGAAATGGGAGTATCGCTGACT -ACGGAAATGGGAGTATCGCAACCT -ACGGAAATGGGAGTATCGGCTACT -ACGGAAATGGGAGTATCGGGATCT -ACGGAAATGGGAGTATCGAAGGCT -ACGGAAATGGGAGTATCGTCAACC -ACGGAAATGGGAGTATCGTGTTCC -ACGGAAATGGGAGTATCGATTCCC -ACGGAAATGGGAGTATCGTTCTCG -ACGGAAATGGGAGTATCGTAGACG -ACGGAAATGGGAGTATCGGTAACG -ACGGAAATGGGAGTATCGACTTCG -ACGGAAATGGGAGTATCGTACGCA -ACGGAAATGGGAGTATCGCTTGCA -ACGGAAATGGGAGTATCGCGAACA -ACGGAAATGGGAGTATCGCAGTCA -ACGGAAATGGGAGTATCGGATCCA -ACGGAAATGGGAGTATCGACGACA -ACGGAAATGGGAGTATCGAGCTCA -ACGGAAATGGGAGTATCGTCACGT -ACGGAAATGGGAGTATCGCGTAGT -ACGGAAATGGGAGTATCGGTCAGT -ACGGAAATGGGAGTATCGGAAGGT -ACGGAAATGGGAGTATCGAACCGT -ACGGAAATGGGAGTATCGTTGTGC -ACGGAAATGGGAGTATCGCTAAGC -ACGGAAATGGGAGTATCGACTAGC -ACGGAAATGGGAGTATCGAGATGC -ACGGAAATGGGAGTATCGTGAAGG -ACGGAAATGGGAGTATCGCAATGG -ACGGAAATGGGAGTATCGATGAGG -ACGGAAATGGGAGTATCGAATGGG -ACGGAAATGGGAGTATCGTCCTGA -ACGGAAATGGGAGTATCGTAGCGA -ACGGAAATGGGAGTATCGCACAGA -ACGGAAATGGGAGTATCGGCAAGA -ACGGAAATGGGAGTATCGGGTTGA -ACGGAAATGGGAGTATCGTCCGAT -ACGGAAATGGGAGTATCGTGGCAT -ACGGAAATGGGAGTATCGCGAGAT -ACGGAAATGGGAGTATCGTACCAC -ACGGAAATGGGAGTATCGCAGAAC -ACGGAAATGGGAGTATCGGTCTAC -ACGGAAATGGGAGTATCGACGTAC -ACGGAAATGGGAGTATCGAGTGAC -ACGGAAATGGGAGTATCGCTGTAG -ACGGAAATGGGAGTATCGCCTAAG -ACGGAAATGGGAGTATCGGTTCAG -ACGGAAATGGGAGTATCGGCATAG -ACGGAAATGGGAGTATCGGACAAG -ACGGAAATGGGAGTATCGAAGCAG -ACGGAAATGGGAGTATCGCGTCAA -ACGGAAATGGGAGTATCGGCTGAA -ACGGAAATGGGAGTATCGAGTACG -ACGGAAATGGGAGTATCGATCCGA -ACGGAAATGGGAGTATCGATGGGA -ACGGAAATGGGAGTATCGGTGCAA -ACGGAAATGGGAGTATCGGAGGAA -ACGGAAATGGGAGTATCGCAGGTA -ACGGAAATGGGAGTATCGGACTCT -ACGGAAATGGGAGTATCGAGTCCT -ACGGAAATGGGAGTATCGTAAGCC -ACGGAAATGGGAGTATCGATAGCC -ACGGAAATGGGAGTATCGTAACCG -ACGGAAATGGGAGTATCGATGCCA -ACGGAAATGGGACTATGCGGAAAC -ACGGAAATGGGACTATGCAACACC -ACGGAAATGGGACTATGCATCGAG -ACGGAAATGGGACTATGCCTCCTT -ACGGAAATGGGACTATGCCCTGTT -ACGGAAATGGGACTATGCCGGTTT -ACGGAAATGGGACTATGCGTGGTT -ACGGAAATGGGACTATGCGCCTTT -ACGGAAATGGGACTATGCGGTCTT -ACGGAAATGGGACTATGCACGCTT -ACGGAAATGGGACTATGCAGCGTT -ACGGAAATGGGACTATGCTTCGTC -ACGGAAATGGGACTATGCTCTCTC -ACGGAAATGGGACTATGCTGGATC -ACGGAAATGGGACTATGCCACTTC -ACGGAAATGGGACTATGCGTACTC -ACGGAAATGGGACTATGCGATGTC -ACGGAAATGGGACTATGCACAGTC -ACGGAAATGGGACTATGCTTGCTG -ACGGAAATGGGACTATGCTCCATG -ACGGAAATGGGACTATGCTGTGTG -ACGGAAATGGGACTATGCCTAGTG -ACGGAAATGGGACTATGCCATCTG -ACGGAAATGGGACTATGCGAGTTG -ACGGAAATGGGACTATGCAGACTG -ACGGAAATGGGACTATGCTCGGTA -ACGGAAATGGGACTATGCTGCCTA -ACGGAAATGGGACTATGCCCACTA -ACGGAAATGGGACTATGCGGAGTA -ACGGAAATGGGACTATGCTCGTCT -ACGGAAATGGGACTATGCTGCACT -ACGGAAATGGGACTATGCCTGACT -ACGGAAATGGGACTATGCCAACCT -ACGGAAATGGGACTATGCGCTACT -ACGGAAATGGGACTATGCGGATCT -ACGGAAATGGGACTATGCAAGGCT -ACGGAAATGGGACTATGCTCAACC -ACGGAAATGGGACTATGCTGTTCC -ACGGAAATGGGACTATGCATTCCC -ACGGAAATGGGACTATGCTTCTCG -ACGGAAATGGGACTATGCTAGACG -ACGGAAATGGGACTATGCGTAACG -ACGGAAATGGGACTATGCACTTCG -ACGGAAATGGGACTATGCTACGCA -ACGGAAATGGGACTATGCCTTGCA -ACGGAAATGGGACTATGCCGAACA -ACGGAAATGGGACTATGCCAGTCA -ACGGAAATGGGACTATGCGATCCA -ACGGAAATGGGACTATGCACGACA -ACGGAAATGGGACTATGCAGCTCA -ACGGAAATGGGACTATGCTCACGT -ACGGAAATGGGACTATGCCGTAGT -ACGGAAATGGGACTATGCGTCAGT -ACGGAAATGGGACTATGCGAAGGT -ACGGAAATGGGACTATGCAACCGT -ACGGAAATGGGACTATGCTTGTGC -ACGGAAATGGGACTATGCCTAAGC -ACGGAAATGGGACTATGCACTAGC -ACGGAAATGGGACTATGCAGATGC -ACGGAAATGGGACTATGCTGAAGG -ACGGAAATGGGACTATGCCAATGG -ACGGAAATGGGACTATGCATGAGG -ACGGAAATGGGACTATGCAATGGG -ACGGAAATGGGACTATGCTCCTGA -ACGGAAATGGGACTATGCTAGCGA -ACGGAAATGGGACTATGCCACAGA -ACGGAAATGGGACTATGCGCAAGA -ACGGAAATGGGACTATGCGGTTGA -ACGGAAATGGGACTATGCTCCGAT -ACGGAAATGGGACTATGCTGGCAT -ACGGAAATGGGACTATGCCGAGAT -ACGGAAATGGGACTATGCTACCAC -ACGGAAATGGGACTATGCCAGAAC -ACGGAAATGGGACTATGCGTCTAC -ACGGAAATGGGACTATGCACGTAC -ACGGAAATGGGACTATGCAGTGAC -ACGGAAATGGGACTATGCCTGTAG -ACGGAAATGGGACTATGCCCTAAG -ACGGAAATGGGACTATGCGTTCAG -ACGGAAATGGGACTATGCGCATAG -ACGGAAATGGGACTATGCGACAAG -ACGGAAATGGGACTATGCAAGCAG -ACGGAAATGGGACTATGCCGTCAA -ACGGAAATGGGACTATGCGCTGAA -ACGGAAATGGGACTATGCAGTACG -ACGGAAATGGGACTATGCATCCGA -ACGGAAATGGGACTATGCATGGGA -ACGGAAATGGGACTATGCGTGCAA -ACGGAAATGGGACTATGCGAGGAA -ACGGAAATGGGACTATGCCAGGTA -ACGGAAATGGGACTATGCGACTCT -ACGGAAATGGGACTATGCAGTCCT -ACGGAAATGGGACTATGCTAAGCC -ACGGAAATGGGACTATGCATAGCC -ACGGAAATGGGACTATGCTAACCG -ACGGAAATGGGACTATGCATGCCA -ACGGAAATGGGACTACCAGGAAAC -ACGGAAATGGGACTACCAAACACC -ACGGAAATGGGACTACCAATCGAG -ACGGAAATGGGACTACCACTCCTT -ACGGAAATGGGACTACCACCTGTT -ACGGAAATGGGACTACCACGGTTT -ACGGAAATGGGACTACCAGTGGTT -ACGGAAATGGGACTACCAGCCTTT -ACGGAAATGGGACTACCAGGTCTT -ACGGAAATGGGACTACCAACGCTT -ACGGAAATGGGACTACCAAGCGTT -ACGGAAATGGGACTACCATTCGTC -ACGGAAATGGGACTACCATCTCTC -ACGGAAATGGGACTACCATGGATC -ACGGAAATGGGACTACCACACTTC -ACGGAAATGGGACTACCAGTACTC -ACGGAAATGGGACTACCAGATGTC -ACGGAAATGGGACTACCAACAGTC -ACGGAAATGGGACTACCATTGCTG -ACGGAAATGGGACTACCATCCATG -ACGGAAATGGGACTACCATGTGTG -ACGGAAATGGGACTACCACTAGTG -ACGGAAATGGGACTACCACATCTG -ACGGAAATGGGACTACCAGAGTTG -ACGGAAATGGGACTACCAAGACTG -ACGGAAATGGGACTACCATCGGTA -ACGGAAATGGGACTACCATGCCTA -ACGGAAATGGGACTACCACCACTA -ACGGAAATGGGACTACCAGGAGTA -ACGGAAATGGGACTACCATCGTCT -ACGGAAATGGGACTACCATGCACT -ACGGAAATGGGACTACCACTGACT -ACGGAAATGGGACTACCACAACCT -ACGGAAATGGGACTACCAGCTACT -ACGGAAATGGGACTACCAGGATCT -ACGGAAATGGGACTACCAAAGGCT -ACGGAAATGGGACTACCATCAACC -ACGGAAATGGGACTACCATGTTCC -ACGGAAATGGGACTACCAATTCCC -ACGGAAATGGGACTACCATTCTCG -ACGGAAATGGGACTACCATAGACG -ACGGAAATGGGACTACCAGTAACG -ACGGAAATGGGACTACCAACTTCG -ACGGAAATGGGACTACCATACGCA -ACGGAAATGGGACTACCACTTGCA -ACGGAAATGGGACTACCACGAACA -ACGGAAATGGGACTACCACAGTCA -ACGGAAATGGGACTACCAGATCCA -ACGGAAATGGGACTACCAACGACA -ACGGAAATGGGACTACCAAGCTCA -ACGGAAATGGGACTACCATCACGT -ACGGAAATGGGACTACCACGTAGT -ACGGAAATGGGACTACCAGTCAGT -ACGGAAATGGGACTACCAGAAGGT -ACGGAAATGGGACTACCAAACCGT -ACGGAAATGGGACTACCATTGTGC -ACGGAAATGGGACTACCACTAAGC -ACGGAAATGGGACTACCAACTAGC -ACGGAAATGGGACTACCAAGATGC -ACGGAAATGGGACTACCATGAAGG -ACGGAAATGGGACTACCACAATGG -ACGGAAATGGGACTACCAATGAGG -ACGGAAATGGGACTACCAAATGGG -ACGGAAATGGGACTACCATCCTGA -ACGGAAATGGGACTACCATAGCGA -ACGGAAATGGGACTACCACACAGA -ACGGAAATGGGACTACCAGCAAGA -ACGGAAATGGGACTACCAGGTTGA -ACGGAAATGGGACTACCATCCGAT -ACGGAAATGGGACTACCATGGCAT -ACGGAAATGGGACTACCACGAGAT -ACGGAAATGGGACTACCATACCAC -ACGGAAATGGGACTACCACAGAAC -ACGGAAATGGGACTACCAGTCTAC -ACGGAAATGGGACTACCAACGTAC -ACGGAAATGGGACTACCAAGTGAC -ACGGAAATGGGACTACCACTGTAG -ACGGAAATGGGACTACCACCTAAG -ACGGAAATGGGACTACCAGTTCAG -ACGGAAATGGGACTACCAGCATAG -ACGGAAATGGGACTACCAGACAAG -ACGGAAATGGGACTACCAAAGCAG -ACGGAAATGGGACTACCACGTCAA -ACGGAAATGGGACTACCAGCTGAA -ACGGAAATGGGACTACCAAGTACG -ACGGAAATGGGACTACCAATCCGA -ACGGAAATGGGACTACCAATGGGA -ACGGAAATGGGACTACCAGTGCAA -ACGGAAATGGGACTACCAGAGGAA -ACGGAAATGGGACTACCACAGGTA -ACGGAAATGGGACTACCAGACTCT -ACGGAAATGGGACTACCAAGTCCT -ACGGAAATGGGACTACCATAAGCC -ACGGAAATGGGACTACCAATAGCC -ACGGAAATGGGACTACCATAACCG -ACGGAAATGGGACTACCAATGCCA -ACGGAAATGGGAGTAGGAGGAAAC -ACGGAAATGGGAGTAGGAAACACC -ACGGAAATGGGAGTAGGAATCGAG -ACGGAAATGGGAGTAGGACTCCTT -ACGGAAATGGGAGTAGGACCTGTT -ACGGAAATGGGAGTAGGACGGTTT -ACGGAAATGGGAGTAGGAGTGGTT -ACGGAAATGGGAGTAGGAGCCTTT -ACGGAAATGGGAGTAGGAGGTCTT -ACGGAAATGGGAGTAGGAACGCTT -ACGGAAATGGGAGTAGGAAGCGTT -ACGGAAATGGGAGTAGGATTCGTC -ACGGAAATGGGAGTAGGATCTCTC -ACGGAAATGGGAGTAGGATGGATC -ACGGAAATGGGAGTAGGACACTTC -ACGGAAATGGGAGTAGGAGTACTC -ACGGAAATGGGAGTAGGAGATGTC -ACGGAAATGGGAGTAGGAACAGTC -ACGGAAATGGGAGTAGGATTGCTG -ACGGAAATGGGAGTAGGATCCATG -ACGGAAATGGGAGTAGGATGTGTG -ACGGAAATGGGAGTAGGACTAGTG -ACGGAAATGGGAGTAGGACATCTG -ACGGAAATGGGAGTAGGAGAGTTG -ACGGAAATGGGAGTAGGAAGACTG -ACGGAAATGGGAGTAGGATCGGTA -ACGGAAATGGGAGTAGGATGCCTA -ACGGAAATGGGAGTAGGACCACTA -ACGGAAATGGGAGTAGGAGGAGTA -ACGGAAATGGGAGTAGGATCGTCT -ACGGAAATGGGAGTAGGATGCACT -ACGGAAATGGGAGTAGGACTGACT -ACGGAAATGGGAGTAGGACAACCT -ACGGAAATGGGAGTAGGAGCTACT -ACGGAAATGGGAGTAGGAGGATCT -ACGGAAATGGGAGTAGGAAAGGCT -ACGGAAATGGGAGTAGGATCAACC -ACGGAAATGGGAGTAGGATGTTCC -ACGGAAATGGGAGTAGGAATTCCC -ACGGAAATGGGAGTAGGATTCTCG -ACGGAAATGGGAGTAGGATAGACG -ACGGAAATGGGAGTAGGAGTAACG -ACGGAAATGGGAGTAGGAACTTCG -ACGGAAATGGGAGTAGGATACGCA -ACGGAAATGGGAGTAGGACTTGCA -ACGGAAATGGGAGTAGGACGAACA -ACGGAAATGGGAGTAGGACAGTCA -ACGGAAATGGGAGTAGGAGATCCA -ACGGAAATGGGAGTAGGAACGACA -ACGGAAATGGGAGTAGGAAGCTCA -ACGGAAATGGGAGTAGGATCACGT -ACGGAAATGGGAGTAGGACGTAGT -ACGGAAATGGGAGTAGGAGTCAGT -ACGGAAATGGGAGTAGGAGAAGGT -ACGGAAATGGGAGTAGGAAACCGT -ACGGAAATGGGAGTAGGATTGTGC -ACGGAAATGGGAGTAGGACTAAGC -ACGGAAATGGGAGTAGGAACTAGC -ACGGAAATGGGAGTAGGAAGATGC -ACGGAAATGGGAGTAGGATGAAGG -ACGGAAATGGGAGTAGGACAATGG -ACGGAAATGGGAGTAGGAATGAGG -ACGGAAATGGGAGTAGGAAATGGG -ACGGAAATGGGAGTAGGATCCTGA -ACGGAAATGGGAGTAGGATAGCGA -ACGGAAATGGGAGTAGGACACAGA -ACGGAAATGGGAGTAGGAGCAAGA -ACGGAAATGGGAGTAGGAGGTTGA -ACGGAAATGGGAGTAGGATCCGAT -ACGGAAATGGGAGTAGGATGGCAT -ACGGAAATGGGAGTAGGACGAGAT -ACGGAAATGGGAGTAGGATACCAC -ACGGAAATGGGAGTAGGACAGAAC -ACGGAAATGGGAGTAGGAGTCTAC -ACGGAAATGGGAGTAGGAACGTAC -ACGGAAATGGGAGTAGGAAGTGAC -ACGGAAATGGGAGTAGGACTGTAG -ACGGAAATGGGAGTAGGACCTAAG -ACGGAAATGGGAGTAGGAGTTCAG -ACGGAAATGGGAGTAGGAGCATAG -ACGGAAATGGGAGTAGGAGACAAG -ACGGAAATGGGAGTAGGAAAGCAG -ACGGAAATGGGAGTAGGACGTCAA -ACGGAAATGGGAGTAGGAGCTGAA -ACGGAAATGGGAGTAGGAAGTACG -ACGGAAATGGGAGTAGGAATCCGA -ACGGAAATGGGAGTAGGAATGGGA -ACGGAAATGGGAGTAGGAGTGCAA -ACGGAAATGGGAGTAGGAGAGGAA -ACGGAAATGGGAGTAGGACAGGTA -ACGGAAATGGGAGTAGGAGACTCT -ACGGAAATGGGAGTAGGAAGTCCT -ACGGAAATGGGAGTAGGATAAGCC -ACGGAAATGGGAGTAGGAATAGCC -ACGGAAATGGGAGTAGGATAACCG -ACGGAAATGGGAGTAGGAATGCCA -ACGGAAATGGGATCTTCGGGAAAC -ACGGAAATGGGATCTTCGAACACC -ACGGAAATGGGATCTTCGATCGAG -ACGGAAATGGGATCTTCGCTCCTT -ACGGAAATGGGATCTTCGCCTGTT -ACGGAAATGGGATCTTCGCGGTTT -ACGGAAATGGGATCTTCGGTGGTT -ACGGAAATGGGATCTTCGGCCTTT -ACGGAAATGGGATCTTCGGGTCTT -ACGGAAATGGGATCTTCGACGCTT -ACGGAAATGGGATCTTCGAGCGTT -ACGGAAATGGGATCTTCGTTCGTC -ACGGAAATGGGATCTTCGTCTCTC -ACGGAAATGGGATCTTCGTGGATC -ACGGAAATGGGATCTTCGCACTTC -ACGGAAATGGGATCTTCGGTACTC -ACGGAAATGGGATCTTCGGATGTC -ACGGAAATGGGATCTTCGACAGTC -ACGGAAATGGGATCTTCGTTGCTG -ACGGAAATGGGATCTTCGTCCATG -ACGGAAATGGGATCTTCGTGTGTG -ACGGAAATGGGATCTTCGCTAGTG -ACGGAAATGGGATCTTCGCATCTG -ACGGAAATGGGATCTTCGGAGTTG -ACGGAAATGGGATCTTCGAGACTG -ACGGAAATGGGATCTTCGTCGGTA -ACGGAAATGGGATCTTCGTGCCTA -ACGGAAATGGGATCTTCGCCACTA -ACGGAAATGGGATCTTCGGGAGTA -ACGGAAATGGGATCTTCGTCGTCT -ACGGAAATGGGATCTTCGTGCACT -ACGGAAATGGGATCTTCGCTGACT -ACGGAAATGGGATCTTCGCAACCT -ACGGAAATGGGATCTTCGGCTACT -ACGGAAATGGGATCTTCGGGATCT -ACGGAAATGGGATCTTCGAAGGCT -ACGGAAATGGGATCTTCGTCAACC -ACGGAAATGGGATCTTCGTGTTCC -ACGGAAATGGGATCTTCGATTCCC -ACGGAAATGGGATCTTCGTTCTCG -ACGGAAATGGGATCTTCGTAGACG -ACGGAAATGGGATCTTCGGTAACG -ACGGAAATGGGATCTTCGACTTCG -ACGGAAATGGGATCTTCGTACGCA -ACGGAAATGGGATCTTCGCTTGCA -ACGGAAATGGGATCTTCGCGAACA -ACGGAAATGGGATCTTCGCAGTCA -ACGGAAATGGGATCTTCGGATCCA -ACGGAAATGGGATCTTCGACGACA -ACGGAAATGGGATCTTCGAGCTCA -ACGGAAATGGGATCTTCGTCACGT -ACGGAAATGGGATCTTCGCGTAGT -ACGGAAATGGGATCTTCGGTCAGT -ACGGAAATGGGATCTTCGGAAGGT -ACGGAAATGGGATCTTCGAACCGT -ACGGAAATGGGATCTTCGTTGTGC -ACGGAAATGGGATCTTCGCTAAGC -ACGGAAATGGGATCTTCGACTAGC -ACGGAAATGGGATCTTCGAGATGC -ACGGAAATGGGATCTTCGTGAAGG -ACGGAAATGGGATCTTCGCAATGG -ACGGAAATGGGATCTTCGATGAGG -ACGGAAATGGGATCTTCGAATGGG -ACGGAAATGGGATCTTCGTCCTGA -ACGGAAATGGGATCTTCGTAGCGA -ACGGAAATGGGATCTTCGCACAGA -ACGGAAATGGGATCTTCGGCAAGA -ACGGAAATGGGATCTTCGGGTTGA -ACGGAAATGGGATCTTCGTCCGAT -ACGGAAATGGGATCTTCGTGGCAT -ACGGAAATGGGATCTTCGCGAGAT -ACGGAAATGGGATCTTCGTACCAC -ACGGAAATGGGATCTTCGCAGAAC -ACGGAAATGGGATCTTCGGTCTAC -ACGGAAATGGGATCTTCGACGTAC -ACGGAAATGGGATCTTCGAGTGAC -ACGGAAATGGGATCTTCGCTGTAG -ACGGAAATGGGATCTTCGCCTAAG -ACGGAAATGGGATCTTCGGTTCAG -ACGGAAATGGGATCTTCGGCATAG -ACGGAAATGGGATCTTCGGACAAG -ACGGAAATGGGATCTTCGAAGCAG -ACGGAAATGGGATCTTCGCGTCAA -ACGGAAATGGGATCTTCGGCTGAA -ACGGAAATGGGATCTTCGAGTACG -ACGGAAATGGGATCTTCGATCCGA -ACGGAAATGGGATCTTCGATGGGA -ACGGAAATGGGATCTTCGGTGCAA -ACGGAAATGGGATCTTCGGAGGAA -ACGGAAATGGGATCTTCGCAGGTA -ACGGAAATGGGATCTTCGGACTCT -ACGGAAATGGGATCTTCGAGTCCT -ACGGAAATGGGATCTTCGTAAGCC -ACGGAAATGGGATCTTCGATAGCC -ACGGAAATGGGATCTTCGTAACCG -ACGGAAATGGGATCTTCGATGCCA -ACGGAAATGGGAACTTGCGGAAAC -ACGGAAATGGGAACTTGCAACACC -ACGGAAATGGGAACTTGCATCGAG -ACGGAAATGGGAACTTGCCTCCTT -ACGGAAATGGGAACTTGCCCTGTT -ACGGAAATGGGAACTTGCCGGTTT -ACGGAAATGGGAACTTGCGTGGTT -ACGGAAATGGGAACTTGCGCCTTT -ACGGAAATGGGAACTTGCGGTCTT -ACGGAAATGGGAACTTGCACGCTT -ACGGAAATGGGAACTTGCAGCGTT -ACGGAAATGGGAACTTGCTTCGTC -ACGGAAATGGGAACTTGCTCTCTC -ACGGAAATGGGAACTTGCTGGATC -ACGGAAATGGGAACTTGCCACTTC -ACGGAAATGGGAACTTGCGTACTC -ACGGAAATGGGAACTTGCGATGTC -ACGGAAATGGGAACTTGCACAGTC -ACGGAAATGGGAACTTGCTTGCTG -ACGGAAATGGGAACTTGCTCCATG -ACGGAAATGGGAACTTGCTGTGTG -ACGGAAATGGGAACTTGCCTAGTG -ACGGAAATGGGAACTTGCCATCTG -ACGGAAATGGGAACTTGCGAGTTG -ACGGAAATGGGAACTTGCAGACTG -ACGGAAATGGGAACTTGCTCGGTA -ACGGAAATGGGAACTTGCTGCCTA -ACGGAAATGGGAACTTGCCCACTA -ACGGAAATGGGAACTTGCGGAGTA -ACGGAAATGGGAACTTGCTCGTCT -ACGGAAATGGGAACTTGCTGCACT -ACGGAAATGGGAACTTGCCTGACT -ACGGAAATGGGAACTTGCCAACCT -ACGGAAATGGGAACTTGCGCTACT -ACGGAAATGGGAACTTGCGGATCT -ACGGAAATGGGAACTTGCAAGGCT -ACGGAAATGGGAACTTGCTCAACC -ACGGAAATGGGAACTTGCTGTTCC -ACGGAAATGGGAACTTGCATTCCC -ACGGAAATGGGAACTTGCTTCTCG -ACGGAAATGGGAACTTGCTAGACG -ACGGAAATGGGAACTTGCGTAACG -ACGGAAATGGGAACTTGCACTTCG -ACGGAAATGGGAACTTGCTACGCA -ACGGAAATGGGAACTTGCCTTGCA -ACGGAAATGGGAACTTGCCGAACA -ACGGAAATGGGAACTTGCCAGTCA -ACGGAAATGGGAACTTGCGATCCA -ACGGAAATGGGAACTTGCACGACA -ACGGAAATGGGAACTTGCAGCTCA -ACGGAAATGGGAACTTGCTCACGT -ACGGAAATGGGAACTTGCCGTAGT -ACGGAAATGGGAACTTGCGTCAGT -ACGGAAATGGGAACTTGCGAAGGT -ACGGAAATGGGAACTTGCAACCGT -ACGGAAATGGGAACTTGCTTGTGC -ACGGAAATGGGAACTTGCCTAAGC -ACGGAAATGGGAACTTGCACTAGC -ACGGAAATGGGAACTTGCAGATGC -ACGGAAATGGGAACTTGCTGAAGG -ACGGAAATGGGAACTTGCCAATGG -ACGGAAATGGGAACTTGCATGAGG -ACGGAAATGGGAACTTGCAATGGG -ACGGAAATGGGAACTTGCTCCTGA -ACGGAAATGGGAACTTGCTAGCGA -ACGGAAATGGGAACTTGCCACAGA -ACGGAAATGGGAACTTGCGCAAGA -ACGGAAATGGGAACTTGCGGTTGA -ACGGAAATGGGAACTTGCTCCGAT -ACGGAAATGGGAACTTGCTGGCAT -ACGGAAATGGGAACTTGCCGAGAT -ACGGAAATGGGAACTTGCTACCAC -ACGGAAATGGGAACTTGCCAGAAC -ACGGAAATGGGAACTTGCGTCTAC -ACGGAAATGGGAACTTGCACGTAC -ACGGAAATGGGAACTTGCAGTGAC -ACGGAAATGGGAACTTGCCTGTAG -ACGGAAATGGGAACTTGCCCTAAG -ACGGAAATGGGAACTTGCGTTCAG -ACGGAAATGGGAACTTGCGCATAG -ACGGAAATGGGAACTTGCGACAAG -ACGGAAATGGGAACTTGCAAGCAG -ACGGAAATGGGAACTTGCCGTCAA -ACGGAAATGGGAACTTGCGCTGAA -ACGGAAATGGGAACTTGCAGTACG -ACGGAAATGGGAACTTGCATCCGA -ACGGAAATGGGAACTTGCATGGGA -ACGGAAATGGGAACTTGCGTGCAA -ACGGAAATGGGAACTTGCGAGGAA -ACGGAAATGGGAACTTGCCAGGTA -ACGGAAATGGGAACTTGCGACTCT -ACGGAAATGGGAACTTGCAGTCCT -ACGGAAATGGGAACTTGCTAAGCC -ACGGAAATGGGAACTTGCATAGCC -ACGGAAATGGGAACTTGCTAACCG -ACGGAAATGGGAACTTGCATGCCA -ACGGAAATGGGAACTCTGGGAAAC -ACGGAAATGGGAACTCTGAACACC -ACGGAAATGGGAACTCTGATCGAG -ACGGAAATGGGAACTCTGCTCCTT -ACGGAAATGGGAACTCTGCCTGTT -ACGGAAATGGGAACTCTGCGGTTT -ACGGAAATGGGAACTCTGGTGGTT -ACGGAAATGGGAACTCTGGCCTTT -ACGGAAATGGGAACTCTGGGTCTT -ACGGAAATGGGAACTCTGACGCTT -ACGGAAATGGGAACTCTGAGCGTT -ACGGAAATGGGAACTCTGTTCGTC -ACGGAAATGGGAACTCTGTCTCTC -ACGGAAATGGGAACTCTGTGGATC -ACGGAAATGGGAACTCTGCACTTC -ACGGAAATGGGAACTCTGGTACTC -ACGGAAATGGGAACTCTGGATGTC -ACGGAAATGGGAACTCTGACAGTC -ACGGAAATGGGAACTCTGTTGCTG -ACGGAAATGGGAACTCTGTCCATG -ACGGAAATGGGAACTCTGTGTGTG -ACGGAAATGGGAACTCTGCTAGTG -ACGGAAATGGGAACTCTGCATCTG -ACGGAAATGGGAACTCTGGAGTTG -ACGGAAATGGGAACTCTGAGACTG -ACGGAAATGGGAACTCTGTCGGTA -ACGGAAATGGGAACTCTGTGCCTA -ACGGAAATGGGAACTCTGCCACTA -ACGGAAATGGGAACTCTGGGAGTA -ACGGAAATGGGAACTCTGTCGTCT -ACGGAAATGGGAACTCTGTGCACT -ACGGAAATGGGAACTCTGCTGACT -ACGGAAATGGGAACTCTGCAACCT -ACGGAAATGGGAACTCTGGCTACT -ACGGAAATGGGAACTCTGGGATCT -ACGGAAATGGGAACTCTGAAGGCT -ACGGAAATGGGAACTCTGTCAACC -ACGGAAATGGGAACTCTGTGTTCC -ACGGAAATGGGAACTCTGATTCCC -ACGGAAATGGGAACTCTGTTCTCG -ACGGAAATGGGAACTCTGTAGACG -ACGGAAATGGGAACTCTGGTAACG -ACGGAAATGGGAACTCTGACTTCG -ACGGAAATGGGAACTCTGTACGCA -ACGGAAATGGGAACTCTGCTTGCA -ACGGAAATGGGAACTCTGCGAACA -ACGGAAATGGGAACTCTGCAGTCA -ACGGAAATGGGAACTCTGGATCCA -ACGGAAATGGGAACTCTGACGACA -ACGGAAATGGGAACTCTGAGCTCA -ACGGAAATGGGAACTCTGTCACGT -ACGGAAATGGGAACTCTGCGTAGT -ACGGAAATGGGAACTCTGGTCAGT -ACGGAAATGGGAACTCTGGAAGGT -ACGGAAATGGGAACTCTGAACCGT -ACGGAAATGGGAACTCTGTTGTGC -ACGGAAATGGGAACTCTGCTAAGC -ACGGAAATGGGAACTCTGACTAGC -ACGGAAATGGGAACTCTGAGATGC -ACGGAAATGGGAACTCTGTGAAGG -ACGGAAATGGGAACTCTGCAATGG -ACGGAAATGGGAACTCTGATGAGG -ACGGAAATGGGAACTCTGAATGGG -ACGGAAATGGGAACTCTGTCCTGA -ACGGAAATGGGAACTCTGTAGCGA -ACGGAAATGGGAACTCTGCACAGA -ACGGAAATGGGAACTCTGGCAAGA -ACGGAAATGGGAACTCTGGGTTGA -ACGGAAATGGGAACTCTGTCCGAT -ACGGAAATGGGAACTCTGTGGCAT -ACGGAAATGGGAACTCTGCGAGAT -ACGGAAATGGGAACTCTGTACCAC -ACGGAAATGGGAACTCTGCAGAAC -ACGGAAATGGGAACTCTGGTCTAC -ACGGAAATGGGAACTCTGACGTAC -ACGGAAATGGGAACTCTGAGTGAC -ACGGAAATGGGAACTCTGCTGTAG -ACGGAAATGGGAACTCTGCCTAAG -ACGGAAATGGGAACTCTGGTTCAG -ACGGAAATGGGAACTCTGGCATAG -ACGGAAATGGGAACTCTGGACAAG -ACGGAAATGGGAACTCTGAAGCAG -ACGGAAATGGGAACTCTGCGTCAA -ACGGAAATGGGAACTCTGGCTGAA -ACGGAAATGGGAACTCTGAGTACG -ACGGAAATGGGAACTCTGATCCGA -ACGGAAATGGGAACTCTGATGGGA -ACGGAAATGGGAACTCTGGTGCAA -ACGGAAATGGGAACTCTGGAGGAA -ACGGAAATGGGAACTCTGCAGGTA -ACGGAAATGGGAACTCTGGACTCT -ACGGAAATGGGAACTCTGAGTCCT -ACGGAAATGGGAACTCTGTAAGCC -ACGGAAATGGGAACTCTGATAGCC -ACGGAAATGGGAACTCTGTAACCG -ACGGAAATGGGAACTCTGATGCCA -ACGGAAATGGGACCTCAAGGAAAC -ACGGAAATGGGACCTCAAAACACC -ACGGAAATGGGACCTCAAATCGAG -ACGGAAATGGGACCTCAACTCCTT -ACGGAAATGGGACCTCAACCTGTT -ACGGAAATGGGACCTCAACGGTTT -ACGGAAATGGGACCTCAAGTGGTT -ACGGAAATGGGACCTCAAGCCTTT -ACGGAAATGGGACCTCAAGGTCTT -ACGGAAATGGGACCTCAAACGCTT -ACGGAAATGGGACCTCAAAGCGTT -ACGGAAATGGGACCTCAATTCGTC -ACGGAAATGGGACCTCAATCTCTC -ACGGAAATGGGACCTCAATGGATC -ACGGAAATGGGACCTCAACACTTC -ACGGAAATGGGACCTCAAGTACTC -ACGGAAATGGGACCTCAAGATGTC -ACGGAAATGGGACCTCAAACAGTC -ACGGAAATGGGACCTCAATTGCTG -ACGGAAATGGGACCTCAATCCATG -ACGGAAATGGGACCTCAATGTGTG -ACGGAAATGGGACCTCAACTAGTG -ACGGAAATGGGACCTCAACATCTG -ACGGAAATGGGACCTCAAGAGTTG -ACGGAAATGGGACCTCAAAGACTG -ACGGAAATGGGACCTCAATCGGTA -ACGGAAATGGGACCTCAATGCCTA -ACGGAAATGGGACCTCAACCACTA -ACGGAAATGGGACCTCAAGGAGTA -ACGGAAATGGGACCTCAATCGTCT -ACGGAAATGGGACCTCAATGCACT -ACGGAAATGGGACCTCAACTGACT -ACGGAAATGGGACCTCAACAACCT -ACGGAAATGGGACCTCAAGCTACT -ACGGAAATGGGACCTCAAGGATCT -ACGGAAATGGGACCTCAAAAGGCT -ACGGAAATGGGACCTCAATCAACC -ACGGAAATGGGACCTCAATGTTCC -ACGGAAATGGGACCTCAAATTCCC -ACGGAAATGGGACCTCAATTCTCG -ACGGAAATGGGACCTCAATAGACG -ACGGAAATGGGACCTCAAGTAACG -ACGGAAATGGGACCTCAAACTTCG -ACGGAAATGGGACCTCAATACGCA -ACGGAAATGGGACCTCAACTTGCA -ACGGAAATGGGACCTCAACGAACA -ACGGAAATGGGACCTCAACAGTCA -ACGGAAATGGGACCTCAAGATCCA -ACGGAAATGGGACCTCAAACGACA -ACGGAAATGGGACCTCAAAGCTCA -ACGGAAATGGGACCTCAATCACGT -ACGGAAATGGGACCTCAACGTAGT -ACGGAAATGGGACCTCAAGTCAGT -ACGGAAATGGGACCTCAAGAAGGT -ACGGAAATGGGACCTCAAAACCGT -ACGGAAATGGGACCTCAATTGTGC -ACGGAAATGGGACCTCAACTAAGC -ACGGAAATGGGACCTCAAACTAGC -ACGGAAATGGGACCTCAAAGATGC -ACGGAAATGGGACCTCAATGAAGG -ACGGAAATGGGACCTCAACAATGG -ACGGAAATGGGACCTCAAATGAGG -ACGGAAATGGGACCTCAAAATGGG -ACGGAAATGGGACCTCAATCCTGA -ACGGAAATGGGACCTCAATAGCGA -ACGGAAATGGGACCTCAACACAGA -ACGGAAATGGGACCTCAAGCAAGA -ACGGAAATGGGACCTCAAGGTTGA -ACGGAAATGGGACCTCAATCCGAT -ACGGAAATGGGACCTCAATGGCAT -ACGGAAATGGGACCTCAACGAGAT -ACGGAAATGGGACCTCAATACCAC -ACGGAAATGGGACCTCAACAGAAC -ACGGAAATGGGACCTCAAGTCTAC -ACGGAAATGGGACCTCAAACGTAC -ACGGAAATGGGACCTCAAAGTGAC -ACGGAAATGGGACCTCAACTGTAG -ACGGAAATGGGACCTCAACCTAAG -ACGGAAATGGGACCTCAAGTTCAG -ACGGAAATGGGACCTCAAGCATAG -ACGGAAATGGGACCTCAAGACAAG -ACGGAAATGGGACCTCAAAAGCAG -ACGGAAATGGGACCTCAACGTCAA -ACGGAAATGGGACCTCAAGCTGAA -ACGGAAATGGGACCTCAAAGTACG -ACGGAAATGGGACCTCAAATCCGA -ACGGAAATGGGACCTCAAATGGGA -ACGGAAATGGGACCTCAAGTGCAA -ACGGAAATGGGACCTCAAGAGGAA -ACGGAAATGGGACCTCAACAGGTA -ACGGAAATGGGACCTCAAGACTCT -ACGGAAATGGGACCTCAAAGTCCT -ACGGAAATGGGACCTCAATAAGCC -ACGGAAATGGGACCTCAAATAGCC -ACGGAAATGGGACCTCAATAACCG -ACGGAAATGGGACCTCAAATGCCA -ACGGAAATGGGAACTGCTGGAAAC -ACGGAAATGGGAACTGCTAACACC -ACGGAAATGGGAACTGCTATCGAG -ACGGAAATGGGAACTGCTCTCCTT -ACGGAAATGGGAACTGCTCCTGTT -ACGGAAATGGGAACTGCTCGGTTT -ACGGAAATGGGAACTGCTGTGGTT -ACGGAAATGGGAACTGCTGCCTTT -ACGGAAATGGGAACTGCTGGTCTT -ACGGAAATGGGAACTGCTACGCTT -ACGGAAATGGGAACTGCTAGCGTT -ACGGAAATGGGAACTGCTTTCGTC -ACGGAAATGGGAACTGCTTCTCTC -ACGGAAATGGGAACTGCTTGGATC -ACGGAAATGGGAACTGCTCACTTC -ACGGAAATGGGAACTGCTGTACTC -ACGGAAATGGGAACTGCTGATGTC -ACGGAAATGGGAACTGCTACAGTC -ACGGAAATGGGAACTGCTTTGCTG -ACGGAAATGGGAACTGCTTCCATG -ACGGAAATGGGAACTGCTTGTGTG -ACGGAAATGGGAACTGCTCTAGTG -ACGGAAATGGGAACTGCTCATCTG -ACGGAAATGGGAACTGCTGAGTTG -ACGGAAATGGGAACTGCTAGACTG -ACGGAAATGGGAACTGCTTCGGTA -ACGGAAATGGGAACTGCTTGCCTA -ACGGAAATGGGAACTGCTCCACTA -ACGGAAATGGGAACTGCTGGAGTA -ACGGAAATGGGAACTGCTTCGTCT -ACGGAAATGGGAACTGCTTGCACT -ACGGAAATGGGAACTGCTCTGACT -ACGGAAATGGGAACTGCTCAACCT -ACGGAAATGGGAACTGCTGCTACT -ACGGAAATGGGAACTGCTGGATCT -ACGGAAATGGGAACTGCTAAGGCT -ACGGAAATGGGAACTGCTTCAACC -ACGGAAATGGGAACTGCTTGTTCC -ACGGAAATGGGAACTGCTATTCCC -ACGGAAATGGGAACTGCTTTCTCG -ACGGAAATGGGAACTGCTTAGACG -ACGGAAATGGGAACTGCTGTAACG -ACGGAAATGGGAACTGCTACTTCG -ACGGAAATGGGAACTGCTTACGCA -ACGGAAATGGGAACTGCTCTTGCA -ACGGAAATGGGAACTGCTCGAACA -ACGGAAATGGGAACTGCTCAGTCA -ACGGAAATGGGAACTGCTGATCCA -ACGGAAATGGGAACTGCTACGACA -ACGGAAATGGGAACTGCTAGCTCA -ACGGAAATGGGAACTGCTTCACGT -ACGGAAATGGGAACTGCTCGTAGT -ACGGAAATGGGAACTGCTGTCAGT -ACGGAAATGGGAACTGCTGAAGGT -ACGGAAATGGGAACTGCTAACCGT -ACGGAAATGGGAACTGCTTTGTGC -ACGGAAATGGGAACTGCTCTAAGC -ACGGAAATGGGAACTGCTACTAGC -ACGGAAATGGGAACTGCTAGATGC -ACGGAAATGGGAACTGCTTGAAGG -ACGGAAATGGGAACTGCTCAATGG -ACGGAAATGGGAACTGCTATGAGG -ACGGAAATGGGAACTGCTAATGGG -ACGGAAATGGGAACTGCTTCCTGA -ACGGAAATGGGAACTGCTTAGCGA -ACGGAAATGGGAACTGCTCACAGA -ACGGAAATGGGAACTGCTGCAAGA -ACGGAAATGGGAACTGCTGGTTGA -ACGGAAATGGGAACTGCTTCCGAT -ACGGAAATGGGAACTGCTTGGCAT -ACGGAAATGGGAACTGCTCGAGAT -ACGGAAATGGGAACTGCTTACCAC -ACGGAAATGGGAACTGCTCAGAAC -ACGGAAATGGGAACTGCTGTCTAC -ACGGAAATGGGAACTGCTACGTAC -ACGGAAATGGGAACTGCTAGTGAC -ACGGAAATGGGAACTGCTCTGTAG -ACGGAAATGGGAACTGCTCCTAAG -ACGGAAATGGGAACTGCTGTTCAG -ACGGAAATGGGAACTGCTGCATAG -ACGGAAATGGGAACTGCTGACAAG -ACGGAAATGGGAACTGCTAAGCAG -ACGGAAATGGGAACTGCTCGTCAA -ACGGAAATGGGAACTGCTGCTGAA -ACGGAAATGGGAACTGCTAGTACG -ACGGAAATGGGAACTGCTATCCGA -ACGGAAATGGGAACTGCTATGGGA -ACGGAAATGGGAACTGCTGTGCAA -ACGGAAATGGGAACTGCTGAGGAA -ACGGAAATGGGAACTGCTCAGGTA -ACGGAAATGGGAACTGCTGACTCT -ACGGAAATGGGAACTGCTAGTCCT -ACGGAAATGGGAACTGCTTAAGCC -ACGGAAATGGGAACTGCTATAGCC -ACGGAAATGGGAACTGCTTAACCG -ACGGAAATGGGAACTGCTATGCCA -ACGGAAATGGGATCTGGAGGAAAC -ACGGAAATGGGATCTGGAAACACC -ACGGAAATGGGATCTGGAATCGAG -ACGGAAATGGGATCTGGACTCCTT -ACGGAAATGGGATCTGGACCTGTT -ACGGAAATGGGATCTGGACGGTTT -ACGGAAATGGGATCTGGAGTGGTT -ACGGAAATGGGATCTGGAGCCTTT -ACGGAAATGGGATCTGGAGGTCTT -ACGGAAATGGGATCTGGAACGCTT -ACGGAAATGGGATCTGGAAGCGTT -ACGGAAATGGGATCTGGATTCGTC -ACGGAAATGGGATCTGGATCTCTC -ACGGAAATGGGATCTGGATGGATC -ACGGAAATGGGATCTGGACACTTC -ACGGAAATGGGATCTGGAGTACTC -ACGGAAATGGGATCTGGAGATGTC -ACGGAAATGGGATCTGGAACAGTC -ACGGAAATGGGATCTGGATTGCTG -ACGGAAATGGGATCTGGATCCATG -ACGGAAATGGGATCTGGATGTGTG -ACGGAAATGGGATCTGGACTAGTG -ACGGAAATGGGATCTGGACATCTG -ACGGAAATGGGATCTGGAGAGTTG -ACGGAAATGGGATCTGGAAGACTG -ACGGAAATGGGATCTGGATCGGTA -ACGGAAATGGGATCTGGATGCCTA -ACGGAAATGGGATCTGGACCACTA -ACGGAAATGGGATCTGGAGGAGTA -ACGGAAATGGGATCTGGATCGTCT -ACGGAAATGGGATCTGGATGCACT -ACGGAAATGGGATCTGGACTGACT -ACGGAAATGGGATCTGGACAACCT -ACGGAAATGGGATCTGGAGCTACT -ACGGAAATGGGATCTGGAGGATCT -ACGGAAATGGGATCTGGAAAGGCT -ACGGAAATGGGATCTGGATCAACC -ACGGAAATGGGATCTGGATGTTCC -ACGGAAATGGGATCTGGAATTCCC -ACGGAAATGGGATCTGGATTCTCG -ACGGAAATGGGATCTGGATAGACG -ACGGAAATGGGATCTGGAGTAACG -ACGGAAATGGGATCTGGAACTTCG -ACGGAAATGGGATCTGGATACGCA -ACGGAAATGGGATCTGGACTTGCA -ACGGAAATGGGATCTGGACGAACA -ACGGAAATGGGATCTGGACAGTCA -ACGGAAATGGGATCTGGAGATCCA -ACGGAAATGGGATCTGGAACGACA -ACGGAAATGGGATCTGGAAGCTCA -ACGGAAATGGGATCTGGATCACGT -ACGGAAATGGGATCTGGACGTAGT -ACGGAAATGGGATCTGGAGTCAGT -ACGGAAATGGGATCTGGAGAAGGT -ACGGAAATGGGATCTGGAAACCGT -ACGGAAATGGGATCTGGATTGTGC -ACGGAAATGGGATCTGGACTAAGC -ACGGAAATGGGATCTGGAACTAGC -ACGGAAATGGGATCTGGAAGATGC -ACGGAAATGGGATCTGGATGAAGG -ACGGAAATGGGATCTGGACAATGG -ACGGAAATGGGATCTGGAATGAGG -ACGGAAATGGGATCTGGAAATGGG -ACGGAAATGGGATCTGGATCCTGA -ACGGAAATGGGATCTGGATAGCGA -ACGGAAATGGGATCTGGACACAGA -ACGGAAATGGGATCTGGAGCAAGA -ACGGAAATGGGATCTGGAGGTTGA -ACGGAAATGGGATCTGGATCCGAT -ACGGAAATGGGATCTGGATGGCAT -ACGGAAATGGGATCTGGACGAGAT -ACGGAAATGGGATCTGGATACCAC -ACGGAAATGGGATCTGGACAGAAC -ACGGAAATGGGATCTGGAGTCTAC -ACGGAAATGGGATCTGGAACGTAC -ACGGAAATGGGATCTGGAAGTGAC -ACGGAAATGGGATCTGGACTGTAG -ACGGAAATGGGATCTGGACCTAAG -ACGGAAATGGGATCTGGAGTTCAG -ACGGAAATGGGATCTGGAGCATAG -ACGGAAATGGGATCTGGAGACAAG -ACGGAAATGGGATCTGGAAAGCAG -ACGGAAATGGGATCTGGACGTCAA -ACGGAAATGGGATCTGGAGCTGAA -ACGGAAATGGGATCTGGAAGTACG -ACGGAAATGGGATCTGGAATCCGA -ACGGAAATGGGATCTGGAATGGGA -ACGGAAATGGGATCTGGAGTGCAA -ACGGAAATGGGATCTGGAGAGGAA -ACGGAAATGGGATCTGGACAGGTA -ACGGAAATGGGATCTGGAGACTCT -ACGGAAATGGGATCTGGAAGTCCT -ACGGAAATGGGATCTGGATAAGCC -ACGGAAATGGGATCTGGAATAGCC -ACGGAAATGGGATCTGGATAACCG -ACGGAAATGGGATCTGGAATGCCA -ACGGAAATGGGAGCTAAGGGAAAC -ACGGAAATGGGAGCTAAGAACACC -ACGGAAATGGGAGCTAAGATCGAG -ACGGAAATGGGAGCTAAGCTCCTT -ACGGAAATGGGAGCTAAGCCTGTT -ACGGAAATGGGAGCTAAGCGGTTT -ACGGAAATGGGAGCTAAGGTGGTT -ACGGAAATGGGAGCTAAGGCCTTT -ACGGAAATGGGAGCTAAGGGTCTT -ACGGAAATGGGAGCTAAGACGCTT -ACGGAAATGGGAGCTAAGAGCGTT -ACGGAAATGGGAGCTAAGTTCGTC -ACGGAAATGGGAGCTAAGTCTCTC -ACGGAAATGGGAGCTAAGTGGATC -ACGGAAATGGGAGCTAAGCACTTC -ACGGAAATGGGAGCTAAGGTACTC -ACGGAAATGGGAGCTAAGGATGTC -ACGGAAATGGGAGCTAAGACAGTC -ACGGAAATGGGAGCTAAGTTGCTG -ACGGAAATGGGAGCTAAGTCCATG -ACGGAAATGGGAGCTAAGTGTGTG -ACGGAAATGGGAGCTAAGCTAGTG -ACGGAAATGGGAGCTAAGCATCTG -ACGGAAATGGGAGCTAAGGAGTTG -ACGGAAATGGGAGCTAAGAGACTG -ACGGAAATGGGAGCTAAGTCGGTA -ACGGAAATGGGAGCTAAGTGCCTA -ACGGAAATGGGAGCTAAGCCACTA -ACGGAAATGGGAGCTAAGGGAGTA -ACGGAAATGGGAGCTAAGTCGTCT -ACGGAAATGGGAGCTAAGTGCACT -ACGGAAATGGGAGCTAAGCTGACT -ACGGAAATGGGAGCTAAGCAACCT -ACGGAAATGGGAGCTAAGGCTACT -ACGGAAATGGGAGCTAAGGGATCT -ACGGAAATGGGAGCTAAGAAGGCT -ACGGAAATGGGAGCTAAGTCAACC -ACGGAAATGGGAGCTAAGTGTTCC -ACGGAAATGGGAGCTAAGATTCCC -ACGGAAATGGGAGCTAAGTTCTCG -ACGGAAATGGGAGCTAAGTAGACG -ACGGAAATGGGAGCTAAGGTAACG -ACGGAAATGGGAGCTAAGACTTCG -ACGGAAATGGGAGCTAAGTACGCA -ACGGAAATGGGAGCTAAGCTTGCA -ACGGAAATGGGAGCTAAGCGAACA -ACGGAAATGGGAGCTAAGCAGTCA -ACGGAAATGGGAGCTAAGGATCCA -ACGGAAATGGGAGCTAAGACGACA -ACGGAAATGGGAGCTAAGAGCTCA -ACGGAAATGGGAGCTAAGTCACGT -ACGGAAATGGGAGCTAAGCGTAGT -ACGGAAATGGGAGCTAAGGTCAGT -ACGGAAATGGGAGCTAAGGAAGGT -ACGGAAATGGGAGCTAAGAACCGT -ACGGAAATGGGAGCTAAGTTGTGC -ACGGAAATGGGAGCTAAGCTAAGC -ACGGAAATGGGAGCTAAGACTAGC -ACGGAAATGGGAGCTAAGAGATGC -ACGGAAATGGGAGCTAAGTGAAGG -ACGGAAATGGGAGCTAAGCAATGG -ACGGAAATGGGAGCTAAGATGAGG -ACGGAAATGGGAGCTAAGAATGGG -ACGGAAATGGGAGCTAAGTCCTGA -ACGGAAATGGGAGCTAAGTAGCGA -ACGGAAATGGGAGCTAAGCACAGA -ACGGAAATGGGAGCTAAGGCAAGA -ACGGAAATGGGAGCTAAGGGTTGA -ACGGAAATGGGAGCTAAGTCCGAT -ACGGAAATGGGAGCTAAGTGGCAT -ACGGAAATGGGAGCTAAGCGAGAT -ACGGAAATGGGAGCTAAGTACCAC -ACGGAAATGGGAGCTAAGCAGAAC -ACGGAAATGGGAGCTAAGGTCTAC -ACGGAAATGGGAGCTAAGACGTAC -ACGGAAATGGGAGCTAAGAGTGAC -ACGGAAATGGGAGCTAAGCTGTAG -ACGGAAATGGGAGCTAAGCCTAAG -ACGGAAATGGGAGCTAAGGTTCAG -ACGGAAATGGGAGCTAAGGCATAG -ACGGAAATGGGAGCTAAGGACAAG -ACGGAAATGGGAGCTAAGAAGCAG -ACGGAAATGGGAGCTAAGCGTCAA -ACGGAAATGGGAGCTAAGGCTGAA -ACGGAAATGGGAGCTAAGAGTACG -ACGGAAATGGGAGCTAAGATCCGA -ACGGAAATGGGAGCTAAGATGGGA -ACGGAAATGGGAGCTAAGGTGCAA -ACGGAAATGGGAGCTAAGGAGGAA -ACGGAAATGGGAGCTAAGCAGGTA -ACGGAAATGGGAGCTAAGGACTCT -ACGGAAATGGGAGCTAAGAGTCCT -ACGGAAATGGGAGCTAAGTAAGCC -ACGGAAATGGGAGCTAAGATAGCC -ACGGAAATGGGAGCTAAGTAACCG -ACGGAAATGGGAGCTAAGATGCCA -ACGGAAATGGGAACCTCAGGAAAC -ACGGAAATGGGAACCTCAAACACC -ACGGAAATGGGAACCTCAATCGAG -ACGGAAATGGGAACCTCACTCCTT -ACGGAAATGGGAACCTCACCTGTT -ACGGAAATGGGAACCTCACGGTTT -ACGGAAATGGGAACCTCAGTGGTT -ACGGAAATGGGAACCTCAGCCTTT -ACGGAAATGGGAACCTCAGGTCTT -ACGGAAATGGGAACCTCAACGCTT -ACGGAAATGGGAACCTCAAGCGTT -ACGGAAATGGGAACCTCATTCGTC -ACGGAAATGGGAACCTCATCTCTC -ACGGAAATGGGAACCTCATGGATC -ACGGAAATGGGAACCTCACACTTC -ACGGAAATGGGAACCTCAGTACTC -ACGGAAATGGGAACCTCAGATGTC -ACGGAAATGGGAACCTCAACAGTC -ACGGAAATGGGAACCTCATTGCTG -ACGGAAATGGGAACCTCATCCATG -ACGGAAATGGGAACCTCATGTGTG -ACGGAAATGGGAACCTCACTAGTG -ACGGAAATGGGAACCTCACATCTG -ACGGAAATGGGAACCTCAGAGTTG -ACGGAAATGGGAACCTCAAGACTG -ACGGAAATGGGAACCTCATCGGTA -ACGGAAATGGGAACCTCATGCCTA -ACGGAAATGGGAACCTCACCACTA -ACGGAAATGGGAACCTCAGGAGTA -ACGGAAATGGGAACCTCATCGTCT -ACGGAAATGGGAACCTCATGCACT -ACGGAAATGGGAACCTCACTGACT -ACGGAAATGGGAACCTCACAACCT -ACGGAAATGGGAACCTCAGCTACT -ACGGAAATGGGAACCTCAGGATCT -ACGGAAATGGGAACCTCAAAGGCT -ACGGAAATGGGAACCTCATCAACC -ACGGAAATGGGAACCTCATGTTCC -ACGGAAATGGGAACCTCAATTCCC -ACGGAAATGGGAACCTCATTCTCG -ACGGAAATGGGAACCTCATAGACG -ACGGAAATGGGAACCTCAGTAACG -ACGGAAATGGGAACCTCAACTTCG -ACGGAAATGGGAACCTCATACGCA -ACGGAAATGGGAACCTCACTTGCA -ACGGAAATGGGAACCTCACGAACA -ACGGAAATGGGAACCTCACAGTCA -ACGGAAATGGGAACCTCAGATCCA -ACGGAAATGGGAACCTCAACGACA -ACGGAAATGGGAACCTCAAGCTCA -ACGGAAATGGGAACCTCATCACGT -ACGGAAATGGGAACCTCACGTAGT -ACGGAAATGGGAACCTCAGTCAGT -ACGGAAATGGGAACCTCAGAAGGT -ACGGAAATGGGAACCTCAAACCGT -ACGGAAATGGGAACCTCATTGTGC -ACGGAAATGGGAACCTCACTAAGC -ACGGAAATGGGAACCTCAACTAGC -ACGGAAATGGGAACCTCAAGATGC -ACGGAAATGGGAACCTCATGAAGG -ACGGAAATGGGAACCTCACAATGG -ACGGAAATGGGAACCTCAATGAGG -ACGGAAATGGGAACCTCAAATGGG -ACGGAAATGGGAACCTCATCCTGA -ACGGAAATGGGAACCTCATAGCGA -ACGGAAATGGGAACCTCACACAGA -ACGGAAATGGGAACCTCAGCAAGA -ACGGAAATGGGAACCTCAGGTTGA -ACGGAAATGGGAACCTCATCCGAT -ACGGAAATGGGAACCTCATGGCAT -ACGGAAATGGGAACCTCACGAGAT -ACGGAAATGGGAACCTCATACCAC -ACGGAAATGGGAACCTCACAGAAC -ACGGAAATGGGAACCTCAGTCTAC -ACGGAAATGGGAACCTCAACGTAC -ACGGAAATGGGAACCTCAAGTGAC -ACGGAAATGGGAACCTCACTGTAG -ACGGAAATGGGAACCTCACCTAAG -ACGGAAATGGGAACCTCAGTTCAG -ACGGAAATGGGAACCTCAGCATAG -ACGGAAATGGGAACCTCAGACAAG -ACGGAAATGGGAACCTCAAAGCAG -ACGGAAATGGGAACCTCACGTCAA -ACGGAAATGGGAACCTCAGCTGAA -ACGGAAATGGGAACCTCAAGTACG -ACGGAAATGGGAACCTCAATCCGA -ACGGAAATGGGAACCTCAATGGGA -ACGGAAATGGGAACCTCAGTGCAA -ACGGAAATGGGAACCTCAGAGGAA -ACGGAAATGGGAACCTCACAGGTA -ACGGAAATGGGAACCTCAGACTCT -ACGGAAATGGGAACCTCAAGTCCT -ACGGAAATGGGAACCTCATAAGCC -ACGGAAATGGGAACCTCAATAGCC -ACGGAAATGGGAACCTCATAACCG -ACGGAAATGGGAACCTCAATGCCA -ACGGAAATGGGATCCTGTGGAAAC -ACGGAAATGGGATCCTGTAACACC -ACGGAAATGGGATCCTGTATCGAG -ACGGAAATGGGATCCTGTCTCCTT -ACGGAAATGGGATCCTGTCCTGTT -ACGGAAATGGGATCCTGTCGGTTT -ACGGAAATGGGATCCTGTGTGGTT -ACGGAAATGGGATCCTGTGCCTTT -ACGGAAATGGGATCCTGTGGTCTT -ACGGAAATGGGATCCTGTACGCTT -ACGGAAATGGGATCCTGTAGCGTT -ACGGAAATGGGATCCTGTTTCGTC -ACGGAAATGGGATCCTGTTCTCTC -ACGGAAATGGGATCCTGTTGGATC -ACGGAAATGGGATCCTGTCACTTC -ACGGAAATGGGATCCTGTGTACTC -ACGGAAATGGGATCCTGTGATGTC -ACGGAAATGGGATCCTGTACAGTC -ACGGAAATGGGATCCTGTTTGCTG -ACGGAAATGGGATCCTGTTCCATG -ACGGAAATGGGATCCTGTTGTGTG -ACGGAAATGGGATCCTGTCTAGTG -ACGGAAATGGGATCCTGTCATCTG -ACGGAAATGGGATCCTGTGAGTTG -ACGGAAATGGGATCCTGTAGACTG -ACGGAAATGGGATCCTGTTCGGTA -ACGGAAATGGGATCCTGTTGCCTA -ACGGAAATGGGATCCTGTCCACTA -ACGGAAATGGGATCCTGTGGAGTA -ACGGAAATGGGATCCTGTTCGTCT -ACGGAAATGGGATCCTGTTGCACT -ACGGAAATGGGATCCTGTCTGACT -ACGGAAATGGGATCCTGTCAACCT -ACGGAAATGGGATCCTGTGCTACT -ACGGAAATGGGATCCTGTGGATCT -ACGGAAATGGGATCCTGTAAGGCT -ACGGAAATGGGATCCTGTTCAACC -ACGGAAATGGGATCCTGTTGTTCC -ACGGAAATGGGATCCTGTATTCCC -ACGGAAATGGGATCCTGTTTCTCG -ACGGAAATGGGATCCTGTTAGACG -ACGGAAATGGGATCCTGTGTAACG -ACGGAAATGGGATCCTGTACTTCG -ACGGAAATGGGATCCTGTTACGCA -ACGGAAATGGGATCCTGTCTTGCA -ACGGAAATGGGATCCTGTCGAACA -ACGGAAATGGGATCCTGTCAGTCA -ACGGAAATGGGATCCTGTGATCCA -ACGGAAATGGGATCCTGTACGACA -ACGGAAATGGGATCCTGTAGCTCA -ACGGAAATGGGATCCTGTTCACGT -ACGGAAATGGGATCCTGTCGTAGT -ACGGAAATGGGATCCTGTGTCAGT -ACGGAAATGGGATCCTGTGAAGGT -ACGGAAATGGGATCCTGTAACCGT -ACGGAAATGGGATCCTGTTTGTGC -ACGGAAATGGGATCCTGTCTAAGC -ACGGAAATGGGATCCTGTACTAGC -ACGGAAATGGGATCCTGTAGATGC -ACGGAAATGGGATCCTGTTGAAGG -ACGGAAATGGGATCCTGTCAATGG -ACGGAAATGGGATCCTGTATGAGG -ACGGAAATGGGATCCTGTAATGGG -ACGGAAATGGGATCCTGTTCCTGA -ACGGAAATGGGATCCTGTTAGCGA -ACGGAAATGGGATCCTGTCACAGA -ACGGAAATGGGATCCTGTGCAAGA -ACGGAAATGGGATCCTGTGGTTGA -ACGGAAATGGGATCCTGTTCCGAT -ACGGAAATGGGATCCTGTTGGCAT -ACGGAAATGGGATCCTGTCGAGAT -ACGGAAATGGGATCCTGTTACCAC -ACGGAAATGGGATCCTGTCAGAAC -ACGGAAATGGGATCCTGTGTCTAC -ACGGAAATGGGATCCTGTACGTAC -ACGGAAATGGGATCCTGTAGTGAC -ACGGAAATGGGATCCTGTCTGTAG -ACGGAAATGGGATCCTGTCCTAAG -ACGGAAATGGGATCCTGTGTTCAG -ACGGAAATGGGATCCTGTGCATAG -ACGGAAATGGGATCCTGTGACAAG -ACGGAAATGGGATCCTGTAAGCAG -ACGGAAATGGGATCCTGTCGTCAA -ACGGAAATGGGATCCTGTGCTGAA -ACGGAAATGGGATCCTGTAGTACG -ACGGAAATGGGATCCTGTATCCGA -ACGGAAATGGGATCCTGTATGGGA -ACGGAAATGGGATCCTGTGTGCAA -ACGGAAATGGGATCCTGTGAGGAA -ACGGAAATGGGATCCTGTCAGGTA -ACGGAAATGGGATCCTGTGACTCT -ACGGAAATGGGATCCTGTAGTCCT -ACGGAAATGGGATCCTGTTAAGCC -ACGGAAATGGGATCCTGTATAGCC -ACGGAAATGGGATCCTGTTAACCG -ACGGAAATGGGATCCTGTATGCCA -ACGGAAATGGGACCCATTGGAAAC -ACGGAAATGGGACCCATTAACACC -ACGGAAATGGGACCCATTATCGAG -ACGGAAATGGGACCCATTCTCCTT -ACGGAAATGGGACCCATTCCTGTT -ACGGAAATGGGACCCATTCGGTTT -ACGGAAATGGGACCCATTGTGGTT -ACGGAAATGGGACCCATTGCCTTT -ACGGAAATGGGACCCATTGGTCTT -ACGGAAATGGGACCCATTACGCTT -ACGGAAATGGGACCCATTAGCGTT -ACGGAAATGGGACCCATTTTCGTC -ACGGAAATGGGACCCATTTCTCTC -ACGGAAATGGGACCCATTTGGATC -ACGGAAATGGGACCCATTCACTTC -ACGGAAATGGGACCCATTGTACTC -ACGGAAATGGGACCCATTGATGTC -ACGGAAATGGGACCCATTACAGTC -ACGGAAATGGGACCCATTTTGCTG -ACGGAAATGGGACCCATTTCCATG -ACGGAAATGGGACCCATTTGTGTG -ACGGAAATGGGACCCATTCTAGTG -ACGGAAATGGGACCCATTCATCTG -ACGGAAATGGGACCCATTGAGTTG -ACGGAAATGGGACCCATTAGACTG -ACGGAAATGGGACCCATTTCGGTA -ACGGAAATGGGACCCATTTGCCTA -ACGGAAATGGGACCCATTCCACTA -ACGGAAATGGGACCCATTGGAGTA -ACGGAAATGGGACCCATTTCGTCT -ACGGAAATGGGACCCATTTGCACT -ACGGAAATGGGACCCATTCTGACT -ACGGAAATGGGACCCATTCAACCT -ACGGAAATGGGACCCATTGCTACT -ACGGAAATGGGACCCATTGGATCT -ACGGAAATGGGACCCATTAAGGCT -ACGGAAATGGGACCCATTTCAACC -ACGGAAATGGGACCCATTTGTTCC -ACGGAAATGGGACCCATTATTCCC -ACGGAAATGGGACCCATTTTCTCG -ACGGAAATGGGACCCATTTAGACG -ACGGAAATGGGACCCATTGTAACG -ACGGAAATGGGACCCATTACTTCG -ACGGAAATGGGACCCATTTACGCA -ACGGAAATGGGACCCATTCTTGCA -ACGGAAATGGGACCCATTCGAACA -ACGGAAATGGGACCCATTCAGTCA -ACGGAAATGGGACCCATTGATCCA -ACGGAAATGGGACCCATTACGACA -ACGGAAATGGGACCCATTAGCTCA -ACGGAAATGGGACCCATTTCACGT -ACGGAAATGGGACCCATTCGTAGT -ACGGAAATGGGACCCATTGTCAGT -ACGGAAATGGGACCCATTGAAGGT -ACGGAAATGGGACCCATTAACCGT -ACGGAAATGGGACCCATTTTGTGC -ACGGAAATGGGACCCATTCTAAGC -ACGGAAATGGGACCCATTACTAGC -ACGGAAATGGGACCCATTAGATGC -ACGGAAATGGGACCCATTTGAAGG -ACGGAAATGGGACCCATTCAATGG -ACGGAAATGGGACCCATTATGAGG -ACGGAAATGGGACCCATTAATGGG -ACGGAAATGGGACCCATTTCCTGA -ACGGAAATGGGACCCATTTAGCGA -ACGGAAATGGGACCCATTCACAGA -ACGGAAATGGGACCCATTGCAAGA -ACGGAAATGGGACCCATTGGTTGA -ACGGAAATGGGACCCATTTCCGAT -ACGGAAATGGGACCCATTTGGCAT -ACGGAAATGGGACCCATTCGAGAT -ACGGAAATGGGACCCATTTACCAC -ACGGAAATGGGACCCATTCAGAAC -ACGGAAATGGGACCCATTGTCTAC -ACGGAAATGGGACCCATTACGTAC -ACGGAAATGGGACCCATTAGTGAC -ACGGAAATGGGACCCATTCTGTAG -ACGGAAATGGGACCCATTCCTAAG -ACGGAAATGGGACCCATTGTTCAG -ACGGAAATGGGACCCATTGCATAG -ACGGAAATGGGACCCATTGACAAG -ACGGAAATGGGACCCATTAAGCAG -ACGGAAATGGGACCCATTCGTCAA -ACGGAAATGGGACCCATTGCTGAA -ACGGAAATGGGACCCATTAGTACG -ACGGAAATGGGACCCATTATCCGA -ACGGAAATGGGACCCATTATGGGA -ACGGAAATGGGACCCATTGTGCAA -ACGGAAATGGGACCCATTGAGGAA -ACGGAAATGGGACCCATTCAGGTA -ACGGAAATGGGACCCATTGACTCT -ACGGAAATGGGACCCATTAGTCCT -ACGGAAATGGGACCCATTTAAGCC -ACGGAAATGGGACCCATTATAGCC -ACGGAAATGGGACCCATTTAACCG -ACGGAAATGGGACCCATTATGCCA -ACGGAAATGGGATCGTTCGGAAAC -ACGGAAATGGGATCGTTCAACACC -ACGGAAATGGGATCGTTCATCGAG -ACGGAAATGGGATCGTTCCTCCTT -ACGGAAATGGGATCGTTCCCTGTT -ACGGAAATGGGATCGTTCCGGTTT -ACGGAAATGGGATCGTTCGTGGTT -ACGGAAATGGGATCGTTCGCCTTT -ACGGAAATGGGATCGTTCGGTCTT -ACGGAAATGGGATCGTTCACGCTT -ACGGAAATGGGATCGTTCAGCGTT -ACGGAAATGGGATCGTTCTTCGTC -ACGGAAATGGGATCGTTCTCTCTC -ACGGAAATGGGATCGTTCTGGATC -ACGGAAATGGGATCGTTCCACTTC -ACGGAAATGGGATCGTTCGTACTC -ACGGAAATGGGATCGTTCGATGTC -ACGGAAATGGGATCGTTCACAGTC -ACGGAAATGGGATCGTTCTTGCTG -ACGGAAATGGGATCGTTCTCCATG -ACGGAAATGGGATCGTTCTGTGTG -ACGGAAATGGGATCGTTCCTAGTG -ACGGAAATGGGATCGTTCCATCTG -ACGGAAATGGGATCGTTCGAGTTG -ACGGAAATGGGATCGTTCAGACTG -ACGGAAATGGGATCGTTCTCGGTA -ACGGAAATGGGATCGTTCTGCCTA -ACGGAAATGGGATCGTTCCCACTA -ACGGAAATGGGATCGTTCGGAGTA -ACGGAAATGGGATCGTTCTCGTCT -ACGGAAATGGGATCGTTCTGCACT -ACGGAAATGGGATCGTTCCTGACT -ACGGAAATGGGATCGTTCCAACCT -ACGGAAATGGGATCGTTCGCTACT -ACGGAAATGGGATCGTTCGGATCT -ACGGAAATGGGATCGTTCAAGGCT -ACGGAAATGGGATCGTTCTCAACC -ACGGAAATGGGATCGTTCTGTTCC -ACGGAAATGGGATCGTTCATTCCC -ACGGAAATGGGATCGTTCTTCTCG -ACGGAAATGGGATCGTTCTAGACG -ACGGAAATGGGATCGTTCGTAACG -ACGGAAATGGGATCGTTCACTTCG -ACGGAAATGGGATCGTTCTACGCA -ACGGAAATGGGATCGTTCCTTGCA -ACGGAAATGGGATCGTTCCGAACA -ACGGAAATGGGATCGTTCCAGTCA -ACGGAAATGGGATCGTTCGATCCA -ACGGAAATGGGATCGTTCACGACA -ACGGAAATGGGATCGTTCAGCTCA -ACGGAAATGGGATCGTTCTCACGT -ACGGAAATGGGATCGTTCCGTAGT -ACGGAAATGGGATCGTTCGTCAGT -ACGGAAATGGGATCGTTCGAAGGT -ACGGAAATGGGATCGTTCAACCGT -ACGGAAATGGGATCGTTCTTGTGC -ACGGAAATGGGATCGTTCCTAAGC -ACGGAAATGGGATCGTTCACTAGC -ACGGAAATGGGATCGTTCAGATGC -ACGGAAATGGGATCGTTCTGAAGG -ACGGAAATGGGATCGTTCCAATGG -ACGGAAATGGGATCGTTCATGAGG -ACGGAAATGGGATCGTTCAATGGG -ACGGAAATGGGATCGTTCTCCTGA -ACGGAAATGGGATCGTTCTAGCGA -ACGGAAATGGGATCGTTCCACAGA -ACGGAAATGGGATCGTTCGCAAGA -ACGGAAATGGGATCGTTCGGTTGA -ACGGAAATGGGATCGTTCTCCGAT -ACGGAAATGGGATCGTTCTGGCAT -ACGGAAATGGGATCGTTCCGAGAT -ACGGAAATGGGATCGTTCTACCAC -ACGGAAATGGGATCGTTCCAGAAC -ACGGAAATGGGATCGTTCGTCTAC -ACGGAAATGGGATCGTTCACGTAC -ACGGAAATGGGATCGTTCAGTGAC -ACGGAAATGGGATCGTTCCTGTAG -ACGGAAATGGGATCGTTCCCTAAG -ACGGAAATGGGATCGTTCGTTCAG -ACGGAAATGGGATCGTTCGCATAG -ACGGAAATGGGATCGTTCGACAAG -ACGGAAATGGGATCGTTCAAGCAG -ACGGAAATGGGATCGTTCCGTCAA -ACGGAAATGGGATCGTTCGCTGAA -ACGGAAATGGGATCGTTCAGTACG -ACGGAAATGGGATCGTTCATCCGA -ACGGAAATGGGATCGTTCATGGGA -ACGGAAATGGGATCGTTCGTGCAA -ACGGAAATGGGATCGTTCGAGGAA -ACGGAAATGGGATCGTTCCAGGTA -ACGGAAATGGGATCGTTCGACTCT -ACGGAAATGGGATCGTTCAGTCCT -ACGGAAATGGGATCGTTCTAAGCC -ACGGAAATGGGATCGTTCATAGCC -ACGGAAATGGGATCGTTCTAACCG -ACGGAAATGGGATCGTTCATGCCA -ACGGAAATGGGAACGTAGGGAAAC -ACGGAAATGGGAACGTAGAACACC -ACGGAAATGGGAACGTAGATCGAG -ACGGAAATGGGAACGTAGCTCCTT -ACGGAAATGGGAACGTAGCCTGTT -ACGGAAATGGGAACGTAGCGGTTT -ACGGAAATGGGAACGTAGGTGGTT -ACGGAAATGGGAACGTAGGCCTTT -ACGGAAATGGGAACGTAGGGTCTT -ACGGAAATGGGAACGTAGACGCTT -ACGGAAATGGGAACGTAGAGCGTT -ACGGAAATGGGAACGTAGTTCGTC -ACGGAAATGGGAACGTAGTCTCTC -ACGGAAATGGGAACGTAGTGGATC -ACGGAAATGGGAACGTAGCACTTC -ACGGAAATGGGAACGTAGGTACTC -ACGGAAATGGGAACGTAGGATGTC -ACGGAAATGGGAACGTAGACAGTC -ACGGAAATGGGAACGTAGTTGCTG -ACGGAAATGGGAACGTAGTCCATG -ACGGAAATGGGAACGTAGTGTGTG -ACGGAAATGGGAACGTAGCTAGTG -ACGGAAATGGGAACGTAGCATCTG -ACGGAAATGGGAACGTAGGAGTTG -ACGGAAATGGGAACGTAGAGACTG -ACGGAAATGGGAACGTAGTCGGTA -ACGGAAATGGGAACGTAGTGCCTA -ACGGAAATGGGAACGTAGCCACTA -ACGGAAATGGGAACGTAGGGAGTA -ACGGAAATGGGAACGTAGTCGTCT -ACGGAAATGGGAACGTAGTGCACT -ACGGAAATGGGAACGTAGCTGACT -ACGGAAATGGGAACGTAGCAACCT -ACGGAAATGGGAACGTAGGCTACT -ACGGAAATGGGAACGTAGGGATCT -ACGGAAATGGGAACGTAGAAGGCT -ACGGAAATGGGAACGTAGTCAACC -ACGGAAATGGGAACGTAGTGTTCC -ACGGAAATGGGAACGTAGATTCCC -ACGGAAATGGGAACGTAGTTCTCG -ACGGAAATGGGAACGTAGTAGACG -ACGGAAATGGGAACGTAGGTAACG -ACGGAAATGGGAACGTAGACTTCG -ACGGAAATGGGAACGTAGTACGCA -ACGGAAATGGGAACGTAGCTTGCA -ACGGAAATGGGAACGTAGCGAACA -ACGGAAATGGGAACGTAGCAGTCA -ACGGAAATGGGAACGTAGGATCCA -ACGGAAATGGGAACGTAGACGACA -ACGGAAATGGGAACGTAGAGCTCA -ACGGAAATGGGAACGTAGTCACGT -ACGGAAATGGGAACGTAGCGTAGT -ACGGAAATGGGAACGTAGGTCAGT -ACGGAAATGGGAACGTAGGAAGGT -ACGGAAATGGGAACGTAGAACCGT -ACGGAAATGGGAACGTAGTTGTGC -ACGGAAATGGGAACGTAGCTAAGC -ACGGAAATGGGAACGTAGACTAGC -ACGGAAATGGGAACGTAGAGATGC -ACGGAAATGGGAACGTAGTGAAGG -ACGGAAATGGGAACGTAGCAATGG -ACGGAAATGGGAACGTAGATGAGG -ACGGAAATGGGAACGTAGAATGGG -ACGGAAATGGGAACGTAGTCCTGA -ACGGAAATGGGAACGTAGTAGCGA -ACGGAAATGGGAACGTAGCACAGA -ACGGAAATGGGAACGTAGGCAAGA -ACGGAAATGGGAACGTAGGGTTGA -ACGGAAATGGGAACGTAGTCCGAT -ACGGAAATGGGAACGTAGTGGCAT -ACGGAAATGGGAACGTAGCGAGAT -ACGGAAATGGGAACGTAGTACCAC -ACGGAAATGGGAACGTAGCAGAAC -ACGGAAATGGGAACGTAGGTCTAC -ACGGAAATGGGAACGTAGACGTAC -ACGGAAATGGGAACGTAGAGTGAC -ACGGAAATGGGAACGTAGCTGTAG -ACGGAAATGGGAACGTAGCCTAAG -ACGGAAATGGGAACGTAGGTTCAG -ACGGAAATGGGAACGTAGGCATAG -ACGGAAATGGGAACGTAGGACAAG -ACGGAAATGGGAACGTAGAAGCAG -ACGGAAATGGGAACGTAGCGTCAA -ACGGAAATGGGAACGTAGGCTGAA -ACGGAAATGGGAACGTAGAGTACG -ACGGAAATGGGAACGTAGATCCGA -ACGGAAATGGGAACGTAGATGGGA -ACGGAAATGGGAACGTAGGTGCAA -ACGGAAATGGGAACGTAGGAGGAA -ACGGAAATGGGAACGTAGCAGGTA -ACGGAAATGGGAACGTAGGACTCT -ACGGAAATGGGAACGTAGAGTCCT -ACGGAAATGGGAACGTAGTAAGCC -ACGGAAATGGGAACGTAGATAGCC -ACGGAAATGGGAACGTAGTAACCG -ACGGAAATGGGAACGTAGATGCCA -ACGGAAATGGGAACGGTAGGAAAC -ACGGAAATGGGAACGGTAAACACC -ACGGAAATGGGAACGGTAATCGAG -ACGGAAATGGGAACGGTACTCCTT -ACGGAAATGGGAACGGTACCTGTT -ACGGAAATGGGAACGGTACGGTTT -ACGGAAATGGGAACGGTAGTGGTT -ACGGAAATGGGAACGGTAGCCTTT -ACGGAAATGGGAACGGTAGGTCTT -ACGGAAATGGGAACGGTAACGCTT -ACGGAAATGGGAACGGTAAGCGTT -ACGGAAATGGGAACGGTATTCGTC -ACGGAAATGGGAACGGTATCTCTC -ACGGAAATGGGAACGGTATGGATC -ACGGAAATGGGAACGGTACACTTC -ACGGAAATGGGAACGGTAGTACTC -ACGGAAATGGGAACGGTAGATGTC -ACGGAAATGGGAACGGTAACAGTC -ACGGAAATGGGAACGGTATTGCTG -ACGGAAATGGGAACGGTATCCATG -ACGGAAATGGGAACGGTATGTGTG -ACGGAAATGGGAACGGTACTAGTG -ACGGAAATGGGAACGGTACATCTG -ACGGAAATGGGAACGGTAGAGTTG -ACGGAAATGGGAACGGTAAGACTG -ACGGAAATGGGAACGGTATCGGTA -ACGGAAATGGGAACGGTATGCCTA -ACGGAAATGGGAACGGTACCACTA -ACGGAAATGGGAACGGTAGGAGTA -ACGGAAATGGGAACGGTATCGTCT -ACGGAAATGGGAACGGTATGCACT -ACGGAAATGGGAACGGTACTGACT -ACGGAAATGGGAACGGTACAACCT -ACGGAAATGGGAACGGTAGCTACT -ACGGAAATGGGAACGGTAGGATCT -ACGGAAATGGGAACGGTAAAGGCT -ACGGAAATGGGAACGGTATCAACC -ACGGAAATGGGAACGGTATGTTCC -ACGGAAATGGGAACGGTAATTCCC -ACGGAAATGGGAACGGTATTCTCG -ACGGAAATGGGAACGGTATAGACG -ACGGAAATGGGAACGGTAGTAACG -ACGGAAATGGGAACGGTAACTTCG -ACGGAAATGGGAACGGTATACGCA -ACGGAAATGGGAACGGTACTTGCA -ACGGAAATGGGAACGGTACGAACA -ACGGAAATGGGAACGGTACAGTCA -ACGGAAATGGGAACGGTAGATCCA -ACGGAAATGGGAACGGTAACGACA -ACGGAAATGGGAACGGTAAGCTCA -ACGGAAATGGGAACGGTATCACGT -ACGGAAATGGGAACGGTACGTAGT -ACGGAAATGGGAACGGTAGTCAGT -ACGGAAATGGGAACGGTAGAAGGT -ACGGAAATGGGAACGGTAAACCGT -ACGGAAATGGGAACGGTATTGTGC -ACGGAAATGGGAACGGTACTAAGC -ACGGAAATGGGAACGGTAACTAGC -ACGGAAATGGGAACGGTAAGATGC -ACGGAAATGGGAACGGTATGAAGG -ACGGAAATGGGAACGGTACAATGG -ACGGAAATGGGAACGGTAATGAGG -ACGGAAATGGGAACGGTAAATGGG -ACGGAAATGGGAACGGTATCCTGA -ACGGAAATGGGAACGGTATAGCGA -ACGGAAATGGGAACGGTACACAGA -ACGGAAATGGGAACGGTAGCAAGA -ACGGAAATGGGAACGGTAGGTTGA -ACGGAAATGGGAACGGTATCCGAT -ACGGAAATGGGAACGGTATGGCAT -ACGGAAATGGGAACGGTACGAGAT -ACGGAAATGGGAACGGTATACCAC -ACGGAAATGGGAACGGTACAGAAC -ACGGAAATGGGAACGGTAGTCTAC -ACGGAAATGGGAACGGTAACGTAC -ACGGAAATGGGAACGGTAAGTGAC -ACGGAAATGGGAACGGTACTGTAG -ACGGAAATGGGAACGGTACCTAAG -ACGGAAATGGGAACGGTAGTTCAG -ACGGAAATGGGAACGGTAGCATAG -ACGGAAATGGGAACGGTAGACAAG -ACGGAAATGGGAACGGTAAAGCAG -ACGGAAATGGGAACGGTACGTCAA -ACGGAAATGGGAACGGTAGCTGAA -ACGGAAATGGGAACGGTAAGTACG -ACGGAAATGGGAACGGTAATCCGA -ACGGAAATGGGAACGGTAATGGGA -ACGGAAATGGGAACGGTAGTGCAA -ACGGAAATGGGAACGGTAGAGGAA -ACGGAAATGGGAACGGTACAGGTA -ACGGAAATGGGAACGGTAGACTCT -ACGGAAATGGGAACGGTAAGTCCT -ACGGAAATGGGAACGGTATAAGCC -ACGGAAATGGGAACGGTAATAGCC -ACGGAAATGGGAACGGTATAACCG -ACGGAAATGGGAACGGTAATGCCA -ACGGAAATGGGATCGACTGGAAAC -ACGGAAATGGGATCGACTAACACC -ACGGAAATGGGATCGACTATCGAG -ACGGAAATGGGATCGACTCTCCTT -ACGGAAATGGGATCGACTCCTGTT -ACGGAAATGGGATCGACTCGGTTT -ACGGAAATGGGATCGACTGTGGTT -ACGGAAATGGGATCGACTGCCTTT -ACGGAAATGGGATCGACTGGTCTT -ACGGAAATGGGATCGACTACGCTT -ACGGAAATGGGATCGACTAGCGTT -ACGGAAATGGGATCGACTTTCGTC -ACGGAAATGGGATCGACTTCTCTC -ACGGAAATGGGATCGACTTGGATC -ACGGAAATGGGATCGACTCACTTC -ACGGAAATGGGATCGACTGTACTC -ACGGAAATGGGATCGACTGATGTC -ACGGAAATGGGATCGACTACAGTC -ACGGAAATGGGATCGACTTTGCTG -ACGGAAATGGGATCGACTTCCATG -ACGGAAATGGGATCGACTTGTGTG -ACGGAAATGGGATCGACTCTAGTG -ACGGAAATGGGATCGACTCATCTG -ACGGAAATGGGATCGACTGAGTTG -ACGGAAATGGGATCGACTAGACTG -ACGGAAATGGGATCGACTTCGGTA -ACGGAAATGGGATCGACTTGCCTA -ACGGAAATGGGATCGACTCCACTA -ACGGAAATGGGATCGACTGGAGTA -ACGGAAATGGGATCGACTTCGTCT -ACGGAAATGGGATCGACTTGCACT -ACGGAAATGGGATCGACTCTGACT -ACGGAAATGGGATCGACTCAACCT -ACGGAAATGGGATCGACTGCTACT -ACGGAAATGGGATCGACTGGATCT -ACGGAAATGGGATCGACTAAGGCT -ACGGAAATGGGATCGACTTCAACC -ACGGAAATGGGATCGACTTGTTCC -ACGGAAATGGGATCGACTATTCCC -ACGGAAATGGGATCGACTTTCTCG -ACGGAAATGGGATCGACTTAGACG -ACGGAAATGGGATCGACTGTAACG -ACGGAAATGGGATCGACTACTTCG -ACGGAAATGGGATCGACTTACGCA -ACGGAAATGGGATCGACTCTTGCA -ACGGAAATGGGATCGACTCGAACA -ACGGAAATGGGATCGACTCAGTCA -ACGGAAATGGGATCGACTGATCCA -ACGGAAATGGGATCGACTACGACA -ACGGAAATGGGATCGACTAGCTCA -ACGGAAATGGGATCGACTTCACGT -ACGGAAATGGGATCGACTCGTAGT -ACGGAAATGGGATCGACTGTCAGT -ACGGAAATGGGATCGACTGAAGGT -ACGGAAATGGGATCGACTAACCGT -ACGGAAATGGGATCGACTTTGTGC -ACGGAAATGGGATCGACTCTAAGC -ACGGAAATGGGATCGACTACTAGC -ACGGAAATGGGATCGACTAGATGC -ACGGAAATGGGATCGACTTGAAGG -ACGGAAATGGGATCGACTCAATGG -ACGGAAATGGGATCGACTATGAGG -ACGGAAATGGGATCGACTAATGGG -ACGGAAATGGGATCGACTTCCTGA -ACGGAAATGGGATCGACTTAGCGA -ACGGAAATGGGATCGACTCACAGA -ACGGAAATGGGATCGACTGCAAGA -ACGGAAATGGGATCGACTGGTTGA -ACGGAAATGGGATCGACTTCCGAT -ACGGAAATGGGATCGACTTGGCAT -ACGGAAATGGGATCGACTCGAGAT -ACGGAAATGGGATCGACTTACCAC -ACGGAAATGGGATCGACTCAGAAC -ACGGAAATGGGATCGACTGTCTAC -ACGGAAATGGGATCGACTACGTAC -ACGGAAATGGGATCGACTAGTGAC -ACGGAAATGGGATCGACTCTGTAG -ACGGAAATGGGATCGACTCCTAAG -ACGGAAATGGGATCGACTGTTCAG -ACGGAAATGGGATCGACTGCATAG -ACGGAAATGGGATCGACTGACAAG -ACGGAAATGGGATCGACTAAGCAG -ACGGAAATGGGATCGACTCGTCAA -ACGGAAATGGGATCGACTGCTGAA -ACGGAAATGGGATCGACTAGTACG -ACGGAAATGGGATCGACTATCCGA -ACGGAAATGGGATCGACTATGGGA -ACGGAAATGGGATCGACTGTGCAA -ACGGAAATGGGATCGACTGAGGAA -ACGGAAATGGGATCGACTCAGGTA -ACGGAAATGGGATCGACTGACTCT -ACGGAAATGGGATCGACTAGTCCT -ACGGAAATGGGATCGACTTAAGCC -ACGGAAATGGGATCGACTATAGCC -ACGGAAATGGGATCGACTTAACCG -ACGGAAATGGGATCGACTATGCCA -ACGGAAATGGGAGCATACGGAAAC -ACGGAAATGGGAGCATACAACACC -ACGGAAATGGGAGCATACATCGAG -ACGGAAATGGGAGCATACCTCCTT -ACGGAAATGGGAGCATACCCTGTT -ACGGAAATGGGAGCATACCGGTTT -ACGGAAATGGGAGCATACGTGGTT -ACGGAAATGGGAGCATACGCCTTT -ACGGAAATGGGAGCATACGGTCTT -ACGGAAATGGGAGCATACACGCTT -ACGGAAATGGGAGCATACAGCGTT -ACGGAAATGGGAGCATACTTCGTC -ACGGAAATGGGAGCATACTCTCTC -ACGGAAATGGGAGCATACTGGATC -ACGGAAATGGGAGCATACCACTTC -ACGGAAATGGGAGCATACGTACTC -ACGGAAATGGGAGCATACGATGTC -ACGGAAATGGGAGCATACACAGTC -ACGGAAATGGGAGCATACTTGCTG -ACGGAAATGGGAGCATACTCCATG -ACGGAAATGGGAGCATACTGTGTG -ACGGAAATGGGAGCATACCTAGTG -ACGGAAATGGGAGCATACCATCTG -ACGGAAATGGGAGCATACGAGTTG -ACGGAAATGGGAGCATACAGACTG -ACGGAAATGGGAGCATACTCGGTA -ACGGAAATGGGAGCATACTGCCTA -ACGGAAATGGGAGCATACCCACTA -ACGGAAATGGGAGCATACGGAGTA -ACGGAAATGGGAGCATACTCGTCT -ACGGAAATGGGAGCATACTGCACT -ACGGAAATGGGAGCATACCTGACT -ACGGAAATGGGAGCATACCAACCT -ACGGAAATGGGAGCATACGCTACT -ACGGAAATGGGAGCATACGGATCT -ACGGAAATGGGAGCATACAAGGCT -ACGGAAATGGGAGCATACTCAACC -ACGGAAATGGGAGCATACTGTTCC -ACGGAAATGGGAGCATACATTCCC -ACGGAAATGGGAGCATACTTCTCG -ACGGAAATGGGAGCATACTAGACG -ACGGAAATGGGAGCATACGTAACG -ACGGAAATGGGAGCATACACTTCG -ACGGAAATGGGAGCATACTACGCA -ACGGAAATGGGAGCATACCTTGCA -ACGGAAATGGGAGCATACCGAACA -ACGGAAATGGGAGCATACCAGTCA -ACGGAAATGGGAGCATACGATCCA -ACGGAAATGGGAGCATACACGACA -ACGGAAATGGGAGCATACAGCTCA -ACGGAAATGGGAGCATACTCACGT -ACGGAAATGGGAGCATACCGTAGT -ACGGAAATGGGAGCATACGTCAGT -ACGGAAATGGGAGCATACGAAGGT -ACGGAAATGGGAGCATACAACCGT -ACGGAAATGGGAGCATACTTGTGC -ACGGAAATGGGAGCATACCTAAGC -ACGGAAATGGGAGCATACACTAGC -ACGGAAATGGGAGCATACAGATGC -ACGGAAATGGGAGCATACTGAAGG -ACGGAAATGGGAGCATACCAATGG -ACGGAAATGGGAGCATACATGAGG -ACGGAAATGGGAGCATACAATGGG -ACGGAAATGGGAGCATACTCCTGA -ACGGAAATGGGAGCATACTAGCGA -ACGGAAATGGGAGCATACCACAGA -ACGGAAATGGGAGCATACGCAAGA -ACGGAAATGGGAGCATACGGTTGA -ACGGAAATGGGAGCATACTCCGAT -ACGGAAATGGGAGCATACTGGCAT -ACGGAAATGGGAGCATACCGAGAT -ACGGAAATGGGAGCATACTACCAC -ACGGAAATGGGAGCATACCAGAAC -ACGGAAATGGGAGCATACGTCTAC -ACGGAAATGGGAGCATACACGTAC -ACGGAAATGGGAGCATACAGTGAC -ACGGAAATGGGAGCATACCTGTAG -ACGGAAATGGGAGCATACCCTAAG -ACGGAAATGGGAGCATACGTTCAG -ACGGAAATGGGAGCATACGCATAG -ACGGAAATGGGAGCATACGACAAG -ACGGAAATGGGAGCATACAAGCAG -ACGGAAATGGGAGCATACCGTCAA -ACGGAAATGGGAGCATACGCTGAA -ACGGAAATGGGAGCATACAGTACG -ACGGAAATGGGAGCATACATCCGA -ACGGAAATGGGAGCATACATGGGA -ACGGAAATGGGAGCATACGTGCAA -ACGGAAATGGGAGCATACGAGGAA -ACGGAAATGGGAGCATACCAGGTA -ACGGAAATGGGAGCATACGACTCT -ACGGAAATGGGAGCATACAGTCCT -ACGGAAATGGGAGCATACTAAGCC -ACGGAAATGGGAGCATACATAGCC -ACGGAAATGGGAGCATACTAACCG -ACGGAAATGGGAGCATACATGCCA -ACGGAAATGGGAGCACTTGGAAAC -ACGGAAATGGGAGCACTTAACACC -ACGGAAATGGGAGCACTTATCGAG -ACGGAAATGGGAGCACTTCTCCTT -ACGGAAATGGGAGCACTTCCTGTT -ACGGAAATGGGAGCACTTCGGTTT -ACGGAAATGGGAGCACTTGTGGTT -ACGGAAATGGGAGCACTTGCCTTT -ACGGAAATGGGAGCACTTGGTCTT -ACGGAAATGGGAGCACTTACGCTT -ACGGAAATGGGAGCACTTAGCGTT -ACGGAAATGGGAGCACTTTTCGTC -ACGGAAATGGGAGCACTTTCTCTC -ACGGAAATGGGAGCACTTTGGATC -ACGGAAATGGGAGCACTTCACTTC -ACGGAAATGGGAGCACTTGTACTC -ACGGAAATGGGAGCACTTGATGTC -ACGGAAATGGGAGCACTTACAGTC -ACGGAAATGGGAGCACTTTTGCTG -ACGGAAATGGGAGCACTTTCCATG -ACGGAAATGGGAGCACTTTGTGTG -ACGGAAATGGGAGCACTTCTAGTG -ACGGAAATGGGAGCACTTCATCTG -ACGGAAATGGGAGCACTTGAGTTG -ACGGAAATGGGAGCACTTAGACTG -ACGGAAATGGGAGCACTTTCGGTA -ACGGAAATGGGAGCACTTTGCCTA -ACGGAAATGGGAGCACTTCCACTA -ACGGAAATGGGAGCACTTGGAGTA -ACGGAAATGGGAGCACTTTCGTCT -ACGGAAATGGGAGCACTTTGCACT -ACGGAAATGGGAGCACTTCTGACT -ACGGAAATGGGAGCACTTCAACCT -ACGGAAATGGGAGCACTTGCTACT -ACGGAAATGGGAGCACTTGGATCT -ACGGAAATGGGAGCACTTAAGGCT -ACGGAAATGGGAGCACTTTCAACC -ACGGAAATGGGAGCACTTTGTTCC -ACGGAAATGGGAGCACTTATTCCC -ACGGAAATGGGAGCACTTTTCTCG -ACGGAAATGGGAGCACTTTAGACG -ACGGAAATGGGAGCACTTGTAACG -ACGGAAATGGGAGCACTTACTTCG -ACGGAAATGGGAGCACTTTACGCA -ACGGAAATGGGAGCACTTCTTGCA -ACGGAAATGGGAGCACTTCGAACA -ACGGAAATGGGAGCACTTCAGTCA -ACGGAAATGGGAGCACTTGATCCA -ACGGAAATGGGAGCACTTACGACA -ACGGAAATGGGAGCACTTAGCTCA -ACGGAAATGGGAGCACTTTCACGT -ACGGAAATGGGAGCACTTCGTAGT -ACGGAAATGGGAGCACTTGTCAGT -ACGGAAATGGGAGCACTTGAAGGT -ACGGAAATGGGAGCACTTAACCGT -ACGGAAATGGGAGCACTTTTGTGC -ACGGAAATGGGAGCACTTCTAAGC -ACGGAAATGGGAGCACTTACTAGC -ACGGAAATGGGAGCACTTAGATGC -ACGGAAATGGGAGCACTTTGAAGG -ACGGAAATGGGAGCACTTCAATGG -ACGGAAATGGGAGCACTTATGAGG -ACGGAAATGGGAGCACTTAATGGG -ACGGAAATGGGAGCACTTTCCTGA -ACGGAAATGGGAGCACTTTAGCGA -ACGGAAATGGGAGCACTTCACAGA -ACGGAAATGGGAGCACTTGCAAGA -ACGGAAATGGGAGCACTTGGTTGA -ACGGAAATGGGAGCACTTTCCGAT -ACGGAAATGGGAGCACTTTGGCAT -ACGGAAATGGGAGCACTTCGAGAT -ACGGAAATGGGAGCACTTTACCAC -ACGGAAATGGGAGCACTTCAGAAC -ACGGAAATGGGAGCACTTGTCTAC -ACGGAAATGGGAGCACTTACGTAC -ACGGAAATGGGAGCACTTAGTGAC -ACGGAAATGGGAGCACTTCTGTAG -ACGGAAATGGGAGCACTTCCTAAG -ACGGAAATGGGAGCACTTGTTCAG -ACGGAAATGGGAGCACTTGCATAG -ACGGAAATGGGAGCACTTGACAAG -ACGGAAATGGGAGCACTTAAGCAG -ACGGAAATGGGAGCACTTCGTCAA -ACGGAAATGGGAGCACTTGCTGAA -ACGGAAATGGGAGCACTTAGTACG -ACGGAAATGGGAGCACTTATCCGA -ACGGAAATGGGAGCACTTATGGGA -ACGGAAATGGGAGCACTTGTGCAA -ACGGAAATGGGAGCACTTGAGGAA -ACGGAAATGGGAGCACTTCAGGTA -ACGGAAATGGGAGCACTTGACTCT -ACGGAAATGGGAGCACTTAGTCCT -ACGGAAATGGGAGCACTTTAAGCC -ACGGAAATGGGAGCACTTATAGCC -ACGGAAATGGGAGCACTTTAACCG -ACGGAAATGGGAGCACTTATGCCA -ACGGAAATGGGAACACGAGGAAAC -ACGGAAATGGGAACACGAAACACC -ACGGAAATGGGAACACGAATCGAG -ACGGAAATGGGAACACGACTCCTT -ACGGAAATGGGAACACGACCTGTT -ACGGAAATGGGAACACGACGGTTT -ACGGAAATGGGAACACGAGTGGTT -ACGGAAATGGGAACACGAGCCTTT -ACGGAAATGGGAACACGAGGTCTT -ACGGAAATGGGAACACGAACGCTT -ACGGAAATGGGAACACGAAGCGTT -ACGGAAATGGGAACACGATTCGTC -ACGGAAATGGGAACACGATCTCTC -ACGGAAATGGGAACACGATGGATC -ACGGAAATGGGAACACGACACTTC -ACGGAAATGGGAACACGAGTACTC -ACGGAAATGGGAACACGAGATGTC -ACGGAAATGGGAACACGAACAGTC -ACGGAAATGGGAACACGATTGCTG -ACGGAAATGGGAACACGATCCATG -ACGGAAATGGGAACACGATGTGTG -ACGGAAATGGGAACACGACTAGTG -ACGGAAATGGGAACACGACATCTG -ACGGAAATGGGAACACGAGAGTTG -ACGGAAATGGGAACACGAAGACTG -ACGGAAATGGGAACACGATCGGTA -ACGGAAATGGGAACACGATGCCTA -ACGGAAATGGGAACACGACCACTA -ACGGAAATGGGAACACGAGGAGTA -ACGGAAATGGGAACACGATCGTCT -ACGGAAATGGGAACACGATGCACT -ACGGAAATGGGAACACGACTGACT -ACGGAAATGGGAACACGACAACCT -ACGGAAATGGGAACACGAGCTACT -ACGGAAATGGGAACACGAGGATCT -ACGGAAATGGGAACACGAAAGGCT -ACGGAAATGGGAACACGATCAACC -ACGGAAATGGGAACACGATGTTCC -ACGGAAATGGGAACACGAATTCCC -ACGGAAATGGGAACACGATTCTCG -ACGGAAATGGGAACACGATAGACG -ACGGAAATGGGAACACGAGTAACG -ACGGAAATGGGAACACGAACTTCG -ACGGAAATGGGAACACGATACGCA -ACGGAAATGGGAACACGACTTGCA -ACGGAAATGGGAACACGACGAACA -ACGGAAATGGGAACACGACAGTCA -ACGGAAATGGGAACACGAGATCCA -ACGGAAATGGGAACACGAACGACA -ACGGAAATGGGAACACGAAGCTCA -ACGGAAATGGGAACACGATCACGT -ACGGAAATGGGAACACGACGTAGT -ACGGAAATGGGAACACGAGTCAGT -ACGGAAATGGGAACACGAGAAGGT -ACGGAAATGGGAACACGAAACCGT -ACGGAAATGGGAACACGATTGTGC -ACGGAAATGGGAACACGACTAAGC -ACGGAAATGGGAACACGAACTAGC -ACGGAAATGGGAACACGAAGATGC -ACGGAAATGGGAACACGATGAAGG -ACGGAAATGGGAACACGACAATGG -ACGGAAATGGGAACACGAATGAGG -ACGGAAATGGGAACACGAAATGGG -ACGGAAATGGGAACACGATCCTGA -ACGGAAATGGGAACACGATAGCGA -ACGGAAATGGGAACACGACACAGA -ACGGAAATGGGAACACGAGCAAGA -ACGGAAATGGGAACACGAGGTTGA -ACGGAAATGGGAACACGATCCGAT -ACGGAAATGGGAACACGATGGCAT -ACGGAAATGGGAACACGACGAGAT -ACGGAAATGGGAACACGATACCAC -ACGGAAATGGGAACACGACAGAAC -ACGGAAATGGGAACACGAGTCTAC -ACGGAAATGGGAACACGAACGTAC -ACGGAAATGGGAACACGAAGTGAC -ACGGAAATGGGAACACGACTGTAG -ACGGAAATGGGAACACGACCTAAG -ACGGAAATGGGAACACGAGTTCAG -ACGGAAATGGGAACACGAGCATAG -ACGGAAATGGGAACACGAGACAAG -ACGGAAATGGGAACACGAAAGCAG -ACGGAAATGGGAACACGACGTCAA -ACGGAAATGGGAACACGAGCTGAA -ACGGAAATGGGAACACGAAGTACG -ACGGAAATGGGAACACGAATCCGA -ACGGAAATGGGAACACGAATGGGA -ACGGAAATGGGAACACGAGTGCAA -ACGGAAATGGGAACACGAGAGGAA -ACGGAAATGGGAACACGACAGGTA -ACGGAAATGGGAACACGAGACTCT -ACGGAAATGGGAACACGAAGTCCT -ACGGAAATGGGAACACGATAAGCC -ACGGAAATGGGAACACGAATAGCC -ACGGAAATGGGAACACGATAACCG -ACGGAAATGGGAACACGAATGCCA -ACGGAAATGGGATCACAGGGAAAC -ACGGAAATGGGATCACAGAACACC -ACGGAAATGGGATCACAGATCGAG -ACGGAAATGGGATCACAGCTCCTT -ACGGAAATGGGATCACAGCCTGTT -ACGGAAATGGGATCACAGCGGTTT -ACGGAAATGGGATCACAGGTGGTT -ACGGAAATGGGATCACAGGCCTTT -ACGGAAATGGGATCACAGGGTCTT -ACGGAAATGGGATCACAGACGCTT -ACGGAAATGGGATCACAGAGCGTT -ACGGAAATGGGATCACAGTTCGTC -ACGGAAATGGGATCACAGTCTCTC -ACGGAAATGGGATCACAGTGGATC -ACGGAAATGGGATCACAGCACTTC -ACGGAAATGGGATCACAGGTACTC -ACGGAAATGGGATCACAGGATGTC -ACGGAAATGGGATCACAGACAGTC -ACGGAAATGGGATCACAGTTGCTG -ACGGAAATGGGATCACAGTCCATG -ACGGAAATGGGATCACAGTGTGTG -ACGGAAATGGGATCACAGCTAGTG -ACGGAAATGGGATCACAGCATCTG -ACGGAAATGGGATCACAGGAGTTG -ACGGAAATGGGATCACAGAGACTG -ACGGAAATGGGATCACAGTCGGTA -ACGGAAATGGGATCACAGTGCCTA -ACGGAAATGGGATCACAGCCACTA -ACGGAAATGGGATCACAGGGAGTA -ACGGAAATGGGATCACAGTCGTCT -ACGGAAATGGGATCACAGTGCACT -ACGGAAATGGGATCACAGCTGACT -ACGGAAATGGGATCACAGCAACCT -ACGGAAATGGGATCACAGGCTACT -ACGGAAATGGGATCACAGGGATCT -ACGGAAATGGGATCACAGAAGGCT -ACGGAAATGGGATCACAGTCAACC -ACGGAAATGGGATCACAGTGTTCC -ACGGAAATGGGATCACAGATTCCC -ACGGAAATGGGATCACAGTTCTCG -ACGGAAATGGGATCACAGTAGACG -ACGGAAATGGGATCACAGGTAACG -ACGGAAATGGGATCACAGACTTCG -ACGGAAATGGGATCACAGTACGCA -ACGGAAATGGGATCACAGCTTGCA -ACGGAAATGGGATCACAGCGAACA -ACGGAAATGGGATCACAGCAGTCA -ACGGAAATGGGATCACAGGATCCA -ACGGAAATGGGATCACAGACGACA -ACGGAAATGGGATCACAGAGCTCA -ACGGAAATGGGATCACAGTCACGT -ACGGAAATGGGATCACAGCGTAGT -ACGGAAATGGGATCACAGGTCAGT -ACGGAAATGGGATCACAGGAAGGT -ACGGAAATGGGATCACAGAACCGT -ACGGAAATGGGATCACAGTTGTGC -ACGGAAATGGGATCACAGCTAAGC -ACGGAAATGGGATCACAGACTAGC -ACGGAAATGGGATCACAGAGATGC -ACGGAAATGGGATCACAGTGAAGG -ACGGAAATGGGATCACAGCAATGG -ACGGAAATGGGATCACAGATGAGG -ACGGAAATGGGATCACAGAATGGG -ACGGAAATGGGATCACAGTCCTGA -ACGGAAATGGGATCACAGTAGCGA -ACGGAAATGGGATCACAGCACAGA -ACGGAAATGGGATCACAGGCAAGA -ACGGAAATGGGATCACAGGGTTGA -ACGGAAATGGGATCACAGTCCGAT -ACGGAAATGGGATCACAGTGGCAT -ACGGAAATGGGATCACAGCGAGAT -ACGGAAATGGGATCACAGTACCAC -ACGGAAATGGGATCACAGCAGAAC -ACGGAAATGGGATCACAGGTCTAC -ACGGAAATGGGATCACAGACGTAC -ACGGAAATGGGATCACAGAGTGAC -ACGGAAATGGGATCACAGCTGTAG -ACGGAAATGGGATCACAGCCTAAG -ACGGAAATGGGATCACAGGTTCAG -ACGGAAATGGGATCACAGGCATAG -ACGGAAATGGGATCACAGGACAAG -ACGGAAATGGGATCACAGAAGCAG -ACGGAAATGGGATCACAGCGTCAA -ACGGAAATGGGATCACAGGCTGAA -ACGGAAATGGGATCACAGAGTACG -ACGGAAATGGGATCACAGATCCGA -ACGGAAATGGGATCACAGATGGGA -ACGGAAATGGGATCACAGGTGCAA -ACGGAAATGGGATCACAGGAGGAA -ACGGAAATGGGATCACAGCAGGTA -ACGGAAATGGGATCACAGGACTCT -ACGGAAATGGGATCACAGAGTCCT -ACGGAAATGGGATCACAGTAAGCC -ACGGAAATGGGATCACAGATAGCC -ACGGAAATGGGATCACAGTAACCG -ACGGAAATGGGATCACAGATGCCA -ACGGAAATGGGACCAGATGGAAAC -ACGGAAATGGGACCAGATAACACC -ACGGAAATGGGACCAGATATCGAG -ACGGAAATGGGACCAGATCTCCTT -ACGGAAATGGGACCAGATCCTGTT -ACGGAAATGGGACCAGATCGGTTT -ACGGAAATGGGACCAGATGTGGTT -ACGGAAATGGGACCAGATGCCTTT -ACGGAAATGGGACCAGATGGTCTT -ACGGAAATGGGACCAGATACGCTT -ACGGAAATGGGACCAGATAGCGTT -ACGGAAATGGGACCAGATTTCGTC -ACGGAAATGGGACCAGATTCTCTC -ACGGAAATGGGACCAGATTGGATC -ACGGAAATGGGACCAGATCACTTC -ACGGAAATGGGACCAGATGTACTC -ACGGAAATGGGACCAGATGATGTC -ACGGAAATGGGACCAGATACAGTC -ACGGAAATGGGACCAGATTTGCTG -ACGGAAATGGGACCAGATTCCATG -ACGGAAATGGGACCAGATTGTGTG -ACGGAAATGGGACCAGATCTAGTG -ACGGAAATGGGACCAGATCATCTG -ACGGAAATGGGACCAGATGAGTTG -ACGGAAATGGGACCAGATAGACTG -ACGGAAATGGGACCAGATTCGGTA -ACGGAAATGGGACCAGATTGCCTA -ACGGAAATGGGACCAGATCCACTA -ACGGAAATGGGACCAGATGGAGTA -ACGGAAATGGGACCAGATTCGTCT -ACGGAAATGGGACCAGATTGCACT -ACGGAAATGGGACCAGATCTGACT -ACGGAAATGGGACCAGATCAACCT -ACGGAAATGGGACCAGATGCTACT -ACGGAAATGGGACCAGATGGATCT -ACGGAAATGGGACCAGATAAGGCT -ACGGAAATGGGACCAGATTCAACC -ACGGAAATGGGACCAGATTGTTCC -ACGGAAATGGGACCAGATATTCCC -ACGGAAATGGGACCAGATTTCTCG -ACGGAAATGGGACCAGATTAGACG -ACGGAAATGGGACCAGATGTAACG -ACGGAAATGGGACCAGATACTTCG -ACGGAAATGGGACCAGATTACGCA -ACGGAAATGGGACCAGATCTTGCA -ACGGAAATGGGACCAGATCGAACA -ACGGAAATGGGACCAGATCAGTCA -ACGGAAATGGGACCAGATGATCCA -ACGGAAATGGGACCAGATACGACA -ACGGAAATGGGACCAGATAGCTCA -ACGGAAATGGGACCAGATTCACGT -ACGGAAATGGGACCAGATCGTAGT -ACGGAAATGGGACCAGATGTCAGT -ACGGAAATGGGACCAGATGAAGGT -ACGGAAATGGGACCAGATAACCGT -ACGGAAATGGGACCAGATTTGTGC -ACGGAAATGGGACCAGATCTAAGC -ACGGAAATGGGACCAGATACTAGC -ACGGAAATGGGACCAGATAGATGC -ACGGAAATGGGACCAGATTGAAGG -ACGGAAATGGGACCAGATCAATGG -ACGGAAATGGGACCAGATATGAGG -ACGGAAATGGGACCAGATAATGGG -ACGGAAATGGGACCAGATTCCTGA -ACGGAAATGGGACCAGATTAGCGA -ACGGAAATGGGACCAGATCACAGA -ACGGAAATGGGACCAGATGCAAGA -ACGGAAATGGGACCAGATGGTTGA -ACGGAAATGGGACCAGATTCCGAT -ACGGAAATGGGACCAGATTGGCAT -ACGGAAATGGGACCAGATCGAGAT -ACGGAAATGGGACCAGATTACCAC -ACGGAAATGGGACCAGATCAGAAC -ACGGAAATGGGACCAGATGTCTAC -ACGGAAATGGGACCAGATACGTAC -ACGGAAATGGGACCAGATAGTGAC -ACGGAAATGGGACCAGATCTGTAG -ACGGAAATGGGACCAGATCCTAAG -ACGGAAATGGGACCAGATGTTCAG -ACGGAAATGGGACCAGATGCATAG -ACGGAAATGGGACCAGATGACAAG -ACGGAAATGGGACCAGATAAGCAG -ACGGAAATGGGACCAGATCGTCAA -ACGGAAATGGGACCAGATGCTGAA -ACGGAAATGGGACCAGATAGTACG -ACGGAAATGGGACCAGATATCCGA -ACGGAAATGGGACCAGATATGGGA -ACGGAAATGGGACCAGATGTGCAA -ACGGAAATGGGACCAGATGAGGAA -ACGGAAATGGGACCAGATCAGGTA -ACGGAAATGGGACCAGATGACTCT -ACGGAAATGGGACCAGATAGTCCT -ACGGAAATGGGACCAGATTAAGCC -ACGGAAATGGGACCAGATATAGCC -ACGGAAATGGGACCAGATTAACCG -ACGGAAATGGGACCAGATATGCCA -ACGGAAATGGGAACAACGGGAAAC -ACGGAAATGGGAACAACGAACACC -ACGGAAATGGGAACAACGATCGAG -ACGGAAATGGGAACAACGCTCCTT -ACGGAAATGGGAACAACGCCTGTT -ACGGAAATGGGAACAACGCGGTTT -ACGGAAATGGGAACAACGGTGGTT -ACGGAAATGGGAACAACGGCCTTT -ACGGAAATGGGAACAACGGGTCTT -ACGGAAATGGGAACAACGACGCTT -ACGGAAATGGGAACAACGAGCGTT -ACGGAAATGGGAACAACGTTCGTC -ACGGAAATGGGAACAACGTCTCTC -ACGGAAATGGGAACAACGTGGATC -ACGGAAATGGGAACAACGCACTTC -ACGGAAATGGGAACAACGGTACTC -ACGGAAATGGGAACAACGGATGTC -ACGGAAATGGGAACAACGACAGTC -ACGGAAATGGGAACAACGTTGCTG -ACGGAAATGGGAACAACGTCCATG -ACGGAAATGGGAACAACGTGTGTG -ACGGAAATGGGAACAACGCTAGTG -ACGGAAATGGGAACAACGCATCTG -ACGGAAATGGGAACAACGGAGTTG -ACGGAAATGGGAACAACGAGACTG -ACGGAAATGGGAACAACGTCGGTA -ACGGAAATGGGAACAACGTGCCTA -ACGGAAATGGGAACAACGCCACTA -ACGGAAATGGGAACAACGGGAGTA -ACGGAAATGGGAACAACGTCGTCT -ACGGAAATGGGAACAACGTGCACT -ACGGAAATGGGAACAACGCTGACT -ACGGAAATGGGAACAACGCAACCT -ACGGAAATGGGAACAACGGCTACT -ACGGAAATGGGAACAACGGGATCT -ACGGAAATGGGAACAACGAAGGCT -ACGGAAATGGGAACAACGTCAACC -ACGGAAATGGGAACAACGTGTTCC -ACGGAAATGGGAACAACGATTCCC -ACGGAAATGGGAACAACGTTCTCG -ACGGAAATGGGAACAACGTAGACG -ACGGAAATGGGAACAACGGTAACG -ACGGAAATGGGAACAACGACTTCG -ACGGAAATGGGAACAACGTACGCA -ACGGAAATGGGAACAACGCTTGCA -ACGGAAATGGGAACAACGCGAACA -ACGGAAATGGGAACAACGCAGTCA -ACGGAAATGGGAACAACGGATCCA -ACGGAAATGGGAACAACGACGACA -ACGGAAATGGGAACAACGAGCTCA -ACGGAAATGGGAACAACGTCACGT -ACGGAAATGGGAACAACGCGTAGT -ACGGAAATGGGAACAACGGTCAGT -ACGGAAATGGGAACAACGGAAGGT -ACGGAAATGGGAACAACGAACCGT -ACGGAAATGGGAACAACGTTGTGC -ACGGAAATGGGAACAACGCTAAGC -ACGGAAATGGGAACAACGACTAGC -ACGGAAATGGGAACAACGAGATGC -ACGGAAATGGGAACAACGTGAAGG -ACGGAAATGGGAACAACGCAATGG -ACGGAAATGGGAACAACGATGAGG -ACGGAAATGGGAACAACGAATGGG -ACGGAAATGGGAACAACGTCCTGA -ACGGAAATGGGAACAACGTAGCGA -ACGGAAATGGGAACAACGCACAGA -ACGGAAATGGGAACAACGGCAAGA -ACGGAAATGGGAACAACGGGTTGA -ACGGAAATGGGAACAACGTCCGAT -ACGGAAATGGGAACAACGTGGCAT -ACGGAAATGGGAACAACGCGAGAT -ACGGAAATGGGAACAACGTACCAC -ACGGAAATGGGAACAACGCAGAAC -ACGGAAATGGGAACAACGGTCTAC -ACGGAAATGGGAACAACGACGTAC -ACGGAAATGGGAACAACGAGTGAC -ACGGAAATGGGAACAACGCTGTAG -ACGGAAATGGGAACAACGCCTAAG -ACGGAAATGGGAACAACGGTTCAG -ACGGAAATGGGAACAACGGCATAG -ACGGAAATGGGAACAACGGACAAG -ACGGAAATGGGAACAACGAAGCAG -ACGGAAATGGGAACAACGCGTCAA -ACGGAAATGGGAACAACGGCTGAA -ACGGAAATGGGAACAACGAGTACG -ACGGAAATGGGAACAACGATCCGA -ACGGAAATGGGAACAACGATGGGA -ACGGAAATGGGAACAACGGTGCAA -ACGGAAATGGGAACAACGGAGGAA -ACGGAAATGGGAACAACGCAGGTA -ACGGAAATGGGAACAACGGACTCT -ACGGAAATGGGAACAACGAGTCCT -ACGGAAATGGGAACAACGTAAGCC -ACGGAAATGGGAACAACGATAGCC -ACGGAAATGGGAACAACGTAACCG -ACGGAAATGGGAACAACGATGCCA -ACGGAAATGGGATCAAGCGGAAAC -ACGGAAATGGGATCAAGCAACACC -ACGGAAATGGGATCAAGCATCGAG -ACGGAAATGGGATCAAGCCTCCTT -ACGGAAATGGGATCAAGCCCTGTT -ACGGAAATGGGATCAAGCCGGTTT -ACGGAAATGGGATCAAGCGTGGTT -ACGGAAATGGGATCAAGCGCCTTT -ACGGAAATGGGATCAAGCGGTCTT -ACGGAAATGGGATCAAGCACGCTT -ACGGAAATGGGATCAAGCAGCGTT -ACGGAAATGGGATCAAGCTTCGTC -ACGGAAATGGGATCAAGCTCTCTC -ACGGAAATGGGATCAAGCTGGATC -ACGGAAATGGGATCAAGCCACTTC -ACGGAAATGGGATCAAGCGTACTC -ACGGAAATGGGATCAAGCGATGTC -ACGGAAATGGGATCAAGCACAGTC -ACGGAAATGGGATCAAGCTTGCTG -ACGGAAATGGGATCAAGCTCCATG -ACGGAAATGGGATCAAGCTGTGTG -ACGGAAATGGGATCAAGCCTAGTG -ACGGAAATGGGATCAAGCCATCTG -ACGGAAATGGGATCAAGCGAGTTG -ACGGAAATGGGATCAAGCAGACTG -ACGGAAATGGGATCAAGCTCGGTA -ACGGAAATGGGATCAAGCTGCCTA -ACGGAAATGGGATCAAGCCCACTA -ACGGAAATGGGATCAAGCGGAGTA -ACGGAAATGGGATCAAGCTCGTCT -ACGGAAATGGGATCAAGCTGCACT -ACGGAAATGGGATCAAGCCTGACT -ACGGAAATGGGATCAAGCCAACCT -ACGGAAATGGGATCAAGCGCTACT -ACGGAAATGGGATCAAGCGGATCT -ACGGAAATGGGATCAAGCAAGGCT -ACGGAAATGGGATCAAGCTCAACC -ACGGAAATGGGATCAAGCTGTTCC -ACGGAAATGGGATCAAGCATTCCC -ACGGAAATGGGATCAAGCTTCTCG -ACGGAAATGGGATCAAGCTAGACG -ACGGAAATGGGATCAAGCGTAACG -ACGGAAATGGGATCAAGCACTTCG -ACGGAAATGGGATCAAGCTACGCA -ACGGAAATGGGATCAAGCCTTGCA -ACGGAAATGGGATCAAGCCGAACA -ACGGAAATGGGATCAAGCCAGTCA -ACGGAAATGGGATCAAGCGATCCA -ACGGAAATGGGATCAAGCACGACA -ACGGAAATGGGATCAAGCAGCTCA -ACGGAAATGGGATCAAGCTCACGT -ACGGAAATGGGATCAAGCCGTAGT -ACGGAAATGGGATCAAGCGTCAGT -ACGGAAATGGGATCAAGCGAAGGT -ACGGAAATGGGATCAAGCAACCGT -ACGGAAATGGGATCAAGCTTGTGC -ACGGAAATGGGATCAAGCCTAAGC -ACGGAAATGGGATCAAGCACTAGC -ACGGAAATGGGATCAAGCAGATGC -ACGGAAATGGGATCAAGCTGAAGG -ACGGAAATGGGATCAAGCCAATGG -ACGGAAATGGGATCAAGCATGAGG -ACGGAAATGGGATCAAGCAATGGG -ACGGAAATGGGATCAAGCTCCTGA -ACGGAAATGGGATCAAGCTAGCGA -ACGGAAATGGGATCAAGCCACAGA -ACGGAAATGGGATCAAGCGCAAGA -ACGGAAATGGGATCAAGCGGTTGA -ACGGAAATGGGATCAAGCTCCGAT -ACGGAAATGGGATCAAGCTGGCAT -ACGGAAATGGGATCAAGCCGAGAT -ACGGAAATGGGATCAAGCTACCAC -ACGGAAATGGGATCAAGCCAGAAC -ACGGAAATGGGATCAAGCGTCTAC -ACGGAAATGGGATCAAGCACGTAC -ACGGAAATGGGATCAAGCAGTGAC -ACGGAAATGGGATCAAGCCTGTAG -ACGGAAATGGGATCAAGCCCTAAG -ACGGAAATGGGATCAAGCGTTCAG -ACGGAAATGGGATCAAGCGCATAG -ACGGAAATGGGATCAAGCGACAAG -ACGGAAATGGGATCAAGCAAGCAG -ACGGAAATGGGATCAAGCCGTCAA -ACGGAAATGGGATCAAGCGCTGAA -ACGGAAATGGGATCAAGCAGTACG -ACGGAAATGGGATCAAGCATCCGA -ACGGAAATGGGATCAAGCATGGGA -ACGGAAATGGGATCAAGCGTGCAA -ACGGAAATGGGATCAAGCGAGGAA -ACGGAAATGGGATCAAGCCAGGTA -ACGGAAATGGGATCAAGCGACTCT -ACGGAAATGGGATCAAGCAGTCCT -ACGGAAATGGGATCAAGCTAAGCC -ACGGAAATGGGATCAAGCATAGCC -ACGGAAATGGGATCAAGCTAACCG -ACGGAAATGGGATCAAGCATGCCA -ACGGAAATGGGACGTTCAGGAAAC -ACGGAAATGGGACGTTCAAACACC -ACGGAAATGGGACGTTCAATCGAG -ACGGAAATGGGACGTTCACTCCTT -ACGGAAATGGGACGTTCACCTGTT -ACGGAAATGGGACGTTCACGGTTT -ACGGAAATGGGACGTTCAGTGGTT -ACGGAAATGGGACGTTCAGCCTTT -ACGGAAATGGGACGTTCAGGTCTT -ACGGAAATGGGACGTTCAACGCTT -ACGGAAATGGGACGTTCAAGCGTT -ACGGAAATGGGACGTTCATTCGTC -ACGGAAATGGGACGTTCATCTCTC -ACGGAAATGGGACGTTCATGGATC -ACGGAAATGGGACGTTCACACTTC -ACGGAAATGGGACGTTCAGTACTC -ACGGAAATGGGACGTTCAGATGTC -ACGGAAATGGGACGTTCAACAGTC -ACGGAAATGGGACGTTCATTGCTG -ACGGAAATGGGACGTTCATCCATG -ACGGAAATGGGACGTTCATGTGTG -ACGGAAATGGGACGTTCACTAGTG -ACGGAAATGGGACGTTCACATCTG -ACGGAAATGGGACGTTCAGAGTTG -ACGGAAATGGGACGTTCAAGACTG -ACGGAAATGGGACGTTCATCGGTA -ACGGAAATGGGACGTTCATGCCTA -ACGGAAATGGGACGTTCACCACTA -ACGGAAATGGGACGTTCAGGAGTA -ACGGAAATGGGACGTTCATCGTCT -ACGGAAATGGGACGTTCATGCACT -ACGGAAATGGGACGTTCACTGACT -ACGGAAATGGGACGTTCACAACCT -ACGGAAATGGGACGTTCAGCTACT -ACGGAAATGGGACGTTCAGGATCT -ACGGAAATGGGACGTTCAAAGGCT -ACGGAAATGGGACGTTCATCAACC -ACGGAAATGGGACGTTCATGTTCC -ACGGAAATGGGACGTTCAATTCCC -ACGGAAATGGGACGTTCATTCTCG -ACGGAAATGGGACGTTCATAGACG -ACGGAAATGGGACGTTCAGTAACG -ACGGAAATGGGACGTTCAACTTCG -ACGGAAATGGGACGTTCATACGCA -ACGGAAATGGGACGTTCACTTGCA -ACGGAAATGGGACGTTCACGAACA -ACGGAAATGGGACGTTCACAGTCA -ACGGAAATGGGACGTTCAGATCCA -ACGGAAATGGGACGTTCAACGACA -ACGGAAATGGGACGTTCAAGCTCA -ACGGAAATGGGACGTTCATCACGT -ACGGAAATGGGACGTTCACGTAGT -ACGGAAATGGGACGTTCAGTCAGT -ACGGAAATGGGACGTTCAGAAGGT -ACGGAAATGGGACGTTCAAACCGT -ACGGAAATGGGACGTTCATTGTGC -ACGGAAATGGGACGTTCACTAAGC -ACGGAAATGGGACGTTCAACTAGC -ACGGAAATGGGACGTTCAAGATGC -ACGGAAATGGGACGTTCATGAAGG -ACGGAAATGGGACGTTCACAATGG -ACGGAAATGGGACGTTCAATGAGG -ACGGAAATGGGACGTTCAAATGGG -ACGGAAATGGGACGTTCATCCTGA -ACGGAAATGGGACGTTCATAGCGA -ACGGAAATGGGACGTTCACACAGA -ACGGAAATGGGACGTTCAGCAAGA -ACGGAAATGGGACGTTCAGGTTGA -ACGGAAATGGGACGTTCATCCGAT -ACGGAAATGGGACGTTCATGGCAT -ACGGAAATGGGACGTTCACGAGAT -ACGGAAATGGGACGTTCATACCAC -ACGGAAATGGGACGTTCACAGAAC -ACGGAAATGGGACGTTCAGTCTAC -ACGGAAATGGGACGTTCAACGTAC -ACGGAAATGGGACGTTCAAGTGAC -ACGGAAATGGGACGTTCACTGTAG -ACGGAAATGGGACGTTCACCTAAG -ACGGAAATGGGACGTTCAGTTCAG -ACGGAAATGGGACGTTCAGCATAG -ACGGAAATGGGACGTTCAGACAAG -ACGGAAATGGGACGTTCAAAGCAG -ACGGAAATGGGACGTTCACGTCAA -ACGGAAATGGGACGTTCAGCTGAA -ACGGAAATGGGACGTTCAAGTACG -ACGGAAATGGGACGTTCAATCCGA -ACGGAAATGGGACGTTCAATGGGA -ACGGAAATGGGACGTTCAGTGCAA -ACGGAAATGGGACGTTCAGAGGAA -ACGGAAATGGGACGTTCACAGGTA -ACGGAAATGGGACGTTCAGACTCT -ACGGAAATGGGACGTTCAAGTCCT -ACGGAAATGGGACGTTCATAAGCC -ACGGAAATGGGACGTTCAATAGCC -ACGGAAATGGGACGTTCATAACCG -ACGGAAATGGGACGTTCAATGCCA -ACGGAAATGGGAAGTCGTGGAAAC -ACGGAAATGGGAAGTCGTAACACC -ACGGAAATGGGAAGTCGTATCGAG -ACGGAAATGGGAAGTCGTCTCCTT -ACGGAAATGGGAAGTCGTCCTGTT -ACGGAAATGGGAAGTCGTCGGTTT -ACGGAAATGGGAAGTCGTGTGGTT -ACGGAAATGGGAAGTCGTGCCTTT -ACGGAAATGGGAAGTCGTGGTCTT -ACGGAAATGGGAAGTCGTACGCTT -ACGGAAATGGGAAGTCGTAGCGTT -ACGGAAATGGGAAGTCGTTTCGTC -ACGGAAATGGGAAGTCGTTCTCTC -ACGGAAATGGGAAGTCGTTGGATC -ACGGAAATGGGAAGTCGTCACTTC -ACGGAAATGGGAAGTCGTGTACTC -ACGGAAATGGGAAGTCGTGATGTC -ACGGAAATGGGAAGTCGTACAGTC -ACGGAAATGGGAAGTCGTTTGCTG -ACGGAAATGGGAAGTCGTTCCATG -ACGGAAATGGGAAGTCGTTGTGTG -ACGGAAATGGGAAGTCGTCTAGTG -ACGGAAATGGGAAGTCGTCATCTG -ACGGAAATGGGAAGTCGTGAGTTG -ACGGAAATGGGAAGTCGTAGACTG -ACGGAAATGGGAAGTCGTTCGGTA -ACGGAAATGGGAAGTCGTTGCCTA -ACGGAAATGGGAAGTCGTCCACTA -ACGGAAATGGGAAGTCGTGGAGTA -ACGGAAATGGGAAGTCGTTCGTCT -ACGGAAATGGGAAGTCGTTGCACT -ACGGAAATGGGAAGTCGTCTGACT -ACGGAAATGGGAAGTCGTCAACCT -ACGGAAATGGGAAGTCGTGCTACT -ACGGAAATGGGAAGTCGTGGATCT -ACGGAAATGGGAAGTCGTAAGGCT -ACGGAAATGGGAAGTCGTTCAACC -ACGGAAATGGGAAGTCGTTGTTCC -ACGGAAATGGGAAGTCGTATTCCC -ACGGAAATGGGAAGTCGTTTCTCG -ACGGAAATGGGAAGTCGTTAGACG -ACGGAAATGGGAAGTCGTGTAACG -ACGGAAATGGGAAGTCGTACTTCG -ACGGAAATGGGAAGTCGTTACGCA -ACGGAAATGGGAAGTCGTCTTGCA -ACGGAAATGGGAAGTCGTCGAACA -ACGGAAATGGGAAGTCGTCAGTCA -ACGGAAATGGGAAGTCGTGATCCA -ACGGAAATGGGAAGTCGTACGACA -ACGGAAATGGGAAGTCGTAGCTCA -ACGGAAATGGGAAGTCGTTCACGT -ACGGAAATGGGAAGTCGTCGTAGT -ACGGAAATGGGAAGTCGTGTCAGT -ACGGAAATGGGAAGTCGTGAAGGT -ACGGAAATGGGAAGTCGTAACCGT -ACGGAAATGGGAAGTCGTTTGTGC -ACGGAAATGGGAAGTCGTCTAAGC -ACGGAAATGGGAAGTCGTACTAGC -ACGGAAATGGGAAGTCGTAGATGC -ACGGAAATGGGAAGTCGTTGAAGG -ACGGAAATGGGAAGTCGTCAATGG -ACGGAAATGGGAAGTCGTATGAGG -ACGGAAATGGGAAGTCGTAATGGG -ACGGAAATGGGAAGTCGTTCCTGA -ACGGAAATGGGAAGTCGTTAGCGA -ACGGAAATGGGAAGTCGTCACAGA -ACGGAAATGGGAAGTCGTGCAAGA -ACGGAAATGGGAAGTCGTGGTTGA -ACGGAAATGGGAAGTCGTTCCGAT -ACGGAAATGGGAAGTCGTTGGCAT -ACGGAAATGGGAAGTCGTCGAGAT -ACGGAAATGGGAAGTCGTTACCAC -ACGGAAATGGGAAGTCGTCAGAAC -ACGGAAATGGGAAGTCGTGTCTAC -ACGGAAATGGGAAGTCGTACGTAC -ACGGAAATGGGAAGTCGTAGTGAC -ACGGAAATGGGAAGTCGTCTGTAG -ACGGAAATGGGAAGTCGTCCTAAG -ACGGAAATGGGAAGTCGTGTTCAG -ACGGAAATGGGAAGTCGTGCATAG -ACGGAAATGGGAAGTCGTGACAAG -ACGGAAATGGGAAGTCGTAAGCAG -ACGGAAATGGGAAGTCGTCGTCAA -ACGGAAATGGGAAGTCGTGCTGAA -ACGGAAATGGGAAGTCGTAGTACG -ACGGAAATGGGAAGTCGTATCCGA -ACGGAAATGGGAAGTCGTATGGGA -ACGGAAATGGGAAGTCGTGTGCAA -ACGGAAATGGGAAGTCGTGAGGAA -ACGGAAATGGGAAGTCGTCAGGTA -ACGGAAATGGGAAGTCGTGACTCT -ACGGAAATGGGAAGTCGTAGTCCT -ACGGAAATGGGAAGTCGTTAAGCC -ACGGAAATGGGAAGTCGTATAGCC -ACGGAAATGGGAAGTCGTTAACCG -ACGGAAATGGGAAGTCGTATGCCA -ACGGAAATGGGAAGTGTCGGAAAC -ACGGAAATGGGAAGTGTCAACACC -ACGGAAATGGGAAGTGTCATCGAG -ACGGAAATGGGAAGTGTCCTCCTT -ACGGAAATGGGAAGTGTCCCTGTT -ACGGAAATGGGAAGTGTCCGGTTT -ACGGAAATGGGAAGTGTCGTGGTT -ACGGAAATGGGAAGTGTCGCCTTT -ACGGAAATGGGAAGTGTCGGTCTT -ACGGAAATGGGAAGTGTCACGCTT -ACGGAAATGGGAAGTGTCAGCGTT -ACGGAAATGGGAAGTGTCTTCGTC -ACGGAAATGGGAAGTGTCTCTCTC -ACGGAAATGGGAAGTGTCTGGATC -ACGGAAATGGGAAGTGTCCACTTC -ACGGAAATGGGAAGTGTCGTACTC -ACGGAAATGGGAAGTGTCGATGTC -ACGGAAATGGGAAGTGTCACAGTC -ACGGAAATGGGAAGTGTCTTGCTG -ACGGAAATGGGAAGTGTCTCCATG -ACGGAAATGGGAAGTGTCTGTGTG -ACGGAAATGGGAAGTGTCCTAGTG -ACGGAAATGGGAAGTGTCCATCTG -ACGGAAATGGGAAGTGTCGAGTTG -ACGGAAATGGGAAGTGTCAGACTG -ACGGAAATGGGAAGTGTCTCGGTA -ACGGAAATGGGAAGTGTCTGCCTA -ACGGAAATGGGAAGTGTCCCACTA -ACGGAAATGGGAAGTGTCGGAGTA -ACGGAAATGGGAAGTGTCTCGTCT -ACGGAAATGGGAAGTGTCTGCACT -ACGGAAATGGGAAGTGTCCTGACT -ACGGAAATGGGAAGTGTCCAACCT -ACGGAAATGGGAAGTGTCGCTACT -ACGGAAATGGGAAGTGTCGGATCT -ACGGAAATGGGAAGTGTCAAGGCT -ACGGAAATGGGAAGTGTCTCAACC -ACGGAAATGGGAAGTGTCTGTTCC -ACGGAAATGGGAAGTGTCATTCCC -ACGGAAATGGGAAGTGTCTTCTCG -ACGGAAATGGGAAGTGTCTAGACG -ACGGAAATGGGAAGTGTCGTAACG -ACGGAAATGGGAAGTGTCACTTCG -ACGGAAATGGGAAGTGTCTACGCA -ACGGAAATGGGAAGTGTCCTTGCA -ACGGAAATGGGAAGTGTCCGAACA -ACGGAAATGGGAAGTGTCCAGTCA -ACGGAAATGGGAAGTGTCGATCCA -ACGGAAATGGGAAGTGTCACGACA -ACGGAAATGGGAAGTGTCAGCTCA -ACGGAAATGGGAAGTGTCTCACGT -ACGGAAATGGGAAGTGTCCGTAGT -ACGGAAATGGGAAGTGTCGTCAGT -ACGGAAATGGGAAGTGTCGAAGGT -ACGGAAATGGGAAGTGTCAACCGT -ACGGAAATGGGAAGTGTCTTGTGC -ACGGAAATGGGAAGTGTCCTAAGC -ACGGAAATGGGAAGTGTCACTAGC -ACGGAAATGGGAAGTGTCAGATGC -ACGGAAATGGGAAGTGTCTGAAGG -ACGGAAATGGGAAGTGTCCAATGG -ACGGAAATGGGAAGTGTCATGAGG -ACGGAAATGGGAAGTGTCAATGGG -ACGGAAATGGGAAGTGTCTCCTGA -ACGGAAATGGGAAGTGTCTAGCGA -ACGGAAATGGGAAGTGTCCACAGA -ACGGAAATGGGAAGTGTCGCAAGA -ACGGAAATGGGAAGTGTCGGTTGA -ACGGAAATGGGAAGTGTCTCCGAT -ACGGAAATGGGAAGTGTCTGGCAT -ACGGAAATGGGAAGTGTCCGAGAT -ACGGAAATGGGAAGTGTCTACCAC -ACGGAAATGGGAAGTGTCCAGAAC -ACGGAAATGGGAAGTGTCGTCTAC -ACGGAAATGGGAAGTGTCACGTAC -ACGGAAATGGGAAGTGTCAGTGAC -ACGGAAATGGGAAGTGTCCTGTAG -ACGGAAATGGGAAGTGTCCCTAAG -ACGGAAATGGGAAGTGTCGTTCAG -ACGGAAATGGGAAGTGTCGCATAG -ACGGAAATGGGAAGTGTCGACAAG -ACGGAAATGGGAAGTGTCAAGCAG -ACGGAAATGGGAAGTGTCCGTCAA -ACGGAAATGGGAAGTGTCGCTGAA -ACGGAAATGGGAAGTGTCAGTACG -ACGGAAATGGGAAGTGTCATCCGA -ACGGAAATGGGAAGTGTCATGGGA -ACGGAAATGGGAAGTGTCGTGCAA -ACGGAAATGGGAAGTGTCGAGGAA -ACGGAAATGGGAAGTGTCCAGGTA -ACGGAAATGGGAAGTGTCGACTCT -ACGGAAATGGGAAGTGTCAGTCCT -ACGGAAATGGGAAGTGTCTAAGCC -ACGGAAATGGGAAGTGTCATAGCC -ACGGAAATGGGAAGTGTCTAACCG -ACGGAAATGGGAAGTGTCATGCCA -ACGGAAATGGGAGGTGAAGGAAAC -ACGGAAATGGGAGGTGAAAACACC -ACGGAAATGGGAGGTGAAATCGAG -ACGGAAATGGGAGGTGAACTCCTT -ACGGAAATGGGAGGTGAACCTGTT -ACGGAAATGGGAGGTGAACGGTTT -ACGGAAATGGGAGGTGAAGTGGTT -ACGGAAATGGGAGGTGAAGCCTTT -ACGGAAATGGGAGGTGAAGGTCTT -ACGGAAATGGGAGGTGAAACGCTT -ACGGAAATGGGAGGTGAAAGCGTT -ACGGAAATGGGAGGTGAATTCGTC -ACGGAAATGGGAGGTGAATCTCTC -ACGGAAATGGGAGGTGAATGGATC -ACGGAAATGGGAGGTGAACACTTC -ACGGAAATGGGAGGTGAAGTACTC -ACGGAAATGGGAGGTGAAGATGTC -ACGGAAATGGGAGGTGAAACAGTC -ACGGAAATGGGAGGTGAATTGCTG -ACGGAAATGGGAGGTGAATCCATG -ACGGAAATGGGAGGTGAATGTGTG -ACGGAAATGGGAGGTGAACTAGTG -ACGGAAATGGGAGGTGAACATCTG -ACGGAAATGGGAGGTGAAGAGTTG -ACGGAAATGGGAGGTGAAAGACTG -ACGGAAATGGGAGGTGAATCGGTA -ACGGAAATGGGAGGTGAATGCCTA -ACGGAAATGGGAGGTGAACCACTA -ACGGAAATGGGAGGTGAAGGAGTA -ACGGAAATGGGAGGTGAATCGTCT -ACGGAAATGGGAGGTGAATGCACT -ACGGAAATGGGAGGTGAACTGACT -ACGGAAATGGGAGGTGAACAACCT -ACGGAAATGGGAGGTGAAGCTACT -ACGGAAATGGGAGGTGAAGGATCT -ACGGAAATGGGAGGTGAAAAGGCT -ACGGAAATGGGAGGTGAATCAACC -ACGGAAATGGGAGGTGAATGTTCC -ACGGAAATGGGAGGTGAAATTCCC -ACGGAAATGGGAGGTGAATTCTCG -ACGGAAATGGGAGGTGAATAGACG -ACGGAAATGGGAGGTGAAGTAACG -ACGGAAATGGGAGGTGAAACTTCG -ACGGAAATGGGAGGTGAATACGCA -ACGGAAATGGGAGGTGAACTTGCA -ACGGAAATGGGAGGTGAACGAACA -ACGGAAATGGGAGGTGAACAGTCA -ACGGAAATGGGAGGTGAAGATCCA -ACGGAAATGGGAGGTGAAACGACA -ACGGAAATGGGAGGTGAAAGCTCA -ACGGAAATGGGAGGTGAATCACGT -ACGGAAATGGGAGGTGAACGTAGT -ACGGAAATGGGAGGTGAAGTCAGT -ACGGAAATGGGAGGTGAAGAAGGT -ACGGAAATGGGAGGTGAAAACCGT -ACGGAAATGGGAGGTGAATTGTGC -ACGGAAATGGGAGGTGAACTAAGC -ACGGAAATGGGAGGTGAAACTAGC -ACGGAAATGGGAGGTGAAAGATGC -ACGGAAATGGGAGGTGAATGAAGG -ACGGAAATGGGAGGTGAACAATGG -ACGGAAATGGGAGGTGAAATGAGG -ACGGAAATGGGAGGTGAAAATGGG -ACGGAAATGGGAGGTGAATCCTGA -ACGGAAATGGGAGGTGAATAGCGA -ACGGAAATGGGAGGTGAACACAGA -ACGGAAATGGGAGGTGAAGCAAGA -ACGGAAATGGGAGGTGAAGGTTGA -ACGGAAATGGGAGGTGAATCCGAT -ACGGAAATGGGAGGTGAATGGCAT -ACGGAAATGGGAGGTGAACGAGAT -ACGGAAATGGGAGGTGAATACCAC -ACGGAAATGGGAGGTGAACAGAAC -ACGGAAATGGGAGGTGAAGTCTAC -ACGGAAATGGGAGGTGAAACGTAC -ACGGAAATGGGAGGTGAAAGTGAC -ACGGAAATGGGAGGTGAACTGTAG -ACGGAAATGGGAGGTGAACCTAAG -ACGGAAATGGGAGGTGAAGTTCAG -ACGGAAATGGGAGGTGAAGCATAG -ACGGAAATGGGAGGTGAAGACAAG -ACGGAAATGGGAGGTGAAAAGCAG -ACGGAAATGGGAGGTGAACGTCAA -ACGGAAATGGGAGGTGAAGCTGAA -ACGGAAATGGGAGGTGAAAGTACG -ACGGAAATGGGAGGTGAAATCCGA -ACGGAAATGGGAGGTGAAATGGGA -ACGGAAATGGGAGGTGAAGTGCAA -ACGGAAATGGGAGGTGAAGAGGAA -ACGGAAATGGGAGGTGAACAGGTA -ACGGAAATGGGAGGTGAAGACTCT -ACGGAAATGGGAGGTGAAAGTCCT -ACGGAAATGGGAGGTGAATAAGCC -ACGGAAATGGGAGGTGAAATAGCC -ACGGAAATGGGAGGTGAATAACCG -ACGGAAATGGGAGGTGAAATGCCA -ACGGAAATGGGACGTAACGGAAAC -ACGGAAATGGGACGTAACAACACC -ACGGAAATGGGACGTAACATCGAG -ACGGAAATGGGACGTAACCTCCTT -ACGGAAATGGGACGTAACCCTGTT -ACGGAAATGGGACGTAACCGGTTT -ACGGAAATGGGACGTAACGTGGTT -ACGGAAATGGGACGTAACGCCTTT -ACGGAAATGGGACGTAACGGTCTT -ACGGAAATGGGACGTAACACGCTT -ACGGAAATGGGACGTAACAGCGTT -ACGGAAATGGGACGTAACTTCGTC -ACGGAAATGGGACGTAACTCTCTC -ACGGAAATGGGACGTAACTGGATC -ACGGAAATGGGACGTAACCACTTC -ACGGAAATGGGACGTAACGTACTC -ACGGAAATGGGACGTAACGATGTC -ACGGAAATGGGACGTAACACAGTC -ACGGAAATGGGACGTAACTTGCTG -ACGGAAATGGGACGTAACTCCATG -ACGGAAATGGGACGTAACTGTGTG -ACGGAAATGGGACGTAACCTAGTG -ACGGAAATGGGACGTAACCATCTG -ACGGAAATGGGACGTAACGAGTTG -ACGGAAATGGGACGTAACAGACTG -ACGGAAATGGGACGTAACTCGGTA -ACGGAAATGGGACGTAACTGCCTA -ACGGAAATGGGACGTAACCCACTA -ACGGAAATGGGACGTAACGGAGTA -ACGGAAATGGGACGTAACTCGTCT -ACGGAAATGGGACGTAACTGCACT -ACGGAAATGGGACGTAACCTGACT -ACGGAAATGGGACGTAACCAACCT -ACGGAAATGGGACGTAACGCTACT -ACGGAAATGGGACGTAACGGATCT -ACGGAAATGGGACGTAACAAGGCT -ACGGAAATGGGACGTAACTCAACC -ACGGAAATGGGACGTAACTGTTCC -ACGGAAATGGGACGTAACATTCCC -ACGGAAATGGGACGTAACTTCTCG -ACGGAAATGGGACGTAACTAGACG -ACGGAAATGGGACGTAACGTAACG -ACGGAAATGGGACGTAACACTTCG -ACGGAAATGGGACGTAACTACGCA -ACGGAAATGGGACGTAACCTTGCA -ACGGAAATGGGACGTAACCGAACA -ACGGAAATGGGACGTAACCAGTCA -ACGGAAATGGGACGTAACGATCCA -ACGGAAATGGGACGTAACACGACA -ACGGAAATGGGACGTAACAGCTCA -ACGGAAATGGGACGTAACTCACGT -ACGGAAATGGGACGTAACCGTAGT -ACGGAAATGGGACGTAACGTCAGT -ACGGAAATGGGACGTAACGAAGGT -ACGGAAATGGGACGTAACAACCGT -ACGGAAATGGGACGTAACTTGTGC -ACGGAAATGGGACGTAACCTAAGC -ACGGAAATGGGACGTAACACTAGC -ACGGAAATGGGACGTAACAGATGC -ACGGAAATGGGACGTAACTGAAGG -ACGGAAATGGGACGTAACCAATGG -ACGGAAATGGGACGTAACATGAGG -ACGGAAATGGGACGTAACAATGGG -ACGGAAATGGGACGTAACTCCTGA -ACGGAAATGGGACGTAACTAGCGA -ACGGAAATGGGACGTAACCACAGA -ACGGAAATGGGACGTAACGCAAGA -ACGGAAATGGGACGTAACGGTTGA -ACGGAAATGGGACGTAACTCCGAT -ACGGAAATGGGACGTAACTGGCAT -ACGGAAATGGGACGTAACCGAGAT -ACGGAAATGGGACGTAACTACCAC -ACGGAAATGGGACGTAACCAGAAC -ACGGAAATGGGACGTAACGTCTAC -ACGGAAATGGGACGTAACACGTAC -ACGGAAATGGGACGTAACAGTGAC -ACGGAAATGGGACGTAACCTGTAG -ACGGAAATGGGACGTAACCCTAAG -ACGGAAATGGGACGTAACGTTCAG -ACGGAAATGGGACGTAACGCATAG -ACGGAAATGGGACGTAACGACAAG -ACGGAAATGGGACGTAACAAGCAG -ACGGAAATGGGACGTAACCGTCAA -ACGGAAATGGGACGTAACGCTGAA -ACGGAAATGGGACGTAACAGTACG -ACGGAAATGGGACGTAACATCCGA -ACGGAAATGGGACGTAACATGGGA -ACGGAAATGGGACGTAACGTGCAA -ACGGAAATGGGACGTAACGAGGAA -ACGGAAATGGGACGTAACCAGGTA -ACGGAAATGGGACGTAACGACTCT -ACGGAAATGGGACGTAACAGTCCT -ACGGAAATGGGACGTAACTAAGCC -ACGGAAATGGGACGTAACATAGCC -ACGGAAATGGGACGTAACTAACCG -ACGGAAATGGGACGTAACATGCCA -ACGGAAATGGGATGCTTGGGAAAC -ACGGAAATGGGATGCTTGAACACC -ACGGAAATGGGATGCTTGATCGAG -ACGGAAATGGGATGCTTGCTCCTT -ACGGAAATGGGATGCTTGCCTGTT -ACGGAAATGGGATGCTTGCGGTTT -ACGGAAATGGGATGCTTGGTGGTT -ACGGAAATGGGATGCTTGGCCTTT -ACGGAAATGGGATGCTTGGGTCTT -ACGGAAATGGGATGCTTGACGCTT -ACGGAAATGGGATGCTTGAGCGTT -ACGGAAATGGGATGCTTGTTCGTC -ACGGAAATGGGATGCTTGTCTCTC -ACGGAAATGGGATGCTTGTGGATC -ACGGAAATGGGATGCTTGCACTTC -ACGGAAATGGGATGCTTGGTACTC -ACGGAAATGGGATGCTTGGATGTC -ACGGAAATGGGATGCTTGACAGTC -ACGGAAATGGGATGCTTGTTGCTG -ACGGAAATGGGATGCTTGTCCATG -ACGGAAATGGGATGCTTGTGTGTG -ACGGAAATGGGATGCTTGCTAGTG -ACGGAAATGGGATGCTTGCATCTG -ACGGAAATGGGATGCTTGGAGTTG -ACGGAAATGGGATGCTTGAGACTG -ACGGAAATGGGATGCTTGTCGGTA -ACGGAAATGGGATGCTTGTGCCTA -ACGGAAATGGGATGCTTGCCACTA -ACGGAAATGGGATGCTTGGGAGTA -ACGGAAATGGGATGCTTGTCGTCT -ACGGAAATGGGATGCTTGTGCACT -ACGGAAATGGGATGCTTGCTGACT -ACGGAAATGGGATGCTTGCAACCT -ACGGAAATGGGATGCTTGGCTACT -ACGGAAATGGGATGCTTGGGATCT -ACGGAAATGGGATGCTTGAAGGCT -ACGGAAATGGGATGCTTGTCAACC -ACGGAAATGGGATGCTTGTGTTCC -ACGGAAATGGGATGCTTGATTCCC -ACGGAAATGGGATGCTTGTTCTCG -ACGGAAATGGGATGCTTGTAGACG -ACGGAAATGGGATGCTTGGTAACG -ACGGAAATGGGATGCTTGACTTCG -ACGGAAATGGGATGCTTGTACGCA -ACGGAAATGGGATGCTTGCTTGCA -ACGGAAATGGGATGCTTGCGAACA -ACGGAAATGGGATGCTTGCAGTCA -ACGGAAATGGGATGCTTGGATCCA -ACGGAAATGGGATGCTTGACGACA -ACGGAAATGGGATGCTTGAGCTCA -ACGGAAATGGGATGCTTGTCACGT -ACGGAAATGGGATGCTTGCGTAGT -ACGGAAATGGGATGCTTGGTCAGT -ACGGAAATGGGATGCTTGGAAGGT -ACGGAAATGGGATGCTTGAACCGT -ACGGAAATGGGATGCTTGTTGTGC -ACGGAAATGGGATGCTTGCTAAGC -ACGGAAATGGGATGCTTGACTAGC -ACGGAAATGGGATGCTTGAGATGC -ACGGAAATGGGATGCTTGTGAAGG -ACGGAAATGGGATGCTTGCAATGG -ACGGAAATGGGATGCTTGATGAGG -ACGGAAATGGGATGCTTGAATGGG -ACGGAAATGGGATGCTTGTCCTGA -ACGGAAATGGGATGCTTGTAGCGA -ACGGAAATGGGATGCTTGCACAGA -ACGGAAATGGGATGCTTGGCAAGA -ACGGAAATGGGATGCTTGGGTTGA -ACGGAAATGGGATGCTTGTCCGAT -ACGGAAATGGGATGCTTGTGGCAT -ACGGAAATGGGATGCTTGCGAGAT -ACGGAAATGGGATGCTTGTACCAC -ACGGAAATGGGATGCTTGCAGAAC -ACGGAAATGGGATGCTTGGTCTAC -ACGGAAATGGGATGCTTGACGTAC -ACGGAAATGGGATGCTTGAGTGAC -ACGGAAATGGGATGCTTGCTGTAG -ACGGAAATGGGATGCTTGCCTAAG -ACGGAAATGGGATGCTTGGTTCAG -ACGGAAATGGGATGCTTGGCATAG -ACGGAAATGGGATGCTTGGACAAG -ACGGAAATGGGATGCTTGAAGCAG -ACGGAAATGGGATGCTTGCGTCAA -ACGGAAATGGGATGCTTGGCTGAA -ACGGAAATGGGATGCTTGAGTACG -ACGGAAATGGGATGCTTGATCCGA -ACGGAAATGGGATGCTTGATGGGA -ACGGAAATGGGATGCTTGGTGCAA -ACGGAAATGGGATGCTTGGAGGAA -ACGGAAATGGGATGCTTGCAGGTA -ACGGAAATGGGATGCTTGGACTCT -ACGGAAATGGGATGCTTGAGTCCT -ACGGAAATGGGATGCTTGTAAGCC -ACGGAAATGGGATGCTTGATAGCC -ACGGAAATGGGATGCTTGTAACCG -ACGGAAATGGGATGCTTGATGCCA -ACGGAAATGGGAAGCCTAGGAAAC -ACGGAAATGGGAAGCCTAAACACC -ACGGAAATGGGAAGCCTAATCGAG -ACGGAAATGGGAAGCCTACTCCTT -ACGGAAATGGGAAGCCTACCTGTT -ACGGAAATGGGAAGCCTACGGTTT -ACGGAAATGGGAAGCCTAGTGGTT -ACGGAAATGGGAAGCCTAGCCTTT -ACGGAAATGGGAAGCCTAGGTCTT -ACGGAAATGGGAAGCCTAACGCTT -ACGGAAATGGGAAGCCTAAGCGTT -ACGGAAATGGGAAGCCTATTCGTC -ACGGAAATGGGAAGCCTATCTCTC -ACGGAAATGGGAAGCCTATGGATC -ACGGAAATGGGAAGCCTACACTTC -ACGGAAATGGGAAGCCTAGTACTC -ACGGAAATGGGAAGCCTAGATGTC -ACGGAAATGGGAAGCCTAACAGTC -ACGGAAATGGGAAGCCTATTGCTG -ACGGAAATGGGAAGCCTATCCATG -ACGGAAATGGGAAGCCTATGTGTG -ACGGAAATGGGAAGCCTACTAGTG -ACGGAAATGGGAAGCCTACATCTG -ACGGAAATGGGAAGCCTAGAGTTG -ACGGAAATGGGAAGCCTAAGACTG -ACGGAAATGGGAAGCCTATCGGTA -ACGGAAATGGGAAGCCTATGCCTA -ACGGAAATGGGAAGCCTACCACTA -ACGGAAATGGGAAGCCTAGGAGTA -ACGGAAATGGGAAGCCTATCGTCT -ACGGAAATGGGAAGCCTATGCACT -ACGGAAATGGGAAGCCTACTGACT -ACGGAAATGGGAAGCCTACAACCT -ACGGAAATGGGAAGCCTAGCTACT -ACGGAAATGGGAAGCCTAGGATCT -ACGGAAATGGGAAGCCTAAAGGCT -ACGGAAATGGGAAGCCTATCAACC -ACGGAAATGGGAAGCCTATGTTCC -ACGGAAATGGGAAGCCTAATTCCC -ACGGAAATGGGAAGCCTATTCTCG -ACGGAAATGGGAAGCCTATAGACG -ACGGAAATGGGAAGCCTAGTAACG -ACGGAAATGGGAAGCCTAACTTCG -ACGGAAATGGGAAGCCTATACGCA -ACGGAAATGGGAAGCCTACTTGCA -ACGGAAATGGGAAGCCTACGAACA -ACGGAAATGGGAAGCCTACAGTCA -ACGGAAATGGGAAGCCTAGATCCA -ACGGAAATGGGAAGCCTAACGACA -ACGGAAATGGGAAGCCTAAGCTCA -ACGGAAATGGGAAGCCTATCACGT -ACGGAAATGGGAAGCCTACGTAGT -ACGGAAATGGGAAGCCTAGTCAGT -ACGGAAATGGGAAGCCTAGAAGGT -ACGGAAATGGGAAGCCTAAACCGT -ACGGAAATGGGAAGCCTATTGTGC -ACGGAAATGGGAAGCCTACTAAGC -ACGGAAATGGGAAGCCTAACTAGC -ACGGAAATGGGAAGCCTAAGATGC -ACGGAAATGGGAAGCCTATGAAGG -ACGGAAATGGGAAGCCTACAATGG -ACGGAAATGGGAAGCCTAATGAGG -ACGGAAATGGGAAGCCTAAATGGG -ACGGAAATGGGAAGCCTATCCTGA -ACGGAAATGGGAAGCCTATAGCGA -ACGGAAATGGGAAGCCTACACAGA -ACGGAAATGGGAAGCCTAGCAAGA -ACGGAAATGGGAAGCCTAGGTTGA -ACGGAAATGGGAAGCCTATCCGAT -ACGGAAATGGGAAGCCTATGGCAT -ACGGAAATGGGAAGCCTACGAGAT -ACGGAAATGGGAAGCCTATACCAC -ACGGAAATGGGAAGCCTACAGAAC -ACGGAAATGGGAAGCCTAGTCTAC -ACGGAAATGGGAAGCCTAACGTAC -ACGGAAATGGGAAGCCTAAGTGAC -ACGGAAATGGGAAGCCTACTGTAG -ACGGAAATGGGAAGCCTACCTAAG -ACGGAAATGGGAAGCCTAGTTCAG -ACGGAAATGGGAAGCCTAGCATAG -ACGGAAATGGGAAGCCTAGACAAG -ACGGAAATGGGAAGCCTAAAGCAG -ACGGAAATGGGAAGCCTACGTCAA -ACGGAAATGGGAAGCCTAGCTGAA -ACGGAAATGGGAAGCCTAAGTACG -ACGGAAATGGGAAGCCTAATCCGA -ACGGAAATGGGAAGCCTAATGGGA -ACGGAAATGGGAAGCCTAGTGCAA -ACGGAAATGGGAAGCCTAGAGGAA -ACGGAAATGGGAAGCCTACAGGTA -ACGGAAATGGGAAGCCTAGACTCT -ACGGAAATGGGAAGCCTAAGTCCT -ACGGAAATGGGAAGCCTATAAGCC -ACGGAAATGGGAAGCCTAATAGCC -ACGGAAATGGGAAGCCTATAACCG -ACGGAAATGGGAAGCCTAATGCCA -ACGGAAATGGGAAGCACTGGAAAC -ACGGAAATGGGAAGCACTAACACC -ACGGAAATGGGAAGCACTATCGAG -ACGGAAATGGGAAGCACTCTCCTT -ACGGAAATGGGAAGCACTCCTGTT -ACGGAAATGGGAAGCACTCGGTTT -ACGGAAATGGGAAGCACTGTGGTT -ACGGAAATGGGAAGCACTGCCTTT -ACGGAAATGGGAAGCACTGGTCTT -ACGGAAATGGGAAGCACTACGCTT -ACGGAAATGGGAAGCACTAGCGTT -ACGGAAATGGGAAGCACTTTCGTC -ACGGAAATGGGAAGCACTTCTCTC -ACGGAAATGGGAAGCACTTGGATC -ACGGAAATGGGAAGCACTCACTTC -ACGGAAATGGGAAGCACTGTACTC -ACGGAAATGGGAAGCACTGATGTC -ACGGAAATGGGAAGCACTACAGTC -ACGGAAATGGGAAGCACTTTGCTG -ACGGAAATGGGAAGCACTTCCATG -ACGGAAATGGGAAGCACTTGTGTG -ACGGAAATGGGAAGCACTCTAGTG -ACGGAAATGGGAAGCACTCATCTG -ACGGAAATGGGAAGCACTGAGTTG -ACGGAAATGGGAAGCACTAGACTG -ACGGAAATGGGAAGCACTTCGGTA -ACGGAAATGGGAAGCACTTGCCTA -ACGGAAATGGGAAGCACTCCACTA -ACGGAAATGGGAAGCACTGGAGTA -ACGGAAATGGGAAGCACTTCGTCT -ACGGAAATGGGAAGCACTTGCACT -ACGGAAATGGGAAGCACTCTGACT -ACGGAAATGGGAAGCACTCAACCT -ACGGAAATGGGAAGCACTGCTACT -ACGGAAATGGGAAGCACTGGATCT -ACGGAAATGGGAAGCACTAAGGCT -ACGGAAATGGGAAGCACTTCAACC -ACGGAAATGGGAAGCACTTGTTCC -ACGGAAATGGGAAGCACTATTCCC -ACGGAAATGGGAAGCACTTTCTCG -ACGGAAATGGGAAGCACTTAGACG -ACGGAAATGGGAAGCACTGTAACG -ACGGAAATGGGAAGCACTACTTCG -ACGGAAATGGGAAGCACTTACGCA -ACGGAAATGGGAAGCACTCTTGCA -ACGGAAATGGGAAGCACTCGAACA -ACGGAAATGGGAAGCACTCAGTCA -ACGGAAATGGGAAGCACTGATCCA -ACGGAAATGGGAAGCACTACGACA -ACGGAAATGGGAAGCACTAGCTCA -ACGGAAATGGGAAGCACTTCACGT -ACGGAAATGGGAAGCACTCGTAGT -ACGGAAATGGGAAGCACTGTCAGT -ACGGAAATGGGAAGCACTGAAGGT -ACGGAAATGGGAAGCACTAACCGT -ACGGAAATGGGAAGCACTTTGTGC -ACGGAAATGGGAAGCACTCTAAGC -ACGGAAATGGGAAGCACTACTAGC -ACGGAAATGGGAAGCACTAGATGC -ACGGAAATGGGAAGCACTTGAAGG -ACGGAAATGGGAAGCACTCAATGG -ACGGAAATGGGAAGCACTATGAGG -ACGGAAATGGGAAGCACTAATGGG -ACGGAAATGGGAAGCACTTCCTGA -ACGGAAATGGGAAGCACTTAGCGA -ACGGAAATGGGAAGCACTCACAGA -ACGGAAATGGGAAGCACTGCAAGA -ACGGAAATGGGAAGCACTGGTTGA -ACGGAAATGGGAAGCACTTCCGAT -ACGGAAATGGGAAGCACTTGGCAT -ACGGAAATGGGAAGCACTCGAGAT -ACGGAAATGGGAAGCACTTACCAC -ACGGAAATGGGAAGCACTCAGAAC -ACGGAAATGGGAAGCACTGTCTAC -ACGGAAATGGGAAGCACTACGTAC -ACGGAAATGGGAAGCACTAGTGAC -ACGGAAATGGGAAGCACTCTGTAG -ACGGAAATGGGAAGCACTCCTAAG -ACGGAAATGGGAAGCACTGTTCAG -ACGGAAATGGGAAGCACTGCATAG -ACGGAAATGGGAAGCACTGACAAG -ACGGAAATGGGAAGCACTAAGCAG -ACGGAAATGGGAAGCACTCGTCAA -ACGGAAATGGGAAGCACTGCTGAA -ACGGAAATGGGAAGCACTAGTACG -ACGGAAATGGGAAGCACTATCCGA -ACGGAAATGGGAAGCACTATGGGA -ACGGAAATGGGAAGCACTGTGCAA -ACGGAAATGGGAAGCACTGAGGAA -ACGGAAATGGGAAGCACTCAGGTA -ACGGAAATGGGAAGCACTGACTCT -ACGGAAATGGGAAGCACTAGTCCT -ACGGAAATGGGAAGCACTTAAGCC -ACGGAAATGGGAAGCACTATAGCC -ACGGAAATGGGAAGCACTTAACCG -ACGGAAATGGGAAGCACTATGCCA -ACGGAAATGGGATGCAGAGGAAAC -ACGGAAATGGGATGCAGAAACACC -ACGGAAATGGGATGCAGAATCGAG -ACGGAAATGGGATGCAGACTCCTT -ACGGAAATGGGATGCAGACCTGTT -ACGGAAATGGGATGCAGACGGTTT -ACGGAAATGGGATGCAGAGTGGTT -ACGGAAATGGGATGCAGAGCCTTT -ACGGAAATGGGATGCAGAGGTCTT -ACGGAAATGGGATGCAGAACGCTT -ACGGAAATGGGATGCAGAAGCGTT -ACGGAAATGGGATGCAGATTCGTC -ACGGAAATGGGATGCAGATCTCTC -ACGGAAATGGGATGCAGATGGATC -ACGGAAATGGGATGCAGACACTTC -ACGGAAATGGGATGCAGAGTACTC -ACGGAAATGGGATGCAGAGATGTC -ACGGAAATGGGATGCAGAACAGTC -ACGGAAATGGGATGCAGATTGCTG -ACGGAAATGGGATGCAGATCCATG -ACGGAAATGGGATGCAGATGTGTG -ACGGAAATGGGATGCAGACTAGTG -ACGGAAATGGGATGCAGACATCTG -ACGGAAATGGGATGCAGAGAGTTG -ACGGAAATGGGATGCAGAAGACTG -ACGGAAATGGGATGCAGATCGGTA -ACGGAAATGGGATGCAGATGCCTA -ACGGAAATGGGATGCAGACCACTA -ACGGAAATGGGATGCAGAGGAGTA -ACGGAAATGGGATGCAGATCGTCT -ACGGAAATGGGATGCAGATGCACT -ACGGAAATGGGATGCAGACTGACT -ACGGAAATGGGATGCAGACAACCT -ACGGAAATGGGATGCAGAGCTACT -ACGGAAATGGGATGCAGAGGATCT -ACGGAAATGGGATGCAGAAAGGCT -ACGGAAATGGGATGCAGATCAACC -ACGGAAATGGGATGCAGATGTTCC -ACGGAAATGGGATGCAGAATTCCC -ACGGAAATGGGATGCAGATTCTCG -ACGGAAATGGGATGCAGATAGACG -ACGGAAATGGGATGCAGAGTAACG -ACGGAAATGGGATGCAGAACTTCG -ACGGAAATGGGATGCAGATACGCA -ACGGAAATGGGATGCAGACTTGCA -ACGGAAATGGGATGCAGACGAACA -ACGGAAATGGGATGCAGACAGTCA -ACGGAAATGGGATGCAGAGATCCA -ACGGAAATGGGATGCAGAACGACA -ACGGAAATGGGATGCAGAAGCTCA -ACGGAAATGGGATGCAGATCACGT -ACGGAAATGGGATGCAGACGTAGT -ACGGAAATGGGATGCAGAGTCAGT -ACGGAAATGGGATGCAGAGAAGGT -ACGGAAATGGGATGCAGAAACCGT -ACGGAAATGGGATGCAGATTGTGC -ACGGAAATGGGATGCAGACTAAGC -ACGGAAATGGGATGCAGAACTAGC -ACGGAAATGGGATGCAGAAGATGC -ACGGAAATGGGATGCAGATGAAGG -ACGGAAATGGGATGCAGACAATGG -ACGGAAATGGGATGCAGAATGAGG -ACGGAAATGGGATGCAGAAATGGG -ACGGAAATGGGATGCAGATCCTGA -ACGGAAATGGGATGCAGATAGCGA -ACGGAAATGGGATGCAGACACAGA -ACGGAAATGGGATGCAGAGCAAGA -ACGGAAATGGGATGCAGAGGTTGA -ACGGAAATGGGATGCAGATCCGAT -ACGGAAATGGGATGCAGATGGCAT -ACGGAAATGGGATGCAGACGAGAT -ACGGAAATGGGATGCAGATACCAC -ACGGAAATGGGATGCAGACAGAAC -ACGGAAATGGGATGCAGAGTCTAC -ACGGAAATGGGATGCAGAACGTAC -ACGGAAATGGGATGCAGAAGTGAC -ACGGAAATGGGATGCAGACTGTAG -ACGGAAATGGGATGCAGACCTAAG -ACGGAAATGGGATGCAGAGTTCAG -ACGGAAATGGGATGCAGAGCATAG -ACGGAAATGGGATGCAGAGACAAG -ACGGAAATGGGATGCAGAAAGCAG -ACGGAAATGGGATGCAGACGTCAA -ACGGAAATGGGATGCAGAGCTGAA -ACGGAAATGGGATGCAGAAGTACG -ACGGAAATGGGATGCAGAATCCGA -ACGGAAATGGGATGCAGAATGGGA -ACGGAAATGGGATGCAGAGTGCAA -ACGGAAATGGGATGCAGAGAGGAA -ACGGAAATGGGATGCAGACAGGTA -ACGGAAATGGGATGCAGAGACTCT -ACGGAAATGGGATGCAGAAGTCCT -ACGGAAATGGGATGCAGATAAGCC -ACGGAAATGGGATGCAGAATAGCC -ACGGAAATGGGATGCAGATAACCG -ACGGAAATGGGATGCAGAATGCCA -ACGGAAATGGGAAGGTGAGGAAAC -ACGGAAATGGGAAGGTGAAACACC -ACGGAAATGGGAAGGTGAATCGAG -ACGGAAATGGGAAGGTGACTCCTT -ACGGAAATGGGAAGGTGACCTGTT -ACGGAAATGGGAAGGTGACGGTTT -ACGGAAATGGGAAGGTGAGTGGTT -ACGGAAATGGGAAGGTGAGCCTTT -ACGGAAATGGGAAGGTGAGGTCTT -ACGGAAATGGGAAGGTGAACGCTT -ACGGAAATGGGAAGGTGAAGCGTT -ACGGAAATGGGAAGGTGATTCGTC -ACGGAAATGGGAAGGTGATCTCTC -ACGGAAATGGGAAGGTGATGGATC -ACGGAAATGGGAAGGTGACACTTC -ACGGAAATGGGAAGGTGAGTACTC -ACGGAAATGGGAAGGTGAGATGTC -ACGGAAATGGGAAGGTGAACAGTC -ACGGAAATGGGAAGGTGATTGCTG -ACGGAAATGGGAAGGTGATCCATG -ACGGAAATGGGAAGGTGATGTGTG -ACGGAAATGGGAAGGTGACTAGTG -ACGGAAATGGGAAGGTGACATCTG -ACGGAAATGGGAAGGTGAGAGTTG -ACGGAAATGGGAAGGTGAAGACTG -ACGGAAATGGGAAGGTGATCGGTA -ACGGAAATGGGAAGGTGATGCCTA -ACGGAAATGGGAAGGTGACCACTA -ACGGAAATGGGAAGGTGAGGAGTA -ACGGAAATGGGAAGGTGATCGTCT -ACGGAAATGGGAAGGTGATGCACT -ACGGAAATGGGAAGGTGACTGACT -ACGGAAATGGGAAGGTGACAACCT -ACGGAAATGGGAAGGTGAGCTACT -ACGGAAATGGGAAGGTGAGGATCT -ACGGAAATGGGAAGGTGAAAGGCT -ACGGAAATGGGAAGGTGATCAACC -ACGGAAATGGGAAGGTGATGTTCC -ACGGAAATGGGAAGGTGAATTCCC -ACGGAAATGGGAAGGTGATTCTCG -ACGGAAATGGGAAGGTGATAGACG -ACGGAAATGGGAAGGTGAGTAACG -ACGGAAATGGGAAGGTGAACTTCG -ACGGAAATGGGAAGGTGATACGCA -ACGGAAATGGGAAGGTGACTTGCA -ACGGAAATGGGAAGGTGACGAACA -ACGGAAATGGGAAGGTGACAGTCA -ACGGAAATGGGAAGGTGAGATCCA -ACGGAAATGGGAAGGTGAACGACA -ACGGAAATGGGAAGGTGAAGCTCA -ACGGAAATGGGAAGGTGATCACGT -ACGGAAATGGGAAGGTGACGTAGT -ACGGAAATGGGAAGGTGAGTCAGT -ACGGAAATGGGAAGGTGAGAAGGT -ACGGAAATGGGAAGGTGAAACCGT -ACGGAAATGGGAAGGTGATTGTGC -ACGGAAATGGGAAGGTGACTAAGC -ACGGAAATGGGAAGGTGAACTAGC -ACGGAAATGGGAAGGTGAAGATGC -ACGGAAATGGGAAGGTGATGAAGG -ACGGAAATGGGAAGGTGACAATGG -ACGGAAATGGGAAGGTGAATGAGG -ACGGAAATGGGAAGGTGAAATGGG -ACGGAAATGGGAAGGTGATCCTGA -ACGGAAATGGGAAGGTGATAGCGA -ACGGAAATGGGAAGGTGACACAGA -ACGGAAATGGGAAGGTGAGCAAGA -ACGGAAATGGGAAGGTGAGGTTGA -ACGGAAATGGGAAGGTGATCCGAT -ACGGAAATGGGAAGGTGATGGCAT -ACGGAAATGGGAAGGTGACGAGAT -ACGGAAATGGGAAGGTGATACCAC -ACGGAAATGGGAAGGTGACAGAAC -ACGGAAATGGGAAGGTGAGTCTAC -ACGGAAATGGGAAGGTGAACGTAC -ACGGAAATGGGAAGGTGAAGTGAC -ACGGAAATGGGAAGGTGACTGTAG -ACGGAAATGGGAAGGTGACCTAAG -ACGGAAATGGGAAGGTGAGTTCAG -ACGGAAATGGGAAGGTGAGCATAG -ACGGAAATGGGAAGGTGAGACAAG -ACGGAAATGGGAAGGTGAAAGCAG -ACGGAAATGGGAAGGTGACGTCAA -ACGGAAATGGGAAGGTGAGCTGAA -ACGGAAATGGGAAGGTGAAGTACG -ACGGAAATGGGAAGGTGAATCCGA -ACGGAAATGGGAAGGTGAATGGGA -ACGGAAATGGGAAGGTGAGTGCAA -ACGGAAATGGGAAGGTGAGAGGAA -ACGGAAATGGGAAGGTGACAGGTA -ACGGAAATGGGAAGGTGAGACTCT -ACGGAAATGGGAAGGTGAAGTCCT -ACGGAAATGGGAAGGTGATAAGCC -ACGGAAATGGGAAGGTGAATAGCC -ACGGAAATGGGAAGGTGATAACCG -ACGGAAATGGGAAGGTGAATGCCA -ACGGAAATGGGATGGCAAGGAAAC -ACGGAAATGGGATGGCAAAACACC -ACGGAAATGGGATGGCAAATCGAG -ACGGAAATGGGATGGCAACTCCTT -ACGGAAATGGGATGGCAACCTGTT -ACGGAAATGGGATGGCAACGGTTT -ACGGAAATGGGATGGCAAGTGGTT -ACGGAAATGGGATGGCAAGCCTTT -ACGGAAATGGGATGGCAAGGTCTT -ACGGAAATGGGATGGCAAACGCTT -ACGGAAATGGGATGGCAAAGCGTT -ACGGAAATGGGATGGCAATTCGTC -ACGGAAATGGGATGGCAATCTCTC -ACGGAAATGGGATGGCAATGGATC -ACGGAAATGGGATGGCAACACTTC -ACGGAAATGGGATGGCAAGTACTC -ACGGAAATGGGATGGCAAGATGTC -ACGGAAATGGGATGGCAAACAGTC -ACGGAAATGGGATGGCAATTGCTG -ACGGAAATGGGATGGCAATCCATG -ACGGAAATGGGATGGCAATGTGTG -ACGGAAATGGGATGGCAACTAGTG -ACGGAAATGGGATGGCAACATCTG -ACGGAAATGGGATGGCAAGAGTTG -ACGGAAATGGGATGGCAAAGACTG -ACGGAAATGGGATGGCAATCGGTA -ACGGAAATGGGATGGCAATGCCTA -ACGGAAATGGGATGGCAACCACTA -ACGGAAATGGGATGGCAAGGAGTA -ACGGAAATGGGATGGCAATCGTCT -ACGGAAATGGGATGGCAATGCACT -ACGGAAATGGGATGGCAACTGACT -ACGGAAATGGGATGGCAACAACCT -ACGGAAATGGGATGGCAAGCTACT -ACGGAAATGGGATGGCAAGGATCT -ACGGAAATGGGATGGCAAAAGGCT -ACGGAAATGGGATGGCAATCAACC -ACGGAAATGGGATGGCAATGTTCC -ACGGAAATGGGATGGCAAATTCCC -ACGGAAATGGGATGGCAATTCTCG -ACGGAAATGGGATGGCAATAGACG -ACGGAAATGGGATGGCAAGTAACG -ACGGAAATGGGATGGCAAACTTCG -ACGGAAATGGGATGGCAATACGCA -ACGGAAATGGGATGGCAACTTGCA -ACGGAAATGGGATGGCAACGAACA -ACGGAAATGGGATGGCAACAGTCA -ACGGAAATGGGATGGCAAGATCCA -ACGGAAATGGGATGGCAAACGACA -ACGGAAATGGGATGGCAAAGCTCA -ACGGAAATGGGATGGCAATCACGT -ACGGAAATGGGATGGCAACGTAGT -ACGGAAATGGGATGGCAAGTCAGT -ACGGAAATGGGATGGCAAGAAGGT -ACGGAAATGGGATGGCAAAACCGT -ACGGAAATGGGATGGCAATTGTGC -ACGGAAATGGGATGGCAACTAAGC -ACGGAAATGGGATGGCAAACTAGC -ACGGAAATGGGATGGCAAAGATGC -ACGGAAATGGGATGGCAATGAAGG -ACGGAAATGGGATGGCAACAATGG -ACGGAAATGGGATGGCAAATGAGG -ACGGAAATGGGATGGCAAAATGGG -ACGGAAATGGGATGGCAATCCTGA -ACGGAAATGGGATGGCAATAGCGA -ACGGAAATGGGATGGCAACACAGA -ACGGAAATGGGATGGCAAGCAAGA -ACGGAAATGGGATGGCAAGGTTGA -ACGGAAATGGGATGGCAATCCGAT -ACGGAAATGGGATGGCAATGGCAT -ACGGAAATGGGATGGCAACGAGAT -ACGGAAATGGGATGGCAATACCAC -ACGGAAATGGGATGGCAACAGAAC -ACGGAAATGGGATGGCAAGTCTAC -ACGGAAATGGGATGGCAAACGTAC -ACGGAAATGGGATGGCAAAGTGAC -ACGGAAATGGGATGGCAACTGTAG -ACGGAAATGGGATGGCAACCTAAG -ACGGAAATGGGATGGCAAGTTCAG -ACGGAAATGGGATGGCAAGCATAG -ACGGAAATGGGATGGCAAGACAAG -ACGGAAATGGGATGGCAAAAGCAG -ACGGAAATGGGATGGCAACGTCAA -ACGGAAATGGGATGGCAAGCTGAA -ACGGAAATGGGATGGCAAAGTACG -ACGGAAATGGGATGGCAAATCCGA -ACGGAAATGGGATGGCAAATGGGA -ACGGAAATGGGATGGCAAGTGCAA -ACGGAAATGGGATGGCAAGAGGAA -ACGGAAATGGGATGGCAACAGGTA -ACGGAAATGGGATGGCAAGACTCT -ACGGAAATGGGATGGCAAAGTCCT -ACGGAAATGGGATGGCAATAAGCC -ACGGAAATGGGATGGCAAATAGCC -ACGGAAATGGGATGGCAATAACCG -ACGGAAATGGGATGGCAAATGCCA -ACGGAAATGGGAAGGATGGGAAAC -ACGGAAATGGGAAGGATGAACACC -ACGGAAATGGGAAGGATGATCGAG -ACGGAAATGGGAAGGATGCTCCTT -ACGGAAATGGGAAGGATGCCTGTT -ACGGAAATGGGAAGGATGCGGTTT -ACGGAAATGGGAAGGATGGTGGTT -ACGGAAATGGGAAGGATGGCCTTT -ACGGAAATGGGAAGGATGGGTCTT -ACGGAAATGGGAAGGATGACGCTT -ACGGAAATGGGAAGGATGAGCGTT -ACGGAAATGGGAAGGATGTTCGTC -ACGGAAATGGGAAGGATGTCTCTC -ACGGAAATGGGAAGGATGTGGATC -ACGGAAATGGGAAGGATGCACTTC -ACGGAAATGGGAAGGATGGTACTC -ACGGAAATGGGAAGGATGGATGTC -ACGGAAATGGGAAGGATGACAGTC -ACGGAAATGGGAAGGATGTTGCTG -ACGGAAATGGGAAGGATGTCCATG -ACGGAAATGGGAAGGATGTGTGTG -ACGGAAATGGGAAGGATGCTAGTG -ACGGAAATGGGAAGGATGCATCTG -ACGGAAATGGGAAGGATGGAGTTG -ACGGAAATGGGAAGGATGAGACTG -ACGGAAATGGGAAGGATGTCGGTA -ACGGAAATGGGAAGGATGTGCCTA -ACGGAAATGGGAAGGATGCCACTA -ACGGAAATGGGAAGGATGGGAGTA -ACGGAAATGGGAAGGATGTCGTCT -ACGGAAATGGGAAGGATGTGCACT -ACGGAAATGGGAAGGATGCTGACT -ACGGAAATGGGAAGGATGCAACCT -ACGGAAATGGGAAGGATGGCTACT -ACGGAAATGGGAAGGATGGGATCT -ACGGAAATGGGAAGGATGAAGGCT -ACGGAAATGGGAAGGATGTCAACC -ACGGAAATGGGAAGGATGTGTTCC -ACGGAAATGGGAAGGATGATTCCC -ACGGAAATGGGAAGGATGTTCTCG -ACGGAAATGGGAAGGATGTAGACG -ACGGAAATGGGAAGGATGGTAACG -ACGGAAATGGGAAGGATGACTTCG -ACGGAAATGGGAAGGATGTACGCA -ACGGAAATGGGAAGGATGCTTGCA -ACGGAAATGGGAAGGATGCGAACA -ACGGAAATGGGAAGGATGCAGTCA -ACGGAAATGGGAAGGATGGATCCA -ACGGAAATGGGAAGGATGACGACA -ACGGAAATGGGAAGGATGAGCTCA -ACGGAAATGGGAAGGATGTCACGT -ACGGAAATGGGAAGGATGCGTAGT -ACGGAAATGGGAAGGATGGTCAGT -ACGGAAATGGGAAGGATGGAAGGT -ACGGAAATGGGAAGGATGAACCGT -ACGGAAATGGGAAGGATGTTGTGC -ACGGAAATGGGAAGGATGCTAAGC -ACGGAAATGGGAAGGATGACTAGC -ACGGAAATGGGAAGGATGAGATGC -ACGGAAATGGGAAGGATGTGAAGG -ACGGAAATGGGAAGGATGCAATGG -ACGGAAATGGGAAGGATGATGAGG -ACGGAAATGGGAAGGATGAATGGG -ACGGAAATGGGAAGGATGTCCTGA -ACGGAAATGGGAAGGATGTAGCGA -ACGGAAATGGGAAGGATGCACAGA -ACGGAAATGGGAAGGATGGCAAGA -ACGGAAATGGGAAGGATGGGTTGA -ACGGAAATGGGAAGGATGTCCGAT -ACGGAAATGGGAAGGATGTGGCAT -ACGGAAATGGGAAGGATGCGAGAT -ACGGAAATGGGAAGGATGTACCAC -ACGGAAATGGGAAGGATGCAGAAC -ACGGAAATGGGAAGGATGGTCTAC -ACGGAAATGGGAAGGATGACGTAC -ACGGAAATGGGAAGGATGAGTGAC -ACGGAAATGGGAAGGATGCTGTAG -ACGGAAATGGGAAGGATGCCTAAG -ACGGAAATGGGAAGGATGGTTCAG -ACGGAAATGGGAAGGATGGCATAG -ACGGAAATGGGAAGGATGGACAAG -ACGGAAATGGGAAGGATGAAGCAG -ACGGAAATGGGAAGGATGCGTCAA -ACGGAAATGGGAAGGATGGCTGAA -ACGGAAATGGGAAGGATGAGTACG -ACGGAAATGGGAAGGATGATCCGA -ACGGAAATGGGAAGGATGATGGGA -ACGGAAATGGGAAGGATGGTGCAA -ACGGAAATGGGAAGGATGGAGGAA -ACGGAAATGGGAAGGATGCAGGTA -ACGGAAATGGGAAGGATGGACTCT -ACGGAAATGGGAAGGATGAGTCCT -ACGGAAATGGGAAGGATGTAAGCC -ACGGAAATGGGAAGGATGATAGCC -ACGGAAATGGGAAGGATGTAACCG -ACGGAAATGGGAAGGATGATGCCA -ACGGAAATGGGAGGGAATGGAAAC -ACGGAAATGGGAGGGAATAACACC -ACGGAAATGGGAGGGAATATCGAG -ACGGAAATGGGAGGGAATCTCCTT -ACGGAAATGGGAGGGAATCCTGTT -ACGGAAATGGGAGGGAATCGGTTT -ACGGAAATGGGAGGGAATGTGGTT -ACGGAAATGGGAGGGAATGCCTTT -ACGGAAATGGGAGGGAATGGTCTT -ACGGAAATGGGAGGGAATACGCTT -ACGGAAATGGGAGGGAATAGCGTT -ACGGAAATGGGAGGGAATTTCGTC -ACGGAAATGGGAGGGAATTCTCTC -ACGGAAATGGGAGGGAATTGGATC -ACGGAAATGGGAGGGAATCACTTC -ACGGAAATGGGAGGGAATGTACTC -ACGGAAATGGGAGGGAATGATGTC -ACGGAAATGGGAGGGAATACAGTC -ACGGAAATGGGAGGGAATTTGCTG -ACGGAAATGGGAGGGAATTCCATG -ACGGAAATGGGAGGGAATTGTGTG -ACGGAAATGGGAGGGAATCTAGTG -ACGGAAATGGGAGGGAATCATCTG -ACGGAAATGGGAGGGAATGAGTTG -ACGGAAATGGGAGGGAATAGACTG -ACGGAAATGGGAGGGAATTCGGTA -ACGGAAATGGGAGGGAATTGCCTA -ACGGAAATGGGAGGGAATCCACTA -ACGGAAATGGGAGGGAATGGAGTA -ACGGAAATGGGAGGGAATTCGTCT -ACGGAAATGGGAGGGAATTGCACT -ACGGAAATGGGAGGGAATCTGACT -ACGGAAATGGGAGGGAATCAACCT -ACGGAAATGGGAGGGAATGCTACT -ACGGAAATGGGAGGGAATGGATCT -ACGGAAATGGGAGGGAATAAGGCT -ACGGAAATGGGAGGGAATTCAACC -ACGGAAATGGGAGGGAATTGTTCC -ACGGAAATGGGAGGGAATATTCCC -ACGGAAATGGGAGGGAATTTCTCG -ACGGAAATGGGAGGGAATTAGACG -ACGGAAATGGGAGGGAATGTAACG -ACGGAAATGGGAGGGAATACTTCG -ACGGAAATGGGAGGGAATTACGCA -ACGGAAATGGGAGGGAATCTTGCA -ACGGAAATGGGAGGGAATCGAACA -ACGGAAATGGGAGGGAATCAGTCA -ACGGAAATGGGAGGGAATGATCCA -ACGGAAATGGGAGGGAATACGACA -ACGGAAATGGGAGGGAATAGCTCA -ACGGAAATGGGAGGGAATTCACGT -ACGGAAATGGGAGGGAATCGTAGT -ACGGAAATGGGAGGGAATGTCAGT -ACGGAAATGGGAGGGAATGAAGGT -ACGGAAATGGGAGGGAATAACCGT -ACGGAAATGGGAGGGAATTTGTGC -ACGGAAATGGGAGGGAATCTAAGC -ACGGAAATGGGAGGGAATACTAGC -ACGGAAATGGGAGGGAATAGATGC -ACGGAAATGGGAGGGAATTGAAGG -ACGGAAATGGGAGGGAATCAATGG -ACGGAAATGGGAGGGAATATGAGG -ACGGAAATGGGAGGGAATAATGGG -ACGGAAATGGGAGGGAATTCCTGA -ACGGAAATGGGAGGGAATTAGCGA -ACGGAAATGGGAGGGAATCACAGA -ACGGAAATGGGAGGGAATGCAAGA -ACGGAAATGGGAGGGAATGGTTGA -ACGGAAATGGGAGGGAATTCCGAT -ACGGAAATGGGAGGGAATTGGCAT -ACGGAAATGGGAGGGAATCGAGAT -ACGGAAATGGGAGGGAATTACCAC -ACGGAAATGGGAGGGAATCAGAAC -ACGGAAATGGGAGGGAATGTCTAC -ACGGAAATGGGAGGGAATACGTAC -ACGGAAATGGGAGGGAATAGTGAC -ACGGAAATGGGAGGGAATCTGTAG -ACGGAAATGGGAGGGAATCCTAAG -ACGGAAATGGGAGGGAATGTTCAG -ACGGAAATGGGAGGGAATGCATAG -ACGGAAATGGGAGGGAATGACAAG -ACGGAAATGGGAGGGAATAAGCAG -ACGGAAATGGGAGGGAATCGTCAA -ACGGAAATGGGAGGGAATGCTGAA -ACGGAAATGGGAGGGAATAGTACG -ACGGAAATGGGAGGGAATATCCGA -ACGGAAATGGGAGGGAATATGGGA -ACGGAAATGGGAGGGAATGTGCAA -ACGGAAATGGGAGGGAATGAGGAA -ACGGAAATGGGAGGGAATCAGGTA -ACGGAAATGGGAGGGAATGACTCT -ACGGAAATGGGAGGGAATAGTCCT -ACGGAAATGGGAGGGAATTAAGCC -ACGGAAATGGGAGGGAATATAGCC -ACGGAAATGGGAGGGAATTAACCG -ACGGAAATGGGAGGGAATATGCCA -ACGGAAATGGGATGATCCGGAAAC -ACGGAAATGGGATGATCCAACACC -ACGGAAATGGGATGATCCATCGAG -ACGGAAATGGGATGATCCCTCCTT -ACGGAAATGGGATGATCCCCTGTT -ACGGAAATGGGATGATCCCGGTTT -ACGGAAATGGGATGATCCGTGGTT -ACGGAAATGGGATGATCCGCCTTT -ACGGAAATGGGATGATCCGGTCTT -ACGGAAATGGGATGATCCACGCTT -ACGGAAATGGGATGATCCAGCGTT -ACGGAAATGGGATGATCCTTCGTC -ACGGAAATGGGATGATCCTCTCTC -ACGGAAATGGGATGATCCTGGATC -ACGGAAATGGGATGATCCCACTTC -ACGGAAATGGGATGATCCGTACTC -ACGGAAATGGGATGATCCGATGTC -ACGGAAATGGGATGATCCACAGTC -ACGGAAATGGGATGATCCTTGCTG -ACGGAAATGGGATGATCCTCCATG -ACGGAAATGGGATGATCCTGTGTG -ACGGAAATGGGATGATCCCTAGTG -ACGGAAATGGGATGATCCCATCTG -ACGGAAATGGGATGATCCGAGTTG -ACGGAAATGGGATGATCCAGACTG -ACGGAAATGGGATGATCCTCGGTA -ACGGAAATGGGATGATCCTGCCTA -ACGGAAATGGGATGATCCCCACTA -ACGGAAATGGGATGATCCGGAGTA -ACGGAAATGGGATGATCCTCGTCT -ACGGAAATGGGATGATCCTGCACT -ACGGAAATGGGATGATCCCTGACT -ACGGAAATGGGATGATCCCAACCT -ACGGAAATGGGATGATCCGCTACT -ACGGAAATGGGATGATCCGGATCT -ACGGAAATGGGATGATCCAAGGCT -ACGGAAATGGGATGATCCTCAACC -ACGGAAATGGGATGATCCTGTTCC -ACGGAAATGGGATGATCCATTCCC -ACGGAAATGGGATGATCCTTCTCG -ACGGAAATGGGATGATCCTAGACG -ACGGAAATGGGATGATCCGTAACG -ACGGAAATGGGATGATCCACTTCG -ACGGAAATGGGATGATCCTACGCA -ACGGAAATGGGATGATCCCTTGCA -ACGGAAATGGGATGATCCCGAACA -ACGGAAATGGGATGATCCCAGTCA -ACGGAAATGGGATGATCCGATCCA -ACGGAAATGGGATGATCCACGACA -ACGGAAATGGGATGATCCAGCTCA -ACGGAAATGGGATGATCCTCACGT -ACGGAAATGGGATGATCCCGTAGT -ACGGAAATGGGATGATCCGTCAGT -ACGGAAATGGGATGATCCGAAGGT -ACGGAAATGGGATGATCCAACCGT -ACGGAAATGGGATGATCCTTGTGC -ACGGAAATGGGATGATCCCTAAGC -ACGGAAATGGGATGATCCACTAGC -ACGGAAATGGGATGATCCAGATGC -ACGGAAATGGGATGATCCTGAAGG -ACGGAAATGGGATGATCCCAATGG -ACGGAAATGGGATGATCCATGAGG -ACGGAAATGGGATGATCCAATGGG -ACGGAAATGGGATGATCCTCCTGA -ACGGAAATGGGATGATCCTAGCGA -ACGGAAATGGGATGATCCCACAGA -ACGGAAATGGGATGATCCGCAAGA -ACGGAAATGGGATGATCCGGTTGA -ACGGAAATGGGATGATCCTCCGAT -ACGGAAATGGGATGATCCTGGCAT -ACGGAAATGGGATGATCCCGAGAT -ACGGAAATGGGATGATCCTACCAC -ACGGAAATGGGATGATCCCAGAAC -ACGGAAATGGGATGATCCGTCTAC -ACGGAAATGGGATGATCCACGTAC -ACGGAAATGGGATGATCCAGTGAC -ACGGAAATGGGATGATCCCTGTAG -ACGGAAATGGGATGATCCCCTAAG -ACGGAAATGGGATGATCCGTTCAG -ACGGAAATGGGATGATCCGCATAG -ACGGAAATGGGATGATCCGACAAG -ACGGAAATGGGATGATCCAAGCAG -ACGGAAATGGGATGATCCCGTCAA -ACGGAAATGGGATGATCCGCTGAA -ACGGAAATGGGATGATCCAGTACG -ACGGAAATGGGATGATCCATCCGA -ACGGAAATGGGATGATCCATGGGA -ACGGAAATGGGATGATCCGTGCAA -ACGGAAATGGGATGATCCGAGGAA -ACGGAAATGGGATGATCCCAGGTA -ACGGAAATGGGATGATCCGACTCT -ACGGAAATGGGATGATCCAGTCCT -ACGGAAATGGGATGATCCTAAGCC -ACGGAAATGGGATGATCCATAGCC -ACGGAAATGGGATGATCCTAACCG -ACGGAAATGGGATGATCCATGCCA -ACGGAAATGGGACGATAGGGAAAC -ACGGAAATGGGACGATAGAACACC -ACGGAAATGGGACGATAGATCGAG -ACGGAAATGGGACGATAGCTCCTT -ACGGAAATGGGACGATAGCCTGTT -ACGGAAATGGGACGATAGCGGTTT -ACGGAAATGGGACGATAGGTGGTT -ACGGAAATGGGACGATAGGCCTTT -ACGGAAATGGGACGATAGGGTCTT -ACGGAAATGGGACGATAGACGCTT -ACGGAAATGGGACGATAGAGCGTT -ACGGAAATGGGACGATAGTTCGTC -ACGGAAATGGGACGATAGTCTCTC -ACGGAAATGGGACGATAGTGGATC -ACGGAAATGGGACGATAGCACTTC -ACGGAAATGGGACGATAGGTACTC -ACGGAAATGGGACGATAGGATGTC -ACGGAAATGGGACGATAGACAGTC -ACGGAAATGGGACGATAGTTGCTG -ACGGAAATGGGACGATAGTCCATG -ACGGAAATGGGACGATAGTGTGTG -ACGGAAATGGGACGATAGCTAGTG -ACGGAAATGGGACGATAGCATCTG -ACGGAAATGGGACGATAGGAGTTG -ACGGAAATGGGACGATAGAGACTG -ACGGAAATGGGACGATAGTCGGTA -ACGGAAATGGGACGATAGTGCCTA -ACGGAAATGGGACGATAGCCACTA -ACGGAAATGGGACGATAGGGAGTA -ACGGAAATGGGACGATAGTCGTCT -ACGGAAATGGGACGATAGTGCACT -ACGGAAATGGGACGATAGCTGACT -ACGGAAATGGGACGATAGCAACCT -ACGGAAATGGGACGATAGGCTACT -ACGGAAATGGGACGATAGGGATCT -ACGGAAATGGGACGATAGAAGGCT -ACGGAAATGGGACGATAGTCAACC -ACGGAAATGGGACGATAGTGTTCC -ACGGAAATGGGACGATAGATTCCC -ACGGAAATGGGACGATAGTTCTCG -ACGGAAATGGGACGATAGTAGACG -ACGGAAATGGGACGATAGGTAACG -ACGGAAATGGGACGATAGACTTCG -ACGGAAATGGGACGATAGTACGCA -ACGGAAATGGGACGATAGCTTGCA -ACGGAAATGGGACGATAGCGAACA -ACGGAAATGGGACGATAGCAGTCA -ACGGAAATGGGACGATAGGATCCA -ACGGAAATGGGACGATAGACGACA -ACGGAAATGGGACGATAGAGCTCA -ACGGAAATGGGACGATAGTCACGT -ACGGAAATGGGACGATAGCGTAGT -ACGGAAATGGGACGATAGGTCAGT -ACGGAAATGGGACGATAGGAAGGT -ACGGAAATGGGACGATAGAACCGT -ACGGAAATGGGACGATAGTTGTGC -ACGGAAATGGGACGATAGCTAAGC -ACGGAAATGGGACGATAGACTAGC -ACGGAAATGGGACGATAGAGATGC -ACGGAAATGGGACGATAGTGAAGG -ACGGAAATGGGACGATAGCAATGG -ACGGAAATGGGACGATAGATGAGG -ACGGAAATGGGACGATAGAATGGG -ACGGAAATGGGACGATAGTCCTGA -ACGGAAATGGGACGATAGTAGCGA -ACGGAAATGGGACGATAGCACAGA -ACGGAAATGGGACGATAGGCAAGA -ACGGAAATGGGACGATAGGGTTGA -ACGGAAATGGGACGATAGTCCGAT -ACGGAAATGGGACGATAGTGGCAT -ACGGAAATGGGACGATAGCGAGAT -ACGGAAATGGGACGATAGTACCAC -ACGGAAATGGGACGATAGCAGAAC -ACGGAAATGGGACGATAGGTCTAC -ACGGAAATGGGACGATAGACGTAC -ACGGAAATGGGACGATAGAGTGAC -ACGGAAATGGGACGATAGCTGTAG -ACGGAAATGGGACGATAGCCTAAG -ACGGAAATGGGACGATAGGTTCAG -ACGGAAATGGGACGATAGGCATAG -ACGGAAATGGGACGATAGGACAAG -ACGGAAATGGGACGATAGAAGCAG -ACGGAAATGGGACGATAGCGTCAA -ACGGAAATGGGACGATAGGCTGAA -ACGGAAATGGGACGATAGAGTACG -ACGGAAATGGGACGATAGATCCGA -ACGGAAATGGGACGATAGATGGGA -ACGGAAATGGGACGATAGGTGCAA -ACGGAAATGGGACGATAGGAGGAA -ACGGAAATGGGACGATAGCAGGTA -ACGGAAATGGGACGATAGGACTCT -ACGGAAATGGGACGATAGAGTCCT -ACGGAAATGGGACGATAGTAAGCC -ACGGAAATGGGACGATAGATAGCC -ACGGAAATGGGACGATAGTAACCG -ACGGAAATGGGACGATAGATGCCA -ACGGAAATGGGAAGACACGGAAAC -ACGGAAATGGGAAGACACAACACC -ACGGAAATGGGAAGACACATCGAG -ACGGAAATGGGAAGACACCTCCTT -ACGGAAATGGGAAGACACCCTGTT -ACGGAAATGGGAAGACACCGGTTT -ACGGAAATGGGAAGACACGTGGTT -ACGGAAATGGGAAGACACGCCTTT -ACGGAAATGGGAAGACACGGTCTT -ACGGAAATGGGAAGACACACGCTT -ACGGAAATGGGAAGACACAGCGTT -ACGGAAATGGGAAGACACTTCGTC -ACGGAAATGGGAAGACACTCTCTC -ACGGAAATGGGAAGACACTGGATC -ACGGAAATGGGAAGACACCACTTC -ACGGAAATGGGAAGACACGTACTC -ACGGAAATGGGAAGACACGATGTC -ACGGAAATGGGAAGACACACAGTC -ACGGAAATGGGAAGACACTTGCTG -ACGGAAATGGGAAGACACTCCATG -ACGGAAATGGGAAGACACTGTGTG -ACGGAAATGGGAAGACACCTAGTG -ACGGAAATGGGAAGACACCATCTG -ACGGAAATGGGAAGACACGAGTTG -ACGGAAATGGGAAGACACAGACTG -ACGGAAATGGGAAGACACTCGGTA -ACGGAAATGGGAAGACACTGCCTA -ACGGAAATGGGAAGACACCCACTA -ACGGAAATGGGAAGACACGGAGTA -ACGGAAATGGGAAGACACTCGTCT -ACGGAAATGGGAAGACACTGCACT -ACGGAAATGGGAAGACACCTGACT -ACGGAAATGGGAAGACACCAACCT -ACGGAAATGGGAAGACACGCTACT -ACGGAAATGGGAAGACACGGATCT -ACGGAAATGGGAAGACACAAGGCT -ACGGAAATGGGAAGACACTCAACC -ACGGAAATGGGAAGACACTGTTCC -ACGGAAATGGGAAGACACATTCCC -ACGGAAATGGGAAGACACTTCTCG -ACGGAAATGGGAAGACACTAGACG -ACGGAAATGGGAAGACACGTAACG -ACGGAAATGGGAAGACACACTTCG -ACGGAAATGGGAAGACACTACGCA -ACGGAAATGGGAAGACACCTTGCA -ACGGAAATGGGAAGACACCGAACA -ACGGAAATGGGAAGACACCAGTCA -ACGGAAATGGGAAGACACGATCCA -ACGGAAATGGGAAGACACACGACA -ACGGAAATGGGAAGACACAGCTCA -ACGGAAATGGGAAGACACTCACGT -ACGGAAATGGGAAGACACCGTAGT -ACGGAAATGGGAAGACACGTCAGT -ACGGAAATGGGAAGACACGAAGGT -ACGGAAATGGGAAGACACAACCGT -ACGGAAATGGGAAGACACTTGTGC -ACGGAAATGGGAAGACACCTAAGC -ACGGAAATGGGAAGACACACTAGC -ACGGAAATGGGAAGACACAGATGC -ACGGAAATGGGAAGACACTGAAGG -ACGGAAATGGGAAGACACCAATGG -ACGGAAATGGGAAGACACATGAGG -ACGGAAATGGGAAGACACAATGGG -ACGGAAATGGGAAGACACTCCTGA -ACGGAAATGGGAAGACACTAGCGA -ACGGAAATGGGAAGACACCACAGA -ACGGAAATGGGAAGACACGCAAGA -ACGGAAATGGGAAGACACGGTTGA -ACGGAAATGGGAAGACACTCCGAT -ACGGAAATGGGAAGACACTGGCAT -ACGGAAATGGGAAGACACCGAGAT -ACGGAAATGGGAAGACACTACCAC -ACGGAAATGGGAAGACACCAGAAC -ACGGAAATGGGAAGACACGTCTAC -ACGGAAATGGGAAGACACACGTAC -ACGGAAATGGGAAGACACAGTGAC -ACGGAAATGGGAAGACACCTGTAG -ACGGAAATGGGAAGACACCCTAAG -ACGGAAATGGGAAGACACGTTCAG -ACGGAAATGGGAAGACACGCATAG -ACGGAAATGGGAAGACACGACAAG -ACGGAAATGGGAAGACACAAGCAG -ACGGAAATGGGAAGACACCGTCAA -ACGGAAATGGGAAGACACGCTGAA -ACGGAAATGGGAAGACACAGTACG -ACGGAAATGGGAAGACACATCCGA -ACGGAAATGGGAAGACACATGGGA -ACGGAAATGGGAAGACACGTGCAA -ACGGAAATGGGAAGACACGAGGAA -ACGGAAATGGGAAGACACCAGGTA -ACGGAAATGGGAAGACACGACTCT -ACGGAAATGGGAAGACACAGTCCT -ACGGAAATGGGAAGACACTAAGCC -ACGGAAATGGGAAGACACATAGCC -ACGGAAATGGGAAGACACTAACCG -ACGGAAATGGGAAGACACATGCCA -ACGGAAATGGGAAGAGCAGGAAAC -ACGGAAATGGGAAGAGCAAACACC -ACGGAAATGGGAAGAGCAATCGAG -ACGGAAATGGGAAGAGCACTCCTT -ACGGAAATGGGAAGAGCACCTGTT -ACGGAAATGGGAAGAGCACGGTTT -ACGGAAATGGGAAGAGCAGTGGTT -ACGGAAATGGGAAGAGCAGCCTTT -ACGGAAATGGGAAGAGCAGGTCTT -ACGGAAATGGGAAGAGCAACGCTT -ACGGAAATGGGAAGAGCAAGCGTT -ACGGAAATGGGAAGAGCATTCGTC -ACGGAAATGGGAAGAGCATCTCTC -ACGGAAATGGGAAGAGCATGGATC -ACGGAAATGGGAAGAGCACACTTC -ACGGAAATGGGAAGAGCAGTACTC -ACGGAAATGGGAAGAGCAGATGTC -ACGGAAATGGGAAGAGCAACAGTC -ACGGAAATGGGAAGAGCATTGCTG -ACGGAAATGGGAAGAGCATCCATG -ACGGAAATGGGAAGAGCATGTGTG -ACGGAAATGGGAAGAGCACTAGTG -ACGGAAATGGGAAGAGCACATCTG -ACGGAAATGGGAAGAGCAGAGTTG -ACGGAAATGGGAAGAGCAAGACTG -ACGGAAATGGGAAGAGCATCGGTA -ACGGAAATGGGAAGAGCATGCCTA -ACGGAAATGGGAAGAGCACCACTA -ACGGAAATGGGAAGAGCAGGAGTA -ACGGAAATGGGAAGAGCATCGTCT -ACGGAAATGGGAAGAGCATGCACT -ACGGAAATGGGAAGAGCACTGACT -ACGGAAATGGGAAGAGCACAACCT -ACGGAAATGGGAAGAGCAGCTACT -ACGGAAATGGGAAGAGCAGGATCT -ACGGAAATGGGAAGAGCAAAGGCT -ACGGAAATGGGAAGAGCATCAACC -ACGGAAATGGGAAGAGCATGTTCC -ACGGAAATGGGAAGAGCAATTCCC -ACGGAAATGGGAAGAGCATTCTCG -ACGGAAATGGGAAGAGCATAGACG -ACGGAAATGGGAAGAGCAGTAACG -ACGGAAATGGGAAGAGCAACTTCG -ACGGAAATGGGAAGAGCATACGCA -ACGGAAATGGGAAGAGCACTTGCA -ACGGAAATGGGAAGAGCACGAACA -ACGGAAATGGGAAGAGCACAGTCA -ACGGAAATGGGAAGAGCAGATCCA -ACGGAAATGGGAAGAGCAACGACA -ACGGAAATGGGAAGAGCAAGCTCA -ACGGAAATGGGAAGAGCATCACGT -ACGGAAATGGGAAGAGCACGTAGT -ACGGAAATGGGAAGAGCAGTCAGT -ACGGAAATGGGAAGAGCAGAAGGT -ACGGAAATGGGAAGAGCAAACCGT -ACGGAAATGGGAAGAGCATTGTGC -ACGGAAATGGGAAGAGCACTAAGC -ACGGAAATGGGAAGAGCAACTAGC -ACGGAAATGGGAAGAGCAAGATGC -ACGGAAATGGGAAGAGCATGAAGG -ACGGAAATGGGAAGAGCACAATGG -ACGGAAATGGGAAGAGCAATGAGG -ACGGAAATGGGAAGAGCAAATGGG -ACGGAAATGGGAAGAGCATCCTGA -ACGGAAATGGGAAGAGCATAGCGA -ACGGAAATGGGAAGAGCACACAGA -ACGGAAATGGGAAGAGCAGCAAGA -ACGGAAATGGGAAGAGCAGGTTGA -ACGGAAATGGGAAGAGCATCCGAT -ACGGAAATGGGAAGAGCATGGCAT -ACGGAAATGGGAAGAGCACGAGAT -ACGGAAATGGGAAGAGCATACCAC -ACGGAAATGGGAAGAGCACAGAAC -ACGGAAATGGGAAGAGCAGTCTAC -ACGGAAATGGGAAGAGCAACGTAC -ACGGAAATGGGAAGAGCAAGTGAC -ACGGAAATGGGAAGAGCACTGTAG -ACGGAAATGGGAAGAGCACCTAAG -ACGGAAATGGGAAGAGCAGTTCAG -ACGGAAATGGGAAGAGCAGCATAG -ACGGAAATGGGAAGAGCAGACAAG -ACGGAAATGGGAAGAGCAAAGCAG -ACGGAAATGGGAAGAGCACGTCAA -ACGGAAATGGGAAGAGCAGCTGAA -ACGGAAATGGGAAGAGCAAGTACG -ACGGAAATGGGAAGAGCAATCCGA -ACGGAAATGGGAAGAGCAATGGGA -ACGGAAATGGGAAGAGCAGTGCAA -ACGGAAATGGGAAGAGCAGAGGAA -ACGGAAATGGGAAGAGCACAGGTA -ACGGAAATGGGAAGAGCAGACTCT -ACGGAAATGGGAAGAGCAAGTCCT -ACGGAAATGGGAAGAGCATAAGCC -ACGGAAATGGGAAGAGCAATAGCC -ACGGAAATGGGAAGAGCATAACCG -ACGGAAATGGGAAGAGCAATGCCA -ACGGAAATGGGATGAGGTGGAAAC -ACGGAAATGGGATGAGGTAACACC -ACGGAAATGGGATGAGGTATCGAG -ACGGAAATGGGATGAGGTCTCCTT -ACGGAAATGGGATGAGGTCCTGTT -ACGGAAATGGGATGAGGTCGGTTT -ACGGAAATGGGATGAGGTGTGGTT -ACGGAAATGGGATGAGGTGCCTTT -ACGGAAATGGGATGAGGTGGTCTT -ACGGAAATGGGATGAGGTACGCTT -ACGGAAATGGGATGAGGTAGCGTT -ACGGAAATGGGATGAGGTTTCGTC -ACGGAAATGGGATGAGGTTCTCTC -ACGGAAATGGGATGAGGTTGGATC -ACGGAAATGGGATGAGGTCACTTC -ACGGAAATGGGATGAGGTGTACTC -ACGGAAATGGGATGAGGTGATGTC -ACGGAAATGGGATGAGGTACAGTC -ACGGAAATGGGATGAGGTTTGCTG -ACGGAAATGGGATGAGGTTCCATG -ACGGAAATGGGATGAGGTTGTGTG -ACGGAAATGGGATGAGGTCTAGTG -ACGGAAATGGGATGAGGTCATCTG -ACGGAAATGGGATGAGGTGAGTTG -ACGGAAATGGGATGAGGTAGACTG -ACGGAAATGGGATGAGGTTCGGTA -ACGGAAATGGGATGAGGTTGCCTA -ACGGAAATGGGATGAGGTCCACTA -ACGGAAATGGGATGAGGTGGAGTA -ACGGAAATGGGATGAGGTTCGTCT -ACGGAAATGGGATGAGGTTGCACT -ACGGAAATGGGATGAGGTCTGACT -ACGGAAATGGGATGAGGTCAACCT -ACGGAAATGGGATGAGGTGCTACT -ACGGAAATGGGATGAGGTGGATCT -ACGGAAATGGGATGAGGTAAGGCT -ACGGAAATGGGATGAGGTTCAACC -ACGGAAATGGGATGAGGTTGTTCC -ACGGAAATGGGATGAGGTATTCCC -ACGGAAATGGGATGAGGTTTCTCG -ACGGAAATGGGATGAGGTTAGACG -ACGGAAATGGGATGAGGTGTAACG -ACGGAAATGGGATGAGGTACTTCG -ACGGAAATGGGATGAGGTTACGCA -ACGGAAATGGGATGAGGTCTTGCA -ACGGAAATGGGATGAGGTCGAACA -ACGGAAATGGGATGAGGTCAGTCA -ACGGAAATGGGATGAGGTGATCCA -ACGGAAATGGGATGAGGTACGACA -ACGGAAATGGGATGAGGTAGCTCA -ACGGAAATGGGATGAGGTTCACGT -ACGGAAATGGGATGAGGTCGTAGT -ACGGAAATGGGATGAGGTGTCAGT -ACGGAAATGGGATGAGGTGAAGGT -ACGGAAATGGGATGAGGTAACCGT -ACGGAAATGGGATGAGGTTTGTGC -ACGGAAATGGGATGAGGTCTAAGC -ACGGAAATGGGATGAGGTACTAGC -ACGGAAATGGGATGAGGTAGATGC -ACGGAAATGGGATGAGGTTGAAGG -ACGGAAATGGGATGAGGTCAATGG -ACGGAAATGGGATGAGGTATGAGG -ACGGAAATGGGATGAGGTAATGGG -ACGGAAATGGGATGAGGTTCCTGA -ACGGAAATGGGATGAGGTTAGCGA -ACGGAAATGGGATGAGGTCACAGA -ACGGAAATGGGATGAGGTGCAAGA -ACGGAAATGGGATGAGGTGGTTGA -ACGGAAATGGGATGAGGTTCCGAT -ACGGAAATGGGATGAGGTTGGCAT -ACGGAAATGGGATGAGGTCGAGAT -ACGGAAATGGGATGAGGTTACCAC -ACGGAAATGGGATGAGGTCAGAAC -ACGGAAATGGGATGAGGTGTCTAC -ACGGAAATGGGATGAGGTACGTAC -ACGGAAATGGGATGAGGTAGTGAC -ACGGAAATGGGATGAGGTCTGTAG -ACGGAAATGGGATGAGGTCCTAAG -ACGGAAATGGGATGAGGTGTTCAG -ACGGAAATGGGATGAGGTGCATAG -ACGGAAATGGGATGAGGTGACAAG -ACGGAAATGGGATGAGGTAAGCAG -ACGGAAATGGGATGAGGTCGTCAA -ACGGAAATGGGATGAGGTGCTGAA -ACGGAAATGGGATGAGGTAGTACG -ACGGAAATGGGATGAGGTATCCGA -ACGGAAATGGGATGAGGTATGGGA -ACGGAAATGGGATGAGGTGTGCAA -ACGGAAATGGGATGAGGTGAGGAA -ACGGAAATGGGATGAGGTCAGGTA -ACGGAAATGGGATGAGGTGACTCT -ACGGAAATGGGATGAGGTAGTCCT -ACGGAAATGGGATGAGGTTAAGCC -ACGGAAATGGGATGAGGTATAGCC -ACGGAAATGGGATGAGGTTAACCG -ACGGAAATGGGATGAGGTATGCCA -ACGGAAATGGGAGATTCCGGAAAC -ACGGAAATGGGAGATTCCAACACC -ACGGAAATGGGAGATTCCATCGAG -ACGGAAATGGGAGATTCCCTCCTT -ACGGAAATGGGAGATTCCCCTGTT -ACGGAAATGGGAGATTCCCGGTTT -ACGGAAATGGGAGATTCCGTGGTT -ACGGAAATGGGAGATTCCGCCTTT -ACGGAAATGGGAGATTCCGGTCTT -ACGGAAATGGGAGATTCCACGCTT -ACGGAAATGGGAGATTCCAGCGTT -ACGGAAATGGGAGATTCCTTCGTC -ACGGAAATGGGAGATTCCTCTCTC -ACGGAAATGGGAGATTCCTGGATC -ACGGAAATGGGAGATTCCCACTTC -ACGGAAATGGGAGATTCCGTACTC -ACGGAAATGGGAGATTCCGATGTC -ACGGAAATGGGAGATTCCACAGTC -ACGGAAATGGGAGATTCCTTGCTG -ACGGAAATGGGAGATTCCTCCATG -ACGGAAATGGGAGATTCCTGTGTG -ACGGAAATGGGAGATTCCCTAGTG -ACGGAAATGGGAGATTCCCATCTG -ACGGAAATGGGAGATTCCGAGTTG -ACGGAAATGGGAGATTCCAGACTG -ACGGAAATGGGAGATTCCTCGGTA -ACGGAAATGGGAGATTCCTGCCTA -ACGGAAATGGGAGATTCCCCACTA -ACGGAAATGGGAGATTCCGGAGTA -ACGGAAATGGGAGATTCCTCGTCT -ACGGAAATGGGAGATTCCTGCACT -ACGGAAATGGGAGATTCCCTGACT -ACGGAAATGGGAGATTCCCAACCT -ACGGAAATGGGAGATTCCGCTACT -ACGGAAATGGGAGATTCCGGATCT -ACGGAAATGGGAGATTCCAAGGCT -ACGGAAATGGGAGATTCCTCAACC -ACGGAAATGGGAGATTCCTGTTCC -ACGGAAATGGGAGATTCCATTCCC -ACGGAAATGGGAGATTCCTTCTCG -ACGGAAATGGGAGATTCCTAGACG -ACGGAAATGGGAGATTCCGTAACG -ACGGAAATGGGAGATTCCACTTCG -ACGGAAATGGGAGATTCCTACGCA -ACGGAAATGGGAGATTCCCTTGCA -ACGGAAATGGGAGATTCCCGAACA -ACGGAAATGGGAGATTCCCAGTCA -ACGGAAATGGGAGATTCCGATCCA -ACGGAAATGGGAGATTCCACGACA -ACGGAAATGGGAGATTCCAGCTCA -ACGGAAATGGGAGATTCCTCACGT -ACGGAAATGGGAGATTCCCGTAGT -ACGGAAATGGGAGATTCCGTCAGT -ACGGAAATGGGAGATTCCGAAGGT -ACGGAAATGGGAGATTCCAACCGT -ACGGAAATGGGAGATTCCTTGTGC -ACGGAAATGGGAGATTCCCTAAGC -ACGGAAATGGGAGATTCCACTAGC -ACGGAAATGGGAGATTCCAGATGC -ACGGAAATGGGAGATTCCTGAAGG -ACGGAAATGGGAGATTCCCAATGG -ACGGAAATGGGAGATTCCATGAGG -ACGGAAATGGGAGATTCCAATGGG -ACGGAAATGGGAGATTCCTCCTGA -ACGGAAATGGGAGATTCCTAGCGA -ACGGAAATGGGAGATTCCCACAGA -ACGGAAATGGGAGATTCCGCAAGA -ACGGAAATGGGAGATTCCGGTTGA -ACGGAAATGGGAGATTCCTCCGAT -ACGGAAATGGGAGATTCCTGGCAT -ACGGAAATGGGAGATTCCCGAGAT -ACGGAAATGGGAGATTCCTACCAC -ACGGAAATGGGAGATTCCCAGAAC -ACGGAAATGGGAGATTCCGTCTAC -ACGGAAATGGGAGATTCCACGTAC -ACGGAAATGGGAGATTCCAGTGAC -ACGGAAATGGGAGATTCCCTGTAG -ACGGAAATGGGAGATTCCCCTAAG -ACGGAAATGGGAGATTCCGTTCAG -ACGGAAATGGGAGATTCCGCATAG -ACGGAAATGGGAGATTCCGACAAG -ACGGAAATGGGAGATTCCAAGCAG -ACGGAAATGGGAGATTCCCGTCAA -ACGGAAATGGGAGATTCCGCTGAA -ACGGAAATGGGAGATTCCAGTACG -ACGGAAATGGGAGATTCCATCCGA -ACGGAAATGGGAGATTCCATGGGA -ACGGAAATGGGAGATTCCGTGCAA -ACGGAAATGGGAGATTCCGAGGAA -ACGGAAATGGGAGATTCCCAGGTA -ACGGAAATGGGAGATTCCGACTCT -ACGGAAATGGGAGATTCCAGTCCT -ACGGAAATGGGAGATTCCTAAGCC -ACGGAAATGGGAGATTCCATAGCC -ACGGAAATGGGAGATTCCTAACCG -ACGGAAATGGGAGATTCCATGCCA -ACGGAAATGGGACATTGGGGAAAC -ACGGAAATGGGACATTGGAACACC -ACGGAAATGGGACATTGGATCGAG -ACGGAAATGGGACATTGGCTCCTT -ACGGAAATGGGACATTGGCCTGTT -ACGGAAATGGGACATTGGCGGTTT -ACGGAAATGGGACATTGGGTGGTT -ACGGAAATGGGACATTGGGCCTTT -ACGGAAATGGGACATTGGGGTCTT -ACGGAAATGGGACATTGGACGCTT -ACGGAAATGGGACATTGGAGCGTT -ACGGAAATGGGACATTGGTTCGTC -ACGGAAATGGGACATTGGTCTCTC -ACGGAAATGGGACATTGGTGGATC -ACGGAAATGGGACATTGGCACTTC -ACGGAAATGGGACATTGGGTACTC -ACGGAAATGGGACATTGGGATGTC -ACGGAAATGGGACATTGGACAGTC -ACGGAAATGGGACATTGGTTGCTG -ACGGAAATGGGACATTGGTCCATG -ACGGAAATGGGACATTGGTGTGTG -ACGGAAATGGGACATTGGCTAGTG -ACGGAAATGGGACATTGGCATCTG -ACGGAAATGGGACATTGGGAGTTG -ACGGAAATGGGACATTGGAGACTG -ACGGAAATGGGACATTGGTCGGTA -ACGGAAATGGGACATTGGTGCCTA -ACGGAAATGGGACATTGGCCACTA -ACGGAAATGGGACATTGGGGAGTA -ACGGAAATGGGACATTGGTCGTCT -ACGGAAATGGGACATTGGTGCACT -ACGGAAATGGGACATTGGCTGACT -ACGGAAATGGGACATTGGCAACCT -ACGGAAATGGGACATTGGGCTACT -ACGGAAATGGGACATTGGGGATCT -ACGGAAATGGGACATTGGAAGGCT -ACGGAAATGGGACATTGGTCAACC -ACGGAAATGGGACATTGGTGTTCC -ACGGAAATGGGACATTGGATTCCC -ACGGAAATGGGACATTGGTTCTCG -ACGGAAATGGGACATTGGTAGACG -ACGGAAATGGGACATTGGGTAACG -ACGGAAATGGGACATTGGACTTCG -ACGGAAATGGGACATTGGTACGCA -ACGGAAATGGGACATTGGCTTGCA -ACGGAAATGGGACATTGGCGAACA -ACGGAAATGGGACATTGGCAGTCA -ACGGAAATGGGACATTGGGATCCA -ACGGAAATGGGACATTGGACGACA -ACGGAAATGGGACATTGGAGCTCA -ACGGAAATGGGACATTGGTCACGT -ACGGAAATGGGACATTGGCGTAGT -ACGGAAATGGGACATTGGGTCAGT -ACGGAAATGGGACATTGGGAAGGT -ACGGAAATGGGACATTGGAACCGT -ACGGAAATGGGACATTGGTTGTGC -ACGGAAATGGGACATTGGCTAAGC -ACGGAAATGGGACATTGGACTAGC -ACGGAAATGGGACATTGGAGATGC -ACGGAAATGGGACATTGGTGAAGG -ACGGAAATGGGACATTGGCAATGG -ACGGAAATGGGACATTGGATGAGG -ACGGAAATGGGACATTGGAATGGG -ACGGAAATGGGACATTGGTCCTGA -ACGGAAATGGGACATTGGTAGCGA -ACGGAAATGGGACATTGGCACAGA -ACGGAAATGGGACATTGGGCAAGA -ACGGAAATGGGACATTGGGGTTGA -ACGGAAATGGGACATTGGTCCGAT -ACGGAAATGGGACATTGGTGGCAT -ACGGAAATGGGACATTGGCGAGAT -ACGGAAATGGGACATTGGTACCAC -ACGGAAATGGGACATTGGCAGAAC -ACGGAAATGGGACATTGGGTCTAC -ACGGAAATGGGACATTGGACGTAC -ACGGAAATGGGACATTGGAGTGAC -ACGGAAATGGGACATTGGCTGTAG -ACGGAAATGGGACATTGGCCTAAG -ACGGAAATGGGACATTGGGTTCAG -ACGGAAATGGGACATTGGGCATAG -ACGGAAATGGGACATTGGGACAAG -ACGGAAATGGGACATTGGAAGCAG -ACGGAAATGGGACATTGGCGTCAA -ACGGAAATGGGACATTGGGCTGAA -ACGGAAATGGGACATTGGAGTACG -ACGGAAATGGGACATTGGATCCGA -ACGGAAATGGGACATTGGATGGGA -ACGGAAATGGGACATTGGGTGCAA -ACGGAAATGGGACATTGGGAGGAA -ACGGAAATGGGACATTGGCAGGTA -ACGGAAATGGGACATTGGGACTCT -ACGGAAATGGGACATTGGAGTCCT -ACGGAAATGGGACATTGGTAAGCC -ACGGAAATGGGACATTGGATAGCC -ACGGAAATGGGACATTGGTAACCG -ACGGAAATGGGACATTGGATGCCA -ACGGAAATGGGAGATCGAGGAAAC -ACGGAAATGGGAGATCGAAACACC -ACGGAAATGGGAGATCGAATCGAG -ACGGAAATGGGAGATCGACTCCTT -ACGGAAATGGGAGATCGACCTGTT -ACGGAAATGGGAGATCGACGGTTT -ACGGAAATGGGAGATCGAGTGGTT -ACGGAAATGGGAGATCGAGCCTTT -ACGGAAATGGGAGATCGAGGTCTT -ACGGAAATGGGAGATCGAACGCTT -ACGGAAATGGGAGATCGAAGCGTT -ACGGAAATGGGAGATCGATTCGTC -ACGGAAATGGGAGATCGATCTCTC -ACGGAAATGGGAGATCGATGGATC -ACGGAAATGGGAGATCGACACTTC -ACGGAAATGGGAGATCGAGTACTC -ACGGAAATGGGAGATCGAGATGTC -ACGGAAATGGGAGATCGAACAGTC -ACGGAAATGGGAGATCGATTGCTG -ACGGAAATGGGAGATCGATCCATG -ACGGAAATGGGAGATCGATGTGTG -ACGGAAATGGGAGATCGACTAGTG -ACGGAAATGGGAGATCGACATCTG -ACGGAAATGGGAGATCGAGAGTTG -ACGGAAATGGGAGATCGAAGACTG -ACGGAAATGGGAGATCGATCGGTA -ACGGAAATGGGAGATCGATGCCTA -ACGGAAATGGGAGATCGACCACTA -ACGGAAATGGGAGATCGAGGAGTA -ACGGAAATGGGAGATCGATCGTCT -ACGGAAATGGGAGATCGATGCACT -ACGGAAATGGGAGATCGACTGACT -ACGGAAATGGGAGATCGACAACCT -ACGGAAATGGGAGATCGAGCTACT -ACGGAAATGGGAGATCGAGGATCT -ACGGAAATGGGAGATCGAAAGGCT -ACGGAAATGGGAGATCGATCAACC -ACGGAAATGGGAGATCGATGTTCC -ACGGAAATGGGAGATCGAATTCCC -ACGGAAATGGGAGATCGATTCTCG -ACGGAAATGGGAGATCGATAGACG -ACGGAAATGGGAGATCGAGTAACG -ACGGAAATGGGAGATCGAACTTCG -ACGGAAATGGGAGATCGATACGCA -ACGGAAATGGGAGATCGACTTGCA -ACGGAAATGGGAGATCGACGAACA -ACGGAAATGGGAGATCGACAGTCA -ACGGAAATGGGAGATCGAGATCCA -ACGGAAATGGGAGATCGAACGACA -ACGGAAATGGGAGATCGAAGCTCA -ACGGAAATGGGAGATCGATCACGT -ACGGAAATGGGAGATCGACGTAGT -ACGGAAATGGGAGATCGAGTCAGT -ACGGAAATGGGAGATCGAGAAGGT -ACGGAAATGGGAGATCGAAACCGT -ACGGAAATGGGAGATCGATTGTGC -ACGGAAATGGGAGATCGACTAAGC -ACGGAAATGGGAGATCGAACTAGC -ACGGAAATGGGAGATCGAAGATGC -ACGGAAATGGGAGATCGATGAAGG -ACGGAAATGGGAGATCGACAATGG -ACGGAAATGGGAGATCGAATGAGG -ACGGAAATGGGAGATCGAAATGGG -ACGGAAATGGGAGATCGATCCTGA -ACGGAAATGGGAGATCGATAGCGA -ACGGAAATGGGAGATCGACACAGA -ACGGAAATGGGAGATCGAGCAAGA -ACGGAAATGGGAGATCGAGGTTGA -ACGGAAATGGGAGATCGATCCGAT -ACGGAAATGGGAGATCGATGGCAT -ACGGAAATGGGAGATCGACGAGAT -ACGGAAATGGGAGATCGATACCAC -ACGGAAATGGGAGATCGACAGAAC -ACGGAAATGGGAGATCGAGTCTAC -ACGGAAATGGGAGATCGAACGTAC -ACGGAAATGGGAGATCGAAGTGAC -ACGGAAATGGGAGATCGACTGTAG -ACGGAAATGGGAGATCGACCTAAG -ACGGAAATGGGAGATCGAGTTCAG -ACGGAAATGGGAGATCGAGCATAG -ACGGAAATGGGAGATCGAGACAAG -ACGGAAATGGGAGATCGAAAGCAG -ACGGAAATGGGAGATCGACGTCAA -ACGGAAATGGGAGATCGAGCTGAA -ACGGAAATGGGAGATCGAAGTACG -ACGGAAATGGGAGATCGAATCCGA -ACGGAAATGGGAGATCGAATGGGA -ACGGAAATGGGAGATCGAGTGCAA -ACGGAAATGGGAGATCGAGAGGAA -ACGGAAATGGGAGATCGACAGGTA -ACGGAAATGGGAGATCGAGACTCT -ACGGAAATGGGAGATCGAAGTCCT -ACGGAAATGGGAGATCGATAAGCC -ACGGAAATGGGAGATCGAATAGCC -ACGGAAATGGGAGATCGATAACCG -ACGGAAATGGGAGATCGAATGCCA -ACGGAAATGGGACACTACGGAAAC -ACGGAAATGGGACACTACAACACC -ACGGAAATGGGACACTACATCGAG -ACGGAAATGGGACACTACCTCCTT -ACGGAAATGGGACACTACCCTGTT -ACGGAAATGGGACACTACCGGTTT -ACGGAAATGGGACACTACGTGGTT -ACGGAAATGGGACACTACGCCTTT -ACGGAAATGGGACACTACGGTCTT -ACGGAAATGGGACACTACACGCTT -ACGGAAATGGGACACTACAGCGTT -ACGGAAATGGGACACTACTTCGTC -ACGGAAATGGGACACTACTCTCTC -ACGGAAATGGGACACTACTGGATC -ACGGAAATGGGACACTACCACTTC -ACGGAAATGGGACACTACGTACTC -ACGGAAATGGGACACTACGATGTC -ACGGAAATGGGACACTACACAGTC -ACGGAAATGGGACACTACTTGCTG -ACGGAAATGGGACACTACTCCATG -ACGGAAATGGGACACTACTGTGTG -ACGGAAATGGGACACTACCTAGTG -ACGGAAATGGGACACTACCATCTG -ACGGAAATGGGACACTACGAGTTG -ACGGAAATGGGACACTACAGACTG -ACGGAAATGGGACACTACTCGGTA -ACGGAAATGGGACACTACTGCCTA -ACGGAAATGGGACACTACCCACTA -ACGGAAATGGGACACTACGGAGTA -ACGGAAATGGGACACTACTCGTCT -ACGGAAATGGGACACTACTGCACT -ACGGAAATGGGACACTACCTGACT -ACGGAAATGGGACACTACCAACCT -ACGGAAATGGGACACTACGCTACT -ACGGAAATGGGACACTACGGATCT -ACGGAAATGGGACACTACAAGGCT -ACGGAAATGGGACACTACTCAACC -ACGGAAATGGGACACTACTGTTCC -ACGGAAATGGGACACTACATTCCC -ACGGAAATGGGACACTACTTCTCG -ACGGAAATGGGACACTACTAGACG -ACGGAAATGGGACACTACGTAACG -ACGGAAATGGGACACTACACTTCG -ACGGAAATGGGACACTACTACGCA -ACGGAAATGGGACACTACCTTGCA -ACGGAAATGGGACACTACCGAACA -ACGGAAATGGGACACTACCAGTCA -ACGGAAATGGGACACTACGATCCA -ACGGAAATGGGACACTACACGACA -ACGGAAATGGGACACTACAGCTCA -ACGGAAATGGGACACTACTCACGT -ACGGAAATGGGACACTACCGTAGT -ACGGAAATGGGACACTACGTCAGT -ACGGAAATGGGACACTACGAAGGT -ACGGAAATGGGACACTACAACCGT -ACGGAAATGGGACACTACTTGTGC -ACGGAAATGGGACACTACCTAAGC -ACGGAAATGGGACACTACACTAGC -ACGGAAATGGGACACTACAGATGC -ACGGAAATGGGACACTACTGAAGG -ACGGAAATGGGACACTACCAATGG -ACGGAAATGGGACACTACATGAGG -ACGGAAATGGGACACTACAATGGG -ACGGAAATGGGACACTACTCCTGA -ACGGAAATGGGACACTACTAGCGA -ACGGAAATGGGACACTACCACAGA -ACGGAAATGGGACACTACGCAAGA -ACGGAAATGGGACACTACGGTTGA -ACGGAAATGGGACACTACTCCGAT -ACGGAAATGGGACACTACTGGCAT -ACGGAAATGGGACACTACCGAGAT -ACGGAAATGGGACACTACTACCAC -ACGGAAATGGGACACTACCAGAAC -ACGGAAATGGGACACTACGTCTAC -ACGGAAATGGGACACTACACGTAC -ACGGAAATGGGACACTACAGTGAC -ACGGAAATGGGACACTACCTGTAG -ACGGAAATGGGACACTACCCTAAG -ACGGAAATGGGACACTACGTTCAG -ACGGAAATGGGACACTACGCATAG -ACGGAAATGGGACACTACGACAAG -ACGGAAATGGGACACTACAAGCAG -ACGGAAATGGGACACTACCGTCAA -ACGGAAATGGGACACTACGCTGAA -ACGGAAATGGGACACTACAGTACG -ACGGAAATGGGACACTACATCCGA -ACGGAAATGGGACACTACATGGGA -ACGGAAATGGGACACTACGTGCAA -ACGGAAATGGGACACTACGAGGAA -ACGGAAATGGGACACTACCAGGTA -ACGGAAATGGGACACTACGACTCT -ACGGAAATGGGACACTACAGTCCT -ACGGAAATGGGACACTACTAAGCC -ACGGAAATGGGACACTACATAGCC -ACGGAAATGGGACACTACTAACCG -ACGGAAATGGGACACTACATGCCA -ACGGAAATGGGAAACCAGGGAAAC -ACGGAAATGGGAAACCAGAACACC -ACGGAAATGGGAAACCAGATCGAG -ACGGAAATGGGAAACCAGCTCCTT -ACGGAAATGGGAAACCAGCCTGTT -ACGGAAATGGGAAACCAGCGGTTT -ACGGAAATGGGAAACCAGGTGGTT -ACGGAAATGGGAAACCAGGCCTTT -ACGGAAATGGGAAACCAGGGTCTT -ACGGAAATGGGAAACCAGACGCTT -ACGGAAATGGGAAACCAGAGCGTT -ACGGAAATGGGAAACCAGTTCGTC -ACGGAAATGGGAAACCAGTCTCTC -ACGGAAATGGGAAACCAGTGGATC -ACGGAAATGGGAAACCAGCACTTC -ACGGAAATGGGAAACCAGGTACTC -ACGGAAATGGGAAACCAGGATGTC -ACGGAAATGGGAAACCAGACAGTC -ACGGAAATGGGAAACCAGTTGCTG -ACGGAAATGGGAAACCAGTCCATG -ACGGAAATGGGAAACCAGTGTGTG -ACGGAAATGGGAAACCAGCTAGTG -ACGGAAATGGGAAACCAGCATCTG -ACGGAAATGGGAAACCAGGAGTTG -ACGGAAATGGGAAACCAGAGACTG -ACGGAAATGGGAAACCAGTCGGTA -ACGGAAATGGGAAACCAGTGCCTA -ACGGAAATGGGAAACCAGCCACTA -ACGGAAATGGGAAACCAGGGAGTA -ACGGAAATGGGAAACCAGTCGTCT -ACGGAAATGGGAAACCAGTGCACT -ACGGAAATGGGAAACCAGCTGACT -ACGGAAATGGGAAACCAGCAACCT -ACGGAAATGGGAAACCAGGCTACT -ACGGAAATGGGAAACCAGGGATCT -ACGGAAATGGGAAACCAGAAGGCT -ACGGAAATGGGAAACCAGTCAACC -ACGGAAATGGGAAACCAGTGTTCC -ACGGAAATGGGAAACCAGATTCCC -ACGGAAATGGGAAACCAGTTCTCG -ACGGAAATGGGAAACCAGTAGACG -ACGGAAATGGGAAACCAGGTAACG -ACGGAAATGGGAAACCAGACTTCG -ACGGAAATGGGAAACCAGTACGCA -ACGGAAATGGGAAACCAGCTTGCA -ACGGAAATGGGAAACCAGCGAACA -ACGGAAATGGGAAACCAGCAGTCA -ACGGAAATGGGAAACCAGGATCCA -ACGGAAATGGGAAACCAGACGACA -ACGGAAATGGGAAACCAGAGCTCA -ACGGAAATGGGAAACCAGTCACGT -ACGGAAATGGGAAACCAGCGTAGT -ACGGAAATGGGAAACCAGGTCAGT -ACGGAAATGGGAAACCAGGAAGGT -ACGGAAATGGGAAACCAGAACCGT -ACGGAAATGGGAAACCAGTTGTGC -ACGGAAATGGGAAACCAGCTAAGC -ACGGAAATGGGAAACCAGACTAGC -ACGGAAATGGGAAACCAGAGATGC -ACGGAAATGGGAAACCAGTGAAGG -ACGGAAATGGGAAACCAGCAATGG -ACGGAAATGGGAAACCAGATGAGG -ACGGAAATGGGAAACCAGAATGGG -ACGGAAATGGGAAACCAGTCCTGA -ACGGAAATGGGAAACCAGTAGCGA -ACGGAAATGGGAAACCAGCACAGA -ACGGAAATGGGAAACCAGGCAAGA -ACGGAAATGGGAAACCAGGGTTGA -ACGGAAATGGGAAACCAGTCCGAT -ACGGAAATGGGAAACCAGTGGCAT -ACGGAAATGGGAAACCAGCGAGAT -ACGGAAATGGGAAACCAGTACCAC -ACGGAAATGGGAAACCAGCAGAAC -ACGGAAATGGGAAACCAGGTCTAC -ACGGAAATGGGAAACCAGACGTAC -ACGGAAATGGGAAACCAGAGTGAC -ACGGAAATGGGAAACCAGCTGTAG -ACGGAAATGGGAAACCAGCCTAAG -ACGGAAATGGGAAACCAGGTTCAG -ACGGAAATGGGAAACCAGGCATAG -ACGGAAATGGGAAACCAGGACAAG -ACGGAAATGGGAAACCAGAAGCAG -ACGGAAATGGGAAACCAGCGTCAA -ACGGAAATGGGAAACCAGGCTGAA -ACGGAAATGGGAAACCAGAGTACG -ACGGAAATGGGAAACCAGATCCGA -ACGGAAATGGGAAACCAGATGGGA -ACGGAAATGGGAAACCAGGTGCAA -ACGGAAATGGGAAACCAGGAGGAA -ACGGAAATGGGAAACCAGCAGGTA -ACGGAAATGGGAAACCAGGACTCT -ACGGAAATGGGAAACCAGAGTCCT -ACGGAAATGGGAAACCAGTAAGCC -ACGGAAATGGGAAACCAGATAGCC -ACGGAAATGGGAAACCAGTAACCG -ACGGAAATGGGAAACCAGATGCCA -ACGGAAATGGGATACGTCGGAAAC -ACGGAAATGGGATACGTCAACACC -ACGGAAATGGGATACGTCATCGAG -ACGGAAATGGGATACGTCCTCCTT -ACGGAAATGGGATACGTCCCTGTT -ACGGAAATGGGATACGTCCGGTTT -ACGGAAATGGGATACGTCGTGGTT -ACGGAAATGGGATACGTCGCCTTT -ACGGAAATGGGATACGTCGGTCTT -ACGGAAATGGGATACGTCACGCTT -ACGGAAATGGGATACGTCAGCGTT -ACGGAAATGGGATACGTCTTCGTC -ACGGAAATGGGATACGTCTCTCTC -ACGGAAATGGGATACGTCTGGATC -ACGGAAATGGGATACGTCCACTTC -ACGGAAATGGGATACGTCGTACTC -ACGGAAATGGGATACGTCGATGTC -ACGGAAATGGGATACGTCACAGTC -ACGGAAATGGGATACGTCTTGCTG -ACGGAAATGGGATACGTCTCCATG -ACGGAAATGGGATACGTCTGTGTG -ACGGAAATGGGATACGTCCTAGTG -ACGGAAATGGGATACGTCCATCTG -ACGGAAATGGGATACGTCGAGTTG -ACGGAAATGGGATACGTCAGACTG -ACGGAAATGGGATACGTCTCGGTA -ACGGAAATGGGATACGTCTGCCTA -ACGGAAATGGGATACGTCCCACTA -ACGGAAATGGGATACGTCGGAGTA -ACGGAAATGGGATACGTCTCGTCT -ACGGAAATGGGATACGTCTGCACT -ACGGAAATGGGATACGTCCTGACT -ACGGAAATGGGATACGTCCAACCT -ACGGAAATGGGATACGTCGCTACT -ACGGAAATGGGATACGTCGGATCT -ACGGAAATGGGATACGTCAAGGCT -ACGGAAATGGGATACGTCTCAACC -ACGGAAATGGGATACGTCTGTTCC -ACGGAAATGGGATACGTCATTCCC -ACGGAAATGGGATACGTCTTCTCG -ACGGAAATGGGATACGTCTAGACG -ACGGAAATGGGATACGTCGTAACG -ACGGAAATGGGATACGTCACTTCG -ACGGAAATGGGATACGTCTACGCA -ACGGAAATGGGATACGTCCTTGCA -ACGGAAATGGGATACGTCCGAACA -ACGGAAATGGGATACGTCCAGTCA -ACGGAAATGGGATACGTCGATCCA -ACGGAAATGGGATACGTCACGACA -ACGGAAATGGGATACGTCAGCTCA -ACGGAAATGGGATACGTCTCACGT -ACGGAAATGGGATACGTCCGTAGT -ACGGAAATGGGATACGTCGTCAGT -ACGGAAATGGGATACGTCGAAGGT -ACGGAAATGGGATACGTCAACCGT -ACGGAAATGGGATACGTCTTGTGC -ACGGAAATGGGATACGTCCTAAGC -ACGGAAATGGGATACGTCACTAGC -ACGGAAATGGGATACGTCAGATGC -ACGGAAATGGGATACGTCTGAAGG -ACGGAAATGGGATACGTCCAATGG -ACGGAAATGGGATACGTCATGAGG -ACGGAAATGGGATACGTCAATGGG -ACGGAAATGGGATACGTCTCCTGA -ACGGAAATGGGATACGTCTAGCGA -ACGGAAATGGGATACGTCCACAGA -ACGGAAATGGGATACGTCGCAAGA -ACGGAAATGGGATACGTCGGTTGA -ACGGAAATGGGATACGTCTCCGAT -ACGGAAATGGGATACGTCTGGCAT -ACGGAAATGGGATACGTCCGAGAT -ACGGAAATGGGATACGTCTACCAC -ACGGAAATGGGATACGTCCAGAAC -ACGGAAATGGGATACGTCGTCTAC -ACGGAAATGGGATACGTCACGTAC -ACGGAAATGGGATACGTCAGTGAC -ACGGAAATGGGATACGTCCTGTAG -ACGGAAATGGGATACGTCCCTAAG -ACGGAAATGGGATACGTCGTTCAG -ACGGAAATGGGATACGTCGCATAG -ACGGAAATGGGATACGTCGACAAG -ACGGAAATGGGATACGTCAAGCAG -ACGGAAATGGGATACGTCCGTCAA -ACGGAAATGGGATACGTCGCTGAA -ACGGAAATGGGATACGTCAGTACG -ACGGAAATGGGATACGTCATCCGA -ACGGAAATGGGATACGTCATGGGA -ACGGAAATGGGATACGTCGTGCAA -ACGGAAATGGGATACGTCGAGGAA -ACGGAAATGGGATACGTCCAGGTA -ACGGAAATGGGATACGTCGACTCT -ACGGAAATGGGATACGTCAGTCCT -ACGGAAATGGGATACGTCTAAGCC -ACGGAAATGGGATACGTCATAGCC -ACGGAAATGGGATACGTCTAACCG -ACGGAAATGGGATACGTCATGCCA -ACGGAAATGGGATACACGGGAAAC -ACGGAAATGGGATACACGAACACC -ACGGAAATGGGATACACGATCGAG -ACGGAAATGGGATACACGCTCCTT -ACGGAAATGGGATACACGCCTGTT -ACGGAAATGGGATACACGCGGTTT -ACGGAAATGGGATACACGGTGGTT -ACGGAAATGGGATACACGGCCTTT -ACGGAAATGGGATACACGGGTCTT -ACGGAAATGGGATACACGACGCTT -ACGGAAATGGGATACACGAGCGTT -ACGGAAATGGGATACACGTTCGTC -ACGGAAATGGGATACACGTCTCTC -ACGGAAATGGGATACACGTGGATC -ACGGAAATGGGATACACGCACTTC -ACGGAAATGGGATACACGGTACTC -ACGGAAATGGGATACACGGATGTC -ACGGAAATGGGATACACGACAGTC -ACGGAAATGGGATACACGTTGCTG -ACGGAAATGGGATACACGTCCATG -ACGGAAATGGGATACACGTGTGTG -ACGGAAATGGGATACACGCTAGTG -ACGGAAATGGGATACACGCATCTG -ACGGAAATGGGATACACGGAGTTG -ACGGAAATGGGATACACGAGACTG -ACGGAAATGGGATACACGTCGGTA -ACGGAAATGGGATACACGTGCCTA -ACGGAAATGGGATACACGCCACTA -ACGGAAATGGGATACACGGGAGTA -ACGGAAATGGGATACACGTCGTCT -ACGGAAATGGGATACACGTGCACT -ACGGAAATGGGATACACGCTGACT -ACGGAAATGGGATACACGCAACCT -ACGGAAATGGGATACACGGCTACT -ACGGAAATGGGATACACGGGATCT -ACGGAAATGGGATACACGAAGGCT -ACGGAAATGGGATACACGTCAACC -ACGGAAATGGGATACACGTGTTCC -ACGGAAATGGGATACACGATTCCC -ACGGAAATGGGATACACGTTCTCG -ACGGAAATGGGATACACGTAGACG -ACGGAAATGGGATACACGGTAACG -ACGGAAATGGGATACACGACTTCG -ACGGAAATGGGATACACGTACGCA -ACGGAAATGGGATACACGCTTGCA -ACGGAAATGGGATACACGCGAACA -ACGGAAATGGGATACACGCAGTCA -ACGGAAATGGGATACACGGATCCA -ACGGAAATGGGATACACGACGACA -ACGGAAATGGGATACACGAGCTCA -ACGGAAATGGGATACACGTCACGT -ACGGAAATGGGATACACGCGTAGT -ACGGAAATGGGATACACGGTCAGT -ACGGAAATGGGATACACGGAAGGT -ACGGAAATGGGATACACGAACCGT -ACGGAAATGGGATACACGTTGTGC -ACGGAAATGGGATACACGCTAAGC -ACGGAAATGGGATACACGACTAGC -ACGGAAATGGGATACACGAGATGC -ACGGAAATGGGATACACGTGAAGG -ACGGAAATGGGATACACGCAATGG -ACGGAAATGGGATACACGATGAGG -ACGGAAATGGGATACACGAATGGG -ACGGAAATGGGATACACGTCCTGA -ACGGAAATGGGATACACGTAGCGA -ACGGAAATGGGATACACGCACAGA -ACGGAAATGGGATACACGGCAAGA -ACGGAAATGGGATACACGGGTTGA -ACGGAAATGGGATACACGTCCGAT -ACGGAAATGGGATACACGTGGCAT -ACGGAAATGGGATACACGCGAGAT -ACGGAAATGGGATACACGTACCAC -ACGGAAATGGGATACACGCAGAAC -ACGGAAATGGGATACACGGTCTAC -ACGGAAATGGGATACACGACGTAC -ACGGAAATGGGATACACGAGTGAC -ACGGAAATGGGATACACGCTGTAG -ACGGAAATGGGATACACGCCTAAG -ACGGAAATGGGATACACGGTTCAG -ACGGAAATGGGATACACGGCATAG -ACGGAAATGGGATACACGGACAAG -ACGGAAATGGGATACACGAAGCAG -ACGGAAATGGGATACACGCGTCAA -ACGGAAATGGGATACACGGCTGAA -ACGGAAATGGGATACACGAGTACG -ACGGAAATGGGATACACGATCCGA -ACGGAAATGGGATACACGATGGGA -ACGGAAATGGGATACACGGTGCAA -ACGGAAATGGGATACACGGAGGAA -ACGGAAATGGGATACACGCAGGTA -ACGGAAATGGGATACACGGACTCT -ACGGAAATGGGATACACGAGTCCT -ACGGAAATGGGATACACGTAAGCC -ACGGAAATGGGATACACGATAGCC -ACGGAAATGGGATACACGTAACCG -ACGGAAATGGGATACACGATGCCA -ACGGAAATGGGAGACAGTGGAAAC -ACGGAAATGGGAGACAGTAACACC -ACGGAAATGGGAGACAGTATCGAG -ACGGAAATGGGAGACAGTCTCCTT -ACGGAAATGGGAGACAGTCCTGTT -ACGGAAATGGGAGACAGTCGGTTT -ACGGAAATGGGAGACAGTGTGGTT -ACGGAAATGGGAGACAGTGCCTTT -ACGGAAATGGGAGACAGTGGTCTT -ACGGAAATGGGAGACAGTACGCTT -ACGGAAATGGGAGACAGTAGCGTT -ACGGAAATGGGAGACAGTTTCGTC -ACGGAAATGGGAGACAGTTCTCTC -ACGGAAATGGGAGACAGTTGGATC -ACGGAAATGGGAGACAGTCACTTC -ACGGAAATGGGAGACAGTGTACTC -ACGGAAATGGGAGACAGTGATGTC -ACGGAAATGGGAGACAGTACAGTC -ACGGAAATGGGAGACAGTTTGCTG -ACGGAAATGGGAGACAGTTCCATG -ACGGAAATGGGAGACAGTTGTGTG -ACGGAAATGGGAGACAGTCTAGTG -ACGGAAATGGGAGACAGTCATCTG -ACGGAAATGGGAGACAGTGAGTTG -ACGGAAATGGGAGACAGTAGACTG -ACGGAAATGGGAGACAGTTCGGTA -ACGGAAATGGGAGACAGTTGCCTA -ACGGAAATGGGAGACAGTCCACTA -ACGGAAATGGGAGACAGTGGAGTA -ACGGAAATGGGAGACAGTTCGTCT -ACGGAAATGGGAGACAGTTGCACT -ACGGAAATGGGAGACAGTCTGACT -ACGGAAATGGGAGACAGTCAACCT -ACGGAAATGGGAGACAGTGCTACT -ACGGAAATGGGAGACAGTGGATCT -ACGGAAATGGGAGACAGTAAGGCT -ACGGAAATGGGAGACAGTTCAACC -ACGGAAATGGGAGACAGTTGTTCC -ACGGAAATGGGAGACAGTATTCCC -ACGGAAATGGGAGACAGTTTCTCG -ACGGAAATGGGAGACAGTTAGACG -ACGGAAATGGGAGACAGTGTAACG -ACGGAAATGGGAGACAGTACTTCG -ACGGAAATGGGAGACAGTTACGCA -ACGGAAATGGGAGACAGTCTTGCA -ACGGAAATGGGAGACAGTCGAACA -ACGGAAATGGGAGACAGTCAGTCA -ACGGAAATGGGAGACAGTGATCCA -ACGGAAATGGGAGACAGTACGACA -ACGGAAATGGGAGACAGTAGCTCA -ACGGAAATGGGAGACAGTTCACGT -ACGGAAATGGGAGACAGTCGTAGT -ACGGAAATGGGAGACAGTGTCAGT -ACGGAAATGGGAGACAGTGAAGGT -ACGGAAATGGGAGACAGTAACCGT -ACGGAAATGGGAGACAGTTTGTGC -ACGGAAATGGGAGACAGTCTAAGC -ACGGAAATGGGAGACAGTACTAGC -ACGGAAATGGGAGACAGTAGATGC -ACGGAAATGGGAGACAGTTGAAGG -ACGGAAATGGGAGACAGTCAATGG -ACGGAAATGGGAGACAGTATGAGG -ACGGAAATGGGAGACAGTAATGGG -ACGGAAATGGGAGACAGTTCCTGA -ACGGAAATGGGAGACAGTTAGCGA -ACGGAAATGGGAGACAGTCACAGA -ACGGAAATGGGAGACAGTGCAAGA -ACGGAAATGGGAGACAGTGGTTGA -ACGGAAATGGGAGACAGTTCCGAT -ACGGAAATGGGAGACAGTTGGCAT -ACGGAAATGGGAGACAGTCGAGAT -ACGGAAATGGGAGACAGTTACCAC -ACGGAAATGGGAGACAGTCAGAAC -ACGGAAATGGGAGACAGTGTCTAC -ACGGAAATGGGAGACAGTACGTAC -ACGGAAATGGGAGACAGTAGTGAC -ACGGAAATGGGAGACAGTCTGTAG -ACGGAAATGGGAGACAGTCCTAAG -ACGGAAATGGGAGACAGTGTTCAG -ACGGAAATGGGAGACAGTGCATAG -ACGGAAATGGGAGACAGTGACAAG -ACGGAAATGGGAGACAGTAAGCAG -ACGGAAATGGGAGACAGTCGTCAA -ACGGAAATGGGAGACAGTGCTGAA -ACGGAAATGGGAGACAGTAGTACG -ACGGAAATGGGAGACAGTATCCGA -ACGGAAATGGGAGACAGTATGGGA -ACGGAAATGGGAGACAGTGTGCAA -ACGGAAATGGGAGACAGTGAGGAA -ACGGAAATGGGAGACAGTCAGGTA -ACGGAAATGGGAGACAGTGACTCT -ACGGAAATGGGAGACAGTAGTCCT -ACGGAAATGGGAGACAGTTAAGCC -ACGGAAATGGGAGACAGTATAGCC -ACGGAAATGGGAGACAGTTAACCG -ACGGAAATGGGAGACAGTATGCCA -ACGGAAATGGGATAGCTGGGAAAC -ACGGAAATGGGATAGCTGAACACC -ACGGAAATGGGATAGCTGATCGAG -ACGGAAATGGGATAGCTGCTCCTT -ACGGAAATGGGATAGCTGCCTGTT -ACGGAAATGGGATAGCTGCGGTTT -ACGGAAATGGGATAGCTGGTGGTT -ACGGAAATGGGATAGCTGGCCTTT -ACGGAAATGGGATAGCTGGGTCTT -ACGGAAATGGGATAGCTGACGCTT -ACGGAAATGGGATAGCTGAGCGTT -ACGGAAATGGGATAGCTGTTCGTC -ACGGAAATGGGATAGCTGTCTCTC -ACGGAAATGGGATAGCTGTGGATC -ACGGAAATGGGATAGCTGCACTTC -ACGGAAATGGGATAGCTGGTACTC -ACGGAAATGGGATAGCTGGATGTC -ACGGAAATGGGATAGCTGACAGTC -ACGGAAATGGGATAGCTGTTGCTG -ACGGAAATGGGATAGCTGTCCATG -ACGGAAATGGGATAGCTGTGTGTG -ACGGAAATGGGATAGCTGCTAGTG -ACGGAAATGGGATAGCTGCATCTG -ACGGAAATGGGATAGCTGGAGTTG -ACGGAAATGGGATAGCTGAGACTG -ACGGAAATGGGATAGCTGTCGGTA -ACGGAAATGGGATAGCTGTGCCTA -ACGGAAATGGGATAGCTGCCACTA -ACGGAAATGGGATAGCTGGGAGTA -ACGGAAATGGGATAGCTGTCGTCT -ACGGAAATGGGATAGCTGTGCACT -ACGGAAATGGGATAGCTGCTGACT -ACGGAAATGGGATAGCTGCAACCT -ACGGAAATGGGATAGCTGGCTACT -ACGGAAATGGGATAGCTGGGATCT -ACGGAAATGGGATAGCTGAAGGCT -ACGGAAATGGGATAGCTGTCAACC -ACGGAAATGGGATAGCTGTGTTCC -ACGGAAATGGGATAGCTGATTCCC -ACGGAAATGGGATAGCTGTTCTCG -ACGGAAATGGGATAGCTGTAGACG -ACGGAAATGGGATAGCTGGTAACG -ACGGAAATGGGATAGCTGACTTCG -ACGGAAATGGGATAGCTGTACGCA -ACGGAAATGGGATAGCTGCTTGCA -ACGGAAATGGGATAGCTGCGAACA -ACGGAAATGGGATAGCTGCAGTCA -ACGGAAATGGGATAGCTGGATCCA -ACGGAAATGGGATAGCTGACGACA -ACGGAAATGGGATAGCTGAGCTCA -ACGGAAATGGGATAGCTGTCACGT -ACGGAAATGGGATAGCTGCGTAGT -ACGGAAATGGGATAGCTGGTCAGT -ACGGAAATGGGATAGCTGGAAGGT -ACGGAAATGGGATAGCTGAACCGT -ACGGAAATGGGATAGCTGTTGTGC -ACGGAAATGGGATAGCTGCTAAGC -ACGGAAATGGGATAGCTGACTAGC -ACGGAAATGGGATAGCTGAGATGC -ACGGAAATGGGATAGCTGTGAAGG -ACGGAAATGGGATAGCTGCAATGG -ACGGAAATGGGATAGCTGATGAGG -ACGGAAATGGGATAGCTGAATGGG -ACGGAAATGGGATAGCTGTCCTGA -ACGGAAATGGGATAGCTGTAGCGA -ACGGAAATGGGATAGCTGCACAGA -ACGGAAATGGGATAGCTGGCAAGA -ACGGAAATGGGATAGCTGGGTTGA -ACGGAAATGGGATAGCTGTCCGAT -ACGGAAATGGGATAGCTGTGGCAT -ACGGAAATGGGATAGCTGCGAGAT -ACGGAAATGGGATAGCTGTACCAC -ACGGAAATGGGATAGCTGCAGAAC -ACGGAAATGGGATAGCTGGTCTAC -ACGGAAATGGGATAGCTGACGTAC -ACGGAAATGGGATAGCTGAGTGAC -ACGGAAATGGGATAGCTGCTGTAG -ACGGAAATGGGATAGCTGCCTAAG -ACGGAAATGGGATAGCTGGTTCAG -ACGGAAATGGGATAGCTGGCATAG -ACGGAAATGGGATAGCTGGACAAG -ACGGAAATGGGATAGCTGAAGCAG -ACGGAAATGGGATAGCTGCGTCAA -ACGGAAATGGGATAGCTGGCTGAA -ACGGAAATGGGATAGCTGAGTACG -ACGGAAATGGGATAGCTGATCCGA -ACGGAAATGGGATAGCTGATGGGA -ACGGAAATGGGATAGCTGGTGCAA -ACGGAAATGGGATAGCTGGAGGAA -ACGGAAATGGGATAGCTGCAGGTA -ACGGAAATGGGATAGCTGGACTCT -ACGGAAATGGGATAGCTGAGTCCT -ACGGAAATGGGATAGCTGTAAGCC -ACGGAAATGGGATAGCTGATAGCC -ACGGAAATGGGATAGCTGTAACCG -ACGGAAATGGGATAGCTGATGCCA -ACGGAAATGGGAAAGCCTGGAAAC -ACGGAAATGGGAAAGCCTAACACC -ACGGAAATGGGAAAGCCTATCGAG -ACGGAAATGGGAAAGCCTCTCCTT -ACGGAAATGGGAAAGCCTCCTGTT -ACGGAAATGGGAAAGCCTCGGTTT -ACGGAAATGGGAAAGCCTGTGGTT -ACGGAAATGGGAAAGCCTGCCTTT -ACGGAAATGGGAAAGCCTGGTCTT -ACGGAAATGGGAAAGCCTACGCTT -ACGGAAATGGGAAAGCCTAGCGTT -ACGGAAATGGGAAAGCCTTTCGTC -ACGGAAATGGGAAAGCCTTCTCTC -ACGGAAATGGGAAAGCCTTGGATC -ACGGAAATGGGAAAGCCTCACTTC -ACGGAAATGGGAAAGCCTGTACTC -ACGGAAATGGGAAAGCCTGATGTC -ACGGAAATGGGAAAGCCTACAGTC -ACGGAAATGGGAAAGCCTTTGCTG -ACGGAAATGGGAAAGCCTTCCATG -ACGGAAATGGGAAAGCCTTGTGTG -ACGGAAATGGGAAAGCCTCTAGTG -ACGGAAATGGGAAAGCCTCATCTG -ACGGAAATGGGAAAGCCTGAGTTG -ACGGAAATGGGAAAGCCTAGACTG -ACGGAAATGGGAAAGCCTTCGGTA -ACGGAAATGGGAAAGCCTTGCCTA -ACGGAAATGGGAAAGCCTCCACTA -ACGGAAATGGGAAAGCCTGGAGTA -ACGGAAATGGGAAAGCCTTCGTCT -ACGGAAATGGGAAAGCCTTGCACT -ACGGAAATGGGAAAGCCTCTGACT -ACGGAAATGGGAAAGCCTCAACCT -ACGGAAATGGGAAAGCCTGCTACT -ACGGAAATGGGAAAGCCTGGATCT -ACGGAAATGGGAAAGCCTAAGGCT -ACGGAAATGGGAAAGCCTTCAACC -ACGGAAATGGGAAAGCCTTGTTCC -ACGGAAATGGGAAAGCCTATTCCC -ACGGAAATGGGAAAGCCTTTCTCG -ACGGAAATGGGAAAGCCTTAGACG -ACGGAAATGGGAAAGCCTGTAACG -ACGGAAATGGGAAAGCCTACTTCG -ACGGAAATGGGAAAGCCTTACGCA -ACGGAAATGGGAAAGCCTCTTGCA -ACGGAAATGGGAAAGCCTCGAACA -ACGGAAATGGGAAAGCCTCAGTCA -ACGGAAATGGGAAAGCCTGATCCA -ACGGAAATGGGAAAGCCTACGACA -ACGGAAATGGGAAAGCCTAGCTCA -ACGGAAATGGGAAAGCCTTCACGT -ACGGAAATGGGAAAGCCTCGTAGT -ACGGAAATGGGAAAGCCTGTCAGT -ACGGAAATGGGAAAGCCTGAAGGT -ACGGAAATGGGAAAGCCTAACCGT -ACGGAAATGGGAAAGCCTTTGTGC -ACGGAAATGGGAAAGCCTCTAAGC -ACGGAAATGGGAAAGCCTACTAGC -ACGGAAATGGGAAAGCCTAGATGC -ACGGAAATGGGAAAGCCTTGAAGG -ACGGAAATGGGAAAGCCTCAATGG -ACGGAAATGGGAAAGCCTATGAGG -ACGGAAATGGGAAAGCCTAATGGG -ACGGAAATGGGAAAGCCTTCCTGA -ACGGAAATGGGAAAGCCTTAGCGA -ACGGAAATGGGAAAGCCTCACAGA -ACGGAAATGGGAAAGCCTGCAAGA -ACGGAAATGGGAAAGCCTGGTTGA -ACGGAAATGGGAAAGCCTTCCGAT -ACGGAAATGGGAAAGCCTTGGCAT -ACGGAAATGGGAAAGCCTCGAGAT -ACGGAAATGGGAAAGCCTTACCAC -ACGGAAATGGGAAAGCCTCAGAAC -ACGGAAATGGGAAAGCCTGTCTAC -ACGGAAATGGGAAAGCCTACGTAC -ACGGAAATGGGAAAGCCTAGTGAC -ACGGAAATGGGAAAGCCTCTGTAG -ACGGAAATGGGAAAGCCTCCTAAG -ACGGAAATGGGAAAGCCTGTTCAG -ACGGAAATGGGAAAGCCTGCATAG -ACGGAAATGGGAAAGCCTGACAAG -ACGGAAATGGGAAAGCCTAAGCAG -ACGGAAATGGGAAAGCCTCGTCAA -ACGGAAATGGGAAAGCCTGCTGAA -ACGGAAATGGGAAAGCCTAGTACG -ACGGAAATGGGAAAGCCTATCCGA -ACGGAAATGGGAAAGCCTATGGGA -ACGGAAATGGGAAAGCCTGTGCAA -ACGGAAATGGGAAAGCCTGAGGAA -ACGGAAATGGGAAAGCCTCAGGTA -ACGGAAATGGGAAAGCCTGACTCT -ACGGAAATGGGAAAGCCTAGTCCT -ACGGAAATGGGAAAGCCTTAAGCC -ACGGAAATGGGAAAGCCTATAGCC -ACGGAAATGGGAAAGCCTTAACCG -ACGGAAATGGGAAAGCCTATGCCA -ACGGAAATGGGACAGGTTGGAAAC -ACGGAAATGGGACAGGTTAACACC -ACGGAAATGGGACAGGTTATCGAG -ACGGAAATGGGACAGGTTCTCCTT -ACGGAAATGGGACAGGTTCCTGTT -ACGGAAATGGGACAGGTTCGGTTT -ACGGAAATGGGACAGGTTGTGGTT -ACGGAAATGGGACAGGTTGCCTTT -ACGGAAATGGGACAGGTTGGTCTT -ACGGAAATGGGACAGGTTACGCTT -ACGGAAATGGGACAGGTTAGCGTT -ACGGAAATGGGACAGGTTTTCGTC -ACGGAAATGGGACAGGTTTCTCTC -ACGGAAATGGGACAGGTTTGGATC -ACGGAAATGGGACAGGTTCACTTC -ACGGAAATGGGACAGGTTGTACTC -ACGGAAATGGGACAGGTTGATGTC -ACGGAAATGGGACAGGTTACAGTC -ACGGAAATGGGACAGGTTTTGCTG -ACGGAAATGGGACAGGTTTCCATG -ACGGAAATGGGACAGGTTTGTGTG -ACGGAAATGGGACAGGTTCTAGTG -ACGGAAATGGGACAGGTTCATCTG -ACGGAAATGGGACAGGTTGAGTTG -ACGGAAATGGGACAGGTTAGACTG -ACGGAAATGGGACAGGTTTCGGTA -ACGGAAATGGGACAGGTTTGCCTA -ACGGAAATGGGACAGGTTCCACTA -ACGGAAATGGGACAGGTTGGAGTA -ACGGAAATGGGACAGGTTTCGTCT -ACGGAAATGGGACAGGTTTGCACT -ACGGAAATGGGACAGGTTCTGACT -ACGGAAATGGGACAGGTTCAACCT -ACGGAAATGGGACAGGTTGCTACT -ACGGAAATGGGACAGGTTGGATCT -ACGGAAATGGGACAGGTTAAGGCT -ACGGAAATGGGACAGGTTTCAACC -ACGGAAATGGGACAGGTTTGTTCC -ACGGAAATGGGACAGGTTATTCCC -ACGGAAATGGGACAGGTTTTCTCG -ACGGAAATGGGACAGGTTTAGACG -ACGGAAATGGGACAGGTTGTAACG -ACGGAAATGGGACAGGTTACTTCG -ACGGAAATGGGACAGGTTTACGCA -ACGGAAATGGGACAGGTTCTTGCA -ACGGAAATGGGACAGGTTCGAACA -ACGGAAATGGGACAGGTTCAGTCA -ACGGAAATGGGACAGGTTGATCCA -ACGGAAATGGGACAGGTTACGACA -ACGGAAATGGGACAGGTTAGCTCA -ACGGAAATGGGACAGGTTTCACGT -ACGGAAATGGGACAGGTTCGTAGT -ACGGAAATGGGACAGGTTGTCAGT -ACGGAAATGGGACAGGTTGAAGGT -ACGGAAATGGGACAGGTTAACCGT -ACGGAAATGGGACAGGTTTTGTGC -ACGGAAATGGGACAGGTTCTAAGC -ACGGAAATGGGACAGGTTACTAGC -ACGGAAATGGGACAGGTTAGATGC -ACGGAAATGGGACAGGTTTGAAGG -ACGGAAATGGGACAGGTTCAATGG -ACGGAAATGGGACAGGTTATGAGG -ACGGAAATGGGACAGGTTAATGGG -ACGGAAATGGGACAGGTTTCCTGA -ACGGAAATGGGACAGGTTTAGCGA -ACGGAAATGGGACAGGTTCACAGA -ACGGAAATGGGACAGGTTGCAAGA -ACGGAAATGGGACAGGTTGGTTGA -ACGGAAATGGGACAGGTTTCCGAT -ACGGAAATGGGACAGGTTTGGCAT -ACGGAAATGGGACAGGTTCGAGAT -ACGGAAATGGGACAGGTTTACCAC -ACGGAAATGGGACAGGTTCAGAAC -ACGGAAATGGGACAGGTTGTCTAC -ACGGAAATGGGACAGGTTACGTAC -ACGGAAATGGGACAGGTTAGTGAC -ACGGAAATGGGACAGGTTCTGTAG -ACGGAAATGGGACAGGTTCCTAAG -ACGGAAATGGGACAGGTTGTTCAG -ACGGAAATGGGACAGGTTGCATAG -ACGGAAATGGGACAGGTTGACAAG -ACGGAAATGGGACAGGTTAAGCAG -ACGGAAATGGGACAGGTTCGTCAA -ACGGAAATGGGACAGGTTGCTGAA -ACGGAAATGGGACAGGTTAGTACG -ACGGAAATGGGACAGGTTATCCGA -ACGGAAATGGGACAGGTTATGGGA -ACGGAAATGGGACAGGTTGTGCAA -ACGGAAATGGGACAGGTTGAGGAA -ACGGAAATGGGACAGGTTCAGGTA -ACGGAAATGGGACAGGTTGACTCT -ACGGAAATGGGACAGGTTAGTCCT -ACGGAAATGGGACAGGTTTAAGCC -ACGGAAATGGGACAGGTTATAGCC -ACGGAAATGGGACAGGTTTAACCG -ACGGAAATGGGACAGGTTATGCCA -ACGGAAATGGGATAGGCAGGAAAC -ACGGAAATGGGATAGGCAAACACC -ACGGAAATGGGATAGGCAATCGAG -ACGGAAATGGGATAGGCACTCCTT -ACGGAAATGGGATAGGCACCTGTT -ACGGAAATGGGATAGGCACGGTTT -ACGGAAATGGGATAGGCAGTGGTT -ACGGAAATGGGATAGGCAGCCTTT -ACGGAAATGGGATAGGCAGGTCTT -ACGGAAATGGGATAGGCAACGCTT -ACGGAAATGGGATAGGCAAGCGTT -ACGGAAATGGGATAGGCATTCGTC -ACGGAAATGGGATAGGCATCTCTC -ACGGAAATGGGATAGGCATGGATC -ACGGAAATGGGATAGGCACACTTC -ACGGAAATGGGATAGGCAGTACTC -ACGGAAATGGGATAGGCAGATGTC -ACGGAAATGGGATAGGCAACAGTC -ACGGAAATGGGATAGGCATTGCTG -ACGGAAATGGGATAGGCATCCATG -ACGGAAATGGGATAGGCATGTGTG -ACGGAAATGGGATAGGCACTAGTG -ACGGAAATGGGATAGGCACATCTG -ACGGAAATGGGATAGGCAGAGTTG -ACGGAAATGGGATAGGCAAGACTG -ACGGAAATGGGATAGGCATCGGTA -ACGGAAATGGGATAGGCATGCCTA -ACGGAAATGGGATAGGCACCACTA -ACGGAAATGGGATAGGCAGGAGTA -ACGGAAATGGGATAGGCATCGTCT -ACGGAAATGGGATAGGCATGCACT -ACGGAAATGGGATAGGCACTGACT -ACGGAAATGGGATAGGCACAACCT -ACGGAAATGGGATAGGCAGCTACT -ACGGAAATGGGATAGGCAGGATCT -ACGGAAATGGGATAGGCAAAGGCT -ACGGAAATGGGATAGGCATCAACC -ACGGAAATGGGATAGGCATGTTCC -ACGGAAATGGGATAGGCAATTCCC -ACGGAAATGGGATAGGCATTCTCG -ACGGAAATGGGATAGGCATAGACG -ACGGAAATGGGATAGGCAGTAACG -ACGGAAATGGGATAGGCAACTTCG -ACGGAAATGGGATAGGCATACGCA -ACGGAAATGGGATAGGCACTTGCA -ACGGAAATGGGATAGGCACGAACA -ACGGAAATGGGATAGGCACAGTCA -ACGGAAATGGGATAGGCAGATCCA -ACGGAAATGGGATAGGCAACGACA -ACGGAAATGGGATAGGCAAGCTCA -ACGGAAATGGGATAGGCATCACGT -ACGGAAATGGGATAGGCACGTAGT -ACGGAAATGGGATAGGCAGTCAGT -ACGGAAATGGGATAGGCAGAAGGT -ACGGAAATGGGATAGGCAAACCGT -ACGGAAATGGGATAGGCATTGTGC -ACGGAAATGGGATAGGCACTAAGC -ACGGAAATGGGATAGGCAACTAGC -ACGGAAATGGGATAGGCAAGATGC -ACGGAAATGGGATAGGCATGAAGG -ACGGAAATGGGATAGGCACAATGG -ACGGAAATGGGATAGGCAATGAGG -ACGGAAATGGGATAGGCAAATGGG -ACGGAAATGGGATAGGCATCCTGA -ACGGAAATGGGATAGGCATAGCGA -ACGGAAATGGGATAGGCACACAGA -ACGGAAATGGGATAGGCAGCAAGA -ACGGAAATGGGATAGGCAGGTTGA -ACGGAAATGGGATAGGCATCCGAT -ACGGAAATGGGATAGGCATGGCAT -ACGGAAATGGGATAGGCACGAGAT -ACGGAAATGGGATAGGCATACCAC -ACGGAAATGGGATAGGCACAGAAC -ACGGAAATGGGATAGGCAGTCTAC -ACGGAAATGGGATAGGCAACGTAC -ACGGAAATGGGATAGGCAAGTGAC -ACGGAAATGGGATAGGCACTGTAG -ACGGAAATGGGATAGGCACCTAAG -ACGGAAATGGGATAGGCAGTTCAG -ACGGAAATGGGATAGGCAGCATAG -ACGGAAATGGGATAGGCAGACAAG -ACGGAAATGGGATAGGCAAAGCAG -ACGGAAATGGGATAGGCACGTCAA -ACGGAAATGGGATAGGCAGCTGAA -ACGGAAATGGGATAGGCAAGTACG -ACGGAAATGGGATAGGCAATCCGA -ACGGAAATGGGATAGGCAATGGGA -ACGGAAATGGGATAGGCAGTGCAA -ACGGAAATGGGATAGGCAGAGGAA -ACGGAAATGGGATAGGCACAGGTA -ACGGAAATGGGATAGGCAGACTCT -ACGGAAATGGGATAGGCAAGTCCT -ACGGAAATGGGATAGGCATAAGCC -ACGGAAATGGGATAGGCAATAGCC -ACGGAAATGGGATAGGCATAACCG -ACGGAAATGGGATAGGCAATGCCA -ACGGAAATGGGAAAGGACGGAAAC -ACGGAAATGGGAAAGGACAACACC -ACGGAAATGGGAAAGGACATCGAG -ACGGAAATGGGAAAGGACCTCCTT -ACGGAAATGGGAAAGGACCCTGTT -ACGGAAATGGGAAAGGACCGGTTT -ACGGAAATGGGAAAGGACGTGGTT -ACGGAAATGGGAAAGGACGCCTTT -ACGGAAATGGGAAAGGACGGTCTT -ACGGAAATGGGAAAGGACACGCTT -ACGGAAATGGGAAAGGACAGCGTT -ACGGAAATGGGAAAGGACTTCGTC -ACGGAAATGGGAAAGGACTCTCTC -ACGGAAATGGGAAAGGACTGGATC -ACGGAAATGGGAAAGGACCACTTC -ACGGAAATGGGAAAGGACGTACTC -ACGGAAATGGGAAAGGACGATGTC -ACGGAAATGGGAAAGGACACAGTC -ACGGAAATGGGAAAGGACTTGCTG -ACGGAAATGGGAAAGGACTCCATG -ACGGAAATGGGAAAGGACTGTGTG -ACGGAAATGGGAAAGGACCTAGTG -ACGGAAATGGGAAAGGACCATCTG -ACGGAAATGGGAAAGGACGAGTTG -ACGGAAATGGGAAAGGACAGACTG -ACGGAAATGGGAAAGGACTCGGTA -ACGGAAATGGGAAAGGACTGCCTA -ACGGAAATGGGAAAGGACCCACTA -ACGGAAATGGGAAAGGACGGAGTA -ACGGAAATGGGAAAGGACTCGTCT -ACGGAAATGGGAAAGGACTGCACT -ACGGAAATGGGAAAGGACCTGACT -ACGGAAATGGGAAAGGACCAACCT -ACGGAAATGGGAAAGGACGCTACT -ACGGAAATGGGAAAGGACGGATCT -ACGGAAATGGGAAAGGACAAGGCT -ACGGAAATGGGAAAGGACTCAACC -ACGGAAATGGGAAAGGACTGTTCC -ACGGAAATGGGAAAGGACATTCCC -ACGGAAATGGGAAAGGACTTCTCG -ACGGAAATGGGAAAGGACTAGACG -ACGGAAATGGGAAAGGACGTAACG -ACGGAAATGGGAAAGGACACTTCG -ACGGAAATGGGAAAGGACTACGCA -ACGGAAATGGGAAAGGACCTTGCA -ACGGAAATGGGAAAGGACCGAACA -ACGGAAATGGGAAAGGACCAGTCA -ACGGAAATGGGAAAGGACGATCCA -ACGGAAATGGGAAAGGACACGACA -ACGGAAATGGGAAAGGACAGCTCA -ACGGAAATGGGAAAGGACTCACGT -ACGGAAATGGGAAAGGACCGTAGT -ACGGAAATGGGAAAGGACGTCAGT -ACGGAAATGGGAAAGGACGAAGGT -ACGGAAATGGGAAAGGACAACCGT -ACGGAAATGGGAAAGGACTTGTGC -ACGGAAATGGGAAAGGACCTAAGC -ACGGAAATGGGAAAGGACACTAGC -ACGGAAATGGGAAAGGACAGATGC -ACGGAAATGGGAAAGGACTGAAGG -ACGGAAATGGGAAAGGACCAATGG -ACGGAAATGGGAAAGGACATGAGG -ACGGAAATGGGAAAGGACAATGGG -ACGGAAATGGGAAAGGACTCCTGA -ACGGAAATGGGAAAGGACTAGCGA -ACGGAAATGGGAAAGGACCACAGA -ACGGAAATGGGAAAGGACGCAAGA -ACGGAAATGGGAAAGGACGGTTGA -ACGGAAATGGGAAAGGACTCCGAT -ACGGAAATGGGAAAGGACTGGCAT -ACGGAAATGGGAAAGGACCGAGAT -ACGGAAATGGGAAAGGACTACCAC -ACGGAAATGGGAAAGGACCAGAAC -ACGGAAATGGGAAAGGACGTCTAC -ACGGAAATGGGAAAGGACACGTAC -ACGGAAATGGGAAAGGACAGTGAC -ACGGAAATGGGAAAGGACCTGTAG -ACGGAAATGGGAAAGGACCCTAAG -ACGGAAATGGGAAAGGACGTTCAG -ACGGAAATGGGAAAGGACGCATAG -ACGGAAATGGGAAAGGACGACAAG -ACGGAAATGGGAAAGGACAAGCAG -ACGGAAATGGGAAAGGACCGTCAA -ACGGAAATGGGAAAGGACGCTGAA -ACGGAAATGGGAAAGGACAGTACG -ACGGAAATGGGAAAGGACATCCGA -ACGGAAATGGGAAAGGACATGGGA -ACGGAAATGGGAAAGGACGTGCAA -ACGGAAATGGGAAAGGACGAGGAA -ACGGAAATGGGAAAGGACCAGGTA -ACGGAAATGGGAAAGGACGACTCT -ACGGAAATGGGAAAGGACAGTCCT -ACGGAAATGGGAAAGGACTAAGCC -ACGGAAATGGGAAAGGACATAGCC -ACGGAAATGGGAAAGGACTAACCG -ACGGAAATGGGAAAGGACATGCCA -ACGGAAATGGGACAGAAGGGAAAC -ACGGAAATGGGACAGAAGAACACC -ACGGAAATGGGACAGAAGATCGAG -ACGGAAATGGGACAGAAGCTCCTT -ACGGAAATGGGACAGAAGCCTGTT -ACGGAAATGGGACAGAAGCGGTTT -ACGGAAATGGGACAGAAGGTGGTT -ACGGAAATGGGACAGAAGGCCTTT -ACGGAAATGGGACAGAAGGGTCTT -ACGGAAATGGGACAGAAGACGCTT -ACGGAAATGGGACAGAAGAGCGTT -ACGGAAATGGGACAGAAGTTCGTC -ACGGAAATGGGACAGAAGTCTCTC -ACGGAAATGGGACAGAAGTGGATC -ACGGAAATGGGACAGAAGCACTTC -ACGGAAATGGGACAGAAGGTACTC -ACGGAAATGGGACAGAAGGATGTC -ACGGAAATGGGACAGAAGACAGTC -ACGGAAATGGGACAGAAGTTGCTG -ACGGAAATGGGACAGAAGTCCATG -ACGGAAATGGGACAGAAGTGTGTG -ACGGAAATGGGACAGAAGCTAGTG -ACGGAAATGGGACAGAAGCATCTG -ACGGAAATGGGACAGAAGGAGTTG -ACGGAAATGGGACAGAAGAGACTG -ACGGAAATGGGACAGAAGTCGGTA -ACGGAAATGGGACAGAAGTGCCTA -ACGGAAATGGGACAGAAGCCACTA -ACGGAAATGGGACAGAAGGGAGTA -ACGGAAATGGGACAGAAGTCGTCT -ACGGAAATGGGACAGAAGTGCACT -ACGGAAATGGGACAGAAGCTGACT -ACGGAAATGGGACAGAAGCAACCT -ACGGAAATGGGACAGAAGGCTACT -ACGGAAATGGGACAGAAGGGATCT -ACGGAAATGGGACAGAAGAAGGCT -ACGGAAATGGGACAGAAGTCAACC -ACGGAAATGGGACAGAAGTGTTCC -ACGGAAATGGGACAGAAGATTCCC -ACGGAAATGGGACAGAAGTTCTCG -ACGGAAATGGGACAGAAGTAGACG -ACGGAAATGGGACAGAAGGTAACG -ACGGAAATGGGACAGAAGACTTCG -ACGGAAATGGGACAGAAGTACGCA -ACGGAAATGGGACAGAAGCTTGCA -ACGGAAATGGGACAGAAGCGAACA -ACGGAAATGGGACAGAAGCAGTCA -ACGGAAATGGGACAGAAGGATCCA -ACGGAAATGGGACAGAAGACGACA -ACGGAAATGGGACAGAAGAGCTCA -ACGGAAATGGGACAGAAGTCACGT -ACGGAAATGGGACAGAAGCGTAGT -ACGGAAATGGGACAGAAGGTCAGT -ACGGAAATGGGACAGAAGGAAGGT -ACGGAAATGGGACAGAAGAACCGT -ACGGAAATGGGACAGAAGTTGTGC -ACGGAAATGGGACAGAAGCTAAGC -ACGGAAATGGGACAGAAGACTAGC -ACGGAAATGGGACAGAAGAGATGC -ACGGAAATGGGACAGAAGTGAAGG -ACGGAAATGGGACAGAAGCAATGG -ACGGAAATGGGACAGAAGATGAGG -ACGGAAATGGGACAGAAGAATGGG -ACGGAAATGGGACAGAAGTCCTGA -ACGGAAATGGGACAGAAGTAGCGA -ACGGAAATGGGACAGAAGCACAGA -ACGGAAATGGGACAGAAGGCAAGA -ACGGAAATGGGACAGAAGGGTTGA -ACGGAAATGGGACAGAAGTCCGAT -ACGGAAATGGGACAGAAGTGGCAT -ACGGAAATGGGACAGAAGCGAGAT -ACGGAAATGGGACAGAAGTACCAC -ACGGAAATGGGACAGAAGCAGAAC -ACGGAAATGGGACAGAAGGTCTAC -ACGGAAATGGGACAGAAGACGTAC -ACGGAAATGGGACAGAAGAGTGAC -ACGGAAATGGGACAGAAGCTGTAG -ACGGAAATGGGACAGAAGCCTAAG -ACGGAAATGGGACAGAAGGTTCAG -ACGGAAATGGGACAGAAGGCATAG -ACGGAAATGGGACAGAAGGACAAG -ACGGAAATGGGACAGAAGAAGCAG -ACGGAAATGGGACAGAAGCGTCAA -ACGGAAATGGGACAGAAGGCTGAA -ACGGAAATGGGACAGAAGAGTACG -ACGGAAATGGGACAGAAGATCCGA -ACGGAAATGGGACAGAAGATGGGA -ACGGAAATGGGACAGAAGGTGCAA -ACGGAAATGGGACAGAAGGAGGAA -ACGGAAATGGGACAGAAGCAGGTA -ACGGAAATGGGACAGAAGGACTCT -ACGGAAATGGGACAGAAGAGTCCT -ACGGAAATGGGACAGAAGTAAGCC -ACGGAAATGGGACAGAAGATAGCC -ACGGAAATGGGACAGAAGTAACCG -ACGGAAATGGGACAGAAGATGCCA -ACGGAAATGGGACAACGTGGAAAC -ACGGAAATGGGACAACGTAACACC -ACGGAAATGGGACAACGTATCGAG -ACGGAAATGGGACAACGTCTCCTT -ACGGAAATGGGACAACGTCCTGTT -ACGGAAATGGGACAACGTCGGTTT -ACGGAAATGGGACAACGTGTGGTT -ACGGAAATGGGACAACGTGCCTTT -ACGGAAATGGGACAACGTGGTCTT -ACGGAAATGGGACAACGTACGCTT -ACGGAAATGGGACAACGTAGCGTT -ACGGAAATGGGACAACGTTTCGTC -ACGGAAATGGGACAACGTTCTCTC -ACGGAAATGGGACAACGTTGGATC -ACGGAAATGGGACAACGTCACTTC -ACGGAAATGGGACAACGTGTACTC -ACGGAAATGGGACAACGTGATGTC -ACGGAAATGGGACAACGTACAGTC -ACGGAAATGGGACAACGTTTGCTG -ACGGAAATGGGACAACGTTCCATG -ACGGAAATGGGACAACGTTGTGTG -ACGGAAATGGGACAACGTCTAGTG -ACGGAAATGGGACAACGTCATCTG -ACGGAAATGGGACAACGTGAGTTG -ACGGAAATGGGACAACGTAGACTG -ACGGAAATGGGACAACGTTCGGTA -ACGGAAATGGGACAACGTTGCCTA -ACGGAAATGGGACAACGTCCACTA -ACGGAAATGGGACAACGTGGAGTA -ACGGAAATGGGACAACGTTCGTCT -ACGGAAATGGGACAACGTTGCACT -ACGGAAATGGGACAACGTCTGACT -ACGGAAATGGGACAACGTCAACCT -ACGGAAATGGGACAACGTGCTACT -ACGGAAATGGGACAACGTGGATCT -ACGGAAATGGGACAACGTAAGGCT -ACGGAAATGGGACAACGTTCAACC -ACGGAAATGGGACAACGTTGTTCC -ACGGAAATGGGACAACGTATTCCC -ACGGAAATGGGACAACGTTTCTCG -ACGGAAATGGGACAACGTTAGACG -ACGGAAATGGGACAACGTGTAACG -ACGGAAATGGGACAACGTACTTCG -ACGGAAATGGGACAACGTTACGCA -ACGGAAATGGGACAACGTCTTGCA -ACGGAAATGGGACAACGTCGAACA -ACGGAAATGGGACAACGTCAGTCA -ACGGAAATGGGACAACGTGATCCA -ACGGAAATGGGACAACGTACGACA -ACGGAAATGGGACAACGTAGCTCA -ACGGAAATGGGACAACGTTCACGT -ACGGAAATGGGACAACGTCGTAGT -ACGGAAATGGGACAACGTGTCAGT -ACGGAAATGGGACAACGTGAAGGT -ACGGAAATGGGACAACGTAACCGT -ACGGAAATGGGACAACGTTTGTGC -ACGGAAATGGGACAACGTCTAAGC -ACGGAAATGGGACAACGTACTAGC -ACGGAAATGGGACAACGTAGATGC -ACGGAAATGGGACAACGTTGAAGG -ACGGAAATGGGACAACGTCAATGG -ACGGAAATGGGACAACGTATGAGG -ACGGAAATGGGACAACGTAATGGG -ACGGAAATGGGACAACGTTCCTGA -ACGGAAATGGGACAACGTTAGCGA -ACGGAAATGGGACAACGTCACAGA -ACGGAAATGGGACAACGTGCAAGA -ACGGAAATGGGACAACGTGGTTGA -ACGGAAATGGGACAACGTTCCGAT -ACGGAAATGGGACAACGTTGGCAT -ACGGAAATGGGACAACGTCGAGAT -ACGGAAATGGGACAACGTTACCAC -ACGGAAATGGGACAACGTCAGAAC -ACGGAAATGGGACAACGTGTCTAC -ACGGAAATGGGACAACGTACGTAC -ACGGAAATGGGACAACGTAGTGAC -ACGGAAATGGGACAACGTCTGTAG -ACGGAAATGGGACAACGTCCTAAG -ACGGAAATGGGACAACGTGTTCAG -ACGGAAATGGGACAACGTGCATAG -ACGGAAATGGGACAACGTGACAAG -ACGGAAATGGGACAACGTAAGCAG -ACGGAAATGGGACAACGTCGTCAA -ACGGAAATGGGACAACGTGCTGAA -ACGGAAATGGGACAACGTAGTACG -ACGGAAATGGGACAACGTATCCGA -ACGGAAATGGGACAACGTATGGGA -ACGGAAATGGGACAACGTGTGCAA -ACGGAAATGGGACAACGTGAGGAA -ACGGAAATGGGACAACGTCAGGTA -ACGGAAATGGGACAACGTGACTCT -ACGGAAATGGGACAACGTAGTCCT -ACGGAAATGGGACAACGTTAAGCC -ACGGAAATGGGACAACGTATAGCC -ACGGAAATGGGACAACGTTAACCG -ACGGAAATGGGACAACGTATGCCA -ACGGAAATGGGAGAAGCTGGAAAC -ACGGAAATGGGAGAAGCTAACACC -ACGGAAATGGGAGAAGCTATCGAG -ACGGAAATGGGAGAAGCTCTCCTT -ACGGAAATGGGAGAAGCTCCTGTT -ACGGAAATGGGAGAAGCTCGGTTT -ACGGAAATGGGAGAAGCTGTGGTT -ACGGAAATGGGAGAAGCTGCCTTT -ACGGAAATGGGAGAAGCTGGTCTT -ACGGAAATGGGAGAAGCTACGCTT -ACGGAAATGGGAGAAGCTAGCGTT -ACGGAAATGGGAGAAGCTTTCGTC -ACGGAAATGGGAGAAGCTTCTCTC -ACGGAAATGGGAGAAGCTTGGATC -ACGGAAATGGGAGAAGCTCACTTC -ACGGAAATGGGAGAAGCTGTACTC -ACGGAAATGGGAGAAGCTGATGTC -ACGGAAATGGGAGAAGCTACAGTC -ACGGAAATGGGAGAAGCTTTGCTG -ACGGAAATGGGAGAAGCTTCCATG -ACGGAAATGGGAGAAGCTTGTGTG -ACGGAAATGGGAGAAGCTCTAGTG -ACGGAAATGGGAGAAGCTCATCTG -ACGGAAATGGGAGAAGCTGAGTTG -ACGGAAATGGGAGAAGCTAGACTG -ACGGAAATGGGAGAAGCTTCGGTA -ACGGAAATGGGAGAAGCTTGCCTA -ACGGAAATGGGAGAAGCTCCACTA -ACGGAAATGGGAGAAGCTGGAGTA -ACGGAAATGGGAGAAGCTTCGTCT -ACGGAAATGGGAGAAGCTTGCACT -ACGGAAATGGGAGAAGCTCTGACT -ACGGAAATGGGAGAAGCTCAACCT -ACGGAAATGGGAGAAGCTGCTACT -ACGGAAATGGGAGAAGCTGGATCT -ACGGAAATGGGAGAAGCTAAGGCT -ACGGAAATGGGAGAAGCTTCAACC -ACGGAAATGGGAGAAGCTTGTTCC -ACGGAAATGGGAGAAGCTATTCCC -ACGGAAATGGGAGAAGCTTTCTCG -ACGGAAATGGGAGAAGCTTAGACG -ACGGAAATGGGAGAAGCTGTAACG -ACGGAAATGGGAGAAGCTACTTCG -ACGGAAATGGGAGAAGCTTACGCA -ACGGAAATGGGAGAAGCTCTTGCA -ACGGAAATGGGAGAAGCTCGAACA -ACGGAAATGGGAGAAGCTCAGTCA -ACGGAAATGGGAGAAGCTGATCCA -ACGGAAATGGGAGAAGCTACGACA -ACGGAAATGGGAGAAGCTAGCTCA -ACGGAAATGGGAGAAGCTTCACGT -ACGGAAATGGGAGAAGCTCGTAGT -ACGGAAATGGGAGAAGCTGTCAGT -ACGGAAATGGGAGAAGCTGAAGGT -ACGGAAATGGGAGAAGCTAACCGT -ACGGAAATGGGAGAAGCTTTGTGC -ACGGAAATGGGAGAAGCTCTAAGC -ACGGAAATGGGAGAAGCTACTAGC -ACGGAAATGGGAGAAGCTAGATGC -ACGGAAATGGGAGAAGCTTGAAGG -ACGGAAATGGGAGAAGCTCAATGG -ACGGAAATGGGAGAAGCTATGAGG -ACGGAAATGGGAGAAGCTAATGGG -ACGGAAATGGGAGAAGCTTCCTGA -ACGGAAATGGGAGAAGCTTAGCGA -ACGGAAATGGGAGAAGCTCACAGA -ACGGAAATGGGAGAAGCTGCAAGA -ACGGAAATGGGAGAAGCTGGTTGA -ACGGAAATGGGAGAAGCTTCCGAT -ACGGAAATGGGAGAAGCTTGGCAT -ACGGAAATGGGAGAAGCTCGAGAT -ACGGAAATGGGAGAAGCTTACCAC -ACGGAAATGGGAGAAGCTCAGAAC -ACGGAAATGGGAGAAGCTGTCTAC -ACGGAAATGGGAGAAGCTACGTAC -ACGGAAATGGGAGAAGCTAGTGAC -ACGGAAATGGGAGAAGCTCTGTAG -ACGGAAATGGGAGAAGCTCCTAAG -ACGGAAATGGGAGAAGCTGTTCAG -ACGGAAATGGGAGAAGCTGCATAG -ACGGAAATGGGAGAAGCTGACAAG -ACGGAAATGGGAGAAGCTAAGCAG -ACGGAAATGGGAGAAGCTCGTCAA -ACGGAAATGGGAGAAGCTGCTGAA -ACGGAAATGGGAGAAGCTAGTACG -ACGGAAATGGGAGAAGCTATCCGA -ACGGAAATGGGAGAAGCTATGGGA -ACGGAAATGGGAGAAGCTGTGCAA -ACGGAAATGGGAGAAGCTGAGGAA -ACGGAAATGGGAGAAGCTCAGGTA -ACGGAAATGGGAGAAGCTGACTCT -ACGGAAATGGGAGAAGCTAGTCCT -ACGGAAATGGGAGAAGCTTAAGCC -ACGGAAATGGGAGAAGCTATAGCC -ACGGAAATGGGAGAAGCTTAACCG -ACGGAAATGGGAGAAGCTATGCCA -ACGGAAATGGGAACGAGTGGAAAC -ACGGAAATGGGAACGAGTAACACC -ACGGAAATGGGAACGAGTATCGAG -ACGGAAATGGGAACGAGTCTCCTT -ACGGAAATGGGAACGAGTCCTGTT -ACGGAAATGGGAACGAGTCGGTTT -ACGGAAATGGGAACGAGTGTGGTT -ACGGAAATGGGAACGAGTGCCTTT -ACGGAAATGGGAACGAGTGGTCTT -ACGGAAATGGGAACGAGTACGCTT -ACGGAAATGGGAACGAGTAGCGTT -ACGGAAATGGGAACGAGTTTCGTC -ACGGAAATGGGAACGAGTTCTCTC -ACGGAAATGGGAACGAGTTGGATC -ACGGAAATGGGAACGAGTCACTTC -ACGGAAATGGGAACGAGTGTACTC -ACGGAAATGGGAACGAGTGATGTC -ACGGAAATGGGAACGAGTACAGTC -ACGGAAATGGGAACGAGTTTGCTG -ACGGAAATGGGAACGAGTTCCATG -ACGGAAATGGGAACGAGTTGTGTG -ACGGAAATGGGAACGAGTCTAGTG -ACGGAAATGGGAACGAGTCATCTG -ACGGAAATGGGAACGAGTGAGTTG -ACGGAAATGGGAACGAGTAGACTG -ACGGAAATGGGAACGAGTTCGGTA -ACGGAAATGGGAACGAGTTGCCTA -ACGGAAATGGGAACGAGTCCACTA -ACGGAAATGGGAACGAGTGGAGTA -ACGGAAATGGGAACGAGTTCGTCT -ACGGAAATGGGAACGAGTTGCACT -ACGGAAATGGGAACGAGTCTGACT -ACGGAAATGGGAACGAGTCAACCT -ACGGAAATGGGAACGAGTGCTACT -ACGGAAATGGGAACGAGTGGATCT -ACGGAAATGGGAACGAGTAAGGCT -ACGGAAATGGGAACGAGTTCAACC -ACGGAAATGGGAACGAGTTGTTCC -ACGGAAATGGGAACGAGTATTCCC -ACGGAAATGGGAACGAGTTTCTCG -ACGGAAATGGGAACGAGTTAGACG -ACGGAAATGGGAACGAGTGTAACG -ACGGAAATGGGAACGAGTACTTCG -ACGGAAATGGGAACGAGTTACGCA -ACGGAAATGGGAACGAGTCTTGCA -ACGGAAATGGGAACGAGTCGAACA -ACGGAAATGGGAACGAGTCAGTCA -ACGGAAATGGGAACGAGTGATCCA -ACGGAAATGGGAACGAGTACGACA -ACGGAAATGGGAACGAGTAGCTCA -ACGGAAATGGGAACGAGTTCACGT -ACGGAAATGGGAACGAGTCGTAGT -ACGGAAATGGGAACGAGTGTCAGT -ACGGAAATGGGAACGAGTGAAGGT -ACGGAAATGGGAACGAGTAACCGT -ACGGAAATGGGAACGAGTTTGTGC -ACGGAAATGGGAACGAGTCTAAGC -ACGGAAATGGGAACGAGTACTAGC -ACGGAAATGGGAACGAGTAGATGC -ACGGAAATGGGAACGAGTTGAAGG -ACGGAAATGGGAACGAGTCAATGG -ACGGAAATGGGAACGAGTATGAGG -ACGGAAATGGGAACGAGTAATGGG -ACGGAAATGGGAACGAGTTCCTGA -ACGGAAATGGGAACGAGTTAGCGA -ACGGAAATGGGAACGAGTCACAGA -ACGGAAATGGGAACGAGTGCAAGA -ACGGAAATGGGAACGAGTGGTTGA -ACGGAAATGGGAACGAGTTCCGAT -ACGGAAATGGGAACGAGTTGGCAT -ACGGAAATGGGAACGAGTCGAGAT -ACGGAAATGGGAACGAGTTACCAC -ACGGAAATGGGAACGAGTCAGAAC -ACGGAAATGGGAACGAGTGTCTAC -ACGGAAATGGGAACGAGTACGTAC -ACGGAAATGGGAACGAGTAGTGAC -ACGGAAATGGGAACGAGTCTGTAG -ACGGAAATGGGAACGAGTCCTAAG -ACGGAAATGGGAACGAGTGTTCAG -ACGGAAATGGGAACGAGTGCATAG -ACGGAAATGGGAACGAGTGACAAG -ACGGAAATGGGAACGAGTAAGCAG -ACGGAAATGGGAACGAGTCGTCAA -ACGGAAATGGGAACGAGTGCTGAA -ACGGAAATGGGAACGAGTAGTACG -ACGGAAATGGGAACGAGTATCCGA -ACGGAAATGGGAACGAGTATGGGA -ACGGAAATGGGAACGAGTGTGCAA -ACGGAAATGGGAACGAGTGAGGAA -ACGGAAATGGGAACGAGTCAGGTA -ACGGAAATGGGAACGAGTGACTCT -ACGGAAATGGGAACGAGTAGTCCT -ACGGAAATGGGAACGAGTTAAGCC -ACGGAAATGGGAACGAGTATAGCC -ACGGAAATGGGAACGAGTTAACCG -ACGGAAATGGGAACGAGTATGCCA -ACGGAAATGGGACGAATCGGAAAC -ACGGAAATGGGACGAATCAACACC -ACGGAAATGGGACGAATCATCGAG -ACGGAAATGGGACGAATCCTCCTT -ACGGAAATGGGACGAATCCCTGTT -ACGGAAATGGGACGAATCCGGTTT -ACGGAAATGGGACGAATCGTGGTT -ACGGAAATGGGACGAATCGCCTTT -ACGGAAATGGGACGAATCGGTCTT -ACGGAAATGGGACGAATCACGCTT -ACGGAAATGGGACGAATCAGCGTT -ACGGAAATGGGACGAATCTTCGTC -ACGGAAATGGGACGAATCTCTCTC -ACGGAAATGGGACGAATCTGGATC -ACGGAAATGGGACGAATCCACTTC -ACGGAAATGGGACGAATCGTACTC -ACGGAAATGGGACGAATCGATGTC -ACGGAAATGGGACGAATCACAGTC -ACGGAAATGGGACGAATCTTGCTG -ACGGAAATGGGACGAATCTCCATG -ACGGAAATGGGACGAATCTGTGTG -ACGGAAATGGGACGAATCCTAGTG -ACGGAAATGGGACGAATCCATCTG -ACGGAAATGGGACGAATCGAGTTG -ACGGAAATGGGACGAATCAGACTG -ACGGAAATGGGACGAATCTCGGTA -ACGGAAATGGGACGAATCTGCCTA -ACGGAAATGGGACGAATCCCACTA -ACGGAAATGGGACGAATCGGAGTA -ACGGAAATGGGACGAATCTCGTCT -ACGGAAATGGGACGAATCTGCACT -ACGGAAATGGGACGAATCCTGACT -ACGGAAATGGGACGAATCCAACCT -ACGGAAATGGGACGAATCGCTACT -ACGGAAATGGGACGAATCGGATCT -ACGGAAATGGGACGAATCAAGGCT -ACGGAAATGGGACGAATCTCAACC -ACGGAAATGGGACGAATCTGTTCC -ACGGAAATGGGACGAATCATTCCC -ACGGAAATGGGACGAATCTTCTCG -ACGGAAATGGGACGAATCTAGACG -ACGGAAATGGGACGAATCGTAACG -ACGGAAATGGGACGAATCACTTCG -ACGGAAATGGGACGAATCTACGCA -ACGGAAATGGGACGAATCCTTGCA -ACGGAAATGGGACGAATCCGAACA -ACGGAAATGGGACGAATCCAGTCA -ACGGAAATGGGACGAATCGATCCA -ACGGAAATGGGACGAATCACGACA -ACGGAAATGGGACGAATCAGCTCA -ACGGAAATGGGACGAATCTCACGT -ACGGAAATGGGACGAATCCGTAGT -ACGGAAATGGGACGAATCGTCAGT -ACGGAAATGGGACGAATCGAAGGT -ACGGAAATGGGACGAATCAACCGT -ACGGAAATGGGACGAATCTTGTGC -ACGGAAATGGGACGAATCCTAAGC -ACGGAAATGGGACGAATCACTAGC -ACGGAAATGGGACGAATCAGATGC -ACGGAAATGGGACGAATCTGAAGG -ACGGAAATGGGACGAATCCAATGG -ACGGAAATGGGACGAATCATGAGG -ACGGAAATGGGACGAATCAATGGG -ACGGAAATGGGACGAATCTCCTGA -ACGGAAATGGGACGAATCTAGCGA -ACGGAAATGGGACGAATCCACAGA -ACGGAAATGGGACGAATCGCAAGA -ACGGAAATGGGACGAATCGGTTGA -ACGGAAATGGGACGAATCTCCGAT -ACGGAAATGGGACGAATCTGGCAT -ACGGAAATGGGACGAATCCGAGAT -ACGGAAATGGGACGAATCTACCAC -ACGGAAATGGGACGAATCCAGAAC -ACGGAAATGGGACGAATCGTCTAC -ACGGAAATGGGACGAATCACGTAC -ACGGAAATGGGACGAATCAGTGAC -ACGGAAATGGGACGAATCCTGTAG -ACGGAAATGGGACGAATCCCTAAG -ACGGAAATGGGACGAATCGTTCAG -ACGGAAATGGGACGAATCGCATAG -ACGGAAATGGGACGAATCGACAAG -ACGGAAATGGGACGAATCAAGCAG -ACGGAAATGGGACGAATCCGTCAA -ACGGAAATGGGACGAATCGCTGAA -ACGGAAATGGGACGAATCAGTACG -ACGGAAATGGGACGAATCATCCGA -ACGGAAATGGGACGAATCATGGGA -ACGGAAATGGGACGAATCGTGCAA -ACGGAAATGGGACGAATCGAGGAA -ACGGAAATGGGACGAATCCAGGTA -ACGGAAATGGGACGAATCGACTCT -ACGGAAATGGGACGAATCAGTCCT -ACGGAAATGGGACGAATCTAAGCC -ACGGAAATGGGACGAATCATAGCC -ACGGAAATGGGACGAATCTAACCG -ACGGAAATGGGACGAATCATGCCA -ACGGAAATGGGAGGAATGGGAAAC -ACGGAAATGGGAGGAATGAACACC -ACGGAAATGGGAGGAATGATCGAG -ACGGAAATGGGAGGAATGCTCCTT -ACGGAAATGGGAGGAATGCCTGTT -ACGGAAATGGGAGGAATGCGGTTT -ACGGAAATGGGAGGAATGGTGGTT -ACGGAAATGGGAGGAATGGCCTTT -ACGGAAATGGGAGGAATGGGTCTT -ACGGAAATGGGAGGAATGACGCTT -ACGGAAATGGGAGGAATGAGCGTT -ACGGAAATGGGAGGAATGTTCGTC -ACGGAAATGGGAGGAATGTCTCTC -ACGGAAATGGGAGGAATGTGGATC -ACGGAAATGGGAGGAATGCACTTC -ACGGAAATGGGAGGAATGGTACTC -ACGGAAATGGGAGGAATGGATGTC -ACGGAAATGGGAGGAATGACAGTC -ACGGAAATGGGAGGAATGTTGCTG -ACGGAAATGGGAGGAATGTCCATG -ACGGAAATGGGAGGAATGTGTGTG -ACGGAAATGGGAGGAATGCTAGTG -ACGGAAATGGGAGGAATGCATCTG -ACGGAAATGGGAGGAATGGAGTTG -ACGGAAATGGGAGGAATGAGACTG -ACGGAAATGGGAGGAATGTCGGTA -ACGGAAATGGGAGGAATGTGCCTA -ACGGAAATGGGAGGAATGCCACTA -ACGGAAATGGGAGGAATGGGAGTA -ACGGAAATGGGAGGAATGTCGTCT -ACGGAAATGGGAGGAATGTGCACT -ACGGAAATGGGAGGAATGCTGACT -ACGGAAATGGGAGGAATGCAACCT -ACGGAAATGGGAGGAATGGCTACT -ACGGAAATGGGAGGAATGGGATCT -ACGGAAATGGGAGGAATGAAGGCT -ACGGAAATGGGAGGAATGTCAACC -ACGGAAATGGGAGGAATGTGTTCC -ACGGAAATGGGAGGAATGATTCCC -ACGGAAATGGGAGGAATGTTCTCG -ACGGAAATGGGAGGAATGTAGACG -ACGGAAATGGGAGGAATGGTAACG -ACGGAAATGGGAGGAATGACTTCG -ACGGAAATGGGAGGAATGTACGCA -ACGGAAATGGGAGGAATGCTTGCA -ACGGAAATGGGAGGAATGCGAACA -ACGGAAATGGGAGGAATGCAGTCA -ACGGAAATGGGAGGAATGGATCCA -ACGGAAATGGGAGGAATGACGACA -ACGGAAATGGGAGGAATGAGCTCA -ACGGAAATGGGAGGAATGTCACGT -ACGGAAATGGGAGGAATGCGTAGT -ACGGAAATGGGAGGAATGGTCAGT -ACGGAAATGGGAGGAATGGAAGGT -ACGGAAATGGGAGGAATGAACCGT -ACGGAAATGGGAGGAATGTTGTGC -ACGGAAATGGGAGGAATGCTAAGC -ACGGAAATGGGAGGAATGACTAGC -ACGGAAATGGGAGGAATGAGATGC -ACGGAAATGGGAGGAATGTGAAGG -ACGGAAATGGGAGGAATGCAATGG -ACGGAAATGGGAGGAATGATGAGG -ACGGAAATGGGAGGAATGAATGGG -ACGGAAATGGGAGGAATGTCCTGA -ACGGAAATGGGAGGAATGTAGCGA -ACGGAAATGGGAGGAATGCACAGA -ACGGAAATGGGAGGAATGGCAAGA -ACGGAAATGGGAGGAATGGGTTGA -ACGGAAATGGGAGGAATGTCCGAT -ACGGAAATGGGAGGAATGTGGCAT -ACGGAAATGGGAGGAATGCGAGAT -ACGGAAATGGGAGGAATGTACCAC -ACGGAAATGGGAGGAATGCAGAAC -ACGGAAATGGGAGGAATGGTCTAC -ACGGAAATGGGAGGAATGACGTAC -ACGGAAATGGGAGGAATGAGTGAC -ACGGAAATGGGAGGAATGCTGTAG -ACGGAAATGGGAGGAATGCCTAAG -ACGGAAATGGGAGGAATGGTTCAG -ACGGAAATGGGAGGAATGGCATAG -ACGGAAATGGGAGGAATGGACAAG -ACGGAAATGGGAGGAATGAAGCAG -ACGGAAATGGGAGGAATGCGTCAA -ACGGAAATGGGAGGAATGGCTGAA -ACGGAAATGGGAGGAATGAGTACG -ACGGAAATGGGAGGAATGATCCGA -ACGGAAATGGGAGGAATGATGGGA -ACGGAAATGGGAGGAATGGTGCAA -ACGGAAATGGGAGGAATGGAGGAA -ACGGAAATGGGAGGAATGCAGGTA -ACGGAAATGGGAGGAATGGACTCT -ACGGAAATGGGAGGAATGAGTCCT -ACGGAAATGGGAGGAATGTAAGCC -ACGGAAATGGGAGGAATGATAGCC -ACGGAAATGGGAGGAATGTAACCG -ACGGAAATGGGAGGAATGATGCCA -ACGGAAATGGGACAAGTGGGAAAC -ACGGAAATGGGACAAGTGAACACC -ACGGAAATGGGACAAGTGATCGAG -ACGGAAATGGGACAAGTGCTCCTT -ACGGAAATGGGACAAGTGCCTGTT -ACGGAAATGGGACAAGTGCGGTTT -ACGGAAATGGGACAAGTGGTGGTT -ACGGAAATGGGACAAGTGGCCTTT -ACGGAAATGGGACAAGTGGGTCTT -ACGGAAATGGGACAAGTGACGCTT -ACGGAAATGGGACAAGTGAGCGTT -ACGGAAATGGGACAAGTGTTCGTC -ACGGAAATGGGACAAGTGTCTCTC -ACGGAAATGGGACAAGTGTGGATC -ACGGAAATGGGACAAGTGCACTTC -ACGGAAATGGGACAAGTGGTACTC -ACGGAAATGGGACAAGTGGATGTC -ACGGAAATGGGACAAGTGACAGTC -ACGGAAATGGGACAAGTGTTGCTG -ACGGAAATGGGACAAGTGTCCATG -ACGGAAATGGGACAAGTGTGTGTG -ACGGAAATGGGACAAGTGCTAGTG -ACGGAAATGGGACAAGTGCATCTG -ACGGAAATGGGACAAGTGGAGTTG -ACGGAAATGGGACAAGTGAGACTG -ACGGAAATGGGACAAGTGTCGGTA -ACGGAAATGGGACAAGTGTGCCTA -ACGGAAATGGGACAAGTGCCACTA -ACGGAAATGGGACAAGTGGGAGTA -ACGGAAATGGGACAAGTGTCGTCT -ACGGAAATGGGACAAGTGTGCACT -ACGGAAATGGGACAAGTGCTGACT -ACGGAAATGGGACAAGTGCAACCT -ACGGAAATGGGACAAGTGGCTACT -ACGGAAATGGGACAAGTGGGATCT -ACGGAAATGGGACAAGTGAAGGCT -ACGGAAATGGGACAAGTGTCAACC -ACGGAAATGGGACAAGTGTGTTCC -ACGGAAATGGGACAAGTGATTCCC -ACGGAAATGGGACAAGTGTTCTCG -ACGGAAATGGGACAAGTGTAGACG -ACGGAAATGGGACAAGTGGTAACG -ACGGAAATGGGACAAGTGACTTCG -ACGGAAATGGGACAAGTGTACGCA -ACGGAAATGGGACAAGTGCTTGCA -ACGGAAATGGGACAAGTGCGAACA -ACGGAAATGGGACAAGTGCAGTCA -ACGGAAATGGGACAAGTGGATCCA -ACGGAAATGGGACAAGTGACGACA -ACGGAAATGGGACAAGTGAGCTCA -ACGGAAATGGGACAAGTGTCACGT -ACGGAAATGGGACAAGTGCGTAGT -ACGGAAATGGGACAAGTGGTCAGT -ACGGAAATGGGACAAGTGGAAGGT -ACGGAAATGGGACAAGTGAACCGT -ACGGAAATGGGACAAGTGTTGTGC -ACGGAAATGGGACAAGTGCTAAGC -ACGGAAATGGGACAAGTGACTAGC -ACGGAAATGGGACAAGTGAGATGC -ACGGAAATGGGACAAGTGTGAAGG -ACGGAAATGGGACAAGTGCAATGG -ACGGAAATGGGACAAGTGATGAGG -ACGGAAATGGGACAAGTGAATGGG -ACGGAAATGGGACAAGTGTCCTGA -ACGGAAATGGGACAAGTGTAGCGA -ACGGAAATGGGACAAGTGCACAGA -ACGGAAATGGGACAAGTGGCAAGA -ACGGAAATGGGACAAGTGGGTTGA -ACGGAAATGGGACAAGTGTCCGAT -ACGGAAATGGGACAAGTGTGGCAT -ACGGAAATGGGACAAGTGCGAGAT -ACGGAAATGGGACAAGTGTACCAC -ACGGAAATGGGACAAGTGCAGAAC -ACGGAAATGGGACAAGTGGTCTAC -ACGGAAATGGGACAAGTGACGTAC -ACGGAAATGGGACAAGTGAGTGAC -ACGGAAATGGGACAAGTGCTGTAG -ACGGAAATGGGACAAGTGCCTAAG -ACGGAAATGGGACAAGTGGTTCAG -ACGGAAATGGGACAAGTGGCATAG -ACGGAAATGGGACAAGTGGACAAG -ACGGAAATGGGACAAGTGAAGCAG -ACGGAAATGGGACAAGTGCGTCAA -ACGGAAATGGGACAAGTGGCTGAA -ACGGAAATGGGACAAGTGAGTACG -ACGGAAATGGGACAAGTGATCCGA -ACGGAAATGGGACAAGTGATGGGA -ACGGAAATGGGACAAGTGGTGCAA -ACGGAAATGGGACAAGTGGAGGAA -ACGGAAATGGGACAAGTGCAGGTA -ACGGAAATGGGACAAGTGGACTCT -ACGGAAATGGGACAAGTGAGTCCT -ACGGAAATGGGACAAGTGTAAGCC -ACGGAAATGGGACAAGTGATAGCC -ACGGAAATGGGACAAGTGTAACCG -ACGGAAATGGGACAAGTGATGCCA -ACGGAAATGGGAGAAGAGGGAAAC -ACGGAAATGGGAGAAGAGAACACC -ACGGAAATGGGAGAAGAGATCGAG -ACGGAAATGGGAGAAGAGCTCCTT -ACGGAAATGGGAGAAGAGCCTGTT -ACGGAAATGGGAGAAGAGCGGTTT -ACGGAAATGGGAGAAGAGGTGGTT -ACGGAAATGGGAGAAGAGGCCTTT -ACGGAAATGGGAGAAGAGGGTCTT -ACGGAAATGGGAGAAGAGACGCTT -ACGGAAATGGGAGAAGAGAGCGTT -ACGGAAATGGGAGAAGAGTTCGTC -ACGGAAATGGGAGAAGAGTCTCTC -ACGGAAATGGGAGAAGAGTGGATC -ACGGAAATGGGAGAAGAGCACTTC -ACGGAAATGGGAGAAGAGGTACTC -ACGGAAATGGGAGAAGAGGATGTC -ACGGAAATGGGAGAAGAGACAGTC -ACGGAAATGGGAGAAGAGTTGCTG -ACGGAAATGGGAGAAGAGTCCATG -ACGGAAATGGGAGAAGAGTGTGTG -ACGGAAATGGGAGAAGAGCTAGTG -ACGGAAATGGGAGAAGAGCATCTG -ACGGAAATGGGAGAAGAGGAGTTG -ACGGAAATGGGAGAAGAGAGACTG -ACGGAAATGGGAGAAGAGTCGGTA -ACGGAAATGGGAGAAGAGTGCCTA -ACGGAAATGGGAGAAGAGCCACTA -ACGGAAATGGGAGAAGAGGGAGTA -ACGGAAATGGGAGAAGAGTCGTCT -ACGGAAATGGGAGAAGAGTGCACT -ACGGAAATGGGAGAAGAGCTGACT -ACGGAAATGGGAGAAGAGCAACCT -ACGGAAATGGGAGAAGAGGCTACT -ACGGAAATGGGAGAAGAGGGATCT -ACGGAAATGGGAGAAGAGAAGGCT -ACGGAAATGGGAGAAGAGTCAACC -ACGGAAATGGGAGAAGAGTGTTCC -ACGGAAATGGGAGAAGAGATTCCC -ACGGAAATGGGAGAAGAGTTCTCG -ACGGAAATGGGAGAAGAGTAGACG -ACGGAAATGGGAGAAGAGGTAACG -ACGGAAATGGGAGAAGAGACTTCG -ACGGAAATGGGAGAAGAGTACGCA -ACGGAAATGGGAGAAGAGCTTGCA -ACGGAAATGGGAGAAGAGCGAACA -ACGGAAATGGGAGAAGAGCAGTCA -ACGGAAATGGGAGAAGAGGATCCA -ACGGAAATGGGAGAAGAGACGACA -ACGGAAATGGGAGAAGAGAGCTCA -ACGGAAATGGGAGAAGAGTCACGT -ACGGAAATGGGAGAAGAGCGTAGT -ACGGAAATGGGAGAAGAGGTCAGT -ACGGAAATGGGAGAAGAGGAAGGT -ACGGAAATGGGAGAAGAGAACCGT -ACGGAAATGGGAGAAGAGTTGTGC -ACGGAAATGGGAGAAGAGCTAAGC -ACGGAAATGGGAGAAGAGACTAGC -ACGGAAATGGGAGAAGAGAGATGC -ACGGAAATGGGAGAAGAGTGAAGG -ACGGAAATGGGAGAAGAGCAATGG -ACGGAAATGGGAGAAGAGATGAGG -ACGGAAATGGGAGAAGAGAATGGG -ACGGAAATGGGAGAAGAGTCCTGA -ACGGAAATGGGAGAAGAGTAGCGA -ACGGAAATGGGAGAAGAGCACAGA -ACGGAAATGGGAGAAGAGGCAAGA -ACGGAAATGGGAGAAGAGGGTTGA -ACGGAAATGGGAGAAGAGTCCGAT -ACGGAAATGGGAGAAGAGTGGCAT -ACGGAAATGGGAGAAGAGCGAGAT -ACGGAAATGGGAGAAGAGTACCAC -ACGGAAATGGGAGAAGAGCAGAAC -ACGGAAATGGGAGAAGAGGTCTAC -ACGGAAATGGGAGAAGAGACGTAC -ACGGAAATGGGAGAAGAGAGTGAC -ACGGAAATGGGAGAAGAGCTGTAG -ACGGAAATGGGAGAAGAGCCTAAG -ACGGAAATGGGAGAAGAGGTTCAG -ACGGAAATGGGAGAAGAGGCATAG -ACGGAAATGGGAGAAGAGGACAAG -ACGGAAATGGGAGAAGAGAAGCAG -ACGGAAATGGGAGAAGAGCGTCAA -ACGGAAATGGGAGAAGAGGCTGAA -ACGGAAATGGGAGAAGAGAGTACG -ACGGAAATGGGAGAAGAGATCCGA -ACGGAAATGGGAGAAGAGATGGGA -ACGGAAATGGGAGAAGAGGTGCAA -ACGGAAATGGGAGAAGAGGAGGAA -ACGGAAATGGGAGAAGAGCAGGTA -ACGGAAATGGGAGAAGAGGACTCT -ACGGAAATGGGAGAAGAGAGTCCT -ACGGAAATGGGAGAAGAGTAAGCC -ACGGAAATGGGAGAAGAGATAGCC -ACGGAAATGGGAGAAGAGTAACCG -ACGGAAATGGGAGAAGAGATGCCA -ACGGAAATGGGAGTACAGGGAAAC -ACGGAAATGGGAGTACAGAACACC -ACGGAAATGGGAGTACAGATCGAG -ACGGAAATGGGAGTACAGCTCCTT -ACGGAAATGGGAGTACAGCCTGTT -ACGGAAATGGGAGTACAGCGGTTT -ACGGAAATGGGAGTACAGGTGGTT -ACGGAAATGGGAGTACAGGCCTTT -ACGGAAATGGGAGTACAGGGTCTT -ACGGAAATGGGAGTACAGACGCTT -ACGGAAATGGGAGTACAGAGCGTT -ACGGAAATGGGAGTACAGTTCGTC -ACGGAAATGGGAGTACAGTCTCTC -ACGGAAATGGGAGTACAGTGGATC -ACGGAAATGGGAGTACAGCACTTC -ACGGAAATGGGAGTACAGGTACTC -ACGGAAATGGGAGTACAGGATGTC -ACGGAAATGGGAGTACAGACAGTC -ACGGAAATGGGAGTACAGTTGCTG -ACGGAAATGGGAGTACAGTCCATG -ACGGAAATGGGAGTACAGTGTGTG -ACGGAAATGGGAGTACAGCTAGTG -ACGGAAATGGGAGTACAGCATCTG -ACGGAAATGGGAGTACAGGAGTTG -ACGGAAATGGGAGTACAGAGACTG -ACGGAAATGGGAGTACAGTCGGTA -ACGGAAATGGGAGTACAGTGCCTA -ACGGAAATGGGAGTACAGCCACTA -ACGGAAATGGGAGTACAGGGAGTA -ACGGAAATGGGAGTACAGTCGTCT -ACGGAAATGGGAGTACAGTGCACT -ACGGAAATGGGAGTACAGCTGACT -ACGGAAATGGGAGTACAGCAACCT -ACGGAAATGGGAGTACAGGCTACT -ACGGAAATGGGAGTACAGGGATCT -ACGGAAATGGGAGTACAGAAGGCT -ACGGAAATGGGAGTACAGTCAACC -ACGGAAATGGGAGTACAGTGTTCC -ACGGAAATGGGAGTACAGATTCCC -ACGGAAATGGGAGTACAGTTCTCG -ACGGAAATGGGAGTACAGTAGACG -ACGGAAATGGGAGTACAGGTAACG -ACGGAAATGGGAGTACAGACTTCG -ACGGAAATGGGAGTACAGTACGCA -ACGGAAATGGGAGTACAGCTTGCA -ACGGAAATGGGAGTACAGCGAACA -ACGGAAATGGGAGTACAGCAGTCA -ACGGAAATGGGAGTACAGGATCCA -ACGGAAATGGGAGTACAGACGACA -ACGGAAATGGGAGTACAGAGCTCA -ACGGAAATGGGAGTACAGTCACGT -ACGGAAATGGGAGTACAGCGTAGT -ACGGAAATGGGAGTACAGGTCAGT -ACGGAAATGGGAGTACAGGAAGGT -ACGGAAATGGGAGTACAGAACCGT -ACGGAAATGGGAGTACAGTTGTGC -ACGGAAATGGGAGTACAGCTAAGC -ACGGAAATGGGAGTACAGACTAGC -ACGGAAATGGGAGTACAGAGATGC -ACGGAAATGGGAGTACAGTGAAGG -ACGGAAATGGGAGTACAGCAATGG -ACGGAAATGGGAGTACAGATGAGG -ACGGAAATGGGAGTACAGAATGGG -ACGGAAATGGGAGTACAGTCCTGA -ACGGAAATGGGAGTACAGTAGCGA -ACGGAAATGGGAGTACAGCACAGA -ACGGAAATGGGAGTACAGGCAAGA -ACGGAAATGGGAGTACAGGGTTGA -ACGGAAATGGGAGTACAGTCCGAT -ACGGAAATGGGAGTACAGTGGCAT -ACGGAAATGGGAGTACAGCGAGAT -ACGGAAATGGGAGTACAGTACCAC -ACGGAAATGGGAGTACAGCAGAAC -ACGGAAATGGGAGTACAGGTCTAC -ACGGAAATGGGAGTACAGACGTAC -ACGGAAATGGGAGTACAGAGTGAC -ACGGAAATGGGAGTACAGCTGTAG -ACGGAAATGGGAGTACAGCCTAAG -ACGGAAATGGGAGTACAGGTTCAG -ACGGAAATGGGAGTACAGGCATAG -ACGGAAATGGGAGTACAGGACAAG -ACGGAAATGGGAGTACAGAAGCAG -ACGGAAATGGGAGTACAGCGTCAA -ACGGAAATGGGAGTACAGGCTGAA -ACGGAAATGGGAGTACAGAGTACG -ACGGAAATGGGAGTACAGATCCGA -ACGGAAATGGGAGTACAGATGGGA -ACGGAAATGGGAGTACAGGTGCAA -ACGGAAATGGGAGTACAGGAGGAA -ACGGAAATGGGAGTACAGCAGGTA -ACGGAAATGGGAGTACAGGACTCT -ACGGAAATGGGAGTACAGAGTCCT -ACGGAAATGGGAGTACAGTAAGCC -ACGGAAATGGGAGTACAGATAGCC -ACGGAAATGGGAGTACAGTAACCG -ACGGAAATGGGAGTACAGATGCCA -ACGGAAATGGGATCTGACGGAAAC -ACGGAAATGGGATCTGACAACACC -ACGGAAATGGGATCTGACATCGAG -ACGGAAATGGGATCTGACCTCCTT -ACGGAAATGGGATCTGACCCTGTT -ACGGAAATGGGATCTGACCGGTTT -ACGGAAATGGGATCTGACGTGGTT -ACGGAAATGGGATCTGACGCCTTT -ACGGAAATGGGATCTGACGGTCTT -ACGGAAATGGGATCTGACACGCTT -ACGGAAATGGGATCTGACAGCGTT -ACGGAAATGGGATCTGACTTCGTC -ACGGAAATGGGATCTGACTCTCTC -ACGGAAATGGGATCTGACTGGATC -ACGGAAATGGGATCTGACCACTTC -ACGGAAATGGGATCTGACGTACTC -ACGGAAATGGGATCTGACGATGTC -ACGGAAATGGGATCTGACACAGTC -ACGGAAATGGGATCTGACTTGCTG -ACGGAAATGGGATCTGACTCCATG -ACGGAAATGGGATCTGACTGTGTG -ACGGAAATGGGATCTGACCTAGTG -ACGGAAATGGGATCTGACCATCTG -ACGGAAATGGGATCTGACGAGTTG -ACGGAAATGGGATCTGACAGACTG -ACGGAAATGGGATCTGACTCGGTA -ACGGAAATGGGATCTGACTGCCTA -ACGGAAATGGGATCTGACCCACTA -ACGGAAATGGGATCTGACGGAGTA -ACGGAAATGGGATCTGACTCGTCT -ACGGAAATGGGATCTGACTGCACT -ACGGAAATGGGATCTGACCTGACT -ACGGAAATGGGATCTGACCAACCT -ACGGAAATGGGATCTGACGCTACT -ACGGAAATGGGATCTGACGGATCT -ACGGAAATGGGATCTGACAAGGCT -ACGGAAATGGGATCTGACTCAACC -ACGGAAATGGGATCTGACTGTTCC -ACGGAAATGGGATCTGACATTCCC -ACGGAAATGGGATCTGACTTCTCG -ACGGAAATGGGATCTGACTAGACG -ACGGAAATGGGATCTGACGTAACG -ACGGAAATGGGATCTGACACTTCG -ACGGAAATGGGATCTGACTACGCA -ACGGAAATGGGATCTGACCTTGCA -ACGGAAATGGGATCTGACCGAACA -ACGGAAATGGGATCTGACCAGTCA -ACGGAAATGGGATCTGACGATCCA -ACGGAAATGGGATCTGACACGACA -ACGGAAATGGGATCTGACAGCTCA -ACGGAAATGGGATCTGACTCACGT -ACGGAAATGGGATCTGACCGTAGT -ACGGAAATGGGATCTGACGTCAGT -ACGGAAATGGGATCTGACGAAGGT -ACGGAAATGGGATCTGACAACCGT -ACGGAAATGGGATCTGACTTGTGC -ACGGAAATGGGATCTGACCTAAGC -ACGGAAATGGGATCTGACACTAGC -ACGGAAATGGGATCTGACAGATGC -ACGGAAATGGGATCTGACTGAAGG -ACGGAAATGGGATCTGACCAATGG -ACGGAAATGGGATCTGACATGAGG -ACGGAAATGGGATCTGACAATGGG -ACGGAAATGGGATCTGACTCCTGA -ACGGAAATGGGATCTGACTAGCGA -ACGGAAATGGGATCTGACCACAGA -ACGGAAATGGGATCTGACGCAAGA -ACGGAAATGGGATCTGACGGTTGA -ACGGAAATGGGATCTGACTCCGAT -ACGGAAATGGGATCTGACTGGCAT -ACGGAAATGGGATCTGACCGAGAT -ACGGAAATGGGATCTGACTACCAC -ACGGAAATGGGATCTGACCAGAAC -ACGGAAATGGGATCTGACGTCTAC -ACGGAAATGGGATCTGACACGTAC -ACGGAAATGGGATCTGACAGTGAC -ACGGAAATGGGATCTGACCTGTAG -ACGGAAATGGGATCTGACCCTAAG -ACGGAAATGGGATCTGACGTTCAG -ACGGAAATGGGATCTGACGCATAG -ACGGAAATGGGATCTGACGACAAG -ACGGAAATGGGATCTGACAAGCAG -ACGGAAATGGGATCTGACCGTCAA -ACGGAAATGGGATCTGACGCTGAA -ACGGAAATGGGATCTGACAGTACG -ACGGAAATGGGATCTGACATCCGA -ACGGAAATGGGATCTGACATGGGA -ACGGAAATGGGATCTGACGTGCAA -ACGGAAATGGGATCTGACGAGGAA -ACGGAAATGGGATCTGACCAGGTA -ACGGAAATGGGATCTGACGACTCT -ACGGAAATGGGATCTGACAGTCCT -ACGGAAATGGGATCTGACTAAGCC -ACGGAAATGGGATCTGACATAGCC -ACGGAAATGGGATCTGACTAACCG -ACGGAAATGGGATCTGACATGCCA -ACGGAAATGGGACCTAGTGGAAAC -ACGGAAATGGGACCTAGTAACACC -ACGGAAATGGGACCTAGTATCGAG -ACGGAAATGGGACCTAGTCTCCTT -ACGGAAATGGGACCTAGTCCTGTT -ACGGAAATGGGACCTAGTCGGTTT -ACGGAAATGGGACCTAGTGTGGTT -ACGGAAATGGGACCTAGTGCCTTT -ACGGAAATGGGACCTAGTGGTCTT -ACGGAAATGGGACCTAGTACGCTT -ACGGAAATGGGACCTAGTAGCGTT -ACGGAAATGGGACCTAGTTTCGTC -ACGGAAATGGGACCTAGTTCTCTC -ACGGAAATGGGACCTAGTTGGATC -ACGGAAATGGGACCTAGTCACTTC -ACGGAAATGGGACCTAGTGTACTC -ACGGAAATGGGACCTAGTGATGTC -ACGGAAATGGGACCTAGTACAGTC -ACGGAAATGGGACCTAGTTTGCTG -ACGGAAATGGGACCTAGTTCCATG -ACGGAAATGGGACCTAGTTGTGTG -ACGGAAATGGGACCTAGTCTAGTG -ACGGAAATGGGACCTAGTCATCTG -ACGGAAATGGGACCTAGTGAGTTG -ACGGAAATGGGACCTAGTAGACTG -ACGGAAATGGGACCTAGTTCGGTA -ACGGAAATGGGACCTAGTTGCCTA -ACGGAAATGGGACCTAGTCCACTA -ACGGAAATGGGACCTAGTGGAGTA -ACGGAAATGGGACCTAGTTCGTCT -ACGGAAATGGGACCTAGTTGCACT -ACGGAAATGGGACCTAGTCTGACT -ACGGAAATGGGACCTAGTCAACCT -ACGGAAATGGGACCTAGTGCTACT -ACGGAAATGGGACCTAGTGGATCT -ACGGAAATGGGACCTAGTAAGGCT -ACGGAAATGGGACCTAGTTCAACC -ACGGAAATGGGACCTAGTTGTTCC -ACGGAAATGGGACCTAGTATTCCC -ACGGAAATGGGACCTAGTTTCTCG -ACGGAAATGGGACCTAGTTAGACG -ACGGAAATGGGACCTAGTGTAACG -ACGGAAATGGGACCTAGTACTTCG -ACGGAAATGGGACCTAGTTACGCA -ACGGAAATGGGACCTAGTCTTGCA -ACGGAAATGGGACCTAGTCGAACA -ACGGAAATGGGACCTAGTCAGTCA -ACGGAAATGGGACCTAGTGATCCA -ACGGAAATGGGACCTAGTACGACA -ACGGAAATGGGACCTAGTAGCTCA -ACGGAAATGGGACCTAGTTCACGT -ACGGAAATGGGACCTAGTCGTAGT -ACGGAAATGGGACCTAGTGTCAGT -ACGGAAATGGGACCTAGTGAAGGT -ACGGAAATGGGACCTAGTAACCGT -ACGGAAATGGGACCTAGTTTGTGC -ACGGAAATGGGACCTAGTCTAAGC -ACGGAAATGGGACCTAGTACTAGC -ACGGAAATGGGACCTAGTAGATGC -ACGGAAATGGGACCTAGTTGAAGG -ACGGAAATGGGACCTAGTCAATGG -ACGGAAATGGGACCTAGTATGAGG -ACGGAAATGGGACCTAGTAATGGG -ACGGAAATGGGACCTAGTTCCTGA -ACGGAAATGGGACCTAGTTAGCGA -ACGGAAATGGGACCTAGTCACAGA -ACGGAAATGGGACCTAGTGCAAGA -ACGGAAATGGGACCTAGTGGTTGA -ACGGAAATGGGACCTAGTTCCGAT -ACGGAAATGGGACCTAGTTGGCAT -ACGGAAATGGGACCTAGTCGAGAT -ACGGAAATGGGACCTAGTTACCAC -ACGGAAATGGGACCTAGTCAGAAC -ACGGAAATGGGACCTAGTGTCTAC -ACGGAAATGGGACCTAGTACGTAC -ACGGAAATGGGACCTAGTAGTGAC -ACGGAAATGGGACCTAGTCTGTAG -ACGGAAATGGGACCTAGTCCTAAG -ACGGAAATGGGACCTAGTGTTCAG -ACGGAAATGGGACCTAGTGCATAG -ACGGAAATGGGACCTAGTGACAAG -ACGGAAATGGGACCTAGTAAGCAG -ACGGAAATGGGACCTAGTCGTCAA -ACGGAAATGGGACCTAGTGCTGAA -ACGGAAATGGGACCTAGTAGTACG -ACGGAAATGGGACCTAGTATCCGA -ACGGAAATGGGACCTAGTATGGGA -ACGGAAATGGGACCTAGTGTGCAA -ACGGAAATGGGACCTAGTGAGGAA -ACGGAAATGGGACCTAGTCAGGTA -ACGGAAATGGGACCTAGTGACTCT -ACGGAAATGGGACCTAGTAGTCCT -ACGGAAATGGGACCTAGTTAAGCC -ACGGAAATGGGACCTAGTATAGCC -ACGGAAATGGGACCTAGTTAACCG -ACGGAAATGGGACCTAGTATGCCA -ACGGAAATGGGAGCCTAAGGAAAC -ACGGAAATGGGAGCCTAAAACACC -ACGGAAATGGGAGCCTAAATCGAG -ACGGAAATGGGAGCCTAACTCCTT -ACGGAAATGGGAGCCTAACCTGTT -ACGGAAATGGGAGCCTAACGGTTT -ACGGAAATGGGAGCCTAAGTGGTT -ACGGAAATGGGAGCCTAAGCCTTT -ACGGAAATGGGAGCCTAAGGTCTT -ACGGAAATGGGAGCCTAAACGCTT -ACGGAAATGGGAGCCTAAAGCGTT -ACGGAAATGGGAGCCTAATTCGTC -ACGGAAATGGGAGCCTAATCTCTC -ACGGAAATGGGAGCCTAATGGATC -ACGGAAATGGGAGCCTAACACTTC -ACGGAAATGGGAGCCTAAGTACTC -ACGGAAATGGGAGCCTAAGATGTC -ACGGAAATGGGAGCCTAAACAGTC -ACGGAAATGGGAGCCTAATTGCTG -ACGGAAATGGGAGCCTAATCCATG -ACGGAAATGGGAGCCTAATGTGTG -ACGGAAATGGGAGCCTAACTAGTG -ACGGAAATGGGAGCCTAACATCTG -ACGGAAATGGGAGCCTAAGAGTTG -ACGGAAATGGGAGCCTAAAGACTG -ACGGAAATGGGAGCCTAATCGGTA -ACGGAAATGGGAGCCTAATGCCTA -ACGGAAATGGGAGCCTAACCACTA -ACGGAAATGGGAGCCTAAGGAGTA -ACGGAAATGGGAGCCTAATCGTCT -ACGGAAATGGGAGCCTAATGCACT -ACGGAAATGGGAGCCTAACTGACT -ACGGAAATGGGAGCCTAACAACCT -ACGGAAATGGGAGCCTAAGCTACT -ACGGAAATGGGAGCCTAAGGATCT -ACGGAAATGGGAGCCTAAAAGGCT -ACGGAAATGGGAGCCTAATCAACC -ACGGAAATGGGAGCCTAATGTTCC -ACGGAAATGGGAGCCTAAATTCCC -ACGGAAATGGGAGCCTAATTCTCG -ACGGAAATGGGAGCCTAATAGACG -ACGGAAATGGGAGCCTAAGTAACG -ACGGAAATGGGAGCCTAAACTTCG -ACGGAAATGGGAGCCTAATACGCA -ACGGAAATGGGAGCCTAACTTGCA -ACGGAAATGGGAGCCTAACGAACA -ACGGAAATGGGAGCCTAACAGTCA -ACGGAAATGGGAGCCTAAGATCCA -ACGGAAATGGGAGCCTAAACGACA -ACGGAAATGGGAGCCTAAAGCTCA -ACGGAAATGGGAGCCTAATCACGT -ACGGAAATGGGAGCCTAACGTAGT -ACGGAAATGGGAGCCTAAGTCAGT -ACGGAAATGGGAGCCTAAGAAGGT -ACGGAAATGGGAGCCTAAAACCGT -ACGGAAATGGGAGCCTAATTGTGC -ACGGAAATGGGAGCCTAACTAAGC -ACGGAAATGGGAGCCTAAACTAGC -ACGGAAATGGGAGCCTAAAGATGC -ACGGAAATGGGAGCCTAATGAAGG -ACGGAAATGGGAGCCTAACAATGG -ACGGAAATGGGAGCCTAAATGAGG -ACGGAAATGGGAGCCTAAAATGGG -ACGGAAATGGGAGCCTAATCCTGA -ACGGAAATGGGAGCCTAATAGCGA -ACGGAAATGGGAGCCTAACACAGA -ACGGAAATGGGAGCCTAAGCAAGA -ACGGAAATGGGAGCCTAAGGTTGA -ACGGAAATGGGAGCCTAATCCGAT -ACGGAAATGGGAGCCTAATGGCAT -ACGGAAATGGGAGCCTAACGAGAT -ACGGAAATGGGAGCCTAATACCAC -ACGGAAATGGGAGCCTAACAGAAC -ACGGAAATGGGAGCCTAAGTCTAC -ACGGAAATGGGAGCCTAAACGTAC -ACGGAAATGGGAGCCTAAAGTGAC -ACGGAAATGGGAGCCTAACTGTAG -ACGGAAATGGGAGCCTAACCTAAG -ACGGAAATGGGAGCCTAAGTTCAG -ACGGAAATGGGAGCCTAAGCATAG -ACGGAAATGGGAGCCTAAGACAAG -ACGGAAATGGGAGCCTAAAAGCAG -ACGGAAATGGGAGCCTAACGTCAA -ACGGAAATGGGAGCCTAAGCTGAA -ACGGAAATGGGAGCCTAAAGTACG -ACGGAAATGGGAGCCTAAATCCGA -ACGGAAATGGGAGCCTAAATGGGA -ACGGAAATGGGAGCCTAAGTGCAA -ACGGAAATGGGAGCCTAAGAGGAA -ACGGAAATGGGAGCCTAACAGGTA -ACGGAAATGGGAGCCTAAGACTCT -ACGGAAATGGGAGCCTAAAGTCCT -ACGGAAATGGGAGCCTAATAAGCC -ACGGAAATGGGAGCCTAAATAGCC -ACGGAAATGGGAGCCTAATAACCG -ACGGAAATGGGAGCCTAAATGCCA -ACGGAAATGGGAGCCATAGGAAAC -ACGGAAATGGGAGCCATAAACACC -ACGGAAATGGGAGCCATAATCGAG -ACGGAAATGGGAGCCATACTCCTT -ACGGAAATGGGAGCCATACCTGTT -ACGGAAATGGGAGCCATACGGTTT -ACGGAAATGGGAGCCATAGTGGTT -ACGGAAATGGGAGCCATAGCCTTT -ACGGAAATGGGAGCCATAGGTCTT -ACGGAAATGGGAGCCATAACGCTT -ACGGAAATGGGAGCCATAAGCGTT -ACGGAAATGGGAGCCATATTCGTC -ACGGAAATGGGAGCCATATCTCTC -ACGGAAATGGGAGCCATATGGATC -ACGGAAATGGGAGCCATACACTTC -ACGGAAATGGGAGCCATAGTACTC -ACGGAAATGGGAGCCATAGATGTC -ACGGAAATGGGAGCCATAACAGTC -ACGGAAATGGGAGCCATATTGCTG -ACGGAAATGGGAGCCATATCCATG -ACGGAAATGGGAGCCATATGTGTG -ACGGAAATGGGAGCCATACTAGTG -ACGGAAATGGGAGCCATACATCTG -ACGGAAATGGGAGCCATAGAGTTG -ACGGAAATGGGAGCCATAAGACTG -ACGGAAATGGGAGCCATATCGGTA -ACGGAAATGGGAGCCATATGCCTA -ACGGAAATGGGAGCCATACCACTA -ACGGAAATGGGAGCCATAGGAGTA -ACGGAAATGGGAGCCATATCGTCT -ACGGAAATGGGAGCCATATGCACT -ACGGAAATGGGAGCCATACTGACT -ACGGAAATGGGAGCCATACAACCT -ACGGAAATGGGAGCCATAGCTACT -ACGGAAATGGGAGCCATAGGATCT -ACGGAAATGGGAGCCATAAAGGCT -ACGGAAATGGGAGCCATATCAACC -ACGGAAATGGGAGCCATATGTTCC -ACGGAAATGGGAGCCATAATTCCC -ACGGAAATGGGAGCCATATTCTCG -ACGGAAATGGGAGCCATATAGACG -ACGGAAATGGGAGCCATAGTAACG -ACGGAAATGGGAGCCATAACTTCG -ACGGAAATGGGAGCCATATACGCA -ACGGAAATGGGAGCCATACTTGCA -ACGGAAATGGGAGCCATACGAACA -ACGGAAATGGGAGCCATACAGTCA -ACGGAAATGGGAGCCATAGATCCA -ACGGAAATGGGAGCCATAACGACA -ACGGAAATGGGAGCCATAAGCTCA -ACGGAAATGGGAGCCATATCACGT -ACGGAAATGGGAGCCATACGTAGT -ACGGAAATGGGAGCCATAGTCAGT -ACGGAAATGGGAGCCATAGAAGGT -ACGGAAATGGGAGCCATAAACCGT -ACGGAAATGGGAGCCATATTGTGC -ACGGAAATGGGAGCCATACTAAGC -ACGGAAATGGGAGCCATAACTAGC -ACGGAAATGGGAGCCATAAGATGC -ACGGAAATGGGAGCCATATGAAGG -ACGGAAATGGGAGCCATACAATGG -ACGGAAATGGGAGCCATAATGAGG -ACGGAAATGGGAGCCATAAATGGG -ACGGAAATGGGAGCCATATCCTGA -ACGGAAATGGGAGCCATATAGCGA -ACGGAAATGGGAGCCATACACAGA -ACGGAAATGGGAGCCATAGCAAGA -ACGGAAATGGGAGCCATAGGTTGA -ACGGAAATGGGAGCCATATCCGAT -ACGGAAATGGGAGCCATATGGCAT -ACGGAAATGGGAGCCATACGAGAT -ACGGAAATGGGAGCCATATACCAC -ACGGAAATGGGAGCCATACAGAAC -ACGGAAATGGGAGCCATAGTCTAC -ACGGAAATGGGAGCCATAACGTAC -ACGGAAATGGGAGCCATAAGTGAC -ACGGAAATGGGAGCCATACTGTAG -ACGGAAATGGGAGCCATACCTAAG -ACGGAAATGGGAGCCATAGTTCAG -ACGGAAATGGGAGCCATAGCATAG -ACGGAAATGGGAGCCATAGACAAG -ACGGAAATGGGAGCCATAAAGCAG -ACGGAAATGGGAGCCATACGTCAA -ACGGAAATGGGAGCCATAGCTGAA -ACGGAAATGGGAGCCATAAGTACG -ACGGAAATGGGAGCCATAATCCGA -ACGGAAATGGGAGCCATAATGGGA -ACGGAAATGGGAGCCATAGTGCAA -ACGGAAATGGGAGCCATAGAGGAA -ACGGAAATGGGAGCCATACAGGTA -ACGGAAATGGGAGCCATAGACTCT -ACGGAAATGGGAGCCATAAGTCCT -ACGGAAATGGGAGCCATATAAGCC -ACGGAAATGGGAGCCATAATAGCC -ACGGAAATGGGAGCCATATAACCG -ACGGAAATGGGAGCCATAATGCCA -ACGGAAATGGGACCGTAAGGAAAC -ACGGAAATGGGACCGTAAAACACC -ACGGAAATGGGACCGTAAATCGAG -ACGGAAATGGGACCGTAACTCCTT -ACGGAAATGGGACCGTAACCTGTT -ACGGAAATGGGACCGTAACGGTTT -ACGGAAATGGGACCGTAAGTGGTT -ACGGAAATGGGACCGTAAGCCTTT -ACGGAAATGGGACCGTAAGGTCTT -ACGGAAATGGGACCGTAAACGCTT -ACGGAAATGGGACCGTAAAGCGTT -ACGGAAATGGGACCGTAATTCGTC -ACGGAAATGGGACCGTAATCTCTC -ACGGAAATGGGACCGTAATGGATC -ACGGAAATGGGACCGTAACACTTC -ACGGAAATGGGACCGTAAGTACTC -ACGGAAATGGGACCGTAAGATGTC -ACGGAAATGGGACCGTAAACAGTC -ACGGAAATGGGACCGTAATTGCTG -ACGGAAATGGGACCGTAATCCATG -ACGGAAATGGGACCGTAATGTGTG -ACGGAAATGGGACCGTAACTAGTG -ACGGAAATGGGACCGTAACATCTG -ACGGAAATGGGACCGTAAGAGTTG -ACGGAAATGGGACCGTAAAGACTG -ACGGAAATGGGACCGTAATCGGTA -ACGGAAATGGGACCGTAATGCCTA -ACGGAAATGGGACCGTAACCACTA -ACGGAAATGGGACCGTAAGGAGTA -ACGGAAATGGGACCGTAATCGTCT -ACGGAAATGGGACCGTAATGCACT -ACGGAAATGGGACCGTAACTGACT -ACGGAAATGGGACCGTAACAACCT -ACGGAAATGGGACCGTAAGCTACT -ACGGAAATGGGACCGTAAGGATCT -ACGGAAATGGGACCGTAAAAGGCT -ACGGAAATGGGACCGTAATCAACC -ACGGAAATGGGACCGTAATGTTCC -ACGGAAATGGGACCGTAAATTCCC -ACGGAAATGGGACCGTAATTCTCG -ACGGAAATGGGACCGTAATAGACG -ACGGAAATGGGACCGTAAGTAACG -ACGGAAATGGGACCGTAAACTTCG -ACGGAAATGGGACCGTAATACGCA -ACGGAAATGGGACCGTAACTTGCA -ACGGAAATGGGACCGTAACGAACA -ACGGAAATGGGACCGTAACAGTCA -ACGGAAATGGGACCGTAAGATCCA -ACGGAAATGGGACCGTAAACGACA -ACGGAAATGGGACCGTAAAGCTCA -ACGGAAATGGGACCGTAATCACGT -ACGGAAATGGGACCGTAACGTAGT -ACGGAAATGGGACCGTAAGTCAGT -ACGGAAATGGGACCGTAAGAAGGT -ACGGAAATGGGACCGTAAAACCGT -ACGGAAATGGGACCGTAATTGTGC -ACGGAAATGGGACCGTAACTAAGC -ACGGAAATGGGACCGTAAACTAGC -ACGGAAATGGGACCGTAAAGATGC -ACGGAAATGGGACCGTAATGAAGG -ACGGAAATGGGACCGTAACAATGG -ACGGAAATGGGACCGTAAATGAGG -ACGGAAATGGGACCGTAAAATGGG -ACGGAAATGGGACCGTAATCCTGA -ACGGAAATGGGACCGTAATAGCGA -ACGGAAATGGGACCGTAACACAGA -ACGGAAATGGGACCGTAAGCAAGA -ACGGAAATGGGACCGTAAGGTTGA -ACGGAAATGGGACCGTAATCCGAT -ACGGAAATGGGACCGTAATGGCAT -ACGGAAATGGGACCGTAACGAGAT -ACGGAAATGGGACCGTAATACCAC -ACGGAAATGGGACCGTAACAGAAC -ACGGAAATGGGACCGTAAGTCTAC -ACGGAAATGGGACCGTAAACGTAC -ACGGAAATGGGACCGTAAAGTGAC -ACGGAAATGGGACCGTAACTGTAG -ACGGAAATGGGACCGTAACCTAAG -ACGGAAATGGGACCGTAAGTTCAG -ACGGAAATGGGACCGTAAGCATAG -ACGGAAATGGGACCGTAAGACAAG -ACGGAAATGGGACCGTAAAAGCAG -ACGGAAATGGGACCGTAACGTCAA -ACGGAAATGGGACCGTAAGCTGAA -ACGGAAATGGGACCGTAAAGTACG -ACGGAAATGGGACCGTAAATCCGA -ACGGAAATGGGACCGTAAATGGGA -ACGGAAATGGGACCGTAAGTGCAA -ACGGAAATGGGACCGTAAGAGGAA -ACGGAAATGGGACCGTAACAGGTA -ACGGAAATGGGACCGTAAGACTCT -ACGGAAATGGGACCGTAAAGTCCT -ACGGAAATGGGACCGTAATAAGCC -ACGGAAATGGGACCGTAAATAGCC -ACGGAAATGGGACCGTAATAACCG -ACGGAAATGGGACCGTAAATGCCA -ACGGAAATGGGACCAATGGGAAAC -ACGGAAATGGGACCAATGAACACC -ACGGAAATGGGACCAATGATCGAG -ACGGAAATGGGACCAATGCTCCTT -ACGGAAATGGGACCAATGCCTGTT -ACGGAAATGGGACCAATGCGGTTT -ACGGAAATGGGACCAATGGTGGTT -ACGGAAATGGGACCAATGGCCTTT -ACGGAAATGGGACCAATGGGTCTT -ACGGAAATGGGACCAATGACGCTT -ACGGAAATGGGACCAATGAGCGTT -ACGGAAATGGGACCAATGTTCGTC -ACGGAAATGGGACCAATGTCTCTC -ACGGAAATGGGACCAATGTGGATC -ACGGAAATGGGACCAATGCACTTC -ACGGAAATGGGACCAATGGTACTC -ACGGAAATGGGACCAATGGATGTC -ACGGAAATGGGACCAATGACAGTC -ACGGAAATGGGACCAATGTTGCTG -ACGGAAATGGGACCAATGTCCATG -ACGGAAATGGGACCAATGTGTGTG -ACGGAAATGGGACCAATGCTAGTG -ACGGAAATGGGACCAATGCATCTG -ACGGAAATGGGACCAATGGAGTTG -ACGGAAATGGGACCAATGAGACTG -ACGGAAATGGGACCAATGTCGGTA -ACGGAAATGGGACCAATGTGCCTA -ACGGAAATGGGACCAATGCCACTA -ACGGAAATGGGACCAATGGGAGTA -ACGGAAATGGGACCAATGTCGTCT -ACGGAAATGGGACCAATGTGCACT -ACGGAAATGGGACCAATGCTGACT -ACGGAAATGGGACCAATGCAACCT -ACGGAAATGGGACCAATGGCTACT -ACGGAAATGGGACCAATGGGATCT -ACGGAAATGGGACCAATGAAGGCT -ACGGAAATGGGACCAATGTCAACC -ACGGAAATGGGACCAATGTGTTCC -ACGGAAATGGGACCAATGATTCCC -ACGGAAATGGGACCAATGTTCTCG -ACGGAAATGGGACCAATGTAGACG -ACGGAAATGGGACCAATGGTAACG -ACGGAAATGGGACCAATGACTTCG -ACGGAAATGGGACCAATGTACGCA -ACGGAAATGGGACCAATGCTTGCA -ACGGAAATGGGACCAATGCGAACA -ACGGAAATGGGACCAATGCAGTCA -ACGGAAATGGGACCAATGGATCCA -ACGGAAATGGGACCAATGACGACA -ACGGAAATGGGACCAATGAGCTCA -ACGGAAATGGGACCAATGTCACGT -ACGGAAATGGGACCAATGCGTAGT -ACGGAAATGGGACCAATGGTCAGT -ACGGAAATGGGACCAATGGAAGGT -ACGGAAATGGGACCAATGAACCGT -ACGGAAATGGGACCAATGTTGTGC -ACGGAAATGGGACCAATGCTAAGC -ACGGAAATGGGACCAATGACTAGC -ACGGAAATGGGACCAATGAGATGC -ACGGAAATGGGACCAATGTGAAGG -ACGGAAATGGGACCAATGCAATGG -ACGGAAATGGGACCAATGATGAGG -ACGGAAATGGGACCAATGAATGGG -ACGGAAATGGGACCAATGTCCTGA -ACGGAAATGGGACCAATGTAGCGA -ACGGAAATGGGACCAATGCACAGA -ACGGAAATGGGACCAATGGCAAGA -ACGGAAATGGGACCAATGGGTTGA -ACGGAAATGGGACCAATGTCCGAT -ACGGAAATGGGACCAATGTGGCAT -ACGGAAATGGGACCAATGCGAGAT -ACGGAAATGGGACCAATGTACCAC -ACGGAAATGGGACCAATGCAGAAC -ACGGAAATGGGACCAATGGTCTAC -ACGGAAATGGGACCAATGACGTAC -ACGGAAATGGGACCAATGAGTGAC -ACGGAAATGGGACCAATGCTGTAG -ACGGAAATGGGACCAATGCCTAAG -ACGGAAATGGGACCAATGGTTCAG -ACGGAAATGGGACCAATGGCATAG -ACGGAAATGGGACCAATGGACAAG -ACGGAAATGGGACCAATGAAGCAG -ACGGAAATGGGACCAATGCGTCAA -ACGGAAATGGGACCAATGGCTGAA -ACGGAAATGGGACCAATGAGTACG -ACGGAAATGGGACCAATGATCCGA -ACGGAAATGGGACCAATGATGGGA -ACGGAAATGGGACCAATGGTGCAA -ACGGAAATGGGACCAATGGAGGAA -ACGGAAATGGGACCAATGCAGGTA -ACGGAAATGGGACCAATGGACTCT -ACGGAAATGGGACCAATGAGTCCT -ACGGAAATGGGACCAATGTAAGCC -ACGGAAATGGGACCAATGATAGCC -ACGGAAATGGGACCAATGTAACCG -ACGGAAATGGGACCAATGATGCCA -ACGGAACCTGATAACGGAGGAAAC -ACGGAACCTGATAACGGAAACACC -ACGGAACCTGATAACGGAATCGAG -ACGGAACCTGATAACGGACTCCTT -ACGGAACCTGATAACGGACCTGTT -ACGGAACCTGATAACGGACGGTTT -ACGGAACCTGATAACGGAGTGGTT -ACGGAACCTGATAACGGAGCCTTT -ACGGAACCTGATAACGGAGGTCTT -ACGGAACCTGATAACGGAACGCTT -ACGGAACCTGATAACGGAAGCGTT -ACGGAACCTGATAACGGATTCGTC -ACGGAACCTGATAACGGATCTCTC -ACGGAACCTGATAACGGATGGATC -ACGGAACCTGATAACGGACACTTC -ACGGAACCTGATAACGGAGTACTC -ACGGAACCTGATAACGGAGATGTC -ACGGAACCTGATAACGGAACAGTC -ACGGAACCTGATAACGGATTGCTG -ACGGAACCTGATAACGGATCCATG -ACGGAACCTGATAACGGATGTGTG -ACGGAACCTGATAACGGACTAGTG -ACGGAACCTGATAACGGACATCTG -ACGGAACCTGATAACGGAGAGTTG -ACGGAACCTGATAACGGAAGACTG -ACGGAACCTGATAACGGATCGGTA -ACGGAACCTGATAACGGATGCCTA -ACGGAACCTGATAACGGACCACTA -ACGGAACCTGATAACGGAGGAGTA -ACGGAACCTGATAACGGATCGTCT -ACGGAACCTGATAACGGATGCACT -ACGGAACCTGATAACGGACTGACT -ACGGAACCTGATAACGGACAACCT -ACGGAACCTGATAACGGAGCTACT -ACGGAACCTGATAACGGAGGATCT -ACGGAACCTGATAACGGAAAGGCT -ACGGAACCTGATAACGGATCAACC -ACGGAACCTGATAACGGATGTTCC -ACGGAACCTGATAACGGAATTCCC -ACGGAACCTGATAACGGATTCTCG -ACGGAACCTGATAACGGATAGACG -ACGGAACCTGATAACGGAGTAACG -ACGGAACCTGATAACGGAACTTCG -ACGGAACCTGATAACGGATACGCA -ACGGAACCTGATAACGGACTTGCA -ACGGAACCTGATAACGGACGAACA -ACGGAACCTGATAACGGACAGTCA -ACGGAACCTGATAACGGAGATCCA -ACGGAACCTGATAACGGAACGACA -ACGGAACCTGATAACGGAAGCTCA -ACGGAACCTGATAACGGATCACGT -ACGGAACCTGATAACGGACGTAGT -ACGGAACCTGATAACGGAGTCAGT -ACGGAACCTGATAACGGAGAAGGT -ACGGAACCTGATAACGGAAACCGT -ACGGAACCTGATAACGGATTGTGC -ACGGAACCTGATAACGGACTAAGC -ACGGAACCTGATAACGGAACTAGC -ACGGAACCTGATAACGGAAGATGC -ACGGAACCTGATAACGGATGAAGG -ACGGAACCTGATAACGGACAATGG -ACGGAACCTGATAACGGAATGAGG -ACGGAACCTGATAACGGAAATGGG -ACGGAACCTGATAACGGATCCTGA -ACGGAACCTGATAACGGATAGCGA -ACGGAACCTGATAACGGACACAGA -ACGGAACCTGATAACGGAGCAAGA -ACGGAACCTGATAACGGAGGTTGA -ACGGAACCTGATAACGGATCCGAT -ACGGAACCTGATAACGGATGGCAT -ACGGAACCTGATAACGGACGAGAT -ACGGAACCTGATAACGGATACCAC -ACGGAACCTGATAACGGACAGAAC -ACGGAACCTGATAACGGAGTCTAC -ACGGAACCTGATAACGGAACGTAC -ACGGAACCTGATAACGGAAGTGAC -ACGGAACCTGATAACGGACTGTAG -ACGGAACCTGATAACGGACCTAAG -ACGGAACCTGATAACGGAGTTCAG -ACGGAACCTGATAACGGAGCATAG -ACGGAACCTGATAACGGAGACAAG -ACGGAACCTGATAACGGAAAGCAG -ACGGAACCTGATAACGGACGTCAA -ACGGAACCTGATAACGGAGCTGAA -ACGGAACCTGATAACGGAAGTACG -ACGGAACCTGATAACGGAATCCGA -ACGGAACCTGATAACGGAATGGGA -ACGGAACCTGATAACGGAGTGCAA -ACGGAACCTGATAACGGAGAGGAA -ACGGAACCTGATAACGGACAGGTA -ACGGAACCTGATAACGGAGACTCT -ACGGAACCTGATAACGGAAGTCCT -ACGGAACCTGATAACGGATAAGCC -ACGGAACCTGATAACGGAATAGCC -ACGGAACCTGATAACGGATAACCG -ACGGAACCTGATAACGGAATGCCA -ACGGAACCTGATACCAACGGAAAC -ACGGAACCTGATACCAACAACACC -ACGGAACCTGATACCAACATCGAG -ACGGAACCTGATACCAACCTCCTT -ACGGAACCTGATACCAACCCTGTT -ACGGAACCTGATACCAACCGGTTT -ACGGAACCTGATACCAACGTGGTT -ACGGAACCTGATACCAACGCCTTT -ACGGAACCTGATACCAACGGTCTT -ACGGAACCTGATACCAACACGCTT -ACGGAACCTGATACCAACAGCGTT -ACGGAACCTGATACCAACTTCGTC -ACGGAACCTGATACCAACTCTCTC -ACGGAACCTGATACCAACTGGATC -ACGGAACCTGATACCAACCACTTC -ACGGAACCTGATACCAACGTACTC -ACGGAACCTGATACCAACGATGTC -ACGGAACCTGATACCAACACAGTC -ACGGAACCTGATACCAACTTGCTG -ACGGAACCTGATACCAACTCCATG -ACGGAACCTGATACCAACTGTGTG -ACGGAACCTGATACCAACCTAGTG -ACGGAACCTGATACCAACCATCTG -ACGGAACCTGATACCAACGAGTTG -ACGGAACCTGATACCAACAGACTG -ACGGAACCTGATACCAACTCGGTA -ACGGAACCTGATACCAACTGCCTA -ACGGAACCTGATACCAACCCACTA -ACGGAACCTGATACCAACGGAGTA -ACGGAACCTGATACCAACTCGTCT -ACGGAACCTGATACCAACTGCACT -ACGGAACCTGATACCAACCTGACT -ACGGAACCTGATACCAACCAACCT -ACGGAACCTGATACCAACGCTACT -ACGGAACCTGATACCAACGGATCT -ACGGAACCTGATACCAACAAGGCT -ACGGAACCTGATACCAACTCAACC -ACGGAACCTGATACCAACTGTTCC -ACGGAACCTGATACCAACATTCCC -ACGGAACCTGATACCAACTTCTCG -ACGGAACCTGATACCAACTAGACG -ACGGAACCTGATACCAACGTAACG -ACGGAACCTGATACCAACACTTCG -ACGGAACCTGATACCAACTACGCA -ACGGAACCTGATACCAACCTTGCA -ACGGAACCTGATACCAACCGAACA -ACGGAACCTGATACCAACCAGTCA -ACGGAACCTGATACCAACGATCCA -ACGGAACCTGATACCAACACGACA -ACGGAACCTGATACCAACAGCTCA -ACGGAACCTGATACCAACTCACGT -ACGGAACCTGATACCAACCGTAGT -ACGGAACCTGATACCAACGTCAGT -ACGGAACCTGATACCAACGAAGGT -ACGGAACCTGATACCAACAACCGT -ACGGAACCTGATACCAACTTGTGC -ACGGAACCTGATACCAACCTAAGC -ACGGAACCTGATACCAACACTAGC -ACGGAACCTGATACCAACAGATGC -ACGGAACCTGATACCAACTGAAGG -ACGGAACCTGATACCAACCAATGG -ACGGAACCTGATACCAACATGAGG -ACGGAACCTGATACCAACAATGGG -ACGGAACCTGATACCAACTCCTGA -ACGGAACCTGATACCAACTAGCGA -ACGGAACCTGATACCAACCACAGA -ACGGAACCTGATACCAACGCAAGA -ACGGAACCTGATACCAACGGTTGA -ACGGAACCTGATACCAACTCCGAT -ACGGAACCTGATACCAACTGGCAT -ACGGAACCTGATACCAACCGAGAT -ACGGAACCTGATACCAACTACCAC -ACGGAACCTGATACCAACCAGAAC -ACGGAACCTGATACCAACGTCTAC -ACGGAACCTGATACCAACACGTAC -ACGGAACCTGATACCAACAGTGAC -ACGGAACCTGATACCAACCTGTAG -ACGGAACCTGATACCAACCCTAAG -ACGGAACCTGATACCAACGTTCAG -ACGGAACCTGATACCAACGCATAG -ACGGAACCTGATACCAACGACAAG -ACGGAACCTGATACCAACAAGCAG -ACGGAACCTGATACCAACCGTCAA -ACGGAACCTGATACCAACGCTGAA -ACGGAACCTGATACCAACAGTACG -ACGGAACCTGATACCAACATCCGA -ACGGAACCTGATACCAACATGGGA -ACGGAACCTGATACCAACGTGCAA -ACGGAACCTGATACCAACGAGGAA -ACGGAACCTGATACCAACCAGGTA -ACGGAACCTGATACCAACGACTCT -ACGGAACCTGATACCAACAGTCCT -ACGGAACCTGATACCAACTAAGCC -ACGGAACCTGATACCAACATAGCC -ACGGAACCTGATACCAACTAACCG -ACGGAACCTGATACCAACATGCCA -ACGGAACCTGATGAGATCGGAAAC -ACGGAACCTGATGAGATCAACACC -ACGGAACCTGATGAGATCATCGAG -ACGGAACCTGATGAGATCCTCCTT -ACGGAACCTGATGAGATCCCTGTT -ACGGAACCTGATGAGATCCGGTTT -ACGGAACCTGATGAGATCGTGGTT -ACGGAACCTGATGAGATCGCCTTT -ACGGAACCTGATGAGATCGGTCTT -ACGGAACCTGATGAGATCACGCTT -ACGGAACCTGATGAGATCAGCGTT -ACGGAACCTGATGAGATCTTCGTC -ACGGAACCTGATGAGATCTCTCTC -ACGGAACCTGATGAGATCTGGATC -ACGGAACCTGATGAGATCCACTTC -ACGGAACCTGATGAGATCGTACTC -ACGGAACCTGATGAGATCGATGTC -ACGGAACCTGATGAGATCACAGTC -ACGGAACCTGATGAGATCTTGCTG -ACGGAACCTGATGAGATCTCCATG -ACGGAACCTGATGAGATCTGTGTG -ACGGAACCTGATGAGATCCTAGTG -ACGGAACCTGATGAGATCCATCTG -ACGGAACCTGATGAGATCGAGTTG -ACGGAACCTGATGAGATCAGACTG -ACGGAACCTGATGAGATCTCGGTA -ACGGAACCTGATGAGATCTGCCTA -ACGGAACCTGATGAGATCCCACTA -ACGGAACCTGATGAGATCGGAGTA -ACGGAACCTGATGAGATCTCGTCT -ACGGAACCTGATGAGATCTGCACT -ACGGAACCTGATGAGATCCTGACT -ACGGAACCTGATGAGATCCAACCT -ACGGAACCTGATGAGATCGCTACT -ACGGAACCTGATGAGATCGGATCT -ACGGAACCTGATGAGATCAAGGCT -ACGGAACCTGATGAGATCTCAACC -ACGGAACCTGATGAGATCTGTTCC -ACGGAACCTGATGAGATCATTCCC -ACGGAACCTGATGAGATCTTCTCG -ACGGAACCTGATGAGATCTAGACG -ACGGAACCTGATGAGATCGTAACG -ACGGAACCTGATGAGATCACTTCG -ACGGAACCTGATGAGATCTACGCA -ACGGAACCTGATGAGATCCTTGCA -ACGGAACCTGATGAGATCCGAACA -ACGGAACCTGATGAGATCCAGTCA -ACGGAACCTGATGAGATCGATCCA -ACGGAACCTGATGAGATCACGACA -ACGGAACCTGATGAGATCAGCTCA -ACGGAACCTGATGAGATCTCACGT -ACGGAACCTGATGAGATCCGTAGT -ACGGAACCTGATGAGATCGTCAGT -ACGGAACCTGATGAGATCGAAGGT -ACGGAACCTGATGAGATCAACCGT -ACGGAACCTGATGAGATCTTGTGC -ACGGAACCTGATGAGATCCTAAGC -ACGGAACCTGATGAGATCACTAGC -ACGGAACCTGATGAGATCAGATGC -ACGGAACCTGATGAGATCTGAAGG -ACGGAACCTGATGAGATCCAATGG -ACGGAACCTGATGAGATCATGAGG -ACGGAACCTGATGAGATCAATGGG -ACGGAACCTGATGAGATCTCCTGA -ACGGAACCTGATGAGATCTAGCGA -ACGGAACCTGATGAGATCCACAGA -ACGGAACCTGATGAGATCGCAAGA -ACGGAACCTGATGAGATCGGTTGA -ACGGAACCTGATGAGATCTCCGAT -ACGGAACCTGATGAGATCTGGCAT -ACGGAACCTGATGAGATCCGAGAT -ACGGAACCTGATGAGATCTACCAC -ACGGAACCTGATGAGATCCAGAAC -ACGGAACCTGATGAGATCGTCTAC -ACGGAACCTGATGAGATCACGTAC -ACGGAACCTGATGAGATCAGTGAC -ACGGAACCTGATGAGATCCTGTAG -ACGGAACCTGATGAGATCCCTAAG -ACGGAACCTGATGAGATCGTTCAG -ACGGAACCTGATGAGATCGCATAG -ACGGAACCTGATGAGATCGACAAG -ACGGAACCTGATGAGATCAAGCAG -ACGGAACCTGATGAGATCCGTCAA -ACGGAACCTGATGAGATCGCTGAA -ACGGAACCTGATGAGATCAGTACG -ACGGAACCTGATGAGATCATCCGA -ACGGAACCTGATGAGATCATGGGA -ACGGAACCTGATGAGATCGTGCAA -ACGGAACCTGATGAGATCGAGGAA -ACGGAACCTGATGAGATCCAGGTA -ACGGAACCTGATGAGATCGACTCT -ACGGAACCTGATGAGATCAGTCCT -ACGGAACCTGATGAGATCTAAGCC -ACGGAACCTGATGAGATCATAGCC -ACGGAACCTGATGAGATCTAACCG -ACGGAACCTGATGAGATCATGCCA -ACGGAACCTGATCTTCTCGGAAAC -ACGGAACCTGATCTTCTCAACACC -ACGGAACCTGATCTTCTCATCGAG -ACGGAACCTGATCTTCTCCTCCTT -ACGGAACCTGATCTTCTCCCTGTT -ACGGAACCTGATCTTCTCCGGTTT -ACGGAACCTGATCTTCTCGTGGTT -ACGGAACCTGATCTTCTCGCCTTT -ACGGAACCTGATCTTCTCGGTCTT -ACGGAACCTGATCTTCTCACGCTT -ACGGAACCTGATCTTCTCAGCGTT -ACGGAACCTGATCTTCTCTTCGTC -ACGGAACCTGATCTTCTCTCTCTC -ACGGAACCTGATCTTCTCTGGATC -ACGGAACCTGATCTTCTCCACTTC -ACGGAACCTGATCTTCTCGTACTC -ACGGAACCTGATCTTCTCGATGTC -ACGGAACCTGATCTTCTCACAGTC -ACGGAACCTGATCTTCTCTTGCTG -ACGGAACCTGATCTTCTCTCCATG -ACGGAACCTGATCTTCTCTGTGTG -ACGGAACCTGATCTTCTCCTAGTG -ACGGAACCTGATCTTCTCCATCTG -ACGGAACCTGATCTTCTCGAGTTG -ACGGAACCTGATCTTCTCAGACTG -ACGGAACCTGATCTTCTCTCGGTA -ACGGAACCTGATCTTCTCTGCCTA -ACGGAACCTGATCTTCTCCCACTA -ACGGAACCTGATCTTCTCGGAGTA -ACGGAACCTGATCTTCTCTCGTCT -ACGGAACCTGATCTTCTCTGCACT -ACGGAACCTGATCTTCTCCTGACT -ACGGAACCTGATCTTCTCCAACCT -ACGGAACCTGATCTTCTCGCTACT -ACGGAACCTGATCTTCTCGGATCT -ACGGAACCTGATCTTCTCAAGGCT -ACGGAACCTGATCTTCTCTCAACC -ACGGAACCTGATCTTCTCTGTTCC -ACGGAACCTGATCTTCTCATTCCC -ACGGAACCTGATCTTCTCTTCTCG -ACGGAACCTGATCTTCTCTAGACG -ACGGAACCTGATCTTCTCGTAACG -ACGGAACCTGATCTTCTCACTTCG -ACGGAACCTGATCTTCTCTACGCA -ACGGAACCTGATCTTCTCCTTGCA -ACGGAACCTGATCTTCTCCGAACA -ACGGAACCTGATCTTCTCCAGTCA -ACGGAACCTGATCTTCTCGATCCA -ACGGAACCTGATCTTCTCACGACA -ACGGAACCTGATCTTCTCAGCTCA -ACGGAACCTGATCTTCTCTCACGT -ACGGAACCTGATCTTCTCCGTAGT -ACGGAACCTGATCTTCTCGTCAGT -ACGGAACCTGATCTTCTCGAAGGT -ACGGAACCTGATCTTCTCAACCGT -ACGGAACCTGATCTTCTCTTGTGC -ACGGAACCTGATCTTCTCCTAAGC -ACGGAACCTGATCTTCTCACTAGC -ACGGAACCTGATCTTCTCAGATGC -ACGGAACCTGATCTTCTCTGAAGG -ACGGAACCTGATCTTCTCCAATGG -ACGGAACCTGATCTTCTCATGAGG -ACGGAACCTGATCTTCTCAATGGG -ACGGAACCTGATCTTCTCTCCTGA -ACGGAACCTGATCTTCTCTAGCGA -ACGGAACCTGATCTTCTCCACAGA -ACGGAACCTGATCTTCTCGCAAGA -ACGGAACCTGATCTTCTCGGTTGA -ACGGAACCTGATCTTCTCTCCGAT -ACGGAACCTGATCTTCTCTGGCAT -ACGGAACCTGATCTTCTCCGAGAT -ACGGAACCTGATCTTCTCTACCAC -ACGGAACCTGATCTTCTCCAGAAC -ACGGAACCTGATCTTCTCGTCTAC -ACGGAACCTGATCTTCTCACGTAC -ACGGAACCTGATCTTCTCAGTGAC -ACGGAACCTGATCTTCTCCTGTAG -ACGGAACCTGATCTTCTCCCTAAG -ACGGAACCTGATCTTCTCGTTCAG -ACGGAACCTGATCTTCTCGCATAG -ACGGAACCTGATCTTCTCGACAAG -ACGGAACCTGATCTTCTCAAGCAG -ACGGAACCTGATCTTCTCCGTCAA -ACGGAACCTGATCTTCTCGCTGAA -ACGGAACCTGATCTTCTCAGTACG -ACGGAACCTGATCTTCTCATCCGA -ACGGAACCTGATCTTCTCATGGGA -ACGGAACCTGATCTTCTCGTGCAA -ACGGAACCTGATCTTCTCGAGGAA -ACGGAACCTGATCTTCTCCAGGTA -ACGGAACCTGATCTTCTCGACTCT -ACGGAACCTGATCTTCTCAGTCCT -ACGGAACCTGATCTTCTCTAAGCC -ACGGAACCTGATCTTCTCATAGCC -ACGGAACCTGATCTTCTCTAACCG -ACGGAACCTGATCTTCTCATGCCA -ACGGAACCTGATGTTCCTGGAAAC -ACGGAACCTGATGTTCCTAACACC -ACGGAACCTGATGTTCCTATCGAG -ACGGAACCTGATGTTCCTCTCCTT -ACGGAACCTGATGTTCCTCCTGTT -ACGGAACCTGATGTTCCTCGGTTT -ACGGAACCTGATGTTCCTGTGGTT -ACGGAACCTGATGTTCCTGCCTTT -ACGGAACCTGATGTTCCTGGTCTT -ACGGAACCTGATGTTCCTACGCTT -ACGGAACCTGATGTTCCTAGCGTT -ACGGAACCTGATGTTCCTTTCGTC -ACGGAACCTGATGTTCCTTCTCTC -ACGGAACCTGATGTTCCTTGGATC -ACGGAACCTGATGTTCCTCACTTC -ACGGAACCTGATGTTCCTGTACTC -ACGGAACCTGATGTTCCTGATGTC -ACGGAACCTGATGTTCCTACAGTC -ACGGAACCTGATGTTCCTTTGCTG -ACGGAACCTGATGTTCCTTCCATG -ACGGAACCTGATGTTCCTTGTGTG -ACGGAACCTGATGTTCCTCTAGTG -ACGGAACCTGATGTTCCTCATCTG -ACGGAACCTGATGTTCCTGAGTTG -ACGGAACCTGATGTTCCTAGACTG -ACGGAACCTGATGTTCCTTCGGTA -ACGGAACCTGATGTTCCTTGCCTA -ACGGAACCTGATGTTCCTCCACTA -ACGGAACCTGATGTTCCTGGAGTA -ACGGAACCTGATGTTCCTTCGTCT -ACGGAACCTGATGTTCCTTGCACT -ACGGAACCTGATGTTCCTCTGACT -ACGGAACCTGATGTTCCTCAACCT -ACGGAACCTGATGTTCCTGCTACT -ACGGAACCTGATGTTCCTGGATCT -ACGGAACCTGATGTTCCTAAGGCT -ACGGAACCTGATGTTCCTTCAACC -ACGGAACCTGATGTTCCTTGTTCC -ACGGAACCTGATGTTCCTATTCCC -ACGGAACCTGATGTTCCTTTCTCG -ACGGAACCTGATGTTCCTTAGACG -ACGGAACCTGATGTTCCTGTAACG -ACGGAACCTGATGTTCCTACTTCG -ACGGAACCTGATGTTCCTTACGCA -ACGGAACCTGATGTTCCTCTTGCA -ACGGAACCTGATGTTCCTCGAACA -ACGGAACCTGATGTTCCTCAGTCA -ACGGAACCTGATGTTCCTGATCCA -ACGGAACCTGATGTTCCTACGACA -ACGGAACCTGATGTTCCTAGCTCA -ACGGAACCTGATGTTCCTTCACGT -ACGGAACCTGATGTTCCTCGTAGT -ACGGAACCTGATGTTCCTGTCAGT -ACGGAACCTGATGTTCCTGAAGGT -ACGGAACCTGATGTTCCTAACCGT -ACGGAACCTGATGTTCCTTTGTGC -ACGGAACCTGATGTTCCTCTAAGC -ACGGAACCTGATGTTCCTACTAGC -ACGGAACCTGATGTTCCTAGATGC -ACGGAACCTGATGTTCCTTGAAGG -ACGGAACCTGATGTTCCTCAATGG -ACGGAACCTGATGTTCCTATGAGG -ACGGAACCTGATGTTCCTAATGGG -ACGGAACCTGATGTTCCTTCCTGA -ACGGAACCTGATGTTCCTTAGCGA -ACGGAACCTGATGTTCCTCACAGA -ACGGAACCTGATGTTCCTGCAAGA -ACGGAACCTGATGTTCCTGGTTGA -ACGGAACCTGATGTTCCTTCCGAT -ACGGAACCTGATGTTCCTTGGCAT -ACGGAACCTGATGTTCCTCGAGAT -ACGGAACCTGATGTTCCTTACCAC -ACGGAACCTGATGTTCCTCAGAAC -ACGGAACCTGATGTTCCTGTCTAC -ACGGAACCTGATGTTCCTACGTAC -ACGGAACCTGATGTTCCTAGTGAC -ACGGAACCTGATGTTCCTCTGTAG -ACGGAACCTGATGTTCCTCCTAAG -ACGGAACCTGATGTTCCTGTTCAG -ACGGAACCTGATGTTCCTGCATAG -ACGGAACCTGATGTTCCTGACAAG -ACGGAACCTGATGTTCCTAAGCAG -ACGGAACCTGATGTTCCTCGTCAA -ACGGAACCTGATGTTCCTGCTGAA -ACGGAACCTGATGTTCCTAGTACG -ACGGAACCTGATGTTCCTATCCGA -ACGGAACCTGATGTTCCTATGGGA -ACGGAACCTGATGTTCCTGTGCAA -ACGGAACCTGATGTTCCTGAGGAA -ACGGAACCTGATGTTCCTCAGGTA -ACGGAACCTGATGTTCCTGACTCT -ACGGAACCTGATGTTCCTAGTCCT -ACGGAACCTGATGTTCCTTAAGCC -ACGGAACCTGATGTTCCTATAGCC -ACGGAACCTGATGTTCCTTAACCG -ACGGAACCTGATGTTCCTATGCCA -ACGGAACCTGATTTTCGGGGAAAC -ACGGAACCTGATTTTCGGAACACC -ACGGAACCTGATTTTCGGATCGAG -ACGGAACCTGATTTTCGGCTCCTT -ACGGAACCTGATTTTCGGCCTGTT -ACGGAACCTGATTTTCGGCGGTTT -ACGGAACCTGATTTTCGGGTGGTT -ACGGAACCTGATTTTCGGGCCTTT -ACGGAACCTGATTTTCGGGGTCTT -ACGGAACCTGATTTTCGGACGCTT -ACGGAACCTGATTTTCGGAGCGTT -ACGGAACCTGATTTTCGGTTCGTC -ACGGAACCTGATTTTCGGTCTCTC -ACGGAACCTGATTTTCGGTGGATC -ACGGAACCTGATTTTCGGCACTTC -ACGGAACCTGATTTTCGGGTACTC -ACGGAACCTGATTTTCGGGATGTC -ACGGAACCTGATTTTCGGACAGTC -ACGGAACCTGATTTTCGGTTGCTG -ACGGAACCTGATTTTCGGTCCATG -ACGGAACCTGATTTTCGGTGTGTG -ACGGAACCTGATTTTCGGCTAGTG -ACGGAACCTGATTTTCGGCATCTG -ACGGAACCTGATTTTCGGGAGTTG -ACGGAACCTGATTTTCGGAGACTG -ACGGAACCTGATTTTCGGTCGGTA -ACGGAACCTGATTTTCGGTGCCTA -ACGGAACCTGATTTTCGGCCACTA -ACGGAACCTGATTTTCGGGGAGTA -ACGGAACCTGATTTTCGGTCGTCT -ACGGAACCTGATTTTCGGTGCACT -ACGGAACCTGATTTTCGGCTGACT -ACGGAACCTGATTTTCGGCAACCT -ACGGAACCTGATTTTCGGGCTACT -ACGGAACCTGATTTTCGGGGATCT -ACGGAACCTGATTTTCGGAAGGCT -ACGGAACCTGATTTTCGGTCAACC -ACGGAACCTGATTTTCGGTGTTCC -ACGGAACCTGATTTTCGGATTCCC -ACGGAACCTGATTTTCGGTTCTCG -ACGGAACCTGATTTTCGGTAGACG -ACGGAACCTGATTTTCGGGTAACG -ACGGAACCTGATTTTCGGACTTCG -ACGGAACCTGATTTTCGGTACGCA -ACGGAACCTGATTTTCGGCTTGCA -ACGGAACCTGATTTTCGGCGAACA -ACGGAACCTGATTTTCGGCAGTCA -ACGGAACCTGATTTTCGGGATCCA -ACGGAACCTGATTTTCGGACGACA -ACGGAACCTGATTTTCGGAGCTCA -ACGGAACCTGATTTTCGGTCACGT -ACGGAACCTGATTTTCGGCGTAGT -ACGGAACCTGATTTTCGGGTCAGT -ACGGAACCTGATTTTCGGGAAGGT -ACGGAACCTGATTTTCGGAACCGT -ACGGAACCTGATTTTCGGTTGTGC -ACGGAACCTGATTTTCGGCTAAGC -ACGGAACCTGATTTTCGGACTAGC -ACGGAACCTGATTTTCGGAGATGC -ACGGAACCTGATTTTCGGTGAAGG -ACGGAACCTGATTTTCGGCAATGG -ACGGAACCTGATTTTCGGATGAGG -ACGGAACCTGATTTTCGGAATGGG -ACGGAACCTGATTTTCGGTCCTGA -ACGGAACCTGATTTTCGGTAGCGA -ACGGAACCTGATTTTCGGCACAGA -ACGGAACCTGATTTTCGGGCAAGA -ACGGAACCTGATTTTCGGGGTTGA -ACGGAACCTGATTTTCGGTCCGAT -ACGGAACCTGATTTTCGGTGGCAT -ACGGAACCTGATTTTCGGCGAGAT -ACGGAACCTGATTTTCGGTACCAC -ACGGAACCTGATTTTCGGCAGAAC -ACGGAACCTGATTTTCGGGTCTAC -ACGGAACCTGATTTTCGGACGTAC -ACGGAACCTGATTTTCGGAGTGAC -ACGGAACCTGATTTTCGGCTGTAG -ACGGAACCTGATTTTCGGCCTAAG -ACGGAACCTGATTTTCGGGTTCAG -ACGGAACCTGATTTTCGGGCATAG -ACGGAACCTGATTTTCGGGACAAG -ACGGAACCTGATTTTCGGAAGCAG -ACGGAACCTGATTTTCGGCGTCAA -ACGGAACCTGATTTTCGGGCTGAA -ACGGAACCTGATTTTCGGAGTACG -ACGGAACCTGATTTTCGGATCCGA -ACGGAACCTGATTTTCGGATGGGA -ACGGAACCTGATTTTCGGGTGCAA -ACGGAACCTGATTTTCGGGAGGAA -ACGGAACCTGATTTTCGGCAGGTA -ACGGAACCTGATTTTCGGGACTCT -ACGGAACCTGATTTTCGGAGTCCT -ACGGAACCTGATTTTCGGTAAGCC -ACGGAACCTGATTTTCGGATAGCC -ACGGAACCTGATTTTCGGTAACCG -ACGGAACCTGATTTTCGGATGCCA -ACGGAACCTGATGTTGTGGGAAAC -ACGGAACCTGATGTTGTGAACACC -ACGGAACCTGATGTTGTGATCGAG -ACGGAACCTGATGTTGTGCTCCTT -ACGGAACCTGATGTTGTGCCTGTT -ACGGAACCTGATGTTGTGCGGTTT -ACGGAACCTGATGTTGTGGTGGTT -ACGGAACCTGATGTTGTGGCCTTT -ACGGAACCTGATGTTGTGGGTCTT -ACGGAACCTGATGTTGTGACGCTT -ACGGAACCTGATGTTGTGAGCGTT -ACGGAACCTGATGTTGTGTTCGTC -ACGGAACCTGATGTTGTGTCTCTC -ACGGAACCTGATGTTGTGTGGATC -ACGGAACCTGATGTTGTGCACTTC -ACGGAACCTGATGTTGTGGTACTC -ACGGAACCTGATGTTGTGGATGTC -ACGGAACCTGATGTTGTGACAGTC -ACGGAACCTGATGTTGTGTTGCTG -ACGGAACCTGATGTTGTGTCCATG -ACGGAACCTGATGTTGTGTGTGTG -ACGGAACCTGATGTTGTGCTAGTG -ACGGAACCTGATGTTGTGCATCTG -ACGGAACCTGATGTTGTGGAGTTG -ACGGAACCTGATGTTGTGAGACTG -ACGGAACCTGATGTTGTGTCGGTA -ACGGAACCTGATGTTGTGTGCCTA -ACGGAACCTGATGTTGTGCCACTA -ACGGAACCTGATGTTGTGGGAGTA -ACGGAACCTGATGTTGTGTCGTCT -ACGGAACCTGATGTTGTGTGCACT -ACGGAACCTGATGTTGTGCTGACT -ACGGAACCTGATGTTGTGCAACCT -ACGGAACCTGATGTTGTGGCTACT -ACGGAACCTGATGTTGTGGGATCT -ACGGAACCTGATGTTGTGAAGGCT -ACGGAACCTGATGTTGTGTCAACC -ACGGAACCTGATGTTGTGTGTTCC -ACGGAACCTGATGTTGTGATTCCC -ACGGAACCTGATGTTGTGTTCTCG -ACGGAACCTGATGTTGTGTAGACG -ACGGAACCTGATGTTGTGGTAACG -ACGGAACCTGATGTTGTGACTTCG -ACGGAACCTGATGTTGTGTACGCA -ACGGAACCTGATGTTGTGCTTGCA -ACGGAACCTGATGTTGTGCGAACA -ACGGAACCTGATGTTGTGCAGTCA -ACGGAACCTGATGTTGTGGATCCA -ACGGAACCTGATGTTGTGACGACA -ACGGAACCTGATGTTGTGAGCTCA -ACGGAACCTGATGTTGTGTCACGT -ACGGAACCTGATGTTGTGCGTAGT -ACGGAACCTGATGTTGTGGTCAGT -ACGGAACCTGATGTTGTGGAAGGT -ACGGAACCTGATGTTGTGAACCGT -ACGGAACCTGATGTTGTGTTGTGC -ACGGAACCTGATGTTGTGCTAAGC -ACGGAACCTGATGTTGTGACTAGC -ACGGAACCTGATGTTGTGAGATGC -ACGGAACCTGATGTTGTGTGAAGG -ACGGAACCTGATGTTGTGCAATGG -ACGGAACCTGATGTTGTGATGAGG -ACGGAACCTGATGTTGTGAATGGG -ACGGAACCTGATGTTGTGTCCTGA -ACGGAACCTGATGTTGTGTAGCGA -ACGGAACCTGATGTTGTGCACAGA -ACGGAACCTGATGTTGTGGCAAGA -ACGGAACCTGATGTTGTGGGTTGA -ACGGAACCTGATGTTGTGTCCGAT -ACGGAACCTGATGTTGTGTGGCAT -ACGGAACCTGATGTTGTGCGAGAT -ACGGAACCTGATGTTGTGTACCAC -ACGGAACCTGATGTTGTGCAGAAC -ACGGAACCTGATGTTGTGGTCTAC -ACGGAACCTGATGTTGTGACGTAC -ACGGAACCTGATGTTGTGAGTGAC -ACGGAACCTGATGTTGTGCTGTAG -ACGGAACCTGATGTTGTGCCTAAG -ACGGAACCTGATGTTGTGGTTCAG -ACGGAACCTGATGTTGTGGCATAG -ACGGAACCTGATGTTGTGGACAAG -ACGGAACCTGATGTTGTGAAGCAG -ACGGAACCTGATGTTGTGCGTCAA -ACGGAACCTGATGTTGTGGCTGAA -ACGGAACCTGATGTTGTGAGTACG -ACGGAACCTGATGTTGTGATCCGA -ACGGAACCTGATGTTGTGATGGGA -ACGGAACCTGATGTTGTGGTGCAA -ACGGAACCTGATGTTGTGGAGGAA -ACGGAACCTGATGTTGTGCAGGTA -ACGGAACCTGATGTTGTGGACTCT -ACGGAACCTGATGTTGTGAGTCCT -ACGGAACCTGATGTTGTGTAAGCC -ACGGAACCTGATGTTGTGATAGCC -ACGGAACCTGATGTTGTGTAACCG -ACGGAACCTGATGTTGTGATGCCA -ACGGAACCTGATTTTGCCGGAAAC -ACGGAACCTGATTTTGCCAACACC -ACGGAACCTGATTTTGCCATCGAG -ACGGAACCTGATTTTGCCCTCCTT -ACGGAACCTGATTTTGCCCCTGTT -ACGGAACCTGATTTTGCCCGGTTT -ACGGAACCTGATTTTGCCGTGGTT -ACGGAACCTGATTTTGCCGCCTTT -ACGGAACCTGATTTTGCCGGTCTT -ACGGAACCTGATTTTGCCACGCTT -ACGGAACCTGATTTTGCCAGCGTT -ACGGAACCTGATTTTGCCTTCGTC -ACGGAACCTGATTTTGCCTCTCTC -ACGGAACCTGATTTTGCCTGGATC -ACGGAACCTGATTTTGCCCACTTC -ACGGAACCTGATTTTGCCGTACTC -ACGGAACCTGATTTTGCCGATGTC -ACGGAACCTGATTTTGCCACAGTC -ACGGAACCTGATTTTGCCTTGCTG -ACGGAACCTGATTTTGCCTCCATG -ACGGAACCTGATTTTGCCTGTGTG -ACGGAACCTGATTTTGCCCTAGTG -ACGGAACCTGATTTTGCCCATCTG -ACGGAACCTGATTTTGCCGAGTTG -ACGGAACCTGATTTTGCCAGACTG -ACGGAACCTGATTTTGCCTCGGTA -ACGGAACCTGATTTTGCCTGCCTA -ACGGAACCTGATTTTGCCCCACTA -ACGGAACCTGATTTTGCCGGAGTA -ACGGAACCTGATTTTGCCTCGTCT -ACGGAACCTGATTTTGCCTGCACT -ACGGAACCTGATTTTGCCCTGACT -ACGGAACCTGATTTTGCCCAACCT -ACGGAACCTGATTTTGCCGCTACT -ACGGAACCTGATTTTGCCGGATCT -ACGGAACCTGATTTTGCCAAGGCT -ACGGAACCTGATTTTGCCTCAACC -ACGGAACCTGATTTTGCCTGTTCC -ACGGAACCTGATTTTGCCATTCCC -ACGGAACCTGATTTTGCCTTCTCG -ACGGAACCTGATTTTGCCTAGACG -ACGGAACCTGATTTTGCCGTAACG -ACGGAACCTGATTTTGCCACTTCG -ACGGAACCTGATTTTGCCTACGCA -ACGGAACCTGATTTTGCCCTTGCA -ACGGAACCTGATTTTGCCCGAACA -ACGGAACCTGATTTTGCCCAGTCA -ACGGAACCTGATTTTGCCGATCCA -ACGGAACCTGATTTTGCCACGACA -ACGGAACCTGATTTTGCCAGCTCA -ACGGAACCTGATTTTGCCTCACGT -ACGGAACCTGATTTTGCCCGTAGT -ACGGAACCTGATTTTGCCGTCAGT -ACGGAACCTGATTTTGCCGAAGGT -ACGGAACCTGATTTTGCCAACCGT -ACGGAACCTGATTTTGCCTTGTGC -ACGGAACCTGATTTTGCCCTAAGC -ACGGAACCTGATTTTGCCACTAGC -ACGGAACCTGATTTTGCCAGATGC -ACGGAACCTGATTTTGCCTGAAGG -ACGGAACCTGATTTTGCCCAATGG -ACGGAACCTGATTTTGCCATGAGG -ACGGAACCTGATTTTGCCAATGGG -ACGGAACCTGATTTTGCCTCCTGA -ACGGAACCTGATTTTGCCTAGCGA -ACGGAACCTGATTTTGCCCACAGA -ACGGAACCTGATTTTGCCGCAAGA -ACGGAACCTGATTTTGCCGGTTGA -ACGGAACCTGATTTTGCCTCCGAT -ACGGAACCTGATTTTGCCTGGCAT -ACGGAACCTGATTTTGCCCGAGAT -ACGGAACCTGATTTTGCCTACCAC -ACGGAACCTGATTTTGCCCAGAAC -ACGGAACCTGATTTTGCCGTCTAC -ACGGAACCTGATTTTGCCACGTAC -ACGGAACCTGATTTTGCCAGTGAC -ACGGAACCTGATTTTGCCCTGTAG -ACGGAACCTGATTTTGCCCCTAAG -ACGGAACCTGATTTTGCCGTTCAG -ACGGAACCTGATTTTGCCGCATAG -ACGGAACCTGATTTTGCCGACAAG -ACGGAACCTGATTTTGCCAAGCAG -ACGGAACCTGATTTTGCCCGTCAA -ACGGAACCTGATTTTGCCGCTGAA -ACGGAACCTGATTTTGCCAGTACG -ACGGAACCTGATTTTGCCATCCGA -ACGGAACCTGATTTTGCCATGGGA -ACGGAACCTGATTTTGCCGTGCAA -ACGGAACCTGATTTTGCCGAGGAA -ACGGAACCTGATTTTGCCCAGGTA -ACGGAACCTGATTTTGCCGACTCT -ACGGAACCTGATTTTGCCAGTCCT -ACGGAACCTGATTTTGCCTAAGCC -ACGGAACCTGATTTTGCCATAGCC -ACGGAACCTGATTTTGCCTAACCG -ACGGAACCTGATTTTGCCATGCCA -ACGGAACCTGATCTTGGTGGAAAC -ACGGAACCTGATCTTGGTAACACC -ACGGAACCTGATCTTGGTATCGAG -ACGGAACCTGATCTTGGTCTCCTT -ACGGAACCTGATCTTGGTCCTGTT -ACGGAACCTGATCTTGGTCGGTTT -ACGGAACCTGATCTTGGTGTGGTT -ACGGAACCTGATCTTGGTGCCTTT -ACGGAACCTGATCTTGGTGGTCTT -ACGGAACCTGATCTTGGTACGCTT -ACGGAACCTGATCTTGGTAGCGTT -ACGGAACCTGATCTTGGTTTCGTC -ACGGAACCTGATCTTGGTTCTCTC -ACGGAACCTGATCTTGGTTGGATC -ACGGAACCTGATCTTGGTCACTTC -ACGGAACCTGATCTTGGTGTACTC -ACGGAACCTGATCTTGGTGATGTC -ACGGAACCTGATCTTGGTACAGTC -ACGGAACCTGATCTTGGTTTGCTG -ACGGAACCTGATCTTGGTTCCATG -ACGGAACCTGATCTTGGTTGTGTG -ACGGAACCTGATCTTGGTCTAGTG -ACGGAACCTGATCTTGGTCATCTG -ACGGAACCTGATCTTGGTGAGTTG -ACGGAACCTGATCTTGGTAGACTG -ACGGAACCTGATCTTGGTTCGGTA -ACGGAACCTGATCTTGGTTGCCTA -ACGGAACCTGATCTTGGTCCACTA -ACGGAACCTGATCTTGGTGGAGTA -ACGGAACCTGATCTTGGTTCGTCT -ACGGAACCTGATCTTGGTTGCACT -ACGGAACCTGATCTTGGTCTGACT -ACGGAACCTGATCTTGGTCAACCT -ACGGAACCTGATCTTGGTGCTACT -ACGGAACCTGATCTTGGTGGATCT -ACGGAACCTGATCTTGGTAAGGCT -ACGGAACCTGATCTTGGTTCAACC -ACGGAACCTGATCTTGGTTGTTCC -ACGGAACCTGATCTTGGTATTCCC -ACGGAACCTGATCTTGGTTTCTCG -ACGGAACCTGATCTTGGTTAGACG -ACGGAACCTGATCTTGGTGTAACG -ACGGAACCTGATCTTGGTACTTCG -ACGGAACCTGATCTTGGTTACGCA -ACGGAACCTGATCTTGGTCTTGCA -ACGGAACCTGATCTTGGTCGAACA -ACGGAACCTGATCTTGGTCAGTCA -ACGGAACCTGATCTTGGTGATCCA -ACGGAACCTGATCTTGGTACGACA -ACGGAACCTGATCTTGGTAGCTCA -ACGGAACCTGATCTTGGTTCACGT -ACGGAACCTGATCTTGGTCGTAGT -ACGGAACCTGATCTTGGTGTCAGT -ACGGAACCTGATCTTGGTGAAGGT -ACGGAACCTGATCTTGGTAACCGT -ACGGAACCTGATCTTGGTTTGTGC -ACGGAACCTGATCTTGGTCTAAGC -ACGGAACCTGATCTTGGTACTAGC -ACGGAACCTGATCTTGGTAGATGC -ACGGAACCTGATCTTGGTTGAAGG -ACGGAACCTGATCTTGGTCAATGG -ACGGAACCTGATCTTGGTATGAGG -ACGGAACCTGATCTTGGTAATGGG -ACGGAACCTGATCTTGGTTCCTGA -ACGGAACCTGATCTTGGTTAGCGA -ACGGAACCTGATCTTGGTCACAGA -ACGGAACCTGATCTTGGTGCAAGA -ACGGAACCTGATCTTGGTGGTTGA -ACGGAACCTGATCTTGGTTCCGAT -ACGGAACCTGATCTTGGTTGGCAT -ACGGAACCTGATCTTGGTCGAGAT -ACGGAACCTGATCTTGGTTACCAC -ACGGAACCTGATCTTGGTCAGAAC -ACGGAACCTGATCTTGGTGTCTAC -ACGGAACCTGATCTTGGTACGTAC -ACGGAACCTGATCTTGGTAGTGAC -ACGGAACCTGATCTTGGTCTGTAG -ACGGAACCTGATCTTGGTCCTAAG -ACGGAACCTGATCTTGGTGTTCAG -ACGGAACCTGATCTTGGTGCATAG -ACGGAACCTGATCTTGGTGACAAG -ACGGAACCTGATCTTGGTAAGCAG -ACGGAACCTGATCTTGGTCGTCAA -ACGGAACCTGATCTTGGTGCTGAA -ACGGAACCTGATCTTGGTAGTACG -ACGGAACCTGATCTTGGTATCCGA -ACGGAACCTGATCTTGGTATGGGA -ACGGAACCTGATCTTGGTGTGCAA -ACGGAACCTGATCTTGGTGAGGAA -ACGGAACCTGATCTTGGTCAGGTA -ACGGAACCTGATCTTGGTGACTCT -ACGGAACCTGATCTTGGTAGTCCT -ACGGAACCTGATCTTGGTTAAGCC -ACGGAACCTGATCTTGGTATAGCC -ACGGAACCTGATCTTGGTTAACCG -ACGGAACCTGATCTTGGTATGCCA -ACGGAACCTGATCTTACGGGAAAC -ACGGAACCTGATCTTACGAACACC -ACGGAACCTGATCTTACGATCGAG -ACGGAACCTGATCTTACGCTCCTT -ACGGAACCTGATCTTACGCCTGTT -ACGGAACCTGATCTTACGCGGTTT -ACGGAACCTGATCTTACGGTGGTT -ACGGAACCTGATCTTACGGCCTTT -ACGGAACCTGATCTTACGGGTCTT -ACGGAACCTGATCTTACGACGCTT -ACGGAACCTGATCTTACGAGCGTT -ACGGAACCTGATCTTACGTTCGTC -ACGGAACCTGATCTTACGTCTCTC -ACGGAACCTGATCTTACGTGGATC -ACGGAACCTGATCTTACGCACTTC -ACGGAACCTGATCTTACGGTACTC -ACGGAACCTGATCTTACGGATGTC -ACGGAACCTGATCTTACGACAGTC -ACGGAACCTGATCTTACGTTGCTG -ACGGAACCTGATCTTACGTCCATG -ACGGAACCTGATCTTACGTGTGTG -ACGGAACCTGATCTTACGCTAGTG -ACGGAACCTGATCTTACGCATCTG -ACGGAACCTGATCTTACGGAGTTG -ACGGAACCTGATCTTACGAGACTG -ACGGAACCTGATCTTACGTCGGTA -ACGGAACCTGATCTTACGTGCCTA -ACGGAACCTGATCTTACGCCACTA -ACGGAACCTGATCTTACGGGAGTA -ACGGAACCTGATCTTACGTCGTCT -ACGGAACCTGATCTTACGTGCACT -ACGGAACCTGATCTTACGCTGACT -ACGGAACCTGATCTTACGCAACCT -ACGGAACCTGATCTTACGGCTACT -ACGGAACCTGATCTTACGGGATCT -ACGGAACCTGATCTTACGAAGGCT -ACGGAACCTGATCTTACGTCAACC -ACGGAACCTGATCTTACGTGTTCC -ACGGAACCTGATCTTACGATTCCC -ACGGAACCTGATCTTACGTTCTCG -ACGGAACCTGATCTTACGTAGACG -ACGGAACCTGATCTTACGGTAACG -ACGGAACCTGATCTTACGACTTCG -ACGGAACCTGATCTTACGTACGCA -ACGGAACCTGATCTTACGCTTGCA -ACGGAACCTGATCTTACGCGAACA -ACGGAACCTGATCTTACGCAGTCA -ACGGAACCTGATCTTACGGATCCA -ACGGAACCTGATCTTACGACGACA -ACGGAACCTGATCTTACGAGCTCA -ACGGAACCTGATCTTACGTCACGT -ACGGAACCTGATCTTACGCGTAGT -ACGGAACCTGATCTTACGGTCAGT -ACGGAACCTGATCTTACGGAAGGT -ACGGAACCTGATCTTACGAACCGT -ACGGAACCTGATCTTACGTTGTGC -ACGGAACCTGATCTTACGCTAAGC -ACGGAACCTGATCTTACGACTAGC -ACGGAACCTGATCTTACGAGATGC -ACGGAACCTGATCTTACGTGAAGG -ACGGAACCTGATCTTACGCAATGG -ACGGAACCTGATCTTACGATGAGG -ACGGAACCTGATCTTACGAATGGG -ACGGAACCTGATCTTACGTCCTGA -ACGGAACCTGATCTTACGTAGCGA -ACGGAACCTGATCTTACGCACAGA -ACGGAACCTGATCTTACGGCAAGA -ACGGAACCTGATCTTACGGGTTGA -ACGGAACCTGATCTTACGTCCGAT -ACGGAACCTGATCTTACGTGGCAT -ACGGAACCTGATCTTACGCGAGAT -ACGGAACCTGATCTTACGTACCAC -ACGGAACCTGATCTTACGCAGAAC -ACGGAACCTGATCTTACGGTCTAC -ACGGAACCTGATCTTACGACGTAC -ACGGAACCTGATCTTACGAGTGAC -ACGGAACCTGATCTTACGCTGTAG -ACGGAACCTGATCTTACGCCTAAG -ACGGAACCTGATCTTACGGTTCAG -ACGGAACCTGATCTTACGGCATAG -ACGGAACCTGATCTTACGGACAAG -ACGGAACCTGATCTTACGAAGCAG -ACGGAACCTGATCTTACGCGTCAA -ACGGAACCTGATCTTACGGCTGAA -ACGGAACCTGATCTTACGAGTACG -ACGGAACCTGATCTTACGATCCGA -ACGGAACCTGATCTTACGATGGGA -ACGGAACCTGATCTTACGGTGCAA -ACGGAACCTGATCTTACGGAGGAA -ACGGAACCTGATCTTACGCAGGTA -ACGGAACCTGATCTTACGGACTCT -ACGGAACCTGATCTTACGAGTCCT -ACGGAACCTGATCTTACGTAAGCC -ACGGAACCTGATCTTACGATAGCC -ACGGAACCTGATCTTACGTAACCG -ACGGAACCTGATCTTACGATGCCA -ACGGAACCTGATGTTAGCGGAAAC -ACGGAACCTGATGTTAGCAACACC -ACGGAACCTGATGTTAGCATCGAG -ACGGAACCTGATGTTAGCCTCCTT -ACGGAACCTGATGTTAGCCCTGTT -ACGGAACCTGATGTTAGCCGGTTT -ACGGAACCTGATGTTAGCGTGGTT -ACGGAACCTGATGTTAGCGCCTTT -ACGGAACCTGATGTTAGCGGTCTT -ACGGAACCTGATGTTAGCACGCTT -ACGGAACCTGATGTTAGCAGCGTT -ACGGAACCTGATGTTAGCTTCGTC -ACGGAACCTGATGTTAGCTCTCTC -ACGGAACCTGATGTTAGCTGGATC -ACGGAACCTGATGTTAGCCACTTC -ACGGAACCTGATGTTAGCGTACTC -ACGGAACCTGATGTTAGCGATGTC -ACGGAACCTGATGTTAGCACAGTC -ACGGAACCTGATGTTAGCTTGCTG -ACGGAACCTGATGTTAGCTCCATG -ACGGAACCTGATGTTAGCTGTGTG -ACGGAACCTGATGTTAGCCTAGTG -ACGGAACCTGATGTTAGCCATCTG -ACGGAACCTGATGTTAGCGAGTTG -ACGGAACCTGATGTTAGCAGACTG -ACGGAACCTGATGTTAGCTCGGTA -ACGGAACCTGATGTTAGCTGCCTA -ACGGAACCTGATGTTAGCCCACTA -ACGGAACCTGATGTTAGCGGAGTA -ACGGAACCTGATGTTAGCTCGTCT -ACGGAACCTGATGTTAGCTGCACT -ACGGAACCTGATGTTAGCCTGACT -ACGGAACCTGATGTTAGCCAACCT -ACGGAACCTGATGTTAGCGCTACT -ACGGAACCTGATGTTAGCGGATCT -ACGGAACCTGATGTTAGCAAGGCT -ACGGAACCTGATGTTAGCTCAACC -ACGGAACCTGATGTTAGCTGTTCC -ACGGAACCTGATGTTAGCATTCCC -ACGGAACCTGATGTTAGCTTCTCG -ACGGAACCTGATGTTAGCTAGACG -ACGGAACCTGATGTTAGCGTAACG -ACGGAACCTGATGTTAGCACTTCG -ACGGAACCTGATGTTAGCTACGCA -ACGGAACCTGATGTTAGCCTTGCA -ACGGAACCTGATGTTAGCCGAACA -ACGGAACCTGATGTTAGCCAGTCA -ACGGAACCTGATGTTAGCGATCCA -ACGGAACCTGATGTTAGCACGACA -ACGGAACCTGATGTTAGCAGCTCA -ACGGAACCTGATGTTAGCTCACGT -ACGGAACCTGATGTTAGCCGTAGT -ACGGAACCTGATGTTAGCGTCAGT -ACGGAACCTGATGTTAGCGAAGGT -ACGGAACCTGATGTTAGCAACCGT -ACGGAACCTGATGTTAGCTTGTGC -ACGGAACCTGATGTTAGCCTAAGC -ACGGAACCTGATGTTAGCACTAGC -ACGGAACCTGATGTTAGCAGATGC -ACGGAACCTGATGTTAGCTGAAGG -ACGGAACCTGATGTTAGCCAATGG -ACGGAACCTGATGTTAGCATGAGG -ACGGAACCTGATGTTAGCAATGGG -ACGGAACCTGATGTTAGCTCCTGA -ACGGAACCTGATGTTAGCTAGCGA -ACGGAACCTGATGTTAGCCACAGA -ACGGAACCTGATGTTAGCGCAAGA -ACGGAACCTGATGTTAGCGGTTGA -ACGGAACCTGATGTTAGCTCCGAT -ACGGAACCTGATGTTAGCTGGCAT -ACGGAACCTGATGTTAGCCGAGAT -ACGGAACCTGATGTTAGCTACCAC -ACGGAACCTGATGTTAGCCAGAAC -ACGGAACCTGATGTTAGCGTCTAC -ACGGAACCTGATGTTAGCACGTAC -ACGGAACCTGATGTTAGCAGTGAC -ACGGAACCTGATGTTAGCCTGTAG -ACGGAACCTGATGTTAGCCCTAAG -ACGGAACCTGATGTTAGCGTTCAG -ACGGAACCTGATGTTAGCGCATAG -ACGGAACCTGATGTTAGCGACAAG -ACGGAACCTGATGTTAGCAAGCAG -ACGGAACCTGATGTTAGCCGTCAA -ACGGAACCTGATGTTAGCGCTGAA -ACGGAACCTGATGTTAGCAGTACG -ACGGAACCTGATGTTAGCATCCGA -ACGGAACCTGATGTTAGCATGGGA -ACGGAACCTGATGTTAGCGTGCAA -ACGGAACCTGATGTTAGCGAGGAA -ACGGAACCTGATGTTAGCCAGGTA -ACGGAACCTGATGTTAGCGACTCT -ACGGAACCTGATGTTAGCAGTCCT -ACGGAACCTGATGTTAGCTAAGCC -ACGGAACCTGATGTTAGCATAGCC -ACGGAACCTGATGTTAGCTAACCG -ACGGAACCTGATGTTAGCATGCCA -ACGGAACCTGATGTCTTCGGAAAC -ACGGAACCTGATGTCTTCAACACC -ACGGAACCTGATGTCTTCATCGAG -ACGGAACCTGATGTCTTCCTCCTT -ACGGAACCTGATGTCTTCCCTGTT -ACGGAACCTGATGTCTTCCGGTTT -ACGGAACCTGATGTCTTCGTGGTT -ACGGAACCTGATGTCTTCGCCTTT -ACGGAACCTGATGTCTTCGGTCTT -ACGGAACCTGATGTCTTCACGCTT -ACGGAACCTGATGTCTTCAGCGTT -ACGGAACCTGATGTCTTCTTCGTC -ACGGAACCTGATGTCTTCTCTCTC -ACGGAACCTGATGTCTTCTGGATC -ACGGAACCTGATGTCTTCCACTTC -ACGGAACCTGATGTCTTCGTACTC -ACGGAACCTGATGTCTTCGATGTC -ACGGAACCTGATGTCTTCACAGTC -ACGGAACCTGATGTCTTCTTGCTG -ACGGAACCTGATGTCTTCTCCATG -ACGGAACCTGATGTCTTCTGTGTG -ACGGAACCTGATGTCTTCCTAGTG -ACGGAACCTGATGTCTTCCATCTG -ACGGAACCTGATGTCTTCGAGTTG -ACGGAACCTGATGTCTTCAGACTG -ACGGAACCTGATGTCTTCTCGGTA -ACGGAACCTGATGTCTTCTGCCTA -ACGGAACCTGATGTCTTCCCACTA -ACGGAACCTGATGTCTTCGGAGTA -ACGGAACCTGATGTCTTCTCGTCT -ACGGAACCTGATGTCTTCTGCACT -ACGGAACCTGATGTCTTCCTGACT -ACGGAACCTGATGTCTTCCAACCT -ACGGAACCTGATGTCTTCGCTACT -ACGGAACCTGATGTCTTCGGATCT -ACGGAACCTGATGTCTTCAAGGCT -ACGGAACCTGATGTCTTCTCAACC -ACGGAACCTGATGTCTTCTGTTCC -ACGGAACCTGATGTCTTCATTCCC -ACGGAACCTGATGTCTTCTTCTCG -ACGGAACCTGATGTCTTCTAGACG -ACGGAACCTGATGTCTTCGTAACG -ACGGAACCTGATGTCTTCACTTCG -ACGGAACCTGATGTCTTCTACGCA -ACGGAACCTGATGTCTTCCTTGCA -ACGGAACCTGATGTCTTCCGAACA -ACGGAACCTGATGTCTTCCAGTCA -ACGGAACCTGATGTCTTCGATCCA -ACGGAACCTGATGTCTTCACGACA -ACGGAACCTGATGTCTTCAGCTCA -ACGGAACCTGATGTCTTCTCACGT -ACGGAACCTGATGTCTTCCGTAGT -ACGGAACCTGATGTCTTCGTCAGT -ACGGAACCTGATGTCTTCGAAGGT -ACGGAACCTGATGTCTTCAACCGT -ACGGAACCTGATGTCTTCTTGTGC -ACGGAACCTGATGTCTTCCTAAGC -ACGGAACCTGATGTCTTCACTAGC -ACGGAACCTGATGTCTTCAGATGC -ACGGAACCTGATGTCTTCTGAAGG -ACGGAACCTGATGTCTTCCAATGG -ACGGAACCTGATGTCTTCATGAGG -ACGGAACCTGATGTCTTCAATGGG -ACGGAACCTGATGTCTTCTCCTGA -ACGGAACCTGATGTCTTCTAGCGA -ACGGAACCTGATGTCTTCCACAGA -ACGGAACCTGATGTCTTCGCAAGA -ACGGAACCTGATGTCTTCGGTTGA -ACGGAACCTGATGTCTTCTCCGAT -ACGGAACCTGATGTCTTCTGGCAT -ACGGAACCTGATGTCTTCCGAGAT -ACGGAACCTGATGTCTTCTACCAC -ACGGAACCTGATGTCTTCCAGAAC -ACGGAACCTGATGTCTTCGTCTAC -ACGGAACCTGATGTCTTCACGTAC -ACGGAACCTGATGTCTTCAGTGAC -ACGGAACCTGATGTCTTCCTGTAG -ACGGAACCTGATGTCTTCCCTAAG -ACGGAACCTGATGTCTTCGTTCAG -ACGGAACCTGATGTCTTCGCATAG -ACGGAACCTGATGTCTTCGACAAG -ACGGAACCTGATGTCTTCAAGCAG -ACGGAACCTGATGTCTTCCGTCAA -ACGGAACCTGATGTCTTCGCTGAA -ACGGAACCTGATGTCTTCAGTACG -ACGGAACCTGATGTCTTCATCCGA -ACGGAACCTGATGTCTTCATGGGA -ACGGAACCTGATGTCTTCGTGCAA -ACGGAACCTGATGTCTTCGAGGAA -ACGGAACCTGATGTCTTCCAGGTA -ACGGAACCTGATGTCTTCGACTCT -ACGGAACCTGATGTCTTCAGTCCT -ACGGAACCTGATGTCTTCTAAGCC -ACGGAACCTGATGTCTTCATAGCC -ACGGAACCTGATGTCTTCTAACCG -ACGGAACCTGATGTCTTCATGCCA -ACGGAACCTGATCTCTCTGGAAAC -ACGGAACCTGATCTCTCTAACACC -ACGGAACCTGATCTCTCTATCGAG -ACGGAACCTGATCTCTCTCTCCTT -ACGGAACCTGATCTCTCTCCTGTT -ACGGAACCTGATCTCTCTCGGTTT -ACGGAACCTGATCTCTCTGTGGTT -ACGGAACCTGATCTCTCTGCCTTT -ACGGAACCTGATCTCTCTGGTCTT -ACGGAACCTGATCTCTCTACGCTT -ACGGAACCTGATCTCTCTAGCGTT -ACGGAACCTGATCTCTCTTTCGTC -ACGGAACCTGATCTCTCTTCTCTC -ACGGAACCTGATCTCTCTTGGATC -ACGGAACCTGATCTCTCTCACTTC -ACGGAACCTGATCTCTCTGTACTC -ACGGAACCTGATCTCTCTGATGTC -ACGGAACCTGATCTCTCTACAGTC -ACGGAACCTGATCTCTCTTTGCTG -ACGGAACCTGATCTCTCTTCCATG -ACGGAACCTGATCTCTCTTGTGTG -ACGGAACCTGATCTCTCTCTAGTG -ACGGAACCTGATCTCTCTCATCTG -ACGGAACCTGATCTCTCTGAGTTG -ACGGAACCTGATCTCTCTAGACTG -ACGGAACCTGATCTCTCTTCGGTA -ACGGAACCTGATCTCTCTTGCCTA -ACGGAACCTGATCTCTCTCCACTA -ACGGAACCTGATCTCTCTGGAGTA -ACGGAACCTGATCTCTCTTCGTCT -ACGGAACCTGATCTCTCTTGCACT -ACGGAACCTGATCTCTCTCTGACT -ACGGAACCTGATCTCTCTCAACCT -ACGGAACCTGATCTCTCTGCTACT -ACGGAACCTGATCTCTCTGGATCT -ACGGAACCTGATCTCTCTAAGGCT -ACGGAACCTGATCTCTCTTCAACC -ACGGAACCTGATCTCTCTTGTTCC -ACGGAACCTGATCTCTCTATTCCC -ACGGAACCTGATCTCTCTTTCTCG -ACGGAACCTGATCTCTCTTAGACG -ACGGAACCTGATCTCTCTGTAACG -ACGGAACCTGATCTCTCTACTTCG -ACGGAACCTGATCTCTCTTACGCA -ACGGAACCTGATCTCTCTCTTGCA -ACGGAACCTGATCTCTCTCGAACA -ACGGAACCTGATCTCTCTCAGTCA -ACGGAACCTGATCTCTCTGATCCA -ACGGAACCTGATCTCTCTACGACA -ACGGAACCTGATCTCTCTAGCTCA -ACGGAACCTGATCTCTCTTCACGT -ACGGAACCTGATCTCTCTCGTAGT -ACGGAACCTGATCTCTCTGTCAGT -ACGGAACCTGATCTCTCTGAAGGT -ACGGAACCTGATCTCTCTAACCGT -ACGGAACCTGATCTCTCTTTGTGC -ACGGAACCTGATCTCTCTCTAAGC -ACGGAACCTGATCTCTCTACTAGC -ACGGAACCTGATCTCTCTAGATGC -ACGGAACCTGATCTCTCTTGAAGG -ACGGAACCTGATCTCTCTCAATGG -ACGGAACCTGATCTCTCTATGAGG -ACGGAACCTGATCTCTCTAATGGG -ACGGAACCTGATCTCTCTTCCTGA -ACGGAACCTGATCTCTCTTAGCGA -ACGGAACCTGATCTCTCTCACAGA -ACGGAACCTGATCTCTCTGCAAGA -ACGGAACCTGATCTCTCTGGTTGA -ACGGAACCTGATCTCTCTTCCGAT -ACGGAACCTGATCTCTCTTGGCAT -ACGGAACCTGATCTCTCTCGAGAT -ACGGAACCTGATCTCTCTTACCAC -ACGGAACCTGATCTCTCTCAGAAC -ACGGAACCTGATCTCTCTGTCTAC -ACGGAACCTGATCTCTCTACGTAC -ACGGAACCTGATCTCTCTAGTGAC -ACGGAACCTGATCTCTCTCTGTAG -ACGGAACCTGATCTCTCTCCTAAG -ACGGAACCTGATCTCTCTGTTCAG -ACGGAACCTGATCTCTCTGCATAG -ACGGAACCTGATCTCTCTGACAAG -ACGGAACCTGATCTCTCTAAGCAG -ACGGAACCTGATCTCTCTCGTCAA -ACGGAACCTGATCTCTCTGCTGAA -ACGGAACCTGATCTCTCTAGTACG -ACGGAACCTGATCTCTCTATCCGA -ACGGAACCTGATCTCTCTATGGGA -ACGGAACCTGATCTCTCTGTGCAA -ACGGAACCTGATCTCTCTGAGGAA -ACGGAACCTGATCTCTCTCAGGTA -ACGGAACCTGATCTCTCTGACTCT -ACGGAACCTGATCTCTCTAGTCCT -ACGGAACCTGATCTCTCTTAAGCC -ACGGAACCTGATCTCTCTATAGCC -ACGGAACCTGATCTCTCTTAACCG -ACGGAACCTGATCTCTCTATGCCA -ACGGAACCTGATATCTGGGGAAAC -ACGGAACCTGATATCTGGAACACC -ACGGAACCTGATATCTGGATCGAG -ACGGAACCTGATATCTGGCTCCTT -ACGGAACCTGATATCTGGCCTGTT -ACGGAACCTGATATCTGGCGGTTT -ACGGAACCTGATATCTGGGTGGTT -ACGGAACCTGATATCTGGGCCTTT -ACGGAACCTGATATCTGGGGTCTT -ACGGAACCTGATATCTGGACGCTT -ACGGAACCTGATATCTGGAGCGTT -ACGGAACCTGATATCTGGTTCGTC -ACGGAACCTGATATCTGGTCTCTC -ACGGAACCTGATATCTGGTGGATC -ACGGAACCTGATATCTGGCACTTC -ACGGAACCTGATATCTGGGTACTC -ACGGAACCTGATATCTGGGATGTC -ACGGAACCTGATATCTGGACAGTC -ACGGAACCTGATATCTGGTTGCTG -ACGGAACCTGATATCTGGTCCATG -ACGGAACCTGATATCTGGTGTGTG -ACGGAACCTGATATCTGGCTAGTG -ACGGAACCTGATATCTGGCATCTG -ACGGAACCTGATATCTGGGAGTTG -ACGGAACCTGATATCTGGAGACTG -ACGGAACCTGATATCTGGTCGGTA -ACGGAACCTGATATCTGGTGCCTA -ACGGAACCTGATATCTGGCCACTA -ACGGAACCTGATATCTGGGGAGTA -ACGGAACCTGATATCTGGTCGTCT -ACGGAACCTGATATCTGGTGCACT -ACGGAACCTGATATCTGGCTGACT -ACGGAACCTGATATCTGGCAACCT -ACGGAACCTGATATCTGGGCTACT -ACGGAACCTGATATCTGGGGATCT -ACGGAACCTGATATCTGGAAGGCT -ACGGAACCTGATATCTGGTCAACC -ACGGAACCTGATATCTGGTGTTCC -ACGGAACCTGATATCTGGATTCCC -ACGGAACCTGATATCTGGTTCTCG -ACGGAACCTGATATCTGGTAGACG -ACGGAACCTGATATCTGGGTAACG -ACGGAACCTGATATCTGGACTTCG -ACGGAACCTGATATCTGGTACGCA -ACGGAACCTGATATCTGGCTTGCA -ACGGAACCTGATATCTGGCGAACA -ACGGAACCTGATATCTGGCAGTCA -ACGGAACCTGATATCTGGGATCCA -ACGGAACCTGATATCTGGACGACA -ACGGAACCTGATATCTGGAGCTCA -ACGGAACCTGATATCTGGTCACGT -ACGGAACCTGATATCTGGCGTAGT -ACGGAACCTGATATCTGGGTCAGT -ACGGAACCTGATATCTGGGAAGGT -ACGGAACCTGATATCTGGAACCGT -ACGGAACCTGATATCTGGTTGTGC -ACGGAACCTGATATCTGGCTAAGC -ACGGAACCTGATATCTGGACTAGC -ACGGAACCTGATATCTGGAGATGC -ACGGAACCTGATATCTGGTGAAGG -ACGGAACCTGATATCTGGCAATGG -ACGGAACCTGATATCTGGATGAGG -ACGGAACCTGATATCTGGAATGGG -ACGGAACCTGATATCTGGTCCTGA -ACGGAACCTGATATCTGGTAGCGA -ACGGAACCTGATATCTGGCACAGA -ACGGAACCTGATATCTGGGCAAGA -ACGGAACCTGATATCTGGGGTTGA -ACGGAACCTGATATCTGGTCCGAT -ACGGAACCTGATATCTGGTGGCAT -ACGGAACCTGATATCTGGCGAGAT -ACGGAACCTGATATCTGGTACCAC -ACGGAACCTGATATCTGGCAGAAC -ACGGAACCTGATATCTGGGTCTAC -ACGGAACCTGATATCTGGACGTAC -ACGGAACCTGATATCTGGAGTGAC -ACGGAACCTGATATCTGGCTGTAG -ACGGAACCTGATATCTGGCCTAAG -ACGGAACCTGATATCTGGGTTCAG -ACGGAACCTGATATCTGGGCATAG -ACGGAACCTGATATCTGGGACAAG -ACGGAACCTGATATCTGGAAGCAG -ACGGAACCTGATATCTGGCGTCAA -ACGGAACCTGATATCTGGGCTGAA -ACGGAACCTGATATCTGGAGTACG -ACGGAACCTGATATCTGGATCCGA -ACGGAACCTGATATCTGGATGGGA -ACGGAACCTGATATCTGGGTGCAA -ACGGAACCTGATATCTGGGAGGAA -ACGGAACCTGATATCTGGCAGGTA -ACGGAACCTGATATCTGGGACTCT -ACGGAACCTGATATCTGGAGTCCT -ACGGAACCTGATATCTGGTAAGCC -ACGGAACCTGATATCTGGATAGCC -ACGGAACCTGATATCTGGTAACCG -ACGGAACCTGATATCTGGATGCCA -ACGGAACCTGATTTCCACGGAAAC -ACGGAACCTGATTTCCACAACACC -ACGGAACCTGATTTCCACATCGAG -ACGGAACCTGATTTCCACCTCCTT -ACGGAACCTGATTTCCACCCTGTT -ACGGAACCTGATTTCCACCGGTTT -ACGGAACCTGATTTCCACGTGGTT -ACGGAACCTGATTTCCACGCCTTT -ACGGAACCTGATTTCCACGGTCTT -ACGGAACCTGATTTCCACACGCTT -ACGGAACCTGATTTCCACAGCGTT -ACGGAACCTGATTTCCACTTCGTC -ACGGAACCTGATTTCCACTCTCTC -ACGGAACCTGATTTCCACTGGATC -ACGGAACCTGATTTCCACCACTTC -ACGGAACCTGATTTCCACGTACTC -ACGGAACCTGATTTCCACGATGTC -ACGGAACCTGATTTCCACACAGTC -ACGGAACCTGATTTCCACTTGCTG -ACGGAACCTGATTTCCACTCCATG -ACGGAACCTGATTTCCACTGTGTG -ACGGAACCTGATTTCCACCTAGTG -ACGGAACCTGATTTCCACCATCTG -ACGGAACCTGATTTCCACGAGTTG -ACGGAACCTGATTTCCACAGACTG -ACGGAACCTGATTTCCACTCGGTA -ACGGAACCTGATTTCCACTGCCTA -ACGGAACCTGATTTCCACCCACTA -ACGGAACCTGATTTCCACGGAGTA -ACGGAACCTGATTTCCACTCGTCT -ACGGAACCTGATTTCCACTGCACT -ACGGAACCTGATTTCCACCTGACT -ACGGAACCTGATTTCCACCAACCT -ACGGAACCTGATTTCCACGCTACT -ACGGAACCTGATTTCCACGGATCT -ACGGAACCTGATTTCCACAAGGCT -ACGGAACCTGATTTCCACTCAACC -ACGGAACCTGATTTCCACTGTTCC -ACGGAACCTGATTTCCACATTCCC -ACGGAACCTGATTTCCACTTCTCG -ACGGAACCTGATTTCCACTAGACG -ACGGAACCTGATTTCCACGTAACG -ACGGAACCTGATTTCCACACTTCG -ACGGAACCTGATTTCCACTACGCA -ACGGAACCTGATTTCCACCTTGCA -ACGGAACCTGATTTCCACCGAACA -ACGGAACCTGATTTCCACCAGTCA -ACGGAACCTGATTTCCACGATCCA -ACGGAACCTGATTTCCACACGACA -ACGGAACCTGATTTCCACAGCTCA -ACGGAACCTGATTTCCACTCACGT -ACGGAACCTGATTTCCACCGTAGT -ACGGAACCTGATTTCCACGTCAGT -ACGGAACCTGATTTCCACGAAGGT -ACGGAACCTGATTTCCACAACCGT -ACGGAACCTGATTTCCACTTGTGC -ACGGAACCTGATTTCCACCTAAGC -ACGGAACCTGATTTCCACACTAGC -ACGGAACCTGATTTCCACAGATGC -ACGGAACCTGATTTCCACTGAAGG -ACGGAACCTGATTTCCACCAATGG -ACGGAACCTGATTTCCACATGAGG -ACGGAACCTGATTTCCACAATGGG -ACGGAACCTGATTTCCACTCCTGA -ACGGAACCTGATTTCCACTAGCGA -ACGGAACCTGATTTCCACCACAGA -ACGGAACCTGATTTCCACGCAAGA -ACGGAACCTGATTTCCACGGTTGA -ACGGAACCTGATTTCCACTCCGAT -ACGGAACCTGATTTCCACTGGCAT -ACGGAACCTGATTTCCACCGAGAT -ACGGAACCTGATTTCCACTACCAC -ACGGAACCTGATTTCCACCAGAAC -ACGGAACCTGATTTCCACGTCTAC -ACGGAACCTGATTTCCACACGTAC -ACGGAACCTGATTTCCACAGTGAC -ACGGAACCTGATTTCCACCTGTAG -ACGGAACCTGATTTCCACCCTAAG -ACGGAACCTGATTTCCACGTTCAG -ACGGAACCTGATTTCCACGCATAG -ACGGAACCTGATTTCCACGACAAG -ACGGAACCTGATTTCCACAAGCAG -ACGGAACCTGATTTCCACCGTCAA -ACGGAACCTGATTTCCACGCTGAA -ACGGAACCTGATTTCCACAGTACG -ACGGAACCTGATTTCCACATCCGA -ACGGAACCTGATTTCCACATGGGA -ACGGAACCTGATTTCCACGTGCAA -ACGGAACCTGATTTCCACGAGGAA -ACGGAACCTGATTTCCACCAGGTA -ACGGAACCTGATTTCCACGACTCT -ACGGAACCTGATTTCCACAGTCCT -ACGGAACCTGATTTCCACTAAGCC -ACGGAACCTGATTTCCACATAGCC -ACGGAACCTGATTTCCACTAACCG -ACGGAACCTGATTTCCACATGCCA -ACGGAACCTGATCTCGTAGGAAAC -ACGGAACCTGATCTCGTAAACACC -ACGGAACCTGATCTCGTAATCGAG -ACGGAACCTGATCTCGTACTCCTT -ACGGAACCTGATCTCGTACCTGTT -ACGGAACCTGATCTCGTACGGTTT -ACGGAACCTGATCTCGTAGTGGTT -ACGGAACCTGATCTCGTAGCCTTT -ACGGAACCTGATCTCGTAGGTCTT -ACGGAACCTGATCTCGTAACGCTT -ACGGAACCTGATCTCGTAAGCGTT -ACGGAACCTGATCTCGTATTCGTC -ACGGAACCTGATCTCGTATCTCTC -ACGGAACCTGATCTCGTATGGATC -ACGGAACCTGATCTCGTACACTTC -ACGGAACCTGATCTCGTAGTACTC -ACGGAACCTGATCTCGTAGATGTC -ACGGAACCTGATCTCGTAACAGTC -ACGGAACCTGATCTCGTATTGCTG -ACGGAACCTGATCTCGTATCCATG -ACGGAACCTGATCTCGTATGTGTG -ACGGAACCTGATCTCGTACTAGTG -ACGGAACCTGATCTCGTACATCTG -ACGGAACCTGATCTCGTAGAGTTG -ACGGAACCTGATCTCGTAAGACTG -ACGGAACCTGATCTCGTATCGGTA -ACGGAACCTGATCTCGTATGCCTA -ACGGAACCTGATCTCGTACCACTA -ACGGAACCTGATCTCGTAGGAGTA -ACGGAACCTGATCTCGTATCGTCT -ACGGAACCTGATCTCGTATGCACT -ACGGAACCTGATCTCGTACTGACT -ACGGAACCTGATCTCGTACAACCT -ACGGAACCTGATCTCGTAGCTACT -ACGGAACCTGATCTCGTAGGATCT -ACGGAACCTGATCTCGTAAAGGCT -ACGGAACCTGATCTCGTATCAACC -ACGGAACCTGATCTCGTATGTTCC -ACGGAACCTGATCTCGTAATTCCC -ACGGAACCTGATCTCGTATTCTCG -ACGGAACCTGATCTCGTATAGACG -ACGGAACCTGATCTCGTAGTAACG -ACGGAACCTGATCTCGTAACTTCG -ACGGAACCTGATCTCGTATACGCA -ACGGAACCTGATCTCGTACTTGCA -ACGGAACCTGATCTCGTACGAACA -ACGGAACCTGATCTCGTACAGTCA -ACGGAACCTGATCTCGTAGATCCA -ACGGAACCTGATCTCGTAACGACA -ACGGAACCTGATCTCGTAAGCTCA -ACGGAACCTGATCTCGTATCACGT -ACGGAACCTGATCTCGTACGTAGT -ACGGAACCTGATCTCGTAGTCAGT -ACGGAACCTGATCTCGTAGAAGGT -ACGGAACCTGATCTCGTAAACCGT -ACGGAACCTGATCTCGTATTGTGC -ACGGAACCTGATCTCGTACTAAGC -ACGGAACCTGATCTCGTAACTAGC -ACGGAACCTGATCTCGTAAGATGC -ACGGAACCTGATCTCGTATGAAGG -ACGGAACCTGATCTCGTACAATGG -ACGGAACCTGATCTCGTAATGAGG -ACGGAACCTGATCTCGTAAATGGG -ACGGAACCTGATCTCGTATCCTGA -ACGGAACCTGATCTCGTATAGCGA -ACGGAACCTGATCTCGTACACAGA -ACGGAACCTGATCTCGTAGCAAGA -ACGGAACCTGATCTCGTAGGTTGA -ACGGAACCTGATCTCGTATCCGAT -ACGGAACCTGATCTCGTATGGCAT -ACGGAACCTGATCTCGTACGAGAT -ACGGAACCTGATCTCGTATACCAC -ACGGAACCTGATCTCGTACAGAAC -ACGGAACCTGATCTCGTAGTCTAC -ACGGAACCTGATCTCGTAACGTAC -ACGGAACCTGATCTCGTAAGTGAC -ACGGAACCTGATCTCGTACTGTAG -ACGGAACCTGATCTCGTACCTAAG -ACGGAACCTGATCTCGTAGTTCAG -ACGGAACCTGATCTCGTAGCATAG -ACGGAACCTGATCTCGTAGACAAG -ACGGAACCTGATCTCGTAAAGCAG -ACGGAACCTGATCTCGTACGTCAA -ACGGAACCTGATCTCGTAGCTGAA -ACGGAACCTGATCTCGTAAGTACG -ACGGAACCTGATCTCGTAATCCGA -ACGGAACCTGATCTCGTAATGGGA -ACGGAACCTGATCTCGTAGTGCAA -ACGGAACCTGATCTCGTAGAGGAA -ACGGAACCTGATCTCGTACAGGTA -ACGGAACCTGATCTCGTAGACTCT -ACGGAACCTGATCTCGTAAGTCCT -ACGGAACCTGATCTCGTATAAGCC -ACGGAACCTGATCTCGTAATAGCC -ACGGAACCTGATCTCGTATAACCG -ACGGAACCTGATCTCGTAATGCCA -ACGGAACCTGATGTCGATGGAAAC -ACGGAACCTGATGTCGATAACACC -ACGGAACCTGATGTCGATATCGAG -ACGGAACCTGATGTCGATCTCCTT -ACGGAACCTGATGTCGATCCTGTT -ACGGAACCTGATGTCGATCGGTTT -ACGGAACCTGATGTCGATGTGGTT -ACGGAACCTGATGTCGATGCCTTT -ACGGAACCTGATGTCGATGGTCTT -ACGGAACCTGATGTCGATACGCTT -ACGGAACCTGATGTCGATAGCGTT -ACGGAACCTGATGTCGATTTCGTC -ACGGAACCTGATGTCGATTCTCTC -ACGGAACCTGATGTCGATTGGATC -ACGGAACCTGATGTCGATCACTTC -ACGGAACCTGATGTCGATGTACTC -ACGGAACCTGATGTCGATGATGTC -ACGGAACCTGATGTCGATACAGTC -ACGGAACCTGATGTCGATTTGCTG -ACGGAACCTGATGTCGATTCCATG -ACGGAACCTGATGTCGATTGTGTG -ACGGAACCTGATGTCGATCTAGTG -ACGGAACCTGATGTCGATCATCTG -ACGGAACCTGATGTCGATGAGTTG -ACGGAACCTGATGTCGATAGACTG -ACGGAACCTGATGTCGATTCGGTA -ACGGAACCTGATGTCGATTGCCTA -ACGGAACCTGATGTCGATCCACTA -ACGGAACCTGATGTCGATGGAGTA -ACGGAACCTGATGTCGATTCGTCT -ACGGAACCTGATGTCGATTGCACT -ACGGAACCTGATGTCGATCTGACT -ACGGAACCTGATGTCGATCAACCT -ACGGAACCTGATGTCGATGCTACT -ACGGAACCTGATGTCGATGGATCT -ACGGAACCTGATGTCGATAAGGCT -ACGGAACCTGATGTCGATTCAACC -ACGGAACCTGATGTCGATTGTTCC -ACGGAACCTGATGTCGATATTCCC -ACGGAACCTGATGTCGATTTCTCG -ACGGAACCTGATGTCGATTAGACG -ACGGAACCTGATGTCGATGTAACG -ACGGAACCTGATGTCGATACTTCG -ACGGAACCTGATGTCGATTACGCA -ACGGAACCTGATGTCGATCTTGCA -ACGGAACCTGATGTCGATCGAACA -ACGGAACCTGATGTCGATCAGTCA -ACGGAACCTGATGTCGATGATCCA -ACGGAACCTGATGTCGATACGACA -ACGGAACCTGATGTCGATAGCTCA -ACGGAACCTGATGTCGATTCACGT -ACGGAACCTGATGTCGATCGTAGT -ACGGAACCTGATGTCGATGTCAGT -ACGGAACCTGATGTCGATGAAGGT -ACGGAACCTGATGTCGATAACCGT -ACGGAACCTGATGTCGATTTGTGC -ACGGAACCTGATGTCGATCTAAGC -ACGGAACCTGATGTCGATACTAGC -ACGGAACCTGATGTCGATAGATGC -ACGGAACCTGATGTCGATTGAAGG -ACGGAACCTGATGTCGATCAATGG -ACGGAACCTGATGTCGATATGAGG -ACGGAACCTGATGTCGATAATGGG -ACGGAACCTGATGTCGATTCCTGA -ACGGAACCTGATGTCGATTAGCGA -ACGGAACCTGATGTCGATCACAGA -ACGGAACCTGATGTCGATGCAAGA -ACGGAACCTGATGTCGATGGTTGA -ACGGAACCTGATGTCGATTCCGAT -ACGGAACCTGATGTCGATTGGCAT -ACGGAACCTGATGTCGATCGAGAT -ACGGAACCTGATGTCGATTACCAC -ACGGAACCTGATGTCGATCAGAAC -ACGGAACCTGATGTCGATGTCTAC -ACGGAACCTGATGTCGATACGTAC -ACGGAACCTGATGTCGATAGTGAC -ACGGAACCTGATGTCGATCTGTAG -ACGGAACCTGATGTCGATCCTAAG -ACGGAACCTGATGTCGATGTTCAG -ACGGAACCTGATGTCGATGCATAG -ACGGAACCTGATGTCGATGACAAG -ACGGAACCTGATGTCGATAAGCAG -ACGGAACCTGATGTCGATCGTCAA -ACGGAACCTGATGTCGATGCTGAA -ACGGAACCTGATGTCGATAGTACG -ACGGAACCTGATGTCGATATCCGA -ACGGAACCTGATGTCGATATGGGA -ACGGAACCTGATGTCGATGTGCAA -ACGGAACCTGATGTCGATGAGGAA -ACGGAACCTGATGTCGATCAGGTA -ACGGAACCTGATGTCGATGACTCT -ACGGAACCTGATGTCGATAGTCCT -ACGGAACCTGATGTCGATTAAGCC -ACGGAACCTGATGTCGATATAGCC -ACGGAACCTGATGTCGATTAACCG -ACGGAACCTGATGTCGATATGCCA -ACGGAACCTGATGTCACAGGAAAC -ACGGAACCTGATGTCACAAACACC -ACGGAACCTGATGTCACAATCGAG -ACGGAACCTGATGTCACACTCCTT -ACGGAACCTGATGTCACACCTGTT -ACGGAACCTGATGTCACACGGTTT -ACGGAACCTGATGTCACAGTGGTT -ACGGAACCTGATGTCACAGCCTTT -ACGGAACCTGATGTCACAGGTCTT -ACGGAACCTGATGTCACAACGCTT -ACGGAACCTGATGTCACAAGCGTT -ACGGAACCTGATGTCACATTCGTC -ACGGAACCTGATGTCACATCTCTC -ACGGAACCTGATGTCACATGGATC -ACGGAACCTGATGTCACACACTTC -ACGGAACCTGATGTCACAGTACTC -ACGGAACCTGATGTCACAGATGTC -ACGGAACCTGATGTCACAACAGTC -ACGGAACCTGATGTCACATTGCTG -ACGGAACCTGATGTCACATCCATG -ACGGAACCTGATGTCACATGTGTG -ACGGAACCTGATGTCACACTAGTG -ACGGAACCTGATGTCACACATCTG -ACGGAACCTGATGTCACAGAGTTG -ACGGAACCTGATGTCACAAGACTG -ACGGAACCTGATGTCACATCGGTA -ACGGAACCTGATGTCACATGCCTA -ACGGAACCTGATGTCACACCACTA -ACGGAACCTGATGTCACAGGAGTA -ACGGAACCTGATGTCACATCGTCT -ACGGAACCTGATGTCACATGCACT -ACGGAACCTGATGTCACACTGACT -ACGGAACCTGATGTCACACAACCT -ACGGAACCTGATGTCACAGCTACT -ACGGAACCTGATGTCACAGGATCT -ACGGAACCTGATGTCACAAAGGCT -ACGGAACCTGATGTCACATCAACC -ACGGAACCTGATGTCACATGTTCC -ACGGAACCTGATGTCACAATTCCC -ACGGAACCTGATGTCACATTCTCG -ACGGAACCTGATGTCACATAGACG -ACGGAACCTGATGTCACAGTAACG -ACGGAACCTGATGTCACAACTTCG -ACGGAACCTGATGTCACATACGCA -ACGGAACCTGATGTCACACTTGCA -ACGGAACCTGATGTCACACGAACA -ACGGAACCTGATGTCACACAGTCA -ACGGAACCTGATGTCACAGATCCA -ACGGAACCTGATGTCACAACGACA -ACGGAACCTGATGTCACAAGCTCA -ACGGAACCTGATGTCACATCACGT -ACGGAACCTGATGTCACACGTAGT -ACGGAACCTGATGTCACAGTCAGT -ACGGAACCTGATGTCACAGAAGGT -ACGGAACCTGATGTCACAAACCGT -ACGGAACCTGATGTCACATTGTGC -ACGGAACCTGATGTCACACTAAGC -ACGGAACCTGATGTCACAACTAGC -ACGGAACCTGATGTCACAAGATGC -ACGGAACCTGATGTCACATGAAGG -ACGGAACCTGATGTCACACAATGG -ACGGAACCTGATGTCACAATGAGG -ACGGAACCTGATGTCACAAATGGG -ACGGAACCTGATGTCACATCCTGA -ACGGAACCTGATGTCACATAGCGA -ACGGAACCTGATGTCACACACAGA -ACGGAACCTGATGTCACAGCAAGA -ACGGAACCTGATGTCACAGGTTGA -ACGGAACCTGATGTCACATCCGAT -ACGGAACCTGATGTCACATGGCAT -ACGGAACCTGATGTCACACGAGAT -ACGGAACCTGATGTCACATACCAC -ACGGAACCTGATGTCACACAGAAC -ACGGAACCTGATGTCACAGTCTAC -ACGGAACCTGATGTCACAACGTAC -ACGGAACCTGATGTCACAAGTGAC -ACGGAACCTGATGTCACACTGTAG -ACGGAACCTGATGTCACACCTAAG -ACGGAACCTGATGTCACAGTTCAG -ACGGAACCTGATGTCACAGCATAG -ACGGAACCTGATGTCACAGACAAG -ACGGAACCTGATGTCACAAAGCAG -ACGGAACCTGATGTCACACGTCAA -ACGGAACCTGATGTCACAGCTGAA -ACGGAACCTGATGTCACAAGTACG -ACGGAACCTGATGTCACAATCCGA -ACGGAACCTGATGTCACAATGGGA -ACGGAACCTGATGTCACAGTGCAA -ACGGAACCTGATGTCACAGAGGAA -ACGGAACCTGATGTCACACAGGTA -ACGGAACCTGATGTCACAGACTCT -ACGGAACCTGATGTCACAAGTCCT -ACGGAACCTGATGTCACATAAGCC -ACGGAACCTGATGTCACAATAGCC -ACGGAACCTGATGTCACATAACCG -ACGGAACCTGATGTCACAATGCCA -ACGGAACCTGATCTGTTGGGAAAC -ACGGAACCTGATCTGTTGAACACC -ACGGAACCTGATCTGTTGATCGAG -ACGGAACCTGATCTGTTGCTCCTT -ACGGAACCTGATCTGTTGCCTGTT -ACGGAACCTGATCTGTTGCGGTTT -ACGGAACCTGATCTGTTGGTGGTT -ACGGAACCTGATCTGTTGGCCTTT -ACGGAACCTGATCTGTTGGGTCTT -ACGGAACCTGATCTGTTGACGCTT -ACGGAACCTGATCTGTTGAGCGTT -ACGGAACCTGATCTGTTGTTCGTC -ACGGAACCTGATCTGTTGTCTCTC -ACGGAACCTGATCTGTTGTGGATC -ACGGAACCTGATCTGTTGCACTTC -ACGGAACCTGATCTGTTGGTACTC -ACGGAACCTGATCTGTTGGATGTC -ACGGAACCTGATCTGTTGACAGTC -ACGGAACCTGATCTGTTGTTGCTG -ACGGAACCTGATCTGTTGTCCATG -ACGGAACCTGATCTGTTGTGTGTG -ACGGAACCTGATCTGTTGCTAGTG -ACGGAACCTGATCTGTTGCATCTG -ACGGAACCTGATCTGTTGGAGTTG -ACGGAACCTGATCTGTTGAGACTG -ACGGAACCTGATCTGTTGTCGGTA -ACGGAACCTGATCTGTTGTGCCTA -ACGGAACCTGATCTGTTGCCACTA -ACGGAACCTGATCTGTTGGGAGTA -ACGGAACCTGATCTGTTGTCGTCT -ACGGAACCTGATCTGTTGTGCACT -ACGGAACCTGATCTGTTGCTGACT -ACGGAACCTGATCTGTTGCAACCT -ACGGAACCTGATCTGTTGGCTACT -ACGGAACCTGATCTGTTGGGATCT -ACGGAACCTGATCTGTTGAAGGCT -ACGGAACCTGATCTGTTGTCAACC -ACGGAACCTGATCTGTTGTGTTCC -ACGGAACCTGATCTGTTGATTCCC -ACGGAACCTGATCTGTTGTTCTCG -ACGGAACCTGATCTGTTGTAGACG -ACGGAACCTGATCTGTTGGTAACG -ACGGAACCTGATCTGTTGACTTCG -ACGGAACCTGATCTGTTGTACGCA -ACGGAACCTGATCTGTTGCTTGCA -ACGGAACCTGATCTGTTGCGAACA -ACGGAACCTGATCTGTTGCAGTCA -ACGGAACCTGATCTGTTGGATCCA -ACGGAACCTGATCTGTTGACGACA -ACGGAACCTGATCTGTTGAGCTCA -ACGGAACCTGATCTGTTGTCACGT -ACGGAACCTGATCTGTTGCGTAGT -ACGGAACCTGATCTGTTGGTCAGT -ACGGAACCTGATCTGTTGGAAGGT -ACGGAACCTGATCTGTTGAACCGT -ACGGAACCTGATCTGTTGTTGTGC -ACGGAACCTGATCTGTTGCTAAGC -ACGGAACCTGATCTGTTGACTAGC -ACGGAACCTGATCTGTTGAGATGC -ACGGAACCTGATCTGTTGTGAAGG -ACGGAACCTGATCTGTTGCAATGG -ACGGAACCTGATCTGTTGATGAGG -ACGGAACCTGATCTGTTGAATGGG -ACGGAACCTGATCTGTTGTCCTGA -ACGGAACCTGATCTGTTGTAGCGA -ACGGAACCTGATCTGTTGCACAGA -ACGGAACCTGATCTGTTGGCAAGA -ACGGAACCTGATCTGTTGGGTTGA -ACGGAACCTGATCTGTTGTCCGAT -ACGGAACCTGATCTGTTGTGGCAT -ACGGAACCTGATCTGTTGCGAGAT -ACGGAACCTGATCTGTTGTACCAC -ACGGAACCTGATCTGTTGCAGAAC -ACGGAACCTGATCTGTTGGTCTAC -ACGGAACCTGATCTGTTGACGTAC -ACGGAACCTGATCTGTTGAGTGAC -ACGGAACCTGATCTGTTGCTGTAG -ACGGAACCTGATCTGTTGCCTAAG -ACGGAACCTGATCTGTTGGTTCAG -ACGGAACCTGATCTGTTGGCATAG -ACGGAACCTGATCTGTTGGACAAG -ACGGAACCTGATCTGTTGAAGCAG -ACGGAACCTGATCTGTTGCGTCAA -ACGGAACCTGATCTGTTGGCTGAA -ACGGAACCTGATCTGTTGAGTACG -ACGGAACCTGATCTGTTGATCCGA -ACGGAACCTGATCTGTTGATGGGA -ACGGAACCTGATCTGTTGGTGCAA -ACGGAACCTGATCTGTTGGAGGAA -ACGGAACCTGATCTGTTGCAGGTA -ACGGAACCTGATCTGTTGGACTCT -ACGGAACCTGATCTGTTGAGTCCT -ACGGAACCTGATCTGTTGTAAGCC -ACGGAACCTGATCTGTTGATAGCC -ACGGAACCTGATCTGTTGTAACCG -ACGGAACCTGATCTGTTGATGCCA -ACGGAACCTGATATGTCCGGAAAC -ACGGAACCTGATATGTCCAACACC -ACGGAACCTGATATGTCCATCGAG -ACGGAACCTGATATGTCCCTCCTT -ACGGAACCTGATATGTCCCCTGTT -ACGGAACCTGATATGTCCCGGTTT -ACGGAACCTGATATGTCCGTGGTT -ACGGAACCTGATATGTCCGCCTTT -ACGGAACCTGATATGTCCGGTCTT -ACGGAACCTGATATGTCCACGCTT -ACGGAACCTGATATGTCCAGCGTT -ACGGAACCTGATATGTCCTTCGTC -ACGGAACCTGATATGTCCTCTCTC -ACGGAACCTGATATGTCCTGGATC -ACGGAACCTGATATGTCCCACTTC -ACGGAACCTGATATGTCCGTACTC -ACGGAACCTGATATGTCCGATGTC -ACGGAACCTGATATGTCCACAGTC -ACGGAACCTGATATGTCCTTGCTG -ACGGAACCTGATATGTCCTCCATG -ACGGAACCTGATATGTCCTGTGTG -ACGGAACCTGATATGTCCCTAGTG -ACGGAACCTGATATGTCCCATCTG -ACGGAACCTGATATGTCCGAGTTG -ACGGAACCTGATATGTCCAGACTG -ACGGAACCTGATATGTCCTCGGTA -ACGGAACCTGATATGTCCTGCCTA -ACGGAACCTGATATGTCCCCACTA -ACGGAACCTGATATGTCCGGAGTA -ACGGAACCTGATATGTCCTCGTCT -ACGGAACCTGATATGTCCTGCACT -ACGGAACCTGATATGTCCCTGACT -ACGGAACCTGATATGTCCCAACCT -ACGGAACCTGATATGTCCGCTACT -ACGGAACCTGATATGTCCGGATCT -ACGGAACCTGATATGTCCAAGGCT -ACGGAACCTGATATGTCCTCAACC -ACGGAACCTGATATGTCCTGTTCC -ACGGAACCTGATATGTCCATTCCC -ACGGAACCTGATATGTCCTTCTCG -ACGGAACCTGATATGTCCTAGACG -ACGGAACCTGATATGTCCGTAACG -ACGGAACCTGATATGTCCACTTCG -ACGGAACCTGATATGTCCTACGCA -ACGGAACCTGATATGTCCCTTGCA -ACGGAACCTGATATGTCCCGAACA -ACGGAACCTGATATGTCCCAGTCA -ACGGAACCTGATATGTCCGATCCA -ACGGAACCTGATATGTCCACGACA -ACGGAACCTGATATGTCCAGCTCA -ACGGAACCTGATATGTCCTCACGT -ACGGAACCTGATATGTCCCGTAGT -ACGGAACCTGATATGTCCGTCAGT -ACGGAACCTGATATGTCCGAAGGT -ACGGAACCTGATATGTCCAACCGT -ACGGAACCTGATATGTCCTTGTGC -ACGGAACCTGATATGTCCCTAAGC -ACGGAACCTGATATGTCCACTAGC -ACGGAACCTGATATGTCCAGATGC -ACGGAACCTGATATGTCCTGAAGG -ACGGAACCTGATATGTCCCAATGG -ACGGAACCTGATATGTCCATGAGG -ACGGAACCTGATATGTCCAATGGG -ACGGAACCTGATATGTCCTCCTGA -ACGGAACCTGATATGTCCTAGCGA -ACGGAACCTGATATGTCCCACAGA -ACGGAACCTGATATGTCCGCAAGA -ACGGAACCTGATATGTCCGGTTGA -ACGGAACCTGATATGTCCTCCGAT -ACGGAACCTGATATGTCCTGGCAT -ACGGAACCTGATATGTCCCGAGAT -ACGGAACCTGATATGTCCTACCAC -ACGGAACCTGATATGTCCCAGAAC -ACGGAACCTGATATGTCCGTCTAC -ACGGAACCTGATATGTCCACGTAC -ACGGAACCTGATATGTCCAGTGAC -ACGGAACCTGATATGTCCCTGTAG -ACGGAACCTGATATGTCCCCTAAG -ACGGAACCTGATATGTCCGTTCAG -ACGGAACCTGATATGTCCGCATAG -ACGGAACCTGATATGTCCGACAAG -ACGGAACCTGATATGTCCAAGCAG -ACGGAACCTGATATGTCCCGTCAA -ACGGAACCTGATATGTCCGCTGAA -ACGGAACCTGATATGTCCAGTACG -ACGGAACCTGATATGTCCATCCGA -ACGGAACCTGATATGTCCATGGGA -ACGGAACCTGATATGTCCGTGCAA -ACGGAACCTGATATGTCCGAGGAA -ACGGAACCTGATATGTCCCAGGTA -ACGGAACCTGATATGTCCGACTCT -ACGGAACCTGATATGTCCAGTCCT -ACGGAACCTGATATGTCCTAAGCC -ACGGAACCTGATATGTCCATAGCC -ACGGAACCTGATATGTCCTAACCG -ACGGAACCTGATATGTCCATGCCA -ACGGAACCTGATGTGTGTGGAAAC -ACGGAACCTGATGTGTGTAACACC -ACGGAACCTGATGTGTGTATCGAG -ACGGAACCTGATGTGTGTCTCCTT -ACGGAACCTGATGTGTGTCCTGTT -ACGGAACCTGATGTGTGTCGGTTT -ACGGAACCTGATGTGTGTGTGGTT -ACGGAACCTGATGTGTGTGCCTTT -ACGGAACCTGATGTGTGTGGTCTT -ACGGAACCTGATGTGTGTACGCTT -ACGGAACCTGATGTGTGTAGCGTT -ACGGAACCTGATGTGTGTTTCGTC -ACGGAACCTGATGTGTGTTCTCTC -ACGGAACCTGATGTGTGTTGGATC -ACGGAACCTGATGTGTGTCACTTC -ACGGAACCTGATGTGTGTGTACTC -ACGGAACCTGATGTGTGTGATGTC -ACGGAACCTGATGTGTGTACAGTC -ACGGAACCTGATGTGTGTTTGCTG -ACGGAACCTGATGTGTGTTCCATG -ACGGAACCTGATGTGTGTTGTGTG -ACGGAACCTGATGTGTGTCTAGTG -ACGGAACCTGATGTGTGTCATCTG -ACGGAACCTGATGTGTGTGAGTTG -ACGGAACCTGATGTGTGTAGACTG -ACGGAACCTGATGTGTGTTCGGTA -ACGGAACCTGATGTGTGTTGCCTA -ACGGAACCTGATGTGTGTCCACTA -ACGGAACCTGATGTGTGTGGAGTA -ACGGAACCTGATGTGTGTTCGTCT -ACGGAACCTGATGTGTGTTGCACT -ACGGAACCTGATGTGTGTCTGACT -ACGGAACCTGATGTGTGTCAACCT -ACGGAACCTGATGTGTGTGCTACT -ACGGAACCTGATGTGTGTGGATCT -ACGGAACCTGATGTGTGTAAGGCT -ACGGAACCTGATGTGTGTTCAACC -ACGGAACCTGATGTGTGTTGTTCC -ACGGAACCTGATGTGTGTATTCCC -ACGGAACCTGATGTGTGTTTCTCG -ACGGAACCTGATGTGTGTTAGACG -ACGGAACCTGATGTGTGTGTAACG -ACGGAACCTGATGTGTGTACTTCG -ACGGAACCTGATGTGTGTTACGCA -ACGGAACCTGATGTGTGTCTTGCA -ACGGAACCTGATGTGTGTCGAACA -ACGGAACCTGATGTGTGTCAGTCA -ACGGAACCTGATGTGTGTGATCCA -ACGGAACCTGATGTGTGTACGACA -ACGGAACCTGATGTGTGTAGCTCA -ACGGAACCTGATGTGTGTTCACGT -ACGGAACCTGATGTGTGTCGTAGT -ACGGAACCTGATGTGTGTGTCAGT -ACGGAACCTGATGTGTGTGAAGGT -ACGGAACCTGATGTGTGTAACCGT -ACGGAACCTGATGTGTGTTTGTGC -ACGGAACCTGATGTGTGTCTAAGC -ACGGAACCTGATGTGTGTACTAGC -ACGGAACCTGATGTGTGTAGATGC -ACGGAACCTGATGTGTGTTGAAGG -ACGGAACCTGATGTGTGTCAATGG -ACGGAACCTGATGTGTGTATGAGG -ACGGAACCTGATGTGTGTAATGGG -ACGGAACCTGATGTGTGTTCCTGA -ACGGAACCTGATGTGTGTTAGCGA -ACGGAACCTGATGTGTGTCACAGA -ACGGAACCTGATGTGTGTGCAAGA -ACGGAACCTGATGTGTGTGGTTGA -ACGGAACCTGATGTGTGTTCCGAT -ACGGAACCTGATGTGTGTTGGCAT -ACGGAACCTGATGTGTGTCGAGAT -ACGGAACCTGATGTGTGTTACCAC -ACGGAACCTGATGTGTGTCAGAAC -ACGGAACCTGATGTGTGTGTCTAC -ACGGAACCTGATGTGTGTACGTAC -ACGGAACCTGATGTGTGTAGTGAC -ACGGAACCTGATGTGTGTCTGTAG -ACGGAACCTGATGTGTGTCCTAAG -ACGGAACCTGATGTGTGTGTTCAG -ACGGAACCTGATGTGTGTGCATAG -ACGGAACCTGATGTGTGTGACAAG -ACGGAACCTGATGTGTGTAAGCAG -ACGGAACCTGATGTGTGTCGTCAA -ACGGAACCTGATGTGTGTGCTGAA -ACGGAACCTGATGTGTGTAGTACG -ACGGAACCTGATGTGTGTATCCGA -ACGGAACCTGATGTGTGTATGGGA -ACGGAACCTGATGTGTGTGTGCAA -ACGGAACCTGATGTGTGTGAGGAA -ACGGAACCTGATGTGTGTCAGGTA -ACGGAACCTGATGTGTGTGACTCT -ACGGAACCTGATGTGTGTAGTCCT -ACGGAACCTGATGTGTGTTAAGCC -ACGGAACCTGATGTGTGTATAGCC -ACGGAACCTGATGTGTGTTAACCG -ACGGAACCTGATGTGTGTATGCCA -ACGGAACCTGATGTGCTAGGAAAC -ACGGAACCTGATGTGCTAAACACC -ACGGAACCTGATGTGCTAATCGAG -ACGGAACCTGATGTGCTACTCCTT -ACGGAACCTGATGTGCTACCTGTT -ACGGAACCTGATGTGCTACGGTTT -ACGGAACCTGATGTGCTAGTGGTT -ACGGAACCTGATGTGCTAGCCTTT -ACGGAACCTGATGTGCTAGGTCTT -ACGGAACCTGATGTGCTAACGCTT -ACGGAACCTGATGTGCTAAGCGTT -ACGGAACCTGATGTGCTATTCGTC -ACGGAACCTGATGTGCTATCTCTC -ACGGAACCTGATGTGCTATGGATC -ACGGAACCTGATGTGCTACACTTC -ACGGAACCTGATGTGCTAGTACTC -ACGGAACCTGATGTGCTAGATGTC -ACGGAACCTGATGTGCTAACAGTC -ACGGAACCTGATGTGCTATTGCTG -ACGGAACCTGATGTGCTATCCATG -ACGGAACCTGATGTGCTATGTGTG -ACGGAACCTGATGTGCTACTAGTG -ACGGAACCTGATGTGCTACATCTG -ACGGAACCTGATGTGCTAGAGTTG -ACGGAACCTGATGTGCTAAGACTG -ACGGAACCTGATGTGCTATCGGTA -ACGGAACCTGATGTGCTATGCCTA -ACGGAACCTGATGTGCTACCACTA -ACGGAACCTGATGTGCTAGGAGTA -ACGGAACCTGATGTGCTATCGTCT -ACGGAACCTGATGTGCTATGCACT -ACGGAACCTGATGTGCTACTGACT -ACGGAACCTGATGTGCTACAACCT -ACGGAACCTGATGTGCTAGCTACT -ACGGAACCTGATGTGCTAGGATCT -ACGGAACCTGATGTGCTAAAGGCT -ACGGAACCTGATGTGCTATCAACC -ACGGAACCTGATGTGCTATGTTCC -ACGGAACCTGATGTGCTAATTCCC -ACGGAACCTGATGTGCTATTCTCG -ACGGAACCTGATGTGCTATAGACG -ACGGAACCTGATGTGCTAGTAACG -ACGGAACCTGATGTGCTAACTTCG -ACGGAACCTGATGTGCTATACGCA -ACGGAACCTGATGTGCTACTTGCA -ACGGAACCTGATGTGCTACGAACA -ACGGAACCTGATGTGCTACAGTCA -ACGGAACCTGATGTGCTAGATCCA -ACGGAACCTGATGTGCTAACGACA -ACGGAACCTGATGTGCTAAGCTCA -ACGGAACCTGATGTGCTATCACGT -ACGGAACCTGATGTGCTACGTAGT -ACGGAACCTGATGTGCTAGTCAGT -ACGGAACCTGATGTGCTAGAAGGT -ACGGAACCTGATGTGCTAAACCGT -ACGGAACCTGATGTGCTATTGTGC -ACGGAACCTGATGTGCTACTAAGC -ACGGAACCTGATGTGCTAACTAGC -ACGGAACCTGATGTGCTAAGATGC -ACGGAACCTGATGTGCTATGAAGG -ACGGAACCTGATGTGCTACAATGG -ACGGAACCTGATGTGCTAATGAGG -ACGGAACCTGATGTGCTAAATGGG -ACGGAACCTGATGTGCTATCCTGA -ACGGAACCTGATGTGCTATAGCGA -ACGGAACCTGATGTGCTACACAGA -ACGGAACCTGATGTGCTAGCAAGA -ACGGAACCTGATGTGCTAGGTTGA -ACGGAACCTGATGTGCTATCCGAT -ACGGAACCTGATGTGCTATGGCAT -ACGGAACCTGATGTGCTACGAGAT -ACGGAACCTGATGTGCTATACCAC -ACGGAACCTGATGTGCTACAGAAC -ACGGAACCTGATGTGCTAGTCTAC -ACGGAACCTGATGTGCTAACGTAC -ACGGAACCTGATGTGCTAAGTGAC -ACGGAACCTGATGTGCTACTGTAG -ACGGAACCTGATGTGCTACCTAAG -ACGGAACCTGATGTGCTAGTTCAG -ACGGAACCTGATGTGCTAGCATAG -ACGGAACCTGATGTGCTAGACAAG -ACGGAACCTGATGTGCTAAAGCAG -ACGGAACCTGATGTGCTACGTCAA -ACGGAACCTGATGTGCTAGCTGAA -ACGGAACCTGATGTGCTAAGTACG -ACGGAACCTGATGTGCTAATCCGA -ACGGAACCTGATGTGCTAATGGGA -ACGGAACCTGATGTGCTAGTGCAA -ACGGAACCTGATGTGCTAGAGGAA -ACGGAACCTGATGTGCTACAGGTA -ACGGAACCTGATGTGCTAGACTCT -ACGGAACCTGATGTGCTAAGTCCT -ACGGAACCTGATGTGCTATAAGCC -ACGGAACCTGATGTGCTAATAGCC -ACGGAACCTGATGTGCTATAACCG -ACGGAACCTGATGTGCTAATGCCA -ACGGAACCTGATCTGCATGGAAAC -ACGGAACCTGATCTGCATAACACC -ACGGAACCTGATCTGCATATCGAG -ACGGAACCTGATCTGCATCTCCTT -ACGGAACCTGATCTGCATCCTGTT -ACGGAACCTGATCTGCATCGGTTT -ACGGAACCTGATCTGCATGTGGTT -ACGGAACCTGATCTGCATGCCTTT -ACGGAACCTGATCTGCATGGTCTT -ACGGAACCTGATCTGCATACGCTT -ACGGAACCTGATCTGCATAGCGTT -ACGGAACCTGATCTGCATTTCGTC -ACGGAACCTGATCTGCATTCTCTC -ACGGAACCTGATCTGCATTGGATC -ACGGAACCTGATCTGCATCACTTC -ACGGAACCTGATCTGCATGTACTC -ACGGAACCTGATCTGCATGATGTC -ACGGAACCTGATCTGCATACAGTC -ACGGAACCTGATCTGCATTTGCTG -ACGGAACCTGATCTGCATTCCATG -ACGGAACCTGATCTGCATTGTGTG -ACGGAACCTGATCTGCATCTAGTG -ACGGAACCTGATCTGCATCATCTG -ACGGAACCTGATCTGCATGAGTTG -ACGGAACCTGATCTGCATAGACTG -ACGGAACCTGATCTGCATTCGGTA -ACGGAACCTGATCTGCATTGCCTA -ACGGAACCTGATCTGCATCCACTA -ACGGAACCTGATCTGCATGGAGTA -ACGGAACCTGATCTGCATTCGTCT -ACGGAACCTGATCTGCATTGCACT -ACGGAACCTGATCTGCATCTGACT -ACGGAACCTGATCTGCATCAACCT -ACGGAACCTGATCTGCATGCTACT -ACGGAACCTGATCTGCATGGATCT -ACGGAACCTGATCTGCATAAGGCT -ACGGAACCTGATCTGCATTCAACC -ACGGAACCTGATCTGCATTGTTCC -ACGGAACCTGATCTGCATATTCCC -ACGGAACCTGATCTGCATTTCTCG -ACGGAACCTGATCTGCATTAGACG -ACGGAACCTGATCTGCATGTAACG -ACGGAACCTGATCTGCATACTTCG -ACGGAACCTGATCTGCATTACGCA -ACGGAACCTGATCTGCATCTTGCA -ACGGAACCTGATCTGCATCGAACA -ACGGAACCTGATCTGCATCAGTCA -ACGGAACCTGATCTGCATGATCCA -ACGGAACCTGATCTGCATACGACA -ACGGAACCTGATCTGCATAGCTCA -ACGGAACCTGATCTGCATTCACGT -ACGGAACCTGATCTGCATCGTAGT -ACGGAACCTGATCTGCATGTCAGT -ACGGAACCTGATCTGCATGAAGGT -ACGGAACCTGATCTGCATAACCGT -ACGGAACCTGATCTGCATTTGTGC -ACGGAACCTGATCTGCATCTAAGC -ACGGAACCTGATCTGCATACTAGC -ACGGAACCTGATCTGCATAGATGC -ACGGAACCTGATCTGCATTGAAGG -ACGGAACCTGATCTGCATCAATGG -ACGGAACCTGATCTGCATATGAGG -ACGGAACCTGATCTGCATAATGGG -ACGGAACCTGATCTGCATTCCTGA -ACGGAACCTGATCTGCATTAGCGA -ACGGAACCTGATCTGCATCACAGA -ACGGAACCTGATCTGCATGCAAGA -ACGGAACCTGATCTGCATGGTTGA -ACGGAACCTGATCTGCATTCCGAT -ACGGAACCTGATCTGCATTGGCAT -ACGGAACCTGATCTGCATCGAGAT -ACGGAACCTGATCTGCATTACCAC -ACGGAACCTGATCTGCATCAGAAC -ACGGAACCTGATCTGCATGTCTAC -ACGGAACCTGATCTGCATACGTAC -ACGGAACCTGATCTGCATAGTGAC -ACGGAACCTGATCTGCATCTGTAG -ACGGAACCTGATCTGCATCCTAAG -ACGGAACCTGATCTGCATGTTCAG -ACGGAACCTGATCTGCATGCATAG -ACGGAACCTGATCTGCATGACAAG -ACGGAACCTGATCTGCATAAGCAG -ACGGAACCTGATCTGCATCGTCAA -ACGGAACCTGATCTGCATGCTGAA -ACGGAACCTGATCTGCATAGTACG -ACGGAACCTGATCTGCATATCCGA -ACGGAACCTGATCTGCATATGGGA -ACGGAACCTGATCTGCATGTGCAA -ACGGAACCTGATCTGCATGAGGAA -ACGGAACCTGATCTGCATCAGGTA -ACGGAACCTGATCTGCATGACTCT -ACGGAACCTGATCTGCATAGTCCT -ACGGAACCTGATCTGCATTAAGCC -ACGGAACCTGATCTGCATATAGCC -ACGGAACCTGATCTGCATTAACCG -ACGGAACCTGATCTGCATATGCCA -ACGGAACCTGATTTGGAGGGAAAC -ACGGAACCTGATTTGGAGAACACC -ACGGAACCTGATTTGGAGATCGAG -ACGGAACCTGATTTGGAGCTCCTT -ACGGAACCTGATTTGGAGCCTGTT -ACGGAACCTGATTTGGAGCGGTTT -ACGGAACCTGATTTGGAGGTGGTT -ACGGAACCTGATTTGGAGGCCTTT -ACGGAACCTGATTTGGAGGGTCTT -ACGGAACCTGATTTGGAGACGCTT -ACGGAACCTGATTTGGAGAGCGTT -ACGGAACCTGATTTGGAGTTCGTC -ACGGAACCTGATTTGGAGTCTCTC -ACGGAACCTGATTTGGAGTGGATC -ACGGAACCTGATTTGGAGCACTTC -ACGGAACCTGATTTGGAGGTACTC -ACGGAACCTGATTTGGAGGATGTC -ACGGAACCTGATTTGGAGACAGTC -ACGGAACCTGATTTGGAGTTGCTG -ACGGAACCTGATTTGGAGTCCATG -ACGGAACCTGATTTGGAGTGTGTG -ACGGAACCTGATTTGGAGCTAGTG -ACGGAACCTGATTTGGAGCATCTG -ACGGAACCTGATTTGGAGGAGTTG -ACGGAACCTGATTTGGAGAGACTG -ACGGAACCTGATTTGGAGTCGGTA -ACGGAACCTGATTTGGAGTGCCTA -ACGGAACCTGATTTGGAGCCACTA -ACGGAACCTGATTTGGAGGGAGTA -ACGGAACCTGATTTGGAGTCGTCT -ACGGAACCTGATTTGGAGTGCACT -ACGGAACCTGATTTGGAGCTGACT -ACGGAACCTGATTTGGAGCAACCT -ACGGAACCTGATTTGGAGGCTACT -ACGGAACCTGATTTGGAGGGATCT -ACGGAACCTGATTTGGAGAAGGCT -ACGGAACCTGATTTGGAGTCAACC -ACGGAACCTGATTTGGAGTGTTCC -ACGGAACCTGATTTGGAGATTCCC -ACGGAACCTGATTTGGAGTTCTCG -ACGGAACCTGATTTGGAGTAGACG -ACGGAACCTGATTTGGAGGTAACG -ACGGAACCTGATTTGGAGACTTCG -ACGGAACCTGATTTGGAGTACGCA -ACGGAACCTGATTTGGAGCTTGCA -ACGGAACCTGATTTGGAGCGAACA -ACGGAACCTGATTTGGAGCAGTCA -ACGGAACCTGATTTGGAGGATCCA -ACGGAACCTGATTTGGAGACGACA -ACGGAACCTGATTTGGAGAGCTCA -ACGGAACCTGATTTGGAGTCACGT -ACGGAACCTGATTTGGAGCGTAGT -ACGGAACCTGATTTGGAGGTCAGT -ACGGAACCTGATTTGGAGGAAGGT -ACGGAACCTGATTTGGAGAACCGT -ACGGAACCTGATTTGGAGTTGTGC -ACGGAACCTGATTTGGAGCTAAGC -ACGGAACCTGATTTGGAGACTAGC -ACGGAACCTGATTTGGAGAGATGC -ACGGAACCTGATTTGGAGTGAAGG -ACGGAACCTGATTTGGAGCAATGG -ACGGAACCTGATTTGGAGATGAGG -ACGGAACCTGATTTGGAGAATGGG -ACGGAACCTGATTTGGAGTCCTGA -ACGGAACCTGATTTGGAGTAGCGA -ACGGAACCTGATTTGGAGCACAGA -ACGGAACCTGATTTGGAGGCAAGA -ACGGAACCTGATTTGGAGGGTTGA -ACGGAACCTGATTTGGAGTCCGAT -ACGGAACCTGATTTGGAGTGGCAT -ACGGAACCTGATTTGGAGCGAGAT -ACGGAACCTGATTTGGAGTACCAC -ACGGAACCTGATTTGGAGCAGAAC -ACGGAACCTGATTTGGAGGTCTAC -ACGGAACCTGATTTGGAGACGTAC -ACGGAACCTGATTTGGAGAGTGAC -ACGGAACCTGATTTGGAGCTGTAG -ACGGAACCTGATTTGGAGCCTAAG -ACGGAACCTGATTTGGAGGTTCAG -ACGGAACCTGATTTGGAGGCATAG -ACGGAACCTGATTTGGAGGACAAG -ACGGAACCTGATTTGGAGAAGCAG -ACGGAACCTGATTTGGAGCGTCAA -ACGGAACCTGATTTGGAGGCTGAA -ACGGAACCTGATTTGGAGAGTACG -ACGGAACCTGATTTGGAGATCCGA -ACGGAACCTGATTTGGAGATGGGA -ACGGAACCTGATTTGGAGGTGCAA -ACGGAACCTGATTTGGAGGAGGAA -ACGGAACCTGATTTGGAGCAGGTA -ACGGAACCTGATTTGGAGGACTCT -ACGGAACCTGATTTGGAGAGTCCT -ACGGAACCTGATTTGGAGTAAGCC -ACGGAACCTGATTTGGAGATAGCC -ACGGAACCTGATTTGGAGTAACCG -ACGGAACCTGATTTGGAGATGCCA -ACGGAACCTGATCTGAGAGGAAAC -ACGGAACCTGATCTGAGAAACACC -ACGGAACCTGATCTGAGAATCGAG -ACGGAACCTGATCTGAGACTCCTT -ACGGAACCTGATCTGAGACCTGTT -ACGGAACCTGATCTGAGACGGTTT -ACGGAACCTGATCTGAGAGTGGTT -ACGGAACCTGATCTGAGAGCCTTT -ACGGAACCTGATCTGAGAGGTCTT -ACGGAACCTGATCTGAGAACGCTT -ACGGAACCTGATCTGAGAAGCGTT -ACGGAACCTGATCTGAGATTCGTC -ACGGAACCTGATCTGAGATCTCTC -ACGGAACCTGATCTGAGATGGATC -ACGGAACCTGATCTGAGACACTTC -ACGGAACCTGATCTGAGAGTACTC -ACGGAACCTGATCTGAGAGATGTC -ACGGAACCTGATCTGAGAACAGTC -ACGGAACCTGATCTGAGATTGCTG -ACGGAACCTGATCTGAGATCCATG -ACGGAACCTGATCTGAGATGTGTG -ACGGAACCTGATCTGAGACTAGTG -ACGGAACCTGATCTGAGACATCTG -ACGGAACCTGATCTGAGAGAGTTG -ACGGAACCTGATCTGAGAAGACTG -ACGGAACCTGATCTGAGATCGGTA -ACGGAACCTGATCTGAGATGCCTA -ACGGAACCTGATCTGAGACCACTA -ACGGAACCTGATCTGAGAGGAGTA -ACGGAACCTGATCTGAGATCGTCT -ACGGAACCTGATCTGAGATGCACT -ACGGAACCTGATCTGAGACTGACT -ACGGAACCTGATCTGAGACAACCT -ACGGAACCTGATCTGAGAGCTACT -ACGGAACCTGATCTGAGAGGATCT -ACGGAACCTGATCTGAGAAAGGCT -ACGGAACCTGATCTGAGATCAACC -ACGGAACCTGATCTGAGATGTTCC -ACGGAACCTGATCTGAGAATTCCC -ACGGAACCTGATCTGAGATTCTCG -ACGGAACCTGATCTGAGATAGACG -ACGGAACCTGATCTGAGAGTAACG -ACGGAACCTGATCTGAGAACTTCG -ACGGAACCTGATCTGAGATACGCA -ACGGAACCTGATCTGAGACTTGCA -ACGGAACCTGATCTGAGACGAACA -ACGGAACCTGATCTGAGACAGTCA -ACGGAACCTGATCTGAGAGATCCA -ACGGAACCTGATCTGAGAACGACA -ACGGAACCTGATCTGAGAAGCTCA -ACGGAACCTGATCTGAGATCACGT -ACGGAACCTGATCTGAGACGTAGT -ACGGAACCTGATCTGAGAGTCAGT -ACGGAACCTGATCTGAGAGAAGGT -ACGGAACCTGATCTGAGAAACCGT -ACGGAACCTGATCTGAGATTGTGC -ACGGAACCTGATCTGAGACTAAGC -ACGGAACCTGATCTGAGAACTAGC -ACGGAACCTGATCTGAGAAGATGC -ACGGAACCTGATCTGAGATGAAGG -ACGGAACCTGATCTGAGACAATGG -ACGGAACCTGATCTGAGAATGAGG -ACGGAACCTGATCTGAGAAATGGG -ACGGAACCTGATCTGAGATCCTGA -ACGGAACCTGATCTGAGATAGCGA -ACGGAACCTGATCTGAGACACAGA -ACGGAACCTGATCTGAGAGCAAGA -ACGGAACCTGATCTGAGAGGTTGA -ACGGAACCTGATCTGAGATCCGAT -ACGGAACCTGATCTGAGATGGCAT -ACGGAACCTGATCTGAGACGAGAT -ACGGAACCTGATCTGAGATACCAC -ACGGAACCTGATCTGAGACAGAAC -ACGGAACCTGATCTGAGAGTCTAC -ACGGAACCTGATCTGAGAACGTAC -ACGGAACCTGATCTGAGAAGTGAC -ACGGAACCTGATCTGAGACTGTAG -ACGGAACCTGATCTGAGACCTAAG -ACGGAACCTGATCTGAGAGTTCAG -ACGGAACCTGATCTGAGAGCATAG -ACGGAACCTGATCTGAGAGACAAG -ACGGAACCTGATCTGAGAAAGCAG -ACGGAACCTGATCTGAGACGTCAA -ACGGAACCTGATCTGAGAGCTGAA -ACGGAACCTGATCTGAGAAGTACG -ACGGAACCTGATCTGAGAATCCGA -ACGGAACCTGATCTGAGAATGGGA -ACGGAACCTGATCTGAGAGTGCAA -ACGGAACCTGATCTGAGAGAGGAA -ACGGAACCTGATCTGAGACAGGTA -ACGGAACCTGATCTGAGAGACTCT -ACGGAACCTGATCTGAGAAGTCCT -ACGGAACCTGATCTGAGATAAGCC -ACGGAACCTGATCTGAGAATAGCC -ACGGAACCTGATCTGAGATAACCG -ACGGAACCTGATCTGAGAATGCCA -ACGGAACCTGATGTATCGGGAAAC -ACGGAACCTGATGTATCGAACACC -ACGGAACCTGATGTATCGATCGAG -ACGGAACCTGATGTATCGCTCCTT -ACGGAACCTGATGTATCGCCTGTT -ACGGAACCTGATGTATCGCGGTTT -ACGGAACCTGATGTATCGGTGGTT -ACGGAACCTGATGTATCGGCCTTT -ACGGAACCTGATGTATCGGGTCTT -ACGGAACCTGATGTATCGACGCTT -ACGGAACCTGATGTATCGAGCGTT -ACGGAACCTGATGTATCGTTCGTC -ACGGAACCTGATGTATCGTCTCTC -ACGGAACCTGATGTATCGTGGATC -ACGGAACCTGATGTATCGCACTTC -ACGGAACCTGATGTATCGGTACTC -ACGGAACCTGATGTATCGGATGTC -ACGGAACCTGATGTATCGACAGTC -ACGGAACCTGATGTATCGTTGCTG -ACGGAACCTGATGTATCGTCCATG -ACGGAACCTGATGTATCGTGTGTG -ACGGAACCTGATGTATCGCTAGTG -ACGGAACCTGATGTATCGCATCTG -ACGGAACCTGATGTATCGGAGTTG -ACGGAACCTGATGTATCGAGACTG -ACGGAACCTGATGTATCGTCGGTA -ACGGAACCTGATGTATCGTGCCTA -ACGGAACCTGATGTATCGCCACTA -ACGGAACCTGATGTATCGGGAGTA -ACGGAACCTGATGTATCGTCGTCT -ACGGAACCTGATGTATCGTGCACT -ACGGAACCTGATGTATCGCTGACT -ACGGAACCTGATGTATCGCAACCT -ACGGAACCTGATGTATCGGCTACT -ACGGAACCTGATGTATCGGGATCT -ACGGAACCTGATGTATCGAAGGCT -ACGGAACCTGATGTATCGTCAACC -ACGGAACCTGATGTATCGTGTTCC -ACGGAACCTGATGTATCGATTCCC -ACGGAACCTGATGTATCGTTCTCG -ACGGAACCTGATGTATCGTAGACG -ACGGAACCTGATGTATCGGTAACG -ACGGAACCTGATGTATCGACTTCG -ACGGAACCTGATGTATCGTACGCA -ACGGAACCTGATGTATCGCTTGCA -ACGGAACCTGATGTATCGCGAACA -ACGGAACCTGATGTATCGCAGTCA -ACGGAACCTGATGTATCGGATCCA -ACGGAACCTGATGTATCGACGACA -ACGGAACCTGATGTATCGAGCTCA -ACGGAACCTGATGTATCGTCACGT -ACGGAACCTGATGTATCGCGTAGT -ACGGAACCTGATGTATCGGTCAGT -ACGGAACCTGATGTATCGGAAGGT -ACGGAACCTGATGTATCGAACCGT -ACGGAACCTGATGTATCGTTGTGC -ACGGAACCTGATGTATCGCTAAGC -ACGGAACCTGATGTATCGACTAGC -ACGGAACCTGATGTATCGAGATGC -ACGGAACCTGATGTATCGTGAAGG -ACGGAACCTGATGTATCGCAATGG -ACGGAACCTGATGTATCGATGAGG -ACGGAACCTGATGTATCGAATGGG -ACGGAACCTGATGTATCGTCCTGA -ACGGAACCTGATGTATCGTAGCGA -ACGGAACCTGATGTATCGCACAGA -ACGGAACCTGATGTATCGGCAAGA -ACGGAACCTGATGTATCGGGTTGA -ACGGAACCTGATGTATCGTCCGAT -ACGGAACCTGATGTATCGTGGCAT -ACGGAACCTGATGTATCGCGAGAT -ACGGAACCTGATGTATCGTACCAC -ACGGAACCTGATGTATCGCAGAAC -ACGGAACCTGATGTATCGGTCTAC -ACGGAACCTGATGTATCGACGTAC -ACGGAACCTGATGTATCGAGTGAC -ACGGAACCTGATGTATCGCTGTAG -ACGGAACCTGATGTATCGCCTAAG -ACGGAACCTGATGTATCGGTTCAG -ACGGAACCTGATGTATCGGCATAG -ACGGAACCTGATGTATCGGACAAG -ACGGAACCTGATGTATCGAAGCAG -ACGGAACCTGATGTATCGCGTCAA -ACGGAACCTGATGTATCGGCTGAA -ACGGAACCTGATGTATCGAGTACG -ACGGAACCTGATGTATCGATCCGA -ACGGAACCTGATGTATCGATGGGA -ACGGAACCTGATGTATCGGTGCAA -ACGGAACCTGATGTATCGGAGGAA -ACGGAACCTGATGTATCGCAGGTA -ACGGAACCTGATGTATCGGACTCT -ACGGAACCTGATGTATCGAGTCCT -ACGGAACCTGATGTATCGTAAGCC -ACGGAACCTGATGTATCGATAGCC -ACGGAACCTGATGTATCGTAACCG -ACGGAACCTGATGTATCGATGCCA -ACGGAACCTGATCTATGCGGAAAC -ACGGAACCTGATCTATGCAACACC -ACGGAACCTGATCTATGCATCGAG -ACGGAACCTGATCTATGCCTCCTT -ACGGAACCTGATCTATGCCCTGTT -ACGGAACCTGATCTATGCCGGTTT -ACGGAACCTGATCTATGCGTGGTT -ACGGAACCTGATCTATGCGCCTTT -ACGGAACCTGATCTATGCGGTCTT -ACGGAACCTGATCTATGCACGCTT -ACGGAACCTGATCTATGCAGCGTT -ACGGAACCTGATCTATGCTTCGTC -ACGGAACCTGATCTATGCTCTCTC -ACGGAACCTGATCTATGCTGGATC -ACGGAACCTGATCTATGCCACTTC -ACGGAACCTGATCTATGCGTACTC -ACGGAACCTGATCTATGCGATGTC -ACGGAACCTGATCTATGCACAGTC -ACGGAACCTGATCTATGCTTGCTG -ACGGAACCTGATCTATGCTCCATG -ACGGAACCTGATCTATGCTGTGTG -ACGGAACCTGATCTATGCCTAGTG -ACGGAACCTGATCTATGCCATCTG -ACGGAACCTGATCTATGCGAGTTG -ACGGAACCTGATCTATGCAGACTG -ACGGAACCTGATCTATGCTCGGTA -ACGGAACCTGATCTATGCTGCCTA -ACGGAACCTGATCTATGCCCACTA -ACGGAACCTGATCTATGCGGAGTA -ACGGAACCTGATCTATGCTCGTCT -ACGGAACCTGATCTATGCTGCACT -ACGGAACCTGATCTATGCCTGACT -ACGGAACCTGATCTATGCCAACCT -ACGGAACCTGATCTATGCGCTACT -ACGGAACCTGATCTATGCGGATCT -ACGGAACCTGATCTATGCAAGGCT -ACGGAACCTGATCTATGCTCAACC -ACGGAACCTGATCTATGCTGTTCC -ACGGAACCTGATCTATGCATTCCC -ACGGAACCTGATCTATGCTTCTCG -ACGGAACCTGATCTATGCTAGACG -ACGGAACCTGATCTATGCGTAACG -ACGGAACCTGATCTATGCACTTCG -ACGGAACCTGATCTATGCTACGCA -ACGGAACCTGATCTATGCCTTGCA -ACGGAACCTGATCTATGCCGAACA -ACGGAACCTGATCTATGCCAGTCA -ACGGAACCTGATCTATGCGATCCA -ACGGAACCTGATCTATGCACGACA -ACGGAACCTGATCTATGCAGCTCA -ACGGAACCTGATCTATGCTCACGT -ACGGAACCTGATCTATGCCGTAGT -ACGGAACCTGATCTATGCGTCAGT -ACGGAACCTGATCTATGCGAAGGT -ACGGAACCTGATCTATGCAACCGT -ACGGAACCTGATCTATGCTTGTGC -ACGGAACCTGATCTATGCCTAAGC -ACGGAACCTGATCTATGCACTAGC -ACGGAACCTGATCTATGCAGATGC -ACGGAACCTGATCTATGCTGAAGG -ACGGAACCTGATCTATGCCAATGG -ACGGAACCTGATCTATGCATGAGG -ACGGAACCTGATCTATGCAATGGG -ACGGAACCTGATCTATGCTCCTGA -ACGGAACCTGATCTATGCTAGCGA -ACGGAACCTGATCTATGCCACAGA -ACGGAACCTGATCTATGCGCAAGA -ACGGAACCTGATCTATGCGGTTGA -ACGGAACCTGATCTATGCTCCGAT -ACGGAACCTGATCTATGCTGGCAT -ACGGAACCTGATCTATGCCGAGAT -ACGGAACCTGATCTATGCTACCAC -ACGGAACCTGATCTATGCCAGAAC -ACGGAACCTGATCTATGCGTCTAC -ACGGAACCTGATCTATGCACGTAC -ACGGAACCTGATCTATGCAGTGAC -ACGGAACCTGATCTATGCCTGTAG -ACGGAACCTGATCTATGCCCTAAG -ACGGAACCTGATCTATGCGTTCAG -ACGGAACCTGATCTATGCGCATAG -ACGGAACCTGATCTATGCGACAAG -ACGGAACCTGATCTATGCAAGCAG -ACGGAACCTGATCTATGCCGTCAA -ACGGAACCTGATCTATGCGCTGAA -ACGGAACCTGATCTATGCAGTACG -ACGGAACCTGATCTATGCATCCGA -ACGGAACCTGATCTATGCATGGGA -ACGGAACCTGATCTATGCGTGCAA -ACGGAACCTGATCTATGCGAGGAA -ACGGAACCTGATCTATGCCAGGTA -ACGGAACCTGATCTATGCGACTCT -ACGGAACCTGATCTATGCAGTCCT -ACGGAACCTGATCTATGCTAAGCC -ACGGAACCTGATCTATGCATAGCC -ACGGAACCTGATCTATGCTAACCG -ACGGAACCTGATCTATGCATGCCA -ACGGAACCTGATCTACCAGGAAAC -ACGGAACCTGATCTACCAAACACC -ACGGAACCTGATCTACCAATCGAG -ACGGAACCTGATCTACCACTCCTT -ACGGAACCTGATCTACCACCTGTT -ACGGAACCTGATCTACCACGGTTT -ACGGAACCTGATCTACCAGTGGTT -ACGGAACCTGATCTACCAGCCTTT -ACGGAACCTGATCTACCAGGTCTT -ACGGAACCTGATCTACCAACGCTT -ACGGAACCTGATCTACCAAGCGTT -ACGGAACCTGATCTACCATTCGTC -ACGGAACCTGATCTACCATCTCTC -ACGGAACCTGATCTACCATGGATC -ACGGAACCTGATCTACCACACTTC -ACGGAACCTGATCTACCAGTACTC -ACGGAACCTGATCTACCAGATGTC -ACGGAACCTGATCTACCAACAGTC -ACGGAACCTGATCTACCATTGCTG -ACGGAACCTGATCTACCATCCATG -ACGGAACCTGATCTACCATGTGTG -ACGGAACCTGATCTACCACTAGTG -ACGGAACCTGATCTACCACATCTG -ACGGAACCTGATCTACCAGAGTTG -ACGGAACCTGATCTACCAAGACTG -ACGGAACCTGATCTACCATCGGTA -ACGGAACCTGATCTACCATGCCTA -ACGGAACCTGATCTACCACCACTA -ACGGAACCTGATCTACCAGGAGTA -ACGGAACCTGATCTACCATCGTCT -ACGGAACCTGATCTACCATGCACT -ACGGAACCTGATCTACCACTGACT -ACGGAACCTGATCTACCACAACCT -ACGGAACCTGATCTACCAGCTACT -ACGGAACCTGATCTACCAGGATCT -ACGGAACCTGATCTACCAAAGGCT -ACGGAACCTGATCTACCATCAACC -ACGGAACCTGATCTACCATGTTCC -ACGGAACCTGATCTACCAATTCCC -ACGGAACCTGATCTACCATTCTCG -ACGGAACCTGATCTACCATAGACG -ACGGAACCTGATCTACCAGTAACG -ACGGAACCTGATCTACCAACTTCG -ACGGAACCTGATCTACCATACGCA -ACGGAACCTGATCTACCACTTGCA -ACGGAACCTGATCTACCACGAACA -ACGGAACCTGATCTACCACAGTCA -ACGGAACCTGATCTACCAGATCCA -ACGGAACCTGATCTACCAACGACA -ACGGAACCTGATCTACCAAGCTCA -ACGGAACCTGATCTACCATCACGT -ACGGAACCTGATCTACCACGTAGT -ACGGAACCTGATCTACCAGTCAGT -ACGGAACCTGATCTACCAGAAGGT -ACGGAACCTGATCTACCAAACCGT -ACGGAACCTGATCTACCATTGTGC -ACGGAACCTGATCTACCACTAAGC -ACGGAACCTGATCTACCAACTAGC -ACGGAACCTGATCTACCAAGATGC -ACGGAACCTGATCTACCATGAAGG -ACGGAACCTGATCTACCACAATGG -ACGGAACCTGATCTACCAATGAGG -ACGGAACCTGATCTACCAAATGGG -ACGGAACCTGATCTACCATCCTGA -ACGGAACCTGATCTACCATAGCGA -ACGGAACCTGATCTACCACACAGA -ACGGAACCTGATCTACCAGCAAGA -ACGGAACCTGATCTACCAGGTTGA -ACGGAACCTGATCTACCATCCGAT -ACGGAACCTGATCTACCATGGCAT -ACGGAACCTGATCTACCACGAGAT -ACGGAACCTGATCTACCATACCAC -ACGGAACCTGATCTACCACAGAAC -ACGGAACCTGATCTACCAGTCTAC -ACGGAACCTGATCTACCAACGTAC -ACGGAACCTGATCTACCAAGTGAC -ACGGAACCTGATCTACCACTGTAG -ACGGAACCTGATCTACCACCTAAG -ACGGAACCTGATCTACCAGTTCAG -ACGGAACCTGATCTACCAGCATAG -ACGGAACCTGATCTACCAGACAAG -ACGGAACCTGATCTACCAAAGCAG -ACGGAACCTGATCTACCACGTCAA -ACGGAACCTGATCTACCAGCTGAA -ACGGAACCTGATCTACCAAGTACG -ACGGAACCTGATCTACCAATCCGA -ACGGAACCTGATCTACCAATGGGA -ACGGAACCTGATCTACCAGTGCAA -ACGGAACCTGATCTACCAGAGGAA -ACGGAACCTGATCTACCACAGGTA -ACGGAACCTGATCTACCAGACTCT -ACGGAACCTGATCTACCAAGTCCT -ACGGAACCTGATCTACCATAAGCC -ACGGAACCTGATCTACCAATAGCC -ACGGAACCTGATCTACCATAACCG -ACGGAACCTGATCTACCAATGCCA -ACGGAACCTGATGTAGGAGGAAAC -ACGGAACCTGATGTAGGAAACACC -ACGGAACCTGATGTAGGAATCGAG -ACGGAACCTGATGTAGGACTCCTT -ACGGAACCTGATGTAGGACCTGTT -ACGGAACCTGATGTAGGACGGTTT -ACGGAACCTGATGTAGGAGTGGTT -ACGGAACCTGATGTAGGAGCCTTT -ACGGAACCTGATGTAGGAGGTCTT -ACGGAACCTGATGTAGGAACGCTT -ACGGAACCTGATGTAGGAAGCGTT -ACGGAACCTGATGTAGGATTCGTC -ACGGAACCTGATGTAGGATCTCTC -ACGGAACCTGATGTAGGATGGATC -ACGGAACCTGATGTAGGACACTTC -ACGGAACCTGATGTAGGAGTACTC -ACGGAACCTGATGTAGGAGATGTC -ACGGAACCTGATGTAGGAACAGTC -ACGGAACCTGATGTAGGATTGCTG -ACGGAACCTGATGTAGGATCCATG -ACGGAACCTGATGTAGGATGTGTG -ACGGAACCTGATGTAGGACTAGTG -ACGGAACCTGATGTAGGACATCTG -ACGGAACCTGATGTAGGAGAGTTG -ACGGAACCTGATGTAGGAAGACTG -ACGGAACCTGATGTAGGATCGGTA -ACGGAACCTGATGTAGGATGCCTA -ACGGAACCTGATGTAGGACCACTA -ACGGAACCTGATGTAGGAGGAGTA -ACGGAACCTGATGTAGGATCGTCT -ACGGAACCTGATGTAGGATGCACT -ACGGAACCTGATGTAGGACTGACT -ACGGAACCTGATGTAGGACAACCT -ACGGAACCTGATGTAGGAGCTACT -ACGGAACCTGATGTAGGAGGATCT -ACGGAACCTGATGTAGGAAAGGCT -ACGGAACCTGATGTAGGATCAACC -ACGGAACCTGATGTAGGATGTTCC -ACGGAACCTGATGTAGGAATTCCC -ACGGAACCTGATGTAGGATTCTCG -ACGGAACCTGATGTAGGATAGACG -ACGGAACCTGATGTAGGAGTAACG -ACGGAACCTGATGTAGGAACTTCG -ACGGAACCTGATGTAGGATACGCA -ACGGAACCTGATGTAGGACTTGCA -ACGGAACCTGATGTAGGACGAACA -ACGGAACCTGATGTAGGACAGTCA -ACGGAACCTGATGTAGGAGATCCA -ACGGAACCTGATGTAGGAACGACA -ACGGAACCTGATGTAGGAAGCTCA -ACGGAACCTGATGTAGGATCACGT -ACGGAACCTGATGTAGGACGTAGT -ACGGAACCTGATGTAGGAGTCAGT -ACGGAACCTGATGTAGGAGAAGGT -ACGGAACCTGATGTAGGAAACCGT -ACGGAACCTGATGTAGGATTGTGC -ACGGAACCTGATGTAGGACTAAGC -ACGGAACCTGATGTAGGAACTAGC -ACGGAACCTGATGTAGGAAGATGC -ACGGAACCTGATGTAGGATGAAGG -ACGGAACCTGATGTAGGACAATGG -ACGGAACCTGATGTAGGAATGAGG -ACGGAACCTGATGTAGGAAATGGG -ACGGAACCTGATGTAGGATCCTGA -ACGGAACCTGATGTAGGATAGCGA -ACGGAACCTGATGTAGGACACAGA -ACGGAACCTGATGTAGGAGCAAGA -ACGGAACCTGATGTAGGAGGTTGA -ACGGAACCTGATGTAGGATCCGAT -ACGGAACCTGATGTAGGATGGCAT -ACGGAACCTGATGTAGGACGAGAT -ACGGAACCTGATGTAGGATACCAC -ACGGAACCTGATGTAGGACAGAAC -ACGGAACCTGATGTAGGAGTCTAC -ACGGAACCTGATGTAGGAACGTAC -ACGGAACCTGATGTAGGAAGTGAC -ACGGAACCTGATGTAGGACTGTAG -ACGGAACCTGATGTAGGACCTAAG -ACGGAACCTGATGTAGGAGTTCAG -ACGGAACCTGATGTAGGAGCATAG -ACGGAACCTGATGTAGGAGACAAG -ACGGAACCTGATGTAGGAAAGCAG -ACGGAACCTGATGTAGGACGTCAA -ACGGAACCTGATGTAGGAGCTGAA -ACGGAACCTGATGTAGGAAGTACG -ACGGAACCTGATGTAGGAATCCGA -ACGGAACCTGATGTAGGAATGGGA -ACGGAACCTGATGTAGGAGTGCAA -ACGGAACCTGATGTAGGAGAGGAA -ACGGAACCTGATGTAGGACAGGTA -ACGGAACCTGATGTAGGAGACTCT -ACGGAACCTGATGTAGGAAGTCCT -ACGGAACCTGATGTAGGATAAGCC -ACGGAACCTGATGTAGGAATAGCC -ACGGAACCTGATGTAGGATAACCG -ACGGAACCTGATGTAGGAATGCCA -ACGGAACCTGATTCTTCGGGAAAC -ACGGAACCTGATTCTTCGAACACC -ACGGAACCTGATTCTTCGATCGAG -ACGGAACCTGATTCTTCGCTCCTT -ACGGAACCTGATTCTTCGCCTGTT -ACGGAACCTGATTCTTCGCGGTTT -ACGGAACCTGATTCTTCGGTGGTT -ACGGAACCTGATTCTTCGGCCTTT -ACGGAACCTGATTCTTCGGGTCTT -ACGGAACCTGATTCTTCGACGCTT -ACGGAACCTGATTCTTCGAGCGTT -ACGGAACCTGATTCTTCGTTCGTC -ACGGAACCTGATTCTTCGTCTCTC -ACGGAACCTGATTCTTCGTGGATC -ACGGAACCTGATTCTTCGCACTTC -ACGGAACCTGATTCTTCGGTACTC -ACGGAACCTGATTCTTCGGATGTC -ACGGAACCTGATTCTTCGACAGTC -ACGGAACCTGATTCTTCGTTGCTG -ACGGAACCTGATTCTTCGTCCATG -ACGGAACCTGATTCTTCGTGTGTG -ACGGAACCTGATTCTTCGCTAGTG -ACGGAACCTGATTCTTCGCATCTG -ACGGAACCTGATTCTTCGGAGTTG -ACGGAACCTGATTCTTCGAGACTG -ACGGAACCTGATTCTTCGTCGGTA -ACGGAACCTGATTCTTCGTGCCTA -ACGGAACCTGATTCTTCGCCACTA -ACGGAACCTGATTCTTCGGGAGTA -ACGGAACCTGATTCTTCGTCGTCT -ACGGAACCTGATTCTTCGTGCACT -ACGGAACCTGATTCTTCGCTGACT -ACGGAACCTGATTCTTCGCAACCT -ACGGAACCTGATTCTTCGGCTACT -ACGGAACCTGATTCTTCGGGATCT -ACGGAACCTGATTCTTCGAAGGCT -ACGGAACCTGATTCTTCGTCAACC -ACGGAACCTGATTCTTCGTGTTCC -ACGGAACCTGATTCTTCGATTCCC -ACGGAACCTGATTCTTCGTTCTCG -ACGGAACCTGATTCTTCGTAGACG -ACGGAACCTGATTCTTCGGTAACG -ACGGAACCTGATTCTTCGACTTCG -ACGGAACCTGATTCTTCGTACGCA -ACGGAACCTGATTCTTCGCTTGCA -ACGGAACCTGATTCTTCGCGAACA -ACGGAACCTGATTCTTCGCAGTCA -ACGGAACCTGATTCTTCGGATCCA -ACGGAACCTGATTCTTCGACGACA -ACGGAACCTGATTCTTCGAGCTCA -ACGGAACCTGATTCTTCGTCACGT -ACGGAACCTGATTCTTCGCGTAGT -ACGGAACCTGATTCTTCGGTCAGT -ACGGAACCTGATTCTTCGGAAGGT -ACGGAACCTGATTCTTCGAACCGT -ACGGAACCTGATTCTTCGTTGTGC -ACGGAACCTGATTCTTCGCTAAGC -ACGGAACCTGATTCTTCGACTAGC -ACGGAACCTGATTCTTCGAGATGC -ACGGAACCTGATTCTTCGTGAAGG -ACGGAACCTGATTCTTCGCAATGG -ACGGAACCTGATTCTTCGATGAGG -ACGGAACCTGATTCTTCGAATGGG -ACGGAACCTGATTCTTCGTCCTGA -ACGGAACCTGATTCTTCGTAGCGA -ACGGAACCTGATTCTTCGCACAGA -ACGGAACCTGATTCTTCGGCAAGA -ACGGAACCTGATTCTTCGGGTTGA -ACGGAACCTGATTCTTCGTCCGAT -ACGGAACCTGATTCTTCGTGGCAT -ACGGAACCTGATTCTTCGCGAGAT -ACGGAACCTGATTCTTCGTACCAC -ACGGAACCTGATTCTTCGCAGAAC -ACGGAACCTGATTCTTCGGTCTAC -ACGGAACCTGATTCTTCGACGTAC -ACGGAACCTGATTCTTCGAGTGAC -ACGGAACCTGATTCTTCGCTGTAG -ACGGAACCTGATTCTTCGCCTAAG -ACGGAACCTGATTCTTCGGTTCAG -ACGGAACCTGATTCTTCGGCATAG -ACGGAACCTGATTCTTCGGACAAG -ACGGAACCTGATTCTTCGAAGCAG -ACGGAACCTGATTCTTCGCGTCAA -ACGGAACCTGATTCTTCGGCTGAA -ACGGAACCTGATTCTTCGAGTACG -ACGGAACCTGATTCTTCGATCCGA -ACGGAACCTGATTCTTCGATGGGA -ACGGAACCTGATTCTTCGGTGCAA -ACGGAACCTGATTCTTCGGAGGAA -ACGGAACCTGATTCTTCGCAGGTA -ACGGAACCTGATTCTTCGGACTCT -ACGGAACCTGATTCTTCGAGTCCT -ACGGAACCTGATTCTTCGTAAGCC -ACGGAACCTGATTCTTCGATAGCC -ACGGAACCTGATTCTTCGTAACCG -ACGGAACCTGATTCTTCGATGCCA -ACGGAACCTGATACTTGCGGAAAC -ACGGAACCTGATACTTGCAACACC -ACGGAACCTGATACTTGCATCGAG -ACGGAACCTGATACTTGCCTCCTT -ACGGAACCTGATACTTGCCCTGTT -ACGGAACCTGATACTTGCCGGTTT -ACGGAACCTGATACTTGCGTGGTT -ACGGAACCTGATACTTGCGCCTTT -ACGGAACCTGATACTTGCGGTCTT -ACGGAACCTGATACTTGCACGCTT -ACGGAACCTGATACTTGCAGCGTT -ACGGAACCTGATACTTGCTTCGTC -ACGGAACCTGATACTTGCTCTCTC -ACGGAACCTGATACTTGCTGGATC -ACGGAACCTGATACTTGCCACTTC -ACGGAACCTGATACTTGCGTACTC -ACGGAACCTGATACTTGCGATGTC -ACGGAACCTGATACTTGCACAGTC -ACGGAACCTGATACTTGCTTGCTG -ACGGAACCTGATACTTGCTCCATG -ACGGAACCTGATACTTGCTGTGTG -ACGGAACCTGATACTTGCCTAGTG -ACGGAACCTGATACTTGCCATCTG -ACGGAACCTGATACTTGCGAGTTG -ACGGAACCTGATACTTGCAGACTG -ACGGAACCTGATACTTGCTCGGTA -ACGGAACCTGATACTTGCTGCCTA -ACGGAACCTGATACTTGCCCACTA -ACGGAACCTGATACTTGCGGAGTA -ACGGAACCTGATACTTGCTCGTCT -ACGGAACCTGATACTTGCTGCACT -ACGGAACCTGATACTTGCCTGACT -ACGGAACCTGATACTTGCCAACCT -ACGGAACCTGATACTTGCGCTACT -ACGGAACCTGATACTTGCGGATCT -ACGGAACCTGATACTTGCAAGGCT -ACGGAACCTGATACTTGCTCAACC -ACGGAACCTGATACTTGCTGTTCC -ACGGAACCTGATACTTGCATTCCC -ACGGAACCTGATACTTGCTTCTCG -ACGGAACCTGATACTTGCTAGACG -ACGGAACCTGATACTTGCGTAACG -ACGGAACCTGATACTTGCACTTCG -ACGGAACCTGATACTTGCTACGCA -ACGGAACCTGATACTTGCCTTGCA -ACGGAACCTGATACTTGCCGAACA -ACGGAACCTGATACTTGCCAGTCA -ACGGAACCTGATACTTGCGATCCA -ACGGAACCTGATACTTGCACGACA -ACGGAACCTGATACTTGCAGCTCA -ACGGAACCTGATACTTGCTCACGT -ACGGAACCTGATACTTGCCGTAGT -ACGGAACCTGATACTTGCGTCAGT -ACGGAACCTGATACTTGCGAAGGT -ACGGAACCTGATACTTGCAACCGT -ACGGAACCTGATACTTGCTTGTGC -ACGGAACCTGATACTTGCCTAAGC -ACGGAACCTGATACTTGCACTAGC -ACGGAACCTGATACTTGCAGATGC -ACGGAACCTGATACTTGCTGAAGG -ACGGAACCTGATACTTGCCAATGG -ACGGAACCTGATACTTGCATGAGG -ACGGAACCTGATACTTGCAATGGG -ACGGAACCTGATACTTGCTCCTGA -ACGGAACCTGATACTTGCTAGCGA -ACGGAACCTGATACTTGCCACAGA -ACGGAACCTGATACTTGCGCAAGA -ACGGAACCTGATACTTGCGGTTGA -ACGGAACCTGATACTTGCTCCGAT -ACGGAACCTGATACTTGCTGGCAT -ACGGAACCTGATACTTGCCGAGAT -ACGGAACCTGATACTTGCTACCAC -ACGGAACCTGATACTTGCCAGAAC -ACGGAACCTGATACTTGCGTCTAC -ACGGAACCTGATACTTGCACGTAC -ACGGAACCTGATACTTGCAGTGAC -ACGGAACCTGATACTTGCCTGTAG -ACGGAACCTGATACTTGCCCTAAG -ACGGAACCTGATACTTGCGTTCAG -ACGGAACCTGATACTTGCGCATAG -ACGGAACCTGATACTTGCGACAAG -ACGGAACCTGATACTTGCAAGCAG -ACGGAACCTGATACTTGCCGTCAA -ACGGAACCTGATACTTGCGCTGAA -ACGGAACCTGATACTTGCAGTACG -ACGGAACCTGATACTTGCATCCGA -ACGGAACCTGATACTTGCATGGGA -ACGGAACCTGATACTTGCGTGCAA -ACGGAACCTGATACTTGCGAGGAA -ACGGAACCTGATACTTGCCAGGTA -ACGGAACCTGATACTTGCGACTCT -ACGGAACCTGATACTTGCAGTCCT -ACGGAACCTGATACTTGCTAAGCC -ACGGAACCTGATACTTGCATAGCC -ACGGAACCTGATACTTGCTAACCG -ACGGAACCTGATACTTGCATGCCA -ACGGAACCTGATACTCTGGGAAAC -ACGGAACCTGATACTCTGAACACC -ACGGAACCTGATACTCTGATCGAG -ACGGAACCTGATACTCTGCTCCTT -ACGGAACCTGATACTCTGCCTGTT -ACGGAACCTGATACTCTGCGGTTT -ACGGAACCTGATACTCTGGTGGTT -ACGGAACCTGATACTCTGGCCTTT -ACGGAACCTGATACTCTGGGTCTT -ACGGAACCTGATACTCTGACGCTT -ACGGAACCTGATACTCTGAGCGTT -ACGGAACCTGATACTCTGTTCGTC -ACGGAACCTGATACTCTGTCTCTC -ACGGAACCTGATACTCTGTGGATC -ACGGAACCTGATACTCTGCACTTC -ACGGAACCTGATACTCTGGTACTC -ACGGAACCTGATACTCTGGATGTC -ACGGAACCTGATACTCTGACAGTC -ACGGAACCTGATACTCTGTTGCTG -ACGGAACCTGATACTCTGTCCATG -ACGGAACCTGATACTCTGTGTGTG -ACGGAACCTGATACTCTGCTAGTG -ACGGAACCTGATACTCTGCATCTG -ACGGAACCTGATACTCTGGAGTTG -ACGGAACCTGATACTCTGAGACTG -ACGGAACCTGATACTCTGTCGGTA -ACGGAACCTGATACTCTGTGCCTA -ACGGAACCTGATACTCTGCCACTA -ACGGAACCTGATACTCTGGGAGTA -ACGGAACCTGATACTCTGTCGTCT -ACGGAACCTGATACTCTGTGCACT -ACGGAACCTGATACTCTGCTGACT -ACGGAACCTGATACTCTGCAACCT -ACGGAACCTGATACTCTGGCTACT -ACGGAACCTGATACTCTGGGATCT -ACGGAACCTGATACTCTGAAGGCT -ACGGAACCTGATACTCTGTCAACC -ACGGAACCTGATACTCTGTGTTCC -ACGGAACCTGATACTCTGATTCCC -ACGGAACCTGATACTCTGTTCTCG -ACGGAACCTGATACTCTGTAGACG -ACGGAACCTGATACTCTGGTAACG -ACGGAACCTGATACTCTGACTTCG -ACGGAACCTGATACTCTGTACGCA -ACGGAACCTGATACTCTGCTTGCA -ACGGAACCTGATACTCTGCGAACA -ACGGAACCTGATACTCTGCAGTCA -ACGGAACCTGATACTCTGGATCCA -ACGGAACCTGATACTCTGACGACA -ACGGAACCTGATACTCTGAGCTCA -ACGGAACCTGATACTCTGTCACGT -ACGGAACCTGATACTCTGCGTAGT -ACGGAACCTGATACTCTGGTCAGT -ACGGAACCTGATACTCTGGAAGGT -ACGGAACCTGATACTCTGAACCGT -ACGGAACCTGATACTCTGTTGTGC -ACGGAACCTGATACTCTGCTAAGC -ACGGAACCTGATACTCTGACTAGC -ACGGAACCTGATACTCTGAGATGC -ACGGAACCTGATACTCTGTGAAGG -ACGGAACCTGATACTCTGCAATGG -ACGGAACCTGATACTCTGATGAGG -ACGGAACCTGATACTCTGAATGGG -ACGGAACCTGATACTCTGTCCTGA -ACGGAACCTGATACTCTGTAGCGA -ACGGAACCTGATACTCTGCACAGA -ACGGAACCTGATACTCTGGCAAGA -ACGGAACCTGATACTCTGGGTTGA -ACGGAACCTGATACTCTGTCCGAT -ACGGAACCTGATACTCTGTGGCAT -ACGGAACCTGATACTCTGCGAGAT -ACGGAACCTGATACTCTGTACCAC -ACGGAACCTGATACTCTGCAGAAC -ACGGAACCTGATACTCTGGTCTAC -ACGGAACCTGATACTCTGACGTAC -ACGGAACCTGATACTCTGAGTGAC -ACGGAACCTGATACTCTGCTGTAG -ACGGAACCTGATACTCTGCCTAAG -ACGGAACCTGATACTCTGGTTCAG -ACGGAACCTGATACTCTGGCATAG -ACGGAACCTGATACTCTGGACAAG -ACGGAACCTGATACTCTGAAGCAG -ACGGAACCTGATACTCTGCGTCAA -ACGGAACCTGATACTCTGGCTGAA -ACGGAACCTGATACTCTGAGTACG -ACGGAACCTGATACTCTGATCCGA -ACGGAACCTGATACTCTGATGGGA -ACGGAACCTGATACTCTGGTGCAA -ACGGAACCTGATACTCTGGAGGAA -ACGGAACCTGATACTCTGCAGGTA -ACGGAACCTGATACTCTGGACTCT -ACGGAACCTGATACTCTGAGTCCT -ACGGAACCTGATACTCTGTAAGCC -ACGGAACCTGATACTCTGATAGCC -ACGGAACCTGATACTCTGTAACCG -ACGGAACCTGATACTCTGATGCCA -ACGGAACCTGATCCTCAAGGAAAC -ACGGAACCTGATCCTCAAAACACC -ACGGAACCTGATCCTCAAATCGAG -ACGGAACCTGATCCTCAACTCCTT -ACGGAACCTGATCCTCAACCTGTT -ACGGAACCTGATCCTCAACGGTTT -ACGGAACCTGATCCTCAAGTGGTT -ACGGAACCTGATCCTCAAGCCTTT -ACGGAACCTGATCCTCAAGGTCTT -ACGGAACCTGATCCTCAAACGCTT -ACGGAACCTGATCCTCAAAGCGTT -ACGGAACCTGATCCTCAATTCGTC -ACGGAACCTGATCCTCAATCTCTC -ACGGAACCTGATCCTCAATGGATC -ACGGAACCTGATCCTCAACACTTC -ACGGAACCTGATCCTCAAGTACTC -ACGGAACCTGATCCTCAAGATGTC -ACGGAACCTGATCCTCAAACAGTC -ACGGAACCTGATCCTCAATTGCTG -ACGGAACCTGATCCTCAATCCATG -ACGGAACCTGATCCTCAATGTGTG -ACGGAACCTGATCCTCAACTAGTG -ACGGAACCTGATCCTCAACATCTG -ACGGAACCTGATCCTCAAGAGTTG -ACGGAACCTGATCCTCAAAGACTG -ACGGAACCTGATCCTCAATCGGTA -ACGGAACCTGATCCTCAATGCCTA -ACGGAACCTGATCCTCAACCACTA -ACGGAACCTGATCCTCAAGGAGTA -ACGGAACCTGATCCTCAATCGTCT -ACGGAACCTGATCCTCAATGCACT -ACGGAACCTGATCCTCAACTGACT -ACGGAACCTGATCCTCAACAACCT -ACGGAACCTGATCCTCAAGCTACT -ACGGAACCTGATCCTCAAGGATCT -ACGGAACCTGATCCTCAAAAGGCT -ACGGAACCTGATCCTCAATCAACC -ACGGAACCTGATCCTCAATGTTCC -ACGGAACCTGATCCTCAAATTCCC -ACGGAACCTGATCCTCAATTCTCG -ACGGAACCTGATCCTCAATAGACG -ACGGAACCTGATCCTCAAGTAACG -ACGGAACCTGATCCTCAAACTTCG -ACGGAACCTGATCCTCAATACGCA -ACGGAACCTGATCCTCAACTTGCA -ACGGAACCTGATCCTCAACGAACA -ACGGAACCTGATCCTCAACAGTCA -ACGGAACCTGATCCTCAAGATCCA -ACGGAACCTGATCCTCAAACGACA -ACGGAACCTGATCCTCAAAGCTCA -ACGGAACCTGATCCTCAATCACGT -ACGGAACCTGATCCTCAACGTAGT -ACGGAACCTGATCCTCAAGTCAGT -ACGGAACCTGATCCTCAAGAAGGT -ACGGAACCTGATCCTCAAAACCGT -ACGGAACCTGATCCTCAATTGTGC -ACGGAACCTGATCCTCAACTAAGC -ACGGAACCTGATCCTCAAACTAGC -ACGGAACCTGATCCTCAAAGATGC -ACGGAACCTGATCCTCAATGAAGG -ACGGAACCTGATCCTCAACAATGG -ACGGAACCTGATCCTCAAATGAGG -ACGGAACCTGATCCTCAAAATGGG -ACGGAACCTGATCCTCAATCCTGA -ACGGAACCTGATCCTCAATAGCGA -ACGGAACCTGATCCTCAACACAGA -ACGGAACCTGATCCTCAAGCAAGA -ACGGAACCTGATCCTCAAGGTTGA -ACGGAACCTGATCCTCAATCCGAT -ACGGAACCTGATCCTCAATGGCAT -ACGGAACCTGATCCTCAACGAGAT -ACGGAACCTGATCCTCAATACCAC -ACGGAACCTGATCCTCAACAGAAC -ACGGAACCTGATCCTCAAGTCTAC -ACGGAACCTGATCCTCAAACGTAC -ACGGAACCTGATCCTCAAAGTGAC -ACGGAACCTGATCCTCAACTGTAG -ACGGAACCTGATCCTCAACCTAAG -ACGGAACCTGATCCTCAAGTTCAG -ACGGAACCTGATCCTCAAGCATAG -ACGGAACCTGATCCTCAAGACAAG -ACGGAACCTGATCCTCAAAAGCAG -ACGGAACCTGATCCTCAACGTCAA -ACGGAACCTGATCCTCAAGCTGAA -ACGGAACCTGATCCTCAAAGTACG -ACGGAACCTGATCCTCAAATCCGA -ACGGAACCTGATCCTCAAATGGGA -ACGGAACCTGATCCTCAAGTGCAA -ACGGAACCTGATCCTCAAGAGGAA -ACGGAACCTGATCCTCAACAGGTA -ACGGAACCTGATCCTCAAGACTCT -ACGGAACCTGATCCTCAAAGTCCT -ACGGAACCTGATCCTCAATAAGCC -ACGGAACCTGATCCTCAAATAGCC -ACGGAACCTGATCCTCAATAACCG -ACGGAACCTGATCCTCAAATGCCA -ACGGAACCTGATACTGCTGGAAAC -ACGGAACCTGATACTGCTAACACC -ACGGAACCTGATACTGCTATCGAG -ACGGAACCTGATACTGCTCTCCTT -ACGGAACCTGATACTGCTCCTGTT -ACGGAACCTGATACTGCTCGGTTT -ACGGAACCTGATACTGCTGTGGTT -ACGGAACCTGATACTGCTGCCTTT -ACGGAACCTGATACTGCTGGTCTT -ACGGAACCTGATACTGCTACGCTT -ACGGAACCTGATACTGCTAGCGTT -ACGGAACCTGATACTGCTTTCGTC -ACGGAACCTGATACTGCTTCTCTC -ACGGAACCTGATACTGCTTGGATC -ACGGAACCTGATACTGCTCACTTC -ACGGAACCTGATACTGCTGTACTC -ACGGAACCTGATACTGCTGATGTC -ACGGAACCTGATACTGCTACAGTC -ACGGAACCTGATACTGCTTTGCTG -ACGGAACCTGATACTGCTTCCATG -ACGGAACCTGATACTGCTTGTGTG -ACGGAACCTGATACTGCTCTAGTG -ACGGAACCTGATACTGCTCATCTG -ACGGAACCTGATACTGCTGAGTTG -ACGGAACCTGATACTGCTAGACTG -ACGGAACCTGATACTGCTTCGGTA -ACGGAACCTGATACTGCTTGCCTA -ACGGAACCTGATACTGCTCCACTA -ACGGAACCTGATACTGCTGGAGTA -ACGGAACCTGATACTGCTTCGTCT -ACGGAACCTGATACTGCTTGCACT -ACGGAACCTGATACTGCTCTGACT -ACGGAACCTGATACTGCTCAACCT -ACGGAACCTGATACTGCTGCTACT -ACGGAACCTGATACTGCTGGATCT -ACGGAACCTGATACTGCTAAGGCT -ACGGAACCTGATACTGCTTCAACC -ACGGAACCTGATACTGCTTGTTCC -ACGGAACCTGATACTGCTATTCCC -ACGGAACCTGATACTGCTTTCTCG -ACGGAACCTGATACTGCTTAGACG -ACGGAACCTGATACTGCTGTAACG -ACGGAACCTGATACTGCTACTTCG -ACGGAACCTGATACTGCTTACGCA -ACGGAACCTGATACTGCTCTTGCA -ACGGAACCTGATACTGCTCGAACA -ACGGAACCTGATACTGCTCAGTCA -ACGGAACCTGATACTGCTGATCCA -ACGGAACCTGATACTGCTACGACA -ACGGAACCTGATACTGCTAGCTCA -ACGGAACCTGATACTGCTTCACGT -ACGGAACCTGATACTGCTCGTAGT -ACGGAACCTGATACTGCTGTCAGT -ACGGAACCTGATACTGCTGAAGGT -ACGGAACCTGATACTGCTAACCGT -ACGGAACCTGATACTGCTTTGTGC -ACGGAACCTGATACTGCTCTAAGC -ACGGAACCTGATACTGCTACTAGC -ACGGAACCTGATACTGCTAGATGC -ACGGAACCTGATACTGCTTGAAGG -ACGGAACCTGATACTGCTCAATGG -ACGGAACCTGATACTGCTATGAGG -ACGGAACCTGATACTGCTAATGGG -ACGGAACCTGATACTGCTTCCTGA -ACGGAACCTGATACTGCTTAGCGA -ACGGAACCTGATACTGCTCACAGA -ACGGAACCTGATACTGCTGCAAGA -ACGGAACCTGATACTGCTGGTTGA -ACGGAACCTGATACTGCTTCCGAT -ACGGAACCTGATACTGCTTGGCAT -ACGGAACCTGATACTGCTCGAGAT -ACGGAACCTGATACTGCTTACCAC -ACGGAACCTGATACTGCTCAGAAC -ACGGAACCTGATACTGCTGTCTAC -ACGGAACCTGATACTGCTACGTAC -ACGGAACCTGATACTGCTAGTGAC -ACGGAACCTGATACTGCTCTGTAG -ACGGAACCTGATACTGCTCCTAAG -ACGGAACCTGATACTGCTGTTCAG -ACGGAACCTGATACTGCTGCATAG -ACGGAACCTGATACTGCTGACAAG -ACGGAACCTGATACTGCTAAGCAG -ACGGAACCTGATACTGCTCGTCAA -ACGGAACCTGATACTGCTGCTGAA -ACGGAACCTGATACTGCTAGTACG -ACGGAACCTGATACTGCTATCCGA -ACGGAACCTGATACTGCTATGGGA -ACGGAACCTGATACTGCTGTGCAA -ACGGAACCTGATACTGCTGAGGAA -ACGGAACCTGATACTGCTCAGGTA -ACGGAACCTGATACTGCTGACTCT -ACGGAACCTGATACTGCTAGTCCT -ACGGAACCTGATACTGCTTAAGCC -ACGGAACCTGATACTGCTATAGCC -ACGGAACCTGATACTGCTTAACCG -ACGGAACCTGATACTGCTATGCCA -ACGGAACCTGATTCTGGAGGAAAC -ACGGAACCTGATTCTGGAAACACC -ACGGAACCTGATTCTGGAATCGAG -ACGGAACCTGATTCTGGACTCCTT -ACGGAACCTGATTCTGGACCTGTT -ACGGAACCTGATTCTGGACGGTTT -ACGGAACCTGATTCTGGAGTGGTT -ACGGAACCTGATTCTGGAGCCTTT -ACGGAACCTGATTCTGGAGGTCTT -ACGGAACCTGATTCTGGAACGCTT -ACGGAACCTGATTCTGGAAGCGTT -ACGGAACCTGATTCTGGATTCGTC -ACGGAACCTGATTCTGGATCTCTC -ACGGAACCTGATTCTGGATGGATC -ACGGAACCTGATTCTGGACACTTC -ACGGAACCTGATTCTGGAGTACTC -ACGGAACCTGATTCTGGAGATGTC -ACGGAACCTGATTCTGGAACAGTC -ACGGAACCTGATTCTGGATTGCTG -ACGGAACCTGATTCTGGATCCATG -ACGGAACCTGATTCTGGATGTGTG -ACGGAACCTGATTCTGGACTAGTG -ACGGAACCTGATTCTGGACATCTG -ACGGAACCTGATTCTGGAGAGTTG -ACGGAACCTGATTCTGGAAGACTG -ACGGAACCTGATTCTGGATCGGTA -ACGGAACCTGATTCTGGATGCCTA -ACGGAACCTGATTCTGGACCACTA -ACGGAACCTGATTCTGGAGGAGTA -ACGGAACCTGATTCTGGATCGTCT -ACGGAACCTGATTCTGGATGCACT -ACGGAACCTGATTCTGGACTGACT -ACGGAACCTGATTCTGGACAACCT -ACGGAACCTGATTCTGGAGCTACT -ACGGAACCTGATTCTGGAGGATCT -ACGGAACCTGATTCTGGAAAGGCT -ACGGAACCTGATTCTGGATCAACC -ACGGAACCTGATTCTGGATGTTCC -ACGGAACCTGATTCTGGAATTCCC -ACGGAACCTGATTCTGGATTCTCG -ACGGAACCTGATTCTGGATAGACG -ACGGAACCTGATTCTGGAGTAACG -ACGGAACCTGATTCTGGAACTTCG -ACGGAACCTGATTCTGGATACGCA -ACGGAACCTGATTCTGGACTTGCA -ACGGAACCTGATTCTGGACGAACA -ACGGAACCTGATTCTGGACAGTCA -ACGGAACCTGATTCTGGAGATCCA -ACGGAACCTGATTCTGGAACGACA -ACGGAACCTGATTCTGGAAGCTCA -ACGGAACCTGATTCTGGATCACGT -ACGGAACCTGATTCTGGACGTAGT -ACGGAACCTGATTCTGGAGTCAGT -ACGGAACCTGATTCTGGAGAAGGT -ACGGAACCTGATTCTGGAAACCGT -ACGGAACCTGATTCTGGATTGTGC -ACGGAACCTGATTCTGGACTAAGC -ACGGAACCTGATTCTGGAACTAGC -ACGGAACCTGATTCTGGAAGATGC -ACGGAACCTGATTCTGGATGAAGG -ACGGAACCTGATTCTGGACAATGG -ACGGAACCTGATTCTGGAATGAGG -ACGGAACCTGATTCTGGAAATGGG -ACGGAACCTGATTCTGGATCCTGA -ACGGAACCTGATTCTGGATAGCGA -ACGGAACCTGATTCTGGACACAGA -ACGGAACCTGATTCTGGAGCAAGA -ACGGAACCTGATTCTGGAGGTTGA -ACGGAACCTGATTCTGGATCCGAT -ACGGAACCTGATTCTGGATGGCAT -ACGGAACCTGATTCTGGACGAGAT -ACGGAACCTGATTCTGGATACCAC -ACGGAACCTGATTCTGGACAGAAC -ACGGAACCTGATTCTGGAGTCTAC -ACGGAACCTGATTCTGGAACGTAC -ACGGAACCTGATTCTGGAAGTGAC -ACGGAACCTGATTCTGGACTGTAG -ACGGAACCTGATTCTGGACCTAAG -ACGGAACCTGATTCTGGAGTTCAG -ACGGAACCTGATTCTGGAGCATAG -ACGGAACCTGATTCTGGAGACAAG -ACGGAACCTGATTCTGGAAAGCAG -ACGGAACCTGATTCTGGACGTCAA -ACGGAACCTGATTCTGGAGCTGAA -ACGGAACCTGATTCTGGAAGTACG -ACGGAACCTGATTCTGGAATCCGA -ACGGAACCTGATTCTGGAATGGGA -ACGGAACCTGATTCTGGAGTGCAA -ACGGAACCTGATTCTGGAGAGGAA -ACGGAACCTGATTCTGGACAGGTA -ACGGAACCTGATTCTGGAGACTCT -ACGGAACCTGATTCTGGAAGTCCT -ACGGAACCTGATTCTGGATAAGCC -ACGGAACCTGATTCTGGAATAGCC -ACGGAACCTGATTCTGGATAACCG -ACGGAACCTGATTCTGGAATGCCA -ACGGAACCTGATGCTAAGGGAAAC -ACGGAACCTGATGCTAAGAACACC -ACGGAACCTGATGCTAAGATCGAG -ACGGAACCTGATGCTAAGCTCCTT -ACGGAACCTGATGCTAAGCCTGTT -ACGGAACCTGATGCTAAGCGGTTT -ACGGAACCTGATGCTAAGGTGGTT -ACGGAACCTGATGCTAAGGCCTTT -ACGGAACCTGATGCTAAGGGTCTT -ACGGAACCTGATGCTAAGACGCTT -ACGGAACCTGATGCTAAGAGCGTT -ACGGAACCTGATGCTAAGTTCGTC -ACGGAACCTGATGCTAAGTCTCTC -ACGGAACCTGATGCTAAGTGGATC -ACGGAACCTGATGCTAAGCACTTC -ACGGAACCTGATGCTAAGGTACTC -ACGGAACCTGATGCTAAGGATGTC -ACGGAACCTGATGCTAAGACAGTC -ACGGAACCTGATGCTAAGTTGCTG -ACGGAACCTGATGCTAAGTCCATG -ACGGAACCTGATGCTAAGTGTGTG -ACGGAACCTGATGCTAAGCTAGTG -ACGGAACCTGATGCTAAGCATCTG -ACGGAACCTGATGCTAAGGAGTTG -ACGGAACCTGATGCTAAGAGACTG -ACGGAACCTGATGCTAAGTCGGTA -ACGGAACCTGATGCTAAGTGCCTA -ACGGAACCTGATGCTAAGCCACTA -ACGGAACCTGATGCTAAGGGAGTA -ACGGAACCTGATGCTAAGTCGTCT -ACGGAACCTGATGCTAAGTGCACT -ACGGAACCTGATGCTAAGCTGACT -ACGGAACCTGATGCTAAGCAACCT -ACGGAACCTGATGCTAAGGCTACT -ACGGAACCTGATGCTAAGGGATCT -ACGGAACCTGATGCTAAGAAGGCT -ACGGAACCTGATGCTAAGTCAACC -ACGGAACCTGATGCTAAGTGTTCC -ACGGAACCTGATGCTAAGATTCCC -ACGGAACCTGATGCTAAGTTCTCG -ACGGAACCTGATGCTAAGTAGACG -ACGGAACCTGATGCTAAGGTAACG -ACGGAACCTGATGCTAAGACTTCG -ACGGAACCTGATGCTAAGTACGCA -ACGGAACCTGATGCTAAGCTTGCA -ACGGAACCTGATGCTAAGCGAACA -ACGGAACCTGATGCTAAGCAGTCA -ACGGAACCTGATGCTAAGGATCCA -ACGGAACCTGATGCTAAGACGACA -ACGGAACCTGATGCTAAGAGCTCA -ACGGAACCTGATGCTAAGTCACGT -ACGGAACCTGATGCTAAGCGTAGT -ACGGAACCTGATGCTAAGGTCAGT -ACGGAACCTGATGCTAAGGAAGGT -ACGGAACCTGATGCTAAGAACCGT -ACGGAACCTGATGCTAAGTTGTGC -ACGGAACCTGATGCTAAGCTAAGC -ACGGAACCTGATGCTAAGACTAGC -ACGGAACCTGATGCTAAGAGATGC -ACGGAACCTGATGCTAAGTGAAGG -ACGGAACCTGATGCTAAGCAATGG -ACGGAACCTGATGCTAAGATGAGG -ACGGAACCTGATGCTAAGAATGGG -ACGGAACCTGATGCTAAGTCCTGA -ACGGAACCTGATGCTAAGTAGCGA -ACGGAACCTGATGCTAAGCACAGA -ACGGAACCTGATGCTAAGGCAAGA -ACGGAACCTGATGCTAAGGGTTGA -ACGGAACCTGATGCTAAGTCCGAT -ACGGAACCTGATGCTAAGTGGCAT -ACGGAACCTGATGCTAAGCGAGAT -ACGGAACCTGATGCTAAGTACCAC -ACGGAACCTGATGCTAAGCAGAAC -ACGGAACCTGATGCTAAGGTCTAC -ACGGAACCTGATGCTAAGACGTAC -ACGGAACCTGATGCTAAGAGTGAC -ACGGAACCTGATGCTAAGCTGTAG -ACGGAACCTGATGCTAAGCCTAAG -ACGGAACCTGATGCTAAGGTTCAG -ACGGAACCTGATGCTAAGGCATAG -ACGGAACCTGATGCTAAGGACAAG -ACGGAACCTGATGCTAAGAAGCAG -ACGGAACCTGATGCTAAGCGTCAA -ACGGAACCTGATGCTAAGGCTGAA -ACGGAACCTGATGCTAAGAGTACG -ACGGAACCTGATGCTAAGATCCGA -ACGGAACCTGATGCTAAGATGGGA -ACGGAACCTGATGCTAAGGTGCAA -ACGGAACCTGATGCTAAGGAGGAA -ACGGAACCTGATGCTAAGCAGGTA -ACGGAACCTGATGCTAAGGACTCT -ACGGAACCTGATGCTAAGAGTCCT -ACGGAACCTGATGCTAAGTAAGCC -ACGGAACCTGATGCTAAGATAGCC -ACGGAACCTGATGCTAAGTAACCG -ACGGAACCTGATGCTAAGATGCCA -ACGGAACCTGATACCTCAGGAAAC -ACGGAACCTGATACCTCAAACACC -ACGGAACCTGATACCTCAATCGAG -ACGGAACCTGATACCTCACTCCTT -ACGGAACCTGATACCTCACCTGTT -ACGGAACCTGATACCTCACGGTTT -ACGGAACCTGATACCTCAGTGGTT -ACGGAACCTGATACCTCAGCCTTT -ACGGAACCTGATACCTCAGGTCTT -ACGGAACCTGATACCTCAACGCTT -ACGGAACCTGATACCTCAAGCGTT -ACGGAACCTGATACCTCATTCGTC -ACGGAACCTGATACCTCATCTCTC -ACGGAACCTGATACCTCATGGATC -ACGGAACCTGATACCTCACACTTC -ACGGAACCTGATACCTCAGTACTC -ACGGAACCTGATACCTCAGATGTC -ACGGAACCTGATACCTCAACAGTC -ACGGAACCTGATACCTCATTGCTG -ACGGAACCTGATACCTCATCCATG -ACGGAACCTGATACCTCATGTGTG -ACGGAACCTGATACCTCACTAGTG -ACGGAACCTGATACCTCACATCTG -ACGGAACCTGATACCTCAGAGTTG -ACGGAACCTGATACCTCAAGACTG -ACGGAACCTGATACCTCATCGGTA -ACGGAACCTGATACCTCATGCCTA -ACGGAACCTGATACCTCACCACTA -ACGGAACCTGATACCTCAGGAGTA -ACGGAACCTGATACCTCATCGTCT -ACGGAACCTGATACCTCATGCACT -ACGGAACCTGATACCTCACTGACT -ACGGAACCTGATACCTCACAACCT -ACGGAACCTGATACCTCAGCTACT -ACGGAACCTGATACCTCAGGATCT -ACGGAACCTGATACCTCAAAGGCT -ACGGAACCTGATACCTCATCAACC -ACGGAACCTGATACCTCATGTTCC -ACGGAACCTGATACCTCAATTCCC -ACGGAACCTGATACCTCATTCTCG -ACGGAACCTGATACCTCATAGACG -ACGGAACCTGATACCTCAGTAACG -ACGGAACCTGATACCTCAACTTCG -ACGGAACCTGATACCTCATACGCA -ACGGAACCTGATACCTCACTTGCA -ACGGAACCTGATACCTCACGAACA -ACGGAACCTGATACCTCACAGTCA -ACGGAACCTGATACCTCAGATCCA -ACGGAACCTGATACCTCAACGACA -ACGGAACCTGATACCTCAAGCTCA -ACGGAACCTGATACCTCATCACGT -ACGGAACCTGATACCTCACGTAGT -ACGGAACCTGATACCTCAGTCAGT -ACGGAACCTGATACCTCAGAAGGT -ACGGAACCTGATACCTCAAACCGT -ACGGAACCTGATACCTCATTGTGC -ACGGAACCTGATACCTCACTAAGC -ACGGAACCTGATACCTCAACTAGC -ACGGAACCTGATACCTCAAGATGC -ACGGAACCTGATACCTCATGAAGG -ACGGAACCTGATACCTCACAATGG -ACGGAACCTGATACCTCAATGAGG -ACGGAACCTGATACCTCAAATGGG -ACGGAACCTGATACCTCATCCTGA -ACGGAACCTGATACCTCATAGCGA -ACGGAACCTGATACCTCACACAGA -ACGGAACCTGATACCTCAGCAAGA -ACGGAACCTGATACCTCAGGTTGA -ACGGAACCTGATACCTCATCCGAT -ACGGAACCTGATACCTCATGGCAT -ACGGAACCTGATACCTCACGAGAT -ACGGAACCTGATACCTCATACCAC -ACGGAACCTGATACCTCACAGAAC -ACGGAACCTGATACCTCAGTCTAC -ACGGAACCTGATACCTCAACGTAC -ACGGAACCTGATACCTCAAGTGAC -ACGGAACCTGATACCTCACTGTAG -ACGGAACCTGATACCTCACCTAAG -ACGGAACCTGATACCTCAGTTCAG -ACGGAACCTGATACCTCAGCATAG -ACGGAACCTGATACCTCAGACAAG -ACGGAACCTGATACCTCAAAGCAG -ACGGAACCTGATACCTCACGTCAA -ACGGAACCTGATACCTCAGCTGAA -ACGGAACCTGATACCTCAAGTACG -ACGGAACCTGATACCTCAATCCGA -ACGGAACCTGATACCTCAATGGGA -ACGGAACCTGATACCTCAGTGCAA -ACGGAACCTGATACCTCAGAGGAA -ACGGAACCTGATACCTCACAGGTA -ACGGAACCTGATACCTCAGACTCT -ACGGAACCTGATACCTCAAGTCCT -ACGGAACCTGATACCTCATAAGCC -ACGGAACCTGATACCTCAATAGCC -ACGGAACCTGATACCTCATAACCG -ACGGAACCTGATACCTCAATGCCA -ACGGAACCTGATTCCTGTGGAAAC -ACGGAACCTGATTCCTGTAACACC -ACGGAACCTGATTCCTGTATCGAG -ACGGAACCTGATTCCTGTCTCCTT -ACGGAACCTGATTCCTGTCCTGTT -ACGGAACCTGATTCCTGTCGGTTT -ACGGAACCTGATTCCTGTGTGGTT -ACGGAACCTGATTCCTGTGCCTTT -ACGGAACCTGATTCCTGTGGTCTT -ACGGAACCTGATTCCTGTACGCTT -ACGGAACCTGATTCCTGTAGCGTT -ACGGAACCTGATTCCTGTTTCGTC -ACGGAACCTGATTCCTGTTCTCTC -ACGGAACCTGATTCCTGTTGGATC -ACGGAACCTGATTCCTGTCACTTC -ACGGAACCTGATTCCTGTGTACTC -ACGGAACCTGATTCCTGTGATGTC -ACGGAACCTGATTCCTGTACAGTC -ACGGAACCTGATTCCTGTTTGCTG -ACGGAACCTGATTCCTGTTCCATG -ACGGAACCTGATTCCTGTTGTGTG -ACGGAACCTGATTCCTGTCTAGTG -ACGGAACCTGATTCCTGTCATCTG -ACGGAACCTGATTCCTGTGAGTTG -ACGGAACCTGATTCCTGTAGACTG -ACGGAACCTGATTCCTGTTCGGTA -ACGGAACCTGATTCCTGTTGCCTA -ACGGAACCTGATTCCTGTCCACTA -ACGGAACCTGATTCCTGTGGAGTA -ACGGAACCTGATTCCTGTTCGTCT -ACGGAACCTGATTCCTGTTGCACT -ACGGAACCTGATTCCTGTCTGACT -ACGGAACCTGATTCCTGTCAACCT -ACGGAACCTGATTCCTGTGCTACT -ACGGAACCTGATTCCTGTGGATCT -ACGGAACCTGATTCCTGTAAGGCT -ACGGAACCTGATTCCTGTTCAACC -ACGGAACCTGATTCCTGTTGTTCC -ACGGAACCTGATTCCTGTATTCCC -ACGGAACCTGATTCCTGTTTCTCG -ACGGAACCTGATTCCTGTTAGACG -ACGGAACCTGATTCCTGTGTAACG -ACGGAACCTGATTCCTGTACTTCG -ACGGAACCTGATTCCTGTTACGCA -ACGGAACCTGATTCCTGTCTTGCA -ACGGAACCTGATTCCTGTCGAACA -ACGGAACCTGATTCCTGTCAGTCA -ACGGAACCTGATTCCTGTGATCCA -ACGGAACCTGATTCCTGTACGACA -ACGGAACCTGATTCCTGTAGCTCA -ACGGAACCTGATTCCTGTTCACGT -ACGGAACCTGATTCCTGTCGTAGT -ACGGAACCTGATTCCTGTGTCAGT -ACGGAACCTGATTCCTGTGAAGGT -ACGGAACCTGATTCCTGTAACCGT -ACGGAACCTGATTCCTGTTTGTGC -ACGGAACCTGATTCCTGTCTAAGC -ACGGAACCTGATTCCTGTACTAGC -ACGGAACCTGATTCCTGTAGATGC -ACGGAACCTGATTCCTGTTGAAGG -ACGGAACCTGATTCCTGTCAATGG -ACGGAACCTGATTCCTGTATGAGG -ACGGAACCTGATTCCTGTAATGGG -ACGGAACCTGATTCCTGTTCCTGA -ACGGAACCTGATTCCTGTTAGCGA -ACGGAACCTGATTCCTGTCACAGA -ACGGAACCTGATTCCTGTGCAAGA -ACGGAACCTGATTCCTGTGGTTGA -ACGGAACCTGATTCCTGTTCCGAT -ACGGAACCTGATTCCTGTTGGCAT -ACGGAACCTGATTCCTGTCGAGAT -ACGGAACCTGATTCCTGTTACCAC -ACGGAACCTGATTCCTGTCAGAAC -ACGGAACCTGATTCCTGTGTCTAC -ACGGAACCTGATTCCTGTACGTAC -ACGGAACCTGATTCCTGTAGTGAC -ACGGAACCTGATTCCTGTCTGTAG -ACGGAACCTGATTCCTGTCCTAAG -ACGGAACCTGATTCCTGTGTTCAG -ACGGAACCTGATTCCTGTGCATAG -ACGGAACCTGATTCCTGTGACAAG -ACGGAACCTGATTCCTGTAAGCAG -ACGGAACCTGATTCCTGTCGTCAA -ACGGAACCTGATTCCTGTGCTGAA -ACGGAACCTGATTCCTGTAGTACG -ACGGAACCTGATTCCTGTATCCGA -ACGGAACCTGATTCCTGTATGGGA -ACGGAACCTGATTCCTGTGTGCAA -ACGGAACCTGATTCCTGTGAGGAA -ACGGAACCTGATTCCTGTCAGGTA -ACGGAACCTGATTCCTGTGACTCT -ACGGAACCTGATTCCTGTAGTCCT -ACGGAACCTGATTCCTGTTAAGCC -ACGGAACCTGATTCCTGTATAGCC -ACGGAACCTGATTCCTGTTAACCG -ACGGAACCTGATTCCTGTATGCCA -ACGGAACCTGATCCCATTGGAAAC -ACGGAACCTGATCCCATTAACACC -ACGGAACCTGATCCCATTATCGAG -ACGGAACCTGATCCCATTCTCCTT -ACGGAACCTGATCCCATTCCTGTT -ACGGAACCTGATCCCATTCGGTTT -ACGGAACCTGATCCCATTGTGGTT -ACGGAACCTGATCCCATTGCCTTT -ACGGAACCTGATCCCATTGGTCTT -ACGGAACCTGATCCCATTACGCTT -ACGGAACCTGATCCCATTAGCGTT -ACGGAACCTGATCCCATTTTCGTC -ACGGAACCTGATCCCATTTCTCTC -ACGGAACCTGATCCCATTTGGATC -ACGGAACCTGATCCCATTCACTTC -ACGGAACCTGATCCCATTGTACTC -ACGGAACCTGATCCCATTGATGTC -ACGGAACCTGATCCCATTACAGTC -ACGGAACCTGATCCCATTTTGCTG -ACGGAACCTGATCCCATTTCCATG -ACGGAACCTGATCCCATTTGTGTG -ACGGAACCTGATCCCATTCTAGTG -ACGGAACCTGATCCCATTCATCTG -ACGGAACCTGATCCCATTGAGTTG -ACGGAACCTGATCCCATTAGACTG -ACGGAACCTGATCCCATTTCGGTA -ACGGAACCTGATCCCATTTGCCTA -ACGGAACCTGATCCCATTCCACTA -ACGGAACCTGATCCCATTGGAGTA -ACGGAACCTGATCCCATTTCGTCT -ACGGAACCTGATCCCATTTGCACT -ACGGAACCTGATCCCATTCTGACT -ACGGAACCTGATCCCATTCAACCT -ACGGAACCTGATCCCATTGCTACT -ACGGAACCTGATCCCATTGGATCT -ACGGAACCTGATCCCATTAAGGCT -ACGGAACCTGATCCCATTTCAACC -ACGGAACCTGATCCCATTTGTTCC -ACGGAACCTGATCCCATTATTCCC -ACGGAACCTGATCCCATTTTCTCG -ACGGAACCTGATCCCATTTAGACG -ACGGAACCTGATCCCATTGTAACG -ACGGAACCTGATCCCATTACTTCG -ACGGAACCTGATCCCATTTACGCA -ACGGAACCTGATCCCATTCTTGCA -ACGGAACCTGATCCCATTCGAACA -ACGGAACCTGATCCCATTCAGTCA -ACGGAACCTGATCCCATTGATCCA -ACGGAACCTGATCCCATTACGACA -ACGGAACCTGATCCCATTAGCTCA -ACGGAACCTGATCCCATTTCACGT -ACGGAACCTGATCCCATTCGTAGT -ACGGAACCTGATCCCATTGTCAGT -ACGGAACCTGATCCCATTGAAGGT -ACGGAACCTGATCCCATTAACCGT -ACGGAACCTGATCCCATTTTGTGC -ACGGAACCTGATCCCATTCTAAGC -ACGGAACCTGATCCCATTACTAGC -ACGGAACCTGATCCCATTAGATGC -ACGGAACCTGATCCCATTTGAAGG -ACGGAACCTGATCCCATTCAATGG -ACGGAACCTGATCCCATTATGAGG -ACGGAACCTGATCCCATTAATGGG -ACGGAACCTGATCCCATTTCCTGA -ACGGAACCTGATCCCATTTAGCGA -ACGGAACCTGATCCCATTCACAGA -ACGGAACCTGATCCCATTGCAAGA -ACGGAACCTGATCCCATTGGTTGA -ACGGAACCTGATCCCATTTCCGAT -ACGGAACCTGATCCCATTTGGCAT -ACGGAACCTGATCCCATTCGAGAT -ACGGAACCTGATCCCATTTACCAC -ACGGAACCTGATCCCATTCAGAAC -ACGGAACCTGATCCCATTGTCTAC -ACGGAACCTGATCCCATTACGTAC -ACGGAACCTGATCCCATTAGTGAC -ACGGAACCTGATCCCATTCTGTAG -ACGGAACCTGATCCCATTCCTAAG -ACGGAACCTGATCCCATTGTTCAG -ACGGAACCTGATCCCATTGCATAG -ACGGAACCTGATCCCATTGACAAG -ACGGAACCTGATCCCATTAAGCAG -ACGGAACCTGATCCCATTCGTCAA -ACGGAACCTGATCCCATTGCTGAA -ACGGAACCTGATCCCATTAGTACG -ACGGAACCTGATCCCATTATCCGA -ACGGAACCTGATCCCATTATGGGA -ACGGAACCTGATCCCATTGTGCAA -ACGGAACCTGATCCCATTGAGGAA -ACGGAACCTGATCCCATTCAGGTA -ACGGAACCTGATCCCATTGACTCT -ACGGAACCTGATCCCATTAGTCCT -ACGGAACCTGATCCCATTTAAGCC -ACGGAACCTGATCCCATTATAGCC -ACGGAACCTGATCCCATTTAACCG -ACGGAACCTGATCCCATTATGCCA -ACGGAACCTGATTCGTTCGGAAAC -ACGGAACCTGATTCGTTCAACACC -ACGGAACCTGATTCGTTCATCGAG -ACGGAACCTGATTCGTTCCTCCTT -ACGGAACCTGATTCGTTCCCTGTT -ACGGAACCTGATTCGTTCCGGTTT -ACGGAACCTGATTCGTTCGTGGTT -ACGGAACCTGATTCGTTCGCCTTT -ACGGAACCTGATTCGTTCGGTCTT -ACGGAACCTGATTCGTTCACGCTT -ACGGAACCTGATTCGTTCAGCGTT -ACGGAACCTGATTCGTTCTTCGTC -ACGGAACCTGATTCGTTCTCTCTC -ACGGAACCTGATTCGTTCTGGATC -ACGGAACCTGATTCGTTCCACTTC -ACGGAACCTGATTCGTTCGTACTC -ACGGAACCTGATTCGTTCGATGTC -ACGGAACCTGATTCGTTCACAGTC -ACGGAACCTGATTCGTTCTTGCTG -ACGGAACCTGATTCGTTCTCCATG -ACGGAACCTGATTCGTTCTGTGTG -ACGGAACCTGATTCGTTCCTAGTG -ACGGAACCTGATTCGTTCCATCTG -ACGGAACCTGATTCGTTCGAGTTG -ACGGAACCTGATTCGTTCAGACTG -ACGGAACCTGATTCGTTCTCGGTA -ACGGAACCTGATTCGTTCTGCCTA -ACGGAACCTGATTCGTTCCCACTA -ACGGAACCTGATTCGTTCGGAGTA -ACGGAACCTGATTCGTTCTCGTCT -ACGGAACCTGATTCGTTCTGCACT -ACGGAACCTGATTCGTTCCTGACT -ACGGAACCTGATTCGTTCCAACCT -ACGGAACCTGATTCGTTCGCTACT -ACGGAACCTGATTCGTTCGGATCT -ACGGAACCTGATTCGTTCAAGGCT -ACGGAACCTGATTCGTTCTCAACC -ACGGAACCTGATTCGTTCTGTTCC -ACGGAACCTGATTCGTTCATTCCC -ACGGAACCTGATTCGTTCTTCTCG -ACGGAACCTGATTCGTTCTAGACG -ACGGAACCTGATTCGTTCGTAACG -ACGGAACCTGATTCGTTCACTTCG -ACGGAACCTGATTCGTTCTACGCA -ACGGAACCTGATTCGTTCCTTGCA -ACGGAACCTGATTCGTTCCGAACA -ACGGAACCTGATTCGTTCCAGTCA -ACGGAACCTGATTCGTTCGATCCA -ACGGAACCTGATTCGTTCACGACA -ACGGAACCTGATTCGTTCAGCTCA -ACGGAACCTGATTCGTTCTCACGT -ACGGAACCTGATTCGTTCCGTAGT -ACGGAACCTGATTCGTTCGTCAGT -ACGGAACCTGATTCGTTCGAAGGT -ACGGAACCTGATTCGTTCAACCGT -ACGGAACCTGATTCGTTCTTGTGC -ACGGAACCTGATTCGTTCCTAAGC -ACGGAACCTGATTCGTTCACTAGC -ACGGAACCTGATTCGTTCAGATGC -ACGGAACCTGATTCGTTCTGAAGG -ACGGAACCTGATTCGTTCCAATGG -ACGGAACCTGATTCGTTCATGAGG -ACGGAACCTGATTCGTTCAATGGG -ACGGAACCTGATTCGTTCTCCTGA -ACGGAACCTGATTCGTTCTAGCGA -ACGGAACCTGATTCGTTCCACAGA -ACGGAACCTGATTCGTTCGCAAGA -ACGGAACCTGATTCGTTCGGTTGA -ACGGAACCTGATTCGTTCTCCGAT -ACGGAACCTGATTCGTTCTGGCAT -ACGGAACCTGATTCGTTCCGAGAT -ACGGAACCTGATTCGTTCTACCAC -ACGGAACCTGATTCGTTCCAGAAC -ACGGAACCTGATTCGTTCGTCTAC -ACGGAACCTGATTCGTTCACGTAC -ACGGAACCTGATTCGTTCAGTGAC -ACGGAACCTGATTCGTTCCTGTAG -ACGGAACCTGATTCGTTCCCTAAG -ACGGAACCTGATTCGTTCGTTCAG -ACGGAACCTGATTCGTTCGCATAG -ACGGAACCTGATTCGTTCGACAAG -ACGGAACCTGATTCGTTCAAGCAG -ACGGAACCTGATTCGTTCCGTCAA -ACGGAACCTGATTCGTTCGCTGAA -ACGGAACCTGATTCGTTCAGTACG -ACGGAACCTGATTCGTTCATCCGA -ACGGAACCTGATTCGTTCATGGGA -ACGGAACCTGATTCGTTCGTGCAA -ACGGAACCTGATTCGTTCGAGGAA -ACGGAACCTGATTCGTTCCAGGTA -ACGGAACCTGATTCGTTCGACTCT -ACGGAACCTGATTCGTTCAGTCCT -ACGGAACCTGATTCGTTCTAAGCC -ACGGAACCTGATTCGTTCATAGCC -ACGGAACCTGATTCGTTCTAACCG -ACGGAACCTGATTCGTTCATGCCA -ACGGAACCTGATACGTAGGGAAAC -ACGGAACCTGATACGTAGAACACC -ACGGAACCTGATACGTAGATCGAG -ACGGAACCTGATACGTAGCTCCTT -ACGGAACCTGATACGTAGCCTGTT -ACGGAACCTGATACGTAGCGGTTT -ACGGAACCTGATACGTAGGTGGTT -ACGGAACCTGATACGTAGGCCTTT -ACGGAACCTGATACGTAGGGTCTT -ACGGAACCTGATACGTAGACGCTT -ACGGAACCTGATACGTAGAGCGTT -ACGGAACCTGATACGTAGTTCGTC -ACGGAACCTGATACGTAGTCTCTC -ACGGAACCTGATACGTAGTGGATC -ACGGAACCTGATACGTAGCACTTC -ACGGAACCTGATACGTAGGTACTC -ACGGAACCTGATACGTAGGATGTC -ACGGAACCTGATACGTAGACAGTC -ACGGAACCTGATACGTAGTTGCTG -ACGGAACCTGATACGTAGTCCATG -ACGGAACCTGATACGTAGTGTGTG -ACGGAACCTGATACGTAGCTAGTG -ACGGAACCTGATACGTAGCATCTG -ACGGAACCTGATACGTAGGAGTTG -ACGGAACCTGATACGTAGAGACTG -ACGGAACCTGATACGTAGTCGGTA -ACGGAACCTGATACGTAGTGCCTA -ACGGAACCTGATACGTAGCCACTA -ACGGAACCTGATACGTAGGGAGTA -ACGGAACCTGATACGTAGTCGTCT -ACGGAACCTGATACGTAGTGCACT -ACGGAACCTGATACGTAGCTGACT -ACGGAACCTGATACGTAGCAACCT -ACGGAACCTGATACGTAGGCTACT -ACGGAACCTGATACGTAGGGATCT -ACGGAACCTGATACGTAGAAGGCT -ACGGAACCTGATACGTAGTCAACC -ACGGAACCTGATACGTAGTGTTCC -ACGGAACCTGATACGTAGATTCCC -ACGGAACCTGATACGTAGTTCTCG -ACGGAACCTGATACGTAGTAGACG -ACGGAACCTGATACGTAGGTAACG -ACGGAACCTGATACGTAGACTTCG -ACGGAACCTGATACGTAGTACGCA -ACGGAACCTGATACGTAGCTTGCA -ACGGAACCTGATACGTAGCGAACA -ACGGAACCTGATACGTAGCAGTCA -ACGGAACCTGATACGTAGGATCCA -ACGGAACCTGATACGTAGACGACA -ACGGAACCTGATACGTAGAGCTCA -ACGGAACCTGATACGTAGTCACGT -ACGGAACCTGATACGTAGCGTAGT -ACGGAACCTGATACGTAGGTCAGT -ACGGAACCTGATACGTAGGAAGGT -ACGGAACCTGATACGTAGAACCGT -ACGGAACCTGATACGTAGTTGTGC -ACGGAACCTGATACGTAGCTAAGC -ACGGAACCTGATACGTAGACTAGC -ACGGAACCTGATACGTAGAGATGC -ACGGAACCTGATACGTAGTGAAGG -ACGGAACCTGATACGTAGCAATGG -ACGGAACCTGATACGTAGATGAGG -ACGGAACCTGATACGTAGAATGGG -ACGGAACCTGATACGTAGTCCTGA -ACGGAACCTGATACGTAGTAGCGA -ACGGAACCTGATACGTAGCACAGA -ACGGAACCTGATACGTAGGCAAGA -ACGGAACCTGATACGTAGGGTTGA -ACGGAACCTGATACGTAGTCCGAT -ACGGAACCTGATACGTAGTGGCAT -ACGGAACCTGATACGTAGCGAGAT -ACGGAACCTGATACGTAGTACCAC -ACGGAACCTGATACGTAGCAGAAC -ACGGAACCTGATACGTAGGTCTAC -ACGGAACCTGATACGTAGACGTAC -ACGGAACCTGATACGTAGAGTGAC -ACGGAACCTGATACGTAGCTGTAG -ACGGAACCTGATACGTAGCCTAAG -ACGGAACCTGATACGTAGGTTCAG -ACGGAACCTGATACGTAGGCATAG -ACGGAACCTGATACGTAGGACAAG -ACGGAACCTGATACGTAGAAGCAG -ACGGAACCTGATACGTAGCGTCAA -ACGGAACCTGATACGTAGGCTGAA -ACGGAACCTGATACGTAGAGTACG -ACGGAACCTGATACGTAGATCCGA -ACGGAACCTGATACGTAGATGGGA -ACGGAACCTGATACGTAGGTGCAA -ACGGAACCTGATACGTAGGAGGAA -ACGGAACCTGATACGTAGCAGGTA -ACGGAACCTGATACGTAGGACTCT -ACGGAACCTGATACGTAGAGTCCT -ACGGAACCTGATACGTAGTAAGCC -ACGGAACCTGATACGTAGATAGCC -ACGGAACCTGATACGTAGTAACCG -ACGGAACCTGATACGTAGATGCCA -ACGGAACCTGATACGGTAGGAAAC -ACGGAACCTGATACGGTAAACACC -ACGGAACCTGATACGGTAATCGAG -ACGGAACCTGATACGGTACTCCTT -ACGGAACCTGATACGGTACCTGTT -ACGGAACCTGATACGGTACGGTTT -ACGGAACCTGATACGGTAGTGGTT -ACGGAACCTGATACGGTAGCCTTT -ACGGAACCTGATACGGTAGGTCTT -ACGGAACCTGATACGGTAACGCTT -ACGGAACCTGATACGGTAAGCGTT -ACGGAACCTGATACGGTATTCGTC -ACGGAACCTGATACGGTATCTCTC -ACGGAACCTGATACGGTATGGATC -ACGGAACCTGATACGGTACACTTC -ACGGAACCTGATACGGTAGTACTC -ACGGAACCTGATACGGTAGATGTC -ACGGAACCTGATACGGTAACAGTC -ACGGAACCTGATACGGTATTGCTG -ACGGAACCTGATACGGTATCCATG -ACGGAACCTGATACGGTATGTGTG -ACGGAACCTGATACGGTACTAGTG -ACGGAACCTGATACGGTACATCTG -ACGGAACCTGATACGGTAGAGTTG -ACGGAACCTGATACGGTAAGACTG -ACGGAACCTGATACGGTATCGGTA -ACGGAACCTGATACGGTATGCCTA -ACGGAACCTGATACGGTACCACTA -ACGGAACCTGATACGGTAGGAGTA -ACGGAACCTGATACGGTATCGTCT -ACGGAACCTGATACGGTATGCACT -ACGGAACCTGATACGGTACTGACT -ACGGAACCTGATACGGTACAACCT -ACGGAACCTGATACGGTAGCTACT -ACGGAACCTGATACGGTAGGATCT -ACGGAACCTGATACGGTAAAGGCT -ACGGAACCTGATACGGTATCAACC -ACGGAACCTGATACGGTATGTTCC -ACGGAACCTGATACGGTAATTCCC -ACGGAACCTGATACGGTATTCTCG -ACGGAACCTGATACGGTATAGACG -ACGGAACCTGATACGGTAGTAACG -ACGGAACCTGATACGGTAACTTCG -ACGGAACCTGATACGGTATACGCA -ACGGAACCTGATACGGTACTTGCA -ACGGAACCTGATACGGTACGAACA -ACGGAACCTGATACGGTACAGTCA -ACGGAACCTGATACGGTAGATCCA -ACGGAACCTGATACGGTAACGACA -ACGGAACCTGATACGGTAAGCTCA -ACGGAACCTGATACGGTATCACGT -ACGGAACCTGATACGGTACGTAGT -ACGGAACCTGATACGGTAGTCAGT -ACGGAACCTGATACGGTAGAAGGT -ACGGAACCTGATACGGTAAACCGT -ACGGAACCTGATACGGTATTGTGC -ACGGAACCTGATACGGTACTAAGC -ACGGAACCTGATACGGTAACTAGC -ACGGAACCTGATACGGTAAGATGC -ACGGAACCTGATACGGTATGAAGG -ACGGAACCTGATACGGTACAATGG -ACGGAACCTGATACGGTAATGAGG -ACGGAACCTGATACGGTAAATGGG -ACGGAACCTGATACGGTATCCTGA -ACGGAACCTGATACGGTATAGCGA -ACGGAACCTGATACGGTACACAGA -ACGGAACCTGATACGGTAGCAAGA -ACGGAACCTGATACGGTAGGTTGA -ACGGAACCTGATACGGTATCCGAT -ACGGAACCTGATACGGTATGGCAT -ACGGAACCTGATACGGTACGAGAT -ACGGAACCTGATACGGTATACCAC -ACGGAACCTGATACGGTACAGAAC -ACGGAACCTGATACGGTAGTCTAC -ACGGAACCTGATACGGTAACGTAC -ACGGAACCTGATACGGTAAGTGAC -ACGGAACCTGATACGGTACTGTAG -ACGGAACCTGATACGGTACCTAAG -ACGGAACCTGATACGGTAGTTCAG -ACGGAACCTGATACGGTAGCATAG -ACGGAACCTGATACGGTAGACAAG -ACGGAACCTGATACGGTAAAGCAG -ACGGAACCTGATACGGTACGTCAA -ACGGAACCTGATACGGTAGCTGAA -ACGGAACCTGATACGGTAAGTACG -ACGGAACCTGATACGGTAATCCGA -ACGGAACCTGATACGGTAATGGGA -ACGGAACCTGATACGGTAGTGCAA -ACGGAACCTGATACGGTAGAGGAA -ACGGAACCTGATACGGTACAGGTA -ACGGAACCTGATACGGTAGACTCT -ACGGAACCTGATACGGTAAGTCCT -ACGGAACCTGATACGGTATAAGCC -ACGGAACCTGATACGGTAATAGCC -ACGGAACCTGATACGGTATAACCG -ACGGAACCTGATACGGTAATGCCA -ACGGAACCTGATTCGACTGGAAAC -ACGGAACCTGATTCGACTAACACC -ACGGAACCTGATTCGACTATCGAG -ACGGAACCTGATTCGACTCTCCTT -ACGGAACCTGATTCGACTCCTGTT -ACGGAACCTGATTCGACTCGGTTT -ACGGAACCTGATTCGACTGTGGTT -ACGGAACCTGATTCGACTGCCTTT -ACGGAACCTGATTCGACTGGTCTT -ACGGAACCTGATTCGACTACGCTT -ACGGAACCTGATTCGACTAGCGTT -ACGGAACCTGATTCGACTTTCGTC -ACGGAACCTGATTCGACTTCTCTC -ACGGAACCTGATTCGACTTGGATC -ACGGAACCTGATTCGACTCACTTC -ACGGAACCTGATTCGACTGTACTC -ACGGAACCTGATTCGACTGATGTC -ACGGAACCTGATTCGACTACAGTC -ACGGAACCTGATTCGACTTTGCTG -ACGGAACCTGATTCGACTTCCATG -ACGGAACCTGATTCGACTTGTGTG -ACGGAACCTGATTCGACTCTAGTG -ACGGAACCTGATTCGACTCATCTG -ACGGAACCTGATTCGACTGAGTTG -ACGGAACCTGATTCGACTAGACTG -ACGGAACCTGATTCGACTTCGGTA -ACGGAACCTGATTCGACTTGCCTA -ACGGAACCTGATTCGACTCCACTA -ACGGAACCTGATTCGACTGGAGTA -ACGGAACCTGATTCGACTTCGTCT -ACGGAACCTGATTCGACTTGCACT -ACGGAACCTGATTCGACTCTGACT -ACGGAACCTGATTCGACTCAACCT -ACGGAACCTGATTCGACTGCTACT -ACGGAACCTGATTCGACTGGATCT -ACGGAACCTGATTCGACTAAGGCT -ACGGAACCTGATTCGACTTCAACC -ACGGAACCTGATTCGACTTGTTCC -ACGGAACCTGATTCGACTATTCCC -ACGGAACCTGATTCGACTTTCTCG -ACGGAACCTGATTCGACTTAGACG -ACGGAACCTGATTCGACTGTAACG -ACGGAACCTGATTCGACTACTTCG -ACGGAACCTGATTCGACTTACGCA -ACGGAACCTGATTCGACTCTTGCA -ACGGAACCTGATTCGACTCGAACA -ACGGAACCTGATTCGACTCAGTCA -ACGGAACCTGATTCGACTGATCCA -ACGGAACCTGATTCGACTACGACA -ACGGAACCTGATTCGACTAGCTCA -ACGGAACCTGATTCGACTTCACGT -ACGGAACCTGATTCGACTCGTAGT -ACGGAACCTGATTCGACTGTCAGT -ACGGAACCTGATTCGACTGAAGGT -ACGGAACCTGATTCGACTAACCGT -ACGGAACCTGATTCGACTTTGTGC -ACGGAACCTGATTCGACTCTAAGC -ACGGAACCTGATTCGACTACTAGC -ACGGAACCTGATTCGACTAGATGC -ACGGAACCTGATTCGACTTGAAGG -ACGGAACCTGATTCGACTCAATGG -ACGGAACCTGATTCGACTATGAGG -ACGGAACCTGATTCGACTAATGGG -ACGGAACCTGATTCGACTTCCTGA -ACGGAACCTGATTCGACTTAGCGA -ACGGAACCTGATTCGACTCACAGA -ACGGAACCTGATTCGACTGCAAGA -ACGGAACCTGATTCGACTGGTTGA -ACGGAACCTGATTCGACTTCCGAT -ACGGAACCTGATTCGACTTGGCAT -ACGGAACCTGATTCGACTCGAGAT -ACGGAACCTGATTCGACTTACCAC -ACGGAACCTGATTCGACTCAGAAC -ACGGAACCTGATTCGACTGTCTAC -ACGGAACCTGATTCGACTACGTAC -ACGGAACCTGATTCGACTAGTGAC -ACGGAACCTGATTCGACTCTGTAG -ACGGAACCTGATTCGACTCCTAAG -ACGGAACCTGATTCGACTGTTCAG -ACGGAACCTGATTCGACTGCATAG -ACGGAACCTGATTCGACTGACAAG -ACGGAACCTGATTCGACTAAGCAG -ACGGAACCTGATTCGACTCGTCAA -ACGGAACCTGATTCGACTGCTGAA -ACGGAACCTGATTCGACTAGTACG -ACGGAACCTGATTCGACTATCCGA -ACGGAACCTGATTCGACTATGGGA -ACGGAACCTGATTCGACTGTGCAA -ACGGAACCTGATTCGACTGAGGAA -ACGGAACCTGATTCGACTCAGGTA -ACGGAACCTGATTCGACTGACTCT -ACGGAACCTGATTCGACTAGTCCT -ACGGAACCTGATTCGACTTAAGCC -ACGGAACCTGATTCGACTATAGCC -ACGGAACCTGATTCGACTTAACCG -ACGGAACCTGATTCGACTATGCCA -ACGGAACCTGATGCATACGGAAAC -ACGGAACCTGATGCATACAACACC -ACGGAACCTGATGCATACATCGAG -ACGGAACCTGATGCATACCTCCTT -ACGGAACCTGATGCATACCCTGTT -ACGGAACCTGATGCATACCGGTTT -ACGGAACCTGATGCATACGTGGTT -ACGGAACCTGATGCATACGCCTTT -ACGGAACCTGATGCATACGGTCTT -ACGGAACCTGATGCATACACGCTT -ACGGAACCTGATGCATACAGCGTT -ACGGAACCTGATGCATACTTCGTC -ACGGAACCTGATGCATACTCTCTC -ACGGAACCTGATGCATACTGGATC -ACGGAACCTGATGCATACCACTTC -ACGGAACCTGATGCATACGTACTC -ACGGAACCTGATGCATACGATGTC -ACGGAACCTGATGCATACACAGTC -ACGGAACCTGATGCATACTTGCTG -ACGGAACCTGATGCATACTCCATG -ACGGAACCTGATGCATACTGTGTG -ACGGAACCTGATGCATACCTAGTG -ACGGAACCTGATGCATACCATCTG -ACGGAACCTGATGCATACGAGTTG -ACGGAACCTGATGCATACAGACTG -ACGGAACCTGATGCATACTCGGTA -ACGGAACCTGATGCATACTGCCTA -ACGGAACCTGATGCATACCCACTA -ACGGAACCTGATGCATACGGAGTA -ACGGAACCTGATGCATACTCGTCT -ACGGAACCTGATGCATACTGCACT -ACGGAACCTGATGCATACCTGACT -ACGGAACCTGATGCATACCAACCT -ACGGAACCTGATGCATACGCTACT -ACGGAACCTGATGCATACGGATCT -ACGGAACCTGATGCATACAAGGCT -ACGGAACCTGATGCATACTCAACC -ACGGAACCTGATGCATACTGTTCC -ACGGAACCTGATGCATACATTCCC -ACGGAACCTGATGCATACTTCTCG -ACGGAACCTGATGCATACTAGACG -ACGGAACCTGATGCATACGTAACG -ACGGAACCTGATGCATACACTTCG -ACGGAACCTGATGCATACTACGCA -ACGGAACCTGATGCATACCTTGCA -ACGGAACCTGATGCATACCGAACA -ACGGAACCTGATGCATACCAGTCA -ACGGAACCTGATGCATACGATCCA -ACGGAACCTGATGCATACACGACA -ACGGAACCTGATGCATACAGCTCA -ACGGAACCTGATGCATACTCACGT -ACGGAACCTGATGCATACCGTAGT -ACGGAACCTGATGCATACGTCAGT -ACGGAACCTGATGCATACGAAGGT -ACGGAACCTGATGCATACAACCGT -ACGGAACCTGATGCATACTTGTGC -ACGGAACCTGATGCATACCTAAGC -ACGGAACCTGATGCATACACTAGC -ACGGAACCTGATGCATACAGATGC -ACGGAACCTGATGCATACTGAAGG -ACGGAACCTGATGCATACCAATGG -ACGGAACCTGATGCATACATGAGG -ACGGAACCTGATGCATACAATGGG -ACGGAACCTGATGCATACTCCTGA -ACGGAACCTGATGCATACTAGCGA -ACGGAACCTGATGCATACCACAGA -ACGGAACCTGATGCATACGCAAGA -ACGGAACCTGATGCATACGGTTGA -ACGGAACCTGATGCATACTCCGAT -ACGGAACCTGATGCATACTGGCAT -ACGGAACCTGATGCATACCGAGAT -ACGGAACCTGATGCATACTACCAC -ACGGAACCTGATGCATACCAGAAC -ACGGAACCTGATGCATACGTCTAC -ACGGAACCTGATGCATACACGTAC -ACGGAACCTGATGCATACAGTGAC -ACGGAACCTGATGCATACCTGTAG -ACGGAACCTGATGCATACCCTAAG -ACGGAACCTGATGCATACGTTCAG -ACGGAACCTGATGCATACGCATAG -ACGGAACCTGATGCATACGACAAG -ACGGAACCTGATGCATACAAGCAG -ACGGAACCTGATGCATACCGTCAA -ACGGAACCTGATGCATACGCTGAA -ACGGAACCTGATGCATACAGTACG -ACGGAACCTGATGCATACATCCGA -ACGGAACCTGATGCATACATGGGA -ACGGAACCTGATGCATACGTGCAA -ACGGAACCTGATGCATACGAGGAA -ACGGAACCTGATGCATACCAGGTA -ACGGAACCTGATGCATACGACTCT -ACGGAACCTGATGCATACAGTCCT -ACGGAACCTGATGCATACTAAGCC -ACGGAACCTGATGCATACATAGCC -ACGGAACCTGATGCATACTAACCG -ACGGAACCTGATGCATACATGCCA -ACGGAACCTGATGCACTTGGAAAC -ACGGAACCTGATGCACTTAACACC -ACGGAACCTGATGCACTTATCGAG -ACGGAACCTGATGCACTTCTCCTT -ACGGAACCTGATGCACTTCCTGTT -ACGGAACCTGATGCACTTCGGTTT -ACGGAACCTGATGCACTTGTGGTT -ACGGAACCTGATGCACTTGCCTTT -ACGGAACCTGATGCACTTGGTCTT -ACGGAACCTGATGCACTTACGCTT -ACGGAACCTGATGCACTTAGCGTT -ACGGAACCTGATGCACTTTTCGTC -ACGGAACCTGATGCACTTTCTCTC -ACGGAACCTGATGCACTTTGGATC -ACGGAACCTGATGCACTTCACTTC -ACGGAACCTGATGCACTTGTACTC -ACGGAACCTGATGCACTTGATGTC -ACGGAACCTGATGCACTTACAGTC -ACGGAACCTGATGCACTTTTGCTG -ACGGAACCTGATGCACTTTCCATG -ACGGAACCTGATGCACTTTGTGTG -ACGGAACCTGATGCACTTCTAGTG -ACGGAACCTGATGCACTTCATCTG -ACGGAACCTGATGCACTTGAGTTG -ACGGAACCTGATGCACTTAGACTG -ACGGAACCTGATGCACTTTCGGTA -ACGGAACCTGATGCACTTTGCCTA -ACGGAACCTGATGCACTTCCACTA -ACGGAACCTGATGCACTTGGAGTA -ACGGAACCTGATGCACTTTCGTCT -ACGGAACCTGATGCACTTTGCACT -ACGGAACCTGATGCACTTCTGACT -ACGGAACCTGATGCACTTCAACCT -ACGGAACCTGATGCACTTGCTACT -ACGGAACCTGATGCACTTGGATCT -ACGGAACCTGATGCACTTAAGGCT -ACGGAACCTGATGCACTTTCAACC -ACGGAACCTGATGCACTTTGTTCC -ACGGAACCTGATGCACTTATTCCC -ACGGAACCTGATGCACTTTTCTCG -ACGGAACCTGATGCACTTTAGACG -ACGGAACCTGATGCACTTGTAACG -ACGGAACCTGATGCACTTACTTCG -ACGGAACCTGATGCACTTTACGCA -ACGGAACCTGATGCACTTCTTGCA -ACGGAACCTGATGCACTTCGAACA -ACGGAACCTGATGCACTTCAGTCA -ACGGAACCTGATGCACTTGATCCA -ACGGAACCTGATGCACTTACGACA -ACGGAACCTGATGCACTTAGCTCA -ACGGAACCTGATGCACTTTCACGT -ACGGAACCTGATGCACTTCGTAGT -ACGGAACCTGATGCACTTGTCAGT -ACGGAACCTGATGCACTTGAAGGT -ACGGAACCTGATGCACTTAACCGT -ACGGAACCTGATGCACTTTTGTGC -ACGGAACCTGATGCACTTCTAAGC -ACGGAACCTGATGCACTTACTAGC -ACGGAACCTGATGCACTTAGATGC -ACGGAACCTGATGCACTTTGAAGG -ACGGAACCTGATGCACTTCAATGG -ACGGAACCTGATGCACTTATGAGG -ACGGAACCTGATGCACTTAATGGG -ACGGAACCTGATGCACTTTCCTGA -ACGGAACCTGATGCACTTTAGCGA -ACGGAACCTGATGCACTTCACAGA -ACGGAACCTGATGCACTTGCAAGA -ACGGAACCTGATGCACTTGGTTGA -ACGGAACCTGATGCACTTTCCGAT -ACGGAACCTGATGCACTTTGGCAT -ACGGAACCTGATGCACTTCGAGAT -ACGGAACCTGATGCACTTTACCAC -ACGGAACCTGATGCACTTCAGAAC -ACGGAACCTGATGCACTTGTCTAC -ACGGAACCTGATGCACTTACGTAC -ACGGAACCTGATGCACTTAGTGAC -ACGGAACCTGATGCACTTCTGTAG -ACGGAACCTGATGCACTTCCTAAG -ACGGAACCTGATGCACTTGTTCAG -ACGGAACCTGATGCACTTGCATAG -ACGGAACCTGATGCACTTGACAAG -ACGGAACCTGATGCACTTAAGCAG -ACGGAACCTGATGCACTTCGTCAA -ACGGAACCTGATGCACTTGCTGAA -ACGGAACCTGATGCACTTAGTACG -ACGGAACCTGATGCACTTATCCGA -ACGGAACCTGATGCACTTATGGGA -ACGGAACCTGATGCACTTGTGCAA -ACGGAACCTGATGCACTTGAGGAA -ACGGAACCTGATGCACTTCAGGTA -ACGGAACCTGATGCACTTGACTCT -ACGGAACCTGATGCACTTAGTCCT -ACGGAACCTGATGCACTTTAAGCC -ACGGAACCTGATGCACTTATAGCC -ACGGAACCTGATGCACTTTAACCG -ACGGAACCTGATGCACTTATGCCA -ACGGAACCTGATACACGAGGAAAC -ACGGAACCTGATACACGAAACACC -ACGGAACCTGATACACGAATCGAG -ACGGAACCTGATACACGACTCCTT -ACGGAACCTGATACACGACCTGTT -ACGGAACCTGATACACGACGGTTT -ACGGAACCTGATACACGAGTGGTT -ACGGAACCTGATACACGAGCCTTT -ACGGAACCTGATACACGAGGTCTT -ACGGAACCTGATACACGAACGCTT -ACGGAACCTGATACACGAAGCGTT -ACGGAACCTGATACACGATTCGTC -ACGGAACCTGATACACGATCTCTC -ACGGAACCTGATACACGATGGATC -ACGGAACCTGATACACGACACTTC -ACGGAACCTGATACACGAGTACTC -ACGGAACCTGATACACGAGATGTC -ACGGAACCTGATACACGAACAGTC -ACGGAACCTGATACACGATTGCTG -ACGGAACCTGATACACGATCCATG -ACGGAACCTGATACACGATGTGTG -ACGGAACCTGATACACGACTAGTG -ACGGAACCTGATACACGACATCTG -ACGGAACCTGATACACGAGAGTTG -ACGGAACCTGATACACGAAGACTG -ACGGAACCTGATACACGATCGGTA -ACGGAACCTGATACACGATGCCTA -ACGGAACCTGATACACGACCACTA -ACGGAACCTGATACACGAGGAGTA -ACGGAACCTGATACACGATCGTCT -ACGGAACCTGATACACGATGCACT -ACGGAACCTGATACACGACTGACT -ACGGAACCTGATACACGACAACCT -ACGGAACCTGATACACGAGCTACT -ACGGAACCTGATACACGAGGATCT -ACGGAACCTGATACACGAAAGGCT -ACGGAACCTGATACACGATCAACC -ACGGAACCTGATACACGATGTTCC -ACGGAACCTGATACACGAATTCCC -ACGGAACCTGATACACGATTCTCG -ACGGAACCTGATACACGATAGACG -ACGGAACCTGATACACGAGTAACG -ACGGAACCTGATACACGAACTTCG -ACGGAACCTGATACACGATACGCA -ACGGAACCTGATACACGACTTGCA -ACGGAACCTGATACACGACGAACA -ACGGAACCTGATACACGACAGTCA -ACGGAACCTGATACACGAGATCCA -ACGGAACCTGATACACGAACGACA -ACGGAACCTGATACACGAAGCTCA -ACGGAACCTGATACACGATCACGT -ACGGAACCTGATACACGACGTAGT -ACGGAACCTGATACACGAGTCAGT -ACGGAACCTGATACACGAGAAGGT -ACGGAACCTGATACACGAAACCGT -ACGGAACCTGATACACGATTGTGC -ACGGAACCTGATACACGACTAAGC -ACGGAACCTGATACACGAACTAGC -ACGGAACCTGATACACGAAGATGC -ACGGAACCTGATACACGATGAAGG -ACGGAACCTGATACACGACAATGG -ACGGAACCTGATACACGAATGAGG -ACGGAACCTGATACACGAAATGGG -ACGGAACCTGATACACGATCCTGA -ACGGAACCTGATACACGATAGCGA -ACGGAACCTGATACACGACACAGA -ACGGAACCTGATACACGAGCAAGA -ACGGAACCTGATACACGAGGTTGA -ACGGAACCTGATACACGATCCGAT -ACGGAACCTGATACACGATGGCAT -ACGGAACCTGATACACGACGAGAT -ACGGAACCTGATACACGATACCAC -ACGGAACCTGATACACGACAGAAC -ACGGAACCTGATACACGAGTCTAC -ACGGAACCTGATACACGAACGTAC -ACGGAACCTGATACACGAAGTGAC -ACGGAACCTGATACACGACTGTAG -ACGGAACCTGATACACGACCTAAG -ACGGAACCTGATACACGAGTTCAG -ACGGAACCTGATACACGAGCATAG -ACGGAACCTGATACACGAGACAAG -ACGGAACCTGATACACGAAAGCAG -ACGGAACCTGATACACGACGTCAA -ACGGAACCTGATACACGAGCTGAA -ACGGAACCTGATACACGAAGTACG -ACGGAACCTGATACACGAATCCGA -ACGGAACCTGATACACGAATGGGA -ACGGAACCTGATACACGAGTGCAA -ACGGAACCTGATACACGAGAGGAA -ACGGAACCTGATACACGACAGGTA -ACGGAACCTGATACACGAGACTCT -ACGGAACCTGATACACGAAGTCCT -ACGGAACCTGATACACGATAAGCC -ACGGAACCTGATACACGAATAGCC -ACGGAACCTGATACACGATAACCG -ACGGAACCTGATACACGAATGCCA -ACGGAACCTGATTCACAGGGAAAC -ACGGAACCTGATTCACAGAACACC -ACGGAACCTGATTCACAGATCGAG -ACGGAACCTGATTCACAGCTCCTT -ACGGAACCTGATTCACAGCCTGTT -ACGGAACCTGATTCACAGCGGTTT -ACGGAACCTGATTCACAGGTGGTT -ACGGAACCTGATTCACAGGCCTTT -ACGGAACCTGATTCACAGGGTCTT -ACGGAACCTGATTCACAGACGCTT -ACGGAACCTGATTCACAGAGCGTT -ACGGAACCTGATTCACAGTTCGTC -ACGGAACCTGATTCACAGTCTCTC -ACGGAACCTGATTCACAGTGGATC -ACGGAACCTGATTCACAGCACTTC -ACGGAACCTGATTCACAGGTACTC -ACGGAACCTGATTCACAGGATGTC -ACGGAACCTGATTCACAGACAGTC -ACGGAACCTGATTCACAGTTGCTG -ACGGAACCTGATTCACAGTCCATG -ACGGAACCTGATTCACAGTGTGTG -ACGGAACCTGATTCACAGCTAGTG -ACGGAACCTGATTCACAGCATCTG -ACGGAACCTGATTCACAGGAGTTG -ACGGAACCTGATTCACAGAGACTG -ACGGAACCTGATTCACAGTCGGTA -ACGGAACCTGATTCACAGTGCCTA -ACGGAACCTGATTCACAGCCACTA -ACGGAACCTGATTCACAGGGAGTA -ACGGAACCTGATTCACAGTCGTCT -ACGGAACCTGATTCACAGTGCACT -ACGGAACCTGATTCACAGCTGACT -ACGGAACCTGATTCACAGCAACCT -ACGGAACCTGATTCACAGGCTACT -ACGGAACCTGATTCACAGGGATCT -ACGGAACCTGATTCACAGAAGGCT -ACGGAACCTGATTCACAGTCAACC -ACGGAACCTGATTCACAGTGTTCC -ACGGAACCTGATTCACAGATTCCC -ACGGAACCTGATTCACAGTTCTCG -ACGGAACCTGATTCACAGTAGACG -ACGGAACCTGATTCACAGGTAACG -ACGGAACCTGATTCACAGACTTCG -ACGGAACCTGATTCACAGTACGCA -ACGGAACCTGATTCACAGCTTGCA -ACGGAACCTGATTCACAGCGAACA -ACGGAACCTGATTCACAGCAGTCA -ACGGAACCTGATTCACAGGATCCA -ACGGAACCTGATTCACAGACGACA -ACGGAACCTGATTCACAGAGCTCA -ACGGAACCTGATTCACAGTCACGT -ACGGAACCTGATTCACAGCGTAGT -ACGGAACCTGATTCACAGGTCAGT -ACGGAACCTGATTCACAGGAAGGT -ACGGAACCTGATTCACAGAACCGT -ACGGAACCTGATTCACAGTTGTGC -ACGGAACCTGATTCACAGCTAAGC -ACGGAACCTGATTCACAGACTAGC -ACGGAACCTGATTCACAGAGATGC -ACGGAACCTGATTCACAGTGAAGG -ACGGAACCTGATTCACAGCAATGG -ACGGAACCTGATTCACAGATGAGG -ACGGAACCTGATTCACAGAATGGG -ACGGAACCTGATTCACAGTCCTGA -ACGGAACCTGATTCACAGTAGCGA -ACGGAACCTGATTCACAGCACAGA -ACGGAACCTGATTCACAGGCAAGA -ACGGAACCTGATTCACAGGGTTGA -ACGGAACCTGATTCACAGTCCGAT -ACGGAACCTGATTCACAGTGGCAT -ACGGAACCTGATTCACAGCGAGAT -ACGGAACCTGATTCACAGTACCAC -ACGGAACCTGATTCACAGCAGAAC -ACGGAACCTGATTCACAGGTCTAC -ACGGAACCTGATTCACAGACGTAC -ACGGAACCTGATTCACAGAGTGAC -ACGGAACCTGATTCACAGCTGTAG -ACGGAACCTGATTCACAGCCTAAG -ACGGAACCTGATTCACAGGTTCAG -ACGGAACCTGATTCACAGGCATAG -ACGGAACCTGATTCACAGGACAAG -ACGGAACCTGATTCACAGAAGCAG -ACGGAACCTGATTCACAGCGTCAA -ACGGAACCTGATTCACAGGCTGAA -ACGGAACCTGATTCACAGAGTACG -ACGGAACCTGATTCACAGATCCGA -ACGGAACCTGATTCACAGATGGGA -ACGGAACCTGATTCACAGGTGCAA -ACGGAACCTGATTCACAGGAGGAA -ACGGAACCTGATTCACAGCAGGTA -ACGGAACCTGATTCACAGGACTCT -ACGGAACCTGATTCACAGAGTCCT -ACGGAACCTGATTCACAGTAAGCC -ACGGAACCTGATTCACAGATAGCC -ACGGAACCTGATTCACAGTAACCG -ACGGAACCTGATTCACAGATGCCA -ACGGAACCTGATCCAGATGGAAAC -ACGGAACCTGATCCAGATAACACC -ACGGAACCTGATCCAGATATCGAG -ACGGAACCTGATCCAGATCTCCTT -ACGGAACCTGATCCAGATCCTGTT -ACGGAACCTGATCCAGATCGGTTT -ACGGAACCTGATCCAGATGTGGTT -ACGGAACCTGATCCAGATGCCTTT -ACGGAACCTGATCCAGATGGTCTT -ACGGAACCTGATCCAGATACGCTT -ACGGAACCTGATCCAGATAGCGTT -ACGGAACCTGATCCAGATTTCGTC -ACGGAACCTGATCCAGATTCTCTC -ACGGAACCTGATCCAGATTGGATC -ACGGAACCTGATCCAGATCACTTC -ACGGAACCTGATCCAGATGTACTC -ACGGAACCTGATCCAGATGATGTC -ACGGAACCTGATCCAGATACAGTC -ACGGAACCTGATCCAGATTTGCTG -ACGGAACCTGATCCAGATTCCATG -ACGGAACCTGATCCAGATTGTGTG -ACGGAACCTGATCCAGATCTAGTG -ACGGAACCTGATCCAGATCATCTG -ACGGAACCTGATCCAGATGAGTTG -ACGGAACCTGATCCAGATAGACTG -ACGGAACCTGATCCAGATTCGGTA -ACGGAACCTGATCCAGATTGCCTA -ACGGAACCTGATCCAGATCCACTA -ACGGAACCTGATCCAGATGGAGTA -ACGGAACCTGATCCAGATTCGTCT -ACGGAACCTGATCCAGATTGCACT -ACGGAACCTGATCCAGATCTGACT -ACGGAACCTGATCCAGATCAACCT -ACGGAACCTGATCCAGATGCTACT -ACGGAACCTGATCCAGATGGATCT -ACGGAACCTGATCCAGATAAGGCT -ACGGAACCTGATCCAGATTCAACC -ACGGAACCTGATCCAGATTGTTCC -ACGGAACCTGATCCAGATATTCCC -ACGGAACCTGATCCAGATTTCTCG -ACGGAACCTGATCCAGATTAGACG -ACGGAACCTGATCCAGATGTAACG -ACGGAACCTGATCCAGATACTTCG -ACGGAACCTGATCCAGATTACGCA -ACGGAACCTGATCCAGATCTTGCA -ACGGAACCTGATCCAGATCGAACA -ACGGAACCTGATCCAGATCAGTCA -ACGGAACCTGATCCAGATGATCCA -ACGGAACCTGATCCAGATACGACA -ACGGAACCTGATCCAGATAGCTCA -ACGGAACCTGATCCAGATTCACGT -ACGGAACCTGATCCAGATCGTAGT -ACGGAACCTGATCCAGATGTCAGT -ACGGAACCTGATCCAGATGAAGGT -ACGGAACCTGATCCAGATAACCGT -ACGGAACCTGATCCAGATTTGTGC -ACGGAACCTGATCCAGATCTAAGC -ACGGAACCTGATCCAGATACTAGC -ACGGAACCTGATCCAGATAGATGC -ACGGAACCTGATCCAGATTGAAGG -ACGGAACCTGATCCAGATCAATGG -ACGGAACCTGATCCAGATATGAGG -ACGGAACCTGATCCAGATAATGGG -ACGGAACCTGATCCAGATTCCTGA -ACGGAACCTGATCCAGATTAGCGA -ACGGAACCTGATCCAGATCACAGA -ACGGAACCTGATCCAGATGCAAGA -ACGGAACCTGATCCAGATGGTTGA -ACGGAACCTGATCCAGATTCCGAT -ACGGAACCTGATCCAGATTGGCAT -ACGGAACCTGATCCAGATCGAGAT -ACGGAACCTGATCCAGATTACCAC -ACGGAACCTGATCCAGATCAGAAC -ACGGAACCTGATCCAGATGTCTAC -ACGGAACCTGATCCAGATACGTAC -ACGGAACCTGATCCAGATAGTGAC -ACGGAACCTGATCCAGATCTGTAG -ACGGAACCTGATCCAGATCCTAAG -ACGGAACCTGATCCAGATGTTCAG -ACGGAACCTGATCCAGATGCATAG -ACGGAACCTGATCCAGATGACAAG -ACGGAACCTGATCCAGATAAGCAG -ACGGAACCTGATCCAGATCGTCAA -ACGGAACCTGATCCAGATGCTGAA -ACGGAACCTGATCCAGATAGTACG -ACGGAACCTGATCCAGATATCCGA -ACGGAACCTGATCCAGATATGGGA -ACGGAACCTGATCCAGATGTGCAA -ACGGAACCTGATCCAGATGAGGAA -ACGGAACCTGATCCAGATCAGGTA -ACGGAACCTGATCCAGATGACTCT -ACGGAACCTGATCCAGATAGTCCT -ACGGAACCTGATCCAGATTAAGCC -ACGGAACCTGATCCAGATATAGCC -ACGGAACCTGATCCAGATTAACCG -ACGGAACCTGATCCAGATATGCCA -ACGGAACCTGATACAACGGGAAAC -ACGGAACCTGATACAACGAACACC -ACGGAACCTGATACAACGATCGAG -ACGGAACCTGATACAACGCTCCTT -ACGGAACCTGATACAACGCCTGTT -ACGGAACCTGATACAACGCGGTTT -ACGGAACCTGATACAACGGTGGTT -ACGGAACCTGATACAACGGCCTTT -ACGGAACCTGATACAACGGGTCTT -ACGGAACCTGATACAACGACGCTT -ACGGAACCTGATACAACGAGCGTT -ACGGAACCTGATACAACGTTCGTC -ACGGAACCTGATACAACGTCTCTC -ACGGAACCTGATACAACGTGGATC -ACGGAACCTGATACAACGCACTTC -ACGGAACCTGATACAACGGTACTC -ACGGAACCTGATACAACGGATGTC -ACGGAACCTGATACAACGACAGTC -ACGGAACCTGATACAACGTTGCTG -ACGGAACCTGATACAACGTCCATG -ACGGAACCTGATACAACGTGTGTG -ACGGAACCTGATACAACGCTAGTG -ACGGAACCTGATACAACGCATCTG -ACGGAACCTGATACAACGGAGTTG -ACGGAACCTGATACAACGAGACTG -ACGGAACCTGATACAACGTCGGTA -ACGGAACCTGATACAACGTGCCTA -ACGGAACCTGATACAACGCCACTA -ACGGAACCTGATACAACGGGAGTA -ACGGAACCTGATACAACGTCGTCT -ACGGAACCTGATACAACGTGCACT -ACGGAACCTGATACAACGCTGACT -ACGGAACCTGATACAACGCAACCT -ACGGAACCTGATACAACGGCTACT -ACGGAACCTGATACAACGGGATCT -ACGGAACCTGATACAACGAAGGCT -ACGGAACCTGATACAACGTCAACC -ACGGAACCTGATACAACGTGTTCC -ACGGAACCTGATACAACGATTCCC -ACGGAACCTGATACAACGTTCTCG -ACGGAACCTGATACAACGTAGACG -ACGGAACCTGATACAACGGTAACG -ACGGAACCTGATACAACGACTTCG -ACGGAACCTGATACAACGTACGCA -ACGGAACCTGATACAACGCTTGCA -ACGGAACCTGATACAACGCGAACA -ACGGAACCTGATACAACGCAGTCA -ACGGAACCTGATACAACGGATCCA -ACGGAACCTGATACAACGACGACA -ACGGAACCTGATACAACGAGCTCA -ACGGAACCTGATACAACGTCACGT -ACGGAACCTGATACAACGCGTAGT -ACGGAACCTGATACAACGGTCAGT -ACGGAACCTGATACAACGGAAGGT -ACGGAACCTGATACAACGAACCGT -ACGGAACCTGATACAACGTTGTGC -ACGGAACCTGATACAACGCTAAGC -ACGGAACCTGATACAACGACTAGC -ACGGAACCTGATACAACGAGATGC -ACGGAACCTGATACAACGTGAAGG -ACGGAACCTGATACAACGCAATGG -ACGGAACCTGATACAACGATGAGG -ACGGAACCTGATACAACGAATGGG -ACGGAACCTGATACAACGTCCTGA -ACGGAACCTGATACAACGTAGCGA -ACGGAACCTGATACAACGCACAGA -ACGGAACCTGATACAACGGCAAGA -ACGGAACCTGATACAACGGGTTGA -ACGGAACCTGATACAACGTCCGAT -ACGGAACCTGATACAACGTGGCAT -ACGGAACCTGATACAACGCGAGAT -ACGGAACCTGATACAACGTACCAC -ACGGAACCTGATACAACGCAGAAC -ACGGAACCTGATACAACGGTCTAC -ACGGAACCTGATACAACGACGTAC -ACGGAACCTGATACAACGAGTGAC -ACGGAACCTGATACAACGCTGTAG -ACGGAACCTGATACAACGCCTAAG -ACGGAACCTGATACAACGGTTCAG -ACGGAACCTGATACAACGGCATAG -ACGGAACCTGATACAACGGACAAG -ACGGAACCTGATACAACGAAGCAG -ACGGAACCTGATACAACGCGTCAA -ACGGAACCTGATACAACGGCTGAA -ACGGAACCTGATACAACGAGTACG -ACGGAACCTGATACAACGATCCGA -ACGGAACCTGATACAACGATGGGA -ACGGAACCTGATACAACGGTGCAA -ACGGAACCTGATACAACGGAGGAA -ACGGAACCTGATACAACGCAGGTA -ACGGAACCTGATACAACGGACTCT -ACGGAACCTGATACAACGAGTCCT -ACGGAACCTGATACAACGTAAGCC -ACGGAACCTGATACAACGATAGCC -ACGGAACCTGATACAACGTAACCG -ACGGAACCTGATACAACGATGCCA -ACGGAACCTGATTCAAGCGGAAAC -ACGGAACCTGATTCAAGCAACACC -ACGGAACCTGATTCAAGCATCGAG -ACGGAACCTGATTCAAGCCTCCTT -ACGGAACCTGATTCAAGCCCTGTT -ACGGAACCTGATTCAAGCCGGTTT -ACGGAACCTGATTCAAGCGTGGTT -ACGGAACCTGATTCAAGCGCCTTT -ACGGAACCTGATTCAAGCGGTCTT -ACGGAACCTGATTCAAGCACGCTT -ACGGAACCTGATTCAAGCAGCGTT -ACGGAACCTGATTCAAGCTTCGTC -ACGGAACCTGATTCAAGCTCTCTC -ACGGAACCTGATTCAAGCTGGATC -ACGGAACCTGATTCAAGCCACTTC -ACGGAACCTGATTCAAGCGTACTC -ACGGAACCTGATTCAAGCGATGTC -ACGGAACCTGATTCAAGCACAGTC -ACGGAACCTGATTCAAGCTTGCTG -ACGGAACCTGATTCAAGCTCCATG -ACGGAACCTGATTCAAGCTGTGTG -ACGGAACCTGATTCAAGCCTAGTG -ACGGAACCTGATTCAAGCCATCTG -ACGGAACCTGATTCAAGCGAGTTG -ACGGAACCTGATTCAAGCAGACTG -ACGGAACCTGATTCAAGCTCGGTA -ACGGAACCTGATTCAAGCTGCCTA -ACGGAACCTGATTCAAGCCCACTA -ACGGAACCTGATTCAAGCGGAGTA -ACGGAACCTGATTCAAGCTCGTCT -ACGGAACCTGATTCAAGCTGCACT -ACGGAACCTGATTCAAGCCTGACT -ACGGAACCTGATTCAAGCCAACCT -ACGGAACCTGATTCAAGCGCTACT -ACGGAACCTGATTCAAGCGGATCT -ACGGAACCTGATTCAAGCAAGGCT -ACGGAACCTGATTCAAGCTCAACC -ACGGAACCTGATTCAAGCTGTTCC -ACGGAACCTGATTCAAGCATTCCC -ACGGAACCTGATTCAAGCTTCTCG -ACGGAACCTGATTCAAGCTAGACG -ACGGAACCTGATTCAAGCGTAACG -ACGGAACCTGATTCAAGCACTTCG -ACGGAACCTGATTCAAGCTACGCA -ACGGAACCTGATTCAAGCCTTGCA -ACGGAACCTGATTCAAGCCGAACA -ACGGAACCTGATTCAAGCCAGTCA -ACGGAACCTGATTCAAGCGATCCA -ACGGAACCTGATTCAAGCACGACA -ACGGAACCTGATTCAAGCAGCTCA -ACGGAACCTGATTCAAGCTCACGT -ACGGAACCTGATTCAAGCCGTAGT -ACGGAACCTGATTCAAGCGTCAGT -ACGGAACCTGATTCAAGCGAAGGT -ACGGAACCTGATTCAAGCAACCGT -ACGGAACCTGATTCAAGCTTGTGC -ACGGAACCTGATTCAAGCCTAAGC -ACGGAACCTGATTCAAGCACTAGC -ACGGAACCTGATTCAAGCAGATGC -ACGGAACCTGATTCAAGCTGAAGG -ACGGAACCTGATTCAAGCCAATGG -ACGGAACCTGATTCAAGCATGAGG -ACGGAACCTGATTCAAGCAATGGG -ACGGAACCTGATTCAAGCTCCTGA -ACGGAACCTGATTCAAGCTAGCGA -ACGGAACCTGATTCAAGCCACAGA -ACGGAACCTGATTCAAGCGCAAGA -ACGGAACCTGATTCAAGCGGTTGA -ACGGAACCTGATTCAAGCTCCGAT -ACGGAACCTGATTCAAGCTGGCAT -ACGGAACCTGATTCAAGCCGAGAT -ACGGAACCTGATTCAAGCTACCAC -ACGGAACCTGATTCAAGCCAGAAC -ACGGAACCTGATTCAAGCGTCTAC -ACGGAACCTGATTCAAGCACGTAC -ACGGAACCTGATTCAAGCAGTGAC -ACGGAACCTGATTCAAGCCTGTAG -ACGGAACCTGATTCAAGCCCTAAG -ACGGAACCTGATTCAAGCGTTCAG -ACGGAACCTGATTCAAGCGCATAG -ACGGAACCTGATTCAAGCGACAAG -ACGGAACCTGATTCAAGCAAGCAG -ACGGAACCTGATTCAAGCCGTCAA -ACGGAACCTGATTCAAGCGCTGAA -ACGGAACCTGATTCAAGCAGTACG -ACGGAACCTGATTCAAGCATCCGA -ACGGAACCTGATTCAAGCATGGGA -ACGGAACCTGATTCAAGCGTGCAA -ACGGAACCTGATTCAAGCGAGGAA -ACGGAACCTGATTCAAGCCAGGTA -ACGGAACCTGATTCAAGCGACTCT -ACGGAACCTGATTCAAGCAGTCCT -ACGGAACCTGATTCAAGCTAAGCC -ACGGAACCTGATTCAAGCATAGCC -ACGGAACCTGATTCAAGCTAACCG -ACGGAACCTGATTCAAGCATGCCA -ACGGAACCTGATCGTTCAGGAAAC -ACGGAACCTGATCGTTCAAACACC -ACGGAACCTGATCGTTCAATCGAG -ACGGAACCTGATCGTTCACTCCTT -ACGGAACCTGATCGTTCACCTGTT -ACGGAACCTGATCGTTCACGGTTT -ACGGAACCTGATCGTTCAGTGGTT -ACGGAACCTGATCGTTCAGCCTTT -ACGGAACCTGATCGTTCAGGTCTT -ACGGAACCTGATCGTTCAACGCTT -ACGGAACCTGATCGTTCAAGCGTT -ACGGAACCTGATCGTTCATTCGTC -ACGGAACCTGATCGTTCATCTCTC -ACGGAACCTGATCGTTCATGGATC -ACGGAACCTGATCGTTCACACTTC -ACGGAACCTGATCGTTCAGTACTC -ACGGAACCTGATCGTTCAGATGTC -ACGGAACCTGATCGTTCAACAGTC -ACGGAACCTGATCGTTCATTGCTG -ACGGAACCTGATCGTTCATCCATG -ACGGAACCTGATCGTTCATGTGTG -ACGGAACCTGATCGTTCACTAGTG -ACGGAACCTGATCGTTCACATCTG -ACGGAACCTGATCGTTCAGAGTTG -ACGGAACCTGATCGTTCAAGACTG -ACGGAACCTGATCGTTCATCGGTA -ACGGAACCTGATCGTTCATGCCTA -ACGGAACCTGATCGTTCACCACTA -ACGGAACCTGATCGTTCAGGAGTA -ACGGAACCTGATCGTTCATCGTCT -ACGGAACCTGATCGTTCATGCACT -ACGGAACCTGATCGTTCACTGACT -ACGGAACCTGATCGTTCACAACCT -ACGGAACCTGATCGTTCAGCTACT -ACGGAACCTGATCGTTCAGGATCT -ACGGAACCTGATCGTTCAAAGGCT -ACGGAACCTGATCGTTCATCAACC -ACGGAACCTGATCGTTCATGTTCC -ACGGAACCTGATCGTTCAATTCCC -ACGGAACCTGATCGTTCATTCTCG -ACGGAACCTGATCGTTCATAGACG -ACGGAACCTGATCGTTCAGTAACG -ACGGAACCTGATCGTTCAACTTCG -ACGGAACCTGATCGTTCATACGCA -ACGGAACCTGATCGTTCACTTGCA -ACGGAACCTGATCGTTCACGAACA -ACGGAACCTGATCGTTCACAGTCA -ACGGAACCTGATCGTTCAGATCCA -ACGGAACCTGATCGTTCAACGACA -ACGGAACCTGATCGTTCAAGCTCA -ACGGAACCTGATCGTTCATCACGT -ACGGAACCTGATCGTTCACGTAGT -ACGGAACCTGATCGTTCAGTCAGT -ACGGAACCTGATCGTTCAGAAGGT -ACGGAACCTGATCGTTCAAACCGT -ACGGAACCTGATCGTTCATTGTGC -ACGGAACCTGATCGTTCACTAAGC -ACGGAACCTGATCGTTCAACTAGC -ACGGAACCTGATCGTTCAAGATGC -ACGGAACCTGATCGTTCATGAAGG -ACGGAACCTGATCGTTCACAATGG -ACGGAACCTGATCGTTCAATGAGG -ACGGAACCTGATCGTTCAAATGGG -ACGGAACCTGATCGTTCATCCTGA -ACGGAACCTGATCGTTCATAGCGA -ACGGAACCTGATCGTTCACACAGA -ACGGAACCTGATCGTTCAGCAAGA -ACGGAACCTGATCGTTCAGGTTGA -ACGGAACCTGATCGTTCATCCGAT -ACGGAACCTGATCGTTCATGGCAT -ACGGAACCTGATCGTTCACGAGAT -ACGGAACCTGATCGTTCATACCAC -ACGGAACCTGATCGTTCACAGAAC -ACGGAACCTGATCGTTCAGTCTAC -ACGGAACCTGATCGTTCAACGTAC -ACGGAACCTGATCGTTCAAGTGAC -ACGGAACCTGATCGTTCACTGTAG -ACGGAACCTGATCGTTCACCTAAG -ACGGAACCTGATCGTTCAGTTCAG -ACGGAACCTGATCGTTCAGCATAG -ACGGAACCTGATCGTTCAGACAAG -ACGGAACCTGATCGTTCAAAGCAG -ACGGAACCTGATCGTTCACGTCAA -ACGGAACCTGATCGTTCAGCTGAA -ACGGAACCTGATCGTTCAAGTACG -ACGGAACCTGATCGTTCAATCCGA -ACGGAACCTGATCGTTCAATGGGA -ACGGAACCTGATCGTTCAGTGCAA -ACGGAACCTGATCGTTCAGAGGAA -ACGGAACCTGATCGTTCACAGGTA -ACGGAACCTGATCGTTCAGACTCT -ACGGAACCTGATCGTTCAAGTCCT -ACGGAACCTGATCGTTCATAAGCC -ACGGAACCTGATCGTTCAATAGCC -ACGGAACCTGATCGTTCATAACCG -ACGGAACCTGATCGTTCAATGCCA -ACGGAACCTGATAGTCGTGGAAAC -ACGGAACCTGATAGTCGTAACACC -ACGGAACCTGATAGTCGTATCGAG -ACGGAACCTGATAGTCGTCTCCTT -ACGGAACCTGATAGTCGTCCTGTT -ACGGAACCTGATAGTCGTCGGTTT -ACGGAACCTGATAGTCGTGTGGTT -ACGGAACCTGATAGTCGTGCCTTT -ACGGAACCTGATAGTCGTGGTCTT -ACGGAACCTGATAGTCGTACGCTT -ACGGAACCTGATAGTCGTAGCGTT -ACGGAACCTGATAGTCGTTTCGTC -ACGGAACCTGATAGTCGTTCTCTC -ACGGAACCTGATAGTCGTTGGATC -ACGGAACCTGATAGTCGTCACTTC -ACGGAACCTGATAGTCGTGTACTC -ACGGAACCTGATAGTCGTGATGTC -ACGGAACCTGATAGTCGTACAGTC -ACGGAACCTGATAGTCGTTTGCTG -ACGGAACCTGATAGTCGTTCCATG -ACGGAACCTGATAGTCGTTGTGTG -ACGGAACCTGATAGTCGTCTAGTG -ACGGAACCTGATAGTCGTCATCTG -ACGGAACCTGATAGTCGTGAGTTG -ACGGAACCTGATAGTCGTAGACTG -ACGGAACCTGATAGTCGTTCGGTA -ACGGAACCTGATAGTCGTTGCCTA -ACGGAACCTGATAGTCGTCCACTA -ACGGAACCTGATAGTCGTGGAGTA -ACGGAACCTGATAGTCGTTCGTCT -ACGGAACCTGATAGTCGTTGCACT -ACGGAACCTGATAGTCGTCTGACT -ACGGAACCTGATAGTCGTCAACCT -ACGGAACCTGATAGTCGTGCTACT -ACGGAACCTGATAGTCGTGGATCT -ACGGAACCTGATAGTCGTAAGGCT -ACGGAACCTGATAGTCGTTCAACC -ACGGAACCTGATAGTCGTTGTTCC -ACGGAACCTGATAGTCGTATTCCC -ACGGAACCTGATAGTCGTTTCTCG -ACGGAACCTGATAGTCGTTAGACG -ACGGAACCTGATAGTCGTGTAACG -ACGGAACCTGATAGTCGTACTTCG -ACGGAACCTGATAGTCGTTACGCA -ACGGAACCTGATAGTCGTCTTGCA -ACGGAACCTGATAGTCGTCGAACA -ACGGAACCTGATAGTCGTCAGTCA -ACGGAACCTGATAGTCGTGATCCA -ACGGAACCTGATAGTCGTACGACA -ACGGAACCTGATAGTCGTAGCTCA -ACGGAACCTGATAGTCGTTCACGT -ACGGAACCTGATAGTCGTCGTAGT -ACGGAACCTGATAGTCGTGTCAGT -ACGGAACCTGATAGTCGTGAAGGT -ACGGAACCTGATAGTCGTAACCGT -ACGGAACCTGATAGTCGTTTGTGC -ACGGAACCTGATAGTCGTCTAAGC -ACGGAACCTGATAGTCGTACTAGC -ACGGAACCTGATAGTCGTAGATGC -ACGGAACCTGATAGTCGTTGAAGG -ACGGAACCTGATAGTCGTCAATGG -ACGGAACCTGATAGTCGTATGAGG -ACGGAACCTGATAGTCGTAATGGG -ACGGAACCTGATAGTCGTTCCTGA -ACGGAACCTGATAGTCGTTAGCGA -ACGGAACCTGATAGTCGTCACAGA -ACGGAACCTGATAGTCGTGCAAGA -ACGGAACCTGATAGTCGTGGTTGA -ACGGAACCTGATAGTCGTTCCGAT -ACGGAACCTGATAGTCGTTGGCAT -ACGGAACCTGATAGTCGTCGAGAT -ACGGAACCTGATAGTCGTTACCAC -ACGGAACCTGATAGTCGTCAGAAC -ACGGAACCTGATAGTCGTGTCTAC -ACGGAACCTGATAGTCGTACGTAC -ACGGAACCTGATAGTCGTAGTGAC -ACGGAACCTGATAGTCGTCTGTAG -ACGGAACCTGATAGTCGTCCTAAG -ACGGAACCTGATAGTCGTGTTCAG -ACGGAACCTGATAGTCGTGCATAG -ACGGAACCTGATAGTCGTGACAAG -ACGGAACCTGATAGTCGTAAGCAG -ACGGAACCTGATAGTCGTCGTCAA -ACGGAACCTGATAGTCGTGCTGAA -ACGGAACCTGATAGTCGTAGTACG -ACGGAACCTGATAGTCGTATCCGA -ACGGAACCTGATAGTCGTATGGGA -ACGGAACCTGATAGTCGTGTGCAA -ACGGAACCTGATAGTCGTGAGGAA -ACGGAACCTGATAGTCGTCAGGTA -ACGGAACCTGATAGTCGTGACTCT -ACGGAACCTGATAGTCGTAGTCCT -ACGGAACCTGATAGTCGTTAAGCC -ACGGAACCTGATAGTCGTATAGCC -ACGGAACCTGATAGTCGTTAACCG -ACGGAACCTGATAGTCGTATGCCA -ACGGAACCTGATAGTGTCGGAAAC -ACGGAACCTGATAGTGTCAACACC -ACGGAACCTGATAGTGTCATCGAG -ACGGAACCTGATAGTGTCCTCCTT -ACGGAACCTGATAGTGTCCCTGTT -ACGGAACCTGATAGTGTCCGGTTT -ACGGAACCTGATAGTGTCGTGGTT -ACGGAACCTGATAGTGTCGCCTTT -ACGGAACCTGATAGTGTCGGTCTT -ACGGAACCTGATAGTGTCACGCTT -ACGGAACCTGATAGTGTCAGCGTT -ACGGAACCTGATAGTGTCTTCGTC -ACGGAACCTGATAGTGTCTCTCTC -ACGGAACCTGATAGTGTCTGGATC -ACGGAACCTGATAGTGTCCACTTC -ACGGAACCTGATAGTGTCGTACTC -ACGGAACCTGATAGTGTCGATGTC -ACGGAACCTGATAGTGTCACAGTC -ACGGAACCTGATAGTGTCTTGCTG -ACGGAACCTGATAGTGTCTCCATG -ACGGAACCTGATAGTGTCTGTGTG -ACGGAACCTGATAGTGTCCTAGTG -ACGGAACCTGATAGTGTCCATCTG -ACGGAACCTGATAGTGTCGAGTTG -ACGGAACCTGATAGTGTCAGACTG -ACGGAACCTGATAGTGTCTCGGTA -ACGGAACCTGATAGTGTCTGCCTA -ACGGAACCTGATAGTGTCCCACTA -ACGGAACCTGATAGTGTCGGAGTA -ACGGAACCTGATAGTGTCTCGTCT -ACGGAACCTGATAGTGTCTGCACT -ACGGAACCTGATAGTGTCCTGACT -ACGGAACCTGATAGTGTCCAACCT -ACGGAACCTGATAGTGTCGCTACT -ACGGAACCTGATAGTGTCGGATCT -ACGGAACCTGATAGTGTCAAGGCT -ACGGAACCTGATAGTGTCTCAACC -ACGGAACCTGATAGTGTCTGTTCC -ACGGAACCTGATAGTGTCATTCCC -ACGGAACCTGATAGTGTCTTCTCG -ACGGAACCTGATAGTGTCTAGACG -ACGGAACCTGATAGTGTCGTAACG -ACGGAACCTGATAGTGTCACTTCG -ACGGAACCTGATAGTGTCTACGCA -ACGGAACCTGATAGTGTCCTTGCA -ACGGAACCTGATAGTGTCCGAACA -ACGGAACCTGATAGTGTCCAGTCA -ACGGAACCTGATAGTGTCGATCCA -ACGGAACCTGATAGTGTCACGACA -ACGGAACCTGATAGTGTCAGCTCA -ACGGAACCTGATAGTGTCTCACGT -ACGGAACCTGATAGTGTCCGTAGT -ACGGAACCTGATAGTGTCGTCAGT -ACGGAACCTGATAGTGTCGAAGGT -ACGGAACCTGATAGTGTCAACCGT -ACGGAACCTGATAGTGTCTTGTGC -ACGGAACCTGATAGTGTCCTAAGC -ACGGAACCTGATAGTGTCACTAGC -ACGGAACCTGATAGTGTCAGATGC -ACGGAACCTGATAGTGTCTGAAGG -ACGGAACCTGATAGTGTCCAATGG -ACGGAACCTGATAGTGTCATGAGG -ACGGAACCTGATAGTGTCAATGGG -ACGGAACCTGATAGTGTCTCCTGA -ACGGAACCTGATAGTGTCTAGCGA -ACGGAACCTGATAGTGTCCACAGA -ACGGAACCTGATAGTGTCGCAAGA -ACGGAACCTGATAGTGTCGGTTGA -ACGGAACCTGATAGTGTCTCCGAT -ACGGAACCTGATAGTGTCTGGCAT -ACGGAACCTGATAGTGTCCGAGAT -ACGGAACCTGATAGTGTCTACCAC -ACGGAACCTGATAGTGTCCAGAAC -ACGGAACCTGATAGTGTCGTCTAC -ACGGAACCTGATAGTGTCACGTAC -ACGGAACCTGATAGTGTCAGTGAC -ACGGAACCTGATAGTGTCCTGTAG -ACGGAACCTGATAGTGTCCCTAAG -ACGGAACCTGATAGTGTCGTTCAG -ACGGAACCTGATAGTGTCGCATAG -ACGGAACCTGATAGTGTCGACAAG -ACGGAACCTGATAGTGTCAAGCAG -ACGGAACCTGATAGTGTCCGTCAA -ACGGAACCTGATAGTGTCGCTGAA -ACGGAACCTGATAGTGTCAGTACG -ACGGAACCTGATAGTGTCATCCGA -ACGGAACCTGATAGTGTCATGGGA -ACGGAACCTGATAGTGTCGTGCAA -ACGGAACCTGATAGTGTCGAGGAA -ACGGAACCTGATAGTGTCCAGGTA -ACGGAACCTGATAGTGTCGACTCT -ACGGAACCTGATAGTGTCAGTCCT -ACGGAACCTGATAGTGTCTAAGCC -ACGGAACCTGATAGTGTCATAGCC -ACGGAACCTGATAGTGTCTAACCG -ACGGAACCTGATAGTGTCATGCCA -ACGGAACCTGATGGTGAAGGAAAC -ACGGAACCTGATGGTGAAAACACC -ACGGAACCTGATGGTGAAATCGAG -ACGGAACCTGATGGTGAACTCCTT -ACGGAACCTGATGGTGAACCTGTT -ACGGAACCTGATGGTGAACGGTTT -ACGGAACCTGATGGTGAAGTGGTT -ACGGAACCTGATGGTGAAGCCTTT -ACGGAACCTGATGGTGAAGGTCTT -ACGGAACCTGATGGTGAAACGCTT -ACGGAACCTGATGGTGAAAGCGTT -ACGGAACCTGATGGTGAATTCGTC -ACGGAACCTGATGGTGAATCTCTC -ACGGAACCTGATGGTGAATGGATC -ACGGAACCTGATGGTGAACACTTC -ACGGAACCTGATGGTGAAGTACTC -ACGGAACCTGATGGTGAAGATGTC -ACGGAACCTGATGGTGAAACAGTC -ACGGAACCTGATGGTGAATTGCTG -ACGGAACCTGATGGTGAATCCATG -ACGGAACCTGATGGTGAATGTGTG -ACGGAACCTGATGGTGAACTAGTG -ACGGAACCTGATGGTGAACATCTG -ACGGAACCTGATGGTGAAGAGTTG -ACGGAACCTGATGGTGAAAGACTG -ACGGAACCTGATGGTGAATCGGTA -ACGGAACCTGATGGTGAATGCCTA -ACGGAACCTGATGGTGAACCACTA -ACGGAACCTGATGGTGAAGGAGTA -ACGGAACCTGATGGTGAATCGTCT -ACGGAACCTGATGGTGAATGCACT -ACGGAACCTGATGGTGAACTGACT -ACGGAACCTGATGGTGAACAACCT -ACGGAACCTGATGGTGAAGCTACT -ACGGAACCTGATGGTGAAGGATCT -ACGGAACCTGATGGTGAAAAGGCT -ACGGAACCTGATGGTGAATCAACC -ACGGAACCTGATGGTGAATGTTCC -ACGGAACCTGATGGTGAAATTCCC -ACGGAACCTGATGGTGAATTCTCG -ACGGAACCTGATGGTGAATAGACG -ACGGAACCTGATGGTGAAGTAACG -ACGGAACCTGATGGTGAAACTTCG -ACGGAACCTGATGGTGAATACGCA -ACGGAACCTGATGGTGAACTTGCA -ACGGAACCTGATGGTGAACGAACA -ACGGAACCTGATGGTGAACAGTCA -ACGGAACCTGATGGTGAAGATCCA -ACGGAACCTGATGGTGAAACGACA -ACGGAACCTGATGGTGAAAGCTCA -ACGGAACCTGATGGTGAATCACGT -ACGGAACCTGATGGTGAACGTAGT -ACGGAACCTGATGGTGAAGTCAGT -ACGGAACCTGATGGTGAAGAAGGT -ACGGAACCTGATGGTGAAAACCGT -ACGGAACCTGATGGTGAATTGTGC -ACGGAACCTGATGGTGAACTAAGC -ACGGAACCTGATGGTGAAACTAGC -ACGGAACCTGATGGTGAAAGATGC -ACGGAACCTGATGGTGAATGAAGG -ACGGAACCTGATGGTGAACAATGG -ACGGAACCTGATGGTGAAATGAGG -ACGGAACCTGATGGTGAAAATGGG -ACGGAACCTGATGGTGAATCCTGA -ACGGAACCTGATGGTGAATAGCGA -ACGGAACCTGATGGTGAACACAGA -ACGGAACCTGATGGTGAAGCAAGA -ACGGAACCTGATGGTGAAGGTTGA -ACGGAACCTGATGGTGAATCCGAT -ACGGAACCTGATGGTGAATGGCAT -ACGGAACCTGATGGTGAACGAGAT -ACGGAACCTGATGGTGAATACCAC -ACGGAACCTGATGGTGAACAGAAC -ACGGAACCTGATGGTGAAGTCTAC -ACGGAACCTGATGGTGAAACGTAC -ACGGAACCTGATGGTGAAAGTGAC -ACGGAACCTGATGGTGAACTGTAG -ACGGAACCTGATGGTGAACCTAAG -ACGGAACCTGATGGTGAAGTTCAG -ACGGAACCTGATGGTGAAGCATAG -ACGGAACCTGATGGTGAAGACAAG -ACGGAACCTGATGGTGAAAAGCAG -ACGGAACCTGATGGTGAACGTCAA -ACGGAACCTGATGGTGAAGCTGAA -ACGGAACCTGATGGTGAAAGTACG -ACGGAACCTGATGGTGAAATCCGA -ACGGAACCTGATGGTGAAATGGGA -ACGGAACCTGATGGTGAAGTGCAA -ACGGAACCTGATGGTGAAGAGGAA -ACGGAACCTGATGGTGAACAGGTA -ACGGAACCTGATGGTGAAGACTCT -ACGGAACCTGATGGTGAAAGTCCT -ACGGAACCTGATGGTGAATAAGCC -ACGGAACCTGATGGTGAAATAGCC -ACGGAACCTGATGGTGAATAACCG -ACGGAACCTGATGGTGAAATGCCA -ACGGAACCTGATCGTAACGGAAAC -ACGGAACCTGATCGTAACAACACC -ACGGAACCTGATCGTAACATCGAG -ACGGAACCTGATCGTAACCTCCTT -ACGGAACCTGATCGTAACCCTGTT -ACGGAACCTGATCGTAACCGGTTT -ACGGAACCTGATCGTAACGTGGTT -ACGGAACCTGATCGTAACGCCTTT -ACGGAACCTGATCGTAACGGTCTT -ACGGAACCTGATCGTAACACGCTT -ACGGAACCTGATCGTAACAGCGTT -ACGGAACCTGATCGTAACTTCGTC -ACGGAACCTGATCGTAACTCTCTC -ACGGAACCTGATCGTAACTGGATC -ACGGAACCTGATCGTAACCACTTC -ACGGAACCTGATCGTAACGTACTC -ACGGAACCTGATCGTAACGATGTC -ACGGAACCTGATCGTAACACAGTC -ACGGAACCTGATCGTAACTTGCTG -ACGGAACCTGATCGTAACTCCATG -ACGGAACCTGATCGTAACTGTGTG -ACGGAACCTGATCGTAACCTAGTG -ACGGAACCTGATCGTAACCATCTG -ACGGAACCTGATCGTAACGAGTTG -ACGGAACCTGATCGTAACAGACTG -ACGGAACCTGATCGTAACTCGGTA -ACGGAACCTGATCGTAACTGCCTA -ACGGAACCTGATCGTAACCCACTA -ACGGAACCTGATCGTAACGGAGTA -ACGGAACCTGATCGTAACTCGTCT -ACGGAACCTGATCGTAACTGCACT -ACGGAACCTGATCGTAACCTGACT -ACGGAACCTGATCGTAACCAACCT -ACGGAACCTGATCGTAACGCTACT -ACGGAACCTGATCGTAACGGATCT -ACGGAACCTGATCGTAACAAGGCT -ACGGAACCTGATCGTAACTCAACC -ACGGAACCTGATCGTAACTGTTCC -ACGGAACCTGATCGTAACATTCCC -ACGGAACCTGATCGTAACTTCTCG -ACGGAACCTGATCGTAACTAGACG -ACGGAACCTGATCGTAACGTAACG -ACGGAACCTGATCGTAACACTTCG -ACGGAACCTGATCGTAACTACGCA -ACGGAACCTGATCGTAACCTTGCA -ACGGAACCTGATCGTAACCGAACA -ACGGAACCTGATCGTAACCAGTCA -ACGGAACCTGATCGTAACGATCCA -ACGGAACCTGATCGTAACACGACA -ACGGAACCTGATCGTAACAGCTCA -ACGGAACCTGATCGTAACTCACGT -ACGGAACCTGATCGTAACCGTAGT -ACGGAACCTGATCGTAACGTCAGT -ACGGAACCTGATCGTAACGAAGGT -ACGGAACCTGATCGTAACAACCGT -ACGGAACCTGATCGTAACTTGTGC -ACGGAACCTGATCGTAACCTAAGC -ACGGAACCTGATCGTAACACTAGC -ACGGAACCTGATCGTAACAGATGC -ACGGAACCTGATCGTAACTGAAGG -ACGGAACCTGATCGTAACCAATGG -ACGGAACCTGATCGTAACATGAGG -ACGGAACCTGATCGTAACAATGGG -ACGGAACCTGATCGTAACTCCTGA -ACGGAACCTGATCGTAACTAGCGA -ACGGAACCTGATCGTAACCACAGA -ACGGAACCTGATCGTAACGCAAGA -ACGGAACCTGATCGTAACGGTTGA -ACGGAACCTGATCGTAACTCCGAT -ACGGAACCTGATCGTAACTGGCAT -ACGGAACCTGATCGTAACCGAGAT -ACGGAACCTGATCGTAACTACCAC -ACGGAACCTGATCGTAACCAGAAC -ACGGAACCTGATCGTAACGTCTAC -ACGGAACCTGATCGTAACACGTAC -ACGGAACCTGATCGTAACAGTGAC -ACGGAACCTGATCGTAACCTGTAG -ACGGAACCTGATCGTAACCCTAAG -ACGGAACCTGATCGTAACGTTCAG -ACGGAACCTGATCGTAACGCATAG -ACGGAACCTGATCGTAACGACAAG -ACGGAACCTGATCGTAACAAGCAG -ACGGAACCTGATCGTAACCGTCAA -ACGGAACCTGATCGTAACGCTGAA -ACGGAACCTGATCGTAACAGTACG -ACGGAACCTGATCGTAACATCCGA -ACGGAACCTGATCGTAACATGGGA -ACGGAACCTGATCGTAACGTGCAA -ACGGAACCTGATCGTAACGAGGAA -ACGGAACCTGATCGTAACCAGGTA -ACGGAACCTGATCGTAACGACTCT -ACGGAACCTGATCGTAACAGTCCT -ACGGAACCTGATCGTAACTAAGCC -ACGGAACCTGATCGTAACATAGCC -ACGGAACCTGATCGTAACTAACCG -ACGGAACCTGATCGTAACATGCCA -ACGGAACCTGATTGCTTGGGAAAC -ACGGAACCTGATTGCTTGAACACC -ACGGAACCTGATTGCTTGATCGAG -ACGGAACCTGATTGCTTGCTCCTT -ACGGAACCTGATTGCTTGCCTGTT -ACGGAACCTGATTGCTTGCGGTTT -ACGGAACCTGATTGCTTGGTGGTT -ACGGAACCTGATTGCTTGGCCTTT -ACGGAACCTGATTGCTTGGGTCTT -ACGGAACCTGATTGCTTGACGCTT -ACGGAACCTGATTGCTTGAGCGTT -ACGGAACCTGATTGCTTGTTCGTC -ACGGAACCTGATTGCTTGTCTCTC -ACGGAACCTGATTGCTTGTGGATC -ACGGAACCTGATTGCTTGCACTTC -ACGGAACCTGATTGCTTGGTACTC -ACGGAACCTGATTGCTTGGATGTC -ACGGAACCTGATTGCTTGACAGTC -ACGGAACCTGATTGCTTGTTGCTG -ACGGAACCTGATTGCTTGTCCATG -ACGGAACCTGATTGCTTGTGTGTG -ACGGAACCTGATTGCTTGCTAGTG -ACGGAACCTGATTGCTTGCATCTG -ACGGAACCTGATTGCTTGGAGTTG -ACGGAACCTGATTGCTTGAGACTG -ACGGAACCTGATTGCTTGTCGGTA -ACGGAACCTGATTGCTTGTGCCTA -ACGGAACCTGATTGCTTGCCACTA -ACGGAACCTGATTGCTTGGGAGTA -ACGGAACCTGATTGCTTGTCGTCT -ACGGAACCTGATTGCTTGTGCACT -ACGGAACCTGATTGCTTGCTGACT -ACGGAACCTGATTGCTTGCAACCT -ACGGAACCTGATTGCTTGGCTACT -ACGGAACCTGATTGCTTGGGATCT -ACGGAACCTGATTGCTTGAAGGCT -ACGGAACCTGATTGCTTGTCAACC -ACGGAACCTGATTGCTTGTGTTCC -ACGGAACCTGATTGCTTGATTCCC -ACGGAACCTGATTGCTTGTTCTCG -ACGGAACCTGATTGCTTGTAGACG -ACGGAACCTGATTGCTTGGTAACG -ACGGAACCTGATTGCTTGACTTCG -ACGGAACCTGATTGCTTGTACGCA -ACGGAACCTGATTGCTTGCTTGCA -ACGGAACCTGATTGCTTGCGAACA -ACGGAACCTGATTGCTTGCAGTCA -ACGGAACCTGATTGCTTGGATCCA -ACGGAACCTGATTGCTTGACGACA -ACGGAACCTGATTGCTTGAGCTCA -ACGGAACCTGATTGCTTGTCACGT -ACGGAACCTGATTGCTTGCGTAGT -ACGGAACCTGATTGCTTGGTCAGT -ACGGAACCTGATTGCTTGGAAGGT -ACGGAACCTGATTGCTTGAACCGT -ACGGAACCTGATTGCTTGTTGTGC -ACGGAACCTGATTGCTTGCTAAGC -ACGGAACCTGATTGCTTGACTAGC -ACGGAACCTGATTGCTTGAGATGC -ACGGAACCTGATTGCTTGTGAAGG -ACGGAACCTGATTGCTTGCAATGG -ACGGAACCTGATTGCTTGATGAGG -ACGGAACCTGATTGCTTGAATGGG -ACGGAACCTGATTGCTTGTCCTGA -ACGGAACCTGATTGCTTGTAGCGA -ACGGAACCTGATTGCTTGCACAGA -ACGGAACCTGATTGCTTGGCAAGA -ACGGAACCTGATTGCTTGGGTTGA -ACGGAACCTGATTGCTTGTCCGAT -ACGGAACCTGATTGCTTGTGGCAT -ACGGAACCTGATTGCTTGCGAGAT -ACGGAACCTGATTGCTTGTACCAC -ACGGAACCTGATTGCTTGCAGAAC -ACGGAACCTGATTGCTTGGTCTAC -ACGGAACCTGATTGCTTGACGTAC -ACGGAACCTGATTGCTTGAGTGAC -ACGGAACCTGATTGCTTGCTGTAG -ACGGAACCTGATTGCTTGCCTAAG -ACGGAACCTGATTGCTTGGTTCAG -ACGGAACCTGATTGCTTGGCATAG -ACGGAACCTGATTGCTTGGACAAG -ACGGAACCTGATTGCTTGAAGCAG -ACGGAACCTGATTGCTTGCGTCAA -ACGGAACCTGATTGCTTGGCTGAA -ACGGAACCTGATTGCTTGAGTACG -ACGGAACCTGATTGCTTGATCCGA -ACGGAACCTGATTGCTTGATGGGA -ACGGAACCTGATTGCTTGGTGCAA -ACGGAACCTGATTGCTTGGAGGAA -ACGGAACCTGATTGCTTGCAGGTA -ACGGAACCTGATTGCTTGGACTCT -ACGGAACCTGATTGCTTGAGTCCT -ACGGAACCTGATTGCTTGTAAGCC -ACGGAACCTGATTGCTTGATAGCC -ACGGAACCTGATTGCTTGTAACCG -ACGGAACCTGATTGCTTGATGCCA -ACGGAACCTGATAGCCTAGGAAAC -ACGGAACCTGATAGCCTAAACACC -ACGGAACCTGATAGCCTAATCGAG -ACGGAACCTGATAGCCTACTCCTT -ACGGAACCTGATAGCCTACCTGTT -ACGGAACCTGATAGCCTACGGTTT -ACGGAACCTGATAGCCTAGTGGTT -ACGGAACCTGATAGCCTAGCCTTT -ACGGAACCTGATAGCCTAGGTCTT -ACGGAACCTGATAGCCTAACGCTT -ACGGAACCTGATAGCCTAAGCGTT -ACGGAACCTGATAGCCTATTCGTC -ACGGAACCTGATAGCCTATCTCTC -ACGGAACCTGATAGCCTATGGATC -ACGGAACCTGATAGCCTACACTTC -ACGGAACCTGATAGCCTAGTACTC -ACGGAACCTGATAGCCTAGATGTC -ACGGAACCTGATAGCCTAACAGTC -ACGGAACCTGATAGCCTATTGCTG -ACGGAACCTGATAGCCTATCCATG -ACGGAACCTGATAGCCTATGTGTG -ACGGAACCTGATAGCCTACTAGTG -ACGGAACCTGATAGCCTACATCTG -ACGGAACCTGATAGCCTAGAGTTG -ACGGAACCTGATAGCCTAAGACTG -ACGGAACCTGATAGCCTATCGGTA -ACGGAACCTGATAGCCTATGCCTA -ACGGAACCTGATAGCCTACCACTA -ACGGAACCTGATAGCCTAGGAGTA -ACGGAACCTGATAGCCTATCGTCT -ACGGAACCTGATAGCCTATGCACT -ACGGAACCTGATAGCCTACTGACT -ACGGAACCTGATAGCCTACAACCT -ACGGAACCTGATAGCCTAGCTACT -ACGGAACCTGATAGCCTAGGATCT -ACGGAACCTGATAGCCTAAAGGCT -ACGGAACCTGATAGCCTATCAACC -ACGGAACCTGATAGCCTATGTTCC -ACGGAACCTGATAGCCTAATTCCC -ACGGAACCTGATAGCCTATTCTCG -ACGGAACCTGATAGCCTATAGACG -ACGGAACCTGATAGCCTAGTAACG -ACGGAACCTGATAGCCTAACTTCG -ACGGAACCTGATAGCCTATACGCA -ACGGAACCTGATAGCCTACTTGCA -ACGGAACCTGATAGCCTACGAACA -ACGGAACCTGATAGCCTACAGTCA -ACGGAACCTGATAGCCTAGATCCA -ACGGAACCTGATAGCCTAACGACA -ACGGAACCTGATAGCCTAAGCTCA -ACGGAACCTGATAGCCTATCACGT -ACGGAACCTGATAGCCTACGTAGT -ACGGAACCTGATAGCCTAGTCAGT -ACGGAACCTGATAGCCTAGAAGGT -ACGGAACCTGATAGCCTAAACCGT -ACGGAACCTGATAGCCTATTGTGC -ACGGAACCTGATAGCCTACTAAGC -ACGGAACCTGATAGCCTAACTAGC -ACGGAACCTGATAGCCTAAGATGC -ACGGAACCTGATAGCCTATGAAGG -ACGGAACCTGATAGCCTACAATGG -ACGGAACCTGATAGCCTAATGAGG -ACGGAACCTGATAGCCTAAATGGG -ACGGAACCTGATAGCCTATCCTGA -ACGGAACCTGATAGCCTATAGCGA -ACGGAACCTGATAGCCTACACAGA -ACGGAACCTGATAGCCTAGCAAGA -ACGGAACCTGATAGCCTAGGTTGA -ACGGAACCTGATAGCCTATCCGAT -ACGGAACCTGATAGCCTATGGCAT -ACGGAACCTGATAGCCTACGAGAT -ACGGAACCTGATAGCCTATACCAC -ACGGAACCTGATAGCCTACAGAAC -ACGGAACCTGATAGCCTAGTCTAC -ACGGAACCTGATAGCCTAACGTAC -ACGGAACCTGATAGCCTAAGTGAC -ACGGAACCTGATAGCCTACTGTAG -ACGGAACCTGATAGCCTACCTAAG -ACGGAACCTGATAGCCTAGTTCAG -ACGGAACCTGATAGCCTAGCATAG -ACGGAACCTGATAGCCTAGACAAG -ACGGAACCTGATAGCCTAAAGCAG -ACGGAACCTGATAGCCTACGTCAA -ACGGAACCTGATAGCCTAGCTGAA -ACGGAACCTGATAGCCTAAGTACG -ACGGAACCTGATAGCCTAATCCGA -ACGGAACCTGATAGCCTAATGGGA -ACGGAACCTGATAGCCTAGTGCAA -ACGGAACCTGATAGCCTAGAGGAA -ACGGAACCTGATAGCCTACAGGTA -ACGGAACCTGATAGCCTAGACTCT -ACGGAACCTGATAGCCTAAGTCCT -ACGGAACCTGATAGCCTATAAGCC -ACGGAACCTGATAGCCTAATAGCC -ACGGAACCTGATAGCCTATAACCG -ACGGAACCTGATAGCCTAATGCCA -ACGGAACCTGATAGCACTGGAAAC -ACGGAACCTGATAGCACTAACACC -ACGGAACCTGATAGCACTATCGAG -ACGGAACCTGATAGCACTCTCCTT -ACGGAACCTGATAGCACTCCTGTT -ACGGAACCTGATAGCACTCGGTTT -ACGGAACCTGATAGCACTGTGGTT -ACGGAACCTGATAGCACTGCCTTT -ACGGAACCTGATAGCACTGGTCTT -ACGGAACCTGATAGCACTACGCTT -ACGGAACCTGATAGCACTAGCGTT -ACGGAACCTGATAGCACTTTCGTC -ACGGAACCTGATAGCACTTCTCTC -ACGGAACCTGATAGCACTTGGATC -ACGGAACCTGATAGCACTCACTTC -ACGGAACCTGATAGCACTGTACTC -ACGGAACCTGATAGCACTGATGTC -ACGGAACCTGATAGCACTACAGTC -ACGGAACCTGATAGCACTTTGCTG -ACGGAACCTGATAGCACTTCCATG -ACGGAACCTGATAGCACTTGTGTG -ACGGAACCTGATAGCACTCTAGTG -ACGGAACCTGATAGCACTCATCTG -ACGGAACCTGATAGCACTGAGTTG -ACGGAACCTGATAGCACTAGACTG -ACGGAACCTGATAGCACTTCGGTA -ACGGAACCTGATAGCACTTGCCTA -ACGGAACCTGATAGCACTCCACTA -ACGGAACCTGATAGCACTGGAGTA -ACGGAACCTGATAGCACTTCGTCT -ACGGAACCTGATAGCACTTGCACT -ACGGAACCTGATAGCACTCTGACT -ACGGAACCTGATAGCACTCAACCT -ACGGAACCTGATAGCACTGCTACT -ACGGAACCTGATAGCACTGGATCT -ACGGAACCTGATAGCACTAAGGCT -ACGGAACCTGATAGCACTTCAACC -ACGGAACCTGATAGCACTTGTTCC -ACGGAACCTGATAGCACTATTCCC -ACGGAACCTGATAGCACTTTCTCG -ACGGAACCTGATAGCACTTAGACG -ACGGAACCTGATAGCACTGTAACG -ACGGAACCTGATAGCACTACTTCG -ACGGAACCTGATAGCACTTACGCA -ACGGAACCTGATAGCACTCTTGCA -ACGGAACCTGATAGCACTCGAACA -ACGGAACCTGATAGCACTCAGTCA -ACGGAACCTGATAGCACTGATCCA -ACGGAACCTGATAGCACTACGACA -ACGGAACCTGATAGCACTAGCTCA -ACGGAACCTGATAGCACTTCACGT -ACGGAACCTGATAGCACTCGTAGT -ACGGAACCTGATAGCACTGTCAGT -ACGGAACCTGATAGCACTGAAGGT -ACGGAACCTGATAGCACTAACCGT -ACGGAACCTGATAGCACTTTGTGC -ACGGAACCTGATAGCACTCTAAGC -ACGGAACCTGATAGCACTACTAGC -ACGGAACCTGATAGCACTAGATGC -ACGGAACCTGATAGCACTTGAAGG -ACGGAACCTGATAGCACTCAATGG -ACGGAACCTGATAGCACTATGAGG -ACGGAACCTGATAGCACTAATGGG -ACGGAACCTGATAGCACTTCCTGA -ACGGAACCTGATAGCACTTAGCGA -ACGGAACCTGATAGCACTCACAGA -ACGGAACCTGATAGCACTGCAAGA -ACGGAACCTGATAGCACTGGTTGA -ACGGAACCTGATAGCACTTCCGAT -ACGGAACCTGATAGCACTTGGCAT -ACGGAACCTGATAGCACTCGAGAT -ACGGAACCTGATAGCACTTACCAC -ACGGAACCTGATAGCACTCAGAAC -ACGGAACCTGATAGCACTGTCTAC -ACGGAACCTGATAGCACTACGTAC -ACGGAACCTGATAGCACTAGTGAC -ACGGAACCTGATAGCACTCTGTAG -ACGGAACCTGATAGCACTCCTAAG -ACGGAACCTGATAGCACTGTTCAG -ACGGAACCTGATAGCACTGCATAG -ACGGAACCTGATAGCACTGACAAG -ACGGAACCTGATAGCACTAAGCAG -ACGGAACCTGATAGCACTCGTCAA -ACGGAACCTGATAGCACTGCTGAA -ACGGAACCTGATAGCACTAGTACG -ACGGAACCTGATAGCACTATCCGA -ACGGAACCTGATAGCACTATGGGA -ACGGAACCTGATAGCACTGTGCAA -ACGGAACCTGATAGCACTGAGGAA -ACGGAACCTGATAGCACTCAGGTA -ACGGAACCTGATAGCACTGACTCT -ACGGAACCTGATAGCACTAGTCCT -ACGGAACCTGATAGCACTTAAGCC -ACGGAACCTGATAGCACTATAGCC -ACGGAACCTGATAGCACTTAACCG -ACGGAACCTGATAGCACTATGCCA -ACGGAACCTGATTGCAGAGGAAAC -ACGGAACCTGATTGCAGAAACACC -ACGGAACCTGATTGCAGAATCGAG -ACGGAACCTGATTGCAGACTCCTT -ACGGAACCTGATTGCAGACCTGTT -ACGGAACCTGATTGCAGACGGTTT -ACGGAACCTGATTGCAGAGTGGTT -ACGGAACCTGATTGCAGAGCCTTT -ACGGAACCTGATTGCAGAGGTCTT -ACGGAACCTGATTGCAGAACGCTT -ACGGAACCTGATTGCAGAAGCGTT -ACGGAACCTGATTGCAGATTCGTC -ACGGAACCTGATTGCAGATCTCTC -ACGGAACCTGATTGCAGATGGATC -ACGGAACCTGATTGCAGACACTTC -ACGGAACCTGATTGCAGAGTACTC -ACGGAACCTGATTGCAGAGATGTC -ACGGAACCTGATTGCAGAACAGTC -ACGGAACCTGATTGCAGATTGCTG -ACGGAACCTGATTGCAGATCCATG -ACGGAACCTGATTGCAGATGTGTG -ACGGAACCTGATTGCAGACTAGTG -ACGGAACCTGATTGCAGACATCTG -ACGGAACCTGATTGCAGAGAGTTG -ACGGAACCTGATTGCAGAAGACTG -ACGGAACCTGATTGCAGATCGGTA -ACGGAACCTGATTGCAGATGCCTA -ACGGAACCTGATTGCAGACCACTA -ACGGAACCTGATTGCAGAGGAGTA -ACGGAACCTGATTGCAGATCGTCT -ACGGAACCTGATTGCAGATGCACT -ACGGAACCTGATTGCAGACTGACT -ACGGAACCTGATTGCAGACAACCT -ACGGAACCTGATTGCAGAGCTACT -ACGGAACCTGATTGCAGAGGATCT -ACGGAACCTGATTGCAGAAAGGCT -ACGGAACCTGATTGCAGATCAACC -ACGGAACCTGATTGCAGATGTTCC -ACGGAACCTGATTGCAGAATTCCC -ACGGAACCTGATTGCAGATTCTCG -ACGGAACCTGATTGCAGATAGACG -ACGGAACCTGATTGCAGAGTAACG -ACGGAACCTGATTGCAGAACTTCG -ACGGAACCTGATTGCAGATACGCA -ACGGAACCTGATTGCAGACTTGCA -ACGGAACCTGATTGCAGACGAACA -ACGGAACCTGATTGCAGACAGTCA -ACGGAACCTGATTGCAGAGATCCA -ACGGAACCTGATTGCAGAACGACA -ACGGAACCTGATTGCAGAAGCTCA -ACGGAACCTGATTGCAGATCACGT -ACGGAACCTGATTGCAGACGTAGT -ACGGAACCTGATTGCAGAGTCAGT -ACGGAACCTGATTGCAGAGAAGGT -ACGGAACCTGATTGCAGAAACCGT -ACGGAACCTGATTGCAGATTGTGC -ACGGAACCTGATTGCAGACTAAGC -ACGGAACCTGATTGCAGAACTAGC -ACGGAACCTGATTGCAGAAGATGC -ACGGAACCTGATTGCAGATGAAGG -ACGGAACCTGATTGCAGACAATGG -ACGGAACCTGATTGCAGAATGAGG -ACGGAACCTGATTGCAGAAATGGG -ACGGAACCTGATTGCAGATCCTGA -ACGGAACCTGATTGCAGATAGCGA -ACGGAACCTGATTGCAGACACAGA -ACGGAACCTGATTGCAGAGCAAGA -ACGGAACCTGATTGCAGAGGTTGA -ACGGAACCTGATTGCAGATCCGAT -ACGGAACCTGATTGCAGATGGCAT -ACGGAACCTGATTGCAGACGAGAT -ACGGAACCTGATTGCAGATACCAC -ACGGAACCTGATTGCAGACAGAAC -ACGGAACCTGATTGCAGAGTCTAC -ACGGAACCTGATTGCAGAACGTAC -ACGGAACCTGATTGCAGAAGTGAC -ACGGAACCTGATTGCAGACTGTAG -ACGGAACCTGATTGCAGACCTAAG -ACGGAACCTGATTGCAGAGTTCAG -ACGGAACCTGATTGCAGAGCATAG -ACGGAACCTGATTGCAGAGACAAG -ACGGAACCTGATTGCAGAAAGCAG -ACGGAACCTGATTGCAGACGTCAA -ACGGAACCTGATTGCAGAGCTGAA -ACGGAACCTGATTGCAGAAGTACG -ACGGAACCTGATTGCAGAATCCGA -ACGGAACCTGATTGCAGAATGGGA -ACGGAACCTGATTGCAGAGTGCAA -ACGGAACCTGATTGCAGAGAGGAA -ACGGAACCTGATTGCAGACAGGTA -ACGGAACCTGATTGCAGAGACTCT -ACGGAACCTGATTGCAGAAGTCCT -ACGGAACCTGATTGCAGATAAGCC -ACGGAACCTGATTGCAGAATAGCC -ACGGAACCTGATTGCAGATAACCG -ACGGAACCTGATTGCAGAATGCCA -ACGGAACCTGATAGGTGAGGAAAC -ACGGAACCTGATAGGTGAAACACC -ACGGAACCTGATAGGTGAATCGAG -ACGGAACCTGATAGGTGACTCCTT -ACGGAACCTGATAGGTGACCTGTT -ACGGAACCTGATAGGTGACGGTTT -ACGGAACCTGATAGGTGAGTGGTT -ACGGAACCTGATAGGTGAGCCTTT -ACGGAACCTGATAGGTGAGGTCTT -ACGGAACCTGATAGGTGAACGCTT -ACGGAACCTGATAGGTGAAGCGTT -ACGGAACCTGATAGGTGATTCGTC -ACGGAACCTGATAGGTGATCTCTC -ACGGAACCTGATAGGTGATGGATC -ACGGAACCTGATAGGTGACACTTC -ACGGAACCTGATAGGTGAGTACTC -ACGGAACCTGATAGGTGAGATGTC -ACGGAACCTGATAGGTGAACAGTC -ACGGAACCTGATAGGTGATTGCTG -ACGGAACCTGATAGGTGATCCATG -ACGGAACCTGATAGGTGATGTGTG -ACGGAACCTGATAGGTGACTAGTG -ACGGAACCTGATAGGTGACATCTG -ACGGAACCTGATAGGTGAGAGTTG -ACGGAACCTGATAGGTGAAGACTG -ACGGAACCTGATAGGTGATCGGTA -ACGGAACCTGATAGGTGATGCCTA -ACGGAACCTGATAGGTGACCACTA -ACGGAACCTGATAGGTGAGGAGTA -ACGGAACCTGATAGGTGATCGTCT -ACGGAACCTGATAGGTGATGCACT -ACGGAACCTGATAGGTGACTGACT -ACGGAACCTGATAGGTGACAACCT -ACGGAACCTGATAGGTGAGCTACT -ACGGAACCTGATAGGTGAGGATCT -ACGGAACCTGATAGGTGAAAGGCT -ACGGAACCTGATAGGTGATCAACC -ACGGAACCTGATAGGTGATGTTCC -ACGGAACCTGATAGGTGAATTCCC -ACGGAACCTGATAGGTGATTCTCG -ACGGAACCTGATAGGTGATAGACG -ACGGAACCTGATAGGTGAGTAACG -ACGGAACCTGATAGGTGAACTTCG -ACGGAACCTGATAGGTGATACGCA -ACGGAACCTGATAGGTGACTTGCA -ACGGAACCTGATAGGTGACGAACA -ACGGAACCTGATAGGTGACAGTCA -ACGGAACCTGATAGGTGAGATCCA -ACGGAACCTGATAGGTGAACGACA -ACGGAACCTGATAGGTGAAGCTCA -ACGGAACCTGATAGGTGATCACGT -ACGGAACCTGATAGGTGACGTAGT -ACGGAACCTGATAGGTGAGTCAGT -ACGGAACCTGATAGGTGAGAAGGT -ACGGAACCTGATAGGTGAAACCGT -ACGGAACCTGATAGGTGATTGTGC -ACGGAACCTGATAGGTGACTAAGC -ACGGAACCTGATAGGTGAACTAGC -ACGGAACCTGATAGGTGAAGATGC -ACGGAACCTGATAGGTGATGAAGG -ACGGAACCTGATAGGTGACAATGG -ACGGAACCTGATAGGTGAATGAGG -ACGGAACCTGATAGGTGAAATGGG -ACGGAACCTGATAGGTGATCCTGA -ACGGAACCTGATAGGTGATAGCGA -ACGGAACCTGATAGGTGACACAGA -ACGGAACCTGATAGGTGAGCAAGA -ACGGAACCTGATAGGTGAGGTTGA -ACGGAACCTGATAGGTGATCCGAT -ACGGAACCTGATAGGTGATGGCAT -ACGGAACCTGATAGGTGACGAGAT -ACGGAACCTGATAGGTGATACCAC -ACGGAACCTGATAGGTGACAGAAC -ACGGAACCTGATAGGTGAGTCTAC -ACGGAACCTGATAGGTGAACGTAC -ACGGAACCTGATAGGTGAAGTGAC -ACGGAACCTGATAGGTGACTGTAG -ACGGAACCTGATAGGTGACCTAAG -ACGGAACCTGATAGGTGAGTTCAG -ACGGAACCTGATAGGTGAGCATAG -ACGGAACCTGATAGGTGAGACAAG -ACGGAACCTGATAGGTGAAAGCAG -ACGGAACCTGATAGGTGACGTCAA -ACGGAACCTGATAGGTGAGCTGAA -ACGGAACCTGATAGGTGAAGTACG -ACGGAACCTGATAGGTGAATCCGA -ACGGAACCTGATAGGTGAATGGGA -ACGGAACCTGATAGGTGAGTGCAA -ACGGAACCTGATAGGTGAGAGGAA -ACGGAACCTGATAGGTGACAGGTA -ACGGAACCTGATAGGTGAGACTCT -ACGGAACCTGATAGGTGAAGTCCT -ACGGAACCTGATAGGTGATAAGCC -ACGGAACCTGATAGGTGAATAGCC -ACGGAACCTGATAGGTGATAACCG -ACGGAACCTGATAGGTGAATGCCA -ACGGAACCTGATTGGCAAGGAAAC -ACGGAACCTGATTGGCAAAACACC -ACGGAACCTGATTGGCAAATCGAG -ACGGAACCTGATTGGCAACTCCTT -ACGGAACCTGATTGGCAACCTGTT -ACGGAACCTGATTGGCAACGGTTT -ACGGAACCTGATTGGCAAGTGGTT -ACGGAACCTGATTGGCAAGCCTTT -ACGGAACCTGATTGGCAAGGTCTT -ACGGAACCTGATTGGCAAACGCTT -ACGGAACCTGATTGGCAAAGCGTT -ACGGAACCTGATTGGCAATTCGTC -ACGGAACCTGATTGGCAATCTCTC -ACGGAACCTGATTGGCAATGGATC -ACGGAACCTGATTGGCAACACTTC -ACGGAACCTGATTGGCAAGTACTC -ACGGAACCTGATTGGCAAGATGTC -ACGGAACCTGATTGGCAAACAGTC -ACGGAACCTGATTGGCAATTGCTG -ACGGAACCTGATTGGCAATCCATG -ACGGAACCTGATTGGCAATGTGTG -ACGGAACCTGATTGGCAACTAGTG -ACGGAACCTGATTGGCAACATCTG -ACGGAACCTGATTGGCAAGAGTTG -ACGGAACCTGATTGGCAAAGACTG -ACGGAACCTGATTGGCAATCGGTA -ACGGAACCTGATTGGCAATGCCTA -ACGGAACCTGATTGGCAACCACTA -ACGGAACCTGATTGGCAAGGAGTA -ACGGAACCTGATTGGCAATCGTCT -ACGGAACCTGATTGGCAATGCACT -ACGGAACCTGATTGGCAACTGACT -ACGGAACCTGATTGGCAACAACCT -ACGGAACCTGATTGGCAAGCTACT -ACGGAACCTGATTGGCAAGGATCT -ACGGAACCTGATTGGCAAAAGGCT -ACGGAACCTGATTGGCAATCAACC -ACGGAACCTGATTGGCAATGTTCC -ACGGAACCTGATTGGCAAATTCCC -ACGGAACCTGATTGGCAATTCTCG -ACGGAACCTGATTGGCAATAGACG -ACGGAACCTGATTGGCAAGTAACG -ACGGAACCTGATTGGCAAACTTCG -ACGGAACCTGATTGGCAATACGCA -ACGGAACCTGATTGGCAACTTGCA -ACGGAACCTGATTGGCAACGAACA -ACGGAACCTGATTGGCAACAGTCA -ACGGAACCTGATTGGCAAGATCCA -ACGGAACCTGATTGGCAAACGACA -ACGGAACCTGATTGGCAAAGCTCA -ACGGAACCTGATTGGCAATCACGT -ACGGAACCTGATTGGCAACGTAGT -ACGGAACCTGATTGGCAAGTCAGT -ACGGAACCTGATTGGCAAGAAGGT -ACGGAACCTGATTGGCAAAACCGT -ACGGAACCTGATTGGCAATTGTGC -ACGGAACCTGATTGGCAACTAAGC -ACGGAACCTGATTGGCAAACTAGC -ACGGAACCTGATTGGCAAAGATGC -ACGGAACCTGATTGGCAATGAAGG -ACGGAACCTGATTGGCAACAATGG -ACGGAACCTGATTGGCAAATGAGG -ACGGAACCTGATTGGCAAAATGGG -ACGGAACCTGATTGGCAATCCTGA -ACGGAACCTGATTGGCAATAGCGA -ACGGAACCTGATTGGCAACACAGA -ACGGAACCTGATTGGCAAGCAAGA -ACGGAACCTGATTGGCAAGGTTGA -ACGGAACCTGATTGGCAATCCGAT -ACGGAACCTGATTGGCAATGGCAT -ACGGAACCTGATTGGCAACGAGAT -ACGGAACCTGATTGGCAATACCAC -ACGGAACCTGATTGGCAACAGAAC -ACGGAACCTGATTGGCAAGTCTAC -ACGGAACCTGATTGGCAAACGTAC -ACGGAACCTGATTGGCAAAGTGAC -ACGGAACCTGATTGGCAACTGTAG -ACGGAACCTGATTGGCAACCTAAG -ACGGAACCTGATTGGCAAGTTCAG -ACGGAACCTGATTGGCAAGCATAG -ACGGAACCTGATTGGCAAGACAAG -ACGGAACCTGATTGGCAAAAGCAG -ACGGAACCTGATTGGCAACGTCAA -ACGGAACCTGATTGGCAAGCTGAA -ACGGAACCTGATTGGCAAAGTACG -ACGGAACCTGATTGGCAAATCCGA -ACGGAACCTGATTGGCAAATGGGA -ACGGAACCTGATTGGCAAGTGCAA -ACGGAACCTGATTGGCAAGAGGAA -ACGGAACCTGATTGGCAACAGGTA -ACGGAACCTGATTGGCAAGACTCT -ACGGAACCTGATTGGCAAAGTCCT -ACGGAACCTGATTGGCAATAAGCC -ACGGAACCTGATTGGCAAATAGCC -ACGGAACCTGATTGGCAATAACCG -ACGGAACCTGATTGGCAAATGCCA -ACGGAACCTGATAGGATGGGAAAC -ACGGAACCTGATAGGATGAACACC -ACGGAACCTGATAGGATGATCGAG -ACGGAACCTGATAGGATGCTCCTT -ACGGAACCTGATAGGATGCCTGTT -ACGGAACCTGATAGGATGCGGTTT -ACGGAACCTGATAGGATGGTGGTT -ACGGAACCTGATAGGATGGCCTTT -ACGGAACCTGATAGGATGGGTCTT -ACGGAACCTGATAGGATGACGCTT -ACGGAACCTGATAGGATGAGCGTT -ACGGAACCTGATAGGATGTTCGTC -ACGGAACCTGATAGGATGTCTCTC -ACGGAACCTGATAGGATGTGGATC -ACGGAACCTGATAGGATGCACTTC -ACGGAACCTGATAGGATGGTACTC -ACGGAACCTGATAGGATGGATGTC -ACGGAACCTGATAGGATGACAGTC -ACGGAACCTGATAGGATGTTGCTG -ACGGAACCTGATAGGATGTCCATG -ACGGAACCTGATAGGATGTGTGTG -ACGGAACCTGATAGGATGCTAGTG -ACGGAACCTGATAGGATGCATCTG -ACGGAACCTGATAGGATGGAGTTG -ACGGAACCTGATAGGATGAGACTG -ACGGAACCTGATAGGATGTCGGTA -ACGGAACCTGATAGGATGTGCCTA -ACGGAACCTGATAGGATGCCACTA -ACGGAACCTGATAGGATGGGAGTA -ACGGAACCTGATAGGATGTCGTCT -ACGGAACCTGATAGGATGTGCACT -ACGGAACCTGATAGGATGCTGACT -ACGGAACCTGATAGGATGCAACCT -ACGGAACCTGATAGGATGGCTACT -ACGGAACCTGATAGGATGGGATCT -ACGGAACCTGATAGGATGAAGGCT -ACGGAACCTGATAGGATGTCAACC -ACGGAACCTGATAGGATGTGTTCC -ACGGAACCTGATAGGATGATTCCC -ACGGAACCTGATAGGATGTTCTCG -ACGGAACCTGATAGGATGTAGACG -ACGGAACCTGATAGGATGGTAACG -ACGGAACCTGATAGGATGACTTCG -ACGGAACCTGATAGGATGTACGCA -ACGGAACCTGATAGGATGCTTGCA -ACGGAACCTGATAGGATGCGAACA -ACGGAACCTGATAGGATGCAGTCA -ACGGAACCTGATAGGATGGATCCA -ACGGAACCTGATAGGATGACGACA -ACGGAACCTGATAGGATGAGCTCA -ACGGAACCTGATAGGATGTCACGT -ACGGAACCTGATAGGATGCGTAGT -ACGGAACCTGATAGGATGGTCAGT -ACGGAACCTGATAGGATGGAAGGT -ACGGAACCTGATAGGATGAACCGT -ACGGAACCTGATAGGATGTTGTGC -ACGGAACCTGATAGGATGCTAAGC -ACGGAACCTGATAGGATGACTAGC -ACGGAACCTGATAGGATGAGATGC -ACGGAACCTGATAGGATGTGAAGG -ACGGAACCTGATAGGATGCAATGG -ACGGAACCTGATAGGATGATGAGG -ACGGAACCTGATAGGATGAATGGG -ACGGAACCTGATAGGATGTCCTGA -ACGGAACCTGATAGGATGTAGCGA -ACGGAACCTGATAGGATGCACAGA -ACGGAACCTGATAGGATGGCAAGA -ACGGAACCTGATAGGATGGGTTGA -ACGGAACCTGATAGGATGTCCGAT -ACGGAACCTGATAGGATGTGGCAT -ACGGAACCTGATAGGATGCGAGAT -ACGGAACCTGATAGGATGTACCAC -ACGGAACCTGATAGGATGCAGAAC -ACGGAACCTGATAGGATGGTCTAC -ACGGAACCTGATAGGATGACGTAC -ACGGAACCTGATAGGATGAGTGAC -ACGGAACCTGATAGGATGCTGTAG -ACGGAACCTGATAGGATGCCTAAG -ACGGAACCTGATAGGATGGTTCAG -ACGGAACCTGATAGGATGGCATAG -ACGGAACCTGATAGGATGGACAAG -ACGGAACCTGATAGGATGAAGCAG -ACGGAACCTGATAGGATGCGTCAA -ACGGAACCTGATAGGATGGCTGAA -ACGGAACCTGATAGGATGAGTACG -ACGGAACCTGATAGGATGATCCGA -ACGGAACCTGATAGGATGATGGGA -ACGGAACCTGATAGGATGGTGCAA -ACGGAACCTGATAGGATGGAGGAA -ACGGAACCTGATAGGATGCAGGTA -ACGGAACCTGATAGGATGGACTCT -ACGGAACCTGATAGGATGAGTCCT -ACGGAACCTGATAGGATGTAAGCC -ACGGAACCTGATAGGATGATAGCC -ACGGAACCTGATAGGATGTAACCG -ACGGAACCTGATAGGATGATGCCA -ACGGAACCTGATGGGAATGGAAAC -ACGGAACCTGATGGGAATAACACC -ACGGAACCTGATGGGAATATCGAG -ACGGAACCTGATGGGAATCTCCTT -ACGGAACCTGATGGGAATCCTGTT -ACGGAACCTGATGGGAATCGGTTT -ACGGAACCTGATGGGAATGTGGTT -ACGGAACCTGATGGGAATGCCTTT -ACGGAACCTGATGGGAATGGTCTT -ACGGAACCTGATGGGAATACGCTT -ACGGAACCTGATGGGAATAGCGTT -ACGGAACCTGATGGGAATTTCGTC -ACGGAACCTGATGGGAATTCTCTC -ACGGAACCTGATGGGAATTGGATC -ACGGAACCTGATGGGAATCACTTC -ACGGAACCTGATGGGAATGTACTC -ACGGAACCTGATGGGAATGATGTC -ACGGAACCTGATGGGAATACAGTC -ACGGAACCTGATGGGAATTTGCTG -ACGGAACCTGATGGGAATTCCATG -ACGGAACCTGATGGGAATTGTGTG -ACGGAACCTGATGGGAATCTAGTG -ACGGAACCTGATGGGAATCATCTG -ACGGAACCTGATGGGAATGAGTTG -ACGGAACCTGATGGGAATAGACTG -ACGGAACCTGATGGGAATTCGGTA -ACGGAACCTGATGGGAATTGCCTA -ACGGAACCTGATGGGAATCCACTA -ACGGAACCTGATGGGAATGGAGTA -ACGGAACCTGATGGGAATTCGTCT -ACGGAACCTGATGGGAATTGCACT -ACGGAACCTGATGGGAATCTGACT -ACGGAACCTGATGGGAATCAACCT -ACGGAACCTGATGGGAATGCTACT -ACGGAACCTGATGGGAATGGATCT -ACGGAACCTGATGGGAATAAGGCT -ACGGAACCTGATGGGAATTCAACC -ACGGAACCTGATGGGAATTGTTCC -ACGGAACCTGATGGGAATATTCCC -ACGGAACCTGATGGGAATTTCTCG -ACGGAACCTGATGGGAATTAGACG -ACGGAACCTGATGGGAATGTAACG -ACGGAACCTGATGGGAATACTTCG -ACGGAACCTGATGGGAATTACGCA -ACGGAACCTGATGGGAATCTTGCA -ACGGAACCTGATGGGAATCGAACA -ACGGAACCTGATGGGAATCAGTCA -ACGGAACCTGATGGGAATGATCCA -ACGGAACCTGATGGGAATACGACA -ACGGAACCTGATGGGAATAGCTCA -ACGGAACCTGATGGGAATTCACGT -ACGGAACCTGATGGGAATCGTAGT -ACGGAACCTGATGGGAATGTCAGT -ACGGAACCTGATGGGAATGAAGGT -ACGGAACCTGATGGGAATAACCGT -ACGGAACCTGATGGGAATTTGTGC -ACGGAACCTGATGGGAATCTAAGC -ACGGAACCTGATGGGAATACTAGC -ACGGAACCTGATGGGAATAGATGC -ACGGAACCTGATGGGAATTGAAGG -ACGGAACCTGATGGGAATCAATGG -ACGGAACCTGATGGGAATATGAGG -ACGGAACCTGATGGGAATAATGGG -ACGGAACCTGATGGGAATTCCTGA -ACGGAACCTGATGGGAATTAGCGA -ACGGAACCTGATGGGAATCACAGA -ACGGAACCTGATGGGAATGCAAGA -ACGGAACCTGATGGGAATGGTTGA -ACGGAACCTGATGGGAATTCCGAT -ACGGAACCTGATGGGAATTGGCAT -ACGGAACCTGATGGGAATCGAGAT -ACGGAACCTGATGGGAATTACCAC -ACGGAACCTGATGGGAATCAGAAC -ACGGAACCTGATGGGAATGTCTAC -ACGGAACCTGATGGGAATACGTAC -ACGGAACCTGATGGGAATAGTGAC -ACGGAACCTGATGGGAATCTGTAG -ACGGAACCTGATGGGAATCCTAAG -ACGGAACCTGATGGGAATGTTCAG -ACGGAACCTGATGGGAATGCATAG -ACGGAACCTGATGGGAATGACAAG -ACGGAACCTGATGGGAATAAGCAG -ACGGAACCTGATGGGAATCGTCAA -ACGGAACCTGATGGGAATGCTGAA -ACGGAACCTGATGGGAATAGTACG -ACGGAACCTGATGGGAATATCCGA -ACGGAACCTGATGGGAATATGGGA -ACGGAACCTGATGGGAATGTGCAA -ACGGAACCTGATGGGAATGAGGAA -ACGGAACCTGATGGGAATCAGGTA -ACGGAACCTGATGGGAATGACTCT -ACGGAACCTGATGGGAATAGTCCT -ACGGAACCTGATGGGAATTAAGCC -ACGGAACCTGATGGGAATATAGCC -ACGGAACCTGATGGGAATTAACCG -ACGGAACCTGATGGGAATATGCCA -ACGGAACCTGATTGATCCGGAAAC -ACGGAACCTGATTGATCCAACACC -ACGGAACCTGATTGATCCATCGAG -ACGGAACCTGATTGATCCCTCCTT -ACGGAACCTGATTGATCCCCTGTT -ACGGAACCTGATTGATCCCGGTTT -ACGGAACCTGATTGATCCGTGGTT -ACGGAACCTGATTGATCCGCCTTT -ACGGAACCTGATTGATCCGGTCTT -ACGGAACCTGATTGATCCACGCTT -ACGGAACCTGATTGATCCAGCGTT -ACGGAACCTGATTGATCCTTCGTC -ACGGAACCTGATTGATCCTCTCTC -ACGGAACCTGATTGATCCTGGATC -ACGGAACCTGATTGATCCCACTTC -ACGGAACCTGATTGATCCGTACTC -ACGGAACCTGATTGATCCGATGTC -ACGGAACCTGATTGATCCACAGTC -ACGGAACCTGATTGATCCTTGCTG -ACGGAACCTGATTGATCCTCCATG -ACGGAACCTGATTGATCCTGTGTG -ACGGAACCTGATTGATCCCTAGTG -ACGGAACCTGATTGATCCCATCTG -ACGGAACCTGATTGATCCGAGTTG -ACGGAACCTGATTGATCCAGACTG -ACGGAACCTGATTGATCCTCGGTA -ACGGAACCTGATTGATCCTGCCTA -ACGGAACCTGATTGATCCCCACTA -ACGGAACCTGATTGATCCGGAGTA -ACGGAACCTGATTGATCCTCGTCT -ACGGAACCTGATTGATCCTGCACT -ACGGAACCTGATTGATCCCTGACT -ACGGAACCTGATTGATCCCAACCT -ACGGAACCTGATTGATCCGCTACT -ACGGAACCTGATTGATCCGGATCT -ACGGAACCTGATTGATCCAAGGCT -ACGGAACCTGATTGATCCTCAACC -ACGGAACCTGATTGATCCTGTTCC -ACGGAACCTGATTGATCCATTCCC -ACGGAACCTGATTGATCCTTCTCG -ACGGAACCTGATTGATCCTAGACG -ACGGAACCTGATTGATCCGTAACG -ACGGAACCTGATTGATCCACTTCG -ACGGAACCTGATTGATCCTACGCA -ACGGAACCTGATTGATCCCTTGCA -ACGGAACCTGATTGATCCCGAACA -ACGGAACCTGATTGATCCCAGTCA -ACGGAACCTGATTGATCCGATCCA -ACGGAACCTGATTGATCCACGACA -ACGGAACCTGATTGATCCAGCTCA -ACGGAACCTGATTGATCCTCACGT -ACGGAACCTGATTGATCCCGTAGT -ACGGAACCTGATTGATCCGTCAGT -ACGGAACCTGATTGATCCGAAGGT -ACGGAACCTGATTGATCCAACCGT -ACGGAACCTGATTGATCCTTGTGC -ACGGAACCTGATTGATCCCTAAGC -ACGGAACCTGATTGATCCACTAGC -ACGGAACCTGATTGATCCAGATGC -ACGGAACCTGATTGATCCTGAAGG -ACGGAACCTGATTGATCCCAATGG -ACGGAACCTGATTGATCCATGAGG -ACGGAACCTGATTGATCCAATGGG -ACGGAACCTGATTGATCCTCCTGA -ACGGAACCTGATTGATCCTAGCGA -ACGGAACCTGATTGATCCCACAGA -ACGGAACCTGATTGATCCGCAAGA -ACGGAACCTGATTGATCCGGTTGA -ACGGAACCTGATTGATCCTCCGAT -ACGGAACCTGATTGATCCTGGCAT -ACGGAACCTGATTGATCCCGAGAT -ACGGAACCTGATTGATCCTACCAC -ACGGAACCTGATTGATCCCAGAAC -ACGGAACCTGATTGATCCGTCTAC -ACGGAACCTGATTGATCCACGTAC -ACGGAACCTGATTGATCCAGTGAC -ACGGAACCTGATTGATCCCTGTAG -ACGGAACCTGATTGATCCCCTAAG -ACGGAACCTGATTGATCCGTTCAG -ACGGAACCTGATTGATCCGCATAG -ACGGAACCTGATTGATCCGACAAG -ACGGAACCTGATTGATCCAAGCAG -ACGGAACCTGATTGATCCCGTCAA -ACGGAACCTGATTGATCCGCTGAA -ACGGAACCTGATTGATCCAGTACG -ACGGAACCTGATTGATCCATCCGA -ACGGAACCTGATTGATCCATGGGA -ACGGAACCTGATTGATCCGTGCAA -ACGGAACCTGATTGATCCGAGGAA -ACGGAACCTGATTGATCCCAGGTA -ACGGAACCTGATTGATCCGACTCT -ACGGAACCTGATTGATCCAGTCCT -ACGGAACCTGATTGATCCTAAGCC -ACGGAACCTGATTGATCCATAGCC -ACGGAACCTGATTGATCCTAACCG -ACGGAACCTGATTGATCCATGCCA -ACGGAACCTGATCGATAGGGAAAC -ACGGAACCTGATCGATAGAACACC -ACGGAACCTGATCGATAGATCGAG -ACGGAACCTGATCGATAGCTCCTT -ACGGAACCTGATCGATAGCCTGTT -ACGGAACCTGATCGATAGCGGTTT -ACGGAACCTGATCGATAGGTGGTT -ACGGAACCTGATCGATAGGCCTTT -ACGGAACCTGATCGATAGGGTCTT -ACGGAACCTGATCGATAGACGCTT -ACGGAACCTGATCGATAGAGCGTT -ACGGAACCTGATCGATAGTTCGTC -ACGGAACCTGATCGATAGTCTCTC -ACGGAACCTGATCGATAGTGGATC -ACGGAACCTGATCGATAGCACTTC -ACGGAACCTGATCGATAGGTACTC -ACGGAACCTGATCGATAGGATGTC -ACGGAACCTGATCGATAGACAGTC -ACGGAACCTGATCGATAGTTGCTG -ACGGAACCTGATCGATAGTCCATG -ACGGAACCTGATCGATAGTGTGTG -ACGGAACCTGATCGATAGCTAGTG -ACGGAACCTGATCGATAGCATCTG -ACGGAACCTGATCGATAGGAGTTG -ACGGAACCTGATCGATAGAGACTG -ACGGAACCTGATCGATAGTCGGTA -ACGGAACCTGATCGATAGTGCCTA -ACGGAACCTGATCGATAGCCACTA -ACGGAACCTGATCGATAGGGAGTA -ACGGAACCTGATCGATAGTCGTCT -ACGGAACCTGATCGATAGTGCACT -ACGGAACCTGATCGATAGCTGACT -ACGGAACCTGATCGATAGCAACCT -ACGGAACCTGATCGATAGGCTACT -ACGGAACCTGATCGATAGGGATCT -ACGGAACCTGATCGATAGAAGGCT -ACGGAACCTGATCGATAGTCAACC -ACGGAACCTGATCGATAGTGTTCC -ACGGAACCTGATCGATAGATTCCC -ACGGAACCTGATCGATAGTTCTCG -ACGGAACCTGATCGATAGTAGACG -ACGGAACCTGATCGATAGGTAACG -ACGGAACCTGATCGATAGACTTCG -ACGGAACCTGATCGATAGTACGCA -ACGGAACCTGATCGATAGCTTGCA -ACGGAACCTGATCGATAGCGAACA -ACGGAACCTGATCGATAGCAGTCA -ACGGAACCTGATCGATAGGATCCA -ACGGAACCTGATCGATAGACGACA -ACGGAACCTGATCGATAGAGCTCA -ACGGAACCTGATCGATAGTCACGT -ACGGAACCTGATCGATAGCGTAGT -ACGGAACCTGATCGATAGGTCAGT -ACGGAACCTGATCGATAGGAAGGT -ACGGAACCTGATCGATAGAACCGT -ACGGAACCTGATCGATAGTTGTGC -ACGGAACCTGATCGATAGCTAAGC -ACGGAACCTGATCGATAGACTAGC -ACGGAACCTGATCGATAGAGATGC -ACGGAACCTGATCGATAGTGAAGG -ACGGAACCTGATCGATAGCAATGG -ACGGAACCTGATCGATAGATGAGG -ACGGAACCTGATCGATAGAATGGG -ACGGAACCTGATCGATAGTCCTGA -ACGGAACCTGATCGATAGTAGCGA -ACGGAACCTGATCGATAGCACAGA -ACGGAACCTGATCGATAGGCAAGA -ACGGAACCTGATCGATAGGGTTGA -ACGGAACCTGATCGATAGTCCGAT -ACGGAACCTGATCGATAGTGGCAT -ACGGAACCTGATCGATAGCGAGAT -ACGGAACCTGATCGATAGTACCAC -ACGGAACCTGATCGATAGCAGAAC -ACGGAACCTGATCGATAGGTCTAC -ACGGAACCTGATCGATAGACGTAC -ACGGAACCTGATCGATAGAGTGAC -ACGGAACCTGATCGATAGCTGTAG -ACGGAACCTGATCGATAGCCTAAG -ACGGAACCTGATCGATAGGTTCAG -ACGGAACCTGATCGATAGGCATAG -ACGGAACCTGATCGATAGGACAAG -ACGGAACCTGATCGATAGAAGCAG -ACGGAACCTGATCGATAGCGTCAA -ACGGAACCTGATCGATAGGCTGAA -ACGGAACCTGATCGATAGAGTACG -ACGGAACCTGATCGATAGATCCGA -ACGGAACCTGATCGATAGATGGGA -ACGGAACCTGATCGATAGGTGCAA -ACGGAACCTGATCGATAGGAGGAA -ACGGAACCTGATCGATAGCAGGTA -ACGGAACCTGATCGATAGGACTCT -ACGGAACCTGATCGATAGAGTCCT -ACGGAACCTGATCGATAGTAAGCC -ACGGAACCTGATCGATAGATAGCC -ACGGAACCTGATCGATAGTAACCG -ACGGAACCTGATCGATAGATGCCA -ACGGAACCTGATAGACACGGAAAC -ACGGAACCTGATAGACACAACACC -ACGGAACCTGATAGACACATCGAG -ACGGAACCTGATAGACACCTCCTT -ACGGAACCTGATAGACACCCTGTT -ACGGAACCTGATAGACACCGGTTT -ACGGAACCTGATAGACACGTGGTT -ACGGAACCTGATAGACACGCCTTT -ACGGAACCTGATAGACACGGTCTT -ACGGAACCTGATAGACACACGCTT -ACGGAACCTGATAGACACAGCGTT -ACGGAACCTGATAGACACTTCGTC -ACGGAACCTGATAGACACTCTCTC -ACGGAACCTGATAGACACTGGATC -ACGGAACCTGATAGACACCACTTC -ACGGAACCTGATAGACACGTACTC -ACGGAACCTGATAGACACGATGTC -ACGGAACCTGATAGACACACAGTC -ACGGAACCTGATAGACACTTGCTG -ACGGAACCTGATAGACACTCCATG -ACGGAACCTGATAGACACTGTGTG -ACGGAACCTGATAGACACCTAGTG -ACGGAACCTGATAGACACCATCTG -ACGGAACCTGATAGACACGAGTTG -ACGGAACCTGATAGACACAGACTG -ACGGAACCTGATAGACACTCGGTA -ACGGAACCTGATAGACACTGCCTA -ACGGAACCTGATAGACACCCACTA -ACGGAACCTGATAGACACGGAGTA -ACGGAACCTGATAGACACTCGTCT -ACGGAACCTGATAGACACTGCACT -ACGGAACCTGATAGACACCTGACT -ACGGAACCTGATAGACACCAACCT -ACGGAACCTGATAGACACGCTACT -ACGGAACCTGATAGACACGGATCT -ACGGAACCTGATAGACACAAGGCT -ACGGAACCTGATAGACACTCAACC -ACGGAACCTGATAGACACTGTTCC -ACGGAACCTGATAGACACATTCCC -ACGGAACCTGATAGACACTTCTCG -ACGGAACCTGATAGACACTAGACG -ACGGAACCTGATAGACACGTAACG -ACGGAACCTGATAGACACACTTCG -ACGGAACCTGATAGACACTACGCA -ACGGAACCTGATAGACACCTTGCA -ACGGAACCTGATAGACACCGAACA -ACGGAACCTGATAGACACCAGTCA -ACGGAACCTGATAGACACGATCCA -ACGGAACCTGATAGACACACGACA -ACGGAACCTGATAGACACAGCTCA -ACGGAACCTGATAGACACTCACGT -ACGGAACCTGATAGACACCGTAGT -ACGGAACCTGATAGACACGTCAGT -ACGGAACCTGATAGACACGAAGGT -ACGGAACCTGATAGACACAACCGT -ACGGAACCTGATAGACACTTGTGC -ACGGAACCTGATAGACACCTAAGC -ACGGAACCTGATAGACACACTAGC -ACGGAACCTGATAGACACAGATGC -ACGGAACCTGATAGACACTGAAGG -ACGGAACCTGATAGACACCAATGG -ACGGAACCTGATAGACACATGAGG -ACGGAACCTGATAGACACAATGGG -ACGGAACCTGATAGACACTCCTGA -ACGGAACCTGATAGACACTAGCGA -ACGGAACCTGATAGACACCACAGA -ACGGAACCTGATAGACACGCAAGA -ACGGAACCTGATAGACACGGTTGA -ACGGAACCTGATAGACACTCCGAT -ACGGAACCTGATAGACACTGGCAT -ACGGAACCTGATAGACACCGAGAT -ACGGAACCTGATAGACACTACCAC -ACGGAACCTGATAGACACCAGAAC -ACGGAACCTGATAGACACGTCTAC -ACGGAACCTGATAGACACACGTAC -ACGGAACCTGATAGACACAGTGAC -ACGGAACCTGATAGACACCTGTAG -ACGGAACCTGATAGACACCCTAAG -ACGGAACCTGATAGACACGTTCAG -ACGGAACCTGATAGACACGCATAG -ACGGAACCTGATAGACACGACAAG -ACGGAACCTGATAGACACAAGCAG -ACGGAACCTGATAGACACCGTCAA -ACGGAACCTGATAGACACGCTGAA -ACGGAACCTGATAGACACAGTACG -ACGGAACCTGATAGACACATCCGA -ACGGAACCTGATAGACACATGGGA -ACGGAACCTGATAGACACGTGCAA -ACGGAACCTGATAGACACGAGGAA -ACGGAACCTGATAGACACCAGGTA -ACGGAACCTGATAGACACGACTCT -ACGGAACCTGATAGACACAGTCCT -ACGGAACCTGATAGACACTAAGCC -ACGGAACCTGATAGACACATAGCC -ACGGAACCTGATAGACACTAACCG -ACGGAACCTGATAGACACATGCCA -ACGGAACCTGATAGAGCAGGAAAC -ACGGAACCTGATAGAGCAAACACC -ACGGAACCTGATAGAGCAATCGAG -ACGGAACCTGATAGAGCACTCCTT -ACGGAACCTGATAGAGCACCTGTT -ACGGAACCTGATAGAGCACGGTTT -ACGGAACCTGATAGAGCAGTGGTT -ACGGAACCTGATAGAGCAGCCTTT -ACGGAACCTGATAGAGCAGGTCTT -ACGGAACCTGATAGAGCAACGCTT -ACGGAACCTGATAGAGCAAGCGTT -ACGGAACCTGATAGAGCATTCGTC -ACGGAACCTGATAGAGCATCTCTC -ACGGAACCTGATAGAGCATGGATC -ACGGAACCTGATAGAGCACACTTC -ACGGAACCTGATAGAGCAGTACTC -ACGGAACCTGATAGAGCAGATGTC -ACGGAACCTGATAGAGCAACAGTC -ACGGAACCTGATAGAGCATTGCTG -ACGGAACCTGATAGAGCATCCATG -ACGGAACCTGATAGAGCATGTGTG -ACGGAACCTGATAGAGCACTAGTG -ACGGAACCTGATAGAGCACATCTG -ACGGAACCTGATAGAGCAGAGTTG -ACGGAACCTGATAGAGCAAGACTG -ACGGAACCTGATAGAGCATCGGTA -ACGGAACCTGATAGAGCATGCCTA -ACGGAACCTGATAGAGCACCACTA -ACGGAACCTGATAGAGCAGGAGTA -ACGGAACCTGATAGAGCATCGTCT -ACGGAACCTGATAGAGCATGCACT -ACGGAACCTGATAGAGCACTGACT -ACGGAACCTGATAGAGCACAACCT -ACGGAACCTGATAGAGCAGCTACT -ACGGAACCTGATAGAGCAGGATCT -ACGGAACCTGATAGAGCAAAGGCT -ACGGAACCTGATAGAGCATCAACC -ACGGAACCTGATAGAGCATGTTCC -ACGGAACCTGATAGAGCAATTCCC -ACGGAACCTGATAGAGCATTCTCG -ACGGAACCTGATAGAGCATAGACG -ACGGAACCTGATAGAGCAGTAACG -ACGGAACCTGATAGAGCAACTTCG -ACGGAACCTGATAGAGCATACGCA -ACGGAACCTGATAGAGCACTTGCA -ACGGAACCTGATAGAGCACGAACA -ACGGAACCTGATAGAGCACAGTCA -ACGGAACCTGATAGAGCAGATCCA -ACGGAACCTGATAGAGCAACGACA -ACGGAACCTGATAGAGCAAGCTCA -ACGGAACCTGATAGAGCATCACGT -ACGGAACCTGATAGAGCACGTAGT -ACGGAACCTGATAGAGCAGTCAGT -ACGGAACCTGATAGAGCAGAAGGT -ACGGAACCTGATAGAGCAAACCGT -ACGGAACCTGATAGAGCATTGTGC -ACGGAACCTGATAGAGCACTAAGC -ACGGAACCTGATAGAGCAACTAGC -ACGGAACCTGATAGAGCAAGATGC -ACGGAACCTGATAGAGCATGAAGG -ACGGAACCTGATAGAGCACAATGG -ACGGAACCTGATAGAGCAATGAGG -ACGGAACCTGATAGAGCAAATGGG -ACGGAACCTGATAGAGCATCCTGA -ACGGAACCTGATAGAGCATAGCGA -ACGGAACCTGATAGAGCACACAGA -ACGGAACCTGATAGAGCAGCAAGA -ACGGAACCTGATAGAGCAGGTTGA -ACGGAACCTGATAGAGCATCCGAT -ACGGAACCTGATAGAGCATGGCAT -ACGGAACCTGATAGAGCACGAGAT -ACGGAACCTGATAGAGCATACCAC -ACGGAACCTGATAGAGCACAGAAC -ACGGAACCTGATAGAGCAGTCTAC -ACGGAACCTGATAGAGCAACGTAC -ACGGAACCTGATAGAGCAAGTGAC -ACGGAACCTGATAGAGCACTGTAG -ACGGAACCTGATAGAGCACCTAAG -ACGGAACCTGATAGAGCAGTTCAG -ACGGAACCTGATAGAGCAGCATAG -ACGGAACCTGATAGAGCAGACAAG -ACGGAACCTGATAGAGCAAAGCAG -ACGGAACCTGATAGAGCACGTCAA -ACGGAACCTGATAGAGCAGCTGAA -ACGGAACCTGATAGAGCAAGTACG -ACGGAACCTGATAGAGCAATCCGA -ACGGAACCTGATAGAGCAATGGGA -ACGGAACCTGATAGAGCAGTGCAA -ACGGAACCTGATAGAGCAGAGGAA -ACGGAACCTGATAGAGCACAGGTA -ACGGAACCTGATAGAGCAGACTCT -ACGGAACCTGATAGAGCAAGTCCT -ACGGAACCTGATAGAGCATAAGCC -ACGGAACCTGATAGAGCAATAGCC -ACGGAACCTGATAGAGCATAACCG -ACGGAACCTGATAGAGCAATGCCA -ACGGAACCTGATTGAGGTGGAAAC -ACGGAACCTGATTGAGGTAACACC -ACGGAACCTGATTGAGGTATCGAG -ACGGAACCTGATTGAGGTCTCCTT -ACGGAACCTGATTGAGGTCCTGTT -ACGGAACCTGATTGAGGTCGGTTT -ACGGAACCTGATTGAGGTGTGGTT -ACGGAACCTGATTGAGGTGCCTTT -ACGGAACCTGATTGAGGTGGTCTT -ACGGAACCTGATTGAGGTACGCTT -ACGGAACCTGATTGAGGTAGCGTT -ACGGAACCTGATTGAGGTTTCGTC -ACGGAACCTGATTGAGGTTCTCTC -ACGGAACCTGATTGAGGTTGGATC -ACGGAACCTGATTGAGGTCACTTC -ACGGAACCTGATTGAGGTGTACTC -ACGGAACCTGATTGAGGTGATGTC -ACGGAACCTGATTGAGGTACAGTC -ACGGAACCTGATTGAGGTTTGCTG -ACGGAACCTGATTGAGGTTCCATG -ACGGAACCTGATTGAGGTTGTGTG -ACGGAACCTGATTGAGGTCTAGTG -ACGGAACCTGATTGAGGTCATCTG -ACGGAACCTGATTGAGGTGAGTTG -ACGGAACCTGATTGAGGTAGACTG -ACGGAACCTGATTGAGGTTCGGTA -ACGGAACCTGATTGAGGTTGCCTA -ACGGAACCTGATTGAGGTCCACTA -ACGGAACCTGATTGAGGTGGAGTA -ACGGAACCTGATTGAGGTTCGTCT -ACGGAACCTGATTGAGGTTGCACT -ACGGAACCTGATTGAGGTCTGACT -ACGGAACCTGATTGAGGTCAACCT -ACGGAACCTGATTGAGGTGCTACT -ACGGAACCTGATTGAGGTGGATCT -ACGGAACCTGATTGAGGTAAGGCT -ACGGAACCTGATTGAGGTTCAACC -ACGGAACCTGATTGAGGTTGTTCC -ACGGAACCTGATTGAGGTATTCCC -ACGGAACCTGATTGAGGTTTCTCG -ACGGAACCTGATTGAGGTTAGACG -ACGGAACCTGATTGAGGTGTAACG -ACGGAACCTGATTGAGGTACTTCG -ACGGAACCTGATTGAGGTTACGCA -ACGGAACCTGATTGAGGTCTTGCA -ACGGAACCTGATTGAGGTCGAACA -ACGGAACCTGATTGAGGTCAGTCA -ACGGAACCTGATTGAGGTGATCCA -ACGGAACCTGATTGAGGTACGACA -ACGGAACCTGATTGAGGTAGCTCA -ACGGAACCTGATTGAGGTTCACGT -ACGGAACCTGATTGAGGTCGTAGT -ACGGAACCTGATTGAGGTGTCAGT -ACGGAACCTGATTGAGGTGAAGGT -ACGGAACCTGATTGAGGTAACCGT -ACGGAACCTGATTGAGGTTTGTGC -ACGGAACCTGATTGAGGTCTAAGC -ACGGAACCTGATTGAGGTACTAGC -ACGGAACCTGATTGAGGTAGATGC -ACGGAACCTGATTGAGGTTGAAGG -ACGGAACCTGATTGAGGTCAATGG -ACGGAACCTGATTGAGGTATGAGG -ACGGAACCTGATTGAGGTAATGGG -ACGGAACCTGATTGAGGTTCCTGA -ACGGAACCTGATTGAGGTTAGCGA -ACGGAACCTGATTGAGGTCACAGA -ACGGAACCTGATTGAGGTGCAAGA -ACGGAACCTGATTGAGGTGGTTGA -ACGGAACCTGATTGAGGTTCCGAT -ACGGAACCTGATTGAGGTTGGCAT -ACGGAACCTGATTGAGGTCGAGAT -ACGGAACCTGATTGAGGTTACCAC -ACGGAACCTGATTGAGGTCAGAAC -ACGGAACCTGATTGAGGTGTCTAC -ACGGAACCTGATTGAGGTACGTAC -ACGGAACCTGATTGAGGTAGTGAC -ACGGAACCTGATTGAGGTCTGTAG -ACGGAACCTGATTGAGGTCCTAAG -ACGGAACCTGATTGAGGTGTTCAG -ACGGAACCTGATTGAGGTGCATAG -ACGGAACCTGATTGAGGTGACAAG -ACGGAACCTGATTGAGGTAAGCAG -ACGGAACCTGATTGAGGTCGTCAA -ACGGAACCTGATTGAGGTGCTGAA -ACGGAACCTGATTGAGGTAGTACG -ACGGAACCTGATTGAGGTATCCGA -ACGGAACCTGATTGAGGTATGGGA -ACGGAACCTGATTGAGGTGTGCAA -ACGGAACCTGATTGAGGTGAGGAA -ACGGAACCTGATTGAGGTCAGGTA -ACGGAACCTGATTGAGGTGACTCT -ACGGAACCTGATTGAGGTAGTCCT -ACGGAACCTGATTGAGGTTAAGCC -ACGGAACCTGATTGAGGTATAGCC -ACGGAACCTGATTGAGGTTAACCG -ACGGAACCTGATTGAGGTATGCCA -ACGGAACCTGATGATTCCGGAAAC -ACGGAACCTGATGATTCCAACACC -ACGGAACCTGATGATTCCATCGAG -ACGGAACCTGATGATTCCCTCCTT -ACGGAACCTGATGATTCCCCTGTT -ACGGAACCTGATGATTCCCGGTTT -ACGGAACCTGATGATTCCGTGGTT -ACGGAACCTGATGATTCCGCCTTT -ACGGAACCTGATGATTCCGGTCTT -ACGGAACCTGATGATTCCACGCTT -ACGGAACCTGATGATTCCAGCGTT -ACGGAACCTGATGATTCCTTCGTC -ACGGAACCTGATGATTCCTCTCTC -ACGGAACCTGATGATTCCTGGATC -ACGGAACCTGATGATTCCCACTTC -ACGGAACCTGATGATTCCGTACTC -ACGGAACCTGATGATTCCGATGTC -ACGGAACCTGATGATTCCACAGTC -ACGGAACCTGATGATTCCTTGCTG -ACGGAACCTGATGATTCCTCCATG -ACGGAACCTGATGATTCCTGTGTG -ACGGAACCTGATGATTCCCTAGTG -ACGGAACCTGATGATTCCCATCTG -ACGGAACCTGATGATTCCGAGTTG -ACGGAACCTGATGATTCCAGACTG -ACGGAACCTGATGATTCCTCGGTA -ACGGAACCTGATGATTCCTGCCTA -ACGGAACCTGATGATTCCCCACTA -ACGGAACCTGATGATTCCGGAGTA -ACGGAACCTGATGATTCCTCGTCT -ACGGAACCTGATGATTCCTGCACT -ACGGAACCTGATGATTCCCTGACT -ACGGAACCTGATGATTCCCAACCT -ACGGAACCTGATGATTCCGCTACT -ACGGAACCTGATGATTCCGGATCT -ACGGAACCTGATGATTCCAAGGCT -ACGGAACCTGATGATTCCTCAACC -ACGGAACCTGATGATTCCTGTTCC -ACGGAACCTGATGATTCCATTCCC -ACGGAACCTGATGATTCCTTCTCG -ACGGAACCTGATGATTCCTAGACG -ACGGAACCTGATGATTCCGTAACG -ACGGAACCTGATGATTCCACTTCG -ACGGAACCTGATGATTCCTACGCA -ACGGAACCTGATGATTCCCTTGCA -ACGGAACCTGATGATTCCCGAACA -ACGGAACCTGATGATTCCCAGTCA -ACGGAACCTGATGATTCCGATCCA -ACGGAACCTGATGATTCCACGACA -ACGGAACCTGATGATTCCAGCTCA -ACGGAACCTGATGATTCCTCACGT -ACGGAACCTGATGATTCCCGTAGT -ACGGAACCTGATGATTCCGTCAGT -ACGGAACCTGATGATTCCGAAGGT -ACGGAACCTGATGATTCCAACCGT -ACGGAACCTGATGATTCCTTGTGC -ACGGAACCTGATGATTCCCTAAGC -ACGGAACCTGATGATTCCACTAGC -ACGGAACCTGATGATTCCAGATGC -ACGGAACCTGATGATTCCTGAAGG -ACGGAACCTGATGATTCCCAATGG -ACGGAACCTGATGATTCCATGAGG -ACGGAACCTGATGATTCCAATGGG -ACGGAACCTGATGATTCCTCCTGA -ACGGAACCTGATGATTCCTAGCGA -ACGGAACCTGATGATTCCCACAGA -ACGGAACCTGATGATTCCGCAAGA -ACGGAACCTGATGATTCCGGTTGA -ACGGAACCTGATGATTCCTCCGAT -ACGGAACCTGATGATTCCTGGCAT -ACGGAACCTGATGATTCCCGAGAT -ACGGAACCTGATGATTCCTACCAC -ACGGAACCTGATGATTCCCAGAAC -ACGGAACCTGATGATTCCGTCTAC -ACGGAACCTGATGATTCCACGTAC -ACGGAACCTGATGATTCCAGTGAC -ACGGAACCTGATGATTCCCTGTAG -ACGGAACCTGATGATTCCCCTAAG -ACGGAACCTGATGATTCCGTTCAG -ACGGAACCTGATGATTCCGCATAG -ACGGAACCTGATGATTCCGACAAG -ACGGAACCTGATGATTCCAAGCAG -ACGGAACCTGATGATTCCCGTCAA -ACGGAACCTGATGATTCCGCTGAA -ACGGAACCTGATGATTCCAGTACG -ACGGAACCTGATGATTCCATCCGA -ACGGAACCTGATGATTCCATGGGA -ACGGAACCTGATGATTCCGTGCAA -ACGGAACCTGATGATTCCGAGGAA -ACGGAACCTGATGATTCCCAGGTA -ACGGAACCTGATGATTCCGACTCT -ACGGAACCTGATGATTCCAGTCCT -ACGGAACCTGATGATTCCTAAGCC -ACGGAACCTGATGATTCCATAGCC -ACGGAACCTGATGATTCCTAACCG -ACGGAACCTGATGATTCCATGCCA -ACGGAACCTGATCATTGGGGAAAC -ACGGAACCTGATCATTGGAACACC -ACGGAACCTGATCATTGGATCGAG -ACGGAACCTGATCATTGGCTCCTT -ACGGAACCTGATCATTGGCCTGTT -ACGGAACCTGATCATTGGCGGTTT -ACGGAACCTGATCATTGGGTGGTT -ACGGAACCTGATCATTGGGCCTTT -ACGGAACCTGATCATTGGGGTCTT -ACGGAACCTGATCATTGGACGCTT -ACGGAACCTGATCATTGGAGCGTT -ACGGAACCTGATCATTGGTTCGTC -ACGGAACCTGATCATTGGTCTCTC -ACGGAACCTGATCATTGGTGGATC -ACGGAACCTGATCATTGGCACTTC -ACGGAACCTGATCATTGGGTACTC -ACGGAACCTGATCATTGGGATGTC -ACGGAACCTGATCATTGGACAGTC -ACGGAACCTGATCATTGGTTGCTG -ACGGAACCTGATCATTGGTCCATG -ACGGAACCTGATCATTGGTGTGTG -ACGGAACCTGATCATTGGCTAGTG -ACGGAACCTGATCATTGGCATCTG -ACGGAACCTGATCATTGGGAGTTG -ACGGAACCTGATCATTGGAGACTG -ACGGAACCTGATCATTGGTCGGTA -ACGGAACCTGATCATTGGTGCCTA -ACGGAACCTGATCATTGGCCACTA -ACGGAACCTGATCATTGGGGAGTA -ACGGAACCTGATCATTGGTCGTCT -ACGGAACCTGATCATTGGTGCACT -ACGGAACCTGATCATTGGCTGACT -ACGGAACCTGATCATTGGCAACCT -ACGGAACCTGATCATTGGGCTACT -ACGGAACCTGATCATTGGGGATCT -ACGGAACCTGATCATTGGAAGGCT -ACGGAACCTGATCATTGGTCAACC -ACGGAACCTGATCATTGGTGTTCC -ACGGAACCTGATCATTGGATTCCC -ACGGAACCTGATCATTGGTTCTCG -ACGGAACCTGATCATTGGTAGACG -ACGGAACCTGATCATTGGGTAACG -ACGGAACCTGATCATTGGACTTCG -ACGGAACCTGATCATTGGTACGCA -ACGGAACCTGATCATTGGCTTGCA -ACGGAACCTGATCATTGGCGAACA -ACGGAACCTGATCATTGGCAGTCA -ACGGAACCTGATCATTGGGATCCA -ACGGAACCTGATCATTGGACGACA -ACGGAACCTGATCATTGGAGCTCA -ACGGAACCTGATCATTGGTCACGT -ACGGAACCTGATCATTGGCGTAGT -ACGGAACCTGATCATTGGGTCAGT -ACGGAACCTGATCATTGGGAAGGT -ACGGAACCTGATCATTGGAACCGT -ACGGAACCTGATCATTGGTTGTGC -ACGGAACCTGATCATTGGCTAAGC -ACGGAACCTGATCATTGGACTAGC -ACGGAACCTGATCATTGGAGATGC -ACGGAACCTGATCATTGGTGAAGG -ACGGAACCTGATCATTGGCAATGG -ACGGAACCTGATCATTGGATGAGG -ACGGAACCTGATCATTGGAATGGG -ACGGAACCTGATCATTGGTCCTGA -ACGGAACCTGATCATTGGTAGCGA -ACGGAACCTGATCATTGGCACAGA -ACGGAACCTGATCATTGGGCAAGA -ACGGAACCTGATCATTGGGGTTGA -ACGGAACCTGATCATTGGTCCGAT -ACGGAACCTGATCATTGGTGGCAT -ACGGAACCTGATCATTGGCGAGAT -ACGGAACCTGATCATTGGTACCAC -ACGGAACCTGATCATTGGCAGAAC -ACGGAACCTGATCATTGGGTCTAC -ACGGAACCTGATCATTGGACGTAC -ACGGAACCTGATCATTGGAGTGAC -ACGGAACCTGATCATTGGCTGTAG -ACGGAACCTGATCATTGGCCTAAG -ACGGAACCTGATCATTGGGTTCAG -ACGGAACCTGATCATTGGGCATAG -ACGGAACCTGATCATTGGGACAAG -ACGGAACCTGATCATTGGAAGCAG -ACGGAACCTGATCATTGGCGTCAA -ACGGAACCTGATCATTGGGCTGAA -ACGGAACCTGATCATTGGAGTACG -ACGGAACCTGATCATTGGATCCGA -ACGGAACCTGATCATTGGATGGGA -ACGGAACCTGATCATTGGGTGCAA -ACGGAACCTGATCATTGGGAGGAA -ACGGAACCTGATCATTGGCAGGTA -ACGGAACCTGATCATTGGGACTCT -ACGGAACCTGATCATTGGAGTCCT -ACGGAACCTGATCATTGGTAAGCC -ACGGAACCTGATCATTGGATAGCC -ACGGAACCTGATCATTGGTAACCG -ACGGAACCTGATCATTGGATGCCA -ACGGAACCTGATGATCGAGGAAAC -ACGGAACCTGATGATCGAAACACC -ACGGAACCTGATGATCGAATCGAG -ACGGAACCTGATGATCGACTCCTT -ACGGAACCTGATGATCGACCTGTT -ACGGAACCTGATGATCGACGGTTT -ACGGAACCTGATGATCGAGTGGTT -ACGGAACCTGATGATCGAGCCTTT -ACGGAACCTGATGATCGAGGTCTT -ACGGAACCTGATGATCGAACGCTT -ACGGAACCTGATGATCGAAGCGTT -ACGGAACCTGATGATCGATTCGTC -ACGGAACCTGATGATCGATCTCTC -ACGGAACCTGATGATCGATGGATC -ACGGAACCTGATGATCGACACTTC -ACGGAACCTGATGATCGAGTACTC -ACGGAACCTGATGATCGAGATGTC -ACGGAACCTGATGATCGAACAGTC -ACGGAACCTGATGATCGATTGCTG -ACGGAACCTGATGATCGATCCATG -ACGGAACCTGATGATCGATGTGTG -ACGGAACCTGATGATCGACTAGTG -ACGGAACCTGATGATCGACATCTG -ACGGAACCTGATGATCGAGAGTTG -ACGGAACCTGATGATCGAAGACTG -ACGGAACCTGATGATCGATCGGTA -ACGGAACCTGATGATCGATGCCTA -ACGGAACCTGATGATCGACCACTA -ACGGAACCTGATGATCGAGGAGTA -ACGGAACCTGATGATCGATCGTCT -ACGGAACCTGATGATCGATGCACT -ACGGAACCTGATGATCGACTGACT -ACGGAACCTGATGATCGACAACCT -ACGGAACCTGATGATCGAGCTACT -ACGGAACCTGATGATCGAGGATCT -ACGGAACCTGATGATCGAAAGGCT -ACGGAACCTGATGATCGATCAACC -ACGGAACCTGATGATCGATGTTCC -ACGGAACCTGATGATCGAATTCCC -ACGGAACCTGATGATCGATTCTCG -ACGGAACCTGATGATCGATAGACG -ACGGAACCTGATGATCGAGTAACG -ACGGAACCTGATGATCGAACTTCG -ACGGAACCTGATGATCGATACGCA -ACGGAACCTGATGATCGACTTGCA -ACGGAACCTGATGATCGACGAACA -ACGGAACCTGATGATCGACAGTCA -ACGGAACCTGATGATCGAGATCCA -ACGGAACCTGATGATCGAACGACA -ACGGAACCTGATGATCGAAGCTCA -ACGGAACCTGATGATCGATCACGT -ACGGAACCTGATGATCGACGTAGT -ACGGAACCTGATGATCGAGTCAGT -ACGGAACCTGATGATCGAGAAGGT -ACGGAACCTGATGATCGAAACCGT -ACGGAACCTGATGATCGATTGTGC -ACGGAACCTGATGATCGACTAAGC -ACGGAACCTGATGATCGAACTAGC -ACGGAACCTGATGATCGAAGATGC -ACGGAACCTGATGATCGATGAAGG -ACGGAACCTGATGATCGACAATGG -ACGGAACCTGATGATCGAATGAGG -ACGGAACCTGATGATCGAAATGGG -ACGGAACCTGATGATCGATCCTGA -ACGGAACCTGATGATCGATAGCGA -ACGGAACCTGATGATCGACACAGA -ACGGAACCTGATGATCGAGCAAGA -ACGGAACCTGATGATCGAGGTTGA -ACGGAACCTGATGATCGATCCGAT -ACGGAACCTGATGATCGATGGCAT -ACGGAACCTGATGATCGACGAGAT -ACGGAACCTGATGATCGATACCAC -ACGGAACCTGATGATCGACAGAAC -ACGGAACCTGATGATCGAGTCTAC -ACGGAACCTGATGATCGAACGTAC -ACGGAACCTGATGATCGAAGTGAC -ACGGAACCTGATGATCGACTGTAG -ACGGAACCTGATGATCGACCTAAG -ACGGAACCTGATGATCGAGTTCAG -ACGGAACCTGATGATCGAGCATAG -ACGGAACCTGATGATCGAGACAAG -ACGGAACCTGATGATCGAAAGCAG -ACGGAACCTGATGATCGACGTCAA -ACGGAACCTGATGATCGAGCTGAA -ACGGAACCTGATGATCGAAGTACG -ACGGAACCTGATGATCGAATCCGA -ACGGAACCTGATGATCGAATGGGA -ACGGAACCTGATGATCGAGTGCAA -ACGGAACCTGATGATCGAGAGGAA -ACGGAACCTGATGATCGACAGGTA -ACGGAACCTGATGATCGAGACTCT -ACGGAACCTGATGATCGAAGTCCT -ACGGAACCTGATGATCGATAAGCC -ACGGAACCTGATGATCGAATAGCC -ACGGAACCTGATGATCGATAACCG -ACGGAACCTGATGATCGAATGCCA -ACGGAACCTGATCACTACGGAAAC -ACGGAACCTGATCACTACAACACC -ACGGAACCTGATCACTACATCGAG -ACGGAACCTGATCACTACCTCCTT -ACGGAACCTGATCACTACCCTGTT -ACGGAACCTGATCACTACCGGTTT -ACGGAACCTGATCACTACGTGGTT -ACGGAACCTGATCACTACGCCTTT -ACGGAACCTGATCACTACGGTCTT -ACGGAACCTGATCACTACACGCTT -ACGGAACCTGATCACTACAGCGTT -ACGGAACCTGATCACTACTTCGTC -ACGGAACCTGATCACTACTCTCTC -ACGGAACCTGATCACTACTGGATC -ACGGAACCTGATCACTACCACTTC -ACGGAACCTGATCACTACGTACTC -ACGGAACCTGATCACTACGATGTC -ACGGAACCTGATCACTACACAGTC -ACGGAACCTGATCACTACTTGCTG -ACGGAACCTGATCACTACTCCATG -ACGGAACCTGATCACTACTGTGTG -ACGGAACCTGATCACTACCTAGTG -ACGGAACCTGATCACTACCATCTG -ACGGAACCTGATCACTACGAGTTG -ACGGAACCTGATCACTACAGACTG -ACGGAACCTGATCACTACTCGGTA -ACGGAACCTGATCACTACTGCCTA -ACGGAACCTGATCACTACCCACTA -ACGGAACCTGATCACTACGGAGTA -ACGGAACCTGATCACTACTCGTCT -ACGGAACCTGATCACTACTGCACT -ACGGAACCTGATCACTACCTGACT -ACGGAACCTGATCACTACCAACCT -ACGGAACCTGATCACTACGCTACT -ACGGAACCTGATCACTACGGATCT -ACGGAACCTGATCACTACAAGGCT -ACGGAACCTGATCACTACTCAACC -ACGGAACCTGATCACTACTGTTCC -ACGGAACCTGATCACTACATTCCC -ACGGAACCTGATCACTACTTCTCG -ACGGAACCTGATCACTACTAGACG -ACGGAACCTGATCACTACGTAACG -ACGGAACCTGATCACTACACTTCG -ACGGAACCTGATCACTACTACGCA -ACGGAACCTGATCACTACCTTGCA -ACGGAACCTGATCACTACCGAACA -ACGGAACCTGATCACTACCAGTCA -ACGGAACCTGATCACTACGATCCA -ACGGAACCTGATCACTACACGACA -ACGGAACCTGATCACTACAGCTCA -ACGGAACCTGATCACTACTCACGT -ACGGAACCTGATCACTACCGTAGT -ACGGAACCTGATCACTACGTCAGT -ACGGAACCTGATCACTACGAAGGT -ACGGAACCTGATCACTACAACCGT -ACGGAACCTGATCACTACTTGTGC -ACGGAACCTGATCACTACCTAAGC -ACGGAACCTGATCACTACACTAGC -ACGGAACCTGATCACTACAGATGC -ACGGAACCTGATCACTACTGAAGG -ACGGAACCTGATCACTACCAATGG -ACGGAACCTGATCACTACATGAGG -ACGGAACCTGATCACTACAATGGG -ACGGAACCTGATCACTACTCCTGA -ACGGAACCTGATCACTACTAGCGA -ACGGAACCTGATCACTACCACAGA -ACGGAACCTGATCACTACGCAAGA -ACGGAACCTGATCACTACGGTTGA -ACGGAACCTGATCACTACTCCGAT -ACGGAACCTGATCACTACTGGCAT -ACGGAACCTGATCACTACCGAGAT -ACGGAACCTGATCACTACTACCAC -ACGGAACCTGATCACTACCAGAAC -ACGGAACCTGATCACTACGTCTAC -ACGGAACCTGATCACTACACGTAC -ACGGAACCTGATCACTACAGTGAC -ACGGAACCTGATCACTACCTGTAG -ACGGAACCTGATCACTACCCTAAG -ACGGAACCTGATCACTACGTTCAG -ACGGAACCTGATCACTACGCATAG -ACGGAACCTGATCACTACGACAAG -ACGGAACCTGATCACTACAAGCAG -ACGGAACCTGATCACTACCGTCAA -ACGGAACCTGATCACTACGCTGAA -ACGGAACCTGATCACTACAGTACG -ACGGAACCTGATCACTACATCCGA -ACGGAACCTGATCACTACATGGGA -ACGGAACCTGATCACTACGTGCAA -ACGGAACCTGATCACTACGAGGAA -ACGGAACCTGATCACTACCAGGTA -ACGGAACCTGATCACTACGACTCT -ACGGAACCTGATCACTACAGTCCT -ACGGAACCTGATCACTACTAAGCC -ACGGAACCTGATCACTACATAGCC -ACGGAACCTGATCACTACTAACCG -ACGGAACCTGATCACTACATGCCA -ACGGAACCTGATAACCAGGGAAAC -ACGGAACCTGATAACCAGAACACC -ACGGAACCTGATAACCAGATCGAG -ACGGAACCTGATAACCAGCTCCTT -ACGGAACCTGATAACCAGCCTGTT -ACGGAACCTGATAACCAGCGGTTT -ACGGAACCTGATAACCAGGTGGTT -ACGGAACCTGATAACCAGGCCTTT -ACGGAACCTGATAACCAGGGTCTT -ACGGAACCTGATAACCAGACGCTT -ACGGAACCTGATAACCAGAGCGTT -ACGGAACCTGATAACCAGTTCGTC -ACGGAACCTGATAACCAGTCTCTC -ACGGAACCTGATAACCAGTGGATC -ACGGAACCTGATAACCAGCACTTC -ACGGAACCTGATAACCAGGTACTC -ACGGAACCTGATAACCAGGATGTC -ACGGAACCTGATAACCAGACAGTC -ACGGAACCTGATAACCAGTTGCTG -ACGGAACCTGATAACCAGTCCATG -ACGGAACCTGATAACCAGTGTGTG -ACGGAACCTGATAACCAGCTAGTG -ACGGAACCTGATAACCAGCATCTG -ACGGAACCTGATAACCAGGAGTTG -ACGGAACCTGATAACCAGAGACTG -ACGGAACCTGATAACCAGTCGGTA -ACGGAACCTGATAACCAGTGCCTA -ACGGAACCTGATAACCAGCCACTA -ACGGAACCTGATAACCAGGGAGTA -ACGGAACCTGATAACCAGTCGTCT -ACGGAACCTGATAACCAGTGCACT -ACGGAACCTGATAACCAGCTGACT -ACGGAACCTGATAACCAGCAACCT -ACGGAACCTGATAACCAGGCTACT -ACGGAACCTGATAACCAGGGATCT -ACGGAACCTGATAACCAGAAGGCT -ACGGAACCTGATAACCAGTCAACC -ACGGAACCTGATAACCAGTGTTCC -ACGGAACCTGATAACCAGATTCCC -ACGGAACCTGATAACCAGTTCTCG -ACGGAACCTGATAACCAGTAGACG -ACGGAACCTGATAACCAGGTAACG -ACGGAACCTGATAACCAGACTTCG -ACGGAACCTGATAACCAGTACGCA -ACGGAACCTGATAACCAGCTTGCA -ACGGAACCTGATAACCAGCGAACA -ACGGAACCTGATAACCAGCAGTCA -ACGGAACCTGATAACCAGGATCCA -ACGGAACCTGATAACCAGACGACA -ACGGAACCTGATAACCAGAGCTCA -ACGGAACCTGATAACCAGTCACGT -ACGGAACCTGATAACCAGCGTAGT -ACGGAACCTGATAACCAGGTCAGT -ACGGAACCTGATAACCAGGAAGGT -ACGGAACCTGATAACCAGAACCGT -ACGGAACCTGATAACCAGTTGTGC -ACGGAACCTGATAACCAGCTAAGC -ACGGAACCTGATAACCAGACTAGC -ACGGAACCTGATAACCAGAGATGC -ACGGAACCTGATAACCAGTGAAGG -ACGGAACCTGATAACCAGCAATGG -ACGGAACCTGATAACCAGATGAGG -ACGGAACCTGATAACCAGAATGGG -ACGGAACCTGATAACCAGTCCTGA -ACGGAACCTGATAACCAGTAGCGA -ACGGAACCTGATAACCAGCACAGA -ACGGAACCTGATAACCAGGCAAGA -ACGGAACCTGATAACCAGGGTTGA -ACGGAACCTGATAACCAGTCCGAT -ACGGAACCTGATAACCAGTGGCAT -ACGGAACCTGATAACCAGCGAGAT -ACGGAACCTGATAACCAGTACCAC -ACGGAACCTGATAACCAGCAGAAC -ACGGAACCTGATAACCAGGTCTAC -ACGGAACCTGATAACCAGACGTAC -ACGGAACCTGATAACCAGAGTGAC -ACGGAACCTGATAACCAGCTGTAG -ACGGAACCTGATAACCAGCCTAAG -ACGGAACCTGATAACCAGGTTCAG -ACGGAACCTGATAACCAGGCATAG -ACGGAACCTGATAACCAGGACAAG -ACGGAACCTGATAACCAGAAGCAG -ACGGAACCTGATAACCAGCGTCAA -ACGGAACCTGATAACCAGGCTGAA -ACGGAACCTGATAACCAGAGTACG -ACGGAACCTGATAACCAGATCCGA -ACGGAACCTGATAACCAGATGGGA -ACGGAACCTGATAACCAGGTGCAA -ACGGAACCTGATAACCAGGAGGAA -ACGGAACCTGATAACCAGCAGGTA -ACGGAACCTGATAACCAGGACTCT -ACGGAACCTGATAACCAGAGTCCT -ACGGAACCTGATAACCAGTAAGCC -ACGGAACCTGATAACCAGATAGCC -ACGGAACCTGATAACCAGTAACCG -ACGGAACCTGATAACCAGATGCCA -ACGGAACCTGATTACGTCGGAAAC -ACGGAACCTGATTACGTCAACACC -ACGGAACCTGATTACGTCATCGAG -ACGGAACCTGATTACGTCCTCCTT -ACGGAACCTGATTACGTCCCTGTT -ACGGAACCTGATTACGTCCGGTTT -ACGGAACCTGATTACGTCGTGGTT -ACGGAACCTGATTACGTCGCCTTT -ACGGAACCTGATTACGTCGGTCTT -ACGGAACCTGATTACGTCACGCTT -ACGGAACCTGATTACGTCAGCGTT -ACGGAACCTGATTACGTCTTCGTC -ACGGAACCTGATTACGTCTCTCTC -ACGGAACCTGATTACGTCTGGATC -ACGGAACCTGATTACGTCCACTTC -ACGGAACCTGATTACGTCGTACTC -ACGGAACCTGATTACGTCGATGTC -ACGGAACCTGATTACGTCACAGTC -ACGGAACCTGATTACGTCTTGCTG -ACGGAACCTGATTACGTCTCCATG -ACGGAACCTGATTACGTCTGTGTG -ACGGAACCTGATTACGTCCTAGTG -ACGGAACCTGATTACGTCCATCTG -ACGGAACCTGATTACGTCGAGTTG -ACGGAACCTGATTACGTCAGACTG -ACGGAACCTGATTACGTCTCGGTA -ACGGAACCTGATTACGTCTGCCTA -ACGGAACCTGATTACGTCCCACTA -ACGGAACCTGATTACGTCGGAGTA -ACGGAACCTGATTACGTCTCGTCT -ACGGAACCTGATTACGTCTGCACT -ACGGAACCTGATTACGTCCTGACT -ACGGAACCTGATTACGTCCAACCT -ACGGAACCTGATTACGTCGCTACT -ACGGAACCTGATTACGTCGGATCT -ACGGAACCTGATTACGTCAAGGCT -ACGGAACCTGATTACGTCTCAACC -ACGGAACCTGATTACGTCTGTTCC -ACGGAACCTGATTACGTCATTCCC -ACGGAACCTGATTACGTCTTCTCG -ACGGAACCTGATTACGTCTAGACG -ACGGAACCTGATTACGTCGTAACG -ACGGAACCTGATTACGTCACTTCG -ACGGAACCTGATTACGTCTACGCA -ACGGAACCTGATTACGTCCTTGCA -ACGGAACCTGATTACGTCCGAACA -ACGGAACCTGATTACGTCCAGTCA -ACGGAACCTGATTACGTCGATCCA -ACGGAACCTGATTACGTCACGACA -ACGGAACCTGATTACGTCAGCTCA -ACGGAACCTGATTACGTCTCACGT -ACGGAACCTGATTACGTCCGTAGT -ACGGAACCTGATTACGTCGTCAGT -ACGGAACCTGATTACGTCGAAGGT -ACGGAACCTGATTACGTCAACCGT -ACGGAACCTGATTACGTCTTGTGC -ACGGAACCTGATTACGTCCTAAGC -ACGGAACCTGATTACGTCACTAGC -ACGGAACCTGATTACGTCAGATGC -ACGGAACCTGATTACGTCTGAAGG -ACGGAACCTGATTACGTCCAATGG -ACGGAACCTGATTACGTCATGAGG -ACGGAACCTGATTACGTCAATGGG -ACGGAACCTGATTACGTCTCCTGA -ACGGAACCTGATTACGTCTAGCGA -ACGGAACCTGATTACGTCCACAGA -ACGGAACCTGATTACGTCGCAAGA -ACGGAACCTGATTACGTCGGTTGA -ACGGAACCTGATTACGTCTCCGAT -ACGGAACCTGATTACGTCTGGCAT -ACGGAACCTGATTACGTCCGAGAT -ACGGAACCTGATTACGTCTACCAC -ACGGAACCTGATTACGTCCAGAAC -ACGGAACCTGATTACGTCGTCTAC -ACGGAACCTGATTACGTCACGTAC -ACGGAACCTGATTACGTCAGTGAC -ACGGAACCTGATTACGTCCTGTAG -ACGGAACCTGATTACGTCCCTAAG -ACGGAACCTGATTACGTCGTTCAG -ACGGAACCTGATTACGTCGCATAG -ACGGAACCTGATTACGTCGACAAG -ACGGAACCTGATTACGTCAAGCAG -ACGGAACCTGATTACGTCCGTCAA -ACGGAACCTGATTACGTCGCTGAA -ACGGAACCTGATTACGTCAGTACG -ACGGAACCTGATTACGTCATCCGA -ACGGAACCTGATTACGTCATGGGA -ACGGAACCTGATTACGTCGTGCAA -ACGGAACCTGATTACGTCGAGGAA -ACGGAACCTGATTACGTCCAGGTA -ACGGAACCTGATTACGTCGACTCT -ACGGAACCTGATTACGTCAGTCCT -ACGGAACCTGATTACGTCTAAGCC -ACGGAACCTGATTACGTCATAGCC -ACGGAACCTGATTACGTCTAACCG -ACGGAACCTGATTACGTCATGCCA -ACGGAACCTGATTACACGGGAAAC -ACGGAACCTGATTACACGAACACC -ACGGAACCTGATTACACGATCGAG -ACGGAACCTGATTACACGCTCCTT -ACGGAACCTGATTACACGCCTGTT -ACGGAACCTGATTACACGCGGTTT -ACGGAACCTGATTACACGGTGGTT -ACGGAACCTGATTACACGGCCTTT -ACGGAACCTGATTACACGGGTCTT -ACGGAACCTGATTACACGACGCTT -ACGGAACCTGATTACACGAGCGTT -ACGGAACCTGATTACACGTTCGTC -ACGGAACCTGATTACACGTCTCTC -ACGGAACCTGATTACACGTGGATC -ACGGAACCTGATTACACGCACTTC -ACGGAACCTGATTACACGGTACTC -ACGGAACCTGATTACACGGATGTC -ACGGAACCTGATTACACGACAGTC -ACGGAACCTGATTACACGTTGCTG -ACGGAACCTGATTACACGTCCATG -ACGGAACCTGATTACACGTGTGTG -ACGGAACCTGATTACACGCTAGTG -ACGGAACCTGATTACACGCATCTG -ACGGAACCTGATTACACGGAGTTG -ACGGAACCTGATTACACGAGACTG -ACGGAACCTGATTACACGTCGGTA -ACGGAACCTGATTACACGTGCCTA -ACGGAACCTGATTACACGCCACTA -ACGGAACCTGATTACACGGGAGTA -ACGGAACCTGATTACACGTCGTCT -ACGGAACCTGATTACACGTGCACT -ACGGAACCTGATTACACGCTGACT -ACGGAACCTGATTACACGCAACCT -ACGGAACCTGATTACACGGCTACT -ACGGAACCTGATTACACGGGATCT -ACGGAACCTGATTACACGAAGGCT -ACGGAACCTGATTACACGTCAACC -ACGGAACCTGATTACACGTGTTCC -ACGGAACCTGATTACACGATTCCC -ACGGAACCTGATTACACGTTCTCG -ACGGAACCTGATTACACGTAGACG -ACGGAACCTGATTACACGGTAACG -ACGGAACCTGATTACACGACTTCG -ACGGAACCTGATTACACGTACGCA -ACGGAACCTGATTACACGCTTGCA -ACGGAACCTGATTACACGCGAACA -ACGGAACCTGATTACACGCAGTCA -ACGGAACCTGATTACACGGATCCA -ACGGAACCTGATTACACGACGACA -ACGGAACCTGATTACACGAGCTCA -ACGGAACCTGATTACACGTCACGT -ACGGAACCTGATTACACGCGTAGT -ACGGAACCTGATTACACGGTCAGT -ACGGAACCTGATTACACGGAAGGT -ACGGAACCTGATTACACGAACCGT -ACGGAACCTGATTACACGTTGTGC -ACGGAACCTGATTACACGCTAAGC -ACGGAACCTGATTACACGACTAGC -ACGGAACCTGATTACACGAGATGC -ACGGAACCTGATTACACGTGAAGG -ACGGAACCTGATTACACGCAATGG -ACGGAACCTGATTACACGATGAGG -ACGGAACCTGATTACACGAATGGG -ACGGAACCTGATTACACGTCCTGA -ACGGAACCTGATTACACGTAGCGA -ACGGAACCTGATTACACGCACAGA -ACGGAACCTGATTACACGGCAAGA -ACGGAACCTGATTACACGGGTTGA -ACGGAACCTGATTACACGTCCGAT -ACGGAACCTGATTACACGTGGCAT -ACGGAACCTGATTACACGCGAGAT -ACGGAACCTGATTACACGTACCAC -ACGGAACCTGATTACACGCAGAAC -ACGGAACCTGATTACACGGTCTAC -ACGGAACCTGATTACACGACGTAC -ACGGAACCTGATTACACGAGTGAC -ACGGAACCTGATTACACGCTGTAG -ACGGAACCTGATTACACGCCTAAG -ACGGAACCTGATTACACGGTTCAG -ACGGAACCTGATTACACGGCATAG -ACGGAACCTGATTACACGGACAAG -ACGGAACCTGATTACACGAAGCAG -ACGGAACCTGATTACACGCGTCAA -ACGGAACCTGATTACACGGCTGAA -ACGGAACCTGATTACACGAGTACG -ACGGAACCTGATTACACGATCCGA -ACGGAACCTGATTACACGATGGGA -ACGGAACCTGATTACACGGTGCAA -ACGGAACCTGATTACACGGAGGAA -ACGGAACCTGATTACACGCAGGTA -ACGGAACCTGATTACACGGACTCT -ACGGAACCTGATTACACGAGTCCT -ACGGAACCTGATTACACGTAAGCC -ACGGAACCTGATTACACGATAGCC -ACGGAACCTGATTACACGTAACCG -ACGGAACCTGATTACACGATGCCA -ACGGAACCTGATGACAGTGGAAAC -ACGGAACCTGATGACAGTAACACC -ACGGAACCTGATGACAGTATCGAG -ACGGAACCTGATGACAGTCTCCTT -ACGGAACCTGATGACAGTCCTGTT -ACGGAACCTGATGACAGTCGGTTT -ACGGAACCTGATGACAGTGTGGTT -ACGGAACCTGATGACAGTGCCTTT -ACGGAACCTGATGACAGTGGTCTT -ACGGAACCTGATGACAGTACGCTT -ACGGAACCTGATGACAGTAGCGTT -ACGGAACCTGATGACAGTTTCGTC -ACGGAACCTGATGACAGTTCTCTC -ACGGAACCTGATGACAGTTGGATC -ACGGAACCTGATGACAGTCACTTC -ACGGAACCTGATGACAGTGTACTC -ACGGAACCTGATGACAGTGATGTC -ACGGAACCTGATGACAGTACAGTC -ACGGAACCTGATGACAGTTTGCTG -ACGGAACCTGATGACAGTTCCATG -ACGGAACCTGATGACAGTTGTGTG -ACGGAACCTGATGACAGTCTAGTG -ACGGAACCTGATGACAGTCATCTG -ACGGAACCTGATGACAGTGAGTTG -ACGGAACCTGATGACAGTAGACTG -ACGGAACCTGATGACAGTTCGGTA -ACGGAACCTGATGACAGTTGCCTA -ACGGAACCTGATGACAGTCCACTA -ACGGAACCTGATGACAGTGGAGTA -ACGGAACCTGATGACAGTTCGTCT -ACGGAACCTGATGACAGTTGCACT -ACGGAACCTGATGACAGTCTGACT -ACGGAACCTGATGACAGTCAACCT -ACGGAACCTGATGACAGTGCTACT -ACGGAACCTGATGACAGTGGATCT -ACGGAACCTGATGACAGTAAGGCT -ACGGAACCTGATGACAGTTCAACC -ACGGAACCTGATGACAGTTGTTCC -ACGGAACCTGATGACAGTATTCCC -ACGGAACCTGATGACAGTTTCTCG -ACGGAACCTGATGACAGTTAGACG -ACGGAACCTGATGACAGTGTAACG -ACGGAACCTGATGACAGTACTTCG -ACGGAACCTGATGACAGTTACGCA -ACGGAACCTGATGACAGTCTTGCA -ACGGAACCTGATGACAGTCGAACA -ACGGAACCTGATGACAGTCAGTCA -ACGGAACCTGATGACAGTGATCCA -ACGGAACCTGATGACAGTACGACA -ACGGAACCTGATGACAGTAGCTCA -ACGGAACCTGATGACAGTTCACGT -ACGGAACCTGATGACAGTCGTAGT -ACGGAACCTGATGACAGTGTCAGT -ACGGAACCTGATGACAGTGAAGGT -ACGGAACCTGATGACAGTAACCGT -ACGGAACCTGATGACAGTTTGTGC -ACGGAACCTGATGACAGTCTAAGC -ACGGAACCTGATGACAGTACTAGC -ACGGAACCTGATGACAGTAGATGC -ACGGAACCTGATGACAGTTGAAGG -ACGGAACCTGATGACAGTCAATGG -ACGGAACCTGATGACAGTATGAGG -ACGGAACCTGATGACAGTAATGGG -ACGGAACCTGATGACAGTTCCTGA -ACGGAACCTGATGACAGTTAGCGA -ACGGAACCTGATGACAGTCACAGA -ACGGAACCTGATGACAGTGCAAGA -ACGGAACCTGATGACAGTGGTTGA -ACGGAACCTGATGACAGTTCCGAT -ACGGAACCTGATGACAGTTGGCAT -ACGGAACCTGATGACAGTCGAGAT -ACGGAACCTGATGACAGTTACCAC -ACGGAACCTGATGACAGTCAGAAC -ACGGAACCTGATGACAGTGTCTAC -ACGGAACCTGATGACAGTACGTAC -ACGGAACCTGATGACAGTAGTGAC -ACGGAACCTGATGACAGTCTGTAG -ACGGAACCTGATGACAGTCCTAAG -ACGGAACCTGATGACAGTGTTCAG -ACGGAACCTGATGACAGTGCATAG -ACGGAACCTGATGACAGTGACAAG -ACGGAACCTGATGACAGTAAGCAG -ACGGAACCTGATGACAGTCGTCAA -ACGGAACCTGATGACAGTGCTGAA -ACGGAACCTGATGACAGTAGTACG -ACGGAACCTGATGACAGTATCCGA -ACGGAACCTGATGACAGTATGGGA -ACGGAACCTGATGACAGTGTGCAA -ACGGAACCTGATGACAGTGAGGAA -ACGGAACCTGATGACAGTCAGGTA -ACGGAACCTGATGACAGTGACTCT -ACGGAACCTGATGACAGTAGTCCT -ACGGAACCTGATGACAGTTAAGCC -ACGGAACCTGATGACAGTATAGCC -ACGGAACCTGATGACAGTTAACCG -ACGGAACCTGATGACAGTATGCCA -ACGGAACCTGATTAGCTGGGAAAC -ACGGAACCTGATTAGCTGAACACC -ACGGAACCTGATTAGCTGATCGAG -ACGGAACCTGATTAGCTGCTCCTT -ACGGAACCTGATTAGCTGCCTGTT -ACGGAACCTGATTAGCTGCGGTTT -ACGGAACCTGATTAGCTGGTGGTT -ACGGAACCTGATTAGCTGGCCTTT -ACGGAACCTGATTAGCTGGGTCTT -ACGGAACCTGATTAGCTGACGCTT -ACGGAACCTGATTAGCTGAGCGTT -ACGGAACCTGATTAGCTGTTCGTC -ACGGAACCTGATTAGCTGTCTCTC -ACGGAACCTGATTAGCTGTGGATC -ACGGAACCTGATTAGCTGCACTTC -ACGGAACCTGATTAGCTGGTACTC -ACGGAACCTGATTAGCTGGATGTC -ACGGAACCTGATTAGCTGACAGTC -ACGGAACCTGATTAGCTGTTGCTG -ACGGAACCTGATTAGCTGTCCATG -ACGGAACCTGATTAGCTGTGTGTG -ACGGAACCTGATTAGCTGCTAGTG -ACGGAACCTGATTAGCTGCATCTG -ACGGAACCTGATTAGCTGGAGTTG -ACGGAACCTGATTAGCTGAGACTG -ACGGAACCTGATTAGCTGTCGGTA -ACGGAACCTGATTAGCTGTGCCTA -ACGGAACCTGATTAGCTGCCACTA -ACGGAACCTGATTAGCTGGGAGTA -ACGGAACCTGATTAGCTGTCGTCT -ACGGAACCTGATTAGCTGTGCACT -ACGGAACCTGATTAGCTGCTGACT -ACGGAACCTGATTAGCTGCAACCT -ACGGAACCTGATTAGCTGGCTACT -ACGGAACCTGATTAGCTGGGATCT -ACGGAACCTGATTAGCTGAAGGCT -ACGGAACCTGATTAGCTGTCAACC -ACGGAACCTGATTAGCTGTGTTCC -ACGGAACCTGATTAGCTGATTCCC -ACGGAACCTGATTAGCTGTTCTCG -ACGGAACCTGATTAGCTGTAGACG -ACGGAACCTGATTAGCTGGTAACG -ACGGAACCTGATTAGCTGACTTCG -ACGGAACCTGATTAGCTGTACGCA -ACGGAACCTGATTAGCTGCTTGCA -ACGGAACCTGATTAGCTGCGAACA -ACGGAACCTGATTAGCTGCAGTCA -ACGGAACCTGATTAGCTGGATCCA -ACGGAACCTGATTAGCTGACGACA -ACGGAACCTGATTAGCTGAGCTCA -ACGGAACCTGATTAGCTGTCACGT -ACGGAACCTGATTAGCTGCGTAGT -ACGGAACCTGATTAGCTGGTCAGT -ACGGAACCTGATTAGCTGGAAGGT -ACGGAACCTGATTAGCTGAACCGT -ACGGAACCTGATTAGCTGTTGTGC -ACGGAACCTGATTAGCTGCTAAGC -ACGGAACCTGATTAGCTGACTAGC -ACGGAACCTGATTAGCTGAGATGC -ACGGAACCTGATTAGCTGTGAAGG -ACGGAACCTGATTAGCTGCAATGG -ACGGAACCTGATTAGCTGATGAGG -ACGGAACCTGATTAGCTGAATGGG -ACGGAACCTGATTAGCTGTCCTGA -ACGGAACCTGATTAGCTGTAGCGA -ACGGAACCTGATTAGCTGCACAGA -ACGGAACCTGATTAGCTGGCAAGA -ACGGAACCTGATTAGCTGGGTTGA -ACGGAACCTGATTAGCTGTCCGAT -ACGGAACCTGATTAGCTGTGGCAT -ACGGAACCTGATTAGCTGCGAGAT -ACGGAACCTGATTAGCTGTACCAC -ACGGAACCTGATTAGCTGCAGAAC -ACGGAACCTGATTAGCTGGTCTAC -ACGGAACCTGATTAGCTGACGTAC -ACGGAACCTGATTAGCTGAGTGAC -ACGGAACCTGATTAGCTGCTGTAG -ACGGAACCTGATTAGCTGCCTAAG -ACGGAACCTGATTAGCTGGTTCAG -ACGGAACCTGATTAGCTGGCATAG -ACGGAACCTGATTAGCTGGACAAG -ACGGAACCTGATTAGCTGAAGCAG -ACGGAACCTGATTAGCTGCGTCAA -ACGGAACCTGATTAGCTGGCTGAA -ACGGAACCTGATTAGCTGAGTACG -ACGGAACCTGATTAGCTGATCCGA -ACGGAACCTGATTAGCTGATGGGA -ACGGAACCTGATTAGCTGGTGCAA -ACGGAACCTGATTAGCTGGAGGAA -ACGGAACCTGATTAGCTGCAGGTA -ACGGAACCTGATTAGCTGGACTCT -ACGGAACCTGATTAGCTGAGTCCT -ACGGAACCTGATTAGCTGTAAGCC -ACGGAACCTGATTAGCTGATAGCC -ACGGAACCTGATTAGCTGTAACCG -ACGGAACCTGATTAGCTGATGCCA -ACGGAACCTGATAAGCCTGGAAAC -ACGGAACCTGATAAGCCTAACACC -ACGGAACCTGATAAGCCTATCGAG -ACGGAACCTGATAAGCCTCTCCTT -ACGGAACCTGATAAGCCTCCTGTT -ACGGAACCTGATAAGCCTCGGTTT -ACGGAACCTGATAAGCCTGTGGTT -ACGGAACCTGATAAGCCTGCCTTT -ACGGAACCTGATAAGCCTGGTCTT -ACGGAACCTGATAAGCCTACGCTT -ACGGAACCTGATAAGCCTAGCGTT -ACGGAACCTGATAAGCCTTTCGTC -ACGGAACCTGATAAGCCTTCTCTC -ACGGAACCTGATAAGCCTTGGATC -ACGGAACCTGATAAGCCTCACTTC -ACGGAACCTGATAAGCCTGTACTC -ACGGAACCTGATAAGCCTGATGTC -ACGGAACCTGATAAGCCTACAGTC -ACGGAACCTGATAAGCCTTTGCTG -ACGGAACCTGATAAGCCTTCCATG -ACGGAACCTGATAAGCCTTGTGTG -ACGGAACCTGATAAGCCTCTAGTG -ACGGAACCTGATAAGCCTCATCTG -ACGGAACCTGATAAGCCTGAGTTG -ACGGAACCTGATAAGCCTAGACTG -ACGGAACCTGATAAGCCTTCGGTA -ACGGAACCTGATAAGCCTTGCCTA -ACGGAACCTGATAAGCCTCCACTA -ACGGAACCTGATAAGCCTGGAGTA -ACGGAACCTGATAAGCCTTCGTCT -ACGGAACCTGATAAGCCTTGCACT -ACGGAACCTGATAAGCCTCTGACT -ACGGAACCTGATAAGCCTCAACCT -ACGGAACCTGATAAGCCTGCTACT -ACGGAACCTGATAAGCCTGGATCT -ACGGAACCTGATAAGCCTAAGGCT -ACGGAACCTGATAAGCCTTCAACC -ACGGAACCTGATAAGCCTTGTTCC -ACGGAACCTGATAAGCCTATTCCC -ACGGAACCTGATAAGCCTTTCTCG -ACGGAACCTGATAAGCCTTAGACG -ACGGAACCTGATAAGCCTGTAACG -ACGGAACCTGATAAGCCTACTTCG -ACGGAACCTGATAAGCCTTACGCA -ACGGAACCTGATAAGCCTCTTGCA -ACGGAACCTGATAAGCCTCGAACA -ACGGAACCTGATAAGCCTCAGTCA -ACGGAACCTGATAAGCCTGATCCA -ACGGAACCTGATAAGCCTACGACA -ACGGAACCTGATAAGCCTAGCTCA -ACGGAACCTGATAAGCCTTCACGT -ACGGAACCTGATAAGCCTCGTAGT -ACGGAACCTGATAAGCCTGTCAGT -ACGGAACCTGATAAGCCTGAAGGT -ACGGAACCTGATAAGCCTAACCGT -ACGGAACCTGATAAGCCTTTGTGC -ACGGAACCTGATAAGCCTCTAAGC -ACGGAACCTGATAAGCCTACTAGC -ACGGAACCTGATAAGCCTAGATGC -ACGGAACCTGATAAGCCTTGAAGG -ACGGAACCTGATAAGCCTCAATGG -ACGGAACCTGATAAGCCTATGAGG -ACGGAACCTGATAAGCCTAATGGG -ACGGAACCTGATAAGCCTTCCTGA -ACGGAACCTGATAAGCCTTAGCGA -ACGGAACCTGATAAGCCTCACAGA -ACGGAACCTGATAAGCCTGCAAGA -ACGGAACCTGATAAGCCTGGTTGA -ACGGAACCTGATAAGCCTTCCGAT -ACGGAACCTGATAAGCCTTGGCAT -ACGGAACCTGATAAGCCTCGAGAT -ACGGAACCTGATAAGCCTTACCAC -ACGGAACCTGATAAGCCTCAGAAC -ACGGAACCTGATAAGCCTGTCTAC -ACGGAACCTGATAAGCCTACGTAC -ACGGAACCTGATAAGCCTAGTGAC -ACGGAACCTGATAAGCCTCTGTAG -ACGGAACCTGATAAGCCTCCTAAG -ACGGAACCTGATAAGCCTGTTCAG -ACGGAACCTGATAAGCCTGCATAG -ACGGAACCTGATAAGCCTGACAAG -ACGGAACCTGATAAGCCTAAGCAG -ACGGAACCTGATAAGCCTCGTCAA -ACGGAACCTGATAAGCCTGCTGAA -ACGGAACCTGATAAGCCTAGTACG -ACGGAACCTGATAAGCCTATCCGA -ACGGAACCTGATAAGCCTATGGGA -ACGGAACCTGATAAGCCTGTGCAA -ACGGAACCTGATAAGCCTGAGGAA -ACGGAACCTGATAAGCCTCAGGTA -ACGGAACCTGATAAGCCTGACTCT -ACGGAACCTGATAAGCCTAGTCCT -ACGGAACCTGATAAGCCTTAAGCC -ACGGAACCTGATAAGCCTATAGCC -ACGGAACCTGATAAGCCTTAACCG -ACGGAACCTGATAAGCCTATGCCA -ACGGAACCTGATCAGGTTGGAAAC -ACGGAACCTGATCAGGTTAACACC -ACGGAACCTGATCAGGTTATCGAG -ACGGAACCTGATCAGGTTCTCCTT -ACGGAACCTGATCAGGTTCCTGTT -ACGGAACCTGATCAGGTTCGGTTT -ACGGAACCTGATCAGGTTGTGGTT -ACGGAACCTGATCAGGTTGCCTTT -ACGGAACCTGATCAGGTTGGTCTT -ACGGAACCTGATCAGGTTACGCTT -ACGGAACCTGATCAGGTTAGCGTT -ACGGAACCTGATCAGGTTTTCGTC -ACGGAACCTGATCAGGTTTCTCTC -ACGGAACCTGATCAGGTTTGGATC -ACGGAACCTGATCAGGTTCACTTC -ACGGAACCTGATCAGGTTGTACTC -ACGGAACCTGATCAGGTTGATGTC -ACGGAACCTGATCAGGTTACAGTC -ACGGAACCTGATCAGGTTTTGCTG -ACGGAACCTGATCAGGTTTCCATG -ACGGAACCTGATCAGGTTTGTGTG -ACGGAACCTGATCAGGTTCTAGTG -ACGGAACCTGATCAGGTTCATCTG -ACGGAACCTGATCAGGTTGAGTTG -ACGGAACCTGATCAGGTTAGACTG -ACGGAACCTGATCAGGTTTCGGTA -ACGGAACCTGATCAGGTTTGCCTA -ACGGAACCTGATCAGGTTCCACTA -ACGGAACCTGATCAGGTTGGAGTA -ACGGAACCTGATCAGGTTTCGTCT -ACGGAACCTGATCAGGTTTGCACT -ACGGAACCTGATCAGGTTCTGACT -ACGGAACCTGATCAGGTTCAACCT -ACGGAACCTGATCAGGTTGCTACT -ACGGAACCTGATCAGGTTGGATCT -ACGGAACCTGATCAGGTTAAGGCT -ACGGAACCTGATCAGGTTTCAACC -ACGGAACCTGATCAGGTTTGTTCC -ACGGAACCTGATCAGGTTATTCCC -ACGGAACCTGATCAGGTTTTCTCG -ACGGAACCTGATCAGGTTTAGACG -ACGGAACCTGATCAGGTTGTAACG -ACGGAACCTGATCAGGTTACTTCG -ACGGAACCTGATCAGGTTTACGCA -ACGGAACCTGATCAGGTTCTTGCA -ACGGAACCTGATCAGGTTCGAACA -ACGGAACCTGATCAGGTTCAGTCA -ACGGAACCTGATCAGGTTGATCCA -ACGGAACCTGATCAGGTTACGACA -ACGGAACCTGATCAGGTTAGCTCA -ACGGAACCTGATCAGGTTTCACGT -ACGGAACCTGATCAGGTTCGTAGT -ACGGAACCTGATCAGGTTGTCAGT -ACGGAACCTGATCAGGTTGAAGGT -ACGGAACCTGATCAGGTTAACCGT -ACGGAACCTGATCAGGTTTTGTGC -ACGGAACCTGATCAGGTTCTAAGC -ACGGAACCTGATCAGGTTACTAGC -ACGGAACCTGATCAGGTTAGATGC -ACGGAACCTGATCAGGTTTGAAGG -ACGGAACCTGATCAGGTTCAATGG -ACGGAACCTGATCAGGTTATGAGG -ACGGAACCTGATCAGGTTAATGGG -ACGGAACCTGATCAGGTTTCCTGA -ACGGAACCTGATCAGGTTTAGCGA -ACGGAACCTGATCAGGTTCACAGA -ACGGAACCTGATCAGGTTGCAAGA -ACGGAACCTGATCAGGTTGGTTGA -ACGGAACCTGATCAGGTTTCCGAT -ACGGAACCTGATCAGGTTTGGCAT -ACGGAACCTGATCAGGTTCGAGAT -ACGGAACCTGATCAGGTTTACCAC -ACGGAACCTGATCAGGTTCAGAAC -ACGGAACCTGATCAGGTTGTCTAC -ACGGAACCTGATCAGGTTACGTAC -ACGGAACCTGATCAGGTTAGTGAC -ACGGAACCTGATCAGGTTCTGTAG -ACGGAACCTGATCAGGTTCCTAAG -ACGGAACCTGATCAGGTTGTTCAG -ACGGAACCTGATCAGGTTGCATAG -ACGGAACCTGATCAGGTTGACAAG -ACGGAACCTGATCAGGTTAAGCAG -ACGGAACCTGATCAGGTTCGTCAA -ACGGAACCTGATCAGGTTGCTGAA -ACGGAACCTGATCAGGTTAGTACG -ACGGAACCTGATCAGGTTATCCGA -ACGGAACCTGATCAGGTTATGGGA -ACGGAACCTGATCAGGTTGTGCAA -ACGGAACCTGATCAGGTTGAGGAA -ACGGAACCTGATCAGGTTCAGGTA -ACGGAACCTGATCAGGTTGACTCT -ACGGAACCTGATCAGGTTAGTCCT -ACGGAACCTGATCAGGTTTAAGCC -ACGGAACCTGATCAGGTTATAGCC -ACGGAACCTGATCAGGTTTAACCG -ACGGAACCTGATCAGGTTATGCCA -ACGGAACCTGATTAGGCAGGAAAC -ACGGAACCTGATTAGGCAAACACC -ACGGAACCTGATTAGGCAATCGAG -ACGGAACCTGATTAGGCACTCCTT -ACGGAACCTGATTAGGCACCTGTT -ACGGAACCTGATTAGGCACGGTTT -ACGGAACCTGATTAGGCAGTGGTT -ACGGAACCTGATTAGGCAGCCTTT -ACGGAACCTGATTAGGCAGGTCTT -ACGGAACCTGATTAGGCAACGCTT -ACGGAACCTGATTAGGCAAGCGTT -ACGGAACCTGATTAGGCATTCGTC -ACGGAACCTGATTAGGCATCTCTC -ACGGAACCTGATTAGGCATGGATC -ACGGAACCTGATTAGGCACACTTC -ACGGAACCTGATTAGGCAGTACTC -ACGGAACCTGATTAGGCAGATGTC -ACGGAACCTGATTAGGCAACAGTC -ACGGAACCTGATTAGGCATTGCTG -ACGGAACCTGATTAGGCATCCATG -ACGGAACCTGATTAGGCATGTGTG -ACGGAACCTGATTAGGCACTAGTG -ACGGAACCTGATTAGGCACATCTG -ACGGAACCTGATTAGGCAGAGTTG -ACGGAACCTGATTAGGCAAGACTG -ACGGAACCTGATTAGGCATCGGTA -ACGGAACCTGATTAGGCATGCCTA -ACGGAACCTGATTAGGCACCACTA -ACGGAACCTGATTAGGCAGGAGTA -ACGGAACCTGATTAGGCATCGTCT -ACGGAACCTGATTAGGCATGCACT -ACGGAACCTGATTAGGCACTGACT -ACGGAACCTGATTAGGCACAACCT -ACGGAACCTGATTAGGCAGCTACT -ACGGAACCTGATTAGGCAGGATCT -ACGGAACCTGATTAGGCAAAGGCT -ACGGAACCTGATTAGGCATCAACC -ACGGAACCTGATTAGGCATGTTCC -ACGGAACCTGATTAGGCAATTCCC -ACGGAACCTGATTAGGCATTCTCG -ACGGAACCTGATTAGGCATAGACG -ACGGAACCTGATTAGGCAGTAACG -ACGGAACCTGATTAGGCAACTTCG -ACGGAACCTGATTAGGCATACGCA -ACGGAACCTGATTAGGCACTTGCA -ACGGAACCTGATTAGGCACGAACA -ACGGAACCTGATTAGGCACAGTCA -ACGGAACCTGATTAGGCAGATCCA -ACGGAACCTGATTAGGCAACGACA -ACGGAACCTGATTAGGCAAGCTCA -ACGGAACCTGATTAGGCATCACGT -ACGGAACCTGATTAGGCACGTAGT -ACGGAACCTGATTAGGCAGTCAGT -ACGGAACCTGATTAGGCAGAAGGT -ACGGAACCTGATTAGGCAAACCGT -ACGGAACCTGATTAGGCATTGTGC -ACGGAACCTGATTAGGCACTAAGC -ACGGAACCTGATTAGGCAACTAGC -ACGGAACCTGATTAGGCAAGATGC -ACGGAACCTGATTAGGCATGAAGG -ACGGAACCTGATTAGGCACAATGG -ACGGAACCTGATTAGGCAATGAGG -ACGGAACCTGATTAGGCAAATGGG -ACGGAACCTGATTAGGCATCCTGA -ACGGAACCTGATTAGGCATAGCGA -ACGGAACCTGATTAGGCACACAGA -ACGGAACCTGATTAGGCAGCAAGA -ACGGAACCTGATTAGGCAGGTTGA -ACGGAACCTGATTAGGCATCCGAT -ACGGAACCTGATTAGGCATGGCAT -ACGGAACCTGATTAGGCACGAGAT -ACGGAACCTGATTAGGCATACCAC -ACGGAACCTGATTAGGCACAGAAC -ACGGAACCTGATTAGGCAGTCTAC -ACGGAACCTGATTAGGCAACGTAC -ACGGAACCTGATTAGGCAAGTGAC -ACGGAACCTGATTAGGCACTGTAG -ACGGAACCTGATTAGGCACCTAAG -ACGGAACCTGATTAGGCAGTTCAG -ACGGAACCTGATTAGGCAGCATAG -ACGGAACCTGATTAGGCAGACAAG -ACGGAACCTGATTAGGCAAAGCAG -ACGGAACCTGATTAGGCACGTCAA -ACGGAACCTGATTAGGCAGCTGAA -ACGGAACCTGATTAGGCAAGTACG -ACGGAACCTGATTAGGCAATCCGA -ACGGAACCTGATTAGGCAATGGGA -ACGGAACCTGATTAGGCAGTGCAA -ACGGAACCTGATTAGGCAGAGGAA -ACGGAACCTGATTAGGCACAGGTA -ACGGAACCTGATTAGGCAGACTCT -ACGGAACCTGATTAGGCAAGTCCT -ACGGAACCTGATTAGGCATAAGCC -ACGGAACCTGATTAGGCAATAGCC -ACGGAACCTGATTAGGCATAACCG -ACGGAACCTGATTAGGCAATGCCA -ACGGAACCTGATAAGGACGGAAAC -ACGGAACCTGATAAGGACAACACC -ACGGAACCTGATAAGGACATCGAG -ACGGAACCTGATAAGGACCTCCTT -ACGGAACCTGATAAGGACCCTGTT -ACGGAACCTGATAAGGACCGGTTT -ACGGAACCTGATAAGGACGTGGTT -ACGGAACCTGATAAGGACGCCTTT -ACGGAACCTGATAAGGACGGTCTT -ACGGAACCTGATAAGGACACGCTT -ACGGAACCTGATAAGGACAGCGTT -ACGGAACCTGATAAGGACTTCGTC -ACGGAACCTGATAAGGACTCTCTC -ACGGAACCTGATAAGGACTGGATC -ACGGAACCTGATAAGGACCACTTC -ACGGAACCTGATAAGGACGTACTC -ACGGAACCTGATAAGGACGATGTC -ACGGAACCTGATAAGGACACAGTC -ACGGAACCTGATAAGGACTTGCTG -ACGGAACCTGATAAGGACTCCATG -ACGGAACCTGATAAGGACTGTGTG -ACGGAACCTGATAAGGACCTAGTG -ACGGAACCTGATAAGGACCATCTG -ACGGAACCTGATAAGGACGAGTTG -ACGGAACCTGATAAGGACAGACTG -ACGGAACCTGATAAGGACTCGGTA -ACGGAACCTGATAAGGACTGCCTA -ACGGAACCTGATAAGGACCCACTA -ACGGAACCTGATAAGGACGGAGTA -ACGGAACCTGATAAGGACTCGTCT -ACGGAACCTGATAAGGACTGCACT -ACGGAACCTGATAAGGACCTGACT -ACGGAACCTGATAAGGACCAACCT -ACGGAACCTGATAAGGACGCTACT -ACGGAACCTGATAAGGACGGATCT -ACGGAACCTGATAAGGACAAGGCT -ACGGAACCTGATAAGGACTCAACC -ACGGAACCTGATAAGGACTGTTCC -ACGGAACCTGATAAGGACATTCCC -ACGGAACCTGATAAGGACTTCTCG -ACGGAACCTGATAAGGACTAGACG -ACGGAACCTGATAAGGACGTAACG -ACGGAACCTGATAAGGACACTTCG -ACGGAACCTGATAAGGACTACGCA -ACGGAACCTGATAAGGACCTTGCA -ACGGAACCTGATAAGGACCGAACA -ACGGAACCTGATAAGGACCAGTCA -ACGGAACCTGATAAGGACGATCCA -ACGGAACCTGATAAGGACACGACA -ACGGAACCTGATAAGGACAGCTCA -ACGGAACCTGATAAGGACTCACGT -ACGGAACCTGATAAGGACCGTAGT -ACGGAACCTGATAAGGACGTCAGT -ACGGAACCTGATAAGGACGAAGGT -ACGGAACCTGATAAGGACAACCGT -ACGGAACCTGATAAGGACTTGTGC -ACGGAACCTGATAAGGACCTAAGC -ACGGAACCTGATAAGGACACTAGC -ACGGAACCTGATAAGGACAGATGC -ACGGAACCTGATAAGGACTGAAGG -ACGGAACCTGATAAGGACCAATGG -ACGGAACCTGATAAGGACATGAGG -ACGGAACCTGATAAGGACAATGGG -ACGGAACCTGATAAGGACTCCTGA -ACGGAACCTGATAAGGACTAGCGA -ACGGAACCTGATAAGGACCACAGA -ACGGAACCTGATAAGGACGCAAGA -ACGGAACCTGATAAGGACGGTTGA -ACGGAACCTGATAAGGACTCCGAT -ACGGAACCTGATAAGGACTGGCAT -ACGGAACCTGATAAGGACCGAGAT -ACGGAACCTGATAAGGACTACCAC -ACGGAACCTGATAAGGACCAGAAC -ACGGAACCTGATAAGGACGTCTAC -ACGGAACCTGATAAGGACACGTAC -ACGGAACCTGATAAGGACAGTGAC -ACGGAACCTGATAAGGACCTGTAG -ACGGAACCTGATAAGGACCCTAAG -ACGGAACCTGATAAGGACGTTCAG -ACGGAACCTGATAAGGACGCATAG -ACGGAACCTGATAAGGACGACAAG -ACGGAACCTGATAAGGACAAGCAG -ACGGAACCTGATAAGGACCGTCAA -ACGGAACCTGATAAGGACGCTGAA -ACGGAACCTGATAAGGACAGTACG -ACGGAACCTGATAAGGACATCCGA -ACGGAACCTGATAAGGACATGGGA -ACGGAACCTGATAAGGACGTGCAA -ACGGAACCTGATAAGGACGAGGAA -ACGGAACCTGATAAGGACCAGGTA -ACGGAACCTGATAAGGACGACTCT -ACGGAACCTGATAAGGACAGTCCT -ACGGAACCTGATAAGGACTAAGCC -ACGGAACCTGATAAGGACATAGCC -ACGGAACCTGATAAGGACTAACCG -ACGGAACCTGATAAGGACATGCCA -ACGGAACCTGATCAGAAGGGAAAC -ACGGAACCTGATCAGAAGAACACC -ACGGAACCTGATCAGAAGATCGAG -ACGGAACCTGATCAGAAGCTCCTT -ACGGAACCTGATCAGAAGCCTGTT -ACGGAACCTGATCAGAAGCGGTTT -ACGGAACCTGATCAGAAGGTGGTT -ACGGAACCTGATCAGAAGGCCTTT -ACGGAACCTGATCAGAAGGGTCTT -ACGGAACCTGATCAGAAGACGCTT -ACGGAACCTGATCAGAAGAGCGTT -ACGGAACCTGATCAGAAGTTCGTC -ACGGAACCTGATCAGAAGTCTCTC -ACGGAACCTGATCAGAAGTGGATC -ACGGAACCTGATCAGAAGCACTTC -ACGGAACCTGATCAGAAGGTACTC -ACGGAACCTGATCAGAAGGATGTC -ACGGAACCTGATCAGAAGACAGTC -ACGGAACCTGATCAGAAGTTGCTG -ACGGAACCTGATCAGAAGTCCATG -ACGGAACCTGATCAGAAGTGTGTG -ACGGAACCTGATCAGAAGCTAGTG -ACGGAACCTGATCAGAAGCATCTG -ACGGAACCTGATCAGAAGGAGTTG -ACGGAACCTGATCAGAAGAGACTG -ACGGAACCTGATCAGAAGTCGGTA -ACGGAACCTGATCAGAAGTGCCTA -ACGGAACCTGATCAGAAGCCACTA -ACGGAACCTGATCAGAAGGGAGTA -ACGGAACCTGATCAGAAGTCGTCT -ACGGAACCTGATCAGAAGTGCACT -ACGGAACCTGATCAGAAGCTGACT -ACGGAACCTGATCAGAAGCAACCT -ACGGAACCTGATCAGAAGGCTACT -ACGGAACCTGATCAGAAGGGATCT -ACGGAACCTGATCAGAAGAAGGCT -ACGGAACCTGATCAGAAGTCAACC -ACGGAACCTGATCAGAAGTGTTCC -ACGGAACCTGATCAGAAGATTCCC -ACGGAACCTGATCAGAAGTTCTCG -ACGGAACCTGATCAGAAGTAGACG -ACGGAACCTGATCAGAAGGTAACG -ACGGAACCTGATCAGAAGACTTCG -ACGGAACCTGATCAGAAGTACGCA -ACGGAACCTGATCAGAAGCTTGCA -ACGGAACCTGATCAGAAGCGAACA -ACGGAACCTGATCAGAAGCAGTCA -ACGGAACCTGATCAGAAGGATCCA -ACGGAACCTGATCAGAAGACGACA -ACGGAACCTGATCAGAAGAGCTCA -ACGGAACCTGATCAGAAGTCACGT -ACGGAACCTGATCAGAAGCGTAGT -ACGGAACCTGATCAGAAGGTCAGT -ACGGAACCTGATCAGAAGGAAGGT -ACGGAACCTGATCAGAAGAACCGT -ACGGAACCTGATCAGAAGTTGTGC -ACGGAACCTGATCAGAAGCTAAGC -ACGGAACCTGATCAGAAGACTAGC -ACGGAACCTGATCAGAAGAGATGC -ACGGAACCTGATCAGAAGTGAAGG -ACGGAACCTGATCAGAAGCAATGG -ACGGAACCTGATCAGAAGATGAGG -ACGGAACCTGATCAGAAGAATGGG -ACGGAACCTGATCAGAAGTCCTGA -ACGGAACCTGATCAGAAGTAGCGA -ACGGAACCTGATCAGAAGCACAGA -ACGGAACCTGATCAGAAGGCAAGA -ACGGAACCTGATCAGAAGGGTTGA -ACGGAACCTGATCAGAAGTCCGAT -ACGGAACCTGATCAGAAGTGGCAT -ACGGAACCTGATCAGAAGCGAGAT -ACGGAACCTGATCAGAAGTACCAC -ACGGAACCTGATCAGAAGCAGAAC -ACGGAACCTGATCAGAAGGTCTAC -ACGGAACCTGATCAGAAGACGTAC -ACGGAACCTGATCAGAAGAGTGAC -ACGGAACCTGATCAGAAGCTGTAG -ACGGAACCTGATCAGAAGCCTAAG -ACGGAACCTGATCAGAAGGTTCAG -ACGGAACCTGATCAGAAGGCATAG -ACGGAACCTGATCAGAAGGACAAG -ACGGAACCTGATCAGAAGAAGCAG -ACGGAACCTGATCAGAAGCGTCAA -ACGGAACCTGATCAGAAGGCTGAA -ACGGAACCTGATCAGAAGAGTACG -ACGGAACCTGATCAGAAGATCCGA -ACGGAACCTGATCAGAAGATGGGA -ACGGAACCTGATCAGAAGGTGCAA -ACGGAACCTGATCAGAAGGAGGAA -ACGGAACCTGATCAGAAGCAGGTA -ACGGAACCTGATCAGAAGGACTCT -ACGGAACCTGATCAGAAGAGTCCT -ACGGAACCTGATCAGAAGTAAGCC -ACGGAACCTGATCAGAAGATAGCC -ACGGAACCTGATCAGAAGTAACCG -ACGGAACCTGATCAGAAGATGCCA -ACGGAACCTGATCAACGTGGAAAC -ACGGAACCTGATCAACGTAACACC -ACGGAACCTGATCAACGTATCGAG -ACGGAACCTGATCAACGTCTCCTT -ACGGAACCTGATCAACGTCCTGTT -ACGGAACCTGATCAACGTCGGTTT -ACGGAACCTGATCAACGTGTGGTT -ACGGAACCTGATCAACGTGCCTTT -ACGGAACCTGATCAACGTGGTCTT -ACGGAACCTGATCAACGTACGCTT -ACGGAACCTGATCAACGTAGCGTT -ACGGAACCTGATCAACGTTTCGTC -ACGGAACCTGATCAACGTTCTCTC -ACGGAACCTGATCAACGTTGGATC -ACGGAACCTGATCAACGTCACTTC -ACGGAACCTGATCAACGTGTACTC -ACGGAACCTGATCAACGTGATGTC -ACGGAACCTGATCAACGTACAGTC -ACGGAACCTGATCAACGTTTGCTG -ACGGAACCTGATCAACGTTCCATG -ACGGAACCTGATCAACGTTGTGTG -ACGGAACCTGATCAACGTCTAGTG -ACGGAACCTGATCAACGTCATCTG -ACGGAACCTGATCAACGTGAGTTG -ACGGAACCTGATCAACGTAGACTG -ACGGAACCTGATCAACGTTCGGTA -ACGGAACCTGATCAACGTTGCCTA -ACGGAACCTGATCAACGTCCACTA -ACGGAACCTGATCAACGTGGAGTA -ACGGAACCTGATCAACGTTCGTCT -ACGGAACCTGATCAACGTTGCACT -ACGGAACCTGATCAACGTCTGACT -ACGGAACCTGATCAACGTCAACCT -ACGGAACCTGATCAACGTGCTACT -ACGGAACCTGATCAACGTGGATCT -ACGGAACCTGATCAACGTAAGGCT -ACGGAACCTGATCAACGTTCAACC -ACGGAACCTGATCAACGTTGTTCC -ACGGAACCTGATCAACGTATTCCC -ACGGAACCTGATCAACGTTTCTCG -ACGGAACCTGATCAACGTTAGACG -ACGGAACCTGATCAACGTGTAACG -ACGGAACCTGATCAACGTACTTCG -ACGGAACCTGATCAACGTTACGCA -ACGGAACCTGATCAACGTCTTGCA -ACGGAACCTGATCAACGTCGAACA -ACGGAACCTGATCAACGTCAGTCA -ACGGAACCTGATCAACGTGATCCA -ACGGAACCTGATCAACGTACGACA -ACGGAACCTGATCAACGTAGCTCA -ACGGAACCTGATCAACGTTCACGT -ACGGAACCTGATCAACGTCGTAGT -ACGGAACCTGATCAACGTGTCAGT -ACGGAACCTGATCAACGTGAAGGT -ACGGAACCTGATCAACGTAACCGT -ACGGAACCTGATCAACGTTTGTGC -ACGGAACCTGATCAACGTCTAAGC -ACGGAACCTGATCAACGTACTAGC -ACGGAACCTGATCAACGTAGATGC -ACGGAACCTGATCAACGTTGAAGG -ACGGAACCTGATCAACGTCAATGG -ACGGAACCTGATCAACGTATGAGG -ACGGAACCTGATCAACGTAATGGG -ACGGAACCTGATCAACGTTCCTGA -ACGGAACCTGATCAACGTTAGCGA -ACGGAACCTGATCAACGTCACAGA -ACGGAACCTGATCAACGTGCAAGA -ACGGAACCTGATCAACGTGGTTGA -ACGGAACCTGATCAACGTTCCGAT -ACGGAACCTGATCAACGTTGGCAT -ACGGAACCTGATCAACGTCGAGAT -ACGGAACCTGATCAACGTTACCAC -ACGGAACCTGATCAACGTCAGAAC -ACGGAACCTGATCAACGTGTCTAC -ACGGAACCTGATCAACGTACGTAC -ACGGAACCTGATCAACGTAGTGAC -ACGGAACCTGATCAACGTCTGTAG -ACGGAACCTGATCAACGTCCTAAG -ACGGAACCTGATCAACGTGTTCAG -ACGGAACCTGATCAACGTGCATAG -ACGGAACCTGATCAACGTGACAAG -ACGGAACCTGATCAACGTAAGCAG -ACGGAACCTGATCAACGTCGTCAA -ACGGAACCTGATCAACGTGCTGAA -ACGGAACCTGATCAACGTAGTACG -ACGGAACCTGATCAACGTATCCGA -ACGGAACCTGATCAACGTATGGGA -ACGGAACCTGATCAACGTGTGCAA -ACGGAACCTGATCAACGTGAGGAA -ACGGAACCTGATCAACGTCAGGTA -ACGGAACCTGATCAACGTGACTCT -ACGGAACCTGATCAACGTAGTCCT -ACGGAACCTGATCAACGTTAAGCC -ACGGAACCTGATCAACGTATAGCC -ACGGAACCTGATCAACGTTAACCG -ACGGAACCTGATCAACGTATGCCA -ACGGAACCTGATGAAGCTGGAAAC -ACGGAACCTGATGAAGCTAACACC -ACGGAACCTGATGAAGCTATCGAG -ACGGAACCTGATGAAGCTCTCCTT -ACGGAACCTGATGAAGCTCCTGTT -ACGGAACCTGATGAAGCTCGGTTT -ACGGAACCTGATGAAGCTGTGGTT -ACGGAACCTGATGAAGCTGCCTTT -ACGGAACCTGATGAAGCTGGTCTT -ACGGAACCTGATGAAGCTACGCTT -ACGGAACCTGATGAAGCTAGCGTT -ACGGAACCTGATGAAGCTTTCGTC -ACGGAACCTGATGAAGCTTCTCTC -ACGGAACCTGATGAAGCTTGGATC -ACGGAACCTGATGAAGCTCACTTC -ACGGAACCTGATGAAGCTGTACTC -ACGGAACCTGATGAAGCTGATGTC -ACGGAACCTGATGAAGCTACAGTC -ACGGAACCTGATGAAGCTTTGCTG -ACGGAACCTGATGAAGCTTCCATG -ACGGAACCTGATGAAGCTTGTGTG -ACGGAACCTGATGAAGCTCTAGTG -ACGGAACCTGATGAAGCTCATCTG -ACGGAACCTGATGAAGCTGAGTTG -ACGGAACCTGATGAAGCTAGACTG -ACGGAACCTGATGAAGCTTCGGTA -ACGGAACCTGATGAAGCTTGCCTA -ACGGAACCTGATGAAGCTCCACTA -ACGGAACCTGATGAAGCTGGAGTA -ACGGAACCTGATGAAGCTTCGTCT -ACGGAACCTGATGAAGCTTGCACT -ACGGAACCTGATGAAGCTCTGACT -ACGGAACCTGATGAAGCTCAACCT -ACGGAACCTGATGAAGCTGCTACT -ACGGAACCTGATGAAGCTGGATCT -ACGGAACCTGATGAAGCTAAGGCT -ACGGAACCTGATGAAGCTTCAACC -ACGGAACCTGATGAAGCTTGTTCC -ACGGAACCTGATGAAGCTATTCCC -ACGGAACCTGATGAAGCTTTCTCG -ACGGAACCTGATGAAGCTTAGACG -ACGGAACCTGATGAAGCTGTAACG -ACGGAACCTGATGAAGCTACTTCG -ACGGAACCTGATGAAGCTTACGCA -ACGGAACCTGATGAAGCTCTTGCA -ACGGAACCTGATGAAGCTCGAACA -ACGGAACCTGATGAAGCTCAGTCA -ACGGAACCTGATGAAGCTGATCCA -ACGGAACCTGATGAAGCTACGACA -ACGGAACCTGATGAAGCTAGCTCA -ACGGAACCTGATGAAGCTTCACGT -ACGGAACCTGATGAAGCTCGTAGT -ACGGAACCTGATGAAGCTGTCAGT -ACGGAACCTGATGAAGCTGAAGGT -ACGGAACCTGATGAAGCTAACCGT -ACGGAACCTGATGAAGCTTTGTGC -ACGGAACCTGATGAAGCTCTAAGC -ACGGAACCTGATGAAGCTACTAGC -ACGGAACCTGATGAAGCTAGATGC -ACGGAACCTGATGAAGCTTGAAGG -ACGGAACCTGATGAAGCTCAATGG -ACGGAACCTGATGAAGCTATGAGG -ACGGAACCTGATGAAGCTAATGGG -ACGGAACCTGATGAAGCTTCCTGA -ACGGAACCTGATGAAGCTTAGCGA -ACGGAACCTGATGAAGCTCACAGA -ACGGAACCTGATGAAGCTGCAAGA -ACGGAACCTGATGAAGCTGGTTGA -ACGGAACCTGATGAAGCTTCCGAT -ACGGAACCTGATGAAGCTTGGCAT -ACGGAACCTGATGAAGCTCGAGAT -ACGGAACCTGATGAAGCTTACCAC -ACGGAACCTGATGAAGCTCAGAAC -ACGGAACCTGATGAAGCTGTCTAC -ACGGAACCTGATGAAGCTACGTAC -ACGGAACCTGATGAAGCTAGTGAC -ACGGAACCTGATGAAGCTCTGTAG -ACGGAACCTGATGAAGCTCCTAAG -ACGGAACCTGATGAAGCTGTTCAG -ACGGAACCTGATGAAGCTGCATAG -ACGGAACCTGATGAAGCTGACAAG -ACGGAACCTGATGAAGCTAAGCAG -ACGGAACCTGATGAAGCTCGTCAA -ACGGAACCTGATGAAGCTGCTGAA -ACGGAACCTGATGAAGCTAGTACG -ACGGAACCTGATGAAGCTATCCGA -ACGGAACCTGATGAAGCTATGGGA -ACGGAACCTGATGAAGCTGTGCAA -ACGGAACCTGATGAAGCTGAGGAA -ACGGAACCTGATGAAGCTCAGGTA -ACGGAACCTGATGAAGCTGACTCT -ACGGAACCTGATGAAGCTAGTCCT -ACGGAACCTGATGAAGCTTAAGCC -ACGGAACCTGATGAAGCTATAGCC -ACGGAACCTGATGAAGCTTAACCG -ACGGAACCTGATGAAGCTATGCCA -ACGGAACCTGATACGAGTGGAAAC -ACGGAACCTGATACGAGTAACACC -ACGGAACCTGATACGAGTATCGAG -ACGGAACCTGATACGAGTCTCCTT -ACGGAACCTGATACGAGTCCTGTT -ACGGAACCTGATACGAGTCGGTTT -ACGGAACCTGATACGAGTGTGGTT -ACGGAACCTGATACGAGTGCCTTT -ACGGAACCTGATACGAGTGGTCTT -ACGGAACCTGATACGAGTACGCTT -ACGGAACCTGATACGAGTAGCGTT -ACGGAACCTGATACGAGTTTCGTC -ACGGAACCTGATACGAGTTCTCTC -ACGGAACCTGATACGAGTTGGATC -ACGGAACCTGATACGAGTCACTTC -ACGGAACCTGATACGAGTGTACTC -ACGGAACCTGATACGAGTGATGTC -ACGGAACCTGATACGAGTACAGTC -ACGGAACCTGATACGAGTTTGCTG -ACGGAACCTGATACGAGTTCCATG -ACGGAACCTGATACGAGTTGTGTG -ACGGAACCTGATACGAGTCTAGTG -ACGGAACCTGATACGAGTCATCTG -ACGGAACCTGATACGAGTGAGTTG -ACGGAACCTGATACGAGTAGACTG -ACGGAACCTGATACGAGTTCGGTA -ACGGAACCTGATACGAGTTGCCTA -ACGGAACCTGATACGAGTCCACTA -ACGGAACCTGATACGAGTGGAGTA -ACGGAACCTGATACGAGTTCGTCT -ACGGAACCTGATACGAGTTGCACT -ACGGAACCTGATACGAGTCTGACT -ACGGAACCTGATACGAGTCAACCT -ACGGAACCTGATACGAGTGCTACT -ACGGAACCTGATACGAGTGGATCT -ACGGAACCTGATACGAGTAAGGCT -ACGGAACCTGATACGAGTTCAACC -ACGGAACCTGATACGAGTTGTTCC -ACGGAACCTGATACGAGTATTCCC -ACGGAACCTGATACGAGTTTCTCG -ACGGAACCTGATACGAGTTAGACG -ACGGAACCTGATACGAGTGTAACG -ACGGAACCTGATACGAGTACTTCG -ACGGAACCTGATACGAGTTACGCA -ACGGAACCTGATACGAGTCTTGCA -ACGGAACCTGATACGAGTCGAACA -ACGGAACCTGATACGAGTCAGTCA -ACGGAACCTGATACGAGTGATCCA -ACGGAACCTGATACGAGTACGACA -ACGGAACCTGATACGAGTAGCTCA -ACGGAACCTGATACGAGTTCACGT -ACGGAACCTGATACGAGTCGTAGT -ACGGAACCTGATACGAGTGTCAGT -ACGGAACCTGATACGAGTGAAGGT -ACGGAACCTGATACGAGTAACCGT -ACGGAACCTGATACGAGTTTGTGC -ACGGAACCTGATACGAGTCTAAGC -ACGGAACCTGATACGAGTACTAGC -ACGGAACCTGATACGAGTAGATGC -ACGGAACCTGATACGAGTTGAAGG -ACGGAACCTGATACGAGTCAATGG -ACGGAACCTGATACGAGTATGAGG -ACGGAACCTGATACGAGTAATGGG -ACGGAACCTGATACGAGTTCCTGA -ACGGAACCTGATACGAGTTAGCGA -ACGGAACCTGATACGAGTCACAGA -ACGGAACCTGATACGAGTGCAAGA -ACGGAACCTGATACGAGTGGTTGA -ACGGAACCTGATACGAGTTCCGAT -ACGGAACCTGATACGAGTTGGCAT -ACGGAACCTGATACGAGTCGAGAT -ACGGAACCTGATACGAGTTACCAC -ACGGAACCTGATACGAGTCAGAAC -ACGGAACCTGATACGAGTGTCTAC -ACGGAACCTGATACGAGTACGTAC -ACGGAACCTGATACGAGTAGTGAC -ACGGAACCTGATACGAGTCTGTAG -ACGGAACCTGATACGAGTCCTAAG -ACGGAACCTGATACGAGTGTTCAG -ACGGAACCTGATACGAGTGCATAG -ACGGAACCTGATACGAGTGACAAG -ACGGAACCTGATACGAGTAAGCAG -ACGGAACCTGATACGAGTCGTCAA -ACGGAACCTGATACGAGTGCTGAA -ACGGAACCTGATACGAGTAGTACG -ACGGAACCTGATACGAGTATCCGA -ACGGAACCTGATACGAGTATGGGA -ACGGAACCTGATACGAGTGTGCAA -ACGGAACCTGATACGAGTGAGGAA -ACGGAACCTGATACGAGTCAGGTA -ACGGAACCTGATACGAGTGACTCT -ACGGAACCTGATACGAGTAGTCCT -ACGGAACCTGATACGAGTTAAGCC -ACGGAACCTGATACGAGTATAGCC -ACGGAACCTGATACGAGTTAACCG -ACGGAACCTGATACGAGTATGCCA -ACGGAACCTGATCGAATCGGAAAC -ACGGAACCTGATCGAATCAACACC -ACGGAACCTGATCGAATCATCGAG -ACGGAACCTGATCGAATCCTCCTT -ACGGAACCTGATCGAATCCCTGTT -ACGGAACCTGATCGAATCCGGTTT -ACGGAACCTGATCGAATCGTGGTT -ACGGAACCTGATCGAATCGCCTTT -ACGGAACCTGATCGAATCGGTCTT -ACGGAACCTGATCGAATCACGCTT -ACGGAACCTGATCGAATCAGCGTT -ACGGAACCTGATCGAATCTTCGTC -ACGGAACCTGATCGAATCTCTCTC -ACGGAACCTGATCGAATCTGGATC -ACGGAACCTGATCGAATCCACTTC -ACGGAACCTGATCGAATCGTACTC -ACGGAACCTGATCGAATCGATGTC -ACGGAACCTGATCGAATCACAGTC -ACGGAACCTGATCGAATCTTGCTG -ACGGAACCTGATCGAATCTCCATG -ACGGAACCTGATCGAATCTGTGTG -ACGGAACCTGATCGAATCCTAGTG -ACGGAACCTGATCGAATCCATCTG -ACGGAACCTGATCGAATCGAGTTG -ACGGAACCTGATCGAATCAGACTG -ACGGAACCTGATCGAATCTCGGTA -ACGGAACCTGATCGAATCTGCCTA -ACGGAACCTGATCGAATCCCACTA -ACGGAACCTGATCGAATCGGAGTA -ACGGAACCTGATCGAATCTCGTCT -ACGGAACCTGATCGAATCTGCACT -ACGGAACCTGATCGAATCCTGACT -ACGGAACCTGATCGAATCCAACCT -ACGGAACCTGATCGAATCGCTACT -ACGGAACCTGATCGAATCGGATCT -ACGGAACCTGATCGAATCAAGGCT -ACGGAACCTGATCGAATCTCAACC -ACGGAACCTGATCGAATCTGTTCC -ACGGAACCTGATCGAATCATTCCC -ACGGAACCTGATCGAATCTTCTCG -ACGGAACCTGATCGAATCTAGACG -ACGGAACCTGATCGAATCGTAACG -ACGGAACCTGATCGAATCACTTCG -ACGGAACCTGATCGAATCTACGCA -ACGGAACCTGATCGAATCCTTGCA -ACGGAACCTGATCGAATCCGAACA -ACGGAACCTGATCGAATCCAGTCA -ACGGAACCTGATCGAATCGATCCA -ACGGAACCTGATCGAATCACGACA -ACGGAACCTGATCGAATCAGCTCA -ACGGAACCTGATCGAATCTCACGT -ACGGAACCTGATCGAATCCGTAGT -ACGGAACCTGATCGAATCGTCAGT -ACGGAACCTGATCGAATCGAAGGT -ACGGAACCTGATCGAATCAACCGT -ACGGAACCTGATCGAATCTTGTGC -ACGGAACCTGATCGAATCCTAAGC -ACGGAACCTGATCGAATCACTAGC -ACGGAACCTGATCGAATCAGATGC -ACGGAACCTGATCGAATCTGAAGG -ACGGAACCTGATCGAATCCAATGG -ACGGAACCTGATCGAATCATGAGG -ACGGAACCTGATCGAATCAATGGG -ACGGAACCTGATCGAATCTCCTGA -ACGGAACCTGATCGAATCTAGCGA -ACGGAACCTGATCGAATCCACAGA -ACGGAACCTGATCGAATCGCAAGA -ACGGAACCTGATCGAATCGGTTGA -ACGGAACCTGATCGAATCTCCGAT -ACGGAACCTGATCGAATCTGGCAT -ACGGAACCTGATCGAATCCGAGAT -ACGGAACCTGATCGAATCTACCAC -ACGGAACCTGATCGAATCCAGAAC -ACGGAACCTGATCGAATCGTCTAC -ACGGAACCTGATCGAATCACGTAC -ACGGAACCTGATCGAATCAGTGAC -ACGGAACCTGATCGAATCCTGTAG -ACGGAACCTGATCGAATCCCTAAG -ACGGAACCTGATCGAATCGTTCAG -ACGGAACCTGATCGAATCGCATAG -ACGGAACCTGATCGAATCGACAAG -ACGGAACCTGATCGAATCAAGCAG -ACGGAACCTGATCGAATCCGTCAA -ACGGAACCTGATCGAATCGCTGAA -ACGGAACCTGATCGAATCAGTACG -ACGGAACCTGATCGAATCATCCGA -ACGGAACCTGATCGAATCATGGGA -ACGGAACCTGATCGAATCGTGCAA -ACGGAACCTGATCGAATCGAGGAA -ACGGAACCTGATCGAATCCAGGTA -ACGGAACCTGATCGAATCGACTCT -ACGGAACCTGATCGAATCAGTCCT -ACGGAACCTGATCGAATCTAAGCC -ACGGAACCTGATCGAATCATAGCC -ACGGAACCTGATCGAATCTAACCG -ACGGAACCTGATCGAATCATGCCA -ACGGAACCTGATGGAATGGGAAAC -ACGGAACCTGATGGAATGAACACC -ACGGAACCTGATGGAATGATCGAG -ACGGAACCTGATGGAATGCTCCTT -ACGGAACCTGATGGAATGCCTGTT -ACGGAACCTGATGGAATGCGGTTT -ACGGAACCTGATGGAATGGTGGTT -ACGGAACCTGATGGAATGGCCTTT -ACGGAACCTGATGGAATGGGTCTT -ACGGAACCTGATGGAATGACGCTT -ACGGAACCTGATGGAATGAGCGTT -ACGGAACCTGATGGAATGTTCGTC -ACGGAACCTGATGGAATGTCTCTC -ACGGAACCTGATGGAATGTGGATC -ACGGAACCTGATGGAATGCACTTC -ACGGAACCTGATGGAATGGTACTC -ACGGAACCTGATGGAATGGATGTC -ACGGAACCTGATGGAATGACAGTC -ACGGAACCTGATGGAATGTTGCTG -ACGGAACCTGATGGAATGTCCATG -ACGGAACCTGATGGAATGTGTGTG -ACGGAACCTGATGGAATGCTAGTG -ACGGAACCTGATGGAATGCATCTG -ACGGAACCTGATGGAATGGAGTTG -ACGGAACCTGATGGAATGAGACTG -ACGGAACCTGATGGAATGTCGGTA -ACGGAACCTGATGGAATGTGCCTA -ACGGAACCTGATGGAATGCCACTA -ACGGAACCTGATGGAATGGGAGTA -ACGGAACCTGATGGAATGTCGTCT -ACGGAACCTGATGGAATGTGCACT -ACGGAACCTGATGGAATGCTGACT -ACGGAACCTGATGGAATGCAACCT -ACGGAACCTGATGGAATGGCTACT -ACGGAACCTGATGGAATGGGATCT -ACGGAACCTGATGGAATGAAGGCT -ACGGAACCTGATGGAATGTCAACC -ACGGAACCTGATGGAATGTGTTCC -ACGGAACCTGATGGAATGATTCCC -ACGGAACCTGATGGAATGTTCTCG -ACGGAACCTGATGGAATGTAGACG -ACGGAACCTGATGGAATGGTAACG -ACGGAACCTGATGGAATGACTTCG -ACGGAACCTGATGGAATGTACGCA -ACGGAACCTGATGGAATGCTTGCA -ACGGAACCTGATGGAATGCGAACA -ACGGAACCTGATGGAATGCAGTCA -ACGGAACCTGATGGAATGGATCCA -ACGGAACCTGATGGAATGACGACA -ACGGAACCTGATGGAATGAGCTCA -ACGGAACCTGATGGAATGTCACGT -ACGGAACCTGATGGAATGCGTAGT -ACGGAACCTGATGGAATGGTCAGT -ACGGAACCTGATGGAATGGAAGGT -ACGGAACCTGATGGAATGAACCGT -ACGGAACCTGATGGAATGTTGTGC -ACGGAACCTGATGGAATGCTAAGC -ACGGAACCTGATGGAATGACTAGC -ACGGAACCTGATGGAATGAGATGC -ACGGAACCTGATGGAATGTGAAGG -ACGGAACCTGATGGAATGCAATGG -ACGGAACCTGATGGAATGATGAGG -ACGGAACCTGATGGAATGAATGGG -ACGGAACCTGATGGAATGTCCTGA -ACGGAACCTGATGGAATGTAGCGA -ACGGAACCTGATGGAATGCACAGA -ACGGAACCTGATGGAATGGCAAGA -ACGGAACCTGATGGAATGGGTTGA -ACGGAACCTGATGGAATGTCCGAT -ACGGAACCTGATGGAATGTGGCAT -ACGGAACCTGATGGAATGCGAGAT -ACGGAACCTGATGGAATGTACCAC -ACGGAACCTGATGGAATGCAGAAC -ACGGAACCTGATGGAATGGTCTAC -ACGGAACCTGATGGAATGACGTAC -ACGGAACCTGATGGAATGAGTGAC -ACGGAACCTGATGGAATGCTGTAG -ACGGAACCTGATGGAATGCCTAAG -ACGGAACCTGATGGAATGGTTCAG -ACGGAACCTGATGGAATGGCATAG -ACGGAACCTGATGGAATGGACAAG -ACGGAACCTGATGGAATGAAGCAG -ACGGAACCTGATGGAATGCGTCAA -ACGGAACCTGATGGAATGGCTGAA -ACGGAACCTGATGGAATGAGTACG -ACGGAACCTGATGGAATGATCCGA -ACGGAACCTGATGGAATGATGGGA -ACGGAACCTGATGGAATGGTGCAA -ACGGAACCTGATGGAATGGAGGAA -ACGGAACCTGATGGAATGCAGGTA -ACGGAACCTGATGGAATGGACTCT -ACGGAACCTGATGGAATGAGTCCT -ACGGAACCTGATGGAATGTAAGCC -ACGGAACCTGATGGAATGATAGCC -ACGGAACCTGATGGAATGTAACCG -ACGGAACCTGATGGAATGATGCCA -ACGGAACCTGATCAAGTGGGAAAC -ACGGAACCTGATCAAGTGAACACC -ACGGAACCTGATCAAGTGATCGAG -ACGGAACCTGATCAAGTGCTCCTT -ACGGAACCTGATCAAGTGCCTGTT -ACGGAACCTGATCAAGTGCGGTTT -ACGGAACCTGATCAAGTGGTGGTT -ACGGAACCTGATCAAGTGGCCTTT -ACGGAACCTGATCAAGTGGGTCTT -ACGGAACCTGATCAAGTGACGCTT -ACGGAACCTGATCAAGTGAGCGTT -ACGGAACCTGATCAAGTGTTCGTC -ACGGAACCTGATCAAGTGTCTCTC -ACGGAACCTGATCAAGTGTGGATC -ACGGAACCTGATCAAGTGCACTTC -ACGGAACCTGATCAAGTGGTACTC -ACGGAACCTGATCAAGTGGATGTC -ACGGAACCTGATCAAGTGACAGTC -ACGGAACCTGATCAAGTGTTGCTG -ACGGAACCTGATCAAGTGTCCATG -ACGGAACCTGATCAAGTGTGTGTG -ACGGAACCTGATCAAGTGCTAGTG -ACGGAACCTGATCAAGTGCATCTG -ACGGAACCTGATCAAGTGGAGTTG -ACGGAACCTGATCAAGTGAGACTG -ACGGAACCTGATCAAGTGTCGGTA -ACGGAACCTGATCAAGTGTGCCTA -ACGGAACCTGATCAAGTGCCACTA -ACGGAACCTGATCAAGTGGGAGTA -ACGGAACCTGATCAAGTGTCGTCT -ACGGAACCTGATCAAGTGTGCACT -ACGGAACCTGATCAAGTGCTGACT -ACGGAACCTGATCAAGTGCAACCT -ACGGAACCTGATCAAGTGGCTACT -ACGGAACCTGATCAAGTGGGATCT -ACGGAACCTGATCAAGTGAAGGCT -ACGGAACCTGATCAAGTGTCAACC -ACGGAACCTGATCAAGTGTGTTCC -ACGGAACCTGATCAAGTGATTCCC -ACGGAACCTGATCAAGTGTTCTCG -ACGGAACCTGATCAAGTGTAGACG -ACGGAACCTGATCAAGTGGTAACG -ACGGAACCTGATCAAGTGACTTCG -ACGGAACCTGATCAAGTGTACGCA -ACGGAACCTGATCAAGTGCTTGCA -ACGGAACCTGATCAAGTGCGAACA -ACGGAACCTGATCAAGTGCAGTCA -ACGGAACCTGATCAAGTGGATCCA -ACGGAACCTGATCAAGTGACGACA -ACGGAACCTGATCAAGTGAGCTCA -ACGGAACCTGATCAAGTGTCACGT -ACGGAACCTGATCAAGTGCGTAGT -ACGGAACCTGATCAAGTGGTCAGT -ACGGAACCTGATCAAGTGGAAGGT -ACGGAACCTGATCAAGTGAACCGT -ACGGAACCTGATCAAGTGTTGTGC -ACGGAACCTGATCAAGTGCTAAGC -ACGGAACCTGATCAAGTGACTAGC -ACGGAACCTGATCAAGTGAGATGC -ACGGAACCTGATCAAGTGTGAAGG -ACGGAACCTGATCAAGTGCAATGG -ACGGAACCTGATCAAGTGATGAGG -ACGGAACCTGATCAAGTGAATGGG -ACGGAACCTGATCAAGTGTCCTGA -ACGGAACCTGATCAAGTGTAGCGA -ACGGAACCTGATCAAGTGCACAGA -ACGGAACCTGATCAAGTGGCAAGA -ACGGAACCTGATCAAGTGGGTTGA -ACGGAACCTGATCAAGTGTCCGAT -ACGGAACCTGATCAAGTGTGGCAT -ACGGAACCTGATCAAGTGCGAGAT -ACGGAACCTGATCAAGTGTACCAC -ACGGAACCTGATCAAGTGCAGAAC -ACGGAACCTGATCAAGTGGTCTAC -ACGGAACCTGATCAAGTGACGTAC -ACGGAACCTGATCAAGTGAGTGAC -ACGGAACCTGATCAAGTGCTGTAG -ACGGAACCTGATCAAGTGCCTAAG -ACGGAACCTGATCAAGTGGTTCAG -ACGGAACCTGATCAAGTGGCATAG -ACGGAACCTGATCAAGTGGACAAG -ACGGAACCTGATCAAGTGAAGCAG -ACGGAACCTGATCAAGTGCGTCAA -ACGGAACCTGATCAAGTGGCTGAA -ACGGAACCTGATCAAGTGAGTACG -ACGGAACCTGATCAAGTGATCCGA -ACGGAACCTGATCAAGTGATGGGA -ACGGAACCTGATCAAGTGGTGCAA -ACGGAACCTGATCAAGTGGAGGAA -ACGGAACCTGATCAAGTGCAGGTA -ACGGAACCTGATCAAGTGGACTCT -ACGGAACCTGATCAAGTGAGTCCT -ACGGAACCTGATCAAGTGTAAGCC -ACGGAACCTGATCAAGTGATAGCC -ACGGAACCTGATCAAGTGTAACCG -ACGGAACCTGATCAAGTGATGCCA -ACGGAACCTGATGAAGAGGGAAAC -ACGGAACCTGATGAAGAGAACACC -ACGGAACCTGATGAAGAGATCGAG -ACGGAACCTGATGAAGAGCTCCTT -ACGGAACCTGATGAAGAGCCTGTT -ACGGAACCTGATGAAGAGCGGTTT -ACGGAACCTGATGAAGAGGTGGTT -ACGGAACCTGATGAAGAGGCCTTT -ACGGAACCTGATGAAGAGGGTCTT -ACGGAACCTGATGAAGAGACGCTT -ACGGAACCTGATGAAGAGAGCGTT -ACGGAACCTGATGAAGAGTTCGTC -ACGGAACCTGATGAAGAGTCTCTC -ACGGAACCTGATGAAGAGTGGATC -ACGGAACCTGATGAAGAGCACTTC -ACGGAACCTGATGAAGAGGTACTC -ACGGAACCTGATGAAGAGGATGTC -ACGGAACCTGATGAAGAGACAGTC -ACGGAACCTGATGAAGAGTTGCTG -ACGGAACCTGATGAAGAGTCCATG -ACGGAACCTGATGAAGAGTGTGTG -ACGGAACCTGATGAAGAGCTAGTG -ACGGAACCTGATGAAGAGCATCTG -ACGGAACCTGATGAAGAGGAGTTG -ACGGAACCTGATGAAGAGAGACTG -ACGGAACCTGATGAAGAGTCGGTA -ACGGAACCTGATGAAGAGTGCCTA -ACGGAACCTGATGAAGAGCCACTA -ACGGAACCTGATGAAGAGGGAGTA -ACGGAACCTGATGAAGAGTCGTCT -ACGGAACCTGATGAAGAGTGCACT -ACGGAACCTGATGAAGAGCTGACT -ACGGAACCTGATGAAGAGCAACCT -ACGGAACCTGATGAAGAGGCTACT -ACGGAACCTGATGAAGAGGGATCT -ACGGAACCTGATGAAGAGAAGGCT -ACGGAACCTGATGAAGAGTCAACC -ACGGAACCTGATGAAGAGTGTTCC -ACGGAACCTGATGAAGAGATTCCC -ACGGAACCTGATGAAGAGTTCTCG -ACGGAACCTGATGAAGAGTAGACG -ACGGAACCTGATGAAGAGGTAACG -ACGGAACCTGATGAAGAGACTTCG -ACGGAACCTGATGAAGAGTACGCA -ACGGAACCTGATGAAGAGCTTGCA -ACGGAACCTGATGAAGAGCGAACA -ACGGAACCTGATGAAGAGCAGTCA -ACGGAACCTGATGAAGAGGATCCA -ACGGAACCTGATGAAGAGACGACA -ACGGAACCTGATGAAGAGAGCTCA -ACGGAACCTGATGAAGAGTCACGT -ACGGAACCTGATGAAGAGCGTAGT -ACGGAACCTGATGAAGAGGTCAGT -ACGGAACCTGATGAAGAGGAAGGT -ACGGAACCTGATGAAGAGAACCGT -ACGGAACCTGATGAAGAGTTGTGC -ACGGAACCTGATGAAGAGCTAAGC -ACGGAACCTGATGAAGAGACTAGC -ACGGAACCTGATGAAGAGAGATGC -ACGGAACCTGATGAAGAGTGAAGG -ACGGAACCTGATGAAGAGCAATGG -ACGGAACCTGATGAAGAGATGAGG -ACGGAACCTGATGAAGAGAATGGG -ACGGAACCTGATGAAGAGTCCTGA -ACGGAACCTGATGAAGAGTAGCGA -ACGGAACCTGATGAAGAGCACAGA -ACGGAACCTGATGAAGAGGCAAGA -ACGGAACCTGATGAAGAGGGTTGA -ACGGAACCTGATGAAGAGTCCGAT -ACGGAACCTGATGAAGAGTGGCAT -ACGGAACCTGATGAAGAGCGAGAT -ACGGAACCTGATGAAGAGTACCAC -ACGGAACCTGATGAAGAGCAGAAC -ACGGAACCTGATGAAGAGGTCTAC -ACGGAACCTGATGAAGAGACGTAC -ACGGAACCTGATGAAGAGAGTGAC -ACGGAACCTGATGAAGAGCTGTAG -ACGGAACCTGATGAAGAGCCTAAG -ACGGAACCTGATGAAGAGGTTCAG -ACGGAACCTGATGAAGAGGCATAG -ACGGAACCTGATGAAGAGGACAAG -ACGGAACCTGATGAAGAGAAGCAG -ACGGAACCTGATGAAGAGCGTCAA -ACGGAACCTGATGAAGAGGCTGAA -ACGGAACCTGATGAAGAGAGTACG -ACGGAACCTGATGAAGAGATCCGA -ACGGAACCTGATGAAGAGATGGGA -ACGGAACCTGATGAAGAGGTGCAA -ACGGAACCTGATGAAGAGGAGGAA -ACGGAACCTGATGAAGAGCAGGTA -ACGGAACCTGATGAAGAGGACTCT -ACGGAACCTGATGAAGAGAGTCCT -ACGGAACCTGATGAAGAGTAAGCC -ACGGAACCTGATGAAGAGATAGCC -ACGGAACCTGATGAAGAGTAACCG -ACGGAACCTGATGAAGAGATGCCA -ACGGAACCTGATGTACAGGGAAAC -ACGGAACCTGATGTACAGAACACC -ACGGAACCTGATGTACAGATCGAG -ACGGAACCTGATGTACAGCTCCTT -ACGGAACCTGATGTACAGCCTGTT -ACGGAACCTGATGTACAGCGGTTT -ACGGAACCTGATGTACAGGTGGTT -ACGGAACCTGATGTACAGGCCTTT -ACGGAACCTGATGTACAGGGTCTT -ACGGAACCTGATGTACAGACGCTT -ACGGAACCTGATGTACAGAGCGTT -ACGGAACCTGATGTACAGTTCGTC -ACGGAACCTGATGTACAGTCTCTC -ACGGAACCTGATGTACAGTGGATC -ACGGAACCTGATGTACAGCACTTC -ACGGAACCTGATGTACAGGTACTC -ACGGAACCTGATGTACAGGATGTC -ACGGAACCTGATGTACAGACAGTC -ACGGAACCTGATGTACAGTTGCTG -ACGGAACCTGATGTACAGTCCATG -ACGGAACCTGATGTACAGTGTGTG -ACGGAACCTGATGTACAGCTAGTG -ACGGAACCTGATGTACAGCATCTG -ACGGAACCTGATGTACAGGAGTTG -ACGGAACCTGATGTACAGAGACTG -ACGGAACCTGATGTACAGTCGGTA -ACGGAACCTGATGTACAGTGCCTA -ACGGAACCTGATGTACAGCCACTA -ACGGAACCTGATGTACAGGGAGTA -ACGGAACCTGATGTACAGTCGTCT -ACGGAACCTGATGTACAGTGCACT -ACGGAACCTGATGTACAGCTGACT -ACGGAACCTGATGTACAGCAACCT -ACGGAACCTGATGTACAGGCTACT -ACGGAACCTGATGTACAGGGATCT -ACGGAACCTGATGTACAGAAGGCT -ACGGAACCTGATGTACAGTCAACC -ACGGAACCTGATGTACAGTGTTCC -ACGGAACCTGATGTACAGATTCCC -ACGGAACCTGATGTACAGTTCTCG -ACGGAACCTGATGTACAGTAGACG -ACGGAACCTGATGTACAGGTAACG -ACGGAACCTGATGTACAGACTTCG -ACGGAACCTGATGTACAGTACGCA -ACGGAACCTGATGTACAGCTTGCA -ACGGAACCTGATGTACAGCGAACA -ACGGAACCTGATGTACAGCAGTCA -ACGGAACCTGATGTACAGGATCCA -ACGGAACCTGATGTACAGACGACA -ACGGAACCTGATGTACAGAGCTCA -ACGGAACCTGATGTACAGTCACGT -ACGGAACCTGATGTACAGCGTAGT -ACGGAACCTGATGTACAGGTCAGT -ACGGAACCTGATGTACAGGAAGGT -ACGGAACCTGATGTACAGAACCGT -ACGGAACCTGATGTACAGTTGTGC -ACGGAACCTGATGTACAGCTAAGC -ACGGAACCTGATGTACAGACTAGC -ACGGAACCTGATGTACAGAGATGC -ACGGAACCTGATGTACAGTGAAGG -ACGGAACCTGATGTACAGCAATGG -ACGGAACCTGATGTACAGATGAGG -ACGGAACCTGATGTACAGAATGGG -ACGGAACCTGATGTACAGTCCTGA -ACGGAACCTGATGTACAGTAGCGA -ACGGAACCTGATGTACAGCACAGA -ACGGAACCTGATGTACAGGCAAGA -ACGGAACCTGATGTACAGGGTTGA -ACGGAACCTGATGTACAGTCCGAT -ACGGAACCTGATGTACAGTGGCAT -ACGGAACCTGATGTACAGCGAGAT -ACGGAACCTGATGTACAGTACCAC -ACGGAACCTGATGTACAGCAGAAC -ACGGAACCTGATGTACAGGTCTAC -ACGGAACCTGATGTACAGACGTAC -ACGGAACCTGATGTACAGAGTGAC -ACGGAACCTGATGTACAGCTGTAG -ACGGAACCTGATGTACAGCCTAAG -ACGGAACCTGATGTACAGGTTCAG -ACGGAACCTGATGTACAGGCATAG -ACGGAACCTGATGTACAGGACAAG -ACGGAACCTGATGTACAGAAGCAG -ACGGAACCTGATGTACAGCGTCAA -ACGGAACCTGATGTACAGGCTGAA -ACGGAACCTGATGTACAGAGTACG -ACGGAACCTGATGTACAGATCCGA -ACGGAACCTGATGTACAGATGGGA -ACGGAACCTGATGTACAGGTGCAA -ACGGAACCTGATGTACAGGAGGAA -ACGGAACCTGATGTACAGCAGGTA -ACGGAACCTGATGTACAGGACTCT -ACGGAACCTGATGTACAGAGTCCT -ACGGAACCTGATGTACAGTAAGCC -ACGGAACCTGATGTACAGATAGCC -ACGGAACCTGATGTACAGTAACCG -ACGGAACCTGATGTACAGATGCCA -ACGGAACCTGATTCTGACGGAAAC -ACGGAACCTGATTCTGACAACACC -ACGGAACCTGATTCTGACATCGAG -ACGGAACCTGATTCTGACCTCCTT -ACGGAACCTGATTCTGACCCTGTT -ACGGAACCTGATTCTGACCGGTTT -ACGGAACCTGATTCTGACGTGGTT -ACGGAACCTGATTCTGACGCCTTT -ACGGAACCTGATTCTGACGGTCTT -ACGGAACCTGATTCTGACACGCTT -ACGGAACCTGATTCTGACAGCGTT -ACGGAACCTGATTCTGACTTCGTC -ACGGAACCTGATTCTGACTCTCTC -ACGGAACCTGATTCTGACTGGATC -ACGGAACCTGATTCTGACCACTTC -ACGGAACCTGATTCTGACGTACTC -ACGGAACCTGATTCTGACGATGTC -ACGGAACCTGATTCTGACACAGTC -ACGGAACCTGATTCTGACTTGCTG -ACGGAACCTGATTCTGACTCCATG -ACGGAACCTGATTCTGACTGTGTG -ACGGAACCTGATTCTGACCTAGTG -ACGGAACCTGATTCTGACCATCTG -ACGGAACCTGATTCTGACGAGTTG -ACGGAACCTGATTCTGACAGACTG -ACGGAACCTGATTCTGACTCGGTA -ACGGAACCTGATTCTGACTGCCTA -ACGGAACCTGATTCTGACCCACTA -ACGGAACCTGATTCTGACGGAGTA -ACGGAACCTGATTCTGACTCGTCT -ACGGAACCTGATTCTGACTGCACT -ACGGAACCTGATTCTGACCTGACT -ACGGAACCTGATTCTGACCAACCT -ACGGAACCTGATTCTGACGCTACT -ACGGAACCTGATTCTGACGGATCT -ACGGAACCTGATTCTGACAAGGCT -ACGGAACCTGATTCTGACTCAACC -ACGGAACCTGATTCTGACTGTTCC -ACGGAACCTGATTCTGACATTCCC -ACGGAACCTGATTCTGACTTCTCG -ACGGAACCTGATTCTGACTAGACG -ACGGAACCTGATTCTGACGTAACG -ACGGAACCTGATTCTGACACTTCG -ACGGAACCTGATTCTGACTACGCA -ACGGAACCTGATTCTGACCTTGCA -ACGGAACCTGATTCTGACCGAACA -ACGGAACCTGATTCTGACCAGTCA -ACGGAACCTGATTCTGACGATCCA -ACGGAACCTGATTCTGACACGACA -ACGGAACCTGATTCTGACAGCTCA -ACGGAACCTGATTCTGACTCACGT -ACGGAACCTGATTCTGACCGTAGT -ACGGAACCTGATTCTGACGTCAGT -ACGGAACCTGATTCTGACGAAGGT -ACGGAACCTGATTCTGACAACCGT -ACGGAACCTGATTCTGACTTGTGC -ACGGAACCTGATTCTGACCTAAGC -ACGGAACCTGATTCTGACACTAGC -ACGGAACCTGATTCTGACAGATGC -ACGGAACCTGATTCTGACTGAAGG -ACGGAACCTGATTCTGACCAATGG -ACGGAACCTGATTCTGACATGAGG -ACGGAACCTGATTCTGACAATGGG -ACGGAACCTGATTCTGACTCCTGA -ACGGAACCTGATTCTGACTAGCGA -ACGGAACCTGATTCTGACCACAGA -ACGGAACCTGATTCTGACGCAAGA -ACGGAACCTGATTCTGACGGTTGA -ACGGAACCTGATTCTGACTCCGAT -ACGGAACCTGATTCTGACTGGCAT -ACGGAACCTGATTCTGACCGAGAT -ACGGAACCTGATTCTGACTACCAC -ACGGAACCTGATTCTGACCAGAAC -ACGGAACCTGATTCTGACGTCTAC -ACGGAACCTGATTCTGACACGTAC -ACGGAACCTGATTCTGACAGTGAC -ACGGAACCTGATTCTGACCTGTAG -ACGGAACCTGATTCTGACCCTAAG -ACGGAACCTGATTCTGACGTTCAG -ACGGAACCTGATTCTGACGCATAG -ACGGAACCTGATTCTGACGACAAG -ACGGAACCTGATTCTGACAAGCAG -ACGGAACCTGATTCTGACCGTCAA -ACGGAACCTGATTCTGACGCTGAA -ACGGAACCTGATTCTGACAGTACG -ACGGAACCTGATTCTGACATCCGA -ACGGAACCTGATTCTGACATGGGA -ACGGAACCTGATTCTGACGTGCAA -ACGGAACCTGATTCTGACGAGGAA -ACGGAACCTGATTCTGACCAGGTA -ACGGAACCTGATTCTGACGACTCT -ACGGAACCTGATTCTGACAGTCCT -ACGGAACCTGATTCTGACTAAGCC -ACGGAACCTGATTCTGACATAGCC -ACGGAACCTGATTCTGACTAACCG -ACGGAACCTGATTCTGACATGCCA -ACGGAACCTGATCCTAGTGGAAAC -ACGGAACCTGATCCTAGTAACACC -ACGGAACCTGATCCTAGTATCGAG -ACGGAACCTGATCCTAGTCTCCTT -ACGGAACCTGATCCTAGTCCTGTT -ACGGAACCTGATCCTAGTCGGTTT -ACGGAACCTGATCCTAGTGTGGTT -ACGGAACCTGATCCTAGTGCCTTT -ACGGAACCTGATCCTAGTGGTCTT -ACGGAACCTGATCCTAGTACGCTT -ACGGAACCTGATCCTAGTAGCGTT -ACGGAACCTGATCCTAGTTTCGTC -ACGGAACCTGATCCTAGTTCTCTC -ACGGAACCTGATCCTAGTTGGATC -ACGGAACCTGATCCTAGTCACTTC -ACGGAACCTGATCCTAGTGTACTC -ACGGAACCTGATCCTAGTGATGTC -ACGGAACCTGATCCTAGTACAGTC -ACGGAACCTGATCCTAGTTTGCTG -ACGGAACCTGATCCTAGTTCCATG -ACGGAACCTGATCCTAGTTGTGTG -ACGGAACCTGATCCTAGTCTAGTG -ACGGAACCTGATCCTAGTCATCTG -ACGGAACCTGATCCTAGTGAGTTG -ACGGAACCTGATCCTAGTAGACTG -ACGGAACCTGATCCTAGTTCGGTA -ACGGAACCTGATCCTAGTTGCCTA -ACGGAACCTGATCCTAGTCCACTA -ACGGAACCTGATCCTAGTGGAGTA -ACGGAACCTGATCCTAGTTCGTCT -ACGGAACCTGATCCTAGTTGCACT -ACGGAACCTGATCCTAGTCTGACT -ACGGAACCTGATCCTAGTCAACCT -ACGGAACCTGATCCTAGTGCTACT -ACGGAACCTGATCCTAGTGGATCT -ACGGAACCTGATCCTAGTAAGGCT -ACGGAACCTGATCCTAGTTCAACC -ACGGAACCTGATCCTAGTTGTTCC -ACGGAACCTGATCCTAGTATTCCC -ACGGAACCTGATCCTAGTTTCTCG -ACGGAACCTGATCCTAGTTAGACG -ACGGAACCTGATCCTAGTGTAACG -ACGGAACCTGATCCTAGTACTTCG -ACGGAACCTGATCCTAGTTACGCA -ACGGAACCTGATCCTAGTCTTGCA -ACGGAACCTGATCCTAGTCGAACA -ACGGAACCTGATCCTAGTCAGTCA -ACGGAACCTGATCCTAGTGATCCA -ACGGAACCTGATCCTAGTACGACA -ACGGAACCTGATCCTAGTAGCTCA -ACGGAACCTGATCCTAGTTCACGT -ACGGAACCTGATCCTAGTCGTAGT -ACGGAACCTGATCCTAGTGTCAGT -ACGGAACCTGATCCTAGTGAAGGT -ACGGAACCTGATCCTAGTAACCGT -ACGGAACCTGATCCTAGTTTGTGC -ACGGAACCTGATCCTAGTCTAAGC -ACGGAACCTGATCCTAGTACTAGC -ACGGAACCTGATCCTAGTAGATGC -ACGGAACCTGATCCTAGTTGAAGG -ACGGAACCTGATCCTAGTCAATGG -ACGGAACCTGATCCTAGTATGAGG -ACGGAACCTGATCCTAGTAATGGG -ACGGAACCTGATCCTAGTTCCTGA -ACGGAACCTGATCCTAGTTAGCGA -ACGGAACCTGATCCTAGTCACAGA -ACGGAACCTGATCCTAGTGCAAGA -ACGGAACCTGATCCTAGTGGTTGA -ACGGAACCTGATCCTAGTTCCGAT -ACGGAACCTGATCCTAGTTGGCAT -ACGGAACCTGATCCTAGTCGAGAT -ACGGAACCTGATCCTAGTTACCAC -ACGGAACCTGATCCTAGTCAGAAC -ACGGAACCTGATCCTAGTGTCTAC -ACGGAACCTGATCCTAGTACGTAC -ACGGAACCTGATCCTAGTAGTGAC -ACGGAACCTGATCCTAGTCTGTAG -ACGGAACCTGATCCTAGTCCTAAG -ACGGAACCTGATCCTAGTGTTCAG -ACGGAACCTGATCCTAGTGCATAG -ACGGAACCTGATCCTAGTGACAAG -ACGGAACCTGATCCTAGTAAGCAG -ACGGAACCTGATCCTAGTCGTCAA -ACGGAACCTGATCCTAGTGCTGAA -ACGGAACCTGATCCTAGTAGTACG -ACGGAACCTGATCCTAGTATCCGA -ACGGAACCTGATCCTAGTATGGGA -ACGGAACCTGATCCTAGTGTGCAA -ACGGAACCTGATCCTAGTGAGGAA -ACGGAACCTGATCCTAGTCAGGTA -ACGGAACCTGATCCTAGTGACTCT -ACGGAACCTGATCCTAGTAGTCCT -ACGGAACCTGATCCTAGTTAAGCC -ACGGAACCTGATCCTAGTATAGCC -ACGGAACCTGATCCTAGTTAACCG -ACGGAACCTGATCCTAGTATGCCA -ACGGAACCTGATGCCTAAGGAAAC -ACGGAACCTGATGCCTAAAACACC -ACGGAACCTGATGCCTAAATCGAG -ACGGAACCTGATGCCTAACTCCTT -ACGGAACCTGATGCCTAACCTGTT -ACGGAACCTGATGCCTAACGGTTT -ACGGAACCTGATGCCTAAGTGGTT -ACGGAACCTGATGCCTAAGCCTTT -ACGGAACCTGATGCCTAAGGTCTT -ACGGAACCTGATGCCTAAACGCTT -ACGGAACCTGATGCCTAAAGCGTT -ACGGAACCTGATGCCTAATTCGTC -ACGGAACCTGATGCCTAATCTCTC -ACGGAACCTGATGCCTAATGGATC -ACGGAACCTGATGCCTAACACTTC -ACGGAACCTGATGCCTAAGTACTC -ACGGAACCTGATGCCTAAGATGTC -ACGGAACCTGATGCCTAAACAGTC -ACGGAACCTGATGCCTAATTGCTG -ACGGAACCTGATGCCTAATCCATG -ACGGAACCTGATGCCTAATGTGTG -ACGGAACCTGATGCCTAACTAGTG -ACGGAACCTGATGCCTAACATCTG -ACGGAACCTGATGCCTAAGAGTTG -ACGGAACCTGATGCCTAAAGACTG -ACGGAACCTGATGCCTAATCGGTA -ACGGAACCTGATGCCTAATGCCTA -ACGGAACCTGATGCCTAACCACTA -ACGGAACCTGATGCCTAAGGAGTA -ACGGAACCTGATGCCTAATCGTCT -ACGGAACCTGATGCCTAATGCACT -ACGGAACCTGATGCCTAACTGACT -ACGGAACCTGATGCCTAACAACCT -ACGGAACCTGATGCCTAAGCTACT -ACGGAACCTGATGCCTAAGGATCT -ACGGAACCTGATGCCTAAAAGGCT -ACGGAACCTGATGCCTAATCAACC -ACGGAACCTGATGCCTAATGTTCC -ACGGAACCTGATGCCTAAATTCCC -ACGGAACCTGATGCCTAATTCTCG -ACGGAACCTGATGCCTAATAGACG -ACGGAACCTGATGCCTAAGTAACG -ACGGAACCTGATGCCTAAACTTCG -ACGGAACCTGATGCCTAATACGCA -ACGGAACCTGATGCCTAACTTGCA -ACGGAACCTGATGCCTAACGAACA -ACGGAACCTGATGCCTAACAGTCA -ACGGAACCTGATGCCTAAGATCCA -ACGGAACCTGATGCCTAAACGACA -ACGGAACCTGATGCCTAAAGCTCA -ACGGAACCTGATGCCTAATCACGT -ACGGAACCTGATGCCTAACGTAGT -ACGGAACCTGATGCCTAAGTCAGT -ACGGAACCTGATGCCTAAGAAGGT -ACGGAACCTGATGCCTAAAACCGT -ACGGAACCTGATGCCTAATTGTGC -ACGGAACCTGATGCCTAACTAAGC -ACGGAACCTGATGCCTAAACTAGC -ACGGAACCTGATGCCTAAAGATGC -ACGGAACCTGATGCCTAATGAAGG -ACGGAACCTGATGCCTAACAATGG -ACGGAACCTGATGCCTAAATGAGG -ACGGAACCTGATGCCTAAAATGGG -ACGGAACCTGATGCCTAATCCTGA -ACGGAACCTGATGCCTAATAGCGA -ACGGAACCTGATGCCTAACACAGA -ACGGAACCTGATGCCTAAGCAAGA -ACGGAACCTGATGCCTAAGGTTGA -ACGGAACCTGATGCCTAATCCGAT -ACGGAACCTGATGCCTAATGGCAT -ACGGAACCTGATGCCTAACGAGAT -ACGGAACCTGATGCCTAATACCAC -ACGGAACCTGATGCCTAACAGAAC -ACGGAACCTGATGCCTAAGTCTAC -ACGGAACCTGATGCCTAAACGTAC -ACGGAACCTGATGCCTAAAGTGAC -ACGGAACCTGATGCCTAACTGTAG -ACGGAACCTGATGCCTAACCTAAG -ACGGAACCTGATGCCTAAGTTCAG -ACGGAACCTGATGCCTAAGCATAG -ACGGAACCTGATGCCTAAGACAAG -ACGGAACCTGATGCCTAAAAGCAG -ACGGAACCTGATGCCTAACGTCAA -ACGGAACCTGATGCCTAAGCTGAA -ACGGAACCTGATGCCTAAAGTACG -ACGGAACCTGATGCCTAAATCCGA -ACGGAACCTGATGCCTAAATGGGA -ACGGAACCTGATGCCTAAGTGCAA -ACGGAACCTGATGCCTAAGAGGAA -ACGGAACCTGATGCCTAACAGGTA -ACGGAACCTGATGCCTAAGACTCT -ACGGAACCTGATGCCTAAAGTCCT -ACGGAACCTGATGCCTAATAAGCC -ACGGAACCTGATGCCTAAATAGCC -ACGGAACCTGATGCCTAATAACCG -ACGGAACCTGATGCCTAAATGCCA -ACGGAACCTGATGCCATAGGAAAC -ACGGAACCTGATGCCATAAACACC -ACGGAACCTGATGCCATAATCGAG -ACGGAACCTGATGCCATACTCCTT -ACGGAACCTGATGCCATACCTGTT -ACGGAACCTGATGCCATACGGTTT -ACGGAACCTGATGCCATAGTGGTT -ACGGAACCTGATGCCATAGCCTTT -ACGGAACCTGATGCCATAGGTCTT -ACGGAACCTGATGCCATAACGCTT -ACGGAACCTGATGCCATAAGCGTT -ACGGAACCTGATGCCATATTCGTC -ACGGAACCTGATGCCATATCTCTC -ACGGAACCTGATGCCATATGGATC -ACGGAACCTGATGCCATACACTTC -ACGGAACCTGATGCCATAGTACTC -ACGGAACCTGATGCCATAGATGTC -ACGGAACCTGATGCCATAACAGTC -ACGGAACCTGATGCCATATTGCTG -ACGGAACCTGATGCCATATCCATG -ACGGAACCTGATGCCATATGTGTG -ACGGAACCTGATGCCATACTAGTG -ACGGAACCTGATGCCATACATCTG -ACGGAACCTGATGCCATAGAGTTG -ACGGAACCTGATGCCATAAGACTG -ACGGAACCTGATGCCATATCGGTA -ACGGAACCTGATGCCATATGCCTA -ACGGAACCTGATGCCATACCACTA -ACGGAACCTGATGCCATAGGAGTA -ACGGAACCTGATGCCATATCGTCT -ACGGAACCTGATGCCATATGCACT -ACGGAACCTGATGCCATACTGACT -ACGGAACCTGATGCCATACAACCT -ACGGAACCTGATGCCATAGCTACT -ACGGAACCTGATGCCATAGGATCT -ACGGAACCTGATGCCATAAAGGCT -ACGGAACCTGATGCCATATCAACC -ACGGAACCTGATGCCATATGTTCC -ACGGAACCTGATGCCATAATTCCC -ACGGAACCTGATGCCATATTCTCG -ACGGAACCTGATGCCATATAGACG -ACGGAACCTGATGCCATAGTAACG -ACGGAACCTGATGCCATAACTTCG -ACGGAACCTGATGCCATATACGCA -ACGGAACCTGATGCCATACTTGCA -ACGGAACCTGATGCCATACGAACA -ACGGAACCTGATGCCATACAGTCA -ACGGAACCTGATGCCATAGATCCA -ACGGAACCTGATGCCATAACGACA -ACGGAACCTGATGCCATAAGCTCA -ACGGAACCTGATGCCATATCACGT -ACGGAACCTGATGCCATACGTAGT -ACGGAACCTGATGCCATAGTCAGT -ACGGAACCTGATGCCATAGAAGGT -ACGGAACCTGATGCCATAAACCGT -ACGGAACCTGATGCCATATTGTGC -ACGGAACCTGATGCCATACTAAGC -ACGGAACCTGATGCCATAACTAGC -ACGGAACCTGATGCCATAAGATGC -ACGGAACCTGATGCCATATGAAGG -ACGGAACCTGATGCCATACAATGG -ACGGAACCTGATGCCATAATGAGG -ACGGAACCTGATGCCATAAATGGG -ACGGAACCTGATGCCATATCCTGA -ACGGAACCTGATGCCATATAGCGA -ACGGAACCTGATGCCATACACAGA -ACGGAACCTGATGCCATAGCAAGA -ACGGAACCTGATGCCATAGGTTGA -ACGGAACCTGATGCCATATCCGAT -ACGGAACCTGATGCCATATGGCAT -ACGGAACCTGATGCCATACGAGAT -ACGGAACCTGATGCCATATACCAC -ACGGAACCTGATGCCATACAGAAC -ACGGAACCTGATGCCATAGTCTAC -ACGGAACCTGATGCCATAACGTAC -ACGGAACCTGATGCCATAAGTGAC -ACGGAACCTGATGCCATACTGTAG -ACGGAACCTGATGCCATACCTAAG -ACGGAACCTGATGCCATAGTTCAG -ACGGAACCTGATGCCATAGCATAG -ACGGAACCTGATGCCATAGACAAG -ACGGAACCTGATGCCATAAAGCAG -ACGGAACCTGATGCCATACGTCAA -ACGGAACCTGATGCCATAGCTGAA -ACGGAACCTGATGCCATAAGTACG -ACGGAACCTGATGCCATAATCCGA -ACGGAACCTGATGCCATAATGGGA -ACGGAACCTGATGCCATAGTGCAA -ACGGAACCTGATGCCATAGAGGAA -ACGGAACCTGATGCCATACAGGTA -ACGGAACCTGATGCCATAGACTCT -ACGGAACCTGATGCCATAAGTCCT -ACGGAACCTGATGCCATATAAGCC -ACGGAACCTGATGCCATAATAGCC -ACGGAACCTGATGCCATATAACCG -ACGGAACCTGATGCCATAATGCCA -ACGGAACCTGATCCGTAAGGAAAC -ACGGAACCTGATCCGTAAAACACC -ACGGAACCTGATCCGTAAATCGAG -ACGGAACCTGATCCGTAACTCCTT -ACGGAACCTGATCCGTAACCTGTT -ACGGAACCTGATCCGTAACGGTTT -ACGGAACCTGATCCGTAAGTGGTT -ACGGAACCTGATCCGTAAGCCTTT -ACGGAACCTGATCCGTAAGGTCTT -ACGGAACCTGATCCGTAAACGCTT -ACGGAACCTGATCCGTAAAGCGTT -ACGGAACCTGATCCGTAATTCGTC -ACGGAACCTGATCCGTAATCTCTC -ACGGAACCTGATCCGTAATGGATC -ACGGAACCTGATCCGTAACACTTC -ACGGAACCTGATCCGTAAGTACTC -ACGGAACCTGATCCGTAAGATGTC -ACGGAACCTGATCCGTAAACAGTC -ACGGAACCTGATCCGTAATTGCTG -ACGGAACCTGATCCGTAATCCATG -ACGGAACCTGATCCGTAATGTGTG -ACGGAACCTGATCCGTAACTAGTG -ACGGAACCTGATCCGTAACATCTG -ACGGAACCTGATCCGTAAGAGTTG -ACGGAACCTGATCCGTAAAGACTG -ACGGAACCTGATCCGTAATCGGTA -ACGGAACCTGATCCGTAATGCCTA -ACGGAACCTGATCCGTAACCACTA -ACGGAACCTGATCCGTAAGGAGTA -ACGGAACCTGATCCGTAATCGTCT -ACGGAACCTGATCCGTAATGCACT -ACGGAACCTGATCCGTAACTGACT -ACGGAACCTGATCCGTAACAACCT -ACGGAACCTGATCCGTAAGCTACT -ACGGAACCTGATCCGTAAGGATCT -ACGGAACCTGATCCGTAAAAGGCT -ACGGAACCTGATCCGTAATCAACC -ACGGAACCTGATCCGTAATGTTCC -ACGGAACCTGATCCGTAAATTCCC -ACGGAACCTGATCCGTAATTCTCG -ACGGAACCTGATCCGTAATAGACG -ACGGAACCTGATCCGTAAGTAACG -ACGGAACCTGATCCGTAAACTTCG -ACGGAACCTGATCCGTAATACGCA -ACGGAACCTGATCCGTAACTTGCA -ACGGAACCTGATCCGTAACGAACA -ACGGAACCTGATCCGTAACAGTCA -ACGGAACCTGATCCGTAAGATCCA -ACGGAACCTGATCCGTAAACGACA -ACGGAACCTGATCCGTAAAGCTCA -ACGGAACCTGATCCGTAATCACGT -ACGGAACCTGATCCGTAACGTAGT -ACGGAACCTGATCCGTAAGTCAGT -ACGGAACCTGATCCGTAAGAAGGT -ACGGAACCTGATCCGTAAAACCGT -ACGGAACCTGATCCGTAATTGTGC -ACGGAACCTGATCCGTAACTAAGC -ACGGAACCTGATCCGTAAACTAGC -ACGGAACCTGATCCGTAAAGATGC -ACGGAACCTGATCCGTAATGAAGG -ACGGAACCTGATCCGTAACAATGG -ACGGAACCTGATCCGTAAATGAGG -ACGGAACCTGATCCGTAAAATGGG -ACGGAACCTGATCCGTAATCCTGA -ACGGAACCTGATCCGTAATAGCGA -ACGGAACCTGATCCGTAACACAGA -ACGGAACCTGATCCGTAAGCAAGA -ACGGAACCTGATCCGTAAGGTTGA -ACGGAACCTGATCCGTAATCCGAT -ACGGAACCTGATCCGTAATGGCAT -ACGGAACCTGATCCGTAACGAGAT -ACGGAACCTGATCCGTAATACCAC -ACGGAACCTGATCCGTAACAGAAC -ACGGAACCTGATCCGTAAGTCTAC -ACGGAACCTGATCCGTAAACGTAC -ACGGAACCTGATCCGTAAAGTGAC -ACGGAACCTGATCCGTAACTGTAG -ACGGAACCTGATCCGTAACCTAAG -ACGGAACCTGATCCGTAAGTTCAG -ACGGAACCTGATCCGTAAGCATAG -ACGGAACCTGATCCGTAAGACAAG -ACGGAACCTGATCCGTAAAAGCAG -ACGGAACCTGATCCGTAACGTCAA -ACGGAACCTGATCCGTAAGCTGAA -ACGGAACCTGATCCGTAAAGTACG -ACGGAACCTGATCCGTAAATCCGA -ACGGAACCTGATCCGTAAATGGGA -ACGGAACCTGATCCGTAAGTGCAA -ACGGAACCTGATCCGTAAGAGGAA -ACGGAACCTGATCCGTAACAGGTA -ACGGAACCTGATCCGTAAGACTCT -ACGGAACCTGATCCGTAAAGTCCT -ACGGAACCTGATCCGTAATAAGCC -ACGGAACCTGATCCGTAAATAGCC -ACGGAACCTGATCCGTAATAACCG -ACGGAACCTGATCCGTAAATGCCA -ACGGAACCTGATCCAATGGGAAAC -ACGGAACCTGATCCAATGAACACC -ACGGAACCTGATCCAATGATCGAG -ACGGAACCTGATCCAATGCTCCTT -ACGGAACCTGATCCAATGCCTGTT -ACGGAACCTGATCCAATGCGGTTT -ACGGAACCTGATCCAATGGTGGTT -ACGGAACCTGATCCAATGGCCTTT -ACGGAACCTGATCCAATGGGTCTT -ACGGAACCTGATCCAATGACGCTT -ACGGAACCTGATCCAATGAGCGTT -ACGGAACCTGATCCAATGTTCGTC -ACGGAACCTGATCCAATGTCTCTC -ACGGAACCTGATCCAATGTGGATC -ACGGAACCTGATCCAATGCACTTC -ACGGAACCTGATCCAATGGTACTC -ACGGAACCTGATCCAATGGATGTC -ACGGAACCTGATCCAATGACAGTC -ACGGAACCTGATCCAATGTTGCTG -ACGGAACCTGATCCAATGTCCATG -ACGGAACCTGATCCAATGTGTGTG -ACGGAACCTGATCCAATGCTAGTG -ACGGAACCTGATCCAATGCATCTG -ACGGAACCTGATCCAATGGAGTTG -ACGGAACCTGATCCAATGAGACTG -ACGGAACCTGATCCAATGTCGGTA -ACGGAACCTGATCCAATGTGCCTA -ACGGAACCTGATCCAATGCCACTA -ACGGAACCTGATCCAATGGGAGTA -ACGGAACCTGATCCAATGTCGTCT -ACGGAACCTGATCCAATGTGCACT -ACGGAACCTGATCCAATGCTGACT -ACGGAACCTGATCCAATGCAACCT -ACGGAACCTGATCCAATGGCTACT -ACGGAACCTGATCCAATGGGATCT -ACGGAACCTGATCCAATGAAGGCT -ACGGAACCTGATCCAATGTCAACC -ACGGAACCTGATCCAATGTGTTCC -ACGGAACCTGATCCAATGATTCCC -ACGGAACCTGATCCAATGTTCTCG -ACGGAACCTGATCCAATGTAGACG -ACGGAACCTGATCCAATGGTAACG -ACGGAACCTGATCCAATGACTTCG -ACGGAACCTGATCCAATGTACGCA -ACGGAACCTGATCCAATGCTTGCA -ACGGAACCTGATCCAATGCGAACA -ACGGAACCTGATCCAATGCAGTCA -ACGGAACCTGATCCAATGGATCCA -ACGGAACCTGATCCAATGACGACA -ACGGAACCTGATCCAATGAGCTCA -ACGGAACCTGATCCAATGTCACGT -ACGGAACCTGATCCAATGCGTAGT -ACGGAACCTGATCCAATGGTCAGT -ACGGAACCTGATCCAATGGAAGGT -ACGGAACCTGATCCAATGAACCGT -ACGGAACCTGATCCAATGTTGTGC -ACGGAACCTGATCCAATGCTAAGC -ACGGAACCTGATCCAATGACTAGC -ACGGAACCTGATCCAATGAGATGC -ACGGAACCTGATCCAATGTGAAGG -ACGGAACCTGATCCAATGCAATGG -ACGGAACCTGATCCAATGATGAGG -ACGGAACCTGATCCAATGAATGGG -ACGGAACCTGATCCAATGTCCTGA -ACGGAACCTGATCCAATGTAGCGA -ACGGAACCTGATCCAATGCACAGA -ACGGAACCTGATCCAATGGCAAGA -ACGGAACCTGATCCAATGGGTTGA -ACGGAACCTGATCCAATGTCCGAT -ACGGAACCTGATCCAATGTGGCAT -ACGGAACCTGATCCAATGCGAGAT -ACGGAACCTGATCCAATGTACCAC -ACGGAACCTGATCCAATGCAGAAC -ACGGAACCTGATCCAATGGTCTAC -ACGGAACCTGATCCAATGACGTAC -ACGGAACCTGATCCAATGAGTGAC -ACGGAACCTGATCCAATGCTGTAG -ACGGAACCTGATCCAATGCCTAAG -ACGGAACCTGATCCAATGGTTCAG -ACGGAACCTGATCCAATGGCATAG -ACGGAACCTGATCCAATGGACAAG -ACGGAACCTGATCCAATGAAGCAG -ACGGAACCTGATCCAATGCGTCAA -ACGGAACCTGATCCAATGGCTGAA -ACGGAACCTGATCCAATGAGTACG -ACGGAACCTGATCCAATGATCCGA -ACGGAACCTGATCCAATGATGGGA -ACGGAACCTGATCCAATGGTGCAA -ACGGAACCTGATCCAATGGAGGAA -ACGGAACCTGATCCAATGCAGGTA -ACGGAACCTGATCCAATGGACTCT -ACGGAACCTGATCCAATGAGTCCT -ACGGAACCTGATCCAATGTAAGCC -ACGGAACCTGATCCAATGATAGCC -ACGGAACCTGATCCAATGTAACCG -ACGGAACCTGATCCAATGATGCCA -ACGGAAAGCGATAACGGAGGAAAC -ACGGAAAGCGATAACGGAAACACC -ACGGAAAGCGATAACGGAATCGAG -ACGGAAAGCGATAACGGACTCCTT -ACGGAAAGCGATAACGGACCTGTT -ACGGAAAGCGATAACGGACGGTTT -ACGGAAAGCGATAACGGAGTGGTT -ACGGAAAGCGATAACGGAGCCTTT -ACGGAAAGCGATAACGGAGGTCTT -ACGGAAAGCGATAACGGAACGCTT -ACGGAAAGCGATAACGGAAGCGTT -ACGGAAAGCGATAACGGATTCGTC -ACGGAAAGCGATAACGGATCTCTC -ACGGAAAGCGATAACGGATGGATC -ACGGAAAGCGATAACGGACACTTC -ACGGAAAGCGATAACGGAGTACTC -ACGGAAAGCGATAACGGAGATGTC -ACGGAAAGCGATAACGGAACAGTC -ACGGAAAGCGATAACGGATTGCTG -ACGGAAAGCGATAACGGATCCATG -ACGGAAAGCGATAACGGATGTGTG -ACGGAAAGCGATAACGGACTAGTG -ACGGAAAGCGATAACGGACATCTG -ACGGAAAGCGATAACGGAGAGTTG -ACGGAAAGCGATAACGGAAGACTG -ACGGAAAGCGATAACGGATCGGTA -ACGGAAAGCGATAACGGATGCCTA -ACGGAAAGCGATAACGGACCACTA -ACGGAAAGCGATAACGGAGGAGTA -ACGGAAAGCGATAACGGATCGTCT -ACGGAAAGCGATAACGGATGCACT -ACGGAAAGCGATAACGGACTGACT -ACGGAAAGCGATAACGGACAACCT -ACGGAAAGCGATAACGGAGCTACT -ACGGAAAGCGATAACGGAGGATCT -ACGGAAAGCGATAACGGAAAGGCT -ACGGAAAGCGATAACGGATCAACC -ACGGAAAGCGATAACGGATGTTCC -ACGGAAAGCGATAACGGAATTCCC -ACGGAAAGCGATAACGGATTCTCG -ACGGAAAGCGATAACGGATAGACG -ACGGAAAGCGATAACGGAGTAACG -ACGGAAAGCGATAACGGAACTTCG -ACGGAAAGCGATAACGGATACGCA -ACGGAAAGCGATAACGGACTTGCA -ACGGAAAGCGATAACGGACGAACA -ACGGAAAGCGATAACGGACAGTCA -ACGGAAAGCGATAACGGAGATCCA -ACGGAAAGCGATAACGGAACGACA -ACGGAAAGCGATAACGGAAGCTCA -ACGGAAAGCGATAACGGATCACGT -ACGGAAAGCGATAACGGACGTAGT -ACGGAAAGCGATAACGGAGTCAGT -ACGGAAAGCGATAACGGAGAAGGT -ACGGAAAGCGATAACGGAAACCGT -ACGGAAAGCGATAACGGATTGTGC -ACGGAAAGCGATAACGGACTAAGC -ACGGAAAGCGATAACGGAACTAGC -ACGGAAAGCGATAACGGAAGATGC -ACGGAAAGCGATAACGGATGAAGG -ACGGAAAGCGATAACGGACAATGG -ACGGAAAGCGATAACGGAATGAGG -ACGGAAAGCGATAACGGAAATGGG -ACGGAAAGCGATAACGGATCCTGA -ACGGAAAGCGATAACGGATAGCGA -ACGGAAAGCGATAACGGACACAGA -ACGGAAAGCGATAACGGAGCAAGA -ACGGAAAGCGATAACGGAGGTTGA -ACGGAAAGCGATAACGGATCCGAT -ACGGAAAGCGATAACGGATGGCAT -ACGGAAAGCGATAACGGACGAGAT -ACGGAAAGCGATAACGGATACCAC -ACGGAAAGCGATAACGGACAGAAC -ACGGAAAGCGATAACGGAGTCTAC -ACGGAAAGCGATAACGGAACGTAC -ACGGAAAGCGATAACGGAAGTGAC -ACGGAAAGCGATAACGGACTGTAG -ACGGAAAGCGATAACGGACCTAAG -ACGGAAAGCGATAACGGAGTTCAG -ACGGAAAGCGATAACGGAGCATAG -ACGGAAAGCGATAACGGAGACAAG -ACGGAAAGCGATAACGGAAAGCAG -ACGGAAAGCGATAACGGACGTCAA -ACGGAAAGCGATAACGGAGCTGAA -ACGGAAAGCGATAACGGAAGTACG -ACGGAAAGCGATAACGGAATCCGA -ACGGAAAGCGATAACGGAATGGGA -ACGGAAAGCGATAACGGAGTGCAA -ACGGAAAGCGATAACGGAGAGGAA -ACGGAAAGCGATAACGGACAGGTA -ACGGAAAGCGATAACGGAGACTCT -ACGGAAAGCGATAACGGAAGTCCT -ACGGAAAGCGATAACGGATAAGCC -ACGGAAAGCGATAACGGAATAGCC -ACGGAAAGCGATAACGGATAACCG -ACGGAAAGCGATAACGGAATGCCA -ACGGAAAGCGATACCAACGGAAAC -ACGGAAAGCGATACCAACAACACC -ACGGAAAGCGATACCAACATCGAG -ACGGAAAGCGATACCAACCTCCTT -ACGGAAAGCGATACCAACCCTGTT -ACGGAAAGCGATACCAACCGGTTT -ACGGAAAGCGATACCAACGTGGTT -ACGGAAAGCGATACCAACGCCTTT -ACGGAAAGCGATACCAACGGTCTT -ACGGAAAGCGATACCAACACGCTT -ACGGAAAGCGATACCAACAGCGTT -ACGGAAAGCGATACCAACTTCGTC -ACGGAAAGCGATACCAACTCTCTC -ACGGAAAGCGATACCAACTGGATC -ACGGAAAGCGATACCAACCACTTC -ACGGAAAGCGATACCAACGTACTC -ACGGAAAGCGATACCAACGATGTC -ACGGAAAGCGATACCAACACAGTC -ACGGAAAGCGATACCAACTTGCTG -ACGGAAAGCGATACCAACTCCATG -ACGGAAAGCGATACCAACTGTGTG -ACGGAAAGCGATACCAACCTAGTG -ACGGAAAGCGATACCAACCATCTG -ACGGAAAGCGATACCAACGAGTTG -ACGGAAAGCGATACCAACAGACTG -ACGGAAAGCGATACCAACTCGGTA -ACGGAAAGCGATACCAACTGCCTA -ACGGAAAGCGATACCAACCCACTA -ACGGAAAGCGATACCAACGGAGTA -ACGGAAAGCGATACCAACTCGTCT -ACGGAAAGCGATACCAACTGCACT -ACGGAAAGCGATACCAACCTGACT -ACGGAAAGCGATACCAACCAACCT -ACGGAAAGCGATACCAACGCTACT -ACGGAAAGCGATACCAACGGATCT -ACGGAAAGCGATACCAACAAGGCT -ACGGAAAGCGATACCAACTCAACC -ACGGAAAGCGATACCAACTGTTCC -ACGGAAAGCGATACCAACATTCCC -ACGGAAAGCGATACCAACTTCTCG -ACGGAAAGCGATACCAACTAGACG -ACGGAAAGCGATACCAACGTAACG -ACGGAAAGCGATACCAACACTTCG -ACGGAAAGCGATACCAACTACGCA -ACGGAAAGCGATACCAACCTTGCA -ACGGAAAGCGATACCAACCGAACA -ACGGAAAGCGATACCAACCAGTCA -ACGGAAAGCGATACCAACGATCCA -ACGGAAAGCGATACCAACACGACA -ACGGAAAGCGATACCAACAGCTCA -ACGGAAAGCGATACCAACTCACGT -ACGGAAAGCGATACCAACCGTAGT -ACGGAAAGCGATACCAACGTCAGT -ACGGAAAGCGATACCAACGAAGGT -ACGGAAAGCGATACCAACAACCGT -ACGGAAAGCGATACCAACTTGTGC -ACGGAAAGCGATACCAACCTAAGC -ACGGAAAGCGATACCAACACTAGC -ACGGAAAGCGATACCAACAGATGC -ACGGAAAGCGATACCAACTGAAGG -ACGGAAAGCGATACCAACCAATGG -ACGGAAAGCGATACCAACATGAGG -ACGGAAAGCGATACCAACAATGGG -ACGGAAAGCGATACCAACTCCTGA -ACGGAAAGCGATACCAACTAGCGA -ACGGAAAGCGATACCAACCACAGA -ACGGAAAGCGATACCAACGCAAGA -ACGGAAAGCGATACCAACGGTTGA -ACGGAAAGCGATACCAACTCCGAT -ACGGAAAGCGATACCAACTGGCAT -ACGGAAAGCGATACCAACCGAGAT -ACGGAAAGCGATACCAACTACCAC -ACGGAAAGCGATACCAACCAGAAC -ACGGAAAGCGATACCAACGTCTAC -ACGGAAAGCGATACCAACACGTAC -ACGGAAAGCGATACCAACAGTGAC -ACGGAAAGCGATACCAACCTGTAG -ACGGAAAGCGATACCAACCCTAAG -ACGGAAAGCGATACCAACGTTCAG -ACGGAAAGCGATACCAACGCATAG -ACGGAAAGCGATACCAACGACAAG -ACGGAAAGCGATACCAACAAGCAG -ACGGAAAGCGATACCAACCGTCAA -ACGGAAAGCGATACCAACGCTGAA -ACGGAAAGCGATACCAACAGTACG -ACGGAAAGCGATACCAACATCCGA -ACGGAAAGCGATACCAACATGGGA -ACGGAAAGCGATACCAACGTGCAA -ACGGAAAGCGATACCAACGAGGAA -ACGGAAAGCGATACCAACCAGGTA -ACGGAAAGCGATACCAACGACTCT -ACGGAAAGCGATACCAACAGTCCT -ACGGAAAGCGATACCAACTAAGCC -ACGGAAAGCGATACCAACATAGCC -ACGGAAAGCGATACCAACTAACCG -ACGGAAAGCGATACCAACATGCCA -ACGGAAAGCGATGAGATCGGAAAC -ACGGAAAGCGATGAGATCAACACC -ACGGAAAGCGATGAGATCATCGAG -ACGGAAAGCGATGAGATCCTCCTT -ACGGAAAGCGATGAGATCCCTGTT -ACGGAAAGCGATGAGATCCGGTTT -ACGGAAAGCGATGAGATCGTGGTT -ACGGAAAGCGATGAGATCGCCTTT -ACGGAAAGCGATGAGATCGGTCTT -ACGGAAAGCGATGAGATCACGCTT -ACGGAAAGCGATGAGATCAGCGTT -ACGGAAAGCGATGAGATCTTCGTC -ACGGAAAGCGATGAGATCTCTCTC -ACGGAAAGCGATGAGATCTGGATC -ACGGAAAGCGATGAGATCCACTTC -ACGGAAAGCGATGAGATCGTACTC -ACGGAAAGCGATGAGATCGATGTC -ACGGAAAGCGATGAGATCACAGTC -ACGGAAAGCGATGAGATCTTGCTG -ACGGAAAGCGATGAGATCTCCATG -ACGGAAAGCGATGAGATCTGTGTG -ACGGAAAGCGATGAGATCCTAGTG -ACGGAAAGCGATGAGATCCATCTG -ACGGAAAGCGATGAGATCGAGTTG -ACGGAAAGCGATGAGATCAGACTG -ACGGAAAGCGATGAGATCTCGGTA -ACGGAAAGCGATGAGATCTGCCTA -ACGGAAAGCGATGAGATCCCACTA -ACGGAAAGCGATGAGATCGGAGTA -ACGGAAAGCGATGAGATCTCGTCT -ACGGAAAGCGATGAGATCTGCACT -ACGGAAAGCGATGAGATCCTGACT -ACGGAAAGCGATGAGATCCAACCT -ACGGAAAGCGATGAGATCGCTACT -ACGGAAAGCGATGAGATCGGATCT -ACGGAAAGCGATGAGATCAAGGCT -ACGGAAAGCGATGAGATCTCAACC -ACGGAAAGCGATGAGATCTGTTCC -ACGGAAAGCGATGAGATCATTCCC -ACGGAAAGCGATGAGATCTTCTCG -ACGGAAAGCGATGAGATCTAGACG -ACGGAAAGCGATGAGATCGTAACG -ACGGAAAGCGATGAGATCACTTCG -ACGGAAAGCGATGAGATCTACGCA -ACGGAAAGCGATGAGATCCTTGCA -ACGGAAAGCGATGAGATCCGAACA -ACGGAAAGCGATGAGATCCAGTCA -ACGGAAAGCGATGAGATCGATCCA -ACGGAAAGCGATGAGATCACGACA -ACGGAAAGCGATGAGATCAGCTCA -ACGGAAAGCGATGAGATCTCACGT -ACGGAAAGCGATGAGATCCGTAGT -ACGGAAAGCGATGAGATCGTCAGT -ACGGAAAGCGATGAGATCGAAGGT -ACGGAAAGCGATGAGATCAACCGT -ACGGAAAGCGATGAGATCTTGTGC -ACGGAAAGCGATGAGATCCTAAGC -ACGGAAAGCGATGAGATCACTAGC -ACGGAAAGCGATGAGATCAGATGC -ACGGAAAGCGATGAGATCTGAAGG -ACGGAAAGCGATGAGATCCAATGG -ACGGAAAGCGATGAGATCATGAGG -ACGGAAAGCGATGAGATCAATGGG -ACGGAAAGCGATGAGATCTCCTGA -ACGGAAAGCGATGAGATCTAGCGA -ACGGAAAGCGATGAGATCCACAGA -ACGGAAAGCGATGAGATCGCAAGA -ACGGAAAGCGATGAGATCGGTTGA -ACGGAAAGCGATGAGATCTCCGAT -ACGGAAAGCGATGAGATCTGGCAT -ACGGAAAGCGATGAGATCCGAGAT -ACGGAAAGCGATGAGATCTACCAC -ACGGAAAGCGATGAGATCCAGAAC -ACGGAAAGCGATGAGATCGTCTAC -ACGGAAAGCGATGAGATCACGTAC -ACGGAAAGCGATGAGATCAGTGAC -ACGGAAAGCGATGAGATCCTGTAG -ACGGAAAGCGATGAGATCCCTAAG -ACGGAAAGCGATGAGATCGTTCAG -ACGGAAAGCGATGAGATCGCATAG -ACGGAAAGCGATGAGATCGACAAG -ACGGAAAGCGATGAGATCAAGCAG -ACGGAAAGCGATGAGATCCGTCAA -ACGGAAAGCGATGAGATCGCTGAA -ACGGAAAGCGATGAGATCAGTACG -ACGGAAAGCGATGAGATCATCCGA -ACGGAAAGCGATGAGATCATGGGA -ACGGAAAGCGATGAGATCGTGCAA -ACGGAAAGCGATGAGATCGAGGAA -ACGGAAAGCGATGAGATCCAGGTA -ACGGAAAGCGATGAGATCGACTCT -ACGGAAAGCGATGAGATCAGTCCT -ACGGAAAGCGATGAGATCTAAGCC -ACGGAAAGCGATGAGATCATAGCC -ACGGAAAGCGATGAGATCTAACCG -ACGGAAAGCGATGAGATCATGCCA -ACGGAAAGCGATCTTCTCGGAAAC -ACGGAAAGCGATCTTCTCAACACC -ACGGAAAGCGATCTTCTCATCGAG -ACGGAAAGCGATCTTCTCCTCCTT -ACGGAAAGCGATCTTCTCCCTGTT -ACGGAAAGCGATCTTCTCCGGTTT -ACGGAAAGCGATCTTCTCGTGGTT -ACGGAAAGCGATCTTCTCGCCTTT -ACGGAAAGCGATCTTCTCGGTCTT -ACGGAAAGCGATCTTCTCACGCTT -ACGGAAAGCGATCTTCTCAGCGTT -ACGGAAAGCGATCTTCTCTTCGTC -ACGGAAAGCGATCTTCTCTCTCTC -ACGGAAAGCGATCTTCTCTGGATC -ACGGAAAGCGATCTTCTCCACTTC -ACGGAAAGCGATCTTCTCGTACTC -ACGGAAAGCGATCTTCTCGATGTC -ACGGAAAGCGATCTTCTCACAGTC -ACGGAAAGCGATCTTCTCTTGCTG -ACGGAAAGCGATCTTCTCTCCATG -ACGGAAAGCGATCTTCTCTGTGTG -ACGGAAAGCGATCTTCTCCTAGTG -ACGGAAAGCGATCTTCTCCATCTG -ACGGAAAGCGATCTTCTCGAGTTG -ACGGAAAGCGATCTTCTCAGACTG -ACGGAAAGCGATCTTCTCTCGGTA -ACGGAAAGCGATCTTCTCTGCCTA -ACGGAAAGCGATCTTCTCCCACTA -ACGGAAAGCGATCTTCTCGGAGTA -ACGGAAAGCGATCTTCTCTCGTCT -ACGGAAAGCGATCTTCTCTGCACT -ACGGAAAGCGATCTTCTCCTGACT -ACGGAAAGCGATCTTCTCCAACCT -ACGGAAAGCGATCTTCTCGCTACT -ACGGAAAGCGATCTTCTCGGATCT -ACGGAAAGCGATCTTCTCAAGGCT -ACGGAAAGCGATCTTCTCTCAACC -ACGGAAAGCGATCTTCTCTGTTCC -ACGGAAAGCGATCTTCTCATTCCC -ACGGAAAGCGATCTTCTCTTCTCG -ACGGAAAGCGATCTTCTCTAGACG -ACGGAAAGCGATCTTCTCGTAACG -ACGGAAAGCGATCTTCTCACTTCG -ACGGAAAGCGATCTTCTCTACGCA -ACGGAAAGCGATCTTCTCCTTGCA -ACGGAAAGCGATCTTCTCCGAACA -ACGGAAAGCGATCTTCTCCAGTCA -ACGGAAAGCGATCTTCTCGATCCA -ACGGAAAGCGATCTTCTCACGACA -ACGGAAAGCGATCTTCTCAGCTCA -ACGGAAAGCGATCTTCTCTCACGT -ACGGAAAGCGATCTTCTCCGTAGT -ACGGAAAGCGATCTTCTCGTCAGT -ACGGAAAGCGATCTTCTCGAAGGT -ACGGAAAGCGATCTTCTCAACCGT -ACGGAAAGCGATCTTCTCTTGTGC -ACGGAAAGCGATCTTCTCCTAAGC -ACGGAAAGCGATCTTCTCACTAGC -ACGGAAAGCGATCTTCTCAGATGC -ACGGAAAGCGATCTTCTCTGAAGG -ACGGAAAGCGATCTTCTCCAATGG -ACGGAAAGCGATCTTCTCATGAGG -ACGGAAAGCGATCTTCTCAATGGG -ACGGAAAGCGATCTTCTCTCCTGA -ACGGAAAGCGATCTTCTCTAGCGA -ACGGAAAGCGATCTTCTCCACAGA -ACGGAAAGCGATCTTCTCGCAAGA -ACGGAAAGCGATCTTCTCGGTTGA -ACGGAAAGCGATCTTCTCTCCGAT -ACGGAAAGCGATCTTCTCTGGCAT -ACGGAAAGCGATCTTCTCCGAGAT -ACGGAAAGCGATCTTCTCTACCAC -ACGGAAAGCGATCTTCTCCAGAAC -ACGGAAAGCGATCTTCTCGTCTAC -ACGGAAAGCGATCTTCTCACGTAC -ACGGAAAGCGATCTTCTCAGTGAC -ACGGAAAGCGATCTTCTCCTGTAG -ACGGAAAGCGATCTTCTCCCTAAG -ACGGAAAGCGATCTTCTCGTTCAG -ACGGAAAGCGATCTTCTCGCATAG -ACGGAAAGCGATCTTCTCGACAAG -ACGGAAAGCGATCTTCTCAAGCAG -ACGGAAAGCGATCTTCTCCGTCAA -ACGGAAAGCGATCTTCTCGCTGAA -ACGGAAAGCGATCTTCTCAGTACG -ACGGAAAGCGATCTTCTCATCCGA -ACGGAAAGCGATCTTCTCATGGGA -ACGGAAAGCGATCTTCTCGTGCAA -ACGGAAAGCGATCTTCTCGAGGAA -ACGGAAAGCGATCTTCTCCAGGTA -ACGGAAAGCGATCTTCTCGACTCT -ACGGAAAGCGATCTTCTCAGTCCT -ACGGAAAGCGATCTTCTCTAAGCC -ACGGAAAGCGATCTTCTCATAGCC -ACGGAAAGCGATCTTCTCTAACCG -ACGGAAAGCGATCTTCTCATGCCA -ACGGAAAGCGATGTTCCTGGAAAC -ACGGAAAGCGATGTTCCTAACACC -ACGGAAAGCGATGTTCCTATCGAG -ACGGAAAGCGATGTTCCTCTCCTT -ACGGAAAGCGATGTTCCTCCTGTT -ACGGAAAGCGATGTTCCTCGGTTT -ACGGAAAGCGATGTTCCTGTGGTT -ACGGAAAGCGATGTTCCTGCCTTT -ACGGAAAGCGATGTTCCTGGTCTT -ACGGAAAGCGATGTTCCTACGCTT -ACGGAAAGCGATGTTCCTAGCGTT -ACGGAAAGCGATGTTCCTTTCGTC -ACGGAAAGCGATGTTCCTTCTCTC -ACGGAAAGCGATGTTCCTTGGATC -ACGGAAAGCGATGTTCCTCACTTC -ACGGAAAGCGATGTTCCTGTACTC -ACGGAAAGCGATGTTCCTGATGTC -ACGGAAAGCGATGTTCCTACAGTC -ACGGAAAGCGATGTTCCTTTGCTG -ACGGAAAGCGATGTTCCTTCCATG -ACGGAAAGCGATGTTCCTTGTGTG -ACGGAAAGCGATGTTCCTCTAGTG -ACGGAAAGCGATGTTCCTCATCTG -ACGGAAAGCGATGTTCCTGAGTTG -ACGGAAAGCGATGTTCCTAGACTG -ACGGAAAGCGATGTTCCTTCGGTA -ACGGAAAGCGATGTTCCTTGCCTA -ACGGAAAGCGATGTTCCTCCACTA -ACGGAAAGCGATGTTCCTGGAGTA -ACGGAAAGCGATGTTCCTTCGTCT -ACGGAAAGCGATGTTCCTTGCACT -ACGGAAAGCGATGTTCCTCTGACT -ACGGAAAGCGATGTTCCTCAACCT -ACGGAAAGCGATGTTCCTGCTACT -ACGGAAAGCGATGTTCCTGGATCT -ACGGAAAGCGATGTTCCTAAGGCT -ACGGAAAGCGATGTTCCTTCAACC -ACGGAAAGCGATGTTCCTTGTTCC -ACGGAAAGCGATGTTCCTATTCCC -ACGGAAAGCGATGTTCCTTTCTCG -ACGGAAAGCGATGTTCCTTAGACG -ACGGAAAGCGATGTTCCTGTAACG -ACGGAAAGCGATGTTCCTACTTCG -ACGGAAAGCGATGTTCCTTACGCA -ACGGAAAGCGATGTTCCTCTTGCA -ACGGAAAGCGATGTTCCTCGAACA -ACGGAAAGCGATGTTCCTCAGTCA -ACGGAAAGCGATGTTCCTGATCCA -ACGGAAAGCGATGTTCCTACGACA -ACGGAAAGCGATGTTCCTAGCTCA -ACGGAAAGCGATGTTCCTTCACGT -ACGGAAAGCGATGTTCCTCGTAGT -ACGGAAAGCGATGTTCCTGTCAGT -ACGGAAAGCGATGTTCCTGAAGGT -ACGGAAAGCGATGTTCCTAACCGT -ACGGAAAGCGATGTTCCTTTGTGC -ACGGAAAGCGATGTTCCTCTAAGC -ACGGAAAGCGATGTTCCTACTAGC -ACGGAAAGCGATGTTCCTAGATGC -ACGGAAAGCGATGTTCCTTGAAGG -ACGGAAAGCGATGTTCCTCAATGG -ACGGAAAGCGATGTTCCTATGAGG -ACGGAAAGCGATGTTCCTAATGGG -ACGGAAAGCGATGTTCCTTCCTGA -ACGGAAAGCGATGTTCCTTAGCGA -ACGGAAAGCGATGTTCCTCACAGA -ACGGAAAGCGATGTTCCTGCAAGA -ACGGAAAGCGATGTTCCTGGTTGA -ACGGAAAGCGATGTTCCTTCCGAT -ACGGAAAGCGATGTTCCTTGGCAT -ACGGAAAGCGATGTTCCTCGAGAT -ACGGAAAGCGATGTTCCTTACCAC -ACGGAAAGCGATGTTCCTCAGAAC -ACGGAAAGCGATGTTCCTGTCTAC -ACGGAAAGCGATGTTCCTACGTAC -ACGGAAAGCGATGTTCCTAGTGAC -ACGGAAAGCGATGTTCCTCTGTAG -ACGGAAAGCGATGTTCCTCCTAAG -ACGGAAAGCGATGTTCCTGTTCAG -ACGGAAAGCGATGTTCCTGCATAG -ACGGAAAGCGATGTTCCTGACAAG -ACGGAAAGCGATGTTCCTAAGCAG -ACGGAAAGCGATGTTCCTCGTCAA -ACGGAAAGCGATGTTCCTGCTGAA -ACGGAAAGCGATGTTCCTAGTACG -ACGGAAAGCGATGTTCCTATCCGA -ACGGAAAGCGATGTTCCTATGGGA -ACGGAAAGCGATGTTCCTGTGCAA -ACGGAAAGCGATGTTCCTGAGGAA -ACGGAAAGCGATGTTCCTCAGGTA -ACGGAAAGCGATGTTCCTGACTCT -ACGGAAAGCGATGTTCCTAGTCCT -ACGGAAAGCGATGTTCCTTAAGCC -ACGGAAAGCGATGTTCCTATAGCC -ACGGAAAGCGATGTTCCTTAACCG -ACGGAAAGCGATGTTCCTATGCCA -ACGGAAAGCGATTTTCGGGGAAAC -ACGGAAAGCGATTTTCGGAACACC -ACGGAAAGCGATTTTCGGATCGAG -ACGGAAAGCGATTTTCGGCTCCTT -ACGGAAAGCGATTTTCGGCCTGTT -ACGGAAAGCGATTTTCGGCGGTTT -ACGGAAAGCGATTTTCGGGTGGTT -ACGGAAAGCGATTTTCGGGCCTTT -ACGGAAAGCGATTTTCGGGGTCTT -ACGGAAAGCGATTTTCGGACGCTT -ACGGAAAGCGATTTTCGGAGCGTT -ACGGAAAGCGATTTTCGGTTCGTC -ACGGAAAGCGATTTTCGGTCTCTC -ACGGAAAGCGATTTTCGGTGGATC -ACGGAAAGCGATTTTCGGCACTTC -ACGGAAAGCGATTTTCGGGTACTC -ACGGAAAGCGATTTTCGGGATGTC -ACGGAAAGCGATTTTCGGACAGTC -ACGGAAAGCGATTTTCGGTTGCTG -ACGGAAAGCGATTTTCGGTCCATG -ACGGAAAGCGATTTTCGGTGTGTG -ACGGAAAGCGATTTTCGGCTAGTG -ACGGAAAGCGATTTTCGGCATCTG -ACGGAAAGCGATTTTCGGGAGTTG -ACGGAAAGCGATTTTCGGAGACTG -ACGGAAAGCGATTTTCGGTCGGTA -ACGGAAAGCGATTTTCGGTGCCTA -ACGGAAAGCGATTTTCGGCCACTA -ACGGAAAGCGATTTTCGGGGAGTA -ACGGAAAGCGATTTTCGGTCGTCT -ACGGAAAGCGATTTTCGGTGCACT -ACGGAAAGCGATTTTCGGCTGACT -ACGGAAAGCGATTTTCGGCAACCT -ACGGAAAGCGATTTTCGGGCTACT -ACGGAAAGCGATTTTCGGGGATCT -ACGGAAAGCGATTTTCGGAAGGCT -ACGGAAAGCGATTTTCGGTCAACC -ACGGAAAGCGATTTTCGGTGTTCC -ACGGAAAGCGATTTTCGGATTCCC -ACGGAAAGCGATTTTCGGTTCTCG -ACGGAAAGCGATTTTCGGTAGACG -ACGGAAAGCGATTTTCGGGTAACG -ACGGAAAGCGATTTTCGGACTTCG -ACGGAAAGCGATTTTCGGTACGCA -ACGGAAAGCGATTTTCGGCTTGCA -ACGGAAAGCGATTTTCGGCGAACA -ACGGAAAGCGATTTTCGGCAGTCA -ACGGAAAGCGATTTTCGGGATCCA -ACGGAAAGCGATTTTCGGACGACA -ACGGAAAGCGATTTTCGGAGCTCA -ACGGAAAGCGATTTTCGGTCACGT -ACGGAAAGCGATTTTCGGCGTAGT -ACGGAAAGCGATTTTCGGGTCAGT -ACGGAAAGCGATTTTCGGGAAGGT -ACGGAAAGCGATTTTCGGAACCGT -ACGGAAAGCGATTTTCGGTTGTGC -ACGGAAAGCGATTTTCGGCTAAGC -ACGGAAAGCGATTTTCGGACTAGC -ACGGAAAGCGATTTTCGGAGATGC -ACGGAAAGCGATTTTCGGTGAAGG -ACGGAAAGCGATTTTCGGCAATGG -ACGGAAAGCGATTTTCGGATGAGG -ACGGAAAGCGATTTTCGGAATGGG -ACGGAAAGCGATTTTCGGTCCTGA -ACGGAAAGCGATTTTCGGTAGCGA -ACGGAAAGCGATTTTCGGCACAGA -ACGGAAAGCGATTTTCGGGCAAGA -ACGGAAAGCGATTTTCGGGGTTGA -ACGGAAAGCGATTTTCGGTCCGAT -ACGGAAAGCGATTTTCGGTGGCAT -ACGGAAAGCGATTTTCGGCGAGAT -ACGGAAAGCGATTTTCGGTACCAC -ACGGAAAGCGATTTTCGGCAGAAC -ACGGAAAGCGATTTTCGGGTCTAC -ACGGAAAGCGATTTTCGGACGTAC -ACGGAAAGCGATTTTCGGAGTGAC -ACGGAAAGCGATTTTCGGCTGTAG -ACGGAAAGCGATTTTCGGCCTAAG -ACGGAAAGCGATTTTCGGGTTCAG -ACGGAAAGCGATTTTCGGGCATAG -ACGGAAAGCGATTTTCGGGACAAG -ACGGAAAGCGATTTTCGGAAGCAG -ACGGAAAGCGATTTTCGGCGTCAA -ACGGAAAGCGATTTTCGGGCTGAA -ACGGAAAGCGATTTTCGGAGTACG -ACGGAAAGCGATTTTCGGATCCGA -ACGGAAAGCGATTTTCGGATGGGA -ACGGAAAGCGATTTTCGGGTGCAA -ACGGAAAGCGATTTTCGGGAGGAA -ACGGAAAGCGATTTTCGGCAGGTA -ACGGAAAGCGATTTTCGGGACTCT -ACGGAAAGCGATTTTCGGAGTCCT -ACGGAAAGCGATTTTCGGTAAGCC -ACGGAAAGCGATTTTCGGATAGCC -ACGGAAAGCGATTTTCGGTAACCG -ACGGAAAGCGATTTTCGGATGCCA -ACGGAAAGCGATGTTGTGGGAAAC -ACGGAAAGCGATGTTGTGAACACC -ACGGAAAGCGATGTTGTGATCGAG -ACGGAAAGCGATGTTGTGCTCCTT -ACGGAAAGCGATGTTGTGCCTGTT -ACGGAAAGCGATGTTGTGCGGTTT -ACGGAAAGCGATGTTGTGGTGGTT -ACGGAAAGCGATGTTGTGGCCTTT -ACGGAAAGCGATGTTGTGGGTCTT -ACGGAAAGCGATGTTGTGACGCTT -ACGGAAAGCGATGTTGTGAGCGTT -ACGGAAAGCGATGTTGTGTTCGTC -ACGGAAAGCGATGTTGTGTCTCTC -ACGGAAAGCGATGTTGTGTGGATC -ACGGAAAGCGATGTTGTGCACTTC -ACGGAAAGCGATGTTGTGGTACTC -ACGGAAAGCGATGTTGTGGATGTC -ACGGAAAGCGATGTTGTGACAGTC -ACGGAAAGCGATGTTGTGTTGCTG -ACGGAAAGCGATGTTGTGTCCATG -ACGGAAAGCGATGTTGTGTGTGTG -ACGGAAAGCGATGTTGTGCTAGTG -ACGGAAAGCGATGTTGTGCATCTG -ACGGAAAGCGATGTTGTGGAGTTG -ACGGAAAGCGATGTTGTGAGACTG -ACGGAAAGCGATGTTGTGTCGGTA -ACGGAAAGCGATGTTGTGTGCCTA -ACGGAAAGCGATGTTGTGCCACTA -ACGGAAAGCGATGTTGTGGGAGTA -ACGGAAAGCGATGTTGTGTCGTCT -ACGGAAAGCGATGTTGTGTGCACT -ACGGAAAGCGATGTTGTGCTGACT -ACGGAAAGCGATGTTGTGCAACCT -ACGGAAAGCGATGTTGTGGCTACT -ACGGAAAGCGATGTTGTGGGATCT -ACGGAAAGCGATGTTGTGAAGGCT -ACGGAAAGCGATGTTGTGTCAACC -ACGGAAAGCGATGTTGTGTGTTCC -ACGGAAAGCGATGTTGTGATTCCC -ACGGAAAGCGATGTTGTGTTCTCG -ACGGAAAGCGATGTTGTGTAGACG -ACGGAAAGCGATGTTGTGGTAACG -ACGGAAAGCGATGTTGTGACTTCG -ACGGAAAGCGATGTTGTGTACGCA -ACGGAAAGCGATGTTGTGCTTGCA -ACGGAAAGCGATGTTGTGCGAACA -ACGGAAAGCGATGTTGTGCAGTCA -ACGGAAAGCGATGTTGTGGATCCA -ACGGAAAGCGATGTTGTGACGACA -ACGGAAAGCGATGTTGTGAGCTCA -ACGGAAAGCGATGTTGTGTCACGT -ACGGAAAGCGATGTTGTGCGTAGT -ACGGAAAGCGATGTTGTGGTCAGT -ACGGAAAGCGATGTTGTGGAAGGT -ACGGAAAGCGATGTTGTGAACCGT -ACGGAAAGCGATGTTGTGTTGTGC -ACGGAAAGCGATGTTGTGCTAAGC -ACGGAAAGCGATGTTGTGACTAGC -ACGGAAAGCGATGTTGTGAGATGC -ACGGAAAGCGATGTTGTGTGAAGG -ACGGAAAGCGATGTTGTGCAATGG -ACGGAAAGCGATGTTGTGATGAGG -ACGGAAAGCGATGTTGTGAATGGG -ACGGAAAGCGATGTTGTGTCCTGA -ACGGAAAGCGATGTTGTGTAGCGA -ACGGAAAGCGATGTTGTGCACAGA -ACGGAAAGCGATGTTGTGGCAAGA -ACGGAAAGCGATGTTGTGGGTTGA -ACGGAAAGCGATGTTGTGTCCGAT -ACGGAAAGCGATGTTGTGTGGCAT -ACGGAAAGCGATGTTGTGCGAGAT -ACGGAAAGCGATGTTGTGTACCAC -ACGGAAAGCGATGTTGTGCAGAAC -ACGGAAAGCGATGTTGTGGTCTAC -ACGGAAAGCGATGTTGTGACGTAC -ACGGAAAGCGATGTTGTGAGTGAC -ACGGAAAGCGATGTTGTGCTGTAG -ACGGAAAGCGATGTTGTGCCTAAG -ACGGAAAGCGATGTTGTGGTTCAG -ACGGAAAGCGATGTTGTGGCATAG -ACGGAAAGCGATGTTGTGGACAAG -ACGGAAAGCGATGTTGTGAAGCAG -ACGGAAAGCGATGTTGTGCGTCAA -ACGGAAAGCGATGTTGTGGCTGAA -ACGGAAAGCGATGTTGTGAGTACG -ACGGAAAGCGATGTTGTGATCCGA -ACGGAAAGCGATGTTGTGATGGGA -ACGGAAAGCGATGTTGTGGTGCAA -ACGGAAAGCGATGTTGTGGAGGAA -ACGGAAAGCGATGTTGTGCAGGTA -ACGGAAAGCGATGTTGTGGACTCT -ACGGAAAGCGATGTTGTGAGTCCT -ACGGAAAGCGATGTTGTGTAAGCC -ACGGAAAGCGATGTTGTGATAGCC -ACGGAAAGCGATGTTGTGTAACCG -ACGGAAAGCGATGTTGTGATGCCA -ACGGAAAGCGATTTTGCCGGAAAC -ACGGAAAGCGATTTTGCCAACACC -ACGGAAAGCGATTTTGCCATCGAG -ACGGAAAGCGATTTTGCCCTCCTT -ACGGAAAGCGATTTTGCCCCTGTT -ACGGAAAGCGATTTTGCCCGGTTT -ACGGAAAGCGATTTTGCCGTGGTT -ACGGAAAGCGATTTTGCCGCCTTT -ACGGAAAGCGATTTTGCCGGTCTT -ACGGAAAGCGATTTTGCCACGCTT -ACGGAAAGCGATTTTGCCAGCGTT -ACGGAAAGCGATTTTGCCTTCGTC -ACGGAAAGCGATTTTGCCTCTCTC -ACGGAAAGCGATTTTGCCTGGATC -ACGGAAAGCGATTTTGCCCACTTC -ACGGAAAGCGATTTTGCCGTACTC -ACGGAAAGCGATTTTGCCGATGTC -ACGGAAAGCGATTTTGCCACAGTC -ACGGAAAGCGATTTTGCCTTGCTG -ACGGAAAGCGATTTTGCCTCCATG -ACGGAAAGCGATTTTGCCTGTGTG -ACGGAAAGCGATTTTGCCCTAGTG -ACGGAAAGCGATTTTGCCCATCTG -ACGGAAAGCGATTTTGCCGAGTTG -ACGGAAAGCGATTTTGCCAGACTG -ACGGAAAGCGATTTTGCCTCGGTA -ACGGAAAGCGATTTTGCCTGCCTA -ACGGAAAGCGATTTTGCCCCACTA -ACGGAAAGCGATTTTGCCGGAGTA -ACGGAAAGCGATTTTGCCTCGTCT -ACGGAAAGCGATTTTGCCTGCACT -ACGGAAAGCGATTTTGCCCTGACT -ACGGAAAGCGATTTTGCCCAACCT -ACGGAAAGCGATTTTGCCGCTACT -ACGGAAAGCGATTTTGCCGGATCT -ACGGAAAGCGATTTTGCCAAGGCT -ACGGAAAGCGATTTTGCCTCAACC -ACGGAAAGCGATTTTGCCTGTTCC -ACGGAAAGCGATTTTGCCATTCCC -ACGGAAAGCGATTTTGCCTTCTCG -ACGGAAAGCGATTTTGCCTAGACG -ACGGAAAGCGATTTTGCCGTAACG -ACGGAAAGCGATTTTGCCACTTCG -ACGGAAAGCGATTTTGCCTACGCA -ACGGAAAGCGATTTTGCCCTTGCA -ACGGAAAGCGATTTTGCCCGAACA -ACGGAAAGCGATTTTGCCCAGTCA -ACGGAAAGCGATTTTGCCGATCCA -ACGGAAAGCGATTTTGCCACGACA -ACGGAAAGCGATTTTGCCAGCTCA -ACGGAAAGCGATTTTGCCTCACGT -ACGGAAAGCGATTTTGCCCGTAGT -ACGGAAAGCGATTTTGCCGTCAGT -ACGGAAAGCGATTTTGCCGAAGGT -ACGGAAAGCGATTTTGCCAACCGT -ACGGAAAGCGATTTTGCCTTGTGC -ACGGAAAGCGATTTTGCCCTAAGC -ACGGAAAGCGATTTTGCCACTAGC -ACGGAAAGCGATTTTGCCAGATGC -ACGGAAAGCGATTTTGCCTGAAGG -ACGGAAAGCGATTTTGCCCAATGG -ACGGAAAGCGATTTTGCCATGAGG -ACGGAAAGCGATTTTGCCAATGGG -ACGGAAAGCGATTTTGCCTCCTGA -ACGGAAAGCGATTTTGCCTAGCGA -ACGGAAAGCGATTTTGCCCACAGA -ACGGAAAGCGATTTTGCCGCAAGA -ACGGAAAGCGATTTTGCCGGTTGA -ACGGAAAGCGATTTTGCCTCCGAT -ACGGAAAGCGATTTTGCCTGGCAT -ACGGAAAGCGATTTTGCCCGAGAT -ACGGAAAGCGATTTTGCCTACCAC -ACGGAAAGCGATTTTGCCCAGAAC -ACGGAAAGCGATTTTGCCGTCTAC -ACGGAAAGCGATTTTGCCACGTAC -ACGGAAAGCGATTTTGCCAGTGAC -ACGGAAAGCGATTTTGCCCTGTAG -ACGGAAAGCGATTTTGCCCCTAAG -ACGGAAAGCGATTTTGCCGTTCAG -ACGGAAAGCGATTTTGCCGCATAG -ACGGAAAGCGATTTTGCCGACAAG -ACGGAAAGCGATTTTGCCAAGCAG -ACGGAAAGCGATTTTGCCCGTCAA -ACGGAAAGCGATTTTGCCGCTGAA -ACGGAAAGCGATTTTGCCAGTACG -ACGGAAAGCGATTTTGCCATCCGA -ACGGAAAGCGATTTTGCCATGGGA -ACGGAAAGCGATTTTGCCGTGCAA -ACGGAAAGCGATTTTGCCGAGGAA -ACGGAAAGCGATTTTGCCCAGGTA -ACGGAAAGCGATTTTGCCGACTCT -ACGGAAAGCGATTTTGCCAGTCCT -ACGGAAAGCGATTTTGCCTAAGCC -ACGGAAAGCGATTTTGCCATAGCC -ACGGAAAGCGATTTTGCCTAACCG -ACGGAAAGCGATTTTGCCATGCCA -ACGGAAAGCGATCTTGGTGGAAAC -ACGGAAAGCGATCTTGGTAACACC -ACGGAAAGCGATCTTGGTATCGAG -ACGGAAAGCGATCTTGGTCTCCTT -ACGGAAAGCGATCTTGGTCCTGTT -ACGGAAAGCGATCTTGGTCGGTTT -ACGGAAAGCGATCTTGGTGTGGTT -ACGGAAAGCGATCTTGGTGCCTTT -ACGGAAAGCGATCTTGGTGGTCTT -ACGGAAAGCGATCTTGGTACGCTT -ACGGAAAGCGATCTTGGTAGCGTT -ACGGAAAGCGATCTTGGTTTCGTC -ACGGAAAGCGATCTTGGTTCTCTC -ACGGAAAGCGATCTTGGTTGGATC -ACGGAAAGCGATCTTGGTCACTTC -ACGGAAAGCGATCTTGGTGTACTC -ACGGAAAGCGATCTTGGTGATGTC -ACGGAAAGCGATCTTGGTACAGTC -ACGGAAAGCGATCTTGGTTTGCTG -ACGGAAAGCGATCTTGGTTCCATG -ACGGAAAGCGATCTTGGTTGTGTG -ACGGAAAGCGATCTTGGTCTAGTG -ACGGAAAGCGATCTTGGTCATCTG -ACGGAAAGCGATCTTGGTGAGTTG -ACGGAAAGCGATCTTGGTAGACTG -ACGGAAAGCGATCTTGGTTCGGTA -ACGGAAAGCGATCTTGGTTGCCTA -ACGGAAAGCGATCTTGGTCCACTA -ACGGAAAGCGATCTTGGTGGAGTA -ACGGAAAGCGATCTTGGTTCGTCT -ACGGAAAGCGATCTTGGTTGCACT -ACGGAAAGCGATCTTGGTCTGACT -ACGGAAAGCGATCTTGGTCAACCT -ACGGAAAGCGATCTTGGTGCTACT -ACGGAAAGCGATCTTGGTGGATCT -ACGGAAAGCGATCTTGGTAAGGCT -ACGGAAAGCGATCTTGGTTCAACC -ACGGAAAGCGATCTTGGTTGTTCC -ACGGAAAGCGATCTTGGTATTCCC -ACGGAAAGCGATCTTGGTTTCTCG -ACGGAAAGCGATCTTGGTTAGACG -ACGGAAAGCGATCTTGGTGTAACG -ACGGAAAGCGATCTTGGTACTTCG -ACGGAAAGCGATCTTGGTTACGCA -ACGGAAAGCGATCTTGGTCTTGCA -ACGGAAAGCGATCTTGGTCGAACA -ACGGAAAGCGATCTTGGTCAGTCA -ACGGAAAGCGATCTTGGTGATCCA -ACGGAAAGCGATCTTGGTACGACA -ACGGAAAGCGATCTTGGTAGCTCA -ACGGAAAGCGATCTTGGTTCACGT -ACGGAAAGCGATCTTGGTCGTAGT -ACGGAAAGCGATCTTGGTGTCAGT -ACGGAAAGCGATCTTGGTGAAGGT -ACGGAAAGCGATCTTGGTAACCGT -ACGGAAAGCGATCTTGGTTTGTGC -ACGGAAAGCGATCTTGGTCTAAGC -ACGGAAAGCGATCTTGGTACTAGC -ACGGAAAGCGATCTTGGTAGATGC -ACGGAAAGCGATCTTGGTTGAAGG -ACGGAAAGCGATCTTGGTCAATGG -ACGGAAAGCGATCTTGGTATGAGG -ACGGAAAGCGATCTTGGTAATGGG -ACGGAAAGCGATCTTGGTTCCTGA -ACGGAAAGCGATCTTGGTTAGCGA -ACGGAAAGCGATCTTGGTCACAGA -ACGGAAAGCGATCTTGGTGCAAGA -ACGGAAAGCGATCTTGGTGGTTGA -ACGGAAAGCGATCTTGGTTCCGAT -ACGGAAAGCGATCTTGGTTGGCAT -ACGGAAAGCGATCTTGGTCGAGAT -ACGGAAAGCGATCTTGGTTACCAC -ACGGAAAGCGATCTTGGTCAGAAC -ACGGAAAGCGATCTTGGTGTCTAC -ACGGAAAGCGATCTTGGTACGTAC -ACGGAAAGCGATCTTGGTAGTGAC -ACGGAAAGCGATCTTGGTCTGTAG -ACGGAAAGCGATCTTGGTCCTAAG -ACGGAAAGCGATCTTGGTGTTCAG -ACGGAAAGCGATCTTGGTGCATAG -ACGGAAAGCGATCTTGGTGACAAG -ACGGAAAGCGATCTTGGTAAGCAG -ACGGAAAGCGATCTTGGTCGTCAA -ACGGAAAGCGATCTTGGTGCTGAA -ACGGAAAGCGATCTTGGTAGTACG -ACGGAAAGCGATCTTGGTATCCGA -ACGGAAAGCGATCTTGGTATGGGA -ACGGAAAGCGATCTTGGTGTGCAA -ACGGAAAGCGATCTTGGTGAGGAA -ACGGAAAGCGATCTTGGTCAGGTA -ACGGAAAGCGATCTTGGTGACTCT -ACGGAAAGCGATCTTGGTAGTCCT -ACGGAAAGCGATCTTGGTTAAGCC -ACGGAAAGCGATCTTGGTATAGCC -ACGGAAAGCGATCTTGGTTAACCG -ACGGAAAGCGATCTTGGTATGCCA -ACGGAAAGCGATCTTACGGGAAAC -ACGGAAAGCGATCTTACGAACACC -ACGGAAAGCGATCTTACGATCGAG -ACGGAAAGCGATCTTACGCTCCTT -ACGGAAAGCGATCTTACGCCTGTT -ACGGAAAGCGATCTTACGCGGTTT -ACGGAAAGCGATCTTACGGTGGTT -ACGGAAAGCGATCTTACGGCCTTT -ACGGAAAGCGATCTTACGGGTCTT -ACGGAAAGCGATCTTACGACGCTT -ACGGAAAGCGATCTTACGAGCGTT -ACGGAAAGCGATCTTACGTTCGTC -ACGGAAAGCGATCTTACGTCTCTC -ACGGAAAGCGATCTTACGTGGATC -ACGGAAAGCGATCTTACGCACTTC -ACGGAAAGCGATCTTACGGTACTC -ACGGAAAGCGATCTTACGGATGTC -ACGGAAAGCGATCTTACGACAGTC -ACGGAAAGCGATCTTACGTTGCTG -ACGGAAAGCGATCTTACGTCCATG -ACGGAAAGCGATCTTACGTGTGTG -ACGGAAAGCGATCTTACGCTAGTG -ACGGAAAGCGATCTTACGCATCTG -ACGGAAAGCGATCTTACGGAGTTG -ACGGAAAGCGATCTTACGAGACTG -ACGGAAAGCGATCTTACGTCGGTA -ACGGAAAGCGATCTTACGTGCCTA -ACGGAAAGCGATCTTACGCCACTA -ACGGAAAGCGATCTTACGGGAGTA -ACGGAAAGCGATCTTACGTCGTCT -ACGGAAAGCGATCTTACGTGCACT -ACGGAAAGCGATCTTACGCTGACT -ACGGAAAGCGATCTTACGCAACCT -ACGGAAAGCGATCTTACGGCTACT -ACGGAAAGCGATCTTACGGGATCT -ACGGAAAGCGATCTTACGAAGGCT -ACGGAAAGCGATCTTACGTCAACC -ACGGAAAGCGATCTTACGTGTTCC -ACGGAAAGCGATCTTACGATTCCC -ACGGAAAGCGATCTTACGTTCTCG -ACGGAAAGCGATCTTACGTAGACG -ACGGAAAGCGATCTTACGGTAACG -ACGGAAAGCGATCTTACGACTTCG -ACGGAAAGCGATCTTACGTACGCA -ACGGAAAGCGATCTTACGCTTGCA -ACGGAAAGCGATCTTACGCGAACA -ACGGAAAGCGATCTTACGCAGTCA -ACGGAAAGCGATCTTACGGATCCA -ACGGAAAGCGATCTTACGACGACA -ACGGAAAGCGATCTTACGAGCTCA -ACGGAAAGCGATCTTACGTCACGT -ACGGAAAGCGATCTTACGCGTAGT -ACGGAAAGCGATCTTACGGTCAGT -ACGGAAAGCGATCTTACGGAAGGT -ACGGAAAGCGATCTTACGAACCGT -ACGGAAAGCGATCTTACGTTGTGC -ACGGAAAGCGATCTTACGCTAAGC -ACGGAAAGCGATCTTACGACTAGC -ACGGAAAGCGATCTTACGAGATGC -ACGGAAAGCGATCTTACGTGAAGG -ACGGAAAGCGATCTTACGCAATGG -ACGGAAAGCGATCTTACGATGAGG -ACGGAAAGCGATCTTACGAATGGG -ACGGAAAGCGATCTTACGTCCTGA -ACGGAAAGCGATCTTACGTAGCGA -ACGGAAAGCGATCTTACGCACAGA -ACGGAAAGCGATCTTACGGCAAGA -ACGGAAAGCGATCTTACGGGTTGA -ACGGAAAGCGATCTTACGTCCGAT -ACGGAAAGCGATCTTACGTGGCAT -ACGGAAAGCGATCTTACGCGAGAT -ACGGAAAGCGATCTTACGTACCAC -ACGGAAAGCGATCTTACGCAGAAC -ACGGAAAGCGATCTTACGGTCTAC -ACGGAAAGCGATCTTACGACGTAC -ACGGAAAGCGATCTTACGAGTGAC -ACGGAAAGCGATCTTACGCTGTAG -ACGGAAAGCGATCTTACGCCTAAG -ACGGAAAGCGATCTTACGGTTCAG -ACGGAAAGCGATCTTACGGCATAG -ACGGAAAGCGATCTTACGGACAAG -ACGGAAAGCGATCTTACGAAGCAG -ACGGAAAGCGATCTTACGCGTCAA -ACGGAAAGCGATCTTACGGCTGAA -ACGGAAAGCGATCTTACGAGTACG -ACGGAAAGCGATCTTACGATCCGA -ACGGAAAGCGATCTTACGATGGGA -ACGGAAAGCGATCTTACGGTGCAA -ACGGAAAGCGATCTTACGGAGGAA -ACGGAAAGCGATCTTACGCAGGTA -ACGGAAAGCGATCTTACGGACTCT -ACGGAAAGCGATCTTACGAGTCCT -ACGGAAAGCGATCTTACGTAAGCC -ACGGAAAGCGATCTTACGATAGCC -ACGGAAAGCGATCTTACGTAACCG -ACGGAAAGCGATCTTACGATGCCA -ACGGAAAGCGATGTTAGCGGAAAC -ACGGAAAGCGATGTTAGCAACACC -ACGGAAAGCGATGTTAGCATCGAG -ACGGAAAGCGATGTTAGCCTCCTT -ACGGAAAGCGATGTTAGCCCTGTT -ACGGAAAGCGATGTTAGCCGGTTT -ACGGAAAGCGATGTTAGCGTGGTT -ACGGAAAGCGATGTTAGCGCCTTT -ACGGAAAGCGATGTTAGCGGTCTT -ACGGAAAGCGATGTTAGCACGCTT -ACGGAAAGCGATGTTAGCAGCGTT -ACGGAAAGCGATGTTAGCTTCGTC -ACGGAAAGCGATGTTAGCTCTCTC -ACGGAAAGCGATGTTAGCTGGATC -ACGGAAAGCGATGTTAGCCACTTC -ACGGAAAGCGATGTTAGCGTACTC -ACGGAAAGCGATGTTAGCGATGTC -ACGGAAAGCGATGTTAGCACAGTC -ACGGAAAGCGATGTTAGCTTGCTG -ACGGAAAGCGATGTTAGCTCCATG -ACGGAAAGCGATGTTAGCTGTGTG -ACGGAAAGCGATGTTAGCCTAGTG -ACGGAAAGCGATGTTAGCCATCTG -ACGGAAAGCGATGTTAGCGAGTTG -ACGGAAAGCGATGTTAGCAGACTG -ACGGAAAGCGATGTTAGCTCGGTA -ACGGAAAGCGATGTTAGCTGCCTA -ACGGAAAGCGATGTTAGCCCACTA -ACGGAAAGCGATGTTAGCGGAGTA -ACGGAAAGCGATGTTAGCTCGTCT -ACGGAAAGCGATGTTAGCTGCACT -ACGGAAAGCGATGTTAGCCTGACT -ACGGAAAGCGATGTTAGCCAACCT -ACGGAAAGCGATGTTAGCGCTACT -ACGGAAAGCGATGTTAGCGGATCT -ACGGAAAGCGATGTTAGCAAGGCT -ACGGAAAGCGATGTTAGCTCAACC -ACGGAAAGCGATGTTAGCTGTTCC -ACGGAAAGCGATGTTAGCATTCCC -ACGGAAAGCGATGTTAGCTTCTCG -ACGGAAAGCGATGTTAGCTAGACG -ACGGAAAGCGATGTTAGCGTAACG -ACGGAAAGCGATGTTAGCACTTCG -ACGGAAAGCGATGTTAGCTACGCA -ACGGAAAGCGATGTTAGCCTTGCA -ACGGAAAGCGATGTTAGCCGAACA -ACGGAAAGCGATGTTAGCCAGTCA -ACGGAAAGCGATGTTAGCGATCCA -ACGGAAAGCGATGTTAGCACGACA -ACGGAAAGCGATGTTAGCAGCTCA -ACGGAAAGCGATGTTAGCTCACGT -ACGGAAAGCGATGTTAGCCGTAGT -ACGGAAAGCGATGTTAGCGTCAGT -ACGGAAAGCGATGTTAGCGAAGGT -ACGGAAAGCGATGTTAGCAACCGT -ACGGAAAGCGATGTTAGCTTGTGC -ACGGAAAGCGATGTTAGCCTAAGC -ACGGAAAGCGATGTTAGCACTAGC -ACGGAAAGCGATGTTAGCAGATGC -ACGGAAAGCGATGTTAGCTGAAGG -ACGGAAAGCGATGTTAGCCAATGG -ACGGAAAGCGATGTTAGCATGAGG -ACGGAAAGCGATGTTAGCAATGGG -ACGGAAAGCGATGTTAGCTCCTGA -ACGGAAAGCGATGTTAGCTAGCGA -ACGGAAAGCGATGTTAGCCACAGA -ACGGAAAGCGATGTTAGCGCAAGA -ACGGAAAGCGATGTTAGCGGTTGA -ACGGAAAGCGATGTTAGCTCCGAT -ACGGAAAGCGATGTTAGCTGGCAT -ACGGAAAGCGATGTTAGCCGAGAT -ACGGAAAGCGATGTTAGCTACCAC -ACGGAAAGCGATGTTAGCCAGAAC -ACGGAAAGCGATGTTAGCGTCTAC -ACGGAAAGCGATGTTAGCACGTAC -ACGGAAAGCGATGTTAGCAGTGAC -ACGGAAAGCGATGTTAGCCTGTAG -ACGGAAAGCGATGTTAGCCCTAAG -ACGGAAAGCGATGTTAGCGTTCAG -ACGGAAAGCGATGTTAGCGCATAG -ACGGAAAGCGATGTTAGCGACAAG -ACGGAAAGCGATGTTAGCAAGCAG -ACGGAAAGCGATGTTAGCCGTCAA -ACGGAAAGCGATGTTAGCGCTGAA -ACGGAAAGCGATGTTAGCAGTACG -ACGGAAAGCGATGTTAGCATCCGA -ACGGAAAGCGATGTTAGCATGGGA -ACGGAAAGCGATGTTAGCGTGCAA -ACGGAAAGCGATGTTAGCGAGGAA -ACGGAAAGCGATGTTAGCCAGGTA -ACGGAAAGCGATGTTAGCGACTCT -ACGGAAAGCGATGTTAGCAGTCCT -ACGGAAAGCGATGTTAGCTAAGCC -ACGGAAAGCGATGTTAGCATAGCC -ACGGAAAGCGATGTTAGCTAACCG -ACGGAAAGCGATGTTAGCATGCCA -ACGGAAAGCGATGTCTTCGGAAAC -ACGGAAAGCGATGTCTTCAACACC -ACGGAAAGCGATGTCTTCATCGAG -ACGGAAAGCGATGTCTTCCTCCTT -ACGGAAAGCGATGTCTTCCCTGTT -ACGGAAAGCGATGTCTTCCGGTTT -ACGGAAAGCGATGTCTTCGTGGTT -ACGGAAAGCGATGTCTTCGCCTTT -ACGGAAAGCGATGTCTTCGGTCTT -ACGGAAAGCGATGTCTTCACGCTT -ACGGAAAGCGATGTCTTCAGCGTT -ACGGAAAGCGATGTCTTCTTCGTC -ACGGAAAGCGATGTCTTCTCTCTC -ACGGAAAGCGATGTCTTCTGGATC -ACGGAAAGCGATGTCTTCCACTTC -ACGGAAAGCGATGTCTTCGTACTC -ACGGAAAGCGATGTCTTCGATGTC -ACGGAAAGCGATGTCTTCACAGTC -ACGGAAAGCGATGTCTTCTTGCTG -ACGGAAAGCGATGTCTTCTCCATG -ACGGAAAGCGATGTCTTCTGTGTG -ACGGAAAGCGATGTCTTCCTAGTG -ACGGAAAGCGATGTCTTCCATCTG -ACGGAAAGCGATGTCTTCGAGTTG -ACGGAAAGCGATGTCTTCAGACTG -ACGGAAAGCGATGTCTTCTCGGTA -ACGGAAAGCGATGTCTTCTGCCTA -ACGGAAAGCGATGTCTTCCCACTA -ACGGAAAGCGATGTCTTCGGAGTA -ACGGAAAGCGATGTCTTCTCGTCT -ACGGAAAGCGATGTCTTCTGCACT -ACGGAAAGCGATGTCTTCCTGACT -ACGGAAAGCGATGTCTTCCAACCT -ACGGAAAGCGATGTCTTCGCTACT -ACGGAAAGCGATGTCTTCGGATCT -ACGGAAAGCGATGTCTTCAAGGCT -ACGGAAAGCGATGTCTTCTCAACC -ACGGAAAGCGATGTCTTCTGTTCC -ACGGAAAGCGATGTCTTCATTCCC -ACGGAAAGCGATGTCTTCTTCTCG -ACGGAAAGCGATGTCTTCTAGACG -ACGGAAAGCGATGTCTTCGTAACG -ACGGAAAGCGATGTCTTCACTTCG -ACGGAAAGCGATGTCTTCTACGCA -ACGGAAAGCGATGTCTTCCTTGCA -ACGGAAAGCGATGTCTTCCGAACA -ACGGAAAGCGATGTCTTCCAGTCA -ACGGAAAGCGATGTCTTCGATCCA -ACGGAAAGCGATGTCTTCACGACA -ACGGAAAGCGATGTCTTCAGCTCA -ACGGAAAGCGATGTCTTCTCACGT -ACGGAAAGCGATGTCTTCCGTAGT -ACGGAAAGCGATGTCTTCGTCAGT -ACGGAAAGCGATGTCTTCGAAGGT -ACGGAAAGCGATGTCTTCAACCGT -ACGGAAAGCGATGTCTTCTTGTGC -ACGGAAAGCGATGTCTTCCTAAGC -ACGGAAAGCGATGTCTTCACTAGC -ACGGAAAGCGATGTCTTCAGATGC -ACGGAAAGCGATGTCTTCTGAAGG -ACGGAAAGCGATGTCTTCCAATGG -ACGGAAAGCGATGTCTTCATGAGG -ACGGAAAGCGATGTCTTCAATGGG -ACGGAAAGCGATGTCTTCTCCTGA -ACGGAAAGCGATGTCTTCTAGCGA -ACGGAAAGCGATGTCTTCCACAGA -ACGGAAAGCGATGTCTTCGCAAGA -ACGGAAAGCGATGTCTTCGGTTGA -ACGGAAAGCGATGTCTTCTCCGAT -ACGGAAAGCGATGTCTTCTGGCAT -ACGGAAAGCGATGTCTTCCGAGAT -ACGGAAAGCGATGTCTTCTACCAC -ACGGAAAGCGATGTCTTCCAGAAC -ACGGAAAGCGATGTCTTCGTCTAC -ACGGAAAGCGATGTCTTCACGTAC -ACGGAAAGCGATGTCTTCAGTGAC -ACGGAAAGCGATGTCTTCCTGTAG -ACGGAAAGCGATGTCTTCCCTAAG -ACGGAAAGCGATGTCTTCGTTCAG -ACGGAAAGCGATGTCTTCGCATAG -ACGGAAAGCGATGTCTTCGACAAG -ACGGAAAGCGATGTCTTCAAGCAG -ACGGAAAGCGATGTCTTCCGTCAA -ACGGAAAGCGATGTCTTCGCTGAA -ACGGAAAGCGATGTCTTCAGTACG -ACGGAAAGCGATGTCTTCATCCGA -ACGGAAAGCGATGTCTTCATGGGA -ACGGAAAGCGATGTCTTCGTGCAA -ACGGAAAGCGATGTCTTCGAGGAA -ACGGAAAGCGATGTCTTCCAGGTA -ACGGAAAGCGATGTCTTCGACTCT -ACGGAAAGCGATGTCTTCAGTCCT -ACGGAAAGCGATGTCTTCTAAGCC -ACGGAAAGCGATGTCTTCATAGCC -ACGGAAAGCGATGTCTTCTAACCG -ACGGAAAGCGATGTCTTCATGCCA -ACGGAAAGCGATCTCTCTGGAAAC -ACGGAAAGCGATCTCTCTAACACC -ACGGAAAGCGATCTCTCTATCGAG -ACGGAAAGCGATCTCTCTCTCCTT -ACGGAAAGCGATCTCTCTCCTGTT -ACGGAAAGCGATCTCTCTCGGTTT -ACGGAAAGCGATCTCTCTGTGGTT -ACGGAAAGCGATCTCTCTGCCTTT -ACGGAAAGCGATCTCTCTGGTCTT -ACGGAAAGCGATCTCTCTACGCTT -ACGGAAAGCGATCTCTCTAGCGTT -ACGGAAAGCGATCTCTCTTTCGTC -ACGGAAAGCGATCTCTCTTCTCTC -ACGGAAAGCGATCTCTCTTGGATC -ACGGAAAGCGATCTCTCTCACTTC -ACGGAAAGCGATCTCTCTGTACTC -ACGGAAAGCGATCTCTCTGATGTC -ACGGAAAGCGATCTCTCTACAGTC -ACGGAAAGCGATCTCTCTTTGCTG -ACGGAAAGCGATCTCTCTTCCATG -ACGGAAAGCGATCTCTCTTGTGTG -ACGGAAAGCGATCTCTCTCTAGTG -ACGGAAAGCGATCTCTCTCATCTG -ACGGAAAGCGATCTCTCTGAGTTG -ACGGAAAGCGATCTCTCTAGACTG -ACGGAAAGCGATCTCTCTTCGGTA -ACGGAAAGCGATCTCTCTTGCCTA -ACGGAAAGCGATCTCTCTCCACTA -ACGGAAAGCGATCTCTCTGGAGTA -ACGGAAAGCGATCTCTCTTCGTCT -ACGGAAAGCGATCTCTCTTGCACT -ACGGAAAGCGATCTCTCTCTGACT -ACGGAAAGCGATCTCTCTCAACCT -ACGGAAAGCGATCTCTCTGCTACT -ACGGAAAGCGATCTCTCTGGATCT -ACGGAAAGCGATCTCTCTAAGGCT -ACGGAAAGCGATCTCTCTTCAACC -ACGGAAAGCGATCTCTCTTGTTCC -ACGGAAAGCGATCTCTCTATTCCC -ACGGAAAGCGATCTCTCTTTCTCG -ACGGAAAGCGATCTCTCTTAGACG -ACGGAAAGCGATCTCTCTGTAACG -ACGGAAAGCGATCTCTCTACTTCG -ACGGAAAGCGATCTCTCTTACGCA -ACGGAAAGCGATCTCTCTCTTGCA -ACGGAAAGCGATCTCTCTCGAACA -ACGGAAAGCGATCTCTCTCAGTCA -ACGGAAAGCGATCTCTCTGATCCA -ACGGAAAGCGATCTCTCTACGACA -ACGGAAAGCGATCTCTCTAGCTCA -ACGGAAAGCGATCTCTCTTCACGT -ACGGAAAGCGATCTCTCTCGTAGT -ACGGAAAGCGATCTCTCTGTCAGT -ACGGAAAGCGATCTCTCTGAAGGT -ACGGAAAGCGATCTCTCTAACCGT -ACGGAAAGCGATCTCTCTTTGTGC -ACGGAAAGCGATCTCTCTCTAAGC -ACGGAAAGCGATCTCTCTACTAGC -ACGGAAAGCGATCTCTCTAGATGC -ACGGAAAGCGATCTCTCTTGAAGG -ACGGAAAGCGATCTCTCTCAATGG -ACGGAAAGCGATCTCTCTATGAGG -ACGGAAAGCGATCTCTCTAATGGG -ACGGAAAGCGATCTCTCTTCCTGA -ACGGAAAGCGATCTCTCTTAGCGA -ACGGAAAGCGATCTCTCTCACAGA -ACGGAAAGCGATCTCTCTGCAAGA -ACGGAAAGCGATCTCTCTGGTTGA -ACGGAAAGCGATCTCTCTTCCGAT -ACGGAAAGCGATCTCTCTTGGCAT -ACGGAAAGCGATCTCTCTCGAGAT -ACGGAAAGCGATCTCTCTTACCAC -ACGGAAAGCGATCTCTCTCAGAAC -ACGGAAAGCGATCTCTCTGTCTAC -ACGGAAAGCGATCTCTCTACGTAC -ACGGAAAGCGATCTCTCTAGTGAC -ACGGAAAGCGATCTCTCTCTGTAG -ACGGAAAGCGATCTCTCTCCTAAG -ACGGAAAGCGATCTCTCTGTTCAG -ACGGAAAGCGATCTCTCTGCATAG -ACGGAAAGCGATCTCTCTGACAAG -ACGGAAAGCGATCTCTCTAAGCAG -ACGGAAAGCGATCTCTCTCGTCAA -ACGGAAAGCGATCTCTCTGCTGAA -ACGGAAAGCGATCTCTCTAGTACG -ACGGAAAGCGATCTCTCTATCCGA -ACGGAAAGCGATCTCTCTATGGGA -ACGGAAAGCGATCTCTCTGTGCAA -ACGGAAAGCGATCTCTCTGAGGAA -ACGGAAAGCGATCTCTCTCAGGTA -ACGGAAAGCGATCTCTCTGACTCT -ACGGAAAGCGATCTCTCTAGTCCT -ACGGAAAGCGATCTCTCTTAAGCC -ACGGAAAGCGATCTCTCTATAGCC -ACGGAAAGCGATCTCTCTTAACCG -ACGGAAAGCGATCTCTCTATGCCA -ACGGAAAGCGATATCTGGGGAAAC -ACGGAAAGCGATATCTGGAACACC -ACGGAAAGCGATATCTGGATCGAG -ACGGAAAGCGATATCTGGCTCCTT -ACGGAAAGCGATATCTGGCCTGTT -ACGGAAAGCGATATCTGGCGGTTT -ACGGAAAGCGATATCTGGGTGGTT -ACGGAAAGCGATATCTGGGCCTTT -ACGGAAAGCGATATCTGGGGTCTT -ACGGAAAGCGATATCTGGACGCTT -ACGGAAAGCGATATCTGGAGCGTT -ACGGAAAGCGATATCTGGTTCGTC -ACGGAAAGCGATATCTGGTCTCTC -ACGGAAAGCGATATCTGGTGGATC -ACGGAAAGCGATATCTGGCACTTC -ACGGAAAGCGATATCTGGGTACTC -ACGGAAAGCGATATCTGGGATGTC -ACGGAAAGCGATATCTGGACAGTC -ACGGAAAGCGATATCTGGTTGCTG -ACGGAAAGCGATATCTGGTCCATG -ACGGAAAGCGATATCTGGTGTGTG -ACGGAAAGCGATATCTGGCTAGTG -ACGGAAAGCGATATCTGGCATCTG -ACGGAAAGCGATATCTGGGAGTTG -ACGGAAAGCGATATCTGGAGACTG -ACGGAAAGCGATATCTGGTCGGTA -ACGGAAAGCGATATCTGGTGCCTA -ACGGAAAGCGATATCTGGCCACTA -ACGGAAAGCGATATCTGGGGAGTA -ACGGAAAGCGATATCTGGTCGTCT -ACGGAAAGCGATATCTGGTGCACT -ACGGAAAGCGATATCTGGCTGACT -ACGGAAAGCGATATCTGGCAACCT -ACGGAAAGCGATATCTGGGCTACT -ACGGAAAGCGATATCTGGGGATCT -ACGGAAAGCGATATCTGGAAGGCT -ACGGAAAGCGATATCTGGTCAACC -ACGGAAAGCGATATCTGGTGTTCC -ACGGAAAGCGATATCTGGATTCCC -ACGGAAAGCGATATCTGGTTCTCG -ACGGAAAGCGATATCTGGTAGACG -ACGGAAAGCGATATCTGGGTAACG -ACGGAAAGCGATATCTGGACTTCG -ACGGAAAGCGATATCTGGTACGCA -ACGGAAAGCGATATCTGGCTTGCA -ACGGAAAGCGATATCTGGCGAACA -ACGGAAAGCGATATCTGGCAGTCA -ACGGAAAGCGATATCTGGGATCCA -ACGGAAAGCGATATCTGGACGACA -ACGGAAAGCGATATCTGGAGCTCA -ACGGAAAGCGATATCTGGTCACGT -ACGGAAAGCGATATCTGGCGTAGT -ACGGAAAGCGATATCTGGGTCAGT -ACGGAAAGCGATATCTGGGAAGGT -ACGGAAAGCGATATCTGGAACCGT -ACGGAAAGCGATATCTGGTTGTGC -ACGGAAAGCGATATCTGGCTAAGC -ACGGAAAGCGATATCTGGACTAGC -ACGGAAAGCGATATCTGGAGATGC -ACGGAAAGCGATATCTGGTGAAGG -ACGGAAAGCGATATCTGGCAATGG -ACGGAAAGCGATATCTGGATGAGG -ACGGAAAGCGATATCTGGAATGGG -ACGGAAAGCGATATCTGGTCCTGA -ACGGAAAGCGATATCTGGTAGCGA -ACGGAAAGCGATATCTGGCACAGA -ACGGAAAGCGATATCTGGGCAAGA -ACGGAAAGCGATATCTGGGGTTGA -ACGGAAAGCGATATCTGGTCCGAT -ACGGAAAGCGATATCTGGTGGCAT -ACGGAAAGCGATATCTGGCGAGAT -ACGGAAAGCGATATCTGGTACCAC -ACGGAAAGCGATATCTGGCAGAAC -ACGGAAAGCGATATCTGGGTCTAC -ACGGAAAGCGATATCTGGACGTAC -ACGGAAAGCGATATCTGGAGTGAC -ACGGAAAGCGATATCTGGCTGTAG -ACGGAAAGCGATATCTGGCCTAAG -ACGGAAAGCGATATCTGGGTTCAG -ACGGAAAGCGATATCTGGGCATAG -ACGGAAAGCGATATCTGGGACAAG -ACGGAAAGCGATATCTGGAAGCAG -ACGGAAAGCGATATCTGGCGTCAA -ACGGAAAGCGATATCTGGGCTGAA -ACGGAAAGCGATATCTGGAGTACG -ACGGAAAGCGATATCTGGATCCGA -ACGGAAAGCGATATCTGGATGGGA -ACGGAAAGCGATATCTGGGTGCAA -ACGGAAAGCGATATCTGGGAGGAA -ACGGAAAGCGATATCTGGCAGGTA -ACGGAAAGCGATATCTGGGACTCT -ACGGAAAGCGATATCTGGAGTCCT -ACGGAAAGCGATATCTGGTAAGCC -ACGGAAAGCGATATCTGGATAGCC -ACGGAAAGCGATATCTGGTAACCG -ACGGAAAGCGATATCTGGATGCCA -ACGGAAAGCGATTTCCACGGAAAC -ACGGAAAGCGATTTCCACAACACC -ACGGAAAGCGATTTCCACATCGAG -ACGGAAAGCGATTTCCACCTCCTT -ACGGAAAGCGATTTCCACCCTGTT -ACGGAAAGCGATTTCCACCGGTTT -ACGGAAAGCGATTTCCACGTGGTT -ACGGAAAGCGATTTCCACGCCTTT -ACGGAAAGCGATTTCCACGGTCTT -ACGGAAAGCGATTTCCACACGCTT -ACGGAAAGCGATTTCCACAGCGTT -ACGGAAAGCGATTTCCACTTCGTC -ACGGAAAGCGATTTCCACTCTCTC -ACGGAAAGCGATTTCCACTGGATC -ACGGAAAGCGATTTCCACCACTTC -ACGGAAAGCGATTTCCACGTACTC -ACGGAAAGCGATTTCCACGATGTC -ACGGAAAGCGATTTCCACACAGTC -ACGGAAAGCGATTTCCACTTGCTG -ACGGAAAGCGATTTCCACTCCATG -ACGGAAAGCGATTTCCACTGTGTG -ACGGAAAGCGATTTCCACCTAGTG -ACGGAAAGCGATTTCCACCATCTG -ACGGAAAGCGATTTCCACGAGTTG -ACGGAAAGCGATTTCCACAGACTG -ACGGAAAGCGATTTCCACTCGGTA -ACGGAAAGCGATTTCCACTGCCTA -ACGGAAAGCGATTTCCACCCACTA -ACGGAAAGCGATTTCCACGGAGTA -ACGGAAAGCGATTTCCACTCGTCT -ACGGAAAGCGATTTCCACTGCACT -ACGGAAAGCGATTTCCACCTGACT -ACGGAAAGCGATTTCCACCAACCT -ACGGAAAGCGATTTCCACGCTACT -ACGGAAAGCGATTTCCACGGATCT -ACGGAAAGCGATTTCCACAAGGCT -ACGGAAAGCGATTTCCACTCAACC -ACGGAAAGCGATTTCCACTGTTCC -ACGGAAAGCGATTTCCACATTCCC -ACGGAAAGCGATTTCCACTTCTCG -ACGGAAAGCGATTTCCACTAGACG -ACGGAAAGCGATTTCCACGTAACG -ACGGAAAGCGATTTCCACACTTCG -ACGGAAAGCGATTTCCACTACGCA -ACGGAAAGCGATTTCCACCTTGCA -ACGGAAAGCGATTTCCACCGAACA -ACGGAAAGCGATTTCCACCAGTCA -ACGGAAAGCGATTTCCACGATCCA -ACGGAAAGCGATTTCCACACGACA -ACGGAAAGCGATTTCCACAGCTCA -ACGGAAAGCGATTTCCACTCACGT -ACGGAAAGCGATTTCCACCGTAGT -ACGGAAAGCGATTTCCACGTCAGT -ACGGAAAGCGATTTCCACGAAGGT -ACGGAAAGCGATTTCCACAACCGT -ACGGAAAGCGATTTCCACTTGTGC -ACGGAAAGCGATTTCCACCTAAGC -ACGGAAAGCGATTTCCACACTAGC -ACGGAAAGCGATTTCCACAGATGC -ACGGAAAGCGATTTCCACTGAAGG -ACGGAAAGCGATTTCCACCAATGG -ACGGAAAGCGATTTCCACATGAGG -ACGGAAAGCGATTTCCACAATGGG -ACGGAAAGCGATTTCCACTCCTGA -ACGGAAAGCGATTTCCACTAGCGA -ACGGAAAGCGATTTCCACCACAGA -ACGGAAAGCGATTTCCACGCAAGA -ACGGAAAGCGATTTCCACGGTTGA -ACGGAAAGCGATTTCCACTCCGAT -ACGGAAAGCGATTTCCACTGGCAT -ACGGAAAGCGATTTCCACCGAGAT -ACGGAAAGCGATTTCCACTACCAC -ACGGAAAGCGATTTCCACCAGAAC -ACGGAAAGCGATTTCCACGTCTAC -ACGGAAAGCGATTTCCACACGTAC -ACGGAAAGCGATTTCCACAGTGAC -ACGGAAAGCGATTTCCACCTGTAG -ACGGAAAGCGATTTCCACCCTAAG -ACGGAAAGCGATTTCCACGTTCAG -ACGGAAAGCGATTTCCACGCATAG -ACGGAAAGCGATTTCCACGACAAG -ACGGAAAGCGATTTCCACAAGCAG -ACGGAAAGCGATTTCCACCGTCAA -ACGGAAAGCGATTTCCACGCTGAA -ACGGAAAGCGATTTCCACAGTACG -ACGGAAAGCGATTTCCACATCCGA -ACGGAAAGCGATTTCCACATGGGA -ACGGAAAGCGATTTCCACGTGCAA -ACGGAAAGCGATTTCCACGAGGAA -ACGGAAAGCGATTTCCACCAGGTA -ACGGAAAGCGATTTCCACGACTCT -ACGGAAAGCGATTTCCACAGTCCT -ACGGAAAGCGATTTCCACTAAGCC -ACGGAAAGCGATTTCCACATAGCC -ACGGAAAGCGATTTCCACTAACCG -ACGGAAAGCGATTTCCACATGCCA -ACGGAAAGCGATCTCGTAGGAAAC -ACGGAAAGCGATCTCGTAAACACC -ACGGAAAGCGATCTCGTAATCGAG -ACGGAAAGCGATCTCGTACTCCTT -ACGGAAAGCGATCTCGTACCTGTT -ACGGAAAGCGATCTCGTACGGTTT -ACGGAAAGCGATCTCGTAGTGGTT -ACGGAAAGCGATCTCGTAGCCTTT -ACGGAAAGCGATCTCGTAGGTCTT -ACGGAAAGCGATCTCGTAACGCTT -ACGGAAAGCGATCTCGTAAGCGTT -ACGGAAAGCGATCTCGTATTCGTC -ACGGAAAGCGATCTCGTATCTCTC -ACGGAAAGCGATCTCGTATGGATC -ACGGAAAGCGATCTCGTACACTTC -ACGGAAAGCGATCTCGTAGTACTC -ACGGAAAGCGATCTCGTAGATGTC -ACGGAAAGCGATCTCGTAACAGTC -ACGGAAAGCGATCTCGTATTGCTG -ACGGAAAGCGATCTCGTATCCATG -ACGGAAAGCGATCTCGTATGTGTG -ACGGAAAGCGATCTCGTACTAGTG -ACGGAAAGCGATCTCGTACATCTG -ACGGAAAGCGATCTCGTAGAGTTG -ACGGAAAGCGATCTCGTAAGACTG -ACGGAAAGCGATCTCGTATCGGTA -ACGGAAAGCGATCTCGTATGCCTA -ACGGAAAGCGATCTCGTACCACTA -ACGGAAAGCGATCTCGTAGGAGTA -ACGGAAAGCGATCTCGTATCGTCT -ACGGAAAGCGATCTCGTATGCACT -ACGGAAAGCGATCTCGTACTGACT -ACGGAAAGCGATCTCGTACAACCT -ACGGAAAGCGATCTCGTAGCTACT -ACGGAAAGCGATCTCGTAGGATCT -ACGGAAAGCGATCTCGTAAAGGCT -ACGGAAAGCGATCTCGTATCAACC -ACGGAAAGCGATCTCGTATGTTCC -ACGGAAAGCGATCTCGTAATTCCC -ACGGAAAGCGATCTCGTATTCTCG -ACGGAAAGCGATCTCGTATAGACG -ACGGAAAGCGATCTCGTAGTAACG -ACGGAAAGCGATCTCGTAACTTCG -ACGGAAAGCGATCTCGTATACGCA -ACGGAAAGCGATCTCGTACTTGCA -ACGGAAAGCGATCTCGTACGAACA -ACGGAAAGCGATCTCGTACAGTCA -ACGGAAAGCGATCTCGTAGATCCA -ACGGAAAGCGATCTCGTAACGACA -ACGGAAAGCGATCTCGTAAGCTCA -ACGGAAAGCGATCTCGTATCACGT -ACGGAAAGCGATCTCGTACGTAGT -ACGGAAAGCGATCTCGTAGTCAGT -ACGGAAAGCGATCTCGTAGAAGGT -ACGGAAAGCGATCTCGTAAACCGT -ACGGAAAGCGATCTCGTATTGTGC -ACGGAAAGCGATCTCGTACTAAGC -ACGGAAAGCGATCTCGTAACTAGC -ACGGAAAGCGATCTCGTAAGATGC -ACGGAAAGCGATCTCGTATGAAGG -ACGGAAAGCGATCTCGTACAATGG -ACGGAAAGCGATCTCGTAATGAGG -ACGGAAAGCGATCTCGTAAATGGG -ACGGAAAGCGATCTCGTATCCTGA -ACGGAAAGCGATCTCGTATAGCGA -ACGGAAAGCGATCTCGTACACAGA -ACGGAAAGCGATCTCGTAGCAAGA -ACGGAAAGCGATCTCGTAGGTTGA -ACGGAAAGCGATCTCGTATCCGAT -ACGGAAAGCGATCTCGTATGGCAT -ACGGAAAGCGATCTCGTACGAGAT -ACGGAAAGCGATCTCGTATACCAC -ACGGAAAGCGATCTCGTACAGAAC -ACGGAAAGCGATCTCGTAGTCTAC -ACGGAAAGCGATCTCGTAACGTAC -ACGGAAAGCGATCTCGTAAGTGAC -ACGGAAAGCGATCTCGTACTGTAG -ACGGAAAGCGATCTCGTACCTAAG -ACGGAAAGCGATCTCGTAGTTCAG -ACGGAAAGCGATCTCGTAGCATAG -ACGGAAAGCGATCTCGTAGACAAG -ACGGAAAGCGATCTCGTAAAGCAG -ACGGAAAGCGATCTCGTACGTCAA -ACGGAAAGCGATCTCGTAGCTGAA -ACGGAAAGCGATCTCGTAAGTACG -ACGGAAAGCGATCTCGTAATCCGA -ACGGAAAGCGATCTCGTAATGGGA -ACGGAAAGCGATCTCGTAGTGCAA -ACGGAAAGCGATCTCGTAGAGGAA -ACGGAAAGCGATCTCGTACAGGTA -ACGGAAAGCGATCTCGTAGACTCT -ACGGAAAGCGATCTCGTAAGTCCT -ACGGAAAGCGATCTCGTATAAGCC -ACGGAAAGCGATCTCGTAATAGCC -ACGGAAAGCGATCTCGTATAACCG -ACGGAAAGCGATCTCGTAATGCCA -ACGGAAAGCGATGTCGATGGAAAC -ACGGAAAGCGATGTCGATAACACC -ACGGAAAGCGATGTCGATATCGAG -ACGGAAAGCGATGTCGATCTCCTT -ACGGAAAGCGATGTCGATCCTGTT -ACGGAAAGCGATGTCGATCGGTTT -ACGGAAAGCGATGTCGATGTGGTT -ACGGAAAGCGATGTCGATGCCTTT -ACGGAAAGCGATGTCGATGGTCTT -ACGGAAAGCGATGTCGATACGCTT -ACGGAAAGCGATGTCGATAGCGTT -ACGGAAAGCGATGTCGATTTCGTC -ACGGAAAGCGATGTCGATTCTCTC -ACGGAAAGCGATGTCGATTGGATC -ACGGAAAGCGATGTCGATCACTTC -ACGGAAAGCGATGTCGATGTACTC -ACGGAAAGCGATGTCGATGATGTC -ACGGAAAGCGATGTCGATACAGTC -ACGGAAAGCGATGTCGATTTGCTG -ACGGAAAGCGATGTCGATTCCATG -ACGGAAAGCGATGTCGATTGTGTG -ACGGAAAGCGATGTCGATCTAGTG -ACGGAAAGCGATGTCGATCATCTG -ACGGAAAGCGATGTCGATGAGTTG -ACGGAAAGCGATGTCGATAGACTG -ACGGAAAGCGATGTCGATTCGGTA -ACGGAAAGCGATGTCGATTGCCTA -ACGGAAAGCGATGTCGATCCACTA -ACGGAAAGCGATGTCGATGGAGTA -ACGGAAAGCGATGTCGATTCGTCT -ACGGAAAGCGATGTCGATTGCACT -ACGGAAAGCGATGTCGATCTGACT -ACGGAAAGCGATGTCGATCAACCT -ACGGAAAGCGATGTCGATGCTACT -ACGGAAAGCGATGTCGATGGATCT -ACGGAAAGCGATGTCGATAAGGCT -ACGGAAAGCGATGTCGATTCAACC -ACGGAAAGCGATGTCGATTGTTCC -ACGGAAAGCGATGTCGATATTCCC -ACGGAAAGCGATGTCGATTTCTCG -ACGGAAAGCGATGTCGATTAGACG -ACGGAAAGCGATGTCGATGTAACG -ACGGAAAGCGATGTCGATACTTCG -ACGGAAAGCGATGTCGATTACGCA -ACGGAAAGCGATGTCGATCTTGCA -ACGGAAAGCGATGTCGATCGAACA -ACGGAAAGCGATGTCGATCAGTCA -ACGGAAAGCGATGTCGATGATCCA -ACGGAAAGCGATGTCGATACGACA -ACGGAAAGCGATGTCGATAGCTCA -ACGGAAAGCGATGTCGATTCACGT -ACGGAAAGCGATGTCGATCGTAGT -ACGGAAAGCGATGTCGATGTCAGT -ACGGAAAGCGATGTCGATGAAGGT -ACGGAAAGCGATGTCGATAACCGT -ACGGAAAGCGATGTCGATTTGTGC -ACGGAAAGCGATGTCGATCTAAGC -ACGGAAAGCGATGTCGATACTAGC -ACGGAAAGCGATGTCGATAGATGC -ACGGAAAGCGATGTCGATTGAAGG -ACGGAAAGCGATGTCGATCAATGG -ACGGAAAGCGATGTCGATATGAGG -ACGGAAAGCGATGTCGATAATGGG -ACGGAAAGCGATGTCGATTCCTGA -ACGGAAAGCGATGTCGATTAGCGA -ACGGAAAGCGATGTCGATCACAGA -ACGGAAAGCGATGTCGATGCAAGA -ACGGAAAGCGATGTCGATGGTTGA -ACGGAAAGCGATGTCGATTCCGAT -ACGGAAAGCGATGTCGATTGGCAT -ACGGAAAGCGATGTCGATCGAGAT -ACGGAAAGCGATGTCGATTACCAC -ACGGAAAGCGATGTCGATCAGAAC -ACGGAAAGCGATGTCGATGTCTAC -ACGGAAAGCGATGTCGATACGTAC -ACGGAAAGCGATGTCGATAGTGAC -ACGGAAAGCGATGTCGATCTGTAG -ACGGAAAGCGATGTCGATCCTAAG -ACGGAAAGCGATGTCGATGTTCAG -ACGGAAAGCGATGTCGATGCATAG -ACGGAAAGCGATGTCGATGACAAG -ACGGAAAGCGATGTCGATAAGCAG -ACGGAAAGCGATGTCGATCGTCAA -ACGGAAAGCGATGTCGATGCTGAA -ACGGAAAGCGATGTCGATAGTACG -ACGGAAAGCGATGTCGATATCCGA -ACGGAAAGCGATGTCGATATGGGA -ACGGAAAGCGATGTCGATGTGCAA -ACGGAAAGCGATGTCGATGAGGAA -ACGGAAAGCGATGTCGATCAGGTA -ACGGAAAGCGATGTCGATGACTCT -ACGGAAAGCGATGTCGATAGTCCT -ACGGAAAGCGATGTCGATTAAGCC -ACGGAAAGCGATGTCGATATAGCC -ACGGAAAGCGATGTCGATTAACCG -ACGGAAAGCGATGTCGATATGCCA -ACGGAAAGCGATGTCACAGGAAAC -ACGGAAAGCGATGTCACAAACACC -ACGGAAAGCGATGTCACAATCGAG -ACGGAAAGCGATGTCACACTCCTT -ACGGAAAGCGATGTCACACCTGTT -ACGGAAAGCGATGTCACACGGTTT -ACGGAAAGCGATGTCACAGTGGTT -ACGGAAAGCGATGTCACAGCCTTT -ACGGAAAGCGATGTCACAGGTCTT -ACGGAAAGCGATGTCACAACGCTT -ACGGAAAGCGATGTCACAAGCGTT -ACGGAAAGCGATGTCACATTCGTC -ACGGAAAGCGATGTCACATCTCTC -ACGGAAAGCGATGTCACATGGATC -ACGGAAAGCGATGTCACACACTTC -ACGGAAAGCGATGTCACAGTACTC -ACGGAAAGCGATGTCACAGATGTC -ACGGAAAGCGATGTCACAACAGTC -ACGGAAAGCGATGTCACATTGCTG -ACGGAAAGCGATGTCACATCCATG -ACGGAAAGCGATGTCACATGTGTG -ACGGAAAGCGATGTCACACTAGTG -ACGGAAAGCGATGTCACACATCTG -ACGGAAAGCGATGTCACAGAGTTG -ACGGAAAGCGATGTCACAAGACTG -ACGGAAAGCGATGTCACATCGGTA -ACGGAAAGCGATGTCACATGCCTA -ACGGAAAGCGATGTCACACCACTA -ACGGAAAGCGATGTCACAGGAGTA -ACGGAAAGCGATGTCACATCGTCT -ACGGAAAGCGATGTCACATGCACT -ACGGAAAGCGATGTCACACTGACT -ACGGAAAGCGATGTCACACAACCT -ACGGAAAGCGATGTCACAGCTACT -ACGGAAAGCGATGTCACAGGATCT -ACGGAAAGCGATGTCACAAAGGCT -ACGGAAAGCGATGTCACATCAACC -ACGGAAAGCGATGTCACATGTTCC -ACGGAAAGCGATGTCACAATTCCC -ACGGAAAGCGATGTCACATTCTCG -ACGGAAAGCGATGTCACATAGACG -ACGGAAAGCGATGTCACAGTAACG -ACGGAAAGCGATGTCACAACTTCG -ACGGAAAGCGATGTCACATACGCA -ACGGAAAGCGATGTCACACTTGCA -ACGGAAAGCGATGTCACACGAACA -ACGGAAAGCGATGTCACACAGTCA -ACGGAAAGCGATGTCACAGATCCA -ACGGAAAGCGATGTCACAACGACA -ACGGAAAGCGATGTCACAAGCTCA -ACGGAAAGCGATGTCACATCACGT -ACGGAAAGCGATGTCACACGTAGT -ACGGAAAGCGATGTCACAGTCAGT -ACGGAAAGCGATGTCACAGAAGGT -ACGGAAAGCGATGTCACAAACCGT -ACGGAAAGCGATGTCACATTGTGC -ACGGAAAGCGATGTCACACTAAGC -ACGGAAAGCGATGTCACAACTAGC -ACGGAAAGCGATGTCACAAGATGC -ACGGAAAGCGATGTCACATGAAGG -ACGGAAAGCGATGTCACACAATGG -ACGGAAAGCGATGTCACAATGAGG -ACGGAAAGCGATGTCACAAATGGG -ACGGAAAGCGATGTCACATCCTGA -ACGGAAAGCGATGTCACATAGCGA -ACGGAAAGCGATGTCACACACAGA -ACGGAAAGCGATGTCACAGCAAGA -ACGGAAAGCGATGTCACAGGTTGA -ACGGAAAGCGATGTCACATCCGAT -ACGGAAAGCGATGTCACATGGCAT -ACGGAAAGCGATGTCACACGAGAT -ACGGAAAGCGATGTCACATACCAC -ACGGAAAGCGATGTCACACAGAAC -ACGGAAAGCGATGTCACAGTCTAC -ACGGAAAGCGATGTCACAACGTAC -ACGGAAAGCGATGTCACAAGTGAC -ACGGAAAGCGATGTCACACTGTAG -ACGGAAAGCGATGTCACACCTAAG -ACGGAAAGCGATGTCACAGTTCAG -ACGGAAAGCGATGTCACAGCATAG -ACGGAAAGCGATGTCACAGACAAG -ACGGAAAGCGATGTCACAAAGCAG -ACGGAAAGCGATGTCACACGTCAA -ACGGAAAGCGATGTCACAGCTGAA -ACGGAAAGCGATGTCACAAGTACG -ACGGAAAGCGATGTCACAATCCGA -ACGGAAAGCGATGTCACAATGGGA -ACGGAAAGCGATGTCACAGTGCAA -ACGGAAAGCGATGTCACAGAGGAA -ACGGAAAGCGATGTCACACAGGTA -ACGGAAAGCGATGTCACAGACTCT -ACGGAAAGCGATGTCACAAGTCCT -ACGGAAAGCGATGTCACATAAGCC -ACGGAAAGCGATGTCACAATAGCC -ACGGAAAGCGATGTCACATAACCG -ACGGAAAGCGATGTCACAATGCCA -ACGGAAAGCGATCTGTTGGGAAAC -ACGGAAAGCGATCTGTTGAACACC -ACGGAAAGCGATCTGTTGATCGAG -ACGGAAAGCGATCTGTTGCTCCTT -ACGGAAAGCGATCTGTTGCCTGTT -ACGGAAAGCGATCTGTTGCGGTTT -ACGGAAAGCGATCTGTTGGTGGTT -ACGGAAAGCGATCTGTTGGCCTTT -ACGGAAAGCGATCTGTTGGGTCTT -ACGGAAAGCGATCTGTTGACGCTT -ACGGAAAGCGATCTGTTGAGCGTT -ACGGAAAGCGATCTGTTGTTCGTC -ACGGAAAGCGATCTGTTGTCTCTC -ACGGAAAGCGATCTGTTGTGGATC -ACGGAAAGCGATCTGTTGCACTTC -ACGGAAAGCGATCTGTTGGTACTC -ACGGAAAGCGATCTGTTGGATGTC -ACGGAAAGCGATCTGTTGACAGTC -ACGGAAAGCGATCTGTTGTTGCTG -ACGGAAAGCGATCTGTTGTCCATG -ACGGAAAGCGATCTGTTGTGTGTG -ACGGAAAGCGATCTGTTGCTAGTG -ACGGAAAGCGATCTGTTGCATCTG -ACGGAAAGCGATCTGTTGGAGTTG -ACGGAAAGCGATCTGTTGAGACTG -ACGGAAAGCGATCTGTTGTCGGTA -ACGGAAAGCGATCTGTTGTGCCTA -ACGGAAAGCGATCTGTTGCCACTA -ACGGAAAGCGATCTGTTGGGAGTA -ACGGAAAGCGATCTGTTGTCGTCT -ACGGAAAGCGATCTGTTGTGCACT -ACGGAAAGCGATCTGTTGCTGACT -ACGGAAAGCGATCTGTTGCAACCT -ACGGAAAGCGATCTGTTGGCTACT -ACGGAAAGCGATCTGTTGGGATCT -ACGGAAAGCGATCTGTTGAAGGCT -ACGGAAAGCGATCTGTTGTCAACC -ACGGAAAGCGATCTGTTGTGTTCC -ACGGAAAGCGATCTGTTGATTCCC -ACGGAAAGCGATCTGTTGTTCTCG -ACGGAAAGCGATCTGTTGTAGACG -ACGGAAAGCGATCTGTTGGTAACG -ACGGAAAGCGATCTGTTGACTTCG -ACGGAAAGCGATCTGTTGTACGCA -ACGGAAAGCGATCTGTTGCTTGCA -ACGGAAAGCGATCTGTTGCGAACA -ACGGAAAGCGATCTGTTGCAGTCA -ACGGAAAGCGATCTGTTGGATCCA -ACGGAAAGCGATCTGTTGACGACA -ACGGAAAGCGATCTGTTGAGCTCA -ACGGAAAGCGATCTGTTGTCACGT -ACGGAAAGCGATCTGTTGCGTAGT -ACGGAAAGCGATCTGTTGGTCAGT -ACGGAAAGCGATCTGTTGGAAGGT -ACGGAAAGCGATCTGTTGAACCGT -ACGGAAAGCGATCTGTTGTTGTGC -ACGGAAAGCGATCTGTTGCTAAGC -ACGGAAAGCGATCTGTTGACTAGC -ACGGAAAGCGATCTGTTGAGATGC -ACGGAAAGCGATCTGTTGTGAAGG -ACGGAAAGCGATCTGTTGCAATGG -ACGGAAAGCGATCTGTTGATGAGG -ACGGAAAGCGATCTGTTGAATGGG -ACGGAAAGCGATCTGTTGTCCTGA -ACGGAAAGCGATCTGTTGTAGCGA -ACGGAAAGCGATCTGTTGCACAGA -ACGGAAAGCGATCTGTTGGCAAGA -ACGGAAAGCGATCTGTTGGGTTGA -ACGGAAAGCGATCTGTTGTCCGAT -ACGGAAAGCGATCTGTTGTGGCAT -ACGGAAAGCGATCTGTTGCGAGAT -ACGGAAAGCGATCTGTTGTACCAC -ACGGAAAGCGATCTGTTGCAGAAC -ACGGAAAGCGATCTGTTGGTCTAC -ACGGAAAGCGATCTGTTGACGTAC -ACGGAAAGCGATCTGTTGAGTGAC -ACGGAAAGCGATCTGTTGCTGTAG -ACGGAAAGCGATCTGTTGCCTAAG -ACGGAAAGCGATCTGTTGGTTCAG -ACGGAAAGCGATCTGTTGGCATAG -ACGGAAAGCGATCTGTTGGACAAG -ACGGAAAGCGATCTGTTGAAGCAG -ACGGAAAGCGATCTGTTGCGTCAA -ACGGAAAGCGATCTGTTGGCTGAA -ACGGAAAGCGATCTGTTGAGTACG -ACGGAAAGCGATCTGTTGATCCGA -ACGGAAAGCGATCTGTTGATGGGA -ACGGAAAGCGATCTGTTGGTGCAA -ACGGAAAGCGATCTGTTGGAGGAA -ACGGAAAGCGATCTGTTGCAGGTA -ACGGAAAGCGATCTGTTGGACTCT -ACGGAAAGCGATCTGTTGAGTCCT -ACGGAAAGCGATCTGTTGTAAGCC -ACGGAAAGCGATCTGTTGATAGCC -ACGGAAAGCGATCTGTTGTAACCG -ACGGAAAGCGATCTGTTGATGCCA -ACGGAAAGCGATATGTCCGGAAAC -ACGGAAAGCGATATGTCCAACACC -ACGGAAAGCGATATGTCCATCGAG -ACGGAAAGCGATATGTCCCTCCTT -ACGGAAAGCGATATGTCCCCTGTT -ACGGAAAGCGATATGTCCCGGTTT -ACGGAAAGCGATATGTCCGTGGTT -ACGGAAAGCGATATGTCCGCCTTT -ACGGAAAGCGATATGTCCGGTCTT -ACGGAAAGCGATATGTCCACGCTT -ACGGAAAGCGATATGTCCAGCGTT -ACGGAAAGCGATATGTCCTTCGTC -ACGGAAAGCGATATGTCCTCTCTC -ACGGAAAGCGATATGTCCTGGATC -ACGGAAAGCGATATGTCCCACTTC -ACGGAAAGCGATATGTCCGTACTC -ACGGAAAGCGATATGTCCGATGTC -ACGGAAAGCGATATGTCCACAGTC -ACGGAAAGCGATATGTCCTTGCTG -ACGGAAAGCGATATGTCCTCCATG -ACGGAAAGCGATATGTCCTGTGTG -ACGGAAAGCGATATGTCCCTAGTG -ACGGAAAGCGATATGTCCCATCTG -ACGGAAAGCGATATGTCCGAGTTG -ACGGAAAGCGATATGTCCAGACTG -ACGGAAAGCGATATGTCCTCGGTA -ACGGAAAGCGATATGTCCTGCCTA -ACGGAAAGCGATATGTCCCCACTA -ACGGAAAGCGATATGTCCGGAGTA -ACGGAAAGCGATATGTCCTCGTCT -ACGGAAAGCGATATGTCCTGCACT -ACGGAAAGCGATATGTCCCTGACT -ACGGAAAGCGATATGTCCCAACCT -ACGGAAAGCGATATGTCCGCTACT -ACGGAAAGCGATATGTCCGGATCT -ACGGAAAGCGATATGTCCAAGGCT -ACGGAAAGCGATATGTCCTCAACC -ACGGAAAGCGATATGTCCTGTTCC -ACGGAAAGCGATATGTCCATTCCC -ACGGAAAGCGATATGTCCTTCTCG -ACGGAAAGCGATATGTCCTAGACG -ACGGAAAGCGATATGTCCGTAACG -ACGGAAAGCGATATGTCCACTTCG -ACGGAAAGCGATATGTCCTACGCA -ACGGAAAGCGATATGTCCCTTGCA -ACGGAAAGCGATATGTCCCGAACA -ACGGAAAGCGATATGTCCCAGTCA -ACGGAAAGCGATATGTCCGATCCA -ACGGAAAGCGATATGTCCACGACA -ACGGAAAGCGATATGTCCAGCTCA -ACGGAAAGCGATATGTCCTCACGT -ACGGAAAGCGATATGTCCCGTAGT -ACGGAAAGCGATATGTCCGTCAGT -ACGGAAAGCGATATGTCCGAAGGT -ACGGAAAGCGATATGTCCAACCGT -ACGGAAAGCGATATGTCCTTGTGC -ACGGAAAGCGATATGTCCCTAAGC -ACGGAAAGCGATATGTCCACTAGC -ACGGAAAGCGATATGTCCAGATGC -ACGGAAAGCGATATGTCCTGAAGG -ACGGAAAGCGATATGTCCCAATGG -ACGGAAAGCGATATGTCCATGAGG -ACGGAAAGCGATATGTCCAATGGG -ACGGAAAGCGATATGTCCTCCTGA -ACGGAAAGCGATATGTCCTAGCGA -ACGGAAAGCGATATGTCCCACAGA -ACGGAAAGCGATATGTCCGCAAGA -ACGGAAAGCGATATGTCCGGTTGA -ACGGAAAGCGATATGTCCTCCGAT -ACGGAAAGCGATATGTCCTGGCAT -ACGGAAAGCGATATGTCCCGAGAT -ACGGAAAGCGATATGTCCTACCAC -ACGGAAAGCGATATGTCCCAGAAC -ACGGAAAGCGATATGTCCGTCTAC -ACGGAAAGCGATATGTCCACGTAC -ACGGAAAGCGATATGTCCAGTGAC -ACGGAAAGCGATATGTCCCTGTAG -ACGGAAAGCGATATGTCCCCTAAG -ACGGAAAGCGATATGTCCGTTCAG -ACGGAAAGCGATATGTCCGCATAG -ACGGAAAGCGATATGTCCGACAAG -ACGGAAAGCGATATGTCCAAGCAG -ACGGAAAGCGATATGTCCCGTCAA -ACGGAAAGCGATATGTCCGCTGAA -ACGGAAAGCGATATGTCCAGTACG -ACGGAAAGCGATATGTCCATCCGA -ACGGAAAGCGATATGTCCATGGGA -ACGGAAAGCGATATGTCCGTGCAA -ACGGAAAGCGATATGTCCGAGGAA -ACGGAAAGCGATATGTCCCAGGTA -ACGGAAAGCGATATGTCCGACTCT -ACGGAAAGCGATATGTCCAGTCCT -ACGGAAAGCGATATGTCCTAAGCC -ACGGAAAGCGATATGTCCATAGCC -ACGGAAAGCGATATGTCCTAACCG -ACGGAAAGCGATATGTCCATGCCA -ACGGAAAGCGATGTGTGTGGAAAC -ACGGAAAGCGATGTGTGTAACACC -ACGGAAAGCGATGTGTGTATCGAG -ACGGAAAGCGATGTGTGTCTCCTT -ACGGAAAGCGATGTGTGTCCTGTT -ACGGAAAGCGATGTGTGTCGGTTT -ACGGAAAGCGATGTGTGTGTGGTT -ACGGAAAGCGATGTGTGTGCCTTT -ACGGAAAGCGATGTGTGTGGTCTT -ACGGAAAGCGATGTGTGTACGCTT -ACGGAAAGCGATGTGTGTAGCGTT -ACGGAAAGCGATGTGTGTTTCGTC -ACGGAAAGCGATGTGTGTTCTCTC -ACGGAAAGCGATGTGTGTTGGATC -ACGGAAAGCGATGTGTGTCACTTC -ACGGAAAGCGATGTGTGTGTACTC -ACGGAAAGCGATGTGTGTGATGTC -ACGGAAAGCGATGTGTGTACAGTC -ACGGAAAGCGATGTGTGTTTGCTG -ACGGAAAGCGATGTGTGTTCCATG -ACGGAAAGCGATGTGTGTTGTGTG -ACGGAAAGCGATGTGTGTCTAGTG -ACGGAAAGCGATGTGTGTCATCTG -ACGGAAAGCGATGTGTGTGAGTTG -ACGGAAAGCGATGTGTGTAGACTG -ACGGAAAGCGATGTGTGTTCGGTA -ACGGAAAGCGATGTGTGTTGCCTA -ACGGAAAGCGATGTGTGTCCACTA -ACGGAAAGCGATGTGTGTGGAGTA -ACGGAAAGCGATGTGTGTTCGTCT -ACGGAAAGCGATGTGTGTTGCACT -ACGGAAAGCGATGTGTGTCTGACT -ACGGAAAGCGATGTGTGTCAACCT -ACGGAAAGCGATGTGTGTGCTACT -ACGGAAAGCGATGTGTGTGGATCT -ACGGAAAGCGATGTGTGTAAGGCT -ACGGAAAGCGATGTGTGTTCAACC -ACGGAAAGCGATGTGTGTTGTTCC -ACGGAAAGCGATGTGTGTATTCCC -ACGGAAAGCGATGTGTGTTTCTCG -ACGGAAAGCGATGTGTGTTAGACG -ACGGAAAGCGATGTGTGTGTAACG -ACGGAAAGCGATGTGTGTACTTCG -ACGGAAAGCGATGTGTGTTACGCA -ACGGAAAGCGATGTGTGTCTTGCA -ACGGAAAGCGATGTGTGTCGAACA -ACGGAAAGCGATGTGTGTCAGTCA -ACGGAAAGCGATGTGTGTGATCCA -ACGGAAAGCGATGTGTGTACGACA -ACGGAAAGCGATGTGTGTAGCTCA -ACGGAAAGCGATGTGTGTTCACGT -ACGGAAAGCGATGTGTGTCGTAGT -ACGGAAAGCGATGTGTGTGTCAGT -ACGGAAAGCGATGTGTGTGAAGGT -ACGGAAAGCGATGTGTGTAACCGT -ACGGAAAGCGATGTGTGTTTGTGC -ACGGAAAGCGATGTGTGTCTAAGC -ACGGAAAGCGATGTGTGTACTAGC -ACGGAAAGCGATGTGTGTAGATGC -ACGGAAAGCGATGTGTGTTGAAGG -ACGGAAAGCGATGTGTGTCAATGG -ACGGAAAGCGATGTGTGTATGAGG -ACGGAAAGCGATGTGTGTAATGGG -ACGGAAAGCGATGTGTGTTCCTGA -ACGGAAAGCGATGTGTGTTAGCGA -ACGGAAAGCGATGTGTGTCACAGA -ACGGAAAGCGATGTGTGTGCAAGA -ACGGAAAGCGATGTGTGTGGTTGA -ACGGAAAGCGATGTGTGTTCCGAT -ACGGAAAGCGATGTGTGTTGGCAT -ACGGAAAGCGATGTGTGTCGAGAT -ACGGAAAGCGATGTGTGTTACCAC -ACGGAAAGCGATGTGTGTCAGAAC -ACGGAAAGCGATGTGTGTGTCTAC -ACGGAAAGCGATGTGTGTACGTAC -ACGGAAAGCGATGTGTGTAGTGAC -ACGGAAAGCGATGTGTGTCTGTAG -ACGGAAAGCGATGTGTGTCCTAAG -ACGGAAAGCGATGTGTGTGTTCAG -ACGGAAAGCGATGTGTGTGCATAG -ACGGAAAGCGATGTGTGTGACAAG -ACGGAAAGCGATGTGTGTAAGCAG -ACGGAAAGCGATGTGTGTCGTCAA -ACGGAAAGCGATGTGTGTGCTGAA -ACGGAAAGCGATGTGTGTAGTACG -ACGGAAAGCGATGTGTGTATCCGA -ACGGAAAGCGATGTGTGTATGGGA -ACGGAAAGCGATGTGTGTGTGCAA -ACGGAAAGCGATGTGTGTGAGGAA -ACGGAAAGCGATGTGTGTCAGGTA -ACGGAAAGCGATGTGTGTGACTCT -ACGGAAAGCGATGTGTGTAGTCCT -ACGGAAAGCGATGTGTGTTAAGCC -ACGGAAAGCGATGTGTGTATAGCC -ACGGAAAGCGATGTGTGTTAACCG -ACGGAAAGCGATGTGTGTATGCCA -ACGGAAAGCGATGTGCTAGGAAAC -ACGGAAAGCGATGTGCTAAACACC -ACGGAAAGCGATGTGCTAATCGAG -ACGGAAAGCGATGTGCTACTCCTT -ACGGAAAGCGATGTGCTACCTGTT -ACGGAAAGCGATGTGCTACGGTTT -ACGGAAAGCGATGTGCTAGTGGTT -ACGGAAAGCGATGTGCTAGCCTTT -ACGGAAAGCGATGTGCTAGGTCTT -ACGGAAAGCGATGTGCTAACGCTT -ACGGAAAGCGATGTGCTAAGCGTT -ACGGAAAGCGATGTGCTATTCGTC -ACGGAAAGCGATGTGCTATCTCTC -ACGGAAAGCGATGTGCTATGGATC -ACGGAAAGCGATGTGCTACACTTC -ACGGAAAGCGATGTGCTAGTACTC -ACGGAAAGCGATGTGCTAGATGTC -ACGGAAAGCGATGTGCTAACAGTC -ACGGAAAGCGATGTGCTATTGCTG -ACGGAAAGCGATGTGCTATCCATG -ACGGAAAGCGATGTGCTATGTGTG -ACGGAAAGCGATGTGCTACTAGTG -ACGGAAAGCGATGTGCTACATCTG -ACGGAAAGCGATGTGCTAGAGTTG -ACGGAAAGCGATGTGCTAAGACTG -ACGGAAAGCGATGTGCTATCGGTA -ACGGAAAGCGATGTGCTATGCCTA -ACGGAAAGCGATGTGCTACCACTA -ACGGAAAGCGATGTGCTAGGAGTA -ACGGAAAGCGATGTGCTATCGTCT -ACGGAAAGCGATGTGCTATGCACT -ACGGAAAGCGATGTGCTACTGACT -ACGGAAAGCGATGTGCTACAACCT -ACGGAAAGCGATGTGCTAGCTACT -ACGGAAAGCGATGTGCTAGGATCT -ACGGAAAGCGATGTGCTAAAGGCT -ACGGAAAGCGATGTGCTATCAACC -ACGGAAAGCGATGTGCTATGTTCC -ACGGAAAGCGATGTGCTAATTCCC -ACGGAAAGCGATGTGCTATTCTCG -ACGGAAAGCGATGTGCTATAGACG -ACGGAAAGCGATGTGCTAGTAACG -ACGGAAAGCGATGTGCTAACTTCG -ACGGAAAGCGATGTGCTATACGCA -ACGGAAAGCGATGTGCTACTTGCA -ACGGAAAGCGATGTGCTACGAACA -ACGGAAAGCGATGTGCTACAGTCA -ACGGAAAGCGATGTGCTAGATCCA -ACGGAAAGCGATGTGCTAACGACA -ACGGAAAGCGATGTGCTAAGCTCA -ACGGAAAGCGATGTGCTATCACGT -ACGGAAAGCGATGTGCTACGTAGT -ACGGAAAGCGATGTGCTAGTCAGT -ACGGAAAGCGATGTGCTAGAAGGT -ACGGAAAGCGATGTGCTAAACCGT -ACGGAAAGCGATGTGCTATTGTGC -ACGGAAAGCGATGTGCTACTAAGC -ACGGAAAGCGATGTGCTAACTAGC -ACGGAAAGCGATGTGCTAAGATGC -ACGGAAAGCGATGTGCTATGAAGG -ACGGAAAGCGATGTGCTACAATGG -ACGGAAAGCGATGTGCTAATGAGG -ACGGAAAGCGATGTGCTAAATGGG -ACGGAAAGCGATGTGCTATCCTGA -ACGGAAAGCGATGTGCTATAGCGA -ACGGAAAGCGATGTGCTACACAGA -ACGGAAAGCGATGTGCTAGCAAGA -ACGGAAAGCGATGTGCTAGGTTGA -ACGGAAAGCGATGTGCTATCCGAT -ACGGAAAGCGATGTGCTATGGCAT -ACGGAAAGCGATGTGCTACGAGAT -ACGGAAAGCGATGTGCTATACCAC -ACGGAAAGCGATGTGCTACAGAAC -ACGGAAAGCGATGTGCTAGTCTAC -ACGGAAAGCGATGTGCTAACGTAC -ACGGAAAGCGATGTGCTAAGTGAC -ACGGAAAGCGATGTGCTACTGTAG -ACGGAAAGCGATGTGCTACCTAAG -ACGGAAAGCGATGTGCTAGTTCAG -ACGGAAAGCGATGTGCTAGCATAG -ACGGAAAGCGATGTGCTAGACAAG -ACGGAAAGCGATGTGCTAAAGCAG -ACGGAAAGCGATGTGCTACGTCAA -ACGGAAAGCGATGTGCTAGCTGAA -ACGGAAAGCGATGTGCTAAGTACG -ACGGAAAGCGATGTGCTAATCCGA -ACGGAAAGCGATGTGCTAATGGGA -ACGGAAAGCGATGTGCTAGTGCAA -ACGGAAAGCGATGTGCTAGAGGAA -ACGGAAAGCGATGTGCTACAGGTA -ACGGAAAGCGATGTGCTAGACTCT -ACGGAAAGCGATGTGCTAAGTCCT -ACGGAAAGCGATGTGCTATAAGCC -ACGGAAAGCGATGTGCTAATAGCC -ACGGAAAGCGATGTGCTATAACCG -ACGGAAAGCGATGTGCTAATGCCA -ACGGAAAGCGATCTGCATGGAAAC -ACGGAAAGCGATCTGCATAACACC -ACGGAAAGCGATCTGCATATCGAG -ACGGAAAGCGATCTGCATCTCCTT -ACGGAAAGCGATCTGCATCCTGTT -ACGGAAAGCGATCTGCATCGGTTT -ACGGAAAGCGATCTGCATGTGGTT -ACGGAAAGCGATCTGCATGCCTTT -ACGGAAAGCGATCTGCATGGTCTT -ACGGAAAGCGATCTGCATACGCTT -ACGGAAAGCGATCTGCATAGCGTT -ACGGAAAGCGATCTGCATTTCGTC -ACGGAAAGCGATCTGCATTCTCTC -ACGGAAAGCGATCTGCATTGGATC -ACGGAAAGCGATCTGCATCACTTC -ACGGAAAGCGATCTGCATGTACTC -ACGGAAAGCGATCTGCATGATGTC -ACGGAAAGCGATCTGCATACAGTC -ACGGAAAGCGATCTGCATTTGCTG -ACGGAAAGCGATCTGCATTCCATG -ACGGAAAGCGATCTGCATTGTGTG -ACGGAAAGCGATCTGCATCTAGTG -ACGGAAAGCGATCTGCATCATCTG -ACGGAAAGCGATCTGCATGAGTTG -ACGGAAAGCGATCTGCATAGACTG -ACGGAAAGCGATCTGCATTCGGTA -ACGGAAAGCGATCTGCATTGCCTA -ACGGAAAGCGATCTGCATCCACTA -ACGGAAAGCGATCTGCATGGAGTA -ACGGAAAGCGATCTGCATTCGTCT -ACGGAAAGCGATCTGCATTGCACT -ACGGAAAGCGATCTGCATCTGACT -ACGGAAAGCGATCTGCATCAACCT -ACGGAAAGCGATCTGCATGCTACT -ACGGAAAGCGATCTGCATGGATCT -ACGGAAAGCGATCTGCATAAGGCT -ACGGAAAGCGATCTGCATTCAACC -ACGGAAAGCGATCTGCATTGTTCC -ACGGAAAGCGATCTGCATATTCCC -ACGGAAAGCGATCTGCATTTCTCG -ACGGAAAGCGATCTGCATTAGACG -ACGGAAAGCGATCTGCATGTAACG -ACGGAAAGCGATCTGCATACTTCG -ACGGAAAGCGATCTGCATTACGCA -ACGGAAAGCGATCTGCATCTTGCA -ACGGAAAGCGATCTGCATCGAACA -ACGGAAAGCGATCTGCATCAGTCA -ACGGAAAGCGATCTGCATGATCCA -ACGGAAAGCGATCTGCATACGACA -ACGGAAAGCGATCTGCATAGCTCA -ACGGAAAGCGATCTGCATTCACGT -ACGGAAAGCGATCTGCATCGTAGT -ACGGAAAGCGATCTGCATGTCAGT -ACGGAAAGCGATCTGCATGAAGGT -ACGGAAAGCGATCTGCATAACCGT -ACGGAAAGCGATCTGCATTTGTGC -ACGGAAAGCGATCTGCATCTAAGC -ACGGAAAGCGATCTGCATACTAGC -ACGGAAAGCGATCTGCATAGATGC -ACGGAAAGCGATCTGCATTGAAGG -ACGGAAAGCGATCTGCATCAATGG -ACGGAAAGCGATCTGCATATGAGG -ACGGAAAGCGATCTGCATAATGGG -ACGGAAAGCGATCTGCATTCCTGA -ACGGAAAGCGATCTGCATTAGCGA -ACGGAAAGCGATCTGCATCACAGA -ACGGAAAGCGATCTGCATGCAAGA -ACGGAAAGCGATCTGCATGGTTGA -ACGGAAAGCGATCTGCATTCCGAT -ACGGAAAGCGATCTGCATTGGCAT -ACGGAAAGCGATCTGCATCGAGAT -ACGGAAAGCGATCTGCATTACCAC -ACGGAAAGCGATCTGCATCAGAAC -ACGGAAAGCGATCTGCATGTCTAC -ACGGAAAGCGATCTGCATACGTAC -ACGGAAAGCGATCTGCATAGTGAC -ACGGAAAGCGATCTGCATCTGTAG -ACGGAAAGCGATCTGCATCCTAAG -ACGGAAAGCGATCTGCATGTTCAG -ACGGAAAGCGATCTGCATGCATAG -ACGGAAAGCGATCTGCATGACAAG -ACGGAAAGCGATCTGCATAAGCAG -ACGGAAAGCGATCTGCATCGTCAA -ACGGAAAGCGATCTGCATGCTGAA -ACGGAAAGCGATCTGCATAGTACG -ACGGAAAGCGATCTGCATATCCGA -ACGGAAAGCGATCTGCATATGGGA -ACGGAAAGCGATCTGCATGTGCAA -ACGGAAAGCGATCTGCATGAGGAA -ACGGAAAGCGATCTGCATCAGGTA -ACGGAAAGCGATCTGCATGACTCT -ACGGAAAGCGATCTGCATAGTCCT -ACGGAAAGCGATCTGCATTAAGCC -ACGGAAAGCGATCTGCATATAGCC -ACGGAAAGCGATCTGCATTAACCG -ACGGAAAGCGATCTGCATATGCCA -ACGGAAAGCGATTTGGAGGGAAAC -ACGGAAAGCGATTTGGAGAACACC -ACGGAAAGCGATTTGGAGATCGAG -ACGGAAAGCGATTTGGAGCTCCTT -ACGGAAAGCGATTTGGAGCCTGTT -ACGGAAAGCGATTTGGAGCGGTTT -ACGGAAAGCGATTTGGAGGTGGTT -ACGGAAAGCGATTTGGAGGCCTTT -ACGGAAAGCGATTTGGAGGGTCTT -ACGGAAAGCGATTTGGAGACGCTT -ACGGAAAGCGATTTGGAGAGCGTT -ACGGAAAGCGATTTGGAGTTCGTC -ACGGAAAGCGATTTGGAGTCTCTC -ACGGAAAGCGATTTGGAGTGGATC -ACGGAAAGCGATTTGGAGCACTTC -ACGGAAAGCGATTTGGAGGTACTC -ACGGAAAGCGATTTGGAGGATGTC -ACGGAAAGCGATTTGGAGACAGTC -ACGGAAAGCGATTTGGAGTTGCTG -ACGGAAAGCGATTTGGAGTCCATG -ACGGAAAGCGATTTGGAGTGTGTG -ACGGAAAGCGATTTGGAGCTAGTG -ACGGAAAGCGATTTGGAGCATCTG -ACGGAAAGCGATTTGGAGGAGTTG -ACGGAAAGCGATTTGGAGAGACTG -ACGGAAAGCGATTTGGAGTCGGTA -ACGGAAAGCGATTTGGAGTGCCTA -ACGGAAAGCGATTTGGAGCCACTA -ACGGAAAGCGATTTGGAGGGAGTA -ACGGAAAGCGATTTGGAGTCGTCT -ACGGAAAGCGATTTGGAGTGCACT -ACGGAAAGCGATTTGGAGCTGACT -ACGGAAAGCGATTTGGAGCAACCT -ACGGAAAGCGATTTGGAGGCTACT -ACGGAAAGCGATTTGGAGGGATCT -ACGGAAAGCGATTTGGAGAAGGCT -ACGGAAAGCGATTTGGAGTCAACC -ACGGAAAGCGATTTGGAGTGTTCC -ACGGAAAGCGATTTGGAGATTCCC -ACGGAAAGCGATTTGGAGTTCTCG -ACGGAAAGCGATTTGGAGTAGACG -ACGGAAAGCGATTTGGAGGTAACG -ACGGAAAGCGATTTGGAGACTTCG -ACGGAAAGCGATTTGGAGTACGCA -ACGGAAAGCGATTTGGAGCTTGCA -ACGGAAAGCGATTTGGAGCGAACA -ACGGAAAGCGATTTGGAGCAGTCA -ACGGAAAGCGATTTGGAGGATCCA -ACGGAAAGCGATTTGGAGACGACA -ACGGAAAGCGATTTGGAGAGCTCA -ACGGAAAGCGATTTGGAGTCACGT -ACGGAAAGCGATTTGGAGCGTAGT -ACGGAAAGCGATTTGGAGGTCAGT -ACGGAAAGCGATTTGGAGGAAGGT -ACGGAAAGCGATTTGGAGAACCGT -ACGGAAAGCGATTTGGAGTTGTGC -ACGGAAAGCGATTTGGAGCTAAGC -ACGGAAAGCGATTTGGAGACTAGC -ACGGAAAGCGATTTGGAGAGATGC -ACGGAAAGCGATTTGGAGTGAAGG -ACGGAAAGCGATTTGGAGCAATGG -ACGGAAAGCGATTTGGAGATGAGG -ACGGAAAGCGATTTGGAGAATGGG -ACGGAAAGCGATTTGGAGTCCTGA -ACGGAAAGCGATTTGGAGTAGCGA -ACGGAAAGCGATTTGGAGCACAGA -ACGGAAAGCGATTTGGAGGCAAGA -ACGGAAAGCGATTTGGAGGGTTGA -ACGGAAAGCGATTTGGAGTCCGAT -ACGGAAAGCGATTTGGAGTGGCAT -ACGGAAAGCGATTTGGAGCGAGAT -ACGGAAAGCGATTTGGAGTACCAC -ACGGAAAGCGATTTGGAGCAGAAC -ACGGAAAGCGATTTGGAGGTCTAC -ACGGAAAGCGATTTGGAGACGTAC -ACGGAAAGCGATTTGGAGAGTGAC -ACGGAAAGCGATTTGGAGCTGTAG -ACGGAAAGCGATTTGGAGCCTAAG -ACGGAAAGCGATTTGGAGGTTCAG -ACGGAAAGCGATTTGGAGGCATAG -ACGGAAAGCGATTTGGAGGACAAG -ACGGAAAGCGATTTGGAGAAGCAG -ACGGAAAGCGATTTGGAGCGTCAA -ACGGAAAGCGATTTGGAGGCTGAA -ACGGAAAGCGATTTGGAGAGTACG -ACGGAAAGCGATTTGGAGATCCGA -ACGGAAAGCGATTTGGAGATGGGA -ACGGAAAGCGATTTGGAGGTGCAA -ACGGAAAGCGATTTGGAGGAGGAA -ACGGAAAGCGATTTGGAGCAGGTA -ACGGAAAGCGATTTGGAGGACTCT -ACGGAAAGCGATTTGGAGAGTCCT -ACGGAAAGCGATTTGGAGTAAGCC -ACGGAAAGCGATTTGGAGATAGCC -ACGGAAAGCGATTTGGAGTAACCG -ACGGAAAGCGATTTGGAGATGCCA -ACGGAAAGCGATCTGAGAGGAAAC -ACGGAAAGCGATCTGAGAAACACC -ACGGAAAGCGATCTGAGAATCGAG -ACGGAAAGCGATCTGAGACTCCTT -ACGGAAAGCGATCTGAGACCTGTT -ACGGAAAGCGATCTGAGACGGTTT -ACGGAAAGCGATCTGAGAGTGGTT -ACGGAAAGCGATCTGAGAGCCTTT -ACGGAAAGCGATCTGAGAGGTCTT -ACGGAAAGCGATCTGAGAACGCTT -ACGGAAAGCGATCTGAGAAGCGTT -ACGGAAAGCGATCTGAGATTCGTC -ACGGAAAGCGATCTGAGATCTCTC -ACGGAAAGCGATCTGAGATGGATC -ACGGAAAGCGATCTGAGACACTTC -ACGGAAAGCGATCTGAGAGTACTC -ACGGAAAGCGATCTGAGAGATGTC -ACGGAAAGCGATCTGAGAACAGTC -ACGGAAAGCGATCTGAGATTGCTG -ACGGAAAGCGATCTGAGATCCATG -ACGGAAAGCGATCTGAGATGTGTG -ACGGAAAGCGATCTGAGACTAGTG -ACGGAAAGCGATCTGAGACATCTG -ACGGAAAGCGATCTGAGAGAGTTG -ACGGAAAGCGATCTGAGAAGACTG -ACGGAAAGCGATCTGAGATCGGTA -ACGGAAAGCGATCTGAGATGCCTA -ACGGAAAGCGATCTGAGACCACTA -ACGGAAAGCGATCTGAGAGGAGTA -ACGGAAAGCGATCTGAGATCGTCT -ACGGAAAGCGATCTGAGATGCACT -ACGGAAAGCGATCTGAGACTGACT -ACGGAAAGCGATCTGAGACAACCT -ACGGAAAGCGATCTGAGAGCTACT -ACGGAAAGCGATCTGAGAGGATCT -ACGGAAAGCGATCTGAGAAAGGCT -ACGGAAAGCGATCTGAGATCAACC -ACGGAAAGCGATCTGAGATGTTCC -ACGGAAAGCGATCTGAGAATTCCC -ACGGAAAGCGATCTGAGATTCTCG -ACGGAAAGCGATCTGAGATAGACG -ACGGAAAGCGATCTGAGAGTAACG -ACGGAAAGCGATCTGAGAACTTCG -ACGGAAAGCGATCTGAGATACGCA -ACGGAAAGCGATCTGAGACTTGCA -ACGGAAAGCGATCTGAGACGAACA -ACGGAAAGCGATCTGAGACAGTCA -ACGGAAAGCGATCTGAGAGATCCA -ACGGAAAGCGATCTGAGAACGACA -ACGGAAAGCGATCTGAGAAGCTCA -ACGGAAAGCGATCTGAGATCACGT -ACGGAAAGCGATCTGAGACGTAGT -ACGGAAAGCGATCTGAGAGTCAGT -ACGGAAAGCGATCTGAGAGAAGGT -ACGGAAAGCGATCTGAGAAACCGT -ACGGAAAGCGATCTGAGATTGTGC -ACGGAAAGCGATCTGAGACTAAGC -ACGGAAAGCGATCTGAGAACTAGC -ACGGAAAGCGATCTGAGAAGATGC -ACGGAAAGCGATCTGAGATGAAGG -ACGGAAAGCGATCTGAGACAATGG -ACGGAAAGCGATCTGAGAATGAGG -ACGGAAAGCGATCTGAGAAATGGG -ACGGAAAGCGATCTGAGATCCTGA -ACGGAAAGCGATCTGAGATAGCGA -ACGGAAAGCGATCTGAGACACAGA -ACGGAAAGCGATCTGAGAGCAAGA -ACGGAAAGCGATCTGAGAGGTTGA -ACGGAAAGCGATCTGAGATCCGAT -ACGGAAAGCGATCTGAGATGGCAT -ACGGAAAGCGATCTGAGACGAGAT -ACGGAAAGCGATCTGAGATACCAC -ACGGAAAGCGATCTGAGACAGAAC -ACGGAAAGCGATCTGAGAGTCTAC -ACGGAAAGCGATCTGAGAACGTAC -ACGGAAAGCGATCTGAGAAGTGAC -ACGGAAAGCGATCTGAGACTGTAG -ACGGAAAGCGATCTGAGACCTAAG -ACGGAAAGCGATCTGAGAGTTCAG -ACGGAAAGCGATCTGAGAGCATAG -ACGGAAAGCGATCTGAGAGACAAG -ACGGAAAGCGATCTGAGAAAGCAG -ACGGAAAGCGATCTGAGACGTCAA -ACGGAAAGCGATCTGAGAGCTGAA -ACGGAAAGCGATCTGAGAAGTACG -ACGGAAAGCGATCTGAGAATCCGA -ACGGAAAGCGATCTGAGAATGGGA -ACGGAAAGCGATCTGAGAGTGCAA -ACGGAAAGCGATCTGAGAGAGGAA -ACGGAAAGCGATCTGAGACAGGTA -ACGGAAAGCGATCTGAGAGACTCT -ACGGAAAGCGATCTGAGAAGTCCT -ACGGAAAGCGATCTGAGATAAGCC -ACGGAAAGCGATCTGAGAATAGCC -ACGGAAAGCGATCTGAGATAACCG -ACGGAAAGCGATCTGAGAATGCCA -ACGGAAAGCGATGTATCGGGAAAC -ACGGAAAGCGATGTATCGAACACC -ACGGAAAGCGATGTATCGATCGAG -ACGGAAAGCGATGTATCGCTCCTT -ACGGAAAGCGATGTATCGCCTGTT -ACGGAAAGCGATGTATCGCGGTTT -ACGGAAAGCGATGTATCGGTGGTT -ACGGAAAGCGATGTATCGGCCTTT -ACGGAAAGCGATGTATCGGGTCTT -ACGGAAAGCGATGTATCGACGCTT -ACGGAAAGCGATGTATCGAGCGTT -ACGGAAAGCGATGTATCGTTCGTC -ACGGAAAGCGATGTATCGTCTCTC -ACGGAAAGCGATGTATCGTGGATC -ACGGAAAGCGATGTATCGCACTTC -ACGGAAAGCGATGTATCGGTACTC -ACGGAAAGCGATGTATCGGATGTC -ACGGAAAGCGATGTATCGACAGTC -ACGGAAAGCGATGTATCGTTGCTG -ACGGAAAGCGATGTATCGTCCATG -ACGGAAAGCGATGTATCGTGTGTG -ACGGAAAGCGATGTATCGCTAGTG -ACGGAAAGCGATGTATCGCATCTG -ACGGAAAGCGATGTATCGGAGTTG -ACGGAAAGCGATGTATCGAGACTG -ACGGAAAGCGATGTATCGTCGGTA -ACGGAAAGCGATGTATCGTGCCTA -ACGGAAAGCGATGTATCGCCACTA -ACGGAAAGCGATGTATCGGGAGTA -ACGGAAAGCGATGTATCGTCGTCT -ACGGAAAGCGATGTATCGTGCACT -ACGGAAAGCGATGTATCGCTGACT -ACGGAAAGCGATGTATCGCAACCT -ACGGAAAGCGATGTATCGGCTACT -ACGGAAAGCGATGTATCGGGATCT -ACGGAAAGCGATGTATCGAAGGCT -ACGGAAAGCGATGTATCGTCAACC -ACGGAAAGCGATGTATCGTGTTCC -ACGGAAAGCGATGTATCGATTCCC -ACGGAAAGCGATGTATCGTTCTCG -ACGGAAAGCGATGTATCGTAGACG -ACGGAAAGCGATGTATCGGTAACG -ACGGAAAGCGATGTATCGACTTCG -ACGGAAAGCGATGTATCGTACGCA -ACGGAAAGCGATGTATCGCTTGCA -ACGGAAAGCGATGTATCGCGAACA -ACGGAAAGCGATGTATCGCAGTCA -ACGGAAAGCGATGTATCGGATCCA -ACGGAAAGCGATGTATCGACGACA -ACGGAAAGCGATGTATCGAGCTCA -ACGGAAAGCGATGTATCGTCACGT -ACGGAAAGCGATGTATCGCGTAGT -ACGGAAAGCGATGTATCGGTCAGT -ACGGAAAGCGATGTATCGGAAGGT -ACGGAAAGCGATGTATCGAACCGT -ACGGAAAGCGATGTATCGTTGTGC -ACGGAAAGCGATGTATCGCTAAGC -ACGGAAAGCGATGTATCGACTAGC -ACGGAAAGCGATGTATCGAGATGC -ACGGAAAGCGATGTATCGTGAAGG -ACGGAAAGCGATGTATCGCAATGG -ACGGAAAGCGATGTATCGATGAGG -ACGGAAAGCGATGTATCGAATGGG -ACGGAAAGCGATGTATCGTCCTGA -ACGGAAAGCGATGTATCGTAGCGA -ACGGAAAGCGATGTATCGCACAGA -ACGGAAAGCGATGTATCGGCAAGA -ACGGAAAGCGATGTATCGGGTTGA -ACGGAAAGCGATGTATCGTCCGAT -ACGGAAAGCGATGTATCGTGGCAT -ACGGAAAGCGATGTATCGCGAGAT -ACGGAAAGCGATGTATCGTACCAC -ACGGAAAGCGATGTATCGCAGAAC -ACGGAAAGCGATGTATCGGTCTAC -ACGGAAAGCGATGTATCGACGTAC -ACGGAAAGCGATGTATCGAGTGAC -ACGGAAAGCGATGTATCGCTGTAG -ACGGAAAGCGATGTATCGCCTAAG -ACGGAAAGCGATGTATCGGTTCAG -ACGGAAAGCGATGTATCGGCATAG -ACGGAAAGCGATGTATCGGACAAG -ACGGAAAGCGATGTATCGAAGCAG -ACGGAAAGCGATGTATCGCGTCAA -ACGGAAAGCGATGTATCGGCTGAA -ACGGAAAGCGATGTATCGAGTACG -ACGGAAAGCGATGTATCGATCCGA -ACGGAAAGCGATGTATCGATGGGA -ACGGAAAGCGATGTATCGGTGCAA -ACGGAAAGCGATGTATCGGAGGAA -ACGGAAAGCGATGTATCGCAGGTA -ACGGAAAGCGATGTATCGGACTCT -ACGGAAAGCGATGTATCGAGTCCT -ACGGAAAGCGATGTATCGTAAGCC -ACGGAAAGCGATGTATCGATAGCC -ACGGAAAGCGATGTATCGTAACCG -ACGGAAAGCGATGTATCGATGCCA -ACGGAAAGCGATCTATGCGGAAAC -ACGGAAAGCGATCTATGCAACACC -ACGGAAAGCGATCTATGCATCGAG -ACGGAAAGCGATCTATGCCTCCTT -ACGGAAAGCGATCTATGCCCTGTT -ACGGAAAGCGATCTATGCCGGTTT -ACGGAAAGCGATCTATGCGTGGTT -ACGGAAAGCGATCTATGCGCCTTT -ACGGAAAGCGATCTATGCGGTCTT -ACGGAAAGCGATCTATGCACGCTT -ACGGAAAGCGATCTATGCAGCGTT -ACGGAAAGCGATCTATGCTTCGTC -ACGGAAAGCGATCTATGCTCTCTC -ACGGAAAGCGATCTATGCTGGATC -ACGGAAAGCGATCTATGCCACTTC -ACGGAAAGCGATCTATGCGTACTC -ACGGAAAGCGATCTATGCGATGTC -ACGGAAAGCGATCTATGCACAGTC -ACGGAAAGCGATCTATGCTTGCTG -ACGGAAAGCGATCTATGCTCCATG -ACGGAAAGCGATCTATGCTGTGTG -ACGGAAAGCGATCTATGCCTAGTG -ACGGAAAGCGATCTATGCCATCTG -ACGGAAAGCGATCTATGCGAGTTG -ACGGAAAGCGATCTATGCAGACTG -ACGGAAAGCGATCTATGCTCGGTA -ACGGAAAGCGATCTATGCTGCCTA -ACGGAAAGCGATCTATGCCCACTA -ACGGAAAGCGATCTATGCGGAGTA -ACGGAAAGCGATCTATGCTCGTCT -ACGGAAAGCGATCTATGCTGCACT -ACGGAAAGCGATCTATGCCTGACT -ACGGAAAGCGATCTATGCCAACCT -ACGGAAAGCGATCTATGCGCTACT -ACGGAAAGCGATCTATGCGGATCT -ACGGAAAGCGATCTATGCAAGGCT -ACGGAAAGCGATCTATGCTCAACC -ACGGAAAGCGATCTATGCTGTTCC -ACGGAAAGCGATCTATGCATTCCC -ACGGAAAGCGATCTATGCTTCTCG -ACGGAAAGCGATCTATGCTAGACG -ACGGAAAGCGATCTATGCGTAACG -ACGGAAAGCGATCTATGCACTTCG -ACGGAAAGCGATCTATGCTACGCA -ACGGAAAGCGATCTATGCCTTGCA -ACGGAAAGCGATCTATGCCGAACA -ACGGAAAGCGATCTATGCCAGTCA -ACGGAAAGCGATCTATGCGATCCA -ACGGAAAGCGATCTATGCACGACA -ACGGAAAGCGATCTATGCAGCTCA -ACGGAAAGCGATCTATGCTCACGT -ACGGAAAGCGATCTATGCCGTAGT -ACGGAAAGCGATCTATGCGTCAGT -ACGGAAAGCGATCTATGCGAAGGT -ACGGAAAGCGATCTATGCAACCGT -ACGGAAAGCGATCTATGCTTGTGC -ACGGAAAGCGATCTATGCCTAAGC -ACGGAAAGCGATCTATGCACTAGC -ACGGAAAGCGATCTATGCAGATGC -ACGGAAAGCGATCTATGCTGAAGG -ACGGAAAGCGATCTATGCCAATGG -ACGGAAAGCGATCTATGCATGAGG -ACGGAAAGCGATCTATGCAATGGG -ACGGAAAGCGATCTATGCTCCTGA -ACGGAAAGCGATCTATGCTAGCGA -ACGGAAAGCGATCTATGCCACAGA -ACGGAAAGCGATCTATGCGCAAGA -ACGGAAAGCGATCTATGCGGTTGA -ACGGAAAGCGATCTATGCTCCGAT -ACGGAAAGCGATCTATGCTGGCAT -ACGGAAAGCGATCTATGCCGAGAT -ACGGAAAGCGATCTATGCTACCAC -ACGGAAAGCGATCTATGCCAGAAC -ACGGAAAGCGATCTATGCGTCTAC -ACGGAAAGCGATCTATGCACGTAC -ACGGAAAGCGATCTATGCAGTGAC -ACGGAAAGCGATCTATGCCTGTAG -ACGGAAAGCGATCTATGCCCTAAG -ACGGAAAGCGATCTATGCGTTCAG -ACGGAAAGCGATCTATGCGCATAG -ACGGAAAGCGATCTATGCGACAAG -ACGGAAAGCGATCTATGCAAGCAG -ACGGAAAGCGATCTATGCCGTCAA -ACGGAAAGCGATCTATGCGCTGAA -ACGGAAAGCGATCTATGCAGTACG -ACGGAAAGCGATCTATGCATCCGA -ACGGAAAGCGATCTATGCATGGGA -ACGGAAAGCGATCTATGCGTGCAA -ACGGAAAGCGATCTATGCGAGGAA -ACGGAAAGCGATCTATGCCAGGTA -ACGGAAAGCGATCTATGCGACTCT -ACGGAAAGCGATCTATGCAGTCCT -ACGGAAAGCGATCTATGCTAAGCC -ACGGAAAGCGATCTATGCATAGCC -ACGGAAAGCGATCTATGCTAACCG -ACGGAAAGCGATCTATGCATGCCA -ACGGAAAGCGATCTACCAGGAAAC -ACGGAAAGCGATCTACCAAACACC -ACGGAAAGCGATCTACCAATCGAG -ACGGAAAGCGATCTACCACTCCTT -ACGGAAAGCGATCTACCACCTGTT -ACGGAAAGCGATCTACCACGGTTT -ACGGAAAGCGATCTACCAGTGGTT -ACGGAAAGCGATCTACCAGCCTTT -ACGGAAAGCGATCTACCAGGTCTT -ACGGAAAGCGATCTACCAACGCTT -ACGGAAAGCGATCTACCAAGCGTT -ACGGAAAGCGATCTACCATTCGTC -ACGGAAAGCGATCTACCATCTCTC -ACGGAAAGCGATCTACCATGGATC -ACGGAAAGCGATCTACCACACTTC -ACGGAAAGCGATCTACCAGTACTC -ACGGAAAGCGATCTACCAGATGTC -ACGGAAAGCGATCTACCAACAGTC -ACGGAAAGCGATCTACCATTGCTG -ACGGAAAGCGATCTACCATCCATG -ACGGAAAGCGATCTACCATGTGTG -ACGGAAAGCGATCTACCACTAGTG -ACGGAAAGCGATCTACCACATCTG -ACGGAAAGCGATCTACCAGAGTTG -ACGGAAAGCGATCTACCAAGACTG -ACGGAAAGCGATCTACCATCGGTA -ACGGAAAGCGATCTACCATGCCTA -ACGGAAAGCGATCTACCACCACTA -ACGGAAAGCGATCTACCAGGAGTA -ACGGAAAGCGATCTACCATCGTCT -ACGGAAAGCGATCTACCATGCACT -ACGGAAAGCGATCTACCACTGACT -ACGGAAAGCGATCTACCACAACCT -ACGGAAAGCGATCTACCAGCTACT -ACGGAAAGCGATCTACCAGGATCT -ACGGAAAGCGATCTACCAAAGGCT -ACGGAAAGCGATCTACCATCAACC -ACGGAAAGCGATCTACCATGTTCC -ACGGAAAGCGATCTACCAATTCCC -ACGGAAAGCGATCTACCATTCTCG -ACGGAAAGCGATCTACCATAGACG -ACGGAAAGCGATCTACCAGTAACG -ACGGAAAGCGATCTACCAACTTCG -ACGGAAAGCGATCTACCATACGCA -ACGGAAAGCGATCTACCACTTGCA -ACGGAAAGCGATCTACCACGAACA -ACGGAAAGCGATCTACCACAGTCA -ACGGAAAGCGATCTACCAGATCCA -ACGGAAAGCGATCTACCAACGACA -ACGGAAAGCGATCTACCAAGCTCA -ACGGAAAGCGATCTACCATCACGT -ACGGAAAGCGATCTACCACGTAGT -ACGGAAAGCGATCTACCAGTCAGT -ACGGAAAGCGATCTACCAGAAGGT -ACGGAAAGCGATCTACCAAACCGT -ACGGAAAGCGATCTACCATTGTGC -ACGGAAAGCGATCTACCACTAAGC -ACGGAAAGCGATCTACCAACTAGC -ACGGAAAGCGATCTACCAAGATGC -ACGGAAAGCGATCTACCATGAAGG -ACGGAAAGCGATCTACCACAATGG -ACGGAAAGCGATCTACCAATGAGG -ACGGAAAGCGATCTACCAAATGGG -ACGGAAAGCGATCTACCATCCTGA -ACGGAAAGCGATCTACCATAGCGA -ACGGAAAGCGATCTACCACACAGA -ACGGAAAGCGATCTACCAGCAAGA -ACGGAAAGCGATCTACCAGGTTGA -ACGGAAAGCGATCTACCATCCGAT -ACGGAAAGCGATCTACCATGGCAT -ACGGAAAGCGATCTACCACGAGAT -ACGGAAAGCGATCTACCATACCAC -ACGGAAAGCGATCTACCACAGAAC -ACGGAAAGCGATCTACCAGTCTAC -ACGGAAAGCGATCTACCAACGTAC -ACGGAAAGCGATCTACCAAGTGAC -ACGGAAAGCGATCTACCACTGTAG -ACGGAAAGCGATCTACCACCTAAG -ACGGAAAGCGATCTACCAGTTCAG -ACGGAAAGCGATCTACCAGCATAG -ACGGAAAGCGATCTACCAGACAAG -ACGGAAAGCGATCTACCAAAGCAG -ACGGAAAGCGATCTACCACGTCAA -ACGGAAAGCGATCTACCAGCTGAA -ACGGAAAGCGATCTACCAAGTACG -ACGGAAAGCGATCTACCAATCCGA -ACGGAAAGCGATCTACCAATGGGA -ACGGAAAGCGATCTACCAGTGCAA -ACGGAAAGCGATCTACCAGAGGAA -ACGGAAAGCGATCTACCACAGGTA -ACGGAAAGCGATCTACCAGACTCT -ACGGAAAGCGATCTACCAAGTCCT -ACGGAAAGCGATCTACCATAAGCC -ACGGAAAGCGATCTACCAATAGCC -ACGGAAAGCGATCTACCATAACCG -ACGGAAAGCGATCTACCAATGCCA -ACGGAAAGCGATGTAGGAGGAAAC -ACGGAAAGCGATGTAGGAAACACC -ACGGAAAGCGATGTAGGAATCGAG -ACGGAAAGCGATGTAGGACTCCTT -ACGGAAAGCGATGTAGGACCTGTT -ACGGAAAGCGATGTAGGACGGTTT -ACGGAAAGCGATGTAGGAGTGGTT -ACGGAAAGCGATGTAGGAGCCTTT -ACGGAAAGCGATGTAGGAGGTCTT -ACGGAAAGCGATGTAGGAACGCTT -ACGGAAAGCGATGTAGGAAGCGTT -ACGGAAAGCGATGTAGGATTCGTC -ACGGAAAGCGATGTAGGATCTCTC -ACGGAAAGCGATGTAGGATGGATC -ACGGAAAGCGATGTAGGACACTTC -ACGGAAAGCGATGTAGGAGTACTC -ACGGAAAGCGATGTAGGAGATGTC -ACGGAAAGCGATGTAGGAACAGTC -ACGGAAAGCGATGTAGGATTGCTG -ACGGAAAGCGATGTAGGATCCATG -ACGGAAAGCGATGTAGGATGTGTG -ACGGAAAGCGATGTAGGACTAGTG -ACGGAAAGCGATGTAGGACATCTG -ACGGAAAGCGATGTAGGAGAGTTG -ACGGAAAGCGATGTAGGAAGACTG -ACGGAAAGCGATGTAGGATCGGTA -ACGGAAAGCGATGTAGGATGCCTA -ACGGAAAGCGATGTAGGACCACTA -ACGGAAAGCGATGTAGGAGGAGTA -ACGGAAAGCGATGTAGGATCGTCT -ACGGAAAGCGATGTAGGATGCACT -ACGGAAAGCGATGTAGGACTGACT -ACGGAAAGCGATGTAGGACAACCT -ACGGAAAGCGATGTAGGAGCTACT -ACGGAAAGCGATGTAGGAGGATCT -ACGGAAAGCGATGTAGGAAAGGCT -ACGGAAAGCGATGTAGGATCAACC -ACGGAAAGCGATGTAGGATGTTCC -ACGGAAAGCGATGTAGGAATTCCC -ACGGAAAGCGATGTAGGATTCTCG -ACGGAAAGCGATGTAGGATAGACG -ACGGAAAGCGATGTAGGAGTAACG -ACGGAAAGCGATGTAGGAACTTCG -ACGGAAAGCGATGTAGGATACGCA -ACGGAAAGCGATGTAGGACTTGCA -ACGGAAAGCGATGTAGGACGAACA -ACGGAAAGCGATGTAGGACAGTCA -ACGGAAAGCGATGTAGGAGATCCA -ACGGAAAGCGATGTAGGAACGACA -ACGGAAAGCGATGTAGGAAGCTCA -ACGGAAAGCGATGTAGGATCACGT -ACGGAAAGCGATGTAGGACGTAGT -ACGGAAAGCGATGTAGGAGTCAGT -ACGGAAAGCGATGTAGGAGAAGGT -ACGGAAAGCGATGTAGGAAACCGT -ACGGAAAGCGATGTAGGATTGTGC -ACGGAAAGCGATGTAGGACTAAGC -ACGGAAAGCGATGTAGGAACTAGC -ACGGAAAGCGATGTAGGAAGATGC -ACGGAAAGCGATGTAGGATGAAGG -ACGGAAAGCGATGTAGGACAATGG -ACGGAAAGCGATGTAGGAATGAGG -ACGGAAAGCGATGTAGGAAATGGG -ACGGAAAGCGATGTAGGATCCTGA -ACGGAAAGCGATGTAGGATAGCGA -ACGGAAAGCGATGTAGGACACAGA -ACGGAAAGCGATGTAGGAGCAAGA -ACGGAAAGCGATGTAGGAGGTTGA -ACGGAAAGCGATGTAGGATCCGAT -ACGGAAAGCGATGTAGGATGGCAT -ACGGAAAGCGATGTAGGACGAGAT -ACGGAAAGCGATGTAGGATACCAC -ACGGAAAGCGATGTAGGACAGAAC -ACGGAAAGCGATGTAGGAGTCTAC -ACGGAAAGCGATGTAGGAACGTAC -ACGGAAAGCGATGTAGGAAGTGAC -ACGGAAAGCGATGTAGGACTGTAG -ACGGAAAGCGATGTAGGACCTAAG -ACGGAAAGCGATGTAGGAGTTCAG -ACGGAAAGCGATGTAGGAGCATAG -ACGGAAAGCGATGTAGGAGACAAG -ACGGAAAGCGATGTAGGAAAGCAG -ACGGAAAGCGATGTAGGACGTCAA -ACGGAAAGCGATGTAGGAGCTGAA -ACGGAAAGCGATGTAGGAAGTACG -ACGGAAAGCGATGTAGGAATCCGA -ACGGAAAGCGATGTAGGAATGGGA -ACGGAAAGCGATGTAGGAGTGCAA -ACGGAAAGCGATGTAGGAGAGGAA -ACGGAAAGCGATGTAGGACAGGTA -ACGGAAAGCGATGTAGGAGACTCT -ACGGAAAGCGATGTAGGAAGTCCT -ACGGAAAGCGATGTAGGATAAGCC -ACGGAAAGCGATGTAGGAATAGCC -ACGGAAAGCGATGTAGGATAACCG -ACGGAAAGCGATGTAGGAATGCCA -ACGGAAAGCGATTCTTCGGGAAAC -ACGGAAAGCGATTCTTCGAACACC -ACGGAAAGCGATTCTTCGATCGAG -ACGGAAAGCGATTCTTCGCTCCTT -ACGGAAAGCGATTCTTCGCCTGTT -ACGGAAAGCGATTCTTCGCGGTTT -ACGGAAAGCGATTCTTCGGTGGTT -ACGGAAAGCGATTCTTCGGCCTTT -ACGGAAAGCGATTCTTCGGGTCTT -ACGGAAAGCGATTCTTCGACGCTT -ACGGAAAGCGATTCTTCGAGCGTT -ACGGAAAGCGATTCTTCGTTCGTC -ACGGAAAGCGATTCTTCGTCTCTC -ACGGAAAGCGATTCTTCGTGGATC -ACGGAAAGCGATTCTTCGCACTTC -ACGGAAAGCGATTCTTCGGTACTC -ACGGAAAGCGATTCTTCGGATGTC -ACGGAAAGCGATTCTTCGACAGTC -ACGGAAAGCGATTCTTCGTTGCTG -ACGGAAAGCGATTCTTCGTCCATG -ACGGAAAGCGATTCTTCGTGTGTG -ACGGAAAGCGATTCTTCGCTAGTG -ACGGAAAGCGATTCTTCGCATCTG -ACGGAAAGCGATTCTTCGGAGTTG -ACGGAAAGCGATTCTTCGAGACTG -ACGGAAAGCGATTCTTCGTCGGTA -ACGGAAAGCGATTCTTCGTGCCTA -ACGGAAAGCGATTCTTCGCCACTA -ACGGAAAGCGATTCTTCGGGAGTA -ACGGAAAGCGATTCTTCGTCGTCT -ACGGAAAGCGATTCTTCGTGCACT -ACGGAAAGCGATTCTTCGCTGACT -ACGGAAAGCGATTCTTCGCAACCT -ACGGAAAGCGATTCTTCGGCTACT -ACGGAAAGCGATTCTTCGGGATCT -ACGGAAAGCGATTCTTCGAAGGCT -ACGGAAAGCGATTCTTCGTCAACC -ACGGAAAGCGATTCTTCGTGTTCC -ACGGAAAGCGATTCTTCGATTCCC -ACGGAAAGCGATTCTTCGTTCTCG -ACGGAAAGCGATTCTTCGTAGACG -ACGGAAAGCGATTCTTCGGTAACG -ACGGAAAGCGATTCTTCGACTTCG -ACGGAAAGCGATTCTTCGTACGCA -ACGGAAAGCGATTCTTCGCTTGCA -ACGGAAAGCGATTCTTCGCGAACA -ACGGAAAGCGATTCTTCGCAGTCA -ACGGAAAGCGATTCTTCGGATCCA -ACGGAAAGCGATTCTTCGACGACA -ACGGAAAGCGATTCTTCGAGCTCA -ACGGAAAGCGATTCTTCGTCACGT -ACGGAAAGCGATTCTTCGCGTAGT -ACGGAAAGCGATTCTTCGGTCAGT -ACGGAAAGCGATTCTTCGGAAGGT -ACGGAAAGCGATTCTTCGAACCGT -ACGGAAAGCGATTCTTCGTTGTGC -ACGGAAAGCGATTCTTCGCTAAGC -ACGGAAAGCGATTCTTCGACTAGC -ACGGAAAGCGATTCTTCGAGATGC -ACGGAAAGCGATTCTTCGTGAAGG -ACGGAAAGCGATTCTTCGCAATGG -ACGGAAAGCGATTCTTCGATGAGG -ACGGAAAGCGATTCTTCGAATGGG -ACGGAAAGCGATTCTTCGTCCTGA -ACGGAAAGCGATTCTTCGTAGCGA -ACGGAAAGCGATTCTTCGCACAGA -ACGGAAAGCGATTCTTCGGCAAGA -ACGGAAAGCGATTCTTCGGGTTGA -ACGGAAAGCGATTCTTCGTCCGAT -ACGGAAAGCGATTCTTCGTGGCAT -ACGGAAAGCGATTCTTCGCGAGAT -ACGGAAAGCGATTCTTCGTACCAC -ACGGAAAGCGATTCTTCGCAGAAC -ACGGAAAGCGATTCTTCGGTCTAC -ACGGAAAGCGATTCTTCGACGTAC -ACGGAAAGCGATTCTTCGAGTGAC -ACGGAAAGCGATTCTTCGCTGTAG -ACGGAAAGCGATTCTTCGCCTAAG -ACGGAAAGCGATTCTTCGGTTCAG -ACGGAAAGCGATTCTTCGGCATAG -ACGGAAAGCGATTCTTCGGACAAG -ACGGAAAGCGATTCTTCGAAGCAG -ACGGAAAGCGATTCTTCGCGTCAA -ACGGAAAGCGATTCTTCGGCTGAA -ACGGAAAGCGATTCTTCGAGTACG -ACGGAAAGCGATTCTTCGATCCGA -ACGGAAAGCGATTCTTCGATGGGA -ACGGAAAGCGATTCTTCGGTGCAA -ACGGAAAGCGATTCTTCGGAGGAA -ACGGAAAGCGATTCTTCGCAGGTA -ACGGAAAGCGATTCTTCGGACTCT -ACGGAAAGCGATTCTTCGAGTCCT -ACGGAAAGCGATTCTTCGTAAGCC -ACGGAAAGCGATTCTTCGATAGCC -ACGGAAAGCGATTCTTCGTAACCG -ACGGAAAGCGATTCTTCGATGCCA -ACGGAAAGCGATACTTGCGGAAAC -ACGGAAAGCGATACTTGCAACACC -ACGGAAAGCGATACTTGCATCGAG -ACGGAAAGCGATACTTGCCTCCTT -ACGGAAAGCGATACTTGCCCTGTT -ACGGAAAGCGATACTTGCCGGTTT -ACGGAAAGCGATACTTGCGTGGTT -ACGGAAAGCGATACTTGCGCCTTT -ACGGAAAGCGATACTTGCGGTCTT -ACGGAAAGCGATACTTGCACGCTT -ACGGAAAGCGATACTTGCAGCGTT -ACGGAAAGCGATACTTGCTTCGTC -ACGGAAAGCGATACTTGCTCTCTC -ACGGAAAGCGATACTTGCTGGATC -ACGGAAAGCGATACTTGCCACTTC -ACGGAAAGCGATACTTGCGTACTC -ACGGAAAGCGATACTTGCGATGTC -ACGGAAAGCGATACTTGCACAGTC -ACGGAAAGCGATACTTGCTTGCTG -ACGGAAAGCGATACTTGCTCCATG -ACGGAAAGCGATACTTGCTGTGTG -ACGGAAAGCGATACTTGCCTAGTG -ACGGAAAGCGATACTTGCCATCTG -ACGGAAAGCGATACTTGCGAGTTG -ACGGAAAGCGATACTTGCAGACTG -ACGGAAAGCGATACTTGCTCGGTA -ACGGAAAGCGATACTTGCTGCCTA -ACGGAAAGCGATACTTGCCCACTA -ACGGAAAGCGATACTTGCGGAGTA -ACGGAAAGCGATACTTGCTCGTCT -ACGGAAAGCGATACTTGCTGCACT -ACGGAAAGCGATACTTGCCTGACT -ACGGAAAGCGATACTTGCCAACCT -ACGGAAAGCGATACTTGCGCTACT -ACGGAAAGCGATACTTGCGGATCT -ACGGAAAGCGATACTTGCAAGGCT -ACGGAAAGCGATACTTGCTCAACC -ACGGAAAGCGATACTTGCTGTTCC -ACGGAAAGCGATACTTGCATTCCC -ACGGAAAGCGATACTTGCTTCTCG -ACGGAAAGCGATACTTGCTAGACG -ACGGAAAGCGATACTTGCGTAACG -ACGGAAAGCGATACTTGCACTTCG -ACGGAAAGCGATACTTGCTACGCA -ACGGAAAGCGATACTTGCCTTGCA -ACGGAAAGCGATACTTGCCGAACA -ACGGAAAGCGATACTTGCCAGTCA -ACGGAAAGCGATACTTGCGATCCA -ACGGAAAGCGATACTTGCACGACA -ACGGAAAGCGATACTTGCAGCTCA -ACGGAAAGCGATACTTGCTCACGT -ACGGAAAGCGATACTTGCCGTAGT -ACGGAAAGCGATACTTGCGTCAGT -ACGGAAAGCGATACTTGCGAAGGT -ACGGAAAGCGATACTTGCAACCGT -ACGGAAAGCGATACTTGCTTGTGC -ACGGAAAGCGATACTTGCCTAAGC -ACGGAAAGCGATACTTGCACTAGC -ACGGAAAGCGATACTTGCAGATGC -ACGGAAAGCGATACTTGCTGAAGG -ACGGAAAGCGATACTTGCCAATGG -ACGGAAAGCGATACTTGCATGAGG -ACGGAAAGCGATACTTGCAATGGG -ACGGAAAGCGATACTTGCTCCTGA -ACGGAAAGCGATACTTGCTAGCGA -ACGGAAAGCGATACTTGCCACAGA -ACGGAAAGCGATACTTGCGCAAGA -ACGGAAAGCGATACTTGCGGTTGA -ACGGAAAGCGATACTTGCTCCGAT -ACGGAAAGCGATACTTGCTGGCAT -ACGGAAAGCGATACTTGCCGAGAT -ACGGAAAGCGATACTTGCTACCAC -ACGGAAAGCGATACTTGCCAGAAC -ACGGAAAGCGATACTTGCGTCTAC -ACGGAAAGCGATACTTGCACGTAC -ACGGAAAGCGATACTTGCAGTGAC -ACGGAAAGCGATACTTGCCTGTAG -ACGGAAAGCGATACTTGCCCTAAG -ACGGAAAGCGATACTTGCGTTCAG -ACGGAAAGCGATACTTGCGCATAG -ACGGAAAGCGATACTTGCGACAAG -ACGGAAAGCGATACTTGCAAGCAG -ACGGAAAGCGATACTTGCCGTCAA -ACGGAAAGCGATACTTGCGCTGAA -ACGGAAAGCGATACTTGCAGTACG -ACGGAAAGCGATACTTGCATCCGA -ACGGAAAGCGATACTTGCATGGGA -ACGGAAAGCGATACTTGCGTGCAA -ACGGAAAGCGATACTTGCGAGGAA -ACGGAAAGCGATACTTGCCAGGTA -ACGGAAAGCGATACTTGCGACTCT -ACGGAAAGCGATACTTGCAGTCCT -ACGGAAAGCGATACTTGCTAAGCC -ACGGAAAGCGATACTTGCATAGCC -ACGGAAAGCGATACTTGCTAACCG -ACGGAAAGCGATACTTGCATGCCA -ACGGAAAGCGATACTCTGGGAAAC -ACGGAAAGCGATACTCTGAACACC -ACGGAAAGCGATACTCTGATCGAG -ACGGAAAGCGATACTCTGCTCCTT -ACGGAAAGCGATACTCTGCCTGTT -ACGGAAAGCGATACTCTGCGGTTT -ACGGAAAGCGATACTCTGGTGGTT -ACGGAAAGCGATACTCTGGCCTTT -ACGGAAAGCGATACTCTGGGTCTT -ACGGAAAGCGATACTCTGACGCTT -ACGGAAAGCGATACTCTGAGCGTT -ACGGAAAGCGATACTCTGTTCGTC -ACGGAAAGCGATACTCTGTCTCTC -ACGGAAAGCGATACTCTGTGGATC -ACGGAAAGCGATACTCTGCACTTC -ACGGAAAGCGATACTCTGGTACTC -ACGGAAAGCGATACTCTGGATGTC -ACGGAAAGCGATACTCTGACAGTC -ACGGAAAGCGATACTCTGTTGCTG -ACGGAAAGCGATACTCTGTCCATG -ACGGAAAGCGATACTCTGTGTGTG -ACGGAAAGCGATACTCTGCTAGTG -ACGGAAAGCGATACTCTGCATCTG -ACGGAAAGCGATACTCTGGAGTTG -ACGGAAAGCGATACTCTGAGACTG -ACGGAAAGCGATACTCTGTCGGTA -ACGGAAAGCGATACTCTGTGCCTA -ACGGAAAGCGATACTCTGCCACTA -ACGGAAAGCGATACTCTGGGAGTA -ACGGAAAGCGATACTCTGTCGTCT -ACGGAAAGCGATACTCTGTGCACT -ACGGAAAGCGATACTCTGCTGACT -ACGGAAAGCGATACTCTGCAACCT -ACGGAAAGCGATACTCTGGCTACT -ACGGAAAGCGATACTCTGGGATCT -ACGGAAAGCGATACTCTGAAGGCT -ACGGAAAGCGATACTCTGTCAACC -ACGGAAAGCGATACTCTGTGTTCC -ACGGAAAGCGATACTCTGATTCCC -ACGGAAAGCGATACTCTGTTCTCG -ACGGAAAGCGATACTCTGTAGACG -ACGGAAAGCGATACTCTGGTAACG -ACGGAAAGCGATACTCTGACTTCG -ACGGAAAGCGATACTCTGTACGCA -ACGGAAAGCGATACTCTGCTTGCA -ACGGAAAGCGATACTCTGCGAACA -ACGGAAAGCGATACTCTGCAGTCA -ACGGAAAGCGATACTCTGGATCCA -ACGGAAAGCGATACTCTGACGACA -ACGGAAAGCGATACTCTGAGCTCA -ACGGAAAGCGATACTCTGTCACGT -ACGGAAAGCGATACTCTGCGTAGT -ACGGAAAGCGATACTCTGGTCAGT -ACGGAAAGCGATACTCTGGAAGGT -ACGGAAAGCGATACTCTGAACCGT -ACGGAAAGCGATACTCTGTTGTGC -ACGGAAAGCGATACTCTGCTAAGC -ACGGAAAGCGATACTCTGACTAGC -ACGGAAAGCGATACTCTGAGATGC -ACGGAAAGCGATACTCTGTGAAGG -ACGGAAAGCGATACTCTGCAATGG -ACGGAAAGCGATACTCTGATGAGG -ACGGAAAGCGATACTCTGAATGGG -ACGGAAAGCGATACTCTGTCCTGA -ACGGAAAGCGATACTCTGTAGCGA -ACGGAAAGCGATACTCTGCACAGA -ACGGAAAGCGATACTCTGGCAAGA -ACGGAAAGCGATACTCTGGGTTGA -ACGGAAAGCGATACTCTGTCCGAT -ACGGAAAGCGATACTCTGTGGCAT -ACGGAAAGCGATACTCTGCGAGAT -ACGGAAAGCGATACTCTGTACCAC -ACGGAAAGCGATACTCTGCAGAAC -ACGGAAAGCGATACTCTGGTCTAC -ACGGAAAGCGATACTCTGACGTAC -ACGGAAAGCGATACTCTGAGTGAC -ACGGAAAGCGATACTCTGCTGTAG -ACGGAAAGCGATACTCTGCCTAAG -ACGGAAAGCGATACTCTGGTTCAG -ACGGAAAGCGATACTCTGGCATAG -ACGGAAAGCGATACTCTGGACAAG -ACGGAAAGCGATACTCTGAAGCAG -ACGGAAAGCGATACTCTGCGTCAA -ACGGAAAGCGATACTCTGGCTGAA -ACGGAAAGCGATACTCTGAGTACG -ACGGAAAGCGATACTCTGATCCGA -ACGGAAAGCGATACTCTGATGGGA -ACGGAAAGCGATACTCTGGTGCAA -ACGGAAAGCGATACTCTGGAGGAA -ACGGAAAGCGATACTCTGCAGGTA -ACGGAAAGCGATACTCTGGACTCT -ACGGAAAGCGATACTCTGAGTCCT -ACGGAAAGCGATACTCTGTAAGCC -ACGGAAAGCGATACTCTGATAGCC -ACGGAAAGCGATACTCTGTAACCG -ACGGAAAGCGATACTCTGATGCCA -ACGGAAAGCGATCCTCAAGGAAAC -ACGGAAAGCGATCCTCAAAACACC -ACGGAAAGCGATCCTCAAATCGAG -ACGGAAAGCGATCCTCAACTCCTT -ACGGAAAGCGATCCTCAACCTGTT -ACGGAAAGCGATCCTCAACGGTTT -ACGGAAAGCGATCCTCAAGTGGTT -ACGGAAAGCGATCCTCAAGCCTTT -ACGGAAAGCGATCCTCAAGGTCTT -ACGGAAAGCGATCCTCAAACGCTT -ACGGAAAGCGATCCTCAAAGCGTT -ACGGAAAGCGATCCTCAATTCGTC -ACGGAAAGCGATCCTCAATCTCTC -ACGGAAAGCGATCCTCAATGGATC -ACGGAAAGCGATCCTCAACACTTC -ACGGAAAGCGATCCTCAAGTACTC -ACGGAAAGCGATCCTCAAGATGTC -ACGGAAAGCGATCCTCAAACAGTC -ACGGAAAGCGATCCTCAATTGCTG -ACGGAAAGCGATCCTCAATCCATG -ACGGAAAGCGATCCTCAATGTGTG -ACGGAAAGCGATCCTCAACTAGTG -ACGGAAAGCGATCCTCAACATCTG -ACGGAAAGCGATCCTCAAGAGTTG -ACGGAAAGCGATCCTCAAAGACTG -ACGGAAAGCGATCCTCAATCGGTA -ACGGAAAGCGATCCTCAATGCCTA -ACGGAAAGCGATCCTCAACCACTA -ACGGAAAGCGATCCTCAAGGAGTA -ACGGAAAGCGATCCTCAATCGTCT -ACGGAAAGCGATCCTCAATGCACT -ACGGAAAGCGATCCTCAACTGACT -ACGGAAAGCGATCCTCAACAACCT -ACGGAAAGCGATCCTCAAGCTACT -ACGGAAAGCGATCCTCAAGGATCT -ACGGAAAGCGATCCTCAAAAGGCT -ACGGAAAGCGATCCTCAATCAACC -ACGGAAAGCGATCCTCAATGTTCC -ACGGAAAGCGATCCTCAAATTCCC -ACGGAAAGCGATCCTCAATTCTCG -ACGGAAAGCGATCCTCAATAGACG -ACGGAAAGCGATCCTCAAGTAACG -ACGGAAAGCGATCCTCAAACTTCG -ACGGAAAGCGATCCTCAATACGCA -ACGGAAAGCGATCCTCAACTTGCA -ACGGAAAGCGATCCTCAACGAACA -ACGGAAAGCGATCCTCAACAGTCA -ACGGAAAGCGATCCTCAAGATCCA -ACGGAAAGCGATCCTCAAACGACA -ACGGAAAGCGATCCTCAAAGCTCA -ACGGAAAGCGATCCTCAATCACGT -ACGGAAAGCGATCCTCAACGTAGT -ACGGAAAGCGATCCTCAAGTCAGT -ACGGAAAGCGATCCTCAAGAAGGT -ACGGAAAGCGATCCTCAAAACCGT -ACGGAAAGCGATCCTCAATTGTGC -ACGGAAAGCGATCCTCAACTAAGC -ACGGAAAGCGATCCTCAAACTAGC -ACGGAAAGCGATCCTCAAAGATGC -ACGGAAAGCGATCCTCAATGAAGG -ACGGAAAGCGATCCTCAACAATGG -ACGGAAAGCGATCCTCAAATGAGG -ACGGAAAGCGATCCTCAAAATGGG -ACGGAAAGCGATCCTCAATCCTGA -ACGGAAAGCGATCCTCAATAGCGA -ACGGAAAGCGATCCTCAACACAGA -ACGGAAAGCGATCCTCAAGCAAGA -ACGGAAAGCGATCCTCAAGGTTGA -ACGGAAAGCGATCCTCAATCCGAT -ACGGAAAGCGATCCTCAATGGCAT -ACGGAAAGCGATCCTCAACGAGAT -ACGGAAAGCGATCCTCAATACCAC -ACGGAAAGCGATCCTCAACAGAAC -ACGGAAAGCGATCCTCAAGTCTAC -ACGGAAAGCGATCCTCAAACGTAC -ACGGAAAGCGATCCTCAAAGTGAC -ACGGAAAGCGATCCTCAACTGTAG -ACGGAAAGCGATCCTCAACCTAAG -ACGGAAAGCGATCCTCAAGTTCAG -ACGGAAAGCGATCCTCAAGCATAG -ACGGAAAGCGATCCTCAAGACAAG -ACGGAAAGCGATCCTCAAAAGCAG -ACGGAAAGCGATCCTCAACGTCAA -ACGGAAAGCGATCCTCAAGCTGAA -ACGGAAAGCGATCCTCAAAGTACG -ACGGAAAGCGATCCTCAAATCCGA -ACGGAAAGCGATCCTCAAATGGGA -ACGGAAAGCGATCCTCAAGTGCAA -ACGGAAAGCGATCCTCAAGAGGAA -ACGGAAAGCGATCCTCAACAGGTA -ACGGAAAGCGATCCTCAAGACTCT -ACGGAAAGCGATCCTCAAAGTCCT -ACGGAAAGCGATCCTCAATAAGCC -ACGGAAAGCGATCCTCAAATAGCC -ACGGAAAGCGATCCTCAATAACCG -ACGGAAAGCGATCCTCAAATGCCA -ACGGAAAGCGATACTGCTGGAAAC -ACGGAAAGCGATACTGCTAACACC -ACGGAAAGCGATACTGCTATCGAG -ACGGAAAGCGATACTGCTCTCCTT -ACGGAAAGCGATACTGCTCCTGTT -ACGGAAAGCGATACTGCTCGGTTT -ACGGAAAGCGATACTGCTGTGGTT -ACGGAAAGCGATACTGCTGCCTTT -ACGGAAAGCGATACTGCTGGTCTT -ACGGAAAGCGATACTGCTACGCTT -ACGGAAAGCGATACTGCTAGCGTT -ACGGAAAGCGATACTGCTTTCGTC -ACGGAAAGCGATACTGCTTCTCTC -ACGGAAAGCGATACTGCTTGGATC -ACGGAAAGCGATACTGCTCACTTC -ACGGAAAGCGATACTGCTGTACTC -ACGGAAAGCGATACTGCTGATGTC -ACGGAAAGCGATACTGCTACAGTC -ACGGAAAGCGATACTGCTTTGCTG -ACGGAAAGCGATACTGCTTCCATG -ACGGAAAGCGATACTGCTTGTGTG -ACGGAAAGCGATACTGCTCTAGTG -ACGGAAAGCGATACTGCTCATCTG -ACGGAAAGCGATACTGCTGAGTTG -ACGGAAAGCGATACTGCTAGACTG -ACGGAAAGCGATACTGCTTCGGTA -ACGGAAAGCGATACTGCTTGCCTA -ACGGAAAGCGATACTGCTCCACTA -ACGGAAAGCGATACTGCTGGAGTA -ACGGAAAGCGATACTGCTTCGTCT -ACGGAAAGCGATACTGCTTGCACT -ACGGAAAGCGATACTGCTCTGACT -ACGGAAAGCGATACTGCTCAACCT -ACGGAAAGCGATACTGCTGCTACT -ACGGAAAGCGATACTGCTGGATCT -ACGGAAAGCGATACTGCTAAGGCT -ACGGAAAGCGATACTGCTTCAACC -ACGGAAAGCGATACTGCTTGTTCC -ACGGAAAGCGATACTGCTATTCCC -ACGGAAAGCGATACTGCTTTCTCG -ACGGAAAGCGATACTGCTTAGACG -ACGGAAAGCGATACTGCTGTAACG -ACGGAAAGCGATACTGCTACTTCG -ACGGAAAGCGATACTGCTTACGCA -ACGGAAAGCGATACTGCTCTTGCA -ACGGAAAGCGATACTGCTCGAACA -ACGGAAAGCGATACTGCTCAGTCA -ACGGAAAGCGATACTGCTGATCCA -ACGGAAAGCGATACTGCTACGACA -ACGGAAAGCGATACTGCTAGCTCA -ACGGAAAGCGATACTGCTTCACGT -ACGGAAAGCGATACTGCTCGTAGT -ACGGAAAGCGATACTGCTGTCAGT -ACGGAAAGCGATACTGCTGAAGGT -ACGGAAAGCGATACTGCTAACCGT -ACGGAAAGCGATACTGCTTTGTGC -ACGGAAAGCGATACTGCTCTAAGC -ACGGAAAGCGATACTGCTACTAGC -ACGGAAAGCGATACTGCTAGATGC -ACGGAAAGCGATACTGCTTGAAGG -ACGGAAAGCGATACTGCTCAATGG -ACGGAAAGCGATACTGCTATGAGG -ACGGAAAGCGATACTGCTAATGGG -ACGGAAAGCGATACTGCTTCCTGA -ACGGAAAGCGATACTGCTTAGCGA -ACGGAAAGCGATACTGCTCACAGA -ACGGAAAGCGATACTGCTGCAAGA -ACGGAAAGCGATACTGCTGGTTGA -ACGGAAAGCGATACTGCTTCCGAT -ACGGAAAGCGATACTGCTTGGCAT -ACGGAAAGCGATACTGCTCGAGAT -ACGGAAAGCGATACTGCTTACCAC -ACGGAAAGCGATACTGCTCAGAAC -ACGGAAAGCGATACTGCTGTCTAC -ACGGAAAGCGATACTGCTACGTAC -ACGGAAAGCGATACTGCTAGTGAC -ACGGAAAGCGATACTGCTCTGTAG -ACGGAAAGCGATACTGCTCCTAAG -ACGGAAAGCGATACTGCTGTTCAG -ACGGAAAGCGATACTGCTGCATAG -ACGGAAAGCGATACTGCTGACAAG -ACGGAAAGCGATACTGCTAAGCAG -ACGGAAAGCGATACTGCTCGTCAA -ACGGAAAGCGATACTGCTGCTGAA -ACGGAAAGCGATACTGCTAGTACG -ACGGAAAGCGATACTGCTATCCGA -ACGGAAAGCGATACTGCTATGGGA -ACGGAAAGCGATACTGCTGTGCAA -ACGGAAAGCGATACTGCTGAGGAA -ACGGAAAGCGATACTGCTCAGGTA -ACGGAAAGCGATACTGCTGACTCT -ACGGAAAGCGATACTGCTAGTCCT -ACGGAAAGCGATACTGCTTAAGCC -ACGGAAAGCGATACTGCTATAGCC -ACGGAAAGCGATACTGCTTAACCG -ACGGAAAGCGATACTGCTATGCCA -ACGGAAAGCGATTCTGGAGGAAAC -ACGGAAAGCGATTCTGGAAACACC -ACGGAAAGCGATTCTGGAATCGAG -ACGGAAAGCGATTCTGGACTCCTT -ACGGAAAGCGATTCTGGACCTGTT -ACGGAAAGCGATTCTGGACGGTTT -ACGGAAAGCGATTCTGGAGTGGTT -ACGGAAAGCGATTCTGGAGCCTTT -ACGGAAAGCGATTCTGGAGGTCTT -ACGGAAAGCGATTCTGGAACGCTT -ACGGAAAGCGATTCTGGAAGCGTT -ACGGAAAGCGATTCTGGATTCGTC -ACGGAAAGCGATTCTGGATCTCTC -ACGGAAAGCGATTCTGGATGGATC -ACGGAAAGCGATTCTGGACACTTC -ACGGAAAGCGATTCTGGAGTACTC -ACGGAAAGCGATTCTGGAGATGTC -ACGGAAAGCGATTCTGGAACAGTC -ACGGAAAGCGATTCTGGATTGCTG -ACGGAAAGCGATTCTGGATCCATG -ACGGAAAGCGATTCTGGATGTGTG -ACGGAAAGCGATTCTGGACTAGTG -ACGGAAAGCGATTCTGGACATCTG -ACGGAAAGCGATTCTGGAGAGTTG -ACGGAAAGCGATTCTGGAAGACTG -ACGGAAAGCGATTCTGGATCGGTA -ACGGAAAGCGATTCTGGATGCCTA -ACGGAAAGCGATTCTGGACCACTA -ACGGAAAGCGATTCTGGAGGAGTA -ACGGAAAGCGATTCTGGATCGTCT -ACGGAAAGCGATTCTGGATGCACT -ACGGAAAGCGATTCTGGACTGACT -ACGGAAAGCGATTCTGGACAACCT -ACGGAAAGCGATTCTGGAGCTACT -ACGGAAAGCGATTCTGGAGGATCT -ACGGAAAGCGATTCTGGAAAGGCT -ACGGAAAGCGATTCTGGATCAACC -ACGGAAAGCGATTCTGGATGTTCC -ACGGAAAGCGATTCTGGAATTCCC -ACGGAAAGCGATTCTGGATTCTCG -ACGGAAAGCGATTCTGGATAGACG -ACGGAAAGCGATTCTGGAGTAACG -ACGGAAAGCGATTCTGGAACTTCG -ACGGAAAGCGATTCTGGATACGCA -ACGGAAAGCGATTCTGGACTTGCA -ACGGAAAGCGATTCTGGACGAACA -ACGGAAAGCGATTCTGGACAGTCA -ACGGAAAGCGATTCTGGAGATCCA -ACGGAAAGCGATTCTGGAACGACA -ACGGAAAGCGATTCTGGAAGCTCA -ACGGAAAGCGATTCTGGATCACGT -ACGGAAAGCGATTCTGGACGTAGT -ACGGAAAGCGATTCTGGAGTCAGT -ACGGAAAGCGATTCTGGAGAAGGT -ACGGAAAGCGATTCTGGAAACCGT -ACGGAAAGCGATTCTGGATTGTGC -ACGGAAAGCGATTCTGGACTAAGC -ACGGAAAGCGATTCTGGAACTAGC -ACGGAAAGCGATTCTGGAAGATGC -ACGGAAAGCGATTCTGGATGAAGG -ACGGAAAGCGATTCTGGACAATGG -ACGGAAAGCGATTCTGGAATGAGG -ACGGAAAGCGATTCTGGAAATGGG -ACGGAAAGCGATTCTGGATCCTGA -ACGGAAAGCGATTCTGGATAGCGA -ACGGAAAGCGATTCTGGACACAGA -ACGGAAAGCGATTCTGGAGCAAGA -ACGGAAAGCGATTCTGGAGGTTGA -ACGGAAAGCGATTCTGGATCCGAT -ACGGAAAGCGATTCTGGATGGCAT -ACGGAAAGCGATTCTGGACGAGAT -ACGGAAAGCGATTCTGGATACCAC -ACGGAAAGCGATTCTGGACAGAAC -ACGGAAAGCGATTCTGGAGTCTAC -ACGGAAAGCGATTCTGGAACGTAC -ACGGAAAGCGATTCTGGAAGTGAC -ACGGAAAGCGATTCTGGACTGTAG -ACGGAAAGCGATTCTGGACCTAAG -ACGGAAAGCGATTCTGGAGTTCAG -ACGGAAAGCGATTCTGGAGCATAG -ACGGAAAGCGATTCTGGAGACAAG -ACGGAAAGCGATTCTGGAAAGCAG -ACGGAAAGCGATTCTGGACGTCAA -ACGGAAAGCGATTCTGGAGCTGAA -ACGGAAAGCGATTCTGGAAGTACG -ACGGAAAGCGATTCTGGAATCCGA -ACGGAAAGCGATTCTGGAATGGGA -ACGGAAAGCGATTCTGGAGTGCAA -ACGGAAAGCGATTCTGGAGAGGAA -ACGGAAAGCGATTCTGGACAGGTA -ACGGAAAGCGATTCTGGAGACTCT -ACGGAAAGCGATTCTGGAAGTCCT -ACGGAAAGCGATTCTGGATAAGCC -ACGGAAAGCGATTCTGGAATAGCC -ACGGAAAGCGATTCTGGATAACCG -ACGGAAAGCGATTCTGGAATGCCA -ACGGAAAGCGATGCTAAGGGAAAC -ACGGAAAGCGATGCTAAGAACACC -ACGGAAAGCGATGCTAAGATCGAG -ACGGAAAGCGATGCTAAGCTCCTT -ACGGAAAGCGATGCTAAGCCTGTT -ACGGAAAGCGATGCTAAGCGGTTT -ACGGAAAGCGATGCTAAGGTGGTT -ACGGAAAGCGATGCTAAGGCCTTT -ACGGAAAGCGATGCTAAGGGTCTT -ACGGAAAGCGATGCTAAGACGCTT -ACGGAAAGCGATGCTAAGAGCGTT -ACGGAAAGCGATGCTAAGTTCGTC -ACGGAAAGCGATGCTAAGTCTCTC -ACGGAAAGCGATGCTAAGTGGATC -ACGGAAAGCGATGCTAAGCACTTC -ACGGAAAGCGATGCTAAGGTACTC -ACGGAAAGCGATGCTAAGGATGTC -ACGGAAAGCGATGCTAAGACAGTC -ACGGAAAGCGATGCTAAGTTGCTG -ACGGAAAGCGATGCTAAGTCCATG -ACGGAAAGCGATGCTAAGTGTGTG -ACGGAAAGCGATGCTAAGCTAGTG -ACGGAAAGCGATGCTAAGCATCTG -ACGGAAAGCGATGCTAAGGAGTTG -ACGGAAAGCGATGCTAAGAGACTG -ACGGAAAGCGATGCTAAGTCGGTA -ACGGAAAGCGATGCTAAGTGCCTA -ACGGAAAGCGATGCTAAGCCACTA -ACGGAAAGCGATGCTAAGGGAGTA -ACGGAAAGCGATGCTAAGTCGTCT -ACGGAAAGCGATGCTAAGTGCACT -ACGGAAAGCGATGCTAAGCTGACT -ACGGAAAGCGATGCTAAGCAACCT -ACGGAAAGCGATGCTAAGGCTACT -ACGGAAAGCGATGCTAAGGGATCT -ACGGAAAGCGATGCTAAGAAGGCT -ACGGAAAGCGATGCTAAGTCAACC -ACGGAAAGCGATGCTAAGTGTTCC -ACGGAAAGCGATGCTAAGATTCCC -ACGGAAAGCGATGCTAAGTTCTCG -ACGGAAAGCGATGCTAAGTAGACG -ACGGAAAGCGATGCTAAGGTAACG -ACGGAAAGCGATGCTAAGACTTCG -ACGGAAAGCGATGCTAAGTACGCA -ACGGAAAGCGATGCTAAGCTTGCA -ACGGAAAGCGATGCTAAGCGAACA -ACGGAAAGCGATGCTAAGCAGTCA -ACGGAAAGCGATGCTAAGGATCCA -ACGGAAAGCGATGCTAAGACGACA -ACGGAAAGCGATGCTAAGAGCTCA -ACGGAAAGCGATGCTAAGTCACGT -ACGGAAAGCGATGCTAAGCGTAGT -ACGGAAAGCGATGCTAAGGTCAGT -ACGGAAAGCGATGCTAAGGAAGGT -ACGGAAAGCGATGCTAAGAACCGT -ACGGAAAGCGATGCTAAGTTGTGC -ACGGAAAGCGATGCTAAGCTAAGC -ACGGAAAGCGATGCTAAGACTAGC -ACGGAAAGCGATGCTAAGAGATGC -ACGGAAAGCGATGCTAAGTGAAGG -ACGGAAAGCGATGCTAAGCAATGG -ACGGAAAGCGATGCTAAGATGAGG -ACGGAAAGCGATGCTAAGAATGGG -ACGGAAAGCGATGCTAAGTCCTGA -ACGGAAAGCGATGCTAAGTAGCGA -ACGGAAAGCGATGCTAAGCACAGA -ACGGAAAGCGATGCTAAGGCAAGA -ACGGAAAGCGATGCTAAGGGTTGA -ACGGAAAGCGATGCTAAGTCCGAT -ACGGAAAGCGATGCTAAGTGGCAT -ACGGAAAGCGATGCTAAGCGAGAT -ACGGAAAGCGATGCTAAGTACCAC -ACGGAAAGCGATGCTAAGCAGAAC -ACGGAAAGCGATGCTAAGGTCTAC -ACGGAAAGCGATGCTAAGACGTAC -ACGGAAAGCGATGCTAAGAGTGAC -ACGGAAAGCGATGCTAAGCTGTAG -ACGGAAAGCGATGCTAAGCCTAAG -ACGGAAAGCGATGCTAAGGTTCAG -ACGGAAAGCGATGCTAAGGCATAG -ACGGAAAGCGATGCTAAGGACAAG -ACGGAAAGCGATGCTAAGAAGCAG -ACGGAAAGCGATGCTAAGCGTCAA -ACGGAAAGCGATGCTAAGGCTGAA -ACGGAAAGCGATGCTAAGAGTACG -ACGGAAAGCGATGCTAAGATCCGA -ACGGAAAGCGATGCTAAGATGGGA -ACGGAAAGCGATGCTAAGGTGCAA -ACGGAAAGCGATGCTAAGGAGGAA -ACGGAAAGCGATGCTAAGCAGGTA -ACGGAAAGCGATGCTAAGGACTCT -ACGGAAAGCGATGCTAAGAGTCCT -ACGGAAAGCGATGCTAAGTAAGCC -ACGGAAAGCGATGCTAAGATAGCC -ACGGAAAGCGATGCTAAGTAACCG -ACGGAAAGCGATGCTAAGATGCCA -ACGGAAAGCGATACCTCAGGAAAC -ACGGAAAGCGATACCTCAAACACC -ACGGAAAGCGATACCTCAATCGAG -ACGGAAAGCGATACCTCACTCCTT -ACGGAAAGCGATACCTCACCTGTT -ACGGAAAGCGATACCTCACGGTTT -ACGGAAAGCGATACCTCAGTGGTT -ACGGAAAGCGATACCTCAGCCTTT -ACGGAAAGCGATACCTCAGGTCTT -ACGGAAAGCGATACCTCAACGCTT -ACGGAAAGCGATACCTCAAGCGTT -ACGGAAAGCGATACCTCATTCGTC -ACGGAAAGCGATACCTCATCTCTC -ACGGAAAGCGATACCTCATGGATC -ACGGAAAGCGATACCTCACACTTC -ACGGAAAGCGATACCTCAGTACTC -ACGGAAAGCGATACCTCAGATGTC -ACGGAAAGCGATACCTCAACAGTC -ACGGAAAGCGATACCTCATTGCTG -ACGGAAAGCGATACCTCATCCATG -ACGGAAAGCGATACCTCATGTGTG -ACGGAAAGCGATACCTCACTAGTG -ACGGAAAGCGATACCTCACATCTG -ACGGAAAGCGATACCTCAGAGTTG -ACGGAAAGCGATACCTCAAGACTG -ACGGAAAGCGATACCTCATCGGTA -ACGGAAAGCGATACCTCATGCCTA -ACGGAAAGCGATACCTCACCACTA -ACGGAAAGCGATACCTCAGGAGTA -ACGGAAAGCGATACCTCATCGTCT -ACGGAAAGCGATACCTCATGCACT -ACGGAAAGCGATACCTCACTGACT -ACGGAAAGCGATACCTCACAACCT -ACGGAAAGCGATACCTCAGCTACT -ACGGAAAGCGATACCTCAGGATCT -ACGGAAAGCGATACCTCAAAGGCT -ACGGAAAGCGATACCTCATCAACC -ACGGAAAGCGATACCTCATGTTCC -ACGGAAAGCGATACCTCAATTCCC -ACGGAAAGCGATACCTCATTCTCG -ACGGAAAGCGATACCTCATAGACG -ACGGAAAGCGATACCTCAGTAACG -ACGGAAAGCGATACCTCAACTTCG -ACGGAAAGCGATACCTCATACGCA -ACGGAAAGCGATACCTCACTTGCA -ACGGAAAGCGATACCTCACGAACA -ACGGAAAGCGATACCTCACAGTCA -ACGGAAAGCGATACCTCAGATCCA -ACGGAAAGCGATACCTCAACGACA -ACGGAAAGCGATACCTCAAGCTCA -ACGGAAAGCGATACCTCATCACGT -ACGGAAAGCGATACCTCACGTAGT -ACGGAAAGCGATACCTCAGTCAGT -ACGGAAAGCGATACCTCAGAAGGT -ACGGAAAGCGATACCTCAAACCGT -ACGGAAAGCGATACCTCATTGTGC -ACGGAAAGCGATACCTCACTAAGC -ACGGAAAGCGATACCTCAACTAGC -ACGGAAAGCGATACCTCAAGATGC -ACGGAAAGCGATACCTCATGAAGG -ACGGAAAGCGATACCTCACAATGG -ACGGAAAGCGATACCTCAATGAGG -ACGGAAAGCGATACCTCAAATGGG -ACGGAAAGCGATACCTCATCCTGA -ACGGAAAGCGATACCTCATAGCGA -ACGGAAAGCGATACCTCACACAGA -ACGGAAAGCGATACCTCAGCAAGA -ACGGAAAGCGATACCTCAGGTTGA -ACGGAAAGCGATACCTCATCCGAT -ACGGAAAGCGATACCTCATGGCAT -ACGGAAAGCGATACCTCACGAGAT -ACGGAAAGCGATACCTCATACCAC -ACGGAAAGCGATACCTCACAGAAC -ACGGAAAGCGATACCTCAGTCTAC -ACGGAAAGCGATACCTCAACGTAC -ACGGAAAGCGATACCTCAAGTGAC -ACGGAAAGCGATACCTCACTGTAG -ACGGAAAGCGATACCTCACCTAAG -ACGGAAAGCGATACCTCAGTTCAG -ACGGAAAGCGATACCTCAGCATAG -ACGGAAAGCGATACCTCAGACAAG -ACGGAAAGCGATACCTCAAAGCAG -ACGGAAAGCGATACCTCACGTCAA -ACGGAAAGCGATACCTCAGCTGAA -ACGGAAAGCGATACCTCAAGTACG -ACGGAAAGCGATACCTCAATCCGA -ACGGAAAGCGATACCTCAATGGGA -ACGGAAAGCGATACCTCAGTGCAA -ACGGAAAGCGATACCTCAGAGGAA -ACGGAAAGCGATACCTCACAGGTA -ACGGAAAGCGATACCTCAGACTCT -ACGGAAAGCGATACCTCAAGTCCT -ACGGAAAGCGATACCTCATAAGCC -ACGGAAAGCGATACCTCAATAGCC -ACGGAAAGCGATACCTCATAACCG -ACGGAAAGCGATACCTCAATGCCA -ACGGAAAGCGATTCCTGTGGAAAC -ACGGAAAGCGATTCCTGTAACACC -ACGGAAAGCGATTCCTGTATCGAG -ACGGAAAGCGATTCCTGTCTCCTT -ACGGAAAGCGATTCCTGTCCTGTT -ACGGAAAGCGATTCCTGTCGGTTT -ACGGAAAGCGATTCCTGTGTGGTT -ACGGAAAGCGATTCCTGTGCCTTT -ACGGAAAGCGATTCCTGTGGTCTT -ACGGAAAGCGATTCCTGTACGCTT -ACGGAAAGCGATTCCTGTAGCGTT -ACGGAAAGCGATTCCTGTTTCGTC -ACGGAAAGCGATTCCTGTTCTCTC -ACGGAAAGCGATTCCTGTTGGATC -ACGGAAAGCGATTCCTGTCACTTC -ACGGAAAGCGATTCCTGTGTACTC -ACGGAAAGCGATTCCTGTGATGTC -ACGGAAAGCGATTCCTGTACAGTC -ACGGAAAGCGATTCCTGTTTGCTG -ACGGAAAGCGATTCCTGTTCCATG -ACGGAAAGCGATTCCTGTTGTGTG -ACGGAAAGCGATTCCTGTCTAGTG -ACGGAAAGCGATTCCTGTCATCTG -ACGGAAAGCGATTCCTGTGAGTTG -ACGGAAAGCGATTCCTGTAGACTG -ACGGAAAGCGATTCCTGTTCGGTA -ACGGAAAGCGATTCCTGTTGCCTA -ACGGAAAGCGATTCCTGTCCACTA -ACGGAAAGCGATTCCTGTGGAGTA -ACGGAAAGCGATTCCTGTTCGTCT -ACGGAAAGCGATTCCTGTTGCACT -ACGGAAAGCGATTCCTGTCTGACT -ACGGAAAGCGATTCCTGTCAACCT -ACGGAAAGCGATTCCTGTGCTACT -ACGGAAAGCGATTCCTGTGGATCT -ACGGAAAGCGATTCCTGTAAGGCT -ACGGAAAGCGATTCCTGTTCAACC -ACGGAAAGCGATTCCTGTTGTTCC -ACGGAAAGCGATTCCTGTATTCCC -ACGGAAAGCGATTCCTGTTTCTCG -ACGGAAAGCGATTCCTGTTAGACG -ACGGAAAGCGATTCCTGTGTAACG -ACGGAAAGCGATTCCTGTACTTCG -ACGGAAAGCGATTCCTGTTACGCA -ACGGAAAGCGATTCCTGTCTTGCA -ACGGAAAGCGATTCCTGTCGAACA -ACGGAAAGCGATTCCTGTCAGTCA -ACGGAAAGCGATTCCTGTGATCCA -ACGGAAAGCGATTCCTGTACGACA -ACGGAAAGCGATTCCTGTAGCTCA -ACGGAAAGCGATTCCTGTTCACGT -ACGGAAAGCGATTCCTGTCGTAGT -ACGGAAAGCGATTCCTGTGTCAGT -ACGGAAAGCGATTCCTGTGAAGGT -ACGGAAAGCGATTCCTGTAACCGT -ACGGAAAGCGATTCCTGTTTGTGC -ACGGAAAGCGATTCCTGTCTAAGC -ACGGAAAGCGATTCCTGTACTAGC -ACGGAAAGCGATTCCTGTAGATGC -ACGGAAAGCGATTCCTGTTGAAGG -ACGGAAAGCGATTCCTGTCAATGG -ACGGAAAGCGATTCCTGTATGAGG -ACGGAAAGCGATTCCTGTAATGGG -ACGGAAAGCGATTCCTGTTCCTGA -ACGGAAAGCGATTCCTGTTAGCGA -ACGGAAAGCGATTCCTGTCACAGA -ACGGAAAGCGATTCCTGTGCAAGA -ACGGAAAGCGATTCCTGTGGTTGA -ACGGAAAGCGATTCCTGTTCCGAT -ACGGAAAGCGATTCCTGTTGGCAT -ACGGAAAGCGATTCCTGTCGAGAT -ACGGAAAGCGATTCCTGTTACCAC -ACGGAAAGCGATTCCTGTCAGAAC -ACGGAAAGCGATTCCTGTGTCTAC -ACGGAAAGCGATTCCTGTACGTAC -ACGGAAAGCGATTCCTGTAGTGAC -ACGGAAAGCGATTCCTGTCTGTAG -ACGGAAAGCGATTCCTGTCCTAAG -ACGGAAAGCGATTCCTGTGTTCAG -ACGGAAAGCGATTCCTGTGCATAG -ACGGAAAGCGATTCCTGTGACAAG -ACGGAAAGCGATTCCTGTAAGCAG -ACGGAAAGCGATTCCTGTCGTCAA -ACGGAAAGCGATTCCTGTGCTGAA -ACGGAAAGCGATTCCTGTAGTACG -ACGGAAAGCGATTCCTGTATCCGA -ACGGAAAGCGATTCCTGTATGGGA -ACGGAAAGCGATTCCTGTGTGCAA -ACGGAAAGCGATTCCTGTGAGGAA -ACGGAAAGCGATTCCTGTCAGGTA -ACGGAAAGCGATTCCTGTGACTCT -ACGGAAAGCGATTCCTGTAGTCCT -ACGGAAAGCGATTCCTGTTAAGCC -ACGGAAAGCGATTCCTGTATAGCC -ACGGAAAGCGATTCCTGTTAACCG -ACGGAAAGCGATTCCTGTATGCCA -ACGGAAAGCGATCCCATTGGAAAC -ACGGAAAGCGATCCCATTAACACC -ACGGAAAGCGATCCCATTATCGAG -ACGGAAAGCGATCCCATTCTCCTT -ACGGAAAGCGATCCCATTCCTGTT -ACGGAAAGCGATCCCATTCGGTTT -ACGGAAAGCGATCCCATTGTGGTT -ACGGAAAGCGATCCCATTGCCTTT -ACGGAAAGCGATCCCATTGGTCTT -ACGGAAAGCGATCCCATTACGCTT -ACGGAAAGCGATCCCATTAGCGTT -ACGGAAAGCGATCCCATTTTCGTC -ACGGAAAGCGATCCCATTTCTCTC -ACGGAAAGCGATCCCATTTGGATC -ACGGAAAGCGATCCCATTCACTTC -ACGGAAAGCGATCCCATTGTACTC -ACGGAAAGCGATCCCATTGATGTC -ACGGAAAGCGATCCCATTACAGTC -ACGGAAAGCGATCCCATTTTGCTG -ACGGAAAGCGATCCCATTTCCATG -ACGGAAAGCGATCCCATTTGTGTG -ACGGAAAGCGATCCCATTCTAGTG -ACGGAAAGCGATCCCATTCATCTG -ACGGAAAGCGATCCCATTGAGTTG -ACGGAAAGCGATCCCATTAGACTG -ACGGAAAGCGATCCCATTTCGGTA -ACGGAAAGCGATCCCATTTGCCTA -ACGGAAAGCGATCCCATTCCACTA -ACGGAAAGCGATCCCATTGGAGTA -ACGGAAAGCGATCCCATTTCGTCT -ACGGAAAGCGATCCCATTTGCACT -ACGGAAAGCGATCCCATTCTGACT -ACGGAAAGCGATCCCATTCAACCT -ACGGAAAGCGATCCCATTGCTACT -ACGGAAAGCGATCCCATTGGATCT -ACGGAAAGCGATCCCATTAAGGCT -ACGGAAAGCGATCCCATTTCAACC -ACGGAAAGCGATCCCATTTGTTCC -ACGGAAAGCGATCCCATTATTCCC -ACGGAAAGCGATCCCATTTTCTCG -ACGGAAAGCGATCCCATTTAGACG -ACGGAAAGCGATCCCATTGTAACG -ACGGAAAGCGATCCCATTACTTCG -ACGGAAAGCGATCCCATTTACGCA -ACGGAAAGCGATCCCATTCTTGCA -ACGGAAAGCGATCCCATTCGAACA -ACGGAAAGCGATCCCATTCAGTCA -ACGGAAAGCGATCCCATTGATCCA -ACGGAAAGCGATCCCATTACGACA -ACGGAAAGCGATCCCATTAGCTCA -ACGGAAAGCGATCCCATTTCACGT -ACGGAAAGCGATCCCATTCGTAGT -ACGGAAAGCGATCCCATTGTCAGT -ACGGAAAGCGATCCCATTGAAGGT -ACGGAAAGCGATCCCATTAACCGT -ACGGAAAGCGATCCCATTTTGTGC -ACGGAAAGCGATCCCATTCTAAGC -ACGGAAAGCGATCCCATTACTAGC -ACGGAAAGCGATCCCATTAGATGC -ACGGAAAGCGATCCCATTTGAAGG -ACGGAAAGCGATCCCATTCAATGG -ACGGAAAGCGATCCCATTATGAGG -ACGGAAAGCGATCCCATTAATGGG -ACGGAAAGCGATCCCATTTCCTGA -ACGGAAAGCGATCCCATTTAGCGA -ACGGAAAGCGATCCCATTCACAGA -ACGGAAAGCGATCCCATTGCAAGA -ACGGAAAGCGATCCCATTGGTTGA -ACGGAAAGCGATCCCATTTCCGAT -ACGGAAAGCGATCCCATTTGGCAT -ACGGAAAGCGATCCCATTCGAGAT -ACGGAAAGCGATCCCATTTACCAC -ACGGAAAGCGATCCCATTCAGAAC -ACGGAAAGCGATCCCATTGTCTAC -ACGGAAAGCGATCCCATTACGTAC -ACGGAAAGCGATCCCATTAGTGAC -ACGGAAAGCGATCCCATTCTGTAG -ACGGAAAGCGATCCCATTCCTAAG -ACGGAAAGCGATCCCATTGTTCAG -ACGGAAAGCGATCCCATTGCATAG -ACGGAAAGCGATCCCATTGACAAG -ACGGAAAGCGATCCCATTAAGCAG -ACGGAAAGCGATCCCATTCGTCAA -ACGGAAAGCGATCCCATTGCTGAA -ACGGAAAGCGATCCCATTAGTACG -ACGGAAAGCGATCCCATTATCCGA -ACGGAAAGCGATCCCATTATGGGA -ACGGAAAGCGATCCCATTGTGCAA -ACGGAAAGCGATCCCATTGAGGAA -ACGGAAAGCGATCCCATTCAGGTA -ACGGAAAGCGATCCCATTGACTCT -ACGGAAAGCGATCCCATTAGTCCT -ACGGAAAGCGATCCCATTTAAGCC -ACGGAAAGCGATCCCATTATAGCC -ACGGAAAGCGATCCCATTTAACCG -ACGGAAAGCGATCCCATTATGCCA -ACGGAAAGCGATTCGTTCGGAAAC -ACGGAAAGCGATTCGTTCAACACC -ACGGAAAGCGATTCGTTCATCGAG -ACGGAAAGCGATTCGTTCCTCCTT -ACGGAAAGCGATTCGTTCCCTGTT -ACGGAAAGCGATTCGTTCCGGTTT -ACGGAAAGCGATTCGTTCGTGGTT -ACGGAAAGCGATTCGTTCGCCTTT -ACGGAAAGCGATTCGTTCGGTCTT -ACGGAAAGCGATTCGTTCACGCTT -ACGGAAAGCGATTCGTTCAGCGTT -ACGGAAAGCGATTCGTTCTTCGTC -ACGGAAAGCGATTCGTTCTCTCTC -ACGGAAAGCGATTCGTTCTGGATC -ACGGAAAGCGATTCGTTCCACTTC -ACGGAAAGCGATTCGTTCGTACTC -ACGGAAAGCGATTCGTTCGATGTC -ACGGAAAGCGATTCGTTCACAGTC -ACGGAAAGCGATTCGTTCTTGCTG -ACGGAAAGCGATTCGTTCTCCATG -ACGGAAAGCGATTCGTTCTGTGTG -ACGGAAAGCGATTCGTTCCTAGTG -ACGGAAAGCGATTCGTTCCATCTG -ACGGAAAGCGATTCGTTCGAGTTG -ACGGAAAGCGATTCGTTCAGACTG -ACGGAAAGCGATTCGTTCTCGGTA -ACGGAAAGCGATTCGTTCTGCCTA -ACGGAAAGCGATTCGTTCCCACTA -ACGGAAAGCGATTCGTTCGGAGTA -ACGGAAAGCGATTCGTTCTCGTCT -ACGGAAAGCGATTCGTTCTGCACT -ACGGAAAGCGATTCGTTCCTGACT -ACGGAAAGCGATTCGTTCCAACCT -ACGGAAAGCGATTCGTTCGCTACT -ACGGAAAGCGATTCGTTCGGATCT -ACGGAAAGCGATTCGTTCAAGGCT -ACGGAAAGCGATTCGTTCTCAACC -ACGGAAAGCGATTCGTTCTGTTCC -ACGGAAAGCGATTCGTTCATTCCC -ACGGAAAGCGATTCGTTCTTCTCG -ACGGAAAGCGATTCGTTCTAGACG -ACGGAAAGCGATTCGTTCGTAACG -ACGGAAAGCGATTCGTTCACTTCG -ACGGAAAGCGATTCGTTCTACGCA -ACGGAAAGCGATTCGTTCCTTGCA -ACGGAAAGCGATTCGTTCCGAACA -ACGGAAAGCGATTCGTTCCAGTCA -ACGGAAAGCGATTCGTTCGATCCA -ACGGAAAGCGATTCGTTCACGACA -ACGGAAAGCGATTCGTTCAGCTCA -ACGGAAAGCGATTCGTTCTCACGT -ACGGAAAGCGATTCGTTCCGTAGT -ACGGAAAGCGATTCGTTCGTCAGT -ACGGAAAGCGATTCGTTCGAAGGT -ACGGAAAGCGATTCGTTCAACCGT -ACGGAAAGCGATTCGTTCTTGTGC -ACGGAAAGCGATTCGTTCCTAAGC -ACGGAAAGCGATTCGTTCACTAGC -ACGGAAAGCGATTCGTTCAGATGC -ACGGAAAGCGATTCGTTCTGAAGG -ACGGAAAGCGATTCGTTCCAATGG -ACGGAAAGCGATTCGTTCATGAGG -ACGGAAAGCGATTCGTTCAATGGG -ACGGAAAGCGATTCGTTCTCCTGA -ACGGAAAGCGATTCGTTCTAGCGA -ACGGAAAGCGATTCGTTCCACAGA -ACGGAAAGCGATTCGTTCGCAAGA -ACGGAAAGCGATTCGTTCGGTTGA -ACGGAAAGCGATTCGTTCTCCGAT -ACGGAAAGCGATTCGTTCTGGCAT -ACGGAAAGCGATTCGTTCCGAGAT -ACGGAAAGCGATTCGTTCTACCAC -ACGGAAAGCGATTCGTTCCAGAAC -ACGGAAAGCGATTCGTTCGTCTAC -ACGGAAAGCGATTCGTTCACGTAC -ACGGAAAGCGATTCGTTCAGTGAC -ACGGAAAGCGATTCGTTCCTGTAG -ACGGAAAGCGATTCGTTCCCTAAG -ACGGAAAGCGATTCGTTCGTTCAG -ACGGAAAGCGATTCGTTCGCATAG -ACGGAAAGCGATTCGTTCGACAAG -ACGGAAAGCGATTCGTTCAAGCAG -ACGGAAAGCGATTCGTTCCGTCAA -ACGGAAAGCGATTCGTTCGCTGAA -ACGGAAAGCGATTCGTTCAGTACG -ACGGAAAGCGATTCGTTCATCCGA -ACGGAAAGCGATTCGTTCATGGGA -ACGGAAAGCGATTCGTTCGTGCAA -ACGGAAAGCGATTCGTTCGAGGAA -ACGGAAAGCGATTCGTTCCAGGTA -ACGGAAAGCGATTCGTTCGACTCT -ACGGAAAGCGATTCGTTCAGTCCT -ACGGAAAGCGATTCGTTCTAAGCC -ACGGAAAGCGATTCGTTCATAGCC -ACGGAAAGCGATTCGTTCTAACCG -ACGGAAAGCGATTCGTTCATGCCA -ACGGAAAGCGATACGTAGGGAAAC -ACGGAAAGCGATACGTAGAACACC -ACGGAAAGCGATACGTAGATCGAG -ACGGAAAGCGATACGTAGCTCCTT -ACGGAAAGCGATACGTAGCCTGTT -ACGGAAAGCGATACGTAGCGGTTT -ACGGAAAGCGATACGTAGGTGGTT -ACGGAAAGCGATACGTAGGCCTTT -ACGGAAAGCGATACGTAGGGTCTT -ACGGAAAGCGATACGTAGACGCTT -ACGGAAAGCGATACGTAGAGCGTT -ACGGAAAGCGATACGTAGTTCGTC -ACGGAAAGCGATACGTAGTCTCTC -ACGGAAAGCGATACGTAGTGGATC -ACGGAAAGCGATACGTAGCACTTC -ACGGAAAGCGATACGTAGGTACTC -ACGGAAAGCGATACGTAGGATGTC -ACGGAAAGCGATACGTAGACAGTC -ACGGAAAGCGATACGTAGTTGCTG -ACGGAAAGCGATACGTAGTCCATG -ACGGAAAGCGATACGTAGTGTGTG -ACGGAAAGCGATACGTAGCTAGTG -ACGGAAAGCGATACGTAGCATCTG -ACGGAAAGCGATACGTAGGAGTTG -ACGGAAAGCGATACGTAGAGACTG -ACGGAAAGCGATACGTAGTCGGTA -ACGGAAAGCGATACGTAGTGCCTA -ACGGAAAGCGATACGTAGCCACTA -ACGGAAAGCGATACGTAGGGAGTA -ACGGAAAGCGATACGTAGTCGTCT -ACGGAAAGCGATACGTAGTGCACT -ACGGAAAGCGATACGTAGCTGACT -ACGGAAAGCGATACGTAGCAACCT -ACGGAAAGCGATACGTAGGCTACT -ACGGAAAGCGATACGTAGGGATCT -ACGGAAAGCGATACGTAGAAGGCT -ACGGAAAGCGATACGTAGTCAACC -ACGGAAAGCGATACGTAGTGTTCC -ACGGAAAGCGATACGTAGATTCCC -ACGGAAAGCGATACGTAGTTCTCG -ACGGAAAGCGATACGTAGTAGACG -ACGGAAAGCGATACGTAGGTAACG -ACGGAAAGCGATACGTAGACTTCG -ACGGAAAGCGATACGTAGTACGCA -ACGGAAAGCGATACGTAGCTTGCA -ACGGAAAGCGATACGTAGCGAACA -ACGGAAAGCGATACGTAGCAGTCA -ACGGAAAGCGATACGTAGGATCCA -ACGGAAAGCGATACGTAGACGACA -ACGGAAAGCGATACGTAGAGCTCA -ACGGAAAGCGATACGTAGTCACGT -ACGGAAAGCGATACGTAGCGTAGT -ACGGAAAGCGATACGTAGGTCAGT -ACGGAAAGCGATACGTAGGAAGGT -ACGGAAAGCGATACGTAGAACCGT -ACGGAAAGCGATACGTAGTTGTGC -ACGGAAAGCGATACGTAGCTAAGC -ACGGAAAGCGATACGTAGACTAGC -ACGGAAAGCGATACGTAGAGATGC -ACGGAAAGCGATACGTAGTGAAGG -ACGGAAAGCGATACGTAGCAATGG -ACGGAAAGCGATACGTAGATGAGG -ACGGAAAGCGATACGTAGAATGGG -ACGGAAAGCGATACGTAGTCCTGA -ACGGAAAGCGATACGTAGTAGCGA -ACGGAAAGCGATACGTAGCACAGA -ACGGAAAGCGATACGTAGGCAAGA -ACGGAAAGCGATACGTAGGGTTGA -ACGGAAAGCGATACGTAGTCCGAT -ACGGAAAGCGATACGTAGTGGCAT -ACGGAAAGCGATACGTAGCGAGAT -ACGGAAAGCGATACGTAGTACCAC -ACGGAAAGCGATACGTAGCAGAAC -ACGGAAAGCGATACGTAGGTCTAC -ACGGAAAGCGATACGTAGACGTAC -ACGGAAAGCGATACGTAGAGTGAC -ACGGAAAGCGATACGTAGCTGTAG -ACGGAAAGCGATACGTAGCCTAAG -ACGGAAAGCGATACGTAGGTTCAG -ACGGAAAGCGATACGTAGGCATAG -ACGGAAAGCGATACGTAGGACAAG -ACGGAAAGCGATACGTAGAAGCAG -ACGGAAAGCGATACGTAGCGTCAA -ACGGAAAGCGATACGTAGGCTGAA -ACGGAAAGCGATACGTAGAGTACG -ACGGAAAGCGATACGTAGATCCGA -ACGGAAAGCGATACGTAGATGGGA -ACGGAAAGCGATACGTAGGTGCAA -ACGGAAAGCGATACGTAGGAGGAA -ACGGAAAGCGATACGTAGCAGGTA -ACGGAAAGCGATACGTAGGACTCT -ACGGAAAGCGATACGTAGAGTCCT -ACGGAAAGCGATACGTAGTAAGCC -ACGGAAAGCGATACGTAGATAGCC -ACGGAAAGCGATACGTAGTAACCG -ACGGAAAGCGATACGTAGATGCCA -ACGGAAAGCGATACGGTAGGAAAC -ACGGAAAGCGATACGGTAAACACC -ACGGAAAGCGATACGGTAATCGAG -ACGGAAAGCGATACGGTACTCCTT -ACGGAAAGCGATACGGTACCTGTT -ACGGAAAGCGATACGGTACGGTTT -ACGGAAAGCGATACGGTAGTGGTT -ACGGAAAGCGATACGGTAGCCTTT -ACGGAAAGCGATACGGTAGGTCTT -ACGGAAAGCGATACGGTAACGCTT -ACGGAAAGCGATACGGTAAGCGTT -ACGGAAAGCGATACGGTATTCGTC -ACGGAAAGCGATACGGTATCTCTC -ACGGAAAGCGATACGGTATGGATC -ACGGAAAGCGATACGGTACACTTC -ACGGAAAGCGATACGGTAGTACTC -ACGGAAAGCGATACGGTAGATGTC -ACGGAAAGCGATACGGTAACAGTC -ACGGAAAGCGATACGGTATTGCTG -ACGGAAAGCGATACGGTATCCATG -ACGGAAAGCGATACGGTATGTGTG -ACGGAAAGCGATACGGTACTAGTG -ACGGAAAGCGATACGGTACATCTG -ACGGAAAGCGATACGGTAGAGTTG -ACGGAAAGCGATACGGTAAGACTG -ACGGAAAGCGATACGGTATCGGTA -ACGGAAAGCGATACGGTATGCCTA -ACGGAAAGCGATACGGTACCACTA -ACGGAAAGCGATACGGTAGGAGTA -ACGGAAAGCGATACGGTATCGTCT -ACGGAAAGCGATACGGTATGCACT -ACGGAAAGCGATACGGTACTGACT -ACGGAAAGCGATACGGTACAACCT -ACGGAAAGCGATACGGTAGCTACT -ACGGAAAGCGATACGGTAGGATCT -ACGGAAAGCGATACGGTAAAGGCT -ACGGAAAGCGATACGGTATCAACC -ACGGAAAGCGATACGGTATGTTCC -ACGGAAAGCGATACGGTAATTCCC -ACGGAAAGCGATACGGTATTCTCG -ACGGAAAGCGATACGGTATAGACG -ACGGAAAGCGATACGGTAGTAACG -ACGGAAAGCGATACGGTAACTTCG -ACGGAAAGCGATACGGTATACGCA -ACGGAAAGCGATACGGTACTTGCA -ACGGAAAGCGATACGGTACGAACA -ACGGAAAGCGATACGGTACAGTCA -ACGGAAAGCGATACGGTAGATCCA -ACGGAAAGCGATACGGTAACGACA -ACGGAAAGCGATACGGTAAGCTCA -ACGGAAAGCGATACGGTATCACGT -ACGGAAAGCGATACGGTACGTAGT -ACGGAAAGCGATACGGTAGTCAGT -ACGGAAAGCGATACGGTAGAAGGT -ACGGAAAGCGATACGGTAAACCGT -ACGGAAAGCGATACGGTATTGTGC -ACGGAAAGCGATACGGTACTAAGC -ACGGAAAGCGATACGGTAACTAGC -ACGGAAAGCGATACGGTAAGATGC -ACGGAAAGCGATACGGTATGAAGG -ACGGAAAGCGATACGGTACAATGG -ACGGAAAGCGATACGGTAATGAGG -ACGGAAAGCGATACGGTAAATGGG -ACGGAAAGCGATACGGTATCCTGA -ACGGAAAGCGATACGGTATAGCGA -ACGGAAAGCGATACGGTACACAGA -ACGGAAAGCGATACGGTAGCAAGA -ACGGAAAGCGATACGGTAGGTTGA -ACGGAAAGCGATACGGTATCCGAT -ACGGAAAGCGATACGGTATGGCAT -ACGGAAAGCGATACGGTACGAGAT -ACGGAAAGCGATACGGTATACCAC -ACGGAAAGCGATACGGTACAGAAC -ACGGAAAGCGATACGGTAGTCTAC -ACGGAAAGCGATACGGTAACGTAC -ACGGAAAGCGATACGGTAAGTGAC -ACGGAAAGCGATACGGTACTGTAG -ACGGAAAGCGATACGGTACCTAAG -ACGGAAAGCGATACGGTAGTTCAG -ACGGAAAGCGATACGGTAGCATAG -ACGGAAAGCGATACGGTAGACAAG -ACGGAAAGCGATACGGTAAAGCAG -ACGGAAAGCGATACGGTACGTCAA -ACGGAAAGCGATACGGTAGCTGAA -ACGGAAAGCGATACGGTAAGTACG -ACGGAAAGCGATACGGTAATCCGA -ACGGAAAGCGATACGGTAATGGGA -ACGGAAAGCGATACGGTAGTGCAA -ACGGAAAGCGATACGGTAGAGGAA -ACGGAAAGCGATACGGTACAGGTA -ACGGAAAGCGATACGGTAGACTCT -ACGGAAAGCGATACGGTAAGTCCT -ACGGAAAGCGATACGGTATAAGCC -ACGGAAAGCGATACGGTAATAGCC -ACGGAAAGCGATACGGTATAACCG -ACGGAAAGCGATACGGTAATGCCA -ACGGAAAGCGATTCGACTGGAAAC -ACGGAAAGCGATTCGACTAACACC -ACGGAAAGCGATTCGACTATCGAG -ACGGAAAGCGATTCGACTCTCCTT -ACGGAAAGCGATTCGACTCCTGTT -ACGGAAAGCGATTCGACTCGGTTT -ACGGAAAGCGATTCGACTGTGGTT -ACGGAAAGCGATTCGACTGCCTTT -ACGGAAAGCGATTCGACTGGTCTT -ACGGAAAGCGATTCGACTACGCTT -ACGGAAAGCGATTCGACTAGCGTT -ACGGAAAGCGATTCGACTTTCGTC -ACGGAAAGCGATTCGACTTCTCTC -ACGGAAAGCGATTCGACTTGGATC -ACGGAAAGCGATTCGACTCACTTC -ACGGAAAGCGATTCGACTGTACTC -ACGGAAAGCGATTCGACTGATGTC -ACGGAAAGCGATTCGACTACAGTC -ACGGAAAGCGATTCGACTTTGCTG -ACGGAAAGCGATTCGACTTCCATG -ACGGAAAGCGATTCGACTTGTGTG -ACGGAAAGCGATTCGACTCTAGTG -ACGGAAAGCGATTCGACTCATCTG -ACGGAAAGCGATTCGACTGAGTTG -ACGGAAAGCGATTCGACTAGACTG -ACGGAAAGCGATTCGACTTCGGTA -ACGGAAAGCGATTCGACTTGCCTA -ACGGAAAGCGATTCGACTCCACTA -ACGGAAAGCGATTCGACTGGAGTA -ACGGAAAGCGATTCGACTTCGTCT -ACGGAAAGCGATTCGACTTGCACT -ACGGAAAGCGATTCGACTCTGACT -ACGGAAAGCGATTCGACTCAACCT -ACGGAAAGCGATTCGACTGCTACT -ACGGAAAGCGATTCGACTGGATCT -ACGGAAAGCGATTCGACTAAGGCT -ACGGAAAGCGATTCGACTTCAACC -ACGGAAAGCGATTCGACTTGTTCC -ACGGAAAGCGATTCGACTATTCCC -ACGGAAAGCGATTCGACTTTCTCG -ACGGAAAGCGATTCGACTTAGACG -ACGGAAAGCGATTCGACTGTAACG -ACGGAAAGCGATTCGACTACTTCG -ACGGAAAGCGATTCGACTTACGCA -ACGGAAAGCGATTCGACTCTTGCA -ACGGAAAGCGATTCGACTCGAACA -ACGGAAAGCGATTCGACTCAGTCA -ACGGAAAGCGATTCGACTGATCCA -ACGGAAAGCGATTCGACTACGACA -ACGGAAAGCGATTCGACTAGCTCA -ACGGAAAGCGATTCGACTTCACGT -ACGGAAAGCGATTCGACTCGTAGT -ACGGAAAGCGATTCGACTGTCAGT -ACGGAAAGCGATTCGACTGAAGGT -ACGGAAAGCGATTCGACTAACCGT -ACGGAAAGCGATTCGACTTTGTGC -ACGGAAAGCGATTCGACTCTAAGC -ACGGAAAGCGATTCGACTACTAGC -ACGGAAAGCGATTCGACTAGATGC -ACGGAAAGCGATTCGACTTGAAGG -ACGGAAAGCGATTCGACTCAATGG -ACGGAAAGCGATTCGACTATGAGG -ACGGAAAGCGATTCGACTAATGGG -ACGGAAAGCGATTCGACTTCCTGA -ACGGAAAGCGATTCGACTTAGCGA -ACGGAAAGCGATTCGACTCACAGA -ACGGAAAGCGATTCGACTGCAAGA -ACGGAAAGCGATTCGACTGGTTGA -ACGGAAAGCGATTCGACTTCCGAT -ACGGAAAGCGATTCGACTTGGCAT -ACGGAAAGCGATTCGACTCGAGAT -ACGGAAAGCGATTCGACTTACCAC -ACGGAAAGCGATTCGACTCAGAAC -ACGGAAAGCGATTCGACTGTCTAC -ACGGAAAGCGATTCGACTACGTAC -ACGGAAAGCGATTCGACTAGTGAC -ACGGAAAGCGATTCGACTCTGTAG -ACGGAAAGCGATTCGACTCCTAAG -ACGGAAAGCGATTCGACTGTTCAG -ACGGAAAGCGATTCGACTGCATAG -ACGGAAAGCGATTCGACTGACAAG -ACGGAAAGCGATTCGACTAAGCAG -ACGGAAAGCGATTCGACTCGTCAA -ACGGAAAGCGATTCGACTGCTGAA -ACGGAAAGCGATTCGACTAGTACG -ACGGAAAGCGATTCGACTATCCGA -ACGGAAAGCGATTCGACTATGGGA -ACGGAAAGCGATTCGACTGTGCAA -ACGGAAAGCGATTCGACTGAGGAA -ACGGAAAGCGATTCGACTCAGGTA -ACGGAAAGCGATTCGACTGACTCT -ACGGAAAGCGATTCGACTAGTCCT -ACGGAAAGCGATTCGACTTAAGCC -ACGGAAAGCGATTCGACTATAGCC -ACGGAAAGCGATTCGACTTAACCG -ACGGAAAGCGATTCGACTATGCCA -ACGGAAAGCGATGCATACGGAAAC -ACGGAAAGCGATGCATACAACACC -ACGGAAAGCGATGCATACATCGAG -ACGGAAAGCGATGCATACCTCCTT -ACGGAAAGCGATGCATACCCTGTT -ACGGAAAGCGATGCATACCGGTTT -ACGGAAAGCGATGCATACGTGGTT -ACGGAAAGCGATGCATACGCCTTT -ACGGAAAGCGATGCATACGGTCTT -ACGGAAAGCGATGCATACACGCTT -ACGGAAAGCGATGCATACAGCGTT -ACGGAAAGCGATGCATACTTCGTC -ACGGAAAGCGATGCATACTCTCTC -ACGGAAAGCGATGCATACTGGATC -ACGGAAAGCGATGCATACCACTTC -ACGGAAAGCGATGCATACGTACTC -ACGGAAAGCGATGCATACGATGTC -ACGGAAAGCGATGCATACACAGTC -ACGGAAAGCGATGCATACTTGCTG -ACGGAAAGCGATGCATACTCCATG -ACGGAAAGCGATGCATACTGTGTG -ACGGAAAGCGATGCATACCTAGTG -ACGGAAAGCGATGCATACCATCTG -ACGGAAAGCGATGCATACGAGTTG -ACGGAAAGCGATGCATACAGACTG -ACGGAAAGCGATGCATACTCGGTA -ACGGAAAGCGATGCATACTGCCTA -ACGGAAAGCGATGCATACCCACTA -ACGGAAAGCGATGCATACGGAGTA -ACGGAAAGCGATGCATACTCGTCT -ACGGAAAGCGATGCATACTGCACT -ACGGAAAGCGATGCATACCTGACT -ACGGAAAGCGATGCATACCAACCT -ACGGAAAGCGATGCATACGCTACT -ACGGAAAGCGATGCATACGGATCT -ACGGAAAGCGATGCATACAAGGCT -ACGGAAAGCGATGCATACTCAACC -ACGGAAAGCGATGCATACTGTTCC -ACGGAAAGCGATGCATACATTCCC -ACGGAAAGCGATGCATACTTCTCG -ACGGAAAGCGATGCATACTAGACG -ACGGAAAGCGATGCATACGTAACG -ACGGAAAGCGATGCATACACTTCG -ACGGAAAGCGATGCATACTACGCA -ACGGAAAGCGATGCATACCTTGCA -ACGGAAAGCGATGCATACCGAACA -ACGGAAAGCGATGCATACCAGTCA -ACGGAAAGCGATGCATACGATCCA -ACGGAAAGCGATGCATACACGACA -ACGGAAAGCGATGCATACAGCTCA -ACGGAAAGCGATGCATACTCACGT -ACGGAAAGCGATGCATACCGTAGT -ACGGAAAGCGATGCATACGTCAGT -ACGGAAAGCGATGCATACGAAGGT -ACGGAAAGCGATGCATACAACCGT -ACGGAAAGCGATGCATACTTGTGC -ACGGAAAGCGATGCATACCTAAGC -ACGGAAAGCGATGCATACACTAGC -ACGGAAAGCGATGCATACAGATGC -ACGGAAAGCGATGCATACTGAAGG -ACGGAAAGCGATGCATACCAATGG -ACGGAAAGCGATGCATACATGAGG -ACGGAAAGCGATGCATACAATGGG -ACGGAAAGCGATGCATACTCCTGA -ACGGAAAGCGATGCATACTAGCGA -ACGGAAAGCGATGCATACCACAGA -ACGGAAAGCGATGCATACGCAAGA -ACGGAAAGCGATGCATACGGTTGA -ACGGAAAGCGATGCATACTCCGAT -ACGGAAAGCGATGCATACTGGCAT -ACGGAAAGCGATGCATACCGAGAT -ACGGAAAGCGATGCATACTACCAC -ACGGAAAGCGATGCATACCAGAAC -ACGGAAAGCGATGCATACGTCTAC -ACGGAAAGCGATGCATACACGTAC -ACGGAAAGCGATGCATACAGTGAC -ACGGAAAGCGATGCATACCTGTAG -ACGGAAAGCGATGCATACCCTAAG -ACGGAAAGCGATGCATACGTTCAG -ACGGAAAGCGATGCATACGCATAG -ACGGAAAGCGATGCATACGACAAG -ACGGAAAGCGATGCATACAAGCAG -ACGGAAAGCGATGCATACCGTCAA -ACGGAAAGCGATGCATACGCTGAA -ACGGAAAGCGATGCATACAGTACG -ACGGAAAGCGATGCATACATCCGA -ACGGAAAGCGATGCATACATGGGA -ACGGAAAGCGATGCATACGTGCAA -ACGGAAAGCGATGCATACGAGGAA -ACGGAAAGCGATGCATACCAGGTA -ACGGAAAGCGATGCATACGACTCT -ACGGAAAGCGATGCATACAGTCCT -ACGGAAAGCGATGCATACTAAGCC -ACGGAAAGCGATGCATACATAGCC -ACGGAAAGCGATGCATACTAACCG -ACGGAAAGCGATGCATACATGCCA -ACGGAAAGCGATGCACTTGGAAAC -ACGGAAAGCGATGCACTTAACACC -ACGGAAAGCGATGCACTTATCGAG -ACGGAAAGCGATGCACTTCTCCTT -ACGGAAAGCGATGCACTTCCTGTT -ACGGAAAGCGATGCACTTCGGTTT -ACGGAAAGCGATGCACTTGTGGTT -ACGGAAAGCGATGCACTTGCCTTT -ACGGAAAGCGATGCACTTGGTCTT -ACGGAAAGCGATGCACTTACGCTT -ACGGAAAGCGATGCACTTAGCGTT -ACGGAAAGCGATGCACTTTTCGTC -ACGGAAAGCGATGCACTTTCTCTC -ACGGAAAGCGATGCACTTTGGATC -ACGGAAAGCGATGCACTTCACTTC -ACGGAAAGCGATGCACTTGTACTC -ACGGAAAGCGATGCACTTGATGTC -ACGGAAAGCGATGCACTTACAGTC -ACGGAAAGCGATGCACTTTTGCTG -ACGGAAAGCGATGCACTTTCCATG -ACGGAAAGCGATGCACTTTGTGTG -ACGGAAAGCGATGCACTTCTAGTG -ACGGAAAGCGATGCACTTCATCTG -ACGGAAAGCGATGCACTTGAGTTG -ACGGAAAGCGATGCACTTAGACTG -ACGGAAAGCGATGCACTTTCGGTA -ACGGAAAGCGATGCACTTTGCCTA -ACGGAAAGCGATGCACTTCCACTA -ACGGAAAGCGATGCACTTGGAGTA -ACGGAAAGCGATGCACTTTCGTCT -ACGGAAAGCGATGCACTTTGCACT -ACGGAAAGCGATGCACTTCTGACT -ACGGAAAGCGATGCACTTCAACCT -ACGGAAAGCGATGCACTTGCTACT -ACGGAAAGCGATGCACTTGGATCT -ACGGAAAGCGATGCACTTAAGGCT -ACGGAAAGCGATGCACTTTCAACC -ACGGAAAGCGATGCACTTTGTTCC -ACGGAAAGCGATGCACTTATTCCC -ACGGAAAGCGATGCACTTTTCTCG -ACGGAAAGCGATGCACTTTAGACG -ACGGAAAGCGATGCACTTGTAACG -ACGGAAAGCGATGCACTTACTTCG -ACGGAAAGCGATGCACTTTACGCA -ACGGAAAGCGATGCACTTCTTGCA -ACGGAAAGCGATGCACTTCGAACA -ACGGAAAGCGATGCACTTCAGTCA -ACGGAAAGCGATGCACTTGATCCA -ACGGAAAGCGATGCACTTACGACA -ACGGAAAGCGATGCACTTAGCTCA -ACGGAAAGCGATGCACTTTCACGT -ACGGAAAGCGATGCACTTCGTAGT -ACGGAAAGCGATGCACTTGTCAGT -ACGGAAAGCGATGCACTTGAAGGT -ACGGAAAGCGATGCACTTAACCGT -ACGGAAAGCGATGCACTTTTGTGC -ACGGAAAGCGATGCACTTCTAAGC -ACGGAAAGCGATGCACTTACTAGC -ACGGAAAGCGATGCACTTAGATGC -ACGGAAAGCGATGCACTTTGAAGG -ACGGAAAGCGATGCACTTCAATGG -ACGGAAAGCGATGCACTTATGAGG -ACGGAAAGCGATGCACTTAATGGG -ACGGAAAGCGATGCACTTTCCTGA -ACGGAAAGCGATGCACTTTAGCGA -ACGGAAAGCGATGCACTTCACAGA -ACGGAAAGCGATGCACTTGCAAGA -ACGGAAAGCGATGCACTTGGTTGA -ACGGAAAGCGATGCACTTTCCGAT -ACGGAAAGCGATGCACTTTGGCAT -ACGGAAAGCGATGCACTTCGAGAT -ACGGAAAGCGATGCACTTTACCAC -ACGGAAAGCGATGCACTTCAGAAC -ACGGAAAGCGATGCACTTGTCTAC -ACGGAAAGCGATGCACTTACGTAC -ACGGAAAGCGATGCACTTAGTGAC -ACGGAAAGCGATGCACTTCTGTAG -ACGGAAAGCGATGCACTTCCTAAG -ACGGAAAGCGATGCACTTGTTCAG -ACGGAAAGCGATGCACTTGCATAG -ACGGAAAGCGATGCACTTGACAAG -ACGGAAAGCGATGCACTTAAGCAG -ACGGAAAGCGATGCACTTCGTCAA -ACGGAAAGCGATGCACTTGCTGAA -ACGGAAAGCGATGCACTTAGTACG -ACGGAAAGCGATGCACTTATCCGA -ACGGAAAGCGATGCACTTATGGGA -ACGGAAAGCGATGCACTTGTGCAA -ACGGAAAGCGATGCACTTGAGGAA -ACGGAAAGCGATGCACTTCAGGTA -ACGGAAAGCGATGCACTTGACTCT -ACGGAAAGCGATGCACTTAGTCCT -ACGGAAAGCGATGCACTTTAAGCC -ACGGAAAGCGATGCACTTATAGCC -ACGGAAAGCGATGCACTTTAACCG -ACGGAAAGCGATGCACTTATGCCA -ACGGAAAGCGATACACGAGGAAAC -ACGGAAAGCGATACACGAAACACC -ACGGAAAGCGATACACGAATCGAG -ACGGAAAGCGATACACGACTCCTT -ACGGAAAGCGATACACGACCTGTT -ACGGAAAGCGATACACGACGGTTT -ACGGAAAGCGATACACGAGTGGTT -ACGGAAAGCGATACACGAGCCTTT -ACGGAAAGCGATACACGAGGTCTT -ACGGAAAGCGATACACGAACGCTT -ACGGAAAGCGATACACGAAGCGTT -ACGGAAAGCGATACACGATTCGTC -ACGGAAAGCGATACACGATCTCTC -ACGGAAAGCGATACACGATGGATC -ACGGAAAGCGATACACGACACTTC -ACGGAAAGCGATACACGAGTACTC -ACGGAAAGCGATACACGAGATGTC -ACGGAAAGCGATACACGAACAGTC -ACGGAAAGCGATACACGATTGCTG -ACGGAAAGCGATACACGATCCATG -ACGGAAAGCGATACACGATGTGTG -ACGGAAAGCGATACACGACTAGTG -ACGGAAAGCGATACACGACATCTG -ACGGAAAGCGATACACGAGAGTTG -ACGGAAAGCGATACACGAAGACTG -ACGGAAAGCGATACACGATCGGTA -ACGGAAAGCGATACACGATGCCTA -ACGGAAAGCGATACACGACCACTA -ACGGAAAGCGATACACGAGGAGTA -ACGGAAAGCGATACACGATCGTCT -ACGGAAAGCGATACACGATGCACT -ACGGAAAGCGATACACGACTGACT -ACGGAAAGCGATACACGACAACCT -ACGGAAAGCGATACACGAGCTACT -ACGGAAAGCGATACACGAGGATCT -ACGGAAAGCGATACACGAAAGGCT -ACGGAAAGCGATACACGATCAACC -ACGGAAAGCGATACACGATGTTCC -ACGGAAAGCGATACACGAATTCCC -ACGGAAAGCGATACACGATTCTCG -ACGGAAAGCGATACACGATAGACG -ACGGAAAGCGATACACGAGTAACG -ACGGAAAGCGATACACGAACTTCG -ACGGAAAGCGATACACGATACGCA -ACGGAAAGCGATACACGACTTGCA -ACGGAAAGCGATACACGACGAACA -ACGGAAAGCGATACACGACAGTCA -ACGGAAAGCGATACACGAGATCCA -ACGGAAAGCGATACACGAACGACA -ACGGAAAGCGATACACGAAGCTCA -ACGGAAAGCGATACACGATCACGT -ACGGAAAGCGATACACGACGTAGT -ACGGAAAGCGATACACGAGTCAGT -ACGGAAAGCGATACACGAGAAGGT -ACGGAAAGCGATACACGAAACCGT -ACGGAAAGCGATACACGATTGTGC -ACGGAAAGCGATACACGACTAAGC -ACGGAAAGCGATACACGAACTAGC -ACGGAAAGCGATACACGAAGATGC -ACGGAAAGCGATACACGATGAAGG -ACGGAAAGCGATACACGACAATGG -ACGGAAAGCGATACACGAATGAGG -ACGGAAAGCGATACACGAAATGGG -ACGGAAAGCGATACACGATCCTGA -ACGGAAAGCGATACACGATAGCGA -ACGGAAAGCGATACACGACACAGA -ACGGAAAGCGATACACGAGCAAGA -ACGGAAAGCGATACACGAGGTTGA -ACGGAAAGCGATACACGATCCGAT -ACGGAAAGCGATACACGATGGCAT -ACGGAAAGCGATACACGACGAGAT -ACGGAAAGCGATACACGATACCAC -ACGGAAAGCGATACACGACAGAAC -ACGGAAAGCGATACACGAGTCTAC -ACGGAAAGCGATACACGAACGTAC -ACGGAAAGCGATACACGAAGTGAC -ACGGAAAGCGATACACGACTGTAG -ACGGAAAGCGATACACGACCTAAG -ACGGAAAGCGATACACGAGTTCAG -ACGGAAAGCGATACACGAGCATAG -ACGGAAAGCGATACACGAGACAAG -ACGGAAAGCGATACACGAAAGCAG -ACGGAAAGCGATACACGACGTCAA -ACGGAAAGCGATACACGAGCTGAA -ACGGAAAGCGATACACGAAGTACG -ACGGAAAGCGATACACGAATCCGA -ACGGAAAGCGATACACGAATGGGA -ACGGAAAGCGATACACGAGTGCAA -ACGGAAAGCGATACACGAGAGGAA -ACGGAAAGCGATACACGACAGGTA -ACGGAAAGCGATACACGAGACTCT -ACGGAAAGCGATACACGAAGTCCT -ACGGAAAGCGATACACGATAAGCC -ACGGAAAGCGATACACGAATAGCC -ACGGAAAGCGATACACGATAACCG -ACGGAAAGCGATACACGAATGCCA -ACGGAAAGCGATTCACAGGGAAAC -ACGGAAAGCGATTCACAGAACACC -ACGGAAAGCGATTCACAGATCGAG -ACGGAAAGCGATTCACAGCTCCTT -ACGGAAAGCGATTCACAGCCTGTT -ACGGAAAGCGATTCACAGCGGTTT -ACGGAAAGCGATTCACAGGTGGTT -ACGGAAAGCGATTCACAGGCCTTT -ACGGAAAGCGATTCACAGGGTCTT -ACGGAAAGCGATTCACAGACGCTT -ACGGAAAGCGATTCACAGAGCGTT -ACGGAAAGCGATTCACAGTTCGTC -ACGGAAAGCGATTCACAGTCTCTC -ACGGAAAGCGATTCACAGTGGATC -ACGGAAAGCGATTCACAGCACTTC -ACGGAAAGCGATTCACAGGTACTC -ACGGAAAGCGATTCACAGGATGTC -ACGGAAAGCGATTCACAGACAGTC -ACGGAAAGCGATTCACAGTTGCTG -ACGGAAAGCGATTCACAGTCCATG -ACGGAAAGCGATTCACAGTGTGTG -ACGGAAAGCGATTCACAGCTAGTG -ACGGAAAGCGATTCACAGCATCTG -ACGGAAAGCGATTCACAGGAGTTG -ACGGAAAGCGATTCACAGAGACTG -ACGGAAAGCGATTCACAGTCGGTA -ACGGAAAGCGATTCACAGTGCCTA -ACGGAAAGCGATTCACAGCCACTA -ACGGAAAGCGATTCACAGGGAGTA -ACGGAAAGCGATTCACAGTCGTCT -ACGGAAAGCGATTCACAGTGCACT -ACGGAAAGCGATTCACAGCTGACT -ACGGAAAGCGATTCACAGCAACCT -ACGGAAAGCGATTCACAGGCTACT -ACGGAAAGCGATTCACAGGGATCT -ACGGAAAGCGATTCACAGAAGGCT -ACGGAAAGCGATTCACAGTCAACC -ACGGAAAGCGATTCACAGTGTTCC -ACGGAAAGCGATTCACAGATTCCC -ACGGAAAGCGATTCACAGTTCTCG -ACGGAAAGCGATTCACAGTAGACG -ACGGAAAGCGATTCACAGGTAACG -ACGGAAAGCGATTCACAGACTTCG -ACGGAAAGCGATTCACAGTACGCA -ACGGAAAGCGATTCACAGCTTGCA -ACGGAAAGCGATTCACAGCGAACA -ACGGAAAGCGATTCACAGCAGTCA -ACGGAAAGCGATTCACAGGATCCA -ACGGAAAGCGATTCACAGACGACA -ACGGAAAGCGATTCACAGAGCTCA -ACGGAAAGCGATTCACAGTCACGT -ACGGAAAGCGATTCACAGCGTAGT -ACGGAAAGCGATTCACAGGTCAGT -ACGGAAAGCGATTCACAGGAAGGT -ACGGAAAGCGATTCACAGAACCGT -ACGGAAAGCGATTCACAGTTGTGC -ACGGAAAGCGATTCACAGCTAAGC -ACGGAAAGCGATTCACAGACTAGC -ACGGAAAGCGATTCACAGAGATGC -ACGGAAAGCGATTCACAGTGAAGG -ACGGAAAGCGATTCACAGCAATGG -ACGGAAAGCGATTCACAGATGAGG -ACGGAAAGCGATTCACAGAATGGG -ACGGAAAGCGATTCACAGTCCTGA -ACGGAAAGCGATTCACAGTAGCGA -ACGGAAAGCGATTCACAGCACAGA -ACGGAAAGCGATTCACAGGCAAGA -ACGGAAAGCGATTCACAGGGTTGA -ACGGAAAGCGATTCACAGTCCGAT -ACGGAAAGCGATTCACAGTGGCAT -ACGGAAAGCGATTCACAGCGAGAT -ACGGAAAGCGATTCACAGTACCAC -ACGGAAAGCGATTCACAGCAGAAC -ACGGAAAGCGATTCACAGGTCTAC -ACGGAAAGCGATTCACAGACGTAC -ACGGAAAGCGATTCACAGAGTGAC -ACGGAAAGCGATTCACAGCTGTAG -ACGGAAAGCGATTCACAGCCTAAG -ACGGAAAGCGATTCACAGGTTCAG -ACGGAAAGCGATTCACAGGCATAG -ACGGAAAGCGATTCACAGGACAAG -ACGGAAAGCGATTCACAGAAGCAG -ACGGAAAGCGATTCACAGCGTCAA -ACGGAAAGCGATTCACAGGCTGAA -ACGGAAAGCGATTCACAGAGTACG -ACGGAAAGCGATTCACAGATCCGA -ACGGAAAGCGATTCACAGATGGGA -ACGGAAAGCGATTCACAGGTGCAA -ACGGAAAGCGATTCACAGGAGGAA -ACGGAAAGCGATTCACAGCAGGTA -ACGGAAAGCGATTCACAGGACTCT -ACGGAAAGCGATTCACAGAGTCCT -ACGGAAAGCGATTCACAGTAAGCC -ACGGAAAGCGATTCACAGATAGCC -ACGGAAAGCGATTCACAGTAACCG -ACGGAAAGCGATTCACAGATGCCA -ACGGAAAGCGATCCAGATGGAAAC -ACGGAAAGCGATCCAGATAACACC -ACGGAAAGCGATCCAGATATCGAG -ACGGAAAGCGATCCAGATCTCCTT -ACGGAAAGCGATCCAGATCCTGTT -ACGGAAAGCGATCCAGATCGGTTT -ACGGAAAGCGATCCAGATGTGGTT -ACGGAAAGCGATCCAGATGCCTTT -ACGGAAAGCGATCCAGATGGTCTT -ACGGAAAGCGATCCAGATACGCTT -ACGGAAAGCGATCCAGATAGCGTT -ACGGAAAGCGATCCAGATTTCGTC -ACGGAAAGCGATCCAGATTCTCTC -ACGGAAAGCGATCCAGATTGGATC -ACGGAAAGCGATCCAGATCACTTC -ACGGAAAGCGATCCAGATGTACTC -ACGGAAAGCGATCCAGATGATGTC -ACGGAAAGCGATCCAGATACAGTC -ACGGAAAGCGATCCAGATTTGCTG -ACGGAAAGCGATCCAGATTCCATG -ACGGAAAGCGATCCAGATTGTGTG -ACGGAAAGCGATCCAGATCTAGTG -ACGGAAAGCGATCCAGATCATCTG -ACGGAAAGCGATCCAGATGAGTTG -ACGGAAAGCGATCCAGATAGACTG -ACGGAAAGCGATCCAGATTCGGTA -ACGGAAAGCGATCCAGATTGCCTA -ACGGAAAGCGATCCAGATCCACTA -ACGGAAAGCGATCCAGATGGAGTA -ACGGAAAGCGATCCAGATTCGTCT -ACGGAAAGCGATCCAGATTGCACT -ACGGAAAGCGATCCAGATCTGACT -ACGGAAAGCGATCCAGATCAACCT -ACGGAAAGCGATCCAGATGCTACT -ACGGAAAGCGATCCAGATGGATCT -ACGGAAAGCGATCCAGATAAGGCT -ACGGAAAGCGATCCAGATTCAACC -ACGGAAAGCGATCCAGATTGTTCC -ACGGAAAGCGATCCAGATATTCCC -ACGGAAAGCGATCCAGATTTCTCG -ACGGAAAGCGATCCAGATTAGACG -ACGGAAAGCGATCCAGATGTAACG -ACGGAAAGCGATCCAGATACTTCG -ACGGAAAGCGATCCAGATTACGCA -ACGGAAAGCGATCCAGATCTTGCA -ACGGAAAGCGATCCAGATCGAACA -ACGGAAAGCGATCCAGATCAGTCA -ACGGAAAGCGATCCAGATGATCCA -ACGGAAAGCGATCCAGATACGACA -ACGGAAAGCGATCCAGATAGCTCA -ACGGAAAGCGATCCAGATTCACGT -ACGGAAAGCGATCCAGATCGTAGT -ACGGAAAGCGATCCAGATGTCAGT -ACGGAAAGCGATCCAGATGAAGGT -ACGGAAAGCGATCCAGATAACCGT -ACGGAAAGCGATCCAGATTTGTGC -ACGGAAAGCGATCCAGATCTAAGC -ACGGAAAGCGATCCAGATACTAGC -ACGGAAAGCGATCCAGATAGATGC -ACGGAAAGCGATCCAGATTGAAGG -ACGGAAAGCGATCCAGATCAATGG -ACGGAAAGCGATCCAGATATGAGG -ACGGAAAGCGATCCAGATAATGGG -ACGGAAAGCGATCCAGATTCCTGA -ACGGAAAGCGATCCAGATTAGCGA -ACGGAAAGCGATCCAGATCACAGA -ACGGAAAGCGATCCAGATGCAAGA -ACGGAAAGCGATCCAGATGGTTGA -ACGGAAAGCGATCCAGATTCCGAT -ACGGAAAGCGATCCAGATTGGCAT -ACGGAAAGCGATCCAGATCGAGAT -ACGGAAAGCGATCCAGATTACCAC -ACGGAAAGCGATCCAGATCAGAAC -ACGGAAAGCGATCCAGATGTCTAC -ACGGAAAGCGATCCAGATACGTAC -ACGGAAAGCGATCCAGATAGTGAC -ACGGAAAGCGATCCAGATCTGTAG -ACGGAAAGCGATCCAGATCCTAAG -ACGGAAAGCGATCCAGATGTTCAG -ACGGAAAGCGATCCAGATGCATAG -ACGGAAAGCGATCCAGATGACAAG -ACGGAAAGCGATCCAGATAAGCAG -ACGGAAAGCGATCCAGATCGTCAA -ACGGAAAGCGATCCAGATGCTGAA -ACGGAAAGCGATCCAGATAGTACG -ACGGAAAGCGATCCAGATATCCGA -ACGGAAAGCGATCCAGATATGGGA -ACGGAAAGCGATCCAGATGTGCAA -ACGGAAAGCGATCCAGATGAGGAA -ACGGAAAGCGATCCAGATCAGGTA -ACGGAAAGCGATCCAGATGACTCT -ACGGAAAGCGATCCAGATAGTCCT -ACGGAAAGCGATCCAGATTAAGCC -ACGGAAAGCGATCCAGATATAGCC -ACGGAAAGCGATCCAGATTAACCG -ACGGAAAGCGATCCAGATATGCCA -ACGGAAAGCGATACAACGGGAAAC -ACGGAAAGCGATACAACGAACACC -ACGGAAAGCGATACAACGATCGAG -ACGGAAAGCGATACAACGCTCCTT -ACGGAAAGCGATACAACGCCTGTT -ACGGAAAGCGATACAACGCGGTTT -ACGGAAAGCGATACAACGGTGGTT -ACGGAAAGCGATACAACGGCCTTT -ACGGAAAGCGATACAACGGGTCTT -ACGGAAAGCGATACAACGACGCTT -ACGGAAAGCGATACAACGAGCGTT -ACGGAAAGCGATACAACGTTCGTC -ACGGAAAGCGATACAACGTCTCTC -ACGGAAAGCGATACAACGTGGATC -ACGGAAAGCGATACAACGCACTTC -ACGGAAAGCGATACAACGGTACTC -ACGGAAAGCGATACAACGGATGTC -ACGGAAAGCGATACAACGACAGTC -ACGGAAAGCGATACAACGTTGCTG -ACGGAAAGCGATACAACGTCCATG -ACGGAAAGCGATACAACGTGTGTG -ACGGAAAGCGATACAACGCTAGTG -ACGGAAAGCGATACAACGCATCTG -ACGGAAAGCGATACAACGGAGTTG -ACGGAAAGCGATACAACGAGACTG -ACGGAAAGCGATACAACGTCGGTA -ACGGAAAGCGATACAACGTGCCTA -ACGGAAAGCGATACAACGCCACTA -ACGGAAAGCGATACAACGGGAGTA -ACGGAAAGCGATACAACGTCGTCT -ACGGAAAGCGATACAACGTGCACT -ACGGAAAGCGATACAACGCTGACT -ACGGAAAGCGATACAACGCAACCT -ACGGAAAGCGATACAACGGCTACT -ACGGAAAGCGATACAACGGGATCT -ACGGAAAGCGATACAACGAAGGCT -ACGGAAAGCGATACAACGTCAACC -ACGGAAAGCGATACAACGTGTTCC -ACGGAAAGCGATACAACGATTCCC -ACGGAAAGCGATACAACGTTCTCG -ACGGAAAGCGATACAACGTAGACG -ACGGAAAGCGATACAACGGTAACG -ACGGAAAGCGATACAACGACTTCG -ACGGAAAGCGATACAACGTACGCA -ACGGAAAGCGATACAACGCTTGCA -ACGGAAAGCGATACAACGCGAACA -ACGGAAAGCGATACAACGCAGTCA -ACGGAAAGCGATACAACGGATCCA -ACGGAAAGCGATACAACGACGACA -ACGGAAAGCGATACAACGAGCTCA -ACGGAAAGCGATACAACGTCACGT -ACGGAAAGCGATACAACGCGTAGT -ACGGAAAGCGATACAACGGTCAGT -ACGGAAAGCGATACAACGGAAGGT -ACGGAAAGCGATACAACGAACCGT -ACGGAAAGCGATACAACGTTGTGC -ACGGAAAGCGATACAACGCTAAGC -ACGGAAAGCGATACAACGACTAGC -ACGGAAAGCGATACAACGAGATGC -ACGGAAAGCGATACAACGTGAAGG -ACGGAAAGCGATACAACGCAATGG -ACGGAAAGCGATACAACGATGAGG -ACGGAAAGCGATACAACGAATGGG -ACGGAAAGCGATACAACGTCCTGA -ACGGAAAGCGATACAACGTAGCGA -ACGGAAAGCGATACAACGCACAGA -ACGGAAAGCGATACAACGGCAAGA -ACGGAAAGCGATACAACGGGTTGA -ACGGAAAGCGATACAACGTCCGAT -ACGGAAAGCGATACAACGTGGCAT -ACGGAAAGCGATACAACGCGAGAT -ACGGAAAGCGATACAACGTACCAC -ACGGAAAGCGATACAACGCAGAAC -ACGGAAAGCGATACAACGGTCTAC -ACGGAAAGCGATACAACGACGTAC -ACGGAAAGCGATACAACGAGTGAC -ACGGAAAGCGATACAACGCTGTAG -ACGGAAAGCGATACAACGCCTAAG -ACGGAAAGCGATACAACGGTTCAG -ACGGAAAGCGATACAACGGCATAG -ACGGAAAGCGATACAACGGACAAG -ACGGAAAGCGATACAACGAAGCAG -ACGGAAAGCGATACAACGCGTCAA -ACGGAAAGCGATACAACGGCTGAA -ACGGAAAGCGATACAACGAGTACG -ACGGAAAGCGATACAACGATCCGA -ACGGAAAGCGATACAACGATGGGA -ACGGAAAGCGATACAACGGTGCAA -ACGGAAAGCGATACAACGGAGGAA -ACGGAAAGCGATACAACGCAGGTA -ACGGAAAGCGATACAACGGACTCT -ACGGAAAGCGATACAACGAGTCCT -ACGGAAAGCGATACAACGTAAGCC -ACGGAAAGCGATACAACGATAGCC -ACGGAAAGCGATACAACGTAACCG -ACGGAAAGCGATACAACGATGCCA -ACGGAAAGCGATTCAAGCGGAAAC -ACGGAAAGCGATTCAAGCAACACC -ACGGAAAGCGATTCAAGCATCGAG -ACGGAAAGCGATTCAAGCCTCCTT -ACGGAAAGCGATTCAAGCCCTGTT -ACGGAAAGCGATTCAAGCCGGTTT -ACGGAAAGCGATTCAAGCGTGGTT -ACGGAAAGCGATTCAAGCGCCTTT -ACGGAAAGCGATTCAAGCGGTCTT -ACGGAAAGCGATTCAAGCACGCTT -ACGGAAAGCGATTCAAGCAGCGTT -ACGGAAAGCGATTCAAGCTTCGTC -ACGGAAAGCGATTCAAGCTCTCTC -ACGGAAAGCGATTCAAGCTGGATC -ACGGAAAGCGATTCAAGCCACTTC -ACGGAAAGCGATTCAAGCGTACTC -ACGGAAAGCGATTCAAGCGATGTC -ACGGAAAGCGATTCAAGCACAGTC -ACGGAAAGCGATTCAAGCTTGCTG -ACGGAAAGCGATTCAAGCTCCATG -ACGGAAAGCGATTCAAGCTGTGTG -ACGGAAAGCGATTCAAGCCTAGTG -ACGGAAAGCGATTCAAGCCATCTG -ACGGAAAGCGATTCAAGCGAGTTG -ACGGAAAGCGATTCAAGCAGACTG -ACGGAAAGCGATTCAAGCTCGGTA -ACGGAAAGCGATTCAAGCTGCCTA -ACGGAAAGCGATTCAAGCCCACTA -ACGGAAAGCGATTCAAGCGGAGTA -ACGGAAAGCGATTCAAGCTCGTCT -ACGGAAAGCGATTCAAGCTGCACT -ACGGAAAGCGATTCAAGCCTGACT -ACGGAAAGCGATTCAAGCCAACCT -ACGGAAAGCGATTCAAGCGCTACT -ACGGAAAGCGATTCAAGCGGATCT -ACGGAAAGCGATTCAAGCAAGGCT -ACGGAAAGCGATTCAAGCTCAACC -ACGGAAAGCGATTCAAGCTGTTCC -ACGGAAAGCGATTCAAGCATTCCC -ACGGAAAGCGATTCAAGCTTCTCG -ACGGAAAGCGATTCAAGCTAGACG -ACGGAAAGCGATTCAAGCGTAACG -ACGGAAAGCGATTCAAGCACTTCG -ACGGAAAGCGATTCAAGCTACGCA -ACGGAAAGCGATTCAAGCCTTGCA -ACGGAAAGCGATTCAAGCCGAACA -ACGGAAAGCGATTCAAGCCAGTCA -ACGGAAAGCGATTCAAGCGATCCA -ACGGAAAGCGATTCAAGCACGACA -ACGGAAAGCGATTCAAGCAGCTCA -ACGGAAAGCGATTCAAGCTCACGT -ACGGAAAGCGATTCAAGCCGTAGT -ACGGAAAGCGATTCAAGCGTCAGT -ACGGAAAGCGATTCAAGCGAAGGT -ACGGAAAGCGATTCAAGCAACCGT -ACGGAAAGCGATTCAAGCTTGTGC -ACGGAAAGCGATTCAAGCCTAAGC -ACGGAAAGCGATTCAAGCACTAGC -ACGGAAAGCGATTCAAGCAGATGC -ACGGAAAGCGATTCAAGCTGAAGG -ACGGAAAGCGATTCAAGCCAATGG -ACGGAAAGCGATTCAAGCATGAGG -ACGGAAAGCGATTCAAGCAATGGG -ACGGAAAGCGATTCAAGCTCCTGA -ACGGAAAGCGATTCAAGCTAGCGA -ACGGAAAGCGATTCAAGCCACAGA -ACGGAAAGCGATTCAAGCGCAAGA -ACGGAAAGCGATTCAAGCGGTTGA -ACGGAAAGCGATTCAAGCTCCGAT -ACGGAAAGCGATTCAAGCTGGCAT -ACGGAAAGCGATTCAAGCCGAGAT -ACGGAAAGCGATTCAAGCTACCAC -ACGGAAAGCGATTCAAGCCAGAAC -ACGGAAAGCGATTCAAGCGTCTAC -ACGGAAAGCGATTCAAGCACGTAC -ACGGAAAGCGATTCAAGCAGTGAC -ACGGAAAGCGATTCAAGCCTGTAG -ACGGAAAGCGATTCAAGCCCTAAG -ACGGAAAGCGATTCAAGCGTTCAG -ACGGAAAGCGATTCAAGCGCATAG -ACGGAAAGCGATTCAAGCGACAAG -ACGGAAAGCGATTCAAGCAAGCAG -ACGGAAAGCGATTCAAGCCGTCAA -ACGGAAAGCGATTCAAGCGCTGAA -ACGGAAAGCGATTCAAGCAGTACG -ACGGAAAGCGATTCAAGCATCCGA -ACGGAAAGCGATTCAAGCATGGGA -ACGGAAAGCGATTCAAGCGTGCAA -ACGGAAAGCGATTCAAGCGAGGAA -ACGGAAAGCGATTCAAGCCAGGTA -ACGGAAAGCGATTCAAGCGACTCT -ACGGAAAGCGATTCAAGCAGTCCT -ACGGAAAGCGATTCAAGCTAAGCC -ACGGAAAGCGATTCAAGCATAGCC -ACGGAAAGCGATTCAAGCTAACCG -ACGGAAAGCGATTCAAGCATGCCA -ACGGAAAGCGATCGTTCAGGAAAC -ACGGAAAGCGATCGTTCAAACACC -ACGGAAAGCGATCGTTCAATCGAG -ACGGAAAGCGATCGTTCACTCCTT -ACGGAAAGCGATCGTTCACCTGTT -ACGGAAAGCGATCGTTCACGGTTT -ACGGAAAGCGATCGTTCAGTGGTT -ACGGAAAGCGATCGTTCAGCCTTT -ACGGAAAGCGATCGTTCAGGTCTT -ACGGAAAGCGATCGTTCAACGCTT -ACGGAAAGCGATCGTTCAAGCGTT -ACGGAAAGCGATCGTTCATTCGTC -ACGGAAAGCGATCGTTCATCTCTC -ACGGAAAGCGATCGTTCATGGATC -ACGGAAAGCGATCGTTCACACTTC -ACGGAAAGCGATCGTTCAGTACTC -ACGGAAAGCGATCGTTCAGATGTC -ACGGAAAGCGATCGTTCAACAGTC -ACGGAAAGCGATCGTTCATTGCTG -ACGGAAAGCGATCGTTCATCCATG -ACGGAAAGCGATCGTTCATGTGTG -ACGGAAAGCGATCGTTCACTAGTG -ACGGAAAGCGATCGTTCACATCTG -ACGGAAAGCGATCGTTCAGAGTTG -ACGGAAAGCGATCGTTCAAGACTG -ACGGAAAGCGATCGTTCATCGGTA -ACGGAAAGCGATCGTTCATGCCTA -ACGGAAAGCGATCGTTCACCACTA -ACGGAAAGCGATCGTTCAGGAGTA -ACGGAAAGCGATCGTTCATCGTCT -ACGGAAAGCGATCGTTCATGCACT -ACGGAAAGCGATCGTTCACTGACT -ACGGAAAGCGATCGTTCACAACCT -ACGGAAAGCGATCGTTCAGCTACT -ACGGAAAGCGATCGTTCAGGATCT -ACGGAAAGCGATCGTTCAAAGGCT -ACGGAAAGCGATCGTTCATCAACC -ACGGAAAGCGATCGTTCATGTTCC -ACGGAAAGCGATCGTTCAATTCCC -ACGGAAAGCGATCGTTCATTCTCG -ACGGAAAGCGATCGTTCATAGACG -ACGGAAAGCGATCGTTCAGTAACG -ACGGAAAGCGATCGTTCAACTTCG -ACGGAAAGCGATCGTTCATACGCA -ACGGAAAGCGATCGTTCACTTGCA -ACGGAAAGCGATCGTTCACGAACA -ACGGAAAGCGATCGTTCACAGTCA -ACGGAAAGCGATCGTTCAGATCCA -ACGGAAAGCGATCGTTCAACGACA -ACGGAAAGCGATCGTTCAAGCTCA -ACGGAAAGCGATCGTTCATCACGT -ACGGAAAGCGATCGTTCACGTAGT -ACGGAAAGCGATCGTTCAGTCAGT -ACGGAAAGCGATCGTTCAGAAGGT -ACGGAAAGCGATCGTTCAAACCGT -ACGGAAAGCGATCGTTCATTGTGC -ACGGAAAGCGATCGTTCACTAAGC -ACGGAAAGCGATCGTTCAACTAGC -ACGGAAAGCGATCGTTCAAGATGC -ACGGAAAGCGATCGTTCATGAAGG -ACGGAAAGCGATCGTTCACAATGG -ACGGAAAGCGATCGTTCAATGAGG -ACGGAAAGCGATCGTTCAAATGGG -ACGGAAAGCGATCGTTCATCCTGA -ACGGAAAGCGATCGTTCATAGCGA -ACGGAAAGCGATCGTTCACACAGA -ACGGAAAGCGATCGTTCAGCAAGA -ACGGAAAGCGATCGTTCAGGTTGA -ACGGAAAGCGATCGTTCATCCGAT -ACGGAAAGCGATCGTTCATGGCAT -ACGGAAAGCGATCGTTCACGAGAT -ACGGAAAGCGATCGTTCATACCAC -ACGGAAAGCGATCGTTCACAGAAC -ACGGAAAGCGATCGTTCAGTCTAC -ACGGAAAGCGATCGTTCAACGTAC -ACGGAAAGCGATCGTTCAAGTGAC -ACGGAAAGCGATCGTTCACTGTAG -ACGGAAAGCGATCGTTCACCTAAG -ACGGAAAGCGATCGTTCAGTTCAG -ACGGAAAGCGATCGTTCAGCATAG -ACGGAAAGCGATCGTTCAGACAAG -ACGGAAAGCGATCGTTCAAAGCAG -ACGGAAAGCGATCGTTCACGTCAA -ACGGAAAGCGATCGTTCAGCTGAA -ACGGAAAGCGATCGTTCAAGTACG -ACGGAAAGCGATCGTTCAATCCGA -ACGGAAAGCGATCGTTCAATGGGA -ACGGAAAGCGATCGTTCAGTGCAA -ACGGAAAGCGATCGTTCAGAGGAA -ACGGAAAGCGATCGTTCACAGGTA -ACGGAAAGCGATCGTTCAGACTCT -ACGGAAAGCGATCGTTCAAGTCCT -ACGGAAAGCGATCGTTCATAAGCC -ACGGAAAGCGATCGTTCAATAGCC -ACGGAAAGCGATCGTTCATAACCG -ACGGAAAGCGATCGTTCAATGCCA -ACGGAAAGCGATAGTCGTGGAAAC -ACGGAAAGCGATAGTCGTAACACC -ACGGAAAGCGATAGTCGTATCGAG -ACGGAAAGCGATAGTCGTCTCCTT -ACGGAAAGCGATAGTCGTCCTGTT -ACGGAAAGCGATAGTCGTCGGTTT -ACGGAAAGCGATAGTCGTGTGGTT -ACGGAAAGCGATAGTCGTGCCTTT -ACGGAAAGCGATAGTCGTGGTCTT -ACGGAAAGCGATAGTCGTACGCTT -ACGGAAAGCGATAGTCGTAGCGTT -ACGGAAAGCGATAGTCGTTTCGTC -ACGGAAAGCGATAGTCGTTCTCTC -ACGGAAAGCGATAGTCGTTGGATC -ACGGAAAGCGATAGTCGTCACTTC -ACGGAAAGCGATAGTCGTGTACTC -ACGGAAAGCGATAGTCGTGATGTC -ACGGAAAGCGATAGTCGTACAGTC -ACGGAAAGCGATAGTCGTTTGCTG -ACGGAAAGCGATAGTCGTTCCATG -ACGGAAAGCGATAGTCGTTGTGTG -ACGGAAAGCGATAGTCGTCTAGTG -ACGGAAAGCGATAGTCGTCATCTG -ACGGAAAGCGATAGTCGTGAGTTG -ACGGAAAGCGATAGTCGTAGACTG -ACGGAAAGCGATAGTCGTTCGGTA -ACGGAAAGCGATAGTCGTTGCCTA -ACGGAAAGCGATAGTCGTCCACTA -ACGGAAAGCGATAGTCGTGGAGTA -ACGGAAAGCGATAGTCGTTCGTCT -ACGGAAAGCGATAGTCGTTGCACT -ACGGAAAGCGATAGTCGTCTGACT -ACGGAAAGCGATAGTCGTCAACCT -ACGGAAAGCGATAGTCGTGCTACT -ACGGAAAGCGATAGTCGTGGATCT -ACGGAAAGCGATAGTCGTAAGGCT -ACGGAAAGCGATAGTCGTTCAACC -ACGGAAAGCGATAGTCGTTGTTCC -ACGGAAAGCGATAGTCGTATTCCC -ACGGAAAGCGATAGTCGTTTCTCG -ACGGAAAGCGATAGTCGTTAGACG -ACGGAAAGCGATAGTCGTGTAACG -ACGGAAAGCGATAGTCGTACTTCG -ACGGAAAGCGATAGTCGTTACGCA -ACGGAAAGCGATAGTCGTCTTGCA -ACGGAAAGCGATAGTCGTCGAACA -ACGGAAAGCGATAGTCGTCAGTCA -ACGGAAAGCGATAGTCGTGATCCA -ACGGAAAGCGATAGTCGTACGACA -ACGGAAAGCGATAGTCGTAGCTCA -ACGGAAAGCGATAGTCGTTCACGT -ACGGAAAGCGATAGTCGTCGTAGT -ACGGAAAGCGATAGTCGTGTCAGT -ACGGAAAGCGATAGTCGTGAAGGT -ACGGAAAGCGATAGTCGTAACCGT -ACGGAAAGCGATAGTCGTTTGTGC -ACGGAAAGCGATAGTCGTCTAAGC -ACGGAAAGCGATAGTCGTACTAGC -ACGGAAAGCGATAGTCGTAGATGC -ACGGAAAGCGATAGTCGTTGAAGG -ACGGAAAGCGATAGTCGTCAATGG -ACGGAAAGCGATAGTCGTATGAGG -ACGGAAAGCGATAGTCGTAATGGG -ACGGAAAGCGATAGTCGTTCCTGA -ACGGAAAGCGATAGTCGTTAGCGA -ACGGAAAGCGATAGTCGTCACAGA -ACGGAAAGCGATAGTCGTGCAAGA -ACGGAAAGCGATAGTCGTGGTTGA -ACGGAAAGCGATAGTCGTTCCGAT -ACGGAAAGCGATAGTCGTTGGCAT -ACGGAAAGCGATAGTCGTCGAGAT -ACGGAAAGCGATAGTCGTTACCAC -ACGGAAAGCGATAGTCGTCAGAAC -ACGGAAAGCGATAGTCGTGTCTAC -ACGGAAAGCGATAGTCGTACGTAC -ACGGAAAGCGATAGTCGTAGTGAC -ACGGAAAGCGATAGTCGTCTGTAG -ACGGAAAGCGATAGTCGTCCTAAG -ACGGAAAGCGATAGTCGTGTTCAG -ACGGAAAGCGATAGTCGTGCATAG -ACGGAAAGCGATAGTCGTGACAAG -ACGGAAAGCGATAGTCGTAAGCAG -ACGGAAAGCGATAGTCGTCGTCAA -ACGGAAAGCGATAGTCGTGCTGAA -ACGGAAAGCGATAGTCGTAGTACG -ACGGAAAGCGATAGTCGTATCCGA -ACGGAAAGCGATAGTCGTATGGGA -ACGGAAAGCGATAGTCGTGTGCAA -ACGGAAAGCGATAGTCGTGAGGAA -ACGGAAAGCGATAGTCGTCAGGTA -ACGGAAAGCGATAGTCGTGACTCT -ACGGAAAGCGATAGTCGTAGTCCT -ACGGAAAGCGATAGTCGTTAAGCC -ACGGAAAGCGATAGTCGTATAGCC -ACGGAAAGCGATAGTCGTTAACCG -ACGGAAAGCGATAGTCGTATGCCA -ACGGAAAGCGATAGTGTCGGAAAC -ACGGAAAGCGATAGTGTCAACACC -ACGGAAAGCGATAGTGTCATCGAG -ACGGAAAGCGATAGTGTCCTCCTT -ACGGAAAGCGATAGTGTCCCTGTT -ACGGAAAGCGATAGTGTCCGGTTT -ACGGAAAGCGATAGTGTCGTGGTT -ACGGAAAGCGATAGTGTCGCCTTT -ACGGAAAGCGATAGTGTCGGTCTT -ACGGAAAGCGATAGTGTCACGCTT -ACGGAAAGCGATAGTGTCAGCGTT -ACGGAAAGCGATAGTGTCTTCGTC -ACGGAAAGCGATAGTGTCTCTCTC -ACGGAAAGCGATAGTGTCTGGATC -ACGGAAAGCGATAGTGTCCACTTC -ACGGAAAGCGATAGTGTCGTACTC -ACGGAAAGCGATAGTGTCGATGTC -ACGGAAAGCGATAGTGTCACAGTC -ACGGAAAGCGATAGTGTCTTGCTG -ACGGAAAGCGATAGTGTCTCCATG -ACGGAAAGCGATAGTGTCTGTGTG -ACGGAAAGCGATAGTGTCCTAGTG -ACGGAAAGCGATAGTGTCCATCTG -ACGGAAAGCGATAGTGTCGAGTTG -ACGGAAAGCGATAGTGTCAGACTG -ACGGAAAGCGATAGTGTCTCGGTA -ACGGAAAGCGATAGTGTCTGCCTA -ACGGAAAGCGATAGTGTCCCACTA -ACGGAAAGCGATAGTGTCGGAGTA -ACGGAAAGCGATAGTGTCTCGTCT -ACGGAAAGCGATAGTGTCTGCACT -ACGGAAAGCGATAGTGTCCTGACT -ACGGAAAGCGATAGTGTCCAACCT -ACGGAAAGCGATAGTGTCGCTACT -ACGGAAAGCGATAGTGTCGGATCT -ACGGAAAGCGATAGTGTCAAGGCT -ACGGAAAGCGATAGTGTCTCAACC -ACGGAAAGCGATAGTGTCTGTTCC -ACGGAAAGCGATAGTGTCATTCCC -ACGGAAAGCGATAGTGTCTTCTCG -ACGGAAAGCGATAGTGTCTAGACG -ACGGAAAGCGATAGTGTCGTAACG -ACGGAAAGCGATAGTGTCACTTCG -ACGGAAAGCGATAGTGTCTACGCA -ACGGAAAGCGATAGTGTCCTTGCA -ACGGAAAGCGATAGTGTCCGAACA -ACGGAAAGCGATAGTGTCCAGTCA -ACGGAAAGCGATAGTGTCGATCCA -ACGGAAAGCGATAGTGTCACGACA -ACGGAAAGCGATAGTGTCAGCTCA -ACGGAAAGCGATAGTGTCTCACGT -ACGGAAAGCGATAGTGTCCGTAGT -ACGGAAAGCGATAGTGTCGTCAGT -ACGGAAAGCGATAGTGTCGAAGGT -ACGGAAAGCGATAGTGTCAACCGT -ACGGAAAGCGATAGTGTCTTGTGC -ACGGAAAGCGATAGTGTCCTAAGC -ACGGAAAGCGATAGTGTCACTAGC -ACGGAAAGCGATAGTGTCAGATGC -ACGGAAAGCGATAGTGTCTGAAGG -ACGGAAAGCGATAGTGTCCAATGG -ACGGAAAGCGATAGTGTCATGAGG -ACGGAAAGCGATAGTGTCAATGGG -ACGGAAAGCGATAGTGTCTCCTGA -ACGGAAAGCGATAGTGTCTAGCGA -ACGGAAAGCGATAGTGTCCACAGA -ACGGAAAGCGATAGTGTCGCAAGA -ACGGAAAGCGATAGTGTCGGTTGA -ACGGAAAGCGATAGTGTCTCCGAT -ACGGAAAGCGATAGTGTCTGGCAT -ACGGAAAGCGATAGTGTCCGAGAT -ACGGAAAGCGATAGTGTCTACCAC -ACGGAAAGCGATAGTGTCCAGAAC -ACGGAAAGCGATAGTGTCGTCTAC -ACGGAAAGCGATAGTGTCACGTAC -ACGGAAAGCGATAGTGTCAGTGAC -ACGGAAAGCGATAGTGTCCTGTAG -ACGGAAAGCGATAGTGTCCCTAAG -ACGGAAAGCGATAGTGTCGTTCAG -ACGGAAAGCGATAGTGTCGCATAG -ACGGAAAGCGATAGTGTCGACAAG -ACGGAAAGCGATAGTGTCAAGCAG -ACGGAAAGCGATAGTGTCCGTCAA -ACGGAAAGCGATAGTGTCGCTGAA -ACGGAAAGCGATAGTGTCAGTACG -ACGGAAAGCGATAGTGTCATCCGA -ACGGAAAGCGATAGTGTCATGGGA -ACGGAAAGCGATAGTGTCGTGCAA -ACGGAAAGCGATAGTGTCGAGGAA -ACGGAAAGCGATAGTGTCCAGGTA -ACGGAAAGCGATAGTGTCGACTCT -ACGGAAAGCGATAGTGTCAGTCCT -ACGGAAAGCGATAGTGTCTAAGCC -ACGGAAAGCGATAGTGTCATAGCC -ACGGAAAGCGATAGTGTCTAACCG -ACGGAAAGCGATAGTGTCATGCCA -ACGGAAAGCGATGGTGAAGGAAAC -ACGGAAAGCGATGGTGAAAACACC -ACGGAAAGCGATGGTGAAATCGAG -ACGGAAAGCGATGGTGAACTCCTT -ACGGAAAGCGATGGTGAACCTGTT -ACGGAAAGCGATGGTGAACGGTTT -ACGGAAAGCGATGGTGAAGTGGTT -ACGGAAAGCGATGGTGAAGCCTTT -ACGGAAAGCGATGGTGAAGGTCTT -ACGGAAAGCGATGGTGAAACGCTT -ACGGAAAGCGATGGTGAAAGCGTT -ACGGAAAGCGATGGTGAATTCGTC -ACGGAAAGCGATGGTGAATCTCTC -ACGGAAAGCGATGGTGAATGGATC -ACGGAAAGCGATGGTGAACACTTC -ACGGAAAGCGATGGTGAAGTACTC -ACGGAAAGCGATGGTGAAGATGTC -ACGGAAAGCGATGGTGAAACAGTC -ACGGAAAGCGATGGTGAATTGCTG -ACGGAAAGCGATGGTGAATCCATG -ACGGAAAGCGATGGTGAATGTGTG -ACGGAAAGCGATGGTGAACTAGTG -ACGGAAAGCGATGGTGAACATCTG -ACGGAAAGCGATGGTGAAGAGTTG -ACGGAAAGCGATGGTGAAAGACTG -ACGGAAAGCGATGGTGAATCGGTA -ACGGAAAGCGATGGTGAATGCCTA -ACGGAAAGCGATGGTGAACCACTA -ACGGAAAGCGATGGTGAAGGAGTA -ACGGAAAGCGATGGTGAATCGTCT -ACGGAAAGCGATGGTGAATGCACT -ACGGAAAGCGATGGTGAACTGACT -ACGGAAAGCGATGGTGAACAACCT -ACGGAAAGCGATGGTGAAGCTACT -ACGGAAAGCGATGGTGAAGGATCT -ACGGAAAGCGATGGTGAAAAGGCT -ACGGAAAGCGATGGTGAATCAACC -ACGGAAAGCGATGGTGAATGTTCC -ACGGAAAGCGATGGTGAAATTCCC -ACGGAAAGCGATGGTGAATTCTCG -ACGGAAAGCGATGGTGAATAGACG -ACGGAAAGCGATGGTGAAGTAACG -ACGGAAAGCGATGGTGAAACTTCG -ACGGAAAGCGATGGTGAATACGCA -ACGGAAAGCGATGGTGAACTTGCA -ACGGAAAGCGATGGTGAACGAACA -ACGGAAAGCGATGGTGAACAGTCA -ACGGAAAGCGATGGTGAAGATCCA -ACGGAAAGCGATGGTGAAACGACA -ACGGAAAGCGATGGTGAAAGCTCA -ACGGAAAGCGATGGTGAATCACGT -ACGGAAAGCGATGGTGAACGTAGT -ACGGAAAGCGATGGTGAAGTCAGT -ACGGAAAGCGATGGTGAAGAAGGT -ACGGAAAGCGATGGTGAAAACCGT -ACGGAAAGCGATGGTGAATTGTGC -ACGGAAAGCGATGGTGAACTAAGC -ACGGAAAGCGATGGTGAAACTAGC -ACGGAAAGCGATGGTGAAAGATGC -ACGGAAAGCGATGGTGAATGAAGG -ACGGAAAGCGATGGTGAACAATGG -ACGGAAAGCGATGGTGAAATGAGG -ACGGAAAGCGATGGTGAAAATGGG -ACGGAAAGCGATGGTGAATCCTGA -ACGGAAAGCGATGGTGAATAGCGA -ACGGAAAGCGATGGTGAACACAGA -ACGGAAAGCGATGGTGAAGCAAGA -ACGGAAAGCGATGGTGAAGGTTGA -ACGGAAAGCGATGGTGAATCCGAT -ACGGAAAGCGATGGTGAATGGCAT -ACGGAAAGCGATGGTGAACGAGAT -ACGGAAAGCGATGGTGAATACCAC -ACGGAAAGCGATGGTGAACAGAAC -ACGGAAAGCGATGGTGAAGTCTAC -ACGGAAAGCGATGGTGAAACGTAC -ACGGAAAGCGATGGTGAAAGTGAC -ACGGAAAGCGATGGTGAACTGTAG -ACGGAAAGCGATGGTGAACCTAAG -ACGGAAAGCGATGGTGAAGTTCAG -ACGGAAAGCGATGGTGAAGCATAG -ACGGAAAGCGATGGTGAAGACAAG -ACGGAAAGCGATGGTGAAAAGCAG -ACGGAAAGCGATGGTGAACGTCAA -ACGGAAAGCGATGGTGAAGCTGAA -ACGGAAAGCGATGGTGAAAGTACG -ACGGAAAGCGATGGTGAAATCCGA -ACGGAAAGCGATGGTGAAATGGGA -ACGGAAAGCGATGGTGAAGTGCAA -ACGGAAAGCGATGGTGAAGAGGAA -ACGGAAAGCGATGGTGAACAGGTA -ACGGAAAGCGATGGTGAAGACTCT -ACGGAAAGCGATGGTGAAAGTCCT -ACGGAAAGCGATGGTGAATAAGCC -ACGGAAAGCGATGGTGAAATAGCC -ACGGAAAGCGATGGTGAATAACCG -ACGGAAAGCGATGGTGAAATGCCA -ACGGAAAGCGATCGTAACGGAAAC -ACGGAAAGCGATCGTAACAACACC -ACGGAAAGCGATCGTAACATCGAG -ACGGAAAGCGATCGTAACCTCCTT -ACGGAAAGCGATCGTAACCCTGTT -ACGGAAAGCGATCGTAACCGGTTT -ACGGAAAGCGATCGTAACGTGGTT -ACGGAAAGCGATCGTAACGCCTTT -ACGGAAAGCGATCGTAACGGTCTT -ACGGAAAGCGATCGTAACACGCTT -ACGGAAAGCGATCGTAACAGCGTT -ACGGAAAGCGATCGTAACTTCGTC -ACGGAAAGCGATCGTAACTCTCTC -ACGGAAAGCGATCGTAACTGGATC -ACGGAAAGCGATCGTAACCACTTC -ACGGAAAGCGATCGTAACGTACTC -ACGGAAAGCGATCGTAACGATGTC -ACGGAAAGCGATCGTAACACAGTC -ACGGAAAGCGATCGTAACTTGCTG -ACGGAAAGCGATCGTAACTCCATG -ACGGAAAGCGATCGTAACTGTGTG -ACGGAAAGCGATCGTAACCTAGTG -ACGGAAAGCGATCGTAACCATCTG -ACGGAAAGCGATCGTAACGAGTTG -ACGGAAAGCGATCGTAACAGACTG -ACGGAAAGCGATCGTAACTCGGTA -ACGGAAAGCGATCGTAACTGCCTA -ACGGAAAGCGATCGTAACCCACTA -ACGGAAAGCGATCGTAACGGAGTA -ACGGAAAGCGATCGTAACTCGTCT -ACGGAAAGCGATCGTAACTGCACT -ACGGAAAGCGATCGTAACCTGACT -ACGGAAAGCGATCGTAACCAACCT -ACGGAAAGCGATCGTAACGCTACT -ACGGAAAGCGATCGTAACGGATCT -ACGGAAAGCGATCGTAACAAGGCT -ACGGAAAGCGATCGTAACTCAACC -ACGGAAAGCGATCGTAACTGTTCC -ACGGAAAGCGATCGTAACATTCCC -ACGGAAAGCGATCGTAACTTCTCG -ACGGAAAGCGATCGTAACTAGACG -ACGGAAAGCGATCGTAACGTAACG -ACGGAAAGCGATCGTAACACTTCG -ACGGAAAGCGATCGTAACTACGCA -ACGGAAAGCGATCGTAACCTTGCA -ACGGAAAGCGATCGTAACCGAACA -ACGGAAAGCGATCGTAACCAGTCA -ACGGAAAGCGATCGTAACGATCCA -ACGGAAAGCGATCGTAACACGACA -ACGGAAAGCGATCGTAACAGCTCA -ACGGAAAGCGATCGTAACTCACGT -ACGGAAAGCGATCGTAACCGTAGT -ACGGAAAGCGATCGTAACGTCAGT -ACGGAAAGCGATCGTAACGAAGGT -ACGGAAAGCGATCGTAACAACCGT -ACGGAAAGCGATCGTAACTTGTGC -ACGGAAAGCGATCGTAACCTAAGC -ACGGAAAGCGATCGTAACACTAGC -ACGGAAAGCGATCGTAACAGATGC -ACGGAAAGCGATCGTAACTGAAGG -ACGGAAAGCGATCGTAACCAATGG -ACGGAAAGCGATCGTAACATGAGG -ACGGAAAGCGATCGTAACAATGGG -ACGGAAAGCGATCGTAACTCCTGA -ACGGAAAGCGATCGTAACTAGCGA -ACGGAAAGCGATCGTAACCACAGA -ACGGAAAGCGATCGTAACGCAAGA -ACGGAAAGCGATCGTAACGGTTGA -ACGGAAAGCGATCGTAACTCCGAT -ACGGAAAGCGATCGTAACTGGCAT -ACGGAAAGCGATCGTAACCGAGAT -ACGGAAAGCGATCGTAACTACCAC -ACGGAAAGCGATCGTAACCAGAAC -ACGGAAAGCGATCGTAACGTCTAC -ACGGAAAGCGATCGTAACACGTAC -ACGGAAAGCGATCGTAACAGTGAC -ACGGAAAGCGATCGTAACCTGTAG -ACGGAAAGCGATCGTAACCCTAAG -ACGGAAAGCGATCGTAACGTTCAG -ACGGAAAGCGATCGTAACGCATAG -ACGGAAAGCGATCGTAACGACAAG -ACGGAAAGCGATCGTAACAAGCAG -ACGGAAAGCGATCGTAACCGTCAA -ACGGAAAGCGATCGTAACGCTGAA -ACGGAAAGCGATCGTAACAGTACG -ACGGAAAGCGATCGTAACATCCGA -ACGGAAAGCGATCGTAACATGGGA -ACGGAAAGCGATCGTAACGTGCAA -ACGGAAAGCGATCGTAACGAGGAA -ACGGAAAGCGATCGTAACCAGGTA -ACGGAAAGCGATCGTAACGACTCT -ACGGAAAGCGATCGTAACAGTCCT -ACGGAAAGCGATCGTAACTAAGCC -ACGGAAAGCGATCGTAACATAGCC -ACGGAAAGCGATCGTAACTAACCG -ACGGAAAGCGATCGTAACATGCCA -ACGGAAAGCGATTGCTTGGGAAAC -ACGGAAAGCGATTGCTTGAACACC -ACGGAAAGCGATTGCTTGATCGAG -ACGGAAAGCGATTGCTTGCTCCTT -ACGGAAAGCGATTGCTTGCCTGTT -ACGGAAAGCGATTGCTTGCGGTTT -ACGGAAAGCGATTGCTTGGTGGTT -ACGGAAAGCGATTGCTTGGCCTTT -ACGGAAAGCGATTGCTTGGGTCTT -ACGGAAAGCGATTGCTTGACGCTT -ACGGAAAGCGATTGCTTGAGCGTT -ACGGAAAGCGATTGCTTGTTCGTC -ACGGAAAGCGATTGCTTGTCTCTC -ACGGAAAGCGATTGCTTGTGGATC -ACGGAAAGCGATTGCTTGCACTTC -ACGGAAAGCGATTGCTTGGTACTC -ACGGAAAGCGATTGCTTGGATGTC -ACGGAAAGCGATTGCTTGACAGTC -ACGGAAAGCGATTGCTTGTTGCTG -ACGGAAAGCGATTGCTTGTCCATG -ACGGAAAGCGATTGCTTGTGTGTG -ACGGAAAGCGATTGCTTGCTAGTG -ACGGAAAGCGATTGCTTGCATCTG -ACGGAAAGCGATTGCTTGGAGTTG -ACGGAAAGCGATTGCTTGAGACTG -ACGGAAAGCGATTGCTTGTCGGTA -ACGGAAAGCGATTGCTTGTGCCTA -ACGGAAAGCGATTGCTTGCCACTA -ACGGAAAGCGATTGCTTGGGAGTA -ACGGAAAGCGATTGCTTGTCGTCT -ACGGAAAGCGATTGCTTGTGCACT -ACGGAAAGCGATTGCTTGCTGACT -ACGGAAAGCGATTGCTTGCAACCT -ACGGAAAGCGATTGCTTGGCTACT -ACGGAAAGCGATTGCTTGGGATCT -ACGGAAAGCGATTGCTTGAAGGCT -ACGGAAAGCGATTGCTTGTCAACC -ACGGAAAGCGATTGCTTGTGTTCC -ACGGAAAGCGATTGCTTGATTCCC -ACGGAAAGCGATTGCTTGTTCTCG -ACGGAAAGCGATTGCTTGTAGACG -ACGGAAAGCGATTGCTTGGTAACG -ACGGAAAGCGATTGCTTGACTTCG -ACGGAAAGCGATTGCTTGTACGCA -ACGGAAAGCGATTGCTTGCTTGCA -ACGGAAAGCGATTGCTTGCGAACA -ACGGAAAGCGATTGCTTGCAGTCA -ACGGAAAGCGATTGCTTGGATCCA -ACGGAAAGCGATTGCTTGACGACA -ACGGAAAGCGATTGCTTGAGCTCA -ACGGAAAGCGATTGCTTGTCACGT -ACGGAAAGCGATTGCTTGCGTAGT -ACGGAAAGCGATTGCTTGGTCAGT -ACGGAAAGCGATTGCTTGGAAGGT -ACGGAAAGCGATTGCTTGAACCGT -ACGGAAAGCGATTGCTTGTTGTGC -ACGGAAAGCGATTGCTTGCTAAGC -ACGGAAAGCGATTGCTTGACTAGC -ACGGAAAGCGATTGCTTGAGATGC -ACGGAAAGCGATTGCTTGTGAAGG -ACGGAAAGCGATTGCTTGCAATGG -ACGGAAAGCGATTGCTTGATGAGG -ACGGAAAGCGATTGCTTGAATGGG -ACGGAAAGCGATTGCTTGTCCTGA -ACGGAAAGCGATTGCTTGTAGCGA -ACGGAAAGCGATTGCTTGCACAGA -ACGGAAAGCGATTGCTTGGCAAGA -ACGGAAAGCGATTGCTTGGGTTGA -ACGGAAAGCGATTGCTTGTCCGAT -ACGGAAAGCGATTGCTTGTGGCAT -ACGGAAAGCGATTGCTTGCGAGAT -ACGGAAAGCGATTGCTTGTACCAC -ACGGAAAGCGATTGCTTGCAGAAC -ACGGAAAGCGATTGCTTGGTCTAC -ACGGAAAGCGATTGCTTGACGTAC -ACGGAAAGCGATTGCTTGAGTGAC -ACGGAAAGCGATTGCTTGCTGTAG -ACGGAAAGCGATTGCTTGCCTAAG -ACGGAAAGCGATTGCTTGGTTCAG -ACGGAAAGCGATTGCTTGGCATAG -ACGGAAAGCGATTGCTTGGACAAG -ACGGAAAGCGATTGCTTGAAGCAG -ACGGAAAGCGATTGCTTGCGTCAA -ACGGAAAGCGATTGCTTGGCTGAA -ACGGAAAGCGATTGCTTGAGTACG -ACGGAAAGCGATTGCTTGATCCGA -ACGGAAAGCGATTGCTTGATGGGA -ACGGAAAGCGATTGCTTGGTGCAA -ACGGAAAGCGATTGCTTGGAGGAA -ACGGAAAGCGATTGCTTGCAGGTA -ACGGAAAGCGATTGCTTGGACTCT -ACGGAAAGCGATTGCTTGAGTCCT -ACGGAAAGCGATTGCTTGTAAGCC -ACGGAAAGCGATTGCTTGATAGCC -ACGGAAAGCGATTGCTTGTAACCG -ACGGAAAGCGATTGCTTGATGCCA -ACGGAAAGCGATAGCCTAGGAAAC -ACGGAAAGCGATAGCCTAAACACC -ACGGAAAGCGATAGCCTAATCGAG -ACGGAAAGCGATAGCCTACTCCTT -ACGGAAAGCGATAGCCTACCTGTT -ACGGAAAGCGATAGCCTACGGTTT -ACGGAAAGCGATAGCCTAGTGGTT -ACGGAAAGCGATAGCCTAGCCTTT -ACGGAAAGCGATAGCCTAGGTCTT -ACGGAAAGCGATAGCCTAACGCTT -ACGGAAAGCGATAGCCTAAGCGTT -ACGGAAAGCGATAGCCTATTCGTC -ACGGAAAGCGATAGCCTATCTCTC -ACGGAAAGCGATAGCCTATGGATC -ACGGAAAGCGATAGCCTACACTTC -ACGGAAAGCGATAGCCTAGTACTC -ACGGAAAGCGATAGCCTAGATGTC -ACGGAAAGCGATAGCCTAACAGTC -ACGGAAAGCGATAGCCTATTGCTG -ACGGAAAGCGATAGCCTATCCATG -ACGGAAAGCGATAGCCTATGTGTG -ACGGAAAGCGATAGCCTACTAGTG -ACGGAAAGCGATAGCCTACATCTG -ACGGAAAGCGATAGCCTAGAGTTG -ACGGAAAGCGATAGCCTAAGACTG -ACGGAAAGCGATAGCCTATCGGTA -ACGGAAAGCGATAGCCTATGCCTA -ACGGAAAGCGATAGCCTACCACTA -ACGGAAAGCGATAGCCTAGGAGTA -ACGGAAAGCGATAGCCTATCGTCT -ACGGAAAGCGATAGCCTATGCACT -ACGGAAAGCGATAGCCTACTGACT -ACGGAAAGCGATAGCCTACAACCT -ACGGAAAGCGATAGCCTAGCTACT -ACGGAAAGCGATAGCCTAGGATCT -ACGGAAAGCGATAGCCTAAAGGCT -ACGGAAAGCGATAGCCTATCAACC -ACGGAAAGCGATAGCCTATGTTCC -ACGGAAAGCGATAGCCTAATTCCC -ACGGAAAGCGATAGCCTATTCTCG -ACGGAAAGCGATAGCCTATAGACG -ACGGAAAGCGATAGCCTAGTAACG -ACGGAAAGCGATAGCCTAACTTCG -ACGGAAAGCGATAGCCTATACGCA -ACGGAAAGCGATAGCCTACTTGCA -ACGGAAAGCGATAGCCTACGAACA -ACGGAAAGCGATAGCCTACAGTCA -ACGGAAAGCGATAGCCTAGATCCA -ACGGAAAGCGATAGCCTAACGACA -ACGGAAAGCGATAGCCTAAGCTCA -ACGGAAAGCGATAGCCTATCACGT -ACGGAAAGCGATAGCCTACGTAGT -ACGGAAAGCGATAGCCTAGTCAGT -ACGGAAAGCGATAGCCTAGAAGGT -ACGGAAAGCGATAGCCTAAACCGT -ACGGAAAGCGATAGCCTATTGTGC -ACGGAAAGCGATAGCCTACTAAGC -ACGGAAAGCGATAGCCTAACTAGC -ACGGAAAGCGATAGCCTAAGATGC -ACGGAAAGCGATAGCCTATGAAGG -ACGGAAAGCGATAGCCTACAATGG -ACGGAAAGCGATAGCCTAATGAGG -ACGGAAAGCGATAGCCTAAATGGG -ACGGAAAGCGATAGCCTATCCTGA -ACGGAAAGCGATAGCCTATAGCGA -ACGGAAAGCGATAGCCTACACAGA -ACGGAAAGCGATAGCCTAGCAAGA -ACGGAAAGCGATAGCCTAGGTTGA -ACGGAAAGCGATAGCCTATCCGAT -ACGGAAAGCGATAGCCTATGGCAT -ACGGAAAGCGATAGCCTACGAGAT -ACGGAAAGCGATAGCCTATACCAC -ACGGAAAGCGATAGCCTACAGAAC -ACGGAAAGCGATAGCCTAGTCTAC -ACGGAAAGCGATAGCCTAACGTAC -ACGGAAAGCGATAGCCTAAGTGAC -ACGGAAAGCGATAGCCTACTGTAG -ACGGAAAGCGATAGCCTACCTAAG -ACGGAAAGCGATAGCCTAGTTCAG -ACGGAAAGCGATAGCCTAGCATAG -ACGGAAAGCGATAGCCTAGACAAG -ACGGAAAGCGATAGCCTAAAGCAG -ACGGAAAGCGATAGCCTACGTCAA -ACGGAAAGCGATAGCCTAGCTGAA -ACGGAAAGCGATAGCCTAAGTACG -ACGGAAAGCGATAGCCTAATCCGA -ACGGAAAGCGATAGCCTAATGGGA -ACGGAAAGCGATAGCCTAGTGCAA -ACGGAAAGCGATAGCCTAGAGGAA -ACGGAAAGCGATAGCCTACAGGTA -ACGGAAAGCGATAGCCTAGACTCT -ACGGAAAGCGATAGCCTAAGTCCT -ACGGAAAGCGATAGCCTATAAGCC -ACGGAAAGCGATAGCCTAATAGCC -ACGGAAAGCGATAGCCTATAACCG -ACGGAAAGCGATAGCCTAATGCCA -ACGGAAAGCGATAGCACTGGAAAC -ACGGAAAGCGATAGCACTAACACC -ACGGAAAGCGATAGCACTATCGAG -ACGGAAAGCGATAGCACTCTCCTT -ACGGAAAGCGATAGCACTCCTGTT -ACGGAAAGCGATAGCACTCGGTTT -ACGGAAAGCGATAGCACTGTGGTT -ACGGAAAGCGATAGCACTGCCTTT -ACGGAAAGCGATAGCACTGGTCTT -ACGGAAAGCGATAGCACTACGCTT -ACGGAAAGCGATAGCACTAGCGTT -ACGGAAAGCGATAGCACTTTCGTC -ACGGAAAGCGATAGCACTTCTCTC -ACGGAAAGCGATAGCACTTGGATC -ACGGAAAGCGATAGCACTCACTTC -ACGGAAAGCGATAGCACTGTACTC -ACGGAAAGCGATAGCACTGATGTC -ACGGAAAGCGATAGCACTACAGTC -ACGGAAAGCGATAGCACTTTGCTG -ACGGAAAGCGATAGCACTTCCATG -ACGGAAAGCGATAGCACTTGTGTG -ACGGAAAGCGATAGCACTCTAGTG -ACGGAAAGCGATAGCACTCATCTG -ACGGAAAGCGATAGCACTGAGTTG -ACGGAAAGCGATAGCACTAGACTG -ACGGAAAGCGATAGCACTTCGGTA -ACGGAAAGCGATAGCACTTGCCTA -ACGGAAAGCGATAGCACTCCACTA -ACGGAAAGCGATAGCACTGGAGTA -ACGGAAAGCGATAGCACTTCGTCT -ACGGAAAGCGATAGCACTTGCACT -ACGGAAAGCGATAGCACTCTGACT -ACGGAAAGCGATAGCACTCAACCT -ACGGAAAGCGATAGCACTGCTACT -ACGGAAAGCGATAGCACTGGATCT -ACGGAAAGCGATAGCACTAAGGCT -ACGGAAAGCGATAGCACTTCAACC -ACGGAAAGCGATAGCACTTGTTCC -ACGGAAAGCGATAGCACTATTCCC -ACGGAAAGCGATAGCACTTTCTCG -ACGGAAAGCGATAGCACTTAGACG -ACGGAAAGCGATAGCACTGTAACG -ACGGAAAGCGATAGCACTACTTCG -ACGGAAAGCGATAGCACTTACGCA -ACGGAAAGCGATAGCACTCTTGCA -ACGGAAAGCGATAGCACTCGAACA -ACGGAAAGCGATAGCACTCAGTCA -ACGGAAAGCGATAGCACTGATCCA -ACGGAAAGCGATAGCACTACGACA -ACGGAAAGCGATAGCACTAGCTCA -ACGGAAAGCGATAGCACTTCACGT -ACGGAAAGCGATAGCACTCGTAGT -ACGGAAAGCGATAGCACTGTCAGT -ACGGAAAGCGATAGCACTGAAGGT -ACGGAAAGCGATAGCACTAACCGT -ACGGAAAGCGATAGCACTTTGTGC -ACGGAAAGCGATAGCACTCTAAGC -ACGGAAAGCGATAGCACTACTAGC -ACGGAAAGCGATAGCACTAGATGC -ACGGAAAGCGATAGCACTTGAAGG -ACGGAAAGCGATAGCACTCAATGG -ACGGAAAGCGATAGCACTATGAGG -ACGGAAAGCGATAGCACTAATGGG -ACGGAAAGCGATAGCACTTCCTGA -ACGGAAAGCGATAGCACTTAGCGA -ACGGAAAGCGATAGCACTCACAGA -ACGGAAAGCGATAGCACTGCAAGA -ACGGAAAGCGATAGCACTGGTTGA -ACGGAAAGCGATAGCACTTCCGAT -ACGGAAAGCGATAGCACTTGGCAT -ACGGAAAGCGATAGCACTCGAGAT -ACGGAAAGCGATAGCACTTACCAC -ACGGAAAGCGATAGCACTCAGAAC -ACGGAAAGCGATAGCACTGTCTAC -ACGGAAAGCGATAGCACTACGTAC -ACGGAAAGCGATAGCACTAGTGAC -ACGGAAAGCGATAGCACTCTGTAG -ACGGAAAGCGATAGCACTCCTAAG -ACGGAAAGCGATAGCACTGTTCAG -ACGGAAAGCGATAGCACTGCATAG -ACGGAAAGCGATAGCACTGACAAG -ACGGAAAGCGATAGCACTAAGCAG -ACGGAAAGCGATAGCACTCGTCAA -ACGGAAAGCGATAGCACTGCTGAA -ACGGAAAGCGATAGCACTAGTACG -ACGGAAAGCGATAGCACTATCCGA -ACGGAAAGCGATAGCACTATGGGA -ACGGAAAGCGATAGCACTGTGCAA -ACGGAAAGCGATAGCACTGAGGAA -ACGGAAAGCGATAGCACTCAGGTA -ACGGAAAGCGATAGCACTGACTCT -ACGGAAAGCGATAGCACTAGTCCT -ACGGAAAGCGATAGCACTTAAGCC -ACGGAAAGCGATAGCACTATAGCC -ACGGAAAGCGATAGCACTTAACCG -ACGGAAAGCGATAGCACTATGCCA -ACGGAAAGCGATTGCAGAGGAAAC -ACGGAAAGCGATTGCAGAAACACC -ACGGAAAGCGATTGCAGAATCGAG -ACGGAAAGCGATTGCAGACTCCTT -ACGGAAAGCGATTGCAGACCTGTT -ACGGAAAGCGATTGCAGACGGTTT -ACGGAAAGCGATTGCAGAGTGGTT -ACGGAAAGCGATTGCAGAGCCTTT -ACGGAAAGCGATTGCAGAGGTCTT -ACGGAAAGCGATTGCAGAACGCTT -ACGGAAAGCGATTGCAGAAGCGTT -ACGGAAAGCGATTGCAGATTCGTC -ACGGAAAGCGATTGCAGATCTCTC -ACGGAAAGCGATTGCAGATGGATC -ACGGAAAGCGATTGCAGACACTTC -ACGGAAAGCGATTGCAGAGTACTC -ACGGAAAGCGATTGCAGAGATGTC -ACGGAAAGCGATTGCAGAACAGTC -ACGGAAAGCGATTGCAGATTGCTG -ACGGAAAGCGATTGCAGATCCATG -ACGGAAAGCGATTGCAGATGTGTG -ACGGAAAGCGATTGCAGACTAGTG -ACGGAAAGCGATTGCAGACATCTG -ACGGAAAGCGATTGCAGAGAGTTG -ACGGAAAGCGATTGCAGAAGACTG -ACGGAAAGCGATTGCAGATCGGTA -ACGGAAAGCGATTGCAGATGCCTA -ACGGAAAGCGATTGCAGACCACTA -ACGGAAAGCGATTGCAGAGGAGTA -ACGGAAAGCGATTGCAGATCGTCT -ACGGAAAGCGATTGCAGATGCACT -ACGGAAAGCGATTGCAGACTGACT -ACGGAAAGCGATTGCAGACAACCT -ACGGAAAGCGATTGCAGAGCTACT -ACGGAAAGCGATTGCAGAGGATCT -ACGGAAAGCGATTGCAGAAAGGCT -ACGGAAAGCGATTGCAGATCAACC -ACGGAAAGCGATTGCAGATGTTCC -ACGGAAAGCGATTGCAGAATTCCC -ACGGAAAGCGATTGCAGATTCTCG -ACGGAAAGCGATTGCAGATAGACG -ACGGAAAGCGATTGCAGAGTAACG -ACGGAAAGCGATTGCAGAACTTCG -ACGGAAAGCGATTGCAGATACGCA -ACGGAAAGCGATTGCAGACTTGCA -ACGGAAAGCGATTGCAGACGAACA -ACGGAAAGCGATTGCAGACAGTCA -ACGGAAAGCGATTGCAGAGATCCA -ACGGAAAGCGATTGCAGAACGACA -ACGGAAAGCGATTGCAGAAGCTCA -ACGGAAAGCGATTGCAGATCACGT -ACGGAAAGCGATTGCAGACGTAGT -ACGGAAAGCGATTGCAGAGTCAGT -ACGGAAAGCGATTGCAGAGAAGGT -ACGGAAAGCGATTGCAGAAACCGT -ACGGAAAGCGATTGCAGATTGTGC -ACGGAAAGCGATTGCAGACTAAGC -ACGGAAAGCGATTGCAGAACTAGC -ACGGAAAGCGATTGCAGAAGATGC -ACGGAAAGCGATTGCAGATGAAGG -ACGGAAAGCGATTGCAGACAATGG -ACGGAAAGCGATTGCAGAATGAGG -ACGGAAAGCGATTGCAGAAATGGG -ACGGAAAGCGATTGCAGATCCTGA -ACGGAAAGCGATTGCAGATAGCGA -ACGGAAAGCGATTGCAGACACAGA -ACGGAAAGCGATTGCAGAGCAAGA -ACGGAAAGCGATTGCAGAGGTTGA -ACGGAAAGCGATTGCAGATCCGAT -ACGGAAAGCGATTGCAGATGGCAT -ACGGAAAGCGATTGCAGACGAGAT -ACGGAAAGCGATTGCAGATACCAC -ACGGAAAGCGATTGCAGACAGAAC -ACGGAAAGCGATTGCAGAGTCTAC -ACGGAAAGCGATTGCAGAACGTAC -ACGGAAAGCGATTGCAGAAGTGAC -ACGGAAAGCGATTGCAGACTGTAG -ACGGAAAGCGATTGCAGACCTAAG -ACGGAAAGCGATTGCAGAGTTCAG -ACGGAAAGCGATTGCAGAGCATAG -ACGGAAAGCGATTGCAGAGACAAG -ACGGAAAGCGATTGCAGAAAGCAG -ACGGAAAGCGATTGCAGACGTCAA -ACGGAAAGCGATTGCAGAGCTGAA -ACGGAAAGCGATTGCAGAAGTACG -ACGGAAAGCGATTGCAGAATCCGA -ACGGAAAGCGATTGCAGAATGGGA -ACGGAAAGCGATTGCAGAGTGCAA -ACGGAAAGCGATTGCAGAGAGGAA -ACGGAAAGCGATTGCAGACAGGTA -ACGGAAAGCGATTGCAGAGACTCT -ACGGAAAGCGATTGCAGAAGTCCT -ACGGAAAGCGATTGCAGATAAGCC -ACGGAAAGCGATTGCAGAATAGCC -ACGGAAAGCGATTGCAGATAACCG -ACGGAAAGCGATTGCAGAATGCCA -ACGGAAAGCGATAGGTGAGGAAAC -ACGGAAAGCGATAGGTGAAACACC -ACGGAAAGCGATAGGTGAATCGAG -ACGGAAAGCGATAGGTGACTCCTT -ACGGAAAGCGATAGGTGACCTGTT -ACGGAAAGCGATAGGTGACGGTTT -ACGGAAAGCGATAGGTGAGTGGTT -ACGGAAAGCGATAGGTGAGCCTTT -ACGGAAAGCGATAGGTGAGGTCTT -ACGGAAAGCGATAGGTGAACGCTT -ACGGAAAGCGATAGGTGAAGCGTT -ACGGAAAGCGATAGGTGATTCGTC -ACGGAAAGCGATAGGTGATCTCTC -ACGGAAAGCGATAGGTGATGGATC -ACGGAAAGCGATAGGTGACACTTC -ACGGAAAGCGATAGGTGAGTACTC -ACGGAAAGCGATAGGTGAGATGTC -ACGGAAAGCGATAGGTGAACAGTC -ACGGAAAGCGATAGGTGATTGCTG -ACGGAAAGCGATAGGTGATCCATG -ACGGAAAGCGATAGGTGATGTGTG -ACGGAAAGCGATAGGTGACTAGTG -ACGGAAAGCGATAGGTGACATCTG -ACGGAAAGCGATAGGTGAGAGTTG -ACGGAAAGCGATAGGTGAAGACTG -ACGGAAAGCGATAGGTGATCGGTA -ACGGAAAGCGATAGGTGATGCCTA -ACGGAAAGCGATAGGTGACCACTA -ACGGAAAGCGATAGGTGAGGAGTA -ACGGAAAGCGATAGGTGATCGTCT -ACGGAAAGCGATAGGTGATGCACT -ACGGAAAGCGATAGGTGACTGACT -ACGGAAAGCGATAGGTGACAACCT -ACGGAAAGCGATAGGTGAGCTACT -ACGGAAAGCGATAGGTGAGGATCT -ACGGAAAGCGATAGGTGAAAGGCT -ACGGAAAGCGATAGGTGATCAACC -ACGGAAAGCGATAGGTGATGTTCC -ACGGAAAGCGATAGGTGAATTCCC -ACGGAAAGCGATAGGTGATTCTCG -ACGGAAAGCGATAGGTGATAGACG -ACGGAAAGCGATAGGTGAGTAACG -ACGGAAAGCGATAGGTGAACTTCG -ACGGAAAGCGATAGGTGATACGCA -ACGGAAAGCGATAGGTGACTTGCA -ACGGAAAGCGATAGGTGACGAACA -ACGGAAAGCGATAGGTGACAGTCA -ACGGAAAGCGATAGGTGAGATCCA -ACGGAAAGCGATAGGTGAACGACA -ACGGAAAGCGATAGGTGAAGCTCA -ACGGAAAGCGATAGGTGATCACGT -ACGGAAAGCGATAGGTGACGTAGT -ACGGAAAGCGATAGGTGAGTCAGT -ACGGAAAGCGATAGGTGAGAAGGT -ACGGAAAGCGATAGGTGAAACCGT -ACGGAAAGCGATAGGTGATTGTGC -ACGGAAAGCGATAGGTGACTAAGC -ACGGAAAGCGATAGGTGAACTAGC -ACGGAAAGCGATAGGTGAAGATGC -ACGGAAAGCGATAGGTGATGAAGG -ACGGAAAGCGATAGGTGACAATGG -ACGGAAAGCGATAGGTGAATGAGG -ACGGAAAGCGATAGGTGAAATGGG -ACGGAAAGCGATAGGTGATCCTGA -ACGGAAAGCGATAGGTGATAGCGA -ACGGAAAGCGATAGGTGACACAGA -ACGGAAAGCGATAGGTGAGCAAGA -ACGGAAAGCGATAGGTGAGGTTGA -ACGGAAAGCGATAGGTGATCCGAT -ACGGAAAGCGATAGGTGATGGCAT -ACGGAAAGCGATAGGTGACGAGAT -ACGGAAAGCGATAGGTGATACCAC -ACGGAAAGCGATAGGTGACAGAAC -ACGGAAAGCGATAGGTGAGTCTAC -ACGGAAAGCGATAGGTGAACGTAC -ACGGAAAGCGATAGGTGAAGTGAC -ACGGAAAGCGATAGGTGACTGTAG -ACGGAAAGCGATAGGTGACCTAAG -ACGGAAAGCGATAGGTGAGTTCAG -ACGGAAAGCGATAGGTGAGCATAG -ACGGAAAGCGATAGGTGAGACAAG -ACGGAAAGCGATAGGTGAAAGCAG -ACGGAAAGCGATAGGTGACGTCAA -ACGGAAAGCGATAGGTGAGCTGAA -ACGGAAAGCGATAGGTGAAGTACG -ACGGAAAGCGATAGGTGAATCCGA -ACGGAAAGCGATAGGTGAATGGGA -ACGGAAAGCGATAGGTGAGTGCAA -ACGGAAAGCGATAGGTGAGAGGAA -ACGGAAAGCGATAGGTGACAGGTA -ACGGAAAGCGATAGGTGAGACTCT -ACGGAAAGCGATAGGTGAAGTCCT -ACGGAAAGCGATAGGTGATAAGCC -ACGGAAAGCGATAGGTGAATAGCC -ACGGAAAGCGATAGGTGATAACCG -ACGGAAAGCGATAGGTGAATGCCA -ACGGAAAGCGATTGGCAAGGAAAC -ACGGAAAGCGATTGGCAAAACACC -ACGGAAAGCGATTGGCAAATCGAG -ACGGAAAGCGATTGGCAACTCCTT -ACGGAAAGCGATTGGCAACCTGTT -ACGGAAAGCGATTGGCAACGGTTT -ACGGAAAGCGATTGGCAAGTGGTT -ACGGAAAGCGATTGGCAAGCCTTT -ACGGAAAGCGATTGGCAAGGTCTT -ACGGAAAGCGATTGGCAAACGCTT -ACGGAAAGCGATTGGCAAAGCGTT -ACGGAAAGCGATTGGCAATTCGTC -ACGGAAAGCGATTGGCAATCTCTC -ACGGAAAGCGATTGGCAATGGATC -ACGGAAAGCGATTGGCAACACTTC -ACGGAAAGCGATTGGCAAGTACTC -ACGGAAAGCGATTGGCAAGATGTC -ACGGAAAGCGATTGGCAAACAGTC -ACGGAAAGCGATTGGCAATTGCTG -ACGGAAAGCGATTGGCAATCCATG -ACGGAAAGCGATTGGCAATGTGTG -ACGGAAAGCGATTGGCAACTAGTG -ACGGAAAGCGATTGGCAACATCTG -ACGGAAAGCGATTGGCAAGAGTTG -ACGGAAAGCGATTGGCAAAGACTG -ACGGAAAGCGATTGGCAATCGGTA -ACGGAAAGCGATTGGCAATGCCTA -ACGGAAAGCGATTGGCAACCACTA -ACGGAAAGCGATTGGCAAGGAGTA -ACGGAAAGCGATTGGCAATCGTCT -ACGGAAAGCGATTGGCAATGCACT -ACGGAAAGCGATTGGCAACTGACT -ACGGAAAGCGATTGGCAACAACCT -ACGGAAAGCGATTGGCAAGCTACT -ACGGAAAGCGATTGGCAAGGATCT -ACGGAAAGCGATTGGCAAAAGGCT -ACGGAAAGCGATTGGCAATCAACC -ACGGAAAGCGATTGGCAATGTTCC -ACGGAAAGCGATTGGCAAATTCCC -ACGGAAAGCGATTGGCAATTCTCG -ACGGAAAGCGATTGGCAATAGACG -ACGGAAAGCGATTGGCAAGTAACG -ACGGAAAGCGATTGGCAAACTTCG -ACGGAAAGCGATTGGCAATACGCA -ACGGAAAGCGATTGGCAACTTGCA -ACGGAAAGCGATTGGCAACGAACA -ACGGAAAGCGATTGGCAACAGTCA -ACGGAAAGCGATTGGCAAGATCCA -ACGGAAAGCGATTGGCAAACGACA -ACGGAAAGCGATTGGCAAAGCTCA -ACGGAAAGCGATTGGCAATCACGT -ACGGAAAGCGATTGGCAACGTAGT -ACGGAAAGCGATTGGCAAGTCAGT -ACGGAAAGCGATTGGCAAGAAGGT -ACGGAAAGCGATTGGCAAAACCGT -ACGGAAAGCGATTGGCAATTGTGC -ACGGAAAGCGATTGGCAACTAAGC -ACGGAAAGCGATTGGCAAACTAGC -ACGGAAAGCGATTGGCAAAGATGC -ACGGAAAGCGATTGGCAATGAAGG -ACGGAAAGCGATTGGCAACAATGG -ACGGAAAGCGATTGGCAAATGAGG -ACGGAAAGCGATTGGCAAAATGGG -ACGGAAAGCGATTGGCAATCCTGA -ACGGAAAGCGATTGGCAATAGCGA -ACGGAAAGCGATTGGCAACACAGA -ACGGAAAGCGATTGGCAAGCAAGA -ACGGAAAGCGATTGGCAAGGTTGA -ACGGAAAGCGATTGGCAATCCGAT -ACGGAAAGCGATTGGCAATGGCAT -ACGGAAAGCGATTGGCAACGAGAT -ACGGAAAGCGATTGGCAATACCAC -ACGGAAAGCGATTGGCAACAGAAC -ACGGAAAGCGATTGGCAAGTCTAC -ACGGAAAGCGATTGGCAAACGTAC -ACGGAAAGCGATTGGCAAAGTGAC -ACGGAAAGCGATTGGCAACTGTAG -ACGGAAAGCGATTGGCAACCTAAG -ACGGAAAGCGATTGGCAAGTTCAG -ACGGAAAGCGATTGGCAAGCATAG -ACGGAAAGCGATTGGCAAGACAAG -ACGGAAAGCGATTGGCAAAAGCAG -ACGGAAAGCGATTGGCAACGTCAA -ACGGAAAGCGATTGGCAAGCTGAA -ACGGAAAGCGATTGGCAAAGTACG -ACGGAAAGCGATTGGCAAATCCGA -ACGGAAAGCGATTGGCAAATGGGA -ACGGAAAGCGATTGGCAAGTGCAA -ACGGAAAGCGATTGGCAAGAGGAA -ACGGAAAGCGATTGGCAACAGGTA -ACGGAAAGCGATTGGCAAGACTCT -ACGGAAAGCGATTGGCAAAGTCCT -ACGGAAAGCGATTGGCAATAAGCC -ACGGAAAGCGATTGGCAAATAGCC -ACGGAAAGCGATTGGCAATAACCG -ACGGAAAGCGATTGGCAAATGCCA -ACGGAAAGCGATAGGATGGGAAAC -ACGGAAAGCGATAGGATGAACACC -ACGGAAAGCGATAGGATGATCGAG -ACGGAAAGCGATAGGATGCTCCTT -ACGGAAAGCGATAGGATGCCTGTT -ACGGAAAGCGATAGGATGCGGTTT -ACGGAAAGCGATAGGATGGTGGTT -ACGGAAAGCGATAGGATGGCCTTT -ACGGAAAGCGATAGGATGGGTCTT -ACGGAAAGCGATAGGATGACGCTT -ACGGAAAGCGATAGGATGAGCGTT -ACGGAAAGCGATAGGATGTTCGTC -ACGGAAAGCGATAGGATGTCTCTC -ACGGAAAGCGATAGGATGTGGATC -ACGGAAAGCGATAGGATGCACTTC -ACGGAAAGCGATAGGATGGTACTC -ACGGAAAGCGATAGGATGGATGTC -ACGGAAAGCGATAGGATGACAGTC -ACGGAAAGCGATAGGATGTTGCTG -ACGGAAAGCGATAGGATGTCCATG -ACGGAAAGCGATAGGATGTGTGTG -ACGGAAAGCGATAGGATGCTAGTG -ACGGAAAGCGATAGGATGCATCTG -ACGGAAAGCGATAGGATGGAGTTG -ACGGAAAGCGATAGGATGAGACTG -ACGGAAAGCGATAGGATGTCGGTA -ACGGAAAGCGATAGGATGTGCCTA -ACGGAAAGCGATAGGATGCCACTA -ACGGAAAGCGATAGGATGGGAGTA -ACGGAAAGCGATAGGATGTCGTCT -ACGGAAAGCGATAGGATGTGCACT -ACGGAAAGCGATAGGATGCTGACT -ACGGAAAGCGATAGGATGCAACCT -ACGGAAAGCGATAGGATGGCTACT -ACGGAAAGCGATAGGATGGGATCT -ACGGAAAGCGATAGGATGAAGGCT -ACGGAAAGCGATAGGATGTCAACC -ACGGAAAGCGATAGGATGTGTTCC -ACGGAAAGCGATAGGATGATTCCC -ACGGAAAGCGATAGGATGTTCTCG -ACGGAAAGCGATAGGATGTAGACG -ACGGAAAGCGATAGGATGGTAACG -ACGGAAAGCGATAGGATGACTTCG -ACGGAAAGCGATAGGATGTACGCA -ACGGAAAGCGATAGGATGCTTGCA -ACGGAAAGCGATAGGATGCGAACA -ACGGAAAGCGATAGGATGCAGTCA -ACGGAAAGCGATAGGATGGATCCA -ACGGAAAGCGATAGGATGACGACA -ACGGAAAGCGATAGGATGAGCTCA -ACGGAAAGCGATAGGATGTCACGT -ACGGAAAGCGATAGGATGCGTAGT -ACGGAAAGCGATAGGATGGTCAGT -ACGGAAAGCGATAGGATGGAAGGT -ACGGAAAGCGATAGGATGAACCGT -ACGGAAAGCGATAGGATGTTGTGC -ACGGAAAGCGATAGGATGCTAAGC -ACGGAAAGCGATAGGATGACTAGC -ACGGAAAGCGATAGGATGAGATGC -ACGGAAAGCGATAGGATGTGAAGG -ACGGAAAGCGATAGGATGCAATGG -ACGGAAAGCGATAGGATGATGAGG -ACGGAAAGCGATAGGATGAATGGG -ACGGAAAGCGATAGGATGTCCTGA -ACGGAAAGCGATAGGATGTAGCGA -ACGGAAAGCGATAGGATGCACAGA -ACGGAAAGCGATAGGATGGCAAGA -ACGGAAAGCGATAGGATGGGTTGA -ACGGAAAGCGATAGGATGTCCGAT -ACGGAAAGCGATAGGATGTGGCAT -ACGGAAAGCGATAGGATGCGAGAT -ACGGAAAGCGATAGGATGTACCAC -ACGGAAAGCGATAGGATGCAGAAC -ACGGAAAGCGATAGGATGGTCTAC -ACGGAAAGCGATAGGATGACGTAC -ACGGAAAGCGATAGGATGAGTGAC -ACGGAAAGCGATAGGATGCTGTAG -ACGGAAAGCGATAGGATGCCTAAG -ACGGAAAGCGATAGGATGGTTCAG -ACGGAAAGCGATAGGATGGCATAG -ACGGAAAGCGATAGGATGGACAAG -ACGGAAAGCGATAGGATGAAGCAG -ACGGAAAGCGATAGGATGCGTCAA -ACGGAAAGCGATAGGATGGCTGAA -ACGGAAAGCGATAGGATGAGTACG -ACGGAAAGCGATAGGATGATCCGA -ACGGAAAGCGATAGGATGATGGGA -ACGGAAAGCGATAGGATGGTGCAA -ACGGAAAGCGATAGGATGGAGGAA -ACGGAAAGCGATAGGATGCAGGTA -ACGGAAAGCGATAGGATGGACTCT -ACGGAAAGCGATAGGATGAGTCCT -ACGGAAAGCGATAGGATGTAAGCC -ACGGAAAGCGATAGGATGATAGCC -ACGGAAAGCGATAGGATGTAACCG -ACGGAAAGCGATAGGATGATGCCA -ACGGAAAGCGATGGGAATGGAAAC -ACGGAAAGCGATGGGAATAACACC -ACGGAAAGCGATGGGAATATCGAG -ACGGAAAGCGATGGGAATCTCCTT -ACGGAAAGCGATGGGAATCCTGTT -ACGGAAAGCGATGGGAATCGGTTT -ACGGAAAGCGATGGGAATGTGGTT -ACGGAAAGCGATGGGAATGCCTTT -ACGGAAAGCGATGGGAATGGTCTT -ACGGAAAGCGATGGGAATACGCTT -ACGGAAAGCGATGGGAATAGCGTT -ACGGAAAGCGATGGGAATTTCGTC -ACGGAAAGCGATGGGAATTCTCTC -ACGGAAAGCGATGGGAATTGGATC -ACGGAAAGCGATGGGAATCACTTC -ACGGAAAGCGATGGGAATGTACTC -ACGGAAAGCGATGGGAATGATGTC -ACGGAAAGCGATGGGAATACAGTC -ACGGAAAGCGATGGGAATTTGCTG -ACGGAAAGCGATGGGAATTCCATG -ACGGAAAGCGATGGGAATTGTGTG -ACGGAAAGCGATGGGAATCTAGTG -ACGGAAAGCGATGGGAATCATCTG -ACGGAAAGCGATGGGAATGAGTTG -ACGGAAAGCGATGGGAATAGACTG -ACGGAAAGCGATGGGAATTCGGTA -ACGGAAAGCGATGGGAATTGCCTA -ACGGAAAGCGATGGGAATCCACTA -ACGGAAAGCGATGGGAATGGAGTA -ACGGAAAGCGATGGGAATTCGTCT -ACGGAAAGCGATGGGAATTGCACT -ACGGAAAGCGATGGGAATCTGACT -ACGGAAAGCGATGGGAATCAACCT -ACGGAAAGCGATGGGAATGCTACT -ACGGAAAGCGATGGGAATGGATCT -ACGGAAAGCGATGGGAATAAGGCT -ACGGAAAGCGATGGGAATTCAACC -ACGGAAAGCGATGGGAATTGTTCC -ACGGAAAGCGATGGGAATATTCCC -ACGGAAAGCGATGGGAATTTCTCG -ACGGAAAGCGATGGGAATTAGACG -ACGGAAAGCGATGGGAATGTAACG -ACGGAAAGCGATGGGAATACTTCG -ACGGAAAGCGATGGGAATTACGCA -ACGGAAAGCGATGGGAATCTTGCA -ACGGAAAGCGATGGGAATCGAACA -ACGGAAAGCGATGGGAATCAGTCA -ACGGAAAGCGATGGGAATGATCCA -ACGGAAAGCGATGGGAATACGACA -ACGGAAAGCGATGGGAATAGCTCA -ACGGAAAGCGATGGGAATTCACGT -ACGGAAAGCGATGGGAATCGTAGT -ACGGAAAGCGATGGGAATGTCAGT -ACGGAAAGCGATGGGAATGAAGGT -ACGGAAAGCGATGGGAATAACCGT -ACGGAAAGCGATGGGAATTTGTGC -ACGGAAAGCGATGGGAATCTAAGC -ACGGAAAGCGATGGGAATACTAGC -ACGGAAAGCGATGGGAATAGATGC -ACGGAAAGCGATGGGAATTGAAGG -ACGGAAAGCGATGGGAATCAATGG -ACGGAAAGCGATGGGAATATGAGG -ACGGAAAGCGATGGGAATAATGGG -ACGGAAAGCGATGGGAATTCCTGA -ACGGAAAGCGATGGGAATTAGCGA -ACGGAAAGCGATGGGAATCACAGA -ACGGAAAGCGATGGGAATGCAAGA -ACGGAAAGCGATGGGAATGGTTGA -ACGGAAAGCGATGGGAATTCCGAT -ACGGAAAGCGATGGGAATTGGCAT -ACGGAAAGCGATGGGAATCGAGAT -ACGGAAAGCGATGGGAATTACCAC -ACGGAAAGCGATGGGAATCAGAAC -ACGGAAAGCGATGGGAATGTCTAC -ACGGAAAGCGATGGGAATACGTAC -ACGGAAAGCGATGGGAATAGTGAC -ACGGAAAGCGATGGGAATCTGTAG -ACGGAAAGCGATGGGAATCCTAAG -ACGGAAAGCGATGGGAATGTTCAG -ACGGAAAGCGATGGGAATGCATAG -ACGGAAAGCGATGGGAATGACAAG -ACGGAAAGCGATGGGAATAAGCAG -ACGGAAAGCGATGGGAATCGTCAA -ACGGAAAGCGATGGGAATGCTGAA -ACGGAAAGCGATGGGAATAGTACG -ACGGAAAGCGATGGGAATATCCGA -ACGGAAAGCGATGGGAATATGGGA -ACGGAAAGCGATGGGAATGTGCAA -ACGGAAAGCGATGGGAATGAGGAA -ACGGAAAGCGATGGGAATCAGGTA -ACGGAAAGCGATGGGAATGACTCT -ACGGAAAGCGATGGGAATAGTCCT -ACGGAAAGCGATGGGAATTAAGCC -ACGGAAAGCGATGGGAATATAGCC -ACGGAAAGCGATGGGAATTAACCG -ACGGAAAGCGATGGGAATATGCCA -ACGGAAAGCGATTGATCCGGAAAC -ACGGAAAGCGATTGATCCAACACC -ACGGAAAGCGATTGATCCATCGAG -ACGGAAAGCGATTGATCCCTCCTT -ACGGAAAGCGATTGATCCCCTGTT -ACGGAAAGCGATTGATCCCGGTTT -ACGGAAAGCGATTGATCCGTGGTT -ACGGAAAGCGATTGATCCGCCTTT -ACGGAAAGCGATTGATCCGGTCTT -ACGGAAAGCGATTGATCCACGCTT -ACGGAAAGCGATTGATCCAGCGTT -ACGGAAAGCGATTGATCCTTCGTC -ACGGAAAGCGATTGATCCTCTCTC -ACGGAAAGCGATTGATCCTGGATC -ACGGAAAGCGATTGATCCCACTTC -ACGGAAAGCGATTGATCCGTACTC -ACGGAAAGCGATTGATCCGATGTC -ACGGAAAGCGATTGATCCACAGTC -ACGGAAAGCGATTGATCCTTGCTG -ACGGAAAGCGATTGATCCTCCATG -ACGGAAAGCGATTGATCCTGTGTG -ACGGAAAGCGATTGATCCCTAGTG -ACGGAAAGCGATTGATCCCATCTG -ACGGAAAGCGATTGATCCGAGTTG -ACGGAAAGCGATTGATCCAGACTG -ACGGAAAGCGATTGATCCTCGGTA -ACGGAAAGCGATTGATCCTGCCTA -ACGGAAAGCGATTGATCCCCACTA -ACGGAAAGCGATTGATCCGGAGTA -ACGGAAAGCGATTGATCCTCGTCT -ACGGAAAGCGATTGATCCTGCACT -ACGGAAAGCGATTGATCCCTGACT -ACGGAAAGCGATTGATCCCAACCT -ACGGAAAGCGATTGATCCGCTACT -ACGGAAAGCGATTGATCCGGATCT -ACGGAAAGCGATTGATCCAAGGCT -ACGGAAAGCGATTGATCCTCAACC -ACGGAAAGCGATTGATCCTGTTCC -ACGGAAAGCGATTGATCCATTCCC -ACGGAAAGCGATTGATCCTTCTCG -ACGGAAAGCGATTGATCCTAGACG -ACGGAAAGCGATTGATCCGTAACG -ACGGAAAGCGATTGATCCACTTCG -ACGGAAAGCGATTGATCCTACGCA -ACGGAAAGCGATTGATCCCTTGCA -ACGGAAAGCGATTGATCCCGAACA -ACGGAAAGCGATTGATCCCAGTCA -ACGGAAAGCGATTGATCCGATCCA -ACGGAAAGCGATTGATCCACGACA -ACGGAAAGCGATTGATCCAGCTCA -ACGGAAAGCGATTGATCCTCACGT -ACGGAAAGCGATTGATCCCGTAGT -ACGGAAAGCGATTGATCCGTCAGT -ACGGAAAGCGATTGATCCGAAGGT -ACGGAAAGCGATTGATCCAACCGT -ACGGAAAGCGATTGATCCTTGTGC -ACGGAAAGCGATTGATCCCTAAGC -ACGGAAAGCGATTGATCCACTAGC -ACGGAAAGCGATTGATCCAGATGC -ACGGAAAGCGATTGATCCTGAAGG -ACGGAAAGCGATTGATCCCAATGG -ACGGAAAGCGATTGATCCATGAGG -ACGGAAAGCGATTGATCCAATGGG -ACGGAAAGCGATTGATCCTCCTGA -ACGGAAAGCGATTGATCCTAGCGA -ACGGAAAGCGATTGATCCCACAGA -ACGGAAAGCGATTGATCCGCAAGA -ACGGAAAGCGATTGATCCGGTTGA -ACGGAAAGCGATTGATCCTCCGAT -ACGGAAAGCGATTGATCCTGGCAT -ACGGAAAGCGATTGATCCCGAGAT -ACGGAAAGCGATTGATCCTACCAC -ACGGAAAGCGATTGATCCCAGAAC -ACGGAAAGCGATTGATCCGTCTAC -ACGGAAAGCGATTGATCCACGTAC -ACGGAAAGCGATTGATCCAGTGAC -ACGGAAAGCGATTGATCCCTGTAG -ACGGAAAGCGATTGATCCCCTAAG -ACGGAAAGCGATTGATCCGTTCAG -ACGGAAAGCGATTGATCCGCATAG -ACGGAAAGCGATTGATCCGACAAG -ACGGAAAGCGATTGATCCAAGCAG -ACGGAAAGCGATTGATCCCGTCAA -ACGGAAAGCGATTGATCCGCTGAA -ACGGAAAGCGATTGATCCAGTACG -ACGGAAAGCGATTGATCCATCCGA -ACGGAAAGCGATTGATCCATGGGA -ACGGAAAGCGATTGATCCGTGCAA -ACGGAAAGCGATTGATCCGAGGAA -ACGGAAAGCGATTGATCCCAGGTA -ACGGAAAGCGATTGATCCGACTCT -ACGGAAAGCGATTGATCCAGTCCT -ACGGAAAGCGATTGATCCTAAGCC -ACGGAAAGCGATTGATCCATAGCC -ACGGAAAGCGATTGATCCTAACCG -ACGGAAAGCGATTGATCCATGCCA -ACGGAAAGCGATCGATAGGGAAAC -ACGGAAAGCGATCGATAGAACACC -ACGGAAAGCGATCGATAGATCGAG -ACGGAAAGCGATCGATAGCTCCTT -ACGGAAAGCGATCGATAGCCTGTT -ACGGAAAGCGATCGATAGCGGTTT -ACGGAAAGCGATCGATAGGTGGTT -ACGGAAAGCGATCGATAGGCCTTT -ACGGAAAGCGATCGATAGGGTCTT -ACGGAAAGCGATCGATAGACGCTT -ACGGAAAGCGATCGATAGAGCGTT -ACGGAAAGCGATCGATAGTTCGTC -ACGGAAAGCGATCGATAGTCTCTC -ACGGAAAGCGATCGATAGTGGATC -ACGGAAAGCGATCGATAGCACTTC -ACGGAAAGCGATCGATAGGTACTC -ACGGAAAGCGATCGATAGGATGTC -ACGGAAAGCGATCGATAGACAGTC -ACGGAAAGCGATCGATAGTTGCTG -ACGGAAAGCGATCGATAGTCCATG -ACGGAAAGCGATCGATAGTGTGTG -ACGGAAAGCGATCGATAGCTAGTG -ACGGAAAGCGATCGATAGCATCTG -ACGGAAAGCGATCGATAGGAGTTG -ACGGAAAGCGATCGATAGAGACTG -ACGGAAAGCGATCGATAGTCGGTA -ACGGAAAGCGATCGATAGTGCCTA -ACGGAAAGCGATCGATAGCCACTA -ACGGAAAGCGATCGATAGGGAGTA -ACGGAAAGCGATCGATAGTCGTCT -ACGGAAAGCGATCGATAGTGCACT -ACGGAAAGCGATCGATAGCTGACT -ACGGAAAGCGATCGATAGCAACCT -ACGGAAAGCGATCGATAGGCTACT -ACGGAAAGCGATCGATAGGGATCT -ACGGAAAGCGATCGATAGAAGGCT -ACGGAAAGCGATCGATAGTCAACC -ACGGAAAGCGATCGATAGTGTTCC -ACGGAAAGCGATCGATAGATTCCC -ACGGAAAGCGATCGATAGTTCTCG -ACGGAAAGCGATCGATAGTAGACG -ACGGAAAGCGATCGATAGGTAACG -ACGGAAAGCGATCGATAGACTTCG -ACGGAAAGCGATCGATAGTACGCA -ACGGAAAGCGATCGATAGCTTGCA -ACGGAAAGCGATCGATAGCGAACA -ACGGAAAGCGATCGATAGCAGTCA -ACGGAAAGCGATCGATAGGATCCA -ACGGAAAGCGATCGATAGACGACA -ACGGAAAGCGATCGATAGAGCTCA -ACGGAAAGCGATCGATAGTCACGT -ACGGAAAGCGATCGATAGCGTAGT -ACGGAAAGCGATCGATAGGTCAGT -ACGGAAAGCGATCGATAGGAAGGT -ACGGAAAGCGATCGATAGAACCGT -ACGGAAAGCGATCGATAGTTGTGC -ACGGAAAGCGATCGATAGCTAAGC -ACGGAAAGCGATCGATAGACTAGC -ACGGAAAGCGATCGATAGAGATGC -ACGGAAAGCGATCGATAGTGAAGG -ACGGAAAGCGATCGATAGCAATGG -ACGGAAAGCGATCGATAGATGAGG -ACGGAAAGCGATCGATAGAATGGG -ACGGAAAGCGATCGATAGTCCTGA -ACGGAAAGCGATCGATAGTAGCGA -ACGGAAAGCGATCGATAGCACAGA -ACGGAAAGCGATCGATAGGCAAGA -ACGGAAAGCGATCGATAGGGTTGA -ACGGAAAGCGATCGATAGTCCGAT -ACGGAAAGCGATCGATAGTGGCAT -ACGGAAAGCGATCGATAGCGAGAT -ACGGAAAGCGATCGATAGTACCAC -ACGGAAAGCGATCGATAGCAGAAC -ACGGAAAGCGATCGATAGGTCTAC -ACGGAAAGCGATCGATAGACGTAC -ACGGAAAGCGATCGATAGAGTGAC -ACGGAAAGCGATCGATAGCTGTAG -ACGGAAAGCGATCGATAGCCTAAG -ACGGAAAGCGATCGATAGGTTCAG -ACGGAAAGCGATCGATAGGCATAG -ACGGAAAGCGATCGATAGGACAAG -ACGGAAAGCGATCGATAGAAGCAG -ACGGAAAGCGATCGATAGCGTCAA -ACGGAAAGCGATCGATAGGCTGAA -ACGGAAAGCGATCGATAGAGTACG -ACGGAAAGCGATCGATAGATCCGA -ACGGAAAGCGATCGATAGATGGGA -ACGGAAAGCGATCGATAGGTGCAA -ACGGAAAGCGATCGATAGGAGGAA -ACGGAAAGCGATCGATAGCAGGTA -ACGGAAAGCGATCGATAGGACTCT -ACGGAAAGCGATCGATAGAGTCCT -ACGGAAAGCGATCGATAGTAAGCC -ACGGAAAGCGATCGATAGATAGCC -ACGGAAAGCGATCGATAGTAACCG -ACGGAAAGCGATCGATAGATGCCA -ACGGAAAGCGATAGACACGGAAAC -ACGGAAAGCGATAGACACAACACC -ACGGAAAGCGATAGACACATCGAG -ACGGAAAGCGATAGACACCTCCTT -ACGGAAAGCGATAGACACCCTGTT -ACGGAAAGCGATAGACACCGGTTT -ACGGAAAGCGATAGACACGTGGTT -ACGGAAAGCGATAGACACGCCTTT -ACGGAAAGCGATAGACACGGTCTT -ACGGAAAGCGATAGACACACGCTT -ACGGAAAGCGATAGACACAGCGTT -ACGGAAAGCGATAGACACTTCGTC -ACGGAAAGCGATAGACACTCTCTC -ACGGAAAGCGATAGACACTGGATC -ACGGAAAGCGATAGACACCACTTC -ACGGAAAGCGATAGACACGTACTC -ACGGAAAGCGATAGACACGATGTC -ACGGAAAGCGATAGACACACAGTC -ACGGAAAGCGATAGACACTTGCTG -ACGGAAAGCGATAGACACTCCATG -ACGGAAAGCGATAGACACTGTGTG -ACGGAAAGCGATAGACACCTAGTG -ACGGAAAGCGATAGACACCATCTG -ACGGAAAGCGATAGACACGAGTTG -ACGGAAAGCGATAGACACAGACTG -ACGGAAAGCGATAGACACTCGGTA -ACGGAAAGCGATAGACACTGCCTA -ACGGAAAGCGATAGACACCCACTA -ACGGAAAGCGATAGACACGGAGTA -ACGGAAAGCGATAGACACTCGTCT -ACGGAAAGCGATAGACACTGCACT -ACGGAAAGCGATAGACACCTGACT -ACGGAAAGCGATAGACACCAACCT -ACGGAAAGCGATAGACACGCTACT -ACGGAAAGCGATAGACACGGATCT -ACGGAAAGCGATAGACACAAGGCT -ACGGAAAGCGATAGACACTCAACC -ACGGAAAGCGATAGACACTGTTCC -ACGGAAAGCGATAGACACATTCCC -ACGGAAAGCGATAGACACTTCTCG -ACGGAAAGCGATAGACACTAGACG -ACGGAAAGCGATAGACACGTAACG -ACGGAAAGCGATAGACACACTTCG -ACGGAAAGCGATAGACACTACGCA -ACGGAAAGCGATAGACACCTTGCA -ACGGAAAGCGATAGACACCGAACA -ACGGAAAGCGATAGACACCAGTCA -ACGGAAAGCGATAGACACGATCCA -ACGGAAAGCGATAGACACACGACA -ACGGAAAGCGATAGACACAGCTCA -ACGGAAAGCGATAGACACTCACGT -ACGGAAAGCGATAGACACCGTAGT -ACGGAAAGCGATAGACACGTCAGT -ACGGAAAGCGATAGACACGAAGGT -ACGGAAAGCGATAGACACAACCGT -ACGGAAAGCGATAGACACTTGTGC -ACGGAAAGCGATAGACACCTAAGC -ACGGAAAGCGATAGACACACTAGC -ACGGAAAGCGATAGACACAGATGC -ACGGAAAGCGATAGACACTGAAGG -ACGGAAAGCGATAGACACCAATGG -ACGGAAAGCGATAGACACATGAGG -ACGGAAAGCGATAGACACAATGGG -ACGGAAAGCGATAGACACTCCTGA -ACGGAAAGCGATAGACACTAGCGA -ACGGAAAGCGATAGACACCACAGA -ACGGAAAGCGATAGACACGCAAGA -ACGGAAAGCGATAGACACGGTTGA -ACGGAAAGCGATAGACACTCCGAT -ACGGAAAGCGATAGACACTGGCAT -ACGGAAAGCGATAGACACCGAGAT -ACGGAAAGCGATAGACACTACCAC -ACGGAAAGCGATAGACACCAGAAC -ACGGAAAGCGATAGACACGTCTAC -ACGGAAAGCGATAGACACACGTAC -ACGGAAAGCGATAGACACAGTGAC -ACGGAAAGCGATAGACACCTGTAG -ACGGAAAGCGATAGACACCCTAAG -ACGGAAAGCGATAGACACGTTCAG -ACGGAAAGCGATAGACACGCATAG -ACGGAAAGCGATAGACACGACAAG -ACGGAAAGCGATAGACACAAGCAG -ACGGAAAGCGATAGACACCGTCAA -ACGGAAAGCGATAGACACGCTGAA -ACGGAAAGCGATAGACACAGTACG -ACGGAAAGCGATAGACACATCCGA -ACGGAAAGCGATAGACACATGGGA -ACGGAAAGCGATAGACACGTGCAA -ACGGAAAGCGATAGACACGAGGAA -ACGGAAAGCGATAGACACCAGGTA -ACGGAAAGCGATAGACACGACTCT -ACGGAAAGCGATAGACACAGTCCT -ACGGAAAGCGATAGACACTAAGCC -ACGGAAAGCGATAGACACATAGCC -ACGGAAAGCGATAGACACTAACCG -ACGGAAAGCGATAGACACATGCCA -ACGGAAAGCGATAGAGCAGGAAAC -ACGGAAAGCGATAGAGCAAACACC -ACGGAAAGCGATAGAGCAATCGAG -ACGGAAAGCGATAGAGCACTCCTT -ACGGAAAGCGATAGAGCACCTGTT -ACGGAAAGCGATAGAGCACGGTTT -ACGGAAAGCGATAGAGCAGTGGTT -ACGGAAAGCGATAGAGCAGCCTTT -ACGGAAAGCGATAGAGCAGGTCTT -ACGGAAAGCGATAGAGCAACGCTT -ACGGAAAGCGATAGAGCAAGCGTT -ACGGAAAGCGATAGAGCATTCGTC -ACGGAAAGCGATAGAGCATCTCTC -ACGGAAAGCGATAGAGCATGGATC -ACGGAAAGCGATAGAGCACACTTC -ACGGAAAGCGATAGAGCAGTACTC -ACGGAAAGCGATAGAGCAGATGTC -ACGGAAAGCGATAGAGCAACAGTC -ACGGAAAGCGATAGAGCATTGCTG -ACGGAAAGCGATAGAGCATCCATG -ACGGAAAGCGATAGAGCATGTGTG -ACGGAAAGCGATAGAGCACTAGTG -ACGGAAAGCGATAGAGCACATCTG -ACGGAAAGCGATAGAGCAGAGTTG -ACGGAAAGCGATAGAGCAAGACTG -ACGGAAAGCGATAGAGCATCGGTA -ACGGAAAGCGATAGAGCATGCCTA -ACGGAAAGCGATAGAGCACCACTA -ACGGAAAGCGATAGAGCAGGAGTA -ACGGAAAGCGATAGAGCATCGTCT -ACGGAAAGCGATAGAGCATGCACT -ACGGAAAGCGATAGAGCACTGACT -ACGGAAAGCGATAGAGCACAACCT -ACGGAAAGCGATAGAGCAGCTACT -ACGGAAAGCGATAGAGCAGGATCT -ACGGAAAGCGATAGAGCAAAGGCT -ACGGAAAGCGATAGAGCATCAACC -ACGGAAAGCGATAGAGCATGTTCC -ACGGAAAGCGATAGAGCAATTCCC -ACGGAAAGCGATAGAGCATTCTCG -ACGGAAAGCGATAGAGCATAGACG -ACGGAAAGCGATAGAGCAGTAACG -ACGGAAAGCGATAGAGCAACTTCG -ACGGAAAGCGATAGAGCATACGCA -ACGGAAAGCGATAGAGCACTTGCA -ACGGAAAGCGATAGAGCACGAACA -ACGGAAAGCGATAGAGCACAGTCA -ACGGAAAGCGATAGAGCAGATCCA -ACGGAAAGCGATAGAGCAACGACA -ACGGAAAGCGATAGAGCAAGCTCA -ACGGAAAGCGATAGAGCATCACGT -ACGGAAAGCGATAGAGCACGTAGT -ACGGAAAGCGATAGAGCAGTCAGT -ACGGAAAGCGATAGAGCAGAAGGT -ACGGAAAGCGATAGAGCAAACCGT -ACGGAAAGCGATAGAGCATTGTGC -ACGGAAAGCGATAGAGCACTAAGC -ACGGAAAGCGATAGAGCAACTAGC -ACGGAAAGCGATAGAGCAAGATGC -ACGGAAAGCGATAGAGCATGAAGG -ACGGAAAGCGATAGAGCACAATGG -ACGGAAAGCGATAGAGCAATGAGG -ACGGAAAGCGATAGAGCAAATGGG -ACGGAAAGCGATAGAGCATCCTGA -ACGGAAAGCGATAGAGCATAGCGA -ACGGAAAGCGATAGAGCACACAGA -ACGGAAAGCGATAGAGCAGCAAGA -ACGGAAAGCGATAGAGCAGGTTGA -ACGGAAAGCGATAGAGCATCCGAT -ACGGAAAGCGATAGAGCATGGCAT -ACGGAAAGCGATAGAGCACGAGAT -ACGGAAAGCGATAGAGCATACCAC -ACGGAAAGCGATAGAGCACAGAAC -ACGGAAAGCGATAGAGCAGTCTAC -ACGGAAAGCGATAGAGCAACGTAC -ACGGAAAGCGATAGAGCAAGTGAC -ACGGAAAGCGATAGAGCACTGTAG -ACGGAAAGCGATAGAGCACCTAAG -ACGGAAAGCGATAGAGCAGTTCAG -ACGGAAAGCGATAGAGCAGCATAG -ACGGAAAGCGATAGAGCAGACAAG -ACGGAAAGCGATAGAGCAAAGCAG -ACGGAAAGCGATAGAGCACGTCAA -ACGGAAAGCGATAGAGCAGCTGAA -ACGGAAAGCGATAGAGCAAGTACG -ACGGAAAGCGATAGAGCAATCCGA -ACGGAAAGCGATAGAGCAATGGGA -ACGGAAAGCGATAGAGCAGTGCAA -ACGGAAAGCGATAGAGCAGAGGAA -ACGGAAAGCGATAGAGCACAGGTA -ACGGAAAGCGATAGAGCAGACTCT -ACGGAAAGCGATAGAGCAAGTCCT -ACGGAAAGCGATAGAGCATAAGCC -ACGGAAAGCGATAGAGCAATAGCC -ACGGAAAGCGATAGAGCATAACCG -ACGGAAAGCGATAGAGCAATGCCA -ACGGAAAGCGATTGAGGTGGAAAC -ACGGAAAGCGATTGAGGTAACACC -ACGGAAAGCGATTGAGGTATCGAG -ACGGAAAGCGATTGAGGTCTCCTT -ACGGAAAGCGATTGAGGTCCTGTT -ACGGAAAGCGATTGAGGTCGGTTT -ACGGAAAGCGATTGAGGTGTGGTT -ACGGAAAGCGATTGAGGTGCCTTT -ACGGAAAGCGATTGAGGTGGTCTT -ACGGAAAGCGATTGAGGTACGCTT -ACGGAAAGCGATTGAGGTAGCGTT -ACGGAAAGCGATTGAGGTTTCGTC -ACGGAAAGCGATTGAGGTTCTCTC -ACGGAAAGCGATTGAGGTTGGATC -ACGGAAAGCGATTGAGGTCACTTC -ACGGAAAGCGATTGAGGTGTACTC -ACGGAAAGCGATTGAGGTGATGTC -ACGGAAAGCGATTGAGGTACAGTC -ACGGAAAGCGATTGAGGTTTGCTG -ACGGAAAGCGATTGAGGTTCCATG -ACGGAAAGCGATTGAGGTTGTGTG -ACGGAAAGCGATTGAGGTCTAGTG -ACGGAAAGCGATTGAGGTCATCTG -ACGGAAAGCGATTGAGGTGAGTTG -ACGGAAAGCGATTGAGGTAGACTG -ACGGAAAGCGATTGAGGTTCGGTA -ACGGAAAGCGATTGAGGTTGCCTA -ACGGAAAGCGATTGAGGTCCACTA -ACGGAAAGCGATTGAGGTGGAGTA -ACGGAAAGCGATTGAGGTTCGTCT -ACGGAAAGCGATTGAGGTTGCACT -ACGGAAAGCGATTGAGGTCTGACT -ACGGAAAGCGATTGAGGTCAACCT -ACGGAAAGCGATTGAGGTGCTACT -ACGGAAAGCGATTGAGGTGGATCT -ACGGAAAGCGATTGAGGTAAGGCT -ACGGAAAGCGATTGAGGTTCAACC -ACGGAAAGCGATTGAGGTTGTTCC -ACGGAAAGCGATTGAGGTATTCCC -ACGGAAAGCGATTGAGGTTTCTCG -ACGGAAAGCGATTGAGGTTAGACG -ACGGAAAGCGATTGAGGTGTAACG -ACGGAAAGCGATTGAGGTACTTCG -ACGGAAAGCGATTGAGGTTACGCA -ACGGAAAGCGATTGAGGTCTTGCA -ACGGAAAGCGATTGAGGTCGAACA -ACGGAAAGCGATTGAGGTCAGTCA -ACGGAAAGCGATTGAGGTGATCCA -ACGGAAAGCGATTGAGGTACGACA -ACGGAAAGCGATTGAGGTAGCTCA -ACGGAAAGCGATTGAGGTTCACGT -ACGGAAAGCGATTGAGGTCGTAGT -ACGGAAAGCGATTGAGGTGTCAGT -ACGGAAAGCGATTGAGGTGAAGGT -ACGGAAAGCGATTGAGGTAACCGT -ACGGAAAGCGATTGAGGTTTGTGC -ACGGAAAGCGATTGAGGTCTAAGC -ACGGAAAGCGATTGAGGTACTAGC -ACGGAAAGCGATTGAGGTAGATGC -ACGGAAAGCGATTGAGGTTGAAGG -ACGGAAAGCGATTGAGGTCAATGG -ACGGAAAGCGATTGAGGTATGAGG -ACGGAAAGCGATTGAGGTAATGGG -ACGGAAAGCGATTGAGGTTCCTGA -ACGGAAAGCGATTGAGGTTAGCGA -ACGGAAAGCGATTGAGGTCACAGA -ACGGAAAGCGATTGAGGTGCAAGA -ACGGAAAGCGATTGAGGTGGTTGA -ACGGAAAGCGATTGAGGTTCCGAT -ACGGAAAGCGATTGAGGTTGGCAT -ACGGAAAGCGATTGAGGTCGAGAT -ACGGAAAGCGATTGAGGTTACCAC -ACGGAAAGCGATTGAGGTCAGAAC -ACGGAAAGCGATTGAGGTGTCTAC -ACGGAAAGCGATTGAGGTACGTAC -ACGGAAAGCGATTGAGGTAGTGAC -ACGGAAAGCGATTGAGGTCTGTAG -ACGGAAAGCGATTGAGGTCCTAAG -ACGGAAAGCGATTGAGGTGTTCAG -ACGGAAAGCGATTGAGGTGCATAG -ACGGAAAGCGATTGAGGTGACAAG -ACGGAAAGCGATTGAGGTAAGCAG -ACGGAAAGCGATTGAGGTCGTCAA -ACGGAAAGCGATTGAGGTGCTGAA -ACGGAAAGCGATTGAGGTAGTACG -ACGGAAAGCGATTGAGGTATCCGA -ACGGAAAGCGATTGAGGTATGGGA -ACGGAAAGCGATTGAGGTGTGCAA -ACGGAAAGCGATTGAGGTGAGGAA -ACGGAAAGCGATTGAGGTCAGGTA -ACGGAAAGCGATTGAGGTGACTCT -ACGGAAAGCGATTGAGGTAGTCCT -ACGGAAAGCGATTGAGGTTAAGCC -ACGGAAAGCGATTGAGGTATAGCC -ACGGAAAGCGATTGAGGTTAACCG -ACGGAAAGCGATTGAGGTATGCCA -ACGGAAAGCGATGATTCCGGAAAC -ACGGAAAGCGATGATTCCAACACC -ACGGAAAGCGATGATTCCATCGAG -ACGGAAAGCGATGATTCCCTCCTT -ACGGAAAGCGATGATTCCCCTGTT -ACGGAAAGCGATGATTCCCGGTTT -ACGGAAAGCGATGATTCCGTGGTT -ACGGAAAGCGATGATTCCGCCTTT -ACGGAAAGCGATGATTCCGGTCTT -ACGGAAAGCGATGATTCCACGCTT -ACGGAAAGCGATGATTCCAGCGTT -ACGGAAAGCGATGATTCCTTCGTC -ACGGAAAGCGATGATTCCTCTCTC -ACGGAAAGCGATGATTCCTGGATC -ACGGAAAGCGATGATTCCCACTTC -ACGGAAAGCGATGATTCCGTACTC -ACGGAAAGCGATGATTCCGATGTC -ACGGAAAGCGATGATTCCACAGTC -ACGGAAAGCGATGATTCCTTGCTG -ACGGAAAGCGATGATTCCTCCATG -ACGGAAAGCGATGATTCCTGTGTG -ACGGAAAGCGATGATTCCCTAGTG -ACGGAAAGCGATGATTCCCATCTG -ACGGAAAGCGATGATTCCGAGTTG -ACGGAAAGCGATGATTCCAGACTG -ACGGAAAGCGATGATTCCTCGGTA -ACGGAAAGCGATGATTCCTGCCTA -ACGGAAAGCGATGATTCCCCACTA -ACGGAAAGCGATGATTCCGGAGTA -ACGGAAAGCGATGATTCCTCGTCT -ACGGAAAGCGATGATTCCTGCACT -ACGGAAAGCGATGATTCCCTGACT -ACGGAAAGCGATGATTCCCAACCT -ACGGAAAGCGATGATTCCGCTACT -ACGGAAAGCGATGATTCCGGATCT -ACGGAAAGCGATGATTCCAAGGCT -ACGGAAAGCGATGATTCCTCAACC -ACGGAAAGCGATGATTCCTGTTCC -ACGGAAAGCGATGATTCCATTCCC -ACGGAAAGCGATGATTCCTTCTCG -ACGGAAAGCGATGATTCCTAGACG -ACGGAAAGCGATGATTCCGTAACG -ACGGAAAGCGATGATTCCACTTCG -ACGGAAAGCGATGATTCCTACGCA -ACGGAAAGCGATGATTCCCTTGCA -ACGGAAAGCGATGATTCCCGAACA -ACGGAAAGCGATGATTCCCAGTCA -ACGGAAAGCGATGATTCCGATCCA -ACGGAAAGCGATGATTCCACGACA -ACGGAAAGCGATGATTCCAGCTCA -ACGGAAAGCGATGATTCCTCACGT -ACGGAAAGCGATGATTCCCGTAGT -ACGGAAAGCGATGATTCCGTCAGT -ACGGAAAGCGATGATTCCGAAGGT -ACGGAAAGCGATGATTCCAACCGT -ACGGAAAGCGATGATTCCTTGTGC -ACGGAAAGCGATGATTCCCTAAGC -ACGGAAAGCGATGATTCCACTAGC -ACGGAAAGCGATGATTCCAGATGC -ACGGAAAGCGATGATTCCTGAAGG -ACGGAAAGCGATGATTCCCAATGG -ACGGAAAGCGATGATTCCATGAGG -ACGGAAAGCGATGATTCCAATGGG -ACGGAAAGCGATGATTCCTCCTGA -ACGGAAAGCGATGATTCCTAGCGA -ACGGAAAGCGATGATTCCCACAGA -ACGGAAAGCGATGATTCCGCAAGA -ACGGAAAGCGATGATTCCGGTTGA -ACGGAAAGCGATGATTCCTCCGAT -ACGGAAAGCGATGATTCCTGGCAT -ACGGAAAGCGATGATTCCCGAGAT -ACGGAAAGCGATGATTCCTACCAC -ACGGAAAGCGATGATTCCCAGAAC -ACGGAAAGCGATGATTCCGTCTAC -ACGGAAAGCGATGATTCCACGTAC -ACGGAAAGCGATGATTCCAGTGAC -ACGGAAAGCGATGATTCCCTGTAG -ACGGAAAGCGATGATTCCCCTAAG -ACGGAAAGCGATGATTCCGTTCAG -ACGGAAAGCGATGATTCCGCATAG -ACGGAAAGCGATGATTCCGACAAG -ACGGAAAGCGATGATTCCAAGCAG -ACGGAAAGCGATGATTCCCGTCAA -ACGGAAAGCGATGATTCCGCTGAA -ACGGAAAGCGATGATTCCAGTACG -ACGGAAAGCGATGATTCCATCCGA -ACGGAAAGCGATGATTCCATGGGA -ACGGAAAGCGATGATTCCGTGCAA -ACGGAAAGCGATGATTCCGAGGAA -ACGGAAAGCGATGATTCCCAGGTA -ACGGAAAGCGATGATTCCGACTCT -ACGGAAAGCGATGATTCCAGTCCT -ACGGAAAGCGATGATTCCTAAGCC -ACGGAAAGCGATGATTCCATAGCC -ACGGAAAGCGATGATTCCTAACCG -ACGGAAAGCGATGATTCCATGCCA -ACGGAAAGCGATCATTGGGGAAAC -ACGGAAAGCGATCATTGGAACACC -ACGGAAAGCGATCATTGGATCGAG -ACGGAAAGCGATCATTGGCTCCTT -ACGGAAAGCGATCATTGGCCTGTT -ACGGAAAGCGATCATTGGCGGTTT -ACGGAAAGCGATCATTGGGTGGTT -ACGGAAAGCGATCATTGGGCCTTT -ACGGAAAGCGATCATTGGGGTCTT -ACGGAAAGCGATCATTGGACGCTT -ACGGAAAGCGATCATTGGAGCGTT -ACGGAAAGCGATCATTGGTTCGTC -ACGGAAAGCGATCATTGGTCTCTC -ACGGAAAGCGATCATTGGTGGATC -ACGGAAAGCGATCATTGGCACTTC -ACGGAAAGCGATCATTGGGTACTC -ACGGAAAGCGATCATTGGGATGTC -ACGGAAAGCGATCATTGGACAGTC -ACGGAAAGCGATCATTGGTTGCTG -ACGGAAAGCGATCATTGGTCCATG -ACGGAAAGCGATCATTGGTGTGTG -ACGGAAAGCGATCATTGGCTAGTG -ACGGAAAGCGATCATTGGCATCTG -ACGGAAAGCGATCATTGGGAGTTG -ACGGAAAGCGATCATTGGAGACTG -ACGGAAAGCGATCATTGGTCGGTA -ACGGAAAGCGATCATTGGTGCCTA -ACGGAAAGCGATCATTGGCCACTA -ACGGAAAGCGATCATTGGGGAGTA -ACGGAAAGCGATCATTGGTCGTCT -ACGGAAAGCGATCATTGGTGCACT -ACGGAAAGCGATCATTGGCTGACT -ACGGAAAGCGATCATTGGCAACCT -ACGGAAAGCGATCATTGGGCTACT -ACGGAAAGCGATCATTGGGGATCT -ACGGAAAGCGATCATTGGAAGGCT -ACGGAAAGCGATCATTGGTCAACC -ACGGAAAGCGATCATTGGTGTTCC -ACGGAAAGCGATCATTGGATTCCC -ACGGAAAGCGATCATTGGTTCTCG -ACGGAAAGCGATCATTGGTAGACG -ACGGAAAGCGATCATTGGGTAACG -ACGGAAAGCGATCATTGGACTTCG -ACGGAAAGCGATCATTGGTACGCA -ACGGAAAGCGATCATTGGCTTGCA -ACGGAAAGCGATCATTGGCGAACA -ACGGAAAGCGATCATTGGCAGTCA -ACGGAAAGCGATCATTGGGATCCA -ACGGAAAGCGATCATTGGACGACA -ACGGAAAGCGATCATTGGAGCTCA -ACGGAAAGCGATCATTGGTCACGT -ACGGAAAGCGATCATTGGCGTAGT -ACGGAAAGCGATCATTGGGTCAGT -ACGGAAAGCGATCATTGGGAAGGT -ACGGAAAGCGATCATTGGAACCGT -ACGGAAAGCGATCATTGGTTGTGC -ACGGAAAGCGATCATTGGCTAAGC -ACGGAAAGCGATCATTGGACTAGC -ACGGAAAGCGATCATTGGAGATGC -ACGGAAAGCGATCATTGGTGAAGG -ACGGAAAGCGATCATTGGCAATGG -ACGGAAAGCGATCATTGGATGAGG -ACGGAAAGCGATCATTGGAATGGG -ACGGAAAGCGATCATTGGTCCTGA -ACGGAAAGCGATCATTGGTAGCGA -ACGGAAAGCGATCATTGGCACAGA -ACGGAAAGCGATCATTGGGCAAGA -ACGGAAAGCGATCATTGGGGTTGA -ACGGAAAGCGATCATTGGTCCGAT -ACGGAAAGCGATCATTGGTGGCAT -ACGGAAAGCGATCATTGGCGAGAT -ACGGAAAGCGATCATTGGTACCAC -ACGGAAAGCGATCATTGGCAGAAC -ACGGAAAGCGATCATTGGGTCTAC -ACGGAAAGCGATCATTGGACGTAC -ACGGAAAGCGATCATTGGAGTGAC -ACGGAAAGCGATCATTGGCTGTAG -ACGGAAAGCGATCATTGGCCTAAG -ACGGAAAGCGATCATTGGGTTCAG -ACGGAAAGCGATCATTGGGCATAG -ACGGAAAGCGATCATTGGGACAAG -ACGGAAAGCGATCATTGGAAGCAG -ACGGAAAGCGATCATTGGCGTCAA -ACGGAAAGCGATCATTGGGCTGAA -ACGGAAAGCGATCATTGGAGTACG -ACGGAAAGCGATCATTGGATCCGA -ACGGAAAGCGATCATTGGATGGGA -ACGGAAAGCGATCATTGGGTGCAA -ACGGAAAGCGATCATTGGGAGGAA -ACGGAAAGCGATCATTGGCAGGTA -ACGGAAAGCGATCATTGGGACTCT -ACGGAAAGCGATCATTGGAGTCCT -ACGGAAAGCGATCATTGGTAAGCC -ACGGAAAGCGATCATTGGATAGCC -ACGGAAAGCGATCATTGGTAACCG -ACGGAAAGCGATCATTGGATGCCA -ACGGAAAGCGATGATCGAGGAAAC -ACGGAAAGCGATGATCGAAACACC -ACGGAAAGCGATGATCGAATCGAG -ACGGAAAGCGATGATCGACTCCTT -ACGGAAAGCGATGATCGACCTGTT -ACGGAAAGCGATGATCGACGGTTT -ACGGAAAGCGATGATCGAGTGGTT -ACGGAAAGCGATGATCGAGCCTTT -ACGGAAAGCGATGATCGAGGTCTT -ACGGAAAGCGATGATCGAACGCTT -ACGGAAAGCGATGATCGAAGCGTT -ACGGAAAGCGATGATCGATTCGTC -ACGGAAAGCGATGATCGATCTCTC -ACGGAAAGCGATGATCGATGGATC -ACGGAAAGCGATGATCGACACTTC -ACGGAAAGCGATGATCGAGTACTC -ACGGAAAGCGATGATCGAGATGTC -ACGGAAAGCGATGATCGAACAGTC -ACGGAAAGCGATGATCGATTGCTG -ACGGAAAGCGATGATCGATCCATG -ACGGAAAGCGATGATCGATGTGTG -ACGGAAAGCGATGATCGACTAGTG -ACGGAAAGCGATGATCGACATCTG -ACGGAAAGCGATGATCGAGAGTTG -ACGGAAAGCGATGATCGAAGACTG -ACGGAAAGCGATGATCGATCGGTA -ACGGAAAGCGATGATCGATGCCTA -ACGGAAAGCGATGATCGACCACTA -ACGGAAAGCGATGATCGAGGAGTA -ACGGAAAGCGATGATCGATCGTCT -ACGGAAAGCGATGATCGATGCACT -ACGGAAAGCGATGATCGACTGACT -ACGGAAAGCGATGATCGACAACCT -ACGGAAAGCGATGATCGAGCTACT -ACGGAAAGCGATGATCGAGGATCT -ACGGAAAGCGATGATCGAAAGGCT -ACGGAAAGCGATGATCGATCAACC -ACGGAAAGCGATGATCGATGTTCC -ACGGAAAGCGATGATCGAATTCCC -ACGGAAAGCGATGATCGATTCTCG -ACGGAAAGCGATGATCGATAGACG -ACGGAAAGCGATGATCGAGTAACG -ACGGAAAGCGATGATCGAACTTCG -ACGGAAAGCGATGATCGATACGCA -ACGGAAAGCGATGATCGACTTGCA -ACGGAAAGCGATGATCGACGAACA -ACGGAAAGCGATGATCGACAGTCA -ACGGAAAGCGATGATCGAGATCCA -ACGGAAAGCGATGATCGAACGACA -ACGGAAAGCGATGATCGAAGCTCA -ACGGAAAGCGATGATCGATCACGT -ACGGAAAGCGATGATCGACGTAGT -ACGGAAAGCGATGATCGAGTCAGT -ACGGAAAGCGATGATCGAGAAGGT -ACGGAAAGCGATGATCGAAACCGT -ACGGAAAGCGATGATCGATTGTGC -ACGGAAAGCGATGATCGACTAAGC -ACGGAAAGCGATGATCGAACTAGC -ACGGAAAGCGATGATCGAAGATGC -ACGGAAAGCGATGATCGATGAAGG -ACGGAAAGCGATGATCGACAATGG -ACGGAAAGCGATGATCGAATGAGG -ACGGAAAGCGATGATCGAAATGGG -ACGGAAAGCGATGATCGATCCTGA -ACGGAAAGCGATGATCGATAGCGA -ACGGAAAGCGATGATCGACACAGA -ACGGAAAGCGATGATCGAGCAAGA -ACGGAAAGCGATGATCGAGGTTGA -ACGGAAAGCGATGATCGATCCGAT -ACGGAAAGCGATGATCGATGGCAT -ACGGAAAGCGATGATCGACGAGAT -ACGGAAAGCGATGATCGATACCAC -ACGGAAAGCGATGATCGACAGAAC -ACGGAAAGCGATGATCGAGTCTAC -ACGGAAAGCGATGATCGAACGTAC -ACGGAAAGCGATGATCGAAGTGAC -ACGGAAAGCGATGATCGACTGTAG -ACGGAAAGCGATGATCGACCTAAG -ACGGAAAGCGATGATCGAGTTCAG -ACGGAAAGCGATGATCGAGCATAG -ACGGAAAGCGATGATCGAGACAAG -ACGGAAAGCGATGATCGAAAGCAG -ACGGAAAGCGATGATCGACGTCAA -ACGGAAAGCGATGATCGAGCTGAA -ACGGAAAGCGATGATCGAAGTACG -ACGGAAAGCGATGATCGAATCCGA -ACGGAAAGCGATGATCGAATGGGA -ACGGAAAGCGATGATCGAGTGCAA -ACGGAAAGCGATGATCGAGAGGAA -ACGGAAAGCGATGATCGACAGGTA -ACGGAAAGCGATGATCGAGACTCT -ACGGAAAGCGATGATCGAAGTCCT -ACGGAAAGCGATGATCGATAAGCC -ACGGAAAGCGATGATCGAATAGCC -ACGGAAAGCGATGATCGATAACCG -ACGGAAAGCGATGATCGAATGCCA -ACGGAAAGCGATCACTACGGAAAC -ACGGAAAGCGATCACTACAACACC -ACGGAAAGCGATCACTACATCGAG -ACGGAAAGCGATCACTACCTCCTT -ACGGAAAGCGATCACTACCCTGTT -ACGGAAAGCGATCACTACCGGTTT -ACGGAAAGCGATCACTACGTGGTT -ACGGAAAGCGATCACTACGCCTTT -ACGGAAAGCGATCACTACGGTCTT -ACGGAAAGCGATCACTACACGCTT -ACGGAAAGCGATCACTACAGCGTT -ACGGAAAGCGATCACTACTTCGTC -ACGGAAAGCGATCACTACTCTCTC -ACGGAAAGCGATCACTACTGGATC -ACGGAAAGCGATCACTACCACTTC -ACGGAAAGCGATCACTACGTACTC -ACGGAAAGCGATCACTACGATGTC -ACGGAAAGCGATCACTACACAGTC -ACGGAAAGCGATCACTACTTGCTG -ACGGAAAGCGATCACTACTCCATG -ACGGAAAGCGATCACTACTGTGTG -ACGGAAAGCGATCACTACCTAGTG -ACGGAAAGCGATCACTACCATCTG -ACGGAAAGCGATCACTACGAGTTG -ACGGAAAGCGATCACTACAGACTG -ACGGAAAGCGATCACTACTCGGTA -ACGGAAAGCGATCACTACTGCCTA -ACGGAAAGCGATCACTACCCACTA -ACGGAAAGCGATCACTACGGAGTA -ACGGAAAGCGATCACTACTCGTCT -ACGGAAAGCGATCACTACTGCACT -ACGGAAAGCGATCACTACCTGACT -ACGGAAAGCGATCACTACCAACCT -ACGGAAAGCGATCACTACGCTACT -ACGGAAAGCGATCACTACGGATCT -ACGGAAAGCGATCACTACAAGGCT -ACGGAAAGCGATCACTACTCAACC -ACGGAAAGCGATCACTACTGTTCC -ACGGAAAGCGATCACTACATTCCC -ACGGAAAGCGATCACTACTTCTCG -ACGGAAAGCGATCACTACTAGACG -ACGGAAAGCGATCACTACGTAACG -ACGGAAAGCGATCACTACACTTCG -ACGGAAAGCGATCACTACTACGCA -ACGGAAAGCGATCACTACCTTGCA -ACGGAAAGCGATCACTACCGAACA -ACGGAAAGCGATCACTACCAGTCA -ACGGAAAGCGATCACTACGATCCA -ACGGAAAGCGATCACTACACGACA -ACGGAAAGCGATCACTACAGCTCA -ACGGAAAGCGATCACTACTCACGT -ACGGAAAGCGATCACTACCGTAGT -ACGGAAAGCGATCACTACGTCAGT -ACGGAAAGCGATCACTACGAAGGT -ACGGAAAGCGATCACTACAACCGT -ACGGAAAGCGATCACTACTTGTGC -ACGGAAAGCGATCACTACCTAAGC -ACGGAAAGCGATCACTACACTAGC -ACGGAAAGCGATCACTACAGATGC -ACGGAAAGCGATCACTACTGAAGG -ACGGAAAGCGATCACTACCAATGG -ACGGAAAGCGATCACTACATGAGG -ACGGAAAGCGATCACTACAATGGG -ACGGAAAGCGATCACTACTCCTGA -ACGGAAAGCGATCACTACTAGCGA -ACGGAAAGCGATCACTACCACAGA -ACGGAAAGCGATCACTACGCAAGA -ACGGAAAGCGATCACTACGGTTGA -ACGGAAAGCGATCACTACTCCGAT -ACGGAAAGCGATCACTACTGGCAT -ACGGAAAGCGATCACTACCGAGAT -ACGGAAAGCGATCACTACTACCAC -ACGGAAAGCGATCACTACCAGAAC -ACGGAAAGCGATCACTACGTCTAC -ACGGAAAGCGATCACTACACGTAC -ACGGAAAGCGATCACTACAGTGAC -ACGGAAAGCGATCACTACCTGTAG -ACGGAAAGCGATCACTACCCTAAG -ACGGAAAGCGATCACTACGTTCAG -ACGGAAAGCGATCACTACGCATAG -ACGGAAAGCGATCACTACGACAAG -ACGGAAAGCGATCACTACAAGCAG -ACGGAAAGCGATCACTACCGTCAA -ACGGAAAGCGATCACTACGCTGAA -ACGGAAAGCGATCACTACAGTACG -ACGGAAAGCGATCACTACATCCGA -ACGGAAAGCGATCACTACATGGGA -ACGGAAAGCGATCACTACGTGCAA -ACGGAAAGCGATCACTACGAGGAA -ACGGAAAGCGATCACTACCAGGTA -ACGGAAAGCGATCACTACGACTCT -ACGGAAAGCGATCACTACAGTCCT -ACGGAAAGCGATCACTACTAAGCC -ACGGAAAGCGATCACTACATAGCC -ACGGAAAGCGATCACTACTAACCG -ACGGAAAGCGATCACTACATGCCA -ACGGAAAGCGATAACCAGGGAAAC -ACGGAAAGCGATAACCAGAACACC -ACGGAAAGCGATAACCAGATCGAG -ACGGAAAGCGATAACCAGCTCCTT -ACGGAAAGCGATAACCAGCCTGTT -ACGGAAAGCGATAACCAGCGGTTT -ACGGAAAGCGATAACCAGGTGGTT -ACGGAAAGCGATAACCAGGCCTTT -ACGGAAAGCGATAACCAGGGTCTT -ACGGAAAGCGATAACCAGACGCTT -ACGGAAAGCGATAACCAGAGCGTT -ACGGAAAGCGATAACCAGTTCGTC -ACGGAAAGCGATAACCAGTCTCTC -ACGGAAAGCGATAACCAGTGGATC -ACGGAAAGCGATAACCAGCACTTC -ACGGAAAGCGATAACCAGGTACTC -ACGGAAAGCGATAACCAGGATGTC -ACGGAAAGCGATAACCAGACAGTC -ACGGAAAGCGATAACCAGTTGCTG -ACGGAAAGCGATAACCAGTCCATG -ACGGAAAGCGATAACCAGTGTGTG -ACGGAAAGCGATAACCAGCTAGTG -ACGGAAAGCGATAACCAGCATCTG -ACGGAAAGCGATAACCAGGAGTTG -ACGGAAAGCGATAACCAGAGACTG -ACGGAAAGCGATAACCAGTCGGTA -ACGGAAAGCGATAACCAGTGCCTA -ACGGAAAGCGATAACCAGCCACTA -ACGGAAAGCGATAACCAGGGAGTA -ACGGAAAGCGATAACCAGTCGTCT -ACGGAAAGCGATAACCAGTGCACT -ACGGAAAGCGATAACCAGCTGACT -ACGGAAAGCGATAACCAGCAACCT -ACGGAAAGCGATAACCAGGCTACT -ACGGAAAGCGATAACCAGGGATCT -ACGGAAAGCGATAACCAGAAGGCT -ACGGAAAGCGATAACCAGTCAACC -ACGGAAAGCGATAACCAGTGTTCC -ACGGAAAGCGATAACCAGATTCCC -ACGGAAAGCGATAACCAGTTCTCG -ACGGAAAGCGATAACCAGTAGACG -ACGGAAAGCGATAACCAGGTAACG -ACGGAAAGCGATAACCAGACTTCG -ACGGAAAGCGATAACCAGTACGCA -ACGGAAAGCGATAACCAGCTTGCA -ACGGAAAGCGATAACCAGCGAACA -ACGGAAAGCGATAACCAGCAGTCA -ACGGAAAGCGATAACCAGGATCCA -ACGGAAAGCGATAACCAGACGACA -ACGGAAAGCGATAACCAGAGCTCA -ACGGAAAGCGATAACCAGTCACGT -ACGGAAAGCGATAACCAGCGTAGT -ACGGAAAGCGATAACCAGGTCAGT -ACGGAAAGCGATAACCAGGAAGGT -ACGGAAAGCGATAACCAGAACCGT -ACGGAAAGCGATAACCAGTTGTGC -ACGGAAAGCGATAACCAGCTAAGC -ACGGAAAGCGATAACCAGACTAGC -ACGGAAAGCGATAACCAGAGATGC -ACGGAAAGCGATAACCAGTGAAGG -ACGGAAAGCGATAACCAGCAATGG -ACGGAAAGCGATAACCAGATGAGG -ACGGAAAGCGATAACCAGAATGGG -ACGGAAAGCGATAACCAGTCCTGA -ACGGAAAGCGATAACCAGTAGCGA -ACGGAAAGCGATAACCAGCACAGA -ACGGAAAGCGATAACCAGGCAAGA -ACGGAAAGCGATAACCAGGGTTGA -ACGGAAAGCGATAACCAGTCCGAT -ACGGAAAGCGATAACCAGTGGCAT -ACGGAAAGCGATAACCAGCGAGAT -ACGGAAAGCGATAACCAGTACCAC -ACGGAAAGCGATAACCAGCAGAAC -ACGGAAAGCGATAACCAGGTCTAC -ACGGAAAGCGATAACCAGACGTAC -ACGGAAAGCGATAACCAGAGTGAC -ACGGAAAGCGATAACCAGCTGTAG -ACGGAAAGCGATAACCAGCCTAAG -ACGGAAAGCGATAACCAGGTTCAG -ACGGAAAGCGATAACCAGGCATAG -ACGGAAAGCGATAACCAGGACAAG -ACGGAAAGCGATAACCAGAAGCAG -ACGGAAAGCGATAACCAGCGTCAA -ACGGAAAGCGATAACCAGGCTGAA -ACGGAAAGCGATAACCAGAGTACG -ACGGAAAGCGATAACCAGATCCGA -ACGGAAAGCGATAACCAGATGGGA -ACGGAAAGCGATAACCAGGTGCAA -ACGGAAAGCGATAACCAGGAGGAA -ACGGAAAGCGATAACCAGCAGGTA -ACGGAAAGCGATAACCAGGACTCT -ACGGAAAGCGATAACCAGAGTCCT -ACGGAAAGCGATAACCAGTAAGCC -ACGGAAAGCGATAACCAGATAGCC -ACGGAAAGCGATAACCAGTAACCG -ACGGAAAGCGATAACCAGATGCCA -ACGGAAAGCGATTACGTCGGAAAC -ACGGAAAGCGATTACGTCAACACC -ACGGAAAGCGATTACGTCATCGAG -ACGGAAAGCGATTACGTCCTCCTT -ACGGAAAGCGATTACGTCCCTGTT -ACGGAAAGCGATTACGTCCGGTTT -ACGGAAAGCGATTACGTCGTGGTT -ACGGAAAGCGATTACGTCGCCTTT -ACGGAAAGCGATTACGTCGGTCTT -ACGGAAAGCGATTACGTCACGCTT -ACGGAAAGCGATTACGTCAGCGTT -ACGGAAAGCGATTACGTCTTCGTC -ACGGAAAGCGATTACGTCTCTCTC -ACGGAAAGCGATTACGTCTGGATC -ACGGAAAGCGATTACGTCCACTTC -ACGGAAAGCGATTACGTCGTACTC -ACGGAAAGCGATTACGTCGATGTC -ACGGAAAGCGATTACGTCACAGTC -ACGGAAAGCGATTACGTCTTGCTG -ACGGAAAGCGATTACGTCTCCATG -ACGGAAAGCGATTACGTCTGTGTG -ACGGAAAGCGATTACGTCCTAGTG -ACGGAAAGCGATTACGTCCATCTG -ACGGAAAGCGATTACGTCGAGTTG -ACGGAAAGCGATTACGTCAGACTG -ACGGAAAGCGATTACGTCTCGGTA -ACGGAAAGCGATTACGTCTGCCTA -ACGGAAAGCGATTACGTCCCACTA -ACGGAAAGCGATTACGTCGGAGTA -ACGGAAAGCGATTACGTCTCGTCT -ACGGAAAGCGATTACGTCTGCACT -ACGGAAAGCGATTACGTCCTGACT -ACGGAAAGCGATTACGTCCAACCT -ACGGAAAGCGATTACGTCGCTACT -ACGGAAAGCGATTACGTCGGATCT -ACGGAAAGCGATTACGTCAAGGCT -ACGGAAAGCGATTACGTCTCAACC -ACGGAAAGCGATTACGTCTGTTCC -ACGGAAAGCGATTACGTCATTCCC -ACGGAAAGCGATTACGTCTTCTCG -ACGGAAAGCGATTACGTCTAGACG -ACGGAAAGCGATTACGTCGTAACG -ACGGAAAGCGATTACGTCACTTCG -ACGGAAAGCGATTACGTCTACGCA -ACGGAAAGCGATTACGTCCTTGCA -ACGGAAAGCGATTACGTCCGAACA -ACGGAAAGCGATTACGTCCAGTCA -ACGGAAAGCGATTACGTCGATCCA -ACGGAAAGCGATTACGTCACGACA -ACGGAAAGCGATTACGTCAGCTCA -ACGGAAAGCGATTACGTCTCACGT -ACGGAAAGCGATTACGTCCGTAGT -ACGGAAAGCGATTACGTCGTCAGT -ACGGAAAGCGATTACGTCGAAGGT -ACGGAAAGCGATTACGTCAACCGT -ACGGAAAGCGATTACGTCTTGTGC -ACGGAAAGCGATTACGTCCTAAGC -ACGGAAAGCGATTACGTCACTAGC -ACGGAAAGCGATTACGTCAGATGC -ACGGAAAGCGATTACGTCTGAAGG -ACGGAAAGCGATTACGTCCAATGG -ACGGAAAGCGATTACGTCATGAGG -ACGGAAAGCGATTACGTCAATGGG -ACGGAAAGCGATTACGTCTCCTGA -ACGGAAAGCGATTACGTCTAGCGA -ACGGAAAGCGATTACGTCCACAGA -ACGGAAAGCGATTACGTCGCAAGA -ACGGAAAGCGATTACGTCGGTTGA -ACGGAAAGCGATTACGTCTCCGAT -ACGGAAAGCGATTACGTCTGGCAT -ACGGAAAGCGATTACGTCCGAGAT -ACGGAAAGCGATTACGTCTACCAC -ACGGAAAGCGATTACGTCCAGAAC -ACGGAAAGCGATTACGTCGTCTAC -ACGGAAAGCGATTACGTCACGTAC -ACGGAAAGCGATTACGTCAGTGAC -ACGGAAAGCGATTACGTCCTGTAG -ACGGAAAGCGATTACGTCCCTAAG -ACGGAAAGCGATTACGTCGTTCAG -ACGGAAAGCGATTACGTCGCATAG -ACGGAAAGCGATTACGTCGACAAG -ACGGAAAGCGATTACGTCAAGCAG -ACGGAAAGCGATTACGTCCGTCAA -ACGGAAAGCGATTACGTCGCTGAA -ACGGAAAGCGATTACGTCAGTACG -ACGGAAAGCGATTACGTCATCCGA -ACGGAAAGCGATTACGTCATGGGA -ACGGAAAGCGATTACGTCGTGCAA -ACGGAAAGCGATTACGTCGAGGAA -ACGGAAAGCGATTACGTCCAGGTA -ACGGAAAGCGATTACGTCGACTCT -ACGGAAAGCGATTACGTCAGTCCT -ACGGAAAGCGATTACGTCTAAGCC -ACGGAAAGCGATTACGTCATAGCC -ACGGAAAGCGATTACGTCTAACCG -ACGGAAAGCGATTACGTCATGCCA -ACGGAAAGCGATTACACGGGAAAC -ACGGAAAGCGATTACACGAACACC -ACGGAAAGCGATTACACGATCGAG -ACGGAAAGCGATTACACGCTCCTT -ACGGAAAGCGATTACACGCCTGTT -ACGGAAAGCGATTACACGCGGTTT -ACGGAAAGCGATTACACGGTGGTT -ACGGAAAGCGATTACACGGCCTTT -ACGGAAAGCGATTACACGGGTCTT -ACGGAAAGCGATTACACGACGCTT -ACGGAAAGCGATTACACGAGCGTT -ACGGAAAGCGATTACACGTTCGTC -ACGGAAAGCGATTACACGTCTCTC -ACGGAAAGCGATTACACGTGGATC -ACGGAAAGCGATTACACGCACTTC -ACGGAAAGCGATTACACGGTACTC -ACGGAAAGCGATTACACGGATGTC -ACGGAAAGCGATTACACGACAGTC -ACGGAAAGCGATTACACGTTGCTG -ACGGAAAGCGATTACACGTCCATG -ACGGAAAGCGATTACACGTGTGTG -ACGGAAAGCGATTACACGCTAGTG -ACGGAAAGCGATTACACGCATCTG -ACGGAAAGCGATTACACGGAGTTG -ACGGAAAGCGATTACACGAGACTG -ACGGAAAGCGATTACACGTCGGTA -ACGGAAAGCGATTACACGTGCCTA -ACGGAAAGCGATTACACGCCACTA -ACGGAAAGCGATTACACGGGAGTA -ACGGAAAGCGATTACACGTCGTCT -ACGGAAAGCGATTACACGTGCACT -ACGGAAAGCGATTACACGCTGACT -ACGGAAAGCGATTACACGCAACCT -ACGGAAAGCGATTACACGGCTACT -ACGGAAAGCGATTACACGGGATCT -ACGGAAAGCGATTACACGAAGGCT -ACGGAAAGCGATTACACGTCAACC -ACGGAAAGCGATTACACGTGTTCC -ACGGAAAGCGATTACACGATTCCC -ACGGAAAGCGATTACACGTTCTCG -ACGGAAAGCGATTACACGTAGACG -ACGGAAAGCGATTACACGGTAACG -ACGGAAAGCGATTACACGACTTCG -ACGGAAAGCGATTACACGTACGCA -ACGGAAAGCGATTACACGCTTGCA -ACGGAAAGCGATTACACGCGAACA -ACGGAAAGCGATTACACGCAGTCA -ACGGAAAGCGATTACACGGATCCA -ACGGAAAGCGATTACACGACGACA -ACGGAAAGCGATTACACGAGCTCA -ACGGAAAGCGATTACACGTCACGT -ACGGAAAGCGATTACACGCGTAGT -ACGGAAAGCGATTACACGGTCAGT -ACGGAAAGCGATTACACGGAAGGT -ACGGAAAGCGATTACACGAACCGT -ACGGAAAGCGATTACACGTTGTGC -ACGGAAAGCGATTACACGCTAAGC -ACGGAAAGCGATTACACGACTAGC -ACGGAAAGCGATTACACGAGATGC -ACGGAAAGCGATTACACGTGAAGG -ACGGAAAGCGATTACACGCAATGG -ACGGAAAGCGATTACACGATGAGG -ACGGAAAGCGATTACACGAATGGG -ACGGAAAGCGATTACACGTCCTGA -ACGGAAAGCGATTACACGTAGCGA -ACGGAAAGCGATTACACGCACAGA -ACGGAAAGCGATTACACGGCAAGA -ACGGAAAGCGATTACACGGGTTGA -ACGGAAAGCGATTACACGTCCGAT -ACGGAAAGCGATTACACGTGGCAT -ACGGAAAGCGATTACACGCGAGAT -ACGGAAAGCGATTACACGTACCAC -ACGGAAAGCGATTACACGCAGAAC -ACGGAAAGCGATTACACGGTCTAC -ACGGAAAGCGATTACACGACGTAC -ACGGAAAGCGATTACACGAGTGAC -ACGGAAAGCGATTACACGCTGTAG -ACGGAAAGCGATTACACGCCTAAG -ACGGAAAGCGATTACACGGTTCAG -ACGGAAAGCGATTACACGGCATAG -ACGGAAAGCGATTACACGGACAAG -ACGGAAAGCGATTACACGAAGCAG -ACGGAAAGCGATTACACGCGTCAA -ACGGAAAGCGATTACACGGCTGAA -ACGGAAAGCGATTACACGAGTACG -ACGGAAAGCGATTACACGATCCGA -ACGGAAAGCGATTACACGATGGGA -ACGGAAAGCGATTACACGGTGCAA -ACGGAAAGCGATTACACGGAGGAA -ACGGAAAGCGATTACACGCAGGTA -ACGGAAAGCGATTACACGGACTCT -ACGGAAAGCGATTACACGAGTCCT -ACGGAAAGCGATTACACGTAAGCC -ACGGAAAGCGATTACACGATAGCC -ACGGAAAGCGATTACACGTAACCG -ACGGAAAGCGATTACACGATGCCA -ACGGAAAGCGATGACAGTGGAAAC -ACGGAAAGCGATGACAGTAACACC -ACGGAAAGCGATGACAGTATCGAG -ACGGAAAGCGATGACAGTCTCCTT -ACGGAAAGCGATGACAGTCCTGTT -ACGGAAAGCGATGACAGTCGGTTT -ACGGAAAGCGATGACAGTGTGGTT -ACGGAAAGCGATGACAGTGCCTTT -ACGGAAAGCGATGACAGTGGTCTT -ACGGAAAGCGATGACAGTACGCTT -ACGGAAAGCGATGACAGTAGCGTT -ACGGAAAGCGATGACAGTTTCGTC -ACGGAAAGCGATGACAGTTCTCTC -ACGGAAAGCGATGACAGTTGGATC -ACGGAAAGCGATGACAGTCACTTC -ACGGAAAGCGATGACAGTGTACTC -ACGGAAAGCGATGACAGTGATGTC -ACGGAAAGCGATGACAGTACAGTC -ACGGAAAGCGATGACAGTTTGCTG -ACGGAAAGCGATGACAGTTCCATG -ACGGAAAGCGATGACAGTTGTGTG -ACGGAAAGCGATGACAGTCTAGTG -ACGGAAAGCGATGACAGTCATCTG -ACGGAAAGCGATGACAGTGAGTTG -ACGGAAAGCGATGACAGTAGACTG -ACGGAAAGCGATGACAGTTCGGTA -ACGGAAAGCGATGACAGTTGCCTA -ACGGAAAGCGATGACAGTCCACTA -ACGGAAAGCGATGACAGTGGAGTA -ACGGAAAGCGATGACAGTTCGTCT -ACGGAAAGCGATGACAGTTGCACT -ACGGAAAGCGATGACAGTCTGACT -ACGGAAAGCGATGACAGTCAACCT -ACGGAAAGCGATGACAGTGCTACT -ACGGAAAGCGATGACAGTGGATCT -ACGGAAAGCGATGACAGTAAGGCT -ACGGAAAGCGATGACAGTTCAACC -ACGGAAAGCGATGACAGTTGTTCC -ACGGAAAGCGATGACAGTATTCCC -ACGGAAAGCGATGACAGTTTCTCG -ACGGAAAGCGATGACAGTTAGACG -ACGGAAAGCGATGACAGTGTAACG -ACGGAAAGCGATGACAGTACTTCG -ACGGAAAGCGATGACAGTTACGCA -ACGGAAAGCGATGACAGTCTTGCA -ACGGAAAGCGATGACAGTCGAACA -ACGGAAAGCGATGACAGTCAGTCA -ACGGAAAGCGATGACAGTGATCCA -ACGGAAAGCGATGACAGTACGACA -ACGGAAAGCGATGACAGTAGCTCA -ACGGAAAGCGATGACAGTTCACGT -ACGGAAAGCGATGACAGTCGTAGT -ACGGAAAGCGATGACAGTGTCAGT -ACGGAAAGCGATGACAGTGAAGGT -ACGGAAAGCGATGACAGTAACCGT -ACGGAAAGCGATGACAGTTTGTGC -ACGGAAAGCGATGACAGTCTAAGC -ACGGAAAGCGATGACAGTACTAGC -ACGGAAAGCGATGACAGTAGATGC -ACGGAAAGCGATGACAGTTGAAGG -ACGGAAAGCGATGACAGTCAATGG -ACGGAAAGCGATGACAGTATGAGG -ACGGAAAGCGATGACAGTAATGGG -ACGGAAAGCGATGACAGTTCCTGA -ACGGAAAGCGATGACAGTTAGCGA -ACGGAAAGCGATGACAGTCACAGA -ACGGAAAGCGATGACAGTGCAAGA -ACGGAAAGCGATGACAGTGGTTGA -ACGGAAAGCGATGACAGTTCCGAT -ACGGAAAGCGATGACAGTTGGCAT -ACGGAAAGCGATGACAGTCGAGAT -ACGGAAAGCGATGACAGTTACCAC -ACGGAAAGCGATGACAGTCAGAAC -ACGGAAAGCGATGACAGTGTCTAC -ACGGAAAGCGATGACAGTACGTAC -ACGGAAAGCGATGACAGTAGTGAC -ACGGAAAGCGATGACAGTCTGTAG -ACGGAAAGCGATGACAGTCCTAAG -ACGGAAAGCGATGACAGTGTTCAG -ACGGAAAGCGATGACAGTGCATAG -ACGGAAAGCGATGACAGTGACAAG -ACGGAAAGCGATGACAGTAAGCAG -ACGGAAAGCGATGACAGTCGTCAA -ACGGAAAGCGATGACAGTGCTGAA -ACGGAAAGCGATGACAGTAGTACG -ACGGAAAGCGATGACAGTATCCGA -ACGGAAAGCGATGACAGTATGGGA -ACGGAAAGCGATGACAGTGTGCAA -ACGGAAAGCGATGACAGTGAGGAA -ACGGAAAGCGATGACAGTCAGGTA -ACGGAAAGCGATGACAGTGACTCT -ACGGAAAGCGATGACAGTAGTCCT -ACGGAAAGCGATGACAGTTAAGCC -ACGGAAAGCGATGACAGTATAGCC -ACGGAAAGCGATGACAGTTAACCG -ACGGAAAGCGATGACAGTATGCCA -ACGGAAAGCGATTAGCTGGGAAAC -ACGGAAAGCGATTAGCTGAACACC -ACGGAAAGCGATTAGCTGATCGAG -ACGGAAAGCGATTAGCTGCTCCTT -ACGGAAAGCGATTAGCTGCCTGTT -ACGGAAAGCGATTAGCTGCGGTTT -ACGGAAAGCGATTAGCTGGTGGTT -ACGGAAAGCGATTAGCTGGCCTTT -ACGGAAAGCGATTAGCTGGGTCTT -ACGGAAAGCGATTAGCTGACGCTT -ACGGAAAGCGATTAGCTGAGCGTT -ACGGAAAGCGATTAGCTGTTCGTC -ACGGAAAGCGATTAGCTGTCTCTC -ACGGAAAGCGATTAGCTGTGGATC -ACGGAAAGCGATTAGCTGCACTTC -ACGGAAAGCGATTAGCTGGTACTC -ACGGAAAGCGATTAGCTGGATGTC -ACGGAAAGCGATTAGCTGACAGTC -ACGGAAAGCGATTAGCTGTTGCTG -ACGGAAAGCGATTAGCTGTCCATG -ACGGAAAGCGATTAGCTGTGTGTG -ACGGAAAGCGATTAGCTGCTAGTG -ACGGAAAGCGATTAGCTGCATCTG -ACGGAAAGCGATTAGCTGGAGTTG -ACGGAAAGCGATTAGCTGAGACTG -ACGGAAAGCGATTAGCTGTCGGTA -ACGGAAAGCGATTAGCTGTGCCTA -ACGGAAAGCGATTAGCTGCCACTA -ACGGAAAGCGATTAGCTGGGAGTA -ACGGAAAGCGATTAGCTGTCGTCT -ACGGAAAGCGATTAGCTGTGCACT -ACGGAAAGCGATTAGCTGCTGACT -ACGGAAAGCGATTAGCTGCAACCT -ACGGAAAGCGATTAGCTGGCTACT -ACGGAAAGCGATTAGCTGGGATCT -ACGGAAAGCGATTAGCTGAAGGCT -ACGGAAAGCGATTAGCTGTCAACC -ACGGAAAGCGATTAGCTGTGTTCC -ACGGAAAGCGATTAGCTGATTCCC -ACGGAAAGCGATTAGCTGTTCTCG -ACGGAAAGCGATTAGCTGTAGACG -ACGGAAAGCGATTAGCTGGTAACG -ACGGAAAGCGATTAGCTGACTTCG -ACGGAAAGCGATTAGCTGTACGCA -ACGGAAAGCGATTAGCTGCTTGCA -ACGGAAAGCGATTAGCTGCGAACA -ACGGAAAGCGATTAGCTGCAGTCA -ACGGAAAGCGATTAGCTGGATCCA -ACGGAAAGCGATTAGCTGACGACA -ACGGAAAGCGATTAGCTGAGCTCA -ACGGAAAGCGATTAGCTGTCACGT -ACGGAAAGCGATTAGCTGCGTAGT -ACGGAAAGCGATTAGCTGGTCAGT -ACGGAAAGCGATTAGCTGGAAGGT -ACGGAAAGCGATTAGCTGAACCGT -ACGGAAAGCGATTAGCTGTTGTGC -ACGGAAAGCGATTAGCTGCTAAGC -ACGGAAAGCGATTAGCTGACTAGC -ACGGAAAGCGATTAGCTGAGATGC -ACGGAAAGCGATTAGCTGTGAAGG -ACGGAAAGCGATTAGCTGCAATGG -ACGGAAAGCGATTAGCTGATGAGG -ACGGAAAGCGATTAGCTGAATGGG -ACGGAAAGCGATTAGCTGTCCTGA -ACGGAAAGCGATTAGCTGTAGCGA -ACGGAAAGCGATTAGCTGCACAGA -ACGGAAAGCGATTAGCTGGCAAGA -ACGGAAAGCGATTAGCTGGGTTGA -ACGGAAAGCGATTAGCTGTCCGAT -ACGGAAAGCGATTAGCTGTGGCAT -ACGGAAAGCGATTAGCTGCGAGAT -ACGGAAAGCGATTAGCTGTACCAC -ACGGAAAGCGATTAGCTGCAGAAC -ACGGAAAGCGATTAGCTGGTCTAC -ACGGAAAGCGATTAGCTGACGTAC -ACGGAAAGCGATTAGCTGAGTGAC -ACGGAAAGCGATTAGCTGCTGTAG -ACGGAAAGCGATTAGCTGCCTAAG -ACGGAAAGCGATTAGCTGGTTCAG -ACGGAAAGCGATTAGCTGGCATAG -ACGGAAAGCGATTAGCTGGACAAG -ACGGAAAGCGATTAGCTGAAGCAG -ACGGAAAGCGATTAGCTGCGTCAA -ACGGAAAGCGATTAGCTGGCTGAA -ACGGAAAGCGATTAGCTGAGTACG -ACGGAAAGCGATTAGCTGATCCGA -ACGGAAAGCGATTAGCTGATGGGA -ACGGAAAGCGATTAGCTGGTGCAA -ACGGAAAGCGATTAGCTGGAGGAA -ACGGAAAGCGATTAGCTGCAGGTA -ACGGAAAGCGATTAGCTGGACTCT -ACGGAAAGCGATTAGCTGAGTCCT -ACGGAAAGCGATTAGCTGTAAGCC -ACGGAAAGCGATTAGCTGATAGCC -ACGGAAAGCGATTAGCTGTAACCG -ACGGAAAGCGATTAGCTGATGCCA -ACGGAAAGCGATAAGCCTGGAAAC -ACGGAAAGCGATAAGCCTAACACC -ACGGAAAGCGATAAGCCTATCGAG -ACGGAAAGCGATAAGCCTCTCCTT -ACGGAAAGCGATAAGCCTCCTGTT -ACGGAAAGCGATAAGCCTCGGTTT -ACGGAAAGCGATAAGCCTGTGGTT -ACGGAAAGCGATAAGCCTGCCTTT -ACGGAAAGCGATAAGCCTGGTCTT -ACGGAAAGCGATAAGCCTACGCTT -ACGGAAAGCGATAAGCCTAGCGTT -ACGGAAAGCGATAAGCCTTTCGTC -ACGGAAAGCGATAAGCCTTCTCTC -ACGGAAAGCGATAAGCCTTGGATC -ACGGAAAGCGATAAGCCTCACTTC -ACGGAAAGCGATAAGCCTGTACTC -ACGGAAAGCGATAAGCCTGATGTC -ACGGAAAGCGATAAGCCTACAGTC -ACGGAAAGCGATAAGCCTTTGCTG -ACGGAAAGCGATAAGCCTTCCATG -ACGGAAAGCGATAAGCCTTGTGTG -ACGGAAAGCGATAAGCCTCTAGTG -ACGGAAAGCGATAAGCCTCATCTG -ACGGAAAGCGATAAGCCTGAGTTG -ACGGAAAGCGATAAGCCTAGACTG -ACGGAAAGCGATAAGCCTTCGGTA -ACGGAAAGCGATAAGCCTTGCCTA -ACGGAAAGCGATAAGCCTCCACTA -ACGGAAAGCGATAAGCCTGGAGTA -ACGGAAAGCGATAAGCCTTCGTCT -ACGGAAAGCGATAAGCCTTGCACT -ACGGAAAGCGATAAGCCTCTGACT -ACGGAAAGCGATAAGCCTCAACCT -ACGGAAAGCGATAAGCCTGCTACT -ACGGAAAGCGATAAGCCTGGATCT -ACGGAAAGCGATAAGCCTAAGGCT -ACGGAAAGCGATAAGCCTTCAACC -ACGGAAAGCGATAAGCCTTGTTCC -ACGGAAAGCGATAAGCCTATTCCC -ACGGAAAGCGATAAGCCTTTCTCG -ACGGAAAGCGATAAGCCTTAGACG -ACGGAAAGCGATAAGCCTGTAACG -ACGGAAAGCGATAAGCCTACTTCG -ACGGAAAGCGATAAGCCTTACGCA -ACGGAAAGCGATAAGCCTCTTGCA -ACGGAAAGCGATAAGCCTCGAACA -ACGGAAAGCGATAAGCCTCAGTCA -ACGGAAAGCGATAAGCCTGATCCA -ACGGAAAGCGATAAGCCTACGACA -ACGGAAAGCGATAAGCCTAGCTCA -ACGGAAAGCGATAAGCCTTCACGT -ACGGAAAGCGATAAGCCTCGTAGT -ACGGAAAGCGATAAGCCTGTCAGT -ACGGAAAGCGATAAGCCTGAAGGT -ACGGAAAGCGATAAGCCTAACCGT -ACGGAAAGCGATAAGCCTTTGTGC -ACGGAAAGCGATAAGCCTCTAAGC -ACGGAAAGCGATAAGCCTACTAGC -ACGGAAAGCGATAAGCCTAGATGC -ACGGAAAGCGATAAGCCTTGAAGG -ACGGAAAGCGATAAGCCTCAATGG -ACGGAAAGCGATAAGCCTATGAGG -ACGGAAAGCGATAAGCCTAATGGG -ACGGAAAGCGATAAGCCTTCCTGA -ACGGAAAGCGATAAGCCTTAGCGA -ACGGAAAGCGATAAGCCTCACAGA -ACGGAAAGCGATAAGCCTGCAAGA -ACGGAAAGCGATAAGCCTGGTTGA -ACGGAAAGCGATAAGCCTTCCGAT -ACGGAAAGCGATAAGCCTTGGCAT -ACGGAAAGCGATAAGCCTCGAGAT -ACGGAAAGCGATAAGCCTTACCAC -ACGGAAAGCGATAAGCCTCAGAAC -ACGGAAAGCGATAAGCCTGTCTAC -ACGGAAAGCGATAAGCCTACGTAC -ACGGAAAGCGATAAGCCTAGTGAC -ACGGAAAGCGATAAGCCTCTGTAG -ACGGAAAGCGATAAGCCTCCTAAG -ACGGAAAGCGATAAGCCTGTTCAG -ACGGAAAGCGATAAGCCTGCATAG -ACGGAAAGCGATAAGCCTGACAAG -ACGGAAAGCGATAAGCCTAAGCAG -ACGGAAAGCGATAAGCCTCGTCAA -ACGGAAAGCGATAAGCCTGCTGAA -ACGGAAAGCGATAAGCCTAGTACG -ACGGAAAGCGATAAGCCTATCCGA -ACGGAAAGCGATAAGCCTATGGGA -ACGGAAAGCGATAAGCCTGTGCAA -ACGGAAAGCGATAAGCCTGAGGAA -ACGGAAAGCGATAAGCCTCAGGTA -ACGGAAAGCGATAAGCCTGACTCT -ACGGAAAGCGATAAGCCTAGTCCT -ACGGAAAGCGATAAGCCTTAAGCC -ACGGAAAGCGATAAGCCTATAGCC -ACGGAAAGCGATAAGCCTTAACCG -ACGGAAAGCGATAAGCCTATGCCA -ACGGAAAGCGATCAGGTTGGAAAC -ACGGAAAGCGATCAGGTTAACACC -ACGGAAAGCGATCAGGTTATCGAG -ACGGAAAGCGATCAGGTTCTCCTT -ACGGAAAGCGATCAGGTTCCTGTT -ACGGAAAGCGATCAGGTTCGGTTT -ACGGAAAGCGATCAGGTTGTGGTT -ACGGAAAGCGATCAGGTTGCCTTT -ACGGAAAGCGATCAGGTTGGTCTT -ACGGAAAGCGATCAGGTTACGCTT -ACGGAAAGCGATCAGGTTAGCGTT -ACGGAAAGCGATCAGGTTTTCGTC -ACGGAAAGCGATCAGGTTTCTCTC -ACGGAAAGCGATCAGGTTTGGATC -ACGGAAAGCGATCAGGTTCACTTC -ACGGAAAGCGATCAGGTTGTACTC -ACGGAAAGCGATCAGGTTGATGTC -ACGGAAAGCGATCAGGTTACAGTC -ACGGAAAGCGATCAGGTTTTGCTG -ACGGAAAGCGATCAGGTTTCCATG -ACGGAAAGCGATCAGGTTTGTGTG -ACGGAAAGCGATCAGGTTCTAGTG -ACGGAAAGCGATCAGGTTCATCTG -ACGGAAAGCGATCAGGTTGAGTTG -ACGGAAAGCGATCAGGTTAGACTG -ACGGAAAGCGATCAGGTTTCGGTA -ACGGAAAGCGATCAGGTTTGCCTA -ACGGAAAGCGATCAGGTTCCACTA -ACGGAAAGCGATCAGGTTGGAGTA -ACGGAAAGCGATCAGGTTTCGTCT -ACGGAAAGCGATCAGGTTTGCACT -ACGGAAAGCGATCAGGTTCTGACT -ACGGAAAGCGATCAGGTTCAACCT -ACGGAAAGCGATCAGGTTGCTACT -ACGGAAAGCGATCAGGTTGGATCT -ACGGAAAGCGATCAGGTTAAGGCT -ACGGAAAGCGATCAGGTTTCAACC -ACGGAAAGCGATCAGGTTTGTTCC -ACGGAAAGCGATCAGGTTATTCCC -ACGGAAAGCGATCAGGTTTTCTCG -ACGGAAAGCGATCAGGTTTAGACG -ACGGAAAGCGATCAGGTTGTAACG -ACGGAAAGCGATCAGGTTACTTCG -ACGGAAAGCGATCAGGTTTACGCA -ACGGAAAGCGATCAGGTTCTTGCA -ACGGAAAGCGATCAGGTTCGAACA -ACGGAAAGCGATCAGGTTCAGTCA -ACGGAAAGCGATCAGGTTGATCCA -ACGGAAAGCGATCAGGTTACGACA -ACGGAAAGCGATCAGGTTAGCTCA -ACGGAAAGCGATCAGGTTTCACGT -ACGGAAAGCGATCAGGTTCGTAGT -ACGGAAAGCGATCAGGTTGTCAGT -ACGGAAAGCGATCAGGTTGAAGGT -ACGGAAAGCGATCAGGTTAACCGT -ACGGAAAGCGATCAGGTTTTGTGC -ACGGAAAGCGATCAGGTTCTAAGC -ACGGAAAGCGATCAGGTTACTAGC -ACGGAAAGCGATCAGGTTAGATGC -ACGGAAAGCGATCAGGTTTGAAGG -ACGGAAAGCGATCAGGTTCAATGG -ACGGAAAGCGATCAGGTTATGAGG -ACGGAAAGCGATCAGGTTAATGGG -ACGGAAAGCGATCAGGTTTCCTGA -ACGGAAAGCGATCAGGTTTAGCGA -ACGGAAAGCGATCAGGTTCACAGA -ACGGAAAGCGATCAGGTTGCAAGA -ACGGAAAGCGATCAGGTTGGTTGA -ACGGAAAGCGATCAGGTTTCCGAT -ACGGAAAGCGATCAGGTTTGGCAT -ACGGAAAGCGATCAGGTTCGAGAT -ACGGAAAGCGATCAGGTTTACCAC -ACGGAAAGCGATCAGGTTCAGAAC -ACGGAAAGCGATCAGGTTGTCTAC -ACGGAAAGCGATCAGGTTACGTAC -ACGGAAAGCGATCAGGTTAGTGAC -ACGGAAAGCGATCAGGTTCTGTAG -ACGGAAAGCGATCAGGTTCCTAAG -ACGGAAAGCGATCAGGTTGTTCAG -ACGGAAAGCGATCAGGTTGCATAG -ACGGAAAGCGATCAGGTTGACAAG -ACGGAAAGCGATCAGGTTAAGCAG -ACGGAAAGCGATCAGGTTCGTCAA -ACGGAAAGCGATCAGGTTGCTGAA -ACGGAAAGCGATCAGGTTAGTACG -ACGGAAAGCGATCAGGTTATCCGA -ACGGAAAGCGATCAGGTTATGGGA -ACGGAAAGCGATCAGGTTGTGCAA -ACGGAAAGCGATCAGGTTGAGGAA -ACGGAAAGCGATCAGGTTCAGGTA -ACGGAAAGCGATCAGGTTGACTCT -ACGGAAAGCGATCAGGTTAGTCCT -ACGGAAAGCGATCAGGTTTAAGCC -ACGGAAAGCGATCAGGTTATAGCC -ACGGAAAGCGATCAGGTTTAACCG -ACGGAAAGCGATCAGGTTATGCCA -ACGGAAAGCGATTAGGCAGGAAAC -ACGGAAAGCGATTAGGCAAACACC -ACGGAAAGCGATTAGGCAATCGAG -ACGGAAAGCGATTAGGCACTCCTT -ACGGAAAGCGATTAGGCACCTGTT -ACGGAAAGCGATTAGGCACGGTTT -ACGGAAAGCGATTAGGCAGTGGTT -ACGGAAAGCGATTAGGCAGCCTTT -ACGGAAAGCGATTAGGCAGGTCTT -ACGGAAAGCGATTAGGCAACGCTT -ACGGAAAGCGATTAGGCAAGCGTT -ACGGAAAGCGATTAGGCATTCGTC -ACGGAAAGCGATTAGGCATCTCTC -ACGGAAAGCGATTAGGCATGGATC -ACGGAAAGCGATTAGGCACACTTC -ACGGAAAGCGATTAGGCAGTACTC -ACGGAAAGCGATTAGGCAGATGTC -ACGGAAAGCGATTAGGCAACAGTC -ACGGAAAGCGATTAGGCATTGCTG -ACGGAAAGCGATTAGGCATCCATG -ACGGAAAGCGATTAGGCATGTGTG -ACGGAAAGCGATTAGGCACTAGTG -ACGGAAAGCGATTAGGCACATCTG -ACGGAAAGCGATTAGGCAGAGTTG -ACGGAAAGCGATTAGGCAAGACTG -ACGGAAAGCGATTAGGCATCGGTA -ACGGAAAGCGATTAGGCATGCCTA -ACGGAAAGCGATTAGGCACCACTA -ACGGAAAGCGATTAGGCAGGAGTA -ACGGAAAGCGATTAGGCATCGTCT -ACGGAAAGCGATTAGGCATGCACT -ACGGAAAGCGATTAGGCACTGACT -ACGGAAAGCGATTAGGCACAACCT -ACGGAAAGCGATTAGGCAGCTACT -ACGGAAAGCGATTAGGCAGGATCT -ACGGAAAGCGATTAGGCAAAGGCT -ACGGAAAGCGATTAGGCATCAACC -ACGGAAAGCGATTAGGCATGTTCC -ACGGAAAGCGATTAGGCAATTCCC -ACGGAAAGCGATTAGGCATTCTCG -ACGGAAAGCGATTAGGCATAGACG -ACGGAAAGCGATTAGGCAGTAACG -ACGGAAAGCGATTAGGCAACTTCG -ACGGAAAGCGATTAGGCATACGCA -ACGGAAAGCGATTAGGCACTTGCA -ACGGAAAGCGATTAGGCACGAACA -ACGGAAAGCGATTAGGCACAGTCA -ACGGAAAGCGATTAGGCAGATCCA -ACGGAAAGCGATTAGGCAACGACA -ACGGAAAGCGATTAGGCAAGCTCA -ACGGAAAGCGATTAGGCATCACGT -ACGGAAAGCGATTAGGCACGTAGT -ACGGAAAGCGATTAGGCAGTCAGT -ACGGAAAGCGATTAGGCAGAAGGT -ACGGAAAGCGATTAGGCAAACCGT -ACGGAAAGCGATTAGGCATTGTGC -ACGGAAAGCGATTAGGCACTAAGC -ACGGAAAGCGATTAGGCAACTAGC -ACGGAAAGCGATTAGGCAAGATGC -ACGGAAAGCGATTAGGCATGAAGG -ACGGAAAGCGATTAGGCACAATGG -ACGGAAAGCGATTAGGCAATGAGG -ACGGAAAGCGATTAGGCAAATGGG -ACGGAAAGCGATTAGGCATCCTGA -ACGGAAAGCGATTAGGCATAGCGA -ACGGAAAGCGATTAGGCACACAGA -ACGGAAAGCGATTAGGCAGCAAGA -ACGGAAAGCGATTAGGCAGGTTGA -ACGGAAAGCGATTAGGCATCCGAT -ACGGAAAGCGATTAGGCATGGCAT -ACGGAAAGCGATTAGGCACGAGAT -ACGGAAAGCGATTAGGCATACCAC -ACGGAAAGCGATTAGGCACAGAAC -ACGGAAAGCGATTAGGCAGTCTAC -ACGGAAAGCGATTAGGCAACGTAC -ACGGAAAGCGATTAGGCAAGTGAC -ACGGAAAGCGATTAGGCACTGTAG -ACGGAAAGCGATTAGGCACCTAAG -ACGGAAAGCGATTAGGCAGTTCAG -ACGGAAAGCGATTAGGCAGCATAG -ACGGAAAGCGATTAGGCAGACAAG -ACGGAAAGCGATTAGGCAAAGCAG -ACGGAAAGCGATTAGGCACGTCAA -ACGGAAAGCGATTAGGCAGCTGAA -ACGGAAAGCGATTAGGCAAGTACG -ACGGAAAGCGATTAGGCAATCCGA -ACGGAAAGCGATTAGGCAATGGGA -ACGGAAAGCGATTAGGCAGTGCAA -ACGGAAAGCGATTAGGCAGAGGAA -ACGGAAAGCGATTAGGCACAGGTA -ACGGAAAGCGATTAGGCAGACTCT -ACGGAAAGCGATTAGGCAAGTCCT -ACGGAAAGCGATTAGGCATAAGCC -ACGGAAAGCGATTAGGCAATAGCC -ACGGAAAGCGATTAGGCATAACCG -ACGGAAAGCGATTAGGCAATGCCA -ACGGAAAGCGATAAGGACGGAAAC -ACGGAAAGCGATAAGGACAACACC -ACGGAAAGCGATAAGGACATCGAG -ACGGAAAGCGATAAGGACCTCCTT -ACGGAAAGCGATAAGGACCCTGTT -ACGGAAAGCGATAAGGACCGGTTT -ACGGAAAGCGATAAGGACGTGGTT -ACGGAAAGCGATAAGGACGCCTTT -ACGGAAAGCGATAAGGACGGTCTT -ACGGAAAGCGATAAGGACACGCTT -ACGGAAAGCGATAAGGACAGCGTT -ACGGAAAGCGATAAGGACTTCGTC -ACGGAAAGCGATAAGGACTCTCTC -ACGGAAAGCGATAAGGACTGGATC -ACGGAAAGCGATAAGGACCACTTC -ACGGAAAGCGATAAGGACGTACTC -ACGGAAAGCGATAAGGACGATGTC -ACGGAAAGCGATAAGGACACAGTC -ACGGAAAGCGATAAGGACTTGCTG -ACGGAAAGCGATAAGGACTCCATG -ACGGAAAGCGATAAGGACTGTGTG -ACGGAAAGCGATAAGGACCTAGTG -ACGGAAAGCGATAAGGACCATCTG -ACGGAAAGCGATAAGGACGAGTTG -ACGGAAAGCGATAAGGACAGACTG -ACGGAAAGCGATAAGGACTCGGTA -ACGGAAAGCGATAAGGACTGCCTA -ACGGAAAGCGATAAGGACCCACTA -ACGGAAAGCGATAAGGACGGAGTA -ACGGAAAGCGATAAGGACTCGTCT -ACGGAAAGCGATAAGGACTGCACT -ACGGAAAGCGATAAGGACCTGACT -ACGGAAAGCGATAAGGACCAACCT -ACGGAAAGCGATAAGGACGCTACT -ACGGAAAGCGATAAGGACGGATCT -ACGGAAAGCGATAAGGACAAGGCT -ACGGAAAGCGATAAGGACTCAACC -ACGGAAAGCGATAAGGACTGTTCC -ACGGAAAGCGATAAGGACATTCCC -ACGGAAAGCGATAAGGACTTCTCG -ACGGAAAGCGATAAGGACTAGACG -ACGGAAAGCGATAAGGACGTAACG -ACGGAAAGCGATAAGGACACTTCG -ACGGAAAGCGATAAGGACTACGCA -ACGGAAAGCGATAAGGACCTTGCA -ACGGAAAGCGATAAGGACCGAACA -ACGGAAAGCGATAAGGACCAGTCA -ACGGAAAGCGATAAGGACGATCCA -ACGGAAAGCGATAAGGACACGACA -ACGGAAAGCGATAAGGACAGCTCA -ACGGAAAGCGATAAGGACTCACGT -ACGGAAAGCGATAAGGACCGTAGT -ACGGAAAGCGATAAGGACGTCAGT -ACGGAAAGCGATAAGGACGAAGGT -ACGGAAAGCGATAAGGACAACCGT -ACGGAAAGCGATAAGGACTTGTGC -ACGGAAAGCGATAAGGACCTAAGC -ACGGAAAGCGATAAGGACACTAGC -ACGGAAAGCGATAAGGACAGATGC -ACGGAAAGCGATAAGGACTGAAGG -ACGGAAAGCGATAAGGACCAATGG -ACGGAAAGCGATAAGGACATGAGG -ACGGAAAGCGATAAGGACAATGGG -ACGGAAAGCGATAAGGACTCCTGA -ACGGAAAGCGATAAGGACTAGCGA -ACGGAAAGCGATAAGGACCACAGA -ACGGAAAGCGATAAGGACGCAAGA -ACGGAAAGCGATAAGGACGGTTGA -ACGGAAAGCGATAAGGACTCCGAT -ACGGAAAGCGATAAGGACTGGCAT -ACGGAAAGCGATAAGGACCGAGAT -ACGGAAAGCGATAAGGACTACCAC -ACGGAAAGCGATAAGGACCAGAAC -ACGGAAAGCGATAAGGACGTCTAC -ACGGAAAGCGATAAGGACACGTAC -ACGGAAAGCGATAAGGACAGTGAC -ACGGAAAGCGATAAGGACCTGTAG -ACGGAAAGCGATAAGGACCCTAAG -ACGGAAAGCGATAAGGACGTTCAG -ACGGAAAGCGATAAGGACGCATAG -ACGGAAAGCGATAAGGACGACAAG -ACGGAAAGCGATAAGGACAAGCAG -ACGGAAAGCGATAAGGACCGTCAA -ACGGAAAGCGATAAGGACGCTGAA -ACGGAAAGCGATAAGGACAGTACG -ACGGAAAGCGATAAGGACATCCGA -ACGGAAAGCGATAAGGACATGGGA -ACGGAAAGCGATAAGGACGTGCAA -ACGGAAAGCGATAAGGACGAGGAA -ACGGAAAGCGATAAGGACCAGGTA -ACGGAAAGCGATAAGGACGACTCT -ACGGAAAGCGATAAGGACAGTCCT -ACGGAAAGCGATAAGGACTAAGCC -ACGGAAAGCGATAAGGACATAGCC -ACGGAAAGCGATAAGGACTAACCG -ACGGAAAGCGATAAGGACATGCCA -ACGGAAAGCGATCAGAAGGGAAAC -ACGGAAAGCGATCAGAAGAACACC -ACGGAAAGCGATCAGAAGATCGAG -ACGGAAAGCGATCAGAAGCTCCTT -ACGGAAAGCGATCAGAAGCCTGTT -ACGGAAAGCGATCAGAAGCGGTTT -ACGGAAAGCGATCAGAAGGTGGTT -ACGGAAAGCGATCAGAAGGCCTTT -ACGGAAAGCGATCAGAAGGGTCTT -ACGGAAAGCGATCAGAAGACGCTT -ACGGAAAGCGATCAGAAGAGCGTT -ACGGAAAGCGATCAGAAGTTCGTC -ACGGAAAGCGATCAGAAGTCTCTC -ACGGAAAGCGATCAGAAGTGGATC -ACGGAAAGCGATCAGAAGCACTTC -ACGGAAAGCGATCAGAAGGTACTC -ACGGAAAGCGATCAGAAGGATGTC -ACGGAAAGCGATCAGAAGACAGTC -ACGGAAAGCGATCAGAAGTTGCTG -ACGGAAAGCGATCAGAAGTCCATG -ACGGAAAGCGATCAGAAGTGTGTG -ACGGAAAGCGATCAGAAGCTAGTG -ACGGAAAGCGATCAGAAGCATCTG -ACGGAAAGCGATCAGAAGGAGTTG -ACGGAAAGCGATCAGAAGAGACTG -ACGGAAAGCGATCAGAAGTCGGTA -ACGGAAAGCGATCAGAAGTGCCTA -ACGGAAAGCGATCAGAAGCCACTA -ACGGAAAGCGATCAGAAGGGAGTA -ACGGAAAGCGATCAGAAGTCGTCT -ACGGAAAGCGATCAGAAGTGCACT -ACGGAAAGCGATCAGAAGCTGACT -ACGGAAAGCGATCAGAAGCAACCT -ACGGAAAGCGATCAGAAGGCTACT -ACGGAAAGCGATCAGAAGGGATCT -ACGGAAAGCGATCAGAAGAAGGCT -ACGGAAAGCGATCAGAAGTCAACC -ACGGAAAGCGATCAGAAGTGTTCC -ACGGAAAGCGATCAGAAGATTCCC -ACGGAAAGCGATCAGAAGTTCTCG -ACGGAAAGCGATCAGAAGTAGACG -ACGGAAAGCGATCAGAAGGTAACG -ACGGAAAGCGATCAGAAGACTTCG -ACGGAAAGCGATCAGAAGTACGCA -ACGGAAAGCGATCAGAAGCTTGCA -ACGGAAAGCGATCAGAAGCGAACA -ACGGAAAGCGATCAGAAGCAGTCA -ACGGAAAGCGATCAGAAGGATCCA -ACGGAAAGCGATCAGAAGACGACA -ACGGAAAGCGATCAGAAGAGCTCA -ACGGAAAGCGATCAGAAGTCACGT -ACGGAAAGCGATCAGAAGCGTAGT -ACGGAAAGCGATCAGAAGGTCAGT -ACGGAAAGCGATCAGAAGGAAGGT -ACGGAAAGCGATCAGAAGAACCGT -ACGGAAAGCGATCAGAAGTTGTGC -ACGGAAAGCGATCAGAAGCTAAGC -ACGGAAAGCGATCAGAAGACTAGC -ACGGAAAGCGATCAGAAGAGATGC -ACGGAAAGCGATCAGAAGTGAAGG -ACGGAAAGCGATCAGAAGCAATGG -ACGGAAAGCGATCAGAAGATGAGG -ACGGAAAGCGATCAGAAGAATGGG -ACGGAAAGCGATCAGAAGTCCTGA -ACGGAAAGCGATCAGAAGTAGCGA -ACGGAAAGCGATCAGAAGCACAGA -ACGGAAAGCGATCAGAAGGCAAGA -ACGGAAAGCGATCAGAAGGGTTGA -ACGGAAAGCGATCAGAAGTCCGAT -ACGGAAAGCGATCAGAAGTGGCAT -ACGGAAAGCGATCAGAAGCGAGAT -ACGGAAAGCGATCAGAAGTACCAC -ACGGAAAGCGATCAGAAGCAGAAC -ACGGAAAGCGATCAGAAGGTCTAC -ACGGAAAGCGATCAGAAGACGTAC -ACGGAAAGCGATCAGAAGAGTGAC -ACGGAAAGCGATCAGAAGCTGTAG -ACGGAAAGCGATCAGAAGCCTAAG -ACGGAAAGCGATCAGAAGGTTCAG -ACGGAAAGCGATCAGAAGGCATAG -ACGGAAAGCGATCAGAAGGACAAG -ACGGAAAGCGATCAGAAGAAGCAG -ACGGAAAGCGATCAGAAGCGTCAA -ACGGAAAGCGATCAGAAGGCTGAA -ACGGAAAGCGATCAGAAGAGTACG -ACGGAAAGCGATCAGAAGATCCGA -ACGGAAAGCGATCAGAAGATGGGA -ACGGAAAGCGATCAGAAGGTGCAA -ACGGAAAGCGATCAGAAGGAGGAA -ACGGAAAGCGATCAGAAGCAGGTA -ACGGAAAGCGATCAGAAGGACTCT -ACGGAAAGCGATCAGAAGAGTCCT -ACGGAAAGCGATCAGAAGTAAGCC -ACGGAAAGCGATCAGAAGATAGCC -ACGGAAAGCGATCAGAAGTAACCG -ACGGAAAGCGATCAGAAGATGCCA -ACGGAAAGCGATCAACGTGGAAAC -ACGGAAAGCGATCAACGTAACACC -ACGGAAAGCGATCAACGTATCGAG -ACGGAAAGCGATCAACGTCTCCTT -ACGGAAAGCGATCAACGTCCTGTT -ACGGAAAGCGATCAACGTCGGTTT -ACGGAAAGCGATCAACGTGTGGTT -ACGGAAAGCGATCAACGTGCCTTT -ACGGAAAGCGATCAACGTGGTCTT -ACGGAAAGCGATCAACGTACGCTT -ACGGAAAGCGATCAACGTAGCGTT -ACGGAAAGCGATCAACGTTTCGTC -ACGGAAAGCGATCAACGTTCTCTC -ACGGAAAGCGATCAACGTTGGATC -ACGGAAAGCGATCAACGTCACTTC -ACGGAAAGCGATCAACGTGTACTC -ACGGAAAGCGATCAACGTGATGTC -ACGGAAAGCGATCAACGTACAGTC -ACGGAAAGCGATCAACGTTTGCTG -ACGGAAAGCGATCAACGTTCCATG -ACGGAAAGCGATCAACGTTGTGTG -ACGGAAAGCGATCAACGTCTAGTG -ACGGAAAGCGATCAACGTCATCTG -ACGGAAAGCGATCAACGTGAGTTG -ACGGAAAGCGATCAACGTAGACTG -ACGGAAAGCGATCAACGTTCGGTA -ACGGAAAGCGATCAACGTTGCCTA -ACGGAAAGCGATCAACGTCCACTA -ACGGAAAGCGATCAACGTGGAGTA -ACGGAAAGCGATCAACGTTCGTCT -ACGGAAAGCGATCAACGTTGCACT -ACGGAAAGCGATCAACGTCTGACT -ACGGAAAGCGATCAACGTCAACCT -ACGGAAAGCGATCAACGTGCTACT -ACGGAAAGCGATCAACGTGGATCT -ACGGAAAGCGATCAACGTAAGGCT -ACGGAAAGCGATCAACGTTCAACC -ACGGAAAGCGATCAACGTTGTTCC -ACGGAAAGCGATCAACGTATTCCC -ACGGAAAGCGATCAACGTTTCTCG -ACGGAAAGCGATCAACGTTAGACG -ACGGAAAGCGATCAACGTGTAACG -ACGGAAAGCGATCAACGTACTTCG -ACGGAAAGCGATCAACGTTACGCA -ACGGAAAGCGATCAACGTCTTGCA -ACGGAAAGCGATCAACGTCGAACA -ACGGAAAGCGATCAACGTCAGTCA -ACGGAAAGCGATCAACGTGATCCA -ACGGAAAGCGATCAACGTACGACA -ACGGAAAGCGATCAACGTAGCTCA -ACGGAAAGCGATCAACGTTCACGT -ACGGAAAGCGATCAACGTCGTAGT -ACGGAAAGCGATCAACGTGTCAGT -ACGGAAAGCGATCAACGTGAAGGT -ACGGAAAGCGATCAACGTAACCGT -ACGGAAAGCGATCAACGTTTGTGC -ACGGAAAGCGATCAACGTCTAAGC -ACGGAAAGCGATCAACGTACTAGC -ACGGAAAGCGATCAACGTAGATGC -ACGGAAAGCGATCAACGTTGAAGG -ACGGAAAGCGATCAACGTCAATGG -ACGGAAAGCGATCAACGTATGAGG -ACGGAAAGCGATCAACGTAATGGG -ACGGAAAGCGATCAACGTTCCTGA -ACGGAAAGCGATCAACGTTAGCGA -ACGGAAAGCGATCAACGTCACAGA -ACGGAAAGCGATCAACGTGCAAGA -ACGGAAAGCGATCAACGTGGTTGA -ACGGAAAGCGATCAACGTTCCGAT -ACGGAAAGCGATCAACGTTGGCAT -ACGGAAAGCGATCAACGTCGAGAT -ACGGAAAGCGATCAACGTTACCAC -ACGGAAAGCGATCAACGTCAGAAC -ACGGAAAGCGATCAACGTGTCTAC -ACGGAAAGCGATCAACGTACGTAC -ACGGAAAGCGATCAACGTAGTGAC -ACGGAAAGCGATCAACGTCTGTAG -ACGGAAAGCGATCAACGTCCTAAG -ACGGAAAGCGATCAACGTGTTCAG -ACGGAAAGCGATCAACGTGCATAG -ACGGAAAGCGATCAACGTGACAAG -ACGGAAAGCGATCAACGTAAGCAG -ACGGAAAGCGATCAACGTCGTCAA -ACGGAAAGCGATCAACGTGCTGAA -ACGGAAAGCGATCAACGTAGTACG -ACGGAAAGCGATCAACGTATCCGA -ACGGAAAGCGATCAACGTATGGGA -ACGGAAAGCGATCAACGTGTGCAA -ACGGAAAGCGATCAACGTGAGGAA -ACGGAAAGCGATCAACGTCAGGTA -ACGGAAAGCGATCAACGTGACTCT -ACGGAAAGCGATCAACGTAGTCCT -ACGGAAAGCGATCAACGTTAAGCC -ACGGAAAGCGATCAACGTATAGCC -ACGGAAAGCGATCAACGTTAACCG -ACGGAAAGCGATCAACGTATGCCA -ACGGAAAGCGATGAAGCTGGAAAC -ACGGAAAGCGATGAAGCTAACACC -ACGGAAAGCGATGAAGCTATCGAG -ACGGAAAGCGATGAAGCTCTCCTT -ACGGAAAGCGATGAAGCTCCTGTT -ACGGAAAGCGATGAAGCTCGGTTT -ACGGAAAGCGATGAAGCTGTGGTT -ACGGAAAGCGATGAAGCTGCCTTT -ACGGAAAGCGATGAAGCTGGTCTT -ACGGAAAGCGATGAAGCTACGCTT -ACGGAAAGCGATGAAGCTAGCGTT -ACGGAAAGCGATGAAGCTTTCGTC -ACGGAAAGCGATGAAGCTTCTCTC -ACGGAAAGCGATGAAGCTTGGATC -ACGGAAAGCGATGAAGCTCACTTC -ACGGAAAGCGATGAAGCTGTACTC -ACGGAAAGCGATGAAGCTGATGTC -ACGGAAAGCGATGAAGCTACAGTC -ACGGAAAGCGATGAAGCTTTGCTG -ACGGAAAGCGATGAAGCTTCCATG -ACGGAAAGCGATGAAGCTTGTGTG -ACGGAAAGCGATGAAGCTCTAGTG -ACGGAAAGCGATGAAGCTCATCTG -ACGGAAAGCGATGAAGCTGAGTTG -ACGGAAAGCGATGAAGCTAGACTG -ACGGAAAGCGATGAAGCTTCGGTA -ACGGAAAGCGATGAAGCTTGCCTA -ACGGAAAGCGATGAAGCTCCACTA -ACGGAAAGCGATGAAGCTGGAGTA -ACGGAAAGCGATGAAGCTTCGTCT -ACGGAAAGCGATGAAGCTTGCACT -ACGGAAAGCGATGAAGCTCTGACT -ACGGAAAGCGATGAAGCTCAACCT -ACGGAAAGCGATGAAGCTGCTACT -ACGGAAAGCGATGAAGCTGGATCT -ACGGAAAGCGATGAAGCTAAGGCT -ACGGAAAGCGATGAAGCTTCAACC -ACGGAAAGCGATGAAGCTTGTTCC -ACGGAAAGCGATGAAGCTATTCCC -ACGGAAAGCGATGAAGCTTTCTCG -ACGGAAAGCGATGAAGCTTAGACG -ACGGAAAGCGATGAAGCTGTAACG -ACGGAAAGCGATGAAGCTACTTCG -ACGGAAAGCGATGAAGCTTACGCA -ACGGAAAGCGATGAAGCTCTTGCA -ACGGAAAGCGATGAAGCTCGAACA -ACGGAAAGCGATGAAGCTCAGTCA -ACGGAAAGCGATGAAGCTGATCCA -ACGGAAAGCGATGAAGCTACGACA -ACGGAAAGCGATGAAGCTAGCTCA -ACGGAAAGCGATGAAGCTTCACGT -ACGGAAAGCGATGAAGCTCGTAGT -ACGGAAAGCGATGAAGCTGTCAGT -ACGGAAAGCGATGAAGCTGAAGGT -ACGGAAAGCGATGAAGCTAACCGT -ACGGAAAGCGATGAAGCTTTGTGC -ACGGAAAGCGATGAAGCTCTAAGC -ACGGAAAGCGATGAAGCTACTAGC -ACGGAAAGCGATGAAGCTAGATGC -ACGGAAAGCGATGAAGCTTGAAGG -ACGGAAAGCGATGAAGCTCAATGG -ACGGAAAGCGATGAAGCTATGAGG -ACGGAAAGCGATGAAGCTAATGGG -ACGGAAAGCGATGAAGCTTCCTGA -ACGGAAAGCGATGAAGCTTAGCGA -ACGGAAAGCGATGAAGCTCACAGA -ACGGAAAGCGATGAAGCTGCAAGA -ACGGAAAGCGATGAAGCTGGTTGA -ACGGAAAGCGATGAAGCTTCCGAT -ACGGAAAGCGATGAAGCTTGGCAT -ACGGAAAGCGATGAAGCTCGAGAT -ACGGAAAGCGATGAAGCTTACCAC -ACGGAAAGCGATGAAGCTCAGAAC -ACGGAAAGCGATGAAGCTGTCTAC -ACGGAAAGCGATGAAGCTACGTAC -ACGGAAAGCGATGAAGCTAGTGAC -ACGGAAAGCGATGAAGCTCTGTAG -ACGGAAAGCGATGAAGCTCCTAAG -ACGGAAAGCGATGAAGCTGTTCAG -ACGGAAAGCGATGAAGCTGCATAG -ACGGAAAGCGATGAAGCTGACAAG -ACGGAAAGCGATGAAGCTAAGCAG -ACGGAAAGCGATGAAGCTCGTCAA -ACGGAAAGCGATGAAGCTGCTGAA -ACGGAAAGCGATGAAGCTAGTACG -ACGGAAAGCGATGAAGCTATCCGA -ACGGAAAGCGATGAAGCTATGGGA -ACGGAAAGCGATGAAGCTGTGCAA -ACGGAAAGCGATGAAGCTGAGGAA -ACGGAAAGCGATGAAGCTCAGGTA -ACGGAAAGCGATGAAGCTGACTCT -ACGGAAAGCGATGAAGCTAGTCCT -ACGGAAAGCGATGAAGCTTAAGCC -ACGGAAAGCGATGAAGCTATAGCC -ACGGAAAGCGATGAAGCTTAACCG -ACGGAAAGCGATGAAGCTATGCCA -ACGGAAAGCGATACGAGTGGAAAC -ACGGAAAGCGATACGAGTAACACC -ACGGAAAGCGATACGAGTATCGAG -ACGGAAAGCGATACGAGTCTCCTT -ACGGAAAGCGATACGAGTCCTGTT -ACGGAAAGCGATACGAGTCGGTTT -ACGGAAAGCGATACGAGTGTGGTT -ACGGAAAGCGATACGAGTGCCTTT -ACGGAAAGCGATACGAGTGGTCTT -ACGGAAAGCGATACGAGTACGCTT -ACGGAAAGCGATACGAGTAGCGTT -ACGGAAAGCGATACGAGTTTCGTC -ACGGAAAGCGATACGAGTTCTCTC -ACGGAAAGCGATACGAGTTGGATC -ACGGAAAGCGATACGAGTCACTTC -ACGGAAAGCGATACGAGTGTACTC -ACGGAAAGCGATACGAGTGATGTC -ACGGAAAGCGATACGAGTACAGTC -ACGGAAAGCGATACGAGTTTGCTG -ACGGAAAGCGATACGAGTTCCATG -ACGGAAAGCGATACGAGTTGTGTG -ACGGAAAGCGATACGAGTCTAGTG -ACGGAAAGCGATACGAGTCATCTG -ACGGAAAGCGATACGAGTGAGTTG -ACGGAAAGCGATACGAGTAGACTG -ACGGAAAGCGATACGAGTTCGGTA -ACGGAAAGCGATACGAGTTGCCTA -ACGGAAAGCGATACGAGTCCACTA -ACGGAAAGCGATACGAGTGGAGTA -ACGGAAAGCGATACGAGTTCGTCT -ACGGAAAGCGATACGAGTTGCACT -ACGGAAAGCGATACGAGTCTGACT -ACGGAAAGCGATACGAGTCAACCT -ACGGAAAGCGATACGAGTGCTACT -ACGGAAAGCGATACGAGTGGATCT -ACGGAAAGCGATACGAGTAAGGCT -ACGGAAAGCGATACGAGTTCAACC -ACGGAAAGCGATACGAGTTGTTCC -ACGGAAAGCGATACGAGTATTCCC -ACGGAAAGCGATACGAGTTTCTCG -ACGGAAAGCGATACGAGTTAGACG -ACGGAAAGCGATACGAGTGTAACG -ACGGAAAGCGATACGAGTACTTCG -ACGGAAAGCGATACGAGTTACGCA -ACGGAAAGCGATACGAGTCTTGCA -ACGGAAAGCGATACGAGTCGAACA -ACGGAAAGCGATACGAGTCAGTCA -ACGGAAAGCGATACGAGTGATCCA -ACGGAAAGCGATACGAGTACGACA -ACGGAAAGCGATACGAGTAGCTCA -ACGGAAAGCGATACGAGTTCACGT -ACGGAAAGCGATACGAGTCGTAGT -ACGGAAAGCGATACGAGTGTCAGT -ACGGAAAGCGATACGAGTGAAGGT -ACGGAAAGCGATACGAGTAACCGT -ACGGAAAGCGATACGAGTTTGTGC -ACGGAAAGCGATACGAGTCTAAGC -ACGGAAAGCGATACGAGTACTAGC -ACGGAAAGCGATACGAGTAGATGC -ACGGAAAGCGATACGAGTTGAAGG -ACGGAAAGCGATACGAGTCAATGG -ACGGAAAGCGATACGAGTATGAGG -ACGGAAAGCGATACGAGTAATGGG -ACGGAAAGCGATACGAGTTCCTGA -ACGGAAAGCGATACGAGTTAGCGA -ACGGAAAGCGATACGAGTCACAGA -ACGGAAAGCGATACGAGTGCAAGA -ACGGAAAGCGATACGAGTGGTTGA -ACGGAAAGCGATACGAGTTCCGAT -ACGGAAAGCGATACGAGTTGGCAT -ACGGAAAGCGATACGAGTCGAGAT -ACGGAAAGCGATACGAGTTACCAC -ACGGAAAGCGATACGAGTCAGAAC -ACGGAAAGCGATACGAGTGTCTAC -ACGGAAAGCGATACGAGTACGTAC -ACGGAAAGCGATACGAGTAGTGAC -ACGGAAAGCGATACGAGTCTGTAG -ACGGAAAGCGATACGAGTCCTAAG -ACGGAAAGCGATACGAGTGTTCAG -ACGGAAAGCGATACGAGTGCATAG -ACGGAAAGCGATACGAGTGACAAG -ACGGAAAGCGATACGAGTAAGCAG -ACGGAAAGCGATACGAGTCGTCAA -ACGGAAAGCGATACGAGTGCTGAA -ACGGAAAGCGATACGAGTAGTACG -ACGGAAAGCGATACGAGTATCCGA -ACGGAAAGCGATACGAGTATGGGA -ACGGAAAGCGATACGAGTGTGCAA -ACGGAAAGCGATACGAGTGAGGAA -ACGGAAAGCGATACGAGTCAGGTA -ACGGAAAGCGATACGAGTGACTCT -ACGGAAAGCGATACGAGTAGTCCT -ACGGAAAGCGATACGAGTTAAGCC -ACGGAAAGCGATACGAGTATAGCC -ACGGAAAGCGATACGAGTTAACCG -ACGGAAAGCGATACGAGTATGCCA -ACGGAAAGCGATCGAATCGGAAAC -ACGGAAAGCGATCGAATCAACACC -ACGGAAAGCGATCGAATCATCGAG -ACGGAAAGCGATCGAATCCTCCTT -ACGGAAAGCGATCGAATCCCTGTT -ACGGAAAGCGATCGAATCCGGTTT -ACGGAAAGCGATCGAATCGTGGTT -ACGGAAAGCGATCGAATCGCCTTT -ACGGAAAGCGATCGAATCGGTCTT -ACGGAAAGCGATCGAATCACGCTT -ACGGAAAGCGATCGAATCAGCGTT -ACGGAAAGCGATCGAATCTTCGTC -ACGGAAAGCGATCGAATCTCTCTC -ACGGAAAGCGATCGAATCTGGATC -ACGGAAAGCGATCGAATCCACTTC -ACGGAAAGCGATCGAATCGTACTC -ACGGAAAGCGATCGAATCGATGTC -ACGGAAAGCGATCGAATCACAGTC -ACGGAAAGCGATCGAATCTTGCTG -ACGGAAAGCGATCGAATCTCCATG -ACGGAAAGCGATCGAATCTGTGTG -ACGGAAAGCGATCGAATCCTAGTG -ACGGAAAGCGATCGAATCCATCTG -ACGGAAAGCGATCGAATCGAGTTG -ACGGAAAGCGATCGAATCAGACTG -ACGGAAAGCGATCGAATCTCGGTA -ACGGAAAGCGATCGAATCTGCCTA -ACGGAAAGCGATCGAATCCCACTA -ACGGAAAGCGATCGAATCGGAGTA -ACGGAAAGCGATCGAATCTCGTCT -ACGGAAAGCGATCGAATCTGCACT -ACGGAAAGCGATCGAATCCTGACT -ACGGAAAGCGATCGAATCCAACCT -ACGGAAAGCGATCGAATCGCTACT -ACGGAAAGCGATCGAATCGGATCT -ACGGAAAGCGATCGAATCAAGGCT -ACGGAAAGCGATCGAATCTCAACC -ACGGAAAGCGATCGAATCTGTTCC -ACGGAAAGCGATCGAATCATTCCC -ACGGAAAGCGATCGAATCTTCTCG -ACGGAAAGCGATCGAATCTAGACG -ACGGAAAGCGATCGAATCGTAACG -ACGGAAAGCGATCGAATCACTTCG -ACGGAAAGCGATCGAATCTACGCA -ACGGAAAGCGATCGAATCCTTGCA -ACGGAAAGCGATCGAATCCGAACA -ACGGAAAGCGATCGAATCCAGTCA -ACGGAAAGCGATCGAATCGATCCA -ACGGAAAGCGATCGAATCACGACA -ACGGAAAGCGATCGAATCAGCTCA -ACGGAAAGCGATCGAATCTCACGT -ACGGAAAGCGATCGAATCCGTAGT -ACGGAAAGCGATCGAATCGTCAGT -ACGGAAAGCGATCGAATCGAAGGT -ACGGAAAGCGATCGAATCAACCGT -ACGGAAAGCGATCGAATCTTGTGC -ACGGAAAGCGATCGAATCCTAAGC -ACGGAAAGCGATCGAATCACTAGC -ACGGAAAGCGATCGAATCAGATGC -ACGGAAAGCGATCGAATCTGAAGG -ACGGAAAGCGATCGAATCCAATGG -ACGGAAAGCGATCGAATCATGAGG -ACGGAAAGCGATCGAATCAATGGG -ACGGAAAGCGATCGAATCTCCTGA -ACGGAAAGCGATCGAATCTAGCGA -ACGGAAAGCGATCGAATCCACAGA -ACGGAAAGCGATCGAATCGCAAGA -ACGGAAAGCGATCGAATCGGTTGA -ACGGAAAGCGATCGAATCTCCGAT -ACGGAAAGCGATCGAATCTGGCAT -ACGGAAAGCGATCGAATCCGAGAT -ACGGAAAGCGATCGAATCTACCAC -ACGGAAAGCGATCGAATCCAGAAC -ACGGAAAGCGATCGAATCGTCTAC -ACGGAAAGCGATCGAATCACGTAC -ACGGAAAGCGATCGAATCAGTGAC -ACGGAAAGCGATCGAATCCTGTAG -ACGGAAAGCGATCGAATCCCTAAG -ACGGAAAGCGATCGAATCGTTCAG -ACGGAAAGCGATCGAATCGCATAG -ACGGAAAGCGATCGAATCGACAAG -ACGGAAAGCGATCGAATCAAGCAG -ACGGAAAGCGATCGAATCCGTCAA -ACGGAAAGCGATCGAATCGCTGAA -ACGGAAAGCGATCGAATCAGTACG -ACGGAAAGCGATCGAATCATCCGA -ACGGAAAGCGATCGAATCATGGGA -ACGGAAAGCGATCGAATCGTGCAA -ACGGAAAGCGATCGAATCGAGGAA -ACGGAAAGCGATCGAATCCAGGTA -ACGGAAAGCGATCGAATCGACTCT -ACGGAAAGCGATCGAATCAGTCCT -ACGGAAAGCGATCGAATCTAAGCC -ACGGAAAGCGATCGAATCATAGCC -ACGGAAAGCGATCGAATCTAACCG -ACGGAAAGCGATCGAATCATGCCA -ACGGAAAGCGATGGAATGGGAAAC -ACGGAAAGCGATGGAATGAACACC -ACGGAAAGCGATGGAATGATCGAG -ACGGAAAGCGATGGAATGCTCCTT -ACGGAAAGCGATGGAATGCCTGTT -ACGGAAAGCGATGGAATGCGGTTT -ACGGAAAGCGATGGAATGGTGGTT -ACGGAAAGCGATGGAATGGCCTTT -ACGGAAAGCGATGGAATGGGTCTT -ACGGAAAGCGATGGAATGACGCTT -ACGGAAAGCGATGGAATGAGCGTT -ACGGAAAGCGATGGAATGTTCGTC -ACGGAAAGCGATGGAATGTCTCTC -ACGGAAAGCGATGGAATGTGGATC -ACGGAAAGCGATGGAATGCACTTC -ACGGAAAGCGATGGAATGGTACTC -ACGGAAAGCGATGGAATGGATGTC -ACGGAAAGCGATGGAATGACAGTC -ACGGAAAGCGATGGAATGTTGCTG -ACGGAAAGCGATGGAATGTCCATG -ACGGAAAGCGATGGAATGTGTGTG -ACGGAAAGCGATGGAATGCTAGTG -ACGGAAAGCGATGGAATGCATCTG -ACGGAAAGCGATGGAATGGAGTTG -ACGGAAAGCGATGGAATGAGACTG -ACGGAAAGCGATGGAATGTCGGTA -ACGGAAAGCGATGGAATGTGCCTA -ACGGAAAGCGATGGAATGCCACTA -ACGGAAAGCGATGGAATGGGAGTA -ACGGAAAGCGATGGAATGTCGTCT -ACGGAAAGCGATGGAATGTGCACT -ACGGAAAGCGATGGAATGCTGACT -ACGGAAAGCGATGGAATGCAACCT -ACGGAAAGCGATGGAATGGCTACT -ACGGAAAGCGATGGAATGGGATCT -ACGGAAAGCGATGGAATGAAGGCT -ACGGAAAGCGATGGAATGTCAACC -ACGGAAAGCGATGGAATGTGTTCC -ACGGAAAGCGATGGAATGATTCCC -ACGGAAAGCGATGGAATGTTCTCG -ACGGAAAGCGATGGAATGTAGACG -ACGGAAAGCGATGGAATGGTAACG -ACGGAAAGCGATGGAATGACTTCG -ACGGAAAGCGATGGAATGTACGCA -ACGGAAAGCGATGGAATGCTTGCA -ACGGAAAGCGATGGAATGCGAACA -ACGGAAAGCGATGGAATGCAGTCA -ACGGAAAGCGATGGAATGGATCCA -ACGGAAAGCGATGGAATGACGACA -ACGGAAAGCGATGGAATGAGCTCA -ACGGAAAGCGATGGAATGTCACGT -ACGGAAAGCGATGGAATGCGTAGT -ACGGAAAGCGATGGAATGGTCAGT -ACGGAAAGCGATGGAATGGAAGGT -ACGGAAAGCGATGGAATGAACCGT -ACGGAAAGCGATGGAATGTTGTGC -ACGGAAAGCGATGGAATGCTAAGC -ACGGAAAGCGATGGAATGACTAGC -ACGGAAAGCGATGGAATGAGATGC -ACGGAAAGCGATGGAATGTGAAGG -ACGGAAAGCGATGGAATGCAATGG -ACGGAAAGCGATGGAATGATGAGG -ACGGAAAGCGATGGAATGAATGGG -ACGGAAAGCGATGGAATGTCCTGA -ACGGAAAGCGATGGAATGTAGCGA -ACGGAAAGCGATGGAATGCACAGA -ACGGAAAGCGATGGAATGGCAAGA -ACGGAAAGCGATGGAATGGGTTGA -ACGGAAAGCGATGGAATGTCCGAT -ACGGAAAGCGATGGAATGTGGCAT -ACGGAAAGCGATGGAATGCGAGAT -ACGGAAAGCGATGGAATGTACCAC -ACGGAAAGCGATGGAATGCAGAAC -ACGGAAAGCGATGGAATGGTCTAC -ACGGAAAGCGATGGAATGACGTAC -ACGGAAAGCGATGGAATGAGTGAC -ACGGAAAGCGATGGAATGCTGTAG -ACGGAAAGCGATGGAATGCCTAAG -ACGGAAAGCGATGGAATGGTTCAG -ACGGAAAGCGATGGAATGGCATAG -ACGGAAAGCGATGGAATGGACAAG -ACGGAAAGCGATGGAATGAAGCAG -ACGGAAAGCGATGGAATGCGTCAA -ACGGAAAGCGATGGAATGGCTGAA -ACGGAAAGCGATGGAATGAGTACG -ACGGAAAGCGATGGAATGATCCGA -ACGGAAAGCGATGGAATGATGGGA -ACGGAAAGCGATGGAATGGTGCAA -ACGGAAAGCGATGGAATGGAGGAA -ACGGAAAGCGATGGAATGCAGGTA -ACGGAAAGCGATGGAATGGACTCT -ACGGAAAGCGATGGAATGAGTCCT -ACGGAAAGCGATGGAATGTAAGCC -ACGGAAAGCGATGGAATGATAGCC -ACGGAAAGCGATGGAATGTAACCG -ACGGAAAGCGATGGAATGATGCCA -ACGGAAAGCGATCAAGTGGGAAAC -ACGGAAAGCGATCAAGTGAACACC -ACGGAAAGCGATCAAGTGATCGAG -ACGGAAAGCGATCAAGTGCTCCTT -ACGGAAAGCGATCAAGTGCCTGTT -ACGGAAAGCGATCAAGTGCGGTTT -ACGGAAAGCGATCAAGTGGTGGTT -ACGGAAAGCGATCAAGTGGCCTTT -ACGGAAAGCGATCAAGTGGGTCTT -ACGGAAAGCGATCAAGTGACGCTT -ACGGAAAGCGATCAAGTGAGCGTT -ACGGAAAGCGATCAAGTGTTCGTC -ACGGAAAGCGATCAAGTGTCTCTC -ACGGAAAGCGATCAAGTGTGGATC -ACGGAAAGCGATCAAGTGCACTTC -ACGGAAAGCGATCAAGTGGTACTC -ACGGAAAGCGATCAAGTGGATGTC -ACGGAAAGCGATCAAGTGACAGTC -ACGGAAAGCGATCAAGTGTTGCTG -ACGGAAAGCGATCAAGTGTCCATG -ACGGAAAGCGATCAAGTGTGTGTG -ACGGAAAGCGATCAAGTGCTAGTG -ACGGAAAGCGATCAAGTGCATCTG -ACGGAAAGCGATCAAGTGGAGTTG -ACGGAAAGCGATCAAGTGAGACTG -ACGGAAAGCGATCAAGTGTCGGTA -ACGGAAAGCGATCAAGTGTGCCTA -ACGGAAAGCGATCAAGTGCCACTA -ACGGAAAGCGATCAAGTGGGAGTA -ACGGAAAGCGATCAAGTGTCGTCT -ACGGAAAGCGATCAAGTGTGCACT -ACGGAAAGCGATCAAGTGCTGACT -ACGGAAAGCGATCAAGTGCAACCT -ACGGAAAGCGATCAAGTGGCTACT -ACGGAAAGCGATCAAGTGGGATCT -ACGGAAAGCGATCAAGTGAAGGCT -ACGGAAAGCGATCAAGTGTCAACC -ACGGAAAGCGATCAAGTGTGTTCC -ACGGAAAGCGATCAAGTGATTCCC -ACGGAAAGCGATCAAGTGTTCTCG -ACGGAAAGCGATCAAGTGTAGACG -ACGGAAAGCGATCAAGTGGTAACG -ACGGAAAGCGATCAAGTGACTTCG -ACGGAAAGCGATCAAGTGTACGCA -ACGGAAAGCGATCAAGTGCTTGCA -ACGGAAAGCGATCAAGTGCGAACA -ACGGAAAGCGATCAAGTGCAGTCA -ACGGAAAGCGATCAAGTGGATCCA -ACGGAAAGCGATCAAGTGACGACA -ACGGAAAGCGATCAAGTGAGCTCA -ACGGAAAGCGATCAAGTGTCACGT -ACGGAAAGCGATCAAGTGCGTAGT -ACGGAAAGCGATCAAGTGGTCAGT -ACGGAAAGCGATCAAGTGGAAGGT -ACGGAAAGCGATCAAGTGAACCGT -ACGGAAAGCGATCAAGTGTTGTGC -ACGGAAAGCGATCAAGTGCTAAGC -ACGGAAAGCGATCAAGTGACTAGC -ACGGAAAGCGATCAAGTGAGATGC -ACGGAAAGCGATCAAGTGTGAAGG -ACGGAAAGCGATCAAGTGCAATGG -ACGGAAAGCGATCAAGTGATGAGG -ACGGAAAGCGATCAAGTGAATGGG -ACGGAAAGCGATCAAGTGTCCTGA -ACGGAAAGCGATCAAGTGTAGCGA -ACGGAAAGCGATCAAGTGCACAGA -ACGGAAAGCGATCAAGTGGCAAGA -ACGGAAAGCGATCAAGTGGGTTGA -ACGGAAAGCGATCAAGTGTCCGAT -ACGGAAAGCGATCAAGTGTGGCAT -ACGGAAAGCGATCAAGTGCGAGAT -ACGGAAAGCGATCAAGTGTACCAC -ACGGAAAGCGATCAAGTGCAGAAC -ACGGAAAGCGATCAAGTGGTCTAC -ACGGAAAGCGATCAAGTGACGTAC -ACGGAAAGCGATCAAGTGAGTGAC -ACGGAAAGCGATCAAGTGCTGTAG -ACGGAAAGCGATCAAGTGCCTAAG -ACGGAAAGCGATCAAGTGGTTCAG -ACGGAAAGCGATCAAGTGGCATAG -ACGGAAAGCGATCAAGTGGACAAG -ACGGAAAGCGATCAAGTGAAGCAG -ACGGAAAGCGATCAAGTGCGTCAA -ACGGAAAGCGATCAAGTGGCTGAA -ACGGAAAGCGATCAAGTGAGTACG -ACGGAAAGCGATCAAGTGATCCGA -ACGGAAAGCGATCAAGTGATGGGA -ACGGAAAGCGATCAAGTGGTGCAA -ACGGAAAGCGATCAAGTGGAGGAA -ACGGAAAGCGATCAAGTGCAGGTA -ACGGAAAGCGATCAAGTGGACTCT -ACGGAAAGCGATCAAGTGAGTCCT -ACGGAAAGCGATCAAGTGTAAGCC -ACGGAAAGCGATCAAGTGATAGCC -ACGGAAAGCGATCAAGTGTAACCG -ACGGAAAGCGATCAAGTGATGCCA -ACGGAAAGCGATGAAGAGGGAAAC -ACGGAAAGCGATGAAGAGAACACC -ACGGAAAGCGATGAAGAGATCGAG -ACGGAAAGCGATGAAGAGCTCCTT -ACGGAAAGCGATGAAGAGCCTGTT -ACGGAAAGCGATGAAGAGCGGTTT -ACGGAAAGCGATGAAGAGGTGGTT -ACGGAAAGCGATGAAGAGGCCTTT -ACGGAAAGCGATGAAGAGGGTCTT -ACGGAAAGCGATGAAGAGACGCTT -ACGGAAAGCGATGAAGAGAGCGTT -ACGGAAAGCGATGAAGAGTTCGTC -ACGGAAAGCGATGAAGAGTCTCTC -ACGGAAAGCGATGAAGAGTGGATC -ACGGAAAGCGATGAAGAGCACTTC -ACGGAAAGCGATGAAGAGGTACTC -ACGGAAAGCGATGAAGAGGATGTC -ACGGAAAGCGATGAAGAGACAGTC -ACGGAAAGCGATGAAGAGTTGCTG -ACGGAAAGCGATGAAGAGTCCATG -ACGGAAAGCGATGAAGAGTGTGTG -ACGGAAAGCGATGAAGAGCTAGTG -ACGGAAAGCGATGAAGAGCATCTG -ACGGAAAGCGATGAAGAGGAGTTG -ACGGAAAGCGATGAAGAGAGACTG -ACGGAAAGCGATGAAGAGTCGGTA -ACGGAAAGCGATGAAGAGTGCCTA -ACGGAAAGCGATGAAGAGCCACTA -ACGGAAAGCGATGAAGAGGGAGTA -ACGGAAAGCGATGAAGAGTCGTCT -ACGGAAAGCGATGAAGAGTGCACT -ACGGAAAGCGATGAAGAGCTGACT -ACGGAAAGCGATGAAGAGCAACCT -ACGGAAAGCGATGAAGAGGCTACT -ACGGAAAGCGATGAAGAGGGATCT -ACGGAAAGCGATGAAGAGAAGGCT -ACGGAAAGCGATGAAGAGTCAACC -ACGGAAAGCGATGAAGAGTGTTCC -ACGGAAAGCGATGAAGAGATTCCC -ACGGAAAGCGATGAAGAGTTCTCG -ACGGAAAGCGATGAAGAGTAGACG -ACGGAAAGCGATGAAGAGGTAACG -ACGGAAAGCGATGAAGAGACTTCG -ACGGAAAGCGATGAAGAGTACGCA -ACGGAAAGCGATGAAGAGCTTGCA -ACGGAAAGCGATGAAGAGCGAACA -ACGGAAAGCGATGAAGAGCAGTCA -ACGGAAAGCGATGAAGAGGATCCA -ACGGAAAGCGATGAAGAGACGACA -ACGGAAAGCGATGAAGAGAGCTCA -ACGGAAAGCGATGAAGAGTCACGT -ACGGAAAGCGATGAAGAGCGTAGT -ACGGAAAGCGATGAAGAGGTCAGT -ACGGAAAGCGATGAAGAGGAAGGT -ACGGAAAGCGATGAAGAGAACCGT -ACGGAAAGCGATGAAGAGTTGTGC -ACGGAAAGCGATGAAGAGCTAAGC -ACGGAAAGCGATGAAGAGACTAGC -ACGGAAAGCGATGAAGAGAGATGC -ACGGAAAGCGATGAAGAGTGAAGG -ACGGAAAGCGATGAAGAGCAATGG -ACGGAAAGCGATGAAGAGATGAGG -ACGGAAAGCGATGAAGAGAATGGG -ACGGAAAGCGATGAAGAGTCCTGA -ACGGAAAGCGATGAAGAGTAGCGA -ACGGAAAGCGATGAAGAGCACAGA -ACGGAAAGCGATGAAGAGGCAAGA -ACGGAAAGCGATGAAGAGGGTTGA -ACGGAAAGCGATGAAGAGTCCGAT -ACGGAAAGCGATGAAGAGTGGCAT -ACGGAAAGCGATGAAGAGCGAGAT -ACGGAAAGCGATGAAGAGTACCAC -ACGGAAAGCGATGAAGAGCAGAAC -ACGGAAAGCGATGAAGAGGTCTAC -ACGGAAAGCGATGAAGAGACGTAC -ACGGAAAGCGATGAAGAGAGTGAC -ACGGAAAGCGATGAAGAGCTGTAG -ACGGAAAGCGATGAAGAGCCTAAG -ACGGAAAGCGATGAAGAGGTTCAG -ACGGAAAGCGATGAAGAGGCATAG -ACGGAAAGCGATGAAGAGGACAAG -ACGGAAAGCGATGAAGAGAAGCAG -ACGGAAAGCGATGAAGAGCGTCAA -ACGGAAAGCGATGAAGAGGCTGAA -ACGGAAAGCGATGAAGAGAGTACG -ACGGAAAGCGATGAAGAGATCCGA -ACGGAAAGCGATGAAGAGATGGGA -ACGGAAAGCGATGAAGAGGTGCAA -ACGGAAAGCGATGAAGAGGAGGAA -ACGGAAAGCGATGAAGAGCAGGTA -ACGGAAAGCGATGAAGAGGACTCT -ACGGAAAGCGATGAAGAGAGTCCT -ACGGAAAGCGATGAAGAGTAAGCC -ACGGAAAGCGATGAAGAGATAGCC -ACGGAAAGCGATGAAGAGTAACCG -ACGGAAAGCGATGAAGAGATGCCA -ACGGAAAGCGATGTACAGGGAAAC -ACGGAAAGCGATGTACAGAACACC -ACGGAAAGCGATGTACAGATCGAG -ACGGAAAGCGATGTACAGCTCCTT -ACGGAAAGCGATGTACAGCCTGTT -ACGGAAAGCGATGTACAGCGGTTT -ACGGAAAGCGATGTACAGGTGGTT -ACGGAAAGCGATGTACAGGCCTTT -ACGGAAAGCGATGTACAGGGTCTT -ACGGAAAGCGATGTACAGACGCTT -ACGGAAAGCGATGTACAGAGCGTT -ACGGAAAGCGATGTACAGTTCGTC -ACGGAAAGCGATGTACAGTCTCTC -ACGGAAAGCGATGTACAGTGGATC -ACGGAAAGCGATGTACAGCACTTC -ACGGAAAGCGATGTACAGGTACTC -ACGGAAAGCGATGTACAGGATGTC -ACGGAAAGCGATGTACAGACAGTC -ACGGAAAGCGATGTACAGTTGCTG -ACGGAAAGCGATGTACAGTCCATG -ACGGAAAGCGATGTACAGTGTGTG -ACGGAAAGCGATGTACAGCTAGTG -ACGGAAAGCGATGTACAGCATCTG -ACGGAAAGCGATGTACAGGAGTTG -ACGGAAAGCGATGTACAGAGACTG -ACGGAAAGCGATGTACAGTCGGTA -ACGGAAAGCGATGTACAGTGCCTA -ACGGAAAGCGATGTACAGCCACTA -ACGGAAAGCGATGTACAGGGAGTA -ACGGAAAGCGATGTACAGTCGTCT -ACGGAAAGCGATGTACAGTGCACT -ACGGAAAGCGATGTACAGCTGACT -ACGGAAAGCGATGTACAGCAACCT -ACGGAAAGCGATGTACAGGCTACT -ACGGAAAGCGATGTACAGGGATCT -ACGGAAAGCGATGTACAGAAGGCT -ACGGAAAGCGATGTACAGTCAACC -ACGGAAAGCGATGTACAGTGTTCC -ACGGAAAGCGATGTACAGATTCCC -ACGGAAAGCGATGTACAGTTCTCG -ACGGAAAGCGATGTACAGTAGACG -ACGGAAAGCGATGTACAGGTAACG -ACGGAAAGCGATGTACAGACTTCG -ACGGAAAGCGATGTACAGTACGCA -ACGGAAAGCGATGTACAGCTTGCA -ACGGAAAGCGATGTACAGCGAACA -ACGGAAAGCGATGTACAGCAGTCA -ACGGAAAGCGATGTACAGGATCCA -ACGGAAAGCGATGTACAGACGACA -ACGGAAAGCGATGTACAGAGCTCA -ACGGAAAGCGATGTACAGTCACGT -ACGGAAAGCGATGTACAGCGTAGT -ACGGAAAGCGATGTACAGGTCAGT -ACGGAAAGCGATGTACAGGAAGGT -ACGGAAAGCGATGTACAGAACCGT -ACGGAAAGCGATGTACAGTTGTGC -ACGGAAAGCGATGTACAGCTAAGC -ACGGAAAGCGATGTACAGACTAGC -ACGGAAAGCGATGTACAGAGATGC -ACGGAAAGCGATGTACAGTGAAGG -ACGGAAAGCGATGTACAGCAATGG -ACGGAAAGCGATGTACAGATGAGG -ACGGAAAGCGATGTACAGAATGGG -ACGGAAAGCGATGTACAGTCCTGA -ACGGAAAGCGATGTACAGTAGCGA -ACGGAAAGCGATGTACAGCACAGA -ACGGAAAGCGATGTACAGGCAAGA -ACGGAAAGCGATGTACAGGGTTGA -ACGGAAAGCGATGTACAGTCCGAT -ACGGAAAGCGATGTACAGTGGCAT -ACGGAAAGCGATGTACAGCGAGAT -ACGGAAAGCGATGTACAGTACCAC -ACGGAAAGCGATGTACAGCAGAAC -ACGGAAAGCGATGTACAGGTCTAC -ACGGAAAGCGATGTACAGACGTAC -ACGGAAAGCGATGTACAGAGTGAC -ACGGAAAGCGATGTACAGCTGTAG -ACGGAAAGCGATGTACAGCCTAAG -ACGGAAAGCGATGTACAGGTTCAG -ACGGAAAGCGATGTACAGGCATAG -ACGGAAAGCGATGTACAGGACAAG -ACGGAAAGCGATGTACAGAAGCAG -ACGGAAAGCGATGTACAGCGTCAA -ACGGAAAGCGATGTACAGGCTGAA -ACGGAAAGCGATGTACAGAGTACG -ACGGAAAGCGATGTACAGATCCGA -ACGGAAAGCGATGTACAGATGGGA -ACGGAAAGCGATGTACAGGTGCAA -ACGGAAAGCGATGTACAGGAGGAA -ACGGAAAGCGATGTACAGCAGGTA -ACGGAAAGCGATGTACAGGACTCT -ACGGAAAGCGATGTACAGAGTCCT -ACGGAAAGCGATGTACAGTAAGCC -ACGGAAAGCGATGTACAGATAGCC -ACGGAAAGCGATGTACAGTAACCG -ACGGAAAGCGATGTACAGATGCCA -ACGGAAAGCGATTCTGACGGAAAC -ACGGAAAGCGATTCTGACAACACC -ACGGAAAGCGATTCTGACATCGAG -ACGGAAAGCGATTCTGACCTCCTT -ACGGAAAGCGATTCTGACCCTGTT -ACGGAAAGCGATTCTGACCGGTTT -ACGGAAAGCGATTCTGACGTGGTT -ACGGAAAGCGATTCTGACGCCTTT -ACGGAAAGCGATTCTGACGGTCTT -ACGGAAAGCGATTCTGACACGCTT -ACGGAAAGCGATTCTGACAGCGTT -ACGGAAAGCGATTCTGACTTCGTC -ACGGAAAGCGATTCTGACTCTCTC -ACGGAAAGCGATTCTGACTGGATC -ACGGAAAGCGATTCTGACCACTTC -ACGGAAAGCGATTCTGACGTACTC -ACGGAAAGCGATTCTGACGATGTC -ACGGAAAGCGATTCTGACACAGTC -ACGGAAAGCGATTCTGACTTGCTG -ACGGAAAGCGATTCTGACTCCATG -ACGGAAAGCGATTCTGACTGTGTG -ACGGAAAGCGATTCTGACCTAGTG -ACGGAAAGCGATTCTGACCATCTG -ACGGAAAGCGATTCTGACGAGTTG -ACGGAAAGCGATTCTGACAGACTG -ACGGAAAGCGATTCTGACTCGGTA -ACGGAAAGCGATTCTGACTGCCTA -ACGGAAAGCGATTCTGACCCACTA -ACGGAAAGCGATTCTGACGGAGTA -ACGGAAAGCGATTCTGACTCGTCT -ACGGAAAGCGATTCTGACTGCACT -ACGGAAAGCGATTCTGACCTGACT -ACGGAAAGCGATTCTGACCAACCT -ACGGAAAGCGATTCTGACGCTACT -ACGGAAAGCGATTCTGACGGATCT -ACGGAAAGCGATTCTGACAAGGCT -ACGGAAAGCGATTCTGACTCAACC -ACGGAAAGCGATTCTGACTGTTCC -ACGGAAAGCGATTCTGACATTCCC -ACGGAAAGCGATTCTGACTTCTCG -ACGGAAAGCGATTCTGACTAGACG -ACGGAAAGCGATTCTGACGTAACG -ACGGAAAGCGATTCTGACACTTCG -ACGGAAAGCGATTCTGACTACGCA -ACGGAAAGCGATTCTGACCTTGCA -ACGGAAAGCGATTCTGACCGAACA -ACGGAAAGCGATTCTGACCAGTCA -ACGGAAAGCGATTCTGACGATCCA -ACGGAAAGCGATTCTGACACGACA -ACGGAAAGCGATTCTGACAGCTCA -ACGGAAAGCGATTCTGACTCACGT -ACGGAAAGCGATTCTGACCGTAGT -ACGGAAAGCGATTCTGACGTCAGT -ACGGAAAGCGATTCTGACGAAGGT -ACGGAAAGCGATTCTGACAACCGT -ACGGAAAGCGATTCTGACTTGTGC -ACGGAAAGCGATTCTGACCTAAGC -ACGGAAAGCGATTCTGACACTAGC -ACGGAAAGCGATTCTGACAGATGC -ACGGAAAGCGATTCTGACTGAAGG -ACGGAAAGCGATTCTGACCAATGG -ACGGAAAGCGATTCTGACATGAGG -ACGGAAAGCGATTCTGACAATGGG -ACGGAAAGCGATTCTGACTCCTGA -ACGGAAAGCGATTCTGACTAGCGA -ACGGAAAGCGATTCTGACCACAGA -ACGGAAAGCGATTCTGACGCAAGA -ACGGAAAGCGATTCTGACGGTTGA -ACGGAAAGCGATTCTGACTCCGAT -ACGGAAAGCGATTCTGACTGGCAT -ACGGAAAGCGATTCTGACCGAGAT -ACGGAAAGCGATTCTGACTACCAC -ACGGAAAGCGATTCTGACCAGAAC -ACGGAAAGCGATTCTGACGTCTAC -ACGGAAAGCGATTCTGACACGTAC -ACGGAAAGCGATTCTGACAGTGAC -ACGGAAAGCGATTCTGACCTGTAG -ACGGAAAGCGATTCTGACCCTAAG -ACGGAAAGCGATTCTGACGTTCAG -ACGGAAAGCGATTCTGACGCATAG -ACGGAAAGCGATTCTGACGACAAG -ACGGAAAGCGATTCTGACAAGCAG -ACGGAAAGCGATTCTGACCGTCAA -ACGGAAAGCGATTCTGACGCTGAA -ACGGAAAGCGATTCTGACAGTACG -ACGGAAAGCGATTCTGACATCCGA -ACGGAAAGCGATTCTGACATGGGA -ACGGAAAGCGATTCTGACGTGCAA -ACGGAAAGCGATTCTGACGAGGAA -ACGGAAAGCGATTCTGACCAGGTA -ACGGAAAGCGATTCTGACGACTCT -ACGGAAAGCGATTCTGACAGTCCT -ACGGAAAGCGATTCTGACTAAGCC -ACGGAAAGCGATTCTGACATAGCC -ACGGAAAGCGATTCTGACTAACCG -ACGGAAAGCGATTCTGACATGCCA -ACGGAAAGCGATCCTAGTGGAAAC -ACGGAAAGCGATCCTAGTAACACC -ACGGAAAGCGATCCTAGTATCGAG -ACGGAAAGCGATCCTAGTCTCCTT -ACGGAAAGCGATCCTAGTCCTGTT -ACGGAAAGCGATCCTAGTCGGTTT -ACGGAAAGCGATCCTAGTGTGGTT -ACGGAAAGCGATCCTAGTGCCTTT -ACGGAAAGCGATCCTAGTGGTCTT -ACGGAAAGCGATCCTAGTACGCTT -ACGGAAAGCGATCCTAGTAGCGTT -ACGGAAAGCGATCCTAGTTTCGTC -ACGGAAAGCGATCCTAGTTCTCTC -ACGGAAAGCGATCCTAGTTGGATC -ACGGAAAGCGATCCTAGTCACTTC -ACGGAAAGCGATCCTAGTGTACTC -ACGGAAAGCGATCCTAGTGATGTC -ACGGAAAGCGATCCTAGTACAGTC -ACGGAAAGCGATCCTAGTTTGCTG -ACGGAAAGCGATCCTAGTTCCATG -ACGGAAAGCGATCCTAGTTGTGTG -ACGGAAAGCGATCCTAGTCTAGTG -ACGGAAAGCGATCCTAGTCATCTG -ACGGAAAGCGATCCTAGTGAGTTG -ACGGAAAGCGATCCTAGTAGACTG -ACGGAAAGCGATCCTAGTTCGGTA -ACGGAAAGCGATCCTAGTTGCCTA -ACGGAAAGCGATCCTAGTCCACTA -ACGGAAAGCGATCCTAGTGGAGTA -ACGGAAAGCGATCCTAGTTCGTCT -ACGGAAAGCGATCCTAGTTGCACT -ACGGAAAGCGATCCTAGTCTGACT -ACGGAAAGCGATCCTAGTCAACCT -ACGGAAAGCGATCCTAGTGCTACT -ACGGAAAGCGATCCTAGTGGATCT -ACGGAAAGCGATCCTAGTAAGGCT -ACGGAAAGCGATCCTAGTTCAACC -ACGGAAAGCGATCCTAGTTGTTCC -ACGGAAAGCGATCCTAGTATTCCC -ACGGAAAGCGATCCTAGTTTCTCG -ACGGAAAGCGATCCTAGTTAGACG -ACGGAAAGCGATCCTAGTGTAACG -ACGGAAAGCGATCCTAGTACTTCG -ACGGAAAGCGATCCTAGTTACGCA -ACGGAAAGCGATCCTAGTCTTGCA -ACGGAAAGCGATCCTAGTCGAACA -ACGGAAAGCGATCCTAGTCAGTCA -ACGGAAAGCGATCCTAGTGATCCA -ACGGAAAGCGATCCTAGTACGACA -ACGGAAAGCGATCCTAGTAGCTCA -ACGGAAAGCGATCCTAGTTCACGT -ACGGAAAGCGATCCTAGTCGTAGT -ACGGAAAGCGATCCTAGTGTCAGT -ACGGAAAGCGATCCTAGTGAAGGT -ACGGAAAGCGATCCTAGTAACCGT -ACGGAAAGCGATCCTAGTTTGTGC -ACGGAAAGCGATCCTAGTCTAAGC -ACGGAAAGCGATCCTAGTACTAGC -ACGGAAAGCGATCCTAGTAGATGC -ACGGAAAGCGATCCTAGTTGAAGG -ACGGAAAGCGATCCTAGTCAATGG -ACGGAAAGCGATCCTAGTATGAGG -ACGGAAAGCGATCCTAGTAATGGG -ACGGAAAGCGATCCTAGTTCCTGA -ACGGAAAGCGATCCTAGTTAGCGA -ACGGAAAGCGATCCTAGTCACAGA -ACGGAAAGCGATCCTAGTGCAAGA -ACGGAAAGCGATCCTAGTGGTTGA -ACGGAAAGCGATCCTAGTTCCGAT -ACGGAAAGCGATCCTAGTTGGCAT -ACGGAAAGCGATCCTAGTCGAGAT -ACGGAAAGCGATCCTAGTTACCAC -ACGGAAAGCGATCCTAGTCAGAAC -ACGGAAAGCGATCCTAGTGTCTAC -ACGGAAAGCGATCCTAGTACGTAC -ACGGAAAGCGATCCTAGTAGTGAC -ACGGAAAGCGATCCTAGTCTGTAG -ACGGAAAGCGATCCTAGTCCTAAG -ACGGAAAGCGATCCTAGTGTTCAG -ACGGAAAGCGATCCTAGTGCATAG -ACGGAAAGCGATCCTAGTGACAAG -ACGGAAAGCGATCCTAGTAAGCAG -ACGGAAAGCGATCCTAGTCGTCAA -ACGGAAAGCGATCCTAGTGCTGAA -ACGGAAAGCGATCCTAGTAGTACG -ACGGAAAGCGATCCTAGTATCCGA -ACGGAAAGCGATCCTAGTATGGGA -ACGGAAAGCGATCCTAGTGTGCAA -ACGGAAAGCGATCCTAGTGAGGAA -ACGGAAAGCGATCCTAGTCAGGTA -ACGGAAAGCGATCCTAGTGACTCT -ACGGAAAGCGATCCTAGTAGTCCT -ACGGAAAGCGATCCTAGTTAAGCC -ACGGAAAGCGATCCTAGTATAGCC -ACGGAAAGCGATCCTAGTTAACCG -ACGGAAAGCGATCCTAGTATGCCA -ACGGAAAGCGATGCCTAAGGAAAC -ACGGAAAGCGATGCCTAAAACACC -ACGGAAAGCGATGCCTAAATCGAG -ACGGAAAGCGATGCCTAACTCCTT -ACGGAAAGCGATGCCTAACCTGTT -ACGGAAAGCGATGCCTAACGGTTT -ACGGAAAGCGATGCCTAAGTGGTT -ACGGAAAGCGATGCCTAAGCCTTT -ACGGAAAGCGATGCCTAAGGTCTT -ACGGAAAGCGATGCCTAAACGCTT -ACGGAAAGCGATGCCTAAAGCGTT -ACGGAAAGCGATGCCTAATTCGTC -ACGGAAAGCGATGCCTAATCTCTC -ACGGAAAGCGATGCCTAATGGATC -ACGGAAAGCGATGCCTAACACTTC -ACGGAAAGCGATGCCTAAGTACTC -ACGGAAAGCGATGCCTAAGATGTC -ACGGAAAGCGATGCCTAAACAGTC -ACGGAAAGCGATGCCTAATTGCTG -ACGGAAAGCGATGCCTAATCCATG -ACGGAAAGCGATGCCTAATGTGTG -ACGGAAAGCGATGCCTAACTAGTG -ACGGAAAGCGATGCCTAACATCTG -ACGGAAAGCGATGCCTAAGAGTTG -ACGGAAAGCGATGCCTAAAGACTG -ACGGAAAGCGATGCCTAATCGGTA -ACGGAAAGCGATGCCTAATGCCTA -ACGGAAAGCGATGCCTAACCACTA -ACGGAAAGCGATGCCTAAGGAGTA -ACGGAAAGCGATGCCTAATCGTCT -ACGGAAAGCGATGCCTAATGCACT -ACGGAAAGCGATGCCTAACTGACT -ACGGAAAGCGATGCCTAACAACCT -ACGGAAAGCGATGCCTAAGCTACT -ACGGAAAGCGATGCCTAAGGATCT -ACGGAAAGCGATGCCTAAAAGGCT -ACGGAAAGCGATGCCTAATCAACC -ACGGAAAGCGATGCCTAATGTTCC -ACGGAAAGCGATGCCTAAATTCCC -ACGGAAAGCGATGCCTAATTCTCG -ACGGAAAGCGATGCCTAATAGACG -ACGGAAAGCGATGCCTAAGTAACG -ACGGAAAGCGATGCCTAAACTTCG -ACGGAAAGCGATGCCTAATACGCA -ACGGAAAGCGATGCCTAACTTGCA -ACGGAAAGCGATGCCTAACGAACA -ACGGAAAGCGATGCCTAACAGTCA -ACGGAAAGCGATGCCTAAGATCCA -ACGGAAAGCGATGCCTAAACGACA -ACGGAAAGCGATGCCTAAAGCTCA -ACGGAAAGCGATGCCTAATCACGT -ACGGAAAGCGATGCCTAACGTAGT -ACGGAAAGCGATGCCTAAGTCAGT -ACGGAAAGCGATGCCTAAGAAGGT -ACGGAAAGCGATGCCTAAAACCGT -ACGGAAAGCGATGCCTAATTGTGC -ACGGAAAGCGATGCCTAACTAAGC -ACGGAAAGCGATGCCTAAACTAGC -ACGGAAAGCGATGCCTAAAGATGC -ACGGAAAGCGATGCCTAATGAAGG -ACGGAAAGCGATGCCTAACAATGG -ACGGAAAGCGATGCCTAAATGAGG -ACGGAAAGCGATGCCTAAAATGGG -ACGGAAAGCGATGCCTAATCCTGA -ACGGAAAGCGATGCCTAATAGCGA -ACGGAAAGCGATGCCTAACACAGA -ACGGAAAGCGATGCCTAAGCAAGA -ACGGAAAGCGATGCCTAAGGTTGA -ACGGAAAGCGATGCCTAATCCGAT -ACGGAAAGCGATGCCTAATGGCAT -ACGGAAAGCGATGCCTAACGAGAT -ACGGAAAGCGATGCCTAATACCAC -ACGGAAAGCGATGCCTAACAGAAC -ACGGAAAGCGATGCCTAAGTCTAC -ACGGAAAGCGATGCCTAAACGTAC -ACGGAAAGCGATGCCTAAAGTGAC -ACGGAAAGCGATGCCTAACTGTAG -ACGGAAAGCGATGCCTAACCTAAG -ACGGAAAGCGATGCCTAAGTTCAG -ACGGAAAGCGATGCCTAAGCATAG -ACGGAAAGCGATGCCTAAGACAAG -ACGGAAAGCGATGCCTAAAAGCAG -ACGGAAAGCGATGCCTAACGTCAA -ACGGAAAGCGATGCCTAAGCTGAA -ACGGAAAGCGATGCCTAAAGTACG -ACGGAAAGCGATGCCTAAATCCGA -ACGGAAAGCGATGCCTAAATGGGA -ACGGAAAGCGATGCCTAAGTGCAA -ACGGAAAGCGATGCCTAAGAGGAA -ACGGAAAGCGATGCCTAACAGGTA -ACGGAAAGCGATGCCTAAGACTCT -ACGGAAAGCGATGCCTAAAGTCCT -ACGGAAAGCGATGCCTAATAAGCC -ACGGAAAGCGATGCCTAAATAGCC -ACGGAAAGCGATGCCTAATAACCG -ACGGAAAGCGATGCCTAAATGCCA -ACGGAAAGCGATGCCATAGGAAAC -ACGGAAAGCGATGCCATAAACACC -ACGGAAAGCGATGCCATAATCGAG -ACGGAAAGCGATGCCATACTCCTT -ACGGAAAGCGATGCCATACCTGTT -ACGGAAAGCGATGCCATACGGTTT -ACGGAAAGCGATGCCATAGTGGTT -ACGGAAAGCGATGCCATAGCCTTT -ACGGAAAGCGATGCCATAGGTCTT -ACGGAAAGCGATGCCATAACGCTT -ACGGAAAGCGATGCCATAAGCGTT -ACGGAAAGCGATGCCATATTCGTC -ACGGAAAGCGATGCCATATCTCTC -ACGGAAAGCGATGCCATATGGATC -ACGGAAAGCGATGCCATACACTTC -ACGGAAAGCGATGCCATAGTACTC -ACGGAAAGCGATGCCATAGATGTC -ACGGAAAGCGATGCCATAACAGTC -ACGGAAAGCGATGCCATATTGCTG -ACGGAAAGCGATGCCATATCCATG -ACGGAAAGCGATGCCATATGTGTG -ACGGAAAGCGATGCCATACTAGTG -ACGGAAAGCGATGCCATACATCTG -ACGGAAAGCGATGCCATAGAGTTG -ACGGAAAGCGATGCCATAAGACTG -ACGGAAAGCGATGCCATATCGGTA -ACGGAAAGCGATGCCATATGCCTA -ACGGAAAGCGATGCCATACCACTA -ACGGAAAGCGATGCCATAGGAGTA -ACGGAAAGCGATGCCATATCGTCT -ACGGAAAGCGATGCCATATGCACT -ACGGAAAGCGATGCCATACTGACT -ACGGAAAGCGATGCCATACAACCT -ACGGAAAGCGATGCCATAGCTACT -ACGGAAAGCGATGCCATAGGATCT -ACGGAAAGCGATGCCATAAAGGCT -ACGGAAAGCGATGCCATATCAACC -ACGGAAAGCGATGCCATATGTTCC -ACGGAAAGCGATGCCATAATTCCC -ACGGAAAGCGATGCCATATTCTCG -ACGGAAAGCGATGCCATATAGACG -ACGGAAAGCGATGCCATAGTAACG -ACGGAAAGCGATGCCATAACTTCG -ACGGAAAGCGATGCCATATACGCA -ACGGAAAGCGATGCCATACTTGCA -ACGGAAAGCGATGCCATACGAACA -ACGGAAAGCGATGCCATACAGTCA -ACGGAAAGCGATGCCATAGATCCA -ACGGAAAGCGATGCCATAACGACA -ACGGAAAGCGATGCCATAAGCTCA -ACGGAAAGCGATGCCATATCACGT -ACGGAAAGCGATGCCATACGTAGT -ACGGAAAGCGATGCCATAGTCAGT -ACGGAAAGCGATGCCATAGAAGGT -ACGGAAAGCGATGCCATAAACCGT -ACGGAAAGCGATGCCATATTGTGC -ACGGAAAGCGATGCCATACTAAGC -ACGGAAAGCGATGCCATAACTAGC -ACGGAAAGCGATGCCATAAGATGC -ACGGAAAGCGATGCCATATGAAGG -ACGGAAAGCGATGCCATACAATGG -ACGGAAAGCGATGCCATAATGAGG -ACGGAAAGCGATGCCATAAATGGG -ACGGAAAGCGATGCCATATCCTGA -ACGGAAAGCGATGCCATATAGCGA -ACGGAAAGCGATGCCATACACAGA -ACGGAAAGCGATGCCATAGCAAGA -ACGGAAAGCGATGCCATAGGTTGA -ACGGAAAGCGATGCCATATCCGAT -ACGGAAAGCGATGCCATATGGCAT -ACGGAAAGCGATGCCATACGAGAT -ACGGAAAGCGATGCCATATACCAC -ACGGAAAGCGATGCCATACAGAAC -ACGGAAAGCGATGCCATAGTCTAC -ACGGAAAGCGATGCCATAACGTAC -ACGGAAAGCGATGCCATAAGTGAC -ACGGAAAGCGATGCCATACTGTAG -ACGGAAAGCGATGCCATACCTAAG -ACGGAAAGCGATGCCATAGTTCAG -ACGGAAAGCGATGCCATAGCATAG -ACGGAAAGCGATGCCATAGACAAG -ACGGAAAGCGATGCCATAAAGCAG -ACGGAAAGCGATGCCATACGTCAA -ACGGAAAGCGATGCCATAGCTGAA -ACGGAAAGCGATGCCATAAGTACG -ACGGAAAGCGATGCCATAATCCGA -ACGGAAAGCGATGCCATAATGGGA -ACGGAAAGCGATGCCATAGTGCAA -ACGGAAAGCGATGCCATAGAGGAA -ACGGAAAGCGATGCCATACAGGTA -ACGGAAAGCGATGCCATAGACTCT -ACGGAAAGCGATGCCATAAGTCCT -ACGGAAAGCGATGCCATATAAGCC -ACGGAAAGCGATGCCATAATAGCC -ACGGAAAGCGATGCCATATAACCG -ACGGAAAGCGATGCCATAATGCCA -ACGGAAAGCGATCCGTAAGGAAAC -ACGGAAAGCGATCCGTAAAACACC -ACGGAAAGCGATCCGTAAATCGAG -ACGGAAAGCGATCCGTAACTCCTT -ACGGAAAGCGATCCGTAACCTGTT -ACGGAAAGCGATCCGTAACGGTTT -ACGGAAAGCGATCCGTAAGTGGTT -ACGGAAAGCGATCCGTAAGCCTTT -ACGGAAAGCGATCCGTAAGGTCTT -ACGGAAAGCGATCCGTAAACGCTT -ACGGAAAGCGATCCGTAAAGCGTT -ACGGAAAGCGATCCGTAATTCGTC -ACGGAAAGCGATCCGTAATCTCTC -ACGGAAAGCGATCCGTAATGGATC -ACGGAAAGCGATCCGTAACACTTC -ACGGAAAGCGATCCGTAAGTACTC -ACGGAAAGCGATCCGTAAGATGTC -ACGGAAAGCGATCCGTAAACAGTC -ACGGAAAGCGATCCGTAATTGCTG -ACGGAAAGCGATCCGTAATCCATG -ACGGAAAGCGATCCGTAATGTGTG -ACGGAAAGCGATCCGTAACTAGTG -ACGGAAAGCGATCCGTAACATCTG -ACGGAAAGCGATCCGTAAGAGTTG -ACGGAAAGCGATCCGTAAAGACTG -ACGGAAAGCGATCCGTAATCGGTA -ACGGAAAGCGATCCGTAATGCCTA -ACGGAAAGCGATCCGTAACCACTA -ACGGAAAGCGATCCGTAAGGAGTA -ACGGAAAGCGATCCGTAATCGTCT -ACGGAAAGCGATCCGTAATGCACT -ACGGAAAGCGATCCGTAACTGACT -ACGGAAAGCGATCCGTAACAACCT -ACGGAAAGCGATCCGTAAGCTACT -ACGGAAAGCGATCCGTAAGGATCT -ACGGAAAGCGATCCGTAAAAGGCT -ACGGAAAGCGATCCGTAATCAACC -ACGGAAAGCGATCCGTAATGTTCC -ACGGAAAGCGATCCGTAAATTCCC -ACGGAAAGCGATCCGTAATTCTCG -ACGGAAAGCGATCCGTAATAGACG -ACGGAAAGCGATCCGTAAGTAACG -ACGGAAAGCGATCCGTAAACTTCG -ACGGAAAGCGATCCGTAATACGCA -ACGGAAAGCGATCCGTAACTTGCA -ACGGAAAGCGATCCGTAACGAACA -ACGGAAAGCGATCCGTAACAGTCA -ACGGAAAGCGATCCGTAAGATCCA -ACGGAAAGCGATCCGTAAACGACA -ACGGAAAGCGATCCGTAAAGCTCA -ACGGAAAGCGATCCGTAATCACGT -ACGGAAAGCGATCCGTAACGTAGT -ACGGAAAGCGATCCGTAAGTCAGT -ACGGAAAGCGATCCGTAAGAAGGT -ACGGAAAGCGATCCGTAAAACCGT -ACGGAAAGCGATCCGTAATTGTGC -ACGGAAAGCGATCCGTAACTAAGC -ACGGAAAGCGATCCGTAAACTAGC -ACGGAAAGCGATCCGTAAAGATGC -ACGGAAAGCGATCCGTAATGAAGG -ACGGAAAGCGATCCGTAACAATGG -ACGGAAAGCGATCCGTAAATGAGG -ACGGAAAGCGATCCGTAAAATGGG -ACGGAAAGCGATCCGTAATCCTGA -ACGGAAAGCGATCCGTAATAGCGA -ACGGAAAGCGATCCGTAACACAGA -ACGGAAAGCGATCCGTAAGCAAGA -ACGGAAAGCGATCCGTAAGGTTGA -ACGGAAAGCGATCCGTAATCCGAT -ACGGAAAGCGATCCGTAATGGCAT -ACGGAAAGCGATCCGTAACGAGAT -ACGGAAAGCGATCCGTAATACCAC -ACGGAAAGCGATCCGTAACAGAAC -ACGGAAAGCGATCCGTAAGTCTAC -ACGGAAAGCGATCCGTAAACGTAC -ACGGAAAGCGATCCGTAAAGTGAC -ACGGAAAGCGATCCGTAACTGTAG -ACGGAAAGCGATCCGTAACCTAAG -ACGGAAAGCGATCCGTAAGTTCAG -ACGGAAAGCGATCCGTAAGCATAG -ACGGAAAGCGATCCGTAAGACAAG -ACGGAAAGCGATCCGTAAAAGCAG -ACGGAAAGCGATCCGTAACGTCAA -ACGGAAAGCGATCCGTAAGCTGAA -ACGGAAAGCGATCCGTAAAGTACG -ACGGAAAGCGATCCGTAAATCCGA -ACGGAAAGCGATCCGTAAATGGGA -ACGGAAAGCGATCCGTAAGTGCAA -ACGGAAAGCGATCCGTAAGAGGAA -ACGGAAAGCGATCCGTAACAGGTA -ACGGAAAGCGATCCGTAAGACTCT -ACGGAAAGCGATCCGTAAAGTCCT -ACGGAAAGCGATCCGTAATAAGCC -ACGGAAAGCGATCCGTAAATAGCC -ACGGAAAGCGATCCGTAATAACCG -ACGGAAAGCGATCCGTAAATGCCA -ACGGAAAGCGATCCAATGGGAAAC -ACGGAAAGCGATCCAATGAACACC -ACGGAAAGCGATCCAATGATCGAG -ACGGAAAGCGATCCAATGCTCCTT -ACGGAAAGCGATCCAATGCCTGTT -ACGGAAAGCGATCCAATGCGGTTT -ACGGAAAGCGATCCAATGGTGGTT -ACGGAAAGCGATCCAATGGCCTTT -ACGGAAAGCGATCCAATGGGTCTT -ACGGAAAGCGATCCAATGACGCTT -ACGGAAAGCGATCCAATGAGCGTT -ACGGAAAGCGATCCAATGTTCGTC -ACGGAAAGCGATCCAATGTCTCTC -ACGGAAAGCGATCCAATGTGGATC -ACGGAAAGCGATCCAATGCACTTC -ACGGAAAGCGATCCAATGGTACTC -ACGGAAAGCGATCCAATGGATGTC -ACGGAAAGCGATCCAATGACAGTC -ACGGAAAGCGATCCAATGTTGCTG -ACGGAAAGCGATCCAATGTCCATG -ACGGAAAGCGATCCAATGTGTGTG -ACGGAAAGCGATCCAATGCTAGTG -ACGGAAAGCGATCCAATGCATCTG -ACGGAAAGCGATCCAATGGAGTTG -ACGGAAAGCGATCCAATGAGACTG -ACGGAAAGCGATCCAATGTCGGTA -ACGGAAAGCGATCCAATGTGCCTA -ACGGAAAGCGATCCAATGCCACTA -ACGGAAAGCGATCCAATGGGAGTA -ACGGAAAGCGATCCAATGTCGTCT -ACGGAAAGCGATCCAATGTGCACT -ACGGAAAGCGATCCAATGCTGACT -ACGGAAAGCGATCCAATGCAACCT -ACGGAAAGCGATCCAATGGCTACT -ACGGAAAGCGATCCAATGGGATCT -ACGGAAAGCGATCCAATGAAGGCT -ACGGAAAGCGATCCAATGTCAACC -ACGGAAAGCGATCCAATGTGTTCC -ACGGAAAGCGATCCAATGATTCCC -ACGGAAAGCGATCCAATGTTCTCG -ACGGAAAGCGATCCAATGTAGACG -ACGGAAAGCGATCCAATGGTAACG -ACGGAAAGCGATCCAATGACTTCG -ACGGAAAGCGATCCAATGTACGCA -ACGGAAAGCGATCCAATGCTTGCA -ACGGAAAGCGATCCAATGCGAACA -ACGGAAAGCGATCCAATGCAGTCA -ACGGAAAGCGATCCAATGGATCCA -ACGGAAAGCGATCCAATGACGACA -ACGGAAAGCGATCCAATGAGCTCA -ACGGAAAGCGATCCAATGTCACGT -ACGGAAAGCGATCCAATGCGTAGT -ACGGAAAGCGATCCAATGGTCAGT -ACGGAAAGCGATCCAATGGAAGGT -ACGGAAAGCGATCCAATGAACCGT -ACGGAAAGCGATCCAATGTTGTGC -ACGGAAAGCGATCCAATGCTAAGC -ACGGAAAGCGATCCAATGACTAGC -ACGGAAAGCGATCCAATGAGATGC -ACGGAAAGCGATCCAATGTGAAGG -ACGGAAAGCGATCCAATGCAATGG -ACGGAAAGCGATCCAATGATGAGG -ACGGAAAGCGATCCAATGAATGGG -ACGGAAAGCGATCCAATGTCCTGA -ACGGAAAGCGATCCAATGTAGCGA -ACGGAAAGCGATCCAATGCACAGA -ACGGAAAGCGATCCAATGGCAAGA -ACGGAAAGCGATCCAATGGGTTGA -ACGGAAAGCGATCCAATGTCCGAT -ACGGAAAGCGATCCAATGTGGCAT -ACGGAAAGCGATCCAATGCGAGAT -ACGGAAAGCGATCCAATGTACCAC -ACGGAAAGCGATCCAATGCAGAAC -ACGGAAAGCGATCCAATGGTCTAC -ACGGAAAGCGATCCAATGACGTAC -ACGGAAAGCGATCCAATGAGTGAC -ACGGAAAGCGATCCAATGCTGTAG -ACGGAAAGCGATCCAATGCCTAAG -ACGGAAAGCGATCCAATGGTTCAG -ACGGAAAGCGATCCAATGGCATAG -ACGGAAAGCGATCCAATGGACAAG -ACGGAAAGCGATCCAATGAAGCAG -ACGGAAAGCGATCCAATGCGTCAA -ACGGAAAGCGATCCAATGGCTGAA -ACGGAAAGCGATCCAATGAGTACG -ACGGAAAGCGATCCAATGATCCGA -ACGGAAAGCGATCCAATGATGGGA -ACGGAAAGCGATCCAATGGTGCAA -ACGGAAAGCGATCCAATGGAGGAA -ACGGAAAGCGATCCAATGCAGGTA -ACGGAAAGCGATCCAATGGACTCT -ACGGAAAGCGATCCAATGAGTCCT -ACGGAAAGCGATCCAATGTAAGCC -ACGGAAAGCGATCCAATGATAGCC -ACGGAAAGCGATCCAATGTAACCG -ACGGAAAGCGATCCAATGATGCCA -ACGGAAACAGACAACGGAGGAAAC -ACGGAAACAGACAACGGAAACACC -ACGGAAACAGACAACGGAATCGAG -ACGGAAACAGACAACGGACTCCTT -ACGGAAACAGACAACGGACCTGTT -ACGGAAACAGACAACGGACGGTTT -ACGGAAACAGACAACGGAGTGGTT -ACGGAAACAGACAACGGAGCCTTT -ACGGAAACAGACAACGGAGGTCTT -ACGGAAACAGACAACGGAACGCTT -ACGGAAACAGACAACGGAAGCGTT -ACGGAAACAGACAACGGATTCGTC -ACGGAAACAGACAACGGATCTCTC -ACGGAAACAGACAACGGATGGATC -ACGGAAACAGACAACGGACACTTC -ACGGAAACAGACAACGGAGTACTC -ACGGAAACAGACAACGGAGATGTC -ACGGAAACAGACAACGGAACAGTC -ACGGAAACAGACAACGGATTGCTG -ACGGAAACAGACAACGGATCCATG -ACGGAAACAGACAACGGATGTGTG -ACGGAAACAGACAACGGACTAGTG -ACGGAAACAGACAACGGACATCTG -ACGGAAACAGACAACGGAGAGTTG -ACGGAAACAGACAACGGAAGACTG -ACGGAAACAGACAACGGATCGGTA -ACGGAAACAGACAACGGATGCCTA -ACGGAAACAGACAACGGACCACTA -ACGGAAACAGACAACGGAGGAGTA -ACGGAAACAGACAACGGATCGTCT -ACGGAAACAGACAACGGATGCACT -ACGGAAACAGACAACGGACTGACT -ACGGAAACAGACAACGGACAACCT -ACGGAAACAGACAACGGAGCTACT -ACGGAAACAGACAACGGAGGATCT -ACGGAAACAGACAACGGAAAGGCT -ACGGAAACAGACAACGGATCAACC -ACGGAAACAGACAACGGATGTTCC -ACGGAAACAGACAACGGAATTCCC -ACGGAAACAGACAACGGATTCTCG -ACGGAAACAGACAACGGATAGACG -ACGGAAACAGACAACGGAGTAACG -ACGGAAACAGACAACGGAACTTCG -ACGGAAACAGACAACGGATACGCA -ACGGAAACAGACAACGGACTTGCA -ACGGAAACAGACAACGGACGAACA -ACGGAAACAGACAACGGACAGTCA -ACGGAAACAGACAACGGAGATCCA -ACGGAAACAGACAACGGAACGACA -ACGGAAACAGACAACGGAAGCTCA -ACGGAAACAGACAACGGATCACGT -ACGGAAACAGACAACGGACGTAGT -ACGGAAACAGACAACGGAGTCAGT -ACGGAAACAGACAACGGAGAAGGT -ACGGAAACAGACAACGGAAACCGT -ACGGAAACAGACAACGGATTGTGC -ACGGAAACAGACAACGGACTAAGC -ACGGAAACAGACAACGGAACTAGC -ACGGAAACAGACAACGGAAGATGC -ACGGAAACAGACAACGGATGAAGG -ACGGAAACAGACAACGGACAATGG -ACGGAAACAGACAACGGAATGAGG -ACGGAAACAGACAACGGAAATGGG -ACGGAAACAGACAACGGATCCTGA -ACGGAAACAGACAACGGATAGCGA -ACGGAAACAGACAACGGACACAGA -ACGGAAACAGACAACGGAGCAAGA -ACGGAAACAGACAACGGAGGTTGA -ACGGAAACAGACAACGGATCCGAT -ACGGAAACAGACAACGGATGGCAT -ACGGAAACAGACAACGGACGAGAT -ACGGAAACAGACAACGGATACCAC -ACGGAAACAGACAACGGACAGAAC -ACGGAAACAGACAACGGAGTCTAC -ACGGAAACAGACAACGGAACGTAC -ACGGAAACAGACAACGGAAGTGAC -ACGGAAACAGACAACGGACTGTAG -ACGGAAACAGACAACGGACCTAAG -ACGGAAACAGACAACGGAGTTCAG -ACGGAAACAGACAACGGAGCATAG -ACGGAAACAGACAACGGAGACAAG -ACGGAAACAGACAACGGAAAGCAG -ACGGAAACAGACAACGGACGTCAA -ACGGAAACAGACAACGGAGCTGAA -ACGGAAACAGACAACGGAAGTACG -ACGGAAACAGACAACGGAATCCGA -ACGGAAACAGACAACGGAATGGGA -ACGGAAACAGACAACGGAGTGCAA -ACGGAAACAGACAACGGAGAGGAA -ACGGAAACAGACAACGGACAGGTA -ACGGAAACAGACAACGGAGACTCT -ACGGAAACAGACAACGGAAGTCCT -ACGGAAACAGACAACGGATAAGCC -ACGGAAACAGACAACGGAATAGCC -ACGGAAACAGACAACGGATAACCG -ACGGAAACAGACAACGGAATGCCA -ACGGAAACAGACACCAACGGAAAC -ACGGAAACAGACACCAACAACACC -ACGGAAACAGACACCAACATCGAG -ACGGAAACAGACACCAACCTCCTT -ACGGAAACAGACACCAACCCTGTT -ACGGAAACAGACACCAACCGGTTT -ACGGAAACAGACACCAACGTGGTT -ACGGAAACAGACACCAACGCCTTT -ACGGAAACAGACACCAACGGTCTT -ACGGAAACAGACACCAACACGCTT -ACGGAAACAGACACCAACAGCGTT -ACGGAAACAGACACCAACTTCGTC -ACGGAAACAGACACCAACTCTCTC -ACGGAAACAGACACCAACTGGATC -ACGGAAACAGACACCAACCACTTC -ACGGAAACAGACACCAACGTACTC -ACGGAAACAGACACCAACGATGTC -ACGGAAACAGACACCAACACAGTC -ACGGAAACAGACACCAACTTGCTG -ACGGAAACAGACACCAACTCCATG -ACGGAAACAGACACCAACTGTGTG -ACGGAAACAGACACCAACCTAGTG -ACGGAAACAGACACCAACCATCTG -ACGGAAACAGACACCAACGAGTTG -ACGGAAACAGACACCAACAGACTG -ACGGAAACAGACACCAACTCGGTA -ACGGAAACAGACACCAACTGCCTA -ACGGAAACAGACACCAACCCACTA -ACGGAAACAGACACCAACGGAGTA -ACGGAAACAGACACCAACTCGTCT -ACGGAAACAGACACCAACTGCACT -ACGGAAACAGACACCAACCTGACT -ACGGAAACAGACACCAACCAACCT -ACGGAAACAGACACCAACGCTACT -ACGGAAACAGACACCAACGGATCT -ACGGAAACAGACACCAACAAGGCT -ACGGAAACAGACACCAACTCAACC -ACGGAAACAGACACCAACTGTTCC -ACGGAAACAGACACCAACATTCCC -ACGGAAACAGACACCAACTTCTCG -ACGGAAACAGACACCAACTAGACG -ACGGAAACAGACACCAACGTAACG -ACGGAAACAGACACCAACACTTCG -ACGGAAACAGACACCAACTACGCA -ACGGAAACAGACACCAACCTTGCA -ACGGAAACAGACACCAACCGAACA -ACGGAAACAGACACCAACCAGTCA -ACGGAAACAGACACCAACGATCCA -ACGGAAACAGACACCAACACGACA -ACGGAAACAGACACCAACAGCTCA -ACGGAAACAGACACCAACTCACGT -ACGGAAACAGACACCAACCGTAGT -ACGGAAACAGACACCAACGTCAGT -ACGGAAACAGACACCAACGAAGGT -ACGGAAACAGACACCAACAACCGT -ACGGAAACAGACACCAACTTGTGC -ACGGAAACAGACACCAACCTAAGC -ACGGAAACAGACACCAACACTAGC -ACGGAAACAGACACCAACAGATGC -ACGGAAACAGACACCAACTGAAGG -ACGGAAACAGACACCAACCAATGG -ACGGAAACAGACACCAACATGAGG -ACGGAAACAGACACCAACAATGGG -ACGGAAACAGACACCAACTCCTGA -ACGGAAACAGACACCAACTAGCGA -ACGGAAACAGACACCAACCACAGA -ACGGAAACAGACACCAACGCAAGA -ACGGAAACAGACACCAACGGTTGA -ACGGAAACAGACACCAACTCCGAT -ACGGAAACAGACACCAACTGGCAT -ACGGAAACAGACACCAACCGAGAT -ACGGAAACAGACACCAACTACCAC -ACGGAAACAGACACCAACCAGAAC -ACGGAAACAGACACCAACGTCTAC -ACGGAAACAGACACCAACACGTAC -ACGGAAACAGACACCAACAGTGAC -ACGGAAACAGACACCAACCTGTAG -ACGGAAACAGACACCAACCCTAAG -ACGGAAACAGACACCAACGTTCAG -ACGGAAACAGACACCAACGCATAG -ACGGAAACAGACACCAACGACAAG -ACGGAAACAGACACCAACAAGCAG -ACGGAAACAGACACCAACCGTCAA -ACGGAAACAGACACCAACGCTGAA -ACGGAAACAGACACCAACAGTACG -ACGGAAACAGACACCAACATCCGA -ACGGAAACAGACACCAACATGGGA -ACGGAAACAGACACCAACGTGCAA -ACGGAAACAGACACCAACGAGGAA -ACGGAAACAGACACCAACCAGGTA -ACGGAAACAGACACCAACGACTCT -ACGGAAACAGACACCAACAGTCCT -ACGGAAACAGACACCAACTAAGCC -ACGGAAACAGACACCAACATAGCC -ACGGAAACAGACACCAACTAACCG -ACGGAAACAGACACCAACATGCCA -ACGGAAACAGACGAGATCGGAAAC -ACGGAAACAGACGAGATCAACACC -ACGGAAACAGACGAGATCATCGAG -ACGGAAACAGACGAGATCCTCCTT -ACGGAAACAGACGAGATCCCTGTT -ACGGAAACAGACGAGATCCGGTTT -ACGGAAACAGACGAGATCGTGGTT -ACGGAAACAGACGAGATCGCCTTT -ACGGAAACAGACGAGATCGGTCTT -ACGGAAACAGACGAGATCACGCTT -ACGGAAACAGACGAGATCAGCGTT -ACGGAAACAGACGAGATCTTCGTC -ACGGAAACAGACGAGATCTCTCTC -ACGGAAACAGACGAGATCTGGATC -ACGGAAACAGACGAGATCCACTTC -ACGGAAACAGACGAGATCGTACTC -ACGGAAACAGACGAGATCGATGTC -ACGGAAACAGACGAGATCACAGTC -ACGGAAACAGACGAGATCTTGCTG -ACGGAAACAGACGAGATCTCCATG -ACGGAAACAGACGAGATCTGTGTG -ACGGAAACAGACGAGATCCTAGTG -ACGGAAACAGACGAGATCCATCTG -ACGGAAACAGACGAGATCGAGTTG -ACGGAAACAGACGAGATCAGACTG -ACGGAAACAGACGAGATCTCGGTA -ACGGAAACAGACGAGATCTGCCTA -ACGGAAACAGACGAGATCCCACTA -ACGGAAACAGACGAGATCGGAGTA -ACGGAAACAGACGAGATCTCGTCT -ACGGAAACAGACGAGATCTGCACT -ACGGAAACAGACGAGATCCTGACT -ACGGAAACAGACGAGATCCAACCT -ACGGAAACAGACGAGATCGCTACT -ACGGAAACAGACGAGATCGGATCT -ACGGAAACAGACGAGATCAAGGCT -ACGGAAACAGACGAGATCTCAACC -ACGGAAACAGACGAGATCTGTTCC -ACGGAAACAGACGAGATCATTCCC -ACGGAAACAGACGAGATCTTCTCG -ACGGAAACAGACGAGATCTAGACG -ACGGAAACAGACGAGATCGTAACG -ACGGAAACAGACGAGATCACTTCG -ACGGAAACAGACGAGATCTACGCA -ACGGAAACAGACGAGATCCTTGCA -ACGGAAACAGACGAGATCCGAACA -ACGGAAACAGACGAGATCCAGTCA -ACGGAAACAGACGAGATCGATCCA -ACGGAAACAGACGAGATCACGACA -ACGGAAACAGACGAGATCAGCTCA -ACGGAAACAGACGAGATCTCACGT -ACGGAAACAGACGAGATCCGTAGT -ACGGAAACAGACGAGATCGTCAGT -ACGGAAACAGACGAGATCGAAGGT -ACGGAAACAGACGAGATCAACCGT -ACGGAAACAGACGAGATCTTGTGC -ACGGAAACAGACGAGATCCTAAGC -ACGGAAACAGACGAGATCACTAGC -ACGGAAACAGACGAGATCAGATGC -ACGGAAACAGACGAGATCTGAAGG -ACGGAAACAGACGAGATCCAATGG -ACGGAAACAGACGAGATCATGAGG -ACGGAAACAGACGAGATCAATGGG -ACGGAAACAGACGAGATCTCCTGA -ACGGAAACAGACGAGATCTAGCGA -ACGGAAACAGACGAGATCCACAGA -ACGGAAACAGACGAGATCGCAAGA -ACGGAAACAGACGAGATCGGTTGA -ACGGAAACAGACGAGATCTCCGAT -ACGGAAACAGACGAGATCTGGCAT -ACGGAAACAGACGAGATCCGAGAT -ACGGAAACAGACGAGATCTACCAC -ACGGAAACAGACGAGATCCAGAAC -ACGGAAACAGACGAGATCGTCTAC -ACGGAAACAGACGAGATCACGTAC -ACGGAAACAGACGAGATCAGTGAC -ACGGAAACAGACGAGATCCTGTAG -ACGGAAACAGACGAGATCCCTAAG -ACGGAAACAGACGAGATCGTTCAG -ACGGAAACAGACGAGATCGCATAG -ACGGAAACAGACGAGATCGACAAG -ACGGAAACAGACGAGATCAAGCAG -ACGGAAACAGACGAGATCCGTCAA -ACGGAAACAGACGAGATCGCTGAA -ACGGAAACAGACGAGATCAGTACG -ACGGAAACAGACGAGATCATCCGA -ACGGAAACAGACGAGATCATGGGA -ACGGAAACAGACGAGATCGTGCAA -ACGGAAACAGACGAGATCGAGGAA -ACGGAAACAGACGAGATCCAGGTA -ACGGAAACAGACGAGATCGACTCT -ACGGAAACAGACGAGATCAGTCCT -ACGGAAACAGACGAGATCTAAGCC -ACGGAAACAGACGAGATCATAGCC -ACGGAAACAGACGAGATCTAACCG -ACGGAAACAGACGAGATCATGCCA -ACGGAAACAGACCTTCTCGGAAAC -ACGGAAACAGACCTTCTCAACACC -ACGGAAACAGACCTTCTCATCGAG -ACGGAAACAGACCTTCTCCTCCTT -ACGGAAACAGACCTTCTCCCTGTT -ACGGAAACAGACCTTCTCCGGTTT -ACGGAAACAGACCTTCTCGTGGTT -ACGGAAACAGACCTTCTCGCCTTT -ACGGAAACAGACCTTCTCGGTCTT -ACGGAAACAGACCTTCTCACGCTT -ACGGAAACAGACCTTCTCAGCGTT -ACGGAAACAGACCTTCTCTTCGTC -ACGGAAACAGACCTTCTCTCTCTC -ACGGAAACAGACCTTCTCTGGATC -ACGGAAACAGACCTTCTCCACTTC -ACGGAAACAGACCTTCTCGTACTC -ACGGAAACAGACCTTCTCGATGTC -ACGGAAACAGACCTTCTCACAGTC -ACGGAAACAGACCTTCTCTTGCTG -ACGGAAACAGACCTTCTCTCCATG -ACGGAAACAGACCTTCTCTGTGTG -ACGGAAACAGACCTTCTCCTAGTG -ACGGAAACAGACCTTCTCCATCTG -ACGGAAACAGACCTTCTCGAGTTG -ACGGAAACAGACCTTCTCAGACTG -ACGGAAACAGACCTTCTCTCGGTA -ACGGAAACAGACCTTCTCTGCCTA -ACGGAAACAGACCTTCTCCCACTA -ACGGAAACAGACCTTCTCGGAGTA -ACGGAAACAGACCTTCTCTCGTCT -ACGGAAACAGACCTTCTCTGCACT -ACGGAAACAGACCTTCTCCTGACT -ACGGAAACAGACCTTCTCCAACCT -ACGGAAACAGACCTTCTCGCTACT -ACGGAAACAGACCTTCTCGGATCT -ACGGAAACAGACCTTCTCAAGGCT -ACGGAAACAGACCTTCTCTCAACC -ACGGAAACAGACCTTCTCTGTTCC -ACGGAAACAGACCTTCTCATTCCC -ACGGAAACAGACCTTCTCTTCTCG -ACGGAAACAGACCTTCTCTAGACG -ACGGAAACAGACCTTCTCGTAACG -ACGGAAACAGACCTTCTCACTTCG -ACGGAAACAGACCTTCTCTACGCA -ACGGAAACAGACCTTCTCCTTGCA -ACGGAAACAGACCTTCTCCGAACA -ACGGAAACAGACCTTCTCCAGTCA -ACGGAAACAGACCTTCTCGATCCA -ACGGAAACAGACCTTCTCACGACA -ACGGAAACAGACCTTCTCAGCTCA -ACGGAAACAGACCTTCTCTCACGT -ACGGAAACAGACCTTCTCCGTAGT -ACGGAAACAGACCTTCTCGTCAGT -ACGGAAACAGACCTTCTCGAAGGT -ACGGAAACAGACCTTCTCAACCGT -ACGGAAACAGACCTTCTCTTGTGC -ACGGAAACAGACCTTCTCCTAAGC -ACGGAAACAGACCTTCTCACTAGC -ACGGAAACAGACCTTCTCAGATGC -ACGGAAACAGACCTTCTCTGAAGG -ACGGAAACAGACCTTCTCCAATGG -ACGGAAACAGACCTTCTCATGAGG -ACGGAAACAGACCTTCTCAATGGG -ACGGAAACAGACCTTCTCTCCTGA -ACGGAAACAGACCTTCTCTAGCGA -ACGGAAACAGACCTTCTCCACAGA -ACGGAAACAGACCTTCTCGCAAGA -ACGGAAACAGACCTTCTCGGTTGA -ACGGAAACAGACCTTCTCTCCGAT -ACGGAAACAGACCTTCTCTGGCAT -ACGGAAACAGACCTTCTCCGAGAT -ACGGAAACAGACCTTCTCTACCAC -ACGGAAACAGACCTTCTCCAGAAC -ACGGAAACAGACCTTCTCGTCTAC -ACGGAAACAGACCTTCTCACGTAC -ACGGAAACAGACCTTCTCAGTGAC -ACGGAAACAGACCTTCTCCTGTAG -ACGGAAACAGACCTTCTCCCTAAG -ACGGAAACAGACCTTCTCGTTCAG -ACGGAAACAGACCTTCTCGCATAG -ACGGAAACAGACCTTCTCGACAAG -ACGGAAACAGACCTTCTCAAGCAG -ACGGAAACAGACCTTCTCCGTCAA -ACGGAAACAGACCTTCTCGCTGAA -ACGGAAACAGACCTTCTCAGTACG -ACGGAAACAGACCTTCTCATCCGA -ACGGAAACAGACCTTCTCATGGGA -ACGGAAACAGACCTTCTCGTGCAA -ACGGAAACAGACCTTCTCGAGGAA -ACGGAAACAGACCTTCTCCAGGTA -ACGGAAACAGACCTTCTCGACTCT -ACGGAAACAGACCTTCTCAGTCCT -ACGGAAACAGACCTTCTCTAAGCC -ACGGAAACAGACCTTCTCATAGCC -ACGGAAACAGACCTTCTCTAACCG -ACGGAAACAGACCTTCTCATGCCA -ACGGAAACAGACGTTCCTGGAAAC -ACGGAAACAGACGTTCCTAACACC -ACGGAAACAGACGTTCCTATCGAG -ACGGAAACAGACGTTCCTCTCCTT -ACGGAAACAGACGTTCCTCCTGTT -ACGGAAACAGACGTTCCTCGGTTT -ACGGAAACAGACGTTCCTGTGGTT -ACGGAAACAGACGTTCCTGCCTTT -ACGGAAACAGACGTTCCTGGTCTT -ACGGAAACAGACGTTCCTACGCTT -ACGGAAACAGACGTTCCTAGCGTT -ACGGAAACAGACGTTCCTTTCGTC -ACGGAAACAGACGTTCCTTCTCTC -ACGGAAACAGACGTTCCTTGGATC -ACGGAAACAGACGTTCCTCACTTC -ACGGAAACAGACGTTCCTGTACTC -ACGGAAACAGACGTTCCTGATGTC -ACGGAAACAGACGTTCCTACAGTC -ACGGAAACAGACGTTCCTTTGCTG -ACGGAAACAGACGTTCCTTCCATG -ACGGAAACAGACGTTCCTTGTGTG -ACGGAAACAGACGTTCCTCTAGTG -ACGGAAACAGACGTTCCTCATCTG -ACGGAAACAGACGTTCCTGAGTTG -ACGGAAACAGACGTTCCTAGACTG -ACGGAAACAGACGTTCCTTCGGTA -ACGGAAACAGACGTTCCTTGCCTA -ACGGAAACAGACGTTCCTCCACTA -ACGGAAACAGACGTTCCTGGAGTA -ACGGAAACAGACGTTCCTTCGTCT -ACGGAAACAGACGTTCCTTGCACT -ACGGAAACAGACGTTCCTCTGACT -ACGGAAACAGACGTTCCTCAACCT -ACGGAAACAGACGTTCCTGCTACT -ACGGAAACAGACGTTCCTGGATCT -ACGGAAACAGACGTTCCTAAGGCT -ACGGAAACAGACGTTCCTTCAACC -ACGGAAACAGACGTTCCTTGTTCC -ACGGAAACAGACGTTCCTATTCCC -ACGGAAACAGACGTTCCTTTCTCG -ACGGAAACAGACGTTCCTTAGACG -ACGGAAACAGACGTTCCTGTAACG -ACGGAAACAGACGTTCCTACTTCG -ACGGAAACAGACGTTCCTTACGCA -ACGGAAACAGACGTTCCTCTTGCA -ACGGAAACAGACGTTCCTCGAACA -ACGGAAACAGACGTTCCTCAGTCA -ACGGAAACAGACGTTCCTGATCCA -ACGGAAACAGACGTTCCTACGACA -ACGGAAACAGACGTTCCTAGCTCA -ACGGAAACAGACGTTCCTTCACGT -ACGGAAACAGACGTTCCTCGTAGT -ACGGAAACAGACGTTCCTGTCAGT -ACGGAAACAGACGTTCCTGAAGGT -ACGGAAACAGACGTTCCTAACCGT -ACGGAAACAGACGTTCCTTTGTGC -ACGGAAACAGACGTTCCTCTAAGC -ACGGAAACAGACGTTCCTACTAGC -ACGGAAACAGACGTTCCTAGATGC -ACGGAAACAGACGTTCCTTGAAGG -ACGGAAACAGACGTTCCTCAATGG -ACGGAAACAGACGTTCCTATGAGG -ACGGAAACAGACGTTCCTAATGGG -ACGGAAACAGACGTTCCTTCCTGA -ACGGAAACAGACGTTCCTTAGCGA -ACGGAAACAGACGTTCCTCACAGA -ACGGAAACAGACGTTCCTGCAAGA -ACGGAAACAGACGTTCCTGGTTGA -ACGGAAACAGACGTTCCTTCCGAT -ACGGAAACAGACGTTCCTTGGCAT -ACGGAAACAGACGTTCCTCGAGAT -ACGGAAACAGACGTTCCTTACCAC -ACGGAAACAGACGTTCCTCAGAAC -ACGGAAACAGACGTTCCTGTCTAC -ACGGAAACAGACGTTCCTACGTAC -ACGGAAACAGACGTTCCTAGTGAC -ACGGAAACAGACGTTCCTCTGTAG -ACGGAAACAGACGTTCCTCCTAAG -ACGGAAACAGACGTTCCTGTTCAG -ACGGAAACAGACGTTCCTGCATAG -ACGGAAACAGACGTTCCTGACAAG -ACGGAAACAGACGTTCCTAAGCAG -ACGGAAACAGACGTTCCTCGTCAA -ACGGAAACAGACGTTCCTGCTGAA -ACGGAAACAGACGTTCCTAGTACG -ACGGAAACAGACGTTCCTATCCGA -ACGGAAACAGACGTTCCTATGGGA -ACGGAAACAGACGTTCCTGTGCAA -ACGGAAACAGACGTTCCTGAGGAA -ACGGAAACAGACGTTCCTCAGGTA -ACGGAAACAGACGTTCCTGACTCT -ACGGAAACAGACGTTCCTAGTCCT -ACGGAAACAGACGTTCCTTAAGCC -ACGGAAACAGACGTTCCTATAGCC -ACGGAAACAGACGTTCCTTAACCG -ACGGAAACAGACGTTCCTATGCCA -ACGGAAACAGACTTTCGGGGAAAC -ACGGAAACAGACTTTCGGAACACC -ACGGAAACAGACTTTCGGATCGAG -ACGGAAACAGACTTTCGGCTCCTT -ACGGAAACAGACTTTCGGCCTGTT -ACGGAAACAGACTTTCGGCGGTTT -ACGGAAACAGACTTTCGGGTGGTT -ACGGAAACAGACTTTCGGGCCTTT -ACGGAAACAGACTTTCGGGGTCTT -ACGGAAACAGACTTTCGGACGCTT -ACGGAAACAGACTTTCGGAGCGTT -ACGGAAACAGACTTTCGGTTCGTC -ACGGAAACAGACTTTCGGTCTCTC -ACGGAAACAGACTTTCGGTGGATC -ACGGAAACAGACTTTCGGCACTTC -ACGGAAACAGACTTTCGGGTACTC -ACGGAAACAGACTTTCGGGATGTC -ACGGAAACAGACTTTCGGACAGTC -ACGGAAACAGACTTTCGGTTGCTG -ACGGAAACAGACTTTCGGTCCATG -ACGGAAACAGACTTTCGGTGTGTG -ACGGAAACAGACTTTCGGCTAGTG -ACGGAAACAGACTTTCGGCATCTG -ACGGAAACAGACTTTCGGGAGTTG -ACGGAAACAGACTTTCGGAGACTG -ACGGAAACAGACTTTCGGTCGGTA -ACGGAAACAGACTTTCGGTGCCTA -ACGGAAACAGACTTTCGGCCACTA -ACGGAAACAGACTTTCGGGGAGTA -ACGGAAACAGACTTTCGGTCGTCT -ACGGAAACAGACTTTCGGTGCACT -ACGGAAACAGACTTTCGGCTGACT -ACGGAAACAGACTTTCGGCAACCT -ACGGAAACAGACTTTCGGGCTACT -ACGGAAACAGACTTTCGGGGATCT -ACGGAAACAGACTTTCGGAAGGCT -ACGGAAACAGACTTTCGGTCAACC -ACGGAAACAGACTTTCGGTGTTCC -ACGGAAACAGACTTTCGGATTCCC -ACGGAAACAGACTTTCGGTTCTCG -ACGGAAACAGACTTTCGGTAGACG -ACGGAAACAGACTTTCGGGTAACG -ACGGAAACAGACTTTCGGACTTCG -ACGGAAACAGACTTTCGGTACGCA -ACGGAAACAGACTTTCGGCTTGCA -ACGGAAACAGACTTTCGGCGAACA -ACGGAAACAGACTTTCGGCAGTCA -ACGGAAACAGACTTTCGGGATCCA -ACGGAAACAGACTTTCGGACGACA -ACGGAAACAGACTTTCGGAGCTCA -ACGGAAACAGACTTTCGGTCACGT -ACGGAAACAGACTTTCGGCGTAGT -ACGGAAACAGACTTTCGGGTCAGT -ACGGAAACAGACTTTCGGGAAGGT -ACGGAAACAGACTTTCGGAACCGT -ACGGAAACAGACTTTCGGTTGTGC -ACGGAAACAGACTTTCGGCTAAGC -ACGGAAACAGACTTTCGGACTAGC -ACGGAAACAGACTTTCGGAGATGC -ACGGAAACAGACTTTCGGTGAAGG -ACGGAAACAGACTTTCGGCAATGG -ACGGAAACAGACTTTCGGATGAGG -ACGGAAACAGACTTTCGGAATGGG -ACGGAAACAGACTTTCGGTCCTGA -ACGGAAACAGACTTTCGGTAGCGA -ACGGAAACAGACTTTCGGCACAGA -ACGGAAACAGACTTTCGGGCAAGA -ACGGAAACAGACTTTCGGGGTTGA -ACGGAAACAGACTTTCGGTCCGAT -ACGGAAACAGACTTTCGGTGGCAT -ACGGAAACAGACTTTCGGCGAGAT -ACGGAAACAGACTTTCGGTACCAC -ACGGAAACAGACTTTCGGCAGAAC -ACGGAAACAGACTTTCGGGTCTAC -ACGGAAACAGACTTTCGGACGTAC -ACGGAAACAGACTTTCGGAGTGAC -ACGGAAACAGACTTTCGGCTGTAG -ACGGAAACAGACTTTCGGCCTAAG -ACGGAAACAGACTTTCGGGTTCAG -ACGGAAACAGACTTTCGGGCATAG -ACGGAAACAGACTTTCGGGACAAG -ACGGAAACAGACTTTCGGAAGCAG -ACGGAAACAGACTTTCGGCGTCAA -ACGGAAACAGACTTTCGGGCTGAA -ACGGAAACAGACTTTCGGAGTACG -ACGGAAACAGACTTTCGGATCCGA -ACGGAAACAGACTTTCGGATGGGA -ACGGAAACAGACTTTCGGGTGCAA -ACGGAAACAGACTTTCGGGAGGAA -ACGGAAACAGACTTTCGGCAGGTA -ACGGAAACAGACTTTCGGGACTCT -ACGGAAACAGACTTTCGGAGTCCT -ACGGAAACAGACTTTCGGTAAGCC -ACGGAAACAGACTTTCGGATAGCC -ACGGAAACAGACTTTCGGTAACCG -ACGGAAACAGACTTTCGGATGCCA -ACGGAAACAGACGTTGTGGGAAAC -ACGGAAACAGACGTTGTGAACACC -ACGGAAACAGACGTTGTGATCGAG -ACGGAAACAGACGTTGTGCTCCTT -ACGGAAACAGACGTTGTGCCTGTT -ACGGAAACAGACGTTGTGCGGTTT -ACGGAAACAGACGTTGTGGTGGTT -ACGGAAACAGACGTTGTGGCCTTT -ACGGAAACAGACGTTGTGGGTCTT -ACGGAAACAGACGTTGTGACGCTT -ACGGAAACAGACGTTGTGAGCGTT -ACGGAAACAGACGTTGTGTTCGTC -ACGGAAACAGACGTTGTGTCTCTC -ACGGAAACAGACGTTGTGTGGATC -ACGGAAACAGACGTTGTGCACTTC -ACGGAAACAGACGTTGTGGTACTC -ACGGAAACAGACGTTGTGGATGTC -ACGGAAACAGACGTTGTGACAGTC -ACGGAAACAGACGTTGTGTTGCTG -ACGGAAACAGACGTTGTGTCCATG -ACGGAAACAGACGTTGTGTGTGTG -ACGGAAACAGACGTTGTGCTAGTG -ACGGAAACAGACGTTGTGCATCTG -ACGGAAACAGACGTTGTGGAGTTG -ACGGAAACAGACGTTGTGAGACTG -ACGGAAACAGACGTTGTGTCGGTA -ACGGAAACAGACGTTGTGTGCCTA -ACGGAAACAGACGTTGTGCCACTA -ACGGAAACAGACGTTGTGGGAGTA -ACGGAAACAGACGTTGTGTCGTCT -ACGGAAACAGACGTTGTGTGCACT -ACGGAAACAGACGTTGTGCTGACT -ACGGAAACAGACGTTGTGCAACCT -ACGGAAACAGACGTTGTGGCTACT -ACGGAAACAGACGTTGTGGGATCT -ACGGAAACAGACGTTGTGAAGGCT -ACGGAAACAGACGTTGTGTCAACC -ACGGAAACAGACGTTGTGTGTTCC -ACGGAAACAGACGTTGTGATTCCC -ACGGAAACAGACGTTGTGTTCTCG -ACGGAAACAGACGTTGTGTAGACG -ACGGAAACAGACGTTGTGGTAACG -ACGGAAACAGACGTTGTGACTTCG -ACGGAAACAGACGTTGTGTACGCA -ACGGAAACAGACGTTGTGCTTGCA -ACGGAAACAGACGTTGTGCGAACA -ACGGAAACAGACGTTGTGCAGTCA -ACGGAAACAGACGTTGTGGATCCA -ACGGAAACAGACGTTGTGACGACA -ACGGAAACAGACGTTGTGAGCTCA -ACGGAAACAGACGTTGTGTCACGT -ACGGAAACAGACGTTGTGCGTAGT -ACGGAAACAGACGTTGTGGTCAGT -ACGGAAACAGACGTTGTGGAAGGT -ACGGAAACAGACGTTGTGAACCGT -ACGGAAACAGACGTTGTGTTGTGC -ACGGAAACAGACGTTGTGCTAAGC -ACGGAAACAGACGTTGTGACTAGC -ACGGAAACAGACGTTGTGAGATGC -ACGGAAACAGACGTTGTGTGAAGG -ACGGAAACAGACGTTGTGCAATGG -ACGGAAACAGACGTTGTGATGAGG -ACGGAAACAGACGTTGTGAATGGG -ACGGAAACAGACGTTGTGTCCTGA -ACGGAAACAGACGTTGTGTAGCGA -ACGGAAACAGACGTTGTGCACAGA -ACGGAAACAGACGTTGTGGCAAGA -ACGGAAACAGACGTTGTGGGTTGA -ACGGAAACAGACGTTGTGTCCGAT -ACGGAAACAGACGTTGTGTGGCAT -ACGGAAACAGACGTTGTGCGAGAT -ACGGAAACAGACGTTGTGTACCAC -ACGGAAACAGACGTTGTGCAGAAC -ACGGAAACAGACGTTGTGGTCTAC -ACGGAAACAGACGTTGTGACGTAC -ACGGAAACAGACGTTGTGAGTGAC -ACGGAAACAGACGTTGTGCTGTAG -ACGGAAACAGACGTTGTGCCTAAG -ACGGAAACAGACGTTGTGGTTCAG -ACGGAAACAGACGTTGTGGCATAG -ACGGAAACAGACGTTGTGGACAAG -ACGGAAACAGACGTTGTGAAGCAG -ACGGAAACAGACGTTGTGCGTCAA -ACGGAAACAGACGTTGTGGCTGAA -ACGGAAACAGACGTTGTGAGTACG -ACGGAAACAGACGTTGTGATCCGA -ACGGAAACAGACGTTGTGATGGGA -ACGGAAACAGACGTTGTGGTGCAA -ACGGAAACAGACGTTGTGGAGGAA -ACGGAAACAGACGTTGTGCAGGTA -ACGGAAACAGACGTTGTGGACTCT -ACGGAAACAGACGTTGTGAGTCCT -ACGGAAACAGACGTTGTGTAAGCC -ACGGAAACAGACGTTGTGATAGCC -ACGGAAACAGACGTTGTGTAACCG -ACGGAAACAGACGTTGTGATGCCA -ACGGAAACAGACTTTGCCGGAAAC -ACGGAAACAGACTTTGCCAACACC -ACGGAAACAGACTTTGCCATCGAG -ACGGAAACAGACTTTGCCCTCCTT -ACGGAAACAGACTTTGCCCCTGTT -ACGGAAACAGACTTTGCCCGGTTT -ACGGAAACAGACTTTGCCGTGGTT -ACGGAAACAGACTTTGCCGCCTTT -ACGGAAACAGACTTTGCCGGTCTT -ACGGAAACAGACTTTGCCACGCTT -ACGGAAACAGACTTTGCCAGCGTT -ACGGAAACAGACTTTGCCTTCGTC -ACGGAAACAGACTTTGCCTCTCTC -ACGGAAACAGACTTTGCCTGGATC -ACGGAAACAGACTTTGCCCACTTC -ACGGAAACAGACTTTGCCGTACTC -ACGGAAACAGACTTTGCCGATGTC -ACGGAAACAGACTTTGCCACAGTC -ACGGAAACAGACTTTGCCTTGCTG -ACGGAAACAGACTTTGCCTCCATG -ACGGAAACAGACTTTGCCTGTGTG -ACGGAAACAGACTTTGCCCTAGTG -ACGGAAACAGACTTTGCCCATCTG -ACGGAAACAGACTTTGCCGAGTTG -ACGGAAACAGACTTTGCCAGACTG -ACGGAAACAGACTTTGCCTCGGTA -ACGGAAACAGACTTTGCCTGCCTA -ACGGAAACAGACTTTGCCCCACTA -ACGGAAACAGACTTTGCCGGAGTA -ACGGAAACAGACTTTGCCTCGTCT -ACGGAAACAGACTTTGCCTGCACT -ACGGAAACAGACTTTGCCCTGACT -ACGGAAACAGACTTTGCCCAACCT -ACGGAAACAGACTTTGCCGCTACT -ACGGAAACAGACTTTGCCGGATCT -ACGGAAACAGACTTTGCCAAGGCT -ACGGAAACAGACTTTGCCTCAACC -ACGGAAACAGACTTTGCCTGTTCC -ACGGAAACAGACTTTGCCATTCCC -ACGGAAACAGACTTTGCCTTCTCG -ACGGAAACAGACTTTGCCTAGACG -ACGGAAACAGACTTTGCCGTAACG -ACGGAAACAGACTTTGCCACTTCG -ACGGAAACAGACTTTGCCTACGCA -ACGGAAACAGACTTTGCCCTTGCA -ACGGAAACAGACTTTGCCCGAACA -ACGGAAACAGACTTTGCCCAGTCA -ACGGAAACAGACTTTGCCGATCCA -ACGGAAACAGACTTTGCCACGACA -ACGGAAACAGACTTTGCCAGCTCA -ACGGAAACAGACTTTGCCTCACGT -ACGGAAACAGACTTTGCCCGTAGT -ACGGAAACAGACTTTGCCGTCAGT -ACGGAAACAGACTTTGCCGAAGGT -ACGGAAACAGACTTTGCCAACCGT -ACGGAAACAGACTTTGCCTTGTGC -ACGGAAACAGACTTTGCCCTAAGC -ACGGAAACAGACTTTGCCACTAGC -ACGGAAACAGACTTTGCCAGATGC -ACGGAAACAGACTTTGCCTGAAGG -ACGGAAACAGACTTTGCCCAATGG -ACGGAAACAGACTTTGCCATGAGG -ACGGAAACAGACTTTGCCAATGGG -ACGGAAACAGACTTTGCCTCCTGA -ACGGAAACAGACTTTGCCTAGCGA -ACGGAAACAGACTTTGCCCACAGA -ACGGAAACAGACTTTGCCGCAAGA -ACGGAAACAGACTTTGCCGGTTGA -ACGGAAACAGACTTTGCCTCCGAT -ACGGAAACAGACTTTGCCTGGCAT -ACGGAAACAGACTTTGCCCGAGAT -ACGGAAACAGACTTTGCCTACCAC -ACGGAAACAGACTTTGCCCAGAAC -ACGGAAACAGACTTTGCCGTCTAC -ACGGAAACAGACTTTGCCACGTAC -ACGGAAACAGACTTTGCCAGTGAC -ACGGAAACAGACTTTGCCCTGTAG -ACGGAAACAGACTTTGCCCCTAAG -ACGGAAACAGACTTTGCCGTTCAG -ACGGAAACAGACTTTGCCGCATAG -ACGGAAACAGACTTTGCCGACAAG -ACGGAAACAGACTTTGCCAAGCAG -ACGGAAACAGACTTTGCCCGTCAA -ACGGAAACAGACTTTGCCGCTGAA -ACGGAAACAGACTTTGCCAGTACG -ACGGAAACAGACTTTGCCATCCGA -ACGGAAACAGACTTTGCCATGGGA -ACGGAAACAGACTTTGCCGTGCAA -ACGGAAACAGACTTTGCCGAGGAA -ACGGAAACAGACTTTGCCCAGGTA -ACGGAAACAGACTTTGCCGACTCT -ACGGAAACAGACTTTGCCAGTCCT -ACGGAAACAGACTTTGCCTAAGCC -ACGGAAACAGACTTTGCCATAGCC -ACGGAAACAGACTTTGCCTAACCG -ACGGAAACAGACTTTGCCATGCCA -ACGGAAACAGACCTTGGTGGAAAC -ACGGAAACAGACCTTGGTAACACC -ACGGAAACAGACCTTGGTATCGAG -ACGGAAACAGACCTTGGTCTCCTT -ACGGAAACAGACCTTGGTCCTGTT -ACGGAAACAGACCTTGGTCGGTTT -ACGGAAACAGACCTTGGTGTGGTT -ACGGAAACAGACCTTGGTGCCTTT -ACGGAAACAGACCTTGGTGGTCTT -ACGGAAACAGACCTTGGTACGCTT -ACGGAAACAGACCTTGGTAGCGTT -ACGGAAACAGACCTTGGTTTCGTC -ACGGAAACAGACCTTGGTTCTCTC -ACGGAAACAGACCTTGGTTGGATC -ACGGAAACAGACCTTGGTCACTTC -ACGGAAACAGACCTTGGTGTACTC -ACGGAAACAGACCTTGGTGATGTC -ACGGAAACAGACCTTGGTACAGTC -ACGGAAACAGACCTTGGTTTGCTG -ACGGAAACAGACCTTGGTTCCATG -ACGGAAACAGACCTTGGTTGTGTG -ACGGAAACAGACCTTGGTCTAGTG -ACGGAAACAGACCTTGGTCATCTG -ACGGAAACAGACCTTGGTGAGTTG -ACGGAAACAGACCTTGGTAGACTG -ACGGAAACAGACCTTGGTTCGGTA -ACGGAAACAGACCTTGGTTGCCTA -ACGGAAACAGACCTTGGTCCACTA -ACGGAAACAGACCTTGGTGGAGTA -ACGGAAACAGACCTTGGTTCGTCT -ACGGAAACAGACCTTGGTTGCACT -ACGGAAACAGACCTTGGTCTGACT -ACGGAAACAGACCTTGGTCAACCT -ACGGAAACAGACCTTGGTGCTACT -ACGGAAACAGACCTTGGTGGATCT -ACGGAAACAGACCTTGGTAAGGCT -ACGGAAACAGACCTTGGTTCAACC -ACGGAAACAGACCTTGGTTGTTCC -ACGGAAACAGACCTTGGTATTCCC -ACGGAAACAGACCTTGGTTTCTCG -ACGGAAACAGACCTTGGTTAGACG -ACGGAAACAGACCTTGGTGTAACG -ACGGAAACAGACCTTGGTACTTCG -ACGGAAACAGACCTTGGTTACGCA -ACGGAAACAGACCTTGGTCTTGCA -ACGGAAACAGACCTTGGTCGAACA -ACGGAAACAGACCTTGGTCAGTCA -ACGGAAACAGACCTTGGTGATCCA -ACGGAAACAGACCTTGGTACGACA -ACGGAAACAGACCTTGGTAGCTCA -ACGGAAACAGACCTTGGTTCACGT -ACGGAAACAGACCTTGGTCGTAGT -ACGGAAACAGACCTTGGTGTCAGT -ACGGAAACAGACCTTGGTGAAGGT -ACGGAAACAGACCTTGGTAACCGT -ACGGAAACAGACCTTGGTTTGTGC -ACGGAAACAGACCTTGGTCTAAGC -ACGGAAACAGACCTTGGTACTAGC -ACGGAAACAGACCTTGGTAGATGC -ACGGAAACAGACCTTGGTTGAAGG -ACGGAAACAGACCTTGGTCAATGG -ACGGAAACAGACCTTGGTATGAGG -ACGGAAACAGACCTTGGTAATGGG -ACGGAAACAGACCTTGGTTCCTGA -ACGGAAACAGACCTTGGTTAGCGA -ACGGAAACAGACCTTGGTCACAGA -ACGGAAACAGACCTTGGTGCAAGA -ACGGAAACAGACCTTGGTGGTTGA -ACGGAAACAGACCTTGGTTCCGAT -ACGGAAACAGACCTTGGTTGGCAT -ACGGAAACAGACCTTGGTCGAGAT -ACGGAAACAGACCTTGGTTACCAC -ACGGAAACAGACCTTGGTCAGAAC -ACGGAAACAGACCTTGGTGTCTAC -ACGGAAACAGACCTTGGTACGTAC -ACGGAAACAGACCTTGGTAGTGAC -ACGGAAACAGACCTTGGTCTGTAG -ACGGAAACAGACCTTGGTCCTAAG -ACGGAAACAGACCTTGGTGTTCAG -ACGGAAACAGACCTTGGTGCATAG -ACGGAAACAGACCTTGGTGACAAG -ACGGAAACAGACCTTGGTAAGCAG -ACGGAAACAGACCTTGGTCGTCAA -ACGGAAACAGACCTTGGTGCTGAA -ACGGAAACAGACCTTGGTAGTACG -ACGGAAACAGACCTTGGTATCCGA -ACGGAAACAGACCTTGGTATGGGA -ACGGAAACAGACCTTGGTGTGCAA -ACGGAAACAGACCTTGGTGAGGAA -ACGGAAACAGACCTTGGTCAGGTA -ACGGAAACAGACCTTGGTGACTCT -ACGGAAACAGACCTTGGTAGTCCT -ACGGAAACAGACCTTGGTTAAGCC -ACGGAAACAGACCTTGGTATAGCC -ACGGAAACAGACCTTGGTTAACCG -ACGGAAACAGACCTTGGTATGCCA -ACGGAAACAGACCTTACGGGAAAC -ACGGAAACAGACCTTACGAACACC -ACGGAAACAGACCTTACGATCGAG -ACGGAAACAGACCTTACGCTCCTT -ACGGAAACAGACCTTACGCCTGTT -ACGGAAACAGACCTTACGCGGTTT -ACGGAAACAGACCTTACGGTGGTT -ACGGAAACAGACCTTACGGCCTTT -ACGGAAACAGACCTTACGGGTCTT -ACGGAAACAGACCTTACGACGCTT -ACGGAAACAGACCTTACGAGCGTT -ACGGAAACAGACCTTACGTTCGTC -ACGGAAACAGACCTTACGTCTCTC -ACGGAAACAGACCTTACGTGGATC -ACGGAAACAGACCTTACGCACTTC -ACGGAAACAGACCTTACGGTACTC -ACGGAAACAGACCTTACGGATGTC -ACGGAAACAGACCTTACGACAGTC -ACGGAAACAGACCTTACGTTGCTG -ACGGAAACAGACCTTACGTCCATG -ACGGAAACAGACCTTACGTGTGTG -ACGGAAACAGACCTTACGCTAGTG -ACGGAAACAGACCTTACGCATCTG -ACGGAAACAGACCTTACGGAGTTG -ACGGAAACAGACCTTACGAGACTG -ACGGAAACAGACCTTACGTCGGTA -ACGGAAACAGACCTTACGTGCCTA -ACGGAAACAGACCTTACGCCACTA -ACGGAAACAGACCTTACGGGAGTA -ACGGAAACAGACCTTACGTCGTCT -ACGGAAACAGACCTTACGTGCACT -ACGGAAACAGACCTTACGCTGACT -ACGGAAACAGACCTTACGCAACCT -ACGGAAACAGACCTTACGGCTACT -ACGGAAACAGACCTTACGGGATCT -ACGGAAACAGACCTTACGAAGGCT -ACGGAAACAGACCTTACGTCAACC -ACGGAAACAGACCTTACGTGTTCC -ACGGAAACAGACCTTACGATTCCC -ACGGAAACAGACCTTACGTTCTCG -ACGGAAACAGACCTTACGTAGACG -ACGGAAACAGACCTTACGGTAACG -ACGGAAACAGACCTTACGACTTCG -ACGGAAACAGACCTTACGTACGCA -ACGGAAACAGACCTTACGCTTGCA -ACGGAAACAGACCTTACGCGAACA -ACGGAAACAGACCTTACGCAGTCA -ACGGAAACAGACCTTACGGATCCA -ACGGAAACAGACCTTACGACGACA -ACGGAAACAGACCTTACGAGCTCA -ACGGAAACAGACCTTACGTCACGT -ACGGAAACAGACCTTACGCGTAGT -ACGGAAACAGACCTTACGGTCAGT -ACGGAAACAGACCTTACGGAAGGT -ACGGAAACAGACCTTACGAACCGT -ACGGAAACAGACCTTACGTTGTGC -ACGGAAACAGACCTTACGCTAAGC -ACGGAAACAGACCTTACGACTAGC -ACGGAAACAGACCTTACGAGATGC -ACGGAAACAGACCTTACGTGAAGG -ACGGAAACAGACCTTACGCAATGG -ACGGAAACAGACCTTACGATGAGG -ACGGAAACAGACCTTACGAATGGG -ACGGAAACAGACCTTACGTCCTGA -ACGGAAACAGACCTTACGTAGCGA -ACGGAAACAGACCTTACGCACAGA -ACGGAAACAGACCTTACGGCAAGA -ACGGAAACAGACCTTACGGGTTGA -ACGGAAACAGACCTTACGTCCGAT -ACGGAAACAGACCTTACGTGGCAT -ACGGAAACAGACCTTACGCGAGAT -ACGGAAACAGACCTTACGTACCAC -ACGGAAACAGACCTTACGCAGAAC -ACGGAAACAGACCTTACGGTCTAC -ACGGAAACAGACCTTACGACGTAC -ACGGAAACAGACCTTACGAGTGAC -ACGGAAACAGACCTTACGCTGTAG -ACGGAAACAGACCTTACGCCTAAG -ACGGAAACAGACCTTACGGTTCAG -ACGGAAACAGACCTTACGGCATAG -ACGGAAACAGACCTTACGGACAAG -ACGGAAACAGACCTTACGAAGCAG -ACGGAAACAGACCTTACGCGTCAA -ACGGAAACAGACCTTACGGCTGAA -ACGGAAACAGACCTTACGAGTACG -ACGGAAACAGACCTTACGATCCGA -ACGGAAACAGACCTTACGATGGGA -ACGGAAACAGACCTTACGGTGCAA -ACGGAAACAGACCTTACGGAGGAA -ACGGAAACAGACCTTACGCAGGTA -ACGGAAACAGACCTTACGGACTCT -ACGGAAACAGACCTTACGAGTCCT -ACGGAAACAGACCTTACGTAAGCC -ACGGAAACAGACCTTACGATAGCC -ACGGAAACAGACCTTACGTAACCG -ACGGAAACAGACCTTACGATGCCA -ACGGAAACAGACGTTAGCGGAAAC -ACGGAAACAGACGTTAGCAACACC -ACGGAAACAGACGTTAGCATCGAG -ACGGAAACAGACGTTAGCCTCCTT -ACGGAAACAGACGTTAGCCCTGTT -ACGGAAACAGACGTTAGCCGGTTT -ACGGAAACAGACGTTAGCGTGGTT -ACGGAAACAGACGTTAGCGCCTTT -ACGGAAACAGACGTTAGCGGTCTT -ACGGAAACAGACGTTAGCACGCTT -ACGGAAACAGACGTTAGCAGCGTT -ACGGAAACAGACGTTAGCTTCGTC -ACGGAAACAGACGTTAGCTCTCTC -ACGGAAACAGACGTTAGCTGGATC -ACGGAAACAGACGTTAGCCACTTC -ACGGAAACAGACGTTAGCGTACTC -ACGGAAACAGACGTTAGCGATGTC -ACGGAAACAGACGTTAGCACAGTC -ACGGAAACAGACGTTAGCTTGCTG -ACGGAAACAGACGTTAGCTCCATG -ACGGAAACAGACGTTAGCTGTGTG -ACGGAAACAGACGTTAGCCTAGTG -ACGGAAACAGACGTTAGCCATCTG -ACGGAAACAGACGTTAGCGAGTTG -ACGGAAACAGACGTTAGCAGACTG -ACGGAAACAGACGTTAGCTCGGTA -ACGGAAACAGACGTTAGCTGCCTA -ACGGAAACAGACGTTAGCCCACTA -ACGGAAACAGACGTTAGCGGAGTA -ACGGAAACAGACGTTAGCTCGTCT -ACGGAAACAGACGTTAGCTGCACT -ACGGAAACAGACGTTAGCCTGACT -ACGGAAACAGACGTTAGCCAACCT -ACGGAAACAGACGTTAGCGCTACT -ACGGAAACAGACGTTAGCGGATCT -ACGGAAACAGACGTTAGCAAGGCT -ACGGAAACAGACGTTAGCTCAACC -ACGGAAACAGACGTTAGCTGTTCC -ACGGAAACAGACGTTAGCATTCCC -ACGGAAACAGACGTTAGCTTCTCG -ACGGAAACAGACGTTAGCTAGACG -ACGGAAACAGACGTTAGCGTAACG -ACGGAAACAGACGTTAGCACTTCG -ACGGAAACAGACGTTAGCTACGCA -ACGGAAACAGACGTTAGCCTTGCA -ACGGAAACAGACGTTAGCCGAACA -ACGGAAACAGACGTTAGCCAGTCA -ACGGAAACAGACGTTAGCGATCCA -ACGGAAACAGACGTTAGCACGACA -ACGGAAACAGACGTTAGCAGCTCA -ACGGAAACAGACGTTAGCTCACGT -ACGGAAACAGACGTTAGCCGTAGT -ACGGAAACAGACGTTAGCGTCAGT -ACGGAAACAGACGTTAGCGAAGGT -ACGGAAACAGACGTTAGCAACCGT -ACGGAAACAGACGTTAGCTTGTGC -ACGGAAACAGACGTTAGCCTAAGC -ACGGAAACAGACGTTAGCACTAGC -ACGGAAACAGACGTTAGCAGATGC -ACGGAAACAGACGTTAGCTGAAGG -ACGGAAACAGACGTTAGCCAATGG -ACGGAAACAGACGTTAGCATGAGG -ACGGAAACAGACGTTAGCAATGGG -ACGGAAACAGACGTTAGCTCCTGA -ACGGAAACAGACGTTAGCTAGCGA -ACGGAAACAGACGTTAGCCACAGA -ACGGAAACAGACGTTAGCGCAAGA -ACGGAAACAGACGTTAGCGGTTGA -ACGGAAACAGACGTTAGCTCCGAT -ACGGAAACAGACGTTAGCTGGCAT -ACGGAAACAGACGTTAGCCGAGAT -ACGGAAACAGACGTTAGCTACCAC -ACGGAAACAGACGTTAGCCAGAAC -ACGGAAACAGACGTTAGCGTCTAC -ACGGAAACAGACGTTAGCACGTAC -ACGGAAACAGACGTTAGCAGTGAC -ACGGAAACAGACGTTAGCCTGTAG -ACGGAAACAGACGTTAGCCCTAAG -ACGGAAACAGACGTTAGCGTTCAG -ACGGAAACAGACGTTAGCGCATAG -ACGGAAACAGACGTTAGCGACAAG -ACGGAAACAGACGTTAGCAAGCAG -ACGGAAACAGACGTTAGCCGTCAA -ACGGAAACAGACGTTAGCGCTGAA -ACGGAAACAGACGTTAGCAGTACG -ACGGAAACAGACGTTAGCATCCGA -ACGGAAACAGACGTTAGCATGGGA -ACGGAAACAGACGTTAGCGTGCAA -ACGGAAACAGACGTTAGCGAGGAA -ACGGAAACAGACGTTAGCCAGGTA -ACGGAAACAGACGTTAGCGACTCT -ACGGAAACAGACGTTAGCAGTCCT -ACGGAAACAGACGTTAGCTAAGCC -ACGGAAACAGACGTTAGCATAGCC -ACGGAAACAGACGTTAGCTAACCG -ACGGAAACAGACGTTAGCATGCCA -ACGGAAACAGACGTCTTCGGAAAC -ACGGAAACAGACGTCTTCAACACC -ACGGAAACAGACGTCTTCATCGAG -ACGGAAACAGACGTCTTCCTCCTT -ACGGAAACAGACGTCTTCCCTGTT -ACGGAAACAGACGTCTTCCGGTTT -ACGGAAACAGACGTCTTCGTGGTT -ACGGAAACAGACGTCTTCGCCTTT -ACGGAAACAGACGTCTTCGGTCTT -ACGGAAACAGACGTCTTCACGCTT -ACGGAAACAGACGTCTTCAGCGTT -ACGGAAACAGACGTCTTCTTCGTC -ACGGAAACAGACGTCTTCTCTCTC -ACGGAAACAGACGTCTTCTGGATC -ACGGAAACAGACGTCTTCCACTTC -ACGGAAACAGACGTCTTCGTACTC -ACGGAAACAGACGTCTTCGATGTC -ACGGAAACAGACGTCTTCACAGTC -ACGGAAACAGACGTCTTCTTGCTG -ACGGAAACAGACGTCTTCTCCATG -ACGGAAACAGACGTCTTCTGTGTG -ACGGAAACAGACGTCTTCCTAGTG -ACGGAAACAGACGTCTTCCATCTG -ACGGAAACAGACGTCTTCGAGTTG -ACGGAAACAGACGTCTTCAGACTG -ACGGAAACAGACGTCTTCTCGGTA -ACGGAAACAGACGTCTTCTGCCTA -ACGGAAACAGACGTCTTCCCACTA -ACGGAAACAGACGTCTTCGGAGTA -ACGGAAACAGACGTCTTCTCGTCT -ACGGAAACAGACGTCTTCTGCACT -ACGGAAACAGACGTCTTCCTGACT -ACGGAAACAGACGTCTTCCAACCT -ACGGAAACAGACGTCTTCGCTACT -ACGGAAACAGACGTCTTCGGATCT -ACGGAAACAGACGTCTTCAAGGCT -ACGGAAACAGACGTCTTCTCAACC -ACGGAAACAGACGTCTTCTGTTCC -ACGGAAACAGACGTCTTCATTCCC -ACGGAAACAGACGTCTTCTTCTCG -ACGGAAACAGACGTCTTCTAGACG -ACGGAAACAGACGTCTTCGTAACG -ACGGAAACAGACGTCTTCACTTCG -ACGGAAACAGACGTCTTCTACGCA -ACGGAAACAGACGTCTTCCTTGCA -ACGGAAACAGACGTCTTCCGAACA -ACGGAAACAGACGTCTTCCAGTCA -ACGGAAACAGACGTCTTCGATCCA -ACGGAAACAGACGTCTTCACGACA -ACGGAAACAGACGTCTTCAGCTCA -ACGGAAACAGACGTCTTCTCACGT -ACGGAAACAGACGTCTTCCGTAGT -ACGGAAACAGACGTCTTCGTCAGT -ACGGAAACAGACGTCTTCGAAGGT -ACGGAAACAGACGTCTTCAACCGT -ACGGAAACAGACGTCTTCTTGTGC -ACGGAAACAGACGTCTTCCTAAGC -ACGGAAACAGACGTCTTCACTAGC -ACGGAAACAGACGTCTTCAGATGC -ACGGAAACAGACGTCTTCTGAAGG -ACGGAAACAGACGTCTTCCAATGG -ACGGAAACAGACGTCTTCATGAGG -ACGGAAACAGACGTCTTCAATGGG -ACGGAAACAGACGTCTTCTCCTGA -ACGGAAACAGACGTCTTCTAGCGA -ACGGAAACAGACGTCTTCCACAGA -ACGGAAACAGACGTCTTCGCAAGA -ACGGAAACAGACGTCTTCGGTTGA -ACGGAAACAGACGTCTTCTCCGAT -ACGGAAACAGACGTCTTCTGGCAT -ACGGAAACAGACGTCTTCCGAGAT -ACGGAAACAGACGTCTTCTACCAC -ACGGAAACAGACGTCTTCCAGAAC -ACGGAAACAGACGTCTTCGTCTAC -ACGGAAACAGACGTCTTCACGTAC -ACGGAAACAGACGTCTTCAGTGAC -ACGGAAACAGACGTCTTCCTGTAG -ACGGAAACAGACGTCTTCCCTAAG -ACGGAAACAGACGTCTTCGTTCAG -ACGGAAACAGACGTCTTCGCATAG -ACGGAAACAGACGTCTTCGACAAG -ACGGAAACAGACGTCTTCAAGCAG -ACGGAAACAGACGTCTTCCGTCAA -ACGGAAACAGACGTCTTCGCTGAA -ACGGAAACAGACGTCTTCAGTACG -ACGGAAACAGACGTCTTCATCCGA -ACGGAAACAGACGTCTTCATGGGA -ACGGAAACAGACGTCTTCGTGCAA -ACGGAAACAGACGTCTTCGAGGAA -ACGGAAACAGACGTCTTCCAGGTA -ACGGAAACAGACGTCTTCGACTCT -ACGGAAACAGACGTCTTCAGTCCT -ACGGAAACAGACGTCTTCTAAGCC -ACGGAAACAGACGTCTTCATAGCC -ACGGAAACAGACGTCTTCTAACCG -ACGGAAACAGACGTCTTCATGCCA -ACGGAAACAGACCTCTCTGGAAAC -ACGGAAACAGACCTCTCTAACACC -ACGGAAACAGACCTCTCTATCGAG -ACGGAAACAGACCTCTCTCTCCTT -ACGGAAACAGACCTCTCTCCTGTT -ACGGAAACAGACCTCTCTCGGTTT -ACGGAAACAGACCTCTCTGTGGTT -ACGGAAACAGACCTCTCTGCCTTT -ACGGAAACAGACCTCTCTGGTCTT -ACGGAAACAGACCTCTCTACGCTT -ACGGAAACAGACCTCTCTAGCGTT -ACGGAAACAGACCTCTCTTTCGTC -ACGGAAACAGACCTCTCTTCTCTC -ACGGAAACAGACCTCTCTTGGATC -ACGGAAACAGACCTCTCTCACTTC -ACGGAAACAGACCTCTCTGTACTC -ACGGAAACAGACCTCTCTGATGTC -ACGGAAACAGACCTCTCTACAGTC -ACGGAAACAGACCTCTCTTTGCTG -ACGGAAACAGACCTCTCTTCCATG -ACGGAAACAGACCTCTCTTGTGTG -ACGGAAACAGACCTCTCTCTAGTG -ACGGAAACAGACCTCTCTCATCTG -ACGGAAACAGACCTCTCTGAGTTG -ACGGAAACAGACCTCTCTAGACTG -ACGGAAACAGACCTCTCTTCGGTA -ACGGAAACAGACCTCTCTTGCCTA -ACGGAAACAGACCTCTCTCCACTA -ACGGAAACAGACCTCTCTGGAGTA -ACGGAAACAGACCTCTCTTCGTCT -ACGGAAACAGACCTCTCTTGCACT -ACGGAAACAGACCTCTCTCTGACT -ACGGAAACAGACCTCTCTCAACCT -ACGGAAACAGACCTCTCTGCTACT -ACGGAAACAGACCTCTCTGGATCT -ACGGAAACAGACCTCTCTAAGGCT -ACGGAAACAGACCTCTCTTCAACC -ACGGAAACAGACCTCTCTTGTTCC -ACGGAAACAGACCTCTCTATTCCC -ACGGAAACAGACCTCTCTTTCTCG -ACGGAAACAGACCTCTCTTAGACG -ACGGAAACAGACCTCTCTGTAACG -ACGGAAACAGACCTCTCTACTTCG -ACGGAAACAGACCTCTCTTACGCA -ACGGAAACAGACCTCTCTCTTGCA -ACGGAAACAGACCTCTCTCGAACA -ACGGAAACAGACCTCTCTCAGTCA -ACGGAAACAGACCTCTCTGATCCA -ACGGAAACAGACCTCTCTACGACA -ACGGAAACAGACCTCTCTAGCTCA -ACGGAAACAGACCTCTCTTCACGT -ACGGAAACAGACCTCTCTCGTAGT -ACGGAAACAGACCTCTCTGTCAGT -ACGGAAACAGACCTCTCTGAAGGT -ACGGAAACAGACCTCTCTAACCGT -ACGGAAACAGACCTCTCTTTGTGC -ACGGAAACAGACCTCTCTCTAAGC -ACGGAAACAGACCTCTCTACTAGC -ACGGAAACAGACCTCTCTAGATGC -ACGGAAACAGACCTCTCTTGAAGG -ACGGAAACAGACCTCTCTCAATGG -ACGGAAACAGACCTCTCTATGAGG -ACGGAAACAGACCTCTCTAATGGG -ACGGAAACAGACCTCTCTTCCTGA -ACGGAAACAGACCTCTCTTAGCGA -ACGGAAACAGACCTCTCTCACAGA -ACGGAAACAGACCTCTCTGCAAGA -ACGGAAACAGACCTCTCTGGTTGA -ACGGAAACAGACCTCTCTTCCGAT -ACGGAAACAGACCTCTCTTGGCAT -ACGGAAACAGACCTCTCTCGAGAT -ACGGAAACAGACCTCTCTTACCAC -ACGGAAACAGACCTCTCTCAGAAC -ACGGAAACAGACCTCTCTGTCTAC -ACGGAAACAGACCTCTCTACGTAC -ACGGAAACAGACCTCTCTAGTGAC -ACGGAAACAGACCTCTCTCTGTAG -ACGGAAACAGACCTCTCTCCTAAG -ACGGAAACAGACCTCTCTGTTCAG -ACGGAAACAGACCTCTCTGCATAG -ACGGAAACAGACCTCTCTGACAAG -ACGGAAACAGACCTCTCTAAGCAG -ACGGAAACAGACCTCTCTCGTCAA -ACGGAAACAGACCTCTCTGCTGAA -ACGGAAACAGACCTCTCTAGTACG -ACGGAAACAGACCTCTCTATCCGA -ACGGAAACAGACCTCTCTATGGGA -ACGGAAACAGACCTCTCTGTGCAA -ACGGAAACAGACCTCTCTGAGGAA -ACGGAAACAGACCTCTCTCAGGTA -ACGGAAACAGACCTCTCTGACTCT -ACGGAAACAGACCTCTCTAGTCCT -ACGGAAACAGACCTCTCTTAAGCC -ACGGAAACAGACCTCTCTATAGCC -ACGGAAACAGACCTCTCTTAACCG -ACGGAAACAGACCTCTCTATGCCA -ACGGAAACAGACATCTGGGGAAAC -ACGGAAACAGACATCTGGAACACC -ACGGAAACAGACATCTGGATCGAG -ACGGAAACAGACATCTGGCTCCTT -ACGGAAACAGACATCTGGCCTGTT -ACGGAAACAGACATCTGGCGGTTT -ACGGAAACAGACATCTGGGTGGTT -ACGGAAACAGACATCTGGGCCTTT -ACGGAAACAGACATCTGGGGTCTT -ACGGAAACAGACATCTGGACGCTT -ACGGAAACAGACATCTGGAGCGTT -ACGGAAACAGACATCTGGTTCGTC -ACGGAAACAGACATCTGGTCTCTC -ACGGAAACAGACATCTGGTGGATC -ACGGAAACAGACATCTGGCACTTC -ACGGAAACAGACATCTGGGTACTC -ACGGAAACAGACATCTGGGATGTC -ACGGAAACAGACATCTGGACAGTC -ACGGAAACAGACATCTGGTTGCTG -ACGGAAACAGACATCTGGTCCATG -ACGGAAACAGACATCTGGTGTGTG -ACGGAAACAGACATCTGGCTAGTG -ACGGAAACAGACATCTGGCATCTG -ACGGAAACAGACATCTGGGAGTTG -ACGGAAACAGACATCTGGAGACTG -ACGGAAACAGACATCTGGTCGGTA -ACGGAAACAGACATCTGGTGCCTA -ACGGAAACAGACATCTGGCCACTA -ACGGAAACAGACATCTGGGGAGTA -ACGGAAACAGACATCTGGTCGTCT -ACGGAAACAGACATCTGGTGCACT -ACGGAAACAGACATCTGGCTGACT -ACGGAAACAGACATCTGGCAACCT -ACGGAAACAGACATCTGGGCTACT -ACGGAAACAGACATCTGGGGATCT -ACGGAAACAGACATCTGGAAGGCT -ACGGAAACAGACATCTGGTCAACC -ACGGAAACAGACATCTGGTGTTCC -ACGGAAACAGACATCTGGATTCCC -ACGGAAACAGACATCTGGTTCTCG -ACGGAAACAGACATCTGGTAGACG -ACGGAAACAGACATCTGGGTAACG -ACGGAAACAGACATCTGGACTTCG -ACGGAAACAGACATCTGGTACGCA -ACGGAAACAGACATCTGGCTTGCA -ACGGAAACAGACATCTGGCGAACA -ACGGAAACAGACATCTGGCAGTCA -ACGGAAACAGACATCTGGGATCCA -ACGGAAACAGACATCTGGACGACA -ACGGAAACAGACATCTGGAGCTCA -ACGGAAACAGACATCTGGTCACGT -ACGGAAACAGACATCTGGCGTAGT -ACGGAAACAGACATCTGGGTCAGT -ACGGAAACAGACATCTGGGAAGGT -ACGGAAACAGACATCTGGAACCGT -ACGGAAACAGACATCTGGTTGTGC -ACGGAAACAGACATCTGGCTAAGC -ACGGAAACAGACATCTGGACTAGC -ACGGAAACAGACATCTGGAGATGC -ACGGAAACAGACATCTGGTGAAGG -ACGGAAACAGACATCTGGCAATGG -ACGGAAACAGACATCTGGATGAGG -ACGGAAACAGACATCTGGAATGGG -ACGGAAACAGACATCTGGTCCTGA -ACGGAAACAGACATCTGGTAGCGA -ACGGAAACAGACATCTGGCACAGA -ACGGAAACAGACATCTGGGCAAGA -ACGGAAACAGACATCTGGGGTTGA -ACGGAAACAGACATCTGGTCCGAT -ACGGAAACAGACATCTGGTGGCAT -ACGGAAACAGACATCTGGCGAGAT -ACGGAAACAGACATCTGGTACCAC -ACGGAAACAGACATCTGGCAGAAC -ACGGAAACAGACATCTGGGTCTAC -ACGGAAACAGACATCTGGACGTAC -ACGGAAACAGACATCTGGAGTGAC -ACGGAAACAGACATCTGGCTGTAG -ACGGAAACAGACATCTGGCCTAAG -ACGGAAACAGACATCTGGGTTCAG -ACGGAAACAGACATCTGGGCATAG -ACGGAAACAGACATCTGGGACAAG -ACGGAAACAGACATCTGGAAGCAG -ACGGAAACAGACATCTGGCGTCAA -ACGGAAACAGACATCTGGGCTGAA -ACGGAAACAGACATCTGGAGTACG -ACGGAAACAGACATCTGGATCCGA -ACGGAAACAGACATCTGGATGGGA -ACGGAAACAGACATCTGGGTGCAA -ACGGAAACAGACATCTGGGAGGAA -ACGGAAACAGACATCTGGCAGGTA -ACGGAAACAGACATCTGGGACTCT -ACGGAAACAGACATCTGGAGTCCT -ACGGAAACAGACATCTGGTAAGCC -ACGGAAACAGACATCTGGATAGCC -ACGGAAACAGACATCTGGTAACCG -ACGGAAACAGACATCTGGATGCCA -ACGGAAACAGACTTCCACGGAAAC -ACGGAAACAGACTTCCACAACACC -ACGGAAACAGACTTCCACATCGAG -ACGGAAACAGACTTCCACCTCCTT -ACGGAAACAGACTTCCACCCTGTT -ACGGAAACAGACTTCCACCGGTTT -ACGGAAACAGACTTCCACGTGGTT -ACGGAAACAGACTTCCACGCCTTT -ACGGAAACAGACTTCCACGGTCTT -ACGGAAACAGACTTCCACACGCTT -ACGGAAACAGACTTCCACAGCGTT -ACGGAAACAGACTTCCACTTCGTC -ACGGAAACAGACTTCCACTCTCTC -ACGGAAACAGACTTCCACTGGATC -ACGGAAACAGACTTCCACCACTTC -ACGGAAACAGACTTCCACGTACTC -ACGGAAACAGACTTCCACGATGTC -ACGGAAACAGACTTCCACACAGTC -ACGGAAACAGACTTCCACTTGCTG -ACGGAAACAGACTTCCACTCCATG -ACGGAAACAGACTTCCACTGTGTG -ACGGAAACAGACTTCCACCTAGTG -ACGGAAACAGACTTCCACCATCTG -ACGGAAACAGACTTCCACGAGTTG -ACGGAAACAGACTTCCACAGACTG -ACGGAAACAGACTTCCACTCGGTA -ACGGAAACAGACTTCCACTGCCTA -ACGGAAACAGACTTCCACCCACTA -ACGGAAACAGACTTCCACGGAGTA -ACGGAAACAGACTTCCACTCGTCT -ACGGAAACAGACTTCCACTGCACT -ACGGAAACAGACTTCCACCTGACT -ACGGAAACAGACTTCCACCAACCT -ACGGAAACAGACTTCCACGCTACT -ACGGAAACAGACTTCCACGGATCT -ACGGAAACAGACTTCCACAAGGCT -ACGGAAACAGACTTCCACTCAACC -ACGGAAACAGACTTCCACTGTTCC -ACGGAAACAGACTTCCACATTCCC -ACGGAAACAGACTTCCACTTCTCG -ACGGAAACAGACTTCCACTAGACG -ACGGAAACAGACTTCCACGTAACG -ACGGAAACAGACTTCCACACTTCG -ACGGAAACAGACTTCCACTACGCA -ACGGAAACAGACTTCCACCTTGCA -ACGGAAACAGACTTCCACCGAACA -ACGGAAACAGACTTCCACCAGTCA -ACGGAAACAGACTTCCACGATCCA -ACGGAAACAGACTTCCACACGACA -ACGGAAACAGACTTCCACAGCTCA -ACGGAAACAGACTTCCACTCACGT -ACGGAAACAGACTTCCACCGTAGT -ACGGAAACAGACTTCCACGTCAGT -ACGGAAACAGACTTCCACGAAGGT -ACGGAAACAGACTTCCACAACCGT -ACGGAAACAGACTTCCACTTGTGC -ACGGAAACAGACTTCCACCTAAGC -ACGGAAACAGACTTCCACACTAGC -ACGGAAACAGACTTCCACAGATGC -ACGGAAACAGACTTCCACTGAAGG -ACGGAAACAGACTTCCACCAATGG -ACGGAAACAGACTTCCACATGAGG -ACGGAAACAGACTTCCACAATGGG -ACGGAAACAGACTTCCACTCCTGA -ACGGAAACAGACTTCCACTAGCGA -ACGGAAACAGACTTCCACCACAGA -ACGGAAACAGACTTCCACGCAAGA -ACGGAAACAGACTTCCACGGTTGA -ACGGAAACAGACTTCCACTCCGAT -ACGGAAACAGACTTCCACTGGCAT -ACGGAAACAGACTTCCACCGAGAT -ACGGAAACAGACTTCCACTACCAC -ACGGAAACAGACTTCCACCAGAAC -ACGGAAACAGACTTCCACGTCTAC -ACGGAAACAGACTTCCACACGTAC -ACGGAAACAGACTTCCACAGTGAC -ACGGAAACAGACTTCCACCTGTAG -ACGGAAACAGACTTCCACCCTAAG -ACGGAAACAGACTTCCACGTTCAG -ACGGAAACAGACTTCCACGCATAG -ACGGAAACAGACTTCCACGACAAG -ACGGAAACAGACTTCCACAAGCAG -ACGGAAACAGACTTCCACCGTCAA -ACGGAAACAGACTTCCACGCTGAA -ACGGAAACAGACTTCCACAGTACG -ACGGAAACAGACTTCCACATCCGA -ACGGAAACAGACTTCCACATGGGA -ACGGAAACAGACTTCCACGTGCAA -ACGGAAACAGACTTCCACGAGGAA -ACGGAAACAGACTTCCACCAGGTA -ACGGAAACAGACTTCCACGACTCT -ACGGAAACAGACTTCCACAGTCCT -ACGGAAACAGACTTCCACTAAGCC -ACGGAAACAGACTTCCACATAGCC -ACGGAAACAGACTTCCACTAACCG -ACGGAAACAGACTTCCACATGCCA -ACGGAAACAGACCTCGTAGGAAAC -ACGGAAACAGACCTCGTAAACACC -ACGGAAACAGACCTCGTAATCGAG -ACGGAAACAGACCTCGTACTCCTT -ACGGAAACAGACCTCGTACCTGTT -ACGGAAACAGACCTCGTACGGTTT -ACGGAAACAGACCTCGTAGTGGTT -ACGGAAACAGACCTCGTAGCCTTT -ACGGAAACAGACCTCGTAGGTCTT -ACGGAAACAGACCTCGTAACGCTT -ACGGAAACAGACCTCGTAAGCGTT -ACGGAAACAGACCTCGTATTCGTC -ACGGAAACAGACCTCGTATCTCTC -ACGGAAACAGACCTCGTATGGATC -ACGGAAACAGACCTCGTACACTTC -ACGGAAACAGACCTCGTAGTACTC -ACGGAAACAGACCTCGTAGATGTC -ACGGAAACAGACCTCGTAACAGTC -ACGGAAACAGACCTCGTATTGCTG -ACGGAAACAGACCTCGTATCCATG -ACGGAAACAGACCTCGTATGTGTG -ACGGAAACAGACCTCGTACTAGTG -ACGGAAACAGACCTCGTACATCTG -ACGGAAACAGACCTCGTAGAGTTG -ACGGAAACAGACCTCGTAAGACTG -ACGGAAACAGACCTCGTATCGGTA -ACGGAAACAGACCTCGTATGCCTA -ACGGAAACAGACCTCGTACCACTA -ACGGAAACAGACCTCGTAGGAGTA -ACGGAAACAGACCTCGTATCGTCT -ACGGAAACAGACCTCGTATGCACT -ACGGAAACAGACCTCGTACTGACT -ACGGAAACAGACCTCGTACAACCT -ACGGAAACAGACCTCGTAGCTACT -ACGGAAACAGACCTCGTAGGATCT -ACGGAAACAGACCTCGTAAAGGCT -ACGGAAACAGACCTCGTATCAACC -ACGGAAACAGACCTCGTATGTTCC -ACGGAAACAGACCTCGTAATTCCC -ACGGAAACAGACCTCGTATTCTCG -ACGGAAACAGACCTCGTATAGACG -ACGGAAACAGACCTCGTAGTAACG -ACGGAAACAGACCTCGTAACTTCG -ACGGAAACAGACCTCGTATACGCA -ACGGAAACAGACCTCGTACTTGCA -ACGGAAACAGACCTCGTACGAACA -ACGGAAACAGACCTCGTACAGTCA -ACGGAAACAGACCTCGTAGATCCA -ACGGAAACAGACCTCGTAACGACA -ACGGAAACAGACCTCGTAAGCTCA -ACGGAAACAGACCTCGTATCACGT -ACGGAAACAGACCTCGTACGTAGT -ACGGAAACAGACCTCGTAGTCAGT -ACGGAAACAGACCTCGTAGAAGGT -ACGGAAACAGACCTCGTAAACCGT -ACGGAAACAGACCTCGTATTGTGC -ACGGAAACAGACCTCGTACTAAGC -ACGGAAACAGACCTCGTAACTAGC -ACGGAAACAGACCTCGTAAGATGC -ACGGAAACAGACCTCGTATGAAGG -ACGGAAACAGACCTCGTACAATGG -ACGGAAACAGACCTCGTAATGAGG -ACGGAAACAGACCTCGTAAATGGG -ACGGAAACAGACCTCGTATCCTGA -ACGGAAACAGACCTCGTATAGCGA -ACGGAAACAGACCTCGTACACAGA -ACGGAAACAGACCTCGTAGCAAGA -ACGGAAACAGACCTCGTAGGTTGA -ACGGAAACAGACCTCGTATCCGAT -ACGGAAACAGACCTCGTATGGCAT -ACGGAAACAGACCTCGTACGAGAT -ACGGAAACAGACCTCGTATACCAC -ACGGAAACAGACCTCGTACAGAAC -ACGGAAACAGACCTCGTAGTCTAC -ACGGAAACAGACCTCGTAACGTAC -ACGGAAACAGACCTCGTAAGTGAC -ACGGAAACAGACCTCGTACTGTAG -ACGGAAACAGACCTCGTACCTAAG -ACGGAAACAGACCTCGTAGTTCAG -ACGGAAACAGACCTCGTAGCATAG -ACGGAAACAGACCTCGTAGACAAG -ACGGAAACAGACCTCGTAAAGCAG -ACGGAAACAGACCTCGTACGTCAA -ACGGAAACAGACCTCGTAGCTGAA -ACGGAAACAGACCTCGTAAGTACG -ACGGAAACAGACCTCGTAATCCGA -ACGGAAACAGACCTCGTAATGGGA -ACGGAAACAGACCTCGTAGTGCAA -ACGGAAACAGACCTCGTAGAGGAA -ACGGAAACAGACCTCGTACAGGTA -ACGGAAACAGACCTCGTAGACTCT -ACGGAAACAGACCTCGTAAGTCCT -ACGGAAACAGACCTCGTATAAGCC -ACGGAAACAGACCTCGTAATAGCC -ACGGAAACAGACCTCGTATAACCG -ACGGAAACAGACCTCGTAATGCCA -ACGGAAACAGACGTCGATGGAAAC -ACGGAAACAGACGTCGATAACACC -ACGGAAACAGACGTCGATATCGAG -ACGGAAACAGACGTCGATCTCCTT -ACGGAAACAGACGTCGATCCTGTT -ACGGAAACAGACGTCGATCGGTTT -ACGGAAACAGACGTCGATGTGGTT -ACGGAAACAGACGTCGATGCCTTT -ACGGAAACAGACGTCGATGGTCTT -ACGGAAACAGACGTCGATACGCTT -ACGGAAACAGACGTCGATAGCGTT -ACGGAAACAGACGTCGATTTCGTC -ACGGAAACAGACGTCGATTCTCTC -ACGGAAACAGACGTCGATTGGATC -ACGGAAACAGACGTCGATCACTTC -ACGGAAACAGACGTCGATGTACTC -ACGGAAACAGACGTCGATGATGTC -ACGGAAACAGACGTCGATACAGTC -ACGGAAACAGACGTCGATTTGCTG -ACGGAAACAGACGTCGATTCCATG -ACGGAAACAGACGTCGATTGTGTG -ACGGAAACAGACGTCGATCTAGTG -ACGGAAACAGACGTCGATCATCTG -ACGGAAACAGACGTCGATGAGTTG -ACGGAAACAGACGTCGATAGACTG -ACGGAAACAGACGTCGATTCGGTA -ACGGAAACAGACGTCGATTGCCTA -ACGGAAACAGACGTCGATCCACTA -ACGGAAACAGACGTCGATGGAGTA -ACGGAAACAGACGTCGATTCGTCT -ACGGAAACAGACGTCGATTGCACT -ACGGAAACAGACGTCGATCTGACT -ACGGAAACAGACGTCGATCAACCT -ACGGAAACAGACGTCGATGCTACT -ACGGAAACAGACGTCGATGGATCT -ACGGAAACAGACGTCGATAAGGCT -ACGGAAACAGACGTCGATTCAACC -ACGGAAACAGACGTCGATTGTTCC -ACGGAAACAGACGTCGATATTCCC -ACGGAAACAGACGTCGATTTCTCG -ACGGAAACAGACGTCGATTAGACG -ACGGAAACAGACGTCGATGTAACG -ACGGAAACAGACGTCGATACTTCG -ACGGAAACAGACGTCGATTACGCA -ACGGAAACAGACGTCGATCTTGCA -ACGGAAACAGACGTCGATCGAACA -ACGGAAACAGACGTCGATCAGTCA -ACGGAAACAGACGTCGATGATCCA -ACGGAAACAGACGTCGATACGACA -ACGGAAACAGACGTCGATAGCTCA -ACGGAAACAGACGTCGATTCACGT -ACGGAAACAGACGTCGATCGTAGT -ACGGAAACAGACGTCGATGTCAGT -ACGGAAACAGACGTCGATGAAGGT -ACGGAAACAGACGTCGATAACCGT -ACGGAAACAGACGTCGATTTGTGC -ACGGAAACAGACGTCGATCTAAGC -ACGGAAACAGACGTCGATACTAGC -ACGGAAACAGACGTCGATAGATGC -ACGGAAACAGACGTCGATTGAAGG -ACGGAAACAGACGTCGATCAATGG -ACGGAAACAGACGTCGATATGAGG -ACGGAAACAGACGTCGATAATGGG -ACGGAAACAGACGTCGATTCCTGA -ACGGAAACAGACGTCGATTAGCGA -ACGGAAACAGACGTCGATCACAGA -ACGGAAACAGACGTCGATGCAAGA -ACGGAAACAGACGTCGATGGTTGA -ACGGAAACAGACGTCGATTCCGAT -ACGGAAACAGACGTCGATTGGCAT -ACGGAAACAGACGTCGATCGAGAT -ACGGAAACAGACGTCGATTACCAC -ACGGAAACAGACGTCGATCAGAAC -ACGGAAACAGACGTCGATGTCTAC -ACGGAAACAGACGTCGATACGTAC -ACGGAAACAGACGTCGATAGTGAC -ACGGAAACAGACGTCGATCTGTAG -ACGGAAACAGACGTCGATCCTAAG -ACGGAAACAGACGTCGATGTTCAG -ACGGAAACAGACGTCGATGCATAG -ACGGAAACAGACGTCGATGACAAG -ACGGAAACAGACGTCGATAAGCAG -ACGGAAACAGACGTCGATCGTCAA -ACGGAAACAGACGTCGATGCTGAA -ACGGAAACAGACGTCGATAGTACG -ACGGAAACAGACGTCGATATCCGA -ACGGAAACAGACGTCGATATGGGA -ACGGAAACAGACGTCGATGTGCAA -ACGGAAACAGACGTCGATGAGGAA -ACGGAAACAGACGTCGATCAGGTA -ACGGAAACAGACGTCGATGACTCT -ACGGAAACAGACGTCGATAGTCCT -ACGGAAACAGACGTCGATTAAGCC -ACGGAAACAGACGTCGATATAGCC -ACGGAAACAGACGTCGATTAACCG -ACGGAAACAGACGTCGATATGCCA -ACGGAAACAGACGTCACAGGAAAC -ACGGAAACAGACGTCACAAACACC -ACGGAAACAGACGTCACAATCGAG -ACGGAAACAGACGTCACACTCCTT -ACGGAAACAGACGTCACACCTGTT -ACGGAAACAGACGTCACACGGTTT -ACGGAAACAGACGTCACAGTGGTT -ACGGAAACAGACGTCACAGCCTTT -ACGGAAACAGACGTCACAGGTCTT -ACGGAAACAGACGTCACAACGCTT -ACGGAAACAGACGTCACAAGCGTT -ACGGAAACAGACGTCACATTCGTC -ACGGAAACAGACGTCACATCTCTC -ACGGAAACAGACGTCACATGGATC -ACGGAAACAGACGTCACACACTTC -ACGGAAACAGACGTCACAGTACTC -ACGGAAACAGACGTCACAGATGTC -ACGGAAACAGACGTCACAACAGTC -ACGGAAACAGACGTCACATTGCTG -ACGGAAACAGACGTCACATCCATG -ACGGAAACAGACGTCACATGTGTG -ACGGAAACAGACGTCACACTAGTG -ACGGAAACAGACGTCACACATCTG -ACGGAAACAGACGTCACAGAGTTG -ACGGAAACAGACGTCACAAGACTG -ACGGAAACAGACGTCACATCGGTA -ACGGAAACAGACGTCACATGCCTA -ACGGAAACAGACGTCACACCACTA -ACGGAAACAGACGTCACAGGAGTA -ACGGAAACAGACGTCACATCGTCT -ACGGAAACAGACGTCACATGCACT -ACGGAAACAGACGTCACACTGACT -ACGGAAACAGACGTCACACAACCT -ACGGAAACAGACGTCACAGCTACT -ACGGAAACAGACGTCACAGGATCT -ACGGAAACAGACGTCACAAAGGCT -ACGGAAACAGACGTCACATCAACC -ACGGAAACAGACGTCACATGTTCC -ACGGAAACAGACGTCACAATTCCC -ACGGAAACAGACGTCACATTCTCG -ACGGAAACAGACGTCACATAGACG -ACGGAAACAGACGTCACAGTAACG -ACGGAAACAGACGTCACAACTTCG -ACGGAAACAGACGTCACATACGCA -ACGGAAACAGACGTCACACTTGCA -ACGGAAACAGACGTCACACGAACA -ACGGAAACAGACGTCACACAGTCA -ACGGAAACAGACGTCACAGATCCA -ACGGAAACAGACGTCACAACGACA -ACGGAAACAGACGTCACAAGCTCA -ACGGAAACAGACGTCACATCACGT -ACGGAAACAGACGTCACACGTAGT -ACGGAAACAGACGTCACAGTCAGT -ACGGAAACAGACGTCACAGAAGGT -ACGGAAACAGACGTCACAAACCGT -ACGGAAACAGACGTCACATTGTGC -ACGGAAACAGACGTCACACTAAGC -ACGGAAACAGACGTCACAACTAGC -ACGGAAACAGACGTCACAAGATGC -ACGGAAACAGACGTCACATGAAGG -ACGGAAACAGACGTCACACAATGG -ACGGAAACAGACGTCACAATGAGG -ACGGAAACAGACGTCACAAATGGG -ACGGAAACAGACGTCACATCCTGA -ACGGAAACAGACGTCACATAGCGA -ACGGAAACAGACGTCACACACAGA -ACGGAAACAGACGTCACAGCAAGA -ACGGAAACAGACGTCACAGGTTGA -ACGGAAACAGACGTCACATCCGAT -ACGGAAACAGACGTCACATGGCAT -ACGGAAACAGACGTCACACGAGAT -ACGGAAACAGACGTCACATACCAC -ACGGAAACAGACGTCACACAGAAC -ACGGAAACAGACGTCACAGTCTAC -ACGGAAACAGACGTCACAACGTAC -ACGGAAACAGACGTCACAAGTGAC -ACGGAAACAGACGTCACACTGTAG -ACGGAAACAGACGTCACACCTAAG -ACGGAAACAGACGTCACAGTTCAG -ACGGAAACAGACGTCACAGCATAG -ACGGAAACAGACGTCACAGACAAG -ACGGAAACAGACGTCACAAAGCAG -ACGGAAACAGACGTCACACGTCAA -ACGGAAACAGACGTCACAGCTGAA -ACGGAAACAGACGTCACAAGTACG -ACGGAAACAGACGTCACAATCCGA -ACGGAAACAGACGTCACAATGGGA -ACGGAAACAGACGTCACAGTGCAA -ACGGAAACAGACGTCACAGAGGAA -ACGGAAACAGACGTCACACAGGTA -ACGGAAACAGACGTCACAGACTCT -ACGGAAACAGACGTCACAAGTCCT -ACGGAAACAGACGTCACATAAGCC -ACGGAAACAGACGTCACAATAGCC -ACGGAAACAGACGTCACATAACCG -ACGGAAACAGACGTCACAATGCCA -ACGGAAACAGACCTGTTGGGAAAC -ACGGAAACAGACCTGTTGAACACC -ACGGAAACAGACCTGTTGATCGAG -ACGGAAACAGACCTGTTGCTCCTT -ACGGAAACAGACCTGTTGCCTGTT -ACGGAAACAGACCTGTTGCGGTTT -ACGGAAACAGACCTGTTGGTGGTT -ACGGAAACAGACCTGTTGGCCTTT -ACGGAAACAGACCTGTTGGGTCTT -ACGGAAACAGACCTGTTGACGCTT -ACGGAAACAGACCTGTTGAGCGTT -ACGGAAACAGACCTGTTGTTCGTC -ACGGAAACAGACCTGTTGTCTCTC -ACGGAAACAGACCTGTTGTGGATC -ACGGAAACAGACCTGTTGCACTTC -ACGGAAACAGACCTGTTGGTACTC -ACGGAAACAGACCTGTTGGATGTC -ACGGAAACAGACCTGTTGACAGTC -ACGGAAACAGACCTGTTGTTGCTG -ACGGAAACAGACCTGTTGTCCATG -ACGGAAACAGACCTGTTGTGTGTG -ACGGAAACAGACCTGTTGCTAGTG -ACGGAAACAGACCTGTTGCATCTG -ACGGAAACAGACCTGTTGGAGTTG -ACGGAAACAGACCTGTTGAGACTG -ACGGAAACAGACCTGTTGTCGGTA -ACGGAAACAGACCTGTTGTGCCTA -ACGGAAACAGACCTGTTGCCACTA -ACGGAAACAGACCTGTTGGGAGTA -ACGGAAACAGACCTGTTGTCGTCT -ACGGAAACAGACCTGTTGTGCACT -ACGGAAACAGACCTGTTGCTGACT -ACGGAAACAGACCTGTTGCAACCT -ACGGAAACAGACCTGTTGGCTACT -ACGGAAACAGACCTGTTGGGATCT -ACGGAAACAGACCTGTTGAAGGCT -ACGGAAACAGACCTGTTGTCAACC -ACGGAAACAGACCTGTTGTGTTCC -ACGGAAACAGACCTGTTGATTCCC -ACGGAAACAGACCTGTTGTTCTCG -ACGGAAACAGACCTGTTGTAGACG -ACGGAAACAGACCTGTTGGTAACG -ACGGAAACAGACCTGTTGACTTCG -ACGGAAACAGACCTGTTGTACGCA -ACGGAAACAGACCTGTTGCTTGCA -ACGGAAACAGACCTGTTGCGAACA -ACGGAAACAGACCTGTTGCAGTCA -ACGGAAACAGACCTGTTGGATCCA -ACGGAAACAGACCTGTTGACGACA -ACGGAAACAGACCTGTTGAGCTCA -ACGGAAACAGACCTGTTGTCACGT -ACGGAAACAGACCTGTTGCGTAGT -ACGGAAACAGACCTGTTGGTCAGT -ACGGAAACAGACCTGTTGGAAGGT -ACGGAAACAGACCTGTTGAACCGT -ACGGAAACAGACCTGTTGTTGTGC -ACGGAAACAGACCTGTTGCTAAGC -ACGGAAACAGACCTGTTGACTAGC -ACGGAAACAGACCTGTTGAGATGC -ACGGAAACAGACCTGTTGTGAAGG -ACGGAAACAGACCTGTTGCAATGG -ACGGAAACAGACCTGTTGATGAGG -ACGGAAACAGACCTGTTGAATGGG -ACGGAAACAGACCTGTTGTCCTGA -ACGGAAACAGACCTGTTGTAGCGA -ACGGAAACAGACCTGTTGCACAGA -ACGGAAACAGACCTGTTGGCAAGA -ACGGAAACAGACCTGTTGGGTTGA -ACGGAAACAGACCTGTTGTCCGAT -ACGGAAACAGACCTGTTGTGGCAT -ACGGAAACAGACCTGTTGCGAGAT -ACGGAAACAGACCTGTTGTACCAC -ACGGAAACAGACCTGTTGCAGAAC -ACGGAAACAGACCTGTTGGTCTAC -ACGGAAACAGACCTGTTGACGTAC -ACGGAAACAGACCTGTTGAGTGAC -ACGGAAACAGACCTGTTGCTGTAG -ACGGAAACAGACCTGTTGCCTAAG -ACGGAAACAGACCTGTTGGTTCAG -ACGGAAACAGACCTGTTGGCATAG -ACGGAAACAGACCTGTTGGACAAG -ACGGAAACAGACCTGTTGAAGCAG -ACGGAAACAGACCTGTTGCGTCAA -ACGGAAACAGACCTGTTGGCTGAA -ACGGAAACAGACCTGTTGAGTACG -ACGGAAACAGACCTGTTGATCCGA -ACGGAAACAGACCTGTTGATGGGA -ACGGAAACAGACCTGTTGGTGCAA -ACGGAAACAGACCTGTTGGAGGAA -ACGGAAACAGACCTGTTGCAGGTA -ACGGAAACAGACCTGTTGGACTCT -ACGGAAACAGACCTGTTGAGTCCT -ACGGAAACAGACCTGTTGTAAGCC -ACGGAAACAGACCTGTTGATAGCC -ACGGAAACAGACCTGTTGTAACCG -ACGGAAACAGACCTGTTGATGCCA -ACGGAAACAGACATGTCCGGAAAC -ACGGAAACAGACATGTCCAACACC -ACGGAAACAGACATGTCCATCGAG -ACGGAAACAGACATGTCCCTCCTT -ACGGAAACAGACATGTCCCCTGTT -ACGGAAACAGACATGTCCCGGTTT -ACGGAAACAGACATGTCCGTGGTT -ACGGAAACAGACATGTCCGCCTTT -ACGGAAACAGACATGTCCGGTCTT -ACGGAAACAGACATGTCCACGCTT -ACGGAAACAGACATGTCCAGCGTT -ACGGAAACAGACATGTCCTTCGTC -ACGGAAACAGACATGTCCTCTCTC -ACGGAAACAGACATGTCCTGGATC -ACGGAAACAGACATGTCCCACTTC -ACGGAAACAGACATGTCCGTACTC -ACGGAAACAGACATGTCCGATGTC -ACGGAAACAGACATGTCCACAGTC -ACGGAAACAGACATGTCCTTGCTG -ACGGAAACAGACATGTCCTCCATG -ACGGAAACAGACATGTCCTGTGTG -ACGGAAACAGACATGTCCCTAGTG -ACGGAAACAGACATGTCCCATCTG -ACGGAAACAGACATGTCCGAGTTG -ACGGAAACAGACATGTCCAGACTG -ACGGAAACAGACATGTCCTCGGTA -ACGGAAACAGACATGTCCTGCCTA -ACGGAAACAGACATGTCCCCACTA -ACGGAAACAGACATGTCCGGAGTA -ACGGAAACAGACATGTCCTCGTCT -ACGGAAACAGACATGTCCTGCACT -ACGGAAACAGACATGTCCCTGACT -ACGGAAACAGACATGTCCCAACCT -ACGGAAACAGACATGTCCGCTACT -ACGGAAACAGACATGTCCGGATCT -ACGGAAACAGACATGTCCAAGGCT -ACGGAAACAGACATGTCCTCAACC -ACGGAAACAGACATGTCCTGTTCC -ACGGAAACAGACATGTCCATTCCC -ACGGAAACAGACATGTCCTTCTCG -ACGGAAACAGACATGTCCTAGACG -ACGGAAACAGACATGTCCGTAACG -ACGGAAACAGACATGTCCACTTCG -ACGGAAACAGACATGTCCTACGCA -ACGGAAACAGACATGTCCCTTGCA -ACGGAAACAGACATGTCCCGAACA -ACGGAAACAGACATGTCCCAGTCA -ACGGAAACAGACATGTCCGATCCA -ACGGAAACAGACATGTCCACGACA -ACGGAAACAGACATGTCCAGCTCA -ACGGAAACAGACATGTCCTCACGT -ACGGAAACAGACATGTCCCGTAGT -ACGGAAACAGACATGTCCGTCAGT -ACGGAAACAGACATGTCCGAAGGT -ACGGAAACAGACATGTCCAACCGT -ACGGAAACAGACATGTCCTTGTGC -ACGGAAACAGACATGTCCCTAAGC -ACGGAAACAGACATGTCCACTAGC -ACGGAAACAGACATGTCCAGATGC -ACGGAAACAGACATGTCCTGAAGG -ACGGAAACAGACATGTCCCAATGG -ACGGAAACAGACATGTCCATGAGG -ACGGAAACAGACATGTCCAATGGG -ACGGAAACAGACATGTCCTCCTGA -ACGGAAACAGACATGTCCTAGCGA -ACGGAAACAGACATGTCCCACAGA -ACGGAAACAGACATGTCCGCAAGA -ACGGAAACAGACATGTCCGGTTGA -ACGGAAACAGACATGTCCTCCGAT -ACGGAAACAGACATGTCCTGGCAT -ACGGAAACAGACATGTCCCGAGAT -ACGGAAACAGACATGTCCTACCAC -ACGGAAACAGACATGTCCCAGAAC -ACGGAAACAGACATGTCCGTCTAC -ACGGAAACAGACATGTCCACGTAC -ACGGAAACAGACATGTCCAGTGAC -ACGGAAACAGACATGTCCCTGTAG -ACGGAAACAGACATGTCCCCTAAG -ACGGAAACAGACATGTCCGTTCAG -ACGGAAACAGACATGTCCGCATAG -ACGGAAACAGACATGTCCGACAAG -ACGGAAACAGACATGTCCAAGCAG -ACGGAAACAGACATGTCCCGTCAA -ACGGAAACAGACATGTCCGCTGAA -ACGGAAACAGACATGTCCAGTACG -ACGGAAACAGACATGTCCATCCGA -ACGGAAACAGACATGTCCATGGGA -ACGGAAACAGACATGTCCGTGCAA -ACGGAAACAGACATGTCCGAGGAA -ACGGAAACAGACATGTCCCAGGTA -ACGGAAACAGACATGTCCGACTCT -ACGGAAACAGACATGTCCAGTCCT -ACGGAAACAGACATGTCCTAAGCC -ACGGAAACAGACATGTCCATAGCC -ACGGAAACAGACATGTCCTAACCG -ACGGAAACAGACATGTCCATGCCA -ACGGAAACAGACGTGTGTGGAAAC -ACGGAAACAGACGTGTGTAACACC -ACGGAAACAGACGTGTGTATCGAG -ACGGAAACAGACGTGTGTCTCCTT -ACGGAAACAGACGTGTGTCCTGTT -ACGGAAACAGACGTGTGTCGGTTT -ACGGAAACAGACGTGTGTGTGGTT -ACGGAAACAGACGTGTGTGCCTTT -ACGGAAACAGACGTGTGTGGTCTT -ACGGAAACAGACGTGTGTACGCTT -ACGGAAACAGACGTGTGTAGCGTT -ACGGAAACAGACGTGTGTTTCGTC -ACGGAAACAGACGTGTGTTCTCTC -ACGGAAACAGACGTGTGTTGGATC -ACGGAAACAGACGTGTGTCACTTC -ACGGAAACAGACGTGTGTGTACTC -ACGGAAACAGACGTGTGTGATGTC -ACGGAAACAGACGTGTGTACAGTC -ACGGAAACAGACGTGTGTTTGCTG -ACGGAAACAGACGTGTGTTCCATG -ACGGAAACAGACGTGTGTTGTGTG -ACGGAAACAGACGTGTGTCTAGTG -ACGGAAACAGACGTGTGTCATCTG -ACGGAAACAGACGTGTGTGAGTTG -ACGGAAACAGACGTGTGTAGACTG -ACGGAAACAGACGTGTGTTCGGTA -ACGGAAACAGACGTGTGTTGCCTA -ACGGAAACAGACGTGTGTCCACTA -ACGGAAACAGACGTGTGTGGAGTA -ACGGAAACAGACGTGTGTTCGTCT -ACGGAAACAGACGTGTGTTGCACT -ACGGAAACAGACGTGTGTCTGACT -ACGGAAACAGACGTGTGTCAACCT -ACGGAAACAGACGTGTGTGCTACT -ACGGAAACAGACGTGTGTGGATCT -ACGGAAACAGACGTGTGTAAGGCT -ACGGAAACAGACGTGTGTTCAACC -ACGGAAACAGACGTGTGTTGTTCC -ACGGAAACAGACGTGTGTATTCCC -ACGGAAACAGACGTGTGTTTCTCG -ACGGAAACAGACGTGTGTTAGACG -ACGGAAACAGACGTGTGTGTAACG -ACGGAAACAGACGTGTGTACTTCG -ACGGAAACAGACGTGTGTTACGCA -ACGGAAACAGACGTGTGTCTTGCA -ACGGAAACAGACGTGTGTCGAACA -ACGGAAACAGACGTGTGTCAGTCA -ACGGAAACAGACGTGTGTGATCCA -ACGGAAACAGACGTGTGTACGACA -ACGGAAACAGACGTGTGTAGCTCA -ACGGAAACAGACGTGTGTTCACGT -ACGGAAACAGACGTGTGTCGTAGT -ACGGAAACAGACGTGTGTGTCAGT -ACGGAAACAGACGTGTGTGAAGGT -ACGGAAACAGACGTGTGTAACCGT -ACGGAAACAGACGTGTGTTTGTGC -ACGGAAACAGACGTGTGTCTAAGC -ACGGAAACAGACGTGTGTACTAGC -ACGGAAACAGACGTGTGTAGATGC -ACGGAAACAGACGTGTGTTGAAGG -ACGGAAACAGACGTGTGTCAATGG -ACGGAAACAGACGTGTGTATGAGG -ACGGAAACAGACGTGTGTAATGGG -ACGGAAACAGACGTGTGTTCCTGA -ACGGAAACAGACGTGTGTTAGCGA -ACGGAAACAGACGTGTGTCACAGA -ACGGAAACAGACGTGTGTGCAAGA -ACGGAAACAGACGTGTGTGGTTGA -ACGGAAACAGACGTGTGTTCCGAT -ACGGAAACAGACGTGTGTTGGCAT -ACGGAAACAGACGTGTGTCGAGAT -ACGGAAACAGACGTGTGTTACCAC -ACGGAAACAGACGTGTGTCAGAAC -ACGGAAACAGACGTGTGTGTCTAC -ACGGAAACAGACGTGTGTACGTAC -ACGGAAACAGACGTGTGTAGTGAC -ACGGAAACAGACGTGTGTCTGTAG -ACGGAAACAGACGTGTGTCCTAAG -ACGGAAACAGACGTGTGTGTTCAG -ACGGAAACAGACGTGTGTGCATAG -ACGGAAACAGACGTGTGTGACAAG -ACGGAAACAGACGTGTGTAAGCAG -ACGGAAACAGACGTGTGTCGTCAA -ACGGAAACAGACGTGTGTGCTGAA -ACGGAAACAGACGTGTGTAGTACG -ACGGAAACAGACGTGTGTATCCGA -ACGGAAACAGACGTGTGTATGGGA -ACGGAAACAGACGTGTGTGTGCAA -ACGGAAACAGACGTGTGTGAGGAA -ACGGAAACAGACGTGTGTCAGGTA -ACGGAAACAGACGTGTGTGACTCT -ACGGAAACAGACGTGTGTAGTCCT -ACGGAAACAGACGTGTGTTAAGCC -ACGGAAACAGACGTGTGTATAGCC -ACGGAAACAGACGTGTGTTAACCG -ACGGAAACAGACGTGTGTATGCCA -ACGGAAACAGACGTGCTAGGAAAC -ACGGAAACAGACGTGCTAAACACC -ACGGAAACAGACGTGCTAATCGAG -ACGGAAACAGACGTGCTACTCCTT -ACGGAAACAGACGTGCTACCTGTT -ACGGAAACAGACGTGCTACGGTTT -ACGGAAACAGACGTGCTAGTGGTT -ACGGAAACAGACGTGCTAGCCTTT -ACGGAAACAGACGTGCTAGGTCTT -ACGGAAACAGACGTGCTAACGCTT -ACGGAAACAGACGTGCTAAGCGTT -ACGGAAACAGACGTGCTATTCGTC -ACGGAAACAGACGTGCTATCTCTC -ACGGAAACAGACGTGCTATGGATC -ACGGAAACAGACGTGCTACACTTC -ACGGAAACAGACGTGCTAGTACTC -ACGGAAACAGACGTGCTAGATGTC -ACGGAAACAGACGTGCTAACAGTC -ACGGAAACAGACGTGCTATTGCTG -ACGGAAACAGACGTGCTATCCATG -ACGGAAACAGACGTGCTATGTGTG -ACGGAAACAGACGTGCTACTAGTG -ACGGAAACAGACGTGCTACATCTG -ACGGAAACAGACGTGCTAGAGTTG -ACGGAAACAGACGTGCTAAGACTG -ACGGAAACAGACGTGCTATCGGTA -ACGGAAACAGACGTGCTATGCCTA -ACGGAAACAGACGTGCTACCACTA -ACGGAAACAGACGTGCTAGGAGTA -ACGGAAACAGACGTGCTATCGTCT -ACGGAAACAGACGTGCTATGCACT -ACGGAAACAGACGTGCTACTGACT -ACGGAAACAGACGTGCTACAACCT -ACGGAAACAGACGTGCTAGCTACT -ACGGAAACAGACGTGCTAGGATCT -ACGGAAACAGACGTGCTAAAGGCT -ACGGAAACAGACGTGCTATCAACC -ACGGAAACAGACGTGCTATGTTCC -ACGGAAACAGACGTGCTAATTCCC -ACGGAAACAGACGTGCTATTCTCG -ACGGAAACAGACGTGCTATAGACG -ACGGAAACAGACGTGCTAGTAACG -ACGGAAACAGACGTGCTAACTTCG -ACGGAAACAGACGTGCTATACGCA -ACGGAAACAGACGTGCTACTTGCA -ACGGAAACAGACGTGCTACGAACA -ACGGAAACAGACGTGCTACAGTCA -ACGGAAACAGACGTGCTAGATCCA -ACGGAAACAGACGTGCTAACGACA -ACGGAAACAGACGTGCTAAGCTCA -ACGGAAACAGACGTGCTATCACGT -ACGGAAACAGACGTGCTACGTAGT -ACGGAAACAGACGTGCTAGTCAGT -ACGGAAACAGACGTGCTAGAAGGT -ACGGAAACAGACGTGCTAAACCGT -ACGGAAACAGACGTGCTATTGTGC -ACGGAAACAGACGTGCTACTAAGC -ACGGAAACAGACGTGCTAACTAGC -ACGGAAACAGACGTGCTAAGATGC -ACGGAAACAGACGTGCTATGAAGG -ACGGAAACAGACGTGCTACAATGG -ACGGAAACAGACGTGCTAATGAGG -ACGGAAACAGACGTGCTAAATGGG -ACGGAAACAGACGTGCTATCCTGA -ACGGAAACAGACGTGCTATAGCGA -ACGGAAACAGACGTGCTACACAGA -ACGGAAACAGACGTGCTAGCAAGA -ACGGAAACAGACGTGCTAGGTTGA -ACGGAAACAGACGTGCTATCCGAT -ACGGAAACAGACGTGCTATGGCAT -ACGGAAACAGACGTGCTACGAGAT -ACGGAAACAGACGTGCTATACCAC -ACGGAAACAGACGTGCTACAGAAC -ACGGAAACAGACGTGCTAGTCTAC -ACGGAAACAGACGTGCTAACGTAC -ACGGAAACAGACGTGCTAAGTGAC -ACGGAAACAGACGTGCTACTGTAG -ACGGAAACAGACGTGCTACCTAAG -ACGGAAACAGACGTGCTAGTTCAG -ACGGAAACAGACGTGCTAGCATAG -ACGGAAACAGACGTGCTAGACAAG -ACGGAAACAGACGTGCTAAAGCAG -ACGGAAACAGACGTGCTACGTCAA -ACGGAAACAGACGTGCTAGCTGAA -ACGGAAACAGACGTGCTAAGTACG -ACGGAAACAGACGTGCTAATCCGA -ACGGAAACAGACGTGCTAATGGGA -ACGGAAACAGACGTGCTAGTGCAA -ACGGAAACAGACGTGCTAGAGGAA -ACGGAAACAGACGTGCTACAGGTA -ACGGAAACAGACGTGCTAGACTCT -ACGGAAACAGACGTGCTAAGTCCT -ACGGAAACAGACGTGCTATAAGCC -ACGGAAACAGACGTGCTAATAGCC -ACGGAAACAGACGTGCTATAACCG -ACGGAAACAGACGTGCTAATGCCA -ACGGAAACAGACCTGCATGGAAAC -ACGGAAACAGACCTGCATAACACC -ACGGAAACAGACCTGCATATCGAG -ACGGAAACAGACCTGCATCTCCTT -ACGGAAACAGACCTGCATCCTGTT -ACGGAAACAGACCTGCATCGGTTT -ACGGAAACAGACCTGCATGTGGTT -ACGGAAACAGACCTGCATGCCTTT -ACGGAAACAGACCTGCATGGTCTT -ACGGAAACAGACCTGCATACGCTT -ACGGAAACAGACCTGCATAGCGTT -ACGGAAACAGACCTGCATTTCGTC -ACGGAAACAGACCTGCATTCTCTC -ACGGAAACAGACCTGCATTGGATC -ACGGAAACAGACCTGCATCACTTC -ACGGAAACAGACCTGCATGTACTC -ACGGAAACAGACCTGCATGATGTC -ACGGAAACAGACCTGCATACAGTC -ACGGAAACAGACCTGCATTTGCTG -ACGGAAACAGACCTGCATTCCATG -ACGGAAACAGACCTGCATTGTGTG -ACGGAAACAGACCTGCATCTAGTG -ACGGAAACAGACCTGCATCATCTG -ACGGAAACAGACCTGCATGAGTTG -ACGGAAACAGACCTGCATAGACTG -ACGGAAACAGACCTGCATTCGGTA -ACGGAAACAGACCTGCATTGCCTA -ACGGAAACAGACCTGCATCCACTA -ACGGAAACAGACCTGCATGGAGTA -ACGGAAACAGACCTGCATTCGTCT -ACGGAAACAGACCTGCATTGCACT -ACGGAAACAGACCTGCATCTGACT -ACGGAAACAGACCTGCATCAACCT -ACGGAAACAGACCTGCATGCTACT -ACGGAAACAGACCTGCATGGATCT -ACGGAAACAGACCTGCATAAGGCT -ACGGAAACAGACCTGCATTCAACC -ACGGAAACAGACCTGCATTGTTCC -ACGGAAACAGACCTGCATATTCCC -ACGGAAACAGACCTGCATTTCTCG -ACGGAAACAGACCTGCATTAGACG -ACGGAAACAGACCTGCATGTAACG -ACGGAAACAGACCTGCATACTTCG -ACGGAAACAGACCTGCATTACGCA -ACGGAAACAGACCTGCATCTTGCA -ACGGAAACAGACCTGCATCGAACA -ACGGAAACAGACCTGCATCAGTCA -ACGGAAACAGACCTGCATGATCCA -ACGGAAACAGACCTGCATACGACA -ACGGAAACAGACCTGCATAGCTCA -ACGGAAACAGACCTGCATTCACGT -ACGGAAACAGACCTGCATCGTAGT -ACGGAAACAGACCTGCATGTCAGT -ACGGAAACAGACCTGCATGAAGGT -ACGGAAACAGACCTGCATAACCGT -ACGGAAACAGACCTGCATTTGTGC -ACGGAAACAGACCTGCATCTAAGC -ACGGAAACAGACCTGCATACTAGC -ACGGAAACAGACCTGCATAGATGC -ACGGAAACAGACCTGCATTGAAGG -ACGGAAACAGACCTGCATCAATGG -ACGGAAACAGACCTGCATATGAGG -ACGGAAACAGACCTGCATAATGGG -ACGGAAACAGACCTGCATTCCTGA -ACGGAAACAGACCTGCATTAGCGA -ACGGAAACAGACCTGCATCACAGA -ACGGAAACAGACCTGCATGCAAGA -ACGGAAACAGACCTGCATGGTTGA -ACGGAAACAGACCTGCATTCCGAT -ACGGAAACAGACCTGCATTGGCAT -ACGGAAACAGACCTGCATCGAGAT -ACGGAAACAGACCTGCATTACCAC -ACGGAAACAGACCTGCATCAGAAC -ACGGAAACAGACCTGCATGTCTAC -ACGGAAACAGACCTGCATACGTAC -ACGGAAACAGACCTGCATAGTGAC -ACGGAAACAGACCTGCATCTGTAG -ACGGAAACAGACCTGCATCCTAAG -ACGGAAACAGACCTGCATGTTCAG -ACGGAAACAGACCTGCATGCATAG -ACGGAAACAGACCTGCATGACAAG -ACGGAAACAGACCTGCATAAGCAG -ACGGAAACAGACCTGCATCGTCAA -ACGGAAACAGACCTGCATGCTGAA -ACGGAAACAGACCTGCATAGTACG -ACGGAAACAGACCTGCATATCCGA -ACGGAAACAGACCTGCATATGGGA -ACGGAAACAGACCTGCATGTGCAA -ACGGAAACAGACCTGCATGAGGAA -ACGGAAACAGACCTGCATCAGGTA -ACGGAAACAGACCTGCATGACTCT -ACGGAAACAGACCTGCATAGTCCT -ACGGAAACAGACCTGCATTAAGCC -ACGGAAACAGACCTGCATATAGCC -ACGGAAACAGACCTGCATTAACCG -ACGGAAACAGACCTGCATATGCCA -ACGGAAACAGACTTGGAGGGAAAC -ACGGAAACAGACTTGGAGAACACC -ACGGAAACAGACTTGGAGATCGAG -ACGGAAACAGACTTGGAGCTCCTT -ACGGAAACAGACTTGGAGCCTGTT -ACGGAAACAGACTTGGAGCGGTTT -ACGGAAACAGACTTGGAGGTGGTT -ACGGAAACAGACTTGGAGGCCTTT -ACGGAAACAGACTTGGAGGGTCTT -ACGGAAACAGACTTGGAGACGCTT -ACGGAAACAGACTTGGAGAGCGTT -ACGGAAACAGACTTGGAGTTCGTC -ACGGAAACAGACTTGGAGTCTCTC -ACGGAAACAGACTTGGAGTGGATC -ACGGAAACAGACTTGGAGCACTTC -ACGGAAACAGACTTGGAGGTACTC -ACGGAAACAGACTTGGAGGATGTC -ACGGAAACAGACTTGGAGACAGTC -ACGGAAACAGACTTGGAGTTGCTG -ACGGAAACAGACTTGGAGTCCATG -ACGGAAACAGACTTGGAGTGTGTG -ACGGAAACAGACTTGGAGCTAGTG -ACGGAAACAGACTTGGAGCATCTG -ACGGAAACAGACTTGGAGGAGTTG -ACGGAAACAGACTTGGAGAGACTG -ACGGAAACAGACTTGGAGTCGGTA -ACGGAAACAGACTTGGAGTGCCTA -ACGGAAACAGACTTGGAGCCACTA -ACGGAAACAGACTTGGAGGGAGTA -ACGGAAACAGACTTGGAGTCGTCT -ACGGAAACAGACTTGGAGTGCACT -ACGGAAACAGACTTGGAGCTGACT -ACGGAAACAGACTTGGAGCAACCT -ACGGAAACAGACTTGGAGGCTACT -ACGGAAACAGACTTGGAGGGATCT -ACGGAAACAGACTTGGAGAAGGCT -ACGGAAACAGACTTGGAGTCAACC -ACGGAAACAGACTTGGAGTGTTCC -ACGGAAACAGACTTGGAGATTCCC -ACGGAAACAGACTTGGAGTTCTCG -ACGGAAACAGACTTGGAGTAGACG -ACGGAAACAGACTTGGAGGTAACG -ACGGAAACAGACTTGGAGACTTCG -ACGGAAACAGACTTGGAGTACGCA -ACGGAAACAGACTTGGAGCTTGCA -ACGGAAACAGACTTGGAGCGAACA -ACGGAAACAGACTTGGAGCAGTCA -ACGGAAACAGACTTGGAGGATCCA -ACGGAAACAGACTTGGAGACGACA -ACGGAAACAGACTTGGAGAGCTCA -ACGGAAACAGACTTGGAGTCACGT -ACGGAAACAGACTTGGAGCGTAGT -ACGGAAACAGACTTGGAGGTCAGT -ACGGAAACAGACTTGGAGGAAGGT -ACGGAAACAGACTTGGAGAACCGT -ACGGAAACAGACTTGGAGTTGTGC -ACGGAAACAGACTTGGAGCTAAGC -ACGGAAACAGACTTGGAGACTAGC -ACGGAAACAGACTTGGAGAGATGC -ACGGAAACAGACTTGGAGTGAAGG -ACGGAAACAGACTTGGAGCAATGG -ACGGAAACAGACTTGGAGATGAGG -ACGGAAACAGACTTGGAGAATGGG -ACGGAAACAGACTTGGAGTCCTGA -ACGGAAACAGACTTGGAGTAGCGA -ACGGAAACAGACTTGGAGCACAGA -ACGGAAACAGACTTGGAGGCAAGA -ACGGAAACAGACTTGGAGGGTTGA -ACGGAAACAGACTTGGAGTCCGAT -ACGGAAACAGACTTGGAGTGGCAT -ACGGAAACAGACTTGGAGCGAGAT -ACGGAAACAGACTTGGAGTACCAC -ACGGAAACAGACTTGGAGCAGAAC -ACGGAAACAGACTTGGAGGTCTAC -ACGGAAACAGACTTGGAGACGTAC -ACGGAAACAGACTTGGAGAGTGAC -ACGGAAACAGACTTGGAGCTGTAG -ACGGAAACAGACTTGGAGCCTAAG -ACGGAAACAGACTTGGAGGTTCAG -ACGGAAACAGACTTGGAGGCATAG -ACGGAAACAGACTTGGAGGACAAG -ACGGAAACAGACTTGGAGAAGCAG -ACGGAAACAGACTTGGAGCGTCAA -ACGGAAACAGACTTGGAGGCTGAA -ACGGAAACAGACTTGGAGAGTACG -ACGGAAACAGACTTGGAGATCCGA -ACGGAAACAGACTTGGAGATGGGA -ACGGAAACAGACTTGGAGGTGCAA -ACGGAAACAGACTTGGAGGAGGAA -ACGGAAACAGACTTGGAGCAGGTA -ACGGAAACAGACTTGGAGGACTCT -ACGGAAACAGACTTGGAGAGTCCT -ACGGAAACAGACTTGGAGTAAGCC -ACGGAAACAGACTTGGAGATAGCC -ACGGAAACAGACTTGGAGTAACCG -ACGGAAACAGACTTGGAGATGCCA -ACGGAAACAGACCTGAGAGGAAAC -ACGGAAACAGACCTGAGAAACACC -ACGGAAACAGACCTGAGAATCGAG -ACGGAAACAGACCTGAGACTCCTT -ACGGAAACAGACCTGAGACCTGTT -ACGGAAACAGACCTGAGACGGTTT -ACGGAAACAGACCTGAGAGTGGTT -ACGGAAACAGACCTGAGAGCCTTT -ACGGAAACAGACCTGAGAGGTCTT -ACGGAAACAGACCTGAGAACGCTT -ACGGAAACAGACCTGAGAAGCGTT -ACGGAAACAGACCTGAGATTCGTC -ACGGAAACAGACCTGAGATCTCTC -ACGGAAACAGACCTGAGATGGATC -ACGGAAACAGACCTGAGACACTTC -ACGGAAACAGACCTGAGAGTACTC -ACGGAAACAGACCTGAGAGATGTC -ACGGAAACAGACCTGAGAACAGTC -ACGGAAACAGACCTGAGATTGCTG -ACGGAAACAGACCTGAGATCCATG -ACGGAAACAGACCTGAGATGTGTG -ACGGAAACAGACCTGAGACTAGTG -ACGGAAACAGACCTGAGACATCTG -ACGGAAACAGACCTGAGAGAGTTG -ACGGAAACAGACCTGAGAAGACTG -ACGGAAACAGACCTGAGATCGGTA -ACGGAAACAGACCTGAGATGCCTA -ACGGAAACAGACCTGAGACCACTA -ACGGAAACAGACCTGAGAGGAGTA -ACGGAAACAGACCTGAGATCGTCT -ACGGAAACAGACCTGAGATGCACT -ACGGAAACAGACCTGAGACTGACT -ACGGAAACAGACCTGAGACAACCT -ACGGAAACAGACCTGAGAGCTACT -ACGGAAACAGACCTGAGAGGATCT -ACGGAAACAGACCTGAGAAAGGCT -ACGGAAACAGACCTGAGATCAACC -ACGGAAACAGACCTGAGATGTTCC -ACGGAAACAGACCTGAGAATTCCC -ACGGAAACAGACCTGAGATTCTCG -ACGGAAACAGACCTGAGATAGACG -ACGGAAACAGACCTGAGAGTAACG -ACGGAAACAGACCTGAGAACTTCG -ACGGAAACAGACCTGAGATACGCA -ACGGAAACAGACCTGAGACTTGCA -ACGGAAACAGACCTGAGACGAACA -ACGGAAACAGACCTGAGACAGTCA -ACGGAAACAGACCTGAGAGATCCA -ACGGAAACAGACCTGAGAACGACA -ACGGAAACAGACCTGAGAAGCTCA -ACGGAAACAGACCTGAGATCACGT -ACGGAAACAGACCTGAGACGTAGT -ACGGAAACAGACCTGAGAGTCAGT -ACGGAAACAGACCTGAGAGAAGGT -ACGGAAACAGACCTGAGAAACCGT -ACGGAAACAGACCTGAGATTGTGC -ACGGAAACAGACCTGAGACTAAGC -ACGGAAACAGACCTGAGAACTAGC -ACGGAAACAGACCTGAGAAGATGC -ACGGAAACAGACCTGAGATGAAGG -ACGGAAACAGACCTGAGACAATGG -ACGGAAACAGACCTGAGAATGAGG -ACGGAAACAGACCTGAGAAATGGG -ACGGAAACAGACCTGAGATCCTGA -ACGGAAACAGACCTGAGATAGCGA -ACGGAAACAGACCTGAGACACAGA -ACGGAAACAGACCTGAGAGCAAGA -ACGGAAACAGACCTGAGAGGTTGA -ACGGAAACAGACCTGAGATCCGAT -ACGGAAACAGACCTGAGATGGCAT -ACGGAAACAGACCTGAGACGAGAT -ACGGAAACAGACCTGAGATACCAC -ACGGAAACAGACCTGAGACAGAAC -ACGGAAACAGACCTGAGAGTCTAC -ACGGAAACAGACCTGAGAACGTAC -ACGGAAACAGACCTGAGAAGTGAC -ACGGAAACAGACCTGAGACTGTAG -ACGGAAACAGACCTGAGACCTAAG -ACGGAAACAGACCTGAGAGTTCAG -ACGGAAACAGACCTGAGAGCATAG -ACGGAAACAGACCTGAGAGACAAG -ACGGAAACAGACCTGAGAAAGCAG -ACGGAAACAGACCTGAGACGTCAA -ACGGAAACAGACCTGAGAGCTGAA -ACGGAAACAGACCTGAGAAGTACG -ACGGAAACAGACCTGAGAATCCGA -ACGGAAACAGACCTGAGAATGGGA -ACGGAAACAGACCTGAGAGTGCAA -ACGGAAACAGACCTGAGAGAGGAA -ACGGAAACAGACCTGAGACAGGTA -ACGGAAACAGACCTGAGAGACTCT -ACGGAAACAGACCTGAGAAGTCCT -ACGGAAACAGACCTGAGATAAGCC -ACGGAAACAGACCTGAGAATAGCC -ACGGAAACAGACCTGAGATAACCG -ACGGAAACAGACCTGAGAATGCCA -ACGGAAACAGACGTATCGGGAAAC -ACGGAAACAGACGTATCGAACACC -ACGGAAACAGACGTATCGATCGAG -ACGGAAACAGACGTATCGCTCCTT -ACGGAAACAGACGTATCGCCTGTT -ACGGAAACAGACGTATCGCGGTTT -ACGGAAACAGACGTATCGGTGGTT -ACGGAAACAGACGTATCGGCCTTT -ACGGAAACAGACGTATCGGGTCTT -ACGGAAACAGACGTATCGACGCTT -ACGGAAACAGACGTATCGAGCGTT -ACGGAAACAGACGTATCGTTCGTC -ACGGAAACAGACGTATCGTCTCTC -ACGGAAACAGACGTATCGTGGATC -ACGGAAACAGACGTATCGCACTTC -ACGGAAACAGACGTATCGGTACTC -ACGGAAACAGACGTATCGGATGTC -ACGGAAACAGACGTATCGACAGTC -ACGGAAACAGACGTATCGTTGCTG -ACGGAAACAGACGTATCGTCCATG -ACGGAAACAGACGTATCGTGTGTG -ACGGAAACAGACGTATCGCTAGTG -ACGGAAACAGACGTATCGCATCTG -ACGGAAACAGACGTATCGGAGTTG -ACGGAAACAGACGTATCGAGACTG -ACGGAAACAGACGTATCGTCGGTA -ACGGAAACAGACGTATCGTGCCTA -ACGGAAACAGACGTATCGCCACTA -ACGGAAACAGACGTATCGGGAGTA -ACGGAAACAGACGTATCGTCGTCT -ACGGAAACAGACGTATCGTGCACT -ACGGAAACAGACGTATCGCTGACT -ACGGAAACAGACGTATCGCAACCT -ACGGAAACAGACGTATCGGCTACT -ACGGAAACAGACGTATCGGGATCT -ACGGAAACAGACGTATCGAAGGCT -ACGGAAACAGACGTATCGTCAACC -ACGGAAACAGACGTATCGTGTTCC -ACGGAAACAGACGTATCGATTCCC -ACGGAAACAGACGTATCGTTCTCG -ACGGAAACAGACGTATCGTAGACG -ACGGAAACAGACGTATCGGTAACG -ACGGAAACAGACGTATCGACTTCG -ACGGAAACAGACGTATCGTACGCA -ACGGAAACAGACGTATCGCTTGCA -ACGGAAACAGACGTATCGCGAACA -ACGGAAACAGACGTATCGCAGTCA -ACGGAAACAGACGTATCGGATCCA -ACGGAAACAGACGTATCGACGACA -ACGGAAACAGACGTATCGAGCTCA -ACGGAAACAGACGTATCGTCACGT -ACGGAAACAGACGTATCGCGTAGT -ACGGAAACAGACGTATCGGTCAGT -ACGGAAACAGACGTATCGGAAGGT -ACGGAAACAGACGTATCGAACCGT -ACGGAAACAGACGTATCGTTGTGC -ACGGAAACAGACGTATCGCTAAGC -ACGGAAACAGACGTATCGACTAGC -ACGGAAACAGACGTATCGAGATGC -ACGGAAACAGACGTATCGTGAAGG -ACGGAAACAGACGTATCGCAATGG -ACGGAAACAGACGTATCGATGAGG -ACGGAAACAGACGTATCGAATGGG -ACGGAAACAGACGTATCGTCCTGA -ACGGAAACAGACGTATCGTAGCGA -ACGGAAACAGACGTATCGCACAGA -ACGGAAACAGACGTATCGGCAAGA -ACGGAAACAGACGTATCGGGTTGA -ACGGAAACAGACGTATCGTCCGAT -ACGGAAACAGACGTATCGTGGCAT -ACGGAAACAGACGTATCGCGAGAT -ACGGAAACAGACGTATCGTACCAC -ACGGAAACAGACGTATCGCAGAAC -ACGGAAACAGACGTATCGGTCTAC -ACGGAAACAGACGTATCGACGTAC -ACGGAAACAGACGTATCGAGTGAC -ACGGAAACAGACGTATCGCTGTAG -ACGGAAACAGACGTATCGCCTAAG -ACGGAAACAGACGTATCGGTTCAG -ACGGAAACAGACGTATCGGCATAG -ACGGAAACAGACGTATCGGACAAG -ACGGAAACAGACGTATCGAAGCAG -ACGGAAACAGACGTATCGCGTCAA -ACGGAAACAGACGTATCGGCTGAA -ACGGAAACAGACGTATCGAGTACG -ACGGAAACAGACGTATCGATCCGA -ACGGAAACAGACGTATCGATGGGA -ACGGAAACAGACGTATCGGTGCAA -ACGGAAACAGACGTATCGGAGGAA -ACGGAAACAGACGTATCGCAGGTA -ACGGAAACAGACGTATCGGACTCT -ACGGAAACAGACGTATCGAGTCCT -ACGGAAACAGACGTATCGTAAGCC -ACGGAAACAGACGTATCGATAGCC -ACGGAAACAGACGTATCGTAACCG -ACGGAAACAGACGTATCGATGCCA -ACGGAAACAGACCTATGCGGAAAC -ACGGAAACAGACCTATGCAACACC -ACGGAAACAGACCTATGCATCGAG -ACGGAAACAGACCTATGCCTCCTT -ACGGAAACAGACCTATGCCCTGTT -ACGGAAACAGACCTATGCCGGTTT -ACGGAAACAGACCTATGCGTGGTT -ACGGAAACAGACCTATGCGCCTTT -ACGGAAACAGACCTATGCGGTCTT -ACGGAAACAGACCTATGCACGCTT -ACGGAAACAGACCTATGCAGCGTT -ACGGAAACAGACCTATGCTTCGTC -ACGGAAACAGACCTATGCTCTCTC -ACGGAAACAGACCTATGCTGGATC -ACGGAAACAGACCTATGCCACTTC -ACGGAAACAGACCTATGCGTACTC -ACGGAAACAGACCTATGCGATGTC -ACGGAAACAGACCTATGCACAGTC -ACGGAAACAGACCTATGCTTGCTG -ACGGAAACAGACCTATGCTCCATG -ACGGAAACAGACCTATGCTGTGTG -ACGGAAACAGACCTATGCCTAGTG -ACGGAAACAGACCTATGCCATCTG -ACGGAAACAGACCTATGCGAGTTG -ACGGAAACAGACCTATGCAGACTG -ACGGAAACAGACCTATGCTCGGTA -ACGGAAACAGACCTATGCTGCCTA -ACGGAAACAGACCTATGCCCACTA -ACGGAAACAGACCTATGCGGAGTA -ACGGAAACAGACCTATGCTCGTCT -ACGGAAACAGACCTATGCTGCACT -ACGGAAACAGACCTATGCCTGACT -ACGGAAACAGACCTATGCCAACCT -ACGGAAACAGACCTATGCGCTACT -ACGGAAACAGACCTATGCGGATCT -ACGGAAACAGACCTATGCAAGGCT -ACGGAAACAGACCTATGCTCAACC -ACGGAAACAGACCTATGCTGTTCC -ACGGAAACAGACCTATGCATTCCC -ACGGAAACAGACCTATGCTTCTCG -ACGGAAACAGACCTATGCTAGACG -ACGGAAACAGACCTATGCGTAACG -ACGGAAACAGACCTATGCACTTCG -ACGGAAACAGACCTATGCTACGCA -ACGGAAACAGACCTATGCCTTGCA -ACGGAAACAGACCTATGCCGAACA -ACGGAAACAGACCTATGCCAGTCA -ACGGAAACAGACCTATGCGATCCA -ACGGAAACAGACCTATGCACGACA -ACGGAAACAGACCTATGCAGCTCA -ACGGAAACAGACCTATGCTCACGT -ACGGAAACAGACCTATGCCGTAGT -ACGGAAACAGACCTATGCGTCAGT -ACGGAAACAGACCTATGCGAAGGT -ACGGAAACAGACCTATGCAACCGT -ACGGAAACAGACCTATGCTTGTGC -ACGGAAACAGACCTATGCCTAAGC -ACGGAAACAGACCTATGCACTAGC -ACGGAAACAGACCTATGCAGATGC -ACGGAAACAGACCTATGCTGAAGG -ACGGAAACAGACCTATGCCAATGG -ACGGAAACAGACCTATGCATGAGG -ACGGAAACAGACCTATGCAATGGG -ACGGAAACAGACCTATGCTCCTGA -ACGGAAACAGACCTATGCTAGCGA -ACGGAAACAGACCTATGCCACAGA -ACGGAAACAGACCTATGCGCAAGA -ACGGAAACAGACCTATGCGGTTGA -ACGGAAACAGACCTATGCTCCGAT -ACGGAAACAGACCTATGCTGGCAT -ACGGAAACAGACCTATGCCGAGAT -ACGGAAACAGACCTATGCTACCAC -ACGGAAACAGACCTATGCCAGAAC -ACGGAAACAGACCTATGCGTCTAC -ACGGAAACAGACCTATGCACGTAC -ACGGAAACAGACCTATGCAGTGAC -ACGGAAACAGACCTATGCCTGTAG -ACGGAAACAGACCTATGCCCTAAG -ACGGAAACAGACCTATGCGTTCAG -ACGGAAACAGACCTATGCGCATAG -ACGGAAACAGACCTATGCGACAAG -ACGGAAACAGACCTATGCAAGCAG -ACGGAAACAGACCTATGCCGTCAA -ACGGAAACAGACCTATGCGCTGAA -ACGGAAACAGACCTATGCAGTACG -ACGGAAACAGACCTATGCATCCGA -ACGGAAACAGACCTATGCATGGGA -ACGGAAACAGACCTATGCGTGCAA -ACGGAAACAGACCTATGCGAGGAA -ACGGAAACAGACCTATGCCAGGTA -ACGGAAACAGACCTATGCGACTCT -ACGGAAACAGACCTATGCAGTCCT -ACGGAAACAGACCTATGCTAAGCC -ACGGAAACAGACCTATGCATAGCC -ACGGAAACAGACCTATGCTAACCG -ACGGAAACAGACCTATGCATGCCA -ACGGAAACAGACCTACCAGGAAAC -ACGGAAACAGACCTACCAAACACC -ACGGAAACAGACCTACCAATCGAG -ACGGAAACAGACCTACCACTCCTT -ACGGAAACAGACCTACCACCTGTT -ACGGAAACAGACCTACCACGGTTT -ACGGAAACAGACCTACCAGTGGTT -ACGGAAACAGACCTACCAGCCTTT -ACGGAAACAGACCTACCAGGTCTT -ACGGAAACAGACCTACCAACGCTT -ACGGAAACAGACCTACCAAGCGTT -ACGGAAACAGACCTACCATTCGTC -ACGGAAACAGACCTACCATCTCTC -ACGGAAACAGACCTACCATGGATC -ACGGAAACAGACCTACCACACTTC -ACGGAAACAGACCTACCAGTACTC -ACGGAAACAGACCTACCAGATGTC -ACGGAAACAGACCTACCAACAGTC -ACGGAAACAGACCTACCATTGCTG -ACGGAAACAGACCTACCATCCATG -ACGGAAACAGACCTACCATGTGTG -ACGGAAACAGACCTACCACTAGTG -ACGGAAACAGACCTACCACATCTG -ACGGAAACAGACCTACCAGAGTTG -ACGGAAACAGACCTACCAAGACTG -ACGGAAACAGACCTACCATCGGTA -ACGGAAACAGACCTACCATGCCTA -ACGGAAACAGACCTACCACCACTA -ACGGAAACAGACCTACCAGGAGTA -ACGGAAACAGACCTACCATCGTCT -ACGGAAACAGACCTACCATGCACT -ACGGAAACAGACCTACCACTGACT -ACGGAAACAGACCTACCACAACCT -ACGGAAACAGACCTACCAGCTACT -ACGGAAACAGACCTACCAGGATCT -ACGGAAACAGACCTACCAAAGGCT -ACGGAAACAGACCTACCATCAACC -ACGGAAACAGACCTACCATGTTCC -ACGGAAACAGACCTACCAATTCCC -ACGGAAACAGACCTACCATTCTCG -ACGGAAACAGACCTACCATAGACG -ACGGAAACAGACCTACCAGTAACG -ACGGAAACAGACCTACCAACTTCG -ACGGAAACAGACCTACCATACGCA -ACGGAAACAGACCTACCACTTGCA -ACGGAAACAGACCTACCACGAACA -ACGGAAACAGACCTACCACAGTCA -ACGGAAACAGACCTACCAGATCCA -ACGGAAACAGACCTACCAACGACA -ACGGAAACAGACCTACCAAGCTCA -ACGGAAACAGACCTACCATCACGT -ACGGAAACAGACCTACCACGTAGT -ACGGAAACAGACCTACCAGTCAGT -ACGGAAACAGACCTACCAGAAGGT -ACGGAAACAGACCTACCAAACCGT -ACGGAAACAGACCTACCATTGTGC -ACGGAAACAGACCTACCACTAAGC -ACGGAAACAGACCTACCAACTAGC -ACGGAAACAGACCTACCAAGATGC -ACGGAAACAGACCTACCATGAAGG -ACGGAAACAGACCTACCACAATGG -ACGGAAACAGACCTACCAATGAGG -ACGGAAACAGACCTACCAAATGGG -ACGGAAACAGACCTACCATCCTGA -ACGGAAACAGACCTACCATAGCGA -ACGGAAACAGACCTACCACACAGA -ACGGAAACAGACCTACCAGCAAGA -ACGGAAACAGACCTACCAGGTTGA -ACGGAAACAGACCTACCATCCGAT -ACGGAAACAGACCTACCATGGCAT -ACGGAAACAGACCTACCACGAGAT -ACGGAAACAGACCTACCATACCAC -ACGGAAACAGACCTACCACAGAAC -ACGGAAACAGACCTACCAGTCTAC -ACGGAAACAGACCTACCAACGTAC -ACGGAAACAGACCTACCAAGTGAC -ACGGAAACAGACCTACCACTGTAG -ACGGAAACAGACCTACCACCTAAG -ACGGAAACAGACCTACCAGTTCAG -ACGGAAACAGACCTACCAGCATAG -ACGGAAACAGACCTACCAGACAAG -ACGGAAACAGACCTACCAAAGCAG -ACGGAAACAGACCTACCACGTCAA -ACGGAAACAGACCTACCAGCTGAA -ACGGAAACAGACCTACCAAGTACG -ACGGAAACAGACCTACCAATCCGA -ACGGAAACAGACCTACCAATGGGA -ACGGAAACAGACCTACCAGTGCAA -ACGGAAACAGACCTACCAGAGGAA -ACGGAAACAGACCTACCACAGGTA -ACGGAAACAGACCTACCAGACTCT -ACGGAAACAGACCTACCAAGTCCT -ACGGAAACAGACCTACCATAAGCC -ACGGAAACAGACCTACCAATAGCC -ACGGAAACAGACCTACCATAACCG -ACGGAAACAGACCTACCAATGCCA -ACGGAAACAGACGTAGGAGGAAAC -ACGGAAACAGACGTAGGAAACACC -ACGGAAACAGACGTAGGAATCGAG -ACGGAAACAGACGTAGGACTCCTT -ACGGAAACAGACGTAGGACCTGTT -ACGGAAACAGACGTAGGACGGTTT -ACGGAAACAGACGTAGGAGTGGTT -ACGGAAACAGACGTAGGAGCCTTT -ACGGAAACAGACGTAGGAGGTCTT -ACGGAAACAGACGTAGGAACGCTT -ACGGAAACAGACGTAGGAAGCGTT -ACGGAAACAGACGTAGGATTCGTC -ACGGAAACAGACGTAGGATCTCTC -ACGGAAACAGACGTAGGATGGATC -ACGGAAACAGACGTAGGACACTTC -ACGGAAACAGACGTAGGAGTACTC -ACGGAAACAGACGTAGGAGATGTC -ACGGAAACAGACGTAGGAACAGTC -ACGGAAACAGACGTAGGATTGCTG -ACGGAAACAGACGTAGGATCCATG -ACGGAAACAGACGTAGGATGTGTG -ACGGAAACAGACGTAGGACTAGTG -ACGGAAACAGACGTAGGACATCTG -ACGGAAACAGACGTAGGAGAGTTG -ACGGAAACAGACGTAGGAAGACTG -ACGGAAACAGACGTAGGATCGGTA -ACGGAAACAGACGTAGGATGCCTA -ACGGAAACAGACGTAGGACCACTA -ACGGAAACAGACGTAGGAGGAGTA -ACGGAAACAGACGTAGGATCGTCT -ACGGAAACAGACGTAGGATGCACT -ACGGAAACAGACGTAGGACTGACT -ACGGAAACAGACGTAGGACAACCT -ACGGAAACAGACGTAGGAGCTACT -ACGGAAACAGACGTAGGAGGATCT -ACGGAAACAGACGTAGGAAAGGCT -ACGGAAACAGACGTAGGATCAACC -ACGGAAACAGACGTAGGATGTTCC -ACGGAAACAGACGTAGGAATTCCC -ACGGAAACAGACGTAGGATTCTCG -ACGGAAACAGACGTAGGATAGACG -ACGGAAACAGACGTAGGAGTAACG -ACGGAAACAGACGTAGGAACTTCG -ACGGAAACAGACGTAGGATACGCA -ACGGAAACAGACGTAGGACTTGCA -ACGGAAACAGACGTAGGACGAACA -ACGGAAACAGACGTAGGACAGTCA -ACGGAAACAGACGTAGGAGATCCA -ACGGAAACAGACGTAGGAACGACA -ACGGAAACAGACGTAGGAAGCTCA -ACGGAAACAGACGTAGGATCACGT -ACGGAAACAGACGTAGGACGTAGT -ACGGAAACAGACGTAGGAGTCAGT -ACGGAAACAGACGTAGGAGAAGGT -ACGGAAACAGACGTAGGAAACCGT -ACGGAAACAGACGTAGGATTGTGC -ACGGAAACAGACGTAGGACTAAGC -ACGGAAACAGACGTAGGAACTAGC -ACGGAAACAGACGTAGGAAGATGC -ACGGAAACAGACGTAGGATGAAGG -ACGGAAACAGACGTAGGACAATGG -ACGGAAACAGACGTAGGAATGAGG -ACGGAAACAGACGTAGGAAATGGG -ACGGAAACAGACGTAGGATCCTGA -ACGGAAACAGACGTAGGATAGCGA -ACGGAAACAGACGTAGGACACAGA -ACGGAAACAGACGTAGGAGCAAGA -ACGGAAACAGACGTAGGAGGTTGA -ACGGAAACAGACGTAGGATCCGAT -ACGGAAACAGACGTAGGATGGCAT -ACGGAAACAGACGTAGGACGAGAT -ACGGAAACAGACGTAGGATACCAC -ACGGAAACAGACGTAGGACAGAAC -ACGGAAACAGACGTAGGAGTCTAC -ACGGAAACAGACGTAGGAACGTAC -ACGGAAACAGACGTAGGAAGTGAC -ACGGAAACAGACGTAGGACTGTAG -ACGGAAACAGACGTAGGACCTAAG -ACGGAAACAGACGTAGGAGTTCAG -ACGGAAACAGACGTAGGAGCATAG -ACGGAAACAGACGTAGGAGACAAG -ACGGAAACAGACGTAGGAAAGCAG -ACGGAAACAGACGTAGGACGTCAA -ACGGAAACAGACGTAGGAGCTGAA -ACGGAAACAGACGTAGGAAGTACG -ACGGAAACAGACGTAGGAATCCGA -ACGGAAACAGACGTAGGAATGGGA -ACGGAAACAGACGTAGGAGTGCAA -ACGGAAACAGACGTAGGAGAGGAA -ACGGAAACAGACGTAGGACAGGTA -ACGGAAACAGACGTAGGAGACTCT -ACGGAAACAGACGTAGGAAGTCCT -ACGGAAACAGACGTAGGATAAGCC -ACGGAAACAGACGTAGGAATAGCC -ACGGAAACAGACGTAGGATAACCG -ACGGAAACAGACGTAGGAATGCCA -ACGGAAACAGACTCTTCGGGAAAC -ACGGAAACAGACTCTTCGAACACC -ACGGAAACAGACTCTTCGATCGAG -ACGGAAACAGACTCTTCGCTCCTT -ACGGAAACAGACTCTTCGCCTGTT -ACGGAAACAGACTCTTCGCGGTTT -ACGGAAACAGACTCTTCGGTGGTT -ACGGAAACAGACTCTTCGGCCTTT -ACGGAAACAGACTCTTCGGGTCTT -ACGGAAACAGACTCTTCGACGCTT -ACGGAAACAGACTCTTCGAGCGTT -ACGGAAACAGACTCTTCGTTCGTC -ACGGAAACAGACTCTTCGTCTCTC -ACGGAAACAGACTCTTCGTGGATC -ACGGAAACAGACTCTTCGCACTTC -ACGGAAACAGACTCTTCGGTACTC -ACGGAAACAGACTCTTCGGATGTC -ACGGAAACAGACTCTTCGACAGTC -ACGGAAACAGACTCTTCGTTGCTG -ACGGAAACAGACTCTTCGTCCATG -ACGGAAACAGACTCTTCGTGTGTG -ACGGAAACAGACTCTTCGCTAGTG -ACGGAAACAGACTCTTCGCATCTG -ACGGAAACAGACTCTTCGGAGTTG -ACGGAAACAGACTCTTCGAGACTG -ACGGAAACAGACTCTTCGTCGGTA -ACGGAAACAGACTCTTCGTGCCTA -ACGGAAACAGACTCTTCGCCACTA -ACGGAAACAGACTCTTCGGGAGTA -ACGGAAACAGACTCTTCGTCGTCT -ACGGAAACAGACTCTTCGTGCACT -ACGGAAACAGACTCTTCGCTGACT -ACGGAAACAGACTCTTCGCAACCT -ACGGAAACAGACTCTTCGGCTACT -ACGGAAACAGACTCTTCGGGATCT -ACGGAAACAGACTCTTCGAAGGCT -ACGGAAACAGACTCTTCGTCAACC -ACGGAAACAGACTCTTCGTGTTCC -ACGGAAACAGACTCTTCGATTCCC -ACGGAAACAGACTCTTCGTTCTCG -ACGGAAACAGACTCTTCGTAGACG -ACGGAAACAGACTCTTCGGTAACG -ACGGAAACAGACTCTTCGACTTCG -ACGGAAACAGACTCTTCGTACGCA -ACGGAAACAGACTCTTCGCTTGCA -ACGGAAACAGACTCTTCGCGAACA -ACGGAAACAGACTCTTCGCAGTCA -ACGGAAACAGACTCTTCGGATCCA -ACGGAAACAGACTCTTCGACGACA -ACGGAAACAGACTCTTCGAGCTCA -ACGGAAACAGACTCTTCGTCACGT -ACGGAAACAGACTCTTCGCGTAGT -ACGGAAACAGACTCTTCGGTCAGT -ACGGAAACAGACTCTTCGGAAGGT -ACGGAAACAGACTCTTCGAACCGT -ACGGAAACAGACTCTTCGTTGTGC -ACGGAAACAGACTCTTCGCTAAGC -ACGGAAACAGACTCTTCGACTAGC -ACGGAAACAGACTCTTCGAGATGC -ACGGAAACAGACTCTTCGTGAAGG -ACGGAAACAGACTCTTCGCAATGG -ACGGAAACAGACTCTTCGATGAGG -ACGGAAACAGACTCTTCGAATGGG -ACGGAAACAGACTCTTCGTCCTGA -ACGGAAACAGACTCTTCGTAGCGA -ACGGAAACAGACTCTTCGCACAGA -ACGGAAACAGACTCTTCGGCAAGA -ACGGAAACAGACTCTTCGGGTTGA -ACGGAAACAGACTCTTCGTCCGAT -ACGGAAACAGACTCTTCGTGGCAT -ACGGAAACAGACTCTTCGCGAGAT -ACGGAAACAGACTCTTCGTACCAC -ACGGAAACAGACTCTTCGCAGAAC -ACGGAAACAGACTCTTCGGTCTAC -ACGGAAACAGACTCTTCGACGTAC -ACGGAAACAGACTCTTCGAGTGAC -ACGGAAACAGACTCTTCGCTGTAG -ACGGAAACAGACTCTTCGCCTAAG -ACGGAAACAGACTCTTCGGTTCAG -ACGGAAACAGACTCTTCGGCATAG -ACGGAAACAGACTCTTCGGACAAG -ACGGAAACAGACTCTTCGAAGCAG -ACGGAAACAGACTCTTCGCGTCAA -ACGGAAACAGACTCTTCGGCTGAA -ACGGAAACAGACTCTTCGAGTACG -ACGGAAACAGACTCTTCGATCCGA -ACGGAAACAGACTCTTCGATGGGA -ACGGAAACAGACTCTTCGGTGCAA -ACGGAAACAGACTCTTCGGAGGAA -ACGGAAACAGACTCTTCGCAGGTA -ACGGAAACAGACTCTTCGGACTCT -ACGGAAACAGACTCTTCGAGTCCT -ACGGAAACAGACTCTTCGTAAGCC -ACGGAAACAGACTCTTCGATAGCC -ACGGAAACAGACTCTTCGTAACCG -ACGGAAACAGACTCTTCGATGCCA -ACGGAAACAGACACTTGCGGAAAC -ACGGAAACAGACACTTGCAACACC -ACGGAAACAGACACTTGCATCGAG -ACGGAAACAGACACTTGCCTCCTT -ACGGAAACAGACACTTGCCCTGTT -ACGGAAACAGACACTTGCCGGTTT -ACGGAAACAGACACTTGCGTGGTT -ACGGAAACAGACACTTGCGCCTTT -ACGGAAACAGACACTTGCGGTCTT -ACGGAAACAGACACTTGCACGCTT -ACGGAAACAGACACTTGCAGCGTT -ACGGAAACAGACACTTGCTTCGTC -ACGGAAACAGACACTTGCTCTCTC -ACGGAAACAGACACTTGCTGGATC -ACGGAAACAGACACTTGCCACTTC -ACGGAAACAGACACTTGCGTACTC -ACGGAAACAGACACTTGCGATGTC -ACGGAAACAGACACTTGCACAGTC -ACGGAAACAGACACTTGCTTGCTG -ACGGAAACAGACACTTGCTCCATG -ACGGAAACAGACACTTGCTGTGTG -ACGGAAACAGACACTTGCCTAGTG -ACGGAAACAGACACTTGCCATCTG -ACGGAAACAGACACTTGCGAGTTG -ACGGAAACAGACACTTGCAGACTG -ACGGAAACAGACACTTGCTCGGTA -ACGGAAACAGACACTTGCTGCCTA -ACGGAAACAGACACTTGCCCACTA -ACGGAAACAGACACTTGCGGAGTA -ACGGAAACAGACACTTGCTCGTCT -ACGGAAACAGACACTTGCTGCACT -ACGGAAACAGACACTTGCCTGACT -ACGGAAACAGACACTTGCCAACCT -ACGGAAACAGACACTTGCGCTACT -ACGGAAACAGACACTTGCGGATCT -ACGGAAACAGACACTTGCAAGGCT -ACGGAAACAGACACTTGCTCAACC -ACGGAAACAGACACTTGCTGTTCC -ACGGAAACAGACACTTGCATTCCC -ACGGAAACAGACACTTGCTTCTCG -ACGGAAACAGACACTTGCTAGACG -ACGGAAACAGACACTTGCGTAACG -ACGGAAACAGACACTTGCACTTCG -ACGGAAACAGACACTTGCTACGCA -ACGGAAACAGACACTTGCCTTGCA -ACGGAAACAGACACTTGCCGAACA -ACGGAAACAGACACTTGCCAGTCA -ACGGAAACAGACACTTGCGATCCA -ACGGAAACAGACACTTGCACGACA -ACGGAAACAGACACTTGCAGCTCA -ACGGAAACAGACACTTGCTCACGT -ACGGAAACAGACACTTGCCGTAGT -ACGGAAACAGACACTTGCGTCAGT -ACGGAAACAGACACTTGCGAAGGT -ACGGAAACAGACACTTGCAACCGT -ACGGAAACAGACACTTGCTTGTGC -ACGGAAACAGACACTTGCCTAAGC -ACGGAAACAGACACTTGCACTAGC -ACGGAAACAGACACTTGCAGATGC -ACGGAAACAGACACTTGCTGAAGG -ACGGAAACAGACACTTGCCAATGG -ACGGAAACAGACACTTGCATGAGG -ACGGAAACAGACACTTGCAATGGG -ACGGAAACAGACACTTGCTCCTGA -ACGGAAACAGACACTTGCTAGCGA -ACGGAAACAGACACTTGCCACAGA -ACGGAAACAGACACTTGCGCAAGA -ACGGAAACAGACACTTGCGGTTGA -ACGGAAACAGACACTTGCTCCGAT -ACGGAAACAGACACTTGCTGGCAT -ACGGAAACAGACACTTGCCGAGAT -ACGGAAACAGACACTTGCTACCAC -ACGGAAACAGACACTTGCCAGAAC -ACGGAAACAGACACTTGCGTCTAC -ACGGAAACAGACACTTGCACGTAC -ACGGAAACAGACACTTGCAGTGAC -ACGGAAACAGACACTTGCCTGTAG -ACGGAAACAGACACTTGCCCTAAG -ACGGAAACAGACACTTGCGTTCAG -ACGGAAACAGACACTTGCGCATAG -ACGGAAACAGACACTTGCGACAAG -ACGGAAACAGACACTTGCAAGCAG -ACGGAAACAGACACTTGCCGTCAA -ACGGAAACAGACACTTGCGCTGAA -ACGGAAACAGACACTTGCAGTACG -ACGGAAACAGACACTTGCATCCGA -ACGGAAACAGACACTTGCATGGGA -ACGGAAACAGACACTTGCGTGCAA -ACGGAAACAGACACTTGCGAGGAA -ACGGAAACAGACACTTGCCAGGTA -ACGGAAACAGACACTTGCGACTCT -ACGGAAACAGACACTTGCAGTCCT -ACGGAAACAGACACTTGCTAAGCC -ACGGAAACAGACACTTGCATAGCC -ACGGAAACAGACACTTGCTAACCG -ACGGAAACAGACACTTGCATGCCA -ACGGAAACAGACACTCTGGGAAAC -ACGGAAACAGACACTCTGAACACC -ACGGAAACAGACACTCTGATCGAG -ACGGAAACAGACACTCTGCTCCTT -ACGGAAACAGACACTCTGCCTGTT -ACGGAAACAGACACTCTGCGGTTT -ACGGAAACAGACACTCTGGTGGTT -ACGGAAACAGACACTCTGGCCTTT -ACGGAAACAGACACTCTGGGTCTT -ACGGAAACAGACACTCTGACGCTT -ACGGAAACAGACACTCTGAGCGTT -ACGGAAACAGACACTCTGTTCGTC -ACGGAAACAGACACTCTGTCTCTC -ACGGAAACAGACACTCTGTGGATC -ACGGAAACAGACACTCTGCACTTC -ACGGAAACAGACACTCTGGTACTC -ACGGAAACAGACACTCTGGATGTC -ACGGAAACAGACACTCTGACAGTC -ACGGAAACAGACACTCTGTTGCTG -ACGGAAACAGACACTCTGTCCATG -ACGGAAACAGACACTCTGTGTGTG -ACGGAAACAGACACTCTGCTAGTG -ACGGAAACAGACACTCTGCATCTG -ACGGAAACAGACACTCTGGAGTTG -ACGGAAACAGACACTCTGAGACTG -ACGGAAACAGACACTCTGTCGGTA -ACGGAAACAGACACTCTGTGCCTA -ACGGAAACAGACACTCTGCCACTA -ACGGAAACAGACACTCTGGGAGTA -ACGGAAACAGACACTCTGTCGTCT -ACGGAAACAGACACTCTGTGCACT -ACGGAAACAGACACTCTGCTGACT -ACGGAAACAGACACTCTGCAACCT -ACGGAAACAGACACTCTGGCTACT -ACGGAAACAGACACTCTGGGATCT -ACGGAAACAGACACTCTGAAGGCT -ACGGAAACAGACACTCTGTCAACC -ACGGAAACAGACACTCTGTGTTCC -ACGGAAACAGACACTCTGATTCCC -ACGGAAACAGACACTCTGTTCTCG -ACGGAAACAGACACTCTGTAGACG -ACGGAAACAGACACTCTGGTAACG -ACGGAAACAGACACTCTGACTTCG -ACGGAAACAGACACTCTGTACGCA -ACGGAAACAGACACTCTGCTTGCA -ACGGAAACAGACACTCTGCGAACA -ACGGAAACAGACACTCTGCAGTCA -ACGGAAACAGACACTCTGGATCCA -ACGGAAACAGACACTCTGACGACA -ACGGAAACAGACACTCTGAGCTCA -ACGGAAACAGACACTCTGTCACGT -ACGGAAACAGACACTCTGCGTAGT -ACGGAAACAGACACTCTGGTCAGT -ACGGAAACAGACACTCTGGAAGGT -ACGGAAACAGACACTCTGAACCGT -ACGGAAACAGACACTCTGTTGTGC -ACGGAAACAGACACTCTGCTAAGC -ACGGAAACAGACACTCTGACTAGC -ACGGAAACAGACACTCTGAGATGC -ACGGAAACAGACACTCTGTGAAGG -ACGGAAACAGACACTCTGCAATGG -ACGGAAACAGACACTCTGATGAGG -ACGGAAACAGACACTCTGAATGGG -ACGGAAACAGACACTCTGTCCTGA -ACGGAAACAGACACTCTGTAGCGA -ACGGAAACAGACACTCTGCACAGA -ACGGAAACAGACACTCTGGCAAGA -ACGGAAACAGACACTCTGGGTTGA -ACGGAAACAGACACTCTGTCCGAT -ACGGAAACAGACACTCTGTGGCAT -ACGGAAACAGACACTCTGCGAGAT -ACGGAAACAGACACTCTGTACCAC -ACGGAAACAGACACTCTGCAGAAC -ACGGAAACAGACACTCTGGTCTAC -ACGGAAACAGACACTCTGACGTAC -ACGGAAACAGACACTCTGAGTGAC -ACGGAAACAGACACTCTGCTGTAG -ACGGAAACAGACACTCTGCCTAAG -ACGGAAACAGACACTCTGGTTCAG -ACGGAAACAGACACTCTGGCATAG -ACGGAAACAGACACTCTGGACAAG -ACGGAAACAGACACTCTGAAGCAG -ACGGAAACAGACACTCTGCGTCAA -ACGGAAACAGACACTCTGGCTGAA -ACGGAAACAGACACTCTGAGTACG -ACGGAAACAGACACTCTGATCCGA -ACGGAAACAGACACTCTGATGGGA -ACGGAAACAGACACTCTGGTGCAA -ACGGAAACAGACACTCTGGAGGAA -ACGGAAACAGACACTCTGCAGGTA -ACGGAAACAGACACTCTGGACTCT -ACGGAAACAGACACTCTGAGTCCT -ACGGAAACAGACACTCTGTAAGCC -ACGGAAACAGACACTCTGATAGCC -ACGGAAACAGACACTCTGTAACCG -ACGGAAACAGACACTCTGATGCCA -ACGGAAACAGACCCTCAAGGAAAC -ACGGAAACAGACCCTCAAAACACC -ACGGAAACAGACCCTCAAATCGAG -ACGGAAACAGACCCTCAACTCCTT -ACGGAAACAGACCCTCAACCTGTT -ACGGAAACAGACCCTCAACGGTTT -ACGGAAACAGACCCTCAAGTGGTT -ACGGAAACAGACCCTCAAGCCTTT -ACGGAAACAGACCCTCAAGGTCTT -ACGGAAACAGACCCTCAAACGCTT -ACGGAAACAGACCCTCAAAGCGTT -ACGGAAACAGACCCTCAATTCGTC -ACGGAAACAGACCCTCAATCTCTC -ACGGAAACAGACCCTCAATGGATC -ACGGAAACAGACCCTCAACACTTC -ACGGAAACAGACCCTCAAGTACTC -ACGGAAACAGACCCTCAAGATGTC -ACGGAAACAGACCCTCAAACAGTC -ACGGAAACAGACCCTCAATTGCTG -ACGGAAACAGACCCTCAATCCATG -ACGGAAACAGACCCTCAATGTGTG -ACGGAAACAGACCCTCAACTAGTG -ACGGAAACAGACCCTCAACATCTG -ACGGAAACAGACCCTCAAGAGTTG -ACGGAAACAGACCCTCAAAGACTG -ACGGAAACAGACCCTCAATCGGTA -ACGGAAACAGACCCTCAATGCCTA -ACGGAAACAGACCCTCAACCACTA -ACGGAAACAGACCCTCAAGGAGTA -ACGGAAACAGACCCTCAATCGTCT -ACGGAAACAGACCCTCAATGCACT -ACGGAAACAGACCCTCAACTGACT -ACGGAAACAGACCCTCAACAACCT -ACGGAAACAGACCCTCAAGCTACT -ACGGAAACAGACCCTCAAGGATCT -ACGGAAACAGACCCTCAAAAGGCT -ACGGAAACAGACCCTCAATCAACC -ACGGAAACAGACCCTCAATGTTCC -ACGGAAACAGACCCTCAAATTCCC -ACGGAAACAGACCCTCAATTCTCG -ACGGAAACAGACCCTCAATAGACG -ACGGAAACAGACCCTCAAGTAACG -ACGGAAACAGACCCTCAAACTTCG -ACGGAAACAGACCCTCAATACGCA -ACGGAAACAGACCCTCAACTTGCA -ACGGAAACAGACCCTCAACGAACA -ACGGAAACAGACCCTCAACAGTCA -ACGGAAACAGACCCTCAAGATCCA -ACGGAAACAGACCCTCAAACGACA -ACGGAAACAGACCCTCAAAGCTCA -ACGGAAACAGACCCTCAATCACGT -ACGGAAACAGACCCTCAACGTAGT -ACGGAAACAGACCCTCAAGTCAGT -ACGGAAACAGACCCTCAAGAAGGT -ACGGAAACAGACCCTCAAAACCGT -ACGGAAACAGACCCTCAATTGTGC -ACGGAAACAGACCCTCAACTAAGC -ACGGAAACAGACCCTCAAACTAGC -ACGGAAACAGACCCTCAAAGATGC -ACGGAAACAGACCCTCAATGAAGG -ACGGAAACAGACCCTCAACAATGG -ACGGAAACAGACCCTCAAATGAGG -ACGGAAACAGACCCTCAAAATGGG -ACGGAAACAGACCCTCAATCCTGA -ACGGAAACAGACCCTCAATAGCGA -ACGGAAACAGACCCTCAACACAGA -ACGGAAACAGACCCTCAAGCAAGA -ACGGAAACAGACCCTCAAGGTTGA -ACGGAAACAGACCCTCAATCCGAT -ACGGAAACAGACCCTCAATGGCAT -ACGGAAACAGACCCTCAACGAGAT -ACGGAAACAGACCCTCAATACCAC -ACGGAAACAGACCCTCAACAGAAC -ACGGAAACAGACCCTCAAGTCTAC -ACGGAAACAGACCCTCAAACGTAC -ACGGAAACAGACCCTCAAAGTGAC -ACGGAAACAGACCCTCAACTGTAG -ACGGAAACAGACCCTCAACCTAAG -ACGGAAACAGACCCTCAAGTTCAG -ACGGAAACAGACCCTCAAGCATAG -ACGGAAACAGACCCTCAAGACAAG -ACGGAAACAGACCCTCAAAAGCAG -ACGGAAACAGACCCTCAACGTCAA -ACGGAAACAGACCCTCAAGCTGAA -ACGGAAACAGACCCTCAAAGTACG -ACGGAAACAGACCCTCAAATCCGA -ACGGAAACAGACCCTCAAATGGGA -ACGGAAACAGACCCTCAAGTGCAA -ACGGAAACAGACCCTCAAGAGGAA -ACGGAAACAGACCCTCAACAGGTA -ACGGAAACAGACCCTCAAGACTCT -ACGGAAACAGACCCTCAAAGTCCT -ACGGAAACAGACCCTCAATAAGCC -ACGGAAACAGACCCTCAAATAGCC -ACGGAAACAGACCCTCAATAACCG -ACGGAAACAGACCCTCAAATGCCA -ACGGAAACAGACACTGCTGGAAAC -ACGGAAACAGACACTGCTAACACC -ACGGAAACAGACACTGCTATCGAG -ACGGAAACAGACACTGCTCTCCTT -ACGGAAACAGACACTGCTCCTGTT -ACGGAAACAGACACTGCTCGGTTT -ACGGAAACAGACACTGCTGTGGTT -ACGGAAACAGACACTGCTGCCTTT -ACGGAAACAGACACTGCTGGTCTT -ACGGAAACAGACACTGCTACGCTT -ACGGAAACAGACACTGCTAGCGTT -ACGGAAACAGACACTGCTTTCGTC -ACGGAAACAGACACTGCTTCTCTC -ACGGAAACAGACACTGCTTGGATC -ACGGAAACAGACACTGCTCACTTC -ACGGAAACAGACACTGCTGTACTC -ACGGAAACAGACACTGCTGATGTC -ACGGAAACAGACACTGCTACAGTC -ACGGAAACAGACACTGCTTTGCTG -ACGGAAACAGACACTGCTTCCATG -ACGGAAACAGACACTGCTTGTGTG -ACGGAAACAGACACTGCTCTAGTG -ACGGAAACAGACACTGCTCATCTG -ACGGAAACAGACACTGCTGAGTTG -ACGGAAACAGACACTGCTAGACTG -ACGGAAACAGACACTGCTTCGGTA -ACGGAAACAGACACTGCTTGCCTA -ACGGAAACAGACACTGCTCCACTA -ACGGAAACAGACACTGCTGGAGTA -ACGGAAACAGACACTGCTTCGTCT -ACGGAAACAGACACTGCTTGCACT -ACGGAAACAGACACTGCTCTGACT -ACGGAAACAGACACTGCTCAACCT -ACGGAAACAGACACTGCTGCTACT -ACGGAAACAGACACTGCTGGATCT -ACGGAAACAGACACTGCTAAGGCT -ACGGAAACAGACACTGCTTCAACC -ACGGAAACAGACACTGCTTGTTCC -ACGGAAACAGACACTGCTATTCCC -ACGGAAACAGACACTGCTTTCTCG -ACGGAAACAGACACTGCTTAGACG -ACGGAAACAGACACTGCTGTAACG -ACGGAAACAGACACTGCTACTTCG -ACGGAAACAGACACTGCTTACGCA -ACGGAAACAGACACTGCTCTTGCA -ACGGAAACAGACACTGCTCGAACA -ACGGAAACAGACACTGCTCAGTCA -ACGGAAACAGACACTGCTGATCCA -ACGGAAACAGACACTGCTACGACA -ACGGAAACAGACACTGCTAGCTCA -ACGGAAACAGACACTGCTTCACGT -ACGGAAACAGACACTGCTCGTAGT -ACGGAAACAGACACTGCTGTCAGT -ACGGAAACAGACACTGCTGAAGGT -ACGGAAACAGACACTGCTAACCGT -ACGGAAACAGACACTGCTTTGTGC -ACGGAAACAGACACTGCTCTAAGC -ACGGAAACAGACACTGCTACTAGC -ACGGAAACAGACACTGCTAGATGC -ACGGAAACAGACACTGCTTGAAGG -ACGGAAACAGACACTGCTCAATGG -ACGGAAACAGACACTGCTATGAGG -ACGGAAACAGACACTGCTAATGGG -ACGGAAACAGACACTGCTTCCTGA -ACGGAAACAGACACTGCTTAGCGA -ACGGAAACAGACACTGCTCACAGA -ACGGAAACAGACACTGCTGCAAGA -ACGGAAACAGACACTGCTGGTTGA -ACGGAAACAGACACTGCTTCCGAT -ACGGAAACAGACACTGCTTGGCAT -ACGGAAACAGACACTGCTCGAGAT -ACGGAAACAGACACTGCTTACCAC -ACGGAAACAGACACTGCTCAGAAC -ACGGAAACAGACACTGCTGTCTAC -ACGGAAACAGACACTGCTACGTAC -ACGGAAACAGACACTGCTAGTGAC -ACGGAAACAGACACTGCTCTGTAG -ACGGAAACAGACACTGCTCCTAAG -ACGGAAACAGACACTGCTGTTCAG -ACGGAAACAGACACTGCTGCATAG -ACGGAAACAGACACTGCTGACAAG -ACGGAAACAGACACTGCTAAGCAG -ACGGAAACAGACACTGCTCGTCAA -ACGGAAACAGACACTGCTGCTGAA -ACGGAAACAGACACTGCTAGTACG -ACGGAAACAGACACTGCTATCCGA -ACGGAAACAGACACTGCTATGGGA -ACGGAAACAGACACTGCTGTGCAA -ACGGAAACAGACACTGCTGAGGAA -ACGGAAACAGACACTGCTCAGGTA -ACGGAAACAGACACTGCTGACTCT -ACGGAAACAGACACTGCTAGTCCT -ACGGAAACAGACACTGCTTAAGCC -ACGGAAACAGACACTGCTATAGCC -ACGGAAACAGACACTGCTTAACCG -ACGGAAACAGACACTGCTATGCCA -ACGGAAACAGACTCTGGAGGAAAC -ACGGAAACAGACTCTGGAAACACC -ACGGAAACAGACTCTGGAATCGAG -ACGGAAACAGACTCTGGACTCCTT -ACGGAAACAGACTCTGGACCTGTT -ACGGAAACAGACTCTGGACGGTTT -ACGGAAACAGACTCTGGAGTGGTT -ACGGAAACAGACTCTGGAGCCTTT -ACGGAAACAGACTCTGGAGGTCTT -ACGGAAACAGACTCTGGAACGCTT -ACGGAAACAGACTCTGGAAGCGTT -ACGGAAACAGACTCTGGATTCGTC -ACGGAAACAGACTCTGGATCTCTC -ACGGAAACAGACTCTGGATGGATC -ACGGAAACAGACTCTGGACACTTC -ACGGAAACAGACTCTGGAGTACTC -ACGGAAACAGACTCTGGAGATGTC -ACGGAAACAGACTCTGGAACAGTC -ACGGAAACAGACTCTGGATTGCTG -ACGGAAACAGACTCTGGATCCATG -ACGGAAACAGACTCTGGATGTGTG -ACGGAAACAGACTCTGGACTAGTG -ACGGAAACAGACTCTGGACATCTG -ACGGAAACAGACTCTGGAGAGTTG -ACGGAAACAGACTCTGGAAGACTG -ACGGAAACAGACTCTGGATCGGTA -ACGGAAACAGACTCTGGATGCCTA -ACGGAAACAGACTCTGGACCACTA -ACGGAAACAGACTCTGGAGGAGTA -ACGGAAACAGACTCTGGATCGTCT -ACGGAAACAGACTCTGGATGCACT -ACGGAAACAGACTCTGGACTGACT -ACGGAAACAGACTCTGGACAACCT -ACGGAAACAGACTCTGGAGCTACT -ACGGAAACAGACTCTGGAGGATCT -ACGGAAACAGACTCTGGAAAGGCT -ACGGAAACAGACTCTGGATCAACC -ACGGAAACAGACTCTGGATGTTCC -ACGGAAACAGACTCTGGAATTCCC -ACGGAAACAGACTCTGGATTCTCG -ACGGAAACAGACTCTGGATAGACG -ACGGAAACAGACTCTGGAGTAACG -ACGGAAACAGACTCTGGAACTTCG -ACGGAAACAGACTCTGGATACGCA -ACGGAAACAGACTCTGGACTTGCA -ACGGAAACAGACTCTGGACGAACA -ACGGAAACAGACTCTGGACAGTCA -ACGGAAACAGACTCTGGAGATCCA -ACGGAAACAGACTCTGGAACGACA -ACGGAAACAGACTCTGGAAGCTCA -ACGGAAACAGACTCTGGATCACGT -ACGGAAACAGACTCTGGACGTAGT -ACGGAAACAGACTCTGGAGTCAGT -ACGGAAACAGACTCTGGAGAAGGT -ACGGAAACAGACTCTGGAAACCGT -ACGGAAACAGACTCTGGATTGTGC -ACGGAAACAGACTCTGGACTAAGC -ACGGAAACAGACTCTGGAACTAGC -ACGGAAACAGACTCTGGAAGATGC -ACGGAAACAGACTCTGGATGAAGG -ACGGAAACAGACTCTGGACAATGG -ACGGAAACAGACTCTGGAATGAGG -ACGGAAACAGACTCTGGAAATGGG -ACGGAAACAGACTCTGGATCCTGA -ACGGAAACAGACTCTGGATAGCGA -ACGGAAACAGACTCTGGACACAGA -ACGGAAACAGACTCTGGAGCAAGA -ACGGAAACAGACTCTGGAGGTTGA -ACGGAAACAGACTCTGGATCCGAT -ACGGAAACAGACTCTGGATGGCAT -ACGGAAACAGACTCTGGACGAGAT -ACGGAAACAGACTCTGGATACCAC -ACGGAAACAGACTCTGGACAGAAC -ACGGAAACAGACTCTGGAGTCTAC -ACGGAAACAGACTCTGGAACGTAC -ACGGAAACAGACTCTGGAAGTGAC -ACGGAAACAGACTCTGGACTGTAG -ACGGAAACAGACTCTGGACCTAAG -ACGGAAACAGACTCTGGAGTTCAG -ACGGAAACAGACTCTGGAGCATAG -ACGGAAACAGACTCTGGAGACAAG -ACGGAAACAGACTCTGGAAAGCAG -ACGGAAACAGACTCTGGACGTCAA -ACGGAAACAGACTCTGGAGCTGAA -ACGGAAACAGACTCTGGAAGTACG -ACGGAAACAGACTCTGGAATCCGA -ACGGAAACAGACTCTGGAATGGGA -ACGGAAACAGACTCTGGAGTGCAA -ACGGAAACAGACTCTGGAGAGGAA -ACGGAAACAGACTCTGGACAGGTA -ACGGAAACAGACTCTGGAGACTCT -ACGGAAACAGACTCTGGAAGTCCT -ACGGAAACAGACTCTGGATAAGCC -ACGGAAACAGACTCTGGAATAGCC -ACGGAAACAGACTCTGGATAACCG -ACGGAAACAGACTCTGGAATGCCA -ACGGAAACAGACGCTAAGGGAAAC -ACGGAAACAGACGCTAAGAACACC -ACGGAAACAGACGCTAAGATCGAG -ACGGAAACAGACGCTAAGCTCCTT -ACGGAAACAGACGCTAAGCCTGTT -ACGGAAACAGACGCTAAGCGGTTT -ACGGAAACAGACGCTAAGGTGGTT -ACGGAAACAGACGCTAAGGCCTTT -ACGGAAACAGACGCTAAGGGTCTT -ACGGAAACAGACGCTAAGACGCTT -ACGGAAACAGACGCTAAGAGCGTT -ACGGAAACAGACGCTAAGTTCGTC -ACGGAAACAGACGCTAAGTCTCTC -ACGGAAACAGACGCTAAGTGGATC -ACGGAAACAGACGCTAAGCACTTC -ACGGAAACAGACGCTAAGGTACTC -ACGGAAACAGACGCTAAGGATGTC -ACGGAAACAGACGCTAAGACAGTC -ACGGAAACAGACGCTAAGTTGCTG -ACGGAAACAGACGCTAAGTCCATG -ACGGAAACAGACGCTAAGTGTGTG -ACGGAAACAGACGCTAAGCTAGTG -ACGGAAACAGACGCTAAGCATCTG -ACGGAAACAGACGCTAAGGAGTTG -ACGGAAACAGACGCTAAGAGACTG -ACGGAAACAGACGCTAAGTCGGTA -ACGGAAACAGACGCTAAGTGCCTA -ACGGAAACAGACGCTAAGCCACTA -ACGGAAACAGACGCTAAGGGAGTA -ACGGAAACAGACGCTAAGTCGTCT -ACGGAAACAGACGCTAAGTGCACT -ACGGAAACAGACGCTAAGCTGACT -ACGGAAACAGACGCTAAGCAACCT -ACGGAAACAGACGCTAAGGCTACT -ACGGAAACAGACGCTAAGGGATCT -ACGGAAACAGACGCTAAGAAGGCT -ACGGAAACAGACGCTAAGTCAACC -ACGGAAACAGACGCTAAGTGTTCC -ACGGAAACAGACGCTAAGATTCCC -ACGGAAACAGACGCTAAGTTCTCG -ACGGAAACAGACGCTAAGTAGACG -ACGGAAACAGACGCTAAGGTAACG -ACGGAAACAGACGCTAAGACTTCG -ACGGAAACAGACGCTAAGTACGCA -ACGGAAACAGACGCTAAGCTTGCA -ACGGAAACAGACGCTAAGCGAACA -ACGGAAACAGACGCTAAGCAGTCA -ACGGAAACAGACGCTAAGGATCCA -ACGGAAACAGACGCTAAGACGACA -ACGGAAACAGACGCTAAGAGCTCA -ACGGAAACAGACGCTAAGTCACGT -ACGGAAACAGACGCTAAGCGTAGT -ACGGAAACAGACGCTAAGGTCAGT -ACGGAAACAGACGCTAAGGAAGGT -ACGGAAACAGACGCTAAGAACCGT -ACGGAAACAGACGCTAAGTTGTGC -ACGGAAACAGACGCTAAGCTAAGC -ACGGAAACAGACGCTAAGACTAGC -ACGGAAACAGACGCTAAGAGATGC -ACGGAAACAGACGCTAAGTGAAGG -ACGGAAACAGACGCTAAGCAATGG -ACGGAAACAGACGCTAAGATGAGG -ACGGAAACAGACGCTAAGAATGGG -ACGGAAACAGACGCTAAGTCCTGA -ACGGAAACAGACGCTAAGTAGCGA -ACGGAAACAGACGCTAAGCACAGA -ACGGAAACAGACGCTAAGGCAAGA -ACGGAAACAGACGCTAAGGGTTGA -ACGGAAACAGACGCTAAGTCCGAT -ACGGAAACAGACGCTAAGTGGCAT -ACGGAAACAGACGCTAAGCGAGAT -ACGGAAACAGACGCTAAGTACCAC -ACGGAAACAGACGCTAAGCAGAAC -ACGGAAACAGACGCTAAGGTCTAC -ACGGAAACAGACGCTAAGACGTAC -ACGGAAACAGACGCTAAGAGTGAC -ACGGAAACAGACGCTAAGCTGTAG -ACGGAAACAGACGCTAAGCCTAAG -ACGGAAACAGACGCTAAGGTTCAG -ACGGAAACAGACGCTAAGGCATAG -ACGGAAACAGACGCTAAGGACAAG -ACGGAAACAGACGCTAAGAAGCAG -ACGGAAACAGACGCTAAGCGTCAA -ACGGAAACAGACGCTAAGGCTGAA -ACGGAAACAGACGCTAAGAGTACG -ACGGAAACAGACGCTAAGATCCGA -ACGGAAACAGACGCTAAGATGGGA -ACGGAAACAGACGCTAAGGTGCAA -ACGGAAACAGACGCTAAGGAGGAA -ACGGAAACAGACGCTAAGCAGGTA -ACGGAAACAGACGCTAAGGACTCT -ACGGAAACAGACGCTAAGAGTCCT -ACGGAAACAGACGCTAAGTAAGCC -ACGGAAACAGACGCTAAGATAGCC -ACGGAAACAGACGCTAAGTAACCG -ACGGAAACAGACGCTAAGATGCCA -ACGGAAACAGACACCTCAGGAAAC -ACGGAAACAGACACCTCAAACACC -ACGGAAACAGACACCTCAATCGAG -ACGGAAACAGACACCTCACTCCTT -ACGGAAACAGACACCTCACCTGTT -ACGGAAACAGACACCTCACGGTTT -ACGGAAACAGACACCTCAGTGGTT -ACGGAAACAGACACCTCAGCCTTT -ACGGAAACAGACACCTCAGGTCTT -ACGGAAACAGACACCTCAACGCTT -ACGGAAACAGACACCTCAAGCGTT -ACGGAAACAGACACCTCATTCGTC -ACGGAAACAGACACCTCATCTCTC -ACGGAAACAGACACCTCATGGATC -ACGGAAACAGACACCTCACACTTC -ACGGAAACAGACACCTCAGTACTC -ACGGAAACAGACACCTCAGATGTC -ACGGAAACAGACACCTCAACAGTC -ACGGAAACAGACACCTCATTGCTG -ACGGAAACAGACACCTCATCCATG -ACGGAAACAGACACCTCATGTGTG -ACGGAAACAGACACCTCACTAGTG -ACGGAAACAGACACCTCACATCTG -ACGGAAACAGACACCTCAGAGTTG -ACGGAAACAGACACCTCAAGACTG -ACGGAAACAGACACCTCATCGGTA -ACGGAAACAGACACCTCATGCCTA -ACGGAAACAGACACCTCACCACTA -ACGGAAACAGACACCTCAGGAGTA -ACGGAAACAGACACCTCATCGTCT -ACGGAAACAGACACCTCATGCACT -ACGGAAACAGACACCTCACTGACT -ACGGAAACAGACACCTCACAACCT -ACGGAAACAGACACCTCAGCTACT -ACGGAAACAGACACCTCAGGATCT -ACGGAAACAGACACCTCAAAGGCT -ACGGAAACAGACACCTCATCAACC -ACGGAAACAGACACCTCATGTTCC -ACGGAAACAGACACCTCAATTCCC -ACGGAAACAGACACCTCATTCTCG -ACGGAAACAGACACCTCATAGACG -ACGGAAACAGACACCTCAGTAACG -ACGGAAACAGACACCTCAACTTCG -ACGGAAACAGACACCTCATACGCA -ACGGAAACAGACACCTCACTTGCA -ACGGAAACAGACACCTCACGAACA -ACGGAAACAGACACCTCACAGTCA -ACGGAAACAGACACCTCAGATCCA -ACGGAAACAGACACCTCAACGACA -ACGGAAACAGACACCTCAAGCTCA -ACGGAAACAGACACCTCATCACGT -ACGGAAACAGACACCTCACGTAGT -ACGGAAACAGACACCTCAGTCAGT -ACGGAAACAGACACCTCAGAAGGT -ACGGAAACAGACACCTCAAACCGT -ACGGAAACAGACACCTCATTGTGC -ACGGAAACAGACACCTCACTAAGC -ACGGAAACAGACACCTCAACTAGC -ACGGAAACAGACACCTCAAGATGC -ACGGAAACAGACACCTCATGAAGG -ACGGAAACAGACACCTCACAATGG -ACGGAAACAGACACCTCAATGAGG -ACGGAAACAGACACCTCAAATGGG -ACGGAAACAGACACCTCATCCTGA -ACGGAAACAGACACCTCATAGCGA -ACGGAAACAGACACCTCACACAGA -ACGGAAACAGACACCTCAGCAAGA -ACGGAAACAGACACCTCAGGTTGA -ACGGAAACAGACACCTCATCCGAT -ACGGAAACAGACACCTCATGGCAT -ACGGAAACAGACACCTCACGAGAT -ACGGAAACAGACACCTCATACCAC -ACGGAAACAGACACCTCACAGAAC -ACGGAAACAGACACCTCAGTCTAC -ACGGAAACAGACACCTCAACGTAC -ACGGAAACAGACACCTCAAGTGAC -ACGGAAACAGACACCTCACTGTAG -ACGGAAACAGACACCTCACCTAAG -ACGGAAACAGACACCTCAGTTCAG -ACGGAAACAGACACCTCAGCATAG -ACGGAAACAGACACCTCAGACAAG -ACGGAAACAGACACCTCAAAGCAG -ACGGAAACAGACACCTCACGTCAA -ACGGAAACAGACACCTCAGCTGAA -ACGGAAACAGACACCTCAAGTACG -ACGGAAACAGACACCTCAATCCGA -ACGGAAACAGACACCTCAATGGGA -ACGGAAACAGACACCTCAGTGCAA -ACGGAAACAGACACCTCAGAGGAA -ACGGAAACAGACACCTCACAGGTA -ACGGAAACAGACACCTCAGACTCT -ACGGAAACAGACACCTCAAGTCCT -ACGGAAACAGACACCTCATAAGCC -ACGGAAACAGACACCTCAATAGCC -ACGGAAACAGACACCTCATAACCG -ACGGAAACAGACACCTCAATGCCA -ACGGAAACAGACTCCTGTGGAAAC -ACGGAAACAGACTCCTGTAACACC -ACGGAAACAGACTCCTGTATCGAG -ACGGAAACAGACTCCTGTCTCCTT -ACGGAAACAGACTCCTGTCCTGTT -ACGGAAACAGACTCCTGTCGGTTT -ACGGAAACAGACTCCTGTGTGGTT -ACGGAAACAGACTCCTGTGCCTTT -ACGGAAACAGACTCCTGTGGTCTT -ACGGAAACAGACTCCTGTACGCTT -ACGGAAACAGACTCCTGTAGCGTT -ACGGAAACAGACTCCTGTTTCGTC -ACGGAAACAGACTCCTGTTCTCTC -ACGGAAACAGACTCCTGTTGGATC -ACGGAAACAGACTCCTGTCACTTC -ACGGAAACAGACTCCTGTGTACTC -ACGGAAACAGACTCCTGTGATGTC -ACGGAAACAGACTCCTGTACAGTC -ACGGAAACAGACTCCTGTTTGCTG -ACGGAAACAGACTCCTGTTCCATG -ACGGAAACAGACTCCTGTTGTGTG -ACGGAAACAGACTCCTGTCTAGTG -ACGGAAACAGACTCCTGTCATCTG -ACGGAAACAGACTCCTGTGAGTTG -ACGGAAACAGACTCCTGTAGACTG -ACGGAAACAGACTCCTGTTCGGTA -ACGGAAACAGACTCCTGTTGCCTA -ACGGAAACAGACTCCTGTCCACTA -ACGGAAACAGACTCCTGTGGAGTA -ACGGAAACAGACTCCTGTTCGTCT -ACGGAAACAGACTCCTGTTGCACT -ACGGAAACAGACTCCTGTCTGACT -ACGGAAACAGACTCCTGTCAACCT -ACGGAAACAGACTCCTGTGCTACT -ACGGAAACAGACTCCTGTGGATCT -ACGGAAACAGACTCCTGTAAGGCT -ACGGAAACAGACTCCTGTTCAACC -ACGGAAACAGACTCCTGTTGTTCC -ACGGAAACAGACTCCTGTATTCCC -ACGGAAACAGACTCCTGTTTCTCG -ACGGAAACAGACTCCTGTTAGACG -ACGGAAACAGACTCCTGTGTAACG -ACGGAAACAGACTCCTGTACTTCG -ACGGAAACAGACTCCTGTTACGCA -ACGGAAACAGACTCCTGTCTTGCA -ACGGAAACAGACTCCTGTCGAACA -ACGGAAACAGACTCCTGTCAGTCA -ACGGAAACAGACTCCTGTGATCCA -ACGGAAACAGACTCCTGTACGACA -ACGGAAACAGACTCCTGTAGCTCA -ACGGAAACAGACTCCTGTTCACGT -ACGGAAACAGACTCCTGTCGTAGT -ACGGAAACAGACTCCTGTGTCAGT -ACGGAAACAGACTCCTGTGAAGGT -ACGGAAACAGACTCCTGTAACCGT -ACGGAAACAGACTCCTGTTTGTGC -ACGGAAACAGACTCCTGTCTAAGC -ACGGAAACAGACTCCTGTACTAGC -ACGGAAACAGACTCCTGTAGATGC -ACGGAAACAGACTCCTGTTGAAGG -ACGGAAACAGACTCCTGTCAATGG -ACGGAAACAGACTCCTGTATGAGG -ACGGAAACAGACTCCTGTAATGGG -ACGGAAACAGACTCCTGTTCCTGA -ACGGAAACAGACTCCTGTTAGCGA -ACGGAAACAGACTCCTGTCACAGA -ACGGAAACAGACTCCTGTGCAAGA -ACGGAAACAGACTCCTGTGGTTGA -ACGGAAACAGACTCCTGTTCCGAT -ACGGAAACAGACTCCTGTTGGCAT -ACGGAAACAGACTCCTGTCGAGAT -ACGGAAACAGACTCCTGTTACCAC -ACGGAAACAGACTCCTGTCAGAAC -ACGGAAACAGACTCCTGTGTCTAC -ACGGAAACAGACTCCTGTACGTAC -ACGGAAACAGACTCCTGTAGTGAC -ACGGAAACAGACTCCTGTCTGTAG -ACGGAAACAGACTCCTGTCCTAAG -ACGGAAACAGACTCCTGTGTTCAG -ACGGAAACAGACTCCTGTGCATAG -ACGGAAACAGACTCCTGTGACAAG -ACGGAAACAGACTCCTGTAAGCAG -ACGGAAACAGACTCCTGTCGTCAA -ACGGAAACAGACTCCTGTGCTGAA -ACGGAAACAGACTCCTGTAGTACG -ACGGAAACAGACTCCTGTATCCGA -ACGGAAACAGACTCCTGTATGGGA -ACGGAAACAGACTCCTGTGTGCAA -ACGGAAACAGACTCCTGTGAGGAA -ACGGAAACAGACTCCTGTCAGGTA -ACGGAAACAGACTCCTGTGACTCT -ACGGAAACAGACTCCTGTAGTCCT -ACGGAAACAGACTCCTGTTAAGCC -ACGGAAACAGACTCCTGTATAGCC -ACGGAAACAGACTCCTGTTAACCG -ACGGAAACAGACTCCTGTATGCCA -ACGGAAACAGACCCCATTGGAAAC -ACGGAAACAGACCCCATTAACACC -ACGGAAACAGACCCCATTATCGAG -ACGGAAACAGACCCCATTCTCCTT -ACGGAAACAGACCCCATTCCTGTT -ACGGAAACAGACCCCATTCGGTTT -ACGGAAACAGACCCCATTGTGGTT -ACGGAAACAGACCCCATTGCCTTT -ACGGAAACAGACCCCATTGGTCTT -ACGGAAACAGACCCCATTACGCTT -ACGGAAACAGACCCCATTAGCGTT -ACGGAAACAGACCCCATTTTCGTC -ACGGAAACAGACCCCATTTCTCTC -ACGGAAACAGACCCCATTTGGATC -ACGGAAACAGACCCCATTCACTTC -ACGGAAACAGACCCCATTGTACTC -ACGGAAACAGACCCCATTGATGTC -ACGGAAACAGACCCCATTACAGTC -ACGGAAACAGACCCCATTTTGCTG -ACGGAAACAGACCCCATTTCCATG -ACGGAAACAGACCCCATTTGTGTG -ACGGAAACAGACCCCATTCTAGTG -ACGGAAACAGACCCCATTCATCTG -ACGGAAACAGACCCCATTGAGTTG -ACGGAAACAGACCCCATTAGACTG -ACGGAAACAGACCCCATTTCGGTA -ACGGAAACAGACCCCATTTGCCTA -ACGGAAACAGACCCCATTCCACTA -ACGGAAACAGACCCCATTGGAGTA -ACGGAAACAGACCCCATTTCGTCT -ACGGAAACAGACCCCATTTGCACT -ACGGAAACAGACCCCATTCTGACT -ACGGAAACAGACCCCATTCAACCT -ACGGAAACAGACCCCATTGCTACT -ACGGAAACAGACCCCATTGGATCT -ACGGAAACAGACCCCATTAAGGCT -ACGGAAACAGACCCCATTTCAACC -ACGGAAACAGACCCCATTTGTTCC -ACGGAAACAGACCCCATTATTCCC -ACGGAAACAGACCCCATTTTCTCG -ACGGAAACAGACCCCATTTAGACG -ACGGAAACAGACCCCATTGTAACG -ACGGAAACAGACCCCATTACTTCG -ACGGAAACAGACCCCATTTACGCA -ACGGAAACAGACCCCATTCTTGCA -ACGGAAACAGACCCCATTCGAACA -ACGGAAACAGACCCCATTCAGTCA -ACGGAAACAGACCCCATTGATCCA -ACGGAAACAGACCCCATTACGACA -ACGGAAACAGACCCCATTAGCTCA -ACGGAAACAGACCCCATTTCACGT -ACGGAAACAGACCCCATTCGTAGT -ACGGAAACAGACCCCATTGTCAGT -ACGGAAACAGACCCCATTGAAGGT -ACGGAAACAGACCCCATTAACCGT -ACGGAAACAGACCCCATTTTGTGC -ACGGAAACAGACCCCATTCTAAGC -ACGGAAACAGACCCCATTACTAGC -ACGGAAACAGACCCCATTAGATGC -ACGGAAACAGACCCCATTTGAAGG -ACGGAAACAGACCCCATTCAATGG -ACGGAAACAGACCCCATTATGAGG -ACGGAAACAGACCCCATTAATGGG -ACGGAAACAGACCCCATTTCCTGA -ACGGAAACAGACCCCATTTAGCGA -ACGGAAACAGACCCCATTCACAGA -ACGGAAACAGACCCCATTGCAAGA -ACGGAAACAGACCCCATTGGTTGA -ACGGAAACAGACCCCATTTCCGAT -ACGGAAACAGACCCCATTTGGCAT -ACGGAAACAGACCCCATTCGAGAT -ACGGAAACAGACCCCATTTACCAC -ACGGAAACAGACCCCATTCAGAAC -ACGGAAACAGACCCCATTGTCTAC -ACGGAAACAGACCCCATTACGTAC -ACGGAAACAGACCCCATTAGTGAC -ACGGAAACAGACCCCATTCTGTAG -ACGGAAACAGACCCCATTCCTAAG -ACGGAAACAGACCCCATTGTTCAG -ACGGAAACAGACCCCATTGCATAG -ACGGAAACAGACCCCATTGACAAG -ACGGAAACAGACCCCATTAAGCAG -ACGGAAACAGACCCCATTCGTCAA -ACGGAAACAGACCCCATTGCTGAA -ACGGAAACAGACCCCATTAGTACG -ACGGAAACAGACCCCATTATCCGA -ACGGAAACAGACCCCATTATGGGA -ACGGAAACAGACCCCATTGTGCAA -ACGGAAACAGACCCCATTGAGGAA -ACGGAAACAGACCCCATTCAGGTA -ACGGAAACAGACCCCATTGACTCT -ACGGAAACAGACCCCATTAGTCCT -ACGGAAACAGACCCCATTTAAGCC -ACGGAAACAGACCCCATTATAGCC -ACGGAAACAGACCCCATTTAACCG -ACGGAAACAGACCCCATTATGCCA -ACGGAAACAGACTCGTTCGGAAAC -ACGGAAACAGACTCGTTCAACACC -ACGGAAACAGACTCGTTCATCGAG -ACGGAAACAGACTCGTTCCTCCTT -ACGGAAACAGACTCGTTCCCTGTT -ACGGAAACAGACTCGTTCCGGTTT -ACGGAAACAGACTCGTTCGTGGTT -ACGGAAACAGACTCGTTCGCCTTT -ACGGAAACAGACTCGTTCGGTCTT -ACGGAAACAGACTCGTTCACGCTT -ACGGAAACAGACTCGTTCAGCGTT -ACGGAAACAGACTCGTTCTTCGTC -ACGGAAACAGACTCGTTCTCTCTC -ACGGAAACAGACTCGTTCTGGATC -ACGGAAACAGACTCGTTCCACTTC -ACGGAAACAGACTCGTTCGTACTC -ACGGAAACAGACTCGTTCGATGTC -ACGGAAACAGACTCGTTCACAGTC -ACGGAAACAGACTCGTTCTTGCTG -ACGGAAACAGACTCGTTCTCCATG -ACGGAAACAGACTCGTTCTGTGTG -ACGGAAACAGACTCGTTCCTAGTG -ACGGAAACAGACTCGTTCCATCTG -ACGGAAACAGACTCGTTCGAGTTG -ACGGAAACAGACTCGTTCAGACTG -ACGGAAACAGACTCGTTCTCGGTA -ACGGAAACAGACTCGTTCTGCCTA -ACGGAAACAGACTCGTTCCCACTA -ACGGAAACAGACTCGTTCGGAGTA -ACGGAAACAGACTCGTTCTCGTCT -ACGGAAACAGACTCGTTCTGCACT -ACGGAAACAGACTCGTTCCTGACT -ACGGAAACAGACTCGTTCCAACCT -ACGGAAACAGACTCGTTCGCTACT -ACGGAAACAGACTCGTTCGGATCT -ACGGAAACAGACTCGTTCAAGGCT -ACGGAAACAGACTCGTTCTCAACC -ACGGAAACAGACTCGTTCTGTTCC -ACGGAAACAGACTCGTTCATTCCC -ACGGAAACAGACTCGTTCTTCTCG -ACGGAAACAGACTCGTTCTAGACG -ACGGAAACAGACTCGTTCGTAACG -ACGGAAACAGACTCGTTCACTTCG -ACGGAAACAGACTCGTTCTACGCA -ACGGAAACAGACTCGTTCCTTGCA -ACGGAAACAGACTCGTTCCGAACA -ACGGAAACAGACTCGTTCCAGTCA -ACGGAAACAGACTCGTTCGATCCA -ACGGAAACAGACTCGTTCACGACA -ACGGAAACAGACTCGTTCAGCTCA -ACGGAAACAGACTCGTTCTCACGT -ACGGAAACAGACTCGTTCCGTAGT -ACGGAAACAGACTCGTTCGTCAGT -ACGGAAACAGACTCGTTCGAAGGT -ACGGAAACAGACTCGTTCAACCGT -ACGGAAACAGACTCGTTCTTGTGC -ACGGAAACAGACTCGTTCCTAAGC -ACGGAAACAGACTCGTTCACTAGC -ACGGAAACAGACTCGTTCAGATGC -ACGGAAACAGACTCGTTCTGAAGG -ACGGAAACAGACTCGTTCCAATGG -ACGGAAACAGACTCGTTCATGAGG -ACGGAAACAGACTCGTTCAATGGG -ACGGAAACAGACTCGTTCTCCTGA -ACGGAAACAGACTCGTTCTAGCGA -ACGGAAACAGACTCGTTCCACAGA -ACGGAAACAGACTCGTTCGCAAGA -ACGGAAACAGACTCGTTCGGTTGA -ACGGAAACAGACTCGTTCTCCGAT -ACGGAAACAGACTCGTTCTGGCAT -ACGGAAACAGACTCGTTCCGAGAT -ACGGAAACAGACTCGTTCTACCAC -ACGGAAACAGACTCGTTCCAGAAC -ACGGAAACAGACTCGTTCGTCTAC -ACGGAAACAGACTCGTTCACGTAC -ACGGAAACAGACTCGTTCAGTGAC -ACGGAAACAGACTCGTTCCTGTAG -ACGGAAACAGACTCGTTCCCTAAG -ACGGAAACAGACTCGTTCGTTCAG -ACGGAAACAGACTCGTTCGCATAG -ACGGAAACAGACTCGTTCGACAAG -ACGGAAACAGACTCGTTCAAGCAG -ACGGAAACAGACTCGTTCCGTCAA -ACGGAAACAGACTCGTTCGCTGAA -ACGGAAACAGACTCGTTCAGTACG -ACGGAAACAGACTCGTTCATCCGA -ACGGAAACAGACTCGTTCATGGGA -ACGGAAACAGACTCGTTCGTGCAA -ACGGAAACAGACTCGTTCGAGGAA -ACGGAAACAGACTCGTTCCAGGTA -ACGGAAACAGACTCGTTCGACTCT -ACGGAAACAGACTCGTTCAGTCCT -ACGGAAACAGACTCGTTCTAAGCC -ACGGAAACAGACTCGTTCATAGCC -ACGGAAACAGACTCGTTCTAACCG -ACGGAAACAGACTCGTTCATGCCA -ACGGAAACAGACACGTAGGGAAAC -ACGGAAACAGACACGTAGAACACC -ACGGAAACAGACACGTAGATCGAG -ACGGAAACAGACACGTAGCTCCTT -ACGGAAACAGACACGTAGCCTGTT -ACGGAAACAGACACGTAGCGGTTT -ACGGAAACAGACACGTAGGTGGTT -ACGGAAACAGACACGTAGGCCTTT -ACGGAAACAGACACGTAGGGTCTT -ACGGAAACAGACACGTAGACGCTT -ACGGAAACAGACACGTAGAGCGTT -ACGGAAACAGACACGTAGTTCGTC -ACGGAAACAGACACGTAGTCTCTC -ACGGAAACAGACACGTAGTGGATC -ACGGAAACAGACACGTAGCACTTC -ACGGAAACAGACACGTAGGTACTC -ACGGAAACAGACACGTAGGATGTC -ACGGAAACAGACACGTAGACAGTC -ACGGAAACAGACACGTAGTTGCTG -ACGGAAACAGACACGTAGTCCATG -ACGGAAACAGACACGTAGTGTGTG -ACGGAAACAGACACGTAGCTAGTG -ACGGAAACAGACACGTAGCATCTG -ACGGAAACAGACACGTAGGAGTTG -ACGGAAACAGACACGTAGAGACTG -ACGGAAACAGACACGTAGTCGGTA -ACGGAAACAGACACGTAGTGCCTA -ACGGAAACAGACACGTAGCCACTA -ACGGAAACAGACACGTAGGGAGTA -ACGGAAACAGACACGTAGTCGTCT -ACGGAAACAGACACGTAGTGCACT -ACGGAAACAGACACGTAGCTGACT -ACGGAAACAGACACGTAGCAACCT -ACGGAAACAGACACGTAGGCTACT -ACGGAAACAGACACGTAGGGATCT -ACGGAAACAGACACGTAGAAGGCT -ACGGAAACAGACACGTAGTCAACC -ACGGAAACAGACACGTAGTGTTCC -ACGGAAACAGACACGTAGATTCCC -ACGGAAACAGACACGTAGTTCTCG -ACGGAAACAGACACGTAGTAGACG -ACGGAAACAGACACGTAGGTAACG -ACGGAAACAGACACGTAGACTTCG -ACGGAAACAGACACGTAGTACGCA -ACGGAAACAGACACGTAGCTTGCA -ACGGAAACAGACACGTAGCGAACA -ACGGAAACAGACACGTAGCAGTCA -ACGGAAACAGACACGTAGGATCCA -ACGGAAACAGACACGTAGACGACA -ACGGAAACAGACACGTAGAGCTCA -ACGGAAACAGACACGTAGTCACGT -ACGGAAACAGACACGTAGCGTAGT -ACGGAAACAGACACGTAGGTCAGT -ACGGAAACAGACACGTAGGAAGGT -ACGGAAACAGACACGTAGAACCGT -ACGGAAACAGACACGTAGTTGTGC -ACGGAAACAGACACGTAGCTAAGC -ACGGAAACAGACACGTAGACTAGC -ACGGAAACAGACACGTAGAGATGC -ACGGAAACAGACACGTAGTGAAGG -ACGGAAACAGACACGTAGCAATGG -ACGGAAACAGACACGTAGATGAGG -ACGGAAACAGACACGTAGAATGGG -ACGGAAACAGACACGTAGTCCTGA -ACGGAAACAGACACGTAGTAGCGA -ACGGAAACAGACACGTAGCACAGA -ACGGAAACAGACACGTAGGCAAGA -ACGGAAACAGACACGTAGGGTTGA -ACGGAAACAGACACGTAGTCCGAT -ACGGAAACAGACACGTAGTGGCAT -ACGGAAACAGACACGTAGCGAGAT -ACGGAAACAGACACGTAGTACCAC -ACGGAAACAGACACGTAGCAGAAC -ACGGAAACAGACACGTAGGTCTAC -ACGGAAACAGACACGTAGACGTAC -ACGGAAACAGACACGTAGAGTGAC -ACGGAAACAGACACGTAGCTGTAG -ACGGAAACAGACACGTAGCCTAAG -ACGGAAACAGACACGTAGGTTCAG -ACGGAAACAGACACGTAGGCATAG -ACGGAAACAGACACGTAGGACAAG -ACGGAAACAGACACGTAGAAGCAG -ACGGAAACAGACACGTAGCGTCAA -ACGGAAACAGACACGTAGGCTGAA -ACGGAAACAGACACGTAGAGTACG -ACGGAAACAGACACGTAGATCCGA -ACGGAAACAGACACGTAGATGGGA -ACGGAAACAGACACGTAGGTGCAA -ACGGAAACAGACACGTAGGAGGAA -ACGGAAACAGACACGTAGCAGGTA -ACGGAAACAGACACGTAGGACTCT -ACGGAAACAGACACGTAGAGTCCT -ACGGAAACAGACACGTAGTAAGCC -ACGGAAACAGACACGTAGATAGCC -ACGGAAACAGACACGTAGTAACCG -ACGGAAACAGACACGTAGATGCCA -ACGGAAACAGACACGGTAGGAAAC -ACGGAAACAGACACGGTAAACACC -ACGGAAACAGACACGGTAATCGAG -ACGGAAACAGACACGGTACTCCTT -ACGGAAACAGACACGGTACCTGTT -ACGGAAACAGACACGGTACGGTTT -ACGGAAACAGACACGGTAGTGGTT -ACGGAAACAGACACGGTAGCCTTT -ACGGAAACAGACACGGTAGGTCTT -ACGGAAACAGACACGGTAACGCTT -ACGGAAACAGACACGGTAAGCGTT -ACGGAAACAGACACGGTATTCGTC -ACGGAAACAGACACGGTATCTCTC -ACGGAAACAGACACGGTATGGATC -ACGGAAACAGACACGGTACACTTC -ACGGAAACAGACACGGTAGTACTC -ACGGAAACAGACACGGTAGATGTC -ACGGAAACAGACACGGTAACAGTC -ACGGAAACAGACACGGTATTGCTG -ACGGAAACAGACACGGTATCCATG -ACGGAAACAGACACGGTATGTGTG -ACGGAAACAGACACGGTACTAGTG -ACGGAAACAGACACGGTACATCTG -ACGGAAACAGACACGGTAGAGTTG -ACGGAAACAGACACGGTAAGACTG -ACGGAAACAGACACGGTATCGGTA -ACGGAAACAGACACGGTATGCCTA -ACGGAAACAGACACGGTACCACTA -ACGGAAACAGACACGGTAGGAGTA -ACGGAAACAGACACGGTATCGTCT -ACGGAAACAGACACGGTATGCACT -ACGGAAACAGACACGGTACTGACT -ACGGAAACAGACACGGTACAACCT -ACGGAAACAGACACGGTAGCTACT -ACGGAAACAGACACGGTAGGATCT -ACGGAAACAGACACGGTAAAGGCT -ACGGAAACAGACACGGTATCAACC -ACGGAAACAGACACGGTATGTTCC -ACGGAAACAGACACGGTAATTCCC -ACGGAAACAGACACGGTATTCTCG -ACGGAAACAGACACGGTATAGACG -ACGGAAACAGACACGGTAGTAACG -ACGGAAACAGACACGGTAACTTCG -ACGGAAACAGACACGGTATACGCA -ACGGAAACAGACACGGTACTTGCA -ACGGAAACAGACACGGTACGAACA -ACGGAAACAGACACGGTACAGTCA -ACGGAAACAGACACGGTAGATCCA -ACGGAAACAGACACGGTAACGACA -ACGGAAACAGACACGGTAAGCTCA -ACGGAAACAGACACGGTATCACGT -ACGGAAACAGACACGGTACGTAGT -ACGGAAACAGACACGGTAGTCAGT -ACGGAAACAGACACGGTAGAAGGT -ACGGAAACAGACACGGTAAACCGT -ACGGAAACAGACACGGTATTGTGC -ACGGAAACAGACACGGTACTAAGC -ACGGAAACAGACACGGTAACTAGC -ACGGAAACAGACACGGTAAGATGC -ACGGAAACAGACACGGTATGAAGG -ACGGAAACAGACACGGTACAATGG -ACGGAAACAGACACGGTAATGAGG -ACGGAAACAGACACGGTAAATGGG -ACGGAAACAGACACGGTATCCTGA -ACGGAAACAGACACGGTATAGCGA -ACGGAAACAGACACGGTACACAGA -ACGGAAACAGACACGGTAGCAAGA -ACGGAAACAGACACGGTAGGTTGA -ACGGAAACAGACACGGTATCCGAT -ACGGAAACAGACACGGTATGGCAT -ACGGAAACAGACACGGTACGAGAT -ACGGAAACAGACACGGTATACCAC -ACGGAAACAGACACGGTACAGAAC -ACGGAAACAGACACGGTAGTCTAC -ACGGAAACAGACACGGTAACGTAC -ACGGAAACAGACACGGTAAGTGAC -ACGGAAACAGACACGGTACTGTAG -ACGGAAACAGACACGGTACCTAAG -ACGGAAACAGACACGGTAGTTCAG -ACGGAAACAGACACGGTAGCATAG -ACGGAAACAGACACGGTAGACAAG -ACGGAAACAGACACGGTAAAGCAG -ACGGAAACAGACACGGTACGTCAA -ACGGAAACAGACACGGTAGCTGAA -ACGGAAACAGACACGGTAAGTACG -ACGGAAACAGACACGGTAATCCGA -ACGGAAACAGACACGGTAATGGGA -ACGGAAACAGACACGGTAGTGCAA -ACGGAAACAGACACGGTAGAGGAA -ACGGAAACAGACACGGTACAGGTA -ACGGAAACAGACACGGTAGACTCT -ACGGAAACAGACACGGTAAGTCCT -ACGGAAACAGACACGGTATAAGCC -ACGGAAACAGACACGGTAATAGCC -ACGGAAACAGACACGGTATAACCG -ACGGAAACAGACACGGTAATGCCA -ACGGAAACAGACTCGACTGGAAAC -ACGGAAACAGACTCGACTAACACC -ACGGAAACAGACTCGACTATCGAG -ACGGAAACAGACTCGACTCTCCTT -ACGGAAACAGACTCGACTCCTGTT -ACGGAAACAGACTCGACTCGGTTT -ACGGAAACAGACTCGACTGTGGTT -ACGGAAACAGACTCGACTGCCTTT -ACGGAAACAGACTCGACTGGTCTT -ACGGAAACAGACTCGACTACGCTT -ACGGAAACAGACTCGACTAGCGTT -ACGGAAACAGACTCGACTTTCGTC -ACGGAAACAGACTCGACTTCTCTC -ACGGAAACAGACTCGACTTGGATC -ACGGAAACAGACTCGACTCACTTC -ACGGAAACAGACTCGACTGTACTC -ACGGAAACAGACTCGACTGATGTC -ACGGAAACAGACTCGACTACAGTC -ACGGAAACAGACTCGACTTTGCTG -ACGGAAACAGACTCGACTTCCATG -ACGGAAACAGACTCGACTTGTGTG -ACGGAAACAGACTCGACTCTAGTG -ACGGAAACAGACTCGACTCATCTG -ACGGAAACAGACTCGACTGAGTTG -ACGGAAACAGACTCGACTAGACTG -ACGGAAACAGACTCGACTTCGGTA -ACGGAAACAGACTCGACTTGCCTA -ACGGAAACAGACTCGACTCCACTA -ACGGAAACAGACTCGACTGGAGTA -ACGGAAACAGACTCGACTTCGTCT -ACGGAAACAGACTCGACTTGCACT -ACGGAAACAGACTCGACTCTGACT -ACGGAAACAGACTCGACTCAACCT -ACGGAAACAGACTCGACTGCTACT -ACGGAAACAGACTCGACTGGATCT -ACGGAAACAGACTCGACTAAGGCT -ACGGAAACAGACTCGACTTCAACC -ACGGAAACAGACTCGACTTGTTCC -ACGGAAACAGACTCGACTATTCCC -ACGGAAACAGACTCGACTTTCTCG -ACGGAAACAGACTCGACTTAGACG -ACGGAAACAGACTCGACTGTAACG -ACGGAAACAGACTCGACTACTTCG -ACGGAAACAGACTCGACTTACGCA -ACGGAAACAGACTCGACTCTTGCA -ACGGAAACAGACTCGACTCGAACA -ACGGAAACAGACTCGACTCAGTCA -ACGGAAACAGACTCGACTGATCCA -ACGGAAACAGACTCGACTACGACA -ACGGAAACAGACTCGACTAGCTCA -ACGGAAACAGACTCGACTTCACGT -ACGGAAACAGACTCGACTCGTAGT -ACGGAAACAGACTCGACTGTCAGT -ACGGAAACAGACTCGACTGAAGGT -ACGGAAACAGACTCGACTAACCGT -ACGGAAACAGACTCGACTTTGTGC -ACGGAAACAGACTCGACTCTAAGC -ACGGAAACAGACTCGACTACTAGC -ACGGAAACAGACTCGACTAGATGC -ACGGAAACAGACTCGACTTGAAGG -ACGGAAACAGACTCGACTCAATGG -ACGGAAACAGACTCGACTATGAGG -ACGGAAACAGACTCGACTAATGGG -ACGGAAACAGACTCGACTTCCTGA -ACGGAAACAGACTCGACTTAGCGA -ACGGAAACAGACTCGACTCACAGA -ACGGAAACAGACTCGACTGCAAGA -ACGGAAACAGACTCGACTGGTTGA -ACGGAAACAGACTCGACTTCCGAT -ACGGAAACAGACTCGACTTGGCAT -ACGGAAACAGACTCGACTCGAGAT -ACGGAAACAGACTCGACTTACCAC -ACGGAAACAGACTCGACTCAGAAC -ACGGAAACAGACTCGACTGTCTAC -ACGGAAACAGACTCGACTACGTAC -ACGGAAACAGACTCGACTAGTGAC -ACGGAAACAGACTCGACTCTGTAG -ACGGAAACAGACTCGACTCCTAAG -ACGGAAACAGACTCGACTGTTCAG -ACGGAAACAGACTCGACTGCATAG -ACGGAAACAGACTCGACTGACAAG -ACGGAAACAGACTCGACTAAGCAG -ACGGAAACAGACTCGACTCGTCAA -ACGGAAACAGACTCGACTGCTGAA -ACGGAAACAGACTCGACTAGTACG -ACGGAAACAGACTCGACTATCCGA -ACGGAAACAGACTCGACTATGGGA -ACGGAAACAGACTCGACTGTGCAA -ACGGAAACAGACTCGACTGAGGAA -ACGGAAACAGACTCGACTCAGGTA -ACGGAAACAGACTCGACTGACTCT -ACGGAAACAGACTCGACTAGTCCT -ACGGAAACAGACTCGACTTAAGCC -ACGGAAACAGACTCGACTATAGCC -ACGGAAACAGACTCGACTTAACCG -ACGGAAACAGACTCGACTATGCCA -ACGGAAACAGACGCATACGGAAAC -ACGGAAACAGACGCATACAACACC -ACGGAAACAGACGCATACATCGAG -ACGGAAACAGACGCATACCTCCTT -ACGGAAACAGACGCATACCCTGTT -ACGGAAACAGACGCATACCGGTTT -ACGGAAACAGACGCATACGTGGTT -ACGGAAACAGACGCATACGCCTTT -ACGGAAACAGACGCATACGGTCTT -ACGGAAACAGACGCATACACGCTT -ACGGAAACAGACGCATACAGCGTT -ACGGAAACAGACGCATACTTCGTC -ACGGAAACAGACGCATACTCTCTC -ACGGAAACAGACGCATACTGGATC -ACGGAAACAGACGCATACCACTTC -ACGGAAACAGACGCATACGTACTC -ACGGAAACAGACGCATACGATGTC -ACGGAAACAGACGCATACACAGTC -ACGGAAACAGACGCATACTTGCTG -ACGGAAACAGACGCATACTCCATG -ACGGAAACAGACGCATACTGTGTG -ACGGAAACAGACGCATACCTAGTG -ACGGAAACAGACGCATACCATCTG -ACGGAAACAGACGCATACGAGTTG -ACGGAAACAGACGCATACAGACTG -ACGGAAACAGACGCATACTCGGTA -ACGGAAACAGACGCATACTGCCTA -ACGGAAACAGACGCATACCCACTA -ACGGAAACAGACGCATACGGAGTA -ACGGAAACAGACGCATACTCGTCT -ACGGAAACAGACGCATACTGCACT -ACGGAAACAGACGCATACCTGACT -ACGGAAACAGACGCATACCAACCT -ACGGAAACAGACGCATACGCTACT -ACGGAAACAGACGCATACGGATCT -ACGGAAACAGACGCATACAAGGCT -ACGGAAACAGACGCATACTCAACC -ACGGAAACAGACGCATACTGTTCC -ACGGAAACAGACGCATACATTCCC -ACGGAAACAGACGCATACTTCTCG -ACGGAAACAGACGCATACTAGACG -ACGGAAACAGACGCATACGTAACG -ACGGAAACAGACGCATACACTTCG -ACGGAAACAGACGCATACTACGCA -ACGGAAACAGACGCATACCTTGCA -ACGGAAACAGACGCATACCGAACA -ACGGAAACAGACGCATACCAGTCA -ACGGAAACAGACGCATACGATCCA -ACGGAAACAGACGCATACACGACA -ACGGAAACAGACGCATACAGCTCA -ACGGAAACAGACGCATACTCACGT -ACGGAAACAGACGCATACCGTAGT -ACGGAAACAGACGCATACGTCAGT -ACGGAAACAGACGCATACGAAGGT -ACGGAAACAGACGCATACAACCGT -ACGGAAACAGACGCATACTTGTGC -ACGGAAACAGACGCATACCTAAGC -ACGGAAACAGACGCATACACTAGC -ACGGAAACAGACGCATACAGATGC -ACGGAAACAGACGCATACTGAAGG -ACGGAAACAGACGCATACCAATGG -ACGGAAACAGACGCATACATGAGG -ACGGAAACAGACGCATACAATGGG -ACGGAAACAGACGCATACTCCTGA -ACGGAAACAGACGCATACTAGCGA -ACGGAAACAGACGCATACCACAGA -ACGGAAACAGACGCATACGCAAGA -ACGGAAACAGACGCATACGGTTGA -ACGGAAACAGACGCATACTCCGAT -ACGGAAACAGACGCATACTGGCAT -ACGGAAACAGACGCATACCGAGAT -ACGGAAACAGACGCATACTACCAC -ACGGAAACAGACGCATACCAGAAC -ACGGAAACAGACGCATACGTCTAC -ACGGAAACAGACGCATACACGTAC -ACGGAAACAGACGCATACAGTGAC -ACGGAAACAGACGCATACCTGTAG -ACGGAAACAGACGCATACCCTAAG -ACGGAAACAGACGCATACGTTCAG -ACGGAAACAGACGCATACGCATAG -ACGGAAACAGACGCATACGACAAG -ACGGAAACAGACGCATACAAGCAG -ACGGAAACAGACGCATACCGTCAA -ACGGAAACAGACGCATACGCTGAA -ACGGAAACAGACGCATACAGTACG -ACGGAAACAGACGCATACATCCGA -ACGGAAACAGACGCATACATGGGA -ACGGAAACAGACGCATACGTGCAA -ACGGAAACAGACGCATACGAGGAA -ACGGAAACAGACGCATACCAGGTA -ACGGAAACAGACGCATACGACTCT -ACGGAAACAGACGCATACAGTCCT -ACGGAAACAGACGCATACTAAGCC -ACGGAAACAGACGCATACATAGCC -ACGGAAACAGACGCATACTAACCG -ACGGAAACAGACGCATACATGCCA -ACGGAAACAGACGCACTTGGAAAC -ACGGAAACAGACGCACTTAACACC -ACGGAAACAGACGCACTTATCGAG -ACGGAAACAGACGCACTTCTCCTT -ACGGAAACAGACGCACTTCCTGTT -ACGGAAACAGACGCACTTCGGTTT -ACGGAAACAGACGCACTTGTGGTT -ACGGAAACAGACGCACTTGCCTTT -ACGGAAACAGACGCACTTGGTCTT -ACGGAAACAGACGCACTTACGCTT -ACGGAAACAGACGCACTTAGCGTT -ACGGAAACAGACGCACTTTTCGTC -ACGGAAACAGACGCACTTTCTCTC -ACGGAAACAGACGCACTTTGGATC -ACGGAAACAGACGCACTTCACTTC -ACGGAAACAGACGCACTTGTACTC -ACGGAAACAGACGCACTTGATGTC -ACGGAAACAGACGCACTTACAGTC -ACGGAAACAGACGCACTTTTGCTG -ACGGAAACAGACGCACTTTCCATG -ACGGAAACAGACGCACTTTGTGTG -ACGGAAACAGACGCACTTCTAGTG -ACGGAAACAGACGCACTTCATCTG -ACGGAAACAGACGCACTTGAGTTG -ACGGAAACAGACGCACTTAGACTG -ACGGAAACAGACGCACTTTCGGTA -ACGGAAACAGACGCACTTTGCCTA -ACGGAAACAGACGCACTTCCACTA -ACGGAAACAGACGCACTTGGAGTA -ACGGAAACAGACGCACTTTCGTCT -ACGGAAACAGACGCACTTTGCACT -ACGGAAACAGACGCACTTCTGACT -ACGGAAACAGACGCACTTCAACCT -ACGGAAACAGACGCACTTGCTACT -ACGGAAACAGACGCACTTGGATCT -ACGGAAACAGACGCACTTAAGGCT -ACGGAAACAGACGCACTTTCAACC -ACGGAAACAGACGCACTTTGTTCC -ACGGAAACAGACGCACTTATTCCC -ACGGAAACAGACGCACTTTTCTCG -ACGGAAACAGACGCACTTTAGACG -ACGGAAACAGACGCACTTGTAACG -ACGGAAACAGACGCACTTACTTCG -ACGGAAACAGACGCACTTTACGCA -ACGGAAACAGACGCACTTCTTGCA -ACGGAAACAGACGCACTTCGAACA -ACGGAAACAGACGCACTTCAGTCA -ACGGAAACAGACGCACTTGATCCA -ACGGAAACAGACGCACTTACGACA -ACGGAAACAGACGCACTTAGCTCA -ACGGAAACAGACGCACTTTCACGT -ACGGAAACAGACGCACTTCGTAGT -ACGGAAACAGACGCACTTGTCAGT -ACGGAAACAGACGCACTTGAAGGT -ACGGAAACAGACGCACTTAACCGT -ACGGAAACAGACGCACTTTTGTGC -ACGGAAACAGACGCACTTCTAAGC -ACGGAAACAGACGCACTTACTAGC -ACGGAAACAGACGCACTTAGATGC -ACGGAAACAGACGCACTTTGAAGG -ACGGAAACAGACGCACTTCAATGG -ACGGAAACAGACGCACTTATGAGG -ACGGAAACAGACGCACTTAATGGG -ACGGAAACAGACGCACTTTCCTGA -ACGGAAACAGACGCACTTTAGCGA -ACGGAAACAGACGCACTTCACAGA -ACGGAAACAGACGCACTTGCAAGA -ACGGAAACAGACGCACTTGGTTGA -ACGGAAACAGACGCACTTTCCGAT -ACGGAAACAGACGCACTTTGGCAT -ACGGAAACAGACGCACTTCGAGAT -ACGGAAACAGACGCACTTTACCAC -ACGGAAACAGACGCACTTCAGAAC -ACGGAAACAGACGCACTTGTCTAC -ACGGAAACAGACGCACTTACGTAC -ACGGAAACAGACGCACTTAGTGAC -ACGGAAACAGACGCACTTCTGTAG -ACGGAAACAGACGCACTTCCTAAG -ACGGAAACAGACGCACTTGTTCAG -ACGGAAACAGACGCACTTGCATAG -ACGGAAACAGACGCACTTGACAAG -ACGGAAACAGACGCACTTAAGCAG -ACGGAAACAGACGCACTTCGTCAA -ACGGAAACAGACGCACTTGCTGAA -ACGGAAACAGACGCACTTAGTACG -ACGGAAACAGACGCACTTATCCGA -ACGGAAACAGACGCACTTATGGGA -ACGGAAACAGACGCACTTGTGCAA -ACGGAAACAGACGCACTTGAGGAA -ACGGAAACAGACGCACTTCAGGTA -ACGGAAACAGACGCACTTGACTCT -ACGGAAACAGACGCACTTAGTCCT -ACGGAAACAGACGCACTTTAAGCC -ACGGAAACAGACGCACTTATAGCC -ACGGAAACAGACGCACTTTAACCG -ACGGAAACAGACGCACTTATGCCA -ACGGAAACAGACACACGAGGAAAC -ACGGAAACAGACACACGAAACACC -ACGGAAACAGACACACGAATCGAG -ACGGAAACAGACACACGACTCCTT -ACGGAAACAGACACACGACCTGTT -ACGGAAACAGACACACGACGGTTT -ACGGAAACAGACACACGAGTGGTT -ACGGAAACAGACACACGAGCCTTT -ACGGAAACAGACACACGAGGTCTT -ACGGAAACAGACACACGAACGCTT -ACGGAAACAGACACACGAAGCGTT -ACGGAAACAGACACACGATTCGTC -ACGGAAACAGACACACGATCTCTC -ACGGAAACAGACACACGATGGATC -ACGGAAACAGACACACGACACTTC -ACGGAAACAGACACACGAGTACTC -ACGGAAACAGACACACGAGATGTC -ACGGAAACAGACACACGAACAGTC -ACGGAAACAGACACACGATTGCTG -ACGGAAACAGACACACGATCCATG -ACGGAAACAGACACACGATGTGTG -ACGGAAACAGACACACGACTAGTG -ACGGAAACAGACACACGACATCTG -ACGGAAACAGACACACGAGAGTTG -ACGGAAACAGACACACGAAGACTG -ACGGAAACAGACACACGATCGGTA -ACGGAAACAGACACACGATGCCTA -ACGGAAACAGACACACGACCACTA -ACGGAAACAGACACACGAGGAGTA -ACGGAAACAGACACACGATCGTCT -ACGGAAACAGACACACGATGCACT -ACGGAAACAGACACACGACTGACT -ACGGAAACAGACACACGACAACCT -ACGGAAACAGACACACGAGCTACT -ACGGAAACAGACACACGAGGATCT -ACGGAAACAGACACACGAAAGGCT -ACGGAAACAGACACACGATCAACC -ACGGAAACAGACACACGATGTTCC -ACGGAAACAGACACACGAATTCCC -ACGGAAACAGACACACGATTCTCG -ACGGAAACAGACACACGATAGACG -ACGGAAACAGACACACGAGTAACG -ACGGAAACAGACACACGAACTTCG -ACGGAAACAGACACACGATACGCA -ACGGAAACAGACACACGACTTGCA -ACGGAAACAGACACACGACGAACA -ACGGAAACAGACACACGACAGTCA -ACGGAAACAGACACACGAGATCCA -ACGGAAACAGACACACGAACGACA -ACGGAAACAGACACACGAAGCTCA -ACGGAAACAGACACACGATCACGT -ACGGAAACAGACACACGACGTAGT -ACGGAAACAGACACACGAGTCAGT -ACGGAAACAGACACACGAGAAGGT -ACGGAAACAGACACACGAAACCGT -ACGGAAACAGACACACGATTGTGC -ACGGAAACAGACACACGACTAAGC -ACGGAAACAGACACACGAACTAGC -ACGGAAACAGACACACGAAGATGC -ACGGAAACAGACACACGATGAAGG -ACGGAAACAGACACACGACAATGG -ACGGAAACAGACACACGAATGAGG -ACGGAAACAGACACACGAAATGGG -ACGGAAACAGACACACGATCCTGA -ACGGAAACAGACACACGATAGCGA -ACGGAAACAGACACACGACACAGA -ACGGAAACAGACACACGAGCAAGA -ACGGAAACAGACACACGAGGTTGA -ACGGAAACAGACACACGATCCGAT -ACGGAAACAGACACACGATGGCAT -ACGGAAACAGACACACGACGAGAT -ACGGAAACAGACACACGATACCAC -ACGGAAACAGACACACGACAGAAC -ACGGAAACAGACACACGAGTCTAC -ACGGAAACAGACACACGAACGTAC -ACGGAAACAGACACACGAAGTGAC -ACGGAAACAGACACACGACTGTAG -ACGGAAACAGACACACGACCTAAG -ACGGAAACAGACACACGAGTTCAG -ACGGAAACAGACACACGAGCATAG -ACGGAAACAGACACACGAGACAAG -ACGGAAACAGACACACGAAAGCAG -ACGGAAACAGACACACGACGTCAA -ACGGAAACAGACACACGAGCTGAA -ACGGAAACAGACACACGAAGTACG -ACGGAAACAGACACACGAATCCGA -ACGGAAACAGACACACGAATGGGA -ACGGAAACAGACACACGAGTGCAA -ACGGAAACAGACACACGAGAGGAA -ACGGAAACAGACACACGACAGGTA -ACGGAAACAGACACACGAGACTCT -ACGGAAACAGACACACGAAGTCCT -ACGGAAACAGACACACGATAAGCC -ACGGAAACAGACACACGAATAGCC -ACGGAAACAGACACACGATAACCG -ACGGAAACAGACACACGAATGCCA -ACGGAAACAGACTCACAGGGAAAC -ACGGAAACAGACTCACAGAACACC -ACGGAAACAGACTCACAGATCGAG -ACGGAAACAGACTCACAGCTCCTT -ACGGAAACAGACTCACAGCCTGTT -ACGGAAACAGACTCACAGCGGTTT -ACGGAAACAGACTCACAGGTGGTT -ACGGAAACAGACTCACAGGCCTTT -ACGGAAACAGACTCACAGGGTCTT -ACGGAAACAGACTCACAGACGCTT -ACGGAAACAGACTCACAGAGCGTT -ACGGAAACAGACTCACAGTTCGTC -ACGGAAACAGACTCACAGTCTCTC -ACGGAAACAGACTCACAGTGGATC -ACGGAAACAGACTCACAGCACTTC -ACGGAAACAGACTCACAGGTACTC -ACGGAAACAGACTCACAGGATGTC -ACGGAAACAGACTCACAGACAGTC -ACGGAAACAGACTCACAGTTGCTG -ACGGAAACAGACTCACAGTCCATG -ACGGAAACAGACTCACAGTGTGTG -ACGGAAACAGACTCACAGCTAGTG -ACGGAAACAGACTCACAGCATCTG -ACGGAAACAGACTCACAGGAGTTG -ACGGAAACAGACTCACAGAGACTG -ACGGAAACAGACTCACAGTCGGTA -ACGGAAACAGACTCACAGTGCCTA -ACGGAAACAGACTCACAGCCACTA -ACGGAAACAGACTCACAGGGAGTA -ACGGAAACAGACTCACAGTCGTCT -ACGGAAACAGACTCACAGTGCACT -ACGGAAACAGACTCACAGCTGACT -ACGGAAACAGACTCACAGCAACCT -ACGGAAACAGACTCACAGGCTACT -ACGGAAACAGACTCACAGGGATCT -ACGGAAACAGACTCACAGAAGGCT -ACGGAAACAGACTCACAGTCAACC -ACGGAAACAGACTCACAGTGTTCC -ACGGAAACAGACTCACAGATTCCC -ACGGAAACAGACTCACAGTTCTCG -ACGGAAACAGACTCACAGTAGACG -ACGGAAACAGACTCACAGGTAACG -ACGGAAACAGACTCACAGACTTCG -ACGGAAACAGACTCACAGTACGCA -ACGGAAACAGACTCACAGCTTGCA -ACGGAAACAGACTCACAGCGAACA -ACGGAAACAGACTCACAGCAGTCA -ACGGAAACAGACTCACAGGATCCA -ACGGAAACAGACTCACAGACGACA -ACGGAAACAGACTCACAGAGCTCA -ACGGAAACAGACTCACAGTCACGT -ACGGAAACAGACTCACAGCGTAGT -ACGGAAACAGACTCACAGGTCAGT -ACGGAAACAGACTCACAGGAAGGT -ACGGAAACAGACTCACAGAACCGT -ACGGAAACAGACTCACAGTTGTGC -ACGGAAACAGACTCACAGCTAAGC -ACGGAAACAGACTCACAGACTAGC -ACGGAAACAGACTCACAGAGATGC -ACGGAAACAGACTCACAGTGAAGG -ACGGAAACAGACTCACAGCAATGG -ACGGAAACAGACTCACAGATGAGG -ACGGAAACAGACTCACAGAATGGG -ACGGAAACAGACTCACAGTCCTGA -ACGGAAACAGACTCACAGTAGCGA -ACGGAAACAGACTCACAGCACAGA -ACGGAAACAGACTCACAGGCAAGA -ACGGAAACAGACTCACAGGGTTGA -ACGGAAACAGACTCACAGTCCGAT -ACGGAAACAGACTCACAGTGGCAT -ACGGAAACAGACTCACAGCGAGAT -ACGGAAACAGACTCACAGTACCAC -ACGGAAACAGACTCACAGCAGAAC -ACGGAAACAGACTCACAGGTCTAC -ACGGAAACAGACTCACAGACGTAC -ACGGAAACAGACTCACAGAGTGAC -ACGGAAACAGACTCACAGCTGTAG -ACGGAAACAGACTCACAGCCTAAG -ACGGAAACAGACTCACAGGTTCAG -ACGGAAACAGACTCACAGGCATAG -ACGGAAACAGACTCACAGGACAAG -ACGGAAACAGACTCACAGAAGCAG -ACGGAAACAGACTCACAGCGTCAA -ACGGAAACAGACTCACAGGCTGAA -ACGGAAACAGACTCACAGAGTACG -ACGGAAACAGACTCACAGATCCGA -ACGGAAACAGACTCACAGATGGGA -ACGGAAACAGACTCACAGGTGCAA -ACGGAAACAGACTCACAGGAGGAA -ACGGAAACAGACTCACAGCAGGTA -ACGGAAACAGACTCACAGGACTCT -ACGGAAACAGACTCACAGAGTCCT -ACGGAAACAGACTCACAGTAAGCC -ACGGAAACAGACTCACAGATAGCC -ACGGAAACAGACTCACAGTAACCG -ACGGAAACAGACTCACAGATGCCA -ACGGAAACAGACCCAGATGGAAAC -ACGGAAACAGACCCAGATAACACC -ACGGAAACAGACCCAGATATCGAG -ACGGAAACAGACCCAGATCTCCTT -ACGGAAACAGACCCAGATCCTGTT -ACGGAAACAGACCCAGATCGGTTT -ACGGAAACAGACCCAGATGTGGTT -ACGGAAACAGACCCAGATGCCTTT -ACGGAAACAGACCCAGATGGTCTT -ACGGAAACAGACCCAGATACGCTT -ACGGAAACAGACCCAGATAGCGTT -ACGGAAACAGACCCAGATTTCGTC -ACGGAAACAGACCCAGATTCTCTC -ACGGAAACAGACCCAGATTGGATC -ACGGAAACAGACCCAGATCACTTC -ACGGAAACAGACCCAGATGTACTC -ACGGAAACAGACCCAGATGATGTC -ACGGAAACAGACCCAGATACAGTC -ACGGAAACAGACCCAGATTTGCTG -ACGGAAACAGACCCAGATTCCATG -ACGGAAACAGACCCAGATTGTGTG -ACGGAAACAGACCCAGATCTAGTG -ACGGAAACAGACCCAGATCATCTG -ACGGAAACAGACCCAGATGAGTTG -ACGGAAACAGACCCAGATAGACTG -ACGGAAACAGACCCAGATTCGGTA -ACGGAAACAGACCCAGATTGCCTA -ACGGAAACAGACCCAGATCCACTA -ACGGAAACAGACCCAGATGGAGTA -ACGGAAACAGACCCAGATTCGTCT -ACGGAAACAGACCCAGATTGCACT -ACGGAAACAGACCCAGATCTGACT -ACGGAAACAGACCCAGATCAACCT -ACGGAAACAGACCCAGATGCTACT -ACGGAAACAGACCCAGATGGATCT -ACGGAAACAGACCCAGATAAGGCT -ACGGAAACAGACCCAGATTCAACC -ACGGAAACAGACCCAGATTGTTCC -ACGGAAACAGACCCAGATATTCCC -ACGGAAACAGACCCAGATTTCTCG -ACGGAAACAGACCCAGATTAGACG -ACGGAAACAGACCCAGATGTAACG -ACGGAAACAGACCCAGATACTTCG -ACGGAAACAGACCCAGATTACGCA -ACGGAAACAGACCCAGATCTTGCA -ACGGAAACAGACCCAGATCGAACA -ACGGAAACAGACCCAGATCAGTCA -ACGGAAACAGACCCAGATGATCCA -ACGGAAACAGACCCAGATACGACA -ACGGAAACAGACCCAGATAGCTCA -ACGGAAACAGACCCAGATTCACGT -ACGGAAACAGACCCAGATCGTAGT -ACGGAAACAGACCCAGATGTCAGT -ACGGAAACAGACCCAGATGAAGGT -ACGGAAACAGACCCAGATAACCGT -ACGGAAACAGACCCAGATTTGTGC -ACGGAAACAGACCCAGATCTAAGC -ACGGAAACAGACCCAGATACTAGC -ACGGAAACAGACCCAGATAGATGC -ACGGAAACAGACCCAGATTGAAGG -ACGGAAACAGACCCAGATCAATGG -ACGGAAACAGACCCAGATATGAGG -ACGGAAACAGACCCAGATAATGGG -ACGGAAACAGACCCAGATTCCTGA -ACGGAAACAGACCCAGATTAGCGA -ACGGAAACAGACCCAGATCACAGA -ACGGAAACAGACCCAGATGCAAGA -ACGGAAACAGACCCAGATGGTTGA -ACGGAAACAGACCCAGATTCCGAT -ACGGAAACAGACCCAGATTGGCAT -ACGGAAACAGACCCAGATCGAGAT -ACGGAAACAGACCCAGATTACCAC -ACGGAAACAGACCCAGATCAGAAC -ACGGAAACAGACCCAGATGTCTAC -ACGGAAACAGACCCAGATACGTAC -ACGGAAACAGACCCAGATAGTGAC -ACGGAAACAGACCCAGATCTGTAG -ACGGAAACAGACCCAGATCCTAAG -ACGGAAACAGACCCAGATGTTCAG -ACGGAAACAGACCCAGATGCATAG -ACGGAAACAGACCCAGATGACAAG -ACGGAAACAGACCCAGATAAGCAG -ACGGAAACAGACCCAGATCGTCAA -ACGGAAACAGACCCAGATGCTGAA -ACGGAAACAGACCCAGATAGTACG -ACGGAAACAGACCCAGATATCCGA -ACGGAAACAGACCCAGATATGGGA -ACGGAAACAGACCCAGATGTGCAA -ACGGAAACAGACCCAGATGAGGAA -ACGGAAACAGACCCAGATCAGGTA -ACGGAAACAGACCCAGATGACTCT -ACGGAAACAGACCCAGATAGTCCT -ACGGAAACAGACCCAGATTAAGCC -ACGGAAACAGACCCAGATATAGCC -ACGGAAACAGACCCAGATTAACCG -ACGGAAACAGACCCAGATATGCCA -ACGGAAACAGACACAACGGGAAAC -ACGGAAACAGACACAACGAACACC -ACGGAAACAGACACAACGATCGAG -ACGGAAACAGACACAACGCTCCTT -ACGGAAACAGACACAACGCCTGTT -ACGGAAACAGACACAACGCGGTTT -ACGGAAACAGACACAACGGTGGTT -ACGGAAACAGACACAACGGCCTTT -ACGGAAACAGACACAACGGGTCTT -ACGGAAACAGACACAACGACGCTT -ACGGAAACAGACACAACGAGCGTT -ACGGAAACAGACACAACGTTCGTC -ACGGAAACAGACACAACGTCTCTC -ACGGAAACAGACACAACGTGGATC -ACGGAAACAGACACAACGCACTTC -ACGGAAACAGACACAACGGTACTC -ACGGAAACAGACACAACGGATGTC -ACGGAAACAGACACAACGACAGTC -ACGGAAACAGACACAACGTTGCTG -ACGGAAACAGACACAACGTCCATG -ACGGAAACAGACACAACGTGTGTG -ACGGAAACAGACACAACGCTAGTG -ACGGAAACAGACACAACGCATCTG -ACGGAAACAGACACAACGGAGTTG -ACGGAAACAGACACAACGAGACTG -ACGGAAACAGACACAACGTCGGTA -ACGGAAACAGACACAACGTGCCTA -ACGGAAACAGACACAACGCCACTA -ACGGAAACAGACACAACGGGAGTA -ACGGAAACAGACACAACGTCGTCT -ACGGAAACAGACACAACGTGCACT -ACGGAAACAGACACAACGCTGACT -ACGGAAACAGACACAACGCAACCT -ACGGAAACAGACACAACGGCTACT -ACGGAAACAGACACAACGGGATCT -ACGGAAACAGACACAACGAAGGCT -ACGGAAACAGACACAACGTCAACC -ACGGAAACAGACACAACGTGTTCC -ACGGAAACAGACACAACGATTCCC -ACGGAAACAGACACAACGTTCTCG -ACGGAAACAGACACAACGTAGACG -ACGGAAACAGACACAACGGTAACG -ACGGAAACAGACACAACGACTTCG -ACGGAAACAGACACAACGTACGCA -ACGGAAACAGACACAACGCTTGCA -ACGGAAACAGACACAACGCGAACA -ACGGAAACAGACACAACGCAGTCA -ACGGAAACAGACACAACGGATCCA -ACGGAAACAGACACAACGACGACA -ACGGAAACAGACACAACGAGCTCA -ACGGAAACAGACACAACGTCACGT -ACGGAAACAGACACAACGCGTAGT -ACGGAAACAGACACAACGGTCAGT -ACGGAAACAGACACAACGGAAGGT -ACGGAAACAGACACAACGAACCGT -ACGGAAACAGACACAACGTTGTGC -ACGGAAACAGACACAACGCTAAGC -ACGGAAACAGACACAACGACTAGC -ACGGAAACAGACACAACGAGATGC -ACGGAAACAGACACAACGTGAAGG -ACGGAAACAGACACAACGCAATGG -ACGGAAACAGACACAACGATGAGG -ACGGAAACAGACACAACGAATGGG -ACGGAAACAGACACAACGTCCTGA -ACGGAAACAGACACAACGTAGCGA -ACGGAAACAGACACAACGCACAGA -ACGGAAACAGACACAACGGCAAGA -ACGGAAACAGACACAACGGGTTGA -ACGGAAACAGACACAACGTCCGAT -ACGGAAACAGACACAACGTGGCAT -ACGGAAACAGACACAACGCGAGAT -ACGGAAACAGACACAACGTACCAC -ACGGAAACAGACACAACGCAGAAC -ACGGAAACAGACACAACGGTCTAC -ACGGAAACAGACACAACGACGTAC -ACGGAAACAGACACAACGAGTGAC -ACGGAAACAGACACAACGCTGTAG -ACGGAAACAGACACAACGCCTAAG -ACGGAAACAGACACAACGGTTCAG -ACGGAAACAGACACAACGGCATAG -ACGGAAACAGACACAACGGACAAG -ACGGAAACAGACACAACGAAGCAG -ACGGAAACAGACACAACGCGTCAA -ACGGAAACAGACACAACGGCTGAA -ACGGAAACAGACACAACGAGTACG -ACGGAAACAGACACAACGATCCGA -ACGGAAACAGACACAACGATGGGA -ACGGAAACAGACACAACGGTGCAA -ACGGAAACAGACACAACGGAGGAA -ACGGAAACAGACACAACGCAGGTA -ACGGAAACAGACACAACGGACTCT -ACGGAAACAGACACAACGAGTCCT -ACGGAAACAGACACAACGTAAGCC -ACGGAAACAGACACAACGATAGCC -ACGGAAACAGACACAACGTAACCG -ACGGAAACAGACACAACGATGCCA -ACGGAAACAGACTCAAGCGGAAAC -ACGGAAACAGACTCAAGCAACACC -ACGGAAACAGACTCAAGCATCGAG -ACGGAAACAGACTCAAGCCTCCTT -ACGGAAACAGACTCAAGCCCTGTT -ACGGAAACAGACTCAAGCCGGTTT -ACGGAAACAGACTCAAGCGTGGTT -ACGGAAACAGACTCAAGCGCCTTT -ACGGAAACAGACTCAAGCGGTCTT -ACGGAAACAGACTCAAGCACGCTT -ACGGAAACAGACTCAAGCAGCGTT -ACGGAAACAGACTCAAGCTTCGTC -ACGGAAACAGACTCAAGCTCTCTC -ACGGAAACAGACTCAAGCTGGATC -ACGGAAACAGACTCAAGCCACTTC -ACGGAAACAGACTCAAGCGTACTC -ACGGAAACAGACTCAAGCGATGTC -ACGGAAACAGACTCAAGCACAGTC -ACGGAAACAGACTCAAGCTTGCTG -ACGGAAACAGACTCAAGCTCCATG -ACGGAAACAGACTCAAGCTGTGTG -ACGGAAACAGACTCAAGCCTAGTG -ACGGAAACAGACTCAAGCCATCTG -ACGGAAACAGACTCAAGCGAGTTG -ACGGAAACAGACTCAAGCAGACTG -ACGGAAACAGACTCAAGCTCGGTA -ACGGAAACAGACTCAAGCTGCCTA -ACGGAAACAGACTCAAGCCCACTA -ACGGAAACAGACTCAAGCGGAGTA -ACGGAAACAGACTCAAGCTCGTCT -ACGGAAACAGACTCAAGCTGCACT -ACGGAAACAGACTCAAGCCTGACT -ACGGAAACAGACTCAAGCCAACCT -ACGGAAACAGACTCAAGCGCTACT -ACGGAAACAGACTCAAGCGGATCT -ACGGAAACAGACTCAAGCAAGGCT -ACGGAAACAGACTCAAGCTCAACC -ACGGAAACAGACTCAAGCTGTTCC -ACGGAAACAGACTCAAGCATTCCC -ACGGAAACAGACTCAAGCTTCTCG -ACGGAAACAGACTCAAGCTAGACG -ACGGAAACAGACTCAAGCGTAACG -ACGGAAACAGACTCAAGCACTTCG -ACGGAAACAGACTCAAGCTACGCA -ACGGAAACAGACTCAAGCCTTGCA -ACGGAAACAGACTCAAGCCGAACA -ACGGAAACAGACTCAAGCCAGTCA -ACGGAAACAGACTCAAGCGATCCA -ACGGAAACAGACTCAAGCACGACA -ACGGAAACAGACTCAAGCAGCTCA -ACGGAAACAGACTCAAGCTCACGT -ACGGAAACAGACTCAAGCCGTAGT -ACGGAAACAGACTCAAGCGTCAGT -ACGGAAACAGACTCAAGCGAAGGT -ACGGAAACAGACTCAAGCAACCGT -ACGGAAACAGACTCAAGCTTGTGC -ACGGAAACAGACTCAAGCCTAAGC -ACGGAAACAGACTCAAGCACTAGC -ACGGAAACAGACTCAAGCAGATGC -ACGGAAACAGACTCAAGCTGAAGG -ACGGAAACAGACTCAAGCCAATGG -ACGGAAACAGACTCAAGCATGAGG -ACGGAAACAGACTCAAGCAATGGG -ACGGAAACAGACTCAAGCTCCTGA -ACGGAAACAGACTCAAGCTAGCGA -ACGGAAACAGACTCAAGCCACAGA -ACGGAAACAGACTCAAGCGCAAGA -ACGGAAACAGACTCAAGCGGTTGA -ACGGAAACAGACTCAAGCTCCGAT -ACGGAAACAGACTCAAGCTGGCAT -ACGGAAACAGACTCAAGCCGAGAT -ACGGAAACAGACTCAAGCTACCAC -ACGGAAACAGACTCAAGCCAGAAC -ACGGAAACAGACTCAAGCGTCTAC -ACGGAAACAGACTCAAGCACGTAC -ACGGAAACAGACTCAAGCAGTGAC -ACGGAAACAGACTCAAGCCTGTAG -ACGGAAACAGACTCAAGCCCTAAG -ACGGAAACAGACTCAAGCGTTCAG -ACGGAAACAGACTCAAGCGCATAG -ACGGAAACAGACTCAAGCGACAAG -ACGGAAACAGACTCAAGCAAGCAG -ACGGAAACAGACTCAAGCCGTCAA -ACGGAAACAGACTCAAGCGCTGAA -ACGGAAACAGACTCAAGCAGTACG -ACGGAAACAGACTCAAGCATCCGA -ACGGAAACAGACTCAAGCATGGGA -ACGGAAACAGACTCAAGCGTGCAA -ACGGAAACAGACTCAAGCGAGGAA -ACGGAAACAGACTCAAGCCAGGTA -ACGGAAACAGACTCAAGCGACTCT -ACGGAAACAGACTCAAGCAGTCCT -ACGGAAACAGACTCAAGCTAAGCC -ACGGAAACAGACTCAAGCATAGCC -ACGGAAACAGACTCAAGCTAACCG -ACGGAAACAGACTCAAGCATGCCA -ACGGAAACAGACCGTTCAGGAAAC -ACGGAAACAGACCGTTCAAACACC -ACGGAAACAGACCGTTCAATCGAG -ACGGAAACAGACCGTTCACTCCTT -ACGGAAACAGACCGTTCACCTGTT -ACGGAAACAGACCGTTCACGGTTT -ACGGAAACAGACCGTTCAGTGGTT -ACGGAAACAGACCGTTCAGCCTTT -ACGGAAACAGACCGTTCAGGTCTT -ACGGAAACAGACCGTTCAACGCTT -ACGGAAACAGACCGTTCAAGCGTT -ACGGAAACAGACCGTTCATTCGTC -ACGGAAACAGACCGTTCATCTCTC -ACGGAAACAGACCGTTCATGGATC -ACGGAAACAGACCGTTCACACTTC -ACGGAAACAGACCGTTCAGTACTC -ACGGAAACAGACCGTTCAGATGTC -ACGGAAACAGACCGTTCAACAGTC -ACGGAAACAGACCGTTCATTGCTG -ACGGAAACAGACCGTTCATCCATG -ACGGAAACAGACCGTTCATGTGTG -ACGGAAACAGACCGTTCACTAGTG -ACGGAAACAGACCGTTCACATCTG -ACGGAAACAGACCGTTCAGAGTTG -ACGGAAACAGACCGTTCAAGACTG -ACGGAAACAGACCGTTCATCGGTA -ACGGAAACAGACCGTTCATGCCTA -ACGGAAACAGACCGTTCACCACTA -ACGGAAACAGACCGTTCAGGAGTA -ACGGAAACAGACCGTTCATCGTCT -ACGGAAACAGACCGTTCATGCACT -ACGGAAACAGACCGTTCACTGACT -ACGGAAACAGACCGTTCACAACCT -ACGGAAACAGACCGTTCAGCTACT -ACGGAAACAGACCGTTCAGGATCT -ACGGAAACAGACCGTTCAAAGGCT -ACGGAAACAGACCGTTCATCAACC -ACGGAAACAGACCGTTCATGTTCC -ACGGAAACAGACCGTTCAATTCCC -ACGGAAACAGACCGTTCATTCTCG -ACGGAAACAGACCGTTCATAGACG -ACGGAAACAGACCGTTCAGTAACG -ACGGAAACAGACCGTTCAACTTCG -ACGGAAACAGACCGTTCATACGCA -ACGGAAACAGACCGTTCACTTGCA -ACGGAAACAGACCGTTCACGAACA -ACGGAAACAGACCGTTCACAGTCA -ACGGAAACAGACCGTTCAGATCCA -ACGGAAACAGACCGTTCAACGACA -ACGGAAACAGACCGTTCAAGCTCA -ACGGAAACAGACCGTTCATCACGT -ACGGAAACAGACCGTTCACGTAGT -ACGGAAACAGACCGTTCAGTCAGT -ACGGAAACAGACCGTTCAGAAGGT -ACGGAAACAGACCGTTCAAACCGT -ACGGAAACAGACCGTTCATTGTGC -ACGGAAACAGACCGTTCACTAAGC -ACGGAAACAGACCGTTCAACTAGC -ACGGAAACAGACCGTTCAAGATGC -ACGGAAACAGACCGTTCATGAAGG -ACGGAAACAGACCGTTCACAATGG -ACGGAAACAGACCGTTCAATGAGG -ACGGAAACAGACCGTTCAAATGGG -ACGGAAACAGACCGTTCATCCTGA -ACGGAAACAGACCGTTCATAGCGA -ACGGAAACAGACCGTTCACACAGA -ACGGAAACAGACCGTTCAGCAAGA -ACGGAAACAGACCGTTCAGGTTGA -ACGGAAACAGACCGTTCATCCGAT -ACGGAAACAGACCGTTCATGGCAT -ACGGAAACAGACCGTTCACGAGAT -ACGGAAACAGACCGTTCATACCAC -ACGGAAACAGACCGTTCACAGAAC -ACGGAAACAGACCGTTCAGTCTAC -ACGGAAACAGACCGTTCAACGTAC -ACGGAAACAGACCGTTCAAGTGAC -ACGGAAACAGACCGTTCACTGTAG -ACGGAAACAGACCGTTCACCTAAG -ACGGAAACAGACCGTTCAGTTCAG -ACGGAAACAGACCGTTCAGCATAG -ACGGAAACAGACCGTTCAGACAAG -ACGGAAACAGACCGTTCAAAGCAG -ACGGAAACAGACCGTTCACGTCAA -ACGGAAACAGACCGTTCAGCTGAA -ACGGAAACAGACCGTTCAAGTACG -ACGGAAACAGACCGTTCAATCCGA -ACGGAAACAGACCGTTCAATGGGA -ACGGAAACAGACCGTTCAGTGCAA -ACGGAAACAGACCGTTCAGAGGAA -ACGGAAACAGACCGTTCACAGGTA -ACGGAAACAGACCGTTCAGACTCT -ACGGAAACAGACCGTTCAAGTCCT -ACGGAAACAGACCGTTCATAAGCC -ACGGAAACAGACCGTTCAATAGCC -ACGGAAACAGACCGTTCATAACCG -ACGGAAACAGACCGTTCAATGCCA -ACGGAAACAGACAGTCGTGGAAAC -ACGGAAACAGACAGTCGTAACACC -ACGGAAACAGACAGTCGTATCGAG -ACGGAAACAGACAGTCGTCTCCTT -ACGGAAACAGACAGTCGTCCTGTT -ACGGAAACAGACAGTCGTCGGTTT -ACGGAAACAGACAGTCGTGTGGTT -ACGGAAACAGACAGTCGTGCCTTT -ACGGAAACAGACAGTCGTGGTCTT -ACGGAAACAGACAGTCGTACGCTT -ACGGAAACAGACAGTCGTAGCGTT -ACGGAAACAGACAGTCGTTTCGTC -ACGGAAACAGACAGTCGTTCTCTC -ACGGAAACAGACAGTCGTTGGATC -ACGGAAACAGACAGTCGTCACTTC -ACGGAAACAGACAGTCGTGTACTC -ACGGAAACAGACAGTCGTGATGTC -ACGGAAACAGACAGTCGTACAGTC -ACGGAAACAGACAGTCGTTTGCTG -ACGGAAACAGACAGTCGTTCCATG -ACGGAAACAGACAGTCGTTGTGTG -ACGGAAACAGACAGTCGTCTAGTG -ACGGAAACAGACAGTCGTCATCTG -ACGGAAACAGACAGTCGTGAGTTG -ACGGAAACAGACAGTCGTAGACTG -ACGGAAACAGACAGTCGTTCGGTA -ACGGAAACAGACAGTCGTTGCCTA -ACGGAAACAGACAGTCGTCCACTA -ACGGAAACAGACAGTCGTGGAGTA -ACGGAAACAGACAGTCGTTCGTCT -ACGGAAACAGACAGTCGTTGCACT -ACGGAAACAGACAGTCGTCTGACT -ACGGAAACAGACAGTCGTCAACCT -ACGGAAACAGACAGTCGTGCTACT -ACGGAAACAGACAGTCGTGGATCT -ACGGAAACAGACAGTCGTAAGGCT -ACGGAAACAGACAGTCGTTCAACC -ACGGAAACAGACAGTCGTTGTTCC -ACGGAAACAGACAGTCGTATTCCC -ACGGAAACAGACAGTCGTTTCTCG -ACGGAAACAGACAGTCGTTAGACG -ACGGAAACAGACAGTCGTGTAACG -ACGGAAACAGACAGTCGTACTTCG -ACGGAAACAGACAGTCGTTACGCA -ACGGAAACAGACAGTCGTCTTGCA -ACGGAAACAGACAGTCGTCGAACA -ACGGAAACAGACAGTCGTCAGTCA -ACGGAAACAGACAGTCGTGATCCA -ACGGAAACAGACAGTCGTACGACA -ACGGAAACAGACAGTCGTAGCTCA -ACGGAAACAGACAGTCGTTCACGT -ACGGAAACAGACAGTCGTCGTAGT -ACGGAAACAGACAGTCGTGTCAGT -ACGGAAACAGACAGTCGTGAAGGT -ACGGAAACAGACAGTCGTAACCGT -ACGGAAACAGACAGTCGTTTGTGC -ACGGAAACAGACAGTCGTCTAAGC -ACGGAAACAGACAGTCGTACTAGC -ACGGAAACAGACAGTCGTAGATGC -ACGGAAACAGACAGTCGTTGAAGG -ACGGAAACAGACAGTCGTCAATGG -ACGGAAACAGACAGTCGTATGAGG -ACGGAAACAGACAGTCGTAATGGG -ACGGAAACAGACAGTCGTTCCTGA -ACGGAAACAGACAGTCGTTAGCGA -ACGGAAACAGACAGTCGTCACAGA -ACGGAAACAGACAGTCGTGCAAGA -ACGGAAACAGACAGTCGTGGTTGA -ACGGAAACAGACAGTCGTTCCGAT -ACGGAAACAGACAGTCGTTGGCAT -ACGGAAACAGACAGTCGTCGAGAT -ACGGAAACAGACAGTCGTTACCAC -ACGGAAACAGACAGTCGTCAGAAC -ACGGAAACAGACAGTCGTGTCTAC -ACGGAAACAGACAGTCGTACGTAC -ACGGAAACAGACAGTCGTAGTGAC -ACGGAAACAGACAGTCGTCTGTAG -ACGGAAACAGACAGTCGTCCTAAG -ACGGAAACAGACAGTCGTGTTCAG -ACGGAAACAGACAGTCGTGCATAG -ACGGAAACAGACAGTCGTGACAAG -ACGGAAACAGACAGTCGTAAGCAG -ACGGAAACAGACAGTCGTCGTCAA -ACGGAAACAGACAGTCGTGCTGAA -ACGGAAACAGACAGTCGTAGTACG -ACGGAAACAGACAGTCGTATCCGA -ACGGAAACAGACAGTCGTATGGGA -ACGGAAACAGACAGTCGTGTGCAA -ACGGAAACAGACAGTCGTGAGGAA -ACGGAAACAGACAGTCGTCAGGTA -ACGGAAACAGACAGTCGTGACTCT -ACGGAAACAGACAGTCGTAGTCCT -ACGGAAACAGACAGTCGTTAAGCC -ACGGAAACAGACAGTCGTATAGCC -ACGGAAACAGACAGTCGTTAACCG -ACGGAAACAGACAGTCGTATGCCA -ACGGAAACAGACAGTGTCGGAAAC -ACGGAAACAGACAGTGTCAACACC -ACGGAAACAGACAGTGTCATCGAG -ACGGAAACAGACAGTGTCCTCCTT -ACGGAAACAGACAGTGTCCCTGTT -ACGGAAACAGACAGTGTCCGGTTT -ACGGAAACAGACAGTGTCGTGGTT -ACGGAAACAGACAGTGTCGCCTTT -ACGGAAACAGACAGTGTCGGTCTT -ACGGAAACAGACAGTGTCACGCTT -ACGGAAACAGACAGTGTCAGCGTT -ACGGAAACAGACAGTGTCTTCGTC -ACGGAAACAGACAGTGTCTCTCTC -ACGGAAACAGACAGTGTCTGGATC -ACGGAAACAGACAGTGTCCACTTC -ACGGAAACAGACAGTGTCGTACTC -ACGGAAACAGACAGTGTCGATGTC -ACGGAAACAGACAGTGTCACAGTC -ACGGAAACAGACAGTGTCTTGCTG -ACGGAAACAGACAGTGTCTCCATG -ACGGAAACAGACAGTGTCTGTGTG -ACGGAAACAGACAGTGTCCTAGTG -ACGGAAACAGACAGTGTCCATCTG -ACGGAAACAGACAGTGTCGAGTTG -ACGGAAACAGACAGTGTCAGACTG -ACGGAAACAGACAGTGTCTCGGTA -ACGGAAACAGACAGTGTCTGCCTA -ACGGAAACAGACAGTGTCCCACTA -ACGGAAACAGACAGTGTCGGAGTA -ACGGAAACAGACAGTGTCTCGTCT -ACGGAAACAGACAGTGTCTGCACT -ACGGAAACAGACAGTGTCCTGACT -ACGGAAACAGACAGTGTCCAACCT -ACGGAAACAGACAGTGTCGCTACT -ACGGAAACAGACAGTGTCGGATCT -ACGGAAACAGACAGTGTCAAGGCT -ACGGAAACAGACAGTGTCTCAACC -ACGGAAACAGACAGTGTCTGTTCC -ACGGAAACAGACAGTGTCATTCCC -ACGGAAACAGACAGTGTCTTCTCG -ACGGAAACAGACAGTGTCTAGACG -ACGGAAACAGACAGTGTCGTAACG -ACGGAAACAGACAGTGTCACTTCG -ACGGAAACAGACAGTGTCTACGCA -ACGGAAACAGACAGTGTCCTTGCA -ACGGAAACAGACAGTGTCCGAACA -ACGGAAACAGACAGTGTCCAGTCA -ACGGAAACAGACAGTGTCGATCCA -ACGGAAACAGACAGTGTCACGACA -ACGGAAACAGACAGTGTCAGCTCA -ACGGAAACAGACAGTGTCTCACGT -ACGGAAACAGACAGTGTCCGTAGT -ACGGAAACAGACAGTGTCGTCAGT -ACGGAAACAGACAGTGTCGAAGGT -ACGGAAACAGACAGTGTCAACCGT -ACGGAAACAGACAGTGTCTTGTGC -ACGGAAACAGACAGTGTCCTAAGC -ACGGAAACAGACAGTGTCACTAGC -ACGGAAACAGACAGTGTCAGATGC -ACGGAAACAGACAGTGTCTGAAGG -ACGGAAACAGACAGTGTCCAATGG -ACGGAAACAGACAGTGTCATGAGG -ACGGAAACAGACAGTGTCAATGGG -ACGGAAACAGACAGTGTCTCCTGA -ACGGAAACAGACAGTGTCTAGCGA -ACGGAAACAGACAGTGTCCACAGA -ACGGAAACAGACAGTGTCGCAAGA -ACGGAAACAGACAGTGTCGGTTGA -ACGGAAACAGACAGTGTCTCCGAT -ACGGAAACAGACAGTGTCTGGCAT -ACGGAAACAGACAGTGTCCGAGAT -ACGGAAACAGACAGTGTCTACCAC -ACGGAAACAGACAGTGTCCAGAAC -ACGGAAACAGACAGTGTCGTCTAC -ACGGAAACAGACAGTGTCACGTAC -ACGGAAACAGACAGTGTCAGTGAC -ACGGAAACAGACAGTGTCCTGTAG -ACGGAAACAGACAGTGTCCCTAAG -ACGGAAACAGACAGTGTCGTTCAG -ACGGAAACAGACAGTGTCGCATAG -ACGGAAACAGACAGTGTCGACAAG -ACGGAAACAGACAGTGTCAAGCAG -ACGGAAACAGACAGTGTCCGTCAA -ACGGAAACAGACAGTGTCGCTGAA -ACGGAAACAGACAGTGTCAGTACG -ACGGAAACAGACAGTGTCATCCGA -ACGGAAACAGACAGTGTCATGGGA -ACGGAAACAGACAGTGTCGTGCAA -ACGGAAACAGACAGTGTCGAGGAA -ACGGAAACAGACAGTGTCCAGGTA -ACGGAAACAGACAGTGTCGACTCT -ACGGAAACAGACAGTGTCAGTCCT -ACGGAAACAGACAGTGTCTAAGCC -ACGGAAACAGACAGTGTCATAGCC -ACGGAAACAGACAGTGTCTAACCG -ACGGAAACAGACAGTGTCATGCCA -ACGGAAACAGACGGTGAAGGAAAC -ACGGAAACAGACGGTGAAAACACC -ACGGAAACAGACGGTGAAATCGAG -ACGGAAACAGACGGTGAACTCCTT -ACGGAAACAGACGGTGAACCTGTT -ACGGAAACAGACGGTGAACGGTTT -ACGGAAACAGACGGTGAAGTGGTT -ACGGAAACAGACGGTGAAGCCTTT -ACGGAAACAGACGGTGAAGGTCTT -ACGGAAACAGACGGTGAAACGCTT -ACGGAAACAGACGGTGAAAGCGTT -ACGGAAACAGACGGTGAATTCGTC -ACGGAAACAGACGGTGAATCTCTC -ACGGAAACAGACGGTGAATGGATC -ACGGAAACAGACGGTGAACACTTC -ACGGAAACAGACGGTGAAGTACTC -ACGGAAACAGACGGTGAAGATGTC -ACGGAAACAGACGGTGAAACAGTC -ACGGAAACAGACGGTGAATTGCTG -ACGGAAACAGACGGTGAATCCATG -ACGGAAACAGACGGTGAATGTGTG -ACGGAAACAGACGGTGAACTAGTG -ACGGAAACAGACGGTGAACATCTG -ACGGAAACAGACGGTGAAGAGTTG -ACGGAAACAGACGGTGAAAGACTG -ACGGAAACAGACGGTGAATCGGTA -ACGGAAACAGACGGTGAATGCCTA -ACGGAAACAGACGGTGAACCACTA -ACGGAAACAGACGGTGAAGGAGTA -ACGGAAACAGACGGTGAATCGTCT -ACGGAAACAGACGGTGAATGCACT -ACGGAAACAGACGGTGAACTGACT -ACGGAAACAGACGGTGAACAACCT -ACGGAAACAGACGGTGAAGCTACT -ACGGAAACAGACGGTGAAGGATCT -ACGGAAACAGACGGTGAAAAGGCT -ACGGAAACAGACGGTGAATCAACC -ACGGAAACAGACGGTGAATGTTCC -ACGGAAACAGACGGTGAAATTCCC -ACGGAAACAGACGGTGAATTCTCG -ACGGAAACAGACGGTGAATAGACG -ACGGAAACAGACGGTGAAGTAACG -ACGGAAACAGACGGTGAAACTTCG -ACGGAAACAGACGGTGAATACGCA -ACGGAAACAGACGGTGAACTTGCA -ACGGAAACAGACGGTGAACGAACA -ACGGAAACAGACGGTGAACAGTCA -ACGGAAACAGACGGTGAAGATCCA -ACGGAAACAGACGGTGAAACGACA -ACGGAAACAGACGGTGAAAGCTCA -ACGGAAACAGACGGTGAATCACGT -ACGGAAACAGACGGTGAACGTAGT -ACGGAAACAGACGGTGAAGTCAGT -ACGGAAACAGACGGTGAAGAAGGT -ACGGAAACAGACGGTGAAAACCGT -ACGGAAACAGACGGTGAATTGTGC -ACGGAAACAGACGGTGAACTAAGC -ACGGAAACAGACGGTGAAACTAGC -ACGGAAACAGACGGTGAAAGATGC -ACGGAAACAGACGGTGAATGAAGG -ACGGAAACAGACGGTGAACAATGG -ACGGAAACAGACGGTGAAATGAGG -ACGGAAACAGACGGTGAAAATGGG -ACGGAAACAGACGGTGAATCCTGA -ACGGAAACAGACGGTGAATAGCGA -ACGGAAACAGACGGTGAACACAGA -ACGGAAACAGACGGTGAAGCAAGA -ACGGAAACAGACGGTGAAGGTTGA -ACGGAAACAGACGGTGAATCCGAT -ACGGAAACAGACGGTGAATGGCAT -ACGGAAACAGACGGTGAACGAGAT -ACGGAAACAGACGGTGAATACCAC -ACGGAAACAGACGGTGAACAGAAC -ACGGAAACAGACGGTGAAGTCTAC -ACGGAAACAGACGGTGAAACGTAC -ACGGAAACAGACGGTGAAAGTGAC -ACGGAAACAGACGGTGAACTGTAG -ACGGAAACAGACGGTGAACCTAAG -ACGGAAACAGACGGTGAAGTTCAG -ACGGAAACAGACGGTGAAGCATAG -ACGGAAACAGACGGTGAAGACAAG -ACGGAAACAGACGGTGAAAAGCAG -ACGGAAACAGACGGTGAACGTCAA -ACGGAAACAGACGGTGAAGCTGAA -ACGGAAACAGACGGTGAAAGTACG -ACGGAAACAGACGGTGAAATCCGA -ACGGAAACAGACGGTGAAATGGGA -ACGGAAACAGACGGTGAAGTGCAA -ACGGAAACAGACGGTGAAGAGGAA -ACGGAAACAGACGGTGAACAGGTA -ACGGAAACAGACGGTGAAGACTCT -ACGGAAACAGACGGTGAAAGTCCT -ACGGAAACAGACGGTGAATAAGCC -ACGGAAACAGACGGTGAAATAGCC -ACGGAAACAGACGGTGAATAACCG -ACGGAAACAGACGGTGAAATGCCA -ACGGAAACAGACCGTAACGGAAAC -ACGGAAACAGACCGTAACAACACC -ACGGAAACAGACCGTAACATCGAG -ACGGAAACAGACCGTAACCTCCTT -ACGGAAACAGACCGTAACCCTGTT -ACGGAAACAGACCGTAACCGGTTT -ACGGAAACAGACCGTAACGTGGTT -ACGGAAACAGACCGTAACGCCTTT -ACGGAAACAGACCGTAACGGTCTT -ACGGAAACAGACCGTAACACGCTT -ACGGAAACAGACCGTAACAGCGTT -ACGGAAACAGACCGTAACTTCGTC -ACGGAAACAGACCGTAACTCTCTC -ACGGAAACAGACCGTAACTGGATC -ACGGAAACAGACCGTAACCACTTC -ACGGAAACAGACCGTAACGTACTC -ACGGAAACAGACCGTAACGATGTC -ACGGAAACAGACCGTAACACAGTC -ACGGAAACAGACCGTAACTTGCTG -ACGGAAACAGACCGTAACTCCATG -ACGGAAACAGACCGTAACTGTGTG -ACGGAAACAGACCGTAACCTAGTG -ACGGAAACAGACCGTAACCATCTG -ACGGAAACAGACCGTAACGAGTTG -ACGGAAACAGACCGTAACAGACTG -ACGGAAACAGACCGTAACTCGGTA -ACGGAAACAGACCGTAACTGCCTA -ACGGAAACAGACCGTAACCCACTA -ACGGAAACAGACCGTAACGGAGTA -ACGGAAACAGACCGTAACTCGTCT -ACGGAAACAGACCGTAACTGCACT -ACGGAAACAGACCGTAACCTGACT -ACGGAAACAGACCGTAACCAACCT -ACGGAAACAGACCGTAACGCTACT -ACGGAAACAGACCGTAACGGATCT -ACGGAAACAGACCGTAACAAGGCT -ACGGAAACAGACCGTAACTCAACC -ACGGAAACAGACCGTAACTGTTCC -ACGGAAACAGACCGTAACATTCCC -ACGGAAACAGACCGTAACTTCTCG -ACGGAAACAGACCGTAACTAGACG -ACGGAAACAGACCGTAACGTAACG -ACGGAAACAGACCGTAACACTTCG -ACGGAAACAGACCGTAACTACGCA -ACGGAAACAGACCGTAACCTTGCA -ACGGAAACAGACCGTAACCGAACA -ACGGAAACAGACCGTAACCAGTCA -ACGGAAACAGACCGTAACGATCCA -ACGGAAACAGACCGTAACACGACA -ACGGAAACAGACCGTAACAGCTCA -ACGGAAACAGACCGTAACTCACGT -ACGGAAACAGACCGTAACCGTAGT -ACGGAAACAGACCGTAACGTCAGT -ACGGAAACAGACCGTAACGAAGGT -ACGGAAACAGACCGTAACAACCGT -ACGGAAACAGACCGTAACTTGTGC -ACGGAAACAGACCGTAACCTAAGC -ACGGAAACAGACCGTAACACTAGC -ACGGAAACAGACCGTAACAGATGC -ACGGAAACAGACCGTAACTGAAGG -ACGGAAACAGACCGTAACCAATGG -ACGGAAACAGACCGTAACATGAGG -ACGGAAACAGACCGTAACAATGGG -ACGGAAACAGACCGTAACTCCTGA -ACGGAAACAGACCGTAACTAGCGA -ACGGAAACAGACCGTAACCACAGA -ACGGAAACAGACCGTAACGCAAGA -ACGGAAACAGACCGTAACGGTTGA -ACGGAAACAGACCGTAACTCCGAT -ACGGAAACAGACCGTAACTGGCAT -ACGGAAACAGACCGTAACCGAGAT -ACGGAAACAGACCGTAACTACCAC -ACGGAAACAGACCGTAACCAGAAC -ACGGAAACAGACCGTAACGTCTAC -ACGGAAACAGACCGTAACACGTAC -ACGGAAACAGACCGTAACAGTGAC -ACGGAAACAGACCGTAACCTGTAG -ACGGAAACAGACCGTAACCCTAAG -ACGGAAACAGACCGTAACGTTCAG -ACGGAAACAGACCGTAACGCATAG -ACGGAAACAGACCGTAACGACAAG -ACGGAAACAGACCGTAACAAGCAG -ACGGAAACAGACCGTAACCGTCAA -ACGGAAACAGACCGTAACGCTGAA -ACGGAAACAGACCGTAACAGTACG -ACGGAAACAGACCGTAACATCCGA -ACGGAAACAGACCGTAACATGGGA -ACGGAAACAGACCGTAACGTGCAA -ACGGAAACAGACCGTAACGAGGAA -ACGGAAACAGACCGTAACCAGGTA -ACGGAAACAGACCGTAACGACTCT -ACGGAAACAGACCGTAACAGTCCT -ACGGAAACAGACCGTAACTAAGCC -ACGGAAACAGACCGTAACATAGCC -ACGGAAACAGACCGTAACTAACCG -ACGGAAACAGACCGTAACATGCCA -ACGGAAACAGACTGCTTGGGAAAC -ACGGAAACAGACTGCTTGAACACC -ACGGAAACAGACTGCTTGATCGAG -ACGGAAACAGACTGCTTGCTCCTT -ACGGAAACAGACTGCTTGCCTGTT -ACGGAAACAGACTGCTTGCGGTTT -ACGGAAACAGACTGCTTGGTGGTT -ACGGAAACAGACTGCTTGGCCTTT -ACGGAAACAGACTGCTTGGGTCTT -ACGGAAACAGACTGCTTGACGCTT -ACGGAAACAGACTGCTTGAGCGTT -ACGGAAACAGACTGCTTGTTCGTC -ACGGAAACAGACTGCTTGTCTCTC -ACGGAAACAGACTGCTTGTGGATC -ACGGAAACAGACTGCTTGCACTTC -ACGGAAACAGACTGCTTGGTACTC -ACGGAAACAGACTGCTTGGATGTC -ACGGAAACAGACTGCTTGACAGTC -ACGGAAACAGACTGCTTGTTGCTG -ACGGAAACAGACTGCTTGTCCATG -ACGGAAACAGACTGCTTGTGTGTG -ACGGAAACAGACTGCTTGCTAGTG -ACGGAAACAGACTGCTTGCATCTG -ACGGAAACAGACTGCTTGGAGTTG -ACGGAAACAGACTGCTTGAGACTG -ACGGAAACAGACTGCTTGTCGGTA -ACGGAAACAGACTGCTTGTGCCTA -ACGGAAACAGACTGCTTGCCACTA -ACGGAAACAGACTGCTTGGGAGTA -ACGGAAACAGACTGCTTGTCGTCT -ACGGAAACAGACTGCTTGTGCACT -ACGGAAACAGACTGCTTGCTGACT -ACGGAAACAGACTGCTTGCAACCT -ACGGAAACAGACTGCTTGGCTACT -ACGGAAACAGACTGCTTGGGATCT -ACGGAAACAGACTGCTTGAAGGCT -ACGGAAACAGACTGCTTGTCAACC -ACGGAAACAGACTGCTTGTGTTCC -ACGGAAACAGACTGCTTGATTCCC -ACGGAAACAGACTGCTTGTTCTCG -ACGGAAACAGACTGCTTGTAGACG -ACGGAAACAGACTGCTTGGTAACG -ACGGAAACAGACTGCTTGACTTCG -ACGGAAACAGACTGCTTGTACGCA -ACGGAAACAGACTGCTTGCTTGCA -ACGGAAACAGACTGCTTGCGAACA -ACGGAAACAGACTGCTTGCAGTCA -ACGGAAACAGACTGCTTGGATCCA -ACGGAAACAGACTGCTTGACGACA -ACGGAAACAGACTGCTTGAGCTCA -ACGGAAACAGACTGCTTGTCACGT -ACGGAAACAGACTGCTTGCGTAGT -ACGGAAACAGACTGCTTGGTCAGT -ACGGAAACAGACTGCTTGGAAGGT -ACGGAAACAGACTGCTTGAACCGT -ACGGAAACAGACTGCTTGTTGTGC -ACGGAAACAGACTGCTTGCTAAGC -ACGGAAACAGACTGCTTGACTAGC -ACGGAAACAGACTGCTTGAGATGC -ACGGAAACAGACTGCTTGTGAAGG -ACGGAAACAGACTGCTTGCAATGG -ACGGAAACAGACTGCTTGATGAGG -ACGGAAACAGACTGCTTGAATGGG -ACGGAAACAGACTGCTTGTCCTGA -ACGGAAACAGACTGCTTGTAGCGA -ACGGAAACAGACTGCTTGCACAGA -ACGGAAACAGACTGCTTGGCAAGA -ACGGAAACAGACTGCTTGGGTTGA -ACGGAAACAGACTGCTTGTCCGAT -ACGGAAACAGACTGCTTGTGGCAT -ACGGAAACAGACTGCTTGCGAGAT -ACGGAAACAGACTGCTTGTACCAC -ACGGAAACAGACTGCTTGCAGAAC -ACGGAAACAGACTGCTTGGTCTAC -ACGGAAACAGACTGCTTGACGTAC -ACGGAAACAGACTGCTTGAGTGAC -ACGGAAACAGACTGCTTGCTGTAG -ACGGAAACAGACTGCTTGCCTAAG -ACGGAAACAGACTGCTTGGTTCAG -ACGGAAACAGACTGCTTGGCATAG -ACGGAAACAGACTGCTTGGACAAG -ACGGAAACAGACTGCTTGAAGCAG -ACGGAAACAGACTGCTTGCGTCAA -ACGGAAACAGACTGCTTGGCTGAA -ACGGAAACAGACTGCTTGAGTACG -ACGGAAACAGACTGCTTGATCCGA -ACGGAAACAGACTGCTTGATGGGA -ACGGAAACAGACTGCTTGGTGCAA -ACGGAAACAGACTGCTTGGAGGAA -ACGGAAACAGACTGCTTGCAGGTA -ACGGAAACAGACTGCTTGGACTCT -ACGGAAACAGACTGCTTGAGTCCT -ACGGAAACAGACTGCTTGTAAGCC -ACGGAAACAGACTGCTTGATAGCC -ACGGAAACAGACTGCTTGTAACCG -ACGGAAACAGACTGCTTGATGCCA -ACGGAAACAGACAGCCTAGGAAAC -ACGGAAACAGACAGCCTAAACACC -ACGGAAACAGACAGCCTAATCGAG -ACGGAAACAGACAGCCTACTCCTT -ACGGAAACAGACAGCCTACCTGTT -ACGGAAACAGACAGCCTACGGTTT -ACGGAAACAGACAGCCTAGTGGTT -ACGGAAACAGACAGCCTAGCCTTT -ACGGAAACAGACAGCCTAGGTCTT -ACGGAAACAGACAGCCTAACGCTT -ACGGAAACAGACAGCCTAAGCGTT -ACGGAAACAGACAGCCTATTCGTC -ACGGAAACAGACAGCCTATCTCTC -ACGGAAACAGACAGCCTATGGATC -ACGGAAACAGACAGCCTACACTTC -ACGGAAACAGACAGCCTAGTACTC -ACGGAAACAGACAGCCTAGATGTC -ACGGAAACAGACAGCCTAACAGTC -ACGGAAACAGACAGCCTATTGCTG -ACGGAAACAGACAGCCTATCCATG -ACGGAAACAGACAGCCTATGTGTG -ACGGAAACAGACAGCCTACTAGTG -ACGGAAACAGACAGCCTACATCTG -ACGGAAACAGACAGCCTAGAGTTG -ACGGAAACAGACAGCCTAAGACTG -ACGGAAACAGACAGCCTATCGGTA -ACGGAAACAGACAGCCTATGCCTA -ACGGAAACAGACAGCCTACCACTA -ACGGAAACAGACAGCCTAGGAGTA -ACGGAAACAGACAGCCTATCGTCT -ACGGAAACAGACAGCCTATGCACT -ACGGAAACAGACAGCCTACTGACT -ACGGAAACAGACAGCCTACAACCT -ACGGAAACAGACAGCCTAGCTACT -ACGGAAACAGACAGCCTAGGATCT -ACGGAAACAGACAGCCTAAAGGCT -ACGGAAACAGACAGCCTATCAACC -ACGGAAACAGACAGCCTATGTTCC -ACGGAAACAGACAGCCTAATTCCC -ACGGAAACAGACAGCCTATTCTCG -ACGGAAACAGACAGCCTATAGACG -ACGGAAACAGACAGCCTAGTAACG -ACGGAAACAGACAGCCTAACTTCG -ACGGAAACAGACAGCCTATACGCA -ACGGAAACAGACAGCCTACTTGCA -ACGGAAACAGACAGCCTACGAACA -ACGGAAACAGACAGCCTACAGTCA -ACGGAAACAGACAGCCTAGATCCA -ACGGAAACAGACAGCCTAACGACA -ACGGAAACAGACAGCCTAAGCTCA -ACGGAAACAGACAGCCTATCACGT -ACGGAAACAGACAGCCTACGTAGT -ACGGAAACAGACAGCCTAGTCAGT -ACGGAAACAGACAGCCTAGAAGGT -ACGGAAACAGACAGCCTAAACCGT -ACGGAAACAGACAGCCTATTGTGC -ACGGAAACAGACAGCCTACTAAGC -ACGGAAACAGACAGCCTAACTAGC -ACGGAAACAGACAGCCTAAGATGC -ACGGAAACAGACAGCCTATGAAGG -ACGGAAACAGACAGCCTACAATGG -ACGGAAACAGACAGCCTAATGAGG -ACGGAAACAGACAGCCTAAATGGG -ACGGAAACAGACAGCCTATCCTGA -ACGGAAACAGACAGCCTATAGCGA -ACGGAAACAGACAGCCTACACAGA -ACGGAAACAGACAGCCTAGCAAGA -ACGGAAACAGACAGCCTAGGTTGA -ACGGAAACAGACAGCCTATCCGAT -ACGGAAACAGACAGCCTATGGCAT -ACGGAAACAGACAGCCTACGAGAT -ACGGAAACAGACAGCCTATACCAC -ACGGAAACAGACAGCCTACAGAAC -ACGGAAACAGACAGCCTAGTCTAC -ACGGAAACAGACAGCCTAACGTAC -ACGGAAACAGACAGCCTAAGTGAC -ACGGAAACAGACAGCCTACTGTAG -ACGGAAACAGACAGCCTACCTAAG -ACGGAAACAGACAGCCTAGTTCAG -ACGGAAACAGACAGCCTAGCATAG -ACGGAAACAGACAGCCTAGACAAG -ACGGAAACAGACAGCCTAAAGCAG -ACGGAAACAGACAGCCTACGTCAA -ACGGAAACAGACAGCCTAGCTGAA -ACGGAAACAGACAGCCTAAGTACG -ACGGAAACAGACAGCCTAATCCGA -ACGGAAACAGACAGCCTAATGGGA -ACGGAAACAGACAGCCTAGTGCAA -ACGGAAACAGACAGCCTAGAGGAA -ACGGAAACAGACAGCCTACAGGTA -ACGGAAACAGACAGCCTAGACTCT -ACGGAAACAGACAGCCTAAGTCCT -ACGGAAACAGACAGCCTATAAGCC -ACGGAAACAGACAGCCTAATAGCC -ACGGAAACAGACAGCCTATAACCG -ACGGAAACAGACAGCCTAATGCCA -ACGGAAACAGACAGCACTGGAAAC -ACGGAAACAGACAGCACTAACACC -ACGGAAACAGACAGCACTATCGAG -ACGGAAACAGACAGCACTCTCCTT -ACGGAAACAGACAGCACTCCTGTT -ACGGAAACAGACAGCACTCGGTTT -ACGGAAACAGACAGCACTGTGGTT -ACGGAAACAGACAGCACTGCCTTT -ACGGAAACAGACAGCACTGGTCTT -ACGGAAACAGACAGCACTACGCTT -ACGGAAACAGACAGCACTAGCGTT -ACGGAAACAGACAGCACTTTCGTC -ACGGAAACAGACAGCACTTCTCTC -ACGGAAACAGACAGCACTTGGATC -ACGGAAACAGACAGCACTCACTTC -ACGGAAACAGACAGCACTGTACTC -ACGGAAACAGACAGCACTGATGTC -ACGGAAACAGACAGCACTACAGTC -ACGGAAACAGACAGCACTTTGCTG -ACGGAAACAGACAGCACTTCCATG -ACGGAAACAGACAGCACTTGTGTG -ACGGAAACAGACAGCACTCTAGTG -ACGGAAACAGACAGCACTCATCTG -ACGGAAACAGACAGCACTGAGTTG -ACGGAAACAGACAGCACTAGACTG -ACGGAAACAGACAGCACTTCGGTA -ACGGAAACAGACAGCACTTGCCTA -ACGGAAACAGACAGCACTCCACTA -ACGGAAACAGACAGCACTGGAGTA -ACGGAAACAGACAGCACTTCGTCT -ACGGAAACAGACAGCACTTGCACT -ACGGAAACAGACAGCACTCTGACT -ACGGAAACAGACAGCACTCAACCT -ACGGAAACAGACAGCACTGCTACT -ACGGAAACAGACAGCACTGGATCT -ACGGAAACAGACAGCACTAAGGCT -ACGGAAACAGACAGCACTTCAACC -ACGGAAACAGACAGCACTTGTTCC -ACGGAAACAGACAGCACTATTCCC -ACGGAAACAGACAGCACTTTCTCG -ACGGAAACAGACAGCACTTAGACG -ACGGAAACAGACAGCACTGTAACG -ACGGAAACAGACAGCACTACTTCG -ACGGAAACAGACAGCACTTACGCA -ACGGAAACAGACAGCACTCTTGCA -ACGGAAACAGACAGCACTCGAACA -ACGGAAACAGACAGCACTCAGTCA -ACGGAAACAGACAGCACTGATCCA -ACGGAAACAGACAGCACTACGACA -ACGGAAACAGACAGCACTAGCTCA -ACGGAAACAGACAGCACTTCACGT -ACGGAAACAGACAGCACTCGTAGT -ACGGAAACAGACAGCACTGTCAGT -ACGGAAACAGACAGCACTGAAGGT -ACGGAAACAGACAGCACTAACCGT -ACGGAAACAGACAGCACTTTGTGC -ACGGAAACAGACAGCACTCTAAGC -ACGGAAACAGACAGCACTACTAGC -ACGGAAACAGACAGCACTAGATGC -ACGGAAACAGACAGCACTTGAAGG -ACGGAAACAGACAGCACTCAATGG -ACGGAAACAGACAGCACTATGAGG -ACGGAAACAGACAGCACTAATGGG -ACGGAAACAGACAGCACTTCCTGA -ACGGAAACAGACAGCACTTAGCGA -ACGGAAACAGACAGCACTCACAGA -ACGGAAACAGACAGCACTGCAAGA -ACGGAAACAGACAGCACTGGTTGA -ACGGAAACAGACAGCACTTCCGAT -ACGGAAACAGACAGCACTTGGCAT -ACGGAAACAGACAGCACTCGAGAT -ACGGAAACAGACAGCACTTACCAC -ACGGAAACAGACAGCACTCAGAAC -ACGGAAACAGACAGCACTGTCTAC -ACGGAAACAGACAGCACTACGTAC -ACGGAAACAGACAGCACTAGTGAC -ACGGAAACAGACAGCACTCTGTAG -ACGGAAACAGACAGCACTCCTAAG -ACGGAAACAGACAGCACTGTTCAG -ACGGAAACAGACAGCACTGCATAG -ACGGAAACAGACAGCACTGACAAG -ACGGAAACAGACAGCACTAAGCAG -ACGGAAACAGACAGCACTCGTCAA -ACGGAAACAGACAGCACTGCTGAA -ACGGAAACAGACAGCACTAGTACG -ACGGAAACAGACAGCACTATCCGA -ACGGAAACAGACAGCACTATGGGA -ACGGAAACAGACAGCACTGTGCAA -ACGGAAACAGACAGCACTGAGGAA -ACGGAAACAGACAGCACTCAGGTA -ACGGAAACAGACAGCACTGACTCT -ACGGAAACAGACAGCACTAGTCCT -ACGGAAACAGACAGCACTTAAGCC -ACGGAAACAGACAGCACTATAGCC -ACGGAAACAGACAGCACTTAACCG -ACGGAAACAGACAGCACTATGCCA -ACGGAAACAGACTGCAGAGGAAAC -ACGGAAACAGACTGCAGAAACACC -ACGGAAACAGACTGCAGAATCGAG -ACGGAAACAGACTGCAGACTCCTT -ACGGAAACAGACTGCAGACCTGTT -ACGGAAACAGACTGCAGACGGTTT -ACGGAAACAGACTGCAGAGTGGTT -ACGGAAACAGACTGCAGAGCCTTT -ACGGAAACAGACTGCAGAGGTCTT -ACGGAAACAGACTGCAGAACGCTT -ACGGAAACAGACTGCAGAAGCGTT -ACGGAAACAGACTGCAGATTCGTC -ACGGAAACAGACTGCAGATCTCTC -ACGGAAACAGACTGCAGATGGATC -ACGGAAACAGACTGCAGACACTTC -ACGGAAACAGACTGCAGAGTACTC -ACGGAAACAGACTGCAGAGATGTC -ACGGAAACAGACTGCAGAACAGTC -ACGGAAACAGACTGCAGATTGCTG -ACGGAAACAGACTGCAGATCCATG -ACGGAAACAGACTGCAGATGTGTG -ACGGAAACAGACTGCAGACTAGTG -ACGGAAACAGACTGCAGACATCTG -ACGGAAACAGACTGCAGAGAGTTG -ACGGAAACAGACTGCAGAAGACTG -ACGGAAACAGACTGCAGATCGGTA -ACGGAAACAGACTGCAGATGCCTA -ACGGAAACAGACTGCAGACCACTA -ACGGAAACAGACTGCAGAGGAGTA -ACGGAAACAGACTGCAGATCGTCT -ACGGAAACAGACTGCAGATGCACT -ACGGAAACAGACTGCAGACTGACT -ACGGAAACAGACTGCAGACAACCT -ACGGAAACAGACTGCAGAGCTACT -ACGGAAACAGACTGCAGAGGATCT -ACGGAAACAGACTGCAGAAAGGCT -ACGGAAACAGACTGCAGATCAACC -ACGGAAACAGACTGCAGATGTTCC -ACGGAAACAGACTGCAGAATTCCC -ACGGAAACAGACTGCAGATTCTCG -ACGGAAACAGACTGCAGATAGACG -ACGGAAACAGACTGCAGAGTAACG -ACGGAAACAGACTGCAGAACTTCG -ACGGAAACAGACTGCAGATACGCA -ACGGAAACAGACTGCAGACTTGCA -ACGGAAACAGACTGCAGACGAACA -ACGGAAACAGACTGCAGACAGTCA -ACGGAAACAGACTGCAGAGATCCA -ACGGAAACAGACTGCAGAACGACA -ACGGAAACAGACTGCAGAAGCTCA -ACGGAAACAGACTGCAGATCACGT -ACGGAAACAGACTGCAGACGTAGT -ACGGAAACAGACTGCAGAGTCAGT -ACGGAAACAGACTGCAGAGAAGGT -ACGGAAACAGACTGCAGAAACCGT -ACGGAAACAGACTGCAGATTGTGC -ACGGAAACAGACTGCAGACTAAGC -ACGGAAACAGACTGCAGAACTAGC -ACGGAAACAGACTGCAGAAGATGC -ACGGAAACAGACTGCAGATGAAGG -ACGGAAACAGACTGCAGACAATGG -ACGGAAACAGACTGCAGAATGAGG -ACGGAAACAGACTGCAGAAATGGG -ACGGAAACAGACTGCAGATCCTGA -ACGGAAACAGACTGCAGATAGCGA -ACGGAAACAGACTGCAGACACAGA -ACGGAAACAGACTGCAGAGCAAGA -ACGGAAACAGACTGCAGAGGTTGA -ACGGAAACAGACTGCAGATCCGAT -ACGGAAACAGACTGCAGATGGCAT -ACGGAAACAGACTGCAGACGAGAT -ACGGAAACAGACTGCAGATACCAC -ACGGAAACAGACTGCAGACAGAAC -ACGGAAACAGACTGCAGAGTCTAC -ACGGAAACAGACTGCAGAACGTAC -ACGGAAACAGACTGCAGAAGTGAC -ACGGAAACAGACTGCAGACTGTAG -ACGGAAACAGACTGCAGACCTAAG -ACGGAAACAGACTGCAGAGTTCAG -ACGGAAACAGACTGCAGAGCATAG -ACGGAAACAGACTGCAGAGACAAG -ACGGAAACAGACTGCAGAAAGCAG -ACGGAAACAGACTGCAGACGTCAA -ACGGAAACAGACTGCAGAGCTGAA -ACGGAAACAGACTGCAGAAGTACG -ACGGAAACAGACTGCAGAATCCGA -ACGGAAACAGACTGCAGAATGGGA -ACGGAAACAGACTGCAGAGTGCAA -ACGGAAACAGACTGCAGAGAGGAA -ACGGAAACAGACTGCAGACAGGTA -ACGGAAACAGACTGCAGAGACTCT -ACGGAAACAGACTGCAGAAGTCCT -ACGGAAACAGACTGCAGATAAGCC -ACGGAAACAGACTGCAGAATAGCC -ACGGAAACAGACTGCAGATAACCG -ACGGAAACAGACTGCAGAATGCCA -ACGGAAACAGACAGGTGAGGAAAC -ACGGAAACAGACAGGTGAAACACC -ACGGAAACAGACAGGTGAATCGAG -ACGGAAACAGACAGGTGACTCCTT -ACGGAAACAGACAGGTGACCTGTT -ACGGAAACAGACAGGTGACGGTTT -ACGGAAACAGACAGGTGAGTGGTT -ACGGAAACAGACAGGTGAGCCTTT -ACGGAAACAGACAGGTGAGGTCTT -ACGGAAACAGACAGGTGAACGCTT -ACGGAAACAGACAGGTGAAGCGTT -ACGGAAACAGACAGGTGATTCGTC -ACGGAAACAGACAGGTGATCTCTC -ACGGAAACAGACAGGTGATGGATC -ACGGAAACAGACAGGTGACACTTC -ACGGAAACAGACAGGTGAGTACTC -ACGGAAACAGACAGGTGAGATGTC -ACGGAAACAGACAGGTGAACAGTC -ACGGAAACAGACAGGTGATTGCTG -ACGGAAACAGACAGGTGATCCATG -ACGGAAACAGACAGGTGATGTGTG -ACGGAAACAGACAGGTGACTAGTG -ACGGAAACAGACAGGTGACATCTG -ACGGAAACAGACAGGTGAGAGTTG -ACGGAAACAGACAGGTGAAGACTG -ACGGAAACAGACAGGTGATCGGTA -ACGGAAACAGACAGGTGATGCCTA -ACGGAAACAGACAGGTGACCACTA -ACGGAAACAGACAGGTGAGGAGTA -ACGGAAACAGACAGGTGATCGTCT -ACGGAAACAGACAGGTGATGCACT -ACGGAAACAGACAGGTGACTGACT -ACGGAAACAGACAGGTGACAACCT -ACGGAAACAGACAGGTGAGCTACT -ACGGAAACAGACAGGTGAGGATCT -ACGGAAACAGACAGGTGAAAGGCT -ACGGAAACAGACAGGTGATCAACC -ACGGAAACAGACAGGTGATGTTCC -ACGGAAACAGACAGGTGAATTCCC -ACGGAAACAGACAGGTGATTCTCG -ACGGAAACAGACAGGTGATAGACG -ACGGAAACAGACAGGTGAGTAACG -ACGGAAACAGACAGGTGAACTTCG -ACGGAAACAGACAGGTGATACGCA -ACGGAAACAGACAGGTGACTTGCA -ACGGAAACAGACAGGTGACGAACA -ACGGAAACAGACAGGTGACAGTCA -ACGGAAACAGACAGGTGAGATCCA -ACGGAAACAGACAGGTGAACGACA -ACGGAAACAGACAGGTGAAGCTCA -ACGGAAACAGACAGGTGATCACGT -ACGGAAACAGACAGGTGACGTAGT -ACGGAAACAGACAGGTGAGTCAGT -ACGGAAACAGACAGGTGAGAAGGT -ACGGAAACAGACAGGTGAAACCGT -ACGGAAACAGACAGGTGATTGTGC -ACGGAAACAGACAGGTGACTAAGC -ACGGAAACAGACAGGTGAACTAGC -ACGGAAACAGACAGGTGAAGATGC -ACGGAAACAGACAGGTGATGAAGG -ACGGAAACAGACAGGTGACAATGG -ACGGAAACAGACAGGTGAATGAGG -ACGGAAACAGACAGGTGAAATGGG -ACGGAAACAGACAGGTGATCCTGA -ACGGAAACAGACAGGTGATAGCGA -ACGGAAACAGACAGGTGACACAGA -ACGGAAACAGACAGGTGAGCAAGA -ACGGAAACAGACAGGTGAGGTTGA -ACGGAAACAGACAGGTGATCCGAT -ACGGAAACAGACAGGTGATGGCAT -ACGGAAACAGACAGGTGACGAGAT -ACGGAAACAGACAGGTGATACCAC -ACGGAAACAGACAGGTGACAGAAC -ACGGAAACAGACAGGTGAGTCTAC -ACGGAAACAGACAGGTGAACGTAC -ACGGAAACAGACAGGTGAAGTGAC -ACGGAAACAGACAGGTGACTGTAG -ACGGAAACAGACAGGTGACCTAAG -ACGGAAACAGACAGGTGAGTTCAG -ACGGAAACAGACAGGTGAGCATAG -ACGGAAACAGACAGGTGAGACAAG -ACGGAAACAGACAGGTGAAAGCAG -ACGGAAACAGACAGGTGACGTCAA -ACGGAAACAGACAGGTGAGCTGAA -ACGGAAACAGACAGGTGAAGTACG -ACGGAAACAGACAGGTGAATCCGA -ACGGAAACAGACAGGTGAATGGGA -ACGGAAACAGACAGGTGAGTGCAA -ACGGAAACAGACAGGTGAGAGGAA -ACGGAAACAGACAGGTGACAGGTA -ACGGAAACAGACAGGTGAGACTCT -ACGGAAACAGACAGGTGAAGTCCT -ACGGAAACAGACAGGTGATAAGCC -ACGGAAACAGACAGGTGAATAGCC -ACGGAAACAGACAGGTGATAACCG -ACGGAAACAGACAGGTGAATGCCA -ACGGAAACAGACTGGCAAGGAAAC -ACGGAAACAGACTGGCAAAACACC -ACGGAAACAGACTGGCAAATCGAG -ACGGAAACAGACTGGCAACTCCTT -ACGGAAACAGACTGGCAACCTGTT -ACGGAAACAGACTGGCAACGGTTT -ACGGAAACAGACTGGCAAGTGGTT -ACGGAAACAGACTGGCAAGCCTTT -ACGGAAACAGACTGGCAAGGTCTT -ACGGAAACAGACTGGCAAACGCTT -ACGGAAACAGACTGGCAAAGCGTT -ACGGAAACAGACTGGCAATTCGTC -ACGGAAACAGACTGGCAATCTCTC -ACGGAAACAGACTGGCAATGGATC -ACGGAAACAGACTGGCAACACTTC -ACGGAAACAGACTGGCAAGTACTC -ACGGAAACAGACTGGCAAGATGTC -ACGGAAACAGACTGGCAAACAGTC -ACGGAAACAGACTGGCAATTGCTG -ACGGAAACAGACTGGCAATCCATG -ACGGAAACAGACTGGCAATGTGTG -ACGGAAACAGACTGGCAACTAGTG -ACGGAAACAGACTGGCAACATCTG -ACGGAAACAGACTGGCAAGAGTTG -ACGGAAACAGACTGGCAAAGACTG -ACGGAAACAGACTGGCAATCGGTA -ACGGAAACAGACTGGCAATGCCTA -ACGGAAACAGACTGGCAACCACTA -ACGGAAACAGACTGGCAAGGAGTA -ACGGAAACAGACTGGCAATCGTCT -ACGGAAACAGACTGGCAATGCACT -ACGGAAACAGACTGGCAACTGACT -ACGGAAACAGACTGGCAACAACCT -ACGGAAACAGACTGGCAAGCTACT -ACGGAAACAGACTGGCAAGGATCT -ACGGAAACAGACTGGCAAAAGGCT -ACGGAAACAGACTGGCAATCAACC -ACGGAAACAGACTGGCAATGTTCC -ACGGAAACAGACTGGCAAATTCCC -ACGGAAACAGACTGGCAATTCTCG -ACGGAAACAGACTGGCAATAGACG -ACGGAAACAGACTGGCAAGTAACG -ACGGAAACAGACTGGCAAACTTCG -ACGGAAACAGACTGGCAATACGCA -ACGGAAACAGACTGGCAACTTGCA -ACGGAAACAGACTGGCAACGAACA -ACGGAAACAGACTGGCAACAGTCA -ACGGAAACAGACTGGCAAGATCCA -ACGGAAACAGACTGGCAAACGACA -ACGGAAACAGACTGGCAAAGCTCA -ACGGAAACAGACTGGCAATCACGT -ACGGAAACAGACTGGCAACGTAGT -ACGGAAACAGACTGGCAAGTCAGT -ACGGAAACAGACTGGCAAGAAGGT -ACGGAAACAGACTGGCAAAACCGT -ACGGAAACAGACTGGCAATTGTGC -ACGGAAACAGACTGGCAACTAAGC -ACGGAAACAGACTGGCAAACTAGC -ACGGAAACAGACTGGCAAAGATGC -ACGGAAACAGACTGGCAATGAAGG -ACGGAAACAGACTGGCAACAATGG -ACGGAAACAGACTGGCAAATGAGG -ACGGAAACAGACTGGCAAAATGGG -ACGGAAACAGACTGGCAATCCTGA -ACGGAAACAGACTGGCAATAGCGA -ACGGAAACAGACTGGCAACACAGA -ACGGAAACAGACTGGCAAGCAAGA -ACGGAAACAGACTGGCAAGGTTGA -ACGGAAACAGACTGGCAATCCGAT -ACGGAAACAGACTGGCAATGGCAT -ACGGAAACAGACTGGCAACGAGAT -ACGGAAACAGACTGGCAATACCAC -ACGGAAACAGACTGGCAACAGAAC -ACGGAAACAGACTGGCAAGTCTAC -ACGGAAACAGACTGGCAAACGTAC -ACGGAAACAGACTGGCAAAGTGAC -ACGGAAACAGACTGGCAACTGTAG -ACGGAAACAGACTGGCAACCTAAG -ACGGAAACAGACTGGCAAGTTCAG -ACGGAAACAGACTGGCAAGCATAG -ACGGAAACAGACTGGCAAGACAAG -ACGGAAACAGACTGGCAAAAGCAG -ACGGAAACAGACTGGCAACGTCAA -ACGGAAACAGACTGGCAAGCTGAA -ACGGAAACAGACTGGCAAAGTACG -ACGGAAACAGACTGGCAAATCCGA -ACGGAAACAGACTGGCAAATGGGA -ACGGAAACAGACTGGCAAGTGCAA -ACGGAAACAGACTGGCAAGAGGAA -ACGGAAACAGACTGGCAACAGGTA -ACGGAAACAGACTGGCAAGACTCT -ACGGAAACAGACTGGCAAAGTCCT -ACGGAAACAGACTGGCAATAAGCC -ACGGAAACAGACTGGCAAATAGCC -ACGGAAACAGACTGGCAATAACCG -ACGGAAACAGACTGGCAAATGCCA -ACGGAAACAGACAGGATGGGAAAC -ACGGAAACAGACAGGATGAACACC -ACGGAAACAGACAGGATGATCGAG -ACGGAAACAGACAGGATGCTCCTT -ACGGAAACAGACAGGATGCCTGTT -ACGGAAACAGACAGGATGCGGTTT -ACGGAAACAGACAGGATGGTGGTT -ACGGAAACAGACAGGATGGCCTTT -ACGGAAACAGACAGGATGGGTCTT -ACGGAAACAGACAGGATGACGCTT -ACGGAAACAGACAGGATGAGCGTT -ACGGAAACAGACAGGATGTTCGTC -ACGGAAACAGACAGGATGTCTCTC -ACGGAAACAGACAGGATGTGGATC -ACGGAAACAGACAGGATGCACTTC -ACGGAAACAGACAGGATGGTACTC -ACGGAAACAGACAGGATGGATGTC -ACGGAAACAGACAGGATGACAGTC -ACGGAAACAGACAGGATGTTGCTG -ACGGAAACAGACAGGATGTCCATG -ACGGAAACAGACAGGATGTGTGTG -ACGGAAACAGACAGGATGCTAGTG -ACGGAAACAGACAGGATGCATCTG -ACGGAAACAGACAGGATGGAGTTG -ACGGAAACAGACAGGATGAGACTG -ACGGAAACAGACAGGATGTCGGTA -ACGGAAACAGACAGGATGTGCCTA -ACGGAAACAGACAGGATGCCACTA -ACGGAAACAGACAGGATGGGAGTA -ACGGAAACAGACAGGATGTCGTCT -ACGGAAACAGACAGGATGTGCACT -ACGGAAACAGACAGGATGCTGACT -ACGGAAACAGACAGGATGCAACCT -ACGGAAACAGACAGGATGGCTACT -ACGGAAACAGACAGGATGGGATCT -ACGGAAACAGACAGGATGAAGGCT -ACGGAAACAGACAGGATGTCAACC -ACGGAAACAGACAGGATGTGTTCC -ACGGAAACAGACAGGATGATTCCC -ACGGAAACAGACAGGATGTTCTCG -ACGGAAACAGACAGGATGTAGACG -ACGGAAACAGACAGGATGGTAACG -ACGGAAACAGACAGGATGACTTCG -ACGGAAACAGACAGGATGTACGCA -ACGGAAACAGACAGGATGCTTGCA -ACGGAAACAGACAGGATGCGAACA -ACGGAAACAGACAGGATGCAGTCA -ACGGAAACAGACAGGATGGATCCA -ACGGAAACAGACAGGATGACGACA -ACGGAAACAGACAGGATGAGCTCA -ACGGAAACAGACAGGATGTCACGT -ACGGAAACAGACAGGATGCGTAGT -ACGGAAACAGACAGGATGGTCAGT -ACGGAAACAGACAGGATGGAAGGT -ACGGAAACAGACAGGATGAACCGT -ACGGAAACAGACAGGATGTTGTGC -ACGGAAACAGACAGGATGCTAAGC -ACGGAAACAGACAGGATGACTAGC -ACGGAAACAGACAGGATGAGATGC -ACGGAAACAGACAGGATGTGAAGG -ACGGAAACAGACAGGATGCAATGG -ACGGAAACAGACAGGATGATGAGG -ACGGAAACAGACAGGATGAATGGG -ACGGAAACAGACAGGATGTCCTGA -ACGGAAACAGACAGGATGTAGCGA -ACGGAAACAGACAGGATGCACAGA -ACGGAAACAGACAGGATGGCAAGA -ACGGAAACAGACAGGATGGGTTGA -ACGGAAACAGACAGGATGTCCGAT -ACGGAAACAGACAGGATGTGGCAT -ACGGAAACAGACAGGATGCGAGAT -ACGGAAACAGACAGGATGTACCAC -ACGGAAACAGACAGGATGCAGAAC -ACGGAAACAGACAGGATGGTCTAC -ACGGAAACAGACAGGATGACGTAC -ACGGAAACAGACAGGATGAGTGAC -ACGGAAACAGACAGGATGCTGTAG -ACGGAAACAGACAGGATGCCTAAG -ACGGAAACAGACAGGATGGTTCAG -ACGGAAACAGACAGGATGGCATAG -ACGGAAACAGACAGGATGGACAAG -ACGGAAACAGACAGGATGAAGCAG -ACGGAAACAGACAGGATGCGTCAA -ACGGAAACAGACAGGATGGCTGAA -ACGGAAACAGACAGGATGAGTACG -ACGGAAACAGACAGGATGATCCGA -ACGGAAACAGACAGGATGATGGGA -ACGGAAACAGACAGGATGGTGCAA -ACGGAAACAGACAGGATGGAGGAA -ACGGAAACAGACAGGATGCAGGTA -ACGGAAACAGACAGGATGGACTCT -ACGGAAACAGACAGGATGAGTCCT -ACGGAAACAGACAGGATGTAAGCC -ACGGAAACAGACAGGATGATAGCC -ACGGAAACAGACAGGATGTAACCG -ACGGAAACAGACAGGATGATGCCA -ACGGAAACAGACGGGAATGGAAAC -ACGGAAACAGACGGGAATAACACC -ACGGAAACAGACGGGAATATCGAG -ACGGAAACAGACGGGAATCTCCTT -ACGGAAACAGACGGGAATCCTGTT -ACGGAAACAGACGGGAATCGGTTT -ACGGAAACAGACGGGAATGTGGTT -ACGGAAACAGACGGGAATGCCTTT -ACGGAAACAGACGGGAATGGTCTT -ACGGAAACAGACGGGAATACGCTT -ACGGAAACAGACGGGAATAGCGTT -ACGGAAACAGACGGGAATTTCGTC -ACGGAAACAGACGGGAATTCTCTC -ACGGAAACAGACGGGAATTGGATC -ACGGAAACAGACGGGAATCACTTC -ACGGAAACAGACGGGAATGTACTC -ACGGAAACAGACGGGAATGATGTC -ACGGAAACAGACGGGAATACAGTC -ACGGAAACAGACGGGAATTTGCTG -ACGGAAACAGACGGGAATTCCATG -ACGGAAACAGACGGGAATTGTGTG -ACGGAAACAGACGGGAATCTAGTG -ACGGAAACAGACGGGAATCATCTG -ACGGAAACAGACGGGAATGAGTTG -ACGGAAACAGACGGGAATAGACTG -ACGGAAACAGACGGGAATTCGGTA -ACGGAAACAGACGGGAATTGCCTA -ACGGAAACAGACGGGAATCCACTA -ACGGAAACAGACGGGAATGGAGTA -ACGGAAACAGACGGGAATTCGTCT -ACGGAAACAGACGGGAATTGCACT -ACGGAAACAGACGGGAATCTGACT -ACGGAAACAGACGGGAATCAACCT -ACGGAAACAGACGGGAATGCTACT -ACGGAAACAGACGGGAATGGATCT -ACGGAAACAGACGGGAATAAGGCT -ACGGAAACAGACGGGAATTCAACC -ACGGAAACAGACGGGAATTGTTCC -ACGGAAACAGACGGGAATATTCCC -ACGGAAACAGACGGGAATTTCTCG -ACGGAAACAGACGGGAATTAGACG -ACGGAAACAGACGGGAATGTAACG -ACGGAAACAGACGGGAATACTTCG -ACGGAAACAGACGGGAATTACGCA -ACGGAAACAGACGGGAATCTTGCA -ACGGAAACAGACGGGAATCGAACA -ACGGAAACAGACGGGAATCAGTCA -ACGGAAACAGACGGGAATGATCCA -ACGGAAACAGACGGGAATACGACA -ACGGAAACAGACGGGAATAGCTCA -ACGGAAACAGACGGGAATTCACGT -ACGGAAACAGACGGGAATCGTAGT -ACGGAAACAGACGGGAATGTCAGT -ACGGAAACAGACGGGAATGAAGGT -ACGGAAACAGACGGGAATAACCGT -ACGGAAACAGACGGGAATTTGTGC -ACGGAAACAGACGGGAATCTAAGC -ACGGAAACAGACGGGAATACTAGC -ACGGAAACAGACGGGAATAGATGC -ACGGAAACAGACGGGAATTGAAGG -ACGGAAACAGACGGGAATCAATGG -ACGGAAACAGACGGGAATATGAGG -ACGGAAACAGACGGGAATAATGGG -ACGGAAACAGACGGGAATTCCTGA -ACGGAAACAGACGGGAATTAGCGA -ACGGAAACAGACGGGAATCACAGA -ACGGAAACAGACGGGAATGCAAGA -ACGGAAACAGACGGGAATGGTTGA -ACGGAAACAGACGGGAATTCCGAT -ACGGAAACAGACGGGAATTGGCAT -ACGGAAACAGACGGGAATCGAGAT -ACGGAAACAGACGGGAATTACCAC -ACGGAAACAGACGGGAATCAGAAC -ACGGAAACAGACGGGAATGTCTAC -ACGGAAACAGACGGGAATACGTAC -ACGGAAACAGACGGGAATAGTGAC -ACGGAAACAGACGGGAATCTGTAG -ACGGAAACAGACGGGAATCCTAAG -ACGGAAACAGACGGGAATGTTCAG -ACGGAAACAGACGGGAATGCATAG -ACGGAAACAGACGGGAATGACAAG -ACGGAAACAGACGGGAATAAGCAG -ACGGAAACAGACGGGAATCGTCAA -ACGGAAACAGACGGGAATGCTGAA -ACGGAAACAGACGGGAATAGTACG -ACGGAAACAGACGGGAATATCCGA -ACGGAAACAGACGGGAATATGGGA -ACGGAAACAGACGGGAATGTGCAA -ACGGAAACAGACGGGAATGAGGAA -ACGGAAACAGACGGGAATCAGGTA -ACGGAAACAGACGGGAATGACTCT -ACGGAAACAGACGGGAATAGTCCT -ACGGAAACAGACGGGAATTAAGCC -ACGGAAACAGACGGGAATATAGCC -ACGGAAACAGACGGGAATTAACCG -ACGGAAACAGACGGGAATATGCCA -ACGGAAACAGACTGATCCGGAAAC -ACGGAAACAGACTGATCCAACACC -ACGGAAACAGACTGATCCATCGAG -ACGGAAACAGACTGATCCCTCCTT -ACGGAAACAGACTGATCCCCTGTT -ACGGAAACAGACTGATCCCGGTTT -ACGGAAACAGACTGATCCGTGGTT -ACGGAAACAGACTGATCCGCCTTT -ACGGAAACAGACTGATCCGGTCTT -ACGGAAACAGACTGATCCACGCTT -ACGGAAACAGACTGATCCAGCGTT -ACGGAAACAGACTGATCCTTCGTC -ACGGAAACAGACTGATCCTCTCTC -ACGGAAACAGACTGATCCTGGATC -ACGGAAACAGACTGATCCCACTTC -ACGGAAACAGACTGATCCGTACTC -ACGGAAACAGACTGATCCGATGTC -ACGGAAACAGACTGATCCACAGTC -ACGGAAACAGACTGATCCTTGCTG -ACGGAAACAGACTGATCCTCCATG -ACGGAAACAGACTGATCCTGTGTG -ACGGAAACAGACTGATCCCTAGTG -ACGGAAACAGACTGATCCCATCTG -ACGGAAACAGACTGATCCGAGTTG -ACGGAAACAGACTGATCCAGACTG -ACGGAAACAGACTGATCCTCGGTA -ACGGAAACAGACTGATCCTGCCTA -ACGGAAACAGACTGATCCCCACTA -ACGGAAACAGACTGATCCGGAGTA -ACGGAAACAGACTGATCCTCGTCT -ACGGAAACAGACTGATCCTGCACT -ACGGAAACAGACTGATCCCTGACT -ACGGAAACAGACTGATCCCAACCT -ACGGAAACAGACTGATCCGCTACT -ACGGAAACAGACTGATCCGGATCT -ACGGAAACAGACTGATCCAAGGCT -ACGGAAACAGACTGATCCTCAACC -ACGGAAACAGACTGATCCTGTTCC -ACGGAAACAGACTGATCCATTCCC -ACGGAAACAGACTGATCCTTCTCG -ACGGAAACAGACTGATCCTAGACG -ACGGAAACAGACTGATCCGTAACG -ACGGAAACAGACTGATCCACTTCG -ACGGAAACAGACTGATCCTACGCA -ACGGAAACAGACTGATCCCTTGCA -ACGGAAACAGACTGATCCCGAACA -ACGGAAACAGACTGATCCCAGTCA -ACGGAAACAGACTGATCCGATCCA -ACGGAAACAGACTGATCCACGACA -ACGGAAACAGACTGATCCAGCTCA -ACGGAAACAGACTGATCCTCACGT -ACGGAAACAGACTGATCCCGTAGT -ACGGAAACAGACTGATCCGTCAGT -ACGGAAACAGACTGATCCGAAGGT -ACGGAAACAGACTGATCCAACCGT -ACGGAAACAGACTGATCCTTGTGC -ACGGAAACAGACTGATCCCTAAGC -ACGGAAACAGACTGATCCACTAGC -ACGGAAACAGACTGATCCAGATGC -ACGGAAACAGACTGATCCTGAAGG -ACGGAAACAGACTGATCCCAATGG -ACGGAAACAGACTGATCCATGAGG -ACGGAAACAGACTGATCCAATGGG -ACGGAAACAGACTGATCCTCCTGA -ACGGAAACAGACTGATCCTAGCGA -ACGGAAACAGACTGATCCCACAGA -ACGGAAACAGACTGATCCGCAAGA -ACGGAAACAGACTGATCCGGTTGA -ACGGAAACAGACTGATCCTCCGAT -ACGGAAACAGACTGATCCTGGCAT -ACGGAAACAGACTGATCCCGAGAT -ACGGAAACAGACTGATCCTACCAC -ACGGAAACAGACTGATCCCAGAAC -ACGGAAACAGACTGATCCGTCTAC -ACGGAAACAGACTGATCCACGTAC -ACGGAAACAGACTGATCCAGTGAC -ACGGAAACAGACTGATCCCTGTAG -ACGGAAACAGACTGATCCCCTAAG -ACGGAAACAGACTGATCCGTTCAG -ACGGAAACAGACTGATCCGCATAG -ACGGAAACAGACTGATCCGACAAG -ACGGAAACAGACTGATCCAAGCAG -ACGGAAACAGACTGATCCCGTCAA -ACGGAAACAGACTGATCCGCTGAA -ACGGAAACAGACTGATCCAGTACG -ACGGAAACAGACTGATCCATCCGA -ACGGAAACAGACTGATCCATGGGA -ACGGAAACAGACTGATCCGTGCAA -ACGGAAACAGACTGATCCGAGGAA -ACGGAAACAGACTGATCCCAGGTA -ACGGAAACAGACTGATCCGACTCT -ACGGAAACAGACTGATCCAGTCCT -ACGGAAACAGACTGATCCTAAGCC -ACGGAAACAGACTGATCCATAGCC -ACGGAAACAGACTGATCCTAACCG -ACGGAAACAGACTGATCCATGCCA -ACGGAAACAGACCGATAGGGAAAC -ACGGAAACAGACCGATAGAACACC -ACGGAAACAGACCGATAGATCGAG -ACGGAAACAGACCGATAGCTCCTT -ACGGAAACAGACCGATAGCCTGTT -ACGGAAACAGACCGATAGCGGTTT -ACGGAAACAGACCGATAGGTGGTT -ACGGAAACAGACCGATAGGCCTTT -ACGGAAACAGACCGATAGGGTCTT -ACGGAAACAGACCGATAGACGCTT -ACGGAAACAGACCGATAGAGCGTT -ACGGAAACAGACCGATAGTTCGTC -ACGGAAACAGACCGATAGTCTCTC -ACGGAAACAGACCGATAGTGGATC -ACGGAAACAGACCGATAGCACTTC -ACGGAAACAGACCGATAGGTACTC -ACGGAAACAGACCGATAGGATGTC -ACGGAAACAGACCGATAGACAGTC -ACGGAAACAGACCGATAGTTGCTG -ACGGAAACAGACCGATAGTCCATG -ACGGAAACAGACCGATAGTGTGTG -ACGGAAACAGACCGATAGCTAGTG -ACGGAAACAGACCGATAGCATCTG -ACGGAAACAGACCGATAGGAGTTG -ACGGAAACAGACCGATAGAGACTG -ACGGAAACAGACCGATAGTCGGTA -ACGGAAACAGACCGATAGTGCCTA -ACGGAAACAGACCGATAGCCACTA -ACGGAAACAGACCGATAGGGAGTA -ACGGAAACAGACCGATAGTCGTCT -ACGGAAACAGACCGATAGTGCACT -ACGGAAACAGACCGATAGCTGACT -ACGGAAACAGACCGATAGCAACCT -ACGGAAACAGACCGATAGGCTACT -ACGGAAACAGACCGATAGGGATCT -ACGGAAACAGACCGATAGAAGGCT -ACGGAAACAGACCGATAGTCAACC -ACGGAAACAGACCGATAGTGTTCC -ACGGAAACAGACCGATAGATTCCC -ACGGAAACAGACCGATAGTTCTCG -ACGGAAACAGACCGATAGTAGACG -ACGGAAACAGACCGATAGGTAACG -ACGGAAACAGACCGATAGACTTCG -ACGGAAACAGACCGATAGTACGCA -ACGGAAACAGACCGATAGCTTGCA -ACGGAAACAGACCGATAGCGAACA -ACGGAAACAGACCGATAGCAGTCA -ACGGAAACAGACCGATAGGATCCA -ACGGAAACAGACCGATAGACGACA -ACGGAAACAGACCGATAGAGCTCA -ACGGAAACAGACCGATAGTCACGT -ACGGAAACAGACCGATAGCGTAGT -ACGGAAACAGACCGATAGGTCAGT -ACGGAAACAGACCGATAGGAAGGT -ACGGAAACAGACCGATAGAACCGT -ACGGAAACAGACCGATAGTTGTGC -ACGGAAACAGACCGATAGCTAAGC -ACGGAAACAGACCGATAGACTAGC -ACGGAAACAGACCGATAGAGATGC -ACGGAAACAGACCGATAGTGAAGG -ACGGAAACAGACCGATAGCAATGG -ACGGAAACAGACCGATAGATGAGG -ACGGAAACAGACCGATAGAATGGG -ACGGAAACAGACCGATAGTCCTGA -ACGGAAACAGACCGATAGTAGCGA -ACGGAAACAGACCGATAGCACAGA -ACGGAAACAGACCGATAGGCAAGA -ACGGAAACAGACCGATAGGGTTGA -ACGGAAACAGACCGATAGTCCGAT -ACGGAAACAGACCGATAGTGGCAT -ACGGAAACAGACCGATAGCGAGAT -ACGGAAACAGACCGATAGTACCAC -ACGGAAACAGACCGATAGCAGAAC -ACGGAAACAGACCGATAGGTCTAC -ACGGAAACAGACCGATAGACGTAC -ACGGAAACAGACCGATAGAGTGAC -ACGGAAACAGACCGATAGCTGTAG -ACGGAAACAGACCGATAGCCTAAG -ACGGAAACAGACCGATAGGTTCAG -ACGGAAACAGACCGATAGGCATAG -ACGGAAACAGACCGATAGGACAAG -ACGGAAACAGACCGATAGAAGCAG -ACGGAAACAGACCGATAGCGTCAA -ACGGAAACAGACCGATAGGCTGAA -ACGGAAACAGACCGATAGAGTACG -ACGGAAACAGACCGATAGATCCGA -ACGGAAACAGACCGATAGATGGGA -ACGGAAACAGACCGATAGGTGCAA -ACGGAAACAGACCGATAGGAGGAA -ACGGAAACAGACCGATAGCAGGTA -ACGGAAACAGACCGATAGGACTCT -ACGGAAACAGACCGATAGAGTCCT -ACGGAAACAGACCGATAGTAAGCC -ACGGAAACAGACCGATAGATAGCC -ACGGAAACAGACCGATAGTAACCG -ACGGAAACAGACCGATAGATGCCA -ACGGAAACAGACAGACACGGAAAC -ACGGAAACAGACAGACACAACACC -ACGGAAACAGACAGACACATCGAG -ACGGAAACAGACAGACACCTCCTT -ACGGAAACAGACAGACACCCTGTT -ACGGAAACAGACAGACACCGGTTT -ACGGAAACAGACAGACACGTGGTT -ACGGAAACAGACAGACACGCCTTT -ACGGAAACAGACAGACACGGTCTT -ACGGAAACAGACAGACACACGCTT -ACGGAAACAGACAGACACAGCGTT -ACGGAAACAGACAGACACTTCGTC -ACGGAAACAGACAGACACTCTCTC -ACGGAAACAGACAGACACTGGATC -ACGGAAACAGACAGACACCACTTC -ACGGAAACAGACAGACACGTACTC -ACGGAAACAGACAGACACGATGTC -ACGGAAACAGACAGACACACAGTC -ACGGAAACAGACAGACACTTGCTG -ACGGAAACAGACAGACACTCCATG -ACGGAAACAGACAGACACTGTGTG -ACGGAAACAGACAGACACCTAGTG -ACGGAAACAGACAGACACCATCTG -ACGGAAACAGACAGACACGAGTTG -ACGGAAACAGACAGACACAGACTG -ACGGAAACAGACAGACACTCGGTA -ACGGAAACAGACAGACACTGCCTA -ACGGAAACAGACAGACACCCACTA -ACGGAAACAGACAGACACGGAGTA -ACGGAAACAGACAGACACTCGTCT -ACGGAAACAGACAGACACTGCACT -ACGGAAACAGACAGACACCTGACT -ACGGAAACAGACAGACACCAACCT -ACGGAAACAGACAGACACGCTACT -ACGGAAACAGACAGACACGGATCT -ACGGAAACAGACAGACACAAGGCT -ACGGAAACAGACAGACACTCAACC -ACGGAAACAGACAGACACTGTTCC -ACGGAAACAGACAGACACATTCCC -ACGGAAACAGACAGACACTTCTCG -ACGGAAACAGACAGACACTAGACG -ACGGAAACAGACAGACACGTAACG -ACGGAAACAGACAGACACACTTCG -ACGGAAACAGACAGACACTACGCA -ACGGAAACAGACAGACACCTTGCA -ACGGAAACAGACAGACACCGAACA -ACGGAAACAGACAGACACCAGTCA -ACGGAAACAGACAGACACGATCCA -ACGGAAACAGACAGACACACGACA -ACGGAAACAGACAGACACAGCTCA -ACGGAAACAGACAGACACTCACGT -ACGGAAACAGACAGACACCGTAGT -ACGGAAACAGACAGACACGTCAGT -ACGGAAACAGACAGACACGAAGGT -ACGGAAACAGACAGACACAACCGT -ACGGAAACAGACAGACACTTGTGC -ACGGAAACAGACAGACACCTAAGC -ACGGAAACAGACAGACACACTAGC -ACGGAAACAGACAGACACAGATGC -ACGGAAACAGACAGACACTGAAGG -ACGGAAACAGACAGACACCAATGG -ACGGAAACAGACAGACACATGAGG -ACGGAAACAGACAGACACAATGGG -ACGGAAACAGACAGACACTCCTGA -ACGGAAACAGACAGACACTAGCGA -ACGGAAACAGACAGACACCACAGA -ACGGAAACAGACAGACACGCAAGA -ACGGAAACAGACAGACACGGTTGA -ACGGAAACAGACAGACACTCCGAT -ACGGAAACAGACAGACACTGGCAT -ACGGAAACAGACAGACACCGAGAT -ACGGAAACAGACAGACACTACCAC -ACGGAAACAGACAGACACCAGAAC -ACGGAAACAGACAGACACGTCTAC -ACGGAAACAGACAGACACACGTAC -ACGGAAACAGACAGACACAGTGAC -ACGGAAACAGACAGACACCTGTAG -ACGGAAACAGACAGACACCCTAAG -ACGGAAACAGACAGACACGTTCAG -ACGGAAACAGACAGACACGCATAG -ACGGAAACAGACAGACACGACAAG -ACGGAAACAGACAGACACAAGCAG -ACGGAAACAGACAGACACCGTCAA -ACGGAAACAGACAGACACGCTGAA -ACGGAAACAGACAGACACAGTACG -ACGGAAACAGACAGACACATCCGA -ACGGAAACAGACAGACACATGGGA -ACGGAAACAGACAGACACGTGCAA -ACGGAAACAGACAGACACGAGGAA -ACGGAAACAGACAGACACCAGGTA -ACGGAAACAGACAGACACGACTCT -ACGGAAACAGACAGACACAGTCCT -ACGGAAACAGACAGACACTAAGCC -ACGGAAACAGACAGACACATAGCC -ACGGAAACAGACAGACACTAACCG -ACGGAAACAGACAGACACATGCCA -ACGGAAACAGACAGAGCAGGAAAC -ACGGAAACAGACAGAGCAAACACC -ACGGAAACAGACAGAGCAATCGAG -ACGGAAACAGACAGAGCACTCCTT -ACGGAAACAGACAGAGCACCTGTT -ACGGAAACAGACAGAGCACGGTTT -ACGGAAACAGACAGAGCAGTGGTT -ACGGAAACAGACAGAGCAGCCTTT -ACGGAAACAGACAGAGCAGGTCTT -ACGGAAACAGACAGAGCAACGCTT -ACGGAAACAGACAGAGCAAGCGTT -ACGGAAACAGACAGAGCATTCGTC -ACGGAAACAGACAGAGCATCTCTC -ACGGAAACAGACAGAGCATGGATC -ACGGAAACAGACAGAGCACACTTC -ACGGAAACAGACAGAGCAGTACTC -ACGGAAACAGACAGAGCAGATGTC -ACGGAAACAGACAGAGCAACAGTC -ACGGAAACAGACAGAGCATTGCTG -ACGGAAACAGACAGAGCATCCATG -ACGGAAACAGACAGAGCATGTGTG -ACGGAAACAGACAGAGCACTAGTG -ACGGAAACAGACAGAGCACATCTG -ACGGAAACAGACAGAGCAGAGTTG -ACGGAAACAGACAGAGCAAGACTG -ACGGAAACAGACAGAGCATCGGTA -ACGGAAACAGACAGAGCATGCCTA -ACGGAAACAGACAGAGCACCACTA -ACGGAAACAGACAGAGCAGGAGTA -ACGGAAACAGACAGAGCATCGTCT -ACGGAAACAGACAGAGCATGCACT -ACGGAAACAGACAGAGCACTGACT -ACGGAAACAGACAGAGCACAACCT -ACGGAAACAGACAGAGCAGCTACT -ACGGAAACAGACAGAGCAGGATCT -ACGGAAACAGACAGAGCAAAGGCT -ACGGAAACAGACAGAGCATCAACC -ACGGAAACAGACAGAGCATGTTCC -ACGGAAACAGACAGAGCAATTCCC -ACGGAAACAGACAGAGCATTCTCG -ACGGAAACAGACAGAGCATAGACG -ACGGAAACAGACAGAGCAGTAACG -ACGGAAACAGACAGAGCAACTTCG -ACGGAAACAGACAGAGCATACGCA -ACGGAAACAGACAGAGCACTTGCA -ACGGAAACAGACAGAGCACGAACA -ACGGAAACAGACAGAGCACAGTCA -ACGGAAACAGACAGAGCAGATCCA -ACGGAAACAGACAGAGCAACGACA -ACGGAAACAGACAGAGCAAGCTCA -ACGGAAACAGACAGAGCATCACGT -ACGGAAACAGACAGAGCACGTAGT -ACGGAAACAGACAGAGCAGTCAGT -ACGGAAACAGACAGAGCAGAAGGT -ACGGAAACAGACAGAGCAAACCGT -ACGGAAACAGACAGAGCATTGTGC -ACGGAAACAGACAGAGCACTAAGC -ACGGAAACAGACAGAGCAACTAGC -ACGGAAACAGACAGAGCAAGATGC -ACGGAAACAGACAGAGCATGAAGG -ACGGAAACAGACAGAGCACAATGG -ACGGAAACAGACAGAGCAATGAGG -ACGGAAACAGACAGAGCAAATGGG -ACGGAAACAGACAGAGCATCCTGA -ACGGAAACAGACAGAGCATAGCGA -ACGGAAACAGACAGAGCACACAGA -ACGGAAACAGACAGAGCAGCAAGA -ACGGAAACAGACAGAGCAGGTTGA -ACGGAAACAGACAGAGCATCCGAT -ACGGAAACAGACAGAGCATGGCAT -ACGGAAACAGACAGAGCACGAGAT -ACGGAAACAGACAGAGCATACCAC -ACGGAAACAGACAGAGCACAGAAC -ACGGAAACAGACAGAGCAGTCTAC -ACGGAAACAGACAGAGCAACGTAC -ACGGAAACAGACAGAGCAAGTGAC -ACGGAAACAGACAGAGCACTGTAG -ACGGAAACAGACAGAGCACCTAAG -ACGGAAACAGACAGAGCAGTTCAG -ACGGAAACAGACAGAGCAGCATAG -ACGGAAACAGACAGAGCAGACAAG -ACGGAAACAGACAGAGCAAAGCAG -ACGGAAACAGACAGAGCACGTCAA -ACGGAAACAGACAGAGCAGCTGAA -ACGGAAACAGACAGAGCAAGTACG -ACGGAAACAGACAGAGCAATCCGA -ACGGAAACAGACAGAGCAATGGGA -ACGGAAACAGACAGAGCAGTGCAA -ACGGAAACAGACAGAGCAGAGGAA -ACGGAAACAGACAGAGCACAGGTA -ACGGAAACAGACAGAGCAGACTCT -ACGGAAACAGACAGAGCAAGTCCT -ACGGAAACAGACAGAGCATAAGCC -ACGGAAACAGACAGAGCAATAGCC -ACGGAAACAGACAGAGCATAACCG -ACGGAAACAGACAGAGCAATGCCA -ACGGAAACAGACTGAGGTGGAAAC -ACGGAAACAGACTGAGGTAACACC -ACGGAAACAGACTGAGGTATCGAG -ACGGAAACAGACTGAGGTCTCCTT -ACGGAAACAGACTGAGGTCCTGTT -ACGGAAACAGACTGAGGTCGGTTT -ACGGAAACAGACTGAGGTGTGGTT -ACGGAAACAGACTGAGGTGCCTTT -ACGGAAACAGACTGAGGTGGTCTT -ACGGAAACAGACTGAGGTACGCTT -ACGGAAACAGACTGAGGTAGCGTT -ACGGAAACAGACTGAGGTTTCGTC -ACGGAAACAGACTGAGGTTCTCTC -ACGGAAACAGACTGAGGTTGGATC -ACGGAAACAGACTGAGGTCACTTC -ACGGAAACAGACTGAGGTGTACTC -ACGGAAACAGACTGAGGTGATGTC -ACGGAAACAGACTGAGGTACAGTC -ACGGAAACAGACTGAGGTTTGCTG -ACGGAAACAGACTGAGGTTCCATG -ACGGAAACAGACTGAGGTTGTGTG -ACGGAAACAGACTGAGGTCTAGTG -ACGGAAACAGACTGAGGTCATCTG -ACGGAAACAGACTGAGGTGAGTTG -ACGGAAACAGACTGAGGTAGACTG -ACGGAAACAGACTGAGGTTCGGTA -ACGGAAACAGACTGAGGTTGCCTA -ACGGAAACAGACTGAGGTCCACTA -ACGGAAACAGACTGAGGTGGAGTA -ACGGAAACAGACTGAGGTTCGTCT -ACGGAAACAGACTGAGGTTGCACT -ACGGAAACAGACTGAGGTCTGACT -ACGGAAACAGACTGAGGTCAACCT -ACGGAAACAGACTGAGGTGCTACT -ACGGAAACAGACTGAGGTGGATCT -ACGGAAACAGACTGAGGTAAGGCT -ACGGAAACAGACTGAGGTTCAACC -ACGGAAACAGACTGAGGTTGTTCC -ACGGAAACAGACTGAGGTATTCCC -ACGGAAACAGACTGAGGTTTCTCG -ACGGAAACAGACTGAGGTTAGACG -ACGGAAACAGACTGAGGTGTAACG -ACGGAAACAGACTGAGGTACTTCG -ACGGAAACAGACTGAGGTTACGCA -ACGGAAACAGACTGAGGTCTTGCA -ACGGAAACAGACTGAGGTCGAACA -ACGGAAACAGACTGAGGTCAGTCA -ACGGAAACAGACTGAGGTGATCCA -ACGGAAACAGACTGAGGTACGACA -ACGGAAACAGACTGAGGTAGCTCA -ACGGAAACAGACTGAGGTTCACGT -ACGGAAACAGACTGAGGTCGTAGT -ACGGAAACAGACTGAGGTGTCAGT -ACGGAAACAGACTGAGGTGAAGGT -ACGGAAACAGACTGAGGTAACCGT -ACGGAAACAGACTGAGGTTTGTGC -ACGGAAACAGACTGAGGTCTAAGC -ACGGAAACAGACTGAGGTACTAGC -ACGGAAACAGACTGAGGTAGATGC -ACGGAAACAGACTGAGGTTGAAGG -ACGGAAACAGACTGAGGTCAATGG -ACGGAAACAGACTGAGGTATGAGG -ACGGAAACAGACTGAGGTAATGGG -ACGGAAACAGACTGAGGTTCCTGA -ACGGAAACAGACTGAGGTTAGCGA -ACGGAAACAGACTGAGGTCACAGA -ACGGAAACAGACTGAGGTGCAAGA -ACGGAAACAGACTGAGGTGGTTGA -ACGGAAACAGACTGAGGTTCCGAT -ACGGAAACAGACTGAGGTTGGCAT -ACGGAAACAGACTGAGGTCGAGAT -ACGGAAACAGACTGAGGTTACCAC -ACGGAAACAGACTGAGGTCAGAAC -ACGGAAACAGACTGAGGTGTCTAC -ACGGAAACAGACTGAGGTACGTAC -ACGGAAACAGACTGAGGTAGTGAC -ACGGAAACAGACTGAGGTCTGTAG -ACGGAAACAGACTGAGGTCCTAAG -ACGGAAACAGACTGAGGTGTTCAG -ACGGAAACAGACTGAGGTGCATAG -ACGGAAACAGACTGAGGTGACAAG -ACGGAAACAGACTGAGGTAAGCAG -ACGGAAACAGACTGAGGTCGTCAA -ACGGAAACAGACTGAGGTGCTGAA -ACGGAAACAGACTGAGGTAGTACG -ACGGAAACAGACTGAGGTATCCGA -ACGGAAACAGACTGAGGTATGGGA -ACGGAAACAGACTGAGGTGTGCAA -ACGGAAACAGACTGAGGTGAGGAA -ACGGAAACAGACTGAGGTCAGGTA -ACGGAAACAGACTGAGGTGACTCT -ACGGAAACAGACTGAGGTAGTCCT -ACGGAAACAGACTGAGGTTAAGCC -ACGGAAACAGACTGAGGTATAGCC -ACGGAAACAGACTGAGGTTAACCG -ACGGAAACAGACTGAGGTATGCCA -ACGGAAACAGACGATTCCGGAAAC -ACGGAAACAGACGATTCCAACACC -ACGGAAACAGACGATTCCATCGAG -ACGGAAACAGACGATTCCCTCCTT -ACGGAAACAGACGATTCCCCTGTT -ACGGAAACAGACGATTCCCGGTTT -ACGGAAACAGACGATTCCGTGGTT -ACGGAAACAGACGATTCCGCCTTT -ACGGAAACAGACGATTCCGGTCTT -ACGGAAACAGACGATTCCACGCTT -ACGGAAACAGACGATTCCAGCGTT -ACGGAAACAGACGATTCCTTCGTC -ACGGAAACAGACGATTCCTCTCTC -ACGGAAACAGACGATTCCTGGATC -ACGGAAACAGACGATTCCCACTTC -ACGGAAACAGACGATTCCGTACTC -ACGGAAACAGACGATTCCGATGTC -ACGGAAACAGACGATTCCACAGTC -ACGGAAACAGACGATTCCTTGCTG -ACGGAAACAGACGATTCCTCCATG -ACGGAAACAGACGATTCCTGTGTG -ACGGAAACAGACGATTCCCTAGTG -ACGGAAACAGACGATTCCCATCTG -ACGGAAACAGACGATTCCGAGTTG -ACGGAAACAGACGATTCCAGACTG -ACGGAAACAGACGATTCCTCGGTA -ACGGAAACAGACGATTCCTGCCTA -ACGGAAACAGACGATTCCCCACTA -ACGGAAACAGACGATTCCGGAGTA -ACGGAAACAGACGATTCCTCGTCT -ACGGAAACAGACGATTCCTGCACT -ACGGAAACAGACGATTCCCTGACT -ACGGAAACAGACGATTCCCAACCT -ACGGAAACAGACGATTCCGCTACT -ACGGAAACAGACGATTCCGGATCT -ACGGAAACAGACGATTCCAAGGCT -ACGGAAACAGACGATTCCTCAACC -ACGGAAACAGACGATTCCTGTTCC -ACGGAAACAGACGATTCCATTCCC -ACGGAAACAGACGATTCCTTCTCG -ACGGAAACAGACGATTCCTAGACG -ACGGAAACAGACGATTCCGTAACG -ACGGAAACAGACGATTCCACTTCG -ACGGAAACAGACGATTCCTACGCA -ACGGAAACAGACGATTCCCTTGCA -ACGGAAACAGACGATTCCCGAACA -ACGGAAACAGACGATTCCCAGTCA -ACGGAAACAGACGATTCCGATCCA -ACGGAAACAGACGATTCCACGACA -ACGGAAACAGACGATTCCAGCTCA -ACGGAAACAGACGATTCCTCACGT -ACGGAAACAGACGATTCCCGTAGT -ACGGAAACAGACGATTCCGTCAGT -ACGGAAACAGACGATTCCGAAGGT -ACGGAAACAGACGATTCCAACCGT -ACGGAAACAGACGATTCCTTGTGC -ACGGAAACAGACGATTCCCTAAGC -ACGGAAACAGACGATTCCACTAGC -ACGGAAACAGACGATTCCAGATGC -ACGGAAACAGACGATTCCTGAAGG -ACGGAAACAGACGATTCCCAATGG -ACGGAAACAGACGATTCCATGAGG -ACGGAAACAGACGATTCCAATGGG -ACGGAAACAGACGATTCCTCCTGA -ACGGAAACAGACGATTCCTAGCGA -ACGGAAACAGACGATTCCCACAGA -ACGGAAACAGACGATTCCGCAAGA -ACGGAAACAGACGATTCCGGTTGA -ACGGAAACAGACGATTCCTCCGAT -ACGGAAACAGACGATTCCTGGCAT -ACGGAAACAGACGATTCCCGAGAT -ACGGAAACAGACGATTCCTACCAC -ACGGAAACAGACGATTCCCAGAAC -ACGGAAACAGACGATTCCGTCTAC -ACGGAAACAGACGATTCCACGTAC -ACGGAAACAGACGATTCCAGTGAC -ACGGAAACAGACGATTCCCTGTAG -ACGGAAACAGACGATTCCCCTAAG -ACGGAAACAGACGATTCCGTTCAG -ACGGAAACAGACGATTCCGCATAG -ACGGAAACAGACGATTCCGACAAG -ACGGAAACAGACGATTCCAAGCAG -ACGGAAACAGACGATTCCCGTCAA -ACGGAAACAGACGATTCCGCTGAA -ACGGAAACAGACGATTCCAGTACG -ACGGAAACAGACGATTCCATCCGA -ACGGAAACAGACGATTCCATGGGA -ACGGAAACAGACGATTCCGTGCAA -ACGGAAACAGACGATTCCGAGGAA -ACGGAAACAGACGATTCCCAGGTA -ACGGAAACAGACGATTCCGACTCT -ACGGAAACAGACGATTCCAGTCCT -ACGGAAACAGACGATTCCTAAGCC -ACGGAAACAGACGATTCCATAGCC -ACGGAAACAGACGATTCCTAACCG -ACGGAAACAGACGATTCCATGCCA -ACGGAAACAGACCATTGGGGAAAC -ACGGAAACAGACCATTGGAACACC -ACGGAAACAGACCATTGGATCGAG -ACGGAAACAGACCATTGGCTCCTT -ACGGAAACAGACCATTGGCCTGTT -ACGGAAACAGACCATTGGCGGTTT -ACGGAAACAGACCATTGGGTGGTT -ACGGAAACAGACCATTGGGCCTTT -ACGGAAACAGACCATTGGGGTCTT -ACGGAAACAGACCATTGGACGCTT -ACGGAAACAGACCATTGGAGCGTT -ACGGAAACAGACCATTGGTTCGTC -ACGGAAACAGACCATTGGTCTCTC -ACGGAAACAGACCATTGGTGGATC -ACGGAAACAGACCATTGGCACTTC -ACGGAAACAGACCATTGGGTACTC -ACGGAAACAGACCATTGGGATGTC -ACGGAAACAGACCATTGGACAGTC -ACGGAAACAGACCATTGGTTGCTG -ACGGAAACAGACCATTGGTCCATG -ACGGAAACAGACCATTGGTGTGTG -ACGGAAACAGACCATTGGCTAGTG -ACGGAAACAGACCATTGGCATCTG -ACGGAAACAGACCATTGGGAGTTG -ACGGAAACAGACCATTGGAGACTG -ACGGAAACAGACCATTGGTCGGTA -ACGGAAACAGACCATTGGTGCCTA -ACGGAAACAGACCATTGGCCACTA -ACGGAAACAGACCATTGGGGAGTA -ACGGAAACAGACCATTGGTCGTCT -ACGGAAACAGACCATTGGTGCACT -ACGGAAACAGACCATTGGCTGACT -ACGGAAACAGACCATTGGCAACCT -ACGGAAACAGACCATTGGGCTACT -ACGGAAACAGACCATTGGGGATCT -ACGGAAACAGACCATTGGAAGGCT -ACGGAAACAGACCATTGGTCAACC -ACGGAAACAGACCATTGGTGTTCC -ACGGAAACAGACCATTGGATTCCC -ACGGAAACAGACCATTGGTTCTCG -ACGGAAACAGACCATTGGTAGACG -ACGGAAACAGACCATTGGGTAACG -ACGGAAACAGACCATTGGACTTCG -ACGGAAACAGACCATTGGTACGCA -ACGGAAACAGACCATTGGCTTGCA -ACGGAAACAGACCATTGGCGAACA -ACGGAAACAGACCATTGGCAGTCA -ACGGAAACAGACCATTGGGATCCA -ACGGAAACAGACCATTGGACGACA -ACGGAAACAGACCATTGGAGCTCA -ACGGAAACAGACCATTGGTCACGT -ACGGAAACAGACCATTGGCGTAGT -ACGGAAACAGACCATTGGGTCAGT -ACGGAAACAGACCATTGGGAAGGT -ACGGAAACAGACCATTGGAACCGT -ACGGAAACAGACCATTGGTTGTGC -ACGGAAACAGACCATTGGCTAAGC -ACGGAAACAGACCATTGGACTAGC -ACGGAAACAGACCATTGGAGATGC -ACGGAAACAGACCATTGGTGAAGG -ACGGAAACAGACCATTGGCAATGG -ACGGAAACAGACCATTGGATGAGG -ACGGAAACAGACCATTGGAATGGG -ACGGAAACAGACCATTGGTCCTGA -ACGGAAACAGACCATTGGTAGCGA -ACGGAAACAGACCATTGGCACAGA -ACGGAAACAGACCATTGGGCAAGA -ACGGAAACAGACCATTGGGGTTGA -ACGGAAACAGACCATTGGTCCGAT -ACGGAAACAGACCATTGGTGGCAT -ACGGAAACAGACCATTGGCGAGAT -ACGGAAACAGACCATTGGTACCAC -ACGGAAACAGACCATTGGCAGAAC -ACGGAAACAGACCATTGGGTCTAC -ACGGAAACAGACCATTGGACGTAC -ACGGAAACAGACCATTGGAGTGAC -ACGGAAACAGACCATTGGCTGTAG -ACGGAAACAGACCATTGGCCTAAG -ACGGAAACAGACCATTGGGTTCAG -ACGGAAACAGACCATTGGGCATAG -ACGGAAACAGACCATTGGGACAAG -ACGGAAACAGACCATTGGAAGCAG -ACGGAAACAGACCATTGGCGTCAA -ACGGAAACAGACCATTGGGCTGAA -ACGGAAACAGACCATTGGAGTACG -ACGGAAACAGACCATTGGATCCGA -ACGGAAACAGACCATTGGATGGGA -ACGGAAACAGACCATTGGGTGCAA -ACGGAAACAGACCATTGGGAGGAA -ACGGAAACAGACCATTGGCAGGTA -ACGGAAACAGACCATTGGGACTCT -ACGGAAACAGACCATTGGAGTCCT -ACGGAAACAGACCATTGGTAAGCC -ACGGAAACAGACCATTGGATAGCC -ACGGAAACAGACCATTGGTAACCG -ACGGAAACAGACCATTGGATGCCA -ACGGAAACAGACGATCGAGGAAAC -ACGGAAACAGACGATCGAAACACC -ACGGAAACAGACGATCGAATCGAG -ACGGAAACAGACGATCGACTCCTT -ACGGAAACAGACGATCGACCTGTT -ACGGAAACAGACGATCGACGGTTT -ACGGAAACAGACGATCGAGTGGTT -ACGGAAACAGACGATCGAGCCTTT -ACGGAAACAGACGATCGAGGTCTT -ACGGAAACAGACGATCGAACGCTT -ACGGAAACAGACGATCGAAGCGTT -ACGGAAACAGACGATCGATTCGTC -ACGGAAACAGACGATCGATCTCTC -ACGGAAACAGACGATCGATGGATC -ACGGAAACAGACGATCGACACTTC -ACGGAAACAGACGATCGAGTACTC -ACGGAAACAGACGATCGAGATGTC -ACGGAAACAGACGATCGAACAGTC -ACGGAAACAGACGATCGATTGCTG -ACGGAAACAGACGATCGATCCATG -ACGGAAACAGACGATCGATGTGTG -ACGGAAACAGACGATCGACTAGTG -ACGGAAACAGACGATCGACATCTG -ACGGAAACAGACGATCGAGAGTTG -ACGGAAACAGACGATCGAAGACTG -ACGGAAACAGACGATCGATCGGTA -ACGGAAACAGACGATCGATGCCTA -ACGGAAACAGACGATCGACCACTA -ACGGAAACAGACGATCGAGGAGTA -ACGGAAACAGACGATCGATCGTCT -ACGGAAACAGACGATCGATGCACT -ACGGAAACAGACGATCGACTGACT -ACGGAAACAGACGATCGACAACCT -ACGGAAACAGACGATCGAGCTACT -ACGGAAACAGACGATCGAGGATCT -ACGGAAACAGACGATCGAAAGGCT -ACGGAAACAGACGATCGATCAACC -ACGGAAACAGACGATCGATGTTCC -ACGGAAACAGACGATCGAATTCCC -ACGGAAACAGACGATCGATTCTCG -ACGGAAACAGACGATCGATAGACG -ACGGAAACAGACGATCGAGTAACG -ACGGAAACAGACGATCGAACTTCG -ACGGAAACAGACGATCGATACGCA -ACGGAAACAGACGATCGACTTGCA -ACGGAAACAGACGATCGACGAACA -ACGGAAACAGACGATCGACAGTCA -ACGGAAACAGACGATCGAGATCCA -ACGGAAACAGACGATCGAACGACA -ACGGAAACAGACGATCGAAGCTCA -ACGGAAACAGACGATCGATCACGT -ACGGAAACAGACGATCGACGTAGT -ACGGAAACAGACGATCGAGTCAGT -ACGGAAACAGACGATCGAGAAGGT -ACGGAAACAGACGATCGAAACCGT -ACGGAAACAGACGATCGATTGTGC -ACGGAAACAGACGATCGACTAAGC -ACGGAAACAGACGATCGAACTAGC -ACGGAAACAGACGATCGAAGATGC -ACGGAAACAGACGATCGATGAAGG -ACGGAAACAGACGATCGACAATGG -ACGGAAACAGACGATCGAATGAGG -ACGGAAACAGACGATCGAAATGGG -ACGGAAACAGACGATCGATCCTGA -ACGGAAACAGACGATCGATAGCGA -ACGGAAACAGACGATCGACACAGA -ACGGAAACAGACGATCGAGCAAGA -ACGGAAACAGACGATCGAGGTTGA -ACGGAAACAGACGATCGATCCGAT -ACGGAAACAGACGATCGATGGCAT -ACGGAAACAGACGATCGACGAGAT -ACGGAAACAGACGATCGATACCAC -ACGGAAACAGACGATCGACAGAAC -ACGGAAACAGACGATCGAGTCTAC -ACGGAAACAGACGATCGAACGTAC -ACGGAAACAGACGATCGAAGTGAC -ACGGAAACAGACGATCGACTGTAG -ACGGAAACAGACGATCGACCTAAG -ACGGAAACAGACGATCGAGTTCAG -ACGGAAACAGACGATCGAGCATAG -ACGGAAACAGACGATCGAGACAAG -ACGGAAACAGACGATCGAAAGCAG -ACGGAAACAGACGATCGACGTCAA -ACGGAAACAGACGATCGAGCTGAA -ACGGAAACAGACGATCGAAGTACG -ACGGAAACAGACGATCGAATCCGA -ACGGAAACAGACGATCGAATGGGA -ACGGAAACAGACGATCGAGTGCAA -ACGGAAACAGACGATCGAGAGGAA -ACGGAAACAGACGATCGACAGGTA -ACGGAAACAGACGATCGAGACTCT -ACGGAAACAGACGATCGAAGTCCT -ACGGAAACAGACGATCGATAAGCC -ACGGAAACAGACGATCGAATAGCC -ACGGAAACAGACGATCGATAACCG -ACGGAAACAGACGATCGAATGCCA -ACGGAAACAGACCACTACGGAAAC -ACGGAAACAGACCACTACAACACC -ACGGAAACAGACCACTACATCGAG -ACGGAAACAGACCACTACCTCCTT -ACGGAAACAGACCACTACCCTGTT -ACGGAAACAGACCACTACCGGTTT -ACGGAAACAGACCACTACGTGGTT -ACGGAAACAGACCACTACGCCTTT -ACGGAAACAGACCACTACGGTCTT -ACGGAAACAGACCACTACACGCTT -ACGGAAACAGACCACTACAGCGTT -ACGGAAACAGACCACTACTTCGTC -ACGGAAACAGACCACTACTCTCTC -ACGGAAACAGACCACTACTGGATC -ACGGAAACAGACCACTACCACTTC -ACGGAAACAGACCACTACGTACTC -ACGGAAACAGACCACTACGATGTC -ACGGAAACAGACCACTACACAGTC -ACGGAAACAGACCACTACTTGCTG -ACGGAAACAGACCACTACTCCATG -ACGGAAACAGACCACTACTGTGTG -ACGGAAACAGACCACTACCTAGTG -ACGGAAACAGACCACTACCATCTG -ACGGAAACAGACCACTACGAGTTG -ACGGAAACAGACCACTACAGACTG -ACGGAAACAGACCACTACTCGGTA -ACGGAAACAGACCACTACTGCCTA -ACGGAAACAGACCACTACCCACTA -ACGGAAACAGACCACTACGGAGTA -ACGGAAACAGACCACTACTCGTCT -ACGGAAACAGACCACTACTGCACT -ACGGAAACAGACCACTACCTGACT -ACGGAAACAGACCACTACCAACCT -ACGGAAACAGACCACTACGCTACT -ACGGAAACAGACCACTACGGATCT -ACGGAAACAGACCACTACAAGGCT -ACGGAAACAGACCACTACTCAACC -ACGGAAACAGACCACTACTGTTCC -ACGGAAACAGACCACTACATTCCC -ACGGAAACAGACCACTACTTCTCG -ACGGAAACAGACCACTACTAGACG -ACGGAAACAGACCACTACGTAACG -ACGGAAACAGACCACTACACTTCG -ACGGAAACAGACCACTACTACGCA -ACGGAAACAGACCACTACCTTGCA -ACGGAAACAGACCACTACCGAACA -ACGGAAACAGACCACTACCAGTCA -ACGGAAACAGACCACTACGATCCA -ACGGAAACAGACCACTACACGACA -ACGGAAACAGACCACTACAGCTCA -ACGGAAACAGACCACTACTCACGT -ACGGAAACAGACCACTACCGTAGT -ACGGAAACAGACCACTACGTCAGT -ACGGAAACAGACCACTACGAAGGT -ACGGAAACAGACCACTACAACCGT -ACGGAAACAGACCACTACTTGTGC -ACGGAAACAGACCACTACCTAAGC -ACGGAAACAGACCACTACACTAGC -ACGGAAACAGACCACTACAGATGC -ACGGAAACAGACCACTACTGAAGG -ACGGAAACAGACCACTACCAATGG -ACGGAAACAGACCACTACATGAGG -ACGGAAACAGACCACTACAATGGG -ACGGAAACAGACCACTACTCCTGA -ACGGAAACAGACCACTACTAGCGA -ACGGAAACAGACCACTACCACAGA -ACGGAAACAGACCACTACGCAAGA -ACGGAAACAGACCACTACGGTTGA -ACGGAAACAGACCACTACTCCGAT -ACGGAAACAGACCACTACTGGCAT -ACGGAAACAGACCACTACCGAGAT -ACGGAAACAGACCACTACTACCAC -ACGGAAACAGACCACTACCAGAAC -ACGGAAACAGACCACTACGTCTAC -ACGGAAACAGACCACTACACGTAC -ACGGAAACAGACCACTACAGTGAC -ACGGAAACAGACCACTACCTGTAG -ACGGAAACAGACCACTACCCTAAG -ACGGAAACAGACCACTACGTTCAG -ACGGAAACAGACCACTACGCATAG -ACGGAAACAGACCACTACGACAAG -ACGGAAACAGACCACTACAAGCAG -ACGGAAACAGACCACTACCGTCAA -ACGGAAACAGACCACTACGCTGAA -ACGGAAACAGACCACTACAGTACG -ACGGAAACAGACCACTACATCCGA -ACGGAAACAGACCACTACATGGGA -ACGGAAACAGACCACTACGTGCAA -ACGGAAACAGACCACTACGAGGAA -ACGGAAACAGACCACTACCAGGTA -ACGGAAACAGACCACTACGACTCT -ACGGAAACAGACCACTACAGTCCT -ACGGAAACAGACCACTACTAAGCC -ACGGAAACAGACCACTACATAGCC -ACGGAAACAGACCACTACTAACCG -ACGGAAACAGACCACTACATGCCA -ACGGAAACAGACAACCAGGGAAAC -ACGGAAACAGACAACCAGAACACC -ACGGAAACAGACAACCAGATCGAG -ACGGAAACAGACAACCAGCTCCTT -ACGGAAACAGACAACCAGCCTGTT -ACGGAAACAGACAACCAGCGGTTT -ACGGAAACAGACAACCAGGTGGTT -ACGGAAACAGACAACCAGGCCTTT -ACGGAAACAGACAACCAGGGTCTT -ACGGAAACAGACAACCAGACGCTT -ACGGAAACAGACAACCAGAGCGTT -ACGGAAACAGACAACCAGTTCGTC -ACGGAAACAGACAACCAGTCTCTC -ACGGAAACAGACAACCAGTGGATC -ACGGAAACAGACAACCAGCACTTC -ACGGAAACAGACAACCAGGTACTC -ACGGAAACAGACAACCAGGATGTC -ACGGAAACAGACAACCAGACAGTC -ACGGAAACAGACAACCAGTTGCTG -ACGGAAACAGACAACCAGTCCATG -ACGGAAACAGACAACCAGTGTGTG -ACGGAAACAGACAACCAGCTAGTG -ACGGAAACAGACAACCAGCATCTG -ACGGAAACAGACAACCAGGAGTTG -ACGGAAACAGACAACCAGAGACTG -ACGGAAACAGACAACCAGTCGGTA -ACGGAAACAGACAACCAGTGCCTA -ACGGAAACAGACAACCAGCCACTA -ACGGAAACAGACAACCAGGGAGTA -ACGGAAACAGACAACCAGTCGTCT -ACGGAAACAGACAACCAGTGCACT -ACGGAAACAGACAACCAGCTGACT -ACGGAAACAGACAACCAGCAACCT -ACGGAAACAGACAACCAGGCTACT -ACGGAAACAGACAACCAGGGATCT -ACGGAAACAGACAACCAGAAGGCT -ACGGAAACAGACAACCAGTCAACC -ACGGAAACAGACAACCAGTGTTCC -ACGGAAACAGACAACCAGATTCCC -ACGGAAACAGACAACCAGTTCTCG -ACGGAAACAGACAACCAGTAGACG -ACGGAAACAGACAACCAGGTAACG -ACGGAAACAGACAACCAGACTTCG -ACGGAAACAGACAACCAGTACGCA -ACGGAAACAGACAACCAGCTTGCA -ACGGAAACAGACAACCAGCGAACA -ACGGAAACAGACAACCAGCAGTCA -ACGGAAACAGACAACCAGGATCCA -ACGGAAACAGACAACCAGACGACA -ACGGAAACAGACAACCAGAGCTCA -ACGGAAACAGACAACCAGTCACGT -ACGGAAACAGACAACCAGCGTAGT -ACGGAAACAGACAACCAGGTCAGT -ACGGAAACAGACAACCAGGAAGGT -ACGGAAACAGACAACCAGAACCGT -ACGGAAACAGACAACCAGTTGTGC -ACGGAAACAGACAACCAGCTAAGC -ACGGAAACAGACAACCAGACTAGC -ACGGAAACAGACAACCAGAGATGC -ACGGAAACAGACAACCAGTGAAGG -ACGGAAACAGACAACCAGCAATGG -ACGGAAACAGACAACCAGATGAGG -ACGGAAACAGACAACCAGAATGGG -ACGGAAACAGACAACCAGTCCTGA -ACGGAAACAGACAACCAGTAGCGA -ACGGAAACAGACAACCAGCACAGA -ACGGAAACAGACAACCAGGCAAGA -ACGGAAACAGACAACCAGGGTTGA -ACGGAAACAGACAACCAGTCCGAT -ACGGAAACAGACAACCAGTGGCAT -ACGGAAACAGACAACCAGCGAGAT -ACGGAAACAGACAACCAGTACCAC -ACGGAAACAGACAACCAGCAGAAC -ACGGAAACAGACAACCAGGTCTAC -ACGGAAACAGACAACCAGACGTAC -ACGGAAACAGACAACCAGAGTGAC -ACGGAAACAGACAACCAGCTGTAG -ACGGAAACAGACAACCAGCCTAAG -ACGGAAACAGACAACCAGGTTCAG -ACGGAAACAGACAACCAGGCATAG -ACGGAAACAGACAACCAGGACAAG -ACGGAAACAGACAACCAGAAGCAG -ACGGAAACAGACAACCAGCGTCAA -ACGGAAACAGACAACCAGGCTGAA -ACGGAAACAGACAACCAGAGTACG -ACGGAAACAGACAACCAGATCCGA -ACGGAAACAGACAACCAGATGGGA -ACGGAAACAGACAACCAGGTGCAA -ACGGAAACAGACAACCAGGAGGAA -ACGGAAACAGACAACCAGCAGGTA -ACGGAAACAGACAACCAGGACTCT -ACGGAAACAGACAACCAGAGTCCT -ACGGAAACAGACAACCAGTAAGCC -ACGGAAACAGACAACCAGATAGCC -ACGGAAACAGACAACCAGTAACCG -ACGGAAACAGACAACCAGATGCCA -ACGGAAACAGACTACGTCGGAAAC -ACGGAAACAGACTACGTCAACACC -ACGGAAACAGACTACGTCATCGAG -ACGGAAACAGACTACGTCCTCCTT -ACGGAAACAGACTACGTCCCTGTT -ACGGAAACAGACTACGTCCGGTTT -ACGGAAACAGACTACGTCGTGGTT -ACGGAAACAGACTACGTCGCCTTT -ACGGAAACAGACTACGTCGGTCTT -ACGGAAACAGACTACGTCACGCTT -ACGGAAACAGACTACGTCAGCGTT -ACGGAAACAGACTACGTCTTCGTC -ACGGAAACAGACTACGTCTCTCTC -ACGGAAACAGACTACGTCTGGATC -ACGGAAACAGACTACGTCCACTTC -ACGGAAACAGACTACGTCGTACTC -ACGGAAACAGACTACGTCGATGTC -ACGGAAACAGACTACGTCACAGTC -ACGGAAACAGACTACGTCTTGCTG -ACGGAAACAGACTACGTCTCCATG -ACGGAAACAGACTACGTCTGTGTG -ACGGAAACAGACTACGTCCTAGTG -ACGGAAACAGACTACGTCCATCTG -ACGGAAACAGACTACGTCGAGTTG -ACGGAAACAGACTACGTCAGACTG -ACGGAAACAGACTACGTCTCGGTA -ACGGAAACAGACTACGTCTGCCTA -ACGGAAACAGACTACGTCCCACTA -ACGGAAACAGACTACGTCGGAGTA -ACGGAAACAGACTACGTCTCGTCT -ACGGAAACAGACTACGTCTGCACT -ACGGAAACAGACTACGTCCTGACT -ACGGAAACAGACTACGTCCAACCT -ACGGAAACAGACTACGTCGCTACT -ACGGAAACAGACTACGTCGGATCT -ACGGAAACAGACTACGTCAAGGCT -ACGGAAACAGACTACGTCTCAACC -ACGGAAACAGACTACGTCTGTTCC -ACGGAAACAGACTACGTCATTCCC -ACGGAAACAGACTACGTCTTCTCG -ACGGAAACAGACTACGTCTAGACG -ACGGAAACAGACTACGTCGTAACG -ACGGAAACAGACTACGTCACTTCG -ACGGAAACAGACTACGTCTACGCA -ACGGAAACAGACTACGTCCTTGCA -ACGGAAACAGACTACGTCCGAACA -ACGGAAACAGACTACGTCCAGTCA -ACGGAAACAGACTACGTCGATCCA -ACGGAAACAGACTACGTCACGACA -ACGGAAACAGACTACGTCAGCTCA -ACGGAAACAGACTACGTCTCACGT -ACGGAAACAGACTACGTCCGTAGT -ACGGAAACAGACTACGTCGTCAGT -ACGGAAACAGACTACGTCGAAGGT -ACGGAAACAGACTACGTCAACCGT -ACGGAAACAGACTACGTCTTGTGC -ACGGAAACAGACTACGTCCTAAGC -ACGGAAACAGACTACGTCACTAGC -ACGGAAACAGACTACGTCAGATGC -ACGGAAACAGACTACGTCTGAAGG -ACGGAAACAGACTACGTCCAATGG -ACGGAAACAGACTACGTCATGAGG -ACGGAAACAGACTACGTCAATGGG -ACGGAAACAGACTACGTCTCCTGA -ACGGAAACAGACTACGTCTAGCGA -ACGGAAACAGACTACGTCCACAGA -ACGGAAACAGACTACGTCGCAAGA -ACGGAAACAGACTACGTCGGTTGA -ACGGAAACAGACTACGTCTCCGAT -ACGGAAACAGACTACGTCTGGCAT -ACGGAAACAGACTACGTCCGAGAT -ACGGAAACAGACTACGTCTACCAC -ACGGAAACAGACTACGTCCAGAAC -ACGGAAACAGACTACGTCGTCTAC -ACGGAAACAGACTACGTCACGTAC -ACGGAAACAGACTACGTCAGTGAC -ACGGAAACAGACTACGTCCTGTAG -ACGGAAACAGACTACGTCCCTAAG -ACGGAAACAGACTACGTCGTTCAG -ACGGAAACAGACTACGTCGCATAG -ACGGAAACAGACTACGTCGACAAG -ACGGAAACAGACTACGTCAAGCAG -ACGGAAACAGACTACGTCCGTCAA -ACGGAAACAGACTACGTCGCTGAA -ACGGAAACAGACTACGTCAGTACG -ACGGAAACAGACTACGTCATCCGA -ACGGAAACAGACTACGTCATGGGA -ACGGAAACAGACTACGTCGTGCAA -ACGGAAACAGACTACGTCGAGGAA -ACGGAAACAGACTACGTCCAGGTA -ACGGAAACAGACTACGTCGACTCT -ACGGAAACAGACTACGTCAGTCCT -ACGGAAACAGACTACGTCTAAGCC -ACGGAAACAGACTACGTCATAGCC -ACGGAAACAGACTACGTCTAACCG -ACGGAAACAGACTACGTCATGCCA -ACGGAAACAGACTACACGGGAAAC -ACGGAAACAGACTACACGAACACC -ACGGAAACAGACTACACGATCGAG -ACGGAAACAGACTACACGCTCCTT -ACGGAAACAGACTACACGCCTGTT -ACGGAAACAGACTACACGCGGTTT -ACGGAAACAGACTACACGGTGGTT -ACGGAAACAGACTACACGGCCTTT -ACGGAAACAGACTACACGGGTCTT -ACGGAAACAGACTACACGACGCTT -ACGGAAACAGACTACACGAGCGTT -ACGGAAACAGACTACACGTTCGTC -ACGGAAACAGACTACACGTCTCTC -ACGGAAACAGACTACACGTGGATC -ACGGAAACAGACTACACGCACTTC -ACGGAAACAGACTACACGGTACTC -ACGGAAACAGACTACACGGATGTC -ACGGAAACAGACTACACGACAGTC -ACGGAAACAGACTACACGTTGCTG -ACGGAAACAGACTACACGTCCATG -ACGGAAACAGACTACACGTGTGTG -ACGGAAACAGACTACACGCTAGTG -ACGGAAACAGACTACACGCATCTG -ACGGAAACAGACTACACGGAGTTG -ACGGAAACAGACTACACGAGACTG -ACGGAAACAGACTACACGTCGGTA -ACGGAAACAGACTACACGTGCCTA -ACGGAAACAGACTACACGCCACTA -ACGGAAACAGACTACACGGGAGTA -ACGGAAACAGACTACACGTCGTCT -ACGGAAACAGACTACACGTGCACT -ACGGAAACAGACTACACGCTGACT -ACGGAAACAGACTACACGCAACCT -ACGGAAACAGACTACACGGCTACT -ACGGAAACAGACTACACGGGATCT -ACGGAAACAGACTACACGAAGGCT -ACGGAAACAGACTACACGTCAACC -ACGGAAACAGACTACACGTGTTCC -ACGGAAACAGACTACACGATTCCC -ACGGAAACAGACTACACGTTCTCG -ACGGAAACAGACTACACGTAGACG -ACGGAAACAGACTACACGGTAACG -ACGGAAACAGACTACACGACTTCG -ACGGAAACAGACTACACGTACGCA -ACGGAAACAGACTACACGCTTGCA -ACGGAAACAGACTACACGCGAACA -ACGGAAACAGACTACACGCAGTCA -ACGGAAACAGACTACACGGATCCA -ACGGAAACAGACTACACGACGACA -ACGGAAACAGACTACACGAGCTCA -ACGGAAACAGACTACACGTCACGT -ACGGAAACAGACTACACGCGTAGT -ACGGAAACAGACTACACGGTCAGT -ACGGAAACAGACTACACGGAAGGT -ACGGAAACAGACTACACGAACCGT -ACGGAAACAGACTACACGTTGTGC -ACGGAAACAGACTACACGCTAAGC -ACGGAAACAGACTACACGACTAGC -ACGGAAACAGACTACACGAGATGC -ACGGAAACAGACTACACGTGAAGG -ACGGAAACAGACTACACGCAATGG -ACGGAAACAGACTACACGATGAGG -ACGGAAACAGACTACACGAATGGG -ACGGAAACAGACTACACGTCCTGA -ACGGAAACAGACTACACGTAGCGA -ACGGAAACAGACTACACGCACAGA -ACGGAAACAGACTACACGGCAAGA -ACGGAAACAGACTACACGGGTTGA -ACGGAAACAGACTACACGTCCGAT -ACGGAAACAGACTACACGTGGCAT -ACGGAAACAGACTACACGCGAGAT -ACGGAAACAGACTACACGTACCAC -ACGGAAACAGACTACACGCAGAAC -ACGGAAACAGACTACACGGTCTAC -ACGGAAACAGACTACACGACGTAC -ACGGAAACAGACTACACGAGTGAC -ACGGAAACAGACTACACGCTGTAG -ACGGAAACAGACTACACGCCTAAG -ACGGAAACAGACTACACGGTTCAG -ACGGAAACAGACTACACGGCATAG -ACGGAAACAGACTACACGGACAAG -ACGGAAACAGACTACACGAAGCAG -ACGGAAACAGACTACACGCGTCAA -ACGGAAACAGACTACACGGCTGAA -ACGGAAACAGACTACACGAGTACG -ACGGAAACAGACTACACGATCCGA -ACGGAAACAGACTACACGATGGGA -ACGGAAACAGACTACACGGTGCAA -ACGGAAACAGACTACACGGAGGAA -ACGGAAACAGACTACACGCAGGTA -ACGGAAACAGACTACACGGACTCT -ACGGAAACAGACTACACGAGTCCT -ACGGAAACAGACTACACGTAAGCC -ACGGAAACAGACTACACGATAGCC -ACGGAAACAGACTACACGTAACCG -ACGGAAACAGACTACACGATGCCA -ACGGAAACAGACGACAGTGGAAAC -ACGGAAACAGACGACAGTAACACC -ACGGAAACAGACGACAGTATCGAG -ACGGAAACAGACGACAGTCTCCTT -ACGGAAACAGACGACAGTCCTGTT -ACGGAAACAGACGACAGTCGGTTT -ACGGAAACAGACGACAGTGTGGTT -ACGGAAACAGACGACAGTGCCTTT -ACGGAAACAGACGACAGTGGTCTT -ACGGAAACAGACGACAGTACGCTT -ACGGAAACAGACGACAGTAGCGTT -ACGGAAACAGACGACAGTTTCGTC -ACGGAAACAGACGACAGTTCTCTC -ACGGAAACAGACGACAGTTGGATC -ACGGAAACAGACGACAGTCACTTC -ACGGAAACAGACGACAGTGTACTC -ACGGAAACAGACGACAGTGATGTC -ACGGAAACAGACGACAGTACAGTC -ACGGAAACAGACGACAGTTTGCTG -ACGGAAACAGACGACAGTTCCATG -ACGGAAACAGACGACAGTTGTGTG -ACGGAAACAGACGACAGTCTAGTG -ACGGAAACAGACGACAGTCATCTG -ACGGAAACAGACGACAGTGAGTTG -ACGGAAACAGACGACAGTAGACTG -ACGGAAACAGACGACAGTTCGGTA -ACGGAAACAGACGACAGTTGCCTA -ACGGAAACAGACGACAGTCCACTA -ACGGAAACAGACGACAGTGGAGTA -ACGGAAACAGACGACAGTTCGTCT -ACGGAAACAGACGACAGTTGCACT -ACGGAAACAGACGACAGTCTGACT -ACGGAAACAGACGACAGTCAACCT -ACGGAAACAGACGACAGTGCTACT -ACGGAAACAGACGACAGTGGATCT -ACGGAAACAGACGACAGTAAGGCT -ACGGAAACAGACGACAGTTCAACC -ACGGAAACAGACGACAGTTGTTCC -ACGGAAACAGACGACAGTATTCCC -ACGGAAACAGACGACAGTTTCTCG -ACGGAAACAGACGACAGTTAGACG -ACGGAAACAGACGACAGTGTAACG -ACGGAAACAGACGACAGTACTTCG -ACGGAAACAGACGACAGTTACGCA -ACGGAAACAGACGACAGTCTTGCA -ACGGAAACAGACGACAGTCGAACA -ACGGAAACAGACGACAGTCAGTCA -ACGGAAACAGACGACAGTGATCCA -ACGGAAACAGACGACAGTACGACA -ACGGAAACAGACGACAGTAGCTCA -ACGGAAACAGACGACAGTTCACGT -ACGGAAACAGACGACAGTCGTAGT -ACGGAAACAGACGACAGTGTCAGT -ACGGAAACAGACGACAGTGAAGGT -ACGGAAACAGACGACAGTAACCGT -ACGGAAACAGACGACAGTTTGTGC -ACGGAAACAGACGACAGTCTAAGC -ACGGAAACAGACGACAGTACTAGC -ACGGAAACAGACGACAGTAGATGC -ACGGAAACAGACGACAGTTGAAGG -ACGGAAACAGACGACAGTCAATGG -ACGGAAACAGACGACAGTATGAGG -ACGGAAACAGACGACAGTAATGGG -ACGGAAACAGACGACAGTTCCTGA -ACGGAAACAGACGACAGTTAGCGA -ACGGAAACAGACGACAGTCACAGA -ACGGAAACAGACGACAGTGCAAGA -ACGGAAACAGACGACAGTGGTTGA -ACGGAAACAGACGACAGTTCCGAT -ACGGAAACAGACGACAGTTGGCAT -ACGGAAACAGACGACAGTCGAGAT -ACGGAAACAGACGACAGTTACCAC -ACGGAAACAGACGACAGTCAGAAC -ACGGAAACAGACGACAGTGTCTAC -ACGGAAACAGACGACAGTACGTAC -ACGGAAACAGACGACAGTAGTGAC -ACGGAAACAGACGACAGTCTGTAG -ACGGAAACAGACGACAGTCCTAAG -ACGGAAACAGACGACAGTGTTCAG -ACGGAAACAGACGACAGTGCATAG -ACGGAAACAGACGACAGTGACAAG -ACGGAAACAGACGACAGTAAGCAG -ACGGAAACAGACGACAGTCGTCAA -ACGGAAACAGACGACAGTGCTGAA -ACGGAAACAGACGACAGTAGTACG -ACGGAAACAGACGACAGTATCCGA -ACGGAAACAGACGACAGTATGGGA -ACGGAAACAGACGACAGTGTGCAA -ACGGAAACAGACGACAGTGAGGAA -ACGGAAACAGACGACAGTCAGGTA -ACGGAAACAGACGACAGTGACTCT -ACGGAAACAGACGACAGTAGTCCT -ACGGAAACAGACGACAGTTAAGCC -ACGGAAACAGACGACAGTATAGCC -ACGGAAACAGACGACAGTTAACCG -ACGGAAACAGACGACAGTATGCCA -ACGGAAACAGACTAGCTGGGAAAC -ACGGAAACAGACTAGCTGAACACC -ACGGAAACAGACTAGCTGATCGAG -ACGGAAACAGACTAGCTGCTCCTT -ACGGAAACAGACTAGCTGCCTGTT -ACGGAAACAGACTAGCTGCGGTTT -ACGGAAACAGACTAGCTGGTGGTT -ACGGAAACAGACTAGCTGGCCTTT -ACGGAAACAGACTAGCTGGGTCTT -ACGGAAACAGACTAGCTGACGCTT -ACGGAAACAGACTAGCTGAGCGTT -ACGGAAACAGACTAGCTGTTCGTC -ACGGAAACAGACTAGCTGTCTCTC -ACGGAAACAGACTAGCTGTGGATC -ACGGAAACAGACTAGCTGCACTTC -ACGGAAACAGACTAGCTGGTACTC -ACGGAAACAGACTAGCTGGATGTC -ACGGAAACAGACTAGCTGACAGTC -ACGGAAACAGACTAGCTGTTGCTG -ACGGAAACAGACTAGCTGTCCATG -ACGGAAACAGACTAGCTGTGTGTG -ACGGAAACAGACTAGCTGCTAGTG -ACGGAAACAGACTAGCTGCATCTG -ACGGAAACAGACTAGCTGGAGTTG -ACGGAAACAGACTAGCTGAGACTG -ACGGAAACAGACTAGCTGTCGGTA -ACGGAAACAGACTAGCTGTGCCTA -ACGGAAACAGACTAGCTGCCACTA -ACGGAAACAGACTAGCTGGGAGTA -ACGGAAACAGACTAGCTGTCGTCT -ACGGAAACAGACTAGCTGTGCACT -ACGGAAACAGACTAGCTGCTGACT -ACGGAAACAGACTAGCTGCAACCT -ACGGAAACAGACTAGCTGGCTACT -ACGGAAACAGACTAGCTGGGATCT -ACGGAAACAGACTAGCTGAAGGCT -ACGGAAACAGACTAGCTGTCAACC -ACGGAAACAGACTAGCTGTGTTCC -ACGGAAACAGACTAGCTGATTCCC -ACGGAAACAGACTAGCTGTTCTCG -ACGGAAACAGACTAGCTGTAGACG -ACGGAAACAGACTAGCTGGTAACG -ACGGAAACAGACTAGCTGACTTCG -ACGGAAACAGACTAGCTGTACGCA -ACGGAAACAGACTAGCTGCTTGCA -ACGGAAACAGACTAGCTGCGAACA -ACGGAAACAGACTAGCTGCAGTCA -ACGGAAACAGACTAGCTGGATCCA -ACGGAAACAGACTAGCTGACGACA -ACGGAAACAGACTAGCTGAGCTCA -ACGGAAACAGACTAGCTGTCACGT -ACGGAAACAGACTAGCTGCGTAGT -ACGGAAACAGACTAGCTGGTCAGT -ACGGAAACAGACTAGCTGGAAGGT -ACGGAAACAGACTAGCTGAACCGT -ACGGAAACAGACTAGCTGTTGTGC -ACGGAAACAGACTAGCTGCTAAGC -ACGGAAACAGACTAGCTGACTAGC -ACGGAAACAGACTAGCTGAGATGC -ACGGAAACAGACTAGCTGTGAAGG -ACGGAAACAGACTAGCTGCAATGG -ACGGAAACAGACTAGCTGATGAGG -ACGGAAACAGACTAGCTGAATGGG -ACGGAAACAGACTAGCTGTCCTGA -ACGGAAACAGACTAGCTGTAGCGA -ACGGAAACAGACTAGCTGCACAGA -ACGGAAACAGACTAGCTGGCAAGA -ACGGAAACAGACTAGCTGGGTTGA -ACGGAAACAGACTAGCTGTCCGAT -ACGGAAACAGACTAGCTGTGGCAT -ACGGAAACAGACTAGCTGCGAGAT -ACGGAAACAGACTAGCTGTACCAC -ACGGAAACAGACTAGCTGCAGAAC -ACGGAAACAGACTAGCTGGTCTAC -ACGGAAACAGACTAGCTGACGTAC -ACGGAAACAGACTAGCTGAGTGAC -ACGGAAACAGACTAGCTGCTGTAG -ACGGAAACAGACTAGCTGCCTAAG -ACGGAAACAGACTAGCTGGTTCAG -ACGGAAACAGACTAGCTGGCATAG -ACGGAAACAGACTAGCTGGACAAG -ACGGAAACAGACTAGCTGAAGCAG -ACGGAAACAGACTAGCTGCGTCAA -ACGGAAACAGACTAGCTGGCTGAA -ACGGAAACAGACTAGCTGAGTACG -ACGGAAACAGACTAGCTGATCCGA -ACGGAAACAGACTAGCTGATGGGA -ACGGAAACAGACTAGCTGGTGCAA -ACGGAAACAGACTAGCTGGAGGAA -ACGGAAACAGACTAGCTGCAGGTA -ACGGAAACAGACTAGCTGGACTCT -ACGGAAACAGACTAGCTGAGTCCT -ACGGAAACAGACTAGCTGTAAGCC -ACGGAAACAGACTAGCTGATAGCC -ACGGAAACAGACTAGCTGTAACCG -ACGGAAACAGACTAGCTGATGCCA -ACGGAAACAGACAAGCCTGGAAAC -ACGGAAACAGACAAGCCTAACACC -ACGGAAACAGACAAGCCTATCGAG -ACGGAAACAGACAAGCCTCTCCTT -ACGGAAACAGACAAGCCTCCTGTT -ACGGAAACAGACAAGCCTCGGTTT -ACGGAAACAGACAAGCCTGTGGTT -ACGGAAACAGACAAGCCTGCCTTT -ACGGAAACAGACAAGCCTGGTCTT -ACGGAAACAGACAAGCCTACGCTT -ACGGAAACAGACAAGCCTAGCGTT -ACGGAAACAGACAAGCCTTTCGTC -ACGGAAACAGACAAGCCTTCTCTC -ACGGAAACAGACAAGCCTTGGATC -ACGGAAACAGACAAGCCTCACTTC -ACGGAAACAGACAAGCCTGTACTC -ACGGAAACAGACAAGCCTGATGTC -ACGGAAACAGACAAGCCTACAGTC -ACGGAAACAGACAAGCCTTTGCTG -ACGGAAACAGACAAGCCTTCCATG -ACGGAAACAGACAAGCCTTGTGTG -ACGGAAACAGACAAGCCTCTAGTG -ACGGAAACAGACAAGCCTCATCTG -ACGGAAACAGACAAGCCTGAGTTG -ACGGAAACAGACAAGCCTAGACTG -ACGGAAACAGACAAGCCTTCGGTA -ACGGAAACAGACAAGCCTTGCCTA -ACGGAAACAGACAAGCCTCCACTA -ACGGAAACAGACAAGCCTGGAGTA -ACGGAAACAGACAAGCCTTCGTCT -ACGGAAACAGACAAGCCTTGCACT -ACGGAAACAGACAAGCCTCTGACT -ACGGAAACAGACAAGCCTCAACCT -ACGGAAACAGACAAGCCTGCTACT -ACGGAAACAGACAAGCCTGGATCT -ACGGAAACAGACAAGCCTAAGGCT -ACGGAAACAGACAAGCCTTCAACC -ACGGAAACAGACAAGCCTTGTTCC -ACGGAAACAGACAAGCCTATTCCC -ACGGAAACAGACAAGCCTTTCTCG -ACGGAAACAGACAAGCCTTAGACG -ACGGAAACAGACAAGCCTGTAACG -ACGGAAACAGACAAGCCTACTTCG -ACGGAAACAGACAAGCCTTACGCA -ACGGAAACAGACAAGCCTCTTGCA -ACGGAAACAGACAAGCCTCGAACA -ACGGAAACAGACAAGCCTCAGTCA -ACGGAAACAGACAAGCCTGATCCA -ACGGAAACAGACAAGCCTACGACA -ACGGAAACAGACAAGCCTAGCTCA -ACGGAAACAGACAAGCCTTCACGT -ACGGAAACAGACAAGCCTCGTAGT -ACGGAAACAGACAAGCCTGTCAGT -ACGGAAACAGACAAGCCTGAAGGT -ACGGAAACAGACAAGCCTAACCGT -ACGGAAACAGACAAGCCTTTGTGC -ACGGAAACAGACAAGCCTCTAAGC -ACGGAAACAGACAAGCCTACTAGC -ACGGAAACAGACAAGCCTAGATGC -ACGGAAACAGACAAGCCTTGAAGG -ACGGAAACAGACAAGCCTCAATGG -ACGGAAACAGACAAGCCTATGAGG -ACGGAAACAGACAAGCCTAATGGG -ACGGAAACAGACAAGCCTTCCTGA -ACGGAAACAGACAAGCCTTAGCGA -ACGGAAACAGACAAGCCTCACAGA -ACGGAAACAGACAAGCCTGCAAGA -ACGGAAACAGACAAGCCTGGTTGA -ACGGAAACAGACAAGCCTTCCGAT -ACGGAAACAGACAAGCCTTGGCAT -ACGGAAACAGACAAGCCTCGAGAT -ACGGAAACAGACAAGCCTTACCAC -ACGGAAACAGACAAGCCTCAGAAC -ACGGAAACAGACAAGCCTGTCTAC -ACGGAAACAGACAAGCCTACGTAC -ACGGAAACAGACAAGCCTAGTGAC -ACGGAAACAGACAAGCCTCTGTAG -ACGGAAACAGACAAGCCTCCTAAG -ACGGAAACAGACAAGCCTGTTCAG -ACGGAAACAGACAAGCCTGCATAG -ACGGAAACAGACAAGCCTGACAAG -ACGGAAACAGACAAGCCTAAGCAG -ACGGAAACAGACAAGCCTCGTCAA -ACGGAAACAGACAAGCCTGCTGAA -ACGGAAACAGACAAGCCTAGTACG -ACGGAAACAGACAAGCCTATCCGA -ACGGAAACAGACAAGCCTATGGGA -ACGGAAACAGACAAGCCTGTGCAA -ACGGAAACAGACAAGCCTGAGGAA -ACGGAAACAGACAAGCCTCAGGTA -ACGGAAACAGACAAGCCTGACTCT -ACGGAAACAGACAAGCCTAGTCCT -ACGGAAACAGACAAGCCTTAAGCC -ACGGAAACAGACAAGCCTATAGCC -ACGGAAACAGACAAGCCTTAACCG -ACGGAAACAGACAAGCCTATGCCA -ACGGAAACAGACCAGGTTGGAAAC -ACGGAAACAGACCAGGTTAACACC -ACGGAAACAGACCAGGTTATCGAG -ACGGAAACAGACCAGGTTCTCCTT -ACGGAAACAGACCAGGTTCCTGTT -ACGGAAACAGACCAGGTTCGGTTT -ACGGAAACAGACCAGGTTGTGGTT -ACGGAAACAGACCAGGTTGCCTTT -ACGGAAACAGACCAGGTTGGTCTT -ACGGAAACAGACCAGGTTACGCTT -ACGGAAACAGACCAGGTTAGCGTT -ACGGAAACAGACCAGGTTTTCGTC -ACGGAAACAGACCAGGTTTCTCTC -ACGGAAACAGACCAGGTTTGGATC -ACGGAAACAGACCAGGTTCACTTC -ACGGAAACAGACCAGGTTGTACTC -ACGGAAACAGACCAGGTTGATGTC -ACGGAAACAGACCAGGTTACAGTC -ACGGAAACAGACCAGGTTTTGCTG -ACGGAAACAGACCAGGTTTCCATG -ACGGAAACAGACCAGGTTTGTGTG -ACGGAAACAGACCAGGTTCTAGTG -ACGGAAACAGACCAGGTTCATCTG -ACGGAAACAGACCAGGTTGAGTTG -ACGGAAACAGACCAGGTTAGACTG -ACGGAAACAGACCAGGTTTCGGTA -ACGGAAACAGACCAGGTTTGCCTA -ACGGAAACAGACCAGGTTCCACTA -ACGGAAACAGACCAGGTTGGAGTA -ACGGAAACAGACCAGGTTTCGTCT -ACGGAAACAGACCAGGTTTGCACT -ACGGAAACAGACCAGGTTCTGACT -ACGGAAACAGACCAGGTTCAACCT -ACGGAAACAGACCAGGTTGCTACT -ACGGAAACAGACCAGGTTGGATCT -ACGGAAACAGACCAGGTTAAGGCT -ACGGAAACAGACCAGGTTTCAACC -ACGGAAACAGACCAGGTTTGTTCC -ACGGAAACAGACCAGGTTATTCCC -ACGGAAACAGACCAGGTTTTCTCG -ACGGAAACAGACCAGGTTTAGACG -ACGGAAACAGACCAGGTTGTAACG -ACGGAAACAGACCAGGTTACTTCG -ACGGAAACAGACCAGGTTTACGCA -ACGGAAACAGACCAGGTTCTTGCA -ACGGAAACAGACCAGGTTCGAACA -ACGGAAACAGACCAGGTTCAGTCA -ACGGAAACAGACCAGGTTGATCCA -ACGGAAACAGACCAGGTTACGACA -ACGGAAACAGACCAGGTTAGCTCA -ACGGAAACAGACCAGGTTTCACGT -ACGGAAACAGACCAGGTTCGTAGT -ACGGAAACAGACCAGGTTGTCAGT -ACGGAAACAGACCAGGTTGAAGGT -ACGGAAACAGACCAGGTTAACCGT -ACGGAAACAGACCAGGTTTTGTGC -ACGGAAACAGACCAGGTTCTAAGC -ACGGAAACAGACCAGGTTACTAGC -ACGGAAACAGACCAGGTTAGATGC -ACGGAAACAGACCAGGTTTGAAGG -ACGGAAACAGACCAGGTTCAATGG -ACGGAAACAGACCAGGTTATGAGG -ACGGAAACAGACCAGGTTAATGGG -ACGGAAACAGACCAGGTTTCCTGA -ACGGAAACAGACCAGGTTTAGCGA -ACGGAAACAGACCAGGTTCACAGA -ACGGAAACAGACCAGGTTGCAAGA -ACGGAAACAGACCAGGTTGGTTGA -ACGGAAACAGACCAGGTTTCCGAT -ACGGAAACAGACCAGGTTTGGCAT -ACGGAAACAGACCAGGTTCGAGAT -ACGGAAACAGACCAGGTTTACCAC -ACGGAAACAGACCAGGTTCAGAAC -ACGGAAACAGACCAGGTTGTCTAC -ACGGAAACAGACCAGGTTACGTAC -ACGGAAACAGACCAGGTTAGTGAC -ACGGAAACAGACCAGGTTCTGTAG -ACGGAAACAGACCAGGTTCCTAAG -ACGGAAACAGACCAGGTTGTTCAG -ACGGAAACAGACCAGGTTGCATAG -ACGGAAACAGACCAGGTTGACAAG -ACGGAAACAGACCAGGTTAAGCAG -ACGGAAACAGACCAGGTTCGTCAA -ACGGAAACAGACCAGGTTGCTGAA -ACGGAAACAGACCAGGTTAGTACG -ACGGAAACAGACCAGGTTATCCGA -ACGGAAACAGACCAGGTTATGGGA -ACGGAAACAGACCAGGTTGTGCAA -ACGGAAACAGACCAGGTTGAGGAA -ACGGAAACAGACCAGGTTCAGGTA -ACGGAAACAGACCAGGTTGACTCT -ACGGAAACAGACCAGGTTAGTCCT -ACGGAAACAGACCAGGTTTAAGCC -ACGGAAACAGACCAGGTTATAGCC -ACGGAAACAGACCAGGTTTAACCG -ACGGAAACAGACCAGGTTATGCCA -ACGGAAACAGACTAGGCAGGAAAC -ACGGAAACAGACTAGGCAAACACC -ACGGAAACAGACTAGGCAATCGAG -ACGGAAACAGACTAGGCACTCCTT -ACGGAAACAGACTAGGCACCTGTT -ACGGAAACAGACTAGGCACGGTTT -ACGGAAACAGACTAGGCAGTGGTT -ACGGAAACAGACTAGGCAGCCTTT -ACGGAAACAGACTAGGCAGGTCTT -ACGGAAACAGACTAGGCAACGCTT -ACGGAAACAGACTAGGCAAGCGTT -ACGGAAACAGACTAGGCATTCGTC -ACGGAAACAGACTAGGCATCTCTC -ACGGAAACAGACTAGGCATGGATC -ACGGAAACAGACTAGGCACACTTC -ACGGAAACAGACTAGGCAGTACTC -ACGGAAACAGACTAGGCAGATGTC -ACGGAAACAGACTAGGCAACAGTC -ACGGAAACAGACTAGGCATTGCTG -ACGGAAACAGACTAGGCATCCATG -ACGGAAACAGACTAGGCATGTGTG -ACGGAAACAGACTAGGCACTAGTG -ACGGAAACAGACTAGGCACATCTG -ACGGAAACAGACTAGGCAGAGTTG -ACGGAAACAGACTAGGCAAGACTG -ACGGAAACAGACTAGGCATCGGTA -ACGGAAACAGACTAGGCATGCCTA -ACGGAAACAGACTAGGCACCACTA -ACGGAAACAGACTAGGCAGGAGTA -ACGGAAACAGACTAGGCATCGTCT -ACGGAAACAGACTAGGCATGCACT -ACGGAAACAGACTAGGCACTGACT -ACGGAAACAGACTAGGCACAACCT -ACGGAAACAGACTAGGCAGCTACT -ACGGAAACAGACTAGGCAGGATCT -ACGGAAACAGACTAGGCAAAGGCT -ACGGAAACAGACTAGGCATCAACC -ACGGAAACAGACTAGGCATGTTCC -ACGGAAACAGACTAGGCAATTCCC -ACGGAAACAGACTAGGCATTCTCG -ACGGAAACAGACTAGGCATAGACG -ACGGAAACAGACTAGGCAGTAACG -ACGGAAACAGACTAGGCAACTTCG -ACGGAAACAGACTAGGCATACGCA -ACGGAAACAGACTAGGCACTTGCA -ACGGAAACAGACTAGGCACGAACA -ACGGAAACAGACTAGGCACAGTCA -ACGGAAACAGACTAGGCAGATCCA -ACGGAAACAGACTAGGCAACGACA -ACGGAAACAGACTAGGCAAGCTCA -ACGGAAACAGACTAGGCATCACGT -ACGGAAACAGACTAGGCACGTAGT -ACGGAAACAGACTAGGCAGTCAGT -ACGGAAACAGACTAGGCAGAAGGT -ACGGAAACAGACTAGGCAAACCGT -ACGGAAACAGACTAGGCATTGTGC -ACGGAAACAGACTAGGCACTAAGC -ACGGAAACAGACTAGGCAACTAGC -ACGGAAACAGACTAGGCAAGATGC -ACGGAAACAGACTAGGCATGAAGG -ACGGAAACAGACTAGGCACAATGG -ACGGAAACAGACTAGGCAATGAGG -ACGGAAACAGACTAGGCAAATGGG -ACGGAAACAGACTAGGCATCCTGA -ACGGAAACAGACTAGGCATAGCGA -ACGGAAACAGACTAGGCACACAGA -ACGGAAACAGACTAGGCAGCAAGA -ACGGAAACAGACTAGGCAGGTTGA -ACGGAAACAGACTAGGCATCCGAT -ACGGAAACAGACTAGGCATGGCAT -ACGGAAACAGACTAGGCACGAGAT -ACGGAAACAGACTAGGCATACCAC -ACGGAAACAGACTAGGCACAGAAC -ACGGAAACAGACTAGGCAGTCTAC -ACGGAAACAGACTAGGCAACGTAC -ACGGAAACAGACTAGGCAAGTGAC -ACGGAAACAGACTAGGCACTGTAG -ACGGAAACAGACTAGGCACCTAAG -ACGGAAACAGACTAGGCAGTTCAG -ACGGAAACAGACTAGGCAGCATAG -ACGGAAACAGACTAGGCAGACAAG -ACGGAAACAGACTAGGCAAAGCAG -ACGGAAACAGACTAGGCACGTCAA -ACGGAAACAGACTAGGCAGCTGAA -ACGGAAACAGACTAGGCAAGTACG -ACGGAAACAGACTAGGCAATCCGA -ACGGAAACAGACTAGGCAATGGGA -ACGGAAACAGACTAGGCAGTGCAA -ACGGAAACAGACTAGGCAGAGGAA -ACGGAAACAGACTAGGCACAGGTA -ACGGAAACAGACTAGGCAGACTCT -ACGGAAACAGACTAGGCAAGTCCT -ACGGAAACAGACTAGGCATAAGCC -ACGGAAACAGACTAGGCAATAGCC -ACGGAAACAGACTAGGCATAACCG -ACGGAAACAGACTAGGCAATGCCA -ACGGAAACAGACAAGGACGGAAAC -ACGGAAACAGACAAGGACAACACC -ACGGAAACAGACAAGGACATCGAG -ACGGAAACAGACAAGGACCTCCTT -ACGGAAACAGACAAGGACCCTGTT -ACGGAAACAGACAAGGACCGGTTT -ACGGAAACAGACAAGGACGTGGTT -ACGGAAACAGACAAGGACGCCTTT -ACGGAAACAGACAAGGACGGTCTT -ACGGAAACAGACAAGGACACGCTT -ACGGAAACAGACAAGGACAGCGTT -ACGGAAACAGACAAGGACTTCGTC -ACGGAAACAGACAAGGACTCTCTC -ACGGAAACAGACAAGGACTGGATC -ACGGAAACAGACAAGGACCACTTC -ACGGAAACAGACAAGGACGTACTC -ACGGAAACAGACAAGGACGATGTC -ACGGAAACAGACAAGGACACAGTC -ACGGAAACAGACAAGGACTTGCTG -ACGGAAACAGACAAGGACTCCATG -ACGGAAACAGACAAGGACTGTGTG -ACGGAAACAGACAAGGACCTAGTG -ACGGAAACAGACAAGGACCATCTG -ACGGAAACAGACAAGGACGAGTTG -ACGGAAACAGACAAGGACAGACTG -ACGGAAACAGACAAGGACTCGGTA -ACGGAAACAGACAAGGACTGCCTA -ACGGAAACAGACAAGGACCCACTA -ACGGAAACAGACAAGGACGGAGTA -ACGGAAACAGACAAGGACTCGTCT -ACGGAAACAGACAAGGACTGCACT -ACGGAAACAGACAAGGACCTGACT -ACGGAAACAGACAAGGACCAACCT -ACGGAAACAGACAAGGACGCTACT -ACGGAAACAGACAAGGACGGATCT -ACGGAAACAGACAAGGACAAGGCT -ACGGAAACAGACAAGGACTCAACC -ACGGAAACAGACAAGGACTGTTCC -ACGGAAACAGACAAGGACATTCCC -ACGGAAACAGACAAGGACTTCTCG -ACGGAAACAGACAAGGACTAGACG -ACGGAAACAGACAAGGACGTAACG -ACGGAAACAGACAAGGACACTTCG -ACGGAAACAGACAAGGACTACGCA -ACGGAAACAGACAAGGACCTTGCA -ACGGAAACAGACAAGGACCGAACA -ACGGAAACAGACAAGGACCAGTCA -ACGGAAACAGACAAGGACGATCCA -ACGGAAACAGACAAGGACACGACA -ACGGAAACAGACAAGGACAGCTCA -ACGGAAACAGACAAGGACTCACGT -ACGGAAACAGACAAGGACCGTAGT -ACGGAAACAGACAAGGACGTCAGT -ACGGAAACAGACAAGGACGAAGGT -ACGGAAACAGACAAGGACAACCGT -ACGGAAACAGACAAGGACTTGTGC -ACGGAAACAGACAAGGACCTAAGC -ACGGAAACAGACAAGGACACTAGC -ACGGAAACAGACAAGGACAGATGC -ACGGAAACAGACAAGGACTGAAGG -ACGGAAACAGACAAGGACCAATGG -ACGGAAACAGACAAGGACATGAGG -ACGGAAACAGACAAGGACAATGGG -ACGGAAACAGACAAGGACTCCTGA -ACGGAAACAGACAAGGACTAGCGA -ACGGAAACAGACAAGGACCACAGA -ACGGAAACAGACAAGGACGCAAGA -ACGGAAACAGACAAGGACGGTTGA -ACGGAAACAGACAAGGACTCCGAT -ACGGAAACAGACAAGGACTGGCAT -ACGGAAACAGACAAGGACCGAGAT -ACGGAAACAGACAAGGACTACCAC -ACGGAAACAGACAAGGACCAGAAC -ACGGAAACAGACAAGGACGTCTAC -ACGGAAACAGACAAGGACACGTAC -ACGGAAACAGACAAGGACAGTGAC -ACGGAAACAGACAAGGACCTGTAG -ACGGAAACAGACAAGGACCCTAAG -ACGGAAACAGACAAGGACGTTCAG -ACGGAAACAGACAAGGACGCATAG -ACGGAAACAGACAAGGACGACAAG -ACGGAAACAGACAAGGACAAGCAG -ACGGAAACAGACAAGGACCGTCAA -ACGGAAACAGACAAGGACGCTGAA -ACGGAAACAGACAAGGACAGTACG -ACGGAAACAGACAAGGACATCCGA -ACGGAAACAGACAAGGACATGGGA -ACGGAAACAGACAAGGACGTGCAA -ACGGAAACAGACAAGGACGAGGAA -ACGGAAACAGACAAGGACCAGGTA -ACGGAAACAGACAAGGACGACTCT -ACGGAAACAGACAAGGACAGTCCT -ACGGAAACAGACAAGGACTAAGCC -ACGGAAACAGACAAGGACATAGCC -ACGGAAACAGACAAGGACTAACCG -ACGGAAACAGACAAGGACATGCCA -ACGGAAACAGACCAGAAGGGAAAC -ACGGAAACAGACCAGAAGAACACC -ACGGAAACAGACCAGAAGATCGAG -ACGGAAACAGACCAGAAGCTCCTT -ACGGAAACAGACCAGAAGCCTGTT -ACGGAAACAGACCAGAAGCGGTTT -ACGGAAACAGACCAGAAGGTGGTT -ACGGAAACAGACCAGAAGGCCTTT -ACGGAAACAGACCAGAAGGGTCTT -ACGGAAACAGACCAGAAGACGCTT -ACGGAAACAGACCAGAAGAGCGTT -ACGGAAACAGACCAGAAGTTCGTC -ACGGAAACAGACCAGAAGTCTCTC -ACGGAAACAGACCAGAAGTGGATC -ACGGAAACAGACCAGAAGCACTTC -ACGGAAACAGACCAGAAGGTACTC -ACGGAAACAGACCAGAAGGATGTC -ACGGAAACAGACCAGAAGACAGTC -ACGGAAACAGACCAGAAGTTGCTG -ACGGAAACAGACCAGAAGTCCATG -ACGGAAACAGACCAGAAGTGTGTG -ACGGAAACAGACCAGAAGCTAGTG -ACGGAAACAGACCAGAAGCATCTG -ACGGAAACAGACCAGAAGGAGTTG -ACGGAAACAGACCAGAAGAGACTG -ACGGAAACAGACCAGAAGTCGGTA -ACGGAAACAGACCAGAAGTGCCTA -ACGGAAACAGACCAGAAGCCACTA -ACGGAAACAGACCAGAAGGGAGTA -ACGGAAACAGACCAGAAGTCGTCT -ACGGAAACAGACCAGAAGTGCACT -ACGGAAACAGACCAGAAGCTGACT -ACGGAAACAGACCAGAAGCAACCT -ACGGAAACAGACCAGAAGGCTACT -ACGGAAACAGACCAGAAGGGATCT -ACGGAAACAGACCAGAAGAAGGCT -ACGGAAACAGACCAGAAGTCAACC -ACGGAAACAGACCAGAAGTGTTCC -ACGGAAACAGACCAGAAGATTCCC -ACGGAAACAGACCAGAAGTTCTCG -ACGGAAACAGACCAGAAGTAGACG -ACGGAAACAGACCAGAAGGTAACG -ACGGAAACAGACCAGAAGACTTCG -ACGGAAACAGACCAGAAGTACGCA -ACGGAAACAGACCAGAAGCTTGCA -ACGGAAACAGACCAGAAGCGAACA -ACGGAAACAGACCAGAAGCAGTCA -ACGGAAACAGACCAGAAGGATCCA -ACGGAAACAGACCAGAAGACGACA -ACGGAAACAGACCAGAAGAGCTCA -ACGGAAACAGACCAGAAGTCACGT -ACGGAAACAGACCAGAAGCGTAGT -ACGGAAACAGACCAGAAGGTCAGT -ACGGAAACAGACCAGAAGGAAGGT -ACGGAAACAGACCAGAAGAACCGT -ACGGAAACAGACCAGAAGTTGTGC -ACGGAAACAGACCAGAAGCTAAGC -ACGGAAACAGACCAGAAGACTAGC -ACGGAAACAGACCAGAAGAGATGC -ACGGAAACAGACCAGAAGTGAAGG -ACGGAAACAGACCAGAAGCAATGG -ACGGAAACAGACCAGAAGATGAGG -ACGGAAACAGACCAGAAGAATGGG -ACGGAAACAGACCAGAAGTCCTGA -ACGGAAACAGACCAGAAGTAGCGA -ACGGAAACAGACCAGAAGCACAGA -ACGGAAACAGACCAGAAGGCAAGA -ACGGAAACAGACCAGAAGGGTTGA -ACGGAAACAGACCAGAAGTCCGAT -ACGGAAACAGACCAGAAGTGGCAT -ACGGAAACAGACCAGAAGCGAGAT -ACGGAAACAGACCAGAAGTACCAC -ACGGAAACAGACCAGAAGCAGAAC -ACGGAAACAGACCAGAAGGTCTAC -ACGGAAACAGACCAGAAGACGTAC -ACGGAAACAGACCAGAAGAGTGAC -ACGGAAACAGACCAGAAGCTGTAG -ACGGAAACAGACCAGAAGCCTAAG -ACGGAAACAGACCAGAAGGTTCAG -ACGGAAACAGACCAGAAGGCATAG -ACGGAAACAGACCAGAAGGACAAG -ACGGAAACAGACCAGAAGAAGCAG -ACGGAAACAGACCAGAAGCGTCAA -ACGGAAACAGACCAGAAGGCTGAA -ACGGAAACAGACCAGAAGAGTACG -ACGGAAACAGACCAGAAGATCCGA -ACGGAAACAGACCAGAAGATGGGA -ACGGAAACAGACCAGAAGGTGCAA -ACGGAAACAGACCAGAAGGAGGAA -ACGGAAACAGACCAGAAGCAGGTA -ACGGAAACAGACCAGAAGGACTCT -ACGGAAACAGACCAGAAGAGTCCT -ACGGAAACAGACCAGAAGTAAGCC -ACGGAAACAGACCAGAAGATAGCC -ACGGAAACAGACCAGAAGTAACCG -ACGGAAACAGACCAGAAGATGCCA -ACGGAAACAGACCAACGTGGAAAC -ACGGAAACAGACCAACGTAACACC -ACGGAAACAGACCAACGTATCGAG -ACGGAAACAGACCAACGTCTCCTT -ACGGAAACAGACCAACGTCCTGTT -ACGGAAACAGACCAACGTCGGTTT -ACGGAAACAGACCAACGTGTGGTT -ACGGAAACAGACCAACGTGCCTTT -ACGGAAACAGACCAACGTGGTCTT -ACGGAAACAGACCAACGTACGCTT -ACGGAAACAGACCAACGTAGCGTT -ACGGAAACAGACCAACGTTTCGTC -ACGGAAACAGACCAACGTTCTCTC -ACGGAAACAGACCAACGTTGGATC -ACGGAAACAGACCAACGTCACTTC -ACGGAAACAGACCAACGTGTACTC -ACGGAAACAGACCAACGTGATGTC -ACGGAAACAGACCAACGTACAGTC -ACGGAAACAGACCAACGTTTGCTG -ACGGAAACAGACCAACGTTCCATG -ACGGAAACAGACCAACGTTGTGTG -ACGGAAACAGACCAACGTCTAGTG -ACGGAAACAGACCAACGTCATCTG -ACGGAAACAGACCAACGTGAGTTG -ACGGAAACAGACCAACGTAGACTG -ACGGAAACAGACCAACGTTCGGTA -ACGGAAACAGACCAACGTTGCCTA -ACGGAAACAGACCAACGTCCACTA -ACGGAAACAGACCAACGTGGAGTA -ACGGAAACAGACCAACGTTCGTCT -ACGGAAACAGACCAACGTTGCACT -ACGGAAACAGACCAACGTCTGACT -ACGGAAACAGACCAACGTCAACCT -ACGGAAACAGACCAACGTGCTACT -ACGGAAACAGACCAACGTGGATCT -ACGGAAACAGACCAACGTAAGGCT -ACGGAAACAGACCAACGTTCAACC -ACGGAAACAGACCAACGTTGTTCC -ACGGAAACAGACCAACGTATTCCC -ACGGAAACAGACCAACGTTTCTCG -ACGGAAACAGACCAACGTTAGACG -ACGGAAACAGACCAACGTGTAACG -ACGGAAACAGACCAACGTACTTCG -ACGGAAACAGACCAACGTTACGCA -ACGGAAACAGACCAACGTCTTGCA -ACGGAAACAGACCAACGTCGAACA -ACGGAAACAGACCAACGTCAGTCA -ACGGAAACAGACCAACGTGATCCA -ACGGAAACAGACCAACGTACGACA -ACGGAAACAGACCAACGTAGCTCA -ACGGAAACAGACCAACGTTCACGT -ACGGAAACAGACCAACGTCGTAGT -ACGGAAACAGACCAACGTGTCAGT -ACGGAAACAGACCAACGTGAAGGT -ACGGAAACAGACCAACGTAACCGT -ACGGAAACAGACCAACGTTTGTGC -ACGGAAACAGACCAACGTCTAAGC -ACGGAAACAGACCAACGTACTAGC -ACGGAAACAGACCAACGTAGATGC -ACGGAAACAGACCAACGTTGAAGG -ACGGAAACAGACCAACGTCAATGG -ACGGAAACAGACCAACGTATGAGG -ACGGAAACAGACCAACGTAATGGG -ACGGAAACAGACCAACGTTCCTGA -ACGGAAACAGACCAACGTTAGCGA -ACGGAAACAGACCAACGTCACAGA -ACGGAAACAGACCAACGTGCAAGA -ACGGAAACAGACCAACGTGGTTGA -ACGGAAACAGACCAACGTTCCGAT -ACGGAAACAGACCAACGTTGGCAT -ACGGAAACAGACCAACGTCGAGAT -ACGGAAACAGACCAACGTTACCAC -ACGGAAACAGACCAACGTCAGAAC -ACGGAAACAGACCAACGTGTCTAC -ACGGAAACAGACCAACGTACGTAC -ACGGAAACAGACCAACGTAGTGAC -ACGGAAACAGACCAACGTCTGTAG -ACGGAAACAGACCAACGTCCTAAG -ACGGAAACAGACCAACGTGTTCAG -ACGGAAACAGACCAACGTGCATAG -ACGGAAACAGACCAACGTGACAAG -ACGGAAACAGACCAACGTAAGCAG -ACGGAAACAGACCAACGTCGTCAA -ACGGAAACAGACCAACGTGCTGAA -ACGGAAACAGACCAACGTAGTACG -ACGGAAACAGACCAACGTATCCGA -ACGGAAACAGACCAACGTATGGGA -ACGGAAACAGACCAACGTGTGCAA -ACGGAAACAGACCAACGTGAGGAA -ACGGAAACAGACCAACGTCAGGTA -ACGGAAACAGACCAACGTGACTCT -ACGGAAACAGACCAACGTAGTCCT -ACGGAAACAGACCAACGTTAAGCC -ACGGAAACAGACCAACGTATAGCC -ACGGAAACAGACCAACGTTAACCG -ACGGAAACAGACCAACGTATGCCA -ACGGAAACAGACGAAGCTGGAAAC -ACGGAAACAGACGAAGCTAACACC -ACGGAAACAGACGAAGCTATCGAG -ACGGAAACAGACGAAGCTCTCCTT -ACGGAAACAGACGAAGCTCCTGTT -ACGGAAACAGACGAAGCTCGGTTT -ACGGAAACAGACGAAGCTGTGGTT -ACGGAAACAGACGAAGCTGCCTTT -ACGGAAACAGACGAAGCTGGTCTT -ACGGAAACAGACGAAGCTACGCTT -ACGGAAACAGACGAAGCTAGCGTT -ACGGAAACAGACGAAGCTTTCGTC -ACGGAAACAGACGAAGCTTCTCTC -ACGGAAACAGACGAAGCTTGGATC -ACGGAAACAGACGAAGCTCACTTC -ACGGAAACAGACGAAGCTGTACTC -ACGGAAACAGACGAAGCTGATGTC -ACGGAAACAGACGAAGCTACAGTC -ACGGAAACAGACGAAGCTTTGCTG -ACGGAAACAGACGAAGCTTCCATG -ACGGAAACAGACGAAGCTTGTGTG -ACGGAAACAGACGAAGCTCTAGTG -ACGGAAACAGACGAAGCTCATCTG -ACGGAAACAGACGAAGCTGAGTTG -ACGGAAACAGACGAAGCTAGACTG -ACGGAAACAGACGAAGCTTCGGTA -ACGGAAACAGACGAAGCTTGCCTA -ACGGAAACAGACGAAGCTCCACTA -ACGGAAACAGACGAAGCTGGAGTA -ACGGAAACAGACGAAGCTTCGTCT -ACGGAAACAGACGAAGCTTGCACT -ACGGAAACAGACGAAGCTCTGACT -ACGGAAACAGACGAAGCTCAACCT -ACGGAAACAGACGAAGCTGCTACT -ACGGAAACAGACGAAGCTGGATCT -ACGGAAACAGACGAAGCTAAGGCT -ACGGAAACAGACGAAGCTTCAACC -ACGGAAACAGACGAAGCTTGTTCC -ACGGAAACAGACGAAGCTATTCCC -ACGGAAACAGACGAAGCTTTCTCG -ACGGAAACAGACGAAGCTTAGACG -ACGGAAACAGACGAAGCTGTAACG -ACGGAAACAGACGAAGCTACTTCG -ACGGAAACAGACGAAGCTTACGCA -ACGGAAACAGACGAAGCTCTTGCA -ACGGAAACAGACGAAGCTCGAACA -ACGGAAACAGACGAAGCTCAGTCA -ACGGAAACAGACGAAGCTGATCCA -ACGGAAACAGACGAAGCTACGACA -ACGGAAACAGACGAAGCTAGCTCA -ACGGAAACAGACGAAGCTTCACGT -ACGGAAACAGACGAAGCTCGTAGT -ACGGAAACAGACGAAGCTGTCAGT -ACGGAAACAGACGAAGCTGAAGGT -ACGGAAACAGACGAAGCTAACCGT -ACGGAAACAGACGAAGCTTTGTGC -ACGGAAACAGACGAAGCTCTAAGC -ACGGAAACAGACGAAGCTACTAGC -ACGGAAACAGACGAAGCTAGATGC -ACGGAAACAGACGAAGCTTGAAGG -ACGGAAACAGACGAAGCTCAATGG -ACGGAAACAGACGAAGCTATGAGG -ACGGAAACAGACGAAGCTAATGGG -ACGGAAACAGACGAAGCTTCCTGA -ACGGAAACAGACGAAGCTTAGCGA -ACGGAAACAGACGAAGCTCACAGA -ACGGAAACAGACGAAGCTGCAAGA -ACGGAAACAGACGAAGCTGGTTGA -ACGGAAACAGACGAAGCTTCCGAT -ACGGAAACAGACGAAGCTTGGCAT -ACGGAAACAGACGAAGCTCGAGAT -ACGGAAACAGACGAAGCTTACCAC -ACGGAAACAGACGAAGCTCAGAAC -ACGGAAACAGACGAAGCTGTCTAC -ACGGAAACAGACGAAGCTACGTAC -ACGGAAACAGACGAAGCTAGTGAC -ACGGAAACAGACGAAGCTCTGTAG -ACGGAAACAGACGAAGCTCCTAAG -ACGGAAACAGACGAAGCTGTTCAG -ACGGAAACAGACGAAGCTGCATAG -ACGGAAACAGACGAAGCTGACAAG -ACGGAAACAGACGAAGCTAAGCAG -ACGGAAACAGACGAAGCTCGTCAA -ACGGAAACAGACGAAGCTGCTGAA -ACGGAAACAGACGAAGCTAGTACG -ACGGAAACAGACGAAGCTATCCGA -ACGGAAACAGACGAAGCTATGGGA -ACGGAAACAGACGAAGCTGTGCAA -ACGGAAACAGACGAAGCTGAGGAA -ACGGAAACAGACGAAGCTCAGGTA -ACGGAAACAGACGAAGCTGACTCT -ACGGAAACAGACGAAGCTAGTCCT -ACGGAAACAGACGAAGCTTAAGCC -ACGGAAACAGACGAAGCTATAGCC -ACGGAAACAGACGAAGCTTAACCG -ACGGAAACAGACGAAGCTATGCCA -ACGGAAACAGACACGAGTGGAAAC -ACGGAAACAGACACGAGTAACACC -ACGGAAACAGACACGAGTATCGAG -ACGGAAACAGACACGAGTCTCCTT -ACGGAAACAGACACGAGTCCTGTT -ACGGAAACAGACACGAGTCGGTTT -ACGGAAACAGACACGAGTGTGGTT -ACGGAAACAGACACGAGTGCCTTT -ACGGAAACAGACACGAGTGGTCTT -ACGGAAACAGACACGAGTACGCTT -ACGGAAACAGACACGAGTAGCGTT -ACGGAAACAGACACGAGTTTCGTC -ACGGAAACAGACACGAGTTCTCTC -ACGGAAACAGACACGAGTTGGATC -ACGGAAACAGACACGAGTCACTTC -ACGGAAACAGACACGAGTGTACTC -ACGGAAACAGACACGAGTGATGTC -ACGGAAACAGACACGAGTACAGTC -ACGGAAACAGACACGAGTTTGCTG -ACGGAAACAGACACGAGTTCCATG -ACGGAAACAGACACGAGTTGTGTG -ACGGAAACAGACACGAGTCTAGTG -ACGGAAACAGACACGAGTCATCTG -ACGGAAACAGACACGAGTGAGTTG -ACGGAAACAGACACGAGTAGACTG -ACGGAAACAGACACGAGTTCGGTA -ACGGAAACAGACACGAGTTGCCTA -ACGGAAACAGACACGAGTCCACTA -ACGGAAACAGACACGAGTGGAGTA -ACGGAAACAGACACGAGTTCGTCT -ACGGAAACAGACACGAGTTGCACT -ACGGAAACAGACACGAGTCTGACT -ACGGAAACAGACACGAGTCAACCT -ACGGAAACAGACACGAGTGCTACT -ACGGAAACAGACACGAGTGGATCT -ACGGAAACAGACACGAGTAAGGCT -ACGGAAACAGACACGAGTTCAACC -ACGGAAACAGACACGAGTTGTTCC -ACGGAAACAGACACGAGTATTCCC -ACGGAAACAGACACGAGTTTCTCG -ACGGAAACAGACACGAGTTAGACG -ACGGAAACAGACACGAGTGTAACG -ACGGAAACAGACACGAGTACTTCG -ACGGAAACAGACACGAGTTACGCA -ACGGAAACAGACACGAGTCTTGCA -ACGGAAACAGACACGAGTCGAACA -ACGGAAACAGACACGAGTCAGTCA -ACGGAAACAGACACGAGTGATCCA -ACGGAAACAGACACGAGTACGACA -ACGGAAACAGACACGAGTAGCTCA -ACGGAAACAGACACGAGTTCACGT -ACGGAAACAGACACGAGTCGTAGT -ACGGAAACAGACACGAGTGTCAGT -ACGGAAACAGACACGAGTGAAGGT -ACGGAAACAGACACGAGTAACCGT -ACGGAAACAGACACGAGTTTGTGC -ACGGAAACAGACACGAGTCTAAGC -ACGGAAACAGACACGAGTACTAGC -ACGGAAACAGACACGAGTAGATGC -ACGGAAACAGACACGAGTTGAAGG -ACGGAAACAGACACGAGTCAATGG -ACGGAAACAGACACGAGTATGAGG -ACGGAAACAGACACGAGTAATGGG -ACGGAAACAGACACGAGTTCCTGA -ACGGAAACAGACACGAGTTAGCGA -ACGGAAACAGACACGAGTCACAGA -ACGGAAACAGACACGAGTGCAAGA -ACGGAAACAGACACGAGTGGTTGA -ACGGAAACAGACACGAGTTCCGAT -ACGGAAACAGACACGAGTTGGCAT -ACGGAAACAGACACGAGTCGAGAT -ACGGAAACAGACACGAGTTACCAC -ACGGAAACAGACACGAGTCAGAAC -ACGGAAACAGACACGAGTGTCTAC -ACGGAAACAGACACGAGTACGTAC -ACGGAAACAGACACGAGTAGTGAC -ACGGAAACAGACACGAGTCTGTAG -ACGGAAACAGACACGAGTCCTAAG -ACGGAAACAGACACGAGTGTTCAG -ACGGAAACAGACACGAGTGCATAG -ACGGAAACAGACACGAGTGACAAG -ACGGAAACAGACACGAGTAAGCAG -ACGGAAACAGACACGAGTCGTCAA -ACGGAAACAGACACGAGTGCTGAA -ACGGAAACAGACACGAGTAGTACG -ACGGAAACAGACACGAGTATCCGA -ACGGAAACAGACACGAGTATGGGA -ACGGAAACAGACACGAGTGTGCAA -ACGGAAACAGACACGAGTGAGGAA -ACGGAAACAGACACGAGTCAGGTA -ACGGAAACAGACACGAGTGACTCT -ACGGAAACAGACACGAGTAGTCCT -ACGGAAACAGACACGAGTTAAGCC -ACGGAAACAGACACGAGTATAGCC -ACGGAAACAGACACGAGTTAACCG -ACGGAAACAGACACGAGTATGCCA -ACGGAAACAGACCGAATCGGAAAC -ACGGAAACAGACCGAATCAACACC -ACGGAAACAGACCGAATCATCGAG -ACGGAAACAGACCGAATCCTCCTT -ACGGAAACAGACCGAATCCCTGTT -ACGGAAACAGACCGAATCCGGTTT -ACGGAAACAGACCGAATCGTGGTT -ACGGAAACAGACCGAATCGCCTTT -ACGGAAACAGACCGAATCGGTCTT -ACGGAAACAGACCGAATCACGCTT -ACGGAAACAGACCGAATCAGCGTT -ACGGAAACAGACCGAATCTTCGTC -ACGGAAACAGACCGAATCTCTCTC -ACGGAAACAGACCGAATCTGGATC -ACGGAAACAGACCGAATCCACTTC -ACGGAAACAGACCGAATCGTACTC -ACGGAAACAGACCGAATCGATGTC -ACGGAAACAGACCGAATCACAGTC -ACGGAAACAGACCGAATCTTGCTG -ACGGAAACAGACCGAATCTCCATG -ACGGAAACAGACCGAATCTGTGTG -ACGGAAACAGACCGAATCCTAGTG -ACGGAAACAGACCGAATCCATCTG -ACGGAAACAGACCGAATCGAGTTG -ACGGAAACAGACCGAATCAGACTG -ACGGAAACAGACCGAATCTCGGTA -ACGGAAACAGACCGAATCTGCCTA -ACGGAAACAGACCGAATCCCACTA -ACGGAAACAGACCGAATCGGAGTA -ACGGAAACAGACCGAATCTCGTCT -ACGGAAACAGACCGAATCTGCACT -ACGGAAACAGACCGAATCCTGACT -ACGGAAACAGACCGAATCCAACCT -ACGGAAACAGACCGAATCGCTACT -ACGGAAACAGACCGAATCGGATCT -ACGGAAACAGACCGAATCAAGGCT -ACGGAAACAGACCGAATCTCAACC -ACGGAAACAGACCGAATCTGTTCC -ACGGAAACAGACCGAATCATTCCC -ACGGAAACAGACCGAATCTTCTCG -ACGGAAACAGACCGAATCTAGACG -ACGGAAACAGACCGAATCGTAACG -ACGGAAACAGACCGAATCACTTCG -ACGGAAACAGACCGAATCTACGCA -ACGGAAACAGACCGAATCCTTGCA -ACGGAAACAGACCGAATCCGAACA -ACGGAAACAGACCGAATCCAGTCA -ACGGAAACAGACCGAATCGATCCA -ACGGAAACAGACCGAATCACGACA -ACGGAAACAGACCGAATCAGCTCA -ACGGAAACAGACCGAATCTCACGT -ACGGAAACAGACCGAATCCGTAGT -ACGGAAACAGACCGAATCGTCAGT -ACGGAAACAGACCGAATCGAAGGT -ACGGAAACAGACCGAATCAACCGT -ACGGAAACAGACCGAATCTTGTGC -ACGGAAACAGACCGAATCCTAAGC -ACGGAAACAGACCGAATCACTAGC -ACGGAAACAGACCGAATCAGATGC -ACGGAAACAGACCGAATCTGAAGG -ACGGAAACAGACCGAATCCAATGG -ACGGAAACAGACCGAATCATGAGG -ACGGAAACAGACCGAATCAATGGG -ACGGAAACAGACCGAATCTCCTGA -ACGGAAACAGACCGAATCTAGCGA -ACGGAAACAGACCGAATCCACAGA -ACGGAAACAGACCGAATCGCAAGA -ACGGAAACAGACCGAATCGGTTGA -ACGGAAACAGACCGAATCTCCGAT -ACGGAAACAGACCGAATCTGGCAT -ACGGAAACAGACCGAATCCGAGAT -ACGGAAACAGACCGAATCTACCAC -ACGGAAACAGACCGAATCCAGAAC -ACGGAAACAGACCGAATCGTCTAC -ACGGAAACAGACCGAATCACGTAC -ACGGAAACAGACCGAATCAGTGAC -ACGGAAACAGACCGAATCCTGTAG -ACGGAAACAGACCGAATCCCTAAG -ACGGAAACAGACCGAATCGTTCAG -ACGGAAACAGACCGAATCGCATAG -ACGGAAACAGACCGAATCGACAAG -ACGGAAACAGACCGAATCAAGCAG -ACGGAAACAGACCGAATCCGTCAA -ACGGAAACAGACCGAATCGCTGAA -ACGGAAACAGACCGAATCAGTACG -ACGGAAACAGACCGAATCATCCGA -ACGGAAACAGACCGAATCATGGGA -ACGGAAACAGACCGAATCGTGCAA -ACGGAAACAGACCGAATCGAGGAA -ACGGAAACAGACCGAATCCAGGTA -ACGGAAACAGACCGAATCGACTCT -ACGGAAACAGACCGAATCAGTCCT -ACGGAAACAGACCGAATCTAAGCC -ACGGAAACAGACCGAATCATAGCC -ACGGAAACAGACCGAATCTAACCG -ACGGAAACAGACCGAATCATGCCA -ACGGAAACAGACGGAATGGGAAAC -ACGGAAACAGACGGAATGAACACC -ACGGAAACAGACGGAATGATCGAG -ACGGAAACAGACGGAATGCTCCTT -ACGGAAACAGACGGAATGCCTGTT -ACGGAAACAGACGGAATGCGGTTT -ACGGAAACAGACGGAATGGTGGTT -ACGGAAACAGACGGAATGGCCTTT -ACGGAAACAGACGGAATGGGTCTT -ACGGAAACAGACGGAATGACGCTT -ACGGAAACAGACGGAATGAGCGTT -ACGGAAACAGACGGAATGTTCGTC -ACGGAAACAGACGGAATGTCTCTC -ACGGAAACAGACGGAATGTGGATC -ACGGAAACAGACGGAATGCACTTC -ACGGAAACAGACGGAATGGTACTC -ACGGAAACAGACGGAATGGATGTC -ACGGAAACAGACGGAATGACAGTC -ACGGAAACAGACGGAATGTTGCTG -ACGGAAACAGACGGAATGTCCATG -ACGGAAACAGACGGAATGTGTGTG -ACGGAAACAGACGGAATGCTAGTG -ACGGAAACAGACGGAATGCATCTG -ACGGAAACAGACGGAATGGAGTTG -ACGGAAACAGACGGAATGAGACTG -ACGGAAACAGACGGAATGTCGGTA -ACGGAAACAGACGGAATGTGCCTA -ACGGAAACAGACGGAATGCCACTA -ACGGAAACAGACGGAATGGGAGTA -ACGGAAACAGACGGAATGTCGTCT -ACGGAAACAGACGGAATGTGCACT -ACGGAAACAGACGGAATGCTGACT -ACGGAAACAGACGGAATGCAACCT -ACGGAAACAGACGGAATGGCTACT -ACGGAAACAGACGGAATGGGATCT -ACGGAAACAGACGGAATGAAGGCT -ACGGAAACAGACGGAATGTCAACC -ACGGAAACAGACGGAATGTGTTCC -ACGGAAACAGACGGAATGATTCCC -ACGGAAACAGACGGAATGTTCTCG -ACGGAAACAGACGGAATGTAGACG -ACGGAAACAGACGGAATGGTAACG -ACGGAAACAGACGGAATGACTTCG -ACGGAAACAGACGGAATGTACGCA -ACGGAAACAGACGGAATGCTTGCA -ACGGAAACAGACGGAATGCGAACA -ACGGAAACAGACGGAATGCAGTCA -ACGGAAACAGACGGAATGGATCCA -ACGGAAACAGACGGAATGACGACA -ACGGAAACAGACGGAATGAGCTCA -ACGGAAACAGACGGAATGTCACGT -ACGGAAACAGACGGAATGCGTAGT -ACGGAAACAGACGGAATGGTCAGT -ACGGAAACAGACGGAATGGAAGGT -ACGGAAACAGACGGAATGAACCGT -ACGGAAACAGACGGAATGTTGTGC -ACGGAAACAGACGGAATGCTAAGC -ACGGAAACAGACGGAATGACTAGC -ACGGAAACAGACGGAATGAGATGC -ACGGAAACAGACGGAATGTGAAGG -ACGGAAACAGACGGAATGCAATGG -ACGGAAACAGACGGAATGATGAGG -ACGGAAACAGACGGAATGAATGGG -ACGGAAACAGACGGAATGTCCTGA -ACGGAAACAGACGGAATGTAGCGA -ACGGAAACAGACGGAATGCACAGA -ACGGAAACAGACGGAATGGCAAGA -ACGGAAACAGACGGAATGGGTTGA -ACGGAAACAGACGGAATGTCCGAT -ACGGAAACAGACGGAATGTGGCAT -ACGGAAACAGACGGAATGCGAGAT -ACGGAAACAGACGGAATGTACCAC -ACGGAAACAGACGGAATGCAGAAC -ACGGAAACAGACGGAATGGTCTAC -ACGGAAACAGACGGAATGACGTAC -ACGGAAACAGACGGAATGAGTGAC -ACGGAAACAGACGGAATGCTGTAG -ACGGAAACAGACGGAATGCCTAAG -ACGGAAACAGACGGAATGGTTCAG -ACGGAAACAGACGGAATGGCATAG -ACGGAAACAGACGGAATGGACAAG -ACGGAAACAGACGGAATGAAGCAG -ACGGAAACAGACGGAATGCGTCAA -ACGGAAACAGACGGAATGGCTGAA -ACGGAAACAGACGGAATGAGTACG -ACGGAAACAGACGGAATGATCCGA -ACGGAAACAGACGGAATGATGGGA -ACGGAAACAGACGGAATGGTGCAA -ACGGAAACAGACGGAATGGAGGAA -ACGGAAACAGACGGAATGCAGGTA -ACGGAAACAGACGGAATGGACTCT -ACGGAAACAGACGGAATGAGTCCT -ACGGAAACAGACGGAATGTAAGCC -ACGGAAACAGACGGAATGATAGCC -ACGGAAACAGACGGAATGTAACCG -ACGGAAACAGACGGAATGATGCCA -ACGGAAACAGACCAAGTGGGAAAC -ACGGAAACAGACCAAGTGAACACC -ACGGAAACAGACCAAGTGATCGAG -ACGGAAACAGACCAAGTGCTCCTT -ACGGAAACAGACCAAGTGCCTGTT -ACGGAAACAGACCAAGTGCGGTTT -ACGGAAACAGACCAAGTGGTGGTT -ACGGAAACAGACCAAGTGGCCTTT -ACGGAAACAGACCAAGTGGGTCTT -ACGGAAACAGACCAAGTGACGCTT -ACGGAAACAGACCAAGTGAGCGTT -ACGGAAACAGACCAAGTGTTCGTC -ACGGAAACAGACCAAGTGTCTCTC -ACGGAAACAGACCAAGTGTGGATC -ACGGAAACAGACCAAGTGCACTTC -ACGGAAACAGACCAAGTGGTACTC -ACGGAAACAGACCAAGTGGATGTC -ACGGAAACAGACCAAGTGACAGTC -ACGGAAACAGACCAAGTGTTGCTG -ACGGAAACAGACCAAGTGTCCATG -ACGGAAACAGACCAAGTGTGTGTG -ACGGAAACAGACCAAGTGCTAGTG -ACGGAAACAGACCAAGTGCATCTG -ACGGAAACAGACCAAGTGGAGTTG -ACGGAAACAGACCAAGTGAGACTG -ACGGAAACAGACCAAGTGTCGGTA -ACGGAAACAGACCAAGTGTGCCTA -ACGGAAACAGACCAAGTGCCACTA -ACGGAAACAGACCAAGTGGGAGTA -ACGGAAACAGACCAAGTGTCGTCT -ACGGAAACAGACCAAGTGTGCACT -ACGGAAACAGACCAAGTGCTGACT -ACGGAAACAGACCAAGTGCAACCT -ACGGAAACAGACCAAGTGGCTACT -ACGGAAACAGACCAAGTGGGATCT -ACGGAAACAGACCAAGTGAAGGCT -ACGGAAACAGACCAAGTGTCAACC -ACGGAAACAGACCAAGTGTGTTCC -ACGGAAACAGACCAAGTGATTCCC -ACGGAAACAGACCAAGTGTTCTCG -ACGGAAACAGACCAAGTGTAGACG -ACGGAAACAGACCAAGTGGTAACG -ACGGAAACAGACCAAGTGACTTCG -ACGGAAACAGACCAAGTGTACGCA -ACGGAAACAGACCAAGTGCTTGCA -ACGGAAACAGACCAAGTGCGAACA -ACGGAAACAGACCAAGTGCAGTCA -ACGGAAACAGACCAAGTGGATCCA -ACGGAAACAGACCAAGTGACGACA -ACGGAAACAGACCAAGTGAGCTCA -ACGGAAACAGACCAAGTGTCACGT -ACGGAAACAGACCAAGTGCGTAGT -ACGGAAACAGACCAAGTGGTCAGT -ACGGAAACAGACCAAGTGGAAGGT -ACGGAAACAGACCAAGTGAACCGT -ACGGAAACAGACCAAGTGTTGTGC -ACGGAAACAGACCAAGTGCTAAGC -ACGGAAACAGACCAAGTGACTAGC -ACGGAAACAGACCAAGTGAGATGC -ACGGAAACAGACCAAGTGTGAAGG -ACGGAAACAGACCAAGTGCAATGG -ACGGAAACAGACCAAGTGATGAGG -ACGGAAACAGACCAAGTGAATGGG -ACGGAAACAGACCAAGTGTCCTGA -ACGGAAACAGACCAAGTGTAGCGA -ACGGAAACAGACCAAGTGCACAGA -ACGGAAACAGACCAAGTGGCAAGA -ACGGAAACAGACCAAGTGGGTTGA -ACGGAAACAGACCAAGTGTCCGAT -ACGGAAACAGACCAAGTGTGGCAT -ACGGAAACAGACCAAGTGCGAGAT -ACGGAAACAGACCAAGTGTACCAC -ACGGAAACAGACCAAGTGCAGAAC -ACGGAAACAGACCAAGTGGTCTAC -ACGGAAACAGACCAAGTGACGTAC -ACGGAAACAGACCAAGTGAGTGAC -ACGGAAACAGACCAAGTGCTGTAG -ACGGAAACAGACCAAGTGCCTAAG -ACGGAAACAGACCAAGTGGTTCAG -ACGGAAACAGACCAAGTGGCATAG -ACGGAAACAGACCAAGTGGACAAG -ACGGAAACAGACCAAGTGAAGCAG -ACGGAAACAGACCAAGTGCGTCAA -ACGGAAACAGACCAAGTGGCTGAA -ACGGAAACAGACCAAGTGAGTACG -ACGGAAACAGACCAAGTGATCCGA -ACGGAAACAGACCAAGTGATGGGA -ACGGAAACAGACCAAGTGGTGCAA -ACGGAAACAGACCAAGTGGAGGAA -ACGGAAACAGACCAAGTGCAGGTA -ACGGAAACAGACCAAGTGGACTCT -ACGGAAACAGACCAAGTGAGTCCT -ACGGAAACAGACCAAGTGTAAGCC -ACGGAAACAGACCAAGTGATAGCC -ACGGAAACAGACCAAGTGTAACCG -ACGGAAACAGACCAAGTGATGCCA -ACGGAAACAGACGAAGAGGGAAAC -ACGGAAACAGACGAAGAGAACACC -ACGGAAACAGACGAAGAGATCGAG -ACGGAAACAGACGAAGAGCTCCTT -ACGGAAACAGACGAAGAGCCTGTT -ACGGAAACAGACGAAGAGCGGTTT -ACGGAAACAGACGAAGAGGTGGTT -ACGGAAACAGACGAAGAGGCCTTT -ACGGAAACAGACGAAGAGGGTCTT -ACGGAAACAGACGAAGAGACGCTT -ACGGAAACAGACGAAGAGAGCGTT -ACGGAAACAGACGAAGAGTTCGTC -ACGGAAACAGACGAAGAGTCTCTC -ACGGAAACAGACGAAGAGTGGATC -ACGGAAACAGACGAAGAGCACTTC -ACGGAAACAGACGAAGAGGTACTC -ACGGAAACAGACGAAGAGGATGTC -ACGGAAACAGACGAAGAGACAGTC -ACGGAAACAGACGAAGAGTTGCTG -ACGGAAACAGACGAAGAGTCCATG -ACGGAAACAGACGAAGAGTGTGTG -ACGGAAACAGACGAAGAGCTAGTG -ACGGAAACAGACGAAGAGCATCTG -ACGGAAACAGACGAAGAGGAGTTG -ACGGAAACAGACGAAGAGAGACTG -ACGGAAACAGACGAAGAGTCGGTA -ACGGAAACAGACGAAGAGTGCCTA -ACGGAAACAGACGAAGAGCCACTA -ACGGAAACAGACGAAGAGGGAGTA -ACGGAAACAGACGAAGAGTCGTCT -ACGGAAACAGACGAAGAGTGCACT -ACGGAAACAGACGAAGAGCTGACT -ACGGAAACAGACGAAGAGCAACCT -ACGGAAACAGACGAAGAGGCTACT -ACGGAAACAGACGAAGAGGGATCT -ACGGAAACAGACGAAGAGAAGGCT -ACGGAAACAGACGAAGAGTCAACC -ACGGAAACAGACGAAGAGTGTTCC -ACGGAAACAGACGAAGAGATTCCC -ACGGAAACAGACGAAGAGTTCTCG -ACGGAAACAGACGAAGAGTAGACG -ACGGAAACAGACGAAGAGGTAACG -ACGGAAACAGACGAAGAGACTTCG -ACGGAAACAGACGAAGAGTACGCA -ACGGAAACAGACGAAGAGCTTGCA -ACGGAAACAGACGAAGAGCGAACA -ACGGAAACAGACGAAGAGCAGTCA -ACGGAAACAGACGAAGAGGATCCA -ACGGAAACAGACGAAGAGACGACA -ACGGAAACAGACGAAGAGAGCTCA -ACGGAAACAGACGAAGAGTCACGT -ACGGAAACAGACGAAGAGCGTAGT -ACGGAAACAGACGAAGAGGTCAGT -ACGGAAACAGACGAAGAGGAAGGT -ACGGAAACAGACGAAGAGAACCGT -ACGGAAACAGACGAAGAGTTGTGC -ACGGAAACAGACGAAGAGCTAAGC -ACGGAAACAGACGAAGAGACTAGC -ACGGAAACAGACGAAGAGAGATGC -ACGGAAACAGACGAAGAGTGAAGG -ACGGAAACAGACGAAGAGCAATGG -ACGGAAACAGACGAAGAGATGAGG -ACGGAAACAGACGAAGAGAATGGG -ACGGAAACAGACGAAGAGTCCTGA -ACGGAAACAGACGAAGAGTAGCGA -ACGGAAACAGACGAAGAGCACAGA -ACGGAAACAGACGAAGAGGCAAGA -ACGGAAACAGACGAAGAGGGTTGA -ACGGAAACAGACGAAGAGTCCGAT -ACGGAAACAGACGAAGAGTGGCAT -ACGGAAACAGACGAAGAGCGAGAT -ACGGAAACAGACGAAGAGTACCAC -ACGGAAACAGACGAAGAGCAGAAC -ACGGAAACAGACGAAGAGGTCTAC -ACGGAAACAGACGAAGAGACGTAC -ACGGAAACAGACGAAGAGAGTGAC -ACGGAAACAGACGAAGAGCTGTAG -ACGGAAACAGACGAAGAGCCTAAG -ACGGAAACAGACGAAGAGGTTCAG -ACGGAAACAGACGAAGAGGCATAG -ACGGAAACAGACGAAGAGGACAAG -ACGGAAACAGACGAAGAGAAGCAG -ACGGAAACAGACGAAGAGCGTCAA -ACGGAAACAGACGAAGAGGCTGAA -ACGGAAACAGACGAAGAGAGTACG -ACGGAAACAGACGAAGAGATCCGA -ACGGAAACAGACGAAGAGATGGGA -ACGGAAACAGACGAAGAGGTGCAA -ACGGAAACAGACGAAGAGGAGGAA -ACGGAAACAGACGAAGAGCAGGTA -ACGGAAACAGACGAAGAGGACTCT -ACGGAAACAGACGAAGAGAGTCCT -ACGGAAACAGACGAAGAGTAAGCC -ACGGAAACAGACGAAGAGATAGCC -ACGGAAACAGACGAAGAGTAACCG -ACGGAAACAGACGAAGAGATGCCA -ACGGAAACAGACGTACAGGGAAAC -ACGGAAACAGACGTACAGAACACC -ACGGAAACAGACGTACAGATCGAG -ACGGAAACAGACGTACAGCTCCTT -ACGGAAACAGACGTACAGCCTGTT -ACGGAAACAGACGTACAGCGGTTT -ACGGAAACAGACGTACAGGTGGTT -ACGGAAACAGACGTACAGGCCTTT -ACGGAAACAGACGTACAGGGTCTT -ACGGAAACAGACGTACAGACGCTT -ACGGAAACAGACGTACAGAGCGTT -ACGGAAACAGACGTACAGTTCGTC -ACGGAAACAGACGTACAGTCTCTC -ACGGAAACAGACGTACAGTGGATC -ACGGAAACAGACGTACAGCACTTC -ACGGAAACAGACGTACAGGTACTC -ACGGAAACAGACGTACAGGATGTC -ACGGAAACAGACGTACAGACAGTC -ACGGAAACAGACGTACAGTTGCTG -ACGGAAACAGACGTACAGTCCATG -ACGGAAACAGACGTACAGTGTGTG -ACGGAAACAGACGTACAGCTAGTG -ACGGAAACAGACGTACAGCATCTG -ACGGAAACAGACGTACAGGAGTTG -ACGGAAACAGACGTACAGAGACTG -ACGGAAACAGACGTACAGTCGGTA -ACGGAAACAGACGTACAGTGCCTA -ACGGAAACAGACGTACAGCCACTA -ACGGAAACAGACGTACAGGGAGTA -ACGGAAACAGACGTACAGTCGTCT -ACGGAAACAGACGTACAGTGCACT -ACGGAAACAGACGTACAGCTGACT -ACGGAAACAGACGTACAGCAACCT -ACGGAAACAGACGTACAGGCTACT -ACGGAAACAGACGTACAGGGATCT -ACGGAAACAGACGTACAGAAGGCT -ACGGAAACAGACGTACAGTCAACC -ACGGAAACAGACGTACAGTGTTCC -ACGGAAACAGACGTACAGATTCCC -ACGGAAACAGACGTACAGTTCTCG -ACGGAAACAGACGTACAGTAGACG -ACGGAAACAGACGTACAGGTAACG -ACGGAAACAGACGTACAGACTTCG -ACGGAAACAGACGTACAGTACGCA -ACGGAAACAGACGTACAGCTTGCA -ACGGAAACAGACGTACAGCGAACA -ACGGAAACAGACGTACAGCAGTCA -ACGGAAACAGACGTACAGGATCCA -ACGGAAACAGACGTACAGACGACA -ACGGAAACAGACGTACAGAGCTCA -ACGGAAACAGACGTACAGTCACGT -ACGGAAACAGACGTACAGCGTAGT -ACGGAAACAGACGTACAGGTCAGT -ACGGAAACAGACGTACAGGAAGGT -ACGGAAACAGACGTACAGAACCGT -ACGGAAACAGACGTACAGTTGTGC -ACGGAAACAGACGTACAGCTAAGC -ACGGAAACAGACGTACAGACTAGC -ACGGAAACAGACGTACAGAGATGC -ACGGAAACAGACGTACAGTGAAGG -ACGGAAACAGACGTACAGCAATGG -ACGGAAACAGACGTACAGATGAGG -ACGGAAACAGACGTACAGAATGGG -ACGGAAACAGACGTACAGTCCTGA -ACGGAAACAGACGTACAGTAGCGA -ACGGAAACAGACGTACAGCACAGA -ACGGAAACAGACGTACAGGCAAGA -ACGGAAACAGACGTACAGGGTTGA -ACGGAAACAGACGTACAGTCCGAT -ACGGAAACAGACGTACAGTGGCAT -ACGGAAACAGACGTACAGCGAGAT -ACGGAAACAGACGTACAGTACCAC -ACGGAAACAGACGTACAGCAGAAC -ACGGAAACAGACGTACAGGTCTAC -ACGGAAACAGACGTACAGACGTAC -ACGGAAACAGACGTACAGAGTGAC -ACGGAAACAGACGTACAGCTGTAG -ACGGAAACAGACGTACAGCCTAAG -ACGGAAACAGACGTACAGGTTCAG -ACGGAAACAGACGTACAGGCATAG -ACGGAAACAGACGTACAGGACAAG -ACGGAAACAGACGTACAGAAGCAG -ACGGAAACAGACGTACAGCGTCAA -ACGGAAACAGACGTACAGGCTGAA -ACGGAAACAGACGTACAGAGTACG -ACGGAAACAGACGTACAGATCCGA -ACGGAAACAGACGTACAGATGGGA -ACGGAAACAGACGTACAGGTGCAA -ACGGAAACAGACGTACAGGAGGAA -ACGGAAACAGACGTACAGCAGGTA -ACGGAAACAGACGTACAGGACTCT -ACGGAAACAGACGTACAGAGTCCT -ACGGAAACAGACGTACAGTAAGCC -ACGGAAACAGACGTACAGATAGCC -ACGGAAACAGACGTACAGTAACCG -ACGGAAACAGACGTACAGATGCCA -ACGGAAACAGACTCTGACGGAAAC -ACGGAAACAGACTCTGACAACACC -ACGGAAACAGACTCTGACATCGAG -ACGGAAACAGACTCTGACCTCCTT -ACGGAAACAGACTCTGACCCTGTT -ACGGAAACAGACTCTGACCGGTTT -ACGGAAACAGACTCTGACGTGGTT -ACGGAAACAGACTCTGACGCCTTT -ACGGAAACAGACTCTGACGGTCTT -ACGGAAACAGACTCTGACACGCTT -ACGGAAACAGACTCTGACAGCGTT -ACGGAAACAGACTCTGACTTCGTC -ACGGAAACAGACTCTGACTCTCTC -ACGGAAACAGACTCTGACTGGATC -ACGGAAACAGACTCTGACCACTTC -ACGGAAACAGACTCTGACGTACTC -ACGGAAACAGACTCTGACGATGTC -ACGGAAACAGACTCTGACACAGTC -ACGGAAACAGACTCTGACTTGCTG -ACGGAAACAGACTCTGACTCCATG -ACGGAAACAGACTCTGACTGTGTG -ACGGAAACAGACTCTGACCTAGTG -ACGGAAACAGACTCTGACCATCTG -ACGGAAACAGACTCTGACGAGTTG -ACGGAAACAGACTCTGACAGACTG -ACGGAAACAGACTCTGACTCGGTA -ACGGAAACAGACTCTGACTGCCTA -ACGGAAACAGACTCTGACCCACTA -ACGGAAACAGACTCTGACGGAGTA -ACGGAAACAGACTCTGACTCGTCT -ACGGAAACAGACTCTGACTGCACT -ACGGAAACAGACTCTGACCTGACT -ACGGAAACAGACTCTGACCAACCT -ACGGAAACAGACTCTGACGCTACT -ACGGAAACAGACTCTGACGGATCT -ACGGAAACAGACTCTGACAAGGCT -ACGGAAACAGACTCTGACTCAACC -ACGGAAACAGACTCTGACTGTTCC -ACGGAAACAGACTCTGACATTCCC -ACGGAAACAGACTCTGACTTCTCG -ACGGAAACAGACTCTGACTAGACG -ACGGAAACAGACTCTGACGTAACG -ACGGAAACAGACTCTGACACTTCG -ACGGAAACAGACTCTGACTACGCA -ACGGAAACAGACTCTGACCTTGCA -ACGGAAACAGACTCTGACCGAACA -ACGGAAACAGACTCTGACCAGTCA -ACGGAAACAGACTCTGACGATCCA -ACGGAAACAGACTCTGACACGACA -ACGGAAACAGACTCTGACAGCTCA -ACGGAAACAGACTCTGACTCACGT -ACGGAAACAGACTCTGACCGTAGT -ACGGAAACAGACTCTGACGTCAGT -ACGGAAACAGACTCTGACGAAGGT -ACGGAAACAGACTCTGACAACCGT -ACGGAAACAGACTCTGACTTGTGC -ACGGAAACAGACTCTGACCTAAGC -ACGGAAACAGACTCTGACACTAGC -ACGGAAACAGACTCTGACAGATGC -ACGGAAACAGACTCTGACTGAAGG -ACGGAAACAGACTCTGACCAATGG -ACGGAAACAGACTCTGACATGAGG -ACGGAAACAGACTCTGACAATGGG -ACGGAAACAGACTCTGACTCCTGA -ACGGAAACAGACTCTGACTAGCGA -ACGGAAACAGACTCTGACCACAGA -ACGGAAACAGACTCTGACGCAAGA -ACGGAAACAGACTCTGACGGTTGA -ACGGAAACAGACTCTGACTCCGAT -ACGGAAACAGACTCTGACTGGCAT -ACGGAAACAGACTCTGACCGAGAT -ACGGAAACAGACTCTGACTACCAC -ACGGAAACAGACTCTGACCAGAAC -ACGGAAACAGACTCTGACGTCTAC -ACGGAAACAGACTCTGACACGTAC -ACGGAAACAGACTCTGACAGTGAC -ACGGAAACAGACTCTGACCTGTAG -ACGGAAACAGACTCTGACCCTAAG -ACGGAAACAGACTCTGACGTTCAG -ACGGAAACAGACTCTGACGCATAG -ACGGAAACAGACTCTGACGACAAG -ACGGAAACAGACTCTGACAAGCAG -ACGGAAACAGACTCTGACCGTCAA -ACGGAAACAGACTCTGACGCTGAA -ACGGAAACAGACTCTGACAGTACG -ACGGAAACAGACTCTGACATCCGA -ACGGAAACAGACTCTGACATGGGA -ACGGAAACAGACTCTGACGTGCAA -ACGGAAACAGACTCTGACGAGGAA -ACGGAAACAGACTCTGACCAGGTA -ACGGAAACAGACTCTGACGACTCT -ACGGAAACAGACTCTGACAGTCCT -ACGGAAACAGACTCTGACTAAGCC -ACGGAAACAGACTCTGACATAGCC -ACGGAAACAGACTCTGACTAACCG -ACGGAAACAGACTCTGACATGCCA -ACGGAAACAGACCCTAGTGGAAAC -ACGGAAACAGACCCTAGTAACACC -ACGGAAACAGACCCTAGTATCGAG -ACGGAAACAGACCCTAGTCTCCTT -ACGGAAACAGACCCTAGTCCTGTT -ACGGAAACAGACCCTAGTCGGTTT -ACGGAAACAGACCCTAGTGTGGTT -ACGGAAACAGACCCTAGTGCCTTT -ACGGAAACAGACCCTAGTGGTCTT -ACGGAAACAGACCCTAGTACGCTT -ACGGAAACAGACCCTAGTAGCGTT -ACGGAAACAGACCCTAGTTTCGTC -ACGGAAACAGACCCTAGTTCTCTC -ACGGAAACAGACCCTAGTTGGATC -ACGGAAACAGACCCTAGTCACTTC -ACGGAAACAGACCCTAGTGTACTC -ACGGAAACAGACCCTAGTGATGTC -ACGGAAACAGACCCTAGTACAGTC -ACGGAAACAGACCCTAGTTTGCTG -ACGGAAACAGACCCTAGTTCCATG -ACGGAAACAGACCCTAGTTGTGTG -ACGGAAACAGACCCTAGTCTAGTG -ACGGAAACAGACCCTAGTCATCTG -ACGGAAACAGACCCTAGTGAGTTG -ACGGAAACAGACCCTAGTAGACTG -ACGGAAACAGACCCTAGTTCGGTA -ACGGAAACAGACCCTAGTTGCCTA -ACGGAAACAGACCCTAGTCCACTA -ACGGAAACAGACCCTAGTGGAGTA -ACGGAAACAGACCCTAGTTCGTCT -ACGGAAACAGACCCTAGTTGCACT -ACGGAAACAGACCCTAGTCTGACT -ACGGAAACAGACCCTAGTCAACCT -ACGGAAACAGACCCTAGTGCTACT -ACGGAAACAGACCCTAGTGGATCT -ACGGAAACAGACCCTAGTAAGGCT -ACGGAAACAGACCCTAGTTCAACC -ACGGAAACAGACCCTAGTTGTTCC -ACGGAAACAGACCCTAGTATTCCC -ACGGAAACAGACCCTAGTTTCTCG -ACGGAAACAGACCCTAGTTAGACG -ACGGAAACAGACCCTAGTGTAACG -ACGGAAACAGACCCTAGTACTTCG -ACGGAAACAGACCCTAGTTACGCA -ACGGAAACAGACCCTAGTCTTGCA -ACGGAAACAGACCCTAGTCGAACA -ACGGAAACAGACCCTAGTCAGTCA -ACGGAAACAGACCCTAGTGATCCA -ACGGAAACAGACCCTAGTACGACA -ACGGAAACAGACCCTAGTAGCTCA -ACGGAAACAGACCCTAGTTCACGT -ACGGAAACAGACCCTAGTCGTAGT -ACGGAAACAGACCCTAGTGTCAGT -ACGGAAACAGACCCTAGTGAAGGT -ACGGAAACAGACCCTAGTAACCGT -ACGGAAACAGACCCTAGTTTGTGC -ACGGAAACAGACCCTAGTCTAAGC -ACGGAAACAGACCCTAGTACTAGC -ACGGAAACAGACCCTAGTAGATGC -ACGGAAACAGACCCTAGTTGAAGG -ACGGAAACAGACCCTAGTCAATGG -ACGGAAACAGACCCTAGTATGAGG -ACGGAAACAGACCCTAGTAATGGG -ACGGAAACAGACCCTAGTTCCTGA -ACGGAAACAGACCCTAGTTAGCGA -ACGGAAACAGACCCTAGTCACAGA -ACGGAAACAGACCCTAGTGCAAGA -ACGGAAACAGACCCTAGTGGTTGA -ACGGAAACAGACCCTAGTTCCGAT -ACGGAAACAGACCCTAGTTGGCAT -ACGGAAACAGACCCTAGTCGAGAT -ACGGAAACAGACCCTAGTTACCAC -ACGGAAACAGACCCTAGTCAGAAC -ACGGAAACAGACCCTAGTGTCTAC -ACGGAAACAGACCCTAGTACGTAC -ACGGAAACAGACCCTAGTAGTGAC -ACGGAAACAGACCCTAGTCTGTAG -ACGGAAACAGACCCTAGTCCTAAG -ACGGAAACAGACCCTAGTGTTCAG -ACGGAAACAGACCCTAGTGCATAG -ACGGAAACAGACCCTAGTGACAAG -ACGGAAACAGACCCTAGTAAGCAG -ACGGAAACAGACCCTAGTCGTCAA -ACGGAAACAGACCCTAGTGCTGAA -ACGGAAACAGACCCTAGTAGTACG -ACGGAAACAGACCCTAGTATCCGA -ACGGAAACAGACCCTAGTATGGGA -ACGGAAACAGACCCTAGTGTGCAA -ACGGAAACAGACCCTAGTGAGGAA -ACGGAAACAGACCCTAGTCAGGTA -ACGGAAACAGACCCTAGTGACTCT -ACGGAAACAGACCCTAGTAGTCCT -ACGGAAACAGACCCTAGTTAAGCC -ACGGAAACAGACCCTAGTATAGCC -ACGGAAACAGACCCTAGTTAACCG -ACGGAAACAGACCCTAGTATGCCA -ACGGAAACAGACGCCTAAGGAAAC -ACGGAAACAGACGCCTAAAACACC -ACGGAAACAGACGCCTAAATCGAG -ACGGAAACAGACGCCTAACTCCTT -ACGGAAACAGACGCCTAACCTGTT -ACGGAAACAGACGCCTAACGGTTT -ACGGAAACAGACGCCTAAGTGGTT -ACGGAAACAGACGCCTAAGCCTTT -ACGGAAACAGACGCCTAAGGTCTT -ACGGAAACAGACGCCTAAACGCTT -ACGGAAACAGACGCCTAAAGCGTT -ACGGAAACAGACGCCTAATTCGTC -ACGGAAACAGACGCCTAATCTCTC -ACGGAAACAGACGCCTAATGGATC -ACGGAAACAGACGCCTAACACTTC -ACGGAAACAGACGCCTAAGTACTC -ACGGAAACAGACGCCTAAGATGTC -ACGGAAACAGACGCCTAAACAGTC -ACGGAAACAGACGCCTAATTGCTG -ACGGAAACAGACGCCTAATCCATG -ACGGAAACAGACGCCTAATGTGTG -ACGGAAACAGACGCCTAACTAGTG -ACGGAAACAGACGCCTAACATCTG -ACGGAAACAGACGCCTAAGAGTTG -ACGGAAACAGACGCCTAAAGACTG -ACGGAAACAGACGCCTAATCGGTA -ACGGAAACAGACGCCTAATGCCTA -ACGGAAACAGACGCCTAACCACTA -ACGGAAACAGACGCCTAAGGAGTA -ACGGAAACAGACGCCTAATCGTCT -ACGGAAACAGACGCCTAATGCACT -ACGGAAACAGACGCCTAACTGACT -ACGGAAACAGACGCCTAACAACCT -ACGGAAACAGACGCCTAAGCTACT -ACGGAAACAGACGCCTAAGGATCT -ACGGAAACAGACGCCTAAAAGGCT -ACGGAAACAGACGCCTAATCAACC -ACGGAAACAGACGCCTAATGTTCC -ACGGAAACAGACGCCTAAATTCCC -ACGGAAACAGACGCCTAATTCTCG -ACGGAAACAGACGCCTAATAGACG -ACGGAAACAGACGCCTAAGTAACG -ACGGAAACAGACGCCTAAACTTCG -ACGGAAACAGACGCCTAATACGCA -ACGGAAACAGACGCCTAACTTGCA -ACGGAAACAGACGCCTAACGAACA -ACGGAAACAGACGCCTAACAGTCA -ACGGAAACAGACGCCTAAGATCCA -ACGGAAACAGACGCCTAAACGACA -ACGGAAACAGACGCCTAAAGCTCA -ACGGAAACAGACGCCTAATCACGT -ACGGAAACAGACGCCTAACGTAGT -ACGGAAACAGACGCCTAAGTCAGT -ACGGAAACAGACGCCTAAGAAGGT -ACGGAAACAGACGCCTAAAACCGT -ACGGAAACAGACGCCTAATTGTGC -ACGGAAACAGACGCCTAACTAAGC -ACGGAAACAGACGCCTAAACTAGC -ACGGAAACAGACGCCTAAAGATGC -ACGGAAACAGACGCCTAATGAAGG -ACGGAAACAGACGCCTAACAATGG -ACGGAAACAGACGCCTAAATGAGG -ACGGAAACAGACGCCTAAAATGGG -ACGGAAACAGACGCCTAATCCTGA -ACGGAAACAGACGCCTAATAGCGA -ACGGAAACAGACGCCTAACACAGA -ACGGAAACAGACGCCTAAGCAAGA -ACGGAAACAGACGCCTAAGGTTGA -ACGGAAACAGACGCCTAATCCGAT -ACGGAAACAGACGCCTAATGGCAT -ACGGAAACAGACGCCTAACGAGAT -ACGGAAACAGACGCCTAATACCAC -ACGGAAACAGACGCCTAACAGAAC -ACGGAAACAGACGCCTAAGTCTAC -ACGGAAACAGACGCCTAAACGTAC -ACGGAAACAGACGCCTAAAGTGAC -ACGGAAACAGACGCCTAACTGTAG -ACGGAAACAGACGCCTAACCTAAG -ACGGAAACAGACGCCTAAGTTCAG -ACGGAAACAGACGCCTAAGCATAG -ACGGAAACAGACGCCTAAGACAAG -ACGGAAACAGACGCCTAAAAGCAG -ACGGAAACAGACGCCTAACGTCAA -ACGGAAACAGACGCCTAAGCTGAA -ACGGAAACAGACGCCTAAAGTACG -ACGGAAACAGACGCCTAAATCCGA -ACGGAAACAGACGCCTAAATGGGA -ACGGAAACAGACGCCTAAGTGCAA -ACGGAAACAGACGCCTAAGAGGAA -ACGGAAACAGACGCCTAACAGGTA -ACGGAAACAGACGCCTAAGACTCT -ACGGAAACAGACGCCTAAAGTCCT -ACGGAAACAGACGCCTAATAAGCC -ACGGAAACAGACGCCTAAATAGCC -ACGGAAACAGACGCCTAATAACCG -ACGGAAACAGACGCCTAAATGCCA -ACGGAAACAGACGCCATAGGAAAC -ACGGAAACAGACGCCATAAACACC -ACGGAAACAGACGCCATAATCGAG -ACGGAAACAGACGCCATACTCCTT -ACGGAAACAGACGCCATACCTGTT -ACGGAAACAGACGCCATACGGTTT -ACGGAAACAGACGCCATAGTGGTT -ACGGAAACAGACGCCATAGCCTTT -ACGGAAACAGACGCCATAGGTCTT -ACGGAAACAGACGCCATAACGCTT -ACGGAAACAGACGCCATAAGCGTT -ACGGAAACAGACGCCATATTCGTC -ACGGAAACAGACGCCATATCTCTC -ACGGAAACAGACGCCATATGGATC -ACGGAAACAGACGCCATACACTTC -ACGGAAACAGACGCCATAGTACTC -ACGGAAACAGACGCCATAGATGTC -ACGGAAACAGACGCCATAACAGTC -ACGGAAACAGACGCCATATTGCTG -ACGGAAACAGACGCCATATCCATG -ACGGAAACAGACGCCATATGTGTG -ACGGAAACAGACGCCATACTAGTG -ACGGAAACAGACGCCATACATCTG -ACGGAAACAGACGCCATAGAGTTG -ACGGAAACAGACGCCATAAGACTG -ACGGAAACAGACGCCATATCGGTA -ACGGAAACAGACGCCATATGCCTA -ACGGAAACAGACGCCATACCACTA -ACGGAAACAGACGCCATAGGAGTA -ACGGAAACAGACGCCATATCGTCT -ACGGAAACAGACGCCATATGCACT -ACGGAAACAGACGCCATACTGACT -ACGGAAACAGACGCCATACAACCT -ACGGAAACAGACGCCATAGCTACT -ACGGAAACAGACGCCATAGGATCT -ACGGAAACAGACGCCATAAAGGCT -ACGGAAACAGACGCCATATCAACC -ACGGAAACAGACGCCATATGTTCC -ACGGAAACAGACGCCATAATTCCC -ACGGAAACAGACGCCATATTCTCG -ACGGAAACAGACGCCATATAGACG -ACGGAAACAGACGCCATAGTAACG -ACGGAAACAGACGCCATAACTTCG -ACGGAAACAGACGCCATATACGCA -ACGGAAACAGACGCCATACTTGCA -ACGGAAACAGACGCCATACGAACA -ACGGAAACAGACGCCATACAGTCA -ACGGAAACAGACGCCATAGATCCA -ACGGAAACAGACGCCATAACGACA -ACGGAAACAGACGCCATAAGCTCA -ACGGAAACAGACGCCATATCACGT -ACGGAAACAGACGCCATACGTAGT -ACGGAAACAGACGCCATAGTCAGT -ACGGAAACAGACGCCATAGAAGGT -ACGGAAACAGACGCCATAAACCGT -ACGGAAACAGACGCCATATTGTGC -ACGGAAACAGACGCCATACTAAGC -ACGGAAACAGACGCCATAACTAGC -ACGGAAACAGACGCCATAAGATGC -ACGGAAACAGACGCCATATGAAGG -ACGGAAACAGACGCCATACAATGG -ACGGAAACAGACGCCATAATGAGG -ACGGAAACAGACGCCATAAATGGG -ACGGAAACAGACGCCATATCCTGA -ACGGAAACAGACGCCATATAGCGA -ACGGAAACAGACGCCATACACAGA -ACGGAAACAGACGCCATAGCAAGA -ACGGAAACAGACGCCATAGGTTGA -ACGGAAACAGACGCCATATCCGAT -ACGGAAACAGACGCCATATGGCAT -ACGGAAACAGACGCCATACGAGAT -ACGGAAACAGACGCCATATACCAC -ACGGAAACAGACGCCATACAGAAC -ACGGAAACAGACGCCATAGTCTAC -ACGGAAACAGACGCCATAACGTAC -ACGGAAACAGACGCCATAAGTGAC -ACGGAAACAGACGCCATACTGTAG -ACGGAAACAGACGCCATACCTAAG -ACGGAAACAGACGCCATAGTTCAG -ACGGAAACAGACGCCATAGCATAG -ACGGAAACAGACGCCATAGACAAG -ACGGAAACAGACGCCATAAAGCAG -ACGGAAACAGACGCCATACGTCAA -ACGGAAACAGACGCCATAGCTGAA -ACGGAAACAGACGCCATAAGTACG -ACGGAAACAGACGCCATAATCCGA -ACGGAAACAGACGCCATAATGGGA -ACGGAAACAGACGCCATAGTGCAA -ACGGAAACAGACGCCATAGAGGAA -ACGGAAACAGACGCCATACAGGTA -ACGGAAACAGACGCCATAGACTCT -ACGGAAACAGACGCCATAAGTCCT -ACGGAAACAGACGCCATATAAGCC -ACGGAAACAGACGCCATAATAGCC -ACGGAAACAGACGCCATATAACCG -ACGGAAACAGACGCCATAATGCCA -ACGGAAACAGACCCGTAAGGAAAC -ACGGAAACAGACCCGTAAAACACC -ACGGAAACAGACCCGTAAATCGAG -ACGGAAACAGACCCGTAACTCCTT -ACGGAAACAGACCCGTAACCTGTT -ACGGAAACAGACCCGTAACGGTTT -ACGGAAACAGACCCGTAAGTGGTT -ACGGAAACAGACCCGTAAGCCTTT -ACGGAAACAGACCCGTAAGGTCTT -ACGGAAACAGACCCGTAAACGCTT -ACGGAAACAGACCCGTAAAGCGTT -ACGGAAACAGACCCGTAATTCGTC -ACGGAAACAGACCCGTAATCTCTC -ACGGAAACAGACCCGTAATGGATC -ACGGAAACAGACCCGTAACACTTC -ACGGAAACAGACCCGTAAGTACTC -ACGGAAACAGACCCGTAAGATGTC -ACGGAAACAGACCCGTAAACAGTC -ACGGAAACAGACCCGTAATTGCTG -ACGGAAACAGACCCGTAATCCATG -ACGGAAACAGACCCGTAATGTGTG -ACGGAAACAGACCCGTAACTAGTG -ACGGAAACAGACCCGTAACATCTG -ACGGAAACAGACCCGTAAGAGTTG -ACGGAAACAGACCCGTAAAGACTG -ACGGAAACAGACCCGTAATCGGTA -ACGGAAACAGACCCGTAATGCCTA -ACGGAAACAGACCCGTAACCACTA -ACGGAAACAGACCCGTAAGGAGTA -ACGGAAACAGACCCGTAATCGTCT -ACGGAAACAGACCCGTAATGCACT -ACGGAAACAGACCCGTAACTGACT -ACGGAAACAGACCCGTAACAACCT -ACGGAAACAGACCCGTAAGCTACT -ACGGAAACAGACCCGTAAGGATCT -ACGGAAACAGACCCGTAAAAGGCT -ACGGAAACAGACCCGTAATCAACC -ACGGAAACAGACCCGTAATGTTCC -ACGGAAACAGACCCGTAAATTCCC -ACGGAAACAGACCCGTAATTCTCG -ACGGAAACAGACCCGTAATAGACG -ACGGAAACAGACCCGTAAGTAACG -ACGGAAACAGACCCGTAAACTTCG -ACGGAAACAGACCCGTAATACGCA -ACGGAAACAGACCCGTAACTTGCA -ACGGAAACAGACCCGTAACGAACA -ACGGAAACAGACCCGTAACAGTCA -ACGGAAACAGACCCGTAAGATCCA -ACGGAAACAGACCCGTAAACGACA -ACGGAAACAGACCCGTAAAGCTCA -ACGGAAACAGACCCGTAATCACGT -ACGGAAACAGACCCGTAACGTAGT -ACGGAAACAGACCCGTAAGTCAGT -ACGGAAACAGACCCGTAAGAAGGT -ACGGAAACAGACCCGTAAAACCGT -ACGGAAACAGACCCGTAATTGTGC -ACGGAAACAGACCCGTAACTAAGC -ACGGAAACAGACCCGTAAACTAGC -ACGGAAACAGACCCGTAAAGATGC -ACGGAAACAGACCCGTAATGAAGG -ACGGAAACAGACCCGTAACAATGG -ACGGAAACAGACCCGTAAATGAGG -ACGGAAACAGACCCGTAAAATGGG -ACGGAAACAGACCCGTAATCCTGA -ACGGAAACAGACCCGTAATAGCGA -ACGGAAACAGACCCGTAACACAGA -ACGGAAACAGACCCGTAAGCAAGA -ACGGAAACAGACCCGTAAGGTTGA -ACGGAAACAGACCCGTAATCCGAT -ACGGAAACAGACCCGTAATGGCAT -ACGGAAACAGACCCGTAACGAGAT -ACGGAAACAGACCCGTAATACCAC -ACGGAAACAGACCCGTAACAGAAC -ACGGAAACAGACCCGTAAGTCTAC -ACGGAAACAGACCCGTAAACGTAC -ACGGAAACAGACCCGTAAAGTGAC -ACGGAAACAGACCCGTAACTGTAG -ACGGAAACAGACCCGTAACCTAAG -ACGGAAACAGACCCGTAAGTTCAG -ACGGAAACAGACCCGTAAGCATAG -ACGGAAACAGACCCGTAAGACAAG -ACGGAAACAGACCCGTAAAAGCAG -ACGGAAACAGACCCGTAACGTCAA -ACGGAAACAGACCCGTAAGCTGAA -ACGGAAACAGACCCGTAAAGTACG -ACGGAAACAGACCCGTAAATCCGA -ACGGAAACAGACCCGTAAATGGGA -ACGGAAACAGACCCGTAAGTGCAA -ACGGAAACAGACCCGTAAGAGGAA -ACGGAAACAGACCCGTAACAGGTA -ACGGAAACAGACCCGTAAGACTCT -ACGGAAACAGACCCGTAAAGTCCT -ACGGAAACAGACCCGTAATAAGCC -ACGGAAACAGACCCGTAAATAGCC -ACGGAAACAGACCCGTAATAACCG -ACGGAAACAGACCCGTAAATGCCA -ACGGAAACAGACCCAATGGGAAAC -ACGGAAACAGACCCAATGAACACC -ACGGAAACAGACCCAATGATCGAG -ACGGAAACAGACCCAATGCTCCTT -ACGGAAACAGACCCAATGCCTGTT -ACGGAAACAGACCCAATGCGGTTT -ACGGAAACAGACCCAATGGTGGTT -ACGGAAACAGACCCAATGGCCTTT -ACGGAAACAGACCCAATGGGTCTT -ACGGAAACAGACCCAATGACGCTT -ACGGAAACAGACCCAATGAGCGTT -ACGGAAACAGACCCAATGTTCGTC -ACGGAAACAGACCCAATGTCTCTC -ACGGAAACAGACCCAATGTGGATC -ACGGAAACAGACCCAATGCACTTC -ACGGAAACAGACCCAATGGTACTC -ACGGAAACAGACCCAATGGATGTC -ACGGAAACAGACCCAATGACAGTC -ACGGAAACAGACCCAATGTTGCTG -ACGGAAACAGACCCAATGTCCATG -ACGGAAACAGACCCAATGTGTGTG -ACGGAAACAGACCCAATGCTAGTG -ACGGAAACAGACCCAATGCATCTG -ACGGAAACAGACCCAATGGAGTTG -ACGGAAACAGACCCAATGAGACTG -ACGGAAACAGACCCAATGTCGGTA -ACGGAAACAGACCCAATGTGCCTA -ACGGAAACAGACCCAATGCCACTA -ACGGAAACAGACCCAATGGGAGTA -ACGGAAACAGACCCAATGTCGTCT -ACGGAAACAGACCCAATGTGCACT -ACGGAAACAGACCCAATGCTGACT -ACGGAAACAGACCCAATGCAACCT -ACGGAAACAGACCCAATGGCTACT -ACGGAAACAGACCCAATGGGATCT -ACGGAAACAGACCCAATGAAGGCT -ACGGAAACAGACCCAATGTCAACC -ACGGAAACAGACCCAATGTGTTCC -ACGGAAACAGACCCAATGATTCCC -ACGGAAACAGACCCAATGTTCTCG -ACGGAAACAGACCCAATGTAGACG -ACGGAAACAGACCCAATGGTAACG -ACGGAAACAGACCCAATGACTTCG -ACGGAAACAGACCCAATGTACGCA -ACGGAAACAGACCCAATGCTTGCA -ACGGAAACAGACCCAATGCGAACA -ACGGAAACAGACCCAATGCAGTCA -ACGGAAACAGACCCAATGGATCCA -ACGGAAACAGACCCAATGACGACA -ACGGAAACAGACCCAATGAGCTCA -ACGGAAACAGACCCAATGTCACGT -ACGGAAACAGACCCAATGCGTAGT -ACGGAAACAGACCCAATGGTCAGT -ACGGAAACAGACCCAATGGAAGGT -ACGGAAACAGACCCAATGAACCGT -ACGGAAACAGACCCAATGTTGTGC -ACGGAAACAGACCCAATGCTAAGC -ACGGAAACAGACCCAATGACTAGC -ACGGAAACAGACCCAATGAGATGC -ACGGAAACAGACCCAATGTGAAGG -ACGGAAACAGACCCAATGCAATGG -ACGGAAACAGACCCAATGATGAGG -ACGGAAACAGACCCAATGAATGGG -ACGGAAACAGACCCAATGTCCTGA -ACGGAAACAGACCCAATGTAGCGA -ACGGAAACAGACCCAATGCACAGA -ACGGAAACAGACCCAATGGCAAGA -ACGGAAACAGACCCAATGGGTTGA -ACGGAAACAGACCCAATGTCCGAT -ACGGAAACAGACCCAATGTGGCAT -ACGGAAACAGACCCAATGCGAGAT -ACGGAAACAGACCCAATGTACCAC -ACGGAAACAGACCCAATGCAGAAC -ACGGAAACAGACCCAATGGTCTAC -ACGGAAACAGACCCAATGACGTAC -ACGGAAACAGACCCAATGAGTGAC -ACGGAAACAGACCCAATGCTGTAG -ACGGAAACAGACCCAATGCCTAAG -ACGGAAACAGACCCAATGGTTCAG -ACGGAAACAGACCCAATGGCATAG -ACGGAAACAGACCCAATGGACAAG -ACGGAAACAGACCCAATGAAGCAG -ACGGAAACAGACCCAATGCGTCAA -ACGGAAACAGACCCAATGGCTGAA -ACGGAAACAGACCCAATGAGTACG -ACGGAAACAGACCCAATGATCCGA -ACGGAAACAGACCCAATGATGGGA -ACGGAAACAGACCCAATGGTGCAA -ACGGAAACAGACCCAATGGAGGAA -ACGGAAACAGACCCAATGCAGGTA -ACGGAAACAGACCCAATGGACTCT -ACGGAAACAGACCCAATGAGTCCT -ACGGAAACAGACCCAATGTAAGCC -ACGGAAACAGACCCAATGATAGCC -ACGGAAACAGACCCAATGTAACCG -ACGGAAACAGACCCAATGATGCCA -ACGGAACAAGAGAACGGAGGAAAC -ACGGAACAAGAGAACGGAAACACC -ACGGAACAAGAGAACGGAATCGAG -ACGGAACAAGAGAACGGACTCCTT -ACGGAACAAGAGAACGGACCTGTT -ACGGAACAAGAGAACGGACGGTTT -ACGGAACAAGAGAACGGAGTGGTT -ACGGAACAAGAGAACGGAGCCTTT -ACGGAACAAGAGAACGGAGGTCTT -ACGGAACAAGAGAACGGAACGCTT -ACGGAACAAGAGAACGGAAGCGTT -ACGGAACAAGAGAACGGATTCGTC -ACGGAACAAGAGAACGGATCTCTC -ACGGAACAAGAGAACGGATGGATC -ACGGAACAAGAGAACGGACACTTC -ACGGAACAAGAGAACGGAGTACTC -ACGGAACAAGAGAACGGAGATGTC -ACGGAACAAGAGAACGGAACAGTC -ACGGAACAAGAGAACGGATTGCTG -ACGGAACAAGAGAACGGATCCATG -ACGGAACAAGAGAACGGATGTGTG -ACGGAACAAGAGAACGGACTAGTG -ACGGAACAAGAGAACGGACATCTG -ACGGAACAAGAGAACGGAGAGTTG -ACGGAACAAGAGAACGGAAGACTG -ACGGAACAAGAGAACGGATCGGTA -ACGGAACAAGAGAACGGATGCCTA -ACGGAACAAGAGAACGGACCACTA -ACGGAACAAGAGAACGGAGGAGTA -ACGGAACAAGAGAACGGATCGTCT -ACGGAACAAGAGAACGGATGCACT -ACGGAACAAGAGAACGGACTGACT -ACGGAACAAGAGAACGGACAACCT -ACGGAACAAGAGAACGGAGCTACT -ACGGAACAAGAGAACGGAGGATCT -ACGGAACAAGAGAACGGAAAGGCT -ACGGAACAAGAGAACGGATCAACC -ACGGAACAAGAGAACGGATGTTCC -ACGGAACAAGAGAACGGAATTCCC -ACGGAACAAGAGAACGGATTCTCG -ACGGAACAAGAGAACGGATAGACG -ACGGAACAAGAGAACGGAGTAACG -ACGGAACAAGAGAACGGAACTTCG -ACGGAACAAGAGAACGGATACGCA -ACGGAACAAGAGAACGGACTTGCA -ACGGAACAAGAGAACGGACGAACA -ACGGAACAAGAGAACGGACAGTCA -ACGGAACAAGAGAACGGAGATCCA -ACGGAACAAGAGAACGGAACGACA -ACGGAACAAGAGAACGGAAGCTCA -ACGGAACAAGAGAACGGATCACGT -ACGGAACAAGAGAACGGACGTAGT -ACGGAACAAGAGAACGGAGTCAGT -ACGGAACAAGAGAACGGAGAAGGT -ACGGAACAAGAGAACGGAAACCGT -ACGGAACAAGAGAACGGATTGTGC -ACGGAACAAGAGAACGGACTAAGC -ACGGAACAAGAGAACGGAACTAGC -ACGGAACAAGAGAACGGAAGATGC -ACGGAACAAGAGAACGGATGAAGG -ACGGAACAAGAGAACGGACAATGG -ACGGAACAAGAGAACGGAATGAGG -ACGGAACAAGAGAACGGAAATGGG -ACGGAACAAGAGAACGGATCCTGA -ACGGAACAAGAGAACGGATAGCGA -ACGGAACAAGAGAACGGACACAGA -ACGGAACAAGAGAACGGAGCAAGA -ACGGAACAAGAGAACGGAGGTTGA -ACGGAACAAGAGAACGGATCCGAT -ACGGAACAAGAGAACGGATGGCAT -ACGGAACAAGAGAACGGACGAGAT -ACGGAACAAGAGAACGGATACCAC -ACGGAACAAGAGAACGGACAGAAC -ACGGAACAAGAGAACGGAGTCTAC -ACGGAACAAGAGAACGGAACGTAC -ACGGAACAAGAGAACGGAAGTGAC -ACGGAACAAGAGAACGGACTGTAG -ACGGAACAAGAGAACGGACCTAAG -ACGGAACAAGAGAACGGAGTTCAG -ACGGAACAAGAGAACGGAGCATAG -ACGGAACAAGAGAACGGAGACAAG -ACGGAACAAGAGAACGGAAAGCAG -ACGGAACAAGAGAACGGACGTCAA -ACGGAACAAGAGAACGGAGCTGAA -ACGGAACAAGAGAACGGAAGTACG -ACGGAACAAGAGAACGGAATCCGA -ACGGAACAAGAGAACGGAATGGGA -ACGGAACAAGAGAACGGAGTGCAA -ACGGAACAAGAGAACGGAGAGGAA -ACGGAACAAGAGAACGGACAGGTA -ACGGAACAAGAGAACGGAGACTCT -ACGGAACAAGAGAACGGAAGTCCT -ACGGAACAAGAGAACGGATAAGCC -ACGGAACAAGAGAACGGAATAGCC -ACGGAACAAGAGAACGGATAACCG -ACGGAACAAGAGAACGGAATGCCA -ACGGAACAAGAGACCAACGGAAAC -ACGGAACAAGAGACCAACAACACC -ACGGAACAAGAGACCAACATCGAG -ACGGAACAAGAGACCAACCTCCTT -ACGGAACAAGAGACCAACCCTGTT -ACGGAACAAGAGACCAACCGGTTT -ACGGAACAAGAGACCAACGTGGTT -ACGGAACAAGAGACCAACGCCTTT -ACGGAACAAGAGACCAACGGTCTT -ACGGAACAAGAGACCAACACGCTT -ACGGAACAAGAGACCAACAGCGTT -ACGGAACAAGAGACCAACTTCGTC -ACGGAACAAGAGACCAACTCTCTC -ACGGAACAAGAGACCAACTGGATC -ACGGAACAAGAGACCAACCACTTC -ACGGAACAAGAGACCAACGTACTC -ACGGAACAAGAGACCAACGATGTC -ACGGAACAAGAGACCAACACAGTC -ACGGAACAAGAGACCAACTTGCTG -ACGGAACAAGAGACCAACTCCATG -ACGGAACAAGAGACCAACTGTGTG -ACGGAACAAGAGACCAACCTAGTG -ACGGAACAAGAGACCAACCATCTG -ACGGAACAAGAGACCAACGAGTTG -ACGGAACAAGAGACCAACAGACTG -ACGGAACAAGAGACCAACTCGGTA -ACGGAACAAGAGACCAACTGCCTA -ACGGAACAAGAGACCAACCCACTA -ACGGAACAAGAGACCAACGGAGTA -ACGGAACAAGAGACCAACTCGTCT -ACGGAACAAGAGACCAACTGCACT -ACGGAACAAGAGACCAACCTGACT -ACGGAACAAGAGACCAACCAACCT -ACGGAACAAGAGACCAACGCTACT -ACGGAACAAGAGACCAACGGATCT -ACGGAACAAGAGACCAACAAGGCT -ACGGAACAAGAGACCAACTCAACC -ACGGAACAAGAGACCAACTGTTCC -ACGGAACAAGAGACCAACATTCCC -ACGGAACAAGAGACCAACTTCTCG -ACGGAACAAGAGACCAACTAGACG -ACGGAACAAGAGACCAACGTAACG -ACGGAACAAGAGACCAACACTTCG -ACGGAACAAGAGACCAACTACGCA -ACGGAACAAGAGACCAACCTTGCA -ACGGAACAAGAGACCAACCGAACA -ACGGAACAAGAGACCAACCAGTCA -ACGGAACAAGAGACCAACGATCCA -ACGGAACAAGAGACCAACACGACA -ACGGAACAAGAGACCAACAGCTCA -ACGGAACAAGAGACCAACTCACGT -ACGGAACAAGAGACCAACCGTAGT -ACGGAACAAGAGACCAACGTCAGT -ACGGAACAAGAGACCAACGAAGGT -ACGGAACAAGAGACCAACAACCGT -ACGGAACAAGAGACCAACTTGTGC -ACGGAACAAGAGACCAACCTAAGC -ACGGAACAAGAGACCAACACTAGC -ACGGAACAAGAGACCAACAGATGC -ACGGAACAAGAGACCAACTGAAGG -ACGGAACAAGAGACCAACCAATGG -ACGGAACAAGAGACCAACATGAGG -ACGGAACAAGAGACCAACAATGGG -ACGGAACAAGAGACCAACTCCTGA -ACGGAACAAGAGACCAACTAGCGA -ACGGAACAAGAGACCAACCACAGA -ACGGAACAAGAGACCAACGCAAGA -ACGGAACAAGAGACCAACGGTTGA -ACGGAACAAGAGACCAACTCCGAT -ACGGAACAAGAGACCAACTGGCAT -ACGGAACAAGAGACCAACCGAGAT -ACGGAACAAGAGACCAACTACCAC -ACGGAACAAGAGACCAACCAGAAC -ACGGAACAAGAGACCAACGTCTAC -ACGGAACAAGAGACCAACACGTAC -ACGGAACAAGAGACCAACAGTGAC -ACGGAACAAGAGACCAACCTGTAG -ACGGAACAAGAGACCAACCCTAAG -ACGGAACAAGAGACCAACGTTCAG -ACGGAACAAGAGACCAACGCATAG -ACGGAACAAGAGACCAACGACAAG -ACGGAACAAGAGACCAACAAGCAG -ACGGAACAAGAGACCAACCGTCAA -ACGGAACAAGAGACCAACGCTGAA -ACGGAACAAGAGACCAACAGTACG -ACGGAACAAGAGACCAACATCCGA -ACGGAACAAGAGACCAACATGGGA -ACGGAACAAGAGACCAACGTGCAA -ACGGAACAAGAGACCAACGAGGAA -ACGGAACAAGAGACCAACCAGGTA -ACGGAACAAGAGACCAACGACTCT -ACGGAACAAGAGACCAACAGTCCT -ACGGAACAAGAGACCAACTAAGCC -ACGGAACAAGAGACCAACATAGCC -ACGGAACAAGAGACCAACTAACCG -ACGGAACAAGAGACCAACATGCCA -ACGGAACAAGAGGAGATCGGAAAC -ACGGAACAAGAGGAGATCAACACC -ACGGAACAAGAGGAGATCATCGAG -ACGGAACAAGAGGAGATCCTCCTT -ACGGAACAAGAGGAGATCCCTGTT -ACGGAACAAGAGGAGATCCGGTTT -ACGGAACAAGAGGAGATCGTGGTT -ACGGAACAAGAGGAGATCGCCTTT -ACGGAACAAGAGGAGATCGGTCTT -ACGGAACAAGAGGAGATCACGCTT -ACGGAACAAGAGGAGATCAGCGTT -ACGGAACAAGAGGAGATCTTCGTC -ACGGAACAAGAGGAGATCTCTCTC -ACGGAACAAGAGGAGATCTGGATC -ACGGAACAAGAGGAGATCCACTTC -ACGGAACAAGAGGAGATCGTACTC -ACGGAACAAGAGGAGATCGATGTC -ACGGAACAAGAGGAGATCACAGTC -ACGGAACAAGAGGAGATCTTGCTG -ACGGAACAAGAGGAGATCTCCATG -ACGGAACAAGAGGAGATCTGTGTG -ACGGAACAAGAGGAGATCCTAGTG -ACGGAACAAGAGGAGATCCATCTG -ACGGAACAAGAGGAGATCGAGTTG -ACGGAACAAGAGGAGATCAGACTG -ACGGAACAAGAGGAGATCTCGGTA -ACGGAACAAGAGGAGATCTGCCTA -ACGGAACAAGAGGAGATCCCACTA -ACGGAACAAGAGGAGATCGGAGTA -ACGGAACAAGAGGAGATCTCGTCT -ACGGAACAAGAGGAGATCTGCACT -ACGGAACAAGAGGAGATCCTGACT -ACGGAACAAGAGGAGATCCAACCT -ACGGAACAAGAGGAGATCGCTACT -ACGGAACAAGAGGAGATCGGATCT -ACGGAACAAGAGGAGATCAAGGCT -ACGGAACAAGAGGAGATCTCAACC -ACGGAACAAGAGGAGATCTGTTCC -ACGGAACAAGAGGAGATCATTCCC -ACGGAACAAGAGGAGATCTTCTCG -ACGGAACAAGAGGAGATCTAGACG -ACGGAACAAGAGGAGATCGTAACG -ACGGAACAAGAGGAGATCACTTCG -ACGGAACAAGAGGAGATCTACGCA -ACGGAACAAGAGGAGATCCTTGCA -ACGGAACAAGAGGAGATCCGAACA -ACGGAACAAGAGGAGATCCAGTCA -ACGGAACAAGAGGAGATCGATCCA -ACGGAACAAGAGGAGATCACGACA -ACGGAACAAGAGGAGATCAGCTCA -ACGGAACAAGAGGAGATCTCACGT -ACGGAACAAGAGGAGATCCGTAGT -ACGGAACAAGAGGAGATCGTCAGT -ACGGAACAAGAGGAGATCGAAGGT -ACGGAACAAGAGGAGATCAACCGT -ACGGAACAAGAGGAGATCTTGTGC -ACGGAACAAGAGGAGATCCTAAGC -ACGGAACAAGAGGAGATCACTAGC -ACGGAACAAGAGGAGATCAGATGC -ACGGAACAAGAGGAGATCTGAAGG -ACGGAACAAGAGGAGATCCAATGG -ACGGAACAAGAGGAGATCATGAGG -ACGGAACAAGAGGAGATCAATGGG -ACGGAACAAGAGGAGATCTCCTGA -ACGGAACAAGAGGAGATCTAGCGA -ACGGAACAAGAGGAGATCCACAGA -ACGGAACAAGAGGAGATCGCAAGA -ACGGAACAAGAGGAGATCGGTTGA -ACGGAACAAGAGGAGATCTCCGAT -ACGGAACAAGAGGAGATCTGGCAT -ACGGAACAAGAGGAGATCCGAGAT -ACGGAACAAGAGGAGATCTACCAC -ACGGAACAAGAGGAGATCCAGAAC -ACGGAACAAGAGGAGATCGTCTAC -ACGGAACAAGAGGAGATCACGTAC -ACGGAACAAGAGGAGATCAGTGAC -ACGGAACAAGAGGAGATCCTGTAG -ACGGAACAAGAGGAGATCCCTAAG -ACGGAACAAGAGGAGATCGTTCAG -ACGGAACAAGAGGAGATCGCATAG -ACGGAACAAGAGGAGATCGACAAG -ACGGAACAAGAGGAGATCAAGCAG -ACGGAACAAGAGGAGATCCGTCAA -ACGGAACAAGAGGAGATCGCTGAA -ACGGAACAAGAGGAGATCAGTACG -ACGGAACAAGAGGAGATCATCCGA -ACGGAACAAGAGGAGATCATGGGA -ACGGAACAAGAGGAGATCGTGCAA -ACGGAACAAGAGGAGATCGAGGAA -ACGGAACAAGAGGAGATCCAGGTA -ACGGAACAAGAGGAGATCGACTCT -ACGGAACAAGAGGAGATCAGTCCT -ACGGAACAAGAGGAGATCTAAGCC -ACGGAACAAGAGGAGATCATAGCC -ACGGAACAAGAGGAGATCTAACCG -ACGGAACAAGAGGAGATCATGCCA -ACGGAACAAGAGCTTCTCGGAAAC -ACGGAACAAGAGCTTCTCAACACC -ACGGAACAAGAGCTTCTCATCGAG -ACGGAACAAGAGCTTCTCCTCCTT -ACGGAACAAGAGCTTCTCCCTGTT -ACGGAACAAGAGCTTCTCCGGTTT -ACGGAACAAGAGCTTCTCGTGGTT -ACGGAACAAGAGCTTCTCGCCTTT -ACGGAACAAGAGCTTCTCGGTCTT -ACGGAACAAGAGCTTCTCACGCTT -ACGGAACAAGAGCTTCTCAGCGTT -ACGGAACAAGAGCTTCTCTTCGTC -ACGGAACAAGAGCTTCTCTCTCTC -ACGGAACAAGAGCTTCTCTGGATC -ACGGAACAAGAGCTTCTCCACTTC -ACGGAACAAGAGCTTCTCGTACTC -ACGGAACAAGAGCTTCTCGATGTC -ACGGAACAAGAGCTTCTCACAGTC -ACGGAACAAGAGCTTCTCTTGCTG -ACGGAACAAGAGCTTCTCTCCATG -ACGGAACAAGAGCTTCTCTGTGTG -ACGGAACAAGAGCTTCTCCTAGTG -ACGGAACAAGAGCTTCTCCATCTG -ACGGAACAAGAGCTTCTCGAGTTG -ACGGAACAAGAGCTTCTCAGACTG -ACGGAACAAGAGCTTCTCTCGGTA -ACGGAACAAGAGCTTCTCTGCCTA -ACGGAACAAGAGCTTCTCCCACTA -ACGGAACAAGAGCTTCTCGGAGTA -ACGGAACAAGAGCTTCTCTCGTCT -ACGGAACAAGAGCTTCTCTGCACT -ACGGAACAAGAGCTTCTCCTGACT -ACGGAACAAGAGCTTCTCCAACCT -ACGGAACAAGAGCTTCTCGCTACT -ACGGAACAAGAGCTTCTCGGATCT -ACGGAACAAGAGCTTCTCAAGGCT -ACGGAACAAGAGCTTCTCTCAACC -ACGGAACAAGAGCTTCTCTGTTCC -ACGGAACAAGAGCTTCTCATTCCC -ACGGAACAAGAGCTTCTCTTCTCG -ACGGAACAAGAGCTTCTCTAGACG -ACGGAACAAGAGCTTCTCGTAACG -ACGGAACAAGAGCTTCTCACTTCG -ACGGAACAAGAGCTTCTCTACGCA -ACGGAACAAGAGCTTCTCCTTGCA -ACGGAACAAGAGCTTCTCCGAACA -ACGGAACAAGAGCTTCTCCAGTCA -ACGGAACAAGAGCTTCTCGATCCA -ACGGAACAAGAGCTTCTCACGACA -ACGGAACAAGAGCTTCTCAGCTCA -ACGGAACAAGAGCTTCTCTCACGT -ACGGAACAAGAGCTTCTCCGTAGT -ACGGAACAAGAGCTTCTCGTCAGT -ACGGAACAAGAGCTTCTCGAAGGT -ACGGAACAAGAGCTTCTCAACCGT -ACGGAACAAGAGCTTCTCTTGTGC -ACGGAACAAGAGCTTCTCCTAAGC -ACGGAACAAGAGCTTCTCACTAGC -ACGGAACAAGAGCTTCTCAGATGC -ACGGAACAAGAGCTTCTCTGAAGG -ACGGAACAAGAGCTTCTCCAATGG -ACGGAACAAGAGCTTCTCATGAGG -ACGGAACAAGAGCTTCTCAATGGG -ACGGAACAAGAGCTTCTCTCCTGA -ACGGAACAAGAGCTTCTCTAGCGA -ACGGAACAAGAGCTTCTCCACAGA -ACGGAACAAGAGCTTCTCGCAAGA -ACGGAACAAGAGCTTCTCGGTTGA -ACGGAACAAGAGCTTCTCTCCGAT -ACGGAACAAGAGCTTCTCTGGCAT -ACGGAACAAGAGCTTCTCCGAGAT -ACGGAACAAGAGCTTCTCTACCAC -ACGGAACAAGAGCTTCTCCAGAAC -ACGGAACAAGAGCTTCTCGTCTAC -ACGGAACAAGAGCTTCTCACGTAC -ACGGAACAAGAGCTTCTCAGTGAC -ACGGAACAAGAGCTTCTCCTGTAG -ACGGAACAAGAGCTTCTCCCTAAG -ACGGAACAAGAGCTTCTCGTTCAG -ACGGAACAAGAGCTTCTCGCATAG -ACGGAACAAGAGCTTCTCGACAAG -ACGGAACAAGAGCTTCTCAAGCAG -ACGGAACAAGAGCTTCTCCGTCAA -ACGGAACAAGAGCTTCTCGCTGAA -ACGGAACAAGAGCTTCTCAGTACG -ACGGAACAAGAGCTTCTCATCCGA -ACGGAACAAGAGCTTCTCATGGGA -ACGGAACAAGAGCTTCTCGTGCAA -ACGGAACAAGAGCTTCTCGAGGAA -ACGGAACAAGAGCTTCTCCAGGTA -ACGGAACAAGAGCTTCTCGACTCT -ACGGAACAAGAGCTTCTCAGTCCT -ACGGAACAAGAGCTTCTCTAAGCC -ACGGAACAAGAGCTTCTCATAGCC -ACGGAACAAGAGCTTCTCTAACCG -ACGGAACAAGAGCTTCTCATGCCA -ACGGAACAAGAGGTTCCTGGAAAC -ACGGAACAAGAGGTTCCTAACACC -ACGGAACAAGAGGTTCCTATCGAG -ACGGAACAAGAGGTTCCTCTCCTT -ACGGAACAAGAGGTTCCTCCTGTT -ACGGAACAAGAGGTTCCTCGGTTT -ACGGAACAAGAGGTTCCTGTGGTT -ACGGAACAAGAGGTTCCTGCCTTT -ACGGAACAAGAGGTTCCTGGTCTT -ACGGAACAAGAGGTTCCTACGCTT -ACGGAACAAGAGGTTCCTAGCGTT -ACGGAACAAGAGGTTCCTTTCGTC -ACGGAACAAGAGGTTCCTTCTCTC -ACGGAACAAGAGGTTCCTTGGATC -ACGGAACAAGAGGTTCCTCACTTC -ACGGAACAAGAGGTTCCTGTACTC -ACGGAACAAGAGGTTCCTGATGTC -ACGGAACAAGAGGTTCCTACAGTC -ACGGAACAAGAGGTTCCTTTGCTG -ACGGAACAAGAGGTTCCTTCCATG -ACGGAACAAGAGGTTCCTTGTGTG -ACGGAACAAGAGGTTCCTCTAGTG -ACGGAACAAGAGGTTCCTCATCTG -ACGGAACAAGAGGTTCCTGAGTTG -ACGGAACAAGAGGTTCCTAGACTG -ACGGAACAAGAGGTTCCTTCGGTA -ACGGAACAAGAGGTTCCTTGCCTA -ACGGAACAAGAGGTTCCTCCACTA -ACGGAACAAGAGGTTCCTGGAGTA -ACGGAACAAGAGGTTCCTTCGTCT -ACGGAACAAGAGGTTCCTTGCACT -ACGGAACAAGAGGTTCCTCTGACT -ACGGAACAAGAGGTTCCTCAACCT -ACGGAACAAGAGGTTCCTGCTACT -ACGGAACAAGAGGTTCCTGGATCT -ACGGAACAAGAGGTTCCTAAGGCT -ACGGAACAAGAGGTTCCTTCAACC -ACGGAACAAGAGGTTCCTTGTTCC -ACGGAACAAGAGGTTCCTATTCCC -ACGGAACAAGAGGTTCCTTTCTCG -ACGGAACAAGAGGTTCCTTAGACG -ACGGAACAAGAGGTTCCTGTAACG -ACGGAACAAGAGGTTCCTACTTCG -ACGGAACAAGAGGTTCCTTACGCA -ACGGAACAAGAGGTTCCTCTTGCA -ACGGAACAAGAGGTTCCTCGAACA -ACGGAACAAGAGGTTCCTCAGTCA -ACGGAACAAGAGGTTCCTGATCCA -ACGGAACAAGAGGTTCCTACGACA -ACGGAACAAGAGGTTCCTAGCTCA -ACGGAACAAGAGGTTCCTTCACGT -ACGGAACAAGAGGTTCCTCGTAGT -ACGGAACAAGAGGTTCCTGTCAGT -ACGGAACAAGAGGTTCCTGAAGGT -ACGGAACAAGAGGTTCCTAACCGT -ACGGAACAAGAGGTTCCTTTGTGC -ACGGAACAAGAGGTTCCTCTAAGC -ACGGAACAAGAGGTTCCTACTAGC -ACGGAACAAGAGGTTCCTAGATGC -ACGGAACAAGAGGTTCCTTGAAGG -ACGGAACAAGAGGTTCCTCAATGG -ACGGAACAAGAGGTTCCTATGAGG -ACGGAACAAGAGGTTCCTAATGGG -ACGGAACAAGAGGTTCCTTCCTGA -ACGGAACAAGAGGTTCCTTAGCGA -ACGGAACAAGAGGTTCCTCACAGA -ACGGAACAAGAGGTTCCTGCAAGA -ACGGAACAAGAGGTTCCTGGTTGA -ACGGAACAAGAGGTTCCTTCCGAT -ACGGAACAAGAGGTTCCTTGGCAT -ACGGAACAAGAGGTTCCTCGAGAT -ACGGAACAAGAGGTTCCTTACCAC -ACGGAACAAGAGGTTCCTCAGAAC -ACGGAACAAGAGGTTCCTGTCTAC -ACGGAACAAGAGGTTCCTACGTAC -ACGGAACAAGAGGTTCCTAGTGAC -ACGGAACAAGAGGTTCCTCTGTAG -ACGGAACAAGAGGTTCCTCCTAAG -ACGGAACAAGAGGTTCCTGTTCAG -ACGGAACAAGAGGTTCCTGCATAG -ACGGAACAAGAGGTTCCTGACAAG -ACGGAACAAGAGGTTCCTAAGCAG -ACGGAACAAGAGGTTCCTCGTCAA -ACGGAACAAGAGGTTCCTGCTGAA -ACGGAACAAGAGGTTCCTAGTACG -ACGGAACAAGAGGTTCCTATCCGA -ACGGAACAAGAGGTTCCTATGGGA -ACGGAACAAGAGGTTCCTGTGCAA -ACGGAACAAGAGGTTCCTGAGGAA -ACGGAACAAGAGGTTCCTCAGGTA -ACGGAACAAGAGGTTCCTGACTCT -ACGGAACAAGAGGTTCCTAGTCCT -ACGGAACAAGAGGTTCCTTAAGCC -ACGGAACAAGAGGTTCCTATAGCC -ACGGAACAAGAGGTTCCTTAACCG -ACGGAACAAGAGGTTCCTATGCCA -ACGGAACAAGAGTTTCGGGGAAAC -ACGGAACAAGAGTTTCGGAACACC -ACGGAACAAGAGTTTCGGATCGAG -ACGGAACAAGAGTTTCGGCTCCTT -ACGGAACAAGAGTTTCGGCCTGTT -ACGGAACAAGAGTTTCGGCGGTTT -ACGGAACAAGAGTTTCGGGTGGTT -ACGGAACAAGAGTTTCGGGCCTTT -ACGGAACAAGAGTTTCGGGGTCTT -ACGGAACAAGAGTTTCGGACGCTT -ACGGAACAAGAGTTTCGGAGCGTT -ACGGAACAAGAGTTTCGGTTCGTC -ACGGAACAAGAGTTTCGGTCTCTC -ACGGAACAAGAGTTTCGGTGGATC -ACGGAACAAGAGTTTCGGCACTTC -ACGGAACAAGAGTTTCGGGTACTC -ACGGAACAAGAGTTTCGGGATGTC -ACGGAACAAGAGTTTCGGACAGTC -ACGGAACAAGAGTTTCGGTTGCTG -ACGGAACAAGAGTTTCGGTCCATG -ACGGAACAAGAGTTTCGGTGTGTG -ACGGAACAAGAGTTTCGGCTAGTG -ACGGAACAAGAGTTTCGGCATCTG -ACGGAACAAGAGTTTCGGGAGTTG -ACGGAACAAGAGTTTCGGAGACTG -ACGGAACAAGAGTTTCGGTCGGTA -ACGGAACAAGAGTTTCGGTGCCTA -ACGGAACAAGAGTTTCGGCCACTA -ACGGAACAAGAGTTTCGGGGAGTA -ACGGAACAAGAGTTTCGGTCGTCT -ACGGAACAAGAGTTTCGGTGCACT -ACGGAACAAGAGTTTCGGCTGACT -ACGGAACAAGAGTTTCGGCAACCT -ACGGAACAAGAGTTTCGGGCTACT -ACGGAACAAGAGTTTCGGGGATCT -ACGGAACAAGAGTTTCGGAAGGCT -ACGGAACAAGAGTTTCGGTCAACC -ACGGAACAAGAGTTTCGGTGTTCC -ACGGAACAAGAGTTTCGGATTCCC -ACGGAACAAGAGTTTCGGTTCTCG -ACGGAACAAGAGTTTCGGTAGACG -ACGGAACAAGAGTTTCGGGTAACG -ACGGAACAAGAGTTTCGGACTTCG -ACGGAACAAGAGTTTCGGTACGCA -ACGGAACAAGAGTTTCGGCTTGCA -ACGGAACAAGAGTTTCGGCGAACA -ACGGAACAAGAGTTTCGGCAGTCA -ACGGAACAAGAGTTTCGGGATCCA -ACGGAACAAGAGTTTCGGACGACA -ACGGAACAAGAGTTTCGGAGCTCA -ACGGAACAAGAGTTTCGGTCACGT -ACGGAACAAGAGTTTCGGCGTAGT -ACGGAACAAGAGTTTCGGGTCAGT -ACGGAACAAGAGTTTCGGGAAGGT -ACGGAACAAGAGTTTCGGAACCGT -ACGGAACAAGAGTTTCGGTTGTGC -ACGGAACAAGAGTTTCGGCTAAGC -ACGGAACAAGAGTTTCGGACTAGC -ACGGAACAAGAGTTTCGGAGATGC -ACGGAACAAGAGTTTCGGTGAAGG -ACGGAACAAGAGTTTCGGCAATGG -ACGGAACAAGAGTTTCGGATGAGG -ACGGAACAAGAGTTTCGGAATGGG -ACGGAACAAGAGTTTCGGTCCTGA -ACGGAACAAGAGTTTCGGTAGCGA -ACGGAACAAGAGTTTCGGCACAGA -ACGGAACAAGAGTTTCGGGCAAGA -ACGGAACAAGAGTTTCGGGGTTGA -ACGGAACAAGAGTTTCGGTCCGAT -ACGGAACAAGAGTTTCGGTGGCAT -ACGGAACAAGAGTTTCGGCGAGAT -ACGGAACAAGAGTTTCGGTACCAC -ACGGAACAAGAGTTTCGGCAGAAC -ACGGAACAAGAGTTTCGGGTCTAC -ACGGAACAAGAGTTTCGGACGTAC -ACGGAACAAGAGTTTCGGAGTGAC -ACGGAACAAGAGTTTCGGCTGTAG -ACGGAACAAGAGTTTCGGCCTAAG -ACGGAACAAGAGTTTCGGGTTCAG -ACGGAACAAGAGTTTCGGGCATAG -ACGGAACAAGAGTTTCGGGACAAG -ACGGAACAAGAGTTTCGGAAGCAG -ACGGAACAAGAGTTTCGGCGTCAA -ACGGAACAAGAGTTTCGGGCTGAA -ACGGAACAAGAGTTTCGGAGTACG -ACGGAACAAGAGTTTCGGATCCGA -ACGGAACAAGAGTTTCGGATGGGA -ACGGAACAAGAGTTTCGGGTGCAA -ACGGAACAAGAGTTTCGGGAGGAA -ACGGAACAAGAGTTTCGGCAGGTA -ACGGAACAAGAGTTTCGGGACTCT -ACGGAACAAGAGTTTCGGAGTCCT -ACGGAACAAGAGTTTCGGTAAGCC -ACGGAACAAGAGTTTCGGATAGCC -ACGGAACAAGAGTTTCGGTAACCG -ACGGAACAAGAGTTTCGGATGCCA -ACGGAACAAGAGGTTGTGGGAAAC -ACGGAACAAGAGGTTGTGAACACC -ACGGAACAAGAGGTTGTGATCGAG -ACGGAACAAGAGGTTGTGCTCCTT -ACGGAACAAGAGGTTGTGCCTGTT -ACGGAACAAGAGGTTGTGCGGTTT -ACGGAACAAGAGGTTGTGGTGGTT -ACGGAACAAGAGGTTGTGGCCTTT -ACGGAACAAGAGGTTGTGGGTCTT -ACGGAACAAGAGGTTGTGACGCTT -ACGGAACAAGAGGTTGTGAGCGTT -ACGGAACAAGAGGTTGTGTTCGTC -ACGGAACAAGAGGTTGTGTCTCTC -ACGGAACAAGAGGTTGTGTGGATC -ACGGAACAAGAGGTTGTGCACTTC -ACGGAACAAGAGGTTGTGGTACTC -ACGGAACAAGAGGTTGTGGATGTC -ACGGAACAAGAGGTTGTGACAGTC -ACGGAACAAGAGGTTGTGTTGCTG -ACGGAACAAGAGGTTGTGTCCATG -ACGGAACAAGAGGTTGTGTGTGTG -ACGGAACAAGAGGTTGTGCTAGTG -ACGGAACAAGAGGTTGTGCATCTG -ACGGAACAAGAGGTTGTGGAGTTG -ACGGAACAAGAGGTTGTGAGACTG -ACGGAACAAGAGGTTGTGTCGGTA -ACGGAACAAGAGGTTGTGTGCCTA -ACGGAACAAGAGGTTGTGCCACTA -ACGGAACAAGAGGTTGTGGGAGTA -ACGGAACAAGAGGTTGTGTCGTCT -ACGGAACAAGAGGTTGTGTGCACT -ACGGAACAAGAGGTTGTGCTGACT -ACGGAACAAGAGGTTGTGCAACCT -ACGGAACAAGAGGTTGTGGCTACT -ACGGAACAAGAGGTTGTGGGATCT -ACGGAACAAGAGGTTGTGAAGGCT -ACGGAACAAGAGGTTGTGTCAACC -ACGGAACAAGAGGTTGTGTGTTCC -ACGGAACAAGAGGTTGTGATTCCC -ACGGAACAAGAGGTTGTGTTCTCG -ACGGAACAAGAGGTTGTGTAGACG -ACGGAACAAGAGGTTGTGGTAACG -ACGGAACAAGAGGTTGTGACTTCG -ACGGAACAAGAGGTTGTGTACGCA -ACGGAACAAGAGGTTGTGCTTGCA -ACGGAACAAGAGGTTGTGCGAACA -ACGGAACAAGAGGTTGTGCAGTCA -ACGGAACAAGAGGTTGTGGATCCA -ACGGAACAAGAGGTTGTGACGACA -ACGGAACAAGAGGTTGTGAGCTCA -ACGGAACAAGAGGTTGTGTCACGT -ACGGAACAAGAGGTTGTGCGTAGT -ACGGAACAAGAGGTTGTGGTCAGT -ACGGAACAAGAGGTTGTGGAAGGT -ACGGAACAAGAGGTTGTGAACCGT -ACGGAACAAGAGGTTGTGTTGTGC -ACGGAACAAGAGGTTGTGCTAAGC -ACGGAACAAGAGGTTGTGACTAGC -ACGGAACAAGAGGTTGTGAGATGC -ACGGAACAAGAGGTTGTGTGAAGG -ACGGAACAAGAGGTTGTGCAATGG -ACGGAACAAGAGGTTGTGATGAGG -ACGGAACAAGAGGTTGTGAATGGG -ACGGAACAAGAGGTTGTGTCCTGA -ACGGAACAAGAGGTTGTGTAGCGA -ACGGAACAAGAGGTTGTGCACAGA -ACGGAACAAGAGGTTGTGGCAAGA -ACGGAACAAGAGGTTGTGGGTTGA -ACGGAACAAGAGGTTGTGTCCGAT -ACGGAACAAGAGGTTGTGTGGCAT -ACGGAACAAGAGGTTGTGCGAGAT -ACGGAACAAGAGGTTGTGTACCAC -ACGGAACAAGAGGTTGTGCAGAAC -ACGGAACAAGAGGTTGTGGTCTAC -ACGGAACAAGAGGTTGTGACGTAC -ACGGAACAAGAGGTTGTGAGTGAC -ACGGAACAAGAGGTTGTGCTGTAG -ACGGAACAAGAGGTTGTGCCTAAG -ACGGAACAAGAGGTTGTGGTTCAG -ACGGAACAAGAGGTTGTGGCATAG -ACGGAACAAGAGGTTGTGGACAAG -ACGGAACAAGAGGTTGTGAAGCAG -ACGGAACAAGAGGTTGTGCGTCAA -ACGGAACAAGAGGTTGTGGCTGAA -ACGGAACAAGAGGTTGTGAGTACG -ACGGAACAAGAGGTTGTGATCCGA -ACGGAACAAGAGGTTGTGATGGGA -ACGGAACAAGAGGTTGTGGTGCAA -ACGGAACAAGAGGTTGTGGAGGAA -ACGGAACAAGAGGTTGTGCAGGTA -ACGGAACAAGAGGTTGTGGACTCT -ACGGAACAAGAGGTTGTGAGTCCT -ACGGAACAAGAGGTTGTGTAAGCC -ACGGAACAAGAGGTTGTGATAGCC -ACGGAACAAGAGGTTGTGTAACCG -ACGGAACAAGAGGTTGTGATGCCA -ACGGAACAAGAGTTTGCCGGAAAC -ACGGAACAAGAGTTTGCCAACACC -ACGGAACAAGAGTTTGCCATCGAG -ACGGAACAAGAGTTTGCCCTCCTT -ACGGAACAAGAGTTTGCCCCTGTT -ACGGAACAAGAGTTTGCCCGGTTT -ACGGAACAAGAGTTTGCCGTGGTT -ACGGAACAAGAGTTTGCCGCCTTT -ACGGAACAAGAGTTTGCCGGTCTT -ACGGAACAAGAGTTTGCCACGCTT -ACGGAACAAGAGTTTGCCAGCGTT -ACGGAACAAGAGTTTGCCTTCGTC -ACGGAACAAGAGTTTGCCTCTCTC -ACGGAACAAGAGTTTGCCTGGATC -ACGGAACAAGAGTTTGCCCACTTC -ACGGAACAAGAGTTTGCCGTACTC -ACGGAACAAGAGTTTGCCGATGTC -ACGGAACAAGAGTTTGCCACAGTC -ACGGAACAAGAGTTTGCCTTGCTG -ACGGAACAAGAGTTTGCCTCCATG -ACGGAACAAGAGTTTGCCTGTGTG -ACGGAACAAGAGTTTGCCCTAGTG -ACGGAACAAGAGTTTGCCCATCTG -ACGGAACAAGAGTTTGCCGAGTTG -ACGGAACAAGAGTTTGCCAGACTG -ACGGAACAAGAGTTTGCCTCGGTA -ACGGAACAAGAGTTTGCCTGCCTA -ACGGAACAAGAGTTTGCCCCACTA -ACGGAACAAGAGTTTGCCGGAGTA -ACGGAACAAGAGTTTGCCTCGTCT -ACGGAACAAGAGTTTGCCTGCACT -ACGGAACAAGAGTTTGCCCTGACT -ACGGAACAAGAGTTTGCCCAACCT -ACGGAACAAGAGTTTGCCGCTACT -ACGGAACAAGAGTTTGCCGGATCT -ACGGAACAAGAGTTTGCCAAGGCT -ACGGAACAAGAGTTTGCCTCAACC -ACGGAACAAGAGTTTGCCTGTTCC -ACGGAACAAGAGTTTGCCATTCCC -ACGGAACAAGAGTTTGCCTTCTCG -ACGGAACAAGAGTTTGCCTAGACG -ACGGAACAAGAGTTTGCCGTAACG -ACGGAACAAGAGTTTGCCACTTCG -ACGGAACAAGAGTTTGCCTACGCA -ACGGAACAAGAGTTTGCCCTTGCA -ACGGAACAAGAGTTTGCCCGAACA -ACGGAACAAGAGTTTGCCCAGTCA -ACGGAACAAGAGTTTGCCGATCCA -ACGGAACAAGAGTTTGCCACGACA -ACGGAACAAGAGTTTGCCAGCTCA -ACGGAACAAGAGTTTGCCTCACGT -ACGGAACAAGAGTTTGCCCGTAGT -ACGGAACAAGAGTTTGCCGTCAGT -ACGGAACAAGAGTTTGCCGAAGGT -ACGGAACAAGAGTTTGCCAACCGT -ACGGAACAAGAGTTTGCCTTGTGC -ACGGAACAAGAGTTTGCCCTAAGC -ACGGAACAAGAGTTTGCCACTAGC -ACGGAACAAGAGTTTGCCAGATGC -ACGGAACAAGAGTTTGCCTGAAGG -ACGGAACAAGAGTTTGCCCAATGG -ACGGAACAAGAGTTTGCCATGAGG -ACGGAACAAGAGTTTGCCAATGGG -ACGGAACAAGAGTTTGCCTCCTGA -ACGGAACAAGAGTTTGCCTAGCGA -ACGGAACAAGAGTTTGCCCACAGA -ACGGAACAAGAGTTTGCCGCAAGA -ACGGAACAAGAGTTTGCCGGTTGA -ACGGAACAAGAGTTTGCCTCCGAT -ACGGAACAAGAGTTTGCCTGGCAT -ACGGAACAAGAGTTTGCCCGAGAT -ACGGAACAAGAGTTTGCCTACCAC -ACGGAACAAGAGTTTGCCCAGAAC -ACGGAACAAGAGTTTGCCGTCTAC -ACGGAACAAGAGTTTGCCACGTAC -ACGGAACAAGAGTTTGCCAGTGAC -ACGGAACAAGAGTTTGCCCTGTAG -ACGGAACAAGAGTTTGCCCCTAAG -ACGGAACAAGAGTTTGCCGTTCAG -ACGGAACAAGAGTTTGCCGCATAG -ACGGAACAAGAGTTTGCCGACAAG -ACGGAACAAGAGTTTGCCAAGCAG -ACGGAACAAGAGTTTGCCCGTCAA -ACGGAACAAGAGTTTGCCGCTGAA -ACGGAACAAGAGTTTGCCAGTACG -ACGGAACAAGAGTTTGCCATCCGA -ACGGAACAAGAGTTTGCCATGGGA -ACGGAACAAGAGTTTGCCGTGCAA -ACGGAACAAGAGTTTGCCGAGGAA -ACGGAACAAGAGTTTGCCCAGGTA -ACGGAACAAGAGTTTGCCGACTCT -ACGGAACAAGAGTTTGCCAGTCCT -ACGGAACAAGAGTTTGCCTAAGCC -ACGGAACAAGAGTTTGCCATAGCC -ACGGAACAAGAGTTTGCCTAACCG -ACGGAACAAGAGTTTGCCATGCCA -ACGGAACAAGAGCTTGGTGGAAAC -ACGGAACAAGAGCTTGGTAACACC -ACGGAACAAGAGCTTGGTATCGAG -ACGGAACAAGAGCTTGGTCTCCTT -ACGGAACAAGAGCTTGGTCCTGTT -ACGGAACAAGAGCTTGGTCGGTTT -ACGGAACAAGAGCTTGGTGTGGTT -ACGGAACAAGAGCTTGGTGCCTTT -ACGGAACAAGAGCTTGGTGGTCTT -ACGGAACAAGAGCTTGGTACGCTT -ACGGAACAAGAGCTTGGTAGCGTT -ACGGAACAAGAGCTTGGTTTCGTC -ACGGAACAAGAGCTTGGTTCTCTC -ACGGAACAAGAGCTTGGTTGGATC -ACGGAACAAGAGCTTGGTCACTTC -ACGGAACAAGAGCTTGGTGTACTC -ACGGAACAAGAGCTTGGTGATGTC -ACGGAACAAGAGCTTGGTACAGTC -ACGGAACAAGAGCTTGGTTTGCTG -ACGGAACAAGAGCTTGGTTCCATG -ACGGAACAAGAGCTTGGTTGTGTG -ACGGAACAAGAGCTTGGTCTAGTG -ACGGAACAAGAGCTTGGTCATCTG -ACGGAACAAGAGCTTGGTGAGTTG -ACGGAACAAGAGCTTGGTAGACTG -ACGGAACAAGAGCTTGGTTCGGTA -ACGGAACAAGAGCTTGGTTGCCTA -ACGGAACAAGAGCTTGGTCCACTA -ACGGAACAAGAGCTTGGTGGAGTA -ACGGAACAAGAGCTTGGTTCGTCT -ACGGAACAAGAGCTTGGTTGCACT -ACGGAACAAGAGCTTGGTCTGACT -ACGGAACAAGAGCTTGGTCAACCT -ACGGAACAAGAGCTTGGTGCTACT -ACGGAACAAGAGCTTGGTGGATCT -ACGGAACAAGAGCTTGGTAAGGCT -ACGGAACAAGAGCTTGGTTCAACC -ACGGAACAAGAGCTTGGTTGTTCC -ACGGAACAAGAGCTTGGTATTCCC -ACGGAACAAGAGCTTGGTTTCTCG -ACGGAACAAGAGCTTGGTTAGACG -ACGGAACAAGAGCTTGGTGTAACG -ACGGAACAAGAGCTTGGTACTTCG -ACGGAACAAGAGCTTGGTTACGCA -ACGGAACAAGAGCTTGGTCTTGCA -ACGGAACAAGAGCTTGGTCGAACA -ACGGAACAAGAGCTTGGTCAGTCA -ACGGAACAAGAGCTTGGTGATCCA -ACGGAACAAGAGCTTGGTACGACA -ACGGAACAAGAGCTTGGTAGCTCA -ACGGAACAAGAGCTTGGTTCACGT -ACGGAACAAGAGCTTGGTCGTAGT -ACGGAACAAGAGCTTGGTGTCAGT -ACGGAACAAGAGCTTGGTGAAGGT -ACGGAACAAGAGCTTGGTAACCGT -ACGGAACAAGAGCTTGGTTTGTGC -ACGGAACAAGAGCTTGGTCTAAGC -ACGGAACAAGAGCTTGGTACTAGC -ACGGAACAAGAGCTTGGTAGATGC -ACGGAACAAGAGCTTGGTTGAAGG -ACGGAACAAGAGCTTGGTCAATGG -ACGGAACAAGAGCTTGGTATGAGG -ACGGAACAAGAGCTTGGTAATGGG -ACGGAACAAGAGCTTGGTTCCTGA -ACGGAACAAGAGCTTGGTTAGCGA -ACGGAACAAGAGCTTGGTCACAGA -ACGGAACAAGAGCTTGGTGCAAGA -ACGGAACAAGAGCTTGGTGGTTGA -ACGGAACAAGAGCTTGGTTCCGAT -ACGGAACAAGAGCTTGGTTGGCAT -ACGGAACAAGAGCTTGGTCGAGAT -ACGGAACAAGAGCTTGGTTACCAC -ACGGAACAAGAGCTTGGTCAGAAC -ACGGAACAAGAGCTTGGTGTCTAC -ACGGAACAAGAGCTTGGTACGTAC -ACGGAACAAGAGCTTGGTAGTGAC -ACGGAACAAGAGCTTGGTCTGTAG -ACGGAACAAGAGCTTGGTCCTAAG -ACGGAACAAGAGCTTGGTGTTCAG -ACGGAACAAGAGCTTGGTGCATAG -ACGGAACAAGAGCTTGGTGACAAG -ACGGAACAAGAGCTTGGTAAGCAG -ACGGAACAAGAGCTTGGTCGTCAA -ACGGAACAAGAGCTTGGTGCTGAA -ACGGAACAAGAGCTTGGTAGTACG -ACGGAACAAGAGCTTGGTATCCGA -ACGGAACAAGAGCTTGGTATGGGA -ACGGAACAAGAGCTTGGTGTGCAA -ACGGAACAAGAGCTTGGTGAGGAA -ACGGAACAAGAGCTTGGTCAGGTA -ACGGAACAAGAGCTTGGTGACTCT -ACGGAACAAGAGCTTGGTAGTCCT -ACGGAACAAGAGCTTGGTTAAGCC -ACGGAACAAGAGCTTGGTATAGCC -ACGGAACAAGAGCTTGGTTAACCG -ACGGAACAAGAGCTTGGTATGCCA -ACGGAACAAGAGCTTACGGGAAAC -ACGGAACAAGAGCTTACGAACACC -ACGGAACAAGAGCTTACGATCGAG -ACGGAACAAGAGCTTACGCTCCTT -ACGGAACAAGAGCTTACGCCTGTT -ACGGAACAAGAGCTTACGCGGTTT -ACGGAACAAGAGCTTACGGTGGTT -ACGGAACAAGAGCTTACGGCCTTT -ACGGAACAAGAGCTTACGGGTCTT -ACGGAACAAGAGCTTACGACGCTT -ACGGAACAAGAGCTTACGAGCGTT -ACGGAACAAGAGCTTACGTTCGTC -ACGGAACAAGAGCTTACGTCTCTC -ACGGAACAAGAGCTTACGTGGATC -ACGGAACAAGAGCTTACGCACTTC -ACGGAACAAGAGCTTACGGTACTC -ACGGAACAAGAGCTTACGGATGTC -ACGGAACAAGAGCTTACGACAGTC -ACGGAACAAGAGCTTACGTTGCTG -ACGGAACAAGAGCTTACGTCCATG -ACGGAACAAGAGCTTACGTGTGTG -ACGGAACAAGAGCTTACGCTAGTG -ACGGAACAAGAGCTTACGCATCTG -ACGGAACAAGAGCTTACGGAGTTG -ACGGAACAAGAGCTTACGAGACTG -ACGGAACAAGAGCTTACGTCGGTA -ACGGAACAAGAGCTTACGTGCCTA -ACGGAACAAGAGCTTACGCCACTA -ACGGAACAAGAGCTTACGGGAGTA -ACGGAACAAGAGCTTACGTCGTCT -ACGGAACAAGAGCTTACGTGCACT -ACGGAACAAGAGCTTACGCTGACT -ACGGAACAAGAGCTTACGCAACCT -ACGGAACAAGAGCTTACGGCTACT -ACGGAACAAGAGCTTACGGGATCT -ACGGAACAAGAGCTTACGAAGGCT -ACGGAACAAGAGCTTACGTCAACC -ACGGAACAAGAGCTTACGTGTTCC -ACGGAACAAGAGCTTACGATTCCC -ACGGAACAAGAGCTTACGTTCTCG -ACGGAACAAGAGCTTACGTAGACG -ACGGAACAAGAGCTTACGGTAACG -ACGGAACAAGAGCTTACGACTTCG -ACGGAACAAGAGCTTACGTACGCA -ACGGAACAAGAGCTTACGCTTGCA -ACGGAACAAGAGCTTACGCGAACA -ACGGAACAAGAGCTTACGCAGTCA -ACGGAACAAGAGCTTACGGATCCA -ACGGAACAAGAGCTTACGACGACA -ACGGAACAAGAGCTTACGAGCTCA -ACGGAACAAGAGCTTACGTCACGT -ACGGAACAAGAGCTTACGCGTAGT -ACGGAACAAGAGCTTACGGTCAGT -ACGGAACAAGAGCTTACGGAAGGT -ACGGAACAAGAGCTTACGAACCGT -ACGGAACAAGAGCTTACGTTGTGC -ACGGAACAAGAGCTTACGCTAAGC -ACGGAACAAGAGCTTACGACTAGC -ACGGAACAAGAGCTTACGAGATGC -ACGGAACAAGAGCTTACGTGAAGG -ACGGAACAAGAGCTTACGCAATGG -ACGGAACAAGAGCTTACGATGAGG -ACGGAACAAGAGCTTACGAATGGG -ACGGAACAAGAGCTTACGTCCTGA -ACGGAACAAGAGCTTACGTAGCGA -ACGGAACAAGAGCTTACGCACAGA -ACGGAACAAGAGCTTACGGCAAGA -ACGGAACAAGAGCTTACGGGTTGA -ACGGAACAAGAGCTTACGTCCGAT -ACGGAACAAGAGCTTACGTGGCAT -ACGGAACAAGAGCTTACGCGAGAT -ACGGAACAAGAGCTTACGTACCAC -ACGGAACAAGAGCTTACGCAGAAC -ACGGAACAAGAGCTTACGGTCTAC -ACGGAACAAGAGCTTACGACGTAC -ACGGAACAAGAGCTTACGAGTGAC -ACGGAACAAGAGCTTACGCTGTAG -ACGGAACAAGAGCTTACGCCTAAG -ACGGAACAAGAGCTTACGGTTCAG -ACGGAACAAGAGCTTACGGCATAG -ACGGAACAAGAGCTTACGGACAAG -ACGGAACAAGAGCTTACGAAGCAG -ACGGAACAAGAGCTTACGCGTCAA -ACGGAACAAGAGCTTACGGCTGAA -ACGGAACAAGAGCTTACGAGTACG -ACGGAACAAGAGCTTACGATCCGA -ACGGAACAAGAGCTTACGATGGGA -ACGGAACAAGAGCTTACGGTGCAA -ACGGAACAAGAGCTTACGGAGGAA -ACGGAACAAGAGCTTACGCAGGTA -ACGGAACAAGAGCTTACGGACTCT -ACGGAACAAGAGCTTACGAGTCCT -ACGGAACAAGAGCTTACGTAAGCC -ACGGAACAAGAGCTTACGATAGCC -ACGGAACAAGAGCTTACGTAACCG -ACGGAACAAGAGCTTACGATGCCA -ACGGAACAAGAGGTTAGCGGAAAC -ACGGAACAAGAGGTTAGCAACACC -ACGGAACAAGAGGTTAGCATCGAG -ACGGAACAAGAGGTTAGCCTCCTT -ACGGAACAAGAGGTTAGCCCTGTT -ACGGAACAAGAGGTTAGCCGGTTT -ACGGAACAAGAGGTTAGCGTGGTT -ACGGAACAAGAGGTTAGCGCCTTT -ACGGAACAAGAGGTTAGCGGTCTT -ACGGAACAAGAGGTTAGCACGCTT -ACGGAACAAGAGGTTAGCAGCGTT -ACGGAACAAGAGGTTAGCTTCGTC -ACGGAACAAGAGGTTAGCTCTCTC -ACGGAACAAGAGGTTAGCTGGATC -ACGGAACAAGAGGTTAGCCACTTC -ACGGAACAAGAGGTTAGCGTACTC -ACGGAACAAGAGGTTAGCGATGTC -ACGGAACAAGAGGTTAGCACAGTC -ACGGAACAAGAGGTTAGCTTGCTG -ACGGAACAAGAGGTTAGCTCCATG -ACGGAACAAGAGGTTAGCTGTGTG -ACGGAACAAGAGGTTAGCCTAGTG -ACGGAACAAGAGGTTAGCCATCTG -ACGGAACAAGAGGTTAGCGAGTTG -ACGGAACAAGAGGTTAGCAGACTG -ACGGAACAAGAGGTTAGCTCGGTA -ACGGAACAAGAGGTTAGCTGCCTA -ACGGAACAAGAGGTTAGCCCACTA -ACGGAACAAGAGGTTAGCGGAGTA -ACGGAACAAGAGGTTAGCTCGTCT -ACGGAACAAGAGGTTAGCTGCACT -ACGGAACAAGAGGTTAGCCTGACT -ACGGAACAAGAGGTTAGCCAACCT -ACGGAACAAGAGGTTAGCGCTACT -ACGGAACAAGAGGTTAGCGGATCT -ACGGAACAAGAGGTTAGCAAGGCT -ACGGAACAAGAGGTTAGCTCAACC -ACGGAACAAGAGGTTAGCTGTTCC -ACGGAACAAGAGGTTAGCATTCCC -ACGGAACAAGAGGTTAGCTTCTCG -ACGGAACAAGAGGTTAGCTAGACG -ACGGAACAAGAGGTTAGCGTAACG -ACGGAACAAGAGGTTAGCACTTCG -ACGGAACAAGAGGTTAGCTACGCA -ACGGAACAAGAGGTTAGCCTTGCA -ACGGAACAAGAGGTTAGCCGAACA -ACGGAACAAGAGGTTAGCCAGTCA -ACGGAACAAGAGGTTAGCGATCCA -ACGGAACAAGAGGTTAGCACGACA -ACGGAACAAGAGGTTAGCAGCTCA -ACGGAACAAGAGGTTAGCTCACGT -ACGGAACAAGAGGTTAGCCGTAGT -ACGGAACAAGAGGTTAGCGTCAGT -ACGGAACAAGAGGTTAGCGAAGGT -ACGGAACAAGAGGTTAGCAACCGT -ACGGAACAAGAGGTTAGCTTGTGC -ACGGAACAAGAGGTTAGCCTAAGC -ACGGAACAAGAGGTTAGCACTAGC -ACGGAACAAGAGGTTAGCAGATGC -ACGGAACAAGAGGTTAGCTGAAGG -ACGGAACAAGAGGTTAGCCAATGG -ACGGAACAAGAGGTTAGCATGAGG -ACGGAACAAGAGGTTAGCAATGGG -ACGGAACAAGAGGTTAGCTCCTGA -ACGGAACAAGAGGTTAGCTAGCGA -ACGGAACAAGAGGTTAGCCACAGA -ACGGAACAAGAGGTTAGCGCAAGA -ACGGAACAAGAGGTTAGCGGTTGA -ACGGAACAAGAGGTTAGCTCCGAT -ACGGAACAAGAGGTTAGCTGGCAT -ACGGAACAAGAGGTTAGCCGAGAT -ACGGAACAAGAGGTTAGCTACCAC -ACGGAACAAGAGGTTAGCCAGAAC -ACGGAACAAGAGGTTAGCGTCTAC -ACGGAACAAGAGGTTAGCACGTAC -ACGGAACAAGAGGTTAGCAGTGAC -ACGGAACAAGAGGTTAGCCTGTAG -ACGGAACAAGAGGTTAGCCCTAAG -ACGGAACAAGAGGTTAGCGTTCAG -ACGGAACAAGAGGTTAGCGCATAG -ACGGAACAAGAGGTTAGCGACAAG -ACGGAACAAGAGGTTAGCAAGCAG -ACGGAACAAGAGGTTAGCCGTCAA -ACGGAACAAGAGGTTAGCGCTGAA -ACGGAACAAGAGGTTAGCAGTACG -ACGGAACAAGAGGTTAGCATCCGA -ACGGAACAAGAGGTTAGCATGGGA -ACGGAACAAGAGGTTAGCGTGCAA -ACGGAACAAGAGGTTAGCGAGGAA -ACGGAACAAGAGGTTAGCCAGGTA -ACGGAACAAGAGGTTAGCGACTCT -ACGGAACAAGAGGTTAGCAGTCCT -ACGGAACAAGAGGTTAGCTAAGCC -ACGGAACAAGAGGTTAGCATAGCC -ACGGAACAAGAGGTTAGCTAACCG -ACGGAACAAGAGGTTAGCATGCCA -ACGGAACAAGAGGTCTTCGGAAAC -ACGGAACAAGAGGTCTTCAACACC -ACGGAACAAGAGGTCTTCATCGAG -ACGGAACAAGAGGTCTTCCTCCTT -ACGGAACAAGAGGTCTTCCCTGTT -ACGGAACAAGAGGTCTTCCGGTTT -ACGGAACAAGAGGTCTTCGTGGTT -ACGGAACAAGAGGTCTTCGCCTTT -ACGGAACAAGAGGTCTTCGGTCTT -ACGGAACAAGAGGTCTTCACGCTT -ACGGAACAAGAGGTCTTCAGCGTT -ACGGAACAAGAGGTCTTCTTCGTC -ACGGAACAAGAGGTCTTCTCTCTC -ACGGAACAAGAGGTCTTCTGGATC -ACGGAACAAGAGGTCTTCCACTTC -ACGGAACAAGAGGTCTTCGTACTC -ACGGAACAAGAGGTCTTCGATGTC -ACGGAACAAGAGGTCTTCACAGTC -ACGGAACAAGAGGTCTTCTTGCTG -ACGGAACAAGAGGTCTTCTCCATG -ACGGAACAAGAGGTCTTCTGTGTG -ACGGAACAAGAGGTCTTCCTAGTG -ACGGAACAAGAGGTCTTCCATCTG -ACGGAACAAGAGGTCTTCGAGTTG -ACGGAACAAGAGGTCTTCAGACTG -ACGGAACAAGAGGTCTTCTCGGTA -ACGGAACAAGAGGTCTTCTGCCTA -ACGGAACAAGAGGTCTTCCCACTA -ACGGAACAAGAGGTCTTCGGAGTA -ACGGAACAAGAGGTCTTCTCGTCT -ACGGAACAAGAGGTCTTCTGCACT -ACGGAACAAGAGGTCTTCCTGACT -ACGGAACAAGAGGTCTTCCAACCT -ACGGAACAAGAGGTCTTCGCTACT -ACGGAACAAGAGGTCTTCGGATCT -ACGGAACAAGAGGTCTTCAAGGCT -ACGGAACAAGAGGTCTTCTCAACC -ACGGAACAAGAGGTCTTCTGTTCC -ACGGAACAAGAGGTCTTCATTCCC -ACGGAACAAGAGGTCTTCTTCTCG -ACGGAACAAGAGGTCTTCTAGACG -ACGGAACAAGAGGTCTTCGTAACG -ACGGAACAAGAGGTCTTCACTTCG -ACGGAACAAGAGGTCTTCTACGCA -ACGGAACAAGAGGTCTTCCTTGCA -ACGGAACAAGAGGTCTTCCGAACA -ACGGAACAAGAGGTCTTCCAGTCA -ACGGAACAAGAGGTCTTCGATCCA -ACGGAACAAGAGGTCTTCACGACA -ACGGAACAAGAGGTCTTCAGCTCA -ACGGAACAAGAGGTCTTCTCACGT -ACGGAACAAGAGGTCTTCCGTAGT -ACGGAACAAGAGGTCTTCGTCAGT -ACGGAACAAGAGGTCTTCGAAGGT -ACGGAACAAGAGGTCTTCAACCGT -ACGGAACAAGAGGTCTTCTTGTGC -ACGGAACAAGAGGTCTTCCTAAGC -ACGGAACAAGAGGTCTTCACTAGC -ACGGAACAAGAGGTCTTCAGATGC -ACGGAACAAGAGGTCTTCTGAAGG -ACGGAACAAGAGGTCTTCCAATGG -ACGGAACAAGAGGTCTTCATGAGG -ACGGAACAAGAGGTCTTCAATGGG -ACGGAACAAGAGGTCTTCTCCTGA -ACGGAACAAGAGGTCTTCTAGCGA -ACGGAACAAGAGGTCTTCCACAGA -ACGGAACAAGAGGTCTTCGCAAGA -ACGGAACAAGAGGTCTTCGGTTGA -ACGGAACAAGAGGTCTTCTCCGAT -ACGGAACAAGAGGTCTTCTGGCAT -ACGGAACAAGAGGTCTTCCGAGAT -ACGGAACAAGAGGTCTTCTACCAC -ACGGAACAAGAGGTCTTCCAGAAC -ACGGAACAAGAGGTCTTCGTCTAC -ACGGAACAAGAGGTCTTCACGTAC -ACGGAACAAGAGGTCTTCAGTGAC -ACGGAACAAGAGGTCTTCCTGTAG -ACGGAACAAGAGGTCTTCCCTAAG -ACGGAACAAGAGGTCTTCGTTCAG -ACGGAACAAGAGGTCTTCGCATAG -ACGGAACAAGAGGTCTTCGACAAG -ACGGAACAAGAGGTCTTCAAGCAG -ACGGAACAAGAGGTCTTCCGTCAA -ACGGAACAAGAGGTCTTCGCTGAA -ACGGAACAAGAGGTCTTCAGTACG -ACGGAACAAGAGGTCTTCATCCGA -ACGGAACAAGAGGTCTTCATGGGA -ACGGAACAAGAGGTCTTCGTGCAA -ACGGAACAAGAGGTCTTCGAGGAA -ACGGAACAAGAGGTCTTCCAGGTA -ACGGAACAAGAGGTCTTCGACTCT -ACGGAACAAGAGGTCTTCAGTCCT -ACGGAACAAGAGGTCTTCTAAGCC -ACGGAACAAGAGGTCTTCATAGCC -ACGGAACAAGAGGTCTTCTAACCG -ACGGAACAAGAGGTCTTCATGCCA -ACGGAACAAGAGCTCTCTGGAAAC -ACGGAACAAGAGCTCTCTAACACC -ACGGAACAAGAGCTCTCTATCGAG -ACGGAACAAGAGCTCTCTCTCCTT -ACGGAACAAGAGCTCTCTCCTGTT -ACGGAACAAGAGCTCTCTCGGTTT -ACGGAACAAGAGCTCTCTGTGGTT -ACGGAACAAGAGCTCTCTGCCTTT -ACGGAACAAGAGCTCTCTGGTCTT -ACGGAACAAGAGCTCTCTACGCTT -ACGGAACAAGAGCTCTCTAGCGTT -ACGGAACAAGAGCTCTCTTTCGTC -ACGGAACAAGAGCTCTCTTCTCTC -ACGGAACAAGAGCTCTCTTGGATC -ACGGAACAAGAGCTCTCTCACTTC -ACGGAACAAGAGCTCTCTGTACTC -ACGGAACAAGAGCTCTCTGATGTC -ACGGAACAAGAGCTCTCTACAGTC -ACGGAACAAGAGCTCTCTTTGCTG -ACGGAACAAGAGCTCTCTTCCATG -ACGGAACAAGAGCTCTCTTGTGTG -ACGGAACAAGAGCTCTCTCTAGTG -ACGGAACAAGAGCTCTCTCATCTG -ACGGAACAAGAGCTCTCTGAGTTG -ACGGAACAAGAGCTCTCTAGACTG -ACGGAACAAGAGCTCTCTTCGGTA -ACGGAACAAGAGCTCTCTTGCCTA -ACGGAACAAGAGCTCTCTCCACTA -ACGGAACAAGAGCTCTCTGGAGTA -ACGGAACAAGAGCTCTCTTCGTCT -ACGGAACAAGAGCTCTCTTGCACT -ACGGAACAAGAGCTCTCTCTGACT -ACGGAACAAGAGCTCTCTCAACCT -ACGGAACAAGAGCTCTCTGCTACT -ACGGAACAAGAGCTCTCTGGATCT -ACGGAACAAGAGCTCTCTAAGGCT -ACGGAACAAGAGCTCTCTTCAACC -ACGGAACAAGAGCTCTCTTGTTCC -ACGGAACAAGAGCTCTCTATTCCC -ACGGAACAAGAGCTCTCTTTCTCG -ACGGAACAAGAGCTCTCTTAGACG -ACGGAACAAGAGCTCTCTGTAACG -ACGGAACAAGAGCTCTCTACTTCG -ACGGAACAAGAGCTCTCTTACGCA -ACGGAACAAGAGCTCTCTCTTGCA -ACGGAACAAGAGCTCTCTCGAACA -ACGGAACAAGAGCTCTCTCAGTCA -ACGGAACAAGAGCTCTCTGATCCA -ACGGAACAAGAGCTCTCTACGACA -ACGGAACAAGAGCTCTCTAGCTCA -ACGGAACAAGAGCTCTCTTCACGT -ACGGAACAAGAGCTCTCTCGTAGT -ACGGAACAAGAGCTCTCTGTCAGT -ACGGAACAAGAGCTCTCTGAAGGT -ACGGAACAAGAGCTCTCTAACCGT -ACGGAACAAGAGCTCTCTTTGTGC -ACGGAACAAGAGCTCTCTCTAAGC -ACGGAACAAGAGCTCTCTACTAGC -ACGGAACAAGAGCTCTCTAGATGC -ACGGAACAAGAGCTCTCTTGAAGG -ACGGAACAAGAGCTCTCTCAATGG -ACGGAACAAGAGCTCTCTATGAGG -ACGGAACAAGAGCTCTCTAATGGG -ACGGAACAAGAGCTCTCTTCCTGA -ACGGAACAAGAGCTCTCTTAGCGA -ACGGAACAAGAGCTCTCTCACAGA -ACGGAACAAGAGCTCTCTGCAAGA -ACGGAACAAGAGCTCTCTGGTTGA -ACGGAACAAGAGCTCTCTTCCGAT -ACGGAACAAGAGCTCTCTTGGCAT -ACGGAACAAGAGCTCTCTCGAGAT -ACGGAACAAGAGCTCTCTTACCAC -ACGGAACAAGAGCTCTCTCAGAAC -ACGGAACAAGAGCTCTCTGTCTAC -ACGGAACAAGAGCTCTCTACGTAC -ACGGAACAAGAGCTCTCTAGTGAC -ACGGAACAAGAGCTCTCTCTGTAG -ACGGAACAAGAGCTCTCTCCTAAG -ACGGAACAAGAGCTCTCTGTTCAG -ACGGAACAAGAGCTCTCTGCATAG -ACGGAACAAGAGCTCTCTGACAAG -ACGGAACAAGAGCTCTCTAAGCAG -ACGGAACAAGAGCTCTCTCGTCAA -ACGGAACAAGAGCTCTCTGCTGAA -ACGGAACAAGAGCTCTCTAGTACG -ACGGAACAAGAGCTCTCTATCCGA -ACGGAACAAGAGCTCTCTATGGGA -ACGGAACAAGAGCTCTCTGTGCAA -ACGGAACAAGAGCTCTCTGAGGAA -ACGGAACAAGAGCTCTCTCAGGTA -ACGGAACAAGAGCTCTCTGACTCT -ACGGAACAAGAGCTCTCTAGTCCT -ACGGAACAAGAGCTCTCTTAAGCC -ACGGAACAAGAGCTCTCTATAGCC -ACGGAACAAGAGCTCTCTTAACCG -ACGGAACAAGAGCTCTCTATGCCA -ACGGAACAAGAGATCTGGGGAAAC -ACGGAACAAGAGATCTGGAACACC -ACGGAACAAGAGATCTGGATCGAG -ACGGAACAAGAGATCTGGCTCCTT -ACGGAACAAGAGATCTGGCCTGTT -ACGGAACAAGAGATCTGGCGGTTT -ACGGAACAAGAGATCTGGGTGGTT -ACGGAACAAGAGATCTGGGCCTTT -ACGGAACAAGAGATCTGGGGTCTT -ACGGAACAAGAGATCTGGACGCTT -ACGGAACAAGAGATCTGGAGCGTT -ACGGAACAAGAGATCTGGTTCGTC -ACGGAACAAGAGATCTGGTCTCTC -ACGGAACAAGAGATCTGGTGGATC -ACGGAACAAGAGATCTGGCACTTC -ACGGAACAAGAGATCTGGGTACTC -ACGGAACAAGAGATCTGGGATGTC -ACGGAACAAGAGATCTGGACAGTC -ACGGAACAAGAGATCTGGTTGCTG -ACGGAACAAGAGATCTGGTCCATG -ACGGAACAAGAGATCTGGTGTGTG -ACGGAACAAGAGATCTGGCTAGTG -ACGGAACAAGAGATCTGGCATCTG -ACGGAACAAGAGATCTGGGAGTTG -ACGGAACAAGAGATCTGGAGACTG -ACGGAACAAGAGATCTGGTCGGTA -ACGGAACAAGAGATCTGGTGCCTA -ACGGAACAAGAGATCTGGCCACTA -ACGGAACAAGAGATCTGGGGAGTA -ACGGAACAAGAGATCTGGTCGTCT -ACGGAACAAGAGATCTGGTGCACT -ACGGAACAAGAGATCTGGCTGACT -ACGGAACAAGAGATCTGGCAACCT -ACGGAACAAGAGATCTGGGCTACT -ACGGAACAAGAGATCTGGGGATCT -ACGGAACAAGAGATCTGGAAGGCT -ACGGAACAAGAGATCTGGTCAACC -ACGGAACAAGAGATCTGGTGTTCC -ACGGAACAAGAGATCTGGATTCCC -ACGGAACAAGAGATCTGGTTCTCG -ACGGAACAAGAGATCTGGTAGACG -ACGGAACAAGAGATCTGGGTAACG -ACGGAACAAGAGATCTGGACTTCG -ACGGAACAAGAGATCTGGTACGCA -ACGGAACAAGAGATCTGGCTTGCA -ACGGAACAAGAGATCTGGCGAACA -ACGGAACAAGAGATCTGGCAGTCA -ACGGAACAAGAGATCTGGGATCCA -ACGGAACAAGAGATCTGGACGACA -ACGGAACAAGAGATCTGGAGCTCA -ACGGAACAAGAGATCTGGTCACGT -ACGGAACAAGAGATCTGGCGTAGT -ACGGAACAAGAGATCTGGGTCAGT -ACGGAACAAGAGATCTGGGAAGGT -ACGGAACAAGAGATCTGGAACCGT -ACGGAACAAGAGATCTGGTTGTGC -ACGGAACAAGAGATCTGGCTAAGC -ACGGAACAAGAGATCTGGACTAGC -ACGGAACAAGAGATCTGGAGATGC -ACGGAACAAGAGATCTGGTGAAGG -ACGGAACAAGAGATCTGGCAATGG -ACGGAACAAGAGATCTGGATGAGG -ACGGAACAAGAGATCTGGAATGGG -ACGGAACAAGAGATCTGGTCCTGA -ACGGAACAAGAGATCTGGTAGCGA -ACGGAACAAGAGATCTGGCACAGA -ACGGAACAAGAGATCTGGGCAAGA -ACGGAACAAGAGATCTGGGGTTGA -ACGGAACAAGAGATCTGGTCCGAT -ACGGAACAAGAGATCTGGTGGCAT -ACGGAACAAGAGATCTGGCGAGAT -ACGGAACAAGAGATCTGGTACCAC -ACGGAACAAGAGATCTGGCAGAAC -ACGGAACAAGAGATCTGGGTCTAC -ACGGAACAAGAGATCTGGACGTAC -ACGGAACAAGAGATCTGGAGTGAC -ACGGAACAAGAGATCTGGCTGTAG -ACGGAACAAGAGATCTGGCCTAAG -ACGGAACAAGAGATCTGGGTTCAG -ACGGAACAAGAGATCTGGGCATAG -ACGGAACAAGAGATCTGGGACAAG -ACGGAACAAGAGATCTGGAAGCAG -ACGGAACAAGAGATCTGGCGTCAA -ACGGAACAAGAGATCTGGGCTGAA -ACGGAACAAGAGATCTGGAGTACG -ACGGAACAAGAGATCTGGATCCGA -ACGGAACAAGAGATCTGGATGGGA -ACGGAACAAGAGATCTGGGTGCAA -ACGGAACAAGAGATCTGGGAGGAA -ACGGAACAAGAGATCTGGCAGGTA -ACGGAACAAGAGATCTGGGACTCT -ACGGAACAAGAGATCTGGAGTCCT -ACGGAACAAGAGATCTGGTAAGCC -ACGGAACAAGAGATCTGGATAGCC -ACGGAACAAGAGATCTGGTAACCG -ACGGAACAAGAGATCTGGATGCCA -ACGGAACAAGAGTTCCACGGAAAC -ACGGAACAAGAGTTCCACAACACC -ACGGAACAAGAGTTCCACATCGAG -ACGGAACAAGAGTTCCACCTCCTT -ACGGAACAAGAGTTCCACCCTGTT -ACGGAACAAGAGTTCCACCGGTTT -ACGGAACAAGAGTTCCACGTGGTT -ACGGAACAAGAGTTCCACGCCTTT -ACGGAACAAGAGTTCCACGGTCTT -ACGGAACAAGAGTTCCACACGCTT -ACGGAACAAGAGTTCCACAGCGTT -ACGGAACAAGAGTTCCACTTCGTC -ACGGAACAAGAGTTCCACTCTCTC -ACGGAACAAGAGTTCCACTGGATC -ACGGAACAAGAGTTCCACCACTTC -ACGGAACAAGAGTTCCACGTACTC -ACGGAACAAGAGTTCCACGATGTC -ACGGAACAAGAGTTCCACACAGTC -ACGGAACAAGAGTTCCACTTGCTG -ACGGAACAAGAGTTCCACTCCATG -ACGGAACAAGAGTTCCACTGTGTG -ACGGAACAAGAGTTCCACCTAGTG -ACGGAACAAGAGTTCCACCATCTG -ACGGAACAAGAGTTCCACGAGTTG -ACGGAACAAGAGTTCCACAGACTG -ACGGAACAAGAGTTCCACTCGGTA -ACGGAACAAGAGTTCCACTGCCTA -ACGGAACAAGAGTTCCACCCACTA -ACGGAACAAGAGTTCCACGGAGTA -ACGGAACAAGAGTTCCACTCGTCT -ACGGAACAAGAGTTCCACTGCACT -ACGGAACAAGAGTTCCACCTGACT -ACGGAACAAGAGTTCCACCAACCT -ACGGAACAAGAGTTCCACGCTACT -ACGGAACAAGAGTTCCACGGATCT -ACGGAACAAGAGTTCCACAAGGCT -ACGGAACAAGAGTTCCACTCAACC -ACGGAACAAGAGTTCCACTGTTCC -ACGGAACAAGAGTTCCACATTCCC -ACGGAACAAGAGTTCCACTTCTCG -ACGGAACAAGAGTTCCACTAGACG -ACGGAACAAGAGTTCCACGTAACG -ACGGAACAAGAGTTCCACACTTCG -ACGGAACAAGAGTTCCACTACGCA -ACGGAACAAGAGTTCCACCTTGCA -ACGGAACAAGAGTTCCACCGAACA -ACGGAACAAGAGTTCCACCAGTCA -ACGGAACAAGAGTTCCACGATCCA -ACGGAACAAGAGTTCCACACGACA -ACGGAACAAGAGTTCCACAGCTCA -ACGGAACAAGAGTTCCACTCACGT -ACGGAACAAGAGTTCCACCGTAGT -ACGGAACAAGAGTTCCACGTCAGT -ACGGAACAAGAGTTCCACGAAGGT -ACGGAACAAGAGTTCCACAACCGT -ACGGAACAAGAGTTCCACTTGTGC -ACGGAACAAGAGTTCCACCTAAGC -ACGGAACAAGAGTTCCACACTAGC -ACGGAACAAGAGTTCCACAGATGC -ACGGAACAAGAGTTCCACTGAAGG -ACGGAACAAGAGTTCCACCAATGG -ACGGAACAAGAGTTCCACATGAGG -ACGGAACAAGAGTTCCACAATGGG -ACGGAACAAGAGTTCCACTCCTGA -ACGGAACAAGAGTTCCACTAGCGA -ACGGAACAAGAGTTCCACCACAGA -ACGGAACAAGAGTTCCACGCAAGA -ACGGAACAAGAGTTCCACGGTTGA -ACGGAACAAGAGTTCCACTCCGAT -ACGGAACAAGAGTTCCACTGGCAT -ACGGAACAAGAGTTCCACCGAGAT -ACGGAACAAGAGTTCCACTACCAC -ACGGAACAAGAGTTCCACCAGAAC -ACGGAACAAGAGTTCCACGTCTAC -ACGGAACAAGAGTTCCACACGTAC -ACGGAACAAGAGTTCCACAGTGAC -ACGGAACAAGAGTTCCACCTGTAG -ACGGAACAAGAGTTCCACCCTAAG -ACGGAACAAGAGTTCCACGTTCAG -ACGGAACAAGAGTTCCACGCATAG -ACGGAACAAGAGTTCCACGACAAG -ACGGAACAAGAGTTCCACAAGCAG -ACGGAACAAGAGTTCCACCGTCAA -ACGGAACAAGAGTTCCACGCTGAA -ACGGAACAAGAGTTCCACAGTACG -ACGGAACAAGAGTTCCACATCCGA -ACGGAACAAGAGTTCCACATGGGA -ACGGAACAAGAGTTCCACGTGCAA -ACGGAACAAGAGTTCCACGAGGAA -ACGGAACAAGAGTTCCACCAGGTA -ACGGAACAAGAGTTCCACGACTCT -ACGGAACAAGAGTTCCACAGTCCT -ACGGAACAAGAGTTCCACTAAGCC -ACGGAACAAGAGTTCCACATAGCC -ACGGAACAAGAGTTCCACTAACCG -ACGGAACAAGAGTTCCACATGCCA -ACGGAACAAGAGCTCGTAGGAAAC -ACGGAACAAGAGCTCGTAAACACC -ACGGAACAAGAGCTCGTAATCGAG -ACGGAACAAGAGCTCGTACTCCTT -ACGGAACAAGAGCTCGTACCTGTT -ACGGAACAAGAGCTCGTACGGTTT -ACGGAACAAGAGCTCGTAGTGGTT -ACGGAACAAGAGCTCGTAGCCTTT -ACGGAACAAGAGCTCGTAGGTCTT -ACGGAACAAGAGCTCGTAACGCTT -ACGGAACAAGAGCTCGTAAGCGTT -ACGGAACAAGAGCTCGTATTCGTC -ACGGAACAAGAGCTCGTATCTCTC -ACGGAACAAGAGCTCGTATGGATC -ACGGAACAAGAGCTCGTACACTTC -ACGGAACAAGAGCTCGTAGTACTC -ACGGAACAAGAGCTCGTAGATGTC -ACGGAACAAGAGCTCGTAACAGTC -ACGGAACAAGAGCTCGTATTGCTG -ACGGAACAAGAGCTCGTATCCATG -ACGGAACAAGAGCTCGTATGTGTG -ACGGAACAAGAGCTCGTACTAGTG -ACGGAACAAGAGCTCGTACATCTG -ACGGAACAAGAGCTCGTAGAGTTG -ACGGAACAAGAGCTCGTAAGACTG -ACGGAACAAGAGCTCGTATCGGTA -ACGGAACAAGAGCTCGTATGCCTA -ACGGAACAAGAGCTCGTACCACTA -ACGGAACAAGAGCTCGTAGGAGTA -ACGGAACAAGAGCTCGTATCGTCT -ACGGAACAAGAGCTCGTATGCACT -ACGGAACAAGAGCTCGTACTGACT -ACGGAACAAGAGCTCGTACAACCT -ACGGAACAAGAGCTCGTAGCTACT -ACGGAACAAGAGCTCGTAGGATCT -ACGGAACAAGAGCTCGTAAAGGCT -ACGGAACAAGAGCTCGTATCAACC -ACGGAACAAGAGCTCGTATGTTCC -ACGGAACAAGAGCTCGTAATTCCC -ACGGAACAAGAGCTCGTATTCTCG -ACGGAACAAGAGCTCGTATAGACG -ACGGAACAAGAGCTCGTAGTAACG -ACGGAACAAGAGCTCGTAACTTCG -ACGGAACAAGAGCTCGTATACGCA -ACGGAACAAGAGCTCGTACTTGCA -ACGGAACAAGAGCTCGTACGAACA -ACGGAACAAGAGCTCGTACAGTCA -ACGGAACAAGAGCTCGTAGATCCA -ACGGAACAAGAGCTCGTAACGACA -ACGGAACAAGAGCTCGTAAGCTCA -ACGGAACAAGAGCTCGTATCACGT -ACGGAACAAGAGCTCGTACGTAGT -ACGGAACAAGAGCTCGTAGTCAGT -ACGGAACAAGAGCTCGTAGAAGGT -ACGGAACAAGAGCTCGTAAACCGT -ACGGAACAAGAGCTCGTATTGTGC -ACGGAACAAGAGCTCGTACTAAGC -ACGGAACAAGAGCTCGTAACTAGC -ACGGAACAAGAGCTCGTAAGATGC -ACGGAACAAGAGCTCGTATGAAGG -ACGGAACAAGAGCTCGTACAATGG -ACGGAACAAGAGCTCGTAATGAGG -ACGGAACAAGAGCTCGTAAATGGG -ACGGAACAAGAGCTCGTATCCTGA -ACGGAACAAGAGCTCGTATAGCGA -ACGGAACAAGAGCTCGTACACAGA -ACGGAACAAGAGCTCGTAGCAAGA -ACGGAACAAGAGCTCGTAGGTTGA -ACGGAACAAGAGCTCGTATCCGAT -ACGGAACAAGAGCTCGTATGGCAT -ACGGAACAAGAGCTCGTACGAGAT -ACGGAACAAGAGCTCGTATACCAC -ACGGAACAAGAGCTCGTACAGAAC -ACGGAACAAGAGCTCGTAGTCTAC -ACGGAACAAGAGCTCGTAACGTAC -ACGGAACAAGAGCTCGTAAGTGAC -ACGGAACAAGAGCTCGTACTGTAG -ACGGAACAAGAGCTCGTACCTAAG -ACGGAACAAGAGCTCGTAGTTCAG -ACGGAACAAGAGCTCGTAGCATAG -ACGGAACAAGAGCTCGTAGACAAG -ACGGAACAAGAGCTCGTAAAGCAG -ACGGAACAAGAGCTCGTACGTCAA -ACGGAACAAGAGCTCGTAGCTGAA -ACGGAACAAGAGCTCGTAAGTACG -ACGGAACAAGAGCTCGTAATCCGA -ACGGAACAAGAGCTCGTAATGGGA -ACGGAACAAGAGCTCGTAGTGCAA -ACGGAACAAGAGCTCGTAGAGGAA -ACGGAACAAGAGCTCGTACAGGTA -ACGGAACAAGAGCTCGTAGACTCT -ACGGAACAAGAGCTCGTAAGTCCT -ACGGAACAAGAGCTCGTATAAGCC -ACGGAACAAGAGCTCGTAATAGCC -ACGGAACAAGAGCTCGTATAACCG -ACGGAACAAGAGCTCGTAATGCCA -ACGGAACAAGAGGTCGATGGAAAC -ACGGAACAAGAGGTCGATAACACC -ACGGAACAAGAGGTCGATATCGAG -ACGGAACAAGAGGTCGATCTCCTT -ACGGAACAAGAGGTCGATCCTGTT -ACGGAACAAGAGGTCGATCGGTTT -ACGGAACAAGAGGTCGATGTGGTT -ACGGAACAAGAGGTCGATGCCTTT -ACGGAACAAGAGGTCGATGGTCTT -ACGGAACAAGAGGTCGATACGCTT -ACGGAACAAGAGGTCGATAGCGTT -ACGGAACAAGAGGTCGATTTCGTC -ACGGAACAAGAGGTCGATTCTCTC -ACGGAACAAGAGGTCGATTGGATC -ACGGAACAAGAGGTCGATCACTTC -ACGGAACAAGAGGTCGATGTACTC -ACGGAACAAGAGGTCGATGATGTC -ACGGAACAAGAGGTCGATACAGTC -ACGGAACAAGAGGTCGATTTGCTG -ACGGAACAAGAGGTCGATTCCATG -ACGGAACAAGAGGTCGATTGTGTG -ACGGAACAAGAGGTCGATCTAGTG -ACGGAACAAGAGGTCGATCATCTG -ACGGAACAAGAGGTCGATGAGTTG -ACGGAACAAGAGGTCGATAGACTG -ACGGAACAAGAGGTCGATTCGGTA -ACGGAACAAGAGGTCGATTGCCTA -ACGGAACAAGAGGTCGATCCACTA -ACGGAACAAGAGGTCGATGGAGTA -ACGGAACAAGAGGTCGATTCGTCT -ACGGAACAAGAGGTCGATTGCACT -ACGGAACAAGAGGTCGATCTGACT -ACGGAACAAGAGGTCGATCAACCT -ACGGAACAAGAGGTCGATGCTACT -ACGGAACAAGAGGTCGATGGATCT -ACGGAACAAGAGGTCGATAAGGCT -ACGGAACAAGAGGTCGATTCAACC -ACGGAACAAGAGGTCGATTGTTCC -ACGGAACAAGAGGTCGATATTCCC -ACGGAACAAGAGGTCGATTTCTCG -ACGGAACAAGAGGTCGATTAGACG -ACGGAACAAGAGGTCGATGTAACG -ACGGAACAAGAGGTCGATACTTCG -ACGGAACAAGAGGTCGATTACGCA -ACGGAACAAGAGGTCGATCTTGCA -ACGGAACAAGAGGTCGATCGAACA -ACGGAACAAGAGGTCGATCAGTCA -ACGGAACAAGAGGTCGATGATCCA -ACGGAACAAGAGGTCGATACGACA -ACGGAACAAGAGGTCGATAGCTCA -ACGGAACAAGAGGTCGATTCACGT -ACGGAACAAGAGGTCGATCGTAGT -ACGGAACAAGAGGTCGATGTCAGT -ACGGAACAAGAGGTCGATGAAGGT -ACGGAACAAGAGGTCGATAACCGT -ACGGAACAAGAGGTCGATTTGTGC -ACGGAACAAGAGGTCGATCTAAGC -ACGGAACAAGAGGTCGATACTAGC -ACGGAACAAGAGGTCGATAGATGC -ACGGAACAAGAGGTCGATTGAAGG -ACGGAACAAGAGGTCGATCAATGG -ACGGAACAAGAGGTCGATATGAGG -ACGGAACAAGAGGTCGATAATGGG -ACGGAACAAGAGGTCGATTCCTGA -ACGGAACAAGAGGTCGATTAGCGA -ACGGAACAAGAGGTCGATCACAGA -ACGGAACAAGAGGTCGATGCAAGA -ACGGAACAAGAGGTCGATGGTTGA -ACGGAACAAGAGGTCGATTCCGAT -ACGGAACAAGAGGTCGATTGGCAT -ACGGAACAAGAGGTCGATCGAGAT -ACGGAACAAGAGGTCGATTACCAC -ACGGAACAAGAGGTCGATCAGAAC -ACGGAACAAGAGGTCGATGTCTAC -ACGGAACAAGAGGTCGATACGTAC -ACGGAACAAGAGGTCGATAGTGAC -ACGGAACAAGAGGTCGATCTGTAG -ACGGAACAAGAGGTCGATCCTAAG -ACGGAACAAGAGGTCGATGTTCAG -ACGGAACAAGAGGTCGATGCATAG -ACGGAACAAGAGGTCGATGACAAG -ACGGAACAAGAGGTCGATAAGCAG -ACGGAACAAGAGGTCGATCGTCAA -ACGGAACAAGAGGTCGATGCTGAA -ACGGAACAAGAGGTCGATAGTACG -ACGGAACAAGAGGTCGATATCCGA -ACGGAACAAGAGGTCGATATGGGA -ACGGAACAAGAGGTCGATGTGCAA -ACGGAACAAGAGGTCGATGAGGAA -ACGGAACAAGAGGTCGATCAGGTA -ACGGAACAAGAGGTCGATGACTCT -ACGGAACAAGAGGTCGATAGTCCT -ACGGAACAAGAGGTCGATTAAGCC -ACGGAACAAGAGGTCGATATAGCC -ACGGAACAAGAGGTCGATTAACCG -ACGGAACAAGAGGTCGATATGCCA -ACGGAACAAGAGGTCACAGGAAAC -ACGGAACAAGAGGTCACAAACACC -ACGGAACAAGAGGTCACAATCGAG -ACGGAACAAGAGGTCACACTCCTT -ACGGAACAAGAGGTCACACCTGTT -ACGGAACAAGAGGTCACACGGTTT -ACGGAACAAGAGGTCACAGTGGTT -ACGGAACAAGAGGTCACAGCCTTT -ACGGAACAAGAGGTCACAGGTCTT -ACGGAACAAGAGGTCACAACGCTT -ACGGAACAAGAGGTCACAAGCGTT -ACGGAACAAGAGGTCACATTCGTC -ACGGAACAAGAGGTCACATCTCTC -ACGGAACAAGAGGTCACATGGATC -ACGGAACAAGAGGTCACACACTTC -ACGGAACAAGAGGTCACAGTACTC -ACGGAACAAGAGGTCACAGATGTC -ACGGAACAAGAGGTCACAACAGTC -ACGGAACAAGAGGTCACATTGCTG -ACGGAACAAGAGGTCACATCCATG -ACGGAACAAGAGGTCACATGTGTG -ACGGAACAAGAGGTCACACTAGTG -ACGGAACAAGAGGTCACACATCTG -ACGGAACAAGAGGTCACAGAGTTG -ACGGAACAAGAGGTCACAAGACTG -ACGGAACAAGAGGTCACATCGGTA -ACGGAACAAGAGGTCACATGCCTA -ACGGAACAAGAGGTCACACCACTA -ACGGAACAAGAGGTCACAGGAGTA -ACGGAACAAGAGGTCACATCGTCT -ACGGAACAAGAGGTCACATGCACT -ACGGAACAAGAGGTCACACTGACT -ACGGAACAAGAGGTCACACAACCT -ACGGAACAAGAGGTCACAGCTACT -ACGGAACAAGAGGTCACAGGATCT -ACGGAACAAGAGGTCACAAAGGCT -ACGGAACAAGAGGTCACATCAACC -ACGGAACAAGAGGTCACATGTTCC -ACGGAACAAGAGGTCACAATTCCC -ACGGAACAAGAGGTCACATTCTCG -ACGGAACAAGAGGTCACATAGACG -ACGGAACAAGAGGTCACAGTAACG -ACGGAACAAGAGGTCACAACTTCG -ACGGAACAAGAGGTCACATACGCA -ACGGAACAAGAGGTCACACTTGCA -ACGGAACAAGAGGTCACACGAACA -ACGGAACAAGAGGTCACACAGTCA -ACGGAACAAGAGGTCACAGATCCA -ACGGAACAAGAGGTCACAACGACA -ACGGAACAAGAGGTCACAAGCTCA -ACGGAACAAGAGGTCACATCACGT -ACGGAACAAGAGGTCACACGTAGT -ACGGAACAAGAGGTCACAGTCAGT -ACGGAACAAGAGGTCACAGAAGGT -ACGGAACAAGAGGTCACAAACCGT -ACGGAACAAGAGGTCACATTGTGC -ACGGAACAAGAGGTCACACTAAGC -ACGGAACAAGAGGTCACAACTAGC -ACGGAACAAGAGGTCACAAGATGC -ACGGAACAAGAGGTCACATGAAGG -ACGGAACAAGAGGTCACACAATGG -ACGGAACAAGAGGTCACAATGAGG -ACGGAACAAGAGGTCACAAATGGG -ACGGAACAAGAGGTCACATCCTGA -ACGGAACAAGAGGTCACATAGCGA -ACGGAACAAGAGGTCACACACAGA -ACGGAACAAGAGGTCACAGCAAGA -ACGGAACAAGAGGTCACAGGTTGA -ACGGAACAAGAGGTCACATCCGAT -ACGGAACAAGAGGTCACATGGCAT -ACGGAACAAGAGGTCACACGAGAT -ACGGAACAAGAGGTCACATACCAC -ACGGAACAAGAGGTCACACAGAAC -ACGGAACAAGAGGTCACAGTCTAC -ACGGAACAAGAGGTCACAACGTAC -ACGGAACAAGAGGTCACAAGTGAC -ACGGAACAAGAGGTCACACTGTAG -ACGGAACAAGAGGTCACACCTAAG -ACGGAACAAGAGGTCACAGTTCAG -ACGGAACAAGAGGTCACAGCATAG -ACGGAACAAGAGGTCACAGACAAG -ACGGAACAAGAGGTCACAAAGCAG -ACGGAACAAGAGGTCACACGTCAA -ACGGAACAAGAGGTCACAGCTGAA -ACGGAACAAGAGGTCACAAGTACG -ACGGAACAAGAGGTCACAATCCGA -ACGGAACAAGAGGTCACAATGGGA -ACGGAACAAGAGGTCACAGTGCAA -ACGGAACAAGAGGTCACAGAGGAA -ACGGAACAAGAGGTCACACAGGTA -ACGGAACAAGAGGTCACAGACTCT -ACGGAACAAGAGGTCACAAGTCCT -ACGGAACAAGAGGTCACATAAGCC -ACGGAACAAGAGGTCACAATAGCC -ACGGAACAAGAGGTCACATAACCG -ACGGAACAAGAGGTCACAATGCCA -ACGGAACAAGAGCTGTTGGGAAAC -ACGGAACAAGAGCTGTTGAACACC -ACGGAACAAGAGCTGTTGATCGAG -ACGGAACAAGAGCTGTTGCTCCTT -ACGGAACAAGAGCTGTTGCCTGTT -ACGGAACAAGAGCTGTTGCGGTTT -ACGGAACAAGAGCTGTTGGTGGTT -ACGGAACAAGAGCTGTTGGCCTTT -ACGGAACAAGAGCTGTTGGGTCTT -ACGGAACAAGAGCTGTTGACGCTT -ACGGAACAAGAGCTGTTGAGCGTT -ACGGAACAAGAGCTGTTGTTCGTC -ACGGAACAAGAGCTGTTGTCTCTC -ACGGAACAAGAGCTGTTGTGGATC -ACGGAACAAGAGCTGTTGCACTTC -ACGGAACAAGAGCTGTTGGTACTC -ACGGAACAAGAGCTGTTGGATGTC -ACGGAACAAGAGCTGTTGACAGTC -ACGGAACAAGAGCTGTTGTTGCTG -ACGGAACAAGAGCTGTTGTCCATG -ACGGAACAAGAGCTGTTGTGTGTG -ACGGAACAAGAGCTGTTGCTAGTG -ACGGAACAAGAGCTGTTGCATCTG -ACGGAACAAGAGCTGTTGGAGTTG -ACGGAACAAGAGCTGTTGAGACTG -ACGGAACAAGAGCTGTTGTCGGTA -ACGGAACAAGAGCTGTTGTGCCTA -ACGGAACAAGAGCTGTTGCCACTA -ACGGAACAAGAGCTGTTGGGAGTA -ACGGAACAAGAGCTGTTGTCGTCT -ACGGAACAAGAGCTGTTGTGCACT -ACGGAACAAGAGCTGTTGCTGACT -ACGGAACAAGAGCTGTTGCAACCT -ACGGAACAAGAGCTGTTGGCTACT -ACGGAACAAGAGCTGTTGGGATCT -ACGGAACAAGAGCTGTTGAAGGCT -ACGGAACAAGAGCTGTTGTCAACC -ACGGAACAAGAGCTGTTGTGTTCC -ACGGAACAAGAGCTGTTGATTCCC -ACGGAACAAGAGCTGTTGTTCTCG -ACGGAACAAGAGCTGTTGTAGACG -ACGGAACAAGAGCTGTTGGTAACG -ACGGAACAAGAGCTGTTGACTTCG -ACGGAACAAGAGCTGTTGTACGCA -ACGGAACAAGAGCTGTTGCTTGCA -ACGGAACAAGAGCTGTTGCGAACA -ACGGAACAAGAGCTGTTGCAGTCA -ACGGAACAAGAGCTGTTGGATCCA -ACGGAACAAGAGCTGTTGACGACA -ACGGAACAAGAGCTGTTGAGCTCA -ACGGAACAAGAGCTGTTGTCACGT -ACGGAACAAGAGCTGTTGCGTAGT -ACGGAACAAGAGCTGTTGGTCAGT -ACGGAACAAGAGCTGTTGGAAGGT -ACGGAACAAGAGCTGTTGAACCGT -ACGGAACAAGAGCTGTTGTTGTGC -ACGGAACAAGAGCTGTTGCTAAGC -ACGGAACAAGAGCTGTTGACTAGC -ACGGAACAAGAGCTGTTGAGATGC -ACGGAACAAGAGCTGTTGTGAAGG -ACGGAACAAGAGCTGTTGCAATGG -ACGGAACAAGAGCTGTTGATGAGG -ACGGAACAAGAGCTGTTGAATGGG -ACGGAACAAGAGCTGTTGTCCTGA -ACGGAACAAGAGCTGTTGTAGCGA -ACGGAACAAGAGCTGTTGCACAGA -ACGGAACAAGAGCTGTTGGCAAGA -ACGGAACAAGAGCTGTTGGGTTGA -ACGGAACAAGAGCTGTTGTCCGAT -ACGGAACAAGAGCTGTTGTGGCAT -ACGGAACAAGAGCTGTTGCGAGAT -ACGGAACAAGAGCTGTTGTACCAC -ACGGAACAAGAGCTGTTGCAGAAC -ACGGAACAAGAGCTGTTGGTCTAC -ACGGAACAAGAGCTGTTGACGTAC -ACGGAACAAGAGCTGTTGAGTGAC -ACGGAACAAGAGCTGTTGCTGTAG -ACGGAACAAGAGCTGTTGCCTAAG -ACGGAACAAGAGCTGTTGGTTCAG -ACGGAACAAGAGCTGTTGGCATAG -ACGGAACAAGAGCTGTTGGACAAG -ACGGAACAAGAGCTGTTGAAGCAG -ACGGAACAAGAGCTGTTGCGTCAA -ACGGAACAAGAGCTGTTGGCTGAA -ACGGAACAAGAGCTGTTGAGTACG -ACGGAACAAGAGCTGTTGATCCGA -ACGGAACAAGAGCTGTTGATGGGA -ACGGAACAAGAGCTGTTGGTGCAA -ACGGAACAAGAGCTGTTGGAGGAA -ACGGAACAAGAGCTGTTGCAGGTA -ACGGAACAAGAGCTGTTGGACTCT -ACGGAACAAGAGCTGTTGAGTCCT -ACGGAACAAGAGCTGTTGTAAGCC -ACGGAACAAGAGCTGTTGATAGCC -ACGGAACAAGAGCTGTTGTAACCG -ACGGAACAAGAGCTGTTGATGCCA -ACGGAACAAGAGATGTCCGGAAAC -ACGGAACAAGAGATGTCCAACACC -ACGGAACAAGAGATGTCCATCGAG -ACGGAACAAGAGATGTCCCTCCTT -ACGGAACAAGAGATGTCCCCTGTT -ACGGAACAAGAGATGTCCCGGTTT -ACGGAACAAGAGATGTCCGTGGTT -ACGGAACAAGAGATGTCCGCCTTT -ACGGAACAAGAGATGTCCGGTCTT -ACGGAACAAGAGATGTCCACGCTT -ACGGAACAAGAGATGTCCAGCGTT -ACGGAACAAGAGATGTCCTTCGTC -ACGGAACAAGAGATGTCCTCTCTC -ACGGAACAAGAGATGTCCTGGATC -ACGGAACAAGAGATGTCCCACTTC -ACGGAACAAGAGATGTCCGTACTC -ACGGAACAAGAGATGTCCGATGTC -ACGGAACAAGAGATGTCCACAGTC -ACGGAACAAGAGATGTCCTTGCTG -ACGGAACAAGAGATGTCCTCCATG -ACGGAACAAGAGATGTCCTGTGTG -ACGGAACAAGAGATGTCCCTAGTG -ACGGAACAAGAGATGTCCCATCTG -ACGGAACAAGAGATGTCCGAGTTG -ACGGAACAAGAGATGTCCAGACTG -ACGGAACAAGAGATGTCCTCGGTA -ACGGAACAAGAGATGTCCTGCCTA -ACGGAACAAGAGATGTCCCCACTA -ACGGAACAAGAGATGTCCGGAGTA -ACGGAACAAGAGATGTCCTCGTCT -ACGGAACAAGAGATGTCCTGCACT -ACGGAACAAGAGATGTCCCTGACT -ACGGAACAAGAGATGTCCCAACCT -ACGGAACAAGAGATGTCCGCTACT -ACGGAACAAGAGATGTCCGGATCT -ACGGAACAAGAGATGTCCAAGGCT -ACGGAACAAGAGATGTCCTCAACC -ACGGAACAAGAGATGTCCTGTTCC -ACGGAACAAGAGATGTCCATTCCC -ACGGAACAAGAGATGTCCTTCTCG -ACGGAACAAGAGATGTCCTAGACG -ACGGAACAAGAGATGTCCGTAACG -ACGGAACAAGAGATGTCCACTTCG -ACGGAACAAGAGATGTCCTACGCA -ACGGAACAAGAGATGTCCCTTGCA -ACGGAACAAGAGATGTCCCGAACA -ACGGAACAAGAGATGTCCCAGTCA -ACGGAACAAGAGATGTCCGATCCA -ACGGAACAAGAGATGTCCACGACA -ACGGAACAAGAGATGTCCAGCTCA -ACGGAACAAGAGATGTCCTCACGT -ACGGAACAAGAGATGTCCCGTAGT -ACGGAACAAGAGATGTCCGTCAGT -ACGGAACAAGAGATGTCCGAAGGT -ACGGAACAAGAGATGTCCAACCGT -ACGGAACAAGAGATGTCCTTGTGC -ACGGAACAAGAGATGTCCCTAAGC -ACGGAACAAGAGATGTCCACTAGC -ACGGAACAAGAGATGTCCAGATGC -ACGGAACAAGAGATGTCCTGAAGG -ACGGAACAAGAGATGTCCCAATGG -ACGGAACAAGAGATGTCCATGAGG -ACGGAACAAGAGATGTCCAATGGG -ACGGAACAAGAGATGTCCTCCTGA -ACGGAACAAGAGATGTCCTAGCGA -ACGGAACAAGAGATGTCCCACAGA -ACGGAACAAGAGATGTCCGCAAGA -ACGGAACAAGAGATGTCCGGTTGA -ACGGAACAAGAGATGTCCTCCGAT -ACGGAACAAGAGATGTCCTGGCAT -ACGGAACAAGAGATGTCCCGAGAT -ACGGAACAAGAGATGTCCTACCAC -ACGGAACAAGAGATGTCCCAGAAC -ACGGAACAAGAGATGTCCGTCTAC -ACGGAACAAGAGATGTCCACGTAC -ACGGAACAAGAGATGTCCAGTGAC -ACGGAACAAGAGATGTCCCTGTAG -ACGGAACAAGAGATGTCCCCTAAG -ACGGAACAAGAGATGTCCGTTCAG -ACGGAACAAGAGATGTCCGCATAG -ACGGAACAAGAGATGTCCGACAAG -ACGGAACAAGAGATGTCCAAGCAG -ACGGAACAAGAGATGTCCCGTCAA -ACGGAACAAGAGATGTCCGCTGAA -ACGGAACAAGAGATGTCCAGTACG -ACGGAACAAGAGATGTCCATCCGA -ACGGAACAAGAGATGTCCATGGGA -ACGGAACAAGAGATGTCCGTGCAA -ACGGAACAAGAGATGTCCGAGGAA -ACGGAACAAGAGATGTCCCAGGTA -ACGGAACAAGAGATGTCCGACTCT -ACGGAACAAGAGATGTCCAGTCCT -ACGGAACAAGAGATGTCCTAAGCC -ACGGAACAAGAGATGTCCATAGCC -ACGGAACAAGAGATGTCCTAACCG -ACGGAACAAGAGATGTCCATGCCA -ACGGAACAAGAGGTGTGTGGAAAC -ACGGAACAAGAGGTGTGTAACACC -ACGGAACAAGAGGTGTGTATCGAG -ACGGAACAAGAGGTGTGTCTCCTT -ACGGAACAAGAGGTGTGTCCTGTT -ACGGAACAAGAGGTGTGTCGGTTT -ACGGAACAAGAGGTGTGTGTGGTT -ACGGAACAAGAGGTGTGTGCCTTT -ACGGAACAAGAGGTGTGTGGTCTT -ACGGAACAAGAGGTGTGTACGCTT -ACGGAACAAGAGGTGTGTAGCGTT -ACGGAACAAGAGGTGTGTTTCGTC -ACGGAACAAGAGGTGTGTTCTCTC -ACGGAACAAGAGGTGTGTTGGATC -ACGGAACAAGAGGTGTGTCACTTC -ACGGAACAAGAGGTGTGTGTACTC -ACGGAACAAGAGGTGTGTGATGTC -ACGGAACAAGAGGTGTGTACAGTC -ACGGAACAAGAGGTGTGTTTGCTG -ACGGAACAAGAGGTGTGTTCCATG -ACGGAACAAGAGGTGTGTTGTGTG -ACGGAACAAGAGGTGTGTCTAGTG -ACGGAACAAGAGGTGTGTCATCTG -ACGGAACAAGAGGTGTGTGAGTTG -ACGGAACAAGAGGTGTGTAGACTG -ACGGAACAAGAGGTGTGTTCGGTA -ACGGAACAAGAGGTGTGTTGCCTA -ACGGAACAAGAGGTGTGTCCACTA -ACGGAACAAGAGGTGTGTGGAGTA -ACGGAACAAGAGGTGTGTTCGTCT -ACGGAACAAGAGGTGTGTTGCACT -ACGGAACAAGAGGTGTGTCTGACT -ACGGAACAAGAGGTGTGTCAACCT -ACGGAACAAGAGGTGTGTGCTACT -ACGGAACAAGAGGTGTGTGGATCT -ACGGAACAAGAGGTGTGTAAGGCT -ACGGAACAAGAGGTGTGTTCAACC -ACGGAACAAGAGGTGTGTTGTTCC -ACGGAACAAGAGGTGTGTATTCCC -ACGGAACAAGAGGTGTGTTTCTCG -ACGGAACAAGAGGTGTGTTAGACG -ACGGAACAAGAGGTGTGTGTAACG -ACGGAACAAGAGGTGTGTACTTCG -ACGGAACAAGAGGTGTGTTACGCA -ACGGAACAAGAGGTGTGTCTTGCA -ACGGAACAAGAGGTGTGTCGAACA -ACGGAACAAGAGGTGTGTCAGTCA -ACGGAACAAGAGGTGTGTGATCCA -ACGGAACAAGAGGTGTGTACGACA -ACGGAACAAGAGGTGTGTAGCTCA -ACGGAACAAGAGGTGTGTTCACGT -ACGGAACAAGAGGTGTGTCGTAGT -ACGGAACAAGAGGTGTGTGTCAGT -ACGGAACAAGAGGTGTGTGAAGGT -ACGGAACAAGAGGTGTGTAACCGT -ACGGAACAAGAGGTGTGTTTGTGC -ACGGAACAAGAGGTGTGTCTAAGC -ACGGAACAAGAGGTGTGTACTAGC -ACGGAACAAGAGGTGTGTAGATGC -ACGGAACAAGAGGTGTGTTGAAGG -ACGGAACAAGAGGTGTGTCAATGG -ACGGAACAAGAGGTGTGTATGAGG -ACGGAACAAGAGGTGTGTAATGGG -ACGGAACAAGAGGTGTGTTCCTGA -ACGGAACAAGAGGTGTGTTAGCGA -ACGGAACAAGAGGTGTGTCACAGA -ACGGAACAAGAGGTGTGTGCAAGA -ACGGAACAAGAGGTGTGTGGTTGA -ACGGAACAAGAGGTGTGTTCCGAT -ACGGAACAAGAGGTGTGTTGGCAT -ACGGAACAAGAGGTGTGTCGAGAT -ACGGAACAAGAGGTGTGTTACCAC -ACGGAACAAGAGGTGTGTCAGAAC -ACGGAACAAGAGGTGTGTGTCTAC -ACGGAACAAGAGGTGTGTACGTAC -ACGGAACAAGAGGTGTGTAGTGAC -ACGGAACAAGAGGTGTGTCTGTAG -ACGGAACAAGAGGTGTGTCCTAAG -ACGGAACAAGAGGTGTGTGTTCAG -ACGGAACAAGAGGTGTGTGCATAG -ACGGAACAAGAGGTGTGTGACAAG -ACGGAACAAGAGGTGTGTAAGCAG -ACGGAACAAGAGGTGTGTCGTCAA -ACGGAACAAGAGGTGTGTGCTGAA -ACGGAACAAGAGGTGTGTAGTACG -ACGGAACAAGAGGTGTGTATCCGA -ACGGAACAAGAGGTGTGTATGGGA -ACGGAACAAGAGGTGTGTGTGCAA -ACGGAACAAGAGGTGTGTGAGGAA -ACGGAACAAGAGGTGTGTCAGGTA -ACGGAACAAGAGGTGTGTGACTCT -ACGGAACAAGAGGTGTGTAGTCCT -ACGGAACAAGAGGTGTGTTAAGCC -ACGGAACAAGAGGTGTGTATAGCC -ACGGAACAAGAGGTGTGTTAACCG -ACGGAACAAGAGGTGTGTATGCCA -ACGGAACAAGAGGTGCTAGGAAAC -ACGGAACAAGAGGTGCTAAACACC -ACGGAACAAGAGGTGCTAATCGAG -ACGGAACAAGAGGTGCTACTCCTT -ACGGAACAAGAGGTGCTACCTGTT -ACGGAACAAGAGGTGCTACGGTTT -ACGGAACAAGAGGTGCTAGTGGTT -ACGGAACAAGAGGTGCTAGCCTTT -ACGGAACAAGAGGTGCTAGGTCTT -ACGGAACAAGAGGTGCTAACGCTT -ACGGAACAAGAGGTGCTAAGCGTT -ACGGAACAAGAGGTGCTATTCGTC -ACGGAACAAGAGGTGCTATCTCTC -ACGGAACAAGAGGTGCTATGGATC -ACGGAACAAGAGGTGCTACACTTC -ACGGAACAAGAGGTGCTAGTACTC -ACGGAACAAGAGGTGCTAGATGTC -ACGGAACAAGAGGTGCTAACAGTC -ACGGAACAAGAGGTGCTATTGCTG -ACGGAACAAGAGGTGCTATCCATG -ACGGAACAAGAGGTGCTATGTGTG -ACGGAACAAGAGGTGCTACTAGTG -ACGGAACAAGAGGTGCTACATCTG -ACGGAACAAGAGGTGCTAGAGTTG -ACGGAACAAGAGGTGCTAAGACTG -ACGGAACAAGAGGTGCTATCGGTA -ACGGAACAAGAGGTGCTATGCCTA -ACGGAACAAGAGGTGCTACCACTA -ACGGAACAAGAGGTGCTAGGAGTA -ACGGAACAAGAGGTGCTATCGTCT -ACGGAACAAGAGGTGCTATGCACT -ACGGAACAAGAGGTGCTACTGACT -ACGGAACAAGAGGTGCTACAACCT -ACGGAACAAGAGGTGCTAGCTACT -ACGGAACAAGAGGTGCTAGGATCT -ACGGAACAAGAGGTGCTAAAGGCT -ACGGAACAAGAGGTGCTATCAACC -ACGGAACAAGAGGTGCTATGTTCC -ACGGAACAAGAGGTGCTAATTCCC -ACGGAACAAGAGGTGCTATTCTCG -ACGGAACAAGAGGTGCTATAGACG -ACGGAACAAGAGGTGCTAGTAACG -ACGGAACAAGAGGTGCTAACTTCG -ACGGAACAAGAGGTGCTATACGCA -ACGGAACAAGAGGTGCTACTTGCA -ACGGAACAAGAGGTGCTACGAACA -ACGGAACAAGAGGTGCTACAGTCA -ACGGAACAAGAGGTGCTAGATCCA -ACGGAACAAGAGGTGCTAACGACA -ACGGAACAAGAGGTGCTAAGCTCA -ACGGAACAAGAGGTGCTATCACGT -ACGGAACAAGAGGTGCTACGTAGT -ACGGAACAAGAGGTGCTAGTCAGT -ACGGAACAAGAGGTGCTAGAAGGT -ACGGAACAAGAGGTGCTAAACCGT -ACGGAACAAGAGGTGCTATTGTGC -ACGGAACAAGAGGTGCTACTAAGC -ACGGAACAAGAGGTGCTAACTAGC -ACGGAACAAGAGGTGCTAAGATGC -ACGGAACAAGAGGTGCTATGAAGG -ACGGAACAAGAGGTGCTACAATGG -ACGGAACAAGAGGTGCTAATGAGG -ACGGAACAAGAGGTGCTAAATGGG -ACGGAACAAGAGGTGCTATCCTGA -ACGGAACAAGAGGTGCTATAGCGA -ACGGAACAAGAGGTGCTACACAGA -ACGGAACAAGAGGTGCTAGCAAGA -ACGGAACAAGAGGTGCTAGGTTGA -ACGGAACAAGAGGTGCTATCCGAT -ACGGAACAAGAGGTGCTATGGCAT -ACGGAACAAGAGGTGCTACGAGAT -ACGGAACAAGAGGTGCTATACCAC -ACGGAACAAGAGGTGCTACAGAAC -ACGGAACAAGAGGTGCTAGTCTAC -ACGGAACAAGAGGTGCTAACGTAC -ACGGAACAAGAGGTGCTAAGTGAC -ACGGAACAAGAGGTGCTACTGTAG -ACGGAACAAGAGGTGCTACCTAAG -ACGGAACAAGAGGTGCTAGTTCAG -ACGGAACAAGAGGTGCTAGCATAG -ACGGAACAAGAGGTGCTAGACAAG -ACGGAACAAGAGGTGCTAAAGCAG -ACGGAACAAGAGGTGCTACGTCAA -ACGGAACAAGAGGTGCTAGCTGAA -ACGGAACAAGAGGTGCTAAGTACG -ACGGAACAAGAGGTGCTAATCCGA -ACGGAACAAGAGGTGCTAATGGGA -ACGGAACAAGAGGTGCTAGTGCAA -ACGGAACAAGAGGTGCTAGAGGAA -ACGGAACAAGAGGTGCTACAGGTA -ACGGAACAAGAGGTGCTAGACTCT -ACGGAACAAGAGGTGCTAAGTCCT -ACGGAACAAGAGGTGCTATAAGCC -ACGGAACAAGAGGTGCTAATAGCC -ACGGAACAAGAGGTGCTATAACCG -ACGGAACAAGAGGTGCTAATGCCA -ACGGAACAAGAGCTGCATGGAAAC -ACGGAACAAGAGCTGCATAACACC -ACGGAACAAGAGCTGCATATCGAG -ACGGAACAAGAGCTGCATCTCCTT -ACGGAACAAGAGCTGCATCCTGTT -ACGGAACAAGAGCTGCATCGGTTT -ACGGAACAAGAGCTGCATGTGGTT -ACGGAACAAGAGCTGCATGCCTTT -ACGGAACAAGAGCTGCATGGTCTT -ACGGAACAAGAGCTGCATACGCTT -ACGGAACAAGAGCTGCATAGCGTT -ACGGAACAAGAGCTGCATTTCGTC -ACGGAACAAGAGCTGCATTCTCTC -ACGGAACAAGAGCTGCATTGGATC -ACGGAACAAGAGCTGCATCACTTC -ACGGAACAAGAGCTGCATGTACTC -ACGGAACAAGAGCTGCATGATGTC -ACGGAACAAGAGCTGCATACAGTC -ACGGAACAAGAGCTGCATTTGCTG -ACGGAACAAGAGCTGCATTCCATG -ACGGAACAAGAGCTGCATTGTGTG -ACGGAACAAGAGCTGCATCTAGTG -ACGGAACAAGAGCTGCATCATCTG -ACGGAACAAGAGCTGCATGAGTTG -ACGGAACAAGAGCTGCATAGACTG -ACGGAACAAGAGCTGCATTCGGTA -ACGGAACAAGAGCTGCATTGCCTA -ACGGAACAAGAGCTGCATCCACTA -ACGGAACAAGAGCTGCATGGAGTA -ACGGAACAAGAGCTGCATTCGTCT -ACGGAACAAGAGCTGCATTGCACT -ACGGAACAAGAGCTGCATCTGACT -ACGGAACAAGAGCTGCATCAACCT -ACGGAACAAGAGCTGCATGCTACT -ACGGAACAAGAGCTGCATGGATCT -ACGGAACAAGAGCTGCATAAGGCT -ACGGAACAAGAGCTGCATTCAACC -ACGGAACAAGAGCTGCATTGTTCC -ACGGAACAAGAGCTGCATATTCCC -ACGGAACAAGAGCTGCATTTCTCG -ACGGAACAAGAGCTGCATTAGACG -ACGGAACAAGAGCTGCATGTAACG -ACGGAACAAGAGCTGCATACTTCG -ACGGAACAAGAGCTGCATTACGCA -ACGGAACAAGAGCTGCATCTTGCA -ACGGAACAAGAGCTGCATCGAACA -ACGGAACAAGAGCTGCATCAGTCA -ACGGAACAAGAGCTGCATGATCCA -ACGGAACAAGAGCTGCATACGACA -ACGGAACAAGAGCTGCATAGCTCA -ACGGAACAAGAGCTGCATTCACGT -ACGGAACAAGAGCTGCATCGTAGT -ACGGAACAAGAGCTGCATGTCAGT -ACGGAACAAGAGCTGCATGAAGGT -ACGGAACAAGAGCTGCATAACCGT -ACGGAACAAGAGCTGCATTTGTGC -ACGGAACAAGAGCTGCATCTAAGC -ACGGAACAAGAGCTGCATACTAGC -ACGGAACAAGAGCTGCATAGATGC -ACGGAACAAGAGCTGCATTGAAGG -ACGGAACAAGAGCTGCATCAATGG -ACGGAACAAGAGCTGCATATGAGG -ACGGAACAAGAGCTGCATAATGGG -ACGGAACAAGAGCTGCATTCCTGA -ACGGAACAAGAGCTGCATTAGCGA -ACGGAACAAGAGCTGCATCACAGA -ACGGAACAAGAGCTGCATGCAAGA -ACGGAACAAGAGCTGCATGGTTGA -ACGGAACAAGAGCTGCATTCCGAT -ACGGAACAAGAGCTGCATTGGCAT -ACGGAACAAGAGCTGCATCGAGAT -ACGGAACAAGAGCTGCATTACCAC -ACGGAACAAGAGCTGCATCAGAAC -ACGGAACAAGAGCTGCATGTCTAC -ACGGAACAAGAGCTGCATACGTAC -ACGGAACAAGAGCTGCATAGTGAC -ACGGAACAAGAGCTGCATCTGTAG -ACGGAACAAGAGCTGCATCCTAAG -ACGGAACAAGAGCTGCATGTTCAG -ACGGAACAAGAGCTGCATGCATAG -ACGGAACAAGAGCTGCATGACAAG -ACGGAACAAGAGCTGCATAAGCAG -ACGGAACAAGAGCTGCATCGTCAA -ACGGAACAAGAGCTGCATGCTGAA -ACGGAACAAGAGCTGCATAGTACG -ACGGAACAAGAGCTGCATATCCGA -ACGGAACAAGAGCTGCATATGGGA -ACGGAACAAGAGCTGCATGTGCAA -ACGGAACAAGAGCTGCATGAGGAA -ACGGAACAAGAGCTGCATCAGGTA -ACGGAACAAGAGCTGCATGACTCT -ACGGAACAAGAGCTGCATAGTCCT -ACGGAACAAGAGCTGCATTAAGCC -ACGGAACAAGAGCTGCATATAGCC -ACGGAACAAGAGCTGCATTAACCG -ACGGAACAAGAGCTGCATATGCCA -ACGGAACAAGAGTTGGAGGGAAAC -ACGGAACAAGAGTTGGAGAACACC -ACGGAACAAGAGTTGGAGATCGAG -ACGGAACAAGAGTTGGAGCTCCTT -ACGGAACAAGAGTTGGAGCCTGTT -ACGGAACAAGAGTTGGAGCGGTTT -ACGGAACAAGAGTTGGAGGTGGTT -ACGGAACAAGAGTTGGAGGCCTTT -ACGGAACAAGAGTTGGAGGGTCTT -ACGGAACAAGAGTTGGAGACGCTT -ACGGAACAAGAGTTGGAGAGCGTT -ACGGAACAAGAGTTGGAGTTCGTC -ACGGAACAAGAGTTGGAGTCTCTC -ACGGAACAAGAGTTGGAGTGGATC -ACGGAACAAGAGTTGGAGCACTTC -ACGGAACAAGAGTTGGAGGTACTC -ACGGAACAAGAGTTGGAGGATGTC -ACGGAACAAGAGTTGGAGACAGTC -ACGGAACAAGAGTTGGAGTTGCTG -ACGGAACAAGAGTTGGAGTCCATG -ACGGAACAAGAGTTGGAGTGTGTG -ACGGAACAAGAGTTGGAGCTAGTG -ACGGAACAAGAGTTGGAGCATCTG -ACGGAACAAGAGTTGGAGGAGTTG -ACGGAACAAGAGTTGGAGAGACTG -ACGGAACAAGAGTTGGAGTCGGTA -ACGGAACAAGAGTTGGAGTGCCTA -ACGGAACAAGAGTTGGAGCCACTA -ACGGAACAAGAGTTGGAGGGAGTA -ACGGAACAAGAGTTGGAGTCGTCT -ACGGAACAAGAGTTGGAGTGCACT -ACGGAACAAGAGTTGGAGCTGACT -ACGGAACAAGAGTTGGAGCAACCT -ACGGAACAAGAGTTGGAGGCTACT -ACGGAACAAGAGTTGGAGGGATCT -ACGGAACAAGAGTTGGAGAAGGCT -ACGGAACAAGAGTTGGAGTCAACC -ACGGAACAAGAGTTGGAGTGTTCC -ACGGAACAAGAGTTGGAGATTCCC -ACGGAACAAGAGTTGGAGTTCTCG -ACGGAACAAGAGTTGGAGTAGACG -ACGGAACAAGAGTTGGAGGTAACG -ACGGAACAAGAGTTGGAGACTTCG -ACGGAACAAGAGTTGGAGTACGCA -ACGGAACAAGAGTTGGAGCTTGCA -ACGGAACAAGAGTTGGAGCGAACA -ACGGAACAAGAGTTGGAGCAGTCA -ACGGAACAAGAGTTGGAGGATCCA -ACGGAACAAGAGTTGGAGACGACA -ACGGAACAAGAGTTGGAGAGCTCA -ACGGAACAAGAGTTGGAGTCACGT -ACGGAACAAGAGTTGGAGCGTAGT -ACGGAACAAGAGTTGGAGGTCAGT -ACGGAACAAGAGTTGGAGGAAGGT -ACGGAACAAGAGTTGGAGAACCGT -ACGGAACAAGAGTTGGAGTTGTGC -ACGGAACAAGAGTTGGAGCTAAGC -ACGGAACAAGAGTTGGAGACTAGC -ACGGAACAAGAGTTGGAGAGATGC -ACGGAACAAGAGTTGGAGTGAAGG -ACGGAACAAGAGTTGGAGCAATGG -ACGGAACAAGAGTTGGAGATGAGG -ACGGAACAAGAGTTGGAGAATGGG -ACGGAACAAGAGTTGGAGTCCTGA -ACGGAACAAGAGTTGGAGTAGCGA -ACGGAACAAGAGTTGGAGCACAGA -ACGGAACAAGAGTTGGAGGCAAGA -ACGGAACAAGAGTTGGAGGGTTGA -ACGGAACAAGAGTTGGAGTCCGAT -ACGGAACAAGAGTTGGAGTGGCAT -ACGGAACAAGAGTTGGAGCGAGAT -ACGGAACAAGAGTTGGAGTACCAC -ACGGAACAAGAGTTGGAGCAGAAC -ACGGAACAAGAGTTGGAGGTCTAC -ACGGAACAAGAGTTGGAGACGTAC -ACGGAACAAGAGTTGGAGAGTGAC -ACGGAACAAGAGTTGGAGCTGTAG -ACGGAACAAGAGTTGGAGCCTAAG -ACGGAACAAGAGTTGGAGGTTCAG -ACGGAACAAGAGTTGGAGGCATAG -ACGGAACAAGAGTTGGAGGACAAG -ACGGAACAAGAGTTGGAGAAGCAG -ACGGAACAAGAGTTGGAGCGTCAA -ACGGAACAAGAGTTGGAGGCTGAA -ACGGAACAAGAGTTGGAGAGTACG -ACGGAACAAGAGTTGGAGATCCGA -ACGGAACAAGAGTTGGAGATGGGA -ACGGAACAAGAGTTGGAGGTGCAA -ACGGAACAAGAGTTGGAGGAGGAA -ACGGAACAAGAGTTGGAGCAGGTA -ACGGAACAAGAGTTGGAGGACTCT -ACGGAACAAGAGTTGGAGAGTCCT -ACGGAACAAGAGTTGGAGTAAGCC -ACGGAACAAGAGTTGGAGATAGCC -ACGGAACAAGAGTTGGAGTAACCG -ACGGAACAAGAGTTGGAGATGCCA -ACGGAACAAGAGCTGAGAGGAAAC -ACGGAACAAGAGCTGAGAAACACC -ACGGAACAAGAGCTGAGAATCGAG -ACGGAACAAGAGCTGAGACTCCTT -ACGGAACAAGAGCTGAGACCTGTT -ACGGAACAAGAGCTGAGACGGTTT -ACGGAACAAGAGCTGAGAGTGGTT -ACGGAACAAGAGCTGAGAGCCTTT -ACGGAACAAGAGCTGAGAGGTCTT -ACGGAACAAGAGCTGAGAACGCTT -ACGGAACAAGAGCTGAGAAGCGTT -ACGGAACAAGAGCTGAGATTCGTC -ACGGAACAAGAGCTGAGATCTCTC -ACGGAACAAGAGCTGAGATGGATC -ACGGAACAAGAGCTGAGACACTTC -ACGGAACAAGAGCTGAGAGTACTC -ACGGAACAAGAGCTGAGAGATGTC -ACGGAACAAGAGCTGAGAACAGTC -ACGGAACAAGAGCTGAGATTGCTG -ACGGAACAAGAGCTGAGATCCATG -ACGGAACAAGAGCTGAGATGTGTG -ACGGAACAAGAGCTGAGACTAGTG -ACGGAACAAGAGCTGAGACATCTG -ACGGAACAAGAGCTGAGAGAGTTG -ACGGAACAAGAGCTGAGAAGACTG -ACGGAACAAGAGCTGAGATCGGTA -ACGGAACAAGAGCTGAGATGCCTA -ACGGAACAAGAGCTGAGACCACTA -ACGGAACAAGAGCTGAGAGGAGTA -ACGGAACAAGAGCTGAGATCGTCT -ACGGAACAAGAGCTGAGATGCACT -ACGGAACAAGAGCTGAGACTGACT -ACGGAACAAGAGCTGAGACAACCT -ACGGAACAAGAGCTGAGAGCTACT -ACGGAACAAGAGCTGAGAGGATCT -ACGGAACAAGAGCTGAGAAAGGCT -ACGGAACAAGAGCTGAGATCAACC -ACGGAACAAGAGCTGAGATGTTCC -ACGGAACAAGAGCTGAGAATTCCC -ACGGAACAAGAGCTGAGATTCTCG -ACGGAACAAGAGCTGAGATAGACG -ACGGAACAAGAGCTGAGAGTAACG -ACGGAACAAGAGCTGAGAACTTCG -ACGGAACAAGAGCTGAGATACGCA -ACGGAACAAGAGCTGAGACTTGCA -ACGGAACAAGAGCTGAGACGAACA -ACGGAACAAGAGCTGAGACAGTCA -ACGGAACAAGAGCTGAGAGATCCA -ACGGAACAAGAGCTGAGAACGACA -ACGGAACAAGAGCTGAGAAGCTCA -ACGGAACAAGAGCTGAGATCACGT -ACGGAACAAGAGCTGAGACGTAGT -ACGGAACAAGAGCTGAGAGTCAGT -ACGGAACAAGAGCTGAGAGAAGGT -ACGGAACAAGAGCTGAGAAACCGT -ACGGAACAAGAGCTGAGATTGTGC -ACGGAACAAGAGCTGAGACTAAGC -ACGGAACAAGAGCTGAGAACTAGC -ACGGAACAAGAGCTGAGAAGATGC -ACGGAACAAGAGCTGAGATGAAGG -ACGGAACAAGAGCTGAGACAATGG -ACGGAACAAGAGCTGAGAATGAGG -ACGGAACAAGAGCTGAGAAATGGG -ACGGAACAAGAGCTGAGATCCTGA -ACGGAACAAGAGCTGAGATAGCGA -ACGGAACAAGAGCTGAGACACAGA -ACGGAACAAGAGCTGAGAGCAAGA -ACGGAACAAGAGCTGAGAGGTTGA -ACGGAACAAGAGCTGAGATCCGAT -ACGGAACAAGAGCTGAGATGGCAT -ACGGAACAAGAGCTGAGACGAGAT -ACGGAACAAGAGCTGAGATACCAC -ACGGAACAAGAGCTGAGACAGAAC -ACGGAACAAGAGCTGAGAGTCTAC -ACGGAACAAGAGCTGAGAACGTAC -ACGGAACAAGAGCTGAGAAGTGAC -ACGGAACAAGAGCTGAGACTGTAG -ACGGAACAAGAGCTGAGACCTAAG -ACGGAACAAGAGCTGAGAGTTCAG -ACGGAACAAGAGCTGAGAGCATAG -ACGGAACAAGAGCTGAGAGACAAG -ACGGAACAAGAGCTGAGAAAGCAG -ACGGAACAAGAGCTGAGACGTCAA -ACGGAACAAGAGCTGAGAGCTGAA -ACGGAACAAGAGCTGAGAAGTACG -ACGGAACAAGAGCTGAGAATCCGA -ACGGAACAAGAGCTGAGAATGGGA -ACGGAACAAGAGCTGAGAGTGCAA -ACGGAACAAGAGCTGAGAGAGGAA -ACGGAACAAGAGCTGAGACAGGTA -ACGGAACAAGAGCTGAGAGACTCT -ACGGAACAAGAGCTGAGAAGTCCT -ACGGAACAAGAGCTGAGATAAGCC -ACGGAACAAGAGCTGAGAATAGCC -ACGGAACAAGAGCTGAGATAACCG -ACGGAACAAGAGCTGAGAATGCCA -ACGGAACAAGAGGTATCGGGAAAC -ACGGAACAAGAGGTATCGAACACC -ACGGAACAAGAGGTATCGATCGAG -ACGGAACAAGAGGTATCGCTCCTT -ACGGAACAAGAGGTATCGCCTGTT -ACGGAACAAGAGGTATCGCGGTTT -ACGGAACAAGAGGTATCGGTGGTT -ACGGAACAAGAGGTATCGGCCTTT -ACGGAACAAGAGGTATCGGGTCTT -ACGGAACAAGAGGTATCGACGCTT -ACGGAACAAGAGGTATCGAGCGTT -ACGGAACAAGAGGTATCGTTCGTC -ACGGAACAAGAGGTATCGTCTCTC -ACGGAACAAGAGGTATCGTGGATC -ACGGAACAAGAGGTATCGCACTTC -ACGGAACAAGAGGTATCGGTACTC -ACGGAACAAGAGGTATCGGATGTC -ACGGAACAAGAGGTATCGACAGTC -ACGGAACAAGAGGTATCGTTGCTG -ACGGAACAAGAGGTATCGTCCATG -ACGGAACAAGAGGTATCGTGTGTG -ACGGAACAAGAGGTATCGCTAGTG -ACGGAACAAGAGGTATCGCATCTG -ACGGAACAAGAGGTATCGGAGTTG -ACGGAACAAGAGGTATCGAGACTG -ACGGAACAAGAGGTATCGTCGGTA -ACGGAACAAGAGGTATCGTGCCTA -ACGGAACAAGAGGTATCGCCACTA -ACGGAACAAGAGGTATCGGGAGTA -ACGGAACAAGAGGTATCGTCGTCT -ACGGAACAAGAGGTATCGTGCACT -ACGGAACAAGAGGTATCGCTGACT -ACGGAACAAGAGGTATCGCAACCT -ACGGAACAAGAGGTATCGGCTACT -ACGGAACAAGAGGTATCGGGATCT -ACGGAACAAGAGGTATCGAAGGCT -ACGGAACAAGAGGTATCGTCAACC -ACGGAACAAGAGGTATCGTGTTCC -ACGGAACAAGAGGTATCGATTCCC -ACGGAACAAGAGGTATCGTTCTCG -ACGGAACAAGAGGTATCGTAGACG -ACGGAACAAGAGGTATCGGTAACG -ACGGAACAAGAGGTATCGACTTCG -ACGGAACAAGAGGTATCGTACGCA -ACGGAACAAGAGGTATCGCTTGCA -ACGGAACAAGAGGTATCGCGAACA -ACGGAACAAGAGGTATCGCAGTCA -ACGGAACAAGAGGTATCGGATCCA -ACGGAACAAGAGGTATCGACGACA -ACGGAACAAGAGGTATCGAGCTCA -ACGGAACAAGAGGTATCGTCACGT -ACGGAACAAGAGGTATCGCGTAGT -ACGGAACAAGAGGTATCGGTCAGT -ACGGAACAAGAGGTATCGGAAGGT -ACGGAACAAGAGGTATCGAACCGT -ACGGAACAAGAGGTATCGTTGTGC -ACGGAACAAGAGGTATCGCTAAGC -ACGGAACAAGAGGTATCGACTAGC -ACGGAACAAGAGGTATCGAGATGC -ACGGAACAAGAGGTATCGTGAAGG -ACGGAACAAGAGGTATCGCAATGG -ACGGAACAAGAGGTATCGATGAGG -ACGGAACAAGAGGTATCGAATGGG -ACGGAACAAGAGGTATCGTCCTGA -ACGGAACAAGAGGTATCGTAGCGA -ACGGAACAAGAGGTATCGCACAGA -ACGGAACAAGAGGTATCGGCAAGA -ACGGAACAAGAGGTATCGGGTTGA -ACGGAACAAGAGGTATCGTCCGAT -ACGGAACAAGAGGTATCGTGGCAT -ACGGAACAAGAGGTATCGCGAGAT -ACGGAACAAGAGGTATCGTACCAC -ACGGAACAAGAGGTATCGCAGAAC -ACGGAACAAGAGGTATCGGTCTAC -ACGGAACAAGAGGTATCGACGTAC -ACGGAACAAGAGGTATCGAGTGAC -ACGGAACAAGAGGTATCGCTGTAG -ACGGAACAAGAGGTATCGCCTAAG -ACGGAACAAGAGGTATCGGTTCAG -ACGGAACAAGAGGTATCGGCATAG -ACGGAACAAGAGGTATCGGACAAG -ACGGAACAAGAGGTATCGAAGCAG -ACGGAACAAGAGGTATCGCGTCAA -ACGGAACAAGAGGTATCGGCTGAA -ACGGAACAAGAGGTATCGAGTACG -ACGGAACAAGAGGTATCGATCCGA -ACGGAACAAGAGGTATCGATGGGA -ACGGAACAAGAGGTATCGGTGCAA -ACGGAACAAGAGGTATCGGAGGAA -ACGGAACAAGAGGTATCGCAGGTA -ACGGAACAAGAGGTATCGGACTCT -ACGGAACAAGAGGTATCGAGTCCT -ACGGAACAAGAGGTATCGTAAGCC -ACGGAACAAGAGGTATCGATAGCC -ACGGAACAAGAGGTATCGTAACCG -ACGGAACAAGAGGTATCGATGCCA -ACGGAACAAGAGCTATGCGGAAAC -ACGGAACAAGAGCTATGCAACACC -ACGGAACAAGAGCTATGCATCGAG -ACGGAACAAGAGCTATGCCTCCTT -ACGGAACAAGAGCTATGCCCTGTT -ACGGAACAAGAGCTATGCCGGTTT -ACGGAACAAGAGCTATGCGTGGTT -ACGGAACAAGAGCTATGCGCCTTT -ACGGAACAAGAGCTATGCGGTCTT -ACGGAACAAGAGCTATGCACGCTT -ACGGAACAAGAGCTATGCAGCGTT -ACGGAACAAGAGCTATGCTTCGTC -ACGGAACAAGAGCTATGCTCTCTC -ACGGAACAAGAGCTATGCTGGATC -ACGGAACAAGAGCTATGCCACTTC -ACGGAACAAGAGCTATGCGTACTC -ACGGAACAAGAGCTATGCGATGTC -ACGGAACAAGAGCTATGCACAGTC -ACGGAACAAGAGCTATGCTTGCTG -ACGGAACAAGAGCTATGCTCCATG -ACGGAACAAGAGCTATGCTGTGTG -ACGGAACAAGAGCTATGCCTAGTG -ACGGAACAAGAGCTATGCCATCTG -ACGGAACAAGAGCTATGCGAGTTG -ACGGAACAAGAGCTATGCAGACTG -ACGGAACAAGAGCTATGCTCGGTA -ACGGAACAAGAGCTATGCTGCCTA -ACGGAACAAGAGCTATGCCCACTA -ACGGAACAAGAGCTATGCGGAGTA -ACGGAACAAGAGCTATGCTCGTCT -ACGGAACAAGAGCTATGCTGCACT -ACGGAACAAGAGCTATGCCTGACT -ACGGAACAAGAGCTATGCCAACCT -ACGGAACAAGAGCTATGCGCTACT -ACGGAACAAGAGCTATGCGGATCT -ACGGAACAAGAGCTATGCAAGGCT -ACGGAACAAGAGCTATGCTCAACC -ACGGAACAAGAGCTATGCTGTTCC -ACGGAACAAGAGCTATGCATTCCC -ACGGAACAAGAGCTATGCTTCTCG -ACGGAACAAGAGCTATGCTAGACG -ACGGAACAAGAGCTATGCGTAACG -ACGGAACAAGAGCTATGCACTTCG -ACGGAACAAGAGCTATGCTACGCA -ACGGAACAAGAGCTATGCCTTGCA -ACGGAACAAGAGCTATGCCGAACA -ACGGAACAAGAGCTATGCCAGTCA -ACGGAACAAGAGCTATGCGATCCA -ACGGAACAAGAGCTATGCACGACA -ACGGAACAAGAGCTATGCAGCTCA -ACGGAACAAGAGCTATGCTCACGT -ACGGAACAAGAGCTATGCCGTAGT -ACGGAACAAGAGCTATGCGTCAGT -ACGGAACAAGAGCTATGCGAAGGT -ACGGAACAAGAGCTATGCAACCGT -ACGGAACAAGAGCTATGCTTGTGC -ACGGAACAAGAGCTATGCCTAAGC -ACGGAACAAGAGCTATGCACTAGC -ACGGAACAAGAGCTATGCAGATGC -ACGGAACAAGAGCTATGCTGAAGG -ACGGAACAAGAGCTATGCCAATGG -ACGGAACAAGAGCTATGCATGAGG -ACGGAACAAGAGCTATGCAATGGG -ACGGAACAAGAGCTATGCTCCTGA -ACGGAACAAGAGCTATGCTAGCGA -ACGGAACAAGAGCTATGCCACAGA -ACGGAACAAGAGCTATGCGCAAGA -ACGGAACAAGAGCTATGCGGTTGA -ACGGAACAAGAGCTATGCTCCGAT -ACGGAACAAGAGCTATGCTGGCAT -ACGGAACAAGAGCTATGCCGAGAT -ACGGAACAAGAGCTATGCTACCAC -ACGGAACAAGAGCTATGCCAGAAC -ACGGAACAAGAGCTATGCGTCTAC -ACGGAACAAGAGCTATGCACGTAC -ACGGAACAAGAGCTATGCAGTGAC -ACGGAACAAGAGCTATGCCTGTAG -ACGGAACAAGAGCTATGCCCTAAG -ACGGAACAAGAGCTATGCGTTCAG -ACGGAACAAGAGCTATGCGCATAG -ACGGAACAAGAGCTATGCGACAAG -ACGGAACAAGAGCTATGCAAGCAG -ACGGAACAAGAGCTATGCCGTCAA -ACGGAACAAGAGCTATGCGCTGAA -ACGGAACAAGAGCTATGCAGTACG -ACGGAACAAGAGCTATGCATCCGA -ACGGAACAAGAGCTATGCATGGGA -ACGGAACAAGAGCTATGCGTGCAA -ACGGAACAAGAGCTATGCGAGGAA -ACGGAACAAGAGCTATGCCAGGTA -ACGGAACAAGAGCTATGCGACTCT -ACGGAACAAGAGCTATGCAGTCCT -ACGGAACAAGAGCTATGCTAAGCC -ACGGAACAAGAGCTATGCATAGCC -ACGGAACAAGAGCTATGCTAACCG -ACGGAACAAGAGCTATGCATGCCA -ACGGAACAAGAGCTACCAGGAAAC -ACGGAACAAGAGCTACCAAACACC -ACGGAACAAGAGCTACCAATCGAG -ACGGAACAAGAGCTACCACTCCTT -ACGGAACAAGAGCTACCACCTGTT -ACGGAACAAGAGCTACCACGGTTT -ACGGAACAAGAGCTACCAGTGGTT -ACGGAACAAGAGCTACCAGCCTTT -ACGGAACAAGAGCTACCAGGTCTT -ACGGAACAAGAGCTACCAACGCTT -ACGGAACAAGAGCTACCAAGCGTT -ACGGAACAAGAGCTACCATTCGTC -ACGGAACAAGAGCTACCATCTCTC -ACGGAACAAGAGCTACCATGGATC -ACGGAACAAGAGCTACCACACTTC -ACGGAACAAGAGCTACCAGTACTC -ACGGAACAAGAGCTACCAGATGTC -ACGGAACAAGAGCTACCAACAGTC -ACGGAACAAGAGCTACCATTGCTG -ACGGAACAAGAGCTACCATCCATG -ACGGAACAAGAGCTACCATGTGTG -ACGGAACAAGAGCTACCACTAGTG -ACGGAACAAGAGCTACCACATCTG -ACGGAACAAGAGCTACCAGAGTTG -ACGGAACAAGAGCTACCAAGACTG -ACGGAACAAGAGCTACCATCGGTA -ACGGAACAAGAGCTACCATGCCTA -ACGGAACAAGAGCTACCACCACTA -ACGGAACAAGAGCTACCAGGAGTA -ACGGAACAAGAGCTACCATCGTCT -ACGGAACAAGAGCTACCATGCACT -ACGGAACAAGAGCTACCACTGACT -ACGGAACAAGAGCTACCACAACCT -ACGGAACAAGAGCTACCAGCTACT -ACGGAACAAGAGCTACCAGGATCT -ACGGAACAAGAGCTACCAAAGGCT -ACGGAACAAGAGCTACCATCAACC -ACGGAACAAGAGCTACCATGTTCC -ACGGAACAAGAGCTACCAATTCCC -ACGGAACAAGAGCTACCATTCTCG -ACGGAACAAGAGCTACCATAGACG -ACGGAACAAGAGCTACCAGTAACG -ACGGAACAAGAGCTACCAACTTCG -ACGGAACAAGAGCTACCATACGCA -ACGGAACAAGAGCTACCACTTGCA -ACGGAACAAGAGCTACCACGAACA -ACGGAACAAGAGCTACCACAGTCA -ACGGAACAAGAGCTACCAGATCCA -ACGGAACAAGAGCTACCAACGACA -ACGGAACAAGAGCTACCAAGCTCA -ACGGAACAAGAGCTACCATCACGT -ACGGAACAAGAGCTACCACGTAGT -ACGGAACAAGAGCTACCAGTCAGT -ACGGAACAAGAGCTACCAGAAGGT -ACGGAACAAGAGCTACCAAACCGT -ACGGAACAAGAGCTACCATTGTGC -ACGGAACAAGAGCTACCACTAAGC -ACGGAACAAGAGCTACCAACTAGC -ACGGAACAAGAGCTACCAAGATGC -ACGGAACAAGAGCTACCATGAAGG -ACGGAACAAGAGCTACCACAATGG -ACGGAACAAGAGCTACCAATGAGG -ACGGAACAAGAGCTACCAAATGGG -ACGGAACAAGAGCTACCATCCTGA -ACGGAACAAGAGCTACCATAGCGA -ACGGAACAAGAGCTACCACACAGA -ACGGAACAAGAGCTACCAGCAAGA -ACGGAACAAGAGCTACCAGGTTGA -ACGGAACAAGAGCTACCATCCGAT -ACGGAACAAGAGCTACCATGGCAT -ACGGAACAAGAGCTACCACGAGAT -ACGGAACAAGAGCTACCATACCAC -ACGGAACAAGAGCTACCACAGAAC -ACGGAACAAGAGCTACCAGTCTAC -ACGGAACAAGAGCTACCAACGTAC -ACGGAACAAGAGCTACCAAGTGAC -ACGGAACAAGAGCTACCACTGTAG -ACGGAACAAGAGCTACCACCTAAG -ACGGAACAAGAGCTACCAGTTCAG -ACGGAACAAGAGCTACCAGCATAG -ACGGAACAAGAGCTACCAGACAAG -ACGGAACAAGAGCTACCAAAGCAG -ACGGAACAAGAGCTACCACGTCAA -ACGGAACAAGAGCTACCAGCTGAA -ACGGAACAAGAGCTACCAAGTACG -ACGGAACAAGAGCTACCAATCCGA -ACGGAACAAGAGCTACCAATGGGA -ACGGAACAAGAGCTACCAGTGCAA -ACGGAACAAGAGCTACCAGAGGAA -ACGGAACAAGAGCTACCACAGGTA -ACGGAACAAGAGCTACCAGACTCT -ACGGAACAAGAGCTACCAAGTCCT -ACGGAACAAGAGCTACCATAAGCC -ACGGAACAAGAGCTACCAATAGCC -ACGGAACAAGAGCTACCATAACCG -ACGGAACAAGAGCTACCAATGCCA -ACGGAACAAGAGGTAGGAGGAAAC -ACGGAACAAGAGGTAGGAAACACC -ACGGAACAAGAGGTAGGAATCGAG -ACGGAACAAGAGGTAGGACTCCTT -ACGGAACAAGAGGTAGGACCTGTT -ACGGAACAAGAGGTAGGACGGTTT -ACGGAACAAGAGGTAGGAGTGGTT -ACGGAACAAGAGGTAGGAGCCTTT -ACGGAACAAGAGGTAGGAGGTCTT -ACGGAACAAGAGGTAGGAACGCTT -ACGGAACAAGAGGTAGGAAGCGTT -ACGGAACAAGAGGTAGGATTCGTC -ACGGAACAAGAGGTAGGATCTCTC -ACGGAACAAGAGGTAGGATGGATC -ACGGAACAAGAGGTAGGACACTTC -ACGGAACAAGAGGTAGGAGTACTC -ACGGAACAAGAGGTAGGAGATGTC -ACGGAACAAGAGGTAGGAACAGTC -ACGGAACAAGAGGTAGGATTGCTG -ACGGAACAAGAGGTAGGATCCATG -ACGGAACAAGAGGTAGGATGTGTG -ACGGAACAAGAGGTAGGACTAGTG -ACGGAACAAGAGGTAGGACATCTG -ACGGAACAAGAGGTAGGAGAGTTG -ACGGAACAAGAGGTAGGAAGACTG -ACGGAACAAGAGGTAGGATCGGTA -ACGGAACAAGAGGTAGGATGCCTA -ACGGAACAAGAGGTAGGACCACTA -ACGGAACAAGAGGTAGGAGGAGTA -ACGGAACAAGAGGTAGGATCGTCT -ACGGAACAAGAGGTAGGATGCACT -ACGGAACAAGAGGTAGGACTGACT -ACGGAACAAGAGGTAGGACAACCT -ACGGAACAAGAGGTAGGAGCTACT -ACGGAACAAGAGGTAGGAGGATCT -ACGGAACAAGAGGTAGGAAAGGCT -ACGGAACAAGAGGTAGGATCAACC -ACGGAACAAGAGGTAGGATGTTCC -ACGGAACAAGAGGTAGGAATTCCC -ACGGAACAAGAGGTAGGATTCTCG -ACGGAACAAGAGGTAGGATAGACG -ACGGAACAAGAGGTAGGAGTAACG -ACGGAACAAGAGGTAGGAACTTCG -ACGGAACAAGAGGTAGGATACGCA -ACGGAACAAGAGGTAGGACTTGCA -ACGGAACAAGAGGTAGGACGAACA -ACGGAACAAGAGGTAGGACAGTCA -ACGGAACAAGAGGTAGGAGATCCA -ACGGAACAAGAGGTAGGAACGACA -ACGGAACAAGAGGTAGGAAGCTCA -ACGGAACAAGAGGTAGGATCACGT -ACGGAACAAGAGGTAGGACGTAGT -ACGGAACAAGAGGTAGGAGTCAGT -ACGGAACAAGAGGTAGGAGAAGGT -ACGGAACAAGAGGTAGGAAACCGT -ACGGAACAAGAGGTAGGATTGTGC -ACGGAACAAGAGGTAGGACTAAGC -ACGGAACAAGAGGTAGGAACTAGC -ACGGAACAAGAGGTAGGAAGATGC -ACGGAACAAGAGGTAGGATGAAGG -ACGGAACAAGAGGTAGGACAATGG -ACGGAACAAGAGGTAGGAATGAGG -ACGGAACAAGAGGTAGGAAATGGG -ACGGAACAAGAGGTAGGATCCTGA -ACGGAACAAGAGGTAGGATAGCGA -ACGGAACAAGAGGTAGGACACAGA -ACGGAACAAGAGGTAGGAGCAAGA -ACGGAACAAGAGGTAGGAGGTTGA -ACGGAACAAGAGGTAGGATCCGAT -ACGGAACAAGAGGTAGGATGGCAT -ACGGAACAAGAGGTAGGACGAGAT -ACGGAACAAGAGGTAGGATACCAC -ACGGAACAAGAGGTAGGACAGAAC -ACGGAACAAGAGGTAGGAGTCTAC -ACGGAACAAGAGGTAGGAACGTAC -ACGGAACAAGAGGTAGGAAGTGAC -ACGGAACAAGAGGTAGGACTGTAG -ACGGAACAAGAGGTAGGACCTAAG -ACGGAACAAGAGGTAGGAGTTCAG -ACGGAACAAGAGGTAGGAGCATAG -ACGGAACAAGAGGTAGGAGACAAG -ACGGAACAAGAGGTAGGAAAGCAG -ACGGAACAAGAGGTAGGACGTCAA -ACGGAACAAGAGGTAGGAGCTGAA -ACGGAACAAGAGGTAGGAAGTACG -ACGGAACAAGAGGTAGGAATCCGA -ACGGAACAAGAGGTAGGAATGGGA -ACGGAACAAGAGGTAGGAGTGCAA -ACGGAACAAGAGGTAGGAGAGGAA -ACGGAACAAGAGGTAGGACAGGTA -ACGGAACAAGAGGTAGGAGACTCT -ACGGAACAAGAGGTAGGAAGTCCT -ACGGAACAAGAGGTAGGATAAGCC -ACGGAACAAGAGGTAGGAATAGCC -ACGGAACAAGAGGTAGGATAACCG -ACGGAACAAGAGGTAGGAATGCCA -ACGGAACAAGAGTCTTCGGGAAAC -ACGGAACAAGAGTCTTCGAACACC -ACGGAACAAGAGTCTTCGATCGAG -ACGGAACAAGAGTCTTCGCTCCTT -ACGGAACAAGAGTCTTCGCCTGTT -ACGGAACAAGAGTCTTCGCGGTTT -ACGGAACAAGAGTCTTCGGTGGTT -ACGGAACAAGAGTCTTCGGCCTTT -ACGGAACAAGAGTCTTCGGGTCTT -ACGGAACAAGAGTCTTCGACGCTT -ACGGAACAAGAGTCTTCGAGCGTT -ACGGAACAAGAGTCTTCGTTCGTC -ACGGAACAAGAGTCTTCGTCTCTC -ACGGAACAAGAGTCTTCGTGGATC -ACGGAACAAGAGTCTTCGCACTTC -ACGGAACAAGAGTCTTCGGTACTC -ACGGAACAAGAGTCTTCGGATGTC -ACGGAACAAGAGTCTTCGACAGTC -ACGGAACAAGAGTCTTCGTTGCTG -ACGGAACAAGAGTCTTCGTCCATG -ACGGAACAAGAGTCTTCGTGTGTG -ACGGAACAAGAGTCTTCGCTAGTG -ACGGAACAAGAGTCTTCGCATCTG -ACGGAACAAGAGTCTTCGGAGTTG -ACGGAACAAGAGTCTTCGAGACTG -ACGGAACAAGAGTCTTCGTCGGTA -ACGGAACAAGAGTCTTCGTGCCTA -ACGGAACAAGAGTCTTCGCCACTA -ACGGAACAAGAGTCTTCGGGAGTA -ACGGAACAAGAGTCTTCGTCGTCT -ACGGAACAAGAGTCTTCGTGCACT -ACGGAACAAGAGTCTTCGCTGACT -ACGGAACAAGAGTCTTCGCAACCT -ACGGAACAAGAGTCTTCGGCTACT -ACGGAACAAGAGTCTTCGGGATCT -ACGGAACAAGAGTCTTCGAAGGCT -ACGGAACAAGAGTCTTCGTCAACC -ACGGAACAAGAGTCTTCGTGTTCC -ACGGAACAAGAGTCTTCGATTCCC -ACGGAACAAGAGTCTTCGTTCTCG -ACGGAACAAGAGTCTTCGTAGACG -ACGGAACAAGAGTCTTCGGTAACG -ACGGAACAAGAGTCTTCGACTTCG -ACGGAACAAGAGTCTTCGTACGCA -ACGGAACAAGAGTCTTCGCTTGCA -ACGGAACAAGAGTCTTCGCGAACA -ACGGAACAAGAGTCTTCGCAGTCA -ACGGAACAAGAGTCTTCGGATCCA -ACGGAACAAGAGTCTTCGACGACA -ACGGAACAAGAGTCTTCGAGCTCA -ACGGAACAAGAGTCTTCGTCACGT -ACGGAACAAGAGTCTTCGCGTAGT -ACGGAACAAGAGTCTTCGGTCAGT -ACGGAACAAGAGTCTTCGGAAGGT -ACGGAACAAGAGTCTTCGAACCGT -ACGGAACAAGAGTCTTCGTTGTGC -ACGGAACAAGAGTCTTCGCTAAGC -ACGGAACAAGAGTCTTCGACTAGC -ACGGAACAAGAGTCTTCGAGATGC -ACGGAACAAGAGTCTTCGTGAAGG -ACGGAACAAGAGTCTTCGCAATGG -ACGGAACAAGAGTCTTCGATGAGG -ACGGAACAAGAGTCTTCGAATGGG -ACGGAACAAGAGTCTTCGTCCTGA -ACGGAACAAGAGTCTTCGTAGCGA -ACGGAACAAGAGTCTTCGCACAGA -ACGGAACAAGAGTCTTCGGCAAGA -ACGGAACAAGAGTCTTCGGGTTGA -ACGGAACAAGAGTCTTCGTCCGAT -ACGGAACAAGAGTCTTCGTGGCAT -ACGGAACAAGAGTCTTCGCGAGAT -ACGGAACAAGAGTCTTCGTACCAC -ACGGAACAAGAGTCTTCGCAGAAC -ACGGAACAAGAGTCTTCGGTCTAC -ACGGAACAAGAGTCTTCGACGTAC -ACGGAACAAGAGTCTTCGAGTGAC -ACGGAACAAGAGTCTTCGCTGTAG -ACGGAACAAGAGTCTTCGCCTAAG -ACGGAACAAGAGTCTTCGGTTCAG -ACGGAACAAGAGTCTTCGGCATAG -ACGGAACAAGAGTCTTCGGACAAG -ACGGAACAAGAGTCTTCGAAGCAG -ACGGAACAAGAGTCTTCGCGTCAA -ACGGAACAAGAGTCTTCGGCTGAA -ACGGAACAAGAGTCTTCGAGTACG -ACGGAACAAGAGTCTTCGATCCGA -ACGGAACAAGAGTCTTCGATGGGA -ACGGAACAAGAGTCTTCGGTGCAA -ACGGAACAAGAGTCTTCGGAGGAA -ACGGAACAAGAGTCTTCGCAGGTA -ACGGAACAAGAGTCTTCGGACTCT -ACGGAACAAGAGTCTTCGAGTCCT -ACGGAACAAGAGTCTTCGTAAGCC -ACGGAACAAGAGTCTTCGATAGCC -ACGGAACAAGAGTCTTCGTAACCG -ACGGAACAAGAGTCTTCGATGCCA -ACGGAACAAGAGACTTGCGGAAAC -ACGGAACAAGAGACTTGCAACACC -ACGGAACAAGAGACTTGCATCGAG -ACGGAACAAGAGACTTGCCTCCTT -ACGGAACAAGAGACTTGCCCTGTT -ACGGAACAAGAGACTTGCCGGTTT -ACGGAACAAGAGACTTGCGTGGTT -ACGGAACAAGAGACTTGCGCCTTT -ACGGAACAAGAGACTTGCGGTCTT -ACGGAACAAGAGACTTGCACGCTT -ACGGAACAAGAGACTTGCAGCGTT -ACGGAACAAGAGACTTGCTTCGTC -ACGGAACAAGAGACTTGCTCTCTC -ACGGAACAAGAGACTTGCTGGATC -ACGGAACAAGAGACTTGCCACTTC -ACGGAACAAGAGACTTGCGTACTC -ACGGAACAAGAGACTTGCGATGTC -ACGGAACAAGAGACTTGCACAGTC -ACGGAACAAGAGACTTGCTTGCTG -ACGGAACAAGAGACTTGCTCCATG -ACGGAACAAGAGACTTGCTGTGTG -ACGGAACAAGAGACTTGCCTAGTG -ACGGAACAAGAGACTTGCCATCTG -ACGGAACAAGAGACTTGCGAGTTG -ACGGAACAAGAGACTTGCAGACTG -ACGGAACAAGAGACTTGCTCGGTA -ACGGAACAAGAGACTTGCTGCCTA -ACGGAACAAGAGACTTGCCCACTA -ACGGAACAAGAGACTTGCGGAGTA -ACGGAACAAGAGACTTGCTCGTCT -ACGGAACAAGAGACTTGCTGCACT -ACGGAACAAGAGACTTGCCTGACT -ACGGAACAAGAGACTTGCCAACCT -ACGGAACAAGAGACTTGCGCTACT -ACGGAACAAGAGACTTGCGGATCT -ACGGAACAAGAGACTTGCAAGGCT -ACGGAACAAGAGACTTGCTCAACC -ACGGAACAAGAGACTTGCTGTTCC -ACGGAACAAGAGACTTGCATTCCC -ACGGAACAAGAGACTTGCTTCTCG -ACGGAACAAGAGACTTGCTAGACG -ACGGAACAAGAGACTTGCGTAACG -ACGGAACAAGAGACTTGCACTTCG -ACGGAACAAGAGACTTGCTACGCA -ACGGAACAAGAGACTTGCCTTGCA -ACGGAACAAGAGACTTGCCGAACA -ACGGAACAAGAGACTTGCCAGTCA -ACGGAACAAGAGACTTGCGATCCA -ACGGAACAAGAGACTTGCACGACA -ACGGAACAAGAGACTTGCAGCTCA -ACGGAACAAGAGACTTGCTCACGT -ACGGAACAAGAGACTTGCCGTAGT -ACGGAACAAGAGACTTGCGTCAGT -ACGGAACAAGAGACTTGCGAAGGT -ACGGAACAAGAGACTTGCAACCGT -ACGGAACAAGAGACTTGCTTGTGC -ACGGAACAAGAGACTTGCCTAAGC -ACGGAACAAGAGACTTGCACTAGC -ACGGAACAAGAGACTTGCAGATGC -ACGGAACAAGAGACTTGCTGAAGG -ACGGAACAAGAGACTTGCCAATGG -ACGGAACAAGAGACTTGCATGAGG -ACGGAACAAGAGACTTGCAATGGG -ACGGAACAAGAGACTTGCTCCTGA -ACGGAACAAGAGACTTGCTAGCGA -ACGGAACAAGAGACTTGCCACAGA -ACGGAACAAGAGACTTGCGCAAGA -ACGGAACAAGAGACTTGCGGTTGA -ACGGAACAAGAGACTTGCTCCGAT -ACGGAACAAGAGACTTGCTGGCAT -ACGGAACAAGAGACTTGCCGAGAT -ACGGAACAAGAGACTTGCTACCAC -ACGGAACAAGAGACTTGCCAGAAC -ACGGAACAAGAGACTTGCGTCTAC -ACGGAACAAGAGACTTGCACGTAC -ACGGAACAAGAGACTTGCAGTGAC -ACGGAACAAGAGACTTGCCTGTAG -ACGGAACAAGAGACTTGCCCTAAG -ACGGAACAAGAGACTTGCGTTCAG -ACGGAACAAGAGACTTGCGCATAG -ACGGAACAAGAGACTTGCGACAAG -ACGGAACAAGAGACTTGCAAGCAG -ACGGAACAAGAGACTTGCCGTCAA -ACGGAACAAGAGACTTGCGCTGAA -ACGGAACAAGAGACTTGCAGTACG -ACGGAACAAGAGACTTGCATCCGA -ACGGAACAAGAGACTTGCATGGGA -ACGGAACAAGAGACTTGCGTGCAA -ACGGAACAAGAGACTTGCGAGGAA -ACGGAACAAGAGACTTGCCAGGTA -ACGGAACAAGAGACTTGCGACTCT -ACGGAACAAGAGACTTGCAGTCCT -ACGGAACAAGAGACTTGCTAAGCC -ACGGAACAAGAGACTTGCATAGCC -ACGGAACAAGAGACTTGCTAACCG -ACGGAACAAGAGACTTGCATGCCA -ACGGAACAAGAGACTCTGGGAAAC -ACGGAACAAGAGACTCTGAACACC -ACGGAACAAGAGACTCTGATCGAG -ACGGAACAAGAGACTCTGCTCCTT -ACGGAACAAGAGACTCTGCCTGTT -ACGGAACAAGAGACTCTGCGGTTT -ACGGAACAAGAGACTCTGGTGGTT -ACGGAACAAGAGACTCTGGCCTTT -ACGGAACAAGAGACTCTGGGTCTT -ACGGAACAAGAGACTCTGACGCTT -ACGGAACAAGAGACTCTGAGCGTT -ACGGAACAAGAGACTCTGTTCGTC -ACGGAACAAGAGACTCTGTCTCTC -ACGGAACAAGAGACTCTGTGGATC -ACGGAACAAGAGACTCTGCACTTC -ACGGAACAAGAGACTCTGGTACTC -ACGGAACAAGAGACTCTGGATGTC -ACGGAACAAGAGACTCTGACAGTC -ACGGAACAAGAGACTCTGTTGCTG -ACGGAACAAGAGACTCTGTCCATG -ACGGAACAAGAGACTCTGTGTGTG -ACGGAACAAGAGACTCTGCTAGTG -ACGGAACAAGAGACTCTGCATCTG -ACGGAACAAGAGACTCTGGAGTTG -ACGGAACAAGAGACTCTGAGACTG -ACGGAACAAGAGACTCTGTCGGTA -ACGGAACAAGAGACTCTGTGCCTA -ACGGAACAAGAGACTCTGCCACTA -ACGGAACAAGAGACTCTGGGAGTA -ACGGAACAAGAGACTCTGTCGTCT -ACGGAACAAGAGACTCTGTGCACT -ACGGAACAAGAGACTCTGCTGACT -ACGGAACAAGAGACTCTGCAACCT -ACGGAACAAGAGACTCTGGCTACT -ACGGAACAAGAGACTCTGGGATCT -ACGGAACAAGAGACTCTGAAGGCT -ACGGAACAAGAGACTCTGTCAACC -ACGGAACAAGAGACTCTGTGTTCC -ACGGAACAAGAGACTCTGATTCCC -ACGGAACAAGAGACTCTGTTCTCG -ACGGAACAAGAGACTCTGTAGACG -ACGGAACAAGAGACTCTGGTAACG -ACGGAACAAGAGACTCTGACTTCG -ACGGAACAAGAGACTCTGTACGCA -ACGGAACAAGAGACTCTGCTTGCA -ACGGAACAAGAGACTCTGCGAACA -ACGGAACAAGAGACTCTGCAGTCA -ACGGAACAAGAGACTCTGGATCCA -ACGGAACAAGAGACTCTGACGACA -ACGGAACAAGAGACTCTGAGCTCA -ACGGAACAAGAGACTCTGTCACGT -ACGGAACAAGAGACTCTGCGTAGT -ACGGAACAAGAGACTCTGGTCAGT -ACGGAACAAGAGACTCTGGAAGGT -ACGGAACAAGAGACTCTGAACCGT -ACGGAACAAGAGACTCTGTTGTGC -ACGGAACAAGAGACTCTGCTAAGC -ACGGAACAAGAGACTCTGACTAGC -ACGGAACAAGAGACTCTGAGATGC -ACGGAACAAGAGACTCTGTGAAGG -ACGGAACAAGAGACTCTGCAATGG -ACGGAACAAGAGACTCTGATGAGG -ACGGAACAAGAGACTCTGAATGGG -ACGGAACAAGAGACTCTGTCCTGA -ACGGAACAAGAGACTCTGTAGCGA -ACGGAACAAGAGACTCTGCACAGA -ACGGAACAAGAGACTCTGGCAAGA -ACGGAACAAGAGACTCTGGGTTGA -ACGGAACAAGAGACTCTGTCCGAT -ACGGAACAAGAGACTCTGTGGCAT -ACGGAACAAGAGACTCTGCGAGAT -ACGGAACAAGAGACTCTGTACCAC -ACGGAACAAGAGACTCTGCAGAAC -ACGGAACAAGAGACTCTGGTCTAC -ACGGAACAAGAGACTCTGACGTAC -ACGGAACAAGAGACTCTGAGTGAC -ACGGAACAAGAGACTCTGCTGTAG -ACGGAACAAGAGACTCTGCCTAAG -ACGGAACAAGAGACTCTGGTTCAG -ACGGAACAAGAGACTCTGGCATAG -ACGGAACAAGAGACTCTGGACAAG -ACGGAACAAGAGACTCTGAAGCAG -ACGGAACAAGAGACTCTGCGTCAA -ACGGAACAAGAGACTCTGGCTGAA -ACGGAACAAGAGACTCTGAGTACG -ACGGAACAAGAGACTCTGATCCGA -ACGGAACAAGAGACTCTGATGGGA -ACGGAACAAGAGACTCTGGTGCAA -ACGGAACAAGAGACTCTGGAGGAA -ACGGAACAAGAGACTCTGCAGGTA -ACGGAACAAGAGACTCTGGACTCT -ACGGAACAAGAGACTCTGAGTCCT -ACGGAACAAGAGACTCTGTAAGCC -ACGGAACAAGAGACTCTGATAGCC -ACGGAACAAGAGACTCTGTAACCG -ACGGAACAAGAGACTCTGATGCCA -ACGGAACAAGAGCCTCAAGGAAAC -ACGGAACAAGAGCCTCAAAACACC -ACGGAACAAGAGCCTCAAATCGAG -ACGGAACAAGAGCCTCAACTCCTT -ACGGAACAAGAGCCTCAACCTGTT -ACGGAACAAGAGCCTCAACGGTTT -ACGGAACAAGAGCCTCAAGTGGTT -ACGGAACAAGAGCCTCAAGCCTTT -ACGGAACAAGAGCCTCAAGGTCTT -ACGGAACAAGAGCCTCAAACGCTT -ACGGAACAAGAGCCTCAAAGCGTT -ACGGAACAAGAGCCTCAATTCGTC -ACGGAACAAGAGCCTCAATCTCTC -ACGGAACAAGAGCCTCAATGGATC -ACGGAACAAGAGCCTCAACACTTC -ACGGAACAAGAGCCTCAAGTACTC -ACGGAACAAGAGCCTCAAGATGTC -ACGGAACAAGAGCCTCAAACAGTC -ACGGAACAAGAGCCTCAATTGCTG -ACGGAACAAGAGCCTCAATCCATG -ACGGAACAAGAGCCTCAATGTGTG -ACGGAACAAGAGCCTCAACTAGTG -ACGGAACAAGAGCCTCAACATCTG -ACGGAACAAGAGCCTCAAGAGTTG -ACGGAACAAGAGCCTCAAAGACTG -ACGGAACAAGAGCCTCAATCGGTA -ACGGAACAAGAGCCTCAATGCCTA -ACGGAACAAGAGCCTCAACCACTA -ACGGAACAAGAGCCTCAAGGAGTA -ACGGAACAAGAGCCTCAATCGTCT -ACGGAACAAGAGCCTCAATGCACT -ACGGAACAAGAGCCTCAACTGACT -ACGGAACAAGAGCCTCAACAACCT -ACGGAACAAGAGCCTCAAGCTACT -ACGGAACAAGAGCCTCAAGGATCT -ACGGAACAAGAGCCTCAAAAGGCT -ACGGAACAAGAGCCTCAATCAACC -ACGGAACAAGAGCCTCAATGTTCC -ACGGAACAAGAGCCTCAAATTCCC -ACGGAACAAGAGCCTCAATTCTCG -ACGGAACAAGAGCCTCAATAGACG -ACGGAACAAGAGCCTCAAGTAACG -ACGGAACAAGAGCCTCAAACTTCG -ACGGAACAAGAGCCTCAATACGCA -ACGGAACAAGAGCCTCAACTTGCA -ACGGAACAAGAGCCTCAACGAACA -ACGGAACAAGAGCCTCAACAGTCA -ACGGAACAAGAGCCTCAAGATCCA -ACGGAACAAGAGCCTCAAACGACA -ACGGAACAAGAGCCTCAAAGCTCA -ACGGAACAAGAGCCTCAATCACGT -ACGGAACAAGAGCCTCAACGTAGT -ACGGAACAAGAGCCTCAAGTCAGT -ACGGAACAAGAGCCTCAAGAAGGT -ACGGAACAAGAGCCTCAAAACCGT -ACGGAACAAGAGCCTCAATTGTGC -ACGGAACAAGAGCCTCAACTAAGC -ACGGAACAAGAGCCTCAAACTAGC -ACGGAACAAGAGCCTCAAAGATGC -ACGGAACAAGAGCCTCAATGAAGG -ACGGAACAAGAGCCTCAACAATGG -ACGGAACAAGAGCCTCAAATGAGG -ACGGAACAAGAGCCTCAAAATGGG -ACGGAACAAGAGCCTCAATCCTGA -ACGGAACAAGAGCCTCAATAGCGA -ACGGAACAAGAGCCTCAACACAGA -ACGGAACAAGAGCCTCAAGCAAGA -ACGGAACAAGAGCCTCAAGGTTGA -ACGGAACAAGAGCCTCAATCCGAT -ACGGAACAAGAGCCTCAATGGCAT -ACGGAACAAGAGCCTCAACGAGAT -ACGGAACAAGAGCCTCAATACCAC -ACGGAACAAGAGCCTCAACAGAAC -ACGGAACAAGAGCCTCAAGTCTAC -ACGGAACAAGAGCCTCAAACGTAC -ACGGAACAAGAGCCTCAAAGTGAC -ACGGAACAAGAGCCTCAACTGTAG -ACGGAACAAGAGCCTCAACCTAAG -ACGGAACAAGAGCCTCAAGTTCAG -ACGGAACAAGAGCCTCAAGCATAG -ACGGAACAAGAGCCTCAAGACAAG -ACGGAACAAGAGCCTCAAAAGCAG -ACGGAACAAGAGCCTCAACGTCAA -ACGGAACAAGAGCCTCAAGCTGAA -ACGGAACAAGAGCCTCAAAGTACG -ACGGAACAAGAGCCTCAAATCCGA -ACGGAACAAGAGCCTCAAATGGGA -ACGGAACAAGAGCCTCAAGTGCAA -ACGGAACAAGAGCCTCAAGAGGAA -ACGGAACAAGAGCCTCAACAGGTA -ACGGAACAAGAGCCTCAAGACTCT -ACGGAACAAGAGCCTCAAAGTCCT -ACGGAACAAGAGCCTCAATAAGCC -ACGGAACAAGAGCCTCAAATAGCC -ACGGAACAAGAGCCTCAATAACCG -ACGGAACAAGAGCCTCAAATGCCA -ACGGAACAAGAGACTGCTGGAAAC -ACGGAACAAGAGACTGCTAACACC -ACGGAACAAGAGACTGCTATCGAG -ACGGAACAAGAGACTGCTCTCCTT -ACGGAACAAGAGACTGCTCCTGTT -ACGGAACAAGAGACTGCTCGGTTT -ACGGAACAAGAGACTGCTGTGGTT -ACGGAACAAGAGACTGCTGCCTTT -ACGGAACAAGAGACTGCTGGTCTT -ACGGAACAAGAGACTGCTACGCTT -ACGGAACAAGAGACTGCTAGCGTT -ACGGAACAAGAGACTGCTTTCGTC -ACGGAACAAGAGACTGCTTCTCTC -ACGGAACAAGAGACTGCTTGGATC -ACGGAACAAGAGACTGCTCACTTC -ACGGAACAAGAGACTGCTGTACTC -ACGGAACAAGAGACTGCTGATGTC -ACGGAACAAGAGACTGCTACAGTC -ACGGAACAAGAGACTGCTTTGCTG -ACGGAACAAGAGACTGCTTCCATG -ACGGAACAAGAGACTGCTTGTGTG -ACGGAACAAGAGACTGCTCTAGTG -ACGGAACAAGAGACTGCTCATCTG -ACGGAACAAGAGACTGCTGAGTTG -ACGGAACAAGAGACTGCTAGACTG -ACGGAACAAGAGACTGCTTCGGTA -ACGGAACAAGAGACTGCTTGCCTA -ACGGAACAAGAGACTGCTCCACTA -ACGGAACAAGAGACTGCTGGAGTA -ACGGAACAAGAGACTGCTTCGTCT -ACGGAACAAGAGACTGCTTGCACT -ACGGAACAAGAGACTGCTCTGACT -ACGGAACAAGAGACTGCTCAACCT -ACGGAACAAGAGACTGCTGCTACT -ACGGAACAAGAGACTGCTGGATCT -ACGGAACAAGAGACTGCTAAGGCT -ACGGAACAAGAGACTGCTTCAACC -ACGGAACAAGAGACTGCTTGTTCC -ACGGAACAAGAGACTGCTATTCCC -ACGGAACAAGAGACTGCTTTCTCG -ACGGAACAAGAGACTGCTTAGACG -ACGGAACAAGAGACTGCTGTAACG -ACGGAACAAGAGACTGCTACTTCG -ACGGAACAAGAGACTGCTTACGCA -ACGGAACAAGAGACTGCTCTTGCA -ACGGAACAAGAGACTGCTCGAACA -ACGGAACAAGAGACTGCTCAGTCA -ACGGAACAAGAGACTGCTGATCCA -ACGGAACAAGAGACTGCTACGACA -ACGGAACAAGAGACTGCTAGCTCA -ACGGAACAAGAGACTGCTTCACGT -ACGGAACAAGAGACTGCTCGTAGT -ACGGAACAAGAGACTGCTGTCAGT -ACGGAACAAGAGACTGCTGAAGGT -ACGGAACAAGAGACTGCTAACCGT -ACGGAACAAGAGACTGCTTTGTGC -ACGGAACAAGAGACTGCTCTAAGC -ACGGAACAAGAGACTGCTACTAGC -ACGGAACAAGAGACTGCTAGATGC -ACGGAACAAGAGACTGCTTGAAGG -ACGGAACAAGAGACTGCTCAATGG -ACGGAACAAGAGACTGCTATGAGG -ACGGAACAAGAGACTGCTAATGGG -ACGGAACAAGAGACTGCTTCCTGA -ACGGAACAAGAGACTGCTTAGCGA -ACGGAACAAGAGACTGCTCACAGA -ACGGAACAAGAGACTGCTGCAAGA -ACGGAACAAGAGACTGCTGGTTGA -ACGGAACAAGAGACTGCTTCCGAT -ACGGAACAAGAGACTGCTTGGCAT -ACGGAACAAGAGACTGCTCGAGAT -ACGGAACAAGAGACTGCTTACCAC -ACGGAACAAGAGACTGCTCAGAAC -ACGGAACAAGAGACTGCTGTCTAC -ACGGAACAAGAGACTGCTACGTAC -ACGGAACAAGAGACTGCTAGTGAC -ACGGAACAAGAGACTGCTCTGTAG -ACGGAACAAGAGACTGCTCCTAAG -ACGGAACAAGAGACTGCTGTTCAG -ACGGAACAAGAGACTGCTGCATAG -ACGGAACAAGAGACTGCTGACAAG -ACGGAACAAGAGACTGCTAAGCAG -ACGGAACAAGAGACTGCTCGTCAA -ACGGAACAAGAGACTGCTGCTGAA -ACGGAACAAGAGACTGCTAGTACG -ACGGAACAAGAGACTGCTATCCGA -ACGGAACAAGAGACTGCTATGGGA -ACGGAACAAGAGACTGCTGTGCAA -ACGGAACAAGAGACTGCTGAGGAA -ACGGAACAAGAGACTGCTCAGGTA -ACGGAACAAGAGACTGCTGACTCT -ACGGAACAAGAGACTGCTAGTCCT -ACGGAACAAGAGACTGCTTAAGCC -ACGGAACAAGAGACTGCTATAGCC -ACGGAACAAGAGACTGCTTAACCG -ACGGAACAAGAGACTGCTATGCCA -ACGGAACAAGAGTCTGGAGGAAAC -ACGGAACAAGAGTCTGGAAACACC -ACGGAACAAGAGTCTGGAATCGAG -ACGGAACAAGAGTCTGGACTCCTT -ACGGAACAAGAGTCTGGACCTGTT -ACGGAACAAGAGTCTGGACGGTTT -ACGGAACAAGAGTCTGGAGTGGTT -ACGGAACAAGAGTCTGGAGCCTTT -ACGGAACAAGAGTCTGGAGGTCTT -ACGGAACAAGAGTCTGGAACGCTT -ACGGAACAAGAGTCTGGAAGCGTT -ACGGAACAAGAGTCTGGATTCGTC -ACGGAACAAGAGTCTGGATCTCTC -ACGGAACAAGAGTCTGGATGGATC -ACGGAACAAGAGTCTGGACACTTC -ACGGAACAAGAGTCTGGAGTACTC -ACGGAACAAGAGTCTGGAGATGTC -ACGGAACAAGAGTCTGGAACAGTC -ACGGAACAAGAGTCTGGATTGCTG -ACGGAACAAGAGTCTGGATCCATG -ACGGAACAAGAGTCTGGATGTGTG -ACGGAACAAGAGTCTGGACTAGTG -ACGGAACAAGAGTCTGGACATCTG -ACGGAACAAGAGTCTGGAGAGTTG -ACGGAACAAGAGTCTGGAAGACTG -ACGGAACAAGAGTCTGGATCGGTA -ACGGAACAAGAGTCTGGATGCCTA -ACGGAACAAGAGTCTGGACCACTA -ACGGAACAAGAGTCTGGAGGAGTA -ACGGAACAAGAGTCTGGATCGTCT -ACGGAACAAGAGTCTGGATGCACT -ACGGAACAAGAGTCTGGACTGACT -ACGGAACAAGAGTCTGGACAACCT -ACGGAACAAGAGTCTGGAGCTACT -ACGGAACAAGAGTCTGGAGGATCT -ACGGAACAAGAGTCTGGAAAGGCT -ACGGAACAAGAGTCTGGATCAACC -ACGGAACAAGAGTCTGGATGTTCC -ACGGAACAAGAGTCTGGAATTCCC -ACGGAACAAGAGTCTGGATTCTCG -ACGGAACAAGAGTCTGGATAGACG -ACGGAACAAGAGTCTGGAGTAACG -ACGGAACAAGAGTCTGGAACTTCG -ACGGAACAAGAGTCTGGATACGCA -ACGGAACAAGAGTCTGGACTTGCA -ACGGAACAAGAGTCTGGACGAACA -ACGGAACAAGAGTCTGGACAGTCA -ACGGAACAAGAGTCTGGAGATCCA -ACGGAACAAGAGTCTGGAACGACA -ACGGAACAAGAGTCTGGAAGCTCA -ACGGAACAAGAGTCTGGATCACGT -ACGGAACAAGAGTCTGGACGTAGT -ACGGAACAAGAGTCTGGAGTCAGT -ACGGAACAAGAGTCTGGAGAAGGT -ACGGAACAAGAGTCTGGAAACCGT -ACGGAACAAGAGTCTGGATTGTGC -ACGGAACAAGAGTCTGGACTAAGC -ACGGAACAAGAGTCTGGAACTAGC -ACGGAACAAGAGTCTGGAAGATGC -ACGGAACAAGAGTCTGGATGAAGG -ACGGAACAAGAGTCTGGACAATGG -ACGGAACAAGAGTCTGGAATGAGG -ACGGAACAAGAGTCTGGAAATGGG -ACGGAACAAGAGTCTGGATCCTGA -ACGGAACAAGAGTCTGGATAGCGA -ACGGAACAAGAGTCTGGACACAGA -ACGGAACAAGAGTCTGGAGCAAGA -ACGGAACAAGAGTCTGGAGGTTGA -ACGGAACAAGAGTCTGGATCCGAT -ACGGAACAAGAGTCTGGATGGCAT -ACGGAACAAGAGTCTGGACGAGAT -ACGGAACAAGAGTCTGGATACCAC -ACGGAACAAGAGTCTGGACAGAAC -ACGGAACAAGAGTCTGGAGTCTAC -ACGGAACAAGAGTCTGGAACGTAC -ACGGAACAAGAGTCTGGAAGTGAC -ACGGAACAAGAGTCTGGACTGTAG -ACGGAACAAGAGTCTGGACCTAAG -ACGGAACAAGAGTCTGGAGTTCAG -ACGGAACAAGAGTCTGGAGCATAG -ACGGAACAAGAGTCTGGAGACAAG -ACGGAACAAGAGTCTGGAAAGCAG -ACGGAACAAGAGTCTGGACGTCAA -ACGGAACAAGAGTCTGGAGCTGAA -ACGGAACAAGAGTCTGGAAGTACG -ACGGAACAAGAGTCTGGAATCCGA -ACGGAACAAGAGTCTGGAATGGGA -ACGGAACAAGAGTCTGGAGTGCAA -ACGGAACAAGAGTCTGGAGAGGAA -ACGGAACAAGAGTCTGGACAGGTA -ACGGAACAAGAGTCTGGAGACTCT -ACGGAACAAGAGTCTGGAAGTCCT -ACGGAACAAGAGTCTGGATAAGCC -ACGGAACAAGAGTCTGGAATAGCC -ACGGAACAAGAGTCTGGATAACCG -ACGGAACAAGAGTCTGGAATGCCA -ACGGAACAAGAGGCTAAGGGAAAC -ACGGAACAAGAGGCTAAGAACACC -ACGGAACAAGAGGCTAAGATCGAG -ACGGAACAAGAGGCTAAGCTCCTT -ACGGAACAAGAGGCTAAGCCTGTT -ACGGAACAAGAGGCTAAGCGGTTT -ACGGAACAAGAGGCTAAGGTGGTT -ACGGAACAAGAGGCTAAGGCCTTT -ACGGAACAAGAGGCTAAGGGTCTT -ACGGAACAAGAGGCTAAGACGCTT -ACGGAACAAGAGGCTAAGAGCGTT -ACGGAACAAGAGGCTAAGTTCGTC -ACGGAACAAGAGGCTAAGTCTCTC -ACGGAACAAGAGGCTAAGTGGATC -ACGGAACAAGAGGCTAAGCACTTC -ACGGAACAAGAGGCTAAGGTACTC -ACGGAACAAGAGGCTAAGGATGTC -ACGGAACAAGAGGCTAAGACAGTC -ACGGAACAAGAGGCTAAGTTGCTG -ACGGAACAAGAGGCTAAGTCCATG -ACGGAACAAGAGGCTAAGTGTGTG -ACGGAACAAGAGGCTAAGCTAGTG -ACGGAACAAGAGGCTAAGCATCTG -ACGGAACAAGAGGCTAAGGAGTTG -ACGGAACAAGAGGCTAAGAGACTG -ACGGAACAAGAGGCTAAGTCGGTA -ACGGAACAAGAGGCTAAGTGCCTA -ACGGAACAAGAGGCTAAGCCACTA -ACGGAACAAGAGGCTAAGGGAGTA -ACGGAACAAGAGGCTAAGTCGTCT -ACGGAACAAGAGGCTAAGTGCACT -ACGGAACAAGAGGCTAAGCTGACT -ACGGAACAAGAGGCTAAGCAACCT -ACGGAACAAGAGGCTAAGGCTACT -ACGGAACAAGAGGCTAAGGGATCT -ACGGAACAAGAGGCTAAGAAGGCT -ACGGAACAAGAGGCTAAGTCAACC -ACGGAACAAGAGGCTAAGTGTTCC -ACGGAACAAGAGGCTAAGATTCCC -ACGGAACAAGAGGCTAAGTTCTCG -ACGGAACAAGAGGCTAAGTAGACG -ACGGAACAAGAGGCTAAGGTAACG -ACGGAACAAGAGGCTAAGACTTCG -ACGGAACAAGAGGCTAAGTACGCA -ACGGAACAAGAGGCTAAGCTTGCA -ACGGAACAAGAGGCTAAGCGAACA -ACGGAACAAGAGGCTAAGCAGTCA -ACGGAACAAGAGGCTAAGGATCCA -ACGGAACAAGAGGCTAAGACGACA -ACGGAACAAGAGGCTAAGAGCTCA -ACGGAACAAGAGGCTAAGTCACGT -ACGGAACAAGAGGCTAAGCGTAGT -ACGGAACAAGAGGCTAAGGTCAGT -ACGGAACAAGAGGCTAAGGAAGGT -ACGGAACAAGAGGCTAAGAACCGT -ACGGAACAAGAGGCTAAGTTGTGC -ACGGAACAAGAGGCTAAGCTAAGC -ACGGAACAAGAGGCTAAGACTAGC -ACGGAACAAGAGGCTAAGAGATGC -ACGGAACAAGAGGCTAAGTGAAGG -ACGGAACAAGAGGCTAAGCAATGG -ACGGAACAAGAGGCTAAGATGAGG -ACGGAACAAGAGGCTAAGAATGGG -ACGGAACAAGAGGCTAAGTCCTGA -ACGGAACAAGAGGCTAAGTAGCGA -ACGGAACAAGAGGCTAAGCACAGA -ACGGAACAAGAGGCTAAGGCAAGA -ACGGAACAAGAGGCTAAGGGTTGA -ACGGAACAAGAGGCTAAGTCCGAT -ACGGAACAAGAGGCTAAGTGGCAT -ACGGAACAAGAGGCTAAGCGAGAT -ACGGAACAAGAGGCTAAGTACCAC -ACGGAACAAGAGGCTAAGCAGAAC -ACGGAACAAGAGGCTAAGGTCTAC -ACGGAACAAGAGGCTAAGACGTAC -ACGGAACAAGAGGCTAAGAGTGAC -ACGGAACAAGAGGCTAAGCTGTAG -ACGGAACAAGAGGCTAAGCCTAAG -ACGGAACAAGAGGCTAAGGTTCAG -ACGGAACAAGAGGCTAAGGCATAG -ACGGAACAAGAGGCTAAGGACAAG -ACGGAACAAGAGGCTAAGAAGCAG -ACGGAACAAGAGGCTAAGCGTCAA -ACGGAACAAGAGGCTAAGGCTGAA -ACGGAACAAGAGGCTAAGAGTACG -ACGGAACAAGAGGCTAAGATCCGA -ACGGAACAAGAGGCTAAGATGGGA -ACGGAACAAGAGGCTAAGGTGCAA -ACGGAACAAGAGGCTAAGGAGGAA -ACGGAACAAGAGGCTAAGCAGGTA -ACGGAACAAGAGGCTAAGGACTCT -ACGGAACAAGAGGCTAAGAGTCCT -ACGGAACAAGAGGCTAAGTAAGCC -ACGGAACAAGAGGCTAAGATAGCC -ACGGAACAAGAGGCTAAGTAACCG -ACGGAACAAGAGGCTAAGATGCCA -ACGGAACAAGAGACCTCAGGAAAC -ACGGAACAAGAGACCTCAAACACC -ACGGAACAAGAGACCTCAATCGAG -ACGGAACAAGAGACCTCACTCCTT -ACGGAACAAGAGACCTCACCTGTT -ACGGAACAAGAGACCTCACGGTTT -ACGGAACAAGAGACCTCAGTGGTT -ACGGAACAAGAGACCTCAGCCTTT -ACGGAACAAGAGACCTCAGGTCTT -ACGGAACAAGAGACCTCAACGCTT -ACGGAACAAGAGACCTCAAGCGTT -ACGGAACAAGAGACCTCATTCGTC -ACGGAACAAGAGACCTCATCTCTC -ACGGAACAAGAGACCTCATGGATC -ACGGAACAAGAGACCTCACACTTC -ACGGAACAAGAGACCTCAGTACTC -ACGGAACAAGAGACCTCAGATGTC -ACGGAACAAGAGACCTCAACAGTC -ACGGAACAAGAGACCTCATTGCTG -ACGGAACAAGAGACCTCATCCATG -ACGGAACAAGAGACCTCATGTGTG -ACGGAACAAGAGACCTCACTAGTG -ACGGAACAAGAGACCTCACATCTG -ACGGAACAAGAGACCTCAGAGTTG -ACGGAACAAGAGACCTCAAGACTG -ACGGAACAAGAGACCTCATCGGTA -ACGGAACAAGAGACCTCATGCCTA -ACGGAACAAGAGACCTCACCACTA -ACGGAACAAGAGACCTCAGGAGTA -ACGGAACAAGAGACCTCATCGTCT -ACGGAACAAGAGACCTCATGCACT -ACGGAACAAGAGACCTCACTGACT -ACGGAACAAGAGACCTCACAACCT -ACGGAACAAGAGACCTCAGCTACT -ACGGAACAAGAGACCTCAGGATCT -ACGGAACAAGAGACCTCAAAGGCT -ACGGAACAAGAGACCTCATCAACC -ACGGAACAAGAGACCTCATGTTCC -ACGGAACAAGAGACCTCAATTCCC -ACGGAACAAGAGACCTCATTCTCG -ACGGAACAAGAGACCTCATAGACG -ACGGAACAAGAGACCTCAGTAACG -ACGGAACAAGAGACCTCAACTTCG -ACGGAACAAGAGACCTCATACGCA -ACGGAACAAGAGACCTCACTTGCA -ACGGAACAAGAGACCTCACGAACA -ACGGAACAAGAGACCTCACAGTCA -ACGGAACAAGAGACCTCAGATCCA -ACGGAACAAGAGACCTCAACGACA -ACGGAACAAGAGACCTCAAGCTCA -ACGGAACAAGAGACCTCATCACGT -ACGGAACAAGAGACCTCACGTAGT -ACGGAACAAGAGACCTCAGTCAGT -ACGGAACAAGAGACCTCAGAAGGT -ACGGAACAAGAGACCTCAAACCGT -ACGGAACAAGAGACCTCATTGTGC -ACGGAACAAGAGACCTCACTAAGC -ACGGAACAAGAGACCTCAACTAGC -ACGGAACAAGAGACCTCAAGATGC -ACGGAACAAGAGACCTCATGAAGG -ACGGAACAAGAGACCTCACAATGG -ACGGAACAAGAGACCTCAATGAGG -ACGGAACAAGAGACCTCAAATGGG -ACGGAACAAGAGACCTCATCCTGA -ACGGAACAAGAGACCTCATAGCGA -ACGGAACAAGAGACCTCACACAGA -ACGGAACAAGAGACCTCAGCAAGA -ACGGAACAAGAGACCTCAGGTTGA -ACGGAACAAGAGACCTCATCCGAT -ACGGAACAAGAGACCTCATGGCAT -ACGGAACAAGAGACCTCACGAGAT -ACGGAACAAGAGACCTCATACCAC -ACGGAACAAGAGACCTCACAGAAC -ACGGAACAAGAGACCTCAGTCTAC -ACGGAACAAGAGACCTCAACGTAC -ACGGAACAAGAGACCTCAAGTGAC -ACGGAACAAGAGACCTCACTGTAG -ACGGAACAAGAGACCTCACCTAAG -ACGGAACAAGAGACCTCAGTTCAG -ACGGAACAAGAGACCTCAGCATAG -ACGGAACAAGAGACCTCAGACAAG -ACGGAACAAGAGACCTCAAAGCAG -ACGGAACAAGAGACCTCACGTCAA -ACGGAACAAGAGACCTCAGCTGAA -ACGGAACAAGAGACCTCAAGTACG -ACGGAACAAGAGACCTCAATCCGA -ACGGAACAAGAGACCTCAATGGGA -ACGGAACAAGAGACCTCAGTGCAA -ACGGAACAAGAGACCTCAGAGGAA -ACGGAACAAGAGACCTCACAGGTA -ACGGAACAAGAGACCTCAGACTCT -ACGGAACAAGAGACCTCAAGTCCT -ACGGAACAAGAGACCTCATAAGCC -ACGGAACAAGAGACCTCAATAGCC -ACGGAACAAGAGACCTCATAACCG -ACGGAACAAGAGACCTCAATGCCA -ACGGAACAAGAGTCCTGTGGAAAC -ACGGAACAAGAGTCCTGTAACACC -ACGGAACAAGAGTCCTGTATCGAG -ACGGAACAAGAGTCCTGTCTCCTT -ACGGAACAAGAGTCCTGTCCTGTT -ACGGAACAAGAGTCCTGTCGGTTT -ACGGAACAAGAGTCCTGTGTGGTT -ACGGAACAAGAGTCCTGTGCCTTT -ACGGAACAAGAGTCCTGTGGTCTT -ACGGAACAAGAGTCCTGTACGCTT -ACGGAACAAGAGTCCTGTAGCGTT -ACGGAACAAGAGTCCTGTTTCGTC -ACGGAACAAGAGTCCTGTTCTCTC -ACGGAACAAGAGTCCTGTTGGATC -ACGGAACAAGAGTCCTGTCACTTC -ACGGAACAAGAGTCCTGTGTACTC -ACGGAACAAGAGTCCTGTGATGTC -ACGGAACAAGAGTCCTGTACAGTC -ACGGAACAAGAGTCCTGTTTGCTG -ACGGAACAAGAGTCCTGTTCCATG -ACGGAACAAGAGTCCTGTTGTGTG -ACGGAACAAGAGTCCTGTCTAGTG -ACGGAACAAGAGTCCTGTCATCTG -ACGGAACAAGAGTCCTGTGAGTTG -ACGGAACAAGAGTCCTGTAGACTG -ACGGAACAAGAGTCCTGTTCGGTA -ACGGAACAAGAGTCCTGTTGCCTA -ACGGAACAAGAGTCCTGTCCACTA -ACGGAACAAGAGTCCTGTGGAGTA -ACGGAACAAGAGTCCTGTTCGTCT -ACGGAACAAGAGTCCTGTTGCACT -ACGGAACAAGAGTCCTGTCTGACT -ACGGAACAAGAGTCCTGTCAACCT -ACGGAACAAGAGTCCTGTGCTACT -ACGGAACAAGAGTCCTGTGGATCT -ACGGAACAAGAGTCCTGTAAGGCT -ACGGAACAAGAGTCCTGTTCAACC -ACGGAACAAGAGTCCTGTTGTTCC -ACGGAACAAGAGTCCTGTATTCCC -ACGGAACAAGAGTCCTGTTTCTCG -ACGGAACAAGAGTCCTGTTAGACG -ACGGAACAAGAGTCCTGTGTAACG -ACGGAACAAGAGTCCTGTACTTCG -ACGGAACAAGAGTCCTGTTACGCA -ACGGAACAAGAGTCCTGTCTTGCA -ACGGAACAAGAGTCCTGTCGAACA -ACGGAACAAGAGTCCTGTCAGTCA -ACGGAACAAGAGTCCTGTGATCCA -ACGGAACAAGAGTCCTGTACGACA -ACGGAACAAGAGTCCTGTAGCTCA -ACGGAACAAGAGTCCTGTTCACGT -ACGGAACAAGAGTCCTGTCGTAGT -ACGGAACAAGAGTCCTGTGTCAGT -ACGGAACAAGAGTCCTGTGAAGGT -ACGGAACAAGAGTCCTGTAACCGT -ACGGAACAAGAGTCCTGTTTGTGC -ACGGAACAAGAGTCCTGTCTAAGC -ACGGAACAAGAGTCCTGTACTAGC -ACGGAACAAGAGTCCTGTAGATGC -ACGGAACAAGAGTCCTGTTGAAGG -ACGGAACAAGAGTCCTGTCAATGG -ACGGAACAAGAGTCCTGTATGAGG -ACGGAACAAGAGTCCTGTAATGGG -ACGGAACAAGAGTCCTGTTCCTGA -ACGGAACAAGAGTCCTGTTAGCGA -ACGGAACAAGAGTCCTGTCACAGA -ACGGAACAAGAGTCCTGTGCAAGA -ACGGAACAAGAGTCCTGTGGTTGA -ACGGAACAAGAGTCCTGTTCCGAT -ACGGAACAAGAGTCCTGTTGGCAT -ACGGAACAAGAGTCCTGTCGAGAT -ACGGAACAAGAGTCCTGTTACCAC -ACGGAACAAGAGTCCTGTCAGAAC -ACGGAACAAGAGTCCTGTGTCTAC -ACGGAACAAGAGTCCTGTACGTAC -ACGGAACAAGAGTCCTGTAGTGAC -ACGGAACAAGAGTCCTGTCTGTAG -ACGGAACAAGAGTCCTGTCCTAAG -ACGGAACAAGAGTCCTGTGTTCAG -ACGGAACAAGAGTCCTGTGCATAG -ACGGAACAAGAGTCCTGTGACAAG -ACGGAACAAGAGTCCTGTAAGCAG -ACGGAACAAGAGTCCTGTCGTCAA -ACGGAACAAGAGTCCTGTGCTGAA -ACGGAACAAGAGTCCTGTAGTACG -ACGGAACAAGAGTCCTGTATCCGA -ACGGAACAAGAGTCCTGTATGGGA -ACGGAACAAGAGTCCTGTGTGCAA -ACGGAACAAGAGTCCTGTGAGGAA -ACGGAACAAGAGTCCTGTCAGGTA -ACGGAACAAGAGTCCTGTGACTCT -ACGGAACAAGAGTCCTGTAGTCCT -ACGGAACAAGAGTCCTGTTAAGCC -ACGGAACAAGAGTCCTGTATAGCC -ACGGAACAAGAGTCCTGTTAACCG -ACGGAACAAGAGTCCTGTATGCCA -ACGGAACAAGAGCCCATTGGAAAC -ACGGAACAAGAGCCCATTAACACC -ACGGAACAAGAGCCCATTATCGAG -ACGGAACAAGAGCCCATTCTCCTT -ACGGAACAAGAGCCCATTCCTGTT -ACGGAACAAGAGCCCATTCGGTTT -ACGGAACAAGAGCCCATTGTGGTT -ACGGAACAAGAGCCCATTGCCTTT -ACGGAACAAGAGCCCATTGGTCTT -ACGGAACAAGAGCCCATTACGCTT -ACGGAACAAGAGCCCATTAGCGTT -ACGGAACAAGAGCCCATTTTCGTC -ACGGAACAAGAGCCCATTTCTCTC -ACGGAACAAGAGCCCATTTGGATC -ACGGAACAAGAGCCCATTCACTTC -ACGGAACAAGAGCCCATTGTACTC -ACGGAACAAGAGCCCATTGATGTC -ACGGAACAAGAGCCCATTACAGTC -ACGGAACAAGAGCCCATTTTGCTG -ACGGAACAAGAGCCCATTTCCATG -ACGGAACAAGAGCCCATTTGTGTG -ACGGAACAAGAGCCCATTCTAGTG -ACGGAACAAGAGCCCATTCATCTG -ACGGAACAAGAGCCCATTGAGTTG -ACGGAACAAGAGCCCATTAGACTG -ACGGAACAAGAGCCCATTTCGGTA -ACGGAACAAGAGCCCATTTGCCTA -ACGGAACAAGAGCCCATTCCACTA -ACGGAACAAGAGCCCATTGGAGTA -ACGGAACAAGAGCCCATTTCGTCT -ACGGAACAAGAGCCCATTTGCACT -ACGGAACAAGAGCCCATTCTGACT -ACGGAACAAGAGCCCATTCAACCT -ACGGAACAAGAGCCCATTGCTACT -ACGGAACAAGAGCCCATTGGATCT -ACGGAACAAGAGCCCATTAAGGCT -ACGGAACAAGAGCCCATTTCAACC -ACGGAACAAGAGCCCATTTGTTCC -ACGGAACAAGAGCCCATTATTCCC -ACGGAACAAGAGCCCATTTTCTCG -ACGGAACAAGAGCCCATTTAGACG -ACGGAACAAGAGCCCATTGTAACG -ACGGAACAAGAGCCCATTACTTCG -ACGGAACAAGAGCCCATTTACGCA -ACGGAACAAGAGCCCATTCTTGCA -ACGGAACAAGAGCCCATTCGAACA -ACGGAACAAGAGCCCATTCAGTCA -ACGGAACAAGAGCCCATTGATCCA -ACGGAACAAGAGCCCATTACGACA -ACGGAACAAGAGCCCATTAGCTCA -ACGGAACAAGAGCCCATTTCACGT -ACGGAACAAGAGCCCATTCGTAGT -ACGGAACAAGAGCCCATTGTCAGT -ACGGAACAAGAGCCCATTGAAGGT -ACGGAACAAGAGCCCATTAACCGT -ACGGAACAAGAGCCCATTTTGTGC -ACGGAACAAGAGCCCATTCTAAGC -ACGGAACAAGAGCCCATTACTAGC -ACGGAACAAGAGCCCATTAGATGC -ACGGAACAAGAGCCCATTTGAAGG -ACGGAACAAGAGCCCATTCAATGG -ACGGAACAAGAGCCCATTATGAGG -ACGGAACAAGAGCCCATTAATGGG -ACGGAACAAGAGCCCATTTCCTGA -ACGGAACAAGAGCCCATTTAGCGA -ACGGAACAAGAGCCCATTCACAGA -ACGGAACAAGAGCCCATTGCAAGA -ACGGAACAAGAGCCCATTGGTTGA -ACGGAACAAGAGCCCATTTCCGAT -ACGGAACAAGAGCCCATTTGGCAT -ACGGAACAAGAGCCCATTCGAGAT -ACGGAACAAGAGCCCATTTACCAC -ACGGAACAAGAGCCCATTCAGAAC -ACGGAACAAGAGCCCATTGTCTAC -ACGGAACAAGAGCCCATTACGTAC -ACGGAACAAGAGCCCATTAGTGAC -ACGGAACAAGAGCCCATTCTGTAG -ACGGAACAAGAGCCCATTCCTAAG -ACGGAACAAGAGCCCATTGTTCAG -ACGGAACAAGAGCCCATTGCATAG -ACGGAACAAGAGCCCATTGACAAG -ACGGAACAAGAGCCCATTAAGCAG -ACGGAACAAGAGCCCATTCGTCAA -ACGGAACAAGAGCCCATTGCTGAA -ACGGAACAAGAGCCCATTAGTACG -ACGGAACAAGAGCCCATTATCCGA -ACGGAACAAGAGCCCATTATGGGA -ACGGAACAAGAGCCCATTGTGCAA -ACGGAACAAGAGCCCATTGAGGAA -ACGGAACAAGAGCCCATTCAGGTA -ACGGAACAAGAGCCCATTGACTCT -ACGGAACAAGAGCCCATTAGTCCT -ACGGAACAAGAGCCCATTTAAGCC -ACGGAACAAGAGCCCATTATAGCC -ACGGAACAAGAGCCCATTTAACCG -ACGGAACAAGAGCCCATTATGCCA -ACGGAACAAGAGTCGTTCGGAAAC -ACGGAACAAGAGTCGTTCAACACC -ACGGAACAAGAGTCGTTCATCGAG -ACGGAACAAGAGTCGTTCCTCCTT -ACGGAACAAGAGTCGTTCCCTGTT -ACGGAACAAGAGTCGTTCCGGTTT -ACGGAACAAGAGTCGTTCGTGGTT -ACGGAACAAGAGTCGTTCGCCTTT -ACGGAACAAGAGTCGTTCGGTCTT -ACGGAACAAGAGTCGTTCACGCTT -ACGGAACAAGAGTCGTTCAGCGTT -ACGGAACAAGAGTCGTTCTTCGTC -ACGGAACAAGAGTCGTTCTCTCTC -ACGGAACAAGAGTCGTTCTGGATC -ACGGAACAAGAGTCGTTCCACTTC -ACGGAACAAGAGTCGTTCGTACTC -ACGGAACAAGAGTCGTTCGATGTC -ACGGAACAAGAGTCGTTCACAGTC -ACGGAACAAGAGTCGTTCTTGCTG -ACGGAACAAGAGTCGTTCTCCATG -ACGGAACAAGAGTCGTTCTGTGTG -ACGGAACAAGAGTCGTTCCTAGTG -ACGGAACAAGAGTCGTTCCATCTG -ACGGAACAAGAGTCGTTCGAGTTG -ACGGAACAAGAGTCGTTCAGACTG -ACGGAACAAGAGTCGTTCTCGGTA -ACGGAACAAGAGTCGTTCTGCCTA -ACGGAACAAGAGTCGTTCCCACTA -ACGGAACAAGAGTCGTTCGGAGTA -ACGGAACAAGAGTCGTTCTCGTCT -ACGGAACAAGAGTCGTTCTGCACT -ACGGAACAAGAGTCGTTCCTGACT -ACGGAACAAGAGTCGTTCCAACCT -ACGGAACAAGAGTCGTTCGCTACT -ACGGAACAAGAGTCGTTCGGATCT -ACGGAACAAGAGTCGTTCAAGGCT -ACGGAACAAGAGTCGTTCTCAACC -ACGGAACAAGAGTCGTTCTGTTCC -ACGGAACAAGAGTCGTTCATTCCC -ACGGAACAAGAGTCGTTCTTCTCG -ACGGAACAAGAGTCGTTCTAGACG -ACGGAACAAGAGTCGTTCGTAACG -ACGGAACAAGAGTCGTTCACTTCG -ACGGAACAAGAGTCGTTCTACGCA -ACGGAACAAGAGTCGTTCCTTGCA -ACGGAACAAGAGTCGTTCCGAACA -ACGGAACAAGAGTCGTTCCAGTCA -ACGGAACAAGAGTCGTTCGATCCA -ACGGAACAAGAGTCGTTCACGACA -ACGGAACAAGAGTCGTTCAGCTCA -ACGGAACAAGAGTCGTTCTCACGT -ACGGAACAAGAGTCGTTCCGTAGT -ACGGAACAAGAGTCGTTCGTCAGT -ACGGAACAAGAGTCGTTCGAAGGT -ACGGAACAAGAGTCGTTCAACCGT -ACGGAACAAGAGTCGTTCTTGTGC -ACGGAACAAGAGTCGTTCCTAAGC -ACGGAACAAGAGTCGTTCACTAGC -ACGGAACAAGAGTCGTTCAGATGC -ACGGAACAAGAGTCGTTCTGAAGG -ACGGAACAAGAGTCGTTCCAATGG -ACGGAACAAGAGTCGTTCATGAGG -ACGGAACAAGAGTCGTTCAATGGG -ACGGAACAAGAGTCGTTCTCCTGA -ACGGAACAAGAGTCGTTCTAGCGA -ACGGAACAAGAGTCGTTCCACAGA -ACGGAACAAGAGTCGTTCGCAAGA -ACGGAACAAGAGTCGTTCGGTTGA -ACGGAACAAGAGTCGTTCTCCGAT -ACGGAACAAGAGTCGTTCTGGCAT -ACGGAACAAGAGTCGTTCCGAGAT -ACGGAACAAGAGTCGTTCTACCAC -ACGGAACAAGAGTCGTTCCAGAAC -ACGGAACAAGAGTCGTTCGTCTAC -ACGGAACAAGAGTCGTTCACGTAC -ACGGAACAAGAGTCGTTCAGTGAC -ACGGAACAAGAGTCGTTCCTGTAG -ACGGAACAAGAGTCGTTCCCTAAG -ACGGAACAAGAGTCGTTCGTTCAG -ACGGAACAAGAGTCGTTCGCATAG -ACGGAACAAGAGTCGTTCGACAAG -ACGGAACAAGAGTCGTTCAAGCAG -ACGGAACAAGAGTCGTTCCGTCAA -ACGGAACAAGAGTCGTTCGCTGAA -ACGGAACAAGAGTCGTTCAGTACG -ACGGAACAAGAGTCGTTCATCCGA -ACGGAACAAGAGTCGTTCATGGGA -ACGGAACAAGAGTCGTTCGTGCAA -ACGGAACAAGAGTCGTTCGAGGAA -ACGGAACAAGAGTCGTTCCAGGTA -ACGGAACAAGAGTCGTTCGACTCT -ACGGAACAAGAGTCGTTCAGTCCT -ACGGAACAAGAGTCGTTCTAAGCC -ACGGAACAAGAGTCGTTCATAGCC -ACGGAACAAGAGTCGTTCTAACCG -ACGGAACAAGAGTCGTTCATGCCA -ACGGAACAAGAGACGTAGGGAAAC -ACGGAACAAGAGACGTAGAACACC -ACGGAACAAGAGACGTAGATCGAG -ACGGAACAAGAGACGTAGCTCCTT -ACGGAACAAGAGACGTAGCCTGTT -ACGGAACAAGAGACGTAGCGGTTT -ACGGAACAAGAGACGTAGGTGGTT -ACGGAACAAGAGACGTAGGCCTTT -ACGGAACAAGAGACGTAGGGTCTT -ACGGAACAAGAGACGTAGACGCTT -ACGGAACAAGAGACGTAGAGCGTT -ACGGAACAAGAGACGTAGTTCGTC -ACGGAACAAGAGACGTAGTCTCTC -ACGGAACAAGAGACGTAGTGGATC -ACGGAACAAGAGACGTAGCACTTC -ACGGAACAAGAGACGTAGGTACTC -ACGGAACAAGAGACGTAGGATGTC -ACGGAACAAGAGACGTAGACAGTC -ACGGAACAAGAGACGTAGTTGCTG -ACGGAACAAGAGACGTAGTCCATG -ACGGAACAAGAGACGTAGTGTGTG -ACGGAACAAGAGACGTAGCTAGTG -ACGGAACAAGAGACGTAGCATCTG -ACGGAACAAGAGACGTAGGAGTTG -ACGGAACAAGAGACGTAGAGACTG -ACGGAACAAGAGACGTAGTCGGTA -ACGGAACAAGAGACGTAGTGCCTA -ACGGAACAAGAGACGTAGCCACTA -ACGGAACAAGAGACGTAGGGAGTA -ACGGAACAAGAGACGTAGTCGTCT -ACGGAACAAGAGACGTAGTGCACT -ACGGAACAAGAGACGTAGCTGACT -ACGGAACAAGAGACGTAGCAACCT -ACGGAACAAGAGACGTAGGCTACT -ACGGAACAAGAGACGTAGGGATCT -ACGGAACAAGAGACGTAGAAGGCT -ACGGAACAAGAGACGTAGTCAACC -ACGGAACAAGAGACGTAGTGTTCC -ACGGAACAAGAGACGTAGATTCCC -ACGGAACAAGAGACGTAGTTCTCG -ACGGAACAAGAGACGTAGTAGACG -ACGGAACAAGAGACGTAGGTAACG -ACGGAACAAGAGACGTAGACTTCG -ACGGAACAAGAGACGTAGTACGCA -ACGGAACAAGAGACGTAGCTTGCA -ACGGAACAAGAGACGTAGCGAACA -ACGGAACAAGAGACGTAGCAGTCA -ACGGAACAAGAGACGTAGGATCCA -ACGGAACAAGAGACGTAGACGACA -ACGGAACAAGAGACGTAGAGCTCA -ACGGAACAAGAGACGTAGTCACGT -ACGGAACAAGAGACGTAGCGTAGT -ACGGAACAAGAGACGTAGGTCAGT -ACGGAACAAGAGACGTAGGAAGGT -ACGGAACAAGAGACGTAGAACCGT -ACGGAACAAGAGACGTAGTTGTGC -ACGGAACAAGAGACGTAGCTAAGC -ACGGAACAAGAGACGTAGACTAGC -ACGGAACAAGAGACGTAGAGATGC -ACGGAACAAGAGACGTAGTGAAGG -ACGGAACAAGAGACGTAGCAATGG -ACGGAACAAGAGACGTAGATGAGG -ACGGAACAAGAGACGTAGAATGGG -ACGGAACAAGAGACGTAGTCCTGA -ACGGAACAAGAGACGTAGTAGCGA -ACGGAACAAGAGACGTAGCACAGA -ACGGAACAAGAGACGTAGGCAAGA -ACGGAACAAGAGACGTAGGGTTGA -ACGGAACAAGAGACGTAGTCCGAT -ACGGAACAAGAGACGTAGTGGCAT -ACGGAACAAGAGACGTAGCGAGAT -ACGGAACAAGAGACGTAGTACCAC -ACGGAACAAGAGACGTAGCAGAAC -ACGGAACAAGAGACGTAGGTCTAC -ACGGAACAAGAGACGTAGACGTAC -ACGGAACAAGAGACGTAGAGTGAC -ACGGAACAAGAGACGTAGCTGTAG -ACGGAACAAGAGACGTAGCCTAAG -ACGGAACAAGAGACGTAGGTTCAG -ACGGAACAAGAGACGTAGGCATAG -ACGGAACAAGAGACGTAGGACAAG -ACGGAACAAGAGACGTAGAAGCAG -ACGGAACAAGAGACGTAGCGTCAA -ACGGAACAAGAGACGTAGGCTGAA -ACGGAACAAGAGACGTAGAGTACG -ACGGAACAAGAGACGTAGATCCGA -ACGGAACAAGAGACGTAGATGGGA -ACGGAACAAGAGACGTAGGTGCAA -ACGGAACAAGAGACGTAGGAGGAA -ACGGAACAAGAGACGTAGCAGGTA -ACGGAACAAGAGACGTAGGACTCT -ACGGAACAAGAGACGTAGAGTCCT -ACGGAACAAGAGACGTAGTAAGCC -ACGGAACAAGAGACGTAGATAGCC -ACGGAACAAGAGACGTAGTAACCG -ACGGAACAAGAGACGTAGATGCCA -ACGGAACAAGAGACGGTAGGAAAC -ACGGAACAAGAGACGGTAAACACC -ACGGAACAAGAGACGGTAATCGAG -ACGGAACAAGAGACGGTACTCCTT -ACGGAACAAGAGACGGTACCTGTT -ACGGAACAAGAGACGGTACGGTTT -ACGGAACAAGAGACGGTAGTGGTT -ACGGAACAAGAGACGGTAGCCTTT -ACGGAACAAGAGACGGTAGGTCTT -ACGGAACAAGAGACGGTAACGCTT -ACGGAACAAGAGACGGTAAGCGTT -ACGGAACAAGAGACGGTATTCGTC -ACGGAACAAGAGACGGTATCTCTC -ACGGAACAAGAGACGGTATGGATC -ACGGAACAAGAGACGGTACACTTC -ACGGAACAAGAGACGGTAGTACTC -ACGGAACAAGAGACGGTAGATGTC -ACGGAACAAGAGACGGTAACAGTC -ACGGAACAAGAGACGGTATTGCTG -ACGGAACAAGAGACGGTATCCATG -ACGGAACAAGAGACGGTATGTGTG -ACGGAACAAGAGACGGTACTAGTG -ACGGAACAAGAGACGGTACATCTG -ACGGAACAAGAGACGGTAGAGTTG -ACGGAACAAGAGACGGTAAGACTG -ACGGAACAAGAGACGGTATCGGTA -ACGGAACAAGAGACGGTATGCCTA -ACGGAACAAGAGACGGTACCACTA -ACGGAACAAGAGACGGTAGGAGTA -ACGGAACAAGAGACGGTATCGTCT -ACGGAACAAGAGACGGTATGCACT -ACGGAACAAGAGACGGTACTGACT -ACGGAACAAGAGACGGTACAACCT -ACGGAACAAGAGACGGTAGCTACT -ACGGAACAAGAGACGGTAGGATCT -ACGGAACAAGAGACGGTAAAGGCT -ACGGAACAAGAGACGGTATCAACC -ACGGAACAAGAGACGGTATGTTCC -ACGGAACAAGAGACGGTAATTCCC -ACGGAACAAGAGACGGTATTCTCG -ACGGAACAAGAGACGGTATAGACG -ACGGAACAAGAGACGGTAGTAACG -ACGGAACAAGAGACGGTAACTTCG -ACGGAACAAGAGACGGTATACGCA -ACGGAACAAGAGACGGTACTTGCA -ACGGAACAAGAGACGGTACGAACA -ACGGAACAAGAGACGGTACAGTCA -ACGGAACAAGAGACGGTAGATCCA -ACGGAACAAGAGACGGTAACGACA -ACGGAACAAGAGACGGTAAGCTCA -ACGGAACAAGAGACGGTATCACGT -ACGGAACAAGAGACGGTACGTAGT -ACGGAACAAGAGACGGTAGTCAGT -ACGGAACAAGAGACGGTAGAAGGT -ACGGAACAAGAGACGGTAAACCGT -ACGGAACAAGAGACGGTATTGTGC -ACGGAACAAGAGACGGTACTAAGC -ACGGAACAAGAGACGGTAACTAGC -ACGGAACAAGAGACGGTAAGATGC -ACGGAACAAGAGACGGTATGAAGG -ACGGAACAAGAGACGGTACAATGG -ACGGAACAAGAGACGGTAATGAGG -ACGGAACAAGAGACGGTAAATGGG -ACGGAACAAGAGACGGTATCCTGA -ACGGAACAAGAGACGGTATAGCGA -ACGGAACAAGAGACGGTACACAGA -ACGGAACAAGAGACGGTAGCAAGA -ACGGAACAAGAGACGGTAGGTTGA -ACGGAACAAGAGACGGTATCCGAT -ACGGAACAAGAGACGGTATGGCAT -ACGGAACAAGAGACGGTACGAGAT -ACGGAACAAGAGACGGTATACCAC -ACGGAACAAGAGACGGTACAGAAC -ACGGAACAAGAGACGGTAGTCTAC -ACGGAACAAGAGACGGTAACGTAC -ACGGAACAAGAGACGGTAAGTGAC -ACGGAACAAGAGACGGTACTGTAG -ACGGAACAAGAGACGGTACCTAAG -ACGGAACAAGAGACGGTAGTTCAG -ACGGAACAAGAGACGGTAGCATAG -ACGGAACAAGAGACGGTAGACAAG -ACGGAACAAGAGACGGTAAAGCAG -ACGGAACAAGAGACGGTACGTCAA -ACGGAACAAGAGACGGTAGCTGAA -ACGGAACAAGAGACGGTAAGTACG -ACGGAACAAGAGACGGTAATCCGA -ACGGAACAAGAGACGGTAATGGGA -ACGGAACAAGAGACGGTAGTGCAA -ACGGAACAAGAGACGGTAGAGGAA -ACGGAACAAGAGACGGTACAGGTA -ACGGAACAAGAGACGGTAGACTCT -ACGGAACAAGAGACGGTAAGTCCT -ACGGAACAAGAGACGGTATAAGCC -ACGGAACAAGAGACGGTAATAGCC -ACGGAACAAGAGACGGTATAACCG -ACGGAACAAGAGACGGTAATGCCA -ACGGAACAAGAGTCGACTGGAAAC -ACGGAACAAGAGTCGACTAACACC -ACGGAACAAGAGTCGACTATCGAG -ACGGAACAAGAGTCGACTCTCCTT -ACGGAACAAGAGTCGACTCCTGTT -ACGGAACAAGAGTCGACTCGGTTT -ACGGAACAAGAGTCGACTGTGGTT -ACGGAACAAGAGTCGACTGCCTTT -ACGGAACAAGAGTCGACTGGTCTT -ACGGAACAAGAGTCGACTACGCTT -ACGGAACAAGAGTCGACTAGCGTT -ACGGAACAAGAGTCGACTTTCGTC -ACGGAACAAGAGTCGACTTCTCTC -ACGGAACAAGAGTCGACTTGGATC -ACGGAACAAGAGTCGACTCACTTC -ACGGAACAAGAGTCGACTGTACTC -ACGGAACAAGAGTCGACTGATGTC -ACGGAACAAGAGTCGACTACAGTC -ACGGAACAAGAGTCGACTTTGCTG -ACGGAACAAGAGTCGACTTCCATG -ACGGAACAAGAGTCGACTTGTGTG -ACGGAACAAGAGTCGACTCTAGTG -ACGGAACAAGAGTCGACTCATCTG -ACGGAACAAGAGTCGACTGAGTTG -ACGGAACAAGAGTCGACTAGACTG -ACGGAACAAGAGTCGACTTCGGTA -ACGGAACAAGAGTCGACTTGCCTA -ACGGAACAAGAGTCGACTCCACTA -ACGGAACAAGAGTCGACTGGAGTA -ACGGAACAAGAGTCGACTTCGTCT -ACGGAACAAGAGTCGACTTGCACT -ACGGAACAAGAGTCGACTCTGACT -ACGGAACAAGAGTCGACTCAACCT -ACGGAACAAGAGTCGACTGCTACT -ACGGAACAAGAGTCGACTGGATCT -ACGGAACAAGAGTCGACTAAGGCT -ACGGAACAAGAGTCGACTTCAACC -ACGGAACAAGAGTCGACTTGTTCC -ACGGAACAAGAGTCGACTATTCCC -ACGGAACAAGAGTCGACTTTCTCG -ACGGAACAAGAGTCGACTTAGACG -ACGGAACAAGAGTCGACTGTAACG -ACGGAACAAGAGTCGACTACTTCG -ACGGAACAAGAGTCGACTTACGCA -ACGGAACAAGAGTCGACTCTTGCA -ACGGAACAAGAGTCGACTCGAACA -ACGGAACAAGAGTCGACTCAGTCA -ACGGAACAAGAGTCGACTGATCCA -ACGGAACAAGAGTCGACTACGACA -ACGGAACAAGAGTCGACTAGCTCA -ACGGAACAAGAGTCGACTTCACGT -ACGGAACAAGAGTCGACTCGTAGT -ACGGAACAAGAGTCGACTGTCAGT -ACGGAACAAGAGTCGACTGAAGGT -ACGGAACAAGAGTCGACTAACCGT -ACGGAACAAGAGTCGACTTTGTGC -ACGGAACAAGAGTCGACTCTAAGC -ACGGAACAAGAGTCGACTACTAGC -ACGGAACAAGAGTCGACTAGATGC -ACGGAACAAGAGTCGACTTGAAGG -ACGGAACAAGAGTCGACTCAATGG -ACGGAACAAGAGTCGACTATGAGG -ACGGAACAAGAGTCGACTAATGGG -ACGGAACAAGAGTCGACTTCCTGA -ACGGAACAAGAGTCGACTTAGCGA -ACGGAACAAGAGTCGACTCACAGA -ACGGAACAAGAGTCGACTGCAAGA -ACGGAACAAGAGTCGACTGGTTGA -ACGGAACAAGAGTCGACTTCCGAT -ACGGAACAAGAGTCGACTTGGCAT -ACGGAACAAGAGTCGACTCGAGAT -ACGGAACAAGAGTCGACTTACCAC -ACGGAACAAGAGTCGACTCAGAAC -ACGGAACAAGAGTCGACTGTCTAC -ACGGAACAAGAGTCGACTACGTAC -ACGGAACAAGAGTCGACTAGTGAC -ACGGAACAAGAGTCGACTCTGTAG -ACGGAACAAGAGTCGACTCCTAAG -ACGGAACAAGAGTCGACTGTTCAG -ACGGAACAAGAGTCGACTGCATAG -ACGGAACAAGAGTCGACTGACAAG -ACGGAACAAGAGTCGACTAAGCAG -ACGGAACAAGAGTCGACTCGTCAA -ACGGAACAAGAGTCGACTGCTGAA -ACGGAACAAGAGTCGACTAGTACG -ACGGAACAAGAGTCGACTATCCGA -ACGGAACAAGAGTCGACTATGGGA -ACGGAACAAGAGTCGACTGTGCAA -ACGGAACAAGAGTCGACTGAGGAA -ACGGAACAAGAGTCGACTCAGGTA -ACGGAACAAGAGTCGACTGACTCT -ACGGAACAAGAGTCGACTAGTCCT -ACGGAACAAGAGTCGACTTAAGCC -ACGGAACAAGAGTCGACTATAGCC -ACGGAACAAGAGTCGACTTAACCG -ACGGAACAAGAGTCGACTATGCCA -ACGGAACAAGAGGCATACGGAAAC -ACGGAACAAGAGGCATACAACACC -ACGGAACAAGAGGCATACATCGAG -ACGGAACAAGAGGCATACCTCCTT -ACGGAACAAGAGGCATACCCTGTT -ACGGAACAAGAGGCATACCGGTTT -ACGGAACAAGAGGCATACGTGGTT -ACGGAACAAGAGGCATACGCCTTT -ACGGAACAAGAGGCATACGGTCTT -ACGGAACAAGAGGCATACACGCTT -ACGGAACAAGAGGCATACAGCGTT -ACGGAACAAGAGGCATACTTCGTC -ACGGAACAAGAGGCATACTCTCTC -ACGGAACAAGAGGCATACTGGATC -ACGGAACAAGAGGCATACCACTTC -ACGGAACAAGAGGCATACGTACTC -ACGGAACAAGAGGCATACGATGTC -ACGGAACAAGAGGCATACACAGTC -ACGGAACAAGAGGCATACTTGCTG -ACGGAACAAGAGGCATACTCCATG -ACGGAACAAGAGGCATACTGTGTG -ACGGAACAAGAGGCATACCTAGTG -ACGGAACAAGAGGCATACCATCTG -ACGGAACAAGAGGCATACGAGTTG -ACGGAACAAGAGGCATACAGACTG -ACGGAACAAGAGGCATACTCGGTA -ACGGAACAAGAGGCATACTGCCTA -ACGGAACAAGAGGCATACCCACTA -ACGGAACAAGAGGCATACGGAGTA -ACGGAACAAGAGGCATACTCGTCT -ACGGAACAAGAGGCATACTGCACT -ACGGAACAAGAGGCATACCTGACT -ACGGAACAAGAGGCATACCAACCT -ACGGAACAAGAGGCATACGCTACT -ACGGAACAAGAGGCATACGGATCT -ACGGAACAAGAGGCATACAAGGCT -ACGGAACAAGAGGCATACTCAACC -ACGGAACAAGAGGCATACTGTTCC -ACGGAACAAGAGGCATACATTCCC -ACGGAACAAGAGGCATACTTCTCG -ACGGAACAAGAGGCATACTAGACG -ACGGAACAAGAGGCATACGTAACG -ACGGAACAAGAGGCATACACTTCG -ACGGAACAAGAGGCATACTACGCA -ACGGAACAAGAGGCATACCTTGCA -ACGGAACAAGAGGCATACCGAACA -ACGGAACAAGAGGCATACCAGTCA -ACGGAACAAGAGGCATACGATCCA -ACGGAACAAGAGGCATACACGACA -ACGGAACAAGAGGCATACAGCTCA -ACGGAACAAGAGGCATACTCACGT -ACGGAACAAGAGGCATACCGTAGT -ACGGAACAAGAGGCATACGTCAGT -ACGGAACAAGAGGCATACGAAGGT -ACGGAACAAGAGGCATACAACCGT -ACGGAACAAGAGGCATACTTGTGC -ACGGAACAAGAGGCATACCTAAGC -ACGGAACAAGAGGCATACACTAGC -ACGGAACAAGAGGCATACAGATGC -ACGGAACAAGAGGCATACTGAAGG -ACGGAACAAGAGGCATACCAATGG -ACGGAACAAGAGGCATACATGAGG -ACGGAACAAGAGGCATACAATGGG -ACGGAACAAGAGGCATACTCCTGA -ACGGAACAAGAGGCATACTAGCGA -ACGGAACAAGAGGCATACCACAGA -ACGGAACAAGAGGCATACGCAAGA -ACGGAACAAGAGGCATACGGTTGA -ACGGAACAAGAGGCATACTCCGAT -ACGGAACAAGAGGCATACTGGCAT -ACGGAACAAGAGGCATACCGAGAT -ACGGAACAAGAGGCATACTACCAC -ACGGAACAAGAGGCATACCAGAAC -ACGGAACAAGAGGCATACGTCTAC -ACGGAACAAGAGGCATACACGTAC -ACGGAACAAGAGGCATACAGTGAC -ACGGAACAAGAGGCATACCTGTAG -ACGGAACAAGAGGCATACCCTAAG -ACGGAACAAGAGGCATACGTTCAG -ACGGAACAAGAGGCATACGCATAG -ACGGAACAAGAGGCATACGACAAG -ACGGAACAAGAGGCATACAAGCAG -ACGGAACAAGAGGCATACCGTCAA -ACGGAACAAGAGGCATACGCTGAA -ACGGAACAAGAGGCATACAGTACG -ACGGAACAAGAGGCATACATCCGA -ACGGAACAAGAGGCATACATGGGA -ACGGAACAAGAGGCATACGTGCAA -ACGGAACAAGAGGCATACGAGGAA -ACGGAACAAGAGGCATACCAGGTA -ACGGAACAAGAGGCATACGACTCT -ACGGAACAAGAGGCATACAGTCCT -ACGGAACAAGAGGCATACTAAGCC -ACGGAACAAGAGGCATACATAGCC -ACGGAACAAGAGGCATACTAACCG -ACGGAACAAGAGGCATACATGCCA -ACGGAACAAGAGGCACTTGGAAAC -ACGGAACAAGAGGCACTTAACACC -ACGGAACAAGAGGCACTTATCGAG -ACGGAACAAGAGGCACTTCTCCTT -ACGGAACAAGAGGCACTTCCTGTT -ACGGAACAAGAGGCACTTCGGTTT -ACGGAACAAGAGGCACTTGTGGTT -ACGGAACAAGAGGCACTTGCCTTT -ACGGAACAAGAGGCACTTGGTCTT -ACGGAACAAGAGGCACTTACGCTT -ACGGAACAAGAGGCACTTAGCGTT -ACGGAACAAGAGGCACTTTTCGTC -ACGGAACAAGAGGCACTTTCTCTC -ACGGAACAAGAGGCACTTTGGATC -ACGGAACAAGAGGCACTTCACTTC -ACGGAACAAGAGGCACTTGTACTC -ACGGAACAAGAGGCACTTGATGTC -ACGGAACAAGAGGCACTTACAGTC -ACGGAACAAGAGGCACTTTTGCTG -ACGGAACAAGAGGCACTTTCCATG -ACGGAACAAGAGGCACTTTGTGTG -ACGGAACAAGAGGCACTTCTAGTG -ACGGAACAAGAGGCACTTCATCTG -ACGGAACAAGAGGCACTTGAGTTG -ACGGAACAAGAGGCACTTAGACTG -ACGGAACAAGAGGCACTTTCGGTA -ACGGAACAAGAGGCACTTTGCCTA -ACGGAACAAGAGGCACTTCCACTA -ACGGAACAAGAGGCACTTGGAGTA -ACGGAACAAGAGGCACTTTCGTCT -ACGGAACAAGAGGCACTTTGCACT -ACGGAACAAGAGGCACTTCTGACT -ACGGAACAAGAGGCACTTCAACCT -ACGGAACAAGAGGCACTTGCTACT -ACGGAACAAGAGGCACTTGGATCT -ACGGAACAAGAGGCACTTAAGGCT -ACGGAACAAGAGGCACTTTCAACC -ACGGAACAAGAGGCACTTTGTTCC -ACGGAACAAGAGGCACTTATTCCC -ACGGAACAAGAGGCACTTTTCTCG -ACGGAACAAGAGGCACTTTAGACG -ACGGAACAAGAGGCACTTGTAACG -ACGGAACAAGAGGCACTTACTTCG -ACGGAACAAGAGGCACTTTACGCA -ACGGAACAAGAGGCACTTCTTGCA -ACGGAACAAGAGGCACTTCGAACA -ACGGAACAAGAGGCACTTCAGTCA -ACGGAACAAGAGGCACTTGATCCA -ACGGAACAAGAGGCACTTACGACA -ACGGAACAAGAGGCACTTAGCTCA -ACGGAACAAGAGGCACTTTCACGT -ACGGAACAAGAGGCACTTCGTAGT -ACGGAACAAGAGGCACTTGTCAGT -ACGGAACAAGAGGCACTTGAAGGT -ACGGAACAAGAGGCACTTAACCGT -ACGGAACAAGAGGCACTTTTGTGC -ACGGAACAAGAGGCACTTCTAAGC -ACGGAACAAGAGGCACTTACTAGC -ACGGAACAAGAGGCACTTAGATGC -ACGGAACAAGAGGCACTTTGAAGG -ACGGAACAAGAGGCACTTCAATGG -ACGGAACAAGAGGCACTTATGAGG -ACGGAACAAGAGGCACTTAATGGG -ACGGAACAAGAGGCACTTTCCTGA -ACGGAACAAGAGGCACTTTAGCGA -ACGGAACAAGAGGCACTTCACAGA -ACGGAACAAGAGGCACTTGCAAGA -ACGGAACAAGAGGCACTTGGTTGA -ACGGAACAAGAGGCACTTTCCGAT -ACGGAACAAGAGGCACTTTGGCAT -ACGGAACAAGAGGCACTTCGAGAT -ACGGAACAAGAGGCACTTTACCAC -ACGGAACAAGAGGCACTTCAGAAC -ACGGAACAAGAGGCACTTGTCTAC -ACGGAACAAGAGGCACTTACGTAC -ACGGAACAAGAGGCACTTAGTGAC -ACGGAACAAGAGGCACTTCTGTAG -ACGGAACAAGAGGCACTTCCTAAG -ACGGAACAAGAGGCACTTGTTCAG -ACGGAACAAGAGGCACTTGCATAG -ACGGAACAAGAGGCACTTGACAAG -ACGGAACAAGAGGCACTTAAGCAG -ACGGAACAAGAGGCACTTCGTCAA -ACGGAACAAGAGGCACTTGCTGAA -ACGGAACAAGAGGCACTTAGTACG -ACGGAACAAGAGGCACTTATCCGA -ACGGAACAAGAGGCACTTATGGGA -ACGGAACAAGAGGCACTTGTGCAA -ACGGAACAAGAGGCACTTGAGGAA -ACGGAACAAGAGGCACTTCAGGTA -ACGGAACAAGAGGCACTTGACTCT -ACGGAACAAGAGGCACTTAGTCCT -ACGGAACAAGAGGCACTTTAAGCC -ACGGAACAAGAGGCACTTATAGCC -ACGGAACAAGAGGCACTTTAACCG -ACGGAACAAGAGGCACTTATGCCA -ACGGAACAAGAGACACGAGGAAAC -ACGGAACAAGAGACACGAAACACC -ACGGAACAAGAGACACGAATCGAG -ACGGAACAAGAGACACGACTCCTT -ACGGAACAAGAGACACGACCTGTT -ACGGAACAAGAGACACGACGGTTT -ACGGAACAAGAGACACGAGTGGTT -ACGGAACAAGAGACACGAGCCTTT -ACGGAACAAGAGACACGAGGTCTT -ACGGAACAAGAGACACGAACGCTT -ACGGAACAAGAGACACGAAGCGTT -ACGGAACAAGAGACACGATTCGTC -ACGGAACAAGAGACACGATCTCTC -ACGGAACAAGAGACACGATGGATC -ACGGAACAAGAGACACGACACTTC -ACGGAACAAGAGACACGAGTACTC -ACGGAACAAGAGACACGAGATGTC -ACGGAACAAGAGACACGAACAGTC -ACGGAACAAGAGACACGATTGCTG -ACGGAACAAGAGACACGATCCATG -ACGGAACAAGAGACACGATGTGTG -ACGGAACAAGAGACACGACTAGTG -ACGGAACAAGAGACACGACATCTG -ACGGAACAAGAGACACGAGAGTTG -ACGGAACAAGAGACACGAAGACTG -ACGGAACAAGAGACACGATCGGTA -ACGGAACAAGAGACACGATGCCTA -ACGGAACAAGAGACACGACCACTA -ACGGAACAAGAGACACGAGGAGTA -ACGGAACAAGAGACACGATCGTCT -ACGGAACAAGAGACACGATGCACT -ACGGAACAAGAGACACGACTGACT -ACGGAACAAGAGACACGACAACCT -ACGGAACAAGAGACACGAGCTACT -ACGGAACAAGAGACACGAGGATCT -ACGGAACAAGAGACACGAAAGGCT -ACGGAACAAGAGACACGATCAACC -ACGGAACAAGAGACACGATGTTCC -ACGGAACAAGAGACACGAATTCCC -ACGGAACAAGAGACACGATTCTCG -ACGGAACAAGAGACACGATAGACG -ACGGAACAAGAGACACGAGTAACG -ACGGAACAAGAGACACGAACTTCG -ACGGAACAAGAGACACGATACGCA -ACGGAACAAGAGACACGACTTGCA -ACGGAACAAGAGACACGACGAACA -ACGGAACAAGAGACACGACAGTCA -ACGGAACAAGAGACACGAGATCCA -ACGGAACAAGAGACACGAACGACA -ACGGAACAAGAGACACGAAGCTCA -ACGGAACAAGAGACACGATCACGT -ACGGAACAAGAGACACGACGTAGT -ACGGAACAAGAGACACGAGTCAGT -ACGGAACAAGAGACACGAGAAGGT -ACGGAACAAGAGACACGAAACCGT -ACGGAACAAGAGACACGATTGTGC -ACGGAACAAGAGACACGACTAAGC -ACGGAACAAGAGACACGAACTAGC -ACGGAACAAGAGACACGAAGATGC -ACGGAACAAGAGACACGATGAAGG -ACGGAACAAGAGACACGACAATGG -ACGGAACAAGAGACACGAATGAGG -ACGGAACAAGAGACACGAAATGGG -ACGGAACAAGAGACACGATCCTGA -ACGGAACAAGAGACACGATAGCGA -ACGGAACAAGAGACACGACACAGA -ACGGAACAAGAGACACGAGCAAGA -ACGGAACAAGAGACACGAGGTTGA -ACGGAACAAGAGACACGATCCGAT -ACGGAACAAGAGACACGATGGCAT -ACGGAACAAGAGACACGACGAGAT -ACGGAACAAGAGACACGATACCAC -ACGGAACAAGAGACACGACAGAAC -ACGGAACAAGAGACACGAGTCTAC -ACGGAACAAGAGACACGAACGTAC -ACGGAACAAGAGACACGAAGTGAC -ACGGAACAAGAGACACGACTGTAG -ACGGAACAAGAGACACGACCTAAG -ACGGAACAAGAGACACGAGTTCAG -ACGGAACAAGAGACACGAGCATAG -ACGGAACAAGAGACACGAGACAAG -ACGGAACAAGAGACACGAAAGCAG -ACGGAACAAGAGACACGACGTCAA -ACGGAACAAGAGACACGAGCTGAA -ACGGAACAAGAGACACGAAGTACG -ACGGAACAAGAGACACGAATCCGA -ACGGAACAAGAGACACGAATGGGA -ACGGAACAAGAGACACGAGTGCAA -ACGGAACAAGAGACACGAGAGGAA -ACGGAACAAGAGACACGACAGGTA -ACGGAACAAGAGACACGAGACTCT -ACGGAACAAGAGACACGAAGTCCT -ACGGAACAAGAGACACGATAAGCC -ACGGAACAAGAGACACGAATAGCC -ACGGAACAAGAGACACGATAACCG -ACGGAACAAGAGACACGAATGCCA -ACGGAACAAGAGTCACAGGGAAAC -ACGGAACAAGAGTCACAGAACACC -ACGGAACAAGAGTCACAGATCGAG -ACGGAACAAGAGTCACAGCTCCTT -ACGGAACAAGAGTCACAGCCTGTT -ACGGAACAAGAGTCACAGCGGTTT -ACGGAACAAGAGTCACAGGTGGTT -ACGGAACAAGAGTCACAGGCCTTT -ACGGAACAAGAGTCACAGGGTCTT -ACGGAACAAGAGTCACAGACGCTT -ACGGAACAAGAGTCACAGAGCGTT -ACGGAACAAGAGTCACAGTTCGTC -ACGGAACAAGAGTCACAGTCTCTC -ACGGAACAAGAGTCACAGTGGATC -ACGGAACAAGAGTCACAGCACTTC -ACGGAACAAGAGTCACAGGTACTC -ACGGAACAAGAGTCACAGGATGTC -ACGGAACAAGAGTCACAGACAGTC -ACGGAACAAGAGTCACAGTTGCTG -ACGGAACAAGAGTCACAGTCCATG -ACGGAACAAGAGTCACAGTGTGTG -ACGGAACAAGAGTCACAGCTAGTG -ACGGAACAAGAGTCACAGCATCTG -ACGGAACAAGAGTCACAGGAGTTG -ACGGAACAAGAGTCACAGAGACTG -ACGGAACAAGAGTCACAGTCGGTA -ACGGAACAAGAGTCACAGTGCCTA -ACGGAACAAGAGTCACAGCCACTA -ACGGAACAAGAGTCACAGGGAGTA -ACGGAACAAGAGTCACAGTCGTCT -ACGGAACAAGAGTCACAGTGCACT -ACGGAACAAGAGTCACAGCTGACT -ACGGAACAAGAGTCACAGCAACCT -ACGGAACAAGAGTCACAGGCTACT -ACGGAACAAGAGTCACAGGGATCT -ACGGAACAAGAGTCACAGAAGGCT -ACGGAACAAGAGTCACAGTCAACC -ACGGAACAAGAGTCACAGTGTTCC -ACGGAACAAGAGTCACAGATTCCC -ACGGAACAAGAGTCACAGTTCTCG -ACGGAACAAGAGTCACAGTAGACG -ACGGAACAAGAGTCACAGGTAACG -ACGGAACAAGAGTCACAGACTTCG -ACGGAACAAGAGTCACAGTACGCA -ACGGAACAAGAGTCACAGCTTGCA -ACGGAACAAGAGTCACAGCGAACA -ACGGAACAAGAGTCACAGCAGTCA -ACGGAACAAGAGTCACAGGATCCA -ACGGAACAAGAGTCACAGACGACA -ACGGAACAAGAGTCACAGAGCTCA -ACGGAACAAGAGTCACAGTCACGT -ACGGAACAAGAGTCACAGCGTAGT -ACGGAACAAGAGTCACAGGTCAGT -ACGGAACAAGAGTCACAGGAAGGT -ACGGAACAAGAGTCACAGAACCGT -ACGGAACAAGAGTCACAGTTGTGC -ACGGAACAAGAGTCACAGCTAAGC -ACGGAACAAGAGTCACAGACTAGC -ACGGAACAAGAGTCACAGAGATGC -ACGGAACAAGAGTCACAGTGAAGG -ACGGAACAAGAGTCACAGCAATGG -ACGGAACAAGAGTCACAGATGAGG -ACGGAACAAGAGTCACAGAATGGG -ACGGAACAAGAGTCACAGTCCTGA -ACGGAACAAGAGTCACAGTAGCGA -ACGGAACAAGAGTCACAGCACAGA -ACGGAACAAGAGTCACAGGCAAGA -ACGGAACAAGAGTCACAGGGTTGA -ACGGAACAAGAGTCACAGTCCGAT -ACGGAACAAGAGTCACAGTGGCAT -ACGGAACAAGAGTCACAGCGAGAT -ACGGAACAAGAGTCACAGTACCAC -ACGGAACAAGAGTCACAGCAGAAC -ACGGAACAAGAGTCACAGGTCTAC -ACGGAACAAGAGTCACAGACGTAC -ACGGAACAAGAGTCACAGAGTGAC -ACGGAACAAGAGTCACAGCTGTAG -ACGGAACAAGAGTCACAGCCTAAG -ACGGAACAAGAGTCACAGGTTCAG -ACGGAACAAGAGTCACAGGCATAG -ACGGAACAAGAGTCACAGGACAAG -ACGGAACAAGAGTCACAGAAGCAG -ACGGAACAAGAGTCACAGCGTCAA -ACGGAACAAGAGTCACAGGCTGAA -ACGGAACAAGAGTCACAGAGTACG -ACGGAACAAGAGTCACAGATCCGA -ACGGAACAAGAGTCACAGATGGGA -ACGGAACAAGAGTCACAGGTGCAA -ACGGAACAAGAGTCACAGGAGGAA -ACGGAACAAGAGTCACAGCAGGTA -ACGGAACAAGAGTCACAGGACTCT -ACGGAACAAGAGTCACAGAGTCCT -ACGGAACAAGAGTCACAGTAAGCC -ACGGAACAAGAGTCACAGATAGCC -ACGGAACAAGAGTCACAGTAACCG -ACGGAACAAGAGTCACAGATGCCA -ACGGAACAAGAGCCAGATGGAAAC -ACGGAACAAGAGCCAGATAACACC -ACGGAACAAGAGCCAGATATCGAG -ACGGAACAAGAGCCAGATCTCCTT -ACGGAACAAGAGCCAGATCCTGTT -ACGGAACAAGAGCCAGATCGGTTT -ACGGAACAAGAGCCAGATGTGGTT -ACGGAACAAGAGCCAGATGCCTTT -ACGGAACAAGAGCCAGATGGTCTT -ACGGAACAAGAGCCAGATACGCTT -ACGGAACAAGAGCCAGATAGCGTT -ACGGAACAAGAGCCAGATTTCGTC -ACGGAACAAGAGCCAGATTCTCTC -ACGGAACAAGAGCCAGATTGGATC -ACGGAACAAGAGCCAGATCACTTC -ACGGAACAAGAGCCAGATGTACTC -ACGGAACAAGAGCCAGATGATGTC -ACGGAACAAGAGCCAGATACAGTC -ACGGAACAAGAGCCAGATTTGCTG -ACGGAACAAGAGCCAGATTCCATG -ACGGAACAAGAGCCAGATTGTGTG -ACGGAACAAGAGCCAGATCTAGTG -ACGGAACAAGAGCCAGATCATCTG -ACGGAACAAGAGCCAGATGAGTTG -ACGGAACAAGAGCCAGATAGACTG -ACGGAACAAGAGCCAGATTCGGTA -ACGGAACAAGAGCCAGATTGCCTA -ACGGAACAAGAGCCAGATCCACTA -ACGGAACAAGAGCCAGATGGAGTA -ACGGAACAAGAGCCAGATTCGTCT -ACGGAACAAGAGCCAGATTGCACT -ACGGAACAAGAGCCAGATCTGACT -ACGGAACAAGAGCCAGATCAACCT -ACGGAACAAGAGCCAGATGCTACT -ACGGAACAAGAGCCAGATGGATCT -ACGGAACAAGAGCCAGATAAGGCT -ACGGAACAAGAGCCAGATTCAACC -ACGGAACAAGAGCCAGATTGTTCC -ACGGAACAAGAGCCAGATATTCCC -ACGGAACAAGAGCCAGATTTCTCG -ACGGAACAAGAGCCAGATTAGACG -ACGGAACAAGAGCCAGATGTAACG -ACGGAACAAGAGCCAGATACTTCG -ACGGAACAAGAGCCAGATTACGCA -ACGGAACAAGAGCCAGATCTTGCA -ACGGAACAAGAGCCAGATCGAACA -ACGGAACAAGAGCCAGATCAGTCA -ACGGAACAAGAGCCAGATGATCCA -ACGGAACAAGAGCCAGATACGACA -ACGGAACAAGAGCCAGATAGCTCA -ACGGAACAAGAGCCAGATTCACGT -ACGGAACAAGAGCCAGATCGTAGT -ACGGAACAAGAGCCAGATGTCAGT -ACGGAACAAGAGCCAGATGAAGGT -ACGGAACAAGAGCCAGATAACCGT -ACGGAACAAGAGCCAGATTTGTGC -ACGGAACAAGAGCCAGATCTAAGC -ACGGAACAAGAGCCAGATACTAGC -ACGGAACAAGAGCCAGATAGATGC -ACGGAACAAGAGCCAGATTGAAGG -ACGGAACAAGAGCCAGATCAATGG -ACGGAACAAGAGCCAGATATGAGG -ACGGAACAAGAGCCAGATAATGGG -ACGGAACAAGAGCCAGATTCCTGA -ACGGAACAAGAGCCAGATTAGCGA -ACGGAACAAGAGCCAGATCACAGA -ACGGAACAAGAGCCAGATGCAAGA -ACGGAACAAGAGCCAGATGGTTGA -ACGGAACAAGAGCCAGATTCCGAT -ACGGAACAAGAGCCAGATTGGCAT -ACGGAACAAGAGCCAGATCGAGAT -ACGGAACAAGAGCCAGATTACCAC -ACGGAACAAGAGCCAGATCAGAAC -ACGGAACAAGAGCCAGATGTCTAC -ACGGAACAAGAGCCAGATACGTAC -ACGGAACAAGAGCCAGATAGTGAC -ACGGAACAAGAGCCAGATCTGTAG -ACGGAACAAGAGCCAGATCCTAAG -ACGGAACAAGAGCCAGATGTTCAG -ACGGAACAAGAGCCAGATGCATAG -ACGGAACAAGAGCCAGATGACAAG -ACGGAACAAGAGCCAGATAAGCAG -ACGGAACAAGAGCCAGATCGTCAA -ACGGAACAAGAGCCAGATGCTGAA -ACGGAACAAGAGCCAGATAGTACG -ACGGAACAAGAGCCAGATATCCGA -ACGGAACAAGAGCCAGATATGGGA -ACGGAACAAGAGCCAGATGTGCAA -ACGGAACAAGAGCCAGATGAGGAA -ACGGAACAAGAGCCAGATCAGGTA -ACGGAACAAGAGCCAGATGACTCT -ACGGAACAAGAGCCAGATAGTCCT -ACGGAACAAGAGCCAGATTAAGCC -ACGGAACAAGAGCCAGATATAGCC -ACGGAACAAGAGCCAGATTAACCG -ACGGAACAAGAGCCAGATATGCCA -ACGGAACAAGAGACAACGGGAAAC -ACGGAACAAGAGACAACGAACACC -ACGGAACAAGAGACAACGATCGAG -ACGGAACAAGAGACAACGCTCCTT -ACGGAACAAGAGACAACGCCTGTT -ACGGAACAAGAGACAACGCGGTTT -ACGGAACAAGAGACAACGGTGGTT -ACGGAACAAGAGACAACGGCCTTT -ACGGAACAAGAGACAACGGGTCTT -ACGGAACAAGAGACAACGACGCTT -ACGGAACAAGAGACAACGAGCGTT -ACGGAACAAGAGACAACGTTCGTC -ACGGAACAAGAGACAACGTCTCTC -ACGGAACAAGAGACAACGTGGATC -ACGGAACAAGAGACAACGCACTTC -ACGGAACAAGAGACAACGGTACTC -ACGGAACAAGAGACAACGGATGTC -ACGGAACAAGAGACAACGACAGTC -ACGGAACAAGAGACAACGTTGCTG -ACGGAACAAGAGACAACGTCCATG -ACGGAACAAGAGACAACGTGTGTG -ACGGAACAAGAGACAACGCTAGTG -ACGGAACAAGAGACAACGCATCTG -ACGGAACAAGAGACAACGGAGTTG -ACGGAACAAGAGACAACGAGACTG -ACGGAACAAGAGACAACGTCGGTA -ACGGAACAAGAGACAACGTGCCTA -ACGGAACAAGAGACAACGCCACTA -ACGGAACAAGAGACAACGGGAGTA -ACGGAACAAGAGACAACGTCGTCT -ACGGAACAAGAGACAACGTGCACT -ACGGAACAAGAGACAACGCTGACT -ACGGAACAAGAGACAACGCAACCT -ACGGAACAAGAGACAACGGCTACT -ACGGAACAAGAGACAACGGGATCT -ACGGAACAAGAGACAACGAAGGCT -ACGGAACAAGAGACAACGTCAACC -ACGGAACAAGAGACAACGTGTTCC -ACGGAACAAGAGACAACGATTCCC -ACGGAACAAGAGACAACGTTCTCG -ACGGAACAAGAGACAACGTAGACG -ACGGAACAAGAGACAACGGTAACG -ACGGAACAAGAGACAACGACTTCG -ACGGAACAAGAGACAACGTACGCA -ACGGAACAAGAGACAACGCTTGCA -ACGGAACAAGAGACAACGCGAACA -ACGGAACAAGAGACAACGCAGTCA -ACGGAACAAGAGACAACGGATCCA -ACGGAACAAGAGACAACGACGACA -ACGGAACAAGAGACAACGAGCTCA -ACGGAACAAGAGACAACGTCACGT -ACGGAACAAGAGACAACGCGTAGT -ACGGAACAAGAGACAACGGTCAGT -ACGGAACAAGAGACAACGGAAGGT -ACGGAACAAGAGACAACGAACCGT -ACGGAACAAGAGACAACGTTGTGC -ACGGAACAAGAGACAACGCTAAGC -ACGGAACAAGAGACAACGACTAGC -ACGGAACAAGAGACAACGAGATGC -ACGGAACAAGAGACAACGTGAAGG -ACGGAACAAGAGACAACGCAATGG -ACGGAACAAGAGACAACGATGAGG -ACGGAACAAGAGACAACGAATGGG -ACGGAACAAGAGACAACGTCCTGA -ACGGAACAAGAGACAACGTAGCGA -ACGGAACAAGAGACAACGCACAGA -ACGGAACAAGAGACAACGGCAAGA -ACGGAACAAGAGACAACGGGTTGA -ACGGAACAAGAGACAACGTCCGAT -ACGGAACAAGAGACAACGTGGCAT -ACGGAACAAGAGACAACGCGAGAT -ACGGAACAAGAGACAACGTACCAC -ACGGAACAAGAGACAACGCAGAAC -ACGGAACAAGAGACAACGGTCTAC -ACGGAACAAGAGACAACGACGTAC -ACGGAACAAGAGACAACGAGTGAC -ACGGAACAAGAGACAACGCTGTAG -ACGGAACAAGAGACAACGCCTAAG -ACGGAACAAGAGACAACGGTTCAG -ACGGAACAAGAGACAACGGCATAG -ACGGAACAAGAGACAACGGACAAG -ACGGAACAAGAGACAACGAAGCAG -ACGGAACAAGAGACAACGCGTCAA -ACGGAACAAGAGACAACGGCTGAA -ACGGAACAAGAGACAACGAGTACG -ACGGAACAAGAGACAACGATCCGA -ACGGAACAAGAGACAACGATGGGA -ACGGAACAAGAGACAACGGTGCAA -ACGGAACAAGAGACAACGGAGGAA -ACGGAACAAGAGACAACGCAGGTA -ACGGAACAAGAGACAACGGACTCT -ACGGAACAAGAGACAACGAGTCCT -ACGGAACAAGAGACAACGTAAGCC -ACGGAACAAGAGACAACGATAGCC -ACGGAACAAGAGACAACGTAACCG -ACGGAACAAGAGACAACGATGCCA -ACGGAACAAGAGTCAAGCGGAAAC -ACGGAACAAGAGTCAAGCAACACC -ACGGAACAAGAGTCAAGCATCGAG -ACGGAACAAGAGTCAAGCCTCCTT -ACGGAACAAGAGTCAAGCCCTGTT -ACGGAACAAGAGTCAAGCCGGTTT -ACGGAACAAGAGTCAAGCGTGGTT -ACGGAACAAGAGTCAAGCGCCTTT -ACGGAACAAGAGTCAAGCGGTCTT -ACGGAACAAGAGTCAAGCACGCTT -ACGGAACAAGAGTCAAGCAGCGTT -ACGGAACAAGAGTCAAGCTTCGTC -ACGGAACAAGAGTCAAGCTCTCTC -ACGGAACAAGAGTCAAGCTGGATC -ACGGAACAAGAGTCAAGCCACTTC -ACGGAACAAGAGTCAAGCGTACTC -ACGGAACAAGAGTCAAGCGATGTC -ACGGAACAAGAGTCAAGCACAGTC -ACGGAACAAGAGTCAAGCTTGCTG -ACGGAACAAGAGTCAAGCTCCATG -ACGGAACAAGAGTCAAGCTGTGTG -ACGGAACAAGAGTCAAGCCTAGTG -ACGGAACAAGAGTCAAGCCATCTG -ACGGAACAAGAGTCAAGCGAGTTG -ACGGAACAAGAGTCAAGCAGACTG -ACGGAACAAGAGTCAAGCTCGGTA -ACGGAACAAGAGTCAAGCTGCCTA -ACGGAACAAGAGTCAAGCCCACTA -ACGGAACAAGAGTCAAGCGGAGTA -ACGGAACAAGAGTCAAGCTCGTCT -ACGGAACAAGAGTCAAGCTGCACT -ACGGAACAAGAGTCAAGCCTGACT -ACGGAACAAGAGTCAAGCCAACCT -ACGGAACAAGAGTCAAGCGCTACT -ACGGAACAAGAGTCAAGCGGATCT -ACGGAACAAGAGTCAAGCAAGGCT -ACGGAACAAGAGTCAAGCTCAACC -ACGGAACAAGAGTCAAGCTGTTCC -ACGGAACAAGAGTCAAGCATTCCC -ACGGAACAAGAGTCAAGCTTCTCG -ACGGAACAAGAGTCAAGCTAGACG -ACGGAACAAGAGTCAAGCGTAACG -ACGGAACAAGAGTCAAGCACTTCG -ACGGAACAAGAGTCAAGCTACGCA -ACGGAACAAGAGTCAAGCCTTGCA -ACGGAACAAGAGTCAAGCCGAACA -ACGGAACAAGAGTCAAGCCAGTCA -ACGGAACAAGAGTCAAGCGATCCA -ACGGAACAAGAGTCAAGCACGACA -ACGGAACAAGAGTCAAGCAGCTCA -ACGGAACAAGAGTCAAGCTCACGT -ACGGAACAAGAGTCAAGCCGTAGT -ACGGAACAAGAGTCAAGCGTCAGT -ACGGAACAAGAGTCAAGCGAAGGT -ACGGAACAAGAGTCAAGCAACCGT -ACGGAACAAGAGTCAAGCTTGTGC -ACGGAACAAGAGTCAAGCCTAAGC -ACGGAACAAGAGTCAAGCACTAGC -ACGGAACAAGAGTCAAGCAGATGC -ACGGAACAAGAGTCAAGCTGAAGG -ACGGAACAAGAGTCAAGCCAATGG -ACGGAACAAGAGTCAAGCATGAGG -ACGGAACAAGAGTCAAGCAATGGG -ACGGAACAAGAGTCAAGCTCCTGA -ACGGAACAAGAGTCAAGCTAGCGA -ACGGAACAAGAGTCAAGCCACAGA -ACGGAACAAGAGTCAAGCGCAAGA -ACGGAACAAGAGTCAAGCGGTTGA -ACGGAACAAGAGTCAAGCTCCGAT -ACGGAACAAGAGTCAAGCTGGCAT -ACGGAACAAGAGTCAAGCCGAGAT -ACGGAACAAGAGTCAAGCTACCAC -ACGGAACAAGAGTCAAGCCAGAAC -ACGGAACAAGAGTCAAGCGTCTAC -ACGGAACAAGAGTCAAGCACGTAC -ACGGAACAAGAGTCAAGCAGTGAC -ACGGAACAAGAGTCAAGCCTGTAG -ACGGAACAAGAGTCAAGCCCTAAG -ACGGAACAAGAGTCAAGCGTTCAG -ACGGAACAAGAGTCAAGCGCATAG -ACGGAACAAGAGTCAAGCGACAAG -ACGGAACAAGAGTCAAGCAAGCAG -ACGGAACAAGAGTCAAGCCGTCAA -ACGGAACAAGAGTCAAGCGCTGAA -ACGGAACAAGAGTCAAGCAGTACG -ACGGAACAAGAGTCAAGCATCCGA -ACGGAACAAGAGTCAAGCATGGGA -ACGGAACAAGAGTCAAGCGTGCAA -ACGGAACAAGAGTCAAGCGAGGAA -ACGGAACAAGAGTCAAGCCAGGTA -ACGGAACAAGAGTCAAGCGACTCT -ACGGAACAAGAGTCAAGCAGTCCT -ACGGAACAAGAGTCAAGCTAAGCC -ACGGAACAAGAGTCAAGCATAGCC -ACGGAACAAGAGTCAAGCTAACCG -ACGGAACAAGAGTCAAGCATGCCA -ACGGAACAAGAGCGTTCAGGAAAC -ACGGAACAAGAGCGTTCAAACACC -ACGGAACAAGAGCGTTCAATCGAG -ACGGAACAAGAGCGTTCACTCCTT -ACGGAACAAGAGCGTTCACCTGTT -ACGGAACAAGAGCGTTCACGGTTT -ACGGAACAAGAGCGTTCAGTGGTT -ACGGAACAAGAGCGTTCAGCCTTT -ACGGAACAAGAGCGTTCAGGTCTT -ACGGAACAAGAGCGTTCAACGCTT -ACGGAACAAGAGCGTTCAAGCGTT -ACGGAACAAGAGCGTTCATTCGTC -ACGGAACAAGAGCGTTCATCTCTC -ACGGAACAAGAGCGTTCATGGATC -ACGGAACAAGAGCGTTCACACTTC -ACGGAACAAGAGCGTTCAGTACTC -ACGGAACAAGAGCGTTCAGATGTC -ACGGAACAAGAGCGTTCAACAGTC -ACGGAACAAGAGCGTTCATTGCTG -ACGGAACAAGAGCGTTCATCCATG -ACGGAACAAGAGCGTTCATGTGTG -ACGGAACAAGAGCGTTCACTAGTG -ACGGAACAAGAGCGTTCACATCTG -ACGGAACAAGAGCGTTCAGAGTTG -ACGGAACAAGAGCGTTCAAGACTG -ACGGAACAAGAGCGTTCATCGGTA -ACGGAACAAGAGCGTTCATGCCTA -ACGGAACAAGAGCGTTCACCACTA -ACGGAACAAGAGCGTTCAGGAGTA -ACGGAACAAGAGCGTTCATCGTCT -ACGGAACAAGAGCGTTCATGCACT -ACGGAACAAGAGCGTTCACTGACT -ACGGAACAAGAGCGTTCACAACCT -ACGGAACAAGAGCGTTCAGCTACT -ACGGAACAAGAGCGTTCAGGATCT -ACGGAACAAGAGCGTTCAAAGGCT -ACGGAACAAGAGCGTTCATCAACC -ACGGAACAAGAGCGTTCATGTTCC -ACGGAACAAGAGCGTTCAATTCCC -ACGGAACAAGAGCGTTCATTCTCG -ACGGAACAAGAGCGTTCATAGACG -ACGGAACAAGAGCGTTCAGTAACG -ACGGAACAAGAGCGTTCAACTTCG -ACGGAACAAGAGCGTTCATACGCA -ACGGAACAAGAGCGTTCACTTGCA -ACGGAACAAGAGCGTTCACGAACA -ACGGAACAAGAGCGTTCACAGTCA -ACGGAACAAGAGCGTTCAGATCCA -ACGGAACAAGAGCGTTCAACGACA -ACGGAACAAGAGCGTTCAAGCTCA -ACGGAACAAGAGCGTTCATCACGT -ACGGAACAAGAGCGTTCACGTAGT -ACGGAACAAGAGCGTTCAGTCAGT -ACGGAACAAGAGCGTTCAGAAGGT -ACGGAACAAGAGCGTTCAAACCGT -ACGGAACAAGAGCGTTCATTGTGC -ACGGAACAAGAGCGTTCACTAAGC -ACGGAACAAGAGCGTTCAACTAGC -ACGGAACAAGAGCGTTCAAGATGC -ACGGAACAAGAGCGTTCATGAAGG -ACGGAACAAGAGCGTTCACAATGG -ACGGAACAAGAGCGTTCAATGAGG -ACGGAACAAGAGCGTTCAAATGGG -ACGGAACAAGAGCGTTCATCCTGA -ACGGAACAAGAGCGTTCATAGCGA -ACGGAACAAGAGCGTTCACACAGA -ACGGAACAAGAGCGTTCAGCAAGA -ACGGAACAAGAGCGTTCAGGTTGA -ACGGAACAAGAGCGTTCATCCGAT -ACGGAACAAGAGCGTTCATGGCAT -ACGGAACAAGAGCGTTCACGAGAT -ACGGAACAAGAGCGTTCATACCAC -ACGGAACAAGAGCGTTCACAGAAC -ACGGAACAAGAGCGTTCAGTCTAC -ACGGAACAAGAGCGTTCAACGTAC -ACGGAACAAGAGCGTTCAAGTGAC -ACGGAACAAGAGCGTTCACTGTAG -ACGGAACAAGAGCGTTCACCTAAG -ACGGAACAAGAGCGTTCAGTTCAG -ACGGAACAAGAGCGTTCAGCATAG -ACGGAACAAGAGCGTTCAGACAAG -ACGGAACAAGAGCGTTCAAAGCAG -ACGGAACAAGAGCGTTCACGTCAA -ACGGAACAAGAGCGTTCAGCTGAA -ACGGAACAAGAGCGTTCAAGTACG -ACGGAACAAGAGCGTTCAATCCGA -ACGGAACAAGAGCGTTCAATGGGA -ACGGAACAAGAGCGTTCAGTGCAA -ACGGAACAAGAGCGTTCAGAGGAA -ACGGAACAAGAGCGTTCACAGGTA -ACGGAACAAGAGCGTTCAGACTCT -ACGGAACAAGAGCGTTCAAGTCCT -ACGGAACAAGAGCGTTCATAAGCC -ACGGAACAAGAGCGTTCAATAGCC -ACGGAACAAGAGCGTTCATAACCG -ACGGAACAAGAGCGTTCAATGCCA -ACGGAACAAGAGAGTCGTGGAAAC -ACGGAACAAGAGAGTCGTAACACC -ACGGAACAAGAGAGTCGTATCGAG -ACGGAACAAGAGAGTCGTCTCCTT -ACGGAACAAGAGAGTCGTCCTGTT -ACGGAACAAGAGAGTCGTCGGTTT -ACGGAACAAGAGAGTCGTGTGGTT -ACGGAACAAGAGAGTCGTGCCTTT -ACGGAACAAGAGAGTCGTGGTCTT -ACGGAACAAGAGAGTCGTACGCTT -ACGGAACAAGAGAGTCGTAGCGTT -ACGGAACAAGAGAGTCGTTTCGTC -ACGGAACAAGAGAGTCGTTCTCTC -ACGGAACAAGAGAGTCGTTGGATC -ACGGAACAAGAGAGTCGTCACTTC -ACGGAACAAGAGAGTCGTGTACTC -ACGGAACAAGAGAGTCGTGATGTC -ACGGAACAAGAGAGTCGTACAGTC -ACGGAACAAGAGAGTCGTTTGCTG -ACGGAACAAGAGAGTCGTTCCATG -ACGGAACAAGAGAGTCGTTGTGTG -ACGGAACAAGAGAGTCGTCTAGTG -ACGGAACAAGAGAGTCGTCATCTG -ACGGAACAAGAGAGTCGTGAGTTG -ACGGAACAAGAGAGTCGTAGACTG -ACGGAACAAGAGAGTCGTTCGGTA -ACGGAACAAGAGAGTCGTTGCCTA -ACGGAACAAGAGAGTCGTCCACTA -ACGGAACAAGAGAGTCGTGGAGTA -ACGGAACAAGAGAGTCGTTCGTCT -ACGGAACAAGAGAGTCGTTGCACT -ACGGAACAAGAGAGTCGTCTGACT -ACGGAACAAGAGAGTCGTCAACCT -ACGGAACAAGAGAGTCGTGCTACT -ACGGAACAAGAGAGTCGTGGATCT -ACGGAACAAGAGAGTCGTAAGGCT -ACGGAACAAGAGAGTCGTTCAACC -ACGGAACAAGAGAGTCGTTGTTCC -ACGGAACAAGAGAGTCGTATTCCC -ACGGAACAAGAGAGTCGTTTCTCG -ACGGAACAAGAGAGTCGTTAGACG -ACGGAACAAGAGAGTCGTGTAACG -ACGGAACAAGAGAGTCGTACTTCG -ACGGAACAAGAGAGTCGTTACGCA -ACGGAACAAGAGAGTCGTCTTGCA -ACGGAACAAGAGAGTCGTCGAACA -ACGGAACAAGAGAGTCGTCAGTCA -ACGGAACAAGAGAGTCGTGATCCA -ACGGAACAAGAGAGTCGTACGACA -ACGGAACAAGAGAGTCGTAGCTCA -ACGGAACAAGAGAGTCGTTCACGT -ACGGAACAAGAGAGTCGTCGTAGT -ACGGAACAAGAGAGTCGTGTCAGT -ACGGAACAAGAGAGTCGTGAAGGT -ACGGAACAAGAGAGTCGTAACCGT -ACGGAACAAGAGAGTCGTTTGTGC -ACGGAACAAGAGAGTCGTCTAAGC -ACGGAACAAGAGAGTCGTACTAGC -ACGGAACAAGAGAGTCGTAGATGC -ACGGAACAAGAGAGTCGTTGAAGG -ACGGAACAAGAGAGTCGTCAATGG -ACGGAACAAGAGAGTCGTATGAGG -ACGGAACAAGAGAGTCGTAATGGG -ACGGAACAAGAGAGTCGTTCCTGA -ACGGAACAAGAGAGTCGTTAGCGA -ACGGAACAAGAGAGTCGTCACAGA -ACGGAACAAGAGAGTCGTGCAAGA -ACGGAACAAGAGAGTCGTGGTTGA -ACGGAACAAGAGAGTCGTTCCGAT -ACGGAACAAGAGAGTCGTTGGCAT -ACGGAACAAGAGAGTCGTCGAGAT -ACGGAACAAGAGAGTCGTTACCAC -ACGGAACAAGAGAGTCGTCAGAAC -ACGGAACAAGAGAGTCGTGTCTAC -ACGGAACAAGAGAGTCGTACGTAC -ACGGAACAAGAGAGTCGTAGTGAC -ACGGAACAAGAGAGTCGTCTGTAG -ACGGAACAAGAGAGTCGTCCTAAG -ACGGAACAAGAGAGTCGTGTTCAG -ACGGAACAAGAGAGTCGTGCATAG -ACGGAACAAGAGAGTCGTGACAAG -ACGGAACAAGAGAGTCGTAAGCAG -ACGGAACAAGAGAGTCGTCGTCAA -ACGGAACAAGAGAGTCGTGCTGAA -ACGGAACAAGAGAGTCGTAGTACG -ACGGAACAAGAGAGTCGTATCCGA -ACGGAACAAGAGAGTCGTATGGGA -ACGGAACAAGAGAGTCGTGTGCAA -ACGGAACAAGAGAGTCGTGAGGAA -ACGGAACAAGAGAGTCGTCAGGTA -ACGGAACAAGAGAGTCGTGACTCT -ACGGAACAAGAGAGTCGTAGTCCT -ACGGAACAAGAGAGTCGTTAAGCC -ACGGAACAAGAGAGTCGTATAGCC -ACGGAACAAGAGAGTCGTTAACCG -ACGGAACAAGAGAGTCGTATGCCA -ACGGAACAAGAGAGTGTCGGAAAC -ACGGAACAAGAGAGTGTCAACACC -ACGGAACAAGAGAGTGTCATCGAG -ACGGAACAAGAGAGTGTCCTCCTT -ACGGAACAAGAGAGTGTCCCTGTT -ACGGAACAAGAGAGTGTCCGGTTT -ACGGAACAAGAGAGTGTCGTGGTT -ACGGAACAAGAGAGTGTCGCCTTT -ACGGAACAAGAGAGTGTCGGTCTT -ACGGAACAAGAGAGTGTCACGCTT -ACGGAACAAGAGAGTGTCAGCGTT -ACGGAACAAGAGAGTGTCTTCGTC -ACGGAACAAGAGAGTGTCTCTCTC -ACGGAACAAGAGAGTGTCTGGATC -ACGGAACAAGAGAGTGTCCACTTC -ACGGAACAAGAGAGTGTCGTACTC -ACGGAACAAGAGAGTGTCGATGTC -ACGGAACAAGAGAGTGTCACAGTC -ACGGAACAAGAGAGTGTCTTGCTG -ACGGAACAAGAGAGTGTCTCCATG -ACGGAACAAGAGAGTGTCTGTGTG -ACGGAACAAGAGAGTGTCCTAGTG -ACGGAACAAGAGAGTGTCCATCTG -ACGGAACAAGAGAGTGTCGAGTTG -ACGGAACAAGAGAGTGTCAGACTG -ACGGAACAAGAGAGTGTCTCGGTA -ACGGAACAAGAGAGTGTCTGCCTA -ACGGAACAAGAGAGTGTCCCACTA -ACGGAACAAGAGAGTGTCGGAGTA -ACGGAACAAGAGAGTGTCTCGTCT -ACGGAACAAGAGAGTGTCTGCACT -ACGGAACAAGAGAGTGTCCTGACT -ACGGAACAAGAGAGTGTCCAACCT -ACGGAACAAGAGAGTGTCGCTACT -ACGGAACAAGAGAGTGTCGGATCT -ACGGAACAAGAGAGTGTCAAGGCT -ACGGAACAAGAGAGTGTCTCAACC -ACGGAACAAGAGAGTGTCTGTTCC -ACGGAACAAGAGAGTGTCATTCCC -ACGGAACAAGAGAGTGTCTTCTCG -ACGGAACAAGAGAGTGTCTAGACG -ACGGAACAAGAGAGTGTCGTAACG -ACGGAACAAGAGAGTGTCACTTCG -ACGGAACAAGAGAGTGTCTACGCA -ACGGAACAAGAGAGTGTCCTTGCA -ACGGAACAAGAGAGTGTCCGAACA -ACGGAACAAGAGAGTGTCCAGTCA -ACGGAACAAGAGAGTGTCGATCCA -ACGGAACAAGAGAGTGTCACGACA -ACGGAACAAGAGAGTGTCAGCTCA -ACGGAACAAGAGAGTGTCTCACGT -ACGGAACAAGAGAGTGTCCGTAGT -ACGGAACAAGAGAGTGTCGTCAGT -ACGGAACAAGAGAGTGTCGAAGGT -ACGGAACAAGAGAGTGTCAACCGT -ACGGAACAAGAGAGTGTCTTGTGC -ACGGAACAAGAGAGTGTCCTAAGC -ACGGAACAAGAGAGTGTCACTAGC -ACGGAACAAGAGAGTGTCAGATGC -ACGGAACAAGAGAGTGTCTGAAGG -ACGGAACAAGAGAGTGTCCAATGG -ACGGAACAAGAGAGTGTCATGAGG -ACGGAACAAGAGAGTGTCAATGGG -ACGGAACAAGAGAGTGTCTCCTGA -ACGGAACAAGAGAGTGTCTAGCGA -ACGGAACAAGAGAGTGTCCACAGA -ACGGAACAAGAGAGTGTCGCAAGA -ACGGAACAAGAGAGTGTCGGTTGA -ACGGAACAAGAGAGTGTCTCCGAT -ACGGAACAAGAGAGTGTCTGGCAT -ACGGAACAAGAGAGTGTCCGAGAT -ACGGAACAAGAGAGTGTCTACCAC -ACGGAACAAGAGAGTGTCCAGAAC -ACGGAACAAGAGAGTGTCGTCTAC -ACGGAACAAGAGAGTGTCACGTAC -ACGGAACAAGAGAGTGTCAGTGAC -ACGGAACAAGAGAGTGTCCTGTAG -ACGGAACAAGAGAGTGTCCCTAAG -ACGGAACAAGAGAGTGTCGTTCAG -ACGGAACAAGAGAGTGTCGCATAG -ACGGAACAAGAGAGTGTCGACAAG -ACGGAACAAGAGAGTGTCAAGCAG -ACGGAACAAGAGAGTGTCCGTCAA -ACGGAACAAGAGAGTGTCGCTGAA -ACGGAACAAGAGAGTGTCAGTACG -ACGGAACAAGAGAGTGTCATCCGA -ACGGAACAAGAGAGTGTCATGGGA -ACGGAACAAGAGAGTGTCGTGCAA -ACGGAACAAGAGAGTGTCGAGGAA -ACGGAACAAGAGAGTGTCCAGGTA -ACGGAACAAGAGAGTGTCGACTCT -ACGGAACAAGAGAGTGTCAGTCCT -ACGGAACAAGAGAGTGTCTAAGCC -ACGGAACAAGAGAGTGTCATAGCC -ACGGAACAAGAGAGTGTCTAACCG -ACGGAACAAGAGAGTGTCATGCCA -ACGGAACAAGAGGGTGAAGGAAAC -ACGGAACAAGAGGGTGAAAACACC -ACGGAACAAGAGGGTGAAATCGAG -ACGGAACAAGAGGGTGAACTCCTT -ACGGAACAAGAGGGTGAACCTGTT -ACGGAACAAGAGGGTGAACGGTTT -ACGGAACAAGAGGGTGAAGTGGTT -ACGGAACAAGAGGGTGAAGCCTTT -ACGGAACAAGAGGGTGAAGGTCTT -ACGGAACAAGAGGGTGAAACGCTT -ACGGAACAAGAGGGTGAAAGCGTT -ACGGAACAAGAGGGTGAATTCGTC -ACGGAACAAGAGGGTGAATCTCTC -ACGGAACAAGAGGGTGAATGGATC -ACGGAACAAGAGGGTGAACACTTC -ACGGAACAAGAGGGTGAAGTACTC -ACGGAACAAGAGGGTGAAGATGTC -ACGGAACAAGAGGGTGAAACAGTC -ACGGAACAAGAGGGTGAATTGCTG -ACGGAACAAGAGGGTGAATCCATG -ACGGAACAAGAGGGTGAATGTGTG -ACGGAACAAGAGGGTGAACTAGTG -ACGGAACAAGAGGGTGAACATCTG -ACGGAACAAGAGGGTGAAGAGTTG -ACGGAACAAGAGGGTGAAAGACTG -ACGGAACAAGAGGGTGAATCGGTA -ACGGAACAAGAGGGTGAATGCCTA -ACGGAACAAGAGGGTGAACCACTA -ACGGAACAAGAGGGTGAAGGAGTA -ACGGAACAAGAGGGTGAATCGTCT -ACGGAACAAGAGGGTGAATGCACT -ACGGAACAAGAGGGTGAACTGACT -ACGGAACAAGAGGGTGAACAACCT -ACGGAACAAGAGGGTGAAGCTACT -ACGGAACAAGAGGGTGAAGGATCT -ACGGAACAAGAGGGTGAAAAGGCT -ACGGAACAAGAGGGTGAATCAACC -ACGGAACAAGAGGGTGAATGTTCC -ACGGAACAAGAGGGTGAAATTCCC -ACGGAACAAGAGGGTGAATTCTCG -ACGGAACAAGAGGGTGAATAGACG -ACGGAACAAGAGGGTGAAGTAACG -ACGGAACAAGAGGGTGAAACTTCG -ACGGAACAAGAGGGTGAATACGCA -ACGGAACAAGAGGGTGAACTTGCA -ACGGAACAAGAGGGTGAACGAACA -ACGGAACAAGAGGGTGAACAGTCA -ACGGAACAAGAGGGTGAAGATCCA -ACGGAACAAGAGGGTGAAACGACA -ACGGAACAAGAGGGTGAAAGCTCA -ACGGAACAAGAGGGTGAATCACGT -ACGGAACAAGAGGGTGAACGTAGT -ACGGAACAAGAGGGTGAAGTCAGT -ACGGAACAAGAGGGTGAAGAAGGT -ACGGAACAAGAGGGTGAAAACCGT -ACGGAACAAGAGGGTGAATTGTGC -ACGGAACAAGAGGGTGAACTAAGC -ACGGAACAAGAGGGTGAAACTAGC -ACGGAACAAGAGGGTGAAAGATGC -ACGGAACAAGAGGGTGAATGAAGG -ACGGAACAAGAGGGTGAACAATGG -ACGGAACAAGAGGGTGAAATGAGG -ACGGAACAAGAGGGTGAAAATGGG -ACGGAACAAGAGGGTGAATCCTGA -ACGGAACAAGAGGGTGAATAGCGA -ACGGAACAAGAGGGTGAACACAGA -ACGGAACAAGAGGGTGAAGCAAGA -ACGGAACAAGAGGGTGAAGGTTGA -ACGGAACAAGAGGGTGAATCCGAT -ACGGAACAAGAGGGTGAATGGCAT -ACGGAACAAGAGGGTGAACGAGAT -ACGGAACAAGAGGGTGAATACCAC -ACGGAACAAGAGGGTGAACAGAAC -ACGGAACAAGAGGGTGAAGTCTAC -ACGGAACAAGAGGGTGAAACGTAC -ACGGAACAAGAGGGTGAAAGTGAC -ACGGAACAAGAGGGTGAACTGTAG -ACGGAACAAGAGGGTGAACCTAAG -ACGGAACAAGAGGGTGAAGTTCAG -ACGGAACAAGAGGGTGAAGCATAG -ACGGAACAAGAGGGTGAAGACAAG -ACGGAACAAGAGGGTGAAAAGCAG -ACGGAACAAGAGGGTGAACGTCAA -ACGGAACAAGAGGGTGAAGCTGAA -ACGGAACAAGAGGGTGAAAGTACG -ACGGAACAAGAGGGTGAAATCCGA -ACGGAACAAGAGGGTGAAATGGGA -ACGGAACAAGAGGGTGAAGTGCAA -ACGGAACAAGAGGGTGAAGAGGAA -ACGGAACAAGAGGGTGAACAGGTA -ACGGAACAAGAGGGTGAAGACTCT -ACGGAACAAGAGGGTGAAAGTCCT -ACGGAACAAGAGGGTGAATAAGCC -ACGGAACAAGAGGGTGAAATAGCC -ACGGAACAAGAGGGTGAATAACCG -ACGGAACAAGAGGGTGAAATGCCA -ACGGAACAAGAGCGTAACGGAAAC -ACGGAACAAGAGCGTAACAACACC -ACGGAACAAGAGCGTAACATCGAG -ACGGAACAAGAGCGTAACCTCCTT -ACGGAACAAGAGCGTAACCCTGTT -ACGGAACAAGAGCGTAACCGGTTT -ACGGAACAAGAGCGTAACGTGGTT -ACGGAACAAGAGCGTAACGCCTTT -ACGGAACAAGAGCGTAACGGTCTT -ACGGAACAAGAGCGTAACACGCTT -ACGGAACAAGAGCGTAACAGCGTT -ACGGAACAAGAGCGTAACTTCGTC -ACGGAACAAGAGCGTAACTCTCTC -ACGGAACAAGAGCGTAACTGGATC -ACGGAACAAGAGCGTAACCACTTC -ACGGAACAAGAGCGTAACGTACTC -ACGGAACAAGAGCGTAACGATGTC -ACGGAACAAGAGCGTAACACAGTC -ACGGAACAAGAGCGTAACTTGCTG -ACGGAACAAGAGCGTAACTCCATG -ACGGAACAAGAGCGTAACTGTGTG -ACGGAACAAGAGCGTAACCTAGTG -ACGGAACAAGAGCGTAACCATCTG -ACGGAACAAGAGCGTAACGAGTTG -ACGGAACAAGAGCGTAACAGACTG -ACGGAACAAGAGCGTAACTCGGTA -ACGGAACAAGAGCGTAACTGCCTA -ACGGAACAAGAGCGTAACCCACTA -ACGGAACAAGAGCGTAACGGAGTA -ACGGAACAAGAGCGTAACTCGTCT -ACGGAACAAGAGCGTAACTGCACT -ACGGAACAAGAGCGTAACCTGACT -ACGGAACAAGAGCGTAACCAACCT -ACGGAACAAGAGCGTAACGCTACT -ACGGAACAAGAGCGTAACGGATCT -ACGGAACAAGAGCGTAACAAGGCT -ACGGAACAAGAGCGTAACTCAACC -ACGGAACAAGAGCGTAACTGTTCC -ACGGAACAAGAGCGTAACATTCCC -ACGGAACAAGAGCGTAACTTCTCG -ACGGAACAAGAGCGTAACTAGACG -ACGGAACAAGAGCGTAACGTAACG -ACGGAACAAGAGCGTAACACTTCG -ACGGAACAAGAGCGTAACTACGCA -ACGGAACAAGAGCGTAACCTTGCA -ACGGAACAAGAGCGTAACCGAACA -ACGGAACAAGAGCGTAACCAGTCA -ACGGAACAAGAGCGTAACGATCCA -ACGGAACAAGAGCGTAACACGACA -ACGGAACAAGAGCGTAACAGCTCA -ACGGAACAAGAGCGTAACTCACGT -ACGGAACAAGAGCGTAACCGTAGT -ACGGAACAAGAGCGTAACGTCAGT -ACGGAACAAGAGCGTAACGAAGGT -ACGGAACAAGAGCGTAACAACCGT -ACGGAACAAGAGCGTAACTTGTGC -ACGGAACAAGAGCGTAACCTAAGC -ACGGAACAAGAGCGTAACACTAGC -ACGGAACAAGAGCGTAACAGATGC -ACGGAACAAGAGCGTAACTGAAGG -ACGGAACAAGAGCGTAACCAATGG -ACGGAACAAGAGCGTAACATGAGG -ACGGAACAAGAGCGTAACAATGGG -ACGGAACAAGAGCGTAACTCCTGA -ACGGAACAAGAGCGTAACTAGCGA -ACGGAACAAGAGCGTAACCACAGA -ACGGAACAAGAGCGTAACGCAAGA -ACGGAACAAGAGCGTAACGGTTGA -ACGGAACAAGAGCGTAACTCCGAT -ACGGAACAAGAGCGTAACTGGCAT -ACGGAACAAGAGCGTAACCGAGAT -ACGGAACAAGAGCGTAACTACCAC -ACGGAACAAGAGCGTAACCAGAAC -ACGGAACAAGAGCGTAACGTCTAC -ACGGAACAAGAGCGTAACACGTAC -ACGGAACAAGAGCGTAACAGTGAC -ACGGAACAAGAGCGTAACCTGTAG -ACGGAACAAGAGCGTAACCCTAAG -ACGGAACAAGAGCGTAACGTTCAG -ACGGAACAAGAGCGTAACGCATAG -ACGGAACAAGAGCGTAACGACAAG -ACGGAACAAGAGCGTAACAAGCAG -ACGGAACAAGAGCGTAACCGTCAA -ACGGAACAAGAGCGTAACGCTGAA -ACGGAACAAGAGCGTAACAGTACG -ACGGAACAAGAGCGTAACATCCGA -ACGGAACAAGAGCGTAACATGGGA -ACGGAACAAGAGCGTAACGTGCAA -ACGGAACAAGAGCGTAACGAGGAA -ACGGAACAAGAGCGTAACCAGGTA -ACGGAACAAGAGCGTAACGACTCT -ACGGAACAAGAGCGTAACAGTCCT -ACGGAACAAGAGCGTAACTAAGCC -ACGGAACAAGAGCGTAACATAGCC -ACGGAACAAGAGCGTAACTAACCG -ACGGAACAAGAGCGTAACATGCCA -ACGGAACAAGAGTGCTTGGGAAAC -ACGGAACAAGAGTGCTTGAACACC -ACGGAACAAGAGTGCTTGATCGAG -ACGGAACAAGAGTGCTTGCTCCTT -ACGGAACAAGAGTGCTTGCCTGTT -ACGGAACAAGAGTGCTTGCGGTTT -ACGGAACAAGAGTGCTTGGTGGTT -ACGGAACAAGAGTGCTTGGCCTTT -ACGGAACAAGAGTGCTTGGGTCTT -ACGGAACAAGAGTGCTTGACGCTT -ACGGAACAAGAGTGCTTGAGCGTT -ACGGAACAAGAGTGCTTGTTCGTC -ACGGAACAAGAGTGCTTGTCTCTC -ACGGAACAAGAGTGCTTGTGGATC -ACGGAACAAGAGTGCTTGCACTTC -ACGGAACAAGAGTGCTTGGTACTC -ACGGAACAAGAGTGCTTGGATGTC -ACGGAACAAGAGTGCTTGACAGTC -ACGGAACAAGAGTGCTTGTTGCTG -ACGGAACAAGAGTGCTTGTCCATG -ACGGAACAAGAGTGCTTGTGTGTG -ACGGAACAAGAGTGCTTGCTAGTG -ACGGAACAAGAGTGCTTGCATCTG -ACGGAACAAGAGTGCTTGGAGTTG -ACGGAACAAGAGTGCTTGAGACTG -ACGGAACAAGAGTGCTTGTCGGTA -ACGGAACAAGAGTGCTTGTGCCTA -ACGGAACAAGAGTGCTTGCCACTA -ACGGAACAAGAGTGCTTGGGAGTA -ACGGAACAAGAGTGCTTGTCGTCT -ACGGAACAAGAGTGCTTGTGCACT -ACGGAACAAGAGTGCTTGCTGACT -ACGGAACAAGAGTGCTTGCAACCT -ACGGAACAAGAGTGCTTGGCTACT -ACGGAACAAGAGTGCTTGGGATCT -ACGGAACAAGAGTGCTTGAAGGCT -ACGGAACAAGAGTGCTTGTCAACC -ACGGAACAAGAGTGCTTGTGTTCC -ACGGAACAAGAGTGCTTGATTCCC -ACGGAACAAGAGTGCTTGTTCTCG -ACGGAACAAGAGTGCTTGTAGACG -ACGGAACAAGAGTGCTTGGTAACG -ACGGAACAAGAGTGCTTGACTTCG -ACGGAACAAGAGTGCTTGTACGCA -ACGGAACAAGAGTGCTTGCTTGCA -ACGGAACAAGAGTGCTTGCGAACA -ACGGAACAAGAGTGCTTGCAGTCA -ACGGAACAAGAGTGCTTGGATCCA -ACGGAACAAGAGTGCTTGACGACA -ACGGAACAAGAGTGCTTGAGCTCA -ACGGAACAAGAGTGCTTGTCACGT -ACGGAACAAGAGTGCTTGCGTAGT -ACGGAACAAGAGTGCTTGGTCAGT -ACGGAACAAGAGTGCTTGGAAGGT -ACGGAACAAGAGTGCTTGAACCGT -ACGGAACAAGAGTGCTTGTTGTGC -ACGGAACAAGAGTGCTTGCTAAGC -ACGGAACAAGAGTGCTTGACTAGC -ACGGAACAAGAGTGCTTGAGATGC -ACGGAACAAGAGTGCTTGTGAAGG -ACGGAACAAGAGTGCTTGCAATGG -ACGGAACAAGAGTGCTTGATGAGG -ACGGAACAAGAGTGCTTGAATGGG -ACGGAACAAGAGTGCTTGTCCTGA -ACGGAACAAGAGTGCTTGTAGCGA -ACGGAACAAGAGTGCTTGCACAGA -ACGGAACAAGAGTGCTTGGCAAGA -ACGGAACAAGAGTGCTTGGGTTGA -ACGGAACAAGAGTGCTTGTCCGAT -ACGGAACAAGAGTGCTTGTGGCAT -ACGGAACAAGAGTGCTTGCGAGAT -ACGGAACAAGAGTGCTTGTACCAC -ACGGAACAAGAGTGCTTGCAGAAC -ACGGAACAAGAGTGCTTGGTCTAC -ACGGAACAAGAGTGCTTGACGTAC -ACGGAACAAGAGTGCTTGAGTGAC -ACGGAACAAGAGTGCTTGCTGTAG -ACGGAACAAGAGTGCTTGCCTAAG -ACGGAACAAGAGTGCTTGGTTCAG -ACGGAACAAGAGTGCTTGGCATAG -ACGGAACAAGAGTGCTTGGACAAG -ACGGAACAAGAGTGCTTGAAGCAG -ACGGAACAAGAGTGCTTGCGTCAA -ACGGAACAAGAGTGCTTGGCTGAA -ACGGAACAAGAGTGCTTGAGTACG -ACGGAACAAGAGTGCTTGATCCGA -ACGGAACAAGAGTGCTTGATGGGA -ACGGAACAAGAGTGCTTGGTGCAA -ACGGAACAAGAGTGCTTGGAGGAA -ACGGAACAAGAGTGCTTGCAGGTA -ACGGAACAAGAGTGCTTGGACTCT -ACGGAACAAGAGTGCTTGAGTCCT -ACGGAACAAGAGTGCTTGTAAGCC -ACGGAACAAGAGTGCTTGATAGCC -ACGGAACAAGAGTGCTTGTAACCG -ACGGAACAAGAGTGCTTGATGCCA -ACGGAACAAGAGAGCCTAGGAAAC -ACGGAACAAGAGAGCCTAAACACC -ACGGAACAAGAGAGCCTAATCGAG -ACGGAACAAGAGAGCCTACTCCTT -ACGGAACAAGAGAGCCTACCTGTT -ACGGAACAAGAGAGCCTACGGTTT -ACGGAACAAGAGAGCCTAGTGGTT -ACGGAACAAGAGAGCCTAGCCTTT -ACGGAACAAGAGAGCCTAGGTCTT -ACGGAACAAGAGAGCCTAACGCTT -ACGGAACAAGAGAGCCTAAGCGTT -ACGGAACAAGAGAGCCTATTCGTC -ACGGAACAAGAGAGCCTATCTCTC -ACGGAACAAGAGAGCCTATGGATC -ACGGAACAAGAGAGCCTACACTTC -ACGGAACAAGAGAGCCTAGTACTC -ACGGAACAAGAGAGCCTAGATGTC -ACGGAACAAGAGAGCCTAACAGTC -ACGGAACAAGAGAGCCTATTGCTG -ACGGAACAAGAGAGCCTATCCATG -ACGGAACAAGAGAGCCTATGTGTG -ACGGAACAAGAGAGCCTACTAGTG -ACGGAACAAGAGAGCCTACATCTG -ACGGAACAAGAGAGCCTAGAGTTG -ACGGAACAAGAGAGCCTAAGACTG -ACGGAACAAGAGAGCCTATCGGTA -ACGGAACAAGAGAGCCTATGCCTA -ACGGAACAAGAGAGCCTACCACTA -ACGGAACAAGAGAGCCTAGGAGTA -ACGGAACAAGAGAGCCTATCGTCT -ACGGAACAAGAGAGCCTATGCACT -ACGGAACAAGAGAGCCTACTGACT -ACGGAACAAGAGAGCCTACAACCT -ACGGAACAAGAGAGCCTAGCTACT -ACGGAACAAGAGAGCCTAGGATCT -ACGGAACAAGAGAGCCTAAAGGCT -ACGGAACAAGAGAGCCTATCAACC -ACGGAACAAGAGAGCCTATGTTCC -ACGGAACAAGAGAGCCTAATTCCC -ACGGAACAAGAGAGCCTATTCTCG -ACGGAACAAGAGAGCCTATAGACG -ACGGAACAAGAGAGCCTAGTAACG -ACGGAACAAGAGAGCCTAACTTCG -ACGGAACAAGAGAGCCTATACGCA -ACGGAACAAGAGAGCCTACTTGCA -ACGGAACAAGAGAGCCTACGAACA -ACGGAACAAGAGAGCCTACAGTCA -ACGGAACAAGAGAGCCTAGATCCA -ACGGAACAAGAGAGCCTAACGACA -ACGGAACAAGAGAGCCTAAGCTCA -ACGGAACAAGAGAGCCTATCACGT -ACGGAACAAGAGAGCCTACGTAGT -ACGGAACAAGAGAGCCTAGTCAGT -ACGGAACAAGAGAGCCTAGAAGGT -ACGGAACAAGAGAGCCTAAACCGT -ACGGAACAAGAGAGCCTATTGTGC -ACGGAACAAGAGAGCCTACTAAGC -ACGGAACAAGAGAGCCTAACTAGC -ACGGAACAAGAGAGCCTAAGATGC -ACGGAACAAGAGAGCCTATGAAGG -ACGGAACAAGAGAGCCTACAATGG -ACGGAACAAGAGAGCCTAATGAGG -ACGGAACAAGAGAGCCTAAATGGG -ACGGAACAAGAGAGCCTATCCTGA -ACGGAACAAGAGAGCCTATAGCGA -ACGGAACAAGAGAGCCTACACAGA -ACGGAACAAGAGAGCCTAGCAAGA -ACGGAACAAGAGAGCCTAGGTTGA -ACGGAACAAGAGAGCCTATCCGAT -ACGGAACAAGAGAGCCTATGGCAT -ACGGAACAAGAGAGCCTACGAGAT -ACGGAACAAGAGAGCCTATACCAC -ACGGAACAAGAGAGCCTACAGAAC -ACGGAACAAGAGAGCCTAGTCTAC -ACGGAACAAGAGAGCCTAACGTAC -ACGGAACAAGAGAGCCTAAGTGAC -ACGGAACAAGAGAGCCTACTGTAG -ACGGAACAAGAGAGCCTACCTAAG -ACGGAACAAGAGAGCCTAGTTCAG -ACGGAACAAGAGAGCCTAGCATAG -ACGGAACAAGAGAGCCTAGACAAG -ACGGAACAAGAGAGCCTAAAGCAG -ACGGAACAAGAGAGCCTACGTCAA -ACGGAACAAGAGAGCCTAGCTGAA -ACGGAACAAGAGAGCCTAAGTACG -ACGGAACAAGAGAGCCTAATCCGA -ACGGAACAAGAGAGCCTAATGGGA -ACGGAACAAGAGAGCCTAGTGCAA -ACGGAACAAGAGAGCCTAGAGGAA -ACGGAACAAGAGAGCCTACAGGTA -ACGGAACAAGAGAGCCTAGACTCT -ACGGAACAAGAGAGCCTAAGTCCT -ACGGAACAAGAGAGCCTATAAGCC -ACGGAACAAGAGAGCCTAATAGCC -ACGGAACAAGAGAGCCTATAACCG -ACGGAACAAGAGAGCCTAATGCCA -ACGGAACAAGAGAGCACTGGAAAC -ACGGAACAAGAGAGCACTAACACC -ACGGAACAAGAGAGCACTATCGAG -ACGGAACAAGAGAGCACTCTCCTT -ACGGAACAAGAGAGCACTCCTGTT -ACGGAACAAGAGAGCACTCGGTTT -ACGGAACAAGAGAGCACTGTGGTT -ACGGAACAAGAGAGCACTGCCTTT -ACGGAACAAGAGAGCACTGGTCTT -ACGGAACAAGAGAGCACTACGCTT -ACGGAACAAGAGAGCACTAGCGTT -ACGGAACAAGAGAGCACTTTCGTC -ACGGAACAAGAGAGCACTTCTCTC -ACGGAACAAGAGAGCACTTGGATC -ACGGAACAAGAGAGCACTCACTTC -ACGGAACAAGAGAGCACTGTACTC -ACGGAACAAGAGAGCACTGATGTC -ACGGAACAAGAGAGCACTACAGTC -ACGGAACAAGAGAGCACTTTGCTG -ACGGAACAAGAGAGCACTTCCATG -ACGGAACAAGAGAGCACTTGTGTG -ACGGAACAAGAGAGCACTCTAGTG -ACGGAACAAGAGAGCACTCATCTG -ACGGAACAAGAGAGCACTGAGTTG -ACGGAACAAGAGAGCACTAGACTG -ACGGAACAAGAGAGCACTTCGGTA -ACGGAACAAGAGAGCACTTGCCTA -ACGGAACAAGAGAGCACTCCACTA -ACGGAACAAGAGAGCACTGGAGTA -ACGGAACAAGAGAGCACTTCGTCT -ACGGAACAAGAGAGCACTTGCACT -ACGGAACAAGAGAGCACTCTGACT -ACGGAACAAGAGAGCACTCAACCT -ACGGAACAAGAGAGCACTGCTACT -ACGGAACAAGAGAGCACTGGATCT -ACGGAACAAGAGAGCACTAAGGCT -ACGGAACAAGAGAGCACTTCAACC -ACGGAACAAGAGAGCACTTGTTCC -ACGGAACAAGAGAGCACTATTCCC -ACGGAACAAGAGAGCACTTTCTCG -ACGGAACAAGAGAGCACTTAGACG -ACGGAACAAGAGAGCACTGTAACG -ACGGAACAAGAGAGCACTACTTCG -ACGGAACAAGAGAGCACTTACGCA -ACGGAACAAGAGAGCACTCTTGCA -ACGGAACAAGAGAGCACTCGAACA -ACGGAACAAGAGAGCACTCAGTCA -ACGGAACAAGAGAGCACTGATCCA -ACGGAACAAGAGAGCACTACGACA -ACGGAACAAGAGAGCACTAGCTCA -ACGGAACAAGAGAGCACTTCACGT -ACGGAACAAGAGAGCACTCGTAGT -ACGGAACAAGAGAGCACTGTCAGT -ACGGAACAAGAGAGCACTGAAGGT -ACGGAACAAGAGAGCACTAACCGT -ACGGAACAAGAGAGCACTTTGTGC -ACGGAACAAGAGAGCACTCTAAGC -ACGGAACAAGAGAGCACTACTAGC -ACGGAACAAGAGAGCACTAGATGC -ACGGAACAAGAGAGCACTTGAAGG -ACGGAACAAGAGAGCACTCAATGG -ACGGAACAAGAGAGCACTATGAGG -ACGGAACAAGAGAGCACTAATGGG -ACGGAACAAGAGAGCACTTCCTGA -ACGGAACAAGAGAGCACTTAGCGA -ACGGAACAAGAGAGCACTCACAGA -ACGGAACAAGAGAGCACTGCAAGA -ACGGAACAAGAGAGCACTGGTTGA -ACGGAACAAGAGAGCACTTCCGAT -ACGGAACAAGAGAGCACTTGGCAT -ACGGAACAAGAGAGCACTCGAGAT -ACGGAACAAGAGAGCACTTACCAC -ACGGAACAAGAGAGCACTCAGAAC -ACGGAACAAGAGAGCACTGTCTAC -ACGGAACAAGAGAGCACTACGTAC -ACGGAACAAGAGAGCACTAGTGAC -ACGGAACAAGAGAGCACTCTGTAG -ACGGAACAAGAGAGCACTCCTAAG -ACGGAACAAGAGAGCACTGTTCAG -ACGGAACAAGAGAGCACTGCATAG -ACGGAACAAGAGAGCACTGACAAG -ACGGAACAAGAGAGCACTAAGCAG -ACGGAACAAGAGAGCACTCGTCAA -ACGGAACAAGAGAGCACTGCTGAA -ACGGAACAAGAGAGCACTAGTACG -ACGGAACAAGAGAGCACTATCCGA -ACGGAACAAGAGAGCACTATGGGA -ACGGAACAAGAGAGCACTGTGCAA -ACGGAACAAGAGAGCACTGAGGAA -ACGGAACAAGAGAGCACTCAGGTA -ACGGAACAAGAGAGCACTGACTCT -ACGGAACAAGAGAGCACTAGTCCT -ACGGAACAAGAGAGCACTTAAGCC -ACGGAACAAGAGAGCACTATAGCC -ACGGAACAAGAGAGCACTTAACCG -ACGGAACAAGAGAGCACTATGCCA -ACGGAACAAGAGTGCAGAGGAAAC -ACGGAACAAGAGTGCAGAAACACC -ACGGAACAAGAGTGCAGAATCGAG -ACGGAACAAGAGTGCAGACTCCTT -ACGGAACAAGAGTGCAGACCTGTT -ACGGAACAAGAGTGCAGACGGTTT -ACGGAACAAGAGTGCAGAGTGGTT -ACGGAACAAGAGTGCAGAGCCTTT -ACGGAACAAGAGTGCAGAGGTCTT -ACGGAACAAGAGTGCAGAACGCTT -ACGGAACAAGAGTGCAGAAGCGTT -ACGGAACAAGAGTGCAGATTCGTC -ACGGAACAAGAGTGCAGATCTCTC -ACGGAACAAGAGTGCAGATGGATC -ACGGAACAAGAGTGCAGACACTTC -ACGGAACAAGAGTGCAGAGTACTC -ACGGAACAAGAGTGCAGAGATGTC -ACGGAACAAGAGTGCAGAACAGTC -ACGGAACAAGAGTGCAGATTGCTG -ACGGAACAAGAGTGCAGATCCATG -ACGGAACAAGAGTGCAGATGTGTG -ACGGAACAAGAGTGCAGACTAGTG -ACGGAACAAGAGTGCAGACATCTG -ACGGAACAAGAGTGCAGAGAGTTG -ACGGAACAAGAGTGCAGAAGACTG -ACGGAACAAGAGTGCAGATCGGTA -ACGGAACAAGAGTGCAGATGCCTA -ACGGAACAAGAGTGCAGACCACTA -ACGGAACAAGAGTGCAGAGGAGTA -ACGGAACAAGAGTGCAGATCGTCT -ACGGAACAAGAGTGCAGATGCACT -ACGGAACAAGAGTGCAGACTGACT -ACGGAACAAGAGTGCAGACAACCT -ACGGAACAAGAGTGCAGAGCTACT -ACGGAACAAGAGTGCAGAGGATCT -ACGGAACAAGAGTGCAGAAAGGCT -ACGGAACAAGAGTGCAGATCAACC -ACGGAACAAGAGTGCAGATGTTCC -ACGGAACAAGAGTGCAGAATTCCC -ACGGAACAAGAGTGCAGATTCTCG -ACGGAACAAGAGTGCAGATAGACG -ACGGAACAAGAGTGCAGAGTAACG -ACGGAACAAGAGTGCAGAACTTCG -ACGGAACAAGAGTGCAGATACGCA -ACGGAACAAGAGTGCAGACTTGCA -ACGGAACAAGAGTGCAGACGAACA -ACGGAACAAGAGTGCAGACAGTCA -ACGGAACAAGAGTGCAGAGATCCA -ACGGAACAAGAGTGCAGAACGACA -ACGGAACAAGAGTGCAGAAGCTCA -ACGGAACAAGAGTGCAGATCACGT -ACGGAACAAGAGTGCAGACGTAGT -ACGGAACAAGAGTGCAGAGTCAGT -ACGGAACAAGAGTGCAGAGAAGGT -ACGGAACAAGAGTGCAGAAACCGT -ACGGAACAAGAGTGCAGATTGTGC -ACGGAACAAGAGTGCAGACTAAGC -ACGGAACAAGAGTGCAGAACTAGC -ACGGAACAAGAGTGCAGAAGATGC -ACGGAACAAGAGTGCAGATGAAGG -ACGGAACAAGAGTGCAGACAATGG -ACGGAACAAGAGTGCAGAATGAGG -ACGGAACAAGAGTGCAGAAATGGG -ACGGAACAAGAGTGCAGATCCTGA -ACGGAACAAGAGTGCAGATAGCGA -ACGGAACAAGAGTGCAGACACAGA -ACGGAACAAGAGTGCAGAGCAAGA -ACGGAACAAGAGTGCAGAGGTTGA -ACGGAACAAGAGTGCAGATCCGAT -ACGGAACAAGAGTGCAGATGGCAT -ACGGAACAAGAGTGCAGACGAGAT -ACGGAACAAGAGTGCAGATACCAC -ACGGAACAAGAGTGCAGACAGAAC -ACGGAACAAGAGTGCAGAGTCTAC -ACGGAACAAGAGTGCAGAACGTAC -ACGGAACAAGAGTGCAGAAGTGAC -ACGGAACAAGAGTGCAGACTGTAG -ACGGAACAAGAGTGCAGACCTAAG -ACGGAACAAGAGTGCAGAGTTCAG -ACGGAACAAGAGTGCAGAGCATAG -ACGGAACAAGAGTGCAGAGACAAG -ACGGAACAAGAGTGCAGAAAGCAG -ACGGAACAAGAGTGCAGACGTCAA -ACGGAACAAGAGTGCAGAGCTGAA -ACGGAACAAGAGTGCAGAAGTACG -ACGGAACAAGAGTGCAGAATCCGA -ACGGAACAAGAGTGCAGAATGGGA -ACGGAACAAGAGTGCAGAGTGCAA -ACGGAACAAGAGTGCAGAGAGGAA -ACGGAACAAGAGTGCAGACAGGTA -ACGGAACAAGAGTGCAGAGACTCT -ACGGAACAAGAGTGCAGAAGTCCT -ACGGAACAAGAGTGCAGATAAGCC -ACGGAACAAGAGTGCAGAATAGCC -ACGGAACAAGAGTGCAGATAACCG -ACGGAACAAGAGTGCAGAATGCCA -ACGGAACAAGAGAGGTGAGGAAAC -ACGGAACAAGAGAGGTGAAACACC -ACGGAACAAGAGAGGTGAATCGAG -ACGGAACAAGAGAGGTGACTCCTT -ACGGAACAAGAGAGGTGACCTGTT -ACGGAACAAGAGAGGTGACGGTTT -ACGGAACAAGAGAGGTGAGTGGTT -ACGGAACAAGAGAGGTGAGCCTTT -ACGGAACAAGAGAGGTGAGGTCTT -ACGGAACAAGAGAGGTGAACGCTT -ACGGAACAAGAGAGGTGAAGCGTT -ACGGAACAAGAGAGGTGATTCGTC -ACGGAACAAGAGAGGTGATCTCTC -ACGGAACAAGAGAGGTGATGGATC -ACGGAACAAGAGAGGTGACACTTC -ACGGAACAAGAGAGGTGAGTACTC -ACGGAACAAGAGAGGTGAGATGTC -ACGGAACAAGAGAGGTGAACAGTC -ACGGAACAAGAGAGGTGATTGCTG -ACGGAACAAGAGAGGTGATCCATG -ACGGAACAAGAGAGGTGATGTGTG -ACGGAACAAGAGAGGTGACTAGTG -ACGGAACAAGAGAGGTGACATCTG -ACGGAACAAGAGAGGTGAGAGTTG -ACGGAACAAGAGAGGTGAAGACTG -ACGGAACAAGAGAGGTGATCGGTA -ACGGAACAAGAGAGGTGATGCCTA -ACGGAACAAGAGAGGTGACCACTA -ACGGAACAAGAGAGGTGAGGAGTA -ACGGAACAAGAGAGGTGATCGTCT -ACGGAACAAGAGAGGTGATGCACT -ACGGAACAAGAGAGGTGACTGACT -ACGGAACAAGAGAGGTGACAACCT -ACGGAACAAGAGAGGTGAGCTACT -ACGGAACAAGAGAGGTGAGGATCT -ACGGAACAAGAGAGGTGAAAGGCT -ACGGAACAAGAGAGGTGATCAACC -ACGGAACAAGAGAGGTGATGTTCC -ACGGAACAAGAGAGGTGAATTCCC -ACGGAACAAGAGAGGTGATTCTCG -ACGGAACAAGAGAGGTGATAGACG -ACGGAACAAGAGAGGTGAGTAACG -ACGGAACAAGAGAGGTGAACTTCG -ACGGAACAAGAGAGGTGATACGCA -ACGGAACAAGAGAGGTGACTTGCA -ACGGAACAAGAGAGGTGACGAACA -ACGGAACAAGAGAGGTGACAGTCA -ACGGAACAAGAGAGGTGAGATCCA -ACGGAACAAGAGAGGTGAACGACA -ACGGAACAAGAGAGGTGAAGCTCA -ACGGAACAAGAGAGGTGATCACGT -ACGGAACAAGAGAGGTGACGTAGT -ACGGAACAAGAGAGGTGAGTCAGT -ACGGAACAAGAGAGGTGAGAAGGT -ACGGAACAAGAGAGGTGAAACCGT -ACGGAACAAGAGAGGTGATTGTGC -ACGGAACAAGAGAGGTGACTAAGC -ACGGAACAAGAGAGGTGAACTAGC -ACGGAACAAGAGAGGTGAAGATGC -ACGGAACAAGAGAGGTGATGAAGG -ACGGAACAAGAGAGGTGACAATGG -ACGGAACAAGAGAGGTGAATGAGG -ACGGAACAAGAGAGGTGAAATGGG -ACGGAACAAGAGAGGTGATCCTGA -ACGGAACAAGAGAGGTGATAGCGA -ACGGAACAAGAGAGGTGACACAGA -ACGGAACAAGAGAGGTGAGCAAGA -ACGGAACAAGAGAGGTGAGGTTGA -ACGGAACAAGAGAGGTGATCCGAT -ACGGAACAAGAGAGGTGATGGCAT -ACGGAACAAGAGAGGTGACGAGAT -ACGGAACAAGAGAGGTGATACCAC -ACGGAACAAGAGAGGTGACAGAAC -ACGGAACAAGAGAGGTGAGTCTAC -ACGGAACAAGAGAGGTGAACGTAC -ACGGAACAAGAGAGGTGAAGTGAC -ACGGAACAAGAGAGGTGACTGTAG -ACGGAACAAGAGAGGTGACCTAAG -ACGGAACAAGAGAGGTGAGTTCAG -ACGGAACAAGAGAGGTGAGCATAG -ACGGAACAAGAGAGGTGAGACAAG -ACGGAACAAGAGAGGTGAAAGCAG -ACGGAACAAGAGAGGTGACGTCAA -ACGGAACAAGAGAGGTGAGCTGAA -ACGGAACAAGAGAGGTGAAGTACG -ACGGAACAAGAGAGGTGAATCCGA -ACGGAACAAGAGAGGTGAATGGGA -ACGGAACAAGAGAGGTGAGTGCAA -ACGGAACAAGAGAGGTGAGAGGAA -ACGGAACAAGAGAGGTGACAGGTA -ACGGAACAAGAGAGGTGAGACTCT -ACGGAACAAGAGAGGTGAAGTCCT -ACGGAACAAGAGAGGTGATAAGCC -ACGGAACAAGAGAGGTGAATAGCC -ACGGAACAAGAGAGGTGATAACCG -ACGGAACAAGAGAGGTGAATGCCA -ACGGAACAAGAGTGGCAAGGAAAC -ACGGAACAAGAGTGGCAAAACACC -ACGGAACAAGAGTGGCAAATCGAG -ACGGAACAAGAGTGGCAACTCCTT -ACGGAACAAGAGTGGCAACCTGTT -ACGGAACAAGAGTGGCAACGGTTT -ACGGAACAAGAGTGGCAAGTGGTT -ACGGAACAAGAGTGGCAAGCCTTT -ACGGAACAAGAGTGGCAAGGTCTT -ACGGAACAAGAGTGGCAAACGCTT -ACGGAACAAGAGTGGCAAAGCGTT -ACGGAACAAGAGTGGCAATTCGTC -ACGGAACAAGAGTGGCAATCTCTC -ACGGAACAAGAGTGGCAATGGATC -ACGGAACAAGAGTGGCAACACTTC -ACGGAACAAGAGTGGCAAGTACTC -ACGGAACAAGAGTGGCAAGATGTC -ACGGAACAAGAGTGGCAAACAGTC -ACGGAACAAGAGTGGCAATTGCTG -ACGGAACAAGAGTGGCAATCCATG -ACGGAACAAGAGTGGCAATGTGTG -ACGGAACAAGAGTGGCAACTAGTG -ACGGAACAAGAGTGGCAACATCTG -ACGGAACAAGAGTGGCAAGAGTTG -ACGGAACAAGAGTGGCAAAGACTG -ACGGAACAAGAGTGGCAATCGGTA -ACGGAACAAGAGTGGCAATGCCTA -ACGGAACAAGAGTGGCAACCACTA -ACGGAACAAGAGTGGCAAGGAGTA -ACGGAACAAGAGTGGCAATCGTCT -ACGGAACAAGAGTGGCAATGCACT -ACGGAACAAGAGTGGCAACTGACT -ACGGAACAAGAGTGGCAACAACCT -ACGGAACAAGAGTGGCAAGCTACT -ACGGAACAAGAGTGGCAAGGATCT -ACGGAACAAGAGTGGCAAAAGGCT -ACGGAACAAGAGTGGCAATCAACC -ACGGAACAAGAGTGGCAATGTTCC -ACGGAACAAGAGTGGCAAATTCCC -ACGGAACAAGAGTGGCAATTCTCG -ACGGAACAAGAGTGGCAATAGACG -ACGGAACAAGAGTGGCAAGTAACG -ACGGAACAAGAGTGGCAAACTTCG -ACGGAACAAGAGTGGCAATACGCA -ACGGAACAAGAGTGGCAACTTGCA -ACGGAACAAGAGTGGCAACGAACA -ACGGAACAAGAGTGGCAACAGTCA -ACGGAACAAGAGTGGCAAGATCCA -ACGGAACAAGAGTGGCAAACGACA -ACGGAACAAGAGTGGCAAAGCTCA -ACGGAACAAGAGTGGCAATCACGT -ACGGAACAAGAGTGGCAACGTAGT -ACGGAACAAGAGTGGCAAGTCAGT -ACGGAACAAGAGTGGCAAGAAGGT -ACGGAACAAGAGTGGCAAAACCGT -ACGGAACAAGAGTGGCAATTGTGC -ACGGAACAAGAGTGGCAACTAAGC -ACGGAACAAGAGTGGCAAACTAGC -ACGGAACAAGAGTGGCAAAGATGC -ACGGAACAAGAGTGGCAATGAAGG -ACGGAACAAGAGTGGCAACAATGG -ACGGAACAAGAGTGGCAAATGAGG -ACGGAACAAGAGTGGCAAAATGGG -ACGGAACAAGAGTGGCAATCCTGA -ACGGAACAAGAGTGGCAATAGCGA -ACGGAACAAGAGTGGCAACACAGA -ACGGAACAAGAGTGGCAAGCAAGA -ACGGAACAAGAGTGGCAAGGTTGA -ACGGAACAAGAGTGGCAATCCGAT -ACGGAACAAGAGTGGCAATGGCAT -ACGGAACAAGAGTGGCAACGAGAT -ACGGAACAAGAGTGGCAATACCAC -ACGGAACAAGAGTGGCAACAGAAC -ACGGAACAAGAGTGGCAAGTCTAC -ACGGAACAAGAGTGGCAAACGTAC -ACGGAACAAGAGTGGCAAAGTGAC -ACGGAACAAGAGTGGCAACTGTAG -ACGGAACAAGAGTGGCAACCTAAG -ACGGAACAAGAGTGGCAAGTTCAG -ACGGAACAAGAGTGGCAAGCATAG -ACGGAACAAGAGTGGCAAGACAAG -ACGGAACAAGAGTGGCAAAAGCAG -ACGGAACAAGAGTGGCAACGTCAA -ACGGAACAAGAGTGGCAAGCTGAA -ACGGAACAAGAGTGGCAAAGTACG -ACGGAACAAGAGTGGCAAATCCGA -ACGGAACAAGAGTGGCAAATGGGA -ACGGAACAAGAGTGGCAAGTGCAA -ACGGAACAAGAGTGGCAAGAGGAA -ACGGAACAAGAGTGGCAACAGGTA -ACGGAACAAGAGTGGCAAGACTCT -ACGGAACAAGAGTGGCAAAGTCCT -ACGGAACAAGAGTGGCAATAAGCC -ACGGAACAAGAGTGGCAAATAGCC -ACGGAACAAGAGTGGCAATAACCG -ACGGAACAAGAGTGGCAAATGCCA -ACGGAACAAGAGAGGATGGGAAAC -ACGGAACAAGAGAGGATGAACACC -ACGGAACAAGAGAGGATGATCGAG -ACGGAACAAGAGAGGATGCTCCTT -ACGGAACAAGAGAGGATGCCTGTT -ACGGAACAAGAGAGGATGCGGTTT -ACGGAACAAGAGAGGATGGTGGTT -ACGGAACAAGAGAGGATGGCCTTT -ACGGAACAAGAGAGGATGGGTCTT -ACGGAACAAGAGAGGATGACGCTT -ACGGAACAAGAGAGGATGAGCGTT -ACGGAACAAGAGAGGATGTTCGTC -ACGGAACAAGAGAGGATGTCTCTC -ACGGAACAAGAGAGGATGTGGATC -ACGGAACAAGAGAGGATGCACTTC -ACGGAACAAGAGAGGATGGTACTC -ACGGAACAAGAGAGGATGGATGTC -ACGGAACAAGAGAGGATGACAGTC -ACGGAACAAGAGAGGATGTTGCTG -ACGGAACAAGAGAGGATGTCCATG -ACGGAACAAGAGAGGATGTGTGTG -ACGGAACAAGAGAGGATGCTAGTG -ACGGAACAAGAGAGGATGCATCTG -ACGGAACAAGAGAGGATGGAGTTG -ACGGAACAAGAGAGGATGAGACTG -ACGGAACAAGAGAGGATGTCGGTA -ACGGAACAAGAGAGGATGTGCCTA -ACGGAACAAGAGAGGATGCCACTA -ACGGAACAAGAGAGGATGGGAGTA -ACGGAACAAGAGAGGATGTCGTCT -ACGGAACAAGAGAGGATGTGCACT -ACGGAACAAGAGAGGATGCTGACT -ACGGAACAAGAGAGGATGCAACCT -ACGGAACAAGAGAGGATGGCTACT -ACGGAACAAGAGAGGATGGGATCT -ACGGAACAAGAGAGGATGAAGGCT -ACGGAACAAGAGAGGATGTCAACC -ACGGAACAAGAGAGGATGTGTTCC -ACGGAACAAGAGAGGATGATTCCC -ACGGAACAAGAGAGGATGTTCTCG -ACGGAACAAGAGAGGATGTAGACG -ACGGAACAAGAGAGGATGGTAACG -ACGGAACAAGAGAGGATGACTTCG -ACGGAACAAGAGAGGATGTACGCA -ACGGAACAAGAGAGGATGCTTGCA -ACGGAACAAGAGAGGATGCGAACA -ACGGAACAAGAGAGGATGCAGTCA -ACGGAACAAGAGAGGATGGATCCA -ACGGAACAAGAGAGGATGACGACA -ACGGAACAAGAGAGGATGAGCTCA -ACGGAACAAGAGAGGATGTCACGT -ACGGAACAAGAGAGGATGCGTAGT -ACGGAACAAGAGAGGATGGTCAGT -ACGGAACAAGAGAGGATGGAAGGT -ACGGAACAAGAGAGGATGAACCGT -ACGGAACAAGAGAGGATGTTGTGC -ACGGAACAAGAGAGGATGCTAAGC -ACGGAACAAGAGAGGATGACTAGC -ACGGAACAAGAGAGGATGAGATGC -ACGGAACAAGAGAGGATGTGAAGG -ACGGAACAAGAGAGGATGCAATGG -ACGGAACAAGAGAGGATGATGAGG -ACGGAACAAGAGAGGATGAATGGG -ACGGAACAAGAGAGGATGTCCTGA -ACGGAACAAGAGAGGATGTAGCGA -ACGGAACAAGAGAGGATGCACAGA -ACGGAACAAGAGAGGATGGCAAGA -ACGGAACAAGAGAGGATGGGTTGA -ACGGAACAAGAGAGGATGTCCGAT -ACGGAACAAGAGAGGATGTGGCAT -ACGGAACAAGAGAGGATGCGAGAT -ACGGAACAAGAGAGGATGTACCAC -ACGGAACAAGAGAGGATGCAGAAC -ACGGAACAAGAGAGGATGGTCTAC -ACGGAACAAGAGAGGATGACGTAC -ACGGAACAAGAGAGGATGAGTGAC -ACGGAACAAGAGAGGATGCTGTAG -ACGGAACAAGAGAGGATGCCTAAG -ACGGAACAAGAGAGGATGGTTCAG -ACGGAACAAGAGAGGATGGCATAG -ACGGAACAAGAGAGGATGGACAAG -ACGGAACAAGAGAGGATGAAGCAG -ACGGAACAAGAGAGGATGCGTCAA -ACGGAACAAGAGAGGATGGCTGAA -ACGGAACAAGAGAGGATGAGTACG -ACGGAACAAGAGAGGATGATCCGA -ACGGAACAAGAGAGGATGATGGGA -ACGGAACAAGAGAGGATGGTGCAA -ACGGAACAAGAGAGGATGGAGGAA -ACGGAACAAGAGAGGATGCAGGTA -ACGGAACAAGAGAGGATGGACTCT -ACGGAACAAGAGAGGATGAGTCCT -ACGGAACAAGAGAGGATGTAAGCC -ACGGAACAAGAGAGGATGATAGCC -ACGGAACAAGAGAGGATGTAACCG -ACGGAACAAGAGAGGATGATGCCA -ACGGAACAAGAGGGGAATGGAAAC -ACGGAACAAGAGGGGAATAACACC -ACGGAACAAGAGGGGAATATCGAG -ACGGAACAAGAGGGGAATCTCCTT -ACGGAACAAGAGGGGAATCCTGTT -ACGGAACAAGAGGGGAATCGGTTT -ACGGAACAAGAGGGGAATGTGGTT -ACGGAACAAGAGGGGAATGCCTTT -ACGGAACAAGAGGGGAATGGTCTT -ACGGAACAAGAGGGGAATACGCTT -ACGGAACAAGAGGGGAATAGCGTT -ACGGAACAAGAGGGGAATTTCGTC -ACGGAACAAGAGGGGAATTCTCTC -ACGGAACAAGAGGGGAATTGGATC -ACGGAACAAGAGGGGAATCACTTC -ACGGAACAAGAGGGGAATGTACTC -ACGGAACAAGAGGGGAATGATGTC -ACGGAACAAGAGGGGAATACAGTC -ACGGAACAAGAGGGGAATTTGCTG -ACGGAACAAGAGGGGAATTCCATG -ACGGAACAAGAGGGGAATTGTGTG -ACGGAACAAGAGGGGAATCTAGTG -ACGGAACAAGAGGGGAATCATCTG -ACGGAACAAGAGGGGAATGAGTTG -ACGGAACAAGAGGGGAATAGACTG -ACGGAACAAGAGGGGAATTCGGTA -ACGGAACAAGAGGGGAATTGCCTA -ACGGAACAAGAGGGGAATCCACTA -ACGGAACAAGAGGGGAATGGAGTA -ACGGAACAAGAGGGGAATTCGTCT -ACGGAACAAGAGGGGAATTGCACT -ACGGAACAAGAGGGGAATCTGACT -ACGGAACAAGAGGGGAATCAACCT -ACGGAACAAGAGGGGAATGCTACT -ACGGAACAAGAGGGGAATGGATCT -ACGGAACAAGAGGGGAATAAGGCT -ACGGAACAAGAGGGGAATTCAACC -ACGGAACAAGAGGGGAATTGTTCC -ACGGAACAAGAGGGGAATATTCCC -ACGGAACAAGAGGGGAATTTCTCG -ACGGAACAAGAGGGGAATTAGACG -ACGGAACAAGAGGGGAATGTAACG -ACGGAACAAGAGGGGAATACTTCG -ACGGAACAAGAGGGGAATTACGCA -ACGGAACAAGAGGGGAATCTTGCA -ACGGAACAAGAGGGGAATCGAACA -ACGGAACAAGAGGGGAATCAGTCA -ACGGAACAAGAGGGGAATGATCCA -ACGGAACAAGAGGGGAATACGACA -ACGGAACAAGAGGGGAATAGCTCA -ACGGAACAAGAGGGGAATTCACGT -ACGGAACAAGAGGGGAATCGTAGT -ACGGAACAAGAGGGGAATGTCAGT -ACGGAACAAGAGGGGAATGAAGGT -ACGGAACAAGAGGGGAATAACCGT -ACGGAACAAGAGGGGAATTTGTGC -ACGGAACAAGAGGGGAATCTAAGC -ACGGAACAAGAGGGGAATACTAGC -ACGGAACAAGAGGGGAATAGATGC -ACGGAACAAGAGGGGAATTGAAGG -ACGGAACAAGAGGGGAATCAATGG -ACGGAACAAGAGGGGAATATGAGG -ACGGAACAAGAGGGGAATAATGGG -ACGGAACAAGAGGGGAATTCCTGA -ACGGAACAAGAGGGGAATTAGCGA -ACGGAACAAGAGGGGAATCACAGA -ACGGAACAAGAGGGGAATGCAAGA -ACGGAACAAGAGGGGAATGGTTGA -ACGGAACAAGAGGGGAATTCCGAT -ACGGAACAAGAGGGGAATTGGCAT -ACGGAACAAGAGGGGAATCGAGAT -ACGGAACAAGAGGGGAATTACCAC -ACGGAACAAGAGGGGAATCAGAAC -ACGGAACAAGAGGGGAATGTCTAC -ACGGAACAAGAGGGGAATACGTAC -ACGGAACAAGAGGGGAATAGTGAC -ACGGAACAAGAGGGGAATCTGTAG -ACGGAACAAGAGGGGAATCCTAAG -ACGGAACAAGAGGGGAATGTTCAG -ACGGAACAAGAGGGGAATGCATAG -ACGGAACAAGAGGGGAATGACAAG -ACGGAACAAGAGGGGAATAAGCAG -ACGGAACAAGAGGGGAATCGTCAA -ACGGAACAAGAGGGGAATGCTGAA -ACGGAACAAGAGGGGAATAGTACG -ACGGAACAAGAGGGGAATATCCGA -ACGGAACAAGAGGGGAATATGGGA -ACGGAACAAGAGGGGAATGTGCAA -ACGGAACAAGAGGGGAATGAGGAA -ACGGAACAAGAGGGGAATCAGGTA -ACGGAACAAGAGGGGAATGACTCT -ACGGAACAAGAGGGGAATAGTCCT -ACGGAACAAGAGGGGAATTAAGCC -ACGGAACAAGAGGGGAATATAGCC -ACGGAACAAGAGGGGAATTAACCG -ACGGAACAAGAGGGGAATATGCCA -ACGGAACAAGAGTGATCCGGAAAC -ACGGAACAAGAGTGATCCAACACC -ACGGAACAAGAGTGATCCATCGAG -ACGGAACAAGAGTGATCCCTCCTT -ACGGAACAAGAGTGATCCCCTGTT -ACGGAACAAGAGTGATCCCGGTTT -ACGGAACAAGAGTGATCCGTGGTT -ACGGAACAAGAGTGATCCGCCTTT -ACGGAACAAGAGTGATCCGGTCTT -ACGGAACAAGAGTGATCCACGCTT -ACGGAACAAGAGTGATCCAGCGTT -ACGGAACAAGAGTGATCCTTCGTC -ACGGAACAAGAGTGATCCTCTCTC -ACGGAACAAGAGTGATCCTGGATC -ACGGAACAAGAGTGATCCCACTTC -ACGGAACAAGAGTGATCCGTACTC -ACGGAACAAGAGTGATCCGATGTC -ACGGAACAAGAGTGATCCACAGTC -ACGGAACAAGAGTGATCCTTGCTG -ACGGAACAAGAGTGATCCTCCATG -ACGGAACAAGAGTGATCCTGTGTG -ACGGAACAAGAGTGATCCCTAGTG -ACGGAACAAGAGTGATCCCATCTG -ACGGAACAAGAGTGATCCGAGTTG -ACGGAACAAGAGTGATCCAGACTG -ACGGAACAAGAGTGATCCTCGGTA -ACGGAACAAGAGTGATCCTGCCTA -ACGGAACAAGAGTGATCCCCACTA -ACGGAACAAGAGTGATCCGGAGTA -ACGGAACAAGAGTGATCCTCGTCT -ACGGAACAAGAGTGATCCTGCACT -ACGGAACAAGAGTGATCCCTGACT -ACGGAACAAGAGTGATCCCAACCT -ACGGAACAAGAGTGATCCGCTACT -ACGGAACAAGAGTGATCCGGATCT -ACGGAACAAGAGTGATCCAAGGCT -ACGGAACAAGAGTGATCCTCAACC -ACGGAACAAGAGTGATCCTGTTCC -ACGGAACAAGAGTGATCCATTCCC -ACGGAACAAGAGTGATCCTTCTCG -ACGGAACAAGAGTGATCCTAGACG -ACGGAACAAGAGTGATCCGTAACG -ACGGAACAAGAGTGATCCACTTCG -ACGGAACAAGAGTGATCCTACGCA -ACGGAACAAGAGTGATCCCTTGCA -ACGGAACAAGAGTGATCCCGAACA -ACGGAACAAGAGTGATCCCAGTCA -ACGGAACAAGAGTGATCCGATCCA -ACGGAACAAGAGTGATCCACGACA -ACGGAACAAGAGTGATCCAGCTCA -ACGGAACAAGAGTGATCCTCACGT -ACGGAACAAGAGTGATCCCGTAGT -ACGGAACAAGAGTGATCCGTCAGT -ACGGAACAAGAGTGATCCGAAGGT -ACGGAACAAGAGTGATCCAACCGT -ACGGAACAAGAGTGATCCTTGTGC -ACGGAACAAGAGTGATCCCTAAGC -ACGGAACAAGAGTGATCCACTAGC -ACGGAACAAGAGTGATCCAGATGC -ACGGAACAAGAGTGATCCTGAAGG -ACGGAACAAGAGTGATCCCAATGG -ACGGAACAAGAGTGATCCATGAGG -ACGGAACAAGAGTGATCCAATGGG -ACGGAACAAGAGTGATCCTCCTGA -ACGGAACAAGAGTGATCCTAGCGA -ACGGAACAAGAGTGATCCCACAGA -ACGGAACAAGAGTGATCCGCAAGA -ACGGAACAAGAGTGATCCGGTTGA -ACGGAACAAGAGTGATCCTCCGAT -ACGGAACAAGAGTGATCCTGGCAT -ACGGAACAAGAGTGATCCCGAGAT -ACGGAACAAGAGTGATCCTACCAC -ACGGAACAAGAGTGATCCCAGAAC -ACGGAACAAGAGTGATCCGTCTAC -ACGGAACAAGAGTGATCCACGTAC -ACGGAACAAGAGTGATCCAGTGAC -ACGGAACAAGAGTGATCCCTGTAG -ACGGAACAAGAGTGATCCCCTAAG -ACGGAACAAGAGTGATCCGTTCAG -ACGGAACAAGAGTGATCCGCATAG -ACGGAACAAGAGTGATCCGACAAG -ACGGAACAAGAGTGATCCAAGCAG -ACGGAACAAGAGTGATCCCGTCAA -ACGGAACAAGAGTGATCCGCTGAA -ACGGAACAAGAGTGATCCAGTACG -ACGGAACAAGAGTGATCCATCCGA -ACGGAACAAGAGTGATCCATGGGA -ACGGAACAAGAGTGATCCGTGCAA -ACGGAACAAGAGTGATCCGAGGAA -ACGGAACAAGAGTGATCCCAGGTA -ACGGAACAAGAGTGATCCGACTCT -ACGGAACAAGAGTGATCCAGTCCT -ACGGAACAAGAGTGATCCTAAGCC -ACGGAACAAGAGTGATCCATAGCC -ACGGAACAAGAGTGATCCTAACCG -ACGGAACAAGAGTGATCCATGCCA -ACGGAACAAGAGCGATAGGGAAAC -ACGGAACAAGAGCGATAGAACACC -ACGGAACAAGAGCGATAGATCGAG -ACGGAACAAGAGCGATAGCTCCTT -ACGGAACAAGAGCGATAGCCTGTT -ACGGAACAAGAGCGATAGCGGTTT -ACGGAACAAGAGCGATAGGTGGTT -ACGGAACAAGAGCGATAGGCCTTT -ACGGAACAAGAGCGATAGGGTCTT -ACGGAACAAGAGCGATAGACGCTT -ACGGAACAAGAGCGATAGAGCGTT -ACGGAACAAGAGCGATAGTTCGTC -ACGGAACAAGAGCGATAGTCTCTC -ACGGAACAAGAGCGATAGTGGATC -ACGGAACAAGAGCGATAGCACTTC -ACGGAACAAGAGCGATAGGTACTC -ACGGAACAAGAGCGATAGGATGTC -ACGGAACAAGAGCGATAGACAGTC -ACGGAACAAGAGCGATAGTTGCTG -ACGGAACAAGAGCGATAGTCCATG -ACGGAACAAGAGCGATAGTGTGTG -ACGGAACAAGAGCGATAGCTAGTG -ACGGAACAAGAGCGATAGCATCTG -ACGGAACAAGAGCGATAGGAGTTG -ACGGAACAAGAGCGATAGAGACTG -ACGGAACAAGAGCGATAGTCGGTA -ACGGAACAAGAGCGATAGTGCCTA -ACGGAACAAGAGCGATAGCCACTA -ACGGAACAAGAGCGATAGGGAGTA -ACGGAACAAGAGCGATAGTCGTCT -ACGGAACAAGAGCGATAGTGCACT -ACGGAACAAGAGCGATAGCTGACT -ACGGAACAAGAGCGATAGCAACCT -ACGGAACAAGAGCGATAGGCTACT -ACGGAACAAGAGCGATAGGGATCT -ACGGAACAAGAGCGATAGAAGGCT -ACGGAACAAGAGCGATAGTCAACC -ACGGAACAAGAGCGATAGTGTTCC -ACGGAACAAGAGCGATAGATTCCC -ACGGAACAAGAGCGATAGTTCTCG -ACGGAACAAGAGCGATAGTAGACG -ACGGAACAAGAGCGATAGGTAACG -ACGGAACAAGAGCGATAGACTTCG -ACGGAACAAGAGCGATAGTACGCA -ACGGAACAAGAGCGATAGCTTGCA -ACGGAACAAGAGCGATAGCGAACA -ACGGAACAAGAGCGATAGCAGTCA -ACGGAACAAGAGCGATAGGATCCA -ACGGAACAAGAGCGATAGACGACA -ACGGAACAAGAGCGATAGAGCTCA -ACGGAACAAGAGCGATAGTCACGT -ACGGAACAAGAGCGATAGCGTAGT -ACGGAACAAGAGCGATAGGTCAGT -ACGGAACAAGAGCGATAGGAAGGT -ACGGAACAAGAGCGATAGAACCGT -ACGGAACAAGAGCGATAGTTGTGC -ACGGAACAAGAGCGATAGCTAAGC -ACGGAACAAGAGCGATAGACTAGC -ACGGAACAAGAGCGATAGAGATGC -ACGGAACAAGAGCGATAGTGAAGG -ACGGAACAAGAGCGATAGCAATGG -ACGGAACAAGAGCGATAGATGAGG -ACGGAACAAGAGCGATAGAATGGG -ACGGAACAAGAGCGATAGTCCTGA -ACGGAACAAGAGCGATAGTAGCGA -ACGGAACAAGAGCGATAGCACAGA -ACGGAACAAGAGCGATAGGCAAGA -ACGGAACAAGAGCGATAGGGTTGA -ACGGAACAAGAGCGATAGTCCGAT -ACGGAACAAGAGCGATAGTGGCAT -ACGGAACAAGAGCGATAGCGAGAT -ACGGAACAAGAGCGATAGTACCAC -ACGGAACAAGAGCGATAGCAGAAC -ACGGAACAAGAGCGATAGGTCTAC -ACGGAACAAGAGCGATAGACGTAC -ACGGAACAAGAGCGATAGAGTGAC -ACGGAACAAGAGCGATAGCTGTAG -ACGGAACAAGAGCGATAGCCTAAG -ACGGAACAAGAGCGATAGGTTCAG -ACGGAACAAGAGCGATAGGCATAG -ACGGAACAAGAGCGATAGGACAAG -ACGGAACAAGAGCGATAGAAGCAG -ACGGAACAAGAGCGATAGCGTCAA -ACGGAACAAGAGCGATAGGCTGAA -ACGGAACAAGAGCGATAGAGTACG -ACGGAACAAGAGCGATAGATCCGA -ACGGAACAAGAGCGATAGATGGGA -ACGGAACAAGAGCGATAGGTGCAA -ACGGAACAAGAGCGATAGGAGGAA -ACGGAACAAGAGCGATAGCAGGTA -ACGGAACAAGAGCGATAGGACTCT -ACGGAACAAGAGCGATAGAGTCCT -ACGGAACAAGAGCGATAGTAAGCC -ACGGAACAAGAGCGATAGATAGCC -ACGGAACAAGAGCGATAGTAACCG -ACGGAACAAGAGCGATAGATGCCA -ACGGAACAAGAGAGACACGGAAAC -ACGGAACAAGAGAGACACAACACC -ACGGAACAAGAGAGACACATCGAG -ACGGAACAAGAGAGACACCTCCTT -ACGGAACAAGAGAGACACCCTGTT -ACGGAACAAGAGAGACACCGGTTT -ACGGAACAAGAGAGACACGTGGTT -ACGGAACAAGAGAGACACGCCTTT -ACGGAACAAGAGAGACACGGTCTT -ACGGAACAAGAGAGACACACGCTT -ACGGAACAAGAGAGACACAGCGTT -ACGGAACAAGAGAGACACTTCGTC -ACGGAACAAGAGAGACACTCTCTC -ACGGAACAAGAGAGACACTGGATC -ACGGAACAAGAGAGACACCACTTC -ACGGAACAAGAGAGACACGTACTC -ACGGAACAAGAGAGACACGATGTC -ACGGAACAAGAGAGACACACAGTC -ACGGAACAAGAGAGACACTTGCTG -ACGGAACAAGAGAGACACTCCATG -ACGGAACAAGAGAGACACTGTGTG -ACGGAACAAGAGAGACACCTAGTG -ACGGAACAAGAGAGACACCATCTG -ACGGAACAAGAGAGACACGAGTTG -ACGGAACAAGAGAGACACAGACTG -ACGGAACAAGAGAGACACTCGGTA -ACGGAACAAGAGAGACACTGCCTA -ACGGAACAAGAGAGACACCCACTA -ACGGAACAAGAGAGACACGGAGTA -ACGGAACAAGAGAGACACTCGTCT -ACGGAACAAGAGAGACACTGCACT -ACGGAACAAGAGAGACACCTGACT -ACGGAACAAGAGAGACACCAACCT -ACGGAACAAGAGAGACACGCTACT -ACGGAACAAGAGAGACACGGATCT -ACGGAACAAGAGAGACACAAGGCT -ACGGAACAAGAGAGACACTCAACC -ACGGAACAAGAGAGACACTGTTCC -ACGGAACAAGAGAGACACATTCCC -ACGGAACAAGAGAGACACTTCTCG -ACGGAACAAGAGAGACACTAGACG -ACGGAACAAGAGAGACACGTAACG -ACGGAACAAGAGAGACACACTTCG -ACGGAACAAGAGAGACACTACGCA -ACGGAACAAGAGAGACACCTTGCA -ACGGAACAAGAGAGACACCGAACA -ACGGAACAAGAGAGACACCAGTCA -ACGGAACAAGAGAGACACGATCCA -ACGGAACAAGAGAGACACACGACA -ACGGAACAAGAGAGACACAGCTCA -ACGGAACAAGAGAGACACTCACGT -ACGGAACAAGAGAGACACCGTAGT -ACGGAACAAGAGAGACACGTCAGT -ACGGAACAAGAGAGACACGAAGGT -ACGGAACAAGAGAGACACAACCGT -ACGGAACAAGAGAGACACTTGTGC -ACGGAACAAGAGAGACACCTAAGC -ACGGAACAAGAGAGACACACTAGC -ACGGAACAAGAGAGACACAGATGC -ACGGAACAAGAGAGACACTGAAGG -ACGGAACAAGAGAGACACCAATGG -ACGGAACAAGAGAGACACATGAGG -ACGGAACAAGAGAGACACAATGGG -ACGGAACAAGAGAGACACTCCTGA -ACGGAACAAGAGAGACACTAGCGA -ACGGAACAAGAGAGACACCACAGA -ACGGAACAAGAGAGACACGCAAGA -ACGGAACAAGAGAGACACGGTTGA -ACGGAACAAGAGAGACACTCCGAT -ACGGAACAAGAGAGACACTGGCAT -ACGGAACAAGAGAGACACCGAGAT -ACGGAACAAGAGAGACACTACCAC -ACGGAACAAGAGAGACACCAGAAC -ACGGAACAAGAGAGACACGTCTAC -ACGGAACAAGAGAGACACACGTAC -ACGGAACAAGAGAGACACAGTGAC -ACGGAACAAGAGAGACACCTGTAG -ACGGAACAAGAGAGACACCCTAAG -ACGGAACAAGAGAGACACGTTCAG -ACGGAACAAGAGAGACACGCATAG -ACGGAACAAGAGAGACACGACAAG -ACGGAACAAGAGAGACACAAGCAG -ACGGAACAAGAGAGACACCGTCAA -ACGGAACAAGAGAGACACGCTGAA -ACGGAACAAGAGAGACACAGTACG -ACGGAACAAGAGAGACACATCCGA -ACGGAACAAGAGAGACACATGGGA -ACGGAACAAGAGAGACACGTGCAA -ACGGAACAAGAGAGACACGAGGAA -ACGGAACAAGAGAGACACCAGGTA -ACGGAACAAGAGAGACACGACTCT -ACGGAACAAGAGAGACACAGTCCT -ACGGAACAAGAGAGACACTAAGCC -ACGGAACAAGAGAGACACATAGCC -ACGGAACAAGAGAGACACTAACCG -ACGGAACAAGAGAGACACATGCCA -ACGGAACAAGAGAGAGCAGGAAAC -ACGGAACAAGAGAGAGCAAACACC -ACGGAACAAGAGAGAGCAATCGAG -ACGGAACAAGAGAGAGCACTCCTT -ACGGAACAAGAGAGAGCACCTGTT -ACGGAACAAGAGAGAGCACGGTTT -ACGGAACAAGAGAGAGCAGTGGTT -ACGGAACAAGAGAGAGCAGCCTTT -ACGGAACAAGAGAGAGCAGGTCTT -ACGGAACAAGAGAGAGCAACGCTT -ACGGAACAAGAGAGAGCAAGCGTT -ACGGAACAAGAGAGAGCATTCGTC -ACGGAACAAGAGAGAGCATCTCTC -ACGGAACAAGAGAGAGCATGGATC -ACGGAACAAGAGAGAGCACACTTC -ACGGAACAAGAGAGAGCAGTACTC -ACGGAACAAGAGAGAGCAGATGTC -ACGGAACAAGAGAGAGCAACAGTC -ACGGAACAAGAGAGAGCATTGCTG -ACGGAACAAGAGAGAGCATCCATG -ACGGAACAAGAGAGAGCATGTGTG -ACGGAACAAGAGAGAGCACTAGTG -ACGGAACAAGAGAGAGCACATCTG -ACGGAACAAGAGAGAGCAGAGTTG -ACGGAACAAGAGAGAGCAAGACTG -ACGGAACAAGAGAGAGCATCGGTA -ACGGAACAAGAGAGAGCATGCCTA -ACGGAACAAGAGAGAGCACCACTA -ACGGAACAAGAGAGAGCAGGAGTA -ACGGAACAAGAGAGAGCATCGTCT -ACGGAACAAGAGAGAGCATGCACT -ACGGAACAAGAGAGAGCACTGACT -ACGGAACAAGAGAGAGCACAACCT -ACGGAACAAGAGAGAGCAGCTACT -ACGGAACAAGAGAGAGCAGGATCT -ACGGAACAAGAGAGAGCAAAGGCT -ACGGAACAAGAGAGAGCATCAACC -ACGGAACAAGAGAGAGCATGTTCC -ACGGAACAAGAGAGAGCAATTCCC -ACGGAACAAGAGAGAGCATTCTCG -ACGGAACAAGAGAGAGCATAGACG -ACGGAACAAGAGAGAGCAGTAACG -ACGGAACAAGAGAGAGCAACTTCG -ACGGAACAAGAGAGAGCATACGCA -ACGGAACAAGAGAGAGCACTTGCA -ACGGAACAAGAGAGAGCACGAACA -ACGGAACAAGAGAGAGCACAGTCA -ACGGAACAAGAGAGAGCAGATCCA -ACGGAACAAGAGAGAGCAACGACA -ACGGAACAAGAGAGAGCAAGCTCA -ACGGAACAAGAGAGAGCATCACGT -ACGGAACAAGAGAGAGCACGTAGT -ACGGAACAAGAGAGAGCAGTCAGT -ACGGAACAAGAGAGAGCAGAAGGT -ACGGAACAAGAGAGAGCAAACCGT -ACGGAACAAGAGAGAGCATTGTGC -ACGGAACAAGAGAGAGCACTAAGC -ACGGAACAAGAGAGAGCAACTAGC -ACGGAACAAGAGAGAGCAAGATGC -ACGGAACAAGAGAGAGCATGAAGG -ACGGAACAAGAGAGAGCACAATGG -ACGGAACAAGAGAGAGCAATGAGG -ACGGAACAAGAGAGAGCAAATGGG -ACGGAACAAGAGAGAGCATCCTGA -ACGGAACAAGAGAGAGCATAGCGA -ACGGAACAAGAGAGAGCACACAGA -ACGGAACAAGAGAGAGCAGCAAGA -ACGGAACAAGAGAGAGCAGGTTGA -ACGGAACAAGAGAGAGCATCCGAT -ACGGAACAAGAGAGAGCATGGCAT -ACGGAACAAGAGAGAGCACGAGAT -ACGGAACAAGAGAGAGCATACCAC -ACGGAACAAGAGAGAGCACAGAAC -ACGGAACAAGAGAGAGCAGTCTAC -ACGGAACAAGAGAGAGCAACGTAC -ACGGAACAAGAGAGAGCAAGTGAC -ACGGAACAAGAGAGAGCACTGTAG -ACGGAACAAGAGAGAGCACCTAAG -ACGGAACAAGAGAGAGCAGTTCAG -ACGGAACAAGAGAGAGCAGCATAG -ACGGAACAAGAGAGAGCAGACAAG -ACGGAACAAGAGAGAGCAAAGCAG -ACGGAACAAGAGAGAGCACGTCAA -ACGGAACAAGAGAGAGCAGCTGAA -ACGGAACAAGAGAGAGCAAGTACG -ACGGAACAAGAGAGAGCAATCCGA -ACGGAACAAGAGAGAGCAATGGGA -ACGGAACAAGAGAGAGCAGTGCAA -ACGGAACAAGAGAGAGCAGAGGAA -ACGGAACAAGAGAGAGCACAGGTA -ACGGAACAAGAGAGAGCAGACTCT -ACGGAACAAGAGAGAGCAAGTCCT -ACGGAACAAGAGAGAGCATAAGCC -ACGGAACAAGAGAGAGCAATAGCC -ACGGAACAAGAGAGAGCATAACCG -ACGGAACAAGAGAGAGCAATGCCA -ACGGAACAAGAGTGAGGTGGAAAC -ACGGAACAAGAGTGAGGTAACACC -ACGGAACAAGAGTGAGGTATCGAG -ACGGAACAAGAGTGAGGTCTCCTT -ACGGAACAAGAGTGAGGTCCTGTT -ACGGAACAAGAGTGAGGTCGGTTT -ACGGAACAAGAGTGAGGTGTGGTT -ACGGAACAAGAGTGAGGTGCCTTT -ACGGAACAAGAGTGAGGTGGTCTT -ACGGAACAAGAGTGAGGTACGCTT -ACGGAACAAGAGTGAGGTAGCGTT -ACGGAACAAGAGTGAGGTTTCGTC -ACGGAACAAGAGTGAGGTTCTCTC -ACGGAACAAGAGTGAGGTTGGATC -ACGGAACAAGAGTGAGGTCACTTC -ACGGAACAAGAGTGAGGTGTACTC -ACGGAACAAGAGTGAGGTGATGTC -ACGGAACAAGAGTGAGGTACAGTC -ACGGAACAAGAGTGAGGTTTGCTG -ACGGAACAAGAGTGAGGTTCCATG -ACGGAACAAGAGTGAGGTTGTGTG -ACGGAACAAGAGTGAGGTCTAGTG -ACGGAACAAGAGTGAGGTCATCTG -ACGGAACAAGAGTGAGGTGAGTTG -ACGGAACAAGAGTGAGGTAGACTG -ACGGAACAAGAGTGAGGTTCGGTA -ACGGAACAAGAGTGAGGTTGCCTA -ACGGAACAAGAGTGAGGTCCACTA -ACGGAACAAGAGTGAGGTGGAGTA -ACGGAACAAGAGTGAGGTTCGTCT -ACGGAACAAGAGTGAGGTTGCACT -ACGGAACAAGAGTGAGGTCTGACT -ACGGAACAAGAGTGAGGTCAACCT -ACGGAACAAGAGTGAGGTGCTACT -ACGGAACAAGAGTGAGGTGGATCT -ACGGAACAAGAGTGAGGTAAGGCT -ACGGAACAAGAGTGAGGTTCAACC -ACGGAACAAGAGTGAGGTTGTTCC -ACGGAACAAGAGTGAGGTATTCCC -ACGGAACAAGAGTGAGGTTTCTCG -ACGGAACAAGAGTGAGGTTAGACG -ACGGAACAAGAGTGAGGTGTAACG -ACGGAACAAGAGTGAGGTACTTCG -ACGGAACAAGAGTGAGGTTACGCA -ACGGAACAAGAGTGAGGTCTTGCA -ACGGAACAAGAGTGAGGTCGAACA -ACGGAACAAGAGTGAGGTCAGTCA -ACGGAACAAGAGTGAGGTGATCCA -ACGGAACAAGAGTGAGGTACGACA -ACGGAACAAGAGTGAGGTAGCTCA -ACGGAACAAGAGTGAGGTTCACGT -ACGGAACAAGAGTGAGGTCGTAGT -ACGGAACAAGAGTGAGGTGTCAGT -ACGGAACAAGAGTGAGGTGAAGGT -ACGGAACAAGAGTGAGGTAACCGT -ACGGAACAAGAGTGAGGTTTGTGC -ACGGAACAAGAGTGAGGTCTAAGC -ACGGAACAAGAGTGAGGTACTAGC -ACGGAACAAGAGTGAGGTAGATGC -ACGGAACAAGAGTGAGGTTGAAGG -ACGGAACAAGAGTGAGGTCAATGG -ACGGAACAAGAGTGAGGTATGAGG -ACGGAACAAGAGTGAGGTAATGGG -ACGGAACAAGAGTGAGGTTCCTGA -ACGGAACAAGAGTGAGGTTAGCGA -ACGGAACAAGAGTGAGGTCACAGA -ACGGAACAAGAGTGAGGTGCAAGA -ACGGAACAAGAGTGAGGTGGTTGA -ACGGAACAAGAGTGAGGTTCCGAT -ACGGAACAAGAGTGAGGTTGGCAT -ACGGAACAAGAGTGAGGTCGAGAT -ACGGAACAAGAGTGAGGTTACCAC -ACGGAACAAGAGTGAGGTCAGAAC -ACGGAACAAGAGTGAGGTGTCTAC -ACGGAACAAGAGTGAGGTACGTAC -ACGGAACAAGAGTGAGGTAGTGAC -ACGGAACAAGAGTGAGGTCTGTAG -ACGGAACAAGAGTGAGGTCCTAAG -ACGGAACAAGAGTGAGGTGTTCAG -ACGGAACAAGAGTGAGGTGCATAG -ACGGAACAAGAGTGAGGTGACAAG -ACGGAACAAGAGTGAGGTAAGCAG -ACGGAACAAGAGTGAGGTCGTCAA -ACGGAACAAGAGTGAGGTGCTGAA -ACGGAACAAGAGTGAGGTAGTACG -ACGGAACAAGAGTGAGGTATCCGA -ACGGAACAAGAGTGAGGTATGGGA -ACGGAACAAGAGTGAGGTGTGCAA -ACGGAACAAGAGTGAGGTGAGGAA -ACGGAACAAGAGTGAGGTCAGGTA -ACGGAACAAGAGTGAGGTGACTCT -ACGGAACAAGAGTGAGGTAGTCCT -ACGGAACAAGAGTGAGGTTAAGCC -ACGGAACAAGAGTGAGGTATAGCC -ACGGAACAAGAGTGAGGTTAACCG -ACGGAACAAGAGTGAGGTATGCCA -ACGGAACAAGAGGATTCCGGAAAC -ACGGAACAAGAGGATTCCAACACC -ACGGAACAAGAGGATTCCATCGAG -ACGGAACAAGAGGATTCCCTCCTT -ACGGAACAAGAGGATTCCCCTGTT -ACGGAACAAGAGGATTCCCGGTTT -ACGGAACAAGAGGATTCCGTGGTT -ACGGAACAAGAGGATTCCGCCTTT -ACGGAACAAGAGGATTCCGGTCTT -ACGGAACAAGAGGATTCCACGCTT -ACGGAACAAGAGGATTCCAGCGTT -ACGGAACAAGAGGATTCCTTCGTC -ACGGAACAAGAGGATTCCTCTCTC -ACGGAACAAGAGGATTCCTGGATC -ACGGAACAAGAGGATTCCCACTTC -ACGGAACAAGAGGATTCCGTACTC -ACGGAACAAGAGGATTCCGATGTC -ACGGAACAAGAGGATTCCACAGTC -ACGGAACAAGAGGATTCCTTGCTG -ACGGAACAAGAGGATTCCTCCATG -ACGGAACAAGAGGATTCCTGTGTG -ACGGAACAAGAGGATTCCCTAGTG -ACGGAACAAGAGGATTCCCATCTG -ACGGAACAAGAGGATTCCGAGTTG -ACGGAACAAGAGGATTCCAGACTG -ACGGAACAAGAGGATTCCTCGGTA -ACGGAACAAGAGGATTCCTGCCTA -ACGGAACAAGAGGATTCCCCACTA -ACGGAACAAGAGGATTCCGGAGTA -ACGGAACAAGAGGATTCCTCGTCT -ACGGAACAAGAGGATTCCTGCACT -ACGGAACAAGAGGATTCCCTGACT -ACGGAACAAGAGGATTCCCAACCT -ACGGAACAAGAGGATTCCGCTACT -ACGGAACAAGAGGATTCCGGATCT -ACGGAACAAGAGGATTCCAAGGCT -ACGGAACAAGAGGATTCCTCAACC -ACGGAACAAGAGGATTCCTGTTCC -ACGGAACAAGAGGATTCCATTCCC -ACGGAACAAGAGGATTCCTTCTCG -ACGGAACAAGAGGATTCCTAGACG -ACGGAACAAGAGGATTCCGTAACG -ACGGAACAAGAGGATTCCACTTCG -ACGGAACAAGAGGATTCCTACGCA -ACGGAACAAGAGGATTCCCTTGCA -ACGGAACAAGAGGATTCCCGAACA -ACGGAACAAGAGGATTCCCAGTCA -ACGGAACAAGAGGATTCCGATCCA -ACGGAACAAGAGGATTCCACGACA -ACGGAACAAGAGGATTCCAGCTCA -ACGGAACAAGAGGATTCCTCACGT -ACGGAACAAGAGGATTCCCGTAGT -ACGGAACAAGAGGATTCCGTCAGT -ACGGAACAAGAGGATTCCGAAGGT -ACGGAACAAGAGGATTCCAACCGT -ACGGAACAAGAGGATTCCTTGTGC -ACGGAACAAGAGGATTCCCTAAGC -ACGGAACAAGAGGATTCCACTAGC -ACGGAACAAGAGGATTCCAGATGC -ACGGAACAAGAGGATTCCTGAAGG -ACGGAACAAGAGGATTCCCAATGG -ACGGAACAAGAGGATTCCATGAGG -ACGGAACAAGAGGATTCCAATGGG -ACGGAACAAGAGGATTCCTCCTGA -ACGGAACAAGAGGATTCCTAGCGA -ACGGAACAAGAGGATTCCCACAGA -ACGGAACAAGAGGATTCCGCAAGA -ACGGAACAAGAGGATTCCGGTTGA -ACGGAACAAGAGGATTCCTCCGAT -ACGGAACAAGAGGATTCCTGGCAT -ACGGAACAAGAGGATTCCCGAGAT -ACGGAACAAGAGGATTCCTACCAC -ACGGAACAAGAGGATTCCCAGAAC -ACGGAACAAGAGGATTCCGTCTAC -ACGGAACAAGAGGATTCCACGTAC -ACGGAACAAGAGGATTCCAGTGAC -ACGGAACAAGAGGATTCCCTGTAG -ACGGAACAAGAGGATTCCCCTAAG -ACGGAACAAGAGGATTCCGTTCAG -ACGGAACAAGAGGATTCCGCATAG -ACGGAACAAGAGGATTCCGACAAG -ACGGAACAAGAGGATTCCAAGCAG -ACGGAACAAGAGGATTCCCGTCAA -ACGGAACAAGAGGATTCCGCTGAA -ACGGAACAAGAGGATTCCAGTACG -ACGGAACAAGAGGATTCCATCCGA -ACGGAACAAGAGGATTCCATGGGA -ACGGAACAAGAGGATTCCGTGCAA -ACGGAACAAGAGGATTCCGAGGAA -ACGGAACAAGAGGATTCCCAGGTA -ACGGAACAAGAGGATTCCGACTCT -ACGGAACAAGAGGATTCCAGTCCT -ACGGAACAAGAGGATTCCTAAGCC -ACGGAACAAGAGGATTCCATAGCC -ACGGAACAAGAGGATTCCTAACCG -ACGGAACAAGAGGATTCCATGCCA -ACGGAACAAGAGCATTGGGGAAAC -ACGGAACAAGAGCATTGGAACACC -ACGGAACAAGAGCATTGGATCGAG -ACGGAACAAGAGCATTGGCTCCTT -ACGGAACAAGAGCATTGGCCTGTT -ACGGAACAAGAGCATTGGCGGTTT -ACGGAACAAGAGCATTGGGTGGTT -ACGGAACAAGAGCATTGGGCCTTT -ACGGAACAAGAGCATTGGGGTCTT -ACGGAACAAGAGCATTGGACGCTT -ACGGAACAAGAGCATTGGAGCGTT -ACGGAACAAGAGCATTGGTTCGTC -ACGGAACAAGAGCATTGGTCTCTC -ACGGAACAAGAGCATTGGTGGATC -ACGGAACAAGAGCATTGGCACTTC -ACGGAACAAGAGCATTGGGTACTC -ACGGAACAAGAGCATTGGGATGTC -ACGGAACAAGAGCATTGGACAGTC -ACGGAACAAGAGCATTGGTTGCTG -ACGGAACAAGAGCATTGGTCCATG -ACGGAACAAGAGCATTGGTGTGTG -ACGGAACAAGAGCATTGGCTAGTG -ACGGAACAAGAGCATTGGCATCTG -ACGGAACAAGAGCATTGGGAGTTG -ACGGAACAAGAGCATTGGAGACTG -ACGGAACAAGAGCATTGGTCGGTA -ACGGAACAAGAGCATTGGTGCCTA -ACGGAACAAGAGCATTGGCCACTA -ACGGAACAAGAGCATTGGGGAGTA -ACGGAACAAGAGCATTGGTCGTCT -ACGGAACAAGAGCATTGGTGCACT -ACGGAACAAGAGCATTGGCTGACT -ACGGAACAAGAGCATTGGCAACCT -ACGGAACAAGAGCATTGGGCTACT -ACGGAACAAGAGCATTGGGGATCT -ACGGAACAAGAGCATTGGAAGGCT -ACGGAACAAGAGCATTGGTCAACC -ACGGAACAAGAGCATTGGTGTTCC -ACGGAACAAGAGCATTGGATTCCC -ACGGAACAAGAGCATTGGTTCTCG -ACGGAACAAGAGCATTGGTAGACG -ACGGAACAAGAGCATTGGGTAACG -ACGGAACAAGAGCATTGGACTTCG -ACGGAACAAGAGCATTGGTACGCA -ACGGAACAAGAGCATTGGCTTGCA -ACGGAACAAGAGCATTGGCGAACA -ACGGAACAAGAGCATTGGCAGTCA -ACGGAACAAGAGCATTGGGATCCA -ACGGAACAAGAGCATTGGACGACA -ACGGAACAAGAGCATTGGAGCTCA -ACGGAACAAGAGCATTGGTCACGT -ACGGAACAAGAGCATTGGCGTAGT -ACGGAACAAGAGCATTGGGTCAGT -ACGGAACAAGAGCATTGGGAAGGT -ACGGAACAAGAGCATTGGAACCGT -ACGGAACAAGAGCATTGGTTGTGC -ACGGAACAAGAGCATTGGCTAAGC -ACGGAACAAGAGCATTGGACTAGC -ACGGAACAAGAGCATTGGAGATGC -ACGGAACAAGAGCATTGGTGAAGG -ACGGAACAAGAGCATTGGCAATGG -ACGGAACAAGAGCATTGGATGAGG -ACGGAACAAGAGCATTGGAATGGG -ACGGAACAAGAGCATTGGTCCTGA -ACGGAACAAGAGCATTGGTAGCGA -ACGGAACAAGAGCATTGGCACAGA -ACGGAACAAGAGCATTGGGCAAGA -ACGGAACAAGAGCATTGGGGTTGA -ACGGAACAAGAGCATTGGTCCGAT -ACGGAACAAGAGCATTGGTGGCAT -ACGGAACAAGAGCATTGGCGAGAT -ACGGAACAAGAGCATTGGTACCAC -ACGGAACAAGAGCATTGGCAGAAC -ACGGAACAAGAGCATTGGGTCTAC -ACGGAACAAGAGCATTGGACGTAC -ACGGAACAAGAGCATTGGAGTGAC -ACGGAACAAGAGCATTGGCTGTAG -ACGGAACAAGAGCATTGGCCTAAG -ACGGAACAAGAGCATTGGGTTCAG -ACGGAACAAGAGCATTGGGCATAG -ACGGAACAAGAGCATTGGGACAAG -ACGGAACAAGAGCATTGGAAGCAG -ACGGAACAAGAGCATTGGCGTCAA -ACGGAACAAGAGCATTGGGCTGAA -ACGGAACAAGAGCATTGGAGTACG -ACGGAACAAGAGCATTGGATCCGA -ACGGAACAAGAGCATTGGATGGGA -ACGGAACAAGAGCATTGGGTGCAA -ACGGAACAAGAGCATTGGGAGGAA -ACGGAACAAGAGCATTGGCAGGTA -ACGGAACAAGAGCATTGGGACTCT -ACGGAACAAGAGCATTGGAGTCCT -ACGGAACAAGAGCATTGGTAAGCC -ACGGAACAAGAGCATTGGATAGCC -ACGGAACAAGAGCATTGGTAACCG -ACGGAACAAGAGCATTGGATGCCA -ACGGAACAAGAGGATCGAGGAAAC -ACGGAACAAGAGGATCGAAACACC -ACGGAACAAGAGGATCGAATCGAG -ACGGAACAAGAGGATCGACTCCTT -ACGGAACAAGAGGATCGACCTGTT -ACGGAACAAGAGGATCGACGGTTT -ACGGAACAAGAGGATCGAGTGGTT -ACGGAACAAGAGGATCGAGCCTTT -ACGGAACAAGAGGATCGAGGTCTT -ACGGAACAAGAGGATCGAACGCTT -ACGGAACAAGAGGATCGAAGCGTT -ACGGAACAAGAGGATCGATTCGTC -ACGGAACAAGAGGATCGATCTCTC -ACGGAACAAGAGGATCGATGGATC -ACGGAACAAGAGGATCGACACTTC -ACGGAACAAGAGGATCGAGTACTC -ACGGAACAAGAGGATCGAGATGTC -ACGGAACAAGAGGATCGAACAGTC -ACGGAACAAGAGGATCGATTGCTG -ACGGAACAAGAGGATCGATCCATG -ACGGAACAAGAGGATCGATGTGTG -ACGGAACAAGAGGATCGACTAGTG -ACGGAACAAGAGGATCGACATCTG -ACGGAACAAGAGGATCGAGAGTTG -ACGGAACAAGAGGATCGAAGACTG -ACGGAACAAGAGGATCGATCGGTA -ACGGAACAAGAGGATCGATGCCTA -ACGGAACAAGAGGATCGACCACTA -ACGGAACAAGAGGATCGAGGAGTA -ACGGAACAAGAGGATCGATCGTCT -ACGGAACAAGAGGATCGATGCACT -ACGGAACAAGAGGATCGACTGACT -ACGGAACAAGAGGATCGACAACCT -ACGGAACAAGAGGATCGAGCTACT -ACGGAACAAGAGGATCGAGGATCT -ACGGAACAAGAGGATCGAAAGGCT -ACGGAACAAGAGGATCGATCAACC -ACGGAACAAGAGGATCGATGTTCC -ACGGAACAAGAGGATCGAATTCCC -ACGGAACAAGAGGATCGATTCTCG -ACGGAACAAGAGGATCGATAGACG -ACGGAACAAGAGGATCGAGTAACG -ACGGAACAAGAGGATCGAACTTCG -ACGGAACAAGAGGATCGATACGCA -ACGGAACAAGAGGATCGACTTGCA -ACGGAACAAGAGGATCGACGAACA -ACGGAACAAGAGGATCGACAGTCA -ACGGAACAAGAGGATCGAGATCCA -ACGGAACAAGAGGATCGAACGACA -ACGGAACAAGAGGATCGAAGCTCA -ACGGAACAAGAGGATCGATCACGT -ACGGAACAAGAGGATCGACGTAGT -ACGGAACAAGAGGATCGAGTCAGT -ACGGAACAAGAGGATCGAGAAGGT -ACGGAACAAGAGGATCGAAACCGT -ACGGAACAAGAGGATCGATTGTGC -ACGGAACAAGAGGATCGACTAAGC -ACGGAACAAGAGGATCGAACTAGC -ACGGAACAAGAGGATCGAAGATGC -ACGGAACAAGAGGATCGATGAAGG -ACGGAACAAGAGGATCGACAATGG -ACGGAACAAGAGGATCGAATGAGG -ACGGAACAAGAGGATCGAAATGGG -ACGGAACAAGAGGATCGATCCTGA -ACGGAACAAGAGGATCGATAGCGA -ACGGAACAAGAGGATCGACACAGA -ACGGAACAAGAGGATCGAGCAAGA -ACGGAACAAGAGGATCGAGGTTGA -ACGGAACAAGAGGATCGATCCGAT -ACGGAACAAGAGGATCGATGGCAT -ACGGAACAAGAGGATCGACGAGAT -ACGGAACAAGAGGATCGATACCAC -ACGGAACAAGAGGATCGACAGAAC -ACGGAACAAGAGGATCGAGTCTAC -ACGGAACAAGAGGATCGAACGTAC -ACGGAACAAGAGGATCGAAGTGAC -ACGGAACAAGAGGATCGACTGTAG -ACGGAACAAGAGGATCGACCTAAG -ACGGAACAAGAGGATCGAGTTCAG -ACGGAACAAGAGGATCGAGCATAG -ACGGAACAAGAGGATCGAGACAAG -ACGGAACAAGAGGATCGAAAGCAG -ACGGAACAAGAGGATCGACGTCAA -ACGGAACAAGAGGATCGAGCTGAA -ACGGAACAAGAGGATCGAAGTACG -ACGGAACAAGAGGATCGAATCCGA -ACGGAACAAGAGGATCGAATGGGA -ACGGAACAAGAGGATCGAGTGCAA -ACGGAACAAGAGGATCGAGAGGAA -ACGGAACAAGAGGATCGACAGGTA -ACGGAACAAGAGGATCGAGACTCT -ACGGAACAAGAGGATCGAAGTCCT -ACGGAACAAGAGGATCGATAAGCC -ACGGAACAAGAGGATCGAATAGCC -ACGGAACAAGAGGATCGATAACCG -ACGGAACAAGAGGATCGAATGCCA -ACGGAACAAGAGCACTACGGAAAC -ACGGAACAAGAGCACTACAACACC -ACGGAACAAGAGCACTACATCGAG -ACGGAACAAGAGCACTACCTCCTT -ACGGAACAAGAGCACTACCCTGTT -ACGGAACAAGAGCACTACCGGTTT -ACGGAACAAGAGCACTACGTGGTT -ACGGAACAAGAGCACTACGCCTTT -ACGGAACAAGAGCACTACGGTCTT -ACGGAACAAGAGCACTACACGCTT -ACGGAACAAGAGCACTACAGCGTT -ACGGAACAAGAGCACTACTTCGTC -ACGGAACAAGAGCACTACTCTCTC -ACGGAACAAGAGCACTACTGGATC -ACGGAACAAGAGCACTACCACTTC -ACGGAACAAGAGCACTACGTACTC -ACGGAACAAGAGCACTACGATGTC -ACGGAACAAGAGCACTACACAGTC -ACGGAACAAGAGCACTACTTGCTG -ACGGAACAAGAGCACTACTCCATG -ACGGAACAAGAGCACTACTGTGTG -ACGGAACAAGAGCACTACCTAGTG -ACGGAACAAGAGCACTACCATCTG -ACGGAACAAGAGCACTACGAGTTG -ACGGAACAAGAGCACTACAGACTG -ACGGAACAAGAGCACTACTCGGTA -ACGGAACAAGAGCACTACTGCCTA -ACGGAACAAGAGCACTACCCACTA -ACGGAACAAGAGCACTACGGAGTA -ACGGAACAAGAGCACTACTCGTCT -ACGGAACAAGAGCACTACTGCACT -ACGGAACAAGAGCACTACCTGACT -ACGGAACAAGAGCACTACCAACCT -ACGGAACAAGAGCACTACGCTACT -ACGGAACAAGAGCACTACGGATCT -ACGGAACAAGAGCACTACAAGGCT -ACGGAACAAGAGCACTACTCAACC -ACGGAACAAGAGCACTACTGTTCC -ACGGAACAAGAGCACTACATTCCC -ACGGAACAAGAGCACTACTTCTCG -ACGGAACAAGAGCACTACTAGACG -ACGGAACAAGAGCACTACGTAACG -ACGGAACAAGAGCACTACACTTCG -ACGGAACAAGAGCACTACTACGCA -ACGGAACAAGAGCACTACCTTGCA -ACGGAACAAGAGCACTACCGAACA -ACGGAACAAGAGCACTACCAGTCA -ACGGAACAAGAGCACTACGATCCA -ACGGAACAAGAGCACTACACGACA -ACGGAACAAGAGCACTACAGCTCA -ACGGAACAAGAGCACTACTCACGT -ACGGAACAAGAGCACTACCGTAGT -ACGGAACAAGAGCACTACGTCAGT -ACGGAACAAGAGCACTACGAAGGT -ACGGAACAAGAGCACTACAACCGT -ACGGAACAAGAGCACTACTTGTGC -ACGGAACAAGAGCACTACCTAAGC -ACGGAACAAGAGCACTACACTAGC -ACGGAACAAGAGCACTACAGATGC -ACGGAACAAGAGCACTACTGAAGG -ACGGAACAAGAGCACTACCAATGG -ACGGAACAAGAGCACTACATGAGG -ACGGAACAAGAGCACTACAATGGG -ACGGAACAAGAGCACTACTCCTGA -ACGGAACAAGAGCACTACTAGCGA -ACGGAACAAGAGCACTACCACAGA -ACGGAACAAGAGCACTACGCAAGA -ACGGAACAAGAGCACTACGGTTGA -ACGGAACAAGAGCACTACTCCGAT -ACGGAACAAGAGCACTACTGGCAT -ACGGAACAAGAGCACTACCGAGAT -ACGGAACAAGAGCACTACTACCAC -ACGGAACAAGAGCACTACCAGAAC -ACGGAACAAGAGCACTACGTCTAC -ACGGAACAAGAGCACTACACGTAC -ACGGAACAAGAGCACTACAGTGAC -ACGGAACAAGAGCACTACCTGTAG -ACGGAACAAGAGCACTACCCTAAG -ACGGAACAAGAGCACTACGTTCAG -ACGGAACAAGAGCACTACGCATAG -ACGGAACAAGAGCACTACGACAAG -ACGGAACAAGAGCACTACAAGCAG -ACGGAACAAGAGCACTACCGTCAA -ACGGAACAAGAGCACTACGCTGAA -ACGGAACAAGAGCACTACAGTACG -ACGGAACAAGAGCACTACATCCGA -ACGGAACAAGAGCACTACATGGGA -ACGGAACAAGAGCACTACGTGCAA -ACGGAACAAGAGCACTACGAGGAA -ACGGAACAAGAGCACTACCAGGTA -ACGGAACAAGAGCACTACGACTCT -ACGGAACAAGAGCACTACAGTCCT -ACGGAACAAGAGCACTACTAAGCC -ACGGAACAAGAGCACTACATAGCC -ACGGAACAAGAGCACTACTAACCG -ACGGAACAAGAGCACTACATGCCA -ACGGAACAAGAGAACCAGGGAAAC -ACGGAACAAGAGAACCAGAACACC -ACGGAACAAGAGAACCAGATCGAG -ACGGAACAAGAGAACCAGCTCCTT -ACGGAACAAGAGAACCAGCCTGTT -ACGGAACAAGAGAACCAGCGGTTT -ACGGAACAAGAGAACCAGGTGGTT -ACGGAACAAGAGAACCAGGCCTTT -ACGGAACAAGAGAACCAGGGTCTT -ACGGAACAAGAGAACCAGACGCTT -ACGGAACAAGAGAACCAGAGCGTT -ACGGAACAAGAGAACCAGTTCGTC -ACGGAACAAGAGAACCAGTCTCTC -ACGGAACAAGAGAACCAGTGGATC -ACGGAACAAGAGAACCAGCACTTC -ACGGAACAAGAGAACCAGGTACTC -ACGGAACAAGAGAACCAGGATGTC -ACGGAACAAGAGAACCAGACAGTC -ACGGAACAAGAGAACCAGTTGCTG -ACGGAACAAGAGAACCAGTCCATG -ACGGAACAAGAGAACCAGTGTGTG -ACGGAACAAGAGAACCAGCTAGTG -ACGGAACAAGAGAACCAGCATCTG -ACGGAACAAGAGAACCAGGAGTTG -ACGGAACAAGAGAACCAGAGACTG -ACGGAACAAGAGAACCAGTCGGTA -ACGGAACAAGAGAACCAGTGCCTA -ACGGAACAAGAGAACCAGCCACTA -ACGGAACAAGAGAACCAGGGAGTA -ACGGAACAAGAGAACCAGTCGTCT -ACGGAACAAGAGAACCAGTGCACT -ACGGAACAAGAGAACCAGCTGACT -ACGGAACAAGAGAACCAGCAACCT -ACGGAACAAGAGAACCAGGCTACT -ACGGAACAAGAGAACCAGGGATCT -ACGGAACAAGAGAACCAGAAGGCT -ACGGAACAAGAGAACCAGTCAACC -ACGGAACAAGAGAACCAGTGTTCC -ACGGAACAAGAGAACCAGATTCCC -ACGGAACAAGAGAACCAGTTCTCG -ACGGAACAAGAGAACCAGTAGACG -ACGGAACAAGAGAACCAGGTAACG -ACGGAACAAGAGAACCAGACTTCG -ACGGAACAAGAGAACCAGTACGCA -ACGGAACAAGAGAACCAGCTTGCA -ACGGAACAAGAGAACCAGCGAACA -ACGGAACAAGAGAACCAGCAGTCA -ACGGAACAAGAGAACCAGGATCCA -ACGGAACAAGAGAACCAGACGACA -ACGGAACAAGAGAACCAGAGCTCA -ACGGAACAAGAGAACCAGTCACGT -ACGGAACAAGAGAACCAGCGTAGT -ACGGAACAAGAGAACCAGGTCAGT -ACGGAACAAGAGAACCAGGAAGGT -ACGGAACAAGAGAACCAGAACCGT -ACGGAACAAGAGAACCAGTTGTGC -ACGGAACAAGAGAACCAGCTAAGC -ACGGAACAAGAGAACCAGACTAGC -ACGGAACAAGAGAACCAGAGATGC -ACGGAACAAGAGAACCAGTGAAGG -ACGGAACAAGAGAACCAGCAATGG -ACGGAACAAGAGAACCAGATGAGG -ACGGAACAAGAGAACCAGAATGGG -ACGGAACAAGAGAACCAGTCCTGA -ACGGAACAAGAGAACCAGTAGCGA -ACGGAACAAGAGAACCAGCACAGA -ACGGAACAAGAGAACCAGGCAAGA -ACGGAACAAGAGAACCAGGGTTGA -ACGGAACAAGAGAACCAGTCCGAT -ACGGAACAAGAGAACCAGTGGCAT -ACGGAACAAGAGAACCAGCGAGAT -ACGGAACAAGAGAACCAGTACCAC -ACGGAACAAGAGAACCAGCAGAAC -ACGGAACAAGAGAACCAGGTCTAC -ACGGAACAAGAGAACCAGACGTAC -ACGGAACAAGAGAACCAGAGTGAC -ACGGAACAAGAGAACCAGCTGTAG -ACGGAACAAGAGAACCAGCCTAAG -ACGGAACAAGAGAACCAGGTTCAG -ACGGAACAAGAGAACCAGGCATAG -ACGGAACAAGAGAACCAGGACAAG -ACGGAACAAGAGAACCAGAAGCAG -ACGGAACAAGAGAACCAGCGTCAA -ACGGAACAAGAGAACCAGGCTGAA -ACGGAACAAGAGAACCAGAGTACG -ACGGAACAAGAGAACCAGATCCGA -ACGGAACAAGAGAACCAGATGGGA -ACGGAACAAGAGAACCAGGTGCAA -ACGGAACAAGAGAACCAGGAGGAA -ACGGAACAAGAGAACCAGCAGGTA -ACGGAACAAGAGAACCAGGACTCT -ACGGAACAAGAGAACCAGAGTCCT -ACGGAACAAGAGAACCAGTAAGCC -ACGGAACAAGAGAACCAGATAGCC -ACGGAACAAGAGAACCAGTAACCG -ACGGAACAAGAGAACCAGATGCCA -ACGGAACAAGAGTACGTCGGAAAC -ACGGAACAAGAGTACGTCAACACC -ACGGAACAAGAGTACGTCATCGAG -ACGGAACAAGAGTACGTCCTCCTT -ACGGAACAAGAGTACGTCCCTGTT -ACGGAACAAGAGTACGTCCGGTTT -ACGGAACAAGAGTACGTCGTGGTT -ACGGAACAAGAGTACGTCGCCTTT -ACGGAACAAGAGTACGTCGGTCTT -ACGGAACAAGAGTACGTCACGCTT -ACGGAACAAGAGTACGTCAGCGTT -ACGGAACAAGAGTACGTCTTCGTC -ACGGAACAAGAGTACGTCTCTCTC -ACGGAACAAGAGTACGTCTGGATC -ACGGAACAAGAGTACGTCCACTTC -ACGGAACAAGAGTACGTCGTACTC -ACGGAACAAGAGTACGTCGATGTC -ACGGAACAAGAGTACGTCACAGTC -ACGGAACAAGAGTACGTCTTGCTG -ACGGAACAAGAGTACGTCTCCATG -ACGGAACAAGAGTACGTCTGTGTG -ACGGAACAAGAGTACGTCCTAGTG -ACGGAACAAGAGTACGTCCATCTG -ACGGAACAAGAGTACGTCGAGTTG -ACGGAACAAGAGTACGTCAGACTG -ACGGAACAAGAGTACGTCTCGGTA -ACGGAACAAGAGTACGTCTGCCTA -ACGGAACAAGAGTACGTCCCACTA -ACGGAACAAGAGTACGTCGGAGTA -ACGGAACAAGAGTACGTCTCGTCT -ACGGAACAAGAGTACGTCTGCACT -ACGGAACAAGAGTACGTCCTGACT -ACGGAACAAGAGTACGTCCAACCT -ACGGAACAAGAGTACGTCGCTACT -ACGGAACAAGAGTACGTCGGATCT -ACGGAACAAGAGTACGTCAAGGCT -ACGGAACAAGAGTACGTCTCAACC -ACGGAACAAGAGTACGTCTGTTCC -ACGGAACAAGAGTACGTCATTCCC -ACGGAACAAGAGTACGTCTTCTCG -ACGGAACAAGAGTACGTCTAGACG -ACGGAACAAGAGTACGTCGTAACG -ACGGAACAAGAGTACGTCACTTCG -ACGGAACAAGAGTACGTCTACGCA -ACGGAACAAGAGTACGTCCTTGCA -ACGGAACAAGAGTACGTCCGAACA -ACGGAACAAGAGTACGTCCAGTCA -ACGGAACAAGAGTACGTCGATCCA -ACGGAACAAGAGTACGTCACGACA -ACGGAACAAGAGTACGTCAGCTCA -ACGGAACAAGAGTACGTCTCACGT -ACGGAACAAGAGTACGTCCGTAGT -ACGGAACAAGAGTACGTCGTCAGT -ACGGAACAAGAGTACGTCGAAGGT -ACGGAACAAGAGTACGTCAACCGT -ACGGAACAAGAGTACGTCTTGTGC -ACGGAACAAGAGTACGTCCTAAGC -ACGGAACAAGAGTACGTCACTAGC -ACGGAACAAGAGTACGTCAGATGC -ACGGAACAAGAGTACGTCTGAAGG -ACGGAACAAGAGTACGTCCAATGG -ACGGAACAAGAGTACGTCATGAGG -ACGGAACAAGAGTACGTCAATGGG -ACGGAACAAGAGTACGTCTCCTGA -ACGGAACAAGAGTACGTCTAGCGA -ACGGAACAAGAGTACGTCCACAGA -ACGGAACAAGAGTACGTCGCAAGA -ACGGAACAAGAGTACGTCGGTTGA -ACGGAACAAGAGTACGTCTCCGAT -ACGGAACAAGAGTACGTCTGGCAT -ACGGAACAAGAGTACGTCCGAGAT -ACGGAACAAGAGTACGTCTACCAC -ACGGAACAAGAGTACGTCCAGAAC -ACGGAACAAGAGTACGTCGTCTAC -ACGGAACAAGAGTACGTCACGTAC -ACGGAACAAGAGTACGTCAGTGAC -ACGGAACAAGAGTACGTCCTGTAG -ACGGAACAAGAGTACGTCCCTAAG -ACGGAACAAGAGTACGTCGTTCAG -ACGGAACAAGAGTACGTCGCATAG -ACGGAACAAGAGTACGTCGACAAG -ACGGAACAAGAGTACGTCAAGCAG -ACGGAACAAGAGTACGTCCGTCAA -ACGGAACAAGAGTACGTCGCTGAA -ACGGAACAAGAGTACGTCAGTACG -ACGGAACAAGAGTACGTCATCCGA -ACGGAACAAGAGTACGTCATGGGA -ACGGAACAAGAGTACGTCGTGCAA -ACGGAACAAGAGTACGTCGAGGAA -ACGGAACAAGAGTACGTCCAGGTA -ACGGAACAAGAGTACGTCGACTCT -ACGGAACAAGAGTACGTCAGTCCT -ACGGAACAAGAGTACGTCTAAGCC -ACGGAACAAGAGTACGTCATAGCC -ACGGAACAAGAGTACGTCTAACCG -ACGGAACAAGAGTACGTCATGCCA -ACGGAACAAGAGTACACGGGAAAC -ACGGAACAAGAGTACACGAACACC -ACGGAACAAGAGTACACGATCGAG -ACGGAACAAGAGTACACGCTCCTT -ACGGAACAAGAGTACACGCCTGTT -ACGGAACAAGAGTACACGCGGTTT -ACGGAACAAGAGTACACGGTGGTT -ACGGAACAAGAGTACACGGCCTTT -ACGGAACAAGAGTACACGGGTCTT -ACGGAACAAGAGTACACGACGCTT -ACGGAACAAGAGTACACGAGCGTT -ACGGAACAAGAGTACACGTTCGTC -ACGGAACAAGAGTACACGTCTCTC -ACGGAACAAGAGTACACGTGGATC -ACGGAACAAGAGTACACGCACTTC -ACGGAACAAGAGTACACGGTACTC -ACGGAACAAGAGTACACGGATGTC -ACGGAACAAGAGTACACGACAGTC -ACGGAACAAGAGTACACGTTGCTG -ACGGAACAAGAGTACACGTCCATG -ACGGAACAAGAGTACACGTGTGTG -ACGGAACAAGAGTACACGCTAGTG -ACGGAACAAGAGTACACGCATCTG -ACGGAACAAGAGTACACGGAGTTG -ACGGAACAAGAGTACACGAGACTG -ACGGAACAAGAGTACACGTCGGTA -ACGGAACAAGAGTACACGTGCCTA -ACGGAACAAGAGTACACGCCACTA -ACGGAACAAGAGTACACGGGAGTA -ACGGAACAAGAGTACACGTCGTCT -ACGGAACAAGAGTACACGTGCACT -ACGGAACAAGAGTACACGCTGACT -ACGGAACAAGAGTACACGCAACCT -ACGGAACAAGAGTACACGGCTACT -ACGGAACAAGAGTACACGGGATCT -ACGGAACAAGAGTACACGAAGGCT -ACGGAACAAGAGTACACGTCAACC -ACGGAACAAGAGTACACGTGTTCC -ACGGAACAAGAGTACACGATTCCC -ACGGAACAAGAGTACACGTTCTCG -ACGGAACAAGAGTACACGTAGACG -ACGGAACAAGAGTACACGGTAACG -ACGGAACAAGAGTACACGACTTCG -ACGGAACAAGAGTACACGTACGCA -ACGGAACAAGAGTACACGCTTGCA -ACGGAACAAGAGTACACGCGAACA -ACGGAACAAGAGTACACGCAGTCA -ACGGAACAAGAGTACACGGATCCA -ACGGAACAAGAGTACACGACGACA -ACGGAACAAGAGTACACGAGCTCA -ACGGAACAAGAGTACACGTCACGT -ACGGAACAAGAGTACACGCGTAGT -ACGGAACAAGAGTACACGGTCAGT -ACGGAACAAGAGTACACGGAAGGT -ACGGAACAAGAGTACACGAACCGT -ACGGAACAAGAGTACACGTTGTGC -ACGGAACAAGAGTACACGCTAAGC -ACGGAACAAGAGTACACGACTAGC -ACGGAACAAGAGTACACGAGATGC -ACGGAACAAGAGTACACGTGAAGG -ACGGAACAAGAGTACACGCAATGG -ACGGAACAAGAGTACACGATGAGG -ACGGAACAAGAGTACACGAATGGG -ACGGAACAAGAGTACACGTCCTGA -ACGGAACAAGAGTACACGTAGCGA -ACGGAACAAGAGTACACGCACAGA -ACGGAACAAGAGTACACGGCAAGA -ACGGAACAAGAGTACACGGGTTGA -ACGGAACAAGAGTACACGTCCGAT -ACGGAACAAGAGTACACGTGGCAT -ACGGAACAAGAGTACACGCGAGAT -ACGGAACAAGAGTACACGTACCAC -ACGGAACAAGAGTACACGCAGAAC -ACGGAACAAGAGTACACGGTCTAC -ACGGAACAAGAGTACACGACGTAC -ACGGAACAAGAGTACACGAGTGAC -ACGGAACAAGAGTACACGCTGTAG -ACGGAACAAGAGTACACGCCTAAG -ACGGAACAAGAGTACACGGTTCAG -ACGGAACAAGAGTACACGGCATAG -ACGGAACAAGAGTACACGGACAAG -ACGGAACAAGAGTACACGAAGCAG -ACGGAACAAGAGTACACGCGTCAA -ACGGAACAAGAGTACACGGCTGAA -ACGGAACAAGAGTACACGAGTACG -ACGGAACAAGAGTACACGATCCGA -ACGGAACAAGAGTACACGATGGGA -ACGGAACAAGAGTACACGGTGCAA -ACGGAACAAGAGTACACGGAGGAA -ACGGAACAAGAGTACACGCAGGTA -ACGGAACAAGAGTACACGGACTCT -ACGGAACAAGAGTACACGAGTCCT -ACGGAACAAGAGTACACGTAAGCC -ACGGAACAAGAGTACACGATAGCC -ACGGAACAAGAGTACACGTAACCG -ACGGAACAAGAGTACACGATGCCA -ACGGAACAAGAGGACAGTGGAAAC -ACGGAACAAGAGGACAGTAACACC -ACGGAACAAGAGGACAGTATCGAG -ACGGAACAAGAGGACAGTCTCCTT -ACGGAACAAGAGGACAGTCCTGTT -ACGGAACAAGAGGACAGTCGGTTT -ACGGAACAAGAGGACAGTGTGGTT -ACGGAACAAGAGGACAGTGCCTTT -ACGGAACAAGAGGACAGTGGTCTT -ACGGAACAAGAGGACAGTACGCTT -ACGGAACAAGAGGACAGTAGCGTT -ACGGAACAAGAGGACAGTTTCGTC -ACGGAACAAGAGGACAGTTCTCTC -ACGGAACAAGAGGACAGTTGGATC -ACGGAACAAGAGGACAGTCACTTC -ACGGAACAAGAGGACAGTGTACTC -ACGGAACAAGAGGACAGTGATGTC -ACGGAACAAGAGGACAGTACAGTC -ACGGAACAAGAGGACAGTTTGCTG -ACGGAACAAGAGGACAGTTCCATG -ACGGAACAAGAGGACAGTTGTGTG -ACGGAACAAGAGGACAGTCTAGTG -ACGGAACAAGAGGACAGTCATCTG -ACGGAACAAGAGGACAGTGAGTTG -ACGGAACAAGAGGACAGTAGACTG -ACGGAACAAGAGGACAGTTCGGTA -ACGGAACAAGAGGACAGTTGCCTA -ACGGAACAAGAGGACAGTCCACTA -ACGGAACAAGAGGACAGTGGAGTA -ACGGAACAAGAGGACAGTTCGTCT -ACGGAACAAGAGGACAGTTGCACT -ACGGAACAAGAGGACAGTCTGACT -ACGGAACAAGAGGACAGTCAACCT -ACGGAACAAGAGGACAGTGCTACT -ACGGAACAAGAGGACAGTGGATCT -ACGGAACAAGAGGACAGTAAGGCT -ACGGAACAAGAGGACAGTTCAACC -ACGGAACAAGAGGACAGTTGTTCC -ACGGAACAAGAGGACAGTATTCCC -ACGGAACAAGAGGACAGTTTCTCG -ACGGAACAAGAGGACAGTTAGACG -ACGGAACAAGAGGACAGTGTAACG -ACGGAACAAGAGGACAGTACTTCG -ACGGAACAAGAGGACAGTTACGCA -ACGGAACAAGAGGACAGTCTTGCA -ACGGAACAAGAGGACAGTCGAACA -ACGGAACAAGAGGACAGTCAGTCA -ACGGAACAAGAGGACAGTGATCCA -ACGGAACAAGAGGACAGTACGACA -ACGGAACAAGAGGACAGTAGCTCA -ACGGAACAAGAGGACAGTTCACGT -ACGGAACAAGAGGACAGTCGTAGT -ACGGAACAAGAGGACAGTGTCAGT -ACGGAACAAGAGGACAGTGAAGGT -ACGGAACAAGAGGACAGTAACCGT -ACGGAACAAGAGGACAGTTTGTGC -ACGGAACAAGAGGACAGTCTAAGC -ACGGAACAAGAGGACAGTACTAGC -ACGGAACAAGAGGACAGTAGATGC -ACGGAACAAGAGGACAGTTGAAGG -ACGGAACAAGAGGACAGTCAATGG -ACGGAACAAGAGGACAGTATGAGG -ACGGAACAAGAGGACAGTAATGGG -ACGGAACAAGAGGACAGTTCCTGA -ACGGAACAAGAGGACAGTTAGCGA -ACGGAACAAGAGGACAGTCACAGA -ACGGAACAAGAGGACAGTGCAAGA -ACGGAACAAGAGGACAGTGGTTGA -ACGGAACAAGAGGACAGTTCCGAT -ACGGAACAAGAGGACAGTTGGCAT -ACGGAACAAGAGGACAGTCGAGAT -ACGGAACAAGAGGACAGTTACCAC -ACGGAACAAGAGGACAGTCAGAAC -ACGGAACAAGAGGACAGTGTCTAC -ACGGAACAAGAGGACAGTACGTAC -ACGGAACAAGAGGACAGTAGTGAC -ACGGAACAAGAGGACAGTCTGTAG -ACGGAACAAGAGGACAGTCCTAAG -ACGGAACAAGAGGACAGTGTTCAG -ACGGAACAAGAGGACAGTGCATAG -ACGGAACAAGAGGACAGTGACAAG -ACGGAACAAGAGGACAGTAAGCAG -ACGGAACAAGAGGACAGTCGTCAA -ACGGAACAAGAGGACAGTGCTGAA -ACGGAACAAGAGGACAGTAGTACG -ACGGAACAAGAGGACAGTATCCGA -ACGGAACAAGAGGACAGTATGGGA -ACGGAACAAGAGGACAGTGTGCAA -ACGGAACAAGAGGACAGTGAGGAA -ACGGAACAAGAGGACAGTCAGGTA -ACGGAACAAGAGGACAGTGACTCT -ACGGAACAAGAGGACAGTAGTCCT -ACGGAACAAGAGGACAGTTAAGCC -ACGGAACAAGAGGACAGTATAGCC -ACGGAACAAGAGGACAGTTAACCG -ACGGAACAAGAGGACAGTATGCCA -ACGGAACAAGAGTAGCTGGGAAAC -ACGGAACAAGAGTAGCTGAACACC -ACGGAACAAGAGTAGCTGATCGAG -ACGGAACAAGAGTAGCTGCTCCTT -ACGGAACAAGAGTAGCTGCCTGTT -ACGGAACAAGAGTAGCTGCGGTTT -ACGGAACAAGAGTAGCTGGTGGTT -ACGGAACAAGAGTAGCTGGCCTTT -ACGGAACAAGAGTAGCTGGGTCTT -ACGGAACAAGAGTAGCTGACGCTT -ACGGAACAAGAGTAGCTGAGCGTT -ACGGAACAAGAGTAGCTGTTCGTC -ACGGAACAAGAGTAGCTGTCTCTC -ACGGAACAAGAGTAGCTGTGGATC -ACGGAACAAGAGTAGCTGCACTTC -ACGGAACAAGAGTAGCTGGTACTC -ACGGAACAAGAGTAGCTGGATGTC -ACGGAACAAGAGTAGCTGACAGTC -ACGGAACAAGAGTAGCTGTTGCTG -ACGGAACAAGAGTAGCTGTCCATG -ACGGAACAAGAGTAGCTGTGTGTG -ACGGAACAAGAGTAGCTGCTAGTG -ACGGAACAAGAGTAGCTGCATCTG -ACGGAACAAGAGTAGCTGGAGTTG -ACGGAACAAGAGTAGCTGAGACTG -ACGGAACAAGAGTAGCTGTCGGTA -ACGGAACAAGAGTAGCTGTGCCTA -ACGGAACAAGAGTAGCTGCCACTA -ACGGAACAAGAGTAGCTGGGAGTA -ACGGAACAAGAGTAGCTGTCGTCT -ACGGAACAAGAGTAGCTGTGCACT -ACGGAACAAGAGTAGCTGCTGACT -ACGGAACAAGAGTAGCTGCAACCT -ACGGAACAAGAGTAGCTGGCTACT -ACGGAACAAGAGTAGCTGGGATCT -ACGGAACAAGAGTAGCTGAAGGCT -ACGGAACAAGAGTAGCTGTCAACC -ACGGAACAAGAGTAGCTGTGTTCC -ACGGAACAAGAGTAGCTGATTCCC -ACGGAACAAGAGTAGCTGTTCTCG -ACGGAACAAGAGTAGCTGTAGACG -ACGGAACAAGAGTAGCTGGTAACG -ACGGAACAAGAGTAGCTGACTTCG -ACGGAACAAGAGTAGCTGTACGCA -ACGGAACAAGAGTAGCTGCTTGCA -ACGGAACAAGAGTAGCTGCGAACA -ACGGAACAAGAGTAGCTGCAGTCA -ACGGAACAAGAGTAGCTGGATCCA -ACGGAACAAGAGTAGCTGACGACA -ACGGAACAAGAGTAGCTGAGCTCA -ACGGAACAAGAGTAGCTGTCACGT -ACGGAACAAGAGTAGCTGCGTAGT -ACGGAACAAGAGTAGCTGGTCAGT -ACGGAACAAGAGTAGCTGGAAGGT -ACGGAACAAGAGTAGCTGAACCGT -ACGGAACAAGAGTAGCTGTTGTGC -ACGGAACAAGAGTAGCTGCTAAGC -ACGGAACAAGAGTAGCTGACTAGC -ACGGAACAAGAGTAGCTGAGATGC -ACGGAACAAGAGTAGCTGTGAAGG -ACGGAACAAGAGTAGCTGCAATGG -ACGGAACAAGAGTAGCTGATGAGG -ACGGAACAAGAGTAGCTGAATGGG -ACGGAACAAGAGTAGCTGTCCTGA -ACGGAACAAGAGTAGCTGTAGCGA -ACGGAACAAGAGTAGCTGCACAGA -ACGGAACAAGAGTAGCTGGCAAGA -ACGGAACAAGAGTAGCTGGGTTGA -ACGGAACAAGAGTAGCTGTCCGAT -ACGGAACAAGAGTAGCTGTGGCAT -ACGGAACAAGAGTAGCTGCGAGAT -ACGGAACAAGAGTAGCTGTACCAC -ACGGAACAAGAGTAGCTGCAGAAC -ACGGAACAAGAGTAGCTGGTCTAC -ACGGAACAAGAGTAGCTGACGTAC -ACGGAACAAGAGTAGCTGAGTGAC -ACGGAACAAGAGTAGCTGCTGTAG -ACGGAACAAGAGTAGCTGCCTAAG -ACGGAACAAGAGTAGCTGGTTCAG -ACGGAACAAGAGTAGCTGGCATAG -ACGGAACAAGAGTAGCTGGACAAG -ACGGAACAAGAGTAGCTGAAGCAG -ACGGAACAAGAGTAGCTGCGTCAA -ACGGAACAAGAGTAGCTGGCTGAA -ACGGAACAAGAGTAGCTGAGTACG -ACGGAACAAGAGTAGCTGATCCGA -ACGGAACAAGAGTAGCTGATGGGA -ACGGAACAAGAGTAGCTGGTGCAA -ACGGAACAAGAGTAGCTGGAGGAA -ACGGAACAAGAGTAGCTGCAGGTA -ACGGAACAAGAGTAGCTGGACTCT -ACGGAACAAGAGTAGCTGAGTCCT -ACGGAACAAGAGTAGCTGTAAGCC -ACGGAACAAGAGTAGCTGATAGCC -ACGGAACAAGAGTAGCTGTAACCG -ACGGAACAAGAGTAGCTGATGCCA -ACGGAACAAGAGAAGCCTGGAAAC -ACGGAACAAGAGAAGCCTAACACC -ACGGAACAAGAGAAGCCTATCGAG -ACGGAACAAGAGAAGCCTCTCCTT -ACGGAACAAGAGAAGCCTCCTGTT -ACGGAACAAGAGAAGCCTCGGTTT -ACGGAACAAGAGAAGCCTGTGGTT -ACGGAACAAGAGAAGCCTGCCTTT -ACGGAACAAGAGAAGCCTGGTCTT -ACGGAACAAGAGAAGCCTACGCTT -ACGGAACAAGAGAAGCCTAGCGTT -ACGGAACAAGAGAAGCCTTTCGTC -ACGGAACAAGAGAAGCCTTCTCTC -ACGGAACAAGAGAAGCCTTGGATC -ACGGAACAAGAGAAGCCTCACTTC -ACGGAACAAGAGAAGCCTGTACTC -ACGGAACAAGAGAAGCCTGATGTC -ACGGAACAAGAGAAGCCTACAGTC -ACGGAACAAGAGAAGCCTTTGCTG -ACGGAACAAGAGAAGCCTTCCATG -ACGGAACAAGAGAAGCCTTGTGTG -ACGGAACAAGAGAAGCCTCTAGTG -ACGGAACAAGAGAAGCCTCATCTG -ACGGAACAAGAGAAGCCTGAGTTG -ACGGAACAAGAGAAGCCTAGACTG -ACGGAACAAGAGAAGCCTTCGGTA -ACGGAACAAGAGAAGCCTTGCCTA -ACGGAACAAGAGAAGCCTCCACTA -ACGGAACAAGAGAAGCCTGGAGTA -ACGGAACAAGAGAAGCCTTCGTCT -ACGGAACAAGAGAAGCCTTGCACT -ACGGAACAAGAGAAGCCTCTGACT -ACGGAACAAGAGAAGCCTCAACCT -ACGGAACAAGAGAAGCCTGCTACT -ACGGAACAAGAGAAGCCTGGATCT -ACGGAACAAGAGAAGCCTAAGGCT -ACGGAACAAGAGAAGCCTTCAACC -ACGGAACAAGAGAAGCCTTGTTCC -ACGGAACAAGAGAAGCCTATTCCC -ACGGAACAAGAGAAGCCTTTCTCG -ACGGAACAAGAGAAGCCTTAGACG -ACGGAACAAGAGAAGCCTGTAACG -ACGGAACAAGAGAAGCCTACTTCG -ACGGAACAAGAGAAGCCTTACGCA -ACGGAACAAGAGAAGCCTCTTGCA -ACGGAACAAGAGAAGCCTCGAACA -ACGGAACAAGAGAAGCCTCAGTCA -ACGGAACAAGAGAAGCCTGATCCA -ACGGAACAAGAGAAGCCTACGACA -ACGGAACAAGAGAAGCCTAGCTCA -ACGGAACAAGAGAAGCCTTCACGT -ACGGAACAAGAGAAGCCTCGTAGT -ACGGAACAAGAGAAGCCTGTCAGT -ACGGAACAAGAGAAGCCTGAAGGT -ACGGAACAAGAGAAGCCTAACCGT -ACGGAACAAGAGAAGCCTTTGTGC -ACGGAACAAGAGAAGCCTCTAAGC -ACGGAACAAGAGAAGCCTACTAGC -ACGGAACAAGAGAAGCCTAGATGC -ACGGAACAAGAGAAGCCTTGAAGG -ACGGAACAAGAGAAGCCTCAATGG -ACGGAACAAGAGAAGCCTATGAGG -ACGGAACAAGAGAAGCCTAATGGG -ACGGAACAAGAGAAGCCTTCCTGA -ACGGAACAAGAGAAGCCTTAGCGA -ACGGAACAAGAGAAGCCTCACAGA -ACGGAACAAGAGAAGCCTGCAAGA -ACGGAACAAGAGAAGCCTGGTTGA -ACGGAACAAGAGAAGCCTTCCGAT -ACGGAACAAGAGAAGCCTTGGCAT -ACGGAACAAGAGAAGCCTCGAGAT -ACGGAACAAGAGAAGCCTTACCAC -ACGGAACAAGAGAAGCCTCAGAAC -ACGGAACAAGAGAAGCCTGTCTAC -ACGGAACAAGAGAAGCCTACGTAC -ACGGAACAAGAGAAGCCTAGTGAC -ACGGAACAAGAGAAGCCTCTGTAG -ACGGAACAAGAGAAGCCTCCTAAG -ACGGAACAAGAGAAGCCTGTTCAG -ACGGAACAAGAGAAGCCTGCATAG -ACGGAACAAGAGAAGCCTGACAAG -ACGGAACAAGAGAAGCCTAAGCAG -ACGGAACAAGAGAAGCCTCGTCAA -ACGGAACAAGAGAAGCCTGCTGAA -ACGGAACAAGAGAAGCCTAGTACG -ACGGAACAAGAGAAGCCTATCCGA -ACGGAACAAGAGAAGCCTATGGGA -ACGGAACAAGAGAAGCCTGTGCAA -ACGGAACAAGAGAAGCCTGAGGAA -ACGGAACAAGAGAAGCCTCAGGTA -ACGGAACAAGAGAAGCCTGACTCT -ACGGAACAAGAGAAGCCTAGTCCT -ACGGAACAAGAGAAGCCTTAAGCC -ACGGAACAAGAGAAGCCTATAGCC -ACGGAACAAGAGAAGCCTTAACCG -ACGGAACAAGAGAAGCCTATGCCA -ACGGAACAAGAGCAGGTTGGAAAC -ACGGAACAAGAGCAGGTTAACACC -ACGGAACAAGAGCAGGTTATCGAG -ACGGAACAAGAGCAGGTTCTCCTT -ACGGAACAAGAGCAGGTTCCTGTT -ACGGAACAAGAGCAGGTTCGGTTT -ACGGAACAAGAGCAGGTTGTGGTT -ACGGAACAAGAGCAGGTTGCCTTT -ACGGAACAAGAGCAGGTTGGTCTT -ACGGAACAAGAGCAGGTTACGCTT -ACGGAACAAGAGCAGGTTAGCGTT -ACGGAACAAGAGCAGGTTTTCGTC -ACGGAACAAGAGCAGGTTTCTCTC -ACGGAACAAGAGCAGGTTTGGATC -ACGGAACAAGAGCAGGTTCACTTC -ACGGAACAAGAGCAGGTTGTACTC -ACGGAACAAGAGCAGGTTGATGTC -ACGGAACAAGAGCAGGTTACAGTC -ACGGAACAAGAGCAGGTTTTGCTG -ACGGAACAAGAGCAGGTTTCCATG -ACGGAACAAGAGCAGGTTTGTGTG -ACGGAACAAGAGCAGGTTCTAGTG -ACGGAACAAGAGCAGGTTCATCTG -ACGGAACAAGAGCAGGTTGAGTTG -ACGGAACAAGAGCAGGTTAGACTG -ACGGAACAAGAGCAGGTTTCGGTA -ACGGAACAAGAGCAGGTTTGCCTA -ACGGAACAAGAGCAGGTTCCACTA -ACGGAACAAGAGCAGGTTGGAGTA -ACGGAACAAGAGCAGGTTTCGTCT -ACGGAACAAGAGCAGGTTTGCACT -ACGGAACAAGAGCAGGTTCTGACT -ACGGAACAAGAGCAGGTTCAACCT -ACGGAACAAGAGCAGGTTGCTACT -ACGGAACAAGAGCAGGTTGGATCT -ACGGAACAAGAGCAGGTTAAGGCT -ACGGAACAAGAGCAGGTTTCAACC -ACGGAACAAGAGCAGGTTTGTTCC -ACGGAACAAGAGCAGGTTATTCCC -ACGGAACAAGAGCAGGTTTTCTCG -ACGGAACAAGAGCAGGTTTAGACG -ACGGAACAAGAGCAGGTTGTAACG -ACGGAACAAGAGCAGGTTACTTCG -ACGGAACAAGAGCAGGTTTACGCA -ACGGAACAAGAGCAGGTTCTTGCA -ACGGAACAAGAGCAGGTTCGAACA -ACGGAACAAGAGCAGGTTCAGTCA -ACGGAACAAGAGCAGGTTGATCCA -ACGGAACAAGAGCAGGTTACGACA -ACGGAACAAGAGCAGGTTAGCTCA -ACGGAACAAGAGCAGGTTTCACGT -ACGGAACAAGAGCAGGTTCGTAGT -ACGGAACAAGAGCAGGTTGTCAGT -ACGGAACAAGAGCAGGTTGAAGGT -ACGGAACAAGAGCAGGTTAACCGT -ACGGAACAAGAGCAGGTTTTGTGC -ACGGAACAAGAGCAGGTTCTAAGC -ACGGAACAAGAGCAGGTTACTAGC -ACGGAACAAGAGCAGGTTAGATGC -ACGGAACAAGAGCAGGTTTGAAGG -ACGGAACAAGAGCAGGTTCAATGG -ACGGAACAAGAGCAGGTTATGAGG -ACGGAACAAGAGCAGGTTAATGGG -ACGGAACAAGAGCAGGTTTCCTGA -ACGGAACAAGAGCAGGTTTAGCGA -ACGGAACAAGAGCAGGTTCACAGA -ACGGAACAAGAGCAGGTTGCAAGA -ACGGAACAAGAGCAGGTTGGTTGA -ACGGAACAAGAGCAGGTTTCCGAT -ACGGAACAAGAGCAGGTTTGGCAT -ACGGAACAAGAGCAGGTTCGAGAT -ACGGAACAAGAGCAGGTTTACCAC -ACGGAACAAGAGCAGGTTCAGAAC -ACGGAACAAGAGCAGGTTGTCTAC -ACGGAACAAGAGCAGGTTACGTAC -ACGGAACAAGAGCAGGTTAGTGAC -ACGGAACAAGAGCAGGTTCTGTAG -ACGGAACAAGAGCAGGTTCCTAAG -ACGGAACAAGAGCAGGTTGTTCAG -ACGGAACAAGAGCAGGTTGCATAG -ACGGAACAAGAGCAGGTTGACAAG -ACGGAACAAGAGCAGGTTAAGCAG -ACGGAACAAGAGCAGGTTCGTCAA -ACGGAACAAGAGCAGGTTGCTGAA -ACGGAACAAGAGCAGGTTAGTACG -ACGGAACAAGAGCAGGTTATCCGA -ACGGAACAAGAGCAGGTTATGGGA -ACGGAACAAGAGCAGGTTGTGCAA -ACGGAACAAGAGCAGGTTGAGGAA -ACGGAACAAGAGCAGGTTCAGGTA -ACGGAACAAGAGCAGGTTGACTCT -ACGGAACAAGAGCAGGTTAGTCCT -ACGGAACAAGAGCAGGTTTAAGCC -ACGGAACAAGAGCAGGTTATAGCC -ACGGAACAAGAGCAGGTTTAACCG -ACGGAACAAGAGCAGGTTATGCCA -ACGGAACAAGAGTAGGCAGGAAAC -ACGGAACAAGAGTAGGCAAACACC -ACGGAACAAGAGTAGGCAATCGAG -ACGGAACAAGAGTAGGCACTCCTT -ACGGAACAAGAGTAGGCACCTGTT -ACGGAACAAGAGTAGGCACGGTTT -ACGGAACAAGAGTAGGCAGTGGTT -ACGGAACAAGAGTAGGCAGCCTTT -ACGGAACAAGAGTAGGCAGGTCTT -ACGGAACAAGAGTAGGCAACGCTT -ACGGAACAAGAGTAGGCAAGCGTT -ACGGAACAAGAGTAGGCATTCGTC -ACGGAACAAGAGTAGGCATCTCTC -ACGGAACAAGAGTAGGCATGGATC -ACGGAACAAGAGTAGGCACACTTC -ACGGAACAAGAGTAGGCAGTACTC -ACGGAACAAGAGTAGGCAGATGTC -ACGGAACAAGAGTAGGCAACAGTC -ACGGAACAAGAGTAGGCATTGCTG -ACGGAACAAGAGTAGGCATCCATG -ACGGAACAAGAGTAGGCATGTGTG -ACGGAACAAGAGTAGGCACTAGTG -ACGGAACAAGAGTAGGCACATCTG -ACGGAACAAGAGTAGGCAGAGTTG -ACGGAACAAGAGTAGGCAAGACTG -ACGGAACAAGAGTAGGCATCGGTA -ACGGAACAAGAGTAGGCATGCCTA -ACGGAACAAGAGTAGGCACCACTA -ACGGAACAAGAGTAGGCAGGAGTA -ACGGAACAAGAGTAGGCATCGTCT -ACGGAACAAGAGTAGGCATGCACT -ACGGAACAAGAGTAGGCACTGACT -ACGGAACAAGAGTAGGCACAACCT -ACGGAACAAGAGTAGGCAGCTACT -ACGGAACAAGAGTAGGCAGGATCT -ACGGAACAAGAGTAGGCAAAGGCT -ACGGAACAAGAGTAGGCATCAACC -ACGGAACAAGAGTAGGCATGTTCC -ACGGAACAAGAGTAGGCAATTCCC -ACGGAACAAGAGTAGGCATTCTCG -ACGGAACAAGAGTAGGCATAGACG -ACGGAACAAGAGTAGGCAGTAACG -ACGGAACAAGAGTAGGCAACTTCG -ACGGAACAAGAGTAGGCATACGCA -ACGGAACAAGAGTAGGCACTTGCA -ACGGAACAAGAGTAGGCACGAACA -ACGGAACAAGAGTAGGCACAGTCA -ACGGAACAAGAGTAGGCAGATCCA -ACGGAACAAGAGTAGGCAACGACA -ACGGAACAAGAGTAGGCAAGCTCA -ACGGAACAAGAGTAGGCATCACGT -ACGGAACAAGAGTAGGCACGTAGT -ACGGAACAAGAGTAGGCAGTCAGT -ACGGAACAAGAGTAGGCAGAAGGT -ACGGAACAAGAGTAGGCAAACCGT -ACGGAACAAGAGTAGGCATTGTGC -ACGGAACAAGAGTAGGCACTAAGC -ACGGAACAAGAGTAGGCAACTAGC -ACGGAACAAGAGTAGGCAAGATGC -ACGGAACAAGAGTAGGCATGAAGG -ACGGAACAAGAGTAGGCACAATGG -ACGGAACAAGAGTAGGCAATGAGG -ACGGAACAAGAGTAGGCAAATGGG -ACGGAACAAGAGTAGGCATCCTGA -ACGGAACAAGAGTAGGCATAGCGA -ACGGAACAAGAGTAGGCACACAGA -ACGGAACAAGAGTAGGCAGCAAGA -ACGGAACAAGAGTAGGCAGGTTGA -ACGGAACAAGAGTAGGCATCCGAT -ACGGAACAAGAGTAGGCATGGCAT -ACGGAACAAGAGTAGGCACGAGAT -ACGGAACAAGAGTAGGCATACCAC -ACGGAACAAGAGTAGGCACAGAAC -ACGGAACAAGAGTAGGCAGTCTAC -ACGGAACAAGAGTAGGCAACGTAC -ACGGAACAAGAGTAGGCAAGTGAC -ACGGAACAAGAGTAGGCACTGTAG -ACGGAACAAGAGTAGGCACCTAAG -ACGGAACAAGAGTAGGCAGTTCAG -ACGGAACAAGAGTAGGCAGCATAG -ACGGAACAAGAGTAGGCAGACAAG -ACGGAACAAGAGTAGGCAAAGCAG -ACGGAACAAGAGTAGGCACGTCAA -ACGGAACAAGAGTAGGCAGCTGAA -ACGGAACAAGAGTAGGCAAGTACG -ACGGAACAAGAGTAGGCAATCCGA -ACGGAACAAGAGTAGGCAATGGGA -ACGGAACAAGAGTAGGCAGTGCAA -ACGGAACAAGAGTAGGCAGAGGAA -ACGGAACAAGAGTAGGCACAGGTA -ACGGAACAAGAGTAGGCAGACTCT -ACGGAACAAGAGTAGGCAAGTCCT -ACGGAACAAGAGTAGGCATAAGCC -ACGGAACAAGAGTAGGCAATAGCC -ACGGAACAAGAGTAGGCATAACCG -ACGGAACAAGAGTAGGCAATGCCA -ACGGAACAAGAGAAGGACGGAAAC -ACGGAACAAGAGAAGGACAACACC -ACGGAACAAGAGAAGGACATCGAG -ACGGAACAAGAGAAGGACCTCCTT -ACGGAACAAGAGAAGGACCCTGTT -ACGGAACAAGAGAAGGACCGGTTT -ACGGAACAAGAGAAGGACGTGGTT -ACGGAACAAGAGAAGGACGCCTTT -ACGGAACAAGAGAAGGACGGTCTT -ACGGAACAAGAGAAGGACACGCTT -ACGGAACAAGAGAAGGACAGCGTT -ACGGAACAAGAGAAGGACTTCGTC -ACGGAACAAGAGAAGGACTCTCTC -ACGGAACAAGAGAAGGACTGGATC -ACGGAACAAGAGAAGGACCACTTC -ACGGAACAAGAGAAGGACGTACTC -ACGGAACAAGAGAAGGACGATGTC -ACGGAACAAGAGAAGGACACAGTC -ACGGAACAAGAGAAGGACTTGCTG -ACGGAACAAGAGAAGGACTCCATG -ACGGAACAAGAGAAGGACTGTGTG -ACGGAACAAGAGAAGGACCTAGTG -ACGGAACAAGAGAAGGACCATCTG -ACGGAACAAGAGAAGGACGAGTTG -ACGGAACAAGAGAAGGACAGACTG -ACGGAACAAGAGAAGGACTCGGTA -ACGGAACAAGAGAAGGACTGCCTA -ACGGAACAAGAGAAGGACCCACTA -ACGGAACAAGAGAAGGACGGAGTA -ACGGAACAAGAGAAGGACTCGTCT -ACGGAACAAGAGAAGGACTGCACT -ACGGAACAAGAGAAGGACCTGACT -ACGGAACAAGAGAAGGACCAACCT -ACGGAACAAGAGAAGGACGCTACT -ACGGAACAAGAGAAGGACGGATCT -ACGGAACAAGAGAAGGACAAGGCT -ACGGAACAAGAGAAGGACTCAACC -ACGGAACAAGAGAAGGACTGTTCC -ACGGAACAAGAGAAGGACATTCCC -ACGGAACAAGAGAAGGACTTCTCG -ACGGAACAAGAGAAGGACTAGACG -ACGGAACAAGAGAAGGACGTAACG -ACGGAACAAGAGAAGGACACTTCG -ACGGAACAAGAGAAGGACTACGCA -ACGGAACAAGAGAAGGACCTTGCA -ACGGAACAAGAGAAGGACCGAACA -ACGGAACAAGAGAAGGACCAGTCA -ACGGAACAAGAGAAGGACGATCCA -ACGGAACAAGAGAAGGACACGACA -ACGGAACAAGAGAAGGACAGCTCA -ACGGAACAAGAGAAGGACTCACGT -ACGGAACAAGAGAAGGACCGTAGT -ACGGAACAAGAGAAGGACGTCAGT -ACGGAACAAGAGAAGGACGAAGGT -ACGGAACAAGAGAAGGACAACCGT -ACGGAACAAGAGAAGGACTTGTGC -ACGGAACAAGAGAAGGACCTAAGC -ACGGAACAAGAGAAGGACACTAGC -ACGGAACAAGAGAAGGACAGATGC -ACGGAACAAGAGAAGGACTGAAGG -ACGGAACAAGAGAAGGACCAATGG -ACGGAACAAGAGAAGGACATGAGG -ACGGAACAAGAGAAGGACAATGGG -ACGGAACAAGAGAAGGACTCCTGA -ACGGAACAAGAGAAGGACTAGCGA -ACGGAACAAGAGAAGGACCACAGA -ACGGAACAAGAGAAGGACGCAAGA -ACGGAACAAGAGAAGGACGGTTGA -ACGGAACAAGAGAAGGACTCCGAT -ACGGAACAAGAGAAGGACTGGCAT -ACGGAACAAGAGAAGGACCGAGAT -ACGGAACAAGAGAAGGACTACCAC -ACGGAACAAGAGAAGGACCAGAAC -ACGGAACAAGAGAAGGACGTCTAC -ACGGAACAAGAGAAGGACACGTAC -ACGGAACAAGAGAAGGACAGTGAC -ACGGAACAAGAGAAGGACCTGTAG -ACGGAACAAGAGAAGGACCCTAAG -ACGGAACAAGAGAAGGACGTTCAG -ACGGAACAAGAGAAGGACGCATAG -ACGGAACAAGAGAAGGACGACAAG -ACGGAACAAGAGAAGGACAAGCAG -ACGGAACAAGAGAAGGACCGTCAA -ACGGAACAAGAGAAGGACGCTGAA -ACGGAACAAGAGAAGGACAGTACG -ACGGAACAAGAGAAGGACATCCGA -ACGGAACAAGAGAAGGACATGGGA -ACGGAACAAGAGAAGGACGTGCAA -ACGGAACAAGAGAAGGACGAGGAA -ACGGAACAAGAGAAGGACCAGGTA -ACGGAACAAGAGAAGGACGACTCT -ACGGAACAAGAGAAGGACAGTCCT -ACGGAACAAGAGAAGGACTAAGCC -ACGGAACAAGAGAAGGACATAGCC -ACGGAACAAGAGAAGGACTAACCG -ACGGAACAAGAGAAGGACATGCCA -ACGGAACAAGAGCAGAAGGGAAAC -ACGGAACAAGAGCAGAAGAACACC -ACGGAACAAGAGCAGAAGATCGAG -ACGGAACAAGAGCAGAAGCTCCTT -ACGGAACAAGAGCAGAAGCCTGTT -ACGGAACAAGAGCAGAAGCGGTTT -ACGGAACAAGAGCAGAAGGTGGTT -ACGGAACAAGAGCAGAAGGCCTTT -ACGGAACAAGAGCAGAAGGGTCTT -ACGGAACAAGAGCAGAAGACGCTT -ACGGAACAAGAGCAGAAGAGCGTT -ACGGAACAAGAGCAGAAGTTCGTC -ACGGAACAAGAGCAGAAGTCTCTC -ACGGAACAAGAGCAGAAGTGGATC -ACGGAACAAGAGCAGAAGCACTTC -ACGGAACAAGAGCAGAAGGTACTC -ACGGAACAAGAGCAGAAGGATGTC -ACGGAACAAGAGCAGAAGACAGTC -ACGGAACAAGAGCAGAAGTTGCTG -ACGGAACAAGAGCAGAAGTCCATG -ACGGAACAAGAGCAGAAGTGTGTG -ACGGAACAAGAGCAGAAGCTAGTG -ACGGAACAAGAGCAGAAGCATCTG -ACGGAACAAGAGCAGAAGGAGTTG -ACGGAACAAGAGCAGAAGAGACTG -ACGGAACAAGAGCAGAAGTCGGTA -ACGGAACAAGAGCAGAAGTGCCTA -ACGGAACAAGAGCAGAAGCCACTA -ACGGAACAAGAGCAGAAGGGAGTA -ACGGAACAAGAGCAGAAGTCGTCT -ACGGAACAAGAGCAGAAGTGCACT -ACGGAACAAGAGCAGAAGCTGACT -ACGGAACAAGAGCAGAAGCAACCT -ACGGAACAAGAGCAGAAGGCTACT -ACGGAACAAGAGCAGAAGGGATCT -ACGGAACAAGAGCAGAAGAAGGCT -ACGGAACAAGAGCAGAAGTCAACC -ACGGAACAAGAGCAGAAGTGTTCC -ACGGAACAAGAGCAGAAGATTCCC -ACGGAACAAGAGCAGAAGTTCTCG -ACGGAACAAGAGCAGAAGTAGACG -ACGGAACAAGAGCAGAAGGTAACG -ACGGAACAAGAGCAGAAGACTTCG -ACGGAACAAGAGCAGAAGTACGCA -ACGGAACAAGAGCAGAAGCTTGCA -ACGGAACAAGAGCAGAAGCGAACA -ACGGAACAAGAGCAGAAGCAGTCA -ACGGAACAAGAGCAGAAGGATCCA -ACGGAACAAGAGCAGAAGACGACA -ACGGAACAAGAGCAGAAGAGCTCA -ACGGAACAAGAGCAGAAGTCACGT -ACGGAACAAGAGCAGAAGCGTAGT -ACGGAACAAGAGCAGAAGGTCAGT -ACGGAACAAGAGCAGAAGGAAGGT -ACGGAACAAGAGCAGAAGAACCGT -ACGGAACAAGAGCAGAAGTTGTGC -ACGGAACAAGAGCAGAAGCTAAGC -ACGGAACAAGAGCAGAAGACTAGC -ACGGAACAAGAGCAGAAGAGATGC -ACGGAACAAGAGCAGAAGTGAAGG -ACGGAACAAGAGCAGAAGCAATGG -ACGGAACAAGAGCAGAAGATGAGG -ACGGAACAAGAGCAGAAGAATGGG -ACGGAACAAGAGCAGAAGTCCTGA -ACGGAACAAGAGCAGAAGTAGCGA -ACGGAACAAGAGCAGAAGCACAGA -ACGGAACAAGAGCAGAAGGCAAGA -ACGGAACAAGAGCAGAAGGGTTGA -ACGGAACAAGAGCAGAAGTCCGAT -ACGGAACAAGAGCAGAAGTGGCAT -ACGGAACAAGAGCAGAAGCGAGAT -ACGGAACAAGAGCAGAAGTACCAC -ACGGAACAAGAGCAGAAGCAGAAC -ACGGAACAAGAGCAGAAGGTCTAC -ACGGAACAAGAGCAGAAGACGTAC -ACGGAACAAGAGCAGAAGAGTGAC -ACGGAACAAGAGCAGAAGCTGTAG -ACGGAACAAGAGCAGAAGCCTAAG -ACGGAACAAGAGCAGAAGGTTCAG -ACGGAACAAGAGCAGAAGGCATAG -ACGGAACAAGAGCAGAAGGACAAG -ACGGAACAAGAGCAGAAGAAGCAG -ACGGAACAAGAGCAGAAGCGTCAA -ACGGAACAAGAGCAGAAGGCTGAA -ACGGAACAAGAGCAGAAGAGTACG -ACGGAACAAGAGCAGAAGATCCGA -ACGGAACAAGAGCAGAAGATGGGA -ACGGAACAAGAGCAGAAGGTGCAA -ACGGAACAAGAGCAGAAGGAGGAA -ACGGAACAAGAGCAGAAGCAGGTA -ACGGAACAAGAGCAGAAGGACTCT -ACGGAACAAGAGCAGAAGAGTCCT -ACGGAACAAGAGCAGAAGTAAGCC -ACGGAACAAGAGCAGAAGATAGCC -ACGGAACAAGAGCAGAAGTAACCG -ACGGAACAAGAGCAGAAGATGCCA -ACGGAACAAGAGCAACGTGGAAAC -ACGGAACAAGAGCAACGTAACACC -ACGGAACAAGAGCAACGTATCGAG -ACGGAACAAGAGCAACGTCTCCTT -ACGGAACAAGAGCAACGTCCTGTT -ACGGAACAAGAGCAACGTCGGTTT -ACGGAACAAGAGCAACGTGTGGTT -ACGGAACAAGAGCAACGTGCCTTT -ACGGAACAAGAGCAACGTGGTCTT -ACGGAACAAGAGCAACGTACGCTT -ACGGAACAAGAGCAACGTAGCGTT -ACGGAACAAGAGCAACGTTTCGTC -ACGGAACAAGAGCAACGTTCTCTC -ACGGAACAAGAGCAACGTTGGATC -ACGGAACAAGAGCAACGTCACTTC -ACGGAACAAGAGCAACGTGTACTC -ACGGAACAAGAGCAACGTGATGTC -ACGGAACAAGAGCAACGTACAGTC -ACGGAACAAGAGCAACGTTTGCTG -ACGGAACAAGAGCAACGTTCCATG -ACGGAACAAGAGCAACGTTGTGTG -ACGGAACAAGAGCAACGTCTAGTG -ACGGAACAAGAGCAACGTCATCTG -ACGGAACAAGAGCAACGTGAGTTG -ACGGAACAAGAGCAACGTAGACTG -ACGGAACAAGAGCAACGTTCGGTA -ACGGAACAAGAGCAACGTTGCCTA -ACGGAACAAGAGCAACGTCCACTA -ACGGAACAAGAGCAACGTGGAGTA -ACGGAACAAGAGCAACGTTCGTCT -ACGGAACAAGAGCAACGTTGCACT -ACGGAACAAGAGCAACGTCTGACT -ACGGAACAAGAGCAACGTCAACCT -ACGGAACAAGAGCAACGTGCTACT -ACGGAACAAGAGCAACGTGGATCT -ACGGAACAAGAGCAACGTAAGGCT -ACGGAACAAGAGCAACGTTCAACC -ACGGAACAAGAGCAACGTTGTTCC -ACGGAACAAGAGCAACGTATTCCC -ACGGAACAAGAGCAACGTTTCTCG -ACGGAACAAGAGCAACGTTAGACG -ACGGAACAAGAGCAACGTGTAACG -ACGGAACAAGAGCAACGTACTTCG -ACGGAACAAGAGCAACGTTACGCA -ACGGAACAAGAGCAACGTCTTGCA -ACGGAACAAGAGCAACGTCGAACA -ACGGAACAAGAGCAACGTCAGTCA -ACGGAACAAGAGCAACGTGATCCA -ACGGAACAAGAGCAACGTACGACA -ACGGAACAAGAGCAACGTAGCTCA -ACGGAACAAGAGCAACGTTCACGT -ACGGAACAAGAGCAACGTCGTAGT -ACGGAACAAGAGCAACGTGTCAGT -ACGGAACAAGAGCAACGTGAAGGT -ACGGAACAAGAGCAACGTAACCGT -ACGGAACAAGAGCAACGTTTGTGC -ACGGAACAAGAGCAACGTCTAAGC -ACGGAACAAGAGCAACGTACTAGC -ACGGAACAAGAGCAACGTAGATGC -ACGGAACAAGAGCAACGTTGAAGG -ACGGAACAAGAGCAACGTCAATGG -ACGGAACAAGAGCAACGTATGAGG -ACGGAACAAGAGCAACGTAATGGG -ACGGAACAAGAGCAACGTTCCTGA -ACGGAACAAGAGCAACGTTAGCGA -ACGGAACAAGAGCAACGTCACAGA -ACGGAACAAGAGCAACGTGCAAGA -ACGGAACAAGAGCAACGTGGTTGA -ACGGAACAAGAGCAACGTTCCGAT -ACGGAACAAGAGCAACGTTGGCAT -ACGGAACAAGAGCAACGTCGAGAT -ACGGAACAAGAGCAACGTTACCAC -ACGGAACAAGAGCAACGTCAGAAC -ACGGAACAAGAGCAACGTGTCTAC -ACGGAACAAGAGCAACGTACGTAC -ACGGAACAAGAGCAACGTAGTGAC -ACGGAACAAGAGCAACGTCTGTAG -ACGGAACAAGAGCAACGTCCTAAG -ACGGAACAAGAGCAACGTGTTCAG -ACGGAACAAGAGCAACGTGCATAG -ACGGAACAAGAGCAACGTGACAAG -ACGGAACAAGAGCAACGTAAGCAG -ACGGAACAAGAGCAACGTCGTCAA -ACGGAACAAGAGCAACGTGCTGAA -ACGGAACAAGAGCAACGTAGTACG -ACGGAACAAGAGCAACGTATCCGA -ACGGAACAAGAGCAACGTATGGGA -ACGGAACAAGAGCAACGTGTGCAA -ACGGAACAAGAGCAACGTGAGGAA -ACGGAACAAGAGCAACGTCAGGTA -ACGGAACAAGAGCAACGTGACTCT -ACGGAACAAGAGCAACGTAGTCCT -ACGGAACAAGAGCAACGTTAAGCC -ACGGAACAAGAGCAACGTATAGCC -ACGGAACAAGAGCAACGTTAACCG -ACGGAACAAGAGCAACGTATGCCA -ACGGAACAAGAGGAAGCTGGAAAC -ACGGAACAAGAGGAAGCTAACACC -ACGGAACAAGAGGAAGCTATCGAG -ACGGAACAAGAGGAAGCTCTCCTT -ACGGAACAAGAGGAAGCTCCTGTT -ACGGAACAAGAGGAAGCTCGGTTT -ACGGAACAAGAGGAAGCTGTGGTT -ACGGAACAAGAGGAAGCTGCCTTT -ACGGAACAAGAGGAAGCTGGTCTT -ACGGAACAAGAGGAAGCTACGCTT -ACGGAACAAGAGGAAGCTAGCGTT -ACGGAACAAGAGGAAGCTTTCGTC -ACGGAACAAGAGGAAGCTTCTCTC -ACGGAACAAGAGGAAGCTTGGATC -ACGGAACAAGAGGAAGCTCACTTC -ACGGAACAAGAGGAAGCTGTACTC -ACGGAACAAGAGGAAGCTGATGTC -ACGGAACAAGAGGAAGCTACAGTC -ACGGAACAAGAGGAAGCTTTGCTG -ACGGAACAAGAGGAAGCTTCCATG -ACGGAACAAGAGGAAGCTTGTGTG -ACGGAACAAGAGGAAGCTCTAGTG -ACGGAACAAGAGGAAGCTCATCTG -ACGGAACAAGAGGAAGCTGAGTTG -ACGGAACAAGAGGAAGCTAGACTG -ACGGAACAAGAGGAAGCTTCGGTA -ACGGAACAAGAGGAAGCTTGCCTA -ACGGAACAAGAGGAAGCTCCACTA -ACGGAACAAGAGGAAGCTGGAGTA -ACGGAACAAGAGGAAGCTTCGTCT -ACGGAACAAGAGGAAGCTTGCACT -ACGGAACAAGAGGAAGCTCTGACT -ACGGAACAAGAGGAAGCTCAACCT -ACGGAACAAGAGGAAGCTGCTACT -ACGGAACAAGAGGAAGCTGGATCT -ACGGAACAAGAGGAAGCTAAGGCT -ACGGAACAAGAGGAAGCTTCAACC -ACGGAACAAGAGGAAGCTTGTTCC -ACGGAACAAGAGGAAGCTATTCCC -ACGGAACAAGAGGAAGCTTTCTCG -ACGGAACAAGAGGAAGCTTAGACG -ACGGAACAAGAGGAAGCTGTAACG -ACGGAACAAGAGGAAGCTACTTCG -ACGGAACAAGAGGAAGCTTACGCA -ACGGAACAAGAGGAAGCTCTTGCA -ACGGAACAAGAGGAAGCTCGAACA -ACGGAACAAGAGGAAGCTCAGTCA -ACGGAACAAGAGGAAGCTGATCCA -ACGGAACAAGAGGAAGCTACGACA -ACGGAACAAGAGGAAGCTAGCTCA -ACGGAACAAGAGGAAGCTTCACGT -ACGGAACAAGAGGAAGCTCGTAGT -ACGGAACAAGAGGAAGCTGTCAGT -ACGGAACAAGAGGAAGCTGAAGGT -ACGGAACAAGAGGAAGCTAACCGT -ACGGAACAAGAGGAAGCTTTGTGC -ACGGAACAAGAGGAAGCTCTAAGC -ACGGAACAAGAGGAAGCTACTAGC -ACGGAACAAGAGGAAGCTAGATGC -ACGGAACAAGAGGAAGCTTGAAGG -ACGGAACAAGAGGAAGCTCAATGG -ACGGAACAAGAGGAAGCTATGAGG -ACGGAACAAGAGGAAGCTAATGGG -ACGGAACAAGAGGAAGCTTCCTGA -ACGGAACAAGAGGAAGCTTAGCGA -ACGGAACAAGAGGAAGCTCACAGA -ACGGAACAAGAGGAAGCTGCAAGA -ACGGAACAAGAGGAAGCTGGTTGA -ACGGAACAAGAGGAAGCTTCCGAT -ACGGAACAAGAGGAAGCTTGGCAT -ACGGAACAAGAGGAAGCTCGAGAT -ACGGAACAAGAGGAAGCTTACCAC -ACGGAACAAGAGGAAGCTCAGAAC -ACGGAACAAGAGGAAGCTGTCTAC -ACGGAACAAGAGGAAGCTACGTAC -ACGGAACAAGAGGAAGCTAGTGAC -ACGGAACAAGAGGAAGCTCTGTAG -ACGGAACAAGAGGAAGCTCCTAAG -ACGGAACAAGAGGAAGCTGTTCAG -ACGGAACAAGAGGAAGCTGCATAG -ACGGAACAAGAGGAAGCTGACAAG -ACGGAACAAGAGGAAGCTAAGCAG -ACGGAACAAGAGGAAGCTCGTCAA -ACGGAACAAGAGGAAGCTGCTGAA -ACGGAACAAGAGGAAGCTAGTACG -ACGGAACAAGAGGAAGCTATCCGA -ACGGAACAAGAGGAAGCTATGGGA -ACGGAACAAGAGGAAGCTGTGCAA -ACGGAACAAGAGGAAGCTGAGGAA -ACGGAACAAGAGGAAGCTCAGGTA -ACGGAACAAGAGGAAGCTGACTCT -ACGGAACAAGAGGAAGCTAGTCCT -ACGGAACAAGAGGAAGCTTAAGCC -ACGGAACAAGAGGAAGCTATAGCC -ACGGAACAAGAGGAAGCTTAACCG -ACGGAACAAGAGGAAGCTATGCCA -ACGGAACAAGAGACGAGTGGAAAC -ACGGAACAAGAGACGAGTAACACC -ACGGAACAAGAGACGAGTATCGAG -ACGGAACAAGAGACGAGTCTCCTT -ACGGAACAAGAGACGAGTCCTGTT -ACGGAACAAGAGACGAGTCGGTTT -ACGGAACAAGAGACGAGTGTGGTT -ACGGAACAAGAGACGAGTGCCTTT -ACGGAACAAGAGACGAGTGGTCTT -ACGGAACAAGAGACGAGTACGCTT -ACGGAACAAGAGACGAGTAGCGTT -ACGGAACAAGAGACGAGTTTCGTC -ACGGAACAAGAGACGAGTTCTCTC -ACGGAACAAGAGACGAGTTGGATC -ACGGAACAAGAGACGAGTCACTTC -ACGGAACAAGAGACGAGTGTACTC -ACGGAACAAGAGACGAGTGATGTC -ACGGAACAAGAGACGAGTACAGTC -ACGGAACAAGAGACGAGTTTGCTG -ACGGAACAAGAGACGAGTTCCATG -ACGGAACAAGAGACGAGTTGTGTG -ACGGAACAAGAGACGAGTCTAGTG -ACGGAACAAGAGACGAGTCATCTG -ACGGAACAAGAGACGAGTGAGTTG -ACGGAACAAGAGACGAGTAGACTG -ACGGAACAAGAGACGAGTTCGGTA -ACGGAACAAGAGACGAGTTGCCTA -ACGGAACAAGAGACGAGTCCACTA -ACGGAACAAGAGACGAGTGGAGTA -ACGGAACAAGAGACGAGTTCGTCT -ACGGAACAAGAGACGAGTTGCACT -ACGGAACAAGAGACGAGTCTGACT -ACGGAACAAGAGACGAGTCAACCT -ACGGAACAAGAGACGAGTGCTACT -ACGGAACAAGAGACGAGTGGATCT -ACGGAACAAGAGACGAGTAAGGCT -ACGGAACAAGAGACGAGTTCAACC -ACGGAACAAGAGACGAGTTGTTCC -ACGGAACAAGAGACGAGTATTCCC -ACGGAACAAGAGACGAGTTTCTCG -ACGGAACAAGAGACGAGTTAGACG -ACGGAACAAGAGACGAGTGTAACG -ACGGAACAAGAGACGAGTACTTCG -ACGGAACAAGAGACGAGTTACGCA -ACGGAACAAGAGACGAGTCTTGCA -ACGGAACAAGAGACGAGTCGAACA -ACGGAACAAGAGACGAGTCAGTCA -ACGGAACAAGAGACGAGTGATCCA -ACGGAACAAGAGACGAGTACGACA -ACGGAACAAGAGACGAGTAGCTCA -ACGGAACAAGAGACGAGTTCACGT -ACGGAACAAGAGACGAGTCGTAGT -ACGGAACAAGAGACGAGTGTCAGT -ACGGAACAAGAGACGAGTGAAGGT -ACGGAACAAGAGACGAGTAACCGT -ACGGAACAAGAGACGAGTTTGTGC -ACGGAACAAGAGACGAGTCTAAGC -ACGGAACAAGAGACGAGTACTAGC -ACGGAACAAGAGACGAGTAGATGC -ACGGAACAAGAGACGAGTTGAAGG -ACGGAACAAGAGACGAGTCAATGG -ACGGAACAAGAGACGAGTATGAGG -ACGGAACAAGAGACGAGTAATGGG -ACGGAACAAGAGACGAGTTCCTGA -ACGGAACAAGAGACGAGTTAGCGA -ACGGAACAAGAGACGAGTCACAGA -ACGGAACAAGAGACGAGTGCAAGA -ACGGAACAAGAGACGAGTGGTTGA -ACGGAACAAGAGACGAGTTCCGAT -ACGGAACAAGAGACGAGTTGGCAT -ACGGAACAAGAGACGAGTCGAGAT -ACGGAACAAGAGACGAGTTACCAC -ACGGAACAAGAGACGAGTCAGAAC -ACGGAACAAGAGACGAGTGTCTAC -ACGGAACAAGAGACGAGTACGTAC -ACGGAACAAGAGACGAGTAGTGAC -ACGGAACAAGAGACGAGTCTGTAG -ACGGAACAAGAGACGAGTCCTAAG -ACGGAACAAGAGACGAGTGTTCAG -ACGGAACAAGAGACGAGTGCATAG -ACGGAACAAGAGACGAGTGACAAG -ACGGAACAAGAGACGAGTAAGCAG -ACGGAACAAGAGACGAGTCGTCAA -ACGGAACAAGAGACGAGTGCTGAA -ACGGAACAAGAGACGAGTAGTACG -ACGGAACAAGAGACGAGTATCCGA -ACGGAACAAGAGACGAGTATGGGA -ACGGAACAAGAGACGAGTGTGCAA -ACGGAACAAGAGACGAGTGAGGAA -ACGGAACAAGAGACGAGTCAGGTA -ACGGAACAAGAGACGAGTGACTCT -ACGGAACAAGAGACGAGTAGTCCT -ACGGAACAAGAGACGAGTTAAGCC -ACGGAACAAGAGACGAGTATAGCC -ACGGAACAAGAGACGAGTTAACCG -ACGGAACAAGAGACGAGTATGCCA -ACGGAACAAGAGCGAATCGGAAAC -ACGGAACAAGAGCGAATCAACACC -ACGGAACAAGAGCGAATCATCGAG -ACGGAACAAGAGCGAATCCTCCTT -ACGGAACAAGAGCGAATCCCTGTT -ACGGAACAAGAGCGAATCCGGTTT -ACGGAACAAGAGCGAATCGTGGTT -ACGGAACAAGAGCGAATCGCCTTT -ACGGAACAAGAGCGAATCGGTCTT -ACGGAACAAGAGCGAATCACGCTT -ACGGAACAAGAGCGAATCAGCGTT -ACGGAACAAGAGCGAATCTTCGTC -ACGGAACAAGAGCGAATCTCTCTC -ACGGAACAAGAGCGAATCTGGATC -ACGGAACAAGAGCGAATCCACTTC -ACGGAACAAGAGCGAATCGTACTC -ACGGAACAAGAGCGAATCGATGTC -ACGGAACAAGAGCGAATCACAGTC -ACGGAACAAGAGCGAATCTTGCTG -ACGGAACAAGAGCGAATCTCCATG -ACGGAACAAGAGCGAATCTGTGTG -ACGGAACAAGAGCGAATCCTAGTG -ACGGAACAAGAGCGAATCCATCTG -ACGGAACAAGAGCGAATCGAGTTG -ACGGAACAAGAGCGAATCAGACTG -ACGGAACAAGAGCGAATCTCGGTA -ACGGAACAAGAGCGAATCTGCCTA -ACGGAACAAGAGCGAATCCCACTA -ACGGAACAAGAGCGAATCGGAGTA -ACGGAACAAGAGCGAATCTCGTCT -ACGGAACAAGAGCGAATCTGCACT -ACGGAACAAGAGCGAATCCTGACT -ACGGAACAAGAGCGAATCCAACCT -ACGGAACAAGAGCGAATCGCTACT -ACGGAACAAGAGCGAATCGGATCT -ACGGAACAAGAGCGAATCAAGGCT -ACGGAACAAGAGCGAATCTCAACC -ACGGAACAAGAGCGAATCTGTTCC -ACGGAACAAGAGCGAATCATTCCC -ACGGAACAAGAGCGAATCTTCTCG -ACGGAACAAGAGCGAATCTAGACG -ACGGAACAAGAGCGAATCGTAACG -ACGGAACAAGAGCGAATCACTTCG -ACGGAACAAGAGCGAATCTACGCA -ACGGAACAAGAGCGAATCCTTGCA -ACGGAACAAGAGCGAATCCGAACA -ACGGAACAAGAGCGAATCCAGTCA -ACGGAACAAGAGCGAATCGATCCA -ACGGAACAAGAGCGAATCACGACA -ACGGAACAAGAGCGAATCAGCTCA -ACGGAACAAGAGCGAATCTCACGT -ACGGAACAAGAGCGAATCCGTAGT -ACGGAACAAGAGCGAATCGTCAGT -ACGGAACAAGAGCGAATCGAAGGT -ACGGAACAAGAGCGAATCAACCGT -ACGGAACAAGAGCGAATCTTGTGC -ACGGAACAAGAGCGAATCCTAAGC -ACGGAACAAGAGCGAATCACTAGC -ACGGAACAAGAGCGAATCAGATGC -ACGGAACAAGAGCGAATCTGAAGG -ACGGAACAAGAGCGAATCCAATGG -ACGGAACAAGAGCGAATCATGAGG -ACGGAACAAGAGCGAATCAATGGG -ACGGAACAAGAGCGAATCTCCTGA -ACGGAACAAGAGCGAATCTAGCGA -ACGGAACAAGAGCGAATCCACAGA -ACGGAACAAGAGCGAATCGCAAGA -ACGGAACAAGAGCGAATCGGTTGA -ACGGAACAAGAGCGAATCTCCGAT -ACGGAACAAGAGCGAATCTGGCAT -ACGGAACAAGAGCGAATCCGAGAT -ACGGAACAAGAGCGAATCTACCAC -ACGGAACAAGAGCGAATCCAGAAC -ACGGAACAAGAGCGAATCGTCTAC -ACGGAACAAGAGCGAATCACGTAC -ACGGAACAAGAGCGAATCAGTGAC -ACGGAACAAGAGCGAATCCTGTAG -ACGGAACAAGAGCGAATCCCTAAG -ACGGAACAAGAGCGAATCGTTCAG -ACGGAACAAGAGCGAATCGCATAG -ACGGAACAAGAGCGAATCGACAAG -ACGGAACAAGAGCGAATCAAGCAG -ACGGAACAAGAGCGAATCCGTCAA -ACGGAACAAGAGCGAATCGCTGAA -ACGGAACAAGAGCGAATCAGTACG -ACGGAACAAGAGCGAATCATCCGA -ACGGAACAAGAGCGAATCATGGGA -ACGGAACAAGAGCGAATCGTGCAA -ACGGAACAAGAGCGAATCGAGGAA -ACGGAACAAGAGCGAATCCAGGTA -ACGGAACAAGAGCGAATCGACTCT -ACGGAACAAGAGCGAATCAGTCCT -ACGGAACAAGAGCGAATCTAAGCC -ACGGAACAAGAGCGAATCATAGCC -ACGGAACAAGAGCGAATCTAACCG -ACGGAACAAGAGCGAATCATGCCA -ACGGAACAAGAGGGAATGGGAAAC -ACGGAACAAGAGGGAATGAACACC -ACGGAACAAGAGGGAATGATCGAG -ACGGAACAAGAGGGAATGCTCCTT -ACGGAACAAGAGGGAATGCCTGTT -ACGGAACAAGAGGGAATGCGGTTT -ACGGAACAAGAGGGAATGGTGGTT -ACGGAACAAGAGGGAATGGCCTTT -ACGGAACAAGAGGGAATGGGTCTT -ACGGAACAAGAGGGAATGACGCTT -ACGGAACAAGAGGGAATGAGCGTT -ACGGAACAAGAGGGAATGTTCGTC -ACGGAACAAGAGGGAATGTCTCTC -ACGGAACAAGAGGGAATGTGGATC -ACGGAACAAGAGGGAATGCACTTC -ACGGAACAAGAGGGAATGGTACTC -ACGGAACAAGAGGGAATGGATGTC -ACGGAACAAGAGGGAATGACAGTC -ACGGAACAAGAGGGAATGTTGCTG -ACGGAACAAGAGGGAATGTCCATG -ACGGAACAAGAGGGAATGTGTGTG -ACGGAACAAGAGGGAATGCTAGTG -ACGGAACAAGAGGGAATGCATCTG -ACGGAACAAGAGGGAATGGAGTTG -ACGGAACAAGAGGGAATGAGACTG -ACGGAACAAGAGGGAATGTCGGTA -ACGGAACAAGAGGGAATGTGCCTA -ACGGAACAAGAGGGAATGCCACTA -ACGGAACAAGAGGGAATGGGAGTA -ACGGAACAAGAGGGAATGTCGTCT -ACGGAACAAGAGGGAATGTGCACT -ACGGAACAAGAGGGAATGCTGACT -ACGGAACAAGAGGGAATGCAACCT -ACGGAACAAGAGGGAATGGCTACT -ACGGAACAAGAGGGAATGGGATCT -ACGGAACAAGAGGGAATGAAGGCT -ACGGAACAAGAGGGAATGTCAACC -ACGGAACAAGAGGGAATGTGTTCC -ACGGAACAAGAGGGAATGATTCCC -ACGGAACAAGAGGGAATGTTCTCG -ACGGAACAAGAGGGAATGTAGACG -ACGGAACAAGAGGGAATGGTAACG -ACGGAACAAGAGGGAATGACTTCG -ACGGAACAAGAGGGAATGTACGCA -ACGGAACAAGAGGGAATGCTTGCA -ACGGAACAAGAGGGAATGCGAACA -ACGGAACAAGAGGGAATGCAGTCA -ACGGAACAAGAGGGAATGGATCCA -ACGGAACAAGAGGGAATGACGACA -ACGGAACAAGAGGGAATGAGCTCA -ACGGAACAAGAGGGAATGTCACGT -ACGGAACAAGAGGGAATGCGTAGT -ACGGAACAAGAGGGAATGGTCAGT -ACGGAACAAGAGGGAATGGAAGGT -ACGGAACAAGAGGGAATGAACCGT -ACGGAACAAGAGGGAATGTTGTGC -ACGGAACAAGAGGGAATGCTAAGC -ACGGAACAAGAGGGAATGACTAGC -ACGGAACAAGAGGGAATGAGATGC -ACGGAACAAGAGGGAATGTGAAGG -ACGGAACAAGAGGGAATGCAATGG -ACGGAACAAGAGGGAATGATGAGG -ACGGAACAAGAGGGAATGAATGGG -ACGGAACAAGAGGGAATGTCCTGA -ACGGAACAAGAGGGAATGTAGCGA -ACGGAACAAGAGGGAATGCACAGA -ACGGAACAAGAGGGAATGGCAAGA -ACGGAACAAGAGGGAATGGGTTGA -ACGGAACAAGAGGGAATGTCCGAT -ACGGAACAAGAGGGAATGTGGCAT -ACGGAACAAGAGGGAATGCGAGAT -ACGGAACAAGAGGGAATGTACCAC -ACGGAACAAGAGGGAATGCAGAAC -ACGGAACAAGAGGGAATGGTCTAC -ACGGAACAAGAGGGAATGACGTAC -ACGGAACAAGAGGGAATGAGTGAC -ACGGAACAAGAGGGAATGCTGTAG -ACGGAACAAGAGGGAATGCCTAAG -ACGGAACAAGAGGGAATGGTTCAG -ACGGAACAAGAGGGAATGGCATAG -ACGGAACAAGAGGGAATGGACAAG -ACGGAACAAGAGGGAATGAAGCAG -ACGGAACAAGAGGGAATGCGTCAA -ACGGAACAAGAGGGAATGGCTGAA -ACGGAACAAGAGGGAATGAGTACG -ACGGAACAAGAGGGAATGATCCGA -ACGGAACAAGAGGGAATGATGGGA -ACGGAACAAGAGGGAATGGTGCAA -ACGGAACAAGAGGGAATGGAGGAA -ACGGAACAAGAGGGAATGCAGGTA -ACGGAACAAGAGGGAATGGACTCT -ACGGAACAAGAGGGAATGAGTCCT -ACGGAACAAGAGGGAATGTAAGCC -ACGGAACAAGAGGGAATGATAGCC -ACGGAACAAGAGGGAATGTAACCG -ACGGAACAAGAGGGAATGATGCCA -ACGGAACAAGAGCAAGTGGGAAAC -ACGGAACAAGAGCAAGTGAACACC -ACGGAACAAGAGCAAGTGATCGAG -ACGGAACAAGAGCAAGTGCTCCTT -ACGGAACAAGAGCAAGTGCCTGTT -ACGGAACAAGAGCAAGTGCGGTTT -ACGGAACAAGAGCAAGTGGTGGTT -ACGGAACAAGAGCAAGTGGCCTTT -ACGGAACAAGAGCAAGTGGGTCTT -ACGGAACAAGAGCAAGTGACGCTT -ACGGAACAAGAGCAAGTGAGCGTT -ACGGAACAAGAGCAAGTGTTCGTC -ACGGAACAAGAGCAAGTGTCTCTC -ACGGAACAAGAGCAAGTGTGGATC -ACGGAACAAGAGCAAGTGCACTTC -ACGGAACAAGAGCAAGTGGTACTC -ACGGAACAAGAGCAAGTGGATGTC -ACGGAACAAGAGCAAGTGACAGTC -ACGGAACAAGAGCAAGTGTTGCTG -ACGGAACAAGAGCAAGTGTCCATG -ACGGAACAAGAGCAAGTGTGTGTG -ACGGAACAAGAGCAAGTGCTAGTG -ACGGAACAAGAGCAAGTGCATCTG -ACGGAACAAGAGCAAGTGGAGTTG -ACGGAACAAGAGCAAGTGAGACTG -ACGGAACAAGAGCAAGTGTCGGTA -ACGGAACAAGAGCAAGTGTGCCTA -ACGGAACAAGAGCAAGTGCCACTA -ACGGAACAAGAGCAAGTGGGAGTA -ACGGAACAAGAGCAAGTGTCGTCT -ACGGAACAAGAGCAAGTGTGCACT -ACGGAACAAGAGCAAGTGCTGACT -ACGGAACAAGAGCAAGTGCAACCT -ACGGAACAAGAGCAAGTGGCTACT -ACGGAACAAGAGCAAGTGGGATCT -ACGGAACAAGAGCAAGTGAAGGCT -ACGGAACAAGAGCAAGTGTCAACC -ACGGAACAAGAGCAAGTGTGTTCC -ACGGAACAAGAGCAAGTGATTCCC -ACGGAACAAGAGCAAGTGTTCTCG -ACGGAACAAGAGCAAGTGTAGACG -ACGGAACAAGAGCAAGTGGTAACG -ACGGAACAAGAGCAAGTGACTTCG -ACGGAACAAGAGCAAGTGTACGCA -ACGGAACAAGAGCAAGTGCTTGCA -ACGGAACAAGAGCAAGTGCGAACA -ACGGAACAAGAGCAAGTGCAGTCA -ACGGAACAAGAGCAAGTGGATCCA -ACGGAACAAGAGCAAGTGACGACA -ACGGAACAAGAGCAAGTGAGCTCA -ACGGAACAAGAGCAAGTGTCACGT -ACGGAACAAGAGCAAGTGCGTAGT -ACGGAACAAGAGCAAGTGGTCAGT -ACGGAACAAGAGCAAGTGGAAGGT -ACGGAACAAGAGCAAGTGAACCGT -ACGGAACAAGAGCAAGTGTTGTGC -ACGGAACAAGAGCAAGTGCTAAGC -ACGGAACAAGAGCAAGTGACTAGC -ACGGAACAAGAGCAAGTGAGATGC -ACGGAACAAGAGCAAGTGTGAAGG -ACGGAACAAGAGCAAGTGCAATGG -ACGGAACAAGAGCAAGTGATGAGG -ACGGAACAAGAGCAAGTGAATGGG -ACGGAACAAGAGCAAGTGTCCTGA -ACGGAACAAGAGCAAGTGTAGCGA -ACGGAACAAGAGCAAGTGCACAGA -ACGGAACAAGAGCAAGTGGCAAGA -ACGGAACAAGAGCAAGTGGGTTGA -ACGGAACAAGAGCAAGTGTCCGAT -ACGGAACAAGAGCAAGTGTGGCAT -ACGGAACAAGAGCAAGTGCGAGAT -ACGGAACAAGAGCAAGTGTACCAC -ACGGAACAAGAGCAAGTGCAGAAC -ACGGAACAAGAGCAAGTGGTCTAC -ACGGAACAAGAGCAAGTGACGTAC -ACGGAACAAGAGCAAGTGAGTGAC -ACGGAACAAGAGCAAGTGCTGTAG -ACGGAACAAGAGCAAGTGCCTAAG -ACGGAACAAGAGCAAGTGGTTCAG -ACGGAACAAGAGCAAGTGGCATAG -ACGGAACAAGAGCAAGTGGACAAG -ACGGAACAAGAGCAAGTGAAGCAG -ACGGAACAAGAGCAAGTGCGTCAA -ACGGAACAAGAGCAAGTGGCTGAA -ACGGAACAAGAGCAAGTGAGTACG -ACGGAACAAGAGCAAGTGATCCGA -ACGGAACAAGAGCAAGTGATGGGA -ACGGAACAAGAGCAAGTGGTGCAA -ACGGAACAAGAGCAAGTGGAGGAA -ACGGAACAAGAGCAAGTGCAGGTA -ACGGAACAAGAGCAAGTGGACTCT -ACGGAACAAGAGCAAGTGAGTCCT -ACGGAACAAGAGCAAGTGTAAGCC -ACGGAACAAGAGCAAGTGATAGCC -ACGGAACAAGAGCAAGTGTAACCG -ACGGAACAAGAGCAAGTGATGCCA -ACGGAACAAGAGGAAGAGGGAAAC -ACGGAACAAGAGGAAGAGAACACC -ACGGAACAAGAGGAAGAGATCGAG -ACGGAACAAGAGGAAGAGCTCCTT -ACGGAACAAGAGGAAGAGCCTGTT -ACGGAACAAGAGGAAGAGCGGTTT -ACGGAACAAGAGGAAGAGGTGGTT -ACGGAACAAGAGGAAGAGGCCTTT -ACGGAACAAGAGGAAGAGGGTCTT -ACGGAACAAGAGGAAGAGACGCTT -ACGGAACAAGAGGAAGAGAGCGTT -ACGGAACAAGAGGAAGAGTTCGTC -ACGGAACAAGAGGAAGAGTCTCTC -ACGGAACAAGAGGAAGAGTGGATC -ACGGAACAAGAGGAAGAGCACTTC -ACGGAACAAGAGGAAGAGGTACTC -ACGGAACAAGAGGAAGAGGATGTC -ACGGAACAAGAGGAAGAGACAGTC -ACGGAACAAGAGGAAGAGTTGCTG -ACGGAACAAGAGGAAGAGTCCATG -ACGGAACAAGAGGAAGAGTGTGTG -ACGGAACAAGAGGAAGAGCTAGTG -ACGGAACAAGAGGAAGAGCATCTG -ACGGAACAAGAGGAAGAGGAGTTG -ACGGAACAAGAGGAAGAGAGACTG -ACGGAACAAGAGGAAGAGTCGGTA -ACGGAACAAGAGGAAGAGTGCCTA -ACGGAACAAGAGGAAGAGCCACTA -ACGGAACAAGAGGAAGAGGGAGTA -ACGGAACAAGAGGAAGAGTCGTCT -ACGGAACAAGAGGAAGAGTGCACT -ACGGAACAAGAGGAAGAGCTGACT -ACGGAACAAGAGGAAGAGCAACCT -ACGGAACAAGAGGAAGAGGCTACT -ACGGAACAAGAGGAAGAGGGATCT -ACGGAACAAGAGGAAGAGAAGGCT -ACGGAACAAGAGGAAGAGTCAACC -ACGGAACAAGAGGAAGAGTGTTCC -ACGGAACAAGAGGAAGAGATTCCC -ACGGAACAAGAGGAAGAGTTCTCG -ACGGAACAAGAGGAAGAGTAGACG -ACGGAACAAGAGGAAGAGGTAACG -ACGGAACAAGAGGAAGAGACTTCG -ACGGAACAAGAGGAAGAGTACGCA -ACGGAACAAGAGGAAGAGCTTGCA -ACGGAACAAGAGGAAGAGCGAACA -ACGGAACAAGAGGAAGAGCAGTCA -ACGGAACAAGAGGAAGAGGATCCA -ACGGAACAAGAGGAAGAGACGACA -ACGGAACAAGAGGAAGAGAGCTCA -ACGGAACAAGAGGAAGAGTCACGT -ACGGAACAAGAGGAAGAGCGTAGT -ACGGAACAAGAGGAAGAGGTCAGT -ACGGAACAAGAGGAAGAGGAAGGT -ACGGAACAAGAGGAAGAGAACCGT -ACGGAACAAGAGGAAGAGTTGTGC -ACGGAACAAGAGGAAGAGCTAAGC -ACGGAACAAGAGGAAGAGACTAGC -ACGGAACAAGAGGAAGAGAGATGC -ACGGAACAAGAGGAAGAGTGAAGG -ACGGAACAAGAGGAAGAGCAATGG -ACGGAACAAGAGGAAGAGATGAGG -ACGGAACAAGAGGAAGAGAATGGG -ACGGAACAAGAGGAAGAGTCCTGA -ACGGAACAAGAGGAAGAGTAGCGA -ACGGAACAAGAGGAAGAGCACAGA -ACGGAACAAGAGGAAGAGGCAAGA -ACGGAACAAGAGGAAGAGGGTTGA -ACGGAACAAGAGGAAGAGTCCGAT -ACGGAACAAGAGGAAGAGTGGCAT -ACGGAACAAGAGGAAGAGCGAGAT -ACGGAACAAGAGGAAGAGTACCAC -ACGGAACAAGAGGAAGAGCAGAAC -ACGGAACAAGAGGAAGAGGTCTAC -ACGGAACAAGAGGAAGAGACGTAC -ACGGAACAAGAGGAAGAGAGTGAC -ACGGAACAAGAGGAAGAGCTGTAG -ACGGAACAAGAGGAAGAGCCTAAG -ACGGAACAAGAGGAAGAGGTTCAG -ACGGAACAAGAGGAAGAGGCATAG -ACGGAACAAGAGGAAGAGGACAAG -ACGGAACAAGAGGAAGAGAAGCAG -ACGGAACAAGAGGAAGAGCGTCAA -ACGGAACAAGAGGAAGAGGCTGAA -ACGGAACAAGAGGAAGAGAGTACG -ACGGAACAAGAGGAAGAGATCCGA -ACGGAACAAGAGGAAGAGATGGGA -ACGGAACAAGAGGAAGAGGTGCAA -ACGGAACAAGAGGAAGAGGAGGAA -ACGGAACAAGAGGAAGAGCAGGTA -ACGGAACAAGAGGAAGAGGACTCT -ACGGAACAAGAGGAAGAGAGTCCT -ACGGAACAAGAGGAAGAGTAAGCC -ACGGAACAAGAGGAAGAGATAGCC -ACGGAACAAGAGGAAGAGTAACCG -ACGGAACAAGAGGAAGAGATGCCA -ACGGAACAAGAGGTACAGGGAAAC -ACGGAACAAGAGGTACAGAACACC -ACGGAACAAGAGGTACAGATCGAG -ACGGAACAAGAGGTACAGCTCCTT -ACGGAACAAGAGGTACAGCCTGTT -ACGGAACAAGAGGTACAGCGGTTT -ACGGAACAAGAGGTACAGGTGGTT -ACGGAACAAGAGGTACAGGCCTTT -ACGGAACAAGAGGTACAGGGTCTT -ACGGAACAAGAGGTACAGACGCTT -ACGGAACAAGAGGTACAGAGCGTT -ACGGAACAAGAGGTACAGTTCGTC -ACGGAACAAGAGGTACAGTCTCTC -ACGGAACAAGAGGTACAGTGGATC -ACGGAACAAGAGGTACAGCACTTC -ACGGAACAAGAGGTACAGGTACTC -ACGGAACAAGAGGTACAGGATGTC -ACGGAACAAGAGGTACAGACAGTC -ACGGAACAAGAGGTACAGTTGCTG -ACGGAACAAGAGGTACAGTCCATG -ACGGAACAAGAGGTACAGTGTGTG -ACGGAACAAGAGGTACAGCTAGTG -ACGGAACAAGAGGTACAGCATCTG -ACGGAACAAGAGGTACAGGAGTTG -ACGGAACAAGAGGTACAGAGACTG -ACGGAACAAGAGGTACAGTCGGTA -ACGGAACAAGAGGTACAGTGCCTA -ACGGAACAAGAGGTACAGCCACTA -ACGGAACAAGAGGTACAGGGAGTA -ACGGAACAAGAGGTACAGTCGTCT -ACGGAACAAGAGGTACAGTGCACT -ACGGAACAAGAGGTACAGCTGACT -ACGGAACAAGAGGTACAGCAACCT -ACGGAACAAGAGGTACAGGCTACT -ACGGAACAAGAGGTACAGGGATCT -ACGGAACAAGAGGTACAGAAGGCT -ACGGAACAAGAGGTACAGTCAACC -ACGGAACAAGAGGTACAGTGTTCC -ACGGAACAAGAGGTACAGATTCCC -ACGGAACAAGAGGTACAGTTCTCG -ACGGAACAAGAGGTACAGTAGACG -ACGGAACAAGAGGTACAGGTAACG -ACGGAACAAGAGGTACAGACTTCG -ACGGAACAAGAGGTACAGTACGCA -ACGGAACAAGAGGTACAGCTTGCA -ACGGAACAAGAGGTACAGCGAACA -ACGGAACAAGAGGTACAGCAGTCA -ACGGAACAAGAGGTACAGGATCCA -ACGGAACAAGAGGTACAGACGACA -ACGGAACAAGAGGTACAGAGCTCA -ACGGAACAAGAGGTACAGTCACGT -ACGGAACAAGAGGTACAGCGTAGT -ACGGAACAAGAGGTACAGGTCAGT -ACGGAACAAGAGGTACAGGAAGGT -ACGGAACAAGAGGTACAGAACCGT -ACGGAACAAGAGGTACAGTTGTGC -ACGGAACAAGAGGTACAGCTAAGC -ACGGAACAAGAGGTACAGACTAGC -ACGGAACAAGAGGTACAGAGATGC -ACGGAACAAGAGGTACAGTGAAGG -ACGGAACAAGAGGTACAGCAATGG -ACGGAACAAGAGGTACAGATGAGG -ACGGAACAAGAGGTACAGAATGGG -ACGGAACAAGAGGTACAGTCCTGA -ACGGAACAAGAGGTACAGTAGCGA -ACGGAACAAGAGGTACAGCACAGA -ACGGAACAAGAGGTACAGGCAAGA -ACGGAACAAGAGGTACAGGGTTGA -ACGGAACAAGAGGTACAGTCCGAT -ACGGAACAAGAGGTACAGTGGCAT -ACGGAACAAGAGGTACAGCGAGAT -ACGGAACAAGAGGTACAGTACCAC -ACGGAACAAGAGGTACAGCAGAAC -ACGGAACAAGAGGTACAGGTCTAC -ACGGAACAAGAGGTACAGACGTAC -ACGGAACAAGAGGTACAGAGTGAC -ACGGAACAAGAGGTACAGCTGTAG -ACGGAACAAGAGGTACAGCCTAAG -ACGGAACAAGAGGTACAGGTTCAG -ACGGAACAAGAGGTACAGGCATAG -ACGGAACAAGAGGTACAGGACAAG -ACGGAACAAGAGGTACAGAAGCAG -ACGGAACAAGAGGTACAGCGTCAA -ACGGAACAAGAGGTACAGGCTGAA -ACGGAACAAGAGGTACAGAGTACG -ACGGAACAAGAGGTACAGATCCGA -ACGGAACAAGAGGTACAGATGGGA -ACGGAACAAGAGGTACAGGTGCAA -ACGGAACAAGAGGTACAGGAGGAA -ACGGAACAAGAGGTACAGCAGGTA -ACGGAACAAGAGGTACAGGACTCT -ACGGAACAAGAGGTACAGAGTCCT -ACGGAACAAGAGGTACAGTAAGCC -ACGGAACAAGAGGTACAGATAGCC -ACGGAACAAGAGGTACAGTAACCG -ACGGAACAAGAGGTACAGATGCCA -ACGGAACAAGAGTCTGACGGAAAC -ACGGAACAAGAGTCTGACAACACC -ACGGAACAAGAGTCTGACATCGAG -ACGGAACAAGAGTCTGACCTCCTT -ACGGAACAAGAGTCTGACCCTGTT -ACGGAACAAGAGTCTGACCGGTTT -ACGGAACAAGAGTCTGACGTGGTT -ACGGAACAAGAGTCTGACGCCTTT -ACGGAACAAGAGTCTGACGGTCTT -ACGGAACAAGAGTCTGACACGCTT -ACGGAACAAGAGTCTGACAGCGTT -ACGGAACAAGAGTCTGACTTCGTC -ACGGAACAAGAGTCTGACTCTCTC -ACGGAACAAGAGTCTGACTGGATC -ACGGAACAAGAGTCTGACCACTTC -ACGGAACAAGAGTCTGACGTACTC -ACGGAACAAGAGTCTGACGATGTC -ACGGAACAAGAGTCTGACACAGTC -ACGGAACAAGAGTCTGACTTGCTG -ACGGAACAAGAGTCTGACTCCATG -ACGGAACAAGAGTCTGACTGTGTG -ACGGAACAAGAGTCTGACCTAGTG -ACGGAACAAGAGTCTGACCATCTG -ACGGAACAAGAGTCTGACGAGTTG -ACGGAACAAGAGTCTGACAGACTG -ACGGAACAAGAGTCTGACTCGGTA -ACGGAACAAGAGTCTGACTGCCTA -ACGGAACAAGAGTCTGACCCACTA -ACGGAACAAGAGTCTGACGGAGTA -ACGGAACAAGAGTCTGACTCGTCT -ACGGAACAAGAGTCTGACTGCACT -ACGGAACAAGAGTCTGACCTGACT -ACGGAACAAGAGTCTGACCAACCT -ACGGAACAAGAGTCTGACGCTACT -ACGGAACAAGAGTCTGACGGATCT -ACGGAACAAGAGTCTGACAAGGCT -ACGGAACAAGAGTCTGACTCAACC -ACGGAACAAGAGTCTGACTGTTCC -ACGGAACAAGAGTCTGACATTCCC -ACGGAACAAGAGTCTGACTTCTCG -ACGGAACAAGAGTCTGACTAGACG -ACGGAACAAGAGTCTGACGTAACG -ACGGAACAAGAGTCTGACACTTCG -ACGGAACAAGAGTCTGACTACGCA -ACGGAACAAGAGTCTGACCTTGCA -ACGGAACAAGAGTCTGACCGAACA -ACGGAACAAGAGTCTGACCAGTCA -ACGGAACAAGAGTCTGACGATCCA -ACGGAACAAGAGTCTGACACGACA -ACGGAACAAGAGTCTGACAGCTCA -ACGGAACAAGAGTCTGACTCACGT -ACGGAACAAGAGTCTGACCGTAGT -ACGGAACAAGAGTCTGACGTCAGT -ACGGAACAAGAGTCTGACGAAGGT -ACGGAACAAGAGTCTGACAACCGT -ACGGAACAAGAGTCTGACTTGTGC -ACGGAACAAGAGTCTGACCTAAGC -ACGGAACAAGAGTCTGACACTAGC -ACGGAACAAGAGTCTGACAGATGC -ACGGAACAAGAGTCTGACTGAAGG -ACGGAACAAGAGTCTGACCAATGG -ACGGAACAAGAGTCTGACATGAGG -ACGGAACAAGAGTCTGACAATGGG -ACGGAACAAGAGTCTGACTCCTGA -ACGGAACAAGAGTCTGACTAGCGA -ACGGAACAAGAGTCTGACCACAGA -ACGGAACAAGAGTCTGACGCAAGA -ACGGAACAAGAGTCTGACGGTTGA -ACGGAACAAGAGTCTGACTCCGAT -ACGGAACAAGAGTCTGACTGGCAT -ACGGAACAAGAGTCTGACCGAGAT -ACGGAACAAGAGTCTGACTACCAC -ACGGAACAAGAGTCTGACCAGAAC -ACGGAACAAGAGTCTGACGTCTAC -ACGGAACAAGAGTCTGACACGTAC -ACGGAACAAGAGTCTGACAGTGAC -ACGGAACAAGAGTCTGACCTGTAG -ACGGAACAAGAGTCTGACCCTAAG -ACGGAACAAGAGTCTGACGTTCAG -ACGGAACAAGAGTCTGACGCATAG -ACGGAACAAGAGTCTGACGACAAG -ACGGAACAAGAGTCTGACAAGCAG -ACGGAACAAGAGTCTGACCGTCAA -ACGGAACAAGAGTCTGACGCTGAA -ACGGAACAAGAGTCTGACAGTACG -ACGGAACAAGAGTCTGACATCCGA -ACGGAACAAGAGTCTGACATGGGA -ACGGAACAAGAGTCTGACGTGCAA -ACGGAACAAGAGTCTGACGAGGAA -ACGGAACAAGAGTCTGACCAGGTA -ACGGAACAAGAGTCTGACGACTCT -ACGGAACAAGAGTCTGACAGTCCT -ACGGAACAAGAGTCTGACTAAGCC -ACGGAACAAGAGTCTGACATAGCC -ACGGAACAAGAGTCTGACTAACCG -ACGGAACAAGAGTCTGACATGCCA -ACGGAACAAGAGCCTAGTGGAAAC -ACGGAACAAGAGCCTAGTAACACC -ACGGAACAAGAGCCTAGTATCGAG -ACGGAACAAGAGCCTAGTCTCCTT -ACGGAACAAGAGCCTAGTCCTGTT -ACGGAACAAGAGCCTAGTCGGTTT -ACGGAACAAGAGCCTAGTGTGGTT -ACGGAACAAGAGCCTAGTGCCTTT -ACGGAACAAGAGCCTAGTGGTCTT -ACGGAACAAGAGCCTAGTACGCTT -ACGGAACAAGAGCCTAGTAGCGTT -ACGGAACAAGAGCCTAGTTTCGTC -ACGGAACAAGAGCCTAGTTCTCTC -ACGGAACAAGAGCCTAGTTGGATC -ACGGAACAAGAGCCTAGTCACTTC -ACGGAACAAGAGCCTAGTGTACTC -ACGGAACAAGAGCCTAGTGATGTC -ACGGAACAAGAGCCTAGTACAGTC -ACGGAACAAGAGCCTAGTTTGCTG -ACGGAACAAGAGCCTAGTTCCATG -ACGGAACAAGAGCCTAGTTGTGTG -ACGGAACAAGAGCCTAGTCTAGTG -ACGGAACAAGAGCCTAGTCATCTG -ACGGAACAAGAGCCTAGTGAGTTG -ACGGAACAAGAGCCTAGTAGACTG -ACGGAACAAGAGCCTAGTTCGGTA -ACGGAACAAGAGCCTAGTTGCCTA -ACGGAACAAGAGCCTAGTCCACTA -ACGGAACAAGAGCCTAGTGGAGTA -ACGGAACAAGAGCCTAGTTCGTCT -ACGGAACAAGAGCCTAGTTGCACT -ACGGAACAAGAGCCTAGTCTGACT -ACGGAACAAGAGCCTAGTCAACCT -ACGGAACAAGAGCCTAGTGCTACT -ACGGAACAAGAGCCTAGTGGATCT -ACGGAACAAGAGCCTAGTAAGGCT -ACGGAACAAGAGCCTAGTTCAACC -ACGGAACAAGAGCCTAGTTGTTCC -ACGGAACAAGAGCCTAGTATTCCC -ACGGAACAAGAGCCTAGTTTCTCG -ACGGAACAAGAGCCTAGTTAGACG -ACGGAACAAGAGCCTAGTGTAACG -ACGGAACAAGAGCCTAGTACTTCG -ACGGAACAAGAGCCTAGTTACGCA -ACGGAACAAGAGCCTAGTCTTGCA -ACGGAACAAGAGCCTAGTCGAACA -ACGGAACAAGAGCCTAGTCAGTCA -ACGGAACAAGAGCCTAGTGATCCA -ACGGAACAAGAGCCTAGTACGACA -ACGGAACAAGAGCCTAGTAGCTCA -ACGGAACAAGAGCCTAGTTCACGT -ACGGAACAAGAGCCTAGTCGTAGT -ACGGAACAAGAGCCTAGTGTCAGT -ACGGAACAAGAGCCTAGTGAAGGT -ACGGAACAAGAGCCTAGTAACCGT -ACGGAACAAGAGCCTAGTTTGTGC -ACGGAACAAGAGCCTAGTCTAAGC -ACGGAACAAGAGCCTAGTACTAGC -ACGGAACAAGAGCCTAGTAGATGC -ACGGAACAAGAGCCTAGTTGAAGG -ACGGAACAAGAGCCTAGTCAATGG -ACGGAACAAGAGCCTAGTATGAGG -ACGGAACAAGAGCCTAGTAATGGG -ACGGAACAAGAGCCTAGTTCCTGA -ACGGAACAAGAGCCTAGTTAGCGA -ACGGAACAAGAGCCTAGTCACAGA -ACGGAACAAGAGCCTAGTGCAAGA -ACGGAACAAGAGCCTAGTGGTTGA -ACGGAACAAGAGCCTAGTTCCGAT -ACGGAACAAGAGCCTAGTTGGCAT -ACGGAACAAGAGCCTAGTCGAGAT -ACGGAACAAGAGCCTAGTTACCAC -ACGGAACAAGAGCCTAGTCAGAAC -ACGGAACAAGAGCCTAGTGTCTAC -ACGGAACAAGAGCCTAGTACGTAC -ACGGAACAAGAGCCTAGTAGTGAC -ACGGAACAAGAGCCTAGTCTGTAG -ACGGAACAAGAGCCTAGTCCTAAG -ACGGAACAAGAGCCTAGTGTTCAG -ACGGAACAAGAGCCTAGTGCATAG -ACGGAACAAGAGCCTAGTGACAAG -ACGGAACAAGAGCCTAGTAAGCAG -ACGGAACAAGAGCCTAGTCGTCAA -ACGGAACAAGAGCCTAGTGCTGAA -ACGGAACAAGAGCCTAGTAGTACG -ACGGAACAAGAGCCTAGTATCCGA -ACGGAACAAGAGCCTAGTATGGGA -ACGGAACAAGAGCCTAGTGTGCAA -ACGGAACAAGAGCCTAGTGAGGAA -ACGGAACAAGAGCCTAGTCAGGTA -ACGGAACAAGAGCCTAGTGACTCT -ACGGAACAAGAGCCTAGTAGTCCT -ACGGAACAAGAGCCTAGTTAAGCC -ACGGAACAAGAGCCTAGTATAGCC -ACGGAACAAGAGCCTAGTTAACCG -ACGGAACAAGAGCCTAGTATGCCA -ACGGAACAAGAGGCCTAAGGAAAC -ACGGAACAAGAGGCCTAAAACACC -ACGGAACAAGAGGCCTAAATCGAG -ACGGAACAAGAGGCCTAACTCCTT -ACGGAACAAGAGGCCTAACCTGTT -ACGGAACAAGAGGCCTAACGGTTT -ACGGAACAAGAGGCCTAAGTGGTT -ACGGAACAAGAGGCCTAAGCCTTT -ACGGAACAAGAGGCCTAAGGTCTT -ACGGAACAAGAGGCCTAAACGCTT -ACGGAACAAGAGGCCTAAAGCGTT -ACGGAACAAGAGGCCTAATTCGTC -ACGGAACAAGAGGCCTAATCTCTC -ACGGAACAAGAGGCCTAATGGATC -ACGGAACAAGAGGCCTAACACTTC -ACGGAACAAGAGGCCTAAGTACTC -ACGGAACAAGAGGCCTAAGATGTC -ACGGAACAAGAGGCCTAAACAGTC -ACGGAACAAGAGGCCTAATTGCTG -ACGGAACAAGAGGCCTAATCCATG -ACGGAACAAGAGGCCTAATGTGTG -ACGGAACAAGAGGCCTAACTAGTG -ACGGAACAAGAGGCCTAACATCTG -ACGGAACAAGAGGCCTAAGAGTTG -ACGGAACAAGAGGCCTAAAGACTG -ACGGAACAAGAGGCCTAATCGGTA -ACGGAACAAGAGGCCTAATGCCTA -ACGGAACAAGAGGCCTAACCACTA -ACGGAACAAGAGGCCTAAGGAGTA -ACGGAACAAGAGGCCTAATCGTCT -ACGGAACAAGAGGCCTAATGCACT -ACGGAACAAGAGGCCTAACTGACT -ACGGAACAAGAGGCCTAACAACCT -ACGGAACAAGAGGCCTAAGCTACT -ACGGAACAAGAGGCCTAAGGATCT -ACGGAACAAGAGGCCTAAAAGGCT -ACGGAACAAGAGGCCTAATCAACC -ACGGAACAAGAGGCCTAATGTTCC -ACGGAACAAGAGGCCTAAATTCCC -ACGGAACAAGAGGCCTAATTCTCG -ACGGAACAAGAGGCCTAATAGACG -ACGGAACAAGAGGCCTAAGTAACG -ACGGAACAAGAGGCCTAAACTTCG -ACGGAACAAGAGGCCTAATACGCA -ACGGAACAAGAGGCCTAACTTGCA -ACGGAACAAGAGGCCTAACGAACA -ACGGAACAAGAGGCCTAACAGTCA -ACGGAACAAGAGGCCTAAGATCCA -ACGGAACAAGAGGCCTAAACGACA -ACGGAACAAGAGGCCTAAAGCTCA -ACGGAACAAGAGGCCTAATCACGT -ACGGAACAAGAGGCCTAACGTAGT -ACGGAACAAGAGGCCTAAGTCAGT -ACGGAACAAGAGGCCTAAGAAGGT -ACGGAACAAGAGGCCTAAAACCGT -ACGGAACAAGAGGCCTAATTGTGC -ACGGAACAAGAGGCCTAACTAAGC -ACGGAACAAGAGGCCTAAACTAGC -ACGGAACAAGAGGCCTAAAGATGC -ACGGAACAAGAGGCCTAATGAAGG -ACGGAACAAGAGGCCTAACAATGG -ACGGAACAAGAGGCCTAAATGAGG -ACGGAACAAGAGGCCTAAAATGGG -ACGGAACAAGAGGCCTAATCCTGA -ACGGAACAAGAGGCCTAATAGCGA -ACGGAACAAGAGGCCTAACACAGA -ACGGAACAAGAGGCCTAAGCAAGA -ACGGAACAAGAGGCCTAAGGTTGA -ACGGAACAAGAGGCCTAATCCGAT -ACGGAACAAGAGGCCTAATGGCAT -ACGGAACAAGAGGCCTAACGAGAT -ACGGAACAAGAGGCCTAATACCAC -ACGGAACAAGAGGCCTAACAGAAC -ACGGAACAAGAGGCCTAAGTCTAC -ACGGAACAAGAGGCCTAAACGTAC -ACGGAACAAGAGGCCTAAAGTGAC -ACGGAACAAGAGGCCTAACTGTAG -ACGGAACAAGAGGCCTAACCTAAG -ACGGAACAAGAGGCCTAAGTTCAG -ACGGAACAAGAGGCCTAAGCATAG -ACGGAACAAGAGGCCTAAGACAAG -ACGGAACAAGAGGCCTAAAAGCAG -ACGGAACAAGAGGCCTAACGTCAA -ACGGAACAAGAGGCCTAAGCTGAA -ACGGAACAAGAGGCCTAAAGTACG -ACGGAACAAGAGGCCTAAATCCGA -ACGGAACAAGAGGCCTAAATGGGA -ACGGAACAAGAGGCCTAAGTGCAA -ACGGAACAAGAGGCCTAAGAGGAA -ACGGAACAAGAGGCCTAACAGGTA -ACGGAACAAGAGGCCTAAGACTCT -ACGGAACAAGAGGCCTAAAGTCCT -ACGGAACAAGAGGCCTAATAAGCC -ACGGAACAAGAGGCCTAAATAGCC -ACGGAACAAGAGGCCTAATAACCG -ACGGAACAAGAGGCCTAAATGCCA -ACGGAACAAGAGGCCATAGGAAAC -ACGGAACAAGAGGCCATAAACACC -ACGGAACAAGAGGCCATAATCGAG -ACGGAACAAGAGGCCATACTCCTT -ACGGAACAAGAGGCCATACCTGTT -ACGGAACAAGAGGCCATACGGTTT -ACGGAACAAGAGGCCATAGTGGTT -ACGGAACAAGAGGCCATAGCCTTT -ACGGAACAAGAGGCCATAGGTCTT -ACGGAACAAGAGGCCATAACGCTT -ACGGAACAAGAGGCCATAAGCGTT -ACGGAACAAGAGGCCATATTCGTC -ACGGAACAAGAGGCCATATCTCTC -ACGGAACAAGAGGCCATATGGATC -ACGGAACAAGAGGCCATACACTTC -ACGGAACAAGAGGCCATAGTACTC -ACGGAACAAGAGGCCATAGATGTC -ACGGAACAAGAGGCCATAACAGTC -ACGGAACAAGAGGCCATATTGCTG -ACGGAACAAGAGGCCATATCCATG -ACGGAACAAGAGGCCATATGTGTG -ACGGAACAAGAGGCCATACTAGTG -ACGGAACAAGAGGCCATACATCTG -ACGGAACAAGAGGCCATAGAGTTG -ACGGAACAAGAGGCCATAAGACTG -ACGGAACAAGAGGCCATATCGGTA -ACGGAACAAGAGGCCATATGCCTA -ACGGAACAAGAGGCCATACCACTA -ACGGAACAAGAGGCCATAGGAGTA -ACGGAACAAGAGGCCATATCGTCT -ACGGAACAAGAGGCCATATGCACT -ACGGAACAAGAGGCCATACTGACT -ACGGAACAAGAGGCCATACAACCT -ACGGAACAAGAGGCCATAGCTACT -ACGGAACAAGAGGCCATAGGATCT -ACGGAACAAGAGGCCATAAAGGCT -ACGGAACAAGAGGCCATATCAACC -ACGGAACAAGAGGCCATATGTTCC -ACGGAACAAGAGGCCATAATTCCC -ACGGAACAAGAGGCCATATTCTCG -ACGGAACAAGAGGCCATATAGACG -ACGGAACAAGAGGCCATAGTAACG -ACGGAACAAGAGGCCATAACTTCG -ACGGAACAAGAGGCCATATACGCA -ACGGAACAAGAGGCCATACTTGCA -ACGGAACAAGAGGCCATACGAACA -ACGGAACAAGAGGCCATACAGTCA -ACGGAACAAGAGGCCATAGATCCA -ACGGAACAAGAGGCCATAACGACA -ACGGAACAAGAGGCCATAAGCTCA -ACGGAACAAGAGGCCATATCACGT -ACGGAACAAGAGGCCATACGTAGT -ACGGAACAAGAGGCCATAGTCAGT -ACGGAACAAGAGGCCATAGAAGGT -ACGGAACAAGAGGCCATAAACCGT -ACGGAACAAGAGGCCATATTGTGC -ACGGAACAAGAGGCCATACTAAGC -ACGGAACAAGAGGCCATAACTAGC -ACGGAACAAGAGGCCATAAGATGC -ACGGAACAAGAGGCCATATGAAGG -ACGGAACAAGAGGCCATACAATGG -ACGGAACAAGAGGCCATAATGAGG -ACGGAACAAGAGGCCATAAATGGG -ACGGAACAAGAGGCCATATCCTGA -ACGGAACAAGAGGCCATATAGCGA -ACGGAACAAGAGGCCATACACAGA -ACGGAACAAGAGGCCATAGCAAGA -ACGGAACAAGAGGCCATAGGTTGA -ACGGAACAAGAGGCCATATCCGAT -ACGGAACAAGAGGCCATATGGCAT -ACGGAACAAGAGGCCATACGAGAT -ACGGAACAAGAGGCCATATACCAC -ACGGAACAAGAGGCCATACAGAAC -ACGGAACAAGAGGCCATAGTCTAC -ACGGAACAAGAGGCCATAACGTAC -ACGGAACAAGAGGCCATAAGTGAC -ACGGAACAAGAGGCCATACTGTAG -ACGGAACAAGAGGCCATACCTAAG -ACGGAACAAGAGGCCATAGTTCAG -ACGGAACAAGAGGCCATAGCATAG -ACGGAACAAGAGGCCATAGACAAG -ACGGAACAAGAGGCCATAAAGCAG -ACGGAACAAGAGGCCATACGTCAA -ACGGAACAAGAGGCCATAGCTGAA -ACGGAACAAGAGGCCATAAGTACG -ACGGAACAAGAGGCCATAATCCGA -ACGGAACAAGAGGCCATAATGGGA -ACGGAACAAGAGGCCATAGTGCAA -ACGGAACAAGAGGCCATAGAGGAA -ACGGAACAAGAGGCCATACAGGTA -ACGGAACAAGAGGCCATAGACTCT -ACGGAACAAGAGGCCATAAGTCCT -ACGGAACAAGAGGCCATATAAGCC -ACGGAACAAGAGGCCATAATAGCC -ACGGAACAAGAGGCCATATAACCG -ACGGAACAAGAGGCCATAATGCCA -ACGGAACAAGAGCCGTAAGGAAAC -ACGGAACAAGAGCCGTAAAACACC -ACGGAACAAGAGCCGTAAATCGAG -ACGGAACAAGAGCCGTAACTCCTT -ACGGAACAAGAGCCGTAACCTGTT -ACGGAACAAGAGCCGTAACGGTTT -ACGGAACAAGAGCCGTAAGTGGTT -ACGGAACAAGAGCCGTAAGCCTTT -ACGGAACAAGAGCCGTAAGGTCTT -ACGGAACAAGAGCCGTAAACGCTT -ACGGAACAAGAGCCGTAAAGCGTT -ACGGAACAAGAGCCGTAATTCGTC -ACGGAACAAGAGCCGTAATCTCTC -ACGGAACAAGAGCCGTAATGGATC -ACGGAACAAGAGCCGTAACACTTC -ACGGAACAAGAGCCGTAAGTACTC -ACGGAACAAGAGCCGTAAGATGTC -ACGGAACAAGAGCCGTAAACAGTC -ACGGAACAAGAGCCGTAATTGCTG -ACGGAACAAGAGCCGTAATCCATG -ACGGAACAAGAGCCGTAATGTGTG -ACGGAACAAGAGCCGTAACTAGTG -ACGGAACAAGAGCCGTAACATCTG -ACGGAACAAGAGCCGTAAGAGTTG -ACGGAACAAGAGCCGTAAAGACTG -ACGGAACAAGAGCCGTAATCGGTA -ACGGAACAAGAGCCGTAATGCCTA -ACGGAACAAGAGCCGTAACCACTA -ACGGAACAAGAGCCGTAAGGAGTA -ACGGAACAAGAGCCGTAATCGTCT -ACGGAACAAGAGCCGTAATGCACT -ACGGAACAAGAGCCGTAACTGACT -ACGGAACAAGAGCCGTAACAACCT -ACGGAACAAGAGCCGTAAGCTACT -ACGGAACAAGAGCCGTAAGGATCT -ACGGAACAAGAGCCGTAAAAGGCT -ACGGAACAAGAGCCGTAATCAACC -ACGGAACAAGAGCCGTAATGTTCC -ACGGAACAAGAGCCGTAAATTCCC -ACGGAACAAGAGCCGTAATTCTCG -ACGGAACAAGAGCCGTAATAGACG -ACGGAACAAGAGCCGTAAGTAACG -ACGGAACAAGAGCCGTAAACTTCG -ACGGAACAAGAGCCGTAATACGCA -ACGGAACAAGAGCCGTAACTTGCA -ACGGAACAAGAGCCGTAACGAACA -ACGGAACAAGAGCCGTAACAGTCA -ACGGAACAAGAGCCGTAAGATCCA -ACGGAACAAGAGCCGTAAACGACA -ACGGAACAAGAGCCGTAAAGCTCA -ACGGAACAAGAGCCGTAATCACGT -ACGGAACAAGAGCCGTAACGTAGT -ACGGAACAAGAGCCGTAAGTCAGT -ACGGAACAAGAGCCGTAAGAAGGT -ACGGAACAAGAGCCGTAAAACCGT -ACGGAACAAGAGCCGTAATTGTGC -ACGGAACAAGAGCCGTAACTAAGC -ACGGAACAAGAGCCGTAAACTAGC -ACGGAACAAGAGCCGTAAAGATGC -ACGGAACAAGAGCCGTAATGAAGG -ACGGAACAAGAGCCGTAACAATGG -ACGGAACAAGAGCCGTAAATGAGG -ACGGAACAAGAGCCGTAAAATGGG -ACGGAACAAGAGCCGTAATCCTGA -ACGGAACAAGAGCCGTAATAGCGA -ACGGAACAAGAGCCGTAACACAGA -ACGGAACAAGAGCCGTAAGCAAGA -ACGGAACAAGAGCCGTAAGGTTGA -ACGGAACAAGAGCCGTAATCCGAT -ACGGAACAAGAGCCGTAATGGCAT -ACGGAACAAGAGCCGTAACGAGAT -ACGGAACAAGAGCCGTAATACCAC -ACGGAACAAGAGCCGTAACAGAAC -ACGGAACAAGAGCCGTAAGTCTAC -ACGGAACAAGAGCCGTAAACGTAC -ACGGAACAAGAGCCGTAAAGTGAC -ACGGAACAAGAGCCGTAACTGTAG -ACGGAACAAGAGCCGTAACCTAAG -ACGGAACAAGAGCCGTAAGTTCAG -ACGGAACAAGAGCCGTAAGCATAG -ACGGAACAAGAGCCGTAAGACAAG -ACGGAACAAGAGCCGTAAAAGCAG -ACGGAACAAGAGCCGTAACGTCAA -ACGGAACAAGAGCCGTAAGCTGAA -ACGGAACAAGAGCCGTAAAGTACG -ACGGAACAAGAGCCGTAAATCCGA -ACGGAACAAGAGCCGTAAATGGGA -ACGGAACAAGAGCCGTAAGTGCAA -ACGGAACAAGAGCCGTAAGAGGAA -ACGGAACAAGAGCCGTAACAGGTA -ACGGAACAAGAGCCGTAAGACTCT -ACGGAACAAGAGCCGTAAAGTCCT -ACGGAACAAGAGCCGTAATAAGCC -ACGGAACAAGAGCCGTAAATAGCC -ACGGAACAAGAGCCGTAATAACCG -ACGGAACAAGAGCCGTAAATGCCA -ACGGAACAAGAGCCAATGGGAAAC -ACGGAACAAGAGCCAATGAACACC -ACGGAACAAGAGCCAATGATCGAG -ACGGAACAAGAGCCAATGCTCCTT -ACGGAACAAGAGCCAATGCCTGTT -ACGGAACAAGAGCCAATGCGGTTT -ACGGAACAAGAGCCAATGGTGGTT -ACGGAACAAGAGCCAATGGCCTTT -ACGGAACAAGAGCCAATGGGTCTT -ACGGAACAAGAGCCAATGACGCTT -ACGGAACAAGAGCCAATGAGCGTT -ACGGAACAAGAGCCAATGTTCGTC -ACGGAACAAGAGCCAATGTCTCTC -ACGGAACAAGAGCCAATGTGGATC -ACGGAACAAGAGCCAATGCACTTC -ACGGAACAAGAGCCAATGGTACTC -ACGGAACAAGAGCCAATGGATGTC -ACGGAACAAGAGCCAATGACAGTC -ACGGAACAAGAGCCAATGTTGCTG -ACGGAACAAGAGCCAATGTCCATG -ACGGAACAAGAGCCAATGTGTGTG -ACGGAACAAGAGCCAATGCTAGTG -ACGGAACAAGAGCCAATGCATCTG -ACGGAACAAGAGCCAATGGAGTTG -ACGGAACAAGAGCCAATGAGACTG -ACGGAACAAGAGCCAATGTCGGTA -ACGGAACAAGAGCCAATGTGCCTA -ACGGAACAAGAGCCAATGCCACTA -ACGGAACAAGAGCCAATGGGAGTA -ACGGAACAAGAGCCAATGTCGTCT -ACGGAACAAGAGCCAATGTGCACT -ACGGAACAAGAGCCAATGCTGACT -ACGGAACAAGAGCCAATGCAACCT -ACGGAACAAGAGCCAATGGCTACT -ACGGAACAAGAGCCAATGGGATCT -ACGGAACAAGAGCCAATGAAGGCT -ACGGAACAAGAGCCAATGTCAACC -ACGGAACAAGAGCCAATGTGTTCC -ACGGAACAAGAGCCAATGATTCCC -ACGGAACAAGAGCCAATGTTCTCG -ACGGAACAAGAGCCAATGTAGACG -ACGGAACAAGAGCCAATGGTAACG -ACGGAACAAGAGCCAATGACTTCG -ACGGAACAAGAGCCAATGTACGCA -ACGGAACAAGAGCCAATGCTTGCA -ACGGAACAAGAGCCAATGCGAACA -ACGGAACAAGAGCCAATGCAGTCA -ACGGAACAAGAGCCAATGGATCCA -ACGGAACAAGAGCCAATGACGACA -ACGGAACAAGAGCCAATGAGCTCA -ACGGAACAAGAGCCAATGTCACGT -ACGGAACAAGAGCCAATGCGTAGT -ACGGAACAAGAGCCAATGGTCAGT -ACGGAACAAGAGCCAATGGAAGGT -ACGGAACAAGAGCCAATGAACCGT -ACGGAACAAGAGCCAATGTTGTGC -ACGGAACAAGAGCCAATGCTAAGC -ACGGAACAAGAGCCAATGACTAGC -ACGGAACAAGAGCCAATGAGATGC -ACGGAACAAGAGCCAATGTGAAGG -ACGGAACAAGAGCCAATGCAATGG -ACGGAACAAGAGCCAATGATGAGG -ACGGAACAAGAGCCAATGAATGGG -ACGGAACAAGAGCCAATGTCCTGA -ACGGAACAAGAGCCAATGTAGCGA -ACGGAACAAGAGCCAATGCACAGA -ACGGAACAAGAGCCAATGGCAAGA -ACGGAACAAGAGCCAATGGGTTGA -ACGGAACAAGAGCCAATGTCCGAT -ACGGAACAAGAGCCAATGTGGCAT -ACGGAACAAGAGCCAATGCGAGAT -ACGGAACAAGAGCCAATGTACCAC -ACGGAACAAGAGCCAATGCAGAAC -ACGGAACAAGAGCCAATGGTCTAC -ACGGAACAAGAGCCAATGACGTAC -ACGGAACAAGAGCCAATGAGTGAC -ACGGAACAAGAGCCAATGCTGTAG -ACGGAACAAGAGCCAATGCCTAAG -ACGGAACAAGAGCCAATGGTTCAG -ACGGAACAAGAGCCAATGGCATAG -ACGGAACAAGAGCCAATGGACAAG -ACGGAACAAGAGCCAATGAAGCAG -ACGGAACAAGAGCCAATGCGTCAA -ACGGAACAAGAGCCAATGGCTGAA -ACGGAACAAGAGCCAATGAGTACG -ACGGAACAAGAGCCAATGATCCGA -ACGGAACAAGAGCCAATGATGGGA -ACGGAACAAGAGCCAATGGTGCAA -ACGGAACAAGAGCCAATGGAGGAA -ACGGAACAAGAGCCAATGCAGGTA -ACGGAACAAGAGCCAATGGACTCT -ACGGAACAAGAGCCAATGAGTCCT -ACGGAACAAGAGCCAATGTAAGCC -ACGGAACAAGAGCCAATGATAGCC -ACGGAACAAGAGCCAATGTAACCG -ACGGAACAAGAGCCAATGATGCCA -ACGGAAGTTGAGAACGGAGGAAAC -ACGGAAGTTGAGAACGGAAACACC -ACGGAAGTTGAGAACGGAATCGAG -ACGGAAGTTGAGAACGGACTCCTT -ACGGAAGTTGAGAACGGACCTGTT -ACGGAAGTTGAGAACGGACGGTTT -ACGGAAGTTGAGAACGGAGTGGTT -ACGGAAGTTGAGAACGGAGCCTTT -ACGGAAGTTGAGAACGGAGGTCTT -ACGGAAGTTGAGAACGGAACGCTT -ACGGAAGTTGAGAACGGAAGCGTT -ACGGAAGTTGAGAACGGATTCGTC -ACGGAAGTTGAGAACGGATCTCTC -ACGGAAGTTGAGAACGGATGGATC -ACGGAAGTTGAGAACGGACACTTC -ACGGAAGTTGAGAACGGAGTACTC -ACGGAAGTTGAGAACGGAGATGTC -ACGGAAGTTGAGAACGGAACAGTC -ACGGAAGTTGAGAACGGATTGCTG -ACGGAAGTTGAGAACGGATCCATG -ACGGAAGTTGAGAACGGATGTGTG -ACGGAAGTTGAGAACGGACTAGTG -ACGGAAGTTGAGAACGGACATCTG -ACGGAAGTTGAGAACGGAGAGTTG -ACGGAAGTTGAGAACGGAAGACTG -ACGGAAGTTGAGAACGGATCGGTA -ACGGAAGTTGAGAACGGATGCCTA -ACGGAAGTTGAGAACGGACCACTA -ACGGAAGTTGAGAACGGAGGAGTA -ACGGAAGTTGAGAACGGATCGTCT -ACGGAAGTTGAGAACGGATGCACT -ACGGAAGTTGAGAACGGACTGACT -ACGGAAGTTGAGAACGGACAACCT -ACGGAAGTTGAGAACGGAGCTACT -ACGGAAGTTGAGAACGGAGGATCT -ACGGAAGTTGAGAACGGAAAGGCT -ACGGAAGTTGAGAACGGATCAACC -ACGGAAGTTGAGAACGGATGTTCC -ACGGAAGTTGAGAACGGAATTCCC -ACGGAAGTTGAGAACGGATTCTCG -ACGGAAGTTGAGAACGGATAGACG -ACGGAAGTTGAGAACGGAGTAACG -ACGGAAGTTGAGAACGGAACTTCG -ACGGAAGTTGAGAACGGATACGCA -ACGGAAGTTGAGAACGGACTTGCA -ACGGAAGTTGAGAACGGACGAACA -ACGGAAGTTGAGAACGGACAGTCA -ACGGAAGTTGAGAACGGAGATCCA -ACGGAAGTTGAGAACGGAACGACA -ACGGAAGTTGAGAACGGAAGCTCA -ACGGAAGTTGAGAACGGATCACGT -ACGGAAGTTGAGAACGGACGTAGT -ACGGAAGTTGAGAACGGAGTCAGT -ACGGAAGTTGAGAACGGAGAAGGT -ACGGAAGTTGAGAACGGAAACCGT -ACGGAAGTTGAGAACGGATTGTGC -ACGGAAGTTGAGAACGGACTAAGC -ACGGAAGTTGAGAACGGAACTAGC -ACGGAAGTTGAGAACGGAAGATGC -ACGGAAGTTGAGAACGGATGAAGG -ACGGAAGTTGAGAACGGACAATGG -ACGGAAGTTGAGAACGGAATGAGG -ACGGAAGTTGAGAACGGAAATGGG -ACGGAAGTTGAGAACGGATCCTGA -ACGGAAGTTGAGAACGGATAGCGA -ACGGAAGTTGAGAACGGACACAGA -ACGGAAGTTGAGAACGGAGCAAGA -ACGGAAGTTGAGAACGGAGGTTGA -ACGGAAGTTGAGAACGGATCCGAT -ACGGAAGTTGAGAACGGATGGCAT -ACGGAAGTTGAGAACGGACGAGAT -ACGGAAGTTGAGAACGGATACCAC -ACGGAAGTTGAGAACGGACAGAAC -ACGGAAGTTGAGAACGGAGTCTAC -ACGGAAGTTGAGAACGGAACGTAC -ACGGAAGTTGAGAACGGAAGTGAC -ACGGAAGTTGAGAACGGACTGTAG -ACGGAAGTTGAGAACGGACCTAAG -ACGGAAGTTGAGAACGGAGTTCAG -ACGGAAGTTGAGAACGGAGCATAG -ACGGAAGTTGAGAACGGAGACAAG -ACGGAAGTTGAGAACGGAAAGCAG -ACGGAAGTTGAGAACGGACGTCAA -ACGGAAGTTGAGAACGGAGCTGAA -ACGGAAGTTGAGAACGGAAGTACG -ACGGAAGTTGAGAACGGAATCCGA -ACGGAAGTTGAGAACGGAATGGGA -ACGGAAGTTGAGAACGGAGTGCAA -ACGGAAGTTGAGAACGGAGAGGAA -ACGGAAGTTGAGAACGGACAGGTA -ACGGAAGTTGAGAACGGAGACTCT -ACGGAAGTTGAGAACGGAAGTCCT -ACGGAAGTTGAGAACGGATAAGCC -ACGGAAGTTGAGAACGGAATAGCC -ACGGAAGTTGAGAACGGATAACCG -ACGGAAGTTGAGAACGGAATGCCA -ACGGAAGTTGAGACCAACGGAAAC -ACGGAAGTTGAGACCAACAACACC -ACGGAAGTTGAGACCAACATCGAG -ACGGAAGTTGAGACCAACCTCCTT -ACGGAAGTTGAGACCAACCCTGTT -ACGGAAGTTGAGACCAACCGGTTT -ACGGAAGTTGAGACCAACGTGGTT -ACGGAAGTTGAGACCAACGCCTTT -ACGGAAGTTGAGACCAACGGTCTT -ACGGAAGTTGAGACCAACACGCTT -ACGGAAGTTGAGACCAACAGCGTT -ACGGAAGTTGAGACCAACTTCGTC -ACGGAAGTTGAGACCAACTCTCTC -ACGGAAGTTGAGACCAACTGGATC -ACGGAAGTTGAGACCAACCACTTC -ACGGAAGTTGAGACCAACGTACTC -ACGGAAGTTGAGACCAACGATGTC -ACGGAAGTTGAGACCAACACAGTC -ACGGAAGTTGAGACCAACTTGCTG -ACGGAAGTTGAGACCAACTCCATG -ACGGAAGTTGAGACCAACTGTGTG -ACGGAAGTTGAGACCAACCTAGTG -ACGGAAGTTGAGACCAACCATCTG -ACGGAAGTTGAGACCAACGAGTTG -ACGGAAGTTGAGACCAACAGACTG -ACGGAAGTTGAGACCAACTCGGTA -ACGGAAGTTGAGACCAACTGCCTA -ACGGAAGTTGAGACCAACCCACTA -ACGGAAGTTGAGACCAACGGAGTA -ACGGAAGTTGAGACCAACTCGTCT -ACGGAAGTTGAGACCAACTGCACT -ACGGAAGTTGAGACCAACCTGACT -ACGGAAGTTGAGACCAACCAACCT -ACGGAAGTTGAGACCAACGCTACT -ACGGAAGTTGAGACCAACGGATCT -ACGGAAGTTGAGACCAACAAGGCT -ACGGAAGTTGAGACCAACTCAACC -ACGGAAGTTGAGACCAACTGTTCC -ACGGAAGTTGAGACCAACATTCCC -ACGGAAGTTGAGACCAACTTCTCG -ACGGAAGTTGAGACCAACTAGACG -ACGGAAGTTGAGACCAACGTAACG -ACGGAAGTTGAGACCAACACTTCG -ACGGAAGTTGAGACCAACTACGCA -ACGGAAGTTGAGACCAACCTTGCA -ACGGAAGTTGAGACCAACCGAACA -ACGGAAGTTGAGACCAACCAGTCA -ACGGAAGTTGAGACCAACGATCCA -ACGGAAGTTGAGACCAACACGACA -ACGGAAGTTGAGACCAACAGCTCA -ACGGAAGTTGAGACCAACTCACGT -ACGGAAGTTGAGACCAACCGTAGT -ACGGAAGTTGAGACCAACGTCAGT -ACGGAAGTTGAGACCAACGAAGGT -ACGGAAGTTGAGACCAACAACCGT -ACGGAAGTTGAGACCAACTTGTGC -ACGGAAGTTGAGACCAACCTAAGC -ACGGAAGTTGAGACCAACACTAGC -ACGGAAGTTGAGACCAACAGATGC -ACGGAAGTTGAGACCAACTGAAGG -ACGGAAGTTGAGACCAACCAATGG -ACGGAAGTTGAGACCAACATGAGG -ACGGAAGTTGAGACCAACAATGGG -ACGGAAGTTGAGACCAACTCCTGA -ACGGAAGTTGAGACCAACTAGCGA -ACGGAAGTTGAGACCAACCACAGA -ACGGAAGTTGAGACCAACGCAAGA -ACGGAAGTTGAGACCAACGGTTGA -ACGGAAGTTGAGACCAACTCCGAT -ACGGAAGTTGAGACCAACTGGCAT -ACGGAAGTTGAGACCAACCGAGAT -ACGGAAGTTGAGACCAACTACCAC -ACGGAAGTTGAGACCAACCAGAAC -ACGGAAGTTGAGACCAACGTCTAC -ACGGAAGTTGAGACCAACACGTAC -ACGGAAGTTGAGACCAACAGTGAC -ACGGAAGTTGAGACCAACCTGTAG -ACGGAAGTTGAGACCAACCCTAAG -ACGGAAGTTGAGACCAACGTTCAG -ACGGAAGTTGAGACCAACGCATAG -ACGGAAGTTGAGACCAACGACAAG -ACGGAAGTTGAGACCAACAAGCAG -ACGGAAGTTGAGACCAACCGTCAA -ACGGAAGTTGAGACCAACGCTGAA -ACGGAAGTTGAGACCAACAGTACG -ACGGAAGTTGAGACCAACATCCGA -ACGGAAGTTGAGACCAACATGGGA -ACGGAAGTTGAGACCAACGTGCAA -ACGGAAGTTGAGACCAACGAGGAA -ACGGAAGTTGAGACCAACCAGGTA -ACGGAAGTTGAGACCAACGACTCT -ACGGAAGTTGAGACCAACAGTCCT -ACGGAAGTTGAGACCAACTAAGCC -ACGGAAGTTGAGACCAACATAGCC -ACGGAAGTTGAGACCAACTAACCG -ACGGAAGTTGAGACCAACATGCCA -ACGGAAGTTGAGGAGATCGGAAAC -ACGGAAGTTGAGGAGATCAACACC -ACGGAAGTTGAGGAGATCATCGAG -ACGGAAGTTGAGGAGATCCTCCTT -ACGGAAGTTGAGGAGATCCCTGTT -ACGGAAGTTGAGGAGATCCGGTTT -ACGGAAGTTGAGGAGATCGTGGTT -ACGGAAGTTGAGGAGATCGCCTTT -ACGGAAGTTGAGGAGATCGGTCTT -ACGGAAGTTGAGGAGATCACGCTT -ACGGAAGTTGAGGAGATCAGCGTT -ACGGAAGTTGAGGAGATCTTCGTC -ACGGAAGTTGAGGAGATCTCTCTC -ACGGAAGTTGAGGAGATCTGGATC -ACGGAAGTTGAGGAGATCCACTTC -ACGGAAGTTGAGGAGATCGTACTC -ACGGAAGTTGAGGAGATCGATGTC -ACGGAAGTTGAGGAGATCACAGTC -ACGGAAGTTGAGGAGATCTTGCTG -ACGGAAGTTGAGGAGATCTCCATG -ACGGAAGTTGAGGAGATCTGTGTG -ACGGAAGTTGAGGAGATCCTAGTG -ACGGAAGTTGAGGAGATCCATCTG -ACGGAAGTTGAGGAGATCGAGTTG -ACGGAAGTTGAGGAGATCAGACTG -ACGGAAGTTGAGGAGATCTCGGTA -ACGGAAGTTGAGGAGATCTGCCTA -ACGGAAGTTGAGGAGATCCCACTA -ACGGAAGTTGAGGAGATCGGAGTA -ACGGAAGTTGAGGAGATCTCGTCT -ACGGAAGTTGAGGAGATCTGCACT -ACGGAAGTTGAGGAGATCCTGACT -ACGGAAGTTGAGGAGATCCAACCT -ACGGAAGTTGAGGAGATCGCTACT -ACGGAAGTTGAGGAGATCGGATCT -ACGGAAGTTGAGGAGATCAAGGCT -ACGGAAGTTGAGGAGATCTCAACC -ACGGAAGTTGAGGAGATCTGTTCC -ACGGAAGTTGAGGAGATCATTCCC -ACGGAAGTTGAGGAGATCTTCTCG -ACGGAAGTTGAGGAGATCTAGACG -ACGGAAGTTGAGGAGATCGTAACG -ACGGAAGTTGAGGAGATCACTTCG -ACGGAAGTTGAGGAGATCTACGCA -ACGGAAGTTGAGGAGATCCTTGCA -ACGGAAGTTGAGGAGATCCGAACA -ACGGAAGTTGAGGAGATCCAGTCA -ACGGAAGTTGAGGAGATCGATCCA -ACGGAAGTTGAGGAGATCACGACA -ACGGAAGTTGAGGAGATCAGCTCA -ACGGAAGTTGAGGAGATCTCACGT -ACGGAAGTTGAGGAGATCCGTAGT -ACGGAAGTTGAGGAGATCGTCAGT -ACGGAAGTTGAGGAGATCGAAGGT -ACGGAAGTTGAGGAGATCAACCGT -ACGGAAGTTGAGGAGATCTTGTGC -ACGGAAGTTGAGGAGATCCTAAGC -ACGGAAGTTGAGGAGATCACTAGC -ACGGAAGTTGAGGAGATCAGATGC -ACGGAAGTTGAGGAGATCTGAAGG -ACGGAAGTTGAGGAGATCCAATGG -ACGGAAGTTGAGGAGATCATGAGG -ACGGAAGTTGAGGAGATCAATGGG -ACGGAAGTTGAGGAGATCTCCTGA -ACGGAAGTTGAGGAGATCTAGCGA -ACGGAAGTTGAGGAGATCCACAGA -ACGGAAGTTGAGGAGATCGCAAGA -ACGGAAGTTGAGGAGATCGGTTGA -ACGGAAGTTGAGGAGATCTCCGAT -ACGGAAGTTGAGGAGATCTGGCAT -ACGGAAGTTGAGGAGATCCGAGAT -ACGGAAGTTGAGGAGATCTACCAC -ACGGAAGTTGAGGAGATCCAGAAC -ACGGAAGTTGAGGAGATCGTCTAC -ACGGAAGTTGAGGAGATCACGTAC -ACGGAAGTTGAGGAGATCAGTGAC -ACGGAAGTTGAGGAGATCCTGTAG -ACGGAAGTTGAGGAGATCCCTAAG -ACGGAAGTTGAGGAGATCGTTCAG -ACGGAAGTTGAGGAGATCGCATAG -ACGGAAGTTGAGGAGATCGACAAG -ACGGAAGTTGAGGAGATCAAGCAG -ACGGAAGTTGAGGAGATCCGTCAA -ACGGAAGTTGAGGAGATCGCTGAA -ACGGAAGTTGAGGAGATCAGTACG -ACGGAAGTTGAGGAGATCATCCGA -ACGGAAGTTGAGGAGATCATGGGA -ACGGAAGTTGAGGAGATCGTGCAA -ACGGAAGTTGAGGAGATCGAGGAA -ACGGAAGTTGAGGAGATCCAGGTA -ACGGAAGTTGAGGAGATCGACTCT -ACGGAAGTTGAGGAGATCAGTCCT -ACGGAAGTTGAGGAGATCTAAGCC -ACGGAAGTTGAGGAGATCATAGCC -ACGGAAGTTGAGGAGATCTAACCG -ACGGAAGTTGAGGAGATCATGCCA -ACGGAAGTTGAGCTTCTCGGAAAC -ACGGAAGTTGAGCTTCTCAACACC -ACGGAAGTTGAGCTTCTCATCGAG -ACGGAAGTTGAGCTTCTCCTCCTT -ACGGAAGTTGAGCTTCTCCCTGTT -ACGGAAGTTGAGCTTCTCCGGTTT -ACGGAAGTTGAGCTTCTCGTGGTT -ACGGAAGTTGAGCTTCTCGCCTTT -ACGGAAGTTGAGCTTCTCGGTCTT -ACGGAAGTTGAGCTTCTCACGCTT -ACGGAAGTTGAGCTTCTCAGCGTT -ACGGAAGTTGAGCTTCTCTTCGTC -ACGGAAGTTGAGCTTCTCTCTCTC -ACGGAAGTTGAGCTTCTCTGGATC -ACGGAAGTTGAGCTTCTCCACTTC -ACGGAAGTTGAGCTTCTCGTACTC -ACGGAAGTTGAGCTTCTCGATGTC -ACGGAAGTTGAGCTTCTCACAGTC -ACGGAAGTTGAGCTTCTCTTGCTG -ACGGAAGTTGAGCTTCTCTCCATG -ACGGAAGTTGAGCTTCTCTGTGTG -ACGGAAGTTGAGCTTCTCCTAGTG -ACGGAAGTTGAGCTTCTCCATCTG -ACGGAAGTTGAGCTTCTCGAGTTG -ACGGAAGTTGAGCTTCTCAGACTG -ACGGAAGTTGAGCTTCTCTCGGTA -ACGGAAGTTGAGCTTCTCTGCCTA -ACGGAAGTTGAGCTTCTCCCACTA -ACGGAAGTTGAGCTTCTCGGAGTA -ACGGAAGTTGAGCTTCTCTCGTCT -ACGGAAGTTGAGCTTCTCTGCACT -ACGGAAGTTGAGCTTCTCCTGACT -ACGGAAGTTGAGCTTCTCCAACCT -ACGGAAGTTGAGCTTCTCGCTACT -ACGGAAGTTGAGCTTCTCGGATCT -ACGGAAGTTGAGCTTCTCAAGGCT -ACGGAAGTTGAGCTTCTCTCAACC -ACGGAAGTTGAGCTTCTCTGTTCC -ACGGAAGTTGAGCTTCTCATTCCC -ACGGAAGTTGAGCTTCTCTTCTCG -ACGGAAGTTGAGCTTCTCTAGACG -ACGGAAGTTGAGCTTCTCGTAACG -ACGGAAGTTGAGCTTCTCACTTCG -ACGGAAGTTGAGCTTCTCTACGCA -ACGGAAGTTGAGCTTCTCCTTGCA -ACGGAAGTTGAGCTTCTCCGAACA -ACGGAAGTTGAGCTTCTCCAGTCA -ACGGAAGTTGAGCTTCTCGATCCA -ACGGAAGTTGAGCTTCTCACGACA -ACGGAAGTTGAGCTTCTCAGCTCA -ACGGAAGTTGAGCTTCTCTCACGT -ACGGAAGTTGAGCTTCTCCGTAGT -ACGGAAGTTGAGCTTCTCGTCAGT -ACGGAAGTTGAGCTTCTCGAAGGT -ACGGAAGTTGAGCTTCTCAACCGT -ACGGAAGTTGAGCTTCTCTTGTGC -ACGGAAGTTGAGCTTCTCCTAAGC -ACGGAAGTTGAGCTTCTCACTAGC -ACGGAAGTTGAGCTTCTCAGATGC -ACGGAAGTTGAGCTTCTCTGAAGG -ACGGAAGTTGAGCTTCTCCAATGG -ACGGAAGTTGAGCTTCTCATGAGG -ACGGAAGTTGAGCTTCTCAATGGG -ACGGAAGTTGAGCTTCTCTCCTGA -ACGGAAGTTGAGCTTCTCTAGCGA -ACGGAAGTTGAGCTTCTCCACAGA -ACGGAAGTTGAGCTTCTCGCAAGA -ACGGAAGTTGAGCTTCTCGGTTGA -ACGGAAGTTGAGCTTCTCTCCGAT -ACGGAAGTTGAGCTTCTCTGGCAT -ACGGAAGTTGAGCTTCTCCGAGAT -ACGGAAGTTGAGCTTCTCTACCAC -ACGGAAGTTGAGCTTCTCCAGAAC -ACGGAAGTTGAGCTTCTCGTCTAC -ACGGAAGTTGAGCTTCTCACGTAC -ACGGAAGTTGAGCTTCTCAGTGAC -ACGGAAGTTGAGCTTCTCCTGTAG -ACGGAAGTTGAGCTTCTCCCTAAG -ACGGAAGTTGAGCTTCTCGTTCAG -ACGGAAGTTGAGCTTCTCGCATAG -ACGGAAGTTGAGCTTCTCGACAAG -ACGGAAGTTGAGCTTCTCAAGCAG -ACGGAAGTTGAGCTTCTCCGTCAA -ACGGAAGTTGAGCTTCTCGCTGAA -ACGGAAGTTGAGCTTCTCAGTACG -ACGGAAGTTGAGCTTCTCATCCGA -ACGGAAGTTGAGCTTCTCATGGGA -ACGGAAGTTGAGCTTCTCGTGCAA -ACGGAAGTTGAGCTTCTCGAGGAA -ACGGAAGTTGAGCTTCTCCAGGTA -ACGGAAGTTGAGCTTCTCGACTCT -ACGGAAGTTGAGCTTCTCAGTCCT -ACGGAAGTTGAGCTTCTCTAAGCC -ACGGAAGTTGAGCTTCTCATAGCC -ACGGAAGTTGAGCTTCTCTAACCG -ACGGAAGTTGAGCTTCTCATGCCA -ACGGAAGTTGAGGTTCCTGGAAAC -ACGGAAGTTGAGGTTCCTAACACC -ACGGAAGTTGAGGTTCCTATCGAG -ACGGAAGTTGAGGTTCCTCTCCTT -ACGGAAGTTGAGGTTCCTCCTGTT -ACGGAAGTTGAGGTTCCTCGGTTT -ACGGAAGTTGAGGTTCCTGTGGTT -ACGGAAGTTGAGGTTCCTGCCTTT -ACGGAAGTTGAGGTTCCTGGTCTT -ACGGAAGTTGAGGTTCCTACGCTT -ACGGAAGTTGAGGTTCCTAGCGTT -ACGGAAGTTGAGGTTCCTTTCGTC -ACGGAAGTTGAGGTTCCTTCTCTC -ACGGAAGTTGAGGTTCCTTGGATC -ACGGAAGTTGAGGTTCCTCACTTC -ACGGAAGTTGAGGTTCCTGTACTC -ACGGAAGTTGAGGTTCCTGATGTC -ACGGAAGTTGAGGTTCCTACAGTC -ACGGAAGTTGAGGTTCCTTTGCTG -ACGGAAGTTGAGGTTCCTTCCATG -ACGGAAGTTGAGGTTCCTTGTGTG -ACGGAAGTTGAGGTTCCTCTAGTG -ACGGAAGTTGAGGTTCCTCATCTG -ACGGAAGTTGAGGTTCCTGAGTTG -ACGGAAGTTGAGGTTCCTAGACTG -ACGGAAGTTGAGGTTCCTTCGGTA -ACGGAAGTTGAGGTTCCTTGCCTA -ACGGAAGTTGAGGTTCCTCCACTA -ACGGAAGTTGAGGTTCCTGGAGTA -ACGGAAGTTGAGGTTCCTTCGTCT -ACGGAAGTTGAGGTTCCTTGCACT -ACGGAAGTTGAGGTTCCTCTGACT -ACGGAAGTTGAGGTTCCTCAACCT -ACGGAAGTTGAGGTTCCTGCTACT -ACGGAAGTTGAGGTTCCTGGATCT -ACGGAAGTTGAGGTTCCTAAGGCT -ACGGAAGTTGAGGTTCCTTCAACC -ACGGAAGTTGAGGTTCCTTGTTCC -ACGGAAGTTGAGGTTCCTATTCCC -ACGGAAGTTGAGGTTCCTTTCTCG -ACGGAAGTTGAGGTTCCTTAGACG -ACGGAAGTTGAGGTTCCTGTAACG -ACGGAAGTTGAGGTTCCTACTTCG -ACGGAAGTTGAGGTTCCTTACGCA -ACGGAAGTTGAGGTTCCTCTTGCA -ACGGAAGTTGAGGTTCCTCGAACA -ACGGAAGTTGAGGTTCCTCAGTCA -ACGGAAGTTGAGGTTCCTGATCCA -ACGGAAGTTGAGGTTCCTACGACA -ACGGAAGTTGAGGTTCCTAGCTCA -ACGGAAGTTGAGGTTCCTTCACGT -ACGGAAGTTGAGGTTCCTCGTAGT -ACGGAAGTTGAGGTTCCTGTCAGT -ACGGAAGTTGAGGTTCCTGAAGGT -ACGGAAGTTGAGGTTCCTAACCGT -ACGGAAGTTGAGGTTCCTTTGTGC -ACGGAAGTTGAGGTTCCTCTAAGC -ACGGAAGTTGAGGTTCCTACTAGC -ACGGAAGTTGAGGTTCCTAGATGC -ACGGAAGTTGAGGTTCCTTGAAGG -ACGGAAGTTGAGGTTCCTCAATGG -ACGGAAGTTGAGGTTCCTATGAGG -ACGGAAGTTGAGGTTCCTAATGGG -ACGGAAGTTGAGGTTCCTTCCTGA -ACGGAAGTTGAGGTTCCTTAGCGA -ACGGAAGTTGAGGTTCCTCACAGA -ACGGAAGTTGAGGTTCCTGCAAGA -ACGGAAGTTGAGGTTCCTGGTTGA -ACGGAAGTTGAGGTTCCTTCCGAT -ACGGAAGTTGAGGTTCCTTGGCAT -ACGGAAGTTGAGGTTCCTCGAGAT -ACGGAAGTTGAGGTTCCTTACCAC -ACGGAAGTTGAGGTTCCTCAGAAC -ACGGAAGTTGAGGTTCCTGTCTAC -ACGGAAGTTGAGGTTCCTACGTAC -ACGGAAGTTGAGGTTCCTAGTGAC -ACGGAAGTTGAGGTTCCTCTGTAG -ACGGAAGTTGAGGTTCCTCCTAAG -ACGGAAGTTGAGGTTCCTGTTCAG -ACGGAAGTTGAGGTTCCTGCATAG -ACGGAAGTTGAGGTTCCTGACAAG -ACGGAAGTTGAGGTTCCTAAGCAG -ACGGAAGTTGAGGTTCCTCGTCAA -ACGGAAGTTGAGGTTCCTGCTGAA -ACGGAAGTTGAGGTTCCTAGTACG -ACGGAAGTTGAGGTTCCTATCCGA -ACGGAAGTTGAGGTTCCTATGGGA -ACGGAAGTTGAGGTTCCTGTGCAA -ACGGAAGTTGAGGTTCCTGAGGAA -ACGGAAGTTGAGGTTCCTCAGGTA -ACGGAAGTTGAGGTTCCTGACTCT -ACGGAAGTTGAGGTTCCTAGTCCT -ACGGAAGTTGAGGTTCCTTAAGCC -ACGGAAGTTGAGGTTCCTATAGCC -ACGGAAGTTGAGGTTCCTTAACCG -ACGGAAGTTGAGGTTCCTATGCCA -ACGGAAGTTGAGTTTCGGGGAAAC -ACGGAAGTTGAGTTTCGGAACACC -ACGGAAGTTGAGTTTCGGATCGAG -ACGGAAGTTGAGTTTCGGCTCCTT -ACGGAAGTTGAGTTTCGGCCTGTT -ACGGAAGTTGAGTTTCGGCGGTTT -ACGGAAGTTGAGTTTCGGGTGGTT -ACGGAAGTTGAGTTTCGGGCCTTT -ACGGAAGTTGAGTTTCGGGGTCTT -ACGGAAGTTGAGTTTCGGACGCTT -ACGGAAGTTGAGTTTCGGAGCGTT -ACGGAAGTTGAGTTTCGGTTCGTC -ACGGAAGTTGAGTTTCGGTCTCTC -ACGGAAGTTGAGTTTCGGTGGATC -ACGGAAGTTGAGTTTCGGCACTTC -ACGGAAGTTGAGTTTCGGGTACTC -ACGGAAGTTGAGTTTCGGGATGTC -ACGGAAGTTGAGTTTCGGACAGTC -ACGGAAGTTGAGTTTCGGTTGCTG -ACGGAAGTTGAGTTTCGGTCCATG -ACGGAAGTTGAGTTTCGGTGTGTG -ACGGAAGTTGAGTTTCGGCTAGTG -ACGGAAGTTGAGTTTCGGCATCTG -ACGGAAGTTGAGTTTCGGGAGTTG -ACGGAAGTTGAGTTTCGGAGACTG -ACGGAAGTTGAGTTTCGGTCGGTA -ACGGAAGTTGAGTTTCGGTGCCTA -ACGGAAGTTGAGTTTCGGCCACTA -ACGGAAGTTGAGTTTCGGGGAGTA -ACGGAAGTTGAGTTTCGGTCGTCT -ACGGAAGTTGAGTTTCGGTGCACT -ACGGAAGTTGAGTTTCGGCTGACT -ACGGAAGTTGAGTTTCGGCAACCT -ACGGAAGTTGAGTTTCGGGCTACT -ACGGAAGTTGAGTTTCGGGGATCT -ACGGAAGTTGAGTTTCGGAAGGCT -ACGGAAGTTGAGTTTCGGTCAACC -ACGGAAGTTGAGTTTCGGTGTTCC -ACGGAAGTTGAGTTTCGGATTCCC -ACGGAAGTTGAGTTTCGGTTCTCG -ACGGAAGTTGAGTTTCGGTAGACG -ACGGAAGTTGAGTTTCGGGTAACG -ACGGAAGTTGAGTTTCGGACTTCG -ACGGAAGTTGAGTTTCGGTACGCA -ACGGAAGTTGAGTTTCGGCTTGCA -ACGGAAGTTGAGTTTCGGCGAACA -ACGGAAGTTGAGTTTCGGCAGTCA -ACGGAAGTTGAGTTTCGGGATCCA -ACGGAAGTTGAGTTTCGGACGACA -ACGGAAGTTGAGTTTCGGAGCTCA -ACGGAAGTTGAGTTTCGGTCACGT -ACGGAAGTTGAGTTTCGGCGTAGT -ACGGAAGTTGAGTTTCGGGTCAGT -ACGGAAGTTGAGTTTCGGGAAGGT -ACGGAAGTTGAGTTTCGGAACCGT -ACGGAAGTTGAGTTTCGGTTGTGC -ACGGAAGTTGAGTTTCGGCTAAGC -ACGGAAGTTGAGTTTCGGACTAGC -ACGGAAGTTGAGTTTCGGAGATGC -ACGGAAGTTGAGTTTCGGTGAAGG -ACGGAAGTTGAGTTTCGGCAATGG -ACGGAAGTTGAGTTTCGGATGAGG -ACGGAAGTTGAGTTTCGGAATGGG -ACGGAAGTTGAGTTTCGGTCCTGA -ACGGAAGTTGAGTTTCGGTAGCGA -ACGGAAGTTGAGTTTCGGCACAGA -ACGGAAGTTGAGTTTCGGGCAAGA -ACGGAAGTTGAGTTTCGGGGTTGA -ACGGAAGTTGAGTTTCGGTCCGAT -ACGGAAGTTGAGTTTCGGTGGCAT -ACGGAAGTTGAGTTTCGGCGAGAT -ACGGAAGTTGAGTTTCGGTACCAC -ACGGAAGTTGAGTTTCGGCAGAAC -ACGGAAGTTGAGTTTCGGGTCTAC -ACGGAAGTTGAGTTTCGGACGTAC -ACGGAAGTTGAGTTTCGGAGTGAC -ACGGAAGTTGAGTTTCGGCTGTAG -ACGGAAGTTGAGTTTCGGCCTAAG -ACGGAAGTTGAGTTTCGGGTTCAG -ACGGAAGTTGAGTTTCGGGCATAG -ACGGAAGTTGAGTTTCGGGACAAG -ACGGAAGTTGAGTTTCGGAAGCAG -ACGGAAGTTGAGTTTCGGCGTCAA -ACGGAAGTTGAGTTTCGGGCTGAA -ACGGAAGTTGAGTTTCGGAGTACG -ACGGAAGTTGAGTTTCGGATCCGA -ACGGAAGTTGAGTTTCGGATGGGA -ACGGAAGTTGAGTTTCGGGTGCAA -ACGGAAGTTGAGTTTCGGGAGGAA -ACGGAAGTTGAGTTTCGGCAGGTA -ACGGAAGTTGAGTTTCGGGACTCT -ACGGAAGTTGAGTTTCGGAGTCCT -ACGGAAGTTGAGTTTCGGTAAGCC -ACGGAAGTTGAGTTTCGGATAGCC -ACGGAAGTTGAGTTTCGGTAACCG -ACGGAAGTTGAGTTTCGGATGCCA -ACGGAAGTTGAGGTTGTGGGAAAC -ACGGAAGTTGAGGTTGTGAACACC -ACGGAAGTTGAGGTTGTGATCGAG -ACGGAAGTTGAGGTTGTGCTCCTT -ACGGAAGTTGAGGTTGTGCCTGTT -ACGGAAGTTGAGGTTGTGCGGTTT -ACGGAAGTTGAGGTTGTGGTGGTT -ACGGAAGTTGAGGTTGTGGCCTTT -ACGGAAGTTGAGGTTGTGGGTCTT -ACGGAAGTTGAGGTTGTGACGCTT -ACGGAAGTTGAGGTTGTGAGCGTT -ACGGAAGTTGAGGTTGTGTTCGTC -ACGGAAGTTGAGGTTGTGTCTCTC -ACGGAAGTTGAGGTTGTGTGGATC -ACGGAAGTTGAGGTTGTGCACTTC -ACGGAAGTTGAGGTTGTGGTACTC -ACGGAAGTTGAGGTTGTGGATGTC -ACGGAAGTTGAGGTTGTGACAGTC -ACGGAAGTTGAGGTTGTGTTGCTG -ACGGAAGTTGAGGTTGTGTCCATG -ACGGAAGTTGAGGTTGTGTGTGTG -ACGGAAGTTGAGGTTGTGCTAGTG -ACGGAAGTTGAGGTTGTGCATCTG -ACGGAAGTTGAGGTTGTGGAGTTG -ACGGAAGTTGAGGTTGTGAGACTG -ACGGAAGTTGAGGTTGTGTCGGTA -ACGGAAGTTGAGGTTGTGTGCCTA -ACGGAAGTTGAGGTTGTGCCACTA -ACGGAAGTTGAGGTTGTGGGAGTA -ACGGAAGTTGAGGTTGTGTCGTCT -ACGGAAGTTGAGGTTGTGTGCACT -ACGGAAGTTGAGGTTGTGCTGACT -ACGGAAGTTGAGGTTGTGCAACCT -ACGGAAGTTGAGGTTGTGGCTACT -ACGGAAGTTGAGGTTGTGGGATCT -ACGGAAGTTGAGGTTGTGAAGGCT -ACGGAAGTTGAGGTTGTGTCAACC -ACGGAAGTTGAGGTTGTGTGTTCC -ACGGAAGTTGAGGTTGTGATTCCC -ACGGAAGTTGAGGTTGTGTTCTCG -ACGGAAGTTGAGGTTGTGTAGACG -ACGGAAGTTGAGGTTGTGGTAACG -ACGGAAGTTGAGGTTGTGACTTCG -ACGGAAGTTGAGGTTGTGTACGCA -ACGGAAGTTGAGGTTGTGCTTGCA -ACGGAAGTTGAGGTTGTGCGAACA -ACGGAAGTTGAGGTTGTGCAGTCA -ACGGAAGTTGAGGTTGTGGATCCA -ACGGAAGTTGAGGTTGTGACGACA -ACGGAAGTTGAGGTTGTGAGCTCA -ACGGAAGTTGAGGTTGTGTCACGT -ACGGAAGTTGAGGTTGTGCGTAGT -ACGGAAGTTGAGGTTGTGGTCAGT -ACGGAAGTTGAGGTTGTGGAAGGT -ACGGAAGTTGAGGTTGTGAACCGT -ACGGAAGTTGAGGTTGTGTTGTGC -ACGGAAGTTGAGGTTGTGCTAAGC -ACGGAAGTTGAGGTTGTGACTAGC -ACGGAAGTTGAGGTTGTGAGATGC -ACGGAAGTTGAGGTTGTGTGAAGG -ACGGAAGTTGAGGTTGTGCAATGG -ACGGAAGTTGAGGTTGTGATGAGG -ACGGAAGTTGAGGTTGTGAATGGG -ACGGAAGTTGAGGTTGTGTCCTGA -ACGGAAGTTGAGGTTGTGTAGCGA -ACGGAAGTTGAGGTTGTGCACAGA -ACGGAAGTTGAGGTTGTGGCAAGA -ACGGAAGTTGAGGTTGTGGGTTGA -ACGGAAGTTGAGGTTGTGTCCGAT -ACGGAAGTTGAGGTTGTGTGGCAT -ACGGAAGTTGAGGTTGTGCGAGAT -ACGGAAGTTGAGGTTGTGTACCAC -ACGGAAGTTGAGGTTGTGCAGAAC -ACGGAAGTTGAGGTTGTGGTCTAC -ACGGAAGTTGAGGTTGTGACGTAC -ACGGAAGTTGAGGTTGTGAGTGAC -ACGGAAGTTGAGGTTGTGCTGTAG -ACGGAAGTTGAGGTTGTGCCTAAG -ACGGAAGTTGAGGTTGTGGTTCAG -ACGGAAGTTGAGGTTGTGGCATAG -ACGGAAGTTGAGGTTGTGGACAAG -ACGGAAGTTGAGGTTGTGAAGCAG -ACGGAAGTTGAGGTTGTGCGTCAA -ACGGAAGTTGAGGTTGTGGCTGAA -ACGGAAGTTGAGGTTGTGAGTACG -ACGGAAGTTGAGGTTGTGATCCGA -ACGGAAGTTGAGGTTGTGATGGGA -ACGGAAGTTGAGGTTGTGGTGCAA -ACGGAAGTTGAGGTTGTGGAGGAA -ACGGAAGTTGAGGTTGTGCAGGTA -ACGGAAGTTGAGGTTGTGGACTCT -ACGGAAGTTGAGGTTGTGAGTCCT -ACGGAAGTTGAGGTTGTGTAAGCC -ACGGAAGTTGAGGTTGTGATAGCC -ACGGAAGTTGAGGTTGTGTAACCG -ACGGAAGTTGAGGTTGTGATGCCA -ACGGAAGTTGAGTTTGCCGGAAAC -ACGGAAGTTGAGTTTGCCAACACC -ACGGAAGTTGAGTTTGCCATCGAG -ACGGAAGTTGAGTTTGCCCTCCTT -ACGGAAGTTGAGTTTGCCCCTGTT -ACGGAAGTTGAGTTTGCCCGGTTT -ACGGAAGTTGAGTTTGCCGTGGTT -ACGGAAGTTGAGTTTGCCGCCTTT -ACGGAAGTTGAGTTTGCCGGTCTT -ACGGAAGTTGAGTTTGCCACGCTT -ACGGAAGTTGAGTTTGCCAGCGTT -ACGGAAGTTGAGTTTGCCTTCGTC -ACGGAAGTTGAGTTTGCCTCTCTC -ACGGAAGTTGAGTTTGCCTGGATC -ACGGAAGTTGAGTTTGCCCACTTC -ACGGAAGTTGAGTTTGCCGTACTC -ACGGAAGTTGAGTTTGCCGATGTC -ACGGAAGTTGAGTTTGCCACAGTC -ACGGAAGTTGAGTTTGCCTTGCTG -ACGGAAGTTGAGTTTGCCTCCATG -ACGGAAGTTGAGTTTGCCTGTGTG -ACGGAAGTTGAGTTTGCCCTAGTG -ACGGAAGTTGAGTTTGCCCATCTG -ACGGAAGTTGAGTTTGCCGAGTTG -ACGGAAGTTGAGTTTGCCAGACTG -ACGGAAGTTGAGTTTGCCTCGGTA -ACGGAAGTTGAGTTTGCCTGCCTA -ACGGAAGTTGAGTTTGCCCCACTA -ACGGAAGTTGAGTTTGCCGGAGTA -ACGGAAGTTGAGTTTGCCTCGTCT -ACGGAAGTTGAGTTTGCCTGCACT -ACGGAAGTTGAGTTTGCCCTGACT -ACGGAAGTTGAGTTTGCCCAACCT -ACGGAAGTTGAGTTTGCCGCTACT -ACGGAAGTTGAGTTTGCCGGATCT -ACGGAAGTTGAGTTTGCCAAGGCT -ACGGAAGTTGAGTTTGCCTCAACC -ACGGAAGTTGAGTTTGCCTGTTCC -ACGGAAGTTGAGTTTGCCATTCCC -ACGGAAGTTGAGTTTGCCTTCTCG -ACGGAAGTTGAGTTTGCCTAGACG -ACGGAAGTTGAGTTTGCCGTAACG -ACGGAAGTTGAGTTTGCCACTTCG -ACGGAAGTTGAGTTTGCCTACGCA -ACGGAAGTTGAGTTTGCCCTTGCA -ACGGAAGTTGAGTTTGCCCGAACA -ACGGAAGTTGAGTTTGCCCAGTCA -ACGGAAGTTGAGTTTGCCGATCCA -ACGGAAGTTGAGTTTGCCACGACA -ACGGAAGTTGAGTTTGCCAGCTCA -ACGGAAGTTGAGTTTGCCTCACGT -ACGGAAGTTGAGTTTGCCCGTAGT -ACGGAAGTTGAGTTTGCCGTCAGT -ACGGAAGTTGAGTTTGCCGAAGGT -ACGGAAGTTGAGTTTGCCAACCGT -ACGGAAGTTGAGTTTGCCTTGTGC -ACGGAAGTTGAGTTTGCCCTAAGC -ACGGAAGTTGAGTTTGCCACTAGC -ACGGAAGTTGAGTTTGCCAGATGC -ACGGAAGTTGAGTTTGCCTGAAGG -ACGGAAGTTGAGTTTGCCCAATGG -ACGGAAGTTGAGTTTGCCATGAGG -ACGGAAGTTGAGTTTGCCAATGGG -ACGGAAGTTGAGTTTGCCTCCTGA -ACGGAAGTTGAGTTTGCCTAGCGA -ACGGAAGTTGAGTTTGCCCACAGA -ACGGAAGTTGAGTTTGCCGCAAGA -ACGGAAGTTGAGTTTGCCGGTTGA -ACGGAAGTTGAGTTTGCCTCCGAT -ACGGAAGTTGAGTTTGCCTGGCAT -ACGGAAGTTGAGTTTGCCCGAGAT -ACGGAAGTTGAGTTTGCCTACCAC -ACGGAAGTTGAGTTTGCCCAGAAC -ACGGAAGTTGAGTTTGCCGTCTAC -ACGGAAGTTGAGTTTGCCACGTAC -ACGGAAGTTGAGTTTGCCAGTGAC -ACGGAAGTTGAGTTTGCCCTGTAG -ACGGAAGTTGAGTTTGCCCCTAAG -ACGGAAGTTGAGTTTGCCGTTCAG -ACGGAAGTTGAGTTTGCCGCATAG -ACGGAAGTTGAGTTTGCCGACAAG -ACGGAAGTTGAGTTTGCCAAGCAG -ACGGAAGTTGAGTTTGCCCGTCAA -ACGGAAGTTGAGTTTGCCGCTGAA -ACGGAAGTTGAGTTTGCCAGTACG -ACGGAAGTTGAGTTTGCCATCCGA -ACGGAAGTTGAGTTTGCCATGGGA -ACGGAAGTTGAGTTTGCCGTGCAA -ACGGAAGTTGAGTTTGCCGAGGAA -ACGGAAGTTGAGTTTGCCCAGGTA -ACGGAAGTTGAGTTTGCCGACTCT -ACGGAAGTTGAGTTTGCCAGTCCT -ACGGAAGTTGAGTTTGCCTAAGCC -ACGGAAGTTGAGTTTGCCATAGCC -ACGGAAGTTGAGTTTGCCTAACCG -ACGGAAGTTGAGTTTGCCATGCCA -ACGGAAGTTGAGCTTGGTGGAAAC -ACGGAAGTTGAGCTTGGTAACACC -ACGGAAGTTGAGCTTGGTATCGAG -ACGGAAGTTGAGCTTGGTCTCCTT -ACGGAAGTTGAGCTTGGTCCTGTT -ACGGAAGTTGAGCTTGGTCGGTTT -ACGGAAGTTGAGCTTGGTGTGGTT -ACGGAAGTTGAGCTTGGTGCCTTT -ACGGAAGTTGAGCTTGGTGGTCTT -ACGGAAGTTGAGCTTGGTACGCTT -ACGGAAGTTGAGCTTGGTAGCGTT -ACGGAAGTTGAGCTTGGTTTCGTC -ACGGAAGTTGAGCTTGGTTCTCTC -ACGGAAGTTGAGCTTGGTTGGATC -ACGGAAGTTGAGCTTGGTCACTTC -ACGGAAGTTGAGCTTGGTGTACTC -ACGGAAGTTGAGCTTGGTGATGTC -ACGGAAGTTGAGCTTGGTACAGTC -ACGGAAGTTGAGCTTGGTTTGCTG -ACGGAAGTTGAGCTTGGTTCCATG -ACGGAAGTTGAGCTTGGTTGTGTG -ACGGAAGTTGAGCTTGGTCTAGTG -ACGGAAGTTGAGCTTGGTCATCTG -ACGGAAGTTGAGCTTGGTGAGTTG -ACGGAAGTTGAGCTTGGTAGACTG -ACGGAAGTTGAGCTTGGTTCGGTA -ACGGAAGTTGAGCTTGGTTGCCTA -ACGGAAGTTGAGCTTGGTCCACTA -ACGGAAGTTGAGCTTGGTGGAGTA -ACGGAAGTTGAGCTTGGTTCGTCT -ACGGAAGTTGAGCTTGGTTGCACT -ACGGAAGTTGAGCTTGGTCTGACT -ACGGAAGTTGAGCTTGGTCAACCT -ACGGAAGTTGAGCTTGGTGCTACT -ACGGAAGTTGAGCTTGGTGGATCT -ACGGAAGTTGAGCTTGGTAAGGCT -ACGGAAGTTGAGCTTGGTTCAACC -ACGGAAGTTGAGCTTGGTTGTTCC -ACGGAAGTTGAGCTTGGTATTCCC -ACGGAAGTTGAGCTTGGTTTCTCG -ACGGAAGTTGAGCTTGGTTAGACG -ACGGAAGTTGAGCTTGGTGTAACG -ACGGAAGTTGAGCTTGGTACTTCG -ACGGAAGTTGAGCTTGGTTACGCA -ACGGAAGTTGAGCTTGGTCTTGCA -ACGGAAGTTGAGCTTGGTCGAACA -ACGGAAGTTGAGCTTGGTCAGTCA -ACGGAAGTTGAGCTTGGTGATCCA -ACGGAAGTTGAGCTTGGTACGACA -ACGGAAGTTGAGCTTGGTAGCTCA -ACGGAAGTTGAGCTTGGTTCACGT -ACGGAAGTTGAGCTTGGTCGTAGT -ACGGAAGTTGAGCTTGGTGTCAGT -ACGGAAGTTGAGCTTGGTGAAGGT -ACGGAAGTTGAGCTTGGTAACCGT -ACGGAAGTTGAGCTTGGTTTGTGC -ACGGAAGTTGAGCTTGGTCTAAGC -ACGGAAGTTGAGCTTGGTACTAGC -ACGGAAGTTGAGCTTGGTAGATGC -ACGGAAGTTGAGCTTGGTTGAAGG -ACGGAAGTTGAGCTTGGTCAATGG -ACGGAAGTTGAGCTTGGTATGAGG -ACGGAAGTTGAGCTTGGTAATGGG -ACGGAAGTTGAGCTTGGTTCCTGA -ACGGAAGTTGAGCTTGGTTAGCGA -ACGGAAGTTGAGCTTGGTCACAGA -ACGGAAGTTGAGCTTGGTGCAAGA -ACGGAAGTTGAGCTTGGTGGTTGA -ACGGAAGTTGAGCTTGGTTCCGAT -ACGGAAGTTGAGCTTGGTTGGCAT -ACGGAAGTTGAGCTTGGTCGAGAT -ACGGAAGTTGAGCTTGGTTACCAC -ACGGAAGTTGAGCTTGGTCAGAAC -ACGGAAGTTGAGCTTGGTGTCTAC -ACGGAAGTTGAGCTTGGTACGTAC -ACGGAAGTTGAGCTTGGTAGTGAC -ACGGAAGTTGAGCTTGGTCTGTAG -ACGGAAGTTGAGCTTGGTCCTAAG -ACGGAAGTTGAGCTTGGTGTTCAG -ACGGAAGTTGAGCTTGGTGCATAG -ACGGAAGTTGAGCTTGGTGACAAG -ACGGAAGTTGAGCTTGGTAAGCAG -ACGGAAGTTGAGCTTGGTCGTCAA -ACGGAAGTTGAGCTTGGTGCTGAA -ACGGAAGTTGAGCTTGGTAGTACG -ACGGAAGTTGAGCTTGGTATCCGA -ACGGAAGTTGAGCTTGGTATGGGA -ACGGAAGTTGAGCTTGGTGTGCAA -ACGGAAGTTGAGCTTGGTGAGGAA -ACGGAAGTTGAGCTTGGTCAGGTA -ACGGAAGTTGAGCTTGGTGACTCT -ACGGAAGTTGAGCTTGGTAGTCCT -ACGGAAGTTGAGCTTGGTTAAGCC -ACGGAAGTTGAGCTTGGTATAGCC -ACGGAAGTTGAGCTTGGTTAACCG -ACGGAAGTTGAGCTTGGTATGCCA -ACGGAAGTTGAGCTTACGGGAAAC -ACGGAAGTTGAGCTTACGAACACC -ACGGAAGTTGAGCTTACGATCGAG -ACGGAAGTTGAGCTTACGCTCCTT -ACGGAAGTTGAGCTTACGCCTGTT -ACGGAAGTTGAGCTTACGCGGTTT -ACGGAAGTTGAGCTTACGGTGGTT -ACGGAAGTTGAGCTTACGGCCTTT -ACGGAAGTTGAGCTTACGGGTCTT -ACGGAAGTTGAGCTTACGACGCTT -ACGGAAGTTGAGCTTACGAGCGTT -ACGGAAGTTGAGCTTACGTTCGTC -ACGGAAGTTGAGCTTACGTCTCTC -ACGGAAGTTGAGCTTACGTGGATC -ACGGAAGTTGAGCTTACGCACTTC -ACGGAAGTTGAGCTTACGGTACTC -ACGGAAGTTGAGCTTACGGATGTC -ACGGAAGTTGAGCTTACGACAGTC -ACGGAAGTTGAGCTTACGTTGCTG -ACGGAAGTTGAGCTTACGTCCATG -ACGGAAGTTGAGCTTACGTGTGTG -ACGGAAGTTGAGCTTACGCTAGTG -ACGGAAGTTGAGCTTACGCATCTG -ACGGAAGTTGAGCTTACGGAGTTG -ACGGAAGTTGAGCTTACGAGACTG -ACGGAAGTTGAGCTTACGTCGGTA -ACGGAAGTTGAGCTTACGTGCCTA -ACGGAAGTTGAGCTTACGCCACTA -ACGGAAGTTGAGCTTACGGGAGTA -ACGGAAGTTGAGCTTACGTCGTCT -ACGGAAGTTGAGCTTACGTGCACT -ACGGAAGTTGAGCTTACGCTGACT -ACGGAAGTTGAGCTTACGCAACCT -ACGGAAGTTGAGCTTACGGCTACT -ACGGAAGTTGAGCTTACGGGATCT -ACGGAAGTTGAGCTTACGAAGGCT -ACGGAAGTTGAGCTTACGTCAACC -ACGGAAGTTGAGCTTACGTGTTCC -ACGGAAGTTGAGCTTACGATTCCC -ACGGAAGTTGAGCTTACGTTCTCG -ACGGAAGTTGAGCTTACGTAGACG -ACGGAAGTTGAGCTTACGGTAACG -ACGGAAGTTGAGCTTACGACTTCG -ACGGAAGTTGAGCTTACGTACGCA -ACGGAAGTTGAGCTTACGCTTGCA -ACGGAAGTTGAGCTTACGCGAACA -ACGGAAGTTGAGCTTACGCAGTCA -ACGGAAGTTGAGCTTACGGATCCA -ACGGAAGTTGAGCTTACGACGACA -ACGGAAGTTGAGCTTACGAGCTCA -ACGGAAGTTGAGCTTACGTCACGT -ACGGAAGTTGAGCTTACGCGTAGT -ACGGAAGTTGAGCTTACGGTCAGT -ACGGAAGTTGAGCTTACGGAAGGT -ACGGAAGTTGAGCTTACGAACCGT -ACGGAAGTTGAGCTTACGTTGTGC -ACGGAAGTTGAGCTTACGCTAAGC -ACGGAAGTTGAGCTTACGACTAGC -ACGGAAGTTGAGCTTACGAGATGC -ACGGAAGTTGAGCTTACGTGAAGG -ACGGAAGTTGAGCTTACGCAATGG -ACGGAAGTTGAGCTTACGATGAGG -ACGGAAGTTGAGCTTACGAATGGG -ACGGAAGTTGAGCTTACGTCCTGA -ACGGAAGTTGAGCTTACGTAGCGA -ACGGAAGTTGAGCTTACGCACAGA -ACGGAAGTTGAGCTTACGGCAAGA -ACGGAAGTTGAGCTTACGGGTTGA -ACGGAAGTTGAGCTTACGTCCGAT -ACGGAAGTTGAGCTTACGTGGCAT -ACGGAAGTTGAGCTTACGCGAGAT -ACGGAAGTTGAGCTTACGTACCAC -ACGGAAGTTGAGCTTACGCAGAAC -ACGGAAGTTGAGCTTACGGTCTAC -ACGGAAGTTGAGCTTACGACGTAC -ACGGAAGTTGAGCTTACGAGTGAC -ACGGAAGTTGAGCTTACGCTGTAG -ACGGAAGTTGAGCTTACGCCTAAG -ACGGAAGTTGAGCTTACGGTTCAG -ACGGAAGTTGAGCTTACGGCATAG -ACGGAAGTTGAGCTTACGGACAAG -ACGGAAGTTGAGCTTACGAAGCAG -ACGGAAGTTGAGCTTACGCGTCAA -ACGGAAGTTGAGCTTACGGCTGAA -ACGGAAGTTGAGCTTACGAGTACG -ACGGAAGTTGAGCTTACGATCCGA -ACGGAAGTTGAGCTTACGATGGGA -ACGGAAGTTGAGCTTACGGTGCAA -ACGGAAGTTGAGCTTACGGAGGAA -ACGGAAGTTGAGCTTACGCAGGTA -ACGGAAGTTGAGCTTACGGACTCT -ACGGAAGTTGAGCTTACGAGTCCT -ACGGAAGTTGAGCTTACGTAAGCC -ACGGAAGTTGAGCTTACGATAGCC -ACGGAAGTTGAGCTTACGTAACCG -ACGGAAGTTGAGCTTACGATGCCA -ACGGAAGTTGAGGTTAGCGGAAAC -ACGGAAGTTGAGGTTAGCAACACC -ACGGAAGTTGAGGTTAGCATCGAG -ACGGAAGTTGAGGTTAGCCTCCTT -ACGGAAGTTGAGGTTAGCCCTGTT -ACGGAAGTTGAGGTTAGCCGGTTT -ACGGAAGTTGAGGTTAGCGTGGTT -ACGGAAGTTGAGGTTAGCGCCTTT -ACGGAAGTTGAGGTTAGCGGTCTT -ACGGAAGTTGAGGTTAGCACGCTT -ACGGAAGTTGAGGTTAGCAGCGTT -ACGGAAGTTGAGGTTAGCTTCGTC -ACGGAAGTTGAGGTTAGCTCTCTC -ACGGAAGTTGAGGTTAGCTGGATC -ACGGAAGTTGAGGTTAGCCACTTC -ACGGAAGTTGAGGTTAGCGTACTC -ACGGAAGTTGAGGTTAGCGATGTC -ACGGAAGTTGAGGTTAGCACAGTC -ACGGAAGTTGAGGTTAGCTTGCTG -ACGGAAGTTGAGGTTAGCTCCATG -ACGGAAGTTGAGGTTAGCTGTGTG -ACGGAAGTTGAGGTTAGCCTAGTG -ACGGAAGTTGAGGTTAGCCATCTG -ACGGAAGTTGAGGTTAGCGAGTTG -ACGGAAGTTGAGGTTAGCAGACTG -ACGGAAGTTGAGGTTAGCTCGGTA -ACGGAAGTTGAGGTTAGCTGCCTA -ACGGAAGTTGAGGTTAGCCCACTA -ACGGAAGTTGAGGTTAGCGGAGTA -ACGGAAGTTGAGGTTAGCTCGTCT -ACGGAAGTTGAGGTTAGCTGCACT -ACGGAAGTTGAGGTTAGCCTGACT -ACGGAAGTTGAGGTTAGCCAACCT -ACGGAAGTTGAGGTTAGCGCTACT -ACGGAAGTTGAGGTTAGCGGATCT -ACGGAAGTTGAGGTTAGCAAGGCT -ACGGAAGTTGAGGTTAGCTCAACC -ACGGAAGTTGAGGTTAGCTGTTCC -ACGGAAGTTGAGGTTAGCATTCCC -ACGGAAGTTGAGGTTAGCTTCTCG -ACGGAAGTTGAGGTTAGCTAGACG -ACGGAAGTTGAGGTTAGCGTAACG -ACGGAAGTTGAGGTTAGCACTTCG -ACGGAAGTTGAGGTTAGCTACGCA -ACGGAAGTTGAGGTTAGCCTTGCA -ACGGAAGTTGAGGTTAGCCGAACA -ACGGAAGTTGAGGTTAGCCAGTCA -ACGGAAGTTGAGGTTAGCGATCCA -ACGGAAGTTGAGGTTAGCACGACA -ACGGAAGTTGAGGTTAGCAGCTCA -ACGGAAGTTGAGGTTAGCTCACGT -ACGGAAGTTGAGGTTAGCCGTAGT -ACGGAAGTTGAGGTTAGCGTCAGT -ACGGAAGTTGAGGTTAGCGAAGGT -ACGGAAGTTGAGGTTAGCAACCGT -ACGGAAGTTGAGGTTAGCTTGTGC -ACGGAAGTTGAGGTTAGCCTAAGC -ACGGAAGTTGAGGTTAGCACTAGC -ACGGAAGTTGAGGTTAGCAGATGC -ACGGAAGTTGAGGTTAGCTGAAGG -ACGGAAGTTGAGGTTAGCCAATGG -ACGGAAGTTGAGGTTAGCATGAGG -ACGGAAGTTGAGGTTAGCAATGGG -ACGGAAGTTGAGGTTAGCTCCTGA -ACGGAAGTTGAGGTTAGCTAGCGA -ACGGAAGTTGAGGTTAGCCACAGA -ACGGAAGTTGAGGTTAGCGCAAGA -ACGGAAGTTGAGGTTAGCGGTTGA -ACGGAAGTTGAGGTTAGCTCCGAT -ACGGAAGTTGAGGTTAGCTGGCAT -ACGGAAGTTGAGGTTAGCCGAGAT -ACGGAAGTTGAGGTTAGCTACCAC -ACGGAAGTTGAGGTTAGCCAGAAC -ACGGAAGTTGAGGTTAGCGTCTAC -ACGGAAGTTGAGGTTAGCACGTAC -ACGGAAGTTGAGGTTAGCAGTGAC -ACGGAAGTTGAGGTTAGCCTGTAG -ACGGAAGTTGAGGTTAGCCCTAAG -ACGGAAGTTGAGGTTAGCGTTCAG -ACGGAAGTTGAGGTTAGCGCATAG -ACGGAAGTTGAGGTTAGCGACAAG -ACGGAAGTTGAGGTTAGCAAGCAG -ACGGAAGTTGAGGTTAGCCGTCAA -ACGGAAGTTGAGGTTAGCGCTGAA -ACGGAAGTTGAGGTTAGCAGTACG -ACGGAAGTTGAGGTTAGCATCCGA -ACGGAAGTTGAGGTTAGCATGGGA -ACGGAAGTTGAGGTTAGCGTGCAA -ACGGAAGTTGAGGTTAGCGAGGAA -ACGGAAGTTGAGGTTAGCCAGGTA -ACGGAAGTTGAGGTTAGCGACTCT -ACGGAAGTTGAGGTTAGCAGTCCT -ACGGAAGTTGAGGTTAGCTAAGCC -ACGGAAGTTGAGGTTAGCATAGCC -ACGGAAGTTGAGGTTAGCTAACCG -ACGGAAGTTGAGGTTAGCATGCCA -ACGGAAGTTGAGGTCTTCGGAAAC -ACGGAAGTTGAGGTCTTCAACACC -ACGGAAGTTGAGGTCTTCATCGAG -ACGGAAGTTGAGGTCTTCCTCCTT -ACGGAAGTTGAGGTCTTCCCTGTT -ACGGAAGTTGAGGTCTTCCGGTTT -ACGGAAGTTGAGGTCTTCGTGGTT -ACGGAAGTTGAGGTCTTCGCCTTT -ACGGAAGTTGAGGTCTTCGGTCTT -ACGGAAGTTGAGGTCTTCACGCTT -ACGGAAGTTGAGGTCTTCAGCGTT -ACGGAAGTTGAGGTCTTCTTCGTC -ACGGAAGTTGAGGTCTTCTCTCTC -ACGGAAGTTGAGGTCTTCTGGATC -ACGGAAGTTGAGGTCTTCCACTTC -ACGGAAGTTGAGGTCTTCGTACTC -ACGGAAGTTGAGGTCTTCGATGTC -ACGGAAGTTGAGGTCTTCACAGTC -ACGGAAGTTGAGGTCTTCTTGCTG -ACGGAAGTTGAGGTCTTCTCCATG -ACGGAAGTTGAGGTCTTCTGTGTG -ACGGAAGTTGAGGTCTTCCTAGTG -ACGGAAGTTGAGGTCTTCCATCTG -ACGGAAGTTGAGGTCTTCGAGTTG -ACGGAAGTTGAGGTCTTCAGACTG -ACGGAAGTTGAGGTCTTCTCGGTA -ACGGAAGTTGAGGTCTTCTGCCTA -ACGGAAGTTGAGGTCTTCCCACTA -ACGGAAGTTGAGGTCTTCGGAGTA -ACGGAAGTTGAGGTCTTCTCGTCT -ACGGAAGTTGAGGTCTTCTGCACT -ACGGAAGTTGAGGTCTTCCTGACT -ACGGAAGTTGAGGTCTTCCAACCT -ACGGAAGTTGAGGTCTTCGCTACT -ACGGAAGTTGAGGTCTTCGGATCT -ACGGAAGTTGAGGTCTTCAAGGCT -ACGGAAGTTGAGGTCTTCTCAACC -ACGGAAGTTGAGGTCTTCTGTTCC -ACGGAAGTTGAGGTCTTCATTCCC -ACGGAAGTTGAGGTCTTCTTCTCG -ACGGAAGTTGAGGTCTTCTAGACG -ACGGAAGTTGAGGTCTTCGTAACG -ACGGAAGTTGAGGTCTTCACTTCG -ACGGAAGTTGAGGTCTTCTACGCA -ACGGAAGTTGAGGTCTTCCTTGCA -ACGGAAGTTGAGGTCTTCCGAACA -ACGGAAGTTGAGGTCTTCCAGTCA -ACGGAAGTTGAGGTCTTCGATCCA -ACGGAAGTTGAGGTCTTCACGACA -ACGGAAGTTGAGGTCTTCAGCTCA -ACGGAAGTTGAGGTCTTCTCACGT -ACGGAAGTTGAGGTCTTCCGTAGT -ACGGAAGTTGAGGTCTTCGTCAGT -ACGGAAGTTGAGGTCTTCGAAGGT -ACGGAAGTTGAGGTCTTCAACCGT -ACGGAAGTTGAGGTCTTCTTGTGC -ACGGAAGTTGAGGTCTTCCTAAGC -ACGGAAGTTGAGGTCTTCACTAGC -ACGGAAGTTGAGGTCTTCAGATGC -ACGGAAGTTGAGGTCTTCTGAAGG -ACGGAAGTTGAGGTCTTCCAATGG -ACGGAAGTTGAGGTCTTCATGAGG -ACGGAAGTTGAGGTCTTCAATGGG -ACGGAAGTTGAGGTCTTCTCCTGA -ACGGAAGTTGAGGTCTTCTAGCGA -ACGGAAGTTGAGGTCTTCCACAGA -ACGGAAGTTGAGGTCTTCGCAAGA -ACGGAAGTTGAGGTCTTCGGTTGA -ACGGAAGTTGAGGTCTTCTCCGAT -ACGGAAGTTGAGGTCTTCTGGCAT -ACGGAAGTTGAGGTCTTCCGAGAT -ACGGAAGTTGAGGTCTTCTACCAC -ACGGAAGTTGAGGTCTTCCAGAAC -ACGGAAGTTGAGGTCTTCGTCTAC -ACGGAAGTTGAGGTCTTCACGTAC -ACGGAAGTTGAGGTCTTCAGTGAC -ACGGAAGTTGAGGTCTTCCTGTAG -ACGGAAGTTGAGGTCTTCCCTAAG -ACGGAAGTTGAGGTCTTCGTTCAG -ACGGAAGTTGAGGTCTTCGCATAG -ACGGAAGTTGAGGTCTTCGACAAG -ACGGAAGTTGAGGTCTTCAAGCAG -ACGGAAGTTGAGGTCTTCCGTCAA -ACGGAAGTTGAGGTCTTCGCTGAA -ACGGAAGTTGAGGTCTTCAGTACG -ACGGAAGTTGAGGTCTTCATCCGA -ACGGAAGTTGAGGTCTTCATGGGA -ACGGAAGTTGAGGTCTTCGTGCAA -ACGGAAGTTGAGGTCTTCGAGGAA -ACGGAAGTTGAGGTCTTCCAGGTA -ACGGAAGTTGAGGTCTTCGACTCT -ACGGAAGTTGAGGTCTTCAGTCCT -ACGGAAGTTGAGGTCTTCTAAGCC -ACGGAAGTTGAGGTCTTCATAGCC -ACGGAAGTTGAGGTCTTCTAACCG -ACGGAAGTTGAGGTCTTCATGCCA -ACGGAAGTTGAGCTCTCTGGAAAC -ACGGAAGTTGAGCTCTCTAACACC -ACGGAAGTTGAGCTCTCTATCGAG -ACGGAAGTTGAGCTCTCTCTCCTT -ACGGAAGTTGAGCTCTCTCCTGTT -ACGGAAGTTGAGCTCTCTCGGTTT -ACGGAAGTTGAGCTCTCTGTGGTT -ACGGAAGTTGAGCTCTCTGCCTTT -ACGGAAGTTGAGCTCTCTGGTCTT -ACGGAAGTTGAGCTCTCTACGCTT -ACGGAAGTTGAGCTCTCTAGCGTT -ACGGAAGTTGAGCTCTCTTTCGTC -ACGGAAGTTGAGCTCTCTTCTCTC -ACGGAAGTTGAGCTCTCTTGGATC -ACGGAAGTTGAGCTCTCTCACTTC -ACGGAAGTTGAGCTCTCTGTACTC -ACGGAAGTTGAGCTCTCTGATGTC -ACGGAAGTTGAGCTCTCTACAGTC -ACGGAAGTTGAGCTCTCTTTGCTG -ACGGAAGTTGAGCTCTCTTCCATG -ACGGAAGTTGAGCTCTCTTGTGTG -ACGGAAGTTGAGCTCTCTCTAGTG -ACGGAAGTTGAGCTCTCTCATCTG -ACGGAAGTTGAGCTCTCTGAGTTG -ACGGAAGTTGAGCTCTCTAGACTG -ACGGAAGTTGAGCTCTCTTCGGTA -ACGGAAGTTGAGCTCTCTTGCCTA -ACGGAAGTTGAGCTCTCTCCACTA -ACGGAAGTTGAGCTCTCTGGAGTA -ACGGAAGTTGAGCTCTCTTCGTCT -ACGGAAGTTGAGCTCTCTTGCACT -ACGGAAGTTGAGCTCTCTCTGACT -ACGGAAGTTGAGCTCTCTCAACCT -ACGGAAGTTGAGCTCTCTGCTACT -ACGGAAGTTGAGCTCTCTGGATCT -ACGGAAGTTGAGCTCTCTAAGGCT -ACGGAAGTTGAGCTCTCTTCAACC -ACGGAAGTTGAGCTCTCTTGTTCC -ACGGAAGTTGAGCTCTCTATTCCC -ACGGAAGTTGAGCTCTCTTTCTCG -ACGGAAGTTGAGCTCTCTTAGACG -ACGGAAGTTGAGCTCTCTGTAACG -ACGGAAGTTGAGCTCTCTACTTCG -ACGGAAGTTGAGCTCTCTTACGCA -ACGGAAGTTGAGCTCTCTCTTGCA -ACGGAAGTTGAGCTCTCTCGAACA -ACGGAAGTTGAGCTCTCTCAGTCA -ACGGAAGTTGAGCTCTCTGATCCA -ACGGAAGTTGAGCTCTCTACGACA -ACGGAAGTTGAGCTCTCTAGCTCA -ACGGAAGTTGAGCTCTCTTCACGT -ACGGAAGTTGAGCTCTCTCGTAGT -ACGGAAGTTGAGCTCTCTGTCAGT -ACGGAAGTTGAGCTCTCTGAAGGT -ACGGAAGTTGAGCTCTCTAACCGT -ACGGAAGTTGAGCTCTCTTTGTGC -ACGGAAGTTGAGCTCTCTCTAAGC -ACGGAAGTTGAGCTCTCTACTAGC -ACGGAAGTTGAGCTCTCTAGATGC -ACGGAAGTTGAGCTCTCTTGAAGG -ACGGAAGTTGAGCTCTCTCAATGG -ACGGAAGTTGAGCTCTCTATGAGG -ACGGAAGTTGAGCTCTCTAATGGG -ACGGAAGTTGAGCTCTCTTCCTGA -ACGGAAGTTGAGCTCTCTTAGCGA -ACGGAAGTTGAGCTCTCTCACAGA -ACGGAAGTTGAGCTCTCTGCAAGA -ACGGAAGTTGAGCTCTCTGGTTGA -ACGGAAGTTGAGCTCTCTTCCGAT -ACGGAAGTTGAGCTCTCTTGGCAT -ACGGAAGTTGAGCTCTCTCGAGAT -ACGGAAGTTGAGCTCTCTTACCAC -ACGGAAGTTGAGCTCTCTCAGAAC -ACGGAAGTTGAGCTCTCTGTCTAC -ACGGAAGTTGAGCTCTCTACGTAC -ACGGAAGTTGAGCTCTCTAGTGAC -ACGGAAGTTGAGCTCTCTCTGTAG -ACGGAAGTTGAGCTCTCTCCTAAG -ACGGAAGTTGAGCTCTCTGTTCAG -ACGGAAGTTGAGCTCTCTGCATAG -ACGGAAGTTGAGCTCTCTGACAAG -ACGGAAGTTGAGCTCTCTAAGCAG -ACGGAAGTTGAGCTCTCTCGTCAA -ACGGAAGTTGAGCTCTCTGCTGAA -ACGGAAGTTGAGCTCTCTAGTACG -ACGGAAGTTGAGCTCTCTATCCGA -ACGGAAGTTGAGCTCTCTATGGGA -ACGGAAGTTGAGCTCTCTGTGCAA -ACGGAAGTTGAGCTCTCTGAGGAA -ACGGAAGTTGAGCTCTCTCAGGTA -ACGGAAGTTGAGCTCTCTGACTCT -ACGGAAGTTGAGCTCTCTAGTCCT -ACGGAAGTTGAGCTCTCTTAAGCC -ACGGAAGTTGAGCTCTCTATAGCC -ACGGAAGTTGAGCTCTCTTAACCG -ACGGAAGTTGAGCTCTCTATGCCA -ACGGAAGTTGAGATCTGGGGAAAC -ACGGAAGTTGAGATCTGGAACACC -ACGGAAGTTGAGATCTGGATCGAG -ACGGAAGTTGAGATCTGGCTCCTT -ACGGAAGTTGAGATCTGGCCTGTT -ACGGAAGTTGAGATCTGGCGGTTT -ACGGAAGTTGAGATCTGGGTGGTT -ACGGAAGTTGAGATCTGGGCCTTT -ACGGAAGTTGAGATCTGGGGTCTT -ACGGAAGTTGAGATCTGGACGCTT -ACGGAAGTTGAGATCTGGAGCGTT -ACGGAAGTTGAGATCTGGTTCGTC -ACGGAAGTTGAGATCTGGTCTCTC -ACGGAAGTTGAGATCTGGTGGATC -ACGGAAGTTGAGATCTGGCACTTC -ACGGAAGTTGAGATCTGGGTACTC -ACGGAAGTTGAGATCTGGGATGTC -ACGGAAGTTGAGATCTGGACAGTC -ACGGAAGTTGAGATCTGGTTGCTG -ACGGAAGTTGAGATCTGGTCCATG -ACGGAAGTTGAGATCTGGTGTGTG -ACGGAAGTTGAGATCTGGCTAGTG -ACGGAAGTTGAGATCTGGCATCTG -ACGGAAGTTGAGATCTGGGAGTTG -ACGGAAGTTGAGATCTGGAGACTG -ACGGAAGTTGAGATCTGGTCGGTA -ACGGAAGTTGAGATCTGGTGCCTA -ACGGAAGTTGAGATCTGGCCACTA -ACGGAAGTTGAGATCTGGGGAGTA -ACGGAAGTTGAGATCTGGTCGTCT -ACGGAAGTTGAGATCTGGTGCACT -ACGGAAGTTGAGATCTGGCTGACT -ACGGAAGTTGAGATCTGGCAACCT -ACGGAAGTTGAGATCTGGGCTACT -ACGGAAGTTGAGATCTGGGGATCT -ACGGAAGTTGAGATCTGGAAGGCT -ACGGAAGTTGAGATCTGGTCAACC -ACGGAAGTTGAGATCTGGTGTTCC -ACGGAAGTTGAGATCTGGATTCCC -ACGGAAGTTGAGATCTGGTTCTCG -ACGGAAGTTGAGATCTGGTAGACG -ACGGAAGTTGAGATCTGGGTAACG -ACGGAAGTTGAGATCTGGACTTCG -ACGGAAGTTGAGATCTGGTACGCA -ACGGAAGTTGAGATCTGGCTTGCA -ACGGAAGTTGAGATCTGGCGAACA -ACGGAAGTTGAGATCTGGCAGTCA -ACGGAAGTTGAGATCTGGGATCCA -ACGGAAGTTGAGATCTGGACGACA -ACGGAAGTTGAGATCTGGAGCTCA -ACGGAAGTTGAGATCTGGTCACGT -ACGGAAGTTGAGATCTGGCGTAGT -ACGGAAGTTGAGATCTGGGTCAGT -ACGGAAGTTGAGATCTGGGAAGGT -ACGGAAGTTGAGATCTGGAACCGT -ACGGAAGTTGAGATCTGGTTGTGC -ACGGAAGTTGAGATCTGGCTAAGC -ACGGAAGTTGAGATCTGGACTAGC -ACGGAAGTTGAGATCTGGAGATGC -ACGGAAGTTGAGATCTGGTGAAGG -ACGGAAGTTGAGATCTGGCAATGG -ACGGAAGTTGAGATCTGGATGAGG -ACGGAAGTTGAGATCTGGAATGGG -ACGGAAGTTGAGATCTGGTCCTGA -ACGGAAGTTGAGATCTGGTAGCGA -ACGGAAGTTGAGATCTGGCACAGA -ACGGAAGTTGAGATCTGGGCAAGA -ACGGAAGTTGAGATCTGGGGTTGA -ACGGAAGTTGAGATCTGGTCCGAT -ACGGAAGTTGAGATCTGGTGGCAT -ACGGAAGTTGAGATCTGGCGAGAT -ACGGAAGTTGAGATCTGGTACCAC -ACGGAAGTTGAGATCTGGCAGAAC -ACGGAAGTTGAGATCTGGGTCTAC -ACGGAAGTTGAGATCTGGACGTAC -ACGGAAGTTGAGATCTGGAGTGAC -ACGGAAGTTGAGATCTGGCTGTAG -ACGGAAGTTGAGATCTGGCCTAAG -ACGGAAGTTGAGATCTGGGTTCAG -ACGGAAGTTGAGATCTGGGCATAG -ACGGAAGTTGAGATCTGGGACAAG -ACGGAAGTTGAGATCTGGAAGCAG -ACGGAAGTTGAGATCTGGCGTCAA -ACGGAAGTTGAGATCTGGGCTGAA -ACGGAAGTTGAGATCTGGAGTACG -ACGGAAGTTGAGATCTGGATCCGA -ACGGAAGTTGAGATCTGGATGGGA -ACGGAAGTTGAGATCTGGGTGCAA -ACGGAAGTTGAGATCTGGGAGGAA -ACGGAAGTTGAGATCTGGCAGGTA -ACGGAAGTTGAGATCTGGGACTCT -ACGGAAGTTGAGATCTGGAGTCCT -ACGGAAGTTGAGATCTGGTAAGCC -ACGGAAGTTGAGATCTGGATAGCC -ACGGAAGTTGAGATCTGGTAACCG -ACGGAAGTTGAGATCTGGATGCCA -ACGGAAGTTGAGTTCCACGGAAAC -ACGGAAGTTGAGTTCCACAACACC -ACGGAAGTTGAGTTCCACATCGAG -ACGGAAGTTGAGTTCCACCTCCTT -ACGGAAGTTGAGTTCCACCCTGTT -ACGGAAGTTGAGTTCCACCGGTTT -ACGGAAGTTGAGTTCCACGTGGTT -ACGGAAGTTGAGTTCCACGCCTTT -ACGGAAGTTGAGTTCCACGGTCTT -ACGGAAGTTGAGTTCCACACGCTT -ACGGAAGTTGAGTTCCACAGCGTT -ACGGAAGTTGAGTTCCACTTCGTC -ACGGAAGTTGAGTTCCACTCTCTC -ACGGAAGTTGAGTTCCACTGGATC -ACGGAAGTTGAGTTCCACCACTTC -ACGGAAGTTGAGTTCCACGTACTC -ACGGAAGTTGAGTTCCACGATGTC -ACGGAAGTTGAGTTCCACACAGTC -ACGGAAGTTGAGTTCCACTTGCTG -ACGGAAGTTGAGTTCCACTCCATG -ACGGAAGTTGAGTTCCACTGTGTG -ACGGAAGTTGAGTTCCACCTAGTG -ACGGAAGTTGAGTTCCACCATCTG -ACGGAAGTTGAGTTCCACGAGTTG -ACGGAAGTTGAGTTCCACAGACTG -ACGGAAGTTGAGTTCCACTCGGTA -ACGGAAGTTGAGTTCCACTGCCTA -ACGGAAGTTGAGTTCCACCCACTA -ACGGAAGTTGAGTTCCACGGAGTA -ACGGAAGTTGAGTTCCACTCGTCT -ACGGAAGTTGAGTTCCACTGCACT -ACGGAAGTTGAGTTCCACCTGACT -ACGGAAGTTGAGTTCCACCAACCT -ACGGAAGTTGAGTTCCACGCTACT -ACGGAAGTTGAGTTCCACGGATCT -ACGGAAGTTGAGTTCCACAAGGCT -ACGGAAGTTGAGTTCCACTCAACC -ACGGAAGTTGAGTTCCACTGTTCC -ACGGAAGTTGAGTTCCACATTCCC -ACGGAAGTTGAGTTCCACTTCTCG -ACGGAAGTTGAGTTCCACTAGACG -ACGGAAGTTGAGTTCCACGTAACG -ACGGAAGTTGAGTTCCACACTTCG -ACGGAAGTTGAGTTCCACTACGCA -ACGGAAGTTGAGTTCCACCTTGCA -ACGGAAGTTGAGTTCCACCGAACA -ACGGAAGTTGAGTTCCACCAGTCA -ACGGAAGTTGAGTTCCACGATCCA -ACGGAAGTTGAGTTCCACACGACA -ACGGAAGTTGAGTTCCACAGCTCA -ACGGAAGTTGAGTTCCACTCACGT -ACGGAAGTTGAGTTCCACCGTAGT -ACGGAAGTTGAGTTCCACGTCAGT -ACGGAAGTTGAGTTCCACGAAGGT -ACGGAAGTTGAGTTCCACAACCGT -ACGGAAGTTGAGTTCCACTTGTGC -ACGGAAGTTGAGTTCCACCTAAGC -ACGGAAGTTGAGTTCCACACTAGC -ACGGAAGTTGAGTTCCACAGATGC -ACGGAAGTTGAGTTCCACTGAAGG -ACGGAAGTTGAGTTCCACCAATGG -ACGGAAGTTGAGTTCCACATGAGG -ACGGAAGTTGAGTTCCACAATGGG -ACGGAAGTTGAGTTCCACTCCTGA -ACGGAAGTTGAGTTCCACTAGCGA -ACGGAAGTTGAGTTCCACCACAGA -ACGGAAGTTGAGTTCCACGCAAGA -ACGGAAGTTGAGTTCCACGGTTGA -ACGGAAGTTGAGTTCCACTCCGAT -ACGGAAGTTGAGTTCCACTGGCAT -ACGGAAGTTGAGTTCCACCGAGAT -ACGGAAGTTGAGTTCCACTACCAC -ACGGAAGTTGAGTTCCACCAGAAC -ACGGAAGTTGAGTTCCACGTCTAC -ACGGAAGTTGAGTTCCACACGTAC -ACGGAAGTTGAGTTCCACAGTGAC -ACGGAAGTTGAGTTCCACCTGTAG -ACGGAAGTTGAGTTCCACCCTAAG -ACGGAAGTTGAGTTCCACGTTCAG -ACGGAAGTTGAGTTCCACGCATAG -ACGGAAGTTGAGTTCCACGACAAG -ACGGAAGTTGAGTTCCACAAGCAG -ACGGAAGTTGAGTTCCACCGTCAA -ACGGAAGTTGAGTTCCACGCTGAA -ACGGAAGTTGAGTTCCACAGTACG -ACGGAAGTTGAGTTCCACATCCGA -ACGGAAGTTGAGTTCCACATGGGA -ACGGAAGTTGAGTTCCACGTGCAA -ACGGAAGTTGAGTTCCACGAGGAA -ACGGAAGTTGAGTTCCACCAGGTA -ACGGAAGTTGAGTTCCACGACTCT -ACGGAAGTTGAGTTCCACAGTCCT -ACGGAAGTTGAGTTCCACTAAGCC -ACGGAAGTTGAGTTCCACATAGCC -ACGGAAGTTGAGTTCCACTAACCG -ACGGAAGTTGAGTTCCACATGCCA -ACGGAAGTTGAGCTCGTAGGAAAC -ACGGAAGTTGAGCTCGTAAACACC -ACGGAAGTTGAGCTCGTAATCGAG -ACGGAAGTTGAGCTCGTACTCCTT -ACGGAAGTTGAGCTCGTACCTGTT -ACGGAAGTTGAGCTCGTACGGTTT -ACGGAAGTTGAGCTCGTAGTGGTT -ACGGAAGTTGAGCTCGTAGCCTTT -ACGGAAGTTGAGCTCGTAGGTCTT -ACGGAAGTTGAGCTCGTAACGCTT -ACGGAAGTTGAGCTCGTAAGCGTT -ACGGAAGTTGAGCTCGTATTCGTC -ACGGAAGTTGAGCTCGTATCTCTC -ACGGAAGTTGAGCTCGTATGGATC -ACGGAAGTTGAGCTCGTACACTTC -ACGGAAGTTGAGCTCGTAGTACTC -ACGGAAGTTGAGCTCGTAGATGTC -ACGGAAGTTGAGCTCGTAACAGTC -ACGGAAGTTGAGCTCGTATTGCTG -ACGGAAGTTGAGCTCGTATCCATG -ACGGAAGTTGAGCTCGTATGTGTG -ACGGAAGTTGAGCTCGTACTAGTG -ACGGAAGTTGAGCTCGTACATCTG -ACGGAAGTTGAGCTCGTAGAGTTG -ACGGAAGTTGAGCTCGTAAGACTG -ACGGAAGTTGAGCTCGTATCGGTA -ACGGAAGTTGAGCTCGTATGCCTA -ACGGAAGTTGAGCTCGTACCACTA -ACGGAAGTTGAGCTCGTAGGAGTA -ACGGAAGTTGAGCTCGTATCGTCT -ACGGAAGTTGAGCTCGTATGCACT -ACGGAAGTTGAGCTCGTACTGACT -ACGGAAGTTGAGCTCGTACAACCT -ACGGAAGTTGAGCTCGTAGCTACT -ACGGAAGTTGAGCTCGTAGGATCT -ACGGAAGTTGAGCTCGTAAAGGCT -ACGGAAGTTGAGCTCGTATCAACC -ACGGAAGTTGAGCTCGTATGTTCC -ACGGAAGTTGAGCTCGTAATTCCC -ACGGAAGTTGAGCTCGTATTCTCG -ACGGAAGTTGAGCTCGTATAGACG -ACGGAAGTTGAGCTCGTAGTAACG -ACGGAAGTTGAGCTCGTAACTTCG -ACGGAAGTTGAGCTCGTATACGCA -ACGGAAGTTGAGCTCGTACTTGCA -ACGGAAGTTGAGCTCGTACGAACA -ACGGAAGTTGAGCTCGTACAGTCA -ACGGAAGTTGAGCTCGTAGATCCA -ACGGAAGTTGAGCTCGTAACGACA -ACGGAAGTTGAGCTCGTAAGCTCA -ACGGAAGTTGAGCTCGTATCACGT -ACGGAAGTTGAGCTCGTACGTAGT -ACGGAAGTTGAGCTCGTAGTCAGT -ACGGAAGTTGAGCTCGTAGAAGGT -ACGGAAGTTGAGCTCGTAAACCGT -ACGGAAGTTGAGCTCGTATTGTGC -ACGGAAGTTGAGCTCGTACTAAGC -ACGGAAGTTGAGCTCGTAACTAGC -ACGGAAGTTGAGCTCGTAAGATGC -ACGGAAGTTGAGCTCGTATGAAGG -ACGGAAGTTGAGCTCGTACAATGG -ACGGAAGTTGAGCTCGTAATGAGG -ACGGAAGTTGAGCTCGTAAATGGG -ACGGAAGTTGAGCTCGTATCCTGA -ACGGAAGTTGAGCTCGTATAGCGA -ACGGAAGTTGAGCTCGTACACAGA -ACGGAAGTTGAGCTCGTAGCAAGA -ACGGAAGTTGAGCTCGTAGGTTGA -ACGGAAGTTGAGCTCGTATCCGAT -ACGGAAGTTGAGCTCGTATGGCAT -ACGGAAGTTGAGCTCGTACGAGAT -ACGGAAGTTGAGCTCGTATACCAC -ACGGAAGTTGAGCTCGTACAGAAC -ACGGAAGTTGAGCTCGTAGTCTAC -ACGGAAGTTGAGCTCGTAACGTAC -ACGGAAGTTGAGCTCGTAAGTGAC -ACGGAAGTTGAGCTCGTACTGTAG -ACGGAAGTTGAGCTCGTACCTAAG -ACGGAAGTTGAGCTCGTAGTTCAG -ACGGAAGTTGAGCTCGTAGCATAG -ACGGAAGTTGAGCTCGTAGACAAG -ACGGAAGTTGAGCTCGTAAAGCAG -ACGGAAGTTGAGCTCGTACGTCAA -ACGGAAGTTGAGCTCGTAGCTGAA -ACGGAAGTTGAGCTCGTAAGTACG -ACGGAAGTTGAGCTCGTAATCCGA -ACGGAAGTTGAGCTCGTAATGGGA -ACGGAAGTTGAGCTCGTAGTGCAA -ACGGAAGTTGAGCTCGTAGAGGAA -ACGGAAGTTGAGCTCGTACAGGTA -ACGGAAGTTGAGCTCGTAGACTCT -ACGGAAGTTGAGCTCGTAAGTCCT -ACGGAAGTTGAGCTCGTATAAGCC -ACGGAAGTTGAGCTCGTAATAGCC -ACGGAAGTTGAGCTCGTATAACCG -ACGGAAGTTGAGCTCGTAATGCCA -ACGGAAGTTGAGGTCGATGGAAAC -ACGGAAGTTGAGGTCGATAACACC -ACGGAAGTTGAGGTCGATATCGAG -ACGGAAGTTGAGGTCGATCTCCTT -ACGGAAGTTGAGGTCGATCCTGTT -ACGGAAGTTGAGGTCGATCGGTTT -ACGGAAGTTGAGGTCGATGTGGTT -ACGGAAGTTGAGGTCGATGCCTTT -ACGGAAGTTGAGGTCGATGGTCTT -ACGGAAGTTGAGGTCGATACGCTT -ACGGAAGTTGAGGTCGATAGCGTT -ACGGAAGTTGAGGTCGATTTCGTC -ACGGAAGTTGAGGTCGATTCTCTC -ACGGAAGTTGAGGTCGATTGGATC -ACGGAAGTTGAGGTCGATCACTTC -ACGGAAGTTGAGGTCGATGTACTC -ACGGAAGTTGAGGTCGATGATGTC -ACGGAAGTTGAGGTCGATACAGTC -ACGGAAGTTGAGGTCGATTTGCTG -ACGGAAGTTGAGGTCGATTCCATG -ACGGAAGTTGAGGTCGATTGTGTG -ACGGAAGTTGAGGTCGATCTAGTG -ACGGAAGTTGAGGTCGATCATCTG -ACGGAAGTTGAGGTCGATGAGTTG -ACGGAAGTTGAGGTCGATAGACTG -ACGGAAGTTGAGGTCGATTCGGTA -ACGGAAGTTGAGGTCGATTGCCTA -ACGGAAGTTGAGGTCGATCCACTA -ACGGAAGTTGAGGTCGATGGAGTA -ACGGAAGTTGAGGTCGATTCGTCT -ACGGAAGTTGAGGTCGATTGCACT -ACGGAAGTTGAGGTCGATCTGACT -ACGGAAGTTGAGGTCGATCAACCT -ACGGAAGTTGAGGTCGATGCTACT -ACGGAAGTTGAGGTCGATGGATCT -ACGGAAGTTGAGGTCGATAAGGCT -ACGGAAGTTGAGGTCGATTCAACC -ACGGAAGTTGAGGTCGATTGTTCC -ACGGAAGTTGAGGTCGATATTCCC -ACGGAAGTTGAGGTCGATTTCTCG -ACGGAAGTTGAGGTCGATTAGACG -ACGGAAGTTGAGGTCGATGTAACG -ACGGAAGTTGAGGTCGATACTTCG -ACGGAAGTTGAGGTCGATTACGCA -ACGGAAGTTGAGGTCGATCTTGCA -ACGGAAGTTGAGGTCGATCGAACA -ACGGAAGTTGAGGTCGATCAGTCA -ACGGAAGTTGAGGTCGATGATCCA -ACGGAAGTTGAGGTCGATACGACA -ACGGAAGTTGAGGTCGATAGCTCA -ACGGAAGTTGAGGTCGATTCACGT -ACGGAAGTTGAGGTCGATCGTAGT -ACGGAAGTTGAGGTCGATGTCAGT -ACGGAAGTTGAGGTCGATGAAGGT -ACGGAAGTTGAGGTCGATAACCGT -ACGGAAGTTGAGGTCGATTTGTGC -ACGGAAGTTGAGGTCGATCTAAGC -ACGGAAGTTGAGGTCGATACTAGC -ACGGAAGTTGAGGTCGATAGATGC -ACGGAAGTTGAGGTCGATTGAAGG -ACGGAAGTTGAGGTCGATCAATGG -ACGGAAGTTGAGGTCGATATGAGG -ACGGAAGTTGAGGTCGATAATGGG -ACGGAAGTTGAGGTCGATTCCTGA -ACGGAAGTTGAGGTCGATTAGCGA -ACGGAAGTTGAGGTCGATCACAGA -ACGGAAGTTGAGGTCGATGCAAGA -ACGGAAGTTGAGGTCGATGGTTGA -ACGGAAGTTGAGGTCGATTCCGAT -ACGGAAGTTGAGGTCGATTGGCAT -ACGGAAGTTGAGGTCGATCGAGAT -ACGGAAGTTGAGGTCGATTACCAC -ACGGAAGTTGAGGTCGATCAGAAC -ACGGAAGTTGAGGTCGATGTCTAC -ACGGAAGTTGAGGTCGATACGTAC -ACGGAAGTTGAGGTCGATAGTGAC -ACGGAAGTTGAGGTCGATCTGTAG -ACGGAAGTTGAGGTCGATCCTAAG -ACGGAAGTTGAGGTCGATGTTCAG -ACGGAAGTTGAGGTCGATGCATAG -ACGGAAGTTGAGGTCGATGACAAG -ACGGAAGTTGAGGTCGATAAGCAG -ACGGAAGTTGAGGTCGATCGTCAA -ACGGAAGTTGAGGTCGATGCTGAA -ACGGAAGTTGAGGTCGATAGTACG -ACGGAAGTTGAGGTCGATATCCGA -ACGGAAGTTGAGGTCGATATGGGA -ACGGAAGTTGAGGTCGATGTGCAA -ACGGAAGTTGAGGTCGATGAGGAA -ACGGAAGTTGAGGTCGATCAGGTA -ACGGAAGTTGAGGTCGATGACTCT -ACGGAAGTTGAGGTCGATAGTCCT -ACGGAAGTTGAGGTCGATTAAGCC -ACGGAAGTTGAGGTCGATATAGCC -ACGGAAGTTGAGGTCGATTAACCG -ACGGAAGTTGAGGTCGATATGCCA -ACGGAAGTTGAGGTCACAGGAAAC -ACGGAAGTTGAGGTCACAAACACC -ACGGAAGTTGAGGTCACAATCGAG -ACGGAAGTTGAGGTCACACTCCTT -ACGGAAGTTGAGGTCACACCTGTT -ACGGAAGTTGAGGTCACACGGTTT -ACGGAAGTTGAGGTCACAGTGGTT -ACGGAAGTTGAGGTCACAGCCTTT -ACGGAAGTTGAGGTCACAGGTCTT -ACGGAAGTTGAGGTCACAACGCTT -ACGGAAGTTGAGGTCACAAGCGTT -ACGGAAGTTGAGGTCACATTCGTC -ACGGAAGTTGAGGTCACATCTCTC -ACGGAAGTTGAGGTCACATGGATC -ACGGAAGTTGAGGTCACACACTTC -ACGGAAGTTGAGGTCACAGTACTC -ACGGAAGTTGAGGTCACAGATGTC -ACGGAAGTTGAGGTCACAACAGTC -ACGGAAGTTGAGGTCACATTGCTG -ACGGAAGTTGAGGTCACATCCATG -ACGGAAGTTGAGGTCACATGTGTG -ACGGAAGTTGAGGTCACACTAGTG -ACGGAAGTTGAGGTCACACATCTG -ACGGAAGTTGAGGTCACAGAGTTG -ACGGAAGTTGAGGTCACAAGACTG -ACGGAAGTTGAGGTCACATCGGTA -ACGGAAGTTGAGGTCACATGCCTA -ACGGAAGTTGAGGTCACACCACTA -ACGGAAGTTGAGGTCACAGGAGTA -ACGGAAGTTGAGGTCACATCGTCT -ACGGAAGTTGAGGTCACATGCACT -ACGGAAGTTGAGGTCACACTGACT -ACGGAAGTTGAGGTCACACAACCT -ACGGAAGTTGAGGTCACAGCTACT -ACGGAAGTTGAGGTCACAGGATCT -ACGGAAGTTGAGGTCACAAAGGCT -ACGGAAGTTGAGGTCACATCAACC -ACGGAAGTTGAGGTCACATGTTCC -ACGGAAGTTGAGGTCACAATTCCC -ACGGAAGTTGAGGTCACATTCTCG -ACGGAAGTTGAGGTCACATAGACG -ACGGAAGTTGAGGTCACAGTAACG -ACGGAAGTTGAGGTCACAACTTCG -ACGGAAGTTGAGGTCACATACGCA -ACGGAAGTTGAGGTCACACTTGCA -ACGGAAGTTGAGGTCACACGAACA -ACGGAAGTTGAGGTCACACAGTCA -ACGGAAGTTGAGGTCACAGATCCA -ACGGAAGTTGAGGTCACAACGACA -ACGGAAGTTGAGGTCACAAGCTCA -ACGGAAGTTGAGGTCACATCACGT -ACGGAAGTTGAGGTCACACGTAGT -ACGGAAGTTGAGGTCACAGTCAGT -ACGGAAGTTGAGGTCACAGAAGGT -ACGGAAGTTGAGGTCACAAACCGT -ACGGAAGTTGAGGTCACATTGTGC -ACGGAAGTTGAGGTCACACTAAGC -ACGGAAGTTGAGGTCACAACTAGC -ACGGAAGTTGAGGTCACAAGATGC -ACGGAAGTTGAGGTCACATGAAGG -ACGGAAGTTGAGGTCACACAATGG -ACGGAAGTTGAGGTCACAATGAGG -ACGGAAGTTGAGGTCACAAATGGG -ACGGAAGTTGAGGTCACATCCTGA -ACGGAAGTTGAGGTCACATAGCGA -ACGGAAGTTGAGGTCACACACAGA -ACGGAAGTTGAGGTCACAGCAAGA -ACGGAAGTTGAGGTCACAGGTTGA -ACGGAAGTTGAGGTCACATCCGAT -ACGGAAGTTGAGGTCACATGGCAT -ACGGAAGTTGAGGTCACACGAGAT -ACGGAAGTTGAGGTCACATACCAC -ACGGAAGTTGAGGTCACACAGAAC -ACGGAAGTTGAGGTCACAGTCTAC -ACGGAAGTTGAGGTCACAACGTAC -ACGGAAGTTGAGGTCACAAGTGAC -ACGGAAGTTGAGGTCACACTGTAG -ACGGAAGTTGAGGTCACACCTAAG -ACGGAAGTTGAGGTCACAGTTCAG -ACGGAAGTTGAGGTCACAGCATAG -ACGGAAGTTGAGGTCACAGACAAG -ACGGAAGTTGAGGTCACAAAGCAG -ACGGAAGTTGAGGTCACACGTCAA -ACGGAAGTTGAGGTCACAGCTGAA -ACGGAAGTTGAGGTCACAAGTACG -ACGGAAGTTGAGGTCACAATCCGA -ACGGAAGTTGAGGTCACAATGGGA -ACGGAAGTTGAGGTCACAGTGCAA -ACGGAAGTTGAGGTCACAGAGGAA -ACGGAAGTTGAGGTCACACAGGTA -ACGGAAGTTGAGGTCACAGACTCT -ACGGAAGTTGAGGTCACAAGTCCT -ACGGAAGTTGAGGTCACATAAGCC -ACGGAAGTTGAGGTCACAATAGCC -ACGGAAGTTGAGGTCACATAACCG -ACGGAAGTTGAGGTCACAATGCCA -ACGGAAGTTGAGCTGTTGGGAAAC -ACGGAAGTTGAGCTGTTGAACACC -ACGGAAGTTGAGCTGTTGATCGAG -ACGGAAGTTGAGCTGTTGCTCCTT -ACGGAAGTTGAGCTGTTGCCTGTT -ACGGAAGTTGAGCTGTTGCGGTTT -ACGGAAGTTGAGCTGTTGGTGGTT -ACGGAAGTTGAGCTGTTGGCCTTT -ACGGAAGTTGAGCTGTTGGGTCTT -ACGGAAGTTGAGCTGTTGACGCTT -ACGGAAGTTGAGCTGTTGAGCGTT -ACGGAAGTTGAGCTGTTGTTCGTC -ACGGAAGTTGAGCTGTTGTCTCTC -ACGGAAGTTGAGCTGTTGTGGATC -ACGGAAGTTGAGCTGTTGCACTTC -ACGGAAGTTGAGCTGTTGGTACTC -ACGGAAGTTGAGCTGTTGGATGTC -ACGGAAGTTGAGCTGTTGACAGTC -ACGGAAGTTGAGCTGTTGTTGCTG -ACGGAAGTTGAGCTGTTGTCCATG -ACGGAAGTTGAGCTGTTGTGTGTG -ACGGAAGTTGAGCTGTTGCTAGTG -ACGGAAGTTGAGCTGTTGCATCTG -ACGGAAGTTGAGCTGTTGGAGTTG -ACGGAAGTTGAGCTGTTGAGACTG -ACGGAAGTTGAGCTGTTGTCGGTA -ACGGAAGTTGAGCTGTTGTGCCTA -ACGGAAGTTGAGCTGTTGCCACTA -ACGGAAGTTGAGCTGTTGGGAGTA -ACGGAAGTTGAGCTGTTGTCGTCT -ACGGAAGTTGAGCTGTTGTGCACT -ACGGAAGTTGAGCTGTTGCTGACT -ACGGAAGTTGAGCTGTTGCAACCT -ACGGAAGTTGAGCTGTTGGCTACT -ACGGAAGTTGAGCTGTTGGGATCT -ACGGAAGTTGAGCTGTTGAAGGCT -ACGGAAGTTGAGCTGTTGTCAACC -ACGGAAGTTGAGCTGTTGTGTTCC -ACGGAAGTTGAGCTGTTGATTCCC -ACGGAAGTTGAGCTGTTGTTCTCG -ACGGAAGTTGAGCTGTTGTAGACG -ACGGAAGTTGAGCTGTTGGTAACG -ACGGAAGTTGAGCTGTTGACTTCG -ACGGAAGTTGAGCTGTTGTACGCA -ACGGAAGTTGAGCTGTTGCTTGCA -ACGGAAGTTGAGCTGTTGCGAACA -ACGGAAGTTGAGCTGTTGCAGTCA -ACGGAAGTTGAGCTGTTGGATCCA -ACGGAAGTTGAGCTGTTGACGACA -ACGGAAGTTGAGCTGTTGAGCTCA -ACGGAAGTTGAGCTGTTGTCACGT -ACGGAAGTTGAGCTGTTGCGTAGT -ACGGAAGTTGAGCTGTTGGTCAGT -ACGGAAGTTGAGCTGTTGGAAGGT -ACGGAAGTTGAGCTGTTGAACCGT -ACGGAAGTTGAGCTGTTGTTGTGC -ACGGAAGTTGAGCTGTTGCTAAGC -ACGGAAGTTGAGCTGTTGACTAGC -ACGGAAGTTGAGCTGTTGAGATGC -ACGGAAGTTGAGCTGTTGTGAAGG -ACGGAAGTTGAGCTGTTGCAATGG -ACGGAAGTTGAGCTGTTGATGAGG -ACGGAAGTTGAGCTGTTGAATGGG -ACGGAAGTTGAGCTGTTGTCCTGA -ACGGAAGTTGAGCTGTTGTAGCGA -ACGGAAGTTGAGCTGTTGCACAGA -ACGGAAGTTGAGCTGTTGGCAAGA -ACGGAAGTTGAGCTGTTGGGTTGA -ACGGAAGTTGAGCTGTTGTCCGAT -ACGGAAGTTGAGCTGTTGTGGCAT -ACGGAAGTTGAGCTGTTGCGAGAT -ACGGAAGTTGAGCTGTTGTACCAC -ACGGAAGTTGAGCTGTTGCAGAAC -ACGGAAGTTGAGCTGTTGGTCTAC -ACGGAAGTTGAGCTGTTGACGTAC -ACGGAAGTTGAGCTGTTGAGTGAC -ACGGAAGTTGAGCTGTTGCTGTAG -ACGGAAGTTGAGCTGTTGCCTAAG -ACGGAAGTTGAGCTGTTGGTTCAG -ACGGAAGTTGAGCTGTTGGCATAG -ACGGAAGTTGAGCTGTTGGACAAG -ACGGAAGTTGAGCTGTTGAAGCAG -ACGGAAGTTGAGCTGTTGCGTCAA -ACGGAAGTTGAGCTGTTGGCTGAA -ACGGAAGTTGAGCTGTTGAGTACG -ACGGAAGTTGAGCTGTTGATCCGA -ACGGAAGTTGAGCTGTTGATGGGA -ACGGAAGTTGAGCTGTTGGTGCAA -ACGGAAGTTGAGCTGTTGGAGGAA -ACGGAAGTTGAGCTGTTGCAGGTA -ACGGAAGTTGAGCTGTTGGACTCT -ACGGAAGTTGAGCTGTTGAGTCCT -ACGGAAGTTGAGCTGTTGTAAGCC -ACGGAAGTTGAGCTGTTGATAGCC -ACGGAAGTTGAGCTGTTGTAACCG -ACGGAAGTTGAGCTGTTGATGCCA -ACGGAAGTTGAGATGTCCGGAAAC -ACGGAAGTTGAGATGTCCAACACC -ACGGAAGTTGAGATGTCCATCGAG -ACGGAAGTTGAGATGTCCCTCCTT -ACGGAAGTTGAGATGTCCCCTGTT -ACGGAAGTTGAGATGTCCCGGTTT -ACGGAAGTTGAGATGTCCGTGGTT -ACGGAAGTTGAGATGTCCGCCTTT -ACGGAAGTTGAGATGTCCGGTCTT -ACGGAAGTTGAGATGTCCACGCTT -ACGGAAGTTGAGATGTCCAGCGTT -ACGGAAGTTGAGATGTCCTTCGTC -ACGGAAGTTGAGATGTCCTCTCTC -ACGGAAGTTGAGATGTCCTGGATC -ACGGAAGTTGAGATGTCCCACTTC -ACGGAAGTTGAGATGTCCGTACTC -ACGGAAGTTGAGATGTCCGATGTC -ACGGAAGTTGAGATGTCCACAGTC -ACGGAAGTTGAGATGTCCTTGCTG -ACGGAAGTTGAGATGTCCTCCATG -ACGGAAGTTGAGATGTCCTGTGTG -ACGGAAGTTGAGATGTCCCTAGTG -ACGGAAGTTGAGATGTCCCATCTG -ACGGAAGTTGAGATGTCCGAGTTG -ACGGAAGTTGAGATGTCCAGACTG -ACGGAAGTTGAGATGTCCTCGGTA -ACGGAAGTTGAGATGTCCTGCCTA -ACGGAAGTTGAGATGTCCCCACTA -ACGGAAGTTGAGATGTCCGGAGTA -ACGGAAGTTGAGATGTCCTCGTCT -ACGGAAGTTGAGATGTCCTGCACT -ACGGAAGTTGAGATGTCCCTGACT -ACGGAAGTTGAGATGTCCCAACCT -ACGGAAGTTGAGATGTCCGCTACT -ACGGAAGTTGAGATGTCCGGATCT -ACGGAAGTTGAGATGTCCAAGGCT -ACGGAAGTTGAGATGTCCTCAACC -ACGGAAGTTGAGATGTCCTGTTCC -ACGGAAGTTGAGATGTCCATTCCC -ACGGAAGTTGAGATGTCCTTCTCG -ACGGAAGTTGAGATGTCCTAGACG -ACGGAAGTTGAGATGTCCGTAACG -ACGGAAGTTGAGATGTCCACTTCG -ACGGAAGTTGAGATGTCCTACGCA -ACGGAAGTTGAGATGTCCCTTGCA -ACGGAAGTTGAGATGTCCCGAACA -ACGGAAGTTGAGATGTCCCAGTCA -ACGGAAGTTGAGATGTCCGATCCA -ACGGAAGTTGAGATGTCCACGACA -ACGGAAGTTGAGATGTCCAGCTCA -ACGGAAGTTGAGATGTCCTCACGT -ACGGAAGTTGAGATGTCCCGTAGT -ACGGAAGTTGAGATGTCCGTCAGT -ACGGAAGTTGAGATGTCCGAAGGT -ACGGAAGTTGAGATGTCCAACCGT -ACGGAAGTTGAGATGTCCTTGTGC -ACGGAAGTTGAGATGTCCCTAAGC -ACGGAAGTTGAGATGTCCACTAGC -ACGGAAGTTGAGATGTCCAGATGC -ACGGAAGTTGAGATGTCCTGAAGG -ACGGAAGTTGAGATGTCCCAATGG -ACGGAAGTTGAGATGTCCATGAGG -ACGGAAGTTGAGATGTCCAATGGG -ACGGAAGTTGAGATGTCCTCCTGA -ACGGAAGTTGAGATGTCCTAGCGA -ACGGAAGTTGAGATGTCCCACAGA -ACGGAAGTTGAGATGTCCGCAAGA -ACGGAAGTTGAGATGTCCGGTTGA -ACGGAAGTTGAGATGTCCTCCGAT -ACGGAAGTTGAGATGTCCTGGCAT -ACGGAAGTTGAGATGTCCCGAGAT -ACGGAAGTTGAGATGTCCTACCAC -ACGGAAGTTGAGATGTCCCAGAAC -ACGGAAGTTGAGATGTCCGTCTAC -ACGGAAGTTGAGATGTCCACGTAC -ACGGAAGTTGAGATGTCCAGTGAC -ACGGAAGTTGAGATGTCCCTGTAG -ACGGAAGTTGAGATGTCCCCTAAG -ACGGAAGTTGAGATGTCCGTTCAG -ACGGAAGTTGAGATGTCCGCATAG -ACGGAAGTTGAGATGTCCGACAAG -ACGGAAGTTGAGATGTCCAAGCAG -ACGGAAGTTGAGATGTCCCGTCAA -ACGGAAGTTGAGATGTCCGCTGAA -ACGGAAGTTGAGATGTCCAGTACG -ACGGAAGTTGAGATGTCCATCCGA -ACGGAAGTTGAGATGTCCATGGGA -ACGGAAGTTGAGATGTCCGTGCAA -ACGGAAGTTGAGATGTCCGAGGAA -ACGGAAGTTGAGATGTCCCAGGTA -ACGGAAGTTGAGATGTCCGACTCT -ACGGAAGTTGAGATGTCCAGTCCT -ACGGAAGTTGAGATGTCCTAAGCC -ACGGAAGTTGAGATGTCCATAGCC -ACGGAAGTTGAGATGTCCTAACCG -ACGGAAGTTGAGATGTCCATGCCA -ACGGAAGTTGAGGTGTGTGGAAAC -ACGGAAGTTGAGGTGTGTAACACC -ACGGAAGTTGAGGTGTGTATCGAG -ACGGAAGTTGAGGTGTGTCTCCTT -ACGGAAGTTGAGGTGTGTCCTGTT -ACGGAAGTTGAGGTGTGTCGGTTT -ACGGAAGTTGAGGTGTGTGTGGTT -ACGGAAGTTGAGGTGTGTGCCTTT -ACGGAAGTTGAGGTGTGTGGTCTT -ACGGAAGTTGAGGTGTGTACGCTT -ACGGAAGTTGAGGTGTGTAGCGTT -ACGGAAGTTGAGGTGTGTTTCGTC -ACGGAAGTTGAGGTGTGTTCTCTC -ACGGAAGTTGAGGTGTGTTGGATC -ACGGAAGTTGAGGTGTGTCACTTC -ACGGAAGTTGAGGTGTGTGTACTC -ACGGAAGTTGAGGTGTGTGATGTC -ACGGAAGTTGAGGTGTGTACAGTC -ACGGAAGTTGAGGTGTGTTTGCTG -ACGGAAGTTGAGGTGTGTTCCATG -ACGGAAGTTGAGGTGTGTTGTGTG -ACGGAAGTTGAGGTGTGTCTAGTG -ACGGAAGTTGAGGTGTGTCATCTG -ACGGAAGTTGAGGTGTGTGAGTTG -ACGGAAGTTGAGGTGTGTAGACTG -ACGGAAGTTGAGGTGTGTTCGGTA -ACGGAAGTTGAGGTGTGTTGCCTA -ACGGAAGTTGAGGTGTGTCCACTA -ACGGAAGTTGAGGTGTGTGGAGTA -ACGGAAGTTGAGGTGTGTTCGTCT -ACGGAAGTTGAGGTGTGTTGCACT -ACGGAAGTTGAGGTGTGTCTGACT -ACGGAAGTTGAGGTGTGTCAACCT -ACGGAAGTTGAGGTGTGTGCTACT -ACGGAAGTTGAGGTGTGTGGATCT -ACGGAAGTTGAGGTGTGTAAGGCT -ACGGAAGTTGAGGTGTGTTCAACC -ACGGAAGTTGAGGTGTGTTGTTCC -ACGGAAGTTGAGGTGTGTATTCCC -ACGGAAGTTGAGGTGTGTTTCTCG -ACGGAAGTTGAGGTGTGTTAGACG -ACGGAAGTTGAGGTGTGTGTAACG -ACGGAAGTTGAGGTGTGTACTTCG -ACGGAAGTTGAGGTGTGTTACGCA -ACGGAAGTTGAGGTGTGTCTTGCA -ACGGAAGTTGAGGTGTGTCGAACA -ACGGAAGTTGAGGTGTGTCAGTCA -ACGGAAGTTGAGGTGTGTGATCCA -ACGGAAGTTGAGGTGTGTACGACA -ACGGAAGTTGAGGTGTGTAGCTCA -ACGGAAGTTGAGGTGTGTTCACGT -ACGGAAGTTGAGGTGTGTCGTAGT -ACGGAAGTTGAGGTGTGTGTCAGT -ACGGAAGTTGAGGTGTGTGAAGGT -ACGGAAGTTGAGGTGTGTAACCGT -ACGGAAGTTGAGGTGTGTTTGTGC -ACGGAAGTTGAGGTGTGTCTAAGC -ACGGAAGTTGAGGTGTGTACTAGC -ACGGAAGTTGAGGTGTGTAGATGC -ACGGAAGTTGAGGTGTGTTGAAGG -ACGGAAGTTGAGGTGTGTCAATGG -ACGGAAGTTGAGGTGTGTATGAGG -ACGGAAGTTGAGGTGTGTAATGGG -ACGGAAGTTGAGGTGTGTTCCTGA -ACGGAAGTTGAGGTGTGTTAGCGA -ACGGAAGTTGAGGTGTGTCACAGA -ACGGAAGTTGAGGTGTGTGCAAGA -ACGGAAGTTGAGGTGTGTGGTTGA -ACGGAAGTTGAGGTGTGTTCCGAT -ACGGAAGTTGAGGTGTGTTGGCAT -ACGGAAGTTGAGGTGTGTCGAGAT -ACGGAAGTTGAGGTGTGTTACCAC -ACGGAAGTTGAGGTGTGTCAGAAC -ACGGAAGTTGAGGTGTGTGTCTAC -ACGGAAGTTGAGGTGTGTACGTAC -ACGGAAGTTGAGGTGTGTAGTGAC -ACGGAAGTTGAGGTGTGTCTGTAG -ACGGAAGTTGAGGTGTGTCCTAAG -ACGGAAGTTGAGGTGTGTGTTCAG -ACGGAAGTTGAGGTGTGTGCATAG -ACGGAAGTTGAGGTGTGTGACAAG -ACGGAAGTTGAGGTGTGTAAGCAG -ACGGAAGTTGAGGTGTGTCGTCAA -ACGGAAGTTGAGGTGTGTGCTGAA -ACGGAAGTTGAGGTGTGTAGTACG -ACGGAAGTTGAGGTGTGTATCCGA -ACGGAAGTTGAGGTGTGTATGGGA -ACGGAAGTTGAGGTGTGTGTGCAA -ACGGAAGTTGAGGTGTGTGAGGAA -ACGGAAGTTGAGGTGTGTCAGGTA -ACGGAAGTTGAGGTGTGTGACTCT -ACGGAAGTTGAGGTGTGTAGTCCT -ACGGAAGTTGAGGTGTGTTAAGCC -ACGGAAGTTGAGGTGTGTATAGCC -ACGGAAGTTGAGGTGTGTTAACCG -ACGGAAGTTGAGGTGTGTATGCCA -ACGGAAGTTGAGGTGCTAGGAAAC -ACGGAAGTTGAGGTGCTAAACACC -ACGGAAGTTGAGGTGCTAATCGAG -ACGGAAGTTGAGGTGCTACTCCTT -ACGGAAGTTGAGGTGCTACCTGTT -ACGGAAGTTGAGGTGCTACGGTTT -ACGGAAGTTGAGGTGCTAGTGGTT -ACGGAAGTTGAGGTGCTAGCCTTT -ACGGAAGTTGAGGTGCTAGGTCTT -ACGGAAGTTGAGGTGCTAACGCTT -ACGGAAGTTGAGGTGCTAAGCGTT -ACGGAAGTTGAGGTGCTATTCGTC -ACGGAAGTTGAGGTGCTATCTCTC -ACGGAAGTTGAGGTGCTATGGATC -ACGGAAGTTGAGGTGCTACACTTC -ACGGAAGTTGAGGTGCTAGTACTC -ACGGAAGTTGAGGTGCTAGATGTC -ACGGAAGTTGAGGTGCTAACAGTC -ACGGAAGTTGAGGTGCTATTGCTG -ACGGAAGTTGAGGTGCTATCCATG -ACGGAAGTTGAGGTGCTATGTGTG -ACGGAAGTTGAGGTGCTACTAGTG -ACGGAAGTTGAGGTGCTACATCTG -ACGGAAGTTGAGGTGCTAGAGTTG -ACGGAAGTTGAGGTGCTAAGACTG -ACGGAAGTTGAGGTGCTATCGGTA -ACGGAAGTTGAGGTGCTATGCCTA -ACGGAAGTTGAGGTGCTACCACTA -ACGGAAGTTGAGGTGCTAGGAGTA -ACGGAAGTTGAGGTGCTATCGTCT -ACGGAAGTTGAGGTGCTATGCACT -ACGGAAGTTGAGGTGCTACTGACT -ACGGAAGTTGAGGTGCTACAACCT -ACGGAAGTTGAGGTGCTAGCTACT -ACGGAAGTTGAGGTGCTAGGATCT -ACGGAAGTTGAGGTGCTAAAGGCT -ACGGAAGTTGAGGTGCTATCAACC -ACGGAAGTTGAGGTGCTATGTTCC -ACGGAAGTTGAGGTGCTAATTCCC -ACGGAAGTTGAGGTGCTATTCTCG -ACGGAAGTTGAGGTGCTATAGACG -ACGGAAGTTGAGGTGCTAGTAACG -ACGGAAGTTGAGGTGCTAACTTCG -ACGGAAGTTGAGGTGCTATACGCA -ACGGAAGTTGAGGTGCTACTTGCA -ACGGAAGTTGAGGTGCTACGAACA -ACGGAAGTTGAGGTGCTACAGTCA -ACGGAAGTTGAGGTGCTAGATCCA -ACGGAAGTTGAGGTGCTAACGACA -ACGGAAGTTGAGGTGCTAAGCTCA -ACGGAAGTTGAGGTGCTATCACGT -ACGGAAGTTGAGGTGCTACGTAGT -ACGGAAGTTGAGGTGCTAGTCAGT -ACGGAAGTTGAGGTGCTAGAAGGT -ACGGAAGTTGAGGTGCTAAACCGT -ACGGAAGTTGAGGTGCTATTGTGC -ACGGAAGTTGAGGTGCTACTAAGC -ACGGAAGTTGAGGTGCTAACTAGC -ACGGAAGTTGAGGTGCTAAGATGC -ACGGAAGTTGAGGTGCTATGAAGG -ACGGAAGTTGAGGTGCTACAATGG -ACGGAAGTTGAGGTGCTAATGAGG -ACGGAAGTTGAGGTGCTAAATGGG -ACGGAAGTTGAGGTGCTATCCTGA -ACGGAAGTTGAGGTGCTATAGCGA -ACGGAAGTTGAGGTGCTACACAGA -ACGGAAGTTGAGGTGCTAGCAAGA -ACGGAAGTTGAGGTGCTAGGTTGA -ACGGAAGTTGAGGTGCTATCCGAT -ACGGAAGTTGAGGTGCTATGGCAT -ACGGAAGTTGAGGTGCTACGAGAT -ACGGAAGTTGAGGTGCTATACCAC -ACGGAAGTTGAGGTGCTACAGAAC -ACGGAAGTTGAGGTGCTAGTCTAC -ACGGAAGTTGAGGTGCTAACGTAC -ACGGAAGTTGAGGTGCTAAGTGAC -ACGGAAGTTGAGGTGCTACTGTAG -ACGGAAGTTGAGGTGCTACCTAAG -ACGGAAGTTGAGGTGCTAGTTCAG -ACGGAAGTTGAGGTGCTAGCATAG -ACGGAAGTTGAGGTGCTAGACAAG -ACGGAAGTTGAGGTGCTAAAGCAG -ACGGAAGTTGAGGTGCTACGTCAA -ACGGAAGTTGAGGTGCTAGCTGAA -ACGGAAGTTGAGGTGCTAAGTACG -ACGGAAGTTGAGGTGCTAATCCGA -ACGGAAGTTGAGGTGCTAATGGGA -ACGGAAGTTGAGGTGCTAGTGCAA -ACGGAAGTTGAGGTGCTAGAGGAA -ACGGAAGTTGAGGTGCTACAGGTA -ACGGAAGTTGAGGTGCTAGACTCT -ACGGAAGTTGAGGTGCTAAGTCCT -ACGGAAGTTGAGGTGCTATAAGCC -ACGGAAGTTGAGGTGCTAATAGCC -ACGGAAGTTGAGGTGCTATAACCG -ACGGAAGTTGAGGTGCTAATGCCA -ACGGAAGTTGAGCTGCATGGAAAC -ACGGAAGTTGAGCTGCATAACACC -ACGGAAGTTGAGCTGCATATCGAG -ACGGAAGTTGAGCTGCATCTCCTT -ACGGAAGTTGAGCTGCATCCTGTT -ACGGAAGTTGAGCTGCATCGGTTT -ACGGAAGTTGAGCTGCATGTGGTT -ACGGAAGTTGAGCTGCATGCCTTT -ACGGAAGTTGAGCTGCATGGTCTT -ACGGAAGTTGAGCTGCATACGCTT -ACGGAAGTTGAGCTGCATAGCGTT -ACGGAAGTTGAGCTGCATTTCGTC -ACGGAAGTTGAGCTGCATTCTCTC -ACGGAAGTTGAGCTGCATTGGATC -ACGGAAGTTGAGCTGCATCACTTC -ACGGAAGTTGAGCTGCATGTACTC -ACGGAAGTTGAGCTGCATGATGTC -ACGGAAGTTGAGCTGCATACAGTC -ACGGAAGTTGAGCTGCATTTGCTG -ACGGAAGTTGAGCTGCATTCCATG -ACGGAAGTTGAGCTGCATTGTGTG -ACGGAAGTTGAGCTGCATCTAGTG -ACGGAAGTTGAGCTGCATCATCTG -ACGGAAGTTGAGCTGCATGAGTTG -ACGGAAGTTGAGCTGCATAGACTG -ACGGAAGTTGAGCTGCATTCGGTA -ACGGAAGTTGAGCTGCATTGCCTA -ACGGAAGTTGAGCTGCATCCACTA -ACGGAAGTTGAGCTGCATGGAGTA -ACGGAAGTTGAGCTGCATTCGTCT -ACGGAAGTTGAGCTGCATTGCACT -ACGGAAGTTGAGCTGCATCTGACT -ACGGAAGTTGAGCTGCATCAACCT -ACGGAAGTTGAGCTGCATGCTACT -ACGGAAGTTGAGCTGCATGGATCT -ACGGAAGTTGAGCTGCATAAGGCT -ACGGAAGTTGAGCTGCATTCAACC -ACGGAAGTTGAGCTGCATTGTTCC -ACGGAAGTTGAGCTGCATATTCCC -ACGGAAGTTGAGCTGCATTTCTCG -ACGGAAGTTGAGCTGCATTAGACG -ACGGAAGTTGAGCTGCATGTAACG -ACGGAAGTTGAGCTGCATACTTCG -ACGGAAGTTGAGCTGCATTACGCA -ACGGAAGTTGAGCTGCATCTTGCA -ACGGAAGTTGAGCTGCATCGAACA -ACGGAAGTTGAGCTGCATCAGTCA -ACGGAAGTTGAGCTGCATGATCCA -ACGGAAGTTGAGCTGCATACGACA -ACGGAAGTTGAGCTGCATAGCTCA -ACGGAAGTTGAGCTGCATTCACGT -ACGGAAGTTGAGCTGCATCGTAGT -ACGGAAGTTGAGCTGCATGTCAGT -ACGGAAGTTGAGCTGCATGAAGGT -ACGGAAGTTGAGCTGCATAACCGT -ACGGAAGTTGAGCTGCATTTGTGC -ACGGAAGTTGAGCTGCATCTAAGC -ACGGAAGTTGAGCTGCATACTAGC -ACGGAAGTTGAGCTGCATAGATGC -ACGGAAGTTGAGCTGCATTGAAGG -ACGGAAGTTGAGCTGCATCAATGG -ACGGAAGTTGAGCTGCATATGAGG -ACGGAAGTTGAGCTGCATAATGGG -ACGGAAGTTGAGCTGCATTCCTGA -ACGGAAGTTGAGCTGCATTAGCGA -ACGGAAGTTGAGCTGCATCACAGA -ACGGAAGTTGAGCTGCATGCAAGA -ACGGAAGTTGAGCTGCATGGTTGA -ACGGAAGTTGAGCTGCATTCCGAT -ACGGAAGTTGAGCTGCATTGGCAT -ACGGAAGTTGAGCTGCATCGAGAT -ACGGAAGTTGAGCTGCATTACCAC -ACGGAAGTTGAGCTGCATCAGAAC -ACGGAAGTTGAGCTGCATGTCTAC -ACGGAAGTTGAGCTGCATACGTAC -ACGGAAGTTGAGCTGCATAGTGAC -ACGGAAGTTGAGCTGCATCTGTAG -ACGGAAGTTGAGCTGCATCCTAAG -ACGGAAGTTGAGCTGCATGTTCAG -ACGGAAGTTGAGCTGCATGCATAG -ACGGAAGTTGAGCTGCATGACAAG -ACGGAAGTTGAGCTGCATAAGCAG -ACGGAAGTTGAGCTGCATCGTCAA -ACGGAAGTTGAGCTGCATGCTGAA -ACGGAAGTTGAGCTGCATAGTACG -ACGGAAGTTGAGCTGCATATCCGA -ACGGAAGTTGAGCTGCATATGGGA -ACGGAAGTTGAGCTGCATGTGCAA -ACGGAAGTTGAGCTGCATGAGGAA -ACGGAAGTTGAGCTGCATCAGGTA -ACGGAAGTTGAGCTGCATGACTCT -ACGGAAGTTGAGCTGCATAGTCCT -ACGGAAGTTGAGCTGCATTAAGCC -ACGGAAGTTGAGCTGCATATAGCC -ACGGAAGTTGAGCTGCATTAACCG -ACGGAAGTTGAGCTGCATATGCCA -ACGGAAGTTGAGTTGGAGGGAAAC -ACGGAAGTTGAGTTGGAGAACACC -ACGGAAGTTGAGTTGGAGATCGAG -ACGGAAGTTGAGTTGGAGCTCCTT -ACGGAAGTTGAGTTGGAGCCTGTT -ACGGAAGTTGAGTTGGAGCGGTTT -ACGGAAGTTGAGTTGGAGGTGGTT -ACGGAAGTTGAGTTGGAGGCCTTT -ACGGAAGTTGAGTTGGAGGGTCTT -ACGGAAGTTGAGTTGGAGACGCTT -ACGGAAGTTGAGTTGGAGAGCGTT -ACGGAAGTTGAGTTGGAGTTCGTC -ACGGAAGTTGAGTTGGAGTCTCTC -ACGGAAGTTGAGTTGGAGTGGATC -ACGGAAGTTGAGTTGGAGCACTTC -ACGGAAGTTGAGTTGGAGGTACTC -ACGGAAGTTGAGTTGGAGGATGTC -ACGGAAGTTGAGTTGGAGACAGTC -ACGGAAGTTGAGTTGGAGTTGCTG -ACGGAAGTTGAGTTGGAGTCCATG -ACGGAAGTTGAGTTGGAGTGTGTG -ACGGAAGTTGAGTTGGAGCTAGTG -ACGGAAGTTGAGTTGGAGCATCTG -ACGGAAGTTGAGTTGGAGGAGTTG -ACGGAAGTTGAGTTGGAGAGACTG -ACGGAAGTTGAGTTGGAGTCGGTA -ACGGAAGTTGAGTTGGAGTGCCTA -ACGGAAGTTGAGTTGGAGCCACTA -ACGGAAGTTGAGTTGGAGGGAGTA -ACGGAAGTTGAGTTGGAGTCGTCT -ACGGAAGTTGAGTTGGAGTGCACT -ACGGAAGTTGAGTTGGAGCTGACT -ACGGAAGTTGAGTTGGAGCAACCT -ACGGAAGTTGAGTTGGAGGCTACT -ACGGAAGTTGAGTTGGAGGGATCT -ACGGAAGTTGAGTTGGAGAAGGCT -ACGGAAGTTGAGTTGGAGTCAACC -ACGGAAGTTGAGTTGGAGTGTTCC -ACGGAAGTTGAGTTGGAGATTCCC -ACGGAAGTTGAGTTGGAGTTCTCG -ACGGAAGTTGAGTTGGAGTAGACG -ACGGAAGTTGAGTTGGAGGTAACG -ACGGAAGTTGAGTTGGAGACTTCG -ACGGAAGTTGAGTTGGAGTACGCA -ACGGAAGTTGAGTTGGAGCTTGCA -ACGGAAGTTGAGTTGGAGCGAACA -ACGGAAGTTGAGTTGGAGCAGTCA -ACGGAAGTTGAGTTGGAGGATCCA -ACGGAAGTTGAGTTGGAGACGACA -ACGGAAGTTGAGTTGGAGAGCTCA -ACGGAAGTTGAGTTGGAGTCACGT -ACGGAAGTTGAGTTGGAGCGTAGT -ACGGAAGTTGAGTTGGAGGTCAGT -ACGGAAGTTGAGTTGGAGGAAGGT -ACGGAAGTTGAGTTGGAGAACCGT -ACGGAAGTTGAGTTGGAGTTGTGC -ACGGAAGTTGAGTTGGAGCTAAGC -ACGGAAGTTGAGTTGGAGACTAGC -ACGGAAGTTGAGTTGGAGAGATGC -ACGGAAGTTGAGTTGGAGTGAAGG -ACGGAAGTTGAGTTGGAGCAATGG -ACGGAAGTTGAGTTGGAGATGAGG -ACGGAAGTTGAGTTGGAGAATGGG -ACGGAAGTTGAGTTGGAGTCCTGA -ACGGAAGTTGAGTTGGAGTAGCGA -ACGGAAGTTGAGTTGGAGCACAGA -ACGGAAGTTGAGTTGGAGGCAAGA -ACGGAAGTTGAGTTGGAGGGTTGA -ACGGAAGTTGAGTTGGAGTCCGAT -ACGGAAGTTGAGTTGGAGTGGCAT -ACGGAAGTTGAGTTGGAGCGAGAT -ACGGAAGTTGAGTTGGAGTACCAC -ACGGAAGTTGAGTTGGAGCAGAAC -ACGGAAGTTGAGTTGGAGGTCTAC -ACGGAAGTTGAGTTGGAGACGTAC -ACGGAAGTTGAGTTGGAGAGTGAC -ACGGAAGTTGAGTTGGAGCTGTAG -ACGGAAGTTGAGTTGGAGCCTAAG -ACGGAAGTTGAGTTGGAGGTTCAG -ACGGAAGTTGAGTTGGAGGCATAG -ACGGAAGTTGAGTTGGAGGACAAG -ACGGAAGTTGAGTTGGAGAAGCAG -ACGGAAGTTGAGTTGGAGCGTCAA -ACGGAAGTTGAGTTGGAGGCTGAA -ACGGAAGTTGAGTTGGAGAGTACG -ACGGAAGTTGAGTTGGAGATCCGA -ACGGAAGTTGAGTTGGAGATGGGA -ACGGAAGTTGAGTTGGAGGTGCAA -ACGGAAGTTGAGTTGGAGGAGGAA -ACGGAAGTTGAGTTGGAGCAGGTA -ACGGAAGTTGAGTTGGAGGACTCT -ACGGAAGTTGAGTTGGAGAGTCCT -ACGGAAGTTGAGTTGGAGTAAGCC -ACGGAAGTTGAGTTGGAGATAGCC -ACGGAAGTTGAGTTGGAGTAACCG -ACGGAAGTTGAGTTGGAGATGCCA -ACGGAAGTTGAGCTGAGAGGAAAC -ACGGAAGTTGAGCTGAGAAACACC -ACGGAAGTTGAGCTGAGAATCGAG -ACGGAAGTTGAGCTGAGACTCCTT -ACGGAAGTTGAGCTGAGACCTGTT -ACGGAAGTTGAGCTGAGACGGTTT -ACGGAAGTTGAGCTGAGAGTGGTT -ACGGAAGTTGAGCTGAGAGCCTTT -ACGGAAGTTGAGCTGAGAGGTCTT -ACGGAAGTTGAGCTGAGAACGCTT -ACGGAAGTTGAGCTGAGAAGCGTT -ACGGAAGTTGAGCTGAGATTCGTC -ACGGAAGTTGAGCTGAGATCTCTC -ACGGAAGTTGAGCTGAGATGGATC -ACGGAAGTTGAGCTGAGACACTTC -ACGGAAGTTGAGCTGAGAGTACTC -ACGGAAGTTGAGCTGAGAGATGTC -ACGGAAGTTGAGCTGAGAACAGTC -ACGGAAGTTGAGCTGAGATTGCTG -ACGGAAGTTGAGCTGAGATCCATG -ACGGAAGTTGAGCTGAGATGTGTG -ACGGAAGTTGAGCTGAGACTAGTG -ACGGAAGTTGAGCTGAGACATCTG -ACGGAAGTTGAGCTGAGAGAGTTG -ACGGAAGTTGAGCTGAGAAGACTG -ACGGAAGTTGAGCTGAGATCGGTA -ACGGAAGTTGAGCTGAGATGCCTA -ACGGAAGTTGAGCTGAGACCACTA -ACGGAAGTTGAGCTGAGAGGAGTA -ACGGAAGTTGAGCTGAGATCGTCT -ACGGAAGTTGAGCTGAGATGCACT -ACGGAAGTTGAGCTGAGACTGACT -ACGGAAGTTGAGCTGAGACAACCT -ACGGAAGTTGAGCTGAGAGCTACT -ACGGAAGTTGAGCTGAGAGGATCT -ACGGAAGTTGAGCTGAGAAAGGCT -ACGGAAGTTGAGCTGAGATCAACC -ACGGAAGTTGAGCTGAGATGTTCC -ACGGAAGTTGAGCTGAGAATTCCC -ACGGAAGTTGAGCTGAGATTCTCG -ACGGAAGTTGAGCTGAGATAGACG -ACGGAAGTTGAGCTGAGAGTAACG -ACGGAAGTTGAGCTGAGAACTTCG -ACGGAAGTTGAGCTGAGATACGCA -ACGGAAGTTGAGCTGAGACTTGCA -ACGGAAGTTGAGCTGAGACGAACA -ACGGAAGTTGAGCTGAGACAGTCA -ACGGAAGTTGAGCTGAGAGATCCA -ACGGAAGTTGAGCTGAGAACGACA -ACGGAAGTTGAGCTGAGAAGCTCA -ACGGAAGTTGAGCTGAGATCACGT -ACGGAAGTTGAGCTGAGACGTAGT -ACGGAAGTTGAGCTGAGAGTCAGT -ACGGAAGTTGAGCTGAGAGAAGGT -ACGGAAGTTGAGCTGAGAAACCGT -ACGGAAGTTGAGCTGAGATTGTGC -ACGGAAGTTGAGCTGAGACTAAGC -ACGGAAGTTGAGCTGAGAACTAGC -ACGGAAGTTGAGCTGAGAAGATGC -ACGGAAGTTGAGCTGAGATGAAGG -ACGGAAGTTGAGCTGAGACAATGG -ACGGAAGTTGAGCTGAGAATGAGG -ACGGAAGTTGAGCTGAGAAATGGG -ACGGAAGTTGAGCTGAGATCCTGA -ACGGAAGTTGAGCTGAGATAGCGA -ACGGAAGTTGAGCTGAGACACAGA -ACGGAAGTTGAGCTGAGAGCAAGA -ACGGAAGTTGAGCTGAGAGGTTGA -ACGGAAGTTGAGCTGAGATCCGAT -ACGGAAGTTGAGCTGAGATGGCAT -ACGGAAGTTGAGCTGAGACGAGAT -ACGGAAGTTGAGCTGAGATACCAC -ACGGAAGTTGAGCTGAGACAGAAC -ACGGAAGTTGAGCTGAGAGTCTAC -ACGGAAGTTGAGCTGAGAACGTAC -ACGGAAGTTGAGCTGAGAAGTGAC -ACGGAAGTTGAGCTGAGACTGTAG -ACGGAAGTTGAGCTGAGACCTAAG -ACGGAAGTTGAGCTGAGAGTTCAG -ACGGAAGTTGAGCTGAGAGCATAG -ACGGAAGTTGAGCTGAGAGACAAG -ACGGAAGTTGAGCTGAGAAAGCAG -ACGGAAGTTGAGCTGAGACGTCAA -ACGGAAGTTGAGCTGAGAGCTGAA -ACGGAAGTTGAGCTGAGAAGTACG -ACGGAAGTTGAGCTGAGAATCCGA -ACGGAAGTTGAGCTGAGAATGGGA -ACGGAAGTTGAGCTGAGAGTGCAA -ACGGAAGTTGAGCTGAGAGAGGAA -ACGGAAGTTGAGCTGAGACAGGTA -ACGGAAGTTGAGCTGAGAGACTCT -ACGGAAGTTGAGCTGAGAAGTCCT -ACGGAAGTTGAGCTGAGATAAGCC -ACGGAAGTTGAGCTGAGAATAGCC -ACGGAAGTTGAGCTGAGATAACCG -ACGGAAGTTGAGCTGAGAATGCCA -ACGGAAGTTGAGGTATCGGGAAAC -ACGGAAGTTGAGGTATCGAACACC -ACGGAAGTTGAGGTATCGATCGAG -ACGGAAGTTGAGGTATCGCTCCTT -ACGGAAGTTGAGGTATCGCCTGTT -ACGGAAGTTGAGGTATCGCGGTTT -ACGGAAGTTGAGGTATCGGTGGTT -ACGGAAGTTGAGGTATCGGCCTTT -ACGGAAGTTGAGGTATCGGGTCTT -ACGGAAGTTGAGGTATCGACGCTT -ACGGAAGTTGAGGTATCGAGCGTT -ACGGAAGTTGAGGTATCGTTCGTC -ACGGAAGTTGAGGTATCGTCTCTC -ACGGAAGTTGAGGTATCGTGGATC -ACGGAAGTTGAGGTATCGCACTTC -ACGGAAGTTGAGGTATCGGTACTC -ACGGAAGTTGAGGTATCGGATGTC -ACGGAAGTTGAGGTATCGACAGTC -ACGGAAGTTGAGGTATCGTTGCTG -ACGGAAGTTGAGGTATCGTCCATG -ACGGAAGTTGAGGTATCGTGTGTG -ACGGAAGTTGAGGTATCGCTAGTG -ACGGAAGTTGAGGTATCGCATCTG -ACGGAAGTTGAGGTATCGGAGTTG -ACGGAAGTTGAGGTATCGAGACTG -ACGGAAGTTGAGGTATCGTCGGTA -ACGGAAGTTGAGGTATCGTGCCTA -ACGGAAGTTGAGGTATCGCCACTA -ACGGAAGTTGAGGTATCGGGAGTA -ACGGAAGTTGAGGTATCGTCGTCT -ACGGAAGTTGAGGTATCGTGCACT -ACGGAAGTTGAGGTATCGCTGACT -ACGGAAGTTGAGGTATCGCAACCT -ACGGAAGTTGAGGTATCGGCTACT -ACGGAAGTTGAGGTATCGGGATCT -ACGGAAGTTGAGGTATCGAAGGCT -ACGGAAGTTGAGGTATCGTCAACC -ACGGAAGTTGAGGTATCGTGTTCC -ACGGAAGTTGAGGTATCGATTCCC -ACGGAAGTTGAGGTATCGTTCTCG -ACGGAAGTTGAGGTATCGTAGACG -ACGGAAGTTGAGGTATCGGTAACG -ACGGAAGTTGAGGTATCGACTTCG -ACGGAAGTTGAGGTATCGTACGCA -ACGGAAGTTGAGGTATCGCTTGCA -ACGGAAGTTGAGGTATCGCGAACA -ACGGAAGTTGAGGTATCGCAGTCA -ACGGAAGTTGAGGTATCGGATCCA -ACGGAAGTTGAGGTATCGACGACA -ACGGAAGTTGAGGTATCGAGCTCA -ACGGAAGTTGAGGTATCGTCACGT -ACGGAAGTTGAGGTATCGCGTAGT -ACGGAAGTTGAGGTATCGGTCAGT -ACGGAAGTTGAGGTATCGGAAGGT -ACGGAAGTTGAGGTATCGAACCGT -ACGGAAGTTGAGGTATCGTTGTGC -ACGGAAGTTGAGGTATCGCTAAGC -ACGGAAGTTGAGGTATCGACTAGC -ACGGAAGTTGAGGTATCGAGATGC -ACGGAAGTTGAGGTATCGTGAAGG -ACGGAAGTTGAGGTATCGCAATGG -ACGGAAGTTGAGGTATCGATGAGG -ACGGAAGTTGAGGTATCGAATGGG -ACGGAAGTTGAGGTATCGTCCTGA -ACGGAAGTTGAGGTATCGTAGCGA -ACGGAAGTTGAGGTATCGCACAGA -ACGGAAGTTGAGGTATCGGCAAGA -ACGGAAGTTGAGGTATCGGGTTGA -ACGGAAGTTGAGGTATCGTCCGAT -ACGGAAGTTGAGGTATCGTGGCAT -ACGGAAGTTGAGGTATCGCGAGAT -ACGGAAGTTGAGGTATCGTACCAC -ACGGAAGTTGAGGTATCGCAGAAC -ACGGAAGTTGAGGTATCGGTCTAC -ACGGAAGTTGAGGTATCGACGTAC -ACGGAAGTTGAGGTATCGAGTGAC -ACGGAAGTTGAGGTATCGCTGTAG -ACGGAAGTTGAGGTATCGCCTAAG -ACGGAAGTTGAGGTATCGGTTCAG -ACGGAAGTTGAGGTATCGGCATAG -ACGGAAGTTGAGGTATCGGACAAG -ACGGAAGTTGAGGTATCGAAGCAG -ACGGAAGTTGAGGTATCGCGTCAA -ACGGAAGTTGAGGTATCGGCTGAA -ACGGAAGTTGAGGTATCGAGTACG -ACGGAAGTTGAGGTATCGATCCGA -ACGGAAGTTGAGGTATCGATGGGA -ACGGAAGTTGAGGTATCGGTGCAA -ACGGAAGTTGAGGTATCGGAGGAA -ACGGAAGTTGAGGTATCGCAGGTA -ACGGAAGTTGAGGTATCGGACTCT -ACGGAAGTTGAGGTATCGAGTCCT -ACGGAAGTTGAGGTATCGTAAGCC -ACGGAAGTTGAGGTATCGATAGCC -ACGGAAGTTGAGGTATCGTAACCG -ACGGAAGTTGAGGTATCGATGCCA -ACGGAAGTTGAGCTATGCGGAAAC -ACGGAAGTTGAGCTATGCAACACC -ACGGAAGTTGAGCTATGCATCGAG -ACGGAAGTTGAGCTATGCCTCCTT -ACGGAAGTTGAGCTATGCCCTGTT -ACGGAAGTTGAGCTATGCCGGTTT -ACGGAAGTTGAGCTATGCGTGGTT -ACGGAAGTTGAGCTATGCGCCTTT -ACGGAAGTTGAGCTATGCGGTCTT -ACGGAAGTTGAGCTATGCACGCTT -ACGGAAGTTGAGCTATGCAGCGTT -ACGGAAGTTGAGCTATGCTTCGTC -ACGGAAGTTGAGCTATGCTCTCTC -ACGGAAGTTGAGCTATGCTGGATC -ACGGAAGTTGAGCTATGCCACTTC -ACGGAAGTTGAGCTATGCGTACTC -ACGGAAGTTGAGCTATGCGATGTC -ACGGAAGTTGAGCTATGCACAGTC -ACGGAAGTTGAGCTATGCTTGCTG -ACGGAAGTTGAGCTATGCTCCATG -ACGGAAGTTGAGCTATGCTGTGTG -ACGGAAGTTGAGCTATGCCTAGTG -ACGGAAGTTGAGCTATGCCATCTG -ACGGAAGTTGAGCTATGCGAGTTG -ACGGAAGTTGAGCTATGCAGACTG -ACGGAAGTTGAGCTATGCTCGGTA -ACGGAAGTTGAGCTATGCTGCCTA -ACGGAAGTTGAGCTATGCCCACTA -ACGGAAGTTGAGCTATGCGGAGTA -ACGGAAGTTGAGCTATGCTCGTCT -ACGGAAGTTGAGCTATGCTGCACT -ACGGAAGTTGAGCTATGCCTGACT -ACGGAAGTTGAGCTATGCCAACCT -ACGGAAGTTGAGCTATGCGCTACT -ACGGAAGTTGAGCTATGCGGATCT -ACGGAAGTTGAGCTATGCAAGGCT -ACGGAAGTTGAGCTATGCTCAACC -ACGGAAGTTGAGCTATGCTGTTCC -ACGGAAGTTGAGCTATGCATTCCC -ACGGAAGTTGAGCTATGCTTCTCG -ACGGAAGTTGAGCTATGCTAGACG -ACGGAAGTTGAGCTATGCGTAACG -ACGGAAGTTGAGCTATGCACTTCG -ACGGAAGTTGAGCTATGCTACGCA -ACGGAAGTTGAGCTATGCCTTGCA -ACGGAAGTTGAGCTATGCCGAACA -ACGGAAGTTGAGCTATGCCAGTCA -ACGGAAGTTGAGCTATGCGATCCA -ACGGAAGTTGAGCTATGCACGACA -ACGGAAGTTGAGCTATGCAGCTCA -ACGGAAGTTGAGCTATGCTCACGT -ACGGAAGTTGAGCTATGCCGTAGT -ACGGAAGTTGAGCTATGCGTCAGT -ACGGAAGTTGAGCTATGCGAAGGT -ACGGAAGTTGAGCTATGCAACCGT -ACGGAAGTTGAGCTATGCTTGTGC -ACGGAAGTTGAGCTATGCCTAAGC -ACGGAAGTTGAGCTATGCACTAGC -ACGGAAGTTGAGCTATGCAGATGC -ACGGAAGTTGAGCTATGCTGAAGG -ACGGAAGTTGAGCTATGCCAATGG -ACGGAAGTTGAGCTATGCATGAGG -ACGGAAGTTGAGCTATGCAATGGG -ACGGAAGTTGAGCTATGCTCCTGA -ACGGAAGTTGAGCTATGCTAGCGA -ACGGAAGTTGAGCTATGCCACAGA -ACGGAAGTTGAGCTATGCGCAAGA -ACGGAAGTTGAGCTATGCGGTTGA -ACGGAAGTTGAGCTATGCTCCGAT -ACGGAAGTTGAGCTATGCTGGCAT -ACGGAAGTTGAGCTATGCCGAGAT -ACGGAAGTTGAGCTATGCTACCAC -ACGGAAGTTGAGCTATGCCAGAAC -ACGGAAGTTGAGCTATGCGTCTAC -ACGGAAGTTGAGCTATGCACGTAC -ACGGAAGTTGAGCTATGCAGTGAC -ACGGAAGTTGAGCTATGCCTGTAG -ACGGAAGTTGAGCTATGCCCTAAG -ACGGAAGTTGAGCTATGCGTTCAG -ACGGAAGTTGAGCTATGCGCATAG -ACGGAAGTTGAGCTATGCGACAAG -ACGGAAGTTGAGCTATGCAAGCAG -ACGGAAGTTGAGCTATGCCGTCAA -ACGGAAGTTGAGCTATGCGCTGAA -ACGGAAGTTGAGCTATGCAGTACG -ACGGAAGTTGAGCTATGCATCCGA -ACGGAAGTTGAGCTATGCATGGGA -ACGGAAGTTGAGCTATGCGTGCAA -ACGGAAGTTGAGCTATGCGAGGAA -ACGGAAGTTGAGCTATGCCAGGTA -ACGGAAGTTGAGCTATGCGACTCT -ACGGAAGTTGAGCTATGCAGTCCT -ACGGAAGTTGAGCTATGCTAAGCC -ACGGAAGTTGAGCTATGCATAGCC -ACGGAAGTTGAGCTATGCTAACCG -ACGGAAGTTGAGCTATGCATGCCA -ACGGAAGTTGAGCTACCAGGAAAC -ACGGAAGTTGAGCTACCAAACACC -ACGGAAGTTGAGCTACCAATCGAG -ACGGAAGTTGAGCTACCACTCCTT -ACGGAAGTTGAGCTACCACCTGTT -ACGGAAGTTGAGCTACCACGGTTT -ACGGAAGTTGAGCTACCAGTGGTT -ACGGAAGTTGAGCTACCAGCCTTT -ACGGAAGTTGAGCTACCAGGTCTT -ACGGAAGTTGAGCTACCAACGCTT -ACGGAAGTTGAGCTACCAAGCGTT -ACGGAAGTTGAGCTACCATTCGTC -ACGGAAGTTGAGCTACCATCTCTC -ACGGAAGTTGAGCTACCATGGATC -ACGGAAGTTGAGCTACCACACTTC -ACGGAAGTTGAGCTACCAGTACTC -ACGGAAGTTGAGCTACCAGATGTC -ACGGAAGTTGAGCTACCAACAGTC -ACGGAAGTTGAGCTACCATTGCTG -ACGGAAGTTGAGCTACCATCCATG -ACGGAAGTTGAGCTACCATGTGTG -ACGGAAGTTGAGCTACCACTAGTG -ACGGAAGTTGAGCTACCACATCTG -ACGGAAGTTGAGCTACCAGAGTTG -ACGGAAGTTGAGCTACCAAGACTG -ACGGAAGTTGAGCTACCATCGGTA -ACGGAAGTTGAGCTACCATGCCTA -ACGGAAGTTGAGCTACCACCACTA -ACGGAAGTTGAGCTACCAGGAGTA -ACGGAAGTTGAGCTACCATCGTCT -ACGGAAGTTGAGCTACCATGCACT -ACGGAAGTTGAGCTACCACTGACT -ACGGAAGTTGAGCTACCACAACCT -ACGGAAGTTGAGCTACCAGCTACT -ACGGAAGTTGAGCTACCAGGATCT -ACGGAAGTTGAGCTACCAAAGGCT -ACGGAAGTTGAGCTACCATCAACC -ACGGAAGTTGAGCTACCATGTTCC -ACGGAAGTTGAGCTACCAATTCCC -ACGGAAGTTGAGCTACCATTCTCG -ACGGAAGTTGAGCTACCATAGACG -ACGGAAGTTGAGCTACCAGTAACG -ACGGAAGTTGAGCTACCAACTTCG -ACGGAAGTTGAGCTACCATACGCA -ACGGAAGTTGAGCTACCACTTGCA -ACGGAAGTTGAGCTACCACGAACA -ACGGAAGTTGAGCTACCACAGTCA -ACGGAAGTTGAGCTACCAGATCCA -ACGGAAGTTGAGCTACCAACGACA -ACGGAAGTTGAGCTACCAAGCTCA -ACGGAAGTTGAGCTACCATCACGT -ACGGAAGTTGAGCTACCACGTAGT -ACGGAAGTTGAGCTACCAGTCAGT -ACGGAAGTTGAGCTACCAGAAGGT -ACGGAAGTTGAGCTACCAAACCGT -ACGGAAGTTGAGCTACCATTGTGC -ACGGAAGTTGAGCTACCACTAAGC -ACGGAAGTTGAGCTACCAACTAGC -ACGGAAGTTGAGCTACCAAGATGC -ACGGAAGTTGAGCTACCATGAAGG -ACGGAAGTTGAGCTACCACAATGG -ACGGAAGTTGAGCTACCAATGAGG -ACGGAAGTTGAGCTACCAAATGGG -ACGGAAGTTGAGCTACCATCCTGA -ACGGAAGTTGAGCTACCATAGCGA -ACGGAAGTTGAGCTACCACACAGA -ACGGAAGTTGAGCTACCAGCAAGA -ACGGAAGTTGAGCTACCAGGTTGA -ACGGAAGTTGAGCTACCATCCGAT -ACGGAAGTTGAGCTACCATGGCAT -ACGGAAGTTGAGCTACCACGAGAT -ACGGAAGTTGAGCTACCATACCAC -ACGGAAGTTGAGCTACCACAGAAC -ACGGAAGTTGAGCTACCAGTCTAC -ACGGAAGTTGAGCTACCAACGTAC -ACGGAAGTTGAGCTACCAAGTGAC -ACGGAAGTTGAGCTACCACTGTAG -ACGGAAGTTGAGCTACCACCTAAG -ACGGAAGTTGAGCTACCAGTTCAG -ACGGAAGTTGAGCTACCAGCATAG -ACGGAAGTTGAGCTACCAGACAAG -ACGGAAGTTGAGCTACCAAAGCAG -ACGGAAGTTGAGCTACCACGTCAA -ACGGAAGTTGAGCTACCAGCTGAA -ACGGAAGTTGAGCTACCAAGTACG -ACGGAAGTTGAGCTACCAATCCGA -ACGGAAGTTGAGCTACCAATGGGA -ACGGAAGTTGAGCTACCAGTGCAA -ACGGAAGTTGAGCTACCAGAGGAA -ACGGAAGTTGAGCTACCACAGGTA -ACGGAAGTTGAGCTACCAGACTCT -ACGGAAGTTGAGCTACCAAGTCCT -ACGGAAGTTGAGCTACCATAAGCC -ACGGAAGTTGAGCTACCAATAGCC -ACGGAAGTTGAGCTACCATAACCG -ACGGAAGTTGAGCTACCAATGCCA -ACGGAAGTTGAGGTAGGAGGAAAC -ACGGAAGTTGAGGTAGGAAACACC -ACGGAAGTTGAGGTAGGAATCGAG -ACGGAAGTTGAGGTAGGACTCCTT -ACGGAAGTTGAGGTAGGACCTGTT -ACGGAAGTTGAGGTAGGACGGTTT -ACGGAAGTTGAGGTAGGAGTGGTT -ACGGAAGTTGAGGTAGGAGCCTTT -ACGGAAGTTGAGGTAGGAGGTCTT -ACGGAAGTTGAGGTAGGAACGCTT -ACGGAAGTTGAGGTAGGAAGCGTT -ACGGAAGTTGAGGTAGGATTCGTC -ACGGAAGTTGAGGTAGGATCTCTC -ACGGAAGTTGAGGTAGGATGGATC -ACGGAAGTTGAGGTAGGACACTTC -ACGGAAGTTGAGGTAGGAGTACTC -ACGGAAGTTGAGGTAGGAGATGTC -ACGGAAGTTGAGGTAGGAACAGTC -ACGGAAGTTGAGGTAGGATTGCTG -ACGGAAGTTGAGGTAGGATCCATG -ACGGAAGTTGAGGTAGGATGTGTG -ACGGAAGTTGAGGTAGGACTAGTG -ACGGAAGTTGAGGTAGGACATCTG -ACGGAAGTTGAGGTAGGAGAGTTG -ACGGAAGTTGAGGTAGGAAGACTG -ACGGAAGTTGAGGTAGGATCGGTA -ACGGAAGTTGAGGTAGGATGCCTA -ACGGAAGTTGAGGTAGGACCACTA -ACGGAAGTTGAGGTAGGAGGAGTA -ACGGAAGTTGAGGTAGGATCGTCT -ACGGAAGTTGAGGTAGGATGCACT -ACGGAAGTTGAGGTAGGACTGACT -ACGGAAGTTGAGGTAGGACAACCT -ACGGAAGTTGAGGTAGGAGCTACT -ACGGAAGTTGAGGTAGGAGGATCT -ACGGAAGTTGAGGTAGGAAAGGCT -ACGGAAGTTGAGGTAGGATCAACC -ACGGAAGTTGAGGTAGGATGTTCC -ACGGAAGTTGAGGTAGGAATTCCC -ACGGAAGTTGAGGTAGGATTCTCG -ACGGAAGTTGAGGTAGGATAGACG -ACGGAAGTTGAGGTAGGAGTAACG -ACGGAAGTTGAGGTAGGAACTTCG -ACGGAAGTTGAGGTAGGATACGCA -ACGGAAGTTGAGGTAGGACTTGCA -ACGGAAGTTGAGGTAGGACGAACA -ACGGAAGTTGAGGTAGGACAGTCA -ACGGAAGTTGAGGTAGGAGATCCA -ACGGAAGTTGAGGTAGGAACGACA -ACGGAAGTTGAGGTAGGAAGCTCA -ACGGAAGTTGAGGTAGGATCACGT -ACGGAAGTTGAGGTAGGACGTAGT -ACGGAAGTTGAGGTAGGAGTCAGT -ACGGAAGTTGAGGTAGGAGAAGGT -ACGGAAGTTGAGGTAGGAAACCGT -ACGGAAGTTGAGGTAGGATTGTGC -ACGGAAGTTGAGGTAGGACTAAGC -ACGGAAGTTGAGGTAGGAACTAGC -ACGGAAGTTGAGGTAGGAAGATGC -ACGGAAGTTGAGGTAGGATGAAGG -ACGGAAGTTGAGGTAGGACAATGG -ACGGAAGTTGAGGTAGGAATGAGG -ACGGAAGTTGAGGTAGGAAATGGG -ACGGAAGTTGAGGTAGGATCCTGA -ACGGAAGTTGAGGTAGGATAGCGA -ACGGAAGTTGAGGTAGGACACAGA -ACGGAAGTTGAGGTAGGAGCAAGA -ACGGAAGTTGAGGTAGGAGGTTGA -ACGGAAGTTGAGGTAGGATCCGAT -ACGGAAGTTGAGGTAGGATGGCAT -ACGGAAGTTGAGGTAGGACGAGAT -ACGGAAGTTGAGGTAGGATACCAC -ACGGAAGTTGAGGTAGGACAGAAC -ACGGAAGTTGAGGTAGGAGTCTAC -ACGGAAGTTGAGGTAGGAACGTAC -ACGGAAGTTGAGGTAGGAAGTGAC -ACGGAAGTTGAGGTAGGACTGTAG -ACGGAAGTTGAGGTAGGACCTAAG -ACGGAAGTTGAGGTAGGAGTTCAG -ACGGAAGTTGAGGTAGGAGCATAG -ACGGAAGTTGAGGTAGGAGACAAG -ACGGAAGTTGAGGTAGGAAAGCAG -ACGGAAGTTGAGGTAGGACGTCAA -ACGGAAGTTGAGGTAGGAGCTGAA -ACGGAAGTTGAGGTAGGAAGTACG -ACGGAAGTTGAGGTAGGAATCCGA -ACGGAAGTTGAGGTAGGAATGGGA -ACGGAAGTTGAGGTAGGAGTGCAA -ACGGAAGTTGAGGTAGGAGAGGAA -ACGGAAGTTGAGGTAGGACAGGTA -ACGGAAGTTGAGGTAGGAGACTCT -ACGGAAGTTGAGGTAGGAAGTCCT -ACGGAAGTTGAGGTAGGATAAGCC -ACGGAAGTTGAGGTAGGAATAGCC -ACGGAAGTTGAGGTAGGATAACCG -ACGGAAGTTGAGGTAGGAATGCCA -ACGGAAGTTGAGTCTTCGGGAAAC -ACGGAAGTTGAGTCTTCGAACACC -ACGGAAGTTGAGTCTTCGATCGAG -ACGGAAGTTGAGTCTTCGCTCCTT -ACGGAAGTTGAGTCTTCGCCTGTT -ACGGAAGTTGAGTCTTCGCGGTTT -ACGGAAGTTGAGTCTTCGGTGGTT -ACGGAAGTTGAGTCTTCGGCCTTT -ACGGAAGTTGAGTCTTCGGGTCTT -ACGGAAGTTGAGTCTTCGACGCTT -ACGGAAGTTGAGTCTTCGAGCGTT -ACGGAAGTTGAGTCTTCGTTCGTC -ACGGAAGTTGAGTCTTCGTCTCTC -ACGGAAGTTGAGTCTTCGTGGATC -ACGGAAGTTGAGTCTTCGCACTTC -ACGGAAGTTGAGTCTTCGGTACTC -ACGGAAGTTGAGTCTTCGGATGTC -ACGGAAGTTGAGTCTTCGACAGTC -ACGGAAGTTGAGTCTTCGTTGCTG -ACGGAAGTTGAGTCTTCGTCCATG -ACGGAAGTTGAGTCTTCGTGTGTG -ACGGAAGTTGAGTCTTCGCTAGTG -ACGGAAGTTGAGTCTTCGCATCTG -ACGGAAGTTGAGTCTTCGGAGTTG -ACGGAAGTTGAGTCTTCGAGACTG -ACGGAAGTTGAGTCTTCGTCGGTA -ACGGAAGTTGAGTCTTCGTGCCTA -ACGGAAGTTGAGTCTTCGCCACTA -ACGGAAGTTGAGTCTTCGGGAGTA -ACGGAAGTTGAGTCTTCGTCGTCT -ACGGAAGTTGAGTCTTCGTGCACT -ACGGAAGTTGAGTCTTCGCTGACT -ACGGAAGTTGAGTCTTCGCAACCT -ACGGAAGTTGAGTCTTCGGCTACT -ACGGAAGTTGAGTCTTCGGGATCT -ACGGAAGTTGAGTCTTCGAAGGCT -ACGGAAGTTGAGTCTTCGTCAACC -ACGGAAGTTGAGTCTTCGTGTTCC -ACGGAAGTTGAGTCTTCGATTCCC -ACGGAAGTTGAGTCTTCGTTCTCG -ACGGAAGTTGAGTCTTCGTAGACG -ACGGAAGTTGAGTCTTCGGTAACG -ACGGAAGTTGAGTCTTCGACTTCG -ACGGAAGTTGAGTCTTCGTACGCA -ACGGAAGTTGAGTCTTCGCTTGCA -ACGGAAGTTGAGTCTTCGCGAACA -ACGGAAGTTGAGTCTTCGCAGTCA -ACGGAAGTTGAGTCTTCGGATCCA -ACGGAAGTTGAGTCTTCGACGACA -ACGGAAGTTGAGTCTTCGAGCTCA -ACGGAAGTTGAGTCTTCGTCACGT -ACGGAAGTTGAGTCTTCGCGTAGT -ACGGAAGTTGAGTCTTCGGTCAGT -ACGGAAGTTGAGTCTTCGGAAGGT -ACGGAAGTTGAGTCTTCGAACCGT -ACGGAAGTTGAGTCTTCGTTGTGC -ACGGAAGTTGAGTCTTCGCTAAGC -ACGGAAGTTGAGTCTTCGACTAGC -ACGGAAGTTGAGTCTTCGAGATGC -ACGGAAGTTGAGTCTTCGTGAAGG -ACGGAAGTTGAGTCTTCGCAATGG -ACGGAAGTTGAGTCTTCGATGAGG -ACGGAAGTTGAGTCTTCGAATGGG -ACGGAAGTTGAGTCTTCGTCCTGA -ACGGAAGTTGAGTCTTCGTAGCGA -ACGGAAGTTGAGTCTTCGCACAGA -ACGGAAGTTGAGTCTTCGGCAAGA -ACGGAAGTTGAGTCTTCGGGTTGA -ACGGAAGTTGAGTCTTCGTCCGAT -ACGGAAGTTGAGTCTTCGTGGCAT -ACGGAAGTTGAGTCTTCGCGAGAT -ACGGAAGTTGAGTCTTCGTACCAC -ACGGAAGTTGAGTCTTCGCAGAAC -ACGGAAGTTGAGTCTTCGGTCTAC -ACGGAAGTTGAGTCTTCGACGTAC -ACGGAAGTTGAGTCTTCGAGTGAC -ACGGAAGTTGAGTCTTCGCTGTAG -ACGGAAGTTGAGTCTTCGCCTAAG -ACGGAAGTTGAGTCTTCGGTTCAG -ACGGAAGTTGAGTCTTCGGCATAG -ACGGAAGTTGAGTCTTCGGACAAG -ACGGAAGTTGAGTCTTCGAAGCAG -ACGGAAGTTGAGTCTTCGCGTCAA -ACGGAAGTTGAGTCTTCGGCTGAA -ACGGAAGTTGAGTCTTCGAGTACG -ACGGAAGTTGAGTCTTCGATCCGA -ACGGAAGTTGAGTCTTCGATGGGA -ACGGAAGTTGAGTCTTCGGTGCAA -ACGGAAGTTGAGTCTTCGGAGGAA -ACGGAAGTTGAGTCTTCGCAGGTA -ACGGAAGTTGAGTCTTCGGACTCT -ACGGAAGTTGAGTCTTCGAGTCCT -ACGGAAGTTGAGTCTTCGTAAGCC -ACGGAAGTTGAGTCTTCGATAGCC -ACGGAAGTTGAGTCTTCGTAACCG -ACGGAAGTTGAGTCTTCGATGCCA -ACGGAAGTTGAGACTTGCGGAAAC -ACGGAAGTTGAGACTTGCAACACC -ACGGAAGTTGAGACTTGCATCGAG -ACGGAAGTTGAGACTTGCCTCCTT -ACGGAAGTTGAGACTTGCCCTGTT -ACGGAAGTTGAGACTTGCCGGTTT -ACGGAAGTTGAGACTTGCGTGGTT -ACGGAAGTTGAGACTTGCGCCTTT -ACGGAAGTTGAGACTTGCGGTCTT -ACGGAAGTTGAGACTTGCACGCTT -ACGGAAGTTGAGACTTGCAGCGTT -ACGGAAGTTGAGACTTGCTTCGTC -ACGGAAGTTGAGACTTGCTCTCTC -ACGGAAGTTGAGACTTGCTGGATC -ACGGAAGTTGAGACTTGCCACTTC -ACGGAAGTTGAGACTTGCGTACTC -ACGGAAGTTGAGACTTGCGATGTC -ACGGAAGTTGAGACTTGCACAGTC -ACGGAAGTTGAGACTTGCTTGCTG -ACGGAAGTTGAGACTTGCTCCATG -ACGGAAGTTGAGACTTGCTGTGTG -ACGGAAGTTGAGACTTGCCTAGTG -ACGGAAGTTGAGACTTGCCATCTG -ACGGAAGTTGAGACTTGCGAGTTG -ACGGAAGTTGAGACTTGCAGACTG -ACGGAAGTTGAGACTTGCTCGGTA -ACGGAAGTTGAGACTTGCTGCCTA -ACGGAAGTTGAGACTTGCCCACTA -ACGGAAGTTGAGACTTGCGGAGTA -ACGGAAGTTGAGACTTGCTCGTCT -ACGGAAGTTGAGACTTGCTGCACT -ACGGAAGTTGAGACTTGCCTGACT -ACGGAAGTTGAGACTTGCCAACCT -ACGGAAGTTGAGACTTGCGCTACT -ACGGAAGTTGAGACTTGCGGATCT -ACGGAAGTTGAGACTTGCAAGGCT -ACGGAAGTTGAGACTTGCTCAACC -ACGGAAGTTGAGACTTGCTGTTCC -ACGGAAGTTGAGACTTGCATTCCC -ACGGAAGTTGAGACTTGCTTCTCG -ACGGAAGTTGAGACTTGCTAGACG -ACGGAAGTTGAGACTTGCGTAACG -ACGGAAGTTGAGACTTGCACTTCG -ACGGAAGTTGAGACTTGCTACGCA -ACGGAAGTTGAGACTTGCCTTGCA -ACGGAAGTTGAGACTTGCCGAACA -ACGGAAGTTGAGACTTGCCAGTCA -ACGGAAGTTGAGACTTGCGATCCA -ACGGAAGTTGAGACTTGCACGACA -ACGGAAGTTGAGACTTGCAGCTCA -ACGGAAGTTGAGACTTGCTCACGT -ACGGAAGTTGAGACTTGCCGTAGT -ACGGAAGTTGAGACTTGCGTCAGT -ACGGAAGTTGAGACTTGCGAAGGT -ACGGAAGTTGAGACTTGCAACCGT -ACGGAAGTTGAGACTTGCTTGTGC -ACGGAAGTTGAGACTTGCCTAAGC -ACGGAAGTTGAGACTTGCACTAGC -ACGGAAGTTGAGACTTGCAGATGC -ACGGAAGTTGAGACTTGCTGAAGG -ACGGAAGTTGAGACTTGCCAATGG -ACGGAAGTTGAGACTTGCATGAGG -ACGGAAGTTGAGACTTGCAATGGG -ACGGAAGTTGAGACTTGCTCCTGA -ACGGAAGTTGAGACTTGCTAGCGA -ACGGAAGTTGAGACTTGCCACAGA -ACGGAAGTTGAGACTTGCGCAAGA -ACGGAAGTTGAGACTTGCGGTTGA -ACGGAAGTTGAGACTTGCTCCGAT -ACGGAAGTTGAGACTTGCTGGCAT -ACGGAAGTTGAGACTTGCCGAGAT -ACGGAAGTTGAGACTTGCTACCAC -ACGGAAGTTGAGACTTGCCAGAAC -ACGGAAGTTGAGACTTGCGTCTAC -ACGGAAGTTGAGACTTGCACGTAC -ACGGAAGTTGAGACTTGCAGTGAC -ACGGAAGTTGAGACTTGCCTGTAG -ACGGAAGTTGAGACTTGCCCTAAG -ACGGAAGTTGAGACTTGCGTTCAG -ACGGAAGTTGAGACTTGCGCATAG -ACGGAAGTTGAGACTTGCGACAAG -ACGGAAGTTGAGACTTGCAAGCAG -ACGGAAGTTGAGACTTGCCGTCAA -ACGGAAGTTGAGACTTGCGCTGAA -ACGGAAGTTGAGACTTGCAGTACG -ACGGAAGTTGAGACTTGCATCCGA -ACGGAAGTTGAGACTTGCATGGGA -ACGGAAGTTGAGACTTGCGTGCAA -ACGGAAGTTGAGACTTGCGAGGAA -ACGGAAGTTGAGACTTGCCAGGTA -ACGGAAGTTGAGACTTGCGACTCT -ACGGAAGTTGAGACTTGCAGTCCT -ACGGAAGTTGAGACTTGCTAAGCC -ACGGAAGTTGAGACTTGCATAGCC -ACGGAAGTTGAGACTTGCTAACCG -ACGGAAGTTGAGACTTGCATGCCA -ACGGAAGTTGAGACTCTGGGAAAC -ACGGAAGTTGAGACTCTGAACACC -ACGGAAGTTGAGACTCTGATCGAG -ACGGAAGTTGAGACTCTGCTCCTT -ACGGAAGTTGAGACTCTGCCTGTT -ACGGAAGTTGAGACTCTGCGGTTT -ACGGAAGTTGAGACTCTGGTGGTT -ACGGAAGTTGAGACTCTGGCCTTT -ACGGAAGTTGAGACTCTGGGTCTT -ACGGAAGTTGAGACTCTGACGCTT -ACGGAAGTTGAGACTCTGAGCGTT -ACGGAAGTTGAGACTCTGTTCGTC -ACGGAAGTTGAGACTCTGTCTCTC -ACGGAAGTTGAGACTCTGTGGATC -ACGGAAGTTGAGACTCTGCACTTC -ACGGAAGTTGAGACTCTGGTACTC -ACGGAAGTTGAGACTCTGGATGTC -ACGGAAGTTGAGACTCTGACAGTC -ACGGAAGTTGAGACTCTGTTGCTG -ACGGAAGTTGAGACTCTGTCCATG -ACGGAAGTTGAGACTCTGTGTGTG -ACGGAAGTTGAGACTCTGCTAGTG -ACGGAAGTTGAGACTCTGCATCTG -ACGGAAGTTGAGACTCTGGAGTTG -ACGGAAGTTGAGACTCTGAGACTG -ACGGAAGTTGAGACTCTGTCGGTA -ACGGAAGTTGAGACTCTGTGCCTA -ACGGAAGTTGAGACTCTGCCACTA -ACGGAAGTTGAGACTCTGGGAGTA -ACGGAAGTTGAGACTCTGTCGTCT -ACGGAAGTTGAGACTCTGTGCACT -ACGGAAGTTGAGACTCTGCTGACT -ACGGAAGTTGAGACTCTGCAACCT -ACGGAAGTTGAGACTCTGGCTACT -ACGGAAGTTGAGACTCTGGGATCT -ACGGAAGTTGAGACTCTGAAGGCT -ACGGAAGTTGAGACTCTGTCAACC -ACGGAAGTTGAGACTCTGTGTTCC -ACGGAAGTTGAGACTCTGATTCCC -ACGGAAGTTGAGACTCTGTTCTCG -ACGGAAGTTGAGACTCTGTAGACG -ACGGAAGTTGAGACTCTGGTAACG -ACGGAAGTTGAGACTCTGACTTCG -ACGGAAGTTGAGACTCTGTACGCA -ACGGAAGTTGAGACTCTGCTTGCA -ACGGAAGTTGAGACTCTGCGAACA -ACGGAAGTTGAGACTCTGCAGTCA -ACGGAAGTTGAGACTCTGGATCCA -ACGGAAGTTGAGACTCTGACGACA -ACGGAAGTTGAGACTCTGAGCTCA -ACGGAAGTTGAGACTCTGTCACGT -ACGGAAGTTGAGACTCTGCGTAGT -ACGGAAGTTGAGACTCTGGTCAGT -ACGGAAGTTGAGACTCTGGAAGGT -ACGGAAGTTGAGACTCTGAACCGT -ACGGAAGTTGAGACTCTGTTGTGC -ACGGAAGTTGAGACTCTGCTAAGC -ACGGAAGTTGAGACTCTGACTAGC -ACGGAAGTTGAGACTCTGAGATGC -ACGGAAGTTGAGACTCTGTGAAGG -ACGGAAGTTGAGACTCTGCAATGG -ACGGAAGTTGAGACTCTGATGAGG -ACGGAAGTTGAGACTCTGAATGGG -ACGGAAGTTGAGACTCTGTCCTGA -ACGGAAGTTGAGACTCTGTAGCGA -ACGGAAGTTGAGACTCTGCACAGA -ACGGAAGTTGAGACTCTGGCAAGA -ACGGAAGTTGAGACTCTGGGTTGA -ACGGAAGTTGAGACTCTGTCCGAT -ACGGAAGTTGAGACTCTGTGGCAT -ACGGAAGTTGAGACTCTGCGAGAT -ACGGAAGTTGAGACTCTGTACCAC -ACGGAAGTTGAGACTCTGCAGAAC -ACGGAAGTTGAGACTCTGGTCTAC -ACGGAAGTTGAGACTCTGACGTAC -ACGGAAGTTGAGACTCTGAGTGAC -ACGGAAGTTGAGACTCTGCTGTAG -ACGGAAGTTGAGACTCTGCCTAAG -ACGGAAGTTGAGACTCTGGTTCAG -ACGGAAGTTGAGACTCTGGCATAG -ACGGAAGTTGAGACTCTGGACAAG -ACGGAAGTTGAGACTCTGAAGCAG -ACGGAAGTTGAGACTCTGCGTCAA -ACGGAAGTTGAGACTCTGGCTGAA -ACGGAAGTTGAGACTCTGAGTACG -ACGGAAGTTGAGACTCTGATCCGA -ACGGAAGTTGAGACTCTGATGGGA -ACGGAAGTTGAGACTCTGGTGCAA -ACGGAAGTTGAGACTCTGGAGGAA -ACGGAAGTTGAGACTCTGCAGGTA -ACGGAAGTTGAGACTCTGGACTCT -ACGGAAGTTGAGACTCTGAGTCCT -ACGGAAGTTGAGACTCTGTAAGCC -ACGGAAGTTGAGACTCTGATAGCC -ACGGAAGTTGAGACTCTGTAACCG -ACGGAAGTTGAGACTCTGATGCCA -ACGGAAGTTGAGCCTCAAGGAAAC -ACGGAAGTTGAGCCTCAAAACACC -ACGGAAGTTGAGCCTCAAATCGAG -ACGGAAGTTGAGCCTCAACTCCTT -ACGGAAGTTGAGCCTCAACCTGTT -ACGGAAGTTGAGCCTCAACGGTTT -ACGGAAGTTGAGCCTCAAGTGGTT -ACGGAAGTTGAGCCTCAAGCCTTT -ACGGAAGTTGAGCCTCAAGGTCTT -ACGGAAGTTGAGCCTCAAACGCTT -ACGGAAGTTGAGCCTCAAAGCGTT -ACGGAAGTTGAGCCTCAATTCGTC -ACGGAAGTTGAGCCTCAATCTCTC -ACGGAAGTTGAGCCTCAATGGATC -ACGGAAGTTGAGCCTCAACACTTC -ACGGAAGTTGAGCCTCAAGTACTC -ACGGAAGTTGAGCCTCAAGATGTC -ACGGAAGTTGAGCCTCAAACAGTC -ACGGAAGTTGAGCCTCAATTGCTG -ACGGAAGTTGAGCCTCAATCCATG -ACGGAAGTTGAGCCTCAATGTGTG -ACGGAAGTTGAGCCTCAACTAGTG -ACGGAAGTTGAGCCTCAACATCTG -ACGGAAGTTGAGCCTCAAGAGTTG -ACGGAAGTTGAGCCTCAAAGACTG -ACGGAAGTTGAGCCTCAATCGGTA -ACGGAAGTTGAGCCTCAATGCCTA -ACGGAAGTTGAGCCTCAACCACTA -ACGGAAGTTGAGCCTCAAGGAGTA -ACGGAAGTTGAGCCTCAATCGTCT -ACGGAAGTTGAGCCTCAATGCACT -ACGGAAGTTGAGCCTCAACTGACT -ACGGAAGTTGAGCCTCAACAACCT -ACGGAAGTTGAGCCTCAAGCTACT -ACGGAAGTTGAGCCTCAAGGATCT -ACGGAAGTTGAGCCTCAAAAGGCT -ACGGAAGTTGAGCCTCAATCAACC -ACGGAAGTTGAGCCTCAATGTTCC -ACGGAAGTTGAGCCTCAAATTCCC -ACGGAAGTTGAGCCTCAATTCTCG -ACGGAAGTTGAGCCTCAATAGACG -ACGGAAGTTGAGCCTCAAGTAACG -ACGGAAGTTGAGCCTCAAACTTCG -ACGGAAGTTGAGCCTCAATACGCA -ACGGAAGTTGAGCCTCAACTTGCA -ACGGAAGTTGAGCCTCAACGAACA -ACGGAAGTTGAGCCTCAACAGTCA -ACGGAAGTTGAGCCTCAAGATCCA -ACGGAAGTTGAGCCTCAAACGACA -ACGGAAGTTGAGCCTCAAAGCTCA -ACGGAAGTTGAGCCTCAATCACGT -ACGGAAGTTGAGCCTCAACGTAGT -ACGGAAGTTGAGCCTCAAGTCAGT -ACGGAAGTTGAGCCTCAAGAAGGT -ACGGAAGTTGAGCCTCAAAACCGT -ACGGAAGTTGAGCCTCAATTGTGC -ACGGAAGTTGAGCCTCAACTAAGC -ACGGAAGTTGAGCCTCAAACTAGC -ACGGAAGTTGAGCCTCAAAGATGC -ACGGAAGTTGAGCCTCAATGAAGG -ACGGAAGTTGAGCCTCAACAATGG -ACGGAAGTTGAGCCTCAAATGAGG -ACGGAAGTTGAGCCTCAAAATGGG -ACGGAAGTTGAGCCTCAATCCTGA -ACGGAAGTTGAGCCTCAATAGCGA -ACGGAAGTTGAGCCTCAACACAGA -ACGGAAGTTGAGCCTCAAGCAAGA -ACGGAAGTTGAGCCTCAAGGTTGA -ACGGAAGTTGAGCCTCAATCCGAT -ACGGAAGTTGAGCCTCAATGGCAT -ACGGAAGTTGAGCCTCAACGAGAT -ACGGAAGTTGAGCCTCAATACCAC -ACGGAAGTTGAGCCTCAACAGAAC -ACGGAAGTTGAGCCTCAAGTCTAC -ACGGAAGTTGAGCCTCAAACGTAC -ACGGAAGTTGAGCCTCAAAGTGAC -ACGGAAGTTGAGCCTCAACTGTAG -ACGGAAGTTGAGCCTCAACCTAAG -ACGGAAGTTGAGCCTCAAGTTCAG -ACGGAAGTTGAGCCTCAAGCATAG -ACGGAAGTTGAGCCTCAAGACAAG -ACGGAAGTTGAGCCTCAAAAGCAG -ACGGAAGTTGAGCCTCAACGTCAA -ACGGAAGTTGAGCCTCAAGCTGAA -ACGGAAGTTGAGCCTCAAAGTACG -ACGGAAGTTGAGCCTCAAATCCGA -ACGGAAGTTGAGCCTCAAATGGGA -ACGGAAGTTGAGCCTCAAGTGCAA -ACGGAAGTTGAGCCTCAAGAGGAA -ACGGAAGTTGAGCCTCAACAGGTA -ACGGAAGTTGAGCCTCAAGACTCT -ACGGAAGTTGAGCCTCAAAGTCCT -ACGGAAGTTGAGCCTCAATAAGCC -ACGGAAGTTGAGCCTCAAATAGCC -ACGGAAGTTGAGCCTCAATAACCG -ACGGAAGTTGAGCCTCAAATGCCA -ACGGAAGTTGAGACTGCTGGAAAC -ACGGAAGTTGAGACTGCTAACACC -ACGGAAGTTGAGACTGCTATCGAG -ACGGAAGTTGAGACTGCTCTCCTT -ACGGAAGTTGAGACTGCTCCTGTT -ACGGAAGTTGAGACTGCTCGGTTT -ACGGAAGTTGAGACTGCTGTGGTT -ACGGAAGTTGAGACTGCTGCCTTT -ACGGAAGTTGAGACTGCTGGTCTT -ACGGAAGTTGAGACTGCTACGCTT -ACGGAAGTTGAGACTGCTAGCGTT -ACGGAAGTTGAGACTGCTTTCGTC -ACGGAAGTTGAGACTGCTTCTCTC -ACGGAAGTTGAGACTGCTTGGATC -ACGGAAGTTGAGACTGCTCACTTC -ACGGAAGTTGAGACTGCTGTACTC -ACGGAAGTTGAGACTGCTGATGTC -ACGGAAGTTGAGACTGCTACAGTC -ACGGAAGTTGAGACTGCTTTGCTG -ACGGAAGTTGAGACTGCTTCCATG -ACGGAAGTTGAGACTGCTTGTGTG -ACGGAAGTTGAGACTGCTCTAGTG -ACGGAAGTTGAGACTGCTCATCTG -ACGGAAGTTGAGACTGCTGAGTTG -ACGGAAGTTGAGACTGCTAGACTG -ACGGAAGTTGAGACTGCTTCGGTA -ACGGAAGTTGAGACTGCTTGCCTA -ACGGAAGTTGAGACTGCTCCACTA -ACGGAAGTTGAGACTGCTGGAGTA -ACGGAAGTTGAGACTGCTTCGTCT -ACGGAAGTTGAGACTGCTTGCACT -ACGGAAGTTGAGACTGCTCTGACT -ACGGAAGTTGAGACTGCTCAACCT -ACGGAAGTTGAGACTGCTGCTACT -ACGGAAGTTGAGACTGCTGGATCT -ACGGAAGTTGAGACTGCTAAGGCT -ACGGAAGTTGAGACTGCTTCAACC -ACGGAAGTTGAGACTGCTTGTTCC -ACGGAAGTTGAGACTGCTATTCCC -ACGGAAGTTGAGACTGCTTTCTCG -ACGGAAGTTGAGACTGCTTAGACG -ACGGAAGTTGAGACTGCTGTAACG -ACGGAAGTTGAGACTGCTACTTCG -ACGGAAGTTGAGACTGCTTACGCA -ACGGAAGTTGAGACTGCTCTTGCA -ACGGAAGTTGAGACTGCTCGAACA -ACGGAAGTTGAGACTGCTCAGTCA -ACGGAAGTTGAGACTGCTGATCCA -ACGGAAGTTGAGACTGCTACGACA -ACGGAAGTTGAGACTGCTAGCTCA -ACGGAAGTTGAGACTGCTTCACGT -ACGGAAGTTGAGACTGCTCGTAGT -ACGGAAGTTGAGACTGCTGTCAGT -ACGGAAGTTGAGACTGCTGAAGGT -ACGGAAGTTGAGACTGCTAACCGT -ACGGAAGTTGAGACTGCTTTGTGC -ACGGAAGTTGAGACTGCTCTAAGC -ACGGAAGTTGAGACTGCTACTAGC -ACGGAAGTTGAGACTGCTAGATGC -ACGGAAGTTGAGACTGCTTGAAGG -ACGGAAGTTGAGACTGCTCAATGG -ACGGAAGTTGAGACTGCTATGAGG -ACGGAAGTTGAGACTGCTAATGGG -ACGGAAGTTGAGACTGCTTCCTGA -ACGGAAGTTGAGACTGCTTAGCGA -ACGGAAGTTGAGACTGCTCACAGA -ACGGAAGTTGAGACTGCTGCAAGA -ACGGAAGTTGAGACTGCTGGTTGA -ACGGAAGTTGAGACTGCTTCCGAT -ACGGAAGTTGAGACTGCTTGGCAT -ACGGAAGTTGAGACTGCTCGAGAT -ACGGAAGTTGAGACTGCTTACCAC -ACGGAAGTTGAGACTGCTCAGAAC -ACGGAAGTTGAGACTGCTGTCTAC -ACGGAAGTTGAGACTGCTACGTAC -ACGGAAGTTGAGACTGCTAGTGAC -ACGGAAGTTGAGACTGCTCTGTAG -ACGGAAGTTGAGACTGCTCCTAAG -ACGGAAGTTGAGACTGCTGTTCAG -ACGGAAGTTGAGACTGCTGCATAG -ACGGAAGTTGAGACTGCTGACAAG -ACGGAAGTTGAGACTGCTAAGCAG -ACGGAAGTTGAGACTGCTCGTCAA -ACGGAAGTTGAGACTGCTGCTGAA -ACGGAAGTTGAGACTGCTAGTACG -ACGGAAGTTGAGACTGCTATCCGA -ACGGAAGTTGAGACTGCTATGGGA -ACGGAAGTTGAGACTGCTGTGCAA -ACGGAAGTTGAGACTGCTGAGGAA -ACGGAAGTTGAGACTGCTCAGGTA -ACGGAAGTTGAGACTGCTGACTCT -ACGGAAGTTGAGACTGCTAGTCCT -ACGGAAGTTGAGACTGCTTAAGCC -ACGGAAGTTGAGACTGCTATAGCC -ACGGAAGTTGAGACTGCTTAACCG -ACGGAAGTTGAGACTGCTATGCCA -ACGGAAGTTGAGTCTGGAGGAAAC -ACGGAAGTTGAGTCTGGAAACACC -ACGGAAGTTGAGTCTGGAATCGAG -ACGGAAGTTGAGTCTGGACTCCTT -ACGGAAGTTGAGTCTGGACCTGTT -ACGGAAGTTGAGTCTGGACGGTTT -ACGGAAGTTGAGTCTGGAGTGGTT -ACGGAAGTTGAGTCTGGAGCCTTT -ACGGAAGTTGAGTCTGGAGGTCTT -ACGGAAGTTGAGTCTGGAACGCTT -ACGGAAGTTGAGTCTGGAAGCGTT -ACGGAAGTTGAGTCTGGATTCGTC -ACGGAAGTTGAGTCTGGATCTCTC -ACGGAAGTTGAGTCTGGATGGATC -ACGGAAGTTGAGTCTGGACACTTC -ACGGAAGTTGAGTCTGGAGTACTC -ACGGAAGTTGAGTCTGGAGATGTC -ACGGAAGTTGAGTCTGGAACAGTC -ACGGAAGTTGAGTCTGGATTGCTG -ACGGAAGTTGAGTCTGGATCCATG -ACGGAAGTTGAGTCTGGATGTGTG -ACGGAAGTTGAGTCTGGACTAGTG -ACGGAAGTTGAGTCTGGACATCTG -ACGGAAGTTGAGTCTGGAGAGTTG -ACGGAAGTTGAGTCTGGAAGACTG -ACGGAAGTTGAGTCTGGATCGGTA -ACGGAAGTTGAGTCTGGATGCCTA -ACGGAAGTTGAGTCTGGACCACTA -ACGGAAGTTGAGTCTGGAGGAGTA -ACGGAAGTTGAGTCTGGATCGTCT -ACGGAAGTTGAGTCTGGATGCACT -ACGGAAGTTGAGTCTGGACTGACT -ACGGAAGTTGAGTCTGGACAACCT -ACGGAAGTTGAGTCTGGAGCTACT -ACGGAAGTTGAGTCTGGAGGATCT -ACGGAAGTTGAGTCTGGAAAGGCT -ACGGAAGTTGAGTCTGGATCAACC -ACGGAAGTTGAGTCTGGATGTTCC -ACGGAAGTTGAGTCTGGAATTCCC -ACGGAAGTTGAGTCTGGATTCTCG -ACGGAAGTTGAGTCTGGATAGACG -ACGGAAGTTGAGTCTGGAGTAACG -ACGGAAGTTGAGTCTGGAACTTCG -ACGGAAGTTGAGTCTGGATACGCA -ACGGAAGTTGAGTCTGGACTTGCA -ACGGAAGTTGAGTCTGGACGAACA -ACGGAAGTTGAGTCTGGACAGTCA -ACGGAAGTTGAGTCTGGAGATCCA -ACGGAAGTTGAGTCTGGAACGACA -ACGGAAGTTGAGTCTGGAAGCTCA -ACGGAAGTTGAGTCTGGATCACGT -ACGGAAGTTGAGTCTGGACGTAGT -ACGGAAGTTGAGTCTGGAGTCAGT -ACGGAAGTTGAGTCTGGAGAAGGT -ACGGAAGTTGAGTCTGGAAACCGT -ACGGAAGTTGAGTCTGGATTGTGC -ACGGAAGTTGAGTCTGGACTAAGC -ACGGAAGTTGAGTCTGGAACTAGC -ACGGAAGTTGAGTCTGGAAGATGC -ACGGAAGTTGAGTCTGGATGAAGG -ACGGAAGTTGAGTCTGGACAATGG -ACGGAAGTTGAGTCTGGAATGAGG -ACGGAAGTTGAGTCTGGAAATGGG -ACGGAAGTTGAGTCTGGATCCTGA -ACGGAAGTTGAGTCTGGATAGCGA -ACGGAAGTTGAGTCTGGACACAGA -ACGGAAGTTGAGTCTGGAGCAAGA -ACGGAAGTTGAGTCTGGAGGTTGA -ACGGAAGTTGAGTCTGGATCCGAT -ACGGAAGTTGAGTCTGGATGGCAT -ACGGAAGTTGAGTCTGGACGAGAT -ACGGAAGTTGAGTCTGGATACCAC -ACGGAAGTTGAGTCTGGACAGAAC -ACGGAAGTTGAGTCTGGAGTCTAC -ACGGAAGTTGAGTCTGGAACGTAC -ACGGAAGTTGAGTCTGGAAGTGAC -ACGGAAGTTGAGTCTGGACTGTAG -ACGGAAGTTGAGTCTGGACCTAAG -ACGGAAGTTGAGTCTGGAGTTCAG -ACGGAAGTTGAGTCTGGAGCATAG -ACGGAAGTTGAGTCTGGAGACAAG -ACGGAAGTTGAGTCTGGAAAGCAG -ACGGAAGTTGAGTCTGGACGTCAA -ACGGAAGTTGAGTCTGGAGCTGAA -ACGGAAGTTGAGTCTGGAAGTACG -ACGGAAGTTGAGTCTGGAATCCGA -ACGGAAGTTGAGTCTGGAATGGGA -ACGGAAGTTGAGTCTGGAGTGCAA -ACGGAAGTTGAGTCTGGAGAGGAA -ACGGAAGTTGAGTCTGGACAGGTA -ACGGAAGTTGAGTCTGGAGACTCT -ACGGAAGTTGAGTCTGGAAGTCCT -ACGGAAGTTGAGTCTGGATAAGCC -ACGGAAGTTGAGTCTGGAATAGCC -ACGGAAGTTGAGTCTGGATAACCG -ACGGAAGTTGAGTCTGGAATGCCA -ACGGAAGTTGAGGCTAAGGGAAAC -ACGGAAGTTGAGGCTAAGAACACC -ACGGAAGTTGAGGCTAAGATCGAG -ACGGAAGTTGAGGCTAAGCTCCTT -ACGGAAGTTGAGGCTAAGCCTGTT -ACGGAAGTTGAGGCTAAGCGGTTT -ACGGAAGTTGAGGCTAAGGTGGTT -ACGGAAGTTGAGGCTAAGGCCTTT -ACGGAAGTTGAGGCTAAGGGTCTT -ACGGAAGTTGAGGCTAAGACGCTT -ACGGAAGTTGAGGCTAAGAGCGTT -ACGGAAGTTGAGGCTAAGTTCGTC -ACGGAAGTTGAGGCTAAGTCTCTC -ACGGAAGTTGAGGCTAAGTGGATC -ACGGAAGTTGAGGCTAAGCACTTC -ACGGAAGTTGAGGCTAAGGTACTC -ACGGAAGTTGAGGCTAAGGATGTC -ACGGAAGTTGAGGCTAAGACAGTC -ACGGAAGTTGAGGCTAAGTTGCTG -ACGGAAGTTGAGGCTAAGTCCATG -ACGGAAGTTGAGGCTAAGTGTGTG -ACGGAAGTTGAGGCTAAGCTAGTG -ACGGAAGTTGAGGCTAAGCATCTG -ACGGAAGTTGAGGCTAAGGAGTTG -ACGGAAGTTGAGGCTAAGAGACTG -ACGGAAGTTGAGGCTAAGTCGGTA -ACGGAAGTTGAGGCTAAGTGCCTA -ACGGAAGTTGAGGCTAAGCCACTA -ACGGAAGTTGAGGCTAAGGGAGTA -ACGGAAGTTGAGGCTAAGTCGTCT -ACGGAAGTTGAGGCTAAGTGCACT -ACGGAAGTTGAGGCTAAGCTGACT -ACGGAAGTTGAGGCTAAGCAACCT -ACGGAAGTTGAGGCTAAGGCTACT -ACGGAAGTTGAGGCTAAGGGATCT -ACGGAAGTTGAGGCTAAGAAGGCT -ACGGAAGTTGAGGCTAAGTCAACC -ACGGAAGTTGAGGCTAAGTGTTCC -ACGGAAGTTGAGGCTAAGATTCCC -ACGGAAGTTGAGGCTAAGTTCTCG -ACGGAAGTTGAGGCTAAGTAGACG -ACGGAAGTTGAGGCTAAGGTAACG -ACGGAAGTTGAGGCTAAGACTTCG -ACGGAAGTTGAGGCTAAGTACGCA -ACGGAAGTTGAGGCTAAGCTTGCA -ACGGAAGTTGAGGCTAAGCGAACA -ACGGAAGTTGAGGCTAAGCAGTCA -ACGGAAGTTGAGGCTAAGGATCCA -ACGGAAGTTGAGGCTAAGACGACA -ACGGAAGTTGAGGCTAAGAGCTCA -ACGGAAGTTGAGGCTAAGTCACGT -ACGGAAGTTGAGGCTAAGCGTAGT -ACGGAAGTTGAGGCTAAGGTCAGT -ACGGAAGTTGAGGCTAAGGAAGGT -ACGGAAGTTGAGGCTAAGAACCGT -ACGGAAGTTGAGGCTAAGTTGTGC -ACGGAAGTTGAGGCTAAGCTAAGC -ACGGAAGTTGAGGCTAAGACTAGC -ACGGAAGTTGAGGCTAAGAGATGC -ACGGAAGTTGAGGCTAAGTGAAGG -ACGGAAGTTGAGGCTAAGCAATGG -ACGGAAGTTGAGGCTAAGATGAGG -ACGGAAGTTGAGGCTAAGAATGGG -ACGGAAGTTGAGGCTAAGTCCTGA -ACGGAAGTTGAGGCTAAGTAGCGA -ACGGAAGTTGAGGCTAAGCACAGA -ACGGAAGTTGAGGCTAAGGCAAGA -ACGGAAGTTGAGGCTAAGGGTTGA -ACGGAAGTTGAGGCTAAGTCCGAT -ACGGAAGTTGAGGCTAAGTGGCAT -ACGGAAGTTGAGGCTAAGCGAGAT -ACGGAAGTTGAGGCTAAGTACCAC -ACGGAAGTTGAGGCTAAGCAGAAC -ACGGAAGTTGAGGCTAAGGTCTAC -ACGGAAGTTGAGGCTAAGACGTAC -ACGGAAGTTGAGGCTAAGAGTGAC -ACGGAAGTTGAGGCTAAGCTGTAG -ACGGAAGTTGAGGCTAAGCCTAAG -ACGGAAGTTGAGGCTAAGGTTCAG -ACGGAAGTTGAGGCTAAGGCATAG -ACGGAAGTTGAGGCTAAGGACAAG -ACGGAAGTTGAGGCTAAGAAGCAG -ACGGAAGTTGAGGCTAAGCGTCAA -ACGGAAGTTGAGGCTAAGGCTGAA -ACGGAAGTTGAGGCTAAGAGTACG -ACGGAAGTTGAGGCTAAGATCCGA -ACGGAAGTTGAGGCTAAGATGGGA -ACGGAAGTTGAGGCTAAGGTGCAA -ACGGAAGTTGAGGCTAAGGAGGAA -ACGGAAGTTGAGGCTAAGCAGGTA -ACGGAAGTTGAGGCTAAGGACTCT -ACGGAAGTTGAGGCTAAGAGTCCT -ACGGAAGTTGAGGCTAAGTAAGCC -ACGGAAGTTGAGGCTAAGATAGCC -ACGGAAGTTGAGGCTAAGTAACCG -ACGGAAGTTGAGGCTAAGATGCCA -ACGGAAGTTGAGACCTCAGGAAAC -ACGGAAGTTGAGACCTCAAACACC -ACGGAAGTTGAGACCTCAATCGAG -ACGGAAGTTGAGACCTCACTCCTT -ACGGAAGTTGAGACCTCACCTGTT -ACGGAAGTTGAGACCTCACGGTTT -ACGGAAGTTGAGACCTCAGTGGTT -ACGGAAGTTGAGACCTCAGCCTTT -ACGGAAGTTGAGACCTCAGGTCTT -ACGGAAGTTGAGACCTCAACGCTT -ACGGAAGTTGAGACCTCAAGCGTT -ACGGAAGTTGAGACCTCATTCGTC -ACGGAAGTTGAGACCTCATCTCTC -ACGGAAGTTGAGACCTCATGGATC -ACGGAAGTTGAGACCTCACACTTC -ACGGAAGTTGAGACCTCAGTACTC -ACGGAAGTTGAGACCTCAGATGTC -ACGGAAGTTGAGACCTCAACAGTC -ACGGAAGTTGAGACCTCATTGCTG -ACGGAAGTTGAGACCTCATCCATG -ACGGAAGTTGAGACCTCATGTGTG -ACGGAAGTTGAGACCTCACTAGTG -ACGGAAGTTGAGACCTCACATCTG -ACGGAAGTTGAGACCTCAGAGTTG -ACGGAAGTTGAGACCTCAAGACTG -ACGGAAGTTGAGACCTCATCGGTA -ACGGAAGTTGAGACCTCATGCCTA -ACGGAAGTTGAGACCTCACCACTA -ACGGAAGTTGAGACCTCAGGAGTA -ACGGAAGTTGAGACCTCATCGTCT -ACGGAAGTTGAGACCTCATGCACT -ACGGAAGTTGAGACCTCACTGACT -ACGGAAGTTGAGACCTCACAACCT -ACGGAAGTTGAGACCTCAGCTACT -ACGGAAGTTGAGACCTCAGGATCT -ACGGAAGTTGAGACCTCAAAGGCT -ACGGAAGTTGAGACCTCATCAACC -ACGGAAGTTGAGACCTCATGTTCC -ACGGAAGTTGAGACCTCAATTCCC -ACGGAAGTTGAGACCTCATTCTCG -ACGGAAGTTGAGACCTCATAGACG -ACGGAAGTTGAGACCTCAGTAACG -ACGGAAGTTGAGACCTCAACTTCG -ACGGAAGTTGAGACCTCATACGCA -ACGGAAGTTGAGACCTCACTTGCA -ACGGAAGTTGAGACCTCACGAACA -ACGGAAGTTGAGACCTCACAGTCA -ACGGAAGTTGAGACCTCAGATCCA -ACGGAAGTTGAGACCTCAACGACA -ACGGAAGTTGAGACCTCAAGCTCA -ACGGAAGTTGAGACCTCATCACGT -ACGGAAGTTGAGACCTCACGTAGT -ACGGAAGTTGAGACCTCAGTCAGT -ACGGAAGTTGAGACCTCAGAAGGT -ACGGAAGTTGAGACCTCAAACCGT -ACGGAAGTTGAGACCTCATTGTGC -ACGGAAGTTGAGACCTCACTAAGC -ACGGAAGTTGAGACCTCAACTAGC -ACGGAAGTTGAGACCTCAAGATGC -ACGGAAGTTGAGACCTCATGAAGG -ACGGAAGTTGAGACCTCACAATGG -ACGGAAGTTGAGACCTCAATGAGG -ACGGAAGTTGAGACCTCAAATGGG -ACGGAAGTTGAGACCTCATCCTGA -ACGGAAGTTGAGACCTCATAGCGA -ACGGAAGTTGAGACCTCACACAGA -ACGGAAGTTGAGACCTCAGCAAGA -ACGGAAGTTGAGACCTCAGGTTGA -ACGGAAGTTGAGACCTCATCCGAT -ACGGAAGTTGAGACCTCATGGCAT -ACGGAAGTTGAGACCTCACGAGAT -ACGGAAGTTGAGACCTCATACCAC -ACGGAAGTTGAGACCTCACAGAAC -ACGGAAGTTGAGACCTCAGTCTAC -ACGGAAGTTGAGACCTCAACGTAC -ACGGAAGTTGAGACCTCAAGTGAC -ACGGAAGTTGAGACCTCACTGTAG -ACGGAAGTTGAGACCTCACCTAAG -ACGGAAGTTGAGACCTCAGTTCAG -ACGGAAGTTGAGACCTCAGCATAG -ACGGAAGTTGAGACCTCAGACAAG -ACGGAAGTTGAGACCTCAAAGCAG -ACGGAAGTTGAGACCTCACGTCAA -ACGGAAGTTGAGACCTCAGCTGAA -ACGGAAGTTGAGACCTCAAGTACG -ACGGAAGTTGAGACCTCAATCCGA -ACGGAAGTTGAGACCTCAATGGGA -ACGGAAGTTGAGACCTCAGTGCAA -ACGGAAGTTGAGACCTCAGAGGAA -ACGGAAGTTGAGACCTCACAGGTA -ACGGAAGTTGAGACCTCAGACTCT -ACGGAAGTTGAGACCTCAAGTCCT -ACGGAAGTTGAGACCTCATAAGCC -ACGGAAGTTGAGACCTCAATAGCC -ACGGAAGTTGAGACCTCATAACCG -ACGGAAGTTGAGACCTCAATGCCA -ACGGAAGTTGAGTCCTGTGGAAAC -ACGGAAGTTGAGTCCTGTAACACC -ACGGAAGTTGAGTCCTGTATCGAG -ACGGAAGTTGAGTCCTGTCTCCTT -ACGGAAGTTGAGTCCTGTCCTGTT -ACGGAAGTTGAGTCCTGTCGGTTT -ACGGAAGTTGAGTCCTGTGTGGTT -ACGGAAGTTGAGTCCTGTGCCTTT -ACGGAAGTTGAGTCCTGTGGTCTT -ACGGAAGTTGAGTCCTGTACGCTT -ACGGAAGTTGAGTCCTGTAGCGTT -ACGGAAGTTGAGTCCTGTTTCGTC -ACGGAAGTTGAGTCCTGTTCTCTC -ACGGAAGTTGAGTCCTGTTGGATC -ACGGAAGTTGAGTCCTGTCACTTC -ACGGAAGTTGAGTCCTGTGTACTC -ACGGAAGTTGAGTCCTGTGATGTC -ACGGAAGTTGAGTCCTGTACAGTC -ACGGAAGTTGAGTCCTGTTTGCTG -ACGGAAGTTGAGTCCTGTTCCATG -ACGGAAGTTGAGTCCTGTTGTGTG -ACGGAAGTTGAGTCCTGTCTAGTG -ACGGAAGTTGAGTCCTGTCATCTG -ACGGAAGTTGAGTCCTGTGAGTTG -ACGGAAGTTGAGTCCTGTAGACTG -ACGGAAGTTGAGTCCTGTTCGGTA -ACGGAAGTTGAGTCCTGTTGCCTA -ACGGAAGTTGAGTCCTGTCCACTA -ACGGAAGTTGAGTCCTGTGGAGTA -ACGGAAGTTGAGTCCTGTTCGTCT -ACGGAAGTTGAGTCCTGTTGCACT -ACGGAAGTTGAGTCCTGTCTGACT -ACGGAAGTTGAGTCCTGTCAACCT -ACGGAAGTTGAGTCCTGTGCTACT -ACGGAAGTTGAGTCCTGTGGATCT -ACGGAAGTTGAGTCCTGTAAGGCT -ACGGAAGTTGAGTCCTGTTCAACC -ACGGAAGTTGAGTCCTGTTGTTCC -ACGGAAGTTGAGTCCTGTATTCCC -ACGGAAGTTGAGTCCTGTTTCTCG -ACGGAAGTTGAGTCCTGTTAGACG -ACGGAAGTTGAGTCCTGTGTAACG -ACGGAAGTTGAGTCCTGTACTTCG -ACGGAAGTTGAGTCCTGTTACGCA -ACGGAAGTTGAGTCCTGTCTTGCA -ACGGAAGTTGAGTCCTGTCGAACA -ACGGAAGTTGAGTCCTGTCAGTCA -ACGGAAGTTGAGTCCTGTGATCCA -ACGGAAGTTGAGTCCTGTACGACA -ACGGAAGTTGAGTCCTGTAGCTCA -ACGGAAGTTGAGTCCTGTTCACGT -ACGGAAGTTGAGTCCTGTCGTAGT -ACGGAAGTTGAGTCCTGTGTCAGT -ACGGAAGTTGAGTCCTGTGAAGGT -ACGGAAGTTGAGTCCTGTAACCGT -ACGGAAGTTGAGTCCTGTTTGTGC -ACGGAAGTTGAGTCCTGTCTAAGC -ACGGAAGTTGAGTCCTGTACTAGC -ACGGAAGTTGAGTCCTGTAGATGC -ACGGAAGTTGAGTCCTGTTGAAGG -ACGGAAGTTGAGTCCTGTCAATGG -ACGGAAGTTGAGTCCTGTATGAGG -ACGGAAGTTGAGTCCTGTAATGGG -ACGGAAGTTGAGTCCTGTTCCTGA -ACGGAAGTTGAGTCCTGTTAGCGA -ACGGAAGTTGAGTCCTGTCACAGA -ACGGAAGTTGAGTCCTGTGCAAGA -ACGGAAGTTGAGTCCTGTGGTTGA -ACGGAAGTTGAGTCCTGTTCCGAT -ACGGAAGTTGAGTCCTGTTGGCAT -ACGGAAGTTGAGTCCTGTCGAGAT -ACGGAAGTTGAGTCCTGTTACCAC -ACGGAAGTTGAGTCCTGTCAGAAC -ACGGAAGTTGAGTCCTGTGTCTAC -ACGGAAGTTGAGTCCTGTACGTAC -ACGGAAGTTGAGTCCTGTAGTGAC -ACGGAAGTTGAGTCCTGTCTGTAG -ACGGAAGTTGAGTCCTGTCCTAAG -ACGGAAGTTGAGTCCTGTGTTCAG -ACGGAAGTTGAGTCCTGTGCATAG -ACGGAAGTTGAGTCCTGTGACAAG -ACGGAAGTTGAGTCCTGTAAGCAG -ACGGAAGTTGAGTCCTGTCGTCAA -ACGGAAGTTGAGTCCTGTGCTGAA -ACGGAAGTTGAGTCCTGTAGTACG -ACGGAAGTTGAGTCCTGTATCCGA -ACGGAAGTTGAGTCCTGTATGGGA -ACGGAAGTTGAGTCCTGTGTGCAA -ACGGAAGTTGAGTCCTGTGAGGAA -ACGGAAGTTGAGTCCTGTCAGGTA -ACGGAAGTTGAGTCCTGTGACTCT -ACGGAAGTTGAGTCCTGTAGTCCT -ACGGAAGTTGAGTCCTGTTAAGCC -ACGGAAGTTGAGTCCTGTATAGCC -ACGGAAGTTGAGTCCTGTTAACCG -ACGGAAGTTGAGTCCTGTATGCCA -ACGGAAGTTGAGCCCATTGGAAAC -ACGGAAGTTGAGCCCATTAACACC -ACGGAAGTTGAGCCCATTATCGAG -ACGGAAGTTGAGCCCATTCTCCTT -ACGGAAGTTGAGCCCATTCCTGTT -ACGGAAGTTGAGCCCATTCGGTTT -ACGGAAGTTGAGCCCATTGTGGTT -ACGGAAGTTGAGCCCATTGCCTTT -ACGGAAGTTGAGCCCATTGGTCTT -ACGGAAGTTGAGCCCATTACGCTT -ACGGAAGTTGAGCCCATTAGCGTT -ACGGAAGTTGAGCCCATTTTCGTC -ACGGAAGTTGAGCCCATTTCTCTC -ACGGAAGTTGAGCCCATTTGGATC -ACGGAAGTTGAGCCCATTCACTTC -ACGGAAGTTGAGCCCATTGTACTC -ACGGAAGTTGAGCCCATTGATGTC -ACGGAAGTTGAGCCCATTACAGTC -ACGGAAGTTGAGCCCATTTTGCTG -ACGGAAGTTGAGCCCATTTCCATG -ACGGAAGTTGAGCCCATTTGTGTG -ACGGAAGTTGAGCCCATTCTAGTG -ACGGAAGTTGAGCCCATTCATCTG -ACGGAAGTTGAGCCCATTGAGTTG -ACGGAAGTTGAGCCCATTAGACTG -ACGGAAGTTGAGCCCATTTCGGTA -ACGGAAGTTGAGCCCATTTGCCTA -ACGGAAGTTGAGCCCATTCCACTA -ACGGAAGTTGAGCCCATTGGAGTA -ACGGAAGTTGAGCCCATTTCGTCT -ACGGAAGTTGAGCCCATTTGCACT -ACGGAAGTTGAGCCCATTCTGACT -ACGGAAGTTGAGCCCATTCAACCT -ACGGAAGTTGAGCCCATTGCTACT -ACGGAAGTTGAGCCCATTGGATCT -ACGGAAGTTGAGCCCATTAAGGCT -ACGGAAGTTGAGCCCATTTCAACC -ACGGAAGTTGAGCCCATTTGTTCC -ACGGAAGTTGAGCCCATTATTCCC -ACGGAAGTTGAGCCCATTTTCTCG -ACGGAAGTTGAGCCCATTTAGACG -ACGGAAGTTGAGCCCATTGTAACG -ACGGAAGTTGAGCCCATTACTTCG -ACGGAAGTTGAGCCCATTTACGCA -ACGGAAGTTGAGCCCATTCTTGCA -ACGGAAGTTGAGCCCATTCGAACA -ACGGAAGTTGAGCCCATTCAGTCA -ACGGAAGTTGAGCCCATTGATCCA -ACGGAAGTTGAGCCCATTACGACA -ACGGAAGTTGAGCCCATTAGCTCA -ACGGAAGTTGAGCCCATTTCACGT -ACGGAAGTTGAGCCCATTCGTAGT -ACGGAAGTTGAGCCCATTGTCAGT -ACGGAAGTTGAGCCCATTGAAGGT -ACGGAAGTTGAGCCCATTAACCGT -ACGGAAGTTGAGCCCATTTTGTGC -ACGGAAGTTGAGCCCATTCTAAGC -ACGGAAGTTGAGCCCATTACTAGC -ACGGAAGTTGAGCCCATTAGATGC -ACGGAAGTTGAGCCCATTTGAAGG -ACGGAAGTTGAGCCCATTCAATGG -ACGGAAGTTGAGCCCATTATGAGG -ACGGAAGTTGAGCCCATTAATGGG -ACGGAAGTTGAGCCCATTTCCTGA -ACGGAAGTTGAGCCCATTTAGCGA -ACGGAAGTTGAGCCCATTCACAGA -ACGGAAGTTGAGCCCATTGCAAGA -ACGGAAGTTGAGCCCATTGGTTGA -ACGGAAGTTGAGCCCATTTCCGAT -ACGGAAGTTGAGCCCATTTGGCAT -ACGGAAGTTGAGCCCATTCGAGAT -ACGGAAGTTGAGCCCATTTACCAC -ACGGAAGTTGAGCCCATTCAGAAC -ACGGAAGTTGAGCCCATTGTCTAC -ACGGAAGTTGAGCCCATTACGTAC -ACGGAAGTTGAGCCCATTAGTGAC -ACGGAAGTTGAGCCCATTCTGTAG -ACGGAAGTTGAGCCCATTCCTAAG -ACGGAAGTTGAGCCCATTGTTCAG -ACGGAAGTTGAGCCCATTGCATAG -ACGGAAGTTGAGCCCATTGACAAG -ACGGAAGTTGAGCCCATTAAGCAG -ACGGAAGTTGAGCCCATTCGTCAA -ACGGAAGTTGAGCCCATTGCTGAA -ACGGAAGTTGAGCCCATTAGTACG -ACGGAAGTTGAGCCCATTATCCGA -ACGGAAGTTGAGCCCATTATGGGA -ACGGAAGTTGAGCCCATTGTGCAA -ACGGAAGTTGAGCCCATTGAGGAA -ACGGAAGTTGAGCCCATTCAGGTA -ACGGAAGTTGAGCCCATTGACTCT -ACGGAAGTTGAGCCCATTAGTCCT -ACGGAAGTTGAGCCCATTTAAGCC -ACGGAAGTTGAGCCCATTATAGCC -ACGGAAGTTGAGCCCATTTAACCG -ACGGAAGTTGAGCCCATTATGCCA -ACGGAAGTTGAGTCGTTCGGAAAC -ACGGAAGTTGAGTCGTTCAACACC -ACGGAAGTTGAGTCGTTCATCGAG -ACGGAAGTTGAGTCGTTCCTCCTT -ACGGAAGTTGAGTCGTTCCCTGTT -ACGGAAGTTGAGTCGTTCCGGTTT -ACGGAAGTTGAGTCGTTCGTGGTT -ACGGAAGTTGAGTCGTTCGCCTTT -ACGGAAGTTGAGTCGTTCGGTCTT -ACGGAAGTTGAGTCGTTCACGCTT -ACGGAAGTTGAGTCGTTCAGCGTT -ACGGAAGTTGAGTCGTTCTTCGTC -ACGGAAGTTGAGTCGTTCTCTCTC -ACGGAAGTTGAGTCGTTCTGGATC -ACGGAAGTTGAGTCGTTCCACTTC -ACGGAAGTTGAGTCGTTCGTACTC -ACGGAAGTTGAGTCGTTCGATGTC -ACGGAAGTTGAGTCGTTCACAGTC -ACGGAAGTTGAGTCGTTCTTGCTG -ACGGAAGTTGAGTCGTTCTCCATG -ACGGAAGTTGAGTCGTTCTGTGTG -ACGGAAGTTGAGTCGTTCCTAGTG -ACGGAAGTTGAGTCGTTCCATCTG -ACGGAAGTTGAGTCGTTCGAGTTG -ACGGAAGTTGAGTCGTTCAGACTG -ACGGAAGTTGAGTCGTTCTCGGTA -ACGGAAGTTGAGTCGTTCTGCCTA -ACGGAAGTTGAGTCGTTCCCACTA -ACGGAAGTTGAGTCGTTCGGAGTA -ACGGAAGTTGAGTCGTTCTCGTCT -ACGGAAGTTGAGTCGTTCTGCACT -ACGGAAGTTGAGTCGTTCCTGACT -ACGGAAGTTGAGTCGTTCCAACCT -ACGGAAGTTGAGTCGTTCGCTACT -ACGGAAGTTGAGTCGTTCGGATCT -ACGGAAGTTGAGTCGTTCAAGGCT -ACGGAAGTTGAGTCGTTCTCAACC -ACGGAAGTTGAGTCGTTCTGTTCC -ACGGAAGTTGAGTCGTTCATTCCC -ACGGAAGTTGAGTCGTTCTTCTCG -ACGGAAGTTGAGTCGTTCTAGACG -ACGGAAGTTGAGTCGTTCGTAACG -ACGGAAGTTGAGTCGTTCACTTCG -ACGGAAGTTGAGTCGTTCTACGCA -ACGGAAGTTGAGTCGTTCCTTGCA -ACGGAAGTTGAGTCGTTCCGAACA -ACGGAAGTTGAGTCGTTCCAGTCA -ACGGAAGTTGAGTCGTTCGATCCA -ACGGAAGTTGAGTCGTTCACGACA -ACGGAAGTTGAGTCGTTCAGCTCA -ACGGAAGTTGAGTCGTTCTCACGT -ACGGAAGTTGAGTCGTTCCGTAGT -ACGGAAGTTGAGTCGTTCGTCAGT -ACGGAAGTTGAGTCGTTCGAAGGT -ACGGAAGTTGAGTCGTTCAACCGT -ACGGAAGTTGAGTCGTTCTTGTGC -ACGGAAGTTGAGTCGTTCCTAAGC -ACGGAAGTTGAGTCGTTCACTAGC -ACGGAAGTTGAGTCGTTCAGATGC -ACGGAAGTTGAGTCGTTCTGAAGG -ACGGAAGTTGAGTCGTTCCAATGG -ACGGAAGTTGAGTCGTTCATGAGG -ACGGAAGTTGAGTCGTTCAATGGG -ACGGAAGTTGAGTCGTTCTCCTGA -ACGGAAGTTGAGTCGTTCTAGCGA -ACGGAAGTTGAGTCGTTCCACAGA -ACGGAAGTTGAGTCGTTCGCAAGA -ACGGAAGTTGAGTCGTTCGGTTGA -ACGGAAGTTGAGTCGTTCTCCGAT -ACGGAAGTTGAGTCGTTCTGGCAT -ACGGAAGTTGAGTCGTTCCGAGAT -ACGGAAGTTGAGTCGTTCTACCAC -ACGGAAGTTGAGTCGTTCCAGAAC -ACGGAAGTTGAGTCGTTCGTCTAC -ACGGAAGTTGAGTCGTTCACGTAC -ACGGAAGTTGAGTCGTTCAGTGAC -ACGGAAGTTGAGTCGTTCCTGTAG -ACGGAAGTTGAGTCGTTCCCTAAG -ACGGAAGTTGAGTCGTTCGTTCAG -ACGGAAGTTGAGTCGTTCGCATAG -ACGGAAGTTGAGTCGTTCGACAAG -ACGGAAGTTGAGTCGTTCAAGCAG -ACGGAAGTTGAGTCGTTCCGTCAA -ACGGAAGTTGAGTCGTTCGCTGAA -ACGGAAGTTGAGTCGTTCAGTACG -ACGGAAGTTGAGTCGTTCATCCGA -ACGGAAGTTGAGTCGTTCATGGGA -ACGGAAGTTGAGTCGTTCGTGCAA -ACGGAAGTTGAGTCGTTCGAGGAA -ACGGAAGTTGAGTCGTTCCAGGTA -ACGGAAGTTGAGTCGTTCGACTCT -ACGGAAGTTGAGTCGTTCAGTCCT -ACGGAAGTTGAGTCGTTCTAAGCC -ACGGAAGTTGAGTCGTTCATAGCC -ACGGAAGTTGAGTCGTTCTAACCG -ACGGAAGTTGAGTCGTTCATGCCA -ACGGAAGTTGAGACGTAGGGAAAC -ACGGAAGTTGAGACGTAGAACACC -ACGGAAGTTGAGACGTAGATCGAG -ACGGAAGTTGAGACGTAGCTCCTT -ACGGAAGTTGAGACGTAGCCTGTT -ACGGAAGTTGAGACGTAGCGGTTT -ACGGAAGTTGAGACGTAGGTGGTT -ACGGAAGTTGAGACGTAGGCCTTT -ACGGAAGTTGAGACGTAGGGTCTT -ACGGAAGTTGAGACGTAGACGCTT -ACGGAAGTTGAGACGTAGAGCGTT -ACGGAAGTTGAGACGTAGTTCGTC -ACGGAAGTTGAGACGTAGTCTCTC -ACGGAAGTTGAGACGTAGTGGATC -ACGGAAGTTGAGACGTAGCACTTC -ACGGAAGTTGAGACGTAGGTACTC -ACGGAAGTTGAGACGTAGGATGTC -ACGGAAGTTGAGACGTAGACAGTC -ACGGAAGTTGAGACGTAGTTGCTG -ACGGAAGTTGAGACGTAGTCCATG -ACGGAAGTTGAGACGTAGTGTGTG -ACGGAAGTTGAGACGTAGCTAGTG -ACGGAAGTTGAGACGTAGCATCTG -ACGGAAGTTGAGACGTAGGAGTTG -ACGGAAGTTGAGACGTAGAGACTG -ACGGAAGTTGAGACGTAGTCGGTA -ACGGAAGTTGAGACGTAGTGCCTA -ACGGAAGTTGAGACGTAGCCACTA -ACGGAAGTTGAGACGTAGGGAGTA -ACGGAAGTTGAGACGTAGTCGTCT -ACGGAAGTTGAGACGTAGTGCACT -ACGGAAGTTGAGACGTAGCTGACT -ACGGAAGTTGAGACGTAGCAACCT -ACGGAAGTTGAGACGTAGGCTACT -ACGGAAGTTGAGACGTAGGGATCT -ACGGAAGTTGAGACGTAGAAGGCT -ACGGAAGTTGAGACGTAGTCAACC -ACGGAAGTTGAGACGTAGTGTTCC -ACGGAAGTTGAGACGTAGATTCCC -ACGGAAGTTGAGACGTAGTTCTCG -ACGGAAGTTGAGACGTAGTAGACG -ACGGAAGTTGAGACGTAGGTAACG -ACGGAAGTTGAGACGTAGACTTCG -ACGGAAGTTGAGACGTAGTACGCA -ACGGAAGTTGAGACGTAGCTTGCA -ACGGAAGTTGAGACGTAGCGAACA -ACGGAAGTTGAGACGTAGCAGTCA -ACGGAAGTTGAGACGTAGGATCCA -ACGGAAGTTGAGACGTAGACGACA -ACGGAAGTTGAGACGTAGAGCTCA -ACGGAAGTTGAGACGTAGTCACGT -ACGGAAGTTGAGACGTAGCGTAGT -ACGGAAGTTGAGACGTAGGTCAGT -ACGGAAGTTGAGACGTAGGAAGGT -ACGGAAGTTGAGACGTAGAACCGT -ACGGAAGTTGAGACGTAGTTGTGC -ACGGAAGTTGAGACGTAGCTAAGC -ACGGAAGTTGAGACGTAGACTAGC -ACGGAAGTTGAGACGTAGAGATGC -ACGGAAGTTGAGACGTAGTGAAGG -ACGGAAGTTGAGACGTAGCAATGG -ACGGAAGTTGAGACGTAGATGAGG -ACGGAAGTTGAGACGTAGAATGGG -ACGGAAGTTGAGACGTAGTCCTGA -ACGGAAGTTGAGACGTAGTAGCGA -ACGGAAGTTGAGACGTAGCACAGA -ACGGAAGTTGAGACGTAGGCAAGA -ACGGAAGTTGAGACGTAGGGTTGA -ACGGAAGTTGAGACGTAGTCCGAT -ACGGAAGTTGAGACGTAGTGGCAT -ACGGAAGTTGAGACGTAGCGAGAT -ACGGAAGTTGAGACGTAGTACCAC -ACGGAAGTTGAGACGTAGCAGAAC -ACGGAAGTTGAGACGTAGGTCTAC -ACGGAAGTTGAGACGTAGACGTAC -ACGGAAGTTGAGACGTAGAGTGAC -ACGGAAGTTGAGACGTAGCTGTAG -ACGGAAGTTGAGACGTAGCCTAAG -ACGGAAGTTGAGACGTAGGTTCAG -ACGGAAGTTGAGACGTAGGCATAG -ACGGAAGTTGAGACGTAGGACAAG -ACGGAAGTTGAGACGTAGAAGCAG -ACGGAAGTTGAGACGTAGCGTCAA -ACGGAAGTTGAGACGTAGGCTGAA -ACGGAAGTTGAGACGTAGAGTACG -ACGGAAGTTGAGACGTAGATCCGA -ACGGAAGTTGAGACGTAGATGGGA -ACGGAAGTTGAGACGTAGGTGCAA -ACGGAAGTTGAGACGTAGGAGGAA -ACGGAAGTTGAGACGTAGCAGGTA -ACGGAAGTTGAGACGTAGGACTCT -ACGGAAGTTGAGACGTAGAGTCCT -ACGGAAGTTGAGACGTAGTAAGCC -ACGGAAGTTGAGACGTAGATAGCC -ACGGAAGTTGAGACGTAGTAACCG -ACGGAAGTTGAGACGTAGATGCCA -ACGGAAGTTGAGACGGTAGGAAAC -ACGGAAGTTGAGACGGTAAACACC -ACGGAAGTTGAGACGGTAATCGAG -ACGGAAGTTGAGACGGTACTCCTT -ACGGAAGTTGAGACGGTACCTGTT -ACGGAAGTTGAGACGGTACGGTTT -ACGGAAGTTGAGACGGTAGTGGTT -ACGGAAGTTGAGACGGTAGCCTTT -ACGGAAGTTGAGACGGTAGGTCTT -ACGGAAGTTGAGACGGTAACGCTT -ACGGAAGTTGAGACGGTAAGCGTT -ACGGAAGTTGAGACGGTATTCGTC -ACGGAAGTTGAGACGGTATCTCTC -ACGGAAGTTGAGACGGTATGGATC -ACGGAAGTTGAGACGGTACACTTC -ACGGAAGTTGAGACGGTAGTACTC -ACGGAAGTTGAGACGGTAGATGTC -ACGGAAGTTGAGACGGTAACAGTC -ACGGAAGTTGAGACGGTATTGCTG -ACGGAAGTTGAGACGGTATCCATG -ACGGAAGTTGAGACGGTATGTGTG -ACGGAAGTTGAGACGGTACTAGTG -ACGGAAGTTGAGACGGTACATCTG -ACGGAAGTTGAGACGGTAGAGTTG -ACGGAAGTTGAGACGGTAAGACTG -ACGGAAGTTGAGACGGTATCGGTA -ACGGAAGTTGAGACGGTATGCCTA -ACGGAAGTTGAGACGGTACCACTA -ACGGAAGTTGAGACGGTAGGAGTA -ACGGAAGTTGAGACGGTATCGTCT -ACGGAAGTTGAGACGGTATGCACT -ACGGAAGTTGAGACGGTACTGACT -ACGGAAGTTGAGACGGTACAACCT -ACGGAAGTTGAGACGGTAGCTACT -ACGGAAGTTGAGACGGTAGGATCT -ACGGAAGTTGAGACGGTAAAGGCT -ACGGAAGTTGAGACGGTATCAACC -ACGGAAGTTGAGACGGTATGTTCC -ACGGAAGTTGAGACGGTAATTCCC -ACGGAAGTTGAGACGGTATTCTCG -ACGGAAGTTGAGACGGTATAGACG -ACGGAAGTTGAGACGGTAGTAACG -ACGGAAGTTGAGACGGTAACTTCG -ACGGAAGTTGAGACGGTATACGCA -ACGGAAGTTGAGACGGTACTTGCA -ACGGAAGTTGAGACGGTACGAACA -ACGGAAGTTGAGACGGTACAGTCA -ACGGAAGTTGAGACGGTAGATCCA -ACGGAAGTTGAGACGGTAACGACA -ACGGAAGTTGAGACGGTAAGCTCA -ACGGAAGTTGAGACGGTATCACGT -ACGGAAGTTGAGACGGTACGTAGT -ACGGAAGTTGAGACGGTAGTCAGT -ACGGAAGTTGAGACGGTAGAAGGT -ACGGAAGTTGAGACGGTAAACCGT -ACGGAAGTTGAGACGGTATTGTGC -ACGGAAGTTGAGACGGTACTAAGC -ACGGAAGTTGAGACGGTAACTAGC -ACGGAAGTTGAGACGGTAAGATGC -ACGGAAGTTGAGACGGTATGAAGG -ACGGAAGTTGAGACGGTACAATGG -ACGGAAGTTGAGACGGTAATGAGG -ACGGAAGTTGAGACGGTAAATGGG -ACGGAAGTTGAGACGGTATCCTGA -ACGGAAGTTGAGACGGTATAGCGA -ACGGAAGTTGAGACGGTACACAGA -ACGGAAGTTGAGACGGTAGCAAGA -ACGGAAGTTGAGACGGTAGGTTGA -ACGGAAGTTGAGACGGTATCCGAT -ACGGAAGTTGAGACGGTATGGCAT -ACGGAAGTTGAGACGGTACGAGAT -ACGGAAGTTGAGACGGTATACCAC -ACGGAAGTTGAGACGGTACAGAAC -ACGGAAGTTGAGACGGTAGTCTAC -ACGGAAGTTGAGACGGTAACGTAC -ACGGAAGTTGAGACGGTAAGTGAC -ACGGAAGTTGAGACGGTACTGTAG -ACGGAAGTTGAGACGGTACCTAAG -ACGGAAGTTGAGACGGTAGTTCAG -ACGGAAGTTGAGACGGTAGCATAG -ACGGAAGTTGAGACGGTAGACAAG -ACGGAAGTTGAGACGGTAAAGCAG -ACGGAAGTTGAGACGGTACGTCAA -ACGGAAGTTGAGACGGTAGCTGAA -ACGGAAGTTGAGACGGTAAGTACG -ACGGAAGTTGAGACGGTAATCCGA -ACGGAAGTTGAGACGGTAATGGGA -ACGGAAGTTGAGACGGTAGTGCAA -ACGGAAGTTGAGACGGTAGAGGAA -ACGGAAGTTGAGACGGTACAGGTA -ACGGAAGTTGAGACGGTAGACTCT -ACGGAAGTTGAGACGGTAAGTCCT -ACGGAAGTTGAGACGGTATAAGCC -ACGGAAGTTGAGACGGTAATAGCC -ACGGAAGTTGAGACGGTATAACCG -ACGGAAGTTGAGACGGTAATGCCA -ACGGAAGTTGAGTCGACTGGAAAC -ACGGAAGTTGAGTCGACTAACACC -ACGGAAGTTGAGTCGACTATCGAG -ACGGAAGTTGAGTCGACTCTCCTT -ACGGAAGTTGAGTCGACTCCTGTT -ACGGAAGTTGAGTCGACTCGGTTT -ACGGAAGTTGAGTCGACTGTGGTT -ACGGAAGTTGAGTCGACTGCCTTT -ACGGAAGTTGAGTCGACTGGTCTT -ACGGAAGTTGAGTCGACTACGCTT -ACGGAAGTTGAGTCGACTAGCGTT -ACGGAAGTTGAGTCGACTTTCGTC -ACGGAAGTTGAGTCGACTTCTCTC -ACGGAAGTTGAGTCGACTTGGATC -ACGGAAGTTGAGTCGACTCACTTC -ACGGAAGTTGAGTCGACTGTACTC -ACGGAAGTTGAGTCGACTGATGTC -ACGGAAGTTGAGTCGACTACAGTC -ACGGAAGTTGAGTCGACTTTGCTG -ACGGAAGTTGAGTCGACTTCCATG -ACGGAAGTTGAGTCGACTTGTGTG -ACGGAAGTTGAGTCGACTCTAGTG -ACGGAAGTTGAGTCGACTCATCTG -ACGGAAGTTGAGTCGACTGAGTTG -ACGGAAGTTGAGTCGACTAGACTG -ACGGAAGTTGAGTCGACTTCGGTA -ACGGAAGTTGAGTCGACTTGCCTA -ACGGAAGTTGAGTCGACTCCACTA -ACGGAAGTTGAGTCGACTGGAGTA -ACGGAAGTTGAGTCGACTTCGTCT -ACGGAAGTTGAGTCGACTTGCACT -ACGGAAGTTGAGTCGACTCTGACT -ACGGAAGTTGAGTCGACTCAACCT -ACGGAAGTTGAGTCGACTGCTACT -ACGGAAGTTGAGTCGACTGGATCT -ACGGAAGTTGAGTCGACTAAGGCT -ACGGAAGTTGAGTCGACTTCAACC -ACGGAAGTTGAGTCGACTTGTTCC -ACGGAAGTTGAGTCGACTATTCCC -ACGGAAGTTGAGTCGACTTTCTCG -ACGGAAGTTGAGTCGACTTAGACG -ACGGAAGTTGAGTCGACTGTAACG -ACGGAAGTTGAGTCGACTACTTCG -ACGGAAGTTGAGTCGACTTACGCA -ACGGAAGTTGAGTCGACTCTTGCA -ACGGAAGTTGAGTCGACTCGAACA -ACGGAAGTTGAGTCGACTCAGTCA -ACGGAAGTTGAGTCGACTGATCCA -ACGGAAGTTGAGTCGACTACGACA -ACGGAAGTTGAGTCGACTAGCTCA -ACGGAAGTTGAGTCGACTTCACGT -ACGGAAGTTGAGTCGACTCGTAGT -ACGGAAGTTGAGTCGACTGTCAGT -ACGGAAGTTGAGTCGACTGAAGGT -ACGGAAGTTGAGTCGACTAACCGT -ACGGAAGTTGAGTCGACTTTGTGC -ACGGAAGTTGAGTCGACTCTAAGC -ACGGAAGTTGAGTCGACTACTAGC -ACGGAAGTTGAGTCGACTAGATGC -ACGGAAGTTGAGTCGACTTGAAGG -ACGGAAGTTGAGTCGACTCAATGG -ACGGAAGTTGAGTCGACTATGAGG -ACGGAAGTTGAGTCGACTAATGGG -ACGGAAGTTGAGTCGACTTCCTGA -ACGGAAGTTGAGTCGACTTAGCGA -ACGGAAGTTGAGTCGACTCACAGA -ACGGAAGTTGAGTCGACTGCAAGA -ACGGAAGTTGAGTCGACTGGTTGA -ACGGAAGTTGAGTCGACTTCCGAT -ACGGAAGTTGAGTCGACTTGGCAT -ACGGAAGTTGAGTCGACTCGAGAT -ACGGAAGTTGAGTCGACTTACCAC -ACGGAAGTTGAGTCGACTCAGAAC -ACGGAAGTTGAGTCGACTGTCTAC -ACGGAAGTTGAGTCGACTACGTAC -ACGGAAGTTGAGTCGACTAGTGAC -ACGGAAGTTGAGTCGACTCTGTAG -ACGGAAGTTGAGTCGACTCCTAAG -ACGGAAGTTGAGTCGACTGTTCAG -ACGGAAGTTGAGTCGACTGCATAG -ACGGAAGTTGAGTCGACTGACAAG -ACGGAAGTTGAGTCGACTAAGCAG -ACGGAAGTTGAGTCGACTCGTCAA -ACGGAAGTTGAGTCGACTGCTGAA -ACGGAAGTTGAGTCGACTAGTACG -ACGGAAGTTGAGTCGACTATCCGA -ACGGAAGTTGAGTCGACTATGGGA -ACGGAAGTTGAGTCGACTGTGCAA -ACGGAAGTTGAGTCGACTGAGGAA -ACGGAAGTTGAGTCGACTCAGGTA -ACGGAAGTTGAGTCGACTGACTCT -ACGGAAGTTGAGTCGACTAGTCCT -ACGGAAGTTGAGTCGACTTAAGCC -ACGGAAGTTGAGTCGACTATAGCC -ACGGAAGTTGAGTCGACTTAACCG -ACGGAAGTTGAGTCGACTATGCCA -ACGGAAGTTGAGGCATACGGAAAC -ACGGAAGTTGAGGCATACAACACC -ACGGAAGTTGAGGCATACATCGAG -ACGGAAGTTGAGGCATACCTCCTT -ACGGAAGTTGAGGCATACCCTGTT -ACGGAAGTTGAGGCATACCGGTTT -ACGGAAGTTGAGGCATACGTGGTT -ACGGAAGTTGAGGCATACGCCTTT -ACGGAAGTTGAGGCATACGGTCTT -ACGGAAGTTGAGGCATACACGCTT -ACGGAAGTTGAGGCATACAGCGTT -ACGGAAGTTGAGGCATACTTCGTC -ACGGAAGTTGAGGCATACTCTCTC -ACGGAAGTTGAGGCATACTGGATC -ACGGAAGTTGAGGCATACCACTTC -ACGGAAGTTGAGGCATACGTACTC -ACGGAAGTTGAGGCATACGATGTC -ACGGAAGTTGAGGCATACACAGTC -ACGGAAGTTGAGGCATACTTGCTG -ACGGAAGTTGAGGCATACTCCATG -ACGGAAGTTGAGGCATACTGTGTG -ACGGAAGTTGAGGCATACCTAGTG -ACGGAAGTTGAGGCATACCATCTG -ACGGAAGTTGAGGCATACGAGTTG -ACGGAAGTTGAGGCATACAGACTG -ACGGAAGTTGAGGCATACTCGGTA -ACGGAAGTTGAGGCATACTGCCTA -ACGGAAGTTGAGGCATACCCACTA -ACGGAAGTTGAGGCATACGGAGTA -ACGGAAGTTGAGGCATACTCGTCT -ACGGAAGTTGAGGCATACTGCACT -ACGGAAGTTGAGGCATACCTGACT -ACGGAAGTTGAGGCATACCAACCT -ACGGAAGTTGAGGCATACGCTACT -ACGGAAGTTGAGGCATACGGATCT -ACGGAAGTTGAGGCATACAAGGCT -ACGGAAGTTGAGGCATACTCAACC -ACGGAAGTTGAGGCATACTGTTCC -ACGGAAGTTGAGGCATACATTCCC -ACGGAAGTTGAGGCATACTTCTCG -ACGGAAGTTGAGGCATACTAGACG -ACGGAAGTTGAGGCATACGTAACG -ACGGAAGTTGAGGCATACACTTCG -ACGGAAGTTGAGGCATACTACGCA -ACGGAAGTTGAGGCATACCTTGCA -ACGGAAGTTGAGGCATACCGAACA -ACGGAAGTTGAGGCATACCAGTCA -ACGGAAGTTGAGGCATACGATCCA -ACGGAAGTTGAGGCATACACGACA -ACGGAAGTTGAGGCATACAGCTCA -ACGGAAGTTGAGGCATACTCACGT -ACGGAAGTTGAGGCATACCGTAGT -ACGGAAGTTGAGGCATACGTCAGT -ACGGAAGTTGAGGCATACGAAGGT -ACGGAAGTTGAGGCATACAACCGT -ACGGAAGTTGAGGCATACTTGTGC -ACGGAAGTTGAGGCATACCTAAGC -ACGGAAGTTGAGGCATACACTAGC -ACGGAAGTTGAGGCATACAGATGC -ACGGAAGTTGAGGCATACTGAAGG -ACGGAAGTTGAGGCATACCAATGG -ACGGAAGTTGAGGCATACATGAGG -ACGGAAGTTGAGGCATACAATGGG -ACGGAAGTTGAGGCATACTCCTGA -ACGGAAGTTGAGGCATACTAGCGA -ACGGAAGTTGAGGCATACCACAGA -ACGGAAGTTGAGGCATACGCAAGA -ACGGAAGTTGAGGCATACGGTTGA -ACGGAAGTTGAGGCATACTCCGAT -ACGGAAGTTGAGGCATACTGGCAT -ACGGAAGTTGAGGCATACCGAGAT -ACGGAAGTTGAGGCATACTACCAC -ACGGAAGTTGAGGCATACCAGAAC -ACGGAAGTTGAGGCATACGTCTAC -ACGGAAGTTGAGGCATACACGTAC -ACGGAAGTTGAGGCATACAGTGAC -ACGGAAGTTGAGGCATACCTGTAG -ACGGAAGTTGAGGCATACCCTAAG -ACGGAAGTTGAGGCATACGTTCAG -ACGGAAGTTGAGGCATACGCATAG -ACGGAAGTTGAGGCATACGACAAG -ACGGAAGTTGAGGCATACAAGCAG -ACGGAAGTTGAGGCATACCGTCAA -ACGGAAGTTGAGGCATACGCTGAA -ACGGAAGTTGAGGCATACAGTACG -ACGGAAGTTGAGGCATACATCCGA -ACGGAAGTTGAGGCATACATGGGA -ACGGAAGTTGAGGCATACGTGCAA -ACGGAAGTTGAGGCATACGAGGAA -ACGGAAGTTGAGGCATACCAGGTA -ACGGAAGTTGAGGCATACGACTCT -ACGGAAGTTGAGGCATACAGTCCT -ACGGAAGTTGAGGCATACTAAGCC -ACGGAAGTTGAGGCATACATAGCC -ACGGAAGTTGAGGCATACTAACCG -ACGGAAGTTGAGGCATACATGCCA -ACGGAAGTTGAGGCACTTGGAAAC -ACGGAAGTTGAGGCACTTAACACC -ACGGAAGTTGAGGCACTTATCGAG -ACGGAAGTTGAGGCACTTCTCCTT -ACGGAAGTTGAGGCACTTCCTGTT -ACGGAAGTTGAGGCACTTCGGTTT -ACGGAAGTTGAGGCACTTGTGGTT -ACGGAAGTTGAGGCACTTGCCTTT -ACGGAAGTTGAGGCACTTGGTCTT -ACGGAAGTTGAGGCACTTACGCTT -ACGGAAGTTGAGGCACTTAGCGTT -ACGGAAGTTGAGGCACTTTTCGTC -ACGGAAGTTGAGGCACTTTCTCTC -ACGGAAGTTGAGGCACTTTGGATC -ACGGAAGTTGAGGCACTTCACTTC -ACGGAAGTTGAGGCACTTGTACTC -ACGGAAGTTGAGGCACTTGATGTC -ACGGAAGTTGAGGCACTTACAGTC -ACGGAAGTTGAGGCACTTTTGCTG -ACGGAAGTTGAGGCACTTTCCATG -ACGGAAGTTGAGGCACTTTGTGTG -ACGGAAGTTGAGGCACTTCTAGTG -ACGGAAGTTGAGGCACTTCATCTG -ACGGAAGTTGAGGCACTTGAGTTG -ACGGAAGTTGAGGCACTTAGACTG -ACGGAAGTTGAGGCACTTTCGGTA -ACGGAAGTTGAGGCACTTTGCCTA -ACGGAAGTTGAGGCACTTCCACTA -ACGGAAGTTGAGGCACTTGGAGTA -ACGGAAGTTGAGGCACTTTCGTCT -ACGGAAGTTGAGGCACTTTGCACT -ACGGAAGTTGAGGCACTTCTGACT -ACGGAAGTTGAGGCACTTCAACCT -ACGGAAGTTGAGGCACTTGCTACT -ACGGAAGTTGAGGCACTTGGATCT -ACGGAAGTTGAGGCACTTAAGGCT -ACGGAAGTTGAGGCACTTTCAACC -ACGGAAGTTGAGGCACTTTGTTCC -ACGGAAGTTGAGGCACTTATTCCC -ACGGAAGTTGAGGCACTTTTCTCG -ACGGAAGTTGAGGCACTTTAGACG -ACGGAAGTTGAGGCACTTGTAACG -ACGGAAGTTGAGGCACTTACTTCG -ACGGAAGTTGAGGCACTTTACGCA -ACGGAAGTTGAGGCACTTCTTGCA -ACGGAAGTTGAGGCACTTCGAACA -ACGGAAGTTGAGGCACTTCAGTCA -ACGGAAGTTGAGGCACTTGATCCA -ACGGAAGTTGAGGCACTTACGACA -ACGGAAGTTGAGGCACTTAGCTCA -ACGGAAGTTGAGGCACTTTCACGT -ACGGAAGTTGAGGCACTTCGTAGT -ACGGAAGTTGAGGCACTTGTCAGT -ACGGAAGTTGAGGCACTTGAAGGT -ACGGAAGTTGAGGCACTTAACCGT -ACGGAAGTTGAGGCACTTTTGTGC -ACGGAAGTTGAGGCACTTCTAAGC -ACGGAAGTTGAGGCACTTACTAGC -ACGGAAGTTGAGGCACTTAGATGC -ACGGAAGTTGAGGCACTTTGAAGG -ACGGAAGTTGAGGCACTTCAATGG -ACGGAAGTTGAGGCACTTATGAGG -ACGGAAGTTGAGGCACTTAATGGG -ACGGAAGTTGAGGCACTTTCCTGA -ACGGAAGTTGAGGCACTTTAGCGA -ACGGAAGTTGAGGCACTTCACAGA -ACGGAAGTTGAGGCACTTGCAAGA -ACGGAAGTTGAGGCACTTGGTTGA -ACGGAAGTTGAGGCACTTTCCGAT -ACGGAAGTTGAGGCACTTTGGCAT -ACGGAAGTTGAGGCACTTCGAGAT -ACGGAAGTTGAGGCACTTTACCAC -ACGGAAGTTGAGGCACTTCAGAAC -ACGGAAGTTGAGGCACTTGTCTAC -ACGGAAGTTGAGGCACTTACGTAC -ACGGAAGTTGAGGCACTTAGTGAC -ACGGAAGTTGAGGCACTTCTGTAG -ACGGAAGTTGAGGCACTTCCTAAG -ACGGAAGTTGAGGCACTTGTTCAG -ACGGAAGTTGAGGCACTTGCATAG -ACGGAAGTTGAGGCACTTGACAAG -ACGGAAGTTGAGGCACTTAAGCAG -ACGGAAGTTGAGGCACTTCGTCAA -ACGGAAGTTGAGGCACTTGCTGAA -ACGGAAGTTGAGGCACTTAGTACG -ACGGAAGTTGAGGCACTTATCCGA -ACGGAAGTTGAGGCACTTATGGGA -ACGGAAGTTGAGGCACTTGTGCAA -ACGGAAGTTGAGGCACTTGAGGAA -ACGGAAGTTGAGGCACTTCAGGTA -ACGGAAGTTGAGGCACTTGACTCT -ACGGAAGTTGAGGCACTTAGTCCT -ACGGAAGTTGAGGCACTTTAAGCC -ACGGAAGTTGAGGCACTTATAGCC -ACGGAAGTTGAGGCACTTTAACCG -ACGGAAGTTGAGGCACTTATGCCA -ACGGAAGTTGAGACACGAGGAAAC -ACGGAAGTTGAGACACGAAACACC -ACGGAAGTTGAGACACGAATCGAG -ACGGAAGTTGAGACACGACTCCTT -ACGGAAGTTGAGACACGACCTGTT -ACGGAAGTTGAGACACGACGGTTT -ACGGAAGTTGAGACACGAGTGGTT -ACGGAAGTTGAGACACGAGCCTTT -ACGGAAGTTGAGACACGAGGTCTT -ACGGAAGTTGAGACACGAACGCTT -ACGGAAGTTGAGACACGAAGCGTT -ACGGAAGTTGAGACACGATTCGTC -ACGGAAGTTGAGACACGATCTCTC -ACGGAAGTTGAGACACGATGGATC -ACGGAAGTTGAGACACGACACTTC -ACGGAAGTTGAGACACGAGTACTC -ACGGAAGTTGAGACACGAGATGTC -ACGGAAGTTGAGACACGAACAGTC -ACGGAAGTTGAGACACGATTGCTG -ACGGAAGTTGAGACACGATCCATG -ACGGAAGTTGAGACACGATGTGTG -ACGGAAGTTGAGACACGACTAGTG -ACGGAAGTTGAGACACGACATCTG -ACGGAAGTTGAGACACGAGAGTTG -ACGGAAGTTGAGACACGAAGACTG -ACGGAAGTTGAGACACGATCGGTA -ACGGAAGTTGAGACACGATGCCTA -ACGGAAGTTGAGACACGACCACTA -ACGGAAGTTGAGACACGAGGAGTA -ACGGAAGTTGAGACACGATCGTCT -ACGGAAGTTGAGACACGATGCACT -ACGGAAGTTGAGACACGACTGACT -ACGGAAGTTGAGACACGACAACCT -ACGGAAGTTGAGACACGAGCTACT -ACGGAAGTTGAGACACGAGGATCT -ACGGAAGTTGAGACACGAAAGGCT -ACGGAAGTTGAGACACGATCAACC -ACGGAAGTTGAGACACGATGTTCC -ACGGAAGTTGAGACACGAATTCCC -ACGGAAGTTGAGACACGATTCTCG -ACGGAAGTTGAGACACGATAGACG -ACGGAAGTTGAGACACGAGTAACG -ACGGAAGTTGAGACACGAACTTCG -ACGGAAGTTGAGACACGATACGCA -ACGGAAGTTGAGACACGACTTGCA -ACGGAAGTTGAGACACGACGAACA -ACGGAAGTTGAGACACGACAGTCA -ACGGAAGTTGAGACACGAGATCCA -ACGGAAGTTGAGACACGAACGACA -ACGGAAGTTGAGACACGAAGCTCA -ACGGAAGTTGAGACACGATCACGT -ACGGAAGTTGAGACACGACGTAGT -ACGGAAGTTGAGACACGAGTCAGT -ACGGAAGTTGAGACACGAGAAGGT -ACGGAAGTTGAGACACGAAACCGT -ACGGAAGTTGAGACACGATTGTGC -ACGGAAGTTGAGACACGACTAAGC -ACGGAAGTTGAGACACGAACTAGC -ACGGAAGTTGAGACACGAAGATGC -ACGGAAGTTGAGACACGATGAAGG -ACGGAAGTTGAGACACGACAATGG -ACGGAAGTTGAGACACGAATGAGG -ACGGAAGTTGAGACACGAAATGGG -ACGGAAGTTGAGACACGATCCTGA -ACGGAAGTTGAGACACGATAGCGA -ACGGAAGTTGAGACACGACACAGA -ACGGAAGTTGAGACACGAGCAAGA -ACGGAAGTTGAGACACGAGGTTGA -ACGGAAGTTGAGACACGATCCGAT -ACGGAAGTTGAGACACGATGGCAT -ACGGAAGTTGAGACACGACGAGAT -ACGGAAGTTGAGACACGATACCAC -ACGGAAGTTGAGACACGACAGAAC -ACGGAAGTTGAGACACGAGTCTAC -ACGGAAGTTGAGACACGAACGTAC -ACGGAAGTTGAGACACGAAGTGAC -ACGGAAGTTGAGACACGACTGTAG -ACGGAAGTTGAGACACGACCTAAG -ACGGAAGTTGAGACACGAGTTCAG -ACGGAAGTTGAGACACGAGCATAG -ACGGAAGTTGAGACACGAGACAAG -ACGGAAGTTGAGACACGAAAGCAG -ACGGAAGTTGAGACACGACGTCAA -ACGGAAGTTGAGACACGAGCTGAA -ACGGAAGTTGAGACACGAAGTACG -ACGGAAGTTGAGACACGAATCCGA -ACGGAAGTTGAGACACGAATGGGA -ACGGAAGTTGAGACACGAGTGCAA -ACGGAAGTTGAGACACGAGAGGAA -ACGGAAGTTGAGACACGACAGGTA -ACGGAAGTTGAGACACGAGACTCT -ACGGAAGTTGAGACACGAAGTCCT -ACGGAAGTTGAGACACGATAAGCC -ACGGAAGTTGAGACACGAATAGCC -ACGGAAGTTGAGACACGATAACCG -ACGGAAGTTGAGACACGAATGCCA -ACGGAAGTTGAGTCACAGGGAAAC -ACGGAAGTTGAGTCACAGAACACC -ACGGAAGTTGAGTCACAGATCGAG -ACGGAAGTTGAGTCACAGCTCCTT -ACGGAAGTTGAGTCACAGCCTGTT -ACGGAAGTTGAGTCACAGCGGTTT -ACGGAAGTTGAGTCACAGGTGGTT -ACGGAAGTTGAGTCACAGGCCTTT -ACGGAAGTTGAGTCACAGGGTCTT -ACGGAAGTTGAGTCACAGACGCTT -ACGGAAGTTGAGTCACAGAGCGTT -ACGGAAGTTGAGTCACAGTTCGTC -ACGGAAGTTGAGTCACAGTCTCTC -ACGGAAGTTGAGTCACAGTGGATC -ACGGAAGTTGAGTCACAGCACTTC -ACGGAAGTTGAGTCACAGGTACTC -ACGGAAGTTGAGTCACAGGATGTC -ACGGAAGTTGAGTCACAGACAGTC -ACGGAAGTTGAGTCACAGTTGCTG -ACGGAAGTTGAGTCACAGTCCATG -ACGGAAGTTGAGTCACAGTGTGTG -ACGGAAGTTGAGTCACAGCTAGTG -ACGGAAGTTGAGTCACAGCATCTG -ACGGAAGTTGAGTCACAGGAGTTG -ACGGAAGTTGAGTCACAGAGACTG -ACGGAAGTTGAGTCACAGTCGGTA -ACGGAAGTTGAGTCACAGTGCCTA -ACGGAAGTTGAGTCACAGCCACTA -ACGGAAGTTGAGTCACAGGGAGTA -ACGGAAGTTGAGTCACAGTCGTCT -ACGGAAGTTGAGTCACAGTGCACT -ACGGAAGTTGAGTCACAGCTGACT -ACGGAAGTTGAGTCACAGCAACCT -ACGGAAGTTGAGTCACAGGCTACT -ACGGAAGTTGAGTCACAGGGATCT -ACGGAAGTTGAGTCACAGAAGGCT -ACGGAAGTTGAGTCACAGTCAACC -ACGGAAGTTGAGTCACAGTGTTCC -ACGGAAGTTGAGTCACAGATTCCC -ACGGAAGTTGAGTCACAGTTCTCG -ACGGAAGTTGAGTCACAGTAGACG -ACGGAAGTTGAGTCACAGGTAACG -ACGGAAGTTGAGTCACAGACTTCG -ACGGAAGTTGAGTCACAGTACGCA -ACGGAAGTTGAGTCACAGCTTGCA -ACGGAAGTTGAGTCACAGCGAACA -ACGGAAGTTGAGTCACAGCAGTCA -ACGGAAGTTGAGTCACAGGATCCA -ACGGAAGTTGAGTCACAGACGACA -ACGGAAGTTGAGTCACAGAGCTCA -ACGGAAGTTGAGTCACAGTCACGT -ACGGAAGTTGAGTCACAGCGTAGT -ACGGAAGTTGAGTCACAGGTCAGT -ACGGAAGTTGAGTCACAGGAAGGT -ACGGAAGTTGAGTCACAGAACCGT -ACGGAAGTTGAGTCACAGTTGTGC -ACGGAAGTTGAGTCACAGCTAAGC -ACGGAAGTTGAGTCACAGACTAGC -ACGGAAGTTGAGTCACAGAGATGC -ACGGAAGTTGAGTCACAGTGAAGG -ACGGAAGTTGAGTCACAGCAATGG -ACGGAAGTTGAGTCACAGATGAGG -ACGGAAGTTGAGTCACAGAATGGG -ACGGAAGTTGAGTCACAGTCCTGA -ACGGAAGTTGAGTCACAGTAGCGA -ACGGAAGTTGAGTCACAGCACAGA -ACGGAAGTTGAGTCACAGGCAAGA -ACGGAAGTTGAGTCACAGGGTTGA -ACGGAAGTTGAGTCACAGTCCGAT -ACGGAAGTTGAGTCACAGTGGCAT -ACGGAAGTTGAGTCACAGCGAGAT -ACGGAAGTTGAGTCACAGTACCAC -ACGGAAGTTGAGTCACAGCAGAAC -ACGGAAGTTGAGTCACAGGTCTAC -ACGGAAGTTGAGTCACAGACGTAC -ACGGAAGTTGAGTCACAGAGTGAC -ACGGAAGTTGAGTCACAGCTGTAG -ACGGAAGTTGAGTCACAGCCTAAG -ACGGAAGTTGAGTCACAGGTTCAG -ACGGAAGTTGAGTCACAGGCATAG -ACGGAAGTTGAGTCACAGGACAAG -ACGGAAGTTGAGTCACAGAAGCAG -ACGGAAGTTGAGTCACAGCGTCAA -ACGGAAGTTGAGTCACAGGCTGAA -ACGGAAGTTGAGTCACAGAGTACG -ACGGAAGTTGAGTCACAGATCCGA -ACGGAAGTTGAGTCACAGATGGGA -ACGGAAGTTGAGTCACAGGTGCAA -ACGGAAGTTGAGTCACAGGAGGAA -ACGGAAGTTGAGTCACAGCAGGTA -ACGGAAGTTGAGTCACAGGACTCT -ACGGAAGTTGAGTCACAGAGTCCT -ACGGAAGTTGAGTCACAGTAAGCC -ACGGAAGTTGAGTCACAGATAGCC -ACGGAAGTTGAGTCACAGTAACCG -ACGGAAGTTGAGTCACAGATGCCA -ACGGAAGTTGAGCCAGATGGAAAC -ACGGAAGTTGAGCCAGATAACACC -ACGGAAGTTGAGCCAGATATCGAG -ACGGAAGTTGAGCCAGATCTCCTT -ACGGAAGTTGAGCCAGATCCTGTT -ACGGAAGTTGAGCCAGATCGGTTT -ACGGAAGTTGAGCCAGATGTGGTT -ACGGAAGTTGAGCCAGATGCCTTT -ACGGAAGTTGAGCCAGATGGTCTT -ACGGAAGTTGAGCCAGATACGCTT -ACGGAAGTTGAGCCAGATAGCGTT -ACGGAAGTTGAGCCAGATTTCGTC -ACGGAAGTTGAGCCAGATTCTCTC -ACGGAAGTTGAGCCAGATTGGATC -ACGGAAGTTGAGCCAGATCACTTC -ACGGAAGTTGAGCCAGATGTACTC -ACGGAAGTTGAGCCAGATGATGTC -ACGGAAGTTGAGCCAGATACAGTC -ACGGAAGTTGAGCCAGATTTGCTG -ACGGAAGTTGAGCCAGATTCCATG -ACGGAAGTTGAGCCAGATTGTGTG -ACGGAAGTTGAGCCAGATCTAGTG -ACGGAAGTTGAGCCAGATCATCTG -ACGGAAGTTGAGCCAGATGAGTTG -ACGGAAGTTGAGCCAGATAGACTG -ACGGAAGTTGAGCCAGATTCGGTA -ACGGAAGTTGAGCCAGATTGCCTA -ACGGAAGTTGAGCCAGATCCACTA -ACGGAAGTTGAGCCAGATGGAGTA -ACGGAAGTTGAGCCAGATTCGTCT -ACGGAAGTTGAGCCAGATTGCACT -ACGGAAGTTGAGCCAGATCTGACT -ACGGAAGTTGAGCCAGATCAACCT -ACGGAAGTTGAGCCAGATGCTACT -ACGGAAGTTGAGCCAGATGGATCT -ACGGAAGTTGAGCCAGATAAGGCT -ACGGAAGTTGAGCCAGATTCAACC -ACGGAAGTTGAGCCAGATTGTTCC -ACGGAAGTTGAGCCAGATATTCCC -ACGGAAGTTGAGCCAGATTTCTCG -ACGGAAGTTGAGCCAGATTAGACG -ACGGAAGTTGAGCCAGATGTAACG -ACGGAAGTTGAGCCAGATACTTCG -ACGGAAGTTGAGCCAGATTACGCA -ACGGAAGTTGAGCCAGATCTTGCA -ACGGAAGTTGAGCCAGATCGAACA -ACGGAAGTTGAGCCAGATCAGTCA -ACGGAAGTTGAGCCAGATGATCCA -ACGGAAGTTGAGCCAGATACGACA -ACGGAAGTTGAGCCAGATAGCTCA -ACGGAAGTTGAGCCAGATTCACGT -ACGGAAGTTGAGCCAGATCGTAGT -ACGGAAGTTGAGCCAGATGTCAGT -ACGGAAGTTGAGCCAGATGAAGGT -ACGGAAGTTGAGCCAGATAACCGT -ACGGAAGTTGAGCCAGATTTGTGC -ACGGAAGTTGAGCCAGATCTAAGC -ACGGAAGTTGAGCCAGATACTAGC -ACGGAAGTTGAGCCAGATAGATGC -ACGGAAGTTGAGCCAGATTGAAGG -ACGGAAGTTGAGCCAGATCAATGG -ACGGAAGTTGAGCCAGATATGAGG -ACGGAAGTTGAGCCAGATAATGGG -ACGGAAGTTGAGCCAGATTCCTGA -ACGGAAGTTGAGCCAGATTAGCGA -ACGGAAGTTGAGCCAGATCACAGA -ACGGAAGTTGAGCCAGATGCAAGA -ACGGAAGTTGAGCCAGATGGTTGA -ACGGAAGTTGAGCCAGATTCCGAT -ACGGAAGTTGAGCCAGATTGGCAT -ACGGAAGTTGAGCCAGATCGAGAT -ACGGAAGTTGAGCCAGATTACCAC -ACGGAAGTTGAGCCAGATCAGAAC -ACGGAAGTTGAGCCAGATGTCTAC -ACGGAAGTTGAGCCAGATACGTAC -ACGGAAGTTGAGCCAGATAGTGAC -ACGGAAGTTGAGCCAGATCTGTAG -ACGGAAGTTGAGCCAGATCCTAAG -ACGGAAGTTGAGCCAGATGTTCAG -ACGGAAGTTGAGCCAGATGCATAG -ACGGAAGTTGAGCCAGATGACAAG -ACGGAAGTTGAGCCAGATAAGCAG -ACGGAAGTTGAGCCAGATCGTCAA -ACGGAAGTTGAGCCAGATGCTGAA -ACGGAAGTTGAGCCAGATAGTACG -ACGGAAGTTGAGCCAGATATCCGA -ACGGAAGTTGAGCCAGATATGGGA -ACGGAAGTTGAGCCAGATGTGCAA -ACGGAAGTTGAGCCAGATGAGGAA -ACGGAAGTTGAGCCAGATCAGGTA -ACGGAAGTTGAGCCAGATGACTCT -ACGGAAGTTGAGCCAGATAGTCCT -ACGGAAGTTGAGCCAGATTAAGCC -ACGGAAGTTGAGCCAGATATAGCC -ACGGAAGTTGAGCCAGATTAACCG -ACGGAAGTTGAGCCAGATATGCCA -ACGGAAGTTGAGACAACGGGAAAC -ACGGAAGTTGAGACAACGAACACC -ACGGAAGTTGAGACAACGATCGAG -ACGGAAGTTGAGACAACGCTCCTT -ACGGAAGTTGAGACAACGCCTGTT -ACGGAAGTTGAGACAACGCGGTTT -ACGGAAGTTGAGACAACGGTGGTT -ACGGAAGTTGAGACAACGGCCTTT -ACGGAAGTTGAGACAACGGGTCTT -ACGGAAGTTGAGACAACGACGCTT -ACGGAAGTTGAGACAACGAGCGTT -ACGGAAGTTGAGACAACGTTCGTC -ACGGAAGTTGAGACAACGTCTCTC -ACGGAAGTTGAGACAACGTGGATC -ACGGAAGTTGAGACAACGCACTTC -ACGGAAGTTGAGACAACGGTACTC -ACGGAAGTTGAGACAACGGATGTC -ACGGAAGTTGAGACAACGACAGTC -ACGGAAGTTGAGACAACGTTGCTG -ACGGAAGTTGAGACAACGTCCATG -ACGGAAGTTGAGACAACGTGTGTG -ACGGAAGTTGAGACAACGCTAGTG -ACGGAAGTTGAGACAACGCATCTG -ACGGAAGTTGAGACAACGGAGTTG -ACGGAAGTTGAGACAACGAGACTG -ACGGAAGTTGAGACAACGTCGGTA -ACGGAAGTTGAGACAACGTGCCTA -ACGGAAGTTGAGACAACGCCACTA -ACGGAAGTTGAGACAACGGGAGTA -ACGGAAGTTGAGACAACGTCGTCT -ACGGAAGTTGAGACAACGTGCACT -ACGGAAGTTGAGACAACGCTGACT -ACGGAAGTTGAGACAACGCAACCT -ACGGAAGTTGAGACAACGGCTACT -ACGGAAGTTGAGACAACGGGATCT -ACGGAAGTTGAGACAACGAAGGCT -ACGGAAGTTGAGACAACGTCAACC -ACGGAAGTTGAGACAACGTGTTCC -ACGGAAGTTGAGACAACGATTCCC -ACGGAAGTTGAGACAACGTTCTCG -ACGGAAGTTGAGACAACGTAGACG -ACGGAAGTTGAGACAACGGTAACG -ACGGAAGTTGAGACAACGACTTCG -ACGGAAGTTGAGACAACGTACGCA -ACGGAAGTTGAGACAACGCTTGCA -ACGGAAGTTGAGACAACGCGAACA -ACGGAAGTTGAGACAACGCAGTCA -ACGGAAGTTGAGACAACGGATCCA -ACGGAAGTTGAGACAACGACGACA -ACGGAAGTTGAGACAACGAGCTCA -ACGGAAGTTGAGACAACGTCACGT -ACGGAAGTTGAGACAACGCGTAGT -ACGGAAGTTGAGACAACGGTCAGT -ACGGAAGTTGAGACAACGGAAGGT -ACGGAAGTTGAGACAACGAACCGT -ACGGAAGTTGAGACAACGTTGTGC -ACGGAAGTTGAGACAACGCTAAGC -ACGGAAGTTGAGACAACGACTAGC -ACGGAAGTTGAGACAACGAGATGC -ACGGAAGTTGAGACAACGTGAAGG -ACGGAAGTTGAGACAACGCAATGG -ACGGAAGTTGAGACAACGATGAGG -ACGGAAGTTGAGACAACGAATGGG -ACGGAAGTTGAGACAACGTCCTGA -ACGGAAGTTGAGACAACGTAGCGA -ACGGAAGTTGAGACAACGCACAGA -ACGGAAGTTGAGACAACGGCAAGA -ACGGAAGTTGAGACAACGGGTTGA -ACGGAAGTTGAGACAACGTCCGAT -ACGGAAGTTGAGACAACGTGGCAT -ACGGAAGTTGAGACAACGCGAGAT -ACGGAAGTTGAGACAACGTACCAC -ACGGAAGTTGAGACAACGCAGAAC -ACGGAAGTTGAGACAACGGTCTAC -ACGGAAGTTGAGACAACGACGTAC -ACGGAAGTTGAGACAACGAGTGAC -ACGGAAGTTGAGACAACGCTGTAG -ACGGAAGTTGAGACAACGCCTAAG -ACGGAAGTTGAGACAACGGTTCAG -ACGGAAGTTGAGACAACGGCATAG -ACGGAAGTTGAGACAACGGACAAG -ACGGAAGTTGAGACAACGAAGCAG -ACGGAAGTTGAGACAACGCGTCAA -ACGGAAGTTGAGACAACGGCTGAA -ACGGAAGTTGAGACAACGAGTACG -ACGGAAGTTGAGACAACGATCCGA -ACGGAAGTTGAGACAACGATGGGA -ACGGAAGTTGAGACAACGGTGCAA -ACGGAAGTTGAGACAACGGAGGAA -ACGGAAGTTGAGACAACGCAGGTA -ACGGAAGTTGAGACAACGGACTCT -ACGGAAGTTGAGACAACGAGTCCT -ACGGAAGTTGAGACAACGTAAGCC -ACGGAAGTTGAGACAACGATAGCC -ACGGAAGTTGAGACAACGTAACCG -ACGGAAGTTGAGACAACGATGCCA -ACGGAAGTTGAGTCAAGCGGAAAC -ACGGAAGTTGAGTCAAGCAACACC -ACGGAAGTTGAGTCAAGCATCGAG -ACGGAAGTTGAGTCAAGCCTCCTT -ACGGAAGTTGAGTCAAGCCCTGTT -ACGGAAGTTGAGTCAAGCCGGTTT -ACGGAAGTTGAGTCAAGCGTGGTT -ACGGAAGTTGAGTCAAGCGCCTTT -ACGGAAGTTGAGTCAAGCGGTCTT -ACGGAAGTTGAGTCAAGCACGCTT -ACGGAAGTTGAGTCAAGCAGCGTT -ACGGAAGTTGAGTCAAGCTTCGTC -ACGGAAGTTGAGTCAAGCTCTCTC -ACGGAAGTTGAGTCAAGCTGGATC -ACGGAAGTTGAGTCAAGCCACTTC -ACGGAAGTTGAGTCAAGCGTACTC -ACGGAAGTTGAGTCAAGCGATGTC -ACGGAAGTTGAGTCAAGCACAGTC -ACGGAAGTTGAGTCAAGCTTGCTG -ACGGAAGTTGAGTCAAGCTCCATG -ACGGAAGTTGAGTCAAGCTGTGTG -ACGGAAGTTGAGTCAAGCCTAGTG -ACGGAAGTTGAGTCAAGCCATCTG -ACGGAAGTTGAGTCAAGCGAGTTG -ACGGAAGTTGAGTCAAGCAGACTG -ACGGAAGTTGAGTCAAGCTCGGTA -ACGGAAGTTGAGTCAAGCTGCCTA -ACGGAAGTTGAGTCAAGCCCACTA -ACGGAAGTTGAGTCAAGCGGAGTA -ACGGAAGTTGAGTCAAGCTCGTCT -ACGGAAGTTGAGTCAAGCTGCACT -ACGGAAGTTGAGTCAAGCCTGACT -ACGGAAGTTGAGTCAAGCCAACCT -ACGGAAGTTGAGTCAAGCGCTACT -ACGGAAGTTGAGTCAAGCGGATCT -ACGGAAGTTGAGTCAAGCAAGGCT -ACGGAAGTTGAGTCAAGCTCAACC -ACGGAAGTTGAGTCAAGCTGTTCC -ACGGAAGTTGAGTCAAGCATTCCC -ACGGAAGTTGAGTCAAGCTTCTCG -ACGGAAGTTGAGTCAAGCTAGACG -ACGGAAGTTGAGTCAAGCGTAACG -ACGGAAGTTGAGTCAAGCACTTCG -ACGGAAGTTGAGTCAAGCTACGCA -ACGGAAGTTGAGTCAAGCCTTGCA -ACGGAAGTTGAGTCAAGCCGAACA -ACGGAAGTTGAGTCAAGCCAGTCA -ACGGAAGTTGAGTCAAGCGATCCA -ACGGAAGTTGAGTCAAGCACGACA -ACGGAAGTTGAGTCAAGCAGCTCA -ACGGAAGTTGAGTCAAGCTCACGT -ACGGAAGTTGAGTCAAGCCGTAGT -ACGGAAGTTGAGTCAAGCGTCAGT -ACGGAAGTTGAGTCAAGCGAAGGT -ACGGAAGTTGAGTCAAGCAACCGT -ACGGAAGTTGAGTCAAGCTTGTGC -ACGGAAGTTGAGTCAAGCCTAAGC -ACGGAAGTTGAGTCAAGCACTAGC -ACGGAAGTTGAGTCAAGCAGATGC -ACGGAAGTTGAGTCAAGCTGAAGG -ACGGAAGTTGAGTCAAGCCAATGG -ACGGAAGTTGAGTCAAGCATGAGG -ACGGAAGTTGAGTCAAGCAATGGG -ACGGAAGTTGAGTCAAGCTCCTGA -ACGGAAGTTGAGTCAAGCTAGCGA -ACGGAAGTTGAGTCAAGCCACAGA -ACGGAAGTTGAGTCAAGCGCAAGA -ACGGAAGTTGAGTCAAGCGGTTGA -ACGGAAGTTGAGTCAAGCTCCGAT -ACGGAAGTTGAGTCAAGCTGGCAT -ACGGAAGTTGAGTCAAGCCGAGAT -ACGGAAGTTGAGTCAAGCTACCAC -ACGGAAGTTGAGTCAAGCCAGAAC -ACGGAAGTTGAGTCAAGCGTCTAC -ACGGAAGTTGAGTCAAGCACGTAC -ACGGAAGTTGAGTCAAGCAGTGAC -ACGGAAGTTGAGTCAAGCCTGTAG -ACGGAAGTTGAGTCAAGCCCTAAG -ACGGAAGTTGAGTCAAGCGTTCAG -ACGGAAGTTGAGTCAAGCGCATAG -ACGGAAGTTGAGTCAAGCGACAAG -ACGGAAGTTGAGTCAAGCAAGCAG -ACGGAAGTTGAGTCAAGCCGTCAA -ACGGAAGTTGAGTCAAGCGCTGAA -ACGGAAGTTGAGTCAAGCAGTACG -ACGGAAGTTGAGTCAAGCATCCGA -ACGGAAGTTGAGTCAAGCATGGGA -ACGGAAGTTGAGTCAAGCGTGCAA -ACGGAAGTTGAGTCAAGCGAGGAA -ACGGAAGTTGAGTCAAGCCAGGTA -ACGGAAGTTGAGTCAAGCGACTCT -ACGGAAGTTGAGTCAAGCAGTCCT -ACGGAAGTTGAGTCAAGCTAAGCC -ACGGAAGTTGAGTCAAGCATAGCC -ACGGAAGTTGAGTCAAGCTAACCG -ACGGAAGTTGAGTCAAGCATGCCA -ACGGAAGTTGAGCGTTCAGGAAAC -ACGGAAGTTGAGCGTTCAAACACC -ACGGAAGTTGAGCGTTCAATCGAG -ACGGAAGTTGAGCGTTCACTCCTT -ACGGAAGTTGAGCGTTCACCTGTT -ACGGAAGTTGAGCGTTCACGGTTT -ACGGAAGTTGAGCGTTCAGTGGTT -ACGGAAGTTGAGCGTTCAGCCTTT -ACGGAAGTTGAGCGTTCAGGTCTT -ACGGAAGTTGAGCGTTCAACGCTT -ACGGAAGTTGAGCGTTCAAGCGTT -ACGGAAGTTGAGCGTTCATTCGTC -ACGGAAGTTGAGCGTTCATCTCTC -ACGGAAGTTGAGCGTTCATGGATC -ACGGAAGTTGAGCGTTCACACTTC -ACGGAAGTTGAGCGTTCAGTACTC -ACGGAAGTTGAGCGTTCAGATGTC -ACGGAAGTTGAGCGTTCAACAGTC -ACGGAAGTTGAGCGTTCATTGCTG -ACGGAAGTTGAGCGTTCATCCATG -ACGGAAGTTGAGCGTTCATGTGTG -ACGGAAGTTGAGCGTTCACTAGTG -ACGGAAGTTGAGCGTTCACATCTG -ACGGAAGTTGAGCGTTCAGAGTTG -ACGGAAGTTGAGCGTTCAAGACTG -ACGGAAGTTGAGCGTTCATCGGTA -ACGGAAGTTGAGCGTTCATGCCTA -ACGGAAGTTGAGCGTTCACCACTA -ACGGAAGTTGAGCGTTCAGGAGTA -ACGGAAGTTGAGCGTTCATCGTCT -ACGGAAGTTGAGCGTTCATGCACT -ACGGAAGTTGAGCGTTCACTGACT -ACGGAAGTTGAGCGTTCACAACCT -ACGGAAGTTGAGCGTTCAGCTACT -ACGGAAGTTGAGCGTTCAGGATCT -ACGGAAGTTGAGCGTTCAAAGGCT -ACGGAAGTTGAGCGTTCATCAACC -ACGGAAGTTGAGCGTTCATGTTCC -ACGGAAGTTGAGCGTTCAATTCCC -ACGGAAGTTGAGCGTTCATTCTCG -ACGGAAGTTGAGCGTTCATAGACG -ACGGAAGTTGAGCGTTCAGTAACG -ACGGAAGTTGAGCGTTCAACTTCG -ACGGAAGTTGAGCGTTCATACGCA -ACGGAAGTTGAGCGTTCACTTGCA -ACGGAAGTTGAGCGTTCACGAACA -ACGGAAGTTGAGCGTTCACAGTCA -ACGGAAGTTGAGCGTTCAGATCCA -ACGGAAGTTGAGCGTTCAACGACA -ACGGAAGTTGAGCGTTCAAGCTCA -ACGGAAGTTGAGCGTTCATCACGT -ACGGAAGTTGAGCGTTCACGTAGT -ACGGAAGTTGAGCGTTCAGTCAGT -ACGGAAGTTGAGCGTTCAGAAGGT -ACGGAAGTTGAGCGTTCAAACCGT -ACGGAAGTTGAGCGTTCATTGTGC -ACGGAAGTTGAGCGTTCACTAAGC -ACGGAAGTTGAGCGTTCAACTAGC -ACGGAAGTTGAGCGTTCAAGATGC -ACGGAAGTTGAGCGTTCATGAAGG -ACGGAAGTTGAGCGTTCACAATGG -ACGGAAGTTGAGCGTTCAATGAGG -ACGGAAGTTGAGCGTTCAAATGGG -ACGGAAGTTGAGCGTTCATCCTGA -ACGGAAGTTGAGCGTTCATAGCGA -ACGGAAGTTGAGCGTTCACACAGA -ACGGAAGTTGAGCGTTCAGCAAGA -ACGGAAGTTGAGCGTTCAGGTTGA -ACGGAAGTTGAGCGTTCATCCGAT -ACGGAAGTTGAGCGTTCATGGCAT -ACGGAAGTTGAGCGTTCACGAGAT -ACGGAAGTTGAGCGTTCATACCAC -ACGGAAGTTGAGCGTTCACAGAAC -ACGGAAGTTGAGCGTTCAGTCTAC -ACGGAAGTTGAGCGTTCAACGTAC -ACGGAAGTTGAGCGTTCAAGTGAC -ACGGAAGTTGAGCGTTCACTGTAG -ACGGAAGTTGAGCGTTCACCTAAG -ACGGAAGTTGAGCGTTCAGTTCAG -ACGGAAGTTGAGCGTTCAGCATAG -ACGGAAGTTGAGCGTTCAGACAAG -ACGGAAGTTGAGCGTTCAAAGCAG -ACGGAAGTTGAGCGTTCACGTCAA -ACGGAAGTTGAGCGTTCAGCTGAA -ACGGAAGTTGAGCGTTCAAGTACG -ACGGAAGTTGAGCGTTCAATCCGA -ACGGAAGTTGAGCGTTCAATGGGA -ACGGAAGTTGAGCGTTCAGTGCAA -ACGGAAGTTGAGCGTTCAGAGGAA -ACGGAAGTTGAGCGTTCACAGGTA -ACGGAAGTTGAGCGTTCAGACTCT -ACGGAAGTTGAGCGTTCAAGTCCT -ACGGAAGTTGAGCGTTCATAAGCC -ACGGAAGTTGAGCGTTCAATAGCC -ACGGAAGTTGAGCGTTCATAACCG -ACGGAAGTTGAGCGTTCAATGCCA -ACGGAAGTTGAGAGTCGTGGAAAC -ACGGAAGTTGAGAGTCGTAACACC -ACGGAAGTTGAGAGTCGTATCGAG -ACGGAAGTTGAGAGTCGTCTCCTT -ACGGAAGTTGAGAGTCGTCCTGTT -ACGGAAGTTGAGAGTCGTCGGTTT -ACGGAAGTTGAGAGTCGTGTGGTT -ACGGAAGTTGAGAGTCGTGCCTTT -ACGGAAGTTGAGAGTCGTGGTCTT -ACGGAAGTTGAGAGTCGTACGCTT -ACGGAAGTTGAGAGTCGTAGCGTT -ACGGAAGTTGAGAGTCGTTTCGTC -ACGGAAGTTGAGAGTCGTTCTCTC -ACGGAAGTTGAGAGTCGTTGGATC -ACGGAAGTTGAGAGTCGTCACTTC -ACGGAAGTTGAGAGTCGTGTACTC -ACGGAAGTTGAGAGTCGTGATGTC -ACGGAAGTTGAGAGTCGTACAGTC -ACGGAAGTTGAGAGTCGTTTGCTG -ACGGAAGTTGAGAGTCGTTCCATG -ACGGAAGTTGAGAGTCGTTGTGTG -ACGGAAGTTGAGAGTCGTCTAGTG -ACGGAAGTTGAGAGTCGTCATCTG -ACGGAAGTTGAGAGTCGTGAGTTG -ACGGAAGTTGAGAGTCGTAGACTG -ACGGAAGTTGAGAGTCGTTCGGTA -ACGGAAGTTGAGAGTCGTTGCCTA -ACGGAAGTTGAGAGTCGTCCACTA -ACGGAAGTTGAGAGTCGTGGAGTA -ACGGAAGTTGAGAGTCGTTCGTCT -ACGGAAGTTGAGAGTCGTTGCACT -ACGGAAGTTGAGAGTCGTCTGACT -ACGGAAGTTGAGAGTCGTCAACCT -ACGGAAGTTGAGAGTCGTGCTACT -ACGGAAGTTGAGAGTCGTGGATCT -ACGGAAGTTGAGAGTCGTAAGGCT -ACGGAAGTTGAGAGTCGTTCAACC -ACGGAAGTTGAGAGTCGTTGTTCC -ACGGAAGTTGAGAGTCGTATTCCC -ACGGAAGTTGAGAGTCGTTTCTCG -ACGGAAGTTGAGAGTCGTTAGACG -ACGGAAGTTGAGAGTCGTGTAACG -ACGGAAGTTGAGAGTCGTACTTCG -ACGGAAGTTGAGAGTCGTTACGCA -ACGGAAGTTGAGAGTCGTCTTGCA -ACGGAAGTTGAGAGTCGTCGAACA -ACGGAAGTTGAGAGTCGTCAGTCA -ACGGAAGTTGAGAGTCGTGATCCA -ACGGAAGTTGAGAGTCGTACGACA -ACGGAAGTTGAGAGTCGTAGCTCA -ACGGAAGTTGAGAGTCGTTCACGT -ACGGAAGTTGAGAGTCGTCGTAGT -ACGGAAGTTGAGAGTCGTGTCAGT -ACGGAAGTTGAGAGTCGTGAAGGT -ACGGAAGTTGAGAGTCGTAACCGT -ACGGAAGTTGAGAGTCGTTTGTGC -ACGGAAGTTGAGAGTCGTCTAAGC -ACGGAAGTTGAGAGTCGTACTAGC -ACGGAAGTTGAGAGTCGTAGATGC -ACGGAAGTTGAGAGTCGTTGAAGG -ACGGAAGTTGAGAGTCGTCAATGG -ACGGAAGTTGAGAGTCGTATGAGG -ACGGAAGTTGAGAGTCGTAATGGG -ACGGAAGTTGAGAGTCGTTCCTGA -ACGGAAGTTGAGAGTCGTTAGCGA -ACGGAAGTTGAGAGTCGTCACAGA -ACGGAAGTTGAGAGTCGTGCAAGA -ACGGAAGTTGAGAGTCGTGGTTGA -ACGGAAGTTGAGAGTCGTTCCGAT -ACGGAAGTTGAGAGTCGTTGGCAT -ACGGAAGTTGAGAGTCGTCGAGAT -ACGGAAGTTGAGAGTCGTTACCAC -ACGGAAGTTGAGAGTCGTCAGAAC -ACGGAAGTTGAGAGTCGTGTCTAC -ACGGAAGTTGAGAGTCGTACGTAC -ACGGAAGTTGAGAGTCGTAGTGAC -ACGGAAGTTGAGAGTCGTCTGTAG -ACGGAAGTTGAGAGTCGTCCTAAG -ACGGAAGTTGAGAGTCGTGTTCAG -ACGGAAGTTGAGAGTCGTGCATAG -ACGGAAGTTGAGAGTCGTGACAAG -ACGGAAGTTGAGAGTCGTAAGCAG -ACGGAAGTTGAGAGTCGTCGTCAA -ACGGAAGTTGAGAGTCGTGCTGAA -ACGGAAGTTGAGAGTCGTAGTACG -ACGGAAGTTGAGAGTCGTATCCGA -ACGGAAGTTGAGAGTCGTATGGGA -ACGGAAGTTGAGAGTCGTGTGCAA -ACGGAAGTTGAGAGTCGTGAGGAA -ACGGAAGTTGAGAGTCGTCAGGTA -ACGGAAGTTGAGAGTCGTGACTCT -ACGGAAGTTGAGAGTCGTAGTCCT -ACGGAAGTTGAGAGTCGTTAAGCC -ACGGAAGTTGAGAGTCGTATAGCC -ACGGAAGTTGAGAGTCGTTAACCG -ACGGAAGTTGAGAGTCGTATGCCA -ACGGAAGTTGAGAGTGTCGGAAAC -ACGGAAGTTGAGAGTGTCAACACC -ACGGAAGTTGAGAGTGTCATCGAG -ACGGAAGTTGAGAGTGTCCTCCTT -ACGGAAGTTGAGAGTGTCCCTGTT -ACGGAAGTTGAGAGTGTCCGGTTT -ACGGAAGTTGAGAGTGTCGTGGTT -ACGGAAGTTGAGAGTGTCGCCTTT -ACGGAAGTTGAGAGTGTCGGTCTT -ACGGAAGTTGAGAGTGTCACGCTT -ACGGAAGTTGAGAGTGTCAGCGTT -ACGGAAGTTGAGAGTGTCTTCGTC -ACGGAAGTTGAGAGTGTCTCTCTC -ACGGAAGTTGAGAGTGTCTGGATC -ACGGAAGTTGAGAGTGTCCACTTC -ACGGAAGTTGAGAGTGTCGTACTC -ACGGAAGTTGAGAGTGTCGATGTC -ACGGAAGTTGAGAGTGTCACAGTC -ACGGAAGTTGAGAGTGTCTTGCTG -ACGGAAGTTGAGAGTGTCTCCATG -ACGGAAGTTGAGAGTGTCTGTGTG -ACGGAAGTTGAGAGTGTCCTAGTG -ACGGAAGTTGAGAGTGTCCATCTG -ACGGAAGTTGAGAGTGTCGAGTTG -ACGGAAGTTGAGAGTGTCAGACTG -ACGGAAGTTGAGAGTGTCTCGGTA -ACGGAAGTTGAGAGTGTCTGCCTA -ACGGAAGTTGAGAGTGTCCCACTA -ACGGAAGTTGAGAGTGTCGGAGTA -ACGGAAGTTGAGAGTGTCTCGTCT -ACGGAAGTTGAGAGTGTCTGCACT -ACGGAAGTTGAGAGTGTCCTGACT -ACGGAAGTTGAGAGTGTCCAACCT -ACGGAAGTTGAGAGTGTCGCTACT -ACGGAAGTTGAGAGTGTCGGATCT -ACGGAAGTTGAGAGTGTCAAGGCT -ACGGAAGTTGAGAGTGTCTCAACC -ACGGAAGTTGAGAGTGTCTGTTCC -ACGGAAGTTGAGAGTGTCATTCCC -ACGGAAGTTGAGAGTGTCTTCTCG -ACGGAAGTTGAGAGTGTCTAGACG -ACGGAAGTTGAGAGTGTCGTAACG -ACGGAAGTTGAGAGTGTCACTTCG -ACGGAAGTTGAGAGTGTCTACGCA -ACGGAAGTTGAGAGTGTCCTTGCA -ACGGAAGTTGAGAGTGTCCGAACA -ACGGAAGTTGAGAGTGTCCAGTCA -ACGGAAGTTGAGAGTGTCGATCCA -ACGGAAGTTGAGAGTGTCACGACA -ACGGAAGTTGAGAGTGTCAGCTCA -ACGGAAGTTGAGAGTGTCTCACGT -ACGGAAGTTGAGAGTGTCCGTAGT -ACGGAAGTTGAGAGTGTCGTCAGT -ACGGAAGTTGAGAGTGTCGAAGGT -ACGGAAGTTGAGAGTGTCAACCGT -ACGGAAGTTGAGAGTGTCTTGTGC -ACGGAAGTTGAGAGTGTCCTAAGC -ACGGAAGTTGAGAGTGTCACTAGC -ACGGAAGTTGAGAGTGTCAGATGC -ACGGAAGTTGAGAGTGTCTGAAGG -ACGGAAGTTGAGAGTGTCCAATGG -ACGGAAGTTGAGAGTGTCATGAGG -ACGGAAGTTGAGAGTGTCAATGGG -ACGGAAGTTGAGAGTGTCTCCTGA -ACGGAAGTTGAGAGTGTCTAGCGA -ACGGAAGTTGAGAGTGTCCACAGA -ACGGAAGTTGAGAGTGTCGCAAGA -ACGGAAGTTGAGAGTGTCGGTTGA -ACGGAAGTTGAGAGTGTCTCCGAT -ACGGAAGTTGAGAGTGTCTGGCAT -ACGGAAGTTGAGAGTGTCCGAGAT -ACGGAAGTTGAGAGTGTCTACCAC -ACGGAAGTTGAGAGTGTCCAGAAC -ACGGAAGTTGAGAGTGTCGTCTAC -ACGGAAGTTGAGAGTGTCACGTAC -ACGGAAGTTGAGAGTGTCAGTGAC -ACGGAAGTTGAGAGTGTCCTGTAG -ACGGAAGTTGAGAGTGTCCCTAAG -ACGGAAGTTGAGAGTGTCGTTCAG -ACGGAAGTTGAGAGTGTCGCATAG -ACGGAAGTTGAGAGTGTCGACAAG -ACGGAAGTTGAGAGTGTCAAGCAG -ACGGAAGTTGAGAGTGTCCGTCAA -ACGGAAGTTGAGAGTGTCGCTGAA -ACGGAAGTTGAGAGTGTCAGTACG -ACGGAAGTTGAGAGTGTCATCCGA -ACGGAAGTTGAGAGTGTCATGGGA -ACGGAAGTTGAGAGTGTCGTGCAA -ACGGAAGTTGAGAGTGTCGAGGAA -ACGGAAGTTGAGAGTGTCCAGGTA -ACGGAAGTTGAGAGTGTCGACTCT -ACGGAAGTTGAGAGTGTCAGTCCT -ACGGAAGTTGAGAGTGTCTAAGCC -ACGGAAGTTGAGAGTGTCATAGCC -ACGGAAGTTGAGAGTGTCTAACCG -ACGGAAGTTGAGAGTGTCATGCCA -ACGGAAGTTGAGGGTGAAGGAAAC -ACGGAAGTTGAGGGTGAAAACACC -ACGGAAGTTGAGGGTGAAATCGAG -ACGGAAGTTGAGGGTGAACTCCTT -ACGGAAGTTGAGGGTGAACCTGTT -ACGGAAGTTGAGGGTGAACGGTTT -ACGGAAGTTGAGGGTGAAGTGGTT -ACGGAAGTTGAGGGTGAAGCCTTT -ACGGAAGTTGAGGGTGAAGGTCTT -ACGGAAGTTGAGGGTGAAACGCTT -ACGGAAGTTGAGGGTGAAAGCGTT -ACGGAAGTTGAGGGTGAATTCGTC -ACGGAAGTTGAGGGTGAATCTCTC -ACGGAAGTTGAGGGTGAATGGATC -ACGGAAGTTGAGGGTGAACACTTC -ACGGAAGTTGAGGGTGAAGTACTC -ACGGAAGTTGAGGGTGAAGATGTC -ACGGAAGTTGAGGGTGAAACAGTC -ACGGAAGTTGAGGGTGAATTGCTG -ACGGAAGTTGAGGGTGAATCCATG -ACGGAAGTTGAGGGTGAATGTGTG -ACGGAAGTTGAGGGTGAACTAGTG -ACGGAAGTTGAGGGTGAACATCTG -ACGGAAGTTGAGGGTGAAGAGTTG -ACGGAAGTTGAGGGTGAAAGACTG -ACGGAAGTTGAGGGTGAATCGGTA -ACGGAAGTTGAGGGTGAATGCCTA -ACGGAAGTTGAGGGTGAACCACTA -ACGGAAGTTGAGGGTGAAGGAGTA -ACGGAAGTTGAGGGTGAATCGTCT -ACGGAAGTTGAGGGTGAATGCACT -ACGGAAGTTGAGGGTGAACTGACT -ACGGAAGTTGAGGGTGAACAACCT -ACGGAAGTTGAGGGTGAAGCTACT -ACGGAAGTTGAGGGTGAAGGATCT -ACGGAAGTTGAGGGTGAAAAGGCT -ACGGAAGTTGAGGGTGAATCAACC -ACGGAAGTTGAGGGTGAATGTTCC -ACGGAAGTTGAGGGTGAAATTCCC -ACGGAAGTTGAGGGTGAATTCTCG -ACGGAAGTTGAGGGTGAATAGACG -ACGGAAGTTGAGGGTGAAGTAACG -ACGGAAGTTGAGGGTGAAACTTCG -ACGGAAGTTGAGGGTGAATACGCA -ACGGAAGTTGAGGGTGAACTTGCA -ACGGAAGTTGAGGGTGAACGAACA -ACGGAAGTTGAGGGTGAACAGTCA -ACGGAAGTTGAGGGTGAAGATCCA -ACGGAAGTTGAGGGTGAAACGACA -ACGGAAGTTGAGGGTGAAAGCTCA -ACGGAAGTTGAGGGTGAATCACGT -ACGGAAGTTGAGGGTGAACGTAGT -ACGGAAGTTGAGGGTGAAGTCAGT -ACGGAAGTTGAGGGTGAAGAAGGT -ACGGAAGTTGAGGGTGAAAACCGT -ACGGAAGTTGAGGGTGAATTGTGC -ACGGAAGTTGAGGGTGAACTAAGC -ACGGAAGTTGAGGGTGAAACTAGC -ACGGAAGTTGAGGGTGAAAGATGC -ACGGAAGTTGAGGGTGAATGAAGG -ACGGAAGTTGAGGGTGAACAATGG -ACGGAAGTTGAGGGTGAAATGAGG -ACGGAAGTTGAGGGTGAAAATGGG -ACGGAAGTTGAGGGTGAATCCTGA -ACGGAAGTTGAGGGTGAATAGCGA -ACGGAAGTTGAGGGTGAACACAGA -ACGGAAGTTGAGGGTGAAGCAAGA -ACGGAAGTTGAGGGTGAAGGTTGA -ACGGAAGTTGAGGGTGAATCCGAT -ACGGAAGTTGAGGGTGAATGGCAT -ACGGAAGTTGAGGGTGAACGAGAT -ACGGAAGTTGAGGGTGAATACCAC -ACGGAAGTTGAGGGTGAACAGAAC -ACGGAAGTTGAGGGTGAAGTCTAC -ACGGAAGTTGAGGGTGAAACGTAC -ACGGAAGTTGAGGGTGAAAGTGAC -ACGGAAGTTGAGGGTGAACTGTAG -ACGGAAGTTGAGGGTGAACCTAAG -ACGGAAGTTGAGGGTGAAGTTCAG -ACGGAAGTTGAGGGTGAAGCATAG -ACGGAAGTTGAGGGTGAAGACAAG -ACGGAAGTTGAGGGTGAAAAGCAG -ACGGAAGTTGAGGGTGAACGTCAA -ACGGAAGTTGAGGGTGAAGCTGAA -ACGGAAGTTGAGGGTGAAAGTACG -ACGGAAGTTGAGGGTGAAATCCGA -ACGGAAGTTGAGGGTGAAATGGGA -ACGGAAGTTGAGGGTGAAGTGCAA -ACGGAAGTTGAGGGTGAAGAGGAA -ACGGAAGTTGAGGGTGAACAGGTA -ACGGAAGTTGAGGGTGAAGACTCT -ACGGAAGTTGAGGGTGAAAGTCCT -ACGGAAGTTGAGGGTGAATAAGCC -ACGGAAGTTGAGGGTGAAATAGCC -ACGGAAGTTGAGGGTGAATAACCG -ACGGAAGTTGAGGGTGAAATGCCA -ACGGAAGTTGAGCGTAACGGAAAC -ACGGAAGTTGAGCGTAACAACACC -ACGGAAGTTGAGCGTAACATCGAG -ACGGAAGTTGAGCGTAACCTCCTT -ACGGAAGTTGAGCGTAACCCTGTT -ACGGAAGTTGAGCGTAACCGGTTT -ACGGAAGTTGAGCGTAACGTGGTT -ACGGAAGTTGAGCGTAACGCCTTT -ACGGAAGTTGAGCGTAACGGTCTT -ACGGAAGTTGAGCGTAACACGCTT -ACGGAAGTTGAGCGTAACAGCGTT -ACGGAAGTTGAGCGTAACTTCGTC -ACGGAAGTTGAGCGTAACTCTCTC -ACGGAAGTTGAGCGTAACTGGATC -ACGGAAGTTGAGCGTAACCACTTC -ACGGAAGTTGAGCGTAACGTACTC -ACGGAAGTTGAGCGTAACGATGTC -ACGGAAGTTGAGCGTAACACAGTC -ACGGAAGTTGAGCGTAACTTGCTG -ACGGAAGTTGAGCGTAACTCCATG -ACGGAAGTTGAGCGTAACTGTGTG -ACGGAAGTTGAGCGTAACCTAGTG -ACGGAAGTTGAGCGTAACCATCTG -ACGGAAGTTGAGCGTAACGAGTTG -ACGGAAGTTGAGCGTAACAGACTG -ACGGAAGTTGAGCGTAACTCGGTA -ACGGAAGTTGAGCGTAACTGCCTA -ACGGAAGTTGAGCGTAACCCACTA -ACGGAAGTTGAGCGTAACGGAGTA -ACGGAAGTTGAGCGTAACTCGTCT -ACGGAAGTTGAGCGTAACTGCACT -ACGGAAGTTGAGCGTAACCTGACT -ACGGAAGTTGAGCGTAACCAACCT -ACGGAAGTTGAGCGTAACGCTACT -ACGGAAGTTGAGCGTAACGGATCT -ACGGAAGTTGAGCGTAACAAGGCT -ACGGAAGTTGAGCGTAACTCAACC -ACGGAAGTTGAGCGTAACTGTTCC -ACGGAAGTTGAGCGTAACATTCCC -ACGGAAGTTGAGCGTAACTTCTCG -ACGGAAGTTGAGCGTAACTAGACG -ACGGAAGTTGAGCGTAACGTAACG -ACGGAAGTTGAGCGTAACACTTCG -ACGGAAGTTGAGCGTAACTACGCA -ACGGAAGTTGAGCGTAACCTTGCA -ACGGAAGTTGAGCGTAACCGAACA -ACGGAAGTTGAGCGTAACCAGTCA -ACGGAAGTTGAGCGTAACGATCCA -ACGGAAGTTGAGCGTAACACGACA -ACGGAAGTTGAGCGTAACAGCTCA -ACGGAAGTTGAGCGTAACTCACGT -ACGGAAGTTGAGCGTAACCGTAGT -ACGGAAGTTGAGCGTAACGTCAGT -ACGGAAGTTGAGCGTAACGAAGGT -ACGGAAGTTGAGCGTAACAACCGT -ACGGAAGTTGAGCGTAACTTGTGC -ACGGAAGTTGAGCGTAACCTAAGC -ACGGAAGTTGAGCGTAACACTAGC -ACGGAAGTTGAGCGTAACAGATGC -ACGGAAGTTGAGCGTAACTGAAGG -ACGGAAGTTGAGCGTAACCAATGG -ACGGAAGTTGAGCGTAACATGAGG -ACGGAAGTTGAGCGTAACAATGGG -ACGGAAGTTGAGCGTAACTCCTGA -ACGGAAGTTGAGCGTAACTAGCGA -ACGGAAGTTGAGCGTAACCACAGA -ACGGAAGTTGAGCGTAACGCAAGA -ACGGAAGTTGAGCGTAACGGTTGA -ACGGAAGTTGAGCGTAACTCCGAT -ACGGAAGTTGAGCGTAACTGGCAT -ACGGAAGTTGAGCGTAACCGAGAT -ACGGAAGTTGAGCGTAACTACCAC -ACGGAAGTTGAGCGTAACCAGAAC -ACGGAAGTTGAGCGTAACGTCTAC -ACGGAAGTTGAGCGTAACACGTAC -ACGGAAGTTGAGCGTAACAGTGAC -ACGGAAGTTGAGCGTAACCTGTAG -ACGGAAGTTGAGCGTAACCCTAAG -ACGGAAGTTGAGCGTAACGTTCAG -ACGGAAGTTGAGCGTAACGCATAG -ACGGAAGTTGAGCGTAACGACAAG -ACGGAAGTTGAGCGTAACAAGCAG -ACGGAAGTTGAGCGTAACCGTCAA -ACGGAAGTTGAGCGTAACGCTGAA -ACGGAAGTTGAGCGTAACAGTACG -ACGGAAGTTGAGCGTAACATCCGA -ACGGAAGTTGAGCGTAACATGGGA -ACGGAAGTTGAGCGTAACGTGCAA -ACGGAAGTTGAGCGTAACGAGGAA -ACGGAAGTTGAGCGTAACCAGGTA -ACGGAAGTTGAGCGTAACGACTCT -ACGGAAGTTGAGCGTAACAGTCCT -ACGGAAGTTGAGCGTAACTAAGCC -ACGGAAGTTGAGCGTAACATAGCC -ACGGAAGTTGAGCGTAACTAACCG -ACGGAAGTTGAGCGTAACATGCCA -ACGGAAGTTGAGTGCTTGGGAAAC -ACGGAAGTTGAGTGCTTGAACACC -ACGGAAGTTGAGTGCTTGATCGAG -ACGGAAGTTGAGTGCTTGCTCCTT -ACGGAAGTTGAGTGCTTGCCTGTT -ACGGAAGTTGAGTGCTTGCGGTTT -ACGGAAGTTGAGTGCTTGGTGGTT -ACGGAAGTTGAGTGCTTGGCCTTT -ACGGAAGTTGAGTGCTTGGGTCTT -ACGGAAGTTGAGTGCTTGACGCTT -ACGGAAGTTGAGTGCTTGAGCGTT -ACGGAAGTTGAGTGCTTGTTCGTC -ACGGAAGTTGAGTGCTTGTCTCTC -ACGGAAGTTGAGTGCTTGTGGATC -ACGGAAGTTGAGTGCTTGCACTTC -ACGGAAGTTGAGTGCTTGGTACTC -ACGGAAGTTGAGTGCTTGGATGTC -ACGGAAGTTGAGTGCTTGACAGTC -ACGGAAGTTGAGTGCTTGTTGCTG -ACGGAAGTTGAGTGCTTGTCCATG -ACGGAAGTTGAGTGCTTGTGTGTG -ACGGAAGTTGAGTGCTTGCTAGTG -ACGGAAGTTGAGTGCTTGCATCTG -ACGGAAGTTGAGTGCTTGGAGTTG -ACGGAAGTTGAGTGCTTGAGACTG -ACGGAAGTTGAGTGCTTGTCGGTA -ACGGAAGTTGAGTGCTTGTGCCTA -ACGGAAGTTGAGTGCTTGCCACTA -ACGGAAGTTGAGTGCTTGGGAGTA -ACGGAAGTTGAGTGCTTGTCGTCT -ACGGAAGTTGAGTGCTTGTGCACT -ACGGAAGTTGAGTGCTTGCTGACT -ACGGAAGTTGAGTGCTTGCAACCT -ACGGAAGTTGAGTGCTTGGCTACT -ACGGAAGTTGAGTGCTTGGGATCT -ACGGAAGTTGAGTGCTTGAAGGCT -ACGGAAGTTGAGTGCTTGTCAACC -ACGGAAGTTGAGTGCTTGTGTTCC -ACGGAAGTTGAGTGCTTGATTCCC -ACGGAAGTTGAGTGCTTGTTCTCG -ACGGAAGTTGAGTGCTTGTAGACG -ACGGAAGTTGAGTGCTTGGTAACG -ACGGAAGTTGAGTGCTTGACTTCG -ACGGAAGTTGAGTGCTTGTACGCA -ACGGAAGTTGAGTGCTTGCTTGCA -ACGGAAGTTGAGTGCTTGCGAACA -ACGGAAGTTGAGTGCTTGCAGTCA -ACGGAAGTTGAGTGCTTGGATCCA -ACGGAAGTTGAGTGCTTGACGACA -ACGGAAGTTGAGTGCTTGAGCTCA -ACGGAAGTTGAGTGCTTGTCACGT -ACGGAAGTTGAGTGCTTGCGTAGT -ACGGAAGTTGAGTGCTTGGTCAGT -ACGGAAGTTGAGTGCTTGGAAGGT -ACGGAAGTTGAGTGCTTGAACCGT -ACGGAAGTTGAGTGCTTGTTGTGC -ACGGAAGTTGAGTGCTTGCTAAGC -ACGGAAGTTGAGTGCTTGACTAGC -ACGGAAGTTGAGTGCTTGAGATGC -ACGGAAGTTGAGTGCTTGTGAAGG -ACGGAAGTTGAGTGCTTGCAATGG -ACGGAAGTTGAGTGCTTGATGAGG -ACGGAAGTTGAGTGCTTGAATGGG -ACGGAAGTTGAGTGCTTGTCCTGA -ACGGAAGTTGAGTGCTTGTAGCGA -ACGGAAGTTGAGTGCTTGCACAGA -ACGGAAGTTGAGTGCTTGGCAAGA -ACGGAAGTTGAGTGCTTGGGTTGA -ACGGAAGTTGAGTGCTTGTCCGAT -ACGGAAGTTGAGTGCTTGTGGCAT -ACGGAAGTTGAGTGCTTGCGAGAT -ACGGAAGTTGAGTGCTTGTACCAC -ACGGAAGTTGAGTGCTTGCAGAAC -ACGGAAGTTGAGTGCTTGGTCTAC -ACGGAAGTTGAGTGCTTGACGTAC -ACGGAAGTTGAGTGCTTGAGTGAC -ACGGAAGTTGAGTGCTTGCTGTAG -ACGGAAGTTGAGTGCTTGCCTAAG -ACGGAAGTTGAGTGCTTGGTTCAG -ACGGAAGTTGAGTGCTTGGCATAG -ACGGAAGTTGAGTGCTTGGACAAG -ACGGAAGTTGAGTGCTTGAAGCAG -ACGGAAGTTGAGTGCTTGCGTCAA -ACGGAAGTTGAGTGCTTGGCTGAA -ACGGAAGTTGAGTGCTTGAGTACG -ACGGAAGTTGAGTGCTTGATCCGA -ACGGAAGTTGAGTGCTTGATGGGA -ACGGAAGTTGAGTGCTTGGTGCAA -ACGGAAGTTGAGTGCTTGGAGGAA -ACGGAAGTTGAGTGCTTGCAGGTA -ACGGAAGTTGAGTGCTTGGACTCT -ACGGAAGTTGAGTGCTTGAGTCCT -ACGGAAGTTGAGTGCTTGTAAGCC -ACGGAAGTTGAGTGCTTGATAGCC -ACGGAAGTTGAGTGCTTGTAACCG -ACGGAAGTTGAGTGCTTGATGCCA -ACGGAAGTTGAGAGCCTAGGAAAC -ACGGAAGTTGAGAGCCTAAACACC -ACGGAAGTTGAGAGCCTAATCGAG -ACGGAAGTTGAGAGCCTACTCCTT -ACGGAAGTTGAGAGCCTACCTGTT -ACGGAAGTTGAGAGCCTACGGTTT -ACGGAAGTTGAGAGCCTAGTGGTT -ACGGAAGTTGAGAGCCTAGCCTTT -ACGGAAGTTGAGAGCCTAGGTCTT -ACGGAAGTTGAGAGCCTAACGCTT -ACGGAAGTTGAGAGCCTAAGCGTT -ACGGAAGTTGAGAGCCTATTCGTC -ACGGAAGTTGAGAGCCTATCTCTC -ACGGAAGTTGAGAGCCTATGGATC -ACGGAAGTTGAGAGCCTACACTTC -ACGGAAGTTGAGAGCCTAGTACTC -ACGGAAGTTGAGAGCCTAGATGTC -ACGGAAGTTGAGAGCCTAACAGTC -ACGGAAGTTGAGAGCCTATTGCTG -ACGGAAGTTGAGAGCCTATCCATG -ACGGAAGTTGAGAGCCTATGTGTG -ACGGAAGTTGAGAGCCTACTAGTG -ACGGAAGTTGAGAGCCTACATCTG -ACGGAAGTTGAGAGCCTAGAGTTG -ACGGAAGTTGAGAGCCTAAGACTG -ACGGAAGTTGAGAGCCTATCGGTA -ACGGAAGTTGAGAGCCTATGCCTA -ACGGAAGTTGAGAGCCTACCACTA -ACGGAAGTTGAGAGCCTAGGAGTA -ACGGAAGTTGAGAGCCTATCGTCT -ACGGAAGTTGAGAGCCTATGCACT -ACGGAAGTTGAGAGCCTACTGACT -ACGGAAGTTGAGAGCCTACAACCT -ACGGAAGTTGAGAGCCTAGCTACT -ACGGAAGTTGAGAGCCTAGGATCT -ACGGAAGTTGAGAGCCTAAAGGCT -ACGGAAGTTGAGAGCCTATCAACC -ACGGAAGTTGAGAGCCTATGTTCC -ACGGAAGTTGAGAGCCTAATTCCC -ACGGAAGTTGAGAGCCTATTCTCG -ACGGAAGTTGAGAGCCTATAGACG -ACGGAAGTTGAGAGCCTAGTAACG -ACGGAAGTTGAGAGCCTAACTTCG -ACGGAAGTTGAGAGCCTATACGCA -ACGGAAGTTGAGAGCCTACTTGCA -ACGGAAGTTGAGAGCCTACGAACA -ACGGAAGTTGAGAGCCTACAGTCA -ACGGAAGTTGAGAGCCTAGATCCA -ACGGAAGTTGAGAGCCTAACGACA -ACGGAAGTTGAGAGCCTAAGCTCA -ACGGAAGTTGAGAGCCTATCACGT -ACGGAAGTTGAGAGCCTACGTAGT -ACGGAAGTTGAGAGCCTAGTCAGT -ACGGAAGTTGAGAGCCTAGAAGGT -ACGGAAGTTGAGAGCCTAAACCGT -ACGGAAGTTGAGAGCCTATTGTGC -ACGGAAGTTGAGAGCCTACTAAGC -ACGGAAGTTGAGAGCCTAACTAGC -ACGGAAGTTGAGAGCCTAAGATGC -ACGGAAGTTGAGAGCCTATGAAGG -ACGGAAGTTGAGAGCCTACAATGG -ACGGAAGTTGAGAGCCTAATGAGG -ACGGAAGTTGAGAGCCTAAATGGG -ACGGAAGTTGAGAGCCTATCCTGA -ACGGAAGTTGAGAGCCTATAGCGA -ACGGAAGTTGAGAGCCTACACAGA -ACGGAAGTTGAGAGCCTAGCAAGA -ACGGAAGTTGAGAGCCTAGGTTGA -ACGGAAGTTGAGAGCCTATCCGAT -ACGGAAGTTGAGAGCCTATGGCAT -ACGGAAGTTGAGAGCCTACGAGAT -ACGGAAGTTGAGAGCCTATACCAC -ACGGAAGTTGAGAGCCTACAGAAC -ACGGAAGTTGAGAGCCTAGTCTAC -ACGGAAGTTGAGAGCCTAACGTAC -ACGGAAGTTGAGAGCCTAAGTGAC -ACGGAAGTTGAGAGCCTACTGTAG -ACGGAAGTTGAGAGCCTACCTAAG -ACGGAAGTTGAGAGCCTAGTTCAG -ACGGAAGTTGAGAGCCTAGCATAG -ACGGAAGTTGAGAGCCTAGACAAG -ACGGAAGTTGAGAGCCTAAAGCAG -ACGGAAGTTGAGAGCCTACGTCAA -ACGGAAGTTGAGAGCCTAGCTGAA -ACGGAAGTTGAGAGCCTAAGTACG -ACGGAAGTTGAGAGCCTAATCCGA -ACGGAAGTTGAGAGCCTAATGGGA -ACGGAAGTTGAGAGCCTAGTGCAA -ACGGAAGTTGAGAGCCTAGAGGAA -ACGGAAGTTGAGAGCCTACAGGTA -ACGGAAGTTGAGAGCCTAGACTCT -ACGGAAGTTGAGAGCCTAAGTCCT -ACGGAAGTTGAGAGCCTATAAGCC -ACGGAAGTTGAGAGCCTAATAGCC -ACGGAAGTTGAGAGCCTATAACCG -ACGGAAGTTGAGAGCCTAATGCCA -ACGGAAGTTGAGAGCACTGGAAAC -ACGGAAGTTGAGAGCACTAACACC -ACGGAAGTTGAGAGCACTATCGAG -ACGGAAGTTGAGAGCACTCTCCTT -ACGGAAGTTGAGAGCACTCCTGTT -ACGGAAGTTGAGAGCACTCGGTTT -ACGGAAGTTGAGAGCACTGTGGTT -ACGGAAGTTGAGAGCACTGCCTTT -ACGGAAGTTGAGAGCACTGGTCTT -ACGGAAGTTGAGAGCACTACGCTT -ACGGAAGTTGAGAGCACTAGCGTT -ACGGAAGTTGAGAGCACTTTCGTC -ACGGAAGTTGAGAGCACTTCTCTC -ACGGAAGTTGAGAGCACTTGGATC -ACGGAAGTTGAGAGCACTCACTTC -ACGGAAGTTGAGAGCACTGTACTC -ACGGAAGTTGAGAGCACTGATGTC -ACGGAAGTTGAGAGCACTACAGTC -ACGGAAGTTGAGAGCACTTTGCTG -ACGGAAGTTGAGAGCACTTCCATG -ACGGAAGTTGAGAGCACTTGTGTG -ACGGAAGTTGAGAGCACTCTAGTG -ACGGAAGTTGAGAGCACTCATCTG -ACGGAAGTTGAGAGCACTGAGTTG -ACGGAAGTTGAGAGCACTAGACTG -ACGGAAGTTGAGAGCACTTCGGTA -ACGGAAGTTGAGAGCACTTGCCTA -ACGGAAGTTGAGAGCACTCCACTA -ACGGAAGTTGAGAGCACTGGAGTA -ACGGAAGTTGAGAGCACTTCGTCT -ACGGAAGTTGAGAGCACTTGCACT -ACGGAAGTTGAGAGCACTCTGACT -ACGGAAGTTGAGAGCACTCAACCT -ACGGAAGTTGAGAGCACTGCTACT -ACGGAAGTTGAGAGCACTGGATCT -ACGGAAGTTGAGAGCACTAAGGCT -ACGGAAGTTGAGAGCACTTCAACC -ACGGAAGTTGAGAGCACTTGTTCC -ACGGAAGTTGAGAGCACTATTCCC -ACGGAAGTTGAGAGCACTTTCTCG -ACGGAAGTTGAGAGCACTTAGACG -ACGGAAGTTGAGAGCACTGTAACG -ACGGAAGTTGAGAGCACTACTTCG -ACGGAAGTTGAGAGCACTTACGCA -ACGGAAGTTGAGAGCACTCTTGCA -ACGGAAGTTGAGAGCACTCGAACA -ACGGAAGTTGAGAGCACTCAGTCA -ACGGAAGTTGAGAGCACTGATCCA -ACGGAAGTTGAGAGCACTACGACA -ACGGAAGTTGAGAGCACTAGCTCA -ACGGAAGTTGAGAGCACTTCACGT -ACGGAAGTTGAGAGCACTCGTAGT -ACGGAAGTTGAGAGCACTGTCAGT -ACGGAAGTTGAGAGCACTGAAGGT -ACGGAAGTTGAGAGCACTAACCGT -ACGGAAGTTGAGAGCACTTTGTGC -ACGGAAGTTGAGAGCACTCTAAGC -ACGGAAGTTGAGAGCACTACTAGC -ACGGAAGTTGAGAGCACTAGATGC -ACGGAAGTTGAGAGCACTTGAAGG -ACGGAAGTTGAGAGCACTCAATGG -ACGGAAGTTGAGAGCACTATGAGG -ACGGAAGTTGAGAGCACTAATGGG -ACGGAAGTTGAGAGCACTTCCTGA -ACGGAAGTTGAGAGCACTTAGCGA -ACGGAAGTTGAGAGCACTCACAGA -ACGGAAGTTGAGAGCACTGCAAGA -ACGGAAGTTGAGAGCACTGGTTGA -ACGGAAGTTGAGAGCACTTCCGAT -ACGGAAGTTGAGAGCACTTGGCAT -ACGGAAGTTGAGAGCACTCGAGAT -ACGGAAGTTGAGAGCACTTACCAC -ACGGAAGTTGAGAGCACTCAGAAC -ACGGAAGTTGAGAGCACTGTCTAC -ACGGAAGTTGAGAGCACTACGTAC -ACGGAAGTTGAGAGCACTAGTGAC -ACGGAAGTTGAGAGCACTCTGTAG -ACGGAAGTTGAGAGCACTCCTAAG -ACGGAAGTTGAGAGCACTGTTCAG -ACGGAAGTTGAGAGCACTGCATAG -ACGGAAGTTGAGAGCACTGACAAG -ACGGAAGTTGAGAGCACTAAGCAG -ACGGAAGTTGAGAGCACTCGTCAA -ACGGAAGTTGAGAGCACTGCTGAA -ACGGAAGTTGAGAGCACTAGTACG -ACGGAAGTTGAGAGCACTATCCGA -ACGGAAGTTGAGAGCACTATGGGA -ACGGAAGTTGAGAGCACTGTGCAA -ACGGAAGTTGAGAGCACTGAGGAA -ACGGAAGTTGAGAGCACTCAGGTA -ACGGAAGTTGAGAGCACTGACTCT -ACGGAAGTTGAGAGCACTAGTCCT -ACGGAAGTTGAGAGCACTTAAGCC -ACGGAAGTTGAGAGCACTATAGCC -ACGGAAGTTGAGAGCACTTAACCG -ACGGAAGTTGAGAGCACTATGCCA -ACGGAAGTTGAGTGCAGAGGAAAC -ACGGAAGTTGAGTGCAGAAACACC -ACGGAAGTTGAGTGCAGAATCGAG -ACGGAAGTTGAGTGCAGACTCCTT -ACGGAAGTTGAGTGCAGACCTGTT -ACGGAAGTTGAGTGCAGACGGTTT -ACGGAAGTTGAGTGCAGAGTGGTT -ACGGAAGTTGAGTGCAGAGCCTTT -ACGGAAGTTGAGTGCAGAGGTCTT -ACGGAAGTTGAGTGCAGAACGCTT -ACGGAAGTTGAGTGCAGAAGCGTT -ACGGAAGTTGAGTGCAGATTCGTC -ACGGAAGTTGAGTGCAGATCTCTC -ACGGAAGTTGAGTGCAGATGGATC -ACGGAAGTTGAGTGCAGACACTTC -ACGGAAGTTGAGTGCAGAGTACTC -ACGGAAGTTGAGTGCAGAGATGTC -ACGGAAGTTGAGTGCAGAACAGTC -ACGGAAGTTGAGTGCAGATTGCTG -ACGGAAGTTGAGTGCAGATCCATG -ACGGAAGTTGAGTGCAGATGTGTG -ACGGAAGTTGAGTGCAGACTAGTG -ACGGAAGTTGAGTGCAGACATCTG -ACGGAAGTTGAGTGCAGAGAGTTG -ACGGAAGTTGAGTGCAGAAGACTG -ACGGAAGTTGAGTGCAGATCGGTA -ACGGAAGTTGAGTGCAGATGCCTA -ACGGAAGTTGAGTGCAGACCACTA -ACGGAAGTTGAGTGCAGAGGAGTA -ACGGAAGTTGAGTGCAGATCGTCT -ACGGAAGTTGAGTGCAGATGCACT -ACGGAAGTTGAGTGCAGACTGACT -ACGGAAGTTGAGTGCAGACAACCT -ACGGAAGTTGAGTGCAGAGCTACT -ACGGAAGTTGAGTGCAGAGGATCT -ACGGAAGTTGAGTGCAGAAAGGCT -ACGGAAGTTGAGTGCAGATCAACC -ACGGAAGTTGAGTGCAGATGTTCC -ACGGAAGTTGAGTGCAGAATTCCC -ACGGAAGTTGAGTGCAGATTCTCG -ACGGAAGTTGAGTGCAGATAGACG -ACGGAAGTTGAGTGCAGAGTAACG -ACGGAAGTTGAGTGCAGAACTTCG -ACGGAAGTTGAGTGCAGATACGCA -ACGGAAGTTGAGTGCAGACTTGCA -ACGGAAGTTGAGTGCAGACGAACA -ACGGAAGTTGAGTGCAGACAGTCA -ACGGAAGTTGAGTGCAGAGATCCA -ACGGAAGTTGAGTGCAGAACGACA -ACGGAAGTTGAGTGCAGAAGCTCA -ACGGAAGTTGAGTGCAGATCACGT -ACGGAAGTTGAGTGCAGACGTAGT -ACGGAAGTTGAGTGCAGAGTCAGT -ACGGAAGTTGAGTGCAGAGAAGGT -ACGGAAGTTGAGTGCAGAAACCGT -ACGGAAGTTGAGTGCAGATTGTGC -ACGGAAGTTGAGTGCAGACTAAGC -ACGGAAGTTGAGTGCAGAACTAGC -ACGGAAGTTGAGTGCAGAAGATGC -ACGGAAGTTGAGTGCAGATGAAGG -ACGGAAGTTGAGTGCAGACAATGG -ACGGAAGTTGAGTGCAGAATGAGG -ACGGAAGTTGAGTGCAGAAATGGG -ACGGAAGTTGAGTGCAGATCCTGA -ACGGAAGTTGAGTGCAGATAGCGA -ACGGAAGTTGAGTGCAGACACAGA -ACGGAAGTTGAGTGCAGAGCAAGA -ACGGAAGTTGAGTGCAGAGGTTGA -ACGGAAGTTGAGTGCAGATCCGAT -ACGGAAGTTGAGTGCAGATGGCAT -ACGGAAGTTGAGTGCAGACGAGAT -ACGGAAGTTGAGTGCAGATACCAC -ACGGAAGTTGAGTGCAGACAGAAC -ACGGAAGTTGAGTGCAGAGTCTAC -ACGGAAGTTGAGTGCAGAACGTAC -ACGGAAGTTGAGTGCAGAAGTGAC -ACGGAAGTTGAGTGCAGACTGTAG -ACGGAAGTTGAGTGCAGACCTAAG -ACGGAAGTTGAGTGCAGAGTTCAG -ACGGAAGTTGAGTGCAGAGCATAG -ACGGAAGTTGAGTGCAGAGACAAG -ACGGAAGTTGAGTGCAGAAAGCAG -ACGGAAGTTGAGTGCAGACGTCAA -ACGGAAGTTGAGTGCAGAGCTGAA -ACGGAAGTTGAGTGCAGAAGTACG -ACGGAAGTTGAGTGCAGAATCCGA -ACGGAAGTTGAGTGCAGAATGGGA -ACGGAAGTTGAGTGCAGAGTGCAA -ACGGAAGTTGAGTGCAGAGAGGAA -ACGGAAGTTGAGTGCAGACAGGTA -ACGGAAGTTGAGTGCAGAGACTCT -ACGGAAGTTGAGTGCAGAAGTCCT -ACGGAAGTTGAGTGCAGATAAGCC -ACGGAAGTTGAGTGCAGAATAGCC -ACGGAAGTTGAGTGCAGATAACCG -ACGGAAGTTGAGTGCAGAATGCCA -ACGGAAGTTGAGAGGTGAGGAAAC -ACGGAAGTTGAGAGGTGAAACACC -ACGGAAGTTGAGAGGTGAATCGAG -ACGGAAGTTGAGAGGTGACTCCTT -ACGGAAGTTGAGAGGTGACCTGTT -ACGGAAGTTGAGAGGTGACGGTTT -ACGGAAGTTGAGAGGTGAGTGGTT -ACGGAAGTTGAGAGGTGAGCCTTT -ACGGAAGTTGAGAGGTGAGGTCTT -ACGGAAGTTGAGAGGTGAACGCTT -ACGGAAGTTGAGAGGTGAAGCGTT -ACGGAAGTTGAGAGGTGATTCGTC -ACGGAAGTTGAGAGGTGATCTCTC -ACGGAAGTTGAGAGGTGATGGATC -ACGGAAGTTGAGAGGTGACACTTC -ACGGAAGTTGAGAGGTGAGTACTC -ACGGAAGTTGAGAGGTGAGATGTC -ACGGAAGTTGAGAGGTGAACAGTC -ACGGAAGTTGAGAGGTGATTGCTG -ACGGAAGTTGAGAGGTGATCCATG -ACGGAAGTTGAGAGGTGATGTGTG -ACGGAAGTTGAGAGGTGACTAGTG -ACGGAAGTTGAGAGGTGACATCTG -ACGGAAGTTGAGAGGTGAGAGTTG -ACGGAAGTTGAGAGGTGAAGACTG -ACGGAAGTTGAGAGGTGATCGGTA -ACGGAAGTTGAGAGGTGATGCCTA -ACGGAAGTTGAGAGGTGACCACTA -ACGGAAGTTGAGAGGTGAGGAGTA -ACGGAAGTTGAGAGGTGATCGTCT -ACGGAAGTTGAGAGGTGATGCACT -ACGGAAGTTGAGAGGTGACTGACT -ACGGAAGTTGAGAGGTGACAACCT -ACGGAAGTTGAGAGGTGAGCTACT -ACGGAAGTTGAGAGGTGAGGATCT -ACGGAAGTTGAGAGGTGAAAGGCT -ACGGAAGTTGAGAGGTGATCAACC -ACGGAAGTTGAGAGGTGATGTTCC -ACGGAAGTTGAGAGGTGAATTCCC -ACGGAAGTTGAGAGGTGATTCTCG -ACGGAAGTTGAGAGGTGATAGACG -ACGGAAGTTGAGAGGTGAGTAACG -ACGGAAGTTGAGAGGTGAACTTCG -ACGGAAGTTGAGAGGTGATACGCA -ACGGAAGTTGAGAGGTGACTTGCA -ACGGAAGTTGAGAGGTGACGAACA -ACGGAAGTTGAGAGGTGACAGTCA -ACGGAAGTTGAGAGGTGAGATCCA -ACGGAAGTTGAGAGGTGAACGACA -ACGGAAGTTGAGAGGTGAAGCTCA -ACGGAAGTTGAGAGGTGATCACGT -ACGGAAGTTGAGAGGTGACGTAGT -ACGGAAGTTGAGAGGTGAGTCAGT -ACGGAAGTTGAGAGGTGAGAAGGT -ACGGAAGTTGAGAGGTGAAACCGT -ACGGAAGTTGAGAGGTGATTGTGC -ACGGAAGTTGAGAGGTGACTAAGC -ACGGAAGTTGAGAGGTGAACTAGC -ACGGAAGTTGAGAGGTGAAGATGC -ACGGAAGTTGAGAGGTGATGAAGG -ACGGAAGTTGAGAGGTGACAATGG -ACGGAAGTTGAGAGGTGAATGAGG -ACGGAAGTTGAGAGGTGAAATGGG -ACGGAAGTTGAGAGGTGATCCTGA -ACGGAAGTTGAGAGGTGATAGCGA -ACGGAAGTTGAGAGGTGACACAGA -ACGGAAGTTGAGAGGTGAGCAAGA -ACGGAAGTTGAGAGGTGAGGTTGA -ACGGAAGTTGAGAGGTGATCCGAT -ACGGAAGTTGAGAGGTGATGGCAT -ACGGAAGTTGAGAGGTGACGAGAT -ACGGAAGTTGAGAGGTGATACCAC -ACGGAAGTTGAGAGGTGACAGAAC -ACGGAAGTTGAGAGGTGAGTCTAC -ACGGAAGTTGAGAGGTGAACGTAC -ACGGAAGTTGAGAGGTGAAGTGAC -ACGGAAGTTGAGAGGTGACTGTAG -ACGGAAGTTGAGAGGTGACCTAAG -ACGGAAGTTGAGAGGTGAGTTCAG -ACGGAAGTTGAGAGGTGAGCATAG -ACGGAAGTTGAGAGGTGAGACAAG -ACGGAAGTTGAGAGGTGAAAGCAG -ACGGAAGTTGAGAGGTGACGTCAA -ACGGAAGTTGAGAGGTGAGCTGAA -ACGGAAGTTGAGAGGTGAAGTACG -ACGGAAGTTGAGAGGTGAATCCGA -ACGGAAGTTGAGAGGTGAATGGGA -ACGGAAGTTGAGAGGTGAGTGCAA -ACGGAAGTTGAGAGGTGAGAGGAA -ACGGAAGTTGAGAGGTGACAGGTA -ACGGAAGTTGAGAGGTGAGACTCT -ACGGAAGTTGAGAGGTGAAGTCCT -ACGGAAGTTGAGAGGTGATAAGCC -ACGGAAGTTGAGAGGTGAATAGCC -ACGGAAGTTGAGAGGTGATAACCG -ACGGAAGTTGAGAGGTGAATGCCA -ACGGAAGTTGAGTGGCAAGGAAAC -ACGGAAGTTGAGTGGCAAAACACC -ACGGAAGTTGAGTGGCAAATCGAG -ACGGAAGTTGAGTGGCAACTCCTT -ACGGAAGTTGAGTGGCAACCTGTT -ACGGAAGTTGAGTGGCAACGGTTT -ACGGAAGTTGAGTGGCAAGTGGTT -ACGGAAGTTGAGTGGCAAGCCTTT -ACGGAAGTTGAGTGGCAAGGTCTT -ACGGAAGTTGAGTGGCAAACGCTT -ACGGAAGTTGAGTGGCAAAGCGTT -ACGGAAGTTGAGTGGCAATTCGTC -ACGGAAGTTGAGTGGCAATCTCTC -ACGGAAGTTGAGTGGCAATGGATC -ACGGAAGTTGAGTGGCAACACTTC -ACGGAAGTTGAGTGGCAAGTACTC -ACGGAAGTTGAGTGGCAAGATGTC -ACGGAAGTTGAGTGGCAAACAGTC -ACGGAAGTTGAGTGGCAATTGCTG -ACGGAAGTTGAGTGGCAATCCATG -ACGGAAGTTGAGTGGCAATGTGTG -ACGGAAGTTGAGTGGCAACTAGTG -ACGGAAGTTGAGTGGCAACATCTG -ACGGAAGTTGAGTGGCAAGAGTTG -ACGGAAGTTGAGTGGCAAAGACTG -ACGGAAGTTGAGTGGCAATCGGTA -ACGGAAGTTGAGTGGCAATGCCTA -ACGGAAGTTGAGTGGCAACCACTA -ACGGAAGTTGAGTGGCAAGGAGTA -ACGGAAGTTGAGTGGCAATCGTCT -ACGGAAGTTGAGTGGCAATGCACT -ACGGAAGTTGAGTGGCAACTGACT -ACGGAAGTTGAGTGGCAACAACCT -ACGGAAGTTGAGTGGCAAGCTACT -ACGGAAGTTGAGTGGCAAGGATCT -ACGGAAGTTGAGTGGCAAAAGGCT -ACGGAAGTTGAGTGGCAATCAACC -ACGGAAGTTGAGTGGCAATGTTCC -ACGGAAGTTGAGTGGCAAATTCCC -ACGGAAGTTGAGTGGCAATTCTCG -ACGGAAGTTGAGTGGCAATAGACG -ACGGAAGTTGAGTGGCAAGTAACG -ACGGAAGTTGAGTGGCAAACTTCG -ACGGAAGTTGAGTGGCAATACGCA -ACGGAAGTTGAGTGGCAACTTGCA -ACGGAAGTTGAGTGGCAACGAACA -ACGGAAGTTGAGTGGCAACAGTCA -ACGGAAGTTGAGTGGCAAGATCCA -ACGGAAGTTGAGTGGCAAACGACA -ACGGAAGTTGAGTGGCAAAGCTCA -ACGGAAGTTGAGTGGCAATCACGT -ACGGAAGTTGAGTGGCAACGTAGT -ACGGAAGTTGAGTGGCAAGTCAGT -ACGGAAGTTGAGTGGCAAGAAGGT -ACGGAAGTTGAGTGGCAAAACCGT -ACGGAAGTTGAGTGGCAATTGTGC -ACGGAAGTTGAGTGGCAACTAAGC -ACGGAAGTTGAGTGGCAAACTAGC -ACGGAAGTTGAGTGGCAAAGATGC -ACGGAAGTTGAGTGGCAATGAAGG -ACGGAAGTTGAGTGGCAACAATGG -ACGGAAGTTGAGTGGCAAATGAGG -ACGGAAGTTGAGTGGCAAAATGGG -ACGGAAGTTGAGTGGCAATCCTGA -ACGGAAGTTGAGTGGCAATAGCGA -ACGGAAGTTGAGTGGCAACACAGA -ACGGAAGTTGAGTGGCAAGCAAGA -ACGGAAGTTGAGTGGCAAGGTTGA -ACGGAAGTTGAGTGGCAATCCGAT -ACGGAAGTTGAGTGGCAATGGCAT -ACGGAAGTTGAGTGGCAACGAGAT -ACGGAAGTTGAGTGGCAATACCAC -ACGGAAGTTGAGTGGCAACAGAAC -ACGGAAGTTGAGTGGCAAGTCTAC -ACGGAAGTTGAGTGGCAAACGTAC -ACGGAAGTTGAGTGGCAAAGTGAC -ACGGAAGTTGAGTGGCAACTGTAG -ACGGAAGTTGAGTGGCAACCTAAG -ACGGAAGTTGAGTGGCAAGTTCAG -ACGGAAGTTGAGTGGCAAGCATAG -ACGGAAGTTGAGTGGCAAGACAAG -ACGGAAGTTGAGTGGCAAAAGCAG -ACGGAAGTTGAGTGGCAACGTCAA -ACGGAAGTTGAGTGGCAAGCTGAA -ACGGAAGTTGAGTGGCAAAGTACG -ACGGAAGTTGAGTGGCAAATCCGA -ACGGAAGTTGAGTGGCAAATGGGA -ACGGAAGTTGAGTGGCAAGTGCAA -ACGGAAGTTGAGTGGCAAGAGGAA -ACGGAAGTTGAGTGGCAACAGGTA -ACGGAAGTTGAGTGGCAAGACTCT -ACGGAAGTTGAGTGGCAAAGTCCT -ACGGAAGTTGAGTGGCAATAAGCC -ACGGAAGTTGAGTGGCAAATAGCC -ACGGAAGTTGAGTGGCAATAACCG -ACGGAAGTTGAGTGGCAAATGCCA -ACGGAAGTTGAGAGGATGGGAAAC -ACGGAAGTTGAGAGGATGAACACC -ACGGAAGTTGAGAGGATGATCGAG -ACGGAAGTTGAGAGGATGCTCCTT -ACGGAAGTTGAGAGGATGCCTGTT -ACGGAAGTTGAGAGGATGCGGTTT -ACGGAAGTTGAGAGGATGGTGGTT -ACGGAAGTTGAGAGGATGGCCTTT -ACGGAAGTTGAGAGGATGGGTCTT -ACGGAAGTTGAGAGGATGACGCTT -ACGGAAGTTGAGAGGATGAGCGTT -ACGGAAGTTGAGAGGATGTTCGTC -ACGGAAGTTGAGAGGATGTCTCTC -ACGGAAGTTGAGAGGATGTGGATC -ACGGAAGTTGAGAGGATGCACTTC -ACGGAAGTTGAGAGGATGGTACTC -ACGGAAGTTGAGAGGATGGATGTC -ACGGAAGTTGAGAGGATGACAGTC -ACGGAAGTTGAGAGGATGTTGCTG -ACGGAAGTTGAGAGGATGTCCATG -ACGGAAGTTGAGAGGATGTGTGTG -ACGGAAGTTGAGAGGATGCTAGTG -ACGGAAGTTGAGAGGATGCATCTG -ACGGAAGTTGAGAGGATGGAGTTG -ACGGAAGTTGAGAGGATGAGACTG -ACGGAAGTTGAGAGGATGTCGGTA -ACGGAAGTTGAGAGGATGTGCCTA -ACGGAAGTTGAGAGGATGCCACTA -ACGGAAGTTGAGAGGATGGGAGTA -ACGGAAGTTGAGAGGATGTCGTCT -ACGGAAGTTGAGAGGATGTGCACT -ACGGAAGTTGAGAGGATGCTGACT -ACGGAAGTTGAGAGGATGCAACCT -ACGGAAGTTGAGAGGATGGCTACT -ACGGAAGTTGAGAGGATGGGATCT -ACGGAAGTTGAGAGGATGAAGGCT -ACGGAAGTTGAGAGGATGTCAACC -ACGGAAGTTGAGAGGATGTGTTCC -ACGGAAGTTGAGAGGATGATTCCC -ACGGAAGTTGAGAGGATGTTCTCG -ACGGAAGTTGAGAGGATGTAGACG -ACGGAAGTTGAGAGGATGGTAACG -ACGGAAGTTGAGAGGATGACTTCG -ACGGAAGTTGAGAGGATGTACGCA -ACGGAAGTTGAGAGGATGCTTGCA -ACGGAAGTTGAGAGGATGCGAACA -ACGGAAGTTGAGAGGATGCAGTCA -ACGGAAGTTGAGAGGATGGATCCA -ACGGAAGTTGAGAGGATGACGACA -ACGGAAGTTGAGAGGATGAGCTCA -ACGGAAGTTGAGAGGATGTCACGT -ACGGAAGTTGAGAGGATGCGTAGT -ACGGAAGTTGAGAGGATGGTCAGT -ACGGAAGTTGAGAGGATGGAAGGT -ACGGAAGTTGAGAGGATGAACCGT -ACGGAAGTTGAGAGGATGTTGTGC -ACGGAAGTTGAGAGGATGCTAAGC -ACGGAAGTTGAGAGGATGACTAGC -ACGGAAGTTGAGAGGATGAGATGC -ACGGAAGTTGAGAGGATGTGAAGG -ACGGAAGTTGAGAGGATGCAATGG -ACGGAAGTTGAGAGGATGATGAGG -ACGGAAGTTGAGAGGATGAATGGG -ACGGAAGTTGAGAGGATGTCCTGA -ACGGAAGTTGAGAGGATGTAGCGA -ACGGAAGTTGAGAGGATGCACAGA -ACGGAAGTTGAGAGGATGGCAAGA -ACGGAAGTTGAGAGGATGGGTTGA -ACGGAAGTTGAGAGGATGTCCGAT -ACGGAAGTTGAGAGGATGTGGCAT -ACGGAAGTTGAGAGGATGCGAGAT -ACGGAAGTTGAGAGGATGTACCAC -ACGGAAGTTGAGAGGATGCAGAAC -ACGGAAGTTGAGAGGATGGTCTAC -ACGGAAGTTGAGAGGATGACGTAC -ACGGAAGTTGAGAGGATGAGTGAC -ACGGAAGTTGAGAGGATGCTGTAG -ACGGAAGTTGAGAGGATGCCTAAG -ACGGAAGTTGAGAGGATGGTTCAG -ACGGAAGTTGAGAGGATGGCATAG -ACGGAAGTTGAGAGGATGGACAAG -ACGGAAGTTGAGAGGATGAAGCAG -ACGGAAGTTGAGAGGATGCGTCAA -ACGGAAGTTGAGAGGATGGCTGAA -ACGGAAGTTGAGAGGATGAGTACG -ACGGAAGTTGAGAGGATGATCCGA -ACGGAAGTTGAGAGGATGATGGGA -ACGGAAGTTGAGAGGATGGTGCAA -ACGGAAGTTGAGAGGATGGAGGAA -ACGGAAGTTGAGAGGATGCAGGTA -ACGGAAGTTGAGAGGATGGACTCT -ACGGAAGTTGAGAGGATGAGTCCT -ACGGAAGTTGAGAGGATGTAAGCC -ACGGAAGTTGAGAGGATGATAGCC -ACGGAAGTTGAGAGGATGTAACCG -ACGGAAGTTGAGAGGATGATGCCA -ACGGAAGTTGAGGGGAATGGAAAC -ACGGAAGTTGAGGGGAATAACACC -ACGGAAGTTGAGGGGAATATCGAG -ACGGAAGTTGAGGGGAATCTCCTT -ACGGAAGTTGAGGGGAATCCTGTT -ACGGAAGTTGAGGGGAATCGGTTT -ACGGAAGTTGAGGGGAATGTGGTT -ACGGAAGTTGAGGGGAATGCCTTT -ACGGAAGTTGAGGGGAATGGTCTT -ACGGAAGTTGAGGGGAATACGCTT -ACGGAAGTTGAGGGGAATAGCGTT -ACGGAAGTTGAGGGGAATTTCGTC -ACGGAAGTTGAGGGGAATTCTCTC -ACGGAAGTTGAGGGGAATTGGATC -ACGGAAGTTGAGGGGAATCACTTC -ACGGAAGTTGAGGGGAATGTACTC -ACGGAAGTTGAGGGGAATGATGTC -ACGGAAGTTGAGGGGAATACAGTC -ACGGAAGTTGAGGGGAATTTGCTG -ACGGAAGTTGAGGGGAATTCCATG -ACGGAAGTTGAGGGGAATTGTGTG -ACGGAAGTTGAGGGGAATCTAGTG -ACGGAAGTTGAGGGGAATCATCTG -ACGGAAGTTGAGGGGAATGAGTTG -ACGGAAGTTGAGGGGAATAGACTG -ACGGAAGTTGAGGGGAATTCGGTA -ACGGAAGTTGAGGGGAATTGCCTA -ACGGAAGTTGAGGGGAATCCACTA -ACGGAAGTTGAGGGGAATGGAGTA -ACGGAAGTTGAGGGGAATTCGTCT -ACGGAAGTTGAGGGGAATTGCACT -ACGGAAGTTGAGGGGAATCTGACT -ACGGAAGTTGAGGGGAATCAACCT -ACGGAAGTTGAGGGGAATGCTACT -ACGGAAGTTGAGGGGAATGGATCT -ACGGAAGTTGAGGGGAATAAGGCT -ACGGAAGTTGAGGGGAATTCAACC -ACGGAAGTTGAGGGGAATTGTTCC -ACGGAAGTTGAGGGGAATATTCCC -ACGGAAGTTGAGGGGAATTTCTCG -ACGGAAGTTGAGGGGAATTAGACG -ACGGAAGTTGAGGGGAATGTAACG -ACGGAAGTTGAGGGGAATACTTCG -ACGGAAGTTGAGGGGAATTACGCA -ACGGAAGTTGAGGGGAATCTTGCA -ACGGAAGTTGAGGGGAATCGAACA -ACGGAAGTTGAGGGGAATCAGTCA -ACGGAAGTTGAGGGGAATGATCCA -ACGGAAGTTGAGGGGAATACGACA -ACGGAAGTTGAGGGGAATAGCTCA -ACGGAAGTTGAGGGGAATTCACGT -ACGGAAGTTGAGGGGAATCGTAGT -ACGGAAGTTGAGGGGAATGTCAGT -ACGGAAGTTGAGGGGAATGAAGGT -ACGGAAGTTGAGGGGAATAACCGT -ACGGAAGTTGAGGGGAATTTGTGC -ACGGAAGTTGAGGGGAATCTAAGC -ACGGAAGTTGAGGGGAATACTAGC -ACGGAAGTTGAGGGGAATAGATGC -ACGGAAGTTGAGGGGAATTGAAGG -ACGGAAGTTGAGGGGAATCAATGG -ACGGAAGTTGAGGGGAATATGAGG -ACGGAAGTTGAGGGGAATAATGGG -ACGGAAGTTGAGGGGAATTCCTGA -ACGGAAGTTGAGGGGAATTAGCGA -ACGGAAGTTGAGGGGAATCACAGA -ACGGAAGTTGAGGGGAATGCAAGA -ACGGAAGTTGAGGGGAATGGTTGA -ACGGAAGTTGAGGGGAATTCCGAT -ACGGAAGTTGAGGGGAATTGGCAT -ACGGAAGTTGAGGGGAATCGAGAT -ACGGAAGTTGAGGGGAATTACCAC -ACGGAAGTTGAGGGGAATCAGAAC -ACGGAAGTTGAGGGGAATGTCTAC -ACGGAAGTTGAGGGGAATACGTAC -ACGGAAGTTGAGGGGAATAGTGAC -ACGGAAGTTGAGGGGAATCTGTAG -ACGGAAGTTGAGGGGAATCCTAAG -ACGGAAGTTGAGGGGAATGTTCAG -ACGGAAGTTGAGGGGAATGCATAG -ACGGAAGTTGAGGGGAATGACAAG -ACGGAAGTTGAGGGGAATAAGCAG -ACGGAAGTTGAGGGGAATCGTCAA -ACGGAAGTTGAGGGGAATGCTGAA -ACGGAAGTTGAGGGGAATAGTACG -ACGGAAGTTGAGGGGAATATCCGA -ACGGAAGTTGAGGGGAATATGGGA -ACGGAAGTTGAGGGGAATGTGCAA -ACGGAAGTTGAGGGGAATGAGGAA -ACGGAAGTTGAGGGGAATCAGGTA -ACGGAAGTTGAGGGGAATGACTCT -ACGGAAGTTGAGGGGAATAGTCCT -ACGGAAGTTGAGGGGAATTAAGCC -ACGGAAGTTGAGGGGAATATAGCC -ACGGAAGTTGAGGGGAATTAACCG -ACGGAAGTTGAGGGGAATATGCCA -ACGGAAGTTGAGTGATCCGGAAAC -ACGGAAGTTGAGTGATCCAACACC -ACGGAAGTTGAGTGATCCATCGAG -ACGGAAGTTGAGTGATCCCTCCTT -ACGGAAGTTGAGTGATCCCCTGTT -ACGGAAGTTGAGTGATCCCGGTTT -ACGGAAGTTGAGTGATCCGTGGTT -ACGGAAGTTGAGTGATCCGCCTTT -ACGGAAGTTGAGTGATCCGGTCTT -ACGGAAGTTGAGTGATCCACGCTT -ACGGAAGTTGAGTGATCCAGCGTT -ACGGAAGTTGAGTGATCCTTCGTC -ACGGAAGTTGAGTGATCCTCTCTC -ACGGAAGTTGAGTGATCCTGGATC -ACGGAAGTTGAGTGATCCCACTTC -ACGGAAGTTGAGTGATCCGTACTC -ACGGAAGTTGAGTGATCCGATGTC -ACGGAAGTTGAGTGATCCACAGTC -ACGGAAGTTGAGTGATCCTTGCTG -ACGGAAGTTGAGTGATCCTCCATG -ACGGAAGTTGAGTGATCCTGTGTG -ACGGAAGTTGAGTGATCCCTAGTG -ACGGAAGTTGAGTGATCCCATCTG -ACGGAAGTTGAGTGATCCGAGTTG -ACGGAAGTTGAGTGATCCAGACTG -ACGGAAGTTGAGTGATCCTCGGTA -ACGGAAGTTGAGTGATCCTGCCTA -ACGGAAGTTGAGTGATCCCCACTA -ACGGAAGTTGAGTGATCCGGAGTA -ACGGAAGTTGAGTGATCCTCGTCT -ACGGAAGTTGAGTGATCCTGCACT -ACGGAAGTTGAGTGATCCCTGACT -ACGGAAGTTGAGTGATCCCAACCT -ACGGAAGTTGAGTGATCCGCTACT -ACGGAAGTTGAGTGATCCGGATCT -ACGGAAGTTGAGTGATCCAAGGCT -ACGGAAGTTGAGTGATCCTCAACC -ACGGAAGTTGAGTGATCCTGTTCC -ACGGAAGTTGAGTGATCCATTCCC -ACGGAAGTTGAGTGATCCTTCTCG -ACGGAAGTTGAGTGATCCTAGACG -ACGGAAGTTGAGTGATCCGTAACG -ACGGAAGTTGAGTGATCCACTTCG -ACGGAAGTTGAGTGATCCTACGCA -ACGGAAGTTGAGTGATCCCTTGCA -ACGGAAGTTGAGTGATCCCGAACA -ACGGAAGTTGAGTGATCCCAGTCA -ACGGAAGTTGAGTGATCCGATCCA -ACGGAAGTTGAGTGATCCACGACA -ACGGAAGTTGAGTGATCCAGCTCA -ACGGAAGTTGAGTGATCCTCACGT -ACGGAAGTTGAGTGATCCCGTAGT -ACGGAAGTTGAGTGATCCGTCAGT -ACGGAAGTTGAGTGATCCGAAGGT -ACGGAAGTTGAGTGATCCAACCGT -ACGGAAGTTGAGTGATCCTTGTGC -ACGGAAGTTGAGTGATCCCTAAGC -ACGGAAGTTGAGTGATCCACTAGC -ACGGAAGTTGAGTGATCCAGATGC -ACGGAAGTTGAGTGATCCTGAAGG -ACGGAAGTTGAGTGATCCCAATGG -ACGGAAGTTGAGTGATCCATGAGG -ACGGAAGTTGAGTGATCCAATGGG -ACGGAAGTTGAGTGATCCTCCTGA -ACGGAAGTTGAGTGATCCTAGCGA -ACGGAAGTTGAGTGATCCCACAGA -ACGGAAGTTGAGTGATCCGCAAGA -ACGGAAGTTGAGTGATCCGGTTGA -ACGGAAGTTGAGTGATCCTCCGAT -ACGGAAGTTGAGTGATCCTGGCAT -ACGGAAGTTGAGTGATCCCGAGAT -ACGGAAGTTGAGTGATCCTACCAC -ACGGAAGTTGAGTGATCCCAGAAC -ACGGAAGTTGAGTGATCCGTCTAC -ACGGAAGTTGAGTGATCCACGTAC -ACGGAAGTTGAGTGATCCAGTGAC -ACGGAAGTTGAGTGATCCCTGTAG -ACGGAAGTTGAGTGATCCCCTAAG -ACGGAAGTTGAGTGATCCGTTCAG -ACGGAAGTTGAGTGATCCGCATAG -ACGGAAGTTGAGTGATCCGACAAG -ACGGAAGTTGAGTGATCCAAGCAG -ACGGAAGTTGAGTGATCCCGTCAA -ACGGAAGTTGAGTGATCCGCTGAA -ACGGAAGTTGAGTGATCCAGTACG -ACGGAAGTTGAGTGATCCATCCGA -ACGGAAGTTGAGTGATCCATGGGA -ACGGAAGTTGAGTGATCCGTGCAA -ACGGAAGTTGAGTGATCCGAGGAA -ACGGAAGTTGAGTGATCCCAGGTA -ACGGAAGTTGAGTGATCCGACTCT -ACGGAAGTTGAGTGATCCAGTCCT -ACGGAAGTTGAGTGATCCTAAGCC -ACGGAAGTTGAGTGATCCATAGCC -ACGGAAGTTGAGTGATCCTAACCG -ACGGAAGTTGAGTGATCCATGCCA -ACGGAAGTTGAGCGATAGGGAAAC -ACGGAAGTTGAGCGATAGAACACC -ACGGAAGTTGAGCGATAGATCGAG -ACGGAAGTTGAGCGATAGCTCCTT -ACGGAAGTTGAGCGATAGCCTGTT -ACGGAAGTTGAGCGATAGCGGTTT -ACGGAAGTTGAGCGATAGGTGGTT -ACGGAAGTTGAGCGATAGGCCTTT -ACGGAAGTTGAGCGATAGGGTCTT -ACGGAAGTTGAGCGATAGACGCTT -ACGGAAGTTGAGCGATAGAGCGTT -ACGGAAGTTGAGCGATAGTTCGTC -ACGGAAGTTGAGCGATAGTCTCTC -ACGGAAGTTGAGCGATAGTGGATC -ACGGAAGTTGAGCGATAGCACTTC -ACGGAAGTTGAGCGATAGGTACTC -ACGGAAGTTGAGCGATAGGATGTC -ACGGAAGTTGAGCGATAGACAGTC -ACGGAAGTTGAGCGATAGTTGCTG -ACGGAAGTTGAGCGATAGTCCATG -ACGGAAGTTGAGCGATAGTGTGTG -ACGGAAGTTGAGCGATAGCTAGTG -ACGGAAGTTGAGCGATAGCATCTG -ACGGAAGTTGAGCGATAGGAGTTG -ACGGAAGTTGAGCGATAGAGACTG -ACGGAAGTTGAGCGATAGTCGGTA -ACGGAAGTTGAGCGATAGTGCCTA -ACGGAAGTTGAGCGATAGCCACTA -ACGGAAGTTGAGCGATAGGGAGTA -ACGGAAGTTGAGCGATAGTCGTCT -ACGGAAGTTGAGCGATAGTGCACT -ACGGAAGTTGAGCGATAGCTGACT -ACGGAAGTTGAGCGATAGCAACCT -ACGGAAGTTGAGCGATAGGCTACT -ACGGAAGTTGAGCGATAGGGATCT -ACGGAAGTTGAGCGATAGAAGGCT -ACGGAAGTTGAGCGATAGTCAACC -ACGGAAGTTGAGCGATAGTGTTCC -ACGGAAGTTGAGCGATAGATTCCC -ACGGAAGTTGAGCGATAGTTCTCG -ACGGAAGTTGAGCGATAGTAGACG -ACGGAAGTTGAGCGATAGGTAACG -ACGGAAGTTGAGCGATAGACTTCG -ACGGAAGTTGAGCGATAGTACGCA -ACGGAAGTTGAGCGATAGCTTGCA -ACGGAAGTTGAGCGATAGCGAACA -ACGGAAGTTGAGCGATAGCAGTCA -ACGGAAGTTGAGCGATAGGATCCA -ACGGAAGTTGAGCGATAGACGACA -ACGGAAGTTGAGCGATAGAGCTCA -ACGGAAGTTGAGCGATAGTCACGT -ACGGAAGTTGAGCGATAGCGTAGT -ACGGAAGTTGAGCGATAGGTCAGT -ACGGAAGTTGAGCGATAGGAAGGT -ACGGAAGTTGAGCGATAGAACCGT -ACGGAAGTTGAGCGATAGTTGTGC -ACGGAAGTTGAGCGATAGCTAAGC -ACGGAAGTTGAGCGATAGACTAGC -ACGGAAGTTGAGCGATAGAGATGC -ACGGAAGTTGAGCGATAGTGAAGG -ACGGAAGTTGAGCGATAGCAATGG -ACGGAAGTTGAGCGATAGATGAGG -ACGGAAGTTGAGCGATAGAATGGG -ACGGAAGTTGAGCGATAGTCCTGA -ACGGAAGTTGAGCGATAGTAGCGA -ACGGAAGTTGAGCGATAGCACAGA -ACGGAAGTTGAGCGATAGGCAAGA -ACGGAAGTTGAGCGATAGGGTTGA -ACGGAAGTTGAGCGATAGTCCGAT -ACGGAAGTTGAGCGATAGTGGCAT -ACGGAAGTTGAGCGATAGCGAGAT -ACGGAAGTTGAGCGATAGTACCAC -ACGGAAGTTGAGCGATAGCAGAAC -ACGGAAGTTGAGCGATAGGTCTAC -ACGGAAGTTGAGCGATAGACGTAC -ACGGAAGTTGAGCGATAGAGTGAC -ACGGAAGTTGAGCGATAGCTGTAG -ACGGAAGTTGAGCGATAGCCTAAG -ACGGAAGTTGAGCGATAGGTTCAG -ACGGAAGTTGAGCGATAGGCATAG -ACGGAAGTTGAGCGATAGGACAAG -ACGGAAGTTGAGCGATAGAAGCAG -ACGGAAGTTGAGCGATAGCGTCAA -ACGGAAGTTGAGCGATAGGCTGAA -ACGGAAGTTGAGCGATAGAGTACG -ACGGAAGTTGAGCGATAGATCCGA -ACGGAAGTTGAGCGATAGATGGGA -ACGGAAGTTGAGCGATAGGTGCAA -ACGGAAGTTGAGCGATAGGAGGAA -ACGGAAGTTGAGCGATAGCAGGTA -ACGGAAGTTGAGCGATAGGACTCT -ACGGAAGTTGAGCGATAGAGTCCT -ACGGAAGTTGAGCGATAGTAAGCC -ACGGAAGTTGAGCGATAGATAGCC -ACGGAAGTTGAGCGATAGTAACCG -ACGGAAGTTGAGCGATAGATGCCA -ACGGAAGTTGAGAGACACGGAAAC -ACGGAAGTTGAGAGACACAACACC -ACGGAAGTTGAGAGACACATCGAG -ACGGAAGTTGAGAGACACCTCCTT -ACGGAAGTTGAGAGACACCCTGTT -ACGGAAGTTGAGAGACACCGGTTT -ACGGAAGTTGAGAGACACGTGGTT -ACGGAAGTTGAGAGACACGCCTTT -ACGGAAGTTGAGAGACACGGTCTT -ACGGAAGTTGAGAGACACACGCTT -ACGGAAGTTGAGAGACACAGCGTT -ACGGAAGTTGAGAGACACTTCGTC -ACGGAAGTTGAGAGACACTCTCTC -ACGGAAGTTGAGAGACACTGGATC -ACGGAAGTTGAGAGACACCACTTC -ACGGAAGTTGAGAGACACGTACTC -ACGGAAGTTGAGAGACACGATGTC -ACGGAAGTTGAGAGACACACAGTC -ACGGAAGTTGAGAGACACTTGCTG -ACGGAAGTTGAGAGACACTCCATG -ACGGAAGTTGAGAGACACTGTGTG -ACGGAAGTTGAGAGACACCTAGTG -ACGGAAGTTGAGAGACACCATCTG -ACGGAAGTTGAGAGACACGAGTTG -ACGGAAGTTGAGAGACACAGACTG -ACGGAAGTTGAGAGACACTCGGTA -ACGGAAGTTGAGAGACACTGCCTA -ACGGAAGTTGAGAGACACCCACTA -ACGGAAGTTGAGAGACACGGAGTA -ACGGAAGTTGAGAGACACTCGTCT -ACGGAAGTTGAGAGACACTGCACT -ACGGAAGTTGAGAGACACCTGACT -ACGGAAGTTGAGAGACACCAACCT -ACGGAAGTTGAGAGACACGCTACT -ACGGAAGTTGAGAGACACGGATCT -ACGGAAGTTGAGAGACACAAGGCT -ACGGAAGTTGAGAGACACTCAACC -ACGGAAGTTGAGAGACACTGTTCC -ACGGAAGTTGAGAGACACATTCCC -ACGGAAGTTGAGAGACACTTCTCG -ACGGAAGTTGAGAGACACTAGACG -ACGGAAGTTGAGAGACACGTAACG -ACGGAAGTTGAGAGACACACTTCG -ACGGAAGTTGAGAGACACTACGCA -ACGGAAGTTGAGAGACACCTTGCA -ACGGAAGTTGAGAGACACCGAACA -ACGGAAGTTGAGAGACACCAGTCA -ACGGAAGTTGAGAGACACGATCCA -ACGGAAGTTGAGAGACACACGACA -ACGGAAGTTGAGAGACACAGCTCA -ACGGAAGTTGAGAGACACTCACGT -ACGGAAGTTGAGAGACACCGTAGT -ACGGAAGTTGAGAGACACGTCAGT -ACGGAAGTTGAGAGACACGAAGGT -ACGGAAGTTGAGAGACACAACCGT -ACGGAAGTTGAGAGACACTTGTGC -ACGGAAGTTGAGAGACACCTAAGC -ACGGAAGTTGAGAGACACACTAGC -ACGGAAGTTGAGAGACACAGATGC -ACGGAAGTTGAGAGACACTGAAGG -ACGGAAGTTGAGAGACACCAATGG -ACGGAAGTTGAGAGACACATGAGG -ACGGAAGTTGAGAGACACAATGGG -ACGGAAGTTGAGAGACACTCCTGA -ACGGAAGTTGAGAGACACTAGCGA -ACGGAAGTTGAGAGACACCACAGA -ACGGAAGTTGAGAGACACGCAAGA -ACGGAAGTTGAGAGACACGGTTGA -ACGGAAGTTGAGAGACACTCCGAT -ACGGAAGTTGAGAGACACTGGCAT -ACGGAAGTTGAGAGACACCGAGAT -ACGGAAGTTGAGAGACACTACCAC -ACGGAAGTTGAGAGACACCAGAAC -ACGGAAGTTGAGAGACACGTCTAC -ACGGAAGTTGAGAGACACACGTAC -ACGGAAGTTGAGAGACACAGTGAC -ACGGAAGTTGAGAGACACCTGTAG -ACGGAAGTTGAGAGACACCCTAAG -ACGGAAGTTGAGAGACACGTTCAG -ACGGAAGTTGAGAGACACGCATAG -ACGGAAGTTGAGAGACACGACAAG -ACGGAAGTTGAGAGACACAAGCAG -ACGGAAGTTGAGAGACACCGTCAA -ACGGAAGTTGAGAGACACGCTGAA -ACGGAAGTTGAGAGACACAGTACG -ACGGAAGTTGAGAGACACATCCGA -ACGGAAGTTGAGAGACACATGGGA -ACGGAAGTTGAGAGACACGTGCAA -ACGGAAGTTGAGAGACACGAGGAA -ACGGAAGTTGAGAGACACCAGGTA -ACGGAAGTTGAGAGACACGACTCT -ACGGAAGTTGAGAGACACAGTCCT -ACGGAAGTTGAGAGACACTAAGCC -ACGGAAGTTGAGAGACACATAGCC -ACGGAAGTTGAGAGACACTAACCG -ACGGAAGTTGAGAGACACATGCCA -ACGGAAGTTGAGAGAGCAGGAAAC -ACGGAAGTTGAGAGAGCAAACACC -ACGGAAGTTGAGAGAGCAATCGAG -ACGGAAGTTGAGAGAGCACTCCTT -ACGGAAGTTGAGAGAGCACCTGTT -ACGGAAGTTGAGAGAGCACGGTTT -ACGGAAGTTGAGAGAGCAGTGGTT -ACGGAAGTTGAGAGAGCAGCCTTT -ACGGAAGTTGAGAGAGCAGGTCTT -ACGGAAGTTGAGAGAGCAACGCTT -ACGGAAGTTGAGAGAGCAAGCGTT -ACGGAAGTTGAGAGAGCATTCGTC -ACGGAAGTTGAGAGAGCATCTCTC -ACGGAAGTTGAGAGAGCATGGATC -ACGGAAGTTGAGAGAGCACACTTC -ACGGAAGTTGAGAGAGCAGTACTC -ACGGAAGTTGAGAGAGCAGATGTC -ACGGAAGTTGAGAGAGCAACAGTC -ACGGAAGTTGAGAGAGCATTGCTG -ACGGAAGTTGAGAGAGCATCCATG -ACGGAAGTTGAGAGAGCATGTGTG -ACGGAAGTTGAGAGAGCACTAGTG -ACGGAAGTTGAGAGAGCACATCTG -ACGGAAGTTGAGAGAGCAGAGTTG -ACGGAAGTTGAGAGAGCAAGACTG -ACGGAAGTTGAGAGAGCATCGGTA -ACGGAAGTTGAGAGAGCATGCCTA -ACGGAAGTTGAGAGAGCACCACTA -ACGGAAGTTGAGAGAGCAGGAGTA -ACGGAAGTTGAGAGAGCATCGTCT -ACGGAAGTTGAGAGAGCATGCACT -ACGGAAGTTGAGAGAGCACTGACT -ACGGAAGTTGAGAGAGCACAACCT -ACGGAAGTTGAGAGAGCAGCTACT -ACGGAAGTTGAGAGAGCAGGATCT -ACGGAAGTTGAGAGAGCAAAGGCT -ACGGAAGTTGAGAGAGCATCAACC -ACGGAAGTTGAGAGAGCATGTTCC -ACGGAAGTTGAGAGAGCAATTCCC -ACGGAAGTTGAGAGAGCATTCTCG -ACGGAAGTTGAGAGAGCATAGACG -ACGGAAGTTGAGAGAGCAGTAACG -ACGGAAGTTGAGAGAGCAACTTCG -ACGGAAGTTGAGAGAGCATACGCA -ACGGAAGTTGAGAGAGCACTTGCA -ACGGAAGTTGAGAGAGCACGAACA -ACGGAAGTTGAGAGAGCACAGTCA -ACGGAAGTTGAGAGAGCAGATCCA -ACGGAAGTTGAGAGAGCAACGACA -ACGGAAGTTGAGAGAGCAAGCTCA -ACGGAAGTTGAGAGAGCATCACGT -ACGGAAGTTGAGAGAGCACGTAGT -ACGGAAGTTGAGAGAGCAGTCAGT -ACGGAAGTTGAGAGAGCAGAAGGT -ACGGAAGTTGAGAGAGCAAACCGT -ACGGAAGTTGAGAGAGCATTGTGC -ACGGAAGTTGAGAGAGCACTAAGC -ACGGAAGTTGAGAGAGCAACTAGC -ACGGAAGTTGAGAGAGCAAGATGC -ACGGAAGTTGAGAGAGCATGAAGG -ACGGAAGTTGAGAGAGCACAATGG -ACGGAAGTTGAGAGAGCAATGAGG -ACGGAAGTTGAGAGAGCAAATGGG -ACGGAAGTTGAGAGAGCATCCTGA -ACGGAAGTTGAGAGAGCATAGCGA -ACGGAAGTTGAGAGAGCACACAGA -ACGGAAGTTGAGAGAGCAGCAAGA -ACGGAAGTTGAGAGAGCAGGTTGA -ACGGAAGTTGAGAGAGCATCCGAT -ACGGAAGTTGAGAGAGCATGGCAT -ACGGAAGTTGAGAGAGCACGAGAT -ACGGAAGTTGAGAGAGCATACCAC -ACGGAAGTTGAGAGAGCACAGAAC -ACGGAAGTTGAGAGAGCAGTCTAC -ACGGAAGTTGAGAGAGCAACGTAC -ACGGAAGTTGAGAGAGCAAGTGAC -ACGGAAGTTGAGAGAGCACTGTAG -ACGGAAGTTGAGAGAGCACCTAAG -ACGGAAGTTGAGAGAGCAGTTCAG -ACGGAAGTTGAGAGAGCAGCATAG -ACGGAAGTTGAGAGAGCAGACAAG -ACGGAAGTTGAGAGAGCAAAGCAG -ACGGAAGTTGAGAGAGCACGTCAA -ACGGAAGTTGAGAGAGCAGCTGAA -ACGGAAGTTGAGAGAGCAAGTACG -ACGGAAGTTGAGAGAGCAATCCGA -ACGGAAGTTGAGAGAGCAATGGGA -ACGGAAGTTGAGAGAGCAGTGCAA -ACGGAAGTTGAGAGAGCAGAGGAA -ACGGAAGTTGAGAGAGCACAGGTA -ACGGAAGTTGAGAGAGCAGACTCT -ACGGAAGTTGAGAGAGCAAGTCCT -ACGGAAGTTGAGAGAGCATAAGCC -ACGGAAGTTGAGAGAGCAATAGCC -ACGGAAGTTGAGAGAGCATAACCG -ACGGAAGTTGAGAGAGCAATGCCA -ACGGAAGTTGAGTGAGGTGGAAAC -ACGGAAGTTGAGTGAGGTAACACC -ACGGAAGTTGAGTGAGGTATCGAG -ACGGAAGTTGAGTGAGGTCTCCTT -ACGGAAGTTGAGTGAGGTCCTGTT -ACGGAAGTTGAGTGAGGTCGGTTT -ACGGAAGTTGAGTGAGGTGTGGTT -ACGGAAGTTGAGTGAGGTGCCTTT -ACGGAAGTTGAGTGAGGTGGTCTT -ACGGAAGTTGAGTGAGGTACGCTT -ACGGAAGTTGAGTGAGGTAGCGTT -ACGGAAGTTGAGTGAGGTTTCGTC -ACGGAAGTTGAGTGAGGTTCTCTC -ACGGAAGTTGAGTGAGGTTGGATC -ACGGAAGTTGAGTGAGGTCACTTC -ACGGAAGTTGAGTGAGGTGTACTC -ACGGAAGTTGAGTGAGGTGATGTC -ACGGAAGTTGAGTGAGGTACAGTC -ACGGAAGTTGAGTGAGGTTTGCTG -ACGGAAGTTGAGTGAGGTTCCATG -ACGGAAGTTGAGTGAGGTTGTGTG -ACGGAAGTTGAGTGAGGTCTAGTG -ACGGAAGTTGAGTGAGGTCATCTG -ACGGAAGTTGAGTGAGGTGAGTTG -ACGGAAGTTGAGTGAGGTAGACTG -ACGGAAGTTGAGTGAGGTTCGGTA -ACGGAAGTTGAGTGAGGTTGCCTA -ACGGAAGTTGAGTGAGGTCCACTA -ACGGAAGTTGAGTGAGGTGGAGTA -ACGGAAGTTGAGTGAGGTTCGTCT -ACGGAAGTTGAGTGAGGTTGCACT -ACGGAAGTTGAGTGAGGTCTGACT -ACGGAAGTTGAGTGAGGTCAACCT -ACGGAAGTTGAGTGAGGTGCTACT -ACGGAAGTTGAGTGAGGTGGATCT -ACGGAAGTTGAGTGAGGTAAGGCT -ACGGAAGTTGAGTGAGGTTCAACC -ACGGAAGTTGAGTGAGGTTGTTCC -ACGGAAGTTGAGTGAGGTATTCCC -ACGGAAGTTGAGTGAGGTTTCTCG -ACGGAAGTTGAGTGAGGTTAGACG -ACGGAAGTTGAGTGAGGTGTAACG -ACGGAAGTTGAGTGAGGTACTTCG -ACGGAAGTTGAGTGAGGTTACGCA -ACGGAAGTTGAGTGAGGTCTTGCA -ACGGAAGTTGAGTGAGGTCGAACA -ACGGAAGTTGAGTGAGGTCAGTCA -ACGGAAGTTGAGTGAGGTGATCCA -ACGGAAGTTGAGTGAGGTACGACA -ACGGAAGTTGAGTGAGGTAGCTCA -ACGGAAGTTGAGTGAGGTTCACGT -ACGGAAGTTGAGTGAGGTCGTAGT -ACGGAAGTTGAGTGAGGTGTCAGT -ACGGAAGTTGAGTGAGGTGAAGGT -ACGGAAGTTGAGTGAGGTAACCGT -ACGGAAGTTGAGTGAGGTTTGTGC -ACGGAAGTTGAGTGAGGTCTAAGC -ACGGAAGTTGAGTGAGGTACTAGC -ACGGAAGTTGAGTGAGGTAGATGC -ACGGAAGTTGAGTGAGGTTGAAGG -ACGGAAGTTGAGTGAGGTCAATGG -ACGGAAGTTGAGTGAGGTATGAGG -ACGGAAGTTGAGTGAGGTAATGGG -ACGGAAGTTGAGTGAGGTTCCTGA -ACGGAAGTTGAGTGAGGTTAGCGA -ACGGAAGTTGAGTGAGGTCACAGA -ACGGAAGTTGAGTGAGGTGCAAGA -ACGGAAGTTGAGTGAGGTGGTTGA -ACGGAAGTTGAGTGAGGTTCCGAT -ACGGAAGTTGAGTGAGGTTGGCAT -ACGGAAGTTGAGTGAGGTCGAGAT -ACGGAAGTTGAGTGAGGTTACCAC -ACGGAAGTTGAGTGAGGTCAGAAC -ACGGAAGTTGAGTGAGGTGTCTAC -ACGGAAGTTGAGTGAGGTACGTAC -ACGGAAGTTGAGTGAGGTAGTGAC -ACGGAAGTTGAGTGAGGTCTGTAG -ACGGAAGTTGAGTGAGGTCCTAAG -ACGGAAGTTGAGTGAGGTGTTCAG -ACGGAAGTTGAGTGAGGTGCATAG -ACGGAAGTTGAGTGAGGTGACAAG -ACGGAAGTTGAGTGAGGTAAGCAG -ACGGAAGTTGAGTGAGGTCGTCAA -ACGGAAGTTGAGTGAGGTGCTGAA -ACGGAAGTTGAGTGAGGTAGTACG -ACGGAAGTTGAGTGAGGTATCCGA -ACGGAAGTTGAGTGAGGTATGGGA -ACGGAAGTTGAGTGAGGTGTGCAA -ACGGAAGTTGAGTGAGGTGAGGAA -ACGGAAGTTGAGTGAGGTCAGGTA -ACGGAAGTTGAGTGAGGTGACTCT -ACGGAAGTTGAGTGAGGTAGTCCT -ACGGAAGTTGAGTGAGGTTAAGCC -ACGGAAGTTGAGTGAGGTATAGCC -ACGGAAGTTGAGTGAGGTTAACCG -ACGGAAGTTGAGTGAGGTATGCCA -ACGGAAGTTGAGGATTCCGGAAAC -ACGGAAGTTGAGGATTCCAACACC -ACGGAAGTTGAGGATTCCATCGAG -ACGGAAGTTGAGGATTCCCTCCTT -ACGGAAGTTGAGGATTCCCCTGTT -ACGGAAGTTGAGGATTCCCGGTTT -ACGGAAGTTGAGGATTCCGTGGTT -ACGGAAGTTGAGGATTCCGCCTTT -ACGGAAGTTGAGGATTCCGGTCTT -ACGGAAGTTGAGGATTCCACGCTT -ACGGAAGTTGAGGATTCCAGCGTT -ACGGAAGTTGAGGATTCCTTCGTC -ACGGAAGTTGAGGATTCCTCTCTC -ACGGAAGTTGAGGATTCCTGGATC -ACGGAAGTTGAGGATTCCCACTTC -ACGGAAGTTGAGGATTCCGTACTC -ACGGAAGTTGAGGATTCCGATGTC -ACGGAAGTTGAGGATTCCACAGTC -ACGGAAGTTGAGGATTCCTTGCTG -ACGGAAGTTGAGGATTCCTCCATG -ACGGAAGTTGAGGATTCCTGTGTG -ACGGAAGTTGAGGATTCCCTAGTG -ACGGAAGTTGAGGATTCCCATCTG -ACGGAAGTTGAGGATTCCGAGTTG -ACGGAAGTTGAGGATTCCAGACTG -ACGGAAGTTGAGGATTCCTCGGTA -ACGGAAGTTGAGGATTCCTGCCTA -ACGGAAGTTGAGGATTCCCCACTA -ACGGAAGTTGAGGATTCCGGAGTA -ACGGAAGTTGAGGATTCCTCGTCT -ACGGAAGTTGAGGATTCCTGCACT -ACGGAAGTTGAGGATTCCCTGACT -ACGGAAGTTGAGGATTCCCAACCT -ACGGAAGTTGAGGATTCCGCTACT -ACGGAAGTTGAGGATTCCGGATCT -ACGGAAGTTGAGGATTCCAAGGCT -ACGGAAGTTGAGGATTCCTCAACC -ACGGAAGTTGAGGATTCCTGTTCC -ACGGAAGTTGAGGATTCCATTCCC -ACGGAAGTTGAGGATTCCTTCTCG -ACGGAAGTTGAGGATTCCTAGACG -ACGGAAGTTGAGGATTCCGTAACG -ACGGAAGTTGAGGATTCCACTTCG -ACGGAAGTTGAGGATTCCTACGCA -ACGGAAGTTGAGGATTCCCTTGCA -ACGGAAGTTGAGGATTCCCGAACA -ACGGAAGTTGAGGATTCCCAGTCA -ACGGAAGTTGAGGATTCCGATCCA -ACGGAAGTTGAGGATTCCACGACA -ACGGAAGTTGAGGATTCCAGCTCA -ACGGAAGTTGAGGATTCCTCACGT -ACGGAAGTTGAGGATTCCCGTAGT -ACGGAAGTTGAGGATTCCGTCAGT -ACGGAAGTTGAGGATTCCGAAGGT -ACGGAAGTTGAGGATTCCAACCGT -ACGGAAGTTGAGGATTCCTTGTGC -ACGGAAGTTGAGGATTCCCTAAGC -ACGGAAGTTGAGGATTCCACTAGC -ACGGAAGTTGAGGATTCCAGATGC -ACGGAAGTTGAGGATTCCTGAAGG -ACGGAAGTTGAGGATTCCCAATGG -ACGGAAGTTGAGGATTCCATGAGG -ACGGAAGTTGAGGATTCCAATGGG -ACGGAAGTTGAGGATTCCTCCTGA -ACGGAAGTTGAGGATTCCTAGCGA -ACGGAAGTTGAGGATTCCCACAGA -ACGGAAGTTGAGGATTCCGCAAGA -ACGGAAGTTGAGGATTCCGGTTGA -ACGGAAGTTGAGGATTCCTCCGAT -ACGGAAGTTGAGGATTCCTGGCAT -ACGGAAGTTGAGGATTCCCGAGAT -ACGGAAGTTGAGGATTCCTACCAC -ACGGAAGTTGAGGATTCCCAGAAC -ACGGAAGTTGAGGATTCCGTCTAC -ACGGAAGTTGAGGATTCCACGTAC -ACGGAAGTTGAGGATTCCAGTGAC -ACGGAAGTTGAGGATTCCCTGTAG -ACGGAAGTTGAGGATTCCCCTAAG -ACGGAAGTTGAGGATTCCGTTCAG -ACGGAAGTTGAGGATTCCGCATAG -ACGGAAGTTGAGGATTCCGACAAG -ACGGAAGTTGAGGATTCCAAGCAG -ACGGAAGTTGAGGATTCCCGTCAA -ACGGAAGTTGAGGATTCCGCTGAA -ACGGAAGTTGAGGATTCCAGTACG -ACGGAAGTTGAGGATTCCATCCGA -ACGGAAGTTGAGGATTCCATGGGA -ACGGAAGTTGAGGATTCCGTGCAA -ACGGAAGTTGAGGATTCCGAGGAA -ACGGAAGTTGAGGATTCCCAGGTA -ACGGAAGTTGAGGATTCCGACTCT -ACGGAAGTTGAGGATTCCAGTCCT -ACGGAAGTTGAGGATTCCTAAGCC -ACGGAAGTTGAGGATTCCATAGCC -ACGGAAGTTGAGGATTCCTAACCG -ACGGAAGTTGAGGATTCCATGCCA -ACGGAAGTTGAGCATTGGGGAAAC -ACGGAAGTTGAGCATTGGAACACC -ACGGAAGTTGAGCATTGGATCGAG -ACGGAAGTTGAGCATTGGCTCCTT -ACGGAAGTTGAGCATTGGCCTGTT -ACGGAAGTTGAGCATTGGCGGTTT -ACGGAAGTTGAGCATTGGGTGGTT -ACGGAAGTTGAGCATTGGGCCTTT -ACGGAAGTTGAGCATTGGGGTCTT -ACGGAAGTTGAGCATTGGACGCTT -ACGGAAGTTGAGCATTGGAGCGTT -ACGGAAGTTGAGCATTGGTTCGTC -ACGGAAGTTGAGCATTGGTCTCTC -ACGGAAGTTGAGCATTGGTGGATC -ACGGAAGTTGAGCATTGGCACTTC -ACGGAAGTTGAGCATTGGGTACTC -ACGGAAGTTGAGCATTGGGATGTC -ACGGAAGTTGAGCATTGGACAGTC -ACGGAAGTTGAGCATTGGTTGCTG -ACGGAAGTTGAGCATTGGTCCATG -ACGGAAGTTGAGCATTGGTGTGTG -ACGGAAGTTGAGCATTGGCTAGTG -ACGGAAGTTGAGCATTGGCATCTG -ACGGAAGTTGAGCATTGGGAGTTG -ACGGAAGTTGAGCATTGGAGACTG -ACGGAAGTTGAGCATTGGTCGGTA -ACGGAAGTTGAGCATTGGTGCCTA -ACGGAAGTTGAGCATTGGCCACTA -ACGGAAGTTGAGCATTGGGGAGTA -ACGGAAGTTGAGCATTGGTCGTCT -ACGGAAGTTGAGCATTGGTGCACT -ACGGAAGTTGAGCATTGGCTGACT -ACGGAAGTTGAGCATTGGCAACCT -ACGGAAGTTGAGCATTGGGCTACT -ACGGAAGTTGAGCATTGGGGATCT -ACGGAAGTTGAGCATTGGAAGGCT -ACGGAAGTTGAGCATTGGTCAACC -ACGGAAGTTGAGCATTGGTGTTCC -ACGGAAGTTGAGCATTGGATTCCC -ACGGAAGTTGAGCATTGGTTCTCG -ACGGAAGTTGAGCATTGGTAGACG -ACGGAAGTTGAGCATTGGGTAACG -ACGGAAGTTGAGCATTGGACTTCG -ACGGAAGTTGAGCATTGGTACGCA -ACGGAAGTTGAGCATTGGCTTGCA -ACGGAAGTTGAGCATTGGCGAACA -ACGGAAGTTGAGCATTGGCAGTCA -ACGGAAGTTGAGCATTGGGATCCA -ACGGAAGTTGAGCATTGGACGACA -ACGGAAGTTGAGCATTGGAGCTCA -ACGGAAGTTGAGCATTGGTCACGT -ACGGAAGTTGAGCATTGGCGTAGT -ACGGAAGTTGAGCATTGGGTCAGT -ACGGAAGTTGAGCATTGGGAAGGT -ACGGAAGTTGAGCATTGGAACCGT -ACGGAAGTTGAGCATTGGTTGTGC -ACGGAAGTTGAGCATTGGCTAAGC -ACGGAAGTTGAGCATTGGACTAGC -ACGGAAGTTGAGCATTGGAGATGC -ACGGAAGTTGAGCATTGGTGAAGG -ACGGAAGTTGAGCATTGGCAATGG -ACGGAAGTTGAGCATTGGATGAGG -ACGGAAGTTGAGCATTGGAATGGG -ACGGAAGTTGAGCATTGGTCCTGA -ACGGAAGTTGAGCATTGGTAGCGA -ACGGAAGTTGAGCATTGGCACAGA -ACGGAAGTTGAGCATTGGGCAAGA -ACGGAAGTTGAGCATTGGGGTTGA -ACGGAAGTTGAGCATTGGTCCGAT -ACGGAAGTTGAGCATTGGTGGCAT -ACGGAAGTTGAGCATTGGCGAGAT -ACGGAAGTTGAGCATTGGTACCAC -ACGGAAGTTGAGCATTGGCAGAAC -ACGGAAGTTGAGCATTGGGTCTAC -ACGGAAGTTGAGCATTGGACGTAC -ACGGAAGTTGAGCATTGGAGTGAC -ACGGAAGTTGAGCATTGGCTGTAG -ACGGAAGTTGAGCATTGGCCTAAG -ACGGAAGTTGAGCATTGGGTTCAG -ACGGAAGTTGAGCATTGGGCATAG -ACGGAAGTTGAGCATTGGGACAAG -ACGGAAGTTGAGCATTGGAAGCAG -ACGGAAGTTGAGCATTGGCGTCAA -ACGGAAGTTGAGCATTGGGCTGAA -ACGGAAGTTGAGCATTGGAGTACG -ACGGAAGTTGAGCATTGGATCCGA -ACGGAAGTTGAGCATTGGATGGGA -ACGGAAGTTGAGCATTGGGTGCAA -ACGGAAGTTGAGCATTGGGAGGAA -ACGGAAGTTGAGCATTGGCAGGTA -ACGGAAGTTGAGCATTGGGACTCT -ACGGAAGTTGAGCATTGGAGTCCT -ACGGAAGTTGAGCATTGGTAAGCC -ACGGAAGTTGAGCATTGGATAGCC -ACGGAAGTTGAGCATTGGTAACCG -ACGGAAGTTGAGCATTGGATGCCA -ACGGAAGTTGAGGATCGAGGAAAC -ACGGAAGTTGAGGATCGAAACACC -ACGGAAGTTGAGGATCGAATCGAG -ACGGAAGTTGAGGATCGACTCCTT -ACGGAAGTTGAGGATCGACCTGTT -ACGGAAGTTGAGGATCGACGGTTT -ACGGAAGTTGAGGATCGAGTGGTT -ACGGAAGTTGAGGATCGAGCCTTT -ACGGAAGTTGAGGATCGAGGTCTT -ACGGAAGTTGAGGATCGAACGCTT -ACGGAAGTTGAGGATCGAAGCGTT -ACGGAAGTTGAGGATCGATTCGTC -ACGGAAGTTGAGGATCGATCTCTC -ACGGAAGTTGAGGATCGATGGATC -ACGGAAGTTGAGGATCGACACTTC -ACGGAAGTTGAGGATCGAGTACTC -ACGGAAGTTGAGGATCGAGATGTC -ACGGAAGTTGAGGATCGAACAGTC -ACGGAAGTTGAGGATCGATTGCTG -ACGGAAGTTGAGGATCGATCCATG -ACGGAAGTTGAGGATCGATGTGTG -ACGGAAGTTGAGGATCGACTAGTG -ACGGAAGTTGAGGATCGACATCTG -ACGGAAGTTGAGGATCGAGAGTTG -ACGGAAGTTGAGGATCGAAGACTG -ACGGAAGTTGAGGATCGATCGGTA -ACGGAAGTTGAGGATCGATGCCTA -ACGGAAGTTGAGGATCGACCACTA -ACGGAAGTTGAGGATCGAGGAGTA -ACGGAAGTTGAGGATCGATCGTCT -ACGGAAGTTGAGGATCGATGCACT -ACGGAAGTTGAGGATCGACTGACT -ACGGAAGTTGAGGATCGACAACCT -ACGGAAGTTGAGGATCGAGCTACT -ACGGAAGTTGAGGATCGAGGATCT -ACGGAAGTTGAGGATCGAAAGGCT -ACGGAAGTTGAGGATCGATCAACC -ACGGAAGTTGAGGATCGATGTTCC -ACGGAAGTTGAGGATCGAATTCCC -ACGGAAGTTGAGGATCGATTCTCG -ACGGAAGTTGAGGATCGATAGACG -ACGGAAGTTGAGGATCGAGTAACG -ACGGAAGTTGAGGATCGAACTTCG -ACGGAAGTTGAGGATCGATACGCA -ACGGAAGTTGAGGATCGACTTGCA -ACGGAAGTTGAGGATCGACGAACA -ACGGAAGTTGAGGATCGACAGTCA -ACGGAAGTTGAGGATCGAGATCCA -ACGGAAGTTGAGGATCGAACGACA -ACGGAAGTTGAGGATCGAAGCTCA -ACGGAAGTTGAGGATCGATCACGT -ACGGAAGTTGAGGATCGACGTAGT -ACGGAAGTTGAGGATCGAGTCAGT -ACGGAAGTTGAGGATCGAGAAGGT -ACGGAAGTTGAGGATCGAAACCGT -ACGGAAGTTGAGGATCGATTGTGC -ACGGAAGTTGAGGATCGACTAAGC -ACGGAAGTTGAGGATCGAACTAGC -ACGGAAGTTGAGGATCGAAGATGC -ACGGAAGTTGAGGATCGATGAAGG -ACGGAAGTTGAGGATCGACAATGG -ACGGAAGTTGAGGATCGAATGAGG -ACGGAAGTTGAGGATCGAAATGGG -ACGGAAGTTGAGGATCGATCCTGA -ACGGAAGTTGAGGATCGATAGCGA -ACGGAAGTTGAGGATCGACACAGA -ACGGAAGTTGAGGATCGAGCAAGA -ACGGAAGTTGAGGATCGAGGTTGA -ACGGAAGTTGAGGATCGATCCGAT -ACGGAAGTTGAGGATCGATGGCAT -ACGGAAGTTGAGGATCGACGAGAT -ACGGAAGTTGAGGATCGATACCAC -ACGGAAGTTGAGGATCGACAGAAC -ACGGAAGTTGAGGATCGAGTCTAC -ACGGAAGTTGAGGATCGAACGTAC -ACGGAAGTTGAGGATCGAAGTGAC -ACGGAAGTTGAGGATCGACTGTAG -ACGGAAGTTGAGGATCGACCTAAG -ACGGAAGTTGAGGATCGAGTTCAG -ACGGAAGTTGAGGATCGAGCATAG -ACGGAAGTTGAGGATCGAGACAAG -ACGGAAGTTGAGGATCGAAAGCAG -ACGGAAGTTGAGGATCGACGTCAA -ACGGAAGTTGAGGATCGAGCTGAA -ACGGAAGTTGAGGATCGAAGTACG -ACGGAAGTTGAGGATCGAATCCGA -ACGGAAGTTGAGGATCGAATGGGA -ACGGAAGTTGAGGATCGAGTGCAA -ACGGAAGTTGAGGATCGAGAGGAA -ACGGAAGTTGAGGATCGACAGGTA -ACGGAAGTTGAGGATCGAGACTCT -ACGGAAGTTGAGGATCGAAGTCCT -ACGGAAGTTGAGGATCGATAAGCC -ACGGAAGTTGAGGATCGAATAGCC -ACGGAAGTTGAGGATCGATAACCG -ACGGAAGTTGAGGATCGAATGCCA -ACGGAAGTTGAGCACTACGGAAAC -ACGGAAGTTGAGCACTACAACACC -ACGGAAGTTGAGCACTACATCGAG -ACGGAAGTTGAGCACTACCTCCTT -ACGGAAGTTGAGCACTACCCTGTT -ACGGAAGTTGAGCACTACCGGTTT -ACGGAAGTTGAGCACTACGTGGTT -ACGGAAGTTGAGCACTACGCCTTT -ACGGAAGTTGAGCACTACGGTCTT -ACGGAAGTTGAGCACTACACGCTT -ACGGAAGTTGAGCACTACAGCGTT -ACGGAAGTTGAGCACTACTTCGTC -ACGGAAGTTGAGCACTACTCTCTC -ACGGAAGTTGAGCACTACTGGATC -ACGGAAGTTGAGCACTACCACTTC -ACGGAAGTTGAGCACTACGTACTC -ACGGAAGTTGAGCACTACGATGTC -ACGGAAGTTGAGCACTACACAGTC -ACGGAAGTTGAGCACTACTTGCTG -ACGGAAGTTGAGCACTACTCCATG -ACGGAAGTTGAGCACTACTGTGTG -ACGGAAGTTGAGCACTACCTAGTG -ACGGAAGTTGAGCACTACCATCTG -ACGGAAGTTGAGCACTACGAGTTG -ACGGAAGTTGAGCACTACAGACTG -ACGGAAGTTGAGCACTACTCGGTA -ACGGAAGTTGAGCACTACTGCCTA -ACGGAAGTTGAGCACTACCCACTA -ACGGAAGTTGAGCACTACGGAGTA -ACGGAAGTTGAGCACTACTCGTCT -ACGGAAGTTGAGCACTACTGCACT -ACGGAAGTTGAGCACTACCTGACT -ACGGAAGTTGAGCACTACCAACCT -ACGGAAGTTGAGCACTACGCTACT -ACGGAAGTTGAGCACTACGGATCT -ACGGAAGTTGAGCACTACAAGGCT -ACGGAAGTTGAGCACTACTCAACC -ACGGAAGTTGAGCACTACTGTTCC -ACGGAAGTTGAGCACTACATTCCC -ACGGAAGTTGAGCACTACTTCTCG -ACGGAAGTTGAGCACTACTAGACG -ACGGAAGTTGAGCACTACGTAACG -ACGGAAGTTGAGCACTACACTTCG -ACGGAAGTTGAGCACTACTACGCA -ACGGAAGTTGAGCACTACCTTGCA -ACGGAAGTTGAGCACTACCGAACA -ACGGAAGTTGAGCACTACCAGTCA -ACGGAAGTTGAGCACTACGATCCA -ACGGAAGTTGAGCACTACACGACA -ACGGAAGTTGAGCACTACAGCTCA -ACGGAAGTTGAGCACTACTCACGT -ACGGAAGTTGAGCACTACCGTAGT -ACGGAAGTTGAGCACTACGTCAGT -ACGGAAGTTGAGCACTACGAAGGT -ACGGAAGTTGAGCACTACAACCGT -ACGGAAGTTGAGCACTACTTGTGC -ACGGAAGTTGAGCACTACCTAAGC -ACGGAAGTTGAGCACTACACTAGC -ACGGAAGTTGAGCACTACAGATGC -ACGGAAGTTGAGCACTACTGAAGG -ACGGAAGTTGAGCACTACCAATGG -ACGGAAGTTGAGCACTACATGAGG -ACGGAAGTTGAGCACTACAATGGG -ACGGAAGTTGAGCACTACTCCTGA -ACGGAAGTTGAGCACTACTAGCGA -ACGGAAGTTGAGCACTACCACAGA -ACGGAAGTTGAGCACTACGCAAGA -ACGGAAGTTGAGCACTACGGTTGA -ACGGAAGTTGAGCACTACTCCGAT -ACGGAAGTTGAGCACTACTGGCAT -ACGGAAGTTGAGCACTACCGAGAT -ACGGAAGTTGAGCACTACTACCAC -ACGGAAGTTGAGCACTACCAGAAC -ACGGAAGTTGAGCACTACGTCTAC -ACGGAAGTTGAGCACTACACGTAC -ACGGAAGTTGAGCACTACAGTGAC -ACGGAAGTTGAGCACTACCTGTAG -ACGGAAGTTGAGCACTACCCTAAG -ACGGAAGTTGAGCACTACGTTCAG -ACGGAAGTTGAGCACTACGCATAG -ACGGAAGTTGAGCACTACGACAAG -ACGGAAGTTGAGCACTACAAGCAG -ACGGAAGTTGAGCACTACCGTCAA -ACGGAAGTTGAGCACTACGCTGAA -ACGGAAGTTGAGCACTACAGTACG -ACGGAAGTTGAGCACTACATCCGA -ACGGAAGTTGAGCACTACATGGGA -ACGGAAGTTGAGCACTACGTGCAA -ACGGAAGTTGAGCACTACGAGGAA -ACGGAAGTTGAGCACTACCAGGTA -ACGGAAGTTGAGCACTACGACTCT -ACGGAAGTTGAGCACTACAGTCCT -ACGGAAGTTGAGCACTACTAAGCC -ACGGAAGTTGAGCACTACATAGCC -ACGGAAGTTGAGCACTACTAACCG -ACGGAAGTTGAGCACTACATGCCA -ACGGAAGTTGAGAACCAGGGAAAC -ACGGAAGTTGAGAACCAGAACACC -ACGGAAGTTGAGAACCAGATCGAG -ACGGAAGTTGAGAACCAGCTCCTT -ACGGAAGTTGAGAACCAGCCTGTT -ACGGAAGTTGAGAACCAGCGGTTT -ACGGAAGTTGAGAACCAGGTGGTT -ACGGAAGTTGAGAACCAGGCCTTT -ACGGAAGTTGAGAACCAGGGTCTT -ACGGAAGTTGAGAACCAGACGCTT -ACGGAAGTTGAGAACCAGAGCGTT -ACGGAAGTTGAGAACCAGTTCGTC -ACGGAAGTTGAGAACCAGTCTCTC -ACGGAAGTTGAGAACCAGTGGATC -ACGGAAGTTGAGAACCAGCACTTC -ACGGAAGTTGAGAACCAGGTACTC -ACGGAAGTTGAGAACCAGGATGTC -ACGGAAGTTGAGAACCAGACAGTC -ACGGAAGTTGAGAACCAGTTGCTG -ACGGAAGTTGAGAACCAGTCCATG -ACGGAAGTTGAGAACCAGTGTGTG -ACGGAAGTTGAGAACCAGCTAGTG -ACGGAAGTTGAGAACCAGCATCTG -ACGGAAGTTGAGAACCAGGAGTTG -ACGGAAGTTGAGAACCAGAGACTG -ACGGAAGTTGAGAACCAGTCGGTA -ACGGAAGTTGAGAACCAGTGCCTA -ACGGAAGTTGAGAACCAGCCACTA -ACGGAAGTTGAGAACCAGGGAGTA -ACGGAAGTTGAGAACCAGTCGTCT -ACGGAAGTTGAGAACCAGTGCACT -ACGGAAGTTGAGAACCAGCTGACT -ACGGAAGTTGAGAACCAGCAACCT -ACGGAAGTTGAGAACCAGGCTACT -ACGGAAGTTGAGAACCAGGGATCT -ACGGAAGTTGAGAACCAGAAGGCT -ACGGAAGTTGAGAACCAGTCAACC -ACGGAAGTTGAGAACCAGTGTTCC -ACGGAAGTTGAGAACCAGATTCCC -ACGGAAGTTGAGAACCAGTTCTCG -ACGGAAGTTGAGAACCAGTAGACG -ACGGAAGTTGAGAACCAGGTAACG -ACGGAAGTTGAGAACCAGACTTCG -ACGGAAGTTGAGAACCAGTACGCA -ACGGAAGTTGAGAACCAGCTTGCA -ACGGAAGTTGAGAACCAGCGAACA -ACGGAAGTTGAGAACCAGCAGTCA -ACGGAAGTTGAGAACCAGGATCCA -ACGGAAGTTGAGAACCAGACGACA -ACGGAAGTTGAGAACCAGAGCTCA -ACGGAAGTTGAGAACCAGTCACGT -ACGGAAGTTGAGAACCAGCGTAGT -ACGGAAGTTGAGAACCAGGTCAGT -ACGGAAGTTGAGAACCAGGAAGGT -ACGGAAGTTGAGAACCAGAACCGT -ACGGAAGTTGAGAACCAGTTGTGC -ACGGAAGTTGAGAACCAGCTAAGC -ACGGAAGTTGAGAACCAGACTAGC -ACGGAAGTTGAGAACCAGAGATGC -ACGGAAGTTGAGAACCAGTGAAGG -ACGGAAGTTGAGAACCAGCAATGG -ACGGAAGTTGAGAACCAGATGAGG -ACGGAAGTTGAGAACCAGAATGGG -ACGGAAGTTGAGAACCAGTCCTGA -ACGGAAGTTGAGAACCAGTAGCGA -ACGGAAGTTGAGAACCAGCACAGA -ACGGAAGTTGAGAACCAGGCAAGA -ACGGAAGTTGAGAACCAGGGTTGA -ACGGAAGTTGAGAACCAGTCCGAT -ACGGAAGTTGAGAACCAGTGGCAT -ACGGAAGTTGAGAACCAGCGAGAT -ACGGAAGTTGAGAACCAGTACCAC -ACGGAAGTTGAGAACCAGCAGAAC -ACGGAAGTTGAGAACCAGGTCTAC -ACGGAAGTTGAGAACCAGACGTAC -ACGGAAGTTGAGAACCAGAGTGAC -ACGGAAGTTGAGAACCAGCTGTAG -ACGGAAGTTGAGAACCAGCCTAAG -ACGGAAGTTGAGAACCAGGTTCAG -ACGGAAGTTGAGAACCAGGCATAG -ACGGAAGTTGAGAACCAGGACAAG -ACGGAAGTTGAGAACCAGAAGCAG -ACGGAAGTTGAGAACCAGCGTCAA -ACGGAAGTTGAGAACCAGGCTGAA -ACGGAAGTTGAGAACCAGAGTACG -ACGGAAGTTGAGAACCAGATCCGA -ACGGAAGTTGAGAACCAGATGGGA -ACGGAAGTTGAGAACCAGGTGCAA -ACGGAAGTTGAGAACCAGGAGGAA -ACGGAAGTTGAGAACCAGCAGGTA -ACGGAAGTTGAGAACCAGGACTCT -ACGGAAGTTGAGAACCAGAGTCCT -ACGGAAGTTGAGAACCAGTAAGCC -ACGGAAGTTGAGAACCAGATAGCC -ACGGAAGTTGAGAACCAGTAACCG -ACGGAAGTTGAGAACCAGATGCCA -ACGGAAGTTGAGTACGTCGGAAAC -ACGGAAGTTGAGTACGTCAACACC -ACGGAAGTTGAGTACGTCATCGAG -ACGGAAGTTGAGTACGTCCTCCTT -ACGGAAGTTGAGTACGTCCCTGTT -ACGGAAGTTGAGTACGTCCGGTTT -ACGGAAGTTGAGTACGTCGTGGTT -ACGGAAGTTGAGTACGTCGCCTTT -ACGGAAGTTGAGTACGTCGGTCTT -ACGGAAGTTGAGTACGTCACGCTT -ACGGAAGTTGAGTACGTCAGCGTT -ACGGAAGTTGAGTACGTCTTCGTC -ACGGAAGTTGAGTACGTCTCTCTC -ACGGAAGTTGAGTACGTCTGGATC -ACGGAAGTTGAGTACGTCCACTTC -ACGGAAGTTGAGTACGTCGTACTC -ACGGAAGTTGAGTACGTCGATGTC -ACGGAAGTTGAGTACGTCACAGTC -ACGGAAGTTGAGTACGTCTTGCTG -ACGGAAGTTGAGTACGTCTCCATG -ACGGAAGTTGAGTACGTCTGTGTG -ACGGAAGTTGAGTACGTCCTAGTG -ACGGAAGTTGAGTACGTCCATCTG -ACGGAAGTTGAGTACGTCGAGTTG -ACGGAAGTTGAGTACGTCAGACTG -ACGGAAGTTGAGTACGTCTCGGTA -ACGGAAGTTGAGTACGTCTGCCTA -ACGGAAGTTGAGTACGTCCCACTA -ACGGAAGTTGAGTACGTCGGAGTA -ACGGAAGTTGAGTACGTCTCGTCT -ACGGAAGTTGAGTACGTCTGCACT -ACGGAAGTTGAGTACGTCCTGACT -ACGGAAGTTGAGTACGTCCAACCT -ACGGAAGTTGAGTACGTCGCTACT -ACGGAAGTTGAGTACGTCGGATCT -ACGGAAGTTGAGTACGTCAAGGCT -ACGGAAGTTGAGTACGTCTCAACC -ACGGAAGTTGAGTACGTCTGTTCC -ACGGAAGTTGAGTACGTCATTCCC -ACGGAAGTTGAGTACGTCTTCTCG -ACGGAAGTTGAGTACGTCTAGACG -ACGGAAGTTGAGTACGTCGTAACG -ACGGAAGTTGAGTACGTCACTTCG -ACGGAAGTTGAGTACGTCTACGCA -ACGGAAGTTGAGTACGTCCTTGCA -ACGGAAGTTGAGTACGTCCGAACA -ACGGAAGTTGAGTACGTCCAGTCA -ACGGAAGTTGAGTACGTCGATCCA -ACGGAAGTTGAGTACGTCACGACA -ACGGAAGTTGAGTACGTCAGCTCA -ACGGAAGTTGAGTACGTCTCACGT -ACGGAAGTTGAGTACGTCCGTAGT -ACGGAAGTTGAGTACGTCGTCAGT -ACGGAAGTTGAGTACGTCGAAGGT -ACGGAAGTTGAGTACGTCAACCGT -ACGGAAGTTGAGTACGTCTTGTGC -ACGGAAGTTGAGTACGTCCTAAGC -ACGGAAGTTGAGTACGTCACTAGC -ACGGAAGTTGAGTACGTCAGATGC -ACGGAAGTTGAGTACGTCTGAAGG -ACGGAAGTTGAGTACGTCCAATGG -ACGGAAGTTGAGTACGTCATGAGG -ACGGAAGTTGAGTACGTCAATGGG -ACGGAAGTTGAGTACGTCTCCTGA -ACGGAAGTTGAGTACGTCTAGCGA -ACGGAAGTTGAGTACGTCCACAGA -ACGGAAGTTGAGTACGTCGCAAGA -ACGGAAGTTGAGTACGTCGGTTGA -ACGGAAGTTGAGTACGTCTCCGAT -ACGGAAGTTGAGTACGTCTGGCAT -ACGGAAGTTGAGTACGTCCGAGAT -ACGGAAGTTGAGTACGTCTACCAC -ACGGAAGTTGAGTACGTCCAGAAC -ACGGAAGTTGAGTACGTCGTCTAC -ACGGAAGTTGAGTACGTCACGTAC -ACGGAAGTTGAGTACGTCAGTGAC -ACGGAAGTTGAGTACGTCCTGTAG -ACGGAAGTTGAGTACGTCCCTAAG -ACGGAAGTTGAGTACGTCGTTCAG -ACGGAAGTTGAGTACGTCGCATAG -ACGGAAGTTGAGTACGTCGACAAG -ACGGAAGTTGAGTACGTCAAGCAG -ACGGAAGTTGAGTACGTCCGTCAA -ACGGAAGTTGAGTACGTCGCTGAA -ACGGAAGTTGAGTACGTCAGTACG -ACGGAAGTTGAGTACGTCATCCGA -ACGGAAGTTGAGTACGTCATGGGA -ACGGAAGTTGAGTACGTCGTGCAA -ACGGAAGTTGAGTACGTCGAGGAA -ACGGAAGTTGAGTACGTCCAGGTA -ACGGAAGTTGAGTACGTCGACTCT -ACGGAAGTTGAGTACGTCAGTCCT -ACGGAAGTTGAGTACGTCTAAGCC -ACGGAAGTTGAGTACGTCATAGCC -ACGGAAGTTGAGTACGTCTAACCG -ACGGAAGTTGAGTACGTCATGCCA -ACGGAAGTTGAGTACACGGGAAAC -ACGGAAGTTGAGTACACGAACACC -ACGGAAGTTGAGTACACGATCGAG -ACGGAAGTTGAGTACACGCTCCTT -ACGGAAGTTGAGTACACGCCTGTT -ACGGAAGTTGAGTACACGCGGTTT -ACGGAAGTTGAGTACACGGTGGTT -ACGGAAGTTGAGTACACGGCCTTT -ACGGAAGTTGAGTACACGGGTCTT -ACGGAAGTTGAGTACACGACGCTT -ACGGAAGTTGAGTACACGAGCGTT -ACGGAAGTTGAGTACACGTTCGTC -ACGGAAGTTGAGTACACGTCTCTC -ACGGAAGTTGAGTACACGTGGATC -ACGGAAGTTGAGTACACGCACTTC -ACGGAAGTTGAGTACACGGTACTC -ACGGAAGTTGAGTACACGGATGTC -ACGGAAGTTGAGTACACGACAGTC -ACGGAAGTTGAGTACACGTTGCTG -ACGGAAGTTGAGTACACGTCCATG -ACGGAAGTTGAGTACACGTGTGTG -ACGGAAGTTGAGTACACGCTAGTG -ACGGAAGTTGAGTACACGCATCTG -ACGGAAGTTGAGTACACGGAGTTG -ACGGAAGTTGAGTACACGAGACTG -ACGGAAGTTGAGTACACGTCGGTA -ACGGAAGTTGAGTACACGTGCCTA -ACGGAAGTTGAGTACACGCCACTA -ACGGAAGTTGAGTACACGGGAGTA -ACGGAAGTTGAGTACACGTCGTCT -ACGGAAGTTGAGTACACGTGCACT -ACGGAAGTTGAGTACACGCTGACT -ACGGAAGTTGAGTACACGCAACCT -ACGGAAGTTGAGTACACGGCTACT -ACGGAAGTTGAGTACACGGGATCT -ACGGAAGTTGAGTACACGAAGGCT -ACGGAAGTTGAGTACACGTCAACC -ACGGAAGTTGAGTACACGTGTTCC -ACGGAAGTTGAGTACACGATTCCC -ACGGAAGTTGAGTACACGTTCTCG -ACGGAAGTTGAGTACACGTAGACG -ACGGAAGTTGAGTACACGGTAACG -ACGGAAGTTGAGTACACGACTTCG -ACGGAAGTTGAGTACACGTACGCA -ACGGAAGTTGAGTACACGCTTGCA -ACGGAAGTTGAGTACACGCGAACA -ACGGAAGTTGAGTACACGCAGTCA -ACGGAAGTTGAGTACACGGATCCA -ACGGAAGTTGAGTACACGACGACA -ACGGAAGTTGAGTACACGAGCTCA -ACGGAAGTTGAGTACACGTCACGT -ACGGAAGTTGAGTACACGCGTAGT -ACGGAAGTTGAGTACACGGTCAGT -ACGGAAGTTGAGTACACGGAAGGT -ACGGAAGTTGAGTACACGAACCGT -ACGGAAGTTGAGTACACGTTGTGC -ACGGAAGTTGAGTACACGCTAAGC -ACGGAAGTTGAGTACACGACTAGC -ACGGAAGTTGAGTACACGAGATGC -ACGGAAGTTGAGTACACGTGAAGG -ACGGAAGTTGAGTACACGCAATGG -ACGGAAGTTGAGTACACGATGAGG -ACGGAAGTTGAGTACACGAATGGG -ACGGAAGTTGAGTACACGTCCTGA -ACGGAAGTTGAGTACACGTAGCGA -ACGGAAGTTGAGTACACGCACAGA -ACGGAAGTTGAGTACACGGCAAGA -ACGGAAGTTGAGTACACGGGTTGA -ACGGAAGTTGAGTACACGTCCGAT -ACGGAAGTTGAGTACACGTGGCAT -ACGGAAGTTGAGTACACGCGAGAT -ACGGAAGTTGAGTACACGTACCAC -ACGGAAGTTGAGTACACGCAGAAC -ACGGAAGTTGAGTACACGGTCTAC -ACGGAAGTTGAGTACACGACGTAC -ACGGAAGTTGAGTACACGAGTGAC -ACGGAAGTTGAGTACACGCTGTAG -ACGGAAGTTGAGTACACGCCTAAG -ACGGAAGTTGAGTACACGGTTCAG -ACGGAAGTTGAGTACACGGCATAG -ACGGAAGTTGAGTACACGGACAAG -ACGGAAGTTGAGTACACGAAGCAG -ACGGAAGTTGAGTACACGCGTCAA -ACGGAAGTTGAGTACACGGCTGAA -ACGGAAGTTGAGTACACGAGTACG -ACGGAAGTTGAGTACACGATCCGA -ACGGAAGTTGAGTACACGATGGGA -ACGGAAGTTGAGTACACGGTGCAA -ACGGAAGTTGAGTACACGGAGGAA -ACGGAAGTTGAGTACACGCAGGTA -ACGGAAGTTGAGTACACGGACTCT -ACGGAAGTTGAGTACACGAGTCCT -ACGGAAGTTGAGTACACGTAAGCC -ACGGAAGTTGAGTACACGATAGCC -ACGGAAGTTGAGTACACGTAACCG -ACGGAAGTTGAGTACACGATGCCA -ACGGAAGTTGAGGACAGTGGAAAC -ACGGAAGTTGAGGACAGTAACACC -ACGGAAGTTGAGGACAGTATCGAG -ACGGAAGTTGAGGACAGTCTCCTT -ACGGAAGTTGAGGACAGTCCTGTT -ACGGAAGTTGAGGACAGTCGGTTT -ACGGAAGTTGAGGACAGTGTGGTT -ACGGAAGTTGAGGACAGTGCCTTT -ACGGAAGTTGAGGACAGTGGTCTT -ACGGAAGTTGAGGACAGTACGCTT -ACGGAAGTTGAGGACAGTAGCGTT -ACGGAAGTTGAGGACAGTTTCGTC -ACGGAAGTTGAGGACAGTTCTCTC -ACGGAAGTTGAGGACAGTTGGATC -ACGGAAGTTGAGGACAGTCACTTC -ACGGAAGTTGAGGACAGTGTACTC -ACGGAAGTTGAGGACAGTGATGTC -ACGGAAGTTGAGGACAGTACAGTC -ACGGAAGTTGAGGACAGTTTGCTG -ACGGAAGTTGAGGACAGTTCCATG -ACGGAAGTTGAGGACAGTTGTGTG -ACGGAAGTTGAGGACAGTCTAGTG -ACGGAAGTTGAGGACAGTCATCTG -ACGGAAGTTGAGGACAGTGAGTTG -ACGGAAGTTGAGGACAGTAGACTG -ACGGAAGTTGAGGACAGTTCGGTA -ACGGAAGTTGAGGACAGTTGCCTA -ACGGAAGTTGAGGACAGTCCACTA -ACGGAAGTTGAGGACAGTGGAGTA -ACGGAAGTTGAGGACAGTTCGTCT -ACGGAAGTTGAGGACAGTTGCACT -ACGGAAGTTGAGGACAGTCTGACT -ACGGAAGTTGAGGACAGTCAACCT -ACGGAAGTTGAGGACAGTGCTACT -ACGGAAGTTGAGGACAGTGGATCT -ACGGAAGTTGAGGACAGTAAGGCT -ACGGAAGTTGAGGACAGTTCAACC -ACGGAAGTTGAGGACAGTTGTTCC -ACGGAAGTTGAGGACAGTATTCCC -ACGGAAGTTGAGGACAGTTTCTCG -ACGGAAGTTGAGGACAGTTAGACG -ACGGAAGTTGAGGACAGTGTAACG -ACGGAAGTTGAGGACAGTACTTCG -ACGGAAGTTGAGGACAGTTACGCA -ACGGAAGTTGAGGACAGTCTTGCA -ACGGAAGTTGAGGACAGTCGAACA -ACGGAAGTTGAGGACAGTCAGTCA -ACGGAAGTTGAGGACAGTGATCCA -ACGGAAGTTGAGGACAGTACGACA -ACGGAAGTTGAGGACAGTAGCTCA -ACGGAAGTTGAGGACAGTTCACGT -ACGGAAGTTGAGGACAGTCGTAGT -ACGGAAGTTGAGGACAGTGTCAGT -ACGGAAGTTGAGGACAGTGAAGGT -ACGGAAGTTGAGGACAGTAACCGT -ACGGAAGTTGAGGACAGTTTGTGC -ACGGAAGTTGAGGACAGTCTAAGC -ACGGAAGTTGAGGACAGTACTAGC -ACGGAAGTTGAGGACAGTAGATGC -ACGGAAGTTGAGGACAGTTGAAGG -ACGGAAGTTGAGGACAGTCAATGG -ACGGAAGTTGAGGACAGTATGAGG -ACGGAAGTTGAGGACAGTAATGGG -ACGGAAGTTGAGGACAGTTCCTGA -ACGGAAGTTGAGGACAGTTAGCGA -ACGGAAGTTGAGGACAGTCACAGA -ACGGAAGTTGAGGACAGTGCAAGA -ACGGAAGTTGAGGACAGTGGTTGA -ACGGAAGTTGAGGACAGTTCCGAT -ACGGAAGTTGAGGACAGTTGGCAT -ACGGAAGTTGAGGACAGTCGAGAT -ACGGAAGTTGAGGACAGTTACCAC -ACGGAAGTTGAGGACAGTCAGAAC -ACGGAAGTTGAGGACAGTGTCTAC -ACGGAAGTTGAGGACAGTACGTAC -ACGGAAGTTGAGGACAGTAGTGAC -ACGGAAGTTGAGGACAGTCTGTAG -ACGGAAGTTGAGGACAGTCCTAAG -ACGGAAGTTGAGGACAGTGTTCAG -ACGGAAGTTGAGGACAGTGCATAG -ACGGAAGTTGAGGACAGTGACAAG -ACGGAAGTTGAGGACAGTAAGCAG -ACGGAAGTTGAGGACAGTCGTCAA -ACGGAAGTTGAGGACAGTGCTGAA -ACGGAAGTTGAGGACAGTAGTACG -ACGGAAGTTGAGGACAGTATCCGA -ACGGAAGTTGAGGACAGTATGGGA -ACGGAAGTTGAGGACAGTGTGCAA -ACGGAAGTTGAGGACAGTGAGGAA -ACGGAAGTTGAGGACAGTCAGGTA -ACGGAAGTTGAGGACAGTGACTCT -ACGGAAGTTGAGGACAGTAGTCCT -ACGGAAGTTGAGGACAGTTAAGCC -ACGGAAGTTGAGGACAGTATAGCC -ACGGAAGTTGAGGACAGTTAACCG -ACGGAAGTTGAGGACAGTATGCCA -ACGGAAGTTGAGTAGCTGGGAAAC -ACGGAAGTTGAGTAGCTGAACACC -ACGGAAGTTGAGTAGCTGATCGAG -ACGGAAGTTGAGTAGCTGCTCCTT -ACGGAAGTTGAGTAGCTGCCTGTT -ACGGAAGTTGAGTAGCTGCGGTTT -ACGGAAGTTGAGTAGCTGGTGGTT -ACGGAAGTTGAGTAGCTGGCCTTT -ACGGAAGTTGAGTAGCTGGGTCTT -ACGGAAGTTGAGTAGCTGACGCTT -ACGGAAGTTGAGTAGCTGAGCGTT -ACGGAAGTTGAGTAGCTGTTCGTC -ACGGAAGTTGAGTAGCTGTCTCTC -ACGGAAGTTGAGTAGCTGTGGATC -ACGGAAGTTGAGTAGCTGCACTTC -ACGGAAGTTGAGTAGCTGGTACTC -ACGGAAGTTGAGTAGCTGGATGTC -ACGGAAGTTGAGTAGCTGACAGTC -ACGGAAGTTGAGTAGCTGTTGCTG -ACGGAAGTTGAGTAGCTGTCCATG -ACGGAAGTTGAGTAGCTGTGTGTG -ACGGAAGTTGAGTAGCTGCTAGTG -ACGGAAGTTGAGTAGCTGCATCTG -ACGGAAGTTGAGTAGCTGGAGTTG -ACGGAAGTTGAGTAGCTGAGACTG -ACGGAAGTTGAGTAGCTGTCGGTA -ACGGAAGTTGAGTAGCTGTGCCTA -ACGGAAGTTGAGTAGCTGCCACTA -ACGGAAGTTGAGTAGCTGGGAGTA -ACGGAAGTTGAGTAGCTGTCGTCT -ACGGAAGTTGAGTAGCTGTGCACT -ACGGAAGTTGAGTAGCTGCTGACT -ACGGAAGTTGAGTAGCTGCAACCT -ACGGAAGTTGAGTAGCTGGCTACT -ACGGAAGTTGAGTAGCTGGGATCT -ACGGAAGTTGAGTAGCTGAAGGCT -ACGGAAGTTGAGTAGCTGTCAACC -ACGGAAGTTGAGTAGCTGTGTTCC -ACGGAAGTTGAGTAGCTGATTCCC -ACGGAAGTTGAGTAGCTGTTCTCG -ACGGAAGTTGAGTAGCTGTAGACG -ACGGAAGTTGAGTAGCTGGTAACG -ACGGAAGTTGAGTAGCTGACTTCG -ACGGAAGTTGAGTAGCTGTACGCA -ACGGAAGTTGAGTAGCTGCTTGCA -ACGGAAGTTGAGTAGCTGCGAACA -ACGGAAGTTGAGTAGCTGCAGTCA -ACGGAAGTTGAGTAGCTGGATCCA -ACGGAAGTTGAGTAGCTGACGACA -ACGGAAGTTGAGTAGCTGAGCTCA -ACGGAAGTTGAGTAGCTGTCACGT -ACGGAAGTTGAGTAGCTGCGTAGT -ACGGAAGTTGAGTAGCTGGTCAGT -ACGGAAGTTGAGTAGCTGGAAGGT -ACGGAAGTTGAGTAGCTGAACCGT -ACGGAAGTTGAGTAGCTGTTGTGC -ACGGAAGTTGAGTAGCTGCTAAGC -ACGGAAGTTGAGTAGCTGACTAGC -ACGGAAGTTGAGTAGCTGAGATGC -ACGGAAGTTGAGTAGCTGTGAAGG -ACGGAAGTTGAGTAGCTGCAATGG -ACGGAAGTTGAGTAGCTGATGAGG -ACGGAAGTTGAGTAGCTGAATGGG -ACGGAAGTTGAGTAGCTGTCCTGA -ACGGAAGTTGAGTAGCTGTAGCGA -ACGGAAGTTGAGTAGCTGCACAGA -ACGGAAGTTGAGTAGCTGGCAAGA -ACGGAAGTTGAGTAGCTGGGTTGA -ACGGAAGTTGAGTAGCTGTCCGAT -ACGGAAGTTGAGTAGCTGTGGCAT -ACGGAAGTTGAGTAGCTGCGAGAT -ACGGAAGTTGAGTAGCTGTACCAC -ACGGAAGTTGAGTAGCTGCAGAAC -ACGGAAGTTGAGTAGCTGGTCTAC -ACGGAAGTTGAGTAGCTGACGTAC -ACGGAAGTTGAGTAGCTGAGTGAC -ACGGAAGTTGAGTAGCTGCTGTAG -ACGGAAGTTGAGTAGCTGCCTAAG -ACGGAAGTTGAGTAGCTGGTTCAG -ACGGAAGTTGAGTAGCTGGCATAG -ACGGAAGTTGAGTAGCTGGACAAG -ACGGAAGTTGAGTAGCTGAAGCAG -ACGGAAGTTGAGTAGCTGCGTCAA -ACGGAAGTTGAGTAGCTGGCTGAA -ACGGAAGTTGAGTAGCTGAGTACG -ACGGAAGTTGAGTAGCTGATCCGA -ACGGAAGTTGAGTAGCTGATGGGA -ACGGAAGTTGAGTAGCTGGTGCAA -ACGGAAGTTGAGTAGCTGGAGGAA -ACGGAAGTTGAGTAGCTGCAGGTA -ACGGAAGTTGAGTAGCTGGACTCT -ACGGAAGTTGAGTAGCTGAGTCCT -ACGGAAGTTGAGTAGCTGTAAGCC -ACGGAAGTTGAGTAGCTGATAGCC -ACGGAAGTTGAGTAGCTGTAACCG -ACGGAAGTTGAGTAGCTGATGCCA -ACGGAAGTTGAGAAGCCTGGAAAC -ACGGAAGTTGAGAAGCCTAACACC -ACGGAAGTTGAGAAGCCTATCGAG -ACGGAAGTTGAGAAGCCTCTCCTT -ACGGAAGTTGAGAAGCCTCCTGTT -ACGGAAGTTGAGAAGCCTCGGTTT -ACGGAAGTTGAGAAGCCTGTGGTT -ACGGAAGTTGAGAAGCCTGCCTTT -ACGGAAGTTGAGAAGCCTGGTCTT -ACGGAAGTTGAGAAGCCTACGCTT -ACGGAAGTTGAGAAGCCTAGCGTT -ACGGAAGTTGAGAAGCCTTTCGTC -ACGGAAGTTGAGAAGCCTTCTCTC -ACGGAAGTTGAGAAGCCTTGGATC -ACGGAAGTTGAGAAGCCTCACTTC -ACGGAAGTTGAGAAGCCTGTACTC -ACGGAAGTTGAGAAGCCTGATGTC -ACGGAAGTTGAGAAGCCTACAGTC -ACGGAAGTTGAGAAGCCTTTGCTG -ACGGAAGTTGAGAAGCCTTCCATG -ACGGAAGTTGAGAAGCCTTGTGTG -ACGGAAGTTGAGAAGCCTCTAGTG -ACGGAAGTTGAGAAGCCTCATCTG -ACGGAAGTTGAGAAGCCTGAGTTG -ACGGAAGTTGAGAAGCCTAGACTG -ACGGAAGTTGAGAAGCCTTCGGTA -ACGGAAGTTGAGAAGCCTTGCCTA -ACGGAAGTTGAGAAGCCTCCACTA -ACGGAAGTTGAGAAGCCTGGAGTA -ACGGAAGTTGAGAAGCCTTCGTCT -ACGGAAGTTGAGAAGCCTTGCACT -ACGGAAGTTGAGAAGCCTCTGACT -ACGGAAGTTGAGAAGCCTCAACCT -ACGGAAGTTGAGAAGCCTGCTACT -ACGGAAGTTGAGAAGCCTGGATCT -ACGGAAGTTGAGAAGCCTAAGGCT -ACGGAAGTTGAGAAGCCTTCAACC -ACGGAAGTTGAGAAGCCTTGTTCC -ACGGAAGTTGAGAAGCCTATTCCC -ACGGAAGTTGAGAAGCCTTTCTCG -ACGGAAGTTGAGAAGCCTTAGACG -ACGGAAGTTGAGAAGCCTGTAACG -ACGGAAGTTGAGAAGCCTACTTCG -ACGGAAGTTGAGAAGCCTTACGCA -ACGGAAGTTGAGAAGCCTCTTGCA -ACGGAAGTTGAGAAGCCTCGAACA -ACGGAAGTTGAGAAGCCTCAGTCA -ACGGAAGTTGAGAAGCCTGATCCA -ACGGAAGTTGAGAAGCCTACGACA -ACGGAAGTTGAGAAGCCTAGCTCA -ACGGAAGTTGAGAAGCCTTCACGT -ACGGAAGTTGAGAAGCCTCGTAGT -ACGGAAGTTGAGAAGCCTGTCAGT -ACGGAAGTTGAGAAGCCTGAAGGT -ACGGAAGTTGAGAAGCCTAACCGT -ACGGAAGTTGAGAAGCCTTTGTGC -ACGGAAGTTGAGAAGCCTCTAAGC -ACGGAAGTTGAGAAGCCTACTAGC -ACGGAAGTTGAGAAGCCTAGATGC -ACGGAAGTTGAGAAGCCTTGAAGG -ACGGAAGTTGAGAAGCCTCAATGG -ACGGAAGTTGAGAAGCCTATGAGG -ACGGAAGTTGAGAAGCCTAATGGG -ACGGAAGTTGAGAAGCCTTCCTGA -ACGGAAGTTGAGAAGCCTTAGCGA -ACGGAAGTTGAGAAGCCTCACAGA -ACGGAAGTTGAGAAGCCTGCAAGA -ACGGAAGTTGAGAAGCCTGGTTGA -ACGGAAGTTGAGAAGCCTTCCGAT -ACGGAAGTTGAGAAGCCTTGGCAT -ACGGAAGTTGAGAAGCCTCGAGAT -ACGGAAGTTGAGAAGCCTTACCAC -ACGGAAGTTGAGAAGCCTCAGAAC -ACGGAAGTTGAGAAGCCTGTCTAC -ACGGAAGTTGAGAAGCCTACGTAC -ACGGAAGTTGAGAAGCCTAGTGAC -ACGGAAGTTGAGAAGCCTCTGTAG -ACGGAAGTTGAGAAGCCTCCTAAG -ACGGAAGTTGAGAAGCCTGTTCAG -ACGGAAGTTGAGAAGCCTGCATAG -ACGGAAGTTGAGAAGCCTGACAAG -ACGGAAGTTGAGAAGCCTAAGCAG -ACGGAAGTTGAGAAGCCTCGTCAA -ACGGAAGTTGAGAAGCCTGCTGAA -ACGGAAGTTGAGAAGCCTAGTACG -ACGGAAGTTGAGAAGCCTATCCGA -ACGGAAGTTGAGAAGCCTATGGGA -ACGGAAGTTGAGAAGCCTGTGCAA -ACGGAAGTTGAGAAGCCTGAGGAA -ACGGAAGTTGAGAAGCCTCAGGTA -ACGGAAGTTGAGAAGCCTGACTCT -ACGGAAGTTGAGAAGCCTAGTCCT -ACGGAAGTTGAGAAGCCTTAAGCC -ACGGAAGTTGAGAAGCCTATAGCC -ACGGAAGTTGAGAAGCCTTAACCG -ACGGAAGTTGAGAAGCCTATGCCA -ACGGAAGTTGAGCAGGTTGGAAAC -ACGGAAGTTGAGCAGGTTAACACC -ACGGAAGTTGAGCAGGTTATCGAG -ACGGAAGTTGAGCAGGTTCTCCTT -ACGGAAGTTGAGCAGGTTCCTGTT -ACGGAAGTTGAGCAGGTTCGGTTT -ACGGAAGTTGAGCAGGTTGTGGTT -ACGGAAGTTGAGCAGGTTGCCTTT -ACGGAAGTTGAGCAGGTTGGTCTT -ACGGAAGTTGAGCAGGTTACGCTT -ACGGAAGTTGAGCAGGTTAGCGTT -ACGGAAGTTGAGCAGGTTTTCGTC -ACGGAAGTTGAGCAGGTTTCTCTC -ACGGAAGTTGAGCAGGTTTGGATC -ACGGAAGTTGAGCAGGTTCACTTC -ACGGAAGTTGAGCAGGTTGTACTC -ACGGAAGTTGAGCAGGTTGATGTC -ACGGAAGTTGAGCAGGTTACAGTC -ACGGAAGTTGAGCAGGTTTTGCTG -ACGGAAGTTGAGCAGGTTTCCATG -ACGGAAGTTGAGCAGGTTTGTGTG -ACGGAAGTTGAGCAGGTTCTAGTG -ACGGAAGTTGAGCAGGTTCATCTG -ACGGAAGTTGAGCAGGTTGAGTTG -ACGGAAGTTGAGCAGGTTAGACTG -ACGGAAGTTGAGCAGGTTTCGGTA -ACGGAAGTTGAGCAGGTTTGCCTA -ACGGAAGTTGAGCAGGTTCCACTA -ACGGAAGTTGAGCAGGTTGGAGTA -ACGGAAGTTGAGCAGGTTTCGTCT -ACGGAAGTTGAGCAGGTTTGCACT -ACGGAAGTTGAGCAGGTTCTGACT -ACGGAAGTTGAGCAGGTTCAACCT -ACGGAAGTTGAGCAGGTTGCTACT -ACGGAAGTTGAGCAGGTTGGATCT -ACGGAAGTTGAGCAGGTTAAGGCT -ACGGAAGTTGAGCAGGTTTCAACC -ACGGAAGTTGAGCAGGTTTGTTCC -ACGGAAGTTGAGCAGGTTATTCCC -ACGGAAGTTGAGCAGGTTTTCTCG -ACGGAAGTTGAGCAGGTTTAGACG -ACGGAAGTTGAGCAGGTTGTAACG -ACGGAAGTTGAGCAGGTTACTTCG -ACGGAAGTTGAGCAGGTTTACGCA -ACGGAAGTTGAGCAGGTTCTTGCA -ACGGAAGTTGAGCAGGTTCGAACA -ACGGAAGTTGAGCAGGTTCAGTCA -ACGGAAGTTGAGCAGGTTGATCCA -ACGGAAGTTGAGCAGGTTACGACA -ACGGAAGTTGAGCAGGTTAGCTCA -ACGGAAGTTGAGCAGGTTTCACGT -ACGGAAGTTGAGCAGGTTCGTAGT -ACGGAAGTTGAGCAGGTTGTCAGT -ACGGAAGTTGAGCAGGTTGAAGGT -ACGGAAGTTGAGCAGGTTAACCGT -ACGGAAGTTGAGCAGGTTTTGTGC -ACGGAAGTTGAGCAGGTTCTAAGC -ACGGAAGTTGAGCAGGTTACTAGC -ACGGAAGTTGAGCAGGTTAGATGC -ACGGAAGTTGAGCAGGTTTGAAGG -ACGGAAGTTGAGCAGGTTCAATGG -ACGGAAGTTGAGCAGGTTATGAGG -ACGGAAGTTGAGCAGGTTAATGGG -ACGGAAGTTGAGCAGGTTTCCTGA -ACGGAAGTTGAGCAGGTTTAGCGA -ACGGAAGTTGAGCAGGTTCACAGA -ACGGAAGTTGAGCAGGTTGCAAGA -ACGGAAGTTGAGCAGGTTGGTTGA -ACGGAAGTTGAGCAGGTTTCCGAT -ACGGAAGTTGAGCAGGTTTGGCAT -ACGGAAGTTGAGCAGGTTCGAGAT -ACGGAAGTTGAGCAGGTTTACCAC -ACGGAAGTTGAGCAGGTTCAGAAC -ACGGAAGTTGAGCAGGTTGTCTAC -ACGGAAGTTGAGCAGGTTACGTAC -ACGGAAGTTGAGCAGGTTAGTGAC -ACGGAAGTTGAGCAGGTTCTGTAG -ACGGAAGTTGAGCAGGTTCCTAAG -ACGGAAGTTGAGCAGGTTGTTCAG -ACGGAAGTTGAGCAGGTTGCATAG -ACGGAAGTTGAGCAGGTTGACAAG -ACGGAAGTTGAGCAGGTTAAGCAG -ACGGAAGTTGAGCAGGTTCGTCAA -ACGGAAGTTGAGCAGGTTGCTGAA -ACGGAAGTTGAGCAGGTTAGTACG -ACGGAAGTTGAGCAGGTTATCCGA -ACGGAAGTTGAGCAGGTTATGGGA -ACGGAAGTTGAGCAGGTTGTGCAA -ACGGAAGTTGAGCAGGTTGAGGAA -ACGGAAGTTGAGCAGGTTCAGGTA -ACGGAAGTTGAGCAGGTTGACTCT -ACGGAAGTTGAGCAGGTTAGTCCT -ACGGAAGTTGAGCAGGTTTAAGCC -ACGGAAGTTGAGCAGGTTATAGCC -ACGGAAGTTGAGCAGGTTTAACCG -ACGGAAGTTGAGCAGGTTATGCCA -ACGGAAGTTGAGTAGGCAGGAAAC -ACGGAAGTTGAGTAGGCAAACACC -ACGGAAGTTGAGTAGGCAATCGAG -ACGGAAGTTGAGTAGGCACTCCTT -ACGGAAGTTGAGTAGGCACCTGTT -ACGGAAGTTGAGTAGGCACGGTTT -ACGGAAGTTGAGTAGGCAGTGGTT -ACGGAAGTTGAGTAGGCAGCCTTT -ACGGAAGTTGAGTAGGCAGGTCTT -ACGGAAGTTGAGTAGGCAACGCTT -ACGGAAGTTGAGTAGGCAAGCGTT -ACGGAAGTTGAGTAGGCATTCGTC -ACGGAAGTTGAGTAGGCATCTCTC -ACGGAAGTTGAGTAGGCATGGATC -ACGGAAGTTGAGTAGGCACACTTC -ACGGAAGTTGAGTAGGCAGTACTC -ACGGAAGTTGAGTAGGCAGATGTC -ACGGAAGTTGAGTAGGCAACAGTC -ACGGAAGTTGAGTAGGCATTGCTG -ACGGAAGTTGAGTAGGCATCCATG -ACGGAAGTTGAGTAGGCATGTGTG -ACGGAAGTTGAGTAGGCACTAGTG -ACGGAAGTTGAGTAGGCACATCTG -ACGGAAGTTGAGTAGGCAGAGTTG -ACGGAAGTTGAGTAGGCAAGACTG -ACGGAAGTTGAGTAGGCATCGGTA -ACGGAAGTTGAGTAGGCATGCCTA -ACGGAAGTTGAGTAGGCACCACTA -ACGGAAGTTGAGTAGGCAGGAGTA -ACGGAAGTTGAGTAGGCATCGTCT -ACGGAAGTTGAGTAGGCATGCACT -ACGGAAGTTGAGTAGGCACTGACT -ACGGAAGTTGAGTAGGCACAACCT -ACGGAAGTTGAGTAGGCAGCTACT -ACGGAAGTTGAGTAGGCAGGATCT -ACGGAAGTTGAGTAGGCAAAGGCT -ACGGAAGTTGAGTAGGCATCAACC -ACGGAAGTTGAGTAGGCATGTTCC -ACGGAAGTTGAGTAGGCAATTCCC -ACGGAAGTTGAGTAGGCATTCTCG -ACGGAAGTTGAGTAGGCATAGACG -ACGGAAGTTGAGTAGGCAGTAACG -ACGGAAGTTGAGTAGGCAACTTCG -ACGGAAGTTGAGTAGGCATACGCA -ACGGAAGTTGAGTAGGCACTTGCA -ACGGAAGTTGAGTAGGCACGAACA -ACGGAAGTTGAGTAGGCACAGTCA -ACGGAAGTTGAGTAGGCAGATCCA -ACGGAAGTTGAGTAGGCAACGACA -ACGGAAGTTGAGTAGGCAAGCTCA -ACGGAAGTTGAGTAGGCATCACGT -ACGGAAGTTGAGTAGGCACGTAGT -ACGGAAGTTGAGTAGGCAGTCAGT -ACGGAAGTTGAGTAGGCAGAAGGT -ACGGAAGTTGAGTAGGCAAACCGT -ACGGAAGTTGAGTAGGCATTGTGC -ACGGAAGTTGAGTAGGCACTAAGC -ACGGAAGTTGAGTAGGCAACTAGC -ACGGAAGTTGAGTAGGCAAGATGC -ACGGAAGTTGAGTAGGCATGAAGG -ACGGAAGTTGAGTAGGCACAATGG -ACGGAAGTTGAGTAGGCAATGAGG -ACGGAAGTTGAGTAGGCAAATGGG -ACGGAAGTTGAGTAGGCATCCTGA -ACGGAAGTTGAGTAGGCATAGCGA -ACGGAAGTTGAGTAGGCACACAGA -ACGGAAGTTGAGTAGGCAGCAAGA -ACGGAAGTTGAGTAGGCAGGTTGA -ACGGAAGTTGAGTAGGCATCCGAT -ACGGAAGTTGAGTAGGCATGGCAT -ACGGAAGTTGAGTAGGCACGAGAT -ACGGAAGTTGAGTAGGCATACCAC -ACGGAAGTTGAGTAGGCACAGAAC -ACGGAAGTTGAGTAGGCAGTCTAC -ACGGAAGTTGAGTAGGCAACGTAC -ACGGAAGTTGAGTAGGCAAGTGAC -ACGGAAGTTGAGTAGGCACTGTAG -ACGGAAGTTGAGTAGGCACCTAAG -ACGGAAGTTGAGTAGGCAGTTCAG -ACGGAAGTTGAGTAGGCAGCATAG -ACGGAAGTTGAGTAGGCAGACAAG -ACGGAAGTTGAGTAGGCAAAGCAG -ACGGAAGTTGAGTAGGCACGTCAA -ACGGAAGTTGAGTAGGCAGCTGAA -ACGGAAGTTGAGTAGGCAAGTACG -ACGGAAGTTGAGTAGGCAATCCGA -ACGGAAGTTGAGTAGGCAATGGGA -ACGGAAGTTGAGTAGGCAGTGCAA -ACGGAAGTTGAGTAGGCAGAGGAA -ACGGAAGTTGAGTAGGCACAGGTA -ACGGAAGTTGAGTAGGCAGACTCT -ACGGAAGTTGAGTAGGCAAGTCCT -ACGGAAGTTGAGTAGGCATAAGCC -ACGGAAGTTGAGTAGGCAATAGCC -ACGGAAGTTGAGTAGGCATAACCG -ACGGAAGTTGAGTAGGCAATGCCA -ACGGAAGTTGAGAAGGACGGAAAC -ACGGAAGTTGAGAAGGACAACACC -ACGGAAGTTGAGAAGGACATCGAG -ACGGAAGTTGAGAAGGACCTCCTT -ACGGAAGTTGAGAAGGACCCTGTT -ACGGAAGTTGAGAAGGACCGGTTT -ACGGAAGTTGAGAAGGACGTGGTT -ACGGAAGTTGAGAAGGACGCCTTT -ACGGAAGTTGAGAAGGACGGTCTT -ACGGAAGTTGAGAAGGACACGCTT -ACGGAAGTTGAGAAGGACAGCGTT -ACGGAAGTTGAGAAGGACTTCGTC -ACGGAAGTTGAGAAGGACTCTCTC -ACGGAAGTTGAGAAGGACTGGATC -ACGGAAGTTGAGAAGGACCACTTC -ACGGAAGTTGAGAAGGACGTACTC -ACGGAAGTTGAGAAGGACGATGTC -ACGGAAGTTGAGAAGGACACAGTC -ACGGAAGTTGAGAAGGACTTGCTG -ACGGAAGTTGAGAAGGACTCCATG -ACGGAAGTTGAGAAGGACTGTGTG -ACGGAAGTTGAGAAGGACCTAGTG -ACGGAAGTTGAGAAGGACCATCTG -ACGGAAGTTGAGAAGGACGAGTTG -ACGGAAGTTGAGAAGGACAGACTG -ACGGAAGTTGAGAAGGACTCGGTA -ACGGAAGTTGAGAAGGACTGCCTA -ACGGAAGTTGAGAAGGACCCACTA -ACGGAAGTTGAGAAGGACGGAGTA -ACGGAAGTTGAGAAGGACTCGTCT -ACGGAAGTTGAGAAGGACTGCACT -ACGGAAGTTGAGAAGGACCTGACT -ACGGAAGTTGAGAAGGACCAACCT -ACGGAAGTTGAGAAGGACGCTACT -ACGGAAGTTGAGAAGGACGGATCT -ACGGAAGTTGAGAAGGACAAGGCT -ACGGAAGTTGAGAAGGACTCAACC -ACGGAAGTTGAGAAGGACTGTTCC -ACGGAAGTTGAGAAGGACATTCCC -ACGGAAGTTGAGAAGGACTTCTCG -ACGGAAGTTGAGAAGGACTAGACG -ACGGAAGTTGAGAAGGACGTAACG -ACGGAAGTTGAGAAGGACACTTCG -ACGGAAGTTGAGAAGGACTACGCA -ACGGAAGTTGAGAAGGACCTTGCA -ACGGAAGTTGAGAAGGACCGAACA -ACGGAAGTTGAGAAGGACCAGTCA -ACGGAAGTTGAGAAGGACGATCCA -ACGGAAGTTGAGAAGGACACGACA -ACGGAAGTTGAGAAGGACAGCTCA -ACGGAAGTTGAGAAGGACTCACGT -ACGGAAGTTGAGAAGGACCGTAGT -ACGGAAGTTGAGAAGGACGTCAGT -ACGGAAGTTGAGAAGGACGAAGGT -ACGGAAGTTGAGAAGGACAACCGT -ACGGAAGTTGAGAAGGACTTGTGC -ACGGAAGTTGAGAAGGACCTAAGC -ACGGAAGTTGAGAAGGACACTAGC -ACGGAAGTTGAGAAGGACAGATGC -ACGGAAGTTGAGAAGGACTGAAGG -ACGGAAGTTGAGAAGGACCAATGG -ACGGAAGTTGAGAAGGACATGAGG -ACGGAAGTTGAGAAGGACAATGGG -ACGGAAGTTGAGAAGGACTCCTGA -ACGGAAGTTGAGAAGGACTAGCGA -ACGGAAGTTGAGAAGGACCACAGA -ACGGAAGTTGAGAAGGACGCAAGA -ACGGAAGTTGAGAAGGACGGTTGA -ACGGAAGTTGAGAAGGACTCCGAT -ACGGAAGTTGAGAAGGACTGGCAT -ACGGAAGTTGAGAAGGACCGAGAT -ACGGAAGTTGAGAAGGACTACCAC -ACGGAAGTTGAGAAGGACCAGAAC -ACGGAAGTTGAGAAGGACGTCTAC -ACGGAAGTTGAGAAGGACACGTAC -ACGGAAGTTGAGAAGGACAGTGAC -ACGGAAGTTGAGAAGGACCTGTAG -ACGGAAGTTGAGAAGGACCCTAAG -ACGGAAGTTGAGAAGGACGTTCAG -ACGGAAGTTGAGAAGGACGCATAG -ACGGAAGTTGAGAAGGACGACAAG -ACGGAAGTTGAGAAGGACAAGCAG -ACGGAAGTTGAGAAGGACCGTCAA -ACGGAAGTTGAGAAGGACGCTGAA -ACGGAAGTTGAGAAGGACAGTACG -ACGGAAGTTGAGAAGGACATCCGA -ACGGAAGTTGAGAAGGACATGGGA -ACGGAAGTTGAGAAGGACGTGCAA -ACGGAAGTTGAGAAGGACGAGGAA -ACGGAAGTTGAGAAGGACCAGGTA -ACGGAAGTTGAGAAGGACGACTCT -ACGGAAGTTGAGAAGGACAGTCCT -ACGGAAGTTGAGAAGGACTAAGCC -ACGGAAGTTGAGAAGGACATAGCC -ACGGAAGTTGAGAAGGACTAACCG -ACGGAAGTTGAGAAGGACATGCCA -ACGGAAGTTGAGCAGAAGGGAAAC -ACGGAAGTTGAGCAGAAGAACACC -ACGGAAGTTGAGCAGAAGATCGAG -ACGGAAGTTGAGCAGAAGCTCCTT -ACGGAAGTTGAGCAGAAGCCTGTT -ACGGAAGTTGAGCAGAAGCGGTTT -ACGGAAGTTGAGCAGAAGGTGGTT -ACGGAAGTTGAGCAGAAGGCCTTT -ACGGAAGTTGAGCAGAAGGGTCTT -ACGGAAGTTGAGCAGAAGACGCTT -ACGGAAGTTGAGCAGAAGAGCGTT -ACGGAAGTTGAGCAGAAGTTCGTC -ACGGAAGTTGAGCAGAAGTCTCTC -ACGGAAGTTGAGCAGAAGTGGATC -ACGGAAGTTGAGCAGAAGCACTTC -ACGGAAGTTGAGCAGAAGGTACTC -ACGGAAGTTGAGCAGAAGGATGTC -ACGGAAGTTGAGCAGAAGACAGTC -ACGGAAGTTGAGCAGAAGTTGCTG -ACGGAAGTTGAGCAGAAGTCCATG -ACGGAAGTTGAGCAGAAGTGTGTG -ACGGAAGTTGAGCAGAAGCTAGTG -ACGGAAGTTGAGCAGAAGCATCTG -ACGGAAGTTGAGCAGAAGGAGTTG -ACGGAAGTTGAGCAGAAGAGACTG -ACGGAAGTTGAGCAGAAGTCGGTA -ACGGAAGTTGAGCAGAAGTGCCTA -ACGGAAGTTGAGCAGAAGCCACTA -ACGGAAGTTGAGCAGAAGGGAGTA -ACGGAAGTTGAGCAGAAGTCGTCT -ACGGAAGTTGAGCAGAAGTGCACT -ACGGAAGTTGAGCAGAAGCTGACT -ACGGAAGTTGAGCAGAAGCAACCT -ACGGAAGTTGAGCAGAAGGCTACT -ACGGAAGTTGAGCAGAAGGGATCT -ACGGAAGTTGAGCAGAAGAAGGCT -ACGGAAGTTGAGCAGAAGTCAACC -ACGGAAGTTGAGCAGAAGTGTTCC -ACGGAAGTTGAGCAGAAGATTCCC -ACGGAAGTTGAGCAGAAGTTCTCG -ACGGAAGTTGAGCAGAAGTAGACG -ACGGAAGTTGAGCAGAAGGTAACG -ACGGAAGTTGAGCAGAAGACTTCG -ACGGAAGTTGAGCAGAAGTACGCA -ACGGAAGTTGAGCAGAAGCTTGCA -ACGGAAGTTGAGCAGAAGCGAACA -ACGGAAGTTGAGCAGAAGCAGTCA -ACGGAAGTTGAGCAGAAGGATCCA -ACGGAAGTTGAGCAGAAGACGACA -ACGGAAGTTGAGCAGAAGAGCTCA -ACGGAAGTTGAGCAGAAGTCACGT -ACGGAAGTTGAGCAGAAGCGTAGT -ACGGAAGTTGAGCAGAAGGTCAGT -ACGGAAGTTGAGCAGAAGGAAGGT -ACGGAAGTTGAGCAGAAGAACCGT -ACGGAAGTTGAGCAGAAGTTGTGC -ACGGAAGTTGAGCAGAAGCTAAGC -ACGGAAGTTGAGCAGAAGACTAGC -ACGGAAGTTGAGCAGAAGAGATGC -ACGGAAGTTGAGCAGAAGTGAAGG -ACGGAAGTTGAGCAGAAGCAATGG -ACGGAAGTTGAGCAGAAGATGAGG -ACGGAAGTTGAGCAGAAGAATGGG -ACGGAAGTTGAGCAGAAGTCCTGA -ACGGAAGTTGAGCAGAAGTAGCGA -ACGGAAGTTGAGCAGAAGCACAGA -ACGGAAGTTGAGCAGAAGGCAAGA -ACGGAAGTTGAGCAGAAGGGTTGA -ACGGAAGTTGAGCAGAAGTCCGAT -ACGGAAGTTGAGCAGAAGTGGCAT -ACGGAAGTTGAGCAGAAGCGAGAT -ACGGAAGTTGAGCAGAAGTACCAC -ACGGAAGTTGAGCAGAAGCAGAAC -ACGGAAGTTGAGCAGAAGGTCTAC -ACGGAAGTTGAGCAGAAGACGTAC -ACGGAAGTTGAGCAGAAGAGTGAC -ACGGAAGTTGAGCAGAAGCTGTAG -ACGGAAGTTGAGCAGAAGCCTAAG -ACGGAAGTTGAGCAGAAGGTTCAG -ACGGAAGTTGAGCAGAAGGCATAG -ACGGAAGTTGAGCAGAAGGACAAG -ACGGAAGTTGAGCAGAAGAAGCAG -ACGGAAGTTGAGCAGAAGCGTCAA -ACGGAAGTTGAGCAGAAGGCTGAA -ACGGAAGTTGAGCAGAAGAGTACG -ACGGAAGTTGAGCAGAAGATCCGA -ACGGAAGTTGAGCAGAAGATGGGA -ACGGAAGTTGAGCAGAAGGTGCAA -ACGGAAGTTGAGCAGAAGGAGGAA -ACGGAAGTTGAGCAGAAGCAGGTA -ACGGAAGTTGAGCAGAAGGACTCT -ACGGAAGTTGAGCAGAAGAGTCCT -ACGGAAGTTGAGCAGAAGTAAGCC -ACGGAAGTTGAGCAGAAGATAGCC -ACGGAAGTTGAGCAGAAGTAACCG -ACGGAAGTTGAGCAGAAGATGCCA -ACGGAAGTTGAGCAACGTGGAAAC -ACGGAAGTTGAGCAACGTAACACC -ACGGAAGTTGAGCAACGTATCGAG -ACGGAAGTTGAGCAACGTCTCCTT -ACGGAAGTTGAGCAACGTCCTGTT -ACGGAAGTTGAGCAACGTCGGTTT -ACGGAAGTTGAGCAACGTGTGGTT -ACGGAAGTTGAGCAACGTGCCTTT -ACGGAAGTTGAGCAACGTGGTCTT -ACGGAAGTTGAGCAACGTACGCTT -ACGGAAGTTGAGCAACGTAGCGTT -ACGGAAGTTGAGCAACGTTTCGTC -ACGGAAGTTGAGCAACGTTCTCTC -ACGGAAGTTGAGCAACGTTGGATC -ACGGAAGTTGAGCAACGTCACTTC -ACGGAAGTTGAGCAACGTGTACTC -ACGGAAGTTGAGCAACGTGATGTC -ACGGAAGTTGAGCAACGTACAGTC -ACGGAAGTTGAGCAACGTTTGCTG -ACGGAAGTTGAGCAACGTTCCATG -ACGGAAGTTGAGCAACGTTGTGTG -ACGGAAGTTGAGCAACGTCTAGTG -ACGGAAGTTGAGCAACGTCATCTG -ACGGAAGTTGAGCAACGTGAGTTG -ACGGAAGTTGAGCAACGTAGACTG -ACGGAAGTTGAGCAACGTTCGGTA -ACGGAAGTTGAGCAACGTTGCCTA -ACGGAAGTTGAGCAACGTCCACTA -ACGGAAGTTGAGCAACGTGGAGTA -ACGGAAGTTGAGCAACGTTCGTCT -ACGGAAGTTGAGCAACGTTGCACT -ACGGAAGTTGAGCAACGTCTGACT -ACGGAAGTTGAGCAACGTCAACCT -ACGGAAGTTGAGCAACGTGCTACT -ACGGAAGTTGAGCAACGTGGATCT -ACGGAAGTTGAGCAACGTAAGGCT -ACGGAAGTTGAGCAACGTTCAACC -ACGGAAGTTGAGCAACGTTGTTCC -ACGGAAGTTGAGCAACGTATTCCC -ACGGAAGTTGAGCAACGTTTCTCG -ACGGAAGTTGAGCAACGTTAGACG -ACGGAAGTTGAGCAACGTGTAACG -ACGGAAGTTGAGCAACGTACTTCG -ACGGAAGTTGAGCAACGTTACGCA -ACGGAAGTTGAGCAACGTCTTGCA -ACGGAAGTTGAGCAACGTCGAACA -ACGGAAGTTGAGCAACGTCAGTCA -ACGGAAGTTGAGCAACGTGATCCA -ACGGAAGTTGAGCAACGTACGACA -ACGGAAGTTGAGCAACGTAGCTCA -ACGGAAGTTGAGCAACGTTCACGT -ACGGAAGTTGAGCAACGTCGTAGT -ACGGAAGTTGAGCAACGTGTCAGT -ACGGAAGTTGAGCAACGTGAAGGT -ACGGAAGTTGAGCAACGTAACCGT -ACGGAAGTTGAGCAACGTTTGTGC -ACGGAAGTTGAGCAACGTCTAAGC -ACGGAAGTTGAGCAACGTACTAGC -ACGGAAGTTGAGCAACGTAGATGC -ACGGAAGTTGAGCAACGTTGAAGG -ACGGAAGTTGAGCAACGTCAATGG -ACGGAAGTTGAGCAACGTATGAGG -ACGGAAGTTGAGCAACGTAATGGG -ACGGAAGTTGAGCAACGTTCCTGA -ACGGAAGTTGAGCAACGTTAGCGA -ACGGAAGTTGAGCAACGTCACAGA -ACGGAAGTTGAGCAACGTGCAAGA -ACGGAAGTTGAGCAACGTGGTTGA -ACGGAAGTTGAGCAACGTTCCGAT -ACGGAAGTTGAGCAACGTTGGCAT -ACGGAAGTTGAGCAACGTCGAGAT -ACGGAAGTTGAGCAACGTTACCAC -ACGGAAGTTGAGCAACGTCAGAAC -ACGGAAGTTGAGCAACGTGTCTAC -ACGGAAGTTGAGCAACGTACGTAC -ACGGAAGTTGAGCAACGTAGTGAC -ACGGAAGTTGAGCAACGTCTGTAG -ACGGAAGTTGAGCAACGTCCTAAG -ACGGAAGTTGAGCAACGTGTTCAG -ACGGAAGTTGAGCAACGTGCATAG -ACGGAAGTTGAGCAACGTGACAAG -ACGGAAGTTGAGCAACGTAAGCAG -ACGGAAGTTGAGCAACGTCGTCAA -ACGGAAGTTGAGCAACGTGCTGAA -ACGGAAGTTGAGCAACGTAGTACG -ACGGAAGTTGAGCAACGTATCCGA -ACGGAAGTTGAGCAACGTATGGGA -ACGGAAGTTGAGCAACGTGTGCAA -ACGGAAGTTGAGCAACGTGAGGAA -ACGGAAGTTGAGCAACGTCAGGTA -ACGGAAGTTGAGCAACGTGACTCT -ACGGAAGTTGAGCAACGTAGTCCT -ACGGAAGTTGAGCAACGTTAAGCC -ACGGAAGTTGAGCAACGTATAGCC -ACGGAAGTTGAGCAACGTTAACCG -ACGGAAGTTGAGCAACGTATGCCA -ACGGAAGTTGAGGAAGCTGGAAAC -ACGGAAGTTGAGGAAGCTAACACC -ACGGAAGTTGAGGAAGCTATCGAG -ACGGAAGTTGAGGAAGCTCTCCTT -ACGGAAGTTGAGGAAGCTCCTGTT -ACGGAAGTTGAGGAAGCTCGGTTT -ACGGAAGTTGAGGAAGCTGTGGTT -ACGGAAGTTGAGGAAGCTGCCTTT -ACGGAAGTTGAGGAAGCTGGTCTT -ACGGAAGTTGAGGAAGCTACGCTT -ACGGAAGTTGAGGAAGCTAGCGTT -ACGGAAGTTGAGGAAGCTTTCGTC -ACGGAAGTTGAGGAAGCTTCTCTC -ACGGAAGTTGAGGAAGCTTGGATC -ACGGAAGTTGAGGAAGCTCACTTC -ACGGAAGTTGAGGAAGCTGTACTC -ACGGAAGTTGAGGAAGCTGATGTC -ACGGAAGTTGAGGAAGCTACAGTC -ACGGAAGTTGAGGAAGCTTTGCTG -ACGGAAGTTGAGGAAGCTTCCATG -ACGGAAGTTGAGGAAGCTTGTGTG -ACGGAAGTTGAGGAAGCTCTAGTG -ACGGAAGTTGAGGAAGCTCATCTG -ACGGAAGTTGAGGAAGCTGAGTTG -ACGGAAGTTGAGGAAGCTAGACTG -ACGGAAGTTGAGGAAGCTTCGGTA -ACGGAAGTTGAGGAAGCTTGCCTA -ACGGAAGTTGAGGAAGCTCCACTA -ACGGAAGTTGAGGAAGCTGGAGTA -ACGGAAGTTGAGGAAGCTTCGTCT -ACGGAAGTTGAGGAAGCTTGCACT -ACGGAAGTTGAGGAAGCTCTGACT -ACGGAAGTTGAGGAAGCTCAACCT -ACGGAAGTTGAGGAAGCTGCTACT -ACGGAAGTTGAGGAAGCTGGATCT -ACGGAAGTTGAGGAAGCTAAGGCT -ACGGAAGTTGAGGAAGCTTCAACC -ACGGAAGTTGAGGAAGCTTGTTCC -ACGGAAGTTGAGGAAGCTATTCCC -ACGGAAGTTGAGGAAGCTTTCTCG -ACGGAAGTTGAGGAAGCTTAGACG -ACGGAAGTTGAGGAAGCTGTAACG -ACGGAAGTTGAGGAAGCTACTTCG -ACGGAAGTTGAGGAAGCTTACGCA -ACGGAAGTTGAGGAAGCTCTTGCA -ACGGAAGTTGAGGAAGCTCGAACA -ACGGAAGTTGAGGAAGCTCAGTCA -ACGGAAGTTGAGGAAGCTGATCCA -ACGGAAGTTGAGGAAGCTACGACA -ACGGAAGTTGAGGAAGCTAGCTCA -ACGGAAGTTGAGGAAGCTTCACGT -ACGGAAGTTGAGGAAGCTCGTAGT -ACGGAAGTTGAGGAAGCTGTCAGT -ACGGAAGTTGAGGAAGCTGAAGGT -ACGGAAGTTGAGGAAGCTAACCGT -ACGGAAGTTGAGGAAGCTTTGTGC -ACGGAAGTTGAGGAAGCTCTAAGC -ACGGAAGTTGAGGAAGCTACTAGC -ACGGAAGTTGAGGAAGCTAGATGC -ACGGAAGTTGAGGAAGCTTGAAGG -ACGGAAGTTGAGGAAGCTCAATGG -ACGGAAGTTGAGGAAGCTATGAGG -ACGGAAGTTGAGGAAGCTAATGGG -ACGGAAGTTGAGGAAGCTTCCTGA -ACGGAAGTTGAGGAAGCTTAGCGA -ACGGAAGTTGAGGAAGCTCACAGA -ACGGAAGTTGAGGAAGCTGCAAGA -ACGGAAGTTGAGGAAGCTGGTTGA -ACGGAAGTTGAGGAAGCTTCCGAT -ACGGAAGTTGAGGAAGCTTGGCAT -ACGGAAGTTGAGGAAGCTCGAGAT -ACGGAAGTTGAGGAAGCTTACCAC -ACGGAAGTTGAGGAAGCTCAGAAC -ACGGAAGTTGAGGAAGCTGTCTAC -ACGGAAGTTGAGGAAGCTACGTAC -ACGGAAGTTGAGGAAGCTAGTGAC -ACGGAAGTTGAGGAAGCTCTGTAG -ACGGAAGTTGAGGAAGCTCCTAAG -ACGGAAGTTGAGGAAGCTGTTCAG -ACGGAAGTTGAGGAAGCTGCATAG -ACGGAAGTTGAGGAAGCTGACAAG -ACGGAAGTTGAGGAAGCTAAGCAG -ACGGAAGTTGAGGAAGCTCGTCAA -ACGGAAGTTGAGGAAGCTGCTGAA -ACGGAAGTTGAGGAAGCTAGTACG -ACGGAAGTTGAGGAAGCTATCCGA -ACGGAAGTTGAGGAAGCTATGGGA -ACGGAAGTTGAGGAAGCTGTGCAA -ACGGAAGTTGAGGAAGCTGAGGAA -ACGGAAGTTGAGGAAGCTCAGGTA -ACGGAAGTTGAGGAAGCTGACTCT -ACGGAAGTTGAGGAAGCTAGTCCT -ACGGAAGTTGAGGAAGCTTAAGCC -ACGGAAGTTGAGGAAGCTATAGCC -ACGGAAGTTGAGGAAGCTTAACCG -ACGGAAGTTGAGGAAGCTATGCCA -ACGGAAGTTGAGACGAGTGGAAAC -ACGGAAGTTGAGACGAGTAACACC -ACGGAAGTTGAGACGAGTATCGAG -ACGGAAGTTGAGACGAGTCTCCTT -ACGGAAGTTGAGACGAGTCCTGTT -ACGGAAGTTGAGACGAGTCGGTTT -ACGGAAGTTGAGACGAGTGTGGTT -ACGGAAGTTGAGACGAGTGCCTTT -ACGGAAGTTGAGACGAGTGGTCTT -ACGGAAGTTGAGACGAGTACGCTT -ACGGAAGTTGAGACGAGTAGCGTT -ACGGAAGTTGAGACGAGTTTCGTC -ACGGAAGTTGAGACGAGTTCTCTC -ACGGAAGTTGAGACGAGTTGGATC -ACGGAAGTTGAGACGAGTCACTTC -ACGGAAGTTGAGACGAGTGTACTC -ACGGAAGTTGAGACGAGTGATGTC -ACGGAAGTTGAGACGAGTACAGTC -ACGGAAGTTGAGACGAGTTTGCTG -ACGGAAGTTGAGACGAGTTCCATG -ACGGAAGTTGAGACGAGTTGTGTG -ACGGAAGTTGAGACGAGTCTAGTG -ACGGAAGTTGAGACGAGTCATCTG -ACGGAAGTTGAGACGAGTGAGTTG -ACGGAAGTTGAGACGAGTAGACTG -ACGGAAGTTGAGACGAGTTCGGTA -ACGGAAGTTGAGACGAGTTGCCTA -ACGGAAGTTGAGACGAGTCCACTA -ACGGAAGTTGAGACGAGTGGAGTA -ACGGAAGTTGAGACGAGTTCGTCT -ACGGAAGTTGAGACGAGTTGCACT -ACGGAAGTTGAGACGAGTCTGACT -ACGGAAGTTGAGACGAGTCAACCT -ACGGAAGTTGAGACGAGTGCTACT -ACGGAAGTTGAGACGAGTGGATCT -ACGGAAGTTGAGACGAGTAAGGCT -ACGGAAGTTGAGACGAGTTCAACC -ACGGAAGTTGAGACGAGTTGTTCC -ACGGAAGTTGAGACGAGTATTCCC -ACGGAAGTTGAGACGAGTTTCTCG -ACGGAAGTTGAGACGAGTTAGACG -ACGGAAGTTGAGACGAGTGTAACG -ACGGAAGTTGAGACGAGTACTTCG -ACGGAAGTTGAGACGAGTTACGCA -ACGGAAGTTGAGACGAGTCTTGCA -ACGGAAGTTGAGACGAGTCGAACA -ACGGAAGTTGAGACGAGTCAGTCA -ACGGAAGTTGAGACGAGTGATCCA -ACGGAAGTTGAGACGAGTACGACA -ACGGAAGTTGAGACGAGTAGCTCA -ACGGAAGTTGAGACGAGTTCACGT -ACGGAAGTTGAGACGAGTCGTAGT -ACGGAAGTTGAGACGAGTGTCAGT -ACGGAAGTTGAGACGAGTGAAGGT -ACGGAAGTTGAGACGAGTAACCGT -ACGGAAGTTGAGACGAGTTTGTGC -ACGGAAGTTGAGACGAGTCTAAGC -ACGGAAGTTGAGACGAGTACTAGC -ACGGAAGTTGAGACGAGTAGATGC -ACGGAAGTTGAGACGAGTTGAAGG -ACGGAAGTTGAGACGAGTCAATGG -ACGGAAGTTGAGACGAGTATGAGG -ACGGAAGTTGAGACGAGTAATGGG -ACGGAAGTTGAGACGAGTTCCTGA -ACGGAAGTTGAGACGAGTTAGCGA -ACGGAAGTTGAGACGAGTCACAGA -ACGGAAGTTGAGACGAGTGCAAGA -ACGGAAGTTGAGACGAGTGGTTGA -ACGGAAGTTGAGACGAGTTCCGAT -ACGGAAGTTGAGACGAGTTGGCAT -ACGGAAGTTGAGACGAGTCGAGAT -ACGGAAGTTGAGACGAGTTACCAC -ACGGAAGTTGAGACGAGTCAGAAC -ACGGAAGTTGAGACGAGTGTCTAC -ACGGAAGTTGAGACGAGTACGTAC -ACGGAAGTTGAGACGAGTAGTGAC -ACGGAAGTTGAGACGAGTCTGTAG -ACGGAAGTTGAGACGAGTCCTAAG -ACGGAAGTTGAGACGAGTGTTCAG -ACGGAAGTTGAGACGAGTGCATAG -ACGGAAGTTGAGACGAGTGACAAG -ACGGAAGTTGAGACGAGTAAGCAG -ACGGAAGTTGAGACGAGTCGTCAA -ACGGAAGTTGAGACGAGTGCTGAA -ACGGAAGTTGAGACGAGTAGTACG -ACGGAAGTTGAGACGAGTATCCGA -ACGGAAGTTGAGACGAGTATGGGA -ACGGAAGTTGAGACGAGTGTGCAA -ACGGAAGTTGAGACGAGTGAGGAA -ACGGAAGTTGAGACGAGTCAGGTA -ACGGAAGTTGAGACGAGTGACTCT -ACGGAAGTTGAGACGAGTAGTCCT -ACGGAAGTTGAGACGAGTTAAGCC -ACGGAAGTTGAGACGAGTATAGCC -ACGGAAGTTGAGACGAGTTAACCG -ACGGAAGTTGAGACGAGTATGCCA -ACGGAAGTTGAGCGAATCGGAAAC -ACGGAAGTTGAGCGAATCAACACC -ACGGAAGTTGAGCGAATCATCGAG -ACGGAAGTTGAGCGAATCCTCCTT -ACGGAAGTTGAGCGAATCCCTGTT -ACGGAAGTTGAGCGAATCCGGTTT -ACGGAAGTTGAGCGAATCGTGGTT -ACGGAAGTTGAGCGAATCGCCTTT -ACGGAAGTTGAGCGAATCGGTCTT -ACGGAAGTTGAGCGAATCACGCTT -ACGGAAGTTGAGCGAATCAGCGTT -ACGGAAGTTGAGCGAATCTTCGTC -ACGGAAGTTGAGCGAATCTCTCTC -ACGGAAGTTGAGCGAATCTGGATC -ACGGAAGTTGAGCGAATCCACTTC -ACGGAAGTTGAGCGAATCGTACTC -ACGGAAGTTGAGCGAATCGATGTC -ACGGAAGTTGAGCGAATCACAGTC -ACGGAAGTTGAGCGAATCTTGCTG -ACGGAAGTTGAGCGAATCTCCATG -ACGGAAGTTGAGCGAATCTGTGTG -ACGGAAGTTGAGCGAATCCTAGTG -ACGGAAGTTGAGCGAATCCATCTG -ACGGAAGTTGAGCGAATCGAGTTG -ACGGAAGTTGAGCGAATCAGACTG -ACGGAAGTTGAGCGAATCTCGGTA -ACGGAAGTTGAGCGAATCTGCCTA -ACGGAAGTTGAGCGAATCCCACTA -ACGGAAGTTGAGCGAATCGGAGTA -ACGGAAGTTGAGCGAATCTCGTCT -ACGGAAGTTGAGCGAATCTGCACT -ACGGAAGTTGAGCGAATCCTGACT -ACGGAAGTTGAGCGAATCCAACCT -ACGGAAGTTGAGCGAATCGCTACT -ACGGAAGTTGAGCGAATCGGATCT -ACGGAAGTTGAGCGAATCAAGGCT -ACGGAAGTTGAGCGAATCTCAACC -ACGGAAGTTGAGCGAATCTGTTCC -ACGGAAGTTGAGCGAATCATTCCC -ACGGAAGTTGAGCGAATCTTCTCG -ACGGAAGTTGAGCGAATCTAGACG -ACGGAAGTTGAGCGAATCGTAACG -ACGGAAGTTGAGCGAATCACTTCG -ACGGAAGTTGAGCGAATCTACGCA -ACGGAAGTTGAGCGAATCCTTGCA -ACGGAAGTTGAGCGAATCCGAACA -ACGGAAGTTGAGCGAATCCAGTCA -ACGGAAGTTGAGCGAATCGATCCA -ACGGAAGTTGAGCGAATCACGACA -ACGGAAGTTGAGCGAATCAGCTCA -ACGGAAGTTGAGCGAATCTCACGT -ACGGAAGTTGAGCGAATCCGTAGT -ACGGAAGTTGAGCGAATCGTCAGT -ACGGAAGTTGAGCGAATCGAAGGT -ACGGAAGTTGAGCGAATCAACCGT -ACGGAAGTTGAGCGAATCTTGTGC -ACGGAAGTTGAGCGAATCCTAAGC -ACGGAAGTTGAGCGAATCACTAGC -ACGGAAGTTGAGCGAATCAGATGC -ACGGAAGTTGAGCGAATCTGAAGG -ACGGAAGTTGAGCGAATCCAATGG -ACGGAAGTTGAGCGAATCATGAGG -ACGGAAGTTGAGCGAATCAATGGG -ACGGAAGTTGAGCGAATCTCCTGA -ACGGAAGTTGAGCGAATCTAGCGA -ACGGAAGTTGAGCGAATCCACAGA -ACGGAAGTTGAGCGAATCGCAAGA -ACGGAAGTTGAGCGAATCGGTTGA -ACGGAAGTTGAGCGAATCTCCGAT -ACGGAAGTTGAGCGAATCTGGCAT -ACGGAAGTTGAGCGAATCCGAGAT -ACGGAAGTTGAGCGAATCTACCAC -ACGGAAGTTGAGCGAATCCAGAAC -ACGGAAGTTGAGCGAATCGTCTAC -ACGGAAGTTGAGCGAATCACGTAC -ACGGAAGTTGAGCGAATCAGTGAC -ACGGAAGTTGAGCGAATCCTGTAG -ACGGAAGTTGAGCGAATCCCTAAG -ACGGAAGTTGAGCGAATCGTTCAG -ACGGAAGTTGAGCGAATCGCATAG -ACGGAAGTTGAGCGAATCGACAAG -ACGGAAGTTGAGCGAATCAAGCAG -ACGGAAGTTGAGCGAATCCGTCAA -ACGGAAGTTGAGCGAATCGCTGAA -ACGGAAGTTGAGCGAATCAGTACG -ACGGAAGTTGAGCGAATCATCCGA -ACGGAAGTTGAGCGAATCATGGGA -ACGGAAGTTGAGCGAATCGTGCAA -ACGGAAGTTGAGCGAATCGAGGAA -ACGGAAGTTGAGCGAATCCAGGTA -ACGGAAGTTGAGCGAATCGACTCT -ACGGAAGTTGAGCGAATCAGTCCT -ACGGAAGTTGAGCGAATCTAAGCC -ACGGAAGTTGAGCGAATCATAGCC -ACGGAAGTTGAGCGAATCTAACCG -ACGGAAGTTGAGCGAATCATGCCA -ACGGAAGTTGAGGGAATGGGAAAC -ACGGAAGTTGAGGGAATGAACACC -ACGGAAGTTGAGGGAATGATCGAG -ACGGAAGTTGAGGGAATGCTCCTT -ACGGAAGTTGAGGGAATGCCTGTT -ACGGAAGTTGAGGGAATGCGGTTT -ACGGAAGTTGAGGGAATGGTGGTT -ACGGAAGTTGAGGGAATGGCCTTT -ACGGAAGTTGAGGGAATGGGTCTT -ACGGAAGTTGAGGGAATGACGCTT -ACGGAAGTTGAGGGAATGAGCGTT -ACGGAAGTTGAGGGAATGTTCGTC -ACGGAAGTTGAGGGAATGTCTCTC -ACGGAAGTTGAGGGAATGTGGATC -ACGGAAGTTGAGGGAATGCACTTC -ACGGAAGTTGAGGGAATGGTACTC -ACGGAAGTTGAGGGAATGGATGTC -ACGGAAGTTGAGGGAATGACAGTC -ACGGAAGTTGAGGGAATGTTGCTG -ACGGAAGTTGAGGGAATGTCCATG -ACGGAAGTTGAGGGAATGTGTGTG -ACGGAAGTTGAGGGAATGCTAGTG -ACGGAAGTTGAGGGAATGCATCTG -ACGGAAGTTGAGGGAATGGAGTTG -ACGGAAGTTGAGGGAATGAGACTG -ACGGAAGTTGAGGGAATGTCGGTA -ACGGAAGTTGAGGGAATGTGCCTA -ACGGAAGTTGAGGGAATGCCACTA -ACGGAAGTTGAGGGAATGGGAGTA -ACGGAAGTTGAGGGAATGTCGTCT -ACGGAAGTTGAGGGAATGTGCACT -ACGGAAGTTGAGGGAATGCTGACT -ACGGAAGTTGAGGGAATGCAACCT -ACGGAAGTTGAGGGAATGGCTACT -ACGGAAGTTGAGGGAATGGGATCT -ACGGAAGTTGAGGGAATGAAGGCT -ACGGAAGTTGAGGGAATGTCAACC -ACGGAAGTTGAGGGAATGTGTTCC -ACGGAAGTTGAGGGAATGATTCCC -ACGGAAGTTGAGGGAATGTTCTCG -ACGGAAGTTGAGGGAATGTAGACG -ACGGAAGTTGAGGGAATGGTAACG -ACGGAAGTTGAGGGAATGACTTCG -ACGGAAGTTGAGGGAATGTACGCA -ACGGAAGTTGAGGGAATGCTTGCA -ACGGAAGTTGAGGGAATGCGAACA -ACGGAAGTTGAGGGAATGCAGTCA -ACGGAAGTTGAGGGAATGGATCCA -ACGGAAGTTGAGGGAATGACGACA -ACGGAAGTTGAGGGAATGAGCTCA -ACGGAAGTTGAGGGAATGTCACGT -ACGGAAGTTGAGGGAATGCGTAGT -ACGGAAGTTGAGGGAATGGTCAGT -ACGGAAGTTGAGGGAATGGAAGGT -ACGGAAGTTGAGGGAATGAACCGT -ACGGAAGTTGAGGGAATGTTGTGC -ACGGAAGTTGAGGGAATGCTAAGC -ACGGAAGTTGAGGGAATGACTAGC -ACGGAAGTTGAGGGAATGAGATGC -ACGGAAGTTGAGGGAATGTGAAGG -ACGGAAGTTGAGGGAATGCAATGG -ACGGAAGTTGAGGGAATGATGAGG -ACGGAAGTTGAGGGAATGAATGGG -ACGGAAGTTGAGGGAATGTCCTGA -ACGGAAGTTGAGGGAATGTAGCGA -ACGGAAGTTGAGGGAATGCACAGA -ACGGAAGTTGAGGGAATGGCAAGA -ACGGAAGTTGAGGGAATGGGTTGA -ACGGAAGTTGAGGGAATGTCCGAT -ACGGAAGTTGAGGGAATGTGGCAT -ACGGAAGTTGAGGGAATGCGAGAT -ACGGAAGTTGAGGGAATGTACCAC -ACGGAAGTTGAGGGAATGCAGAAC -ACGGAAGTTGAGGGAATGGTCTAC -ACGGAAGTTGAGGGAATGACGTAC -ACGGAAGTTGAGGGAATGAGTGAC -ACGGAAGTTGAGGGAATGCTGTAG -ACGGAAGTTGAGGGAATGCCTAAG -ACGGAAGTTGAGGGAATGGTTCAG -ACGGAAGTTGAGGGAATGGCATAG -ACGGAAGTTGAGGGAATGGACAAG -ACGGAAGTTGAGGGAATGAAGCAG -ACGGAAGTTGAGGGAATGCGTCAA -ACGGAAGTTGAGGGAATGGCTGAA -ACGGAAGTTGAGGGAATGAGTACG -ACGGAAGTTGAGGGAATGATCCGA -ACGGAAGTTGAGGGAATGATGGGA -ACGGAAGTTGAGGGAATGGTGCAA -ACGGAAGTTGAGGGAATGGAGGAA -ACGGAAGTTGAGGGAATGCAGGTA -ACGGAAGTTGAGGGAATGGACTCT -ACGGAAGTTGAGGGAATGAGTCCT -ACGGAAGTTGAGGGAATGTAAGCC -ACGGAAGTTGAGGGAATGATAGCC -ACGGAAGTTGAGGGAATGTAACCG -ACGGAAGTTGAGGGAATGATGCCA -ACGGAAGTTGAGCAAGTGGGAAAC -ACGGAAGTTGAGCAAGTGAACACC -ACGGAAGTTGAGCAAGTGATCGAG -ACGGAAGTTGAGCAAGTGCTCCTT -ACGGAAGTTGAGCAAGTGCCTGTT -ACGGAAGTTGAGCAAGTGCGGTTT -ACGGAAGTTGAGCAAGTGGTGGTT -ACGGAAGTTGAGCAAGTGGCCTTT -ACGGAAGTTGAGCAAGTGGGTCTT -ACGGAAGTTGAGCAAGTGACGCTT -ACGGAAGTTGAGCAAGTGAGCGTT -ACGGAAGTTGAGCAAGTGTTCGTC -ACGGAAGTTGAGCAAGTGTCTCTC -ACGGAAGTTGAGCAAGTGTGGATC -ACGGAAGTTGAGCAAGTGCACTTC -ACGGAAGTTGAGCAAGTGGTACTC -ACGGAAGTTGAGCAAGTGGATGTC -ACGGAAGTTGAGCAAGTGACAGTC -ACGGAAGTTGAGCAAGTGTTGCTG -ACGGAAGTTGAGCAAGTGTCCATG -ACGGAAGTTGAGCAAGTGTGTGTG -ACGGAAGTTGAGCAAGTGCTAGTG -ACGGAAGTTGAGCAAGTGCATCTG -ACGGAAGTTGAGCAAGTGGAGTTG -ACGGAAGTTGAGCAAGTGAGACTG -ACGGAAGTTGAGCAAGTGTCGGTA -ACGGAAGTTGAGCAAGTGTGCCTA -ACGGAAGTTGAGCAAGTGCCACTA -ACGGAAGTTGAGCAAGTGGGAGTA -ACGGAAGTTGAGCAAGTGTCGTCT -ACGGAAGTTGAGCAAGTGTGCACT -ACGGAAGTTGAGCAAGTGCTGACT -ACGGAAGTTGAGCAAGTGCAACCT -ACGGAAGTTGAGCAAGTGGCTACT -ACGGAAGTTGAGCAAGTGGGATCT -ACGGAAGTTGAGCAAGTGAAGGCT -ACGGAAGTTGAGCAAGTGTCAACC -ACGGAAGTTGAGCAAGTGTGTTCC -ACGGAAGTTGAGCAAGTGATTCCC -ACGGAAGTTGAGCAAGTGTTCTCG -ACGGAAGTTGAGCAAGTGTAGACG -ACGGAAGTTGAGCAAGTGGTAACG -ACGGAAGTTGAGCAAGTGACTTCG -ACGGAAGTTGAGCAAGTGTACGCA -ACGGAAGTTGAGCAAGTGCTTGCA -ACGGAAGTTGAGCAAGTGCGAACA -ACGGAAGTTGAGCAAGTGCAGTCA -ACGGAAGTTGAGCAAGTGGATCCA -ACGGAAGTTGAGCAAGTGACGACA -ACGGAAGTTGAGCAAGTGAGCTCA -ACGGAAGTTGAGCAAGTGTCACGT -ACGGAAGTTGAGCAAGTGCGTAGT -ACGGAAGTTGAGCAAGTGGTCAGT -ACGGAAGTTGAGCAAGTGGAAGGT -ACGGAAGTTGAGCAAGTGAACCGT -ACGGAAGTTGAGCAAGTGTTGTGC -ACGGAAGTTGAGCAAGTGCTAAGC -ACGGAAGTTGAGCAAGTGACTAGC -ACGGAAGTTGAGCAAGTGAGATGC -ACGGAAGTTGAGCAAGTGTGAAGG -ACGGAAGTTGAGCAAGTGCAATGG -ACGGAAGTTGAGCAAGTGATGAGG -ACGGAAGTTGAGCAAGTGAATGGG -ACGGAAGTTGAGCAAGTGTCCTGA -ACGGAAGTTGAGCAAGTGTAGCGA -ACGGAAGTTGAGCAAGTGCACAGA -ACGGAAGTTGAGCAAGTGGCAAGA -ACGGAAGTTGAGCAAGTGGGTTGA -ACGGAAGTTGAGCAAGTGTCCGAT -ACGGAAGTTGAGCAAGTGTGGCAT -ACGGAAGTTGAGCAAGTGCGAGAT -ACGGAAGTTGAGCAAGTGTACCAC -ACGGAAGTTGAGCAAGTGCAGAAC -ACGGAAGTTGAGCAAGTGGTCTAC -ACGGAAGTTGAGCAAGTGACGTAC -ACGGAAGTTGAGCAAGTGAGTGAC -ACGGAAGTTGAGCAAGTGCTGTAG -ACGGAAGTTGAGCAAGTGCCTAAG -ACGGAAGTTGAGCAAGTGGTTCAG -ACGGAAGTTGAGCAAGTGGCATAG -ACGGAAGTTGAGCAAGTGGACAAG -ACGGAAGTTGAGCAAGTGAAGCAG -ACGGAAGTTGAGCAAGTGCGTCAA -ACGGAAGTTGAGCAAGTGGCTGAA -ACGGAAGTTGAGCAAGTGAGTACG -ACGGAAGTTGAGCAAGTGATCCGA -ACGGAAGTTGAGCAAGTGATGGGA -ACGGAAGTTGAGCAAGTGGTGCAA -ACGGAAGTTGAGCAAGTGGAGGAA -ACGGAAGTTGAGCAAGTGCAGGTA -ACGGAAGTTGAGCAAGTGGACTCT -ACGGAAGTTGAGCAAGTGAGTCCT -ACGGAAGTTGAGCAAGTGTAAGCC -ACGGAAGTTGAGCAAGTGATAGCC -ACGGAAGTTGAGCAAGTGTAACCG -ACGGAAGTTGAGCAAGTGATGCCA -ACGGAAGTTGAGGAAGAGGGAAAC -ACGGAAGTTGAGGAAGAGAACACC -ACGGAAGTTGAGGAAGAGATCGAG -ACGGAAGTTGAGGAAGAGCTCCTT -ACGGAAGTTGAGGAAGAGCCTGTT -ACGGAAGTTGAGGAAGAGCGGTTT -ACGGAAGTTGAGGAAGAGGTGGTT -ACGGAAGTTGAGGAAGAGGCCTTT -ACGGAAGTTGAGGAAGAGGGTCTT -ACGGAAGTTGAGGAAGAGACGCTT -ACGGAAGTTGAGGAAGAGAGCGTT -ACGGAAGTTGAGGAAGAGTTCGTC -ACGGAAGTTGAGGAAGAGTCTCTC -ACGGAAGTTGAGGAAGAGTGGATC -ACGGAAGTTGAGGAAGAGCACTTC -ACGGAAGTTGAGGAAGAGGTACTC -ACGGAAGTTGAGGAAGAGGATGTC -ACGGAAGTTGAGGAAGAGACAGTC -ACGGAAGTTGAGGAAGAGTTGCTG -ACGGAAGTTGAGGAAGAGTCCATG -ACGGAAGTTGAGGAAGAGTGTGTG -ACGGAAGTTGAGGAAGAGCTAGTG -ACGGAAGTTGAGGAAGAGCATCTG -ACGGAAGTTGAGGAAGAGGAGTTG -ACGGAAGTTGAGGAAGAGAGACTG -ACGGAAGTTGAGGAAGAGTCGGTA -ACGGAAGTTGAGGAAGAGTGCCTA -ACGGAAGTTGAGGAAGAGCCACTA -ACGGAAGTTGAGGAAGAGGGAGTA -ACGGAAGTTGAGGAAGAGTCGTCT -ACGGAAGTTGAGGAAGAGTGCACT -ACGGAAGTTGAGGAAGAGCTGACT -ACGGAAGTTGAGGAAGAGCAACCT -ACGGAAGTTGAGGAAGAGGCTACT -ACGGAAGTTGAGGAAGAGGGATCT -ACGGAAGTTGAGGAAGAGAAGGCT -ACGGAAGTTGAGGAAGAGTCAACC -ACGGAAGTTGAGGAAGAGTGTTCC -ACGGAAGTTGAGGAAGAGATTCCC -ACGGAAGTTGAGGAAGAGTTCTCG -ACGGAAGTTGAGGAAGAGTAGACG -ACGGAAGTTGAGGAAGAGGTAACG -ACGGAAGTTGAGGAAGAGACTTCG -ACGGAAGTTGAGGAAGAGTACGCA -ACGGAAGTTGAGGAAGAGCTTGCA -ACGGAAGTTGAGGAAGAGCGAACA -ACGGAAGTTGAGGAAGAGCAGTCA -ACGGAAGTTGAGGAAGAGGATCCA -ACGGAAGTTGAGGAAGAGACGACA -ACGGAAGTTGAGGAAGAGAGCTCA -ACGGAAGTTGAGGAAGAGTCACGT -ACGGAAGTTGAGGAAGAGCGTAGT -ACGGAAGTTGAGGAAGAGGTCAGT -ACGGAAGTTGAGGAAGAGGAAGGT -ACGGAAGTTGAGGAAGAGAACCGT -ACGGAAGTTGAGGAAGAGTTGTGC -ACGGAAGTTGAGGAAGAGCTAAGC -ACGGAAGTTGAGGAAGAGACTAGC -ACGGAAGTTGAGGAAGAGAGATGC -ACGGAAGTTGAGGAAGAGTGAAGG -ACGGAAGTTGAGGAAGAGCAATGG -ACGGAAGTTGAGGAAGAGATGAGG -ACGGAAGTTGAGGAAGAGAATGGG -ACGGAAGTTGAGGAAGAGTCCTGA -ACGGAAGTTGAGGAAGAGTAGCGA -ACGGAAGTTGAGGAAGAGCACAGA -ACGGAAGTTGAGGAAGAGGCAAGA -ACGGAAGTTGAGGAAGAGGGTTGA -ACGGAAGTTGAGGAAGAGTCCGAT -ACGGAAGTTGAGGAAGAGTGGCAT -ACGGAAGTTGAGGAAGAGCGAGAT -ACGGAAGTTGAGGAAGAGTACCAC -ACGGAAGTTGAGGAAGAGCAGAAC -ACGGAAGTTGAGGAAGAGGTCTAC -ACGGAAGTTGAGGAAGAGACGTAC -ACGGAAGTTGAGGAAGAGAGTGAC -ACGGAAGTTGAGGAAGAGCTGTAG -ACGGAAGTTGAGGAAGAGCCTAAG -ACGGAAGTTGAGGAAGAGGTTCAG -ACGGAAGTTGAGGAAGAGGCATAG -ACGGAAGTTGAGGAAGAGGACAAG -ACGGAAGTTGAGGAAGAGAAGCAG -ACGGAAGTTGAGGAAGAGCGTCAA -ACGGAAGTTGAGGAAGAGGCTGAA -ACGGAAGTTGAGGAAGAGAGTACG -ACGGAAGTTGAGGAAGAGATCCGA -ACGGAAGTTGAGGAAGAGATGGGA -ACGGAAGTTGAGGAAGAGGTGCAA -ACGGAAGTTGAGGAAGAGGAGGAA -ACGGAAGTTGAGGAAGAGCAGGTA -ACGGAAGTTGAGGAAGAGGACTCT -ACGGAAGTTGAGGAAGAGAGTCCT -ACGGAAGTTGAGGAAGAGTAAGCC -ACGGAAGTTGAGGAAGAGATAGCC -ACGGAAGTTGAGGAAGAGTAACCG -ACGGAAGTTGAGGAAGAGATGCCA -ACGGAAGTTGAGGTACAGGGAAAC -ACGGAAGTTGAGGTACAGAACACC -ACGGAAGTTGAGGTACAGATCGAG -ACGGAAGTTGAGGTACAGCTCCTT -ACGGAAGTTGAGGTACAGCCTGTT -ACGGAAGTTGAGGTACAGCGGTTT -ACGGAAGTTGAGGTACAGGTGGTT -ACGGAAGTTGAGGTACAGGCCTTT -ACGGAAGTTGAGGTACAGGGTCTT -ACGGAAGTTGAGGTACAGACGCTT -ACGGAAGTTGAGGTACAGAGCGTT -ACGGAAGTTGAGGTACAGTTCGTC -ACGGAAGTTGAGGTACAGTCTCTC -ACGGAAGTTGAGGTACAGTGGATC -ACGGAAGTTGAGGTACAGCACTTC -ACGGAAGTTGAGGTACAGGTACTC -ACGGAAGTTGAGGTACAGGATGTC -ACGGAAGTTGAGGTACAGACAGTC -ACGGAAGTTGAGGTACAGTTGCTG -ACGGAAGTTGAGGTACAGTCCATG -ACGGAAGTTGAGGTACAGTGTGTG -ACGGAAGTTGAGGTACAGCTAGTG -ACGGAAGTTGAGGTACAGCATCTG -ACGGAAGTTGAGGTACAGGAGTTG -ACGGAAGTTGAGGTACAGAGACTG -ACGGAAGTTGAGGTACAGTCGGTA -ACGGAAGTTGAGGTACAGTGCCTA -ACGGAAGTTGAGGTACAGCCACTA -ACGGAAGTTGAGGTACAGGGAGTA -ACGGAAGTTGAGGTACAGTCGTCT -ACGGAAGTTGAGGTACAGTGCACT -ACGGAAGTTGAGGTACAGCTGACT -ACGGAAGTTGAGGTACAGCAACCT -ACGGAAGTTGAGGTACAGGCTACT -ACGGAAGTTGAGGTACAGGGATCT -ACGGAAGTTGAGGTACAGAAGGCT -ACGGAAGTTGAGGTACAGTCAACC -ACGGAAGTTGAGGTACAGTGTTCC -ACGGAAGTTGAGGTACAGATTCCC -ACGGAAGTTGAGGTACAGTTCTCG -ACGGAAGTTGAGGTACAGTAGACG -ACGGAAGTTGAGGTACAGGTAACG -ACGGAAGTTGAGGTACAGACTTCG -ACGGAAGTTGAGGTACAGTACGCA -ACGGAAGTTGAGGTACAGCTTGCA -ACGGAAGTTGAGGTACAGCGAACA -ACGGAAGTTGAGGTACAGCAGTCA -ACGGAAGTTGAGGTACAGGATCCA -ACGGAAGTTGAGGTACAGACGACA -ACGGAAGTTGAGGTACAGAGCTCA -ACGGAAGTTGAGGTACAGTCACGT -ACGGAAGTTGAGGTACAGCGTAGT -ACGGAAGTTGAGGTACAGGTCAGT -ACGGAAGTTGAGGTACAGGAAGGT -ACGGAAGTTGAGGTACAGAACCGT -ACGGAAGTTGAGGTACAGTTGTGC -ACGGAAGTTGAGGTACAGCTAAGC -ACGGAAGTTGAGGTACAGACTAGC -ACGGAAGTTGAGGTACAGAGATGC -ACGGAAGTTGAGGTACAGTGAAGG -ACGGAAGTTGAGGTACAGCAATGG -ACGGAAGTTGAGGTACAGATGAGG -ACGGAAGTTGAGGTACAGAATGGG -ACGGAAGTTGAGGTACAGTCCTGA -ACGGAAGTTGAGGTACAGTAGCGA -ACGGAAGTTGAGGTACAGCACAGA -ACGGAAGTTGAGGTACAGGCAAGA -ACGGAAGTTGAGGTACAGGGTTGA -ACGGAAGTTGAGGTACAGTCCGAT -ACGGAAGTTGAGGTACAGTGGCAT -ACGGAAGTTGAGGTACAGCGAGAT -ACGGAAGTTGAGGTACAGTACCAC -ACGGAAGTTGAGGTACAGCAGAAC -ACGGAAGTTGAGGTACAGGTCTAC -ACGGAAGTTGAGGTACAGACGTAC -ACGGAAGTTGAGGTACAGAGTGAC -ACGGAAGTTGAGGTACAGCTGTAG -ACGGAAGTTGAGGTACAGCCTAAG -ACGGAAGTTGAGGTACAGGTTCAG -ACGGAAGTTGAGGTACAGGCATAG -ACGGAAGTTGAGGTACAGGACAAG -ACGGAAGTTGAGGTACAGAAGCAG -ACGGAAGTTGAGGTACAGCGTCAA -ACGGAAGTTGAGGTACAGGCTGAA -ACGGAAGTTGAGGTACAGAGTACG -ACGGAAGTTGAGGTACAGATCCGA -ACGGAAGTTGAGGTACAGATGGGA -ACGGAAGTTGAGGTACAGGTGCAA -ACGGAAGTTGAGGTACAGGAGGAA -ACGGAAGTTGAGGTACAGCAGGTA -ACGGAAGTTGAGGTACAGGACTCT -ACGGAAGTTGAGGTACAGAGTCCT -ACGGAAGTTGAGGTACAGTAAGCC -ACGGAAGTTGAGGTACAGATAGCC -ACGGAAGTTGAGGTACAGTAACCG -ACGGAAGTTGAGGTACAGATGCCA -ACGGAAGTTGAGTCTGACGGAAAC -ACGGAAGTTGAGTCTGACAACACC -ACGGAAGTTGAGTCTGACATCGAG -ACGGAAGTTGAGTCTGACCTCCTT -ACGGAAGTTGAGTCTGACCCTGTT -ACGGAAGTTGAGTCTGACCGGTTT -ACGGAAGTTGAGTCTGACGTGGTT -ACGGAAGTTGAGTCTGACGCCTTT -ACGGAAGTTGAGTCTGACGGTCTT -ACGGAAGTTGAGTCTGACACGCTT -ACGGAAGTTGAGTCTGACAGCGTT -ACGGAAGTTGAGTCTGACTTCGTC -ACGGAAGTTGAGTCTGACTCTCTC -ACGGAAGTTGAGTCTGACTGGATC -ACGGAAGTTGAGTCTGACCACTTC -ACGGAAGTTGAGTCTGACGTACTC -ACGGAAGTTGAGTCTGACGATGTC -ACGGAAGTTGAGTCTGACACAGTC -ACGGAAGTTGAGTCTGACTTGCTG -ACGGAAGTTGAGTCTGACTCCATG -ACGGAAGTTGAGTCTGACTGTGTG -ACGGAAGTTGAGTCTGACCTAGTG -ACGGAAGTTGAGTCTGACCATCTG -ACGGAAGTTGAGTCTGACGAGTTG -ACGGAAGTTGAGTCTGACAGACTG -ACGGAAGTTGAGTCTGACTCGGTA -ACGGAAGTTGAGTCTGACTGCCTA -ACGGAAGTTGAGTCTGACCCACTA -ACGGAAGTTGAGTCTGACGGAGTA -ACGGAAGTTGAGTCTGACTCGTCT -ACGGAAGTTGAGTCTGACTGCACT -ACGGAAGTTGAGTCTGACCTGACT -ACGGAAGTTGAGTCTGACCAACCT -ACGGAAGTTGAGTCTGACGCTACT -ACGGAAGTTGAGTCTGACGGATCT -ACGGAAGTTGAGTCTGACAAGGCT -ACGGAAGTTGAGTCTGACTCAACC -ACGGAAGTTGAGTCTGACTGTTCC -ACGGAAGTTGAGTCTGACATTCCC -ACGGAAGTTGAGTCTGACTTCTCG -ACGGAAGTTGAGTCTGACTAGACG -ACGGAAGTTGAGTCTGACGTAACG -ACGGAAGTTGAGTCTGACACTTCG -ACGGAAGTTGAGTCTGACTACGCA -ACGGAAGTTGAGTCTGACCTTGCA -ACGGAAGTTGAGTCTGACCGAACA -ACGGAAGTTGAGTCTGACCAGTCA -ACGGAAGTTGAGTCTGACGATCCA -ACGGAAGTTGAGTCTGACACGACA -ACGGAAGTTGAGTCTGACAGCTCA -ACGGAAGTTGAGTCTGACTCACGT -ACGGAAGTTGAGTCTGACCGTAGT -ACGGAAGTTGAGTCTGACGTCAGT -ACGGAAGTTGAGTCTGACGAAGGT -ACGGAAGTTGAGTCTGACAACCGT -ACGGAAGTTGAGTCTGACTTGTGC -ACGGAAGTTGAGTCTGACCTAAGC -ACGGAAGTTGAGTCTGACACTAGC -ACGGAAGTTGAGTCTGACAGATGC -ACGGAAGTTGAGTCTGACTGAAGG -ACGGAAGTTGAGTCTGACCAATGG -ACGGAAGTTGAGTCTGACATGAGG -ACGGAAGTTGAGTCTGACAATGGG -ACGGAAGTTGAGTCTGACTCCTGA -ACGGAAGTTGAGTCTGACTAGCGA -ACGGAAGTTGAGTCTGACCACAGA -ACGGAAGTTGAGTCTGACGCAAGA -ACGGAAGTTGAGTCTGACGGTTGA -ACGGAAGTTGAGTCTGACTCCGAT -ACGGAAGTTGAGTCTGACTGGCAT -ACGGAAGTTGAGTCTGACCGAGAT -ACGGAAGTTGAGTCTGACTACCAC -ACGGAAGTTGAGTCTGACCAGAAC -ACGGAAGTTGAGTCTGACGTCTAC -ACGGAAGTTGAGTCTGACACGTAC -ACGGAAGTTGAGTCTGACAGTGAC -ACGGAAGTTGAGTCTGACCTGTAG -ACGGAAGTTGAGTCTGACCCTAAG -ACGGAAGTTGAGTCTGACGTTCAG -ACGGAAGTTGAGTCTGACGCATAG -ACGGAAGTTGAGTCTGACGACAAG -ACGGAAGTTGAGTCTGACAAGCAG -ACGGAAGTTGAGTCTGACCGTCAA -ACGGAAGTTGAGTCTGACGCTGAA -ACGGAAGTTGAGTCTGACAGTACG -ACGGAAGTTGAGTCTGACATCCGA -ACGGAAGTTGAGTCTGACATGGGA -ACGGAAGTTGAGTCTGACGTGCAA -ACGGAAGTTGAGTCTGACGAGGAA -ACGGAAGTTGAGTCTGACCAGGTA -ACGGAAGTTGAGTCTGACGACTCT -ACGGAAGTTGAGTCTGACAGTCCT -ACGGAAGTTGAGTCTGACTAAGCC -ACGGAAGTTGAGTCTGACATAGCC -ACGGAAGTTGAGTCTGACTAACCG -ACGGAAGTTGAGTCTGACATGCCA -ACGGAAGTTGAGCCTAGTGGAAAC -ACGGAAGTTGAGCCTAGTAACACC -ACGGAAGTTGAGCCTAGTATCGAG -ACGGAAGTTGAGCCTAGTCTCCTT -ACGGAAGTTGAGCCTAGTCCTGTT -ACGGAAGTTGAGCCTAGTCGGTTT -ACGGAAGTTGAGCCTAGTGTGGTT -ACGGAAGTTGAGCCTAGTGCCTTT -ACGGAAGTTGAGCCTAGTGGTCTT -ACGGAAGTTGAGCCTAGTACGCTT -ACGGAAGTTGAGCCTAGTAGCGTT -ACGGAAGTTGAGCCTAGTTTCGTC -ACGGAAGTTGAGCCTAGTTCTCTC -ACGGAAGTTGAGCCTAGTTGGATC -ACGGAAGTTGAGCCTAGTCACTTC -ACGGAAGTTGAGCCTAGTGTACTC -ACGGAAGTTGAGCCTAGTGATGTC -ACGGAAGTTGAGCCTAGTACAGTC -ACGGAAGTTGAGCCTAGTTTGCTG -ACGGAAGTTGAGCCTAGTTCCATG -ACGGAAGTTGAGCCTAGTTGTGTG -ACGGAAGTTGAGCCTAGTCTAGTG -ACGGAAGTTGAGCCTAGTCATCTG -ACGGAAGTTGAGCCTAGTGAGTTG -ACGGAAGTTGAGCCTAGTAGACTG -ACGGAAGTTGAGCCTAGTTCGGTA -ACGGAAGTTGAGCCTAGTTGCCTA -ACGGAAGTTGAGCCTAGTCCACTA -ACGGAAGTTGAGCCTAGTGGAGTA -ACGGAAGTTGAGCCTAGTTCGTCT -ACGGAAGTTGAGCCTAGTTGCACT -ACGGAAGTTGAGCCTAGTCTGACT -ACGGAAGTTGAGCCTAGTCAACCT -ACGGAAGTTGAGCCTAGTGCTACT -ACGGAAGTTGAGCCTAGTGGATCT -ACGGAAGTTGAGCCTAGTAAGGCT -ACGGAAGTTGAGCCTAGTTCAACC -ACGGAAGTTGAGCCTAGTTGTTCC -ACGGAAGTTGAGCCTAGTATTCCC -ACGGAAGTTGAGCCTAGTTTCTCG -ACGGAAGTTGAGCCTAGTTAGACG -ACGGAAGTTGAGCCTAGTGTAACG -ACGGAAGTTGAGCCTAGTACTTCG -ACGGAAGTTGAGCCTAGTTACGCA -ACGGAAGTTGAGCCTAGTCTTGCA -ACGGAAGTTGAGCCTAGTCGAACA -ACGGAAGTTGAGCCTAGTCAGTCA -ACGGAAGTTGAGCCTAGTGATCCA -ACGGAAGTTGAGCCTAGTACGACA -ACGGAAGTTGAGCCTAGTAGCTCA -ACGGAAGTTGAGCCTAGTTCACGT -ACGGAAGTTGAGCCTAGTCGTAGT -ACGGAAGTTGAGCCTAGTGTCAGT -ACGGAAGTTGAGCCTAGTGAAGGT -ACGGAAGTTGAGCCTAGTAACCGT -ACGGAAGTTGAGCCTAGTTTGTGC -ACGGAAGTTGAGCCTAGTCTAAGC -ACGGAAGTTGAGCCTAGTACTAGC -ACGGAAGTTGAGCCTAGTAGATGC -ACGGAAGTTGAGCCTAGTTGAAGG -ACGGAAGTTGAGCCTAGTCAATGG -ACGGAAGTTGAGCCTAGTATGAGG -ACGGAAGTTGAGCCTAGTAATGGG -ACGGAAGTTGAGCCTAGTTCCTGA -ACGGAAGTTGAGCCTAGTTAGCGA -ACGGAAGTTGAGCCTAGTCACAGA -ACGGAAGTTGAGCCTAGTGCAAGA -ACGGAAGTTGAGCCTAGTGGTTGA -ACGGAAGTTGAGCCTAGTTCCGAT -ACGGAAGTTGAGCCTAGTTGGCAT -ACGGAAGTTGAGCCTAGTCGAGAT -ACGGAAGTTGAGCCTAGTTACCAC -ACGGAAGTTGAGCCTAGTCAGAAC -ACGGAAGTTGAGCCTAGTGTCTAC -ACGGAAGTTGAGCCTAGTACGTAC -ACGGAAGTTGAGCCTAGTAGTGAC -ACGGAAGTTGAGCCTAGTCTGTAG -ACGGAAGTTGAGCCTAGTCCTAAG -ACGGAAGTTGAGCCTAGTGTTCAG -ACGGAAGTTGAGCCTAGTGCATAG -ACGGAAGTTGAGCCTAGTGACAAG -ACGGAAGTTGAGCCTAGTAAGCAG -ACGGAAGTTGAGCCTAGTCGTCAA -ACGGAAGTTGAGCCTAGTGCTGAA -ACGGAAGTTGAGCCTAGTAGTACG -ACGGAAGTTGAGCCTAGTATCCGA -ACGGAAGTTGAGCCTAGTATGGGA -ACGGAAGTTGAGCCTAGTGTGCAA -ACGGAAGTTGAGCCTAGTGAGGAA -ACGGAAGTTGAGCCTAGTCAGGTA -ACGGAAGTTGAGCCTAGTGACTCT -ACGGAAGTTGAGCCTAGTAGTCCT -ACGGAAGTTGAGCCTAGTTAAGCC -ACGGAAGTTGAGCCTAGTATAGCC -ACGGAAGTTGAGCCTAGTTAACCG -ACGGAAGTTGAGCCTAGTATGCCA -ACGGAAGTTGAGGCCTAAGGAAAC -ACGGAAGTTGAGGCCTAAAACACC -ACGGAAGTTGAGGCCTAAATCGAG -ACGGAAGTTGAGGCCTAACTCCTT -ACGGAAGTTGAGGCCTAACCTGTT -ACGGAAGTTGAGGCCTAACGGTTT -ACGGAAGTTGAGGCCTAAGTGGTT -ACGGAAGTTGAGGCCTAAGCCTTT -ACGGAAGTTGAGGCCTAAGGTCTT -ACGGAAGTTGAGGCCTAAACGCTT -ACGGAAGTTGAGGCCTAAAGCGTT -ACGGAAGTTGAGGCCTAATTCGTC -ACGGAAGTTGAGGCCTAATCTCTC -ACGGAAGTTGAGGCCTAATGGATC -ACGGAAGTTGAGGCCTAACACTTC -ACGGAAGTTGAGGCCTAAGTACTC -ACGGAAGTTGAGGCCTAAGATGTC -ACGGAAGTTGAGGCCTAAACAGTC -ACGGAAGTTGAGGCCTAATTGCTG -ACGGAAGTTGAGGCCTAATCCATG -ACGGAAGTTGAGGCCTAATGTGTG -ACGGAAGTTGAGGCCTAACTAGTG -ACGGAAGTTGAGGCCTAACATCTG -ACGGAAGTTGAGGCCTAAGAGTTG -ACGGAAGTTGAGGCCTAAAGACTG -ACGGAAGTTGAGGCCTAATCGGTA -ACGGAAGTTGAGGCCTAATGCCTA -ACGGAAGTTGAGGCCTAACCACTA -ACGGAAGTTGAGGCCTAAGGAGTA -ACGGAAGTTGAGGCCTAATCGTCT -ACGGAAGTTGAGGCCTAATGCACT -ACGGAAGTTGAGGCCTAACTGACT -ACGGAAGTTGAGGCCTAACAACCT -ACGGAAGTTGAGGCCTAAGCTACT -ACGGAAGTTGAGGCCTAAGGATCT -ACGGAAGTTGAGGCCTAAAAGGCT -ACGGAAGTTGAGGCCTAATCAACC -ACGGAAGTTGAGGCCTAATGTTCC -ACGGAAGTTGAGGCCTAAATTCCC -ACGGAAGTTGAGGCCTAATTCTCG -ACGGAAGTTGAGGCCTAATAGACG -ACGGAAGTTGAGGCCTAAGTAACG -ACGGAAGTTGAGGCCTAAACTTCG -ACGGAAGTTGAGGCCTAATACGCA -ACGGAAGTTGAGGCCTAACTTGCA -ACGGAAGTTGAGGCCTAACGAACA -ACGGAAGTTGAGGCCTAACAGTCA -ACGGAAGTTGAGGCCTAAGATCCA -ACGGAAGTTGAGGCCTAAACGACA -ACGGAAGTTGAGGCCTAAAGCTCA -ACGGAAGTTGAGGCCTAATCACGT -ACGGAAGTTGAGGCCTAACGTAGT -ACGGAAGTTGAGGCCTAAGTCAGT -ACGGAAGTTGAGGCCTAAGAAGGT -ACGGAAGTTGAGGCCTAAAACCGT -ACGGAAGTTGAGGCCTAATTGTGC -ACGGAAGTTGAGGCCTAACTAAGC -ACGGAAGTTGAGGCCTAAACTAGC -ACGGAAGTTGAGGCCTAAAGATGC -ACGGAAGTTGAGGCCTAATGAAGG -ACGGAAGTTGAGGCCTAACAATGG -ACGGAAGTTGAGGCCTAAATGAGG -ACGGAAGTTGAGGCCTAAAATGGG -ACGGAAGTTGAGGCCTAATCCTGA -ACGGAAGTTGAGGCCTAATAGCGA -ACGGAAGTTGAGGCCTAACACAGA -ACGGAAGTTGAGGCCTAAGCAAGA -ACGGAAGTTGAGGCCTAAGGTTGA -ACGGAAGTTGAGGCCTAATCCGAT -ACGGAAGTTGAGGCCTAATGGCAT -ACGGAAGTTGAGGCCTAACGAGAT -ACGGAAGTTGAGGCCTAATACCAC -ACGGAAGTTGAGGCCTAACAGAAC -ACGGAAGTTGAGGCCTAAGTCTAC -ACGGAAGTTGAGGCCTAAACGTAC -ACGGAAGTTGAGGCCTAAAGTGAC -ACGGAAGTTGAGGCCTAACTGTAG -ACGGAAGTTGAGGCCTAACCTAAG -ACGGAAGTTGAGGCCTAAGTTCAG -ACGGAAGTTGAGGCCTAAGCATAG -ACGGAAGTTGAGGCCTAAGACAAG -ACGGAAGTTGAGGCCTAAAAGCAG -ACGGAAGTTGAGGCCTAACGTCAA -ACGGAAGTTGAGGCCTAAGCTGAA -ACGGAAGTTGAGGCCTAAAGTACG -ACGGAAGTTGAGGCCTAAATCCGA -ACGGAAGTTGAGGCCTAAATGGGA -ACGGAAGTTGAGGCCTAAGTGCAA -ACGGAAGTTGAGGCCTAAGAGGAA -ACGGAAGTTGAGGCCTAACAGGTA -ACGGAAGTTGAGGCCTAAGACTCT -ACGGAAGTTGAGGCCTAAAGTCCT -ACGGAAGTTGAGGCCTAATAAGCC -ACGGAAGTTGAGGCCTAAATAGCC -ACGGAAGTTGAGGCCTAATAACCG -ACGGAAGTTGAGGCCTAAATGCCA -ACGGAAGTTGAGGCCATAGGAAAC -ACGGAAGTTGAGGCCATAAACACC -ACGGAAGTTGAGGCCATAATCGAG -ACGGAAGTTGAGGCCATACTCCTT -ACGGAAGTTGAGGCCATACCTGTT -ACGGAAGTTGAGGCCATACGGTTT -ACGGAAGTTGAGGCCATAGTGGTT -ACGGAAGTTGAGGCCATAGCCTTT -ACGGAAGTTGAGGCCATAGGTCTT -ACGGAAGTTGAGGCCATAACGCTT -ACGGAAGTTGAGGCCATAAGCGTT -ACGGAAGTTGAGGCCATATTCGTC -ACGGAAGTTGAGGCCATATCTCTC -ACGGAAGTTGAGGCCATATGGATC -ACGGAAGTTGAGGCCATACACTTC -ACGGAAGTTGAGGCCATAGTACTC -ACGGAAGTTGAGGCCATAGATGTC -ACGGAAGTTGAGGCCATAACAGTC -ACGGAAGTTGAGGCCATATTGCTG -ACGGAAGTTGAGGCCATATCCATG -ACGGAAGTTGAGGCCATATGTGTG -ACGGAAGTTGAGGCCATACTAGTG -ACGGAAGTTGAGGCCATACATCTG -ACGGAAGTTGAGGCCATAGAGTTG -ACGGAAGTTGAGGCCATAAGACTG -ACGGAAGTTGAGGCCATATCGGTA -ACGGAAGTTGAGGCCATATGCCTA -ACGGAAGTTGAGGCCATACCACTA -ACGGAAGTTGAGGCCATAGGAGTA -ACGGAAGTTGAGGCCATATCGTCT -ACGGAAGTTGAGGCCATATGCACT -ACGGAAGTTGAGGCCATACTGACT -ACGGAAGTTGAGGCCATACAACCT -ACGGAAGTTGAGGCCATAGCTACT -ACGGAAGTTGAGGCCATAGGATCT -ACGGAAGTTGAGGCCATAAAGGCT -ACGGAAGTTGAGGCCATATCAACC -ACGGAAGTTGAGGCCATATGTTCC -ACGGAAGTTGAGGCCATAATTCCC -ACGGAAGTTGAGGCCATATTCTCG -ACGGAAGTTGAGGCCATATAGACG -ACGGAAGTTGAGGCCATAGTAACG -ACGGAAGTTGAGGCCATAACTTCG -ACGGAAGTTGAGGCCATATACGCA -ACGGAAGTTGAGGCCATACTTGCA -ACGGAAGTTGAGGCCATACGAACA -ACGGAAGTTGAGGCCATACAGTCA -ACGGAAGTTGAGGCCATAGATCCA -ACGGAAGTTGAGGCCATAACGACA -ACGGAAGTTGAGGCCATAAGCTCA -ACGGAAGTTGAGGCCATATCACGT -ACGGAAGTTGAGGCCATACGTAGT -ACGGAAGTTGAGGCCATAGTCAGT -ACGGAAGTTGAGGCCATAGAAGGT -ACGGAAGTTGAGGCCATAAACCGT -ACGGAAGTTGAGGCCATATTGTGC -ACGGAAGTTGAGGCCATACTAAGC -ACGGAAGTTGAGGCCATAACTAGC -ACGGAAGTTGAGGCCATAAGATGC -ACGGAAGTTGAGGCCATATGAAGG -ACGGAAGTTGAGGCCATACAATGG -ACGGAAGTTGAGGCCATAATGAGG -ACGGAAGTTGAGGCCATAAATGGG -ACGGAAGTTGAGGCCATATCCTGA -ACGGAAGTTGAGGCCATATAGCGA -ACGGAAGTTGAGGCCATACACAGA -ACGGAAGTTGAGGCCATAGCAAGA -ACGGAAGTTGAGGCCATAGGTTGA -ACGGAAGTTGAGGCCATATCCGAT -ACGGAAGTTGAGGCCATATGGCAT -ACGGAAGTTGAGGCCATACGAGAT -ACGGAAGTTGAGGCCATATACCAC -ACGGAAGTTGAGGCCATACAGAAC -ACGGAAGTTGAGGCCATAGTCTAC -ACGGAAGTTGAGGCCATAACGTAC -ACGGAAGTTGAGGCCATAAGTGAC -ACGGAAGTTGAGGCCATACTGTAG -ACGGAAGTTGAGGCCATACCTAAG -ACGGAAGTTGAGGCCATAGTTCAG -ACGGAAGTTGAGGCCATAGCATAG -ACGGAAGTTGAGGCCATAGACAAG -ACGGAAGTTGAGGCCATAAAGCAG -ACGGAAGTTGAGGCCATACGTCAA -ACGGAAGTTGAGGCCATAGCTGAA -ACGGAAGTTGAGGCCATAAGTACG -ACGGAAGTTGAGGCCATAATCCGA -ACGGAAGTTGAGGCCATAATGGGA -ACGGAAGTTGAGGCCATAGTGCAA -ACGGAAGTTGAGGCCATAGAGGAA -ACGGAAGTTGAGGCCATACAGGTA -ACGGAAGTTGAGGCCATAGACTCT -ACGGAAGTTGAGGCCATAAGTCCT -ACGGAAGTTGAGGCCATATAAGCC -ACGGAAGTTGAGGCCATAATAGCC -ACGGAAGTTGAGGCCATATAACCG -ACGGAAGTTGAGGCCATAATGCCA -ACGGAAGTTGAGCCGTAAGGAAAC -ACGGAAGTTGAGCCGTAAAACACC -ACGGAAGTTGAGCCGTAAATCGAG -ACGGAAGTTGAGCCGTAACTCCTT -ACGGAAGTTGAGCCGTAACCTGTT -ACGGAAGTTGAGCCGTAACGGTTT -ACGGAAGTTGAGCCGTAAGTGGTT -ACGGAAGTTGAGCCGTAAGCCTTT -ACGGAAGTTGAGCCGTAAGGTCTT -ACGGAAGTTGAGCCGTAAACGCTT -ACGGAAGTTGAGCCGTAAAGCGTT -ACGGAAGTTGAGCCGTAATTCGTC -ACGGAAGTTGAGCCGTAATCTCTC -ACGGAAGTTGAGCCGTAATGGATC -ACGGAAGTTGAGCCGTAACACTTC -ACGGAAGTTGAGCCGTAAGTACTC -ACGGAAGTTGAGCCGTAAGATGTC -ACGGAAGTTGAGCCGTAAACAGTC -ACGGAAGTTGAGCCGTAATTGCTG -ACGGAAGTTGAGCCGTAATCCATG -ACGGAAGTTGAGCCGTAATGTGTG -ACGGAAGTTGAGCCGTAACTAGTG -ACGGAAGTTGAGCCGTAACATCTG -ACGGAAGTTGAGCCGTAAGAGTTG -ACGGAAGTTGAGCCGTAAAGACTG -ACGGAAGTTGAGCCGTAATCGGTA -ACGGAAGTTGAGCCGTAATGCCTA -ACGGAAGTTGAGCCGTAACCACTA -ACGGAAGTTGAGCCGTAAGGAGTA -ACGGAAGTTGAGCCGTAATCGTCT -ACGGAAGTTGAGCCGTAATGCACT -ACGGAAGTTGAGCCGTAACTGACT -ACGGAAGTTGAGCCGTAACAACCT -ACGGAAGTTGAGCCGTAAGCTACT -ACGGAAGTTGAGCCGTAAGGATCT -ACGGAAGTTGAGCCGTAAAAGGCT -ACGGAAGTTGAGCCGTAATCAACC -ACGGAAGTTGAGCCGTAATGTTCC -ACGGAAGTTGAGCCGTAAATTCCC -ACGGAAGTTGAGCCGTAATTCTCG -ACGGAAGTTGAGCCGTAATAGACG -ACGGAAGTTGAGCCGTAAGTAACG -ACGGAAGTTGAGCCGTAAACTTCG -ACGGAAGTTGAGCCGTAATACGCA -ACGGAAGTTGAGCCGTAACTTGCA -ACGGAAGTTGAGCCGTAACGAACA -ACGGAAGTTGAGCCGTAACAGTCA -ACGGAAGTTGAGCCGTAAGATCCA -ACGGAAGTTGAGCCGTAAACGACA -ACGGAAGTTGAGCCGTAAAGCTCA -ACGGAAGTTGAGCCGTAATCACGT -ACGGAAGTTGAGCCGTAACGTAGT -ACGGAAGTTGAGCCGTAAGTCAGT -ACGGAAGTTGAGCCGTAAGAAGGT -ACGGAAGTTGAGCCGTAAAACCGT -ACGGAAGTTGAGCCGTAATTGTGC -ACGGAAGTTGAGCCGTAACTAAGC -ACGGAAGTTGAGCCGTAAACTAGC -ACGGAAGTTGAGCCGTAAAGATGC -ACGGAAGTTGAGCCGTAATGAAGG -ACGGAAGTTGAGCCGTAACAATGG -ACGGAAGTTGAGCCGTAAATGAGG -ACGGAAGTTGAGCCGTAAAATGGG -ACGGAAGTTGAGCCGTAATCCTGA -ACGGAAGTTGAGCCGTAATAGCGA -ACGGAAGTTGAGCCGTAACACAGA -ACGGAAGTTGAGCCGTAAGCAAGA -ACGGAAGTTGAGCCGTAAGGTTGA -ACGGAAGTTGAGCCGTAATCCGAT -ACGGAAGTTGAGCCGTAATGGCAT -ACGGAAGTTGAGCCGTAACGAGAT -ACGGAAGTTGAGCCGTAATACCAC -ACGGAAGTTGAGCCGTAACAGAAC -ACGGAAGTTGAGCCGTAAGTCTAC -ACGGAAGTTGAGCCGTAAACGTAC -ACGGAAGTTGAGCCGTAAAGTGAC -ACGGAAGTTGAGCCGTAACTGTAG -ACGGAAGTTGAGCCGTAACCTAAG -ACGGAAGTTGAGCCGTAAGTTCAG -ACGGAAGTTGAGCCGTAAGCATAG -ACGGAAGTTGAGCCGTAAGACAAG -ACGGAAGTTGAGCCGTAAAAGCAG -ACGGAAGTTGAGCCGTAACGTCAA -ACGGAAGTTGAGCCGTAAGCTGAA -ACGGAAGTTGAGCCGTAAAGTACG -ACGGAAGTTGAGCCGTAAATCCGA -ACGGAAGTTGAGCCGTAAATGGGA -ACGGAAGTTGAGCCGTAAGTGCAA -ACGGAAGTTGAGCCGTAAGAGGAA -ACGGAAGTTGAGCCGTAACAGGTA -ACGGAAGTTGAGCCGTAAGACTCT -ACGGAAGTTGAGCCGTAAAGTCCT -ACGGAAGTTGAGCCGTAATAAGCC -ACGGAAGTTGAGCCGTAAATAGCC -ACGGAAGTTGAGCCGTAATAACCG -ACGGAAGTTGAGCCGTAAATGCCA -ACGGAAGTTGAGCCAATGGGAAAC -ACGGAAGTTGAGCCAATGAACACC -ACGGAAGTTGAGCCAATGATCGAG -ACGGAAGTTGAGCCAATGCTCCTT -ACGGAAGTTGAGCCAATGCCTGTT -ACGGAAGTTGAGCCAATGCGGTTT -ACGGAAGTTGAGCCAATGGTGGTT -ACGGAAGTTGAGCCAATGGCCTTT -ACGGAAGTTGAGCCAATGGGTCTT -ACGGAAGTTGAGCCAATGACGCTT -ACGGAAGTTGAGCCAATGAGCGTT -ACGGAAGTTGAGCCAATGTTCGTC -ACGGAAGTTGAGCCAATGTCTCTC -ACGGAAGTTGAGCCAATGTGGATC -ACGGAAGTTGAGCCAATGCACTTC -ACGGAAGTTGAGCCAATGGTACTC -ACGGAAGTTGAGCCAATGGATGTC -ACGGAAGTTGAGCCAATGACAGTC -ACGGAAGTTGAGCCAATGTTGCTG -ACGGAAGTTGAGCCAATGTCCATG -ACGGAAGTTGAGCCAATGTGTGTG -ACGGAAGTTGAGCCAATGCTAGTG -ACGGAAGTTGAGCCAATGCATCTG -ACGGAAGTTGAGCCAATGGAGTTG -ACGGAAGTTGAGCCAATGAGACTG -ACGGAAGTTGAGCCAATGTCGGTA -ACGGAAGTTGAGCCAATGTGCCTA -ACGGAAGTTGAGCCAATGCCACTA -ACGGAAGTTGAGCCAATGGGAGTA -ACGGAAGTTGAGCCAATGTCGTCT -ACGGAAGTTGAGCCAATGTGCACT -ACGGAAGTTGAGCCAATGCTGACT -ACGGAAGTTGAGCCAATGCAACCT -ACGGAAGTTGAGCCAATGGCTACT -ACGGAAGTTGAGCCAATGGGATCT -ACGGAAGTTGAGCCAATGAAGGCT -ACGGAAGTTGAGCCAATGTCAACC -ACGGAAGTTGAGCCAATGTGTTCC -ACGGAAGTTGAGCCAATGATTCCC -ACGGAAGTTGAGCCAATGTTCTCG -ACGGAAGTTGAGCCAATGTAGACG -ACGGAAGTTGAGCCAATGGTAACG -ACGGAAGTTGAGCCAATGACTTCG -ACGGAAGTTGAGCCAATGTACGCA -ACGGAAGTTGAGCCAATGCTTGCA -ACGGAAGTTGAGCCAATGCGAACA -ACGGAAGTTGAGCCAATGCAGTCA -ACGGAAGTTGAGCCAATGGATCCA -ACGGAAGTTGAGCCAATGACGACA -ACGGAAGTTGAGCCAATGAGCTCA -ACGGAAGTTGAGCCAATGTCACGT -ACGGAAGTTGAGCCAATGCGTAGT -ACGGAAGTTGAGCCAATGGTCAGT -ACGGAAGTTGAGCCAATGGAAGGT -ACGGAAGTTGAGCCAATGAACCGT -ACGGAAGTTGAGCCAATGTTGTGC -ACGGAAGTTGAGCCAATGCTAAGC -ACGGAAGTTGAGCCAATGACTAGC -ACGGAAGTTGAGCCAATGAGATGC -ACGGAAGTTGAGCCAATGTGAAGG -ACGGAAGTTGAGCCAATGCAATGG -ACGGAAGTTGAGCCAATGATGAGG -ACGGAAGTTGAGCCAATGAATGGG -ACGGAAGTTGAGCCAATGTCCTGA -ACGGAAGTTGAGCCAATGTAGCGA -ACGGAAGTTGAGCCAATGCACAGA -ACGGAAGTTGAGCCAATGGCAAGA -ACGGAAGTTGAGCCAATGGGTTGA -ACGGAAGTTGAGCCAATGTCCGAT -ACGGAAGTTGAGCCAATGTGGCAT -ACGGAAGTTGAGCCAATGCGAGAT -ACGGAAGTTGAGCCAATGTACCAC -ACGGAAGTTGAGCCAATGCAGAAC -ACGGAAGTTGAGCCAATGGTCTAC -ACGGAAGTTGAGCCAATGACGTAC -ACGGAAGTTGAGCCAATGAGTGAC -ACGGAAGTTGAGCCAATGCTGTAG -ACGGAAGTTGAGCCAATGCCTAAG -ACGGAAGTTGAGCCAATGGTTCAG -ACGGAAGTTGAGCCAATGGCATAG -ACGGAAGTTGAGCCAATGGACAAG -ACGGAAGTTGAGCCAATGAAGCAG -ACGGAAGTTGAGCCAATGCGTCAA -ACGGAAGTTGAGCCAATGGCTGAA -ACGGAAGTTGAGCCAATGAGTACG -ACGGAAGTTGAGCCAATGATCCGA -ACGGAAGTTGAGCCAATGATGGGA -ACGGAAGTTGAGCCAATGGTGCAA -ACGGAAGTTGAGCCAATGGAGGAA -ACGGAAGTTGAGCCAATGCAGGTA -ACGGAAGTTGAGCCAATGGACTCT -ACGGAAGTTGAGCCAATGAGTCCT -ACGGAAGTTGAGCCAATGTAAGCC -ACGGAAGTTGAGCCAATGATAGCC -ACGGAAGTTGAGCCAATGTAACCG -ACGGAAGTTGAGCCAATGATGCCA -ACGGAACCGATTAACGGAGGAAAC -ACGGAACCGATTAACGGAAACACC -ACGGAACCGATTAACGGAATCGAG -ACGGAACCGATTAACGGACTCCTT -ACGGAACCGATTAACGGACCTGTT -ACGGAACCGATTAACGGACGGTTT -ACGGAACCGATTAACGGAGTGGTT -ACGGAACCGATTAACGGAGCCTTT -ACGGAACCGATTAACGGAGGTCTT -ACGGAACCGATTAACGGAACGCTT -ACGGAACCGATTAACGGAAGCGTT -ACGGAACCGATTAACGGATTCGTC -ACGGAACCGATTAACGGATCTCTC -ACGGAACCGATTAACGGATGGATC -ACGGAACCGATTAACGGACACTTC -ACGGAACCGATTAACGGAGTACTC -ACGGAACCGATTAACGGAGATGTC -ACGGAACCGATTAACGGAACAGTC -ACGGAACCGATTAACGGATTGCTG -ACGGAACCGATTAACGGATCCATG -ACGGAACCGATTAACGGATGTGTG -ACGGAACCGATTAACGGACTAGTG -ACGGAACCGATTAACGGACATCTG -ACGGAACCGATTAACGGAGAGTTG -ACGGAACCGATTAACGGAAGACTG -ACGGAACCGATTAACGGATCGGTA -ACGGAACCGATTAACGGATGCCTA -ACGGAACCGATTAACGGACCACTA -ACGGAACCGATTAACGGAGGAGTA -ACGGAACCGATTAACGGATCGTCT -ACGGAACCGATTAACGGATGCACT -ACGGAACCGATTAACGGACTGACT -ACGGAACCGATTAACGGACAACCT -ACGGAACCGATTAACGGAGCTACT -ACGGAACCGATTAACGGAGGATCT -ACGGAACCGATTAACGGAAAGGCT -ACGGAACCGATTAACGGATCAACC -ACGGAACCGATTAACGGATGTTCC -ACGGAACCGATTAACGGAATTCCC -ACGGAACCGATTAACGGATTCTCG -ACGGAACCGATTAACGGATAGACG -ACGGAACCGATTAACGGAGTAACG -ACGGAACCGATTAACGGAACTTCG -ACGGAACCGATTAACGGATACGCA -ACGGAACCGATTAACGGACTTGCA -ACGGAACCGATTAACGGACGAACA -ACGGAACCGATTAACGGACAGTCA -ACGGAACCGATTAACGGAGATCCA -ACGGAACCGATTAACGGAACGACA -ACGGAACCGATTAACGGAAGCTCA -ACGGAACCGATTAACGGATCACGT -ACGGAACCGATTAACGGACGTAGT -ACGGAACCGATTAACGGAGTCAGT -ACGGAACCGATTAACGGAGAAGGT -ACGGAACCGATTAACGGAAACCGT -ACGGAACCGATTAACGGATTGTGC -ACGGAACCGATTAACGGACTAAGC -ACGGAACCGATTAACGGAACTAGC -ACGGAACCGATTAACGGAAGATGC -ACGGAACCGATTAACGGATGAAGG -ACGGAACCGATTAACGGACAATGG -ACGGAACCGATTAACGGAATGAGG -ACGGAACCGATTAACGGAAATGGG -ACGGAACCGATTAACGGATCCTGA -ACGGAACCGATTAACGGATAGCGA -ACGGAACCGATTAACGGACACAGA -ACGGAACCGATTAACGGAGCAAGA -ACGGAACCGATTAACGGAGGTTGA -ACGGAACCGATTAACGGATCCGAT -ACGGAACCGATTAACGGATGGCAT -ACGGAACCGATTAACGGACGAGAT -ACGGAACCGATTAACGGATACCAC -ACGGAACCGATTAACGGACAGAAC -ACGGAACCGATTAACGGAGTCTAC -ACGGAACCGATTAACGGAACGTAC -ACGGAACCGATTAACGGAAGTGAC -ACGGAACCGATTAACGGACTGTAG -ACGGAACCGATTAACGGACCTAAG -ACGGAACCGATTAACGGAGTTCAG -ACGGAACCGATTAACGGAGCATAG -ACGGAACCGATTAACGGAGACAAG -ACGGAACCGATTAACGGAAAGCAG -ACGGAACCGATTAACGGACGTCAA -ACGGAACCGATTAACGGAGCTGAA -ACGGAACCGATTAACGGAAGTACG -ACGGAACCGATTAACGGAATCCGA -ACGGAACCGATTAACGGAATGGGA -ACGGAACCGATTAACGGAGTGCAA -ACGGAACCGATTAACGGAGAGGAA -ACGGAACCGATTAACGGACAGGTA -ACGGAACCGATTAACGGAGACTCT -ACGGAACCGATTAACGGAAGTCCT -ACGGAACCGATTAACGGATAAGCC -ACGGAACCGATTAACGGAATAGCC -ACGGAACCGATTAACGGATAACCG -ACGGAACCGATTAACGGAATGCCA -ACGGAACCGATTACCAACGGAAAC -ACGGAACCGATTACCAACAACACC -ACGGAACCGATTACCAACATCGAG -ACGGAACCGATTACCAACCTCCTT -ACGGAACCGATTACCAACCCTGTT -ACGGAACCGATTACCAACCGGTTT -ACGGAACCGATTACCAACGTGGTT -ACGGAACCGATTACCAACGCCTTT -ACGGAACCGATTACCAACGGTCTT -ACGGAACCGATTACCAACACGCTT -ACGGAACCGATTACCAACAGCGTT -ACGGAACCGATTACCAACTTCGTC -ACGGAACCGATTACCAACTCTCTC -ACGGAACCGATTACCAACTGGATC -ACGGAACCGATTACCAACCACTTC -ACGGAACCGATTACCAACGTACTC -ACGGAACCGATTACCAACGATGTC -ACGGAACCGATTACCAACACAGTC -ACGGAACCGATTACCAACTTGCTG -ACGGAACCGATTACCAACTCCATG -ACGGAACCGATTACCAACTGTGTG -ACGGAACCGATTACCAACCTAGTG -ACGGAACCGATTACCAACCATCTG -ACGGAACCGATTACCAACGAGTTG -ACGGAACCGATTACCAACAGACTG -ACGGAACCGATTACCAACTCGGTA -ACGGAACCGATTACCAACTGCCTA -ACGGAACCGATTACCAACCCACTA -ACGGAACCGATTACCAACGGAGTA -ACGGAACCGATTACCAACTCGTCT -ACGGAACCGATTACCAACTGCACT -ACGGAACCGATTACCAACCTGACT -ACGGAACCGATTACCAACCAACCT -ACGGAACCGATTACCAACGCTACT -ACGGAACCGATTACCAACGGATCT -ACGGAACCGATTACCAACAAGGCT -ACGGAACCGATTACCAACTCAACC -ACGGAACCGATTACCAACTGTTCC -ACGGAACCGATTACCAACATTCCC -ACGGAACCGATTACCAACTTCTCG -ACGGAACCGATTACCAACTAGACG -ACGGAACCGATTACCAACGTAACG -ACGGAACCGATTACCAACACTTCG -ACGGAACCGATTACCAACTACGCA -ACGGAACCGATTACCAACCTTGCA -ACGGAACCGATTACCAACCGAACA -ACGGAACCGATTACCAACCAGTCA -ACGGAACCGATTACCAACGATCCA -ACGGAACCGATTACCAACACGACA -ACGGAACCGATTACCAACAGCTCA -ACGGAACCGATTACCAACTCACGT -ACGGAACCGATTACCAACCGTAGT -ACGGAACCGATTACCAACGTCAGT -ACGGAACCGATTACCAACGAAGGT -ACGGAACCGATTACCAACAACCGT -ACGGAACCGATTACCAACTTGTGC -ACGGAACCGATTACCAACCTAAGC -ACGGAACCGATTACCAACACTAGC -ACGGAACCGATTACCAACAGATGC -ACGGAACCGATTACCAACTGAAGG -ACGGAACCGATTACCAACCAATGG -ACGGAACCGATTACCAACATGAGG -ACGGAACCGATTACCAACAATGGG -ACGGAACCGATTACCAACTCCTGA -ACGGAACCGATTACCAACTAGCGA -ACGGAACCGATTACCAACCACAGA -ACGGAACCGATTACCAACGCAAGA -ACGGAACCGATTACCAACGGTTGA -ACGGAACCGATTACCAACTCCGAT -ACGGAACCGATTACCAACTGGCAT -ACGGAACCGATTACCAACCGAGAT -ACGGAACCGATTACCAACTACCAC -ACGGAACCGATTACCAACCAGAAC -ACGGAACCGATTACCAACGTCTAC -ACGGAACCGATTACCAACACGTAC -ACGGAACCGATTACCAACAGTGAC -ACGGAACCGATTACCAACCTGTAG -ACGGAACCGATTACCAACCCTAAG -ACGGAACCGATTACCAACGTTCAG -ACGGAACCGATTACCAACGCATAG -ACGGAACCGATTACCAACGACAAG -ACGGAACCGATTACCAACAAGCAG -ACGGAACCGATTACCAACCGTCAA -ACGGAACCGATTACCAACGCTGAA -ACGGAACCGATTACCAACAGTACG -ACGGAACCGATTACCAACATCCGA -ACGGAACCGATTACCAACATGGGA -ACGGAACCGATTACCAACGTGCAA -ACGGAACCGATTACCAACGAGGAA -ACGGAACCGATTACCAACCAGGTA -ACGGAACCGATTACCAACGACTCT -ACGGAACCGATTACCAACAGTCCT -ACGGAACCGATTACCAACTAAGCC -ACGGAACCGATTACCAACATAGCC -ACGGAACCGATTACCAACTAACCG -ACGGAACCGATTACCAACATGCCA -ACGGAACCGATTGAGATCGGAAAC -ACGGAACCGATTGAGATCAACACC -ACGGAACCGATTGAGATCATCGAG -ACGGAACCGATTGAGATCCTCCTT -ACGGAACCGATTGAGATCCCTGTT -ACGGAACCGATTGAGATCCGGTTT -ACGGAACCGATTGAGATCGTGGTT -ACGGAACCGATTGAGATCGCCTTT -ACGGAACCGATTGAGATCGGTCTT -ACGGAACCGATTGAGATCACGCTT -ACGGAACCGATTGAGATCAGCGTT -ACGGAACCGATTGAGATCTTCGTC -ACGGAACCGATTGAGATCTCTCTC -ACGGAACCGATTGAGATCTGGATC -ACGGAACCGATTGAGATCCACTTC -ACGGAACCGATTGAGATCGTACTC -ACGGAACCGATTGAGATCGATGTC -ACGGAACCGATTGAGATCACAGTC -ACGGAACCGATTGAGATCTTGCTG -ACGGAACCGATTGAGATCTCCATG -ACGGAACCGATTGAGATCTGTGTG -ACGGAACCGATTGAGATCCTAGTG -ACGGAACCGATTGAGATCCATCTG -ACGGAACCGATTGAGATCGAGTTG -ACGGAACCGATTGAGATCAGACTG -ACGGAACCGATTGAGATCTCGGTA -ACGGAACCGATTGAGATCTGCCTA -ACGGAACCGATTGAGATCCCACTA -ACGGAACCGATTGAGATCGGAGTA -ACGGAACCGATTGAGATCTCGTCT -ACGGAACCGATTGAGATCTGCACT -ACGGAACCGATTGAGATCCTGACT -ACGGAACCGATTGAGATCCAACCT -ACGGAACCGATTGAGATCGCTACT -ACGGAACCGATTGAGATCGGATCT -ACGGAACCGATTGAGATCAAGGCT -ACGGAACCGATTGAGATCTCAACC -ACGGAACCGATTGAGATCTGTTCC -ACGGAACCGATTGAGATCATTCCC -ACGGAACCGATTGAGATCTTCTCG -ACGGAACCGATTGAGATCTAGACG -ACGGAACCGATTGAGATCGTAACG -ACGGAACCGATTGAGATCACTTCG -ACGGAACCGATTGAGATCTACGCA -ACGGAACCGATTGAGATCCTTGCA -ACGGAACCGATTGAGATCCGAACA -ACGGAACCGATTGAGATCCAGTCA -ACGGAACCGATTGAGATCGATCCA -ACGGAACCGATTGAGATCACGACA -ACGGAACCGATTGAGATCAGCTCA -ACGGAACCGATTGAGATCTCACGT -ACGGAACCGATTGAGATCCGTAGT -ACGGAACCGATTGAGATCGTCAGT -ACGGAACCGATTGAGATCGAAGGT -ACGGAACCGATTGAGATCAACCGT -ACGGAACCGATTGAGATCTTGTGC -ACGGAACCGATTGAGATCCTAAGC -ACGGAACCGATTGAGATCACTAGC -ACGGAACCGATTGAGATCAGATGC -ACGGAACCGATTGAGATCTGAAGG -ACGGAACCGATTGAGATCCAATGG -ACGGAACCGATTGAGATCATGAGG -ACGGAACCGATTGAGATCAATGGG -ACGGAACCGATTGAGATCTCCTGA -ACGGAACCGATTGAGATCTAGCGA -ACGGAACCGATTGAGATCCACAGA -ACGGAACCGATTGAGATCGCAAGA -ACGGAACCGATTGAGATCGGTTGA -ACGGAACCGATTGAGATCTCCGAT -ACGGAACCGATTGAGATCTGGCAT -ACGGAACCGATTGAGATCCGAGAT -ACGGAACCGATTGAGATCTACCAC -ACGGAACCGATTGAGATCCAGAAC -ACGGAACCGATTGAGATCGTCTAC -ACGGAACCGATTGAGATCACGTAC -ACGGAACCGATTGAGATCAGTGAC -ACGGAACCGATTGAGATCCTGTAG -ACGGAACCGATTGAGATCCCTAAG -ACGGAACCGATTGAGATCGTTCAG -ACGGAACCGATTGAGATCGCATAG -ACGGAACCGATTGAGATCGACAAG -ACGGAACCGATTGAGATCAAGCAG -ACGGAACCGATTGAGATCCGTCAA -ACGGAACCGATTGAGATCGCTGAA -ACGGAACCGATTGAGATCAGTACG -ACGGAACCGATTGAGATCATCCGA -ACGGAACCGATTGAGATCATGGGA -ACGGAACCGATTGAGATCGTGCAA -ACGGAACCGATTGAGATCGAGGAA -ACGGAACCGATTGAGATCCAGGTA -ACGGAACCGATTGAGATCGACTCT -ACGGAACCGATTGAGATCAGTCCT -ACGGAACCGATTGAGATCTAAGCC -ACGGAACCGATTGAGATCATAGCC -ACGGAACCGATTGAGATCTAACCG -ACGGAACCGATTGAGATCATGCCA -ACGGAACCGATTCTTCTCGGAAAC -ACGGAACCGATTCTTCTCAACACC -ACGGAACCGATTCTTCTCATCGAG -ACGGAACCGATTCTTCTCCTCCTT -ACGGAACCGATTCTTCTCCCTGTT -ACGGAACCGATTCTTCTCCGGTTT -ACGGAACCGATTCTTCTCGTGGTT -ACGGAACCGATTCTTCTCGCCTTT -ACGGAACCGATTCTTCTCGGTCTT -ACGGAACCGATTCTTCTCACGCTT -ACGGAACCGATTCTTCTCAGCGTT -ACGGAACCGATTCTTCTCTTCGTC -ACGGAACCGATTCTTCTCTCTCTC -ACGGAACCGATTCTTCTCTGGATC -ACGGAACCGATTCTTCTCCACTTC -ACGGAACCGATTCTTCTCGTACTC -ACGGAACCGATTCTTCTCGATGTC -ACGGAACCGATTCTTCTCACAGTC -ACGGAACCGATTCTTCTCTTGCTG -ACGGAACCGATTCTTCTCTCCATG -ACGGAACCGATTCTTCTCTGTGTG -ACGGAACCGATTCTTCTCCTAGTG -ACGGAACCGATTCTTCTCCATCTG -ACGGAACCGATTCTTCTCGAGTTG -ACGGAACCGATTCTTCTCAGACTG -ACGGAACCGATTCTTCTCTCGGTA -ACGGAACCGATTCTTCTCTGCCTA -ACGGAACCGATTCTTCTCCCACTA -ACGGAACCGATTCTTCTCGGAGTA -ACGGAACCGATTCTTCTCTCGTCT -ACGGAACCGATTCTTCTCTGCACT -ACGGAACCGATTCTTCTCCTGACT -ACGGAACCGATTCTTCTCCAACCT -ACGGAACCGATTCTTCTCGCTACT -ACGGAACCGATTCTTCTCGGATCT -ACGGAACCGATTCTTCTCAAGGCT -ACGGAACCGATTCTTCTCTCAACC -ACGGAACCGATTCTTCTCTGTTCC -ACGGAACCGATTCTTCTCATTCCC -ACGGAACCGATTCTTCTCTTCTCG -ACGGAACCGATTCTTCTCTAGACG -ACGGAACCGATTCTTCTCGTAACG -ACGGAACCGATTCTTCTCACTTCG -ACGGAACCGATTCTTCTCTACGCA -ACGGAACCGATTCTTCTCCTTGCA -ACGGAACCGATTCTTCTCCGAACA -ACGGAACCGATTCTTCTCCAGTCA -ACGGAACCGATTCTTCTCGATCCA -ACGGAACCGATTCTTCTCACGACA -ACGGAACCGATTCTTCTCAGCTCA -ACGGAACCGATTCTTCTCTCACGT -ACGGAACCGATTCTTCTCCGTAGT -ACGGAACCGATTCTTCTCGTCAGT -ACGGAACCGATTCTTCTCGAAGGT -ACGGAACCGATTCTTCTCAACCGT -ACGGAACCGATTCTTCTCTTGTGC -ACGGAACCGATTCTTCTCCTAAGC -ACGGAACCGATTCTTCTCACTAGC -ACGGAACCGATTCTTCTCAGATGC -ACGGAACCGATTCTTCTCTGAAGG -ACGGAACCGATTCTTCTCCAATGG -ACGGAACCGATTCTTCTCATGAGG -ACGGAACCGATTCTTCTCAATGGG -ACGGAACCGATTCTTCTCTCCTGA -ACGGAACCGATTCTTCTCTAGCGA -ACGGAACCGATTCTTCTCCACAGA -ACGGAACCGATTCTTCTCGCAAGA -ACGGAACCGATTCTTCTCGGTTGA -ACGGAACCGATTCTTCTCTCCGAT -ACGGAACCGATTCTTCTCTGGCAT -ACGGAACCGATTCTTCTCCGAGAT -ACGGAACCGATTCTTCTCTACCAC -ACGGAACCGATTCTTCTCCAGAAC -ACGGAACCGATTCTTCTCGTCTAC -ACGGAACCGATTCTTCTCACGTAC -ACGGAACCGATTCTTCTCAGTGAC -ACGGAACCGATTCTTCTCCTGTAG -ACGGAACCGATTCTTCTCCCTAAG -ACGGAACCGATTCTTCTCGTTCAG -ACGGAACCGATTCTTCTCGCATAG -ACGGAACCGATTCTTCTCGACAAG -ACGGAACCGATTCTTCTCAAGCAG -ACGGAACCGATTCTTCTCCGTCAA -ACGGAACCGATTCTTCTCGCTGAA -ACGGAACCGATTCTTCTCAGTACG -ACGGAACCGATTCTTCTCATCCGA -ACGGAACCGATTCTTCTCATGGGA -ACGGAACCGATTCTTCTCGTGCAA -ACGGAACCGATTCTTCTCGAGGAA -ACGGAACCGATTCTTCTCCAGGTA -ACGGAACCGATTCTTCTCGACTCT -ACGGAACCGATTCTTCTCAGTCCT -ACGGAACCGATTCTTCTCTAAGCC -ACGGAACCGATTCTTCTCATAGCC -ACGGAACCGATTCTTCTCTAACCG -ACGGAACCGATTCTTCTCATGCCA -ACGGAACCGATTGTTCCTGGAAAC -ACGGAACCGATTGTTCCTAACACC -ACGGAACCGATTGTTCCTATCGAG -ACGGAACCGATTGTTCCTCTCCTT -ACGGAACCGATTGTTCCTCCTGTT -ACGGAACCGATTGTTCCTCGGTTT -ACGGAACCGATTGTTCCTGTGGTT -ACGGAACCGATTGTTCCTGCCTTT -ACGGAACCGATTGTTCCTGGTCTT -ACGGAACCGATTGTTCCTACGCTT -ACGGAACCGATTGTTCCTAGCGTT -ACGGAACCGATTGTTCCTTTCGTC -ACGGAACCGATTGTTCCTTCTCTC -ACGGAACCGATTGTTCCTTGGATC -ACGGAACCGATTGTTCCTCACTTC -ACGGAACCGATTGTTCCTGTACTC -ACGGAACCGATTGTTCCTGATGTC -ACGGAACCGATTGTTCCTACAGTC -ACGGAACCGATTGTTCCTTTGCTG -ACGGAACCGATTGTTCCTTCCATG -ACGGAACCGATTGTTCCTTGTGTG -ACGGAACCGATTGTTCCTCTAGTG -ACGGAACCGATTGTTCCTCATCTG -ACGGAACCGATTGTTCCTGAGTTG -ACGGAACCGATTGTTCCTAGACTG -ACGGAACCGATTGTTCCTTCGGTA -ACGGAACCGATTGTTCCTTGCCTA -ACGGAACCGATTGTTCCTCCACTA -ACGGAACCGATTGTTCCTGGAGTA -ACGGAACCGATTGTTCCTTCGTCT -ACGGAACCGATTGTTCCTTGCACT -ACGGAACCGATTGTTCCTCTGACT -ACGGAACCGATTGTTCCTCAACCT -ACGGAACCGATTGTTCCTGCTACT -ACGGAACCGATTGTTCCTGGATCT -ACGGAACCGATTGTTCCTAAGGCT -ACGGAACCGATTGTTCCTTCAACC -ACGGAACCGATTGTTCCTTGTTCC -ACGGAACCGATTGTTCCTATTCCC -ACGGAACCGATTGTTCCTTTCTCG -ACGGAACCGATTGTTCCTTAGACG -ACGGAACCGATTGTTCCTGTAACG -ACGGAACCGATTGTTCCTACTTCG -ACGGAACCGATTGTTCCTTACGCA -ACGGAACCGATTGTTCCTCTTGCA -ACGGAACCGATTGTTCCTCGAACA -ACGGAACCGATTGTTCCTCAGTCA -ACGGAACCGATTGTTCCTGATCCA -ACGGAACCGATTGTTCCTACGACA -ACGGAACCGATTGTTCCTAGCTCA -ACGGAACCGATTGTTCCTTCACGT -ACGGAACCGATTGTTCCTCGTAGT -ACGGAACCGATTGTTCCTGTCAGT -ACGGAACCGATTGTTCCTGAAGGT -ACGGAACCGATTGTTCCTAACCGT -ACGGAACCGATTGTTCCTTTGTGC -ACGGAACCGATTGTTCCTCTAAGC -ACGGAACCGATTGTTCCTACTAGC -ACGGAACCGATTGTTCCTAGATGC -ACGGAACCGATTGTTCCTTGAAGG -ACGGAACCGATTGTTCCTCAATGG -ACGGAACCGATTGTTCCTATGAGG -ACGGAACCGATTGTTCCTAATGGG -ACGGAACCGATTGTTCCTTCCTGA -ACGGAACCGATTGTTCCTTAGCGA -ACGGAACCGATTGTTCCTCACAGA -ACGGAACCGATTGTTCCTGCAAGA -ACGGAACCGATTGTTCCTGGTTGA -ACGGAACCGATTGTTCCTTCCGAT -ACGGAACCGATTGTTCCTTGGCAT -ACGGAACCGATTGTTCCTCGAGAT -ACGGAACCGATTGTTCCTTACCAC -ACGGAACCGATTGTTCCTCAGAAC -ACGGAACCGATTGTTCCTGTCTAC -ACGGAACCGATTGTTCCTACGTAC -ACGGAACCGATTGTTCCTAGTGAC -ACGGAACCGATTGTTCCTCTGTAG -ACGGAACCGATTGTTCCTCCTAAG -ACGGAACCGATTGTTCCTGTTCAG -ACGGAACCGATTGTTCCTGCATAG -ACGGAACCGATTGTTCCTGACAAG -ACGGAACCGATTGTTCCTAAGCAG -ACGGAACCGATTGTTCCTCGTCAA -ACGGAACCGATTGTTCCTGCTGAA -ACGGAACCGATTGTTCCTAGTACG -ACGGAACCGATTGTTCCTATCCGA -ACGGAACCGATTGTTCCTATGGGA -ACGGAACCGATTGTTCCTGTGCAA -ACGGAACCGATTGTTCCTGAGGAA -ACGGAACCGATTGTTCCTCAGGTA -ACGGAACCGATTGTTCCTGACTCT -ACGGAACCGATTGTTCCTAGTCCT -ACGGAACCGATTGTTCCTTAAGCC -ACGGAACCGATTGTTCCTATAGCC -ACGGAACCGATTGTTCCTTAACCG -ACGGAACCGATTGTTCCTATGCCA -ACGGAACCGATTTTTCGGGGAAAC -ACGGAACCGATTTTTCGGAACACC -ACGGAACCGATTTTTCGGATCGAG -ACGGAACCGATTTTTCGGCTCCTT -ACGGAACCGATTTTTCGGCCTGTT -ACGGAACCGATTTTTCGGCGGTTT -ACGGAACCGATTTTTCGGGTGGTT -ACGGAACCGATTTTTCGGGCCTTT -ACGGAACCGATTTTTCGGGGTCTT -ACGGAACCGATTTTTCGGACGCTT -ACGGAACCGATTTTTCGGAGCGTT -ACGGAACCGATTTTTCGGTTCGTC -ACGGAACCGATTTTTCGGTCTCTC -ACGGAACCGATTTTTCGGTGGATC -ACGGAACCGATTTTTCGGCACTTC -ACGGAACCGATTTTTCGGGTACTC -ACGGAACCGATTTTTCGGGATGTC -ACGGAACCGATTTTTCGGACAGTC -ACGGAACCGATTTTTCGGTTGCTG -ACGGAACCGATTTTTCGGTCCATG -ACGGAACCGATTTTTCGGTGTGTG -ACGGAACCGATTTTTCGGCTAGTG -ACGGAACCGATTTTTCGGCATCTG -ACGGAACCGATTTTTCGGGAGTTG -ACGGAACCGATTTTTCGGAGACTG -ACGGAACCGATTTTTCGGTCGGTA -ACGGAACCGATTTTTCGGTGCCTA -ACGGAACCGATTTTTCGGCCACTA -ACGGAACCGATTTTTCGGGGAGTA -ACGGAACCGATTTTTCGGTCGTCT -ACGGAACCGATTTTTCGGTGCACT -ACGGAACCGATTTTTCGGCTGACT -ACGGAACCGATTTTTCGGCAACCT -ACGGAACCGATTTTTCGGGCTACT -ACGGAACCGATTTTTCGGGGATCT -ACGGAACCGATTTTTCGGAAGGCT -ACGGAACCGATTTTTCGGTCAACC -ACGGAACCGATTTTTCGGTGTTCC -ACGGAACCGATTTTTCGGATTCCC -ACGGAACCGATTTTTCGGTTCTCG -ACGGAACCGATTTTTCGGTAGACG -ACGGAACCGATTTTTCGGGTAACG -ACGGAACCGATTTTTCGGACTTCG -ACGGAACCGATTTTTCGGTACGCA -ACGGAACCGATTTTTCGGCTTGCA -ACGGAACCGATTTTTCGGCGAACA -ACGGAACCGATTTTTCGGCAGTCA -ACGGAACCGATTTTTCGGGATCCA -ACGGAACCGATTTTTCGGACGACA -ACGGAACCGATTTTTCGGAGCTCA -ACGGAACCGATTTTTCGGTCACGT -ACGGAACCGATTTTTCGGCGTAGT -ACGGAACCGATTTTTCGGGTCAGT -ACGGAACCGATTTTTCGGGAAGGT -ACGGAACCGATTTTTCGGAACCGT -ACGGAACCGATTTTTCGGTTGTGC -ACGGAACCGATTTTTCGGCTAAGC -ACGGAACCGATTTTTCGGACTAGC -ACGGAACCGATTTTTCGGAGATGC -ACGGAACCGATTTTTCGGTGAAGG -ACGGAACCGATTTTTCGGCAATGG -ACGGAACCGATTTTTCGGATGAGG -ACGGAACCGATTTTTCGGAATGGG -ACGGAACCGATTTTTCGGTCCTGA -ACGGAACCGATTTTTCGGTAGCGA -ACGGAACCGATTTTTCGGCACAGA -ACGGAACCGATTTTTCGGGCAAGA -ACGGAACCGATTTTTCGGGGTTGA -ACGGAACCGATTTTTCGGTCCGAT -ACGGAACCGATTTTTCGGTGGCAT -ACGGAACCGATTTTTCGGCGAGAT -ACGGAACCGATTTTTCGGTACCAC -ACGGAACCGATTTTTCGGCAGAAC -ACGGAACCGATTTTTCGGGTCTAC -ACGGAACCGATTTTTCGGACGTAC -ACGGAACCGATTTTTCGGAGTGAC -ACGGAACCGATTTTTCGGCTGTAG -ACGGAACCGATTTTTCGGCCTAAG -ACGGAACCGATTTTTCGGGTTCAG -ACGGAACCGATTTTTCGGGCATAG -ACGGAACCGATTTTTCGGGACAAG -ACGGAACCGATTTTTCGGAAGCAG -ACGGAACCGATTTTTCGGCGTCAA -ACGGAACCGATTTTTCGGGCTGAA -ACGGAACCGATTTTTCGGAGTACG -ACGGAACCGATTTTTCGGATCCGA -ACGGAACCGATTTTTCGGATGGGA -ACGGAACCGATTTTTCGGGTGCAA -ACGGAACCGATTTTTCGGGAGGAA -ACGGAACCGATTTTTCGGCAGGTA -ACGGAACCGATTTTTCGGGACTCT -ACGGAACCGATTTTTCGGAGTCCT -ACGGAACCGATTTTTCGGTAAGCC -ACGGAACCGATTTTTCGGATAGCC -ACGGAACCGATTTTTCGGTAACCG -ACGGAACCGATTTTTCGGATGCCA -ACGGAACCGATTGTTGTGGGAAAC -ACGGAACCGATTGTTGTGAACACC -ACGGAACCGATTGTTGTGATCGAG -ACGGAACCGATTGTTGTGCTCCTT -ACGGAACCGATTGTTGTGCCTGTT -ACGGAACCGATTGTTGTGCGGTTT -ACGGAACCGATTGTTGTGGTGGTT -ACGGAACCGATTGTTGTGGCCTTT -ACGGAACCGATTGTTGTGGGTCTT -ACGGAACCGATTGTTGTGACGCTT -ACGGAACCGATTGTTGTGAGCGTT -ACGGAACCGATTGTTGTGTTCGTC -ACGGAACCGATTGTTGTGTCTCTC -ACGGAACCGATTGTTGTGTGGATC -ACGGAACCGATTGTTGTGCACTTC -ACGGAACCGATTGTTGTGGTACTC -ACGGAACCGATTGTTGTGGATGTC -ACGGAACCGATTGTTGTGACAGTC -ACGGAACCGATTGTTGTGTTGCTG -ACGGAACCGATTGTTGTGTCCATG -ACGGAACCGATTGTTGTGTGTGTG -ACGGAACCGATTGTTGTGCTAGTG -ACGGAACCGATTGTTGTGCATCTG -ACGGAACCGATTGTTGTGGAGTTG -ACGGAACCGATTGTTGTGAGACTG -ACGGAACCGATTGTTGTGTCGGTA -ACGGAACCGATTGTTGTGTGCCTA -ACGGAACCGATTGTTGTGCCACTA -ACGGAACCGATTGTTGTGGGAGTA -ACGGAACCGATTGTTGTGTCGTCT -ACGGAACCGATTGTTGTGTGCACT -ACGGAACCGATTGTTGTGCTGACT -ACGGAACCGATTGTTGTGCAACCT -ACGGAACCGATTGTTGTGGCTACT -ACGGAACCGATTGTTGTGGGATCT -ACGGAACCGATTGTTGTGAAGGCT -ACGGAACCGATTGTTGTGTCAACC -ACGGAACCGATTGTTGTGTGTTCC -ACGGAACCGATTGTTGTGATTCCC -ACGGAACCGATTGTTGTGTTCTCG -ACGGAACCGATTGTTGTGTAGACG -ACGGAACCGATTGTTGTGGTAACG -ACGGAACCGATTGTTGTGACTTCG -ACGGAACCGATTGTTGTGTACGCA -ACGGAACCGATTGTTGTGCTTGCA -ACGGAACCGATTGTTGTGCGAACA -ACGGAACCGATTGTTGTGCAGTCA -ACGGAACCGATTGTTGTGGATCCA -ACGGAACCGATTGTTGTGACGACA -ACGGAACCGATTGTTGTGAGCTCA -ACGGAACCGATTGTTGTGTCACGT -ACGGAACCGATTGTTGTGCGTAGT -ACGGAACCGATTGTTGTGGTCAGT -ACGGAACCGATTGTTGTGGAAGGT -ACGGAACCGATTGTTGTGAACCGT -ACGGAACCGATTGTTGTGTTGTGC -ACGGAACCGATTGTTGTGCTAAGC -ACGGAACCGATTGTTGTGACTAGC -ACGGAACCGATTGTTGTGAGATGC -ACGGAACCGATTGTTGTGTGAAGG -ACGGAACCGATTGTTGTGCAATGG -ACGGAACCGATTGTTGTGATGAGG -ACGGAACCGATTGTTGTGAATGGG -ACGGAACCGATTGTTGTGTCCTGA -ACGGAACCGATTGTTGTGTAGCGA -ACGGAACCGATTGTTGTGCACAGA -ACGGAACCGATTGTTGTGGCAAGA -ACGGAACCGATTGTTGTGGGTTGA -ACGGAACCGATTGTTGTGTCCGAT -ACGGAACCGATTGTTGTGTGGCAT -ACGGAACCGATTGTTGTGCGAGAT -ACGGAACCGATTGTTGTGTACCAC -ACGGAACCGATTGTTGTGCAGAAC -ACGGAACCGATTGTTGTGGTCTAC -ACGGAACCGATTGTTGTGACGTAC -ACGGAACCGATTGTTGTGAGTGAC -ACGGAACCGATTGTTGTGCTGTAG -ACGGAACCGATTGTTGTGCCTAAG -ACGGAACCGATTGTTGTGGTTCAG -ACGGAACCGATTGTTGTGGCATAG -ACGGAACCGATTGTTGTGGACAAG -ACGGAACCGATTGTTGTGAAGCAG -ACGGAACCGATTGTTGTGCGTCAA -ACGGAACCGATTGTTGTGGCTGAA -ACGGAACCGATTGTTGTGAGTACG -ACGGAACCGATTGTTGTGATCCGA -ACGGAACCGATTGTTGTGATGGGA -ACGGAACCGATTGTTGTGGTGCAA -ACGGAACCGATTGTTGTGGAGGAA -ACGGAACCGATTGTTGTGCAGGTA -ACGGAACCGATTGTTGTGGACTCT -ACGGAACCGATTGTTGTGAGTCCT -ACGGAACCGATTGTTGTGTAAGCC -ACGGAACCGATTGTTGTGATAGCC -ACGGAACCGATTGTTGTGTAACCG -ACGGAACCGATTGTTGTGATGCCA -ACGGAACCGATTTTTGCCGGAAAC -ACGGAACCGATTTTTGCCAACACC -ACGGAACCGATTTTTGCCATCGAG -ACGGAACCGATTTTTGCCCTCCTT -ACGGAACCGATTTTTGCCCCTGTT -ACGGAACCGATTTTTGCCCGGTTT -ACGGAACCGATTTTTGCCGTGGTT -ACGGAACCGATTTTTGCCGCCTTT -ACGGAACCGATTTTTGCCGGTCTT -ACGGAACCGATTTTTGCCACGCTT -ACGGAACCGATTTTTGCCAGCGTT -ACGGAACCGATTTTTGCCTTCGTC -ACGGAACCGATTTTTGCCTCTCTC -ACGGAACCGATTTTTGCCTGGATC -ACGGAACCGATTTTTGCCCACTTC -ACGGAACCGATTTTTGCCGTACTC -ACGGAACCGATTTTTGCCGATGTC -ACGGAACCGATTTTTGCCACAGTC -ACGGAACCGATTTTTGCCTTGCTG -ACGGAACCGATTTTTGCCTCCATG -ACGGAACCGATTTTTGCCTGTGTG -ACGGAACCGATTTTTGCCCTAGTG -ACGGAACCGATTTTTGCCCATCTG -ACGGAACCGATTTTTGCCGAGTTG -ACGGAACCGATTTTTGCCAGACTG -ACGGAACCGATTTTTGCCTCGGTA -ACGGAACCGATTTTTGCCTGCCTA -ACGGAACCGATTTTTGCCCCACTA -ACGGAACCGATTTTTGCCGGAGTA -ACGGAACCGATTTTTGCCTCGTCT -ACGGAACCGATTTTTGCCTGCACT -ACGGAACCGATTTTTGCCCTGACT -ACGGAACCGATTTTTGCCCAACCT -ACGGAACCGATTTTTGCCGCTACT -ACGGAACCGATTTTTGCCGGATCT -ACGGAACCGATTTTTGCCAAGGCT -ACGGAACCGATTTTTGCCTCAACC -ACGGAACCGATTTTTGCCTGTTCC -ACGGAACCGATTTTTGCCATTCCC -ACGGAACCGATTTTTGCCTTCTCG -ACGGAACCGATTTTTGCCTAGACG -ACGGAACCGATTTTTGCCGTAACG -ACGGAACCGATTTTTGCCACTTCG -ACGGAACCGATTTTTGCCTACGCA -ACGGAACCGATTTTTGCCCTTGCA -ACGGAACCGATTTTTGCCCGAACA -ACGGAACCGATTTTTGCCCAGTCA -ACGGAACCGATTTTTGCCGATCCA -ACGGAACCGATTTTTGCCACGACA -ACGGAACCGATTTTTGCCAGCTCA -ACGGAACCGATTTTTGCCTCACGT -ACGGAACCGATTTTTGCCCGTAGT -ACGGAACCGATTTTTGCCGTCAGT -ACGGAACCGATTTTTGCCGAAGGT -ACGGAACCGATTTTTGCCAACCGT -ACGGAACCGATTTTTGCCTTGTGC -ACGGAACCGATTTTTGCCCTAAGC -ACGGAACCGATTTTTGCCACTAGC -ACGGAACCGATTTTTGCCAGATGC -ACGGAACCGATTTTTGCCTGAAGG -ACGGAACCGATTTTTGCCCAATGG -ACGGAACCGATTTTTGCCATGAGG -ACGGAACCGATTTTTGCCAATGGG -ACGGAACCGATTTTTGCCTCCTGA -ACGGAACCGATTTTTGCCTAGCGA -ACGGAACCGATTTTTGCCCACAGA -ACGGAACCGATTTTTGCCGCAAGA -ACGGAACCGATTTTTGCCGGTTGA -ACGGAACCGATTTTTGCCTCCGAT -ACGGAACCGATTTTTGCCTGGCAT -ACGGAACCGATTTTTGCCCGAGAT -ACGGAACCGATTTTTGCCTACCAC -ACGGAACCGATTTTTGCCCAGAAC -ACGGAACCGATTTTTGCCGTCTAC -ACGGAACCGATTTTTGCCACGTAC -ACGGAACCGATTTTTGCCAGTGAC -ACGGAACCGATTTTTGCCCTGTAG -ACGGAACCGATTTTTGCCCCTAAG -ACGGAACCGATTTTTGCCGTTCAG -ACGGAACCGATTTTTGCCGCATAG -ACGGAACCGATTTTTGCCGACAAG -ACGGAACCGATTTTTGCCAAGCAG -ACGGAACCGATTTTTGCCCGTCAA -ACGGAACCGATTTTTGCCGCTGAA -ACGGAACCGATTTTTGCCAGTACG -ACGGAACCGATTTTTGCCATCCGA -ACGGAACCGATTTTTGCCATGGGA -ACGGAACCGATTTTTGCCGTGCAA -ACGGAACCGATTTTTGCCGAGGAA -ACGGAACCGATTTTTGCCCAGGTA -ACGGAACCGATTTTTGCCGACTCT -ACGGAACCGATTTTTGCCAGTCCT -ACGGAACCGATTTTTGCCTAAGCC -ACGGAACCGATTTTTGCCATAGCC -ACGGAACCGATTTTTGCCTAACCG -ACGGAACCGATTTTTGCCATGCCA -ACGGAACCGATTCTTGGTGGAAAC -ACGGAACCGATTCTTGGTAACACC -ACGGAACCGATTCTTGGTATCGAG -ACGGAACCGATTCTTGGTCTCCTT -ACGGAACCGATTCTTGGTCCTGTT -ACGGAACCGATTCTTGGTCGGTTT -ACGGAACCGATTCTTGGTGTGGTT -ACGGAACCGATTCTTGGTGCCTTT -ACGGAACCGATTCTTGGTGGTCTT -ACGGAACCGATTCTTGGTACGCTT -ACGGAACCGATTCTTGGTAGCGTT -ACGGAACCGATTCTTGGTTTCGTC -ACGGAACCGATTCTTGGTTCTCTC -ACGGAACCGATTCTTGGTTGGATC -ACGGAACCGATTCTTGGTCACTTC -ACGGAACCGATTCTTGGTGTACTC -ACGGAACCGATTCTTGGTGATGTC -ACGGAACCGATTCTTGGTACAGTC -ACGGAACCGATTCTTGGTTTGCTG -ACGGAACCGATTCTTGGTTCCATG -ACGGAACCGATTCTTGGTTGTGTG -ACGGAACCGATTCTTGGTCTAGTG -ACGGAACCGATTCTTGGTCATCTG -ACGGAACCGATTCTTGGTGAGTTG -ACGGAACCGATTCTTGGTAGACTG -ACGGAACCGATTCTTGGTTCGGTA -ACGGAACCGATTCTTGGTTGCCTA -ACGGAACCGATTCTTGGTCCACTA -ACGGAACCGATTCTTGGTGGAGTA -ACGGAACCGATTCTTGGTTCGTCT -ACGGAACCGATTCTTGGTTGCACT -ACGGAACCGATTCTTGGTCTGACT -ACGGAACCGATTCTTGGTCAACCT -ACGGAACCGATTCTTGGTGCTACT -ACGGAACCGATTCTTGGTGGATCT -ACGGAACCGATTCTTGGTAAGGCT -ACGGAACCGATTCTTGGTTCAACC -ACGGAACCGATTCTTGGTTGTTCC -ACGGAACCGATTCTTGGTATTCCC -ACGGAACCGATTCTTGGTTTCTCG -ACGGAACCGATTCTTGGTTAGACG -ACGGAACCGATTCTTGGTGTAACG -ACGGAACCGATTCTTGGTACTTCG -ACGGAACCGATTCTTGGTTACGCA -ACGGAACCGATTCTTGGTCTTGCA -ACGGAACCGATTCTTGGTCGAACA -ACGGAACCGATTCTTGGTCAGTCA -ACGGAACCGATTCTTGGTGATCCA -ACGGAACCGATTCTTGGTACGACA -ACGGAACCGATTCTTGGTAGCTCA -ACGGAACCGATTCTTGGTTCACGT -ACGGAACCGATTCTTGGTCGTAGT -ACGGAACCGATTCTTGGTGTCAGT -ACGGAACCGATTCTTGGTGAAGGT -ACGGAACCGATTCTTGGTAACCGT -ACGGAACCGATTCTTGGTTTGTGC -ACGGAACCGATTCTTGGTCTAAGC -ACGGAACCGATTCTTGGTACTAGC -ACGGAACCGATTCTTGGTAGATGC -ACGGAACCGATTCTTGGTTGAAGG -ACGGAACCGATTCTTGGTCAATGG -ACGGAACCGATTCTTGGTATGAGG -ACGGAACCGATTCTTGGTAATGGG -ACGGAACCGATTCTTGGTTCCTGA -ACGGAACCGATTCTTGGTTAGCGA -ACGGAACCGATTCTTGGTCACAGA -ACGGAACCGATTCTTGGTGCAAGA -ACGGAACCGATTCTTGGTGGTTGA -ACGGAACCGATTCTTGGTTCCGAT -ACGGAACCGATTCTTGGTTGGCAT -ACGGAACCGATTCTTGGTCGAGAT -ACGGAACCGATTCTTGGTTACCAC -ACGGAACCGATTCTTGGTCAGAAC -ACGGAACCGATTCTTGGTGTCTAC -ACGGAACCGATTCTTGGTACGTAC -ACGGAACCGATTCTTGGTAGTGAC -ACGGAACCGATTCTTGGTCTGTAG -ACGGAACCGATTCTTGGTCCTAAG -ACGGAACCGATTCTTGGTGTTCAG -ACGGAACCGATTCTTGGTGCATAG -ACGGAACCGATTCTTGGTGACAAG -ACGGAACCGATTCTTGGTAAGCAG -ACGGAACCGATTCTTGGTCGTCAA -ACGGAACCGATTCTTGGTGCTGAA -ACGGAACCGATTCTTGGTAGTACG -ACGGAACCGATTCTTGGTATCCGA -ACGGAACCGATTCTTGGTATGGGA -ACGGAACCGATTCTTGGTGTGCAA -ACGGAACCGATTCTTGGTGAGGAA -ACGGAACCGATTCTTGGTCAGGTA -ACGGAACCGATTCTTGGTGACTCT -ACGGAACCGATTCTTGGTAGTCCT -ACGGAACCGATTCTTGGTTAAGCC -ACGGAACCGATTCTTGGTATAGCC -ACGGAACCGATTCTTGGTTAACCG -ACGGAACCGATTCTTGGTATGCCA -ACGGAACCGATTCTTACGGGAAAC -ACGGAACCGATTCTTACGAACACC -ACGGAACCGATTCTTACGATCGAG -ACGGAACCGATTCTTACGCTCCTT -ACGGAACCGATTCTTACGCCTGTT -ACGGAACCGATTCTTACGCGGTTT -ACGGAACCGATTCTTACGGTGGTT -ACGGAACCGATTCTTACGGCCTTT -ACGGAACCGATTCTTACGGGTCTT -ACGGAACCGATTCTTACGACGCTT -ACGGAACCGATTCTTACGAGCGTT -ACGGAACCGATTCTTACGTTCGTC -ACGGAACCGATTCTTACGTCTCTC -ACGGAACCGATTCTTACGTGGATC -ACGGAACCGATTCTTACGCACTTC -ACGGAACCGATTCTTACGGTACTC -ACGGAACCGATTCTTACGGATGTC -ACGGAACCGATTCTTACGACAGTC -ACGGAACCGATTCTTACGTTGCTG -ACGGAACCGATTCTTACGTCCATG -ACGGAACCGATTCTTACGTGTGTG -ACGGAACCGATTCTTACGCTAGTG -ACGGAACCGATTCTTACGCATCTG -ACGGAACCGATTCTTACGGAGTTG -ACGGAACCGATTCTTACGAGACTG -ACGGAACCGATTCTTACGTCGGTA -ACGGAACCGATTCTTACGTGCCTA -ACGGAACCGATTCTTACGCCACTA -ACGGAACCGATTCTTACGGGAGTA -ACGGAACCGATTCTTACGTCGTCT -ACGGAACCGATTCTTACGTGCACT -ACGGAACCGATTCTTACGCTGACT -ACGGAACCGATTCTTACGCAACCT -ACGGAACCGATTCTTACGGCTACT -ACGGAACCGATTCTTACGGGATCT -ACGGAACCGATTCTTACGAAGGCT -ACGGAACCGATTCTTACGTCAACC -ACGGAACCGATTCTTACGTGTTCC -ACGGAACCGATTCTTACGATTCCC -ACGGAACCGATTCTTACGTTCTCG -ACGGAACCGATTCTTACGTAGACG -ACGGAACCGATTCTTACGGTAACG -ACGGAACCGATTCTTACGACTTCG -ACGGAACCGATTCTTACGTACGCA -ACGGAACCGATTCTTACGCTTGCA -ACGGAACCGATTCTTACGCGAACA -ACGGAACCGATTCTTACGCAGTCA -ACGGAACCGATTCTTACGGATCCA -ACGGAACCGATTCTTACGACGACA -ACGGAACCGATTCTTACGAGCTCA -ACGGAACCGATTCTTACGTCACGT -ACGGAACCGATTCTTACGCGTAGT -ACGGAACCGATTCTTACGGTCAGT -ACGGAACCGATTCTTACGGAAGGT -ACGGAACCGATTCTTACGAACCGT -ACGGAACCGATTCTTACGTTGTGC -ACGGAACCGATTCTTACGCTAAGC -ACGGAACCGATTCTTACGACTAGC -ACGGAACCGATTCTTACGAGATGC -ACGGAACCGATTCTTACGTGAAGG -ACGGAACCGATTCTTACGCAATGG -ACGGAACCGATTCTTACGATGAGG -ACGGAACCGATTCTTACGAATGGG -ACGGAACCGATTCTTACGTCCTGA -ACGGAACCGATTCTTACGTAGCGA -ACGGAACCGATTCTTACGCACAGA -ACGGAACCGATTCTTACGGCAAGA -ACGGAACCGATTCTTACGGGTTGA -ACGGAACCGATTCTTACGTCCGAT -ACGGAACCGATTCTTACGTGGCAT -ACGGAACCGATTCTTACGCGAGAT -ACGGAACCGATTCTTACGTACCAC -ACGGAACCGATTCTTACGCAGAAC -ACGGAACCGATTCTTACGGTCTAC -ACGGAACCGATTCTTACGACGTAC -ACGGAACCGATTCTTACGAGTGAC -ACGGAACCGATTCTTACGCTGTAG -ACGGAACCGATTCTTACGCCTAAG -ACGGAACCGATTCTTACGGTTCAG -ACGGAACCGATTCTTACGGCATAG -ACGGAACCGATTCTTACGGACAAG -ACGGAACCGATTCTTACGAAGCAG -ACGGAACCGATTCTTACGCGTCAA -ACGGAACCGATTCTTACGGCTGAA -ACGGAACCGATTCTTACGAGTACG -ACGGAACCGATTCTTACGATCCGA -ACGGAACCGATTCTTACGATGGGA -ACGGAACCGATTCTTACGGTGCAA -ACGGAACCGATTCTTACGGAGGAA -ACGGAACCGATTCTTACGCAGGTA -ACGGAACCGATTCTTACGGACTCT -ACGGAACCGATTCTTACGAGTCCT -ACGGAACCGATTCTTACGTAAGCC -ACGGAACCGATTCTTACGATAGCC -ACGGAACCGATTCTTACGTAACCG -ACGGAACCGATTCTTACGATGCCA -ACGGAACCGATTGTTAGCGGAAAC -ACGGAACCGATTGTTAGCAACACC -ACGGAACCGATTGTTAGCATCGAG -ACGGAACCGATTGTTAGCCTCCTT -ACGGAACCGATTGTTAGCCCTGTT -ACGGAACCGATTGTTAGCCGGTTT -ACGGAACCGATTGTTAGCGTGGTT -ACGGAACCGATTGTTAGCGCCTTT -ACGGAACCGATTGTTAGCGGTCTT -ACGGAACCGATTGTTAGCACGCTT -ACGGAACCGATTGTTAGCAGCGTT -ACGGAACCGATTGTTAGCTTCGTC -ACGGAACCGATTGTTAGCTCTCTC -ACGGAACCGATTGTTAGCTGGATC -ACGGAACCGATTGTTAGCCACTTC -ACGGAACCGATTGTTAGCGTACTC -ACGGAACCGATTGTTAGCGATGTC -ACGGAACCGATTGTTAGCACAGTC -ACGGAACCGATTGTTAGCTTGCTG -ACGGAACCGATTGTTAGCTCCATG -ACGGAACCGATTGTTAGCTGTGTG -ACGGAACCGATTGTTAGCCTAGTG -ACGGAACCGATTGTTAGCCATCTG -ACGGAACCGATTGTTAGCGAGTTG -ACGGAACCGATTGTTAGCAGACTG -ACGGAACCGATTGTTAGCTCGGTA -ACGGAACCGATTGTTAGCTGCCTA -ACGGAACCGATTGTTAGCCCACTA -ACGGAACCGATTGTTAGCGGAGTA -ACGGAACCGATTGTTAGCTCGTCT -ACGGAACCGATTGTTAGCTGCACT -ACGGAACCGATTGTTAGCCTGACT -ACGGAACCGATTGTTAGCCAACCT -ACGGAACCGATTGTTAGCGCTACT -ACGGAACCGATTGTTAGCGGATCT -ACGGAACCGATTGTTAGCAAGGCT -ACGGAACCGATTGTTAGCTCAACC -ACGGAACCGATTGTTAGCTGTTCC -ACGGAACCGATTGTTAGCATTCCC -ACGGAACCGATTGTTAGCTTCTCG -ACGGAACCGATTGTTAGCTAGACG -ACGGAACCGATTGTTAGCGTAACG -ACGGAACCGATTGTTAGCACTTCG -ACGGAACCGATTGTTAGCTACGCA -ACGGAACCGATTGTTAGCCTTGCA -ACGGAACCGATTGTTAGCCGAACA -ACGGAACCGATTGTTAGCCAGTCA -ACGGAACCGATTGTTAGCGATCCA -ACGGAACCGATTGTTAGCACGACA -ACGGAACCGATTGTTAGCAGCTCA -ACGGAACCGATTGTTAGCTCACGT -ACGGAACCGATTGTTAGCCGTAGT -ACGGAACCGATTGTTAGCGTCAGT -ACGGAACCGATTGTTAGCGAAGGT -ACGGAACCGATTGTTAGCAACCGT -ACGGAACCGATTGTTAGCTTGTGC -ACGGAACCGATTGTTAGCCTAAGC -ACGGAACCGATTGTTAGCACTAGC -ACGGAACCGATTGTTAGCAGATGC -ACGGAACCGATTGTTAGCTGAAGG -ACGGAACCGATTGTTAGCCAATGG -ACGGAACCGATTGTTAGCATGAGG -ACGGAACCGATTGTTAGCAATGGG -ACGGAACCGATTGTTAGCTCCTGA -ACGGAACCGATTGTTAGCTAGCGA -ACGGAACCGATTGTTAGCCACAGA -ACGGAACCGATTGTTAGCGCAAGA -ACGGAACCGATTGTTAGCGGTTGA -ACGGAACCGATTGTTAGCTCCGAT -ACGGAACCGATTGTTAGCTGGCAT -ACGGAACCGATTGTTAGCCGAGAT -ACGGAACCGATTGTTAGCTACCAC -ACGGAACCGATTGTTAGCCAGAAC -ACGGAACCGATTGTTAGCGTCTAC -ACGGAACCGATTGTTAGCACGTAC -ACGGAACCGATTGTTAGCAGTGAC -ACGGAACCGATTGTTAGCCTGTAG -ACGGAACCGATTGTTAGCCCTAAG -ACGGAACCGATTGTTAGCGTTCAG -ACGGAACCGATTGTTAGCGCATAG -ACGGAACCGATTGTTAGCGACAAG -ACGGAACCGATTGTTAGCAAGCAG -ACGGAACCGATTGTTAGCCGTCAA -ACGGAACCGATTGTTAGCGCTGAA -ACGGAACCGATTGTTAGCAGTACG -ACGGAACCGATTGTTAGCATCCGA -ACGGAACCGATTGTTAGCATGGGA -ACGGAACCGATTGTTAGCGTGCAA -ACGGAACCGATTGTTAGCGAGGAA -ACGGAACCGATTGTTAGCCAGGTA -ACGGAACCGATTGTTAGCGACTCT -ACGGAACCGATTGTTAGCAGTCCT -ACGGAACCGATTGTTAGCTAAGCC -ACGGAACCGATTGTTAGCATAGCC -ACGGAACCGATTGTTAGCTAACCG -ACGGAACCGATTGTTAGCATGCCA -ACGGAACCGATTGTCTTCGGAAAC -ACGGAACCGATTGTCTTCAACACC -ACGGAACCGATTGTCTTCATCGAG -ACGGAACCGATTGTCTTCCTCCTT -ACGGAACCGATTGTCTTCCCTGTT -ACGGAACCGATTGTCTTCCGGTTT -ACGGAACCGATTGTCTTCGTGGTT -ACGGAACCGATTGTCTTCGCCTTT -ACGGAACCGATTGTCTTCGGTCTT -ACGGAACCGATTGTCTTCACGCTT -ACGGAACCGATTGTCTTCAGCGTT -ACGGAACCGATTGTCTTCTTCGTC -ACGGAACCGATTGTCTTCTCTCTC -ACGGAACCGATTGTCTTCTGGATC -ACGGAACCGATTGTCTTCCACTTC -ACGGAACCGATTGTCTTCGTACTC -ACGGAACCGATTGTCTTCGATGTC -ACGGAACCGATTGTCTTCACAGTC -ACGGAACCGATTGTCTTCTTGCTG -ACGGAACCGATTGTCTTCTCCATG -ACGGAACCGATTGTCTTCTGTGTG -ACGGAACCGATTGTCTTCCTAGTG -ACGGAACCGATTGTCTTCCATCTG -ACGGAACCGATTGTCTTCGAGTTG -ACGGAACCGATTGTCTTCAGACTG -ACGGAACCGATTGTCTTCTCGGTA -ACGGAACCGATTGTCTTCTGCCTA -ACGGAACCGATTGTCTTCCCACTA -ACGGAACCGATTGTCTTCGGAGTA -ACGGAACCGATTGTCTTCTCGTCT -ACGGAACCGATTGTCTTCTGCACT -ACGGAACCGATTGTCTTCCTGACT -ACGGAACCGATTGTCTTCCAACCT -ACGGAACCGATTGTCTTCGCTACT -ACGGAACCGATTGTCTTCGGATCT -ACGGAACCGATTGTCTTCAAGGCT -ACGGAACCGATTGTCTTCTCAACC -ACGGAACCGATTGTCTTCTGTTCC -ACGGAACCGATTGTCTTCATTCCC -ACGGAACCGATTGTCTTCTTCTCG -ACGGAACCGATTGTCTTCTAGACG -ACGGAACCGATTGTCTTCGTAACG -ACGGAACCGATTGTCTTCACTTCG -ACGGAACCGATTGTCTTCTACGCA -ACGGAACCGATTGTCTTCCTTGCA -ACGGAACCGATTGTCTTCCGAACA -ACGGAACCGATTGTCTTCCAGTCA -ACGGAACCGATTGTCTTCGATCCA -ACGGAACCGATTGTCTTCACGACA -ACGGAACCGATTGTCTTCAGCTCA -ACGGAACCGATTGTCTTCTCACGT -ACGGAACCGATTGTCTTCCGTAGT -ACGGAACCGATTGTCTTCGTCAGT -ACGGAACCGATTGTCTTCGAAGGT -ACGGAACCGATTGTCTTCAACCGT -ACGGAACCGATTGTCTTCTTGTGC -ACGGAACCGATTGTCTTCCTAAGC -ACGGAACCGATTGTCTTCACTAGC -ACGGAACCGATTGTCTTCAGATGC -ACGGAACCGATTGTCTTCTGAAGG -ACGGAACCGATTGTCTTCCAATGG -ACGGAACCGATTGTCTTCATGAGG -ACGGAACCGATTGTCTTCAATGGG -ACGGAACCGATTGTCTTCTCCTGA -ACGGAACCGATTGTCTTCTAGCGA -ACGGAACCGATTGTCTTCCACAGA -ACGGAACCGATTGTCTTCGCAAGA -ACGGAACCGATTGTCTTCGGTTGA -ACGGAACCGATTGTCTTCTCCGAT -ACGGAACCGATTGTCTTCTGGCAT -ACGGAACCGATTGTCTTCCGAGAT -ACGGAACCGATTGTCTTCTACCAC -ACGGAACCGATTGTCTTCCAGAAC -ACGGAACCGATTGTCTTCGTCTAC -ACGGAACCGATTGTCTTCACGTAC -ACGGAACCGATTGTCTTCAGTGAC -ACGGAACCGATTGTCTTCCTGTAG -ACGGAACCGATTGTCTTCCCTAAG -ACGGAACCGATTGTCTTCGTTCAG -ACGGAACCGATTGTCTTCGCATAG -ACGGAACCGATTGTCTTCGACAAG -ACGGAACCGATTGTCTTCAAGCAG -ACGGAACCGATTGTCTTCCGTCAA -ACGGAACCGATTGTCTTCGCTGAA -ACGGAACCGATTGTCTTCAGTACG -ACGGAACCGATTGTCTTCATCCGA -ACGGAACCGATTGTCTTCATGGGA -ACGGAACCGATTGTCTTCGTGCAA -ACGGAACCGATTGTCTTCGAGGAA -ACGGAACCGATTGTCTTCCAGGTA -ACGGAACCGATTGTCTTCGACTCT -ACGGAACCGATTGTCTTCAGTCCT -ACGGAACCGATTGTCTTCTAAGCC -ACGGAACCGATTGTCTTCATAGCC -ACGGAACCGATTGTCTTCTAACCG -ACGGAACCGATTGTCTTCATGCCA -ACGGAACCGATTCTCTCTGGAAAC -ACGGAACCGATTCTCTCTAACACC -ACGGAACCGATTCTCTCTATCGAG -ACGGAACCGATTCTCTCTCTCCTT -ACGGAACCGATTCTCTCTCCTGTT -ACGGAACCGATTCTCTCTCGGTTT -ACGGAACCGATTCTCTCTGTGGTT -ACGGAACCGATTCTCTCTGCCTTT -ACGGAACCGATTCTCTCTGGTCTT -ACGGAACCGATTCTCTCTACGCTT -ACGGAACCGATTCTCTCTAGCGTT -ACGGAACCGATTCTCTCTTTCGTC -ACGGAACCGATTCTCTCTTCTCTC -ACGGAACCGATTCTCTCTTGGATC -ACGGAACCGATTCTCTCTCACTTC -ACGGAACCGATTCTCTCTGTACTC -ACGGAACCGATTCTCTCTGATGTC -ACGGAACCGATTCTCTCTACAGTC -ACGGAACCGATTCTCTCTTTGCTG -ACGGAACCGATTCTCTCTTCCATG -ACGGAACCGATTCTCTCTTGTGTG -ACGGAACCGATTCTCTCTCTAGTG -ACGGAACCGATTCTCTCTCATCTG -ACGGAACCGATTCTCTCTGAGTTG -ACGGAACCGATTCTCTCTAGACTG -ACGGAACCGATTCTCTCTTCGGTA -ACGGAACCGATTCTCTCTTGCCTA -ACGGAACCGATTCTCTCTCCACTA -ACGGAACCGATTCTCTCTGGAGTA -ACGGAACCGATTCTCTCTTCGTCT -ACGGAACCGATTCTCTCTTGCACT -ACGGAACCGATTCTCTCTCTGACT -ACGGAACCGATTCTCTCTCAACCT -ACGGAACCGATTCTCTCTGCTACT -ACGGAACCGATTCTCTCTGGATCT -ACGGAACCGATTCTCTCTAAGGCT -ACGGAACCGATTCTCTCTTCAACC -ACGGAACCGATTCTCTCTTGTTCC -ACGGAACCGATTCTCTCTATTCCC -ACGGAACCGATTCTCTCTTTCTCG -ACGGAACCGATTCTCTCTTAGACG -ACGGAACCGATTCTCTCTGTAACG -ACGGAACCGATTCTCTCTACTTCG -ACGGAACCGATTCTCTCTTACGCA -ACGGAACCGATTCTCTCTCTTGCA -ACGGAACCGATTCTCTCTCGAACA -ACGGAACCGATTCTCTCTCAGTCA -ACGGAACCGATTCTCTCTGATCCA -ACGGAACCGATTCTCTCTACGACA -ACGGAACCGATTCTCTCTAGCTCA -ACGGAACCGATTCTCTCTTCACGT -ACGGAACCGATTCTCTCTCGTAGT -ACGGAACCGATTCTCTCTGTCAGT -ACGGAACCGATTCTCTCTGAAGGT -ACGGAACCGATTCTCTCTAACCGT -ACGGAACCGATTCTCTCTTTGTGC -ACGGAACCGATTCTCTCTCTAAGC -ACGGAACCGATTCTCTCTACTAGC -ACGGAACCGATTCTCTCTAGATGC -ACGGAACCGATTCTCTCTTGAAGG -ACGGAACCGATTCTCTCTCAATGG -ACGGAACCGATTCTCTCTATGAGG -ACGGAACCGATTCTCTCTAATGGG -ACGGAACCGATTCTCTCTTCCTGA -ACGGAACCGATTCTCTCTTAGCGA -ACGGAACCGATTCTCTCTCACAGA -ACGGAACCGATTCTCTCTGCAAGA -ACGGAACCGATTCTCTCTGGTTGA -ACGGAACCGATTCTCTCTTCCGAT -ACGGAACCGATTCTCTCTTGGCAT -ACGGAACCGATTCTCTCTCGAGAT -ACGGAACCGATTCTCTCTTACCAC -ACGGAACCGATTCTCTCTCAGAAC -ACGGAACCGATTCTCTCTGTCTAC -ACGGAACCGATTCTCTCTACGTAC -ACGGAACCGATTCTCTCTAGTGAC -ACGGAACCGATTCTCTCTCTGTAG -ACGGAACCGATTCTCTCTCCTAAG -ACGGAACCGATTCTCTCTGTTCAG -ACGGAACCGATTCTCTCTGCATAG -ACGGAACCGATTCTCTCTGACAAG -ACGGAACCGATTCTCTCTAAGCAG -ACGGAACCGATTCTCTCTCGTCAA -ACGGAACCGATTCTCTCTGCTGAA -ACGGAACCGATTCTCTCTAGTACG -ACGGAACCGATTCTCTCTATCCGA -ACGGAACCGATTCTCTCTATGGGA -ACGGAACCGATTCTCTCTGTGCAA -ACGGAACCGATTCTCTCTGAGGAA -ACGGAACCGATTCTCTCTCAGGTA -ACGGAACCGATTCTCTCTGACTCT -ACGGAACCGATTCTCTCTAGTCCT -ACGGAACCGATTCTCTCTTAAGCC -ACGGAACCGATTCTCTCTATAGCC -ACGGAACCGATTCTCTCTTAACCG -ACGGAACCGATTCTCTCTATGCCA -ACGGAACCGATTATCTGGGGAAAC -ACGGAACCGATTATCTGGAACACC -ACGGAACCGATTATCTGGATCGAG -ACGGAACCGATTATCTGGCTCCTT -ACGGAACCGATTATCTGGCCTGTT -ACGGAACCGATTATCTGGCGGTTT -ACGGAACCGATTATCTGGGTGGTT -ACGGAACCGATTATCTGGGCCTTT -ACGGAACCGATTATCTGGGGTCTT -ACGGAACCGATTATCTGGACGCTT -ACGGAACCGATTATCTGGAGCGTT -ACGGAACCGATTATCTGGTTCGTC -ACGGAACCGATTATCTGGTCTCTC -ACGGAACCGATTATCTGGTGGATC -ACGGAACCGATTATCTGGCACTTC -ACGGAACCGATTATCTGGGTACTC -ACGGAACCGATTATCTGGGATGTC -ACGGAACCGATTATCTGGACAGTC -ACGGAACCGATTATCTGGTTGCTG -ACGGAACCGATTATCTGGTCCATG -ACGGAACCGATTATCTGGTGTGTG -ACGGAACCGATTATCTGGCTAGTG -ACGGAACCGATTATCTGGCATCTG -ACGGAACCGATTATCTGGGAGTTG -ACGGAACCGATTATCTGGAGACTG -ACGGAACCGATTATCTGGTCGGTA -ACGGAACCGATTATCTGGTGCCTA -ACGGAACCGATTATCTGGCCACTA -ACGGAACCGATTATCTGGGGAGTA -ACGGAACCGATTATCTGGTCGTCT -ACGGAACCGATTATCTGGTGCACT -ACGGAACCGATTATCTGGCTGACT -ACGGAACCGATTATCTGGCAACCT -ACGGAACCGATTATCTGGGCTACT -ACGGAACCGATTATCTGGGGATCT -ACGGAACCGATTATCTGGAAGGCT -ACGGAACCGATTATCTGGTCAACC -ACGGAACCGATTATCTGGTGTTCC -ACGGAACCGATTATCTGGATTCCC -ACGGAACCGATTATCTGGTTCTCG -ACGGAACCGATTATCTGGTAGACG -ACGGAACCGATTATCTGGGTAACG -ACGGAACCGATTATCTGGACTTCG -ACGGAACCGATTATCTGGTACGCA -ACGGAACCGATTATCTGGCTTGCA -ACGGAACCGATTATCTGGCGAACA -ACGGAACCGATTATCTGGCAGTCA -ACGGAACCGATTATCTGGGATCCA -ACGGAACCGATTATCTGGACGACA -ACGGAACCGATTATCTGGAGCTCA -ACGGAACCGATTATCTGGTCACGT -ACGGAACCGATTATCTGGCGTAGT -ACGGAACCGATTATCTGGGTCAGT -ACGGAACCGATTATCTGGGAAGGT -ACGGAACCGATTATCTGGAACCGT -ACGGAACCGATTATCTGGTTGTGC -ACGGAACCGATTATCTGGCTAAGC -ACGGAACCGATTATCTGGACTAGC -ACGGAACCGATTATCTGGAGATGC -ACGGAACCGATTATCTGGTGAAGG -ACGGAACCGATTATCTGGCAATGG -ACGGAACCGATTATCTGGATGAGG -ACGGAACCGATTATCTGGAATGGG -ACGGAACCGATTATCTGGTCCTGA -ACGGAACCGATTATCTGGTAGCGA -ACGGAACCGATTATCTGGCACAGA -ACGGAACCGATTATCTGGGCAAGA -ACGGAACCGATTATCTGGGGTTGA -ACGGAACCGATTATCTGGTCCGAT -ACGGAACCGATTATCTGGTGGCAT -ACGGAACCGATTATCTGGCGAGAT -ACGGAACCGATTATCTGGTACCAC -ACGGAACCGATTATCTGGCAGAAC -ACGGAACCGATTATCTGGGTCTAC -ACGGAACCGATTATCTGGACGTAC -ACGGAACCGATTATCTGGAGTGAC -ACGGAACCGATTATCTGGCTGTAG -ACGGAACCGATTATCTGGCCTAAG -ACGGAACCGATTATCTGGGTTCAG -ACGGAACCGATTATCTGGGCATAG -ACGGAACCGATTATCTGGGACAAG -ACGGAACCGATTATCTGGAAGCAG -ACGGAACCGATTATCTGGCGTCAA -ACGGAACCGATTATCTGGGCTGAA -ACGGAACCGATTATCTGGAGTACG -ACGGAACCGATTATCTGGATCCGA -ACGGAACCGATTATCTGGATGGGA -ACGGAACCGATTATCTGGGTGCAA -ACGGAACCGATTATCTGGGAGGAA -ACGGAACCGATTATCTGGCAGGTA -ACGGAACCGATTATCTGGGACTCT -ACGGAACCGATTATCTGGAGTCCT -ACGGAACCGATTATCTGGTAAGCC -ACGGAACCGATTATCTGGATAGCC -ACGGAACCGATTATCTGGTAACCG -ACGGAACCGATTATCTGGATGCCA -ACGGAACCGATTTTCCACGGAAAC -ACGGAACCGATTTTCCACAACACC -ACGGAACCGATTTTCCACATCGAG -ACGGAACCGATTTTCCACCTCCTT -ACGGAACCGATTTTCCACCCTGTT -ACGGAACCGATTTTCCACCGGTTT -ACGGAACCGATTTTCCACGTGGTT -ACGGAACCGATTTTCCACGCCTTT -ACGGAACCGATTTTCCACGGTCTT -ACGGAACCGATTTTCCACACGCTT -ACGGAACCGATTTTCCACAGCGTT -ACGGAACCGATTTTCCACTTCGTC -ACGGAACCGATTTTCCACTCTCTC -ACGGAACCGATTTTCCACTGGATC -ACGGAACCGATTTTCCACCACTTC -ACGGAACCGATTTTCCACGTACTC -ACGGAACCGATTTTCCACGATGTC -ACGGAACCGATTTTCCACACAGTC -ACGGAACCGATTTTCCACTTGCTG -ACGGAACCGATTTTCCACTCCATG -ACGGAACCGATTTTCCACTGTGTG -ACGGAACCGATTTTCCACCTAGTG -ACGGAACCGATTTTCCACCATCTG -ACGGAACCGATTTTCCACGAGTTG -ACGGAACCGATTTTCCACAGACTG -ACGGAACCGATTTTCCACTCGGTA -ACGGAACCGATTTTCCACTGCCTA -ACGGAACCGATTTTCCACCCACTA -ACGGAACCGATTTTCCACGGAGTA -ACGGAACCGATTTTCCACTCGTCT -ACGGAACCGATTTTCCACTGCACT -ACGGAACCGATTTTCCACCTGACT -ACGGAACCGATTTTCCACCAACCT -ACGGAACCGATTTTCCACGCTACT -ACGGAACCGATTTTCCACGGATCT -ACGGAACCGATTTTCCACAAGGCT -ACGGAACCGATTTTCCACTCAACC -ACGGAACCGATTTTCCACTGTTCC -ACGGAACCGATTTTCCACATTCCC -ACGGAACCGATTTTCCACTTCTCG -ACGGAACCGATTTTCCACTAGACG -ACGGAACCGATTTTCCACGTAACG -ACGGAACCGATTTTCCACACTTCG -ACGGAACCGATTTTCCACTACGCA -ACGGAACCGATTTTCCACCTTGCA -ACGGAACCGATTTTCCACCGAACA -ACGGAACCGATTTTCCACCAGTCA -ACGGAACCGATTTTCCACGATCCA -ACGGAACCGATTTTCCACACGACA -ACGGAACCGATTTTCCACAGCTCA -ACGGAACCGATTTTCCACTCACGT -ACGGAACCGATTTTCCACCGTAGT -ACGGAACCGATTTTCCACGTCAGT -ACGGAACCGATTTTCCACGAAGGT -ACGGAACCGATTTTCCACAACCGT -ACGGAACCGATTTTCCACTTGTGC -ACGGAACCGATTTTCCACCTAAGC -ACGGAACCGATTTTCCACACTAGC -ACGGAACCGATTTTCCACAGATGC -ACGGAACCGATTTTCCACTGAAGG -ACGGAACCGATTTTCCACCAATGG -ACGGAACCGATTTTCCACATGAGG -ACGGAACCGATTTTCCACAATGGG -ACGGAACCGATTTTCCACTCCTGA -ACGGAACCGATTTTCCACTAGCGA -ACGGAACCGATTTTCCACCACAGA -ACGGAACCGATTTTCCACGCAAGA -ACGGAACCGATTTTCCACGGTTGA -ACGGAACCGATTTTCCACTCCGAT -ACGGAACCGATTTTCCACTGGCAT -ACGGAACCGATTTTCCACCGAGAT -ACGGAACCGATTTTCCACTACCAC -ACGGAACCGATTTTCCACCAGAAC -ACGGAACCGATTTTCCACGTCTAC -ACGGAACCGATTTTCCACACGTAC -ACGGAACCGATTTTCCACAGTGAC -ACGGAACCGATTTTCCACCTGTAG -ACGGAACCGATTTTCCACCCTAAG -ACGGAACCGATTTTCCACGTTCAG -ACGGAACCGATTTTCCACGCATAG -ACGGAACCGATTTTCCACGACAAG -ACGGAACCGATTTTCCACAAGCAG -ACGGAACCGATTTTCCACCGTCAA -ACGGAACCGATTTTCCACGCTGAA -ACGGAACCGATTTTCCACAGTACG -ACGGAACCGATTTTCCACATCCGA -ACGGAACCGATTTTCCACATGGGA -ACGGAACCGATTTTCCACGTGCAA -ACGGAACCGATTTTCCACGAGGAA -ACGGAACCGATTTTCCACCAGGTA -ACGGAACCGATTTTCCACGACTCT -ACGGAACCGATTTTCCACAGTCCT -ACGGAACCGATTTTCCACTAAGCC -ACGGAACCGATTTTCCACATAGCC -ACGGAACCGATTTTCCACTAACCG -ACGGAACCGATTTTCCACATGCCA -ACGGAACCGATTCTCGTAGGAAAC -ACGGAACCGATTCTCGTAAACACC -ACGGAACCGATTCTCGTAATCGAG -ACGGAACCGATTCTCGTACTCCTT -ACGGAACCGATTCTCGTACCTGTT -ACGGAACCGATTCTCGTACGGTTT -ACGGAACCGATTCTCGTAGTGGTT -ACGGAACCGATTCTCGTAGCCTTT -ACGGAACCGATTCTCGTAGGTCTT -ACGGAACCGATTCTCGTAACGCTT -ACGGAACCGATTCTCGTAAGCGTT -ACGGAACCGATTCTCGTATTCGTC -ACGGAACCGATTCTCGTATCTCTC -ACGGAACCGATTCTCGTATGGATC -ACGGAACCGATTCTCGTACACTTC -ACGGAACCGATTCTCGTAGTACTC -ACGGAACCGATTCTCGTAGATGTC -ACGGAACCGATTCTCGTAACAGTC -ACGGAACCGATTCTCGTATTGCTG -ACGGAACCGATTCTCGTATCCATG -ACGGAACCGATTCTCGTATGTGTG -ACGGAACCGATTCTCGTACTAGTG -ACGGAACCGATTCTCGTACATCTG -ACGGAACCGATTCTCGTAGAGTTG -ACGGAACCGATTCTCGTAAGACTG -ACGGAACCGATTCTCGTATCGGTA -ACGGAACCGATTCTCGTATGCCTA -ACGGAACCGATTCTCGTACCACTA -ACGGAACCGATTCTCGTAGGAGTA -ACGGAACCGATTCTCGTATCGTCT -ACGGAACCGATTCTCGTATGCACT -ACGGAACCGATTCTCGTACTGACT -ACGGAACCGATTCTCGTACAACCT -ACGGAACCGATTCTCGTAGCTACT -ACGGAACCGATTCTCGTAGGATCT -ACGGAACCGATTCTCGTAAAGGCT -ACGGAACCGATTCTCGTATCAACC -ACGGAACCGATTCTCGTATGTTCC -ACGGAACCGATTCTCGTAATTCCC -ACGGAACCGATTCTCGTATTCTCG -ACGGAACCGATTCTCGTATAGACG -ACGGAACCGATTCTCGTAGTAACG -ACGGAACCGATTCTCGTAACTTCG -ACGGAACCGATTCTCGTATACGCA -ACGGAACCGATTCTCGTACTTGCA -ACGGAACCGATTCTCGTACGAACA -ACGGAACCGATTCTCGTACAGTCA -ACGGAACCGATTCTCGTAGATCCA -ACGGAACCGATTCTCGTAACGACA -ACGGAACCGATTCTCGTAAGCTCA -ACGGAACCGATTCTCGTATCACGT -ACGGAACCGATTCTCGTACGTAGT -ACGGAACCGATTCTCGTAGTCAGT -ACGGAACCGATTCTCGTAGAAGGT -ACGGAACCGATTCTCGTAAACCGT -ACGGAACCGATTCTCGTATTGTGC -ACGGAACCGATTCTCGTACTAAGC -ACGGAACCGATTCTCGTAACTAGC -ACGGAACCGATTCTCGTAAGATGC -ACGGAACCGATTCTCGTATGAAGG -ACGGAACCGATTCTCGTACAATGG -ACGGAACCGATTCTCGTAATGAGG -ACGGAACCGATTCTCGTAAATGGG -ACGGAACCGATTCTCGTATCCTGA -ACGGAACCGATTCTCGTATAGCGA -ACGGAACCGATTCTCGTACACAGA -ACGGAACCGATTCTCGTAGCAAGA -ACGGAACCGATTCTCGTAGGTTGA -ACGGAACCGATTCTCGTATCCGAT -ACGGAACCGATTCTCGTATGGCAT -ACGGAACCGATTCTCGTACGAGAT -ACGGAACCGATTCTCGTATACCAC -ACGGAACCGATTCTCGTACAGAAC -ACGGAACCGATTCTCGTAGTCTAC -ACGGAACCGATTCTCGTAACGTAC -ACGGAACCGATTCTCGTAAGTGAC -ACGGAACCGATTCTCGTACTGTAG -ACGGAACCGATTCTCGTACCTAAG -ACGGAACCGATTCTCGTAGTTCAG -ACGGAACCGATTCTCGTAGCATAG -ACGGAACCGATTCTCGTAGACAAG -ACGGAACCGATTCTCGTAAAGCAG -ACGGAACCGATTCTCGTACGTCAA -ACGGAACCGATTCTCGTAGCTGAA -ACGGAACCGATTCTCGTAAGTACG -ACGGAACCGATTCTCGTAATCCGA -ACGGAACCGATTCTCGTAATGGGA -ACGGAACCGATTCTCGTAGTGCAA -ACGGAACCGATTCTCGTAGAGGAA -ACGGAACCGATTCTCGTACAGGTA -ACGGAACCGATTCTCGTAGACTCT -ACGGAACCGATTCTCGTAAGTCCT -ACGGAACCGATTCTCGTATAAGCC -ACGGAACCGATTCTCGTAATAGCC -ACGGAACCGATTCTCGTATAACCG -ACGGAACCGATTCTCGTAATGCCA -ACGGAACCGATTGTCGATGGAAAC -ACGGAACCGATTGTCGATAACACC -ACGGAACCGATTGTCGATATCGAG -ACGGAACCGATTGTCGATCTCCTT -ACGGAACCGATTGTCGATCCTGTT -ACGGAACCGATTGTCGATCGGTTT -ACGGAACCGATTGTCGATGTGGTT -ACGGAACCGATTGTCGATGCCTTT -ACGGAACCGATTGTCGATGGTCTT -ACGGAACCGATTGTCGATACGCTT -ACGGAACCGATTGTCGATAGCGTT -ACGGAACCGATTGTCGATTTCGTC -ACGGAACCGATTGTCGATTCTCTC -ACGGAACCGATTGTCGATTGGATC -ACGGAACCGATTGTCGATCACTTC -ACGGAACCGATTGTCGATGTACTC -ACGGAACCGATTGTCGATGATGTC -ACGGAACCGATTGTCGATACAGTC -ACGGAACCGATTGTCGATTTGCTG -ACGGAACCGATTGTCGATTCCATG -ACGGAACCGATTGTCGATTGTGTG -ACGGAACCGATTGTCGATCTAGTG -ACGGAACCGATTGTCGATCATCTG -ACGGAACCGATTGTCGATGAGTTG -ACGGAACCGATTGTCGATAGACTG -ACGGAACCGATTGTCGATTCGGTA -ACGGAACCGATTGTCGATTGCCTA -ACGGAACCGATTGTCGATCCACTA -ACGGAACCGATTGTCGATGGAGTA -ACGGAACCGATTGTCGATTCGTCT -ACGGAACCGATTGTCGATTGCACT -ACGGAACCGATTGTCGATCTGACT -ACGGAACCGATTGTCGATCAACCT -ACGGAACCGATTGTCGATGCTACT -ACGGAACCGATTGTCGATGGATCT -ACGGAACCGATTGTCGATAAGGCT -ACGGAACCGATTGTCGATTCAACC -ACGGAACCGATTGTCGATTGTTCC -ACGGAACCGATTGTCGATATTCCC -ACGGAACCGATTGTCGATTTCTCG -ACGGAACCGATTGTCGATTAGACG -ACGGAACCGATTGTCGATGTAACG -ACGGAACCGATTGTCGATACTTCG -ACGGAACCGATTGTCGATTACGCA -ACGGAACCGATTGTCGATCTTGCA -ACGGAACCGATTGTCGATCGAACA -ACGGAACCGATTGTCGATCAGTCA -ACGGAACCGATTGTCGATGATCCA -ACGGAACCGATTGTCGATACGACA -ACGGAACCGATTGTCGATAGCTCA -ACGGAACCGATTGTCGATTCACGT -ACGGAACCGATTGTCGATCGTAGT -ACGGAACCGATTGTCGATGTCAGT -ACGGAACCGATTGTCGATGAAGGT -ACGGAACCGATTGTCGATAACCGT -ACGGAACCGATTGTCGATTTGTGC -ACGGAACCGATTGTCGATCTAAGC -ACGGAACCGATTGTCGATACTAGC -ACGGAACCGATTGTCGATAGATGC -ACGGAACCGATTGTCGATTGAAGG -ACGGAACCGATTGTCGATCAATGG -ACGGAACCGATTGTCGATATGAGG -ACGGAACCGATTGTCGATAATGGG -ACGGAACCGATTGTCGATTCCTGA -ACGGAACCGATTGTCGATTAGCGA -ACGGAACCGATTGTCGATCACAGA -ACGGAACCGATTGTCGATGCAAGA -ACGGAACCGATTGTCGATGGTTGA -ACGGAACCGATTGTCGATTCCGAT -ACGGAACCGATTGTCGATTGGCAT -ACGGAACCGATTGTCGATCGAGAT -ACGGAACCGATTGTCGATTACCAC -ACGGAACCGATTGTCGATCAGAAC -ACGGAACCGATTGTCGATGTCTAC -ACGGAACCGATTGTCGATACGTAC -ACGGAACCGATTGTCGATAGTGAC -ACGGAACCGATTGTCGATCTGTAG -ACGGAACCGATTGTCGATCCTAAG -ACGGAACCGATTGTCGATGTTCAG -ACGGAACCGATTGTCGATGCATAG -ACGGAACCGATTGTCGATGACAAG -ACGGAACCGATTGTCGATAAGCAG -ACGGAACCGATTGTCGATCGTCAA -ACGGAACCGATTGTCGATGCTGAA -ACGGAACCGATTGTCGATAGTACG -ACGGAACCGATTGTCGATATCCGA -ACGGAACCGATTGTCGATATGGGA -ACGGAACCGATTGTCGATGTGCAA -ACGGAACCGATTGTCGATGAGGAA -ACGGAACCGATTGTCGATCAGGTA -ACGGAACCGATTGTCGATGACTCT -ACGGAACCGATTGTCGATAGTCCT -ACGGAACCGATTGTCGATTAAGCC -ACGGAACCGATTGTCGATATAGCC -ACGGAACCGATTGTCGATTAACCG -ACGGAACCGATTGTCGATATGCCA -ACGGAACCGATTGTCACAGGAAAC -ACGGAACCGATTGTCACAAACACC -ACGGAACCGATTGTCACAATCGAG -ACGGAACCGATTGTCACACTCCTT -ACGGAACCGATTGTCACACCTGTT -ACGGAACCGATTGTCACACGGTTT -ACGGAACCGATTGTCACAGTGGTT -ACGGAACCGATTGTCACAGCCTTT -ACGGAACCGATTGTCACAGGTCTT -ACGGAACCGATTGTCACAACGCTT -ACGGAACCGATTGTCACAAGCGTT -ACGGAACCGATTGTCACATTCGTC -ACGGAACCGATTGTCACATCTCTC -ACGGAACCGATTGTCACATGGATC -ACGGAACCGATTGTCACACACTTC -ACGGAACCGATTGTCACAGTACTC -ACGGAACCGATTGTCACAGATGTC -ACGGAACCGATTGTCACAACAGTC -ACGGAACCGATTGTCACATTGCTG -ACGGAACCGATTGTCACATCCATG -ACGGAACCGATTGTCACATGTGTG -ACGGAACCGATTGTCACACTAGTG -ACGGAACCGATTGTCACACATCTG -ACGGAACCGATTGTCACAGAGTTG -ACGGAACCGATTGTCACAAGACTG -ACGGAACCGATTGTCACATCGGTA -ACGGAACCGATTGTCACATGCCTA -ACGGAACCGATTGTCACACCACTA -ACGGAACCGATTGTCACAGGAGTA -ACGGAACCGATTGTCACATCGTCT -ACGGAACCGATTGTCACATGCACT -ACGGAACCGATTGTCACACTGACT -ACGGAACCGATTGTCACACAACCT -ACGGAACCGATTGTCACAGCTACT -ACGGAACCGATTGTCACAGGATCT -ACGGAACCGATTGTCACAAAGGCT -ACGGAACCGATTGTCACATCAACC -ACGGAACCGATTGTCACATGTTCC -ACGGAACCGATTGTCACAATTCCC -ACGGAACCGATTGTCACATTCTCG -ACGGAACCGATTGTCACATAGACG -ACGGAACCGATTGTCACAGTAACG -ACGGAACCGATTGTCACAACTTCG -ACGGAACCGATTGTCACATACGCA -ACGGAACCGATTGTCACACTTGCA -ACGGAACCGATTGTCACACGAACA -ACGGAACCGATTGTCACACAGTCA -ACGGAACCGATTGTCACAGATCCA -ACGGAACCGATTGTCACAACGACA -ACGGAACCGATTGTCACAAGCTCA -ACGGAACCGATTGTCACATCACGT -ACGGAACCGATTGTCACACGTAGT -ACGGAACCGATTGTCACAGTCAGT -ACGGAACCGATTGTCACAGAAGGT -ACGGAACCGATTGTCACAAACCGT -ACGGAACCGATTGTCACATTGTGC -ACGGAACCGATTGTCACACTAAGC -ACGGAACCGATTGTCACAACTAGC -ACGGAACCGATTGTCACAAGATGC -ACGGAACCGATTGTCACATGAAGG -ACGGAACCGATTGTCACACAATGG -ACGGAACCGATTGTCACAATGAGG -ACGGAACCGATTGTCACAAATGGG -ACGGAACCGATTGTCACATCCTGA -ACGGAACCGATTGTCACATAGCGA -ACGGAACCGATTGTCACACACAGA -ACGGAACCGATTGTCACAGCAAGA -ACGGAACCGATTGTCACAGGTTGA -ACGGAACCGATTGTCACATCCGAT -ACGGAACCGATTGTCACATGGCAT -ACGGAACCGATTGTCACACGAGAT -ACGGAACCGATTGTCACATACCAC -ACGGAACCGATTGTCACACAGAAC -ACGGAACCGATTGTCACAGTCTAC -ACGGAACCGATTGTCACAACGTAC -ACGGAACCGATTGTCACAAGTGAC -ACGGAACCGATTGTCACACTGTAG -ACGGAACCGATTGTCACACCTAAG -ACGGAACCGATTGTCACAGTTCAG -ACGGAACCGATTGTCACAGCATAG -ACGGAACCGATTGTCACAGACAAG -ACGGAACCGATTGTCACAAAGCAG -ACGGAACCGATTGTCACACGTCAA -ACGGAACCGATTGTCACAGCTGAA -ACGGAACCGATTGTCACAAGTACG -ACGGAACCGATTGTCACAATCCGA -ACGGAACCGATTGTCACAATGGGA -ACGGAACCGATTGTCACAGTGCAA -ACGGAACCGATTGTCACAGAGGAA -ACGGAACCGATTGTCACACAGGTA -ACGGAACCGATTGTCACAGACTCT -ACGGAACCGATTGTCACAAGTCCT -ACGGAACCGATTGTCACATAAGCC -ACGGAACCGATTGTCACAATAGCC -ACGGAACCGATTGTCACATAACCG -ACGGAACCGATTGTCACAATGCCA -ACGGAACCGATTCTGTTGGGAAAC -ACGGAACCGATTCTGTTGAACACC -ACGGAACCGATTCTGTTGATCGAG -ACGGAACCGATTCTGTTGCTCCTT -ACGGAACCGATTCTGTTGCCTGTT -ACGGAACCGATTCTGTTGCGGTTT -ACGGAACCGATTCTGTTGGTGGTT -ACGGAACCGATTCTGTTGGCCTTT -ACGGAACCGATTCTGTTGGGTCTT -ACGGAACCGATTCTGTTGACGCTT -ACGGAACCGATTCTGTTGAGCGTT -ACGGAACCGATTCTGTTGTTCGTC -ACGGAACCGATTCTGTTGTCTCTC -ACGGAACCGATTCTGTTGTGGATC -ACGGAACCGATTCTGTTGCACTTC -ACGGAACCGATTCTGTTGGTACTC -ACGGAACCGATTCTGTTGGATGTC -ACGGAACCGATTCTGTTGACAGTC -ACGGAACCGATTCTGTTGTTGCTG -ACGGAACCGATTCTGTTGTCCATG -ACGGAACCGATTCTGTTGTGTGTG -ACGGAACCGATTCTGTTGCTAGTG -ACGGAACCGATTCTGTTGCATCTG -ACGGAACCGATTCTGTTGGAGTTG -ACGGAACCGATTCTGTTGAGACTG -ACGGAACCGATTCTGTTGTCGGTA -ACGGAACCGATTCTGTTGTGCCTA -ACGGAACCGATTCTGTTGCCACTA -ACGGAACCGATTCTGTTGGGAGTA -ACGGAACCGATTCTGTTGTCGTCT -ACGGAACCGATTCTGTTGTGCACT -ACGGAACCGATTCTGTTGCTGACT -ACGGAACCGATTCTGTTGCAACCT -ACGGAACCGATTCTGTTGGCTACT -ACGGAACCGATTCTGTTGGGATCT -ACGGAACCGATTCTGTTGAAGGCT -ACGGAACCGATTCTGTTGTCAACC -ACGGAACCGATTCTGTTGTGTTCC -ACGGAACCGATTCTGTTGATTCCC -ACGGAACCGATTCTGTTGTTCTCG -ACGGAACCGATTCTGTTGTAGACG -ACGGAACCGATTCTGTTGGTAACG -ACGGAACCGATTCTGTTGACTTCG -ACGGAACCGATTCTGTTGTACGCA -ACGGAACCGATTCTGTTGCTTGCA -ACGGAACCGATTCTGTTGCGAACA -ACGGAACCGATTCTGTTGCAGTCA -ACGGAACCGATTCTGTTGGATCCA -ACGGAACCGATTCTGTTGACGACA -ACGGAACCGATTCTGTTGAGCTCA -ACGGAACCGATTCTGTTGTCACGT -ACGGAACCGATTCTGTTGCGTAGT -ACGGAACCGATTCTGTTGGTCAGT -ACGGAACCGATTCTGTTGGAAGGT -ACGGAACCGATTCTGTTGAACCGT -ACGGAACCGATTCTGTTGTTGTGC -ACGGAACCGATTCTGTTGCTAAGC -ACGGAACCGATTCTGTTGACTAGC -ACGGAACCGATTCTGTTGAGATGC -ACGGAACCGATTCTGTTGTGAAGG -ACGGAACCGATTCTGTTGCAATGG -ACGGAACCGATTCTGTTGATGAGG -ACGGAACCGATTCTGTTGAATGGG -ACGGAACCGATTCTGTTGTCCTGA -ACGGAACCGATTCTGTTGTAGCGA -ACGGAACCGATTCTGTTGCACAGA -ACGGAACCGATTCTGTTGGCAAGA -ACGGAACCGATTCTGTTGGGTTGA -ACGGAACCGATTCTGTTGTCCGAT -ACGGAACCGATTCTGTTGTGGCAT -ACGGAACCGATTCTGTTGCGAGAT -ACGGAACCGATTCTGTTGTACCAC -ACGGAACCGATTCTGTTGCAGAAC -ACGGAACCGATTCTGTTGGTCTAC -ACGGAACCGATTCTGTTGACGTAC -ACGGAACCGATTCTGTTGAGTGAC -ACGGAACCGATTCTGTTGCTGTAG -ACGGAACCGATTCTGTTGCCTAAG -ACGGAACCGATTCTGTTGGTTCAG -ACGGAACCGATTCTGTTGGCATAG -ACGGAACCGATTCTGTTGGACAAG -ACGGAACCGATTCTGTTGAAGCAG -ACGGAACCGATTCTGTTGCGTCAA -ACGGAACCGATTCTGTTGGCTGAA -ACGGAACCGATTCTGTTGAGTACG -ACGGAACCGATTCTGTTGATCCGA -ACGGAACCGATTCTGTTGATGGGA -ACGGAACCGATTCTGTTGGTGCAA -ACGGAACCGATTCTGTTGGAGGAA -ACGGAACCGATTCTGTTGCAGGTA -ACGGAACCGATTCTGTTGGACTCT -ACGGAACCGATTCTGTTGAGTCCT -ACGGAACCGATTCTGTTGTAAGCC -ACGGAACCGATTCTGTTGATAGCC -ACGGAACCGATTCTGTTGTAACCG -ACGGAACCGATTCTGTTGATGCCA -ACGGAACCGATTATGTCCGGAAAC -ACGGAACCGATTATGTCCAACACC -ACGGAACCGATTATGTCCATCGAG -ACGGAACCGATTATGTCCCTCCTT -ACGGAACCGATTATGTCCCCTGTT -ACGGAACCGATTATGTCCCGGTTT -ACGGAACCGATTATGTCCGTGGTT -ACGGAACCGATTATGTCCGCCTTT -ACGGAACCGATTATGTCCGGTCTT -ACGGAACCGATTATGTCCACGCTT -ACGGAACCGATTATGTCCAGCGTT -ACGGAACCGATTATGTCCTTCGTC -ACGGAACCGATTATGTCCTCTCTC -ACGGAACCGATTATGTCCTGGATC -ACGGAACCGATTATGTCCCACTTC -ACGGAACCGATTATGTCCGTACTC -ACGGAACCGATTATGTCCGATGTC -ACGGAACCGATTATGTCCACAGTC -ACGGAACCGATTATGTCCTTGCTG -ACGGAACCGATTATGTCCTCCATG -ACGGAACCGATTATGTCCTGTGTG -ACGGAACCGATTATGTCCCTAGTG -ACGGAACCGATTATGTCCCATCTG -ACGGAACCGATTATGTCCGAGTTG -ACGGAACCGATTATGTCCAGACTG -ACGGAACCGATTATGTCCTCGGTA -ACGGAACCGATTATGTCCTGCCTA -ACGGAACCGATTATGTCCCCACTA -ACGGAACCGATTATGTCCGGAGTA -ACGGAACCGATTATGTCCTCGTCT -ACGGAACCGATTATGTCCTGCACT -ACGGAACCGATTATGTCCCTGACT -ACGGAACCGATTATGTCCCAACCT -ACGGAACCGATTATGTCCGCTACT -ACGGAACCGATTATGTCCGGATCT -ACGGAACCGATTATGTCCAAGGCT -ACGGAACCGATTATGTCCTCAACC -ACGGAACCGATTATGTCCTGTTCC -ACGGAACCGATTATGTCCATTCCC -ACGGAACCGATTATGTCCTTCTCG -ACGGAACCGATTATGTCCTAGACG -ACGGAACCGATTATGTCCGTAACG -ACGGAACCGATTATGTCCACTTCG -ACGGAACCGATTATGTCCTACGCA -ACGGAACCGATTATGTCCCTTGCA -ACGGAACCGATTATGTCCCGAACA -ACGGAACCGATTATGTCCCAGTCA -ACGGAACCGATTATGTCCGATCCA -ACGGAACCGATTATGTCCACGACA -ACGGAACCGATTATGTCCAGCTCA -ACGGAACCGATTATGTCCTCACGT -ACGGAACCGATTATGTCCCGTAGT -ACGGAACCGATTATGTCCGTCAGT -ACGGAACCGATTATGTCCGAAGGT -ACGGAACCGATTATGTCCAACCGT -ACGGAACCGATTATGTCCTTGTGC -ACGGAACCGATTATGTCCCTAAGC -ACGGAACCGATTATGTCCACTAGC -ACGGAACCGATTATGTCCAGATGC -ACGGAACCGATTATGTCCTGAAGG -ACGGAACCGATTATGTCCCAATGG -ACGGAACCGATTATGTCCATGAGG -ACGGAACCGATTATGTCCAATGGG -ACGGAACCGATTATGTCCTCCTGA -ACGGAACCGATTATGTCCTAGCGA -ACGGAACCGATTATGTCCCACAGA -ACGGAACCGATTATGTCCGCAAGA -ACGGAACCGATTATGTCCGGTTGA -ACGGAACCGATTATGTCCTCCGAT -ACGGAACCGATTATGTCCTGGCAT -ACGGAACCGATTATGTCCCGAGAT -ACGGAACCGATTATGTCCTACCAC -ACGGAACCGATTATGTCCCAGAAC -ACGGAACCGATTATGTCCGTCTAC -ACGGAACCGATTATGTCCACGTAC -ACGGAACCGATTATGTCCAGTGAC -ACGGAACCGATTATGTCCCTGTAG -ACGGAACCGATTATGTCCCCTAAG -ACGGAACCGATTATGTCCGTTCAG -ACGGAACCGATTATGTCCGCATAG -ACGGAACCGATTATGTCCGACAAG -ACGGAACCGATTATGTCCAAGCAG -ACGGAACCGATTATGTCCCGTCAA -ACGGAACCGATTATGTCCGCTGAA -ACGGAACCGATTATGTCCAGTACG -ACGGAACCGATTATGTCCATCCGA -ACGGAACCGATTATGTCCATGGGA -ACGGAACCGATTATGTCCGTGCAA -ACGGAACCGATTATGTCCGAGGAA -ACGGAACCGATTATGTCCCAGGTA -ACGGAACCGATTATGTCCGACTCT -ACGGAACCGATTATGTCCAGTCCT -ACGGAACCGATTATGTCCTAAGCC -ACGGAACCGATTATGTCCATAGCC -ACGGAACCGATTATGTCCTAACCG -ACGGAACCGATTATGTCCATGCCA -ACGGAACCGATTGTGTGTGGAAAC -ACGGAACCGATTGTGTGTAACACC -ACGGAACCGATTGTGTGTATCGAG -ACGGAACCGATTGTGTGTCTCCTT -ACGGAACCGATTGTGTGTCCTGTT -ACGGAACCGATTGTGTGTCGGTTT -ACGGAACCGATTGTGTGTGTGGTT -ACGGAACCGATTGTGTGTGCCTTT -ACGGAACCGATTGTGTGTGGTCTT -ACGGAACCGATTGTGTGTACGCTT -ACGGAACCGATTGTGTGTAGCGTT -ACGGAACCGATTGTGTGTTTCGTC -ACGGAACCGATTGTGTGTTCTCTC -ACGGAACCGATTGTGTGTTGGATC -ACGGAACCGATTGTGTGTCACTTC -ACGGAACCGATTGTGTGTGTACTC -ACGGAACCGATTGTGTGTGATGTC -ACGGAACCGATTGTGTGTACAGTC -ACGGAACCGATTGTGTGTTTGCTG -ACGGAACCGATTGTGTGTTCCATG -ACGGAACCGATTGTGTGTTGTGTG -ACGGAACCGATTGTGTGTCTAGTG -ACGGAACCGATTGTGTGTCATCTG -ACGGAACCGATTGTGTGTGAGTTG -ACGGAACCGATTGTGTGTAGACTG -ACGGAACCGATTGTGTGTTCGGTA -ACGGAACCGATTGTGTGTTGCCTA -ACGGAACCGATTGTGTGTCCACTA -ACGGAACCGATTGTGTGTGGAGTA -ACGGAACCGATTGTGTGTTCGTCT -ACGGAACCGATTGTGTGTTGCACT -ACGGAACCGATTGTGTGTCTGACT -ACGGAACCGATTGTGTGTCAACCT -ACGGAACCGATTGTGTGTGCTACT -ACGGAACCGATTGTGTGTGGATCT -ACGGAACCGATTGTGTGTAAGGCT -ACGGAACCGATTGTGTGTTCAACC -ACGGAACCGATTGTGTGTTGTTCC -ACGGAACCGATTGTGTGTATTCCC -ACGGAACCGATTGTGTGTTTCTCG -ACGGAACCGATTGTGTGTTAGACG -ACGGAACCGATTGTGTGTGTAACG -ACGGAACCGATTGTGTGTACTTCG -ACGGAACCGATTGTGTGTTACGCA -ACGGAACCGATTGTGTGTCTTGCA -ACGGAACCGATTGTGTGTCGAACA -ACGGAACCGATTGTGTGTCAGTCA -ACGGAACCGATTGTGTGTGATCCA -ACGGAACCGATTGTGTGTACGACA -ACGGAACCGATTGTGTGTAGCTCA -ACGGAACCGATTGTGTGTTCACGT -ACGGAACCGATTGTGTGTCGTAGT -ACGGAACCGATTGTGTGTGTCAGT -ACGGAACCGATTGTGTGTGAAGGT -ACGGAACCGATTGTGTGTAACCGT -ACGGAACCGATTGTGTGTTTGTGC -ACGGAACCGATTGTGTGTCTAAGC -ACGGAACCGATTGTGTGTACTAGC -ACGGAACCGATTGTGTGTAGATGC -ACGGAACCGATTGTGTGTTGAAGG -ACGGAACCGATTGTGTGTCAATGG -ACGGAACCGATTGTGTGTATGAGG -ACGGAACCGATTGTGTGTAATGGG -ACGGAACCGATTGTGTGTTCCTGA -ACGGAACCGATTGTGTGTTAGCGA -ACGGAACCGATTGTGTGTCACAGA -ACGGAACCGATTGTGTGTGCAAGA -ACGGAACCGATTGTGTGTGGTTGA -ACGGAACCGATTGTGTGTTCCGAT -ACGGAACCGATTGTGTGTTGGCAT -ACGGAACCGATTGTGTGTCGAGAT -ACGGAACCGATTGTGTGTTACCAC -ACGGAACCGATTGTGTGTCAGAAC -ACGGAACCGATTGTGTGTGTCTAC -ACGGAACCGATTGTGTGTACGTAC -ACGGAACCGATTGTGTGTAGTGAC -ACGGAACCGATTGTGTGTCTGTAG -ACGGAACCGATTGTGTGTCCTAAG -ACGGAACCGATTGTGTGTGTTCAG -ACGGAACCGATTGTGTGTGCATAG -ACGGAACCGATTGTGTGTGACAAG -ACGGAACCGATTGTGTGTAAGCAG -ACGGAACCGATTGTGTGTCGTCAA -ACGGAACCGATTGTGTGTGCTGAA -ACGGAACCGATTGTGTGTAGTACG -ACGGAACCGATTGTGTGTATCCGA -ACGGAACCGATTGTGTGTATGGGA -ACGGAACCGATTGTGTGTGTGCAA -ACGGAACCGATTGTGTGTGAGGAA -ACGGAACCGATTGTGTGTCAGGTA -ACGGAACCGATTGTGTGTGACTCT -ACGGAACCGATTGTGTGTAGTCCT -ACGGAACCGATTGTGTGTTAAGCC -ACGGAACCGATTGTGTGTATAGCC -ACGGAACCGATTGTGTGTTAACCG -ACGGAACCGATTGTGTGTATGCCA -ACGGAACCGATTGTGCTAGGAAAC -ACGGAACCGATTGTGCTAAACACC -ACGGAACCGATTGTGCTAATCGAG -ACGGAACCGATTGTGCTACTCCTT -ACGGAACCGATTGTGCTACCTGTT -ACGGAACCGATTGTGCTACGGTTT -ACGGAACCGATTGTGCTAGTGGTT -ACGGAACCGATTGTGCTAGCCTTT -ACGGAACCGATTGTGCTAGGTCTT -ACGGAACCGATTGTGCTAACGCTT -ACGGAACCGATTGTGCTAAGCGTT -ACGGAACCGATTGTGCTATTCGTC -ACGGAACCGATTGTGCTATCTCTC -ACGGAACCGATTGTGCTATGGATC -ACGGAACCGATTGTGCTACACTTC -ACGGAACCGATTGTGCTAGTACTC -ACGGAACCGATTGTGCTAGATGTC -ACGGAACCGATTGTGCTAACAGTC -ACGGAACCGATTGTGCTATTGCTG -ACGGAACCGATTGTGCTATCCATG -ACGGAACCGATTGTGCTATGTGTG -ACGGAACCGATTGTGCTACTAGTG -ACGGAACCGATTGTGCTACATCTG -ACGGAACCGATTGTGCTAGAGTTG -ACGGAACCGATTGTGCTAAGACTG -ACGGAACCGATTGTGCTATCGGTA -ACGGAACCGATTGTGCTATGCCTA -ACGGAACCGATTGTGCTACCACTA -ACGGAACCGATTGTGCTAGGAGTA -ACGGAACCGATTGTGCTATCGTCT -ACGGAACCGATTGTGCTATGCACT -ACGGAACCGATTGTGCTACTGACT -ACGGAACCGATTGTGCTACAACCT -ACGGAACCGATTGTGCTAGCTACT -ACGGAACCGATTGTGCTAGGATCT -ACGGAACCGATTGTGCTAAAGGCT -ACGGAACCGATTGTGCTATCAACC -ACGGAACCGATTGTGCTATGTTCC -ACGGAACCGATTGTGCTAATTCCC -ACGGAACCGATTGTGCTATTCTCG -ACGGAACCGATTGTGCTATAGACG -ACGGAACCGATTGTGCTAGTAACG -ACGGAACCGATTGTGCTAACTTCG -ACGGAACCGATTGTGCTATACGCA -ACGGAACCGATTGTGCTACTTGCA -ACGGAACCGATTGTGCTACGAACA -ACGGAACCGATTGTGCTACAGTCA -ACGGAACCGATTGTGCTAGATCCA -ACGGAACCGATTGTGCTAACGACA -ACGGAACCGATTGTGCTAAGCTCA -ACGGAACCGATTGTGCTATCACGT -ACGGAACCGATTGTGCTACGTAGT -ACGGAACCGATTGTGCTAGTCAGT -ACGGAACCGATTGTGCTAGAAGGT -ACGGAACCGATTGTGCTAAACCGT -ACGGAACCGATTGTGCTATTGTGC -ACGGAACCGATTGTGCTACTAAGC -ACGGAACCGATTGTGCTAACTAGC -ACGGAACCGATTGTGCTAAGATGC -ACGGAACCGATTGTGCTATGAAGG -ACGGAACCGATTGTGCTACAATGG -ACGGAACCGATTGTGCTAATGAGG -ACGGAACCGATTGTGCTAAATGGG -ACGGAACCGATTGTGCTATCCTGA -ACGGAACCGATTGTGCTATAGCGA -ACGGAACCGATTGTGCTACACAGA -ACGGAACCGATTGTGCTAGCAAGA -ACGGAACCGATTGTGCTAGGTTGA -ACGGAACCGATTGTGCTATCCGAT -ACGGAACCGATTGTGCTATGGCAT -ACGGAACCGATTGTGCTACGAGAT -ACGGAACCGATTGTGCTATACCAC -ACGGAACCGATTGTGCTACAGAAC -ACGGAACCGATTGTGCTAGTCTAC -ACGGAACCGATTGTGCTAACGTAC -ACGGAACCGATTGTGCTAAGTGAC -ACGGAACCGATTGTGCTACTGTAG -ACGGAACCGATTGTGCTACCTAAG -ACGGAACCGATTGTGCTAGTTCAG -ACGGAACCGATTGTGCTAGCATAG -ACGGAACCGATTGTGCTAGACAAG -ACGGAACCGATTGTGCTAAAGCAG -ACGGAACCGATTGTGCTACGTCAA -ACGGAACCGATTGTGCTAGCTGAA -ACGGAACCGATTGTGCTAAGTACG -ACGGAACCGATTGTGCTAATCCGA -ACGGAACCGATTGTGCTAATGGGA -ACGGAACCGATTGTGCTAGTGCAA -ACGGAACCGATTGTGCTAGAGGAA -ACGGAACCGATTGTGCTACAGGTA -ACGGAACCGATTGTGCTAGACTCT -ACGGAACCGATTGTGCTAAGTCCT -ACGGAACCGATTGTGCTATAAGCC -ACGGAACCGATTGTGCTAATAGCC -ACGGAACCGATTGTGCTATAACCG -ACGGAACCGATTGTGCTAATGCCA -ACGGAACCGATTCTGCATGGAAAC -ACGGAACCGATTCTGCATAACACC -ACGGAACCGATTCTGCATATCGAG -ACGGAACCGATTCTGCATCTCCTT -ACGGAACCGATTCTGCATCCTGTT -ACGGAACCGATTCTGCATCGGTTT -ACGGAACCGATTCTGCATGTGGTT -ACGGAACCGATTCTGCATGCCTTT -ACGGAACCGATTCTGCATGGTCTT -ACGGAACCGATTCTGCATACGCTT -ACGGAACCGATTCTGCATAGCGTT -ACGGAACCGATTCTGCATTTCGTC -ACGGAACCGATTCTGCATTCTCTC -ACGGAACCGATTCTGCATTGGATC -ACGGAACCGATTCTGCATCACTTC -ACGGAACCGATTCTGCATGTACTC -ACGGAACCGATTCTGCATGATGTC -ACGGAACCGATTCTGCATACAGTC -ACGGAACCGATTCTGCATTTGCTG -ACGGAACCGATTCTGCATTCCATG -ACGGAACCGATTCTGCATTGTGTG -ACGGAACCGATTCTGCATCTAGTG -ACGGAACCGATTCTGCATCATCTG -ACGGAACCGATTCTGCATGAGTTG -ACGGAACCGATTCTGCATAGACTG -ACGGAACCGATTCTGCATTCGGTA -ACGGAACCGATTCTGCATTGCCTA -ACGGAACCGATTCTGCATCCACTA -ACGGAACCGATTCTGCATGGAGTA -ACGGAACCGATTCTGCATTCGTCT -ACGGAACCGATTCTGCATTGCACT -ACGGAACCGATTCTGCATCTGACT -ACGGAACCGATTCTGCATCAACCT -ACGGAACCGATTCTGCATGCTACT -ACGGAACCGATTCTGCATGGATCT -ACGGAACCGATTCTGCATAAGGCT -ACGGAACCGATTCTGCATTCAACC -ACGGAACCGATTCTGCATTGTTCC -ACGGAACCGATTCTGCATATTCCC -ACGGAACCGATTCTGCATTTCTCG -ACGGAACCGATTCTGCATTAGACG -ACGGAACCGATTCTGCATGTAACG -ACGGAACCGATTCTGCATACTTCG -ACGGAACCGATTCTGCATTACGCA -ACGGAACCGATTCTGCATCTTGCA -ACGGAACCGATTCTGCATCGAACA -ACGGAACCGATTCTGCATCAGTCA -ACGGAACCGATTCTGCATGATCCA -ACGGAACCGATTCTGCATACGACA -ACGGAACCGATTCTGCATAGCTCA -ACGGAACCGATTCTGCATTCACGT -ACGGAACCGATTCTGCATCGTAGT -ACGGAACCGATTCTGCATGTCAGT -ACGGAACCGATTCTGCATGAAGGT -ACGGAACCGATTCTGCATAACCGT -ACGGAACCGATTCTGCATTTGTGC -ACGGAACCGATTCTGCATCTAAGC -ACGGAACCGATTCTGCATACTAGC -ACGGAACCGATTCTGCATAGATGC -ACGGAACCGATTCTGCATTGAAGG -ACGGAACCGATTCTGCATCAATGG -ACGGAACCGATTCTGCATATGAGG -ACGGAACCGATTCTGCATAATGGG -ACGGAACCGATTCTGCATTCCTGA -ACGGAACCGATTCTGCATTAGCGA -ACGGAACCGATTCTGCATCACAGA -ACGGAACCGATTCTGCATGCAAGA -ACGGAACCGATTCTGCATGGTTGA -ACGGAACCGATTCTGCATTCCGAT -ACGGAACCGATTCTGCATTGGCAT -ACGGAACCGATTCTGCATCGAGAT -ACGGAACCGATTCTGCATTACCAC -ACGGAACCGATTCTGCATCAGAAC -ACGGAACCGATTCTGCATGTCTAC -ACGGAACCGATTCTGCATACGTAC -ACGGAACCGATTCTGCATAGTGAC -ACGGAACCGATTCTGCATCTGTAG -ACGGAACCGATTCTGCATCCTAAG -ACGGAACCGATTCTGCATGTTCAG -ACGGAACCGATTCTGCATGCATAG -ACGGAACCGATTCTGCATGACAAG -ACGGAACCGATTCTGCATAAGCAG -ACGGAACCGATTCTGCATCGTCAA -ACGGAACCGATTCTGCATGCTGAA -ACGGAACCGATTCTGCATAGTACG -ACGGAACCGATTCTGCATATCCGA -ACGGAACCGATTCTGCATATGGGA -ACGGAACCGATTCTGCATGTGCAA -ACGGAACCGATTCTGCATGAGGAA -ACGGAACCGATTCTGCATCAGGTA -ACGGAACCGATTCTGCATGACTCT -ACGGAACCGATTCTGCATAGTCCT -ACGGAACCGATTCTGCATTAAGCC -ACGGAACCGATTCTGCATATAGCC -ACGGAACCGATTCTGCATTAACCG -ACGGAACCGATTCTGCATATGCCA -ACGGAACCGATTTTGGAGGGAAAC -ACGGAACCGATTTTGGAGAACACC -ACGGAACCGATTTTGGAGATCGAG -ACGGAACCGATTTTGGAGCTCCTT -ACGGAACCGATTTTGGAGCCTGTT -ACGGAACCGATTTTGGAGCGGTTT -ACGGAACCGATTTTGGAGGTGGTT -ACGGAACCGATTTTGGAGGCCTTT -ACGGAACCGATTTTGGAGGGTCTT -ACGGAACCGATTTTGGAGACGCTT -ACGGAACCGATTTTGGAGAGCGTT -ACGGAACCGATTTTGGAGTTCGTC -ACGGAACCGATTTTGGAGTCTCTC -ACGGAACCGATTTTGGAGTGGATC -ACGGAACCGATTTTGGAGCACTTC -ACGGAACCGATTTTGGAGGTACTC -ACGGAACCGATTTTGGAGGATGTC -ACGGAACCGATTTTGGAGACAGTC -ACGGAACCGATTTTGGAGTTGCTG -ACGGAACCGATTTTGGAGTCCATG -ACGGAACCGATTTTGGAGTGTGTG -ACGGAACCGATTTTGGAGCTAGTG -ACGGAACCGATTTTGGAGCATCTG -ACGGAACCGATTTTGGAGGAGTTG -ACGGAACCGATTTTGGAGAGACTG -ACGGAACCGATTTTGGAGTCGGTA -ACGGAACCGATTTTGGAGTGCCTA -ACGGAACCGATTTTGGAGCCACTA -ACGGAACCGATTTTGGAGGGAGTA -ACGGAACCGATTTTGGAGTCGTCT -ACGGAACCGATTTTGGAGTGCACT -ACGGAACCGATTTTGGAGCTGACT -ACGGAACCGATTTTGGAGCAACCT -ACGGAACCGATTTTGGAGGCTACT -ACGGAACCGATTTTGGAGGGATCT -ACGGAACCGATTTTGGAGAAGGCT -ACGGAACCGATTTTGGAGTCAACC -ACGGAACCGATTTTGGAGTGTTCC -ACGGAACCGATTTTGGAGATTCCC -ACGGAACCGATTTTGGAGTTCTCG -ACGGAACCGATTTTGGAGTAGACG -ACGGAACCGATTTTGGAGGTAACG -ACGGAACCGATTTTGGAGACTTCG -ACGGAACCGATTTTGGAGTACGCA -ACGGAACCGATTTTGGAGCTTGCA -ACGGAACCGATTTTGGAGCGAACA -ACGGAACCGATTTTGGAGCAGTCA -ACGGAACCGATTTTGGAGGATCCA -ACGGAACCGATTTTGGAGACGACA -ACGGAACCGATTTTGGAGAGCTCA -ACGGAACCGATTTTGGAGTCACGT -ACGGAACCGATTTTGGAGCGTAGT -ACGGAACCGATTTTGGAGGTCAGT -ACGGAACCGATTTTGGAGGAAGGT -ACGGAACCGATTTTGGAGAACCGT -ACGGAACCGATTTTGGAGTTGTGC -ACGGAACCGATTTTGGAGCTAAGC -ACGGAACCGATTTTGGAGACTAGC -ACGGAACCGATTTTGGAGAGATGC -ACGGAACCGATTTTGGAGTGAAGG -ACGGAACCGATTTTGGAGCAATGG -ACGGAACCGATTTTGGAGATGAGG -ACGGAACCGATTTTGGAGAATGGG -ACGGAACCGATTTTGGAGTCCTGA -ACGGAACCGATTTTGGAGTAGCGA -ACGGAACCGATTTTGGAGCACAGA -ACGGAACCGATTTTGGAGGCAAGA -ACGGAACCGATTTTGGAGGGTTGA -ACGGAACCGATTTTGGAGTCCGAT -ACGGAACCGATTTTGGAGTGGCAT -ACGGAACCGATTTTGGAGCGAGAT -ACGGAACCGATTTTGGAGTACCAC -ACGGAACCGATTTTGGAGCAGAAC -ACGGAACCGATTTTGGAGGTCTAC -ACGGAACCGATTTTGGAGACGTAC -ACGGAACCGATTTTGGAGAGTGAC -ACGGAACCGATTTTGGAGCTGTAG -ACGGAACCGATTTTGGAGCCTAAG -ACGGAACCGATTTTGGAGGTTCAG -ACGGAACCGATTTTGGAGGCATAG -ACGGAACCGATTTTGGAGGACAAG -ACGGAACCGATTTTGGAGAAGCAG -ACGGAACCGATTTTGGAGCGTCAA -ACGGAACCGATTTTGGAGGCTGAA -ACGGAACCGATTTTGGAGAGTACG -ACGGAACCGATTTTGGAGATCCGA -ACGGAACCGATTTTGGAGATGGGA -ACGGAACCGATTTTGGAGGTGCAA -ACGGAACCGATTTTGGAGGAGGAA -ACGGAACCGATTTTGGAGCAGGTA -ACGGAACCGATTTTGGAGGACTCT -ACGGAACCGATTTTGGAGAGTCCT -ACGGAACCGATTTTGGAGTAAGCC -ACGGAACCGATTTTGGAGATAGCC -ACGGAACCGATTTTGGAGTAACCG -ACGGAACCGATTTTGGAGATGCCA -ACGGAACCGATTCTGAGAGGAAAC -ACGGAACCGATTCTGAGAAACACC -ACGGAACCGATTCTGAGAATCGAG -ACGGAACCGATTCTGAGACTCCTT -ACGGAACCGATTCTGAGACCTGTT -ACGGAACCGATTCTGAGACGGTTT -ACGGAACCGATTCTGAGAGTGGTT -ACGGAACCGATTCTGAGAGCCTTT -ACGGAACCGATTCTGAGAGGTCTT -ACGGAACCGATTCTGAGAACGCTT -ACGGAACCGATTCTGAGAAGCGTT -ACGGAACCGATTCTGAGATTCGTC -ACGGAACCGATTCTGAGATCTCTC -ACGGAACCGATTCTGAGATGGATC -ACGGAACCGATTCTGAGACACTTC -ACGGAACCGATTCTGAGAGTACTC -ACGGAACCGATTCTGAGAGATGTC -ACGGAACCGATTCTGAGAACAGTC -ACGGAACCGATTCTGAGATTGCTG -ACGGAACCGATTCTGAGATCCATG -ACGGAACCGATTCTGAGATGTGTG -ACGGAACCGATTCTGAGACTAGTG -ACGGAACCGATTCTGAGACATCTG -ACGGAACCGATTCTGAGAGAGTTG -ACGGAACCGATTCTGAGAAGACTG -ACGGAACCGATTCTGAGATCGGTA -ACGGAACCGATTCTGAGATGCCTA -ACGGAACCGATTCTGAGACCACTA -ACGGAACCGATTCTGAGAGGAGTA -ACGGAACCGATTCTGAGATCGTCT -ACGGAACCGATTCTGAGATGCACT -ACGGAACCGATTCTGAGACTGACT -ACGGAACCGATTCTGAGACAACCT -ACGGAACCGATTCTGAGAGCTACT -ACGGAACCGATTCTGAGAGGATCT -ACGGAACCGATTCTGAGAAAGGCT -ACGGAACCGATTCTGAGATCAACC -ACGGAACCGATTCTGAGATGTTCC -ACGGAACCGATTCTGAGAATTCCC -ACGGAACCGATTCTGAGATTCTCG -ACGGAACCGATTCTGAGATAGACG -ACGGAACCGATTCTGAGAGTAACG -ACGGAACCGATTCTGAGAACTTCG -ACGGAACCGATTCTGAGATACGCA -ACGGAACCGATTCTGAGACTTGCA -ACGGAACCGATTCTGAGACGAACA -ACGGAACCGATTCTGAGACAGTCA -ACGGAACCGATTCTGAGAGATCCA -ACGGAACCGATTCTGAGAACGACA -ACGGAACCGATTCTGAGAAGCTCA -ACGGAACCGATTCTGAGATCACGT -ACGGAACCGATTCTGAGACGTAGT -ACGGAACCGATTCTGAGAGTCAGT -ACGGAACCGATTCTGAGAGAAGGT -ACGGAACCGATTCTGAGAAACCGT -ACGGAACCGATTCTGAGATTGTGC -ACGGAACCGATTCTGAGACTAAGC -ACGGAACCGATTCTGAGAACTAGC -ACGGAACCGATTCTGAGAAGATGC -ACGGAACCGATTCTGAGATGAAGG -ACGGAACCGATTCTGAGACAATGG -ACGGAACCGATTCTGAGAATGAGG -ACGGAACCGATTCTGAGAAATGGG -ACGGAACCGATTCTGAGATCCTGA -ACGGAACCGATTCTGAGATAGCGA -ACGGAACCGATTCTGAGACACAGA -ACGGAACCGATTCTGAGAGCAAGA -ACGGAACCGATTCTGAGAGGTTGA -ACGGAACCGATTCTGAGATCCGAT -ACGGAACCGATTCTGAGATGGCAT -ACGGAACCGATTCTGAGACGAGAT -ACGGAACCGATTCTGAGATACCAC -ACGGAACCGATTCTGAGACAGAAC -ACGGAACCGATTCTGAGAGTCTAC -ACGGAACCGATTCTGAGAACGTAC -ACGGAACCGATTCTGAGAAGTGAC -ACGGAACCGATTCTGAGACTGTAG -ACGGAACCGATTCTGAGACCTAAG -ACGGAACCGATTCTGAGAGTTCAG -ACGGAACCGATTCTGAGAGCATAG -ACGGAACCGATTCTGAGAGACAAG -ACGGAACCGATTCTGAGAAAGCAG -ACGGAACCGATTCTGAGACGTCAA -ACGGAACCGATTCTGAGAGCTGAA -ACGGAACCGATTCTGAGAAGTACG -ACGGAACCGATTCTGAGAATCCGA -ACGGAACCGATTCTGAGAATGGGA -ACGGAACCGATTCTGAGAGTGCAA -ACGGAACCGATTCTGAGAGAGGAA -ACGGAACCGATTCTGAGACAGGTA -ACGGAACCGATTCTGAGAGACTCT -ACGGAACCGATTCTGAGAAGTCCT -ACGGAACCGATTCTGAGATAAGCC -ACGGAACCGATTCTGAGAATAGCC -ACGGAACCGATTCTGAGATAACCG -ACGGAACCGATTCTGAGAATGCCA -ACGGAACCGATTGTATCGGGAAAC -ACGGAACCGATTGTATCGAACACC -ACGGAACCGATTGTATCGATCGAG -ACGGAACCGATTGTATCGCTCCTT -ACGGAACCGATTGTATCGCCTGTT -ACGGAACCGATTGTATCGCGGTTT -ACGGAACCGATTGTATCGGTGGTT -ACGGAACCGATTGTATCGGCCTTT -ACGGAACCGATTGTATCGGGTCTT -ACGGAACCGATTGTATCGACGCTT -ACGGAACCGATTGTATCGAGCGTT -ACGGAACCGATTGTATCGTTCGTC -ACGGAACCGATTGTATCGTCTCTC -ACGGAACCGATTGTATCGTGGATC -ACGGAACCGATTGTATCGCACTTC -ACGGAACCGATTGTATCGGTACTC -ACGGAACCGATTGTATCGGATGTC -ACGGAACCGATTGTATCGACAGTC -ACGGAACCGATTGTATCGTTGCTG -ACGGAACCGATTGTATCGTCCATG -ACGGAACCGATTGTATCGTGTGTG -ACGGAACCGATTGTATCGCTAGTG -ACGGAACCGATTGTATCGCATCTG -ACGGAACCGATTGTATCGGAGTTG -ACGGAACCGATTGTATCGAGACTG -ACGGAACCGATTGTATCGTCGGTA -ACGGAACCGATTGTATCGTGCCTA -ACGGAACCGATTGTATCGCCACTA -ACGGAACCGATTGTATCGGGAGTA -ACGGAACCGATTGTATCGTCGTCT -ACGGAACCGATTGTATCGTGCACT -ACGGAACCGATTGTATCGCTGACT -ACGGAACCGATTGTATCGCAACCT -ACGGAACCGATTGTATCGGCTACT -ACGGAACCGATTGTATCGGGATCT -ACGGAACCGATTGTATCGAAGGCT -ACGGAACCGATTGTATCGTCAACC -ACGGAACCGATTGTATCGTGTTCC -ACGGAACCGATTGTATCGATTCCC -ACGGAACCGATTGTATCGTTCTCG -ACGGAACCGATTGTATCGTAGACG -ACGGAACCGATTGTATCGGTAACG -ACGGAACCGATTGTATCGACTTCG -ACGGAACCGATTGTATCGTACGCA -ACGGAACCGATTGTATCGCTTGCA -ACGGAACCGATTGTATCGCGAACA -ACGGAACCGATTGTATCGCAGTCA -ACGGAACCGATTGTATCGGATCCA -ACGGAACCGATTGTATCGACGACA -ACGGAACCGATTGTATCGAGCTCA -ACGGAACCGATTGTATCGTCACGT -ACGGAACCGATTGTATCGCGTAGT -ACGGAACCGATTGTATCGGTCAGT -ACGGAACCGATTGTATCGGAAGGT -ACGGAACCGATTGTATCGAACCGT -ACGGAACCGATTGTATCGTTGTGC -ACGGAACCGATTGTATCGCTAAGC -ACGGAACCGATTGTATCGACTAGC -ACGGAACCGATTGTATCGAGATGC -ACGGAACCGATTGTATCGTGAAGG -ACGGAACCGATTGTATCGCAATGG -ACGGAACCGATTGTATCGATGAGG -ACGGAACCGATTGTATCGAATGGG -ACGGAACCGATTGTATCGTCCTGA -ACGGAACCGATTGTATCGTAGCGA -ACGGAACCGATTGTATCGCACAGA -ACGGAACCGATTGTATCGGCAAGA -ACGGAACCGATTGTATCGGGTTGA -ACGGAACCGATTGTATCGTCCGAT -ACGGAACCGATTGTATCGTGGCAT -ACGGAACCGATTGTATCGCGAGAT -ACGGAACCGATTGTATCGTACCAC -ACGGAACCGATTGTATCGCAGAAC -ACGGAACCGATTGTATCGGTCTAC -ACGGAACCGATTGTATCGACGTAC -ACGGAACCGATTGTATCGAGTGAC -ACGGAACCGATTGTATCGCTGTAG -ACGGAACCGATTGTATCGCCTAAG -ACGGAACCGATTGTATCGGTTCAG -ACGGAACCGATTGTATCGGCATAG -ACGGAACCGATTGTATCGGACAAG -ACGGAACCGATTGTATCGAAGCAG -ACGGAACCGATTGTATCGCGTCAA -ACGGAACCGATTGTATCGGCTGAA -ACGGAACCGATTGTATCGAGTACG -ACGGAACCGATTGTATCGATCCGA -ACGGAACCGATTGTATCGATGGGA -ACGGAACCGATTGTATCGGTGCAA -ACGGAACCGATTGTATCGGAGGAA -ACGGAACCGATTGTATCGCAGGTA -ACGGAACCGATTGTATCGGACTCT -ACGGAACCGATTGTATCGAGTCCT -ACGGAACCGATTGTATCGTAAGCC -ACGGAACCGATTGTATCGATAGCC -ACGGAACCGATTGTATCGTAACCG -ACGGAACCGATTGTATCGATGCCA -ACGGAACCGATTCTATGCGGAAAC -ACGGAACCGATTCTATGCAACACC -ACGGAACCGATTCTATGCATCGAG -ACGGAACCGATTCTATGCCTCCTT -ACGGAACCGATTCTATGCCCTGTT -ACGGAACCGATTCTATGCCGGTTT -ACGGAACCGATTCTATGCGTGGTT -ACGGAACCGATTCTATGCGCCTTT -ACGGAACCGATTCTATGCGGTCTT -ACGGAACCGATTCTATGCACGCTT -ACGGAACCGATTCTATGCAGCGTT -ACGGAACCGATTCTATGCTTCGTC -ACGGAACCGATTCTATGCTCTCTC -ACGGAACCGATTCTATGCTGGATC -ACGGAACCGATTCTATGCCACTTC -ACGGAACCGATTCTATGCGTACTC -ACGGAACCGATTCTATGCGATGTC -ACGGAACCGATTCTATGCACAGTC -ACGGAACCGATTCTATGCTTGCTG -ACGGAACCGATTCTATGCTCCATG -ACGGAACCGATTCTATGCTGTGTG -ACGGAACCGATTCTATGCCTAGTG -ACGGAACCGATTCTATGCCATCTG -ACGGAACCGATTCTATGCGAGTTG -ACGGAACCGATTCTATGCAGACTG -ACGGAACCGATTCTATGCTCGGTA -ACGGAACCGATTCTATGCTGCCTA -ACGGAACCGATTCTATGCCCACTA -ACGGAACCGATTCTATGCGGAGTA -ACGGAACCGATTCTATGCTCGTCT -ACGGAACCGATTCTATGCTGCACT -ACGGAACCGATTCTATGCCTGACT -ACGGAACCGATTCTATGCCAACCT -ACGGAACCGATTCTATGCGCTACT -ACGGAACCGATTCTATGCGGATCT -ACGGAACCGATTCTATGCAAGGCT -ACGGAACCGATTCTATGCTCAACC -ACGGAACCGATTCTATGCTGTTCC -ACGGAACCGATTCTATGCATTCCC -ACGGAACCGATTCTATGCTTCTCG -ACGGAACCGATTCTATGCTAGACG -ACGGAACCGATTCTATGCGTAACG -ACGGAACCGATTCTATGCACTTCG -ACGGAACCGATTCTATGCTACGCA -ACGGAACCGATTCTATGCCTTGCA -ACGGAACCGATTCTATGCCGAACA -ACGGAACCGATTCTATGCCAGTCA -ACGGAACCGATTCTATGCGATCCA -ACGGAACCGATTCTATGCACGACA -ACGGAACCGATTCTATGCAGCTCA -ACGGAACCGATTCTATGCTCACGT -ACGGAACCGATTCTATGCCGTAGT -ACGGAACCGATTCTATGCGTCAGT -ACGGAACCGATTCTATGCGAAGGT -ACGGAACCGATTCTATGCAACCGT -ACGGAACCGATTCTATGCTTGTGC -ACGGAACCGATTCTATGCCTAAGC -ACGGAACCGATTCTATGCACTAGC -ACGGAACCGATTCTATGCAGATGC -ACGGAACCGATTCTATGCTGAAGG -ACGGAACCGATTCTATGCCAATGG -ACGGAACCGATTCTATGCATGAGG -ACGGAACCGATTCTATGCAATGGG -ACGGAACCGATTCTATGCTCCTGA -ACGGAACCGATTCTATGCTAGCGA -ACGGAACCGATTCTATGCCACAGA -ACGGAACCGATTCTATGCGCAAGA -ACGGAACCGATTCTATGCGGTTGA -ACGGAACCGATTCTATGCTCCGAT -ACGGAACCGATTCTATGCTGGCAT -ACGGAACCGATTCTATGCCGAGAT -ACGGAACCGATTCTATGCTACCAC -ACGGAACCGATTCTATGCCAGAAC -ACGGAACCGATTCTATGCGTCTAC -ACGGAACCGATTCTATGCACGTAC -ACGGAACCGATTCTATGCAGTGAC -ACGGAACCGATTCTATGCCTGTAG -ACGGAACCGATTCTATGCCCTAAG -ACGGAACCGATTCTATGCGTTCAG -ACGGAACCGATTCTATGCGCATAG -ACGGAACCGATTCTATGCGACAAG -ACGGAACCGATTCTATGCAAGCAG -ACGGAACCGATTCTATGCCGTCAA -ACGGAACCGATTCTATGCGCTGAA -ACGGAACCGATTCTATGCAGTACG -ACGGAACCGATTCTATGCATCCGA -ACGGAACCGATTCTATGCATGGGA -ACGGAACCGATTCTATGCGTGCAA -ACGGAACCGATTCTATGCGAGGAA -ACGGAACCGATTCTATGCCAGGTA -ACGGAACCGATTCTATGCGACTCT -ACGGAACCGATTCTATGCAGTCCT -ACGGAACCGATTCTATGCTAAGCC -ACGGAACCGATTCTATGCATAGCC -ACGGAACCGATTCTATGCTAACCG -ACGGAACCGATTCTATGCATGCCA -ACGGAACCGATTCTACCAGGAAAC -ACGGAACCGATTCTACCAAACACC -ACGGAACCGATTCTACCAATCGAG -ACGGAACCGATTCTACCACTCCTT -ACGGAACCGATTCTACCACCTGTT -ACGGAACCGATTCTACCACGGTTT -ACGGAACCGATTCTACCAGTGGTT -ACGGAACCGATTCTACCAGCCTTT -ACGGAACCGATTCTACCAGGTCTT -ACGGAACCGATTCTACCAACGCTT -ACGGAACCGATTCTACCAAGCGTT -ACGGAACCGATTCTACCATTCGTC -ACGGAACCGATTCTACCATCTCTC -ACGGAACCGATTCTACCATGGATC -ACGGAACCGATTCTACCACACTTC -ACGGAACCGATTCTACCAGTACTC -ACGGAACCGATTCTACCAGATGTC -ACGGAACCGATTCTACCAACAGTC -ACGGAACCGATTCTACCATTGCTG -ACGGAACCGATTCTACCATCCATG -ACGGAACCGATTCTACCATGTGTG -ACGGAACCGATTCTACCACTAGTG -ACGGAACCGATTCTACCACATCTG -ACGGAACCGATTCTACCAGAGTTG -ACGGAACCGATTCTACCAAGACTG -ACGGAACCGATTCTACCATCGGTA -ACGGAACCGATTCTACCATGCCTA -ACGGAACCGATTCTACCACCACTA -ACGGAACCGATTCTACCAGGAGTA -ACGGAACCGATTCTACCATCGTCT -ACGGAACCGATTCTACCATGCACT -ACGGAACCGATTCTACCACTGACT -ACGGAACCGATTCTACCACAACCT -ACGGAACCGATTCTACCAGCTACT -ACGGAACCGATTCTACCAGGATCT -ACGGAACCGATTCTACCAAAGGCT -ACGGAACCGATTCTACCATCAACC -ACGGAACCGATTCTACCATGTTCC -ACGGAACCGATTCTACCAATTCCC -ACGGAACCGATTCTACCATTCTCG -ACGGAACCGATTCTACCATAGACG -ACGGAACCGATTCTACCAGTAACG -ACGGAACCGATTCTACCAACTTCG -ACGGAACCGATTCTACCATACGCA -ACGGAACCGATTCTACCACTTGCA -ACGGAACCGATTCTACCACGAACA -ACGGAACCGATTCTACCACAGTCA -ACGGAACCGATTCTACCAGATCCA -ACGGAACCGATTCTACCAACGACA -ACGGAACCGATTCTACCAAGCTCA -ACGGAACCGATTCTACCATCACGT -ACGGAACCGATTCTACCACGTAGT -ACGGAACCGATTCTACCAGTCAGT -ACGGAACCGATTCTACCAGAAGGT -ACGGAACCGATTCTACCAAACCGT -ACGGAACCGATTCTACCATTGTGC -ACGGAACCGATTCTACCACTAAGC -ACGGAACCGATTCTACCAACTAGC -ACGGAACCGATTCTACCAAGATGC -ACGGAACCGATTCTACCATGAAGG -ACGGAACCGATTCTACCACAATGG -ACGGAACCGATTCTACCAATGAGG -ACGGAACCGATTCTACCAAATGGG -ACGGAACCGATTCTACCATCCTGA -ACGGAACCGATTCTACCATAGCGA -ACGGAACCGATTCTACCACACAGA -ACGGAACCGATTCTACCAGCAAGA -ACGGAACCGATTCTACCAGGTTGA -ACGGAACCGATTCTACCATCCGAT -ACGGAACCGATTCTACCATGGCAT -ACGGAACCGATTCTACCACGAGAT -ACGGAACCGATTCTACCATACCAC -ACGGAACCGATTCTACCACAGAAC -ACGGAACCGATTCTACCAGTCTAC -ACGGAACCGATTCTACCAACGTAC -ACGGAACCGATTCTACCAAGTGAC -ACGGAACCGATTCTACCACTGTAG -ACGGAACCGATTCTACCACCTAAG -ACGGAACCGATTCTACCAGTTCAG -ACGGAACCGATTCTACCAGCATAG -ACGGAACCGATTCTACCAGACAAG -ACGGAACCGATTCTACCAAAGCAG -ACGGAACCGATTCTACCACGTCAA -ACGGAACCGATTCTACCAGCTGAA -ACGGAACCGATTCTACCAAGTACG -ACGGAACCGATTCTACCAATCCGA -ACGGAACCGATTCTACCAATGGGA -ACGGAACCGATTCTACCAGTGCAA -ACGGAACCGATTCTACCAGAGGAA -ACGGAACCGATTCTACCACAGGTA -ACGGAACCGATTCTACCAGACTCT -ACGGAACCGATTCTACCAAGTCCT -ACGGAACCGATTCTACCATAAGCC -ACGGAACCGATTCTACCAATAGCC -ACGGAACCGATTCTACCATAACCG -ACGGAACCGATTCTACCAATGCCA -ACGGAACCGATTGTAGGAGGAAAC -ACGGAACCGATTGTAGGAAACACC -ACGGAACCGATTGTAGGAATCGAG -ACGGAACCGATTGTAGGACTCCTT -ACGGAACCGATTGTAGGACCTGTT -ACGGAACCGATTGTAGGACGGTTT -ACGGAACCGATTGTAGGAGTGGTT -ACGGAACCGATTGTAGGAGCCTTT -ACGGAACCGATTGTAGGAGGTCTT -ACGGAACCGATTGTAGGAACGCTT -ACGGAACCGATTGTAGGAAGCGTT -ACGGAACCGATTGTAGGATTCGTC -ACGGAACCGATTGTAGGATCTCTC -ACGGAACCGATTGTAGGATGGATC -ACGGAACCGATTGTAGGACACTTC -ACGGAACCGATTGTAGGAGTACTC -ACGGAACCGATTGTAGGAGATGTC -ACGGAACCGATTGTAGGAACAGTC -ACGGAACCGATTGTAGGATTGCTG -ACGGAACCGATTGTAGGATCCATG -ACGGAACCGATTGTAGGATGTGTG -ACGGAACCGATTGTAGGACTAGTG -ACGGAACCGATTGTAGGACATCTG -ACGGAACCGATTGTAGGAGAGTTG -ACGGAACCGATTGTAGGAAGACTG -ACGGAACCGATTGTAGGATCGGTA -ACGGAACCGATTGTAGGATGCCTA -ACGGAACCGATTGTAGGACCACTA -ACGGAACCGATTGTAGGAGGAGTA -ACGGAACCGATTGTAGGATCGTCT -ACGGAACCGATTGTAGGATGCACT -ACGGAACCGATTGTAGGACTGACT -ACGGAACCGATTGTAGGACAACCT -ACGGAACCGATTGTAGGAGCTACT -ACGGAACCGATTGTAGGAGGATCT -ACGGAACCGATTGTAGGAAAGGCT -ACGGAACCGATTGTAGGATCAACC -ACGGAACCGATTGTAGGATGTTCC -ACGGAACCGATTGTAGGAATTCCC -ACGGAACCGATTGTAGGATTCTCG -ACGGAACCGATTGTAGGATAGACG -ACGGAACCGATTGTAGGAGTAACG -ACGGAACCGATTGTAGGAACTTCG -ACGGAACCGATTGTAGGATACGCA -ACGGAACCGATTGTAGGACTTGCA -ACGGAACCGATTGTAGGACGAACA -ACGGAACCGATTGTAGGACAGTCA -ACGGAACCGATTGTAGGAGATCCA -ACGGAACCGATTGTAGGAACGACA -ACGGAACCGATTGTAGGAAGCTCA -ACGGAACCGATTGTAGGATCACGT -ACGGAACCGATTGTAGGACGTAGT -ACGGAACCGATTGTAGGAGTCAGT -ACGGAACCGATTGTAGGAGAAGGT -ACGGAACCGATTGTAGGAAACCGT -ACGGAACCGATTGTAGGATTGTGC -ACGGAACCGATTGTAGGACTAAGC -ACGGAACCGATTGTAGGAACTAGC -ACGGAACCGATTGTAGGAAGATGC -ACGGAACCGATTGTAGGATGAAGG -ACGGAACCGATTGTAGGACAATGG -ACGGAACCGATTGTAGGAATGAGG -ACGGAACCGATTGTAGGAAATGGG -ACGGAACCGATTGTAGGATCCTGA -ACGGAACCGATTGTAGGATAGCGA -ACGGAACCGATTGTAGGACACAGA -ACGGAACCGATTGTAGGAGCAAGA -ACGGAACCGATTGTAGGAGGTTGA -ACGGAACCGATTGTAGGATCCGAT -ACGGAACCGATTGTAGGATGGCAT -ACGGAACCGATTGTAGGACGAGAT -ACGGAACCGATTGTAGGATACCAC -ACGGAACCGATTGTAGGACAGAAC -ACGGAACCGATTGTAGGAGTCTAC -ACGGAACCGATTGTAGGAACGTAC -ACGGAACCGATTGTAGGAAGTGAC -ACGGAACCGATTGTAGGACTGTAG -ACGGAACCGATTGTAGGACCTAAG -ACGGAACCGATTGTAGGAGTTCAG -ACGGAACCGATTGTAGGAGCATAG -ACGGAACCGATTGTAGGAGACAAG -ACGGAACCGATTGTAGGAAAGCAG -ACGGAACCGATTGTAGGACGTCAA -ACGGAACCGATTGTAGGAGCTGAA -ACGGAACCGATTGTAGGAAGTACG -ACGGAACCGATTGTAGGAATCCGA -ACGGAACCGATTGTAGGAATGGGA -ACGGAACCGATTGTAGGAGTGCAA -ACGGAACCGATTGTAGGAGAGGAA -ACGGAACCGATTGTAGGACAGGTA -ACGGAACCGATTGTAGGAGACTCT -ACGGAACCGATTGTAGGAAGTCCT -ACGGAACCGATTGTAGGATAAGCC -ACGGAACCGATTGTAGGAATAGCC -ACGGAACCGATTGTAGGATAACCG -ACGGAACCGATTGTAGGAATGCCA -ACGGAACCGATTTCTTCGGGAAAC -ACGGAACCGATTTCTTCGAACACC -ACGGAACCGATTTCTTCGATCGAG -ACGGAACCGATTTCTTCGCTCCTT -ACGGAACCGATTTCTTCGCCTGTT -ACGGAACCGATTTCTTCGCGGTTT -ACGGAACCGATTTCTTCGGTGGTT -ACGGAACCGATTTCTTCGGCCTTT -ACGGAACCGATTTCTTCGGGTCTT -ACGGAACCGATTTCTTCGACGCTT -ACGGAACCGATTTCTTCGAGCGTT -ACGGAACCGATTTCTTCGTTCGTC -ACGGAACCGATTTCTTCGTCTCTC -ACGGAACCGATTTCTTCGTGGATC -ACGGAACCGATTTCTTCGCACTTC -ACGGAACCGATTTCTTCGGTACTC -ACGGAACCGATTTCTTCGGATGTC -ACGGAACCGATTTCTTCGACAGTC -ACGGAACCGATTTCTTCGTTGCTG -ACGGAACCGATTTCTTCGTCCATG -ACGGAACCGATTTCTTCGTGTGTG -ACGGAACCGATTTCTTCGCTAGTG -ACGGAACCGATTTCTTCGCATCTG -ACGGAACCGATTTCTTCGGAGTTG -ACGGAACCGATTTCTTCGAGACTG -ACGGAACCGATTTCTTCGTCGGTA -ACGGAACCGATTTCTTCGTGCCTA -ACGGAACCGATTTCTTCGCCACTA -ACGGAACCGATTTCTTCGGGAGTA -ACGGAACCGATTTCTTCGTCGTCT -ACGGAACCGATTTCTTCGTGCACT -ACGGAACCGATTTCTTCGCTGACT -ACGGAACCGATTTCTTCGCAACCT -ACGGAACCGATTTCTTCGGCTACT -ACGGAACCGATTTCTTCGGGATCT -ACGGAACCGATTTCTTCGAAGGCT -ACGGAACCGATTTCTTCGTCAACC -ACGGAACCGATTTCTTCGTGTTCC -ACGGAACCGATTTCTTCGATTCCC -ACGGAACCGATTTCTTCGTTCTCG -ACGGAACCGATTTCTTCGTAGACG -ACGGAACCGATTTCTTCGGTAACG -ACGGAACCGATTTCTTCGACTTCG -ACGGAACCGATTTCTTCGTACGCA -ACGGAACCGATTTCTTCGCTTGCA -ACGGAACCGATTTCTTCGCGAACA -ACGGAACCGATTTCTTCGCAGTCA -ACGGAACCGATTTCTTCGGATCCA -ACGGAACCGATTTCTTCGACGACA -ACGGAACCGATTTCTTCGAGCTCA -ACGGAACCGATTTCTTCGTCACGT -ACGGAACCGATTTCTTCGCGTAGT -ACGGAACCGATTTCTTCGGTCAGT -ACGGAACCGATTTCTTCGGAAGGT -ACGGAACCGATTTCTTCGAACCGT -ACGGAACCGATTTCTTCGTTGTGC -ACGGAACCGATTTCTTCGCTAAGC -ACGGAACCGATTTCTTCGACTAGC -ACGGAACCGATTTCTTCGAGATGC -ACGGAACCGATTTCTTCGTGAAGG -ACGGAACCGATTTCTTCGCAATGG -ACGGAACCGATTTCTTCGATGAGG -ACGGAACCGATTTCTTCGAATGGG -ACGGAACCGATTTCTTCGTCCTGA -ACGGAACCGATTTCTTCGTAGCGA -ACGGAACCGATTTCTTCGCACAGA -ACGGAACCGATTTCTTCGGCAAGA -ACGGAACCGATTTCTTCGGGTTGA -ACGGAACCGATTTCTTCGTCCGAT -ACGGAACCGATTTCTTCGTGGCAT -ACGGAACCGATTTCTTCGCGAGAT -ACGGAACCGATTTCTTCGTACCAC -ACGGAACCGATTTCTTCGCAGAAC -ACGGAACCGATTTCTTCGGTCTAC -ACGGAACCGATTTCTTCGACGTAC -ACGGAACCGATTTCTTCGAGTGAC -ACGGAACCGATTTCTTCGCTGTAG -ACGGAACCGATTTCTTCGCCTAAG -ACGGAACCGATTTCTTCGGTTCAG -ACGGAACCGATTTCTTCGGCATAG -ACGGAACCGATTTCTTCGGACAAG -ACGGAACCGATTTCTTCGAAGCAG -ACGGAACCGATTTCTTCGCGTCAA -ACGGAACCGATTTCTTCGGCTGAA -ACGGAACCGATTTCTTCGAGTACG -ACGGAACCGATTTCTTCGATCCGA -ACGGAACCGATTTCTTCGATGGGA -ACGGAACCGATTTCTTCGGTGCAA -ACGGAACCGATTTCTTCGGAGGAA -ACGGAACCGATTTCTTCGCAGGTA -ACGGAACCGATTTCTTCGGACTCT -ACGGAACCGATTTCTTCGAGTCCT -ACGGAACCGATTTCTTCGTAAGCC -ACGGAACCGATTTCTTCGATAGCC -ACGGAACCGATTTCTTCGTAACCG -ACGGAACCGATTTCTTCGATGCCA -ACGGAACCGATTACTTGCGGAAAC -ACGGAACCGATTACTTGCAACACC -ACGGAACCGATTACTTGCATCGAG -ACGGAACCGATTACTTGCCTCCTT -ACGGAACCGATTACTTGCCCTGTT -ACGGAACCGATTACTTGCCGGTTT -ACGGAACCGATTACTTGCGTGGTT -ACGGAACCGATTACTTGCGCCTTT -ACGGAACCGATTACTTGCGGTCTT -ACGGAACCGATTACTTGCACGCTT -ACGGAACCGATTACTTGCAGCGTT -ACGGAACCGATTACTTGCTTCGTC -ACGGAACCGATTACTTGCTCTCTC -ACGGAACCGATTACTTGCTGGATC -ACGGAACCGATTACTTGCCACTTC -ACGGAACCGATTACTTGCGTACTC -ACGGAACCGATTACTTGCGATGTC -ACGGAACCGATTACTTGCACAGTC -ACGGAACCGATTACTTGCTTGCTG -ACGGAACCGATTACTTGCTCCATG -ACGGAACCGATTACTTGCTGTGTG -ACGGAACCGATTACTTGCCTAGTG -ACGGAACCGATTACTTGCCATCTG -ACGGAACCGATTACTTGCGAGTTG -ACGGAACCGATTACTTGCAGACTG -ACGGAACCGATTACTTGCTCGGTA -ACGGAACCGATTACTTGCTGCCTA -ACGGAACCGATTACTTGCCCACTA -ACGGAACCGATTACTTGCGGAGTA -ACGGAACCGATTACTTGCTCGTCT -ACGGAACCGATTACTTGCTGCACT -ACGGAACCGATTACTTGCCTGACT -ACGGAACCGATTACTTGCCAACCT -ACGGAACCGATTACTTGCGCTACT -ACGGAACCGATTACTTGCGGATCT -ACGGAACCGATTACTTGCAAGGCT -ACGGAACCGATTACTTGCTCAACC -ACGGAACCGATTACTTGCTGTTCC -ACGGAACCGATTACTTGCATTCCC -ACGGAACCGATTACTTGCTTCTCG -ACGGAACCGATTACTTGCTAGACG -ACGGAACCGATTACTTGCGTAACG -ACGGAACCGATTACTTGCACTTCG -ACGGAACCGATTACTTGCTACGCA -ACGGAACCGATTACTTGCCTTGCA -ACGGAACCGATTACTTGCCGAACA -ACGGAACCGATTACTTGCCAGTCA -ACGGAACCGATTACTTGCGATCCA -ACGGAACCGATTACTTGCACGACA -ACGGAACCGATTACTTGCAGCTCA -ACGGAACCGATTACTTGCTCACGT -ACGGAACCGATTACTTGCCGTAGT -ACGGAACCGATTACTTGCGTCAGT -ACGGAACCGATTACTTGCGAAGGT -ACGGAACCGATTACTTGCAACCGT -ACGGAACCGATTACTTGCTTGTGC -ACGGAACCGATTACTTGCCTAAGC -ACGGAACCGATTACTTGCACTAGC -ACGGAACCGATTACTTGCAGATGC -ACGGAACCGATTACTTGCTGAAGG -ACGGAACCGATTACTTGCCAATGG -ACGGAACCGATTACTTGCATGAGG -ACGGAACCGATTACTTGCAATGGG -ACGGAACCGATTACTTGCTCCTGA -ACGGAACCGATTACTTGCTAGCGA -ACGGAACCGATTACTTGCCACAGA -ACGGAACCGATTACTTGCGCAAGA -ACGGAACCGATTACTTGCGGTTGA -ACGGAACCGATTACTTGCTCCGAT -ACGGAACCGATTACTTGCTGGCAT -ACGGAACCGATTACTTGCCGAGAT -ACGGAACCGATTACTTGCTACCAC -ACGGAACCGATTACTTGCCAGAAC -ACGGAACCGATTACTTGCGTCTAC -ACGGAACCGATTACTTGCACGTAC -ACGGAACCGATTACTTGCAGTGAC -ACGGAACCGATTACTTGCCTGTAG -ACGGAACCGATTACTTGCCCTAAG -ACGGAACCGATTACTTGCGTTCAG -ACGGAACCGATTACTTGCGCATAG -ACGGAACCGATTACTTGCGACAAG -ACGGAACCGATTACTTGCAAGCAG -ACGGAACCGATTACTTGCCGTCAA -ACGGAACCGATTACTTGCGCTGAA -ACGGAACCGATTACTTGCAGTACG -ACGGAACCGATTACTTGCATCCGA -ACGGAACCGATTACTTGCATGGGA -ACGGAACCGATTACTTGCGTGCAA -ACGGAACCGATTACTTGCGAGGAA -ACGGAACCGATTACTTGCCAGGTA -ACGGAACCGATTACTTGCGACTCT -ACGGAACCGATTACTTGCAGTCCT -ACGGAACCGATTACTTGCTAAGCC -ACGGAACCGATTACTTGCATAGCC -ACGGAACCGATTACTTGCTAACCG -ACGGAACCGATTACTTGCATGCCA -ACGGAACCGATTACTCTGGGAAAC -ACGGAACCGATTACTCTGAACACC -ACGGAACCGATTACTCTGATCGAG -ACGGAACCGATTACTCTGCTCCTT -ACGGAACCGATTACTCTGCCTGTT -ACGGAACCGATTACTCTGCGGTTT -ACGGAACCGATTACTCTGGTGGTT -ACGGAACCGATTACTCTGGCCTTT -ACGGAACCGATTACTCTGGGTCTT -ACGGAACCGATTACTCTGACGCTT -ACGGAACCGATTACTCTGAGCGTT -ACGGAACCGATTACTCTGTTCGTC -ACGGAACCGATTACTCTGTCTCTC -ACGGAACCGATTACTCTGTGGATC -ACGGAACCGATTACTCTGCACTTC -ACGGAACCGATTACTCTGGTACTC -ACGGAACCGATTACTCTGGATGTC -ACGGAACCGATTACTCTGACAGTC -ACGGAACCGATTACTCTGTTGCTG -ACGGAACCGATTACTCTGTCCATG -ACGGAACCGATTACTCTGTGTGTG -ACGGAACCGATTACTCTGCTAGTG -ACGGAACCGATTACTCTGCATCTG -ACGGAACCGATTACTCTGGAGTTG -ACGGAACCGATTACTCTGAGACTG -ACGGAACCGATTACTCTGTCGGTA -ACGGAACCGATTACTCTGTGCCTA -ACGGAACCGATTACTCTGCCACTA -ACGGAACCGATTACTCTGGGAGTA -ACGGAACCGATTACTCTGTCGTCT -ACGGAACCGATTACTCTGTGCACT -ACGGAACCGATTACTCTGCTGACT -ACGGAACCGATTACTCTGCAACCT -ACGGAACCGATTACTCTGGCTACT -ACGGAACCGATTACTCTGGGATCT -ACGGAACCGATTACTCTGAAGGCT -ACGGAACCGATTACTCTGTCAACC -ACGGAACCGATTACTCTGTGTTCC -ACGGAACCGATTACTCTGATTCCC -ACGGAACCGATTACTCTGTTCTCG -ACGGAACCGATTACTCTGTAGACG -ACGGAACCGATTACTCTGGTAACG -ACGGAACCGATTACTCTGACTTCG -ACGGAACCGATTACTCTGTACGCA -ACGGAACCGATTACTCTGCTTGCA -ACGGAACCGATTACTCTGCGAACA -ACGGAACCGATTACTCTGCAGTCA -ACGGAACCGATTACTCTGGATCCA -ACGGAACCGATTACTCTGACGACA -ACGGAACCGATTACTCTGAGCTCA -ACGGAACCGATTACTCTGTCACGT -ACGGAACCGATTACTCTGCGTAGT -ACGGAACCGATTACTCTGGTCAGT -ACGGAACCGATTACTCTGGAAGGT -ACGGAACCGATTACTCTGAACCGT -ACGGAACCGATTACTCTGTTGTGC -ACGGAACCGATTACTCTGCTAAGC -ACGGAACCGATTACTCTGACTAGC -ACGGAACCGATTACTCTGAGATGC -ACGGAACCGATTACTCTGTGAAGG -ACGGAACCGATTACTCTGCAATGG -ACGGAACCGATTACTCTGATGAGG -ACGGAACCGATTACTCTGAATGGG -ACGGAACCGATTACTCTGTCCTGA -ACGGAACCGATTACTCTGTAGCGA -ACGGAACCGATTACTCTGCACAGA -ACGGAACCGATTACTCTGGCAAGA -ACGGAACCGATTACTCTGGGTTGA -ACGGAACCGATTACTCTGTCCGAT -ACGGAACCGATTACTCTGTGGCAT -ACGGAACCGATTACTCTGCGAGAT -ACGGAACCGATTACTCTGTACCAC -ACGGAACCGATTACTCTGCAGAAC -ACGGAACCGATTACTCTGGTCTAC -ACGGAACCGATTACTCTGACGTAC -ACGGAACCGATTACTCTGAGTGAC -ACGGAACCGATTACTCTGCTGTAG -ACGGAACCGATTACTCTGCCTAAG -ACGGAACCGATTACTCTGGTTCAG -ACGGAACCGATTACTCTGGCATAG -ACGGAACCGATTACTCTGGACAAG -ACGGAACCGATTACTCTGAAGCAG -ACGGAACCGATTACTCTGCGTCAA -ACGGAACCGATTACTCTGGCTGAA -ACGGAACCGATTACTCTGAGTACG -ACGGAACCGATTACTCTGATCCGA -ACGGAACCGATTACTCTGATGGGA -ACGGAACCGATTACTCTGGTGCAA -ACGGAACCGATTACTCTGGAGGAA -ACGGAACCGATTACTCTGCAGGTA -ACGGAACCGATTACTCTGGACTCT -ACGGAACCGATTACTCTGAGTCCT -ACGGAACCGATTACTCTGTAAGCC -ACGGAACCGATTACTCTGATAGCC -ACGGAACCGATTACTCTGTAACCG -ACGGAACCGATTACTCTGATGCCA -ACGGAACCGATTCCTCAAGGAAAC -ACGGAACCGATTCCTCAAAACACC -ACGGAACCGATTCCTCAAATCGAG -ACGGAACCGATTCCTCAACTCCTT -ACGGAACCGATTCCTCAACCTGTT -ACGGAACCGATTCCTCAACGGTTT -ACGGAACCGATTCCTCAAGTGGTT -ACGGAACCGATTCCTCAAGCCTTT -ACGGAACCGATTCCTCAAGGTCTT -ACGGAACCGATTCCTCAAACGCTT -ACGGAACCGATTCCTCAAAGCGTT -ACGGAACCGATTCCTCAATTCGTC -ACGGAACCGATTCCTCAATCTCTC -ACGGAACCGATTCCTCAATGGATC -ACGGAACCGATTCCTCAACACTTC -ACGGAACCGATTCCTCAAGTACTC -ACGGAACCGATTCCTCAAGATGTC -ACGGAACCGATTCCTCAAACAGTC -ACGGAACCGATTCCTCAATTGCTG -ACGGAACCGATTCCTCAATCCATG -ACGGAACCGATTCCTCAATGTGTG -ACGGAACCGATTCCTCAACTAGTG -ACGGAACCGATTCCTCAACATCTG -ACGGAACCGATTCCTCAAGAGTTG -ACGGAACCGATTCCTCAAAGACTG -ACGGAACCGATTCCTCAATCGGTA -ACGGAACCGATTCCTCAATGCCTA -ACGGAACCGATTCCTCAACCACTA -ACGGAACCGATTCCTCAAGGAGTA -ACGGAACCGATTCCTCAATCGTCT -ACGGAACCGATTCCTCAATGCACT -ACGGAACCGATTCCTCAACTGACT -ACGGAACCGATTCCTCAACAACCT -ACGGAACCGATTCCTCAAGCTACT -ACGGAACCGATTCCTCAAGGATCT -ACGGAACCGATTCCTCAAAAGGCT -ACGGAACCGATTCCTCAATCAACC -ACGGAACCGATTCCTCAATGTTCC -ACGGAACCGATTCCTCAAATTCCC -ACGGAACCGATTCCTCAATTCTCG -ACGGAACCGATTCCTCAATAGACG -ACGGAACCGATTCCTCAAGTAACG -ACGGAACCGATTCCTCAAACTTCG -ACGGAACCGATTCCTCAATACGCA -ACGGAACCGATTCCTCAACTTGCA -ACGGAACCGATTCCTCAACGAACA -ACGGAACCGATTCCTCAACAGTCA -ACGGAACCGATTCCTCAAGATCCA -ACGGAACCGATTCCTCAAACGACA -ACGGAACCGATTCCTCAAAGCTCA -ACGGAACCGATTCCTCAATCACGT -ACGGAACCGATTCCTCAACGTAGT -ACGGAACCGATTCCTCAAGTCAGT -ACGGAACCGATTCCTCAAGAAGGT -ACGGAACCGATTCCTCAAAACCGT -ACGGAACCGATTCCTCAATTGTGC -ACGGAACCGATTCCTCAACTAAGC -ACGGAACCGATTCCTCAAACTAGC -ACGGAACCGATTCCTCAAAGATGC -ACGGAACCGATTCCTCAATGAAGG -ACGGAACCGATTCCTCAACAATGG -ACGGAACCGATTCCTCAAATGAGG -ACGGAACCGATTCCTCAAAATGGG -ACGGAACCGATTCCTCAATCCTGA -ACGGAACCGATTCCTCAATAGCGA -ACGGAACCGATTCCTCAACACAGA -ACGGAACCGATTCCTCAAGCAAGA -ACGGAACCGATTCCTCAAGGTTGA -ACGGAACCGATTCCTCAATCCGAT -ACGGAACCGATTCCTCAATGGCAT -ACGGAACCGATTCCTCAACGAGAT -ACGGAACCGATTCCTCAATACCAC -ACGGAACCGATTCCTCAACAGAAC -ACGGAACCGATTCCTCAAGTCTAC -ACGGAACCGATTCCTCAAACGTAC -ACGGAACCGATTCCTCAAAGTGAC -ACGGAACCGATTCCTCAACTGTAG -ACGGAACCGATTCCTCAACCTAAG -ACGGAACCGATTCCTCAAGTTCAG -ACGGAACCGATTCCTCAAGCATAG -ACGGAACCGATTCCTCAAGACAAG -ACGGAACCGATTCCTCAAAAGCAG -ACGGAACCGATTCCTCAACGTCAA -ACGGAACCGATTCCTCAAGCTGAA -ACGGAACCGATTCCTCAAAGTACG -ACGGAACCGATTCCTCAAATCCGA -ACGGAACCGATTCCTCAAATGGGA -ACGGAACCGATTCCTCAAGTGCAA -ACGGAACCGATTCCTCAAGAGGAA -ACGGAACCGATTCCTCAACAGGTA -ACGGAACCGATTCCTCAAGACTCT -ACGGAACCGATTCCTCAAAGTCCT -ACGGAACCGATTCCTCAATAAGCC -ACGGAACCGATTCCTCAAATAGCC -ACGGAACCGATTCCTCAATAACCG -ACGGAACCGATTCCTCAAATGCCA -ACGGAACCGATTACTGCTGGAAAC -ACGGAACCGATTACTGCTAACACC -ACGGAACCGATTACTGCTATCGAG -ACGGAACCGATTACTGCTCTCCTT -ACGGAACCGATTACTGCTCCTGTT -ACGGAACCGATTACTGCTCGGTTT -ACGGAACCGATTACTGCTGTGGTT -ACGGAACCGATTACTGCTGCCTTT -ACGGAACCGATTACTGCTGGTCTT -ACGGAACCGATTACTGCTACGCTT -ACGGAACCGATTACTGCTAGCGTT -ACGGAACCGATTACTGCTTTCGTC -ACGGAACCGATTACTGCTTCTCTC -ACGGAACCGATTACTGCTTGGATC -ACGGAACCGATTACTGCTCACTTC -ACGGAACCGATTACTGCTGTACTC -ACGGAACCGATTACTGCTGATGTC -ACGGAACCGATTACTGCTACAGTC -ACGGAACCGATTACTGCTTTGCTG -ACGGAACCGATTACTGCTTCCATG -ACGGAACCGATTACTGCTTGTGTG -ACGGAACCGATTACTGCTCTAGTG -ACGGAACCGATTACTGCTCATCTG -ACGGAACCGATTACTGCTGAGTTG -ACGGAACCGATTACTGCTAGACTG -ACGGAACCGATTACTGCTTCGGTA -ACGGAACCGATTACTGCTTGCCTA -ACGGAACCGATTACTGCTCCACTA -ACGGAACCGATTACTGCTGGAGTA -ACGGAACCGATTACTGCTTCGTCT -ACGGAACCGATTACTGCTTGCACT -ACGGAACCGATTACTGCTCTGACT -ACGGAACCGATTACTGCTCAACCT -ACGGAACCGATTACTGCTGCTACT -ACGGAACCGATTACTGCTGGATCT -ACGGAACCGATTACTGCTAAGGCT -ACGGAACCGATTACTGCTTCAACC -ACGGAACCGATTACTGCTTGTTCC -ACGGAACCGATTACTGCTATTCCC -ACGGAACCGATTACTGCTTTCTCG -ACGGAACCGATTACTGCTTAGACG -ACGGAACCGATTACTGCTGTAACG -ACGGAACCGATTACTGCTACTTCG -ACGGAACCGATTACTGCTTACGCA -ACGGAACCGATTACTGCTCTTGCA -ACGGAACCGATTACTGCTCGAACA -ACGGAACCGATTACTGCTCAGTCA -ACGGAACCGATTACTGCTGATCCA -ACGGAACCGATTACTGCTACGACA -ACGGAACCGATTACTGCTAGCTCA -ACGGAACCGATTACTGCTTCACGT -ACGGAACCGATTACTGCTCGTAGT -ACGGAACCGATTACTGCTGTCAGT -ACGGAACCGATTACTGCTGAAGGT -ACGGAACCGATTACTGCTAACCGT -ACGGAACCGATTACTGCTTTGTGC -ACGGAACCGATTACTGCTCTAAGC -ACGGAACCGATTACTGCTACTAGC -ACGGAACCGATTACTGCTAGATGC -ACGGAACCGATTACTGCTTGAAGG -ACGGAACCGATTACTGCTCAATGG -ACGGAACCGATTACTGCTATGAGG -ACGGAACCGATTACTGCTAATGGG -ACGGAACCGATTACTGCTTCCTGA -ACGGAACCGATTACTGCTTAGCGA -ACGGAACCGATTACTGCTCACAGA -ACGGAACCGATTACTGCTGCAAGA -ACGGAACCGATTACTGCTGGTTGA -ACGGAACCGATTACTGCTTCCGAT -ACGGAACCGATTACTGCTTGGCAT -ACGGAACCGATTACTGCTCGAGAT -ACGGAACCGATTACTGCTTACCAC -ACGGAACCGATTACTGCTCAGAAC -ACGGAACCGATTACTGCTGTCTAC -ACGGAACCGATTACTGCTACGTAC -ACGGAACCGATTACTGCTAGTGAC -ACGGAACCGATTACTGCTCTGTAG -ACGGAACCGATTACTGCTCCTAAG -ACGGAACCGATTACTGCTGTTCAG -ACGGAACCGATTACTGCTGCATAG -ACGGAACCGATTACTGCTGACAAG -ACGGAACCGATTACTGCTAAGCAG -ACGGAACCGATTACTGCTCGTCAA -ACGGAACCGATTACTGCTGCTGAA -ACGGAACCGATTACTGCTAGTACG -ACGGAACCGATTACTGCTATCCGA -ACGGAACCGATTACTGCTATGGGA -ACGGAACCGATTACTGCTGTGCAA -ACGGAACCGATTACTGCTGAGGAA -ACGGAACCGATTACTGCTCAGGTA -ACGGAACCGATTACTGCTGACTCT -ACGGAACCGATTACTGCTAGTCCT -ACGGAACCGATTACTGCTTAAGCC -ACGGAACCGATTACTGCTATAGCC -ACGGAACCGATTACTGCTTAACCG -ACGGAACCGATTACTGCTATGCCA -ACGGAACCGATTTCTGGAGGAAAC -ACGGAACCGATTTCTGGAAACACC -ACGGAACCGATTTCTGGAATCGAG -ACGGAACCGATTTCTGGACTCCTT -ACGGAACCGATTTCTGGACCTGTT -ACGGAACCGATTTCTGGACGGTTT -ACGGAACCGATTTCTGGAGTGGTT -ACGGAACCGATTTCTGGAGCCTTT -ACGGAACCGATTTCTGGAGGTCTT -ACGGAACCGATTTCTGGAACGCTT -ACGGAACCGATTTCTGGAAGCGTT -ACGGAACCGATTTCTGGATTCGTC -ACGGAACCGATTTCTGGATCTCTC -ACGGAACCGATTTCTGGATGGATC -ACGGAACCGATTTCTGGACACTTC -ACGGAACCGATTTCTGGAGTACTC -ACGGAACCGATTTCTGGAGATGTC -ACGGAACCGATTTCTGGAACAGTC -ACGGAACCGATTTCTGGATTGCTG -ACGGAACCGATTTCTGGATCCATG -ACGGAACCGATTTCTGGATGTGTG -ACGGAACCGATTTCTGGACTAGTG -ACGGAACCGATTTCTGGACATCTG -ACGGAACCGATTTCTGGAGAGTTG -ACGGAACCGATTTCTGGAAGACTG -ACGGAACCGATTTCTGGATCGGTA -ACGGAACCGATTTCTGGATGCCTA -ACGGAACCGATTTCTGGACCACTA -ACGGAACCGATTTCTGGAGGAGTA -ACGGAACCGATTTCTGGATCGTCT -ACGGAACCGATTTCTGGATGCACT -ACGGAACCGATTTCTGGACTGACT -ACGGAACCGATTTCTGGACAACCT -ACGGAACCGATTTCTGGAGCTACT -ACGGAACCGATTTCTGGAGGATCT -ACGGAACCGATTTCTGGAAAGGCT -ACGGAACCGATTTCTGGATCAACC -ACGGAACCGATTTCTGGATGTTCC -ACGGAACCGATTTCTGGAATTCCC -ACGGAACCGATTTCTGGATTCTCG -ACGGAACCGATTTCTGGATAGACG -ACGGAACCGATTTCTGGAGTAACG -ACGGAACCGATTTCTGGAACTTCG -ACGGAACCGATTTCTGGATACGCA -ACGGAACCGATTTCTGGACTTGCA -ACGGAACCGATTTCTGGACGAACA -ACGGAACCGATTTCTGGACAGTCA -ACGGAACCGATTTCTGGAGATCCA -ACGGAACCGATTTCTGGAACGACA -ACGGAACCGATTTCTGGAAGCTCA -ACGGAACCGATTTCTGGATCACGT -ACGGAACCGATTTCTGGACGTAGT -ACGGAACCGATTTCTGGAGTCAGT -ACGGAACCGATTTCTGGAGAAGGT -ACGGAACCGATTTCTGGAAACCGT -ACGGAACCGATTTCTGGATTGTGC -ACGGAACCGATTTCTGGACTAAGC -ACGGAACCGATTTCTGGAACTAGC -ACGGAACCGATTTCTGGAAGATGC -ACGGAACCGATTTCTGGATGAAGG -ACGGAACCGATTTCTGGACAATGG -ACGGAACCGATTTCTGGAATGAGG -ACGGAACCGATTTCTGGAAATGGG -ACGGAACCGATTTCTGGATCCTGA -ACGGAACCGATTTCTGGATAGCGA -ACGGAACCGATTTCTGGACACAGA -ACGGAACCGATTTCTGGAGCAAGA -ACGGAACCGATTTCTGGAGGTTGA -ACGGAACCGATTTCTGGATCCGAT -ACGGAACCGATTTCTGGATGGCAT -ACGGAACCGATTTCTGGACGAGAT -ACGGAACCGATTTCTGGATACCAC -ACGGAACCGATTTCTGGACAGAAC -ACGGAACCGATTTCTGGAGTCTAC -ACGGAACCGATTTCTGGAACGTAC -ACGGAACCGATTTCTGGAAGTGAC -ACGGAACCGATTTCTGGACTGTAG -ACGGAACCGATTTCTGGACCTAAG -ACGGAACCGATTTCTGGAGTTCAG -ACGGAACCGATTTCTGGAGCATAG -ACGGAACCGATTTCTGGAGACAAG -ACGGAACCGATTTCTGGAAAGCAG -ACGGAACCGATTTCTGGACGTCAA -ACGGAACCGATTTCTGGAGCTGAA -ACGGAACCGATTTCTGGAAGTACG -ACGGAACCGATTTCTGGAATCCGA -ACGGAACCGATTTCTGGAATGGGA -ACGGAACCGATTTCTGGAGTGCAA -ACGGAACCGATTTCTGGAGAGGAA -ACGGAACCGATTTCTGGACAGGTA -ACGGAACCGATTTCTGGAGACTCT -ACGGAACCGATTTCTGGAAGTCCT -ACGGAACCGATTTCTGGATAAGCC -ACGGAACCGATTTCTGGAATAGCC -ACGGAACCGATTTCTGGATAACCG -ACGGAACCGATTTCTGGAATGCCA -ACGGAACCGATTGCTAAGGGAAAC -ACGGAACCGATTGCTAAGAACACC -ACGGAACCGATTGCTAAGATCGAG -ACGGAACCGATTGCTAAGCTCCTT -ACGGAACCGATTGCTAAGCCTGTT -ACGGAACCGATTGCTAAGCGGTTT -ACGGAACCGATTGCTAAGGTGGTT -ACGGAACCGATTGCTAAGGCCTTT -ACGGAACCGATTGCTAAGGGTCTT -ACGGAACCGATTGCTAAGACGCTT -ACGGAACCGATTGCTAAGAGCGTT -ACGGAACCGATTGCTAAGTTCGTC -ACGGAACCGATTGCTAAGTCTCTC -ACGGAACCGATTGCTAAGTGGATC -ACGGAACCGATTGCTAAGCACTTC -ACGGAACCGATTGCTAAGGTACTC -ACGGAACCGATTGCTAAGGATGTC -ACGGAACCGATTGCTAAGACAGTC -ACGGAACCGATTGCTAAGTTGCTG -ACGGAACCGATTGCTAAGTCCATG -ACGGAACCGATTGCTAAGTGTGTG -ACGGAACCGATTGCTAAGCTAGTG -ACGGAACCGATTGCTAAGCATCTG -ACGGAACCGATTGCTAAGGAGTTG -ACGGAACCGATTGCTAAGAGACTG -ACGGAACCGATTGCTAAGTCGGTA -ACGGAACCGATTGCTAAGTGCCTA -ACGGAACCGATTGCTAAGCCACTA -ACGGAACCGATTGCTAAGGGAGTA -ACGGAACCGATTGCTAAGTCGTCT -ACGGAACCGATTGCTAAGTGCACT -ACGGAACCGATTGCTAAGCTGACT -ACGGAACCGATTGCTAAGCAACCT -ACGGAACCGATTGCTAAGGCTACT -ACGGAACCGATTGCTAAGGGATCT -ACGGAACCGATTGCTAAGAAGGCT -ACGGAACCGATTGCTAAGTCAACC -ACGGAACCGATTGCTAAGTGTTCC -ACGGAACCGATTGCTAAGATTCCC -ACGGAACCGATTGCTAAGTTCTCG -ACGGAACCGATTGCTAAGTAGACG -ACGGAACCGATTGCTAAGGTAACG -ACGGAACCGATTGCTAAGACTTCG -ACGGAACCGATTGCTAAGTACGCA -ACGGAACCGATTGCTAAGCTTGCA -ACGGAACCGATTGCTAAGCGAACA -ACGGAACCGATTGCTAAGCAGTCA -ACGGAACCGATTGCTAAGGATCCA -ACGGAACCGATTGCTAAGACGACA -ACGGAACCGATTGCTAAGAGCTCA -ACGGAACCGATTGCTAAGTCACGT -ACGGAACCGATTGCTAAGCGTAGT -ACGGAACCGATTGCTAAGGTCAGT -ACGGAACCGATTGCTAAGGAAGGT -ACGGAACCGATTGCTAAGAACCGT -ACGGAACCGATTGCTAAGTTGTGC -ACGGAACCGATTGCTAAGCTAAGC -ACGGAACCGATTGCTAAGACTAGC -ACGGAACCGATTGCTAAGAGATGC -ACGGAACCGATTGCTAAGTGAAGG -ACGGAACCGATTGCTAAGCAATGG -ACGGAACCGATTGCTAAGATGAGG -ACGGAACCGATTGCTAAGAATGGG -ACGGAACCGATTGCTAAGTCCTGA -ACGGAACCGATTGCTAAGTAGCGA -ACGGAACCGATTGCTAAGCACAGA -ACGGAACCGATTGCTAAGGCAAGA -ACGGAACCGATTGCTAAGGGTTGA -ACGGAACCGATTGCTAAGTCCGAT -ACGGAACCGATTGCTAAGTGGCAT -ACGGAACCGATTGCTAAGCGAGAT -ACGGAACCGATTGCTAAGTACCAC -ACGGAACCGATTGCTAAGCAGAAC -ACGGAACCGATTGCTAAGGTCTAC -ACGGAACCGATTGCTAAGACGTAC -ACGGAACCGATTGCTAAGAGTGAC -ACGGAACCGATTGCTAAGCTGTAG -ACGGAACCGATTGCTAAGCCTAAG -ACGGAACCGATTGCTAAGGTTCAG -ACGGAACCGATTGCTAAGGCATAG -ACGGAACCGATTGCTAAGGACAAG -ACGGAACCGATTGCTAAGAAGCAG -ACGGAACCGATTGCTAAGCGTCAA -ACGGAACCGATTGCTAAGGCTGAA -ACGGAACCGATTGCTAAGAGTACG -ACGGAACCGATTGCTAAGATCCGA -ACGGAACCGATTGCTAAGATGGGA -ACGGAACCGATTGCTAAGGTGCAA -ACGGAACCGATTGCTAAGGAGGAA -ACGGAACCGATTGCTAAGCAGGTA -ACGGAACCGATTGCTAAGGACTCT -ACGGAACCGATTGCTAAGAGTCCT -ACGGAACCGATTGCTAAGTAAGCC -ACGGAACCGATTGCTAAGATAGCC -ACGGAACCGATTGCTAAGTAACCG -ACGGAACCGATTGCTAAGATGCCA -ACGGAACCGATTACCTCAGGAAAC -ACGGAACCGATTACCTCAAACACC -ACGGAACCGATTACCTCAATCGAG -ACGGAACCGATTACCTCACTCCTT -ACGGAACCGATTACCTCACCTGTT -ACGGAACCGATTACCTCACGGTTT -ACGGAACCGATTACCTCAGTGGTT -ACGGAACCGATTACCTCAGCCTTT -ACGGAACCGATTACCTCAGGTCTT -ACGGAACCGATTACCTCAACGCTT -ACGGAACCGATTACCTCAAGCGTT -ACGGAACCGATTACCTCATTCGTC -ACGGAACCGATTACCTCATCTCTC -ACGGAACCGATTACCTCATGGATC -ACGGAACCGATTACCTCACACTTC -ACGGAACCGATTACCTCAGTACTC -ACGGAACCGATTACCTCAGATGTC -ACGGAACCGATTACCTCAACAGTC -ACGGAACCGATTACCTCATTGCTG -ACGGAACCGATTACCTCATCCATG -ACGGAACCGATTACCTCATGTGTG -ACGGAACCGATTACCTCACTAGTG -ACGGAACCGATTACCTCACATCTG -ACGGAACCGATTACCTCAGAGTTG -ACGGAACCGATTACCTCAAGACTG -ACGGAACCGATTACCTCATCGGTA -ACGGAACCGATTACCTCATGCCTA -ACGGAACCGATTACCTCACCACTA -ACGGAACCGATTACCTCAGGAGTA -ACGGAACCGATTACCTCATCGTCT -ACGGAACCGATTACCTCATGCACT -ACGGAACCGATTACCTCACTGACT -ACGGAACCGATTACCTCACAACCT -ACGGAACCGATTACCTCAGCTACT -ACGGAACCGATTACCTCAGGATCT -ACGGAACCGATTACCTCAAAGGCT -ACGGAACCGATTACCTCATCAACC -ACGGAACCGATTACCTCATGTTCC -ACGGAACCGATTACCTCAATTCCC -ACGGAACCGATTACCTCATTCTCG -ACGGAACCGATTACCTCATAGACG -ACGGAACCGATTACCTCAGTAACG -ACGGAACCGATTACCTCAACTTCG -ACGGAACCGATTACCTCATACGCA -ACGGAACCGATTACCTCACTTGCA -ACGGAACCGATTACCTCACGAACA -ACGGAACCGATTACCTCACAGTCA -ACGGAACCGATTACCTCAGATCCA -ACGGAACCGATTACCTCAACGACA -ACGGAACCGATTACCTCAAGCTCA -ACGGAACCGATTACCTCATCACGT -ACGGAACCGATTACCTCACGTAGT -ACGGAACCGATTACCTCAGTCAGT -ACGGAACCGATTACCTCAGAAGGT -ACGGAACCGATTACCTCAAACCGT -ACGGAACCGATTACCTCATTGTGC -ACGGAACCGATTACCTCACTAAGC -ACGGAACCGATTACCTCAACTAGC -ACGGAACCGATTACCTCAAGATGC -ACGGAACCGATTACCTCATGAAGG -ACGGAACCGATTACCTCACAATGG -ACGGAACCGATTACCTCAATGAGG -ACGGAACCGATTACCTCAAATGGG -ACGGAACCGATTACCTCATCCTGA -ACGGAACCGATTACCTCATAGCGA -ACGGAACCGATTACCTCACACAGA -ACGGAACCGATTACCTCAGCAAGA -ACGGAACCGATTACCTCAGGTTGA -ACGGAACCGATTACCTCATCCGAT -ACGGAACCGATTACCTCATGGCAT -ACGGAACCGATTACCTCACGAGAT -ACGGAACCGATTACCTCATACCAC -ACGGAACCGATTACCTCACAGAAC -ACGGAACCGATTACCTCAGTCTAC -ACGGAACCGATTACCTCAACGTAC -ACGGAACCGATTACCTCAAGTGAC -ACGGAACCGATTACCTCACTGTAG -ACGGAACCGATTACCTCACCTAAG -ACGGAACCGATTACCTCAGTTCAG -ACGGAACCGATTACCTCAGCATAG -ACGGAACCGATTACCTCAGACAAG -ACGGAACCGATTACCTCAAAGCAG -ACGGAACCGATTACCTCACGTCAA -ACGGAACCGATTACCTCAGCTGAA -ACGGAACCGATTACCTCAAGTACG -ACGGAACCGATTACCTCAATCCGA -ACGGAACCGATTACCTCAATGGGA -ACGGAACCGATTACCTCAGTGCAA -ACGGAACCGATTACCTCAGAGGAA -ACGGAACCGATTACCTCACAGGTA -ACGGAACCGATTACCTCAGACTCT -ACGGAACCGATTACCTCAAGTCCT -ACGGAACCGATTACCTCATAAGCC -ACGGAACCGATTACCTCAATAGCC -ACGGAACCGATTACCTCATAACCG -ACGGAACCGATTACCTCAATGCCA -ACGGAACCGATTTCCTGTGGAAAC -ACGGAACCGATTTCCTGTAACACC -ACGGAACCGATTTCCTGTATCGAG -ACGGAACCGATTTCCTGTCTCCTT -ACGGAACCGATTTCCTGTCCTGTT -ACGGAACCGATTTCCTGTCGGTTT -ACGGAACCGATTTCCTGTGTGGTT -ACGGAACCGATTTCCTGTGCCTTT -ACGGAACCGATTTCCTGTGGTCTT -ACGGAACCGATTTCCTGTACGCTT -ACGGAACCGATTTCCTGTAGCGTT -ACGGAACCGATTTCCTGTTTCGTC -ACGGAACCGATTTCCTGTTCTCTC -ACGGAACCGATTTCCTGTTGGATC -ACGGAACCGATTTCCTGTCACTTC -ACGGAACCGATTTCCTGTGTACTC -ACGGAACCGATTTCCTGTGATGTC -ACGGAACCGATTTCCTGTACAGTC -ACGGAACCGATTTCCTGTTTGCTG -ACGGAACCGATTTCCTGTTCCATG -ACGGAACCGATTTCCTGTTGTGTG -ACGGAACCGATTTCCTGTCTAGTG -ACGGAACCGATTTCCTGTCATCTG -ACGGAACCGATTTCCTGTGAGTTG -ACGGAACCGATTTCCTGTAGACTG -ACGGAACCGATTTCCTGTTCGGTA -ACGGAACCGATTTCCTGTTGCCTA -ACGGAACCGATTTCCTGTCCACTA -ACGGAACCGATTTCCTGTGGAGTA -ACGGAACCGATTTCCTGTTCGTCT -ACGGAACCGATTTCCTGTTGCACT -ACGGAACCGATTTCCTGTCTGACT -ACGGAACCGATTTCCTGTCAACCT -ACGGAACCGATTTCCTGTGCTACT -ACGGAACCGATTTCCTGTGGATCT -ACGGAACCGATTTCCTGTAAGGCT -ACGGAACCGATTTCCTGTTCAACC -ACGGAACCGATTTCCTGTTGTTCC -ACGGAACCGATTTCCTGTATTCCC -ACGGAACCGATTTCCTGTTTCTCG -ACGGAACCGATTTCCTGTTAGACG -ACGGAACCGATTTCCTGTGTAACG -ACGGAACCGATTTCCTGTACTTCG -ACGGAACCGATTTCCTGTTACGCA -ACGGAACCGATTTCCTGTCTTGCA -ACGGAACCGATTTCCTGTCGAACA -ACGGAACCGATTTCCTGTCAGTCA -ACGGAACCGATTTCCTGTGATCCA -ACGGAACCGATTTCCTGTACGACA -ACGGAACCGATTTCCTGTAGCTCA -ACGGAACCGATTTCCTGTTCACGT -ACGGAACCGATTTCCTGTCGTAGT -ACGGAACCGATTTCCTGTGTCAGT -ACGGAACCGATTTCCTGTGAAGGT -ACGGAACCGATTTCCTGTAACCGT -ACGGAACCGATTTCCTGTTTGTGC -ACGGAACCGATTTCCTGTCTAAGC -ACGGAACCGATTTCCTGTACTAGC -ACGGAACCGATTTCCTGTAGATGC -ACGGAACCGATTTCCTGTTGAAGG -ACGGAACCGATTTCCTGTCAATGG -ACGGAACCGATTTCCTGTATGAGG -ACGGAACCGATTTCCTGTAATGGG -ACGGAACCGATTTCCTGTTCCTGA -ACGGAACCGATTTCCTGTTAGCGA -ACGGAACCGATTTCCTGTCACAGA -ACGGAACCGATTTCCTGTGCAAGA -ACGGAACCGATTTCCTGTGGTTGA -ACGGAACCGATTTCCTGTTCCGAT -ACGGAACCGATTTCCTGTTGGCAT -ACGGAACCGATTTCCTGTCGAGAT -ACGGAACCGATTTCCTGTTACCAC -ACGGAACCGATTTCCTGTCAGAAC -ACGGAACCGATTTCCTGTGTCTAC -ACGGAACCGATTTCCTGTACGTAC -ACGGAACCGATTTCCTGTAGTGAC -ACGGAACCGATTTCCTGTCTGTAG -ACGGAACCGATTTCCTGTCCTAAG -ACGGAACCGATTTCCTGTGTTCAG -ACGGAACCGATTTCCTGTGCATAG -ACGGAACCGATTTCCTGTGACAAG -ACGGAACCGATTTCCTGTAAGCAG -ACGGAACCGATTTCCTGTCGTCAA -ACGGAACCGATTTCCTGTGCTGAA -ACGGAACCGATTTCCTGTAGTACG -ACGGAACCGATTTCCTGTATCCGA -ACGGAACCGATTTCCTGTATGGGA -ACGGAACCGATTTCCTGTGTGCAA -ACGGAACCGATTTCCTGTGAGGAA -ACGGAACCGATTTCCTGTCAGGTA -ACGGAACCGATTTCCTGTGACTCT -ACGGAACCGATTTCCTGTAGTCCT -ACGGAACCGATTTCCTGTTAAGCC -ACGGAACCGATTTCCTGTATAGCC -ACGGAACCGATTTCCTGTTAACCG -ACGGAACCGATTTCCTGTATGCCA -ACGGAACCGATTCCCATTGGAAAC -ACGGAACCGATTCCCATTAACACC -ACGGAACCGATTCCCATTATCGAG -ACGGAACCGATTCCCATTCTCCTT -ACGGAACCGATTCCCATTCCTGTT -ACGGAACCGATTCCCATTCGGTTT -ACGGAACCGATTCCCATTGTGGTT -ACGGAACCGATTCCCATTGCCTTT -ACGGAACCGATTCCCATTGGTCTT -ACGGAACCGATTCCCATTACGCTT -ACGGAACCGATTCCCATTAGCGTT -ACGGAACCGATTCCCATTTTCGTC -ACGGAACCGATTCCCATTTCTCTC -ACGGAACCGATTCCCATTTGGATC -ACGGAACCGATTCCCATTCACTTC -ACGGAACCGATTCCCATTGTACTC -ACGGAACCGATTCCCATTGATGTC -ACGGAACCGATTCCCATTACAGTC -ACGGAACCGATTCCCATTTTGCTG -ACGGAACCGATTCCCATTTCCATG -ACGGAACCGATTCCCATTTGTGTG -ACGGAACCGATTCCCATTCTAGTG -ACGGAACCGATTCCCATTCATCTG -ACGGAACCGATTCCCATTGAGTTG -ACGGAACCGATTCCCATTAGACTG -ACGGAACCGATTCCCATTTCGGTA -ACGGAACCGATTCCCATTTGCCTA -ACGGAACCGATTCCCATTCCACTA -ACGGAACCGATTCCCATTGGAGTA -ACGGAACCGATTCCCATTTCGTCT -ACGGAACCGATTCCCATTTGCACT -ACGGAACCGATTCCCATTCTGACT -ACGGAACCGATTCCCATTCAACCT -ACGGAACCGATTCCCATTGCTACT -ACGGAACCGATTCCCATTGGATCT -ACGGAACCGATTCCCATTAAGGCT -ACGGAACCGATTCCCATTTCAACC -ACGGAACCGATTCCCATTTGTTCC -ACGGAACCGATTCCCATTATTCCC -ACGGAACCGATTCCCATTTTCTCG -ACGGAACCGATTCCCATTTAGACG -ACGGAACCGATTCCCATTGTAACG -ACGGAACCGATTCCCATTACTTCG -ACGGAACCGATTCCCATTTACGCA -ACGGAACCGATTCCCATTCTTGCA -ACGGAACCGATTCCCATTCGAACA -ACGGAACCGATTCCCATTCAGTCA -ACGGAACCGATTCCCATTGATCCA -ACGGAACCGATTCCCATTACGACA -ACGGAACCGATTCCCATTAGCTCA -ACGGAACCGATTCCCATTTCACGT -ACGGAACCGATTCCCATTCGTAGT -ACGGAACCGATTCCCATTGTCAGT -ACGGAACCGATTCCCATTGAAGGT -ACGGAACCGATTCCCATTAACCGT -ACGGAACCGATTCCCATTTTGTGC -ACGGAACCGATTCCCATTCTAAGC -ACGGAACCGATTCCCATTACTAGC -ACGGAACCGATTCCCATTAGATGC -ACGGAACCGATTCCCATTTGAAGG -ACGGAACCGATTCCCATTCAATGG -ACGGAACCGATTCCCATTATGAGG -ACGGAACCGATTCCCATTAATGGG -ACGGAACCGATTCCCATTTCCTGA -ACGGAACCGATTCCCATTTAGCGA -ACGGAACCGATTCCCATTCACAGA -ACGGAACCGATTCCCATTGCAAGA -ACGGAACCGATTCCCATTGGTTGA -ACGGAACCGATTCCCATTTCCGAT -ACGGAACCGATTCCCATTTGGCAT -ACGGAACCGATTCCCATTCGAGAT -ACGGAACCGATTCCCATTTACCAC -ACGGAACCGATTCCCATTCAGAAC -ACGGAACCGATTCCCATTGTCTAC -ACGGAACCGATTCCCATTACGTAC -ACGGAACCGATTCCCATTAGTGAC -ACGGAACCGATTCCCATTCTGTAG -ACGGAACCGATTCCCATTCCTAAG -ACGGAACCGATTCCCATTGTTCAG -ACGGAACCGATTCCCATTGCATAG -ACGGAACCGATTCCCATTGACAAG -ACGGAACCGATTCCCATTAAGCAG -ACGGAACCGATTCCCATTCGTCAA -ACGGAACCGATTCCCATTGCTGAA -ACGGAACCGATTCCCATTAGTACG -ACGGAACCGATTCCCATTATCCGA -ACGGAACCGATTCCCATTATGGGA -ACGGAACCGATTCCCATTGTGCAA -ACGGAACCGATTCCCATTGAGGAA -ACGGAACCGATTCCCATTCAGGTA -ACGGAACCGATTCCCATTGACTCT -ACGGAACCGATTCCCATTAGTCCT -ACGGAACCGATTCCCATTTAAGCC -ACGGAACCGATTCCCATTATAGCC -ACGGAACCGATTCCCATTTAACCG -ACGGAACCGATTCCCATTATGCCA -ACGGAACCGATTTCGTTCGGAAAC -ACGGAACCGATTTCGTTCAACACC -ACGGAACCGATTTCGTTCATCGAG -ACGGAACCGATTTCGTTCCTCCTT -ACGGAACCGATTTCGTTCCCTGTT -ACGGAACCGATTTCGTTCCGGTTT -ACGGAACCGATTTCGTTCGTGGTT -ACGGAACCGATTTCGTTCGCCTTT -ACGGAACCGATTTCGTTCGGTCTT -ACGGAACCGATTTCGTTCACGCTT -ACGGAACCGATTTCGTTCAGCGTT -ACGGAACCGATTTCGTTCTTCGTC -ACGGAACCGATTTCGTTCTCTCTC -ACGGAACCGATTTCGTTCTGGATC -ACGGAACCGATTTCGTTCCACTTC -ACGGAACCGATTTCGTTCGTACTC -ACGGAACCGATTTCGTTCGATGTC -ACGGAACCGATTTCGTTCACAGTC -ACGGAACCGATTTCGTTCTTGCTG -ACGGAACCGATTTCGTTCTCCATG -ACGGAACCGATTTCGTTCTGTGTG -ACGGAACCGATTTCGTTCCTAGTG -ACGGAACCGATTTCGTTCCATCTG -ACGGAACCGATTTCGTTCGAGTTG -ACGGAACCGATTTCGTTCAGACTG -ACGGAACCGATTTCGTTCTCGGTA -ACGGAACCGATTTCGTTCTGCCTA -ACGGAACCGATTTCGTTCCCACTA -ACGGAACCGATTTCGTTCGGAGTA -ACGGAACCGATTTCGTTCTCGTCT -ACGGAACCGATTTCGTTCTGCACT -ACGGAACCGATTTCGTTCCTGACT -ACGGAACCGATTTCGTTCCAACCT -ACGGAACCGATTTCGTTCGCTACT -ACGGAACCGATTTCGTTCGGATCT -ACGGAACCGATTTCGTTCAAGGCT -ACGGAACCGATTTCGTTCTCAACC -ACGGAACCGATTTCGTTCTGTTCC -ACGGAACCGATTTCGTTCATTCCC -ACGGAACCGATTTCGTTCTTCTCG -ACGGAACCGATTTCGTTCTAGACG -ACGGAACCGATTTCGTTCGTAACG -ACGGAACCGATTTCGTTCACTTCG -ACGGAACCGATTTCGTTCTACGCA -ACGGAACCGATTTCGTTCCTTGCA -ACGGAACCGATTTCGTTCCGAACA -ACGGAACCGATTTCGTTCCAGTCA -ACGGAACCGATTTCGTTCGATCCA -ACGGAACCGATTTCGTTCACGACA -ACGGAACCGATTTCGTTCAGCTCA -ACGGAACCGATTTCGTTCTCACGT -ACGGAACCGATTTCGTTCCGTAGT -ACGGAACCGATTTCGTTCGTCAGT -ACGGAACCGATTTCGTTCGAAGGT -ACGGAACCGATTTCGTTCAACCGT -ACGGAACCGATTTCGTTCTTGTGC -ACGGAACCGATTTCGTTCCTAAGC -ACGGAACCGATTTCGTTCACTAGC -ACGGAACCGATTTCGTTCAGATGC -ACGGAACCGATTTCGTTCTGAAGG -ACGGAACCGATTTCGTTCCAATGG -ACGGAACCGATTTCGTTCATGAGG -ACGGAACCGATTTCGTTCAATGGG -ACGGAACCGATTTCGTTCTCCTGA -ACGGAACCGATTTCGTTCTAGCGA -ACGGAACCGATTTCGTTCCACAGA -ACGGAACCGATTTCGTTCGCAAGA -ACGGAACCGATTTCGTTCGGTTGA -ACGGAACCGATTTCGTTCTCCGAT -ACGGAACCGATTTCGTTCTGGCAT -ACGGAACCGATTTCGTTCCGAGAT -ACGGAACCGATTTCGTTCTACCAC -ACGGAACCGATTTCGTTCCAGAAC -ACGGAACCGATTTCGTTCGTCTAC -ACGGAACCGATTTCGTTCACGTAC -ACGGAACCGATTTCGTTCAGTGAC -ACGGAACCGATTTCGTTCCTGTAG -ACGGAACCGATTTCGTTCCCTAAG -ACGGAACCGATTTCGTTCGTTCAG -ACGGAACCGATTTCGTTCGCATAG -ACGGAACCGATTTCGTTCGACAAG -ACGGAACCGATTTCGTTCAAGCAG -ACGGAACCGATTTCGTTCCGTCAA -ACGGAACCGATTTCGTTCGCTGAA -ACGGAACCGATTTCGTTCAGTACG -ACGGAACCGATTTCGTTCATCCGA -ACGGAACCGATTTCGTTCATGGGA -ACGGAACCGATTTCGTTCGTGCAA -ACGGAACCGATTTCGTTCGAGGAA -ACGGAACCGATTTCGTTCCAGGTA -ACGGAACCGATTTCGTTCGACTCT -ACGGAACCGATTTCGTTCAGTCCT -ACGGAACCGATTTCGTTCTAAGCC -ACGGAACCGATTTCGTTCATAGCC -ACGGAACCGATTTCGTTCTAACCG -ACGGAACCGATTTCGTTCATGCCA -ACGGAACCGATTACGTAGGGAAAC -ACGGAACCGATTACGTAGAACACC -ACGGAACCGATTACGTAGATCGAG -ACGGAACCGATTACGTAGCTCCTT -ACGGAACCGATTACGTAGCCTGTT -ACGGAACCGATTACGTAGCGGTTT -ACGGAACCGATTACGTAGGTGGTT -ACGGAACCGATTACGTAGGCCTTT -ACGGAACCGATTACGTAGGGTCTT -ACGGAACCGATTACGTAGACGCTT -ACGGAACCGATTACGTAGAGCGTT -ACGGAACCGATTACGTAGTTCGTC -ACGGAACCGATTACGTAGTCTCTC -ACGGAACCGATTACGTAGTGGATC -ACGGAACCGATTACGTAGCACTTC -ACGGAACCGATTACGTAGGTACTC -ACGGAACCGATTACGTAGGATGTC -ACGGAACCGATTACGTAGACAGTC -ACGGAACCGATTACGTAGTTGCTG -ACGGAACCGATTACGTAGTCCATG -ACGGAACCGATTACGTAGTGTGTG -ACGGAACCGATTACGTAGCTAGTG -ACGGAACCGATTACGTAGCATCTG -ACGGAACCGATTACGTAGGAGTTG -ACGGAACCGATTACGTAGAGACTG -ACGGAACCGATTACGTAGTCGGTA -ACGGAACCGATTACGTAGTGCCTA -ACGGAACCGATTACGTAGCCACTA -ACGGAACCGATTACGTAGGGAGTA -ACGGAACCGATTACGTAGTCGTCT -ACGGAACCGATTACGTAGTGCACT -ACGGAACCGATTACGTAGCTGACT -ACGGAACCGATTACGTAGCAACCT -ACGGAACCGATTACGTAGGCTACT -ACGGAACCGATTACGTAGGGATCT -ACGGAACCGATTACGTAGAAGGCT -ACGGAACCGATTACGTAGTCAACC -ACGGAACCGATTACGTAGTGTTCC -ACGGAACCGATTACGTAGATTCCC -ACGGAACCGATTACGTAGTTCTCG -ACGGAACCGATTACGTAGTAGACG -ACGGAACCGATTACGTAGGTAACG -ACGGAACCGATTACGTAGACTTCG -ACGGAACCGATTACGTAGTACGCA -ACGGAACCGATTACGTAGCTTGCA -ACGGAACCGATTACGTAGCGAACA -ACGGAACCGATTACGTAGCAGTCA -ACGGAACCGATTACGTAGGATCCA -ACGGAACCGATTACGTAGACGACA -ACGGAACCGATTACGTAGAGCTCA -ACGGAACCGATTACGTAGTCACGT -ACGGAACCGATTACGTAGCGTAGT -ACGGAACCGATTACGTAGGTCAGT -ACGGAACCGATTACGTAGGAAGGT -ACGGAACCGATTACGTAGAACCGT -ACGGAACCGATTACGTAGTTGTGC -ACGGAACCGATTACGTAGCTAAGC -ACGGAACCGATTACGTAGACTAGC -ACGGAACCGATTACGTAGAGATGC -ACGGAACCGATTACGTAGTGAAGG -ACGGAACCGATTACGTAGCAATGG -ACGGAACCGATTACGTAGATGAGG -ACGGAACCGATTACGTAGAATGGG -ACGGAACCGATTACGTAGTCCTGA -ACGGAACCGATTACGTAGTAGCGA -ACGGAACCGATTACGTAGCACAGA -ACGGAACCGATTACGTAGGCAAGA -ACGGAACCGATTACGTAGGGTTGA -ACGGAACCGATTACGTAGTCCGAT -ACGGAACCGATTACGTAGTGGCAT -ACGGAACCGATTACGTAGCGAGAT -ACGGAACCGATTACGTAGTACCAC -ACGGAACCGATTACGTAGCAGAAC -ACGGAACCGATTACGTAGGTCTAC -ACGGAACCGATTACGTAGACGTAC -ACGGAACCGATTACGTAGAGTGAC -ACGGAACCGATTACGTAGCTGTAG -ACGGAACCGATTACGTAGCCTAAG -ACGGAACCGATTACGTAGGTTCAG -ACGGAACCGATTACGTAGGCATAG -ACGGAACCGATTACGTAGGACAAG -ACGGAACCGATTACGTAGAAGCAG -ACGGAACCGATTACGTAGCGTCAA -ACGGAACCGATTACGTAGGCTGAA -ACGGAACCGATTACGTAGAGTACG -ACGGAACCGATTACGTAGATCCGA -ACGGAACCGATTACGTAGATGGGA -ACGGAACCGATTACGTAGGTGCAA -ACGGAACCGATTACGTAGGAGGAA -ACGGAACCGATTACGTAGCAGGTA -ACGGAACCGATTACGTAGGACTCT -ACGGAACCGATTACGTAGAGTCCT -ACGGAACCGATTACGTAGTAAGCC -ACGGAACCGATTACGTAGATAGCC -ACGGAACCGATTACGTAGTAACCG -ACGGAACCGATTACGTAGATGCCA -ACGGAACCGATTACGGTAGGAAAC -ACGGAACCGATTACGGTAAACACC -ACGGAACCGATTACGGTAATCGAG -ACGGAACCGATTACGGTACTCCTT -ACGGAACCGATTACGGTACCTGTT -ACGGAACCGATTACGGTACGGTTT -ACGGAACCGATTACGGTAGTGGTT -ACGGAACCGATTACGGTAGCCTTT -ACGGAACCGATTACGGTAGGTCTT -ACGGAACCGATTACGGTAACGCTT -ACGGAACCGATTACGGTAAGCGTT -ACGGAACCGATTACGGTATTCGTC -ACGGAACCGATTACGGTATCTCTC -ACGGAACCGATTACGGTATGGATC -ACGGAACCGATTACGGTACACTTC -ACGGAACCGATTACGGTAGTACTC -ACGGAACCGATTACGGTAGATGTC -ACGGAACCGATTACGGTAACAGTC -ACGGAACCGATTACGGTATTGCTG -ACGGAACCGATTACGGTATCCATG -ACGGAACCGATTACGGTATGTGTG -ACGGAACCGATTACGGTACTAGTG -ACGGAACCGATTACGGTACATCTG -ACGGAACCGATTACGGTAGAGTTG -ACGGAACCGATTACGGTAAGACTG -ACGGAACCGATTACGGTATCGGTA -ACGGAACCGATTACGGTATGCCTA -ACGGAACCGATTACGGTACCACTA -ACGGAACCGATTACGGTAGGAGTA -ACGGAACCGATTACGGTATCGTCT -ACGGAACCGATTACGGTATGCACT -ACGGAACCGATTACGGTACTGACT -ACGGAACCGATTACGGTACAACCT -ACGGAACCGATTACGGTAGCTACT -ACGGAACCGATTACGGTAGGATCT -ACGGAACCGATTACGGTAAAGGCT -ACGGAACCGATTACGGTATCAACC -ACGGAACCGATTACGGTATGTTCC -ACGGAACCGATTACGGTAATTCCC -ACGGAACCGATTACGGTATTCTCG -ACGGAACCGATTACGGTATAGACG -ACGGAACCGATTACGGTAGTAACG -ACGGAACCGATTACGGTAACTTCG -ACGGAACCGATTACGGTATACGCA -ACGGAACCGATTACGGTACTTGCA -ACGGAACCGATTACGGTACGAACA -ACGGAACCGATTACGGTACAGTCA -ACGGAACCGATTACGGTAGATCCA -ACGGAACCGATTACGGTAACGACA -ACGGAACCGATTACGGTAAGCTCA -ACGGAACCGATTACGGTATCACGT -ACGGAACCGATTACGGTACGTAGT -ACGGAACCGATTACGGTAGTCAGT -ACGGAACCGATTACGGTAGAAGGT -ACGGAACCGATTACGGTAAACCGT -ACGGAACCGATTACGGTATTGTGC -ACGGAACCGATTACGGTACTAAGC -ACGGAACCGATTACGGTAACTAGC -ACGGAACCGATTACGGTAAGATGC -ACGGAACCGATTACGGTATGAAGG -ACGGAACCGATTACGGTACAATGG -ACGGAACCGATTACGGTAATGAGG -ACGGAACCGATTACGGTAAATGGG -ACGGAACCGATTACGGTATCCTGA -ACGGAACCGATTACGGTATAGCGA -ACGGAACCGATTACGGTACACAGA -ACGGAACCGATTACGGTAGCAAGA -ACGGAACCGATTACGGTAGGTTGA -ACGGAACCGATTACGGTATCCGAT -ACGGAACCGATTACGGTATGGCAT -ACGGAACCGATTACGGTACGAGAT -ACGGAACCGATTACGGTATACCAC -ACGGAACCGATTACGGTACAGAAC -ACGGAACCGATTACGGTAGTCTAC -ACGGAACCGATTACGGTAACGTAC -ACGGAACCGATTACGGTAAGTGAC -ACGGAACCGATTACGGTACTGTAG -ACGGAACCGATTACGGTACCTAAG -ACGGAACCGATTACGGTAGTTCAG -ACGGAACCGATTACGGTAGCATAG -ACGGAACCGATTACGGTAGACAAG -ACGGAACCGATTACGGTAAAGCAG -ACGGAACCGATTACGGTACGTCAA -ACGGAACCGATTACGGTAGCTGAA -ACGGAACCGATTACGGTAAGTACG -ACGGAACCGATTACGGTAATCCGA -ACGGAACCGATTACGGTAATGGGA -ACGGAACCGATTACGGTAGTGCAA -ACGGAACCGATTACGGTAGAGGAA -ACGGAACCGATTACGGTACAGGTA -ACGGAACCGATTACGGTAGACTCT -ACGGAACCGATTACGGTAAGTCCT -ACGGAACCGATTACGGTATAAGCC -ACGGAACCGATTACGGTAATAGCC -ACGGAACCGATTACGGTATAACCG -ACGGAACCGATTACGGTAATGCCA -ACGGAACCGATTTCGACTGGAAAC -ACGGAACCGATTTCGACTAACACC -ACGGAACCGATTTCGACTATCGAG -ACGGAACCGATTTCGACTCTCCTT -ACGGAACCGATTTCGACTCCTGTT -ACGGAACCGATTTCGACTCGGTTT -ACGGAACCGATTTCGACTGTGGTT -ACGGAACCGATTTCGACTGCCTTT -ACGGAACCGATTTCGACTGGTCTT -ACGGAACCGATTTCGACTACGCTT -ACGGAACCGATTTCGACTAGCGTT -ACGGAACCGATTTCGACTTTCGTC -ACGGAACCGATTTCGACTTCTCTC -ACGGAACCGATTTCGACTTGGATC -ACGGAACCGATTTCGACTCACTTC -ACGGAACCGATTTCGACTGTACTC -ACGGAACCGATTTCGACTGATGTC -ACGGAACCGATTTCGACTACAGTC -ACGGAACCGATTTCGACTTTGCTG -ACGGAACCGATTTCGACTTCCATG -ACGGAACCGATTTCGACTTGTGTG -ACGGAACCGATTTCGACTCTAGTG -ACGGAACCGATTTCGACTCATCTG -ACGGAACCGATTTCGACTGAGTTG -ACGGAACCGATTTCGACTAGACTG -ACGGAACCGATTTCGACTTCGGTA -ACGGAACCGATTTCGACTTGCCTA -ACGGAACCGATTTCGACTCCACTA -ACGGAACCGATTTCGACTGGAGTA -ACGGAACCGATTTCGACTTCGTCT -ACGGAACCGATTTCGACTTGCACT -ACGGAACCGATTTCGACTCTGACT -ACGGAACCGATTTCGACTCAACCT -ACGGAACCGATTTCGACTGCTACT -ACGGAACCGATTTCGACTGGATCT -ACGGAACCGATTTCGACTAAGGCT -ACGGAACCGATTTCGACTTCAACC -ACGGAACCGATTTCGACTTGTTCC -ACGGAACCGATTTCGACTATTCCC -ACGGAACCGATTTCGACTTTCTCG -ACGGAACCGATTTCGACTTAGACG -ACGGAACCGATTTCGACTGTAACG -ACGGAACCGATTTCGACTACTTCG -ACGGAACCGATTTCGACTTACGCA -ACGGAACCGATTTCGACTCTTGCA -ACGGAACCGATTTCGACTCGAACA -ACGGAACCGATTTCGACTCAGTCA -ACGGAACCGATTTCGACTGATCCA -ACGGAACCGATTTCGACTACGACA -ACGGAACCGATTTCGACTAGCTCA -ACGGAACCGATTTCGACTTCACGT -ACGGAACCGATTTCGACTCGTAGT -ACGGAACCGATTTCGACTGTCAGT -ACGGAACCGATTTCGACTGAAGGT -ACGGAACCGATTTCGACTAACCGT -ACGGAACCGATTTCGACTTTGTGC -ACGGAACCGATTTCGACTCTAAGC -ACGGAACCGATTTCGACTACTAGC -ACGGAACCGATTTCGACTAGATGC -ACGGAACCGATTTCGACTTGAAGG -ACGGAACCGATTTCGACTCAATGG -ACGGAACCGATTTCGACTATGAGG -ACGGAACCGATTTCGACTAATGGG -ACGGAACCGATTTCGACTTCCTGA -ACGGAACCGATTTCGACTTAGCGA -ACGGAACCGATTTCGACTCACAGA -ACGGAACCGATTTCGACTGCAAGA -ACGGAACCGATTTCGACTGGTTGA -ACGGAACCGATTTCGACTTCCGAT -ACGGAACCGATTTCGACTTGGCAT -ACGGAACCGATTTCGACTCGAGAT -ACGGAACCGATTTCGACTTACCAC -ACGGAACCGATTTCGACTCAGAAC -ACGGAACCGATTTCGACTGTCTAC -ACGGAACCGATTTCGACTACGTAC -ACGGAACCGATTTCGACTAGTGAC -ACGGAACCGATTTCGACTCTGTAG -ACGGAACCGATTTCGACTCCTAAG -ACGGAACCGATTTCGACTGTTCAG -ACGGAACCGATTTCGACTGCATAG -ACGGAACCGATTTCGACTGACAAG -ACGGAACCGATTTCGACTAAGCAG -ACGGAACCGATTTCGACTCGTCAA -ACGGAACCGATTTCGACTGCTGAA -ACGGAACCGATTTCGACTAGTACG -ACGGAACCGATTTCGACTATCCGA -ACGGAACCGATTTCGACTATGGGA -ACGGAACCGATTTCGACTGTGCAA -ACGGAACCGATTTCGACTGAGGAA -ACGGAACCGATTTCGACTCAGGTA -ACGGAACCGATTTCGACTGACTCT -ACGGAACCGATTTCGACTAGTCCT -ACGGAACCGATTTCGACTTAAGCC -ACGGAACCGATTTCGACTATAGCC -ACGGAACCGATTTCGACTTAACCG -ACGGAACCGATTTCGACTATGCCA -ACGGAACCGATTGCATACGGAAAC -ACGGAACCGATTGCATACAACACC -ACGGAACCGATTGCATACATCGAG -ACGGAACCGATTGCATACCTCCTT -ACGGAACCGATTGCATACCCTGTT -ACGGAACCGATTGCATACCGGTTT -ACGGAACCGATTGCATACGTGGTT -ACGGAACCGATTGCATACGCCTTT -ACGGAACCGATTGCATACGGTCTT -ACGGAACCGATTGCATACACGCTT -ACGGAACCGATTGCATACAGCGTT -ACGGAACCGATTGCATACTTCGTC -ACGGAACCGATTGCATACTCTCTC -ACGGAACCGATTGCATACTGGATC -ACGGAACCGATTGCATACCACTTC -ACGGAACCGATTGCATACGTACTC -ACGGAACCGATTGCATACGATGTC -ACGGAACCGATTGCATACACAGTC -ACGGAACCGATTGCATACTTGCTG -ACGGAACCGATTGCATACTCCATG -ACGGAACCGATTGCATACTGTGTG -ACGGAACCGATTGCATACCTAGTG -ACGGAACCGATTGCATACCATCTG -ACGGAACCGATTGCATACGAGTTG -ACGGAACCGATTGCATACAGACTG -ACGGAACCGATTGCATACTCGGTA -ACGGAACCGATTGCATACTGCCTA -ACGGAACCGATTGCATACCCACTA -ACGGAACCGATTGCATACGGAGTA -ACGGAACCGATTGCATACTCGTCT -ACGGAACCGATTGCATACTGCACT -ACGGAACCGATTGCATACCTGACT -ACGGAACCGATTGCATACCAACCT -ACGGAACCGATTGCATACGCTACT -ACGGAACCGATTGCATACGGATCT -ACGGAACCGATTGCATACAAGGCT -ACGGAACCGATTGCATACTCAACC -ACGGAACCGATTGCATACTGTTCC -ACGGAACCGATTGCATACATTCCC -ACGGAACCGATTGCATACTTCTCG -ACGGAACCGATTGCATACTAGACG -ACGGAACCGATTGCATACGTAACG -ACGGAACCGATTGCATACACTTCG -ACGGAACCGATTGCATACTACGCA -ACGGAACCGATTGCATACCTTGCA -ACGGAACCGATTGCATACCGAACA -ACGGAACCGATTGCATACCAGTCA -ACGGAACCGATTGCATACGATCCA -ACGGAACCGATTGCATACACGACA -ACGGAACCGATTGCATACAGCTCA -ACGGAACCGATTGCATACTCACGT -ACGGAACCGATTGCATACCGTAGT -ACGGAACCGATTGCATACGTCAGT -ACGGAACCGATTGCATACGAAGGT -ACGGAACCGATTGCATACAACCGT -ACGGAACCGATTGCATACTTGTGC -ACGGAACCGATTGCATACCTAAGC -ACGGAACCGATTGCATACACTAGC -ACGGAACCGATTGCATACAGATGC -ACGGAACCGATTGCATACTGAAGG -ACGGAACCGATTGCATACCAATGG -ACGGAACCGATTGCATACATGAGG -ACGGAACCGATTGCATACAATGGG -ACGGAACCGATTGCATACTCCTGA -ACGGAACCGATTGCATACTAGCGA -ACGGAACCGATTGCATACCACAGA -ACGGAACCGATTGCATACGCAAGA -ACGGAACCGATTGCATACGGTTGA -ACGGAACCGATTGCATACTCCGAT -ACGGAACCGATTGCATACTGGCAT -ACGGAACCGATTGCATACCGAGAT -ACGGAACCGATTGCATACTACCAC -ACGGAACCGATTGCATACCAGAAC -ACGGAACCGATTGCATACGTCTAC -ACGGAACCGATTGCATACACGTAC -ACGGAACCGATTGCATACAGTGAC -ACGGAACCGATTGCATACCTGTAG -ACGGAACCGATTGCATACCCTAAG -ACGGAACCGATTGCATACGTTCAG -ACGGAACCGATTGCATACGCATAG -ACGGAACCGATTGCATACGACAAG -ACGGAACCGATTGCATACAAGCAG -ACGGAACCGATTGCATACCGTCAA -ACGGAACCGATTGCATACGCTGAA -ACGGAACCGATTGCATACAGTACG -ACGGAACCGATTGCATACATCCGA -ACGGAACCGATTGCATACATGGGA -ACGGAACCGATTGCATACGTGCAA -ACGGAACCGATTGCATACGAGGAA -ACGGAACCGATTGCATACCAGGTA -ACGGAACCGATTGCATACGACTCT -ACGGAACCGATTGCATACAGTCCT -ACGGAACCGATTGCATACTAAGCC -ACGGAACCGATTGCATACATAGCC -ACGGAACCGATTGCATACTAACCG -ACGGAACCGATTGCATACATGCCA -ACGGAACCGATTGCACTTGGAAAC -ACGGAACCGATTGCACTTAACACC -ACGGAACCGATTGCACTTATCGAG -ACGGAACCGATTGCACTTCTCCTT -ACGGAACCGATTGCACTTCCTGTT -ACGGAACCGATTGCACTTCGGTTT -ACGGAACCGATTGCACTTGTGGTT -ACGGAACCGATTGCACTTGCCTTT -ACGGAACCGATTGCACTTGGTCTT -ACGGAACCGATTGCACTTACGCTT -ACGGAACCGATTGCACTTAGCGTT -ACGGAACCGATTGCACTTTTCGTC -ACGGAACCGATTGCACTTTCTCTC -ACGGAACCGATTGCACTTTGGATC -ACGGAACCGATTGCACTTCACTTC -ACGGAACCGATTGCACTTGTACTC -ACGGAACCGATTGCACTTGATGTC -ACGGAACCGATTGCACTTACAGTC -ACGGAACCGATTGCACTTTTGCTG -ACGGAACCGATTGCACTTTCCATG -ACGGAACCGATTGCACTTTGTGTG -ACGGAACCGATTGCACTTCTAGTG -ACGGAACCGATTGCACTTCATCTG -ACGGAACCGATTGCACTTGAGTTG -ACGGAACCGATTGCACTTAGACTG -ACGGAACCGATTGCACTTTCGGTA -ACGGAACCGATTGCACTTTGCCTA -ACGGAACCGATTGCACTTCCACTA -ACGGAACCGATTGCACTTGGAGTA -ACGGAACCGATTGCACTTTCGTCT -ACGGAACCGATTGCACTTTGCACT -ACGGAACCGATTGCACTTCTGACT -ACGGAACCGATTGCACTTCAACCT -ACGGAACCGATTGCACTTGCTACT -ACGGAACCGATTGCACTTGGATCT -ACGGAACCGATTGCACTTAAGGCT -ACGGAACCGATTGCACTTTCAACC -ACGGAACCGATTGCACTTTGTTCC -ACGGAACCGATTGCACTTATTCCC -ACGGAACCGATTGCACTTTTCTCG -ACGGAACCGATTGCACTTTAGACG -ACGGAACCGATTGCACTTGTAACG -ACGGAACCGATTGCACTTACTTCG -ACGGAACCGATTGCACTTTACGCA -ACGGAACCGATTGCACTTCTTGCA -ACGGAACCGATTGCACTTCGAACA -ACGGAACCGATTGCACTTCAGTCA -ACGGAACCGATTGCACTTGATCCA -ACGGAACCGATTGCACTTACGACA -ACGGAACCGATTGCACTTAGCTCA -ACGGAACCGATTGCACTTTCACGT -ACGGAACCGATTGCACTTCGTAGT -ACGGAACCGATTGCACTTGTCAGT -ACGGAACCGATTGCACTTGAAGGT -ACGGAACCGATTGCACTTAACCGT -ACGGAACCGATTGCACTTTTGTGC -ACGGAACCGATTGCACTTCTAAGC -ACGGAACCGATTGCACTTACTAGC -ACGGAACCGATTGCACTTAGATGC -ACGGAACCGATTGCACTTTGAAGG -ACGGAACCGATTGCACTTCAATGG -ACGGAACCGATTGCACTTATGAGG -ACGGAACCGATTGCACTTAATGGG -ACGGAACCGATTGCACTTTCCTGA -ACGGAACCGATTGCACTTTAGCGA -ACGGAACCGATTGCACTTCACAGA -ACGGAACCGATTGCACTTGCAAGA -ACGGAACCGATTGCACTTGGTTGA -ACGGAACCGATTGCACTTTCCGAT -ACGGAACCGATTGCACTTTGGCAT -ACGGAACCGATTGCACTTCGAGAT -ACGGAACCGATTGCACTTTACCAC -ACGGAACCGATTGCACTTCAGAAC -ACGGAACCGATTGCACTTGTCTAC -ACGGAACCGATTGCACTTACGTAC -ACGGAACCGATTGCACTTAGTGAC -ACGGAACCGATTGCACTTCTGTAG -ACGGAACCGATTGCACTTCCTAAG -ACGGAACCGATTGCACTTGTTCAG -ACGGAACCGATTGCACTTGCATAG -ACGGAACCGATTGCACTTGACAAG -ACGGAACCGATTGCACTTAAGCAG -ACGGAACCGATTGCACTTCGTCAA -ACGGAACCGATTGCACTTGCTGAA -ACGGAACCGATTGCACTTAGTACG -ACGGAACCGATTGCACTTATCCGA -ACGGAACCGATTGCACTTATGGGA -ACGGAACCGATTGCACTTGTGCAA -ACGGAACCGATTGCACTTGAGGAA -ACGGAACCGATTGCACTTCAGGTA -ACGGAACCGATTGCACTTGACTCT -ACGGAACCGATTGCACTTAGTCCT -ACGGAACCGATTGCACTTTAAGCC -ACGGAACCGATTGCACTTATAGCC -ACGGAACCGATTGCACTTTAACCG -ACGGAACCGATTGCACTTATGCCA -ACGGAACCGATTACACGAGGAAAC -ACGGAACCGATTACACGAAACACC -ACGGAACCGATTACACGAATCGAG -ACGGAACCGATTACACGACTCCTT -ACGGAACCGATTACACGACCTGTT -ACGGAACCGATTACACGACGGTTT -ACGGAACCGATTACACGAGTGGTT -ACGGAACCGATTACACGAGCCTTT -ACGGAACCGATTACACGAGGTCTT -ACGGAACCGATTACACGAACGCTT -ACGGAACCGATTACACGAAGCGTT -ACGGAACCGATTACACGATTCGTC -ACGGAACCGATTACACGATCTCTC -ACGGAACCGATTACACGATGGATC -ACGGAACCGATTACACGACACTTC -ACGGAACCGATTACACGAGTACTC -ACGGAACCGATTACACGAGATGTC -ACGGAACCGATTACACGAACAGTC -ACGGAACCGATTACACGATTGCTG -ACGGAACCGATTACACGATCCATG -ACGGAACCGATTACACGATGTGTG -ACGGAACCGATTACACGACTAGTG -ACGGAACCGATTACACGACATCTG -ACGGAACCGATTACACGAGAGTTG -ACGGAACCGATTACACGAAGACTG -ACGGAACCGATTACACGATCGGTA -ACGGAACCGATTACACGATGCCTA -ACGGAACCGATTACACGACCACTA -ACGGAACCGATTACACGAGGAGTA -ACGGAACCGATTACACGATCGTCT -ACGGAACCGATTACACGATGCACT -ACGGAACCGATTACACGACTGACT -ACGGAACCGATTACACGACAACCT -ACGGAACCGATTACACGAGCTACT -ACGGAACCGATTACACGAGGATCT -ACGGAACCGATTACACGAAAGGCT -ACGGAACCGATTACACGATCAACC -ACGGAACCGATTACACGATGTTCC -ACGGAACCGATTACACGAATTCCC -ACGGAACCGATTACACGATTCTCG -ACGGAACCGATTACACGATAGACG -ACGGAACCGATTACACGAGTAACG -ACGGAACCGATTACACGAACTTCG -ACGGAACCGATTACACGATACGCA -ACGGAACCGATTACACGACTTGCA -ACGGAACCGATTACACGACGAACA -ACGGAACCGATTACACGACAGTCA -ACGGAACCGATTACACGAGATCCA -ACGGAACCGATTACACGAACGACA -ACGGAACCGATTACACGAAGCTCA -ACGGAACCGATTACACGATCACGT -ACGGAACCGATTACACGACGTAGT -ACGGAACCGATTACACGAGTCAGT -ACGGAACCGATTACACGAGAAGGT -ACGGAACCGATTACACGAAACCGT -ACGGAACCGATTACACGATTGTGC -ACGGAACCGATTACACGACTAAGC -ACGGAACCGATTACACGAACTAGC -ACGGAACCGATTACACGAAGATGC -ACGGAACCGATTACACGATGAAGG -ACGGAACCGATTACACGACAATGG -ACGGAACCGATTACACGAATGAGG -ACGGAACCGATTACACGAAATGGG -ACGGAACCGATTACACGATCCTGA -ACGGAACCGATTACACGATAGCGA -ACGGAACCGATTACACGACACAGA -ACGGAACCGATTACACGAGCAAGA -ACGGAACCGATTACACGAGGTTGA -ACGGAACCGATTACACGATCCGAT -ACGGAACCGATTACACGATGGCAT -ACGGAACCGATTACACGACGAGAT -ACGGAACCGATTACACGATACCAC -ACGGAACCGATTACACGACAGAAC -ACGGAACCGATTACACGAGTCTAC -ACGGAACCGATTACACGAACGTAC -ACGGAACCGATTACACGAAGTGAC -ACGGAACCGATTACACGACTGTAG -ACGGAACCGATTACACGACCTAAG -ACGGAACCGATTACACGAGTTCAG -ACGGAACCGATTACACGAGCATAG -ACGGAACCGATTACACGAGACAAG -ACGGAACCGATTACACGAAAGCAG -ACGGAACCGATTACACGACGTCAA -ACGGAACCGATTACACGAGCTGAA -ACGGAACCGATTACACGAAGTACG -ACGGAACCGATTACACGAATCCGA -ACGGAACCGATTACACGAATGGGA -ACGGAACCGATTACACGAGTGCAA -ACGGAACCGATTACACGAGAGGAA -ACGGAACCGATTACACGACAGGTA -ACGGAACCGATTACACGAGACTCT -ACGGAACCGATTACACGAAGTCCT -ACGGAACCGATTACACGATAAGCC -ACGGAACCGATTACACGAATAGCC -ACGGAACCGATTACACGATAACCG -ACGGAACCGATTACACGAATGCCA -ACGGAACCGATTTCACAGGGAAAC -ACGGAACCGATTTCACAGAACACC -ACGGAACCGATTTCACAGATCGAG -ACGGAACCGATTTCACAGCTCCTT -ACGGAACCGATTTCACAGCCTGTT -ACGGAACCGATTTCACAGCGGTTT -ACGGAACCGATTTCACAGGTGGTT -ACGGAACCGATTTCACAGGCCTTT -ACGGAACCGATTTCACAGGGTCTT -ACGGAACCGATTTCACAGACGCTT -ACGGAACCGATTTCACAGAGCGTT -ACGGAACCGATTTCACAGTTCGTC -ACGGAACCGATTTCACAGTCTCTC -ACGGAACCGATTTCACAGTGGATC -ACGGAACCGATTTCACAGCACTTC -ACGGAACCGATTTCACAGGTACTC -ACGGAACCGATTTCACAGGATGTC -ACGGAACCGATTTCACAGACAGTC -ACGGAACCGATTTCACAGTTGCTG -ACGGAACCGATTTCACAGTCCATG -ACGGAACCGATTTCACAGTGTGTG -ACGGAACCGATTTCACAGCTAGTG -ACGGAACCGATTTCACAGCATCTG -ACGGAACCGATTTCACAGGAGTTG -ACGGAACCGATTTCACAGAGACTG -ACGGAACCGATTTCACAGTCGGTA -ACGGAACCGATTTCACAGTGCCTA -ACGGAACCGATTTCACAGCCACTA -ACGGAACCGATTTCACAGGGAGTA -ACGGAACCGATTTCACAGTCGTCT -ACGGAACCGATTTCACAGTGCACT -ACGGAACCGATTTCACAGCTGACT -ACGGAACCGATTTCACAGCAACCT -ACGGAACCGATTTCACAGGCTACT -ACGGAACCGATTTCACAGGGATCT -ACGGAACCGATTTCACAGAAGGCT -ACGGAACCGATTTCACAGTCAACC -ACGGAACCGATTTCACAGTGTTCC -ACGGAACCGATTTCACAGATTCCC -ACGGAACCGATTTCACAGTTCTCG -ACGGAACCGATTTCACAGTAGACG -ACGGAACCGATTTCACAGGTAACG -ACGGAACCGATTTCACAGACTTCG -ACGGAACCGATTTCACAGTACGCA -ACGGAACCGATTTCACAGCTTGCA -ACGGAACCGATTTCACAGCGAACA -ACGGAACCGATTTCACAGCAGTCA -ACGGAACCGATTTCACAGGATCCA -ACGGAACCGATTTCACAGACGACA -ACGGAACCGATTTCACAGAGCTCA -ACGGAACCGATTTCACAGTCACGT -ACGGAACCGATTTCACAGCGTAGT -ACGGAACCGATTTCACAGGTCAGT -ACGGAACCGATTTCACAGGAAGGT -ACGGAACCGATTTCACAGAACCGT -ACGGAACCGATTTCACAGTTGTGC -ACGGAACCGATTTCACAGCTAAGC -ACGGAACCGATTTCACAGACTAGC -ACGGAACCGATTTCACAGAGATGC -ACGGAACCGATTTCACAGTGAAGG -ACGGAACCGATTTCACAGCAATGG -ACGGAACCGATTTCACAGATGAGG -ACGGAACCGATTTCACAGAATGGG -ACGGAACCGATTTCACAGTCCTGA -ACGGAACCGATTTCACAGTAGCGA -ACGGAACCGATTTCACAGCACAGA -ACGGAACCGATTTCACAGGCAAGA -ACGGAACCGATTTCACAGGGTTGA -ACGGAACCGATTTCACAGTCCGAT -ACGGAACCGATTTCACAGTGGCAT -ACGGAACCGATTTCACAGCGAGAT -ACGGAACCGATTTCACAGTACCAC -ACGGAACCGATTTCACAGCAGAAC -ACGGAACCGATTTCACAGGTCTAC -ACGGAACCGATTTCACAGACGTAC -ACGGAACCGATTTCACAGAGTGAC -ACGGAACCGATTTCACAGCTGTAG -ACGGAACCGATTTCACAGCCTAAG -ACGGAACCGATTTCACAGGTTCAG -ACGGAACCGATTTCACAGGCATAG -ACGGAACCGATTTCACAGGACAAG -ACGGAACCGATTTCACAGAAGCAG -ACGGAACCGATTTCACAGCGTCAA -ACGGAACCGATTTCACAGGCTGAA -ACGGAACCGATTTCACAGAGTACG -ACGGAACCGATTTCACAGATCCGA -ACGGAACCGATTTCACAGATGGGA -ACGGAACCGATTTCACAGGTGCAA -ACGGAACCGATTTCACAGGAGGAA -ACGGAACCGATTTCACAGCAGGTA -ACGGAACCGATTTCACAGGACTCT -ACGGAACCGATTTCACAGAGTCCT -ACGGAACCGATTTCACAGTAAGCC -ACGGAACCGATTTCACAGATAGCC -ACGGAACCGATTTCACAGTAACCG -ACGGAACCGATTTCACAGATGCCA -ACGGAACCGATTCCAGATGGAAAC -ACGGAACCGATTCCAGATAACACC -ACGGAACCGATTCCAGATATCGAG -ACGGAACCGATTCCAGATCTCCTT -ACGGAACCGATTCCAGATCCTGTT -ACGGAACCGATTCCAGATCGGTTT -ACGGAACCGATTCCAGATGTGGTT -ACGGAACCGATTCCAGATGCCTTT -ACGGAACCGATTCCAGATGGTCTT -ACGGAACCGATTCCAGATACGCTT -ACGGAACCGATTCCAGATAGCGTT -ACGGAACCGATTCCAGATTTCGTC -ACGGAACCGATTCCAGATTCTCTC -ACGGAACCGATTCCAGATTGGATC -ACGGAACCGATTCCAGATCACTTC -ACGGAACCGATTCCAGATGTACTC -ACGGAACCGATTCCAGATGATGTC -ACGGAACCGATTCCAGATACAGTC -ACGGAACCGATTCCAGATTTGCTG -ACGGAACCGATTCCAGATTCCATG -ACGGAACCGATTCCAGATTGTGTG -ACGGAACCGATTCCAGATCTAGTG -ACGGAACCGATTCCAGATCATCTG -ACGGAACCGATTCCAGATGAGTTG -ACGGAACCGATTCCAGATAGACTG -ACGGAACCGATTCCAGATTCGGTA -ACGGAACCGATTCCAGATTGCCTA -ACGGAACCGATTCCAGATCCACTA -ACGGAACCGATTCCAGATGGAGTA -ACGGAACCGATTCCAGATTCGTCT -ACGGAACCGATTCCAGATTGCACT -ACGGAACCGATTCCAGATCTGACT -ACGGAACCGATTCCAGATCAACCT -ACGGAACCGATTCCAGATGCTACT -ACGGAACCGATTCCAGATGGATCT -ACGGAACCGATTCCAGATAAGGCT -ACGGAACCGATTCCAGATTCAACC -ACGGAACCGATTCCAGATTGTTCC -ACGGAACCGATTCCAGATATTCCC -ACGGAACCGATTCCAGATTTCTCG -ACGGAACCGATTCCAGATTAGACG -ACGGAACCGATTCCAGATGTAACG -ACGGAACCGATTCCAGATACTTCG -ACGGAACCGATTCCAGATTACGCA -ACGGAACCGATTCCAGATCTTGCA -ACGGAACCGATTCCAGATCGAACA -ACGGAACCGATTCCAGATCAGTCA -ACGGAACCGATTCCAGATGATCCA -ACGGAACCGATTCCAGATACGACA -ACGGAACCGATTCCAGATAGCTCA -ACGGAACCGATTCCAGATTCACGT -ACGGAACCGATTCCAGATCGTAGT -ACGGAACCGATTCCAGATGTCAGT -ACGGAACCGATTCCAGATGAAGGT -ACGGAACCGATTCCAGATAACCGT -ACGGAACCGATTCCAGATTTGTGC -ACGGAACCGATTCCAGATCTAAGC -ACGGAACCGATTCCAGATACTAGC -ACGGAACCGATTCCAGATAGATGC -ACGGAACCGATTCCAGATTGAAGG -ACGGAACCGATTCCAGATCAATGG -ACGGAACCGATTCCAGATATGAGG -ACGGAACCGATTCCAGATAATGGG -ACGGAACCGATTCCAGATTCCTGA -ACGGAACCGATTCCAGATTAGCGA -ACGGAACCGATTCCAGATCACAGA -ACGGAACCGATTCCAGATGCAAGA -ACGGAACCGATTCCAGATGGTTGA -ACGGAACCGATTCCAGATTCCGAT -ACGGAACCGATTCCAGATTGGCAT -ACGGAACCGATTCCAGATCGAGAT -ACGGAACCGATTCCAGATTACCAC -ACGGAACCGATTCCAGATCAGAAC -ACGGAACCGATTCCAGATGTCTAC -ACGGAACCGATTCCAGATACGTAC -ACGGAACCGATTCCAGATAGTGAC -ACGGAACCGATTCCAGATCTGTAG -ACGGAACCGATTCCAGATCCTAAG -ACGGAACCGATTCCAGATGTTCAG -ACGGAACCGATTCCAGATGCATAG -ACGGAACCGATTCCAGATGACAAG -ACGGAACCGATTCCAGATAAGCAG -ACGGAACCGATTCCAGATCGTCAA -ACGGAACCGATTCCAGATGCTGAA -ACGGAACCGATTCCAGATAGTACG -ACGGAACCGATTCCAGATATCCGA -ACGGAACCGATTCCAGATATGGGA -ACGGAACCGATTCCAGATGTGCAA -ACGGAACCGATTCCAGATGAGGAA -ACGGAACCGATTCCAGATCAGGTA -ACGGAACCGATTCCAGATGACTCT -ACGGAACCGATTCCAGATAGTCCT -ACGGAACCGATTCCAGATTAAGCC -ACGGAACCGATTCCAGATATAGCC -ACGGAACCGATTCCAGATTAACCG -ACGGAACCGATTCCAGATATGCCA -ACGGAACCGATTACAACGGGAAAC -ACGGAACCGATTACAACGAACACC -ACGGAACCGATTACAACGATCGAG -ACGGAACCGATTACAACGCTCCTT -ACGGAACCGATTACAACGCCTGTT -ACGGAACCGATTACAACGCGGTTT -ACGGAACCGATTACAACGGTGGTT -ACGGAACCGATTACAACGGCCTTT -ACGGAACCGATTACAACGGGTCTT -ACGGAACCGATTACAACGACGCTT -ACGGAACCGATTACAACGAGCGTT -ACGGAACCGATTACAACGTTCGTC -ACGGAACCGATTACAACGTCTCTC -ACGGAACCGATTACAACGTGGATC -ACGGAACCGATTACAACGCACTTC -ACGGAACCGATTACAACGGTACTC -ACGGAACCGATTACAACGGATGTC -ACGGAACCGATTACAACGACAGTC -ACGGAACCGATTACAACGTTGCTG -ACGGAACCGATTACAACGTCCATG -ACGGAACCGATTACAACGTGTGTG -ACGGAACCGATTACAACGCTAGTG -ACGGAACCGATTACAACGCATCTG -ACGGAACCGATTACAACGGAGTTG -ACGGAACCGATTACAACGAGACTG -ACGGAACCGATTACAACGTCGGTA -ACGGAACCGATTACAACGTGCCTA -ACGGAACCGATTACAACGCCACTA -ACGGAACCGATTACAACGGGAGTA -ACGGAACCGATTACAACGTCGTCT -ACGGAACCGATTACAACGTGCACT -ACGGAACCGATTACAACGCTGACT -ACGGAACCGATTACAACGCAACCT -ACGGAACCGATTACAACGGCTACT -ACGGAACCGATTACAACGGGATCT -ACGGAACCGATTACAACGAAGGCT -ACGGAACCGATTACAACGTCAACC -ACGGAACCGATTACAACGTGTTCC -ACGGAACCGATTACAACGATTCCC -ACGGAACCGATTACAACGTTCTCG -ACGGAACCGATTACAACGTAGACG -ACGGAACCGATTACAACGGTAACG -ACGGAACCGATTACAACGACTTCG -ACGGAACCGATTACAACGTACGCA -ACGGAACCGATTACAACGCTTGCA -ACGGAACCGATTACAACGCGAACA -ACGGAACCGATTACAACGCAGTCA -ACGGAACCGATTACAACGGATCCA -ACGGAACCGATTACAACGACGACA -ACGGAACCGATTACAACGAGCTCA -ACGGAACCGATTACAACGTCACGT -ACGGAACCGATTACAACGCGTAGT -ACGGAACCGATTACAACGGTCAGT -ACGGAACCGATTACAACGGAAGGT -ACGGAACCGATTACAACGAACCGT -ACGGAACCGATTACAACGTTGTGC -ACGGAACCGATTACAACGCTAAGC -ACGGAACCGATTACAACGACTAGC -ACGGAACCGATTACAACGAGATGC -ACGGAACCGATTACAACGTGAAGG -ACGGAACCGATTACAACGCAATGG -ACGGAACCGATTACAACGATGAGG -ACGGAACCGATTACAACGAATGGG -ACGGAACCGATTACAACGTCCTGA -ACGGAACCGATTACAACGTAGCGA -ACGGAACCGATTACAACGCACAGA -ACGGAACCGATTACAACGGCAAGA -ACGGAACCGATTACAACGGGTTGA -ACGGAACCGATTACAACGTCCGAT -ACGGAACCGATTACAACGTGGCAT -ACGGAACCGATTACAACGCGAGAT -ACGGAACCGATTACAACGTACCAC -ACGGAACCGATTACAACGCAGAAC -ACGGAACCGATTACAACGGTCTAC -ACGGAACCGATTACAACGACGTAC -ACGGAACCGATTACAACGAGTGAC -ACGGAACCGATTACAACGCTGTAG -ACGGAACCGATTACAACGCCTAAG -ACGGAACCGATTACAACGGTTCAG -ACGGAACCGATTACAACGGCATAG -ACGGAACCGATTACAACGGACAAG -ACGGAACCGATTACAACGAAGCAG -ACGGAACCGATTACAACGCGTCAA -ACGGAACCGATTACAACGGCTGAA -ACGGAACCGATTACAACGAGTACG -ACGGAACCGATTACAACGATCCGA -ACGGAACCGATTACAACGATGGGA -ACGGAACCGATTACAACGGTGCAA -ACGGAACCGATTACAACGGAGGAA -ACGGAACCGATTACAACGCAGGTA -ACGGAACCGATTACAACGGACTCT -ACGGAACCGATTACAACGAGTCCT -ACGGAACCGATTACAACGTAAGCC -ACGGAACCGATTACAACGATAGCC -ACGGAACCGATTACAACGTAACCG -ACGGAACCGATTACAACGATGCCA -ACGGAACCGATTTCAAGCGGAAAC -ACGGAACCGATTTCAAGCAACACC -ACGGAACCGATTTCAAGCATCGAG -ACGGAACCGATTTCAAGCCTCCTT -ACGGAACCGATTTCAAGCCCTGTT -ACGGAACCGATTTCAAGCCGGTTT -ACGGAACCGATTTCAAGCGTGGTT -ACGGAACCGATTTCAAGCGCCTTT -ACGGAACCGATTTCAAGCGGTCTT -ACGGAACCGATTTCAAGCACGCTT -ACGGAACCGATTTCAAGCAGCGTT -ACGGAACCGATTTCAAGCTTCGTC -ACGGAACCGATTTCAAGCTCTCTC -ACGGAACCGATTTCAAGCTGGATC -ACGGAACCGATTTCAAGCCACTTC -ACGGAACCGATTTCAAGCGTACTC -ACGGAACCGATTTCAAGCGATGTC -ACGGAACCGATTTCAAGCACAGTC -ACGGAACCGATTTCAAGCTTGCTG -ACGGAACCGATTTCAAGCTCCATG -ACGGAACCGATTTCAAGCTGTGTG -ACGGAACCGATTTCAAGCCTAGTG -ACGGAACCGATTTCAAGCCATCTG -ACGGAACCGATTTCAAGCGAGTTG -ACGGAACCGATTTCAAGCAGACTG -ACGGAACCGATTTCAAGCTCGGTA -ACGGAACCGATTTCAAGCTGCCTA -ACGGAACCGATTTCAAGCCCACTA -ACGGAACCGATTTCAAGCGGAGTA -ACGGAACCGATTTCAAGCTCGTCT -ACGGAACCGATTTCAAGCTGCACT -ACGGAACCGATTTCAAGCCTGACT -ACGGAACCGATTTCAAGCCAACCT -ACGGAACCGATTTCAAGCGCTACT -ACGGAACCGATTTCAAGCGGATCT -ACGGAACCGATTTCAAGCAAGGCT -ACGGAACCGATTTCAAGCTCAACC -ACGGAACCGATTTCAAGCTGTTCC -ACGGAACCGATTTCAAGCATTCCC -ACGGAACCGATTTCAAGCTTCTCG -ACGGAACCGATTTCAAGCTAGACG -ACGGAACCGATTTCAAGCGTAACG -ACGGAACCGATTTCAAGCACTTCG -ACGGAACCGATTTCAAGCTACGCA -ACGGAACCGATTTCAAGCCTTGCA -ACGGAACCGATTTCAAGCCGAACA -ACGGAACCGATTTCAAGCCAGTCA -ACGGAACCGATTTCAAGCGATCCA -ACGGAACCGATTTCAAGCACGACA -ACGGAACCGATTTCAAGCAGCTCA -ACGGAACCGATTTCAAGCTCACGT -ACGGAACCGATTTCAAGCCGTAGT -ACGGAACCGATTTCAAGCGTCAGT -ACGGAACCGATTTCAAGCGAAGGT -ACGGAACCGATTTCAAGCAACCGT -ACGGAACCGATTTCAAGCTTGTGC -ACGGAACCGATTTCAAGCCTAAGC -ACGGAACCGATTTCAAGCACTAGC -ACGGAACCGATTTCAAGCAGATGC -ACGGAACCGATTTCAAGCTGAAGG -ACGGAACCGATTTCAAGCCAATGG -ACGGAACCGATTTCAAGCATGAGG -ACGGAACCGATTTCAAGCAATGGG -ACGGAACCGATTTCAAGCTCCTGA -ACGGAACCGATTTCAAGCTAGCGA -ACGGAACCGATTTCAAGCCACAGA -ACGGAACCGATTTCAAGCGCAAGA -ACGGAACCGATTTCAAGCGGTTGA -ACGGAACCGATTTCAAGCTCCGAT -ACGGAACCGATTTCAAGCTGGCAT -ACGGAACCGATTTCAAGCCGAGAT -ACGGAACCGATTTCAAGCTACCAC -ACGGAACCGATTTCAAGCCAGAAC -ACGGAACCGATTTCAAGCGTCTAC -ACGGAACCGATTTCAAGCACGTAC -ACGGAACCGATTTCAAGCAGTGAC -ACGGAACCGATTTCAAGCCTGTAG -ACGGAACCGATTTCAAGCCCTAAG -ACGGAACCGATTTCAAGCGTTCAG -ACGGAACCGATTTCAAGCGCATAG -ACGGAACCGATTTCAAGCGACAAG -ACGGAACCGATTTCAAGCAAGCAG -ACGGAACCGATTTCAAGCCGTCAA -ACGGAACCGATTTCAAGCGCTGAA -ACGGAACCGATTTCAAGCAGTACG -ACGGAACCGATTTCAAGCATCCGA -ACGGAACCGATTTCAAGCATGGGA -ACGGAACCGATTTCAAGCGTGCAA -ACGGAACCGATTTCAAGCGAGGAA -ACGGAACCGATTTCAAGCCAGGTA -ACGGAACCGATTTCAAGCGACTCT -ACGGAACCGATTTCAAGCAGTCCT -ACGGAACCGATTTCAAGCTAAGCC -ACGGAACCGATTTCAAGCATAGCC -ACGGAACCGATTTCAAGCTAACCG -ACGGAACCGATTTCAAGCATGCCA -ACGGAACCGATTCGTTCAGGAAAC -ACGGAACCGATTCGTTCAAACACC -ACGGAACCGATTCGTTCAATCGAG -ACGGAACCGATTCGTTCACTCCTT -ACGGAACCGATTCGTTCACCTGTT -ACGGAACCGATTCGTTCACGGTTT -ACGGAACCGATTCGTTCAGTGGTT -ACGGAACCGATTCGTTCAGCCTTT -ACGGAACCGATTCGTTCAGGTCTT -ACGGAACCGATTCGTTCAACGCTT -ACGGAACCGATTCGTTCAAGCGTT -ACGGAACCGATTCGTTCATTCGTC -ACGGAACCGATTCGTTCATCTCTC -ACGGAACCGATTCGTTCATGGATC -ACGGAACCGATTCGTTCACACTTC -ACGGAACCGATTCGTTCAGTACTC -ACGGAACCGATTCGTTCAGATGTC -ACGGAACCGATTCGTTCAACAGTC -ACGGAACCGATTCGTTCATTGCTG -ACGGAACCGATTCGTTCATCCATG -ACGGAACCGATTCGTTCATGTGTG -ACGGAACCGATTCGTTCACTAGTG -ACGGAACCGATTCGTTCACATCTG -ACGGAACCGATTCGTTCAGAGTTG -ACGGAACCGATTCGTTCAAGACTG -ACGGAACCGATTCGTTCATCGGTA -ACGGAACCGATTCGTTCATGCCTA -ACGGAACCGATTCGTTCACCACTA -ACGGAACCGATTCGTTCAGGAGTA -ACGGAACCGATTCGTTCATCGTCT -ACGGAACCGATTCGTTCATGCACT -ACGGAACCGATTCGTTCACTGACT -ACGGAACCGATTCGTTCACAACCT -ACGGAACCGATTCGTTCAGCTACT -ACGGAACCGATTCGTTCAGGATCT -ACGGAACCGATTCGTTCAAAGGCT -ACGGAACCGATTCGTTCATCAACC -ACGGAACCGATTCGTTCATGTTCC -ACGGAACCGATTCGTTCAATTCCC -ACGGAACCGATTCGTTCATTCTCG -ACGGAACCGATTCGTTCATAGACG -ACGGAACCGATTCGTTCAGTAACG -ACGGAACCGATTCGTTCAACTTCG -ACGGAACCGATTCGTTCATACGCA -ACGGAACCGATTCGTTCACTTGCA -ACGGAACCGATTCGTTCACGAACA -ACGGAACCGATTCGTTCACAGTCA -ACGGAACCGATTCGTTCAGATCCA -ACGGAACCGATTCGTTCAACGACA -ACGGAACCGATTCGTTCAAGCTCA -ACGGAACCGATTCGTTCATCACGT -ACGGAACCGATTCGTTCACGTAGT -ACGGAACCGATTCGTTCAGTCAGT -ACGGAACCGATTCGTTCAGAAGGT -ACGGAACCGATTCGTTCAAACCGT -ACGGAACCGATTCGTTCATTGTGC -ACGGAACCGATTCGTTCACTAAGC -ACGGAACCGATTCGTTCAACTAGC -ACGGAACCGATTCGTTCAAGATGC -ACGGAACCGATTCGTTCATGAAGG -ACGGAACCGATTCGTTCACAATGG -ACGGAACCGATTCGTTCAATGAGG -ACGGAACCGATTCGTTCAAATGGG -ACGGAACCGATTCGTTCATCCTGA -ACGGAACCGATTCGTTCATAGCGA -ACGGAACCGATTCGTTCACACAGA -ACGGAACCGATTCGTTCAGCAAGA -ACGGAACCGATTCGTTCAGGTTGA -ACGGAACCGATTCGTTCATCCGAT -ACGGAACCGATTCGTTCATGGCAT -ACGGAACCGATTCGTTCACGAGAT -ACGGAACCGATTCGTTCATACCAC -ACGGAACCGATTCGTTCACAGAAC -ACGGAACCGATTCGTTCAGTCTAC -ACGGAACCGATTCGTTCAACGTAC -ACGGAACCGATTCGTTCAAGTGAC -ACGGAACCGATTCGTTCACTGTAG -ACGGAACCGATTCGTTCACCTAAG -ACGGAACCGATTCGTTCAGTTCAG -ACGGAACCGATTCGTTCAGCATAG -ACGGAACCGATTCGTTCAGACAAG -ACGGAACCGATTCGTTCAAAGCAG -ACGGAACCGATTCGTTCACGTCAA -ACGGAACCGATTCGTTCAGCTGAA -ACGGAACCGATTCGTTCAAGTACG -ACGGAACCGATTCGTTCAATCCGA -ACGGAACCGATTCGTTCAATGGGA -ACGGAACCGATTCGTTCAGTGCAA -ACGGAACCGATTCGTTCAGAGGAA -ACGGAACCGATTCGTTCACAGGTA -ACGGAACCGATTCGTTCAGACTCT -ACGGAACCGATTCGTTCAAGTCCT -ACGGAACCGATTCGTTCATAAGCC -ACGGAACCGATTCGTTCAATAGCC -ACGGAACCGATTCGTTCATAACCG -ACGGAACCGATTCGTTCAATGCCA -ACGGAACCGATTAGTCGTGGAAAC -ACGGAACCGATTAGTCGTAACACC -ACGGAACCGATTAGTCGTATCGAG -ACGGAACCGATTAGTCGTCTCCTT -ACGGAACCGATTAGTCGTCCTGTT -ACGGAACCGATTAGTCGTCGGTTT -ACGGAACCGATTAGTCGTGTGGTT -ACGGAACCGATTAGTCGTGCCTTT -ACGGAACCGATTAGTCGTGGTCTT -ACGGAACCGATTAGTCGTACGCTT -ACGGAACCGATTAGTCGTAGCGTT -ACGGAACCGATTAGTCGTTTCGTC -ACGGAACCGATTAGTCGTTCTCTC -ACGGAACCGATTAGTCGTTGGATC -ACGGAACCGATTAGTCGTCACTTC -ACGGAACCGATTAGTCGTGTACTC -ACGGAACCGATTAGTCGTGATGTC -ACGGAACCGATTAGTCGTACAGTC -ACGGAACCGATTAGTCGTTTGCTG -ACGGAACCGATTAGTCGTTCCATG -ACGGAACCGATTAGTCGTTGTGTG -ACGGAACCGATTAGTCGTCTAGTG -ACGGAACCGATTAGTCGTCATCTG -ACGGAACCGATTAGTCGTGAGTTG -ACGGAACCGATTAGTCGTAGACTG -ACGGAACCGATTAGTCGTTCGGTA -ACGGAACCGATTAGTCGTTGCCTA -ACGGAACCGATTAGTCGTCCACTA -ACGGAACCGATTAGTCGTGGAGTA -ACGGAACCGATTAGTCGTTCGTCT -ACGGAACCGATTAGTCGTTGCACT -ACGGAACCGATTAGTCGTCTGACT -ACGGAACCGATTAGTCGTCAACCT -ACGGAACCGATTAGTCGTGCTACT -ACGGAACCGATTAGTCGTGGATCT -ACGGAACCGATTAGTCGTAAGGCT -ACGGAACCGATTAGTCGTTCAACC -ACGGAACCGATTAGTCGTTGTTCC -ACGGAACCGATTAGTCGTATTCCC -ACGGAACCGATTAGTCGTTTCTCG -ACGGAACCGATTAGTCGTTAGACG -ACGGAACCGATTAGTCGTGTAACG -ACGGAACCGATTAGTCGTACTTCG -ACGGAACCGATTAGTCGTTACGCA -ACGGAACCGATTAGTCGTCTTGCA -ACGGAACCGATTAGTCGTCGAACA -ACGGAACCGATTAGTCGTCAGTCA -ACGGAACCGATTAGTCGTGATCCA -ACGGAACCGATTAGTCGTACGACA -ACGGAACCGATTAGTCGTAGCTCA -ACGGAACCGATTAGTCGTTCACGT -ACGGAACCGATTAGTCGTCGTAGT -ACGGAACCGATTAGTCGTGTCAGT -ACGGAACCGATTAGTCGTGAAGGT -ACGGAACCGATTAGTCGTAACCGT -ACGGAACCGATTAGTCGTTTGTGC -ACGGAACCGATTAGTCGTCTAAGC -ACGGAACCGATTAGTCGTACTAGC -ACGGAACCGATTAGTCGTAGATGC -ACGGAACCGATTAGTCGTTGAAGG -ACGGAACCGATTAGTCGTCAATGG -ACGGAACCGATTAGTCGTATGAGG -ACGGAACCGATTAGTCGTAATGGG -ACGGAACCGATTAGTCGTTCCTGA -ACGGAACCGATTAGTCGTTAGCGA -ACGGAACCGATTAGTCGTCACAGA -ACGGAACCGATTAGTCGTGCAAGA -ACGGAACCGATTAGTCGTGGTTGA -ACGGAACCGATTAGTCGTTCCGAT -ACGGAACCGATTAGTCGTTGGCAT -ACGGAACCGATTAGTCGTCGAGAT -ACGGAACCGATTAGTCGTTACCAC -ACGGAACCGATTAGTCGTCAGAAC -ACGGAACCGATTAGTCGTGTCTAC -ACGGAACCGATTAGTCGTACGTAC -ACGGAACCGATTAGTCGTAGTGAC -ACGGAACCGATTAGTCGTCTGTAG -ACGGAACCGATTAGTCGTCCTAAG -ACGGAACCGATTAGTCGTGTTCAG -ACGGAACCGATTAGTCGTGCATAG -ACGGAACCGATTAGTCGTGACAAG -ACGGAACCGATTAGTCGTAAGCAG -ACGGAACCGATTAGTCGTCGTCAA -ACGGAACCGATTAGTCGTGCTGAA -ACGGAACCGATTAGTCGTAGTACG -ACGGAACCGATTAGTCGTATCCGA -ACGGAACCGATTAGTCGTATGGGA -ACGGAACCGATTAGTCGTGTGCAA -ACGGAACCGATTAGTCGTGAGGAA -ACGGAACCGATTAGTCGTCAGGTA -ACGGAACCGATTAGTCGTGACTCT -ACGGAACCGATTAGTCGTAGTCCT -ACGGAACCGATTAGTCGTTAAGCC -ACGGAACCGATTAGTCGTATAGCC -ACGGAACCGATTAGTCGTTAACCG -ACGGAACCGATTAGTCGTATGCCA -ACGGAACCGATTAGTGTCGGAAAC -ACGGAACCGATTAGTGTCAACACC -ACGGAACCGATTAGTGTCATCGAG -ACGGAACCGATTAGTGTCCTCCTT -ACGGAACCGATTAGTGTCCCTGTT -ACGGAACCGATTAGTGTCCGGTTT -ACGGAACCGATTAGTGTCGTGGTT -ACGGAACCGATTAGTGTCGCCTTT -ACGGAACCGATTAGTGTCGGTCTT -ACGGAACCGATTAGTGTCACGCTT -ACGGAACCGATTAGTGTCAGCGTT -ACGGAACCGATTAGTGTCTTCGTC -ACGGAACCGATTAGTGTCTCTCTC -ACGGAACCGATTAGTGTCTGGATC -ACGGAACCGATTAGTGTCCACTTC -ACGGAACCGATTAGTGTCGTACTC -ACGGAACCGATTAGTGTCGATGTC -ACGGAACCGATTAGTGTCACAGTC -ACGGAACCGATTAGTGTCTTGCTG -ACGGAACCGATTAGTGTCTCCATG -ACGGAACCGATTAGTGTCTGTGTG -ACGGAACCGATTAGTGTCCTAGTG -ACGGAACCGATTAGTGTCCATCTG -ACGGAACCGATTAGTGTCGAGTTG -ACGGAACCGATTAGTGTCAGACTG -ACGGAACCGATTAGTGTCTCGGTA -ACGGAACCGATTAGTGTCTGCCTA -ACGGAACCGATTAGTGTCCCACTA -ACGGAACCGATTAGTGTCGGAGTA -ACGGAACCGATTAGTGTCTCGTCT -ACGGAACCGATTAGTGTCTGCACT -ACGGAACCGATTAGTGTCCTGACT -ACGGAACCGATTAGTGTCCAACCT -ACGGAACCGATTAGTGTCGCTACT -ACGGAACCGATTAGTGTCGGATCT -ACGGAACCGATTAGTGTCAAGGCT -ACGGAACCGATTAGTGTCTCAACC -ACGGAACCGATTAGTGTCTGTTCC -ACGGAACCGATTAGTGTCATTCCC -ACGGAACCGATTAGTGTCTTCTCG -ACGGAACCGATTAGTGTCTAGACG -ACGGAACCGATTAGTGTCGTAACG -ACGGAACCGATTAGTGTCACTTCG -ACGGAACCGATTAGTGTCTACGCA -ACGGAACCGATTAGTGTCCTTGCA -ACGGAACCGATTAGTGTCCGAACA -ACGGAACCGATTAGTGTCCAGTCA -ACGGAACCGATTAGTGTCGATCCA -ACGGAACCGATTAGTGTCACGACA -ACGGAACCGATTAGTGTCAGCTCA -ACGGAACCGATTAGTGTCTCACGT -ACGGAACCGATTAGTGTCCGTAGT -ACGGAACCGATTAGTGTCGTCAGT -ACGGAACCGATTAGTGTCGAAGGT -ACGGAACCGATTAGTGTCAACCGT -ACGGAACCGATTAGTGTCTTGTGC -ACGGAACCGATTAGTGTCCTAAGC -ACGGAACCGATTAGTGTCACTAGC -ACGGAACCGATTAGTGTCAGATGC -ACGGAACCGATTAGTGTCTGAAGG -ACGGAACCGATTAGTGTCCAATGG -ACGGAACCGATTAGTGTCATGAGG -ACGGAACCGATTAGTGTCAATGGG -ACGGAACCGATTAGTGTCTCCTGA -ACGGAACCGATTAGTGTCTAGCGA -ACGGAACCGATTAGTGTCCACAGA -ACGGAACCGATTAGTGTCGCAAGA -ACGGAACCGATTAGTGTCGGTTGA -ACGGAACCGATTAGTGTCTCCGAT -ACGGAACCGATTAGTGTCTGGCAT -ACGGAACCGATTAGTGTCCGAGAT -ACGGAACCGATTAGTGTCTACCAC -ACGGAACCGATTAGTGTCCAGAAC -ACGGAACCGATTAGTGTCGTCTAC -ACGGAACCGATTAGTGTCACGTAC -ACGGAACCGATTAGTGTCAGTGAC -ACGGAACCGATTAGTGTCCTGTAG -ACGGAACCGATTAGTGTCCCTAAG -ACGGAACCGATTAGTGTCGTTCAG -ACGGAACCGATTAGTGTCGCATAG -ACGGAACCGATTAGTGTCGACAAG -ACGGAACCGATTAGTGTCAAGCAG -ACGGAACCGATTAGTGTCCGTCAA -ACGGAACCGATTAGTGTCGCTGAA -ACGGAACCGATTAGTGTCAGTACG -ACGGAACCGATTAGTGTCATCCGA -ACGGAACCGATTAGTGTCATGGGA -ACGGAACCGATTAGTGTCGTGCAA -ACGGAACCGATTAGTGTCGAGGAA -ACGGAACCGATTAGTGTCCAGGTA -ACGGAACCGATTAGTGTCGACTCT -ACGGAACCGATTAGTGTCAGTCCT -ACGGAACCGATTAGTGTCTAAGCC -ACGGAACCGATTAGTGTCATAGCC -ACGGAACCGATTAGTGTCTAACCG -ACGGAACCGATTAGTGTCATGCCA -ACGGAACCGATTGGTGAAGGAAAC -ACGGAACCGATTGGTGAAAACACC -ACGGAACCGATTGGTGAAATCGAG -ACGGAACCGATTGGTGAACTCCTT -ACGGAACCGATTGGTGAACCTGTT -ACGGAACCGATTGGTGAACGGTTT -ACGGAACCGATTGGTGAAGTGGTT -ACGGAACCGATTGGTGAAGCCTTT -ACGGAACCGATTGGTGAAGGTCTT -ACGGAACCGATTGGTGAAACGCTT -ACGGAACCGATTGGTGAAAGCGTT -ACGGAACCGATTGGTGAATTCGTC -ACGGAACCGATTGGTGAATCTCTC -ACGGAACCGATTGGTGAATGGATC -ACGGAACCGATTGGTGAACACTTC -ACGGAACCGATTGGTGAAGTACTC -ACGGAACCGATTGGTGAAGATGTC -ACGGAACCGATTGGTGAAACAGTC -ACGGAACCGATTGGTGAATTGCTG -ACGGAACCGATTGGTGAATCCATG -ACGGAACCGATTGGTGAATGTGTG -ACGGAACCGATTGGTGAACTAGTG -ACGGAACCGATTGGTGAACATCTG -ACGGAACCGATTGGTGAAGAGTTG -ACGGAACCGATTGGTGAAAGACTG -ACGGAACCGATTGGTGAATCGGTA -ACGGAACCGATTGGTGAATGCCTA -ACGGAACCGATTGGTGAACCACTA -ACGGAACCGATTGGTGAAGGAGTA -ACGGAACCGATTGGTGAATCGTCT -ACGGAACCGATTGGTGAATGCACT -ACGGAACCGATTGGTGAACTGACT -ACGGAACCGATTGGTGAACAACCT -ACGGAACCGATTGGTGAAGCTACT -ACGGAACCGATTGGTGAAGGATCT -ACGGAACCGATTGGTGAAAAGGCT -ACGGAACCGATTGGTGAATCAACC -ACGGAACCGATTGGTGAATGTTCC -ACGGAACCGATTGGTGAAATTCCC -ACGGAACCGATTGGTGAATTCTCG -ACGGAACCGATTGGTGAATAGACG -ACGGAACCGATTGGTGAAGTAACG -ACGGAACCGATTGGTGAAACTTCG -ACGGAACCGATTGGTGAATACGCA -ACGGAACCGATTGGTGAACTTGCA -ACGGAACCGATTGGTGAACGAACA -ACGGAACCGATTGGTGAACAGTCA -ACGGAACCGATTGGTGAAGATCCA -ACGGAACCGATTGGTGAAACGACA -ACGGAACCGATTGGTGAAAGCTCA -ACGGAACCGATTGGTGAATCACGT -ACGGAACCGATTGGTGAACGTAGT -ACGGAACCGATTGGTGAAGTCAGT -ACGGAACCGATTGGTGAAGAAGGT -ACGGAACCGATTGGTGAAAACCGT -ACGGAACCGATTGGTGAATTGTGC -ACGGAACCGATTGGTGAACTAAGC -ACGGAACCGATTGGTGAAACTAGC -ACGGAACCGATTGGTGAAAGATGC -ACGGAACCGATTGGTGAATGAAGG -ACGGAACCGATTGGTGAACAATGG -ACGGAACCGATTGGTGAAATGAGG -ACGGAACCGATTGGTGAAAATGGG -ACGGAACCGATTGGTGAATCCTGA -ACGGAACCGATTGGTGAATAGCGA -ACGGAACCGATTGGTGAACACAGA -ACGGAACCGATTGGTGAAGCAAGA -ACGGAACCGATTGGTGAAGGTTGA -ACGGAACCGATTGGTGAATCCGAT -ACGGAACCGATTGGTGAATGGCAT -ACGGAACCGATTGGTGAACGAGAT -ACGGAACCGATTGGTGAATACCAC -ACGGAACCGATTGGTGAACAGAAC -ACGGAACCGATTGGTGAAGTCTAC -ACGGAACCGATTGGTGAAACGTAC -ACGGAACCGATTGGTGAAAGTGAC -ACGGAACCGATTGGTGAACTGTAG -ACGGAACCGATTGGTGAACCTAAG -ACGGAACCGATTGGTGAAGTTCAG -ACGGAACCGATTGGTGAAGCATAG -ACGGAACCGATTGGTGAAGACAAG -ACGGAACCGATTGGTGAAAAGCAG -ACGGAACCGATTGGTGAACGTCAA -ACGGAACCGATTGGTGAAGCTGAA -ACGGAACCGATTGGTGAAAGTACG -ACGGAACCGATTGGTGAAATCCGA -ACGGAACCGATTGGTGAAATGGGA -ACGGAACCGATTGGTGAAGTGCAA -ACGGAACCGATTGGTGAAGAGGAA -ACGGAACCGATTGGTGAACAGGTA -ACGGAACCGATTGGTGAAGACTCT -ACGGAACCGATTGGTGAAAGTCCT -ACGGAACCGATTGGTGAATAAGCC -ACGGAACCGATTGGTGAAATAGCC -ACGGAACCGATTGGTGAATAACCG -ACGGAACCGATTGGTGAAATGCCA -ACGGAACCGATTCGTAACGGAAAC -ACGGAACCGATTCGTAACAACACC -ACGGAACCGATTCGTAACATCGAG -ACGGAACCGATTCGTAACCTCCTT -ACGGAACCGATTCGTAACCCTGTT -ACGGAACCGATTCGTAACCGGTTT -ACGGAACCGATTCGTAACGTGGTT -ACGGAACCGATTCGTAACGCCTTT -ACGGAACCGATTCGTAACGGTCTT -ACGGAACCGATTCGTAACACGCTT -ACGGAACCGATTCGTAACAGCGTT -ACGGAACCGATTCGTAACTTCGTC -ACGGAACCGATTCGTAACTCTCTC -ACGGAACCGATTCGTAACTGGATC -ACGGAACCGATTCGTAACCACTTC -ACGGAACCGATTCGTAACGTACTC -ACGGAACCGATTCGTAACGATGTC -ACGGAACCGATTCGTAACACAGTC -ACGGAACCGATTCGTAACTTGCTG -ACGGAACCGATTCGTAACTCCATG -ACGGAACCGATTCGTAACTGTGTG -ACGGAACCGATTCGTAACCTAGTG -ACGGAACCGATTCGTAACCATCTG -ACGGAACCGATTCGTAACGAGTTG -ACGGAACCGATTCGTAACAGACTG -ACGGAACCGATTCGTAACTCGGTA -ACGGAACCGATTCGTAACTGCCTA -ACGGAACCGATTCGTAACCCACTA -ACGGAACCGATTCGTAACGGAGTA -ACGGAACCGATTCGTAACTCGTCT -ACGGAACCGATTCGTAACTGCACT -ACGGAACCGATTCGTAACCTGACT -ACGGAACCGATTCGTAACCAACCT -ACGGAACCGATTCGTAACGCTACT -ACGGAACCGATTCGTAACGGATCT -ACGGAACCGATTCGTAACAAGGCT -ACGGAACCGATTCGTAACTCAACC -ACGGAACCGATTCGTAACTGTTCC -ACGGAACCGATTCGTAACATTCCC -ACGGAACCGATTCGTAACTTCTCG -ACGGAACCGATTCGTAACTAGACG -ACGGAACCGATTCGTAACGTAACG -ACGGAACCGATTCGTAACACTTCG -ACGGAACCGATTCGTAACTACGCA -ACGGAACCGATTCGTAACCTTGCA -ACGGAACCGATTCGTAACCGAACA -ACGGAACCGATTCGTAACCAGTCA -ACGGAACCGATTCGTAACGATCCA -ACGGAACCGATTCGTAACACGACA -ACGGAACCGATTCGTAACAGCTCA -ACGGAACCGATTCGTAACTCACGT -ACGGAACCGATTCGTAACCGTAGT -ACGGAACCGATTCGTAACGTCAGT -ACGGAACCGATTCGTAACGAAGGT -ACGGAACCGATTCGTAACAACCGT -ACGGAACCGATTCGTAACTTGTGC -ACGGAACCGATTCGTAACCTAAGC -ACGGAACCGATTCGTAACACTAGC -ACGGAACCGATTCGTAACAGATGC -ACGGAACCGATTCGTAACTGAAGG -ACGGAACCGATTCGTAACCAATGG -ACGGAACCGATTCGTAACATGAGG -ACGGAACCGATTCGTAACAATGGG -ACGGAACCGATTCGTAACTCCTGA -ACGGAACCGATTCGTAACTAGCGA -ACGGAACCGATTCGTAACCACAGA -ACGGAACCGATTCGTAACGCAAGA -ACGGAACCGATTCGTAACGGTTGA -ACGGAACCGATTCGTAACTCCGAT -ACGGAACCGATTCGTAACTGGCAT -ACGGAACCGATTCGTAACCGAGAT -ACGGAACCGATTCGTAACTACCAC -ACGGAACCGATTCGTAACCAGAAC -ACGGAACCGATTCGTAACGTCTAC -ACGGAACCGATTCGTAACACGTAC -ACGGAACCGATTCGTAACAGTGAC -ACGGAACCGATTCGTAACCTGTAG -ACGGAACCGATTCGTAACCCTAAG -ACGGAACCGATTCGTAACGTTCAG -ACGGAACCGATTCGTAACGCATAG -ACGGAACCGATTCGTAACGACAAG -ACGGAACCGATTCGTAACAAGCAG -ACGGAACCGATTCGTAACCGTCAA -ACGGAACCGATTCGTAACGCTGAA -ACGGAACCGATTCGTAACAGTACG -ACGGAACCGATTCGTAACATCCGA -ACGGAACCGATTCGTAACATGGGA -ACGGAACCGATTCGTAACGTGCAA -ACGGAACCGATTCGTAACGAGGAA -ACGGAACCGATTCGTAACCAGGTA -ACGGAACCGATTCGTAACGACTCT -ACGGAACCGATTCGTAACAGTCCT -ACGGAACCGATTCGTAACTAAGCC -ACGGAACCGATTCGTAACATAGCC -ACGGAACCGATTCGTAACTAACCG -ACGGAACCGATTCGTAACATGCCA -ACGGAACCGATTTGCTTGGGAAAC -ACGGAACCGATTTGCTTGAACACC -ACGGAACCGATTTGCTTGATCGAG -ACGGAACCGATTTGCTTGCTCCTT -ACGGAACCGATTTGCTTGCCTGTT -ACGGAACCGATTTGCTTGCGGTTT -ACGGAACCGATTTGCTTGGTGGTT -ACGGAACCGATTTGCTTGGCCTTT -ACGGAACCGATTTGCTTGGGTCTT -ACGGAACCGATTTGCTTGACGCTT -ACGGAACCGATTTGCTTGAGCGTT -ACGGAACCGATTTGCTTGTTCGTC -ACGGAACCGATTTGCTTGTCTCTC -ACGGAACCGATTTGCTTGTGGATC -ACGGAACCGATTTGCTTGCACTTC -ACGGAACCGATTTGCTTGGTACTC -ACGGAACCGATTTGCTTGGATGTC -ACGGAACCGATTTGCTTGACAGTC -ACGGAACCGATTTGCTTGTTGCTG -ACGGAACCGATTTGCTTGTCCATG -ACGGAACCGATTTGCTTGTGTGTG -ACGGAACCGATTTGCTTGCTAGTG -ACGGAACCGATTTGCTTGCATCTG -ACGGAACCGATTTGCTTGGAGTTG -ACGGAACCGATTTGCTTGAGACTG -ACGGAACCGATTTGCTTGTCGGTA -ACGGAACCGATTTGCTTGTGCCTA -ACGGAACCGATTTGCTTGCCACTA -ACGGAACCGATTTGCTTGGGAGTA -ACGGAACCGATTTGCTTGTCGTCT -ACGGAACCGATTTGCTTGTGCACT -ACGGAACCGATTTGCTTGCTGACT -ACGGAACCGATTTGCTTGCAACCT -ACGGAACCGATTTGCTTGGCTACT -ACGGAACCGATTTGCTTGGGATCT -ACGGAACCGATTTGCTTGAAGGCT -ACGGAACCGATTTGCTTGTCAACC -ACGGAACCGATTTGCTTGTGTTCC -ACGGAACCGATTTGCTTGATTCCC -ACGGAACCGATTTGCTTGTTCTCG -ACGGAACCGATTTGCTTGTAGACG -ACGGAACCGATTTGCTTGGTAACG -ACGGAACCGATTTGCTTGACTTCG -ACGGAACCGATTTGCTTGTACGCA -ACGGAACCGATTTGCTTGCTTGCA -ACGGAACCGATTTGCTTGCGAACA -ACGGAACCGATTTGCTTGCAGTCA -ACGGAACCGATTTGCTTGGATCCA -ACGGAACCGATTTGCTTGACGACA -ACGGAACCGATTTGCTTGAGCTCA -ACGGAACCGATTTGCTTGTCACGT -ACGGAACCGATTTGCTTGCGTAGT -ACGGAACCGATTTGCTTGGTCAGT -ACGGAACCGATTTGCTTGGAAGGT -ACGGAACCGATTTGCTTGAACCGT -ACGGAACCGATTTGCTTGTTGTGC -ACGGAACCGATTTGCTTGCTAAGC -ACGGAACCGATTTGCTTGACTAGC -ACGGAACCGATTTGCTTGAGATGC -ACGGAACCGATTTGCTTGTGAAGG -ACGGAACCGATTTGCTTGCAATGG -ACGGAACCGATTTGCTTGATGAGG -ACGGAACCGATTTGCTTGAATGGG -ACGGAACCGATTTGCTTGTCCTGA -ACGGAACCGATTTGCTTGTAGCGA -ACGGAACCGATTTGCTTGCACAGA -ACGGAACCGATTTGCTTGGCAAGA -ACGGAACCGATTTGCTTGGGTTGA -ACGGAACCGATTTGCTTGTCCGAT -ACGGAACCGATTTGCTTGTGGCAT -ACGGAACCGATTTGCTTGCGAGAT -ACGGAACCGATTTGCTTGTACCAC -ACGGAACCGATTTGCTTGCAGAAC -ACGGAACCGATTTGCTTGGTCTAC -ACGGAACCGATTTGCTTGACGTAC -ACGGAACCGATTTGCTTGAGTGAC -ACGGAACCGATTTGCTTGCTGTAG -ACGGAACCGATTTGCTTGCCTAAG -ACGGAACCGATTTGCTTGGTTCAG -ACGGAACCGATTTGCTTGGCATAG -ACGGAACCGATTTGCTTGGACAAG -ACGGAACCGATTTGCTTGAAGCAG -ACGGAACCGATTTGCTTGCGTCAA -ACGGAACCGATTTGCTTGGCTGAA -ACGGAACCGATTTGCTTGAGTACG -ACGGAACCGATTTGCTTGATCCGA -ACGGAACCGATTTGCTTGATGGGA -ACGGAACCGATTTGCTTGGTGCAA -ACGGAACCGATTTGCTTGGAGGAA -ACGGAACCGATTTGCTTGCAGGTA -ACGGAACCGATTTGCTTGGACTCT -ACGGAACCGATTTGCTTGAGTCCT -ACGGAACCGATTTGCTTGTAAGCC -ACGGAACCGATTTGCTTGATAGCC -ACGGAACCGATTTGCTTGTAACCG -ACGGAACCGATTTGCTTGATGCCA -ACGGAACCGATTAGCCTAGGAAAC -ACGGAACCGATTAGCCTAAACACC -ACGGAACCGATTAGCCTAATCGAG -ACGGAACCGATTAGCCTACTCCTT -ACGGAACCGATTAGCCTACCTGTT -ACGGAACCGATTAGCCTACGGTTT -ACGGAACCGATTAGCCTAGTGGTT -ACGGAACCGATTAGCCTAGCCTTT -ACGGAACCGATTAGCCTAGGTCTT -ACGGAACCGATTAGCCTAACGCTT -ACGGAACCGATTAGCCTAAGCGTT -ACGGAACCGATTAGCCTATTCGTC -ACGGAACCGATTAGCCTATCTCTC -ACGGAACCGATTAGCCTATGGATC -ACGGAACCGATTAGCCTACACTTC -ACGGAACCGATTAGCCTAGTACTC -ACGGAACCGATTAGCCTAGATGTC -ACGGAACCGATTAGCCTAACAGTC -ACGGAACCGATTAGCCTATTGCTG -ACGGAACCGATTAGCCTATCCATG -ACGGAACCGATTAGCCTATGTGTG -ACGGAACCGATTAGCCTACTAGTG -ACGGAACCGATTAGCCTACATCTG -ACGGAACCGATTAGCCTAGAGTTG -ACGGAACCGATTAGCCTAAGACTG -ACGGAACCGATTAGCCTATCGGTA -ACGGAACCGATTAGCCTATGCCTA -ACGGAACCGATTAGCCTACCACTA -ACGGAACCGATTAGCCTAGGAGTA -ACGGAACCGATTAGCCTATCGTCT -ACGGAACCGATTAGCCTATGCACT -ACGGAACCGATTAGCCTACTGACT -ACGGAACCGATTAGCCTACAACCT -ACGGAACCGATTAGCCTAGCTACT -ACGGAACCGATTAGCCTAGGATCT -ACGGAACCGATTAGCCTAAAGGCT -ACGGAACCGATTAGCCTATCAACC -ACGGAACCGATTAGCCTATGTTCC -ACGGAACCGATTAGCCTAATTCCC -ACGGAACCGATTAGCCTATTCTCG -ACGGAACCGATTAGCCTATAGACG -ACGGAACCGATTAGCCTAGTAACG -ACGGAACCGATTAGCCTAACTTCG -ACGGAACCGATTAGCCTATACGCA -ACGGAACCGATTAGCCTACTTGCA -ACGGAACCGATTAGCCTACGAACA -ACGGAACCGATTAGCCTACAGTCA -ACGGAACCGATTAGCCTAGATCCA -ACGGAACCGATTAGCCTAACGACA -ACGGAACCGATTAGCCTAAGCTCA -ACGGAACCGATTAGCCTATCACGT -ACGGAACCGATTAGCCTACGTAGT -ACGGAACCGATTAGCCTAGTCAGT -ACGGAACCGATTAGCCTAGAAGGT -ACGGAACCGATTAGCCTAAACCGT -ACGGAACCGATTAGCCTATTGTGC -ACGGAACCGATTAGCCTACTAAGC -ACGGAACCGATTAGCCTAACTAGC -ACGGAACCGATTAGCCTAAGATGC -ACGGAACCGATTAGCCTATGAAGG -ACGGAACCGATTAGCCTACAATGG -ACGGAACCGATTAGCCTAATGAGG -ACGGAACCGATTAGCCTAAATGGG -ACGGAACCGATTAGCCTATCCTGA -ACGGAACCGATTAGCCTATAGCGA -ACGGAACCGATTAGCCTACACAGA -ACGGAACCGATTAGCCTAGCAAGA -ACGGAACCGATTAGCCTAGGTTGA -ACGGAACCGATTAGCCTATCCGAT -ACGGAACCGATTAGCCTATGGCAT -ACGGAACCGATTAGCCTACGAGAT -ACGGAACCGATTAGCCTATACCAC -ACGGAACCGATTAGCCTACAGAAC -ACGGAACCGATTAGCCTAGTCTAC -ACGGAACCGATTAGCCTAACGTAC -ACGGAACCGATTAGCCTAAGTGAC -ACGGAACCGATTAGCCTACTGTAG -ACGGAACCGATTAGCCTACCTAAG -ACGGAACCGATTAGCCTAGTTCAG -ACGGAACCGATTAGCCTAGCATAG -ACGGAACCGATTAGCCTAGACAAG -ACGGAACCGATTAGCCTAAAGCAG -ACGGAACCGATTAGCCTACGTCAA -ACGGAACCGATTAGCCTAGCTGAA -ACGGAACCGATTAGCCTAAGTACG -ACGGAACCGATTAGCCTAATCCGA -ACGGAACCGATTAGCCTAATGGGA -ACGGAACCGATTAGCCTAGTGCAA -ACGGAACCGATTAGCCTAGAGGAA -ACGGAACCGATTAGCCTACAGGTA -ACGGAACCGATTAGCCTAGACTCT -ACGGAACCGATTAGCCTAAGTCCT -ACGGAACCGATTAGCCTATAAGCC -ACGGAACCGATTAGCCTAATAGCC -ACGGAACCGATTAGCCTATAACCG -ACGGAACCGATTAGCCTAATGCCA -ACGGAACCGATTAGCACTGGAAAC -ACGGAACCGATTAGCACTAACACC -ACGGAACCGATTAGCACTATCGAG -ACGGAACCGATTAGCACTCTCCTT -ACGGAACCGATTAGCACTCCTGTT -ACGGAACCGATTAGCACTCGGTTT -ACGGAACCGATTAGCACTGTGGTT -ACGGAACCGATTAGCACTGCCTTT -ACGGAACCGATTAGCACTGGTCTT -ACGGAACCGATTAGCACTACGCTT -ACGGAACCGATTAGCACTAGCGTT -ACGGAACCGATTAGCACTTTCGTC -ACGGAACCGATTAGCACTTCTCTC -ACGGAACCGATTAGCACTTGGATC -ACGGAACCGATTAGCACTCACTTC -ACGGAACCGATTAGCACTGTACTC -ACGGAACCGATTAGCACTGATGTC -ACGGAACCGATTAGCACTACAGTC -ACGGAACCGATTAGCACTTTGCTG -ACGGAACCGATTAGCACTTCCATG -ACGGAACCGATTAGCACTTGTGTG -ACGGAACCGATTAGCACTCTAGTG -ACGGAACCGATTAGCACTCATCTG -ACGGAACCGATTAGCACTGAGTTG -ACGGAACCGATTAGCACTAGACTG -ACGGAACCGATTAGCACTTCGGTA -ACGGAACCGATTAGCACTTGCCTA -ACGGAACCGATTAGCACTCCACTA -ACGGAACCGATTAGCACTGGAGTA -ACGGAACCGATTAGCACTTCGTCT -ACGGAACCGATTAGCACTTGCACT -ACGGAACCGATTAGCACTCTGACT -ACGGAACCGATTAGCACTCAACCT -ACGGAACCGATTAGCACTGCTACT -ACGGAACCGATTAGCACTGGATCT -ACGGAACCGATTAGCACTAAGGCT -ACGGAACCGATTAGCACTTCAACC -ACGGAACCGATTAGCACTTGTTCC -ACGGAACCGATTAGCACTATTCCC -ACGGAACCGATTAGCACTTTCTCG -ACGGAACCGATTAGCACTTAGACG -ACGGAACCGATTAGCACTGTAACG -ACGGAACCGATTAGCACTACTTCG -ACGGAACCGATTAGCACTTACGCA -ACGGAACCGATTAGCACTCTTGCA -ACGGAACCGATTAGCACTCGAACA -ACGGAACCGATTAGCACTCAGTCA -ACGGAACCGATTAGCACTGATCCA -ACGGAACCGATTAGCACTACGACA -ACGGAACCGATTAGCACTAGCTCA -ACGGAACCGATTAGCACTTCACGT -ACGGAACCGATTAGCACTCGTAGT -ACGGAACCGATTAGCACTGTCAGT -ACGGAACCGATTAGCACTGAAGGT -ACGGAACCGATTAGCACTAACCGT -ACGGAACCGATTAGCACTTTGTGC -ACGGAACCGATTAGCACTCTAAGC -ACGGAACCGATTAGCACTACTAGC -ACGGAACCGATTAGCACTAGATGC -ACGGAACCGATTAGCACTTGAAGG -ACGGAACCGATTAGCACTCAATGG -ACGGAACCGATTAGCACTATGAGG -ACGGAACCGATTAGCACTAATGGG -ACGGAACCGATTAGCACTTCCTGA -ACGGAACCGATTAGCACTTAGCGA -ACGGAACCGATTAGCACTCACAGA -ACGGAACCGATTAGCACTGCAAGA -ACGGAACCGATTAGCACTGGTTGA -ACGGAACCGATTAGCACTTCCGAT -ACGGAACCGATTAGCACTTGGCAT -ACGGAACCGATTAGCACTCGAGAT -ACGGAACCGATTAGCACTTACCAC -ACGGAACCGATTAGCACTCAGAAC -ACGGAACCGATTAGCACTGTCTAC -ACGGAACCGATTAGCACTACGTAC -ACGGAACCGATTAGCACTAGTGAC -ACGGAACCGATTAGCACTCTGTAG -ACGGAACCGATTAGCACTCCTAAG -ACGGAACCGATTAGCACTGTTCAG -ACGGAACCGATTAGCACTGCATAG -ACGGAACCGATTAGCACTGACAAG -ACGGAACCGATTAGCACTAAGCAG -ACGGAACCGATTAGCACTCGTCAA -ACGGAACCGATTAGCACTGCTGAA -ACGGAACCGATTAGCACTAGTACG -ACGGAACCGATTAGCACTATCCGA -ACGGAACCGATTAGCACTATGGGA -ACGGAACCGATTAGCACTGTGCAA -ACGGAACCGATTAGCACTGAGGAA -ACGGAACCGATTAGCACTCAGGTA -ACGGAACCGATTAGCACTGACTCT -ACGGAACCGATTAGCACTAGTCCT -ACGGAACCGATTAGCACTTAAGCC -ACGGAACCGATTAGCACTATAGCC -ACGGAACCGATTAGCACTTAACCG -ACGGAACCGATTAGCACTATGCCA -ACGGAACCGATTTGCAGAGGAAAC -ACGGAACCGATTTGCAGAAACACC -ACGGAACCGATTTGCAGAATCGAG -ACGGAACCGATTTGCAGACTCCTT -ACGGAACCGATTTGCAGACCTGTT -ACGGAACCGATTTGCAGACGGTTT -ACGGAACCGATTTGCAGAGTGGTT -ACGGAACCGATTTGCAGAGCCTTT -ACGGAACCGATTTGCAGAGGTCTT -ACGGAACCGATTTGCAGAACGCTT -ACGGAACCGATTTGCAGAAGCGTT -ACGGAACCGATTTGCAGATTCGTC -ACGGAACCGATTTGCAGATCTCTC -ACGGAACCGATTTGCAGATGGATC -ACGGAACCGATTTGCAGACACTTC -ACGGAACCGATTTGCAGAGTACTC -ACGGAACCGATTTGCAGAGATGTC -ACGGAACCGATTTGCAGAACAGTC -ACGGAACCGATTTGCAGATTGCTG -ACGGAACCGATTTGCAGATCCATG -ACGGAACCGATTTGCAGATGTGTG -ACGGAACCGATTTGCAGACTAGTG -ACGGAACCGATTTGCAGACATCTG -ACGGAACCGATTTGCAGAGAGTTG -ACGGAACCGATTTGCAGAAGACTG -ACGGAACCGATTTGCAGATCGGTA -ACGGAACCGATTTGCAGATGCCTA -ACGGAACCGATTTGCAGACCACTA -ACGGAACCGATTTGCAGAGGAGTA -ACGGAACCGATTTGCAGATCGTCT -ACGGAACCGATTTGCAGATGCACT -ACGGAACCGATTTGCAGACTGACT -ACGGAACCGATTTGCAGACAACCT -ACGGAACCGATTTGCAGAGCTACT -ACGGAACCGATTTGCAGAGGATCT -ACGGAACCGATTTGCAGAAAGGCT -ACGGAACCGATTTGCAGATCAACC -ACGGAACCGATTTGCAGATGTTCC -ACGGAACCGATTTGCAGAATTCCC -ACGGAACCGATTTGCAGATTCTCG -ACGGAACCGATTTGCAGATAGACG -ACGGAACCGATTTGCAGAGTAACG -ACGGAACCGATTTGCAGAACTTCG -ACGGAACCGATTTGCAGATACGCA -ACGGAACCGATTTGCAGACTTGCA -ACGGAACCGATTTGCAGACGAACA -ACGGAACCGATTTGCAGACAGTCA -ACGGAACCGATTTGCAGAGATCCA -ACGGAACCGATTTGCAGAACGACA -ACGGAACCGATTTGCAGAAGCTCA -ACGGAACCGATTTGCAGATCACGT -ACGGAACCGATTTGCAGACGTAGT -ACGGAACCGATTTGCAGAGTCAGT -ACGGAACCGATTTGCAGAGAAGGT -ACGGAACCGATTTGCAGAAACCGT -ACGGAACCGATTTGCAGATTGTGC -ACGGAACCGATTTGCAGACTAAGC -ACGGAACCGATTTGCAGAACTAGC -ACGGAACCGATTTGCAGAAGATGC -ACGGAACCGATTTGCAGATGAAGG -ACGGAACCGATTTGCAGACAATGG -ACGGAACCGATTTGCAGAATGAGG -ACGGAACCGATTTGCAGAAATGGG -ACGGAACCGATTTGCAGATCCTGA -ACGGAACCGATTTGCAGATAGCGA -ACGGAACCGATTTGCAGACACAGA -ACGGAACCGATTTGCAGAGCAAGA -ACGGAACCGATTTGCAGAGGTTGA -ACGGAACCGATTTGCAGATCCGAT -ACGGAACCGATTTGCAGATGGCAT -ACGGAACCGATTTGCAGACGAGAT -ACGGAACCGATTTGCAGATACCAC -ACGGAACCGATTTGCAGACAGAAC -ACGGAACCGATTTGCAGAGTCTAC -ACGGAACCGATTTGCAGAACGTAC -ACGGAACCGATTTGCAGAAGTGAC -ACGGAACCGATTTGCAGACTGTAG -ACGGAACCGATTTGCAGACCTAAG -ACGGAACCGATTTGCAGAGTTCAG -ACGGAACCGATTTGCAGAGCATAG -ACGGAACCGATTTGCAGAGACAAG -ACGGAACCGATTTGCAGAAAGCAG -ACGGAACCGATTTGCAGACGTCAA -ACGGAACCGATTTGCAGAGCTGAA -ACGGAACCGATTTGCAGAAGTACG -ACGGAACCGATTTGCAGAATCCGA -ACGGAACCGATTTGCAGAATGGGA -ACGGAACCGATTTGCAGAGTGCAA -ACGGAACCGATTTGCAGAGAGGAA -ACGGAACCGATTTGCAGACAGGTA -ACGGAACCGATTTGCAGAGACTCT -ACGGAACCGATTTGCAGAAGTCCT -ACGGAACCGATTTGCAGATAAGCC -ACGGAACCGATTTGCAGAATAGCC -ACGGAACCGATTTGCAGATAACCG -ACGGAACCGATTTGCAGAATGCCA -ACGGAACCGATTAGGTGAGGAAAC -ACGGAACCGATTAGGTGAAACACC -ACGGAACCGATTAGGTGAATCGAG -ACGGAACCGATTAGGTGACTCCTT -ACGGAACCGATTAGGTGACCTGTT -ACGGAACCGATTAGGTGACGGTTT -ACGGAACCGATTAGGTGAGTGGTT -ACGGAACCGATTAGGTGAGCCTTT -ACGGAACCGATTAGGTGAGGTCTT -ACGGAACCGATTAGGTGAACGCTT -ACGGAACCGATTAGGTGAAGCGTT -ACGGAACCGATTAGGTGATTCGTC -ACGGAACCGATTAGGTGATCTCTC -ACGGAACCGATTAGGTGATGGATC -ACGGAACCGATTAGGTGACACTTC -ACGGAACCGATTAGGTGAGTACTC -ACGGAACCGATTAGGTGAGATGTC -ACGGAACCGATTAGGTGAACAGTC -ACGGAACCGATTAGGTGATTGCTG -ACGGAACCGATTAGGTGATCCATG -ACGGAACCGATTAGGTGATGTGTG -ACGGAACCGATTAGGTGACTAGTG -ACGGAACCGATTAGGTGACATCTG -ACGGAACCGATTAGGTGAGAGTTG -ACGGAACCGATTAGGTGAAGACTG -ACGGAACCGATTAGGTGATCGGTA -ACGGAACCGATTAGGTGATGCCTA -ACGGAACCGATTAGGTGACCACTA -ACGGAACCGATTAGGTGAGGAGTA -ACGGAACCGATTAGGTGATCGTCT -ACGGAACCGATTAGGTGATGCACT -ACGGAACCGATTAGGTGACTGACT -ACGGAACCGATTAGGTGACAACCT -ACGGAACCGATTAGGTGAGCTACT -ACGGAACCGATTAGGTGAGGATCT -ACGGAACCGATTAGGTGAAAGGCT -ACGGAACCGATTAGGTGATCAACC -ACGGAACCGATTAGGTGATGTTCC -ACGGAACCGATTAGGTGAATTCCC -ACGGAACCGATTAGGTGATTCTCG -ACGGAACCGATTAGGTGATAGACG -ACGGAACCGATTAGGTGAGTAACG -ACGGAACCGATTAGGTGAACTTCG -ACGGAACCGATTAGGTGATACGCA -ACGGAACCGATTAGGTGACTTGCA -ACGGAACCGATTAGGTGACGAACA -ACGGAACCGATTAGGTGACAGTCA -ACGGAACCGATTAGGTGAGATCCA -ACGGAACCGATTAGGTGAACGACA -ACGGAACCGATTAGGTGAAGCTCA -ACGGAACCGATTAGGTGATCACGT -ACGGAACCGATTAGGTGACGTAGT -ACGGAACCGATTAGGTGAGTCAGT -ACGGAACCGATTAGGTGAGAAGGT -ACGGAACCGATTAGGTGAAACCGT -ACGGAACCGATTAGGTGATTGTGC -ACGGAACCGATTAGGTGACTAAGC -ACGGAACCGATTAGGTGAACTAGC -ACGGAACCGATTAGGTGAAGATGC -ACGGAACCGATTAGGTGATGAAGG -ACGGAACCGATTAGGTGACAATGG -ACGGAACCGATTAGGTGAATGAGG -ACGGAACCGATTAGGTGAAATGGG -ACGGAACCGATTAGGTGATCCTGA -ACGGAACCGATTAGGTGATAGCGA -ACGGAACCGATTAGGTGACACAGA -ACGGAACCGATTAGGTGAGCAAGA -ACGGAACCGATTAGGTGAGGTTGA -ACGGAACCGATTAGGTGATCCGAT -ACGGAACCGATTAGGTGATGGCAT -ACGGAACCGATTAGGTGACGAGAT -ACGGAACCGATTAGGTGATACCAC -ACGGAACCGATTAGGTGACAGAAC -ACGGAACCGATTAGGTGAGTCTAC -ACGGAACCGATTAGGTGAACGTAC -ACGGAACCGATTAGGTGAAGTGAC -ACGGAACCGATTAGGTGACTGTAG -ACGGAACCGATTAGGTGACCTAAG -ACGGAACCGATTAGGTGAGTTCAG -ACGGAACCGATTAGGTGAGCATAG -ACGGAACCGATTAGGTGAGACAAG -ACGGAACCGATTAGGTGAAAGCAG -ACGGAACCGATTAGGTGACGTCAA -ACGGAACCGATTAGGTGAGCTGAA -ACGGAACCGATTAGGTGAAGTACG -ACGGAACCGATTAGGTGAATCCGA -ACGGAACCGATTAGGTGAATGGGA -ACGGAACCGATTAGGTGAGTGCAA -ACGGAACCGATTAGGTGAGAGGAA -ACGGAACCGATTAGGTGACAGGTA -ACGGAACCGATTAGGTGAGACTCT -ACGGAACCGATTAGGTGAAGTCCT -ACGGAACCGATTAGGTGATAAGCC -ACGGAACCGATTAGGTGAATAGCC -ACGGAACCGATTAGGTGATAACCG -ACGGAACCGATTAGGTGAATGCCA -ACGGAACCGATTTGGCAAGGAAAC -ACGGAACCGATTTGGCAAAACACC -ACGGAACCGATTTGGCAAATCGAG -ACGGAACCGATTTGGCAACTCCTT -ACGGAACCGATTTGGCAACCTGTT -ACGGAACCGATTTGGCAACGGTTT -ACGGAACCGATTTGGCAAGTGGTT -ACGGAACCGATTTGGCAAGCCTTT -ACGGAACCGATTTGGCAAGGTCTT -ACGGAACCGATTTGGCAAACGCTT -ACGGAACCGATTTGGCAAAGCGTT -ACGGAACCGATTTGGCAATTCGTC -ACGGAACCGATTTGGCAATCTCTC -ACGGAACCGATTTGGCAATGGATC -ACGGAACCGATTTGGCAACACTTC -ACGGAACCGATTTGGCAAGTACTC -ACGGAACCGATTTGGCAAGATGTC -ACGGAACCGATTTGGCAAACAGTC -ACGGAACCGATTTGGCAATTGCTG -ACGGAACCGATTTGGCAATCCATG -ACGGAACCGATTTGGCAATGTGTG -ACGGAACCGATTTGGCAACTAGTG -ACGGAACCGATTTGGCAACATCTG -ACGGAACCGATTTGGCAAGAGTTG -ACGGAACCGATTTGGCAAAGACTG -ACGGAACCGATTTGGCAATCGGTA -ACGGAACCGATTTGGCAATGCCTA -ACGGAACCGATTTGGCAACCACTA -ACGGAACCGATTTGGCAAGGAGTA -ACGGAACCGATTTGGCAATCGTCT -ACGGAACCGATTTGGCAATGCACT -ACGGAACCGATTTGGCAACTGACT -ACGGAACCGATTTGGCAACAACCT -ACGGAACCGATTTGGCAAGCTACT -ACGGAACCGATTTGGCAAGGATCT -ACGGAACCGATTTGGCAAAAGGCT -ACGGAACCGATTTGGCAATCAACC -ACGGAACCGATTTGGCAATGTTCC -ACGGAACCGATTTGGCAAATTCCC -ACGGAACCGATTTGGCAATTCTCG -ACGGAACCGATTTGGCAATAGACG -ACGGAACCGATTTGGCAAGTAACG -ACGGAACCGATTTGGCAAACTTCG -ACGGAACCGATTTGGCAATACGCA -ACGGAACCGATTTGGCAACTTGCA -ACGGAACCGATTTGGCAACGAACA -ACGGAACCGATTTGGCAACAGTCA -ACGGAACCGATTTGGCAAGATCCA -ACGGAACCGATTTGGCAAACGACA -ACGGAACCGATTTGGCAAAGCTCA -ACGGAACCGATTTGGCAATCACGT -ACGGAACCGATTTGGCAACGTAGT -ACGGAACCGATTTGGCAAGTCAGT -ACGGAACCGATTTGGCAAGAAGGT -ACGGAACCGATTTGGCAAAACCGT -ACGGAACCGATTTGGCAATTGTGC -ACGGAACCGATTTGGCAACTAAGC -ACGGAACCGATTTGGCAAACTAGC -ACGGAACCGATTTGGCAAAGATGC -ACGGAACCGATTTGGCAATGAAGG -ACGGAACCGATTTGGCAACAATGG -ACGGAACCGATTTGGCAAATGAGG -ACGGAACCGATTTGGCAAAATGGG -ACGGAACCGATTTGGCAATCCTGA -ACGGAACCGATTTGGCAATAGCGA -ACGGAACCGATTTGGCAACACAGA -ACGGAACCGATTTGGCAAGCAAGA -ACGGAACCGATTTGGCAAGGTTGA -ACGGAACCGATTTGGCAATCCGAT -ACGGAACCGATTTGGCAATGGCAT -ACGGAACCGATTTGGCAACGAGAT -ACGGAACCGATTTGGCAATACCAC -ACGGAACCGATTTGGCAACAGAAC -ACGGAACCGATTTGGCAAGTCTAC -ACGGAACCGATTTGGCAAACGTAC -ACGGAACCGATTTGGCAAAGTGAC -ACGGAACCGATTTGGCAACTGTAG -ACGGAACCGATTTGGCAACCTAAG -ACGGAACCGATTTGGCAAGTTCAG -ACGGAACCGATTTGGCAAGCATAG -ACGGAACCGATTTGGCAAGACAAG -ACGGAACCGATTTGGCAAAAGCAG -ACGGAACCGATTTGGCAACGTCAA -ACGGAACCGATTTGGCAAGCTGAA -ACGGAACCGATTTGGCAAAGTACG -ACGGAACCGATTTGGCAAATCCGA -ACGGAACCGATTTGGCAAATGGGA -ACGGAACCGATTTGGCAAGTGCAA -ACGGAACCGATTTGGCAAGAGGAA -ACGGAACCGATTTGGCAACAGGTA -ACGGAACCGATTTGGCAAGACTCT -ACGGAACCGATTTGGCAAAGTCCT -ACGGAACCGATTTGGCAATAAGCC -ACGGAACCGATTTGGCAAATAGCC -ACGGAACCGATTTGGCAATAACCG -ACGGAACCGATTTGGCAAATGCCA -ACGGAACCGATTAGGATGGGAAAC -ACGGAACCGATTAGGATGAACACC -ACGGAACCGATTAGGATGATCGAG -ACGGAACCGATTAGGATGCTCCTT -ACGGAACCGATTAGGATGCCTGTT -ACGGAACCGATTAGGATGCGGTTT -ACGGAACCGATTAGGATGGTGGTT -ACGGAACCGATTAGGATGGCCTTT -ACGGAACCGATTAGGATGGGTCTT -ACGGAACCGATTAGGATGACGCTT -ACGGAACCGATTAGGATGAGCGTT -ACGGAACCGATTAGGATGTTCGTC -ACGGAACCGATTAGGATGTCTCTC -ACGGAACCGATTAGGATGTGGATC -ACGGAACCGATTAGGATGCACTTC -ACGGAACCGATTAGGATGGTACTC -ACGGAACCGATTAGGATGGATGTC -ACGGAACCGATTAGGATGACAGTC -ACGGAACCGATTAGGATGTTGCTG -ACGGAACCGATTAGGATGTCCATG -ACGGAACCGATTAGGATGTGTGTG -ACGGAACCGATTAGGATGCTAGTG -ACGGAACCGATTAGGATGCATCTG -ACGGAACCGATTAGGATGGAGTTG -ACGGAACCGATTAGGATGAGACTG -ACGGAACCGATTAGGATGTCGGTA -ACGGAACCGATTAGGATGTGCCTA -ACGGAACCGATTAGGATGCCACTA -ACGGAACCGATTAGGATGGGAGTA -ACGGAACCGATTAGGATGTCGTCT -ACGGAACCGATTAGGATGTGCACT -ACGGAACCGATTAGGATGCTGACT -ACGGAACCGATTAGGATGCAACCT -ACGGAACCGATTAGGATGGCTACT -ACGGAACCGATTAGGATGGGATCT -ACGGAACCGATTAGGATGAAGGCT -ACGGAACCGATTAGGATGTCAACC -ACGGAACCGATTAGGATGTGTTCC -ACGGAACCGATTAGGATGATTCCC -ACGGAACCGATTAGGATGTTCTCG -ACGGAACCGATTAGGATGTAGACG -ACGGAACCGATTAGGATGGTAACG -ACGGAACCGATTAGGATGACTTCG -ACGGAACCGATTAGGATGTACGCA -ACGGAACCGATTAGGATGCTTGCA -ACGGAACCGATTAGGATGCGAACA -ACGGAACCGATTAGGATGCAGTCA -ACGGAACCGATTAGGATGGATCCA -ACGGAACCGATTAGGATGACGACA -ACGGAACCGATTAGGATGAGCTCA -ACGGAACCGATTAGGATGTCACGT -ACGGAACCGATTAGGATGCGTAGT -ACGGAACCGATTAGGATGGTCAGT -ACGGAACCGATTAGGATGGAAGGT -ACGGAACCGATTAGGATGAACCGT -ACGGAACCGATTAGGATGTTGTGC -ACGGAACCGATTAGGATGCTAAGC -ACGGAACCGATTAGGATGACTAGC -ACGGAACCGATTAGGATGAGATGC -ACGGAACCGATTAGGATGTGAAGG -ACGGAACCGATTAGGATGCAATGG -ACGGAACCGATTAGGATGATGAGG -ACGGAACCGATTAGGATGAATGGG -ACGGAACCGATTAGGATGTCCTGA -ACGGAACCGATTAGGATGTAGCGA -ACGGAACCGATTAGGATGCACAGA -ACGGAACCGATTAGGATGGCAAGA -ACGGAACCGATTAGGATGGGTTGA -ACGGAACCGATTAGGATGTCCGAT -ACGGAACCGATTAGGATGTGGCAT -ACGGAACCGATTAGGATGCGAGAT -ACGGAACCGATTAGGATGTACCAC -ACGGAACCGATTAGGATGCAGAAC -ACGGAACCGATTAGGATGGTCTAC -ACGGAACCGATTAGGATGACGTAC -ACGGAACCGATTAGGATGAGTGAC -ACGGAACCGATTAGGATGCTGTAG -ACGGAACCGATTAGGATGCCTAAG -ACGGAACCGATTAGGATGGTTCAG -ACGGAACCGATTAGGATGGCATAG -ACGGAACCGATTAGGATGGACAAG -ACGGAACCGATTAGGATGAAGCAG -ACGGAACCGATTAGGATGCGTCAA -ACGGAACCGATTAGGATGGCTGAA -ACGGAACCGATTAGGATGAGTACG -ACGGAACCGATTAGGATGATCCGA -ACGGAACCGATTAGGATGATGGGA -ACGGAACCGATTAGGATGGTGCAA -ACGGAACCGATTAGGATGGAGGAA -ACGGAACCGATTAGGATGCAGGTA -ACGGAACCGATTAGGATGGACTCT -ACGGAACCGATTAGGATGAGTCCT -ACGGAACCGATTAGGATGTAAGCC -ACGGAACCGATTAGGATGATAGCC -ACGGAACCGATTAGGATGTAACCG -ACGGAACCGATTAGGATGATGCCA -ACGGAACCGATTGGGAATGGAAAC -ACGGAACCGATTGGGAATAACACC -ACGGAACCGATTGGGAATATCGAG -ACGGAACCGATTGGGAATCTCCTT -ACGGAACCGATTGGGAATCCTGTT -ACGGAACCGATTGGGAATCGGTTT -ACGGAACCGATTGGGAATGTGGTT -ACGGAACCGATTGGGAATGCCTTT -ACGGAACCGATTGGGAATGGTCTT -ACGGAACCGATTGGGAATACGCTT -ACGGAACCGATTGGGAATAGCGTT -ACGGAACCGATTGGGAATTTCGTC -ACGGAACCGATTGGGAATTCTCTC -ACGGAACCGATTGGGAATTGGATC -ACGGAACCGATTGGGAATCACTTC -ACGGAACCGATTGGGAATGTACTC -ACGGAACCGATTGGGAATGATGTC -ACGGAACCGATTGGGAATACAGTC -ACGGAACCGATTGGGAATTTGCTG -ACGGAACCGATTGGGAATTCCATG -ACGGAACCGATTGGGAATTGTGTG -ACGGAACCGATTGGGAATCTAGTG -ACGGAACCGATTGGGAATCATCTG -ACGGAACCGATTGGGAATGAGTTG -ACGGAACCGATTGGGAATAGACTG -ACGGAACCGATTGGGAATTCGGTA -ACGGAACCGATTGGGAATTGCCTA -ACGGAACCGATTGGGAATCCACTA -ACGGAACCGATTGGGAATGGAGTA -ACGGAACCGATTGGGAATTCGTCT -ACGGAACCGATTGGGAATTGCACT -ACGGAACCGATTGGGAATCTGACT -ACGGAACCGATTGGGAATCAACCT -ACGGAACCGATTGGGAATGCTACT -ACGGAACCGATTGGGAATGGATCT -ACGGAACCGATTGGGAATAAGGCT -ACGGAACCGATTGGGAATTCAACC -ACGGAACCGATTGGGAATTGTTCC -ACGGAACCGATTGGGAATATTCCC -ACGGAACCGATTGGGAATTTCTCG -ACGGAACCGATTGGGAATTAGACG -ACGGAACCGATTGGGAATGTAACG -ACGGAACCGATTGGGAATACTTCG -ACGGAACCGATTGGGAATTACGCA -ACGGAACCGATTGGGAATCTTGCA -ACGGAACCGATTGGGAATCGAACA -ACGGAACCGATTGGGAATCAGTCA -ACGGAACCGATTGGGAATGATCCA -ACGGAACCGATTGGGAATACGACA -ACGGAACCGATTGGGAATAGCTCA -ACGGAACCGATTGGGAATTCACGT -ACGGAACCGATTGGGAATCGTAGT -ACGGAACCGATTGGGAATGTCAGT -ACGGAACCGATTGGGAATGAAGGT -ACGGAACCGATTGGGAATAACCGT -ACGGAACCGATTGGGAATTTGTGC -ACGGAACCGATTGGGAATCTAAGC -ACGGAACCGATTGGGAATACTAGC -ACGGAACCGATTGGGAATAGATGC -ACGGAACCGATTGGGAATTGAAGG -ACGGAACCGATTGGGAATCAATGG -ACGGAACCGATTGGGAATATGAGG -ACGGAACCGATTGGGAATAATGGG -ACGGAACCGATTGGGAATTCCTGA -ACGGAACCGATTGGGAATTAGCGA -ACGGAACCGATTGGGAATCACAGA -ACGGAACCGATTGGGAATGCAAGA -ACGGAACCGATTGGGAATGGTTGA -ACGGAACCGATTGGGAATTCCGAT -ACGGAACCGATTGGGAATTGGCAT -ACGGAACCGATTGGGAATCGAGAT -ACGGAACCGATTGGGAATTACCAC -ACGGAACCGATTGGGAATCAGAAC -ACGGAACCGATTGGGAATGTCTAC -ACGGAACCGATTGGGAATACGTAC -ACGGAACCGATTGGGAATAGTGAC -ACGGAACCGATTGGGAATCTGTAG -ACGGAACCGATTGGGAATCCTAAG -ACGGAACCGATTGGGAATGTTCAG -ACGGAACCGATTGGGAATGCATAG -ACGGAACCGATTGGGAATGACAAG -ACGGAACCGATTGGGAATAAGCAG -ACGGAACCGATTGGGAATCGTCAA -ACGGAACCGATTGGGAATGCTGAA -ACGGAACCGATTGGGAATAGTACG -ACGGAACCGATTGGGAATATCCGA -ACGGAACCGATTGGGAATATGGGA -ACGGAACCGATTGGGAATGTGCAA -ACGGAACCGATTGGGAATGAGGAA -ACGGAACCGATTGGGAATCAGGTA -ACGGAACCGATTGGGAATGACTCT -ACGGAACCGATTGGGAATAGTCCT -ACGGAACCGATTGGGAATTAAGCC -ACGGAACCGATTGGGAATATAGCC -ACGGAACCGATTGGGAATTAACCG -ACGGAACCGATTGGGAATATGCCA -ACGGAACCGATTTGATCCGGAAAC -ACGGAACCGATTTGATCCAACACC -ACGGAACCGATTTGATCCATCGAG -ACGGAACCGATTTGATCCCTCCTT -ACGGAACCGATTTGATCCCCTGTT -ACGGAACCGATTTGATCCCGGTTT -ACGGAACCGATTTGATCCGTGGTT -ACGGAACCGATTTGATCCGCCTTT -ACGGAACCGATTTGATCCGGTCTT -ACGGAACCGATTTGATCCACGCTT -ACGGAACCGATTTGATCCAGCGTT -ACGGAACCGATTTGATCCTTCGTC -ACGGAACCGATTTGATCCTCTCTC -ACGGAACCGATTTGATCCTGGATC -ACGGAACCGATTTGATCCCACTTC -ACGGAACCGATTTGATCCGTACTC -ACGGAACCGATTTGATCCGATGTC -ACGGAACCGATTTGATCCACAGTC -ACGGAACCGATTTGATCCTTGCTG -ACGGAACCGATTTGATCCTCCATG -ACGGAACCGATTTGATCCTGTGTG -ACGGAACCGATTTGATCCCTAGTG -ACGGAACCGATTTGATCCCATCTG -ACGGAACCGATTTGATCCGAGTTG -ACGGAACCGATTTGATCCAGACTG -ACGGAACCGATTTGATCCTCGGTA -ACGGAACCGATTTGATCCTGCCTA -ACGGAACCGATTTGATCCCCACTA -ACGGAACCGATTTGATCCGGAGTA -ACGGAACCGATTTGATCCTCGTCT -ACGGAACCGATTTGATCCTGCACT -ACGGAACCGATTTGATCCCTGACT -ACGGAACCGATTTGATCCCAACCT -ACGGAACCGATTTGATCCGCTACT -ACGGAACCGATTTGATCCGGATCT -ACGGAACCGATTTGATCCAAGGCT -ACGGAACCGATTTGATCCTCAACC -ACGGAACCGATTTGATCCTGTTCC -ACGGAACCGATTTGATCCATTCCC -ACGGAACCGATTTGATCCTTCTCG -ACGGAACCGATTTGATCCTAGACG -ACGGAACCGATTTGATCCGTAACG -ACGGAACCGATTTGATCCACTTCG -ACGGAACCGATTTGATCCTACGCA -ACGGAACCGATTTGATCCCTTGCA -ACGGAACCGATTTGATCCCGAACA -ACGGAACCGATTTGATCCCAGTCA -ACGGAACCGATTTGATCCGATCCA -ACGGAACCGATTTGATCCACGACA -ACGGAACCGATTTGATCCAGCTCA -ACGGAACCGATTTGATCCTCACGT -ACGGAACCGATTTGATCCCGTAGT -ACGGAACCGATTTGATCCGTCAGT -ACGGAACCGATTTGATCCGAAGGT -ACGGAACCGATTTGATCCAACCGT -ACGGAACCGATTTGATCCTTGTGC -ACGGAACCGATTTGATCCCTAAGC -ACGGAACCGATTTGATCCACTAGC -ACGGAACCGATTTGATCCAGATGC -ACGGAACCGATTTGATCCTGAAGG -ACGGAACCGATTTGATCCCAATGG -ACGGAACCGATTTGATCCATGAGG -ACGGAACCGATTTGATCCAATGGG -ACGGAACCGATTTGATCCTCCTGA -ACGGAACCGATTTGATCCTAGCGA -ACGGAACCGATTTGATCCCACAGA -ACGGAACCGATTTGATCCGCAAGA -ACGGAACCGATTTGATCCGGTTGA -ACGGAACCGATTTGATCCTCCGAT -ACGGAACCGATTTGATCCTGGCAT -ACGGAACCGATTTGATCCCGAGAT -ACGGAACCGATTTGATCCTACCAC -ACGGAACCGATTTGATCCCAGAAC -ACGGAACCGATTTGATCCGTCTAC -ACGGAACCGATTTGATCCACGTAC -ACGGAACCGATTTGATCCAGTGAC -ACGGAACCGATTTGATCCCTGTAG -ACGGAACCGATTTGATCCCCTAAG -ACGGAACCGATTTGATCCGTTCAG -ACGGAACCGATTTGATCCGCATAG -ACGGAACCGATTTGATCCGACAAG -ACGGAACCGATTTGATCCAAGCAG -ACGGAACCGATTTGATCCCGTCAA -ACGGAACCGATTTGATCCGCTGAA -ACGGAACCGATTTGATCCAGTACG -ACGGAACCGATTTGATCCATCCGA -ACGGAACCGATTTGATCCATGGGA -ACGGAACCGATTTGATCCGTGCAA -ACGGAACCGATTTGATCCGAGGAA -ACGGAACCGATTTGATCCCAGGTA -ACGGAACCGATTTGATCCGACTCT -ACGGAACCGATTTGATCCAGTCCT -ACGGAACCGATTTGATCCTAAGCC -ACGGAACCGATTTGATCCATAGCC -ACGGAACCGATTTGATCCTAACCG -ACGGAACCGATTTGATCCATGCCA -ACGGAACCGATTCGATAGGGAAAC -ACGGAACCGATTCGATAGAACACC -ACGGAACCGATTCGATAGATCGAG -ACGGAACCGATTCGATAGCTCCTT -ACGGAACCGATTCGATAGCCTGTT -ACGGAACCGATTCGATAGCGGTTT -ACGGAACCGATTCGATAGGTGGTT -ACGGAACCGATTCGATAGGCCTTT -ACGGAACCGATTCGATAGGGTCTT -ACGGAACCGATTCGATAGACGCTT -ACGGAACCGATTCGATAGAGCGTT -ACGGAACCGATTCGATAGTTCGTC -ACGGAACCGATTCGATAGTCTCTC -ACGGAACCGATTCGATAGTGGATC -ACGGAACCGATTCGATAGCACTTC -ACGGAACCGATTCGATAGGTACTC -ACGGAACCGATTCGATAGGATGTC -ACGGAACCGATTCGATAGACAGTC -ACGGAACCGATTCGATAGTTGCTG -ACGGAACCGATTCGATAGTCCATG -ACGGAACCGATTCGATAGTGTGTG -ACGGAACCGATTCGATAGCTAGTG -ACGGAACCGATTCGATAGCATCTG -ACGGAACCGATTCGATAGGAGTTG -ACGGAACCGATTCGATAGAGACTG -ACGGAACCGATTCGATAGTCGGTA -ACGGAACCGATTCGATAGTGCCTA -ACGGAACCGATTCGATAGCCACTA -ACGGAACCGATTCGATAGGGAGTA -ACGGAACCGATTCGATAGTCGTCT -ACGGAACCGATTCGATAGTGCACT -ACGGAACCGATTCGATAGCTGACT -ACGGAACCGATTCGATAGCAACCT -ACGGAACCGATTCGATAGGCTACT -ACGGAACCGATTCGATAGGGATCT -ACGGAACCGATTCGATAGAAGGCT -ACGGAACCGATTCGATAGTCAACC -ACGGAACCGATTCGATAGTGTTCC -ACGGAACCGATTCGATAGATTCCC -ACGGAACCGATTCGATAGTTCTCG -ACGGAACCGATTCGATAGTAGACG -ACGGAACCGATTCGATAGGTAACG -ACGGAACCGATTCGATAGACTTCG -ACGGAACCGATTCGATAGTACGCA -ACGGAACCGATTCGATAGCTTGCA -ACGGAACCGATTCGATAGCGAACA -ACGGAACCGATTCGATAGCAGTCA -ACGGAACCGATTCGATAGGATCCA -ACGGAACCGATTCGATAGACGACA -ACGGAACCGATTCGATAGAGCTCA -ACGGAACCGATTCGATAGTCACGT -ACGGAACCGATTCGATAGCGTAGT -ACGGAACCGATTCGATAGGTCAGT -ACGGAACCGATTCGATAGGAAGGT -ACGGAACCGATTCGATAGAACCGT -ACGGAACCGATTCGATAGTTGTGC -ACGGAACCGATTCGATAGCTAAGC -ACGGAACCGATTCGATAGACTAGC -ACGGAACCGATTCGATAGAGATGC -ACGGAACCGATTCGATAGTGAAGG -ACGGAACCGATTCGATAGCAATGG -ACGGAACCGATTCGATAGATGAGG -ACGGAACCGATTCGATAGAATGGG -ACGGAACCGATTCGATAGTCCTGA -ACGGAACCGATTCGATAGTAGCGA -ACGGAACCGATTCGATAGCACAGA -ACGGAACCGATTCGATAGGCAAGA -ACGGAACCGATTCGATAGGGTTGA -ACGGAACCGATTCGATAGTCCGAT -ACGGAACCGATTCGATAGTGGCAT -ACGGAACCGATTCGATAGCGAGAT -ACGGAACCGATTCGATAGTACCAC -ACGGAACCGATTCGATAGCAGAAC -ACGGAACCGATTCGATAGGTCTAC -ACGGAACCGATTCGATAGACGTAC -ACGGAACCGATTCGATAGAGTGAC -ACGGAACCGATTCGATAGCTGTAG -ACGGAACCGATTCGATAGCCTAAG -ACGGAACCGATTCGATAGGTTCAG -ACGGAACCGATTCGATAGGCATAG -ACGGAACCGATTCGATAGGACAAG -ACGGAACCGATTCGATAGAAGCAG -ACGGAACCGATTCGATAGCGTCAA -ACGGAACCGATTCGATAGGCTGAA -ACGGAACCGATTCGATAGAGTACG -ACGGAACCGATTCGATAGATCCGA -ACGGAACCGATTCGATAGATGGGA -ACGGAACCGATTCGATAGGTGCAA -ACGGAACCGATTCGATAGGAGGAA -ACGGAACCGATTCGATAGCAGGTA -ACGGAACCGATTCGATAGGACTCT -ACGGAACCGATTCGATAGAGTCCT -ACGGAACCGATTCGATAGTAAGCC -ACGGAACCGATTCGATAGATAGCC -ACGGAACCGATTCGATAGTAACCG -ACGGAACCGATTCGATAGATGCCA -ACGGAACCGATTAGACACGGAAAC -ACGGAACCGATTAGACACAACACC -ACGGAACCGATTAGACACATCGAG -ACGGAACCGATTAGACACCTCCTT -ACGGAACCGATTAGACACCCTGTT -ACGGAACCGATTAGACACCGGTTT -ACGGAACCGATTAGACACGTGGTT -ACGGAACCGATTAGACACGCCTTT -ACGGAACCGATTAGACACGGTCTT -ACGGAACCGATTAGACACACGCTT -ACGGAACCGATTAGACACAGCGTT -ACGGAACCGATTAGACACTTCGTC -ACGGAACCGATTAGACACTCTCTC -ACGGAACCGATTAGACACTGGATC -ACGGAACCGATTAGACACCACTTC -ACGGAACCGATTAGACACGTACTC -ACGGAACCGATTAGACACGATGTC -ACGGAACCGATTAGACACACAGTC -ACGGAACCGATTAGACACTTGCTG -ACGGAACCGATTAGACACTCCATG -ACGGAACCGATTAGACACTGTGTG -ACGGAACCGATTAGACACCTAGTG -ACGGAACCGATTAGACACCATCTG -ACGGAACCGATTAGACACGAGTTG -ACGGAACCGATTAGACACAGACTG -ACGGAACCGATTAGACACTCGGTA -ACGGAACCGATTAGACACTGCCTA -ACGGAACCGATTAGACACCCACTA -ACGGAACCGATTAGACACGGAGTA -ACGGAACCGATTAGACACTCGTCT -ACGGAACCGATTAGACACTGCACT -ACGGAACCGATTAGACACCTGACT -ACGGAACCGATTAGACACCAACCT -ACGGAACCGATTAGACACGCTACT -ACGGAACCGATTAGACACGGATCT -ACGGAACCGATTAGACACAAGGCT -ACGGAACCGATTAGACACTCAACC -ACGGAACCGATTAGACACTGTTCC -ACGGAACCGATTAGACACATTCCC -ACGGAACCGATTAGACACTTCTCG -ACGGAACCGATTAGACACTAGACG -ACGGAACCGATTAGACACGTAACG -ACGGAACCGATTAGACACACTTCG -ACGGAACCGATTAGACACTACGCA -ACGGAACCGATTAGACACCTTGCA -ACGGAACCGATTAGACACCGAACA -ACGGAACCGATTAGACACCAGTCA -ACGGAACCGATTAGACACGATCCA -ACGGAACCGATTAGACACACGACA -ACGGAACCGATTAGACACAGCTCA -ACGGAACCGATTAGACACTCACGT -ACGGAACCGATTAGACACCGTAGT -ACGGAACCGATTAGACACGTCAGT -ACGGAACCGATTAGACACGAAGGT -ACGGAACCGATTAGACACAACCGT -ACGGAACCGATTAGACACTTGTGC -ACGGAACCGATTAGACACCTAAGC -ACGGAACCGATTAGACACACTAGC -ACGGAACCGATTAGACACAGATGC -ACGGAACCGATTAGACACTGAAGG -ACGGAACCGATTAGACACCAATGG -ACGGAACCGATTAGACACATGAGG -ACGGAACCGATTAGACACAATGGG -ACGGAACCGATTAGACACTCCTGA -ACGGAACCGATTAGACACTAGCGA -ACGGAACCGATTAGACACCACAGA -ACGGAACCGATTAGACACGCAAGA -ACGGAACCGATTAGACACGGTTGA -ACGGAACCGATTAGACACTCCGAT -ACGGAACCGATTAGACACTGGCAT -ACGGAACCGATTAGACACCGAGAT -ACGGAACCGATTAGACACTACCAC -ACGGAACCGATTAGACACCAGAAC -ACGGAACCGATTAGACACGTCTAC -ACGGAACCGATTAGACACACGTAC -ACGGAACCGATTAGACACAGTGAC -ACGGAACCGATTAGACACCTGTAG -ACGGAACCGATTAGACACCCTAAG -ACGGAACCGATTAGACACGTTCAG -ACGGAACCGATTAGACACGCATAG -ACGGAACCGATTAGACACGACAAG -ACGGAACCGATTAGACACAAGCAG -ACGGAACCGATTAGACACCGTCAA -ACGGAACCGATTAGACACGCTGAA -ACGGAACCGATTAGACACAGTACG -ACGGAACCGATTAGACACATCCGA -ACGGAACCGATTAGACACATGGGA -ACGGAACCGATTAGACACGTGCAA -ACGGAACCGATTAGACACGAGGAA -ACGGAACCGATTAGACACCAGGTA -ACGGAACCGATTAGACACGACTCT -ACGGAACCGATTAGACACAGTCCT -ACGGAACCGATTAGACACTAAGCC -ACGGAACCGATTAGACACATAGCC -ACGGAACCGATTAGACACTAACCG -ACGGAACCGATTAGACACATGCCA -ACGGAACCGATTAGAGCAGGAAAC -ACGGAACCGATTAGAGCAAACACC -ACGGAACCGATTAGAGCAATCGAG -ACGGAACCGATTAGAGCACTCCTT -ACGGAACCGATTAGAGCACCTGTT -ACGGAACCGATTAGAGCACGGTTT -ACGGAACCGATTAGAGCAGTGGTT -ACGGAACCGATTAGAGCAGCCTTT -ACGGAACCGATTAGAGCAGGTCTT -ACGGAACCGATTAGAGCAACGCTT -ACGGAACCGATTAGAGCAAGCGTT -ACGGAACCGATTAGAGCATTCGTC -ACGGAACCGATTAGAGCATCTCTC -ACGGAACCGATTAGAGCATGGATC -ACGGAACCGATTAGAGCACACTTC -ACGGAACCGATTAGAGCAGTACTC -ACGGAACCGATTAGAGCAGATGTC -ACGGAACCGATTAGAGCAACAGTC -ACGGAACCGATTAGAGCATTGCTG -ACGGAACCGATTAGAGCATCCATG -ACGGAACCGATTAGAGCATGTGTG -ACGGAACCGATTAGAGCACTAGTG -ACGGAACCGATTAGAGCACATCTG -ACGGAACCGATTAGAGCAGAGTTG -ACGGAACCGATTAGAGCAAGACTG -ACGGAACCGATTAGAGCATCGGTA -ACGGAACCGATTAGAGCATGCCTA -ACGGAACCGATTAGAGCACCACTA -ACGGAACCGATTAGAGCAGGAGTA -ACGGAACCGATTAGAGCATCGTCT -ACGGAACCGATTAGAGCATGCACT -ACGGAACCGATTAGAGCACTGACT -ACGGAACCGATTAGAGCACAACCT -ACGGAACCGATTAGAGCAGCTACT -ACGGAACCGATTAGAGCAGGATCT -ACGGAACCGATTAGAGCAAAGGCT -ACGGAACCGATTAGAGCATCAACC -ACGGAACCGATTAGAGCATGTTCC -ACGGAACCGATTAGAGCAATTCCC -ACGGAACCGATTAGAGCATTCTCG -ACGGAACCGATTAGAGCATAGACG -ACGGAACCGATTAGAGCAGTAACG -ACGGAACCGATTAGAGCAACTTCG -ACGGAACCGATTAGAGCATACGCA -ACGGAACCGATTAGAGCACTTGCA -ACGGAACCGATTAGAGCACGAACA -ACGGAACCGATTAGAGCACAGTCA -ACGGAACCGATTAGAGCAGATCCA -ACGGAACCGATTAGAGCAACGACA -ACGGAACCGATTAGAGCAAGCTCA -ACGGAACCGATTAGAGCATCACGT -ACGGAACCGATTAGAGCACGTAGT -ACGGAACCGATTAGAGCAGTCAGT -ACGGAACCGATTAGAGCAGAAGGT -ACGGAACCGATTAGAGCAAACCGT -ACGGAACCGATTAGAGCATTGTGC -ACGGAACCGATTAGAGCACTAAGC -ACGGAACCGATTAGAGCAACTAGC -ACGGAACCGATTAGAGCAAGATGC -ACGGAACCGATTAGAGCATGAAGG -ACGGAACCGATTAGAGCACAATGG -ACGGAACCGATTAGAGCAATGAGG -ACGGAACCGATTAGAGCAAATGGG -ACGGAACCGATTAGAGCATCCTGA -ACGGAACCGATTAGAGCATAGCGA -ACGGAACCGATTAGAGCACACAGA -ACGGAACCGATTAGAGCAGCAAGA -ACGGAACCGATTAGAGCAGGTTGA -ACGGAACCGATTAGAGCATCCGAT -ACGGAACCGATTAGAGCATGGCAT -ACGGAACCGATTAGAGCACGAGAT -ACGGAACCGATTAGAGCATACCAC -ACGGAACCGATTAGAGCACAGAAC -ACGGAACCGATTAGAGCAGTCTAC -ACGGAACCGATTAGAGCAACGTAC -ACGGAACCGATTAGAGCAAGTGAC -ACGGAACCGATTAGAGCACTGTAG -ACGGAACCGATTAGAGCACCTAAG -ACGGAACCGATTAGAGCAGTTCAG -ACGGAACCGATTAGAGCAGCATAG -ACGGAACCGATTAGAGCAGACAAG -ACGGAACCGATTAGAGCAAAGCAG -ACGGAACCGATTAGAGCACGTCAA -ACGGAACCGATTAGAGCAGCTGAA -ACGGAACCGATTAGAGCAAGTACG -ACGGAACCGATTAGAGCAATCCGA -ACGGAACCGATTAGAGCAATGGGA -ACGGAACCGATTAGAGCAGTGCAA -ACGGAACCGATTAGAGCAGAGGAA -ACGGAACCGATTAGAGCACAGGTA -ACGGAACCGATTAGAGCAGACTCT -ACGGAACCGATTAGAGCAAGTCCT -ACGGAACCGATTAGAGCATAAGCC -ACGGAACCGATTAGAGCAATAGCC -ACGGAACCGATTAGAGCATAACCG -ACGGAACCGATTAGAGCAATGCCA -ACGGAACCGATTTGAGGTGGAAAC -ACGGAACCGATTTGAGGTAACACC -ACGGAACCGATTTGAGGTATCGAG -ACGGAACCGATTTGAGGTCTCCTT -ACGGAACCGATTTGAGGTCCTGTT -ACGGAACCGATTTGAGGTCGGTTT -ACGGAACCGATTTGAGGTGTGGTT -ACGGAACCGATTTGAGGTGCCTTT -ACGGAACCGATTTGAGGTGGTCTT -ACGGAACCGATTTGAGGTACGCTT -ACGGAACCGATTTGAGGTAGCGTT -ACGGAACCGATTTGAGGTTTCGTC -ACGGAACCGATTTGAGGTTCTCTC -ACGGAACCGATTTGAGGTTGGATC -ACGGAACCGATTTGAGGTCACTTC -ACGGAACCGATTTGAGGTGTACTC -ACGGAACCGATTTGAGGTGATGTC -ACGGAACCGATTTGAGGTACAGTC -ACGGAACCGATTTGAGGTTTGCTG -ACGGAACCGATTTGAGGTTCCATG -ACGGAACCGATTTGAGGTTGTGTG -ACGGAACCGATTTGAGGTCTAGTG -ACGGAACCGATTTGAGGTCATCTG -ACGGAACCGATTTGAGGTGAGTTG -ACGGAACCGATTTGAGGTAGACTG -ACGGAACCGATTTGAGGTTCGGTA -ACGGAACCGATTTGAGGTTGCCTA -ACGGAACCGATTTGAGGTCCACTA -ACGGAACCGATTTGAGGTGGAGTA -ACGGAACCGATTTGAGGTTCGTCT -ACGGAACCGATTTGAGGTTGCACT -ACGGAACCGATTTGAGGTCTGACT -ACGGAACCGATTTGAGGTCAACCT -ACGGAACCGATTTGAGGTGCTACT -ACGGAACCGATTTGAGGTGGATCT -ACGGAACCGATTTGAGGTAAGGCT -ACGGAACCGATTTGAGGTTCAACC -ACGGAACCGATTTGAGGTTGTTCC -ACGGAACCGATTTGAGGTATTCCC -ACGGAACCGATTTGAGGTTTCTCG -ACGGAACCGATTTGAGGTTAGACG -ACGGAACCGATTTGAGGTGTAACG -ACGGAACCGATTTGAGGTACTTCG -ACGGAACCGATTTGAGGTTACGCA -ACGGAACCGATTTGAGGTCTTGCA -ACGGAACCGATTTGAGGTCGAACA -ACGGAACCGATTTGAGGTCAGTCA -ACGGAACCGATTTGAGGTGATCCA -ACGGAACCGATTTGAGGTACGACA -ACGGAACCGATTTGAGGTAGCTCA -ACGGAACCGATTTGAGGTTCACGT -ACGGAACCGATTTGAGGTCGTAGT -ACGGAACCGATTTGAGGTGTCAGT -ACGGAACCGATTTGAGGTGAAGGT -ACGGAACCGATTTGAGGTAACCGT -ACGGAACCGATTTGAGGTTTGTGC -ACGGAACCGATTTGAGGTCTAAGC -ACGGAACCGATTTGAGGTACTAGC -ACGGAACCGATTTGAGGTAGATGC -ACGGAACCGATTTGAGGTTGAAGG -ACGGAACCGATTTGAGGTCAATGG -ACGGAACCGATTTGAGGTATGAGG -ACGGAACCGATTTGAGGTAATGGG -ACGGAACCGATTTGAGGTTCCTGA -ACGGAACCGATTTGAGGTTAGCGA -ACGGAACCGATTTGAGGTCACAGA -ACGGAACCGATTTGAGGTGCAAGA -ACGGAACCGATTTGAGGTGGTTGA -ACGGAACCGATTTGAGGTTCCGAT -ACGGAACCGATTTGAGGTTGGCAT -ACGGAACCGATTTGAGGTCGAGAT -ACGGAACCGATTTGAGGTTACCAC -ACGGAACCGATTTGAGGTCAGAAC -ACGGAACCGATTTGAGGTGTCTAC -ACGGAACCGATTTGAGGTACGTAC -ACGGAACCGATTTGAGGTAGTGAC -ACGGAACCGATTTGAGGTCTGTAG -ACGGAACCGATTTGAGGTCCTAAG -ACGGAACCGATTTGAGGTGTTCAG -ACGGAACCGATTTGAGGTGCATAG -ACGGAACCGATTTGAGGTGACAAG -ACGGAACCGATTTGAGGTAAGCAG -ACGGAACCGATTTGAGGTCGTCAA -ACGGAACCGATTTGAGGTGCTGAA -ACGGAACCGATTTGAGGTAGTACG -ACGGAACCGATTTGAGGTATCCGA -ACGGAACCGATTTGAGGTATGGGA -ACGGAACCGATTTGAGGTGTGCAA -ACGGAACCGATTTGAGGTGAGGAA -ACGGAACCGATTTGAGGTCAGGTA -ACGGAACCGATTTGAGGTGACTCT -ACGGAACCGATTTGAGGTAGTCCT -ACGGAACCGATTTGAGGTTAAGCC -ACGGAACCGATTTGAGGTATAGCC -ACGGAACCGATTTGAGGTTAACCG -ACGGAACCGATTTGAGGTATGCCA -ACGGAACCGATTGATTCCGGAAAC -ACGGAACCGATTGATTCCAACACC -ACGGAACCGATTGATTCCATCGAG -ACGGAACCGATTGATTCCCTCCTT -ACGGAACCGATTGATTCCCCTGTT -ACGGAACCGATTGATTCCCGGTTT -ACGGAACCGATTGATTCCGTGGTT -ACGGAACCGATTGATTCCGCCTTT -ACGGAACCGATTGATTCCGGTCTT -ACGGAACCGATTGATTCCACGCTT -ACGGAACCGATTGATTCCAGCGTT -ACGGAACCGATTGATTCCTTCGTC -ACGGAACCGATTGATTCCTCTCTC -ACGGAACCGATTGATTCCTGGATC -ACGGAACCGATTGATTCCCACTTC -ACGGAACCGATTGATTCCGTACTC -ACGGAACCGATTGATTCCGATGTC -ACGGAACCGATTGATTCCACAGTC -ACGGAACCGATTGATTCCTTGCTG -ACGGAACCGATTGATTCCTCCATG -ACGGAACCGATTGATTCCTGTGTG -ACGGAACCGATTGATTCCCTAGTG -ACGGAACCGATTGATTCCCATCTG -ACGGAACCGATTGATTCCGAGTTG -ACGGAACCGATTGATTCCAGACTG -ACGGAACCGATTGATTCCTCGGTA -ACGGAACCGATTGATTCCTGCCTA -ACGGAACCGATTGATTCCCCACTA -ACGGAACCGATTGATTCCGGAGTA -ACGGAACCGATTGATTCCTCGTCT -ACGGAACCGATTGATTCCTGCACT -ACGGAACCGATTGATTCCCTGACT -ACGGAACCGATTGATTCCCAACCT -ACGGAACCGATTGATTCCGCTACT -ACGGAACCGATTGATTCCGGATCT -ACGGAACCGATTGATTCCAAGGCT -ACGGAACCGATTGATTCCTCAACC -ACGGAACCGATTGATTCCTGTTCC -ACGGAACCGATTGATTCCATTCCC -ACGGAACCGATTGATTCCTTCTCG -ACGGAACCGATTGATTCCTAGACG -ACGGAACCGATTGATTCCGTAACG -ACGGAACCGATTGATTCCACTTCG -ACGGAACCGATTGATTCCTACGCA -ACGGAACCGATTGATTCCCTTGCA -ACGGAACCGATTGATTCCCGAACA -ACGGAACCGATTGATTCCCAGTCA -ACGGAACCGATTGATTCCGATCCA -ACGGAACCGATTGATTCCACGACA -ACGGAACCGATTGATTCCAGCTCA -ACGGAACCGATTGATTCCTCACGT -ACGGAACCGATTGATTCCCGTAGT -ACGGAACCGATTGATTCCGTCAGT -ACGGAACCGATTGATTCCGAAGGT -ACGGAACCGATTGATTCCAACCGT -ACGGAACCGATTGATTCCTTGTGC -ACGGAACCGATTGATTCCCTAAGC -ACGGAACCGATTGATTCCACTAGC -ACGGAACCGATTGATTCCAGATGC -ACGGAACCGATTGATTCCTGAAGG -ACGGAACCGATTGATTCCCAATGG -ACGGAACCGATTGATTCCATGAGG -ACGGAACCGATTGATTCCAATGGG -ACGGAACCGATTGATTCCTCCTGA -ACGGAACCGATTGATTCCTAGCGA -ACGGAACCGATTGATTCCCACAGA -ACGGAACCGATTGATTCCGCAAGA -ACGGAACCGATTGATTCCGGTTGA -ACGGAACCGATTGATTCCTCCGAT -ACGGAACCGATTGATTCCTGGCAT -ACGGAACCGATTGATTCCCGAGAT -ACGGAACCGATTGATTCCTACCAC -ACGGAACCGATTGATTCCCAGAAC -ACGGAACCGATTGATTCCGTCTAC -ACGGAACCGATTGATTCCACGTAC -ACGGAACCGATTGATTCCAGTGAC -ACGGAACCGATTGATTCCCTGTAG -ACGGAACCGATTGATTCCCCTAAG -ACGGAACCGATTGATTCCGTTCAG -ACGGAACCGATTGATTCCGCATAG -ACGGAACCGATTGATTCCGACAAG -ACGGAACCGATTGATTCCAAGCAG -ACGGAACCGATTGATTCCCGTCAA -ACGGAACCGATTGATTCCGCTGAA -ACGGAACCGATTGATTCCAGTACG -ACGGAACCGATTGATTCCATCCGA -ACGGAACCGATTGATTCCATGGGA -ACGGAACCGATTGATTCCGTGCAA -ACGGAACCGATTGATTCCGAGGAA -ACGGAACCGATTGATTCCCAGGTA -ACGGAACCGATTGATTCCGACTCT -ACGGAACCGATTGATTCCAGTCCT -ACGGAACCGATTGATTCCTAAGCC -ACGGAACCGATTGATTCCATAGCC -ACGGAACCGATTGATTCCTAACCG -ACGGAACCGATTGATTCCATGCCA -ACGGAACCGATTCATTGGGGAAAC -ACGGAACCGATTCATTGGAACACC -ACGGAACCGATTCATTGGATCGAG -ACGGAACCGATTCATTGGCTCCTT -ACGGAACCGATTCATTGGCCTGTT -ACGGAACCGATTCATTGGCGGTTT -ACGGAACCGATTCATTGGGTGGTT -ACGGAACCGATTCATTGGGCCTTT -ACGGAACCGATTCATTGGGGTCTT -ACGGAACCGATTCATTGGACGCTT -ACGGAACCGATTCATTGGAGCGTT -ACGGAACCGATTCATTGGTTCGTC -ACGGAACCGATTCATTGGTCTCTC -ACGGAACCGATTCATTGGTGGATC -ACGGAACCGATTCATTGGCACTTC -ACGGAACCGATTCATTGGGTACTC -ACGGAACCGATTCATTGGGATGTC -ACGGAACCGATTCATTGGACAGTC -ACGGAACCGATTCATTGGTTGCTG -ACGGAACCGATTCATTGGTCCATG -ACGGAACCGATTCATTGGTGTGTG -ACGGAACCGATTCATTGGCTAGTG -ACGGAACCGATTCATTGGCATCTG -ACGGAACCGATTCATTGGGAGTTG -ACGGAACCGATTCATTGGAGACTG -ACGGAACCGATTCATTGGTCGGTA -ACGGAACCGATTCATTGGTGCCTA -ACGGAACCGATTCATTGGCCACTA -ACGGAACCGATTCATTGGGGAGTA -ACGGAACCGATTCATTGGTCGTCT -ACGGAACCGATTCATTGGTGCACT -ACGGAACCGATTCATTGGCTGACT -ACGGAACCGATTCATTGGCAACCT -ACGGAACCGATTCATTGGGCTACT -ACGGAACCGATTCATTGGGGATCT -ACGGAACCGATTCATTGGAAGGCT -ACGGAACCGATTCATTGGTCAACC -ACGGAACCGATTCATTGGTGTTCC -ACGGAACCGATTCATTGGATTCCC -ACGGAACCGATTCATTGGTTCTCG -ACGGAACCGATTCATTGGTAGACG -ACGGAACCGATTCATTGGGTAACG -ACGGAACCGATTCATTGGACTTCG -ACGGAACCGATTCATTGGTACGCA -ACGGAACCGATTCATTGGCTTGCA -ACGGAACCGATTCATTGGCGAACA -ACGGAACCGATTCATTGGCAGTCA -ACGGAACCGATTCATTGGGATCCA -ACGGAACCGATTCATTGGACGACA -ACGGAACCGATTCATTGGAGCTCA -ACGGAACCGATTCATTGGTCACGT -ACGGAACCGATTCATTGGCGTAGT -ACGGAACCGATTCATTGGGTCAGT -ACGGAACCGATTCATTGGGAAGGT -ACGGAACCGATTCATTGGAACCGT -ACGGAACCGATTCATTGGTTGTGC -ACGGAACCGATTCATTGGCTAAGC -ACGGAACCGATTCATTGGACTAGC -ACGGAACCGATTCATTGGAGATGC -ACGGAACCGATTCATTGGTGAAGG -ACGGAACCGATTCATTGGCAATGG -ACGGAACCGATTCATTGGATGAGG -ACGGAACCGATTCATTGGAATGGG -ACGGAACCGATTCATTGGTCCTGA -ACGGAACCGATTCATTGGTAGCGA -ACGGAACCGATTCATTGGCACAGA -ACGGAACCGATTCATTGGGCAAGA -ACGGAACCGATTCATTGGGGTTGA -ACGGAACCGATTCATTGGTCCGAT -ACGGAACCGATTCATTGGTGGCAT -ACGGAACCGATTCATTGGCGAGAT -ACGGAACCGATTCATTGGTACCAC -ACGGAACCGATTCATTGGCAGAAC -ACGGAACCGATTCATTGGGTCTAC -ACGGAACCGATTCATTGGACGTAC -ACGGAACCGATTCATTGGAGTGAC -ACGGAACCGATTCATTGGCTGTAG -ACGGAACCGATTCATTGGCCTAAG -ACGGAACCGATTCATTGGGTTCAG -ACGGAACCGATTCATTGGGCATAG -ACGGAACCGATTCATTGGGACAAG -ACGGAACCGATTCATTGGAAGCAG -ACGGAACCGATTCATTGGCGTCAA -ACGGAACCGATTCATTGGGCTGAA -ACGGAACCGATTCATTGGAGTACG -ACGGAACCGATTCATTGGATCCGA -ACGGAACCGATTCATTGGATGGGA -ACGGAACCGATTCATTGGGTGCAA -ACGGAACCGATTCATTGGGAGGAA -ACGGAACCGATTCATTGGCAGGTA -ACGGAACCGATTCATTGGGACTCT -ACGGAACCGATTCATTGGAGTCCT -ACGGAACCGATTCATTGGTAAGCC -ACGGAACCGATTCATTGGATAGCC -ACGGAACCGATTCATTGGTAACCG -ACGGAACCGATTCATTGGATGCCA -ACGGAACCGATTGATCGAGGAAAC -ACGGAACCGATTGATCGAAACACC -ACGGAACCGATTGATCGAATCGAG -ACGGAACCGATTGATCGACTCCTT -ACGGAACCGATTGATCGACCTGTT -ACGGAACCGATTGATCGACGGTTT -ACGGAACCGATTGATCGAGTGGTT -ACGGAACCGATTGATCGAGCCTTT -ACGGAACCGATTGATCGAGGTCTT -ACGGAACCGATTGATCGAACGCTT -ACGGAACCGATTGATCGAAGCGTT -ACGGAACCGATTGATCGATTCGTC -ACGGAACCGATTGATCGATCTCTC -ACGGAACCGATTGATCGATGGATC -ACGGAACCGATTGATCGACACTTC -ACGGAACCGATTGATCGAGTACTC -ACGGAACCGATTGATCGAGATGTC -ACGGAACCGATTGATCGAACAGTC -ACGGAACCGATTGATCGATTGCTG -ACGGAACCGATTGATCGATCCATG -ACGGAACCGATTGATCGATGTGTG -ACGGAACCGATTGATCGACTAGTG -ACGGAACCGATTGATCGACATCTG -ACGGAACCGATTGATCGAGAGTTG -ACGGAACCGATTGATCGAAGACTG -ACGGAACCGATTGATCGATCGGTA -ACGGAACCGATTGATCGATGCCTA -ACGGAACCGATTGATCGACCACTA -ACGGAACCGATTGATCGAGGAGTA -ACGGAACCGATTGATCGATCGTCT -ACGGAACCGATTGATCGATGCACT -ACGGAACCGATTGATCGACTGACT -ACGGAACCGATTGATCGACAACCT -ACGGAACCGATTGATCGAGCTACT -ACGGAACCGATTGATCGAGGATCT -ACGGAACCGATTGATCGAAAGGCT -ACGGAACCGATTGATCGATCAACC -ACGGAACCGATTGATCGATGTTCC -ACGGAACCGATTGATCGAATTCCC -ACGGAACCGATTGATCGATTCTCG -ACGGAACCGATTGATCGATAGACG -ACGGAACCGATTGATCGAGTAACG -ACGGAACCGATTGATCGAACTTCG -ACGGAACCGATTGATCGATACGCA -ACGGAACCGATTGATCGACTTGCA -ACGGAACCGATTGATCGACGAACA -ACGGAACCGATTGATCGACAGTCA -ACGGAACCGATTGATCGAGATCCA -ACGGAACCGATTGATCGAACGACA -ACGGAACCGATTGATCGAAGCTCA -ACGGAACCGATTGATCGATCACGT -ACGGAACCGATTGATCGACGTAGT -ACGGAACCGATTGATCGAGTCAGT -ACGGAACCGATTGATCGAGAAGGT -ACGGAACCGATTGATCGAAACCGT -ACGGAACCGATTGATCGATTGTGC -ACGGAACCGATTGATCGACTAAGC -ACGGAACCGATTGATCGAACTAGC -ACGGAACCGATTGATCGAAGATGC -ACGGAACCGATTGATCGATGAAGG -ACGGAACCGATTGATCGACAATGG -ACGGAACCGATTGATCGAATGAGG -ACGGAACCGATTGATCGAAATGGG -ACGGAACCGATTGATCGATCCTGA -ACGGAACCGATTGATCGATAGCGA -ACGGAACCGATTGATCGACACAGA -ACGGAACCGATTGATCGAGCAAGA -ACGGAACCGATTGATCGAGGTTGA -ACGGAACCGATTGATCGATCCGAT -ACGGAACCGATTGATCGATGGCAT -ACGGAACCGATTGATCGACGAGAT -ACGGAACCGATTGATCGATACCAC -ACGGAACCGATTGATCGACAGAAC -ACGGAACCGATTGATCGAGTCTAC -ACGGAACCGATTGATCGAACGTAC -ACGGAACCGATTGATCGAAGTGAC -ACGGAACCGATTGATCGACTGTAG -ACGGAACCGATTGATCGACCTAAG -ACGGAACCGATTGATCGAGTTCAG -ACGGAACCGATTGATCGAGCATAG -ACGGAACCGATTGATCGAGACAAG -ACGGAACCGATTGATCGAAAGCAG -ACGGAACCGATTGATCGACGTCAA -ACGGAACCGATTGATCGAGCTGAA -ACGGAACCGATTGATCGAAGTACG -ACGGAACCGATTGATCGAATCCGA -ACGGAACCGATTGATCGAATGGGA -ACGGAACCGATTGATCGAGTGCAA -ACGGAACCGATTGATCGAGAGGAA -ACGGAACCGATTGATCGACAGGTA -ACGGAACCGATTGATCGAGACTCT -ACGGAACCGATTGATCGAAGTCCT -ACGGAACCGATTGATCGATAAGCC -ACGGAACCGATTGATCGAATAGCC -ACGGAACCGATTGATCGATAACCG -ACGGAACCGATTGATCGAATGCCA -ACGGAACCGATTCACTACGGAAAC -ACGGAACCGATTCACTACAACACC -ACGGAACCGATTCACTACATCGAG -ACGGAACCGATTCACTACCTCCTT -ACGGAACCGATTCACTACCCTGTT -ACGGAACCGATTCACTACCGGTTT -ACGGAACCGATTCACTACGTGGTT -ACGGAACCGATTCACTACGCCTTT -ACGGAACCGATTCACTACGGTCTT -ACGGAACCGATTCACTACACGCTT -ACGGAACCGATTCACTACAGCGTT -ACGGAACCGATTCACTACTTCGTC -ACGGAACCGATTCACTACTCTCTC -ACGGAACCGATTCACTACTGGATC -ACGGAACCGATTCACTACCACTTC -ACGGAACCGATTCACTACGTACTC -ACGGAACCGATTCACTACGATGTC -ACGGAACCGATTCACTACACAGTC -ACGGAACCGATTCACTACTTGCTG -ACGGAACCGATTCACTACTCCATG -ACGGAACCGATTCACTACTGTGTG -ACGGAACCGATTCACTACCTAGTG -ACGGAACCGATTCACTACCATCTG -ACGGAACCGATTCACTACGAGTTG -ACGGAACCGATTCACTACAGACTG -ACGGAACCGATTCACTACTCGGTA -ACGGAACCGATTCACTACTGCCTA -ACGGAACCGATTCACTACCCACTA -ACGGAACCGATTCACTACGGAGTA -ACGGAACCGATTCACTACTCGTCT -ACGGAACCGATTCACTACTGCACT -ACGGAACCGATTCACTACCTGACT -ACGGAACCGATTCACTACCAACCT -ACGGAACCGATTCACTACGCTACT -ACGGAACCGATTCACTACGGATCT -ACGGAACCGATTCACTACAAGGCT -ACGGAACCGATTCACTACTCAACC -ACGGAACCGATTCACTACTGTTCC -ACGGAACCGATTCACTACATTCCC -ACGGAACCGATTCACTACTTCTCG -ACGGAACCGATTCACTACTAGACG -ACGGAACCGATTCACTACGTAACG -ACGGAACCGATTCACTACACTTCG -ACGGAACCGATTCACTACTACGCA -ACGGAACCGATTCACTACCTTGCA -ACGGAACCGATTCACTACCGAACA -ACGGAACCGATTCACTACCAGTCA -ACGGAACCGATTCACTACGATCCA -ACGGAACCGATTCACTACACGACA -ACGGAACCGATTCACTACAGCTCA -ACGGAACCGATTCACTACTCACGT -ACGGAACCGATTCACTACCGTAGT -ACGGAACCGATTCACTACGTCAGT -ACGGAACCGATTCACTACGAAGGT -ACGGAACCGATTCACTACAACCGT -ACGGAACCGATTCACTACTTGTGC -ACGGAACCGATTCACTACCTAAGC -ACGGAACCGATTCACTACACTAGC -ACGGAACCGATTCACTACAGATGC -ACGGAACCGATTCACTACTGAAGG -ACGGAACCGATTCACTACCAATGG -ACGGAACCGATTCACTACATGAGG -ACGGAACCGATTCACTACAATGGG -ACGGAACCGATTCACTACTCCTGA -ACGGAACCGATTCACTACTAGCGA -ACGGAACCGATTCACTACCACAGA -ACGGAACCGATTCACTACGCAAGA -ACGGAACCGATTCACTACGGTTGA -ACGGAACCGATTCACTACTCCGAT -ACGGAACCGATTCACTACTGGCAT -ACGGAACCGATTCACTACCGAGAT -ACGGAACCGATTCACTACTACCAC -ACGGAACCGATTCACTACCAGAAC -ACGGAACCGATTCACTACGTCTAC -ACGGAACCGATTCACTACACGTAC -ACGGAACCGATTCACTACAGTGAC -ACGGAACCGATTCACTACCTGTAG -ACGGAACCGATTCACTACCCTAAG -ACGGAACCGATTCACTACGTTCAG -ACGGAACCGATTCACTACGCATAG -ACGGAACCGATTCACTACGACAAG -ACGGAACCGATTCACTACAAGCAG -ACGGAACCGATTCACTACCGTCAA -ACGGAACCGATTCACTACGCTGAA -ACGGAACCGATTCACTACAGTACG -ACGGAACCGATTCACTACATCCGA -ACGGAACCGATTCACTACATGGGA -ACGGAACCGATTCACTACGTGCAA -ACGGAACCGATTCACTACGAGGAA -ACGGAACCGATTCACTACCAGGTA -ACGGAACCGATTCACTACGACTCT -ACGGAACCGATTCACTACAGTCCT -ACGGAACCGATTCACTACTAAGCC -ACGGAACCGATTCACTACATAGCC -ACGGAACCGATTCACTACTAACCG -ACGGAACCGATTCACTACATGCCA -ACGGAACCGATTAACCAGGGAAAC -ACGGAACCGATTAACCAGAACACC -ACGGAACCGATTAACCAGATCGAG -ACGGAACCGATTAACCAGCTCCTT -ACGGAACCGATTAACCAGCCTGTT -ACGGAACCGATTAACCAGCGGTTT -ACGGAACCGATTAACCAGGTGGTT -ACGGAACCGATTAACCAGGCCTTT -ACGGAACCGATTAACCAGGGTCTT -ACGGAACCGATTAACCAGACGCTT -ACGGAACCGATTAACCAGAGCGTT -ACGGAACCGATTAACCAGTTCGTC -ACGGAACCGATTAACCAGTCTCTC -ACGGAACCGATTAACCAGTGGATC -ACGGAACCGATTAACCAGCACTTC -ACGGAACCGATTAACCAGGTACTC -ACGGAACCGATTAACCAGGATGTC -ACGGAACCGATTAACCAGACAGTC -ACGGAACCGATTAACCAGTTGCTG -ACGGAACCGATTAACCAGTCCATG -ACGGAACCGATTAACCAGTGTGTG -ACGGAACCGATTAACCAGCTAGTG -ACGGAACCGATTAACCAGCATCTG -ACGGAACCGATTAACCAGGAGTTG -ACGGAACCGATTAACCAGAGACTG -ACGGAACCGATTAACCAGTCGGTA -ACGGAACCGATTAACCAGTGCCTA -ACGGAACCGATTAACCAGCCACTA -ACGGAACCGATTAACCAGGGAGTA -ACGGAACCGATTAACCAGTCGTCT -ACGGAACCGATTAACCAGTGCACT -ACGGAACCGATTAACCAGCTGACT -ACGGAACCGATTAACCAGCAACCT -ACGGAACCGATTAACCAGGCTACT -ACGGAACCGATTAACCAGGGATCT -ACGGAACCGATTAACCAGAAGGCT -ACGGAACCGATTAACCAGTCAACC -ACGGAACCGATTAACCAGTGTTCC -ACGGAACCGATTAACCAGATTCCC -ACGGAACCGATTAACCAGTTCTCG -ACGGAACCGATTAACCAGTAGACG -ACGGAACCGATTAACCAGGTAACG -ACGGAACCGATTAACCAGACTTCG -ACGGAACCGATTAACCAGTACGCA -ACGGAACCGATTAACCAGCTTGCA -ACGGAACCGATTAACCAGCGAACA -ACGGAACCGATTAACCAGCAGTCA -ACGGAACCGATTAACCAGGATCCA -ACGGAACCGATTAACCAGACGACA -ACGGAACCGATTAACCAGAGCTCA -ACGGAACCGATTAACCAGTCACGT -ACGGAACCGATTAACCAGCGTAGT -ACGGAACCGATTAACCAGGTCAGT -ACGGAACCGATTAACCAGGAAGGT -ACGGAACCGATTAACCAGAACCGT -ACGGAACCGATTAACCAGTTGTGC -ACGGAACCGATTAACCAGCTAAGC -ACGGAACCGATTAACCAGACTAGC -ACGGAACCGATTAACCAGAGATGC -ACGGAACCGATTAACCAGTGAAGG -ACGGAACCGATTAACCAGCAATGG -ACGGAACCGATTAACCAGATGAGG -ACGGAACCGATTAACCAGAATGGG -ACGGAACCGATTAACCAGTCCTGA -ACGGAACCGATTAACCAGTAGCGA -ACGGAACCGATTAACCAGCACAGA -ACGGAACCGATTAACCAGGCAAGA -ACGGAACCGATTAACCAGGGTTGA -ACGGAACCGATTAACCAGTCCGAT -ACGGAACCGATTAACCAGTGGCAT -ACGGAACCGATTAACCAGCGAGAT -ACGGAACCGATTAACCAGTACCAC -ACGGAACCGATTAACCAGCAGAAC -ACGGAACCGATTAACCAGGTCTAC -ACGGAACCGATTAACCAGACGTAC -ACGGAACCGATTAACCAGAGTGAC -ACGGAACCGATTAACCAGCTGTAG -ACGGAACCGATTAACCAGCCTAAG -ACGGAACCGATTAACCAGGTTCAG -ACGGAACCGATTAACCAGGCATAG -ACGGAACCGATTAACCAGGACAAG -ACGGAACCGATTAACCAGAAGCAG -ACGGAACCGATTAACCAGCGTCAA -ACGGAACCGATTAACCAGGCTGAA -ACGGAACCGATTAACCAGAGTACG -ACGGAACCGATTAACCAGATCCGA -ACGGAACCGATTAACCAGATGGGA -ACGGAACCGATTAACCAGGTGCAA -ACGGAACCGATTAACCAGGAGGAA -ACGGAACCGATTAACCAGCAGGTA -ACGGAACCGATTAACCAGGACTCT -ACGGAACCGATTAACCAGAGTCCT -ACGGAACCGATTAACCAGTAAGCC -ACGGAACCGATTAACCAGATAGCC -ACGGAACCGATTAACCAGTAACCG -ACGGAACCGATTAACCAGATGCCA -ACGGAACCGATTTACGTCGGAAAC -ACGGAACCGATTTACGTCAACACC -ACGGAACCGATTTACGTCATCGAG -ACGGAACCGATTTACGTCCTCCTT -ACGGAACCGATTTACGTCCCTGTT -ACGGAACCGATTTACGTCCGGTTT -ACGGAACCGATTTACGTCGTGGTT -ACGGAACCGATTTACGTCGCCTTT -ACGGAACCGATTTACGTCGGTCTT -ACGGAACCGATTTACGTCACGCTT -ACGGAACCGATTTACGTCAGCGTT -ACGGAACCGATTTACGTCTTCGTC -ACGGAACCGATTTACGTCTCTCTC -ACGGAACCGATTTACGTCTGGATC -ACGGAACCGATTTACGTCCACTTC -ACGGAACCGATTTACGTCGTACTC -ACGGAACCGATTTACGTCGATGTC -ACGGAACCGATTTACGTCACAGTC -ACGGAACCGATTTACGTCTTGCTG -ACGGAACCGATTTACGTCTCCATG -ACGGAACCGATTTACGTCTGTGTG -ACGGAACCGATTTACGTCCTAGTG -ACGGAACCGATTTACGTCCATCTG -ACGGAACCGATTTACGTCGAGTTG -ACGGAACCGATTTACGTCAGACTG -ACGGAACCGATTTACGTCTCGGTA -ACGGAACCGATTTACGTCTGCCTA -ACGGAACCGATTTACGTCCCACTA -ACGGAACCGATTTACGTCGGAGTA -ACGGAACCGATTTACGTCTCGTCT -ACGGAACCGATTTACGTCTGCACT -ACGGAACCGATTTACGTCCTGACT -ACGGAACCGATTTACGTCCAACCT -ACGGAACCGATTTACGTCGCTACT -ACGGAACCGATTTACGTCGGATCT -ACGGAACCGATTTACGTCAAGGCT -ACGGAACCGATTTACGTCTCAACC -ACGGAACCGATTTACGTCTGTTCC -ACGGAACCGATTTACGTCATTCCC -ACGGAACCGATTTACGTCTTCTCG -ACGGAACCGATTTACGTCTAGACG -ACGGAACCGATTTACGTCGTAACG -ACGGAACCGATTTACGTCACTTCG -ACGGAACCGATTTACGTCTACGCA -ACGGAACCGATTTACGTCCTTGCA -ACGGAACCGATTTACGTCCGAACA -ACGGAACCGATTTACGTCCAGTCA -ACGGAACCGATTTACGTCGATCCA -ACGGAACCGATTTACGTCACGACA -ACGGAACCGATTTACGTCAGCTCA -ACGGAACCGATTTACGTCTCACGT -ACGGAACCGATTTACGTCCGTAGT -ACGGAACCGATTTACGTCGTCAGT -ACGGAACCGATTTACGTCGAAGGT -ACGGAACCGATTTACGTCAACCGT -ACGGAACCGATTTACGTCTTGTGC -ACGGAACCGATTTACGTCCTAAGC -ACGGAACCGATTTACGTCACTAGC -ACGGAACCGATTTACGTCAGATGC -ACGGAACCGATTTACGTCTGAAGG -ACGGAACCGATTTACGTCCAATGG -ACGGAACCGATTTACGTCATGAGG -ACGGAACCGATTTACGTCAATGGG -ACGGAACCGATTTACGTCTCCTGA -ACGGAACCGATTTACGTCTAGCGA -ACGGAACCGATTTACGTCCACAGA -ACGGAACCGATTTACGTCGCAAGA -ACGGAACCGATTTACGTCGGTTGA -ACGGAACCGATTTACGTCTCCGAT -ACGGAACCGATTTACGTCTGGCAT -ACGGAACCGATTTACGTCCGAGAT -ACGGAACCGATTTACGTCTACCAC -ACGGAACCGATTTACGTCCAGAAC -ACGGAACCGATTTACGTCGTCTAC -ACGGAACCGATTTACGTCACGTAC -ACGGAACCGATTTACGTCAGTGAC -ACGGAACCGATTTACGTCCTGTAG -ACGGAACCGATTTACGTCCCTAAG -ACGGAACCGATTTACGTCGTTCAG -ACGGAACCGATTTACGTCGCATAG -ACGGAACCGATTTACGTCGACAAG -ACGGAACCGATTTACGTCAAGCAG -ACGGAACCGATTTACGTCCGTCAA -ACGGAACCGATTTACGTCGCTGAA -ACGGAACCGATTTACGTCAGTACG -ACGGAACCGATTTACGTCATCCGA -ACGGAACCGATTTACGTCATGGGA -ACGGAACCGATTTACGTCGTGCAA -ACGGAACCGATTTACGTCGAGGAA -ACGGAACCGATTTACGTCCAGGTA -ACGGAACCGATTTACGTCGACTCT -ACGGAACCGATTTACGTCAGTCCT -ACGGAACCGATTTACGTCTAAGCC -ACGGAACCGATTTACGTCATAGCC -ACGGAACCGATTTACGTCTAACCG -ACGGAACCGATTTACGTCATGCCA -ACGGAACCGATTTACACGGGAAAC -ACGGAACCGATTTACACGAACACC -ACGGAACCGATTTACACGATCGAG -ACGGAACCGATTTACACGCTCCTT -ACGGAACCGATTTACACGCCTGTT -ACGGAACCGATTTACACGCGGTTT -ACGGAACCGATTTACACGGTGGTT -ACGGAACCGATTTACACGGCCTTT -ACGGAACCGATTTACACGGGTCTT -ACGGAACCGATTTACACGACGCTT -ACGGAACCGATTTACACGAGCGTT -ACGGAACCGATTTACACGTTCGTC -ACGGAACCGATTTACACGTCTCTC -ACGGAACCGATTTACACGTGGATC -ACGGAACCGATTTACACGCACTTC -ACGGAACCGATTTACACGGTACTC -ACGGAACCGATTTACACGGATGTC -ACGGAACCGATTTACACGACAGTC -ACGGAACCGATTTACACGTTGCTG -ACGGAACCGATTTACACGTCCATG -ACGGAACCGATTTACACGTGTGTG -ACGGAACCGATTTACACGCTAGTG -ACGGAACCGATTTACACGCATCTG -ACGGAACCGATTTACACGGAGTTG -ACGGAACCGATTTACACGAGACTG -ACGGAACCGATTTACACGTCGGTA -ACGGAACCGATTTACACGTGCCTA -ACGGAACCGATTTACACGCCACTA -ACGGAACCGATTTACACGGGAGTA -ACGGAACCGATTTACACGTCGTCT -ACGGAACCGATTTACACGTGCACT -ACGGAACCGATTTACACGCTGACT -ACGGAACCGATTTACACGCAACCT -ACGGAACCGATTTACACGGCTACT -ACGGAACCGATTTACACGGGATCT -ACGGAACCGATTTACACGAAGGCT -ACGGAACCGATTTACACGTCAACC -ACGGAACCGATTTACACGTGTTCC -ACGGAACCGATTTACACGATTCCC -ACGGAACCGATTTACACGTTCTCG -ACGGAACCGATTTACACGTAGACG -ACGGAACCGATTTACACGGTAACG -ACGGAACCGATTTACACGACTTCG -ACGGAACCGATTTACACGTACGCA -ACGGAACCGATTTACACGCTTGCA -ACGGAACCGATTTACACGCGAACA -ACGGAACCGATTTACACGCAGTCA -ACGGAACCGATTTACACGGATCCA -ACGGAACCGATTTACACGACGACA -ACGGAACCGATTTACACGAGCTCA -ACGGAACCGATTTACACGTCACGT -ACGGAACCGATTTACACGCGTAGT -ACGGAACCGATTTACACGGTCAGT -ACGGAACCGATTTACACGGAAGGT -ACGGAACCGATTTACACGAACCGT -ACGGAACCGATTTACACGTTGTGC -ACGGAACCGATTTACACGCTAAGC -ACGGAACCGATTTACACGACTAGC -ACGGAACCGATTTACACGAGATGC -ACGGAACCGATTTACACGTGAAGG -ACGGAACCGATTTACACGCAATGG -ACGGAACCGATTTACACGATGAGG -ACGGAACCGATTTACACGAATGGG -ACGGAACCGATTTACACGTCCTGA -ACGGAACCGATTTACACGTAGCGA -ACGGAACCGATTTACACGCACAGA -ACGGAACCGATTTACACGGCAAGA -ACGGAACCGATTTACACGGGTTGA -ACGGAACCGATTTACACGTCCGAT -ACGGAACCGATTTACACGTGGCAT -ACGGAACCGATTTACACGCGAGAT -ACGGAACCGATTTACACGTACCAC -ACGGAACCGATTTACACGCAGAAC -ACGGAACCGATTTACACGGTCTAC -ACGGAACCGATTTACACGACGTAC -ACGGAACCGATTTACACGAGTGAC -ACGGAACCGATTTACACGCTGTAG -ACGGAACCGATTTACACGCCTAAG -ACGGAACCGATTTACACGGTTCAG -ACGGAACCGATTTACACGGCATAG -ACGGAACCGATTTACACGGACAAG -ACGGAACCGATTTACACGAAGCAG -ACGGAACCGATTTACACGCGTCAA -ACGGAACCGATTTACACGGCTGAA -ACGGAACCGATTTACACGAGTACG -ACGGAACCGATTTACACGATCCGA -ACGGAACCGATTTACACGATGGGA -ACGGAACCGATTTACACGGTGCAA -ACGGAACCGATTTACACGGAGGAA -ACGGAACCGATTTACACGCAGGTA -ACGGAACCGATTTACACGGACTCT -ACGGAACCGATTTACACGAGTCCT -ACGGAACCGATTTACACGTAAGCC -ACGGAACCGATTTACACGATAGCC -ACGGAACCGATTTACACGTAACCG -ACGGAACCGATTTACACGATGCCA -ACGGAACCGATTGACAGTGGAAAC -ACGGAACCGATTGACAGTAACACC -ACGGAACCGATTGACAGTATCGAG -ACGGAACCGATTGACAGTCTCCTT -ACGGAACCGATTGACAGTCCTGTT -ACGGAACCGATTGACAGTCGGTTT -ACGGAACCGATTGACAGTGTGGTT -ACGGAACCGATTGACAGTGCCTTT -ACGGAACCGATTGACAGTGGTCTT -ACGGAACCGATTGACAGTACGCTT -ACGGAACCGATTGACAGTAGCGTT -ACGGAACCGATTGACAGTTTCGTC -ACGGAACCGATTGACAGTTCTCTC -ACGGAACCGATTGACAGTTGGATC -ACGGAACCGATTGACAGTCACTTC -ACGGAACCGATTGACAGTGTACTC -ACGGAACCGATTGACAGTGATGTC -ACGGAACCGATTGACAGTACAGTC -ACGGAACCGATTGACAGTTTGCTG -ACGGAACCGATTGACAGTTCCATG -ACGGAACCGATTGACAGTTGTGTG -ACGGAACCGATTGACAGTCTAGTG -ACGGAACCGATTGACAGTCATCTG -ACGGAACCGATTGACAGTGAGTTG -ACGGAACCGATTGACAGTAGACTG -ACGGAACCGATTGACAGTTCGGTA -ACGGAACCGATTGACAGTTGCCTA -ACGGAACCGATTGACAGTCCACTA -ACGGAACCGATTGACAGTGGAGTA -ACGGAACCGATTGACAGTTCGTCT -ACGGAACCGATTGACAGTTGCACT -ACGGAACCGATTGACAGTCTGACT -ACGGAACCGATTGACAGTCAACCT -ACGGAACCGATTGACAGTGCTACT -ACGGAACCGATTGACAGTGGATCT -ACGGAACCGATTGACAGTAAGGCT -ACGGAACCGATTGACAGTTCAACC -ACGGAACCGATTGACAGTTGTTCC -ACGGAACCGATTGACAGTATTCCC -ACGGAACCGATTGACAGTTTCTCG -ACGGAACCGATTGACAGTTAGACG -ACGGAACCGATTGACAGTGTAACG -ACGGAACCGATTGACAGTACTTCG -ACGGAACCGATTGACAGTTACGCA -ACGGAACCGATTGACAGTCTTGCA -ACGGAACCGATTGACAGTCGAACA -ACGGAACCGATTGACAGTCAGTCA -ACGGAACCGATTGACAGTGATCCA -ACGGAACCGATTGACAGTACGACA -ACGGAACCGATTGACAGTAGCTCA -ACGGAACCGATTGACAGTTCACGT -ACGGAACCGATTGACAGTCGTAGT -ACGGAACCGATTGACAGTGTCAGT -ACGGAACCGATTGACAGTGAAGGT -ACGGAACCGATTGACAGTAACCGT -ACGGAACCGATTGACAGTTTGTGC -ACGGAACCGATTGACAGTCTAAGC -ACGGAACCGATTGACAGTACTAGC -ACGGAACCGATTGACAGTAGATGC -ACGGAACCGATTGACAGTTGAAGG -ACGGAACCGATTGACAGTCAATGG -ACGGAACCGATTGACAGTATGAGG -ACGGAACCGATTGACAGTAATGGG -ACGGAACCGATTGACAGTTCCTGA -ACGGAACCGATTGACAGTTAGCGA -ACGGAACCGATTGACAGTCACAGA -ACGGAACCGATTGACAGTGCAAGA -ACGGAACCGATTGACAGTGGTTGA -ACGGAACCGATTGACAGTTCCGAT -ACGGAACCGATTGACAGTTGGCAT -ACGGAACCGATTGACAGTCGAGAT -ACGGAACCGATTGACAGTTACCAC -ACGGAACCGATTGACAGTCAGAAC -ACGGAACCGATTGACAGTGTCTAC -ACGGAACCGATTGACAGTACGTAC -ACGGAACCGATTGACAGTAGTGAC -ACGGAACCGATTGACAGTCTGTAG -ACGGAACCGATTGACAGTCCTAAG -ACGGAACCGATTGACAGTGTTCAG -ACGGAACCGATTGACAGTGCATAG -ACGGAACCGATTGACAGTGACAAG -ACGGAACCGATTGACAGTAAGCAG -ACGGAACCGATTGACAGTCGTCAA -ACGGAACCGATTGACAGTGCTGAA -ACGGAACCGATTGACAGTAGTACG -ACGGAACCGATTGACAGTATCCGA -ACGGAACCGATTGACAGTATGGGA -ACGGAACCGATTGACAGTGTGCAA -ACGGAACCGATTGACAGTGAGGAA -ACGGAACCGATTGACAGTCAGGTA -ACGGAACCGATTGACAGTGACTCT -ACGGAACCGATTGACAGTAGTCCT -ACGGAACCGATTGACAGTTAAGCC -ACGGAACCGATTGACAGTATAGCC -ACGGAACCGATTGACAGTTAACCG -ACGGAACCGATTGACAGTATGCCA -ACGGAACCGATTTAGCTGGGAAAC -ACGGAACCGATTTAGCTGAACACC -ACGGAACCGATTTAGCTGATCGAG -ACGGAACCGATTTAGCTGCTCCTT -ACGGAACCGATTTAGCTGCCTGTT -ACGGAACCGATTTAGCTGCGGTTT -ACGGAACCGATTTAGCTGGTGGTT -ACGGAACCGATTTAGCTGGCCTTT -ACGGAACCGATTTAGCTGGGTCTT -ACGGAACCGATTTAGCTGACGCTT -ACGGAACCGATTTAGCTGAGCGTT -ACGGAACCGATTTAGCTGTTCGTC -ACGGAACCGATTTAGCTGTCTCTC -ACGGAACCGATTTAGCTGTGGATC -ACGGAACCGATTTAGCTGCACTTC -ACGGAACCGATTTAGCTGGTACTC -ACGGAACCGATTTAGCTGGATGTC -ACGGAACCGATTTAGCTGACAGTC -ACGGAACCGATTTAGCTGTTGCTG -ACGGAACCGATTTAGCTGTCCATG -ACGGAACCGATTTAGCTGTGTGTG -ACGGAACCGATTTAGCTGCTAGTG -ACGGAACCGATTTAGCTGCATCTG -ACGGAACCGATTTAGCTGGAGTTG -ACGGAACCGATTTAGCTGAGACTG -ACGGAACCGATTTAGCTGTCGGTA -ACGGAACCGATTTAGCTGTGCCTA -ACGGAACCGATTTAGCTGCCACTA -ACGGAACCGATTTAGCTGGGAGTA -ACGGAACCGATTTAGCTGTCGTCT -ACGGAACCGATTTAGCTGTGCACT -ACGGAACCGATTTAGCTGCTGACT -ACGGAACCGATTTAGCTGCAACCT -ACGGAACCGATTTAGCTGGCTACT -ACGGAACCGATTTAGCTGGGATCT -ACGGAACCGATTTAGCTGAAGGCT -ACGGAACCGATTTAGCTGTCAACC -ACGGAACCGATTTAGCTGTGTTCC -ACGGAACCGATTTAGCTGATTCCC -ACGGAACCGATTTAGCTGTTCTCG -ACGGAACCGATTTAGCTGTAGACG -ACGGAACCGATTTAGCTGGTAACG -ACGGAACCGATTTAGCTGACTTCG -ACGGAACCGATTTAGCTGTACGCA -ACGGAACCGATTTAGCTGCTTGCA -ACGGAACCGATTTAGCTGCGAACA -ACGGAACCGATTTAGCTGCAGTCA -ACGGAACCGATTTAGCTGGATCCA -ACGGAACCGATTTAGCTGACGACA -ACGGAACCGATTTAGCTGAGCTCA -ACGGAACCGATTTAGCTGTCACGT -ACGGAACCGATTTAGCTGCGTAGT -ACGGAACCGATTTAGCTGGTCAGT -ACGGAACCGATTTAGCTGGAAGGT -ACGGAACCGATTTAGCTGAACCGT -ACGGAACCGATTTAGCTGTTGTGC -ACGGAACCGATTTAGCTGCTAAGC -ACGGAACCGATTTAGCTGACTAGC -ACGGAACCGATTTAGCTGAGATGC -ACGGAACCGATTTAGCTGTGAAGG -ACGGAACCGATTTAGCTGCAATGG -ACGGAACCGATTTAGCTGATGAGG -ACGGAACCGATTTAGCTGAATGGG -ACGGAACCGATTTAGCTGTCCTGA -ACGGAACCGATTTAGCTGTAGCGA -ACGGAACCGATTTAGCTGCACAGA -ACGGAACCGATTTAGCTGGCAAGA -ACGGAACCGATTTAGCTGGGTTGA -ACGGAACCGATTTAGCTGTCCGAT -ACGGAACCGATTTAGCTGTGGCAT -ACGGAACCGATTTAGCTGCGAGAT -ACGGAACCGATTTAGCTGTACCAC -ACGGAACCGATTTAGCTGCAGAAC -ACGGAACCGATTTAGCTGGTCTAC -ACGGAACCGATTTAGCTGACGTAC -ACGGAACCGATTTAGCTGAGTGAC -ACGGAACCGATTTAGCTGCTGTAG -ACGGAACCGATTTAGCTGCCTAAG -ACGGAACCGATTTAGCTGGTTCAG -ACGGAACCGATTTAGCTGGCATAG -ACGGAACCGATTTAGCTGGACAAG -ACGGAACCGATTTAGCTGAAGCAG -ACGGAACCGATTTAGCTGCGTCAA -ACGGAACCGATTTAGCTGGCTGAA -ACGGAACCGATTTAGCTGAGTACG -ACGGAACCGATTTAGCTGATCCGA -ACGGAACCGATTTAGCTGATGGGA -ACGGAACCGATTTAGCTGGTGCAA -ACGGAACCGATTTAGCTGGAGGAA -ACGGAACCGATTTAGCTGCAGGTA -ACGGAACCGATTTAGCTGGACTCT -ACGGAACCGATTTAGCTGAGTCCT -ACGGAACCGATTTAGCTGTAAGCC -ACGGAACCGATTTAGCTGATAGCC -ACGGAACCGATTTAGCTGTAACCG -ACGGAACCGATTTAGCTGATGCCA -ACGGAACCGATTAAGCCTGGAAAC -ACGGAACCGATTAAGCCTAACACC -ACGGAACCGATTAAGCCTATCGAG -ACGGAACCGATTAAGCCTCTCCTT -ACGGAACCGATTAAGCCTCCTGTT -ACGGAACCGATTAAGCCTCGGTTT -ACGGAACCGATTAAGCCTGTGGTT -ACGGAACCGATTAAGCCTGCCTTT -ACGGAACCGATTAAGCCTGGTCTT -ACGGAACCGATTAAGCCTACGCTT -ACGGAACCGATTAAGCCTAGCGTT -ACGGAACCGATTAAGCCTTTCGTC -ACGGAACCGATTAAGCCTTCTCTC -ACGGAACCGATTAAGCCTTGGATC -ACGGAACCGATTAAGCCTCACTTC -ACGGAACCGATTAAGCCTGTACTC -ACGGAACCGATTAAGCCTGATGTC -ACGGAACCGATTAAGCCTACAGTC -ACGGAACCGATTAAGCCTTTGCTG -ACGGAACCGATTAAGCCTTCCATG -ACGGAACCGATTAAGCCTTGTGTG -ACGGAACCGATTAAGCCTCTAGTG -ACGGAACCGATTAAGCCTCATCTG -ACGGAACCGATTAAGCCTGAGTTG -ACGGAACCGATTAAGCCTAGACTG -ACGGAACCGATTAAGCCTTCGGTA -ACGGAACCGATTAAGCCTTGCCTA -ACGGAACCGATTAAGCCTCCACTA -ACGGAACCGATTAAGCCTGGAGTA -ACGGAACCGATTAAGCCTTCGTCT -ACGGAACCGATTAAGCCTTGCACT -ACGGAACCGATTAAGCCTCTGACT -ACGGAACCGATTAAGCCTCAACCT -ACGGAACCGATTAAGCCTGCTACT -ACGGAACCGATTAAGCCTGGATCT -ACGGAACCGATTAAGCCTAAGGCT -ACGGAACCGATTAAGCCTTCAACC -ACGGAACCGATTAAGCCTTGTTCC -ACGGAACCGATTAAGCCTATTCCC -ACGGAACCGATTAAGCCTTTCTCG -ACGGAACCGATTAAGCCTTAGACG -ACGGAACCGATTAAGCCTGTAACG -ACGGAACCGATTAAGCCTACTTCG -ACGGAACCGATTAAGCCTTACGCA -ACGGAACCGATTAAGCCTCTTGCA -ACGGAACCGATTAAGCCTCGAACA -ACGGAACCGATTAAGCCTCAGTCA -ACGGAACCGATTAAGCCTGATCCA -ACGGAACCGATTAAGCCTACGACA -ACGGAACCGATTAAGCCTAGCTCA -ACGGAACCGATTAAGCCTTCACGT -ACGGAACCGATTAAGCCTCGTAGT -ACGGAACCGATTAAGCCTGTCAGT -ACGGAACCGATTAAGCCTGAAGGT -ACGGAACCGATTAAGCCTAACCGT -ACGGAACCGATTAAGCCTTTGTGC -ACGGAACCGATTAAGCCTCTAAGC -ACGGAACCGATTAAGCCTACTAGC -ACGGAACCGATTAAGCCTAGATGC -ACGGAACCGATTAAGCCTTGAAGG -ACGGAACCGATTAAGCCTCAATGG -ACGGAACCGATTAAGCCTATGAGG -ACGGAACCGATTAAGCCTAATGGG -ACGGAACCGATTAAGCCTTCCTGA -ACGGAACCGATTAAGCCTTAGCGA -ACGGAACCGATTAAGCCTCACAGA -ACGGAACCGATTAAGCCTGCAAGA -ACGGAACCGATTAAGCCTGGTTGA -ACGGAACCGATTAAGCCTTCCGAT -ACGGAACCGATTAAGCCTTGGCAT -ACGGAACCGATTAAGCCTCGAGAT -ACGGAACCGATTAAGCCTTACCAC -ACGGAACCGATTAAGCCTCAGAAC -ACGGAACCGATTAAGCCTGTCTAC -ACGGAACCGATTAAGCCTACGTAC -ACGGAACCGATTAAGCCTAGTGAC -ACGGAACCGATTAAGCCTCTGTAG -ACGGAACCGATTAAGCCTCCTAAG -ACGGAACCGATTAAGCCTGTTCAG -ACGGAACCGATTAAGCCTGCATAG -ACGGAACCGATTAAGCCTGACAAG -ACGGAACCGATTAAGCCTAAGCAG -ACGGAACCGATTAAGCCTCGTCAA -ACGGAACCGATTAAGCCTGCTGAA -ACGGAACCGATTAAGCCTAGTACG -ACGGAACCGATTAAGCCTATCCGA -ACGGAACCGATTAAGCCTATGGGA -ACGGAACCGATTAAGCCTGTGCAA -ACGGAACCGATTAAGCCTGAGGAA -ACGGAACCGATTAAGCCTCAGGTA -ACGGAACCGATTAAGCCTGACTCT -ACGGAACCGATTAAGCCTAGTCCT -ACGGAACCGATTAAGCCTTAAGCC -ACGGAACCGATTAAGCCTATAGCC -ACGGAACCGATTAAGCCTTAACCG -ACGGAACCGATTAAGCCTATGCCA -ACGGAACCGATTCAGGTTGGAAAC -ACGGAACCGATTCAGGTTAACACC -ACGGAACCGATTCAGGTTATCGAG -ACGGAACCGATTCAGGTTCTCCTT -ACGGAACCGATTCAGGTTCCTGTT -ACGGAACCGATTCAGGTTCGGTTT -ACGGAACCGATTCAGGTTGTGGTT -ACGGAACCGATTCAGGTTGCCTTT -ACGGAACCGATTCAGGTTGGTCTT -ACGGAACCGATTCAGGTTACGCTT -ACGGAACCGATTCAGGTTAGCGTT -ACGGAACCGATTCAGGTTTTCGTC -ACGGAACCGATTCAGGTTTCTCTC -ACGGAACCGATTCAGGTTTGGATC -ACGGAACCGATTCAGGTTCACTTC -ACGGAACCGATTCAGGTTGTACTC -ACGGAACCGATTCAGGTTGATGTC -ACGGAACCGATTCAGGTTACAGTC -ACGGAACCGATTCAGGTTTTGCTG -ACGGAACCGATTCAGGTTTCCATG -ACGGAACCGATTCAGGTTTGTGTG -ACGGAACCGATTCAGGTTCTAGTG -ACGGAACCGATTCAGGTTCATCTG -ACGGAACCGATTCAGGTTGAGTTG -ACGGAACCGATTCAGGTTAGACTG -ACGGAACCGATTCAGGTTTCGGTA -ACGGAACCGATTCAGGTTTGCCTA -ACGGAACCGATTCAGGTTCCACTA -ACGGAACCGATTCAGGTTGGAGTA -ACGGAACCGATTCAGGTTTCGTCT -ACGGAACCGATTCAGGTTTGCACT -ACGGAACCGATTCAGGTTCTGACT -ACGGAACCGATTCAGGTTCAACCT -ACGGAACCGATTCAGGTTGCTACT -ACGGAACCGATTCAGGTTGGATCT -ACGGAACCGATTCAGGTTAAGGCT -ACGGAACCGATTCAGGTTTCAACC -ACGGAACCGATTCAGGTTTGTTCC -ACGGAACCGATTCAGGTTATTCCC -ACGGAACCGATTCAGGTTTTCTCG -ACGGAACCGATTCAGGTTTAGACG -ACGGAACCGATTCAGGTTGTAACG -ACGGAACCGATTCAGGTTACTTCG -ACGGAACCGATTCAGGTTTACGCA -ACGGAACCGATTCAGGTTCTTGCA -ACGGAACCGATTCAGGTTCGAACA -ACGGAACCGATTCAGGTTCAGTCA -ACGGAACCGATTCAGGTTGATCCA -ACGGAACCGATTCAGGTTACGACA -ACGGAACCGATTCAGGTTAGCTCA -ACGGAACCGATTCAGGTTTCACGT -ACGGAACCGATTCAGGTTCGTAGT -ACGGAACCGATTCAGGTTGTCAGT -ACGGAACCGATTCAGGTTGAAGGT -ACGGAACCGATTCAGGTTAACCGT -ACGGAACCGATTCAGGTTTTGTGC -ACGGAACCGATTCAGGTTCTAAGC -ACGGAACCGATTCAGGTTACTAGC -ACGGAACCGATTCAGGTTAGATGC -ACGGAACCGATTCAGGTTTGAAGG -ACGGAACCGATTCAGGTTCAATGG -ACGGAACCGATTCAGGTTATGAGG -ACGGAACCGATTCAGGTTAATGGG -ACGGAACCGATTCAGGTTTCCTGA -ACGGAACCGATTCAGGTTTAGCGA -ACGGAACCGATTCAGGTTCACAGA -ACGGAACCGATTCAGGTTGCAAGA -ACGGAACCGATTCAGGTTGGTTGA -ACGGAACCGATTCAGGTTTCCGAT -ACGGAACCGATTCAGGTTTGGCAT -ACGGAACCGATTCAGGTTCGAGAT -ACGGAACCGATTCAGGTTTACCAC -ACGGAACCGATTCAGGTTCAGAAC -ACGGAACCGATTCAGGTTGTCTAC -ACGGAACCGATTCAGGTTACGTAC -ACGGAACCGATTCAGGTTAGTGAC -ACGGAACCGATTCAGGTTCTGTAG -ACGGAACCGATTCAGGTTCCTAAG -ACGGAACCGATTCAGGTTGTTCAG -ACGGAACCGATTCAGGTTGCATAG -ACGGAACCGATTCAGGTTGACAAG -ACGGAACCGATTCAGGTTAAGCAG -ACGGAACCGATTCAGGTTCGTCAA -ACGGAACCGATTCAGGTTGCTGAA -ACGGAACCGATTCAGGTTAGTACG -ACGGAACCGATTCAGGTTATCCGA -ACGGAACCGATTCAGGTTATGGGA -ACGGAACCGATTCAGGTTGTGCAA -ACGGAACCGATTCAGGTTGAGGAA -ACGGAACCGATTCAGGTTCAGGTA -ACGGAACCGATTCAGGTTGACTCT -ACGGAACCGATTCAGGTTAGTCCT -ACGGAACCGATTCAGGTTTAAGCC -ACGGAACCGATTCAGGTTATAGCC -ACGGAACCGATTCAGGTTTAACCG -ACGGAACCGATTCAGGTTATGCCA -ACGGAACCGATTTAGGCAGGAAAC -ACGGAACCGATTTAGGCAAACACC -ACGGAACCGATTTAGGCAATCGAG -ACGGAACCGATTTAGGCACTCCTT -ACGGAACCGATTTAGGCACCTGTT -ACGGAACCGATTTAGGCACGGTTT -ACGGAACCGATTTAGGCAGTGGTT -ACGGAACCGATTTAGGCAGCCTTT -ACGGAACCGATTTAGGCAGGTCTT -ACGGAACCGATTTAGGCAACGCTT -ACGGAACCGATTTAGGCAAGCGTT -ACGGAACCGATTTAGGCATTCGTC -ACGGAACCGATTTAGGCATCTCTC -ACGGAACCGATTTAGGCATGGATC -ACGGAACCGATTTAGGCACACTTC -ACGGAACCGATTTAGGCAGTACTC -ACGGAACCGATTTAGGCAGATGTC -ACGGAACCGATTTAGGCAACAGTC -ACGGAACCGATTTAGGCATTGCTG -ACGGAACCGATTTAGGCATCCATG -ACGGAACCGATTTAGGCATGTGTG -ACGGAACCGATTTAGGCACTAGTG -ACGGAACCGATTTAGGCACATCTG -ACGGAACCGATTTAGGCAGAGTTG -ACGGAACCGATTTAGGCAAGACTG -ACGGAACCGATTTAGGCATCGGTA -ACGGAACCGATTTAGGCATGCCTA -ACGGAACCGATTTAGGCACCACTA -ACGGAACCGATTTAGGCAGGAGTA -ACGGAACCGATTTAGGCATCGTCT -ACGGAACCGATTTAGGCATGCACT -ACGGAACCGATTTAGGCACTGACT -ACGGAACCGATTTAGGCACAACCT -ACGGAACCGATTTAGGCAGCTACT -ACGGAACCGATTTAGGCAGGATCT -ACGGAACCGATTTAGGCAAAGGCT -ACGGAACCGATTTAGGCATCAACC -ACGGAACCGATTTAGGCATGTTCC -ACGGAACCGATTTAGGCAATTCCC -ACGGAACCGATTTAGGCATTCTCG -ACGGAACCGATTTAGGCATAGACG -ACGGAACCGATTTAGGCAGTAACG -ACGGAACCGATTTAGGCAACTTCG -ACGGAACCGATTTAGGCATACGCA -ACGGAACCGATTTAGGCACTTGCA -ACGGAACCGATTTAGGCACGAACA -ACGGAACCGATTTAGGCACAGTCA -ACGGAACCGATTTAGGCAGATCCA -ACGGAACCGATTTAGGCAACGACA -ACGGAACCGATTTAGGCAAGCTCA -ACGGAACCGATTTAGGCATCACGT -ACGGAACCGATTTAGGCACGTAGT -ACGGAACCGATTTAGGCAGTCAGT -ACGGAACCGATTTAGGCAGAAGGT -ACGGAACCGATTTAGGCAAACCGT -ACGGAACCGATTTAGGCATTGTGC -ACGGAACCGATTTAGGCACTAAGC -ACGGAACCGATTTAGGCAACTAGC -ACGGAACCGATTTAGGCAAGATGC -ACGGAACCGATTTAGGCATGAAGG -ACGGAACCGATTTAGGCACAATGG -ACGGAACCGATTTAGGCAATGAGG -ACGGAACCGATTTAGGCAAATGGG -ACGGAACCGATTTAGGCATCCTGA -ACGGAACCGATTTAGGCATAGCGA -ACGGAACCGATTTAGGCACACAGA -ACGGAACCGATTTAGGCAGCAAGA -ACGGAACCGATTTAGGCAGGTTGA -ACGGAACCGATTTAGGCATCCGAT -ACGGAACCGATTTAGGCATGGCAT -ACGGAACCGATTTAGGCACGAGAT -ACGGAACCGATTTAGGCATACCAC -ACGGAACCGATTTAGGCACAGAAC -ACGGAACCGATTTAGGCAGTCTAC -ACGGAACCGATTTAGGCAACGTAC -ACGGAACCGATTTAGGCAAGTGAC -ACGGAACCGATTTAGGCACTGTAG -ACGGAACCGATTTAGGCACCTAAG -ACGGAACCGATTTAGGCAGTTCAG -ACGGAACCGATTTAGGCAGCATAG -ACGGAACCGATTTAGGCAGACAAG -ACGGAACCGATTTAGGCAAAGCAG -ACGGAACCGATTTAGGCACGTCAA -ACGGAACCGATTTAGGCAGCTGAA -ACGGAACCGATTTAGGCAAGTACG -ACGGAACCGATTTAGGCAATCCGA -ACGGAACCGATTTAGGCAATGGGA -ACGGAACCGATTTAGGCAGTGCAA -ACGGAACCGATTTAGGCAGAGGAA -ACGGAACCGATTTAGGCACAGGTA -ACGGAACCGATTTAGGCAGACTCT -ACGGAACCGATTTAGGCAAGTCCT -ACGGAACCGATTTAGGCATAAGCC -ACGGAACCGATTTAGGCAATAGCC -ACGGAACCGATTTAGGCATAACCG -ACGGAACCGATTTAGGCAATGCCA -ACGGAACCGATTAAGGACGGAAAC -ACGGAACCGATTAAGGACAACACC -ACGGAACCGATTAAGGACATCGAG -ACGGAACCGATTAAGGACCTCCTT -ACGGAACCGATTAAGGACCCTGTT -ACGGAACCGATTAAGGACCGGTTT -ACGGAACCGATTAAGGACGTGGTT -ACGGAACCGATTAAGGACGCCTTT -ACGGAACCGATTAAGGACGGTCTT -ACGGAACCGATTAAGGACACGCTT -ACGGAACCGATTAAGGACAGCGTT -ACGGAACCGATTAAGGACTTCGTC -ACGGAACCGATTAAGGACTCTCTC -ACGGAACCGATTAAGGACTGGATC -ACGGAACCGATTAAGGACCACTTC -ACGGAACCGATTAAGGACGTACTC -ACGGAACCGATTAAGGACGATGTC -ACGGAACCGATTAAGGACACAGTC -ACGGAACCGATTAAGGACTTGCTG -ACGGAACCGATTAAGGACTCCATG -ACGGAACCGATTAAGGACTGTGTG -ACGGAACCGATTAAGGACCTAGTG -ACGGAACCGATTAAGGACCATCTG -ACGGAACCGATTAAGGACGAGTTG -ACGGAACCGATTAAGGACAGACTG -ACGGAACCGATTAAGGACTCGGTA -ACGGAACCGATTAAGGACTGCCTA -ACGGAACCGATTAAGGACCCACTA -ACGGAACCGATTAAGGACGGAGTA -ACGGAACCGATTAAGGACTCGTCT -ACGGAACCGATTAAGGACTGCACT -ACGGAACCGATTAAGGACCTGACT -ACGGAACCGATTAAGGACCAACCT -ACGGAACCGATTAAGGACGCTACT -ACGGAACCGATTAAGGACGGATCT -ACGGAACCGATTAAGGACAAGGCT -ACGGAACCGATTAAGGACTCAACC -ACGGAACCGATTAAGGACTGTTCC -ACGGAACCGATTAAGGACATTCCC -ACGGAACCGATTAAGGACTTCTCG -ACGGAACCGATTAAGGACTAGACG -ACGGAACCGATTAAGGACGTAACG -ACGGAACCGATTAAGGACACTTCG -ACGGAACCGATTAAGGACTACGCA -ACGGAACCGATTAAGGACCTTGCA -ACGGAACCGATTAAGGACCGAACA -ACGGAACCGATTAAGGACCAGTCA -ACGGAACCGATTAAGGACGATCCA -ACGGAACCGATTAAGGACACGACA -ACGGAACCGATTAAGGACAGCTCA -ACGGAACCGATTAAGGACTCACGT -ACGGAACCGATTAAGGACCGTAGT -ACGGAACCGATTAAGGACGTCAGT -ACGGAACCGATTAAGGACGAAGGT -ACGGAACCGATTAAGGACAACCGT -ACGGAACCGATTAAGGACTTGTGC -ACGGAACCGATTAAGGACCTAAGC -ACGGAACCGATTAAGGACACTAGC -ACGGAACCGATTAAGGACAGATGC -ACGGAACCGATTAAGGACTGAAGG -ACGGAACCGATTAAGGACCAATGG -ACGGAACCGATTAAGGACATGAGG -ACGGAACCGATTAAGGACAATGGG -ACGGAACCGATTAAGGACTCCTGA -ACGGAACCGATTAAGGACTAGCGA -ACGGAACCGATTAAGGACCACAGA -ACGGAACCGATTAAGGACGCAAGA -ACGGAACCGATTAAGGACGGTTGA -ACGGAACCGATTAAGGACTCCGAT -ACGGAACCGATTAAGGACTGGCAT -ACGGAACCGATTAAGGACCGAGAT -ACGGAACCGATTAAGGACTACCAC -ACGGAACCGATTAAGGACCAGAAC -ACGGAACCGATTAAGGACGTCTAC -ACGGAACCGATTAAGGACACGTAC -ACGGAACCGATTAAGGACAGTGAC -ACGGAACCGATTAAGGACCTGTAG -ACGGAACCGATTAAGGACCCTAAG -ACGGAACCGATTAAGGACGTTCAG -ACGGAACCGATTAAGGACGCATAG -ACGGAACCGATTAAGGACGACAAG -ACGGAACCGATTAAGGACAAGCAG -ACGGAACCGATTAAGGACCGTCAA -ACGGAACCGATTAAGGACGCTGAA -ACGGAACCGATTAAGGACAGTACG -ACGGAACCGATTAAGGACATCCGA -ACGGAACCGATTAAGGACATGGGA -ACGGAACCGATTAAGGACGTGCAA -ACGGAACCGATTAAGGACGAGGAA -ACGGAACCGATTAAGGACCAGGTA -ACGGAACCGATTAAGGACGACTCT -ACGGAACCGATTAAGGACAGTCCT -ACGGAACCGATTAAGGACTAAGCC -ACGGAACCGATTAAGGACATAGCC -ACGGAACCGATTAAGGACTAACCG -ACGGAACCGATTAAGGACATGCCA -ACGGAACCGATTCAGAAGGGAAAC -ACGGAACCGATTCAGAAGAACACC -ACGGAACCGATTCAGAAGATCGAG -ACGGAACCGATTCAGAAGCTCCTT -ACGGAACCGATTCAGAAGCCTGTT -ACGGAACCGATTCAGAAGCGGTTT -ACGGAACCGATTCAGAAGGTGGTT -ACGGAACCGATTCAGAAGGCCTTT -ACGGAACCGATTCAGAAGGGTCTT -ACGGAACCGATTCAGAAGACGCTT -ACGGAACCGATTCAGAAGAGCGTT -ACGGAACCGATTCAGAAGTTCGTC -ACGGAACCGATTCAGAAGTCTCTC -ACGGAACCGATTCAGAAGTGGATC -ACGGAACCGATTCAGAAGCACTTC -ACGGAACCGATTCAGAAGGTACTC -ACGGAACCGATTCAGAAGGATGTC -ACGGAACCGATTCAGAAGACAGTC -ACGGAACCGATTCAGAAGTTGCTG -ACGGAACCGATTCAGAAGTCCATG -ACGGAACCGATTCAGAAGTGTGTG -ACGGAACCGATTCAGAAGCTAGTG -ACGGAACCGATTCAGAAGCATCTG -ACGGAACCGATTCAGAAGGAGTTG -ACGGAACCGATTCAGAAGAGACTG -ACGGAACCGATTCAGAAGTCGGTA -ACGGAACCGATTCAGAAGTGCCTA -ACGGAACCGATTCAGAAGCCACTA -ACGGAACCGATTCAGAAGGGAGTA -ACGGAACCGATTCAGAAGTCGTCT -ACGGAACCGATTCAGAAGTGCACT -ACGGAACCGATTCAGAAGCTGACT -ACGGAACCGATTCAGAAGCAACCT -ACGGAACCGATTCAGAAGGCTACT -ACGGAACCGATTCAGAAGGGATCT -ACGGAACCGATTCAGAAGAAGGCT -ACGGAACCGATTCAGAAGTCAACC -ACGGAACCGATTCAGAAGTGTTCC -ACGGAACCGATTCAGAAGATTCCC -ACGGAACCGATTCAGAAGTTCTCG -ACGGAACCGATTCAGAAGTAGACG -ACGGAACCGATTCAGAAGGTAACG -ACGGAACCGATTCAGAAGACTTCG -ACGGAACCGATTCAGAAGTACGCA -ACGGAACCGATTCAGAAGCTTGCA -ACGGAACCGATTCAGAAGCGAACA -ACGGAACCGATTCAGAAGCAGTCA -ACGGAACCGATTCAGAAGGATCCA -ACGGAACCGATTCAGAAGACGACA -ACGGAACCGATTCAGAAGAGCTCA -ACGGAACCGATTCAGAAGTCACGT -ACGGAACCGATTCAGAAGCGTAGT -ACGGAACCGATTCAGAAGGTCAGT -ACGGAACCGATTCAGAAGGAAGGT -ACGGAACCGATTCAGAAGAACCGT -ACGGAACCGATTCAGAAGTTGTGC -ACGGAACCGATTCAGAAGCTAAGC -ACGGAACCGATTCAGAAGACTAGC -ACGGAACCGATTCAGAAGAGATGC -ACGGAACCGATTCAGAAGTGAAGG -ACGGAACCGATTCAGAAGCAATGG -ACGGAACCGATTCAGAAGATGAGG -ACGGAACCGATTCAGAAGAATGGG -ACGGAACCGATTCAGAAGTCCTGA -ACGGAACCGATTCAGAAGTAGCGA -ACGGAACCGATTCAGAAGCACAGA -ACGGAACCGATTCAGAAGGCAAGA -ACGGAACCGATTCAGAAGGGTTGA -ACGGAACCGATTCAGAAGTCCGAT -ACGGAACCGATTCAGAAGTGGCAT -ACGGAACCGATTCAGAAGCGAGAT -ACGGAACCGATTCAGAAGTACCAC -ACGGAACCGATTCAGAAGCAGAAC -ACGGAACCGATTCAGAAGGTCTAC -ACGGAACCGATTCAGAAGACGTAC -ACGGAACCGATTCAGAAGAGTGAC -ACGGAACCGATTCAGAAGCTGTAG -ACGGAACCGATTCAGAAGCCTAAG -ACGGAACCGATTCAGAAGGTTCAG -ACGGAACCGATTCAGAAGGCATAG -ACGGAACCGATTCAGAAGGACAAG -ACGGAACCGATTCAGAAGAAGCAG -ACGGAACCGATTCAGAAGCGTCAA -ACGGAACCGATTCAGAAGGCTGAA -ACGGAACCGATTCAGAAGAGTACG -ACGGAACCGATTCAGAAGATCCGA -ACGGAACCGATTCAGAAGATGGGA -ACGGAACCGATTCAGAAGGTGCAA -ACGGAACCGATTCAGAAGGAGGAA -ACGGAACCGATTCAGAAGCAGGTA -ACGGAACCGATTCAGAAGGACTCT -ACGGAACCGATTCAGAAGAGTCCT -ACGGAACCGATTCAGAAGTAAGCC -ACGGAACCGATTCAGAAGATAGCC -ACGGAACCGATTCAGAAGTAACCG -ACGGAACCGATTCAGAAGATGCCA -ACGGAACCGATTCAACGTGGAAAC -ACGGAACCGATTCAACGTAACACC -ACGGAACCGATTCAACGTATCGAG -ACGGAACCGATTCAACGTCTCCTT -ACGGAACCGATTCAACGTCCTGTT -ACGGAACCGATTCAACGTCGGTTT -ACGGAACCGATTCAACGTGTGGTT -ACGGAACCGATTCAACGTGCCTTT -ACGGAACCGATTCAACGTGGTCTT -ACGGAACCGATTCAACGTACGCTT -ACGGAACCGATTCAACGTAGCGTT -ACGGAACCGATTCAACGTTTCGTC -ACGGAACCGATTCAACGTTCTCTC -ACGGAACCGATTCAACGTTGGATC -ACGGAACCGATTCAACGTCACTTC -ACGGAACCGATTCAACGTGTACTC -ACGGAACCGATTCAACGTGATGTC -ACGGAACCGATTCAACGTACAGTC -ACGGAACCGATTCAACGTTTGCTG -ACGGAACCGATTCAACGTTCCATG -ACGGAACCGATTCAACGTTGTGTG -ACGGAACCGATTCAACGTCTAGTG -ACGGAACCGATTCAACGTCATCTG -ACGGAACCGATTCAACGTGAGTTG -ACGGAACCGATTCAACGTAGACTG -ACGGAACCGATTCAACGTTCGGTA -ACGGAACCGATTCAACGTTGCCTA -ACGGAACCGATTCAACGTCCACTA -ACGGAACCGATTCAACGTGGAGTA -ACGGAACCGATTCAACGTTCGTCT -ACGGAACCGATTCAACGTTGCACT -ACGGAACCGATTCAACGTCTGACT -ACGGAACCGATTCAACGTCAACCT -ACGGAACCGATTCAACGTGCTACT -ACGGAACCGATTCAACGTGGATCT -ACGGAACCGATTCAACGTAAGGCT -ACGGAACCGATTCAACGTTCAACC -ACGGAACCGATTCAACGTTGTTCC -ACGGAACCGATTCAACGTATTCCC -ACGGAACCGATTCAACGTTTCTCG -ACGGAACCGATTCAACGTTAGACG -ACGGAACCGATTCAACGTGTAACG -ACGGAACCGATTCAACGTACTTCG -ACGGAACCGATTCAACGTTACGCA -ACGGAACCGATTCAACGTCTTGCA -ACGGAACCGATTCAACGTCGAACA -ACGGAACCGATTCAACGTCAGTCA -ACGGAACCGATTCAACGTGATCCA -ACGGAACCGATTCAACGTACGACA -ACGGAACCGATTCAACGTAGCTCA -ACGGAACCGATTCAACGTTCACGT -ACGGAACCGATTCAACGTCGTAGT -ACGGAACCGATTCAACGTGTCAGT -ACGGAACCGATTCAACGTGAAGGT -ACGGAACCGATTCAACGTAACCGT -ACGGAACCGATTCAACGTTTGTGC -ACGGAACCGATTCAACGTCTAAGC -ACGGAACCGATTCAACGTACTAGC -ACGGAACCGATTCAACGTAGATGC -ACGGAACCGATTCAACGTTGAAGG -ACGGAACCGATTCAACGTCAATGG -ACGGAACCGATTCAACGTATGAGG -ACGGAACCGATTCAACGTAATGGG -ACGGAACCGATTCAACGTTCCTGA -ACGGAACCGATTCAACGTTAGCGA -ACGGAACCGATTCAACGTCACAGA -ACGGAACCGATTCAACGTGCAAGA -ACGGAACCGATTCAACGTGGTTGA -ACGGAACCGATTCAACGTTCCGAT -ACGGAACCGATTCAACGTTGGCAT -ACGGAACCGATTCAACGTCGAGAT -ACGGAACCGATTCAACGTTACCAC -ACGGAACCGATTCAACGTCAGAAC -ACGGAACCGATTCAACGTGTCTAC -ACGGAACCGATTCAACGTACGTAC -ACGGAACCGATTCAACGTAGTGAC -ACGGAACCGATTCAACGTCTGTAG -ACGGAACCGATTCAACGTCCTAAG -ACGGAACCGATTCAACGTGTTCAG -ACGGAACCGATTCAACGTGCATAG -ACGGAACCGATTCAACGTGACAAG -ACGGAACCGATTCAACGTAAGCAG -ACGGAACCGATTCAACGTCGTCAA -ACGGAACCGATTCAACGTGCTGAA -ACGGAACCGATTCAACGTAGTACG -ACGGAACCGATTCAACGTATCCGA -ACGGAACCGATTCAACGTATGGGA -ACGGAACCGATTCAACGTGTGCAA -ACGGAACCGATTCAACGTGAGGAA -ACGGAACCGATTCAACGTCAGGTA -ACGGAACCGATTCAACGTGACTCT -ACGGAACCGATTCAACGTAGTCCT -ACGGAACCGATTCAACGTTAAGCC -ACGGAACCGATTCAACGTATAGCC -ACGGAACCGATTCAACGTTAACCG -ACGGAACCGATTCAACGTATGCCA -ACGGAACCGATTGAAGCTGGAAAC -ACGGAACCGATTGAAGCTAACACC -ACGGAACCGATTGAAGCTATCGAG -ACGGAACCGATTGAAGCTCTCCTT -ACGGAACCGATTGAAGCTCCTGTT -ACGGAACCGATTGAAGCTCGGTTT -ACGGAACCGATTGAAGCTGTGGTT -ACGGAACCGATTGAAGCTGCCTTT -ACGGAACCGATTGAAGCTGGTCTT -ACGGAACCGATTGAAGCTACGCTT -ACGGAACCGATTGAAGCTAGCGTT -ACGGAACCGATTGAAGCTTTCGTC -ACGGAACCGATTGAAGCTTCTCTC -ACGGAACCGATTGAAGCTTGGATC -ACGGAACCGATTGAAGCTCACTTC -ACGGAACCGATTGAAGCTGTACTC -ACGGAACCGATTGAAGCTGATGTC -ACGGAACCGATTGAAGCTACAGTC -ACGGAACCGATTGAAGCTTTGCTG -ACGGAACCGATTGAAGCTTCCATG -ACGGAACCGATTGAAGCTTGTGTG -ACGGAACCGATTGAAGCTCTAGTG -ACGGAACCGATTGAAGCTCATCTG -ACGGAACCGATTGAAGCTGAGTTG -ACGGAACCGATTGAAGCTAGACTG -ACGGAACCGATTGAAGCTTCGGTA -ACGGAACCGATTGAAGCTTGCCTA -ACGGAACCGATTGAAGCTCCACTA -ACGGAACCGATTGAAGCTGGAGTA -ACGGAACCGATTGAAGCTTCGTCT -ACGGAACCGATTGAAGCTTGCACT -ACGGAACCGATTGAAGCTCTGACT -ACGGAACCGATTGAAGCTCAACCT -ACGGAACCGATTGAAGCTGCTACT -ACGGAACCGATTGAAGCTGGATCT -ACGGAACCGATTGAAGCTAAGGCT -ACGGAACCGATTGAAGCTTCAACC -ACGGAACCGATTGAAGCTTGTTCC -ACGGAACCGATTGAAGCTATTCCC -ACGGAACCGATTGAAGCTTTCTCG -ACGGAACCGATTGAAGCTTAGACG -ACGGAACCGATTGAAGCTGTAACG -ACGGAACCGATTGAAGCTACTTCG -ACGGAACCGATTGAAGCTTACGCA -ACGGAACCGATTGAAGCTCTTGCA -ACGGAACCGATTGAAGCTCGAACA -ACGGAACCGATTGAAGCTCAGTCA -ACGGAACCGATTGAAGCTGATCCA -ACGGAACCGATTGAAGCTACGACA -ACGGAACCGATTGAAGCTAGCTCA -ACGGAACCGATTGAAGCTTCACGT -ACGGAACCGATTGAAGCTCGTAGT -ACGGAACCGATTGAAGCTGTCAGT -ACGGAACCGATTGAAGCTGAAGGT -ACGGAACCGATTGAAGCTAACCGT -ACGGAACCGATTGAAGCTTTGTGC -ACGGAACCGATTGAAGCTCTAAGC -ACGGAACCGATTGAAGCTACTAGC -ACGGAACCGATTGAAGCTAGATGC -ACGGAACCGATTGAAGCTTGAAGG -ACGGAACCGATTGAAGCTCAATGG -ACGGAACCGATTGAAGCTATGAGG -ACGGAACCGATTGAAGCTAATGGG -ACGGAACCGATTGAAGCTTCCTGA -ACGGAACCGATTGAAGCTTAGCGA -ACGGAACCGATTGAAGCTCACAGA -ACGGAACCGATTGAAGCTGCAAGA -ACGGAACCGATTGAAGCTGGTTGA -ACGGAACCGATTGAAGCTTCCGAT -ACGGAACCGATTGAAGCTTGGCAT -ACGGAACCGATTGAAGCTCGAGAT -ACGGAACCGATTGAAGCTTACCAC -ACGGAACCGATTGAAGCTCAGAAC -ACGGAACCGATTGAAGCTGTCTAC -ACGGAACCGATTGAAGCTACGTAC -ACGGAACCGATTGAAGCTAGTGAC -ACGGAACCGATTGAAGCTCTGTAG -ACGGAACCGATTGAAGCTCCTAAG -ACGGAACCGATTGAAGCTGTTCAG -ACGGAACCGATTGAAGCTGCATAG -ACGGAACCGATTGAAGCTGACAAG -ACGGAACCGATTGAAGCTAAGCAG -ACGGAACCGATTGAAGCTCGTCAA -ACGGAACCGATTGAAGCTGCTGAA -ACGGAACCGATTGAAGCTAGTACG -ACGGAACCGATTGAAGCTATCCGA -ACGGAACCGATTGAAGCTATGGGA -ACGGAACCGATTGAAGCTGTGCAA -ACGGAACCGATTGAAGCTGAGGAA -ACGGAACCGATTGAAGCTCAGGTA -ACGGAACCGATTGAAGCTGACTCT -ACGGAACCGATTGAAGCTAGTCCT -ACGGAACCGATTGAAGCTTAAGCC -ACGGAACCGATTGAAGCTATAGCC -ACGGAACCGATTGAAGCTTAACCG -ACGGAACCGATTGAAGCTATGCCA -ACGGAACCGATTACGAGTGGAAAC -ACGGAACCGATTACGAGTAACACC -ACGGAACCGATTACGAGTATCGAG -ACGGAACCGATTACGAGTCTCCTT -ACGGAACCGATTACGAGTCCTGTT -ACGGAACCGATTACGAGTCGGTTT -ACGGAACCGATTACGAGTGTGGTT -ACGGAACCGATTACGAGTGCCTTT -ACGGAACCGATTACGAGTGGTCTT -ACGGAACCGATTACGAGTACGCTT -ACGGAACCGATTACGAGTAGCGTT -ACGGAACCGATTACGAGTTTCGTC -ACGGAACCGATTACGAGTTCTCTC -ACGGAACCGATTACGAGTTGGATC -ACGGAACCGATTACGAGTCACTTC -ACGGAACCGATTACGAGTGTACTC -ACGGAACCGATTACGAGTGATGTC -ACGGAACCGATTACGAGTACAGTC -ACGGAACCGATTACGAGTTTGCTG -ACGGAACCGATTACGAGTTCCATG -ACGGAACCGATTACGAGTTGTGTG -ACGGAACCGATTACGAGTCTAGTG -ACGGAACCGATTACGAGTCATCTG -ACGGAACCGATTACGAGTGAGTTG -ACGGAACCGATTACGAGTAGACTG -ACGGAACCGATTACGAGTTCGGTA -ACGGAACCGATTACGAGTTGCCTA -ACGGAACCGATTACGAGTCCACTA -ACGGAACCGATTACGAGTGGAGTA -ACGGAACCGATTACGAGTTCGTCT -ACGGAACCGATTACGAGTTGCACT -ACGGAACCGATTACGAGTCTGACT -ACGGAACCGATTACGAGTCAACCT -ACGGAACCGATTACGAGTGCTACT -ACGGAACCGATTACGAGTGGATCT -ACGGAACCGATTACGAGTAAGGCT -ACGGAACCGATTACGAGTTCAACC -ACGGAACCGATTACGAGTTGTTCC -ACGGAACCGATTACGAGTATTCCC -ACGGAACCGATTACGAGTTTCTCG -ACGGAACCGATTACGAGTTAGACG -ACGGAACCGATTACGAGTGTAACG -ACGGAACCGATTACGAGTACTTCG -ACGGAACCGATTACGAGTTACGCA -ACGGAACCGATTACGAGTCTTGCA -ACGGAACCGATTACGAGTCGAACA -ACGGAACCGATTACGAGTCAGTCA -ACGGAACCGATTACGAGTGATCCA -ACGGAACCGATTACGAGTACGACA -ACGGAACCGATTACGAGTAGCTCA -ACGGAACCGATTACGAGTTCACGT -ACGGAACCGATTACGAGTCGTAGT -ACGGAACCGATTACGAGTGTCAGT -ACGGAACCGATTACGAGTGAAGGT -ACGGAACCGATTACGAGTAACCGT -ACGGAACCGATTACGAGTTTGTGC -ACGGAACCGATTACGAGTCTAAGC -ACGGAACCGATTACGAGTACTAGC -ACGGAACCGATTACGAGTAGATGC -ACGGAACCGATTACGAGTTGAAGG -ACGGAACCGATTACGAGTCAATGG -ACGGAACCGATTACGAGTATGAGG -ACGGAACCGATTACGAGTAATGGG -ACGGAACCGATTACGAGTTCCTGA -ACGGAACCGATTACGAGTTAGCGA -ACGGAACCGATTACGAGTCACAGA -ACGGAACCGATTACGAGTGCAAGA -ACGGAACCGATTACGAGTGGTTGA -ACGGAACCGATTACGAGTTCCGAT -ACGGAACCGATTACGAGTTGGCAT -ACGGAACCGATTACGAGTCGAGAT -ACGGAACCGATTACGAGTTACCAC -ACGGAACCGATTACGAGTCAGAAC -ACGGAACCGATTACGAGTGTCTAC -ACGGAACCGATTACGAGTACGTAC -ACGGAACCGATTACGAGTAGTGAC -ACGGAACCGATTACGAGTCTGTAG -ACGGAACCGATTACGAGTCCTAAG -ACGGAACCGATTACGAGTGTTCAG -ACGGAACCGATTACGAGTGCATAG -ACGGAACCGATTACGAGTGACAAG -ACGGAACCGATTACGAGTAAGCAG -ACGGAACCGATTACGAGTCGTCAA -ACGGAACCGATTACGAGTGCTGAA -ACGGAACCGATTACGAGTAGTACG -ACGGAACCGATTACGAGTATCCGA -ACGGAACCGATTACGAGTATGGGA -ACGGAACCGATTACGAGTGTGCAA -ACGGAACCGATTACGAGTGAGGAA -ACGGAACCGATTACGAGTCAGGTA -ACGGAACCGATTACGAGTGACTCT -ACGGAACCGATTACGAGTAGTCCT -ACGGAACCGATTACGAGTTAAGCC -ACGGAACCGATTACGAGTATAGCC -ACGGAACCGATTACGAGTTAACCG -ACGGAACCGATTACGAGTATGCCA -ACGGAACCGATTCGAATCGGAAAC -ACGGAACCGATTCGAATCAACACC -ACGGAACCGATTCGAATCATCGAG -ACGGAACCGATTCGAATCCTCCTT -ACGGAACCGATTCGAATCCCTGTT -ACGGAACCGATTCGAATCCGGTTT -ACGGAACCGATTCGAATCGTGGTT -ACGGAACCGATTCGAATCGCCTTT -ACGGAACCGATTCGAATCGGTCTT -ACGGAACCGATTCGAATCACGCTT -ACGGAACCGATTCGAATCAGCGTT -ACGGAACCGATTCGAATCTTCGTC -ACGGAACCGATTCGAATCTCTCTC -ACGGAACCGATTCGAATCTGGATC -ACGGAACCGATTCGAATCCACTTC -ACGGAACCGATTCGAATCGTACTC -ACGGAACCGATTCGAATCGATGTC -ACGGAACCGATTCGAATCACAGTC -ACGGAACCGATTCGAATCTTGCTG -ACGGAACCGATTCGAATCTCCATG -ACGGAACCGATTCGAATCTGTGTG -ACGGAACCGATTCGAATCCTAGTG -ACGGAACCGATTCGAATCCATCTG -ACGGAACCGATTCGAATCGAGTTG -ACGGAACCGATTCGAATCAGACTG -ACGGAACCGATTCGAATCTCGGTA -ACGGAACCGATTCGAATCTGCCTA -ACGGAACCGATTCGAATCCCACTA -ACGGAACCGATTCGAATCGGAGTA -ACGGAACCGATTCGAATCTCGTCT -ACGGAACCGATTCGAATCTGCACT -ACGGAACCGATTCGAATCCTGACT -ACGGAACCGATTCGAATCCAACCT -ACGGAACCGATTCGAATCGCTACT -ACGGAACCGATTCGAATCGGATCT -ACGGAACCGATTCGAATCAAGGCT -ACGGAACCGATTCGAATCTCAACC -ACGGAACCGATTCGAATCTGTTCC -ACGGAACCGATTCGAATCATTCCC -ACGGAACCGATTCGAATCTTCTCG -ACGGAACCGATTCGAATCTAGACG -ACGGAACCGATTCGAATCGTAACG -ACGGAACCGATTCGAATCACTTCG -ACGGAACCGATTCGAATCTACGCA -ACGGAACCGATTCGAATCCTTGCA -ACGGAACCGATTCGAATCCGAACA -ACGGAACCGATTCGAATCCAGTCA -ACGGAACCGATTCGAATCGATCCA -ACGGAACCGATTCGAATCACGACA -ACGGAACCGATTCGAATCAGCTCA -ACGGAACCGATTCGAATCTCACGT -ACGGAACCGATTCGAATCCGTAGT -ACGGAACCGATTCGAATCGTCAGT -ACGGAACCGATTCGAATCGAAGGT -ACGGAACCGATTCGAATCAACCGT -ACGGAACCGATTCGAATCTTGTGC -ACGGAACCGATTCGAATCCTAAGC -ACGGAACCGATTCGAATCACTAGC -ACGGAACCGATTCGAATCAGATGC -ACGGAACCGATTCGAATCTGAAGG -ACGGAACCGATTCGAATCCAATGG -ACGGAACCGATTCGAATCATGAGG -ACGGAACCGATTCGAATCAATGGG -ACGGAACCGATTCGAATCTCCTGA -ACGGAACCGATTCGAATCTAGCGA -ACGGAACCGATTCGAATCCACAGA -ACGGAACCGATTCGAATCGCAAGA -ACGGAACCGATTCGAATCGGTTGA -ACGGAACCGATTCGAATCTCCGAT -ACGGAACCGATTCGAATCTGGCAT -ACGGAACCGATTCGAATCCGAGAT -ACGGAACCGATTCGAATCTACCAC -ACGGAACCGATTCGAATCCAGAAC -ACGGAACCGATTCGAATCGTCTAC -ACGGAACCGATTCGAATCACGTAC -ACGGAACCGATTCGAATCAGTGAC -ACGGAACCGATTCGAATCCTGTAG -ACGGAACCGATTCGAATCCCTAAG -ACGGAACCGATTCGAATCGTTCAG -ACGGAACCGATTCGAATCGCATAG -ACGGAACCGATTCGAATCGACAAG -ACGGAACCGATTCGAATCAAGCAG -ACGGAACCGATTCGAATCCGTCAA -ACGGAACCGATTCGAATCGCTGAA -ACGGAACCGATTCGAATCAGTACG -ACGGAACCGATTCGAATCATCCGA -ACGGAACCGATTCGAATCATGGGA -ACGGAACCGATTCGAATCGTGCAA -ACGGAACCGATTCGAATCGAGGAA -ACGGAACCGATTCGAATCCAGGTA -ACGGAACCGATTCGAATCGACTCT -ACGGAACCGATTCGAATCAGTCCT -ACGGAACCGATTCGAATCTAAGCC -ACGGAACCGATTCGAATCATAGCC -ACGGAACCGATTCGAATCTAACCG -ACGGAACCGATTCGAATCATGCCA -ACGGAACCGATTGGAATGGGAAAC -ACGGAACCGATTGGAATGAACACC -ACGGAACCGATTGGAATGATCGAG -ACGGAACCGATTGGAATGCTCCTT -ACGGAACCGATTGGAATGCCTGTT -ACGGAACCGATTGGAATGCGGTTT -ACGGAACCGATTGGAATGGTGGTT -ACGGAACCGATTGGAATGGCCTTT -ACGGAACCGATTGGAATGGGTCTT -ACGGAACCGATTGGAATGACGCTT -ACGGAACCGATTGGAATGAGCGTT -ACGGAACCGATTGGAATGTTCGTC -ACGGAACCGATTGGAATGTCTCTC -ACGGAACCGATTGGAATGTGGATC -ACGGAACCGATTGGAATGCACTTC -ACGGAACCGATTGGAATGGTACTC -ACGGAACCGATTGGAATGGATGTC -ACGGAACCGATTGGAATGACAGTC -ACGGAACCGATTGGAATGTTGCTG -ACGGAACCGATTGGAATGTCCATG -ACGGAACCGATTGGAATGTGTGTG -ACGGAACCGATTGGAATGCTAGTG -ACGGAACCGATTGGAATGCATCTG -ACGGAACCGATTGGAATGGAGTTG -ACGGAACCGATTGGAATGAGACTG -ACGGAACCGATTGGAATGTCGGTA -ACGGAACCGATTGGAATGTGCCTA -ACGGAACCGATTGGAATGCCACTA -ACGGAACCGATTGGAATGGGAGTA -ACGGAACCGATTGGAATGTCGTCT -ACGGAACCGATTGGAATGTGCACT -ACGGAACCGATTGGAATGCTGACT -ACGGAACCGATTGGAATGCAACCT -ACGGAACCGATTGGAATGGCTACT -ACGGAACCGATTGGAATGGGATCT -ACGGAACCGATTGGAATGAAGGCT -ACGGAACCGATTGGAATGTCAACC -ACGGAACCGATTGGAATGTGTTCC -ACGGAACCGATTGGAATGATTCCC -ACGGAACCGATTGGAATGTTCTCG -ACGGAACCGATTGGAATGTAGACG -ACGGAACCGATTGGAATGGTAACG -ACGGAACCGATTGGAATGACTTCG -ACGGAACCGATTGGAATGTACGCA -ACGGAACCGATTGGAATGCTTGCA -ACGGAACCGATTGGAATGCGAACA -ACGGAACCGATTGGAATGCAGTCA -ACGGAACCGATTGGAATGGATCCA -ACGGAACCGATTGGAATGACGACA -ACGGAACCGATTGGAATGAGCTCA -ACGGAACCGATTGGAATGTCACGT -ACGGAACCGATTGGAATGCGTAGT -ACGGAACCGATTGGAATGGTCAGT -ACGGAACCGATTGGAATGGAAGGT -ACGGAACCGATTGGAATGAACCGT -ACGGAACCGATTGGAATGTTGTGC -ACGGAACCGATTGGAATGCTAAGC -ACGGAACCGATTGGAATGACTAGC -ACGGAACCGATTGGAATGAGATGC -ACGGAACCGATTGGAATGTGAAGG -ACGGAACCGATTGGAATGCAATGG -ACGGAACCGATTGGAATGATGAGG -ACGGAACCGATTGGAATGAATGGG -ACGGAACCGATTGGAATGTCCTGA -ACGGAACCGATTGGAATGTAGCGA -ACGGAACCGATTGGAATGCACAGA -ACGGAACCGATTGGAATGGCAAGA -ACGGAACCGATTGGAATGGGTTGA -ACGGAACCGATTGGAATGTCCGAT -ACGGAACCGATTGGAATGTGGCAT -ACGGAACCGATTGGAATGCGAGAT -ACGGAACCGATTGGAATGTACCAC -ACGGAACCGATTGGAATGCAGAAC -ACGGAACCGATTGGAATGGTCTAC -ACGGAACCGATTGGAATGACGTAC -ACGGAACCGATTGGAATGAGTGAC -ACGGAACCGATTGGAATGCTGTAG -ACGGAACCGATTGGAATGCCTAAG -ACGGAACCGATTGGAATGGTTCAG -ACGGAACCGATTGGAATGGCATAG -ACGGAACCGATTGGAATGGACAAG -ACGGAACCGATTGGAATGAAGCAG -ACGGAACCGATTGGAATGCGTCAA -ACGGAACCGATTGGAATGGCTGAA -ACGGAACCGATTGGAATGAGTACG -ACGGAACCGATTGGAATGATCCGA -ACGGAACCGATTGGAATGATGGGA -ACGGAACCGATTGGAATGGTGCAA -ACGGAACCGATTGGAATGGAGGAA -ACGGAACCGATTGGAATGCAGGTA -ACGGAACCGATTGGAATGGACTCT -ACGGAACCGATTGGAATGAGTCCT -ACGGAACCGATTGGAATGTAAGCC -ACGGAACCGATTGGAATGATAGCC -ACGGAACCGATTGGAATGTAACCG -ACGGAACCGATTGGAATGATGCCA -ACGGAACCGATTCAAGTGGGAAAC -ACGGAACCGATTCAAGTGAACACC -ACGGAACCGATTCAAGTGATCGAG -ACGGAACCGATTCAAGTGCTCCTT -ACGGAACCGATTCAAGTGCCTGTT -ACGGAACCGATTCAAGTGCGGTTT -ACGGAACCGATTCAAGTGGTGGTT -ACGGAACCGATTCAAGTGGCCTTT -ACGGAACCGATTCAAGTGGGTCTT -ACGGAACCGATTCAAGTGACGCTT -ACGGAACCGATTCAAGTGAGCGTT -ACGGAACCGATTCAAGTGTTCGTC -ACGGAACCGATTCAAGTGTCTCTC -ACGGAACCGATTCAAGTGTGGATC -ACGGAACCGATTCAAGTGCACTTC -ACGGAACCGATTCAAGTGGTACTC -ACGGAACCGATTCAAGTGGATGTC -ACGGAACCGATTCAAGTGACAGTC -ACGGAACCGATTCAAGTGTTGCTG -ACGGAACCGATTCAAGTGTCCATG -ACGGAACCGATTCAAGTGTGTGTG -ACGGAACCGATTCAAGTGCTAGTG -ACGGAACCGATTCAAGTGCATCTG -ACGGAACCGATTCAAGTGGAGTTG -ACGGAACCGATTCAAGTGAGACTG -ACGGAACCGATTCAAGTGTCGGTA -ACGGAACCGATTCAAGTGTGCCTA -ACGGAACCGATTCAAGTGCCACTA -ACGGAACCGATTCAAGTGGGAGTA -ACGGAACCGATTCAAGTGTCGTCT -ACGGAACCGATTCAAGTGTGCACT -ACGGAACCGATTCAAGTGCTGACT -ACGGAACCGATTCAAGTGCAACCT -ACGGAACCGATTCAAGTGGCTACT -ACGGAACCGATTCAAGTGGGATCT -ACGGAACCGATTCAAGTGAAGGCT -ACGGAACCGATTCAAGTGTCAACC -ACGGAACCGATTCAAGTGTGTTCC -ACGGAACCGATTCAAGTGATTCCC -ACGGAACCGATTCAAGTGTTCTCG -ACGGAACCGATTCAAGTGTAGACG -ACGGAACCGATTCAAGTGGTAACG -ACGGAACCGATTCAAGTGACTTCG -ACGGAACCGATTCAAGTGTACGCA -ACGGAACCGATTCAAGTGCTTGCA -ACGGAACCGATTCAAGTGCGAACA -ACGGAACCGATTCAAGTGCAGTCA -ACGGAACCGATTCAAGTGGATCCA -ACGGAACCGATTCAAGTGACGACA -ACGGAACCGATTCAAGTGAGCTCA -ACGGAACCGATTCAAGTGTCACGT -ACGGAACCGATTCAAGTGCGTAGT -ACGGAACCGATTCAAGTGGTCAGT -ACGGAACCGATTCAAGTGGAAGGT -ACGGAACCGATTCAAGTGAACCGT -ACGGAACCGATTCAAGTGTTGTGC -ACGGAACCGATTCAAGTGCTAAGC -ACGGAACCGATTCAAGTGACTAGC -ACGGAACCGATTCAAGTGAGATGC -ACGGAACCGATTCAAGTGTGAAGG -ACGGAACCGATTCAAGTGCAATGG -ACGGAACCGATTCAAGTGATGAGG -ACGGAACCGATTCAAGTGAATGGG -ACGGAACCGATTCAAGTGTCCTGA -ACGGAACCGATTCAAGTGTAGCGA -ACGGAACCGATTCAAGTGCACAGA -ACGGAACCGATTCAAGTGGCAAGA -ACGGAACCGATTCAAGTGGGTTGA -ACGGAACCGATTCAAGTGTCCGAT -ACGGAACCGATTCAAGTGTGGCAT -ACGGAACCGATTCAAGTGCGAGAT -ACGGAACCGATTCAAGTGTACCAC -ACGGAACCGATTCAAGTGCAGAAC -ACGGAACCGATTCAAGTGGTCTAC -ACGGAACCGATTCAAGTGACGTAC -ACGGAACCGATTCAAGTGAGTGAC -ACGGAACCGATTCAAGTGCTGTAG -ACGGAACCGATTCAAGTGCCTAAG -ACGGAACCGATTCAAGTGGTTCAG -ACGGAACCGATTCAAGTGGCATAG -ACGGAACCGATTCAAGTGGACAAG -ACGGAACCGATTCAAGTGAAGCAG -ACGGAACCGATTCAAGTGCGTCAA -ACGGAACCGATTCAAGTGGCTGAA -ACGGAACCGATTCAAGTGAGTACG -ACGGAACCGATTCAAGTGATCCGA -ACGGAACCGATTCAAGTGATGGGA -ACGGAACCGATTCAAGTGGTGCAA -ACGGAACCGATTCAAGTGGAGGAA -ACGGAACCGATTCAAGTGCAGGTA -ACGGAACCGATTCAAGTGGACTCT -ACGGAACCGATTCAAGTGAGTCCT -ACGGAACCGATTCAAGTGTAAGCC -ACGGAACCGATTCAAGTGATAGCC -ACGGAACCGATTCAAGTGTAACCG -ACGGAACCGATTCAAGTGATGCCA -ACGGAACCGATTGAAGAGGGAAAC -ACGGAACCGATTGAAGAGAACACC -ACGGAACCGATTGAAGAGATCGAG -ACGGAACCGATTGAAGAGCTCCTT -ACGGAACCGATTGAAGAGCCTGTT -ACGGAACCGATTGAAGAGCGGTTT -ACGGAACCGATTGAAGAGGTGGTT -ACGGAACCGATTGAAGAGGCCTTT -ACGGAACCGATTGAAGAGGGTCTT -ACGGAACCGATTGAAGAGACGCTT -ACGGAACCGATTGAAGAGAGCGTT -ACGGAACCGATTGAAGAGTTCGTC -ACGGAACCGATTGAAGAGTCTCTC -ACGGAACCGATTGAAGAGTGGATC -ACGGAACCGATTGAAGAGCACTTC -ACGGAACCGATTGAAGAGGTACTC -ACGGAACCGATTGAAGAGGATGTC -ACGGAACCGATTGAAGAGACAGTC -ACGGAACCGATTGAAGAGTTGCTG -ACGGAACCGATTGAAGAGTCCATG -ACGGAACCGATTGAAGAGTGTGTG -ACGGAACCGATTGAAGAGCTAGTG -ACGGAACCGATTGAAGAGCATCTG -ACGGAACCGATTGAAGAGGAGTTG -ACGGAACCGATTGAAGAGAGACTG -ACGGAACCGATTGAAGAGTCGGTA -ACGGAACCGATTGAAGAGTGCCTA -ACGGAACCGATTGAAGAGCCACTA -ACGGAACCGATTGAAGAGGGAGTA -ACGGAACCGATTGAAGAGTCGTCT -ACGGAACCGATTGAAGAGTGCACT -ACGGAACCGATTGAAGAGCTGACT -ACGGAACCGATTGAAGAGCAACCT -ACGGAACCGATTGAAGAGGCTACT -ACGGAACCGATTGAAGAGGGATCT -ACGGAACCGATTGAAGAGAAGGCT -ACGGAACCGATTGAAGAGTCAACC -ACGGAACCGATTGAAGAGTGTTCC -ACGGAACCGATTGAAGAGATTCCC -ACGGAACCGATTGAAGAGTTCTCG -ACGGAACCGATTGAAGAGTAGACG -ACGGAACCGATTGAAGAGGTAACG -ACGGAACCGATTGAAGAGACTTCG -ACGGAACCGATTGAAGAGTACGCA -ACGGAACCGATTGAAGAGCTTGCA -ACGGAACCGATTGAAGAGCGAACA -ACGGAACCGATTGAAGAGCAGTCA -ACGGAACCGATTGAAGAGGATCCA -ACGGAACCGATTGAAGAGACGACA -ACGGAACCGATTGAAGAGAGCTCA -ACGGAACCGATTGAAGAGTCACGT -ACGGAACCGATTGAAGAGCGTAGT -ACGGAACCGATTGAAGAGGTCAGT -ACGGAACCGATTGAAGAGGAAGGT -ACGGAACCGATTGAAGAGAACCGT -ACGGAACCGATTGAAGAGTTGTGC -ACGGAACCGATTGAAGAGCTAAGC -ACGGAACCGATTGAAGAGACTAGC -ACGGAACCGATTGAAGAGAGATGC -ACGGAACCGATTGAAGAGTGAAGG -ACGGAACCGATTGAAGAGCAATGG -ACGGAACCGATTGAAGAGATGAGG -ACGGAACCGATTGAAGAGAATGGG -ACGGAACCGATTGAAGAGTCCTGA -ACGGAACCGATTGAAGAGTAGCGA -ACGGAACCGATTGAAGAGCACAGA -ACGGAACCGATTGAAGAGGCAAGA -ACGGAACCGATTGAAGAGGGTTGA -ACGGAACCGATTGAAGAGTCCGAT -ACGGAACCGATTGAAGAGTGGCAT -ACGGAACCGATTGAAGAGCGAGAT -ACGGAACCGATTGAAGAGTACCAC -ACGGAACCGATTGAAGAGCAGAAC -ACGGAACCGATTGAAGAGGTCTAC -ACGGAACCGATTGAAGAGACGTAC -ACGGAACCGATTGAAGAGAGTGAC -ACGGAACCGATTGAAGAGCTGTAG -ACGGAACCGATTGAAGAGCCTAAG -ACGGAACCGATTGAAGAGGTTCAG -ACGGAACCGATTGAAGAGGCATAG -ACGGAACCGATTGAAGAGGACAAG -ACGGAACCGATTGAAGAGAAGCAG -ACGGAACCGATTGAAGAGCGTCAA -ACGGAACCGATTGAAGAGGCTGAA -ACGGAACCGATTGAAGAGAGTACG -ACGGAACCGATTGAAGAGATCCGA -ACGGAACCGATTGAAGAGATGGGA -ACGGAACCGATTGAAGAGGTGCAA -ACGGAACCGATTGAAGAGGAGGAA -ACGGAACCGATTGAAGAGCAGGTA -ACGGAACCGATTGAAGAGGACTCT -ACGGAACCGATTGAAGAGAGTCCT -ACGGAACCGATTGAAGAGTAAGCC -ACGGAACCGATTGAAGAGATAGCC -ACGGAACCGATTGAAGAGTAACCG -ACGGAACCGATTGAAGAGATGCCA -ACGGAACCGATTGTACAGGGAAAC -ACGGAACCGATTGTACAGAACACC -ACGGAACCGATTGTACAGATCGAG -ACGGAACCGATTGTACAGCTCCTT -ACGGAACCGATTGTACAGCCTGTT -ACGGAACCGATTGTACAGCGGTTT -ACGGAACCGATTGTACAGGTGGTT -ACGGAACCGATTGTACAGGCCTTT -ACGGAACCGATTGTACAGGGTCTT -ACGGAACCGATTGTACAGACGCTT -ACGGAACCGATTGTACAGAGCGTT -ACGGAACCGATTGTACAGTTCGTC -ACGGAACCGATTGTACAGTCTCTC -ACGGAACCGATTGTACAGTGGATC -ACGGAACCGATTGTACAGCACTTC -ACGGAACCGATTGTACAGGTACTC -ACGGAACCGATTGTACAGGATGTC -ACGGAACCGATTGTACAGACAGTC -ACGGAACCGATTGTACAGTTGCTG -ACGGAACCGATTGTACAGTCCATG -ACGGAACCGATTGTACAGTGTGTG -ACGGAACCGATTGTACAGCTAGTG -ACGGAACCGATTGTACAGCATCTG -ACGGAACCGATTGTACAGGAGTTG -ACGGAACCGATTGTACAGAGACTG -ACGGAACCGATTGTACAGTCGGTA -ACGGAACCGATTGTACAGTGCCTA -ACGGAACCGATTGTACAGCCACTA -ACGGAACCGATTGTACAGGGAGTA -ACGGAACCGATTGTACAGTCGTCT -ACGGAACCGATTGTACAGTGCACT -ACGGAACCGATTGTACAGCTGACT -ACGGAACCGATTGTACAGCAACCT -ACGGAACCGATTGTACAGGCTACT -ACGGAACCGATTGTACAGGGATCT -ACGGAACCGATTGTACAGAAGGCT -ACGGAACCGATTGTACAGTCAACC -ACGGAACCGATTGTACAGTGTTCC -ACGGAACCGATTGTACAGATTCCC -ACGGAACCGATTGTACAGTTCTCG -ACGGAACCGATTGTACAGTAGACG -ACGGAACCGATTGTACAGGTAACG -ACGGAACCGATTGTACAGACTTCG -ACGGAACCGATTGTACAGTACGCA -ACGGAACCGATTGTACAGCTTGCA -ACGGAACCGATTGTACAGCGAACA -ACGGAACCGATTGTACAGCAGTCA -ACGGAACCGATTGTACAGGATCCA -ACGGAACCGATTGTACAGACGACA -ACGGAACCGATTGTACAGAGCTCA -ACGGAACCGATTGTACAGTCACGT -ACGGAACCGATTGTACAGCGTAGT -ACGGAACCGATTGTACAGGTCAGT -ACGGAACCGATTGTACAGGAAGGT -ACGGAACCGATTGTACAGAACCGT -ACGGAACCGATTGTACAGTTGTGC -ACGGAACCGATTGTACAGCTAAGC -ACGGAACCGATTGTACAGACTAGC -ACGGAACCGATTGTACAGAGATGC -ACGGAACCGATTGTACAGTGAAGG -ACGGAACCGATTGTACAGCAATGG -ACGGAACCGATTGTACAGATGAGG -ACGGAACCGATTGTACAGAATGGG -ACGGAACCGATTGTACAGTCCTGA -ACGGAACCGATTGTACAGTAGCGA -ACGGAACCGATTGTACAGCACAGA -ACGGAACCGATTGTACAGGCAAGA -ACGGAACCGATTGTACAGGGTTGA -ACGGAACCGATTGTACAGTCCGAT -ACGGAACCGATTGTACAGTGGCAT -ACGGAACCGATTGTACAGCGAGAT -ACGGAACCGATTGTACAGTACCAC -ACGGAACCGATTGTACAGCAGAAC -ACGGAACCGATTGTACAGGTCTAC -ACGGAACCGATTGTACAGACGTAC -ACGGAACCGATTGTACAGAGTGAC -ACGGAACCGATTGTACAGCTGTAG -ACGGAACCGATTGTACAGCCTAAG -ACGGAACCGATTGTACAGGTTCAG -ACGGAACCGATTGTACAGGCATAG -ACGGAACCGATTGTACAGGACAAG -ACGGAACCGATTGTACAGAAGCAG -ACGGAACCGATTGTACAGCGTCAA -ACGGAACCGATTGTACAGGCTGAA -ACGGAACCGATTGTACAGAGTACG -ACGGAACCGATTGTACAGATCCGA -ACGGAACCGATTGTACAGATGGGA -ACGGAACCGATTGTACAGGTGCAA -ACGGAACCGATTGTACAGGAGGAA -ACGGAACCGATTGTACAGCAGGTA -ACGGAACCGATTGTACAGGACTCT -ACGGAACCGATTGTACAGAGTCCT -ACGGAACCGATTGTACAGTAAGCC -ACGGAACCGATTGTACAGATAGCC -ACGGAACCGATTGTACAGTAACCG -ACGGAACCGATTGTACAGATGCCA -ACGGAACCGATTTCTGACGGAAAC -ACGGAACCGATTTCTGACAACACC -ACGGAACCGATTTCTGACATCGAG -ACGGAACCGATTTCTGACCTCCTT -ACGGAACCGATTTCTGACCCTGTT -ACGGAACCGATTTCTGACCGGTTT -ACGGAACCGATTTCTGACGTGGTT -ACGGAACCGATTTCTGACGCCTTT -ACGGAACCGATTTCTGACGGTCTT -ACGGAACCGATTTCTGACACGCTT -ACGGAACCGATTTCTGACAGCGTT -ACGGAACCGATTTCTGACTTCGTC -ACGGAACCGATTTCTGACTCTCTC -ACGGAACCGATTTCTGACTGGATC -ACGGAACCGATTTCTGACCACTTC -ACGGAACCGATTTCTGACGTACTC -ACGGAACCGATTTCTGACGATGTC -ACGGAACCGATTTCTGACACAGTC -ACGGAACCGATTTCTGACTTGCTG -ACGGAACCGATTTCTGACTCCATG -ACGGAACCGATTTCTGACTGTGTG -ACGGAACCGATTTCTGACCTAGTG -ACGGAACCGATTTCTGACCATCTG -ACGGAACCGATTTCTGACGAGTTG -ACGGAACCGATTTCTGACAGACTG -ACGGAACCGATTTCTGACTCGGTA -ACGGAACCGATTTCTGACTGCCTA -ACGGAACCGATTTCTGACCCACTA -ACGGAACCGATTTCTGACGGAGTA -ACGGAACCGATTTCTGACTCGTCT -ACGGAACCGATTTCTGACTGCACT -ACGGAACCGATTTCTGACCTGACT -ACGGAACCGATTTCTGACCAACCT -ACGGAACCGATTTCTGACGCTACT -ACGGAACCGATTTCTGACGGATCT -ACGGAACCGATTTCTGACAAGGCT -ACGGAACCGATTTCTGACTCAACC -ACGGAACCGATTTCTGACTGTTCC -ACGGAACCGATTTCTGACATTCCC -ACGGAACCGATTTCTGACTTCTCG -ACGGAACCGATTTCTGACTAGACG -ACGGAACCGATTTCTGACGTAACG -ACGGAACCGATTTCTGACACTTCG -ACGGAACCGATTTCTGACTACGCA -ACGGAACCGATTTCTGACCTTGCA -ACGGAACCGATTTCTGACCGAACA -ACGGAACCGATTTCTGACCAGTCA -ACGGAACCGATTTCTGACGATCCA -ACGGAACCGATTTCTGACACGACA -ACGGAACCGATTTCTGACAGCTCA -ACGGAACCGATTTCTGACTCACGT -ACGGAACCGATTTCTGACCGTAGT -ACGGAACCGATTTCTGACGTCAGT -ACGGAACCGATTTCTGACGAAGGT -ACGGAACCGATTTCTGACAACCGT -ACGGAACCGATTTCTGACTTGTGC -ACGGAACCGATTTCTGACCTAAGC -ACGGAACCGATTTCTGACACTAGC -ACGGAACCGATTTCTGACAGATGC -ACGGAACCGATTTCTGACTGAAGG -ACGGAACCGATTTCTGACCAATGG -ACGGAACCGATTTCTGACATGAGG -ACGGAACCGATTTCTGACAATGGG -ACGGAACCGATTTCTGACTCCTGA -ACGGAACCGATTTCTGACTAGCGA -ACGGAACCGATTTCTGACCACAGA -ACGGAACCGATTTCTGACGCAAGA -ACGGAACCGATTTCTGACGGTTGA -ACGGAACCGATTTCTGACTCCGAT -ACGGAACCGATTTCTGACTGGCAT -ACGGAACCGATTTCTGACCGAGAT -ACGGAACCGATTTCTGACTACCAC -ACGGAACCGATTTCTGACCAGAAC -ACGGAACCGATTTCTGACGTCTAC -ACGGAACCGATTTCTGACACGTAC -ACGGAACCGATTTCTGACAGTGAC -ACGGAACCGATTTCTGACCTGTAG -ACGGAACCGATTTCTGACCCTAAG -ACGGAACCGATTTCTGACGTTCAG -ACGGAACCGATTTCTGACGCATAG -ACGGAACCGATTTCTGACGACAAG -ACGGAACCGATTTCTGACAAGCAG -ACGGAACCGATTTCTGACCGTCAA -ACGGAACCGATTTCTGACGCTGAA -ACGGAACCGATTTCTGACAGTACG -ACGGAACCGATTTCTGACATCCGA -ACGGAACCGATTTCTGACATGGGA -ACGGAACCGATTTCTGACGTGCAA -ACGGAACCGATTTCTGACGAGGAA -ACGGAACCGATTTCTGACCAGGTA -ACGGAACCGATTTCTGACGACTCT -ACGGAACCGATTTCTGACAGTCCT -ACGGAACCGATTTCTGACTAAGCC -ACGGAACCGATTTCTGACATAGCC -ACGGAACCGATTTCTGACTAACCG -ACGGAACCGATTTCTGACATGCCA -ACGGAACCGATTCCTAGTGGAAAC -ACGGAACCGATTCCTAGTAACACC -ACGGAACCGATTCCTAGTATCGAG -ACGGAACCGATTCCTAGTCTCCTT -ACGGAACCGATTCCTAGTCCTGTT -ACGGAACCGATTCCTAGTCGGTTT -ACGGAACCGATTCCTAGTGTGGTT -ACGGAACCGATTCCTAGTGCCTTT -ACGGAACCGATTCCTAGTGGTCTT -ACGGAACCGATTCCTAGTACGCTT -ACGGAACCGATTCCTAGTAGCGTT -ACGGAACCGATTCCTAGTTTCGTC -ACGGAACCGATTCCTAGTTCTCTC -ACGGAACCGATTCCTAGTTGGATC -ACGGAACCGATTCCTAGTCACTTC -ACGGAACCGATTCCTAGTGTACTC -ACGGAACCGATTCCTAGTGATGTC -ACGGAACCGATTCCTAGTACAGTC -ACGGAACCGATTCCTAGTTTGCTG -ACGGAACCGATTCCTAGTTCCATG -ACGGAACCGATTCCTAGTTGTGTG -ACGGAACCGATTCCTAGTCTAGTG -ACGGAACCGATTCCTAGTCATCTG -ACGGAACCGATTCCTAGTGAGTTG -ACGGAACCGATTCCTAGTAGACTG -ACGGAACCGATTCCTAGTTCGGTA -ACGGAACCGATTCCTAGTTGCCTA -ACGGAACCGATTCCTAGTCCACTA -ACGGAACCGATTCCTAGTGGAGTA -ACGGAACCGATTCCTAGTTCGTCT -ACGGAACCGATTCCTAGTTGCACT -ACGGAACCGATTCCTAGTCTGACT -ACGGAACCGATTCCTAGTCAACCT -ACGGAACCGATTCCTAGTGCTACT -ACGGAACCGATTCCTAGTGGATCT -ACGGAACCGATTCCTAGTAAGGCT -ACGGAACCGATTCCTAGTTCAACC -ACGGAACCGATTCCTAGTTGTTCC -ACGGAACCGATTCCTAGTATTCCC -ACGGAACCGATTCCTAGTTTCTCG -ACGGAACCGATTCCTAGTTAGACG -ACGGAACCGATTCCTAGTGTAACG -ACGGAACCGATTCCTAGTACTTCG -ACGGAACCGATTCCTAGTTACGCA -ACGGAACCGATTCCTAGTCTTGCA -ACGGAACCGATTCCTAGTCGAACA -ACGGAACCGATTCCTAGTCAGTCA -ACGGAACCGATTCCTAGTGATCCA -ACGGAACCGATTCCTAGTACGACA -ACGGAACCGATTCCTAGTAGCTCA -ACGGAACCGATTCCTAGTTCACGT -ACGGAACCGATTCCTAGTCGTAGT -ACGGAACCGATTCCTAGTGTCAGT -ACGGAACCGATTCCTAGTGAAGGT -ACGGAACCGATTCCTAGTAACCGT -ACGGAACCGATTCCTAGTTTGTGC -ACGGAACCGATTCCTAGTCTAAGC -ACGGAACCGATTCCTAGTACTAGC -ACGGAACCGATTCCTAGTAGATGC -ACGGAACCGATTCCTAGTTGAAGG -ACGGAACCGATTCCTAGTCAATGG -ACGGAACCGATTCCTAGTATGAGG -ACGGAACCGATTCCTAGTAATGGG -ACGGAACCGATTCCTAGTTCCTGA -ACGGAACCGATTCCTAGTTAGCGA -ACGGAACCGATTCCTAGTCACAGA -ACGGAACCGATTCCTAGTGCAAGA -ACGGAACCGATTCCTAGTGGTTGA -ACGGAACCGATTCCTAGTTCCGAT -ACGGAACCGATTCCTAGTTGGCAT -ACGGAACCGATTCCTAGTCGAGAT -ACGGAACCGATTCCTAGTTACCAC -ACGGAACCGATTCCTAGTCAGAAC -ACGGAACCGATTCCTAGTGTCTAC -ACGGAACCGATTCCTAGTACGTAC -ACGGAACCGATTCCTAGTAGTGAC -ACGGAACCGATTCCTAGTCTGTAG -ACGGAACCGATTCCTAGTCCTAAG -ACGGAACCGATTCCTAGTGTTCAG -ACGGAACCGATTCCTAGTGCATAG -ACGGAACCGATTCCTAGTGACAAG -ACGGAACCGATTCCTAGTAAGCAG -ACGGAACCGATTCCTAGTCGTCAA -ACGGAACCGATTCCTAGTGCTGAA -ACGGAACCGATTCCTAGTAGTACG -ACGGAACCGATTCCTAGTATCCGA -ACGGAACCGATTCCTAGTATGGGA -ACGGAACCGATTCCTAGTGTGCAA -ACGGAACCGATTCCTAGTGAGGAA -ACGGAACCGATTCCTAGTCAGGTA -ACGGAACCGATTCCTAGTGACTCT -ACGGAACCGATTCCTAGTAGTCCT -ACGGAACCGATTCCTAGTTAAGCC -ACGGAACCGATTCCTAGTATAGCC -ACGGAACCGATTCCTAGTTAACCG -ACGGAACCGATTCCTAGTATGCCA -ACGGAACCGATTGCCTAAGGAAAC -ACGGAACCGATTGCCTAAAACACC -ACGGAACCGATTGCCTAAATCGAG -ACGGAACCGATTGCCTAACTCCTT -ACGGAACCGATTGCCTAACCTGTT -ACGGAACCGATTGCCTAACGGTTT -ACGGAACCGATTGCCTAAGTGGTT -ACGGAACCGATTGCCTAAGCCTTT -ACGGAACCGATTGCCTAAGGTCTT -ACGGAACCGATTGCCTAAACGCTT -ACGGAACCGATTGCCTAAAGCGTT -ACGGAACCGATTGCCTAATTCGTC -ACGGAACCGATTGCCTAATCTCTC -ACGGAACCGATTGCCTAATGGATC -ACGGAACCGATTGCCTAACACTTC -ACGGAACCGATTGCCTAAGTACTC -ACGGAACCGATTGCCTAAGATGTC -ACGGAACCGATTGCCTAAACAGTC -ACGGAACCGATTGCCTAATTGCTG -ACGGAACCGATTGCCTAATCCATG -ACGGAACCGATTGCCTAATGTGTG -ACGGAACCGATTGCCTAACTAGTG -ACGGAACCGATTGCCTAACATCTG -ACGGAACCGATTGCCTAAGAGTTG -ACGGAACCGATTGCCTAAAGACTG -ACGGAACCGATTGCCTAATCGGTA -ACGGAACCGATTGCCTAATGCCTA -ACGGAACCGATTGCCTAACCACTA -ACGGAACCGATTGCCTAAGGAGTA -ACGGAACCGATTGCCTAATCGTCT -ACGGAACCGATTGCCTAATGCACT -ACGGAACCGATTGCCTAACTGACT -ACGGAACCGATTGCCTAACAACCT -ACGGAACCGATTGCCTAAGCTACT -ACGGAACCGATTGCCTAAGGATCT -ACGGAACCGATTGCCTAAAAGGCT -ACGGAACCGATTGCCTAATCAACC -ACGGAACCGATTGCCTAATGTTCC -ACGGAACCGATTGCCTAAATTCCC -ACGGAACCGATTGCCTAATTCTCG -ACGGAACCGATTGCCTAATAGACG -ACGGAACCGATTGCCTAAGTAACG -ACGGAACCGATTGCCTAAACTTCG -ACGGAACCGATTGCCTAATACGCA -ACGGAACCGATTGCCTAACTTGCA -ACGGAACCGATTGCCTAACGAACA -ACGGAACCGATTGCCTAACAGTCA -ACGGAACCGATTGCCTAAGATCCA -ACGGAACCGATTGCCTAAACGACA -ACGGAACCGATTGCCTAAAGCTCA -ACGGAACCGATTGCCTAATCACGT -ACGGAACCGATTGCCTAACGTAGT -ACGGAACCGATTGCCTAAGTCAGT -ACGGAACCGATTGCCTAAGAAGGT -ACGGAACCGATTGCCTAAAACCGT -ACGGAACCGATTGCCTAATTGTGC -ACGGAACCGATTGCCTAACTAAGC -ACGGAACCGATTGCCTAAACTAGC -ACGGAACCGATTGCCTAAAGATGC -ACGGAACCGATTGCCTAATGAAGG -ACGGAACCGATTGCCTAACAATGG -ACGGAACCGATTGCCTAAATGAGG -ACGGAACCGATTGCCTAAAATGGG -ACGGAACCGATTGCCTAATCCTGA -ACGGAACCGATTGCCTAATAGCGA -ACGGAACCGATTGCCTAACACAGA -ACGGAACCGATTGCCTAAGCAAGA -ACGGAACCGATTGCCTAAGGTTGA -ACGGAACCGATTGCCTAATCCGAT -ACGGAACCGATTGCCTAATGGCAT -ACGGAACCGATTGCCTAACGAGAT -ACGGAACCGATTGCCTAATACCAC -ACGGAACCGATTGCCTAACAGAAC -ACGGAACCGATTGCCTAAGTCTAC -ACGGAACCGATTGCCTAAACGTAC -ACGGAACCGATTGCCTAAAGTGAC -ACGGAACCGATTGCCTAACTGTAG -ACGGAACCGATTGCCTAACCTAAG -ACGGAACCGATTGCCTAAGTTCAG -ACGGAACCGATTGCCTAAGCATAG -ACGGAACCGATTGCCTAAGACAAG -ACGGAACCGATTGCCTAAAAGCAG -ACGGAACCGATTGCCTAACGTCAA -ACGGAACCGATTGCCTAAGCTGAA -ACGGAACCGATTGCCTAAAGTACG -ACGGAACCGATTGCCTAAATCCGA -ACGGAACCGATTGCCTAAATGGGA -ACGGAACCGATTGCCTAAGTGCAA -ACGGAACCGATTGCCTAAGAGGAA -ACGGAACCGATTGCCTAACAGGTA -ACGGAACCGATTGCCTAAGACTCT -ACGGAACCGATTGCCTAAAGTCCT -ACGGAACCGATTGCCTAATAAGCC -ACGGAACCGATTGCCTAAATAGCC -ACGGAACCGATTGCCTAATAACCG -ACGGAACCGATTGCCTAAATGCCA -ACGGAACCGATTGCCATAGGAAAC -ACGGAACCGATTGCCATAAACACC -ACGGAACCGATTGCCATAATCGAG -ACGGAACCGATTGCCATACTCCTT -ACGGAACCGATTGCCATACCTGTT -ACGGAACCGATTGCCATACGGTTT -ACGGAACCGATTGCCATAGTGGTT -ACGGAACCGATTGCCATAGCCTTT -ACGGAACCGATTGCCATAGGTCTT -ACGGAACCGATTGCCATAACGCTT -ACGGAACCGATTGCCATAAGCGTT -ACGGAACCGATTGCCATATTCGTC -ACGGAACCGATTGCCATATCTCTC -ACGGAACCGATTGCCATATGGATC -ACGGAACCGATTGCCATACACTTC -ACGGAACCGATTGCCATAGTACTC -ACGGAACCGATTGCCATAGATGTC -ACGGAACCGATTGCCATAACAGTC -ACGGAACCGATTGCCATATTGCTG -ACGGAACCGATTGCCATATCCATG -ACGGAACCGATTGCCATATGTGTG -ACGGAACCGATTGCCATACTAGTG -ACGGAACCGATTGCCATACATCTG -ACGGAACCGATTGCCATAGAGTTG -ACGGAACCGATTGCCATAAGACTG -ACGGAACCGATTGCCATATCGGTA -ACGGAACCGATTGCCATATGCCTA -ACGGAACCGATTGCCATACCACTA -ACGGAACCGATTGCCATAGGAGTA -ACGGAACCGATTGCCATATCGTCT -ACGGAACCGATTGCCATATGCACT -ACGGAACCGATTGCCATACTGACT -ACGGAACCGATTGCCATACAACCT -ACGGAACCGATTGCCATAGCTACT -ACGGAACCGATTGCCATAGGATCT -ACGGAACCGATTGCCATAAAGGCT -ACGGAACCGATTGCCATATCAACC -ACGGAACCGATTGCCATATGTTCC -ACGGAACCGATTGCCATAATTCCC -ACGGAACCGATTGCCATATTCTCG -ACGGAACCGATTGCCATATAGACG -ACGGAACCGATTGCCATAGTAACG -ACGGAACCGATTGCCATAACTTCG -ACGGAACCGATTGCCATATACGCA -ACGGAACCGATTGCCATACTTGCA -ACGGAACCGATTGCCATACGAACA -ACGGAACCGATTGCCATACAGTCA -ACGGAACCGATTGCCATAGATCCA -ACGGAACCGATTGCCATAACGACA -ACGGAACCGATTGCCATAAGCTCA -ACGGAACCGATTGCCATATCACGT -ACGGAACCGATTGCCATACGTAGT -ACGGAACCGATTGCCATAGTCAGT -ACGGAACCGATTGCCATAGAAGGT -ACGGAACCGATTGCCATAAACCGT -ACGGAACCGATTGCCATATTGTGC -ACGGAACCGATTGCCATACTAAGC -ACGGAACCGATTGCCATAACTAGC -ACGGAACCGATTGCCATAAGATGC -ACGGAACCGATTGCCATATGAAGG -ACGGAACCGATTGCCATACAATGG -ACGGAACCGATTGCCATAATGAGG -ACGGAACCGATTGCCATAAATGGG -ACGGAACCGATTGCCATATCCTGA -ACGGAACCGATTGCCATATAGCGA -ACGGAACCGATTGCCATACACAGA -ACGGAACCGATTGCCATAGCAAGA -ACGGAACCGATTGCCATAGGTTGA -ACGGAACCGATTGCCATATCCGAT -ACGGAACCGATTGCCATATGGCAT -ACGGAACCGATTGCCATACGAGAT -ACGGAACCGATTGCCATATACCAC -ACGGAACCGATTGCCATACAGAAC -ACGGAACCGATTGCCATAGTCTAC -ACGGAACCGATTGCCATAACGTAC -ACGGAACCGATTGCCATAAGTGAC -ACGGAACCGATTGCCATACTGTAG -ACGGAACCGATTGCCATACCTAAG -ACGGAACCGATTGCCATAGTTCAG -ACGGAACCGATTGCCATAGCATAG -ACGGAACCGATTGCCATAGACAAG -ACGGAACCGATTGCCATAAAGCAG -ACGGAACCGATTGCCATACGTCAA -ACGGAACCGATTGCCATAGCTGAA -ACGGAACCGATTGCCATAAGTACG -ACGGAACCGATTGCCATAATCCGA -ACGGAACCGATTGCCATAATGGGA -ACGGAACCGATTGCCATAGTGCAA -ACGGAACCGATTGCCATAGAGGAA -ACGGAACCGATTGCCATACAGGTA -ACGGAACCGATTGCCATAGACTCT -ACGGAACCGATTGCCATAAGTCCT -ACGGAACCGATTGCCATATAAGCC -ACGGAACCGATTGCCATAATAGCC -ACGGAACCGATTGCCATATAACCG -ACGGAACCGATTGCCATAATGCCA -ACGGAACCGATTCCGTAAGGAAAC -ACGGAACCGATTCCGTAAAACACC -ACGGAACCGATTCCGTAAATCGAG -ACGGAACCGATTCCGTAACTCCTT -ACGGAACCGATTCCGTAACCTGTT -ACGGAACCGATTCCGTAACGGTTT -ACGGAACCGATTCCGTAAGTGGTT -ACGGAACCGATTCCGTAAGCCTTT -ACGGAACCGATTCCGTAAGGTCTT -ACGGAACCGATTCCGTAAACGCTT -ACGGAACCGATTCCGTAAAGCGTT -ACGGAACCGATTCCGTAATTCGTC -ACGGAACCGATTCCGTAATCTCTC -ACGGAACCGATTCCGTAATGGATC -ACGGAACCGATTCCGTAACACTTC -ACGGAACCGATTCCGTAAGTACTC -ACGGAACCGATTCCGTAAGATGTC -ACGGAACCGATTCCGTAAACAGTC -ACGGAACCGATTCCGTAATTGCTG -ACGGAACCGATTCCGTAATCCATG -ACGGAACCGATTCCGTAATGTGTG -ACGGAACCGATTCCGTAACTAGTG -ACGGAACCGATTCCGTAACATCTG -ACGGAACCGATTCCGTAAGAGTTG -ACGGAACCGATTCCGTAAAGACTG -ACGGAACCGATTCCGTAATCGGTA -ACGGAACCGATTCCGTAATGCCTA -ACGGAACCGATTCCGTAACCACTA -ACGGAACCGATTCCGTAAGGAGTA -ACGGAACCGATTCCGTAATCGTCT -ACGGAACCGATTCCGTAATGCACT -ACGGAACCGATTCCGTAACTGACT -ACGGAACCGATTCCGTAACAACCT -ACGGAACCGATTCCGTAAGCTACT -ACGGAACCGATTCCGTAAGGATCT -ACGGAACCGATTCCGTAAAAGGCT -ACGGAACCGATTCCGTAATCAACC -ACGGAACCGATTCCGTAATGTTCC -ACGGAACCGATTCCGTAAATTCCC -ACGGAACCGATTCCGTAATTCTCG -ACGGAACCGATTCCGTAATAGACG -ACGGAACCGATTCCGTAAGTAACG -ACGGAACCGATTCCGTAAACTTCG -ACGGAACCGATTCCGTAATACGCA -ACGGAACCGATTCCGTAACTTGCA -ACGGAACCGATTCCGTAACGAACA -ACGGAACCGATTCCGTAACAGTCA -ACGGAACCGATTCCGTAAGATCCA -ACGGAACCGATTCCGTAAACGACA -ACGGAACCGATTCCGTAAAGCTCA -ACGGAACCGATTCCGTAATCACGT -ACGGAACCGATTCCGTAACGTAGT -ACGGAACCGATTCCGTAAGTCAGT -ACGGAACCGATTCCGTAAGAAGGT -ACGGAACCGATTCCGTAAAACCGT -ACGGAACCGATTCCGTAATTGTGC -ACGGAACCGATTCCGTAACTAAGC -ACGGAACCGATTCCGTAAACTAGC -ACGGAACCGATTCCGTAAAGATGC -ACGGAACCGATTCCGTAATGAAGG -ACGGAACCGATTCCGTAACAATGG -ACGGAACCGATTCCGTAAATGAGG -ACGGAACCGATTCCGTAAAATGGG -ACGGAACCGATTCCGTAATCCTGA -ACGGAACCGATTCCGTAATAGCGA -ACGGAACCGATTCCGTAACACAGA -ACGGAACCGATTCCGTAAGCAAGA -ACGGAACCGATTCCGTAAGGTTGA -ACGGAACCGATTCCGTAATCCGAT -ACGGAACCGATTCCGTAATGGCAT -ACGGAACCGATTCCGTAACGAGAT -ACGGAACCGATTCCGTAATACCAC -ACGGAACCGATTCCGTAACAGAAC -ACGGAACCGATTCCGTAAGTCTAC -ACGGAACCGATTCCGTAAACGTAC -ACGGAACCGATTCCGTAAAGTGAC -ACGGAACCGATTCCGTAACTGTAG -ACGGAACCGATTCCGTAACCTAAG -ACGGAACCGATTCCGTAAGTTCAG -ACGGAACCGATTCCGTAAGCATAG -ACGGAACCGATTCCGTAAGACAAG -ACGGAACCGATTCCGTAAAAGCAG -ACGGAACCGATTCCGTAACGTCAA -ACGGAACCGATTCCGTAAGCTGAA -ACGGAACCGATTCCGTAAAGTACG -ACGGAACCGATTCCGTAAATCCGA -ACGGAACCGATTCCGTAAATGGGA -ACGGAACCGATTCCGTAAGTGCAA -ACGGAACCGATTCCGTAAGAGGAA -ACGGAACCGATTCCGTAACAGGTA -ACGGAACCGATTCCGTAAGACTCT -ACGGAACCGATTCCGTAAAGTCCT -ACGGAACCGATTCCGTAATAAGCC -ACGGAACCGATTCCGTAAATAGCC -ACGGAACCGATTCCGTAATAACCG -ACGGAACCGATTCCGTAAATGCCA -ACGGAACCGATTCCAATGGGAAAC -ACGGAACCGATTCCAATGAACACC -ACGGAACCGATTCCAATGATCGAG -ACGGAACCGATTCCAATGCTCCTT -ACGGAACCGATTCCAATGCCTGTT -ACGGAACCGATTCCAATGCGGTTT -ACGGAACCGATTCCAATGGTGGTT -ACGGAACCGATTCCAATGGCCTTT -ACGGAACCGATTCCAATGGGTCTT -ACGGAACCGATTCCAATGACGCTT -ACGGAACCGATTCCAATGAGCGTT -ACGGAACCGATTCCAATGTTCGTC -ACGGAACCGATTCCAATGTCTCTC -ACGGAACCGATTCCAATGTGGATC -ACGGAACCGATTCCAATGCACTTC -ACGGAACCGATTCCAATGGTACTC -ACGGAACCGATTCCAATGGATGTC -ACGGAACCGATTCCAATGACAGTC -ACGGAACCGATTCCAATGTTGCTG -ACGGAACCGATTCCAATGTCCATG -ACGGAACCGATTCCAATGTGTGTG -ACGGAACCGATTCCAATGCTAGTG -ACGGAACCGATTCCAATGCATCTG -ACGGAACCGATTCCAATGGAGTTG -ACGGAACCGATTCCAATGAGACTG -ACGGAACCGATTCCAATGTCGGTA -ACGGAACCGATTCCAATGTGCCTA -ACGGAACCGATTCCAATGCCACTA -ACGGAACCGATTCCAATGGGAGTA -ACGGAACCGATTCCAATGTCGTCT -ACGGAACCGATTCCAATGTGCACT -ACGGAACCGATTCCAATGCTGACT -ACGGAACCGATTCCAATGCAACCT -ACGGAACCGATTCCAATGGCTACT -ACGGAACCGATTCCAATGGGATCT -ACGGAACCGATTCCAATGAAGGCT -ACGGAACCGATTCCAATGTCAACC -ACGGAACCGATTCCAATGTGTTCC -ACGGAACCGATTCCAATGATTCCC -ACGGAACCGATTCCAATGTTCTCG -ACGGAACCGATTCCAATGTAGACG -ACGGAACCGATTCCAATGGTAACG -ACGGAACCGATTCCAATGACTTCG -ACGGAACCGATTCCAATGTACGCA -ACGGAACCGATTCCAATGCTTGCA -ACGGAACCGATTCCAATGCGAACA -ACGGAACCGATTCCAATGCAGTCA -ACGGAACCGATTCCAATGGATCCA -ACGGAACCGATTCCAATGACGACA -ACGGAACCGATTCCAATGAGCTCA -ACGGAACCGATTCCAATGTCACGT -ACGGAACCGATTCCAATGCGTAGT -ACGGAACCGATTCCAATGGTCAGT -ACGGAACCGATTCCAATGGAAGGT -ACGGAACCGATTCCAATGAACCGT -ACGGAACCGATTCCAATGTTGTGC -ACGGAACCGATTCCAATGCTAAGC -ACGGAACCGATTCCAATGACTAGC -ACGGAACCGATTCCAATGAGATGC -ACGGAACCGATTCCAATGTGAAGG -ACGGAACCGATTCCAATGCAATGG -ACGGAACCGATTCCAATGATGAGG -ACGGAACCGATTCCAATGAATGGG -ACGGAACCGATTCCAATGTCCTGA -ACGGAACCGATTCCAATGTAGCGA -ACGGAACCGATTCCAATGCACAGA -ACGGAACCGATTCCAATGGCAAGA -ACGGAACCGATTCCAATGGGTTGA -ACGGAACCGATTCCAATGTCCGAT -ACGGAACCGATTCCAATGTGGCAT -ACGGAACCGATTCCAATGCGAGAT -ACGGAACCGATTCCAATGTACCAC -ACGGAACCGATTCCAATGCAGAAC -ACGGAACCGATTCCAATGGTCTAC -ACGGAACCGATTCCAATGACGTAC -ACGGAACCGATTCCAATGAGTGAC -ACGGAACCGATTCCAATGCTGTAG -ACGGAACCGATTCCAATGCCTAAG -ACGGAACCGATTCCAATGGTTCAG -ACGGAACCGATTCCAATGGCATAG -ACGGAACCGATTCCAATGGACAAG -ACGGAACCGATTCCAATGAAGCAG -ACGGAACCGATTCCAATGCGTCAA -ACGGAACCGATTCCAATGGCTGAA -ACGGAACCGATTCCAATGAGTACG -ACGGAACCGATTCCAATGATCCGA -ACGGAACCGATTCCAATGATGGGA -ACGGAACCGATTCCAATGGTGCAA -ACGGAACCGATTCCAATGGAGGAA -ACGGAACCGATTCCAATGCAGGTA -ACGGAACCGATTCCAATGGACTCT -ACGGAACCGATTCCAATGAGTCCT -ACGGAACCGATTCCAATGTAAGCC -ACGGAACCGATTCCAATGATAGCC -ACGGAACCGATTCCAATGTAACCG -ACGGAACCGATTCCAATGATGCCA -ACGGAAGGCATTAACGGAGGAAAC -ACGGAAGGCATTAACGGAAACACC -ACGGAAGGCATTAACGGAATCGAG -ACGGAAGGCATTAACGGACTCCTT -ACGGAAGGCATTAACGGACCTGTT -ACGGAAGGCATTAACGGACGGTTT -ACGGAAGGCATTAACGGAGTGGTT -ACGGAAGGCATTAACGGAGCCTTT -ACGGAAGGCATTAACGGAGGTCTT -ACGGAAGGCATTAACGGAACGCTT -ACGGAAGGCATTAACGGAAGCGTT -ACGGAAGGCATTAACGGATTCGTC -ACGGAAGGCATTAACGGATCTCTC -ACGGAAGGCATTAACGGATGGATC -ACGGAAGGCATTAACGGACACTTC -ACGGAAGGCATTAACGGAGTACTC -ACGGAAGGCATTAACGGAGATGTC -ACGGAAGGCATTAACGGAACAGTC -ACGGAAGGCATTAACGGATTGCTG -ACGGAAGGCATTAACGGATCCATG -ACGGAAGGCATTAACGGATGTGTG -ACGGAAGGCATTAACGGACTAGTG -ACGGAAGGCATTAACGGACATCTG -ACGGAAGGCATTAACGGAGAGTTG -ACGGAAGGCATTAACGGAAGACTG -ACGGAAGGCATTAACGGATCGGTA -ACGGAAGGCATTAACGGATGCCTA -ACGGAAGGCATTAACGGACCACTA -ACGGAAGGCATTAACGGAGGAGTA -ACGGAAGGCATTAACGGATCGTCT -ACGGAAGGCATTAACGGATGCACT -ACGGAAGGCATTAACGGACTGACT -ACGGAAGGCATTAACGGACAACCT -ACGGAAGGCATTAACGGAGCTACT -ACGGAAGGCATTAACGGAGGATCT -ACGGAAGGCATTAACGGAAAGGCT -ACGGAAGGCATTAACGGATCAACC -ACGGAAGGCATTAACGGATGTTCC -ACGGAAGGCATTAACGGAATTCCC -ACGGAAGGCATTAACGGATTCTCG -ACGGAAGGCATTAACGGATAGACG -ACGGAAGGCATTAACGGAGTAACG -ACGGAAGGCATTAACGGAACTTCG -ACGGAAGGCATTAACGGATACGCA -ACGGAAGGCATTAACGGACTTGCA -ACGGAAGGCATTAACGGACGAACA -ACGGAAGGCATTAACGGACAGTCA -ACGGAAGGCATTAACGGAGATCCA -ACGGAAGGCATTAACGGAACGACA -ACGGAAGGCATTAACGGAAGCTCA -ACGGAAGGCATTAACGGATCACGT -ACGGAAGGCATTAACGGACGTAGT -ACGGAAGGCATTAACGGAGTCAGT -ACGGAAGGCATTAACGGAGAAGGT -ACGGAAGGCATTAACGGAAACCGT -ACGGAAGGCATTAACGGATTGTGC -ACGGAAGGCATTAACGGACTAAGC -ACGGAAGGCATTAACGGAACTAGC -ACGGAAGGCATTAACGGAAGATGC -ACGGAAGGCATTAACGGATGAAGG -ACGGAAGGCATTAACGGACAATGG -ACGGAAGGCATTAACGGAATGAGG -ACGGAAGGCATTAACGGAAATGGG -ACGGAAGGCATTAACGGATCCTGA -ACGGAAGGCATTAACGGATAGCGA -ACGGAAGGCATTAACGGACACAGA -ACGGAAGGCATTAACGGAGCAAGA -ACGGAAGGCATTAACGGAGGTTGA -ACGGAAGGCATTAACGGATCCGAT -ACGGAAGGCATTAACGGATGGCAT -ACGGAAGGCATTAACGGACGAGAT -ACGGAAGGCATTAACGGATACCAC -ACGGAAGGCATTAACGGACAGAAC -ACGGAAGGCATTAACGGAGTCTAC -ACGGAAGGCATTAACGGAACGTAC -ACGGAAGGCATTAACGGAAGTGAC -ACGGAAGGCATTAACGGACTGTAG -ACGGAAGGCATTAACGGACCTAAG -ACGGAAGGCATTAACGGAGTTCAG -ACGGAAGGCATTAACGGAGCATAG -ACGGAAGGCATTAACGGAGACAAG -ACGGAAGGCATTAACGGAAAGCAG -ACGGAAGGCATTAACGGACGTCAA -ACGGAAGGCATTAACGGAGCTGAA -ACGGAAGGCATTAACGGAAGTACG -ACGGAAGGCATTAACGGAATCCGA -ACGGAAGGCATTAACGGAATGGGA -ACGGAAGGCATTAACGGAGTGCAA -ACGGAAGGCATTAACGGAGAGGAA -ACGGAAGGCATTAACGGACAGGTA -ACGGAAGGCATTAACGGAGACTCT -ACGGAAGGCATTAACGGAAGTCCT -ACGGAAGGCATTAACGGATAAGCC -ACGGAAGGCATTAACGGAATAGCC -ACGGAAGGCATTAACGGATAACCG -ACGGAAGGCATTAACGGAATGCCA -ACGGAAGGCATTACCAACGGAAAC -ACGGAAGGCATTACCAACAACACC -ACGGAAGGCATTACCAACATCGAG -ACGGAAGGCATTACCAACCTCCTT -ACGGAAGGCATTACCAACCCTGTT -ACGGAAGGCATTACCAACCGGTTT -ACGGAAGGCATTACCAACGTGGTT -ACGGAAGGCATTACCAACGCCTTT -ACGGAAGGCATTACCAACGGTCTT -ACGGAAGGCATTACCAACACGCTT -ACGGAAGGCATTACCAACAGCGTT -ACGGAAGGCATTACCAACTTCGTC -ACGGAAGGCATTACCAACTCTCTC -ACGGAAGGCATTACCAACTGGATC -ACGGAAGGCATTACCAACCACTTC -ACGGAAGGCATTACCAACGTACTC -ACGGAAGGCATTACCAACGATGTC -ACGGAAGGCATTACCAACACAGTC -ACGGAAGGCATTACCAACTTGCTG -ACGGAAGGCATTACCAACTCCATG -ACGGAAGGCATTACCAACTGTGTG -ACGGAAGGCATTACCAACCTAGTG -ACGGAAGGCATTACCAACCATCTG -ACGGAAGGCATTACCAACGAGTTG -ACGGAAGGCATTACCAACAGACTG -ACGGAAGGCATTACCAACTCGGTA -ACGGAAGGCATTACCAACTGCCTA -ACGGAAGGCATTACCAACCCACTA -ACGGAAGGCATTACCAACGGAGTA -ACGGAAGGCATTACCAACTCGTCT -ACGGAAGGCATTACCAACTGCACT -ACGGAAGGCATTACCAACCTGACT -ACGGAAGGCATTACCAACCAACCT -ACGGAAGGCATTACCAACGCTACT -ACGGAAGGCATTACCAACGGATCT -ACGGAAGGCATTACCAACAAGGCT -ACGGAAGGCATTACCAACTCAACC -ACGGAAGGCATTACCAACTGTTCC -ACGGAAGGCATTACCAACATTCCC -ACGGAAGGCATTACCAACTTCTCG -ACGGAAGGCATTACCAACTAGACG -ACGGAAGGCATTACCAACGTAACG -ACGGAAGGCATTACCAACACTTCG -ACGGAAGGCATTACCAACTACGCA -ACGGAAGGCATTACCAACCTTGCA -ACGGAAGGCATTACCAACCGAACA -ACGGAAGGCATTACCAACCAGTCA -ACGGAAGGCATTACCAACGATCCA -ACGGAAGGCATTACCAACACGACA -ACGGAAGGCATTACCAACAGCTCA -ACGGAAGGCATTACCAACTCACGT -ACGGAAGGCATTACCAACCGTAGT -ACGGAAGGCATTACCAACGTCAGT -ACGGAAGGCATTACCAACGAAGGT -ACGGAAGGCATTACCAACAACCGT -ACGGAAGGCATTACCAACTTGTGC -ACGGAAGGCATTACCAACCTAAGC -ACGGAAGGCATTACCAACACTAGC -ACGGAAGGCATTACCAACAGATGC -ACGGAAGGCATTACCAACTGAAGG -ACGGAAGGCATTACCAACCAATGG -ACGGAAGGCATTACCAACATGAGG -ACGGAAGGCATTACCAACAATGGG -ACGGAAGGCATTACCAACTCCTGA -ACGGAAGGCATTACCAACTAGCGA -ACGGAAGGCATTACCAACCACAGA -ACGGAAGGCATTACCAACGCAAGA -ACGGAAGGCATTACCAACGGTTGA -ACGGAAGGCATTACCAACTCCGAT -ACGGAAGGCATTACCAACTGGCAT -ACGGAAGGCATTACCAACCGAGAT -ACGGAAGGCATTACCAACTACCAC -ACGGAAGGCATTACCAACCAGAAC -ACGGAAGGCATTACCAACGTCTAC -ACGGAAGGCATTACCAACACGTAC -ACGGAAGGCATTACCAACAGTGAC -ACGGAAGGCATTACCAACCTGTAG -ACGGAAGGCATTACCAACCCTAAG -ACGGAAGGCATTACCAACGTTCAG -ACGGAAGGCATTACCAACGCATAG -ACGGAAGGCATTACCAACGACAAG -ACGGAAGGCATTACCAACAAGCAG -ACGGAAGGCATTACCAACCGTCAA -ACGGAAGGCATTACCAACGCTGAA -ACGGAAGGCATTACCAACAGTACG -ACGGAAGGCATTACCAACATCCGA -ACGGAAGGCATTACCAACATGGGA -ACGGAAGGCATTACCAACGTGCAA -ACGGAAGGCATTACCAACGAGGAA -ACGGAAGGCATTACCAACCAGGTA -ACGGAAGGCATTACCAACGACTCT -ACGGAAGGCATTACCAACAGTCCT -ACGGAAGGCATTACCAACTAAGCC -ACGGAAGGCATTACCAACATAGCC -ACGGAAGGCATTACCAACTAACCG -ACGGAAGGCATTACCAACATGCCA -ACGGAAGGCATTGAGATCGGAAAC -ACGGAAGGCATTGAGATCAACACC -ACGGAAGGCATTGAGATCATCGAG -ACGGAAGGCATTGAGATCCTCCTT -ACGGAAGGCATTGAGATCCCTGTT -ACGGAAGGCATTGAGATCCGGTTT -ACGGAAGGCATTGAGATCGTGGTT -ACGGAAGGCATTGAGATCGCCTTT -ACGGAAGGCATTGAGATCGGTCTT -ACGGAAGGCATTGAGATCACGCTT -ACGGAAGGCATTGAGATCAGCGTT -ACGGAAGGCATTGAGATCTTCGTC -ACGGAAGGCATTGAGATCTCTCTC -ACGGAAGGCATTGAGATCTGGATC -ACGGAAGGCATTGAGATCCACTTC -ACGGAAGGCATTGAGATCGTACTC -ACGGAAGGCATTGAGATCGATGTC -ACGGAAGGCATTGAGATCACAGTC -ACGGAAGGCATTGAGATCTTGCTG -ACGGAAGGCATTGAGATCTCCATG -ACGGAAGGCATTGAGATCTGTGTG -ACGGAAGGCATTGAGATCCTAGTG -ACGGAAGGCATTGAGATCCATCTG -ACGGAAGGCATTGAGATCGAGTTG -ACGGAAGGCATTGAGATCAGACTG -ACGGAAGGCATTGAGATCTCGGTA -ACGGAAGGCATTGAGATCTGCCTA -ACGGAAGGCATTGAGATCCCACTA -ACGGAAGGCATTGAGATCGGAGTA -ACGGAAGGCATTGAGATCTCGTCT -ACGGAAGGCATTGAGATCTGCACT -ACGGAAGGCATTGAGATCCTGACT -ACGGAAGGCATTGAGATCCAACCT -ACGGAAGGCATTGAGATCGCTACT -ACGGAAGGCATTGAGATCGGATCT -ACGGAAGGCATTGAGATCAAGGCT -ACGGAAGGCATTGAGATCTCAACC -ACGGAAGGCATTGAGATCTGTTCC -ACGGAAGGCATTGAGATCATTCCC -ACGGAAGGCATTGAGATCTTCTCG -ACGGAAGGCATTGAGATCTAGACG -ACGGAAGGCATTGAGATCGTAACG -ACGGAAGGCATTGAGATCACTTCG -ACGGAAGGCATTGAGATCTACGCA -ACGGAAGGCATTGAGATCCTTGCA -ACGGAAGGCATTGAGATCCGAACA -ACGGAAGGCATTGAGATCCAGTCA -ACGGAAGGCATTGAGATCGATCCA -ACGGAAGGCATTGAGATCACGACA -ACGGAAGGCATTGAGATCAGCTCA -ACGGAAGGCATTGAGATCTCACGT -ACGGAAGGCATTGAGATCCGTAGT -ACGGAAGGCATTGAGATCGTCAGT -ACGGAAGGCATTGAGATCGAAGGT -ACGGAAGGCATTGAGATCAACCGT -ACGGAAGGCATTGAGATCTTGTGC -ACGGAAGGCATTGAGATCCTAAGC -ACGGAAGGCATTGAGATCACTAGC -ACGGAAGGCATTGAGATCAGATGC -ACGGAAGGCATTGAGATCTGAAGG -ACGGAAGGCATTGAGATCCAATGG -ACGGAAGGCATTGAGATCATGAGG -ACGGAAGGCATTGAGATCAATGGG -ACGGAAGGCATTGAGATCTCCTGA -ACGGAAGGCATTGAGATCTAGCGA -ACGGAAGGCATTGAGATCCACAGA -ACGGAAGGCATTGAGATCGCAAGA -ACGGAAGGCATTGAGATCGGTTGA -ACGGAAGGCATTGAGATCTCCGAT -ACGGAAGGCATTGAGATCTGGCAT -ACGGAAGGCATTGAGATCCGAGAT -ACGGAAGGCATTGAGATCTACCAC -ACGGAAGGCATTGAGATCCAGAAC -ACGGAAGGCATTGAGATCGTCTAC -ACGGAAGGCATTGAGATCACGTAC -ACGGAAGGCATTGAGATCAGTGAC -ACGGAAGGCATTGAGATCCTGTAG -ACGGAAGGCATTGAGATCCCTAAG -ACGGAAGGCATTGAGATCGTTCAG -ACGGAAGGCATTGAGATCGCATAG -ACGGAAGGCATTGAGATCGACAAG -ACGGAAGGCATTGAGATCAAGCAG -ACGGAAGGCATTGAGATCCGTCAA -ACGGAAGGCATTGAGATCGCTGAA -ACGGAAGGCATTGAGATCAGTACG -ACGGAAGGCATTGAGATCATCCGA -ACGGAAGGCATTGAGATCATGGGA -ACGGAAGGCATTGAGATCGTGCAA -ACGGAAGGCATTGAGATCGAGGAA -ACGGAAGGCATTGAGATCCAGGTA -ACGGAAGGCATTGAGATCGACTCT -ACGGAAGGCATTGAGATCAGTCCT -ACGGAAGGCATTGAGATCTAAGCC -ACGGAAGGCATTGAGATCATAGCC -ACGGAAGGCATTGAGATCTAACCG -ACGGAAGGCATTGAGATCATGCCA -ACGGAAGGCATTCTTCTCGGAAAC -ACGGAAGGCATTCTTCTCAACACC -ACGGAAGGCATTCTTCTCATCGAG -ACGGAAGGCATTCTTCTCCTCCTT -ACGGAAGGCATTCTTCTCCCTGTT -ACGGAAGGCATTCTTCTCCGGTTT -ACGGAAGGCATTCTTCTCGTGGTT -ACGGAAGGCATTCTTCTCGCCTTT -ACGGAAGGCATTCTTCTCGGTCTT -ACGGAAGGCATTCTTCTCACGCTT -ACGGAAGGCATTCTTCTCAGCGTT -ACGGAAGGCATTCTTCTCTTCGTC -ACGGAAGGCATTCTTCTCTCTCTC -ACGGAAGGCATTCTTCTCTGGATC -ACGGAAGGCATTCTTCTCCACTTC -ACGGAAGGCATTCTTCTCGTACTC -ACGGAAGGCATTCTTCTCGATGTC -ACGGAAGGCATTCTTCTCACAGTC -ACGGAAGGCATTCTTCTCTTGCTG -ACGGAAGGCATTCTTCTCTCCATG -ACGGAAGGCATTCTTCTCTGTGTG -ACGGAAGGCATTCTTCTCCTAGTG -ACGGAAGGCATTCTTCTCCATCTG -ACGGAAGGCATTCTTCTCGAGTTG -ACGGAAGGCATTCTTCTCAGACTG -ACGGAAGGCATTCTTCTCTCGGTA -ACGGAAGGCATTCTTCTCTGCCTA -ACGGAAGGCATTCTTCTCCCACTA -ACGGAAGGCATTCTTCTCGGAGTA -ACGGAAGGCATTCTTCTCTCGTCT -ACGGAAGGCATTCTTCTCTGCACT -ACGGAAGGCATTCTTCTCCTGACT -ACGGAAGGCATTCTTCTCCAACCT -ACGGAAGGCATTCTTCTCGCTACT -ACGGAAGGCATTCTTCTCGGATCT -ACGGAAGGCATTCTTCTCAAGGCT -ACGGAAGGCATTCTTCTCTCAACC -ACGGAAGGCATTCTTCTCTGTTCC -ACGGAAGGCATTCTTCTCATTCCC -ACGGAAGGCATTCTTCTCTTCTCG -ACGGAAGGCATTCTTCTCTAGACG -ACGGAAGGCATTCTTCTCGTAACG -ACGGAAGGCATTCTTCTCACTTCG -ACGGAAGGCATTCTTCTCTACGCA -ACGGAAGGCATTCTTCTCCTTGCA -ACGGAAGGCATTCTTCTCCGAACA -ACGGAAGGCATTCTTCTCCAGTCA -ACGGAAGGCATTCTTCTCGATCCA -ACGGAAGGCATTCTTCTCACGACA -ACGGAAGGCATTCTTCTCAGCTCA -ACGGAAGGCATTCTTCTCTCACGT -ACGGAAGGCATTCTTCTCCGTAGT -ACGGAAGGCATTCTTCTCGTCAGT -ACGGAAGGCATTCTTCTCGAAGGT -ACGGAAGGCATTCTTCTCAACCGT -ACGGAAGGCATTCTTCTCTTGTGC -ACGGAAGGCATTCTTCTCCTAAGC -ACGGAAGGCATTCTTCTCACTAGC -ACGGAAGGCATTCTTCTCAGATGC -ACGGAAGGCATTCTTCTCTGAAGG -ACGGAAGGCATTCTTCTCCAATGG -ACGGAAGGCATTCTTCTCATGAGG -ACGGAAGGCATTCTTCTCAATGGG -ACGGAAGGCATTCTTCTCTCCTGA -ACGGAAGGCATTCTTCTCTAGCGA -ACGGAAGGCATTCTTCTCCACAGA -ACGGAAGGCATTCTTCTCGCAAGA -ACGGAAGGCATTCTTCTCGGTTGA -ACGGAAGGCATTCTTCTCTCCGAT -ACGGAAGGCATTCTTCTCTGGCAT -ACGGAAGGCATTCTTCTCCGAGAT -ACGGAAGGCATTCTTCTCTACCAC -ACGGAAGGCATTCTTCTCCAGAAC -ACGGAAGGCATTCTTCTCGTCTAC -ACGGAAGGCATTCTTCTCACGTAC -ACGGAAGGCATTCTTCTCAGTGAC -ACGGAAGGCATTCTTCTCCTGTAG -ACGGAAGGCATTCTTCTCCCTAAG -ACGGAAGGCATTCTTCTCGTTCAG -ACGGAAGGCATTCTTCTCGCATAG -ACGGAAGGCATTCTTCTCGACAAG -ACGGAAGGCATTCTTCTCAAGCAG -ACGGAAGGCATTCTTCTCCGTCAA -ACGGAAGGCATTCTTCTCGCTGAA -ACGGAAGGCATTCTTCTCAGTACG -ACGGAAGGCATTCTTCTCATCCGA -ACGGAAGGCATTCTTCTCATGGGA -ACGGAAGGCATTCTTCTCGTGCAA -ACGGAAGGCATTCTTCTCGAGGAA -ACGGAAGGCATTCTTCTCCAGGTA -ACGGAAGGCATTCTTCTCGACTCT -ACGGAAGGCATTCTTCTCAGTCCT -ACGGAAGGCATTCTTCTCTAAGCC -ACGGAAGGCATTCTTCTCATAGCC -ACGGAAGGCATTCTTCTCTAACCG -ACGGAAGGCATTCTTCTCATGCCA -ACGGAAGGCATTGTTCCTGGAAAC -ACGGAAGGCATTGTTCCTAACACC -ACGGAAGGCATTGTTCCTATCGAG -ACGGAAGGCATTGTTCCTCTCCTT -ACGGAAGGCATTGTTCCTCCTGTT -ACGGAAGGCATTGTTCCTCGGTTT -ACGGAAGGCATTGTTCCTGTGGTT -ACGGAAGGCATTGTTCCTGCCTTT -ACGGAAGGCATTGTTCCTGGTCTT -ACGGAAGGCATTGTTCCTACGCTT -ACGGAAGGCATTGTTCCTAGCGTT -ACGGAAGGCATTGTTCCTTTCGTC -ACGGAAGGCATTGTTCCTTCTCTC -ACGGAAGGCATTGTTCCTTGGATC -ACGGAAGGCATTGTTCCTCACTTC -ACGGAAGGCATTGTTCCTGTACTC -ACGGAAGGCATTGTTCCTGATGTC -ACGGAAGGCATTGTTCCTACAGTC -ACGGAAGGCATTGTTCCTTTGCTG -ACGGAAGGCATTGTTCCTTCCATG -ACGGAAGGCATTGTTCCTTGTGTG -ACGGAAGGCATTGTTCCTCTAGTG -ACGGAAGGCATTGTTCCTCATCTG -ACGGAAGGCATTGTTCCTGAGTTG -ACGGAAGGCATTGTTCCTAGACTG -ACGGAAGGCATTGTTCCTTCGGTA -ACGGAAGGCATTGTTCCTTGCCTA -ACGGAAGGCATTGTTCCTCCACTA -ACGGAAGGCATTGTTCCTGGAGTA -ACGGAAGGCATTGTTCCTTCGTCT -ACGGAAGGCATTGTTCCTTGCACT -ACGGAAGGCATTGTTCCTCTGACT -ACGGAAGGCATTGTTCCTCAACCT -ACGGAAGGCATTGTTCCTGCTACT -ACGGAAGGCATTGTTCCTGGATCT -ACGGAAGGCATTGTTCCTAAGGCT -ACGGAAGGCATTGTTCCTTCAACC -ACGGAAGGCATTGTTCCTTGTTCC -ACGGAAGGCATTGTTCCTATTCCC -ACGGAAGGCATTGTTCCTTTCTCG -ACGGAAGGCATTGTTCCTTAGACG -ACGGAAGGCATTGTTCCTGTAACG -ACGGAAGGCATTGTTCCTACTTCG -ACGGAAGGCATTGTTCCTTACGCA -ACGGAAGGCATTGTTCCTCTTGCA -ACGGAAGGCATTGTTCCTCGAACA -ACGGAAGGCATTGTTCCTCAGTCA -ACGGAAGGCATTGTTCCTGATCCA -ACGGAAGGCATTGTTCCTACGACA -ACGGAAGGCATTGTTCCTAGCTCA -ACGGAAGGCATTGTTCCTTCACGT -ACGGAAGGCATTGTTCCTCGTAGT -ACGGAAGGCATTGTTCCTGTCAGT -ACGGAAGGCATTGTTCCTGAAGGT -ACGGAAGGCATTGTTCCTAACCGT -ACGGAAGGCATTGTTCCTTTGTGC -ACGGAAGGCATTGTTCCTCTAAGC -ACGGAAGGCATTGTTCCTACTAGC -ACGGAAGGCATTGTTCCTAGATGC -ACGGAAGGCATTGTTCCTTGAAGG -ACGGAAGGCATTGTTCCTCAATGG -ACGGAAGGCATTGTTCCTATGAGG -ACGGAAGGCATTGTTCCTAATGGG -ACGGAAGGCATTGTTCCTTCCTGA -ACGGAAGGCATTGTTCCTTAGCGA -ACGGAAGGCATTGTTCCTCACAGA -ACGGAAGGCATTGTTCCTGCAAGA -ACGGAAGGCATTGTTCCTGGTTGA -ACGGAAGGCATTGTTCCTTCCGAT -ACGGAAGGCATTGTTCCTTGGCAT -ACGGAAGGCATTGTTCCTCGAGAT -ACGGAAGGCATTGTTCCTTACCAC -ACGGAAGGCATTGTTCCTCAGAAC -ACGGAAGGCATTGTTCCTGTCTAC -ACGGAAGGCATTGTTCCTACGTAC -ACGGAAGGCATTGTTCCTAGTGAC -ACGGAAGGCATTGTTCCTCTGTAG -ACGGAAGGCATTGTTCCTCCTAAG -ACGGAAGGCATTGTTCCTGTTCAG -ACGGAAGGCATTGTTCCTGCATAG -ACGGAAGGCATTGTTCCTGACAAG -ACGGAAGGCATTGTTCCTAAGCAG -ACGGAAGGCATTGTTCCTCGTCAA -ACGGAAGGCATTGTTCCTGCTGAA -ACGGAAGGCATTGTTCCTAGTACG -ACGGAAGGCATTGTTCCTATCCGA -ACGGAAGGCATTGTTCCTATGGGA -ACGGAAGGCATTGTTCCTGTGCAA -ACGGAAGGCATTGTTCCTGAGGAA -ACGGAAGGCATTGTTCCTCAGGTA -ACGGAAGGCATTGTTCCTGACTCT -ACGGAAGGCATTGTTCCTAGTCCT -ACGGAAGGCATTGTTCCTTAAGCC -ACGGAAGGCATTGTTCCTATAGCC -ACGGAAGGCATTGTTCCTTAACCG -ACGGAAGGCATTGTTCCTATGCCA -ACGGAAGGCATTTTTCGGGGAAAC -ACGGAAGGCATTTTTCGGAACACC -ACGGAAGGCATTTTTCGGATCGAG -ACGGAAGGCATTTTTCGGCTCCTT -ACGGAAGGCATTTTTCGGCCTGTT -ACGGAAGGCATTTTTCGGCGGTTT -ACGGAAGGCATTTTTCGGGTGGTT -ACGGAAGGCATTTTTCGGGCCTTT -ACGGAAGGCATTTTTCGGGGTCTT -ACGGAAGGCATTTTTCGGACGCTT -ACGGAAGGCATTTTTCGGAGCGTT -ACGGAAGGCATTTTTCGGTTCGTC -ACGGAAGGCATTTTTCGGTCTCTC -ACGGAAGGCATTTTTCGGTGGATC -ACGGAAGGCATTTTTCGGCACTTC -ACGGAAGGCATTTTTCGGGTACTC -ACGGAAGGCATTTTTCGGGATGTC -ACGGAAGGCATTTTTCGGACAGTC -ACGGAAGGCATTTTTCGGTTGCTG -ACGGAAGGCATTTTTCGGTCCATG -ACGGAAGGCATTTTTCGGTGTGTG -ACGGAAGGCATTTTTCGGCTAGTG -ACGGAAGGCATTTTTCGGCATCTG -ACGGAAGGCATTTTTCGGGAGTTG -ACGGAAGGCATTTTTCGGAGACTG -ACGGAAGGCATTTTTCGGTCGGTA -ACGGAAGGCATTTTTCGGTGCCTA -ACGGAAGGCATTTTTCGGCCACTA -ACGGAAGGCATTTTTCGGGGAGTA -ACGGAAGGCATTTTTCGGTCGTCT -ACGGAAGGCATTTTTCGGTGCACT -ACGGAAGGCATTTTTCGGCTGACT -ACGGAAGGCATTTTTCGGCAACCT -ACGGAAGGCATTTTTCGGGCTACT -ACGGAAGGCATTTTTCGGGGATCT -ACGGAAGGCATTTTTCGGAAGGCT -ACGGAAGGCATTTTTCGGTCAACC -ACGGAAGGCATTTTTCGGTGTTCC -ACGGAAGGCATTTTTCGGATTCCC -ACGGAAGGCATTTTTCGGTTCTCG -ACGGAAGGCATTTTTCGGTAGACG -ACGGAAGGCATTTTTCGGGTAACG -ACGGAAGGCATTTTTCGGACTTCG -ACGGAAGGCATTTTTCGGTACGCA -ACGGAAGGCATTTTTCGGCTTGCA -ACGGAAGGCATTTTTCGGCGAACA -ACGGAAGGCATTTTTCGGCAGTCA -ACGGAAGGCATTTTTCGGGATCCA -ACGGAAGGCATTTTTCGGACGACA -ACGGAAGGCATTTTTCGGAGCTCA -ACGGAAGGCATTTTTCGGTCACGT -ACGGAAGGCATTTTTCGGCGTAGT -ACGGAAGGCATTTTTCGGGTCAGT -ACGGAAGGCATTTTTCGGGAAGGT -ACGGAAGGCATTTTTCGGAACCGT -ACGGAAGGCATTTTTCGGTTGTGC -ACGGAAGGCATTTTTCGGCTAAGC -ACGGAAGGCATTTTTCGGACTAGC -ACGGAAGGCATTTTTCGGAGATGC -ACGGAAGGCATTTTTCGGTGAAGG -ACGGAAGGCATTTTTCGGCAATGG -ACGGAAGGCATTTTTCGGATGAGG -ACGGAAGGCATTTTTCGGAATGGG -ACGGAAGGCATTTTTCGGTCCTGA -ACGGAAGGCATTTTTCGGTAGCGA -ACGGAAGGCATTTTTCGGCACAGA -ACGGAAGGCATTTTTCGGGCAAGA -ACGGAAGGCATTTTTCGGGGTTGA -ACGGAAGGCATTTTTCGGTCCGAT -ACGGAAGGCATTTTTCGGTGGCAT -ACGGAAGGCATTTTTCGGCGAGAT -ACGGAAGGCATTTTTCGGTACCAC -ACGGAAGGCATTTTTCGGCAGAAC -ACGGAAGGCATTTTTCGGGTCTAC -ACGGAAGGCATTTTTCGGACGTAC -ACGGAAGGCATTTTTCGGAGTGAC -ACGGAAGGCATTTTTCGGCTGTAG -ACGGAAGGCATTTTTCGGCCTAAG -ACGGAAGGCATTTTTCGGGTTCAG -ACGGAAGGCATTTTTCGGGCATAG -ACGGAAGGCATTTTTCGGGACAAG -ACGGAAGGCATTTTTCGGAAGCAG -ACGGAAGGCATTTTTCGGCGTCAA -ACGGAAGGCATTTTTCGGGCTGAA -ACGGAAGGCATTTTTCGGAGTACG -ACGGAAGGCATTTTTCGGATCCGA -ACGGAAGGCATTTTTCGGATGGGA -ACGGAAGGCATTTTTCGGGTGCAA -ACGGAAGGCATTTTTCGGGAGGAA -ACGGAAGGCATTTTTCGGCAGGTA -ACGGAAGGCATTTTTCGGGACTCT -ACGGAAGGCATTTTTCGGAGTCCT -ACGGAAGGCATTTTTCGGTAAGCC -ACGGAAGGCATTTTTCGGATAGCC -ACGGAAGGCATTTTTCGGTAACCG -ACGGAAGGCATTTTTCGGATGCCA -ACGGAAGGCATTGTTGTGGGAAAC -ACGGAAGGCATTGTTGTGAACACC -ACGGAAGGCATTGTTGTGATCGAG -ACGGAAGGCATTGTTGTGCTCCTT -ACGGAAGGCATTGTTGTGCCTGTT -ACGGAAGGCATTGTTGTGCGGTTT -ACGGAAGGCATTGTTGTGGTGGTT -ACGGAAGGCATTGTTGTGGCCTTT -ACGGAAGGCATTGTTGTGGGTCTT -ACGGAAGGCATTGTTGTGACGCTT -ACGGAAGGCATTGTTGTGAGCGTT -ACGGAAGGCATTGTTGTGTTCGTC -ACGGAAGGCATTGTTGTGTCTCTC -ACGGAAGGCATTGTTGTGTGGATC -ACGGAAGGCATTGTTGTGCACTTC -ACGGAAGGCATTGTTGTGGTACTC -ACGGAAGGCATTGTTGTGGATGTC -ACGGAAGGCATTGTTGTGACAGTC -ACGGAAGGCATTGTTGTGTTGCTG -ACGGAAGGCATTGTTGTGTCCATG -ACGGAAGGCATTGTTGTGTGTGTG -ACGGAAGGCATTGTTGTGCTAGTG -ACGGAAGGCATTGTTGTGCATCTG -ACGGAAGGCATTGTTGTGGAGTTG -ACGGAAGGCATTGTTGTGAGACTG -ACGGAAGGCATTGTTGTGTCGGTA -ACGGAAGGCATTGTTGTGTGCCTA -ACGGAAGGCATTGTTGTGCCACTA -ACGGAAGGCATTGTTGTGGGAGTA -ACGGAAGGCATTGTTGTGTCGTCT -ACGGAAGGCATTGTTGTGTGCACT -ACGGAAGGCATTGTTGTGCTGACT -ACGGAAGGCATTGTTGTGCAACCT -ACGGAAGGCATTGTTGTGGCTACT -ACGGAAGGCATTGTTGTGGGATCT -ACGGAAGGCATTGTTGTGAAGGCT -ACGGAAGGCATTGTTGTGTCAACC -ACGGAAGGCATTGTTGTGTGTTCC -ACGGAAGGCATTGTTGTGATTCCC -ACGGAAGGCATTGTTGTGTTCTCG -ACGGAAGGCATTGTTGTGTAGACG -ACGGAAGGCATTGTTGTGGTAACG -ACGGAAGGCATTGTTGTGACTTCG -ACGGAAGGCATTGTTGTGTACGCA -ACGGAAGGCATTGTTGTGCTTGCA -ACGGAAGGCATTGTTGTGCGAACA -ACGGAAGGCATTGTTGTGCAGTCA -ACGGAAGGCATTGTTGTGGATCCA -ACGGAAGGCATTGTTGTGACGACA -ACGGAAGGCATTGTTGTGAGCTCA -ACGGAAGGCATTGTTGTGTCACGT -ACGGAAGGCATTGTTGTGCGTAGT -ACGGAAGGCATTGTTGTGGTCAGT -ACGGAAGGCATTGTTGTGGAAGGT -ACGGAAGGCATTGTTGTGAACCGT -ACGGAAGGCATTGTTGTGTTGTGC -ACGGAAGGCATTGTTGTGCTAAGC -ACGGAAGGCATTGTTGTGACTAGC -ACGGAAGGCATTGTTGTGAGATGC -ACGGAAGGCATTGTTGTGTGAAGG -ACGGAAGGCATTGTTGTGCAATGG -ACGGAAGGCATTGTTGTGATGAGG -ACGGAAGGCATTGTTGTGAATGGG -ACGGAAGGCATTGTTGTGTCCTGA -ACGGAAGGCATTGTTGTGTAGCGA -ACGGAAGGCATTGTTGTGCACAGA -ACGGAAGGCATTGTTGTGGCAAGA -ACGGAAGGCATTGTTGTGGGTTGA -ACGGAAGGCATTGTTGTGTCCGAT -ACGGAAGGCATTGTTGTGTGGCAT -ACGGAAGGCATTGTTGTGCGAGAT -ACGGAAGGCATTGTTGTGTACCAC -ACGGAAGGCATTGTTGTGCAGAAC -ACGGAAGGCATTGTTGTGGTCTAC -ACGGAAGGCATTGTTGTGACGTAC -ACGGAAGGCATTGTTGTGAGTGAC -ACGGAAGGCATTGTTGTGCTGTAG -ACGGAAGGCATTGTTGTGCCTAAG -ACGGAAGGCATTGTTGTGGTTCAG -ACGGAAGGCATTGTTGTGGCATAG -ACGGAAGGCATTGTTGTGGACAAG -ACGGAAGGCATTGTTGTGAAGCAG -ACGGAAGGCATTGTTGTGCGTCAA -ACGGAAGGCATTGTTGTGGCTGAA -ACGGAAGGCATTGTTGTGAGTACG -ACGGAAGGCATTGTTGTGATCCGA -ACGGAAGGCATTGTTGTGATGGGA -ACGGAAGGCATTGTTGTGGTGCAA -ACGGAAGGCATTGTTGTGGAGGAA -ACGGAAGGCATTGTTGTGCAGGTA -ACGGAAGGCATTGTTGTGGACTCT -ACGGAAGGCATTGTTGTGAGTCCT -ACGGAAGGCATTGTTGTGTAAGCC -ACGGAAGGCATTGTTGTGATAGCC -ACGGAAGGCATTGTTGTGTAACCG -ACGGAAGGCATTGTTGTGATGCCA -ACGGAAGGCATTTTTGCCGGAAAC -ACGGAAGGCATTTTTGCCAACACC -ACGGAAGGCATTTTTGCCATCGAG -ACGGAAGGCATTTTTGCCCTCCTT -ACGGAAGGCATTTTTGCCCCTGTT -ACGGAAGGCATTTTTGCCCGGTTT -ACGGAAGGCATTTTTGCCGTGGTT -ACGGAAGGCATTTTTGCCGCCTTT -ACGGAAGGCATTTTTGCCGGTCTT -ACGGAAGGCATTTTTGCCACGCTT -ACGGAAGGCATTTTTGCCAGCGTT -ACGGAAGGCATTTTTGCCTTCGTC -ACGGAAGGCATTTTTGCCTCTCTC -ACGGAAGGCATTTTTGCCTGGATC -ACGGAAGGCATTTTTGCCCACTTC -ACGGAAGGCATTTTTGCCGTACTC -ACGGAAGGCATTTTTGCCGATGTC -ACGGAAGGCATTTTTGCCACAGTC -ACGGAAGGCATTTTTGCCTTGCTG -ACGGAAGGCATTTTTGCCTCCATG -ACGGAAGGCATTTTTGCCTGTGTG -ACGGAAGGCATTTTTGCCCTAGTG -ACGGAAGGCATTTTTGCCCATCTG -ACGGAAGGCATTTTTGCCGAGTTG -ACGGAAGGCATTTTTGCCAGACTG -ACGGAAGGCATTTTTGCCTCGGTA -ACGGAAGGCATTTTTGCCTGCCTA -ACGGAAGGCATTTTTGCCCCACTA -ACGGAAGGCATTTTTGCCGGAGTA -ACGGAAGGCATTTTTGCCTCGTCT -ACGGAAGGCATTTTTGCCTGCACT -ACGGAAGGCATTTTTGCCCTGACT -ACGGAAGGCATTTTTGCCCAACCT -ACGGAAGGCATTTTTGCCGCTACT -ACGGAAGGCATTTTTGCCGGATCT -ACGGAAGGCATTTTTGCCAAGGCT -ACGGAAGGCATTTTTGCCTCAACC -ACGGAAGGCATTTTTGCCTGTTCC -ACGGAAGGCATTTTTGCCATTCCC -ACGGAAGGCATTTTTGCCTTCTCG -ACGGAAGGCATTTTTGCCTAGACG -ACGGAAGGCATTTTTGCCGTAACG -ACGGAAGGCATTTTTGCCACTTCG -ACGGAAGGCATTTTTGCCTACGCA -ACGGAAGGCATTTTTGCCCTTGCA -ACGGAAGGCATTTTTGCCCGAACA -ACGGAAGGCATTTTTGCCCAGTCA -ACGGAAGGCATTTTTGCCGATCCA -ACGGAAGGCATTTTTGCCACGACA -ACGGAAGGCATTTTTGCCAGCTCA -ACGGAAGGCATTTTTGCCTCACGT -ACGGAAGGCATTTTTGCCCGTAGT -ACGGAAGGCATTTTTGCCGTCAGT -ACGGAAGGCATTTTTGCCGAAGGT -ACGGAAGGCATTTTTGCCAACCGT -ACGGAAGGCATTTTTGCCTTGTGC -ACGGAAGGCATTTTTGCCCTAAGC -ACGGAAGGCATTTTTGCCACTAGC -ACGGAAGGCATTTTTGCCAGATGC -ACGGAAGGCATTTTTGCCTGAAGG -ACGGAAGGCATTTTTGCCCAATGG -ACGGAAGGCATTTTTGCCATGAGG -ACGGAAGGCATTTTTGCCAATGGG -ACGGAAGGCATTTTTGCCTCCTGA -ACGGAAGGCATTTTTGCCTAGCGA -ACGGAAGGCATTTTTGCCCACAGA -ACGGAAGGCATTTTTGCCGCAAGA -ACGGAAGGCATTTTTGCCGGTTGA -ACGGAAGGCATTTTTGCCTCCGAT -ACGGAAGGCATTTTTGCCTGGCAT -ACGGAAGGCATTTTTGCCCGAGAT -ACGGAAGGCATTTTTGCCTACCAC -ACGGAAGGCATTTTTGCCCAGAAC -ACGGAAGGCATTTTTGCCGTCTAC -ACGGAAGGCATTTTTGCCACGTAC -ACGGAAGGCATTTTTGCCAGTGAC -ACGGAAGGCATTTTTGCCCTGTAG -ACGGAAGGCATTTTTGCCCCTAAG -ACGGAAGGCATTTTTGCCGTTCAG -ACGGAAGGCATTTTTGCCGCATAG -ACGGAAGGCATTTTTGCCGACAAG -ACGGAAGGCATTTTTGCCAAGCAG -ACGGAAGGCATTTTTGCCCGTCAA -ACGGAAGGCATTTTTGCCGCTGAA -ACGGAAGGCATTTTTGCCAGTACG -ACGGAAGGCATTTTTGCCATCCGA -ACGGAAGGCATTTTTGCCATGGGA -ACGGAAGGCATTTTTGCCGTGCAA -ACGGAAGGCATTTTTGCCGAGGAA -ACGGAAGGCATTTTTGCCCAGGTA -ACGGAAGGCATTTTTGCCGACTCT -ACGGAAGGCATTTTTGCCAGTCCT -ACGGAAGGCATTTTTGCCTAAGCC -ACGGAAGGCATTTTTGCCATAGCC -ACGGAAGGCATTTTTGCCTAACCG -ACGGAAGGCATTTTTGCCATGCCA -ACGGAAGGCATTCTTGGTGGAAAC -ACGGAAGGCATTCTTGGTAACACC -ACGGAAGGCATTCTTGGTATCGAG -ACGGAAGGCATTCTTGGTCTCCTT -ACGGAAGGCATTCTTGGTCCTGTT -ACGGAAGGCATTCTTGGTCGGTTT -ACGGAAGGCATTCTTGGTGTGGTT -ACGGAAGGCATTCTTGGTGCCTTT -ACGGAAGGCATTCTTGGTGGTCTT -ACGGAAGGCATTCTTGGTACGCTT -ACGGAAGGCATTCTTGGTAGCGTT -ACGGAAGGCATTCTTGGTTTCGTC -ACGGAAGGCATTCTTGGTTCTCTC -ACGGAAGGCATTCTTGGTTGGATC -ACGGAAGGCATTCTTGGTCACTTC -ACGGAAGGCATTCTTGGTGTACTC -ACGGAAGGCATTCTTGGTGATGTC -ACGGAAGGCATTCTTGGTACAGTC -ACGGAAGGCATTCTTGGTTTGCTG -ACGGAAGGCATTCTTGGTTCCATG -ACGGAAGGCATTCTTGGTTGTGTG -ACGGAAGGCATTCTTGGTCTAGTG -ACGGAAGGCATTCTTGGTCATCTG -ACGGAAGGCATTCTTGGTGAGTTG -ACGGAAGGCATTCTTGGTAGACTG -ACGGAAGGCATTCTTGGTTCGGTA -ACGGAAGGCATTCTTGGTTGCCTA -ACGGAAGGCATTCTTGGTCCACTA -ACGGAAGGCATTCTTGGTGGAGTA -ACGGAAGGCATTCTTGGTTCGTCT -ACGGAAGGCATTCTTGGTTGCACT -ACGGAAGGCATTCTTGGTCTGACT -ACGGAAGGCATTCTTGGTCAACCT -ACGGAAGGCATTCTTGGTGCTACT -ACGGAAGGCATTCTTGGTGGATCT -ACGGAAGGCATTCTTGGTAAGGCT -ACGGAAGGCATTCTTGGTTCAACC -ACGGAAGGCATTCTTGGTTGTTCC -ACGGAAGGCATTCTTGGTATTCCC -ACGGAAGGCATTCTTGGTTTCTCG -ACGGAAGGCATTCTTGGTTAGACG -ACGGAAGGCATTCTTGGTGTAACG -ACGGAAGGCATTCTTGGTACTTCG -ACGGAAGGCATTCTTGGTTACGCA -ACGGAAGGCATTCTTGGTCTTGCA -ACGGAAGGCATTCTTGGTCGAACA -ACGGAAGGCATTCTTGGTCAGTCA -ACGGAAGGCATTCTTGGTGATCCA -ACGGAAGGCATTCTTGGTACGACA -ACGGAAGGCATTCTTGGTAGCTCA -ACGGAAGGCATTCTTGGTTCACGT -ACGGAAGGCATTCTTGGTCGTAGT -ACGGAAGGCATTCTTGGTGTCAGT -ACGGAAGGCATTCTTGGTGAAGGT -ACGGAAGGCATTCTTGGTAACCGT -ACGGAAGGCATTCTTGGTTTGTGC -ACGGAAGGCATTCTTGGTCTAAGC -ACGGAAGGCATTCTTGGTACTAGC -ACGGAAGGCATTCTTGGTAGATGC -ACGGAAGGCATTCTTGGTTGAAGG -ACGGAAGGCATTCTTGGTCAATGG -ACGGAAGGCATTCTTGGTATGAGG -ACGGAAGGCATTCTTGGTAATGGG -ACGGAAGGCATTCTTGGTTCCTGA -ACGGAAGGCATTCTTGGTTAGCGA -ACGGAAGGCATTCTTGGTCACAGA -ACGGAAGGCATTCTTGGTGCAAGA -ACGGAAGGCATTCTTGGTGGTTGA -ACGGAAGGCATTCTTGGTTCCGAT -ACGGAAGGCATTCTTGGTTGGCAT -ACGGAAGGCATTCTTGGTCGAGAT -ACGGAAGGCATTCTTGGTTACCAC -ACGGAAGGCATTCTTGGTCAGAAC -ACGGAAGGCATTCTTGGTGTCTAC -ACGGAAGGCATTCTTGGTACGTAC -ACGGAAGGCATTCTTGGTAGTGAC -ACGGAAGGCATTCTTGGTCTGTAG -ACGGAAGGCATTCTTGGTCCTAAG -ACGGAAGGCATTCTTGGTGTTCAG -ACGGAAGGCATTCTTGGTGCATAG -ACGGAAGGCATTCTTGGTGACAAG -ACGGAAGGCATTCTTGGTAAGCAG -ACGGAAGGCATTCTTGGTCGTCAA -ACGGAAGGCATTCTTGGTGCTGAA -ACGGAAGGCATTCTTGGTAGTACG -ACGGAAGGCATTCTTGGTATCCGA -ACGGAAGGCATTCTTGGTATGGGA -ACGGAAGGCATTCTTGGTGTGCAA -ACGGAAGGCATTCTTGGTGAGGAA -ACGGAAGGCATTCTTGGTCAGGTA -ACGGAAGGCATTCTTGGTGACTCT -ACGGAAGGCATTCTTGGTAGTCCT -ACGGAAGGCATTCTTGGTTAAGCC -ACGGAAGGCATTCTTGGTATAGCC -ACGGAAGGCATTCTTGGTTAACCG -ACGGAAGGCATTCTTGGTATGCCA -ACGGAAGGCATTCTTACGGGAAAC -ACGGAAGGCATTCTTACGAACACC -ACGGAAGGCATTCTTACGATCGAG -ACGGAAGGCATTCTTACGCTCCTT -ACGGAAGGCATTCTTACGCCTGTT -ACGGAAGGCATTCTTACGCGGTTT -ACGGAAGGCATTCTTACGGTGGTT -ACGGAAGGCATTCTTACGGCCTTT -ACGGAAGGCATTCTTACGGGTCTT -ACGGAAGGCATTCTTACGACGCTT -ACGGAAGGCATTCTTACGAGCGTT -ACGGAAGGCATTCTTACGTTCGTC -ACGGAAGGCATTCTTACGTCTCTC -ACGGAAGGCATTCTTACGTGGATC -ACGGAAGGCATTCTTACGCACTTC -ACGGAAGGCATTCTTACGGTACTC -ACGGAAGGCATTCTTACGGATGTC -ACGGAAGGCATTCTTACGACAGTC -ACGGAAGGCATTCTTACGTTGCTG -ACGGAAGGCATTCTTACGTCCATG -ACGGAAGGCATTCTTACGTGTGTG -ACGGAAGGCATTCTTACGCTAGTG -ACGGAAGGCATTCTTACGCATCTG -ACGGAAGGCATTCTTACGGAGTTG -ACGGAAGGCATTCTTACGAGACTG -ACGGAAGGCATTCTTACGTCGGTA -ACGGAAGGCATTCTTACGTGCCTA -ACGGAAGGCATTCTTACGCCACTA -ACGGAAGGCATTCTTACGGGAGTA -ACGGAAGGCATTCTTACGTCGTCT -ACGGAAGGCATTCTTACGTGCACT -ACGGAAGGCATTCTTACGCTGACT -ACGGAAGGCATTCTTACGCAACCT -ACGGAAGGCATTCTTACGGCTACT -ACGGAAGGCATTCTTACGGGATCT -ACGGAAGGCATTCTTACGAAGGCT -ACGGAAGGCATTCTTACGTCAACC -ACGGAAGGCATTCTTACGTGTTCC -ACGGAAGGCATTCTTACGATTCCC -ACGGAAGGCATTCTTACGTTCTCG -ACGGAAGGCATTCTTACGTAGACG -ACGGAAGGCATTCTTACGGTAACG -ACGGAAGGCATTCTTACGACTTCG -ACGGAAGGCATTCTTACGTACGCA -ACGGAAGGCATTCTTACGCTTGCA -ACGGAAGGCATTCTTACGCGAACA -ACGGAAGGCATTCTTACGCAGTCA -ACGGAAGGCATTCTTACGGATCCA -ACGGAAGGCATTCTTACGACGACA -ACGGAAGGCATTCTTACGAGCTCA -ACGGAAGGCATTCTTACGTCACGT -ACGGAAGGCATTCTTACGCGTAGT -ACGGAAGGCATTCTTACGGTCAGT -ACGGAAGGCATTCTTACGGAAGGT -ACGGAAGGCATTCTTACGAACCGT -ACGGAAGGCATTCTTACGTTGTGC -ACGGAAGGCATTCTTACGCTAAGC -ACGGAAGGCATTCTTACGACTAGC -ACGGAAGGCATTCTTACGAGATGC -ACGGAAGGCATTCTTACGTGAAGG -ACGGAAGGCATTCTTACGCAATGG -ACGGAAGGCATTCTTACGATGAGG -ACGGAAGGCATTCTTACGAATGGG -ACGGAAGGCATTCTTACGTCCTGA -ACGGAAGGCATTCTTACGTAGCGA -ACGGAAGGCATTCTTACGCACAGA -ACGGAAGGCATTCTTACGGCAAGA -ACGGAAGGCATTCTTACGGGTTGA -ACGGAAGGCATTCTTACGTCCGAT -ACGGAAGGCATTCTTACGTGGCAT -ACGGAAGGCATTCTTACGCGAGAT -ACGGAAGGCATTCTTACGTACCAC -ACGGAAGGCATTCTTACGCAGAAC -ACGGAAGGCATTCTTACGGTCTAC -ACGGAAGGCATTCTTACGACGTAC -ACGGAAGGCATTCTTACGAGTGAC -ACGGAAGGCATTCTTACGCTGTAG -ACGGAAGGCATTCTTACGCCTAAG -ACGGAAGGCATTCTTACGGTTCAG -ACGGAAGGCATTCTTACGGCATAG -ACGGAAGGCATTCTTACGGACAAG -ACGGAAGGCATTCTTACGAAGCAG -ACGGAAGGCATTCTTACGCGTCAA -ACGGAAGGCATTCTTACGGCTGAA -ACGGAAGGCATTCTTACGAGTACG -ACGGAAGGCATTCTTACGATCCGA -ACGGAAGGCATTCTTACGATGGGA -ACGGAAGGCATTCTTACGGTGCAA -ACGGAAGGCATTCTTACGGAGGAA -ACGGAAGGCATTCTTACGCAGGTA -ACGGAAGGCATTCTTACGGACTCT -ACGGAAGGCATTCTTACGAGTCCT -ACGGAAGGCATTCTTACGTAAGCC -ACGGAAGGCATTCTTACGATAGCC -ACGGAAGGCATTCTTACGTAACCG -ACGGAAGGCATTCTTACGATGCCA -ACGGAAGGCATTGTTAGCGGAAAC -ACGGAAGGCATTGTTAGCAACACC -ACGGAAGGCATTGTTAGCATCGAG -ACGGAAGGCATTGTTAGCCTCCTT -ACGGAAGGCATTGTTAGCCCTGTT -ACGGAAGGCATTGTTAGCCGGTTT -ACGGAAGGCATTGTTAGCGTGGTT -ACGGAAGGCATTGTTAGCGCCTTT -ACGGAAGGCATTGTTAGCGGTCTT -ACGGAAGGCATTGTTAGCACGCTT -ACGGAAGGCATTGTTAGCAGCGTT -ACGGAAGGCATTGTTAGCTTCGTC -ACGGAAGGCATTGTTAGCTCTCTC -ACGGAAGGCATTGTTAGCTGGATC -ACGGAAGGCATTGTTAGCCACTTC -ACGGAAGGCATTGTTAGCGTACTC -ACGGAAGGCATTGTTAGCGATGTC -ACGGAAGGCATTGTTAGCACAGTC -ACGGAAGGCATTGTTAGCTTGCTG -ACGGAAGGCATTGTTAGCTCCATG -ACGGAAGGCATTGTTAGCTGTGTG -ACGGAAGGCATTGTTAGCCTAGTG -ACGGAAGGCATTGTTAGCCATCTG -ACGGAAGGCATTGTTAGCGAGTTG -ACGGAAGGCATTGTTAGCAGACTG -ACGGAAGGCATTGTTAGCTCGGTA -ACGGAAGGCATTGTTAGCTGCCTA -ACGGAAGGCATTGTTAGCCCACTA -ACGGAAGGCATTGTTAGCGGAGTA -ACGGAAGGCATTGTTAGCTCGTCT -ACGGAAGGCATTGTTAGCTGCACT -ACGGAAGGCATTGTTAGCCTGACT -ACGGAAGGCATTGTTAGCCAACCT -ACGGAAGGCATTGTTAGCGCTACT -ACGGAAGGCATTGTTAGCGGATCT -ACGGAAGGCATTGTTAGCAAGGCT -ACGGAAGGCATTGTTAGCTCAACC -ACGGAAGGCATTGTTAGCTGTTCC -ACGGAAGGCATTGTTAGCATTCCC -ACGGAAGGCATTGTTAGCTTCTCG -ACGGAAGGCATTGTTAGCTAGACG -ACGGAAGGCATTGTTAGCGTAACG -ACGGAAGGCATTGTTAGCACTTCG -ACGGAAGGCATTGTTAGCTACGCA -ACGGAAGGCATTGTTAGCCTTGCA -ACGGAAGGCATTGTTAGCCGAACA -ACGGAAGGCATTGTTAGCCAGTCA -ACGGAAGGCATTGTTAGCGATCCA -ACGGAAGGCATTGTTAGCACGACA -ACGGAAGGCATTGTTAGCAGCTCA -ACGGAAGGCATTGTTAGCTCACGT -ACGGAAGGCATTGTTAGCCGTAGT -ACGGAAGGCATTGTTAGCGTCAGT -ACGGAAGGCATTGTTAGCGAAGGT -ACGGAAGGCATTGTTAGCAACCGT -ACGGAAGGCATTGTTAGCTTGTGC -ACGGAAGGCATTGTTAGCCTAAGC -ACGGAAGGCATTGTTAGCACTAGC -ACGGAAGGCATTGTTAGCAGATGC -ACGGAAGGCATTGTTAGCTGAAGG -ACGGAAGGCATTGTTAGCCAATGG -ACGGAAGGCATTGTTAGCATGAGG -ACGGAAGGCATTGTTAGCAATGGG -ACGGAAGGCATTGTTAGCTCCTGA -ACGGAAGGCATTGTTAGCTAGCGA -ACGGAAGGCATTGTTAGCCACAGA -ACGGAAGGCATTGTTAGCGCAAGA -ACGGAAGGCATTGTTAGCGGTTGA -ACGGAAGGCATTGTTAGCTCCGAT -ACGGAAGGCATTGTTAGCTGGCAT -ACGGAAGGCATTGTTAGCCGAGAT -ACGGAAGGCATTGTTAGCTACCAC -ACGGAAGGCATTGTTAGCCAGAAC -ACGGAAGGCATTGTTAGCGTCTAC -ACGGAAGGCATTGTTAGCACGTAC -ACGGAAGGCATTGTTAGCAGTGAC -ACGGAAGGCATTGTTAGCCTGTAG -ACGGAAGGCATTGTTAGCCCTAAG -ACGGAAGGCATTGTTAGCGTTCAG -ACGGAAGGCATTGTTAGCGCATAG -ACGGAAGGCATTGTTAGCGACAAG -ACGGAAGGCATTGTTAGCAAGCAG -ACGGAAGGCATTGTTAGCCGTCAA -ACGGAAGGCATTGTTAGCGCTGAA -ACGGAAGGCATTGTTAGCAGTACG -ACGGAAGGCATTGTTAGCATCCGA -ACGGAAGGCATTGTTAGCATGGGA -ACGGAAGGCATTGTTAGCGTGCAA -ACGGAAGGCATTGTTAGCGAGGAA -ACGGAAGGCATTGTTAGCCAGGTA -ACGGAAGGCATTGTTAGCGACTCT -ACGGAAGGCATTGTTAGCAGTCCT -ACGGAAGGCATTGTTAGCTAAGCC -ACGGAAGGCATTGTTAGCATAGCC -ACGGAAGGCATTGTTAGCTAACCG -ACGGAAGGCATTGTTAGCATGCCA -ACGGAAGGCATTGTCTTCGGAAAC -ACGGAAGGCATTGTCTTCAACACC -ACGGAAGGCATTGTCTTCATCGAG -ACGGAAGGCATTGTCTTCCTCCTT -ACGGAAGGCATTGTCTTCCCTGTT -ACGGAAGGCATTGTCTTCCGGTTT -ACGGAAGGCATTGTCTTCGTGGTT -ACGGAAGGCATTGTCTTCGCCTTT -ACGGAAGGCATTGTCTTCGGTCTT -ACGGAAGGCATTGTCTTCACGCTT -ACGGAAGGCATTGTCTTCAGCGTT -ACGGAAGGCATTGTCTTCTTCGTC -ACGGAAGGCATTGTCTTCTCTCTC -ACGGAAGGCATTGTCTTCTGGATC -ACGGAAGGCATTGTCTTCCACTTC -ACGGAAGGCATTGTCTTCGTACTC -ACGGAAGGCATTGTCTTCGATGTC -ACGGAAGGCATTGTCTTCACAGTC -ACGGAAGGCATTGTCTTCTTGCTG -ACGGAAGGCATTGTCTTCTCCATG -ACGGAAGGCATTGTCTTCTGTGTG -ACGGAAGGCATTGTCTTCCTAGTG -ACGGAAGGCATTGTCTTCCATCTG -ACGGAAGGCATTGTCTTCGAGTTG -ACGGAAGGCATTGTCTTCAGACTG -ACGGAAGGCATTGTCTTCTCGGTA -ACGGAAGGCATTGTCTTCTGCCTA -ACGGAAGGCATTGTCTTCCCACTA -ACGGAAGGCATTGTCTTCGGAGTA -ACGGAAGGCATTGTCTTCTCGTCT -ACGGAAGGCATTGTCTTCTGCACT -ACGGAAGGCATTGTCTTCCTGACT -ACGGAAGGCATTGTCTTCCAACCT -ACGGAAGGCATTGTCTTCGCTACT -ACGGAAGGCATTGTCTTCGGATCT -ACGGAAGGCATTGTCTTCAAGGCT -ACGGAAGGCATTGTCTTCTCAACC -ACGGAAGGCATTGTCTTCTGTTCC -ACGGAAGGCATTGTCTTCATTCCC -ACGGAAGGCATTGTCTTCTTCTCG -ACGGAAGGCATTGTCTTCTAGACG -ACGGAAGGCATTGTCTTCGTAACG -ACGGAAGGCATTGTCTTCACTTCG -ACGGAAGGCATTGTCTTCTACGCA -ACGGAAGGCATTGTCTTCCTTGCA -ACGGAAGGCATTGTCTTCCGAACA -ACGGAAGGCATTGTCTTCCAGTCA -ACGGAAGGCATTGTCTTCGATCCA -ACGGAAGGCATTGTCTTCACGACA -ACGGAAGGCATTGTCTTCAGCTCA -ACGGAAGGCATTGTCTTCTCACGT -ACGGAAGGCATTGTCTTCCGTAGT -ACGGAAGGCATTGTCTTCGTCAGT -ACGGAAGGCATTGTCTTCGAAGGT -ACGGAAGGCATTGTCTTCAACCGT -ACGGAAGGCATTGTCTTCTTGTGC -ACGGAAGGCATTGTCTTCCTAAGC -ACGGAAGGCATTGTCTTCACTAGC -ACGGAAGGCATTGTCTTCAGATGC -ACGGAAGGCATTGTCTTCTGAAGG -ACGGAAGGCATTGTCTTCCAATGG -ACGGAAGGCATTGTCTTCATGAGG -ACGGAAGGCATTGTCTTCAATGGG -ACGGAAGGCATTGTCTTCTCCTGA -ACGGAAGGCATTGTCTTCTAGCGA -ACGGAAGGCATTGTCTTCCACAGA -ACGGAAGGCATTGTCTTCGCAAGA -ACGGAAGGCATTGTCTTCGGTTGA -ACGGAAGGCATTGTCTTCTCCGAT -ACGGAAGGCATTGTCTTCTGGCAT -ACGGAAGGCATTGTCTTCCGAGAT -ACGGAAGGCATTGTCTTCTACCAC -ACGGAAGGCATTGTCTTCCAGAAC -ACGGAAGGCATTGTCTTCGTCTAC -ACGGAAGGCATTGTCTTCACGTAC -ACGGAAGGCATTGTCTTCAGTGAC -ACGGAAGGCATTGTCTTCCTGTAG -ACGGAAGGCATTGTCTTCCCTAAG -ACGGAAGGCATTGTCTTCGTTCAG -ACGGAAGGCATTGTCTTCGCATAG -ACGGAAGGCATTGTCTTCGACAAG -ACGGAAGGCATTGTCTTCAAGCAG -ACGGAAGGCATTGTCTTCCGTCAA -ACGGAAGGCATTGTCTTCGCTGAA -ACGGAAGGCATTGTCTTCAGTACG -ACGGAAGGCATTGTCTTCATCCGA -ACGGAAGGCATTGTCTTCATGGGA -ACGGAAGGCATTGTCTTCGTGCAA -ACGGAAGGCATTGTCTTCGAGGAA -ACGGAAGGCATTGTCTTCCAGGTA -ACGGAAGGCATTGTCTTCGACTCT -ACGGAAGGCATTGTCTTCAGTCCT -ACGGAAGGCATTGTCTTCTAAGCC -ACGGAAGGCATTGTCTTCATAGCC -ACGGAAGGCATTGTCTTCTAACCG -ACGGAAGGCATTGTCTTCATGCCA -ACGGAAGGCATTCTCTCTGGAAAC -ACGGAAGGCATTCTCTCTAACACC -ACGGAAGGCATTCTCTCTATCGAG -ACGGAAGGCATTCTCTCTCTCCTT -ACGGAAGGCATTCTCTCTCCTGTT -ACGGAAGGCATTCTCTCTCGGTTT -ACGGAAGGCATTCTCTCTGTGGTT -ACGGAAGGCATTCTCTCTGCCTTT -ACGGAAGGCATTCTCTCTGGTCTT -ACGGAAGGCATTCTCTCTACGCTT -ACGGAAGGCATTCTCTCTAGCGTT -ACGGAAGGCATTCTCTCTTTCGTC -ACGGAAGGCATTCTCTCTTCTCTC -ACGGAAGGCATTCTCTCTTGGATC -ACGGAAGGCATTCTCTCTCACTTC -ACGGAAGGCATTCTCTCTGTACTC -ACGGAAGGCATTCTCTCTGATGTC -ACGGAAGGCATTCTCTCTACAGTC -ACGGAAGGCATTCTCTCTTTGCTG -ACGGAAGGCATTCTCTCTTCCATG -ACGGAAGGCATTCTCTCTTGTGTG -ACGGAAGGCATTCTCTCTCTAGTG -ACGGAAGGCATTCTCTCTCATCTG -ACGGAAGGCATTCTCTCTGAGTTG -ACGGAAGGCATTCTCTCTAGACTG -ACGGAAGGCATTCTCTCTTCGGTA -ACGGAAGGCATTCTCTCTTGCCTA -ACGGAAGGCATTCTCTCTCCACTA -ACGGAAGGCATTCTCTCTGGAGTA -ACGGAAGGCATTCTCTCTTCGTCT -ACGGAAGGCATTCTCTCTTGCACT -ACGGAAGGCATTCTCTCTCTGACT -ACGGAAGGCATTCTCTCTCAACCT -ACGGAAGGCATTCTCTCTGCTACT -ACGGAAGGCATTCTCTCTGGATCT -ACGGAAGGCATTCTCTCTAAGGCT -ACGGAAGGCATTCTCTCTTCAACC -ACGGAAGGCATTCTCTCTTGTTCC -ACGGAAGGCATTCTCTCTATTCCC -ACGGAAGGCATTCTCTCTTTCTCG -ACGGAAGGCATTCTCTCTTAGACG -ACGGAAGGCATTCTCTCTGTAACG -ACGGAAGGCATTCTCTCTACTTCG -ACGGAAGGCATTCTCTCTTACGCA -ACGGAAGGCATTCTCTCTCTTGCA -ACGGAAGGCATTCTCTCTCGAACA -ACGGAAGGCATTCTCTCTCAGTCA -ACGGAAGGCATTCTCTCTGATCCA -ACGGAAGGCATTCTCTCTACGACA -ACGGAAGGCATTCTCTCTAGCTCA -ACGGAAGGCATTCTCTCTTCACGT -ACGGAAGGCATTCTCTCTCGTAGT -ACGGAAGGCATTCTCTCTGTCAGT -ACGGAAGGCATTCTCTCTGAAGGT -ACGGAAGGCATTCTCTCTAACCGT -ACGGAAGGCATTCTCTCTTTGTGC -ACGGAAGGCATTCTCTCTCTAAGC -ACGGAAGGCATTCTCTCTACTAGC -ACGGAAGGCATTCTCTCTAGATGC -ACGGAAGGCATTCTCTCTTGAAGG -ACGGAAGGCATTCTCTCTCAATGG -ACGGAAGGCATTCTCTCTATGAGG -ACGGAAGGCATTCTCTCTAATGGG -ACGGAAGGCATTCTCTCTTCCTGA -ACGGAAGGCATTCTCTCTTAGCGA -ACGGAAGGCATTCTCTCTCACAGA -ACGGAAGGCATTCTCTCTGCAAGA -ACGGAAGGCATTCTCTCTGGTTGA -ACGGAAGGCATTCTCTCTTCCGAT -ACGGAAGGCATTCTCTCTTGGCAT -ACGGAAGGCATTCTCTCTCGAGAT -ACGGAAGGCATTCTCTCTTACCAC -ACGGAAGGCATTCTCTCTCAGAAC -ACGGAAGGCATTCTCTCTGTCTAC -ACGGAAGGCATTCTCTCTACGTAC -ACGGAAGGCATTCTCTCTAGTGAC -ACGGAAGGCATTCTCTCTCTGTAG -ACGGAAGGCATTCTCTCTCCTAAG -ACGGAAGGCATTCTCTCTGTTCAG -ACGGAAGGCATTCTCTCTGCATAG -ACGGAAGGCATTCTCTCTGACAAG -ACGGAAGGCATTCTCTCTAAGCAG -ACGGAAGGCATTCTCTCTCGTCAA -ACGGAAGGCATTCTCTCTGCTGAA -ACGGAAGGCATTCTCTCTAGTACG -ACGGAAGGCATTCTCTCTATCCGA -ACGGAAGGCATTCTCTCTATGGGA -ACGGAAGGCATTCTCTCTGTGCAA -ACGGAAGGCATTCTCTCTGAGGAA -ACGGAAGGCATTCTCTCTCAGGTA -ACGGAAGGCATTCTCTCTGACTCT -ACGGAAGGCATTCTCTCTAGTCCT -ACGGAAGGCATTCTCTCTTAAGCC -ACGGAAGGCATTCTCTCTATAGCC -ACGGAAGGCATTCTCTCTTAACCG -ACGGAAGGCATTCTCTCTATGCCA -ACGGAAGGCATTATCTGGGGAAAC -ACGGAAGGCATTATCTGGAACACC -ACGGAAGGCATTATCTGGATCGAG -ACGGAAGGCATTATCTGGCTCCTT -ACGGAAGGCATTATCTGGCCTGTT -ACGGAAGGCATTATCTGGCGGTTT -ACGGAAGGCATTATCTGGGTGGTT -ACGGAAGGCATTATCTGGGCCTTT -ACGGAAGGCATTATCTGGGGTCTT -ACGGAAGGCATTATCTGGACGCTT -ACGGAAGGCATTATCTGGAGCGTT -ACGGAAGGCATTATCTGGTTCGTC -ACGGAAGGCATTATCTGGTCTCTC -ACGGAAGGCATTATCTGGTGGATC -ACGGAAGGCATTATCTGGCACTTC -ACGGAAGGCATTATCTGGGTACTC -ACGGAAGGCATTATCTGGGATGTC -ACGGAAGGCATTATCTGGACAGTC -ACGGAAGGCATTATCTGGTTGCTG -ACGGAAGGCATTATCTGGTCCATG -ACGGAAGGCATTATCTGGTGTGTG -ACGGAAGGCATTATCTGGCTAGTG -ACGGAAGGCATTATCTGGCATCTG -ACGGAAGGCATTATCTGGGAGTTG -ACGGAAGGCATTATCTGGAGACTG -ACGGAAGGCATTATCTGGTCGGTA -ACGGAAGGCATTATCTGGTGCCTA -ACGGAAGGCATTATCTGGCCACTA -ACGGAAGGCATTATCTGGGGAGTA -ACGGAAGGCATTATCTGGTCGTCT -ACGGAAGGCATTATCTGGTGCACT -ACGGAAGGCATTATCTGGCTGACT -ACGGAAGGCATTATCTGGCAACCT -ACGGAAGGCATTATCTGGGCTACT -ACGGAAGGCATTATCTGGGGATCT -ACGGAAGGCATTATCTGGAAGGCT -ACGGAAGGCATTATCTGGTCAACC -ACGGAAGGCATTATCTGGTGTTCC -ACGGAAGGCATTATCTGGATTCCC -ACGGAAGGCATTATCTGGTTCTCG -ACGGAAGGCATTATCTGGTAGACG -ACGGAAGGCATTATCTGGGTAACG -ACGGAAGGCATTATCTGGACTTCG -ACGGAAGGCATTATCTGGTACGCA -ACGGAAGGCATTATCTGGCTTGCA -ACGGAAGGCATTATCTGGCGAACA -ACGGAAGGCATTATCTGGCAGTCA -ACGGAAGGCATTATCTGGGATCCA -ACGGAAGGCATTATCTGGACGACA -ACGGAAGGCATTATCTGGAGCTCA -ACGGAAGGCATTATCTGGTCACGT -ACGGAAGGCATTATCTGGCGTAGT -ACGGAAGGCATTATCTGGGTCAGT -ACGGAAGGCATTATCTGGGAAGGT -ACGGAAGGCATTATCTGGAACCGT -ACGGAAGGCATTATCTGGTTGTGC -ACGGAAGGCATTATCTGGCTAAGC -ACGGAAGGCATTATCTGGACTAGC -ACGGAAGGCATTATCTGGAGATGC -ACGGAAGGCATTATCTGGTGAAGG -ACGGAAGGCATTATCTGGCAATGG -ACGGAAGGCATTATCTGGATGAGG -ACGGAAGGCATTATCTGGAATGGG -ACGGAAGGCATTATCTGGTCCTGA -ACGGAAGGCATTATCTGGTAGCGA -ACGGAAGGCATTATCTGGCACAGA -ACGGAAGGCATTATCTGGGCAAGA -ACGGAAGGCATTATCTGGGGTTGA -ACGGAAGGCATTATCTGGTCCGAT -ACGGAAGGCATTATCTGGTGGCAT -ACGGAAGGCATTATCTGGCGAGAT -ACGGAAGGCATTATCTGGTACCAC -ACGGAAGGCATTATCTGGCAGAAC -ACGGAAGGCATTATCTGGGTCTAC -ACGGAAGGCATTATCTGGACGTAC -ACGGAAGGCATTATCTGGAGTGAC -ACGGAAGGCATTATCTGGCTGTAG -ACGGAAGGCATTATCTGGCCTAAG -ACGGAAGGCATTATCTGGGTTCAG -ACGGAAGGCATTATCTGGGCATAG -ACGGAAGGCATTATCTGGGACAAG -ACGGAAGGCATTATCTGGAAGCAG -ACGGAAGGCATTATCTGGCGTCAA -ACGGAAGGCATTATCTGGGCTGAA -ACGGAAGGCATTATCTGGAGTACG -ACGGAAGGCATTATCTGGATCCGA -ACGGAAGGCATTATCTGGATGGGA -ACGGAAGGCATTATCTGGGTGCAA -ACGGAAGGCATTATCTGGGAGGAA -ACGGAAGGCATTATCTGGCAGGTA -ACGGAAGGCATTATCTGGGACTCT -ACGGAAGGCATTATCTGGAGTCCT -ACGGAAGGCATTATCTGGTAAGCC -ACGGAAGGCATTATCTGGATAGCC -ACGGAAGGCATTATCTGGTAACCG -ACGGAAGGCATTATCTGGATGCCA -ACGGAAGGCATTTTCCACGGAAAC -ACGGAAGGCATTTTCCACAACACC -ACGGAAGGCATTTTCCACATCGAG -ACGGAAGGCATTTTCCACCTCCTT -ACGGAAGGCATTTTCCACCCTGTT -ACGGAAGGCATTTTCCACCGGTTT -ACGGAAGGCATTTTCCACGTGGTT -ACGGAAGGCATTTTCCACGCCTTT -ACGGAAGGCATTTTCCACGGTCTT -ACGGAAGGCATTTTCCACACGCTT -ACGGAAGGCATTTTCCACAGCGTT -ACGGAAGGCATTTTCCACTTCGTC -ACGGAAGGCATTTTCCACTCTCTC -ACGGAAGGCATTTTCCACTGGATC -ACGGAAGGCATTTTCCACCACTTC -ACGGAAGGCATTTTCCACGTACTC -ACGGAAGGCATTTTCCACGATGTC -ACGGAAGGCATTTTCCACACAGTC -ACGGAAGGCATTTTCCACTTGCTG -ACGGAAGGCATTTTCCACTCCATG -ACGGAAGGCATTTTCCACTGTGTG -ACGGAAGGCATTTTCCACCTAGTG -ACGGAAGGCATTTTCCACCATCTG -ACGGAAGGCATTTTCCACGAGTTG -ACGGAAGGCATTTTCCACAGACTG -ACGGAAGGCATTTTCCACTCGGTA -ACGGAAGGCATTTTCCACTGCCTA -ACGGAAGGCATTTTCCACCCACTA -ACGGAAGGCATTTTCCACGGAGTA -ACGGAAGGCATTTTCCACTCGTCT -ACGGAAGGCATTTTCCACTGCACT -ACGGAAGGCATTTTCCACCTGACT -ACGGAAGGCATTTTCCACCAACCT -ACGGAAGGCATTTTCCACGCTACT -ACGGAAGGCATTTTCCACGGATCT -ACGGAAGGCATTTTCCACAAGGCT -ACGGAAGGCATTTTCCACTCAACC -ACGGAAGGCATTTTCCACTGTTCC -ACGGAAGGCATTTTCCACATTCCC -ACGGAAGGCATTTTCCACTTCTCG -ACGGAAGGCATTTTCCACTAGACG -ACGGAAGGCATTTTCCACGTAACG -ACGGAAGGCATTTTCCACACTTCG -ACGGAAGGCATTTTCCACTACGCA -ACGGAAGGCATTTTCCACCTTGCA -ACGGAAGGCATTTTCCACCGAACA -ACGGAAGGCATTTTCCACCAGTCA -ACGGAAGGCATTTTCCACGATCCA -ACGGAAGGCATTTTCCACACGACA -ACGGAAGGCATTTTCCACAGCTCA -ACGGAAGGCATTTTCCACTCACGT -ACGGAAGGCATTTTCCACCGTAGT -ACGGAAGGCATTTTCCACGTCAGT -ACGGAAGGCATTTTCCACGAAGGT -ACGGAAGGCATTTTCCACAACCGT -ACGGAAGGCATTTTCCACTTGTGC -ACGGAAGGCATTTTCCACCTAAGC -ACGGAAGGCATTTTCCACACTAGC -ACGGAAGGCATTTTCCACAGATGC -ACGGAAGGCATTTTCCACTGAAGG -ACGGAAGGCATTTTCCACCAATGG -ACGGAAGGCATTTTCCACATGAGG -ACGGAAGGCATTTTCCACAATGGG -ACGGAAGGCATTTTCCACTCCTGA -ACGGAAGGCATTTTCCACTAGCGA -ACGGAAGGCATTTTCCACCACAGA -ACGGAAGGCATTTTCCACGCAAGA -ACGGAAGGCATTTTCCACGGTTGA -ACGGAAGGCATTTTCCACTCCGAT -ACGGAAGGCATTTTCCACTGGCAT -ACGGAAGGCATTTTCCACCGAGAT -ACGGAAGGCATTTTCCACTACCAC -ACGGAAGGCATTTTCCACCAGAAC -ACGGAAGGCATTTTCCACGTCTAC -ACGGAAGGCATTTTCCACACGTAC -ACGGAAGGCATTTTCCACAGTGAC -ACGGAAGGCATTTTCCACCTGTAG -ACGGAAGGCATTTTCCACCCTAAG -ACGGAAGGCATTTTCCACGTTCAG -ACGGAAGGCATTTTCCACGCATAG -ACGGAAGGCATTTTCCACGACAAG -ACGGAAGGCATTTTCCACAAGCAG -ACGGAAGGCATTTTCCACCGTCAA -ACGGAAGGCATTTTCCACGCTGAA -ACGGAAGGCATTTTCCACAGTACG -ACGGAAGGCATTTTCCACATCCGA -ACGGAAGGCATTTTCCACATGGGA -ACGGAAGGCATTTTCCACGTGCAA -ACGGAAGGCATTTTCCACGAGGAA -ACGGAAGGCATTTTCCACCAGGTA -ACGGAAGGCATTTTCCACGACTCT -ACGGAAGGCATTTTCCACAGTCCT -ACGGAAGGCATTTTCCACTAAGCC -ACGGAAGGCATTTTCCACATAGCC -ACGGAAGGCATTTTCCACTAACCG -ACGGAAGGCATTTTCCACATGCCA -ACGGAAGGCATTCTCGTAGGAAAC -ACGGAAGGCATTCTCGTAAACACC -ACGGAAGGCATTCTCGTAATCGAG -ACGGAAGGCATTCTCGTACTCCTT -ACGGAAGGCATTCTCGTACCTGTT -ACGGAAGGCATTCTCGTACGGTTT -ACGGAAGGCATTCTCGTAGTGGTT -ACGGAAGGCATTCTCGTAGCCTTT -ACGGAAGGCATTCTCGTAGGTCTT -ACGGAAGGCATTCTCGTAACGCTT -ACGGAAGGCATTCTCGTAAGCGTT -ACGGAAGGCATTCTCGTATTCGTC -ACGGAAGGCATTCTCGTATCTCTC -ACGGAAGGCATTCTCGTATGGATC -ACGGAAGGCATTCTCGTACACTTC -ACGGAAGGCATTCTCGTAGTACTC -ACGGAAGGCATTCTCGTAGATGTC -ACGGAAGGCATTCTCGTAACAGTC -ACGGAAGGCATTCTCGTATTGCTG -ACGGAAGGCATTCTCGTATCCATG -ACGGAAGGCATTCTCGTATGTGTG -ACGGAAGGCATTCTCGTACTAGTG -ACGGAAGGCATTCTCGTACATCTG -ACGGAAGGCATTCTCGTAGAGTTG -ACGGAAGGCATTCTCGTAAGACTG -ACGGAAGGCATTCTCGTATCGGTA -ACGGAAGGCATTCTCGTATGCCTA -ACGGAAGGCATTCTCGTACCACTA -ACGGAAGGCATTCTCGTAGGAGTA -ACGGAAGGCATTCTCGTATCGTCT -ACGGAAGGCATTCTCGTATGCACT -ACGGAAGGCATTCTCGTACTGACT -ACGGAAGGCATTCTCGTACAACCT -ACGGAAGGCATTCTCGTAGCTACT -ACGGAAGGCATTCTCGTAGGATCT -ACGGAAGGCATTCTCGTAAAGGCT -ACGGAAGGCATTCTCGTATCAACC -ACGGAAGGCATTCTCGTATGTTCC -ACGGAAGGCATTCTCGTAATTCCC -ACGGAAGGCATTCTCGTATTCTCG -ACGGAAGGCATTCTCGTATAGACG -ACGGAAGGCATTCTCGTAGTAACG -ACGGAAGGCATTCTCGTAACTTCG -ACGGAAGGCATTCTCGTATACGCA -ACGGAAGGCATTCTCGTACTTGCA -ACGGAAGGCATTCTCGTACGAACA -ACGGAAGGCATTCTCGTACAGTCA -ACGGAAGGCATTCTCGTAGATCCA -ACGGAAGGCATTCTCGTAACGACA -ACGGAAGGCATTCTCGTAAGCTCA -ACGGAAGGCATTCTCGTATCACGT -ACGGAAGGCATTCTCGTACGTAGT -ACGGAAGGCATTCTCGTAGTCAGT -ACGGAAGGCATTCTCGTAGAAGGT -ACGGAAGGCATTCTCGTAAACCGT -ACGGAAGGCATTCTCGTATTGTGC -ACGGAAGGCATTCTCGTACTAAGC -ACGGAAGGCATTCTCGTAACTAGC -ACGGAAGGCATTCTCGTAAGATGC -ACGGAAGGCATTCTCGTATGAAGG -ACGGAAGGCATTCTCGTACAATGG -ACGGAAGGCATTCTCGTAATGAGG -ACGGAAGGCATTCTCGTAAATGGG -ACGGAAGGCATTCTCGTATCCTGA -ACGGAAGGCATTCTCGTATAGCGA -ACGGAAGGCATTCTCGTACACAGA -ACGGAAGGCATTCTCGTAGCAAGA -ACGGAAGGCATTCTCGTAGGTTGA -ACGGAAGGCATTCTCGTATCCGAT -ACGGAAGGCATTCTCGTATGGCAT -ACGGAAGGCATTCTCGTACGAGAT -ACGGAAGGCATTCTCGTATACCAC -ACGGAAGGCATTCTCGTACAGAAC -ACGGAAGGCATTCTCGTAGTCTAC -ACGGAAGGCATTCTCGTAACGTAC -ACGGAAGGCATTCTCGTAAGTGAC -ACGGAAGGCATTCTCGTACTGTAG -ACGGAAGGCATTCTCGTACCTAAG -ACGGAAGGCATTCTCGTAGTTCAG -ACGGAAGGCATTCTCGTAGCATAG -ACGGAAGGCATTCTCGTAGACAAG -ACGGAAGGCATTCTCGTAAAGCAG -ACGGAAGGCATTCTCGTACGTCAA -ACGGAAGGCATTCTCGTAGCTGAA -ACGGAAGGCATTCTCGTAAGTACG -ACGGAAGGCATTCTCGTAATCCGA -ACGGAAGGCATTCTCGTAATGGGA -ACGGAAGGCATTCTCGTAGTGCAA -ACGGAAGGCATTCTCGTAGAGGAA -ACGGAAGGCATTCTCGTACAGGTA -ACGGAAGGCATTCTCGTAGACTCT -ACGGAAGGCATTCTCGTAAGTCCT -ACGGAAGGCATTCTCGTATAAGCC -ACGGAAGGCATTCTCGTAATAGCC -ACGGAAGGCATTCTCGTATAACCG -ACGGAAGGCATTCTCGTAATGCCA -ACGGAAGGCATTGTCGATGGAAAC -ACGGAAGGCATTGTCGATAACACC -ACGGAAGGCATTGTCGATATCGAG -ACGGAAGGCATTGTCGATCTCCTT -ACGGAAGGCATTGTCGATCCTGTT -ACGGAAGGCATTGTCGATCGGTTT -ACGGAAGGCATTGTCGATGTGGTT -ACGGAAGGCATTGTCGATGCCTTT -ACGGAAGGCATTGTCGATGGTCTT -ACGGAAGGCATTGTCGATACGCTT -ACGGAAGGCATTGTCGATAGCGTT -ACGGAAGGCATTGTCGATTTCGTC -ACGGAAGGCATTGTCGATTCTCTC -ACGGAAGGCATTGTCGATTGGATC -ACGGAAGGCATTGTCGATCACTTC -ACGGAAGGCATTGTCGATGTACTC -ACGGAAGGCATTGTCGATGATGTC -ACGGAAGGCATTGTCGATACAGTC -ACGGAAGGCATTGTCGATTTGCTG -ACGGAAGGCATTGTCGATTCCATG -ACGGAAGGCATTGTCGATTGTGTG -ACGGAAGGCATTGTCGATCTAGTG -ACGGAAGGCATTGTCGATCATCTG -ACGGAAGGCATTGTCGATGAGTTG -ACGGAAGGCATTGTCGATAGACTG -ACGGAAGGCATTGTCGATTCGGTA -ACGGAAGGCATTGTCGATTGCCTA -ACGGAAGGCATTGTCGATCCACTA -ACGGAAGGCATTGTCGATGGAGTA -ACGGAAGGCATTGTCGATTCGTCT -ACGGAAGGCATTGTCGATTGCACT -ACGGAAGGCATTGTCGATCTGACT -ACGGAAGGCATTGTCGATCAACCT -ACGGAAGGCATTGTCGATGCTACT -ACGGAAGGCATTGTCGATGGATCT -ACGGAAGGCATTGTCGATAAGGCT -ACGGAAGGCATTGTCGATTCAACC -ACGGAAGGCATTGTCGATTGTTCC -ACGGAAGGCATTGTCGATATTCCC -ACGGAAGGCATTGTCGATTTCTCG -ACGGAAGGCATTGTCGATTAGACG -ACGGAAGGCATTGTCGATGTAACG -ACGGAAGGCATTGTCGATACTTCG -ACGGAAGGCATTGTCGATTACGCA -ACGGAAGGCATTGTCGATCTTGCA -ACGGAAGGCATTGTCGATCGAACA -ACGGAAGGCATTGTCGATCAGTCA -ACGGAAGGCATTGTCGATGATCCA -ACGGAAGGCATTGTCGATACGACA -ACGGAAGGCATTGTCGATAGCTCA -ACGGAAGGCATTGTCGATTCACGT -ACGGAAGGCATTGTCGATCGTAGT -ACGGAAGGCATTGTCGATGTCAGT -ACGGAAGGCATTGTCGATGAAGGT -ACGGAAGGCATTGTCGATAACCGT -ACGGAAGGCATTGTCGATTTGTGC -ACGGAAGGCATTGTCGATCTAAGC -ACGGAAGGCATTGTCGATACTAGC -ACGGAAGGCATTGTCGATAGATGC -ACGGAAGGCATTGTCGATTGAAGG -ACGGAAGGCATTGTCGATCAATGG -ACGGAAGGCATTGTCGATATGAGG -ACGGAAGGCATTGTCGATAATGGG -ACGGAAGGCATTGTCGATTCCTGA -ACGGAAGGCATTGTCGATTAGCGA -ACGGAAGGCATTGTCGATCACAGA -ACGGAAGGCATTGTCGATGCAAGA -ACGGAAGGCATTGTCGATGGTTGA -ACGGAAGGCATTGTCGATTCCGAT -ACGGAAGGCATTGTCGATTGGCAT -ACGGAAGGCATTGTCGATCGAGAT -ACGGAAGGCATTGTCGATTACCAC -ACGGAAGGCATTGTCGATCAGAAC -ACGGAAGGCATTGTCGATGTCTAC -ACGGAAGGCATTGTCGATACGTAC -ACGGAAGGCATTGTCGATAGTGAC -ACGGAAGGCATTGTCGATCTGTAG -ACGGAAGGCATTGTCGATCCTAAG -ACGGAAGGCATTGTCGATGTTCAG -ACGGAAGGCATTGTCGATGCATAG -ACGGAAGGCATTGTCGATGACAAG -ACGGAAGGCATTGTCGATAAGCAG -ACGGAAGGCATTGTCGATCGTCAA -ACGGAAGGCATTGTCGATGCTGAA -ACGGAAGGCATTGTCGATAGTACG -ACGGAAGGCATTGTCGATATCCGA -ACGGAAGGCATTGTCGATATGGGA -ACGGAAGGCATTGTCGATGTGCAA -ACGGAAGGCATTGTCGATGAGGAA -ACGGAAGGCATTGTCGATCAGGTA -ACGGAAGGCATTGTCGATGACTCT -ACGGAAGGCATTGTCGATAGTCCT -ACGGAAGGCATTGTCGATTAAGCC -ACGGAAGGCATTGTCGATATAGCC -ACGGAAGGCATTGTCGATTAACCG -ACGGAAGGCATTGTCGATATGCCA -ACGGAAGGCATTGTCACAGGAAAC -ACGGAAGGCATTGTCACAAACACC -ACGGAAGGCATTGTCACAATCGAG -ACGGAAGGCATTGTCACACTCCTT -ACGGAAGGCATTGTCACACCTGTT -ACGGAAGGCATTGTCACACGGTTT -ACGGAAGGCATTGTCACAGTGGTT -ACGGAAGGCATTGTCACAGCCTTT -ACGGAAGGCATTGTCACAGGTCTT -ACGGAAGGCATTGTCACAACGCTT -ACGGAAGGCATTGTCACAAGCGTT -ACGGAAGGCATTGTCACATTCGTC -ACGGAAGGCATTGTCACATCTCTC -ACGGAAGGCATTGTCACATGGATC -ACGGAAGGCATTGTCACACACTTC -ACGGAAGGCATTGTCACAGTACTC -ACGGAAGGCATTGTCACAGATGTC -ACGGAAGGCATTGTCACAACAGTC -ACGGAAGGCATTGTCACATTGCTG -ACGGAAGGCATTGTCACATCCATG -ACGGAAGGCATTGTCACATGTGTG -ACGGAAGGCATTGTCACACTAGTG -ACGGAAGGCATTGTCACACATCTG -ACGGAAGGCATTGTCACAGAGTTG -ACGGAAGGCATTGTCACAAGACTG -ACGGAAGGCATTGTCACATCGGTA -ACGGAAGGCATTGTCACATGCCTA -ACGGAAGGCATTGTCACACCACTA -ACGGAAGGCATTGTCACAGGAGTA -ACGGAAGGCATTGTCACATCGTCT -ACGGAAGGCATTGTCACATGCACT -ACGGAAGGCATTGTCACACTGACT -ACGGAAGGCATTGTCACACAACCT -ACGGAAGGCATTGTCACAGCTACT -ACGGAAGGCATTGTCACAGGATCT -ACGGAAGGCATTGTCACAAAGGCT -ACGGAAGGCATTGTCACATCAACC -ACGGAAGGCATTGTCACATGTTCC -ACGGAAGGCATTGTCACAATTCCC -ACGGAAGGCATTGTCACATTCTCG -ACGGAAGGCATTGTCACATAGACG -ACGGAAGGCATTGTCACAGTAACG -ACGGAAGGCATTGTCACAACTTCG -ACGGAAGGCATTGTCACATACGCA -ACGGAAGGCATTGTCACACTTGCA -ACGGAAGGCATTGTCACACGAACA -ACGGAAGGCATTGTCACACAGTCA -ACGGAAGGCATTGTCACAGATCCA -ACGGAAGGCATTGTCACAACGACA -ACGGAAGGCATTGTCACAAGCTCA -ACGGAAGGCATTGTCACATCACGT -ACGGAAGGCATTGTCACACGTAGT -ACGGAAGGCATTGTCACAGTCAGT -ACGGAAGGCATTGTCACAGAAGGT -ACGGAAGGCATTGTCACAAACCGT -ACGGAAGGCATTGTCACATTGTGC -ACGGAAGGCATTGTCACACTAAGC -ACGGAAGGCATTGTCACAACTAGC -ACGGAAGGCATTGTCACAAGATGC -ACGGAAGGCATTGTCACATGAAGG -ACGGAAGGCATTGTCACACAATGG -ACGGAAGGCATTGTCACAATGAGG -ACGGAAGGCATTGTCACAAATGGG -ACGGAAGGCATTGTCACATCCTGA -ACGGAAGGCATTGTCACATAGCGA -ACGGAAGGCATTGTCACACACAGA -ACGGAAGGCATTGTCACAGCAAGA -ACGGAAGGCATTGTCACAGGTTGA -ACGGAAGGCATTGTCACATCCGAT -ACGGAAGGCATTGTCACATGGCAT -ACGGAAGGCATTGTCACACGAGAT -ACGGAAGGCATTGTCACATACCAC -ACGGAAGGCATTGTCACACAGAAC -ACGGAAGGCATTGTCACAGTCTAC -ACGGAAGGCATTGTCACAACGTAC -ACGGAAGGCATTGTCACAAGTGAC -ACGGAAGGCATTGTCACACTGTAG -ACGGAAGGCATTGTCACACCTAAG -ACGGAAGGCATTGTCACAGTTCAG -ACGGAAGGCATTGTCACAGCATAG -ACGGAAGGCATTGTCACAGACAAG -ACGGAAGGCATTGTCACAAAGCAG -ACGGAAGGCATTGTCACACGTCAA -ACGGAAGGCATTGTCACAGCTGAA -ACGGAAGGCATTGTCACAAGTACG -ACGGAAGGCATTGTCACAATCCGA -ACGGAAGGCATTGTCACAATGGGA -ACGGAAGGCATTGTCACAGTGCAA -ACGGAAGGCATTGTCACAGAGGAA -ACGGAAGGCATTGTCACACAGGTA -ACGGAAGGCATTGTCACAGACTCT -ACGGAAGGCATTGTCACAAGTCCT -ACGGAAGGCATTGTCACATAAGCC -ACGGAAGGCATTGTCACAATAGCC -ACGGAAGGCATTGTCACATAACCG -ACGGAAGGCATTGTCACAATGCCA -ACGGAAGGCATTCTGTTGGGAAAC -ACGGAAGGCATTCTGTTGAACACC -ACGGAAGGCATTCTGTTGATCGAG -ACGGAAGGCATTCTGTTGCTCCTT -ACGGAAGGCATTCTGTTGCCTGTT -ACGGAAGGCATTCTGTTGCGGTTT -ACGGAAGGCATTCTGTTGGTGGTT -ACGGAAGGCATTCTGTTGGCCTTT -ACGGAAGGCATTCTGTTGGGTCTT -ACGGAAGGCATTCTGTTGACGCTT -ACGGAAGGCATTCTGTTGAGCGTT -ACGGAAGGCATTCTGTTGTTCGTC -ACGGAAGGCATTCTGTTGTCTCTC -ACGGAAGGCATTCTGTTGTGGATC -ACGGAAGGCATTCTGTTGCACTTC -ACGGAAGGCATTCTGTTGGTACTC -ACGGAAGGCATTCTGTTGGATGTC -ACGGAAGGCATTCTGTTGACAGTC -ACGGAAGGCATTCTGTTGTTGCTG -ACGGAAGGCATTCTGTTGTCCATG -ACGGAAGGCATTCTGTTGTGTGTG -ACGGAAGGCATTCTGTTGCTAGTG -ACGGAAGGCATTCTGTTGCATCTG -ACGGAAGGCATTCTGTTGGAGTTG -ACGGAAGGCATTCTGTTGAGACTG -ACGGAAGGCATTCTGTTGTCGGTA -ACGGAAGGCATTCTGTTGTGCCTA -ACGGAAGGCATTCTGTTGCCACTA -ACGGAAGGCATTCTGTTGGGAGTA -ACGGAAGGCATTCTGTTGTCGTCT -ACGGAAGGCATTCTGTTGTGCACT -ACGGAAGGCATTCTGTTGCTGACT -ACGGAAGGCATTCTGTTGCAACCT -ACGGAAGGCATTCTGTTGGCTACT -ACGGAAGGCATTCTGTTGGGATCT -ACGGAAGGCATTCTGTTGAAGGCT -ACGGAAGGCATTCTGTTGTCAACC -ACGGAAGGCATTCTGTTGTGTTCC -ACGGAAGGCATTCTGTTGATTCCC -ACGGAAGGCATTCTGTTGTTCTCG -ACGGAAGGCATTCTGTTGTAGACG -ACGGAAGGCATTCTGTTGGTAACG -ACGGAAGGCATTCTGTTGACTTCG -ACGGAAGGCATTCTGTTGTACGCA -ACGGAAGGCATTCTGTTGCTTGCA -ACGGAAGGCATTCTGTTGCGAACA -ACGGAAGGCATTCTGTTGCAGTCA -ACGGAAGGCATTCTGTTGGATCCA -ACGGAAGGCATTCTGTTGACGACA -ACGGAAGGCATTCTGTTGAGCTCA -ACGGAAGGCATTCTGTTGTCACGT -ACGGAAGGCATTCTGTTGCGTAGT -ACGGAAGGCATTCTGTTGGTCAGT -ACGGAAGGCATTCTGTTGGAAGGT -ACGGAAGGCATTCTGTTGAACCGT -ACGGAAGGCATTCTGTTGTTGTGC -ACGGAAGGCATTCTGTTGCTAAGC -ACGGAAGGCATTCTGTTGACTAGC -ACGGAAGGCATTCTGTTGAGATGC -ACGGAAGGCATTCTGTTGTGAAGG -ACGGAAGGCATTCTGTTGCAATGG -ACGGAAGGCATTCTGTTGATGAGG -ACGGAAGGCATTCTGTTGAATGGG -ACGGAAGGCATTCTGTTGTCCTGA -ACGGAAGGCATTCTGTTGTAGCGA -ACGGAAGGCATTCTGTTGCACAGA -ACGGAAGGCATTCTGTTGGCAAGA -ACGGAAGGCATTCTGTTGGGTTGA -ACGGAAGGCATTCTGTTGTCCGAT -ACGGAAGGCATTCTGTTGTGGCAT -ACGGAAGGCATTCTGTTGCGAGAT -ACGGAAGGCATTCTGTTGTACCAC -ACGGAAGGCATTCTGTTGCAGAAC -ACGGAAGGCATTCTGTTGGTCTAC -ACGGAAGGCATTCTGTTGACGTAC -ACGGAAGGCATTCTGTTGAGTGAC -ACGGAAGGCATTCTGTTGCTGTAG -ACGGAAGGCATTCTGTTGCCTAAG -ACGGAAGGCATTCTGTTGGTTCAG -ACGGAAGGCATTCTGTTGGCATAG -ACGGAAGGCATTCTGTTGGACAAG -ACGGAAGGCATTCTGTTGAAGCAG -ACGGAAGGCATTCTGTTGCGTCAA -ACGGAAGGCATTCTGTTGGCTGAA -ACGGAAGGCATTCTGTTGAGTACG -ACGGAAGGCATTCTGTTGATCCGA -ACGGAAGGCATTCTGTTGATGGGA -ACGGAAGGCATTCTGTTGGTGCAA -ACGGAAGGCATTCTGTTGGAGGAA -ACGGAAGGCATTCTGTTGCAGGTA -ACGGAAGGCATTCTGTTGGACTCT -ACGGAAGGCATTCTGTTGAGTCCT -ACGGAAGGCATTCTGTTGTAAGCC -ACGGAAGGCATTCTGTTGATAGCC -ACGGAAGGCATTCTGTTGTAACCG -ACGGAAGGCATTCTGTTGATGCCA -ACGGAAGGCATTATGTCCGGAAAC -ACGGAAGGCATTATGTCCAACACC -ACGGAAGGCATTATGTCCATCGAG -ACGGAAGGCATTATGTCCCTCCTT -ACGGAAGGCATTATGTCCCCTGTT -ACGGAAGGCATTATGTCCCGGTTT -ACGGAAGGCATTATGTCCGTGGTT -ACGGAAGGCATTATGTCCGCCTTT -ACGGAAGGCATTATGTCCGGTCTT -ACGGAAGGCATTATGTCCACGCTT -ACGGAAGGCATTATGTCCAGCGTT -ACGGAAGGCATTATGTCCTTCGTC -ACGGAAGGCATTATGTCCTCTCTC -ACGGAAGGCATTATGTCCTGGATC -ACGGAAGGCATTATGTCCCACTTC -ACGGAAGGCATTATGTCCGTACTC -ACGGAAGGCATTATGTCCGATGTC -ACGGAAGGCATTATGTCCACAGTC -ACGGAAGGCATTATGTCCTTGCTG -ACGGAAGGCATTATGTCCTCCATG -ACGGAAGGCATTATGTCCTGTGTG -ACGGAAGGCATTATGTCCCTAGTG -ACGGAAGGCATTATGTCCCATCTG -ACGGAAGGCATTATGTCCGAGTTG -ACGGAAGGCATTATGTCCAGACTG -ACGGAAGGCATTATGTCCTCGGTA -ACGGAAGGCATTATGTCCTGCCTA -ACGGAAGGCATTATGTCCCCACTA -ACGGAAGGCATTATGTCCGGAGTA -ACGGAAGGCATTATGTCCTCGTCT -ACGGAAGGCATTATGTCCTGCACT -ACGGAAGGCATTATGTCCCTGACT -ACGGAAGGCATTATGTCCCAACCT -ACGGAAGGCATTATGTCCGCTACT -ACGGAAGGCATTATGTCCGGATCT -ACGGAAGGCATTATGTCCAAGGCT -ACGGAAGGCATTATGTCCTCAACC -ACGGAAGGCATTATGTCCTGTTCC -ACGGAAGGCATTATGTCCATTCCC -ACGGAAGGCATTATGTCCTTCTCG -ACGGAAGGCATTATGTCCTAGACG -ACGGAAGGCATTATGTCCGTAACG -ACGGAAGGCATTATGTCCACTTCG -ACGGAAGGCATTATGTCCTACGCA -ACGGAAGGCATTATGTCCCTTGCA -ACGGAAGGCATTATGTCCCGAACA -ACGGAAGGCATTATGTCCCAGTCA -ACGGAAGGCATTATGTCCGATCCA -ACGGAAGGCATTATGTCCACGACA -ACGGAAGGCATTATGTCCAGCTCA -ACGGAAGGCATTATGTCCTCACGT -ACGGAAGGCATTATGTCCCGTAGT -ACGGAAGGCATTATGTCCGTCAGT -ACGGAAGGCATTATGTCCGAAGGT -ACGGAAGGCATTATGTCCAACCGT -ACGGAAGGCATTATGTCCTTGTGC -ACGGAAGGCATTATGTCCCTAAGC -ACGGAAGGCATTATGTCCACTAGC -ACGGAAGGCATTATGTCCAGATGC -ACGGAAGGCATTATGTCCTGAAGG -ACGGAAGGCATTATGTCCCAATGG -ACGGAAGGCATTATGTCCATGAGG -ACGGAAGGCATTATGTCCAATGGG -ACGGAAGGCATTATGTCCTCCTGA -ACGGAAGGCATTATGTCCTAGCGA -ACGGAAGGCATTATGTCCCACAGA -ACGGAAGGCATTATGTCCGCAAGA -ACGGAAGGCATTATGTCCGGTTGA -ACGGAAGGCATTATGTCCTCCGAT -ACGGAAGGCATTATGTCCTGGCAT -ACGGAAGGCATTATGTCCCGAGAT -ACGGAAGGCATTATGTCCTACCAC -ACGGAAGGCATTATGTCCCAGAAC -ACGGAAGGCATTATGTCCGTCTAC -ACGGAAGGCATTATGTCCACGTAC -ACGGAAGGCATTATGTCCAGTGAC -ACGGAAGGCATTATGTCCCTGTAG -ACGGAAGGCATTATGTCCCCTAAG -ACGGAAGGCATTATGTCCGTTCAG -ACGGAAGGCATTATGTCCGCATAG -ACGGAAGGCATTATGTCCGACAAG -ACGGAAGGCATTATGTCCAAGCAG -ACGGAAGGCATTATGTCCCGTCAA -ACGGAAGGCATTATGTCCGCTGAA -ACGGAAGGCATTATGTCCAGTACG -ACGGAAGGCATTATGTCCATCCGA -ACGGAAGGCATTATGTCCATGGGA -ACGGAAGGCATTATGTCCGTGCAA -ACGGAAGGCATTATGTCCGAGGAA -ACGGAAGGCATTATGTCCCAGGTA -ACGGAAGGCATTATGTCCGACTCT -ACGGAAGGCATTATGTCCAGTCCT -ACGGAAGGCATTATGTCCTAAGCC -ACGGAAGGCATTATGTCCATAGCC -ACGGAAGGCATTATGTCCTAACCG -ACGGAAGGCATTATGTCCATGCCA -ACGGAAGGCATTGTGTGTGGAAAC -ACGGAAGGCATTGTGTGTAACACC -ACGGAAGGCATTGTGTGTATCGAG -ACGGAAGGCATTGTGTGTCTCCTT -ACGGAAGGCATTGTGTGTCCTGTT -ACGGAAGGCATTGTGTGTCGGTTT -ACGGAAGGCATTGTGTGTGTGGTT -ACGGAAGGCATTGTGTGTGCCTTT -ACGGAAGGCATTGTGTGTGGTCTT -ACGGAAGGCATTGTGTGTACGCTT -ACGGAAGGCATTGTGTGTAGCGTT -ACGGAAGGCATTGTGTGTTTCGTC -ACGGAAGGCATTGTGTGTTCTCTC -ACGGAAGGCATTGTGTGTTGGATC -ACGGAAGGCATTGTGTGTCACTTC -ACGGAAGGCATTGTGTGTGTACTC -ACGGAAGGCATTGTGTGTGATGTC -ACGGAAGGCATTGTGTGTACAGTC -ACGGAAGGCATTGTGTGTTTGCTG -ACGGAAGGCATTGTGTGTTCCATG -ACGGAAGGCATTGTGTGTTGTGTG -ACGGAAGGCATTGTGTGTCTAGTG -ACGGAAGGCATTGTGTGTCATCTG -ACGGAAGGCATTGTGTGTGAGTTG -ACGGAAGGCATTGTGTGTAGACTG -ACGGAAGGCATTGTGTGTTCGGTA -ACGGAAGGCATTGTGTGTTGCCTA -ACGGAAGGCATTGTGTGTCCACTA -ACGGAAGGCATTGTGTGTGGAGTA -ACGGAAGGCATTGTGTGTTCGTCT -ACGGAAGGCATTGTGTGTTGCACT -ACGGAAGGCATTGTGTGTCTGACT -ACGGAAGGCATTGTGTGTCAACCT -ACGGAAGGCATTGTGTGTGCTACT -ACGGAAGGCATTGTGTGTGGATCT -ACGGAAGGCATTGTGTGTAAGGCT -ACGGAAGGCATTGTGTGTTCAACC -ACGGAAGGCATTGTGTGTTGTTCC -ACGGAAGGCATTGTGTGTATTCCC -ACGGAAGGCATTGTGTGTTTCTCG -ACGGAAGGCATTGTGTGTTAGACG -ACGGAAGGCATTGTGTGTGTAACG -ACGGAAGGCATTGTGTGTACTTCG -ACGGAAGGCATTGTGTGTTACGCA -ACGGAAGGCATTGTGTGTCTTGCA -ACGGAAGGCATTGTGTGTCGAACA -ACGGAAGGCATTGTGTGTCAGTCA -ACGGAAGGCATTGTGTGTGATCCA -ACGGAAGGCATTGTGTGTACGACA -ACGGAAGGCATTGTGTGTAGCTCA -ACGGAAGGCATTGTGTGTTCACGT -ACGGAAGGCATTGTGTGTCGTAGT -ACGGAAGGCATTGTGTGTGTCAGT -ACGGAAGGCATTGTGTGTGAAGGT -ACGGAAGGCATTGTGTGTAACCGT -ACGGAAGGCATTGTGTGTTTGTGC -ACGGAAGGCATTGTGTGTCTAAGC -ACGGAAGGCATTGTGTGTACTAGC -ACGGAAGGCATTGTGTGTAGATGC -ACGGAAGGCATTGTGTGTTGAAGG -ACGGAAGGCATTGTGTGTCAATGG -ACGGAAGGCATTGTGTGTATGAGG -ACGGAAGGCATTGTGTGTAATGGG -ACGGAAGGCATTGTGTGTTCCTGA -ACGGAAGGCATTGTGTGTTAGCGA -ACGGAAGGCATTGTGTGTCACAGA -ACGGAAGGCATTGTGTGTGCAAGA -ACGGAAGGCATTGTGTGTGGTTGA -ACGGAAGGCATTGTGTGTTCCGAT -ACGGAAGGCATTGTGTGTTGGCAT -ACGGAAGGCATTGTGTGTCGAGAT -ACGGAAGGCATTGTGTGTTACCAC -ACGGAAGGCATTGTGTGTCAGAAC -ACGGAAGGCATTGTGTGTGTCTAC -ACGGAAGGCATTGTGTGTACGTAC -ACGGAAGGCATTGTGTGTAGTGAC -ACGGAAGGCATTGTGTGTCTGTAG -ACGGAAGGCATTGTGTGTCCTAAG -ACGGAAGGCATTGTGTGTGTTCAG -ACGGAAGGCATTGTGTGTGCATAG -ACGGAAGGCATTGTGTGTGACAAG -ACGGAAGGCATTGTGTGTAAGCAG -ACGGAAGGCATTGTGTGTCGTCAA -ACGGAAGGCATTGTGTGTGCTGAA -ACGGAAGGCATTGTGTGTAGTACG -ACGGAAGGCATTGTGTGTATCCGA -ACGGAAGGCATTGTGTGTATGGGA -ACGGAAGGCATTGTGTGTGTGCAA -ACGGAAGGCATTGTGTGTGAGGAA -ACGGAAGGCATTGTGTGTCAGGTA -ACGGAAGGCATTGTGTGTGACTCT -ACGGAAGGCATTGTGTGTAGTCCT -ACGGAAGGCATTGTGTGTTAAGCC -ACGGAAGGCATTGTGTGTATAGCC -ACGGAAGGCATTGTGTGTTAACCG -ACGGAAGGCATTGTGTGTATGCCA -ACGGAAGGCATTGTGCTAGGAAAC -ACGGAAGGCATTGTGCTAAACACC -ACGGAAGGCATTGTGCTAATCGAG -ACGGAAGGCATTGTGCTACTCCTT -ACGGAAGGCATTGTGCTACCTGTT -ACGGAAGGCATTGTGCTACGGTTT -ACGGAAGGCATTGTGCTAGTGGTT -ACGGAAGGCATTGTGCTAGCCTTT -ACGGAAGGCATTGTGCTAGGTCTT -ACGGAAGGCATTGTGCTAACGCTT -ACGGAAGGCATTGTGCTAAGCGTT -ACGGAAGGCATTGTGCTATTCGTC -ACGGAAGGCATTGTGCTATCTCTC -ACGGAAGGCATTGTGCTATGGATC -ACGGAAGGCATTGTGCTACACTTC -ACGGAAGGCATTGTGCTAGTACTC -ACGGAAGGCATTGTGCTAGATGTC -ACGGAAGGCATTGTGCTAACAGTC -ACGGAAGGCATTGTGCTATTGCTG -ACGGAAGGCATTGTGCTATCCATG -ACGGAAGGCATTGTGCTATGTGTG -ACGGAAGGCATTGTGCTACTAGTG -ACGGAAGGCATTGTGCTACATCTG -ACGGAAGGCATTGTGCTAGAGTTG -ACGGAAGGCATTGTGCTAAGACTG -ACGGAAGGCATTGTGCTATCGGTA -ACGGAAGGCATTGTGCTATGCCTA -ACGGAAGGCATTGTGCTACCACTA -ACGGAAGGCATTGTGCTAGGAGTA -ACGGAAGGCATTGTGCTATCGTCT -ACGGAAGGCATTGTGCTATGCACT -ACGGAAGGCATTGTGCTACTGACT -ACGGAAGGCATTGTGCTACAACCT -ACGGAAGGCATTGTGCTAGCTACT -ACGGAAGGCATTGTGCTAGGATCT -ACGGAAGGCATTGTGCTAAAGGCT -ACGGAAGGCATTGTGCTATCAACC -ACGGAAGGCATTGTGCTATGTTCC -ACGGAAGGCATTGTGCTAATTCCC -ACGGAAGGCATTGTGCTATTCTCG -ACGGAAGGCATTGTGCTATAGACG -ACGGAAGGCATTGTGCTAGTAACG -ACGGAAGGCATTGTGCTAACTTCG -ACGGAAGGCATTGTGCTATACGCA -ACGGAAGGCATTGTGCTACTTGCA -ACGGAAGGCATTGTGCTACGAACA -ACGGAAGGCATTGTGCTACAGTCA -ACGGAAGGCATTGTGCTAGATCCA -ACGGAAGGCATTGTGCTAACGACA -ACGGAAGGCATTGTGCTAAGCTCA -ACGGAAGGCATTGTGCTATCACGT -ACGGAAGGCATTGTGCTACGTAGT -ACGGAAGGCATTGTGCTAGTCAGT -ACGGAAGGCATTGTGCTAGAAGGT -ACGGAAGGCATTGTGCTAAACCGT -ACGGAAGGCATTGTGCTATTGTGC -ACGGAAGGCATTGTGCTACTAAGC -ACGGAAGGCATTGTGCTAACTAGC -ACGGAAGGCATTGTGCTAAGATGC -ACGGAAGGCATTGTGCTATGAAGG -ACGGAAGGCATTGTGCTACAATGG -ACGGAAGGCATTGTGCTAATGAGG -ACGGAAGGCATTGTGCTAAATGGG -ACGGAAGGCATTGTGCTATCCTGA -ACGGAAGGCATTGTGCTATAGCGA -ACGGAAGGCATTGTGCTACACAGA -ACGGAAGGCATTGTGCTAGCAAGA -ACGGAAGGCATTGTGCTAGGTTGA -ACGGAAGGCATTGTGCTATCCGAT -ACGGAAGGCATTGTGCTATGGCAT -ACGGAAGGCATTGTGCTACGAGAT -ACGGAAGGCATTGTGCTATACCAC -ACGGAAGGCATTGTGCTACAGAAC -ACGGAAGGCATTGTGCTAGTCTAC -ACGGAAGGCATTGTGCTAACGTAC -ACGGAAGGCATTGTGCTAAGTGAC -ACGGAAGGCATTGTGCTACTGTAG -ACGGAAGGCATTGTGCTACCTAAG -ACGGAAGGCATTGTGCTAGTTCAG -ACGGAAGGCATTGTGCTAGCATAG -ACGGAAGGCATTGTGCTAGACAAG -ACGGAAGGCATTGTGCTAAAGCAG -ACGGAAGGCATTGTGCTACGTCAA -ACGGAAGGCATTGTGCTAGCTGAA -ACGGAAGGCATTGTGCTAAGTACG -ACGGAAGGCATTGTGCTAATCCGA -ACGGAAGGCATTGTGCTAATGGGA -ACGGAAGGCATTGTGCTAGTGCAA -ACGGAAGGCATTGTGCTAGAGGAA -ACGGAAGGCATTGTGCTACAGGTA -ACGGAAGGCATTGTGCTAGACTCT -ACGGAAGGCATTGTGCTAAGTCCT -ACGGAAGGCATTGTGCTATAAGCC -ACGGAAGGCATTGTGCTAATAGCC -ACGGAAGGCATTGTGCTATAACCG -ACGGAAGGCATTGTGCTAATGCCA -ACGGAAGGCATTCTGCATGGAAAC -ACGGAAGGCATTCTGCATAACACC -ACGGAAGGCATTCTGCATATCGAG -ACGGAAGGCATTCTGCATCTCCTT -ACGGAAGGCATTCTGCATCCTGTT -ACGGAAGGCATTCTGCATCGGTTT -ACGGAAGGCATTCTGCATGTGGTT -ACGGAAGGCATTCTGCATGCCTTT -ACGGAAGGCATTCTGCATGGTCTT -ACGGAAGGCATTCTGCATACGCTT -ACGGAAGGCATTCTGCATAGCGTT -ACGGAAGGCATTCTGCATTTCGTC -ACGGAAGGCATTCTGCATTCTCTC -ACGGAAGGCATTCTGCATTGGATC -ACGGAAGGCATTCTGCATCACTTC -ACGGAAGGCATTCTGCATGTACTC -ACGGAAGGCATTCTGCATGATGTC -ACGGAAGGCATTCTGCATACAGTC -ACGGAAGGCATTCTGCATTTGCTG -ACGGAAGGCATTCTGCATTCCATG -ACGGAAGGCATTCTGCATTGTGTG -ACGGAAGGCATTCTGCATCTAGTG -ACGGAAGGCATTCTGCATCATCTG -ACGGAAGGCATTCTGCATGAGTTG -ACGGAAGGCATTCTGCATAGACTG -ACGGAAGGCATTCTGCATTCGGTA -ACGGAAGGCATTCTGCATTGCCTA -ACGGAAGGCATTCTGCATCCACTA -ACGGAAGGCATTCTGCATGGAGTA -ACGGAAGGCATTCTGCATTCGTCT -ACGGAAGGCATTCTGCATTGCACT -ACGGAAGGCATTCTGCATCTGACT -ACGGAAGGCATTCTGCATCAACCT -ACGGAAGGCATTCTGCATGCTACT -ACGGAAGGCATTCTGCATGGATCT -ACGGAAGGCATTCTGCATAAGGCT -ACGGAAGGCATTCTGCATTCAACC -ACGGAAGGCATTCTGCATTGTTCC -ACGGAAGGCATTCTGCATATTCCC -ACGGAAGGCATTCTGCATTTCTCG -ACGGAAGGCATTCTGCATTAGACG -ACGGAAGGCATTCTGCATGTAACG -ACGGAAGGCATTCTGCATACTTCG -ACGGAAGGCATTCTGCATTACGCA -ACGGAAGGCATTCTGCATCTTGCA -ACGGAAGGCATTCTGCATCGAACA -ACGGAAGGCATTCTGCATCAGTCA -ACGGAAGGCATTCTGCATGATCCA -ACGGAAGGCATTCTGCATACGACA -ACGGAAGGCATTCTGCATAGCTCA -ACGGAAGGCATTCTGCATTCACGT -ACGGAAGGCATTCTGCATCGTAGT -ACGGAAGGCATTCTGCATGTCAGT -ACGGAAGGCATTCTGCATGAAGGT -ACGGAAGGCATTCTGCATAACCGT -ACGGAAGGCATTCTGCATTTGTGC -ACGGAAGGCATTCTGCATCTAAGC -ACGGAAGGCATTCTGCATACTAGC -ACGGAAGGCATTCTGCATAGATGC -ACGGAAGGCATTCTGCATTGAAGG -ACGGAAGGCATTCTGCATCAATGG -ACGGAAGGCATTCTGCATATGAGG -ACGGAAGGCATTCTGCATAATGGG -ACGGAAGGCATTCTGCATTCCTGA -ACGGAAGGCATTCTGCATTAGCGA -ACGGAAGGCATTCTGCATCACAGA -ACGGAAGGCATTCTGCATGCAAGA -ACGGAAGGCATTCTGCATGGTTGA -ACGGAAGGCATTCTGCATTCCGAT -ACGGAAGGCATTCTGCATTGGCAT -ACGGAAGGCATTCTGCATCGAGAT -ACGGAAGGCATTCTGCATTACCAC -ACGGAAGGCATTCTGCATCAGAAC -ACGGAAGGCATTCTGCATGTCTAC -ACGGAAGGCATTCTGCATACGTAC -ACGGAAGGCATTCTGCATAGTGAC -ACGGAAGGCATTCTGCATCTGTAG -ACGGAAGGCATTCTGCATCCTAAG -ACGGAAGGCATTCTGCATGTTCAG -ACGGAAGGCATTCTGCATGCATAG -ACGGAAGGCATTCTGCATGACAAG -ACGGAAGGCATTCTGCATAAGCAG -ACGGAAGGCATTCTGCATCGTCAA -ACGGAAGGCATTCTGCATGCTGAA -ACGGAAGGCATTCTGCATAGTACG -ACGGAAGGCATTCTGCATATCCGA -ACGGAAGGCATTCTGCATATGGGA -ACGGAAGGCATTCTGCATGTGCAA -ACGGAAGGCATTCTGCATGAGGAA -ACGGAAGGCATTCTGCATCAGGTA -ACGGAAGGCATTCTGCATGACTCT -ACGGAAGGCATTCTGCATAGTCCT -ACGGAAGGCATTCTGCATTAAGCC -ACGGAAGGCATTCTGCATATAGCC -ACGGAAGGCATTCTGCATTAACCG -ACGGAAGGCATTCTGCATATGCCA -ACGGAAGGCATTTTGGAGGGAAAC -ACGGAAGGCATTTTGGAGAACACC -ACGGAAGGCATTTTGGAGATCGAG -ACGGAAGGCATTTTGGAGCTCCTT -ACGGAAGGCATTTTGGAGCCTGTT -ACGGAAGGCATTTTGGAGCGGTTT -ACGGAAGGCATTTTGGAGGTGGTT -ACGGAAGGCATTTTGGAGGCCTTT -ACGGAAGGCATTTTGGAGGGTCTT -ACGGAAGGCATTTTGGAGACGCTT -ACGGAAGGCATTTTGGAGAGCGTT -ACGGAAGGCATTTTGGAGTTCGTC -ACGGAAGGCATTTTGGAGTCTCTC -ACGGAAGGCATTTTGGAGTGGATC -ACGGAAGGCATTTTGGAGCACTTC -ACGGAAGGCATTTTGGAGGTACTC -ACGGAAGGCATTTTGGAGGATGTC -ACGGAAGGCATTTTGGAGACAGTC -ACGGAAGGCATTTTGGAGTTGCTG -ACGGAAGGCATTTTGGAGTCCATG -ACGGAAGGCATTTTGGAGTGTGTG -ACGGAAGGCATTTTGGAGCTAGTG -ACGGAAGGCATTTTGGAGCATCTG -ACGGAAGGCATTTTGGAGGAGTTG -ACGGAAGGCATTTTGGAGAGACTG -ACGGAAGGCATTTTGGAGTCGGTA -ACGGAAGGCATTTTGGAGTGCCTA -ACGGAAGGCATTTTGGAGCCACTA -ACGGAAGGCATTTTGGAGGGAGTA -ACGGAAGGCATTTTGGAGTCGTCT -ACGGAAGGCATTTTGGAGTGCACT -ACGGAAGGCATTTTGGAGCTGACT -ACGGAAGGCATTTTGGAGCAACCT -ACGGAAGGCATTTTGGAGGCTACT -ACGGAAGGCATTTTGGAGGGATCT -ACGGAAGGCATTTTGGAGAAGGCT -ACGGAAGGCATTTTGGAGTCAACC -ACGGAAGGCATTTTGGAGTGTTCC -ACGGAAGGCATTTTGGAGATTCCC -ACGGAAGGCATTTTGGAGTTCTCG -ACGGAAGGCATTTTGGAGTAGACG -ACGGAAGGCATTTTGGAGGTAACG -ACGGAAGGCATTTTGGAGACTTCG -ACGGAAGGCATTTTGGAGTACGCA -ACGGAAGGCATTTTGGAGCTTGCA -ACGGAAGGCATTTTGGAGCGAACA -ACGGAAGGCATTTTGGAGCAGTCA -ACGGAAGGCATTTTGGAGGATCCA -ACGGAAGGCATTTTGGAGACGACA -ACGGAAGGCATTTTGGAGAGCTCA -ACGGAAGGCATTTTGGAGTCACGT -ACGGAAGGCATTTTGGAGCGTAGT -ACGGAAGGCATTTTGGAGGTCAGT -ACGGAAGGCATTTTGGAGGAAGGT -ACGGAAGGCATTTTGGAGAACCGT -ACGGAAGGCATTTTGGAGTTGTGC -ACGGAAGGCATTTTGGAGCTAAGC -ACGGAAGGCATTTTGGAGACTAGC -ACGGAAGGCATTTTGGAGAGATGC -ACGGAAGGCATTTTGGAGTGAAGG -ACGGAAGGCATTTTGGAGCAATGG -ACGGAAGGCATTTTGGAGATGAGG -ACGGAAGGCATTTTGGAGAATGGG -ACGGAAGGCATTTTGGAGTCCTGA -ACGGAAGGCATTTTGGAGTAGCGA -ACGGAAGGCATTTTGGAGCACAGA -ACGGAAGGCATTTTGGAGGCAAGA -ACGGAAGGCATTTTGGAGGGTTGA -ACGGAAGGCATTTTGGAGTCCGAT -ACGGAAGGCATTTTGGAGTGGCAT -ACGGAAGGCATTTTGGAGCGAGAT -ACGGAAGGCATTTTGGAGTACCAC -ACGGAAGGCATTTTGGAGCAGAAC -ACGGAAGGCATTTTGGAGGTCTAC -ACGGAAGGCATTTTGGAGACGTAC -ACGGAAGGCATTTTGGAGAGTGAC -ACGGAAGGCATTTTGGAGCTGTAG -ACGGAAGGCATTTTGGAGCCTAAG -ACGGAAGGCATTTTGGAGGTTCAG -ACGGAAGGCATTTTGGAGGCATAG -ACGGAAGGCATTTTGGAGGACAAG -ACGGAAGGCATTTTGGAGAAGCAG -ACGGAAGGCATTTTGGAGCGTCAA -ACGGAAGGCATTTTGGAGGCTGAA -ACGGAAGGCATTTTGGAGAGTACG -ACGGAAGGCATTTTGGAGATCCGA -ACGGAAGGCATTTTGGAGATGGGA -ACGGAAGGCATTTTGGAGGTGCAA -ACGGAAGGCATTTTGGAGGAGGAA -ACGGAAGGCATTTTGGAGCAGGTA -ACGGAAGGCATTTTGGAGGACTCT -ACGGAAGGCATTTTGGAGAGTCCT -ACGGAAGGCATTTTGGAGTAAGCC -ACGGAAGGCATTTTGGAGATAGCC -ACGGAAGGCATTTTGGAGTAACCG -ACGGAAGGCATTTTGGAGATGCCA -ACGGAAGGCATTCTGAGAGGAAAC -ACGGAAGGCATTCTGAGAAACACC -ACGGAAGGCATTCTGAGAATCGAG -ACGGAAGGCATTCTGAGACTCCTT -ACGGAAGGCATTCTGAGACCTGTT -ACGGAAGGCATTCTGAGACGGTTT -ACGGAAGGCATTCTGAGAGTGGTT -ACGGAAGGCATTCTGAGAGCCTTT -ACGGAAGGCATTCTGAGAGGTCTT -ACGGAAGGCATTCTGAGAACGCTT -ACGGAAGGCATTCTGAGAAGCGTT -ACGGAAGGCATTCTGAGATTCGTC -ACGGAAGGCATTCTGAGATCTCTC -ACGGAAGGCATTCTGAGATGGATC -ACGGAAGGCATTCTGAGACACTTC -ACGGAAGGCATTCTGAGAGTACTC -ACGGAAGGCATTCTGAGAGATGTC -ACGGAAGGCATTCTGAGAACAGTC -ACGGAAGGCATTCTGAGATTGCTG -ACGGAAGGCATTCTGAGATCCATG -ACGGAAGGCATTCTGAGATGTGTG -ACGGAAGGCATTCTGAGACTAGTG -ACGGAAGGCATTCTGAGACATCTG -ACGGAAGGCATTCTGAGAGAGTTG -ACGGAAGGCATTCTGAGAAGACTG -ACGGAAGGCATTCTGAGATCGGTA -ACGGAAGGCATTCTGAGATGCCTA -ACGGAAGGCATTCTGAGACCACTA -ACGGAAGGCATTCTGAGAGGAGTA -ACGGAAGGCATTCTGAGATCGTCT -ACGGAAGGCATTCTGAGATGCACT -ACGGAAGGCATTCTGAGACTGACT -ACGGAAGGCATTCTGAGACAACCT -ACGGAAGGCATTCTGAGAGCTACT -ACGGAAGGCATTCTGAGAGGATCT -ACGGAAGGCATTCTGAGAAAGGCT -ACGGAAGGCATTCTGAGATCAACC -ACGGAAGGCATTCTGAGATGTTCC -ACGGAAGGCATTCTGAGAATTCCC -ACGGAAGGCATTCTGAGATTCTCG -ACGGAAGGCATTCTGAGATAGACG -ACGGAAGGCATTCTGAGAGTAACG -ACGGAAGGCATTCTGAGAACTTCG -ACGGAAGGCATTCTGAGATACGCA -ACGGAAGGCATTCTGAGACTTGCA -ACGGAAGGCATTCTGAGACGAACA -ACGGAAGGCATTCTGAGACAGTCA -ACGGAAGGCATTCTGAGAGATCCA -ACGGAAGGCATTCTGAGAACGACA -ACGGAAGGCATTCTGAGAAGCTCA -ACGGAAGGCATTCTGAGATCACGT -ACGGAAGGCATTCTGAGACGTAGT -ACGGAAGGCATTCTGAGAGTCAGT -ACGGAAGGCATTCTGAGAGAAGGT -ACGGAAGGCATTCTGAGAAACCGT -ACGGAAGGCATTCTGAGATTGTGC -ACGGAAGGCATTCTGAGACTAAGC -ACGGAAGGCATTCTGAGAACTAGC -ACGGAAGGCATTCTGAGAAGATGC -ACGGAAGGCATTCTGAGATGAAGG -ACGGAAGGCATTCTGAGACAATGG -ACGGAAGGCATTCTGAGAATGAGG -ACGGAAGGCATTCTGAGAAATGGG -ACGGAAGGCATTCTGAGATCCTGA -ACGGAAGGCATTCTGAGATAGCGA -ACGGAAGGCATTCTGAGACACAGA -ACGGAAGGCATTCTGAGAGCAAGA -ACGGAAGGCATTCTGAGAGGTTGA -ACGGAAGGCATTCTGAGATCCGAT -ACGGAAGGCATTCTGAGATGGCAT -ACGGAAGGCATTCTGAGACGAGAT -ACGGAAGGCATTCTGAGATACCAC -ACGGAAGGCATTCTGAGACAGAAC -ACGGAAGGCATTCTGAGAGTCTAC -ACGGAAGGCATTCTGAGAACGTAC -ACGGAAGGCATTCTGAGAAGTGAC -ACGGAAGGCATTCTGAGACTGTAG -ACGGAAGGCATTCTGAGACCTAAG -ACGGAAGGCATTCTGAGAGTTCAG -ACGGAAGGCATTCTGAGAGCATAG -ACGGAAGGCATTCTGAGAGACAAG -ACGGAAGGCATTCTGAGAAAGCAG -ACGGAAGGCATTCTGAGACGTCAA -ACGGAAGGCATTCTGAGAGCTGAA -ACGGAAGGCATTCTGAGAAGTACG -ACGGAAGGCATTCTGAGAATCCGA -ACGGAAGGCATTCTGAGAATGGGA -ACGGAAGGCATTCTGAGAGTGCAA -ACGGAAGGCATTCTGAGAGAGGAA -ACGGAAGGCATTCTGAGACAGGTA -ACGGAAGGCATTCTGAGAGACTCT -ACGGAAGGCATTCTGAGAAGTCCT -ACGGAAGGCATTCTGAGATAAGCC -ACGGAAGGCATTCTGAGAATAGCC -ACGGAAGGCATTCTGAGATAACCG -ACGGAAGGCATTCTGAGAATGCCA -ACGGAAGGCATTGTATCGGGAAAC -ACGGAAGGCATTGTATCGAACACC -ACGGAAGGCATTGTATCGATCGAG -ACGGAAGGCATTGTATCGCTCCTT -ACGGAAGGCATTGTATCGCCTGTT -ACGGAAGGCATTGTATCGCGGTTT -ACGGAAGGCATTGTATCGGTGGTT -ACGGAAGGCATTGTATCGGCCTTT -ACGGAAGGCATTGTATCGGGTCTT -ACGGAAGGCATTGTATCGACGCTT -ACGGAAGGCATTGTATCGAGCGTT -ACGGAAGGCATTGTATCGTTCGTC -ACGGAAGGCATTGTATCGTCTCTC -ACGGAAGGCATTGTATCGTGGATC -ACGGAAGGCATTGTATCGCACTTC -ACGGAAGGCATTGTATCGGTACTC -ACGGAAGGCATTGTATCGGATGTC -ACGGAAGGCATTGTATCGACAGTC -ACGGAAGGCATTGTATCGTTGCTG -ACGGAAGGCATTGTATCGTCCATG -ACGGAAGGCATTGTATCGTGTGTG -ACGGAAGGCATTGTATCGCTAGTG -ACGGAAGGCATTGTATCGCATCTG -ACGGAAGGCATTGTATCGGAGTTG -ACGGAAGGCATTGTATCGAGACTG -ACGGAAGGCATTGTATCGTCGGTA -ACGGAAGGCATTGTATCGTGCCTA -ACGGAAGGCATTGTATCGCCACTA -ACGGAAGGCATTGTATCGGGAGTA -ACGGAAGGCATTGTATCGTCGTCT -ACGGAAGGCATTGTATCGTGCACT -ACGGAAGGCATTGTATCGCTGACT -ACGGAAGGCATTGTATCGCAACCT -ACGGAAGGCATTGTATCGGCTACT -ACGGAAGGCATTGTATCGGGATCT -ACGGAAGGCATTGTATCGAAGGCT -ACGGAAGGCATTGTATCGTCAACC -ACGGAAGGCATTGTATCGTGTTCC -ACGGAAGGCATTGTATCGATTCCC -ACGGAAGGCATTGTATCGTTCTCG -ACGGAAGGCATTGTATCGTAGACG -ACGGAAGGCATTGTATCGGTAACG -ACGGAAGGCATTGTATCGACTTCG -ACGGAAGGCATTGTATCGTACGCA -ACGGAAGGCATTGTATCGCTTGCA -ACGGAAGGCATTGTATCGCGAACA -ACGGAAGGCATTGTATCGCAGTCA -ACGGAAGGCATTGTATCGGATCCA -ACGGAAGGCATTGTATCGACGACA -ACGGAAGGCATTGTATCGAGCTCA -ACGGAAGGCATTGTATCGTCACGT -ACGGAAGGCATTGTATCGCGTAGT -ACGGAAGGCATTGTATCGGTCAGT -ACGGAAGGCATTGTATCGGAAGGT -ACGGAAGGCATTGTATCGAACCGT -ACGGAAGGCATTGTATCGTTGTGC -ACGGAAGGCATTGTATCGCTAAGC -ACGGAAGGCATTGTATCGACTAGC -ACGGAAGGCATTGTATCGAGATGC -ACGGAAGGCATTGTATCGTGAAGG -ACGGAAGGCATTGTATCGCAATGG -ACGGAAGGCATTGTATCGATGAGG -ACGGAAGGCATTGTATCGAATGGG -ACGGAAGGCATTGTATCGTCCTGA -ACGGAAGGCATTGTATCGTAGCGA -ACGGAAGGCATTGTATCGCACAGA -ACGGAAGGCATTGTATCGGCAAGA -ACGGAAGGCATTGTATCGGGTTGA -ACGGAAGGCATTGTATCGTCCGAT -ACGGAAGGCATTGTATCGTGGCAT -ACGGAAGGCATTGTATCGCGAGAT -ACGGAAGGCATTGTATCGTACCAC -ACGGAAGGCATTGTATCGCAGAAC -ACGGAAGGCATTGTATCGGTCTAC -ACGGAAGGCATTGTATCGACGTAC -ACGGAAGGCATTGTATCGAGTGAC -ACGGAAGGCATTGTATCGCTGTAG -ACGGAAGGCATTGTATCGCCTAAG -ACGGAAGGCATTGTATCGGTTCAG -ACGGAAGGCATTGTATCGGCATAG -ACGGAAGGCATTGTATCGGACAAG -ACGGAAGGCATTGTATCGAAGCAG -ACGGAAGGCATTGTATCGCGTCAA -ACGGAAGGCATTGTATCGGCTGAA -ACGGAAGGCATTGTATCGAGTACG -ACGGAAGGCATTGTATCGATCCGA -ACGGAAGGCATTGTATCGATGGGA -ACGGAAGGCATTGTATCGGTGCAA -ACGGAAGGCATTGTATCGGAGGAA -ACGGAAGGCATTGTATCGCAGGTA -ACGGAAGGCATTGTATCGGACTCT -ACGGAAGGCATTGTATCGAGTCCT -ACGGAAGGCATTGTATCGTAAGCC -ACGGAAGGCATTGTATCGATAGCC -ACGGAAGGCATTGTATCGTAACCG -ACGGAAGGCATTGTATCGATGCCA -ACGGAAGGCATTCTATGCGGAAAC -ACGGAAGGCATTCTATGCAACACC -ACGGAAGGCATTCTATGCATCGAG -ACGGAAGGCATTCTATGCCTCCTT -ACGGAAGGCATTCTATGCCCTGTT -ACGGAAGGCATTCTATGCCGGTTT -ACGGAAGGCATTCTATGCGTGGTT -ACGGAAGGCATTCTATGCGCCTTT -ACGGAAGGCATTCTATGCGGTCTT -ACGGAAGGCATTCTATGCACGCTT -ACGGAAGGCATTCTATGCAGCGTT -ACGGAAGGCATTCTATGCTTCGTC -ACGGAAGGCATTCTATGCTCTCTC -ACGGAAGGCATTCTATGCTGGATC -ACGGAAGGCATTCTATGCCACTTC -ACGGAAGGCATTCTATGCGTACTC -ACGGAAGGCATTCTATGCGATGTC -ACGGAAGGCATTCTATGCACAGTC -ACGGAAGGCATTCTATGCTTGCTG -ACGGAAGGCATTCTATGCTCCATG -ACGGAAGGCATTCTATGCTGTGTG -ACGGAAGGCATTCTATGCCTAGTG -ACGGAAGGCATTCTATGCCATCTG -ACGGAAGGCATTCTATGCGAGTTG -ACGGAAGGCATTCTATGCAGACTG -ACGGAAGGCATTCTATGCTCGGTA -ACGGAAGGCATTCTATGCTGCCTA -ACGGAAGGCATTCTATGCCCACTA -ACGGAAGGCATTCTATGCGGAGTA -ACGGAAGGCATTCTATGCTCGTCT -ACGGAAGGCATTCTATGCTGCACT -ACGGAAGGCATTCTATGCCTGACT -ACGGAAGGCATTCTATGCCAACCT -ACGGAAGGCATTCTATGCGCTACT -ACGGAAGGCATTCTATGCGGATCT -ACGGAAGGCATTCTATGCAAGGCT -ACGGAAGGCATTCTATGCTCAACC -ACGGAAGGCATTCTATGCTGTTCC -ACGGAAGGCATTCTATGCATTCCC -ACGGAAGGCATTCTATGCTTCTCG -ACGGAAGGCATTCTATGCTAGACG -ACGGAAGGCATTCTATGCGTAACG -ACGGAAGGCATTCTATGCACTTCG -ACGGAAGGCATTCTATGCTACGCA -ACGGAAGGCATTCTATGCCTTGCA -ACGGAAGGCATTCTATGCCGAACA -ACGGAAGGCATTCTATGCCAGTCA -ACGGAAGGCATTCTATGCGATCCA -ACGGAAGGCATTCTATGCACGACA -ACGGAAGGCATTCTATGCAGCTCA -ACGGAAGGCATTCTATGCTCACGT -ACGGAAGGCATTCTATGCCGTAGT -ACGGAAGGCATTCTATGCGTCAGT -ACGGAAGGCATTCTATGCGAAGGT -ACGGAAGGCATTCTATGCAACCGT -ACGGAAGGCATTCTATGCTTGTGC -ACGGAAGGCATTCTATGCCTAAGC -ACGGAAGGCATTCTATGCACTAGC -ACGGAAGGCATTCTATGCAGATGC -ACGGAAGGCATTCTATGCTGAAGG -ACGGAAGGCATTCTATGCCAATGG -ACGGAAGGCATTCTATGCATGAGG -ACGGAAGGCATTCTATGCAATGGG -ACGGAAGGCATTCTATGCTCCTGA -ACGGAAGGCATTCTATGCTAGCGA -ACGGAAGGCATTCTATGCCACAGA -ACGGAAGGCATTCTATGCGCAAGA -ACGGAAGGCATTCTATGCGGTTGA -ACGGAAGGCATTCTATGCTCCGAT -ACGGAAGGCATTCTATGCTGGCAT -ACGGAAGGCATTCTATGCCGAGAT -ACGGAAGGCATTCTATGCTACCAC -ACGGAAGGCATTCTATGCCAGAAC -ACGGAAGGCATTCTATGCGTCTAC -ACGGAAGGCATTCTATGCACGTAC -ACGGAAGGCATTCTATGCAGTGAC -ACGGAAGGCATTCTATGCCTGTAG -ACGGAAGGCATTCTATGCCCTAAG -ACGGAAGGCATTCTATGCGTTCAG -ACGGAAGGCATTCTATGCGCATAG -ACGGAAGGCATTCTATGCGACAAG -ACGGAAGGCATTCTATGCAAGCAG -ACGGAAGGCATTCTATGCCGTCAA -ACGGAAGGCATTCTATGCGCTGAA -ACGGAAGGCATTCTATGCAGTACG -ACGGAAGGCATTCTATGCATCCGA -ACGGAAGGCATTCTATGCATGGGA -ACGGAAGGCATTCTATGCGTGCAA -ACGGAAGGCATTCTATGCGAGGAA -ACGGAAGGCATTCTATGCCAGGTA -ACGGAAGGCATTCTATGCGACTCT -ACGGAAGGCATTCTATGCAGTCCT -ACGGAAGGCATTCTATGCTAAGCC -ACGGAAGGCATTCTATGCATAGCC -ACGGAAGGCATTCTATGCTAACCG -ACGGAAGGCATTCTATGCATGCCA -ACGGAAGGCATTCTACCAGGAAAC -ACGGAAGGCATTCTACCAAACACC -ACGGAAGGCATTCTACCAATCGAG -ACGGAAGGCATTCTACCACTCCTT -ACGGAAGGCATTCTACCACCTGTT -ACGGAAGGCATTCTACCACGGTTT -ACGGAAGGCATTCTACCAGTGGTT -ACGGAAGGCATTCTACCAGCCTTT -ACGGAAGGCATTCTACCAGGTCTT -ACGGAAGGCATTCTACCAACGCTT -ACGGAAGGCATTCTACCAAGCGTT -ACGGAAGGCATTCTACCATTCGTC -ACGGAAGGCATTCTACCATCTCTC -ACGGAAGGCATTCTACCATGGATC -ACGGAAGGCATTCTACCACACTTC -ACGGAAGGCATTCTACCAGTACTC -ACGGAAGGCATTCTACCAGATGTC -ACGGAAGGCATTCTACCAACAGTC -ACGGAAGGCATTCTACCATTGCTG -ACGGAAGGCATTCTACCATCCATG -ACGGAAGGCATTCTACCATGTGTG -ACGGAAGGCATTCTACCACTAGTG -ACGGAAGGCATTCTACCACATCTG -ACGGAAGGCATTCTACCAGAGTTG -ACGGAAGGCATTCTACCAAGACTG -ACGGAAGGCATTCTACCATCGGTA -ACGGAAGGCATTCTACCATGCCTA -ACGGAAGGCATTCTACCACCACTA -ACGGAAGGCATTCTACCAGGAGTA -ACGGAAGGCATTCTACCATCGTCT -ACGGAAGGCATTCTACCATGCACT -ACGGAAGGCATTCTACCACTGACT -ACGGAAGGCATTCTACCACAACCT -ACGGAAGGCATTCTACCAGCTACT -ACGGAAGGCATTCTACCAGGATCT -ACGGAAGGCATTCTACCAAAGGCT -ACGGAAGGCATTCTACCATCAACC -ACGGAAGGCATTCTACCATGTTCC -ACGGAAGGCATTCTACCAATTCCC -ACGGAAGGCATTCTACCATTCTCG -ACGGAAGGCATTCTACCATAGACG -ACGGAAGGCATTCTACCAGTAACG -ACGGAAGGCATTCTACCAACTTCG -ACGGAAGGCATTCTACCATACGCA -ACGGAAGGCATTCTACCACTTGCA -ACGGAAGGCATTCTACCACGAACA -ACGGAAGGCATTCTACCACAGTCA -ACGGAAGGCATTCTACCAGATCCA -ACGGAAGGCATTCTACCAACGACA -ACGGAAGGCATTCTACCAAGCTCA -ACGGAAGGCATTCTACCATCACGT -ACGGAAGGCATTCTACCACGTAGT -ACGGAAGGCATTCTACCAGTCAGT -ACGGAAGGCATTCTACCAGAAGGT -ACGGAAGGCATTCTACCAAACCGT -ACGGAAGGCATTCTACCATTGTGC -ACGGAAGGCATTCTACCACTAAGC -ACGGAAGGCATTCTACCAACTAGC -ACGGAAGGCATTCTACCAAGATGC -ACGGAAGGCATTCTACCATGAAGG -ACGGAAGGCATTCTACCACAATGG -ACGGAAGGCATTCTACCAATGAGG -ACGGAAGGCATTCTACCAAATGGG -ACGGAAGGCATTCTACCATCCTGA -ACGGAAGGCATTCTACCATAGCGA -ACGGAAGGCATTCTACCACACAGA -ACGGAAGGCATTCTACCAGCAAGA -ACGGAAGGCATTCTACCAGGTTGA -ACGGAAGGCATTCTACCATCCGAT -ACGGAAGGCATTCTACCATGGCAT -ACGGAAGGCATTCTACCACGAGAT -ACGGAAGGCATTCTACCATACCAC -ACGGAAGGCATTCTACCACAGAAC -ACGGAAGGCATTCTACCAGTCTAC -ACGGAAGGCATTCTACCAACGTAC -ACGGAAGGCATTCTACCAAGTGAC -ACGGAAGGCATTCTACCACTGTAG -ACGGAAGGCATTCTACCACCTAAG -ACGGAAGGCATTCTACCAGTTCAG -ACGGAAGGCATTCTACCAGCATAG -ACGGAAGGCATTCTACCAGACAAG -ACGGAAGGCATTCTACCAAAGCAG -ACGGAAGGCATTCTACCACGTCAA -ACGGAAGGCATTCTACCAGCTGAA -ACGGAAGGCATTCTACCAAGTACG -ACGGAAGGCATTCTACCAATCCGA -ACGGAAGGCATTCTACCAATGGGA -ACGGAAGGCATTCTACCAGTGCAA -ACGGAAGGCATTCTACCAGAGGAA -ACGGAAGGCATTCTACCACAGGTA -ACGGAAGGCATTCTACCAGACTCT -ACGGAAGGCATTCTACCAAGTCCT -ACGGAAGGCATTCTACCATAAGCC -ACGGAAGGCATTCTACCAATAGCC -ACGGAAGGCATTCTACCATAACCG -ACGGAAGGCATTCTACCAATGCCA -ACGGAAGGCATTGTAGGAGGAAAC -ACGGAAGGCATTGTAGGAAACACC -ACGGAAGGCATTGTAGGAATCGAG -ACGGAAGGCATTGTAGGACTCCTT -ACGGAAGGCATTGTAGGACCTGTT -ACGGAAGGCATTGTAGGACGGTTT -ACGGAAGGCATTGTAGGAGTGGTT -ACGGAAGGCATTGTAGGAGCCTTT -ACGGAAGGCATTGTAGGAGGTCTT -ACGGAAGGCATTGTAGGAACGCTT -ACGGAAGGCATTGTAGGAAGCGTT -ACGGAAGGCATTGTAGGATTCGTC -ACGGAAGGCATTGTAGGATCTCTC -ACGGAAGGCATTGTAGGATGGATC -ACGGAAGGCATTGTAGGACACTTC -ACGGAAGGCATTGTAGGAGTACTC -ACGGAAGGCATTGTAGGAGATGTC -ACGGAAGGCATTGTAGGAACAGTC -ACGGAAGGCATTGTAGGATTGCTG -ACGGAAGGCATTGTAGGATCCATG -ACGGAAGGCATTGTAGGATGTGTG -ACGGAAGGCATTGTAGGACTAGTG -ACGGAAGGCATTGTAGGACATCTG -ACGGAAGGCATTGTAGGAGAGTTG -ACGGAAGGCATTGTAGGAAGACTG -ACGGAAGGCATTGTAGGATCGGTA -ACGGAAGGCATTGTAGGATGCCTA -ACGGAAGGCATTGTAGGACCACTA -ACGGAAGGCATTGTAGGAGGAGTA -ACGGAAGGCATTGTAGGATCGTCT -ACGGAAGGCATTGTAGGATGCACT -ACGGAAGGCATTGTAGGACTGACT -ACGGAAGGCATTGTAGGACAACCT -ACGGAAGGCATTGTAGGAGCTACT -ACGGAAGGCATTGTAGGAGGATCT -ACGGAAGGCATTGTAGGAAAGGCT -ACGGAAGGCATTGTAGGATCAACC -ACGGAAGGCATTGTAGGATGTTCC -ACGGAAGGCATTGTAGGAATTCCC -ACGGAAGGCATTGTAGGATTCTCG -ACGGAAGGCATTGTAGGATAGACG -ACGGAAGGCATTGTAGGAGTAACG -ACGGAAGGCATTGTAGGAACTTCG -ACGGAAGGCATTGTAGGATACGCA -ACGGAAGGCATTGTAGGACTTGCA -ACGGAAGGCATTGTAGGACGAACA -ACGGAAGGCATTGTAGGACAGTCA -ACGGAAGGCATTGTAGGAGATCCA -ACGGAAGGCATTGTAGGAACGACA -ACGGAAGGCATTGTAGGAAGCTCA -ACGGAAGGCATTGTAGGATCACGT -ACGGAAGGCATTGTAGGACGTAGT -ACGGAAGGCATTGTAGGAGTCAGT -ACGGAAGGCATTGTAGGAGAAGGT -ACGGAAGGCATTGTAGGAAACCGT -ACGGAAGGCATTGTAGGATTGTGC -ACGGAAGGCATTGTAGGACTAAGC -ACGGAAGGCATTGTAGGAACTAGC -ACGGAAGGCATTGTAGGAAGATGC -ACGGAAGGCATTGTAGGATGAAGG -ACGGAAGGCATTGTAGGACAATGG -ACGGAAGGCATTGTAGGAATGAGG -ACGGAAGGCATTGTAGGAAATGGG -ACGGAAGGCATTGTAGGATCCTGA -ACGGAAGGCATTGTAGGATAGCGA -ACGGAAGGCATTGTAGGACACAGA -ACGGAAGGCATTGTAGGAGCAAGA -ACGGAAGGCATTGTAGGAGGTTGA -ACGGAAGGCATTGTAGGATCCGAT -ACGGAAGGCATTGTAGGATGGCAT -ACGGAAGGCATTGTAGGACGAGAT -ACGGAAGGCATTGTAGGATACCAC -ACGGAAGGCATTGTAGGACAGAAC -ACGGAAGGCATTGTAGGAGTCTAC -ACGGAAGGCATTGTAGGAACGTAC -ACGGAAGGCATTGTAGGAAGTGAC -ACGGAAGGCATTGTAGGACTGTAG -ACGGAAGGCATTGTAGGACCTAAG -ACGGAAGGCATTGTAGGAGTTCAG -ACGGAAGGCATTGTAGGAGCATAG -ACGGAAGGCATTGTAGGAGACAAG -ACGGAAGGCATTGTAGGAAAGCAG -ACGGAAGGCATTGTAGGACGTCAA -ACGGAAGGCATTGTAGGAGCTGAA -ACGGAAGGCATTGTAGGAAGTACG -ACGGAAGGCATTGTAGGAATCCGA -ACGGAAGGCATTGTAGGAATGGGA -ACGGAAGGCATTGTAGGAGTGCAA -ACGGAAGGCATTGTAGGAGAGGAA -ACGGAAGGCATTGTAGGACAGGTA -ACGGAAGGCATTGTAGGAGACTCT -ACGGAAGGCATTGTAGGAAGTCCT -ACGGAAGGCATTGTAGGATAAGCC -ACGGAAGGCATTGTAGGAATAGCC -ACGGAAGGCATTGTAGGATAACCG -ACGGAAGGCATTGTAGGAATGCCA -ACGGAAGGCATTTCTTCGGGAAAC -ACGGAAGGCATTTCTTCGAACACC -ACGGAAGGCATTTCTTCGATCGAG -ACGGAAGGCATTTCTTCGCTCCTT -ACGGAAGGCATTTCTTCGCCTGTT -ACGGAAGGCATTTCTTCGCGGTTT -ACGGAAGGCATTTCTTCGGTGGTT -ACGGAAGGCATTTCTTCGGCCTTT -ACGGAAGGCATTTCTTCGGGTCTT -ACGGAAGGCATTTCTTCGACGCTT -ACGGAAGGCATTTCTTCGAGCGTT -ACGGAAGGCATTTCTTCGTTCGTC -ACGGAAGGCATTTCTTCGTCTCTC -ACGGAAGGCATTTCTTCGTGGATC -ACGGAAGGCATTTCTTCGCACTTC -ACGGAAGGCATTTCTTCGGTACTC -ACGGAAGGCATTTCTTCGGATGTC -ACGGAAGGCATTTCTTCGACAGTC -ACGGAAGGCATTTCTTCGTTGCTG -ACGGAAGGCATTTCTTCGTCCATG -ACGGAAGGCATTTCTTCGTGTGTG -ACGGAAGGCATTTCTTCGCTAGTG -ACGGAAGGCATTTCTTCGCATCTG -ACGGAAGGCATTTCTTCGGAGTTG -ACGGAAGGCATTTCTTCGAGACTG -ACGGAAGGCATTTCTTCGTCGGTA -ACGGAAGGCATTTCTTCGTGCCTA -ACGGAAGGCATTTCTTCGCCACTA -ACGGAAGGCATTTCTTCGGGAGTA -ACGGAAGGCATTTCTTCGTCGTCT -ACGGAAGGCATTTCTTCGTGCACT -ACGGAAGGCATTTCTTCGCTGACT -ACGGAAGGCATTTCTTCGCAACCT -ACGGAAGGCATTTCTTCGGCTACT -ACGGAAGGCATTTCTTCGGGATCT -ACGGAAGGCATTTCTTCGAAGGCT -ACGGAAGGCATTTCTTCGTCAACC -ACGGAAGGCATTTCTTCGTGTTCC -ACGGAAGGCATTTCTTCGATTCCC -ACGGAAGGCATTTCTTCGTTCTCG -ACGGAAGGCATTTCTTCGTAGACG -ACGGAAGGCATTTCTTCGGTAACG -ACGGAAGGCATTTCTTCGACTTCG -ACGGAAGGCATTTCTTCGTACGCA -ACGGAAGGCATTTCTTCGCTTGCA -ACGGAAGGCATTTCTTCGCGAACA -ACGGAAGGCATTTCTTCGCAGTCA -ACGGAAGGCATTTCTTCGGATCCA -ACGGAAGGCATTTCTTCGACGACA -ACGGAAGGCATTTCTTCGAGCTCA -ACGGAAGGCATTTCTTCGTCACGT -ACGGAAGGCATTTCTTCGCGTAGT -ACGGAAGGCATTTCTTCGGTCAGT -ACGGAAGGCATTTCTTCGGAAGGT -ACGGAAGGCATTTCTTCGAACCGT -ACGGAAGGCATTTCTTCGTTGTGC -ACGGAAGGCATTTCTTCGCTAAGC -ACGGAAGGCATTTCTTCGACTAGC -ACGGAAGGCATTTCTTCGAGATGC -ACGGAAGGCATTTCTTCGTGAAGG -ACGGAAGGCATTTCTTCGCAATGG -ACGGAAGGCATTTCTTCGATGAGG -ACGGAAGGCATTTCTTCGAATGGG -ACGGAAGGCATTTCTTCGTCCTGA -ACGGAAGGCATTTCTTCGTAGCGA -ACGGAAGGCATTTCTTCGCACAGA -ACGGAAGGCATTTCTTCGGCAAGA -ACGGAAGGCATTTCTTCGGGTTGA -ACGGAAGGCATTTCTTCGTCCGAT -ACGGAAGGCATTTCTTCGTGGCAT -ACGGAAGGCATTTCTTCGCGAGAT -ACGGAAGGCATTTCTTCGTACCAC -ACGGAAGGCATTTCTTCGCAGAAC -ACGGAAGGCATTTCTTCGGTCTAC -ACGGAAGGCATTTCTTCGACGTAC -ACGGAAGGCATTTCTTCGAGTGAC -ACGGAAGGCATTTCTTCGCTGTAG -ACGGAAGGCATTTCTTCGCCTAAG -ACGGAAGGCATTTCTTCGGTTCAG -ACGGAAGGCATTTCTTCGGCATAG -ACGGAAGGCATTTCTTCGGACAAG -ACGGAAGGCATTTCTTCGAAGCAG -ACGGAAGGCATTTCTTCGCGTCAA -ACGGAAGGCATTTCTTCGGCTGAA -ACGGAAGGCATTTCTTCGAGTACG -ACGGAAGGCATTTCTTCGATCCGA -ACGGAAGGCATTTCTTCGATGGGA -ACGGAAGGCATTTCTTCGGTGCAA -ACGGAAGGCATTTCTTCGGAGGAA -ACGGAAGGCATTTCTTCGCAGGTA -ACGGAAGGCATTTCTTCGGACTCT -ACGGAAGGCATTTCTTCGAGTCCT -ACGGAAGGCATTTCTTCGTAAGCC -ACGGAAGGCATTTCTTCGATAGCC -ACGGAAGGCATTTCTTCGTAACCG -ACGGAAGGCATTTCTTCGATGCCA -ACGGAAGGCATTACTTGCGGAAAC -ACGGAAGGCATTACTTGCAACACC -ACGGAAGGCATTACTTGCATCGAG -ACGGAAGGCATTACTTGCCTCCTT -ACGGAAGGCATTACTTGCCCTGTT -ACGGAAGGCATTACTTGCCGGTTT -ACGGAAGGCATTACTTGCGTGGTT -ACGGAAGGCATTACTTGCGCCTTT -ACGGAAGGCATTACTTGCGGTCTT -ACGGAAGGCATTACTTGCACGCTT -ACGGAAGGCATTACTTGCAGCGTT -ACGGAAGGCATTACTTGCTTCGTC -ACGGAAGGCATTACTTGCTCTCTC -ACGGAAGGCATTACTTGCTGGATC -ACGGAAGGCATTACTTGCCACTTC -ACGGAAGGCATTACTTGCGTACTC -ACGGAAGGCATTACTTGCGATGTC -ACGGAAGGCATTACTTGCACAGTC -ACGGAAGGCATTACTTGCTTGCTG -ACGGAAGGCATTACTTGCTCCATG -ACGGAAGGCATTACTTGCTGTGTG -ACGGAAGGCATTACTTGCCTAGTG -ACGGAAGGCATTACTTGCCATCTG -ACGGAAGGCATTACTTGCGAGTTG -ACGGAAGGCATTACTTGCAGACTG -ACGGAAGGCATTACTTGCTCGGTA -ACGGAAGGCATTACTTGCTGCCTA -ACGGAAGGCATTACTTGCCCACTA -ACGGAAGGCATTACTTGCGGAGTA -ACGGAAGGCATTACTTGCTCGTCT -ACGGAAGGCATTACTTGCTGCACT -ACGGAAGGCATTACTTGCCTGACT -ACGGAAGGCATTACTTGCCAACCT -ACGGAAGGCATTACTTGCGCTACT -ACGGAAGGCATTACTTGCGGATCT -ACGGAAGGCATTACTTGCAAGGCT -ACGGAAGGCATTACTTGCTCAACC -ACGGAAGGCATTACTTGCTGTTCC -ACGGAAGGCATTACTTGCATTCCC -ACGGAAGGCATTACTTGCTTCTCG -ACGGAAGGCATTACTTGCTAGACG -ACGGAAGGCATTACTTGCGTAACG -ACGGAAGGCATTACTTGCACTTCG -ACGGAAGGCATTACTTGCTACGCA -ACGGAAGGCATTACTTGCCTTGCA -ACGGAAGGCATTACTTGCCGAACA -ACGGAAGGCATTACTTGCCAGTCA -ACGGAAGGCATTACTTGCGATCCA -ACGGAAGGCATTACTTGCACGACA -ACGGAAGGCATTACTTGCAGCTCA -ACGGAAGGCATTACTTGCTCACGT -ACGGAAGGCATTACTTGCCGTAGT -ACGGAAGGCATTACTTGCGTCAGT -ACGGAAGGCATTACTTGCGAAGGT -ACGGAAGGCATTACTTGCAACCGT -ACGGAAGGCATTACTTGCTTGTGC -ACGGAAGGCATTACTTGCCTAAGC -ACGGAAGGCATTACTTGCACTAGC -ACGGAAGGCATTACTTGCAGATGC -ACGGAAGGCATTACTTGCTGAAGG -ACGGAAGGCATTACTTGCCAATGG -ACGGAAGGCATTACTTGCATGAGG -ACGGAAGGCATTACTTGCAATGGG -ACGGAAGGCATTACTTGCTCCTGA -ACGGAAGGCATTACTTGCTAGCGA -ACGGAAGGCATTACTTGCCACAGA -ACGGAAGGCATTACTTGCGCAAGA -ACGGAAGGCATTACTTGCGGTTGA -ACGGAAGGCATTACTTGCTCCGAT -ACGGAAGGCATTACTTGCTGGCAT -ACGGAAGGCATTACTTGCCGAGAT -ACGGAAGGCATTACTTGCTACCAC -ACGGAAGGCATTACTTGCCAGAAC -ACGGAAGGCATTACTTGCGTCTAC -ACGGAAGGCATTACTTGCACGTAC -ACGGAAGGCATTACTTGCAGTGAC -ACGGAAGGCATTACTTGCCTGTAG -ACGGAAGGCATTACTTGCCCTAAG -ACGGAAGGCATTACTTGCGTTCAG -ACGGAAGGCATTACTTGCGCATAG -ACGGAAGGCATTACTTGCGACAAG -ACGGAAGGCATTACTTGCAAGCAG -ACGGAAGGCATTACTTGCCGTCAA -ACGGAAGGCATTACTTGCGCTGAA -ACGGAAGGCATTACTTGCAGTACG -ACGGAAGGCATTACTTGCATCCGA -ACGGAAGGCATTACTTGCATGGGA -ACGGAAGGCATTACTTGCGTGCAA -ACGGAAGGCATTACTTGCGAGGAA -ACGGAAGGCATTACTTGCCAGGTA -ACGGAAGGCATTACTTGCGACTCT -ACGGAAGGCATTACTTGCAGTCCT -ACGGAAGGCATTACTTGCTAAGCC -ACGGAAGGCATTACTTGCATAGCC -ACGGAAGGCATTACTTGCTAACCG -ACGGAAGGCATTACTTGCATGCCA -ACGGAAGGCATTACTCTGGGAAAC -ACGGAAGGCATTACTCTGAACACC -ACGGAAGGCATTACTCTGATCGAG -ACGGAAGGCATTACTCTGCTCCTT -ACGGAAGGCATTACTCTGCCTGTT -ACGGAAGGCATTACTCTGCGGTTT -ACGGAAGGCATTACTCTGGTGGTT -ACGGAAGGCATTACTCTGGCCTTT -ACGGAAGGCATTACTCTGGGTCTT -ACGGAAGGCATTACTCTGACGCTT -ACGGAAGGCATTACTCTGAGCGTT -ACGGAAGGCATTACTCTGTTCGTC -ACGGAAGGCATTACTCTGTCTCTC -ACGGAAGGCATTACTCTGTGGATC -ACGGAAGGCATTACTCTGCACTTC -ACGGAAGGCATTACTCTGGTACTC -ACGGAAGGCATTACTCTGGATGTC -ACGGAAGGCATTACTCTGACAGTC -ACGGAAGGCATTACTCTGTTGCTG -ACGGAAGGCATTACTCTGTCCATG -ACGGAAGGCATTACTCTGTGTGTG -ACGGAAGGCATTACTCTGCTAGTG -ACGGAAGGCATTACTCTGCATCTG -ACGGAAGGCATTACTCTGGAGTTG -ACGGAAGGCATTACTCTGAGACTG -ACGGAAGGCATTACTCTGTCGGTA -ACGGAAGGCATTACTCTGTGCCTA -ACGGAAGGCATTACTCTGCCACTA -ACGGAAGGCATTACTCTGGGAGTA -ACGGAAGGCATTACTCTGTCGTCT -ACGGAAGGCATTACTCTGTGCACT -ACGGAAGGCATTACTCTGCTGACT -ACGGAAGGCATTACTCTGCAACCT -ACGGAAGGCATTACTCTGGCTACT -ACGGAAGGCATTACTCTGGGATCT -ACGGAAGGCATTACTCTGAAGGCT -ACGGAAGGCATTACTCTGTCAACC -ACGGAAGGCATTACTCTGTGTTCC -ACGGAAGGCATTACTCTGATTCCC -ACGGAAGGCATTACTCTGTTCTCG -ACGGAAGGCATTACTCTGTAGACG -ACGGAAGGCATTACTCTGGTAACG -ACGGAAGGCATTACTCTGACTTCG -ACGGAAGGCATTACTCTGTACGCA -ACGGAAGGCATTACTCTGCTTGCA -ACGGAAGGCATTACTCTGCGAACA -ACGGAAGGCATTACTCTGCAGTCA -ACGGAAGGCATTACTCTGGATCCA -ACGGAAGGCATTACTCTGACGACA -ACGGAAGGCATTACTCTGAGCTCA -ACGGAAGGCATTACTCTGTCACGT -ACGGAAGGCATTACTCTGCGTAGT -ACGGAAGGCATTACTCTGGTCAGT -ACGGAAGGCATTACTCTGGAAGGT -ACGGAAGGCATTACTCTGAACCGT -ACGGAAGGCATTACTCTGTTGTGC -ACGGAAGGCATTACTCTGCTAAGC -ACGGAAGGCATTACTCTGACTAGC -ACGGAAGGCATTACTCTGAGATGC -ACGGAAGGCATTACTCTGTGAAGG -ACGGAAGGCATTACTCTGCAATGG -ACGGAAGGCATTACTCTGATGAGG -ACGGAAGGCATTACTCTGAATGGG -ACGGAAGGCATTACTCTGTCCTGA -ACGGAAGGCATTACTCTGTAGCGA -ACGGAAGGCATTACTCTGCACAGA -ACGGAAGGCATTACTCTGGCAAGA -ACGGAAGGCATTACTCTGGGTTGA -ACGGAAGGCATTACTCTGTCCGAT -ACGGAAGGCATTACTCTGTGGCAT -ACGGAAGGCATTACTCTGCGAGAT -ACGGAAGGCATTACTCTGTACCAC -ACGGAAGGCATTACTCTGCAGAAC -ACGGAAGGCATTACTCTGGTCTAC -ACGGAAGGCATTACTCTGACGTAC -ACGGAAGGCATTACTCTGAGTGAC -ACGGAAGGCATTACTCTGCTGTAG -ACGGAAGGCATTACTCTGCCTAAG -ACGGAAGGCATTACTCTGGTTCAG -ACGGAAGGCATTACTCTGGCATAG -ACGGAAGGCATTACTCTGGACAAG -ACGGAAGGCATTACTCTGAAGCAG -ACGGAAGGCATTACTCTGCGTCAA -ACGGAAGGCATTACTCTGGCTGAA -ACGGAAGGCATTACTCTGAGTACG -ACGGAAGGCATTACTCTGATCCGA -ACGGAAGGCATTACTCTGATGGGA -ACGGAAGGCATTACTCTGGTGCAA -ACGGAAGGCATTACTCTGGAGGAA -ACGGAAGGCATTACTCTGCAGGTA -ACGGAAGGCATTACTCTGGACTCT -ACGGAAGGCATTACTCTGAGTCCT -ACGGAAGGCATTACTCTGTAAGCC -ACGGAAGGCATTACTCTGATAGCC -ACGGAAGGCATTACTCTGTAACCG -ACGGAAGGCATTACTCTGATGCCA -ACGGAAGGCATTCCTCAAGGAAAC -ACGGAAGGCATTCCTCAAAACACC -ACGGAAGGCATTCCTCAAATCGAG -ACGGAAGGCATTCCTCAACTCCTT -ACGGAAGGCATTCCTCAACCTGTT -ACGGAAGGCATTCCTCAACGGTTT -ACGGAAGGCATTCCTCAAGTGGTT -ACGGAAGGCATTCCTCAAGCCTTT -ACGGAAGGCATTCCTCAAGGTCTT -ACGGAAGGCATTCCTCAAACGCTT -ACGGAAGGCATTCCTCAAAGCGTT -ACGGAAGGCATTCCTCAATTCGTC -ACGGAAGGCATTCCTCAATCTCTC -ACGGAAGGCATTCCTCAATGGATC -ACGGAAGGCATTCCTCAACACTTC -ACGGAAGGCATTCCTCAAGTACTC -ACGGAAGGCATTCCTCAAGATGTC -ACGGAAGGCATTCCTCAAACAGTC -ACGGAAGGCATTCCTCAATTGCTG -ACGGAAGGCATTCCTCAATCCATG -ACGGAAGGCATTCCTCAATGTGTG -ACGGAAGGCATTCCTCAACTAGTG -ACGGAAGGCATTCCTCAACATCTG -ACGGAAGGCATTCCTCAAGAGTTG -ACGGAAGGCATTCCTCAAAGACTG -ACGGAAGGCATTCCTCAATCGGTA -ACGGAAGGCATTCCTCAATGCCTA -ACGGAAGGCATTCCTCAACCACTA -ACGGAAGGCATTCCTCAAGGAGTA -ACGGAAGGCATTCCTCAATCGTCT -ACGGAAGGCATTCCTCAATGCACT -ACGGAAGGCATTCCTCAACTGACT -ACGGAAGGCATTCCTCAACAACCT -ACGGAAGGCATTCCTCAAGCTACT -ACGGAAGGCATTCCTCAAGGATCT -ACGGAAGGCATTCCTCAAAAGGCT -ACGGAAGGCATTCCTCAATCAACC -ACGGAAGGCATTCCTCAATGTTCC -ACGGAAGGCATTCCTCAAATTCCC -ACGGAAGGCATTCCTCAATTCTCG -ACGGAAGGCATTCCTCAATAGACG -ACGGAAGGCATTCCTCAAGTAACG -ACGGAAGGCATTCCTCAAACTTCG -ACGGAAGGCATTCCTCAATACGCA -ACGGAAGGCATTCCTCAACTTGCA -ACGGAAGGCATTCCTCAACGAACA -ACGGAAGGCATTCCTCAACAGTCA -ACGGAAGGCATTCCTCAAGATCCA -ACGGAAGGCATTCCTCAAACGACA -ACGGAAGGCATTCCTCAAAGCTCA -ACGGAAGGCATTCCTCAATCACGT -ACGGAAGGCATTCCTCAACGTAGT -ACGGAAGGCATTCCTCAAGTCAGT -ACGGAAGGCATTCCTCAAGAAGGT -ACGGAAGGCATTCCTCAAAACCGT -ACGGAAGGCATTCCTCAATTGTGC -ACGGAAGGCATTCCTCAACTAAGC -ACGGAAGGCATTCCTCAAACTAGC -ACGGAAGGCATTCCTCAAAGATGC -ACGGAAGGCATTCCTCAATGAAGG -ACGGAAGGCATTCCTCAACAATGG -ACGGAAGGCATTCCTCAAATGAGG -ACGGAAGGCATTCCTCAAAATGGG -ACGGAAGGCATTCCTCAATCCTGA -ACGGAAGGCATTCCTCAATAGCGA -ACGGAAGGCATTCCTCAACACAGA -ACGGAAGGCATTCCTCAAGCAAGA -ACGGAAGGCATTCCTCAAGGTTGA -ACGGAAGGCATTCCTCAATCCGAT -ACGGAAGGCATTCCTCAATGGCAT -ACGGAAGGCATTCCTCAACGAGAT -ACGGAAGGCATTCCTCAATACCAC -ACGGAAGGCATTCCTCAACAGAAC -ACGGAAGGCATTCCTCAAGTCTAC -ACGGAAGGCATTCCTCAAACGTAC -ACGGAAGGCATTCCTCAAAGTGAC -ACGGAAGGCATTCCTCAACTGTAG -ACGGAAGGCATTCCTCAACCTAAG -ACGGAAGGCATTCCTCAAGTTCAG -ACGGAAGGCATTCCTCAAGCATAG -ACGGAAGGCATTCCTCAAGACAAG -ACGGAAGGCATTCCTCAAAAGCAG -ACGGAAGGCATTCCTCAACGTCAA -ACGGAAGGCATTCCTCAAGCTGAA -ACGGAAGGCATTCCTCAAAGTACG -ACGGAAGGCATTCCTCAAATCCGA -ACGGAAGGCATTCCTCAAATGGGA -ACGGAAGGCATTCCTCAAGTGCAA -ACGGAAGGCATTCCTCAAGAGGAA -ACGGAAGGCATTCCTCAACAGGTA -ACGGAAGGCATTCCTCAAGACTCT -ACGGAAGGCATTCCTCAAAGTCCT -ACGGAAGGCATTCCTCAATAAGCC -ACGGAAGGCATTCCTCAAATAGCC -ACGGAAGGCATTCCTCAATAACCG -ACGGAAGGCATTCCTCAAATGCCA -ACGGAAGGCATTACTGCTGGAAAC -ACGGAAGGCATTACTGCTAACACC -ACGGAAGGCATTACTGCTATCGAG -ACGGAAGGCATTACTGCTCTCCTT -ACGGAAGGCATTACTGCTCCTGTT -ACGGAAGGCATTACTGCTCGGTTT -ACGGAAGGCATTACTGCTGTGGTT -ACGGAAGGCATTACTGCTGCCTTT -ACGGAAGGCATTACTGCTGGTCTT -ACGGAAGGCATTACTGCTACGCTT -ACGGAAGGCATTACTGCTAGCGTT -ACGGAAGGCATTACTGCTTTCGTC -ACGGAAGGCATTACTGCTTCTCTC -ACGGAAGGCATTACTGCTTGGATC -ACGGAAGGCATTACTGCTCACTTC -ACGGAAGGCATTACTGCTGTACTC -ACGGAAGGCATTACTGCTGATGTC -ACGGAAGGCATTACTGCTACAGTC -ACGGAAGGCATTACTGCTTTGCTG -ACGGAAGGCATTACTGCTTCCATG -ACGGAAGGCATTACTGCTTGTGTG -ACGGAAGGCATTACTGCTCTAGTG -ACGGAAGGCATTACTGCTCATCTG -ACGGAAGGCATTACTGCTGAGTTG -ACGGAAGGCATTACTGCTAGACTG -ACGGAAGGCATTACTGCTTCGGTA -ACGGAAGGCATTACTGCTTGCCTA -ACGGAAGGCATTACTGCTCCACTA -ACGGAAGGCATTACTGCTGGAGTA -ACGGAAGGCATTACTGCTTCGTCT -ACGGAAGGCATTACTGCTTGCACT -ACGGAAGGCATTACTGCTCTGACT -ACGGAAGGCATTACTGCTCAACCT -ACGGAAGGCATTACTGCTGCTACT -ACGGAAGGCATTACTGCTGGATCT -ACGGAAGGCATTACTGCTAAGGCT -ACGGAAGGCATTACTGCTTCAACC -ACGGAAGGCATTACTGCTTGTTCC -ACGGAAGGCATTACTGCTATTCCC -ACGGAAGGCATTACTGCTTTCTCG -ACGGAAGGCATTACTGCTTAGACG -ACGGAAGGCATTACTGCTGTAACG -ACGGAAGGCATTACTGCTACTTCG -ACGGAAGGCATTACTGCTTACGCA -ACGGAAGGCATTACTGCTCTTGCA -ACGGAAGGCATTACTGCTCGAACA -ACGGAAGGCATTACTGCTCAGTCA -ACGGAAGGCATTACTGCTGATCCA -ACGGAAGGCATTACTGCTACGACA -ACGGAAGGCATTACTGCTAGCTCA -ACGGAAGGCATTACTGCTTCACGT -ACGGAAGGCATTACTGCTCGTAGT -ACGGAAGGCATTACTGCTGTCAGT -ACGGAAGGCATTACTGCTGAAGGT -ACGGAAGGCATTACTGCTAACCGT -ACGGAAGGCATTACTGCTTTGTGC -ACGGAAGGCATTACTGCTCTAAGC -ACGGAAGGCATTACTGCTACTAGC -ACGGAAGGCATTACTGCTAGATGC -ACGGAAGGCATTACTGCTTGAAGG -ACGGAAGGCATTACTGCTCAATGG -ACGGAAGGCATTACTGCTATGAGG -ACGGAAGGCATTACTGCTAATGGG -ACGGAAGGCATTACTGCTTCCTGA -ACGGAAGGCATTACTGCTTAGCGA -ACGGAAGGCATTACTGCTCACAGA -ACGGAAGGCATTACTGCTGCAAGA -ACGGAAGGCATTACTGCTGGTTGA -ACGGAAGGCATTACTGCTTCCGAT -ACGGAAGGCATTACTGCTTGGCAT -ACGGAAGGCATTACTGCTCGAGAT -ACGGAAGGCATTACTGCTTACCAC -ACGGAAGGCATTACTGCTCAGAAC -ACGGAAGGCATTACTGCTGTCTAC -ACGGAAGGCATTACTGCTACGTAC -ACGGAAGGCATTACTGCTAGTGAC -ACGGAAGGCATTACTGCTCTGTAG -ACGGAAGGCATTACTGCTCCTAAG -ACGGAAGGCATTACTGCTGTTCAG -ACGGAAGGCATTACTGCTGCATAG -ACGGAAGGCATTACTGCTGACAAG -ACGGAAGGCATTACTGCTAAGCAG -ACGGAAGGCATTACTGCTCGTCAA -ACGGAAGGCATTACTGCTGCTGAA -ACGGAAGGCATTACTGCTAGTACG -ACGGAAGGCATTACTGCTATCCGA -ACGGAAGGCATTACTGCTATGGGA -ACGGAAGGCATTACTGCTGTGCAA -ACGGAAGGCATTACTGCTGAGGAA -ACGGAAGGCATTACTGCTCAGGTA -ACGGAAGGCATTACTGCTGACTCT -ACGGAAGGCATTACTGCTAGTCCT -ACGGAAGGCATTACTGCTTAAGCC -ACGGAAGGCATTACTGCTATAGCC -ACGGAAGGCATTACTGCTTAACCG -ACGGAAGGCATTACTGCTATGCCA -ACGGAAGGCATTTCTGGAGGAAAC -ACGGAAGGCATTTCTGGAAACACC -ACGGAAGGCATTTCTGGAATCGAG -ACGGAAGGCATTTCTGGACTCCTT -ACGGAAGGCATTTCTGGACCTGTT -ACGGAAGGCATTTCTGGACGGTTT -ACGGAAGGCATTTCTGGAGTGGTT -ACGGAAGGCATTTCTGGAGCCTTT -ACGGAAGGCATTTCTGGAGGTCTT -ACGGAAGGCATTTCTGGAACGCTT -ACGGAAGGCATTTCTGGAAGCGTT -ACGGAAGGCATTTCTGGATTCGTC -ACGGAAGGCATTTCTGGATCTCTC -ACGGAAGGCATTTCTGGATGGATC -ACGGAAGGCATTTCTGGACACTTC -ACGGAAGGCATTTCTGGAGTACTC -ACGGAAGGCATTTCTGGAGATGTC -ACGGAAGGCATTTCTGGAACAGTC -ACGGAAGGCATTTCTGGATTGCTG -ACGGAAGGCATTTCTGGATCCATG -ACGGAAGGCATTTCTGGATGTGTG -ACGGAAGGCATTTCTGGACTAGTG -ACGGAAGGCATTTCTGGACATCTG -ACGGAAGGCATTTCTGGAGAGTTG -ACGGAAGGCATTTCTGGAAGACTG -ACGGAAGGCATTTCTGGATCGGTA -ACGGAAGGCATTTCTGGATGCCTA -ACGGAAGGCATTTCTGGACCACTA -ACGGAAGGCATTTCTGGAGGAGTA -ACGGAAGGCATTTCTGGATCGTCT -ACGGAAGGCATTTCTGGATGCACT -ACGGAAGGCATTTCTGGACTGACT -ACGGAAGGCATTTCTGGACAACCT -ACGGAAGGCATTTCTGGAGCTACT -ACGGAAGGCATTTCTGGAGGATCT -ACGGAAGGCATTTCTGGAAAGGCT -ACGGAAGGCATTTCTGGATCAACC -ACGGAAGGCATTTCTGGATGTTCC -ACGGAAGGCATTTCTGGAATTCCC -ACGGAAGGCATTTCTGGATTCTCG -ACGGAAGGCATTTCTGGATAGACG -ACGGAAGGCATTTCTGGAGTAACG -ACGGAAGGCATTTCTGGAACTTCG -ACGGAAGGCATTTCTGGATACGCA -ACGGAAGGCATTTCTGGACTTGCA -ACGGAAGGCATTTCTGGACGAACA -ACGGAAGGCATTTCTGGACAGTCA -ACGGAAGGCATTTCTGGAGATCCA -ACGGAAGGCATTTCTGGAACGACA -ACGGAAGGCATTTCTGGAAGCTCA -ACGGAAGGCATTTCTGGATCACGT -ACGGAAGGCATTTCTGGACGTAGT -ACGGAAGGCATTTCTGGAGTCAGT -ACGGAAGGCATTTCTGGAGAAGGT -ACGGAAGGCATTTCTGGAAACCGT -ACGGAAGGCATTTCTGGATTGTGC -ACGGAAGGCATTTCTGGACTAAGC -ACGGAAGGCATTTCTGGAACTAGC -ACGGAAGGCATTTCTGGAAGATGC -ACGGAAGGCATTTCTGGATGAAGG -ACGGAAGGCATTTCTGGACAATGG -ACGGAAGGCATTTCTGGAATGAGG -ACGGAAGGCATTTCTGGAAATGGG -ACGGAAGGCATTTCTGGATCCTGA -ACGGAAGGCATTTCTGGATAGCGA -ACGGAAGGCATTTCTGGACACAGA -ACGGAAGGCATTTCTGGAGCAAGA -ACGGAAGGCATTTCTGGAGGTTGA -ACGGAAGGCATTTCTGGATCCGAT -ACGGAAGGCATTTCTGGATGGCAT -ACGGAAGGCATTTCTGGACGAGAT -ACGGAAGGCATTTCTGGATACCAC -ACGGAAGGCATTTCTGGACAGAAC -ACGGAAGGCATTTCTGGAGTCTAC -ACGGAAGGCATTTCTGGAACGTAC -ACGGAAGGCATTTCTGGAAGTGAC -ACGGAAGGCATTTCTGGACTGTAG -ACGGAAGGCATTTCTGGACCTAAG -ACGGAAGGCATTTCTGGAGTTCAG -ACGGAAGGCATTTCTGGAGCATAG -ACGGAAGGCATTTCTGGAGACAAG -ACGGAAGGCATTTCTGGAAAGCAG -ACGGAAGGCATTTCTGGACGTCAA -ACGGAAGGCATTTCTGGAGCTGAA -ACGGAAGGCATTTCTGGAAGTACG -ACGGAAGGCATTTCTGGAATCCGA -ACGGAAGGCATTTCTGGAATGGGA -ACGGAAGGCATTTCTGGAGTGCAA -ACGGAAGGCATTTCTGGAGAGGAA -ACGGAAGGCATTTCTGGACAGGTA -ACGGAAGGCATTTCTGGAGACTCT -ACGGAAGGCATTTCTGGAAGTCCT -ACGGAAGGCATTTCTGGATAAGCC -ACGGAAGGCATTTCTGGAATAGCC -ACGGAAGGCATTTCTGGATAACCG -ACGGAAGGCATTTCTGGAATGCCA -ACGGAAGGCATTGCTAAGGGAAAC -ACGGAAGGCATTGCTAAGAACACC -ACGGAAGGCATTGCTAAGATCGAG -ACGGAAGGCATTGCTAAGCTCCTT -ACGGAAGGCATTGCTAAGCCTGTT -ACGGAAGGCATTGCTAAGCGGTTT -ACGGAAGGCATTGCTAAGGTGGTT -ACGGAAGGCATTGCTAAGGCCTTT -ACGGAAGGCATTGCTAAGGGTCTT -ACGGAAGGCATTGCTAAGACGCTT -ACGGAAGGCATTGCTAAGAGCGTT -ACGGAAGGCATTGCTAAGTTCGTC -ACGGAAGGCATTGCTAAGTCTCTC -ACGGAAGGCATTGCTAAGTGGATC -ACGGAAGGCATTGCTAAGCACTTC -ACGGAAGGCATTGCTAAGGTACTC -ACGGAAGGCATTGCTAAGGATGTC -ACGGAAGGCATTGCTAAGACAGTC -ACGGAAGGCATTGCTAAGTTGCTG -ACGGAAGGCATTGCTAAGTCCATG -ACGGAAGGCATTGCTAAGTGTGTG -ACGGAAGGCATTGCTAAGCTAGTG -ACGGAAGGCATTGCTAAGCATCTG -ACGGAAGGCATTGCTAAGGAGTTG -ACGGAAGGCATTGCTAAGAGACTG -ACGGAAGGCATTGCTAAGTCGGTA -ACGGAAGGCATTGCTAAGTGCCTA -ACGGAAGGCATTGCTAAGCCACTA -ACGGAAGGCATTGCTAAGGGAGTA -ACGGAAGGCATTGCTAAGTCGTCT -ACGGAAGGCATTGCTAAGTGCACT -ACGGAAGGCATTGCTAAGCTGACT -ACGGAAGGCATTGCTAAGCAACCT -ACGGAAGGCATTGCTAAGGCTACT -ACGGAAGGCATTGCTAAGGGATCT -ACGGAAGGCATTGCTAAGAAGGCT -ACGGAAGGCATTGCTAAGTCAACC -ACGGAAGGCATTGCTAAGTGTTCC -ACGGAAGGCATTGCTAAGATTCCC -ACGGAAGGCATTGCTAAGTTCTCG -ACGGAAGGCATTGCTAAGTAGACG -ACGGAAGGCATTGCTAAGGTAACG -ACGGAAGGCATTGCTAAGACTTCG -ACGGAAGGCATTGCTAAGTACGCA -ACGGAAGGCATTGCTAAGCTTGCA -ACGGAAGGCATTGCTAAGCGAACA -ACGGAAGGCATTGCTAAGCAGTCA -ACGGAAGGCATTGCTAAGGATCCA -ACGGAAGGCATTGCTAAGACGACA -ACGGAAGGCATTGCTAAGAGCTCA -ACGGAAGGCATTGCTAAGTCACGT -ACGGAAGGCATTGCTAAGCGTAGT -ACGGAAGGCATTGCTAAGGTCAGT -ACGGAAGGCATTGCTAAGGAAGGT -ACGGAAGGCATTGCTAAGAACCGT -ACGGAAGGCATTGCTAAGTTGTGC -ACGGAAGGCATTGCTAAGCTAAGC -ACGGAAGGCATTGCTAAGACTAGC -ACGGAAGGCATTGCTAAGAGATGC -ACGGAAGGCATTGCTAAGTGAAGG -ACGGAAGGCATTGCTAAGCAATGG -ACGGAAGGCATTGCTAAGATGAGG -ACGGAAGGCATTGCTAAGAATGGG -ACGGAAGGCATTGCTAAGTCCTGA -ACGGAAGGCATTGCTAAGTAGCGA -ACGGAAGGCATTGCTAAGCACAGA -ACGGAAGGCATTGCTAAGGCAAGA -ACGGAAGGCATTGCTAAGGGTTGA -ACGGAAGGCATTGCTAAGTCCGAT -ACGGAAGGCATTGCTAAGTGGCAT -ACGGAAGGCATTGCTAAGCGAGAT -ACGGAAGGCATTGCTAAGTACCAC -ACGGAAGGCATTGCTAAGCAGAAC -ACGGAAGGCATTGCTAAGGTCTAC -ACGGAAGGCATTGCTAAGACGTAC -ACGGAAGGCATTGCTAAGAGTGAC -ACGGAAGGCATTGCTAAGCTGTAG -ACGGAAGGCATTGCTAAGCCTAAG -ACGGAAGGCATTGCTAAGGTTCAG -ACGGAAGGCATTGCTAAGGCATAG -ACGGAAGGCATTGCTAAGGACAAG -ACGGAAGGCATTGCTAAGAAGCAG -ACGGAAGGCATTGCTAAGCGTCAA -ACGGAAGGCATTGCTAAGGCTGAA -ACGGAAGGCATTGCTAAGAGTACG -ACGGAAGGCATTGCTAAGATCCGA -ACGGAAGGCATTGCTAAGATGGGA -ACGGAAGGCATTGCTAAGGTGCAA -ACGGAAGGCATTGCTAAGGAGGAA -ACGGAAGGCATTGCTAAGCAGGTA -ACGGAAGGCATTGCTAAGGACTCT -ACGGAAGGCATTGCTAAGAGTCCT -ACGGAAGGCATTGCTAAGTAAGCC -ACGGAAGGCATTGCTAAGATAGCC -ACGGAAGGCATTGCTAAGTAACCG -ACGGAAGGCATTGCTAAGATGCCA -ACGGAAGGCATTACCTCAGGAAAC -ACGGAAGGCATTACCTCAAACACC -ACGGAAGGCATTACCTCAATCGAG -ACGGAAGGCATTACCTCACTCCTT -ACGGAAGGCATTACCTCACCTGTT -ACGGAAGGCATTACCTCACGGTTT -ACGGAAGGCATTACCTCAGTGGTT -ACGGAAGGCATTACCTCAGCCTTT -ACGGAAGGCATTACCTCAGGTCTT -ACGGAAGGCATTACCTCAACGCTT -ACGGAAGGCATTACCTCAAGCGTT -ACGGAAGGCATTACCTCATTCGTC -ACGGAAGGCATTACCTCATCTCTC -ACGGAAGGCATTACCTCATGGATC -ACGGAAGGCATTACCTCACACTTC -ACGGAAGGCATTACCTCAGTACTC -ACGGAAGGCATTACCTCAGATGTC -ACGGAAGGCATTACCTCAACAGTC -ACGGAAGGCATTACCTCATTGCTG -ACGGAAGGCATTACCTCATCCATG -ACGGAAGGCATTACCTCATGTGTG -ACGGAAGGCATTACCTCACTAGTG -ACGGAAGGCATTACCTCACATCTG -ACGGAAGGCATTACCTCAGAGTTG -ACGGAAGGCATTACCTCAAGACTG -ACGGAAGGCATTACCTCATCGGTA -ACGGAAGGCATTACCTCATGCCTA -ACGGAAGGCATTACCTCACCACTA -ACGGAAGGCATTACCTCAGGAGTA -ACGGAAGGCATTACCTCATCGTCT -ACGGAAGGCATTACCTCATGCACT -ACGGAAGGCATTACCTCACTGACT -ACGGAAGGCATTACCTCACAACCT -ACGGAAGGCATTACCTCAGCTACT -ACGGAAGGCATTACCTCAGGATCT -ACGGAAGGCATTACCTCAAAGGCT -ACGGAAGGCATTACCTCATCAACC -ACGGAAGGCATTACCTCATGTTCC -ACGGAAGGCATTACCTCAATTCCC -ACGGAAGGCATTACCTCATTCTCG -ACGGAAGGCATTACCTCATAGACG -ACGGAAGGCATTACCTCAGTAACG -ACGGAAGGCATTACCTCAACTTCG -ACGGAAGGCATTACCTCATACGCA -ACGGAAGGCATTACCTCACTTGCA -ACGGAAGGCATTACCTCACGAACA -ACGGAAGGCATTACCTCACAGTCA -ACGGAAGGCATTACCTCAGATCCA -ACGGAAGGCATTACCTCAACGACA -ACGGAAGGCATTACCTCAAGCTCA -ACGGAAGGCATTACCTCATCACGT -ACGGAAGGCATTACCTCACGTAGT -ACGGAAGGCATTACCTCAGTCAGT -ACGGAAGGCATTACCTCAGAAGGT -ACGGAAGGCATTACCTCAAACCGT -ACGGAAGGCATTACCTCATTGTGC -ACGGAAGGCATTACCTCACTAAGC -ACGGAAGGCATTACCTCAACTAGC -ACGGAAGGCATTACCTCAAGATGC -ACGGAAGGCATTACCTCATGAAGG -ACGGAAGGCATTACCTCACAATGG -ACGGAAGGCATTACCTCAATGAGG -ACGGAAGGCATTACCTCAAATGGG -ACGGAAGGCATTACCTCATCCTGA -ACGGAAGGCATTACCTCATAGCGA -ACGGAAGGCATTACCTCACACAGA -ACGGAAGGCATTACCTCAGCAAGA -ACGGAAGGCATTACCTCAGGTTGA -ACGGAAGGCATTACCTCATCCGAT -ACGGAAGGCATTACCTCATGGCAT -ACGGAAGGCATTACCTCACGAGAT -ACGGAAGGCATTACCTCATACCAC -ACGGAAGGCATTACCTCACAGAAC -ACGGAAGGCATTACCTCAGTCTAC -ACGGAAGGCATTACCTCAACGTAC -ACGGAAGGCATTACCTCAAGTGAC -ACGGAAGGCATTACCTCACTGTAG -ACGGAAGGCATTACCTCACCTAAG -ACGGAAGGCATTACCTCAGTTCAG -ACGGAAGGCATTACCTCAGCATAG -ACGGAAGGCATTACCTCAGACAAG -ACGGAAGGCATTACCTCAAAGCAG -ACGGAAGGCATTACCTCACGTCAA -ACGGAAGGCATTACCTCAGCTGAA -ACGGAAGGCATTACCTCAAGTACG -ACGGAAGGCATTACCTCAATCCGA -ACGGAAGGCATTACCTCAATGGGA -ACGGAAGGCATTACCTCAGTGCAA -ACGGAAGGCATTACCTCAGAGGAA -ACGGAAGGCATTACCTCACAGGTA -ACGGAAGGCATTACCTCAGACTCT -ACGGAAGGCATTACCTCAAGTCCT -ACGGAAGGCATTACCTCATAAGCC -ACGGAAGGCATTACCTCAATAGCC -ACGGAAGGCATTACCTCATAACCG -ACGGAAGGCATTACCTCAATGCCA -ACGGAAGGCATTTCCTGTGGAAAC -ACGGAAGGCATTTCCTGTAACACC -ACGGAAGGCATTTCCTGTATCGAG -ACGGAAGGCATTTCCTGTCTCCTT -ACGGAAGGCATTTCCTGTCCTGTT -ACGGAAGGCATTTCCTGTCGGTTT -ACGGAAGGCATTTCCTGTGTGGTT -ACGGAAGGCATTTCCTGTGCCTTT -ACGGAAGGCATTTCCTGTGGTCTT -ACGGAAGGCATTTCCTGTACGCTT -ACGGAAGGCATTTCCTGTAGCGTT -ACGGAAGGCATTTCCTGTTTCGTC -ACGGAAGGCATTTCCTGTTCTCTC -ACGGAAGGCATTTCCTGTTGGATC -ACGGAAGGCATTTCCTGTCACTTC -ACGGAAGGCATTTCCTGTGTACTC -ACGGAAGGCATTTCCTGTGATGTC -ACGGAAGGCATTTCCTGTACAGTC -ACGGAAGGCATTTCCTGTTTGCTG -ACGGAAGGCATTTCCTGTTCCATG -ACGGAAGGCATTTCCTGTTGTGTG -ACGGAAGGCATTTCCTGTCTAGTG -ACGGAAGGCATTTCCTGTCATCTG -ACGGAAGGCATTTCCTGTGAGTTG -ACGGAAGGCATTTCCTGTAGACTG -ACGGAAGGCATTTCCTGTTCGGTA -ACGGAAGGCATTTCCTGTTGCCTA -ACGGAAGGCATTTCCTGTCCACTA -ACGGAAGGCATTTCCTGTGGAGTA -ACGGAAGGCATTTCCTGTTCGTCT -ACGGAAGGCATTTCCTGTTGCACT -ACGGAAGGCATTTCCTGTCTGACT -ACGGAAGGCATTTCCTGTCAACCT -ACGGAAGGCATTTCCTGTGCTACT -ACGGAAGGCATTTCCTGTGGATCT -ACGGAAGGCATTTCCTGTAAGGCT -ACGGAAGGCATTTCCTGTTCAACC -ACGGAAGGCATTTCCTGTTGTTCC -ACGGAAGGCATTTCCTGTATTCCC -ACGGAAGGCATTTCCTGTTTCTCG -ACGGAAGGCATTTCCTGTTAGACG -ACGGAAGGCATTTCCTGTGTAACG -ACGGAAGGCATTTCCTGTACTTCG -ACGGAAGGCATTTCCTGTTACGCA -ACGGAAGGCATTTCCTGTCTTGCA -ACGGAAGGCATTTCCTGTCGAACA -ACGGAAGGCATTTCCTGTCAGTCA -ACGGAAGGCATTTCCTGTGATCCA -ACGGAAGGCATTTCCTGTACGACA -ACGGAAGGCATTTCCTGTAGCTCA -ACGGAAGGCATTTCCTGTTCACGT -ACGGAAGGCATTTCCTGTCGTAGT -ACGGAAGGCATTTCCTGTGTCAGT -ACGGAAGGCATTTCCTGTGAAGGT -ACGGAAGGCATTTCCTGTAACCGT -ACGGAAGGCATTTCCTGTTTGTGC -ACGGAAGGCATTTCCTGTCTAAGC -ACGGAAGGCATTTCCTGTACTAGC -ACGGAAGGCATTTCCTGTAGATGC -ACGGAAGGCATTTCCTGTTGAAGG -ACGGAAGGCATTTCCTGTCAATGG -ACGGAAGGCATTTCCTGTATGAGG -ACGGAAGGCATTTCCTGTAATGGG -ACGGAAGGCATTTCCTGTTCCTGA -ACGGAAGGCATTTCCTGTTAGCGA -ACGGAAGGCATTTCCTGTCACAGA -ACGGAAGGCATTTCCTGTGCAAGA -ACGGAAGGCATTTCCTGTGGTTGA -ACGGAAGGCATTTCCTGTTCCGAT -ACGGAAGGCATTTCCTGTTGGCAT -ACGGAAGGCATTTCCTGTCGAGAT -ACGGAAGGCATTTCCTGTTACCAC -ACGGAAGGCATTTCCTGTCAGAAC -ACGGAAGGCATTTCCTGTGTCTAC -ACGGAAGGCATTTCCTGTACGTAC -ACGGAAGGCATTTCCTGTAGTGAC -ACGGAAGGCATTTCCTGTCTGTAG -ACGGAAGGCATTTCCTGTCCTAAG -ACGGAAGGCATTTCCTGTGTTCAG -ACGGAAGGCATTTCCTGTGCATAG -ACGGAAGGCATTTCCTGTGACAAG -ACGGAAGGCATTTCCTGTAAGCAG -ACGGAAGGCATTTCCTGTCGTCAA -ACGGAAGGCATTTCCTGTGCTGAA -ACGGAAGGCATTTCCTGTAGTACG -ACGGAAGGCATTTCCTGTATCCGA -ACGGAAGGCATTTCCTGTATGGGA -ACGGAAGGCATTTCCTGTGTGCAA -ACGGAAGGCATTTCCTGTGAGGAA -ACGGAAGGCATTTCCTGTCAGGTA -ACGGAAGGCATTTCCTGTGACTCT -ACGGAAGGCATTTCCTGTAGTCCT -ACGGAAGGCATTTCCTGTTAAGCC -ACGGAAGGCATTTCCTGTATAGCC -ACGGAAGGCATTTCCTGTTAACCG -ACGGAAGGCATTTCCTGTATGCCA -ACGGAAGGCATTCCCATTGGAAAC -ACGGAAGGCATTCCCATTAACACC -ACGGAAGGCATTCCCATTATCGAG -ACGGAAGGCATTCCCATTCTCCTT -ACGGAAGGCATTCCCATTCCTGTT -ACGGAAGGCATTCCCATTCGGTTT -ACGGAAGGCATTCCCATTGTGGTT -ACGGAAGGCATTCCCATTGCCTTT -ACGGAAGGCATTCCCATTGGTCTT -ACGGAAGGCATTCCCATTACGCTT -ACGGAAGGCATTCCCATTAGCGTT -ACGGAAGGCATTCCCATTTTCGTC -ACGGAAGGCATTCCCATTTCTCTC -ACGGAAGGCATTCCCATTTGGATC -ACGGAAGGCATTCCCATTCACTTC -ACGGAAGGCATTCCCATTGTACTC -ACGGAAGGCATTCCCATTGATGTC -ACGGAAGGCATTCCCATTACAGTC -ACGGAAGGCATTCCCATTTTGCTG -ACGGAAGGCATTCCCATTTCCATG -ACGGAAGGCATTCCCATTTGTGTG -ACGGAAGGCATTCCCATTCTAGTG -ACGGAAGGCATTCCCATTCATCTG -ACGGAAGGCATTCCCATTGAGTTG -ACGGAAGGCATTCCCATTAGACTG -ACGGAAGGCATTCCCATTTCGGTA -ACGGAAGGCATTCCCATTTGCCTA -ACGGAAGGCATTCCCATTCCACTA -ACGGAAGGCATTCCCATTGGAGTA -ACGGAAGGCATTCCCATTTCGTCT -ACGGAAGGCATTCCCATTTGCACT -ACGGAAGGCATTCCCATTCTGACT -ACGGAAGGCATTCCCATTCAACCT -ACGGAAGGCATTCCCATTGCTACT -ACGGAAGGCATTCCCATTGGATCT -ACGGAAGGCATTCCCATTAAGGCT -ACGGAAGGCATTCCCATTTCAACC -ACGGAAGGCATTCCCATTTGTTCC -ACGGAAGGCATTCCCATTATTCCC -ACGGAAGGCATTCCCATTTTCTCG -ACGGAAGGCATTCCCATTTAGACG -ACGGAAGGCATTCCCATTGTAACG -ACGGAAGGCATTCCCATTACTTCG -ACGGAAGGCATTCCCATTTACGCA -ACGGAAGGCATTCCCATTCTTGCA -ACGGAAGGCATTCCCATTCGAACA -ACGGAAGGCATTCCCATTCAGTCA -ACGGAAGGCATTCCCATTGATCCA -ACGGAAGGCATTCCCATTACGACA -ACGGAAGGCATTCCCATTAGCTCA -ACGGAAGGCATTCCCATTTCACGT -ACGGAAGGCATTCCCATTCGTAGT -ACGGAAGGCATTCCCATTGTCAGT -ACGGAAGGCATTCCCATTGAAGGT -ACGGAAGGCATTCCCATTAACCGT -ACGGAAGGCATTCCCATTTTGTGC -ACGGAAGGCATTCCCATTCTAAGC -ACGGAAGGCATTCCCATTACTAGC -ACGGAAGGCATTCCCATTAGATGC -ACGGAAGGCATTCCCATTTGAAGG -ACGGAAGGCATTCCCATTCAATGG -ACGGAAGGCATTCCCATTATGAGG -ACGGAAGGCATTCCCATTAATGGG -ACGGAAGGCATTCCCATTTCCTGA -ACGGAAGGCATTCCCATTTAGCGA -ACGGAAGGCATTCCCATTCACAGA -ACGGAAGGCATTCCCATTGCAAGA -ACGGAAGGCATTCCCATTGGTTGA -ACGGAAGGCATTCCCATTTCCGAT -ACGGAAGGCATTCCCATTTGGCAT -ACGGAAGGCATTCCCATTCGAGAT -ACGGAAGGCATTCCCATTTACCAC -ACGGAAGGCATTCCCATTCAGAAC -ACGGAAGGCATTCCCATTGTCTAC -ACGGAAGGCATTCCCATTACGTAC -ACGGAAGGCATTCCCATTAGTGAC -ACGGAAGGCATTCCCATTCTGTAG -ACGGAAGGCATTCCCATTCCTAAG -ACGGAAGGCATTCCCATTGTTCAG -ACGGAAGGCATTCCCATTGCATAG -ACGGAAGGCATTCCCATTGACAAG -ACGGAAGGCATTCCCATTAAGCAG -ACGGAAGGCATTCCCATTCGTCAA -ACGGAAGGCATTCCCATTGCTGAA -ACGGAAGGCATTCCCATTAGTACG -ACGGAAGGCATTCCCATTATCCGA -ACGGAAGGCATTCCCATTATGGGA -ACGGAAGGCATTCCCATTGTGCAA -ACGGAAGGCATTCCCATTGAGGAA -ACGGAAGGCATTCCCATTCAGGTA -ACGGAAGGCATTCCCATTGACTCT -ACGGAAGGCATTCCCATTAGTCCT -ACGGAAGGCATTCCCATTTAAGCC -ACGGAAGGCATTCCCATTATAGCC -ACGGAAGGCATTCCCATTTAACCG -ACGGAAGGCATTCCCATTATGCCA -ACGGAAGGCATTTCGTTCGGAAAC -ACGGAAGGCATTTCGTTCAACACC -ACGGAAGGCATTTCGTTCATCGAG -ACGGAAGGCATTTCGTTCCTCCTT -ACGGAAGGCATTTCGTTCCCTGTT -ACGGAAGGCATTTCGTTCCGGTTT -ACGGAAGGCATTTCGTTCGTGGTT -ACGGAAGGCATTTCGTTCGCCTTT -ACGGAAGGCATTTCGTTCGGTCTT -ACGGAAGGCATTTCGTTCACGCTT -ACGGAAGGCATTTCGTTCAGCGTT -ACGGAAGGCATTTCGTTCTTCGTC -ACGGAAGGCATTTCGTTCTCTCTC -ACGGAAGGCATTTCGTTCTGGATC -ACGGAAGGCATTTCGTTCCACTTC -ACGGAAGGCATTTCGTTCGTACTC -ACGGAAGGCATTTCGTTCGATGTC -ACGGAAGGCATTTCGTTCACAGTC -ACGGAAGGCATTTCGTTCTTGCTG -ACGGAAGGCATTTCGTTCTCCATG -ACGGAAGGCATTTCGTTCTGTGTG -ACGGAAGGCATTTCGTTCCTAGTG -ACGGAAGGCATTTCGTTCCATCTG -ACGGAAGGCATTTCGTTCGAGTTG -ACGGAAGGCATTTCGTTCAGACTG -ACGGAAGGCATTTCGTTCTCGGTA -ACGGAAGGCATTTCGTTCTGCCTA -ACGGAAGGCATTTCGTTCCCACTA -ACGGAAGGCATTTCGTTCGGAGTA -ACGGAAGGCATTTCGTTCTCGTCT -ACGGAAGGCATTTCGTTCTGCACT -ACGGAAGGCATTTCGTTCCTGACT -ACGGAAGGCATTTCGTTCCAACCT -ACGGAAGGCATTTCGTTCGCTACT -ACGGAAGGCATTTCGTTCGGATCT -ACGGAAGGCATTTCGTTCAAGGCT -ACGGAAGGCATTTCGTTCTCAACC -ACGGAAGGCATTTCGTTCTGTTCC -ACGGAAGGCATTTCGTTCATTCCC -ACGGAAGGCATTTCGTTCTTCTCG -ACGGAAGGCATTTCGTTCTAGACG -ACGGAAGGCATTTCGTTCGTAACG -ACGGAAGGCATTTCGTTCACTTCG -ACGGAAGGCATTTCGTTCTACGCA -ACGGAAGGCATTTCGTTCCTTGCA -ACGGAAGGCATTTCGTTCCGAACA -ACGGAAGGCATTTCGTTCCAGTCA -ACGGAAGGCATTTCGTTCGATCCA -ACGGAAGGCATTTCGTTCACGACA -ACGGAAGGCATTTCGTTCAGCTCA -ACGGAAGGCATTTCGTTCTCACGT -ACGGAAGGCATTTCGTTCCGTAGT -ACGGAAGGCATTTCGTTCGTCAGT -ACGGAAGGCATTTCGTTCGAAGGT -ACGGAAGGCATTTCGTTCAACCGT -ACGGAAGGCATTTCGTTCTTGTGC -ACGGAAGGCATTTCGTTCCTAAGC -ACGGAAGGCATTTCGTTCACTAGC -ACGGAAGGCATTTCGTTCAGATGC -ACGGAAGGCATTTCGTTCTGAAGG -ACGGAAGGCATTTCGTTCCAATGG -ACGGAAGGCATTTCGTTCATGAGG -ACGGAAGGCATTTCGTTCAATGGG -ACGGAAGGCATTTCGTTCTCCTGA -ACGGAAGGCATTTCGTTCTAGCGA -ACGGAAGGCATTTCGTTCCACAGA -ACGGAAGGCATTTCGTTCGCAAGA -ACGGAAGGCATTTCGTTCGGTTGA -ACGGAAGGCATTTCGTTCTCCGAT -ACGGAAGGCATTTCGTTCTGGCAT -ACGGAAGGCATTTCGTTCCGAGAT -ACGGAAGGCATTTCGTTCTACCAC -ACGGAAGGCATTTCGTTCCAGAAC -ACGGAAGGCATTTCGTTCGTCTAC -ACGGAAGGCATTTCGTTCACGTAC -ACGGAAGGCATTTCGTTCAGTGAC -ACGGAAGGCATTTCGTTCCTGTAG -ACGGAAGGCATTTCGTTCCCTAAG -ACGGAAGGCATTTCGTTCGTTCAG -ACGGAAGGCATTTCGTTCGCATAG -ACGGAAGGCATTTCGTTCGACAAG -ACGGAAGGCATTTCGTTCAAGCAG -ACGGAAGGCATTTCGTTCCGTCAA -ACGGAAGGCATTTCGTTCGCTGAA -ACGGAAGGCATTTCGTTCAGTACG -ACGGAAGGCATTTCGTTCATCCGA -ACGGAAGGCATTTCGTTCATGGGA -ACGGAAGGCATTTCGTTCGTGCAA -ACGGAAGGCATTTCGTTCGAGGAA -ACGGAAGGCATTTCGTTCCAGGTA -ACGGAAGGCATTTCGTTCGACTCT -ACGGAAGGCATTTCGTTCAGTCCT -ACGGAAGGCATTTCGTTCTAAGCC -ACGGAAGGCATTTCGTTCATAGCC -ACGGAAGGCATTTCGTTCTAACCG -ACGGAAGGCATTTCGTTCATGCCA -ACGGAAGGCATTACGTAGGGAAAC -ACGGAAGGCATTACGTAGAACACC -ACGGAAGGCATTACGTAGATCGAG -ACGGAAGGCATTACGTAGCTCCTT -ACGGAAGGCATTACGTAGCCTGTT -ACGGAAGGCATTACGTAGCGGTTT -ACGGAAGGCATTACGTAGGTGGTT -ACGGAAGGCATTACGTAGGCCTTT -ACGGAAGGCATTACGTAGGGTCTT -ACGGAAGGCATTACGTAGACGCTT -ACGGAAGGCATTACGTAGAGCGTT -ACGGAAGGCATTACGTAGTTCGTC -ACGGAAGGCATTACGTAGTCTCTC -ACGGAAGGCATTACGTAGTGGATC -ACGGAAGGCATTACGTAGCACTTC -ACGGAAGGCATTACGTAGGTACTC -ACGGAAGGCATTACGTAGGATGTC -ACGGAAGGCATTACGTAGACAGTC -ACGGAAGGCATTACGTAGTTGCTG -ACGGAAGGCATTACGTAGTCCATG -ACGGAAGGCATTACGTAGTGTGTG -ACGGAAGGCATTACGTAGCTAGTG -ACGGAAGGCATTACGTAGCATCTG -ACGGAAGGCATTACGTAGGAGTTG -ACGGAAGGCATTACGTAGAGACTG -ACGGAAGGCATTACGTAGTCGGTA -ACGGAAGGCATTACGTAGTGCCTA -ACGGAAGGCATTACGTAGCCACTA -ACGGAAGGCATTACGTAGGGAGTA -ACGGAAGGCATTACGTAGTCGTCT -ACGGAAGGCATTACGTAGTGCACT -ACGGAAGGCATTACGTAGCTGACT -ACGGAAGGCATTACGTAGCAACCT -ACGGAAGGCATTACGTAGGCTACT -ACGGAAGGCATTACGTAGGGATCT -ACGGAAGGCATTACGTAGAAGGCT -ACGGAAGGCATTACGTAGTCAACC -ACGGAAGGCATTACGTAGTGTTCC -ACGGAAGGCATTACGTAGATTCCC -ACGGAAGGCATTACGTAGTTCTCG -ACGGAAGGCATTACGTAGTAGACG -ACGGAAGGCATTACGTAGGTAACG -ACGGAAGGCATTACGTAGACTTCG -ACGGAAGGCATTACGTAGTACGCA -ACGGAAGGCATTACGTAGCTTGCA -ACGGAAGGCATTACGTAGCGAACA -ACGGAAGGCATTACGTAGCAGTCA -ACGGAAGGCATTACGTAGGATCCA -ACGGAAGGCATTACGTAGACGACA -ACGGAAGGCATTACGTAGAGCTCA -ACGGAAGGCATTACGTAGTCACGT -ACGGAAGGCATTACGTAGCGTAGT -ACGGAAGGCATTACGTAGGTCAGT -ACGGAAGGCATTACGTAGGAAGGT -ACGGAAGGCATTACGTAGAACCGT -ACGGAAGGCATTACGTAGTTGTGC -ACGGAAGGCATTACGTAGCTAAGC -ACGGAAGGCATTACGTAGACTAGC -ACGGAAGGCATTACGTAGAGATGC -ACGGAAGGCATTACGTAGTGAAGG -ACGGAAGGCATTACGTAGCAATGG -ACGGAAGGCATTACGTAGATGAGG -ACGGAAGGCATTACGTAGAATGGG -ACGGAAGGCATTACGTAGTCCTGA -ACGGAAGGCATTACGTAGTAGCGA -ACGGAAGGCATTACGTAGCACAGA -ACGGAAGGCATTACGTAGGCAAGA -ACGGAAGGCATTACGTAGGGTTGA -ACGGAAGGCATTACGTAGTCCGAT -ACGGAAGGCATTACGTAGTGGCAT -ACGGAAGGCATTACGTAGCGAGAT -ACGGAAGGCATTACGTAGTACCAC -ACGGAAGGCATTACGTAGCAGAAC -ACGGAAGGCATTACGTAGGTCTAC -ACGGAAGGCATTACGTAGACGTAC -ACGGAAGGCATTACGTAGAGTGAC -ACGGAAGGCATTACGTAGCTGTAG -ACGGAAGGCATTACGTAGCCTAAG -ACGGAAGGCATTACGTAGGTTCAG -ACGGAAGGCATTACGTAGGCATAG -ACGGAAGGCATTACGTAGGACAAG -ACGGAAGGCATTACGTAGAAGCAG -ACGGAAGGCATTACGTAGCGTCAA -ACGGAAGGCATTACGTAGGCTGAA -ACGGAAGGCATTACGTAGAGTACG -ACGGAAGGCATTACGTAGATCCGA -ACGGAAGGCATTACGTAGATGGGA -ACGGAAGGCATTACGTAGGTGCAA -ACGGAAGGCATTACGTAGGAGGAA -ACGGAAGGCATTACGTAGCAGGTA -ACGGAAGGCATTACGTAGGACTCT -ACGGAAGGCATTACGTAGAGTCCT -ACGGAAGGCATTACGTAGTAAGCC -ACGGAAGGCATTACGTAGATAGCC -ACGGAAGGCATTACGTAGTAACCG -ACGGAAGGCATTACGTAGATGCCA -ACGGAAGGCATTACGGTAGGAAAC -ACGGAAGGCATTACGGTAAACACC -ACGGAAGGCATTACGGTAATCGAG -ACGGAAGGCATTACGGTACTCCTT -ACGGAAGGCATTACGGTACCTGTT -ACGGAAGGCATTACGGTACGGTTT -ACGGAAGGCATTACGGTAGTGGTT -ACGGAAGGCATTACGGTAGCCTTT -ACGGAAGGCATTACGGTAGGTCTT -ACGGAAGGCATTACGGTAACGCTT -ACGGAAGGCATTACGGTAAGCGTT -ACGGAAGGCATTACGGTATTCGTC -ACGGAAGGCATTACGGTATCTCTC -ACGGAAGGCATTACGGTATGGATC -ACGGAAGGCATTACGGTACACTTC -ACGGAAGGCATTACGGTAGTACTC -ACGGAAGGCATTACGGTAGATGTC -ACGGAAGGCATTACGGTAACAGTC -ACGGAAGGCATTACGGTATTGCTG -ACGGAAGGCATTACGGTATCCATG -ACGGAAGGCATTACGGTATGTGTG -ACGGAAGGCATTACGGTACTAGTG -ACGGAAGGCATTACGGTACATCTG -ACGGAAGGCATTACGGTAGAGTTG -ACGGAAGGCATTACGGTAAGACTG -ACGGAAGGCATTACGGTATCGGTA -ACGGAAGGCATTACGGTATGCCTA -ACGGAAGGCATTACGGTACCACTA -ACGGAAGGCATTACGGTAGGAGTA -ACGGAAGGCATTACGGTATCGTCT -ACGGAAGGCATTACGGTATGCACT -ACGGAAGGCATTACGGTACTGACT -ACGGAAGGCATTACGGTACAACCT -ACGGAAGGCATTACGGTAGCTACT -ACGGAAGGCATTACGGTAGGATCT -ACGGAAGGCATTACGGTAAAGGCT -ACGGAAGGCATTACGGTATCAACC -ACGGAAGGCATTACGGTATGTTCC -ACGGAAGGCATTACGGTAATTCCC -ACGGAAGGCATTACGGTATTCTCG -ACGGAAGGCATTACGGTATAGACG -ACGGAAGGCATTACGGTAGTAACG -ACGGAAGGCATTACGGTAACTTCG -ACGGAAGGCATTACGGTATACGCA -ACGGAAGGCATTACGGTACTTGCA -ACGGAAGGCATTACGGTACGAACA -ACGGAAGGCATTACGGTACAGTCA -ACGGAAGGCATTACGGTAGATCCA -ACGGAAGGCATTACGGTAACGACA -ACGGAAGGCATTACGGTAAGCTCA -ACGGAAGGCATTACGGTATCACGT -ACGGAAGGCATTACGGTACGTAGT -ACGGAAGGCATTACGGTAGTCAGT -ACGGAAGGCATTACGGTAGAAGGT -ACGGAAGGCATTACGGTAAACCGT -ACGGAAGGCATTACGGTATTGTGC -ACGGAAGGCATTACGGTACTAAGC -ACGGAAGGCATTACGGTAACTAGC -ACGGAAGGCATTACGGTAAGATGC -ACGGAAGGCATTACGGTATGAAGG -ACGGAAGGCATTACGGTACAATGG -ACGGAAGGCATTACGGTAATGAGG -ACGGAAGGCATTACGGTAAATGGG -ACGGAAGGCATTACGGTATCCTGA -ACGGAAGGCATTACGGTATAGCGA -ACGGAAGGCATTACGGTACACAGA -ACGGAAGGCATTACGGTAGCAAGA -ACGGAAGGCATTACGGTAGGTTGA -ACGGAAGGCATTACGGTATCCGAT -ACGGAAGGCATTACGGTATGGCAT -ACGGAAGGCATTACGGTACGAGAT -ACGGAAGGCATTACGGTATACCAC -ACGGAAGGCATTACGGTACAGAAC -ACGGAAGGCATTACGGTAGTCTAC -ACGGAAGGCATTACGGTAACGTAC -ACGGAAGGCATTACGGTAAGTGAC -ACGGAAGGCATTACGGTACTGTAG -ACGGAAGGCATTACGGTACCTAAG -ACGGAAGGCATTACGGTAGTTCAG -ACGGAAGGCATTACGGTAGCATAG -ACGGAAGGCATTACGGTAGACAAG -ACGGAAGGCATTACGGTAAAGCAG -ACGGAAGGCATTACGGTACGTCAA -ACGGAAGGCATTACGGTAGCTGAA -ACGGAAGGCATTACGGTAAGTACG -ACGGAAGGCATTACGGTAATCCGA -ACGGAAGGCATTACGGTAATGGGA -ACGGAAGGCATTACGGTAGTGCAA -ACGGAAGGCATTACGGTAGAGGAA -ACGGAAGGCATTACGGTACAGGTA -ACGGAAGGCATTACGGTAGACTCT -ACGGAAGGCATTACGGTAAGTCCT -ACGGAAGGCATTACGGTATAAGCC -ACGGAAGGCATTACGGTAATAGCC -ACGGAAGGCATTACGGTATAACCG -ACGGAAGGCATTACGGTAATGCCA -ACGGAAGGCATTTCGACTGGAAAC -ACGGAAGGCATTTCGACTAACACC -ACGGAAGGCATTTCGACTATCGAG -ACGGAAGGCATTTCGACTCTCCTT -ACGGAAGGCATTTCGACTCCTGTT -ACGGAAGGCATTTCGACTCGGTTT -ACGGAAGGCATTTCGACTGTGGTT -ACGGAAGGCATTTCGACTGCCTTT -ACGGAAGGCATTTCGACTGGTCTT -ACGGAAGGCATTTCGACTACGCTT -ACGGAAGGCATTTCGACTAGCGTT -ACGGAAGGCATTTCGACTTTCGTC -ACGGAAGGCATTTCGACTTCTCTC -ACGGAAGGCATTTCGACTTGGATC -ACGGAAGGCATTTCGACTCACTTC -ACGGAAGGCATTTCGACTGTACTC -ACGGAAGGCATTTCGACTGATGTC -ACGGAAGGCATTTCGACTACAGTC -ACGGAAGGCATTTCGACTTTGCTG -ACGGAAGGCATTTCGACTTCCATG -ACGGAAGGCATTTCGACTTGTGTG -ACGGAAGGCATTTCGACTCTAGTG -ACGGAAGGCATTTCGACTCATCTG -ACGGAAGGCATTTCGACTGAGTTG -ACGGAAGGCATTTCGACTAGACTG -ACGGAAGGCATTTCGACTTCGGTA -ACGGAAGGCATTTCGACTTGCCTA -ACGGAAGGCATTTCGACTCCACTA -ACGGAAGGCATTTCGACTGGAGTA -ACGGAAGGCATTTCGACTTCGTCT -ACGGAAGGCATTTCGACTTGCACT -ACGGAAGGCATTTCGACTCTGACT -ACGGAAGGCATTTCGACTCAACCT -ACGGAAGGCATTTCGACTGCTACT -ACGGAAGGCATTTCGACTGGATCT -ACGGAAGGCATTTCGACTAAGGCT -ACGGAAGGCATTTCGACTTCAACC -ACGGAAGGCATTTCGACTTGTTCC -ACGGAAGGCATTTCGACTATTCCC -ACGGAAGGCATTTCGACTTTCTCG -ACGGAAGGCATTTCGACTTAGACG -ACGGAAGGCATTTCGACTGTAACG -ACGGAAGGCATTTCGACTACTTCG -ACGGAAGGCATTTCGACTTACGCA -ACGGAAGGCATTTCGACTCTTGCA -ACGGAAGGCATTTCGACTCGAACA -ACGGAAGGCATTTCGACTCAGTCA -ACGGAAGGCATTTCGACTGATCCA -ACGGAAGGCATTTCGACTACGACA -ACGGAAGGCATTTCGACTAGCTCA -ACGGAAGGCATTTCGACTTCACGT -ACGGAAGGCATTTCGACTCGTAGT -ACGGAAGGCATTTCGACTGTCAGT -ACGGAAGGCATTTCGACTGAAGGT -ACGGAAGGCATTTCGACTAACCGT -ACGGAAGGCATTTCGACTTTGTGC -ACGGAAGGCATTTCGACTCTAAGC -ACGGAAGGCATTTCGACTACTAGC -ACGGAAGGCATTTCGACTAGATGC -ACGGAAGGCATTTCGACTTGAAGG -ACGGAAGGCATTTCGACTCAATGG -ACGGAAGGCATTTCGACTATGAGG -ACGGAAGGCATTTCGACTAATGGG -ACGGAAGGCATTTCGACTTCCTGA -ACGGAAGGCATTTCGACTTAGCGA -ACGGAAGGCATTTCGACTCACAGA -ACGGAAGGCATTTCGACTGCAAGA -ACGGAAGGCATTTCGACTGGTTGA -ACGGAAGGCATTTCGACTTCCGAT -ACGGAAGGCATTTCGACTTGGCAT -ACGGAAGGCATTTCGACTCGAGAT -ACGGAAGGCATTTCGACTTACCAC -ACGGAAGGCATTTCGACTCAGAAC -ACGGAAGGCATTTCGACTGTCTAC -ACGGAAGGCATTTCGACTACGTAC -ACGGAAGGCATTTCGACTAGTGAC -ACGGAAGGCATTTCGACTCTGTAG -ACGGAAGGCATTTCGACTCCTAAG -ACGGAAGGCATTTCGACTGTTCAG -ACGGAAGGCATTTCGACTGCATAG -ACGGAAGGCATTTCGACTGACAAG -ACGGAAGGCATTTCGACTAAGCAG -ACGGAAGGCATTTCGACTCGTCAA -ACGGAAGGCATTTCGACTGCTGAA -ACGGAAGGCATTTCGACTAGTACG -ACGGAAGGCATTTCGACTATCCGA -ACGGAAGGCATTTCGACTATGGGA -ACGGAAGGCATTTCGACTGTGCAA -ACGGAAGGCATTTCGACTGAGGAA -ACGGAAGGCATTTCGACTCAGGTA -ACGGAAGGCATTTCGACTGACTCT -ACGGAAGGCATTTCGACTAGTCCT -ACGGAAGGCATTTCGACTTAAGCC -ACGGAAGGCATTTCGACTATAGCC -ACGGAAGGCATTTCGACTTAACCG -ACGGAAGGCATTTCGACTATGCCA -ACGGAAGGCATTGCATACGGAAAC -ACGGAAGGCATTGCATACAACACC -ACGGAAGGCATTGCATACATCGAG -ACGGAAGGCATTGCATACCTCCTT -ACGGAAGGCATTGCATACCCTGTT -ACGGAAGGCATTGCATACCGGTTT -ACGGAAGGCATTGCATACGTGGTT -ACGGAAGGCATTGCATACGCCTTT -ACGGAAGGCATTGCATACGGTCTT -ACGGAAGGCATTGCATACACGCTT -ACGGAAGGCATTGCATACAGCGTT -ACGGAAGGCATTGCATACTTCGTC -ACGGAAGGCATTGCATACTCTCTC -ACGGAAGGCATTGCATACTGGATC -ACGGAAGGCATTGCATACCACTTC -ACGGAAGGCATTGCATACGTACTC -ACGGAAGGCATTGCATACGATGTC -ACGGAAGGCATTGCATACACAGTC -ACGGAAGGCATTGCATACTTGCTG -ACGGAAGGCATTGCATACTCCATG -ACGGAAGGCATTGCATACTGTGTG -ACGGAAGGCATTGCATACCTAGTG -ACGGAAGGCATTGCATACCATCTG -ACGGAAGGCATTGCATACGAGTTG -ACGGAAGGCATTGCATACAGACTG -ACGGAAGGCATTGCATACTCGGTA -ACGGAAGGCATTGCATACTGCCTA -ACGGAAGGCATTGCATACCCACTA -ACGGAAGGCATTGCATACGGAGTA -ACGGAAGGCATTGCATACTCGTCT -ACGGAAGGCATTGCATACTGCACT -ACGGAAGGCATTGCATACCTGACT -ACGGAAGGCATTGCATACCAACCT -ACGGAAGGCATTGCATACGCTACT -ACGGAAGGCATTGCATACGGATCT -ACGGAAGGCATTGCATACAAGGCT -ACGGAAGGCATTGCATACTCAACC -ACGGAAGGCATTGCATACTGTTCC -ACGGAAGGCATTGCATACATTCCC -ACGGAAGGCATTGCATACTTCTCG -ACGGAAGGCATTGCATACTAGACG -ACGGAAGGCATTGCATACGTAACG -ACGGAAGGCATTGCATACACTTCG -ACGGAAGGCATTGCATACTACGCA -ACGGAAGGCATTGCATACCTTGCA -ACGGAAGGCATTGCATACCGAACA -ACGGAAGGCATTGCATACCAGTCA -ACGGAAGGCATTGCATACGATCCA -ACGGAAGGCATTGCATACACGACA -ACGGAAGGCATTGCATACAGCTCA -ACGGAAGGCATTGCATACTCACGT -ACGGAAGGCATTGCATACCGTAGT -ACGGAAGGCATTGCATACGTCAGT -ACGGAAGGCATTGCATACGAAGGT -ACGGAAGGCATTGCATACAACCGT -ACGGAAGGCATTGCATACTTGTGC -ACGGAAGGCATTGCATACCTAAGC -ACGGAAGGCATTGCATACACTAGC -ACGGAAGGCATTGCATACAGATGC -ACGGAAGGCATTGCATACTGAAGG -ACGGAAGGCATTGCATACCAATGG -ACGGAAGGCATTGCATACATGAGG -ACGGAAGGCATTGCATACAATGGG -ACGGAAGGCATTGCATACTCCTGA -ACGGAAGGCATTGCATACTAGCGA -ACGGAAGGCATTGCATACCACAGA -ACGGAAGGCATTGCATACGCAAGA -ACGGAAGGCATTGCATACGGTTGA -ACGGAAGGCATTGCATACTCCGAT -ACGGAAGGCATTGCATACTGGCAT -ACGGAAGGCATTGCATACCGAGAT -ACGGAAGGCATTGCATACTACCAC -ACGGAAGGCATTGCATACCAGAAC -ACGGAAGGCATTGCATACGTCTAC -ACGGAAGGCATTGCATACACGTAC -ACGGAAGGCATTGCATACAGTGAC -ACGGAAGGCATTGCATACCTGTAG -ACGGAAGGCATTGCATACCCTAAG -ACGGAAGGCATTGCATACGTTCAG -ACGGAAGGCATTGCATACGCATAG -ACGGAAGGCATTGCATACGACAAG -ACGGAAGGCATTGCATACAAGCAG -ACGGAAGGCATTGCATACCGTCAA -ACGGAAGGCATTGCATACGCTGAA -ACGGAAGGCATTGCATACAGTACG -ACGGAAGGCATTGCATACATCCGA -ACGGAAGGCATTGCATACATGGGA -ACGGAAGGCATTGCATACGTGCAA -ACGGAAGGCATTGCATACGAGGAA -ACGGAAGGCATTGCATACCAGGTA -ACGGAAGGCATTGCATACGACTCT -ACGGAAGGCATTGCATACAGTCCT -ACGGAAGGCATTGCATACTAAGCC -ACGGAAGGCATTGCATACATAGCC -ACGGAAGGCATTGCATACTAACCG -ACGGAAGGCATTGCATACATGCCA -ACGGAAGGCATTGCACTTGGAAAC -ACGGAAGGCATTGCACTTAACACC -ACGGAAGGCATTGCACTTATCGAG -ACGGAAGGCATTGCACTTCTCCTT -ACGGAAGGCATTGCACTTCCTGTT -ACGGAAGGCATTGCACTTCGGTTT -ACGGAAGGCATTGCACTTGTGGTT -ACGGAAGGCATTGCACTTGCCTTT -ACGGAAGGCATTGCACTTGGTCTT -ACGGAAGGCATTGCACTTACGCTT -ACGGAAGGCATTGCACTTAGCGTT -ACGGAAGGCATTGCACTTTTCGTC -ACGGAAGGCATTGCACTTTCTCTC -ACGGAAGGCATTGCACTTTGGATC -ACGGAAGGCATTGCACTTCACTTC -ACGGAAGGCATTGCACTTGTACTC -ACGGAAGGCATTGCACTTGATGTC -ACGGAAGGCATTGCACTTACAGTC -ACGGAAGGCATTGCACTTTTGCTG -ACGGAAGGCATTGCACTTTCCATG -ACGGAAGGCATTGCACTTTGTGTG -ACGGAAGGCATTGCACTTCTAGTG -ACGGAAGGCATTGCACTTCATCTG -ACGGAAGGCATTGCACTTGAGTTG -ACGGAAGGCATTGCACTTAGACTG -ACGGAAGGCATTGCACTTTCGGTA -ACGGAAGGCATTGCACTTTGCCTA -ACGGAAGGCATTGCACTTCCACTA -ACGGAAGGCATTGCACTTGGAGTA -ACGGAAGGCATTGCACTTTCGTCT -ACGGAAGGCATTGCACTTTGCACT -ACGGAAGGCATTGCACTTCTGACT -ACGGAAGGCATTGCACTTCAACCT -ACGGAAGGCATTGCACTTGCTACT -ACGGAAGGCATTGCACTTGGATCT -ACGGAAGGCATTGCACTTAAGGCT -ACGGAAGGCATTGCACTTTCAACC -ACGGAAGGCATTGCACTTTGTTCC -ACGGAAGGCATTGCACTTATTCCC -ACGGAAGGCATTGCACTTTTCTCG -ACGGAAGGCATTGCACTTTAGACG -ACGGAAGGCATTGCACTTGTAACG -ACGGAAGGCATTGCACTTACTTCG -ACGGAAGGCATTGCACTTTACGCA -ACGGAAGGCATTGCACTTCTTGCA -ACGGAAGGCATTGCACTTCGAACA -ACGGAAGGCATTGCACTTCAGTCA -ACGGAAGGCATTGCACTTGATCCA -ACGGAAGGCATTGCACTTACGACA -ACGGAAGGCATTGCACTTAGCTCA -ACGGAAGGCATTGCACTTTCACGT -ACGGAAGGCATTGCACTTCGTAGT -ACGGAAGGCATTGCACTTGTCAGT -ACGGAAGGCATTGCACTTGAAGGT -ACGGAAGGCATTGCACTTAACCGT -ACGGAAGGCATTGCACTTTTGTGC -ACGGAAGGCATTGCACTTCTAAGC -ACGGAAGGCATTGCACTTACTAGC -ACGGAAGGCATTGCACTTAGATGC -ACGGAAGGCATTGCACTTTGAAGG -ACGGAAGGCATTGCACTTCAATGG -ACGGAAGGCATTGCACTTATGAGG -ACGGAAGGCATTGCACTTAATGGG -ACGGAAGGCATTGCACTTTCCTGA -ACGGAAGGCATTGCACTTTAGCGA -ACGGAAGGCATTGCACTTCACAGA -ACGGAAGGCATTGCACTTGCAAGA -ACGGAAGGCATTGCACTTGGTTGA -ACGGAAGGCATTGCACTTTCCGAT -ACGGAAGGCATTGCACTTTGGCAT -ACGGAAGGCATTGCACTTCGAGAT -ACGGAAGGCATTGCACTTTACCAC -ACGGAAGGCATTGCACTTCAGAAC -ACGGAAGGCATTGCACTTGTCTAC -ACGGAAGGCATTGCACTTACGTAC -ACGGAAGGCATTGCACTTAGTGAC -ACGGAAGGCATTGCACTTCTGTAG -ACGGAAGGCATTGCACTTCCTAAG -ACGGAAGGCATTGCACTTGTTCAG -ACGGAAGGCATTGCACTTGCATAG -ACGGAAGGCATTGCACTTGACAAG -ACGGAAGGCATTGCACTTAAGCAG -ACGGAAGGCATTGCACTTCGTCAA -ACGGAAGGCATTGCACTTGCTGAA -ACGGAAGGCATTGCACTTAGTACG -ACGGAAGGCATTGCACTTATCCGA -ACGGAAGGCATTGCACTTATGGGA -ACGGAAGGCATTGCACTTGTGCAA -ACGGAAGGCATTGCACTTGAGGAA -ACGGAAGGCATTGCACTTCAGGTA -ACGGAAGGCATTGCACTTGACTCT -ACGGAAGGCATTGCACTTAGTCCT -ACGGAAGGCATTGCACTTTAAGCC -ACGGAAGGCATTGCACTTATAGCC -ACGGAAGGCATTGCACTTTAACCG -ACGGAAGGCATTGCACTTATGCCA -ACGGAAGGCATTACACGAGGAAAC -ACGGAAGGCATTACACGAAACACC -ACGGAAGGCATTACACGAATCGAG -ACGGAAGGCATTACACGACTCCTT -ACGGAAGGCATTACACGACCTGTT -ACGGAAGGCATTACACGACGGTTT -ACGGAAGGCATTACACGAGTGGTT -ACGGAAGGCATTACACGAGCCTTT -ACGGAAGGCATTACACGAGGTCTT -ACGGAAGGCATTACACGAACGCTT -ACGGAAGGCATTACACGAAGCGTT -ACGGAAGGCATTACACGATTCGTC -ACGGAAGGCATTACACGATCTCTC -ACGGAAGGCATTACACGATGGATC -ACGGAAGGCATTACACGACACTTC -ACGGAAGGCATTACACGAGTACTC -ACGGAAGGCATTACACGAGATGTC -ACGGAAGGCATTACACGAACAGTC -ACGGAAGGCATTACACGATTGCTG -ACGGAAGGCATTACACGATCCATG -ACGGAAGGCATTACACGATGTGTG -ACGGAAGGCATTACACGACTAGTG -ACGGAAGGCATTACACGACATCTG -ACGGAAGGCATTACACGAGAGTTG -ACGGAAGGCATTACACGAAGACTG -ACGGAAGGCATTACACGATCGGTA -ACGGAAGGCATTACACGATGCCTA -ACGGAAGGCATTACACGACCACTA -ACGGAAGGCATTACACGAGGAGTA -ACGGAAGGCATTACACGATCGTCT -ACGGAAGGCATTACACGATGCACT -ACGGAAGGCATTACACGACTGACT -ACGGAAGGCATTACACGACAACCT -ACGGAAGGCATTACACGAGCTACT -ACGGAAGGCATTACACGAGGATCT -ACGGAAGGCATTACACGAAAGGCT -ACGGAAGGCATTACACGATCAACC -ACGGAAGGCATTACACGATGTTCC -ACGGAAGGCATTACACGAATTCCC -ACGGAAGGCATTACACGATTCTCG -ACGGAAGGCATTACACGATAGACG -ACGGAAGGCATTACACGAGTAACG -ACGGAAGGCATTACACGAACTTCG -ACGGAAGGCATTACACGATACGCA -ACGGAAGGCATTACACGACTTGCA -ACGGAAGGCATTACACGACGAACA -ACGGAAGGCATTACACGACAGTCA -ACGGAAGGCATTACACGAGATCCA -ACGGAAGGCATTACACGAACGACA -ACGGAAGGCATTACACGAAGCTCA -ACGGAAGGCATTACACGATCACGT -ACGGAAGGCATTACACGACGTAGT -ACGGAAGGCATTACACGAGTCAGT -ACGGAAGGCATTACACGAGAAGGT -ACGGAAGGCATTACACGAAACCGT -ACGGAAGGCATTACACGATTGTGC -ACGGAAGGCATTACACGACTAAGC -ACGGAAGGCATTACACGAACTAGC -ACGGAAGGCATTACACGAAGATGC -ACGGAAGGCATTACACGATGAAGG -ACGGAAGGCATTACACGACAATGG -ACGGAAGGCATTACACGAATGAGG -ACGGAAGGCATTACACGAAATGGG -ACGGAAGGCATTACACGATCCTGA -ACGGAAGGCATTACACGATAGCGA -ACGGAAGGCATTACACGACACAGA -ACGGAAGGCATTACACGAGCAAGA -ACGGAAGGCATTACACGAGGTTGA -ACGGAAGGCATTACACGATCCGAT -ACGGAAGGCATTACACGATGGCAT -ACGGAAGGCATTACACGACGAGAT -ACGGAAGGCATTACACGATACCAC -ACGGAAGGCATTACACGACAGAAC -ACGGAAGGCATTACACGAGTCTAC -ACGGAAGGCATTACACGAACGTAC -ACGGAAGGCATTACACGAAGTGAC -ACGGAAGGCATTACACGACTGTAG -ACGGAAGGCATTACACGACCTAAG -ACGGAAGGCATTACACGAGTTCAG -ACGGAAGGCATTACACGAGCATAG -ACGGAAGGCATTACACGAGACAAG -ACGGAAGGCATTACACGAAAGCAG -ACGGAAGGCATTACACGACGTCAA -ACGGAAGGCATTACACGAGCTGAA -ACGGAAGGCATTACACGAAGTACG -ACGGAAGGCATTACACGAATCCGA -ACGGAAGGCATTACACGAATGGGA -ACGGAAGGCATTACACGAGTGCAA -ACGGAAGGCATTACACGAGAGGAA -ACGGAAGGCATTACACGACAGGTA -ACGGAAGGCATTACACGAGACTCT -ACGGAAGGCATTACACGAAGTCCT -ACGGAAGGCATTACACGATAAGCC -ACGGAAGGCATTACACGAATAGCC -ACGGAAGGCATTACACGATAACCG -ACGGAAGGCATTACACGAATGCCA -ACGGAAGGCATTTCACAGGGAAAC -ACGGAAGGCATTTCACAGAACACC -ACGGAAGGCATTTCACAGATCGAG -ACGGAAGGCATTTCACAGCTCCTT -ACGGAAGGCATTTCACAGCCTGTT -ACGGAAGGCATTTCACAGCGGTTT -ACGGAAGGCATTTCACAGGTGGTT -ACGGAAGGCATTTCACAGGCCTTT -ACGGAAGGCATTTCACAGGGTCTT -ACGGAAGGCATTTCACAGACGCTT -ACGGAAGGCATTTCACAGAGCGTT -ACGGAAGGCATTTCACAGTTCGTC -ACGGAAGGCATTTCACAGTCTCTC -ACGGAAGGCATTTCACAGTGGATC -ACGGAAGGCATTTCACAGCACTTC -ACGGAAGGCATTTCACAGGTACTC -ACGGAAGGCATTTCACAGGATGTC -ACGGAAGGCATTTCACAGACAGTC -ACGGAAGGCATTTCACAGTTGCTG -ACGGAAGGCATTTCACAGTCCATG -ACGGAAGGCATTTCACAGTGTGTG -ACGGAAGGCATTTCACAGCTAGTG -ACGGAAGGCATTTCACAGCATCTG -ACGGAAGGCATTTCACAGGAGTTG -ACGGAAGGCATTTCACAGAGACTG -ACGGAAGGCATTTCACAGTCGGTA -ACGGAAGGCATTTCACAGTGCCTA -ACGGAAGGCATTTCACAGCCACTA -ACGGAAGGCATTTCACAGGGAGTA -ACGGAAGGCATTTCACAGTCGTCT -ACGGAAGGCATTTCACAGTGCACT -ACGGAAGGCATTTCACAGCTGACT -ACGGAAGGCATTTCACAGCAACCT -ACGGAAGGCATTTCACAGGCTACT -ACGGAAGGCATTTCACAGGGATCT -ACGGAAGGCATTTCACAGAAGGCT -ACGGAAGGCATTTCACAGTCAACC -ACGGAAGGCATTTCACAGTGTTCC -ACGGAAGGCATTTCACAGATTCCC -ACGGAAGGCATTTCACAGTTCTCG -ACGGAAGGCATTTCACAGTAGACG -ACGGAAGGCATTTCACAGGTAACG -ACGGAAGGCATTTCACAGACTTCG -ACGGAAGGCATTTCACAGTACGCA -ACGGAAGGCATTTCACAGCTTGCA -ACGGAAGGCATTTCACAGCGAACA -ACGGAAGGCATTTCACAGCAGTCA -ACGGAAGGCATTTCACAGGATCCA -ACGGAAGGCATTTCACAGACGACA -ACGGAAGGCATTTCACAGAGCTCA -ACGGAAGGCATTTCACAGTCACGT -ACGGAAGGCATTTCACAGCGTAGT -ACGGAAGGCATTTCACAGGTCAGT -ACGGAAGGCATTTCACAGGAAGGT -ACGGAAGGCATTTCACAGAACCGT -ACGGAAGGCATTTCACAGTTGTGC -ACGGAAGGCATTTCACAGCTAAGC -ACGGAAGGCATTTCACAGACTAGC -ACGGAAGGCATTTCACAGAGATGC -ACGGAAGGCATTTCACAGTGAAGG -ACGGAAGGCATTTCACAGCAATGG -ACGGAAGGCATTTCACAGATGAGG -ACGGAAGGCATTTCACAGAATGGG -ACGGAAGGCATTTCACAGTCCTGA -ACGGAAGGCATTTCACAGTAGCGA -ACGGAAGGCATTTCACAGCACAGA -ACGGAAGGCATTTCACAGGCAAGA -ACGGAAGGCATTTCACAGGGTTGA -ACGGAAGGCATTTCACAGTCCGAT -ACGGAAGGCATTTCACAGTGGCAT -ACGGAAGGCATTTCACAGCGAGAT -ACGGAAGGCATTTCACAGTACCAC -ACGGAAGGCATTTCACAGCAGAAC -ACGGAAGGCATTTCACAGGTCTAC -ACGGAAGGCATTTCACAGACGTAC -ACGGAAGGCATTTCACAGAGTGAC -ACGGAAGGCATTTCACAGCTGTAG -ACGGAAGGCATTTCACAGCCTAAG -ACGGAAGGCATTTCACAGGTTCAG -ACGGAAGGCATTTCACAGGCATAG -ACGGAAGGCATTTCACAGGACAAG -ACGGAAGGCATTTCACAGAAGCAG -ACGGAAGGCATTTCACAGCGTCAA -ACGGAAGGCATTTCACAGGCTGAA -ACGGAAGGCATTTCACAGAGTACG -ACGGAAGGCATTTCACAGATCCGA -ACGGAAGGCATTTCACAGATGGGA -ACGGAAGGCATTTCACAGGTGCAA -ACGGAAGGCATTTCACAGGAGGAA -ACGGAAGGCATTTCACAGCAGGTA -ACGGAAGGCATTTCACAGGACTCT -ACGGAAGGCATTTCACAGAGTCCT -ACGGAAGGCATTTCACAGTAAGCC -ACGGAAGGCATTTCACAGATAGCC -ACGGAAGGCATTTCACAGTAACCG -ACGGAAGGCATTTCACAGATGCCA -ACGGAAGGCATTCCAGATGGAAAC -ACGGAAGGCATTCCAGATAACACC -ACGGAAGGCATTCCAGATATCGAG -ACGGAAGGCATTCCAGATCTCCTT -ACGGAAGGCATTCCAGATCCTGTT -ACGGAAGGCATTCCAGATCGGTTT -ACGGAAGGCATTCCAGATGTGGTT -ACGGAAGGCATTCCAGATGCCTTT -ACGGAAGGCATTCCAGATGGTCTT -ACGGAAGGCATTCCAGATACGCTT -ACGGAAGGCATTCCAGATAGCGTT -ACGGAAGGCATTCCAGATTTCGTC -ACGGAAGGCATTCCAGATTCTCTC -ACGGAAGGCATTCCAGATTGGATC -ACGGAAGGCATTCCAGATCACTTC -ACGGAAGGCATTCCAGATGTACTC -ACGGAAGGCATTCCAGATGATGTC -ACGGAAGGCATTCCAGATACAGTC -ACGGAAGGCATTCCAGATTTGCTG -ACGGAAGGCATTCCAGATTCCATG -ACGGAAGGCATTCCAGATTGTGTG -ACGGAAGGCATTCCAGATCTAGTG -ACGGAAGGCATTCCAGATCATCTG -ACGGAAGGCATTCCAGATGAGTTG -ACGGAAGGCATTCCAGATAGACTG -ACGGAAGGCATTCCAGATTCGGTA -ACGGAAGGCATTCCAGATTGCCTA -ACGGAAGGCATTCCAGATCCACTA -ACGGAAGGCATTCCAGATGGAGTA -ACGGAAGGCATTCCAGATTCGTCT -ACGGAAGGCATTCCAGATTGCACT -ACGGAAGGCATTCCAGATCTGACT -ACGGAAGGCATTCCAGATCAACCT -ACGGAAGGCATTCCAGATGCTACT -ACGGAAGGCATTCCAGATGGATCT -ACGGAAGGCATTCCAGATAAGGCT -ACGGAAGGCATTCCAGATTCAACC -ACGGAAGGCATTCCAGATTGTTCC -ACGGAAGGCATTCCAGATATTCCC -ACGGAAGGCATTCCAGATTTCTCG -ACGGAAGGCATTCCAGATTAGACG -ACGGAAGGCATTCCAGATGTAACG -ACGGAAGGCATTCCAGATACTTCG -ACGGAAGGCATTCCAGATTACGCA -ACGGAAGGCATTCCAGATCTTGCA -ACGGAAGGCATTCCAGATCGAACA -ACGGAAGGCATTCCAGATCAGTCA -ACGGAAGGCATTCCAGATGATCCA -ACGGAAGGCATTCCAGATACGACA -ACGGAAGGCATTCCAGATAGCTCA -ACGGAAGGCATTCCAGATTCACGT -ACGGAAGGCATTCCAGATCGTAGT -ACGGAAGGCATTCCAGATGTCAGT -ACGGAAGGCATTCCAGATGAAGGT -ACGGAAGGCATTCCAGATAACCGT -ACGGAAGGCATTCCAGATTTGTGC -ACGGAAGGCATTCCAGATCTAAGC -ACGGAAGGCATTCCAGATACTAGC -ACGGAAGGCATTCCAGATAGATGC -ACGGAAGGCATTCCAGATTGAAGG -ACGGAAGGCATTCCAGATCAATGG -ACGGAAGGCATTCCAGATATGAGG -ACGGAAGGCATTCCAGATAATGGG -ACGGAAGGCATTCCAGATTCCTGA -ACGGAAGGCATTCCAGATTAGCGA -ACGGAAGGCATTCCAGATCACAGA -ACGGAAGGCATTCCAGATGCAAGA -ACGGAAGGCATTCCAGATGGTTGA -ACGGAAGGCATTCCAGATTCCGAT -ACGGAAGGCATTCCAGATTGGCAT -ACGGAAGGCATTCCAGATCGAGAT -ACGGAAGGCATTCCAGATTACCAC -ACGGAAGGCATTCCAGATCAGAAC -ACGGAAGGCATTCCAGATGTCTAC -ACGGAAGGCATTCCAGATACGTAC -ACGGAAGGCATTCCAGATAGTGAC -ACGGAAGGCATTCCAGATCTGTAG -ACGGAAGGCATTCCAGATCCTAAG -ACGGAAGGCATTCCAGATGTTCAG -ACGGAAGGCATTCCAGATGCATAG -ACGGAAGGCATTCCAGATGACAAG -ACGGAAGGCATTCCAGATAAGCAG -ACGGAAGGCATTCCAGATCGTCAA -ACGGAAGGCATTCCAGATGCTGAA -ACGGAAGGCATTCCAGATAGTACG -ACGGAAGGCATTCCAGATATCCGA -ACGGAAGGCATTCCAGATATGGGA -ACGGAAGGCATTCCAGATGTGCAA -ACGGAAGGCATTCCAGATGAGGAA -ACGGAAGGCATTCCAGATCAGGTA -ACGGAAGGCATTCCAGATGACTCT -ACGGAAGGCATTCCAGATAGTCCT -ACGGAAGGCATTCCAGATTAAGCC -ACGGAAGGCATTCCAGATATAGCC -ACGGAAGGCATTCCAGATTAACCG -ACGGAAGGCATTCCAGATATGCCA -ACGGAAGGCATTACAACGGGAAAC -ACGGAAGGCATTACAACGAACACC -ACGGAAGGCATTACAACGATCGAG -ACGGAAGGCATTACAACGCTCCTT -ACGGAAGGCATTACAACGCCTGTT -ACGGAAGGCATTACAACGCGGTTT -ACGGAAGGCATTACAACGGTGGTT -ACGGAAGGCATTACAACGGCCTTT -ACGGAAGGCATTACAACGGGTCTT -ACGGAAGGCATTACAACGACGCTT -ACGGAAGGCATTACAACGAGCGTT -ACGGAAGGCATTACAACGTTCGTC -ACGGAAGGCATTACAACGTCTCTC -ACGGAAGGCATTACAACGTGGATC -ACGGAAGGCATTACAACGCACTTC -ACGGAAGGCATTACAACGGTACTC -ACGGAAGGCATTACAACGGATGTC -ACGGAAGGCATTACAACGACAGTC -ACGGAAGGCATTACAACGTTGCTG -ACGGAAGGCATTACAACGTCCATG -ACGGAAGGCATTACAACGTGTGTG -ACGGAAGGCATTACAACGCTAGTG -ACGGAAGGCATTACAACGCATCTG -ACGGAAGGCATTACAACGGAGTTG -ACGGAAGGCATTACAACGAGACTG -ACGGAAGGCATTACAACGTCGGTA -ACGGAAGGCATTACAACGTGCCTA -ACGGAAGGCATTACAACGCCACTA -ACGGAAGGCATTACAACGGGAGTA -ACGGAAGGCATTACAACGTCGTCT -ACGGAAGGCATTACAACGTGCACT -ACGGAAGGCATTACAACGCTGACT -ACGGAAGGCATTACAACGCAACCT -ACGGAAGGCATTACAACGGCTACT -ACGGAAGGCATTACAACGGGATCT -ACGGAAGGCATTACAACGAAGGCT -ACGGAAGGCATTACAACGTCAACC -ACGGAAGGCATTACAACGTGTTCC -ACGGAAGGCATTACAACGATTCCC -ACGGAAGGCATTACAACGTTCTCG -ACGGAAGGCATTACAACGTAGACG -ACGGAAGGCATTACAACGGTAACG -ACGGAAGGCATTACAACGACTTCG -ACGGAAGGCATTACAACGTACGCA -ACGGAAGGCATTACAACGCTTGCA -ACGGAAGGCATTACAACGCGAACA -ACGGAAGGCATTACAACGCAGTCA -ACGGAAGGCATTACAACGGATCCA -ACGGAAGGCATTACAACGACGACA -ACGGAAGGCATTACAACGAGCTCA -ACGGAAGGCATTACAACGTCACGT -ACGGAAGGCATTACAACGCGTAGT -ACGGAAGGCATTACAACGGTCAGT -ACGGAAGGCATTACAACGGAAGGT -ACGGAAGGCATTACAACGAACCGT -ACGGAAGGCATTACAACGTTGTGC -ACGGAAGGCATTACAACGCTAAGC -ACGGAAGGCATTACAACGACTAGC -ACGGAAGGCATTACAACGAGATGC -ACGGAAGGCATTACAACGTGAAGG -ACGGAAGGCATTACAACGCAATGG -ACGGAAGGCATTACAACGATGAGG -ACGGAAGGCATTACAACGAATGGG -ACGGAAGGCATTACAACGTCCTGA -ACGGAAGGCATTACAACGTAGCGA -ACGGAAGGCATTACAACGCACAGA -ACGGAAGGCATTACAACGGCAAGA -ACGGAAGGCATTACAACGGGTTGA -ACGGAAGGCATTACAACGTCCGAT -ACGGAAGGCATTACAACGTGGCAT -ACGGAAGGCATTACAACGCGAGAT -ACGGAAGGCATTACAACGTACCAC -ACGGAAGGCATTACAACGCAGAAC -ACGGAAGGCATTACAACGGTCTAC -ACGGAAGGCATTACAACGACGTAC -ACGGAAGGCATTACAACGAGTGAC -ACGGAAGGCATTACAACGCTGTAG -ACGGAAGGCATTACAACGCCTAAG -ACGGAAGGCATTACAACGGTTCAG -ACGGAAGGCATTACAACGGCATAG -ACGGAAGGCATTACAACGGACAAG -ACGGAAGGCATTACAACGAAGCAG -ACGGAAGGCATTACAACGCGTCAA -ACGGAAGGCATTACAACGGCTGAA -ACGGAAGGCATTACAACGAGTACG -ACGGAAGGCATTACAACGATCCGA -ACGGAAGGCATTACAACGATGGGA -ACGGAAGGCATTACAACGGTGCAA -ACGGAAGGCATTACAACGGAGGAA -ACGGAAGGCATTACAACGCAGGTA -ACGGAAGGCATTACAACGGACTCT -ACGGAAGGCATTACAACGAGTCCT -ACGGAAGGCATTACAACGTAAGCC -ACGGAAGGCATTACAACGATAGCC -ACGGAAGGCATTACAACGTAACCG -ACGGAAGGCATTACAACGATGCCA -ACGGAAGGCATTTCAAGCGGAAAC -ACGGAAGGCATTTCAAGCAACACC -ACGGAAGGCATTTCAAGCATCGAG -ACGGAAGGCATTTCAAGCCTCCTT -ACGGAAGGCATTTCAAGCCCTGTT -ACGGAAGGCATTTCAAGCCGGTTT -ACGGAAGGCATTTCAAGCGTGGTT -ACGGAAGGCATTTCAAGCGCCTTT -ACGGAAGGCATTTCAAGCGGTCTT -ACGGAAGGCATTTCAAGCACGCTT -ACGGAAGGCATTTCAAGCAGCGTT -ACGGAAGGCATTTCAAGCTTCGTC -ACGGAAGGCATTTCAAGCTCTCTC -ACGGAAGGCATTTCAAGCTGGATC -ACGGAAGGCATTTCAAGCCACTTC -ACGGAAGGCATTTCAAGCGTACTC -ACGGAAGGCATTTCAAGCGATGTC -ACGGAAGGCATTTCAAGCACAGTC -ACGGAAGGCATTTCAAGCTTGCTG -ACGGAAGGCATTTCAAGCTCCATG -ACGGAAGGCATTTCAAGCTGTGTG -ACGGAAGGCATTTCAAGCCTAGTG -ACGGAAGGCATTTCAAGCCATCTG -ACGGAAGGCATTTCAAGCGAGTTG -ACGGAAGGCATTTCAAGCAGACTG -ACGGAAGGCATTTCAAGCTCGGTA -ACGGAAGGCATTTCAAGCTGCCTA -ACGGAAGGCATTTCAAGCCCACTA -ACGGAAGGCATTTCAAGCGGAGTA -ACGGAAGGCATTTCAAGCTCGTCT -ACGGAAGGCATTTCAAGCTGCACT -ACGGAAGGCATTTCAAGCCTGACT -ACGGAAGGCATTTCAAGCCAACCT -ACGGAAGGCATTTCAAGCGCTACT -ACGGAAGGCATTTCAAGCGGATCT -ACGGAAGGCATTTCAAGCAAGGCT -ACGGAAGGCATTTCAAGCTCAACC -ACGGAAGGCATTTCAAGCTGTTCC -ACGGAAGGCATTTCAAGCATTCCC -ACGGAAGGCATTTCAAGCTTCTCG -ACGGAAGGCATTTCAAGCTAGACG -ACGGAAGGCATTTCAAGCGTAACG -ACGGAAGGCATTTCAAGCACTTCG -ACGGAAGGCATTTCAAGCTACGCA -ACGGAAGGCATTTCAAGCCTTGCA -ACGGAAGGCATTTCAAGCCGAACA -ACGGAAGGCATTTCAAGCCAGTCA -ACGGAAGGCATTTCAAGCGATCCA -ACGGAAGGCATTTCAAGCACGACA -ACGGAAGGCATTTCAAGCAGCTCA -ACGGAAGGCATTTCAAGCTCACGT -ACGGAAGGCATTTCAAGCCGTAGT -ACGGAAGGCATTTCAAGCGTCAGT -ACGGAAGGCATTTCAAGCGAAGGT -ACGGAAGGCATTTCAAGCAACCGT -ACGGAAGGCATTTCAAGCTTGTGC -ACGGAAGGCATTTCAAGCCTAAGC -ACGGAAGGCATTTCAAGCACTAGC -ACGGAAGGCATTTCAAGCAGATGC -ACGGAAGGCATTTCAAGCTGAAGG -ACGGAAGGCATTTCAAGCCAATGG -ACGGAAGGCATTTCAAGCATGAGG -ACGGAAGGCATTTCAAGCAATGGG -ACGGAAGGCATTTCAAGCTCCTGA -ACGGAAGGCATTTCAAGCTAGCGA -ACGGAAGGCATTTCAAGCCACAGA -ACGGAAGGCATTTCAAGCGCAAGA -ACGGAAGGCATTTCAAGCGGTTGA -ACGGAAGGCATTTCAAGCTCCGAT -ACGGAAGGCATTTCAAGCTGGCAT -ACGGAAGGCATTTCAAGCCGAGAT -ACGGAAGGCATTTCAAGCTACCAC -ACGGAAGGCATTTCAAGCCAGAAC -ACGGAAGGCATTTCAAGCGTCTAC -ACGGAAGGCATTTCAAGCACGTAC -ACGGAAGGCATTTCAAGCAGTGAC -ACGGAAGGCATTTCAAGCCTGTAG -ACGGAAGGCATTTCAAGCCCTAAG -ACGGAAGGCATTTCAAGCGTTCAG -ACGGAAGGCATTTCAAGCGCATAG -ACGGAAGGCATTTCAAGCGACAAG -ACGGAAGGCATTTCAAGCAAGCAG -ACGGAAGGCATTTCAAGCCGTCAA -ACGGAAGGCATTTCAAGCGCTGAA -ACGGAAGGCATTTCAAGCAGTACG -ACGGAAGGCATTTCAAGCATCCGA -ACGGAAGGCATTTCAAGCATGGGA -ACGGAAGGCATTTCAAGCGTGCAA -ACGGAAGGCATTTCAAGCGAGGAA -ACGGAAGGCATTTCAAGCCAGGTA -ACGGAAGGCATTTCAAGCGACTCT -ACGGAAGGCATTTCAAGCAGTCCT -ACGGAAGGCATTTCAAGCTAAGCC -ACGGAAGGCATTTCAAGCATAGCC -ACGGAAGGCATTTCAAGCTAACCG -ACGGAAGGCATTTCAAGCATGCCA -ACGGAAGGCATTCGTTCAGGAAAC -ACGGAAGGCATTCGTTCAAACACC -ACGGAAGGCATTCGTTCAATCGAG -ACGGAAGGCATTCGTTCACTCCTT -ACGGAAGGCATTCGTTCACCTGTT -ACGGAAGGCATTCGTTCACGGTTT -ACGGAAGGCATTCGTTCAGTGGTT -ACGGAAGGCATTCGTTCAGCCTTT -ACGGAAGGCATTCGTTCAGGTCTT -ACGGAAGGCATTCGTTCAACGCTT -ACGGAAGGCATTCGTTCAAGCGTT -ACGGAAGGCATTCGTTCATTCGTC -ACGGAAGGCATTCGTTCATCTCTC -ACGGAAGGCATTCGTTCATGGATC -ACGGAAGGCATTCGTTCACACTTC -ACGGAAGGCATTCGTTCAGTACTC -ACGGAAGGCATTCGTTCAGATGTC -ACGGAAGGCATTCGTTCAACAGTC -ACGGAAGGCATTCGTTCATTGCTG -ACGGAAGGCATTCGTTCATCCATG -ACGGAAGGCATTCGTTCATGTGTG -ACGGAAGGCATTCGTTCACTAGTG -ACGGAAGGCATTCGTTCACATCTG -ACGGAAGGCATTCGTTCAGAGTTG -ACGGAAGGCATTCGTTCAAGACTG -ACGGAAGGCATTCGTTCATCGGTA -ACGGAAGGCATTCGTTCATGCCTA -ACGGAAGGCATTCGTTCACCACTA -ACGGAAGGCATTCGTTCAGGAGTA -ACGGAAGGCATTCGTTCATCGTCT -ACGGAAGGCATTCGTTCATGCACT -ACGGAAGGCATTCGTTCACTGACT -ACGGAAGGCATTCGTTCACAACCT -ACGGAAGGCATTCGTTCAGCTACT -ACGGAAGGCATTCGTTCAGGATCT -ACGGAAGGCATTCGTTCAAAGGCT -ACGGAAGGCATTCGTTCATCAACC -ACGGAAGGCATTCGTTCATGTTCC -ACGGAAGGCATTCGTTCAATTCCC -ACGGAAGGCATTCGTTCATTCTCG -ACGGAAGGCATTCGTTCATAGACG -ACGGAAGGCATTCGTTCAGTAACG -ACGGAAGGCATTCGTTCAACTTCG -ACGGAAGGCATTCGTTCATACGCA -ACGGAAGGCATTCGTTCACTTGCA -ACGGAAGGCATTCGTTCACGAACA -ACGGAAGGCATTCGTTCACAGTCA -ACGGAAGGCATTCGTTCAGATCCA -ACGGAAGGCATTCGTTCAACGACA -ACGGAAGGCATTCGTTCAAGCTCA -ACGGAAGGCATTCGTTCATCACGT -ACGGAAGGCATTCGTTCACGTAGT -ACGGAAGGCATTCGTTCAGTCAGT -ACGGAAGGCATTCGTTCAGAAGGT -ACGGAAGGCATTCGTTCAAACCGT -ACGGAAGGCATTCGTTCATTGTGC -ACGGAAGGCATTCGTTCACTAAGC -ACGGAAGGCATTCGTTCAACTAGC -ACGGAAGGCATTCGTTCAAGATGC -ACGGAAGGCATTCGTTCATGAAGG -ACGGAAGGCATTCGTTCACAATGG -ACGGAAGGCATTCGTTCAATGAGG -ACGGAAGGCATTCGTTCAAATGGG -ACGGAAGGCATTCGTTCATCCTGA -ACGGAAGGCATTCGTTCATAGCGA -ACGGAAGGCATTCGTTCACACAGA -ACGGAAGGCATTCGTTCAGCAAGA -ACGGAAGGCATTCGTTCAGGTTGA -ACGGAAGGCATTCGTTCATCCGAT -ACGGAAGGCATTCGTTCATGGCAT -ACGGAAGGCATTCGTTCACGAGAT -ACGGAAGGCATTCGTTCATACCAC -ACGGAAGGCATTCGTTCACAGAAC -ACGGAAGGCATTCGTTCAGTCTAC -ACGGAAGGCATTCGTTCAACGTAC -ACGGAAGGCATTCGTTCAAGTGAC -ACGGAAGGCATTCGTTCACTGTAG -ACGGAAGGCATTCGTTCACCTAAG -ACGGAAGGCATTCGTTCAGTTCAG -ACGGAAGGCATTCGTTCAGCATAG -ACGGAAGGCATTCGTTCAGACAAG -ACGGAAGGCATTCGTTCAAAGCAG -ACGGAAGGCATTCGTTCACGTCAA -ACGGAAGGCATTCGTTCAGCTGAA -ACGGAAGGCATTCGTTCAAGTACG -ACGGAAGGCATTCGTTCAATCCGA -ACGGAAGGCATTCGTTCAATGGGA -ACGGAAGGCATTCGTTCAGTGCAA -ACGGAAGGCATTCGTTCAGAGGAA -ACGGAAGGCATTCGTTCACAGGTA -ACGGAAGGCATTCGTTCAGACTCT -ACGGAAGGCATTCGTTCAAGTCCT -ACGGAAGGCATTCGTTCATAAGCC -ACGGAAGGCATTCGTTCAATAGCC -ACGGAAGGCATTCGTTCATAACCG -ACGGAAGGCATTCGTTCAATGCCA -ACGGAAGGCATTAGTCGTGGAAAC -ACGGAAGGCATTAGTCGTAACACC -ACGGAAGGCATTAGTCGTATCGAG -ACGGAAGGCATTAGTCGTCTCCTT -ACGGAAGGCATTAGTCGTCCTGTT -ACGGAAGGCATTAGTCGTCGGTTT -ACGGAAGGCATTAGTCGTGTGGTT -ACGGAAGGCATTAGTCGTGCCTTT -ACGGAAGGCATTAGTCGTGGTCTT -ACGGAAGGCATTAGTCGTACGCTT -ACGGAAGGCATTAGTCGTAGCGTT -ACGGAAGGCATTAGTCGTTTCGTC -ACGGAAGGCATTAGTCGTTCTCTC -ACGGAAGGCATTAGTCGTTGGATC -ACGGAAGGCATTAGTCGTCACTTC -ACGGAAGGCATTAGTCGTGTACTC -ACGGAAGGCATTAGTCGTGATGTC -ACGGAAGGCATTAGTCGTACAGTC -ACGGAAGGCATTAGTCGTTTGCTG -ACGGAAGGCATTAGTCGTTCCATG -ACGGAAGGCATTAGTCGTTGTGTG -ACGGAAGGCATTAGTCGTCTAGTG -ACGGAAGGCATTAGTCGTCATCTG -ACGGAAGGCATTAGTCGTGAGTTG -ACGGAAGGCATTAGTCGTAGACTG -ACGGAAGGCATTAGTCGTTCGGTA -ACGGAAGGCATTAGTCGTTGCCTA -ACGGAAGGCATTAGTCGTCCACTA -ACGGAAGGCATTAGTCGTGGAGTA -ACGGAAGGCATTAGTCGTTCGTCT -ACGGAAGGCATTAGTCGTTGCACT -ACGGAAGGCATTAGTCGTCTGACT -ACGGAAGGCATTAGTCGTCAACCT -ACGGAAGGCATTAGTCGTGCTACT -ACGGAAGGCATTAGTCGTGGATCT -ACGGAAGGCATTAGTCGTAAGGCT -ACGGAAGGCATTAGTCGTTCAACC -ACGGAAGGCATTAGTCGTTGTTCC -ACGGAAGGCATTAGTCGTATTCCC -ACGGAAGGCATTAGTCGTTTCTCG -ACGGAAGGCATTAGTCGTTAGACG -ACGGAAGGCATTAGTCGTGTAACG -ACGGAAGGCATTAGTCGTACTTCG -ACGGAAGGCATTAGTCGTTACGCA -ACGGAAGGCATTAGTCGTCTTGCA -ACGGAAGGCATTAGTCGTCGAACA -ACGGAAGGCATTAGTCGTCAGTCA -ACGGAAGGCATTAGTCGTGATCCA -ACGGAAGGCATTAGTCGTACGACA -ACGGAAGGCATTAGTCGTAGCTCA -ACGGAAGGCATTAGTCGTTCACGT -ACGGAAGGCATTAGTCGTCGTAGT -ACGGAAGGCATTAGTCGTGTCAGT -ACGGAAGGCATTAGTCGTGAAGGT -ACGGAAGGCATTAGTCGTAACCGT -ACGGAAGGCATTAGTCGTTTGTGC -ACGGAAGGCATTAGTCGTCTAAGC -ACGGAAGGCATTAGTCGTACTAGC -ACGGAAGGCATTAGTCGTAGATGC -ACGGAAGGCATTAGTCGTTGAAGG -ACGGAAGGCATTAGTCGTCAATGG -ACGGAAGGCATTAGTCGTATGAGG -ACGGAAGGCATTAGTCGTAATGGG -ACGGAAGGCATTAGTCGTTCCTGA -ACGGAAGGCATTAGTCGTTAGCGA -ACGGAAGGCATTAGTCGTCACAGA -ACGGAAGGCATTAGTCGTGCAAGA -ACGGAAGGCATTAGTCGTGGTTGA -ACGGAAGGCATTAGTCGTTCCGAT -ACGGAAGGCATTAGTCGTTGGCAT -ACGGAAGGCATTAGTCGTCGAGAT -ACGGAAGGCATTAGTCGTTACCAC -ACGGAAGGCATTAGTCGTCAGAAC -ACGGAAGGCATTAGTCGTGTCTAC -ACGGAAGGCATTAGTCGTACGTAC -ACGGAAGGCATTAGTCGTAGTGAC -ACGGAAGGCATTAGTCGTCTGTAG -ACGGAAGGCATTAGTCGTCCTAAG -ACGGAAGGCATTAGTCGTGTTCAG -ACGGAAGGCATTAGTCGTGCATAG -ACGGAAGGCATTAGTCGTGACAAG -ACGGAAGGCATTAGTCGTAAGCAG -ACGGAAGGCATTAGTCGTCGTCAA -ACGGAAGGCATTAGTCGTGCTGAA -ACGGAAGGCATTAGTCGTAGTACG -ACGGAAGGCATTAGTCGTATCCGA -ACGGAAGGCATTAGTCGTATGGGA -ACGGAAGGCATTAGTCGTGTGCAA -ACGGAAGGCATTAGTCGTGAGGAA -ACGGAAGGCATTAGTCGTCAGGTA -ACGGAAGGCATTAGTCGTGACTCT -ACGGAAGGCATTAGTCGTAGTCCT -ACGGAAGGCATTAGTCGTTAAGCC -ACGGAAGGCATTAGTCGTATAGCC -ACGGAAGGCATTAGTCGTTAACCG -ACGGAAGGCATTAGTCGTATGCCA -ACGGAAGGCATTAGTGTCGGAAAC -ACGGAAGGCATTAGTGTCAACACC -ACGGAAGGCATTAGTGTCATCGAG -ACGGAAGGCATTAGTGTCCTCCTT -ACGGAAGGCATTAGTGTCCCTGTT -ACGGAAGGCATTAGTGTCCGGTTT -ACGGAAGGCATTAGTGTCGTGGTT -ACGGAAGGCATTAGTGTCGCCTTT -ACGGAAGGCATTAGTGTCGGTCTT -ACGGAAGGCATTAGTGTCACGCTT -ACGGAAGGCATTAGTGTCAGCGTT -ACGGAAGGCATTAGTGTCTTCGTC -ACGGAAGGCATTAGTGTCTCTCTC -ACGGAAGGCATTAGTGTCTGGATC -ACGGAAGGCATTAGTGTCCACTTC -ACGGAAGGCATTAGTGTCGTACTC -ACGGAAGGCATTAGTGTCGATGTC -ACGGAAGGCATTAGTGTCACAGTC -ACGGAAGGCATTAGTGTCTTGCTG -ACGGAAGGCATTAGTGTCTCCATG -ACGGAAGGCATTAGTGTCTGTGTG -ACGGAAGGCATTAGTGTCCTAGTG -ACGGAAGGCATTAGTGTCCATCTG -ACGGAAGGCATTAGTGTCGAGTTG -ACGGAAGGCATTAGTGTCAGACTG -ACGGAAGGCATTAGTGTCTCGGTA -ACGGAAGGCATTAGTGTCTGCCTA -ACGGAAGGCATTAGTGTCCCACTA -ACGGAAGGCATTAGTGTCGGAGTA -ACGGAAGGCATTAGTGTCTCGTCT -ACGGAAGGCATTAGTGTCTGCACT -ACGGAAGGCATTAGTGTCCTGACT -ACGGAAGGCATTAGTGTCCAACCT -ACGGAAGGCATTAGTGTCGCTACT -ACGGAAGGCATTAGTGTCGGATCT -ACGGAAGGCATTAGTGTCAAGGCT -ACGGAAGGCATTAGTGTCTCAACC -ACGGAAGGCATTAGTGTCTGTTCC -ACGGAAGGCATTAGTGTCATTCCC -ACGGAAGGCATTAGTGTCTTCTCG -ACGGAAGGCATTAGTGTCTAGACG -ACGGAAGGCATTAGTGTCGTAACG -ACGGAAGGCATTAGTGTCACTTCG -ACGGAAGGCATTAGTGTCTACGCA -ACGGAAGGCATTAGTGTCCTTGCA -ACGGAAGGCATTAGTGTCCGAACA -ACGGAAGGCATTAGTGTCCAGTCA -ACGGAAGGCATTAGTGTCGATCCA -ACGGAAGGCATTAGTGTCACGACA -ACGGAAGGCATTAGTGTCAGCTCA -ACGGAAGGCATTAGTGTCTCACGT -ACGGAAGGCATTAGTGTCCGTAGT -ACGGAAGGCATTAGTGTCGTCAGT -ACGGAAGGCATTAGTGTCGAAGGT -ACGGAAGGCATTAGTGTCAACCGT -ACGGAAGGCATTAGTGTCTTGTGC -ACGGAAGGCATTAGTGTCCTAAGC -ACGGAAGGCATTAGTGTCACTAGC -ACGGAAGGCATTAGTGTCAGATGC -ACGGAAGGCATTAGTGTCTGAAGG -ACGGAAGGCATTAGTGTCCAATGG -ACGGAAGGCATTAGTGTCATGAGG -ACGGAAGGCATTAGTGTCAATGGG -ACGGAAGGCATTAGTGTCTCCTGA -ACGGAAGGCATTAGTGTCTAGCGA -ACGGAAGGCATTAGTGTCCACAGA -ACGGAAGGCATTAGTGTCGCAAGA -ACGGAAGGCATTAGTGTCGGTTGA -ACGGAAGGCATTAGTGTCTCCGAT -ACGGAAGGCATTAGTGTCTGGCAT -ACGGAAGGCATTAGTGTCCGAGAT -ACGGAAGGCATTAGTGTCTACCAC -ACGGAAGGCATTAGTGTCCAGAAC -ACGGAAGGCATTAGTGTCGTCTAC -ACGGAAGGCATTAGTGTCACGTAC -ACGGAAGGCATTAGTGTCAGTGAC -ACGGAAGGCATTAGTGTCCTGTAG -ACGGAAGGCATTAGTGTCCCTAAG -ACGGAAGGCATTAGTGTCGTTCAG -ACGGAAGGCATTAGTGTCGCATAG -ACGGAAGGCATTAGTGTCGACAAG -ACGGAAGGCATTAGTGTCAAGCAG -ACGGAAGGCATTAGTGTCCGTCAA -ACGGAAGGCATTAGTGTCGCTGAA -ACGGAAGGCATTAGTGTCAGTACG -ACGGAAGGCATTAGTGTCATCCGA -ACGGAAGGCATTAGTGTCATGGGA -ACGGAAGGCATTAGTGTCGTGCAA -ACGGAAGGCATTAGTGTCGAGGAA -ACGGAAGGCATTAGTGTCCAGGTA -ACGGAAGGCATTAGTGTCGACTCT -ACGGAAGGCATTAGTGTCAGTCCT -ACGGAAGGCATTAGTGTCTAAGCC -ACGGAAGGCATTAGTGTCATAGCC -ACGGAAGGCATTAGTGTCTAACCG -ACGGAAGGCATTAGTGTCATGCCA -ACGGAAGGCATTGGTGAAGGAAAC -ACGGAAGGCATTGGTGAAAACACC -ACGGAAGGCATTGGTGAAATCGAG -ACGGAAGGCATTGGTGAACTCCTT -ACGGAAGGCATTGGTGAACCTGTT -ACGGAAGGCATTGGTGAACGGTTT -ACGGAAGGCATTGGTGAAGTGGTT -ACGGAAGGCATTGGTGAAGCCTTT -ACGGAAGGCATTGGTGAAGGTCTT -ACGGAAGGCATTGGTGAAACGCTT -ACGGAAGGCATTGGTGAAAGCGTT -ACGGAAGGCATTGGTGAATTCGTC -ACGGAAGGCATTGGTGAATCTCTC -ACGGAAGGCATTGGTGAATGGATC -ACGGAAGGCATTGGTGAACACTTC -ACGGAAGGCATTGGTGAAGTACTC -ACGGAAGGCATTGGTGAAGATGTC -ACGGAAGGCATTGGTGAAACAGTC -ACGGAAGGCATTGGTGAATTGCTG -ACGGAAGGCATTGGTGAATCCATG -ACGGAAGGCATTGGTGAATGTGTG -ACGGAAGGCATTGGTGAACTAGTG -ACGGAAGGCATTGGTGAACATCTG -ACGGAAGGCATTGGTGAAGAGTTG -ACGGAAGGCATTGGTGAAAGACTG -ACGGAAGGCATTGGTGAATCGGTA -ACGGAAGGCATTGGTGAATGCCTA -ACGGAAGGCATTGGTGAACCACTA -ACGGAAGGCATTGGTGAAGGAGTA -ACGGAAGGCATTGGTGAATCGTCT -ACGGAAGGCATTGGTGAATGCACT -ACGGAAGGCATTGGTGAACTGACT -ACGGAAGGCATTGGTGAACAACCT -ACGGAAGGCATTGGTGAAGCTACT -ACGGAAGGCATTGGTGAAGGATCT -ACGGAAGGCATTGGTGAAAAGGCT -ACGGAAGGCATTGGTGAATCAACC -ACGGAAGGCATTGGTGAATGTTCC -ACGGAAGGCATTGGTGAAATTCCC -ACGGAAGGCATTGGTGAATTCTCG -ACGGAAGGCATTGGTGAATAGACG -ACGGAAGGCATTGGTGAAGTAACG -ACGGAAGGCATTGGTGAAACTTCG -ACGGAAGGCATTGGTGAATACGCA -ACGGAAGGCATTGGTGAACTTGCA -ACGGAAGGCATTGGTGAACGAACA -ACGGAAGGCATTGGTGAACAGTCA -ACGGAAGGCATTGGTGAAGATCCA -ACGGAAGGCATTGGTGAAACGACA -ACGGAAGGCATTGGTGAAAGCTCA -ACGGAAGGCATTGGTGAATCACGT -ACGGAAGGCATTGGTGAACGTAGT -ACGGAAGGCATTGGTGAAGTCAGT -ACGGAAGGCATTGGTGAAGAAGGT -ACGGAAGGCATTGGTGAAAACCGT -ACGGAAGGCATTGGTGAATTGTGC -ACGGAAGGCATTGGTGAACTAAGC -ACGGAAGGCATTGGTGAAACTAGC -ACGGAAGGCATTGGTGAAAGATGC -ACGGAAGGCATTGGTGAATGAAGG -ACGGAAGGCATTGGTGAACAATGG -ACGGAAGGCATTGGTGAAATGAGG -ACGGAAGGCATTGGTGAAAATGGG -ACGGAAGGCATTGGTGAATCCTGA -ACGGAAGGCATTGGTGAATAGCGA -ACGGAAGGCATTGGTGAACACAGA -ACGGAAGGCATTGGTGAAGCAAGA -ACGGAAGGCATTGGTGAAGGTTGA -ACGGAAGGCATTGGTGAATCCGAT -ACGGAAGGCATTGGTGAATGGCAT -ACGGAAGGCATTGGTGAACGAGAT -ACGGAAGGCATTGGTGAATACCAC -ACGGAAGGCATTGGTGAACAGAAC -ACGGAAGGCATTGGTGAAGTCTAC -ACGGAAGGCATTGGTGAAACGTAC -ACGGAAGGCATTGGTGAAAGTGAC -ACGGAAGGCATTGGTGAACTGTAG -ACGGAAGGCATTGGTGAACCTAAG -ACGGAAGGCATTGGTGAAGTTCAG -ACGGAAGGCATTGGTGAAGCATAG -ACGGAAGGCATTGGTGAAGACAAG -ACGGAAGGCATTGGTGAAAAGCAG -ACGGAAGGCATTGGTGAACGTCAA -ACGGAAGGCATTGGTGAAGCTGAA -ACGGAAGGCATTGGTGAAAGTACG -ACGGAAGGCATTGGTGAAATCCGA -ACGGAAGGCATTGGTGAAATGGGA -ACGGAAGGCATTGGTGAAGTGCAA -ACGGAAGGCATTGGTGAAGAGGAA -ACGGAAGGCATTGGTGAACAGGTA -ACGGAAGGCATTGGTGAAGACTCT -ACGGAAGGCATTGGTGAAAGTCCT -ACGGAAGGCATTGGTGAATAAGCC -ACGGAAGGCATTGGTGAAATAGCC -ACGGAAGGCATTGGTGAATAACCG -ACGGAAGGCATTGGTGAAATGCCA -ACGGAAGGCATTCGTAACGGAAAC -ACGGAAGGCATTCGTAACAACACC -ACGGAAGGCATTCGTAACATCGAG -ACGGAAGGCATTCGTAACCTCCTT -ACGGAAGGCATTCGTAACCCTGTT -ACGGAAGGCATTCGTAACCGGTTT -ACGGAAGGCATTCGTAACGTGGTT -ACGGAAGGCATTCGTAACGCCTTT -ACGGAAGGCATTCGTAACGGTCTT -ACGGAAGGCATTCGTAACACGCTT -ACGGAAGGCATTCGTAACAGCGTT -ACGGAAGGCATTCGTAACTTCGTC -ACGGAAGGCATTCGTAACTCTCTC -ACGGAAGGCATTCGTAACTGGATC -ACGGAAGGCATTCGTAACCACTTC -ACGGAAGGCATTCGTAACGTACTC -ACGGAAGGCATTCGTAACGATGTC -ACGGAAGGCATTCGTAACACAGTC -ACGGAAGGCATTCGTAACTTGCTG -ACGGAAGGCATTCGTAACTCCATG -ACGGAAGGCATTCGTAACTGTGTG -ACGGAAGGCATTCGTAACCTAGTG -ACGGAAGGCATTCGTAACCATCTG -ACGGAAGGCATTCGTAACGAGTTG -ACGGAAGGCATTCGTAACAGACTG -ACGGAAGGCATTCGTAACTCGGTA -ACGGAAGGCATTCGTAACTGCCTA -ACGGAAGGCATTCGTAACCCACTA -ACGGAAGGCATTCGTAACGGAGTA -ACGGAAGGCATTCGTAACTCGTCT -ACGGAAGGCATTCGTAACTGCACT -ACGGAAGGCATTCGTAACCTGACT -ACGGAAGGCATTCGTAACCAACCT -ACGGAAGGCATTCGTAACGCTACT -ACGGAAGGCATTCGTAACGGATCT -ACGGAAGGCATTCGTAACAAGGCT -ACGGAAGGCATTCGTAACTCAACC -ACGGAAGGCATTCGTAACTGTTCC -ACGGAAGGCATTCGTAACATTCCC -ACGGAAGGCATTCGTAACTTCTCG -ACGGAAGGCATTCGTAACTAGACG -ACGGAAGGCATTCGTAACGTAACG -ACGGAAGGCATTCGTAACACTTCG -ACGGAAGGCATTCGTAACTACGCA -ACGGAAGGCATTCGTAACCTTGCA -ACGGAAGGCATTCGTAACCGAACA -ACGGAAGGCATTCGTAACCAGTCA -ACGGAAGGCATTCGTAACGATCCA -ACGGAAGGCATTCGTAACACGACA -ACGGAAGGCATTCGTAACAGCTCA -ACGGAAGGCATTCGTAACTCACGT -ACGGAAGGCATTCGTAACCGTAGT -ACGGAAGGCATTCGTAACGTCAGT -ACGGAAGGCATTCGTAACGAAGGT -ACGGAAGGCATTCGTAACAACCGT -ACGGAAGGCATTCGTAACTTGTGC -ACGGAAGGCATTCGTAACCTAAGC -ACGGAAGGCATTCGTAACACTAGC -ACGGAAGGCATTCGTAACAGATGC -ACGGAAGGCATTCGTAACTGAAGG -ACGGAAGGCATTCGTAACCAATGG -ACGGAAGGCATTCGTAACATGAGG -ACGGAAGGCATTCGTAACAATGGG -ACGGAAGGCATTCGTAACTCCTGA -ACGGAAGGCATTCGTAACTAGCGA -ACGGAAGGCATTCGTAACCACAGA -ACGGAAGGCATTCGTAACGCAAGA -ACGGAAGGCATTCGTAACGGTTGA -ACGGAAGGCATTCGTAACTCCGAT -ACGGAAGGCATTCGTAACTGGCAT -ACGGAAGGCATTCGTAACCGAGAT -ACGGAAGGCATTCGTAACTACCAC -ACGGAAGGCATTCGTAACCAGAAC -ACGGAAGGCATTCGTAACGTCTAC -ACGGAAGGCATTCGTAACACGTAC -ACGGAAGGCATTCGTAACAGTGAC -ACGGAAGGCATTCGTAACCTGTAG -ACGGAAGGCATTCGTAACCCTAAG -ACGGAAGGCATTCGTAACGTTCAG -ACGGAAGGCATTCGTAACGCATAG -ACGGAAGGCATTCGTAACGACAAG -ACGGAAGGCATTCGTAACAAGCAG -ACGGAAGGCATTCGTAACCGTCAA -ACGGAAGGCATTCGTAACGCTGAA -ACGGAAGGCATTCGTAACAGTACG -ACGGAAGGCATTCGTAACATCCGA -ACGGAAGGCATTCGTAACATGGGA -ACGGAAGGCATTCGTAACGTGCAA -ACGGAAGGCATTCGTAACGAGGAA -ACGGAAGGCATTCGTAACCAGGTA -ACGGAAGGCATTCGTAACGACTCT -ACGGAAGGCATTCGTAACAGTCCT -ACGGAAGGCATTCGTAACTAAGCC -ACGGAAGGCATTCGTAACATAGCC -ACGGAAGGCATTCGTAACTAACCG -ACGGAAGGCATTCGTAACATGCCA -ACGGAAGGCATTTGCTTGGGAAAC -ACGGAAGGCATTTGCTTGAACACC -ACGGAAGGCATTTGCTTGATCGAG -ACGGAAGGCATTTGCTTGCTCCTT -ACGGAAGGCATTTGCTTGCCTGTT -ACGGAAGGCATTTGCTTGCGGTTT -ACGGAAGGCATTTGCTTGGTGGTT -ACGGAAGGCATTTGCTTGGCCTTT -ACGGAAGGCATTTGCTTGGGTCTT -ACGGAAGGCATTTGCTTGACGCTT -ACGGAAGGCATTTGCTTGAGCGTT -ACGGAAGGCATTTGCTTGTTCGTC -ACGGAAGGCATTTGCTTGTCTCTC -ACGGAAGGCATTTGCTTGTGGATC -ACGGAAGGCATTTGCTTGCACTTC -ACGGAAGGCATTTGCTTGGTACTC -ACGGAAGGCATTTGCTTGGATGTC -ACGGAAGGCATTTGCTTGACAGTC -ACGGAAGGCATTTGCTTGTTGCTG -ACGGAAGGCATTTGCTTGTCCATG -ACGGAAGGCATTTGCTTGTGTGTG -ACGGAAGGCATTTGCTTGCTAGTG -ACGGAAGGCATTTGCTTGCATCTG -ACGGAAGGCATTTGCTTGGAGTTG -ACGGAAGGCATTTGCTTGAGACTG -ACGGAAGGCATTTGCTTGTCGGTA -ACGGAAGGCATTTGCTTGTGCCTA -ACGGAAGGCATTTGCTTGCCACTA -ACGGAAGGCATTTGCTTGGGAGTA -ACGGAAGGCATTTGCTTGTCGTCT -ACGGAAGGCATTTGCTTGTGCACT -ACGGAAGGCATTTGCTTGCTGACT -ACGGAAGGCATTTGCTTGCAACCT -ACGGAAGGCATTTGCTTGGCTACT -ACGGAAGGCATTTGCTTGGGATCT -ACGGAAGGCATTTGCTTGAAGGCT -ACGGAAGGCATTTGCTTGTCAACC -ACGGAAGGCATTTGCTTGTGTTCC -ACGGAAGGCATTTGCTTGATTCCC -ACGGAAGGCATTTGCTTGTTCTCG -ACGGAAGGCATTTGCTTGTAGACG -ACGGAAGGCATTTGCTTGGTAACG -ACGGAAGGCATTTGCTTGACTTCG -ACGGAAGGCATTTGCTTGTACGCA -ACGGAAGGCATTTGCTTGCTTGCA -ACGGAAGGCATTTGCTTGCGAACA -ACGGAAGGCATTTGCTTGCAGTCA -ACGGAAGGCATTTGCTTGGATCCA -ACGGAAGGCATTTGCTTGACGACA -ACGGAAGGCATTTGCTTGAGCTCA -ACGGAAGGCATTTGCTTGTCACGT -ACGGAAGGCATTTGCTTGCGTAGT -ACGGAAGGCATTTGCTTGGTCAGT -ACGGAAGGCATTTGCTTGGAAGGT -ACGGAAGGCATTTGCTTGAACCGT -ACGGAAGGCATTTGCTTGTTGTGC -ACGGAAGGCATTTGCTTGCTAAGC -ACGGAAGGCATTTGCTTGACTAGC -ACGGAAGGCATTTGCTTGAGATGC -ACGGAAGGCATTTGCTTGTGAAGG -ACGGAAGGCATTTGCTTGCAATGG -ACGGAAGGCATTTGCTTGATGAGG -ACGGAAGGCATTTGCTTGAATGGG -ACGGAAGGCATTTGCTTGTCCTGA -ACGGAAGGCATTTGCTTGTAGCGA -ACGGAAGGCATTTGCTTGCACAGA -ACGGAAGGCATTTGCTTGGCAAGA -ACGGAAGGCATTTGCTTGGGTTGA -ACGGAAGGCATTTGCTTGTCCGAT -ACGGAAGGCATTTGCTTGTGGCAT -ACGGAAGGCATTTGCTTGCGAGAT -ACGGAAGGCATTTGCTTGTACCAC -ACGGAAGGCATTTGCTTGCAGAAC -ACGGAAGGCATTTGCTTGGTCTAC -ACGGAAGGCATTTGCTTGACGTAC -ACGGAAGGCATTTGCTTGAGTGAC -ACGGAAGGCATTTGCTTGCTGTAG -ACGGAAGGCATTTGCTTGCCTAAG -ACGGAAGGCATTTGCTTGGTTCAG -ACGGAAGGCATTTGCTTGGCATAG -ACGGAAGGCATTTGCTTGGACAAG -ACGGAAGGCATTTGCTTGAAGCAG -ACGGAAGGCATTTGCTTGCGTCAA -ACGGAAGGCATTTGCTTGGCTGAA -ACGGAAGGCATTTGCTTGAGTACG -ACGGAAGGCATTTGCTTGATCCGA -ACGGAAGGCATTTGCTTGATGGGA -ACGGAAGGCATTTGCTTGGTGCAA -ACGGAAGGCATTTGCTTGGAGGAA -ACGGAAGGCATTTGCTTGCAGGTA -ACGGAAGGCATTTGCTTGGACTCT -ACGGAAGGCATTTGCTTGAGTCCT -ACGGAAGGCATTTGCTTGTAAGCC -ACGGAAGGCATTTGCTTGATAGCC -ACGGAAGGCATTTGCTTGTAACCG -ACGGAAGGCATTTGCTTGATGCCA -ACGGAAGGCATTAGCCTAGGAAAC -ACGGAAGGCATTAGCCTAAACACC -ACGGAAGGCATTAGCCTAATCGAG -ACGGAAGGCATTAGCCTACTCCTT -ACGGAAGGCATTAGCCTACCTGTT -ACGGAAGGCATTAGCCTACGGTTT -ACGGAAGGCATTAGCCTAGTGGTT -ACGGAAGGCATTAGCCTAGCCTTT -ACGGAAGGCATTAGCCTAGGTCTT -ACGGAAGGCATTAGCCTAACGCTT -ACGGAAGGCATTAGCCTAAGCGTT -ACGGAAGGCATTAGCCTATTCGTC -ACGGAAGGCATTAGCCTATCTCTC -ACGGAAGGCATTAGCCTATGGATC -ACGGAAGGCATTAGCCTACACTTC -ACGGAAGGCATTAGCCTAGTACTC -ACGGAAGGCATTAGCCTAGATGTC -ACGGAAGGCATTAGCCTAACAGTC -ACGGAAGGCATTAGCCTATTGCTG -ACGGAAGGCATTAGCCTATCCATG -ACGGAAGGCATTAGCCTATGTGTG -ACGGAAGGCATTAGCCTACTAGTG -ACGGAAGGCATTAGCCTACATCTG -ACGGAAGGCATTAGCCTAGAGTTG -ACGGAAGGCATTAGCCTAAGACTG -ACGGAAGGCATTAGCCTATCGGTA -ACGGAAGGCATTAGCCTATGCCTA -ACGGAAGGCATTAGCCTACCACTA -ACGGAAGGCATTAGCCTAGGAGTA -ACGGAAGGCATTAGCCTATCGTCT -ACGGAAGGCATTAGCCTATGCACT -ACGGAAGGCATTAGCCTACTGACT -ACGGAAGGCATTAGCCTACAACCT -ACGGAAGGCATTAGCCTAGCTACT -ACGGAAGGCATTAGCCTAGGATCT -ACGGAAGGCATTAGCCTAAAGGCT -ACGGAAGGCATTAGCCTATCAACC -ACGGAAGGCATTAGCCTATGTTCC -ACGGAAGGCATTAGCCTAATTCCC -ACGGAAGGCATTAGCCTATTCTCG -ACGGAAGGCATTAGCCTATAGACG -ACGGAAGGCATTAGCCTAGTAACG -ACGGAAGGCATTAGCCTAACTTCG -ACGGAAGGCATTAGCCTATACGCA -ACGGAAGGCATTAGCCTACTTGCA -ACGGAAGGCATTAGCCTACGAACA -ACGGAAGGCATTAGCCTACAGTCA -ACGGAAGGCATTAGCCTAGATCCA -ACGGAAGGCATTAGCCTAACGACA -ACGGAAGGCATTAGCCTAAGCTCA -ACGGAAGGCATTAGCCTATCACGT -ACGGAAGGCATTAGCCTACGTAGT -ACGGAAGGCATTAGCCTAGTCAGT -ACGGAAGGCATTAGCCTAGAAGGT -ACGGAAGGCATTAGCCTAAACCGT -ACGGAAGGCATTAGCCTATTGTGC -ACGGAAGGCATTAGCCTACTAAGC -ACGGAAGGCATTAGCCTAACTAGC -ACGGAAGGCATTAGCCTAAGATGC -ACGGAAGGCATTAGCCTATGAAGG -ACGGAAGGCATTAGCCTACAATGG -ACGGAAGGCATTAGCCTAATGAGG -ACGGAAGGCATTAGCCTAAATGGG -ACGGAAGGCATTAGCCTATCCTGA -ACGGAAGGCATTAGCCTATAGCGA -ACGGAAGGCATTAGCCTACACAGA -ACGGAAGGCATTAGCCTAGCAAGA -ACGGAAGGCATTAGCCTAGGTTGA -ACGGAAGGCATTAGCCTATCCGAT -ACGGAAGGCATTAGCCTATGGCAT -ACGGAAGGCATTAGCCTACGAGAT -ACGGAAGGCATTAGCCTATACCAC -ACGGAAGGCATTAGCCTACAGAAC -ACGGAAGGCATTAGCCTAGTCTAC -ACGGAAGGCATTAGCCTAACGTAC -ACGGAAGGCATTAGCCTAAGTGAC -ACGGAAGGCATTAGCCTACTGTAG -ACGGAAGGCATTAGCCTACCTAAG -ACGGAAGGCATTAGCCTAGTTCAG -ACGGAAGGCATTAGCCTAGCATAG -ACGGAAGGCATTAGCCTAGACAAG -ACGGAAGGCATTAGCCTAAAGCAG -ACGGAAGGCATTAGCCTACGTCAA -ACGGAAGGCATTAGCCTAGCTGAA -ACGGAAGGCATTAGCCTAAGTACG -ACGGAAGGCATTAGCCTAATCCGA -ACGGAAGGCATTAGCCTAATGGGA -ACGGAAGGCATTAGCCTAGTGCAA -ACGGAAGGCATTAGCCTAGAGGAA -ACGGAAGGCATTAGCCTACAGGTA -ACGGAAGGCATTAGCCTAGACTCT -ACGGAAGGCATTAGCCTAAGTCCT -ACGGAAGGCATTAGCCTATAAGCC -ACGGAAGGCATTAGCCTAATAGCC -ACGGAAGGCATTAGCCTATAACCG -ACGGAAGGCATTAGCCTAATGCCA -ACGGAAGGCATTAGCACTGGAAAC -ACGGAAGGCATTAGCACTAACACC -ACGGAAGGCATTAGCACTATCGAG -ACGGAAGGCATTAGCACTCTCCTT -ACGGAAGGCATTAGCACTCCTGTT -ACGGAAGGCATTAGCACTCGGTTT -ACGGAAGGCATTAGCACTGTGGTT -ACGGAAGGCATTAGCACTGCCTTT -ACGGAAGGCATTAGCACTGGTCTT -ACGGAAGGCATTAGCACTACGCTT -ACGGAAGGCATTAGCACTAGCGTT -ACGGAAGGCATTAGCACTTTCGTC -ACGGAAGGCATTAGCACTTCTCTC -ACGGAAGGCATTAGCACTTGGATC -ACGGAAGGCATTAGCACTCACTTC -ACGGAAGGCATTAGCACTGTACTC -ACGGAAGGCATTAGCACTGATGTC -ACGGAAGGCATTAGCACTACAGTC -ACGGAAGGCATTAGCACTTTGCTG -ACGGAAGGCATTAGCACTTCCATG -ACGGAAGGCATTAGCACTTGTGTG -ACGGAAGGCATTAGCACTCTAGTG -ACGGAAGGCATTAGCACTCATCTG -ACGGAAGGCATTAGCACTGAGTTG -ACGGAAGGCATTAGCACTAGACTG -ACGGAAGGCATTAGCACTTCGGTA -ACGGAAGGCATTAGCACTTGCCTA -ACGGAAGGCATTAGCACTCCACTA -ACGGAAGGCATTAGCACTGGAGTA -ACGGAAGGCATTAGCACTTCGTCT -ACGGAAGGCATTAGCACTTGCACT -ACGGAAGGCATTAGCACTCTGACT -ACGGAAGGCATTAGCACTCAACCT -ACGGAAGGCATTAGCACTGCTACT -ACGGAAGGCATTAGCACTGGATCT -ACGGAAGGCATTAGCACTAAGGCT -ACGGAAGGCATTAGCACTTCAACC -ACGGAAGGCATTAGCACTTGTTCC -ACGGAAGGCATTAGCACTATTCCC -ACGGAAGGCATTAGCACTTTCTCG -ACGGAAGGCATTAGCACTTAGACG -ACGGAAGGCATTAGCACTGTAACG -ACGGAAGGCATTAGCACTACTTCG -ACGGAAGGCATTAGCACTTACGCA -ACGGAAGGCATTAGCACTCTTGCA -ACGGAAGGCATTAGCACTCGAACA -ACGGAAGGCATTAGCACTCAGTCA -ACGGAAGGCATTAGCACTGATCCA -ACGGAAGGCATTAGCACTACGACA -ACGGAAGGCATTAGCACTAGCTCA -ACGGAAGGCATTAGCACTTCACGT -ACGGAAGGCATTAGCACTCGTAGT -ACGGAAGGCATTAGCACTGTCAGT -ACGGAAGGCATTAGCACTGAAGGT -ACGGAAGGCATTAGCACTAACCGT -ACGGAAGGCATTAGCACTTTGTGC -ACGGAAGGCATTAGCACTCTAAGC -ACGGAAGGCATTAGCACTACTAGC -ACGGAAGGCATTAGCACTAGATGC -ACGGAAGGCATTAGCACTTGAAGG -ACGGAAGGCATTAGCACTCAATGG -ACGGAAGGCATTAGCACTATGAGG -ACGGAAGGCATTAGCACTAATGGG -ACGGAAGGCATTAGCACTTCCTGA -ACGGAAGGCATTAGCACTTAGCGA -ACGGAAGGCATTAGCACTCACAGA -ACGGAAGGCATTAGCACTGCAAGA -ACGGAAGGCATTAGCACTGGTTGA -ACGGAAGGCATTAGCACTTCCGAT -ACGGAAGGCATTAGCACTTGGCAT -ACGGAAGGCATTAGCACTCGAGAT -ACGGAAGGCATTAGCACTTACCAC -ACGGAAGGCATTAGCACTCAGAAC -ACGGAAGGCATTAGCACTGTCTAC -ACGGAAGGCATTAGCACTACGTAC -ACGGAAGGCATTAGCACTAGTGAC -ACGGAAGGCATTAGCACTCTGTAG -ACGGAAGGCATTAGCACTCCTAAG -ACGGAAGGCATTAGCACTGTTCAG -ACGGAAGGCATTAGCACTGCATAG -ACGGAAGGCATTAGCACTGACAAG -ACGGAAGGCATTAGCACTAAGCAG -ACGGAAGGCATTAGCACTCGTCAA -ACGGAAGGCATTAGCACTGCTGAA -ACGGAAGGCATTAGCACTAGTACG -ACGGAAGGCATTAGCACTATCCGA -ACGGAAGGCATTAGCACTATGGGA -ACGGAAGGCATTAGCACTGTGCAA -ACGGAAGGCATTAGCACTGAGGAA -ACGGAAGGCATTAGCACTCAGGTA -ACGGAAGGCATTAGCACTGACTCT -ACGGAAGGCATTAGCACTAGTCCT -ACGGAAGGCATTAGCACTTAAGCC -ACGGAAGGCATTAGCACTATAGCC -ACGGAAGGCATTAGCACTTAACCG -ACGGAAGGCATTAGCACTATGCCA -ACGGAAGGCATTTGCAGAGGAAAC -ACGGAAGGCATTTGCAGAAACACC -ACGGAAGGCATTTGCAGAATCGAG -ACGGAAGGCATTTGCAGACTCCTT -ACGGAAGGCATTTGCAGACCTGTT -ACGGAAGGCATTTGCAGACGGTTT -ACGGAAGGCATTTGCAGAGTGGTT -ACGGAAGGCATTTGCAGAGCCTTT -ACGGAAGGCATTTGCAGAGGTCTT -ACGGAAGGCATTTGCAGAACGCTT -ACGGAAGGCATTTGCAGAAGCGTT -ACGGAAGGCATTTGCAGATTCGTC -ACGGAAGGCATTTGCAGATCTCTC -ACGGAAGGCATTTGCAGATGGATC -ACGGAAGGCATTTGCAGACACTTC -ACGGAAGGCATTTGCAGAGTACTC -ACGGAAGGCATTTGCAGAGATGTC -ACGGAAGGCATTTGCAGAACAGTC -ACGGAAGGCATTTGCAGATTGCTG -ACGGAAGGCATTTGCAGATCCATG -ACGGAAGGCATTTGCAGATGTGTG -ACGGAAGGCATTTGCAGACTAGTG -ACGGAAGGCATTTGCAGACATCTG -ACGGAAGGCATTTGCAGAGAGTTG -ACGGAAGGCATTTGCAGAAGACTG -ACGGAAGGCATTTGCAGATCGGTA -ACGGAAGGCATTTGCAGATGCCTA -ACGGAAGGCATTTGCAGACCACTA -ACGGAAGGCATTTGCAGAGGAGTA -ACGGAAGGCATTTGCAGATCGTCT -ACGGAAGGCATTTGCAGATGCACT -ACGGAAGGCATTTGCAGACTGACT -ACGGAAGGCATTTGCAGACAACCT -ACGGAAGGCATTTGCAGAGCTACT -ACGGAAGGCATTTGCAGAGGATCT -ACGGAAGGCATTTGCAGAAAGGCT -ACGGAAGGCATTTGCAGATCAACC -ACGGAAGGCATTTGCAGATGTTCC -ACGGAAGGCATTTGCAGAATTCCC -ACGGAAGGCATTTGCAGATTCTCG -ACGGAAGGCATTTGCAGATAGACG -ACGGAAGGCATTTGCAGAGTAACG -ACGGAAGGCATTTGCAGAACTTCG -ACGGAAGGCATTTGCAGATACGCA -ACGGAAGGCATTTGCAGACTTGCA -ACGGAAGGCATTTGCAGACGAACA -ACGGAAGGCATTTGCAGACAGTCA -ACGGAAGGCATTTGCAGAGATCCA -ACGGAAGGCATTTGCAGAACGACA -ACGGAAGGCATTTGCAGAAGCTCA -ACGGAAGGCATTTGCAGATCACGT -ACGGAAGGCATTTGCAGACGTAGT -ACGGAAGGCATTTGCAGAGTCAGT -ACGGAAGGCATTTGCAGAGAAGGT -ACGGAAGGCATTTGCAGAAACCGT -ACGGAAGGCATTTGCAGATTGTGC -ACGGAAGGCATTTGCAGACTAAGC -ACGGAAGGCATTTGCAGAACTAGC -ACGGAAGGCATTTGCAGAAGATGC -ACGGAAGGCATTTGCAGATGAAGG -ACGGAAGGCATTTGCAGACAATGG -ACGGAAGGCATTTGCAGAATGAGG -ACGGAAGGCATTTGCAGAAATGGG -ACGGAAGGCATTTGCAGATCCTGA -ACGGAAGGCATTTGCAGATAGCGA -ACGGAAGGCATTTGCAGACACAGA -ACGGAAGGCATTTGCAGAGCAAGA -ACGGAAGGCATTTGCAGAGGTTGA -ACGGAAGGCATTTGCAGATCCGAT -ACGGAAGGCATTTGCAGATGGCAT -ACGGAAGGCATTTGCAGACGAGAT -ACGGAAGGCATTTGCAGATACCAC -ACGGAAGGCATTTGCAGACAGAAC -ACGGAAGGCATTTGCAGAGTCTAC -ACGGAAGGCATTTGCAGAACGTAC -ACGGAAGGCATTTGCAGAAGTGAC -ACGGAAGGCATTTGCAGACTGTAG -ACGGAAGGCATTTGCAGACCTAAG -ACGGAAGGCATTTGCAGAGTTCAG -ACGGAAGGCATTTGCAGAGCATAG -ACGGAAGGCATTTGCAGAGACAAG -ACGGAAGGCATTTGCAGAAAGCAG -ACGGAAGGCATTTGCAGACGTCAA -ACGGAAGGCATTTGCAGAGCTGAA -ACGGAAGGCATTTGCAGAAGTACG -ACGGAAGGCATTTGCAGAATCCGA -ACGGAAGGCATTTGCAGAATGGGA -ACGGAAGGCATTTGCAGAGTGCAA -ACGGAAGGCATTTGCAGAGAGGAA -ACGGAAGGCATTTGCAGACAGGTA -ACGGAAGGCATTTGCAGAGACTCT -ACGGAAGGCATTTGCAGAAGTCCT -ACGGAAGGCATTTGCAGATAAGCC -ACGGAAGGCATTTGCAGAATAGCC -ACGGAAGGCATTTGCAGATAACCG -ACGGAAGGCATTTGCAGAATGCCA -ACGGAAGGCATTAGGTGAGGAAAC -ACGGAAGGCATTAGGTGAAACACC -ACGGAAGGCATTAGGTGAATCGAG -ACGGAAGGCATTAGGTGACTCCTT -ACGGAAGGCATTAGGTGACCTGTT -ACGGAAGGCATTAGGTGACGGTTT -ACGGAAGGCATTAGGTGAGTGGTT -ACGGAAGGCATTAGGTGAGCCTTT -ACGGAAGGCATTAGGTGAGGTCTT -ACGGAAGGCATTAGGTGAACGCTT -ACGGAAGGCATTAGGTGAAGCGTT -ACGGAAGGCATTAGGTGATTCGTC -ACGGAAGGCATTAGGTGATCTCTC -ACGGAAGGCATTAGGTGATGGATC -ACGGAAGGCATTAGGTGACACTTC -ACGGAAGGCATTAGGTGAGTACTC -ACGGAAGGCATTAGGTGAGATGTC -ACGGAAGGCATTAGGTGAACAGTC -ACGGAAGGCATTAGGTGATTGCTG -ACGGAAGGCATTAGGTGATCCATG -ACGGAAGGCATTAGGTGATGTGTG -ACGGAAGGCATTAGGTGACTAGTG -ACGGAAGGCATTAGGTGACATCTG -ACGGAAGGCATTAGGTGAGAGTTG -ACGGAAGGCATTAGGTGAAGACTG -ACGGAAGGCATTAGGTGATCGGTA -ACGGAAGGCATTAGGTGATGCCTA -ACGGAAGGCATTAGGTGACCACTA -ACGGAAGGCATTAGGTGAGGAGTA -ACGGAAGGCATTAGGTGATCGTCT -ACGGAAGGCATTAGGTGATGCACT -ACGGAAGGCATTAGGTGACTGACT -ACGGAAGGCATTAGGTGACAACCT -ACGGAAGGCATTAGGTGAGCTACT -ACGGAAGGCATTAGGTGAGGATCT -ACGGAAGGCATTAGGTGAAAGGCT -ACGGAAGGCATTAGGTGATCAACC -ACGGAAGGCATTAGGTGATGTTCC -ACGGAAGGCATTAGGTGAATTCCC -ACGGAAGGCATTAGGTGATTCTCG -ACGGAAGGCATTAGGTGATAGACG -ACGGAAGGCATTAGGTGAGTAACG -ACGGAAGGCATTAGGTGAACTTCG -ACGGAAGGCATTAGGTGATACGCA -ACGGAAGGCATTAGGTGACTTGCA -ACGGAAGGCATTAGGTGACGAACA -ACGGAAGGCATTAGGTGACAGTCA -ACGGAAGGCATTAGGTGAGATCCA -ACGGAAGGCATTAGGTGAACGACA -ACGGAAGGCATTAGGTGAAGCTCA -ACGGAAGGCATTAGGTGATCACGT -ACGGAAGGCATTAGGTGACGTAGT -ACGGAAGGCATTAGGTGAGTCAGT -ACGGAAGGCATTAGGTGAGAAGGT -ACGGAAGGCATTAGGTGAAACCGT -ACGGAAGGCATTAGGTGATTGTGC -ACGGAAGGCATTAGGTGACTAAGC -ACGGAAGGCATTAGGTGAACTAGC -ACGGAAGGCATTAGGTGAAGATGC -ACGGAAGGCATTAGGTGATGAAGG -ACGGAAGGCATTAGGTGACAATGG -ACGGAAGGCATTAGGTGAATGAGG -ACGGAAGGCATTAGGTGAAATGGG -ACGGAAGGCATTAGGTGATCCTGA -ACGGAAGGCATTAGGTGATAGCGA -ACGGAAGGCATTAGGTGACACAGA -ACGGAAGGCATTAGGTGAGCAAGA -ACGGAAGGCATTAGGTGAGGTTGA -ACGGAAGGCATTAGGTGATCCGAT -ACGGAAGGCATTAGGTGATGGCAT -ACGGAAGGCATTAGGTGACGAGAT -ACGGAAGGCATTAGGTGATACCAC -ACGGAAGGCATTAGGTGACAGAAC -ACGGAAGGCATTAGGTGAGTCTAC -ACGGAAGGCATTAGGTGAACGTAC -ACGGAAGGCATTAGGTGAAGTGAC -ACGGAAGGCATTAGGTGACTGTAG -ACGGAAGGCATTAGGTGACCTAAG -ACGGAAGGCATTAGGTGAGTTCAG -ACGGAAGGCATTAGGTGAGCATAG -ACGGAAGGCATTAGGTGAGACAAG -ACGGAAGGCATTAGGTGAAAGCAG -ACGGAAGGCATTAGGTGACGTCAA -ACGGAAGGCATTAGGTGAGCTGAA -ACGGAAGGCATTAGGTGAAGTACG -ACGGAAGGCATTAGGTGAATCCGA -ACGGAAGGCATTAGGTGAATGGGA -ACGGAAGGCATTAGGTGAGTGCAA -ACGGAAGGCATTAGGTGAGAGGAA -ACGGAAGGCATTAGGTGACAGGTA -ACGGAAGGCATTAGGTGAGACTCT -ACGGAAGGCATTAGGTGAAGTCCT -ACGGAAGGCATTAGGTGATAAGCC -ACGGAAGGCATTAGGTGAATAGCC -ACGGAAGGCATTAGGTGATAACCG -ACGGAAGGCATTAGGTGAATGCCA -ACGGAAGGCATTTGGCAAGGAAAC -ACGGAAGGCATTTGGCAAAACACC -ACGGAAGGCATTTGGCAAATCGAG -ACGGAAGGCATTTGGCAACTCCTT -ACGGAAGGCATTTGGCAACCTGTT -ACGGAAGGCATTTGGCAACGGTTT -ACGGAAGGCATTTGGCAAGTGGTT -ACGGAAGGCATTTGGCAAGCCTTT -ACGGAAGGCATTTGGCAAGGTCTT -ACGGAAGGCATTTGGCAAACGCTT -ACGGAAGGCATTTGGCAAAGCGTT -ACGGAAGGCATTTGGCAATTCGTC -ACGGAAGGCATTTGGCAATCTCTC -ACGGAAGGCATTTGGCAATGGATC -ACGGAAGGCATTTGGCAACACTTC -ACGGAAGGCATTTGGCAAGTACTC -ACGGAAGGCATTTGGCAAGATGTC -ACGGAAGGCATTTGGCAAACAGTC -ACGGAAGGCATTTGGCAATTGCTG -ACGGAAGGCATTTGGCAATCCATG -ACGGAAGGCATTTGGCAATGTGTG -ACGGAAGGCATTTGGCAACTAGTG -ACGGAAGGCATTTGGCAACATCTG -ACGGAAGGCATTTGGCAAGAGTTG -ACGGAAGGCATTTGGCAAAGACTG -ACGGAAGGCATTTGGCAATCGGTA -ACGGAAGGCATTTGGCAATGCCTA -ACGGAAGGCATTTGGCAACCACTA -ACGGAAGGCATTTGGCAAGGAGTA -ACGGAAGGCATTTGGCAATCGTCT -ACGGAAGGCATTTGGCAATGCACT -ACGGAAGGCATTTGGCAACTGACT -ACGGAAGGCATTTGGCAACAACCT -ACGGAAGGCATTTGGCAAGCTACT -ACGGAAGGCATTTGGCAAGGATCT -ACGGAAGGCATTTGGCAAAAGGCT -ACGGAAGGCATTTGGCAATCAACC -ACGGAAGGCATTTGGCAATGTTCC -ACGGAAGGCATTTGGCAAATTCCC -ACGGAAGGCATTTGGCAATTCTCG -ACGGAAGGCATTTGGCAATAGACG -ACGGAAGGCATTTGGCAAGTAACG -ACGGAAGGCATTTGGCAAACTTCG -ACGGAAGGCATTTGGCAATACGCA -ACGGAAGGCATTTGGCAACTTGCA -ACGGAAGGCATTTGGCAACGAACA -ACGGAAGGCATTTGGCAACAGTCA -ACGGAAGGCATTTGGCAAGATCCA -ACGGAAGGCATTTGGCAAACGACA -ACGGAAGGCATTTGGCAAAGCTCA -ACGGAAGGCATTTGGCAATCACGT -ACGGAAGGCATTTGGCAACGTAGT -ACGGAAGGCATTTGGCAAGTCAGT -ACGGAAGGCATTTGGCAAGAAGGT -ACGGAAGGCATTTGGCAAAACCGT -ACGGAAGGCATTTGGCAATTGTGC -ACGGAAGGCATTTGGCAACTAAGC -ACGGAAGGCATTTGGCAAACTAGC -ACGGAAGGCATTTGGCAAAGATGC -ACGGAAGGCATTTGGCAATGAAGG -ACGGAAGGCATTTGGCAACAATGG -ACGGAAGGCATTTGGCAAATGAGG -ACGGAAGGCATTTGGCAAAATGGG -ACGGAAGGCATTTGGCAATCCTGA -ACGGAAGGCATTTGGCAATAGCGA -ACGGAAGGCATTTGGCAACACAGA -ACGGAAGGCATTTGGCAAGCAAGA -ACGGAAGGCATTTGGCAAGGTTGA -ACGGAAGGCATTTGGCAATCCGAT -ACGGAAGGCATTTGGCAATGGCAT -ACGGAAGGCATTTGGCAACGAGAT -ACGGAAGGCATTTGGCAATACCAC -ACGGAAGGCATTTGGCAACAGAAC -ACGGAAGGCATTTGGCAAGTCTAC -ACGGAAGGCATTTGGCAAACGTAC -ACGGAAGGCATTTGGCAAAGTGAC -ACGGAAGGCATTTGGCAACTGTAG -ACGGAAGGCATTTGGCAACCTAAG -ACGGAAGGCATTTGGCAAGTTCAG -ACGGAAGGCATTTGGCAAGCATAG -ACGGAAGGCATTTGGCAAGACAAG -ACGGAAGGCATTTGGCAAAAGCAG -ACGGAAGGCATTTGGCAACGTCAA -ACGGAAGGCATTTGGCAAGCTGAA -ACGGAAGGCATTTGGCAAAGTACG -ACGGAAGGCATTTGGCAAATCCGA -ACGGAAGGCATTTGGCAAATGGGA -ACGGAAGGCATTTGGCAAGTGCAA -ACGGAAGGCATTTGGCAAGAGGAA -ACGGAAGGCATTTGGCAACAGGTA -ACGGAAGGCATTTGGCAAGACTCT -ACGGAAGGCATTTGGCAAAGTCCT -ACGGAAGGCATTTGGCAATAAGCC -ACGGAAGGCATTTGGCAAATAGCC -ACGGAAGGCATTTGGCAATAACCG -ACGGAAGGCATTTGGCAAATGCCA -ACGGAAGGCATTAGGATGGGAAAC -ACGGAAGGCATTAGGATGAACACC -ACGGAAGGCATTAGGATGATCGAG -ACGGAAGGCATTAGGATGCTCCTT -ACGGAAGGCATTAGGATGCCTGTT -ACGGAAGGCATTAGGATGCGGTTT -ACGGAAGGCATTAGGATGGTGGTT -ACGGAAGGCATTAGGATGGCCTTT -ACGGAAGGCATTAGGATGGGTCTT -ACGGAAGGCATTAGGATGACGCTT -ACGGAAGGCATTAGGATGAGCGTT -ACGGAAGGCATTAGGATGTTCGTC -ACGGAAGGCATTAGGATGTCTCTC -ACGGAAGGCATTAGGATGTGGATC -ACGGAAGGCATTAGGATGCACTTC -ACGGAAGGCATTAGGATGGTACTC -ACGGAAGGCATTAGGATGGATGTC -ACGGAAGGCATTAGGATGACAGTC -ACGGAAGGCATTAGGATGTTGCTG -ACGGAAGGCATTAGGATGTCCATG -ACGGAAGGCATTAGGATGTGTGTG -ACGGAAGGCATTAGGATGCTAGTG -ACGGAAGGCATTAGGATGCATCTG -ACGGAAGGCATTAGGATGGAGTTG -ACGGAAGGCATTAGGATGAGACTG -ACGGAAGGCATTAGGATGTCGGTA -ACGGAAGGCATTAGGATGTGCCTA -ACGGAAGGCATTAGGATGCCACTA -ACGGAAGGCATTAGGATGGGAGTA -ACGGAAGGCATTAGGATGTCGTCT -ACGGAAGGCATTAGGATGTGCACT -ACGGAAGGCATTAGGATGCTGACT -ACGGAAGGCATTAGGATGCAACCT -ACGGAAGGCATTAGGATGGCTACT -ACGGAAGGCATTAGGATGGGATCT -ACGGAAGGCATTAGGATGAAGGCT -ACGGAAGGCATTAGGATGTCAACC -ACGGAAGGCATTAGGATGTGTTCC -ACGGAAGGCATTAGGATGATTCCC -ACGGAAGGCATTAGGATGTTCTCG -ACGGAAGGCATTAGGATGTAGACG -ACGGAAGGCATTAGGATGGTAACG -ACGGAAGGCATTAGGATGACTTCG -ACGGAAGGCATTAGGATGTACGCA -ACGGAAGGCATTAGGATGCTTGCA -ACGGAAGGCATTAGGATGCGAACA -ACGGAAGGCATTAGGATGCAGTCA -ACGGAAGGCATTAGGATGGATCCA -ACGGAAGGCATTAGGATGACGACA -ACGGAAGGCATTAGGATGAGCTCA -ACGGAAGGCATTAGGATGTCACGT -ACGGAAGGCATTAGGATGCGTAGT -ACGGAAGGCATTAGGATGGTCAGT -ACGGAAGGCATTAGGATGGAAGGT -ACGGAAGGCATTAGGATGAACCGT -ACGGAAGGCATTAGGATGTTGTGC -ACGGAAGGCATTAGGATGCTAAGC -ACGGAAGGCATTAGGATGACTAGC -ACGGAAGGCATTAGGATGAGATGC -ACGGAAGGCATTAGGATGTGAAGG -ACGGAAGGCATTAGGATGCAATGG -ACGGAAGGCATTAGGATGATGAGG -ACGGAAGGCATTAGGATGAATGGG -ACGGAAGGCATTAGGATGTCCTGA -ACGGAAGGCATTAGGATGTAGCGA -ACGGAAGGCATTAGGATGCACAGA -ACGGAAGGCATTAGGATGGCAAGA -ACGGAAGGCATTAGGATGGGTTGA -ACGGAAGGCATTAGGATGTCCGAT -ACGGAAGGCATTAGGATGTGGCAT -ACGGAAGGCATTAGGATGCGAGAT -ACGGAAGGCATTAGGATGTACCAC -ACGGAAGGCATTAGGATGCAGAAC -ACGGAAGGCATTAGGATGGTCTAC -ACGGAAGGCATTAGGATGACGTAC -ACGGAAGGCATTAGGATGAGTGAC -ACGGAAGGCATTAGGATGCTGTAG -ACGGAAGGCATTAGGATGCCTAAG -ACGGAAGGCATTAGGATGGTTCAG -ACGGAAGGCATTAGGATGGCATAG -ACGGAAGGCATTAGGATGGACAAG -ACGGAAGGCATTAGGATGAAGCAG -ACGGAAGGCATTAGGATGCGTCAA -ACGGAAGGCATTAGGATGGCTGAA -ACGGAAGGCATTAGGATGAGTACG -ACGGAAGGCATTAGGATGATCCGA -ACGGAAGGCATTAGGATGATGGGA -ACGGAAGGCATTAGGATGGTGCAA -ACGGAAGGCATTAGGATGGAGGAA -ACGGAAGGCATTAGGATGCAGGTA -ACGGAAGGCATTAGGATGGACTCT -ACGGAAGGCATTAGGATGAGTCCT -ACGGAAGGCATTAGGATGTAAGCC -ACGGAAGGCATTAGGATGATAGCC -ACGGAAGGCATTAGGATGTAACCG -ACGGAAGGCATTAGGATGATGCCA -ACGGAAGGCATTGGGAATGGAAAC -ACGGAAGGCATTGGGAATAACACC -ACGGAAGGCATTGGGAATATCGAG -ACGGAAGGCATTGGGAATCTCCTT -ACGGAAGGCATTGGGAATCCTGTT -ACGGAAGGCATTGGGAATCGGTTT -ACGGAAGGCATTGGGAATGTGGTT -ACGGAAGGCATTGGGAATGCCTTT -ACGGAAGGCATTGGGAATGGTCTT -ACGGAAGGCATTGGGAATACGCTT -ACGGAAGGCATTGGGAATAGCGTT -ACGGAAGGCATTGGGAATTTCGTC -ACGGAAGGCATTGGGAATTCTCTC -ACGGAAGGCATTGGGAATTGGATC -ACGGAAGGCATTGGGAATCACTTC -ACGGAAGGCATTGGGAATGTACTC -ACGGAAGGCATTGGGAATGATGTC -ACGGAAGGCATTGGGAATACAGTC -ACGGAAGGCATTGGGAATTTGCTG -ACGGAAGGCATTGGGAATTCCATG -ACGGAAGGCATTGGGAATTGTGTG -ACGGAAGGCATTGGGAATCTAGTG -ACGGAAGGCATTGGGAATCATCTG -ACGGAAGGCATTGGGAATGAGTTG -ACGGAAGGCATTGGGAATAGACTG -ACGGAAGGCATTGGGAATTCGGTA -ACGGAAGGCATTGGGAATTGCCTA -ACGGAAGGCATTGGGAATCCACTA -ACGGAAGGCATTGGGAATGGAGTA -ACGGAAGGCATTGGGAATTCGTCT -ACGGAAGGCATTGGGAATTGCACT -ACGGAAGGCATTGGGAATCTGACT -ACGGAAGGCATTGGGAATCAACCT -ACGGAAGGCATTGGGAATGCTACT -ACGGAAGGCATTGGGAATGGATCT -ACGGAAGGCATTGGGAATAAGGCT -ACGGAAGGCATTGGGAATTCAACC -ACGGAAGGCATTGGGAATTGTTCC -ACGGAAGGCATTGGGAATATTCCC -ACGGAAGGCATTGGGAATTTCTCG -ACGGAAGGCATTGGGAATTAGACG -ACGGAAGGCATTGGGAATGTAACG -ACGGAAGGCATTGGGAATACTTCG -ACGGAAGGCATTGGGAATTACGCA -ACGGAAGGCATTGGGAATCTTGCA -ACGGAAGGCATTGGGAATCGAACA -ACGGAAGGCATTGGGAATCAGTCA -ACGGAAGGCATTGGGAATGATCCA -ACGGAAGGCATTGGGAATACGACA -ACGGAAGGCATTGGGAATAGCTCA -ACGGAAGGCATTGGGAATTCACGT -ACGGAAGGCATTGGGAATCGTAGT -ACGGAAGGCATTGGGAATGTCAGT -ACGGAAGGCATTGGGAATGAAGGT -ACGGAAGGCATTGGGAATAACCGT -ACGGAAGGCATTGGGAATTTGTGC -ACGGAAGGCATTGGGAATCTAAGC -ACGGAAGGCATTGGGAATACTAGC -ACGGAAGGCATTGGGAATAGATGC -ACGGAAGGCATTGGGAATTGAAGG -ACGGAAGGCATTGGGAATCAATGG -ACGGAAGGCATTGGGAATATGAGG -ACGGAAGGCATTGGGAATAATGGG -ACGGAAGGCATTGGGAATTCCTGA -ACGGAAGGCATTGGGAATTAGCGA -ACGGAAGGCATTGGGAATCACAGA -ACGGAAGGCATTGGGAATGCAAGA -ACGGAAGGCATTGGGAATGGTTGA -ACGGAAGGCATTGGGAATTCCGAT -ACGGAAGGCATTGGGAATTGGCAT -ACGGAAGGCATTGGGAATCGAGAT -ACGGAAGGCATTGGGAATTACCAC -ACGGAAGGCATTGGGAATCAGAAC -ACGGAAGGCATTGGGAATGTCTAC -ACGGAAGGCATTGGGAATACGTAC -ACGGAAGGCATTGGGAATAGTGAC -ACGGAAGGCATTGGGAATCTGTAG -ACGGAAGGCATTGGGAATCCTAAG -ACGGAAGGCATTGGGAATGTTCAG -ACGGAAGGCATTGGGAATGCATAG -ACGGAAGGCATTGGGAATGACAAG -ACGGAAGGCATTGGGAATAAGCAG -ACGGAAGGCATTGGGAATCGTCAA -ACGGAAGGCATTGGGAATGCTGAA -ACGGAAGGCATTGGGAATAGTACG -ACGGAAGGCATTGGGAATATCCGA -ACGGAAGGCATTGGGAATATGGGA -ACGGAAGGCATTGGGAATGTGCAA -ACGGAAGGCATTGGGAATGAGGAA -ACGGAAGGCATTGGGAATCAGGTA -ACGGAAGGCATTGGGAATGACTCT -ACGGAAGGCATTGGGAATAGTCCT -ACGGAAGGCATTGGGAATTAAGCC -ACGGAAGGCATTGGGAATATAGCC -ACGGAAGGCATTGGGAATTAACCG -ACGGAAGGCATTGGGAATATGCCA -ACGGAAGGCATTTGATCCGGAAAC -ACGGAAGGCATTTGATCCAACACC -ACGGAAGGCATTTGATCCATCGAG -ACGGAAGGCATTTGATCCCTCCTT -ACGGAAGGCATTTGATCCCCTGTT -ACGGAAGGCATTTGATCCCGGTTT -ACGGAAGGCATTTGATCCGTGGTT -ACGGAAGGCATTTGATCCGCCTTT -ACGGAAGGCATTTGATCCGGTCTT -ACGGAAGGCATTTGATCCACGCTT -ACGGAAGGCATTTGATCCAGCGTT -ACGGAAGGCATTTGATCCTTCGTC -ACGGAAGGCATTTGATCCTCTCTC -ACGGAAGGCATTTGATCCTGGATC -ACGGAAGGCATTTGATCCCACTTC -ACGGAAGGCATTTGATCCGTACTC -ACGGAAGGCATTTGATCCGATGTC -ACGGAAGGCATTTGATCCACAGTC -ACGGAAGGCATTTGATCCTTGCTG -ACGGAAGGCATTTGATCCTCCATG -ACGGAAGGCATTTGATCCTGTGTG -ACGGAAGGCATTTGATCCCTAGTG -ACGGAAGGCATTTGATCCCATCTG -ACGGAAGGCATTTGATCCGAGTTG -ACGGAAGGCATTTGATCCAGACTG -ACGGAAGGCATTTGATCCTCGGTA -ACGGAAGGCATTTGATCCTGCCTA -ACGGAAGGCATTTGATCCCCACTA -ACGGAAGGCATTTGATCCGGAGTA -ACGGAAGGCATTTGATCCTCGTCT -ACGGAAGGCATTTGATCCTGCACT -ACGGAAGGCATTTGATCCCTGACT -ACGGAAGGCATTTGATCCCAACCT -ACGGAAGGCATTTGATCCGCTACT -ACGGAAGGCATTTGATCCGGATCT -ACGGAAGGCATTTGATCCAAGGCT -ACGGAAGGCATTTGATCCTCAACC -ACGGAAGGCATTTGATCCTGTTCC -ACGGAAGGCATTTGATCCATTCCC -ACGGAAGGCATTTGATCCTTCTCG -ACGGAAGGCATTTGATCCTAGACG -ACGGAAGGCATTTGATCCGTAACG -ACGGAAGGCATTTGATCCACTTCG -ACGGAAGGCATTTGATCCTACGCA -ACGGAAGGCATTTGATCCCTTGCA -ACGGAAGGCATTTGATCCCGAACA -ACGGAAGGCATTTGATCCCAGTCA -ACGGAAGGCATTTGATCCGATCCA -ACGGAAGGCATTTGATCCACGACA -ACGGAAGGCATTTGATCCAGCTCA -ACGGAAGGCATTTGATCCTCACGT -ACGGAAGGCATTTGATCCCGTAGT -ACGGAAGGCATTTGATCCGTCAGT -ACGGAAGGCATTTGATCCGAAGGT -ACGGAAGGCATTTGATCCAACCGT -ACGGAAGGCATTTGATCCTTGTGC -ACGGAAGGCATTTGATCCCTAAGC -ACGGAAGGCATTTGATCCACTAGC -ACGGAAGGCATTTGATCCAGATGC -ACGGAAGGCATTTGATCCTGAAGG -ACGGAAGGCATTTGATCCCAATGG -ACGGAAGGCATTTGATCCATGAGG -ACGGAAGGCATTTGATCCAATGGG -ACGGAAGGCATTTGATCCTCCTGA -ACGGAAGGCATTTGATCCTAGCGA -ACGGAAGGCATTTGATCCCACAGA -ACGGAAGGCATTTGATCCGCAAGA -ACGGAAGGCATTTGATCCGGTTGA -ACGGAAGGCATTTGATCCTCCGAT -ACGGAAGGCATTTGATCCTGGCAT -ACGGAAGGCATTTGATCCCGAGAT -ACGGAAGGCATTTGATCCTACCAC -ACGGAAGGCATTTGATCCCAGAAC -ACGGAAGGCATTTGATCCGTCTAC -ACGGAAGGCATTTGATCCACGTAC -ACGGAAGGCATTTGATCCAGTGAC -ACGGAAGGCATTTGATCCCTGTAG -ACGGAAGGCATTTGATCCCCTAAG -ACGGAAGGCATTTGATCCGTTCAG -ACGGAAGGCATTTGATCCGCATAG -ACGGAAGGCATTTGATCCGACAAG -ACGGAAGGCATTTGATCCAAGCAG -ACGGAAGGCATTTGATCCCGTCAA -ACGGAAGGCATTTGATCCGCTGAA -ACGGAAGGCATTTGATCCAGTACG -ACGGAAGGCATTTGATCCATCCGA -ACGGAAGGCATTTGATCCATGGGA -ACGGAAGGCATTTGATCCGTGCAA -ACGGAAGGCATTTGATCCGAGGAA -ACGGAAGGCATTTGATCCCAGGTA -ACGGAAGGCATTTGATCCGACTCT -ACGGAAGGCATTTGATCCAGTCCT -ACGGAAGGCATTTGATCCTAAGCC -ACGGAAGGCATTTGATCCATAGCC -ACGGAAGGCATTTGATCCTAACCG -ACGGAAGGCATTTGATCCATGCCA -ACGGAAGGCATTCGATAGGGAAAC -ACGGAAGGCATTCGATAGAACACC -ACGGAAGGCATTCGATAGATCGAG -ACGGAAGGCATTCGATAGCTCCTT -ACGGAAGGCATTCGATAGCCTGTT -ACGGAAGGCATTCGATAGCGGTTT -ACGGAAGGCATTCGATAGGTGGTT -ACGGAAGGCATTCGATAGGCCTTT -ACGGAAGGCATTCGATAGGGTCTT -ACGGAAGGCATTCGATAGACGCTT -ACGGAAGGCATTCGATAGAGCGTT -ACGGAAGGCATTCGATAGTTCGTC -ACGGAAGGCATTCGATAGTCTCTC -ACGGAAGGCATTCGATAGTGGATC -ACGGAAGGCATTCGATAGCACTTC -ACGGAAGGCATTCGATAGGTACTC -ACGGAAGGCATTCGATAGGATGTC -ACGGAAGGCATTCGATAGACAGTC -ACGGAAGGCATTCGATAGTTGCTG -ACGGAAGGCATTCGATAGTCCATG -ACGGAAGGCATTCGATAGTGTGTG -ACGGAAGGCATTCGATAGCTAGTG -ACGGAAGGCATTCGATAGCATCTG -ACGGAAGGCATTCGATAGGAGTTG -ACGGAAGGCATTCGATAGAGACTG -ACGGAAGGCATTCGATAGTCGGTA -ACGGAAGGCATTCGATAGTGCCTA -ACGGAAGGCATTCGATAGCCACTA -ACGGAAGGCATTCGATAGGGAGTA -ACGGAAGGCATTCGATAGTCGTCT -ACGGAAGGCATTCGATAGTGCACT -ACGGAAGGCATTCGATAGCTGACT -ACGGAAGGCATTCGATAGCAACCT -ACGGAAGGCATTCGATAGGCTACT -ACGGAAGGCATTCGATAGGGATCT -ACGGAAGGCATTCGATAGAAGGCT -ACGGAAGGCATTCGATAGTCAACC -ACGGAAGGCATTCGATAGTGTTCC -ACGGAAGGCATTCGATAGATTCCC -ACGGAAGGCATTCGATAGTTCTCG -ACGGAAGGCATTCGATAGTAGACG -ACGGAAGGCATTCGATAGGTAACG -ACGGAAGGCATTCGATAGACTTCG -ACGGAAGGCATTCGATAGTACGCA -ACGGAAGGCATTCGATAGCTTGCA -ACGGAAGGCATTCGATAGCGAACA -ACGGAAGGCATTCGATAGCAGTCA -ACGGAAGGCATTCGATAGGATCCA -ACGGAAGGCATTCGATAGACGACA -ACGGAAGGCATTCGATAGAGCTCA -ACGGAAGGCATTCGATAGTCACGT -ACGGAAGGCATTCGATAGCGTAGT -ACGGAAGGCATTCGATAGGTCAGT -ACGGAAGGCATTCGATAGGAAGGT -ACGGAAGGCATTCGATAGAACCGT -ACGGAAGGCATTCGATAGTTGTGC -ACGGAAGGCATTCGATAGCTAAGC -ACGGAAGGCATTCGATAGACTAGC -ACGGAAGGCATTCGATAGAGATGC -ACGGAAGGCATTCGATAGTGAAGG -ACGGAAGGCATTCGATAGCAATGG -ACGGAAGGCATTCGATAGATGAGG -ACGGAAGGCATTCGATAGAATGGG -ACGGAAGGCATTCGATAGTCCTGA -ACGGAAGGCATTCGATAGTAGCGA -ACGGAAGGCATTCGATAGCACAGA -ACGGAAGGCATTCGATAGGCAAGA -ACGGAAGGCATTCGATAGGGTTGA -ACGGAAGGCATTCGATAGTCCGAT -ACGGAAGGCATTCGATAGTGGCAT -ACGGAAGGCATTCGATAGCGAGAT -ACGGAAGGCATTCGATAGTACCAC -ACGGAAGGCATTCGATAGCAGAAC -ACGGAAGGCATTCGATAGGTCTAC -ACGGAAGGCATTCGATAGACGTAC -ACGGAAGGCATTCGATAGAGTGAC -ACGGAAGGCATTCGATAGCTGTAG -ACGGAAGGCATTCGATAGCCTAAG -ACGGAAGGCATTCGATAGGTTCAG -ACGGAAGGCATTCGATAGGCATAG -ACGGAAGGCATTCGATAGGACAAG -ACGGAAGGCATTCGATAGAAGCAG -ACGGAAGGCATTCGATAGCGTCAA -ACGGAAGGCATTCGATAGGCTGAA -ACGGAAGGCATTCGATAGAGTACG -ACGGAAGGCATTCGATAGATCCGA -ACGGAAGGCATTCGATAGATGGGA -ACGGAAGGCATTCGATAGGTGCAA -ACGGAAGGCATTCGATAGGAGGAA -ACGGAAGGCATTCGATAGCAGGTA -ACGGAAGGCATTCGATAGGACTCT -ACGGAAGGCATTCGATAGAGTCCT -ACGGAAGGCATTCGATAGTAAGCC -ACGGAAGGCATTCGATAGATAGCC -ACGGAAGGCATTCGATAGTAACCG -ACGGAAGGCATTCGATAGATGCCA -ACGGAAGGCATTAGACACGGAAAC -ACGGAAGGCATTAGACACAACACC -ACGGAAGGCATTAGACACATCGAG -ACGGAAGGCATTAGACACCTCCTT -ACGGAAGGCATTAGACACCCTGTT -ACGGAAGGCATTAGACACCGGTTT -ACGGAAGGCATTAGACACGTGGTT -ACGGAAGGCATTAGACACGCCTTT -ACGGAAGGCATTAGACACGGTCTT -ACGGAAGGCATTAGACACACGCTT -ACGGAAGGCATTAGACACAGCGTT -ACGGAAGGCATTAGACACTTCGTC -ACGGAAGGCATTAGACACTCTCTC -ACGGAAGGCATTAGACACTGGATC -ACGGAAGGCATTAGACACCACTTC -ACGGAAGGCATTAGACACGTACTC -ACGGAAGGCATTAGACACGATGTC -ACGGAAGGCATTAGACACACAGTC -ACGGAAGGCATTAGACACTTGCTG -ACGGAAGGCATTAGACACTCCATG -ACGGAAGGCATTAGACACTGTGTG -ACGGAAGGCATTAGACACCTAGTG -ACGGAAGGCATTAGACACCATCTG -ACGGAAGGCATTAGACACGAGTTG -ACGGAAGGCATTAGACACAGACTG -ACGGAAGGCATTAGACACTCGGTA -ACGGAAGGCATTAGACACTGCCTA -ACGGAAGGCATTAGACACCCACTA -ACGGAAGGCATTAGACACGGAGTA -ACGGAAGGCATTAGACACTCGTCT -ACGGAAGGCATTAGACACTGCACT -ACGGAAGGCATTAGACACCTGACT -ACGGAAGGCATTAGACACCAACCT -ACGGAAGGCATTAGACACGCTACT -ACGGAAGGCATTAGACACGGATCT -ACGGAAGGCATTAGACACAAGGCT -ACGGAAGGCATTAGACACTCAACC -ACGGAAGGCATTAGACACTGTTCC -ACGGAAGGCATTAGACACATTCCC -ACGGAAGGCATTAGACACTTCTCG -ACGGAAGGCATTAGACACTAGACG -ACGGAAGGCATTAGACACGTAACG -ACGGAAGGCATTAGACACACTTCG -ACGGAAGGCATTAGACACTACGCA -ACGGAAGGCATTAGACACCTTGCA -ACGGAAGGCATTAGACACCGAACA -ACGGAAGGCATTAGACACCAGTCA -ACGGAAGGCATTAGACACGATCCA -ACGGAAGGCATTAGACACACGACA -ACGGAAGGCATTAGACACAGCTCA -ACGGAAGGCATTAGACACTCACGT -ACGGAAGGCATTAGACACCGTAGT -ACGGAAGGCATTAGACACGTCAGT -ACGGAAGGCATTAGACACGAAGGT -ACGGAAGGCATTAGACACAACCGT -ACGGAAGGCATTAGACACTTGTGC -ACGGAAGGCATTAGACACCTAAGC -ACGGAAGGCATTAGACACACTAGC -ACGGAAGGCATTAGACACAGATGC -ACGGAAGGCATTAGACACTGAAGG -ACGGAAGGCATTAGACACCAATGG -ACGGAAGGCATTAGACACATGAGG -ACGGAAGGCATTAGACACAATGGG -ACGGAAGGCATTAGACACTCCTGA -ACGGAAGGCATTAGACACTAGCGA -ACGGAAGGCATTAGACACCACAGA -ACGGAAGGCATTAGACACGCAAGA -ACGGAAGGCATTAGACACGGTTGA -ACGGAAGGCATTAGACACTCCGAT -ACGGAAGGCATTAGACACTGGCAT -ACGGAAGGCATTAGACACCGAGAT -ACGGAAGGCATTAGACACTACCAC -ACGGAAGGCATTAGACACCAGAAC -ACGGAAGGCATTAGACACGTCTAC -ACGGAAGGCATTAGACACACGTAC -ACGGAAGGCATTAGACACAGTGAC -ACGGAAGGCATTAGACACCTGTAG -ACGGAAGGCATTAGACACCCTAAG -ACGGAAGGCATTAGACACGTTCAG -ACGGAAGGCATTAGACACGCATAG -ACGGAAGGCATTAGACACGACAAG -ACGGAAGGCATTAGACACAAGCAG -ACGGAAGGCATTAGACACCGTCAA -ACGGAAGGCATTAGACACGCTGAA -ACGGAAGGCATTAGACACAGTACG -ACGGAAGGCATTAGACACATCCGA -ACGGAAGGCATTAGACACATGGGA -ACGGAAGGCATTAGACACGTGCAA -ACGGAAGGCATTAGACACGAGGAA -ACGGAAGGCATTAGACACCAGGTA -ACGGAAGGCATTAGACACGACTCT -ACGGAAGGCATTAGACACAGTCCT -ACGGAAGGCATTAGACACTAAGCC -ACGGAAGGCATTAGACACATAGCC -ACGGAAGGCATTAGACACTAACCG -ACGGAAGGCATTAGACACATGCCA -ACGGAAGGCATTAGAGCAGGAAAC -ACGGAAGGCATTAGAGCAAACACC -ACGGAAGGCATTAGAGCAATCGAG -ACGGAAGGCATTAGAGCACTCCTT -ACGGAAGGCATTAGAGCACCTGTT -ACGGAAGGCATTAGAGCACGGTTT -ACGGAAGGCATTAGAGCAGTGGTT -ACGGAAGGCATTAGAGCAGCCTTT -ACGGAAGGCATTAGAGCAGGTCTT -ACGGAAGGCATTAGAGCAACGCTT -ACGGAAGGCATTAGAGCAAGCGTT -ACGGAAGGCATTAGAGCATTCGTC -ACGGAAGGCATTAGAGCATCTCTC -ACGGAAGGCATTAGAGCATGGATC -ACGGAAGGCATTAGAGCACACTTC -ACGGAAGGCATTAGAGCAGTACTC -ACGGAAGGCATTAGAGCAGATGTC -ACGGAAGGCATTAGAGCAACAGTC -ACGGAAGGCATTAGAGCATTGCTG -ACGGAAGGCATTAGAGCATCCATG -ACGGAAGGCATTAGAGCATGTGTG -ACGGAAGGCATTAGAGCACTAGTG -ACGGAAGGCATTAGAGCACATCTG -ACGGAAGGCATTAGAGCAGAGTTG -ACGGAAGGCATTAGAGCAAGACTG -ACGGAAGGCATTAGAGCATCGGTA -ACGGAAGGCATTAGAGCATGCCTA -ACGGAAGGCATTAGAGCACCACTA -ACGGAAGGCATTAGAGCAGGAGTA -ACGGAAGGCATTAGAGCATCGTCT -ACGGAAGGCATTAGAGCATGCACT -ACGGAAGGCATTAGAGCACTGACT -ACGGAAGGCATTAGAGCACAACCT -ACGGAAGGCATTAGAGCAGCTACT -ACGGAAGGCATTAGAGCAGGATCT -ACGGAAGGCATTAGAGCAAAGGCT -ACGGAAGGCATTAGAGCATCAACC -ACGGAAGGCATTAGAGCATGTTCC -ACGGAAGGCATTAGAGCAATTCCC -ACGGAAGGCATTAGAGCATTCTCG -ACGGAAGGCATTAGAGCATAGACG -ACGGAAGGCATTAGAGCAGTAACG -ACGGAAGGCATTAGAGCAACTTCG -ACGGAAGGCATTAGAGCATACGCA -ACGGAAGGCATTAGAGCACTTGCA -ACGGAAGGCATTAGAGCACGAACA -ACGGAAGGCATTAGAGCACAGTCA -ACGGAAGGCATTAGAGCAGATCCA -ACGGAAGGCATTAGAGCAACGACA -ACGGAAGGCATTAGAGCAAGCTCA -ACGGAAGGCATTAGAGCATCACGT -ACGGAAGGCATTAGAGCACGTAGT -ACGGAAGGCATTAGAGCAGTCAGT -ACGGAAGGCATTAGAGCAGAAGGT -ACGGAAGGCATTAGAGCAAACCGT -ACGGAAGGCATTAGAGCATTGTGC -ACGGAAGGCATTAGAGCACTAAGC -ACGGAAGGCATTAGAGCAACTAGC -ACGGAAGGCATTAGAGCAAGATGC -ACGGAAGGCATTAGAGCATGAAGG -ACGGAAGGCATTAGAGCACAATGG -ACGGAAGGCATTAGAGCAATGAGG -ACGGAAGGCATTAGAGCAAATGGG -ACGGAAGGCATTAGAGCATCCTGA -ACGGAAGGCATTAGAGCATAGCGA -ACGGAAGGCATTAGAGCACACAGA -ACGGAAGGCATTAGAGCAGCAAGA -ACGGAAGGCATTAGAGCAGGTTGA -ACGGAAGGCATTAGAGCATCCGAT -ACGGAAGGCATTAGAGCATGGCAT -ACGGAAGGCATTAGAGCACGAGAT -ACGGAAGGCATTAGAGCATACCAC -ACGGAAGGCATTAGAGCACAGAAC -ACGGAAGGCATTAGAGCAGTCTAC -ACGGAAGGCATTAGAGCAACGTAC -ACGGAAGGCATTAGAGCAAGTGAC -ACGGAAGGCATTAGAGCACTGTAG -ACGGAAGGCATTAGAGCACCTAAG -ACGGAAGGCATTAGAGCAGTTCAG -ACGGAAGGCATTAGAGCAGCATAG -ACGGAAGGCATTAGAGCAGACAAG -ACGGAAGGCATTAGAGCAAAGCAG -ACGGAAGGCATTAGAGCACGTCAA -ACGGAAGGCATTAGAGCAGCTGAA -ACGGAAGGCATTAGAGCAAGTACG -ACGGAAGGCATTAGAGCAATCCGA -ACGGAAGGCATTAGAGCAATGGGA -ACGGAAGGCATTAGAGCAGTGCAA -ACGGAAGGCATTAGAGCAGAGGAA -ACGGAAGGCATTAGAGCACAGGTA -ACGGAAGGCATTAGAGCAGACTCT -ACGGAAGGCATTAGAGCAAGTCCT -ACGGAAGGCATTAGAGCATAAGCC -ACGGAAGGCATTAGAGCAATAGCC -ACGGAAGGCATTAGAGCATAACCG -ACGGAAGGCATTAGAGCAATGCCA -ACGGAAGGCATTTGAGGTGGAAAC -ACGGAAGGCATTTGAGGTAACACC -ACGGAAGGCATTTGAGGTATCGAG -ACGGAAGGCATTTGAGGTCTCCTT -ACGGAAGGCATTTGAGGTCCTGTT -ACGGAAGGCATTTGAGGTCGGTTT -ACGGAAGGCATTTGAGGTGTGGTT -ACGGAAGGCATTTGAGGTGCCTTT -ACGGAAGGCATTTGAGGTGGTCTT -ACGGAAGGCATTTGAGGTACGCTT -ACGGAAGGCATTTGAGGTAGCGTT -ACGGAAGGCATTTGAGGTTTCGTC -ACGGAAGGCATTTGAGGTTCTCTC -ACGGAAGGCATTTGAGGTTGGATC -ACGGAAGGCATTTGAGGTCACTTC -ACGGAAGGCATTTGAGGTGTACTC -ACGGAAGGCATTTGAGGTGATGTC -ACGGAAGGCATTTGAGGTACAGTC -ACGGAAGGCATTTGAGGTTTGCTG -ACGGAAGGCATTTGAGGTTCCATG -ACGGAAGGCATTTGAGGTTGTGTG -ACGGAAGGCATTTGAGGTCTAGTG -ACGGAAGGCATTTGAGGTCATCTG -ACGGAAGGCATTTGAGGTGAGTTG -ACGGAAGGCATTTGAGGTAGACTG -ACGGAAGGCATTTGAGGTTCGGTA -ACGGAAGGCATTTGAGGTTGCCTA -ACGGAAGGCATTTGAGGTCCACTA -ACGGAAGGCATTTGAGGTGGAGTA -ACGGAAGGCATTTGAGGTTCGTCT -ACGGAAGGCATTTGAGGTTGCACT -ACGGAAGGCATTTGAGGTCTGACT -ACGGAAGGCATTTGAGGTCAACCT -ACGGAAGGCATTTGAGGTGCTACT -ACGGAAGGCATTTGAGGTGGATCT -ACGGAAGGCATTTGAGGTAAGGCT -ACGGAAGGCATTTGAGGTTCAACC -ACGGAAGGCATTTGAGGTTGTTCC -ACGGAAGGCATTTGAGGTATTCCC -ACGGAAGGCATTTGAGGTTTCTCG -ACGGAAGGCATTTGAGGTTAGACG -ACGGAAGGCATTTGAGGTGTAACG -ACGGAAGGCATTTGAGGTACTTCG -ACGGAAGGCATTTGAGGTTACGCA -ACGGAAGGCATTTGAGGTCTTGCA -ACGGAAGGCATTTGAGGTCGAACA -ACGGAAGGCATTTGAGGTCAGTCA -ACGGAAGGCATTTGAGGTGATCCA -ACGGAAGGCATTTGAGGTACGACA -ACGGAAGGCATTTGAGGTAGCTCA -ACGGAAGGCATTTGAGGTTCACGT -ACGGAAGGCATTTGAGGTCGTAGT -ACGGAAGGCATTTGAGGTGTCAGT -ACGGAAGGCATTTGAGGTGAAGGT -ACGGAAGGCATTTGAGGTAACCGT -ACGGAAGGCATTTGAGGTTTGTGC -ACGGAAGGCATTTGAGGTCTAAGC -ACGGAAGGCATTTGAGGTACTAGC -ACGGAAGGCATTTGAGGTAGATGC -ACGGAAGGCATTTGAGGTTGAAGG -ACGGAAGGCATTTGAGGTCAATGG -ACGGAAGGCATTTGAGGTATGAGG -ACGGAAGGCATTTGAGGTAATGGG -ACGGAAGGCATTTGAGGTTCCTGA -ACGGAAGGCATTTGAGGTTAGCGA -ACGGAAGGCATTTGAGGTCACAGA -ACGGAAGGCATTTGAGGTGCAAGA -ACGGAAGGCATTTGAGGTGGTTGA -ACGGAAGGCATTTGAGGTTCCGAT -ACGGAAGGCATTTGAGGTTGGCAT -ACGGAAGGCATTTGAGGTCGAGAT -ACGGAAGGCATTTGAGGTTACCAC -ACGGAAGGCATTTGAGGTCAGAAC -ACGGAAGGCATTTGAGGTGTCTAC -ACGGAAGGCATTTGAGGTACGTAC -ACGGAAGGCATTTGAGGTAGTGAC -ACGGAAGGCATTTGAGGTCTGTAG -ACGGAAGGCATTTGAGGTCCTAAG -ACGGAAGGCATTTGAGGTGTTCAG -ACGGAAGGCATTTGAGGTGCATAG -ACGGAAGGCATTTGAGGTGACAAG -ACGGAAGGCATTTGAGGTAAGCAG -ACGGAAGGCATTTGAGGTCGTCAA -ACGGAAGGCATTTGAGGTGCTGAA -ACGGAAGGCATTTGAGGTAGTACG -ACGGAAGGCATTTGAGGTATCCGA -ACGGAAGGCATTTGAGGTATGGGA -ACGGAAGGCATTTGAGGTGTGCAA -ACGGAAGGCATTTGAGGTGAGGAA -ACGGAAGGCATTTGAGGTCAGGTA -ACGGAAGGCATTTGAGGTGACTCT -ACGGAAGGCATTTGAGGTAGTCCT -ACGGAAGGCATTTGAGGTTAAGCC -ACGGAAGGCATTTGAGGTATAGCC -ACGGAAGGCATTTGAGGTTAACCG -ACGGAAGGCATTTGAGGTATGCCA -ACGGAAGGCATTGATTCCGGAAAC -ACGGAAGGCATTGATTCCAACACC -ACGGAAGGCATTGATTCCATCGAG -ACGGAAGGCATTGATTCCCTCCTT -ACGGAAGGCATTGATTCCCCTGTT -ACGGAAGGCATTGATTCCCGGTTT -ACGGAAGGCATTGATTCCGTGGTT -ACGGAAGGCATTGATTCCGCCTTT -ACGGAAGGCATTGATTCCGGTCTT -ACGGAAGGCATTGATTCCACGCTT -ACGGAAGGCATTGATTCCAGCGTT -ACGGAAGGCATTGATTCCTTCGTC -ACGGAAGGCATTGATTCCTCTCTC -ACGGAAGGCATTGATTCCTGGATC -ACGGAAGGCATTGATTCCCACTTC -ACGGAAGGCATTGATTCCGTACTC -ACGGAAGGCATTGATTCCGATGTC -ACGGAAGGCATTGATTCCACAGTC -ACGGAAGGCATTGATTCCTTGCTG -ACGGAAGGCATTGATTCCTCCATG -ACGGAAGGCATTGATTCCTGTGTG -ACGGAAGGCATTGATTCCCTAGTG -ACGGAAGGCATTGATTCCCATCTG -ACGGAAGGCATTGATTCCGAGTTG -ACGGAAGGCATTGATTCCAGACTG -ACGGAAGGCATTGATTCCTCGGTA -ACGGAAGGCATTGATTCCTGCCTA -ACGGAAGGCATTGATTCCCCACTA -ACGGAAGGCATTGATTCCGGAGTA -ACGGAAGGCATTGATTCCTCGTCT -ACGGAAGGCATTGATTCCTGCACT -ACGGAAGGCATTGATTCCCTGACT -ACGGAAGGCATTGATTCCCAACCT -ACGGAAGGCATTGATTCCGCTACT -ACGGAAGGCATTGATTCCGGATCT -ACGGAAGGCATTGATTCCAAGGCT -ACGGAAGGCATTGATTCCTCAACC -ACGGAAGGCATTGATTCCTGTTCC -ACGGAAGGCATTGATTCCATTCCC -ACGGAAGGCATTGATTCCTTCTCG -ACGGAAGGCATTGATTCCTAGACG -ACGGAAGGCATTGATTCCGTAACG -ACGGAAGGCATTGATTCCACTTCG -ACGGAAGGCATTGATTCCTACGCA -ACGGAAGGCATTGATTCCCTTGCA -ACGGAAGGCATTGATTCCCGAACA -ACGGAAGGCATTGATTCCCAGTCA -ACGGAAGGCATTGATTCCGATCCA -ACGGAAGGCATTGATTCCACGACA -ACGGAAGGCATTGATTCCAGCTCA -ACGGAAGGCATTGATTCCTCACGT -ACGGAAGGCATTGATTCCCGTAGT -ACGGAAGGCATTGATTCCGTCAGT -ACGGAAGGCATTGATTCCGAAGGT -ACGGAAGGCATTGATTCCAACCGT -ACGGAAGGCATTGATTCCTTGTGC -ACGGAAGGCATTGATTCCCTAAGC -ACGGAAGGCATTGATTCCACTAGC -ACGGAAGGCATTGATTCCAGATGC -ACGGAAGGCATTGATTCCTGAAGG -ACGGAAGGCATTGATTCCCAATGG -ACGGAAGGCATTGATTCCATGAGG -ACGGAAGGCATTGATTCCAATGGG -ACGGAAGGCATTGATTCCTCCTGA -ACGGAAGGCATTGATTCCTAGCGA -ACGGAAGGCATTGATTCCCACAGA -ACGGAAGGCATTGATTCCGCAAGA -ACGGAAGGCATTGATTCCGGTTGA -ACGGAAGGCATTGATTCCTCCGAT -ACGGAAGGCATTGATTCCTGGCAT -ACGGAAGGCATTGATTCCCGAGAT -ACGGAAGGCATTGATTCCTACCAC -ACGGAAGGCATTGATTCCCAGAAC -ACGGAAGGCATTGATTCCGTCTAC -ACGGAAGGCATTGATTCCACGTAC -ACGGAAGGCATTGATTCCAGTGAC -ACGGAAGGCATTGATTCCCTGTAG -ACGGAAGGCATTGATTCCCCTAAG -ACGGAAGGCATTGATTCCGTTCAG -ACGGAAGGCATTGATTCCGCATAG -ACGGAAGGCATTGATTCCGACAAG -ACGGAAGGCATTGATTCCAAGCAG -ACGGAAGGCATTGATTCCCGTCAA -ACGGAAGGCATTGATTCCGCTGAA -ACGGAAGGCATTGATTCCAGTACG -ACGGAAGGCATTGATTCCATCCGA -ACGGAAGGCATTGATTCCATGGGA -ACGGAAGGCATTGATTCCGTGCAA -ACGGAAGGCATTGATTCCGAGGAA -ACGGAAGGCATTGATTCCCAGGTA -ACGGAAGGCATTGATTCCGACTCT -ACGGAAGGCATTGATTCCAGTCCT -ACGGAAGGCATTGATTCCTAAGCC -ACGGAAGGCATTGATTCCATAGCC -ACGGAAGGCATTGATTCCTAACCG -ACGGAAGGCATTGATTCCATGCCA -ACGGAAGGCATTCATTGGGGAAAC -ACGGAAGGCATTCATTGGAACACC -ACGGAAGGCATTCATTGGATCGAG -ACGGAAGGCATTCATTGGCTCCTT -ACGGAAGGCATTCATTGGCCTGTT -ACGGAAGGCATTCATTGGCGGTTT -ACGGAAGGCATTCATTGGGTGGTT -ACGGAAGGCATTCATTGGGCCTTT -ACGGAAGGCATTCATTGGGGTCTT -ACGGAAGGCATTCATTGGACGCTT -ACGGAAGGCATTCATTGGAGCGTT -ACGGAAGGCATTCATTGGTTCGTC -ACGGAAGGCATTCATTGGTCTCTC -ACGGAAGGCATTCATTGGTGGATC -ACGGAAGGCATTCATTGGCACTTC -ACGGAAGGCATTCATTGGGTACTC -ACGGAAGGCATTCATTGGGATGTC -ACGGAAGGCATTCATTGGACAGTC -ACGGAAGGCATTCATTGGTTGCTG -ACGGAAGGCATTCATTGGTCCATG -ACGGAAGGCATTCATTGGTGTGTG -ACGGAAGGCATTCATTGGCTAGTG -ACGGAAGGCATTCATTGGCATCTG -ACGGAAGGCATTCATTGGGAGTTG -ACGGAAGGCATTCATTGGAGACTG -ACGGAAGGCATTCATTGGTCGGTA -ACGGAAGGCATTCATTGGTGCCTA -ACGGAAGGCATTCATTGGCCACTA -ACGGAAGGCATTCATTGGGGAGTA -ACGGAAGGCATTCATTGGTCGTCT -ACGGAAGGCATTCATTGGTGCACT -ACGGAAGGCATTCATTGGCTGACT -ACGGAAGGCATTCATTGGCAACCT -ACGGAAGGCATTCATTGGGCTACT -ACGGAAGGCATTCATTGGGGATCT -ACGGAAGGCATTCATTGGAAGGCT -ACGGAAGGCATTCATTGGTCAACC -ACGGAAGGCATTCATTGGTGTTCC -ACGGAAGGCATTCATTGGATTCCC -ACGGAAGGCATTCATTGGTTCTCG -ACGGAAGGCATTCATTGGTAGACG -ACGGAAGGCATTCATTGGGTAACG -ACGGAAGGCATTCATTGGACTTCG -ACGGAAGGCATTCATTGGTACGCA -ACGGAAGGCATTCATTGGCTTGCA -ACGGAAGGCATTCATTGGCGAACA -ACGGAAGGCATTCATTGGCAGTCA -ACGGAAGGCATTCATTGGGATCCA -ACGGAAGGCATTCATTGGACGACA -ACGGAAGGCATTCATTGGAGCTCA -ACGGAAGGCATTCATTGGTCACGT -ACGGAAGGCATTCATTGGCGTAGT -ACGGAAGGCATTCATTGGGTCAGT -ACGGAAGGCATTCATTGGGAAGGT -ACGGAAGGCATTCATTGGAACCGT -ACGGAAGGCATTCATTGGTTGTGC -ACGGAAGGCATTCATTGGCTAAGC -ACGGAAGGCATTCATTGGACTAGC -ACGGAAGGCATTCATTGGAGATGC -ACGGAAGGCATTCATTGGTGAAGG -ACGGAAGGCATTCATTGGCAATGG -ACGGAAGGCATTCATTGGATGAGG -ACGGAAGGCATTCATTGGAATGGG -ACGGAAGGCATTCATTGGTCCTGA -ACGGAAGGCATTCATTGGTAGCGA -ACGGAAGGCATTCATTGGCACAGA -ACGGAAGGCATTCATTGGGCAAGA -ACGGAAGGCATTCATTGGGGTTGA -ACGGAAGGCATTCATTGGTCCGAT -ACGGAAGGCATTCATTGGTGGCAT -ACGGAAGGCATTCATTGGCGAGAT -ACGGAAGGCATTCATTGGTACCAC -ACGGAAGGCATTCATTGGCAGAAC -ACGGAAGGCATTCATTGGGTCTAC -ACGGAAGGCATTCATTGGACGTAC -ACGGAAGGCATTCATTGGAGTGAC -ACGGAAGGCATTCATTGGCTGTAG -ACGGAAGGCATTCATTGGCCTAAG -ACGGAAGGCATTCATTGGGTTCAG -ACGGAAGGCATTCATTGGGCATAG -ACGGAAGGCATTCATTGGGACAAG -ACGGAAGGCATTCATTGGAAGCAG -ACGGAAGGCATTCATTGGCGTCAA -ACGGAAGGCATTCATTGGGCTGAA -ACGGAAGGCATTCATTGGAGTACG -ACGGAAGGCATTCATTGGATCCGA -ACGGAAGGCATTCATTGGATGGGA -ACGGAAGGCATTCATTGGGTGCAA -ACGGAAGGCATTCATTGGGAGGAA -ACGGAAGGCATTCATTGGCAGGTA -ACGGAAGGCATTCATTGGGACTCT -ACGGAAGGCATTCATTGGAGTCCT -ACGGAAGGCATTCATTGGTAAGCC -ACGGAAGGCATTCATTGGATAGCC -ACGGAAGGCATTCATTGGTAACCG -ACGGAAGGCATTCATTGGATGCCA -ACGGAAGGCATTGATCGAGGAAAC -ACGGAAGGCATTGATCGAAACACC -ACGGAAGGCATTGATCGAATCGAG -ACGGAAGGCATTGATCGACTCCTT -ACGGAAGGCATTGATCGACCTGTT -ACGGAAGGCATTGATCGACGGTTT -ACGGAAGGCATTGATCGAGTGGTT -ACGGAAGGCATTGATCGAGCCTTT -ACGGAAGGCATTGATCGAGGTCTT -ACGGAAGGCATTGATCGAACGCTT -ACGGAAGGCATTGATCGAAGCGTT -ACGGAAGGCATTGATCGATTCGTC -ACGGAAGGCATTGATCGATCTCTC -ACGGAAGGCATTGATCGATGGATC -ACGGAAGGCATTGATCGACACTTC -ACGGAAGGCATTGATCGAGTACTC -ACGGAAGGCATTGATCGAGATGTC -ACGGAAGGCATTGATCGAACAGTC -ACGGAAGGCATTGATCGATTGCTG -ACGGAAGGCATTGATCGATCCATG -ACGGAAGGCATTGATCGATGTGTG -ACGGAAGGCATTGATCGACTAGTG -ACGGAAGGCATTGATCGACATCTG -ACGGAAGGCATTGATCGAGAGTTG -ACGGAAGGCATTGATCGAAGACTG -ACGGAAGGCATTGATCGATCGGTA -ACGGAAGGCATTGATCGATGCCTA -ACGGAAGGCATTGATCGACCACTA -ACGGAAGGCATTGATCGAGGAGTA -ACGGAAGGCATTGATCGATCGTCT -ACGGAAGGCATTGATCGATGCACT -ACGGAAGGCATTGATCGACTGACT -ACGGAAGGCATTGATCGACAACCT -ACGGAAGGCATTGATCGAGCTACT -ACGGAAGGCATTGATCGAGGATCT -ACGGAAGGCATTGATCGAAAGGCT -ACGGAAGGCATTGATCGATCAACC -ACGGAAGGCATTGATCGATGTTCC -ACGGAAGGCATTGATCGAATTCCC -ACGGAAGGCATTGATCGATTCTCG -ACGGAAGGCATTGATCGATAGACG -ACGGAAGGCATTGATCGAGTAACG -ACGGAAGGCATTGATCGAACTTCG -ACGGAAGGCATTGATCGATACGCA -ACGGAAGGCATTGATCGACTTGCA -ACGGAAGGCATTGATCGACGAACA -ACGGAAGGCATTGATCGACAGTCA -ACGGAAGGCATTGATCGAGATCCA -ACGGAAGGCATTGATCGAACGACA -ACGGAAGGCATTGATCGAAGCTCA -ACGGAAGGCATTGATCGATCACGT -ACGGAAGGCATTGATCGACGTAGT -ACGGAAGGCATTGATCGAGTCAGT -ACGGAAGGCATTGATCGAGAAGGT -ACGGAAGGCATTGATCGAAACCGT -ACGGAAGGCATTGATCGATTGTGC -ACGGAAGGCATTGATCGACTAAGC -ACGGAAGGCATTGATCGAACTAGC -ACGGAAGGCATTGATCGAAGATGC -ACGGAAGGCATTGATCGATGAAGG -ACGGAAGGCATTGATCGACAATGG -ACGGAAGGCATTGATCGAATGAGG -ACGGAAGGCATTGATCGAAATGGG -ACGGAAGGCATTGATCGATCCTGA -ACGGAAGGCATTGATCGATAGCGA -ACGGAAGGCATTGATCGACACAGA -ACGGAAGGCATTGATCGAGCAAGA -ACGGAAGGCATTGATCGAGGTTGA -ACGGAAGGCATTGATCGATCCGAT -ACGGAAGGCATTGATCGATGGCAT -ACGGAAGGCATTGATCGACGAGAT -ACGGAAGGCATTGATCGATACCAC -ACGGAAGGCATTGATCGACAGAAC -ACGGAAGGCATTGATCGAGTCTAC -ACGGAAGGCATTGATCGAACGTAC -ACGGAAGGCATTGATCGAAGTGAC -ACGGAAGGCATTGATCGACTGTAG -ACGGAAGGCATTGATCGACCTAAG -ACGGAAGGCATTGATCGAGTTCAG -ACGGAAGGCATTGATCGAGCATAG -ACGGAAGGCATTGATCGAGACAAG -ACGGAAGGCATTGATCGAAAGCAG -ACGGAAGGCATTGATCGACGTCAA -ACGGAAGGCATTGATCGAGCTGAA -ACGGAAGGCATTGATCGAAGTACG -ACGGAAGGCATTGATCGAATCCGA -ACGGAAGGCATTGATCGAATGGGA -ACGGAAGGCATTGATCGAGTGCAA -ACGGAAGGCATTGATCGAGAGGAA -ACGGAAGGCATTGATCGACAGGTA -ACGGAAGGCATTGATCGAGACTCT -ACGGAAGGCATTGATCGAAGTCCT -ACGGAAGGCATTGATCGATAAGCC -ACGGAAGGCATTGATCGAATAGCC -ACGGAAGGCATTGATCGATAACCG -ACGGAAGGCATTGATCGAATGCCA -ACGGAAGGCATTCACTACGGAAAC -ACGGAAGGCATTCACTACAACACC -ACGGAAGGCATTCACTACATCGAG -ACGGAAGGCATTCACTACCTCCTT -ACGGAAGGCATTCACTACCCTGTT -ACGGAAGGCATTCACTACCGGTTT -ACGGAAGGCATTCACTACGTGGTT -ACGGAAGGCATTCACTACGCCTTT -ACGGAAGGCATTCACTACGGTCTT -ACGGAAGGCATTCACTACACGCTT -ACGGAAGGCATTCACTACAGCGTT -ACGGAAGGCATTCACTACTTCGTC -ACGGAAGGCATTCACTACTCTCTC -ACGGAAGGCATTCACTACTGGATC -ACGGAAGGCATTCACTACCACTTC -ACGGAAGGCATTCACTACGTACTC -ACGGAAGGCATTCACTACGATGTC -ACGGAAGGCATTCACTACACAGTC -ACGGAAGGCATTCACTACTTGCTG -ACGGAAGGCATTCACTACTCCATG -ACGGAAGGCATTCACTACTGTGTG -ACGGAAGGCATTCACTACCTAGTG -ACGGAAGGCATTCACTACCATCTG -ACGGAAGGCATTCACTACGAGTTG -ACGGAAGGCATTCACTACAGACTG -ACGGAAGGCATTCACTACTCGGTA -ACGGAAGGCATTCACTACTGCCTA -ACGGAAGGCATTCACTACCCACTA -ACGGAAGGCATTCACTACGGAGTA -ACGGAAGGCATTCACTACTCGTCT -ACGGAAGGCATTCACTACTGCACT -ACGGAAGGCATTCACTACCTGACT -ACGGAAGGCATTCACTACCAACCT -ACGGAAGGCATTCACTACGCTACT -ACGGAAGGCATTCACTACGGATCT -ACGGAAGGCATTCACTACAAGGCT -ACGGAAGGCATTCACTACTCAACC -ACGGAAGGCATTCACTACTGTTCC -ACGGAAGGCATTCACTACATTCCC -ACGGAAGGCATTCACTACTTCTCG -ACGGAAGGCATTCACTACTAGACG -ACGGAAGGCATTCACTACGTAACG -ACGGAAGGCATTCACTACACTTCG -ACGGAAGGCATTCACTACTACGCA -ACGGAAGGCATTCACTACCTTGCA -ACGGAAGGCATTCACTACCGAACA -ACGGAAGGCATTCACTACCAGTCA -ACGGAAGGCATTCACTACGATCCA -ACGGAAGGCATTCACTACACGACA -ACGGAAGGCATTCACTACAGCTCA -ACGGAAGGCATTCACTACTCACGT -ACGGAAGGCATTCACTACCGTAGT -ACGGAAGGCATTCACTACGTCAGT -ACGGAAGGCATTCACTACGAAGGT -ACGGAAGGCATTCACTACAACCGT -ACGGAAGGCATTCACTACTTGTGC -ACGGAAGGCATTCACTACCTAAGC -ACGGAAGGCATTCACTACACTAGC -ACGGAAGGCATTCACTACAGATGC -ACGGAAGGCATTCACTACTGAAGG -ACGGAAGGCATTCACTACCAATGG -ACGGAAGGCATTCACTACATGAGG -ACGGAAGGCATTCACTACAATGGG -ACGGAAGGCATTCACTACTCCTGA -ACGGAAGGCATTCACTACTAGCGA -ACGGAAGGCATTCACTACCACAGA -ACGGAAGGCATTCACTACGCAAGA -ACGGAAGGCATTCACTACGGTTGA -ACGGAAGGCATTCACTACTCCGAT -ACGGAAGGCATTCACTACTGGCAT -ACGGAAGGCATTCACTACCGAGAT -ACGGAAGGCATTCACTACTACCAC -ACGGAAGGCATTCACTACCAGAAC -ACGGAAGGCATTCACTACGTCTAC -ACGGAAGGCATTCACTACACGTAC -ACGGAAGGCATTCACTACAGTGAC -ACGGAAGGCATTCACTACCTGTAG -ACGGAAGGCATTCACTACCCTAAG -ACGGAAGGCATTCACTACGTTCAG -ACGGAAGGCATTCACTACGCATAG -ACGGAAGGCATTCACTACGACAAG -ACGGAAGGCATTCACTACAAGCAG -ACGGAAGGCATTCACTACCGTCAA -ACGGAAGGCATTCACTACGCTGAA -ACGGAAGGCATTCACTACAGTACG -ACGGAAGGCATTCACTACATCCGA -ACGGAAGGCATTCACTACATGGGA -ACGGAAGGCATTCACTACGTGCAA -ACGGAAGGCATTCACTACGAGGAA -ACGGAAGGCATTCACTACCAGGTA -ACGGAAGGCATTCACTACGACTCT -ACGGAAGGCATTCACTACAGTCCT -ACGGAAGGCATTCACTACTAAGCC -ACGGAAGGCATTCACTACATAGCC -ACGGAAGGCATTCACTACTAACCG -ACGGAAGGCATTCACTACATGCCA -ACGGAAGGCATTAACCAGGGAAAC -ACGGAAGGCATTAACCAGAACACC -ACGGAAGGCATTAACCAGATCGAG -ACGGAAGGCATTAACCAGCTCCTT -ACGGAAGGCATTAACCAGCCTGTT -ACGGAAGGCATTAACCAGCGGTTT -ACGGAAGGCATTAACCAGGTGGTT -ACGGAAGGCATTAACCAGGCCTTT -ACGGAAGGCATTAACCAGGGTCTT -ACGGAAGGCATTAACCAGACGCTT -ACGGAAGGCATTAACCAGAGCGTT -ACGGAAGGCATTAACCAGTTCGTC -ACGGAAGGCATTAACCAGTCTCTC -ACGGAAGGCATTAACCAGTGGATC -ACGGAAGGCATTAACCAGCACTTC -ACGGAAGGCATTAACCAGGTACTC -ACGGAAGGCATTAACCAGGATGTC -ACGGAAGGCATTAACCAGACAGTC -ACGGAAGGCATTAACCAGTTGCTG -ACGGAAGGCATTAACCAGTCCATG -ACGGAAGGCATTAACCAGTGTGTG -ACGGAAGGCATTAACCAGCTAGTG -ACGGAAGGCATTAACCAGCATCTG -ACGGAAGGCATTAACCAGGAGTTG -ACGGAAGGCATTAACCAGAGACTG -ACGGAAGGCATTAACCAGTCGGTA -ACGGAAGGCATTAACCAGTGCCTA -ACGGAAGGCATTAACCAGCCACTA -ACGGAAGGCATTAACCAGGGAGTA -ACGGAAGGCATTAACCAGTCGTCT -ACGGAAGGCATTAACCAGTGCACT -ACGGAAGGCATTAACCAGCTGACT -ACGGAAGGCATTAACCAGCAACCT -ACGGAAGGCATTAACCAGGCTACT -ACGGAAGGCATTAACCAGGGATCT -ACGGAAGGCATTAACCAGAAGGCT -ACGGAAGGCATTAACCAGTCAACC -ACGGAAGGCATTAACCAGTGTTCC -ACGGAAGGCATTAACCAGATTCCC -ACGGAAGGCATTAACCAGTTCTCG -ACGGAAGGCATTAACCAGTAGACG -ACGGAAGGCATTAACCAGGTAACG -ACGGAAGGCATTAACCAGACTTCG -ACGGAAGGCATTAACCAGTACGCA -ACGGAAGGCATTAACCAGCTTGCA -ACGGAAGGCATTAACCAGCGAACA -ACGGAAGGCATTAACCAGCAGTCA -ACGGAAGGCATTAACCAGGATCCA -ACGGAAGGCATTAACCAGACGACA -ACGGAAGGCATTAACCAGAGCTCA -ACGGAAGGCATTAACCAGTCACGT -ACGGAAGGCATTAACCAGCGTAGT -ACGGAAGGCATTAACCAGGTCAGT -ACGGAAGGCATTAACCAGGAAGGT -ACGGAAGGCATTAACCAGAACCGT -ACGGAAGGCATTAACCAGTTGTGC -ACGGAAGGCATTAACCAGCTAAGC -ACGGAAGGCATTAACCAGACTAGC -ACGGAAGGCATTAACCAGAGATGC -ACGGAAGGCATTAACCAGTGAAGG -ACGGAAGGCATTAACCAGCAATGG -ACGGAAGGCATTAACCAGATGAGG -ACGGAAGGCATTAACCAGAATGGG -ACGGAAGGCATTAACCAGTCCTGA -ACGGAAGGCATTAACCAGTAGCGA -ACGGAAGGCATTAACCAGCACAGA -ACGGAAGGCATTAACCAGGCAAGA -ACGGAAGGCATTAACCAGGGTTGA -ACGGAAGGCATTAACCAGTCCGAT -ACGGAAGGCATTAACCAGTGGCAT -ACGGAAGGCATTAACCAGCGAGAT -ACGGAAGGCATTAACCAGTACCAC -ACGGAAGGCATTAACCAGCAGAAC -ACGGAAGGCATTAACCAGGTCTAC -ACGGAAGGCATTAACCAGACGTAC -ACGGAAGGCATTAACCAGAGTGAC -ACGGAAGGCATTAACCAGCTGTAG -ACGGAAGGCATTAACCAGCCTAAG -ACGGAAGGCATTAACCAGGTTCAG -ACGGAAGGCATTAACCAGGCATAG -ACGGAAGGCATTAACCAGGACAAG -ACGGAAGGCATTAACCAGAAGCAG -ACGGAAGGCATTAACCAGCGTCAA -ACGGAAGGCATTAACCAGGCTGAA -ACGGAAGGCATTAACCAGAGTACG -ACGGAAGGCATTAACCAGATCCGA -ACGGAAGGCATTAACCAGATGGGA -ACGGAAGGCATTAACCAGGTGCAA -ACGGAAGGCATTAACCAGGAGGAA -ACGGAAGGCATTAACCAGCAGGTA -ACGGAAGGCATTAACCAGGACTCT -ACGGAAGGCATTAACCAGAGTCCT -ACGGAAGGCATTAACCAGTAAGCC -ACGGAAGGCATTAACCAGATAGCC -ACGGAAGGCATTAACCAGTAACCG -ACGGAAGGCATTAACCAGATGCCA -ACGGAAGGCATTTACGTCGGAAAC -ACGGAAGGCATTTACGTCAACACC -ACGGAAGGCATTTACGTCATCGAG -ACGGAAGGCATTTACGTCCTCCTT -ACGGAAGGCATTTACGTCCCTGTT -ACGGAAGGCATTTACGTCCGGTTT -ACGGAAGGCATTTACGTCGTGGTT -ACGGAAGGCATTTACGTCGCCTTT -ACGGAAGGCATTTACGTCGGTCTT -ACGGAAGGCATTTACGTCACGCTT -ACGGAAGGCATTTACGTCAGCGTT -ACGGAAGGCATTTACGTCTTCGTC -ACGGAAGGCATTTACGTCTCTCTC -ACGGAAGGCATTTACGTCTGGATC -ACGGAAGGCATTTACGTCCACTTC -ACGGAAGGCATTTACGTCGTACTC -ACGGAAGGCATTTACGTCGATGTC -ACGGAAGGCATTTACGTCACAGTC -ACGGAAGGCATTTACGTCTTGCTG -ACGGAAGGCATTTACGTCTCCATG -ACGGAAGGCATTTACGTCTGTGTG -ACGGAAGGCATTTACGTCCTAGTG -ACGGAAGGCATTTACGTCCATCTG -ACGGAAGGCATTTACGTCGAGTTG -ACGGAAGGCATTTACGTCAGACTG -ACGGAAGGCATTTACGTCTCGGTA -ACGGAAGGCATTTACGTCTGCCTA -ACGGAAGGCATTTACGTCCCACTA -ACGGAAGGCATTTACGTCGGAGTA -ACGGAAGGCATTTACGTCTCGTCT -ACGGAAGGCATTTACGTCTGCACT -ACGGAAGGCATTTACGTCCTGACT -ACGGAAGGCATTTACGTCCAACCT -ACGGAAGGCATTTACGTCGCTACT -ACGGAAGGCATTTACGTCGGATCT -ACGGAAGGCATTTACGTCAAGGCT -ACGGAAGGCATTTACGTCTCAACC -ACGGAAGGCATTTACGTCTGTTCC -ACGGAAGGCATTTACGTCATTCCC -ACGGAAGGCATTTACGTCTTCTCG -ACGGAAGGCATTTACGTCTAGACG -ACGGAAGGCATTTACGTCGTAACG -ACGGAAGGCATTTACGTCACTTCG -ACGGAAGGCATTTACGTCTACGCA -ACGGAAGGCATTTACGTCCTTGCA -ACGGAAGGCATTTACGTCCGAACA -ACGGAAGGCATTTACGTCCAGTCA -ACGGAAGGCATTTACGTCGATCCA -ACGGAAGGCATTTACGTCACGACA -ACGGAAGGCATTTACGTCAGCTCA -ACGGAAGGCATTTACGTCTCACGT -ACGGAAGGCATTTACGTCCGTAGT -ACGGAAGGCATTTACGTCGTCAGT -ACGGAAGGCATTTACGTCGAAGGT -ACGGAAGGCATTTACGTCAACCGT -ACGGAAGGCATTTACGTCTTGTGC -ACGGAAGGCATTTACGTCCTAAGC -ACGGAAGGCATTTACGTCACTAGC -ACGGAAGGCATTTACGTCAGATGC -ACGGAAGGCATTTACGTCTGAAGG -ACGGAAGGCATTTACGTCCAATGG -ACGGAAGGCATTTACGTCATGAGG -ACGGAAGGCATTTACGTCAATGGG -ACGGAAGGCATTTACGTCTCCTGA -ACGGAAGGCATTTACGTCTAGCGA -ACGGAAGGCATTTACGTCCACAGA -ACGGAAGGCATTTACGTCGCAAGA -ACGGAAGGCATTTACGTCGGTTGA -ACGGAAGGCATTTACGTCTCCGAT -ACGGAAGGCATTTACGTCTGGCAT -ACGGAAGGCATTTACGTCCGAGAT -ACGGAAGGCATTTACGTCTACCAC -ACGGAAGGCATTTACGTCCAGAAC -ACGGAAGGCATTTACGTCGTCTAC -ACGGAAGGCATTTACGTCACGTAC -ACGGAAGGCATTTACGTCAGTGAC -ACGGAAGGCATTTACGTCCTGTAG -ACGGAAGGCATTTACGTCCCTAAG -ACGGAAGGCATTTACGTCGTTCAG -ACGGAAGGCATTTACGTCGCATAG -ACGGAAGGCATTTACGTCGACAAG -ACGGAAGGCATTTACGTCAAGCAG -ACGGAAGGCATTTACGTCCGTCAA -ACGGAAGGCATTTACGTCGCTGAA -ACGGAAGGCATTTACGTCAGTACG -ACGGAAGGCATTTACGTCATCCGA -ACGGAAGGCATTTACGTCATGGGA -ACGGAAGGCATTTACGTCGTGCAA -ACGGAAGGCATTTACGTCGAGGAA -ACGGAAGGCATTTACGTCCAGGTA -ACGGAAGGCATTTACGTCGACTCT -ACGGAAGGCATTTACGTCAGTCCT -ACGGAAGGCATTTACGTCTAAGCC -ACGGAAGGCATTTACGTCATAGCC -ACGGAAGGCATTTACGTCTAACCG -ACGGAAGGCATTTACGTCATGCCA -ACGGAAGGCATTTACACGGGAAAC -ACGGAAGGCATTTACACGAACACC -ACGGAAGGCATTTACACGATCGAG -ACGGAAGGCATTTACACGCTCCTT -ACGGAAGGCATTTACACGCCTGTT -ACGGAAGGCATTTACACGCGGTTT -ACGGAAGGCATTTACACGGTGGTT -ACGGAAGGCATTTACACGGCCTTT -ACGGAAGGCATTTACACGGGTCTT -ACGGAAGGCATTTACACGACGCTT -ACGGAAGGCATTTACACGAGCGTT -ACGGAAGGCATTTACACGTTCGTC -ACGGAAGGCATTTACACGTCTCTC -ACGGAAGGCATTTACACGTGGATC -ACGGAAGGCATTTACACGCACTTC -ACGGAAGGCATTTACACGGTACTC -ACGGAAGGCATTTACACGGATGTC -ACGGAAGGCATTTACACGACAGTC -ACGGAAGGCATTTACACGTTGCTG -ACGGAAGGCATTTACACGTCCATG -ACGGAAGGCATTTACACGTGTGTG -ACGGAAGGCATTTACACGCTAGTG -ACGGAAGGCATTTACACGCATCTG -ACGGAAGGCATTTACACGGAGTTG -ACGGAAGGCATTTACACGAGACTG -ACGGAAGGCATTTACACGTCGGTA -ACGGAAGGCATTTACACGTGCCTA -ACGGAAGGCATTTACACGCCACTA -ACGGAAGGCATTTACACGGGAGTA -ACGGAAGGCATTTACACGTCGTCT -ACGGAAGGCATTTACACGTGCACT -ACGGAAGGCATTTACACGCTGACT -ACGGAAGGCATTTACACGCAACCT -ACGGAAGGCATTTACACGGCTACT -ACGGAAGGCATTTACACGGGATCT -ACGGAAGGCATTTACACGAAGGCT -ACGGAAGGCATTTACACGTCAACC -ACGGAAGGCATTTACACGTGTTCC -ACGGAAGGCATTTACACGATTCCC -ACGGAAGGCATTTACACGTTCTCG -ACGGAAGGCATTTACACGTAGACG -ACGGAAGGCATTTACACGGTAACG -ACGGAAGGCATTTACACGACTTCG -ACGGAAGGCATTTACACGTACGCA -ACGGAAGGCATTTACACGCTTGCA -ACGGAAGGCATTTACACGCGAACA -ACGGAAGGCATTTACACGCAGTCA -ACGGAAGGCATTTACACGGATCCA -ACGGAAGGCATTTACACGACGACA -ACGGAAGGCATTTACACGAGCTCA -ACGGAAGGCATTTACACGTCACGT -ACGGAAGGCATTTACACGCGTAGT -ACGGAAGGCATTTACACGGTCAGT -ACGGAAGGCATTTACACGGAAGGT -ACGGAAGGCATTTACACGAACCGT -ACGGAAGGCATTTACACGTTGTGC -ACGGAAGGCATTTACACGCTAAGC -ACGGAAGGCATTTACACGACTAGC -ACGGAAGGCATTTACACGAGATGC -ACGGAAGGCATTTACACGTGAAGG -ACGGAAGGCATTTACACGCAATGG -ACGGAAGGCATTTACACGATGAGG -ACGGAAGGCATTTACACGAATGGG -ACGGAAGGCATTTACACGTCCTGA -ACGGAAGGCATTTACACGTAGCGA -ACGGAAGGCATTTACACGCACAGA -ACGGAAGGCATTTACACGGCAAGA -ACGGAAGGCATTTACACGGGTTGA -ACGGAAGGCATTTACACGTCCGAT -ACGGAAGGCATTTACACGTGGCAT -ACGGAAGGCATTTACACGCGAGAT -ACGGAAGGCATTTACACGTACCAC -ACGGAAGGCATTTACACGCAGAAC -ACGGAAGGCATTTACACGGTCTAC -ACGGAAGGCATTTACACGACGTAC -ACGGAAGGCATTTACACGAGTGAC -ACGGAAGGCATTTACACGCTGTAG -ACGGAAGGCATTTACACGCCTAAG -ACGGAAGGCATTTACACGGTTCAG -ACGGAAGGCATTTACACGGCATAG -ACGGAAGGCATTTACACGGACAAG -ACGGAAGGCATTTACACGAAGCAG -ACGGAAGGCATTTACACGCGTCAA -ACGGAAGGCATTTACACGGCTGAA -ACGGAAGGCATTTACACGAGTACG -ACGGAAGGCATTTACACGATCCGA -ACGGAAGGCATTTACACGATGGGA -ACGGAAGGCATTTACACGGTGCAA -ACGGAAGGCATTTACACGGAGGAA -ACGGAAGGCATTTACACGCAGGTA -ACGGAAGGCATTTACACGGACTCT -ACGGAAGGCATTTACACGAGTCCT -ACGGAAGGCATTTACACGTAAGCC -ACGGAAGGCATTTACACGATAGCC -ACGGAAGGCATTTACACGTAACCG -ACGGAAGGCATTTACACGATGCCA -ACGGAAGGCATTGACAGTGGAAAC -ACGGAAGGCATTGACAGTAACACC -ACGGAAGGCATTGACAGTATCGAG -ACGGAAGGCATTGACAGTCTCCTT -ACGGAAGGCATTGACAGTCCTGTT -ACGGAAGGCATTGACAGTCGGTTT -ACGGAAGGCATTGACAGTGTGGTT -ACGGAAGGCATTGACAGTGCCTTT -ACGGAAGGCATTGACAGTGGTCTT -ACGGAAGGCATTGACAGTACGCTT -ACGGAAGGCATTGACAGTAGCGTT -ACGGAAGGCATTGACAGTTTCGTC -ACGGAAGGCATTGACAGTTCTCTC -ACGGAAGGCATTGACAGTTGGATC -ACGGAAGGCATTGACAGTCACTTC -ACGGAAGGCATTGACAGTGTACTC -ACGGAAGGCATTGACAGTGATGTC -ACGGAAGGCATTGACAGTACAGTC -ACGGAAGGCATTGACAGTTTGCTG -ACGGAAGGCATTGACAGTTCCATG -ACGGAAGGCATTGACAGTTGTGTG -ACGGAAGGCATTGACAGTCTAGTG -ACGGAAGGCATTGACAGTCATCTG -ACGGAAGGCATTGACAGTGAGTTG -ACGGAAGGCATTGACAGTAGACTG -ACGGAAGGCATTGACAGTTCGGTA -ACGGAAGGCATTGACAGTTGCCTA -ACGGAAGGCATTGACAGTCCACTA -ACGGAAGGCATTGACAGTGGAGTA -ACGGAAGGCATTGACAGTTCGTCT -ACGGAAGGCATTGACAGTTGCACT -ACGGAAGGCATTGACAGTCTGACT -ACGGAAGGCATTGACAGTCAACCT -ACGGAAGGCATTGACAGTGCTACT -ACGGAAGGCATTGACAGTGGATCT -ACGGAAGGCATTGACAGTAAGGCT -ACGGAAGGCATTGACAGTTCAACC -ACGGAAGGCATTGACAGTTGTTCC -ACGGAAGGCATTGACAGTATTCCC -ACGGAAGGCATTGACAGTTTCTCG -ACGGAAGGCATTGACAGTTAGACG -ACGGAAGGCATTGACAGTGTAACG -ACGGAAGGCATTGACAGTACTTCG -ACGGAAGGCATTGACAGTTACGCA -ACGGAAGGCATTGACAGTCTTGCA -ACGGAAGGCATTGACAGTCGAACA -ACGGAAGGCATTGACAGTCAGTCA -ACGGAAGGCATTGACAGTGATCCA -ACGGAAGGCATTGACAGTACGACA -ACGGAAGGCATTGACAGTAGCTCA -ACGGAAGGCATTGACAGTTCACGT -ACGGAAGGCATTGACAGTCGTAGT -ACGGAAGGCATTGACAGTGTCAGT -ACGGAAGGCATTGACAGTGAAGGT -ACGGAAGGCATTGACAGTAACCGT -ACGGAAGGCATTGACAGTTTGTGC -ACGGAAGGCATTGACAGTCTAAGC -ACGGAAGGCATTGACAGTACTAGC -ACGGAAGGCATTGACAGTAGATGC -ACGGAAGGCATTGACAGTTGAAGG -ACGGAAGGCATTGACAGTCAATGG -ACGGAAGGCATTGACAGTATGAGG -ACGGAAGGCATTGACAGTAATGGG -ACGGAAGGCATTGACAGTTCCTGA -ACGGAAGGCATTGACAGTTAGCGA -ACGGAAGGCATTGACAGTCACAGA -ACGGAAGGCATTGACAGTGCAAGA -ACGGAAGGCATTGACAGTGGTTGA -ACGGAAGGCATTGACAGTTCCGAT -ACGGAAGGCATTGACAGTTGGCAT -ACGGAAGGCATTGACAGTCGAGAT -ACGGAAGGCATTGACAGTTACCAC -ACGGAAGGCATTGACAGTCAGAAC -ACGGAAGGCATTGACAGTGTCTAC -ACGGAAGGCATTGACAGTACGTAC -ACGGAAGGCATTGACAGTAGTGAC -ACGGAAGGCATTGACAGTCTGTAG -ACGGAAGGCATTGACAGTCCTAAG -ACGGAAGGCATTGACAGTGTTCAG -ACGGAAGGCATTGACAGTGCATAG -ACGGAAGGCATTGACAGTGACAAG -ACGGAAGGCATTGACAGTAAGCAG -ACGGAAGGCATTGACAGTCGTCAA -ACGGAAGGCATTGACAGTGCTGAA -ACGGAAGGCATTGACAGTAGTACG -ACGGAAGGCATTGACAGTATCCGA -ACGGAAGGCATTGACAGTATGGGA -ACGGAAGGCATTGACAGTGTGCAA -ACGGAAGGCATTGACAGTGAGGAA -ACGGAAGGCATTGACAGTCAGGTA -ACGGAAGGCATTGACAGTGACTCT -ACGGAAGGCATTGACAGTAGTCCT -ACGGAAGGCATTGACAGTTAAGCC -ACGGAAGGCATTGACAGTATAGCC -ACGGAAGGCATTGACAGTTAACCG -ACGGAAGGCATTGACAGTATGCCA -ACGGAAGGCATTTAGCTGGGAAAC -ACGGAAGGCATTTAGCTGAACACC -ACGGAAGGCATTTAGCTGATCGAG -ACGGAAGGCATTTAGCTGCTCCTT -ACGGAAGGCATTTAGCTGCCTGTT -ACGGAAGGCATTTAGCTGCGGTTT -ACGGAAGGCATTTAGCTGGTGGTT -ACGGAAGGCATTTAGCTGGCCTTT -ACGGAAGGCATTTAGCTGGGTCTT -ACGGAAGGCATTTAGCTGACGCTT -ACGGAAGGCATTTAGCTGAGCGTT -ACGGAAGGCATTTAGCTGTTCGTC -ACGGAAGGCATTTAGCTGTCTCTC -ACGGAAGGCATTTAGCTGTGGATC -ACGGAAGGCATTTAGCTGCACTTC -ACGGAAGGCATTTAGCTGGTACTC -ACGGAAGGCATTTAGCTGGATGTC -ACGGAAGGCATTTAGCTGACAGTC -ACGGAAGGCATTTAGCTGTTGCTG -ACGGAAGGCATTTAGCTGTCCATG -ACGGAAGGCATTTAGCTGTGTGTG -ACGGAAGGCATTTAGCTGCTAGTG -ACGGAAGGCATTTAGCTGCATCTG -ACGGAAGGCATTTAGCTGGAGTTG -ACGGAAGGCATTTAGCTGAGACTG -ACGGAAGGCATTTAGCTGTCGGTA -ACGGAAGGCATTTAGCTGTGCCTA -ACGGAAGGCATTTAGCTGCCACTA -ACGGAAGGCATTTAGCTGGGAGTA -ACGGAAGGCATTTAGCTGTCGTCT -ACGGAAGGCATTTAGCTGTGCACT -ACGGAAGGCATTTAGCTGCTGACT -ACGGAAGGCATTTAGCTGCAACCT -ACGGAAGGCATTTAGCTGGCTACT -ACGGAAGGCATTTAGCTGGGATCT -ACGGAAGGCATTTAGCTGAAGGCT -ACGGAAGGCATTTAGCTGTCAACC -ACGGAAGGCATTTAGCTGTGTTCC -ACGGAAGGCATTTAGCTGATTCCC -ACGGAAGGCATTTAGCTGTTCTCG -ACGGAAGGCATTTAGCTGTAGACG -ACGGAAGGCATTTAGCTGGTAACG -ACGGAAGGCATTTAGCTGACTTCG -ACGGAAGGCATTTAGCTGTACGCA -ACGGAAGGCATTTAGCTGCTTGCA -ACGGAAGGCATTTAGCTGCGAACA -ACGGAAGGCATTTAGCTGCAGTCA -ACGGAAGGCATTTAGCTGGATCCA -ACGGAAGGCATTTAGCTGACGACA -ACGGAAGGCATTTAGCTGAGCTCA -ACGGAAGGCATTTAGCTGTCACGT -ACGGAAGGCATTTAGCTGCGTAGT -ACGGAAGGCATTTAGCTGGTCAGT -ACGGAAGGCATTTAGCTGGAAGGT -ACGGAAGGCATTTAGCTGAACCGT -ACGGAAGGCATTTAGCTGTTGTGC -ACGGAAGGCATTTAGCTGCTAAGC -ACGGAAGGCATTTAGCTGACTAGC -ACGGAAGGCATTTAGCTGAGATGC -ACGGAAGGCATTTAGCTGTGAAGG -ACGGAAGGCATTTAGCTGCAATGG -ACGGAAGGCATTTAGCTGATGAGG -ACGGAAGGCATTTAGCTGAATGGG -ACGGAAGGCATTTAGCTGTCCTGA -ACGGAAGGCATTTAGCTGTAGCGA -ACGGAAGGCATTTAGCTGCACAGA -ACGGAAGGCATTTAGCTGGCAAGA -ACGGAAGGCATTTAGCTGGGTTGA -ACGGAAGGCATTTAGCTGTCCGAT -ACGGAAGGCATTTAGCTGTGGCAT -ACGGAAGGCATTTAGCTGCGAGAT -ACGGAAGGCATTTAGCTGTACCAC -ACGGAAGGCATTTAGCTGCAGAAC -ACGGAAGGCATTTAGCTGGTCTAC -ACGGAAGGCATTTAGCTGACGTAC -ACGGAAGGCATTTAGCTGAGTGAC -ACGGAAGGCATTTAGCTGCTGTAG -ACGGAAGGCATTTAGCTGCCTAAG -ACGGAAGGCATTTAGCTGGTTCAG -ACGGAAGGCATTTAGCTGGCATAG -ACGGAAGGCATTTAGCTGGACAAG -ACGGAAGGCATTTAGCTGAAGCAG -ACGGAAGGCATTTAGCTGCGTCAA -ACGGAAGGCATTTAGCTGGCTGAA -ACGGAAGGCATTTAGCTGAGTACG -ACGGAAGGCATTTAGCTGATCCGA -ACGGAAGGCATTTAGCTGATGGGA -ACGGAAGGCATTTAGCTGGTGCAA -ACGGAAGGCATTTAGCTGGAGGAA -ACGGAAGGCATTTAGCTGCAGGTA -ACGGAAGGCATTTAGCTGGACTCT -ACGGAAGGCATTTAGCTGAGTCCT -ACGGAAGGCATTTAGCTGTAAGCC -ACGGAAGGCATTTAGCTGATAGCC -ACGGAAGGCATTTAGCTGTAACCG -ACGGAAGGCATTTAGCTGATGCCA -ACGGAAGGCATTAAGCCTGGAAAC -ACGGAAGGCATTAAGCCTAACACC -ACGGAAGGCATTAAGCCTATCGAG -ACGGAAGGCATTAAGCCTCTCCTT -ACGGAAGGCATTAAGCCTCCTGTT -ACGGAAGGCATTAAGCCTCGGTTT -ACGGAAGGCATTAAGCCTGTGGTT -ACGGAAGGCATTAAGCCTGCCTTT -ACGGAAGGCATTAAGCCTGGTCTT -ACGGAAGGCATTAAGCCTACGCTT -ACGGAAGGCATTAAGCCTAGCGTT -ACGGAAGGCATTAAGCCTTTCGTC -ACGGAAGGCATTAAGCCTTCTCTC -ACGGAAGGCATTAAGCCTTGGATC -ACGGAAGGCATTAAGCCTCACTTC -ACGGAAGGCATTAAGCCTGTACTC -ACGGAAGGCATTAAGCCTGATGTC -ACGGAAGGCATTAAGCCTACAGTC -ACGGAAGGCATTAAGCCTTTGCTG -ACGGAAGGCATTAAGCCTTCCATG -ACGGAAGGCATTAAGCCTTGTGTG -ACGGAAGGCATTAAGCCTCTAGTG -ACGGAAGGCATTAAGCCTCATCTG -ACGGAAGGCATTAAGCCTGAGTTG -ACGGAAGGCATTAAGCCTAGACTG -ACGGAAGGCATTAAGCCTTCGGTA -ACGGAAGGCATTAAGCCTTGCCTA -ACGGAAGGCATTAAGCCTCCACTA -ACGGAAGGCATTAAGCCTGGAGTA -ACGGAAGGCATTAAGCCTTCGTCT -ACGGAAGGCATTAAGCCTTGCACT -ACGGAAGGCATTAAGCCTCTGACT -ACGGAAGGCATTAAGCCTCAACCT -ACGGAAGGCATTAAGCCTGCTACT -ACGGAAGGCATTAAGCCTGGATCT -ACGGAAGGCATTAAGCCTAAGGCT -ACGGAAGGCATTAAGCCTTCAACC -ACGGAAGGCATTAAGCCTTGTTCC -ACGGAAGGCATTAAGCCTATTCCC -ACGGAAGGCATTAAGCCTTTCTCG -ACGGAAGGCATTAAGCCTTAGACG -ACGGAAGGCATTAAGCCTGTAACG -ACGGAAGGCATTAAGCCTACTTCG -ACGGAAGGCATTAAGCCTTACGCA -ACGGAAGGCATTAAGCCTCTTGCA -ACGGAAGGCATTAAGCCTCGAACA -ACGGAAGGCATTAAGCCTCAGTCA -ACGGAAGGCATTAAGCCTGATCCA -ACGGAAGGCATTAAGCCTACGACA -ACGGAAGGCATTAAGCCTAGCTCA -ACGGAAGGCATTAAGCCTTCACGT -ACGGAAGGCATTAAGCCTCGTAGT -ACGGAAGGCATTAAGCCTGTCAGT -ACGGAAGGCATTAAGCCTGAAGGT -ACGGAAGGCATTAAGCCTAACCGT -ACGGAAGGCATTAAGCCTTTGTGC -ACGGAAGGCATTAAGCCTCTAAGC -ACGGAAGGCATTAAGCCTACTAGC -ACGGAAGGCATTAAGCCTAGATGC -ACGGAAGGCATTAAGCCTTGAAGG -ACGGAAGGCATTAAGCCTCAATGG -ACGGAAGGCATTAAGCCTATGAGG -ACGGAAGGCATTAAGCCTAATGGG -ACGGAAGGCATTAAGCCTTCCTGA -ACGGAAGGCATTAAGCCTTAGCGA -ACGGAAGGCATTAAGCCTCACAGA -ACGGAAGGCATTAAGCCTGCAAGA -ACGGAAGGCATTAAGCCTGGTTGA -ACGGAAGGCATTAAGCCTTCCGAT -ACGGAAGGCATTAAGCCTTGGCAT -ACGGAAGGCATTAAGCCTCGAGAT -ACGGAAGGCATTAAGCCTTACCAC -ACGGAAGGCATTAAGCCTCAGAAC -ACGGAAGGCATTAAGCCTGTCTAC -ACGGAAGGCATTAAGCCTACGTAC -ACGGAAGGCATTAAGCCTAGTGAC -ACGGAAGGCATTAAGCCTCTGTAG -ACGGAAGGCATTAAGCCTCCTAAG -ACGGAAGGCATTAAGCCTGTTCAG -ACGGAAGGCATTAAGCCTGCATAG -ACGGAAGGCATTAAGCCTGACAAG -ACGGAAGGCATTAAGCCTAAGCAG -ACGGAAGGCATTAAGCCTCGTCAA -ACGGAAGGCATTAAGCCTGCTGAA -ACGGAAGGCATTAAGCCTAGTACG -ACGGAAGGCATTAAGCCTATCCGA -ACGGAAGGCATTAAGCCTATGGGA -ACGGAAGGCATTAAGCCTGTGCAA -ACGGAAGGCATTAAGCCTGAGGAA -ACGGAAGGCATTAAGCCTCAGGTA -ACGGAAGGCATTAAGCCTGACTCT -ACGGAAGGCATTAAGCCTAGTCCT -ACGGAAGGCATTAAGCCTTAAGCC -ACGGAAGGCATTAAGCCTATAGCC -ACGGAAGGCATTAAGCCTTAACCG -ACGGAAGGCATTAAGCCTATGCCA -ACGGAAGGCATTCAGGTTGGAAAC -ACGGAAGGCATTCAGGTTAACACC -ACGGAAGGCATTCAGGTTATCGAG -ACGGAAGGCATTCAGGTTCTCCTT -ACGGAAGGCATTCAGGTTCCTGTT -ACGGAAGGCATTCAGGTTCGGTTT -ACGGAAGGCATTCAGGTTGTGGTT -ACGGAAGGCATTCAGGTTGCCTTT -ACGGAAGGCATTCAGGTTGGTCTT -ACGGAAGGCATTCAGGTTACGCTT -ACGGAAGGCATTCAGGTTAGCGTT -ACGGAAGGCATTCAGGTTTTCGTC -ACGGAAGGCATTCAGGTTTCTCTC -ACGGAAGGCATTCAGGTTTGGATC -ACGGAAGGCATTCAGGTTCACTTC -ACGGAAGGCATTCAGGTTGTACTC -ACGGAAGGCATTCAGGTTGATGTC -ACGGAAGGCATTCAGGTTACAGTC -ACGGAAGGCATTCAGGTTTTGCTG -ACGGAAGGCATTCAGGTTTCCATG -ACGGAAGGCATTCAGGTTTGTGTG -ACGGAAGGCATTCAGGTTCTAGTG -ACGGAAGGCATTCAGGTTCATCTG -ACGGAAGGCATTCAGGTTGAGTTG -ACGGAAGGCATTCAGGTTAGACTG -ACGGAAGGCATTCAGGTTTCGGTA -ACGGAAGGCATTCAGGTTTGCCTA -ACGGAAGGCATTCAGGTTCCACTA -ACGGAAGGCATTCAGGTTGGAGTA -ACGGAAGGCATTCAGGTTTCGTCT -ACGGAAGGCATTCAGGTTTGCACT -ACGGAAGGCATTCAGGTTCTGACT -ACGGAAGGCATTCAGGTTCAACCT -ACGGAAGGCATTCAGGTTGCTACT -ACGGAAGGCATTCAGGTTGGATCT -ACGGAAGGCATTCAGGTTAAGGCT -ACGGAAGGCATTCAGGTTTCAACC -ACGGAAGGCATTCAGGTTTGTTCC -ACGGAAGGCATTCAGGTTATTCCC -ACGGAAGGCATTCAGGTTTTCTCG -ACGGAAGGCATTCAGGTTTAGACG -ACGGAAGGCATTCAGGTTGTAACG -ACGGAAGGCATTCAGGTTACTTCG -ACGGAAGGCATTCAGGTTTACGCA -ACGGAAGGCATTCAGGTTCTTGCA -ACGGAAGGCATTCAGGTTCGAACA -ACGGAAGGCATTCAGGTTCAGTCA -ACGGAAGGCATTCAGGTTGATCCA -ACGGAAGGCATTCAGGTTACGACA -ACGGAAGGCATTCAGGTTAGCTCA -ACGGAAGGCATTCAGGTTTCACGT -ACGGAAGGCATTCAGGTTCGTAGT -ACGGAAGGCATTCAGGTTGTCAGT -ACGGAAGGCATTCAGGTTGAAGGT -ACGGAAGGCATTCAGGTTAACCGT -ACGGAAGGCATTCAGGTTTTGTGC -ACGGAAGGCATTCAGGTTCTAAGC -ACGGAAGGCATTCAGGTTACTAGC -ACGGAAGGCATTCAGGTTAGATGC -ACGGAAGGCATTCAGGTTTGAAGG -ACGGAAGGCATTCAGGTTCAATGG -ACGGAAGGCATTCAGGTTATGAGG -ACGGAAGGCATTCAGGTTAATGGG -ACGGAAGGCATTCAGGTTTCCTGA -ACGGAAGGCATTCAGGTTTAGCGA -ACGGAAGGCATTCAGGTTCACAGA -ACGGAAGGCATTCAGGTTGCAAGA -ACGGAAGGCATTCAGGTTGGTTGA -ACGGAAGGCATTCAGGTTTCCGAT -ACGGAAGGCATTCAGGTTTGGCAT -ACGGAAGGCATTCAGGTTCGAGAT -ACGGAAGGCATTCAGGTTTACCAC -ACGGAAGGCATTCAGGTTCAGAAC -ACGGAAGGCATTCAGGTTGTCTAC -ACGGAAGGCATTCAGGTTACGTAC -ACGGAAGGCATTCAGGTTAGTGAC -ACGGAAGGCATTCAGGTTCTGTAG -ACGGAAGGCATTCAGGTTCCTAAG -ACGGAAGGCATTCAGGTTGTTCAG -ACGGAAGGCATTCAGGTTGCATAG -ACGGAAGGCATTCAGGTTGACAAG -ACGGAAGGCATTCAGGTTAAGCAG -ACGGAAGGCATTCAGGTTCGTCAA -ACGGAAGGCATTCAGGTTGCTGAA -ACGGAAGGCATTCAGGTTAGTACG -ACGGAAGGCATTCAGGTTATCCGA -ACGGAAGGCATTCAGGTTATGGGA -ACGGAAGGCATTCAGGTTGTGCAA -ACGGAAGGCATTCAGGTTGAGGAA -ACGGAAGGCATTCAGGTTCAGGTA -ACGGAAGGCATTCAGGTTGACTCT -ACGGAAGGCATTCAGGTTAGTCCT -ACGGAAGGCATTCAGGTTTAAGCC -ACGGAAGGCATTCAGGTTATAGCC -ACGGAAGGCATTCAGGTTTAACCG -ACGGAAGGCATTCAGGTTATGCCA -ACGGAAGGCATTTAGGCAGGAAAC -ACGGAAGGCATTTAGGCAAACACC -ACGGAAGGCATTTAGGCAATCGAG -ACGGAAGGCATTTAGGCACTCCTT -ACGGAAGGCATTTAGGCACCTGTT -ACGGAAGGCATTTAGGCACGGTTT -ACGGAAGGCATTTAGGCAGTGGTT -ACGGAAGGCATTTAGGCAGCCTTT -ACGGAAGGCATTTAGGCAGGTCTT -ACGGAAGGCATTTAGGCAACGCTT -ACGGAAGGCATTTAGGCAAGCGTT -ACGGAAGGCATTTAGGCATTCGTC -ACGGAAGGCATTTAGGCATCTCTC -ACGGAAGGCATTTAGGCATGGATC -ACGGAAGGCATTTAGGCACACTTC -ACGGAAGGCATTTAGGCAGTACTC -ACGGAAGGCATTTAGGCAGATGTC -ACGGAAGGCATTTAGGCAACAGTC -ACGGAAGGCATTTAGGCATTGCTG -ACGGAAGGCATTTAGGCATCCATG -ACGGAAGGCATTTAGGCATGTGTG -ACGGAAGGCATTTAGGCACTAGTG -ACGGAAGGCATTTAGGCACATCTG -ACGGAAGGCATTTAGGCAGAGTTG -ACGGAAGGCATTTAGGCAAGACTG -ACGGAAGGCATTTAGGCATCGGTA -ACGGAAGGCATTTAGGCATGCCTA -ACGGAAGGCATTTAGGCACCACTA -ACGGAAGGCATTTAGGCAGGAGTA -ACGGAAGGCATTTAGGCATCGTCT -ACGGAAGGCATTTAGGCATGCACT -ACGGAAGGCATTTAGGCACTGACT -ACGGAAGGCATTTAGGCACAACCT -ACGGAAGGCATTTAGGCAGCTACT -ACGGAAGGCATTTAGGCAGGATCT -ACGGAAGGCATTTAGGCAAAGGCT -ACGGAAGGCATTTAGGCATCAACC -ACGGAAGGCATTTAGGCATGTTCC -ACGGAAGGCATTTAGGCAATTCCC -ACGGAAGGCATTTAGGCATTCTCG -ACGGAAGGCATTTAGGCATAGACG -ACGGAAGGCATTTAGGCAGTAACG -ACGGAAGGCATTTAGGCAACTTCG -ACGGAAGGCATTTAGGCATACGCA -ACGGAAGGCATTTAGGCACTTGCA -ACGGAAGGCATTTAGGCACGAACA -ACGGAAGGCATTTAGGCACAGTCA -ACGGAAGGCATTTAGGCAGATCCA -ACGGAAGGCATTTAGGCAACGACA -ACGGAAGGCATTTAGGCAAGCTCA -ACGGAAGGCATTTAGGCATCACGT -ACGGAAGGCATTTAGGCACGTAGT -ACGGAAGGCATTTAGGCAGTCAGT -ACGGAAGGCATTTAGGCAGAAGGT -ACGGAAGGCATTTAGGCAAACCGT -ACGGAAGGCATTTAGGCATTGTGC -ACGGAAGGCATTTAGGCACTAAGC -ACGGAAGGCATTTAGGCAACTAGC -ACGGAAGGCATTTAGGCAAGATGC -ACGGAAGGCATTTAGGCATGAAGG -ACGGAAGGCATTTAGGCACAATGG -ACGGAAGGCATTTAGGCAATGAGG -ACGGAAGGCATTTAGGCAAATGGG -ACGGAAGGCATTTAGGCATCCTGA -ACGGAAGGCATTTAGGCATAGCGA -ACGGAAGGCATTTAGGCACACAGA -ACGGAAGGCATTTAGGCAGCAAGA -ACGGAAGGCATTTAGGCAGGTTGA -ACGGAAGGCATTTAGGCATCCGAT -ACGGAAGGCATTTAGGCATGGCAT -ACGGAAGGCATTTAGGCACGAGAT -ACGGAAGGCATTTAGGCATACCAC -ACGGAAGGCATTTAGGCACAGAAC -ACGGAAGGCATTTAGGCAGTCTAC -ACGGAAGGCATTTAGGCAACGTAC -ACGGAAGGCATTTAGGCAAGTGAC -ACGGAAGGCATTTAGGCACTGTAG -ACGGAAGGCATTTAGGCACCTAAG -ACGGAAGGCATTTAGGCAGTTCAG -ACGGAAGGCATTTAGGCAGCATAG -ACGGAAGGCATTTAGGCAGACAAG -ACGGAAGGCATTTAGGCAAAGCAG -ACGGAAGGCATTTAGGCACGTCAA -ACGGAAGGCATTTAGGCAGCTGAA -ACGGAAGGCATTTAGGCAAGTACG -ACGGAAGGCATTTAGGCAATCCGA -ACGGAAGGCATTTAGGCAATGGGA -ACGGAAGGCATTTAGGCAGTGCAA -ACGGAAGGCATTTAGGCAGAGGAA -ACGGAAGGCATTTAGGCACAGGTA -ACGGAAGGCATTTAGGCAGACTCT -ACGGAAGGCATTTAGGCAAGTCCT -ACGGAAGGCATTTAGGCATAAGCC -ACGGAAGGCATTTAGGCAATAGCC -ACGGAAGGCATTTAGGCATAACCG -ACGGAAGGCATTTAGGCAATGCCA -ACGGAAGGCATTAAGGACGGAAAC -ACGGAAGGCATTAAGGACAACACC -ACGGAAGGCATTAAGGACATCGAG -ACGGAAGGCATTAAGGACCTCCTT -ACGGAAGGCATTAAGGACCCTGTT -ACGGAAGGCATTAAGGACCGGTTT -ACGGAAGGCATTAAGGACGTGGTT -ACGGAAGGCATTAAGGACGCCTTT -ACGGAAGGCATTAAGGACGGTCTT -ACGGAAGGCATTAAGGACACGCTT -ACGGAAGGCATTAAGGACAGCGTT -ACGGAAGGCATTAAGGACTTCGTC -ACGGAAGGCATTAAGGACTCTCTC -ACGGAAGGCATTAAGGACTGGATC -ACGGAAGGCATTAAGGACCACTTC -ACGGAAGGCATTAAGGACGTACTC -ACGGAAGGCATTAAGGACGATGTC -ACGGAAGGCATTAAGGACACAGTC -ACGGAAGGCATTAAGGACTTGCTG -ACGGAAGGCATTAAGGACTCCATG -ACGGAAGGCATTAAGGACTGTGTG -ACGGAAGGCATTAAGGACCTAGTG -ACGGAAGGCATTAAGGACCATCTG -ACGGAAGGCATTAAGGACGAGTTG -ACGGAAGGCATTAAGGACAGACTG -ACGGAAGGCATTAAGGACTCGGTA -ACGGAAGGCATTAAGGACTGCCTA -ACGGAAGGCATTAAGGACCCACTA -ACGGAAGGCATTAAGGACGGAGTA -ACGGAAGGCATTAAGGACTCGTCT -ACGGAAGGCATTAAGGACTGCACT -ACGGAAGGCATTAAGGACCTGACT -ACGGAAGGCATTAAGGACCAACCT -ACGGAAGGCATTAAGGACGCTACT -ACGGAAGGCATTAAGGACGGATCT -ACGGAAGGCATTAAGGACAAGGCT -ACGGAAGGCATTAAGGACTCAACC -ACGGAAGGCATTAAGGACTGTTCC -ACGGAAGGCATTAAGGACATTCCC -ACGGAAGGCATTAAGGACTTCTCG -ACGGAAGGCATTAAGGACTAGACG -ACGGAAGGCATTAAGGACGTAACG -ACGGAAGGCATTAAGGACACTTCG -ACGGAAGGCATTAAGGACTACGCA -ACGGAAGGCATTAAGGACCTTGCA -ACGGAAGGCATTAAGGACCGAACA -ACGGAAGGCATTAAGGACCAGTCA -ACGGAAGGCATTAAGGACGATCCA -ACGGAAGGCATTAAGGACACGACA -ACGGAAGGCATTAAGGACAGCTCA -ACGGAAGGCATTAAGGACTCACGT -ACGGAAGGCATTAAGGACCGTAGT -ACGGAAGGCATTAAGGACGTCAGT -ACGGAAGGCATTAAGGACGAAGGT -ACGGAAGGCATTAAGGACAACCGT -ACGGAAGGCATTAAGGACTTGTGC -ACGGAAGGCATTAAGGACCTAAGC -ACGGAAGGCATTAAGGACACTAGC -ACGGAAGGCATTAAGGACAGATGC -ACGGAAGGCATTAAGGACTGAAGG -ACGGAAGGCATTAAGGACCAATGG -ACGGAAGGCATTAAGGACATGAGG -ACGGAAGGCATTAAGGACAATGGG -ACGGAAGGCATTAAGGACTCCTGA -ACGGAAGGCATTAAGGACTAGCGA -ACGGAAGGCATTAAGGACCACAGA -ACGGAAGGCATTAAGGACGCAAGA -ACGGAAGGCATTAAGGACGGTTGA -ACGGAAGGCATTAAGGACTCCGAT -ACGGAAGGCATTAAGGACTGGCAT -ACGGAAGGCATTAAGGACCGAGAT -ACGGAAGGCATTAAGGACTACCAC -ACGGAAGGCATTAAGGACCAGAAC -ACGGAAGGCATTAAGGACGTCTAC -ACGGAAGGCATTAAGGACACGTAC -ACGGAAGGCATTAAGGACAGTGAC -ACGGAAGGCATTAAGGACCTGTAG -ACGGAAGGCATTAAGGACCCTAAG -ACGGAAGGCATTAAGGACGTTCAG -ACGGAAGGCATTAAGGACGCATAG -ACGGAAGGCATTAAGGACGACAAG -ACGGAAGGCATTAAGGACAAGCAG -ACGGAAGGCATTAAGGACCGTCAA -ACGGAAGGCATTAAGGACGCTGAA -ACGGAAGGCATTAAGGACAGTACG -ACGGAAGGCATTAAGGACATCCGA -ACGGAAGGCATTAAGGACATGGGA -ACGGAAGGCATTAAGGACGTGCAA -ACGGAAGGCATTAAGGACGAGGAA -ACGGAAGGCATTAAGGACCAGGTA -ACGGAAGGCATTAAGGACGACTCT -ACGGAAGGCATTAAGGACAGTCCT -ACGGAAGGCATTAAGGACTAAGCC -ACGGAAGGCATTAAGGACATAGCC -ACGGAAGGCATTAAGGACTAACCG -ACGGAAGGCATTAAGGACATGCCA -ACGGAAGGCATTCAGAAGGGAAAC -ACGGAAGGCATTCAGAAGAACACC -ACGGAAGGCATTCAGAAGATCGAG -ACGGAAGGCATTCAGAAGCTCCTT -ACGGAAGGCATTCAGAAGCCTGTT -ACGGAAGGCATTCAGAAGCGGTTT -ACGGAAGGCATTCAGAAGGTGGTT -ACGGAAGGCATTCAGAAGGCCTTT -ACGGAAGGCATTCAGAAGGGTCTT -ACGGAAGGCATTCAGAAGACGCTT -ACGGAAGGCATTCAGAAGAGCGTT -ACGGAAGGCATTCAGAAGTTCGTC -ACGGAAGGCATTCAGAAGTCTCTC -ACGGAAGGCATTCAGAAGTGGATC -ACGGAAGGCATTCAGAAGCACTTC -ACGGAAGGCATTCAGAAGGTACTC -ACGGAAGGCATTCAGAAGGATGTC -ACGGAAGGCATTCAGAAGACAGTC -ACGGAAGGCATTCAGAAGTTGCTG -ACGGAAGGCATTCAGAAGTCCATG -ACGGAAGGCATTCAGAAGTGTGTG -ACGGAAGGCATTCAGAAGCTAGTG -ACGGAAGGCATTCAGAAGCATCTG -ACGGAAGGCATTCAGAAGGAGTTG -ACGGAAGGCATTCAGAAGAGACTG -ACGGAAGGCATTCAGAAGTCGGTA -ACGGAAGGCATTCAGAAGTGCCTA -ACGGAAGGCATTCAGAAGCCACTA -ACGGAAGGCATTCAGAAGGGAGTA -ACGGAAGGCATTCAGAAGTCGTCT -ACGGAAGGCATTCAGAAGTGCACT -ACGGAAGGCATTCAGAAGCTGACT -ACGGAAGGCATTCAGAAGCAACCT -ACGGAAGGCATTCAGAAGGCTACT -ACGGAAGGCATTCAGAAGGGATCT -ACGGAAGGCATTCAGAAGAAGGCT -ACGGAAGGCATTCAGAAGTCAACC -ACGGAAGGCATTCAGAAGTGTTCC -ACGGAAGGCATTCAGAAGATTCCC -ACGGAAGGCATTCAGAAGTTCTCG -ACGGAAGGCATTCAGAAGTAGACG -ACGGAAGGCATTCAGAAGGTAACG -ACGGAAGGCATTCAGAAGACTTCG -ACGGAAGGCATTCAGAAGTACGCA -ACGGAAGGCATTCAGAAGCTTGCA -ACGGAAGGCATTCAGAAGCGAACA -ACGGAAGGCATTCAGAAGCAGTCA -ACGGAAGGCATTCAGAAGGATCCA -ACGGAAGGCATTCAGAAGACGACA -ACGGAAGGCATTCAGAAGAGCTCA -ACGGAAGGCATTCAGAAGTCACGT -ACGGAAGGCATTCAGAAGCGTAGT -ACGGAAGGCATTCAGAAGGTCAGT -ACGGAAGGCATTCAGAAGGAAGGT -ACGGAAGGCATTCAGAAGAACCGT -ACGGAAGGCATTCAGAAGTTGTGC -ACGGAAGGCATTCAGAAGCTAAGC -ACGGAAGGCATTCAGAAGACTAGC -ACGGAAGGCATTCAGAAGAGATGC -ACGGAAGGCATTCAGAAGTGAAGG -ACGGAAGGCATTCAGAAGCAATGG -ACGGAAGGCATTCAGAAGATGAGG -ACGGAAGGCATTCAGAAGAATGGG -ACGGAAGGCATTCAGAAGTCCTGA -ACGGAAGGCATTCAGAAGTAGCGA -ACGGAAGGCATTCAGAAGCACAGA -ACGGAAGGCATTCAGAAGGCAAGA -ACGGAAGGCATTCAGAAGGGTTGA -ACGGAAGGCATTCAGAAGTCCGAT -ACGGAAGGCATTCAGAAGTGGCAT -ACGGAAGGCATTCAGAAGCGAGAT -ACGGAAGGCATTCAGAAGTACCAC -ACGGAAGGCATTCAGAAGCAGAAC -ACGGAAGGCATTCAGAAGGTCTAC -ACGGAAGGCATTCAGAAGACGTAC -ACGGAAGGCATTCAGAAGAGTGAC -ACGGAAGGCATTCAGAAGCTGTAG -ACGGAAGGCATTCAGAAGCCTAAG -ACGGAAGGCATTCAGAAGGTTCAG -ACGGAAGGCATTCAGAAGGCATAG -ACGGAAGGCATTCAGAAGGACAAG -ACGGAAGGCATTCAGAAGAAGCAG -ACGGAAGGCATTCAGAAGCGTCAA -ACGGAAGGCATTCAGAAGGCTGAA -ACGGAAGGCATTCAGAAGAGTACG -ACGGAAGGCATTCAGAAGATCCGA -ACGGAAGGCATTCAGAAGATGGGA -ACGGAAGGCATTCAGAAGGTGCAA -ACGGAAGGCATTCAGAAGGAGGAA -ACGGAAGGCATTCAGAAGCAGGTA -ACGGAAGGCATTCAGAAGGACTCT -ACGGAAGGCATTCAGAAGAGTCCT -ACGGAAGGCATTCAGAAGTAAGCC -ACGGAAGGCATTCAGAAGATAGCC -ACGGAAGGCATTCAGAAGTAACCG -ACGGAAGGCATTCAGAAGATGCCA -ACGGAAGGCATTCAACGTGGAAAC -ACGGAAGGCATTCAACGTAACACC -ACGGAAGGCATTCAACGTATCGAG -ACGGAAGGCATTCAACGTCTCCTT -ACGGAAGGCATTCAACGTCCTGTT -ACGGAAGGCATTCAACGTCGGTTT -ACGGAAGGCATTCAACGTGTGGTT -ACGGAAGGCATTCAACGTGCCTTT -ACGGAAGGCATTCAACGTGGTCTT -ACGGAAGGCATTCAACGTACGCTT -ACGGAAGGCATTCAACGTAGCGTT -ACGGAAGGCATTCAACGTTTCGTC -ACGGAAGGCATTCAACGTTCTCTC -ACGGAAGGCATTCAACGTTGGATC -ACGGAAGGCATTCAACGTCACTTC -ACGGAAGGCATTCAACGTGTACTC -ACGGAAGGCATTCAACGTGATGTC -ACGGAAGGCATTCAACGTACAGTC -ACGGAAGGCATTCAACGTTTGCTG -ACGGAAGGCATTCAACGTTCCATG -ACGGAAGGCATTCAACGTTGTGTG -ACGGAAGGCATTCAACGTCTAGTG -ACGGAAGGCATTCAACGTCATCTG -ACGGAAGGCATTCAACGTGAGTTG -ACGGAAGGCATTCAACGTAGACTG -ACGGAAGGCATTCAACGTTCGGTA -ACGGAAGGCATTCAACGTTGCCTA -ACGGAAGGCATTCAACGTCCACTA -ACGGAAGGCATTCAACGTGGAGTA -ACGGAAGGCATTCAACGTTCGTCT -ACGGAAGGCATTCAACGTTGCACT -ACGGAAGGCATTCAACGTCTGACT -ACGGAAGGCATTCAACGTCAACCT -ACGGAAGGCATTCAACGTGCTACT -ACGGAAGGCATTCAACGTGGATCT -ACGGAAGGCATTCAACGTAAGGCT -ACGGAAGGCATTCAACGTTCAACC -ACGGAAGGCATTCAACGTTGTTCC -ACGGAAGGCATTCAACGTATTCCC -ACGGAAGGCATTCAACGTTTCTCG -ACGGAAGGCATTCAACGTTAGACG -ACGGAAGGCATTCAACGTGTAACG -ACGGAAGGCATTCAACGTACTTCG -ACGGAAGGCATTCAACGTTACGCA -ACGGAAGGCATTCAACGTCTTGCA -ACGGAAGGCATTCAACGTCGAACA -ACGGAAGGCATTCAACGTCAGTCA -ACGGAAGGCATTCAACGTGATCCA -ACGGAAGGCATTCAACGTACGACA -ACGGAAGGCATTCAACGTAGCTCA -ACGGAAGGCATTCAACGTTCACGT -ACGGAAGGCATTCAACGTCGTAGT -ACGGAAGGCATTCAACGTGTCAGT -ACGGAAGGCATTCAACGTGAAGGT -ACGGAAGGCATTCAACGTAACCGT -ACGGAAGGCATTCAACGTTTGTGC -ACGGAAGGCATTCAACGTCTAAGC -ACGGAAGGCATTCAACGTACTAGC -ACGGAAGGCATTCAACGTAGATGC -ACGGAAGGCATTCAACGTTGAAGG -ACGGAAGGCATTCAACGTCAATGG -ACGGAAGGCATTCAACGTATGAGG -ACGGAAGGCATTCAACGTAATGGG -ACGGAAGGCATTCAACGTTCCTGA -ACGGAAGGCATTCAACGTTAGCGA -ACGGAAGGCATTCAACGTCACAGA -ACGGAAGGCATTCAACGTGCAAGA -ACGGAAGGCATTCAACGTGGTTGA -ACGGAAGGCATTCAACGTTCCGAT -ACGGAAGGCATTCAACGTTGGCAT -ACGGAAGGCATTCAACGTCGAGAT -ACGGAAGGCATTCAACGTTACCAC -ACGGAAGGCATTCAACGTCAGAAC -ACGGAAGGCATTCAACGTGTCTAC -ACGGAAGGCATTCAACGTACGTAC -ACGGAAGGCATTCAACGTAGTGAC -ACGGAAGGCATTCAACGTCTGTAG -ACGGAAGGCATTCAACGTCCTAAG -ACGGAAGGCATTCAACGTGTTCAG -ACGGAAGGCATTCAACGTGCATAG -ACGGAAGGCATTCAACGTGACAAG -ACGGAAGGCATTCAACGTAAGCAG -ACGGAAGGCATTCAACGTCGTCAA -ACGGAAGGCATTCAACGTGCTGAA -ACGGAAGGCATTCAACGTAGTACG -ACGGAAGGCATTCAACGTATCCGA -ACGGAAGGCATTCAACGTATGGGA -ACGGAAGGCATTCAACGTGTGCAA -ACGGAAGGCATTCAACGTGAGGAA -ACGGAAGGCATTCAACGTCAGGTA -ACGGAAGGCATTCAACGTGACTCT -ACGGAAGGCATTCAACGTAGTCCT -ACGGAAGGCATTCAACGTTAAGCC -ACGGAAGGCATTCAACGTATAGCC -ACGGAAGGCATTCAACGTTAACCG -ACGGAAGGCATTCAACGTATGCCA -ACGGAAGGCATTGAAGCTGGAAAC -ACGGAAGGCATTGAAGCTAACACC -ACGGAAGGCATTGAAGCTATCGAG -ACGGAAGGCATTGAAGCTCTCCTT -ACGGAAGGCATTGAAGCTCCTGTT -ACGGAAGGCATTGAAGCTCGGTTT -ACGGAAGGCATTGAAGCTGTGGTT -ACGGAAGGCATTGAAGCTGCCTTT -ACGGAAGGCATTGAAGCTGGTCTT -ACGGAAGGCATTGAAGCTACGCTT -ACGGAAGGCATTGAAGCTAGCGTT -ACGGAAGGCATTGAAGCTTTCGTC -ACGGAAGGCATTGAAGCTTCTCTC -ACGGAAGGCATTGAAGCTTGGATC -ACGGAAGGCATTGAAGCTCACTTC -ACGGAAGGCATTGAAGCTGTACTC -ACGGAAGGCATTGAAGCTGATGTC -ACGGAAGGCATTGAAGCTACAGTC -ACGGAAGGCATTGAAGCTTTGCTG -ACGGAAGGCATTGAAGCTTCCATG -ACGGAAGGCATTGAAGCTTGTGTG -ACGGAAGGCATTGAAGCTCTAGTG -ACGGAAGGCATTGAAGCTCATCTG -ACGGAAGGCATTGAAGCTGAGTTG -ACGGAAGGCATTGAAGCTAGACTG -ACGGAAGGCATTGAAGCTTCGGTA -ACGGAAGGCATTGAAGCTTGCCTA -ACGGAAGGCATTGAAGCTCCACTA -ACGGAAGGCATTGAAGCTGGAGTA -ACGGAAGGCATTGAAGCTTCGTCT -ACGGAAGGCATTGAAGCTTGCACT -ACGGAAGGCATTGAAGCTCTGACT -ACGGAAGGCATTGAAGCTCAACCT -ACGGAAGGCATTGAAGCTGCTACT -ACGGAAGGCATTGAAGCTGGATCT -ACGGAAGGCATTGAAGCTAAGGCT -ACGGAAGGCATTGAAGCTTCAACC -ACGGAAGGCATTGAAGCTTGTTCC -ACGGAAGGCATTGAAGCTATTCCC -ACGGAAGGCATTGAAGCTTTCTCG -ACGGAAGGCATTGAAGCTTAGACG -ACGGAAGGCATTGAAGCTGTAACG -ACGGAAGGCATTGAAGCTACTTCG -ACGGAAGGCATTGAAGCTTACGCA -ACGGAAGGCATTGAAGCTCTTGCA -ACGGAAGGCATTGAAGCTCGAACA -ACGGAAGGCATTGAAGCTCAGTCA -ACGGAAGGCATTGAAGCTGATCCA -ACGGAAGGCATTGAAGCTACGACA -ACGGAAGGCATTGAAGCTAGCTCA -ACGGAAGGCATTGAAGCTTCACGT -ACGGAAGGCATTGAAGCTCGTAGT -ACGGAAGGCATTGAAGCTGTCAGT -ACGGAAGGCATTGAAGCTGAAGGT -ACGGAAGGCATTGAAGCTAACCGT -ACGGAAGGCATTGAAGCTTTGTGC -ACGGAAGGCATTGAAGCTCTAAGC -ACGGAAGGCATTGAAGCTACTAGC -ACGGAAGGCATTGAAGCTAGATGC -ACGGAAGGCATTGAAGCTTGAAGG -ACGGAAGGCATTGAAGCTCAATGG -ACGGAAGGCATTGAAGCTATGAGG -ACGGAAGGCATTGAAGCTAATGGG -ACGGAAGGCATTGAAGCTTCCTGA -ACGGAAGGCATTGAAGCTTAGCGA -ACGGAAGGCATTGAAGCTCACAGA -ACGGAAGGCATTGAAGCTGCAAGA -ACGGAAGGCATTGAAGCTGGTTGA -ACGGAAGGCATTGAAGCTTCCGAT -ACGGAAGGCATTGAAGCTTGGCAT -ACGGAAGGCATTGAAGCTCGAGAT -ACGGAAGGCATTGAAGCTTACCAC -ACGGAAGGCATTGAAGCTCAGAAC -ACGGAAGGCATTGAAGCTGTCTAC -ACGGAAGGCATTGAAGCTACGTAC -ACGGAAGGCATTGAAGCTAGTGAC -ACGGAAGGCATTGAAGCTCTGTAG -ACGGAAGGCATTGAAGCTCCTAAG -ACGGAAGGCATTGAAGCTGTTCAG -ACGGAAGGCATTGAAGCTGCATAG -ACGGAAGGCATTGAAGCTGACAAG -ACGGAAGGCATTGAAGCTAAGCAG -ACGGAAGGCATTGAAGCTCGTCAA -ACGGAAGGCATTGAAGCTGCTGAA -ACGGAAGGCATTGAAGCTAGTACG -ACGGAAGGCATTGAAGCTATCCGA -ACGGAAGGCATTGAAGCTATGGGA -ACGGAAGGCATTGAAGCTGTGCAA -ACGGAAGGCATTGAAGCTGAGGAA -ACGGAAGGCATTGAAGCTCAGGTA -ACGGAAGGCATTGAAGCTGACTCT -ACGGAAGGCATTGAAGCTAGTCCT -ACGGAAGGCATTGAAGCTTAAGCC -ACGGAAGGCATTGAAGCTATAGCC -ACGGAAGGCATTGAAGCTTAACCG -ACGGAAGGCATTGAAGCTATGCCA -ACGGAAGGCATTACGAGTGGAAAC -ACGGAAGGCATTACGAGTAACACC -ACGGAAGGCATTACGAGTATCGAG -ACGGAAGGCATTACGAGTCTCCTT -ACGGAAGGCATTACGAGTCCTGTT -ACGGAAGGCATTACGAGTCGGTTT -ACGGAAGGCATTACGAGTGTGGTT -ACGGAAGGCATTACGAGTGCCTTT -ACGGAAGGCATTACGAGTGGTCTT -ACGGAAGGCATTACGAGTACGCTT -ACGGAAGGCATTACGAGTAGCGTT -ACGGAAGGCATTACGAGTTTCGTC -ACGGAAGGCATTACGAGTTCTCTC -ACGGAAGGCATTACGAGTTGGATC -ACGGAAGGCATTACGAGTCACTTC -ACGGAAGGCATTACGAGTGTACTC -ACGGAAGGCATTACGAGTGATGTC -ACGGAAGGCATTACGAGTACAGTC -ACGGAAGGCATTACGAGTTTGCTG -ACGGAAGGCATTACGAGTTCCATG -ACGGAAGGCATTACGAGTTGTGTG -ACGGAAGGCATTACGAGTCTAGTG -ACGGAAGGCATTACGAGTCATCTG -ACGGAAGGCATTACGAGTGAGTTG -ACGGAAGGCATTACGAGTAGACTG -ACGGAAGGCATTACGAGTTCGGTA -ACGGAAGGCATTACGAGTTGCCTA -ACGGAAGGCATTACGAGTCCACTA -ACGGAAGGCATTACGAGTGGAGTA -ACGGAAGGCATTACGAGTTCGTCT -ACGGAAGGCATTACGAGTTGCACT -ACGGAAGGCATTACGAGTCTGACT -ACGGAAGGCATTACGAGTCAACCT -ACGGAAGGCATTACGAGTGCTACT -ACGGAAGGCATTACGAGTGGATCT -ACGGAAGGCATTACGAGTAAGGCT -ACGGAAGGCATTACGAGTTCAACC -ACGGAAGGCATTACGAGTTGTTCC -ACGGAAGGCATTACGAGTATTCCC -ACGGAAGGCATTACGAGTTTCTCG -ACGGAAGGCATTACGAGTTAGACG -ACGGAAGGCATTACGAGTGTAACG -ACGGAAGGCATTACGAGTACTTCG -ACGGAAGGCATTACGAGTTACGCA -ACGGAAGGCATTACGAGTCTTGCA -ACGGAAGGCATTACGAGTCGAACA -ACGGAAGGCATTACGAGTCAGTCA -ACGGAAGGCATTACGAGTGATCCA -ACGGAAGGCATTACGAGTACGACA -ACGGAAGGCATTACGAGTAGCTCA -ACGGAAGGCATTACGAGTTCACGT -ACGGAAGGCATTACGAGTCGTAGT -ACGGAAGGCATTACGAGTGTCAGT -ACGGAAGGCATTACGAGTGAAGGT -ACGGAAGGCATTACGAGTAACCGT -ACGGAAGGCATTACGAGTTTGTGC -ACGGAAGGCATTACGAGTCTAAGC -ACGGAAGGCATTACGAGTACTAGC -ACGGAAGGCATTACGAGTAGATGC -ACGGAAGGCATTACGAGTTGAAGG -ACGGAAGGCATTACGAGTCAATGG -ACGGAAGGCATTACGAGTATGAGG -ACGGAAGGCATTACGAGTAATGGG -ACGGAAGGCATTACGAGTTCCTGA -ACGGAAGGCATTACGAGTTAGCGA -ACGGAAGGCATTACGAGTCACAGA -ACGGAAGGCATTACGAGTGCAAGA -ACGGAAGGCATTACGAGTGGTTGA -ACGGAAGGCATTACGAGTTCCGAT -ACGGAAGGCATTACGAGTTGGCAT -ACGGAAGGCATTACGAGTCGAGAT -ACGGAAGGCATTACGAGTTACCAC -ACGGAAGGCATTACGAGTCAGAAC -ACGGAAGGCATTACGAGTGTCTAC -ACGGAAGGCATTACGAGTACGTAC -ACGGAAGGCATTACGAGTAGTGAC -ACGGAAGGCATTACGAGTCTGTAG -ACGGAAGGCATTACGAGTCCTAAG -ACGGAAGGCATTACGAGTGTTCAG -ACGGAAGGCATTACGAGTGCATAG -ACGGAAGGCATTACGAGTGACAAG -ACGGAAGGCATTACGAGTAAGCAG -ACGGAAGGCATTACGAGTCGTCAA -ACGGAAGGCATTACGAGTGCTGAA -ACGGAAGGCATTACGAGTAGTACG -ACGGAAGGCATTACGAGTATCCGA -ACGGAAGGCATTACGAGTATGGGA -ACGGAAGGCATTACGAGTGTGCAA -ACGGAAGGCATTACGAGTGAGGAA -ACGGAAGGCATTACGAGTCAGGTA -ACGGAAGGCATTACGAGTGACTCT -ACGGAAGGCATTACGAGTAGTCCT -ACGGAAGGCATTACGAGTTAAGCC -ACGGAAGGCATTACGAGTATAGCC -ACGGAAGGCATTACGAGTTAACCG -ACGGAAGGCATTACGAGTATGCCA -ACGGAAGGCATTCGAATCGGAAAC -ACGGAAGGCATTCGAATCAACACC -ACGGAAGGCATTCGAATCATCGAG -ACGGAAGGCATTCGAATCCTCCTT -ACGGAAGGCATTCGAATCCCTGTT -ACGGAAGGCATTCGAATCCGGTTT -ACGGAAGGCATTCGAATCGTGGTT -ACGGAAGGCATTCGAATCGCCTTT -ACGGAAGGCATTCGAATCGGTCTT -ACGGAAGGCATTCGAATCACGCTT -ACGGAAGGCATTCGAATCAGCGTT -ACGGAAGGCATTCGAATCTTCGTC -ACGGAAGGCATTCGAATCTCTCTC -ACGGAAGGCATTCGAATCTGGATC -ACGGAAGGCATTCGAATCCACTTC -ACGGAAGGCATTCGAATCGTACTC -ACGGAAGGCATTCGAATCGATGTC -ACGGAAGGCATTCGAATCACAGTC -ACGGAAGGCATTCGAATCTTGCTG -ACGGAAGGCATTCGAATCTCCATG -ACGGAAGGCATTCGAATCTGTGTG -ACGGAAGGCATTCGAATCCTAGTG -ACGGAAGGCATTCGAATCCATCTG -ACGGAAGGCATTCGAATCGAGTTG -ACGGAAGGCATTCGAATCAGACTG -ACGGAAGGCATTCGAATCTCGGTA -ACGGAAGGCATTCGAATCTGCCTA -ACGGAAGGCATTCGAATCCCACTA -ACGGAAGGCATTCGAATCGGAGTA -ACGGAAGGCATTCGAATCTCGTCT -ACGGAAGGCATTCGAATCTGCACT -ACGGAAGGCATTCGAATCCTGACT -ACGGAAGGCATTCGAATCCAACCT -ACGGAAGGCATTCGAATCGCTACT -ACGGAAGGCATTCGAATCGGATCT -ACGGAAGGCATTCGAATCAAGGCT -ACGGAAGGCATTCGAATCTCAACC -ACGGAAGGCATTCGAATCTGTTCC -ACGGAAGGCATTCGAATCATTCCC -ACGGAAGGCATTCGAATCTTCTCG -ACGGAAGGCATTCGAATCTAGACG -ACGGAAGGCATTCGAATCGTAACG -ACGGAAGGCATTCGAATCACTTCG -ACGGAAGGCATTCGAATCTACGCA -ACGGAAGGCATTCGAATCCTTGCA -ACGGAAGGCATTCGAATCCGAACA -ACGGAAGGCATTCGAATCCAGTCA -ACGGAAGGCATTCGAATCGATCCA -ACGGAAGGCATTCGAATCACGACA -ACGGAAGGCATTCGAATCAGCTCA -ACGGAAGGCATTCGAATCTCACGT -ACGGAAGGCATTCGAATCCGTAGT -ACGGAAGGCATTCGAATCGTCAGT -ACGGAAGGCATTCGAATCGAAGGT -ACGGAAGGCATTCGAATCAACCGT -ACGGAAGGCATTCGAATCTTGTGC -ACGGAAGGCATTCGAATCCTAAGC -ACGGAAGGCATTCGAATCACTAGC -ACGGAAGGCATTCGAATCAGATGC -ACGGAAGGCATTCGAATCTGAAGG -ACGGAAGGCATTCGAATCCAATGG -ACGGAAGGCATTCGAATCATGAGG -ACGGAAGGCATTCGAATCAATGGG -ACGGAAGGCATTCGAATCTCCTGA -ACGGAAGGCATTCGAATCTAGCGA -ACGGAAGGCATTCGAATCCACAGA -ACGGAAGGCATTCGAATCGCAAGA -ACGGAAGGCATTCGAATCGGTTGA -ACGGAAGGCATTCGAATCTCCGAT -ACGGAAGGCATTCGAATCTGGCAT -ACGGAAGGCATTCGAATCCGAGAT -ACGGAAGGCATTCGAATCTACCAC -ACGGAAGGCATTCGAATCCAGAAC -ACGGAAGGCATTCGAATCGTCTAC -ACGGAAGGCATTCGAATCACGTAC -ACGGAAGGCATTCGAATCAGTGAC -ACGGAAGGCATTCGAATCCTGTAG -ACGGAAGGCATTCGAATCCCTAAG -ACGGAAGGCATTCGAATCGTTCAG -ACGGAAGGCATTCGAATCGCATAG -ACGGAAGGCATTCGAATCGACAAG -ACGGAAGGCATTCGAATCAAGCAG -ACGGAAGGCATTCGAATCCGTCAA -ACGGAAGGCATTCGAATCGCTGAA -ACGGAAGGCATTCGAATCAGTACG -ACGGAAGGCATTCGAATCATCCGA -ACGGAAGGCATTCGAATCATGGGA -ACGGAAGGCATTCGAATCGTGCAA -ACGGAAGGCATTCGAATCGAGGAA -ACGGAAGGCATTCGAATCCAGGTA -ACGGAAGGCATTCGAATCGACTCT -ACGGAAGGCATTCGAATCAGTCCT -ACGGAAGGCATTCGAATCTAAGCC -ACGGAAGGCATTCGAATCATAGCC -ACGGAAGGCATTCGAATCTAACCG -ACGGAAGGCATTCGAATCATGCCA -ACGGAAGGCATTGGAATGGGAAAC -ACGGAAGGCATTGGAATGAACACC -ACGGAAGGCATTGGAATGATCGAG -ACGGAAGGCATTGGAATGCTCCTT -ACGGAAGGCATTGGAATGCCTGTT -ACGGAAGGCATTGGAATGCGGTTT -ACGGAAGGCATTGGAATGGTGGTT -ACGGAAGGCATTGGAATGGCCTTT -ACGGAAGGCATTGGAATGGGTCTT -ACGGAAGGCATTGGAATGACGCTT -ACGGAAGGCATTGGAATGAGCGTT -ACGGAAGGCATTGGAATGTTCGTC -ACGGAAGGCATTGGAATGTCTCTC -ACGGAAGGCATTGGAATGTGGATC -ACGGAAGGCATTGGAATGCACTTC -ACGGAAGGCATTGGAATGGTACTC -ACGGAAGGCATTGGAATGGATGTC -ACGGAAGGCATTGGAATGACAGTC -ACGGAAGGCATTGGAATGTTGCTG -ACGGAAGGCATTGGAATGTCCATG -ACGGAAGGCATTGGAATGTGTGTG -ACGGAAGGCATTGGAATGCTAGTG -ACGGAAGGCATTGGAATGCATCTG -ACGGAAGGCATTGGAATGGAGTTG -ACGGAAGGCATTGGAATGAGACTG -ACGGAAGGCATTGGAATGTCGGTA -ACGGAAGGCATTGGAATGTGCCTA -ACGGAAGGCATTGGAATGCCACTA -ACGGAAGGCATTGGAATGGGAGTA -ACGGAAGGCATTGGAATGTCGTCT -ACGGAAGGCATTGGAATGTGCACT -ACGGAAGGCATTGGAATGCTGACT -ACGGAAGGCATTGGAATGCAACCT -ACGGAAGGCATTGGAATGGCTACT -ACGGAAGGCATTGGAATGGGATCT -ACGGAAGGCATTGGAATGAAGGCT -ACGGAAGGCATTGGAATGTCAACC -ACGGAAGGCATTGGAATGTGTTCC -ACGGAAGGCATTGGAATGATTCCC -ACGGAAGGCATTGGAATGTTCTCG -ACGGAAGGCATTGGAATGTAGACG -ACGGAAGGCATTGGAATGGTAACG -ACGGAAGGCATTGGAATGACTTCG -ACGGAAGGCATTGGAATGTACGCA -ACGGAAGGCATTGGAATGCTTGCA -ACGGAAGGCATTGGAATGCGAACA -ACGGAAGGCATTGGAATGCAGTCA -ACGGAAGGCATTGGAATGGATCCA -ACGGAAGGCATTGGAATGACGACA -ACGGAAGGCATTGGAATGAGCTCA -ACGGAAGGCATTGGAATGTCACGT -ACGGAAGGCATTGGAATGCGTAGT -ACGGAAGGCATTGGAATGGTCAGT -ACGGAAGGCATTGGAATGGAAGGT -ACGGAAGGCATTGGAATGAACCGT -ACGGAAGGCATTGGAATGTTGTGC -ACGGAAGGCATTGGAATGCTAAGC -ACGGAAGGCATTGGAATGACTAGC -ACGGAAGGCATTGGAATGAGATGC -ACGGAAGGCATTGGAATGTGAAGG -ACGGAAGGCATTGGAATGCAATGG -ACGGAAGGCATTGGAATGATGAGG -ACGGAAGGCATTGGAATGAATGGG -ACGGAAGGCATTGGAATGTCCTGA -ACGGAAGGCATTGGAATGTAGCGA -ACGGAAGGCATTGGAATGCACAGA -ACGGAAGGCATTGGAATGGCAAGA -ACGGAAGGCATTGGAATGGGTTGA -ACGGAAGGCATTGGAATGTCCGAT -ACGGAAGGCATTGGAATGTGGCAT -ACGGAAGGCATTGGAATGCGAGAT -ACGGAAGGCATTGGAATGTACCAC -ACGGAAGGCATTGGAATGCAGAAC -ACGGAAGGCATTGGAATGGTCTAC -ACGGAAGGCATTGGAATGACGTAC -ACGGAAGGCATTGGAATGAGTGAC -ACGGAAGGCATTGGAATGCTGTAG -ACGGAAGGCATTGGAATGCCTAAG -ACGGAAGGCATTGGAATGGTTCAG -ACGGAAGGCATTGGAATGGCATAG -ACGGAAGGCATTGGAATGGACAAG -ACGGAAGGCATTGGAATGAAGCAG -ACGGAAGGCATTGGAATGCGTCAA -ACGGAAGGCATTGGAATGGCTGAA -ACGGAAGGCATTGGAATGAGTACG -ACGGAAGGCATTGGAATGATCCGA -ACGGAAGGCATTGGAATGATGGGA -ACGGAAGGCATTGGAATGGTGCAA -ACGGAAGGCATTGGAATGGAGGAA -ACGGAAGGCATTGGAATGCAGGTA -ACGGAAGGCATTGGAATGGACTCT -ACGGAAGGCATTGGAATGAGTCCT -ACGGAAGGCATTGGAATGTAAGCC -ACGGAAGGCATTGGAATGATAGCC -ACGGAAGGCATTGGAATGTAACCG -ACGGAAGGCATTGGAATGATGCCA -ACGGAAGGCATTCAAGTGGGAAAC -ACGGAAGGCATTCAAGTGAACACC -ACGGAAGGCATTCAAGTGATCGAG -ACGGAAGGCATTCAAGTGCTCCTT -ACGGAAGGCATTCAAGTGCCTGTT -ACGGAAGGCATTCAAGTGCGGTTT -ACGGAAGGCATTCAAGTGGTGGTT -ACGGAAGGCATTCAAGTGGCCTTT -ACGGAAGGCATTCAAGTGGGTCTT -ACGGAAGGCATTCAAGTGACGCTT -ACGGAAGGCATTCAAGTGAGCGTT -ACGGAAGGCATTCAAGTGTTCGTC -ACGGAAGGCATTCAAGTGTCTCTC -ACGGAAGGCATTCAAGTGTGGATC -ACGGAAGGCATTCAAGTGCACTTC -ACGGAAGGCATTCAAGTGGTACTC -ACGGAAGGCATTCAAGTGGATGTC -ACGGAAGGCATTCAAGTGACAGTC -ACGGAAGGCATTCAAGTGTTGCTG -ACGGAAGGCATTCAAGTGTCCATG -ACGGAAGGCATTCAAGTGTGTGTG -ACGGAAGGCATTCAAGTGCTAGTG -ACGGAAGGCATTCAAGTGCATCTG -ACGGAAGGCATTCAAGTGGAGTTG -ACGGAAGGCATTCAAGTGAGACTG -ACGGAAGGCATTCAAGTGTCGGTA -ACGGAAGGCATTCAAGTGTGCCTA -ACGGAAGGCATTCAAGTGCCACTA -ACGGAAGGCATTCAAGTGGGAGTA -ACGGAAGGCATTCAAGTGTCGTCT -ACGGAAGGCATTCAAGTGTGCACT -ACGGAAGGCATTCAAGTGCTGACT -ACGGAAGGCATTCAAGTGCAACCT -ACGGAAGGCATTCAAGTGGCTACT -ACGGAAGGCATTCAAGTGGGATCT -ACGGAAGGCATTCAAGTGAAGGCT -ACGGAAGGCATTCAAGTGTCAACC -ACGGAAGGCATTCAAGTGTGTTCC -ACGGAAGGCATTCAAGTGATTCCC -ACGGAAGGCATTCAAGTGTTCTCG -ACGGAAGGCATTCAAGTGTAGACG -ACGGAAGGCATTCAAGTGGTAACG -ACGGAAGGCATTCAAGTGACTTCG -ACGGAAGGCATTCAAGTGTACGCA -ACGGAAGGCATTCAAGTGCTTGCA -ACGGAAGGCATTCAAGTGCGAACA -ACGGAAGGCATTCAAGTGCAGTCA -ACGGAAGGCATTCAAGTGGATCCA -ACGGAAGGCATTCAAGTGACGACA -ACGGAAGGCATTCAAGTGAGCTCA -ACGGAAGGCATTCAAGTGTCACGT -ACGGAAGGCATTCAAGTGCGTAGT -ACGGAAGGCATTCAAGTGGTCAGT -ACGGAAGGCATTCAAGTGGAAGGT -ACGGAAGGCATTCAAGTGAACCGT -ACGGAAGGCATTCAAGTGTTGTGC -ACGGAAGGCATTCAAGTGCTAAGC -ACGGAAGGCATTCAAGTGACTAGC -ACGGAAGGCATTCAAGTGAGATGC -ACGGAAGGCATTCAAGTGTGAAGG -ACGGAAGGCATTCAAGTGCAATGG -ACGGAAGGCATTCAAGTGATGAGG -ACGGAAGGCATTCAAGTGAATGGG -ACGGAAGGCATTCAAGTGTCCTGA -ACGGAAGGCATTCAAGTGTAGCGA -ACGGAAGGCATTCAAGTGCACAGA -ACGGAAGGCATTCAAGTGGCAAGA -ACGGAAGGCATTCAAGTGGGTTGA -ACGGAAGGCATTCAAGTGTCCGAT -ACGGAAGGCATTCAAGTGTGGCAT -ACGGAAGGCATTCAAGTGCGAGAT -ACGGAAGGCATTCAAGTGTACCAC -ACGGAAGGCATTCAAGTGCAGAAC -ACGGAAGGCATTCAAGTGGTCTAC -ACGGAAGGCATTCAAGTGACGTAC -ACGGAAGGCATTCAAGTGAGTGAC -ACGGAAGGCATTCAAGTGCTGTAG -ACGGAAGGCATTCAAGTGCCTAAG -ACGGAAGGCATTCAAGTGGTTCAG -ACGGAAGGCATTCAAGTGGCATAG -ACGGAAGGCATTCAAGTGGACAAG -ACGGAAGGCATTCAAGTGAAGCAG -ACGGAAGGCATTCAAGTGCGTCAA -ACGGAAGGCATTCAAGTGGCTGAA -ACGGAAGGCATTCAAGTGAGTACG -ACGGAAGGCATTCAAGTGATCCGA -ACGGAAGGCATTCAAGTGATGGGA -ACGGAAGGCATTCAAGTGGTGCAA -ACGGAAGGCATTCAAGTGGAGGAA -ACGGAAGGCATTCAAGTGCAGGTA -ACGGAAGGCATTCAAGTGGACTCT -ACGGAAGGCATTCAAGTGAGTCCT -ACGGAAGGCATTCAAGTGTAAGCC -ACGGAAGGCATTCAAGTGATAGCC -ACGGAAGGCATTCAAGTGTAACCG -ACGGAAGGCATTCAAGTGATGCCA -ACGGAAGGCATTGAAGAGGGAAAC -ACGGAAGGCATTGAAGAGAACACC -ACGGAAGGCATTGAAGAGATCGAG -ACGGAAGGCATTGAAGAGCTCCTT -ACGGAAGGCATTGAAGAGCCTGTT -ACGGAAGGCATTGAAGAGCGGTTT -ACGGAAGGCATTGAAGAGGTGGTT -ACGGAAGGCATTGAAGAGGCCTTT -ACGGAAGGCATTGAAGAGGGTCTT -ACGGAAGGCATTGAAGAGACGCTT -ACGGAAGGCATTGAAGAGAGCGTT -ACGGAAGGCATTGAAGAGTTCGTC -ACGGAAGGCATTGAAGAGTCTCTC -ACGGAAGGCATTGAAGAGTGGATC -ACGGAAGGCATTGAAGAGCACTTC -ACGGAAGGCATTGAAGAGGTACTC -ACGGAAGGCATTGAAGAGGATGTC -ACGGAAGGCATTGAAGAGACAGTC -ACGGAAGGCATTGAAGAGTTGCTG -ACGGAAGGCATTGAAGAGTCCATG -ACGGAAGGCATTGAAGAGTGTGTG -ACGGAAGGCATTGAAGAGCTAGTG -ACGGAAGGCATTGAAGAGCATCTG -ACGGAAGGCATTGAAGAGGAGTTG -ACGGAAGGCATTGAAGAGAGACTG -ACGGAAGGCATTGAAGAGTCGGTA -ACGGAAGGCATTGAAGAGTGCCTA -ACGGAAGGCATTGAAGAGCCACTA -ACGGAAGGCATTGAAGAGGGAGTA -ACGGAAGGCATTGAAGAGTCGTCT -ACGGAAGGCATTGAAGAGTGCACT -ACGGAAGGCATTGAAGAGCTGACT -ACGGAAGGCATTGAAGAGCAACCT -ACGGAAGGCATTGAAGAGGCTACT -ACGGAAGGCATTGAAGAGGGATCT -ACGGAAGGCATTGAAGAGAAGGCT -ACGGAAGGCATTGAAGAGTCAACC -ACGGAAGGCATTGAAGAGTGTTCC -ACGGAAGGCATTGAAGAGATTCCC -ACGGAAGGCATTGAAGAGTTCTCG -ACGGAAGGCATTGAAGAGTAGACG -ACGGAAGGCATTGAAGAGGTAACG -ACGGAAGGCATTGAAGAGACTTCG -ACGGAAGGCATTGAAGAGTACGCA -ACGGAAGGCATTGAAGAGCTTGCA -ACGGAAGGCATTGAAGAGCGAACA -ACGGAAGGCATTGAAGAGCAGTCA -ACGGAAGGCATTGAAGAGGATCCA -ACGGAAGGCATTGAAGAGACGACA -ACGGAAGGCATTGAAGAGAGCTCA -ACGGAAGGCATTGAAGAGTCACGT -ACGGAAGGCATTGAAGAGCGTAGT -ACGGAAGGCATTGAAGAGGTCAGT -ACGGAAGGCATTGAAGAGGAAGGT -ACGGAAGGCATTGAAGAGAACCGT -ACGGAAGGCATTGAAGAGTTGTGC -ACGGAAGGCATTGAAGAGCTAAGC -ACGGAAGGCATTGAAGAGACTAGC -ACGGAAGGCATTGAAGAGAGATGC -ACGGAAGGCATTGAAGAGTGAAGG -ACGGAAGGCATTGAAGAGCAATGG -ACGGAAGGCATTGAAGAGATGAGG -ACGGAAGGCATTGAAGAGAATGGG -ACGGAAGGCATTGAAGAGTCCTGA -ACGGAAGGCATTGAAGAGTAGCGA -ACGGAAGGCATTGAAGAGCACAGA -ACGGAAGGCATTGAAGAGGCAAGA -ACGGAAGGCATTGAAGAGGGTTGA -ACGGAAGGCATTGAAGAGTCCGAT -ACGGAAGGCATTGAAGAGTGGCAT -ACGGAAGGCATTGAAGAGCGAGAT -ACGGAAGGCATTGAAGAGTACCAC -ACGGAAGGCATTGAAGAGCAGAAC -ACGGAAGGCATTGAAGAGGTCTAC -ACGGAAGGCATTGAAGAGACGTAC -ACGGAAGGCATTGAAGAGAGTGAC -ACGGAAGGCATTGAAGAGCTGTAG -ACGGAAGGCATTGAAGAGCCTAAG -ACGGAAGGCATTGAAGAGGTTCAG -ACGGAAGGCATTGAAGAGGCATAG -ACGGAAGGCATTGAAGAGGACAAG -ACGGAAGGCATTGAAGAGAAGCAG -ACGGAAGGCATTGAAGAGCGTCAA -ACGGAAGGCATTGAAGAGGCTGAA -ACGGAAGGCATTGAAGAGAGTACG -ACGGAAGGCATTGAAGAGATCCGA -ACGGAAGGCATTGAAGAGATGGGA -ACGGAAGGCATTGAAGAGGTGCAA -ACGGAAGGCATTGAAGAGGAGGAA -ACGGAAGGCATTGAAGAGCAGGTA -ACGGAAGGCATTGAAGAGGACTCT -ACGGAAGGCATTGAAGAGAGTCCT -ACGGAAGGCATTGAAGAGTAAGCC -ACGGAAGGCATTGAAGAGATAGCC -ACGGAAGGCATTGAAGAGTAACCG -ACGGAAGGCATTGAAGAGATGCCA -ACGGAAGGCATTGTACAGGGAAAC -ACGGAAGGCATTGTACAGAACACC -ACGGAAGGCATTGTACAGATCGAG -ACGGAAGGCATTGTACAGCTCCTT -ACGGAAGGCATTGTACAGCCTGTT -ACGGAAGGCATTGTACAGCGGTTT -ACGGAAGGCATTGTACAGGTGGTT -ACGGAAGGCATTGTACAGGCCTTT -ACGGAAGGCATTGTACAGGGTCTT -ACGGAAGGCATTGTACAGACGCTT -ACGGAAGGCATTGTACAGAGCGTT -ACGGAAGGCATTGTACAGTTCGTC -ACGGAAGGCATTGTACAGTCTCTC -ACGGAAGGCATTGTACAGTGGATC -ACGGAAGGCATTGTACAGCACTTC -ACGGAAGGCATTGTACAGGTACTC -ACGGAAGGCATTGTACAGGATGTC -ACGGAAGGCATTGTACAGACAGTC -ACGGAAGGCATTGTACAGTTGCTG -ACGGAAGGCATTGTACAGTCCATG -ACGGAAGGCATTGTACAGTGTGTG -ACGGAAGGCATTGTACAGCTAGTG -ACGGAAGGCATTGTACAGCATCTG -ACGGAAGGCATTGTACAGGAGTTG -ACGGAAGGCATTGTACAGAGACTG -ACGGAAGGCATTGTACAGTCGGTA -ACGGAAGGCATTGTACAGTGCCTA -ACGGAAGGCATTGTACAGCCACTA -ACGGAAGGCATTGTACAGGGAGTA -ACGGAAGGCATTGTACAGTCGTCT -ACGGAAGGCATTGTACAGTGCACT -ACGGAAGGCATTGTACAGCTGACT -ACGGAAGGCATTGTACAGCAACCT -ACGGAAGGCATTGTACAGGCTACT -ACGGAAGGCATTGTACAGGGATCT -ACGGAAGGCATTGTACAGAAGGCT -ACGGAAGGCATTGTACAGTCAACC -ACGGAAGGCATTGTACAGTGTTCC -ACGGAAGGCATTGTACAGATTCCC -ACGGAAGGCATTGTACAGTTCTCG -ACGGAAGGCATTGTACAGTAGACG -ACGGAAGGCATTGTACAGGTAACG -ACGGAAGGCATTGTACAGACTTCG -ACGGAAGGCATTGTACAGTACGCA -ACGGAAGGCATTGTACAGCTTGCA -ACGGAAGGCATTGTACAGCGAACA -ACGGAAGGCATTGTACAGCAGTCA -ACGGAAGGCATTGTACAGGATCCA -ACGGAAGGCATTGTACAGACGACA -ACGGAAGGCATTGTACAGAGCTCA -ACGGAAGGCATTGTACAGTCACGT -ACGGAAGGCATTGTACAGCGTAGT -ACGGAAGGCATTGTACAGGTCAGT -ACGGAAGGCATTGTACAGGAAGGT -ACGGAAGGCATTGTACAGAACCGT -ACGGAAGGCATTGTACAGTTGTGC -ACGGAAGGCATTGTACAGCTAAGC -ACGGAAGGCATTGTACAGACTAGC -ACGGAAGGCATTGTACAGAGATGC -ACGGAAGGCATTGTACAGTGAAGG -ACGGAAGGCATTGTACAGCAATGG -ACGGAAGGCATTGTACAGATGAGG -ACGGAAGGCATTGTACAGAATGGG -ACGGAAGGCATTGTACAGTCCTGA -ACGGAAGGCATTGTACAGTAGCGA -ACGGAAGGCATTGTACAGCACAGA -ACGGAAGGCATTGTACAGGCAAGA -ACGGAAGGCATTGTACAGGGTTGA -ACGGAAGGCATTGTACAGTCCGAT -ACGGAAGGCATTGTACAGTGGCAT -ACGGAAGGCATTGTACAGCGAGAT -ACGGAAGGCATTGTACAGTACCAC -ACGGAAGGCATTGTACAGCAGAAC -ACGGAAGGCATTGTACAGGTCTAC -ACGGAAGGCATTGTACAGACGTAC -ACGGAAGGCATTGTACAGAGTGAC -ACGGAAGGCATTGTACAGCTGTAG -ACGGAAGGCATTGTACAGCCTAAG -ACGGAAGGCATTGTACAGGTTCAG -ACGGAAGGCATTGTACAGGCATAG -ACGGAAGGCATTGTACAGGACAAG -ACGGAAGGCATTGTACAGAAGCAG -ACGGAAGGCATTGTACAGCGTCAA -ACGGAAGGCATTGTACAGGCTGAA -ACGGAAGGCATTGTACAGAGTACG -ACGGAAGGCATTGTACAGATCCGA -ACGGAAGGCATTGTACAGATGGGA -ACGGAAGGCATTGTACAGGTGCAA -ACGGAAGGCATTGTACAGGAGGAA -ACGGAAGGCATTGTACAGCAGGTA -ACGGAAGGCATTGTACAGGACTCT -ACGGAAGGCATTGTACAGAGTCCT -ACGGAAGGCATTGTACAGTAAGCC -ACGGAAGGCATTGTACAGATAGCC -ACGGAAGGCATTGTACAGTAACCG -ACGGAAGGCATTGTACAGATGCCA -ACGGAAGGCATTTCTGACGGAAAC -ACGGAAGGCATTTCTGACAACACC -ACGGAAGGCATTTCTGACATCGAG -ACGGAAGGCATTTCTGACCTCCTT -ACGGAAGGCATTTCTGACCCTGTT -ACGGAAGGCATTTCTGACCGGTTT -ACGGAAGGCATTTCTGACGTGGTT -ACGGAAGGCATTTCTGACGCCTTT -ACGGAAGGCATTTCTGACGGTCTT -ACGGAAGGCATTTCTGACACGCTT -ACGGAAGGCATTTCTGACAGCGTT -ACGGAAGGCATTTCTGACTTCGTC -ACGGAAGGCATTTCTGACTCTCTC -ACGGAAGGCATTTCTGACTGGATC -ACGGAAGGCATTTCTGACCACTTC -ACGGAAGGCATTTCTGACGTACTC -ACGGAAGGCATTTCTGACGATGTC -ACGGAAGGCATTTCTGACACAGTC -ACGGAAGGCATTTCTGACTTGCTG -ACGGAAGGCATTTCTGACTCCATG -ACGGAAGGCATTTCTGACTGTGTG -ACGGAAGGCATTTCTGACCTAGTG -ACGGAAGGCATTTCTGACCATCTG -ACGGAAGGCATTTCTGACGAGTTG -ACGGAAGGCATTTCTGACAGACTG -ACGGAAGGCATTTCTGACTCGGTA -ACGGAAGGCATTTCTGACTGCCTA -ACGGAAGGCATTTCTGACCCACTA -ACGGAAGGCATTTCTGACGGAGTA -ACGGAAGGCATTTCTGACTCGTCT -ACGGAAGGCATTTCTGACTGCACT -ACGGAAGGCATTTCTGACCTGACT -ACGGAAGGCATTTCTGACCAACCT -ACGGAAGGCATTTCTGACGCTACT -ACGGAAGGCATTTCTGACGGATCT -ACGGAAGGCATTTCTGACAAGGCT -ACGGAAGGCATTTCTGACTCAACC -ACGGAAGGCATTTCTGACTGTTCC -ACGGAAGGCATTTCTGACATTCCC -ACGGAAGGCATTTCTGACTTCTCG -ACGGAAGGCATTTCTGACTAGACG -ACGGAAGGCATTTCTGACGTAACG -ACGGAAGGCATTTCTGACACTTCG -ACGGAAGGCATTTCTGACTACGCA -ACGGAAGGCATTTCTGACCTTGCA -ACGGAAGGCATTTCTGACCGAACA -ACGGAAGGCATTTCTGACCAGTCA -ACGGAAGGCATTTCTGACGATCCA -ACGGAAGGCATTTCTGACACGACA -ACGGAAGGCATTTCTGACAGCTCA -ACGGAAGGCATTTCTGACTCACGT -ACGGAAGGCATTTCTGACCGTAGT -ACGGAAGGCATTTCTGACGTCAGT -ACGGAAGGCATTTCTGACGAAGGT -ACGGAAGGCATTTCTGACAACCGT -ACGGAAGGCATTTCTGACTTGTGC -ACGGAAGGCATTTCTGACCTAAGC -ACGGAAGGCATTTCTGACACTAGC -ACGGAAGGCATTTCTGACAGATGC -ACGGAAGGCATTTCTGACTGAAGG -ACGGAAGGCATTTCTGACCAATGG -ACGGAAGGCATTTCTGACATGAGG -ACGGAAGGCATTTCTGACAATGGG -ACGGAAGGCATTTCTGACTCCTGA -ACGGAAGGCATTTCTGACTAGCGA -ACGGAAGGCATTTCTGACCACAGA -ACGGAAGGCATTTCTGACGCAAGA -ACGGAAGGCATTTCTGACGGTTGA -ACGGAAGGCATTTCTGACTCCGAT -ACGGAAGGCATTTCTGACTGGCAT -ACGGAAGGCATTTCTGACCGAGAT -ACGGAAGGCATTTCTGACTACCAC -ACGGAAGGCATTTCTGACCAGAAC -ACGGAAGGCATTTCTGACGTCTAC -ACGGAAGGCATTTCTGACACGTAC -ACGGAAGGCATTTCTGACAGTGAC -ACGGAAGGCATTTCTGACCTGTAG -ACGGAAGGCATTTCTGACCCTAAG -ACGGAAGGCATTTCTGACGTTCAG -ACGGAAGGCATTTCTGACGCATAG -ACGGAAGGCATTTCTGACGACAAG -ACGGAAGGCATTTCTGACAAGCAG -ACGGAAGGCATTTCTGACCGTCAA -ACGGAAGGCATTTCTGACGCTGAA -ACGGAAGGCATTTCTGACAGTACG -ACGGAAGGCATTTCTGACATCCGA -ACGGAAGGCATTTCTGACATGGGA -ACGGAAGGCATTTCTGACGTGCAA -ACGGAAGGCATTTCTGACGAGGAA -ACGGAAGGCATTTCTGACCAGGTA -ACGGAAGGCATTTCTGACGACTCT -ACGGAAGGCATTTCTGACAGTCCT -ACGGAAGGCATTTCTGACTAAGCC -ACGGAAGGCATTTCTGACATAGCC -ACGGAAGGCATTTCTGACTAACCG -ACGGAAGGCATTTCTGACATGCCA -ACGGAAGGCATTCCTAGTGGAAAC -ACGGAAGGCATTCCTAGTAACACC -ACGGAAGGCATTCCTAGTATCGAG -ACGGAAGGCATTCCTAGTCTCCTT -ACGGAAGGCATTCCTAGTCCTGTT -ACGGAAGGCATTCCTAGTCGGTTT -ACGGAAGGCATTCCTAGTGTGGTT -ACGGAAGGCATTCCTAGTGCCTTT -ACGGAAGGCATTCCTAGTGGTCTT -ACGGAAGGCATTCCTAGTACGCTT -ACGGAAGGCATTCCTAGTAGCGTT -ACGGAAGGCATTCCTAGTTTCGTC -ACGGAAGGCATTCCTAGTTCTCTC -ACGGAAGGCATTCCTAGTTGGATC -ACGGAAGGCATTCCTAGTCACTTC -ACGGAAGGCATTCCTAGTGTACTC -ACGGAAGGCATTCCTAGTGATGTC -ACGGAAGGCATTCCTAGTACAGTC -ACGGAAGGCATTCCTAGTTTGCTG -ACGGAAGGCATTCCTAGTTCCATG -ACGGAAGGCATTCCTAGTTGTGTG -ACGGAAGGCATTCCTAGTCTAGTG -ACGGAAGGCATTCCTAGTCATCTG -ACGGAAGGCATTCCTAGTGAGTTG -ACGGAAGGCATTCCTAGTAGACTG -ACGGAAGGCATTCCTAGTTCGGTA -ACGGAAGGCATTCCTAGTTGCCTA -ACGGAAGGCATTCCTAGTCCACTA -ACGGAAGGCATTCCTAGTGGAGTA -ACGGAAGGCATTCCTAGTTCGTCT -ACGGAAGGCATTCCTAGTTGCACT -ACGGAAGGCATTCCTAGTCTGACT -ACGGAAGGCATTCCTAGTCAACCT -ACGGAAGGCATTCCTAGTGCTACT -ACGGAAGGCATTCCTAGTGGATCT -ACGGAAGGCATTCCTAGTAAGGCT -ACGGAAGGCATTCCTAGTTCAACC -ACGGAAGGCATTCCTAGTTGTTCC -ACGGAAGGCATTCCTAGTATTCCC -ACGGAAGGCATTCCTAGTTTCTCG -ACGGAAGGCATTCCTAGTTAGACG -ACGGAAGGCATTCCTAGTGTAACG -ACGGAAGGCATTCCTAGTACTTCG -ACGGAAGGCATTCCTAGTTACGCA -ACGGAAGGCATTCCTAGTCTTGCA -ACGGAAGGCATTCCTAGTCGAACA -ACGGAAGGCATTCCTAGTCAGTCA -ACGGAAGGCATTCCTAGTGATCCA -ACGGAAGGCATTCCTAGTACGACA -ACGGAAGGCATTCCTAGTAGCTCA -ACGGAAGGCATTCCTAGTTCACGT -ACGGAAGGCATTCCTAGTCGTAGT -ACGGAAGGCATTCCTAGTGTCAGT -ACGGAAGGCATTCCTAGTGAAGGT -ACGGAAGGCATTCCTAGTAACCGT -ACGGAAGGCATTCCTAGTTTGTGC -ACGGAAGGCATTCCTAGTCTAAGC -ACGGAAGGCATTCCTAGTACTAGC -ACGGAAGGCATTCCTAGTAGATGC -ACGGAAGGCATTCCTAGTTGAAGG -ACGGAAGGCATTCCTAGTCAATGG -ACGGAAGGCATTCCTAGTATGAGG -ACGGAAGGCATTCCTAGTAATGGG -ACGGAAGGCATTCCTAGTTCCTGA -ACGGAAGGCATTCCTAGTTAGCGA -ACGGAAGGCATTCCTAGTCACAGA -ACGGAAGGCATTCCTAGTGCAAGA -ACGGAAGGCATTCCTAGTGGTTGA -ACGGAAGGCATTCCTAGTTCCGAT -ACGGAAGGCATTCCTAGTTGGCAT -ACGGAAGGCATTCCTAGTCGAGAT -ACGGAAGGCATTCCTAGTTACCAC -ACGGAAGGCATTCCTAGTCAGAAC -ACGGAAGGCATTCCTAGTGTCTAC -ACGGAAGGCATTCCTAGTACGTAC -ACGGAAGGCATTCCTAGTAGTGAC -ACGGAAGGCATTCCTAGTCTGTAG -ACGGAAGGCATTCCTAGTCCTAAG -ACGGAAGGCATTCCTAGTGTTCAG -ACGGAAGGCATTCCTAGTGCATAG -ACGGAAGGCATTCCTAGTGACAAG -ACGGAAGGCATTCCTAGTAAGCAG -ACGGAAGGCATTCCTAGTCGTCAA -ACGGAAGGCATTCCTAGTGCTGAA -ACGGAAGGCATTCCTAGTAGTACG -ACGGAAGGCATTCCTAGTATCCGA -ACGGAAGGCATTCCTAGTATGGGA -ACGGAAGGCATTCCTAGTGTGCAA -ACGGAAGGCATTCCTAGTGAGGAA -ACGGAAGGCATTCCTAGTCAGGTA -ACGGAAGGCATTCCTAGTGACTCT -ACGGAAGGCATTCCTAGTAGTCCT -ACGGAAGGCATTCCTAGTTAAGCC -ACGGAAGGCATTCCTAGTATAGCC -ACGGAAGGCATTCCTAGTTAACCG -ACGGAAGGCATTCCTAGTATGCCA -ACGGAAGGCATTGCCTAAGGAAAC -ACGGAAGGCATTGCCTAAAACACC -ACGGAAGGCATTGCCTAAATCGAG -ACGGAAGGCATTGCCTAACTCCTT -ACGGAAGGCATTGCCTAACCTGTT -ACGGAAGGCATTGCCTAACGGTTT -ACGGAAGGCATTGCCTAAGTGGTT -ACGGAAGGCATTGCCTAAGCCTTT -ACGGAAGGCATTGCCTAAGGTCTT -ACGGAAGGCATTGCCTAAACGCTT -ACGGAAGGCATTGCCTAAAGCGTT -ACGGAAGGCATTGCCTAATTCGTC -ACGGAAGGCATTGCCTAATCTCTC -ACGGAAGGCATTGCCTAATGGATC -ACGGAAGGCATTGCCTAACACTTC -ACGGAAGGCATTGCCTAAGTACTC -ACGGAAGGCATTGCCTAAGATGTC -ACGGAAGGCATTGCCTAAACAGTC -ACGGAAGGCATTGCCTAATTGCTG -ACGGAAGGCATTGCCTAATCCATG -ACGGAAGGCATTGCCTAATGTGTG -ACGGAAGGCATTGCCTAACTAGTG -ACGGAAGGCATTGCCTAACATCTG -ACGGAAGGCATTGCCTAAGAGTTG -ACGGAAGGCATTGCCTAAAGACTG -ACGGAAGGCATTGCCTAATCGGTA -ACGGAAGGCATTGCCTAATGCCTA -ACGGAAGGCATTGCCTAACCACTA -ACGGAAGGCATTGCCTAAGGAGTA -ACGGAAGGCATTGCCTAATCGTCT -ACGGAAGGCATTGCCTAATGCACT -ACGGAAGGCATTGCCTAACTGACT -ACGGAAGGCATTGCCTAACAACCT -ACGGAAGGCATTGCCTAAGCTACT -ACGGAAGGCATTGCCTAAGGATCT -ACGGAAGGCATTGCCTAAAAGGCT -ACGGAAGGCATTGCCTAATCAACC -ACGGAAGGCATTGCCTAATGTTCC -ACGGAAGGCATTGCCTAAATTCCC -ACGGAAGGCATTGCCTAATTCTCG -ACGGAAGGCATTGCCTAATAGACG -ACGGAAGGCATTGCCTAAGTAACG -ACGGAAGGCATTGCCTAAACTTCG -ACGGAAGGCATTGCCTAATACGCA -ACGGAAGGCATTGCCTAACTTGCA -ACGGAAGGCATTGCCTAACGAACA -ACGGAAGGCATTGCCTAACAGTCA -ACGGAAGGCATTGCCTAAGATCCA -ACGGAAGGCATTGCCTAAACGACA -ACGGAAGGCATTGCCTAAAGCTCA -ACGGAAGGCATTGCCTAATCACGT -ACGGAAGGCATTGCCTAACGTAGT -ACGGAAGGCATTGCCTAAGTCAGT -ACGGAAGGCATTGCCTAAGAAGGT -ACGGAAGGCATTGCCTAAAACCGT -ACGGAAGGCATTGCCTAATTGTGC -ACGGAAGGCATTGCCTAACTAAGC -ACGGAAGGCATTGCCTAAACTAGC -ACGGAAGGCATTGCCTAAAGATGC -ACGGAAGGCATTGCCTAATGAAGG -ACGGAAGGCATTGCCTAACAATGG -ACGGAAGGCATTGCCTAAATGAGG -ACGGAAGGCATTGCCTAAAATGGG -ACGGAAGGCATTGCCTAATCCTGA -ACGGAAGGCATTGCCTAATAGCGA -ACGGAAGGCATTGCCTAACACAGA -ACGGAAGGCATTGCCTAAGCAAGA -ACGGAAGGCATTGCCTAAGGTTGA -ACGGAAGGCATTGCCTAATCCGAT -ACGGAAGGCATTGCCTAATGGCAT -ACGGAAGGCATTGCCTAACGAGAT -ACGGAAGGCATTGCCTAATACCAC -ACGGAAGGCATTGCCTAACAGAAC -ACGGAAGGCATTGCCTAAGTCTAC -ACGGAAGGCATTGCCTAAACGTAC -ACGGAAGGCATTGCCTAAAGTGAC -ACGGAAGGCATTGCCTAACTGTAG -ACGGAAGGCATTGCCTAACCTAAG -ACGGAAGGCATTGCCTAAGTTCAG -ACGGAAGGCATTGCCTAAGCATAG -ACGGAAGGCATTGCCTAAGACAAG -ACGGAAGGCATTGCCTAAAAGCAG -ACGGAAGGCATTGCCTAACGTCAA -ACGGAAGGCATTGCCTAAGCTGAA -ACGGAAGGCATTGCCTAAAGTACG -ACGGAAGGCATTGCCTAAATCCGA -ACGGAAGGCATTGCCTAAATGGGA -ACGGAAGGCATTGCCTAAGTGCAA -ACGGAAGGCATTGCCTAAGAGGAA -ACGGAAGGCATTGCCTAACAGGTA -ACGGAAGGCATTGCCTAAGACTCT -ACGGAAGGCATTGCCTAAAGTCCT -ACGGAAGGCATTGCCTAATAAGCC -ACGGAAGGCATTGCCTAAATAGCC -ACGGAAGGCATTGCCTAATAACCG -ACGGAAGGCATTGCCTAAATGCCA -ACGGAAGGCATTGCCATAGGAAAC -ACGGAAGGCATTGCCATAAACACC -ACGGAAGGCATTGCCATAATCGAG -ACGGAAGGCATTGCCATACTCCTT -ACGGAAGGCATTGCCATACCTGTT -ACGGAAGGCATTGCCATACGGTTT -ACGGAAGGCATTGCCATAGTGGTT -ACGGAAGGCATTGCCATAGCCTTT -ACGGAAGGCATTGCCATAGGTCTT -ACGGAAGGCATTGCCATAACGCTT -ACGGAAGGCATTGCCATAAGCGTT -ACGGAAGGCATTGCCATATTCGTC -ACGGAAGGCATTGCCATATCTCTC -ACGGAAGGCATTGCCATATGGATC -ACGGAAGGCATTGCCATACACTTC -ACGGAAGGCATTGCCATAGTACTC -ACGGAAGGCATTGCCATAGATGTC -ACGGAAGGCATTGCCATAACAGTC -ACGGAAGGCATTGCCATATTGCTG -ACGGAAGGCATTGCCATATCCATG -ACGGAAGGCATTGCCATATGTGTG -ACGGAAGGCATTGCCATACTAGTG -ACGGAAGGCATTGCCATACATCTG -ACGGAAGGCATTGCCATAGAGTTG -ACGGAAGGCATTGCCATAAGACTG -ACGGAAGGCATTGCCATATCGGTA -ACGGAAGGCATTGCCATATGCCTA -ACGGAAGGCATTGCCATACCACTA -ACGGAAGGCATTGCCATAGGAGTA -ACGGAAGGCATTGCCATATCGTCT -ACGGAAGGCATTGCCATATGCACT -ACGGAAGGCATTGCCATACTGACT -ACGGAAGGCATTGCCATACAACCT -ACGGAAGGCATTGCCATAGCTACT -ACGGAAGGCATTGCCATAGGATCT -ACGGAAGGCATTGCCATAAAGGCT -ACGGAAGGCATTGCCATATCAACC -ACGGAAGGCATTGCCATATGTTCC -ACGGAAGGCATTGCCATAATTCCC -ACGGAAGGCATTGCCATATTCTCG -ACGGAAGGCATTGCCATATAGACG -ACGGAAGGCATTGCCATAGTAACG -ACGGAAGGCATTGCCATAACTTCG -ACGGAAGGCATTGCCATATACGCA -ACGGAAGGCATTGCCATACTTGCA -ACGGAAGGCATTGCCATACGAACA -ACGGAAGGCATTGCCATACAGTCA -ACGGAAGGCATTGCCATAGATCCA -ACGGAAGGCATTGCCATAACGACA -ACGGAAGGCATTGCCATAAGCTCA -ACGGAAGGCATTGCCATATCACGT -ACGGAAGGCATTGCCATACGTAGT -ACGGAAGGCATTGCCATAGTCAGT -ACGGAAGGCATTGCCATAGAAGGT -ACGGAAGGCATTGCCATAAACCGT -ACGGAAGGCATTGCCATATTGTGC -ACGGAAGGCATTGCCATACTAAGC -ACGGAAGGCATTGCCATAACTAGC -ACGGAAGGCATTGCCATAAGATGC -ACGGAAGGCATTGCCATATGAAGG -ACGGAAGGCATTGCCATACAATGG -ACGGAAGGCATTGCCATAATGAGG -ACGGAAGGCATTGCCATAAATGGG -ACGGAAGGCATTGCCATATCCTGA -ACGGAAGGCATTGCCATATAGCGA -ACGGAAGGCATTGCCATACACAGA -ACGGAAGGCATTGCCATAGCAAGA -ACGGAAGGCATTGCCATAGGTTGA -ACGGAAGGCATTGCCATATCCGAT -ACGGAAGGCATTGCCATATGGCAT -ACGGAAGGCATTGCCATACGAGAT -ACGGAAGGCATTGCCATATACCAC -ACGGAAGGCATTGCCATACAGAAC -ACGGAAGGCATTGCCATAGTCTAC -ACGGAAGGCATTGCCATAACGTAC -ACGGAAGGCATTGCCATAAGTGAC -ACGGAAGGCATTGCCATACTGTAG -ACGGAAGGCATTGCCATACCTAAG -ACGGAAGGCATTGCCATAGTTCAG -ACGGAAGGCATTGCCATAGCATAG -ACGGAAGGCATTGCCATAGACAAG -ACGGAAGGCATTGCCATAAAGCAG -ACGGAAGGCATTGCCATACGTCAA -ACGGAAGGCATTGCCATAGCTGAA -ACGGAAGGCATTGCCATAAGTACG -ACGGAAGGCATTGCCATAATCCGA -ACGGAAGGCATTGCCATAATGGGA -ACGGAAGGCATTGCCATAGTGCAA -ACGGAAGGCATTGCCATAGAGGAA -ACGGAAGGCATTGCCATACAGGTA -ACGGAAGGCATTGCCATAGACTCT -ACGGAAGGCATTGCCATAAGTCCT -ACGGAAGGCATTGCCATATAAGCC -ACGGAAGGCATTGCCATAATAGCC -ACGGAAGGCATTGCCATATAACCG -ACGGAAGGCATTGCCATAATGCCA -ACGGAAGGCATTCCGTAAGGAAAC -ACGGAAGGCATTCCGTAAAACACC -ACGGAAGGCATTCCGTAAATCGAG -ACGGAAGGCATTCCGTAACTCCTT -ACGGAAGGCATTCCGTAACCTGTT -ACGGAAGGCATTCCGTAACGGTTT -ACGGAAGGCATTCCGTAAGTGGTT -ACGGAAGGCATTCCGTAAGCCTTT -ACGGAAGGCATTCCGTAAGGTCTT -ACGGAAGGCATTCCGTAAACGCTT -ACGGAAGGCATTCCGTAAAGCGTT -ACGGAAGGCATTCCGTAATTCGTC -ACGGAAGGCATTCCGTAATCTCTC -ACGGAAGGCATTCCGTAATGGATC -ACGGAAGGCATTCCGTAACACTTC -ACGGAAGGCATTCCGTAAGTACTC -ACGGAAGGCATTCCGTAAGATGTC -ACGGAAGGCATTCCGTAAACAGTC -ACGGAAGGCATTCCGTAATTGCTG -ACGGAAGGCATTCCGTAATCCATG -ACGGAAGGCATTCCGTAATGTGTG -ACGGAAGGCATTCCGTAACTAGTG -ACGGAAGGCATTCCGTAACATCTG -ACGGAAGGCATTCCGTAAGAGTTG -ACGGAAGGCATTCCGTAAAGACTG -ACGGAAGGCATTCCGTAATCGGTA -ACGGAAGGCATTCCGTAATGCCTA -ACGGAAGGCATTCCGTAACCACTA -ACGGAAGGCATTCCGTAAGGAGTA -ACGGAAGGCATTCCGTAATCGTCT -ACGGAAGGCATTCCGTAATGCACT -ACGGAAGGCATTCCGTAACTGACT -ACGGAAGGCATTCCGTAACAACCT -ACGGAAGGCATTCCGTAAGCTACT -ACGGAAGGCATTCCGTAAGGATCT -ACGGAAGGCATTCCGTAAAAGGCT -ACGGAAGGCATTCCGTAATCAACC -ACGGAAGGCATTCCGTAATGTTCC -ACGGAAGGCATTCCGTAAATTCCC -ACGGAAGGCATTCCGTAATTCTCG -ACGGAAGGCATTCCGTAATAGACG -ACGGAAGGCATTCCGTAAGTAACG -ACGGAAGGCATTCCGTAAACTTCG -ACGGAAGGCATTCCGTAATACGCA -ACGGAAGGCATTCCGTAACTTGCA -ACGGAAGGCATTCCGTAACGAACA -ACGGAAGGCATTCCGTAACAGTCA -ACGGAAGGCATTCCGTAAGATCCA -ACGGAAGGCATTCCGTAAACGACA -ACGGAAGGCATTCCGTAAAGCTCA -ACGGAAGGCATTCCGTAATCACGT -ACGGAAGGCATTCCGTAACGTAGT -ACGGAAGGCATTCCGTAAGTCAGT -ACGGAAGGCATTCCGTAAGAAGGT -ACGGAAGGCATTCCGTAAAACCGT -ACGGAAGGCATTCCGTAATTGTGC -ACGGAAGGCATTCCGTAACTAAGC -ACGGAAGGCATTCCGTAAACTAGC -ACGGAAGGCATTCCGTAAAGATGC -ACGGAAGGCATTCCGTAATGAAGG -ACGGAAGGCATTCCGTAACAATGG -ACGGAAGGCATTCCGTAAATGAGG -ACGGAAGGCATTCCGTAAAATGGG -ACGGAAGGCATTCCGTAATCCTGA -ACGGAAGGCATTCCGTAATAGCGA -ACGGAAGGCATTCCGTAACACAGA -ACGGAAGGCATTCCGTAAGCAAGA -ACGGAAGGCATTCCGTAAGGTTGA -ACGGAAGGCATTCCGTAATCCGAT -ACGGAAGGCATTCCGTAATGGCAT -ACGGAAGGCATTCCGTAACGAGAT -ACGGAAGGCATTCCGTAATACCAC -ACGGAAGGCATTCCGTAACAGAAC -ACGGAAGGCATTCCGTAAGTCTAC -ACGGAAGGCATTCCGTAAACGTAC -ACGGAAGGCATTCCGTAAAGTGAC -ACGGAAGGCATTCCGTAACTGTAG -ACGGAAGGCATTCCGTAACCTAAG -ACGGAAGGCATTCCGTAAGTTCAG -ACGGAAGGCATTCCGTAAGCATAG -ACGGAAGGCATTCCGTAAGACAAG -ACGGAAGGCATTCCGTAAAAGCAG -ACGGAAGGCATTCCGTAACGTCAA -ACGGAAGGCATTCCGTAAGCTGAA -ACGGAAGGCATTCCGTAAAGTACG -ACGGAAGGCATTCCGTAAATCCGA -ACGGAAGGCATTCCGTAAATGGGA -ACGGAAGGCATTCCGTAAGTGCAA -ACGGAAGGCATTCCGTAAGAGGAA -ACGGAAGGCATTCCGTAACAGGTA -ACGGAAGGCATTCCGTAAGACTCT -ACGGAAGGCATTCCGTAAAGTCCT -ACGGAAGGCATTCCGTAATAAGCC -ACGGAAGGCATTCCGTAAATAGCC -ACGGAAGGCATTCCGTAATAACCG -ACGGAAGGCATTCCGTAAATGCCA -ACGGAAGGCATTCCAATGGGAAAC -ACGGAAGGCATTCCAATGAACACC -ACGGAAGGCATTCCAATGATCGAG -ACGGAAGGCATTCCAATGCTCCTT -ACGGAAGGCATTCCAATGCCTGTT -ACGGAAGGCATTCCAATGCGGTTT -ACGGAAGGCATTCCAATGGTGGTT -ACGGAAGGCATTCCAATGGCCTTT -ACGGAAGGCATTCCAATGGGTCTT -ACGGAAGGCATTCCAATGACGCTT -ACGGAAGGCATTCCAATGAGCGTT -ACGGAAGGCATTCCAATGTTCGTC -ACGGAAGGCATTCCAATGTCTCTC -ACGGAAGGCATTCCAATGTGGATC -ACGGAAGGCATTCCAATGCACTTC -ACGGAAGGCATTCCAATGGTACTC -ACGGAAGGCATTCCAATGGATGTC -ACGGAAGGCATTCCAATGACAGTC -ACGGAAGGCATTCCAATGTTGCTG -ACGGAAGGCATTCCAATGTCCATG -ACGGAAGGCATTCCAATGTGTGTG -ACGGAAGGCATTCCAATGCTAGTG -ACGGAAGGCATTCCAATGCATCTG -ACGGAAGGCATTCCAATGGAGTTG -ACGGAAGGCATTCCAATGAGACTG -ACGGAAGGCATTCCAATGTCGGTA -ACGGAAGGCATTCCAATGTGCCTA -ACGGAAGGCATTCCAATGCCACTA -ACGGAAGGCATTCCAATGGGAGTA -ACGGAAGGCATTCCAATGTCGTCT -ACGGAAGGCATTCCAATGTGCACT -ACGGAAGGCATTCCAATGCTGACT -ACGGAAGGCATTCCAATGCAACCT -ACGGAAGGCATTCCAATGGCTACT -ACGGAAGGCATTCCAATGGGATCT -ACGGAAGGCATTCCAATGAAGGCT -ACGGAAGGCATTCCAATGTCAACC -ACGGAAGGCATTCCAATGTGTTCC -ACGGAAGGCATTCCAATGATTCCC -ACGGAAGGCATTCCAATGTTCTCG -ACGGAAGGCATTCCAATGTAGACG -ACGGAAGGCATTCCAATGGTAACG -ACGGAAGGCATTCCAATGACTTCG -ACGGAAGGCATTCCAATGTACGCA -ACGGAAGGCATTCCAATGCTTGCA -ACGGAAGGCATTCCAATGCGAACA -ACGGAAGGCATTCCAATGCAGTCA -ACGGAAGGCATTCCAATGGATCCA -ACGGAAGGCATTCCAATGACGACA -ACGGAAGGCATTCCAATGAGCTCA -ACGGAAGGCATTCCAATGTCACGT -ACGGAAGGCATTCCAATGCGTAGT -ACGGAAGGCATTCCAATGGTCAGT -ACGGAAGGCATTCCAATGGAAGGT -ACGGAAGGCATTCCAATGAACCGT -ACGGAAGGCATTCCAATGTTGTGC -ACGGAAGGCATTCCAATGCTAAGC -ACGGAAGGCATTCCAATGACTAGC -ACGGAAGGCATTCCAATGAGATGC -ACGGAAGGCATTCCAATGTGAAGG -ACGGAAGGCATTCCAATGCAATGG -ACGGAAGGCATTCCAATGATGAGG -ACGGAAGGCATTCCAATGAATGGG -ACGGAAGGCATTCCAATGTCCTGA -ACGGAAGGCATTCCAATGTAGCGA -ACGGAAGGCATTCCAATGCACAGA -ACGGAAGGCATTCCAATGGCAAGA -ACGGAAGGCATTCCAATGGGTTGA -ACGGAAGGCATTCCAATGTCCGAT -ACGGAAGGCATTCCAATGTGGCAT -ACGGAAGGCATTCCAATGCGAGAT -ACGGAAGGCATTCCAATGTACCAC -ACGGAAGGCATTCCAATGCAGAAC -ACGGAAGGCATTCCAATGGTCTAC -ACGGAAGGCATTCCAATGACGTAC -ACGGAAGGCATTCCAATGAGTGAC -ACGGAAGGCATTCCAATGCTGTAG -ACGGAAGGCATTCCAATGCCTAAG -ACGGAAGGCATTCCAATGGTTCAG -ACGGAAGGCATTCCAATGGCATAG -ACGGAAGGCATTCCAATGGACAAG -ACGGAAGGCATTCCAATGAAGCAG -ACGGAAGGCATTCCAATGCGTCAA -ACGGAAGGCATTCCAATGGCTGAA -ACGGAAGGCATTCCAATGAGTACG -ACGGAAGGCATTCCAATGATCCGA -ACGGAAGGCATTCCAATGATGGGA -ACGGAAGGCATTCCAATGGTGCAA -ACGGAAGGCATTCCAATGGAGGAA -ACGGAAGGCATTCCAATGCAGGTA -ACGGAAGGCATTCCAATGGACTCT -ACGGAAGGCATTCCAATGAGTCCT -ACGGAAGGCATTCCAATGTAAGCC -ACGGAAGGCATTCCAATGATAGCC -ACGGAAGGCATTCCAATGTAACCG -ACGGAAGGCATTCCAATGATGCCA -ACGGAAGAGATCAACGGAGGAAAC -ACGGAAGAGATCAACGGAAACACC -ACGGAAGAGATCAACGGAATCGAG -ACGGAAGAGATCAACGGACTCCTT -ACGGAAGAGATCAACGGACCTGTT -ACGGAAGAGATCAACGGACGGTTT -ACGGAAGAGATCAACGGAGTGGTT -ACGGAAGAGATCAACGGAGCCTTT -ACGGAAGAGATCAACGGAGGTCTT -ACGGAAGAGATCAACGGAACGCTT -ACGGAAGAGATCAACGGAAGCGTT -ACGGAAGAGATCAACGGATTCGTC -ACGGAAGAGATCAACGGATCTCTC -ACGGAAGAGATCAACGGATGGATC -ACGGAAGAGATCAACGGACACTTC -ACGGAAGAGATCAACGGAGTACTC -ACGGAAGAGATCAACGGAGATGTC -ACGGAAGAGATCAACGGAACAGTC -ACGGAAGAGATCAACGGATTGCTG -ACGGAAGAGATCAACGGATCCATG -ACGGAAGAGATCAACGGATGTGTG -ACGGAAGAGATCAACGGACTAGTG -ACGGAAGAGATCAACGGACATCTG -ACGGAAGAGATCAACGGAGAGTTG -ACGGAAGAGATCAACGGAAGACTG -ACGGAAGAGATCAACGGATCGGTA -ACGGAAGAGATCAACGGATGCCTA -ACGGAAGAGATCAACGGACCACTA -ACGGAAGAGATCAACGGAGGAGTA -ACGGAAGAGATCAACGGATCGTCT -ACGGAAGAGATCAACGGATGCACT -ACGGAAGAGATCAACGGACTGACT -ACGGAAGAGATCAACGGACAACCT -ACGGAAGAGATCAACGGAGCTACT -ACGGAAGAGATCAACGGAGGATCT -ACGGAAGAGATCAACGGAAAGGCT -ACGGAAGAGATCAACGGATCAACC -ACGGAAGAGATCAACGGATGTTCC -ACGGAAGAGATCAACGGAATTCCC -ACGGAAGAGATCAACGGATTCTCG -ACGGAAGAGATCAACGGATAGACG -ACGGAAGAGATCAACGGAGTAACG -ACGGAAGAGATCAACGGAACTTCG -ACGGAAGAGATCAACGGATACGCA -ACGGAAGAGATCAACGGACTTGCA -ACGGAAGAGATCAACGGACGAACA -ACGGAAGAGATCAACGGACAGTCA -ACGGAAGAGATCAACGGAGATCCA -ACGGAAGAGATCAACGGAACGACA -ACGGAAGAGATCAACGGAAGCTCA -ACGGAAGAGATCAACGGATCACGT -ACGGAAGAGATCAACGGACGTAGT -ACGGAAGAGATCAACGGAGTCAGT -ACGGAAGAGATCAACGGAGAAGGT -ACGGAAGAGATCAACGGAAACCGT -ACGGAAGAGATCAACGGATTGTGC -ACGGAAGAGATCAACGGACTAAGC -ACGGAAGAGATCAACGGAACTAGC -ACGGAAGAGATCAACGGAAGATGC -ACGGAAGAGATCAACGGATGAAGG -ACGGAAGAGATCAACGGACAATGG -ACGGAAGAGATCAACGGAATGAGG -ACGGAAGAGATCAACGGAAATGGG -ACGGAAGAGATCAACGGATCCTGA -ACGGAAGAGATCAACGGATAGCGA -ACGGAAGAGATCAACGGACACAGA -ACGGAAGAGATCAACGGAGCAAGA -ACGGAAGAGATCAACGGAGGTTGA -ACGGAAGAGATCAACGGATCCGAT -ACGGAAGAGATCAACGGATGGCAT -ACGGAAGAGATCAACGGACGAGAT -ACGGAAGAGATCAACGGATACCAC -ACGGAAGAGATCAACGGACAGAAC -ACGGAAGAGATCAACGGAGTCTAC -ACGGAAGAGATCAACGGAACGTAC -ACGGAAGAGATCAACGGAAGTGAC -ACGGAAGAGATCAACGGACTGTAG -ACGGAAGAGATCAACGGACCTAAG -ACGGAAGAGATCAACGGAGTTCAG -ACGGAAGAGATCAACGGAGCATAG -ACGGAAGAGATCAACGGAGACAAG -ACGGAAGAGATCAACGGAAAGCAG -ACGGAAGAGATCAACGGACGTCAA -ACGGAAGAGATCAACGGAGCTGAA -ACGGAAGAGATCAACGGAAGTACG -ACGGAAGAGATCAACGGAATCCGA -ACGGAAGAGATCAACGGAATGGGA -ACGGAAGAGATCAACGGAGTGCAA -ACGGAAGAGATCAACGGAGAGGAA -ACGGAAGAGATCAACGGACAGGTA -ACGGAAGAGATCAACGGAGACTCT -ACGGAAGAGATCAACGGAAGTCCT -ACGGAAGAGATCAACGGATAAGCC -ACGGAAGAGATCAACGGAATAGCC -ACGGAAGAGATCAACGGATAACCG -ACGGAAGAGATCAACGGAATGCCA -ACGGAAGAGATCACCAACGGAAAC -ACGGAAGAGATCACCAACAACACC -ACGGAAGAGATCACCAACATCGAG -ACGGAAGAGATCACCAACCTCCTT -ACGGAAGAGATCACCAACCCTGTT -ACGGAAGAGATCACCAACCGGTTT -ACGGAAGAGATCACCAACGTGGTT -ACGGAAGAGATCACCAACGCCTTT -ACGGAAGAGATCACCAACGGTCTT -ACGGAAGAGATCACCAACACGCTT -ACGGAAGAGATCACCAACAGCGTT -ACGGAAGAGATCACCAACTTCGTC -ACGGAAGAGATCACCAACTCTCTC -ACGGAAGAGATCACCAACTGGATC -ACGGAAGAGATCACCAACCACTTC -ACGGAAGAGATCACCAACGTACTC -ACGGAAGAGATCACCAACGATGTC -ACGGAAGAGATCACCAACACAGTC -ACGGAAGAGATCACCAACTTGCTG -ACGGAAGAGATCACCAACTCCATG -ACGGAAGAGATCACCAACTGTGTG -ACGGAAGAGATCACCAACCTAGTG -ACGGAAGAGATCACCAACCATCTG -ACGGAAGAGATCACCAACGAGTTG -ACGGAAGAGATCACCAACAGACTG -ACGGAAGAGATCACCAACTCGGTA -ACGGAAGAGATCACCAACTGCCTA -ACGGAAGAGATCACCAACCCACTA -ACGGAAGAGATCACCAACGGAGTA -ACGGAAGAGATCACCAACTCGTCT -ACGGAAGAGATCACCAACTGCACT -ACGGAAGAGATCACCAACCTGACT -ACGGAAGAGATCACCAACCAACCT -ACGGAAGAGATCACCAACGCTACT -ACGGAAGAGATCACCAACGGATCT -ACGGAAGAGATCACCAACAAGGCT -ACGGAAGAGATCACCAACTCAACC -ACGGAAGAGATCACCAACTGTTCC -ACGGAAGAGATCACCAACATTCCC -ACGGAAGAGATCACCAACTTCTCG -ACGGAAGAGATCACCAACTAGACG -ACGGAAGAGATCACCAACGTAACG -ACGGAAGAGATCACCAACACTTCG -ACGGAAGAGATCACCAACTACGCA -ACGGAAGAGATCACCAACCTTGCA -ACGGAAGAGATCACCAACCGAACA -ACGGAAGAGATCACCAACCAGTCA -ACGGAAGAGATCACCAACGATCCA -ACGGAAGAGATCACCAACACGACA -ACGGAAGAGATCACCAACAGCTCA -ACGGAAGAGATCACCAACTCACGT -ACGGAAGAGATCACCAACCGTAGT -ACGGAAGAGATCACCAACGTCAGT -ACGGAAGAGATCACCAACGAAGGT -ACGGAAGAGATCACCAACAACCGT -ACGGAAGAGATCACCAACTTGTGC -ACGGAAGAGATCACCAACCTAAGC -ACGGAAGAGATCACCAACACTAGC -ACGGAAGAGATCACCAACAGATGC -ACGGAAGAGATCACCAACTGAAGG -ACGGAAGAGATCACCAACCAATGG -ACGGAAGAGATCACCAACATGAGG -ACGGAAGAGATCACCAACAATGGG -ACGGAAGAGATCACCAACTCCTGA -ACGGAAGAGATCACCAACTAGCGA -ACGGAAGAGATCACCAACCACAGA -ACGGAAGAGATCACCAACGCAAGA -ACGGAAGAGATCACCAACGGTTGA -ACGGAAGAGATCACCAACTCCGAT -ACGGAAGAGATCACCAACTGGCAT -ACGGAAGAGATCACCAACCGAGAT -ACGGAAGAGATCACCAACTACCAC -ACGGAAGAGATCACCAACCAGAAC -ACGGAAGAGATCACCAACGTCTAC -ACGGAAGAGATCACCAACACGTAC -ACGGAAGAGATCACCAACAGTGAC -ACGGAAGAGATCACCAACCTGTAG -ACGGAAGAGATCACCAACCCTAAG -ACGGAAGAGATCACCAACGTTCAG -ACGGAAGAGATCACCAACGCATAG -ACGGAAGAGATCACCAACGACAAG -ACGGAAGAGATCACCAACAAGCAG -ACGGAAGAGATCACCAACCGTCAA -ACGGAAGAGATCACCAACGCTGAA -ACGGAAGAGATCACCAACAGTACG -ACGGAAGAGATCACCAACATCCGA -ACGGAAGAGATCACCAACATGGGA -ACGGAAGAGATCACCAACGTGCAA -ACGGAAGAGATCACCAACGAGGAA -ACGGAAGAGATCACCAACCAGGTA -ACGGAAGAGATCACCAACGACTCT -ACGGAAGAGATCACCAACAGTCCT -ACGGAAGAGATCACCAACTAAGCC -ACGGAAGAGATCACCAACATAGCC -ACGGAAGAGATCACCAACTAACCG -ACGGAAGAGATCACCAACATGCCA -ACGGAAGAGATCGAGATCGGAAAC -ACGGAAGAGATCGAGATCAACACC -ACGGAAGAGATCGAGATCATCGAG -ACGGAAGAGATCGAGATCCTCCTT -ACGGAAGAGATCGAGATCCCTGTT -ACGGAAGAGATCGAGATCCGGTTT -ACGGAAGAGATCGAGATCGTGGTT -ACGGAAGAGATCGAGATCGCCTTT -ACGGAAGAGATCGAGATCGGTCTT -ACGGAAGAGATCGAGATCACGCTT -ACGGAAGAGATCGAGATCAGCGTT -ACGGAAGAGATCGAGATCTTCGTC -ACGGAAGAGATCGAGATCTCTCTC -ACGGAAGAGATCGAGATCTGGATC -ACGGAAGAGATCGAGATCCACTTC -ACGGAAGAGATCGAGATCGTACTC -ACGGAAGAGATCGAGATCGATGTC -ACGGAAGAGATCGAGATCACAGTC -ACGGAAGAGATCGAGATCTTGCTG -ACGGAAGAGATCGAGATCTCCATG -ACGGAAGAGATCGAGATCTGTGTG -ACGGAAGAGATCGAGATCCTAGTG -ACGGAAGAGATCGAGATCCATCTG -ACGGAAGAGATCGAGATCGAGTTG -ACGGAAGAGATCGAGATCAGACTG -ACGGAAGAGATCGAGATCTCGGTA -ACGGAAGAGATCGAGATCTGCCTA -ACGGAAGAGATCGAGATCCCACTA -ACGGAAGAGATCGAGATCGGAGTA -ACGGAAGAGATCGAGATCTCGTCT -ACGGAAGAGATCGAGATCTGCACT -ACGGAAGAGATCGAGATCCTGACT -ACGGAAGAGATCGAGATCCAACCT -ACGGAAGAGATCGAGATCGCTACT -ACGGAAGAGATCGAGATCGGATCT -ACGGAAGAGATCGAGATCAAGGCT -ACGGAAGAGATCGAGATCTCAACC -ACGGAAGAGATCGAGATCTGTTCC -ACGGAAGAGATCGAGATCATTCCC -ACGGAAGAGATCGAGATCTTCTCG -ACGGAAGAGATCGAGATCTAGACG -ACGGAAGAGATCGAGATCGTAACG -ACGGAAGAGATCGAGATCACTTCG -ACGGAAGAGATCGAGATCTACGCA -ACGGAAGAGATCGAGATCCTTGCA -ACGGAAGAGATCGAGATCCGAACA -ACGGAAGAGATCGAGATCCAGTCA -ACGGAAGAGATCGAGATCGATCCA -ACGGAAGAGATCGAGATCACGACA -ACGGAAGAGATCGAGATCAGCTCA -ACGGAAGAGATCGAGATCTCACGT -ACGGAAGAGATCGAGATCCGTAGT -ACGGAAGAGATCGAGATCGTCAGT -ACGGAAGAGATCGAGATCGAAGGT -ACGGAAGAGATCGAGATCAACCGT -ACGGAAGAGATCGAGATCTTGTGC -ACGGAAGAGATCGAGATCCTAAGC -ACGGAAGAGATCGAGATCACTAGC -ACGGAAGAGATCGAGATCAGATGC -ACGGAAGAGATCGAGATCTGAAGG -ACGGAAGAGATCGAGATCCAATGG -ACGGAAGAGATCGAGATCATGAGG -ACGGAAGAGATCGAGATCAATGGG -ACGGAAGAGATCGAGATCTCCTGA -ACGGAAGAGATCGAGATCTAGCGA -ACGGAAGAGATCGAGATCCACAGA -ACGGAAGAGATCGAGATCGCAAGA -ACGGAAGAGATCGAGATCGGTTGA -ACGGAAGAGATCGAGATCTCCGAT -ACGGAAGAGATCGAGATCTGGCAT -ACGGAAGAGATCGAGATCCGAGAT -ACGGAAGAGATCGAGATCTACCAC -ACGGAAGAGATCGAGATCCAGAAC -ACGGAAGAGATCGAGATCGTCTAC -ACGGAAGAGATCGAGATCACGTAC -ACGGAAGAGATCGAGATCAGTGAC -ACGGAAGAGATCGAGATCCTGTAG -ACGGAAGAGATCGAGATCCCTAAG -ACGGAAGAGATCGAGATCGTTCAG -ACGGAAGAGATCGAGATCGCATAG -ACGGAAGAGATCGAGATCGACAAG -ACGGAAGAGATCGAGATCAAGCAG -ACGGAAGAGATCGAGATCCGTCAA -ACGGAAGAGATCGAGATCGCTGAA -ACGGAAGAGATCGAGATCAGTACG -ACGGAAGAGATCGAGATCATCCGA -ACGGAAGAGATCGAGATCATGGGA -ACGGAAGAGATCGAGATCGTGCAA -ACGGAAGAGATCGAGATCGAGGAA -ACGGAAGAGATCGAGATCCAGGTA -ACGGAAGAGATCGAGATCGACTCT -ACGGAAGAGATCGAGATCAGTCCT -ACGGAAGAGATCGAGATCTAAGCC -ACGGAAGAGATCGAGATCATAGCC -ACGGAAGAGATCGAGATCTAACCG -ACGGAAGAGATCGAGATCATGCCA -ACGGAAGAGATCCTTCTCGGAAAC -ACGGAAGAGATCCTTCTCAACACC -ACGGAAGAGATCCTTCTCATCGAG -ACGGAAGAGATCCTTCTCCTCCTT -ACGGAAGAGATCCTTCTCCCTGTT -ACGGAAGAGATCCTTCTCCGGTTT -ACGGAAGAGATCCTTCTCGTGGTT -ACGGAAGAGATCCTTCTCGCCTTT -ACGGAAGAGATCCTTCTCGGTCTT -ACGGAAGAGATCCTTCTCACGCTT -ACGGAAGAGATCCTTCTCAGCGTT -ACGGAAGAGATCCTTCTCTTCGTC -ACGGAAGAGATCCTTCTCTCTCTC -ACGGAAGAGATCCTTCTCTGGATC -ACGGAAGAGATCCTTCTCCACTTC -ACGGAAGAGATCCTTCTCGTACTC -ACGGAAGAGATCCTTCTCGATGTC -ACGGAAGAGATCCTTCTCACAGTC -ACGGAAGAGATCCTTCTCTTGCTG -ACGGAAGAGATCCTTCTCTCCATG -ACGGAAGAGATCCTTCTCTGTGTG -ACGGAAGAGATCCTTCTCCTAGTG -ACGGAAGAGATCCTTCTCCATCTG -ACGGAAGAGATCCTTCTCGAGTTG -ACGGAAGAGATCCTTCTCAGACTG -ACGGAAGAGATCCTTCTCTCGGTA -ACGGAAGAGATCCTTCTCTGCCTA -ACGGAAGAGATCCTTCTCCCACTA -ACGGAAGAGATCCTTCTCGGAGTA -ACGGAAGAGATCCTTCTCTCGTCT -ACGGAAGAGATCCTTCTCTGCACT -ACGGAAGAGATCCTTCTCCTGACT -ACGGAAGAGATCCTTCTCCAACCT -ACGGAAGAGATCCTTCTCGCTACT -ACGGAAGAGATCCTTCTCGGATCT -ACGGAAGAGATCCTTCTCAAGGCT -ACGGAAGAGATCCTTCTCTCAACC -ACGGAAGAGATCCTTCTCTGTTCC -ACGGAAGAGATCCTTCTCATTCCC -ACGGAAGAGATCCTTCTCTTCTCG -ACGGAAGAGATCCTTCTCTAGACG -ACGGAAGAGATCCTTCTCGTAACG -ACGGAAGAGATCCTTCTCACTTCG -ACGGAAGAGATCCTTCTCTACGCA -ACGGAAGAGATCCTTCTCCTTGCA -ACGGAAGAGATCCTTCTCCGAACA -ACGGAAGAGATCCTTCTCCAGTCA -ACGGAAGAGATCCTTCTCGATCCA -ACGGAAGAGATCCTTCTCACGACA -ACGGAAGAGATCCTTCTCAGCTCA -ACGGAAGAGATCCTTCTCTCACGT -ACGGAAGAGATCCTTCTCCGTAGT -ACGGAAGAGATCCTTCTCGTCAGT -ACGGAAGAGATCCTTCTCGAAGGT -ACGGAAGAGATCCTTCTCAACCGT -ACGGAAGAGATCCTTCTCTTGTGC -ACGGAAGAGATCCTTCTCCTAAGC -ACGGAAGAGATCCTTCTCACTAGC -ACGGAAGAGATCCTTCTCAGATGC -ACGGAAGAGATCCTTCTCTGAAGG -ACGGAAGAGATCCTTCTCCAATGG -ACGGAAGAGATCCTTCTCATGAGG -ACGGAAGAGATCCTTCTCAATGGG -ACGGAAGAGATCCTTCTCTCCTGA -ACGGAAGAGATCCTTCTCTAGCGA -ACGGAAGAGATCCTTCTCCACAGA -ACGGAAGAGATCCTTCTCGCAAGA -ACGGAAGAGATCCTTCTCGGTTGA -ACGGAAGAGATCCTTCTCTCCGAT -ACGGAAGAGATCCTTCTCTGGCAT -ACGGAAGAGATCCTTCTCCGAGAT -ACGGAAGAGATCCTTCTCTACCAC -ACGGAAGAGATCCTTCTCCAGAAC -ACGGAAGAGATCCTTCTCGTCTAC -ACGGAAGAGATCCTTCTCACGTAC -ACGGAAGAGATCCTTCTCAGTGAC -ACGGAAGAGATCCTTCTCCTGTAG -ACGGAAGAGATCCTTCTCCCTAAG -ACGGAAGAGATCCTTCTCGTTCAG -ACGGAAGAGATCCTTCTCGCATAG -ACGGAAGAGATCCTTCTCGACAAG -ACGGAAGAGATCCTTCTCAAGCAG -ACGGAAGAGATCCTTCTCCGTCAA -ACGGAAGAGATCCTTCTCGCTGAA -ACGGAAGAGATCCTTCTCAGTACG -ACGGAAGAGATCCTTCTCATCCGA -ACGGAAGAGATCCTTCTCATGGGA -ACGGAAGAGATCCTTCTCGTGCAA -ACGGAAGAGATCCTTCTCGAGGAA -ACGGAAGAGATCCTTCTCCAGGTA -ACGGAAGAGATCCTTCTCGACTCT -ACGGAAGAGATCCTTCTCAGTCCT -ACGGAAGAGATCCTTCTCTAAGCC -ACGGAAGAGATCCTTCTCATAGCC -ACGGAAGAGATCCTTCTCTAACCG -ACGGAAGAGATCCTTCTCATGCCA -ACGGAAGAGATCGTTCCTGGAAAC -ACGGAAGAGATCGTTCCTAACACC -ACGGAAGAGATCGTTCCTATCGAG -ACGGAAGAGATCGTTCCTCTCCTT -ACGGAAGAGATCGTTCCTCCTGTT -ACGGAAGAGATCGTTCCTCGGTTT -ACGGAAGAGATCGTTCCTGTGGTT -ACGGAAGAGATCGTTCCTGCCTTT -ACGGAAGAGATCGTTCCTGGTCTT -ACGGAAGAGATCGTTCCTACGCTT -ACGGAAGAGATCGTTCCTAGCGTT -ACGGAAGAGATCGTTCCTTTCGTC -ACGGAAGAGATCGTTCCTTCTCTC -ACGGAAGAGATCGTTCCTTGGATC -ACGGAAGAGATCGTTCCTCACTTC -ACGGAAGAGATCGTTCCTGTACTC -ACGGAAGAGATCGTTCCTGATGTC -ACGGAAGAGATCGTTCCTACAGTC -ACGGAAGAGATCGTTCCTTTGCTG -ACGGAAGAGATCGTTCCTTCCATG -ACGGAAGAGATCGTTCCTTGTGTG -ACGGAAGAGATCGTTCCTCTAGTG -ACGGAAGAGATCGTTCCTCATCTG -ACGGAAGAGATCGTTCCTGAGTTG -ACGGAAGAGATCGTTCCTAGACTG -ACGGAAGAGATCGTTCCTTCGGTA -ACGGAAGAGATCGTTCCTTGCCTA -ACGGAAGAGATCGTTCCTCCACTA -ACGGAAGAGATCGTTCCTGGAGTA -ACGGAAGAGATCGTTCCTTCGTCT -ACGGAAGAGATCGTTCCTTGCACT -ACGGAAGAGATCGTTCCTCTGACT -ACGGAAGAGATCGTTCCTCAACCT -ACGGAAGAGATCGTTCCTGCTACT -ACGGAAGAGATCGTTCCTGGATCT -ACGGAAGAGATCGTTCCTAAGGCT -ACGGAAGAGATCGTTCCTTCAACC -ACGGAAGAGATCGTTCCTTGTTCC -ACGGAAGAGATCGTTCCTATTCCC -ACGGAAGAGATCGTTCCTTTCTCG -ACGGAAGAGATCGTTCCTTAGACG -ACGGAAGAGATCGTTCCTGTAACG -ACGGAAGAGATCGTTCCTACTTCG -ACGGAAGAGATCGTTCCTTACGCA -ACGGAAGAGATCGTTCCTCTTGCA -ACGGAAGAGATCGTTCCTCGAACA -ACGGAAGAGATCGTTCCTCAGTCA -ACGGAAGAGATCGTTCCTGATCCA -ACGGAAGAGATCGTTCCTACGACA -ACGGAAGAGATCGTTCCTAGCTCA -ACGGAAGAGATCGTTCCTTCACGT -ACGGAAGAGATCGTTCCTCGTAGT -ACGGAAGAGATCGTTCCTGTCAGT -ACGGAAGAGATCGTTCCTGAAGGT -ACGGAAGAGATCGTTCCTAACCGT -ACGGAAGAGATCGTTCCTTTGTGC -ACGGAAGAGATCGTTCCTCTAAGC -ACGGAAGAGATCGTTCCTACTAGC -ACGGAAGAGATCGTTCCTAGATGC -ACGGAAGAGATCGTTCCTTGAAGG -ACGGAAGAGATCGTTCCTCAATGG -ACGGAAGAGATCGTTCCTATGAGG -ACGGAAGAGATCGTTCCTAATGGG -ACGGAAGAGATCGTTCCTTCCTGA -ACGGAAGAGATCGTTCCTTAGCGA -ACGGAAGAGATCGTTCCTCACAGA -ACGGAAGAGATCGTTCCTGCAAGA -ACGGAAGAGATCGTTCCTGGTTGA -ACGGAAGAGATCGTTCCTTCCGAT -ACGGAAGAGATCGTTCCTTGGCAT -ACGGAAGAGATCGTTCCTCGAGAT -ACGGAAGAGATCGTTCCTTACCAC -ACGGAAGAGATCGTTCCTCAGAAC -ACGGAAGAGATCGTTCCTGTCTAC -ACGGAAGAGATCGTTCCTACGTAC -ACGGAAGAGATCGTTCCTAGTGAC -ACGGAAGAGATCGTTCCTCTGTAG -ACGGAAGAGATCGTTCCTCCTAAG -ACGGAAGAGATCGTTCCTGTTCAG -ACGGAAGAGATCGTTCCTGCATAG -ACGGAAGAGATCGTTCCTGACAAG -ACGGAAGAGATCGTTCCTAAGCAG -ACGGAAGAGATCGTTCCTCGTCAA -ACGGAAGAGATCGTTCCTGCTGAA -ACGGAAGAGATCGTTCCTAGTACG -ACGGAAGAGATCGTTCCTATCCGA -ACGGAAGAGATCGTTCCTATGGGA -ACGGAAGAGATCGTTCCTGTGCAA -ACGGAAGAGATCGTTCCTGAGGAA -ACGGAAGAGATCGTTCCTCAGGTA -ACGGAAGAGATCGTTCCTGACTCT -ACGGAAGAGATCGTTCCTAGTCCT -ACGGAAGAGATCGTTCCTTAAGCC -ACGGAAGAGATCGTTCCTATAGCC -ACGGAAGAGATCGTTCCTTAACCG -ACGGAAGAGATCGTTCCTATGCCA -ACGGAAGAGATCTTTCGGGGAAAC -ACGGAAGAGATCTTTCGGAACACC -ACGGAAGAGATCTTTCGGATCGAG -ACGGAAGAGATCTTTCGGCTCCTT -ACGGAAGAGATCTTTCGGCCTGTT -ACGGAAGAGATCTTTCGGCGGTTT -ACGGAAGAGATCTTTCGGGTGGTT -ACGGAAGAGATCTTTCGGGCCTTT -ACGGAAGAGATCTTTCGGGGTCTT -ACGGAAGAGATCTTTCGGACGCTT -ACGGAAGAGATCTTTCGGAGCGTT -ACGGAAGAGATCTTTCGGTTCGTC -ACGGAAGAGATCTTTCGGTCTCTC -ACGGAAGAGATCTTTCGGTGGATC -ACGGAAGAGATCTTTCGGCACTTC -ACGGAAGAGATCTTTCGGGTACTC -ACGGAAGAGATCTTTCGGGATGTC -ACGGAAGAGATCTTTCGGACAGTC -ACGGAAGAGATCTTTCGGTTGCTG -ACGGAAGAGATCTTTCGGTCCATG -ACGGAAGAGATCTTTCGGTGTGTG -ACGGAAGAGATCTTTCGGCTAGTG -ACGGAAGAGATCTTTCGGCATCTG -ACGGAAGAGATCTTTCGGGAGTTG -ACGGAAGAGATCTTTCGGAGACTG -ACGGAAGAGATCTTTCGGTCGGTA -ACGGAAGAGATCTTTCGGTGCCTA -ACGGAAGAGATCTTTCGGCCACTA -ACGGAAGAGATCTTTCGGGGAGTA -ACGGAAGAGATCTTTCGGTCGTCT -ACGGAAGAGATCTTTCGGTGCACT -ACGGAAGAGATCTTTCGGCTGACT -ACGGAAGAGATCTTTCGGCAACCT -ACGGAAGAGATCTTTCGGGCTACT -ACGGAAGAGATCTTTCGGGGATCT -ACGGAAGAGATCTTTCGGAAGGCT -ACGGAAGAGATCTTTCGGTCAACC -ACGGAAGAGATCTTTCGGTGTTCC -ACGGAAGAGATCTTTCGGATTCCC -ACGGAAGAGATCTTTCGGTTCTCG -ACGGAAGAGATCTTTCGGTAGACG -ACGGAAGAGATCTTTCGGGTAACG -ACGGAAGAGATCTTTCGGACTTCG -ACGGAAGAGATCTTTCGGTACGCA -ACGGAAGAGATCTTTCGGCTTGCA -ACGGAAGAGATCTTTCGGCGAACA -ACGGAAGAGATCTTTCGGCAGTCA -ACGGAAGAGATCTTTCGGGATCCA -ACGGAAGAGATCTTTCGGACGACA -ACGGAAGAGATCTTTCGGAGCTCA -ACGGAAGAGATCTTTCGGTCACGT -ACGGAAGAGATCTTTCGGCGTAGT -ACGGAAGAGATCTTTCGGGTCAGT -ACGGAAGAGATCTTTCGGGAAGGT -ACGGAAGAGATCTTTCGGAACCGT -ACGGAAGAGATCTTTCGGTTGTGC -ACGGAAGAGATCTTTCGGCTAAGC -ACGGAAGAGATCTTTCGGACTAGC -ACGGAAGAGATCTTTCGGAGATGC -ACGGAAGAGATCTTTCGGTGAAGG -ACGGAAGAGATCTTTCGGCAATGG -ACGGAAGAGATCTTTCGGATGAGG -ACGGAAGAGATCTTTCGGAATGGG -ACGGAAGAGATCTTTCGGTCCTGA -ACGGAAGAGATCTTTCGGTAGCGA -ACGGAAGAGATCTTTCGGCACAGA -ACGGAAGAGATCTTTCGGGCAAGA -ACGGAAGAGATCTTTCGGGGTTGA -ACGGAAGAGATCTTTCGGTCCGAT -ACGGAAGAGATCTTTCGGTGGCAT -ACGGAAGAGATCTTTCGGCGAGAT -ACGGAAGAGATCTTTCGGTACCAC -ACGGAAGAGATCTTTCGGCAGAAC -ACGGAAGAGATCTTTCGGGTCTAC -ACGGAAGAGATCTTTCGGACGTAC -ACGGAAGAGATCTTTCGGAGTGAC -ACGGAAGAGATCTTTCGGCTGTAG -ACGGAAGAGATCTTTCGGCCTAAG -ACGGAAGAGATCTTTCGGGTTCAG -ACGGAAGAGATCTTTCGGGCATAG -ACGGAAGAGATCTTTCGGGACAAG -ACGGAAGAGATCTTTCGGAAGCAG -ACGGAAGAGATCTTTCGGCGTCAA -ACGGAAGAGATCTTTCGGGCTGAA -ACGGAAGAGATCTTTCGGAGTACG -ACGGAAGAGATCTTTCGGATCCGA -ACGGAAGAGATCTTTCGGATGGGA -ACGGAAGAGATCTTTCGGGTGCAA -ACGGAAGAGATCTTTCGGGAGGAA -ACGGAAGAGATCTTTCGGCAGGTA -ACGGAAGAGATCTTTCGGGACTCT -ACGGAAGAGATCTTTCGGAGTCCT -ACGGAAGAGATCTTTCGGTAAGCC -ACGGAAGAGATCTTTCGGATAGCC -ACGGAAGAGATCTTTCGGTAACCG -ACGGAAGAGATCTTTCGGATGCCA -ACGGAAGAGATCGTTGTGGGAAAC -ACGGAAGAGATCGTTGTGAACACC -ACGGAAGAGATCGTTGTGATCGAG -ACGGAAGAGATCGTTGTGCTCCTT -ACGGAAGAGATCGTTGTGCCTGTT -ACGGAAGAGATCGTTGTGCGGTTT -ACGGAAGAGATCGTTGTGGTGGTT -ACGGAAGAGATCGTTGTGGCCTTT -ACGGAAGAGATCGTTGTGGGTCTT -ACGGAAGAGATCGTTGTGACGCTT -ACGGAAGAGATCGTTGTGAGCGTT -ACGGAAGAGATCGTTGTGTTCGTC -ACGGAAGAGATCGTTGTGTCTCTC -ACGGAAGAGATCGTTGTGTGGATC -ACGGAAGAGATCGTTGTGCACTTC -ACGGAAGAGATCGTTGTGGTACTC -ACGGAAGAGATCGTTGTGGATGTC -ACGGAAGAGATCGTTGTGACAGTC -ACGGAAGAGATCGTTGTGTTGCTG -ACGGAAGAGATCGTTGTGTCCATG -ACGGAAGAGATCGTTGTGTGTGTG -ACGGAAGAGATCGTTGTGCTAGTG -ACGGAAGAGATCGTTGTGCATCTG -ACGGAAGAGATCGTTGTGGAGTTG -ACGGAAGAGATCGTTGTGAGACTG -ACGGAAGAGATCGTTGTGTCGGTA -ACGGAAGAGATCGTTGTGTGCCTA -ACGGAAGAGATCGTTGTGCCACTA -ACGGAAGAGATCGTTGTGGGAGTA -ACGGAAGAGATCGTTGTGTCGTCT -ACGGAAGAGATCGTTGTGTGCACT -ACGGAAGAGATCGTTGTGCTGACT -ACGGAAGAGATCGTTGTGCAACCT -ACGGAAGAGATCGTTGTGGCTACT -ACGGAAGAGATCGTTGTGGGATCT -ACGGAAGAGATCGTTGTGAAGGCT -ACGGAAGAGATCGTTGTGTCAACC -ACGGAAGAGATCGTTGTGTGTTCC -ACGGAAGAGATCGTTGTGATTCCC -ACGGAAGAGATCGTTGTGTTCTCG -ACGGAAGAGATCGTTGTGTAGACG -ACGGAAGAGATCGTTGTGGTAACG -ACGGAAGAGATCGTTGTGACTTCG -ACGGAAGAGATCGTTGTGTACGCA -ACGGAAGAGATCGTTGTGCTTGCA -ACGGAAGAGATCGTTGTGCGAACA -ACGGAAGAGATCGTTGTGCAGTCA -ACGGAAGAGATCGTTGTGGATCCA -ACGGAAGAGATCGTTGTGACGACA -ACGGAAGAGATCGTTGTGAGCTCA -ACGGAAGAGATCGTTGTGTCACGT -ACGGAAGAGATCGTTGTGCGTAGT -ACGGAAGAGATCGTTGTGGTCAGT -ACGGAAGAGATCGTTGTGGAAGGT -ACGGAAGAGATCGTTGTGAACCGT -ACGGAAGAGATCGTTGTGTTGTGC -ACGGAAGAGATCGTTGTGCTAAGC -ACGGAAGAGATCGTTGTGACTAGC -ACGGAAGAGATCGTTGTGAGATGC -ACGGAAGAGATCGTTGTGTGAAGG -ACGGAAGAGATCGTTGTGCAATGG -ACGGAAGAGATCGTTGTGATGAGG -ACGGAAGAGATCGTTGTGAATGGG -ACGGAAGAGATCGTTGTGTCCTGA -ACGGAAGAGATCGTTGTGTAGCGA -ACGGAAGAGATCGTTGTGCACAGA -ACGGAAGAGATCGTTGTGGCAAGA -ACGGAAGAGATCGTTGTGGGTTGA -ACGGAAGAGATCGTTGTGTCCGAT -ACGGAAGAGATCGTTGTGTGGCAT -ACGGAAGAGATCGTTGTGCGAGAT -ACGGAAGAGATCGTTGTGTACCAC -ACGGAAGAGATCGTTGTGCAGAAC -ACGGAAGAGATCGTTGTGGTCTAC -ACGGAAGAGATCGTTGTGACGTAC -ACGGAAGAGATCGTTGTGAGTGAC -ACGGAAGAGATCGTTGTGCTGTAG -ACGGAAGAGATCGTTGTGCCTAAG -ACGGAAGAGATCGTTGTGGTTCAG -ACGGAAGAGATCGTTGTGGCATAG -ACGGAAGAGATCGTTGTGGACAAG -ACGGAAGAGATCGTTGTGAAGCAG -ACGGAAGAGATCGTTGTGCGTCAA -ACGGAAGAGATCGTTGTGGCTGAA -ACGGAAGAGATCGTTGTGAGTACG -ACGGAAGAGATCGTTGTGATCCGA -ACGGAAGAGATCGTTGTGATGGGA -ACGGAAGAGATCGTTGTGGTGCAA -ACGGAAGAGATCGTTGTGGAGGAA -ACGGAAGAGATCGTTGTGCAGGTA -ACGGAAGAGATCGTTGTGGACTCT -ACGGAAGAGATCGTTGTGAGTCCT -ACGGAAGAGATCGTTGTGTAAGCC -ACGGAAGAGATCGTTGTGATAGCC -ACGGAAGAGATCGTTGTGTAACCG -ACGGAAGAGATCGTTGTGATGCCA -ACGGAAGAGATCTTTGCCGGAAAC -ACGGAAGAGATCTTTGCCAACACC -ACGGAAGAGATCTTTGCCATCGAG -ACGGAAGAGATCTTTGCCCTCCTT -ACGGAAGAGATCTTTGCCCCTGTT -ACGGAAGAGATCTTTGCCCGGTTT -ACGGAAGAGATCTTTGCCGTGGTT -ACGGAAGAGATCTTTGCCGCCTTT -ACGGAAGAGATCTTTGCCGGTCTT -ACGGAAGAGATCTTTGCCACGCTT -ACGGAAGAGATCTTTGCCAGCGTT -ACGGAAGAGATCTTTGCCTTCGTC -ACGGAAGAGATCTTTGCCTCTCTC -ACGGAAGAGATCTTTGCCTGGATC -ACGGAAGAGATCTTTGCCCACTTC -ACGGAAGAGATCTTTGCCGTACTC -ACGGAAGAGATCTTTGCCGATGTC -ACGGAAGAGATCTTTGCCACAGTC -ACGGAAGAGATCTTTGCCTTGCTG -ACGGAAGAGATCTTTGCCTCCATG -ACGGAAGAGATCTTTGCCTGTGTG -ACGGAAGAGATCTTTGCCCTAGTG -ACGGAAGAGATCTTTGCCCATCTG -ACGGAAGAGATCTTTGCCGAGTTG -ACGGAAGAGATCTTTGCCAGACTG -ACGGAAGAGATCTTTGCCTCGGTA -ACGGAAGAGATCTTTGCCTGCCTA -ACGGAAGAGATCTTTGCCCCACTA -ACGGAAGAGATCTTTGCCGGAGTA -ACGGAAGAGATCTTTGCCTCGTCT -ACGGAAGAGATCTTTGCCTGCACT -ACGGAAGAGATCTTTGCCCTGACT -ACGGAAGAGATCTTTGCCCAACCT -ACGGAAGAGATCTTTGCCGCTACT -ACGGAAGAGATCTTTGCCGGATCT -ACGGAAGAGATCTTTGCCAAGGCT -ACGGAAGAGATCTTTGCCTCAACC -ACGGAAGAGATCTTTGCCTGTTCC -ACGGAAGAGATCTTTGCCATTCCC -ACGGAAGAGATCTTTGCCTTCTCG -ACGGAAGAGATCTTTGCCTAGACG -ACGGAAGAGATCTTTGCCGTAACG -ACGGAAGAGATCTTTGCCACTTCG -ACGGAAGAGATCTTTGCCTACGCA -ACGGAAGAGATCTTTGCCCTTGCA -ACGGAAGAGATCTTTGCCCGAACA -ACGGAAGAGATCTTTGCCCAGTCA -ACGGAAGAGATCTTTGCCGATCCA -ACGGAAGAGATCTTTGCCACGACA -ACGGAAGAGATCTTTGCCAGCTCA -ACGGAAGAGATCTTTGCCTCACGT -ACGGAAGAGATCTTTGCCCGTAGT -ACGGAAGAGATCTTTGCCGTCAGT -ACGGAAGAGATCTTTGCCGAAGGT -ACGGAAGAGATCTTTGCCAACCGT -ACGGAAGAGATCTTTGCCTTGTGC -ACGGAAGAGATCTTTGCCCTAAGC -ACGGAAGAGATCTTTGCCACTAGC -ACGGAAGAGATCTTTGCCAGATGC -ACGGAAGAGATCTTTGCCTGAAGG -ACGGAAGAGATCTTTGCCCAATGG -ACGGAAGAGATCTTTGCCATGAGG -ACGGAAGAGATCTTTGCCAATGGG -ACGGAAGAGATCTTTGCCTCCTGA -ACGGAAGAGATCTTTGCCTAGCGA -ACGGAAGAGATCTTTGCCCACAGA -ACGGAAGAGATCTTTGCCGCAAGA -ACGGAAGAGATCTTTGCCGGTTGA -ACGGAAGAGATCTTTGCCTCCGAT -ACGGAAGAGATCTTTGCCTGGCAT -ACGGAAGAGATCTTTGCCCGAGAT -ACGGAAGAGATCTTTGCCTACCAC -ACGGAAGAGATCTTTGCCCAGAAC -ACGGAAGAGATCTTTGCCGTCTAC -ACGGAAGAGATCTTTGCCACGTAC -ACGGAAGAGATCTTTGCCAGTGAC -ACGGAAGAGATCTTTGCCCTGTAG -ACGGAAGAGATCTTTGCCCCTAAG -ACGGAAGAGATCTTTGCCGTTCAG -ACGGAAGAGATCTTTGCCGCATAG -ACGGAAGAGATCTTTGCCGACAAG -ACGGAAGAGATCTTTGCCAAGCAG -ACGGAAGAGATCTTTGCCCGTCAA -ACGGAAGAGATCTTTGCCGCTGAA -ACGGAAGAGATCTTTGCCAGTACG -ACGGAAGAGATCTTTGCCATCCGA -ACGGAAGAGATCTTTGCCATGGGA -ACGGAAGAGATCTTTGCCGTGCAA -ACGGAAGAGATCTTTGCCGAGGAA -ACGGAAGAGATCTTTGCCCAGGTA -ACGGAAGAGATCTTTGCCGACTCT -ACGGAAGAGATCTTTGCCAGTCCT -ACGGAAGAGATCTTTGCCTAAGCC -ACGGAAGAGATCTTTGCCATAGCC -ACGGAAGAGATCTTTGCCTAACCG -ACGGAAGAGATCTTTGCCATGCCA -ACGGAAGAGATCCTTGGTGGAAAC -ACGGAAGAGATCCTTGGTAACACC -ACGGAAGAGATCCTTGGTATCGAG -ACGGAAGAGATCCTTGGTCTCCTT -ACGGAAGAGATCCTTGGTCCTGTT -ACGGAAGAGATCCTTGGTCGGTTT -ACGGAAGAGATCCTTGGTGTGGTT -ACGGAAGAGATCCTTGGTGCCTTT -ACGGAAGAGATCCTTGGTGGTCTT -ACGGAAGAGATCCTTGGTACGCTT -ACGGAAGAGATCCTTGGTAGCGTT -ACGGAAGAGATCCTTGGTTTCGTC -ACGGAAGAGATCCTTGGTTCTCTC -ACGGAAGAGATCCTTGGTTGGATC -ACGGAAGAGATCCTTGGTCACTTC -ACGGAAGAGATCCTTGGTGTACTC -ACGGAAGAGATCCTTGGTGATGTC -ACGGAAGAGATCCTTGGTACAGTC -ACGGAAGAGATCCTTGGTTTGCTG -ACGGAAGAGATCCTTGGTTCCATG -ACGGAAGAGATCCTTGGTTGTGTG -ACGGAAGAGATCCTTGGTCTAGTG -ACGGAAGAGATCCTTGGTCATCTG -ACGGAAGAGATCCTTGGTGAGTTG -ACGGAAGAGATCCTTGGTAGACTG -ACGGAAGAGATCCTTGGTTCGGTA -ACGGAAGAGATCCTTGGTTGCCTA -ACGGAAGAGATCCTTGGTCCACTA -ACGGAAGAGATCCTTGGTGGAGTA -ACGGAAGAGATCCTTGGTTCGTCT -ACGGAAGAGATCCTTGGTTGCACT -ACGGAAGAGATCCTTGGTCTGACT -ACGGAAGAGATCCTTGGTCAACCT -ACGGAAGAGATCCTTGGTGCTACT -ACGGAAGAGATCCTTGGTGGATCT -ACGGAAGAGATCCTTGGTAAGGCT -ACGGAAGAGATCCTTGGTTCAACC -ACGGAAGAGATCCTTGGTTGTTCC -ACGGAAGAGATCCTTGGTATTCCC -ACGGAAGAGATCCTTGGTTTCTCG -ACGGAAGAGATCCTTGGTTAGACG -ACGGAAGAGATCCTTGGTGTAACG -ACGGAAGAGATCCTTGGTACTTCG -ACGGAAGAGATCCTTGGTTACGCA -ACGGAAGAGATCCTTGGTCTTGCA -ACGGAAGAGATCCTTGGTCGAACA -ACGGAAGAGATCCTTGGTCAGTCA -ACGGAAGAGATCCTTGGTGATCCA -ACGGAAGAGATCCTTGGTACGACA -ACGGAAGAGATCCTTGGTAGCTCA -ACGGAAGAGATCCTTGGTTCACGT -ACGGAAGAGATCCTTGGTCGTAGT -ACGGAAGAGATCCTTGGTGTCAGT -ACGGAAGAGATCCTTGGTGAAGGT -ACGGAAGAGATCCTTGGTAACCGT -ACGGAAGAGATCCTTGGTTTGTGC -ACGGAAGAGATCCTTGGTCTAAGC -ACGGAAGAGATCCTTGGTACTAGC -ACGGAAGAGATCCTTGGTAGATGC -ACGGAAGAGATCCTTGGTTGAAGG -ACGGAAGAGATCCTTGGTCAATGG -ACGGAAGAGATCCTTGGTATGAGG -ACGGAAGAGATCCTTGGTAATGGG -ACGGAAGAGATCCTTGGTTCCTGA -ACGGAAGAGATCCTTGGTTAGCGA -ACGGAAGAGATCCTTGGTCACAGA -ACGGAAGAGATCCTTGGTGCAAGA -ACGGAAGAGATCCTTGGTGGTTGA -ACGGAAGAGATCCTTGGTTCCGAT -ACGGAAGAGATCCTTGGTTGGCAT -ACGGAAGAGATCCTTGGTCGAGAT -ACGGAAGAGATCCTTGGTTACCAC -ACGGAAGAGATCCTTGGTCAGAAC -ACGGAAGAGATCCTTGGTGTCTAC -ACGGAAGAGATCCTTGGTACGTAC -ACGGAAGAGATCCTTGGTAGTGAC -ACGGAAGAGATCCTTGGTCTGTAG -ACGGAAGAGATCCTTGGTCCTAAG -ACGGAAGAGATCCTTGGTGTTCAG -ACGGAAGAGATCCTTGGTGCATAG -ACGGAAGAGATCCTTGGTGACAAG -ACGGAAGAGATCCTTGGTAAGCAG -ACGGAAGAGATCCTTGGTCGTCAA -ACGGAAGAGATCCTTGGTGCTGAA -ACGGAAGAGATCCTTGGTAGTACG -ACGGAAGAGATCCTTGGTATCCGA -ACGGAAGAGATCCTTGGTATGGGA -ACGGAAGAGATCCTTGGTGTGCAA -ACGGAAGAGATCCTTGGTGAGGAA -ACGGAAGAGATCCTTGGTCAGGTA -ACGGAAGAGATCCTTGGTGACTCT -ACGGAAGAGATCCTTGGTAGTCCT -ACGGAAGAGATCCTTGGTTAAGCC -ACGGAAGAGATCCTTGGTATAGCC -ACGGAAGAGATCCTTGGTTAACCG -ACGGAAGAGATCCTTGGTATGCCA -ACGGAAGAGATCCTTACGGGAAAC -ACGGAAGAGATCCTTACGAACACC -ACGGAAGAGATCCTTACGATCGAG -ACGGAAGAGATCCTTACGCTCCTT -ACGGAAGAGATCCTTACGCCTGTT -ACGGAAGAGATCCTTACGCGGTTT -ACGGAAGAGATCCTTACGGTGGTT -ACGGAAGAGATCCTTACGGCCTTT -ACGGAAGAGATCCTTACGGGTCTT -ACGGAAGAGATCCTTACGACGCTT -ACGGAAGAGATCCTTACGAGCGTT -ACGGAAGAGATCCTTACGTTCGTC -ACGGAAGAGATCCTTACGTCTCTC -ACGGAAGAGATCCTTACGTGGATC -ACGGAAGAGATCCTTACGCACTTC -ACGGAAGAGATCCTTACGGTACTC -ACGGAAGAGATCCTTACGGATGTC -ACGGAAGAGATCCTTACGACAGTC -ACGGAAGAGATCCTTACGTTGCTG -ACGGAAGAGATCCTTACGTCCATG -ACGGAAGAGATCCTTACGTGTGTG -ACGGAAGAGATCCTTACGCTAGTG -ACGGAAGAGATCCTTACGCATCTG -ACGGAAGAGATCCTTACGGAGTTG -ACGGAAGAGATCCTTACGAGACTG -ACGGAAGAGATCCTTACGTCGGTA -ACGGAAGAGATCCTTACGTGCCTA -ACGGAAGAGATCCTTACGCCACTA -ACGGAAGAGATCCTTACGGGAGTA -ACGGAAGAGATCCTTACGTCGTCT -ACGGAAGAGATCCTTACGTGCACT -ACGGAAGAGATCCTTACGCTGACT -ACGGAAGAGATCCTTACGCAACCT -ACGGAAGAGATCCTTACGGCTACT -ACGGAAGAGATCCTTACGGGATCT -ACGGAAGAGATCCTTACGAAGGCT -ACGGAAGAGATCCTTACGTCAACC -ACGGAAGAGATCCTTACGTGTTCC -ACGGAAGAGATCCTTACGATTCCC -ACGGAAGAGATCCTTACGTTCTCG -ACGGAAGAGATCCTTACGTAGACG -ACGGAAGAGATCCTTACGGTAACG -ACGGAAGAGATCCTTACGACTTCG -ACGGAAGAGATCCTTACGTACGCA -ACGGAAGAGATCCTTACGCTTGCA -ACGGAAGAGATCCTTACGCGAACA -ACGGAAGAGATCCTTACGCAGTCA -ACGGAAGAGATCCTTACGGATCCA -ACGGAAGAGATCCTTACGACGACA -ACGGAAGAGATCCTTACGAGCTCA -ACGGAAGAGATCCTTACGTCACGT -ACGGAAGAGATCCTTACGCGTAGT -ACGGAAGAGATCCTTACGGTCAGT -ACGGAAGAGATCCTTACGGAAGGT -ACGGAAGAGATCCTTACGAACCGT -ACGGAAGAGATCCTTACGTTGTGC -ACGGAAGAGATCCTTACGCTAAGC -ACGGAAGAGATCCTTACGACTAGC -ACGGAAGAGATCCTTACGAGATGC -ACGGAAGAGATCCTTACGTGAAGG -ACGGAAGAGATCCTTACGCAATGG -ACGGAAGAGATCCTTACGATGAGG -ACGGAAGAGATCCTTACGAATGGG -ACGGAAGAGATCCTTACGTCCTGA -ACGGAAGAGATCCTTACGTAGCGA -ACGGAAGAGATCCTTACGCACAGA -ACGGAAGAGATCCTTACGGCAAGA -ACGGAAGAGATCCTTACGGGTTGA -ACGGAAGAGATCCTTACGTCCGAT -ACGGAAGAGATCCTTACGTGGCAT -ACGGAAGAGATCCTTACGCGAGAT -ACGGAAGAGATCCTTACGTACCAC -ACGGAAGAGATCCTTACGCAGAAC -ACGGAAGAGATCCTTACGGTCTAC -ACGGAAGAGATCCTTACGACGTAC -ACGGAAGAGATCCTTACGAGTGAC -ACGGAAGAGATCCTTACGCTGTAG -ACGGAAGAGATCCTTACGCCTAAG -ACGGAAGAGATCCTTACGGTTCAG -ACGGAAGAGATCCTTACGGCATAG -ACGGAAGAGATCCTTACGGACAAG -ACGGAAGAGATCCTTACGAAGCAG -ACGGAAGAGATCCTTACGCGTCAA -ACGGAAGAGATCCTTACGGCTGAA -ACGGAAGAGATCCTTACGAGTACG -ACGGAAGAGATCCTTACGATCCGA -ACGGAAGAGATCCTTACGATGGGA -ACGGAAGAGATCCTTACGGTGCAA -ACGGAAGAGATCCTTACGGAGGAA -ACGGAAGAGATCCTTACGCAGGTA -ACGGAAGAGATCCTTACGGACTCT -ACGGAAGAGATCCTTACGAGTCCT -ACGGAAGAGATCCTTACGTAAGCC -ACGGAAGAGATCCTTACGATAGCC -ACGGAAGAGATCCTTACGTAACCG -ACGGAAGAGATCCTTACGATGCCA -ACGGAAGAGATCGTTAGCGGAAAC -ACGGAAGAGATCGTTAGCAACACC -ACGGAAGAGATCGTTAGCATCGAG -ACGGAAGAGATCGTTAGCCTCCTT -ACGGAAGAGATCGTTAGCCCTGTT -ACGGAAGAGATCGTTAGCCGGTTT -ACGGAAGAGATCGTTAGCGTGGTT -ACGGAAGAGATCGTTAGCGCCTTT -ACGGAAGAGATCGTTAGCGGTCTT -ACGGAAGAGATCGTTAGCACGCTT -ACGGAAGAGATCGTTAGCAGCGTT -ACGGAAGAGATCGTTAGCTTCGTC -ACGGAAGAGATCGTTAGCTCTCTC -ACGGAAGAGATCGTTAGCTGGATC -ACGGAAGAGATCGTTAGCCACTTC -ACGGAAGAGATCGTTAGCGTACTC -ACGGAAGAGATCGTTAGCGATGTC -ACGGAAGAGATCGTTAGCACAGTC -ACGGAAGAGATCGTTAGCTTGCTG -ACGGAAGAGATCGTTAGCTCCATG -ACGGAAGAGATCGTTAGCTGTGTG -ACGGAAGAGATCGTTAGCCTAGTG -ACGGAAGAGATCGTTAGCCATCTG -ACGGAAGAGATCGTTAGCGAGTTG -ACGGAAGAGATCGTTAGCAGACTG -ACGGAAGAGATCGTTAGCTCGGTA -ACGGAAGAGATCGTTAGCTGCCTA -ACGGAAGAGATCGTTAGCCCACTA -ACGGAAGAGATCGTTAGCGGAGTA -ACGGAAGAGATCGTTAGCTCGTCT -ACGGAAGAGATCGTTAGCTGCACT -ACGGAAGAGATCGTTAGCCTGACT -ACGGAAGAGATCGTTAGCCAACCT -ACGGAAGAGATCGTTAGCGCTACT -ACGGAAGAGATCGTTAGCGGATCT -ACGGAAGAGATCGTTAGCAAGGCT -ACGGAAGAGATCGTTAGCTCAACC -ACGGAAGAGATCGTTAGCTGTTCC -ACGGAAGAGATCGTTAGCATTCCC -ACGGAAGAGATCGTTAGCTTCTCG -ACGGAAGAGATCGTTAGCTAGACG -ACGGAAGAGATCGTTAGCGTAACG -ACGGAAGAGATCGTTAGCACTTCG -ACGGAAGAGATCGTTAGCTACGCA -ACGGAAGAGATCGTTAGCCTTGCA -ACGGAAGAGATCGTTAGCCGAACA -ACGGAAGAGATCGTTAGCCAGTCA -ACGGAAGAGATCGTTAGCGATCCA -ACGGAAGAGATCGTTAGCACGACA -ACGGAAGAGATCGTTAGCAGCTCA -ACGGAAGAGATCGTTAGCTCACGT -ACGGAAGAGATCGTTAGCCGTAGT -ACGGAAGAGATCGTTAGCGTCAGT -ACGGAAGAGATCGTTAGCGAAGGT -ACGGAAGAGATCGTTAGCAACCGT -ACGGAAGAGATCGTTAGCTTGTGC -ACGGAAGAGATCGTTAGCCTAAGC -ACGGAAGAGATCGTTAGCACTAGC -ACGGAAGAGATCGTTAGCAGATGC -ACGGAAGAGATCGTTAGCTGAAGG -ACGGAAGAGATCGTTAGCCAATGG -ACGGAAGAGATCGTTAGCATGAGG -ACGGAAGAGATCGTTAGCAATGGG -ACGGAAGAGATCGTTAGCTCCTGA -ACGGAAGAGATCGTTAGCTAGCGA -ACGGAAGAGATCGTTAGCCACAGA -ACGGAAGAGATCGTTAGCGCAAGA -ACGGAAGAGATCGTTAGCGGTTGA -ACGGAAGAGATCGTTAGCTCCGAT -ACGGAAGAGATCGTTAGCTGGCAT -ACGGAAGAGATCGTTAGCCGAGAT -ACGGAAGAGATCGTTAGCTACCAC -ACGGAAGAGATCGTTAGCCAGAAC -ACGGAAGAGATCGTTAGCGTCTAC -ACGGAAGAGATCGTTAGCACGTAC -ACGGAAGAGATCGTTAGCAGTGAC -ACGGAAGAGATCGTTAGCCTGTAG -ACGGAAGAGATCGTTAGCCCTAAG -ACGGAAGAGATCGTTAGCGTTCAG -ACGGAAGAGATCGTTAGCGCATAG -ACGGAAGAGATCGTTAGCGACAAG -ACGGAAGAGATCGTTAGCAAGCAG -ACGGAAGAGATCGTTAGCCGTCAA -ACGGAAGAGATCGTTAGCGCTGAA -ACGGAAGAGATCGTTAGCAGTACG -ACGGAAGAGATCGTTAGCATCCGA -ACGGAAGAGATCGTTAGCATGGGA -ACGGAAGAGATCGTTAGCGTGCAA -ACGGAAGAGATCGTTAGCGAGGAA -ACGGAAGAGATCGTTAGCCAGGTA -ACGGAAGAGATCGTTAGCGACTCT -ACGGAAGAGATCGTTAGCAGTCCT -ACGGAAGAGATCGTTAGCTAAGCC -ACGGAAGAGATCGTTAGCATAGCC -ACGGAAGAGATCGTTAGCTAACCG -ACGGAAGAGATCGTTAGCATGCCA -ACGGAAGAGATCGTCTTCGGAAAC -ACGGAAGAGATCGTCTTCAACACC -ACGGAAGAGATCGTCTTCATCGAG -ACGGAAGAGATCGTCTTCCTCCTT -ACGGAAGAGATCGTCTTCCCTGTT -ACGGAAGAGATCGTCTTCCGGTTT -ACGGAAGAGATCGTCTTCGTGGTT -ACGGAAGAGATCGTCTTCGCCTTT -ACGGAAGAGATCGTCTTCGGTCTT -ACGGAAGAGATCGTCTTCACGCTT -ACGGAAGAGATCGTCTTCAGCGTT -ACGGAAGAGATCGTCTTCTTCGTC -ACGGAAGAGATCGTCTTCTCTCTC -ACGGAAGAGATCGTCTTCTGGATC -ACGGAAGAGATCGTCTTCCACTTC -ACGGAAGAGATCGTCTTCGTACTC -ACGGAAGAGATCGTCTTCGATGTC -ACGGAAGAGATCGTCTTCACAGTC -ACGGAAGAGATCGTCTTCTTGCTG -ACGGAAGAGATCGTCTTCTCCATG -ACGGAAGAGATCGTCTTCTGTGTG -ACGGAAGAGATCGTCTTCCTAGTG -ACGGAAGAGATCGTCTTCCATCTG -ACGGAAGAGATCGTCTTCGAGTTG -ACGGAAGAGATCGTCTTCAGACTG -ACGGAAGAGATCGTCTTCTCGGTA -ACGGAAGAGATCGTCTTCTGCCTA -ACGGAAGAGATCGTCTTCCCACTA -ACGGAAGAGATCGTCTTCGGAGTA -ACGGAAGAGATCGTCTTCTCGTCT -ACGGAAGAGATCGTCTTCTGCACT -ACGGAAGAGATCGTCTTCCTGACT -ACGGAAGAGATCGTCTTCCAACCT -ACGGAAGAGATCGTCTTCGCTACT -ACGGAAGAGATCGTCTTCGGATCT -ACGGAAGAGATCGTCTTCAAGGCT -ACGGAAGAGATCGTCTTCTCAACC -ACGGAAGAGATCGTCTTCTGTTCC -ACGGAAGAGATCGTCTTCATTCCC -ACGGAAGAGATCGTCTTCTTCTCG -ACGGAAGAGATCGTCTTCTAGACG -ACGGAAGAGATCGTCTTCGTAACG -ACGGAAGAGATCGTCTTCACTTCG -ACGGAAGAGATCGTCTTCTACGCA -ACGGAAGAGATCGTCTTCCTTGCA -ACGGAAGAGATCGTCTTCCGAACA -ACGGAAGAGATCGTCTTCCAGTCA -ACGGAAGAGATCGTCTTCGATCCA -ACGGAAGAGATCGTCTTCACGACA -ACGGAAGAGATCGTCTTCAGCTCA -ACGGAAGAGATCGTCTTCTCACGT -ACGGAAGAGATCGTCTTCCGTAGT -ACGGAAGAGATCGTCTTCGTCAGT -ACGGAAGAGATCGTCTTCGAAGGT -ACGGAAGAGATCGTCTTCAACCGT -ACGGAAGAGATCGTCTTCTTGTGC -ACGGAAGAGATCGTCTTCCTAAGC -ACGGAAGAGATCGTCTTCACTAGC -ACGGAAGAGATCGTCTTCAGATGC -ACGGAAGAGATCGTCTTCTGAAGG -ACGGAAGAGATCGTCTTCCAATGG -ACGGAAGAGATCGTCTTCATGAGG -ACGGAAGAGATCGTCTTCAATGGG -ACGGAAGAGATCGTCTTCTCCTGA -ACGGAAGAGATCGTCTTCTAGCGA -ACGGAAGAGATCGTCTTCCACAGA -ACGGAAGAGATCGTCTTCGCAAGA -ACGGAAGAGATCGTCTTCGGTTGA -ACGGAAGAGATCGTCTTCTCCGAT -ACGGAAGAGATCGTCTTCTGGCAT -ACGGAAGAGATCGTCTTCCGAGAT -ACGGAAGAGATCGTCTTCTACCAC -ACGGAAGAGATCGTCTTCCAGAAC -ACGGAAGAGATCGTCTTCGTCTAC -ACGGAAGAGATCGTCTTCACGTAC -ACGGAAGAGATCGTCTTCAGTGAC -ACGGAAGAGATCGTCTTCCTGTAG -ACGGAAGAGATCGTCTTCCCTAAG -ACGGAAGAGATCGTCTTCGTTCAG -ACGGAAGAGATCGTCTTCGCATAG -ACGGAAGAGATCGTCTTCGACAAG -ACGGAAGAGATCGTCTTCAAGCAG -ACGGAAGAGATCGTCTTCCGTCAA -ACGGAAGAGATCGTCTTCGCTGAA -ACGGAAGAGATCGTCTTCAGTACG -ACGGAAGAGATCGTCTTCATCCGA -ACGGAAGAGATCGTCTTCATGGGA -ACGGAAGAGATCGTCTTCGTGCAA -ACGGAAGAGATCGTCTTCGAGGAA -ACGGAAGAGATCGTCTTCCAGGTA -ACGGAAGAGATCGTCTTCGACTCT -ACGGAAGAGATCGTCTTCAGTCCT -ACGGAAGAGATCGTCTTCTAAGCC -ACGGAAGAGATCGTCTTCATAGCC -ACGGAAGAGATCGTCTTCTAACCG -ACGGAAGAGATCGTCTTCATGCCA -ACGGAAGAGATCCTCTCTGGAAAC -ACGGAAGAGATCCTCTCTAACACC -ACGGAAGAGATCCTCTCTATCGAG -ACGGAAGAGATCCTCTCTCTCCTT -ACGGAAGAGATCCTCTCTCCTGTT -ACGGAAGAGATCCTCTCTCGGTTT -ACGGAAGAGATCCTCTCTGTGGTT -ACGGAAGAGATCCTCTCTGCCTTT -ACGGAAGAGATCCTCTCTGGTCTT -ACGGAAGAGATCCTCTCTACGCTT -ACGGAAGAGATCCTCTCTAGCGTT -ACGGAAGAGATCCTCTCTTTCGTC -ACGGAAGAGATCCTCTCTTCTCTC -ACGGAAGAGATCCTCTCTTGGATC -ACGGAAGAGATCCTCTCTCACTTC -ACGGAAGAGATCCTCTCTGTACTC -ACGGAAGAGATCCTCTCTGATGTC -ACGGAAGAGATCCTCTCTACAGTC -ACGGAAGAGATCCTCTCTTTGCTG -ACGGAAGAGATCCTCTCTTCCATG -ACGGAAGAGATCCTCTCTTGTGTG -ACGGAAGAGATCCTCTCTCTAGTG -ACGGAAGAGATCCTCTCTCATCTG -ACGGAAGAGATCCTCTCTGAGTTG -ACGGAAGAGATCCTCTCTAGACTG -ACGGAAGAGATCCTCTCTTCGGTA -ACGGAAGAGATCCTCTCTTGCCTA -ACGGAAGAGATCCTCTCTCCACTA -ACGGAAGAGATCCTCTCTGGAGTA -ACGGAAGAGATCCTCTCTTCGTCT -ACGGAAGAGATCCTCTCTTGCACT -ACGGAAGAGATCCTCTCTCTGACT -ACGGAAGAGATCCTCTCTCAACCT -ACGGAAGAGATCCTCTCTGCTACT -ACGGAAGAGATCCTCTCTGGATCT -ACGGAAGAGATCCTCTCTAAGGCT -ACGGAAGAGATCCTCTCTTCAACC -ACGGAAGAGATCCTCTCTTGTTCC -ACGGAAGAGATCCTCTCTATTCCC -ACGGAAGAGATCCTCTCTTTCTCG -ACGGAAGAGATCCTCTCTTAGACG -ACGGAAGAGATCCTCTCTGTAACG -ACGGAAGAGATCCTCTCTACTTCG -ACGGAAGAGATCCTCTCTTACGCA -ACGGAAGAGATCCTCTCTCTTGCA -ACGGAAGAGATCCTCTCTCGAACA -ACGGAAGAGATCCTCTCTCAGTCA -ACGGAAGAGATCCTCTCTGATCCA -ACGGAAGAGATCCTCTCTACGACA -ACGGAAGAGATCCTCTCTAGCTCA -ACGGAAGAGATCCTCTCTTCACGT -ACGGAAGAGATCCTCTCTCGTAGT -ACGGAAGAGATCCTCTCTGTCAGT -ACGGAAGAGATCCTCTCTGAAGGT -ACGGAAGAGATCCTCTCTAACCGT -ACGGAAGAGATCCTCTCTTTGTGC -ACGGAAGAGATCCTCTCTCTAAGC -ACGGAAGAGATCCTCTCTACTAGC -ACGGAAGAGATCCTCTCTAGATGC -ACGGAAGAGATCCTCTCTTGAAGG -ACGGAAGAGATCCTCTCTCAATGG -ACGGAAGAGATCCTCTCTATGAGG -ACGGAAGAGATCCTCTCTAATGGG -ACGGAAGAGATCCTCTCTTCCTGA -ACGGAAGAGATCCTCTCTTAGCGA -ACGGAAGAGATCCTCTCTCACAGA -ACGGAAGAGATCCTCTCTGCAAGA -ACGGAAGAGATCCTCTCTGGTTGA -ACGGAAGAGATCCTCTCTTCCGAT -ACGGAAGAGATCCTCTCTTGGCAT -ACGGAAGAGATCCTCTCTCGAGAT -ACGGAAGAGATCCTCTCTTACCAC -ACGGAAGAGATCCTCTCTCAGAAC -ACGGAAGAGATCCTCTCTGTCTAC -ACGGAAGAGATCCTCTCTACGTAC -ACGGAAGAGATCCTCTCTAGTGAC -ACGGAAGAGATCCTCTCTCTGTAG -ACGGAAGAGATCCTCTCTCCTAAG -ACGGAAGAGATCCTCTCTGTTCAG -ACGGAAGAGATCCTCTCTGCATAG -ACGGAAGAGATCCTCTCTGACAAG -ACGGAAGAGATCCTCTCTAAGCAG -ACGGAAGAGATCCTCTCTCGTCAA -ACGGAAGAGATCCTCTCTGCTGAA -ACGGAAGAGATCCTCTCTAGTACG -ACGGAAGAGATCCTCTCTATCCGA -ACGGAAGAGATCCTCTCTATGGGA -ACGGAAGAGATCCTCTCTGTGCAA -ACGGAAGAGATCCTCTCTGAGGAA -ACGGAAGAGATCCTCTCTCAGGTA -ACGGAAGAGATCCTCTCTGACTCT -ACGGAAGAGATCCTCTCTAGTCCT -ACGGAAGAGATCCTCTCTTAAGCC -ACGGAAGAGATCCTCTCTATAGCC -ACGGAAGAGATCCTCTCTTAACCG -ACGGAAGAGATCCTCTCTATGCCA -ACGGAAGAGATCATCTGGGGAAAC -ACGGAAGAGATCATCTGGAACACC -ACGGAAGAGATCATCTGGATCGAG -ACGGAAGAGATCATCTGGCTCCTT -ACGGAAGAGATCATCTGGCCTGTT -ACGGAAGAGATCATCTGGCGGTTT -ACGGAAGAGATCATCTGGGTGGTT -ACGGAAGAGATCATCTGGGCCTTT -ACGGAAGAGATCATCTGGGGTCTT -ACGGAAGAGATCATCTGGACGCTT -ACGGAAGAGATCATCTGGAGCGTT -ACGGAAGAGATCATCTGGTTCGTC -ACGGAAGAGATCATCTGGTCTCTC -ACGGAAGAGATCATCTGGTGGATC -ACGGAAGAGATCATCTGGCACTTC -ACGGAAGAGATCATCTGGGTACTC -ACGGAAGAGATCATCTGGGATGTC -ACGGAAGAGATCATCTGGACAGTC -ACGGAAGAGATCATCTGGTTGCTG -ACGGAAGAGATCATCTGGTCCATG -ACGGAAGAGATCATCTGGTGTGTG -ACGGAAGAGATCATCTGGCTAGTG -ACGGAAGAGATCATCTGGCATCTG -ACGGAAGAGATCATCTGGGAGTTG -ACGGAAGAGATCATCTGGAGACTG -ACGGAAGAGATCATCTGGTCGGTA -ACGGAAGAGATCATCTGGTGCCTA -ACGGAAGAGATCATCTGGCCACTA -ACGGAAGAGATCATCTGGGGAGTA -ACGGAAGAGATCATCTGGTCGTCT -ACGGAAGAGATCATCTGGTGCACT -ACGGAAGAGATCATCTGGCTGACT -ACGGAAGAGATCATCTGGCAACCT -ACGGAAGAGATCATCTGGGCTACT -ACGGAAGAGATCATCTGGGGATCT -ACGGAAGAGATCATCTGGAAGGCT -ACGGAAGAGATCATCTGGTCAACC -ACGGAAGAGATCATCTGGTGTTCC -ACGGAAGAGATCATCTGGATTCCC -ACGGAAGAGATCATCTGGTTCTCG -ACGGAAGAGATCATCTGGTAGACG -ACGGAAGAGATCATCTGGGTAACG -ACGGAAGAGATCATCTGGACTTCG -ACGGAAGAGATCATCTGGTACGCA -ACGGAAGAGATCATCTGGCTTGCA -ACGGAAGAGATCATCTGGCGAACA -ACGGAAGAGATCATCTGGCAGTCA -ACGGAAGAGATCATCTGGGATCCA -ACGGAAGAGATCATCTGGACGACA -ACGGAAGAGATCATCTGGAGCTCA -ACGGAAGAGATCATCTGGTCACGT -ACGGAAGAGATCATCTGGCGTAGT -ACGGAAGAGATCATCTGGGTCAGT -ACGGAAGAGATCATCTGGGAAGGT -ACGGAAGAGATCATCTGGAACCGT -ACGGAAGAGATCATCTGGTTGTGC -ACGGAAGAGATCATCTGGCTAAGC -ACGGAAGAGATCATCTGGACTAGC -ACGGAAGAGATCATCTGGAGATGC -ACGGAAGAGATCATCTGGTGAAGG -ACGGAAGAGATCATCTGGCAATGG -ACGGAAGAGATCATCTGGATGAGG -ACGGAAGAGATCATCTGGAATGGG -ACGGAAGAGATCATCTGGTCCTGA -ACGGAAGAGATCATCTGGTAGCGA -ACGGAAGAGATCATCTGGCACAGA -ACGGAAGAGATCATCTGGGCAAGA -ACGGAAGAGATCATCTGGGGTTGA -ACGGAAGAGATCATCTGGTCCGAT -ACGGAAGAGATCATCTGGTGGCAT -ACGGAAGAGATCATCTGGCGAGAT -ACGGAAGAGATCATCTGGTACCAC -ACGGAAGAGATCATCTGGCAGAAC -ACGGAAGAGATCATCTGGGTCTAC -ACGGAAGAGATCATCTGGACGTAC -ACGGAAGAGATCATCTGGAGTGAC -ACGGAAGAGATCATCTGGCTGTAG -ACGGAAGAGATCATCTGGCCTAAG -ACGGAAGAGATCATCTGGGTTCAG -ACGGAAGAGATCATCTGGGCATAG -ACGGAAGAGATCATCTGGGACAAG -ACGGAAGAGATCATCTGGAAGCAG -ACGGAAGAGATCATCTGGCGTCAA -ACGGAAGAGATCATCTGGGCTGAA -ACGGAAGAGATCATCTGGAGTACG -ACGGAAGAGATCATCTGGATCCGA -ACGGAAGAGATCATCTGGATGGGA -ACGGAAGAGATCATCTGGGTGCAA -ACGGAAGAGATCATCTGGGAGGAA -ACGGAAGAGATCATCTGGCAGGTA -ACGGAAGAGATCATCTGGGACTCT -ACGGAAGAGATCATCTGGAGTCCT -ACGGAAGAGATCATCTGGTAAGCC -ACGGAAGAGATCATCTGGATAGCC -ACGGAAGAGATCATCTGGTAACCG -ACGGAAGAGATCATCTGGATGCCA -ACGGAAGAGATCTTCCACGGAAAC -ACGGAAGAGATCTTCCACAACACC -ACGGAAGAGATCTTCCACATCGAG -ACGGAAGAGATCTTCCACCTCCTT -ACGGAAGAGATCTTCCACCCTGTT -ACGGAAGAGATCTTCCACCGGTTT -ACGGAAGAGATCTTCCACGTGGTT -ACGGAAGAGATCTTCCACGCCTTT -ACGGAAGAGATCTTCCACGGTCTT -ACGGAAGAGATCTTCCACACGCTT -ACGGAAGAGATCTTCCACAGCGTT -ACGGAAGAGATCTTCCACTTCGTC -ACGGAAGAGATCTTCCACTCTCTC -ACGGAAGAGATCTTCCACTGGATC -ACGGAAGAGATCTTCCACCACTTC -ACGGAAGAGATCTTCCACGTACTC -ACGGAAGAGATCTTCCACGATGTC -ACGGAAGAGATCTTCCACACAGTC -ACGGAAGAGATCTTCCACTTGCTG -ACGGAAGAGATCTTCCACTCCATG -ACGGAAGAGATCTTCCACTGTGTG -ACGGAAGAGATCTTCCACCTAGTG -ACGGAAGAGATCTTCCACCATCTG -ACGGAAGAGATCTTCCACGAGTTG -ACGGAAGAGATCTTCCACAGACTG -ACGGAAGAGATCTTCCACTCGGTA -ACGGAAGAGATCTTCCACTGCCTA -ACGGAAGAGATCTTCCACCCACTA -ACGGAAGAGATCTTCCACGGAGTA -ACGGAAGAGATCTTCCACTCGTCT -ACGGAAGAGATCTTCCACTGCACT -ACGGAAGAGATCTTCCACCTGACT -ACGGAAGAGATCTTCCACCAACCT -ACGGAAGAGATCTTCCACGCTACT -ACGGAAGAGATCTTCCACGGATCT -ACGGAAGAGATCTTCCACAAGGCT -ACGGAAGAGATCTTCCACTCAACC -ACGGAAGAGATCTTCCACTGTTCC -ACGGAAGAGATCTTCCACATTCCC -ACGGAAGAGATCTTCCACTTCTCG -ACGGAAGAGATCTTCCACTAGACG -ACGGAAGAGATCTTCCACGTAACG -ACGGAAGAGATCTTCCACACTTCG -ACGGAAGAGATCTTCCACTACGCA -ACGGAAGAGATCTTCCACCTTGCA -ACGGAAGAGATCTTCCACCGAACA -ACGGAAGAGATCTTCCACCAGTCA -ACGGAAGAGATCTTCCACGATCCA -ACGGAAGAGATCTTCCACACGACA -ACGGAAGAGATCTTCCACAGCTCA -ACGGAAGAGATCTTCCACTCACGT -ACGGAAGAGATCTTCCACCGTAGT -ACGGAAGAGATCTTCCACGTCAGT -ACGGAAGAGATCTTCCACGAAGGT -ACGGAAGAGATCTTCCACAACCGT -ACGGAAGAGATCTTCCACTTGTGC -ACGGAAGAGATCTTCCACCTAAGC -ACGGAAGAGATCTTCCACACTAGC -ACGGAAGAGATCTTCCACAGATGC -ACGGAAGAGATCTTCCACTGAAGG -ACGGAAGAGATCTTCCACCAATGG -ACGGAAGAGATCTTCCACATGAGG -ACGGAAGAGATCTTCCACAATGGG -ACGGAAGAGATCTTCCACTCCTGA -ACGGAAGAGATCTTCCACTAGCGA -ACGGAAGAGATCTTCCACCACAGA -ACGGAAGAGATCTTCCACGCAAGA -ACGGAAGAGATCTTCCACGGTTGA -ACGGAAGAGATCTTCCACTCCGAT -ACGGAAGAGATCTTCCACTGGCAT -ACGGAAGAGATCTTCCACCGAGAT -ACGGAAGAGATCTTCCACTACCAC -ACGGAAGAGATCTTCCACCAGAAC -ACGGAAGAGATCTTCCACGTCTAC -ACGGAAGAGATCTTCCACACGTAC -ACGGAAGAGATCTTCCACAGTGAC -ACGGAAGAGATCTTCCACCTGTAG -ACGGAAGAGATCTTCCACCCTAAG -ACGGAAGAGATCTTCCACGTTCAG -ACGGAAGAGATCTTCCACGCATAG -ACGGAAGAGATCTTCCACGACAAG -ACGGAAGAGATCTTCCACAAGCAG -ACGGAAGAGATCTTCCACCGTCAA -ACGGAAGAGATCTTCCACGCTGAA -ACGGAAGAGATCTTCCACAGTACG -ACGGAAGAGATCTTCCACATCCGA -ACGGAAGAGATCTTCCACATGGGA -ACGGAAGAGATCTTCCACGTGCAA -ACGGAAGAGATCTTCCACGAGGAA -ACGGAAGAGATCTTCCACCAGGTA -ACGGAAGAGATCTTCCACGACTCT -ACGGAAGAGATCTTCCACAGTCCT -ACGGAAGAGATCTTCCACTAAGCC -ACGGAAGAGATCTTCCACATAGCC -ACGGAAGAGATCTTCCACTAACCG -ACGGAAGAGATCTTCCACATGCCA -ACGGAAGAGATCCTCGTAGGAAAC -ACGGAAGAGATCCTCGTAAACACC -ACGGAAGAGATCCTCGTAATCGAG -ACGGAAGAGATCCTCGTACTCCTT -ACGGAAGAGATCCTCGTACCTGTT -ACGGAAGAGATCCTCGTACGGTTT -ACGGAAGAGATCCTCGTAGTGGTT -ACGGAAGAGATCCTCGTAGCCTTT -ACGGAAGAGATCCTCGTAGGTCTT -ACGGAAGAGATCCTCGTAACGCTT -ACGGAAGAGATCCTCGTAAGCGTT -ACGGAAGAGATCCTCGTATTCGTC -ACGGAAGAGATCCTCGTATCTCTC -ACGGAAGAGATCCTCGTATGGATC -ACGGAAGAGATCCTCGTACACTTC -ACGGAAGAGATCCTCGTAGTACTC -ACGGAAGAGATCCTCGTAGATGTC -ACGGAAGAGATCCTCGTAACAGTC -ACGGAAGAGATCCTCGTATTGCTG -ACGGAAGAGATCCTCGTATCCATG -ACGGAAGAGATCCTCGTATGTGTG -ACGGAAGAGATCCTCGTACTAGTG -ACGGAAGAGATCCTCGTACATCTG -ACGGAAGAGATCCTCGTAGAGTTG -ACGGAAGAGATCCTCGTAAGACTG -ACGGAAGAGATCCTCGTATCGGTA -ACGGAAGAGATCCTCGTATGCCTA -ACGGAAGAGATCCTCGTACCACTA -ACGGAAGAGATCCTCGTAGGAGTA -ACGGAAGAGATCCTCGTATCGTCT -ACGGAAGAGATCCTCGTATGCACT -ACGGAAGAGATCCTCGTACTGACT -ACGGAAGAGATCCTCGTACAACCT -ACGGAAGAGATCCTCGTAGCTACT -ACGGAAGAGATCCTCGTAGGATCT -ACGGAAGAGATCCTCGTAAAGGCT -ACGGAAGAGATCCTCGTATCAACC -ACGGAAGAGATCCTCGTATGTTCC -ACGGAAGAGATCCTCGTAATTCCC -ACGGAAGAGATCCTCGTATTCTCG -ACGGAAGAGATCCTCGTATAGACG -ACGGAAGAGATCCTCGTAGTAACG -ACGGAAGAGATCCTCGTAACTTCG -ACGGAAGAGATCCTCGTATACGCA -ACGGAAGAGATCCTCGTACTTGCA -ACGGAAGAGATCCTCGTACGAACA -ACGGAAGAGATCCTCGTACAGTCA -ACGGAAGAGATCCTCGTAGATCCA -ACGGAAGAGATCCTCGTAACGACA -ACGGAAGAGATCCTCGTAAGCTCA -ACGGAAGAGATCCTCGTATCACGT -ACGGAAGAGATCCTCGTACGTAGT -ACGGAAGAGATCCTCGTAGTCAGT -ACGGAAGAGATCCTCGTAGAAGGT -ACGGAAGAGATCCTCGTAAACCGT -ACGGAAGAGATCCTCGTATTGTGC -ACGGAAGAGATCCTCGTACTAAGC -ACGGAAGAGATCCTCGTAACTAGC -ACGGAAGAGATCCTCGTAAGATGC -ACGGAAGAGATCCTCGTATGAAGG -ACGGAAGAGATCCTCGTACAATGG -ACGGAAGAGATCCTCGTAATGAGG -ACGGAAGAGATCCTCGTAAATGGG -ACGGAAGAGATCCTCGTATCCTGA -ACGGAAGAGATCCTCGTATAGCGA -ACGGAAGAGATCCTCGTACACAGA -ACGGAAGAGATCCTCGTAGCAAGA -ACGGAAGAGATCCTCGTAGGTTGA -ACGGAAGAGATCCTCGTATCCGAT -ACGGAAGAGATCCTCGTATGGCAT -ACGGAAGAGATCCTCGTACGAGAT -ACGGAAGAGATCCTCGTATACCAC -ACGGAAGAGATCCTCGTACAGAAC -ACGGAAGAGATCCTCGTAGTCTAC -ACGGAAGAGATCCTCGTAACGTAC -ACGGAAGAGATCCTCGTAAGTGAC -ACGGAAGAGATCCTCGTACTGTAG -ACGGAAGAGATCCTCGTACCTAAG -ACGGAAGAGATCCTCGTAGTTCAG -ACGGAAGAGATCCTCGTAGCATAG -ACGGAAGAGATCCTCGTAGACAAG -ACGGAAGAGATCCTCGTAAAGCAG -ACGGAAGAGATCCTCGTACGTCAA -ACGGAAGAGATCCTCGTAGCTGAA -ACGGAAGAGATCCTCGTAAGTACG -ACGGAAGAGATCCTCGTAATCCGA -ACGGAAGAGATCCTCGTAATGGGA -ACGGAAGAGATCCTCGTAGTGCAA -ACGGAAGAGATCCTCGTAGAGGAA -ACGGAAGAGATCCTCGTACAGGTA -ACGGAAGAGATCCTCGTAGACTCT -ACGGAAGAGATCCTCGTAAGTCCT -ACGGAAGAGATCCTCGTATAAGCC -ACGGAAGAGATCCTCGTAATAGCC -ACGGAAGAGATCCTCGTATAACCG -ACGGAAGAGATCCTCGTAATGCCA -ACGGAAGAGATCGTCGATGGAAAC -ACGGAAGAGATCGTCGATAACACC -ACGGAAGAGATCGTCGATATCGAG -ACGGAAGAGATCGTCGATCTCCTT -ACGGAAGAGATCGTCGATCCTGTT -ACGGAAGAGATCGTCGATCGGTTT -ACGGAAGAGATCGTCGATGTGGTT -ACGGAAGAGATCGTCGATGCCTTT -ACGGAAGAGATCGTCGATGGTCTT -ACGGAAGAGATCGTCGATACGCTT -ACGGAAGAGATCGTCGATAGCGTT -ACGGAAGAGATCGTCGATTTCGTC -ACGGAAGAGATCGTCGATTCTCTC -ACGGAAGAGATCGTCGATTGGATC -ACGGAAGAGATCGTCGATCACTTC -ACGGAAGAGATCGTCGATGTACTC -ACGGAAGAGATCGTCGATGATGTC -ACGGAAGAGATCGTCGATACAGTC -ACGGAAGAGATCGTCGATTTGCTG -ACGGAAGAGATCGTCGATTCCATG -ACGGAAGAGATCGTCGATTGTGTG -ACGGAAGAGATCGTCGATCTAGTG -ACGGAAGAGATCGTCGATCATCTG -ACGGAAGAGATCGTCGATGAGTTG -ACGGAAGAGATCGTCGATAGACTG -ACGGAAGAGATCGTCGATTCGGTA -ACGGAAGAGATCGTCGATTGCCTA -ACGGAAGAGATCGTCGATCCACTA -ACGGAAGAGATCGTCGATGGAGTA -ACGGAAGAGATCGTCGATTCGTCT -ACGGAAGAGATCGTCGATTGCACT -ACGGAAGAGATCGTCGATCTGACT -ACGGAAGAGATCGTCGATCAACCT -ACGGAAGAGATCGTCGATGCTACT -ACGGAAGAGATCGTCGATGGATCT -ACGGAAGAGATCGTCGATAAGGCT -ACGGAAGAGATCGTCGATTCAACC -ACGGAAGAGATCGTCGATTGTTCC -ACGGAAGAGATCGTCGATATTCCC -ACGGAAGAGATCGTCGATTTCTCG -ACGGAAGAGATCGTCGATTAGACG -ACGGAAGAGATCGTCGATGTAACG -ACGGAAGAGATCGTCGATACTTCG -ACGGAAGAGATCGTCGATTACGCA -ACGGAAGAGATCGTCGATCTTGCA -ACGGAAGAGATCGTCGATCGAACA -ACGGAAGAGATCGTCGATCAGTCA -ACGGAAGAGATCGTCGATGATCCA -ACGGAAGAGATCGTCGATACGACA -ACGGAAGAGATCGTCGATAGCTCA -ACGGAAGAGATCGTCGATTCACGT -ACGGAAGAGATCGTCGATCGTAGT -ACGGAAGAGATCGTCGATGTCAGT -ACGGAAGAGATCGTCGATGAAGGT -ACGGAAGAGATCGTCGATAACCGT -ACGGAAGAGATCGTCGATTTGTGC -ACGGAAGAGATCGTCGATCTAAGC -ACGGAAGAGATCGTCGATACTAGC -ACGGAAGAGATCGTCGATAGATGC -ACGGAAGAGATCGTCGATTGAAGG -ACGGAAGAGATCGTCGATCAATGG -ACGGAAGAGATCGTCGATATGAGG -ACGGAAGAGATCGTCGATAATGGG -ACGGAAGAGATCGTCGATTCCTGA -ACGGAAGAGATCGTCGATTAGCGA -ACGGAAGAGATCGTCGATCACAGA -ACGGAAGAGATCGTCGATGCAAGA -ACGGAAGAGATCGTCGATGGTTGA -ACGGAAGAGATCGTCGATTCCGAT -ACGGAAGAGATCGTCGATTGGCAT -ACGGAAGAGATCGTCGATCGAGAT -ACGGAAGAGATCGTCGATTACCAC -ACGGAAGAGATCGTCGATCAGAAC -ACGGAAGAGATCGTCGATGTCTAC -ACGGAAGAGATCGTCGATACGTAC -ACGGAAGAGATCGTCGATAGTGAC -ACGGAAGAGATCGTCGATCTGTAG -ACGGAAGAGATCGTCGATCCTAAG -ACGGAAGAGATCGTCGATGTTCAG -ACGGAAGAGATCGTCGATGCATAG -ACGGAAGAGATCGTCGATGACAAG -ACGGAAGAGATCGTCGATAAGCAG -ACGGAAGAGATCGTCGATCGTCAA -ACGGAAGAGATCGTCGATGCTGAA -ACGGAAGAGATCGTCGATAGTACG -ACGGAAGAGATCGTCGATATCCGA -ACGGAAGAGATCGTCGATATGGGA -ACGGAAGAGATCGTCGATGTGCAA -ACGGAAGAGATCGTCGATGAGGAA -ACGGAAGAGATCGTCGATCAGGTA -ACGGAAGAGATCGTCGATGACTCT -ACGGAAGAGATCGTCGATAGTCCT -ACGGAAGAGATCGTCGATTAAGCC -ACGGAAGAGATCGTCGATATAGCC -ACGGAAGAGATCGTCGATTAACCG -ACGGAAGAGATCGTCGATATGCCA -ACGGAAGAGATCGTCACAGGAAAC -ACGGAAGAGATCGTCACAAACACC -ACGGAAGAGATCGTCACAATCGAG -ACGGAAGAGATCGTCACACTCCTT -ACGGAAGAGATCGTCACACCTGTT -ACGGAAGAGATCGTCACACGGTTT -ACGGAAGAGATCGTCACAGTGGTT -ACGGAAGAGATCGTCACAGCCTTT -ACGGAAGAGATCGTCACAGGTCTT -ACGGAAGAGATCGTCACAACGCTT -ACGGAAGAGATCGTCACAAGCGTT -ACGGAAGAGATCGTCACATTCGTC -ACGGAAGAGATCGTCACATCTCTC -ACGGAAGAGATCGTCACATGGATC -ACGGAAGAGATCGTCACACACTTC -ACGGAAGAGATCGTCACAGTACTC -ACGGAAGAGATCGTCACAGATGTC -ACGGAAGAGATCGTCACAACAGTC -ACGGAAGAGATCGTCACATTGCTG -ACGGAAGAGATCGTCACATCCATG -ACGGAAGAGATCGTCACATGTGTG -ACGGAAGAGATCGTCACACTAGTG -ACGGAAGAGATCGTCACACATCTG -ACGGAAGAGATCGTCACAGAGTTG -ACGGAAGAGATCGTCACAAGACTG -ACGGAAGAGATCGTCACATCGGTA -ACGGAAGAGATCGTCACATGCCTA -ACGGAAGAGATCGTCACACCACTA -ACGGAAGAGATCGTCACAGGAGTA -ACGGAAGAGATCGTCACATCGTCT -ACGGAAGAGATCGTCACATGCACT -ACGGAAGAGATCGTCACACTGACT -ACGGAAGAGATCGTCACACAACCT -ACGGAAGAGATCGTCACAGCTACT -ACGGAAGAGATCGTCACAGGATCT -ACGGAAGAGATCGTCACAAAGGCT -ACGGAAGAGATCGTCACATCAACC -ACGGAAGAGATCGTCACATGTTCC -ACGGAAGAGATCGTCACAATTCCC -ACGGAAGAGATCGTCACATTCTCG -ACGGAAGAGATCGTCACATAGACG -ACGGAAGAGATCGTCACAGTAACG -ACGGAAGAGATCGTCACAACTTCG -ACGGAAGAGATCGTCACATACGCA -ACGGAAGAGATCGTCACACTTGCA -ACGGAAGAGATCGTCACACGAACA -ACGGAAGAGATCGTCACACAGTCA -ACGGAAGAGATCGTCACAGATCCA -ACGGAAGAGATCGTCACAACGACA -ACGGAAGAGATCGTCACAAGCTCA -ACGGAAGAGATCGTCACATCACGT -ACGGAAGAGATCGTCACACGTAGT -ACGGAAGAGATCGTCACAGTCAGT -ACGGAAGAGATCGTCACAGAAGGT -ACGGAAGAGATCGTCACAAACCGT -ACGGAAGAGATCGTCACATTGTGC -ACGGAAGAGATCGTCACACTAAGC -ACGGAAGAGATCGTCACAACTAGC -ACGGAAGAGATCGTCACAAGATGC -ACGGAAGAGATCGTCACATGAAGG -ACGGAAGAGATCGTCACACAATGG -ACGGAAGAGATCGTCACAATGAGG -ACGGAAGAGATCGTCACAAATGGG -ACGGAAGAGATCGTCACATCCTGA -ACGGAAGAGATCGTCACATAGCGA -ACGGAAGAGATCGTCACACACAGA -ACGGAAGAGATCGTCACAGCAAGA -ACGGAAGAGATCGTCACAGGTTGA -ACGGAAGAGATCGTCACATCCGAT -ACGGAAGAGATCGTCACATGGCAT -ACGGAAGAGATCGTCACACGAGAT -ACGGAAGAGATCGTCACATACCAC -ACGGAAGAGATCGTCACACAGAAC -ACGGAAGAGATCGTCACAGTCTAC -ACGGAAGAGATCGTCACAACGTAC -ACGGAAGAGATCGTCACAAGTGAC -ACGGAAGAGATCGTCACACTGTAG -ACGGAAGAGATCGTCACACCTAAG -ACGGAAGAGATCGTCACAGTTCAG -ACGGAAGAGATCGTCACAGCATAG -ACGGAAGAGATCGTCACAGACAAG -ACGGAAGAGATCGTCACAAAGCAG -ACGGAAGAGATCGTCACACGTCAA -ACGGAAGAGATCGTCACAGCTGAA -ACGGAAGAGATCGTCACAAGTACG -ACGGAAGAGATCGTCACAATCCGA -ACGGAAGAGATCGTCACAATGGGA -ACGGAAGAGATCGTCACAGTGCAA -ACGGAAGAGATCGTCACAGAGGAA -ACGGAAGAGATCGTCACACAGGTA -ACGGAAGAGATCGTCACAGACTCT -ACGGAAGAGATCGTCACAAGTCCT -ACGGAAGAGATCGTCACATAAGCC -ACGGAAGAGATCGTCACAATAGCC -ACGGAAGAGATCGTCACATAACCG -ACGGAAGAGATCGTCACAATGCCA -ACGGAAGAGATCCTGTTGGGAAAC -ACGGAAGAGATCCTGTTGAACACC -ACGGAAGAGATCCTGTTGATCGAG -ACGGAAGAGATCCTGTTGCTCCTT -ACGGAAGAGATCCTGTTGCCTGTT -ACGGAAGAGATCCTGTTGCGGTTT -ACGGAAGAGATCCTGTTGGTGGTT -ACGGAAGAGATCCTGTTGGCCTTT -ACGGAAGAGATCCTGTTGGGTCTT -ACGGAAGAGATCCTGTTGACGCTT -ACGGAAGAGATCCTGTTGAGCGTT -ACGGAAGAGATCCTGTTGTTCGTC -ACGGAAGAGATCCTGTTGTCTCTC -ACGGAAGAGATCCTGTTGTGGATC -ACGGAAGAGATCCTGTTGCACTTC -ACGGAAGAGATCCTGTTGGTACTC -ACGGAAGAGATCCTGTTGGATGTC -ACGGAAGAGATCCTGTTGACAGTC -ACGGAAGAGATCCTGTTGTTGCTG -ACGGAAGAGATCCTGTTGTCCATG -ACGGAAGAGATCCTGTTGTGTGTG -ACGGAAGAGATCCTGTTGCTAGTG -ACGGAAGAGATCCTGTTGCATCTG -ACGGAAGAGATCCTGTTGGAGTTG -ACGGAAGAGATCCTGTTGAGACTG -ACGGAAGAGATCCTGTTGTCGGTA -ACGGAAGAGATCCTGTTGTGCCTA -ACGGAAGAGATCCTGTTGCCACTA -ACGGAAGAGATCCTGTTGGGAGTA -ACGGAAGAGATCCTGTTGTCGTCT -ACGGAAGAGATCCTGTTGTGCACT -ACGGAAGAGATCCTGTTGCTGACT -ACGGAAGAGATCCTGTTGCAACCT -ACGGAAGAGATCCTGTTGGCTACT -ACGGAAGAGATCCTGTTGGGATCT -ACGGAAGAGATCCTGTTGAAGGCT -ACGGAAGAGATCCTGTTGTCAACC -ACGGAAGAGATCCTGTTGTGTTCC -ACGGAAGAGATCCTGTTGATTCCC -ACGGAAGAGATCCTGTTGTTCTCG -ACGGAAGAGATCCTGTTGTAGACG -ACGGAAGAGATCCTGTTGGTAACG -ACGGAAGAGATCCTGTTGACTTCG -ACGGAAGAGATCCTGTTGTACGCA -ACGGAAGAGATCCTGTTGCTTGCA -ACGGAAGAGATCCTGTTGCGAACA -ACGGAAGAGATCCTGTTGCAGTCA -ACGGAAGAGATCCTGTTGGATCCA -ACGGAAGAGATCCTGTTGACGACA -ACGGAAGAGATCCTGTTGAGCTCA -ACGGAAGAGATCCTGTTGTCACGT -ACGGAAGAGATCCTGTTGCGTAGT -ACGGAAGAGATCCTGTTGGTCAGT -ACGGAAGAGATCCTGTTGGAAGGT -ACGGAAGAGATCCTGTTGAACCGT -ACGGAAGAGATCCTGTTGTTGTGC -ACGGAAGAGATCCTGTTGCTAAGC -ACGGAAGAGATCCTGTTGACTAGC -ACGGAAGAGATCCTGTTGAGATGC -ACGGAAGAGATCCTGTTGTGAAGG -ACGGAAGAGATCCTGTTGCAATGG -ACGGAAGAGATCCTGTTGATGAGG -ACGGAAGAGATCCTGTTGAATGGG -ACGGAAGAGATCCTGTTGTCCTGA -ACGGAAGAGATCCTGTTGTAGCGA -ACGGAAGAGATCCTGTTGCACAGA -ACGGAAGAGATCCTGTTGGCAAGA -ACGGAAGAGATCCTGTTGGGTTGA -ACGGAAGAGATCCTGTTGTCCGAT -ACGGAAGAGATCCTGTTGTGGCAT -ACGGAAGAGATCCTGTTGCGAGAT -ACGGAAGAGATCCTGTTGTACCAC -ACGGAAGAGATCCTGTTGCAGAAC -ACGGAAGAGATCCTGTTGGTCTAC -ACGGAAGAGATCCTGTTGACGTAC -ACGGAAGAGATCCTGTTGAGTGAC -ACGGAAGAGATCCTGTTGCTGTAG -ACGGAAGAGATCCTGTTGCCTAAG -ACGGAAGAGATCCTGTTGGTTCAG -ACGGAAGAGATCCTGTTGGCATAG -ACGGAAGAGATCCTGTTGGACAAG -ACGGAAGAGATCCTGTTGAAGCAG -ACGGAAGAGATCCTGTTGCGTCAA -ACGGAAGAGATCCTGTTGGCTGAA -ACGGAAGAGATCCTGTTGAGTACG -ACGGAAGAGATCCTGTTGATCCGA -ACGGAAGAGATCCTGTTGATGGGA -ACGGAAGAGATCCTGTTGGTGCAA -ACGGAAGAGATCCTGTTGGAGGAA -ACGGAAGAGATCCTGTTGCAGGTA -ACGGAAGAGATCCTGTTGGACTCT -ACGGAAGAGATCCTGTTGAGTCCT -ACGGAAGAGATCCTGTTGTAAGCC -ACGGAAGAGATCCTGTTGATAGCC -ACGGAAGAGATCCTGTTGTAACCG -ACGGAAGAGATCCTGTTGATGCCA -ACGGAAGAGATCATGTCCGGAAAC -ACGGAAGAGATCATGTCCAACACC -ACGGAAGAGATCATGTCCATCGAG -ACGGAAGAGATCATGTCCCTCCTT -ACGGAAGAGATCATGTCCCCTGTT -ACGGAAGAGATCATGTCCCGGTTT -ACGGAAGAGATCATGTCCGTGGTT -ACGGAAGAGATCATGTCCGCCTTT -ACGGAAGAGATCATGTCCGGTCTT -ACGGAAGAGATCATGTCCACGCTT -ACGGAAGAGATCATGTCCAGCGTT -ACGGAAGAGATCATGTCCTTCGTC -ACGGAAGAGATCATGTCCTCTCTC -ACGGAAGAGATCATGTCCTGGATC -ACGGAAGAGATCATGTCCCACTTC -ACGGAAGAGATCATGTCCGTACTC -ACGGAAGAGATCATGTCCGATGTC -ACGGAAGAGATCATGTCCACAGTC -ACGGAAGAGATCATGTCCTTGCTG -ACGGAAGAGATCATGTCCTCCATG -ACGGAAGAGATCATGTCCTGTGTG -ACGGAAGAGATCATGTCCCTAGTG -ACGGAAGAGATCATGTCCCATCTG -ACGGAAGAGATCATGTCCGAGTTG -ACGGAAGAGATCATGTCCAGACTG -ACGGAAGAGATCATGTCCTCGGTA -ACGGAAGAGATCATGTCCTGCCTA -ACGGAAGAGATCATGTCCCCACTA -ACGGAAGAGATCATGTCCGGAGTA -ACGGAAGAGATCATGTCCTCGTCT -ACGGAAGAGATCATGTCCTGCACT -ACGGAAGAGATCATGTCCCTGACT -ACGGAAGAGATCATGTCCCAACCT -ACGGAAGAGATCATGTCCGCTACT -ACGGAAGAGATCATGTCCGGATCT -ACGGAAGAGATCATGTCCAAGGCT -ACGGAAGAGATCATGTCCTCAACC -ACGGAAGAGATCATGTCCTGTTCC -ACGGAAGAGATCATGTCCATTCCC -ACGGAAGAGATCATGTCCTTCTCG -ACGGAAGAGATCATGTCCTAGACG -ACGGAAGAGATCATGTCCGTAACG -ACGGAAGAGATCATGTCCACTTCG -ACGGAAGAGATCATGTCCTACGCA -ACGGAAGAGATCATGTCCCTTGCA -ACGGAAGAGATCATGTCCCGAACA -ACGGAAGAGATCATGTCCCAGTCA -ACGGAAGAGATCATGTCCGATCCA -ACGGAAGAGATCATGTCCACGACA -ACGGAAGAGATCATGTCCAGCTCA -ACGGAAGAGATCATGTCCTCACGT -ACGGAAGAGATCATGTCCCGTAGT -ACGGAAGAGATCATGTCCGTCAGT -ACGGAAGAGATCATGTCCGAAGGT -ACGGAAGAGATCATGTCCAACCGT -ACGGAAGAGATCATGTCCTTGTGC -ACGGAAGAGATCATGTCCCTAAGC -ACGGAAGAGATCATGTCCACTAGC -ACGGAAGAGATCATGTCCAGATGC -ACGGAAGAGATCATGTCCTGAAGG -ACGGAAGAGATCATGTCCCAATGG -ACGGAAGAGATCATGTCCATGAGG -ACGGAAGAGATCATGTCCAATGGG -ACGGAAGAGATCATGTCCTCCTGA -ACGGAAGAGATCATGTCCTAGCGA -ACGGAAGAGATCATGTCCCACAGA -ACGGAAGAGATCATGTCCGCAAGA -ACGGAAGAGATCATGTCCGGTTGA -ACGGAAGAGATCATGTCCTCCGAT -ACGGAAGAGATCATGTCCTGGCAT -ACGGAAGAGATCATGTCCCGAGAT -ACGGAAGAGATCATGTCCTACCAC -ACGGAAGAGATCATGTCCCAGAAC -ACGGAAGAGATCATGTCCGTCTAC -ACGGAAGAGATCATGTCCACGTAC -ACGGAAGAGATCATGTCCAGTGAC -ACGGAAGAGATCATGTCCCTGTAG -ACGGAAGAGATCATGTCCCCTAAG -ACGGAAGAGATCATGTCCGTTCAG -ACGGAAGAGATCATGTCCGCATAG -ACGGAAGAGATCATGTCCGACAAG -ACGGAAGAGATCATGTCCAAGCAG -ACGGAAGAGATCATGTCCCGTCAA -ACGGAAGAGATCATGTCCGCTGAA -ACGGAAGAGATCATGTCCAGTACG -ACGGAAGAGATCATGTCCATCCGA -ACGGAAGAGATCATGTCCATGGGA -ACGGAAGAGATCATGTCCGTGCAA -ACGGAAGAGATCATGTCCGAGGAA -ACGGAAGAGATCATGTCCCAGGTA -ACGGAAGAGATCATGTCCGACTCT -ACGGAAGAGATCATGTCCAGTCCT -ACGGAAGAGATCATGTCCTAAGCC -ACGGAAGAGATCATGTCCATAGCC -ACGGAAGAGATCATGTCCTAACCG -ACGGAAGAGATCATGTCCATGCCA -ACGGAAGAGATCGTGTGTGGAAAC -ACGGAAGAGATCGTGTGTAACACC -ACGGAAGAGATCGTGTGTATCGAG -ACGGAAGAGATCGTGTGTCTCCTT -ACGGAAGAGATCGTGTGTCCTGTT -ACGGAAGAGATCGTGTGTCGGTTT -ACGGAAGAGATCGTGTGTGTGGTT -ACGGAAGAGATCGTGTGTGCCTTT -ACGGAAGAGATCGTGTGTGGTCTT -ACGGAAGAGATCGTGTGTACGCTT -ACGGAAGAGATCGTGTGTAGCGTT -ACGGAAGAGATCGTGTGTTTCGTC -ACGGAAGAGATCGTGTGTTCTCTC -ACGGAAGAGATCGTGTGTTGGATC -ACGGAAGAGATCGTGTGTCACTTC -ACGGAAGAGATCGTGTGTGTACTC -ACGGAAGAGATCGTGTGTGATGTC -ACGGAAGAGATCGTGTGTACAGTC -ACGGAAGAGATCGTGTGTTTGCTG -ACGGAAGAGATCGTGTGTTCCATG -ACGGAAGAGATCGTGTGTTGTGTG -ACGGAAGAGATCGTGTGTCTAGTG -ACGGAAGAGATCGTGTGTCATCTG -ACGGAAGAGATCGTGTGTGAGTTG -ACGGAAGAGATCGTGTGTAGACTG -ACGGAAGAGATCGTGTGTTCGGTA -ACGGAAGAGATCGTGTGTTGCCTA -ACGGAAGAGATCGTGTGTCCACTA -ACGGAAGAGATCGTGTGTGGAGTA -ACGGAAGAGATCGTGTGTTCGTCT -ACGGAAGAGATCGTGTGTTGCACT -ACGGAAGAGATCGTGTGTCTGACT -ACGGAAGAGATCGTGTGTCAACCT -ACGGAAGAGATCGTGTGTGCTACT -ACGGAAGAGATCGTGTGTGGATCT -ACGGAAGAGATCGTGTGTAAGGCT -ACGGAAGAGATCGTGTGTTCAACC -ACGGAAGAGATCGTGTGTTGTTCC -ACGGAAGAGATCGTGTGTATTCCC -ACGGAAGAGATCGTGTGTTTCTCG -ACGGAAGAGATCGTGTGTTAGACG -ACGGAAGAGATCGTGTGTGTAACG -ACGGAAGAGATCGTGTGTACTTCG -ACGGAAGAGATCGTGTGTTACGCA -ACGGAAGAGATCGTGTGTCTTGCA -ACGGAAGAGATCGTGTGTCGAACA -ACGGAAGAGATCGTGTGTCAGTCA -ACGGAAGAGATCGTGTGTGATCCA -ACGGAAGAGATCGTGTGTACGACA -ACGGAAGAGATCGTGTGTAGCTCA -ACGGAAGAGATCGTGTGTTCACGT -ACGGAAGAGATCGTGTGTCGTAGT -ACGGAAGAGATCGTGTGTGTCAGT -ACGGAAGAGATCGTGTGTGAAGGT -ACGGAAGAGATCGTGTGTAACCGT -ACGGAAGAGATCGTGTGTTTGTGC -ACGGAAGAGATCGTGTGTCTAAGC -ACGGAAGAGATCGTGTGTACTAGC -ACGGAAGAGATCGTGTGTAGATGC -ACGGAAGAGATCGTGTGTTGAAGG -ACGGAAGAGATCGTGTGTCAATGG -ACGGAAGAGATCGTGTGTATGAGG -ACGGAAGAGATCGTGTGTAATGGG -ACGGAAGAGATCGTGTGTTCCTGA -ACGGAAGAGATCGTGTGTTAGCGA -ACGGAAGAGATCGTGTGTCACAGA -ACGGAAGAGATCGTGTGTGCAAGA -ACGGAAGAGATCGTGTGTGGTTGA -ACGGAAGAGATCGTGTGTTCCGAT -ACGGAAGAGATCGTGTGTTGGCAT -ACGGAAGAGATCGTGTGTCGAGAT -ACGGAAGAGATCGTGTGTTACCAC -ACGGAAGAGATCGTGTGTCAGAAC -ACGGAAGAGATCGTGTGTGTCTAC -ACGGAAGAGATCGTGTGTACGTAC -ACGGAAGAGATCGTGTGTAGTGAC -ACGGAAGAGATCGTGTGTCTGTAG -ACGGAAGAGATCGTGTGTCCTAAG -ACGGAAGAGATCGTGTGTGTTCAG -ACGGAAGAGATCGTGTGTGCATAG -ACGGAAGAGATCGTGTGTGACAAG -ACGGAAGAGATCGTGTGTAAGCAG -ACGGAAGAGATCGTGTGTCGTCAA -ACGGAAGAGATCGTGTGTGCTGAA -ACGGAAGAGATCGTGTGTAGTACG -ACGGAAGAGATCGTGTGTATCCGA -ACGGAAGAGATCGTGTGTATGGGA -ACGGAAGAGATCGTGTGTGTGCAA -ACGGAAGAGATCGTGTGTGAGGAA -ACGGAAGAGATCGTGTGTCAGGTA -ACGGAAGAGATCGTGTGTGACTCT -ACGGAAGAGATCGTGTGTAGTCCT -ACGGAAGAGATCGTGTGTTAAGCC -ACGGAAGAGATCGTGTGTATAGCC -ACGGAAGAGATCGTGTGTTAACCG -ACGGAAGAGATCGTGTGTATGCCA -ACGGAAGAGATCGTGCTAGGAAAC -ACGGAAGAGATCGTGCTAAACACC -ACGGAAGAGATCGTGCTAATCGAG -ACGGAAGAGATCGTGCTACTCCTT -ACGGAAGAGATCGTGCTACCTGTT -ACGGAAGAGATCGTGCTACGGTTT -ACGGAAGAGATCGTGCTAGTGGTT -ACGGAAGAGATCGTGCTAGCCTTT -ACGGAAGAGATCGTGCTAGGTCTT -ACGGAAGAGATCGTGCTAACGCTT -ACGGAAGAGATCGTGCTAAGCGTT -ACGGAAGAGATCGTGCTATTCGTC -ACGGAAGAGATCGTGCTATCTCTC -ACGGAAGAGATCGTGCTATGGATC -ACGGAAGAGATCGTGCTACACTTC -ACGGAAGAGATCGTGCTAGTACTC -ACGGAAGAGATCGTGCTAGATGTC -ACGGAAGAGATCGTGCTAACAGTC -ACGGAAGAGATCGTGCTATTGCTG -ACGGAAGAGATCGTGCTATCCATG -ACGGAAGAGATCGTGCTATGTGTG -ACGGAAGAGATCGTGCTACTAGTG -ACGGAAGAGATCGTGCTACATCTG -ACGGAAGAGATCGTGCTAGAGTTG -ACGGAAGAGATCGTGCTAAGACTG -ACGGAAGAGATCGTGCTATCGGTA -ACGGAAGAGATCGTGCTATGCCTA -ACGGAAGAGATCGTGCTACCACTA -ACGGAAGAGATCGTGCTAGGAGTA -ACGGAAGAGATCGTGCTATCGTCT -ACGGAAGAGATCGTGCTATGCACT -ACGGAAGAGATCGTGCTACTGACT -ACGGAAGAGATCGTGCTACAACCT -ACGGAAGAGATCGTGCTAGCTACT -ACGGAAGAGATCGTGCTAGGATCT -ACGGAAGAGATCGTGCTAAAGGCT -ACGGAAGAGATCGTGCTATCAACC -ACGGAAGAGATCGTGCTATGTTCC -ACGGAAGAGATCGTGCTAATTCCC -ACGGAAGAGATCGTGCTATTCTCG -ACGGAAGAGATCGTGCTATAGACG -ACGGAAGAGATCGTGCTAGTAACG -ACGGAAGAGATCGTGCTAACTTCG -ACGGAAGAGATCGTGCTATACGCA -ACGGAAGAGATCGTGCTACTTGCA -ACGGAAGAGATCGTGCTACGAACA -ACGGAAGAGATCGTGCTACAGTCA -ACGGAAGAGATCGTGCTAGATCCA -ACGGAAGAGATCGTGCTAACGACA -ACGGAAGAGATCGTGCTAAGCTCA -ACGGAAGAGATCGTGCTATCACGT -ACGGAAGAGATCGTGCTACGTAGT -ACGGAAGAGATCGTGCTAGTCAGT -ACGGAAGAGATCGTGCTAGAAGGT -ACGGAAGAGATCGTGCTAAACCGT -ACGGAAGAGATCGTGCTATTGTGC -ACGGAAGAGATCGTGCTACTAAGC -ACGGAAGAGATCGTGCTAACTAGC -ACGGAAGAGATCGTGCTAAGATGC -ACGGAAGAGATCGTGCTATGAAGG -ACGGAAGAGATCGTGCTACAATGG -ACGGAAGAGATCGTGCTAATGAGG -ACGGAAGAGATCGTGCTAAATGGG -ACGGAAGAGATCGTGCTATCCTGA -ACGGAAGAGATCGTGCTATAGCGA -ACGGAAGAGATCGTGCTACACAGA -ACGGAAGAGATCGTGCTAGCAAGA -ACGGAAGAGATCGTGCTAGGTTGA -ACGGAAGAGATCGTGCTATCCGAT -ACGGAAGAGATCGTGCTATGGCAT -ACGGAAGAGATCGTGCTACGAGAT -ACGGAAGAGATCGTGCTATACCAC -ACGGAAGAGATCGTGCTACAGAAC -ACGGAAGAGATCGTGCTAGTCTAC -ACGGAAGAGATCGTGCTAACGTAC -ACGGAAGAGATCGTGCTAAGTGAC -ACGGAAGAGATCGTGCTACTGTAG -ACGGAAGAGATCGTGCTACCTAAG -ACGGAAGAGATCGTGCTAGTTCAG -ACGGAAGAGATCGTGCTAGCATAG -ACGGAAGAGATCGTGCTAGACAAG -ACGGAAGAGATCGTGCTAAAGCAG -ACGGAAGAGATCGTGCTACGTCAA -ACGGAAGAGATCGTGCTAGCTGAA -ACGGAAGAGATCGTGCTAAGTACG -ACGGAAGAGATCGTGCTAATCCGA -ACGGAAGAGATCGTGCTAATGGGA -ACGGAAGAGATCGTGCTAGTGCAA -ACGGAAGAGATCGTGCTAGAGGAA -ACGGAAGAGATCGTGCTACAGGTA -ACGGAAGAGATCGTGCTAGACTCT -ACGGAAGAGATCGTGCTAAGTCCT -ACGGAAGAGATCGTGCTATAAGCC -ACGGAAGAGATCGTGCTAATAGCC -ACGGAAGAGATCGTGCTATAACCG -ACGGAAGAGATCGTGCTAATGCCA -ACGGAAGAGATCCTGCATGGAAAC -ACGGAAGAGATCCTGCATAACACC -ACGGAAGAGATCCTGCATATCGAG -ACGGAAGAGATCCTGCATCTCCTT -ACGGAAGAGATCCTGCATCCTGTT -ACGGAAGAGATCCTGCATCGGTTT -ACGGAAGAGATCCTGCATGTGGTT -ACGGAAGAGATCCTGCATGCCTTT -ACGGAAGAGATCCTGCATGGTCTT -ACGGAAGAGATCCTGCATACGCTT -ACGGAAGAGATCCTGCATAGCGTT -ACGGAAGAGATCCTGCATTTCGTC -ACGGAAGAGATCCTGCATTCTCTC -ACGGAAGAGATCCTGCATTGGATC -ACGGAAGAGATCCTGCATCACTTC -ACGGAAGAGATCCTGCATGTACTC -ACGGAAGAGATCCTGCATGATGTC -ACGGAAGAGATCCTGCATACAGTC -ACGGAAGAGATCCTGCATTTGCTG -ACGGAAGAGATCCTGCATTCCATG -ACGGAAGAGATCCTGCATTGTGTG -ACGGAAGAGATCCTGCATCTAGTG -ACGGAAGAGATCCTGCATCATCTG -ACGGAAGAGATCCTGCATGAGTTG -ACGGAAGAGATCCTGCATAGACTG -ACGGAAGAGATCCTGCATTCGGTA -ACGGAAGAGATCCTGCATTGCCTA -ACGGAAGAGATCCTGCATCCACTA -ACGGAAGAGATCCTGCATGGAGTA -ACGGAAGAGATCCTGCATTCGTCT -ACGGAAGAGATCCTGCATTGCACT -ACGGAAGAGATCCTGCATCTGACT -ACGGAAGAGATCCTGCATCAACCT -ACGGAAGAGATCCTGCATGCTACT -ACGGAAGAGATCCTGCATGGATCT -ACGGAAGAGATCCTGCATAAGGCT -ACGGAAGAGATCCTGCATTCAACC -ACGGAAGAGATCCTGCATTGTTCC -ACGGAAGAGATCCTGCATATTCCC -ACGGAAGAGATCCTGCATTTCTCG -ACGGAAGAGATCCTGCATTAGACG -ACGGAAGAGATCCTGCATGTAACG -ACGGAAGAGATCCTGCATACTTCG -ACGGAAGAGATCCTGCATTACGCA -ACGGAAGAGATCCTGCATCTTGCA -ACGGAAGAGATCCTGCATCGAACA -ACGGAAGAGATCCTGCATCAGTCA -ACGGAAGAGATCCTGCATGATCCA -ACGGAAGAGATCCTGCATACGACA -ACGGAAGAGATCCTGCATAGCTCA -ACGGAAGAGATCCTGCATTCACGT -ACGGAAGAGATCCTGCATCGTAGT -ACGGAAGAGATCCTGCATGTCAGT -ACGGAAGAGATCCTGCATGAAGGT -ACGGAAGAGATCCTGCATAACCGT -ACGGAAGAGATCCTGCATTTGTGC -ACGGAAGAGATCCTGCATCTAAGC -ACGGAAGAGATCCTGCATACTAGC -ACGGAAGAGATCCTGCATAGATGC -ACGGAAGAGATCCTGCATTGAAGG -ACGGAAGAGATCCTGCATCAATGG -ACGGAAGAGATCCTGCATATGAGG -ACGGAAGAGATCCTGCATAATGGG -ACGGAAGAGATCCTGCATTCCTGA -ACGGAAGAGATCCTGCATTAGCGA -ACGGAAGAGATCCTGCATCACAGA -ACGGAAGAGATCCTGCATGCAAGA -ACGGAAGAGATCCTGCATGGTTGA -ACGGAAGAGATCCTGCATTCCGAT -ACGGAAGAGATCCTGCATTGGCAT -ACGGAAGAGATCCTGCATCGAGAT -ACGGAAGAGATCCTGCATTACCAC -ACGGAAGAGATCCTGCATCAGAAC -ACGGAAGAGATCCTGCATGTCTAC -ACGGAAGAGATCCTGCATACGTAC -ACGGAAGAGATCCTGCATAGTGAC -ACGGAAGAGATCCTGCATCTGTAG -ACGGAAGAGATCCTGCATCCTAAG -ACGGAAGAGATCCTGCATGTTCAG -ACGGAAGAGATCCTGCATGCATAG -ACGGAAGAGATCCTGCATGACAAG -ACGGAAGAGATCCTGCATAAGCAG -ACGGAAGAGATCCTGCATCGTCAA -ACGGAAGAGATCCTGCATGCTGAA -ACGGAAGAGATCCTGCATAGTACG -ACGGAAGAGATCCTGCATATCCGA -ACGGAAGAGATCCTGCATATGGGA -ACGGAAGAGATCCTGCATGTGCAA -ACGGAAGAGATCCTGCATGAGGAA -ACGGAAGAGATCCTGCATCAGGTA -ACGGAAGAGATCCTGCATGACTCT -ACGGAAGAGATCCTGCATAGTCCT -ACGGAAGAGATCCTGCATTAAGCC -ACGGAAGAGATCCTGCATATAGCC -ACGGAAGAGATCCTGCATTAACCG -ACGGAAGAGATCCTGCATATGCCA -ACGGAAGAGATCTTGGAGGGAAAC -ACGGAAGAGATCTTGGAGAACACC -ACGGAAGAGATCTTGGAGATCGAG -ACGGAAGAGATCTTGGAGCTCCTT -ACGGAAGAGATCTTGGAGCCTGTT -ACGGAAGAGATCTTGGAGCGGTTT -ACGGAAGAGATCTTGGAGGTGGTT -ACGGAAGAGATCTTGGAGGCCTTT -ACGGAAGAGATCTTGGAGGGTCTT -ACGGAAGAGATCTTGGAGACGCTT -ACGGAAGAGATCTTGGAGAGCGTT -ACGGAAGAGATCTTGGAGTTCGTC -ACGGAAGAGATCTTGGAGTCTCTC -ACGGAAGAGATCTTGGAGTGGATC -ACGGAAGAGATCTTGGAGCACTTC -ACGGAAGAGATCTTGGAGGTACTC -ACGGAAGAGATCTTGGAGGATGTC -ACGGAAGAGATCTTGGAGACAGTC -ACGGAAGAGATCTTGGAGTTGCTG -ACGGAAGAGATCTTGGAGTCCATG -ACGGAAGAGATCTTGGAGTGTGTG -ACGGAAGAGATCTTGGAGCTAGTG -ACGGAAGAGATCTTGGAGCATCTG -ACGGAAGAGATCTTGGAGGAGTTG -ACGGAAGAGATCTTGGAGAGACTG -ACGGAAGAGATCTTGGAGTCGGTA -ACGGAAGAGATCTTGGAGTGCCTA -ACGGAAGAGATCTTGGAGCCACTA -ACGGAAGAGATCTTGGAGGGAGTA -ACGGAAGAGATCTTGGAGTCGTCT -ACGGAAGAGATCTTGGAGTGCACT -ACGGAAGAGATCTTGGAGCTGACT -ACGGAAGAGATCTTGGAGCAACCT -ACGGAAGAGATCTTGGAGGCTACT -ACGGAAGAGATCTTGGAGGGATCT -ACGGAAGAGATCTTGGAGAAGGCT -ACGGAAGAGATCTTGGAGTCAACC -ACGGAAGAGATCTTGGAGTGTTCC -ACGGAAGAGATCTTGGAGATTCCC -ACGGAAGAGATCTTGGAGTTCTCG -ACGGAAGAGATCTTGGAGTAGACG -ACGGAAGAGATCTTGGAGGTAACG -ACGGAAGAGATCTTGGAGACTTCG -ACGGAAGAGATCTTGGAGTACGCA -ACGGAAGAGATCTTGGAGCTTGCA -ACGGAAGAGATCTTGGAGCGAACA -ACGGAAGAGATCTTGGAGCAGTCA -ACGGAAGAGATCTTGGAGGATCCA -ACGGAAGAGATCTTGGAGACGACA -ACGGAAGAGATCTTGGAGAGCTCA -ACGGAAGAGATCTTGGAGTCACGT -ACGGAAGAGATCTTGGAGCGTAGT -ACGGAAGAGATCTTGGAGGTCAGT -ACGGAAGAGATCTTGGAGGAAGGT -ACGGAAGAGATCTTGGAGAACCGT -ACGGAAGAGATCTTGGAGTTGTGC -ACGGAAGAGATCTTGGAGCTAAGC -ACGGAAGAGATCTTGGAGACTAGC -ACGGAAGAGATCTTGGAGAGATGC -ACGGAAGAGATCTTGGAGTGAAGG -ACGGAAGAGATCTTGGAGCAATGG -ACGGAAGAGATCTTGGAGATGAGG -ACGGAAGAGATCTTGGAGAATGGG -ACGGAAGAGATCTTGGAGTCCTGA -ACGGAAGAGATCTTGGAGTAGCGA -ACGGAAGAGATCTTGGAGCACAGA -ACGGAAGAGATCTTGGAGGCAAGA -ACGGAAGAGATCTTGGAGGGTTGA -ACGGAAGAGATCTTGGAGTCCGAT -ACGGAAGAGATCTTGGAGTGGCAT -ACGGAAGAGATCTTGGAGCGAGAT -ACGGAAGAGATCTTGGAGTACCAC -ACGGAAGAGATCTTGGAGCAGAAC -ACGGAAGAGATCTTGGAGGTCTAC -ACGGAAGAGATCTTGGAGACGTAC -ACGGAAGAGATCTTGGAGAGTGAC -ACGGAAGAGATCTTGGAGCTGTAG -ACGGAAGAGATCTTGGAGCCTAAG -ACGGAAGAGATCTTGGAGGTTCAG -ACGGAAGAGATCTTGGAGGCATAG -ACGGAAGAGATCTTGGAGGACAAG -ACGGAAGAGATCTTGGAGAAGCAG -ACGGAAGAGATCTTGGAGCGTCAA -ACGGAAGAGATCTTGGAGGCTGAA -ACGGAAGAGATCTTGGAGAGTACG -ACGGAAGAGATCTTGGAGATCCGA -ACGGAAGAGATCTTGGAGATGGGA -ACGGAAGAGATCTTGGAGGTGCAA -ACGGAAGAGATCTTGGAGGAGGAA -ACGGAAGAGATCTTGGAGCAGGTA -ACGGAAGAGATCTTGGAGGACTCT -ACGGAAGAGATCTTGGAGAGTCCT -ACGGAAGAGATCTTGGAGTAAGCC -ACGGAAGAGATCTTGGAGATAGCC -ACGGAAGAGATCTTGGAGTAACCG -ACGGAAGAGATCTTGGAGATGCCA -ACGGAAGAGATCCTGAGAGGAAAC -ACGGAAGAGATCCTGAGAAACACC -ACGGAAGAGATCCTGAGAATCGAG -ACGGAAGAGATCCTGAGACTCCTT -ACGGAAGAGATCCTGAGACCTGTT -ACGGAAGAGATCCTGAGACGGTTT -ACGGAAGAGATCCTGAGAGTGGTT -ACGGAAGAGATCCTGAGAGCCTTT -ACGGAAGAGATCCTGAGAGGTCTT -ACGGAAGAGATCCTGAGAACGCTT -ACGGAAGAGATCCTGAGAAGCGTT -ACGGAAGAGATCCTGAGATTCGTC -ACGGAAGAGATCCTGAGATCTCTC -ACGGAAGAGATCCTGAGATGGATC -ACGGAAGAGATCCTGAGACACTTC -ACGGAAGAGATCCTGAGAGTACTC -ACGGAAGAGATCCTGAGAGATGTC -ACGGAAGAGATCCTGAGAACAGTC -ACGGAAGAGATCCTGAGATTGCTG -ACGGAAGAGATCCTGAGATCCATG -ACGGAAGAGATCCTGAGATGTGTG -ACGGAAGAGATCCTGAGACTAGTG -ACGGAAGAGATCCTGAGACATCTG -ACGGAAGAGATCCTGAGAGAGTTG -ACGGAAGAGATCCTGAGAAGACTG -ACGGAAGAGATCCTGAGATCGGTA -ACGGAAGAGATCCTGAGATGCCTA -ACGGAAGAGATCCTGAGACCACTA -ACGGAAGAGATCCTGAGAGGAGTA -ACGGAAGAGATCCTGAGATCGTCT -ACGGAAGAGATCCTGAGATGCACT -ACGGAAGAGATCCTGAGACTGACT -ACGGAAGAGATCCTGAGACAACCT -ACGGAAGAGATCCTGAGAGCTACT -ACGGAAGAGATCCTGAGAGGATCT -ACGGAAGAGATCCTGAGAAAGGCT -ACGGAAGAGATCCTGAGATCAACC -ACGGAAGAGATCCTGAGATGTTCC -ACGGAAGAGATCCTGAGAATTCCC -ACGGAAGAGATCCTGAGATTCTCG -ACGGAAGAGATCCTGAGATAGACG -ACGGAAGAGATCCTGAGAGTAACG -ACGGAAGAGATCCTGAGAACTTCG -ACGGAAGAGATCCTGAGATACGCA -ACGGAAGAGATCCTGAGACTTGCA -ACGGAAGAGATCCTGAGACGAACA -ACGGAAGAGATCCTGAGACAGTCA -ACGGAAGAGATCCTGAGAGATCCA -ACGGAAGAGATCCTGAGAACGACA -ACGGAAGAGATCCTGAGAAGCTCA -ACGGAAGAGATCCTGAGATCACGT -ACGGAAGAGATCCTGAGACGTAGT -ACGGAAGAGATCCTGAGAGTCAGT -ACGGAAGAGATCCTGAGAGAAGGT -ACGGAAGAGATCCTGAGAAACCGT -ACGGAAGAGATCCTGAGATTGTGC -ACGGAAGAGATCCTGAGACTAAGC -ACGGAAGAGATCCTGAGAACTAGC -ACGGAAGAGATCCTGAGAAGATGC -ACGGAAGAGATCCTGAGATGAAGG -ACGGAAGAGATCCTGAGACAATGG -ACGGAAGAGATCCTGAGAATGAGG -ACGGAAGAGATCCTGAGAAATGGG -ACGGAAGAGATCCTGAGATCCTGA -ACGGAAGAGATCCTGAGATAGCGA -ACGGAAGAGATCCTGAGACACAGA -ACGGAAGAGATCCTGAGAGCAAGA -ACGGAAGAGATCCTGAGAGGTTGA -ACGGAAGAGATCCTGAGATCCGAT -ACGGAAGAGATCCTGAGATGGCAT -ACGGAAGAGATCCTGAGACGAGAT -ACGGAAGAGATCCTGAGATACCAC -ACGGAAGAGATCCTGAGACAGAAC -ACGGAAGAGATCCTGAGAGTCTAC -ACGGAAGAGATCCTGAGAACGTAC -ACGGAAGAGATCCTGAGAAGTGAC -ACGGAAGAGATCCTGAGACTGTAG -ACGGAAGAGATCCTGAGACCTAAG -ACGGAAGAGATCCTGAGAGTTCAG -ACGGAAGAGATCCTGAGAGCATAG -ACGGAAGAGATCCTGAGAGACAAG -ACGGAAGAGATCCTGAGAAAGCAG -ACGGAAGAGATCCTGAGACGTCAA -ACGGAAGAGATCCTGAGAGCTGAA -ACGGAAGAGATCCTGAGAAGTACG -ACGGAAGAGATCCTGAGAATCCGA -ACGGAAGAGATCCTGAGAATGGGA -ACGGAAGAGATCCTGAGAGTGCAA -ACGGAAGAGATCCTGAGAGAGGAA -ACGGAAGAGATCCTGAGACAGGTA -ACGGAAGAGATCCTGAGAGACTCT -ACGGAAGAGATCCTGAGAAGTCCT -ACGGAAGAGATCCTGAGATAAGCC -ACGGAAGAGATCCTGAGAATAGCC -ACGGAAGAGATCCTGAGATAACCG -ACGGAAGAGATCCTGAGAATGCCA -ACGGAAGAGATCGTATCGGGAAAC -ACGGAAGAGATCGTATCGAACACC -ACGGAAGAGATCGTATCGATCGAG -ACGGAAGAGATCGTATCGCTCCTT -ACGGAAGAGATCGTATCGCCTGTT -ACGGAAGAGATCGTATCGCGGTTT -ACGGAAGAGATCGTATCGGTGGTT -ACGGAAGAGATCGTATCGGCCTTT -ACGGAAGAGATCGTATCGGGTCTT -ACGGAAGAGATCGTATCGACGCTT -ACGGAAGAGATCGTATCGAGCGTT -ACGGAAGAGATCGTATCGTTCGTC -ACGGAAGAGATCGTATCGTCTCTC -ACGGAAGAGATCGTATCGTGGATC -ACGGAAGAGATCGTATCGCACTTC -ACGGAAGAGATCGTATCGGTACTC -ACGGAAGAGATCGTATCGGATGTC -ACGGAAGAGATCGTATCGACAGTC -ACGGAAGAGATCGTATCGTTGCTG -ACGGAAGAGATCGTATCGTCCATG -ACGGAAGAGATCGTATCGTGTGTG -ACGGAAGAGATCGTATCGCTAGTG -ACGGAAGAGATCGTATCGCATCTG -ACGGAAGAGATCGTATCGGAGTTG -ACGGAAGAGATCGTATCGAGACTG -ACGGAAGAGATCGTATCGTCGGTA -ACGGAAGAGATCGTATCGTGCCTA -ACGGAAGAGATCGTATCGCCACTA -ACGGAAGAGATCGTATCGGGAGTA -ACGGAAGAGATCGTATCGTCGTCT -ACGGAAGAGATCGTATCGTGCACT -ACGGAAGAGATCGTATCGCTGACT -ACGGAAGAGATCGTATCGCAACCT -ACGGAAGAGATCGTATCGGCTACT -ACGGAAGAGATCGTATCGGGATCT -ACGGAAGAGATCGTATCGAAGGCT -ACGGAAGAGATCGTATCGTCAACC -ACGGAAGAGATCGTATCGTGTTCC -ACGGAAGAGATCGTATCGATTCCC -ACGGAAGAGATCGTATCGTTCTCG -ACGGAAGAGATCGTATCGTAGACG -ACGGAAGAGATCGTATCGGTAACG -ACGGAAGAGATCGTATCGACTTCG -ACGGAAGAGATCGTATCGTACGCA -ACGGAAGAGATCGTATCGCTTGCA -ACGGAAGAGATCGTATCGCGAACA -ACGGAAGAGATCGTATCGCAGTCA -ACGGAAGAGATCGTATCGGATCCA -ACGGAAGAGATCGTATCGACGACA -ACGGAAGAGATCGTATCGAGCTCA -ACGGAAGAGATCGTATCGTCACGT -ACGGAAGAGATCGTATCGCGTAGT -ACGGAAGAGATCGTATCGGTCAGT -ACGGAAGAGATCGTATCGGAAGGT -ACGGAAGAGATCGTATCGAACCGT -ACGGAAGAGATCGTATCGTTGTGC -ACGGAAGAGATCGTATCGCTAAGC -ACGGAAGAGATCGTATCGACTAGC -ACGGAAGAGATCGTATCGAGATGC -ACGGAAGAGATCGTATCGTGAAGG -ACGGAAGAGATCGTATCGCAATGG -ACGGAAGAGATCGTATCGATGAGG -ACGGAAGAGATCGTATCGAATGGG -ACGGAAGAGATCGTATCGTCCTGA -ACGGAAGAGATCGTATCGTAGCGA -ACGGAAGAGATCGTATCGCACAGA -ACGGAAGAGATCGTATCGGCAAGA -ACGGAAGAGATCGTATCGGGTTGA -ACGGAAGAGATCGTATCGTCCGAT -ACGGAAGAGATCGTATCGTGGCAT -ACGGAAGAGATCGTATCGCGAGAT -ACGGAAGAGATCGTATCGTACCAC -ACGGAAGAGATCGTATCGCAGAAC -ACGGAAGAGATCGTATCGGTCTAC -ACGGAAGAGATCGTATCGACGTAC -ACGGAAGAGATCGTATCGAGTGAC -ACGGAAGAGATCGTATCGCTGTAG -ACGGAAGAGATCGTATCGCCTAAG -ACGGAAGAGATCGTATCGGTTCAG -ACGGAAGAGATCGTATCGGCATAG -ACGGAAGAGATCGTATCGGACAAG -ACGGAAGAGATCGTATCGAAGCAG -ACGGAAGAGATCGTATCGCGTCAA -ACGGAAGAGATCGTATCGGCTGAA -ACGGAAGAGATCGTATCGAGTACG -ACGGAAGAGATCGTATCGATCCGA -ACGGAAGAGATCGTATCGATGGGA -ACGGAAGAGATCGTATCGGTGCAA -ACGGAAGAGATCGTATCGGAGGAA -ACGGAAGAGATCGTATCGCAGGTA -ACGGAAGAGATCGTATCGGACTCT -ACGGAAGAGATCGTATCGAGTCCT -ACGGAAGAGATCGTATCGTAAGCC -ACGGAAGAGATCGTATCGATAGCC -ACGGAAGAGATCGTATCGTAACCG -ACGGAAGAGATCGTATCGATGCCA -ACGGAAGAGATCCTATGCGGAAAC -ACGGAAGAGATCCTATGCAACACC -ACGGAAGAGATCCTATGCATCGAG -ACGGAAGAGATCCTATGCCTCCTT -ACGGAAGAGATCCTATGCCCTGTT -ACGGAAGAGATCCTATGCCGGTTT -ACGGAAGAGATCCTATGCGTGGTT -ACGGAAGAGATCCTATGCGCCTTT -ACGGAAGAGATCCTATGCGGTCTT -ACGGAAGAGATCCTATGCACGCTT -ACGGAAGAGATCCTATGCAGCGTT -ACGGAAGAGATCCTATGCTTCGTC -ACGGAAGAGATCCTATGCTCTCTC -ACGGAAGAGATCCTATGCTGGATC -ACGGAAGAGATCCTATGCCACTTC -ACGGAAGAGATCCTATGCGTACTC -ACGGAAGAGATCCTATGCGATGTC -ACGGAAGAGATCCTATGCACAGTC -ACGGAAGAGATCCTATGCTTGCTG -ACGGAAGAGATCCTATGCTCCATG -ACGGAAGAGATCCTATGCTGTGTG -ACGGAAGAGATCCTATGCCTAGTG -ACGGAAGAGATCCTATGCCATCTG -ACGGAAGAGATCCTATGCGAGTTG -ACGGAAGAGATCCTATGCAGACTG -ACGGAAGAGATCCTATGCTCGGTA -ACGGAAGAGATCCTATGCTGCCTA -ACGGAAGAGATCCTATGCCCACTA -ACGGAAGAGATCCTATGCGGAGTA -ACGGAAGAGATCCTATGCTCGTCT -ACGGAAGAGATCCTATGCTGCACT -ACGGAAGAGATCCTATGCCTGACT -ACGGAAGAGATCCTATGCCAACCT -ACGGAAGAGATCCTATGCGCTACT -ACGGAAGAGATCCTATGCGGATCT -ACGGAAGAGATCCTATGCAAGGCT -ACGGAAGAGATCCTATGCTCAACC -ACGGAAGAGATCCTATGCTGTTCC -ACGGAAGAGATCCTATGCATTCCC -ACGGAAGAGATCCTATGCTTCTCG -ACGGAAGAGATCCTATGCTAGACG -ACGGAAGAGATCCTATGCGTAACG -ACGGAAGAGATCCTATGCACTTCG -ACGGAAGAGATCCTATGCTACGCA -ACGGAAGAGATCCTATGCCTTGCA -ACGGAAGAGATCCTATGCCGAACA -ACGGAAGAGATCCTATGCCAGTCA -ACGGAAGAGATCCTATGCGATCCA -ACGGAAGAGATCCTATGCACGACA -ACGGAAGAGATCCTATGCAGCTCA -ACGGAAGAGATCCTATGCTCACGT -ACGGAAGAGATCCTATGCCGTAGT -ACGGAAGAGATCCTATGCGTCAGT -ACGGAAGAGATCCTATGCGAAGGT -ACGGAAGAGATCCTATGCAACCGT -ACGGAAGAGATCCTATGCTTGTGC -ACGGAAGAGATCCTATGCCTAAGC -ACGGAAGAGATCCTATGCACTAGC -ACGGAAGAGATCCTATGCAGATGC -ACGGAAGAGATCCTATGCTGAAGG -ACGGAAGAGATCCTATGCCAATGG -ACGGAAGAGATCCTATGCATGAGG -ACGGAAGAGATCCTATGCAATGGG -ACGGAAGAGATCCTATGCTCCTGA -ACGGAAGAGATCCTATGCTAGCGA -ACGGAAGAGATCCTATGCCACAGA -ACGGAAGAGATCCTATGCGCAAGA -ACGGAAGAGATCCTATGCGGTTGA -ACGGAAGAGATCCTATGCTCCGAT -ACGGAAGAGATCCTATGCTGGCAT -ACGGAAGAGATCCTATGCCGAGAT -ACGGAAGAGATCCTATGCTACCAC -ACGGAAGAGATCCTATGCCAGAAC -ACGGAAGAGATCCTATGCGTCTAC -ACGGAAGAGATCCTATGCACGTAC -ACGGAAGAGATCCTATGCAGTGAC -ACGGAAGAGATCCTATGCCTGTAG -ACGGAAGAGATCCTATGCCCTAAG -ACGGAAGAGATCCTATGCGTTCAG -ACGGAAGAGATCCTATGCGCATAG -ACGGAAGAGATCCTATGCGACAAG -ACGGAAGAGATCCTATGCAAGCAG -ACGGAAGAGATCCTATGCCGTCAA -ACGGAAGAGATCCTATGCGCTGAA -ACGGAAGAGATCCTATGCAGTACG -ACGGAAGAGATCCTATGCATCCGA -ACGGAAGAGATCCTATGCATGGGA -ACGGAAGAGATCCTATGCGTGCAA -ACGGAAGAGATCCTATGCGAGGAA -ACGGAAGAGATCCTATGCCAGGTA -ACGGAAGAGATCCTATGCGACTCT -ACGGAAGAGATCCTATGCAGTCCT -ACGGAAGAGATCCTATGCTAAGCC -ACGGAAGAGATCCTATGCATAGCC -ACGGAAGAGATCCTATGCTAACCG -ACGGAAGAGATCCTATGCATGCCA -ACGGAAGAGATCCTACCAGGAAAC -ACGGAAGAGATCCTACCAAACACC -ACGGAAGAGATCCTACCAATCGAG -ACGGAAGAGATCCTACCACTCCTT -ACGGAAGAGATCCTACCACCTGTT -ACGGAAGAGATCCTACCACGGTTT -ACGGAAGAGATCCTACCAGTGGTT -ACGGAAGAGATCCTACCAGCCTTT -ACGGAAGAGATCCTACCAGGTCTT -ACGGAAGAGATCCTACCAACGCTT -ACGGAAGAGATCCTACCAAGCGTT -ACGGAAGAGATCCTACCATTCGTC -ACGGAAGAGATCCTACCATCTCTC -ACGGAAGAGATCCTACCATGGATC -ACGGAAGAGATCCTACCACACTTC -ACGGAAGAGATCCTACCAGTACTC -ACGGAAGAGATCCTACCAGATGTC -ACGGAAGAGATCCTACCAACAGTC -ACGGAAGAGATCCTACCATTGCTG -ACGGAAGAGATCCTACCATCCATG -ACGGAAGAGATCCTACCATGTGTG -ACGGAAGAGATCCTACCACTAGTG -ACGGAAGAGATCCTACCACATCTG -ACGGAAGAGATCCTACCAGAGTTG -ACGGAAGAGATCCTACCAAGACTG -ACGGAAGAGATCCTACCATCGGTA -ACGGAAGAGATCCTACCATGCCTA -ACGGAAGAGATCCTACCACCACTA -ACGGAAGAGATCCTACCAGGAGTA -ACGGAAGAGATCCTACCATCGTCT -ACGGAAGAGATCCTACCATGCACT -ACGGAAGAGATCCTACCACTGACT -ACGGAAGAGATCCTACCACAACCT -ACGGAAGAGATCCTACCAGCTACT -ACGGAAGAGATCCTACCAGGATCT -ACGGAAGAGATCCTACCAAAGGCT -ACGGAAGAGATCCTACCATCAACC -ACGGAAGAGATCCTACCATGTTCC -ACGGAAGAGATCCTACCAATTCCC -ACGGAAGAGATCCTACCATTCTCG -ACGGAAGAGATCCTACCATAGACG -ACGGAAGAGATCCTACCAGTAACG -ACGGAAGAGATCCTACCAACTTCG -ACGGAAGAGATCCTACCATACGCA -ACGGAAGAGATCCTACCACTTGCA -ACGGAAGAGATCCTACCACGAACA -ACGGAAGAGATCCTACCACAGTCA -ACGGAAGAGATCCTACCAGATCCA -ACGGAAGAGATCCTACCAACGACA -ACGGAAGAGATCCTACCAAGCTCA -ACGGAAGAGATCCTACCATCACGT -ACGGAAGAGATCCTACCACGTAGT -ACGGAAGAGATCCTACCAGTCAGT -ACGGAAGAGATCCTACCAGAAGGT -ACGGAAGAGATCCTACCAAACCGT -ACGGAAGAGATCCTACCATTGTGC -ACGGAAGAGATCCTACCACTAAGC -ACGGAAGAGATCCTACCAACTAGC -ACGGAAGAGATCCTACCAAGATGC -ACGGAAGAGATCCTACCATGAAGG -ACGGAAGAGATCCTACCACAATGG -ACGGAAGAGATCCTACCAATGAGG -ACGGAAGAGATCCTACCAAATGGG -ACGGAAGAGATCCTACCATCCTGA -ACGGAAGAGATCCTACCATAGCGA -ACGGAAGAGATCCTACCACACAGA -ACGGAAGAGATCCTACCAGCAAGA -ACGGAAGAGATCCTACCAGGTTGA -ACGGAAGAGATCCTACCATCCGAT -ACGGAAGAGATCCTACCATGGCAT -ACGGAAGAGATCCTACCACGAGAT -ACGGAAGAGATCCTACCATACCAC -ACGGAAGAGATCCTACCACAGAAC -ACGGAAGAGATCCTACCAGTCTAC -ACGGAAGAGATCCTACCAACGTAC -ACGGAAGAGATCCTACCAAGTGAC -ACGGAAGAGATCCTACCACTGTAG -ACGGAAGAGATCCTACCACCTAAG -ACGGAAGAGATCCTACCAGTTCAG -ACGGAAGAGATCCTACCAGCATAG -ACGGAAGAGATCCTACCAGACAAG -ACGGAAGAGATCCTACCAAAGCAG -ACGGAAGAGATCCTACCACGTCAA -ACGGAAGAGATCCTACCAGCTGAA -ACGGAAGAGATCCTACCAAGTACG -ACGGAAGAGATCCTACCAATCCGA -ACGGAAGAGATCCTACCAATGGGA -ACGGAAGAGATCCTACCAGTGCAA -ACGGAAGAGATCCTACCAGAGGAA -ACGGAAGAGATCCTACCACAGGTA -ACGGAAGAGATCCTACCAGACTCT -ACGGAAGAGATCCTACCAAGTCCT -ACGGAAGAGATCCTACCATAAGCC -ACGGAAGAGATCCTACCAATAGCC -ACGGAAGAGATCCTACCATAACCG -ACGGAAGAGATCCTACCAATGCCA -ACGGAAGAGATCGTAGGAGGAAAC -ACGGAAGAGATCGTAGGAAACACC -ACGGAAGAGATCGTAGGAATCGAG -ACGGAAGAGATCGTAGGACTCCTT -ACGGAAGAGATCGTAGGACCTGTT -ACGGAAGAGATCGTAGGACGGTTT -ACGGAAGAGATCGTAGGAGTGGTT -ACGGAAGAGATCGTAGGAGCCTTT -ACGGAAGAGATCGTAGGAGGTCTT -ACGGAAGAGATCGTAGGAACGCTT -ACGGAAGAGATCGTAGGAAGCGTT -ACGGAAGAGATCGTAGGATTCGTC -ACGGAAGAGATCGTAGGATCTCTC -ACGGAAGAGATCGTAGGATGGATC -ACGGAAGAGATCGTAGGACACTTC -ACGGAAGAGATCGTAGGAGTACTC -ACGGAAGAGATCGTAGGAGATGTC -ACGGAAGAGATCGTAGGAACAGTC -ACGGAAGAGATCGTAGGATTGCTG -ACGGAAGAGATCGTAGGATCCATG -ACGGAAGAGATCGTAGGATGTGTG -ACGGAAGAGATCGTAGGACTAGTG -ACGGAAGAGATCGTAGGACATCTG -ACGGAAGAGATCGTAGGAGAGTTG -ACGGAAGAGATCGTAGGAAGACTG -ACGGAAGAGATCGTAGGATCGGTA -ACGGAAGAGATCGTAGGATGCCTA -ACGGAAGAGATCGTAGGACCACTA -ACGGAAGAGATCGTAGGAGGAGTA -ACGGAAGAGATCGTAGGATCGTCT -ACGGAAGAGATCGTAGGATGCACT -ACGGAAGAGATCGTAGGACTGACT -ACGGAAGAGATCGTAGGACAACCT -ACGGAAGAGATCGTAGGAGCTACT -ACGGAAGAGATCGTAGGAGGATCT -ACGGAAGAGATCGTAGGAAAGGCT -ACGGAAGAGATCGTAGGATCAACC -ACGGAAGAGATCGTAGGATGTTCC -ACGGAAGAGATCGTAGGAATTCCC -ACGGAAGAGATCGTAGGATTCTCG -ACGGAAGAGATCGTAGGATAGACG -ACGGAAGAGATCGTAGGAGTAACG -ACGGAAGAGATCGTAGGAACTTCG -ACGGAAGAGATCGTAGGATACGCA -ACGGAAGAGATCGTAGGACTTGCA -ACGGAAGAGATCGTAGGACGAACA -ACGGAAGAGATCGTAGGACAGTCA -ACGGAAGAGATCGTAGGAGATCCA -ACGGAAGAGATCGTAGGAACGACA -ACGGAAGAGATCGTAGGAAGCTCA -ACGGAAGAGATCGTAGGATCACGT -ACGGAAGAGATCGTAGGACGTAGT -ACGGAAGAGATCGTAGGAGTCAGT -ACGGAAGAGATCGTAGGAGAAGGT -ACGGAAGAGATCGTAGGAAACCGT -ACGGAAGAGATCGTAGGATTGTGC -ACGGAAGAGATCGTAGGACTAAGC -ACGGAAGAGATCGTAGGAACTAGC -ACGGAAGAGATCGTAGGAAGATGC -ACGGAAGAGATCGTAGGATGAAGG -ACGGAAGAGATCGTAGGACAATGG -ACGGAAGAGATCGTAGGAATGAGG -ACGGAAGAGATCGTAGGAAATGGG -ACGGAAGAGATCGTAGGATCCTGA -ACGGAAGAGATCGTAGGATAGCGA -ACGGAAGAGATCGTAGGACACAGA -ACGGAAGAGATCGTAGGAGCAAGA -ACGGAAGAGATCGTAGGAGGTTGA -ACGGAAGAGATCGTAGGATCCGAT -ACGGAAGAGATCGTAGGATGGCAT -ACGGAAGAGATCGTAGGACGAGAT -ACGGAAGAGATCGTAGGATACCAC -ACGGAAGAGATCGTAGGACAGAAC -ACGGAAGAGATCGTAGGAGTCTAC -ACGGAAGAGATCGTAGGAACGTAC -ACGGAAGAGATCGTAGGAAGTGAC -ACGGAAGAGATCGTAGGACTGTAG -ACGGAAGAGATCGTAGGACCTAAG -ACGGAAGAGATCGTAGGAGTTCAG -ACGGAAGAGATCGTAGGAGCATAG -ACGGAAGAGATCGTAGGAGACAAG -ACGGAAGAGATCGTAGGAAAGCAG -ACGGAAGAGATCGTAGGACGTCAA -ACGGAAGAGATCGTAGGAGCTGAA -ACGGAAGAGATCGTAGGAAGTACG -ACGGAAGAGATCGTAGGAATCCGA -ACGGAAGAGATCGTAGGAATGGGA -ACGGAAGAGATCGTAGGAGTGCAA -ACGGAAGAGATCGTAGGAGAGGAA -ACGGAAGAGATCGTAGGACAGGTA -ACGGAAGAGATCGTAGGAGACTCT -ACGGAAGAGATCGTAGGAAGTCCT -ACGGAAGAGATCGTAGGATAAGCC -ACGGAAGAGATCGTAGGAATAGCC -ACGGAAGAGATCGTAGGATAACCG -ACGGAAGAGATCGTAGGAATGCCA -ACGGAAGAGATCTCTTCGGGAAAC -ACGGAAGAGATCTCTTCGAACACC -ACGGAAGAGATCTCTTCGATCGAG -ACGGAAGAGATCTCTTCGCTCCTT -ACGGAAGAGATCTCTTCGCCTGTT -ACGGAAGAGATCTCTTCGCGGTTT -ACGGAAGAGATCTCTTCGGTGGTT -ACGGAAGAGATCTCTTCGGCCTTT -ACGGAAGAGATCTCTTCGGGTCTT -ACGGAAGAGATCTCTTCGACGCTT -ACGGAAGAGATCTCTTCGAGCGTT -ACGGAAGAGATCTCTTCGTTCGTC -ACGGAAGAGATCTCTTCGTCTCTC -ACGGAAGAGATCTCTTCGTGGATC -ACGGAAGAGATCTCTTCGCACTTC -ACGGAAGAGATCTCTTCGGTACTC -ACGGAAGAGATCTCTTCGGATGTC -ACGGAAGAGATCTCTTCGACAGTC -ACGGAAGAGATCTCTTCGTTGCTG -ACGGAAGAGATCTCTTCGTCCATG -ACGGAAGAGATCTCTTCGTGTGTG -ACGGAAGAGATCTCTTCGCTAGTG -ACGGAAGAGATCTCTTCGCATCTG -ACGGAAGAGATCTCTTCGGAGTTG -ACGGAAGAGATCTCTTCGAGACTG -ACGGAAGAGATCTCTTCGTCGGTA -ACGGAAGAGATCTCTTCGTGCCTA -ACGGAAGAGATCTCTTCGCCACTA -ACGGAAGAGATCTCTTCGGGAGTA -ACGGAAGAGATCTCTTCGTCGTCT -ACGGAAGAGATCTCTTCGTGCACT -ACGGAAGAGATCTCTTCGCTGACT -ACGGAAGAGATCTCTTCGCAACCT -ACGGAAGAGATCTCTTCGGCTACT -ACGGAAGAGATCTCTTCGGGATCT -ACGGAAGAGATCTCTTCGAAGGCT -ACGGAAGAGATCTCTTCGTCAACC -ACGGAAGAGATCTCTTCGTGTTCC -ACGGAAGAGATCTCTTCGATTCCC -ACGGAAGAGATCTCTTCGTTCTCG -ACGGAAGAGATCTCTTCGTAGACG -ACGGAAGAGATCTCTTCGGTAACG -ACGGAAGAGATCTCTTCGACTTCG -ACGGAAGAGATCTCTTCGTACGCA -ACGGAAGAGATCTCTTCGCTTGCA -ACGGAAGAGATCTCTTCGCGAACA -ACGGAAGAGATCTCTTCGCAGTCA -ACGGAAGAGATCTCTTCGGATCCA -ACGGAAGAGATCTCTTCGACGACA -ACGGAAGAGATCTCTTCGAGCTCA -ACGGAAGAGATCTCTTCGTCACGT -ACGGAAGAGATCTCTTCGCGTAGT -ACGGAAGAGATCTCTTCGGTCAGT -ACGGAAGAGATCTCTTCGGAAGGT -ACGGAAGAGATCTCTTCGAACCGT -ACGGAAGAGATCTCTTCGTTGTGC -ACGGAAGAGATCTCTTCGCTAAGC -ACGGAAGAGATCTCTTCGACTAGC -ACGGAAGAGATCTCTTCGAGATGC -ACGGAAGAGATCTCTTCGTGAAGG -ACGGAAGAGATCTCTTCGCAATGG -ACGGAAGAGATCTCTTCGATGAGG -ACGGAAGAGATCTCTTCGAATGGG -ACGGAAGAGATCTCTTCGTCCTGA -ACGGAAGAGATCTCTTCGTAGCGA -ACGGAAGAGATCTCTTCGCACAGA -ACGGAAGAGATCTCTTCGGCAAGA -ACGGAAGAGATCTCTTCGGGTTGA -ACGGAAGAGATCTCTTCGTCCGAT -ACGGAAGAGATCTCTTCGTGGCAT -ACGGAAGAGATCTCTTCGCGAGAT -ACGGAAGAGATCTCTTCGTACCAC -ACGGAAGAGATCTCTTCGCAGAAC -ACGGAAGAGATCTCTTCGGTCTAC -ACGGAAGAGATCTCTTCGACGTAC -ACGGAAGAGATCTCTTCGAGTGAC -ACGGAAGAGATCTCTTCGCTGTAG -ACGGAAGAGATCTCTTCGCCTAAG -ACGGAAGAGATCTCTTCGGTTCAG -ACGGAAGAGATCTCTTCGGCATAG -ACGGAAGAGATCTCTTCGGACAAG -ACGGAAGAGATCTCTTCGAAGCAG -ACGGAAGAGATCTCTTCGCGTCAA -ACGGAAGAGATCTCTTCGGCTGAA -ACGGAAGAGATCTCTTCGAGTACG -ACGGAAGAGATCTCTTCGATCCGA -ACGGAAGAGATCTCTTCGATGGGA -ACGGAAGAGATCTCTTCGGTGCAA -ACGGAAGAGATCTCTTCGGAGGAA -ACGGAAGAGATCTCTTCGCAGGTA -ACGGAAGAGATCTCTTCGGACTCT -ACGGAAGAGATCTCTTCGAGTCCT -ACGGAAGAGATCTCTTCGTAAGCC -ACGGAAGAGATCTCTTCGATAGCC -ACGGAAGAGATCTCTTCGTAACCG -ACGGAAGAGATCTCTTCGATGCCA -ACGGAAGAGATCACTTGCGGAAAC -ACGGAAGAGATCACTTGCAACACC -ACGGAAGAGATCACTTGCATCGAG -ACGGAAGAGATCACTTGCCTCCTT -ACGGAAGAGATCACTTGCCCTGTT -ACGGAAGAGATCACTTGCCGGTTT -ACGGAAGAGATCACTTGCGTGGTT -ACGGAAGAGATCACTTGCGCCTTT -ACGGAAGAGATCACTTGCGGTCTT -ACGGAAGAGATCACTTGCACGCTT -ACGGAAGAGATCACTTGCAGCGTT -ACGGAAGAGATCACTTGCTTCGTC -ACGGAAGAGATCACTTGCTCTCTC -ACGGAAGAGATCACTTGCTGGATC -ACGGAAGAGATCACTTGCCACTTC -ACGGAAGAGATCACTTGCGTACTC -ACGGAAGAGATCACTTGCGATGTC -ACGGAAGAGATCACTTGCACAGTC -ACGGAAGAGATCACTTGCTTGCTG -ACGGAAGAGATCACTTGCTCCATG -ACGGAAGAGATCACTTGCTGTGTG -ACGGAAGAGATCACTTGCCTAGTG -ACGGAAGAGATCACTTGCCATCTG -ACGGAAGAGATCACTTGCGAGTTG -ACGGAAGAGATCACTTGCAGACTG -ACGGAAGAGATCACTTGCTCGGTA -ACGGAAGAGATCACTTGCTGCCTA -ACGGAAGAGATCACTTGCCCACTA -ACGGAAGAGATCACTTGCGGAGTA -ACGGAAGAGATCACTTGCTCGTCT -ACGGAAGAGATCACTTGCTGCACT -ACGGAAGAGATCACTTGCCTGACT -ACGGAAGAGATCACTTGCCAACCT -ACGGAAGAGATCACTTGCGCTACT -ACGGAAGAGATCACTTGCGGATCT -ACGGAAGAGATCACTTGCAAGGCT -ACGGAAGAGATCACTTGCTCAACC -ACGGAAGAGATCACTTGCTGTTCC -ACGGAAGAGATCACTTGCATTCCC -ACGGAAGAGATCACTTGCTTCTCG -ACGGAAGAGATCACTTGCTAGACG -ACGGAAGAGATCACTTGCGTAACG -ACGGAAGAGATCACTTGCACTTCG -ACGGAAGAGATCACTTGCTACGCA -ACGGAAGAGATCACTTGCCTTGCA -ACGGAAGAGATCACTTGCCGAACA -ACGGAAGAGATCACTTGCCAGTCA -ACGGAAGAGATCACTTGCGATCCA -ACGGAAGAGATCACTTGCACGACA -ACGGAAGAGATCACTTGCAGCTCA -ACGGAAGAGATCACTTGCTCACGT -ACGGAAGAGATCACTTGCCGTAGT -ACGGAAGAGATCACTTGCGTCAGT -ACGGAAGAGATCACTTGCGAAGGT -ACGGAAGAGATCACTTGCAACCGT -ACGGAAGAGATCACTTGCTTGTGC -ACGGAAGAGATCACTTGCCTAAGC -ACGGAAGAGATCACTTGCACTAGC -ACGGAAGAGATCACTTGCAGATGC -ACGGAAGAGATCACTTGCTGAAGG -ACGGAAGAGATCACTTGCCAATGG -ACGGAAGAGATCACTTGCATGAGG -ACGGAAGAGATCACTTGCAATGGG -ACGGAAGAGATCACTTGCTCCTGA -ACGGAAGAGATCACTTGCTAGCGA -ACGGAAGAGATCACTTGCCACAGA -ACGGAAGAGATCACTTGCGCAAGA -ACGGAAGAGATCACTTGCGGTTGA -ACGGAAGAGATCACTTGCTCCGAT -ACGGAAGAGATCACTTGCTGGCAT -ACGGAAGAGATCACTTGCCGAGAT -ACGGAAGAGATCACTTGCTACCAC -ACGGAAGAGATCACTTGCCAGAAC -ACGGAAGAGATCACTTGCGTCTAC -ACGGAAGAGATCACTTGCACGTAC -ACGGAAGAGATCACTTGCAGTGAC -ACGGAAGAGATCACTTGCCTGTAG -ACGGAAGAGATCACTTGCCCTAAG -ACGGAAGAGATCACTTGCGTTCAG -ACGGAAGAGATCACTTGCGCATAG -ACGGAAGAGATCACTTGCGACAAG -ACGGAAGAGATCACTTGCAAGCAG -ACGGAAGAGATCACTTGCCGTCAA -ACGGAAGAGATCACTTGCGCTGAA -ACGGAAGAGATCACTTGCAGTACG -ACGGAAGAGATCACTTGCATCCGA -ACGGAAGAGATCACTTGCATGGGA -ACGGAAGAGATCACTTGCGTGCAA -ACGGAAGAGATCACTTGCGAGGAA -ACGGAAGAGATCACTTGCCAGGTA -ACGGAAGAGATCACTTGCGACTCT -ACGGAAGAGATCACTTGCAGTCCT -ACGGAAGAGATCACTTGCTAAGCC -ACGGAAGAGATCACTTGCATAGCC -ACGGAAGAGATCACTTGCTAACCG -ACGGAAGAGATCACTTGCATGCCA -ACGGAAGAGATCACTCTGGGAAAC -ACGGAAGAGATCACTCTGAACACC -ACGGAAGAGATCACTCTGATCGAG -ACGGAAGAGATCACTCTGCTCCTT -ACGGAAGAGATCACTCTGCCTGTT -ACGGAAGAGATCACTCTGCGGTTT -ACGGAAGAGATCACTCTGGTGGTT -ACGGAAGAGATCACTCTGGCCTTT -ACGGAAGAGATCACTCTGGGTCTT -ACGGAAGAGATCACTCTGACGCTT -ACGGAAGAGATCACTCTGAGCGTT -ACGGAAGAGATCACTCTGTTCGTC -ACGGAAGAGATCACTCTGTCTCTC -ACGGAAGAGATCACTCTGTGGATC -ACGGAAGAGATCACTCTGCACTTC -ACGGAAGAGATCACTCTGGTACTC -ACGGAAGAGATCACTCTGGATGTC -ACGGAAGAGATCACTCTGACAGTC -ACGGAAGAGATCACTCTGTTGCTG -ACGGAAGAGATCACTCTGTCCATG -ACGGAAGAGATCACTCTGTGTGTG -ACGGAAGAGATCACTCTGCTAGTG -ACGGAAGAGATCACTCTGCATCTG -ACGGAAGAGATCACTCTGGAGTTG -ACGGAAGAGATCACTCTGAGACTG -ACGGAAGAGATCACTCTGTCGGTA -ACGGAAGAGATCACTCTGTGCCTA -ACGGAAGAGATCACTCTGCCACTA -ACGGAAGAGATCACTCTGGGAGTA -ACGGAAGAGATCACTCTGTCGTCT -ACGGAAGAGATCACTCTGTGCACT -ACGGAAGAGATCACTCTGCTGACT -ACGGAAGAGATCACTCTGCAACCT -ACGGAAGAGATCACTCTGGCTACT -ACGGAAGAGATCACTCTGGGATCT -ACGGAAGAGATCACTCTGAAGGCT -ACGGAAGAGATCACTCTGTCAACC -ACGGAAGAGATCACTCTGTGTTCC -ACGGAAGAGATCACTCTGATTCCC -ACGGAAGAGATCACTCTGTTCTCG -ACGGAAGAGATCACTCTGTAGACG -ACGGAAGAGATCACTCTGGTAACG -ACGGAAGAGATCACTCTGACTTCG -ACGGAAGAGATCACTCTGTACGCA -ACGGAAGAGATCACTCTGCTTGCA -ACGGAAGAGATCACTCTGCGAACA -ACGGAAGAGATCACTCTGCAGTCA -ACGGAAGAGATCACTCTGGATCCA -ACGGAAGAGATCACTCTGACGACA -ACGGAAGAGATCACTCTGAGCTCA -ACGGAAGAGATCACTCTGTCACGT -ACGGAAGAGATCACTCTGCGTAGT -ACGGAAGAGATCACTCTGGTCAGT -ACGGAAGAGATCACTCTGGAAGGT -ACGGAAGAGATCACTCTGAACCGT -ACGGAAGAGATCACTCTGTTGTGC -ACGGAAGAGATCACTCTGCTAAGC -ACGGAAGAGATCACTCTGACTAGC -ACGGAAGAGATCACTCTGAGATGC -ACGGAAGAGATCACTCTGTGAAGG -ACGGAAGAGATCACTCTGCAATGG -ACGGAAGAGATCACTCTGATGAGG -ACGGAAGAGATCACTCTGAATGGG -ACGGAAGAGATCACTCTGTCCTGA -ACGGAAGAGATCACTCTGTAGCGA -ACGGAAGAGATCACTCTGCACAGA -ACGGAAGAGATCACTCTGGCAAGA -ACGGAAGAGATCACTCTGGGTTGA -ACGGAAGAGATCACTCTGTCCGAT -ACGGAAGAGATCACTCTGTGGCAT -ACGGAAGAGATCACTCTGCGAGAT -ACGGAAGAGATCACTCTGTACCAC -ACGGAAGAGATCACTCTGCAGAAC -ACGGAAGAGATCACTCTGGTCTAC -ACGGAAGAGATCACTCTGACGTAC -ACGGAAGAGATCACTCTGAGTGAC -ACGGAAGAGATCACTCTGCTGTAG -ACGGAAGAGATCACTCTGCCTAAG -ACGGAAGAGATCACTCTGGTTCAG -ACGGAAGAGATCACTCTGGCATAG -ACGGAAGAGATCACTCTGGACAAG -ACGGAAGAGATCACTCTGAAGCAG -ACGGAAGAGATCACTCTGCGTCAA -ACGGAAGAGATCACTCTGGCTGAA -ACGGAAGAGATCACTCTGAGTACG -ACGGAAGAGATCACTCTGATCCGA -ACGGAAGAGATCACTCTGATGGGA -ACGGAAGAGATCACTCTGGTGCAA -ACGGAAGAGATCACTCTGGAGGAA -ACGGAAGAGATCACTCTGCAGGTA -ACGGAAGAGATCACTCTGGACTCT -ACGGAAGAGATCACTCTGAGTCCT -ACGGAAGAGATCACTCTGTAAGCC -ACGGAAGAGATCACTCTGATAGCC -ACGGAAGAGATCACTCTGTAACCG -ACGGAAGAGATCACTCTGATGCCA -ACGGAAGAGATCCCTCAAGGAAAC -ACGGAAGAGATCCCTCAAAACACC -ACGGAAGAGATCCCTCAAATCGAG -ACGGAAGAGATCCCTCAACTCCTT -ACGGAAGAGATCCCTCAACCTGTT -ACGGAAGAGATCCCTCAACGGTTT -ACGGAAGAGATCCCTCAAGTGGTT -ACGGAAGAGATCCCTCAAGCCTTT -ACGGAAGAGATCCCTCAAGGTCTT -ACGGAAGAGATCCCTCAAACGCTT -ACGGAAGAGATCCCTCAAAGCGTT -ACGGAAGAGATCCCTCAATTCGTC -ACGGAAGAGATCCCTCAATCTCTC -ACGGAAGAGATCCCTCAATGGATC -ACGGAAGAGATCCCTCAACACTTC -ACGGAAGAGATCCCTCAAGTACTC -ACGGAAGAGATCCCTCAAGATGTC -ACGGAAGAGATCCCTCAAACAGTC -ACGGAAGAGATCCCTCAATTGCTG -ACGGAAGAGATCCCTCAATCCATG -ACGGAAGAGATCCCTCAATGTGTG -ACGGAAGAGATCCCTCAACTAGTG -ACGGAAGAGATCCCTCAACATCTG -ACGGAAGAGATCCCTCAAGAGTTG -ACGGAAGAGATCCCTCAAAGACTG -ACGGAAGAGATCCCTCAATCGGTA -ACGGAAGAGATCCCTCAATGCCTA -ACGGAAGAGATCCCTCAACCACTA -ACGGAAGAGATCCCTCAAGGAGTA -ACGGAAGAGATCCCTCAATCGTCT -ACGGAAGAGATCCCTCAATGCACT -ACGGAAGAGATCCCTCAACTGACT -ACGGAAGAGATCCCTCAACAACCT -ACGGAAGAGATCCCTCAAGCTACT -ACGGAAGAGATCCCTCAAGGATCT -ACGGAAGAGATCCCTCAAAAGGCT -ACGGAAGAGATCCCTCAATCAACC -ACGGAAGAGATCCCTCAATGTTCC -ACGGAAGAGATCCCTCAAATTCCC -ACGGAAGAGATCCCTCAATTCTCG -ACGGAAGAGATCCCTCAATAGACG -ACGGAAGAGATCCCTCAAGTAACG -ACGGAAGAGATCCCTCAAACTTCG -ACGGAAGAGATCCCTCAATACGCA -ACGGAAGAGATCCCTCAACTTGCA -ACGGAAGAGATCCCTCAACGAACA -ACGGAAGAGATCCCTCAACAGTCA -ACGGAAGAGATCCCTCAAGATCCA -ACGGAAGAGATCCCTCAAACGACA -ACGGAAGAGATCCCTCAAAGCTCA -ACGGAAGAGATCCCTCAATCACGT -ACGGAAGAGATCCCTCAACGTAGT -ACGGAAGAGATCCCTCAAGTCAGT -ACGGAAGAGATCCCTCAAGAAGGT -ACGGAAGAGATCCCTCAAAACCGT -ACGGAAGAGATCCCTCAATTGTGC -ACGGAAGAGATCCCTCAACTAAGC -ACGGAAGAGATCCCTCAAACTAGC -ACGGAAGAGATCCCTCAAAGATGC -ACGGAAGAGATCCCTCAATGAAGG -ACGGAAGAGATCCCTCAACAATGG -ACGGAAGAGATCCCTCAAATGAGG -ACGGAAGAGATCCCTCAAAATGGG -ACGGAAGAGATCCCTCAATCCTGA -ACGGAAGAGATCCCTCAATAGCGA -ACGGAAGAGATCCCTCAACACAGA -ACGGAAGAGATCCCTCAAGCAAGA -ACGGAAGAGATCCCTCAAGGTTGA -ACGGAAGAGATCCCTCAATCCGAT -ACGGAAGAGATCCCTCAATGGCAT -ACGGAAGAGATCCCTCAACGAGAT -ACGGAAGAGATCCCTCAATACCAC -ACGGAAGAGATCCCTCAACAGAAC -ACGGAAGAGATCCCTCAAGTCTAC -ACGGAAGAGATCCCTCAAACGTAC -ACGGAAGAGATCCCTCAAAGTGAC -ACGGAAGAGATCCCTCAACTGTAG -ACGGAAGAGATCCCTCAACCTAAG -ACGGAAGAGATCCCTCAAGTTCAG -ACGGAAGAGATCCCTCAAGCATAG -ACGGAAGAGATCCCTCAAGACAAG -ACGGAAGAGATCCCTCAAAAGCAG -ACGGAAGAGATCCCTCAACGTCAA -ACGGAAGAGATCCCTCAAGCTGAA -ACGGAAGAGATCCCTCAAAGTACG -ACGGAAGAGATCCCTCAAATCCGA -ACGGAAGAGATCCCTCAAATGGGA -ACGGAAGAGATCCCTCAAGTGCAA -ACGGAAGAGATCCCTCAAGAGGAA -ACGGAAGAGATCCCTCAACAGGTA -ACGGAAGAGATCCCTCAAGACTCT -ACGGAAGAGATCCCTCAAAGTCCT -ACGGAAGAGATCCCTCAATAAGCC -ACGGAAGAGATCCCTCAAATAGCC -ACGGAAGAGATCCCTCAATAACCG -ACGGAAGAGATCCCTCAAATGCCA -ACGGAAGAGATCACTGCTGGAAAC -ACGGAAGAGATCACTGCTAACACC -ACGGAAGAGATCACTGCTATCGAG -ACGGAAGAGATCACTGCTCTCCTT -ACGGAAGAGATCACTGCTCCTGTT -ACGGAAGAGATCACTGCTCGGTTT -ACGGAAGAGATCACTGCTGTGGTT -ACGGAAGAGATCACTGCTGCCTTT -ACGGAAGAGATCACTGCTGGTCTT -ACGGAAGAGATCACTGCTACGCTT -ACGGAAGAGATCACTGCTAGCGTT -ACGGAAGAGATCACTGCTTTCGTC -ACGGAAGAGATCACTGCTTCTCTC -ACGGAAGAGATCACTGCTTGGATC -ACGGAAGAGATCACTGCTCACTTC -ACGGAAGAGATCACTGCTGTACTC -ACGGAAGAGATCACTGCTGATGTC -ACGGAAGAGATCACTGCTACAGTC -ACGGAAGAGATCACTGCTTTGCTG -ACGGAAGAGATCACTGCTTCCATG -ACGGAAGAGATCACTGCTTGTGTG -ACGGAAGAGATCACTGCTCTAGTG -ACGGAAGAGATCACTGCTCATCTG -ACGGAAGAGATCACTGCTGAGTTG -ACGGAAGAGATCACTGCTAGACTG -ACGGAAGAGATCACTGCTTCGGTA -ACGGAAGAGATCACTGCTTGCCTA -ACGGAAGAGATCACTGCTCCACTA -ACGGAAGAGATCACTGCTGGAGTA -ACGGAAGAGATCACTGCTTCGTCT -ACGGAAGAGATCACTGCTTGCACT -ACGGAAGAGATCACTGCTCTGACT -ACGGAAGAGATCACTGCTCAACCT -ACGGAAGAGATCACTGCTGCTACT -ACGGAAGAGATCACTGCTGGATCT -ACGGAAGAGATCACTGCTAAGGCT -ACGGAAGAGATCACTGCTTCAACC -ACGGAAGAGATCACTGCTTGTTCC -ACGGAAGAGATCACTGCTATTCCC -ACGGAAGAGATCACTGCTTTCTCG -ACGGAAGAGATCACTGCTTAGACG -ACGGAAGAGATCACTGCTGTAACG -ACGGAAGAGATCACTGCTACTTCG -ACGGAAGAGATCACTGCTTACGCA -ACGGAAGAGATCACTGCTCTTGCA -ACGGAAGAGATCACTGCTCGAACA -ACGGAAGAGATCACTGCTCAGTCA -ACGGAAGAGATCACTGCTGATCCA -ACGGAAGAGATCACTGCTACGACA -ACGGAAGAGATCACTGCTAGCTCA -ACGGAAGAGATCACTGCTTCACGT -ACGGAAGAGATCACTGCTCGTAGT -ACGGAAGAGATCACTGCTGTCAGT -ACGGAAGAGATCACTGCTGAAGGT -ACGGAAGAGATCACTGCTAACCGT -ACGGAAGAGATCACTGCTTTGTGC -ACGGAAGAGATCACTGCTCTAAGC -ACGGAAGAGATCACTGCTACTAGC -ACGGAAGAGATCACTGCTAGATGC -ACGGAAGAGATCACTGCTTGAAGG -ACGGAAGAGATCACTGCTCAATGG -ACGGAAGAGATCACTGCTATGAGG -ACGGAAGAGATCACTGCTAATGGG -ACGGAAGAGATCACTGCTTCCTGA -ACGGAAGAGATCACTGCTTAGCGA -ACGGAAGAGATCACTGCTCACAGA -ACGGAAGAGATCACTGCTGCAAGA -ACGGAAGAGATCACTGCTGGTTGA -ACGGAAGAGATCACTGCTTCCGAT -ACGGAAGAGATCACTGCTTGGCAT -ACGGAAGAGATCACTGCTCGAGAT -ACGGAAGAGATCACTGCTTACCAC -ACGGAAGAGATCACTGCTCAGAAC -ACGGAAGAGATCACTGCTGTCTAC -ACGGAAGAGATCACTGCTACGTAC -ACGGAAGAGATCACTGCTAGTGAC -ACGGAAGAGATCACTGCTCTGTAG -ACGGAAGAGATCACTGCTCCTAAG -ACGGAAGAGATCACTGCTGTTCAG -ACGGAAGAGATCACTGCTGCATAG -ACGGAAGAGATCACTGCTGACAAG -ACGGAAGAGATCACTGCTAAGCAG -ACGGAAGAGATCACTGCTCGTCAA -ACGGAAGAGATCACTGCTGCTGAA -ACGGAAGAGATCACTGCTAGTACG -ACGGAAGAGATCACTGCTATCCGA -ACGGAAGAGATCACTGCTATGGGA -ACGGAAGAGATCACTGCTGTGCAA -ACGGAAGAGATCACTGCTGAGGAA -ACGGAAGAGATCACTGCTCAGGTA -ACGGAAGAGATCACTGCTGACTCT -ACGGAAGAGATCACTGCTAGTCCT -ACGGAAGAGATCACTGCTTAAGCC -ACGGAAGAGATCACTGCTATAGCC -ACGGAAGAGATCACTGCTTAACCG -ACGGAAGAGATCACTGCTATGCCA -ACGGAAGAGATCTCTGGAGGAAAC -ACGGAAGAGATCTCTGGAAACACC -ACGGAAGAGATCTCTGGAATCGAG -ACGGAAGAGATCTCTGGACTCCTT -ACGGAAGAGATCTCTGGACCTGTT -ACGGAAGAGATCTCTGGACGGTTT -ACGGAAGAGATCTCTGGAGTGGTT -ACGGAAGAGATCTCTGGAGCCTTT -ACGGAAGAGATCTCTGGAGGTCTT -ACGGAAGAGATCTCTGGAACGCTT -ACGGAAGAGATCTCTGGAAGCGTT -ACGGAAGAGATCTCTGGATTCGTC -ACGGAAGAGATCTCTGGATCTCTC -ACGGAAGAGATCTCTGGATGGATC -ACGGAAGAGATCTCTGGACACTTC -ACGGAAGAGATCTCTGGAGTACTC -ACGGAAGAGATCTCTGGAGATGTC -ACGGAAGAGATCTCTGGAACAGTC -ACGGAAGAGATCTCTGGATTGCTG -ACGGAAGAGATCTCTGGATCCATG -ACGGAAGAGATCTCTGGATGTGTG -ACGGAAGAGATCTCTGGACTAGTG -ACGGAAGAGATCTCTGGACATCTG -ACGGAAGAGATCTCTGGAGAGTTG -ACGGAAGAGATCTCTGGAAGACTG -ACGGAAGAGATCTCTGGATCGGTA -ACGGAAGAGATCTCTGGATGCCTA -ACGGAAGAGATCTCTGGACCACTA -ACGGAAGAGATCTCTGGAGGAGTA -ACGGAAGAGATCTCTGGATCGTCT -ACGGAAGAGATCTCTGGATGCACT -ACGGAAGAGATCTCTGGACTGACT -ACGGAAGAGATCTCTGGACAACCT -ACGGAAGAGATCTCTGGAGCTACT -ACGGAAGAGATCTCTGGAGGATCT -ACGGAAGAGATCTCTGGAAAGGCT -ACGGAAGAGATCTCTGGATCAACC -ACGGAAGAGATCTCTGGATGTTCC -ACGGAAGAGATCTCTGGAATTCCC -ACGGAAGAGATCTCTGGATTCTCG -ACGGAAGAGATCTCTGGATAGACG -ACGGAAGAGATCTCTGGAGTAACG -ACGGAAGAGATCTCTGGAACTTCG -ACGGAAGAGATCTCTGGATACGCA -ACGGAAGAGATCTCTGGACTTGCA -ACGGAAGAGATCTCTGGACGAACA -ACGGAAGAGATCTCTGGACAGTCA -ACGGAAGAGATCTCTGGAGATCCA -ACGGAAGAGATCTCTGGAACGACA -ACGGAAGAGATCTCTGGAAGCTCA -ACGGAAGAGATCTCTGGATCACGT -ACGGAAGAGATCTCTGGACGTAGT -ACGGAAGAGATCTCTGGAGTCAGT -ACGGAAGAGATCTCTGGAGAAGGT -ACGGAAGAGATCTCTGGAAACCGT -ACGGAAGAGATCTCTGGATTGTGC -ACGGAAGAGATCTCTGGACTAAGC -ACGGAAGAGATCTCTGGAACTAGC -ACGGAAGAGATCTCTGGAAGATGC -ACGGAAGAGATCTCTGGATGAAGG -ACGGAAGAGATCTCTGGACAATGG -ACGGAAGAGATCTCTGGAATGAGG -ACGGAAGAGATCTCTGGAAATGGG -ACGGAAGAGATCTCTGGATCCTGA -ACGGAAGAGATCTCTGGATAGCGA -ACGGAAGAGATCTCTGGACACAGA -ACGGAAGAGATCTCTGGAGCAAGA -ACGGAAGAGATCTCTGGAGGTTGA -ACGGAAGAGATCTCTGGATCCGAT -ACGGAAGAGATCTCTGGATGGCAT -ACGGAAGAGATCTCTGGACGAGAT -ACGGAAGAGATCTCTGGATACCAC -ACGGAAGAGATCTCTGGACAGAAC -ACGGAAGAGATCTCTGGAGTCTAC -ACGGAAGAGATCTCTGGAACGTAC -ACGGAAGAGATCTCTGGAAGTGAC -ACGGAAGAGATCTCTGGACTGTAG -ACGGAAGAGATCTCTGGACCTAAG -ACGGAAGAGATCTCTGGAGTTCAG -ACGGAAGAGATCTCTGGAGCATAG -ACGGAAGAGATCTCTGGAGACAAG -ACGGAAGAGATCTCTGGAAAGCAG -ACGGAAGAGATCTCTGGACGTCAA -ACGGAAGAGATCTCTGGAGCTGAA -ACGGAAGAGATCTCTGGAAGTACG -ACGGAAGAGATCTCTGGAATCCGA -ACGGAAGAGATCTCTGGAATGGGA -ACGGAAGAGATCTCTGGAGTGCAA -ACGGAAGAGATCTCTGGAGAGGAA -ACGGAAGAGATCTCTGGACAGGTA -ACGGAAGAGATCTCTGGAGACTCT -ACGGAAGAGATCTCTGGAAGTCCT -ACGGAAGAGATCTCTGGATAAGCC -ACGGAAGAGATCTCTGGAATAGCC -ACGGAAGAGATCTCTGGATAACCG -ACGGAAGAGATCTCTGGAATGCCA -ACGGAAGAGATCGCTAAGGGAAAC -ACGGAAGAGATCGCTAAGAACACC -ACGGAAGAGATCGCTAAGATCGAG -ACGGAAGAGATCGCTAAGCTCCTT -ACGGAAGAGATCGCTAAGCCTGTT -ACGGAAGAGATCGCTAAGCGGTTT -ACGGAAGAGATCGCTAAGGTGGTT -ACGGAAGAGATCGCTAAGGCCTTT -ACGGAAGAGATCGCTAAGGGTCTT -ACGGAAGAGATCGCTAAGACGCTT -ACGGAAGAGATCGCTAAGAGCGTT -ACGGAAGAGATCGCTAAGTTCGTC -ACGGAAGAGATCGCTAAGTCTCTC -ACGGAAGAGATCGCTAAGTGGATC -ACGGAAGAGATCGCTAAGCACTTC -ACGGAAGAGATCGCTAAGGTACTC -ACGGAAGAGATCGCTAAGGATGTC -ACGGAAGAGATCGCTAAGACAGTC -ACGGAAGAGATCGCTAAGTTGCTG -ACGGAAGAGATCGCTAAGTCCATG -ACGGAAGAGATCGCTAAGTGTGTG -ACGGAAGAGATCGCTAAGCTAGTG -ACGGAAGAGATCGCTAAGCATCTG -ACGGAAGAGATCGCTAAGGAGTTG -ACGGAAGAGATCGCTAAGAGACTG -ACGGAAGAGATCGCTAAGTCGGTA -ACGGAAGAGATCGCTAAGTGCCTA -ACGGAAGAGATCGCTAAGCCACTA -ACGGAAGAGATCGCTAAGGGAGTA -ACGGAAGAGATCGCTAAGTCGTCT -ACGGAAGAGATCGCTAAGTGCACT -ACGGAAGAGATCGCTAAGCTGACT -ACGGAAGAGATCGCTAAGCAACCT -ACGGAAGAGATCGCTAAGGCTACT -ACGGAAGAGATCGCTAAGGGATCT -ACGGAAGAGATCGCTAAGAAGGCT -ACGGAAGAGATCGCTAAGTCAACC -ACGGAAGAGATCGCTAAGTGTTCC -ACGGAAGAGATCGCTAAGATTCCC -ACGGAAGAGATCGCTAAGTTCTCG -ACGGAAGAGATCGCTAAGTAGACG -ACGGAAGAGATCGCTAAGGTAACG -ACGGAAGAGATCGCTAAGACTTCG -ACGGAAGAGATCGCTAAGTACGCA -ACGGAAGAGATCGCTAAGCTTGCA -ACGGAAGAGATCGCTAAGCGAACA -ACGGAAGAGATCGCTAAGCAGTCA -ACGGAAGAGATCGCTAAGGATCCA -ACGGAAGAGATCGCTAAGACGACA -ACGGAAGAGATCGCTAAGAGCTCA -ACGGAAGAGATCGCTAAGTCACGT -ACGGAAGAGATCGCTAAGCGTAGT -ACGGAAGAGATCGCTAAGGTCAGT -ACGGAAGAGATCGCTAAGGAAGGT -ACGGAAGAGATCGCTAAGAACCGT -ACGGAAGAGATCGCTAAGTTGTGC -ACGGAAGAGATCGCTAAGCTAAGC -ACGGAAGAGATCGCTAAGACTAGC -ACGGAAGAGATCGCTAAGAGATGC -ACGGAAGAGATCGCTAAGTGAAGG -ACGGAAGAGATCGCTAAGCAATGG -ACGGAAGAGATCGCTAAGATGAGG -ACGGAAGAGATCGCTAAGAATGGG -ACGGAAGAGATCGCTAAGTCCTGA -ACGGAAGAGATCGCTAAGTAGCGA -ACGGAAGAGATCGCTAAGCACAGA -ACGGAAGAGATCGCTAAGGCAAGA -ACGGAAGAGATCGCTAAGGGTTGA -ACGGAAGAGATCGCTAAGTCCGAT -ACGGAAGAGATCGCTAAGTGGCAT -ACGGAAGAGATCGCTAAGCGAGAT -ACGGAAGAGATCGCTAAGTACCAC -ACGGAAGAGATCGCTAAGCAGAAC -ACGGAAGAGATCGCTAAGGTCTAC -ACGGAAGAGATCGCTAAGACGTAC -ACGGAAGAGATCGCTAAGAGTGAC -ACGGAAGAGATCGCTAAGCTGTAG -ACGGAAGAGATCGCTAAGCCTAAG -ACGGAAGAGATCGCTAAGGTTCAG -ACGGAAGAGATCGCTAAGGCATAG -ACGGAAGAGATCGCTAAGGACAAG -ACGGAAGAGATCGCTAAGAAGCAG -ACGGAAGAGATCGCTAAGCGTCAA -ACGGAAGAGATCGCTAAGGCTGAA -ACGGAAGAGATCGCTAAGAGTACG -ACGGAAGAGATCGCTAAGATCCGA -ACGGAAGAGATCGCTAAGATGGGA -ACGGAAGAGATCGCTAAGGTGCAA -ACGGAAGAGATCGCTAAGGAGGAA -ACGGAAGAGATCGCTAAGCAGGTA -ACGGAAGAGATCGCTAAGGACTCT -ACGGAAGAGATCGCTAAGAGTCCT -ACGGAAGAGATCGCTAAGTAAGCC -ACGGAAGAGATCGCTAAGATAGCC -ACGGAAGAGATCGCTAAGTAACCG -ACGGAAGAGATCGCTAAGATGCCA -ACGGAAGAGATCACCTCAGGAAAC -ACGGAAGAGATCACCTCAAACACC -ACGGAAGAGATCACCTCAATCGAG -ACGGAAGAGATCACCTCACTCCTT -ACGGAAGAGATCACCTCACCTGTT -ACGGAAGAGATCACCTCACGGTTT -ACGGAAGAGATCACCTCAGTGGTT -ACGGAAGAGATCACCTCAGCCTTT -ACGGAAGAGATCACCTCAGGTCTT -ACGGAAGAGATCACCTCAACGCTT -ACGGAAGAGATCACCTCAAGCGTT -ACGGAAGAGATCACCTCATTCGTC -ACGGAAGAGATCACCTCATCTCTC -ACGGAAGAGATCACCTCATGGATC -ACGGAAGAGATCACCTCACACTTC -ACGGAAGAGATCACCTCAGTACTC -ACGGAAGAGATCACCTCAGATGTC -ACGGAAGAGATCACCTCAACAGTC -ACGGAAGAGATCACCTCATTGCTG -ACGGAAGAGATCACCTCATCCATG -ACGGAAGAGATCACCTCATGTGTG -ACGGAAGAGATCACCTCACTAGTG -ACGGAAGAGATCACCTCACATCTG -ACGGAAGAGATCACCTCAGAGTTG -ACGGAAGAGATCACCTCAAGACTG -ACGGAAGAGATCACCTCATCGGTA -ACGGAAGAGATCACCTCATGCCTA -ACGGAAGAGATCACCTCACCACTA -ACGGAAGAGATCACCTCAGGAGTA -ACGGAAGAGATCACCTCATCGTCT -ACGGAAGAGATCACCTCATGCACT -ACGGAAGAGATCACCTCACTGACT -ACGGAAGAGATCACCTCACAACCT -ACGGAAGAGATCACCTCAGCTACT -ACGGAAGAGATCACCTCAGGATCT -ACGGAAGAGATCACCTCAAAGGCT -ACGGAAGAGATCACCTCATCAACC -ACGGAAGAGATCACCTCATGTTCC -ACGGAAGAGATCACCTCAATTCCC -ACGGAAGAGATCACCTCATTCTCG -ACGGAAGAGATCACCTCATAGACG -ACGGAAGAGATCACCTCAGTAACG -ACGGAAGAGATCACCTCAACTTCG -ACGGAAGAGATCACCTCATACGCA -ACGGAAGAGATCACCTCACTTGCA -ACGGAAGAGATCACCTCACGAACA -ACGGAAGAGATCACCTCACAGTCA -ACGGAAGAGATCACCTCAGATCCA -ACGGAAGAGATCACCTCAACGACA -ACGGAAGAGATCACCTCAAGCTCA -ACGGAAGAGATCACCTCATCACGT -ACGGAAGAGATCACCTCACGTAGT -ACGGAAGAGATCACCTCAGTCAGT -ACGGAAGAGATCACCTCAGAAGGT -ACGGAAGAGATCACCTCAAACCGT -ACGGAAGAGATCACCTCATTGTGC -ACGGAAGAGATCACCTCACTAAGC -ACGGAAGAGATCACCTCAACTAGC -ACGGAAGAGATCACCTCAAGATGC -ACGGAAGAGATCACCTCATGAAGG -ACGGAAGAGATCACCTCACAATGG -ACGGAAGAGATCACCTCAATGAGG -ACGGAAGAGATCACCTCAAATGGG -ACGGAAGAGATCACCTCATCCTGA -ACGGAAGAGATCACCTCATAGCGA -ACGGAAGAGATCACCTCACACAGA -ACGGAAGAGATCACCTCAGCAAGA -ACGGAAGAGATCACCTCAGGTTGA -ACGGAAGAGATCACCTCATCCGAT -ACGGAAGAGATCACCTCATGGCAT -ACGGAAGAGATCACCTCACGAGAT -ACGGAAGAGATCACCTCATACCAC -ACGGAAGAGATCACCTCACAGAAC -ACGGAAGAGATCACCTCAGTCTAC -ACGGAAGAGATCACCTCAACGTAC -ACGGAAGAGATCACCTCAAGTGAC -ACGGAAGAGATCACCTCACTGTAG -ACGGAAGAGATCACCTCACCTAAG -ACGGAAGAGATCACCTCAGTTCAG -ACGGAAGAGATCACCTCAGCATAG -ACGGAAGAGATCACCTCAGACAAG -ACGGAAGAGATCACCTCAAAGCAG -ACGGAAGAGATCACCTCACGTCAA -ACGGAAGAGATCACCTCAGCTGAA -ACGGAAGAGATCACCTCAAGTACG -ACGGAAGAGATCACCTCAATCCGA -ACGGAAGAGATCACCTCAATGGGA -ACGGAAGAGATCACCTCAGTGCAA -ACGGAAGAGATCACCTCAGAGGAA -ACGGAAGAGATCACCTCACAGGTA -ACGGAAGAGATCACCTCAGACTCT -ACGGAAGAGATCACCTCAAGTCCT -ACGGAAGAGATCACCTCATAAGCC -ACGGAAGAGATCACCTCAATAGCC -ACGGAAGAGATCACCTCATAACCG -ACGGAAGAGATCACCTCAATGCCA -ACGGAAGAGATCTCCTGTGGAAAC -ACGGAAGAGATCTCCTGTAACACC -ACGGAAGAGATCTCCTGTATCGAG -ACGGAAGAGATCTCCTGTCTCCTT -ACGGAAGAGATCTCCTGTCCTGTT -ACGGAAGAGATCTCCTGTCGGTTT -ACGGAAGAGATCTCCTGTGTGGTT -ACGGAAGAGATCTCCTGTGCCTTT -ACGGAAGAGATCTCCTGTGGTCTT -ACGGAAGAGATCTCCTGTACGCTT -ACGGAAGAGATCTCCTGTAGCGTT -ACGGAAGAGATCTCCTGTTTCGTC -ACGGAAGAGATCTCCTGTTCTCTC -ACGGAAGAGATCTCCTGTTGGATC -ACGGAAGAGATCTCCTGTCACTTC -ACGGAAGAGATCTCCTGTGTACTC -ACGGAAGAGATCTCCTGTGATGTC -ACGGAAGAGATCTCCTGTACAGTC -ACGGAAGAGATCTCCTGTTTGCTG -ACGGAAGAGATCTCCTGTTCCATG -ACGGAAGAGATCTCCTGTTGTGTG -ACGGAAGAGATCTCCTGTCTAGTG -ACGGAAGAGATCTCCTGTCATCTG -ACGGAAGAGATCTCCTGTGAGTTG -ACGGAAGAGATCTCCTGTAGACTG -ACGGAAGAGATCTCCTGTTCGGTA -ACGGAAGAGATCTCCTGTTGCCTA -ACGGAAGAGATCTCCTGTCCACTA -ACGGAAGAGATCTCCTGTGGAGTA -ACGGAAGAGATCTCCTGTTCGTCT -ACGGAAGAGATCTCCTGTTGCACT -ACGGAAGAGATCTCCTGTCTGACT -ACGGAAGAGATCTCCTGTCAACCT -ACGGAAGAGATCTCCTGTGCTACT -ACGGAAGAGATCTCCTGTGGATCT -ACGGAAGAGATCTCCTGTAAGGCT -ACGGAAGAGATCTCCTGTTCAACC -ACGGAAGAGATCTCCTGTTGTTCC -ACGGAAGAGATCTCCTGTATTCCC -ACGGAAGAGATCTCCTGTTTCTCG -ACGGAAGAGATCTCCTGTTAGACG -ACGGAAGAGATCTCCTGTGTAACG -ACGGAAGAGATCTCCTGTACTTCG -ACGGAAGAGATCTCCTGTTACGCA -ACGGAAGAGATCTCCTGTCTTGCA -ACGGAAGAGATCTCCTGTCGAACA -ACGGAAGAGATCTCCTGTCAGTCA -ACGGAAGAGATCTCCTGTGATCCA -ACGGAAGAGATCTCCTGTACGACA -ACGGAAGAGATCTCCTGTAGCTCA -ACGGAAGAGATCTCCTGTTCACGT -ACGGAAGAGATCTCCTGTCGTAGT -ACGGAAGAGATCTCCTGTGTCAGT -ACGGAAGAGATCTCCTGTGAAGGT -ACGGAAGAGATCTCCTGTAACCGT -ACGGAAGAGATCTCCTGTTTGTGC -ACGGAAGAGATCTCCTGTCTAAGC -ACGGAAGAGATCTCCTGTACTAGC -ACGGAAGAGATCTCCTGTAGATGC -ACGGAAGAGATCTCCTGTTGAAGG -ACGGAAGAGATCTCCTGTCAATGG -ACGGAAGAGATCTCCTGTATGAGG -ACGGAAGAGATCTCCTGTAATGGG -ACGGAAGAGATCTCCTGTTCCTGA -ACGGAAGAGATCTCCTGTTAGCGA -ACGGAAGAGATCTCCTGTCACAGA -ACGGAAGAGATCTCCTGTGCAAGA -ACGGAAGAGATCTCCTGTGGTTGA -ACGGAAGAGATCTCCTGTTCCGAT -ACGGAAGAGATCTCCTGTTGGCAT -ACGGAAGAGATCTCCTGTCGAGAT -ACGGAAGAGATCTCCTGTTACCAC -ACGGAAGAGATCTCCTGTCAGAAC -ACGGAAGAGATCTCCTGTGTCTAC -ACGGAAGAGATCTCCTGTACGTAC -ACGGAAGAGATCTCCTGTAGTGAC -ACGGAAGAGATCTCCTGTCTGTAG -ACGGAAGAGATCTCCTGTCCTAAG -ACGGAAGAGATCTCCTGTGTTCAG -ACGGAAGAGATCTCCTGTGCATAG -ACGGAAGAGATCTCCTGTGACAAG -ACGGAAGAGATCTCCTGTAAGCAG -ACGGAAGAGATCTCCTGTCGTCAA -ACGGAAGAGATCTCCTGTGCTGAA -ACGGAAGAGATCTCCTGTAGTACG -ACGGAAGAGATCTCCTGTATCCGA -ACGGAAGAGATCTCCTGTATGGGA -ACGGAAGAGATCTCCTGTGTGCAA -ACGGAAGAGATCTCCTGTGAGGAA -ACGGAAGAGATCTCCTGTCAGGTA -ACGGAAGAGATCTCCTGTGACTCT -ACGGAAGAGATCTCCTGTAGTCCT -ACGGAAGAGATCTCCTGTTAAGCC -ACGGAAGAGATCTCCTGTATAGCC -ACGGAAGAGATCTCCTGTTAACCG -ACGGAAGAGATCTCCTGTATGCCA -ACGGAAGAGATCCCCATTGGAAAC -ACGGAAGAGATCCCCATTAACACC -ACGGAAGAGATCCCCATTATCGAG -ACGGAAGAGATCCCCATTCTCCTT -ACGGAAGAGATCCCCATTCCTGTT -ACGGAAGAGATCCCCATTCGGTTT -ACGGAAGAGATCCCCATTGTGGTT -ACGGAAGAGATCCCCATTGCCTTT -ACGGAAGAGATCCCCATTGGTCTT -ACGGAAGAGATCCCCATTACGCTT -ACGGAAGAGATCCCCATTAGCGTT -ACGGAAGAGATCCCCATTTTCGTC -ACGGAAGAGATCCCCATTTCTCTC -ACGGAAGAGATCCCCATTTGGATC -ACGGAAGAGATCCCCATTCACTTC -ACGGAAGAGATCCCCATTGTACTC -ACGGAAGAGATCCCCATTGATGTC -ACGGAAGAGATCCCCATTACAGTC -ACGGAAGAGATCCCCATTTTGCTG -ACGGAAGAGATCCCCATTTCCATG -ACGGAAGAGATCCCCATTTGTGTG -ACGGAAGAGATCCCCATTCTAGTG -ACGGAAGAGATCCCCATTCATCTG -ACGGAAGAGATCCCCATTGAGTTG -ACGGAAGAGATCCCCATTAGACTG -ACGGAAGAGATCCCCATTTCGGTA -ACGGAAGAGATCCCCATTTGCCTA -ACGGAAGAGATCCCCATTCCACTA -ACGGAAGAGATCCCCATTGGAGTA -ACGGAAGAGATCCCCATTTCGTCT -ACGGAAGAGATCCCCATTTGCACT -ACGGAAGAGATCCCCATTCTGACT -ACGGAAGAGATCCCCATTCAACCT -ACGGAAGAGATCCCCATTGCTACT -ACGGAAGAGATCCCCATTGGATCT -ACGGAAGAGATCCCCATTAAGGCT -ACGGAAGAGATCCCCATTTCAACC -ACGGAAGAGATCCCCATTTGTTCC -ACGGAAGAGATCCCCATTATTCCC -ACGGAAGAGATCCCCATTTTCTCG -ACGGAAGAGATCCCCATTTAGACG -ACGGAAGAGATCCCCATTGTAACG -ACGGAAGAGATCCCCATTACTTCG -ACGGAAGAGATCCCCATTTACGCA -ACGGAAGAGATCCCCATTCTTGCA -ACGGAAGAGATCCCCATTCGAACA -ACGGAAGAGATCCCCATTCAGTCA -ACGGAAGAGATCCCCATTGATCCA -ACGGAAGAGATCCCCATTACGACA -ACGGAAGAGATCCCCATTAGCTCA -ACGGAAGAGATCCCCATTTCACGT -ACGGAAGAGATCCCCATTCGTAGT -ACGGAAGAGATCCCCATTGTCAGT -ACGGAAGAGATCCCCATTGAAGGT -ACGGAAGAGATCCCCATTAACCGT -ACGGAAGAGATCCCCATTTTGTGC -ACGGAAGAGATCCCCATTCTAAGC -ACGGAAGAGATCCCCATTACTAGC -ACGGAAGAGATCCCCATTAGATGC -ACGGAAGAGATCCCCATTTGAAGG -ACGGAAGAGATCCCCATTCAATGG -ACGGAAGAGATCCCCATTATGAGG -ACGGAAGAGATCCCCATTAATGGG -ACGGAAGAGATCCCCATTTCCTGA -ACGGAAGAGATCCCCATTTAGCGA -ACGGAAGAGATCCCCATTCACAGA -ACGGAAGAGATCCCCATTGCAAGA -ACGGAAGAGATCCCCATTGGTTGA -ACGGAAGAGATCCCCATTTCCGAT -ACGGAAGAGATCCCCATTTGGCAT -ACGGAAGAGATCCCCATTCGAGAT -ACGGAAGAGATCCCCATTTACCAC -ACGGAAGAGATCCCCATTCAGAAC -ACGGAAGAGATCCCCATTGTCTAC -ACGGAAGAGATCCCCATTACGTAC -ACGGAAGAGATCCCCATTAGTGAC -ACGGAAGAGATCCCCATTCTGTAG -ACGGAAGAGATCCCCATTCCTAAG -ACGGAAGAGATCCCCATTGTTCAG -ACGGAAGAGATCCCCATTGCATAG -ACGGAAGAGATCCCCATTGACAAG -ACGGAAGAGATCCCCATTAAGCAG -ACGGAAGAGATCCCCATTCGTCAA -ACGGAAGAGATCCCCATTGCTGAA -ACGGAAGAGATCCCCATTAGTACG -ACGGAAGAGATCCCCATTATCCGA -ACGGAAGAGATCCCCATTATGGGA -ACGGAAGAGATCCCCATTGTGCAA -ACGGAAGAGATCCCCATTGAGGAA -ACGGAAGAGATCCCCATTCAGGTA -ACGGAAGAGATCCCCATTGACTCT -ACGGAAGAGATCCCCATTAGTCCT -ACGGAAGAGATCCCCATTTAAGCC -ACGGAAGAGATCCCCATTATAGCC -ACGGAAGAGATCCCCATTTAACCG -ACGGAAGAGATCCCCATTATGCCA -ACGGAAGAGATCTCGTTCGGAAAC -ACGGAAGAGATCTCGTTCAACACC -ACGGAAGAGATCTCGTTCATCGAG -ACGGAAGAGATCTCGTTCCTCCTT -ACGGAAGAGATCTCGTTCCCTGTT -ACGGAAGAGATCTCGTTCCGGTTT -ACGGAAGAGATCTCGTTCGTGGTT -ACGGAAGAGATCTCGTTCGCCTTT -ACGGAAGAGATCTCGTTCGGTCTT -ACGGAAGAGATCTCGTTCACGCTT -ACGGAAGAGATCTCGTTCAGCGTT -ACGGAAGAGATCTCGTTCTTCGTC -ACGGAAGAGATCTCGTTCTCTCTC -ACGGAAGAGATCTCGTTCTGGATC -ACGGAAGAGATCTCGTTCCACTTC -ACGGAAGAGATCTCGTTCGTACTC -ACGGAAGAGATCTCGTTCGATGTC -ACGGAAGAGATCTCGTTCACAGTC -ACGGAAGAGATCTCGTTCTTGCTG -ACGGAAGAGATCTCGTTCTCCATG -ACGGAAGAGATCTCGTTCTGTGTG -ACGGAAGAGATCTCGTTCCTAGTG -ACGGAAGAGATCTCGTTCCATCTG -ACGGAAGAGATCTCGTTCGAGTTG -ACGGAAGAGATCTCGTTCAGACTG -ACGGAAGAGATCTCGTTCTCGGTA -ACGGAAGAGATCTCGTTCTGCCTA -ACGGAAGAGATCTCGTTCCCACTA -ACGGAAGAGATCTCGTTCGGAGTA -ACGGAAGAGATCTCGTTCTCGTCT -ACGGAAGAGATCTCGTTCTGCACT -ACGGAAGAGATCTCGTTCCTGACT -ACGGAAGAGATCTCGTTCCAACCT -ACGGAAGAGATCTCGTTCGCTACT -ACGGAAGAGATCTCGTTCGGATCT -ACGGAAGAGATCTCGTTCAAGGCT -ACGGAAGAGATCTCGTTCTCAACC -ACGGAAGAGATCTCGTTCTGTTCC -ACGGAAGAGATCTCGTTCATTCCC -ACGGAAGAGATCTCGTTCTTCTCG -ACGGAAGAGATCTCGTTCTAGACG -ACGGAAGAGATCTCGTTCGTAACG -ACGGAAGAGATCTCGTTCACTTCG -ACGGAAGAGATCTCGTTCTACGCA -ACGGAAGAGATCTCGTTCCTTGCA -ACGGAAGAGATCTCGTTCCGAACA -ACGGAAGAGATCTCGTTCCAGTCA -ACGGAAGAGATCTCGTTCGATCCA -ACGGAAGAGATCTCGTTCACGACA -ACGGAAGAGATCTCGTTCAGCTCA -ACGGAAGAGATCTCGTTCTCACGT -ACGGAAGAGATCTCGTTCCGTAGT -ACGGAAGAGATCTCGTTCGTCAGT -ACGGAAGAGATCTCGTTCGAAGGT -ACGGAAGAGATCTCGTTCAACCGT -ACGGAAGAGATCTCGTTCTTGTGC -ACGGAAGAGATCTCGTTCCTAAGC -ACGGAAGAGATCTCGTTCACTAGC -ACGGAAGAGATCTCGTTCAGATGC -ACGGAAGAGATCTCGTTCTGAAGG -ACGGAAGAGATCTCGTTCCAATGG -ACGGAAGAGATCTCGTTCATGAGG -ACGGAAGAGATCTCGTTCAATGGG -ACGGAAGAGATCTCGTTCTCCTGA -ACGGAAGAGATCTCGTTCTAGCGA -ACGGAAGAGATCTCGTTCCACAGA -ACGGAAGAGATCTCGTTCGCAAGA -ACGGAAGAGATCTCGTTCGGTTGA -ACGGAAGAGATCTCGTTCTCCGAT -ACGGAAGAGATCTCGTTCTGGCAT -ACGGAAGAGATCTCGTTCCGAGAT -ACGGAAGAGATCTCGTTCTACCAC -ACGGAAGAGATCTCGTTCCAGAAC -ACGGAAGAGATCTCGTTCGTCTAC -ACGGAAGAGATCTCGTTCACGTAC -ACGGAAGAGATCTCGTTCAGTGAC -ACGGAAGAGATCTCGTTCCTGTAG -ACGGAAGAGATCTCGTTCCCTAAG -ACGGAAGAGATCTCGTTCGTTCAG -ACGGAAGAGATCTCGTTCGCATAG -ACGGAAGAGATCTCGTTCGACAAG -ACGGAAGAGATCTCGTTCAAGCAG -ACGGAAGAGATCTCGTTCCGTCAA -ACGGAAGAGATCTCGTTCGCTGAA -ACGGAAGAGATCTCGTTCAGTACG -ACGGAAGAGATCTCGTTCATCCGA -ACGGAAGAGATCTCGTTCATGGGA -ACGGAAGAGATCTCGTTCGTGCAA -ACGGAAGAGATCTCGTTCGAGGAA -ACGGAAGAGATCTCGTTCCAGGTA -ACGGAAGAGATCTCGTTCGACTCT -ACGGAAGAGATCTCGTTCAGTCCT -ACGGAAGAGATCTCGTTCTAAGCC -ACGGAAGAGATCTCGTTCATAGCC -ACGGAAGAGATCTCGTTCTAACCG -ACGGAAGAGATCTCGTTCATGCCA -ACGGAAGAGATCACGTAGGGAAAC -ACGGAAGAGATCACGTAGAACACC -ACGGAAGAGATCACGTAGATCGAG -ACGGAAGAGATCACGTAGCTCCTT -ACGGAAGAGATCACGTAGCCTGTT -ACGGAAGAGATCACGTAGCGGTTT -ACGGAAGAGATCACGTAGGTGGTT -ACGGAAGAGATCACGTAGGCCTTT -ACGGAAGAGATCACGTAGGGTCTT -ACGGAAGAGATCACGTAGACGCTT -ACGGAAGAGATCACGTAGAGCGTT -ACGGAAGAGATCACGTAGTTCGTC -ACGGAAGAGATCACGTAGTCTCTC -ACGGAAGAGATCACGTAGTGGATC -ACGGAAGAGATCACGTAGCACTTC -ACGGAAGAGATCACGTAGGTACTC -ACGGAAGAGATCACGTAGGATGTC -ACGGAAGAGATCACGTAGACAGTC -ACGGAAGAGATCACGTAGTTGCTG -ACGGAAGAGATCACGTAGTCCATG -ACGGAAGAGATCACGTAGTGTGTG -ACGGAAGAGATCACGTAGCTAGTG -ACGGAAGAGATCACGTAGCATCTG -ACGGAAGAGATCACGTAGGAGTTG -ACGGAAGAGATCACGTAGAGACTG -ACGGAAGAGATCACGTAGTCGGTA -ACGGAAGAGATCACGTAGTGCCTA -ACGGAAGAGATCACGTAGCCACTA -ACGGAAGAGATCACGTAGGGAGTA -ACGGAAGAGATCACGTAGTCGTCT -ACGGAAGAGATCACGTAGTGCACT -ACGGAAGAGATCACGTAGCTGACT -ACGGAAGAGATCACGTAGCAACCT -ACGGAAGAGATCACGTAGGCTACT -ACGGAAGAGATCACGTAGGGATCT -ACGGAAGAGATCACGTAGAAGGCT -ACGGAAGAGATCACGTAGTCAACC -ACGGAAGAGATCACGTAGTGTTCC -ACGGAAGAGATCACGTAGATTCCC -ACGGAAGAGATCACGTAGTTCTCG -ACGGAAGAGATCACGTAGTAGACG -ACGGAAGAGATCACGTAGGTAACG -ACGGAAGAGATCACGTAGACTTCG -ACGGAAGAGATCACGTAGTACGCA -ACGGAAGAGATCACGTAGCTTGCA -ACGGAAGAGATCACGTAGCGAACA -ACGGAAGAGATCACGTAGCAGTCA -ACGGAAGAGATCACGTAGGATCCA -ACGGAAGAGATCACGTAGACGACA -ACGGAAGAGATCACGTAGAGCTCA -ACGGAAGAGATCACGTAGTCACGT -ACGGAAGAGATCACGTAGCGTAGT -ACGGAAGAGATCACGTAGGTCAGT -ACGGAAGAGATCACGTAGGAAGGT -ACGGAAGAGATCACGTAGAACCGT -ACGGAAGAGATCACGTAGTTGTGC -ACGGAAGAGATCACGTAGCTAAGC -ACGGAAGAGATCACGTAGACTAGC -ACGGAAGAGATCACGTAGAGATGC -ACGGAAGAGATCACGTAGTGAAGG -ACGGAAGAGATCACGTAGCAATGG -ACGGAAGAGATCACGTAGATGAGG -ACGGAAGAGATCACGTAGAATGGG -ACGGAAGAGATCACGTAGTCCTGA -ACGGAAGAGATCACGTAGTAGCGA -ACGGAAGAGATCACGTAGCACAGA -ACGGAAGAGATCACGTAGGCAAGA -ACGGAAGAGATCACGTAGGGTTGA -ACGGAAGAGATCACGTAGTCCGAT -ACGGAAGAGATCACGTAGTGGCAT -ACGGAAGAGATCACGTAGCGAGAT -ACGGAAGAGATCACGTAGTACCAC -ACGGAAGAGATCACGTAGCAGAAC -ACGGAAGAGATCACGTAGGTCTAC -ACGGAAGAGATCACGTAGACGTAC -ACGGAAGAGATCACGTAGAGTGAC -ACGGAAGAGATCACGTAGCTGTAG -ACGGAAGAGATCACGTAGCCTAAG -ACGGAAGAGATCACGTAGGTTCAG -ACGGAAGAGATCACGTAGGCATAG -ACGGAAGAGATCACGTAGGACAAG -ACGGAAGAGATCACGTAGAAGCAG -ACGGAAGAGATCACGTAGCGTCAA -ACGGAAGAGATCACGTAGGCTGAA -ACGGAAGAGATCACGTAGAGTACG -ACGGAAGAGATCACGTAGATCCGA -ACGGAAGAGATCACGTAGATGGGA -ACGGAAGAGATCACGTAGGTGCAA -ACGGAAGAGATCACGTAGGAGGAA -ACGGAAGAGATCACGTAGCAGGTA -ACGGAAGAGATCACGTAGGACTCT -ACGGAAGAGATCACGTAGAGTCCT -ACGGAAGAGATCACGTAGTAAGCC -ACGGAAGAGATCACGTAGATAGCC -ACGGAAGAGATCACGTAGTAACCG -ACGGAAGAGATCACGTAGATGCCA -ACGGAAGAGATCACGGTAGGAAAC -ACGGAAGAGATCACGGTAAACACC -ACGGAAGAGATCACGGTAATCGAG -ACGGAAGAGATCACGGTACTCCTT -ACGGAAGAGATCACGGTACCTGTT -ACGGAAGAGATCACGGTACGGTTT -ACGGAAGAGATCACGGTAGTGGTT -ACGGAAGAGATCACGGTAGCCTTT -ACGGAAGAGATCACGGTAGGTCTT -ACGGAAGAGATCACGGTAACGCTT -ACGGAAGAGATCACGGTAAGCGTT -ACGGAAGAGATCACGGTATTCGTC -ACGGAAGAGATCACGGTATCTCTC -ACGGAAGAGATCACGGTATGGATC -ACGGAAGAGATCACGGTACACTTC -ACGGAAGAGATCACGGTAGTACTC -ACGGAAGAGATCACGGTAGATGTC -ACGGAAGAGATCACGGTAACAGTC -ACGGAAGAGATCACGGTATTGCTG -ACGGAAGAGATCACGGTATCCATG -ACGGAAGAGATCACGGTATGTGTG -ACGGAAGAGATCACGGTACTAGTG -ACGGAAGAGATCACGGTACATCTG -ACGGAAGAGATCACGGTAGAGTTG -ACGGAAGAGATCACGGTAAGACTG -ACGGAAGAGATCACGGTATCGGTA -ACGGAAGAGATCACGGTATGCCTA -ACGGAAGAGATCACGGTACCACTA -ACGGAAGAGATCACGGTAGGAGTA -ACGGAAGAGATCACGGTATCGTCT -ACGGAAGAGATCACGGTATGCACT -ACGGAAGAGATCACGGTACTGACT -ACGGAAGAGATCACGGTACAACCT -ACGGAAGAGATCACGGTAGCTACT -ACGGAAGAGATCACGGTAGGATCT -ACGGAAGAGATCACGGTAAAGGCT -ACGGAAGAGATCACGGTATCAACC -ACGGAAGAGATCACGGTATGTTCC -ACGGAAGAGATCACGGTAATTCCC -ACGGAAGAGATCACGGTATTCTCG -ACGGAAGAGATCACGGTATAGACG -ACGGAAGAGATCACGGTAGTAACG -ACGGAAGAGATCACGGTAACTTCG -ACGGAAGAGATCACGGTATACGCA -ACGGAAGAGATCACGGTACTTGCA -ACGGAAGAGATCACGGTACGAACA -ACGGAAGAGATCACGGTACAGTCA -ACGGAAGAGATCACGGTAGATCCA -ACGGAAGAGATCACGGTAACGACA -ACGGAAGAGATCACGGTAAGCTCA -ACGGAAGAGATCACGGTATCACGT -ACGGAAGAGATCACGGTACGTAGT -ACGGAAGAGATCACGGTAGTCAGT -ACGGAAGAGATCACGGTAGAAGGT -ACGGAAGAGATCACGGTAAACCGT -ACGGAAGAGATCACGGTATTGTGC -ACGGAAGAGATCACGGTACTAAGC -ACGGAAGAGATCACGGTAACTAGC -ACGGAAGAGATCACGGTAAGATGC -ACGGAAGAGATCACGGTATGAAGG -ACGGAAGAGATCACGGTACAATGG -ACGGAAGAGATCACGGTAATGAGG -ACGGAAGAGATCACGGTAAATGGG -ACGGAAGAGATCACGGTATCCTGA -ACGGAAGAGATCACGGTATAGCGA -ACGGAAGAGATCACGGTACACAGA -ACGGAAGAGATCACGGTAGCAAGA -ACGGAAGAGATCACGGTAGGTTGA -ACGGAAGAGATCACGGTATCCGAT -ACGGAAGAGATCACGGTATGGCAT -ACGGAAGAGATCACGGTACGAGAT -ACGGAAGAGATCACGGTATACCAC -ACGGAAGAGATCACGGTACAGAAC -ACGGAAGAGATCACGGTAGTCTAC -ACGGAAGAGATCACGGTAACGTAC -ACGGAAGAGATCACGGTAAGTGAC -ACGGAAGAGATCACGGTACTGTAG -ACGGAAGAGATCACGGTACCTAAG -ACGGAAGAGATCACGGTAGTTCAG -ACGGAAGAGATCACGGTAGCATAG -ACGGAAGAGATCACGGTAGACAAG -ACGGAAGAGATCACGGTAAAGCAG -ACGGAAGAGATCACGGTACGTCAA -ACGGAAGAGATCACGGTAGCTGAA -ACGGAAGAGATCACGGTAAGTACG -ACGGAAGAGATCACGGTAATCCGA -ACGGAAGAGATCACGGTAATGGGA -ACGGAAGAGATCACGGTAGTGCAA -ACGGAAGAGATCACGGTAGAGGAA -ACGGAAGAGATCACGGTACAGGTA -ACGGAAGAGATCACGGTAGACTCT -ACGGAAGAGATCACGGTAAGTCCT -ACGGAAGAGATCACGGTATAAGCC -ACGGAAGAGATCACGGTAATAGCC -ACGGAAGAGATCACGGTATAACCG -ACGGAAGAGATCACGGTAATGCCA -ACGGAAGAGATCTCGACTGGAAAC -ACGGAAGAGATCTCGACTAACACC -ACGGAAGAGATCTCGACTATCGAG -ACGGAAGAGATCTCGACTCTCCTT -ACGGAAGAGATCTCGACTCCTGTT -ACGGAAGAGATCTCGACTCGGTTT -ACGGAAGAGATCTCGACTGTGGTT -ACGGAAGAGATCTCGACTGCCTTT -ACGGAAGAGATCTCGACTGGTCTT -ACGGAAGAGATCTCGACTACGCTT -ACGGAAGAGATCTCGACTAGCGTT -ACGGAAGAGATCTCGACTTTCGTC -ACGGAAGAGATCTCGACTTCTCTC -ACGGAAGAGATCTCGACTTGGATC -ACGGAAGAGATCTCGACTCACTTC -ACGGAAGAGATCTCGACTGTACTC -ACGGAAGAGATCTCGACTGATGTC -ACGGAAGAGATCTCGACTACAGTC -ACGGAAGAGATCTCGACTTTGCTG -ACGGAAGAGATCTCGACTTCCATG -ACGGAAGAGATCTCGACTTGTGTG -ACGGAAGAGATCTCGACTCTAGTG -ACGGAAGAGATCTCGACTCATCTG -ACGGAAGAGATCTCGACTGAGTTG -ACGGAAGAGATCTCGACTAGACTG -ACGGAAGAGATCTCGACTTCGGTA -ACGGAAGAGATCTCGACTTGCCTA -ACGGAAGAGATCTCGACTCCACTA -ACGGAAGAGATCTCGACTGGAGTA -ACGGAAGAGATCTCGACTTCGTCT -ACGGAAGAGATCTCGACTTGCACT -ACGGAAGAGATCTCGACTCTGACT -ACGGAAGAGATCTCGACTCAACCT -ACGGAAGAGATCTCGACTGCTACT -ACGGAAGAGATCTCGACTGGATCT -ACGGAAGAGATCTCGACTAAGGCT -ACGGAAGAGATCTCGACTTCAACC -ACGGAAGAGATCTCGACTTGTTCC -ACGGAAGAGATCTCGACTATTCCC -ACGGAAGAGATCTCGACTTTCTCG -ACGGAAGAGATCTCGACTTAGACG -ACGGAAGAGATCTCGACTGTAACG -ACGGAAGAGATCTCGACTACTTCG -ACGGAAGAGATCTCGACTTACGCA -ACGGAAGAGATCTCGACTCTTGCA -ACGGAAGAGATCTCGACTCGAACA -ACGGAAGAGATCTCGACTCAGTCA -ACGGAAGAGATCTCGACTGATCCA -ACGGAAGAGATCTCGACTACGACA -ACGGAAGAGATCTCGACTAGCTCA -ACGGAAGAGATCTCGACTTCACGT -ACGGAAGAGATCTCGACTCGTAGT -ACGGAAGAGATCTCGACTGTCAGT -ACGGAAGAGATCTCGACTGAAGGT -ACGGAAGAGATCTCGACTAACCGT -ACGGAAGAGATCTCGACTTTGTGC -ACGGAAGAGATCTCGACTCTAAGC -ACGGAAGAGATCTCGACTACTAGC -ACGGAAGAGATCTCGACTAGATGC -ACGGAAGAGATCTCGACTTGAAGG -ACGGAAGAGATCTCGACTCAATGG -ACGGAAGAGATCTCGACTATGAGG -ACGGAAGAGATCTCGACTAATGGG -ACGGAAGAGATCTCGACTTCCTGA -ACGGAAGAGATCTCGACTTAGCGA -ACGGAAGAGATCTCGACTCACAGA -ACGGAAGAGATCTCGACTGCAAGA -ACGGAAGAGATCTCGACTGGTTGA -ACGGAAGAGATCTCGACTTCCGAT -ACGGAAGAGATCTCGACTTGGCAT -ACGGAAGAGATCTCGACTCGAGAT -ACGGAAGAGATCTCGACTTACCAC -ACGGAAGAGATCTCGACTCAGAAC -ACGGAAGAGATCTCGACTGTCTAC -ACGGAAGAGATCTCGACTACGTAC -ACGGAAGAGATCTCGACTAGTGAC -ACGGAAGAGATCTCGACTCTGTAG -ACGGAAGAGATCTCGACTCCTAAG -ACGGAAGAGATCTCGACTGTTCAG -ACGGAAGAGATCTCGACTGCATAG -ACGGAAGAGATCTCGACTGACAAG -ACGGAAGAGATCTCGACTAAGCAG -ACGGAAGAGATCTCGACTCGTCAA -ACGGAAGAGATCTCGACTGCTGAA -ACGGAAGAGATCTCGACTAGTACG -ACGGAAGAGATCTCGACTATCCGA -ACGGAAGAGATCTCGACTATGGGA -ACGGAAGAGATCTCGACTGTGCAA -ACGGAAGAGATCTCGACTGAGGAA -ACGGAAGAGATCTCGACTCAGGTA -ACGGAAGAGATCTCGACTGACTCT -ACGGAAGAGATCTCGACTAGTCCT -ACGGAAGAGATCTCGACTTAAGCC -ACGGAAGAGATCTCGACTATAGCC -ACGGAAGAGATCTCGACTTAACCG -ACGGAAGAGATCTCGACTATGCCA -ACGGAAGAGATCGCATACGGAAAC -ACGGAAGAGATCGCATACAACACC -ACGGAAGAGATCGCATACATCGAG -ACGGAAGAGATCGCATACCTCCTT -ACGGAAGAGATCGCATACCCTGTT -ACGGAAGAGATCGCATACCGGTTT -ACGGAAGAGATCGCATACGTGGTT -ACGGAAGAGATCGCATACGCCTTT -ACGGAAGAGATCGCATACGGTCTT -ACGGAAGAGATCGCATACACGCTT -ACGGAAGAGATCGCATACAGCGTT -ACGGAAGAGATCGCATACTTCGTC -ACGGAAGAGATCGCATACTCTCTC -ACGGAAGAGATCGCATACTGGATC -ACGGAAGAGATCGCATACCACTTC -ACGGAAGAGATCGCATACGTACTC -ACGGAAGAGATCGCATACGATGTC -ACGGAAGAGATCGCATACACAGTC -ACGGAAGAGATCGCATACTTGCTG -ACGGAAGAGATCGCATACTCCATG -ACGGAAGAGATCGCATACTGTGTG -ACGGAAGAGATCGCATACCTAGTG -ACGGAAGAGATCGCATACCATCTG -ACGGAAGAGATCGCATACGAGTTG -ACGGAAGAGATCGCATACAGACTG -ACGGAAGAGATCGCATACTCGGTA -ACGGAAGAGATCGCATACTGCCTA -ACGGAAGAGATCGCATACCCACTA -ACGGAAGAGATCGCATACGGAGTA -ACGGAAGAGATCGCATACTCGTCT -ACGGAAGAGATCGCATACTGCACT -ACGGAAGAGATCGCATACCTGACT -ACGGAAGAGATCGCATACCAACCT -ACGGAAGAGATCGCATACGCTACT -ACGGAAGAGATCGCATACGGATCT -ACGGAAGAGATCGCATACAAGGCT -ACGGAAGAGATCGCATACTCAACC -ACGGAAGAGATCGCATACTGTTCC -ACGGAAGAGATCGCATACATTCCC -ACGGAAGAGATCGCATACTTCTCG -ACGGAAGAGATCGCATACTAGACG -ACGGAAGAGATCGCATACGTAACG -ACGGAAGAGATCGCATACACTTCG -ACGGAAGAGATCGCATACTACGCA -ACGGAAGAGATCGCATACCTTGCA -ACGGAAGAGATCGCATACCGAACA -ACGGAAGAGATCGCATACCAGTCA -ACGGAAGAGATCGCATACGATCCA -ACGGAAGAGATCGCATACACGACA -ACGGAAGAGATCGCATACAGCTCA -ACGGAAGAGATCGCATACTCACGT -ACGGAAGAGATCGCATACCGTAGT -ACGGAAGAGATCGCATACGTCAGT -ACGGAAGAGATCGCATACGAAGGT -ACGGAAGAGATCGCATACAACCGT -ACGGAAGAGATCGCATACTTGTGC -ACGGAAGAGATCGCATACCTAAGC -ACGGAAGAGATCGCATACACTAGC -ACGGAAGAGATCGCATACAGATGC -ACGGAAGAGATCGCATACTGAAGG -ACGGAAGAGATCGCATACCAATGG -ACGGAAGAGATCGCATACATGAGG -ACGGAAGAGATCGCATACAATGGG -ACGGAAGAGATCGCATACTCCTGA -ACGGAAGAGATCGCATACTAGCGA -ACGGAAGAGATCGCATACCACAGA -ACGGAAGAGATCGCATACGCAAGA -ACGGAAGAGATCGCATACGGTTGA -ACGGAAGAGATCGCATACTCCGAT -ACGGAAGAGATCGCATACTGGCAT -ACGGAAGAGATCGCATACCGAGAT -ACGGAAGAGATCGCATACTACCAC -ACGGAAGAGATCGCATACCAGAAC -ACGGAAGAGATCGCATACGTCTAC -ACGGAAGAGATCGCATACACGTAC -ACGGAAGAGATCGCATACAGTGAC -ACGGAAGAGATCGCATACCTGTAG -ACGGAAGAGATCGCATACCCTAAG -ACGGAAGAGATCGCATACGTTCAG -ACGGAAGAGATCGCATACGCATAG -ACGGAAGAGATCGCATACGACAAG -ACGGAAGAGATCGCATACAAGCAG -ACGGAAGAGATCGCATACCGTCAA -ACGGAAGAGATCGCATACGCTGAA -ACGGAAGAGATCGCATACAGTACG -ACGGAAGAGATCGCATACATCCGA -ACGGAAGAGATCGCATACATGGGA -ACGGAAGAGATCGCATACGTGCAA -ACGGAAGAGATCGCATACGAGGAA -ACGGAAGAGATCGCATACCAGGTA -ACGGAAGAGATCGCATACGACTCT -ACGGAAGAGATCGCATACAGTCCT -ACGGAAGAGATCGCATACTAAGCC -ACGGAAGAGATCGCATACATAGCC -ACGGAAGAGATCGCATACTAACCG -ACGGAAGAGATCGCATACATGCCA -ACGGAAGAGATCGCACTTGGAAAC -ACGGAAGAGATCGCACTTAACACC -ACGGAAGAGATCGCACTTATCGAG -ACGGAAGAGATCGCACTTCTCCTT -ACGGAAGAGATCGCACTTCCTGTT -ACGGAAGAGATCGCACTTCGGTTT -ACGGAAGAGATCGCACTTGTGGTT -ACGGAAGAGATCGCACTTGCCTTT -ACGGAAGAGATCGCACTTGGTCTT -ACGGAAGAGATCGCACTTACGCTT -ACGGAAGAGATCGCACTTAGCGTT -ACGGAAGAGATCGCACTTTTCGTC -ACGGAAGAGATCGCACTTTCTCTC -ACGGAAGAGATCGCACTTTGGATC -ACGGAAGAGATCGCACTTCACTTC -ACGGAAGAGATCGCACTTGTACTC -ACGGAAGAGATCGCACTTGATGTC -ACGGAAGAGATCGCACTTACAGTC -ACGGAAGAGATCGCACTTTTGCTG -ACGGAAGAGATCGCACTTTCCATG -ACGGAAGAGATCGCACTTTGTGTG -ACGGAAGAGATCGCACTTCTAGTG -ACGGAAGAGATCGCACTTCATCTG -ACGGAAGAGATCGCACTTGAGTTG -ACGGAAGAGATCGCACTTAGACTG -ACGGAAGAGATCGCACTTTCGGTA -ACGGAAGAGATCGCACTTTGCCTA -ACGGAAGAGATCGCACTTCCACTA -ACGGAAGAGATCGCACTTGGAGTA -ACGGAAGAGATCGCACTTTCGTCT -ACGGAAGAGATCGCACTTTGCACT -ACGGAAGAGATCGCACTTCTGACT -ACGGAAGAGATCGCACTTCAACCT -ACGGAAGAGATCGCACTTGCTACT -ACGGAAGAGATCGCACTTGGATCT -ACGGAAGAGATCGCACTTAAGGCT -ACGGAAGAGATCGCACTTTCAACC -ACGGAAGAGATCGCACTTTGTTCC -ACGGAAGAGATCGCACTTATTCCC -ACGGAAGAGATCGCACTTTTCTCG -ACGGAAGAGATCGCACTTTAGACG -ACGGAAGAGATCGCACTTGTAACG -ACGGAAGAGATCGCACTTACTTCG -ACGGAAGAGATCGCACTTTACGCA -ACGGAAGAGATCGCACTTCTTGCA -ACGGAAGAGATCGCACTTCGAACA -ACGGAAGAGATCGCACTTCAGTCA -ACGGAAGAGATCGCACTTGATCCA -ACGGAAGAGATCGCACTTACGACA -ACGGAAGAGATCGCACTTAGCTCA -ACGGAAGAGATCGCACTTTCACGT -ACGGAAGAGATCGCACTTCGTAGT -ACGGAAGAGATCGCACTTGTCAGT -ACGGAAGAGATCGCACTTGAAGGT -ACGGAAGAGATCGCACTTAACCGT -ACGGAAGAGATCGCACTTTTGTGC -ACGGAAGAGATCGCACTTCTAAGC -ACGGAAGAGATCGCACTTACTAGC -ACGGAAGAGATCGCACTTAGATGC -ACGGAAGAGATCGCACTTTGAAGG -ACGGAAGAGATCGCACTTCAATGG -ACGGAAGAGATCGCACTTATGAGG -ACGGAAGAGATCGCACTTAATGGG -ACGGAAGAGATCGCACTTTCCTGA -ACGGAAGAGATCGCACTTTAGCGA -ACGGAAGAGATCGCACTTCACAGA -ACGGAAGAGATCGCACTTGCAAGA -ACGGAAGAGATCGCACTTGGTTGA -ACGGAAGAGATCGCACTTTCCGAT -ACGGAAGAGATCGCACTTTGGCAT -ACGGAAGAGATCGCACTTCGAGAT -ACGGAAGAGATCGCACTTTACCAC -ACGGAAGAGATCGCACTTCAGAAC -ACGGAAGAGATCGCACTTGTCTAC -ACGGAAGAGATCGCACTTACGTAC -ACGGAAGAGATCGCACTTAGTGAC -ACGGAAGAGATCGCACTTCTGTAG -ACGGAAGAGATCGCACTTCCTAAG -ACGGAAGAGATCGCACTTGTTCAG -ACGGAAGAGATCGCACTTGCATAG -ACGGAAGAGATCGCACTTGACAAG -ACGGAAGAGATCGCACTTAAGCAG -ACGGAAGAGATCGCACTTCGTCAA -ACGGAAGAGATCGCACTTGCTGAA -ACGGAAGAGATCGCACTTAGTACG -ACGGAAGAGATCGCACTTATCCGA -ACGGAAGAGATCGCACTTATGGGA -ACGGAAGAGATCGCACTTGTGCAA -ACGGAAGAGATCGCACTTGAGGAA -ACGGAAGAGATCGCACTTCAGGTA -ACGGAAGAGATCGCACTTGACTCT -ACGGAAGAGATCGCACTTAGTCCT -ACGGAAGAGATCGCACTTTAAGCC -ACGGAAGAGATCGCACTTATAGCC -ACGGAAGAGATCGCACTTTAACCG -ACGGAAGAGATCGCACTTATGCCA -ACGGAAGAGATCACACGAGGAAAC -ACGGAAGAGATCACACGAAACACC -ACGGAAGAGATCACACGAATCGAG -ACGGAAGAGATCACACGACTCCTT -ACGGAAGAGATCACACGACCTGTT -ACGGAAGAGATCACACGACGGTTT -ACGGAAGAGATCACACGAGTGGTT -ACGGAAGAGATCACACGAGCCTTT -ACGGAAGAGATCACACGAGGTCTT -ACGGAAGAGATCACACGAACGCTT -ACGGAAGAGATCACACGAAGCGTT -ACGGAAGAGATCACACGATTCGTC -ACGGAAGAGATCACACGATCTCTC -ACGGAAGAGATCACACGATGGATC -ACGGAAGAGATCACACGACACTTC -ACGGAAGAGATCACACGAGTACTC -ACGGAAGAGATCACACGAGATGTC -ACGGAAGAGATCACACGAACAGTC -ACGGAAGAGATCACACGATTGCTG -ACGGAAGAGATCACACGATCCATG -ACGGAAGAGATCACACGATGTGTG -ACGGAAGAGATCACACGACTAGTG -ACGGAAGAGATCACACGACATCTG -ACGGAAGAGATCACACGAGAGTTG -ACGGAAGAGATCACACGAAGACTG -ACGGAAGAGATCACACGATCGGTA -ACGGAAGAGATCACACGATGCCTA -ACGGAAGAGATCACACGACCACTA -ACGGAAGAGATCACACGAGGAGTA -ACGGAAGAGATCACACGATCGTCT -ACGGAAGAGATCACACGATGCACT -ACGGAAGAGATCACACGACTGACT -ACGGAAGAGATCACACGACAACCT -ACGGAAGAGATCACACGAGCTACT -ACGGAAGAGATCACACGAGGATCT -ACGGAAGAGATCACACGAAAGGCT -ACGGAAGAGATCACACGATCAACC -ACGGAAGAGATCACACGATGTTCC -ACGGAAGAGATCACACGAATTCCC -ACGGAAGAGATCACACGATTCTCG -ACGGAAGAGATCACACGATAGACG -ACGGAAGAGATCACACGAGTAACG -ACGGAAGAGATCACACGAACTTCG -ACGGAAGAGATCACACGATACGCA -ACGGAAGAGATCACACGACTTGCA -ACGGAAGAGATCACACGACGAACA -ACGGAAGAGATCACACGACAGTCA -ACGGAAGAGATCACACGAGATCCA -ACGGAAGAGATCACACGAACGACA -ACGGAAGAGATCACACGAAGCTCA -ACGGAAGAGATCACACGATCACGT -ACGGAAGAGATCACACGACGTAGT -ACGGAAGAGATCACACGAGTCAGT -ACGGAAGAGATCACACGAGAAGGT -ACGGAAGAGATCACACGAAACCGT -ACGGAAGAGATCACACGATTGTGC -ACGGAAGAGATCACACGACTAAGC -ACGGAAGAGATCACACGAACTAGC -ACGGAAGAGATCACACGAAGATGC -ACGGAAGAGATCACACGATGAAGG -ACGGAAGAGATCACACGACAATGG -ACGGAAGAGATCACACGAATGAGG -ACGGAAGAGATCACACGAAATGGG -ACGGAAGAGATCACACGATCCTGA -ACGGAAGAGATCACACGATAGCGA -ACGGAAGAGATCACACGACACAGA -ACGGAAGAGATCACACGAGCAAGA -ACGGAAGAGATCACACGAGGTTGA -ACGGAAGAGATCACACGATCCGAT -ACGGAAGAGATCACACGATGGCAT -ACGGAAGAGATCACACGACGAGAT -ACGGAAGAGATCACACGATACCAC -ACGGAAGAGATCACACGACAGAAC -ACGGAAGAGATCACACGAGTCTAC -ACGGAAGAGATCACACGAACGTAC -ACGGAAGAGATCACACGAAGTGAC -ACGGAAGAGATCACACGACTGTAG -ACGGAAGAGATCACACGACCTAAG -ACGGAAGAGATCACACGAGTTCAG -ACGGAAGAGATCACACGAGCATAG -ACGGAAGAGATCACACGAGACAAG -ACGGAAGAGATCACACGAAAGCAG -ACGGAAGAGATCACACGACGTCAA -ACGGAAGAGATCACACGAGCTGAA -ACGGAAGAGATCACACGAAGTACG -ACGGAAGAGATCACACGAATCCGA -ACGGAAGAGATCACACGAATGGGA -ACGGAAGAGATCACACGAGTGCAA -ACGGAAGAGATCACACGAGAGGAA -ACGGAAGAGATCACACGACAGGTA -ACGGAAGAGATCACACGAGACTCT -ACGGAAGAGATCACACGAAGTCCT -ACGGAAGAGATCACACGATAAGCC -ACGGAAGAGATCACACGAATAGCC -ACGGAAGAGATCACACGATAACCG -ACGGAAGAGATCACACGAATGCCA -ACGGAAGAGATCTCACAGGGAAAC -ACGGAAGAGATCTCACAGAACACC -ACGGAAGAGATCTCACAGATCGAG -ACGGAAGAGATCTCACAGCTCCTT -ACGGAAGAGATCTCACAGCCTGTT -ACGGAAGAGATCTCACAGCGGTTT -ACGGAAGAGATCTCACAGGTGGTT -ACGGAAGAGATCTCACAGGCCTTT -ACGGAAGAGATCTCACAGGGTCTT -ACGGAAGAGATCTCACAGACGCTT -ACGGAAGAGATCTCACAGAGCGTT -ACGGAAGAGATCTCACAGTTCGTC -ACGGAAGAGATCTCACAGTCTCTC -ACGGAAGAGATCTCACAGTGGATC -ACGGAAGAGATCTCACAGCACTTC -ACGGAAGAGATCTCACAGGTACTC -ACGGAAGAGATCTCACAGGATGTC -ACGGAAGAGATCTCACAGACAGTC -ACGGAAGAGATCTCACAGTTGCTG -ACGGAAGAGATCTCACAGTCCATG -ACGGAAGAGATCTCACAGTGTGTG -ACGGAAGAGATCTCACAGCTAGTG -ACGGAAGAGATCTCACAGCATCTG -ACGGAAGAGATCTCACAGGAGTTG -ACGGAAGAGATCTCACAGAGACTG -ACGGAAGAGATCTCACAGTCGGTA -ACGGAAGAGATCTCACAGTGCCTA -ACGGAAGAGATCTCACAGCCACTA -ACGGAAGAGATCTCACAGGGAGTA -ACGGAAGAGATCTCACAGTCGTCT -ACGGAAGAGATCTCACAGTGCACT -ACGGAAGAGATCTCACAGCTGACT -ACGGAAGAGATCTCACAGCAACCT -ACGGAAGAGATCTCACAGGCTACT -ACGGAAGAGATCTCACAGGGATCT -ACGGAAGAGATCTCACAGAAGGCT -ACGGAAGAGATCTCACAGTCAACC -ACGGAAGAGATCTCACAGTGTTCC -ACGGAAGAGATCTCACAGATTCCC -ACGGAAGAGATCTCACAGTTCTCG -ACGGAAGAGATCTCACAGTAGACG -ACGGAAGAGATCTCACAGGTAACG -ACGGAAGAGATCTCACAGACTTCG -ACGGAAGAGATCTCACAGTACGCA -ACGGAAGAGATCTCACAGCTTGCA -ACGGAAGAGATCTCACAGCGAACA -ACGGAAGAGATCTCACAGCAGTCA -ACGGAAGAGATCTCACAGGATCCA -ACGGAAGAGATCTCACAGACGACA -ACGGAAGAGATCTCACAGAGCTCA -ACGGAAGAGATCTCACAGTCACGT -ACGGAAGAGATCTCACAGCGTAGT -ACGGAAGAGATCTCACAGGTCAGT -ACGGAAGAGATCTCACAGGAAGGT -ACGGAAGAGATCTCACAGAACCGT -ACGGAAGAGATCTCACAGTTGTGC -ACGGAAGAGATCTCACAGCTAAGC -ACGGAAGAGATCTCACAGACTAGC -ACGGAAGAGATCTCACAGAGATGC -ACGGAAGAGATCTCACAGTGAAGG -ACGGAAGAGATCTCACAGCAATGG -ACGGAAGAGATCTCACAGATGAGG -ACGGAAGAGATCTCACAGAATGGG -ACGGAAGAGATCTCACAGTCCTGA -ACGGAAGAGATCTCACAGTAGCGA -ACGGAAGAGATCTCACAGCACAGA -ACGGAAGAGATCTCACAGGCAAGA -ACGGAAGAGATCTCACAGGGTTGA -ACGGAAGAGATCTCACAGTCCGAT -ACGGAAGAGATCTCACAGTGGCAT -ACGGAAGAGATCTCACAGCGAGAT -ACGGAAGAGATCTCACAGTACCAC -ACGGAAGAGATCTCACAGCAGAAC -ACGGAAGAGATCTCACAGGTCTAC -ACGGAAGAGATCTCACAGACGTAC -ACGGAAGAGATCTCACAGAGTGAC -ACGGAAGAGATCTCACAGCTGTAG -ACGGAAGAGATCTCACAGCCTAAG -ACGGAAGAGATCTCACAGGTTCAG -ACGGAAGAGATCTCACAGGCATAG -ACGGAAGAGATCTCACAGGACAAG -ACGGAAGAGATCTCACAGAAGCAG -ACGGAAGAGATCTCACAGCGTCAA -ACGGAAGAGATCTCACAGGCTGAA -ACGGAAGAGATCTCACAGAGTACG -ACGGAAGAGATCTCACAGATCCGA -ACGGAAGAGATCTCACAGATGGGA -ACGGAAGAGATCTCACAGGTGCAA -ACGGAAGAGATCTCACAGGAGGAA -ACGGAAGAGATCTCACAGCAGGTA -ACGGAAGAGATCTCACAGGACTCT -ACGGAAGAGATCTCACAGAGTCCT -ACGGAAGAGATCTCACAGTAAGCC -ACGGAAGAGATCTCACAGATAGCC -ACGGAAGAGATCTCACAGTAACCG -ACGGAAGAGATCTCACAGATGCCA -ACGGAAGAGATCCCAGATGGAAAC -ACGGAAGAGATCCCAGATAACACC -ACGGAAGAGATCCCAGATATCGAG -ACGGAAGAGATCCCAGATCTCCTT -ACGGAAGAGATCCCAGATCCTGTT -ACGGAAGAGATCCCAGATCGGTTT -ACGGAAGAGATCCCAGATGTGGTT -ACGGAAGAGATCCCAGATGCCTTT -ACGGAAGAGATCCCAGATGGTCTT -ACGGAAGAGATCCCAGATACGCTT -ACGGAAGAGATCCCAGATAGCGTT -ACGGAAGAGATCCCAGATTTCGTC -ACGGAAGAGATCCCAGATTCTCTC -ACGGAAGAGATCCCAGATTGGATC -ACGGAAGAGATCCCAGATCACTTC -ACGGAAGAGATCCCAGATGTACTC -ACGGAAGAGATCCCAGATGATGTC -ACGGAAGAGATCCCAGATACAGTC -ACGGAAGAGATCCCAGATTTGCTG -ACGGAAGAGATCCCAGATTCCATG -ACGGAAGAGATCCCAGATTGTGTG -ACGGAAGAGATCCCAGATCTAGTG -ACGGAAGAGATCCCAGATCATCTG -ACGGAAGAGATCCCAGATGAGTTG -ACGGAAGAGATCCCAGATAGACTG -ACGGAAGAGATCCCAGATTCGGTA -ACGGAAGAGATCCCAGATTGCCTA -ACGGAAGAGATCCCAGATCCACTA -ACGGAAGAGATCCCAGATGGAGTA -ACGGAAGAGATCCCAGATTCGTCT -ACGGAAGAGATCCCAGATTGCACT -ACGGAAGAGATCCCAGATCTGACT -ACGGAAGAGATCCCAGATCAACCT -ACGGAAGAGATCCCAGATGCTACT -ACGGAAGAGATCCCAGATGGATCT -ACGGAAGAGATCCCAGATAAGGCT -ACGGAAGAGATCCCAGATTCAACC -ACGGAAGAGATCCCAGATTGTTCC -ACGGAAGAGATCCCAGATATTCCC -ACGGAAGAGATCCCAGATTTCTCG -ACGGAAGAGATCCCAGATTAGACG -ACGGAAGAGATCCCAGATGTAACG -ACGGAAGAGATCCCAGATACTTCG -ACGGAAGAGATCCCAGATTACGCA -ACGGAAGAGATCCCAGATCTTGCA -ACGGAAGAGATCCCAGATCGAACA -ACGGAAGAGATCCCAGATCAGTCA -ACGGAAGAGATCCCAGATGATCCA -ACGGAAGAGATCCCAGATACGACA -ACGGAAGAGATCCCAGATAGCTCA -ACGGAAGAGATCCCAGATTCACGT -ACGGAAGAGATCCCAGATCGTAGT -ACGGAAGAGATCCCAGATGTCAGT -ACGGAAGAGATCCCAGATGAAGGT -ACGGAAGAGATCCCAGATAACCGT -ACGGAAGAGATCCCAGATTTGTGC -ACGGAAGAGATCCCAGATCTAAGC -ACGGAAGAGATCCCAGATACTAGC -ACGGAAGAGATCCCAGATAGATGC -ACGGAAGAGATCCCAGATTGAAGG -ACGGAAGAGATCCCAGATCAATGG -ACGGAAGAGATCCCAGATATGAGG -ACGGAAGAGATCCCAGATAATGGG -ACGGAAGAGATCCCAGATTCCTGA -ACGGAAGAGATCCCAGATTAGCGA -ACGGAAGAGATCCCAGATCACAGA -ACGGAAGAGATCCCAGATGCAAGA -ACGGAAGAGATCCCAGATGGTTGA -ACGGAAGAGATCCCAGATTCCGAT -ACGGAAGAGATCCCAGATTGGCAT -ACGGAAGAGATCCCAGATCGAGAT -ACGGAAGAGATCCCAGATTACCAC -ACGGAAGAGATCCCAGATCAGAAC -ACGGAAGAGATCCCAGATGTCTAC -ACGGAAGAGATCCCAGATACGTAC -ACGGAAGAGATCCCAGATAGTGAC -ACGGAAGAGATCCCAGATCTGTAG -ACGGAAGAGATCCCAGATCCTAAG -ACGGAAGAGATCCCAGATGTTCAG -ACGGAAGAGATCCCAGATGCATAG -ACGGAAGAGATCCCAGATGACAAG -ACGGAAGAGATCCCAGATAAGCAG -ACGGAAGAGATCCCAGATCGTCAA -ACGGAAGAGATCCCAGATGCTGAA -ACGGAAGAGATCCCAGATAGTACG -ACGGAAGAGATCCCAGATATCCGA -ACGGAAGAGATCCCAGATATGGGA -ACGGAAGAGATCCCAGATGTGCAA -ACGGAAGAGATCCCAGATGAGGAA -ACGGAAGAGATCCCAGATCAGGTA -ACGGAAGAGATCCCAGATGACTCT -ACGGAAGAGATCCCAGATAGTCCT -ACGGAAGAGATCCCAGATTAAGCC -ACGGAAGAGATCCCAGATATAGCC -ACGGAAGAGATCCCAGATTAACCG -ACGGAAGAGATCCCAGATATGCCA -ACGGAAGAGATCACAACGGGAAAC -ACGGAAGAGATCACAACGAACACC -ACGGAAGAGATCACAACGATCGAG -ACGGAAGAGATCACAACGCTCCTT -ACGGAAGAGATCACAACGCCTGTT -ACGGAAGAGATCACAACGCGGTTT -ACGGAAGAGATCACAACGGTGGTT -ACGGAAGAGATCACAACGGCCTTT -ACGGAAGAGATCACAACGGGTCTT -ACGGAAGAGATCACAACGACGCTT -ACGGAAGAGATCACAACGAGCGTT -ACGGAAGAGATCACAACGTTCGTC -ACGGAAGAGATCACAACGTCTCTC -ACGGAAGAGATCACAACGTGGATC -ACGGAAGAGATCACAACGCACTTC -ACGGAAGAGATCACAACGGTACTC -ACGGAAGAGATCACAACGGATGTC -ACGGAAGAGATCACAACGACAGTC -ACGGAAGAGATCACAACGTTGCTG -ACGGAAGAGATCACAACGTCCATG -ACGGAAGAGATCACAACGTGTGTG -ACGGAAGAGATCACAACGCTAGTG -ACGGAAGAGATCACAACGCATCTG -ACGGAAGAGATCACAACGGAGTTG -ACGGAAGAGATCACAACGAGACTG -ACGGAAGAGATCACAACGTCGGTA -ACGGAAGAGATCACAACGTGCCTA -ACGGAAGAGATCACAACGCCACTA -ACGGAAGAGATCACAACGGGAGTA -ACGGAAGAGATCACAACGTCGTCT -ACGGAAGAGATCACAACGTGCACT -ACGGAAGAGATCACAACGCTGACT -ACGGAAGAGATCACAACGCAACCT -ACGGAAGAGATCACAACGGCTACT -ACGGAAGAGATCACAACGGGATCT -ACGGAAGAGATCACAACGAAGGCT -ACGGAAGAGATCACAACGTCAACC -ACGGAAGAGATCACAACGTGTTCC -ACGGAAGAGATCACAACGATTCCC -ACGGAAGAGATCACAACGTTCTCG -ACGGAAGAGATCACAACGTAGACG -ACGGAAGAGATCACAACGGTAACG -ACGGAAGAGATCACAACGACTTCG -ACGGAAGAGATCACAACGTACGCA -ACGGAAGAGATCACAACGCTTGCA -ACGGAAGAGATCACAACGCGAACA -ACGGAAGAGATCACAACGCAGTCA -ACGGAAGAGATCACAACGGATCCA -ACGGAAGAGATCACAACGACGACA -ACGGAAGAGATCACAACGAGCTCA -ACGGAAGAGATCACAACGTCACGT -ACGGAAGAGATCACAACGCGTAGT -ACGGAAGAGATCACAACGGTCAGT -ACGGAAGAGATCACAACGGAAGGT -ACGGAAGAGATCACAACGAACCGT -ACGGAAGAGATCACAACGTTGTGC -ACGGAAGAGATCACAACGCTAAGC -ACGGAAGAGATCACAACGACTAGC -ACGGAAGAGATCACAACGAGATGC -ACGGAAGAGATCACAACGTGAAGG -ACGGAAGAGATCACAACGCAATGG -ACGGAAGAGATCACAACGATGAGG -ACGGAAGAGATCACAACGAATGGG -ACGGAAGAGATCACAACGTCCTGA -ACGGAAGAGATCACAACGTAGCGA -ACGGAAGAGATCACAACGCACAGA -ACGGAAGAGATCACAACGGCAAGA -ACGGAAGAGATCACAACGGGTTGA -ACGGAAGAGATCACAACGTCCGAT -ACGGAAGAGATCACAACGTGGCAT -ACGGAAGAGATCACAACGCGAGAT -ACGGAAGAGATCACAACGTACCAC -ACGGAAGAGATCACAACGCAGAAC -ACGGAAGAGATCACAACGGTCTAC -ACGGAAGAGATCACAACGACGTAC -ACGGAAGAGATCACAACGAGTGAC -ACGGAAGAGATCACAACGCTGTAG -ACGGAAGAGATCACAACGCCTAAG -ACGGAAGAGATCACAACGGTTCAG -ACGGAAGAGATCACAACGGCATAG -ACGGAAGAGATCACAACGGACAAG -ACGGAAGAGATCACAACGAAGCAG -ACGGAAGAGATCACAACGCGTCAA -ACGGAAGAGATCACAACGGCTGAA -ACGGAAGAGATCACAACGAGTACG -ACGGAAGAGATCACAACGATCCGA -ACGGAAGAGATCACAACGATGGGA -ACGGAAGAGATCACAACGGTGCAA -ACGGAAGAGATCACAACGGAGGAA -ACGGAAGAGATCACAACGCAGGTA -ACGGAAGAGATCACAACGGACTCT -ACGGAAGAGATCACAACGAGTCCT -ACGGAAGAGATCACAACGTAAGCC -ACGGAAGAGATCACAACGATAGCC -ACGGAAGAGATCACAACGTAACCG -ACGGAAGAGATCACAACGATGCCA -ACGGAAGAGATCTCAAGCGGAAAC -ACGGAAGAGATCTCAAGCAACACC -ACGGAAGAGATCTCAAGCATCGAG -ACGGAAGAGATCTCAAGCCTCCTT -ACGGAAGAGATCTCAAGCCCTGTT -ACGGAAGAGATCTCAAGCCGGTTT -ACGGAAGAGATCTCAAGCGTGGTT -ACGGAAGAGATCTCAAGCGCCTTT -ACGGAAGAGATCTCAAGCGGTCTT -ACGGAAGAGATCTCAAGCACGCTT -ACGGAAGAGATCTCAAGCAGCGTT -ACGGAAGAGATCTCAAGCTTCGTC -ACGGAAGAGATCTCAAGCTCTCTC -ACGGAAGAGATCTCAAGCTGGATC -ACGGAAGAGATCTCAAGCCACTTC -ACGGAAGAGATCTCAAGCGTACTC -ACGGAAGAGATCTCAAGCGATGTC -ACGGAAGAGATCTCAAGCACAGTC -ACGGAAGAGATCTCAAGCTTGCTG -ACGGAAGAGATCTCAAGCTCCATG -ACGGAAGAGATCTCAAGCTGTGTG -ACGGAAGAGATCTCAAGCCTAGTG -ACGGAAGAGATCTCAAGCCATCTG -ACGGAAGAGATCTCAAGCGAGTTG -ACGGAAGAGATCTCAAGCAGACTG -ACGGAAGAGATCTCAAGCTCGGTA -ACGGAAGAGATCTCAAGCTGCCTA -ACGGAAGAGATCTCAAGCCCACTA -ACGGAAGAGATCTCAAGCGGAGTA -ACGGAAGAGATCTCAAGCTCGTCT -ACGGAAGAGATCTCAAGCTGCACT -ACGGAAGAGATCTCAAGCCTGACT -ACGGAAGAGATCTCAAGCCAACCT -ACGGAAGAGATCTCAAGCGCTACT -ACGGAAGAGATCTCAAGCGGATCT -ACGGAAGAGATCTCAAGCAAGGCT -ACGGAAGAGATCTCAAGCTCAACC -ACGGAAGAGATCTCAAGCTGTTCC -ACGGAAGAGATCTCAAGCATTCCC -ACGGAAGAGATCTCAAGCTTCTCG -ACGGAAGAGATCTCAAGCTAGACG -ACGGAAGAGATCTCAAGCGTAACG -ACGGAAGAGATCTCAAGCACTTCG -ACGGAAGAGATCTCAAGCTACGCA -ACGGAAGAGATCTCAAGCCTTGCA -ACGGAAGAGATCTCAAGCCGAACA -ACGGAAGAGATCTCAAGCCAGTCA -ACGGAAGAGATCTCAAGCGATCCA -ACGGAAGAGATCTCAAGCACGACA -ACGGAAGAGATCTCAAGCAGCTCA -ACGGAAGAGATCTCAAGCTCACGT -ACGGAAGAGATCTCAAGCCGTAGT -ACGGAAGAGATCTCAAGCGTCAGT -ACGGAAGAGATCTCAAGCGAAGGT -ACGGAAGAGATCTCAAGCAACCGT -ACGGAAGAGATCTCAAGCTTGTGC -ACGGAAGAGATCTCAAGCCTAAGC -ACGGAAGAGATCTCAAGCACTAGC -ACGGAAGAGATCTCAAGCAGATGC -ACGGAAGAGATCTCAAGCTGAAGG -ACGGAAGAGATCTCAAGCCAATGG -ACGGAAGAGATCTCAAGCATGAGG -ACGGAAGAGATCTCAAGCAATGGG -ACGGAAGAGATCTCAAGCTCCTGA -ACGGAAGAGATCTCAAGCTAGCGA -ACGGAAGAGATCTCAAGCCACAGA -ACGGAAGAGATCTCAAGCGCAAGA -ACGGAAGAGATCTCAAGCGGTTGA -ACGGAAGAGATCTCAAGCTCCGAT -ACGGAAGAGATCTCAAGCTGGCAT -ACGGAAGAGATCTCAAGCCGAGAT -ACGGAAGAGATCTCAAGCTACCAC -ACGGAAGAGATCTCAAGCCAGAAC -ACGGAAGAGATCTCAAGCGTCTAC -ACGGAAGAGATCTCAAGCACGTAC -ACGGAAGAGATCTCAAGCAGTGAC -ACGGAAGAGATCTCAAGCCTGTAG -ACGGAAGAGATCTCAAGCCCTAAG -ACGGAAGAGATCTCAAGCGTTCAG -ACGGAAGAGATCTCAAGCGCATAG -ACGGAAGAGATCTCAAGCGACAAG -ACGGAAGAGATCTCAAGCAAGCAG -ACGGAAGAGATCTCAAGCCGTCAA -ACGGAAGAGATCTCAAGCGCTGAA -ACGGAAGAGATCTCAAGCAGTACG -ACGGAAGAGATCTCAAGCATCCGA -ACGGAAGAGATCTCAAGCATGGGA -ACGGAAGAGATCTCAAGCGTGCAA -ACGGAAGAGATCTCAAGCGAGGAA -ACGGAAGAGATCTCAAGCCAGGTA -ACGGAAGAGATCTCAAGCGACTCT -ACGGAAGAGATCTCAAGCAGTCCT -ACGGAAGAGATCTCAAGCTAAGCC -ACGGAAGAGATCTCAAGCATAGCC -ACGGAAGAGATCTCAAGCTAACCG -ACGGAAGAGATCTCAAGCATGCCA -ACGGAAGAGATCCGTTCAGGAAAC -ACGGAAGAGATCCGTTCAAACACC -ACGGAAGAGATCCGTTCAATCGAG -ACGGAAGAGATCCGTTCACTCCTT -ACGGAAGAGATCCGTTCACCTGTT -ACGGAAGAGATCCGTTCACGGTTT -ACGGAAGAGATCCGTTCAGTGGTT -ACGGAAGAGATCCGTTCAGCCTTT -ACGGAAGAGATCCGTTCAGGTCTT -ACGGAAGAGATCCGTTCAACGCTT -ACGGAAGAGATCCGTTCAAGCGTT -ACGGAAGAGATCCGTTCATTCGTC -ACGGAAGAGATCCGTTCATCTCTC -ACGGAAGAGATCCGTTCATGGATC -ACGGAAGAGATCCGTTCACACTTC -ACGGAAGAGATCCGTTCAGTACTC -ACGGAAGAGATCCGTTCAGATGTC -ACGGAAGAGATCCGTTCAACAGTC -ACGGAAGAGATCCGTTCATTGCTG -ACGGAAGAGATCCGTTCATCCATG -ACGGAAGAGATCCGTTCATGTGTG -ACGGAAGAGATCCGTTCACTAGTG -ACGGAAGAGATCCGTTCACATCTG -ACGGAAGAGATCCGTTCAGAGTTG -ACGGAAGAGATCCGTTCAAGACTG -ACGGAAGAGATCCGTTCATCGGTA -ACGGAAGAGATCCGTTCATGCCTA -ACGGAAGAGATCCGTTCACCACTA -ACGGAAGAGATCCGTTCAGGAGTA -ACGGAAGAGATCCGTTCATCGTCT -ACGGAAGAGATCCGTTCATGCACT -ACGGAAGAGATCCGTTCACTGACT -ACGGAAGAGATCCGTTCACAACCT -ACGGAAGAGATCCGTTCAGCTACT -ACGGAAGAGATCCGTTCAGGATCT -ACGGAAGAGATCCGTTCAAAGGCT -ACGGAAGAGATCCGTTCATCAACC -ACGGAAGAGATCCGTTCATGTTCC -ACGGAAGAGATCCGTTCAATTCCC -ACGGAAGAGATCCGTTCATTCTCG -ACGGAAGAGATCCGTTCATAGACG -ACGGAAGAGATCCGTTCAGTAACG -ACGGAAGAGATCCGTTCAACTTCG -ACGGAAGAGATCCGTTCATACGCA -ACGGAAGAGATCCGTTCACTTGCA -ACGGAAGAGATCCGTTCACGAACA -ACGGAAGAGATCCGTTCACAGTCA -ACGGAAGAGATCCGTTCAGATCCA -ACGGAAGAGATCCGTTCAACGACA -ACGGAAGAGATCCGTTCAAGCTCA -ACGGAAGAGATCCGTTCATCACGT -ACGGAAGAGATCCGTTCACGTAGT -ACGGAAGAGATCCGTTCAGTCAGT -ACGGAAGAGATCCGTTCAGAAGGT -ACGGAAGAGATCCGTTCAAACCGT -ACGGAAGAGATCCGTTCATTGTGC -ACGGAAGAGATCCGTTCACTAAGC -ACGGAAGAGATCCGTTCAACTAGC -ACGGAAGAGATCCGTTCAAGATGC -ACGGAAGAGATCCGTTCATGAAGG -ACGGAAGAGATCCGTTCACAATGG -ACGGAAGAGATCCGTTCAATGAGG -ACGGAAGAGATCCGTTCAAATGGG -ACGGAAGAGATCCGTTCATCCTGA -ACGGAAGAGATCCGTTCATAGCGA -ACGGAAGAGATCCGTTCACACAGA -ACGGAAGAGATCCGTTCAGCAAGA -ACGGAAGAGATCCGTTCAGGTTGA -ACGGAAGAGATCCGTTCATCCGAT -ACGGAAGAGATCCGTTCATGGCAT -ACGGAAGAGATCCGTTCACGAGAT -ACGGAAGAGATCCGTTCATACCAC -ACGGAAGAGATCCGTTCACAGAAC -ACGGAAGAGATCCGTTCAGTCTAC -ACGGAAGAGATCCGTTCAACGTAC -ACGGAAGAGATCCGTTCAAGTGAC -ACGGAAGAGATCCGTTCACTGTAG -ACGGAAGAGATCCGTTCACCTAAG -ACGGAAGAGATCCGTTCAGTTCAG -ACGGAAGAGATCCGTTCAGCATAG -ACGGAAGAGATCCGTTCAGACAAG -ACGGAAGAGATCCGTTCAAAGCAG -ACGGAAGAGATCCGTTCACGTCAA -ACGGAAGAGATCCGTTCAGCTGAA -ACGGAAGAGATCCGTTCAAGTACG -ACGGAAGAGATCCGTTCAATCCGA -ACGGAAGAGATCCGTTCAATGGGA -ACGGAAGAGATCCGTTCAGTGCAA -ACGGAAGAGATCCGTTCAGAGGAA -ACGGAAGAGATCCGTTCACAGGTA -ACGGAAGAGATCCGTTCAGACTCT -ACGGAAGAGATCCGTTCAAGTCCT -ACGGAAGAGATCCGTTCATAAGCC -ACGGAAGAGATCCGTTCAATAGCC -ACGGAAGAGATCCGTTCATAACCG -ACGGAAGAGATCCGTTCAATGCCA -ACGGAAGAGATCAGTCGTGGAAAC -ACGGAAGAGATCAGTCGTAACACC -ACGGAAGAGATCAGTCGTATCGAG -ACGGAAGAGATCAGTCGTCTCCTT -ACGGAAGAGATCAGTCGTCCTGTT -ACGGAAGAGATCAGTCGTCGGTTT -ACGGAAGAGATCAGTCGTGTGGTT -ACGGAAGAGATCAGTCGTGCCTTT -ACGGAAGAGATCAGTCGTGGTCTT -ACGGAAGAGATCAGTCGTACGCTT -ACGGAAGAGATCAGTCGTAGCGTT -ACGGAAGAGATCAGTCGTTTCGTC -ACGGAAGAGATCAGTCGTTCTCTC -ACGGAAGAGATCAGTCGTTGGATC -ACGGAAGAGATCAGTCGTCACTTC -ACGGAAGAGATCAGTCGTGTACTC -ACGGAAGAGATCAGTCGTGATGTC -ACGGAAGAGATCAGTCGTACAGTC -ACGGAAGAGATCAGTCGTTTGCTG -ACGGAAGAGATCAGTCGTTCCATG -ACGGAAGAGATCAGTCGTTGTGTG -ACGGAAGAGATCAGTCGTCTAGTG -ACGGAAGAGATCAGTCGTCATCTG -ACGGAAGAGATCAGTCGTGAGTTG -ACGGAAGAGATCAGTCGTAGACTG -ACGGAAGAGATCAGTCGTTCGGTA -ACGGAAGAGATCAGTCGTTGCCTA -ACGGAAGAGATCAGTCGTCCACTA -ACGGAAGAGATCAGTCGTGGAGTA -ACGGAAGAGATCAGTCGTTCGTCT -ACGGAAGAGATCAGTCGTTGCACT -ACGGAAGAGATCAGTCGTCTGACT -ACGGAAGAGATCAGTCGTCAACCT -ACGGAAGAGATCAGTCGTGCTACT -ACGGAAGAGATCAGTCGTGGATCT -ACGGAAGAGATCAGTCGTAAGGCT -ACGGAAGAGATCAGTCGTTCAACC -ACGGAAGAGATCAGTCGTTGTTCC -ACGGAAGAGATCAGTCGTATTCCC -ACGGAAGAGATCAGTCGTTTCTCG -ACGGAAGAGATCAGTCGTTAGACG -ACGGAAGAGATCAGTCGTGTAACG -ACGGAAGAGATCAGTCGTACTTCG -ACGGAAGAGATCAGTCGTTACGCA -ACGGAAGAGATCAGTCGTCTTGCA -ACGGAAGAGATCAGTCGTCGAACA -ACGGAAGAGATCAGTCGTCAGTCA -ACGGAAGAGATCAGTCGTGATCCA -ACGGAAGAGATCAGTCGTACGACA -ACGGAAGAGATCAGTCGTAGCTCA -ACGGAAGAGATCAGTCGTTCACGT -ACGGAAGAGATCAGTCGTCGTAGT -ACGGAAGAGATCAGTCGTGTCAGT -ACGGAAGAGATCAGTCGTGAAGGT -ACGGAAGAGATCAGTCGTAACCGT -ACGGAAGAGATCAGTCGTTTGTGC -ACGGAAGAGATCAGTCGTCTAAGC -ACGGAAGAGATCAGTCGTACTAGC -ACGGAAGAGATCAGTCGTAGATGC -ACGGAAGAGATCAGTCGTTGAAGG -ACGGAAGAGATCAGTCGTCAATGG -ACGGAAGAGATCAGTCGTATGAGG -ACGGAAGAGATCAGTCGTAATGGG -ACGGAAGAGATCAGTCGTTCCTGA -ACGGAAGAGATCAGTCGTTAGCGA -ACGGAAGAGATCAGTCGTCACAGA -ACGGAAGAGATCAGTCGTGCAAGA -ACGGAAGAGATCAGTCGTGGTTGA -ACGGAAGAGATCAGTCGTTCCGAT -ACGGAAGAGATCAGTCGTTGGCAT -ACGGAAGAGATCAGTCGTCGAGAT -ACGGAAGAGATCAGTCGTTACCAC -ACGGAAGAGATCAGTCGTCAGAAC -ACGGAAGAGATCAGTCGTGTCTAC -ACGGAAGAGATCAGTCGTACGTAC -ACGGAAGAGATCAGTCGTAGTGAC -ACGGAAGAGATCAGTCGTCTGTAG -ACGGAAGAGATCAGTCGTCCTAAG -ACGGAAGAGATCAGTCGTGTTCAG -ACGGAAGAGATCAGTCGTGCATAG -ACGGAAGAGATCAGTCGTGACAAG -ACGGAAGAGATCAGTCGTAAGCAG -ACGGAAGAGATCAGTCGTCGTCAA -ACGGAAGAGATCAGTCGTGCTGAA -ACGGAAGAGATCAGTCGTAGTACG -ACGGAAGAGATCAGTCGTATCCGA -ACGGAAGAGATCAGTCGTATGGGA -ACGGAAGAGATCAGTCGTGTGCAA -ACGGAAGAGATCAGTCGTGAGGAA -ACGGAAGAGATCAGTCGTCAGGTA -ACGGAAGAGATCAGTCGTGACTCT -ACGGAAGAGATCAGTCGTAGTCCT -ACGGAAGAGATCAGTCGTTAAGCC -ACGGAAGAGATCAGTCGTATAGCC -ACGGAAGAGATCAGTCGTTAACCG -ACGGAAGAGATCAGTCGTATGCCA -ACGGAAGAGATCAGTGTCGGAAAC -ACGGAAGAGATCAGTGTCAACACC -ACGGAAGAGATCAGTGTCATCGAG -ACGGAAGAGATCAGTGTCCTCCTT -ACGGAAGAGATCAGTGTCCCTGTT -ACGGAAGAGATCAGTGTCCGGTTT -ACGGAAGAGATCAGTGTCGTGGTT -ACGGAAGAGATCAGTGTCGCCTTT -ACGGAAGAGATCAGTGTCGGTCTT -ACGGAAGAGATCAGTGTCACGCTT -ACGGAAGAGATCAGTGTCAGCGTT -ACGGAAGAGATCAGTGTCTTCGTC -ACGGAAGAGATCAGTGTCTCTCTC -ACGGAAGAGATCAGTGTCTGGATC -ACGGAAGAGATCAGTGTCCACTTC -ACGGAAGAGATCAGTGTCGTACTC -ACGGAAGAGATCAGTGTCGATGTC -ACGGAAGAGATCAGTGTCACAGTC -ACGGAAGAGATCAGTGTCTTGCTG -ACGGAAGAGATCAGTGTCTCCATG -ACGGAAGAGATCAGTGTCTGTGTG -ACGGAAGAGATCAGTGTCCTAGTG -ACGGAAGAGATCAGTGTCCATCTG -ACGGAAGAGATCAGTGTCGAGTTG -ACGGAAGAGATCAGTGTCAGACTG -ACGGAAGAGATCAGTGTCTCGGTA -ACGGAAGAGATCAGTGTCTGCCTA -ACGGAAGAGATCAGTGTCCCACTA -ACGGAAGAGATCAGTGTCGGAGTA -ACGGAAGAGATCAGTGTCTCGTCT -ACGGAAGAGATCAGTGTCTGCACT -ACGGAAGAGATCAGTGTCCTGACT -ACGGAAGAGATCAGTGTCCAACCT -ACGGAAGAGATCAGTGTCGCTACT -ACGGAAGAGATCAGTGTCGGATCT -ACGGAAGAGATCAGTGTCAAGGCT -ACGGAAGAGATCAGTGTCTCAACC -ACGGAAGAGATCAGTGTCTGTTCC -ACGGAAGAGATCAGTGTCATTCCC -ACGGAAGAGATCAGTGTCTTCTCG -ACGGAAGAGATCAGTGTCTAGACG -ACGGAAGAGATCAGTGTCGTAACG -ACGGAAGAGATCAGTGTCACTTCG -ACGGAAGAGATCAGTGTCTACGCA -ACGGAAGAGATCAGTGTCCTTGCA -ACGGAAGAGATCAGTGTCCGAACA -ACGGAAGAGATCAGTGTCCAGTCA -ACGGAAGAGATCAGTGTCGATCCA -ACGGAAGAGATCAGTGTCACGACA -ACGGAAGAGATCAGTGTCAGCTCA -ACGGAAGAGATCAGTGTCTCACGT -ACGGAAGAGATCAGTGTCCGTAGT -ACGGAAGAGATCAGTGTCGTCAGT -ACGGAAGAGATCAGTGTCGAAGGT -ACGGAAGAGATCAGTGTCAACCGT -ACGGAAGAGATCAGTGTCTTGTGC -ACGGAAGAGATCAGTGTCCTAAGC -ACGGAAGAGATCAGTGTCACTAGC -ACGGAAGAGATCAGTGTCAGATGC -ACGGAAGAGATCAGTGTCTGAAGG -ACGGAAGAGATCAGTGTCCAATGG -ACGGAAGAGATCAGTGTCATGAGG -ACGGAAGAGATCAGTGTCAATGGG -ACGGAAGAGATCAGTGTCTCCTGA -ACGGAAGAGATCAGTGTCTAGCGA -ACGGAAGAGATCAGTGTCCACAGA -ACGGAAGAGATCAGTGTCGCAAGA -ACGGAAGAGATCAGTGTCGGTTGA -ACGGAAGAGATCAGTGTCTCCGAT -ACGGAAGAGATCAGTGTCTGGCAT -ACGGAAGAGATCAGTGTCCGAGAT -ACGGAAGAGATCAGTGTCTACCAC -ACGGAAGAGATCAGTGTCCAGAAC -ACGGAAGAGATCAGTGTCGTCTAC -ACGGAAGAGATCAGTGTCACGTAC -ACGGAAGAGATCAGTGTCAGTGAC -ACGGAAGAGATCAGTGTCCTGTAG -ACGGAAGAGATCAGTGTCCCTAAG -ACGGAAGAGATCAGTGTCGTTCAG -ACGGAAGAGATCAGTGTCGCATAG -ACGGAAGAGATCAGTGTCGACAAG -ACGGAAGAGATCAGTGTCAAGCAG -ACGGAAGAGATCAGTGTCCGTCAA -ACGGAAGAGATCAGTGTCGCTGAA -ACGGAAGAGATCAGTGTCAGTACG -ACGGAAGAGATCAGTGTCATCCGA -ACGGAAGAGATCAGTGTCATGGGA -ACGGAAGAGATCAGTGTCGTGCAA -ACGGAAGAGATCAGTGTCGAGGAA -ACGGAAGAGATCAGTGTCCAGGTA -ACGGAAGAGATCAGTGTCGACTCT -ACGGAAGAGATCAGTGTCAGTCCT -ACGGAAGAGATCAGTGTCTAAGCC -ACGGAAGAGATCAGTGTCATAGCC -ACGGAAGAGATCAGTGTCTAACCG -ACGGAAGAGATCAGTGTCATGCCA -ACGGAAGAGATCGGTGAAGGAAAC -ACGGAAGAGATCGGTGAAAACACC -ACGGAAGAGATCGGTGAAATCGAG -ACGGAAGAGATCGGTGAACTCCTT -ACGGAAGAGATCGGTGAACCTGTT -ACGGAAGAGATCGGTGAACGGTTT -ACGGAAGAGATCGGTGAAGTGGTT -ACGGAAGAGATCGGTGAAGCCTTT -ACGGAAGAGATCGGTGAAGGTCTT -ACGGAAGAGATCGGTGAAACGCTT -ACGGAAGAGATCGGTGAAAGCGTT -ACGGAAGAGATCGGTGAATTCGTC -ACGGAAGAGATCGGTGAATCTCTC -ACGGAAGAGATCGGTGAATGGATC -ACGGAAGAGATCGGTGAACACTTC -ACGGAAGAGATCGGTGAAGTACTC -ACGGAAGAGATCGGTGAAGATGTC -ACGGAAGAGATCGGTGAAACAGTC -ACGGAAGAGATCGGTGAATTGCTG -ACGGAAGAGATCGGTGAATCCATG -ACGGAAGAGATCGGTGAATGTGTG -ACGGAAGAGATCGGTGAACTAGTG -ACGGAAGAGATCGGTGAACATCTG -ACGGAAGAGATCGGTGAAGAGTTG -ACGGAAGAGATCGGTGAAAGACTG -ACGGAAGAGATCGGTGAATCGGTA -ACGGAAGAGATCGGTGAATGCCTA -ACGGAAGAGATCGGTGAACCACTA -ACGGAAGAGATCGGTGAAGGAGTA -ACGGAAGAGATCGGTGAATCGTCT -ACGGAAGAGATCGGTGAATGCACT -ACGGAAGAGATCGGTGAACTGACT -ACGGAAGAGATCGGTGAACAACCT -ACGGAAGAGATCGGTGAAGCTACT -ACGGAAGAGATCGGTGAAGGATCT -ACGGAAGAGATCGGTGAAAAGGCT -ACGGAAGAGATCGGTGAATCAACC -ACGGAAGAGATCGGTGAATGTTCC -ACGGAAGAGATCGGTGAAATTCCC -ACGGAAGAGATCGGTGAATTCTCG -ACGGAAGAGATCGGTGAATAGACG -ACGGAAGAGATCGGTGAAGTAACG -ACGGAAGAGATCGGTGAAACTTCG -ACGGAAGAGATCGGTGAATACGCA -ACGGAAGAGATCGGTGAACTTGCA -ACGGAAGAGATCGGTGAACGAACA -ACGGAAGAGATCGGTGAACAGTCA -ACGGAAGAGATCGGTGAAGATCCA -ACGGAAGAGATCGGTGAAACGACA -ACGGAAGAGATCGGTGAAAGCTCA -ACGGAAGAGATCGGTGAATCACGT -ACGGAAGAGATCGGTGAACGTAGT -ACGGAAGAGATCGGTGAAGTCAGT -ACGGAAGAGATCGGTGAAGAAGGT -ACGGAAGAGATCGGTGAAAACCGT -ACGGAAGAGATCGGTGAATTGTGC -ACGGAAGAGATCGGTGAACTAAGC -ACGGAAGAGATCGGTGAAACTAGC -ACGGAAGAGATCGGTGAAAGATGC -ACGGAAGAGATCGGTGAATGAAGG -ACGGAAGAGATCGGTGAACAATGG -ACGGAAGAGATCGGTGAAATGAGG -ACGGAAGAGATCGGTGAAAATGGG -ACGGAAGAGATCGGTGAATCCTGA -ACGGAAGAGATCGGTGAATAGCGA -ACGGAAGAGATCGGTGAACACAGA -ACGGAAGAGATCGGTGAAGCAAGA -ACGGAAGAGATCGGTGAAGGTTGA -ACGGAAGAGATCGGTGAATCCGAT -ACGGAAGAGATCGGTGAATGGCAT -ACGGAAGAGATCGGTGAACGAGAT -ACGGAAGAGATCGGTGAATACCAC -ACGGAAGAGATCGGTGAACAGAAC -ACGGAAGAGATCGGTGAAGTCTAC -ACGGAAGAGATCGGTGAAACGTAC -ACGGAAGAGATCGGTGAAAGTGAC -ACGGAAGAGATCGGTGAACTGTAG -ACGGAAGAGATCGGTGAACCTAAG -ACGGAAGAGATCGGTGAAGTTCAG -ACGGAAGAGATCGGTGAAGCATAG -ACGGAAGAGATCGGTGAAGACAAG -ACGGAAGAGATCGGTGAAAAGCAG -ACGGAAGAGATCGGTGAACGTCAA -ACGGAAGAGATCGGTGAAGCTGAA -ACGGAAGAGATCGGTGAAAGTACG -ACGGAAGAGATCGGTGAAATCCGA -ACGGAAGAGATCGGTGAAATGGGA -ACGGAAGAGATCGGTGAAGTGCAA -ACGGAAGAGATCGGTGAAGAGGAA -ACGGAAGAGATCGGTGAACAGGTA -ACGGAAGAGATCGGTGAAGACTCT -ACGGAAGAGATCGGTGAAAGTCCT -ACGGAAGAGATCGGTGAATAAGCC -ACGGAAGAGATCGGTGAAATAGCC -ACGGAAGAGATCGGTGAATAACCG -ACGGAAGAGATCGGTGAAATGCCA -ACGGAAGAGATCCGTAACGGAAAC -ACGGAAGAGATCCGTAACAACACC -ACGGAAGAGATCCGTAACATCGAG -ACGGAAGAGATCCGTAACCTCCTT -ACGGAAGAGATCCGTAACCCTGTT -ACGGAAGAGATCCGTAACCGGTTT -ACGGAAGAGATCCGTAACGTGGTT -ACGGAAGAGATCCGTAACGCCTTT -ACGGAAGAGATCCGTAACGGTCTT -ACGGAAGAGATCCGTAACACGCTT -ACGGAAGAGATCCGTAACAGCGTT -ACGGAAGAGATCCGTAACTTCGTC -ACGGAAGAGATCCGTAACTCTCTC -ACGGAAGAGATCCGTAACTGGATC -ACGGAAGAGATCCGTAACCACTTC -ACGGAAGAGATCCGTAACGTACTC -ACGGAAGAGATCCGTAACGATGTC -ACGGAAGAGATCCGTAACACAGTC -ACGGAAGAGATCCGTAACTTGCTG -ACGGAAGAGATCCGTAACTCCATG -ACGGAAGAGATCCGTAACTGTGTG -ACGGAAGAGATCCGTAACCTAGTG -ACGGAAGAGATCCGTAACCATCTG -ACGGAAGAGATCCGTAACGAGTTG -ACGGAAGAGATCCGTAACAGACTG -ACGGAAGAGATCCGTAACTCGGTA -ACGGAAGAGATCCGTAACTGCCTA -ACGGAAGAGATCCGTAACCCACTA -ACGGAAGAGATCCGTAACGGAGTA -ACGGAAGAGATCCGTAACTCGTCT -ACGGAAGAGATCCGTAACTGCACT -ACGGAAGAGATCCGTAACCTGACT -ACGGAAGAGATCCGTAACCAACCT -ACGGAAGAGATCCGTAACGCTACT -ACGGAAGAGATCCGTAACGGATCT -ACGGAAGAGATCCGTAACAAGGCT -ACGGAAGAGATCCGTAACTCAACC -ACGGAAGAGATCCGTAACTGTTCC -ACGGAAGAGATCCGTAACATTCCC -ACGGAAGAGATCCGTAACTTCTCG -ACGGAAGAGATCCGTAACTAGACG -ACGGAAGAGATCCGTAACGTAACG -ACGGAAGAGATCCGTAACACTTCG -ACGGAAGAGATCCGTAACTACGCA -ACGGAAGAGATCCGTAACCTTGCA -ACGGAAGAGATCCGTAACCGAACA -ACGGAAGAGATCCGTAACCAGTCA -ACGGAAGAGATCCGTAACGATCCA -ACGGAAGAGATCCGTAACACGACA -ACGGAAGAGATCCGTAACAGCTCA -ACGGAAGAGATCCGTAACTCACGT -ACGGAAGAGATCCGTAACCGTAGT -ACGGAAGAGATCCGTAACGTCAGT -ACGGAAGAGATCCGTAACGAAGGT -ACGGAAGAGATCCGTAACAACCGT -ACGGAAGAGATCCGTAACTTGTGC -ACGGAAGAGATCCGTAACCTAAGC -ACGGAAGAGATCCGTAACACTAGC -ACGGAAGAGATCCGTAACAGATGC -ACGGAAGAGATCCGTAACTGAAGG -ACGGAAGAGATCCGTAACCAATGG -ACGGAAGAGATCCGTAACATGAGG -ACGGAAGAGATCCGTAACAATGGG -ACGGAAGAGATCCGTAACTCCTGA -ACGGAAGAGATCCGTAACTAGCGA -ACGGAAGAGATCCGTAACCACAGA -ACGGAAGAGATCCGTAACGCAAGA -ACGGAAGAGATCCGTAACGGTTGA -ACGGAAGAGATCCGTAACTCCGAT -ACGGAAGAGATCCGTAACTGGCAT -ACGGAAGAGATCCGTAACCGAGAT -ACGGAAGAGATCCGTAACTACCAC -ACGGAAGAGATCCGTAACCAGAAC -ACGGAAGAGATCCGTAACGTCTAC -ACGGAAGAGATCCGTAACACGTAC -ACGGAAGAGATCCGTAACAGTGAC -ACGGAAGAGATCCGTAACCTGTAG -ACGGAAGAGATCCGTAACCCTAAG -ACGGAAGAGATCCGTAACGTTCAG -ACGGAAGAGATCCGTAACGCATAG -ACGGAAGAGATCCGTAACGACAAG -ACGGAAGAGATCCGTAACAAGCAG -ACGGAAGAGATCCGTAACCGTCAA -ACGGAAGAGATCCGTAACGCTGAA -ACGGAAGAGATCCGTAACAGTACG -ACGGAAGAGATCCGTAACATCCGA -ACGGAAGAGATCCGTAACATGGGA -ACGGAAGAGATCCGTAACGTGCAA -ACGGAAGAGATCCGTAACGAGGAA -ACGGAAGAGATCCGTAACCAGGTA -ACGGAAGAGATCCGTAACGACTCT -ACGGAAGAGATCCGTAACAGTCCT -ACGGAAGAGATCCGTAACTAAGCC -ACGGAAGAGATCCGTAACATAGCC -ACGGAAGAGATCCGTAACTAACCG -ACGGAAGAGATCCGTAACATGCCA -ACGGAAGAGATCTGCTTGGGAAAC -ACGGAAGAGATCTGCTTGAACACC -ACGGAAGAGATCTGCTTGATCGAG -ACGGAAGAGATCTGCTTGCTCCTT -ACGGAAGAGATCTGCTTGCCTGTT -ACGGAAGAGATCTGCTTGCGGTTT -ACGGAAGAGATCTGCTTGGTGGTT -ACGGAAGAGATCTGCTTGGCCTTT -ACGGAAGAGATCTGCTTGGGTCTT -ACGGAAGAGATCTGCTTGACGCTT -ACGGAAGAGATCTGCTTGAGCGTT -ACGGAAGAGATCTGCTTGTTCGTC -ACGGAAGAGATCTGCTTGTCTCTC -ACGGAAGAGATCTGCTTGTGGATC -ACGGAAGAGATCTGCTTGCACTTC -ACGGAAGAGATCTGCTTGGTACTC -ACGGAAGAGATCTGCTTGGATGTC -ACGGAAGAGATCTGCTTGACAGTC -ACGGAAGAGATCTGCTTGTTGCTG -ACGGAAGAGATCTGCTTGTCCATG -ACGGAAGAGATCTGCTTGTGTGTG -ACGGAAGAGATCTGCTTGCTAGTG -ACGGAAGAGATCTGCTTGCATCTG -ACGGAAGAGATCTGCTTGGAGTTG -ACGGAAGAGATCTGCTTGAGACTG -ACGGAAGAGATCTGCTTGTCGGTA -ACGGAAGAGATCTGCTTGTGCCTA -ACGGAAGAGATCTGCTTGCCACTA -ACGGAAGAGATCTGCTTGGGAGTA -ACGGAAGAGATCTGCTTGTCGTCT -ACGGAAGAGATCTGCTTGTGCACT -ACGGAAGAGATCTGCTTGCTGACT -ACGGAAGAGATCTGCTTGCAACCT -ACGGAAGAGATCTGCTTGGCTACT -ACGGAAGAGATCTGCTTGGGATCT -ACGGAAGAGATCTGCTTGAAGGCT -ACGGAAGAGATCTGCTTGTCAACC -ACGGAAGAGATCTGCTTGTGTTCC -ACGGAAGAGATCTGCTTGATTCCC -ACGGAAGAGATCTGCTTGTTCTCG -ACGGAAGAGATCTGCTTGTAGACG -ACGGAAGAGATCTGCTTGGTAACG -ACGGAAGAGATCTGCTTGACTTCG -ACGGAAGAGATCTGCTTGTACGCA -ACGGAAGAGATCTGCTTGCTTGCA -ACGGAAGAGATCTGCTTGCGAACA -ACGGAAGAGATCTGCTTGCAGTCA -ACGGAAGAGATCTGCTTGGATCCA -ACGGAAGAGATCTGCTTGACGACA -ACGGAAGAGATCTGCTTGAGCTCA -ACGGAAGAGATCTGCTTGTCACGT -ACGGAAGAGATCTGCTTGCGTAGT -ACGGAAGAGATCTGCTTGGTCAGT -ACGGAAGAGATCTGCTTGGAAGGT -ACGGAAGAGATCTGCTTGAACCGT -ACGGAAGAGATCTGCTTGTTGTGC -ACGGAAGAGATCTGCTTGCTAAGC -ACGGAAGAGATCTGCTTGACTAGC -ACGGAAGAGATCTGCTTGAGATGC -ACGGAAGAGATCTGCTTGTGAAGG -ACGGAAGAGATCTGCTTGCAATGG -ACGGAAGAGATCTGCTTGATGAGG -ACGGAAGAGATCTGCTTGAATGGG -ACGGAAGAGATCTGCTTGTCCTGA -ACGGAAGAGATCTGCTTGTAGCGA -ACGGAAGAGATCTGCTTGCACAGA -ACGGAAGAGATCTGCTTGGCAAGA -ACGGAAGAGATCTGCTTGGGTTGA -ACGGAAGAGATCTGCTTGTCCGAT -ACGGAAGAGATCTGCTTGTGGCAT -ACGGAAGAGATCTGCTTGCGAGAT -ACGGAAGAGATCTGCTTGTACCAC -ACGGAAGAGATCTGCTTGCAGAAC -ACGGAAGAGATCTGCTTGGTCTAC -ACGGAAGAGATCTGCTTGACGTAC -ACGGAAGAGATCTGCTTGAGTGAC -ACGGAAGAGATCTGCTTGCTGTAG -ACGGAAGAGATCTGCTTGCCTAAG -ACGGAAGAGATCTGCTTGGTTCAG -ACGGAAGAGATCTGCTTGGCATAG -ACGGAAGAGATCTGCTTGGACAAG -ACGGAAGAGATCTGCTTGAAGCAG -ACGGAAGAGATCTGCTTGCGTCAA -ACGGAAGAGATCTGCTTGGCTGAA -ACGGAAGAGATCTGCTTGAGTACG -ACGGAAGAGATCTGCTTGATCCGA -ACGGAAGAGATCTGCTTGATGGGA -ACGGAAGAGATCTGCTTGGTGCAA -ACGGAAGAGATCTGCTTGGAGGAA -ACGGAAGAGATCTGCTTGCAGGTA -ACGGAAGAGATCTGCTTGGACTCT -ACGGAAGAGATCTGCTTGAGTCCT -ACGGAAGAGATCTGCTTGTAAGCC -ACGGAAGAGATCTGCTTGATAGCC -ACGGAAGAGATCTGCTTGTAACCG -ACGGAAGAGATCTGCTTGATGCCA -ACGGAAGAGATCAGCCTAGGAAAC -ACGGAAGAGATCAGCCTAAACACC -ACGGAAGAGATCAGCCTAATCGAG -ACGGAAGAGATCAGCCTACTCCTT -ACGGAAGAGATCAGCCTACCTGTT -ACGGAAGAGATCAGCCTACGGTTT -ACGGAAGAGATCAGCCTAGTGGTT -ACGGAAGAGATCAGCCTAGCCTTT -ACGGAAGAGATCAGCCTAGGTCTT -ACGGAAGAGATCAGCCTAACGCTT -ACGGAAGAGATCAGCCTAAGCGTT -ACGGAAGAGATCAGCCTATTCGTC -ACGGAAGAGATCAGCCTATCTCTC -ACGGAAGAGATCAGCCTATGGATC -ACGGAAGAGATCAGCCTACACTTC -ACGGAAGAGATCAGCCTAGTACTC -ACGGAAGAGATCAGCCTAGATGTC -ACGGAAGAGATCAGCCTAACAGTC -ACGGAAGAGATCAGCCTATTGCTG -ACGGAAGAGATCAGCCTATCCATG -ACGGAAGAGATCAGCCTATGTGTG -ACGGAAGAGATCAGCCTACTAGTG -ACGGAAGAGATCAGCCTACATCTG -ACGGAAGAGATCAGCCTAGAGTTG -ACGGAAGAGATCAGCCTAAGACTG -ACGGAAGAGATCAGCCTATCGGTA -ACGGAAGAGATCAGCCTATGCCTA -ACGGAAGAGATCAGCCTACCACTA -ACGGAAGAGATCAGCCTAGGAGTA -ACGGAAGAGATCAGCCTATCGTCT -ACGGAAGAGATCAGCCTATGCACT -ACGGAAGAGATCAGCCTACTGACT -ACGGAAGAGATCAGCCTACAACCT -ACGGAAGAGATCAGCCTAGCTACT -ACGGAAGAGATCAGCCTAGGATCT -ACGGAAGAGATCAGCCTAAAGGCT -ACGGAAGAGATCAGCCTATCAACC -ACGGAAGAGATCAGCCTATGTTCC -ACGGAAGAGATCAGCCTAATTCCC -ACGGAAGAGATCAGCCTATTCTCG -ACGGAAGAGATCAGCCTATAGACG -ACGGAAGAGATCAGCCTAGTAACG -ACGGAAGAGATCAGCCTAACTTCG -ACGGAAGAGATCAGCCTATACGCA -ACGGAAGAGATCAGCCTACTTGCA -ACGGAAGAGATCAGCCTACGAACA -ACGGAAGAGATCAGCCTACAGTCA -ACGGAAGAGATCAGCCTAGATCCA -ACGGAAGAGATCAGCCTAACGACA -ACGGAAGAGATCAGCCTAAGCTCA -ACGGAAGAGATCAGCCTATCACGT -ACGGAAGAGATCAGCCTACGTAGT -ACGGAAGAGATCAGCCTAGTCAGT -ACGGAAGAGATCAGCCTAGAAGGT -ACGGAAGAGATCAGCCTAAACCGT -ACGGAAGAGATCAGCCTATTGTGC -ACGGAAGAGATCAGCCTACTAAGC -ACGGAAGAGATCAGCCTAACTAGC -ACGGAAGAGATCAGCCTAAGATGC -ACGGAAGAGATCAGCCTATGAAGG -ACGGAAGAGATCAGCCTACAATGG -ACGGAAGAGATCAGCCTAATGAGG -ACGGAAGAGATCAGCCTAAATGGG -ACGGAAGAGATCAGCCTATCCTGA -ACGGAAGAGATCAGCCTATAGCGA -ACGGAAGAGATCAGCCTACACAGA -ACGGAAGAGATCAGCCTAGCAAGA -ACGGAAGAGATCAGCCTAGGTTGA -ACGGAAGAGATCAGCCTATCCGAT -ACGGAAGAGATCAGCCTATGGCAT -ACGGAAGAGATCAGCCTACGAGAT -ACGGAAGAGATCAGCCTATACCAC -ACGGAAGAGATCAGCCTACAGAAC -ACGGAAGAGATCAGCCTAGTCTAC -ACGGAAGAGATCAGCCTAACGTAC -ACGGAAGAGATCAGCCTAAGTGAC -ACGGAAGAGATCAGCCTACTGTAG -ACGGAAGAGATCAGCCTACCTAAG -ACGGAAGAGATCAGCCTAGTTCAG -ACGGAAGAGATCAGCCTAGCATAG -ACGGAAGAGATCAGCCTAGACAAG -ACGGAAGAGATCAGCCTAAAGCAG -ACGGAAGAGATCAGCCTACGTCAA -ACGGAAGAGATCAGCCTAGCTGAA -ACGGAAGAGATCAGCCTAAGTACG -ACGGAAGAGATCAGCCTAATCCGA -ACGGAAGAGATCAGCCTAATGGGA -ACGGAAGAGATCAGCCTAGTGCAA -ACGGAAGAGATCAGCCTAGAGGAA -ACGGAAGAGATCAGCCTACAGGTA -ACGGAAGAGATCAGCCTAGACTCT -ACGGAAGAGATCAGCCTAAGTCCT -ACGGAAGAGATCAGCCTATAAGCC -ACGGAAGAGATCAGCCTAATAGCC -ACGGAAGAGATCAGCCTATAACCG -ACGGAAGAGATCAGCCTAATGCCA -ACGGAAGAGATCAGCACTGGAAAC -ACGGAAGAGATCAGCACTAACACC -ACGGAAGAGATCAGCACTATCGAG -ACGGAAGAGATCAGCACTCTCCTT -ACGGAAGAGATCAGCACTCCTGTT -ACGGAAGAGATCAGCACTCGGTTT -ACGGAAGAGATCAGCACTGTGGTT -ACGGAAGAGATCAGCACTGCCTTT -ACGGAAGAGATCAGCACTGGTCTT -ACGGAAGAGATCAGCACTACGCTT -ACGGAAGAGATCAGCACTAGCGTT -ACGGAAGAGATCAGCACTTTCGTC -ACGGAAGAGATCAGCACTTCTCTC -ACGGAAGAGATCAGCACTTGGATC -ACGGAAGAGATCAGCACTCACTTC -ACGGAAGAGATCAGCACTGTACTC -ACGGAAGAGATCAGCACTGATGTC -ACGGAAGAGATCAGCACTACAGTC -ACGGAAGAGATCAGCACTTTGCTG -ACGGAAGAGATCAGCACTTCCATG -ACGGAAGAGATCAGCACTTGTGTG -ACGGAAGAGATCAGCACTCTAGTG -ACGGAAGAGATCAGCACTCATCTG -ACGGAAGAGATCAGCACTGAGTTG -ACGGAAGAGATCAGCACTAGACTG -ACGGAAGAGATCAGCACTTCGGTA -ACGGAAGAGATCAGCACTTGCCTA -ACGGAAGAGATCAGCACTCCACTA -ACGGAAGAGATCAGCACTGGAGTA -ACGGAAGAGATCAGCACTTCGTCT -ACGGAAGAGATCAGCACTTGCACT -ACGGAAGAGATCAGCACTCTGACT -ACGGAAGAGATCAGCACTCAACCT -ACGGAAGAGATCAGCACTGCTACT -ACGGAAGAGATCAGCACTGGATCT -ACGGAAGAGATCAGCACTAAGGCT -ACGGAAGAGATCAGCACTTCAACC -ACGGAAGAGATCAGCACTTGTTCC -ACGGAAGAGATCAGCACTATTCCC -ACGGAAGAGATCAGCACTTTCTCG -ACGGAAGAGATCAGCACTTAGACG -ACGGAAGAGATCAGCACTGTAACG -ACGGAAGAGATCAGCACTACTTCG -ACGGAAGAGATCAGCACTTACGCA -ACGGAAGAGATCAGCACTCTTGCA -ACGGAAGAGATCAGCACTCGAACA -ACGGAAGAGATCAGCACTCAGTCA -ACGGAAGAGATCAGCACTGATCCA -ACGGAAGAGATCAGCACTACGACA -ACGGAAGAGATCAGCACTAGCTCA -ACGGAAGAGATCAGCACTTCACGT -ACGGAAGAGATCAGCACTCGTAGT -ACGGAAGAGATCAGCACTGTCAGT -ACGGAAGAGATCAGCACTGAAGGT -ACGGAAGAGATCAGCACTAACCGT -ACGGAAGAGATCAGCACTTTGTGC -ACGGAAGAGATCAGCACTCTAAGC -ACGGAAGAGATCAGCACTACTAGC -ACGGAAGAGATCAGCACTAGATGC -ACGGAAGAGATCAGCACTTGAAGG -ACGGAAGAGATCAGCACTCAATGG -ACGGAAGAGATCAGCACTATGAGG -ACGGAAGAGATCAGCACTAATGGG -ACGGAAGAGATCAGCACTTCCTGA -ACGGAAGAGATCAGCACTTAGCGA -ACGGAAGAGATCAGCACTCACAGA -ACGGAAGAGATCAGCACTGCAAGA -ACGGAAGAGATCAGCACTGGTTGA -ACGGAAGAGATCAGCACTTCCGAT -ACGGAAGAGATCAGCACTTGGCAT -ACGGAAGAGATCAGCACTCGAGAT -ACGGAAGAGATCAGCACTTACCAC -ACGGAAGAGATCAGCACTCAGAAC -ACGGAAGAGATCAGCACTGTCTAC -ACGGAAGAGATCAGCACTACGTAC -ACGGAAGAGATCAGCACTAGTGAC -ACGGAAGAGATCAGCACTCTGTAG -ACGGAAGAGATCAGCACTCCTAAG -ACGGAAGAGATCAGCACTGTTCAG -ACGGAAGAGATCAGCACTGCATAG -ACGGAAGAGATCAGCACTGACAAG -ACGGAAGAGATCAGCACTAAGCAG -ACGGAAGAGATCAGCACTCGTCAA -ACGGAAGAGATCAGCACTGCTGAA -ACGGAAGAGATCAGCACTAGTACG -ACGGAAGAGATCAGCACTATCCGA -ACGGAAGAGATCAGCACTATGGGA -ACGGAAGAGATCAGCACTGTGCAA -ACGGAAGAGATCAGCACTGAGGAA -ACGGAAGAGATCAGCACTCAGGTA -ACGGAAGAGATCAGCACTGACTCT -ACGGAAGAGATCAGCACTAGTCCT -ACGGAAGAGATCAGCACTTAAGCC -ACGGAAGAGATCAGCACTATAGCC -ACGGAAGAGATCAGCACTTAACCG -ACGGAAGAGATCAGCACTATGCCA -ACGGAAGAGATCTGCAGAGGAAAC -ACGGAAGAGATCTGCAGAAACACC -ACGGAAGAGATCTGCAGAATCGAG -ACGGAAGAGATCTGCAGACTCCTT -ACGGAAGAGATCTGCAGACCTGTT -ACGGAAGAGATCTGCAGACGGTTT -ACGGAAGAGATCTGCAGAGTGGTT -ACGGAAGAGATCTGCAGAGCCTTT -ACGGAAGAGATCTGCAGAGGTCTT -ACGGAAGAGATCTGCAGAACGCTT -ACGGAAGAGATCTGCAGAAGCGTT -ACGGAAGAGATCTGCAGATTCGTC -ACGGAAGAGATCTGCAGATCTCTC -ACGGAAGAGATCTGCAGATGGATC -ACGGAAGAGATCTGCAGACACTTC -ACGGAAGAGATCTGCAGAGTACTC -ACGGAAGAGATCTGCAGAGATGTC -ACGGAAGAGATCTGCAGAACAGTC -ACGGAAGAGATCTGCAGATTGCTG -ACGGAAGAGATCTGCAGATCCATG -ACGGAAGAGATCTGCAGATGTGTG -ACGGAAGAGATCTGCAGACTAGTG -ACGGAAGAGATCTGCAGACATCTG -ACGGAAGAGATCTGCAGAGAGTTG -ACGGAAGAGATCTGCAGAAGACTG -ACGGAAGAGATCTGCAGATCGGTA -ACGGAAGAGATCTGCAGATGCCTA -ACGGAAGAGATCTGCAGACCACTA -ACGGAAGAGATCTGCAGAGGAGTA -ACGGAAGAGATCTGCAGATCGTCT -ACGGAAGAGATCTGCAGATGCACT -ACGGAAGAGATCTGCAGACTGACT -ACGGAAGAGATCTGCAGACAACCT -ACGGAAGAGATCTGCAGAGCTACT -ACGGAAGAGATCTGCAGAGGATCT -ACGGAAGAGATCTGCAGAAAGGCT -ACGGAAGAGATCTGCAGATCAACC -ACGGAAGAGATCTGCAGATGTTCC -ACGGAAGAGATCTGCAGAATTCCC -ACGGAAGAGATCTGCAGATTCTCG -ACGGAAGAGATCTGCAGATAGACG -ACGGAAGAGATCTGCAGAGTAACG -ACGGAAGAGATCTGCAGAACTTCG -ACGGAAGAGATCTGCAGATACGCA -ACGGAAGAGATCTGCAGACTTGCA -ACGGAAGAGATCTGCAGACGAACA -ACGGAAGAGATCTGCAGACAGTCA -ACGGAAGAGATCTGCAGAGATCCA -ACGGAAGAGATCTGCAGAACGACA -ACGGAAGAGATCTGCAGAAGCTCA -ACGGAAGAGATCTGCAGATCACGT -ACGGAAGAGATCTGCAGACGTAGT -ACGGAAGAGATCTGCAGAGTCAGT -ACGGAAGAGATCTGCAGAGAAGGT -ACGGAAGAGATCTGCAGAAACCGT -ACGGAAGAGATCTGCAGATTGTGC -ACGGAAGAGATCTGCAGACTAAGC -ACGGAAGAGATCTGCAGAACTAGC -ACGGAAGAGATCTGCAGAAGATGC -ACGGAAGAGATCTGCAGATGAAGG -ACGGAAGAGATCTGCAGACAATGG -ACGGAAGAGATCTGCAGAATGAGG -ACGGAAGAGATCTGCAGAAATGGG -ACGGAAGAGATCTGCAGATCCTGA -ACGGAAGAGATCTGCAGATAGCGA -ACGGAAGAGATCTGCAGACACAGA -ACGGAAGAGATCTGCAGAGCAAGA -ACGGAAGAGATCTGCAGAGGTTGA -ACGGAAGAGATCTGCAGATCCGAT -ACGGAAGAGATCTGCAGATGGCAT -ACGGAAGAGATCTGCAGACGAGAT -ACGGAAGAGATCTGCAGATACCAC -ACGGAAGAGATCTGCAGACAGAAC -ACGGAAGAGATCTGCAGAGTCTAC -ACGGAAGAGATCTGCAGAACGTAC -ACGGAAGAGATCTGCAGAAGTGAC -ACGGAAGAGATCTGCAGACTGTAG -ACGGAAGAGATCTGCAGACCTAAG -ACGGAAGAGATCTGCAGAGTTCAG -ACGGAAGAGATCTGCAGAGCATAG -ACGGAAGAGATCTGCAGAGACAAG -ACGGAAGAGATCTGCAGAAAGCAG -ACGGAAGAGATCTGCAGACGTCAA -ACGGAAGAGATCTGCAGAGCTGAA -ACGGAAGAGATCTGCAGAAGTACG -ACGGAAGAGATCTGCAGAATCCGA -ACGGAAGAGATCTGCAGAATGGGA -ACGGAAGAGATCTGCAGAGTGCAA -ACGGAAGAGATCTGCAGAGAGGAA -ACGGAAGAGATCTGCAGACAGGTA -ACGGAAGAGATCTGCAGAGACTCT -ACGGAAGAGATCTGCAGAAGTCCT -ACGGAAGAGATCTGCAGATAAGCC -ACGGAAGAGATCTGCAGAATAGCC -ACGGAAGAGATCTGCAGATAACCG -ACGGAAGAGATCTGCAGAATGCCA -ACGGAAGAGATCAGGTGAGGAAAC -ACGGAAGAGATCAGGTGAAACACC -ACGGAAGAGATCAGGTGAATCGAG -ACGGAAGAGATCAGGTGACTCCTT -ACGGAAGAGATCAGGTGACCTGTT -ACGGAAGAGATCAGGTGACGGTTT -ACGGAAGAGATCAGGTGAGTGGTT -ACGGAAGAGATCAGGTGAGCCTTT -ACGGAAGAGATCAGGTGAGGTCTT -ACGGAAGAGATCAGGTGAACGCTT -ACGGAAGAGATCAGGTGAAGCGTT -ACGGAAGAGATCAGGTGATTCGTC -ACGGAAGAGATCAGGTGATCTCTC -ACGGAAGAGATCAGGTGATGGATC -ACGGAAGAGATCAGGTGACACTTC -ACGGAAGAGATCAGGTGAGTACTC -ACGGAAGAGATCAGGTGAGATGTC -ACGGAAGAGATCAGGTGAACAGTC -ACGGAAGAGATCAGGTGATTGCTG -ACGGAAGAGATCAGGTGATCCATG -ACGGAAGAGATCAGGTGATGTGTG -ACGGAAGAGATCAGGTGACTAGTG -ACGGAAGAGATCAGGTGACATCTG -ACGGAAGAGATCAGGTGAGAGTTG -ACGGAAGAGATCAGGTGAAGACTG -ACGGAAGAGATCAGGTGATCGGTA -ACGGAAGAGATCAGGTGATGCCTA -ACGGAAGAGATCAGGTGACCACTA -ACGGAAGAGATCAGGTGAGGAGTA -ACGGAAGAGATCAGGTGATCGTCT -ACGGAAGAGATCAGGTGATGCACT -ACGGAAGAGATCAGGTGACTGACT -ACGGAAGAGATCAGGTGACAACCT -ACGGAAGAGATCAGGTGAGCTACT -ACGGAAGAGATCAGGTGAGGATCT -ACGGAAGAGATCAGGTGAAAGGCT -ACGGAAGAGATCAGGTGATCAACC -ACGGAAGAGATCAGGTGATGTTCC -ACGGAAGAGATCAGGTGAATTCCC -ACGGAAGAGATCAGGTGATTCTCG -ACGGAAGAGATCAGGTGATAGACG -ACGGAAGAGATCAGGTGAGTAACG -ACGGAAGAGATCAGGTGAACTTCG -ACGGAAGAGATCAGGTGATACGCA -ACGGAAGAGATCAGGTGACTTGCA -ACGGAAGAGATCAGGTGACGAACA -ACGGAAGAGATCAGGTGACAGTCA -ACGGAAGAGATCAGGTGAGATCCA -ACGGAAGAGATCAGGTGAACGACA -ACGGAAGAGATCAGGTGAAGCTCA -ACGGAAGAGATCAGGTGATCACGT -ACGGAAGAGATCAGGTGACGTAGT -ACGGAAGAGATCAGGTGAGTCAGT -ACGGAAGAGATCAGGTGAGAAGGT -ACGGAAGAGATCAGGTGAAACCGT -ACGGAAGAGATCAGGTGATTGTGC -ACGGAAGAGATCAGGTGACTAAGC -ACGGAAGAGATCAGGTGAACTAGC -ACGGAAGAGATCAGGTGAAGATGC -ACGGAAGAGATCAGGTGATGAAGG -ACGGAAGAGATCAGGTGACAATGG -ACGGAAGAGATCAGGTGAATGAGG -ACGGAAGAGATCAGGTGAAATGGG -ACGGAAGAGATCAGGTGATCCTGA -ACGGAAGAGATCAGGTGATAGCGA -ACGGAAGAGATCAGGTGACACAGA -ACGGAAGAGATCAGGTGAGCAAGA -ACGGAAGAGATCAGGTGAGGTTGA -ACGGAAGAGATCAGGTGATCCGAT -ACGGAAGAGATCAGGTGATGGCAT -ACGGAAGAGATCAGGTGACGAGAT -ACGGAAGAGATCAGGTGATACCAC -ACGGAAGAGATCAGGTGACAGAAC -ACGGAAGAGATCAGGTGAGTCTAC -ACGGAAGAGATCAGGTGAACGTAC -ACGGAAGAGATCAGGTGAAGTGAC -ACGGAAGAGATCAGGTGACTGTAG -ACGGAAGAGATCAGGTGACCTAAG -ACGGAAGAGATCAGGTGAGTTCAG -ACGGAAGAGATCAGGTGAGCATAG -ACGGAAGAGATCAGGTGAGACAAG -ACGGAAGAGATCAGGTGAAAGCAG -ACGGAAGAGATCAGGTGACGTCAA -ACGGAAGAGATCAGGTGAGCTGAA -ACGGAAGAGATCAGGTGAAGTACG -ACGGAAGAGATCAGGTGAATCCGA -ACGGAAGAGATCAGGTGAATGGGA -ACGGAAGAGATCAGGTGAGTGCAA -ACGGAAGAGATCAGGTGAGAGGAA -ACGGAAGAGATCAGGTGACAGGTA -ACGGAAGAGATCAGGTGAGACTCT -ACGGAAGAGATCAGGTGAAGTCCT -ACGGAAGAGATCAGGTGATAAGCC -ACGGAAGAGATCAGGTGAATAGCC -ACGGAAGAGATCAGGTGATAACCG -ACGGAAGAGATCAGGTGAATGCCA -ACGGAAGAGATCTGGCAAGGAAAC -ACGGAAGAGATCTGGCAAAACACC -ACGGAAGAGATCTGGCAAATCGAG -ACGGAAGAGATCTGGCAACTCCTT -ACGGAAGAGATCTGGCAACCTGTT -ACGGAAGAGATCTGGCAACGGTTT -ACGGAAGAGATCTGGCAAGTGGTT -ACGGAAGAGATCTGGCAAGCCTTT -ACGGAAGAGATCTGGCAAGGTCTT -ACGGAAGAGATCTGGCAAACGCTT -ACGGAAGAGATCTGGCAAAGCGTT -ACGGAAGAGATCTGGCAATTCGTC -ACGGAAGAGATCTGGCAATCTCTC -ACGGAAGAGATCTGGCAATGGATC -ACGGAAGAGATCTGGCAACACTTC -ACGGAAGAGATCTGGCAAGTACTC -ACGGAAGAGATCTGGCAAGATGTC -ACGGAAGAGATCTGGCAAACAGTC -ACGGAAGAGATCTGGCAATTGCTG -ACGGAAGAGATCTGGCAATCCATG -ACGGAAGAGATCTGGCAATGTGTG -ACGGAAGAGATCTGGCAACTAGTG -ACGGAAGAGATCTGGCAACATCTG -ACGGAAGAGATCTGGCAAGAGTTG -ACGGAAGAGATCTGGCAAAGACTG -ACGGAAGAGATCTGGCAATCGGTA -ACGGAAGAGATCTGGCAATGCCTA -ACGGAAGAGATCTGGCAACCACTA -ACGGAAGAGATCTGGCAAGGAGTA -ACGGAAGAGATCTGGCAATCGTCT -ACGGAAGAGATCTGGCAATGCACT -ACGGAAGAGATCTGGCAACTGACT -ACGGAAGAGATCTGGCAACAACCT -ACGGAAGAGATCTGGCAAGCTACT -ACGGAAGAGATCTGGCAAGGATCT -ACGGAAGAGATCTGGCAAAAGGCT -ACGGAAGAGATCTGGCAATCAACC -ACGGAAGAGATCTGGCAATGTTCC -ACGGAAGAGATCTGGCAAATTCCC -ACGGAAGAGATCTGGCAATTCTCG -ACGGAAGAGATCTGGCAATAGACG -ACGGAAGAGATCTGGCAAGTAACG -ACGGAAGAGATCTGGCAAACTTCG -ACGGAAGAGATCTGGCAATACGCA -ACGGAAGAGATCTGGCAACTTGCA -ACGGAAGAGATCTGGCAACGAACA -ACGGAAGAGATCTGGCAACAGTCA -ACGGAAGAGATCTGGCAAGATCCA -ACGGAAGAGATCTGGCAAACGACA -ACGGAAGAGATCTGGCAAAGCTCA -ACGGAAGAGATCTGGCAATCACGT -ACGGAAGAGATCTGGCAACGTAGT -ACGGAAGAGATCTGGCAAGTCAGT -ACGGAAGAGATCTGGCAAGAAGGT -ACGGAAGAGATCTGGCAAAACCGT -ACGGAAGAGATCTGGCAATTGTGC -ACGGAAGAGATCTGGCAACTAAGC -ACGGAAGAGATCTGGCAAACTAGC -ACGGAAGAGATCTGGCAAAGATGC -ACGGAAGAGATCTGGCAATGAAGG -ACGGAAGAGATCTGGCAACAATGG -ACGGAAGAGATCTGGCAAATGAGG -ACGGAAGAGATCTGGCAAAATGGG -ACGGAAGAGATCTGGCAATCCTGA -ACGGAAGAGATCTGGCAATAGCGA -ACGGAAGAGATCTGGCAACACAGA -ACGGAAGAGATCTGGCAAGCAAGA -ACGGAAGAGATCTGGCAAGGTTGA -ACGGAAGAGATCTGGCAATCCGAT -ACGGAAGAGATCTGGCAATGGCAT -ACGGAAGAGATCTGGCAACGAGAT -ACGGAAGAGATCTGGCAATACCAC -ACGGAAGAGATCTGGCAACAGAAC -ACGGAAGAGATCTGGCAAGTCTAC -ACGGAAGAGATCTGGCAAACGTAC -ACGGAAGAGATCTGGCAAAGTGAC -ACGGAAGAGATCTGGCAACTGTAG -ACGGAAGAGATCTGGCAACCTAAG -ACGGAAGAGATCTGGCAAGTTCAG -ACGGAAGAGATCTGGCAAGCATAG -ACGGAAGAGATCTGGCAAGACAAG -ACGGAAGAGATCTGGCAAAAGCAG -ACGGAAGAGATCTGGCAACGTCAA -ACGGAAGAGATCTGGCAAGCTGAA -ACGGAAGAGATCTGGCAAAGTACG -ACGGAAGAGATCTGGCAAATCCGA -ACGGAAGAGATCTGGCAAATGGGA -ACGGAAGAGATCTGGCAAGTGCAA -ACGGAAGAGATCTGGCAAGAGGAA -ACGGAAGAGATCTGGCAACAGGTA -ACGGAAGAGATCTGGCAAGACTCT -ACGGAAGAGATCTGGCAAAGTCCT -ACGGAAGAGATCTGGCAATAAGCC -ACGGAAGAGATCTGGCAAATAGCC -ACGGAAGAGATCTGGCAATAACCG -ACGGAAGAGATCTGGCAAATGCCA -ACGGAAGAGATCAGGATGGGAAAC -ACGGAAGAGATCAGGATGAACACC -ACGGAAGAGATCAGGATGATCGAG -ACGGAAGAGATCAGGATGCTCCTT -ACGGAAGAGATCAGGATGCCTGTT -ACGGAAGAGATCAGGATGCGGTTT -ACGGAAGAGATCAGGATGGTGGTT -ACGGAAGAGATCAGGATGGCCTTT -ACGGAAGAGATCAGGATGGGTCTT -ACGGAAGAGATCAGGATGACGCTT -ACGGAAGAGATCAGGATGAGCGTT -ACGGAAGAGATCAGGATGTTCGTC -ACGGAAGAGATCAGGATGTCTCTC -ACGGAAGAGATCAGGATGTGGATC -ACGGAAGAGATCAGGATGCACTTC -ACGGAAGAGATCAGGATGGTACTC -ACGGAAGAGATCAGGATGGATGTC -ACGGAAGAGATCAGGATGACAGTC -ACGGAAGAGATCAGGATGTTGCTG -ACGGAAGAGATCAGGATGTCCATG -ACGGAAGAGATCAGGATGTGTGTG -ACGGAAGAGATCAGGATGCTAGTG -ACGGAAGAGATCAGGATGCATCTG -ACGGAAGAGATCAGGATGGAGTTG -ACGGAAGAGATCAGGATGAGACTG -ACGGAAGAGATCAGGATGTCGGTA -ACGGAAGAGATCAGGATGTGCCTA -ACGGAAGAGATCAGGATGCCACTA -ACGGAAGAGATCAGGATGGGAGTA -ACGGAAGAGATCAGGATGTCGTCT -ACGGAAGAGATCAGGATGTGCACT -ACGGAAGAGATCAGGATGCTGACT -ACGGAAGAGATCAGGATGCAACCT -ACGGAAGAGATCAGGATGGCTACT -ACGGAAGAGATCAGGATGGGATCT -ACGGAAGAGATCAGGATGAAGGCT -ACGGAAGAGATCAGGATGTCAACC -ACGGAAGAGATCAGGATGTGTTCC -ACGGAAGAGATCAGGATGATTCCC -ACGGAAGAGATCAGGATGTTCTCG -ACGGAAGAGATCAGGATGTAGACG -ACGGAAGAGATCAGGATGGTAACG -ACGGAAGAGATCAGGATGACTTCG -ACGGAAGAGATCAGGATGTACGCA -ACGGAAGAGATCAGGATGCTTGCA -ACGGAAGAGATCAGGATGCGAACA -ACGGAAGAGATCAGGATGCAGTCA -ACGGAAGAGATCAGGATGGATCCA -ACGGAAGAGATCAGGATGACGACA -ACGGAAGAGATCAGGATGAGCTCA -ACGGAAGAGATCAGGATGTCACGT -ACGGAAGAGATCAGGATGCGTAGT -ACGGAAGAGATCAGGATGGTCAGT -ACGGAAGAGATCAGGATGGAAGGT -ACGGAAGAGATCAGGATGAACCGT -ACGGAAGAGATCAGGATGTTGTGC -ACGGAAGAGATCAGGATGCTAAGC -ACGGAAGAGATCAGGATGACTAGC -ACGGAAGAGATCAGGATGAGATGC -ACGGAAGAGATCAGGATGTGAAGG -ACGGAAGAGATCAGGATGCAATGG -ACGGAAGAGATCAGGATGATGAGG -ACGGAAGAGATCAGGATGAATGGG -ACGGAAGAGATCAGGATGTCCTGA -ACGGAAGAGATCAGGATGTAGCGA -ACGGAAGAGATCAGGATGCACAGA -ACGGAAGAGATCAGGATGGCAAGA -ACGGAAGAGATCAGGATGGGTTGA -ACGGAAGAGATCAGGATGTCCGAT -ACGGAAGAGATCAGGATGTGGCAT -ACGGAAGAGATCAGGATGCGAGAT -ACGGAAGAGATCAGGATGTACCAC -ACGGAAGAGATCAGGATGCAGAAC -ACGGAAGAGATCAGGATGGTCTAC -ACGGAAGAGATCAGGATGACGTAC -ACGGAAGAGATCAGGATGAGTGAC -ACGGAAGAGATCAGGATGCTGTAG -ACGGAAGAGATCAGGATGCCTAAG -ACGGAAGAGATCAGGATGGTTCAG -ACGGAAGAGATCAGGATGGCATAG -ACGGAAGAGATCAGGATGGACAAG -ACGGAAGAGATCAGGATGAAGCAG -ACGGAAGAGATCAGGATGCGTCAA -ACGGAAGAGATCAGGATGGCTGAA -ACGGAAGAGATCAGGATGAGTACG -ACGGAAGAGATCAGGATGATCCGA -ACGGAAGAGATCAGGATGATGGGA -ACGGAAGAGATCAGGATGGTGCAA -ACGGAAGAGATCAGGATGGAGGAA -ACGGAAGAGATCAGGATGCAGGTA -ACGGAAGAGATCAGGATGGACTCT -ACGGAAGAGATCAGGATGAGTCCT -ACGGAAGAGATCAGGATGTAAGCC -ACGGAAGAGATCAGGATGATAGCC -ACGGAAGAGATCAGGATGTAACCG -ACGGAAGAGATCAGGATGATGCCA -ACGGAAGAGATCGGGAATGGAAAC -ACGGAAGAGATCGGGAATAACACC -ACGGAAGAGATCGGGAATATCGAG -ACGGAAGAGATCGGGAATCTCCTT -ACGGAAGAGATCGGGAATCCTGTT -ACGGAAGAGATCGGGAATCGGTTT -ACGGAAGAGATCGGGAATGTGGTT -ACGGAAGAGATCGGGAATGCCTTT -ACGGAAGAGATCGGGAATGGTCTT -ACGGAAGAGATCGGGAATACGCTT -ACGGAAGAGATCGGGAATAGCGTT -ACGGAAGAGATCGGGAATTTCGTC -ACGGAAGAGATCGGGAATTCTCTC -ACGGAAGAGATCGGGAATTGGATC -ACGGAAGAGATCGGGAATCACTTC -ACGGAAGAGATCGGGAATGTACTC -ACGGAAGAGATCGGGAATGATGTC -ACGGAAGAGATCGGGAATACAGTC -ACGGAAGAGATCGGGAATTTGCTG -ACGGAAGAGATCGGGAATTCCATG -ACGGAAGAGATCGGGAATTGTGTG -ACGGAAGAGATCGGGAATCTAGTG -ACGGAAGAGATCGGGAATCATCTG -ACGGAAGAGATCGGGAATGAGTTG -ACGGAAGAGATCGGGAATAGACTG -ACGGAAGAGATCGGGAATTCGGTA -ACGGAAGAGATCGGGAATTGCCTA -ACGGAAGAGATCGGGAATCCACTA -ACGGAAGAGATCGGGAATGGAGTA -ACGGAAGAGATCGGGAATTCGTCT -ACGGAAGAGATCGGGAATTGCACT -ACGGAAGAGATCGGGAATCTGACT -ACGGAAGAGATCGGGAATCAACCT -ACGGAAGAGATCGGGAATGCTACT -ACGGAAGAGATCGGGAATGGATCT -ACGGAAGAGATCGGGAATAAGGCT -ACGGAAGAGATCGGGAATTCAACC -ACGGAAGAGATCGGGAATTGTTCC -ACGGAAGAGATCGGGAATATTCCC -ACGGAAGAGATCGGGAATTTCTCG -ACGGAAGAGATCGGGAATTAGACG -ACGGAAGAGATCGGGAATGTAACG -ACGGAAGAGATCGGGAATACTTCG -ACGGAAGAGATCGGGAATTACGCA -ACGGAAGAGATCGGGAATCTTGCA -ACGGAAGAGATCGGGAATCGAACA -ACGGAAGAGATCGGGAATCAGTCA -ACGGAAGAGATCGGGAATGATCCA -ACGGAAGAGATCGGGAATACGACA -ACGGAAGAGATCGGGAATAGCTCA -ACGGAAGAGATCGGGAATTCACGT -ACGGAAGAGATCGGGAATCGTAGT -ACGGAAGAGATCGGGAATGTCAGT -ACGGAAGAGATCGGGAATGAAGGT -ACGGAAGAGATCGGGAATAACCGT -ACGGAAGAGATCGGGAATTTGTGC -ACGGAAGAGATCGGGAATCTAAGC -ACGGAAGAGATCGGGAATACTAGC -ACGGAAGAGATCGGGAATAGATGC -ACGGAAGAGATCGGGAATTGAAGG -ACGGAAGAGATCGGGAATCAATGG -ACGGAAGAGATCGGGAATATGAGG -ACGGAAGAGATCGGGAATAATGGG -ACGGAAGAGATCGGGAATTCCTGA -ACGGAAGAGATCGGGAATTAGCGA -ACGGAAGAGATCGGGAATCACAGA -ACGGAAGAGATCGGGAATGCAAGA -ACGGAAGAGATCGGGAATGGTTGA -ACGGAAGAGATCGGGAATTCCGAT -ACGGAAGAGATCGGGAATTGGCAT -ACGGAAGAGATCGGGAATCGAGAT -ACGGAAGAGATCGGGAATTACCAC -ACGGAAGAGATCGGGAATCAGAAC -ACGGAAGAGATCGGGAATGTCTAC -ACGGAAGAGATCGGGAATACGTAC -ACGGAAGAGATCGGGAATAGTGAC -ACGGAAGAGATCGGGAATCTGTAG -ACGGAAGAGATCGGGAATCCTAAG -ACGGAAGAGATCGGGAATGTTCAG -ACGGAAGAGATCGGGAATGCATAG -ACGGAAGAGATCGGGAATGACAAG -ACGGAAGAGATCGGGAATAAGCAG -ACGGAAGAGATCGGGAATCGTCAA -ACGGAAGAGATCGGGAATGCTGAA -ACGGAAGAGATCGGGAATAGTACG -ACGGAAGAGATCGGGAATATCCGA -ACGGAAGAGATCGGGAATATGGGA -ACGGAAGAGATCGGGAATGTGCAA -ACGGAAGAGATCGGGAATGAGGAA -ACGGAAGAGATCGGGAATCAGGTA -ACGGAAGAGATCGGGAATGACTCT -ACGGAAGAGATCGGGAATAGTCCT -ACGGAAGAGATCGGGAATTAAGCC -ACGGAAGAGATCGGGAATATAGCC -ACGGAAGAGATCGGGAATTAACCG -ACGGAAGAGATCGGGAATATGCCA -ACGGAAGAGATCTGATCCGGAAAC -ACGGAAGAGATCTGATCCAACACC -ACGGAAGAGATCTGATCCATCGAG -ACGGAAGAGATCTGATCCCTCCTT -ACGGAAGAGATCTGATCCCCTGTT -ACGGAAGAGATCTGATCCCGGTTT -ACGGAAGAGATCTGATCCGTGGTT -ACGGAAGAGATCTGATCCGCCTTT -ACGGAAGAGATCTGATCCGGTCTT -ACGGAAGAGATCTGATCCACGCTT -ACGGAAGAGATCTGATCCAGCGTT -ACGGAAGAGATCTGATCCTTCGTC -ACGGAAGAGATCTGATCCTCTCTC -ACGGAAGAGATCTGATCCTGGATC -ACGGAAGAGATCTGATCCCACTTC -ACGGAAGAGATCTGATCCGTACTC -ACGGAAGAGATCTGATCCGATGTC -ACGGAAGAGATCTGATCCACAGTC -ACGGAAGAGATCTGATCCTTGCTG -ACGGAAGAGATCTGATCCTCCATG -ACGGAAGAGATCTGATCCTGTGTG -ACGGAAGAGATCTGATCCCTAGTG -ACGGAAGAGATCTGATCCCATCTG -ACGGAAGAGATCTGATCCGAGTTG -ACGGAAGAGATCTGATCCAGACTG -ACGGAAGAGATCTGATCCTCGGTA -ACGGAAGAGATCTGATCCTGCCTA -ACGGAAGAGATCTGATCCCCACTA -ACGGAAGAGATCTGATCCGGAGTA -ACGGAAGAGATCTGATCCTCGTCT -ACGGAAGAGATCTGATCCTGCACT -ACGGAAGAGATCTGATCCCTGACT -ACGGAAGAGATCTGATCCCAACCT -ACGGAAGAGATCTGATCCGCTACT -ACGGAAGAGATCTGATCCGGATCT -ACGGAAGAGATCTGATCCAAGGCT -ACGGAAGAGATCTGATCCTCAACC -ACGGAAGAGATCTGATCCTGTTCC -ACGGAAGAGATCTGATCCATTCCC -ACGGAAGAGATCTGATCCTTCTCG -ACGGAAGAGATCTGATCCTAGACG -ACGGAAGAGATCTGATCCGTAACG -ACGGAAGAGATCTGATCCACTTCG -ACGGAAGAGATCTGATCCTACGCA -ACGGAAGAGATCTGATCCCTTGCA -ACGGAAGAGATCTGATCCCGAACA -ACGGAAGAGATCTGATCCCAGTCA -ACGGAAGAGATCTGATCCGATCCA -ACGGAAGAGATCTGATCCACGACA -ACGGAAGAGATCTGATCCAGCTCA -ACGGAAGAGATCTGATCCTCACGT -ACGGAAGAGATCTGATCCCGTAGT -ACGGAAGAGATCTGATCCGTCAGT -ACGGAAGAGATCTGATCCGAAGGT -ACGGAAGAGATCTGATCCAACCGT -ACGGAAGAGATCTGATCCTTGTGC -ACGGAAGAGATCTGATCCCTAAGC -ACGGAAGAGATCTGATCCACTAGC -ACGGAAGAGATCTGATCCAGATGC -ACGGAAGAGATCTGATCCTGAAGG -ACGGAAGAGATCTGATCCCAATGG -ACGGAAGAGATCTGATCCATGAGG -ACGGAAGAGATCTGATCCAATGGG -ACGGAAGAGATCTGATCCTCCTGA -ACGGAAGAGATCTGATCCTAGCGA -ACGGAAGAGATCTGATCCCACAGA -ACGGAAGAGATCTGATCCGCAAGA -ACGGAAGAGATCTGATCCGGTTGA -ACGGAAGAGATCTGATCCTCCGAT -ACGGAAGAGATCTGATCCTGGCAT -ACGGAAGAGATCTGATCCCGAGAT -ACGGAAGAGATCTGATCCTACCAC -ACGGAAGAGATCTGATCCCAGAAC -ACGGAAGAGATCTGATCCGTCTAC -ACGGAAGAGATCTGATCCACGTAC -ACGGAAGAGATCTGATCCAGTGAC -ACGGAAGAGATCTGATCCCTGTAG -ACGGAAGAGATCTGATCCCCTAAG -ACGGAAGAGATCTGATCCGTTCAG -ACGGAAGAGATCTGATCCGCATAG -ACGGAAGAGATCTGATCCGACAAG -ACGGAAGAGATCTGATCCAAGCAG -ACGGAAGAGATCTGATCCCGTCAA -ACGGAAGAGATCTGATCCGCTGAA -ACGGAAGAGATCTGATCCAGTACG -ACGGAAGAGATCTGATCCATCCGA -ACGGAAGAGATCTGATCCATGGGA -ACGGAAGAGATCTGATCCGTGCAA -ACGGAAGAGATCTGATCCGAGGAA -ACGGAAGAGATCTGATCCCAGGTA -ACGGAAGAGATCTGATCCGACTCT -ACGGAAGAGATCTGATCCAGTCCT -ACGGAAGAGATCTGATCCTAAGCC -ACGGAAGAGATCTGATCCATAGCC -ACGGAAGAGATCTGATCCTAACCG -ACGGAAGAGATCTGATCCATGCCA -ACGGAAGAGATCCGATAGGGAAAC -ACGGAAGAGATCCGATAGAACACC -ACGGAAGAGATCCGATAGATCGAG -ACGGAAGAGATCCGATAGCTCCTT -ACGGAAGAGATCCGATAGCCTGTT -ACGGAAGAGATCCGATAGCGGTTT -ACGGAAGAGATCCGATAGGTGGTT -ACGGAAGAGATCCGATAGGCCTTT -ACGGAAGAGATCCGATAGGGTCTT -ACGGAAGAGATCCGATAGACGCTT -ACGGAAGAGATCCGATAGAGCGTT -ACGGAAGAGATCCGATAGTTCGTC -ACGGAAGAGATCCGATAGTCTCTC -ACGGAAGAGATCCGATAGTGGATC -ACGGAAGAGATCCGATAGCACTTC -ACGGAAGAGATCCGATAGGTACTC -ACGGAAGAGATCCGATAGGATGTC -ACGGAAGAGATCCGATAGACAGTC -ACGGAAGAGATCCGATAGTTGCTG -ACGGAAGAGATCCGATAGTCCATG -ACGGAAGAGATCCGATAGTGTGTG -ACGGAAGAGATCCGATAGCTAGTG -ACGGAAGAGATCCGATAGCATCTG -ACGGAAGAGATCCGATAGGAGTTG -ACGGAAGAGATCCGATAGAGACTG -ACGGAAGAGATCCGATAGTCGGTA -ACGGAAGAGATCCGATAGTGCCTA -ACGGAAGAGATCCGATAGCCACTA -ACGGAAGAGATCCGATAGGGAGTA -ACGGAAGAGATCCGATAGTCGTCT -ACGGAAGAGATCCGATAGTGCACT -ACGGAAGAGATCCGATAGCTGACT -ACGGAAGAGATCCGATAGCAACCT -ACGGAAGAGATCCGATAGGCTACT -ACGGAAGAGATCCGATAGGGATCT -ACGGAAGAGATCCGATAGAAGGCT -ACGGAAGAGATCCGATAGTCAACC -ACGGAAGAGATCCGATAGTGTTCC -ACGGAAGAGATCCGATAGATTCCC -ACGGAAGAGATCCGATAGTTCTCG -ACGGAAGAGATCCGATAGTAGACG -ACGGAAGAGATCCGATAGGTAACG -ACGGAAGAGATCCGATAGACTTCG -ACGGAAGAGATCCGATAGTACGCA -ACGGAAGAGATCCGATAGCTTGCA -ACGGAAGAGATCCGATAGCGAACA -ACGGAAGAGATCCGATAGCAGTCA -ACGGAAGAGATCCGATAGGATCCA -ACGGAAGAGATCCGATAGACGACA -ACGGAAGAGATCCGATAGAGCTCA -ACGGAAGAGATCCGATAGTCACGT -ACGGAAGAGATCCGATAGCGTAGT -ACGGAAGAGATCCGATAGGTCAGT -ACGGAAGAGATCCGATAGGAAGGT -ACGGAAGAGATCCGATAGAACCGT -ACGGAAGAGATCCGATAGTTGTGC -ACGGAAGAGATCCGATAGCTAAGC -ACGGAAGAGATCCGATAGACTAGC -ACGGAAGAGATCCGATAGAGATGC -ACGGAAGAGATCCGATAGTGAAGG -ACGGAAGAGATCCGATAGCAATGG -ACGGAAGAGATCCGATAGATGAGG -ACGGAAGAGATCCGATAGAATGGG -ACGGAAGAGATCCGATAGTCCTGA -ACGGAAGAGATCCGATAGTAGCGA -ACGGAAGAGATCCGATAGCACAGA -ACGGAAGAGATCCGATAGGCAAGA -ACGGAAGAGATCCGATAGGGTTGA -ACGGAAGAGATCCGATAGTCCGAT -ACGGAAGAGATCCGATAGTGGCAT -ACGGAAGAGATCCGATAGCGAGAT -ACGGAAGAGATCCGATAGTACCAC -ACGGAAGAGATCCGATAGCAGAAC -ACGGAAGAGATCCGATAGGTCTAC -ACGGAAGAGATCCGATAGACGTAC -ACGGAAGAGATCCGATAGAGTGAC -ACGGAAGAGATCCGATAGCTGTAG -ACGGAAGAGATCCGATAGCCTAAG -ACGGAAGAGATCCGATAGGTTCAG -ACGGAAGAGATCCGATAGGCATAG -ACGGAAGAGATCCGATAGGACAAG -ACGGAAGAGATCCGATAGAAGCAG -ACGGAAGAGATCCGATAGCGTCAA -ACGGAAGAGATCCGATAGGCTGAA -ACGGAAGAGATCCGATAGAGTACG -ACGGAAGAGATCCGATAGATCCGA -ACGGAAGAGATCCGATAGATGGGA -ACGGAAGAGATCCGATAGGTGCAA -ACGGAAGAGATCCGATAGGAGGAA -ACGGAAGAGATCCGATAGCAGGTA -ACGGAAGAGATCCGATAGGACTCT -ACGGAAGAGATCCGATAGAGTCCT -ACGGAAGAGATCCGATAGTAAGCC -ACGGAAGAGATCCGATAGATAGCC -ACGGAAGAGATCCGATAGTAACCG -ACGGAAGAGATCCGATAGATGCCA -ACGGAAGAGATCAGACACGGAAAC -ACGGAAGAGATCAGACACAACACC -ACGGAAGAGATCAGACACATCGAG -ACGGAAGAGATCAGACACCTCCTT -ACGGAAGAGATCAGACACCCTGTT -ACGGAAGAGATCAGACACCGGTTT -ACGGAAGAGATCAGACACGTGGTT -ACGGAAGAGATCAGACACGCCTTT -ACGGAAGAGATCAGACACGGTCTT -ACGGAAGAGATCAGACACACGCTT -ACGGAAGAGATCAGACACAGCGTT -ACGGAAGAGATCAGACACTTCGTC -ACGGAAGAGATCAGACACTCTCTC -ACGGAAGAGATCAGACACTGGATC -ACGGAAGAGATCAGACACCACTTC -ACGGAAGAGATCAGACACGTACTC -ACGGAAGAGATCAGACACGATGTC -ACGGAAGAGATCAGACACACAGTC -ACGGAAGAGATCAGACACTTGCTG -ACGGAAGAGATCAGACACTCCATG -ACGGAAGAGATCAGACACTGTGTG -ACGGAAGAGATCAGACACCTAGTG -ACGGAAGAGATCAGACACCATCTG -ACGGAAGAGATCAGACACGAGTTG -ACGGAAGAGATCAGACACAGACTG -ACGGAAGAGATCAGACACTCGGTA -ACGGAAGAGATCAGACACTGCCTA -ACGGAAGAGATCAGACACCCACTA -ACGGAAGAGATCAGACACGGAGTA -ACGGAAGAGATCAGACACTCGTCT -ACGGAAGAGATCAGACACTGCACT -ACGGAAGAGATCAGACACCTGACT -ACGGAAGAGATCAGACACCAACCT -ACGGAAGAGATCAGACACGCTACT -ACGGAAGAGATCAGACACGGATCT -ACGGAAGAGATCAGACACAAGGCT -ACGGAAGAGATCAGACACTCAACC -ACGGAAGAGATCAGACACTGTTCC -ACGGAAGAGATCAGACACATTCCC -ACGGAAGAGATCAGACACTTCTCG -ACGGAAGAGATCAGACACTAGACG -ACGGAAGAGATCAGACACGTAACG -ACGGAAGAGATCAGACACACTTCG -ACGGAAGAGATCAGACACTACGCA -ACGGAAGAGATCAGACACCTTGCA -ACGGAAGAGATCAGACACCGAACA -ACGGAAGAGATCAGACACCAGTCA -ACGGAAGAGATCAGACACGATCCA -ACGGAAGAGATCAGACACACGACA -ACGGAAGAGATCAGACACAGCTCA -ACGGAAGAGATCAGACACTCACGT -ACGGAAGAGATCAGACACCGTAGT -ACGGAAGAGATCAGACACGTCAGT -ACGGAAGAGATCAGACACGAAGGT -ACGGAAGAGATCAGACACAACCGT -ACGGAAGAGATCAGACACTTGTGC -ACGGAAGAGATCAGACACCTAAGC -ACGGAAGAGATCAGACACACTAGC -ACGGAAGAGATCAGACACAGATGC -ACGGAAGAGATCAGACACTGAAGG -ACGGAAGAGATCAGACACCAATGG -ACGGAAGAGATCAGACACATGAGG -ACGGAAGAGATCAGACACAATGGG -ACGGAAGAGATCAGACACTCCTGA -ACGGAAGAGATCAGACACTAGCGA -ACGGAAGAGATCAGACACCACAGA -ACGGAAGAGATCAGACACGCAAGA -ACGGAAGAGATCAGACACGGTTGA -ACGGAAGAGATCAGACACTCCGAT -ACGGAAGAGATCAGACACTGGCAT -ACGGAAGAGATCAGACACCGAGAT -ACGGAAGAGATCAGACACTACCAC -ACGGAAGAGATCAGACACCAGAAC -ACGGAAGAGATCAGACACGTCTAC -ACGGAAGAGATCAGACACACGTAC -ACGGAAGAGATCAGACACAGTGAC -ACGGAAGAGATCAGACACCTGTAG -ACGGAAGAGATCAGACACCCTAAG -ACGGAAGAGATCAGACACGTTCAG -ACGGAAGAGATCAGACACGCATAG -ACGGAAGAGATCAGACACGACAAG -ACGGAAGAGATCAGACACAAGCAG -ACGGAAGAGATCAGACACCGTCAA -ACGGAAGAGATCAGACACGCTGAA -ACGGAAGAGATCAGACACAGTACG -ACGGAAGAGATCAGACACATCCGA -ACGGAAGAGATCAGACACATGGGA -ACGGAAGAGATCAGACACGTGCAA -ACGGAAGAGATCAGACACGAGGAA -ACGGAAGAGATCAGACACCAGGTA -ACGGAAGAGATCAGACACGACTCT -ACGGAAGAGATCAGACACAGTCCT -ACGGAAGAGATCAGACACTAAGCC -ACGGAAGAGATCAGACACATAGCC -ACGGAAGAGATCAGACACTAACCG -ACGGAAGAGATCAGACACATGCCA -ACGGAAGAGATCAGAGCAGGAAAC -ACGGAAGAGATCAGAGCAAACACC -ACGGAAGAGATCAGAGCAATCGAG -ACGGAAGAGATCAGAGCACTCCTT -ACGGAAGAGATCAGAGCACCTGTT -ACGGAAGAGATCAGAGCACGGTTT -ACGGAAGAGATCAGAGCAGTGGTT -ACGGAAGAGATCAGAGCAGCCTTT -ACGGAAGAGATCAGAGCAGGTCTT -ACGGAAGAGATCAGAGCAACGCTT -ACGGAAGAGATCAGAGCAAGCGTT -ACGGAAGAGATCAGAGCATTCGTC -ACGGAAGAGATCAGAGCATCTCTC -ACGGAAGAGATCAGAGCATGGATC -ACGGAAGAGATCAGAGCACACTTC -ACGGAAGAGATCAGAGCAGTACTC -ACGGAAGAGATCAGAGCAGATGTC -ACGGAAGAGATCAGAGCAACAGTC -ACGGAAGAGATCAGAGCATTGCTG -ACGGAAGAGATCAGAGCATCCATG -ACGGAAGAGATCAGAGCATGTGTG -ACGGAAGAGATCAGAGCACTAGTG -ACGGAAGAGATCAGAGCACATCTG -ACGGAAGAGATCAGAGCAGAGTTG -ACGGAAGAGATCAGAGCAAGACTG -ACGGAAGAGATCAGAGCATCGGTA -ACGGAAGAGATCAGAGCATGCCTA -ACGGAAGAGATCAGAGCACCACTA -ACGGAAGAGATCAGAGCAGGAGTA -ACGGAAGAGATCAGAGCATCGTCT -ACGGAAGAGATCAGAGCATGCACT -ACGGAAGAGATCAGAGCACTGACT -ACGGAAGAGATCAGAGCACAACCT -ACGGAAGAGATCAGAGCAGCTACT -ACGGAAGAGATCAGAGCAGGATCT -ACGGAAGAGATCAGAGCAAAGGCT -ACGGAAGAGATCAGAGCATCAACC -ACGGAAGAGATCAGAGCATGTTCC -ACGGAAGAGATCAGAGCAATTCCC -ACGGAAGAGATCAGAGCATTCTCG -ACGGAAGAGATCAGAGCATAGACG -ACGGAAGAGATCAGAGCAGTAACG -ACGGAAGAGATCAGAGCAACTTCG -ACGGAAGAGATCAGAGCATACGCA -ACGGAAGAGATCAGAGCACTTGCA -ACGGAAGAGATCAGAGCACGAACA -ACGGAAGAGATCAGAGCACAGTCA -ACGGAAGAGATCAGAGCAGATCCA -ACGGAAGAGATCAGAGCAACGACA -ACGGAAGAGATCAGAGCAAGCTCA -ACGGAAGAGATCAGAGCATCACGT -ACGGAAGAGATCAGAGCACGTAGT -ACGGAAGAGATCAGAGCAGTCAGT -ACGGAAGAGATCAGAGCAGAAGGT -ACGGAAGAGATCAGAGCAAACCGT -ACGGAAGAGATCAGAGCATTGTGC -ACGGAAGAGATCAGAGCACTAAGC -ACGGAAGAGATCAGAGCAACTAGC -ACGGAAGAGATCAGAGCAAGATGC -ACGGAAGAGATCAGAGCATGAAGG -ACGGAAGAGATCAGAGCACAATGG -ACGGAAGAGATCAGAGCAATGAGG -ACGGAAGAGATCAGAGCAAATGGG -ACGGAAGAGATCAGAGCATCCTGA -ACGGAAGAGATCAGAGCATAGCGA -ACGGAAGAGATCAGAGCACACAGA -ACGGAAGAGATCAGAGCAGCAAGA -ACGGAAGAGATCAGAGCAGGTTGA -ACGGAAGAGATCAGAGCATCCGAT -ACGGAAGAGATCAGAGCATGGCAT -ACGGAAGAGATCAGAGCACGAGAT -ACGGAAGAGATCAGAGCATACCAC -ACGGAAGAGATCAGAGCACAGAAC -ACGGAAGAGATCAGAGCAGTCTAC -ACGGAAGAGATCAGAGCAACGTAC -ACGGAAGAGATCAGAGCAAGTGAC -ACGGAAGAGATCAGAGCACTGTAG -ACGGAAGAGATCAGAGCACCTAAG -ACGGAAGAGATCAGAGCAGTTCAG -ACGGAAGAGATCAGAGCAGCATAG -ACGGAAGAGATCAGAGCAGACAAG -ACGGAAGAGATCAGAGCAAAGCAG -ACGGAAGAGATCAGAGCACGTCAA -ACGGAAGAGATCAGAGCAGCTGAA -ACGGAAGAGATCAGAGCAAGTACG -ACGGAAGAGATCAGAGCAATCCGA -ACGGAAGAGATCAGAGCAATGGGA -ACGGAAGAGATCAGAGCAGTGCAA -ACGGAAGAGATCAGAGCAGAGGAA -ACGGAAGAGATCAGAGCACAGGTA -ACGGAAGAGATCAGAGCAGACTCT -ACGGAAGAGATCAGAGCAAGTCCT -ACGGAAGAGATCAGAGCATAAGCC -ACGGAAGAGATCAGAGCAATAGCC -ACGGAAGAGATCAGAGCATAACCG -ACGGAAGAGATCAGAGCAATGCCA -ACGGAAGAGATCTGAGGTGGAAAC -ACGGAAGAGATCTGAGGTAACACC -ACGGAAGAGATCTGAGGTATCGAG -ACGGAAGAGATCTGAGGTCTCCTT -ACGGAAGAGATCTGAGGTCCTGTT -ACGGAAGAGATCTGAGGTCGGTTT -ACGGAAGAGATCTGAGGTGTGGTT -ACGGAAGAGATCTGAGGTGCCTTT -ACGGAAGAGATCTGAGGTGGTCTT -ACGGAAGAGATCTGAGGTACGCTT -ACGGAAGAGATCTGAGGTAGCGTT -ACGGAAGAGATCTGAGGTTTCGTC -ACGGAAGAGATCTGAGGTTCTCTC -ACGGAAGAGATCTGAGGTTGGATC -ACGGAAGAGATCTGAGGTCACTTC -ACGGAAGAGATCTGAGGTGTACTC -ACGGAAGAGATCTGAGGTGATGTC -ACGGAAGAGATCTGAGGTACAGTC -ACGGAAGAGATCTGAGGTTTGCTG -ACGGAAGAGATCTGAGGTTCCATG -ACGGAAGAGATCTGAGGTTGTGTG -ACGGAAGAGATCTGAGGTCTAGTG -ACGGAAGAGATCTGAGGTCATCTG -ACGGAAGAGATCTGAGGTGAGTTG -ACGGAAGAGATCTGAGGTAGACTG -ACGGAAGAGATCTGAGGTTCGGTA -ACGGAAGAGATCTGAGGTTGCCTA -ACGGAAGAGATCTGAGGTCCACTA -ACGGAAGAGATCTGAGGTGGAGTA -ACGGAAGAGATCTGAGGTTCGTCT -ACGGAAGAGATCTGAGGTTGCACT -ACGGAAGAGATCTGAGGTCTGACT -ACGGAAGAGATCTGAGGTCAACCT -ACGGAAGAGATCTGAGGTGCTACT -ACGGAAGAGATCTGAGGTGGATCT -ACGGAAGAGATCTGAGGTAAGGCT -ACGGAAGAGATCTGAGGTTCAACC -ACGGAAGAGATCTGAGGTTGTTCC -ACGGAAGAGATCTGAGGTATTCCC -ACGGAAGAGATCTGAGGTTTCTCG -ACGGAAGAGATCTGAGGTTAGACG -ACGGAAGAGATCTGAGGTGTAACG -ACGGAAGAGATCTGAGGTACTTCG -ACGGAAGAGATCTGAGGTTACGCA -ACGGAAGAGATCTGAGGTCTTGCA -ACGGAAGAGATCTGAGGTCGAACA -ACGGAAGAGATCTGAGGTCAGTCA -ACGGAAGAGATCTGAGGTGATCCA -ACGGAAGAGATCTGAGGTACGACA -ACGGAAGAGATCTGAGGTAGCTCA -ACGGAAGAGATCTGAGGTTCACGT -ACGGAAGAGATCTGAGGTCGTAGT -ACGGAAGAGATCTGAGGTGTCAGT -ACGGAAGAGATCTGAGGTGAAGGT -ACGGAAGAGATCTGAGGTAACCGT -ACGGAAGAGATCTGAGGTTTGTGC -ACGGAAGAGATCTGAGGTCTAAGC -ACGGAAGAGATCTGAGGTACTAGC -ACGGAAGAGATCTGAGGTAGATGC -ACGGAAGAGATCTGAGGTTGAAGG -ACGGAAGAGATCTGAGGTCAATGG -ACGGAAGAGATCTGAGGTATGAGG -ACGGAAGAGATCTGAGGTAATGGG -ACGGAAGAGATCTGAGGTTCCTGA -ACGGAAGAGATCTGAGGTTAGCGA -ACGGAAGAGATCTGAGGTCACAGA -ACGGAAGAGATCTGAGGTGCAAGA -ACGGAAGAGATCTGAGGTGGTTGA -ACGGAAGAGATCTGAGGTTCCGAT -ACGGAAGAGATCTGAGGTTGGCAT -ACGGAAGAGATCTGAGGTCGAGAT -ACGGAAGAGATCTGAGGTTACCAC -ACGGAAGAGATCTGAGGTCAGAAC -ACGGAAGAGATCTGAGGTGTCTAC -ACGGAAGAGATCTGAGGTACGTAC -ACGGAAGAGATCTGAGGTAGTGAC -ACGGAAGAGATCTGAGGTCTGTAG -ACGGAAGAGATCTGAGGTCCTAAG -ACGGAAGAGATCTGAGGTGTTCAG -ACGGAAGAGATCTGAGGTGCATAG -ACGGAAGAGATCTGAGGTGACAAG -ACGGAAGAGATCTGAGGTAAGCAG -ACGGAAGAGATCTGAGGTCGTCAA -ACGGAAGAGATCTGAGGTGCTGAA -ACGGAAGAGATCTGAGGTAGTACG -ACGGAAGAGATCTGAGGTATCCGA -ACGGAAGAGATCTGAGGTATGGGA -ACGGAAGAGATCTGAGGTGTGCAA -ACGGAAGAGATCTGAGGTGAGGAA -ACGGAAGAGATCTGAGGTCAGGTA -ACGGAAGAGATCTGAGGTGACTCT -ACGGAAGAGATCTGAGGTAGTCCT -ACGGAAGAGATCTGAGGTTAAGCC -ACGGAAGAGATCTGAGGTATAGCC -ACGGAAGAGATCTGAGGTTAACCG -ACGGAAGAGATCTGAGGTATGCCA -ACGGAAGAGATCGATTCCGGAAAC -ACGGAAGAGATCGATTCCAACACC -ACGGAAGAGATCGATTCCATCGAG -ACGGAAGAGATCGATTCCCTCCTT -ACGGAAGAGATCGATTCCCCTGTT -ACGGAAGAGATCGATTCCCGGTTT -ACGGAAGAGATCGATTCCGTGGTT -ACGGAAGAGATCGATTCCGCCTTT -ACGGAAGAGATCGATTCCGGTCTT -ACGGAAGAGATCGATTCCACGCTT -ACGGAAGAGATCGATTCCAGCGTT -ACGGAAGAGATCGATTCCTTCGTC -ACGGAAGAGATCGATTCCTCTCTC -ACGGAAGAGATCGATTCCTGGATC -ACGGAAGAGATCGATTCCCACTTC -ACGGAAGAGATCGATTCCGTACTC -ACGGAAGAGATCGATTCCGATGTC -ACGGAAGAGATCGATTCCACAGTC -ACGGAAGAGATCGATTCCTTGCTG -ACGGAAGAGATCGATTCCTCCATG -ACGGAAGAGATCGATTCCTGTGTG -ACGGAAGAGATCGATTCCCTAGTG -ACGGAAGAGATCGATTCCCATCTG -ACGGAAGAGATCGATTCCGAGTTG -ACGGAAGAGATCGATTCCAGACTG -ACGGAAGAGATCGATTCCTCGGTA -ACGGAAGAGATCGATTCCTGCCTA -ACGGAAGAGATCGATTCCCCACTA -ACGGAAGAGATCGATTCCGGAGTA -ACGGAAGAGATCGATTCCTCGTCT -ACGGAAGAGATCGATTCCTGCACT -ACGGAAGAGATCGATTCCCTGACT -ACGGAAGAGATCGATTCCCAACCT -ACGGAAGAGATCGATTCCGCTACT -ACGGAAGAGATCGATTCCGGATCT -ACGGAAGAGATCGATTCCAAGGCT -ACGGAAGAGATCGATTCCTCAACC -ACGGAAGAGATCGATTCCTGTTCC -ACGGAAGAGATCGATTCCATTCCC -ACGGAAGAGATCGATTCCTTCTCG -ACGGAAGAGATCGATTCCTAGACG -ACGGAAGAGATCGATTCCGTAACG -ACGGAAGAGATCGATTCCACTTCG -ACGGAAGAGATCGATTCCTACGCA -ACGGAAGAGATCGATTCCCTTGCA -ACGGAAGAGATCGATTCCCGAACA -ACGGAAGAGATCGATTCCCAGTCA -ACGGAAGAGATCGATTCCGATCCA -ACGGAAGAGATCGATTCCACGACA -ACGGAAGAGATCGATTCCAGCTCA -ACGGAAGAGATCGATTCCTCACGT -ACGGAAGAGATCGATTCCCGTAGT -ACGGAAGAGATCGATTCCGTCAGT -ACGGAAGAGATCGATTCCGAAGGT -ACGGAAGAGATCGATTCCAACCGT -ACGGAAGAGATCGATTCCTTGTGC -ACGGAAGAGATCGATTCCCTAAGC -ACGGAAGAGATCGATTCCACTAGC -ACGGAAGAGATCGATTCCAGATGC -ACGGAAGAGATCGATTCCTGAAGG -ACGGAAGAGATCGATTCCCAATGG -ACGGAAGAGATCGATTCCATGAGG -ACGGAAGAGATCGATTCCAATGGG -ACGGAAGAGATCGATTCCTCCTGA -ACGGAAGAGATCGATTCCTAGCGA -ACGGAAGAGATCGATTCCCACAGA -ACGGAAGAGATCGATTCCGCAAGA -ACGGAAGAGATCGATTCCGGTTGA -ACGGAAGAGATCGATTCCTCCGAT -ACGGAAGAGATCGATTCCTGGCAT -ACGGAAGAGATCGATTCCCGAGAT -ACGGAAGAGATCGATTCCTACCAC -ACGGAAGAGATCGATTCCCAGAAC -ACGGAAGAGATCGATTCCGTCTAC -ACGGAAGAGATCGATTCCACGTAC -ACGGAAGAGATCGATTCCAGTGAC -ACGGAAGAGATCGATTCCCTGTAG -ACGGAAGAGATCGATTCCCCTAAG -ACGGAAGAGATCGATTCCGTTCAG -ACGGAAGAGATCGATTCCGCATAG -ACGGAAGAGATCGATTCCGACAAG -ACGGAAGAGATCGATTCCAAGCAG -ACGGAAGAGATCGATTCCCGTCAA -ACGGAAGAGATCGATTCCGCTGAA -ACGGAAGAGATCGATTCCAGTACG -ACGGAAGAGATCGATTCCATCCGA -ACGGAAGAGATCGATTCCATGGGA -ACGGAAGAGATCGATTCCGTGCAA -ACGGAAGAGATCGATTCCGAGGAA -ACGGAAGAGATCGATTCCCAGGTA -ACGGAAGAGATCGATTCCGACTCT -ACGGAAGAGATCGATTCCAGTCCT -ACGGAAGAGATCGATTCCTAAGCC -ACGGAAGAGATCGATTCCATAGCC -ACGGAAGAGATCGATTCCTAACCG -ACGGAAGAGATCGATTCCATGCCA -ACGGAAGAGATCCATTGGGGAAAC -ACGGAAGAGATCCATTGGAACACC -ACGGAAGAGATCCATTGGATCGAG -ACGGAAGAGATCCATTGGCTCCTT -ACGGAAGAGATCCATTGGCCTGTT -ACGGAAGAGATCCATTGGCGGTTT -ACGGAAGAGATCCATTGGGTGGTT -ACGGAAGAGATCCATTGGGCCTTT -ACGGAAGAGATCCATTGGGGTCTT -ACGGAAGAGATCCATTGGACGCTT -ACGGAAGAGATCCATTGGAGCGTT -ACGGAAGAGATCCATTGGTTCGTC -ACGGAAGAGATCCATTGGTCTCTC -ACGGAAGAGATCCATTGGTGGATC -ACGGAAGAGATCCATTGGCACTTC -ACGGAAGAGATCCATTGGGTACTC -ACGGAAGAGATCCATTGGGATGTC -ACGGAAGAGATCCATTGGACAGTC -ACGGAAGAGATCCATTGGTTGCTG -ACGGAAGAGATCCATTGGTCCATG -ACGGAAGAGATCCATTGGTGTGTG -ACGGAAGAGATCCATTGGCTAGTG -ACGGAAGAGATCCATTGGCATCTG -ACGGAAGAGATCCATTGGGAGTTG -ACGGAAGAGATCCATTGGAGACTG -ACGGAAGAGATCCATTGGTCGGTA -ACGGAAGAGATCCATTGGTGCCTA -ACGGAAGAGATCCATTGGCCACTA -ACGGAAGAGATCCATTGGGGAGTA -ACGGAAGAGATCCATTGGTCGTCT -ACGGAAGAGATCCATTGGTGCACT -ACGGAAGAGATCCATTGGCTGACT -ACGGAAGAGATCCATTGGCAACCT -ACGGAAGAGATCCATTGGGCTACT -ACGGAAGAGATCCATTGGGGATCT -ACGGAAGAGATCCATTGGAAGGCT -ACGGAAGAGATCCATTGGTCAACC -ACGGAAGAGATCCATTGGTGTTCC -ACGGAAGAGATCCATTGGATTCCC -ACGGAAGAGATCCATTGGTTCTCG -ACGGAAGAGATCCATTGGTAGACG -ACGGAAGAGATCCATTGGGTAACG -ACGGAAGAGATCCATTGGACTTCG -ACGGAAGAGATCCATTGGTACGCA -ACGGAAGAGATCCATTGGCTTGCA -ACGGAAGAGATCCATTGGCGAACA -ACGGAAGAGATCCATTGGCAGTCA -ACGGAAGAGATCCATTGGGATCCA -ACGGAAGAGATCCATTGGACGACA -ACGGAAGAGATCCATTGGAGCTCA -ACGGAAGAGATCCATTGGTCACGT -ACGGAAGAGATCCATTGGCGTAGT -ACGGAAGAGATCCATTGGGTCAGT -ACGGAAGAGATCCATTGGGAAGGT -ACGGAAGAGATCCATTGGAACCGT -ACGGAAGAGATCCATTGGTTGTGC -ACGGAAGAGATCCATTGGCTAAGC -ACGGAAGAGATCCATTGGACTAGC -ACGGAAGAGATCCATTGGAGATGC -ACGGAAGAGATCCATTGGTGAAGG -ACGGAAGAGATCCATTGGCAATGG -ACGGAAGAGATCCATTGGATGAGG -ACGGAAGAGATCCATTGGAATGGG -ACGGAAGAGATCCATTGGTCCTGA -ACGGAAGAGATCCATTGGTAGCGA -ACGGAAGAGATCCATTGGCACAGA -ACGGAAGAGATCCATTGGGCAAGA -ACGGAAGAGATCCATTGGGGTTGA -ACGGAAGAGATCCATTGGTCCGAT -ACGGAAGAGATCCATTGGTGGCAT -ACGGAAGAGATCCATTGGCGAGAT -ACGGAAGAGATCCATTGGTACCAC -ACGGAAGAGATCCATTGGCAGAAC -ACGGAAGAGATCCATTGGGTCTAC -ACGGAAGAGATCCATTGGACGTAC -ACGGAAGAGATCCATTGGAGTGAC -ACGGAAGAGATCCATTGGCTGTAG -ACGGAAGAGATCCATTGGCCTAAG -ACGGAAGAGATCCATTGGGTTCAG -ACGGAAGAGATCCATTGGGCATAG -ACGGAAGAGATCCATTGGGACAAG -ACGGAAGAGATCCATTGGAAGCAG -ACGGAAGAGATCCATTGGCGTCAA -ACGGAAGAGATCCATTGGGCTGAA -ACGGAAGAGATCCATTGGAGTACG -ACGGAAGAGATCCATTGGATCCGA -ACGGAAGAGATCCATTGGATGGGA -ACGGAAGAGATCCATTGGGTGCAA -ACGGAAGAGATCCATTGGGAGGAA -ACGGAAGAGATCCATTGGCAGGTA -ACGGAAGAGATCCATTGGGACTCT -ACGGAAGAGATCCATTGGAGTCCT -ACGGAAGAGATCCATTGGTAAGCC -ACGGAAGAGATCCATTGGATAGCC -ACGGAAGAGATCCATTGGTAACCG -ACGGAAGAGATCCATTGGATGCCA -ACGGAAGAGATCGATCGAGGAAAC -ACGGAAGAGATCGATCGAAACACC -ACGGAAGAGATCGATCGAATCGAG -ACGGAAGAGATCGATCGACTCCTT -ACGGAAGAGATCGATCGACCTGTT -ACGGAAGAGATCGATCGACGGTTT -ACGGAAGAGATCGATCGAGTGGTT -ACGGAAGAGATCGATCGAGCCTTT -ACGGAAGAGATCGATCGAGGTCTT -ACGGAAGAGATCGATCGAACGCTT -ACGGAAGAGATCGATCGAAGCGTT -ACGGAAGAGATCGATCGATTCGTC -ACGGAAGAGATCGATCGATCTCTC -ACGGAAGAGATCGATCGATGGATC -ACGGAAGAGATCGATCGACACTTC -ACGGAAGAGATCGATCGAGTACTC -ACGGAAGAGATCGATCGAGATGTC -ACGGAAGAGATCGATCGAACAGTC -ACGGAAGAGATCGATCGATTGCTG -ACGGAAGAGATCGATCGATCCATG -ACGGAAGAGATCGATCGATGTGTG -ACGGAAGAGATCGATCGACTAGTG -ACGGAAGAGATCGATCGACATCTG -ACGGAAGAGATCGATCGAGAGTTG -ACGGAAGAGATCGATCGAAGACTG -ACGGAAGAGATCGATCGATCGGTA -ACGGAAGAGATCGATCGATGCCTA -ACGGAAGAGATCGATCGACCACTA -ACGGAAGAGATCGATCGAGGAGTA -ACGGAAGAGATCGATCGATCGTCT -ACGGAAGAGATCGATCGATGCACT -ACGGAAGAGATCGATCGACTGACT -ACGGAAGAGATCGATCGACAACCT -ACGGAAGAGATCGATCGAGCTACT -ACGGAAGAGATCGATCGAGGATCT -ACGGAAGAGATCGATCGAAAGGCT -ACGGAAGAGATCGATCGATCAACC -ACGGAAGAGATCGATCGATGTTCC -ACGGAAGAGATCGATCGAATTCCC -ACGGAAGAGATCGATCGATTCTCG -ACGGAAGAGATCGATCGATAGACG -ACGGAAGAGATCGATCGAGTAACG -ACGGAAGAGATCGATCGAACTTCG -ACGGAAGAGATCGATCGATACGCA -ACGGAAGAGATCGATCGACTTGCA -ACGGAAGAGATCGATCGACGAACA -ACGGAAGAGATCGATCGACAGTCA -ACGGAAGAGATCGATCGAGATCCA -ACGGAAGAGATCGATCGAACGACA -ACGGAAGAGATCGATCGAAGCTCA -ACGGAAGAGATCGATCGATCACGT -ACGGAAGAGATCGATCGACGTAGT -ACGGAAGAGATCGATCGAGTCAGT -ACGGAAGAGATCGATCGAGAAGGT -ACGGAAGAGATCGATCGAAACCGT -ACGGAAGAGATCGATCGATTGTGC -ACGGAAGAGATCGATCGACTAAGC -ACGGAAGAGATCGATCGAACTAGC -ACGGAAGAGATCGATCGAAGATGC -ACGGAAGAGATCGATCGATGAAGG -ACGGAAGAGATCGATCGACAATGG -ACGGAAGAGATCGATCGAATGAGG -ACGGAAGAGATCGATCGAAATGGG -ACGGAAGAGATCGATCGATCCTGA -ACGGAAGAGATCGATCGATAGCGA -ACGGAAGAGATCGATCGACACAGA -ACGGAAGAGATCGATCGAGCAAGA -ACGGAAGAGATCGATCGAGGTTGA -ACGGAAGAGATCGATCGATCCGAT -ACGGAAGAGATCGATCGATGGCAT -ACGGAAGAGATCGATCGACGAGAT -ACGGAAGAGATCGATCGATACCAC -ACGGAAGAGATCGATCGACAGAAC -ACGGAAGAGATCGATCGAGTCTAC -ACGGAAGAGATCGATCGAACGTAC -ACGGAAGAGATCGATCGAAGTGAC -ACGGAAGAGATCGATCGACTGTAG -ACGGAAGAGATCGATCGACCTAAG -ACGGAAGAGATCGATCGAGTTCAG -ACGGAAGAGATCGATCGAGCATAG -ACGGAAGAGATCGATCGAGACAAG -ACGGAAGAGATCGATCGAAAGCAG -ACGGAAGAGATCGATCGACGTCAA -ACGGAAGAGATCGATCGAGCTGAA -ACGGAAGAGATCGATCGAAGTACG -ACGGAAGAGATCGATCGAATCCGA -ACGGAAGAGATCGATCGAATGGGA -ACGGAAGAGATCGATCGAGTGCAA -ACGGAAGAGATCGATCGAGAGGAA -ACGGAAGAGATCGATCGACAGGTA -ACGGAAGAGATCGATCGAGACTCT -ACGGAAGAGATCGATCGAAGTCCT -ACGGAAGAGATCGATCGATAAGCC -ACGGAAGAGATCGATCGAATAGCC -ACGGAAGAGATCGATCGATAACCG -ACGGAAGAGATCGATCGAATGCCA -ACGGAAGAGATCCACTACGGAAAC -ACGGAAGAGATCCACTACAACACC -ACGGAAGAGATCCACTACATCGAG -ACGGAAGAGATCCACTACCTCCTT -ACGGAAGAGATCCACTACCCTGTT -ACGGAAGAGATCCACTACCGGTTT -ACGGAAGAGATCCACTACGTGGTT -ACGGAAGAGATCCACTACGCCTTT -ACGGAAGAGATCCACTACGGTCTT -ACGGAAGAGATCCACTACACGCTT -ACGGAAGAGATCCACTACAGCGTT -ACGGAAGAGATCCACTACTTCGTC -ACGGAAGAGATCCACTACTCTCTC -ACGGAAGAGATCCACTACTGGATC -ACGGAAGAGATCCACTACCACTTC -ACGGAAGAGATCCACTACGTACTC -ACGGAAGAGATCCACTACGATGTC -ACGGAAGAGATCCACTACACAGTC -ACGGAAGAGATCCACTACTTGCTG -ACGGAAGAGATCCACTACTCCATG -ACGGAAGAGATCCACTACTGTGTG -ACGGAAGAGATCCACTACCTAGTG -ACGGAAGAGATCCACTACCATCTG -ACGGAAGAGATCCACTACGAGTTG -ACGGAAGAGATCCACTACAGACTG -ACGGAAGAGATCCACTACTCGGTA -ACGGAAGAGATCCACTACTGCCTA -ACGGAAGAGATCCACTACCCACTA -ACGGAAGAGATCCACTACGGAGTA -ACGGAAGAGATCCACTACTCGTCT -ACGGAAGAGATCCACTACTGCACT -ACGGAAGAGATCCACTACCTGACT -ACGGAAGAGATCCACTACCAACCT -ACGGAAGAGATCCACTACGCTACT -ACGGAAGAGATCCACTACGGATCT -ACGGAAGAGATCCACTACAAGGCT -ACGGAAGAGATCCACTACTCAACC -ACGGAAGAGATCCACTACTGTTCC -ACGGAAGAGATCCACTACATTCCC -ACGGAAGAGATCCACTACTTCTCG -ACGGAAGAGATCCACTACTAGACG -ACGGAAGAGATCCACTACGTAACG -ACGGAAGAGATCCACTACACTTCG -ACGGAAGAGATCCACTACTACGCA -ACGGAAGAGATCCACTACCTTGCA -ACGGAAGAGATCCACTACCGAACA -ACGGAAGAGATCCACTACCAGTCA -ACGGAAGAGATCCACTACGATCCA -ACGGAAGAGATCCACTACACGACA -ACGGAAGAGATCCACTACAGCTCA -ACGGAAGAGATCCACTACTCACGT -ACGGAAGAGATCCACTACCGTAGT -ACGGAAGAGATCCACTACGTCAGT -ACGGAAGAGATCCACTACGAAGGT -ACGGAAGAGATCCACTACAACCGT -ACGGAAGAGATCCACTACTTGTGC -ACGGAAGAGATCCACTACCTAAGC -ACGGAAGAGATCCACTACACTAGC -ACGGAAGAGATCCACTACAGATGC -ACGGAAGAGATCCACTACTGAAGG -ACGGAAGAGATCCACTACCAATGG -ACGGAAGAGATCCACTACATGAGG -ACGGAAGAGATCCACTACAATGGG -ACGGAAGAGATCCACTACTCCTGA -ACGGAAGAGATCCACTACTAGCGA -ACGGAAGAGATCCACTACCACAGA -ACGGAAGAGATCCACTACGCAAGA -ACGGAAGAGATCCACTACGGTTGA -ACGGAAGAGATCCACTACTCCGAT -ACGGAAGAGATCCACTACTGGCAT -ACGGAAGAGATCCACTACCGAGAT -ACGGAAGAGATCCACTACTACCAC -ACGGAAGAGATCCACTACCAGAAC -ACGGAAGAGATCCACTACGTCTAC -ACGGAAGAGATCCACTACACGTAC -ACGGAAGAGATCCACTACAGTGAC -ACGGAAGAGATCCACTACCTGTAG -ACGGAAGAGATCCACTACCCTAAG -ACGGAAGAGATCCACTACGTTCAG -ACGGAAGAGATCCACTACGCATAG -ACGGAAGAGATCCACTACGACAAG -ACGGAAGAGATCCACTACAAGCAG -ACGGAAGAGATCCACTACCGTCAA -ACGGAAGAGATCCACTACGCTGAA -ACGGAAGAGATCCACTACAGTACG -ACGGAAGAGATCCACTACATCCGA -ACGGAAGAGATCCACTACATGGGA -ACGGAAGAGATCCACTACGTGCAA -ACGGAAGAGATCCACTACGAGGAA -ACGGAAGAGATCCACTACCAGGTA -ACGGAAGAGATCCACTACGACTCT -ACGGAAGAGATCCACTACAGTCCT -ACGGAAGAGATCCACTACTAAGCC -ACGGAAGAGATCCACTACATAGCC -ACGGAAGAGATCCACTACTAACCG -ACGGAAGAGATCCACTACATGCCA -ACGGAAGAGATCAACCAGGGAAAC -ACGGAAGAGATCAACCAGAACACC -ACGGAAGAGATCAACCAGATCGAG -ACGGAAGAGATCAACCAGCTCCTT -ACGGAAGAGATCAACCAGCCTGTT -ACGGAAGAGATCAACCAGCGGTTT -ACGGAAGAGATCAACCAGGTGGTT -ACGGAAGAGATCAACCAGGCCTTT -ACGGAAGAGATCAACCAGGGTCTT -ACGGAAGAGATCAACCAGACGCTT -ACGGAAGAGATCAACCAGAGCGTT -ACGGAAGAGATCAACCAGTTCGTC -ACGGAAGAGATCAACCAGTCTCTC -ACGGAAGAGATCAACCAGTGGATC -ACGGAAGAGATCAACCAGCACTTC -ACGGAAGAGATCAACCAGGTACTC -ACGGAAGAGATCAACCAGGATGTC -ACGGAAGAGATCAACCAGACAGTC -ACGGAAGAGATCAACCAGTTGCTG -ACGGAAGAGATCAACCAGTCCATG -ACGGAAGAGATCAACCAGTGTGTG -ACGGAAGAGATCAACCAGCTAGTG -ACGGAAGAGATCAACCAGCATCTG -ACGGAAGAGATCAACCAGGAGTTG -ACGGAAGAGATCAACCAGAGACTG -ACGGAAGAGATCAACCAGTCGGTA -ACGGAAGAGATCAACCAGTGCCTA -ACGGAAGAGATCAACCAGCCACTA -ACGGAAGAGATCAACCAGGGAGTA -ACGGAAGAGATCAACCAGTCGTCT -ACGGAAGAGATCAACCAGTGCACT -ACGGAAGAGATCAACCAGCTGACT -ACGGAAGAGATCAACCAGCAACCT -ACGGAAGAGATCAACCAGGCTACT -ACGGAAGAGATCAACCAGGGATCT -ACGGAAGAGATCAACCAGAAGGCT -ACGGAAGAGATCAACCAGTCAACC -ACGGAAGAGATCAACCAGTGTTCC -ACGGAAGAGATCAACCAGATTCCC -ACGGAAGAGATCAACCAGTTCTCG -ACGGAAGAGATCAACCAGTAGACG -ACGGAAGAGATCAACCAGGTAACG -ACGGAAGAGATCAACCAGACTTCG -ACGGAAGAGATCAACCAGTACGCA -ACGGAAGAGATCAACCAGCTTGCA -ACGGAAGAGATCAACCAGCGAACA -ACGGAAGAGATCAACCAGCAGTCA -ACGGAAGAGATCAACCAGGATCCA -ACGGAAGAGATCAACCAGACGACA -ACGGAAGAGATCAACCAGAGCTCA -ACGGAAGAGATCAACCAGTCACGT -ACGGAAGAGATCAACCAGCGTAGT -ACGGAAGAGATCAACCAGGTCAGT -ACGGAAGAGATCAACCAGGAAGGT -ACGGAAGAGATCAACCAGAACCGT -ACGGAAGAGATCAACCAGTTGTGC -ACGGAAGAGATCAACCAGCTAAGC -ACGGAAGAGATCAACCAGACTAGC -ACGGAAGAGATCAACCAGAGATGC -ACGGAAGAGATCAACCAGTGAAGG -ACGGAAGAGATCAACCAGCAATGG -ACGGAAGAGATCAACCAGATGAGG -ACGGAAGAGATCAACCAGAATGGG -ACGGAAGAGATCAACCAGTCCTGA -ACGGAAGAGATCAACCAGTAGCGA -ACGGAAGAGATCAACCAGCACAGA -ACGGAAGAGATCAACCAGGCAAGA -ACGGAAGAGATCAACCAGGGTTGA -ACGGAAGAGATCAACCAGTCCGAT -ACGGAAGAGATCAACCAGTGGCAT -ACGGAAGAGATCAACCAGCGAGAT -ACGGAAGAGATCAACCAGTACCAC -ACGGAAGAGATCAACCAGCAGAAC -ACGGAAGAGATCAACCAGGTCTAC -ACGGAAGAGATCAACCAGACGTAC -ACGGAAGAGATCAACCAGAGTGAC -ACGGAAGAGATCAACCAGCTGTAG -ACGGAAGAGATCAACCAGCCTAAG -ACGGAAGAGATCAACCAGGTTCAG -ACGGAAGAGATCAACCAGGCATAG -ACGGAAGAGATCAACCAGGACAAG -ACGGAAGAGATCAACCAGAAGCAG -ACGGAAGAGATCAACCAGCGTCAA -ACGGAAGAGATCAACCAGGCTGAA -ACGGAAGAGATCAACCAGAGTACG -ACGGAAGAGATCAACCAGATCCGA -ACGGAAGAGATCAACCAGATGGGA -ACGGAAGAGATCAACCAGGTGCAA -ACGGAAGAGATCAACCAGGAGGAA -ACGGAAGAGATCAACCAGCAGGTA -ACGGAAGAGATCAACCAGGACTCT -ACGGAAGAGATCAACCAGAGTCCT -ACGGAAGAGATCAACCAGTAAGCC -ACGGAAGAGATCAACCAGATAGCC -ACGGAAGAGATCAACCAGTAACCG -ACGGAAGAGATCAACCAGATGCCA -ACGGAAGAGATCTACGTCGGAAAC -ACGGAAGAGATCTACGTCAACACC -ACGGAAGAGATCTACGTCATCGAG -ACGGAAGAGATCTACGTCCTCCTT -ACGGAAGAGATCTACGTCCCTGTT -ACGGAAGAGATCTACGTCCGGTTT -ACGGAAGAGATCTACGTCGTGGTT -ACGGAAGAGATCTACGTCGCCTTT -ACGGAAGAGATCTACGTCGGTCTT -ACGGAAGAGATCTACGTCACGCTT -ACGGAAGAGATCTACGTCAGCGTT -ACGGAAGAGATCTACGTCTTCGTC -ACGGAAGAGATCTACGTCTCTCTC -ACGGAAGAGATCTACGTCTGGATC -ACGGAAGAGATCTACGTCCACTTC -ACGGAAGAGATCTACGTCGTACTC -ACGGAAGAGATCTACGTCGATGTC -ACGGAAGAGATCTACGTCACAGTC -ACGGAAGAGATCTACGTCTTGCTG -ACGGAAGAGATCTACGTCTCCATG -ACGGAAGAGATCTACGTCTGTGTG -ACGGAAGAGATCTACGTCCTAGTG -ACGGAAGAGATCTACGTCCATCTG -ACGGAAGAGATCTACGTCGAGTTG -ACGGAAGAGATCTACGTCAGACTG -ACGGAAGAGATCTACGTCTCGGTA -ACGGAAGAGATCTACGTCTGCCTA -ACGGAAGAGATCTACGTCCCACTA -ACGGAAGAGATCTACGTCGGAGTA -ACGGAAGAGATCTACGTCTCGTCT -ACGGAAGAGATCTACGTCTGCACT -ACGGAAGAGATCTACGTCCTGACT -ACGGAAGAGATCTACGTCCAACCT -ACGGAAGAGATCTACGTCGCTACT -ACGGAAGAGATCTACGTCGGATCT -ACGGAAGAGATCTACGTCAAGGCT -ACGGAAGAGATCTACGTCTCAACC -ACGGAAGAGATCTACGTCTGTTCC -ACGGAAGAGATCTACGTCATTCCC -ACGGAAGAGATCTACGTCTTCTCG -ACGGAAGAGATCTACGTCTAGACG -ACGGAAGAGATCTACGTCGTAACG -ACGGAAGAGATCTACGTCACTTCG -ACGGAAGAGATCTACGTCTACGCA -ACGGAAGAGATCTACGTCCTTGCA -ACGGAAGAGATCTACGTCCGAACA -ACGGAAGAGATCTACGTCCAGTCA -ACGGAAGAGATCTACGTCGATCCA -ACGGAAGAGATCTACGTCACGACA -ACGGAAGAGATCTACGTCAGCTCA -ACGGAAGAGATCTACGTCTCACGT -ACGGAAGAGATCTACGTCCGTAGT -ACGGAAGAGATCTACGTCGTCAGT -ACGGAAGAGATCTACGTCGAAGGT -ACGGAAGAGATCTACGTCAACCGT -ACGGAAGAGATCTACGTCTTGTGC -ACGGAAGAGATCTACGTCCTAAGC -ACGGAAGAGATCTACGTCACTAGC -ACGGAAGAGATCTACGTCAGATGC -ACGGAAGAGATCTACGTCTGAAGG -ACGGAAGAGATCTACGTCCAATGG -ACGGAAGAGATCTACGTCATGAGG -ACGGAAGAGATCTACGTCAATGGG -ACGGAAGAGATCTACGTCTCCTGA -ACGGAAGAGATCTACGTCTAGCGA -ACGGAAGAGATCTACGTCCACAGA -ACGGAAGAGATCTACGTCGCAAGA -ACGGAAGAGATCTACGTCGGTTGA -ACGGAAGAGATCTACGTCTCCGAT -ACGGAAGAGATCTACGTCTGGCAT -ACGGAAGAGATCTACGTCCGAGAT -ACGGAAGAGATCTACGTCTACCAC -ACGGAAGAGATCTACGTCCAGAAC -ACGGAAGAGATCTACGTCGTCTAC -ACGGAAGAGATCTACGTCACGTAC -ACGGAAGAGATCTACGTCAGTGAC -ACGGAAGAGATCTACGTCCTGTAG -ACGGAAGAGATCTACGTCCCTAAG -ACGGAAGAGATCTACGTCGTTCAG -ACGGAAGAGATCTACGTCGCATAG -ACGGAAGAGATCTACGTCGACAAG -ACGGAAGAGATCTACGTCAAGCAG -ACGGAAGAGATCTACGTCCGTCAA -ACGGAAGAGATCTACGTCGCTGAA -ACGGAAGAGATCTACGTCAGTACG -ACGGAAGAGATCTACGTCATCCGA -ACGGAAGAGATCTACGTCATGGGA -ACGGAAGAGATCTACGTCGTGCAA -ACGGAAGAGATCTACGTCGAGGAA -ACGGAAGAGATCTACGTCCAGGTA -ACGGAAGAGATCTACGTCGACTCT -ACGGAAGAGATCTACGTCAGTCCT -ACGGAAGAGATCTACGTCTAAGCC -ACGGAAGAGATCTACGTCATAGCC -ACGGAAGAGATCTACGTCTAACCG -ACGGAAGAGATCTACGTCATGCCA -ACGGAAGAGATCTACACGGGAAAC -ACGGAAGAGATCTACACGAACACC -ACGGAAGAGATCTACACGATCGAG -ACGGAAGAGATCTACACGCTCCTT -ACGGAAGAGATCTACACGCCTGTT -ACGGAAGAGATCTACACGCGGTTT -ACGGAAGAGATCTACACGGTGGTT -ACGGAAGAGATCTACACGGCCTTT -ACGGAAGAGATCTACACGGGTCTT -ACGGAAGAGATCTACACGACGCTT -ACGGAAGAGATCTACACGAGCGTT -ACGGAAGAGATCTACACGTTCGTC -ACGGAAGAGATCTACACGTCTCTC -ACGGAAGAGATCTACACGTGGATC -ACGGAAGAGATCTACACGCACTTC -ACGGAAGAGATCTACACGGTACTC -ACGGAAGAGATCTACACGGATGTC -ACGGAAGAGATCTACACGACAGTC -ACGGAAGAGATCTACACGTTGCTG -ACGGAAGAGATCTACACGTCCATG -ACGGAAGAGATCTACACGTGTGTG -ACGGAAGAGATCTACACGCTAGTG -ACGGAAGAGATCTACACGCATCTG -ACGGAAGAGATCTACACGGAGTTG -ACGGAAGAGATCTACACGAGACTG -ACGGAAGAGATCTACACGTCGGTA -ACGGAAGAGATCTACACGTGCCTA -ACGGAAGAGATCTACACGCCACTA -ACGGAAGAGATCTACACGGGAGTA -ACGGAAGAGATCTACACGTCGTCT -ACGGAAGAGATCTACACGTGCACT -ACGGAAGAGATCTACACGCTGACT -ACGGAAGAGATCTACACGCAACCT -ACGGAAGAGATCTACACGGCTACT -ACGGAAGAGATCTACACGGGATCT -ACGGAAGAGATCTACACGAAGGCT -ACGGAAGAGATCTACACGTCAACC -ACGGAAGAGATCTACACGTGTTCC -ACGGAAGAGATCTACACGATTCCC -ACGGAAGAGATCTACACGTTCTCG -ACGGAAGAGATCTACACGTAGACG -ACGGAAGAGATCTACACGGTAACG -ACGGAAGAGATCTACACGACTTCG -ACGGAAGAGATCTACACGTACGCA -ACGGAAGAGATCTACACGCTTGCA -ACGGAAGAGATCTACACGCGAACA -ACGGAAGAGATCTACACGCAGTCA -ACGGAAGAGATCTACACGGATCCA -ACGGAAGAGATCTACACGACGACA -ACGGAAGAGATCTACACGAGCTCA -ACGGAAGAGATCTACACGTCACGT -ACGGAAGAGATCTACACGCGTAGT -ACGGAAGAGATCTACACGGTCAGT -ACGGAAGAGATCTACACGGAAGGT -ACGGAAGAGATCTACACGAACCGT -ACGGAAGAGATCTACACGTTGTGC -ACGGAAGAGATCTACACGCTAAGC -ACGGAAGAGATCTACACGACTAGC -ACGGAAGAGATCTACACGAGATGC -ACGGAAGAGATCTACACGTGAAGG -ACGGAAGAGATCTACACGCAATGG -ACGGAAGAGATCTACACGATGAGG -ACGGAAGAGATCTACACGAATGGG -ACGGAAGAGATCTACACGTCCTGA -ACGGAAGAGATCTACACGTAGCGA -ACGGAAGAGATCTACACGCACAGA -ACGGAAGAGATCTACACGGCAAGA -ACGGAAGAGATCTACACGGGTTGA -ACGGAAGAGATCTACACGTCCGAT -ACGGAAGAGATCTACACGTGGCAT -ACGGAAGAGATCTACACGCGAGAT -ACGGAAGAGATCTACACGTACCAC -ACGGAAGAGATCTACACGCAGAAC -ACGGAAGAGATCTACACGGTCTAC -ACGGAAGAGATCTACACGACGTAC -ACGGAAGAGATCTACACGAGTGAC -ACGGAAGAGATCTACACGCTGTAG -ACGGAAGAGATCTACACGCCTAAG -ACGGAAGAGATCTACACGGTTCAG -ACGGAAGAGATCTACACGGCATAG -ACGGAAGAGATCTACACGGACAAG -ACGGAAGAGATCTACACGAAGCAG -ACGGAAGAGATCTACACGCGTCAA -ACGGAAGAGATCTACACGGCTGAA -ACGGAAGAGATCTACACGAGTACG -ACGGAAGAGATCTACACGATCCGA -ACGGAAGAGATCTACACGATGGGA -ACGGAAGAGATCTACACGGTGCAA -ACGGAAGAGATCTACACGGAGGAA -ACGGAAGAGATCTACACGCAGGTA -ACGGAAGAGATCTACACGGACTCT -ACGGAAGAGATCTACACGAGTCCT -ACGGAAGAGATCTACACGTAAGCC -ACGGAAGAGATCTACACGATAGCC -ACGGAAGAGATCTACACGTAACCG -ACGGAAGAGATCTACACGATGCCA -ACGGAAGAGATCGACAGTGGAAAC -ACGGAAGAGATCGACAGTAACACC -ACGGAAGAGATCGACAGTATCGAG -ACGGAAGAGATCGACAGTCTCCTT -ACGGAAGAGATCGACAGTCCTGTT -ACGGAAGAGATCGACAGTCGGTTT -ACGGAAGAGATCGACAGTGTGGTT -ACGGAAGAGATCGACAGTGCCTTT -ACGGAAGAGATCGACAGTGGTCTT -ACGGAAGAGATCGACAGTACGCTT -ACGGAAGAGATCGACAGTAGCGTT -ACGGAAGAGATCGACAGTTTCGTC -ACGGAAGAGATCGACAGTTCTCTC -ACGGAAGAGATCGACAGTTGGATC -ACGGAAGAGATCGACAGTCACTTC -ACGGAAGAGATCGACAGTGTACTC -ACGGAAGAGATCGACAGTGATGTC -ACGGAAGAGATCGACAGTACAGTC -ACGGAAGAGATCGACAGTTTGCTG -ACGGAAGAGATCGACAGTTCCATG -ACGGAAGAGATCGACAGTTGTGTG -ACGGAAGAGATCGACAGTCTAGTG -ACGGAAGAGATCGACAGTCATCTG -ACGGAAGAGATCGACAGTGAGTTG -ACGGAAGAGATCGACAGTAGACTG -ACGGAAGAGATCGACAGTTCGGTA -ACGGAAGAGATCGACAGTTGCCTA -ACGGAAGAGATCGACAGTCCACTA -ACGGAAGAGATCGACAGTGGAGTA -ACGGAAGAGATCGACAGTTCGTCT -ACGGAAGAGATCGACAGTTGCACT -ACGGAAGAGATCGACAGTCTGACT -ACGGAAGAGATCGACAGTCAACCT -ACGGAAGAGATCGACAGTGCTACT -ACGGAAGAGATCGACAGTGGATCT -ACGGAAGAGATCGACAGTAAGGCT -ACGGAAGAGATCGACAGTTCAACC -ACGGAAGAGATCGACAGTTGTTCC -ACGGAAGAGATCGACAGTATTCCC -ACGGAAGAGATCGACAGTTTCTCG -ACGGAAGAGATCGACAGTTAGACG -ACGGAAGAGATCGACAGTGTAACG -ACGGAAGAGATCGACAGTACTTCG -ACGGAAGAGATCGACAGTTACGCA -ACGGAAGAGATCGACAGTCTTGCA -ACGGAAGAGATCGACAGTCGAACA -ACGGAAGAGATCGACAGTCAGTCA -ACGGAAGAGATCGACAGTGATCCA -ACGGAAGAGATCGACAGTACGACA -ACGGAAGAGATCGACAGTAGCTCA -ACGGAAGAGATCGACAGTTCACGT -ACGGAAGAGATCGACAGTCGTAGT -ACGGAAGAGATCGACAGTGTCAGT -ACGGAAGAGATCGACAGTGAAGGT -ACGGAAGAGATCGACAGTAACCGT -ACGGAAGAGATCGACAGTTTGTGC -ACGGAAGAGATCGACAGTCTAAGC -ACGGAAGAGATCGACAGTACTAGC -ACGGAAGAGATCGACAGTAGATGC -ACGGAAGAGATCGACAGTTGAAGG -ACGGAAGAGATCGACAGTCAATGG -ACGGAAGAGATCGACAGTATGAGG -ACGGAAGAGATCGACAGTAATGGG -ACGGAAGAGATCGACAGTTCCTGA -ACGGAAGAGATCGACAGTTAGCGA -ACGGAAGAGATCGACAGTCACAGA -ACGGAAGAGATCGACAGTGCAAGA -ACGGAAGAGATCGACAGTGGTTGA -ACGGAAGAGATCGACAGTTCCGAT -ACGGAAGAGATCGACAGTTGGCAT -ACGGAAGAGATCGACAGTCGAGAT -ACGGAAGAGATCGACAGTTACCAC -ACGGAAGAGATCGACAGTCAGAAC -ACGGAAGAGATCGACAGTGTCTAC -ACGGAAGAGATCGACAGTACGTAC -ACGGAAGAGATCGACAGTAGTGAC -ACGGAAGAGATCGACAGTCTGTAG -ACGGAAGAGATCGACAGTCCTAAG -ACGGAAGAGATCGACAGTGTTCAG -ACGGAAGAGATCGACAGTGCATAG -ACGGAAGAGATCGACAGTGACAAG -ACGGAAGAGATCGACAGTAAGCAG -ACGGAAGAGATCGACAGTCGTCAA -ACGGAAGAGATCGACAGTGCTGAA -ACGGAAGAGATCGACAGTAGTACG -ACGGAAGAGATCGACAGTATCCGA -ACGGAAGAGATCGACAGTATGGGA -ACGGAAGAGATCGACAGTGTGCAA -ACGGAAGAGATCGACAGTGAGGAA -ACGGAAGAGATCGACAGTCAGGTA -ACGGAAGAGATCGACAGTGACTCT -ACGGAAGAGATCGACAGTAGTCCT -ACGGAAGAGATCGACAGTTAAGCC -ACGGAAGAGATCGACAGTATAGCC -ACGGAAGAGATCGACAGTTAACCG -ACGGAAGAGATCGACAGTATGCCA -ACGGAAGAGATCTAGCTGGGAAAC -ACGGAAGAGATCTAGCTGAACACC -ACGGAAGAGATCTAGCTGATCGAG -ACGGAAGAGATCTAGCTGCTCCTT -ACGGAAGAGATCTAGCTGCCTGTT -ACGGAAGAGATCTAGCTGCGGTTT -ACGGAAGAGATCTAGCTGGTGGTT -ACGGAAGAGATCTAGCTGGCCTTT -ACGGAAGAGATCTAGCTGGGTCTT -ACGGAAGAGATCTAGCTGACGCTT -ACGGAAGAGATCTAGCTGAGCGTT -ACGGAAGAGATCTAGCTGTTCGTC -ACGGAAGAGATCTAGCTGTCTCTC -ACGGAAGAGATCTAGCTGTGGATC -ACGGAAGAGATCTAGCTGCACTTC -ACGGAAGAGATCTAGCTGGTACTC -ACGGAAGAGATCTAGCTGGATGTC -ACGGAAGAGATCTAGCTGACAGTC -ACGGAAGAGATCTAGCTGTTGCTG -ACGGAAGAGATCTAGCTGTCCATG -ACGGAAGAGATCTAGCTGTGTGTG -ACGGAAGAGATCTAGCTGCTAGTG -ACGGAAGAGATCTAGCTGCATCTG -ACGGAAGAGATCTAGCTGGAGTTG -ACGGAAGAGATCTAGCTGAGACTG -ACGGAAGAGATCTAGCTGTCGGTA -ACGGAAGAGATCTAGCTGTGCCTA -ACGGAAGAGATCTAGCTGCCACTA -ACGGAAGAGATCTAGCTGGGAGTA -ACGGAAGAGATCTAGCTGTCGTCT -ACGGAAGAGATCTAGCTGTGCACT -ACGGAAGAGATCTAGCTGCTGACT -ACGGAAGAGATCTAGCTGCAACCT -ACGGAAGAGATCTAGCTGGCTACT -ACGGAAGAGATCTAGCTGGGATCT -ACGGAAGAGATCTAGCTGAAGGCT -ACGGAAGAGATCTAGCTGTCAACC -ACGGAAGAGATCTAGCTGTGTTCC -ACGGAAGAGATCTAGCTGATTCCC -ACGGAAGAGATCTAGCTGTTCTCG -ACGGAAGAGATCTAGCTGTAGACG -ACGGAAGAGATCTAGCTGGTAACG -ACGGAAGAGATCTAGCTGACTTCG -ACGGAAGAGATCTAGCTGTACGCA -ACGGAAGAGATCTAGCTGCTTGCA -ACGGAAGAGATCTAGCTGCGAACA -ACGGAAGAGATCTAGCTGCAGTCA -ACGGAAGAGATCTAGCTGGATCCA -ACGGAAGAGATCTAGCTGACGACA -ACGGAAGAGATCTAGCTGAGCTCA -ACGGAAGAGATCTAGCTGTCACGT -ACGGAAGAGATCTAGCTGCGTAGT -ACGGAAGAGATCTAGCTGGTCAGT -ACGGAAGAGATCTAGCTGGAAGGT -ACGGAAGAGATCTAGCTGAACCGT -ACGGAAGAGATCTAGCTGTTGTGC -ACGGAAGAGATCTAGCTGCTAAGC -ACGGAAGAGATCTAGCTGACTAGC -ACGGAAGAGATCTAGCTGAGATGC -ACGGAAGAGATCTAGCTGTGAAGG -ACGGAAGAGATCTAGCTGCAATGG -ACGGAAGAGATCTAGCTGATGAGG -ACGGAAGAGATCTAGCTGAATGGG -ACGGAAGAGATCTAGCTGTCCTGA -ACGGAAGAGATCTAGCTGTAGCGA -ACGGAAGAGATCTAGCTGCACAGA -ACGGAAGAGATCTAGCTGGCAAGA -ACGGAAGAGATCTAGCTGGGTTGA -ACGGAAGAGATCTAGCTGTCCGAT -ACGGAAGAGATCTAGCTGTGGCAT -ACGGAAGAGATCTAGCTGCGAGAT -ACGGAAGAGATCTAGCTGTACCAC -ACGGAAGAGATCTAGCTGCAGAAC -ACGGAAGAGATCTAGCTGGTCTAC -ACGGAAGAGATCTAGCTGACGTAC -ACGGAAGAGATCTAGCTGAGTGAC -ACGGAAGAGATCTAGCTGCTGTAG -ACGGAAGAGATCTAGCTGCCTAAG -ACGGAAGAGATCTAGCTGGTTCAG -ACGGAAGAGATCTAGCTGGCATAG -ACGGAAGAGATCTAGCTGGACAAG -ACGGAAGAGATCTAGCTGAAGCAG -ACGGAAGAGATCTAGCTGCGTCAA -ACGGAAGAGATCTAGCTGGCTGAA -ACGGAAGAGATCTAGCTGAGTACG -ACGGAAGAGATCTAGCTGATCCGA -ACGGAAGAGATCTAGCTGATGGGA -ACGGAAGAGATCTAGCTGGTGCAA -ACGGAAGAGATCTAGCTGGAGGAA -ACGGAAGAGATCTAGCTGCAGGTA -ACGGAAGAGATCTAGCTGGACTCT -ACGGAAGAGATCTAGCTGAGTCCT -ACGGAAGAGATCTAGCTGTAAGCC -ACGGAAGAGATCTAGCTGATAGCC -ACGGAAGAGATCTAGCTGTAACCG -ACGGAAGAGATCTAGCTGATGCCA -ACGGAAGAGATCAAGCCTGGAAAC -ACGGAAGAGATCAAGCCTAACACC -ACGGAAGAGATCAAGCCTATCGAG -ACGGAAGAGATCAAGCCTCTCCTT -ACGGAAGAGATCAAGCCTCCTGTT -ACGGAAGAGATCAAGCCTCGGTTT -ACGGAAGAGATCAAGCCTGTGGTT -ACGGAAGAGATCAAGCCTGCCTTT -ACGGAAGAGATCAAGCCTGGTCTT -ACGGAAGAGATCAAGCCTACGCTT -ACGGAAGAGATCAAGCCTAGCGTT -ACGGAAGAGATCAAGCCTTTCGTC -ACGGAAGAGATCAAGCCTTCTCTC -ACGGAAGAGATCAAGCCTTGGATC -ACGGAAGAGATCAAGCCTCACTTC -ACGGAAGAGATCAAGCCTGTACTC -ACGGAAGAGATCAAGCCTGATGTC -ACGGAAGAGATCAAGCCTACAGTC -ACGGAAGAGATCAAGCCTTTGCTG -ACGGAAGAGATCAAGCCTTCCATG -ACGGAAGAGATCAAGCCTTGTGTG -ACGGAAGAGATCAAGCCTCTAGTG -ACGGAAGAGATCAAGCCTCATCTG -ACGGAAGAGATCAAGCCTGAGTTG -ACGGAAGAGATCAAGCCTAGACTG -ACGGAAGAGATCAAGCCTTCGGTA -ACGGAAGAGATCAAGCCTTGCCTA -ACGGAAGAGATCAAGCCTCCACTA -ACGGAAGAGATCAAGCCTGGAGTA -ACGGAAGAGATCAAGCCTTCGTCT -ACGGAAGAGATCAAGCCTTGCACT -ACGGAAGAGATCAAGCCTCTGACT -ACGGAAGAGATCAAGCCTCAACCT -ACGGAAGAGATCAAGCCTGCTACT -ACGGAAGAGATCAAGCCTGGATCT -ACGGAAGAGATCAAGCCTAAGGCT -ACGGAAGAGATCAAGCCTTCAACC -ACGGAAGAGATCAAGCCTTGTTCC -ACGGAAGAGATCAAGCCTATTCCC -ACGGAAGAGATCAAGCCTTTCTCG -ACGGAAGAGATCAAGCCTTAGACG -ACGGAAGAGATCAAGCCTGTAACG -ACGGAAGAGATCAAGCCTACTTCG -ACGGAAGAGATCAAGCCTTACGCA -ACGGAAGAGATCAAGCCTCTTGCA -ACGGAAGAGATCAAGCCTCGAACA -ACGGAAGAGATCAAGCCTCAGTCA -ACGGAAGAGATCAAGCCTGATCCA -ACGGAAGAGATCAAGCCTACGACA -ACGGAAGAGATCAAGCCTAGCTCA -ACGGAAGAGATCAAGCCTTCACGT -ACGGAAGAGATCAAGCCTCGTAGT -ACGGAAGAGATCAAGCCTGTCAGT -ACGGAAGAGATCAAGCCTGAAGGT -ACGGAAGAGATCAAGCCTAACCGT -ACGGAAGAGATCAAGCCTTTGTGC -ACGGAAGAGATCAAGCCTCTAAGC -ACGGAAGAGATCAAGCCTACTAGC -ACGGAAGAGATCAAGCCTAGATGC -ACGGAAGAGATCAAGCCTTGAAGG -ACGGAAGAGATCAAGCCTCAATGG -ACGGAAGAGATCAAGCCTATGAGG -ACGGAAGAGATCAAGCCTAATGGG -ACGGAAGAGATCAAGCCTTCCTGA -ACGGAAGAGATCAAGCCTTAGCGA -ACGGAAGAGATCAAGCCTCACAGA -ACGGAAGAGATCAAGCCTGCAAGA -ACGGAAGAGATCAAGCCTGGTTGA -ACGGAAGAGATCAAGCCTTCCGAT -ACGGAAGAGATCAAGCCTTGGCAT -ACGGAAGAGATCAAGCCTCGAGAT -ACGGAAGAGATCAAGCCTTACCAC -ACGGAAGAGATCAAGCCTCAGAAC -ACGGAAGAGATCAAGCCTGTCTAC -ACGGAAGAGATCAAGCCTACGTAC -ACGGAAGAGATCAAGCCTAGTGAC -ACGGAAGAGATCAAGCCTCTGTAG -ACGGAAGAGATCAAGCCTCCTAAG -ACGGAAGAGATCAAGCCTGTTCAG -ACGGAAGAGATCAAGCCTGCATAG -ACGGAAGAGATCAAGCCTGACAAG -ACGGAAGAGATCAAGCCTAAGCAG -ACGGAAGAGATCAAGCCTCGTCAA -ACGGAAGAGATCAAGCCTGCTGAA -ACGGAAGAGATCAAGCCTAGTACG -ACGGAAGAGATCAAGCCTATCCGA -ACGGAAGAGATCAAGCCTATGGGA -ACGGAAGAGATCAAGCCTGTGCAA -ACGGAAGAGATCAAGCCTGAGGAA -ACGGAAGAGATCAAGCCTCAGGTA -ACGGAAGAGATCAAGCCTGACTCT -ACGGAAGAGATCAAGCCTAGTCCT -ACGGAAGAGATCAAGCCTTAAGCC -ACGGAAGAGATCAAGCCTATAGCC -ACGGAAGAGATCAAGCCTTAACCG -ACGGAAGAGATCAAGCCTATGCCA -ACGGAAGAGATCCAGGTTGGAAAC -ACGGAAGAGATCCAGGTTAACACC -ACGGAAGAGATCCAGGTTATCGAG -ACGGAAGAGATCCAGGTTCTCCTT -ACGGAAGAGATCCAGGTTCCTGTT -ACGGAAGAGATCCAGGTTCGGTTT -ACGGAAGAGATCCAGGTTGTGGTT -ACGGAAGAGATCCAGGTTGCCTTT -ACGGAAGAGATCCAGGTTGGTCTT -ACGGAAGAGATCCAGGTTACGCTT -ACGGAAGAGATCCAGGTTAGCGTT -ACGGAAGAGATCCAGGTTTTCGTC -ACGGAAGAGATCCAGGTTTCTCTC -ACGGAAGAGATCCAGGTTTGGATC -ACGGAAGAGATCCAGGTTCACTTC -ACGGAAGAGATCCAGGTTGTACTC -ACGGAAGAGATCCAGGTTGATGTC -ACGGAAGAGATCCAGGTTACAGTC -ACGGAAGAGATCCAGGTTTTGCTG -ACGGAAGAGATCCAGGTTTCCATG -ACGGAAGAGATCCAGGTTTGTGTG -ACGGAAGAGATCCAGGTTCTAGTG -ACGGAAGAGATCCAGGTTCATCTG -ACGGAAGAGATCCAGGTTGAGTTG -ACGGAAGAGATCCAGGTTAGACTG -ACGGAAGAGATCCAGGTTTCGGTA -ACGGAAGAGATCCAGGTTTGCCTA -ACGGAAGAGATCCAGGTTCCACTA -ACGGAAGAGATCCAGGTTGGAGTA -ACGGAAGAGATCCAGGTTTCGTCT -ACGGAAGAGATCCAGGTTTGCACT -ACGGAAGAGATCCAGGTTCTGACT -ACGGAAGAGATCCAGGTTCAACCT -ACGGAAGAGATCCAGGTTGCTACT -ACGGAAGAGATCCAGGTTGGATCT -ACGGAAGAGATCCAGGTTAAGGCT -ACGGAAGAGATCCAGGTTTCAACC -ACGGAAGAGATCCAGGTTTGTTCC -ACGGAAGAGATCCAGGTTATTCCC -ACGGAAGAGATCCAGGTTTTCTCG -ACGGAAGAGATCCAGGTTTAGACG -ACGGAAGAGATCCAGGTTGTAACG -ACGGAAGAGATCCAGGTTACTTCG -ACGGAAGAGATCCAGGTTTACGCA -ACGGAAGAGATCCAGGTTCTTGCA -ACGGAAGAGATCCAGGTTCGAACA -ACGGAAGAGATCCAGGTTCAGTCA -ACGGAAGAGATCCAGGTTGATCCA -ACGGAAGAGATCCAGGTTACGACA -ACGGAAGAGATCCAGGTTAGCTCA -ACGGAAGAGATCCAGGTTTCACGT -ACGGAAGAGATCCAGGTTCGTAGT -ACGGAAGAGATCCAGGTTGTCAGT -ACGGAAGAGATCCAGGTTGAAGGT -ACGGAAGAGATCCAGGTTAACCGT -ACGGAAGAGATCCAGGTTTTGTGC -ACGGAAGAGATCCAGGTTCTAAGC -ACGGAAGAGATCCAGGTTACTAGC -ACGGAAGAGATCCAGGTTAGATGC -ACGGAAGAGATCCAGGTTTGAAGG -ACGGAAGAGATCCAGGTTCAATGG -ACGGAAGAGATCCAGGTTATGAGG -ACGGAAGAGATCCAGGTTAATGGG -ACGGAAGAGATCCAGGTTTCCTGA -ACGGAAGAGATCCAGGTTTAGCGA -ACGGAAGAGATCCAGGTTCACAGA -ACGGAAGAGATCCAGGTTGCAAGA -ACGGAAGAGATCCAGGTTGGTTGA -ACGGAAGAGATCCAGGTTTCCGAT -ACGGAAGAGATCCAGGTTTGGCAT -ACGGAAGAGATCCAGGTTCGAGAT -ACGGAAGAGATCCAGGTTTACCAC -ACGGAAGAGATCCAGGTTCAGAAC -ACGGAAGAGATCCAGGTTGTCTAC -ACGGAAGAGATCCAGGTTACGTAC -ACGGAAGAGATCCAGGTTAGTGAC -ACGGAAGAGATCCAGGTTCTGTAG -ACGGAAGAGATCCAGGTTCCTAAG -ACGGAAGAGATCCAGGTTGTTCAG -ACGGAAGAGATCCAGGTTGCATAG -ACGGAAGAGATCCAGGTTGACAAG -ACGGAAGAGATCCAGGTTAAGCAG -ACGGAAGAGATCCAGGTTCGTCAA -ACGGAAGAGATCCAGGTTGCTGAA -ACGGAAGAGATCCAGGTTAGTACG -ACGGAAGAGATCCAGGTTATCCGA -ACGGAAGAGATCCAGGTTATGGGA -ACGGAAGAGATCCAGGTTGTGCAA -ACGGAAGAGATCCAGGTTGAGGAA -ACGGAAGAGATCCAGGTTCAGGTA -ACGGAAGAGATCCAGGTTGACTCT -ACGGAAGAGATCCAGGTTAGTCCT -ACGGAAGAGATCCAGGTTTAAGCC -ACGGAAGAGATCCAGGTTATAGCC -ACGGAAGAGATCCAGGTTTAACCG -ACGGAAGAGATCCAGGTTATGCCA -ACGGAAGAGATCTAGGCAGGAAAC -ACGGAAGAGATCTAGGCAAACACC -ACGGAAGAGATCTAGGCAATCGAG -ACGGAAGAGATCTAGGCACTCCTT -ACGGAAGAGATCTAGGCACCTGTT -ACGGAAGAGATCTAGGCACGGTTT -ACGGAAGAGATCTAGGCAGTGGTT -ACGGAAGAGATCTAGGCAGCCTTT -ACGGAAGAGATCTAGGCAGGTCTT -ACGGAAGAGATCTAGGCAACGCTT -ACGGAAGAGATCTAGGCAAGCGTT -ACGGAAGAGATCTAGGCATTCGTC -ACGGAAGAGATCTAGGCATCTCTC -ACGGAAGAGATCTAGGCATGGATC -ACGGAAGAGATCTAGGCACACTTC -ACGGAAGAGATCTAGGCAGTACTC -ACGGAAGAGATCTAGGCAGATGTC -ACGGAAGAGATCTAGGCAACAGTC -ACGGAAGAGATCTAGGCATTGCTG -ACGGAAGAGATCTAGGCATCCATG -ACGGAAGAGATCTAGGCATGTGTG -ACGGAAGAGATCTAGGCACTAGTG -ACGGAAGAGATCTAGGCACATCTG -ACGGAAGAGATCTAGGCAGAGTTG -ACGGAAGAGATCTAGGCAAGACTG -ACGGAAGAGATCTAGGCATCGGTA -ACGGAAGAGATCTAGGCATGCCTA -ACGGAAGAGATCTAGGCACCACTA -ACGGAAGAGATCTAGGCAGGAGTA -ACGGAAGAGATCTAGGCATCGTCT -ACGGAAGAGATCTAGGCATGCACT -ACGGAAGAGATCTAGGCACTGACT -ACGGAAGAGATCTAGGCACAACCT -ACGGAAGAGATCTAGGCAGCTACT -ACGGAAGAGATCTAGGCAGGATCT -ACGGAAGAGATCTAGGCAAAGGCT -ACGGAAGAGATCTAGGCATCAACC -ACGGAAGAGATCTAGGCATGTTCC -ACGGAAGAGATCTAGGCAATTCCC -ACGGAAGAGATCTAGGCATTCTCG -ACGGAAGAGATCTAGGCATAGACG -ACGGAAGAGATCTAGGCAGTAACG -ACGGAAGAGATCTAGGCAACTTCG -ACGGAAGAGATCTAGGCATACGCA -ACGGAAGAGATCTAGGCACTTGCA -ACGGAAGAGATCTAGGCACGAACA -ACGGAAGAGATCTAGGCACAGTCA -ACGGAAGAGATCTAGGCAGATCCA -ACGGAAGAGATCTAGGCAACGACA -ACGGAAGAGATCTAGGCAAGCTCA -ACGGAAGAGATCTAGGCATCACGT -ACGGAAGAGATCTAGGCACGTAGT -ACGGAAGAGATCTAGGCAGTCAGT -ACGGAAGAGATCTAGGCAGAAGGT -ACGGAAGAGATCTAGGCAAACCGT -ACGGAAGAGATCTAGGCATTGTGC -ACGGAAGAGATCTAGGCACTAAGC -ACGGAAGAGATCTAGGCAACTAGC -ACGGAAGAGATCTAGGCAAGATGC -ACGGAAGAGATCTAGGCATGAAGG -ACGGAAGAGATCTAGGCACAATGG -ACGGAAGAGATCTAGGCAATGAGG -ACGGAAGAGATCTAGGCAAATGGG -ACGGAAGAGATCTAGGCATCCTGA -ACGGAAGAGATCTAGGCATAGCGA -ACGGAAGAGATCTAGGCACACAGA -ACGGAAGAGATCTAGGCAGCAAGA -ACGGAAGAGATCTAGGCAGGTTGA -ACGGAAGAGATCTAGGCATCCGAT -ACGGAAGAGATCTAGGCATGGCAT -ACGGAAGAGATCTAGGCACGAGAT -ACGGAAGAGATCTAGGCATACCAC -ACGGAAGAGATCTAGGCACAGAAC -ACGGAAGAGATCTAGGCAGTCTAC -ACGGAAGAGATCTAGGCAACGTAC -ACGGAAGAGATCTAGGCAAGTGAC -ACGGAAGAGATCTAGGCACTGTAG -ACGGAAGAGATCTAGGCACCTAAG -ACGGAAGAGATCTAGGCAGTTCAG -ACGGAAGAGATCTAGGCAGCATAG -ACGGAAGAGATCTAGGCAGACAAG -ACGGAAGAGATCTAGGCAAAGCAG -ACGGAAGAGATCTAGGCACGTCAA -ACGGAAGAGATCTAGGCAGCTGAA -ACGGAAGAGATCTAGGCAAGTACG -ACGGAAGAGATCTAGGCAATCCGA -ACGGAAGAGATCTAGGCAATGGGA -ACGGAAGAGATCTAGGCAGTGCAA -ACGGAAGAGATCTAGGCAGAGGAA -ACGGAAGAGATCTAGGCACAGGTA -ACGGAAGAGATCTAGGCAGACTCT -ACGGAAGAGATCTAGGCAAGTCCT -ACGGAAGAGATCTAGGCATAAGCC -ACGGAAGAGATCTAGGCAATAGCC -ACGGAAGAGATCTAGGCATAACCG -ACGGAAGAGATCTAGGCAATGCCA -ACGGAAGAGATCAAGGACGGAAAC -ACGGAAGAGATCAAGGACAACACC -ACGGAAGAGATCAAGGACATCGAG -ACGGAAGAGATCAAGGACCTCCTT -ACGGAAGAGATCAAGGACCCTGTT -ACGGAAGAGATCAAGGACCGGTTT -ACGGAAGAGATCAAGGACGTGGTT -ACGGAAGAGATCAAGGACGCCTTT -ACGGAAGAGATCAAGGACGGTCTT -ACGGAAGAGATCAAGGACACGCTT -ACGGAAGAGATCAAGGACAGCGTT -ACGGAAGAGATCAAGGACTTCGTC -ACGGAAGAGATCAAGGACTCTCTC -ACGGAAGAGATCAAGGACTGGATC -ACGGAAGAGATCAAGGACCACTTC -ACGGAAGAGATCAAGGACGTACTC -ACGGAAGAGATCAAGGACGATGTC -ACGGAAGAGATCAAGGACACAGTC -ACGGAAGAGATCAAGGACTTGCTG -ACGGAAGAGATCAAGGACTCCATG -ACGGAAGAGATCAAGGACTGTGTG -ACGGAAGAGATCAAGGACCTAGTG -ACGGAAGAGATCAAGGACCATCTG -ACGGAAGAGATCAAGGACGAGTTG -ACGGAAGAGATCAAGGACAGACTG -ACGGAAGAGATCAAGGACTCGGTA -ACGGAAGAGATCAAGGACTGCCTA -ACGGAAGAGATCAAGGACCCACTA -ACGGAAGAGATCAAGGACGGAGTA -ACGGAAGAGATCAAGGACTCGTCT -ACGGAAGAGATCAAGGACTGCACT -ACGGAAGAGATCAAGGACCTGACT -ACGGAAGAGATCAAGGACCAACCT -ACGGAAGAGATCAAGGACGCTACT -ACGGAAGAGATCAAGGACGGATCT -ACGGAAGAGATCAAGGACAAGGCT -ACGGAAGAGATCAAGGACTCAACC -ACGGAAGAGATCAAGGACTGTTCC -ACGGAAGAGATCAAGGACATTCCC -ACGGAAGAGATCAAGGACTTCTCG -ACGGAAGAGATCAAGGACTAGACG -ACGGAAGAGATCAAGGACGTAACG -ACGGAAGAGATCAAGGACACTTCG -ACGGAAGAGATCAAGGACTACGCA -ACGGAAGAGATCAAGGACCTTGCA -ACGGAAGAGATCAAGGACCGAACA -ACGGAAGAGATCAAGGACCAGTCA -ACGGAAGAGATCAAGGACGATCCA -ACGGAAGAGATCAAGGACACGACA -ACGGAAGAGATCAAGGACAGCTCA -ACGGAAGAGATCAAGGACTCACGT -ACGGAAGAGATCAAGGACCGTAGT -ACGGAAGAGATCAAGGACGTCAGT -ACGGAAGAGATCAAGGACGAAGGT -ACGGAAGAGATCAAGGACAACCGT -ACGGAAGAGATCAAGGACTTGTGC -ACGGAAGAGATCAAGGACCTAAGC -ACGGAAGAGATCAAGGACACTAGC -ACGGAAGAGATCAAGGACAGATGC -ACGGAAGAGATCAAGGACTGAAGG -ACGGAAGAGATCAAGGACCAATGG -ACGGAAGAGATCAAGGACATGAGG -ACGGAAGAGATCAAGGACAATGGG -ACGGAAGAGATCAAGGACTCCTGA -ACGGAAGAGATCAAGGACTAGCGA -ACGGAAGAGATCAAGGACCACAGA -ACGGAAGAGATCAAGGACGCAAGA -ACGGAAGAGATCAAGGACGGTTGA -ACGGAAGAGATCAAGGACTCCGAT -ACGGAAGAGATCAAGGACTGGCAT -ACGGAAGAGATCAAGGACCGAGAT -ACGGAAGAGATCAAGGACTACCAC -ACGGAAGAGATCAAGGACCAGAAC -ACGGAAGAGATCAAGGACGTCTAC -ACGGAAGAGATCAAGGACACGTAC -ACGGAAGAGATCAAGGACAGTGAC -ACGGAAGAGATCAAGGACCTGTAG -ACGGAAGAGATCAAGGACCCTAAG -ACGGAAGAGATCAAGGACGTTCAG -ACGGAAGAGATCAAGGACGCATAG -ACGGAAGAGATCAAGGACGACAAG -ACGGAAGAGATCAAGGACAAGCAG -ACGGAAGAGATCAAGGACCGTCAA -ACGGAAGAGATCAAGGACGCTGAA -ACGGAAGAGATCAAGGACAGTACG -ACGGAAGAGATCAAGGACATCCGA -ACGGAAGAGATCAAGGACATGGGA -ACGGAAGAGATCAAGGACGTGCAA -ACGGAAGAGATCAAGGACGAGGAA -ACGGAAGAGATCAAGGACCAGGTA -ACGGAAGAGATCAAGGACGACTCT -ACGGAAGAGATCAAGGACAGTCCT -ACGGAAGAGATCAAGGACTAAGCC -ACGGAAGAGATCAAGGACATAGCC -ACGGAAGAGATCAAGGACTAACCG -ACGGAAGAGATCAAGGACATGCCA -ACGGAAGAGATCCAGAAGGGAAAC -ACGGAAGAGATCCAGAAGAACACC -ACGGAAGAGATCCAGAAGATCGAG -ACGGAAGAGATCCAGAAGCTCCTT -ACGGAAGAGATCCAGAAGCCTGTT -ACGGAAGAGATCCAGAAGCGGTTT -ACGGAAGAGATCCAGAAGGTGGTT -ACGGAAGAGATCCAGAAGGCCTTT -ACGGAAGAGATCCAGAAGGGTCTT -ACGGAAGAGATCCAGAAGACGCTT -ACGGAAGAGATCCAGAAGAGCGTT -ACGGAAGAGATCCAGAAGTTCGTC -ACGGAAGAGATCCAGAAGTCTCTC -ACGGAAGAGATCCAGAAGTGGATC -ACGGAAGAGATCCAGAAGCACTTC -ACGGAAGAGATCCAGAAGGTACTC -ACGGAAGAGATCCAGAAGGATGTC -ACGGAAGAGATCCAGAAGACAGTC -ACGGAAGAGATCCAGAAGTTGCTG -ACGGAAGAGATCCAGAAGTCCATG -ACGGAAGAGATCCAGAAGTGTGTG -ACGGAAGAGATCCAGAAGCTAGTG -ACGGAAGAGATCCAGAAGCATCTG -ACGGAAGAGATCCAGAAGGAGTTG -ACGGAAGAGATCCAGAAGAGACTG -ACGGAAGAGATCCAGAAGTCGGTA -ACGGAAGAGATCCAGAAGTGCCTA -ACGGAAGAGATCCAGAAGCCACTA -ACGGAAGAGATCCAGAAGGGAGTA -ACGGAAGAGATCCAGAAGTCGTCT -ACGGAAGAGATCCAGAAGTGCACT -ACGGAAGAGATCCAGAAGCTGACT -ACGGAAGAGATCCAGAAGCAACCT -ACGGAAGAGATCCAGAAGGCTACT -ACGGAAGAGATCCAGAAGGGATCT -ACGGAAGAGATCCAGAAGAAGGCT -ACGGAAGAGATCCAGAAGTCAACC -ACGGAAGAGATCCAGAAGTGTTCC -ACGGAAGAGATCCAGAAGATTCCC -ACGGAAGAGATCCAGAAGTTCTCG -ACGGAAGAGATCCAGAAGTAGACG -ACGGAAGAGATCCAGAAGGTAACG -ACGGAAGAGATCCAGAAGACTTCG -ACGGAAGAGATCCAGAAGTACGCA -ACGGAAGAGATCCAGAAGCTTGCA -ACGGAAGAGATCCAGAAGCGAACA -ACGGAAGAGATCCAGAAGCAGTCA -ACGGAAGAGATCCAGAAGGATCCA -ACGGAAGAGATCCAGAAGACGACA -ACGGAAGAGATCCAGAAGAGCTCA -ACGGAAGAGATCCAGAAGTCACGT -ACGGAAGAGATCCAGAAGCGTAGT -ACGGAAGAGATCCAGAAGGTCAGT -ACGGAAGAGATCCAGAAGGAAGGT -ACGGAAGAGATCCAGAAGAACCGT -ACGGAAGAGATCCAGAAGTTGTGC -ACGGAAGAGATCCAGAAGCTAAGC -ACGGAAGAGATCCAGAAGACTAGC -ACGGAAGAGATCCAGAAGAGATGC -ACGGAAGAGATCCAGAAGTGAAGG -ACGGAAGAGATCCAGAAGCAATGG -ACGGAAGAGATCCAGAAGATGAGG -ACGGAAGAGATCCAGAAGAATGGG -ACGGAAGAGATCCAGAAGTCCTGA -ACGGAAGAGATCCAGAAGTAGCGA -ACGGAAGAGATCCAGAAGCACAGA -ACGGAAGAGATCCAGAAGGCAAGA -ACGGAAGAGATCCAGAAGGGTTGA -ACGGAAGAGATCCAGAAGTCCGAT -ACGGAAGAGATCCAGAAGTGGCAT -ACGGAAGAGATCCAGAAGCGAGAT -ACGGAAGAGATCCAGAAGTACCAC -ACGGAAGAGATCCAGAAGCAGAAC -ACGGAAGAGATCCAGAAGGTCTAC -ACGGAAGAGATCCAGAAGACGTAC -ACGGAAGAGATCCAGAAGAGTGAC -ACGGAAGAGATCCAGAAGCTGTAG -ACGGAAGAGATCCAGAAGCCTAAG -ACGGAAGAGATCCAGAAGGTTCAG -ACGGAAGAGATCCAGAAGGCATAG -ACGGAAGAGATCCAGAAGGACAAG -ACGGAAGAGATCCAGAAGAAGCAG -ACGGAAGAGATCCAGAAGCGTCAA -ACGGAAGAGATCCAGAAGGCTGAA -ACGGAAGAGATCCAGAAGAGTACG -ACGGAAGAGATCCAGAAGATCCGA -ACGGAAGAGATCCAGAAGATGGGA -ACGGAAGAGATCCAGAAGGTGCAA -ACGGAAGAGATCCAGAAGGAGGAA -ACGGAAGAGATCCAGAAGCAGGTA -ACGGAAGAGATCCAGAAGGACTCT -ACGGAAGAGATCCAGAAGAGTCCT -ACGGAAGAGATCCAGAAGTAAGCC -ACGGAAGAGATCCAGAAGATAGCC -ACGGAAGAGATCCAGAAGTAACCG -ACGGAAGAGATCCAGAAGATGCCA -ACGGAAGAGATCCAACGTGGAAAC -ACGGAAGAGATCCAACGTAACACC -ACGGAAGAGATCCAACGTATCGAG -ACGGAAGAGATCCAACGTCTCCTT -ACGGAAGAGATCCAACGTCCTGTT -ACGGAAGAGATCCAACGTCGGTTT -ACGGAAGAGATCCAACGTGTGGTT -ACGGAAGAGATCCAACGTGCCTTT -ACGGAAGAGATCCAACGTGGTCTT -ACGGAAGAGATCCAACGTACGCTT -ACGGAAGAGATCCAACGTAGCGTT -ACGGAAGAGATCCAACGTTTCGTC -ACGGAAGAGATCCAACGTTCTCTC -ACGGAAGAGATCCAACGTTGGATC -ACGGAAGAGATCCAACGTCACTTC -ACGGAAGAGATCCAACGTGTACTC -ACGGAAGAGATCCAACGTGATGTC -ACGGAAGAGATCCAACGTACAGTC -ACGGAAGAGATCCAACGTTTGCTG -ACGGAAGAGATCCAACGTTCCATG -ACGGAAGAGATCCAACGTTGTGTG -ACGGAAGAGATCCAACGTCTAGTG -ACGGAAGAGATCCAACGTCATCTG -ACGGAAGAGATCCAACGTGAGTTG -ACGGAAGAGATCCAACGTAGACTG -ACGGAAGAGATCCAACGTTCGGTA -ACGGAAGAGATCCAACGTTGCCTA -ACGGAAGAGATCCAACGTCCACTA -ACGGAAGAGATCCAACGTGGAGTA -ACGGAAGAGATCCAACGTTCGTCT -ACGGAAGAGATCCAACGTTGCACT -ACGGAAGAGATCCAACGTCTGACT -ACGGAAGAGATCCAACGTCAACCT -ACGGAAGAGATCCAACGTGCTACT -ACGGAAGAGATCCAACGTGGATCT -ACGGAAGAGATCCAACGTAAGGCT -ACGGAAGAGATCCAACGTTCAACC -ACGGAAGAGATCCAACGTTGTTCC -ACGGAAGAGATCCAACGTATTCCC -ACGGAAGAGATCCAACGTTTCTCG -ACGGAAGAGATCCAACGTTAGACG -ACGGAAGAGATCCAACGTGTAACG -ACGGAAGAGATCCAACGTACTTCG -ACGGAAGAGATCCAACGTTACGCA -ACGGAAGAGATCCAACGTCTTGCA -ACGGAAGAGATCCAACGTCGAACA -ACGGAAGAGATCCAACGTCAGTCA -ACGGAAGAGATCCAACGTGATCCA -ACGGAAGAGATCCAACGTACGACA -ACGGAAGAGATCCAACGTAGCTCA -ACGGAAGAGATCCAACGTTCACGT -ACGGAAGAGATCCAACGTCGTAGT -ACGGAAGAGATCCAACGTGTCAGT -ACGGAAGAGATCCAACGTGAAGGT -ACGGAAGAGATCCAACGTAACCGT -ACGGAAGAGATCCAACGTTTGTGC -ACGGAAGAGATCCAACGTCTAAGC -ACGGAAGAGATCCAACGTACTAGC -ACGGAAGAGATCCAACGTAGATGC -ACGGAAGAGATCCAACGTTGAAGG -ACGGAAGAGATCCAACGTCAATGG -ACGGAAGAGATCCAACGTATGAGG -ACGGAAGAGATCCAACGTAATGGG -ACGGAAGAGATCCAACGTTCCTGA -ACGGAAGAGATCCAACGTTAGCGA -ACGGAAGAGATCCAACGTCACAGA -ACGGAAGAGATCCAACGTGCAAGA -ACGGAAGAGATCCAACGTGGTTGA -ACGGAAGAGATCCAACGTTCCGAT -ACGGAAGAGATCCAACGTTGGCAT -ACGGAAGAGATCCAACGTCGAGAT -ACGGAAGAGATCCAACGTTACCAC -ACGGAAGAGATCCAACGTCAGAAC -ACGGAAGAGATCCAACGTGTCTAC -ACGGAAGAGATCCAACGTACGTAC -ACGGAAGAGATCCAACGTAGTGAC -ACGGAAGAGATCCAACGTCTGTAG -ACGGAAGAGATCCAACGTCCTAAG -ACGGAAGAGATCCAACGTGTTCAG -ACGGAAGAGATCCAACGTGCATAG -ACGGAAGAGATCCAACGTGACAAG -ACGGAAGAGATCCAACGTAAGCAG -ACGGAAGAGATCCAACGTCGTCAA -ACGGAAGAGATCCAACGTGCTGAA -ACGGAAGAGATCCAACGTAGTACG -ACGGAAGAGATCCAACGTATCCGA -ACGGAAGAGATCCAACGTATGGGA -ACGGAAGAGATCCAACGTGTGCAA -ACGGAAGAGATCCAACGTGAGGAA -ACGGAAGAGATCCAACGTCAGGTA -ACGGAAGAGATCCAACGTGACTCT -ACGGAAGAGATCCAACGTAGTCCT -ACGGAAGAGATCCAACGTTAAGCC -ACGGAAGAGATCCAACGTATAGCC -ACGGAAGAGATCCAACGTTAACCG -ACGGAAGAGATCCAACGTATGCCA -ACGGAAGAGATCGAAGCTGGAAAC -ACGGAAGAGATCGAAGCTAACACC -ACGGAAGAGATCGAAGCTATCGAG -ACGGAAGAGATCGAAGCTCTCCTT -ACGGAAGAGATCGAAGCTCCTGTT -ACGGAAGAGATCGAAGCTCGGTTT -ACGGAAGAGATCGAAGCTGTGGTT -ACGGAAGAGATCGAAGCTGCCTTT -ACGGAAGAGATCGAAGCTGGTCTT -ACGGAAGAGATCGAAGCTACGCTT -ACGGAAGAGATCGAAGCTAGCGTT -ACGGAAGAGATCGAAGCTTTCGTC -ACGGAAGAGATCGAAGCTTCTCTC -ACGGAAGAGATCGAAGCTTGGATC -ACGGAAGAGATCGAAGCTCACTTC -ACGGAAGAGATCGAAGCTGTACTC -ACGGAAGAGATCGAAGCTGATGTC -ACGGAAGAGATCGAAGCTACAGTC -ACGGAAGAGATCGAAGCTTTGCTG -ACGGAAGAGATCGAAGCTTCCATG -ACGGAAGAGATCGAAGCTTGTGTG -ACGGAAGAGATCGAAGCTCTAGTG -ACGGAAGAGATCGAAGCTCATCTG -ACGGAAGAGATCGAAGCTGAGTTG -ACGGAAGAGATCGAAGCTAGACTG -ACGGAAGAGATCGAAGCTTCGGTA -ACGGAAGAGATCGAAGCTTGCCTA -ACGGAAGAGATCGAAGCTCCACTA -ACGGAAGAGATCGAAGCTGGAGTA -ACGGAAGAGATCGAAGCTTCGTCT -ACGGAAGAGATCGAAGCTTGCACT -ACGGAAGAGATCGAAGCTCTGACT -ACGGAAGAGATCGAAGCTCAACCT -ACGGAAGAGATCGAAGCTGCTACT -ACGGAAGAGATCGAAGCTGGATCT -ACGGAAGAGATCGAAGCTAAGGCT -ACGGAAGAGATCGAAGCTTCAACC -ACGGAAGAGATCGAAGCTTGTTCC -ACGGAAGAGATCGAAGCTATTCCC -ACGGAAGAGATCGAAGCTTTCTCG -ACGGAAGAGATCGAAGCTTAGACG -ACGGAAGAGATCGAAGCTGTAACG -ACGGAAGAGATCGAAGCTACTTCG -ACGGAAGAGATCGAAGCTTACGCA -ACGGAAGAGATCGAAGCTCTTGCA -ACGGAAGAGATCGAAGCTCGAACA -ACGGAAGAGATCGAAGCTCAGTCA -ACGGAAGAGATCGAAGCTGATCCA -ACGGAAGAGATCGAAGCTACGACA -ACGGAAGAGATCGAAGCTAGCTCA -ACGGAAGAGATCGAAGCTTCACGT -ACGGAAGAGATCGAAGCTCGTAGT -ACGGAAGAGATCGAAGCTGTCAGT -ACGGAAGAGATCGAAGCTGAAGGT -ACGGAAGAGATCGAAGCTAACCGT -ACGGAAGAGATCGAAGCTTTGTGC -ACGGAAGAGATCGAAGCTCTAAGC -ACGGAAGAGATCGAAGCTACTAGC -ACGGAAGAGATCGAAGCTAGATGC -ACGGAAGAGATCGAAGCTTGAAGG -ACGGAAGAGATCGAAGCTCAATGG -ACGGAAGAGATCGAAGCTATGAGG -ACGGAAGAGATCGAAGCTAATGGG -ACGGAAGAGATCGAAGCTTCCTGA -ACGGAAGAGATCGAAGCTTAGCGA -ACGGAAGAGATCGAAGCTCACAGA -ACGGAAGAGATCGAAGCTGCAAGA -ACGGAAGAGATCGAAGCTGGTTGA -ACGGAAGAGATCGAAGCTTCCGAT -ACGGAAGAGATCGAAGCTTGGCAT -ACGGAAGAGATCGAAGCTCGAGAT -ACGGAAGAGATCGAAGCTTACCAC -ACGGAAGAGATCGAAGCTCAGAAC -ACGGAAGAGATCGAAGCTGTCTAC -ACGGAAGAGATCGAAGCTACGTAC -ACGGAAGAGATCGAAGCTAGTGAC -ACGGAAGAGATCGAAGCTCTGTAG -ACGGAAGAGATCGAAGCTCCTAAG -ACGGAAGAGATCGAAGCTGTTCAG -ACGGAAGAGATCGAAGCTGCATAG -ACGGAAGAGATCGAAGCTGACAAG -ACGGAAGAGATCGAAGCTAAGCAG -ACGGAAGAGATCGAAGCTCGTCAA -ACGGAAGAGATCGAAGCTGCTGAA -ACGGAAGAGATCGAAGCTAGTACG -ACGGAAGAGATCGAAGCTATCCGA -ACGGAAGAGATCGAAGCTATGGGA -ACGGAAGAGATCGAAGCTGTGCAA -ACGGAAGAGATCGAAGCTGAGGAA -ACGGAAGAGATCGAAGCTCAGGTA -ACGGAAGAGATCGAAGCTGACTCT -ACGGAAGAGATCGAAGCTAGTCCT -ACGGAAGAGATCGAAGCTTAAGCC -ACGGAAGAGATCGAAGCTATAGCC -ACGGAAGAGATCGAAGCTTAACCG -ACGGAAGAGATCGAAGCTATGCCA -ACGGAAGAGATCACGAGTGGAAAC -ACGGAAGAGATCACGAGTAACACC -ACGGAAGAGATCACGAGTATCGAG -ACGGAAGAGATCACGAGTCTCCTT -ACGGAAGAGATCACGAGTCCTGTT -ACGGAAGAGATCACGAGTCGGTTT -ACGGAAGAGATCACGAGTGTGGTT -ACGGAAGAGATCACGAGTGCCTTT -ACGGAAGAGATCACGAGTGGTCTT -ACGGAAGAGATCACGAGTACGCTT -ACGGAAGAGATCACGAGTAGCGTT -ACGGAAGAGATCACGAGTTTCGTC -ACGGAAGAGATCACGAGTTCTCTC -ACGGAAGAGATCACGAGTTGGATC -ACGGAAGAGATCACGAGTCACTTC -ACGGAAGAGATCACGAGTGTACTC -ACGGAAGAGATCACGAGTGATGTC -ACGGAAGAGATCACGAGTACAGTC -ACGGAAGAGATCACGAGTTTGCTG -ACGGAAGAGATCACGAGTTCCATG -ACGGAAGAGATCACGAGTTGTGTG -ACGGAAGAGATCACGAGTCTAGTG -ACGGAAGAGATCACGAGTCATCTG -ACGGAAGAGATCACGAGTGAGTTG -ACGGAAGAGATCACGAGTAGACTG -ACGGAAGAGATCACGAGTTCGGTA -ACGGAAGAGATCACGAGTTGCCTA -ACGGAAGAGATCACGAGTCCACTA -ACGGAAGAGATCACGAGTGGAGTA -ACGGAAGAGATCACGAGTTCGTCT -ACGGAAGAGATCACGAGTTGCACT -ACGGAAGAGATCACGAGTCTGACT -ACGGAAGAGATCACGAGTCAACCT -ACGGAAGAGATCACGAGTGCTACT -ACGGAAGAGATCACGAGTGGATCT -ACGGAAGAGATCACGAGTAAGGCT -ACGGAAGAGATCACGAGTTCAACC -ACGGAAGAGATCACGAGTTGTTCC -ACGGAAGAGATCACGAGTATTCCC -ACGGAAGAGATCACGAGTTTCTCG -ACGGAAGAGATCACGAGTTAGACG -ACGGAAGAGATCACGAGTGTAACG -ACGGAAGAGATCACGAGTACTTCG -ACGGAAGAGATCACGAGTTACGCA -ACGGAAGAGATCACGAGTCTTGCA -ACGGAAGAGATCACGAGTCGAACA -ACGGAAGAGATCACGAGTCAGTCA -ACGGAAGAGATCACGAGTGATCCA -ACGGAAGAGATCACGAGTACGACA -ACGGAAGAGATCACGAGTAGCTCA -ACGGAAGAGATCACGAGTTCACGT -ACGGAAGAGATCACGAGTCGTAGT -ACGGAAGAGATCACGAGTGTCAGT -ACGGAAGAGATCACGAGTGAAGGT -ACGGAAGAGATCACGAGTAACCGT -ACGGAAGAGATCACGAGTTTGTGC -ACGGAAGAGATCACGAGTCTAAGC -ACGGAAGAGATCACGAGTACTAGC -ACGGAAGAGATCACGAGTAGATGC -ACGGAAGAGATCACGAGTTGAAGG -ACGGAAGAGATCACGAGTCAATGG -ACGGAAGAGATCACGAGTATGAGG -ACGGAAGAGATCACGAGTAATGGG -ACGGAAGAGATCACGAGTTCCTGA -ACGGAAGAGATCACGAGTTAGCGA -ACGGAAGAGATCACGAGTCACAGA -ACGGAAGAGATCACGAGTGCAAGA -ACGGAAGAGATCACGAGTGGTTGA -ACGGAAGAGATCACGAGTTCCGAT -ACGGAAGAGATCACGAGTTGGCAT -ACGGAAGAGATCACGAGTCGAGAT -ACGGAAGAGATCACGAGTTACCAC -ACGGAAGAGATCACGAGTCAGAAC -ACGGAAGAGATCACGAGTGTCTAC -ACGGAAGAGATCACGAGTACGTAC -ACGGAAGAGATCACGAGTAGTGAC -ACGGAAGAGATCACGAGTCTGTAG -ACGGAAGAGATCACGAGTCCTAAG -ACGGAAGAGATCACGAGTGTTCAG -ACGGAAGAGATCACGAGTGCATAG -ACGGAAGAGATCACGAGTGACAAG -ACGGAAGAGATCACGAGTAAGCAG -ACGGAAGAGATCACGAGTCGTCAA -ACGGAAGAGATCACGAGTGCTGAA -ACGGAAGAGATCACGAGTAGTACG -ACGGAAGAGATCACGAGTATCCGA -ACGGAAGAGATCACGAGTATGGGA -ACGGAAGAGATCACGAGTGTGCAA -ACGGAAGAGATCACGAGTGAGGAA -ACGGAAGAGATCACGAGTCAGGTA -ACGGAAGAGATCACGAGTGACTCT -ACGGAAGAGATCACGAGTAGTCCT -ACGGAAGAGATCACGAGTTAAGCC -ACGGAAGAGATCACGAGTATAGCC -ACGGAAGAGATCACGAGTTAACCG -ACGGAAGAGATCACGAGTATGCCA -ACGGAAGAGATCCGAATCGGAAAC -ACGGAAGAGATCCGAATCAACACC -ACGGAAGAGATCCGAATCATCGAG -ACGGAAGAGATCCGAATCCTCCTT -ACGGAAGAGATCCGAATCCCTGTT -ACGGAAGAGATCCGAATCCGGTTT -ACGGAAGAGATCCGAATCGTGGTT -ACGGAAGAGATCCGAATCGCCTTT -ACGGAAGAGATCCGAATCGGTCTT -ACGGAAGAGATCCGAATCACGCTT -ACGGAAGAGATCCGAATCAGCGTT -ACGGAAGAGATCCGAATCTTCGTC -ACGGAAGAGATCCGAATCTCTCTC -ACGGAAGAGATCCGAATCTGGATC -ACGGAAGAGATCCGAATCCACTTC -ACGGAAGAGATCCGAATCGTACTC -ACGGAAGAGATCCGAATCGATGTC -ACGGAAGAGATCCGAATCACAGTC -ACGGAAGAGATCCGAATCTTGCTG -ACGGAAGAGATCCGAATCTCCATG -ACGGAAGAGATCCGAATCTGTGTG -ACGGAAGAGATCCGAATCCTAGTG -ACGGAAGAGATCCGAATCCATCTG -ACGGAAGAGATCCGAATCGAGTTG -ACGGAAGAGATCCGAATCAGACTG -ACGGAAGAGATCCGAATCTCGGTA -ACGGAAGAGATCCGAATCTGCCTA -ACGGAAGAGATCCGAATCCCACTA -ACGGAAGAGATCCGAATCGGAGTA -ACGGAAGAGATCCGAATCTCGTCT -ACGGAAGAGATCCGAATCTGCACT -ACGGAAGAGATCCGAATCCTGACT -ACGGAAGAGATCCGAATCCAACCT -ACGGAAGAGATCCGAATCGCTACT -ACGGAAGAGATCCGAATCGGATCT -ACGGAAGAGATCCGAATCAAGGCT -ACGGAAGAGATCCGAATCTCAACC -ACGGAAGAGATCCGAATCTGTTCC -ACGGAAGAGATCCGAATCATTCCC -ACGGAAGAGATCCGAATCTTCTCG -ACGGAAGAGATCCGAATCTAGACG -ACGGAAGAGATCCGAATCGTAACG -ACGGAAGAGATCCGAATCACTTCG -ACGGAAGAGATCCGAATCTACGCA -ACGGAAGAGATCCGAATCCTTGCA -ACGGAAGAGATCCGAATCCGAACA -ACGGAAGAGATCCGAATCCAGTCA -ACGGAAGAGATCCGAATCGATCCA -ACGGAAGAGATCCGAATCACGACA -ACGGAAGAGATCCGAATCAGCTCA -ACGGAAGAGATCCGAATCTCACGT -ACGGAAGAGATCCGAATCCGTAGT -ACGGAAGAGATCCGAATCGTCAGT -ACGGAAGAGATCCGAATCGAAGGT -ACGGAAGAGATCCGAATCAACCGT -ACGGAAGAGATCCGAATCTTGTGC -ACGGAAGAGATCCGAATCCTAAGC -ACGGAAGAGATCCGAATCACTAGC -ACGGAAGAGATCCGAATCAGATGC -ACGGAAGAGATCCGAATCTGAAGG -ACGGAAGAGATCCGAATCCAATGG -ACGGAAGAGATCCGAATCATGAGG -ACGGAAGAGATCCGAATCAATGGG -ACGGAAGAGATCCGAATCTCCTGA -ACGGAAGAGATCCGAATCTAGCGA -ACGGAAGAGATCCGAATCCACAGA -ACGGAAGAGATCCGAATCGCAAGA -ACGGAAGAGATCCGAATCGGTTGA -ACGGAAGAGATCCGAATCTCCGAT -ACGGAAGAGATCCGAATCTGGCAT -ACGGAAGAGATCCGAATCCGAGAT -ACGGAAGAGATCCGAATCTACCAC -ACGGAAGAGATCCGAATCCAGAAC -ACGGAAGAGATCCGAATCGTCTAC -ACGGAAGAGATCCGAATCACGTAC -ACGGAAGAGATCCGAATCAGTGAC -ACGGAAGAGATCCGAATCCTGTAG -ACGGAAGAGATCCGAATCCCTAAG -ACGGAAGAGATCCGAATCGTTCAG -ACGGAAGAGATCCGAATCGCATAG -ACGGAAGAGATCCGAATCGACAAG -ACGGAAGAGATCCGAATCAAGCAG -ACGGAAGAGATCCGAATCCGTCAA -ACGGAAGAGATCCGAATCGCTGAA -ACGGAAGAGATCCGAATCAGTACG -ACGGAAGAGATCCGAATCATCCGA -ACGGAAGAGATCCGAATCATGGGA -ACGGAAGAGATCCGAATCGTGCAA -ACGGAAGAGATCCGAATCGAGGAA -ACGGAAGAGATCCGAATCCAGGTA -ACGGAAGAGATCCGAATCGACTCT -ACGGAAGAGATCCGAATCAGTCCT -ACGGAAGAGATCCGAATCTAAGCC -ACGGAAGAGATCCGAATCATAGCC -ACGGAAGAGATCCGAATCTAACCG -ACGGAAGAGATCCGAATCATGCCA -ACGGAAGAGATCGGAATGGGAAAC -ACGGAAGAGATCGGAATGAACACC -ACGGAAGAGATCGGAATGATCGAG -ACGGAAGAGATCGGAATGCTCCTT -ACGGAAGAGATCGGAATGCCTGTT -ACGGAAGAGATCGGAATGCGGTTT -ACGGAAGAGATCGGAATGGTGGTT -ACGGAAGAGATCGGAATGGCCTTT -ACGGAAGAGATCGGAATGGGTCTT -ACGGAAGAGATCGGAATGACGCTT -ACGGAAGAGATCGGAATGAGCGTT -ACGGAAGAGATCGGAATGTTCGTC -ACGGAAGAGATCGGAATGTCTCTC -ACGGAAGAGATCGGAATGTGGATC -ACGGAAGAGATCGGAATGCACTTC -ACGGAAGAGATCGGAATGGTACTC -ACGGAAGAGATCGGAATGGATGTC -ACGGAAGAGATCGGAATGACAGTC -ACGGAAGAGATCGGAATGTTGCTG -ACGGAAGAGATCGGAATGTCCATG -ACGGAAGAGATCGGAATGTGTGTG -ACGGAAGAGATCGGAATGCTAGTG -ACGGAAGAGATCGGAATGCATCTG -ACGGAAGAGATCGGAATGGAGTTG -ACGGAAGAGATCGGAATGAGACTG -ACGGAAGAGATCGGAATGTCGGTA -ACGGAAGAGATCGGAATGTGCCTA -ACGGAAGAGATCGGAATGCCACTA -ACGGAAGAGATCGGAATGGGAGTA -ACGGAAGAGATCGGAATGTCGTCT -ACGGAAGAGATCGGAATGTGCACT -ACGGAAGAGATCGGAATGCTGACT -ACGGAAGAGATCGGAATGCAACCT -ACGGAAGAGATCGGAATGGCTACT -ACGGAAGAGATCGGAATGGGATCT -ACGGAAGAGATCGGAATGAAGGCT -ACGGAAGAGATCGGAATGTCAACC -ACGGAAGAGATCGGAATGTGTTCC -ACGGAAGAGATCGGAATGATTCCC -ACGGAAGAGATCGGAATGTTCTCG -ACGGAAGAGATCGGAATGTAGACG -ACGGAAGAGATCGGAATGGTAACG -ACGGAAGAGATCGGAATGACTTCG -ACGGAAGAGATCGGAATGTACGCA -ACGGAAGAGATCGGAATGCTTGCA -ACGGAAGAGATCGGAATGCGAACA -ACGGAAGAGATCGGAATGCAGTCA -ACGGAAGAGATCGGAATGGATCCA -ACGGAAGAGATCGGAATGACGACA -ACGGAAGAGATCGGAATGAGCTCA -ACGGAAGAGATCGGAATGTCACGT -ACGGAAGAGATCGGAATGCGTAGT -ACGGAAGAGATCGGAATGGTCAGT -ACGGAAGAGATCGGAATGGAAGGT -ACGGAAGAGATCGGAATGAACCGT -ACGGAAGAGATCGGAATGTTGTGC -ACGGAAGAGATCGGAATGCTAAGC -ACGGAAGAGATCGGAATGACTAGC -ACGGAAGAGATCGGAATGAGATGC -ACGGAAGAGATCGGAATGTGAAGG -ACGGAAGAGATCGGAATGCAATGG -ACGGAAGAGATCGGAATGATGAGG -ACGGAAGAGATCGGAATGAATGGG -ACGGAAGAGATCGGAATGTCCTGA -ACGGAAGAGATCGGAATGTAGCGA -ACGGAAGAGATCGGAATGCACAGA -ACGGAAGAGATCGGAATGGCAAGA -ACGGAAGAGATCGGAATGGGTTGA -ACGGAAGAGATCGGAATGTCCGAT -ACGGAAGAGATCGGAATGTGGCAT -ACGGAAGAGATCGGAATGCGAGAT -ACGGAAGAGATCGGAATGTACCAC -ACGGAAGAGATCGGAATGCAGAAC -ACGGAAGAGATCGGAATGGTCTAC -ACGGAAGAGATCGGAATGACGTAC -ACGGAAGAGATCGGAATGAGTGAC -ACGGAAGAGATCGGAATGCTGTAG -ACGGAAGAGATCGGAATGCCTAAG -ACGGAAGAGATCGGAATGGTTCAG -ACGGAAGAGATCGGAATGGCATAG -ACGGAAGAGATCGGAATGGACAAG -ACGGAAGAGATCGGAATGAAGCAG -ACGGAAGAGATCGGAATGCGTCAA -ACGGAAGAGATCGGAATGGCTGAA -ACGGAAGAGATCGGAATGAGTACG -ACGGAAGAGATCGGAATGATCCGA -ACGGAAGAGATCGGAATGATGGGA -ACGGAAGAGATCGGAATGGTGCAA -ACGGAAGAGATCGGAATGGAGGAA -ACGGAAGAGATCGGAATGCAGGTA -ACGGAAGAGATCGGAATGGACTCT -ACGGAAGAGATCGGAATGAGTCCT -ACGGAAGAGATCGGAATGTAAGCC -ACGGAAGAGATCGGAATGATAGCC -ACGGAAGAGATCGGAATGTAACCG -ACGGAAGAGATCGGAATGATGCCA -ACGGAAGAGATCCAAGTGGGAAAC -ACGGAAGAGATCCAAGTGAACACC -ACGGAAGAGATCCAAGTGATCGAG -ACGGAAGAGATCCAAGTGCTCCTT -ACGGAAGAGATCCAAGTGCCTGTT -ACGGAAGAGATCCAAGTGCGGTTT -ACGGAAGAGATCCAAGTGGTGGTT -ACGGAAGAGATCCAAGTGGCCTTT -ACGGAAGAGATCCAAGTGGGTCTT -ACGGAAGAGATCCAAGTGACGCTT -ACGGAAGAGATCCAAGTGAGCGTT -ACGGAAGAGATCCAAGTGTTCGTC -ACGGAAGAGATCCAAGTGTCTCTC -ACGGAAGAGATCCAAGTGTGGATC -ACGGAAGAGATCCAAGTGCACTTC -ACGGAAGAGATCCAAGTGGTACTC -ACGGAAGAGATCCAAGTGGATGTC -ACGGAAGAGATCCAAGTGACAGTC -ACGGAAGAGATCCAAGTGTTGCTG -ACGGAAGAGATCCAAGTGTCCATG -ACGGAAGAGATCCAAGTGTGTGTG -ACGGAAGAGATCCAAGTGCTAGTG -ACGGAAGAGATCCAAGTGCATCTG -ACGGAAGAGATCCAAGTGGAGTTG -ACGGAAGAGATCCAAGTGAGACTG -ACGGAAGAGATCCAAGTGTCGGTA -ACGGAAGAGATCCAAGTGTGCCTA -ACGGAAGAGATCCAAGTGCCACTA -ACGGAAGAGATCCAAGTGGGAGTA -ACGGAAGAGATCCAAGTGTCGTCT -ACGGAAGAGATCCAAGTGTGCACT -ACGGAAGAGATCCAAGTGCTGACT -ACGGAAGAGATCCAAGTGCAACCT -ACGGAAGAGATCCAAGTGGCTACT -ACGGAAGAGATCCAAGTGGGATCT -ACGGAAGAGATCCAAGTGAAGGCT -ACGGAAGAGATCCAAGTGTCAACC -ACGGAAGAGATCCAAGTGTGTTCC -ACGGAAGAGATCCAAGTGATTCCC -ACGGAAGAGATCCAAGTGTTCTCG -ACGGAAGAGATCCAAGTGTAGACG -ACGGAAGAGATCCAAGTGGTAACG -ACGGAAGAGATCCAAGTGACTTCG -ACGGAAGAGATCCAAGTGTACGCA -ACGGAAGAGATCCAAGTGCTTGCA -ACGGAAGAGATCCAAGTGCGAACA -ACGGAAGAGATCCAAGTGCAGTCA -ACGGAAGAGATCCAAGTGGATCCA -ACGGAAGAGATCCAAGTGACGACA -ACGGAAGAGATCCAAGTGAGCTCA -ACGGAAGAGATCCAAGTGTCACGT -ACGGAAGAGATCCAAGTGCGTAGT -ACGGAAGAGATCCAAGTGGTCAGT -ACGGAAGAGATCCAAGTGGAAGGT -ACGGAAGAGATCCAAGTGAACCGT -ACGGAAGAGATCCAAGTGTTGTGC -ACGGAAGAGATCCAAGTGCTAAGC -ACGGAAGAGATCCAAGTGACTAGC -ACGGAAGAGATCCAAGTGAGATGC -ACGGAAGAGATCCAAGTGTGAAGG -ACGGAAGAGATCCAAGTGCAATGG -ACGGAAGAGATCCAAGTGATGAGG -ACGGAAGAGATCCAAGTGAATGGG -ACGGAAGAGATCCAAGTGTCCTGA -ACGGAAGAGATCCAAGTGTAGCGA -ACGGAAGAGATCCAAGTGCACAGA -ACGGAAGAGATCCAAGTGGCAAGA -ACGGAAGAGATCCAAGTGGGTTGA -ACGGAAGAGATCCAAGTGTCCGAT -ACGGAAGAGATCCAAGTGTGGCAT -ACGGAAGAGATCCAAGTGCGAGAT -ACGGAAGAGATCCAAGTGTACCAC -ACGGAAGAGATCCAAGTGCAGAAC -ACGGAAGAGATCCAAGTGGTCTAC -ACGGAAGAGATCCAAGTGACGTAC -ACGGAAGAGATCCAAGTGAGTGAC -ACGGAAGAGATCCAAGTGCTGTAG -ACGGAAGAGATCCAAGTGCCTAAG -ACGGAAGAGATCCAAGTGGTTCAG -ACGGAAGAGATCCAAGTGGCATAG -ACGGAAGAGATCCAAGTGGACAAG -ACGGAAGAGATCCAAGTGAAGCAG -ACGGAAGAGATCCAAGTGCGTCAA -ACGGAAGAGATCCAAGTGGCTGAA -ACGGAAGAGATCCAAGTGAGTACG -ACGGAAGAGATCCAAGTGATCCGA -ACGGAAGAGATCCAAGTGATGGGA -ACGGAAGAGATCCAAGTGGTGCAA -ACGGAAGAGATCCAAGTGGAGGAA -ACGGAAGAGATCCAAGTGCAGGTA -ACGGAAGAGATCCAAGTGGACTCT -ACGGAAGAGATCCAAGTGAGTCCT -ACGGAAGAGATCCAAGTGTAAGCC -ACGGAAGAGATCCAAGTGATAGCC -ACGGAAGAGATCCAAGTGTAACCG -ACGGAAGAGATCCAAGTGATGCCA -ACGGAAGAGATCGAAGAGGGAAAC -ACGGAAGAGATCGAAGAGAACACC -ACGGAAGAGATCGAAGAGATCGAG -ACGGAAGAGATCGAAGAGCTCCTT -ACGGAAGAGATCGAAGAGCCTGTT -ACGGAAGAGATCGAAGAGCGGTTT -ACGGAAGAGATCGAAGAGGTGGTT -ACGGAAGAGATCGAAGAGGCCTTT -ACGGAAGAGATCGAAGAGGGTCTT -ACGGAAGAGATCGAAGAGACGCTT -ACGGAAGAGATCGAAGAGAGCGTT -ACGGAAGAGATCGAAGAGTTCGTC -ACGGAAGAGATCGAAGAGTCTCTC -ACGGAAGAGATCGAAGAGTGGATC -ACGGAAGAGATCGAAGAGCACTTC -ACGGAAGAGATCGAAGAGGTACTC -ACGGAAGAGATCGAAGAGGATGTC -ACGGAAGAGATCGAAGAGACAGTC -ACGGAAGAGATCGAAGAGTTGCTG -ACGGAAGAGATCGAAGAGTCCATG -ACGGAAGAGATCGAAGAGTGTGTG -ACGGAAGAGATCGAAGAGCTAGTG -ACGGAAGAGATCGAAGAGCATCTG -ACGGAAGAGATCGAAGAGGAGTTG -ACGGAAGAGATCGAAGAGAGACTG -ACGGAAGAGATCGAAGAGTCGGTA -ACGGAAGAGATCGAAGAGTGCCTA -ACGGAAGAGATCGAAGAGCCACTA -ACGGAAGAGATCGAAGAGGGAGTA -ACGGAAGAGATCGAAGAGTCGTCT -ACGGAAGAGATCGAAGAGTGCACT -ACGGAAGAGATCGAAGAGCTGACT -ACGGAAGAGATCGAAGAGCAACCT -ACGGAAGAGATCGAAGAGGCTACT -ACGGAAGAGATCGAAGAGGGATCT -ACGGAAGAGATCGAAGAGAAGGCT -ACGGAAGAGATCGAAGAGTCAACC -ACGGAAGAGATCGAAGAGTGTTCC -ACGGAAGAGATCGAAGAGATTCCC -ACGGAAGAGATCGAAGAGTTCTCG -ACGGAAGAGATCGAAGAGTAGACG -ACGGAAGAGATCGAAGAGGTAACG -ACGGAAGAGATCGAAGAGACTTCG -ACGGAAGAGATCGAAGAGTACGCA -ACGGAAGAGATCGAAGAGCTTGCA -ACGGAAGAGATCGAAGAGCGAACA -ACGGAAGAGATCGAAGAGCAGTCA -ACGGAAGAGATCGAAGAGGATCCA -ACGGAAGAGATCGAAGAGACGACA -ACGGAAGAGATCGAAGAGAGCTCA -ACGGAAGAGATCGAAGAGTCACGT -ACGGAAGAGATCGAAGAGCGTAGT -ACGGAAGAGATCGAAGAGGTCAGT -ACGGAAGAGATCGAAGAGGAAGGT -ACGGAAGAGATCGAAGAGAACCGT -ACGGAAGAGATCGAAGAGTTGTGC -ACGGAAGAGATCGAAGAGCTAAGC -ACGGAAGAGATCGAAGAGACTAGC -ACGGAAGAGATCGAAGAGAGATGC -ACGGAAGAGATCGAAGAGTGAAGG -ACGGAAGAGATCGAAGAGCAATGG -ACGGAAGAGATCGAAGAGATGAGG -ACGGAAGAGATCGAAGAGAATGGG -ACGGAAGAGATCGAAGAGTCCTGA -ACGGAAGAGATCGAAGAGTAGCGA -ACGGAAGAGATCGAAGAGCACAGA -ACGGAAGAGATCGAAGAGGCAAGA -ACGGAAGAGATCGAAGAGGGTTGA -ACGGAAGAGATCGAAGAGTCCGAT -ACGGAAGAGATCGAAGAGTGGCAT -ACGGAAGAGATCGAAGAGCGAGAT -ACGGAAGAGATCGAAGAGTACCAC -ACGGAAGAGATCGAAGAGCAGAAC -ACGGAAGAGATCGAAGAGGTCTAC -ACGGAAGAGATCGAAGAGACGTAC -ACGGAAGAGATCGAAGAGAGTGAC -ACGGAAGAGATCGAAGAGCTGTAG -ACGGAAGAGATCGAAGAGCCTAAG -ACGGAAGAGATCGAAGAGGTTCAG -ACGGAAGAGATCGAAGAGGCATAG -ACGGAAGAGATCGAAGAGGACAAG -ACGGAAGAGATCGAAGAGAAGCAG -ACGGAAGAGATCGAAGAGCGTCAA -ACGGAAGAGATCGAAGAGGCTGAA -ACGGAAGAGATCGAAGAGAGTACG -ACGGAAGAGATCGAAGAGATCCGA -ACGGAAGAGATCGAAGAGATGGGA -ACGGAAGAGATCGAAGAGGTGCAA -ACGGAAGAGATCGAAGAGGAGGAA -ACGGAAGAGATCGAAGAGCAGGTA -ACGGAAGAGATCGAAGAGGACTCT -ACGGAAGAGATCGAAGAGAGTCCT -ACGGAAGAGATCGAAGAGTAAGCC -ACGGAAGAGATCGAAGAGATAGCC -ACGGAAGAGATCGAAGAGTAACCG -ACGGAAGAGATCGAAGAGATGCCA -ACGGAAGAGATCGTACAGGGAAAC -ACGGAAGAGATCGTACAGAACACC -ACGGAAGAGATCGTACAGATCGAG -ACGGAAGAGATCGTACAGCTCCTT -ACGGAAGAGATCGTACAGCCTGTT -ACGGAAGAGATCGTACAGCGGTTT -ACGGAAGAGATCGTACAGGTGGTT -ACGGAAGAGATCGTACAGGCCTTT -ACGGAAGAGATCGTACAGGGTCTT -ACGGAAGAGATCGTACAGACGCTT -ACGGAAGAGATCGTACAGAGCGTT -ACGGAAGAGATCGTACAGTTCGTC -ACGGAAGAGATCGTACAGTCTCTC -ACGGAAGAGATCGTACAGTGGATC -ACGGAAGAGATCGTACAGCACTTC -ACGGAAGAGATCGTACAGGTACTC -ACGGAAGAGATCGTACAGGATGTC -ACGGAAGAGATCGTACAGACAGTC -ACGGAAGAGATCGTACAGTTGCTG -ACGGAAGAGATCGTACAGTCCATG -ACGGAAGAGATCGTACAGTGTGTG -ACGGAAGAGATCGTACAGCTAGTG -ACGGAAGAGATCGTACAGCATCTG -ACGGAAGAGATCGTACAGGAGTTG -ACGGAAGAGATCGTACAGAGACTG -ACGGAAGAGATCGTACAGTCGGTA -ACGGAAGAGATCGTACAGTGCCTA -ACGGAAGAGATCGTACAGCCACTA -ACGGAAGAGATCGTACAGGGAGTA -ACGGAAGAGATCGTACAGTCGTCT -ACGGAAGAGATCGTACAGTGCACT -ACGGAAGAGATCGTACAGCTGACT -ACGGAAGAGATCGTACAGCAACCT -ACGGAAGAGATCGTACAGGCTACT -ACGGAAGAGATCGTACAGGGATCT -ACGGAAGAGATCGTACAGAAGGCT -ACGGAAGAGATCGTACAGTCAACC -ACGGAAGAGATCGTACAGTGTTCC -ACGGAAGAGATCGTACAGATTCCC -ACGGAAGAGATCGTACAGTTCTCG -ACGGAAGAGATCGTACAGTAGACG -ACGGAAGAGATCGTACAGGTAACG -ACGGAAGAGATCGTACAGACTTCG -ACGGAAGAGATCGTACAGTACGCA -ACGGAAGAGATCGTACAGCTTGCA -ACGGAAGAGATCGTACAGCGAACA -ACGGAAGAGATCGTACAGCAGTCA -ACGGAAGAGATCGTACAGGATCCA -ACGGAAGAGATCGTACAGACGACA -ACGGAAGAGATCGTACAGAGCTCA -ACGGAAGAGATCGTACAGTCACGT -ACGGAAGAGATCGTACAGCGTAGT -ACGGAAGAGATCGTACAGGTCAGT -ACGGAAGAGATCGTACAGGAAGGT -ACGGAAGAGATCGTACAGAACCGT -ACGGAAGAGATCGTACAGTTGTGC -ACGGAAGAGATCGTACAGCTAAGC -ACGGAAGAGATCGTACAGACTAGC -ACGGAAGAGATCGTACAGAGATGC -ACGGAAGAGATCGTACAGTGAAGG -ACGGAAGAGATCGTACAGCAATGG -ACGGAAGAGATCGTACAGATGAGG -ACGGAAGAGATCGTACAGAATGGG -ACGGAAGAGATCGTACAGTCCTGA -ACGGAAGAGATCGTACAGTAGCGA -ACGGAAGAGATCGTACAGCACAGA -ACGGAAGAGATCGTACAGGCAAGA -ACGGAAGAGATCGTACAGGGTTGA -ACGGAAGAGATCGTACAGTCCGAT -ACGGAAGAGATCGTACAGTGGCAT -ACGGAAGAGATCGTACAGCGAGAT -ACGGAAGAGATCGTACAGTACCAC -ACGGAAGAGATCGTACAGCAGAAC -ACGGAAGAGATCGTACAGGTCTAC -ACGGAAGAGATCGTACAGACGTAC -ACGGAAGAGATCGTACAGAGTGAC -ACGGAAGAGATCGTACAGCTGTAG -ACGGAAGAGATCGTACAGCCTAAG -ACGGAAGAGATCGTACAGGTTCAG -ACGGAAGAGATCGTACAGGCATAG -ACGGAAGAGATCGTACAGGACAAG -ACGGAAGAGATCGTACAGAAGCAG -ACGGAAGAGATCGTACAGCGTCAA -ACGGAAGAGATCGTACAGGCTGAA -ACGGAAGAGATCGTACAGAGTACG -ACGGAAGAGATCGTACAGATCCGA -ACGGAAGAGATCGTACAGATGGGA -ACGGAAGAGATCGTACAGGTGCAA -ACGGAAGAGATCGTACAGGAGGAA -ACGGAAGAGATCGTACAGCAGGTA -ACGGAAGAGATCGTACAGGACTCT -ACGGAAGAGATCGTACAGAGTCCT -ACGGAAGAGATCGTACAGTAAGCC -ACGGAAGAGATCGTACAGATAGCC -ACGGAAGAGATCGTACAGTAACCG -ACGGAAGAGATCGTACAGATGCCA -ACGGAAGAGATCTCTGACGGAAAC -ACGGAAGAGATCTCTGACAACACC -ACGGAAGAGATCTCTGACATCGAG -ACGGAAGAGATCTCTGACCTCCTT -ACGGAAGAGATCTCTGACCCTGTT -ACGGAAGAGATCTCTGACCGGTTT -ACGGAAGAGATCTCTGACGTGGTT -ACGGAAGAGATCTCTGACGCCTTT -ACGGAAGAGATCTCTGACGGTCTT -ACGGAAGAGATCTCTGACACGCTT -ACGGAAGAGATCTCTGACAGCGTT -ACGGAAGAGATCTCTGACTTCGTC -ACGGAAGAGATCTCTGACTCTCTC -ACGGAAGAGATCTCTGACTGGATC -ACGGAAGAGATCTCTGACCACTTC -ACGGAAGAGATCTCTGACGTACTC -ACGGAAGAGATCTCTGACGATGTC -ACGGAAGAGATCTCTGACACAGTC -ACGGAAGAGATCTCTGACTTGCTG -ACGGAAGAGATCTCTGACTCCATG -ACGGAAGAGATCTCTGACTGTGTG -ACGGAAGAGATCTCTGACCTAGTG -ACGGAAGAGATCTCTGACCATCTG -ACGGAAGAGATCTCTGACGAGTTG -ACGGAAGAGATCTCTGACAGACTG -ACGGAAGAGATCTCTGACTCGGTA -ACGGAAGAGATCTCTGACTGCCTA -ACGGAAGAGATCTCTGACCCACTA -ACGGAAGAGATCTCTGACGGAGTA -ACGGAAGAGATCTCTGACTCGTCT -ACGGAAGAGATCTCTGACTGCACT -ACGGAAGAGATCTCTGACCTGACT -ACGGAAGAGATCTCTGACCAACCT -ACGGAAGAGATCTCTGACGCTACT -ACGGAAGAGATCTCTGACGGATCT -ACGGAAGAGATCTCTGACAAGGCT -ACGGAAGAGATCTCTGACTCAACC -ACGGAAGAGATCTCTGACTGTTCC -ACGGAAGAGATCTCTGACATTCCC -ACGGAAGAGATCTCTGACTTCTCG -ACGGAAGAGATCTCTGACTAGACG -ACGGAAGAGATCTCTGACGTAACG -ACGGAAGAGATCTCTGACACTTCG -ACGGAAGAGATCTCTGACTACGCA -ACGGAAGAGATCTCTGACCTTGCA -ACGGAAGAGATCTCTGACCGAACA -ACGGAAGAGATCTCTGACCAGTCA -ACGGAAGAGATCTCTGACGATCCA -ACGGAAGAGATCTCTGACACGACA -ACGGAAGAGATCTCTGACAGCTCA -ACGGAAGAGATCTCTGACTCACGT -ACGGAAGAGATCTCTGACCGTAGT -ACGGAAGAGATCTCTGACGTCAGT -ACGGAAGAGATCTCTGACGAAGGT -ACGGAAGAGATCTCTGACAACCGT -ACGGAAGAGATCTCTGACTTGTGC -ACGGAAGAGATCTCTGACCTAAGC -ACGGAAGAGATCTCTGACACTAGC -ACGGAAGAGATCTCTGACAGATGC -ACGGAAGAGATCTCTGACTGAAGG -ACGGAAGAGATCTCTGACCAATGG -ACGGAAGAGATCTCTGACATGAGG -ACGGAAGAGATCTCTGACAATGGG -ACGGAAGAGATCTCTGACTCCTGA -ACGGAAGAGATCTCTGACTAGCGA -ACGGAAGAGATCTCTGACCACAGA -ACGGAAGAGATCTCTGACGCAAGA -ACGGAAGAGATCTCTGACGGTTGA -ACGGAAGAGATCTCTGACTCCGAT -ACGGAAGAGATCTCTGACTGGCAT -ACGGAAGAGATCTCTGACCGAGAT -ACGGAAGAGATCTCTGACTACCAC -ACGGAAGAGATCTCTGACCAGAAC -ACGGAAGAGATCTCTGACGTCTAC -ACGGAAGAGATCTCTGACACGTAC -ACGGAAGAGATCTCTGACAGTGAC -ACGGAAGAGATCTCTGACCTGTAG -ACGGAAGAGATCTCTGACCCTAAG -ACGGAAGAGATCTCTGACGTTCAG -ACGGAAGAGATCTCTGACGCATAG -ACGGAAGAGATCTCTGACGACAAG -ACGGAAGAGATCTCTGACAAGCAG -ACGGAAGAGATCTCTGACCGTCAA -ACGGAAGAGATCTCTGACGCTGAA -ACGGAAGAGATCTCTGACAGTACG -ACGGAAGAGATCTCTGACATCCGA -ACGGAAGAGATCTCTGACATGGGA -ACGGAAGAGATCTCTGACGTGCAA -ACGGAAGAGATCTCTGACGAGGAA -ACGGAAGAGATCTCTGACCAGGTA -ACGGAAGAGATCTCTGACGACTCT -ACGGAAGAGATCTCTGACAGTCCT -ACGGAAGAGATCTCTGACTAAGCC -ACGGAAGAGATCTCTGACATAGCC -ACGGAAGAGATCTCTGACTAACCG -ACGGAAGAGATCTCTGACATGCCA -ACGGAAGAGATCCCTAGTGGAAAC -ACGGAAGAGATCCCTAGTAACACC -ACGGAAGAGATCCCTAGTATCGAG -ACGGAAGAGATCCCTAGTCTCCTT -ACGGAAGAGATCCCTAGTCCTGTT -ACGGAAGAGATCCCTAGTCGGTTT -ACGGAAGAGATCCCTAGTGTGGTT -ACGGAAGAGATCCCTAGTGCCTTT -ACGGAAGAGATCCCTAGTGGTCTT -ACGGAAGAGATCCCTAGTACGCTT -ACGGAAGAGATCCCTAGTAGCGTT -ACGGAAGAGATCCCTAGTTTCGTC -ACGGAAGAGATCCCTAGTTCTCTC -ACGGAAGAGATCCCTAGTTGGATC -ACGGAAGAGATCCCTAGTCACTTC -ACGGAAGAGATCCCTAGTGTACTC -ACGGAAGAGATCCCTAGTGATGTC -ACGGAAGAGATCCCTAGTACAGTC -ACGGAAGAGATCCCTAGTTTGCTG -ACGGAAGAGATCCCTAGTTCCATG -ACGGAAGAGATCCCTAGTTGTGTG -ACGGAAGAGATCCCTAGTCTAGTG -ACGGAAGAGATCCCTAGTCATCTG -ACGGAAGAGATCCCTAGTGAGTTG -ACGGAAGAGATCCCTAGTAGACTG -ACGGAAGAGATCCCTAGTTCGGTA -ACGGAAGAGATCCCTAGTTGCCTA -ACGGAAGAGATCCCTAGTCCACTA -ACGGAAGAGATCCCTAGTGGAGTA -ACGGAAGAGATCCCTAGTTCGTCT -ACGGAAGAGATCCCTAGTTGCACT -ACGGAAGAGATCCCTAGTCTGACT -ACGGAAGAGATCCCTAGTCAACCT -ACGGAAGAGATCCCTAGTGCTACT -ACGGAAGAGATCCCTAGTGGATCT -ACGGAAGAGATCCCTAGTAAGGCT -ACGGAAGAGATCCCTAGTTCAACC -ACGGAAGAGATCCCTAGTTGTTCC -ACGGAAGAGATCCCTAGTATTCCC -ACGGAAGAGATCCCTAGTTTCTCG -ACGGAAGAGATCCCTAGTTAGACG -ACGGAAGAGATCCCTAGTGTAACG -ACGGAAGAGATCCCTAGTACTTCG -ACGGAAGAGATCCCTAGTTACGCA -ACGGAAGAGATCCCTAGTCTTGCA -ACGGAAGAGATCCCTAGTCGAACA -ACGGAAGAGATCCCTAGTCAGTCA -ACGGAAGAGATCCCTAGTGATCCA -ACGGAAGAGATCCCTAGTACGACA -ACGGAAGAGATCCCTAGTAGCTCA -ACGGAAGAGATCCCTAGTTCACGT -ACGGAAGAGATCCCTAGTCGTAGT -ACGGAAGAGATCCCTAGTGTCAGT -ACGGAAGAGATCCCTAGTGAAGGT -ACGGAAGAGATCCCTAGTAACCGT -ACGGAAGAGATCCCTAGTTTGTGC -ACGGAAGAGATCCCTAGTCTAAGC -ACGGAAGAGATCCCTAGTACTAGC -ACGGAAGAGATCCCTAGTAGATGC -ACGGAAGAGATCCCTAGTTGAAGG -ACGGAAGAGATCCCTAGTCAATGG -ACGGAAGAGATCCCTAGTATGAGG -ACGGAAGAGATCCCTAGTAATGGG -ACGGAAGAGATCCCTAGTTCCTGA -ACGGAAGAGATCCCTAGTTAGCGA -ACGGAAGAGATCCCTAGTCACAGA -ACGGAAGAGATCCCTAGTGCAAGA -ACGGAAGAGATCCCTAGTGGTTGA -ACGGAAGAGATCCCTAGTTCCGAT -ACGGAAGAGATCCCTAGTTGGCAT -ACGGAAGAGATCCCTAGTCGAGAT -ACGGAAGAGATCCCTAGTTACCAC -ACGGAAGAGATCCCTAGTCAGAAC -ACGGAAGAGATCCCTAGTGTCTAC -ACGGAAGAGATCCCTAGTACGTAC -ACGGAAGAGATCCCTAGTAGTGAC -ACGGAAGAGATCCCTAGTCTGTAG -ACGGAAGAGATCCCTAGTCCTAAG -ACGGAAGAGATCCCTAGTGTTCAG -ACGGAAGAGATCCCTAGTGCATAG -ACGGAAGAGATCCCTAGTGACAAG -ACGGAAGAGATCCCTAGTAAGCAG -ACGGAAGAGATCCCTAGTCGTCAA -ACGGAAGAGATCCCTAGTGCTGAA -ACGGAAGAGATCCCTAGTAGTACG -ACGGAAGAGATCCCTAGTATCCGA -ACGGAAGAGATCCCTAGTATGGGA -ACGGAAGAGATCCCTAGTGTGCAA -ACGGAAGAGATCCCTAGTGAGGAA -ACGGAAGAGATCCCTAGTCAGGTA -ACGGAAGAGATCCCTAGTGACTCT -ACGGAAGAGATCCCTAGTAGTCCT -ACGGAAGAGATCCCTAGTTAAGCC -ACGGAAGAGATCCCTAGTATAGCC -ACGGAAGAGATCCCTAGTTAACCG -ACGGAAGAGATCCCTAGTATGCCA -ACGGAAGAGATCGCCTAAGGAAAC -ACGGAAGAGATCGCCTAAAACACC -ACGGAAGAGATCGCCTAAATCGAG -ACGGAAGAGATCGCCTAACTCCTT -ACGGAAGAGATCGCCTAACCTGTT -ACGGAAGAGATCGCCTAACGGTTT -ACGGAAGAGATCGCCTAAGTGGTT -ACGGAAGAGATCGCCTAAGCCTTT -ACGGAAGAGATCGCCTAAGGTCTT -ACGGAAGAGATCGCCTAAACGCTT -ACGGAAGAGATCGCCTAAAGCGTT -ACGGAAGAGATCGCCTAATTCGTC -ACGGAAGAGATCGCCTAATCTCTC -ACGGAAGAGATCGCCTAATGGATC -ACGGAAGAGATCGCCTAACACTTC -ACGGAAGAGATCGCCTAAGTACTC -ACGGAAGAGATCGCCTAAGATGTC -ACGGAAGAGATCGCCTAAACAGTC -ACGGAAGAGATCGCCTAATTGCTG -ACGGAAGAGATCGCCTAATCCATG -ACGGAAGAGATCGCCTAATGTGTG -ACGGAAGAGATCGCCTAACTAGTG -ACGGAAGAGATCGCCTAACATCTG -ACGGAAGAGATCGCCTAAGAGTTG -ACGGAAGAGATCGCCTAAAGACTG -ACGGAAGAGATCGCCTAATCGGTA -ACGGAAGAGATCGCCTAATGCCTA -ACGGAAGAGATCGCCTAACCACTA -ACGGAAGAGATCGCCTAAGGAGTA -ACGGAAGAGATCGCCTAATCGTCT -ACGGAAGAGATCGCCTAATGCACT -ACGGAAGAGATCGCCTAACTGACT -ACGGAAGAGATCGCCTAACAACCT -ACGGAAGAGATCGCCTAAGCTACT -ACGGAAGAGATCGCCTAAGGATCT -ACGGAAGAGATCGCCTAAAAGGCT -ACGGAAGAGATCGCCTAATCAACC -ACGGAAGAGATCGCCTAATGTTCC -ACGGAAGAGATCGCCTAAATTCCC -ACGGAAGAGATCGCCTAATTCTCG -ACGGAAGAGATCGCCTAATAGACG -ACGGAAGAGATCGCCTAAGTAACG -ACGGAAGAGATCGCCTAAACTTCG -ACGGAAGAGATCGCCTAATACGCA -ACGGAAGAGATCGCCTAACTTGCA -ACGGAAGAGATCGCCTAACGAACA -ACGGAAGAGATCGCCTAACAGTCA -ACGGAAGAGATCGCCTAAGATCCA -ACGGAAGAGATCGCCTAAACGACA -ACGGAAGAGATCGCCTAAAGCTCA -ACGGAAGAGATCGCCTAATCACGT -ACGGAAGAGATCGCCTAACGTAGT -ACGGAAGAGATCGCCTAAGTCAGT -ACGGAAGAGATCGCCTAAGAAGGT -ACGGAAGAGATCGCCTAAAACCGT -ACGGAAGAGATCGCCTAATTGTGC -ACGGAAGAGATCGCCTAACTAAGC -ACGGAAGAGATCGCCTAAACTAGC -ACGGAAGAGATCGCCTAAAGATGC -ACGGAAGAGATCGCCTAATGAAGG -ACGGAAGAGATCGCCTAACAATGG -ACGGAAGAGATCGCCTAAATGAGG -ACGGAAGAGATCGCCTAAAATGGG -ACGGAAGAGATCGCCTAATCCTGA -ACGGAAGAGATCGCCTAATAGCGA -ACGGAAGAGATCGCCTAACACAGA -ACGGAAGAGATCGCCTAAGCAAGA -ACGGAAGAGATCGCCTAAGGTTGA -ACGGAAGAGATCGCCTAATCCGAT -ACGGAAGAGATCGCCTAATGGCAT -ACGGAAGAGATCGCCTAACGAGAT -ACGGAAGAGATCGCCTAATACCAC -ACGGAAGAGATCGCCTAACAGAAC -ACGGAAGAGATCGCCTAAGTCTAC -ACGGAAGAGATCGCCTAAACGTAC -ACGGAAGAGATCGCCTAAAGTGAC -ACGGAAGAGATCGCCTAACTGTAG -ACGGAAGAGATCGCCTAACCTAAG -ACGGAAGAGATCGCCTAAGTTCAG -ACGGAAGAGATCGCCTAAGCATAG -ACGGAAGAGATCGCCTAAGACAAG -ACGGAAGAGATCGCCTAAAAGCAG -ACGGAAGAGATCGCCTAACGTCAA -ACGGAAGAGATCGCCTAAGCTGAA -ACGGAAGAGATCGCCTAAAGTACG -ACGGAAGAGATCGCCTAAATCCGA -ACGGAAGAGATCGCCTAAATGGGA -ACGGAAGAGATCGCCTAAGTGCAA -ACGGAAGAGATCGCCTAAGAGGAA -ACGGAAGAGATCGCCTAACAGGTA -ACGGAAGAGATCGCCTAAGACTCT -ACGGAAGAGATCGCCTAAAGTCCT -ACGGAAGAGATCGCCTAATAAGCC -ACGGAAGAGATCGCCTAAATAGCC -ACGGAAGAGATCGCCTAATAACCG -ACGGAAGAGATCGCCTAAATGCCA -ACGGAAGAGATCGCCATAGGAAAC -ACGGAAGAGATCGCCATAAACACC -ACGGAAGAGATCGCCATAATCGAG -ACGGAAGAGATCGCCATACTCCTT -ACGGAAGAGATCGCCATACCTGTT -ACGGAAGAGATCGCCATACGGTTT -ACGGAAGAGATCGCCATAGTGGTT -ACGGAAGAGATCGCCATAGCCTTT -ACGGAAGAGATCGCCATAGGTCTT -ACGGAAGAGATCGCCATAACGCTT -ACGGAAGAGATCGCCATAAGCGTT -ACGGAAGAGATCGCCATATTCGTC -ACGGAAGAGATCGCCATATCTCTC -ACGGAAGAGATCGCCATATGGATC -ACGGAAGAGATCGCCATACACTTC -ACGGAAGAGATCGCCATAGTACTC -ACGGAAGAGATCGCCATAGATGTC -ACGGAAGAGATCGCCATAACAGTC -ACGGAAGAGATCGCCATATTGCTG -ACGGAAGAGATCGCCATATCCATG -ACGGAAGAGATCGCCATATGTGTG -ACGGAAGAGATCGCCATACTAGTG -ACGGAAGAGATCGCCATACATCTG -ACGGAAGAGATCGCCATAGAGTTG -ACGGAAGAGATCGCCATAAGACTG -ACGGAAGAGATCGCCATATCGGTA -ACGGAAGAGATCGCCATATGCCTA -ACGGAAGAGATCGCCATACCACTA -ACGGAAGAGATCGCCATAGGAGTA -ACGGAAGAGATCGCCATATCGTCT -ACGGAAGAGATCGCCATATGCACT -ACGGAAGAGATCGCCATACTGACT -ACGGAAGAGATCGCCATACAACCT -ACGGAAGAGATCGCCATAGCTACT -ACGGAAGAGATCGCCATAGGATCT -ACGGAAGAGATCGCCATAAAGGCT -ACGGAAGAGATCGCCATATCAACC -ACGGAAGAGATCGCCATATGTTCC -ACGGAAGAGATCGCCATAATTCCC -ACGGAAGAGATCGCCATATTCTCG -ACGGAAGAGATCGCCATATAGACG -ACGGAAGAGATCGCCATAGTAACG -ACGGAAGAGATCGCCATAACTTCG -ACGGAAGAGATCGCCATATACGCA -ACGGAAGAGATCGCCATACTTGCA -ACGGAAGAGATCGCCATACGAACA -ACGGAAGAGATCGCCATACAGTCA -ACGGAAGAGATCGCCATAGATCCA -ACGGAAGAGATCGCCATAACGACA -ACGGAAGAGATCGCCATAAGCTCA -ACGGAAGAGATCGCCATATCACGT -ACGGAAGAGATCGCCATACGTAGT -ACGGAAGAGATCGCCATAGTCAGT -ACGGAAGAGATCGCCATAGAAGGT -ACGGAAGAGATCGCCATAAACCGT -ACGGAAGAGATCGCCATATTGTGC -ACGGAAGAGATCGCCATACTAAGC -ACGGAAGAGATCGCCATAACTAGC -ACGGAAGAGATCGCCATAAGATGC -ACGGAAGAGATCGCCATATGAAGG -ACGGAAGAGATCGCCATACAATGG -ACGGAAGAGATCGCCATAATGAGG -ACGGAAGAGATCGCCATAAATGGG -ACGGAAGAGATCGCCATATCCTGA -ACGGAAGAGATCGCCATATAGCGA -ACGGAAGAGATCGCCATACACAGA -ACGGAAGAGATCGCCATAGCAAGA -ACGGAAGAGATCGCCATAGGTTGA -ACGGAAGAGATCGCCATATCCGAT -ACGGAAGAGATCGCCATATGGCAT -ACGGAAGAGATCGCCATACGAGAT -ACGGAAGAGATCGCCATATACCAC -ACGGAAGAGATCGCCATACAGAAC -ACGGAAGAGATCGCCATAGTCTAC -ACGGAAGAGATCGCCATAACGTAC -ACGGAAGAGATCGCCATAAGTGAC -ACGGAAGAGATCGCCATACTGTAG -ACGGAAGAGATCGCCATACCTAAG -ACGGAAGAGATCGCCATAGTTCAG -ACGGAAGAGATCGCCATAGCATAG -ACGGAAGAGATCGCCATAGACAAG -ACGGAAGAGATCGCCATAAAGCAG -ACGGAAGAGATCGCCATACGTCAA -ACGGAAGAGATCGCCATAGCTGAA -ACGGAAGAGATCGCCATAAGTACG -ACGGAAGAGATCGCCATAATCCGA -ACGGAAGAGATCGCCATAATGGGA -ACGGAAGAGATCGCCATAGTGCAA -ACGGAAGAGATCGCCATAGAGGAA -ACGGAAGAGATCGCCATACAGGTA -ACGGAAGAGATCGCCATAGACTCT -ACGGAAGAGATCGCCATAAGTCCT -ACGGAAGAGATCGCCATATAAGCC -ACGGAAGAGATCGCCATAATAGCC -ACGGAAGAGATCGCCATATAACCG -ACGGAAGAGATCGCCATAATGCCA -ACGGAAGAGATCCCGTAAGGAAAC -ACGGAAGAGATCCCGTAAAACACC -ACGGAAGAGATCCCGTAAATCGAG -ACGGAAGAGATCCCGTAACTCCTT -ACGGAAGAGATCCCGTAACCTGTT -ACGGAAGAGATCCCGTAACGGTTT -ACGGAAGAGATCCCGTAAGTGGTT -ACGGAAGAGATCCCGTAAGCCTTT -ACGGAAGAGATCCCGTAAGGTCTT -ACGGAAGAGATCCCGTAAACGCTT -ACGGAAGAGATCCCGTAAAGCGTT -ACGGAAGAGATCCCGTAATTCGTC -ACGGAAGAGATCCCGTAATCTCTC -ACGGAAGAGATCCCGTAATGGATC -ACGGAAGAGATCCCGTAACACTTC -ACGGAAGAGATCCCGTAAGTACTC -ACGGAAGAGATCCCGTAAGATGTC -ACGGAAGAGATCCCGTAAACAGTC -ACGGAAGAGATCCCGTAATTGCTG -ACGGAAGAGATCCCGTAATCCATG -ACGGAAGAGATCCCGTAATGTGTG -ACGGAAGAGATCCCGTAACTAGTG -ACGGAAGAGATCCCGTAACATCTG -ACGGAAGAGATCCCGTAAGAGTTG -ACGGAAGAGATCCCGTAAAGACTG -ACGGAAGAGATCCCGTAATCGGTA -ACGGAAGAGATCCCGTAATGCCTA -ACGGAAGAGATCCCGTAACCACTA -ACGGAAGAGATCCCGTAAGGAGTA -ACGGAAGAGATCCCGTAATCGTCT -ACGGAAGAGATCCCGTAATGCACT -ACGGAAGAGATCCCGTAACTGACT -ACGGAAGAGATCCCGTAACAACCT -ACGGAAGAGATCCCGTAAGCTACT -ACGGAAGAGATCCCGTAAGGATCT -ACGGAAGAGATCCCGTAAAAGGCT -ACGGAAGAGATCCCGTAATCAACC -ACGGAAGAGATCCCGTAATGTTCC -ACGGAAGAGATCCCGTAAATTCCC -ACGGAAGAGATCCCGTAATTCTCG -ACGGAAGAGATCCCGTAATAGACG -ACGGAAGAGATCCCGTAAGTAACG -ACGGAAGAGATCCCGTAAACTTCG -ACGGAAGAGATCCCGTAATACGCA -ACGGAAGAGATCCCGTAACTTGCA -ACGGAAGAGATCCCGTAACGAACA -ACGGAAGAGATCCCGTAACAGTCA -ACGGAAGAGATCCCGTAAGATCCA -ACGGAAGAGATCCCGTAAACGACA -ACGGAAGAGATCCCGTAAAGCTCA -ACGGAAGAGATCCCGTAATCACGT -ACGGAAGAGATCCCGTAACGTAGT -ACGGAAGAGATCCCGTAAGTCAGT -ACGGAAGAGATCCCGTAAGAAGGT -ACGGAAGAGATCCCGTAAAACCGT -ACGGAAGAGATCCCGTAATTGTGC -ACGGAAGAGATCCCGTAACTAAGC -ACGGAAGAGATCCCGTAAACTAGC -ACGGAAGAGATCCCGTAAAGATGC -ACGGAAGAGATCCCGTAATGAAGG -ACGGAAGAGATCCCGTAACAATGG -ACGGAAGAGATCCCGTAAATGAGG -ACGGAAGAGATCCCGTAAAATGGG -ACGGAAGAGATCCCGTAATCCTGA -ACGGAAGAGATCCCGTAATAGCGA -ACGGAAGAGATCCCGTAACACAGA -ACGGAAGAGATCCCGTAAGCAAGA -ACGGAAGAGATCCCGTAAGGTTGA -ACGGAAGAGATCCCGTAATCCGAT -ACGGAAGAGATCCCGTAATGGCAT -ACGGAAGAGATCCCGTAACGAGAT -ACGGAAGAGATCCCGTAATACCAC -ACGGAAGAGATCCCGTAACAGAAC -ACGGAAGAGATCCCGTAAGTCTAC -ACGGAAGAGATCCCGTAAACGTAC -ACGGAAGAGATCCCGTAAAGTGAC -ACGGAAGAGATCCCGTAACTGTAG -ACGGAAGAGATCCCGTAACCTAAG -ACGGAAGAGATCCCGTAAGTTCAG -ACGGAAGAGATCCCGTAAGCATAG -ACGGAAGAGATCCCGTAAGACAAG -ACGGAAGAGATCCCGTAAAAGCAG -ACGGAAGAGATCCCGTAACGTCAA -ACGGAAGAGATCCCGTAAGCTGAA -ACGGAAGAGATCCCGTAAAGTACG -ACGGAAGAGATCCCGTAAATCCGA -ACGGAAGAGATCCCGTAAATGGGA -ACGGAAGAGATCCCGTAAGTGCAA -ACGGAAGAGATCCCGTAAGAGGAA -ACGGAAGAGATCCCGTAACAGGTA -ACGGAAGAGATCCCGTAAGACTCT -ACGGAAGAGATCCCGTAAAGTCCT -ACGGAAGAGATCCCGTAATAAGCC -ACGGAAGAGATCCCGTAAATAGCC -ACGGAAGAGATCCCGTAATAACCG -ACGGAAGAGATCCCGTAAATGCCA -ACGGAAGAGATCCCAATGGGAAAC -ACGGAAGAGATCCCAATGAACACC -ACGGAAGAGATCCCAATGATCGAG -ACGGAAGAGATCCCAATGCTCCTT -ACGGAAGAGATCCCAATGCCTGTT -ACGGAAGAGATCCCAATGCGGTTT -ACGGAAGAGATCCCAATGGTGGTT -ACGGAAGAGATCCCAATGGCCTTT -ACGGAAGAGATCCCAATGGGTCTT -ACGGAAGAGATCCCAATGACGCTT -ACGGAAGAGATCCCAATGAGCGTT -ACGGAAGAGATCCCAATGTTCGTC -ACGGAAGAGATCCCAATGTCTCTC -ACGGAAGAGATCCCAATGTGGATC -ACGGAAGAGATCCCAATGCACTTC -ACGGAAGAGATCCCAATGGTACTC -ACGGAAGAGATCCCAATGGATGTC -ACGGAAGAGATCCCAATGACAGTC -ACGGAAGAGATCCCAATGTTGCTG -ACGGAAGAGATCCCAATGTCCATG -ACGGAAGAGATCCCAATGTGTGTG -ACGGAAGAGATCCCAATGCTAGTG -ACGGAAGAGATCCCAATGCATCTG -ACGGAAGAGATCCCAATGGAGTTG -ACGGAAGAGATCCCAATGAGACTG -ACGGAAGAGATCCCAATGTCGGTA -ACGGAAGAGATCCCAATGTGCCTA -ACGGAAGAGATCCCAATGCCACTA -ACGGAAGAGATCCCAATGGGAGTA -ACGGAAGAGATCCCAATGTCGTCT -ACGGAAGAGATCCCAATGTGCACT -ACGGAAGAGATCCCAATGCTGACT -ACGGAAGAGATCCCAATGCAACCT -ACGGAAGAGATCCCAATGGCTACT -ACGGAAGAGATCCCAATGGGATCT -ACGGAAGAGATCCCAATGAAGGCT -ACGGAAGAGATCCCAATGTCAACC -ACGGAAGAGATCCCAATGTGTTCC -ACGGAAGAGATCCCAATGATTCCC -ACGGAAGAGATCCCAATGTTCTCG -ACGGAAGAGATCCCAATGTAGACG -ACGGAAGAGATCCCAATGGTAACG -ACGGAAGAGATCCCAATGACTTCG -ACGGAAGAGATCCCAATGTACGCA -ACGGAAGAGATCCCAATGCTTGCA -ACGGAAGAGATCCCAATGCGAACA -ACGGAAGAGATCCCAATGCAGTCA -ACGGAAGAGATCCCAATGGATCCA -ACGGAAGAGATCCCAATGACGACA -ACGGAAGAGATCCCAATGAGCTCA -ACGGAAGAGATCCCAATGTCACGT -ACGGAAGAGATCCCAATGCGTAGT -ACGGAAGAGATCCCAATGGTCAGT -ACGGAAGAGATCCCAATGGAAGGT -ACGGAAGAGATCCCAATGAACCGT -ACGGAAGAGATCCCAATGTTGTGC -ACGGAAGAGATCCCAATGCTAAGC -ACGGAAGAGATCCCAATGACTAGC -ACGGAAGAGATCCCAATGAGATGC -ACGGAAGAGATCCCAATGTGAAGG -ACGGAAGAGATCCCAATGCAATGG -ACGGAAGAGATCCCAATGATGAGG -ACGGAAGAGATCCCAATGAATGGG -ACGGAAGAGATCCCAATGTCCTGA -ACGGAAGAGATCCCAATGTAGCGA -ACGGAAGAGATCCCAATGCACAGA -ACGGAAGAGATCCCAATGGCAAGA -ACGGAAGAGATCCCAATGGGTTGA -ACGGAAGAGATCCCAATGTCCGAT -ACGGAAGAGATCCCAATGTGGCAT -ACGGAAGAGATCCCAATGCGAGAT -ACGGAAGAGATCCCAATGTACCAC -ACGGAAGAGATCCCAATGCAGAAC -ACGGAAGAGATCCCAATGGTCTAC -ACGGAAGAGATCCCAATGACGTAC -ACGGAAGAGATCCCAATGAGTGAC -ACGGAAGAGATCCCAATGCTGTAG -ACGGAAGAGATCCCAATGCCTAAG -ACGGAAGAGATCCCAATGGTTCAG -ACGGAAGAGATCCCAATGGCATAG -ACGGAAGAGATCCCAATGGACAAG -ACGGAAGAGATCCCAATGAAGCAG -ACGGAAGAGATCCCAATGCGTCAA -ACGGAAGAGATCCCAATGGCTGAA -ACGGAAGAGATCCCAATGAGTACG -ACGGAAGAGATCCCAATGATCCGA -ACGGAAGAGATCCCAATGATGGGA -ACGGAAGAGATCCCAATGGTGCAA -ACGGAAGAGATCCCAATGGAGGAA -ACGGAAGAGATCCCAATGCAGGTA -ACGGAAGAGATCCCAATGGACTCT -ACGGAAGAGATCCCAATGAGTCCT -ACGGAAGAGATCCCAATGTAAGCC -ACGGAAGAGATCCCAATGATAGCC -ACGGAAGAGATCCCAATGTAACCG -ACGGAAGAGATCCCAATGATGCCA -ACGGAAACCACTAACGGAGGAAAC -ACGGAAACCACTAACGGAAACACC -ACGGAAACCACTAACGGAATCGAG -ACGGAAACCACTAACGGACTCCTT -ACGGAAACCACTAACGGACCTGTT -ACGGAAACCACTAACGGACGGTTT -ACGGAAACCACTAACGGAGTGGTT -ACGGAAACCACTAACGGAGCCTTT -ACGGAAACCACTAACGGAGGTCTT -ACGGAAACCACTAACGGAACGCTT -ACGGAAACCACTAACGGAAGCGTT -ACGGAAACCACTAACGGATTCGTC -ACGGAAACCACTAACGGATCTCTC -ACGGAAACCACTAACGGATGGATC -ACGGAAACCACTAACGGACACTTC -ACGGAAACCACTAACGGAGTACTC -ACGGAAACCACTAACGGAGATGTC -ACGGAAACCACTAACGGAACAGTC -ACGGAAACCACTAACGGATTGCTG -ACGGAAACCACTAACGGATCCATG -ACGGAAACCACTAACGGATGTGTG -ACGGAAACCACTAACGGACTAGTG -ACGGAAACCACTAACGGACATCTG -ACGGAAACCACTAACGGAGAGTTG -ACGGAAACCACTAACGGAAGACTG -ACGGAAACCACTAACGGATCGGTA -ACGGAAACCACTAACGGATGCCTA -ACGGAAACCACTAACGGACCACTA -ACGGAAACCACTAACGGAGGAGTA -ACGGAAACCACTAACGGATCGTCT -ACGGAAACCACTAACGGATGCACT -ACGGAAACCACTAACGGACTGACT -ACGGAAACCACTAACGGACAACCT -ACGGAAACCACTAACGGAGCTACT -ACGGAAACCACTAACGGAGGATCT -ACGGAAACCACTAACGGAAAGGCT -ACGGAAACCACTAACGGATCAACC -ACGGAAACCACTAACGGATGTTCC -ACGGAAACCACTAACGGAATTCCC -ACGGAAACCACTAACGGATTCTCG -ACGGAAACCACTAACGGATAGACG -ACGGAAACCACTAACGGAGTAACG -ACGGAAACCACTAACGGAACTTCG -ACGGAAACCACTAACGGATACGCA -ACGGAAACCACTAACGGACTTGCA -ACGGAAACCACTAACGGACGAACA -ACGGAAACCACTAACGGACAGTCA -ACGGAAACCACTAACGGAGATCCA -ACGGAAACCACTAACGGAACGACA -ACGGAAACCACTAACGGAAGCTCA -ACGGAAACCACTAACGGATCACGT -ACGGAAACCACTAACGGACGTAGT -ACGGAAACCACTAACGGAGTCAGT -ACGGAAACCACTAACGGAGAAGGT -ACGGAAACCACTAACGGAAACCGT -ACGGAAACCACTAACGGATTGTGC -ACGGAAACCACTAACGGACTAAGC -ACGGAAACCACTAACGGAACTAGC -ACGGAAACCACTAACGGAAGATGC -ACGGAAACCACTAACGGATGAAGG -ACGGAAACCACTAACGGACAATGG -ACGGAAACCACTAACGGAATGAGG -ACGGAAACCACTAACGGAAATGGG -ACGGAAACCACTAACGGATCCTGA -ACGGAAACCACTAACGGATAGCGA -ACGGAAACCACTAACGGACACAGA -ACGGAAACCACTAACGGAGCAAGA -ACGGAAACCACTAACGGAGGTTGA -ACGGAAACCACTAACGGATCCGAT -ACGGAAACCACTAACGGATGGCAT -ACGGAAACCACTAACGGACGAGAT -ACGGAAACCACTAACGGATACCAC -ACGGAAACCACTAACGGACAGAAC -ACGGAAACCACTAACGGAGTCTAC -ACGGAAACCACTAACGGAACGTAC -ACGGAAACCACTAACGGAAGTGAC -ACGGAAACCACTAACGGACTGTAG -ACGGAAACCACTAACGGACCTAAG -ACGGAAACCACTAACGGAGTTCAG -ACGGAAACCACTAACGGAGCATAG -ACGGAAACCACTAACGGAGACAAG -ACGGAAACCACTAACGGAAAGCAG -ACGGAAACCACTAACGGACGTCAA -ACGGAAACCACTAACGGAGCTGAA -ACGGAAACCACTAACGGAAGTACG -ACGGAAACCACTAACGGAATCCGA -ACGGAAACCACTAACGGAATGGGA -ACGGAAACCACTAACGGAGTGCAA -ACGGAAACCACTAACGGAGAGGAA -ACGGAAACCACTAACGGACAGGTA -ACGGAAACCACTAACGGAGACTCT -ACGGAAACCACTAACGGAAGTCCT -ACGGAAACCACTAACGGATAAGCC -ACGGAAACCACTAACGGAATAGCC -ACGGAAACCACTAACGGATAACCG -ACGGAAACCACTAACGGAATGCCA -ACGGAAACCACTACCAACGGAAAC -ACGGAAACCACTACCAACAACACC -ACGGAAACCACTACCAACATCGAG -ACGGAAACCACTACCAACCTCCTT -ACGGAAACCACTACCAACCCTGTT -ACGGAAACCACTACCAACCGGTTT -ACGGAAACCACTACCAACGTGGTT -ACGGAAACCACTACCAACGCCTTT -ACGGAAACCACTACCAACGGTCTT -ACGGAAACCACTACCAACACGCTT -ACGGAAACCACTACCAACAGCGTT -ACGGAAACCACTACCAACTTCGTC -ACGGAAACCACTACCAACTCTCTC -ACGGAAACCACTACCAACTGGATC -ACGGAAACCACTACCAACCACTTC -ACGGAAACCACTACCAACGTACTC -ACGGAAACCACTACCAACGATGTC -ACGGAAACCACTACCAACACAGTC -ACGGAAACCACTACCAACTTGCTG -ACGGAAACCACTACCAACTCCATG -ACGGAAACCACTACCAACTGTGTG -ACGGAAACCACTACCAACCTAGTG -ACGGAAACCACTACCAACCATCTG -ACGGAAACCACTACCAACGAGTTG -ACGGAAACCACTACCAACAGACTG -ACGGAAACCACTACCAACTCGGTA -ACGGAAACCACTACCAACTGCCTA -ACGGAAACCACTACCAACCCACTA -ACGGAAACCACTACCAACGGAGTA -ACGGAAACCACTACCAACTCGTCT -ACGGAAACCACTACCAACTGCACT -ACGGAAACCACTACCAACCTGACT -ACGGAAACCACTACCAACCAACCT -ACGGAAACCACTACCAACGCTACT -ACGGAAACCACTACCAACGGATCT -ACGGAAACCACTACCAACAAGGCT -ACGGAAACCACTACCAACTCAACC -ACGGAAACCACTACCAACTGTTCC -ACGGAAACCACTACCAACATTCCC -ACGGAAACCACTACCAACTTCTCG -ACGGAAACCACTACCAACTAGACG -ACGGAAACCACTACCAACGTAACG -ACGGAAACCACTACCAACACTTCG -ACGGAAACCACTACCAACTACGCA -ACGGAAACCACTACCAACCTTGCA -ACGGAAACCACTACCAACCGAACA -ACGGAAACCACTACCAACCAGTCA -ACGGAAACCACTACCAACGATCCA -ACGGAAACCACTACCAACACGACA -ACGGAAACCACTACCAACAGCTCA -ACGGAAACCACTACCAACTCACGT -ACGGAAACCACTACCAACCGTAGT -ACGGAAACCACTACCAACGTCAGT -ACGGAAACCACTACCAACGAAGGT -ACGGAAACCACTACCAACAACCGT -ACGGAAACCACTACCAACTTGTGC -ACGGAAACCACTACCAACCTAAGC -ACGGAAACCACTACCAACACTAGC -ACGGAAACCACTACCAACAGATGC -ACGGAAACCACTACCAACTGAAGG -ACGGAAACCACTACCAACCAATGG -ACGGAAACCACTACCAACATGAGG -ACGGAAACCACTACCAACAATGGG -ACGGAAACCACTACCAACTCCTGA -ACGGAAACCACTACCAACTAGCGA -ACGGAAACCACTACCAACCACAGA -ACGGAAACCACTACCAACGCAAGA -ACGGAAACCACTACCAACGGTTGA -ACGGAAACCACTACCAACTCCGAT -ACGGAAACCACTACCAACTGGCAT -ACGGAAACCACTACCAACCGAGAT -ACGGAAACCACTACCAACTACCAC -ACGGAAACCACTACCAACCAGAAC -ACGGAAACCACTACCAACGTCTAC -ACGGAAACCACTACCAACACGTAC -ACGGAAACCACTACCAACAGTGAC -ACGGAAACCACTACCAACCTGTAG -ACGGAAACCACTACCAACCCTAAG -ACGGAAACCACTACCAACGTTCAG -ACGGAAACCACTACCAACGCATAG -ACGGAAACCACTACCAACGACAAG -ACGGAAACCACTACCAACAAGCAG -ACGGAAACCACTACCAACCGTCAA -ACGGAAACCACTACCAACGCTGAA -ACGGAAACCACTACCAACAGTACG -ACGGAAACCACTACCAACATCCGA -ACGGAAACCACTACCAACATGGGA -ACGGAAACCACTACCAACGTGCAA -ACGGAAACCACTACCAACGAGGAA -ACGGAAACCACTACCAACCAGGTA -ACGGAAACCACTACCAACGACTCT -ACGGAAACCACTACCAACAGTCCT -ACGGAAACCACTACCAACTAAGCC -ACGGAAACCACTACCAACATAGCC -ACGGAAACCACTACCAACTAACCG -ACGGAAACCACTACCAACATGCCA -ACGGAAACCACTGAGATCGGAAAC -ACGGAAACCACTGAGATCAACACC -ACGGAAACCACTGAGATCATCGAG -ACGGAAACCACTGAGATCCTCCTT -ACGGAAACCACTGAGATCCCTGTT -ACGGAAACCACTGAGATCCGGTTT -ACGGAAACCACTGAGATCGTGGTT -ACGGAAACCACTGAGATCGCCTTT -ACGGAAACCACTGAGATCGGTCTT -ACGGAAACCACTGAGATCACGCTT -ACGGAAACCACTGAGATCAGCGTT -ACGGAAACCACTGAGATCTTCGTC -ACGGAAACCACTGAGATCTCTCTC -ACGGAAACCACTGAGATCTGGATC -ACGGAAACCACTGAGATCCACTTC -ACGGAAACCACTGAGATCGTACTC -ACGGAAACCACTGAGATCGATGTC -ACGGAAACCACTGAGATCACAGTC -ACGGAAACCACTGAGATCTTGCTG -ACGGAAACCACTGAGATCTCCATG -ACGGAAACCACTGAGATCTGTGTG -ACGGAAACCACTGAGATCCTAGTG -ACGGAAACCACTGAGATCCATCTG -ACGGAAACCACTGAGATCGAGTTG -ACGGAAACCACTGAGATCAGACTG -ACGGAAACCACTGAGATCTCGGTA -ACGGAAACCACTGAGATCTGCCTA -ACGGAAACCACTGAGATCCCACTA -ACGGAAACCACTGAGATCGGAGTA -ACGGAAACCACTGAGATCTCGTCT -ACGGAAACCACTGAGATCTGCACT -ACGGAAACCACTGAGATCCTGACT -ACGGAAACCACTGAGATCCAACCT -ACGGAAACCACTGAGATCGCTACT -ACGGAAACCACTGAGATCGGATCT -ACGGAAACCACTGAGATCAAGGCT -ACGGAAACCACTGAGATCTCAACC -ACGGAAACCACTGAGATCTGTTCC -ACGGAAACCACTGAGATCATTCCC -ACGGAAACCACTGAGATCTTCTCG -ACGGAAACCACTGAGATCTAGACG -ACGGAAACCACTGAGATCGTAACG -ACGGAAACCACTGAGATCACTTCG -ACGGAAACCACTGAGATCTACGCA -ACGGAAACCACTGAGATCCTTGCA -ACGGAAACCACTGAGATCCGAACA -ACGGAAACCACTGAGATCCAGTCA -ACGGAAACCACTGAGATCGATCCA -ACGGAAACCACTGAGATCACGACA -ACGGAAACCACTGAGATCAGCTCA -ACGGAAACCACTGAGATCTCACGT -ACGGAAACCACTGAGATCCGTAGT -ACGGAAACCACTGAGATCGTCAGT -ACGGAAACCACTGAGATCGAAGGT -ACGGAAACCACTGAGATCAACCGT -ACGGAAACCACTGAGATCTTGTGC -ACGGAAACCACTGAGATCCTAAGC -ACGGAAACCACTGAGATCACTAGC -ACGGAAACCACTGAGATCAGATGC -ACGGAAACCACTGAGATCTGAAGG -ACGGAAACCACTGAGATCCAATGG -ACGGAAACCACTGAGATCATGAGG -ACGGAAACCACTGAGATCAATGGG -ACGGAAACCACTGAGATCTCCTGA -ACGGAAACCACTGAGATCTAGCGA -ACGGAAACCACTGAGATCCACAGA -ACGGAAACCACTGAGATCGCAAGA -ACGGAAACCACTGAGATCGGTTGA -ACGGAAACCACTGAGATCTCCGAT -ACGGAAACCACTGAGATCTGGCAT -ACGGAAACCACTGAGATCCGAGAT -ACGGAAACCACTGAGATCTACCAC -ACGGAAACCACTGAGATCCAGAAC -ACGGAAACCACTGAGATCGTCTAC -ACGGAAACCACTGAGATCACGTAC -ACGGAAACCACTGAGATCAGTGAC -ACGGAAACCACTGAGATCCTGTAG -ACGGAAACCACTGAGATCCCTAAG -ACGGAAACCACTGAGATCGTTCAG -ACGGAAACCACTGAGATCGCATAG -ACGGAAACCACTGAGATCGACAAG -ACGGAAACCACTGAGATCAAGCAG -ACGGAAACCACTGAGATCCGTCAA -ACGGAAACCACTGAGATCGCTGAA -ACGGAAACCACTGAGATCAGTACG -ACGGAAACCACTGAGATCATCCGA -ACGGAAACCACTGAGATCATGGGA -ACGGAAACCACTGAGATCGTGCAA -ACGGAAACCACTGAGATCGAGGAA -ACGGAAACCACTGAGATCCAGGTA -ACGGAAACCACTGAGATCGACTCT -ACGGAAACCACTGAGATCAGTCCT -ACGGAAACCACTGAGATCTAAGCC -ACGGAAACCACTGAGATCATAGCC -ACGGAAACCACTGAGATCTAACCG -ACGGAAACCACTGAGATCATGCCA -ACGGAAACCACTCTTCTCGGAAAC -ACGGAAACCACTCTTCTCAACACC -ACGGAAACCACTCTTCTCATCGAG -ACGGAAACCACTCTTCTCCTCCTT -ACGGAAACCACTCTTCTCCCTGTT -ACGGAAACCACTCTTCTCCGGTTT -ACGGAAACCACTCTTCTCGTGGTT -ACGGAAACCACTCTTCTCGCCTTT -ACGGAAACCACTCTTCTCGGTCTT -ACGGAAACCACTCTTCTCACGCTT -ACGGAAACCACTCTTCTCAGCGTT -ACGGAAACCACTCTTCTCTTCGTC -ACGGAAACCACTCTTCTCTCTCTC -ACGGAAACCACTCTTCTCTGGATC -ACGGAAACCACTCTTCTCCACTTC -ACGGAAACCACTCTTCTCGTACTC -ACGGAAACCACTCTTCTCGATGTC -ACGGAAACCACTCTTCTCACAGTC -ACGGAAACCACTCTTCTCTTGCTG -ACGGAAACCACTCTTCTCTCCATG -ACGGAAACCACTCTTCTCTGTGTG -ACGGAAACCACTCTTCTCCTAGTG -ACGGAAACCACTCTTCTCCATCTG -ACGGAAACCACTCTTCTCGAGTTG -ACGGAAACCACTCTTCTCAGACTG -ACGGAAACCACTCTTCTCTCGGTA -ACGGAAACCACTCTTCTCTGCCTA -ACGGAAACCACTCTTCTCCCACTA -ACGGAAACCACTCTTCTCGGAGTA -ACGGAAACCACTCTTCTCTCGTCT -ACGGAAACCACTCTTCTCTGCACT -ACGGAAACCACTCTTCTCCTGACT -ACGGAAACCACTCTTCTCCAACCT -ACGGAAACCACTCTTCTCGCTACT -ACGGAAACCACTCTTCTCGGATCT -ACGGAAACCACTCTTCTCAAGGCT -ACGGAAACCACTCTTCTCTCAACC -ACGGAAACCACTCTTCTCTGTTCC -ACGGAAACCACTCTTCTCATTCCC -ACGGAAACCACTCTTCTCTTCTCG -ACGGAAACCACTCTTCTCTAGACG -ACGGAAACCACTCTTCTCGTAACG -ACGGAAACCACTCTTCTCACTTCG -ACGGAAACCACTCTTCTCTACGCA -ACGGAAACCACTCTTCTCCTTGCA -ACGGAAACCACTCTTCTCCGAACA -ACGGAAACCACTCTTCTCCAGTCA -ACGGAAACCACTCTTCTCGATCCA -ACGGAAACCACTCTTCTCACGACA -ACGGAAACCACTCTTCTCAGCTCA -ACGGAAACCACTCTTCTCTCACGT -ACGGAAACCACTCTTCTCCGTAGT -ACGGAAACCACTCTTCTCGTCAGT -ACGGAAACCACTCTTCTCGAAGGT -ACGGAAACCACTCTTCTCAACCGT -ACGGAAACCACTCTTCTCTTGTGC -ACGGAAACCACTCTTCTCCTAAGC -ACGGAAACCACTCTTCTCACTAGC -ACGGAAACCACTCTTCTCAGATGC -ACGGAAACCACTCTTCTCTGAAGG -ACGGAAACCACTCTTCTCCAATGG -ACGGAAACCACTCTTCTCATGAGG -ACGGAAACCACTCTTCTCAATGGG -ACGGAAACCACTCTTCTCTCCTGA -ACGGAAACCACTCTTCTCTAGCGA -ACGGAAACCACTCTTCTCCACAGA -ACGGAAACCACTCTTCTCGCAAGA -ACGGAAACCACTCTTCTCGGTTGA -ACGGAAACCACTCTTCTCTCCGAT -ACGGAAACCACTCTTCTCTGGCAT -ACGGAAACCACTCTTCTCCGAGAT -ACGGAAACCACTCTTCTCTACCAC -ACGGAAACCACTCTTCTCCAGAAC -ACGGAAACCACTCTTCTCGTCTAC -ACGGAAACCACTCTTCTCACGTAC -ACGGAAACCACTCTTCTCAGTGAC -ACGGAAACCACTCTTCTCCTGTAG -ACGGAAACCACTCTTCTCCCTAAG -ACGGAAACCACTCTTCTCGTTCAG -ACGGAAACCACTCTTCTCGCATAG -ACGGAAACCACTCTTCTCGACAAG -ACGGAAACCACTCTTCTCAAGCAG -ACGGAAACCACTCTTCTCCGTCAA -ACGGAAACCACTCTTCTCGCTGAA -ACGGAAACCACTCTTCTCAGTACG -ACGGAAACCACTCTTCTCATCCGA -ACGGAAACCACTCTTCTCATGGGA -ACGGAAACCACTCTTCTCGTGCAA -ACGGAAACCACTCTTCTCGAGGAA -ACGGAAACCACTCTTCTCCAGGTA -ACGGAAACCACTCTTCTCGACTCT -ACGGAAACCACTCTTCTCAGTCCT -ACGGAAACCACTCTTCTCTAAGCC -ACGGAAACCACTCTTCTCATAGCC -ACGGAAACCACTCTTCTCTAACCG -ACGGAAACCACTCTTCTCATGCCA -ACGGAAACCACTGTTCCTGGAAAC -ACGGAAACCACTGTTCCTAACACC -ACGGAAACCACTGTTCCTATCGAG -ACGGAAACCACTGTTCCTCTCCTT -ACGGAAACCACTGTTCCTCCTGTT -ACGGAAACCACTGTTCCTCGGTTT -ACGGAAACCACTGTTCCTGTGGTT -ACGGAAACCACTGTTCCTGCCTTT -ACGGAAACCACTGTTCCTGGTCTT -ACGGAAACCACTGTTCCTACGCTT -ACGGAAACCACTGTTCCTAGCGTT -ACGGAAACCACTGTTCCTTTCGTC -ACGGAAACCACTGTTCCTTCTCTC -ACGGAAACCACTGTTCCTTGGATC -ACGGAAACCACTGTTCCTCACTTC -ACGGAAACCACTGTTCCTGTACTC -ACGGAAACCACTGTTCCTGATGTC -ACGGAAACCACTGTTCCTACAGTC -ACGGAAACCACTGTTCCTTTGCTG -ACGGAAACCACTGTTCCTTCCATG -ACGGAAACCACTGTTCCTTGTGTG -ACGGAAACCACTGTTCCTCTAGTG -ACGGAAACCACTGTTCCTCATCTG -ACGGAAACCACTGTTCCTGAGTTG -ACGGAAACCACTGTTCCTAGACTG -ACGGAAACCACTGTTCCTTCGGTA -ACGGAAACCACTGTTCCTTGCCTA -ACGGAAACCACTGTTCCTCCACTA -ACGGAAACCACTGTTCCTGGAGTA -ACGGAAACCACTGTTCCTTCGTCT -ACGGAAACCACTGTTCCTTGCACT -ACGGAAACCACTGTTCCTCTGACT -ACGGAAACCACTGTTCCTCAACCT -ACGGAAACCACTGTTCCTGCTACT -ACGGAAACCACTGTTCCTGGATCT -ACGGAAACCACTGTTCCTAAGGCT -ACGGAAACCACTGTTCCTTCAACC -ACGGAAACCACTGTTCCTTGTTCC -ACGGAAACCACTGTTCCTATTCCC -ACGGAAACCACTGTTCCTTTCTCG -ACGGAAACCACTGTTCCTTAGACG -ACGGAAACCACTGTTCCTGTAACG -ACGGAAACCACTGTTCCTACTTCG -ACGGAAACCACTGTTCCTTACGCA -ACGGAAACCACTGTTCCTCTTGCA -ACGGAAACCACTGTTCCTCGAACA -ACGGAAACCACTGTTCCTCAGTCA -ACGGAAACCACTGTTCCTGATCCA -ACGGAAACCACTGTTCCTACGACA -ACGGAAACCACTGTTCCTAGCTCA -ACGGAAACCACTGTTCCTTCACGT -ACGGAAACCACTGTTCCTCGTAGT -ACGGAAACCACTGTTCCTGTCAGT -ACGGAAACCACTGTTCCTGAAGGT -ACGGAAACCACTGTTCCTAACCGT -ACGGAAACCACTGTTCCTTTGTGC -ACGGAAACCACTGTTCCTCTAAGC -ACGGAAACCACTGTTCCTACTAGC -ACGGAAACCACTGTTCCTAGATGC -ACGGAAACCACTGTTCCTTGAAGG -ACGGAAACCACTGTTCCTCAATGG -ACGGAAACCACTGTTCCTATGAGG -ACGGAAACCACTGTTCCTAATGGG -ACGGAAACCACTGTTCCTTCCTGA -ACGGAAACCACTGTTCCTTAGCGA -ACGGAAACCACTGTTCCTCACAGA -ACGGAAACCACTGTTCCTGCAAGA -ACGGAAACCACTGTTCCTGGTTGA -ACGGAAACCACTGTTCCTTCCGAT -ACGGAAACCACTGTTCCTTGGCAT -ACGGAAACCACTGTTCCTCGAGAT -ACGGAAACCACTGTTCCTTACCAC -ACGGAAACCACTGTTCCTCAGAAC -ACGGAAACCACTGTTCCTGTCTAC -ACGGAAACCACTGTTCCTACGTAC -ACGGAAACCACTGTTCCTAGTGAC -ACGGAAACCACTGTTCCTCTGTAG -ACGGAAACCACTGTTCCTCCTAAG -ACGGAAACCACTGTTCCTGTTCAG -ACGGAAACCACTGTTCCTGCATAG -ACGGAAACCACTGTTCCTGACAAG -ACGGAAACCACTGTTCCTAAGCAG -ACGGAAACCACTGTTCCTCGTCAA -ACGGAAACCACTGTTCCTGCTGAA -ACGGAAACCACTGTTCCTAGTACG -ACGGAAACCACTGTTCCTATCCGA -ACGGAAACCACTGTTCCTATGGGA -ACGGAAACCACTGTTCCTGTGCAA -ACGGAAACCACTGTTCCTGAGGAA -ACGGAAACCACTGTTCCTCAGGTA -ACGGAAACCACTGTTCCTGACTCT -ACGGAAACCACTGTTCCTAGTCCT -ACGGAAACCACTGTTCCTTAAGCC -ACGGAAACCACTGTTCCTATAGCC -ACGGAAACCACTGTTCCTTAACCG -ACGGAAACCACTGTTCCTATGCCA -ACGGAAACCACTTTTCGGGGAAAC -ACGGAAACCACTTTTCGGAACACC -ACGGAAACCACTTTTCGGATCGAG -ACGGAAACCACTTTTCGGCTCCTT -ACGGAAACCACTTTTCGGCCTGTT -ACGGAAACCACTTTTCGGCGGTTT -ACGGAAACCACTTTTCGGGTGGTT -ACGGAAACCACTTTTCGGGCCTTT -ACGGAAACCACTTTTCGGGGTCTT -ACGGAAACCACTTTTCGGACGCTT -ACGGAAACCACTTTTCGGAGCGTT -ACGGAAACCACTTTTCGGTTCGTC -ACGGAAACCACTTTTCGGTCTCTC -ACGGAAACCACTTTTCGGTGGATC -ACGGAAACCACTTTTCGGCACTTC -ACGGAAACCACTTTTCGGGTACTC -ACGGAAACCACTTTTCGGGATGTC -ACGGAAACCACTTTTCGGACAGTC -ACGGAAACCACTTTTCGGTTGCTG -ACGGAAACCACTTTTCGGTCCATG -ACGGAAACCACTTTTCGGTGTGTG -ACGGAAACCACTTTTCGGCTAGTG -ACGGAAACCACTTTTCGGCATCTG -ACGGAAACCACTTTTCGGGAGTTG -ACGGAAACCACTTTTCGGAGACTG -ACGGAAACCACTTTTCGGTCGGTA -ACGGAAACCACTTTTCGGTGCCTA -ACGGAAACCACTTTTCGGCCACTA -ACGGAAACCACTTTTCGGGGAGTA -ACGGAAACCACTTTTCGGTCGTCT -ACGGAAACCACTTTTCGGTGCACT -ACGGAAACCACTTTTCGGCTGACT -ACGGAAACCACTTTTCGGCAACCT -ACGGAAACCACTTTTCGGGCTACT -ACGGAAACCACTTTTCGGGGATCT -ACGGAAACCACTTTTCGGAAGGCT -ACGGAAACCACTTTTCGGTCAACC -ACGGAAACCACTTTTCGGTGTTCC -ACGGAAACCACTTTTCGGATTCCC -ACGGAAACCACTTTTCGGTTCTCG -ACGGAAACCACTTTTCGGTAGACG -ACGGAAACCACTTTTCGGGTAACG -ACGGAAACCACTTTTCGGACTTCG -ACGGAAACCACTTTTCGGTACGCA -ACGGAAACCACTTTTCGGCTTGCA -ACGGAAACCACTTTTCGGCGAACA -ACGGAAACCACTTTTCGGCAGTCA -ACGGAAACCACTTTTCGGGATCCA -ACGGAAACCACTTTTCGGACGACA -ACGGAAACCACTTTTCGGAGCTCA -ACGGAAACCACTTTTCGGTCACGT -ACGGAAACCACTTTTCGGCGTAGT -ACGGAAACCACTTTTCGGGTCAGT -ACGGAAACCACTTTTCGGGAAGGT -ACGGAAACCACTTTTCGGAACCGT -ACGGAAACCACTTTTCGGTTGTGC -ACGGAAACCACTTTTCGGCTAAGC -ACGGAAACCACTTTTCGGACTAGC -ACGGAAACCACTTTTCGGAGATGC -ACGGAAACCACTTTTCGGTGAAGG -ACGGAAACCACTTTTCGGCAATGG -ACGGAAACCACTTTTCGGATGAGG -ACGGAAACCACTTTTCGGAATGGG -ACGGAAACCACTTTTCGGTCCTGA -ACGGAAACCACTTTTCGGTAGCGA -ACGGAAACCACTTTTCGGCACAGA -ACGGAAACCACTTTTCGGGCAAGA -ACGGAAACCACTTTTCGGGGTTGA -ACGGAAACCACTTTTCGGTCCGAT -ACGGAAACCACTTTTCGGTGGCAT -ACGGAAACCACTTTTCGGCGAGAT -ACGGAAACCACTTTTCGGTACCAC -ACGGAAACCACTTTTCGGCAGAAC -ACGGAAACCACTTTTCGGGTCTAC -ACGGAAACCACTTTTCGGACGTAC -ACGGAAACCACTTTTCGGAGTGAC -ACGGAAACCACTTTTCGGCTGTAG -ACGGAAACCACTTTTCGGCCTAAG -ACGGAAACCACTTTTCGGGTTCAG -ACGGAAACCACTTTTCGGGCATAG -ACGGAAACCACTTTTCGGGACAAG -ACGGAAACCACTTTTCGGAAGCAG -ACGGAAACCACTTTTCGGCGTCAA -ACGGAAACCACTTTTCGGGCTGAA -ACGGAAACCACTTTTCGGAGTACG -ACGGAAACCACTTTTCGGATCCGA -ACGGAAACCACTTTTCGGATGGGA -ACGGAAACCACTTTTCGGGTGCAA -ACGGAAACCACTTTTCGGGAGGAA -ACGGAAACCACTTTTCGGCAGGTA -ACGGAAACCACTTTTCGGGACTCT -ACGGAAACCACTTTTCGGAGTCCT -ACGGAAACCACTTTTCGGTAAGCC -ACGGAAACCACTTTTCGGATAGCC -ACGGAAACCACTTTTCGGTAACCG -ACGGAAACCACTTTTCGGATGCCA -ACGGAAACCACTGTTGTGGGAAAC -ACGGAAACCACTGTTGTGAACACC -ACGGAAACCACTGTTGTGATCGAG -ACGGAAACCACTGTTGTGCTCCTT -ACGGAAACCACTGTTGTGCCTGTT -ACGGAAACCACTGTTGTGCGGTTT -ACGGAAACCACTGTTGTGGTGGTT -ACGGAAACCACTGTTGTGGCCTTT -ACGGAAACCACTGTTGTGGGTCTT -ACGGAAACCACTGTTGTGACGCTT -ACGGAAACCACTGTTGTGAGCGTT -ACGGAAACCACTGTTGTGTTCGTC -ACGGAAACCACTGTTGTGTCTCTC -ACGGAAACCACTGTTGTGTGGATC -ACGGAAACCACTGTTGTGCACTTC -ACGGAAACCACTGTTGTGGTACTC -ACGGAAACCACTGTTGTGGATGTC -ACGGAAACCACTGTTGTGACAGTC -ACGGAAACCACTGTTGTGTTGCTG -ACGGAAACCACTGTTGTGTCCATG -ACGGAAACCACTGTTGTGTGTGTG -ACGGAAACCACTGTTGTGCTAGTG -ACGGAAACCACTGTTGTGCATCTG -ACGGAAACCACTGTTGTGGAGTTG -ACGGAAACCACTGTTGTGAGACTG -ACGGAAACCACTGTTGTGTCGGTA -ACGGAAACCACTGTTGTGTGCCTA -ACGGAAACCACTGTTGTGCCACTA -ACGGAAACCACTGTTGTGGGAGTA -ACGGAAACCACTGTTGTGTCGTCT -ACGGAAACCACTGTTGTGTGCACT -ACGGAAACCACTGTTGTGCTGACT -ACGGAAACCACTGTTGTGCAACCT -ACGGAAACCACTGTTGTGGCTACT -ACGGAAACCACTGTTGTGGGATCT -ACGGAAACCACTGTTGTGAAGGCT -ACGGAAACCACTGTTGTGTCAACC -ACGGAAACCACTGTTGTGTGTTCC -ACGGAAACCACTGTTGTGATTCCC -ACGGAAACCACTGTTGTGTTCTCG -ACGGAAACCACTGTTGTGTAGACG -ACGGAAACCACTGTTGTGGTAACG -ACGGAAACCACTGTTGTGACTTCG -ACGGAAACCACTGTTGTGTACGCA -ACGGAAACCACTGTTGTGCTTGCA -ACGGAAACCACTGTTGTGCGAACA -ACGGAAACCACTGTTGTGCAGTCA -ACGGAAACCACTGTTGTGGATCCA -ACGGAAACCACTGTTGTGACGACA -ACGGAAACCACTGTTGTGAGCTCA -ACGGAAACCACTGTTGTGTCACGT -ACGGAAACCACTGTTGTGCGTAGT -ACGGAAACCACTGTTGTGGTCAGT -ACGGAAACCACTGTTGTGGAAGGT -ACGGAAACCACTGTTGTGAACCGT -ACGGAAACCACTGTTGTGTTGTGC -ACGGAAACCACTGTTGTGCTAAGC -ACGGAAACCACTGTTGTGACTAGC -ACGGAAACCACTGTTGTGAGATGC -ACGGAAACCACTGTTGTGTGAAGG -ACGGAAACCACTGTTGTGCAATGG -ACGGAAACCACTGTTGTGATGAGG -ACGGAAACCACTGTTGTGAATGGG -ACGGAAACCACTGTTGTGTCCTGA -ACGGAAACCACTGTTGTGTAGCGA -ACGGAAACCACTGTTGTGCACAGA -ACGGAAACCACTGTTGTGGCAAGA -ACGGAAACCACTGTTGTGGGTTGA -ACGGAAACCACTGTTGTGTCCGAT -ACGGAAACCACTGTTGTGTGGCAT -ACGGAAACCACTGTTGTGCGAGAT -ACGGAAACCACTGTTGTGTACCAC -ACGGAAACCACTGTTGTGCAGAAC -ACGGAAACCACTGTTGTGGTCTAC -ACGGAAACCACTGTTGTGACGTAC -ACGGAAACCACTGTTGTGAGTGAC -ACGGAAACCACTGTTGTGCTGTAG -ACGGAAACCACTGTTGTGCCTAAG -ACGGAAACCACTGTTGTGGTTCAG -ACGGAAACCACTGTTGTGGCATAG -ACGGAAACCACTGTTGTGGACAAG -ACGGAAACCACTGTTGTGAAGCAG -ACGGAAACCACTGTTGTGCGTCAA -ACGGAAACCACTGTTGTGGCTGAA -ACGGAAACCACTGTTGTGAGTACG -ACGGAAACCACTGTTGTGATCCGA -ACGGAAACCACTGTTGTGATGGGA -ACGGAAACCACTGTTGTGGTGCAA -ACGGAAACCACTGTTGTGGAGGAA -ACGGAAACCACTGTTGTGCAGGTA -ACGGAAACCACTGTTGTGGACTCT -ACGGAAACCACTGTTGTGAGTCCT -ACGGAAACCACTGTTGTGTAAGCC -ACGGAAACCACTGTTGTGATAGCC -ACGGAAACCACTGTTGTGTAACCG -ACGGAAACCACTGTTGTGATGCCA -ACGGAAACCACTTTTGCCGGAAAC -ACGGAAACCACTTTTGCCAACACC -ACGGAAACCACTTTTGCCATCGAG -ACGGAAACCACTTTTGCCCTCCTT -ACGGAAACCACTTTTGCCCCTGTT -ACGGAAACCACTTTTGCCCGGTTT -ACGGAAACCACTTTTGCCGTGGTT -ACGGAAACCACTTTTGCCGCCTTT -ACGGAAACCACTTTTGCCGGTCTT -ACGGAAACCACTTTTGCCACGCTT -ACGGAAACCACTTTTGCCAGCGTT -ACGGAAACCACTTTTGCCTTCGTC -ACGGAAACCACTTTTGCCTCTCTC -ACGGAAACCACTTTTGCCTGGATC -ACGGAAACCACTTTTGCCCACTTC -ACGGAAACCACTTTTGCCGTACTC -ACGGAAACCACTTTTGCCGATGTC -ACGGAAACCACTTTTGCCACAGTC -ACGGAAACCACTTTTGCCTTGCTG -ACGGAAACCACTTTTGCCTCCATG -ACGGAAACCACTTTTGCCTGTGTG -ACGGAAACCACTTTTGCCCTAGTG -ACGGAAACCACTTTTGCCCATCTG -ACGGAAACCACTTTTGCCGAGTTG -ACGGAAACCACTTTTGCCAGACTG -ACGGAAACCACTTTTGCCTCGGTA -ACGGAAACCACTTTTGCCTGCCTA -ACGGAAACCACTTTTGCCCCACTA -ACGGAAACCACTTTTGCCGGAGTA -ACGGAAACCACTTTTGCCTCGTCT -ACGGAAACCACTTTTGCCTGCACT -ACGGAAACCACTTTTGCCCTGACT -ACGGAAACCACTTTTGCCCAACCT -ACGGAAACCACTTTTGCCGCTACT -ACGGAAACCACTTTTGCCGGATCT -ACGGAAACCACTTTTGCCAAGGCT -ACGGAAACCACTTTTGCCTCAACC -ACGGAAACCACTTTTGCCTGTTCC -ACGGAAACCACTTTTGCCATTCCC -ACGGAAACCACTTTTGCCTTCTCG -ACGGAAACCACTTTTGCCTAGACG -ACGGAAACCACTTTTGCCGTAACG -ACGGAAACCACTTTTGCCACTTCG -ACGGAAACCACTTTTGCCTACGCA -ACGGAAACCACTTTTGCCCTTGCA -ACGGAAACCACTTTTGCCCGAACA -ACGGAAACCACTTTTGCCCAGTCA -ACGGAAACCACTTTTGCCGATCCA -ACGGAAACCACTTTTGCCACGACA -ACGGAAACCACTTTTGCCAGCTCA -ACGGAAACCACTTTTGCCTCACGT -ACGGAAACCACTTTTGCCCGTAGT -ACGGAAACCACTTTTGCCGTCAGT -ACGGAAACCACTTTTGCCGAAGGT -ACGGAAACCACTTTTGCCAACCGT -ACGGAAACCACTTTTGCCTTGTGC -ACGGAAACCACTTTTGCCCTAAGC -ACGGAAACCACTTTTGCCACTAGC -ACGGAAACCACTTTTGCCAGATGC -ACGGAAACCACTTTTGCCTGAAGG -ACGGAAACCACTTTTGCCCAATGG -ACGGAAACCACTTTTGCCATGAGG -ACGGAAACCACTTTTGCCAATGGG -ACGGAAACCACTTTTGCCTCCTGA -ACGGAAACCACTTTTGCCTAGCGA -ACGGAAACCACTTTTGCCCACAGA -ACGGAAACCACTTTTGCCGCAAGA -ACGGAAACCACTTTTGCCGGTTGA -ACGGAAACCACTTTTGCCTCCGAT -ACGGAAACCACTTTTGCCTGGCAT -ACGGAAACCACTTTTGCCCGAGAT -ACGGAAACCACTTTTGCCTACCAC -ACGGAAACCACTTTTGCCCAGAAC -ACGGAAACCACTTTTGCCGTCTAC -ACGGAAACCACTTTTGCCACGTAC -ACGGAAACCACTTTTGCCAGTGAC -ACGGAAACCACTTTTGCCCTGTAG -ACGGAAACCACTTTTGCCCCTAAG -ACGGAAACCACTTTTGCCGTTCAG -ACGGAAACCACTTTTGCCGCATAG -ACGGAAACCACTTTTGCCGACAAG -ACGGAAACCACTTTTGCCAAGCAG -ACGGAAACCACTTTTGCCCGTCAA -ACGGAAACCACTTTTGCCGCTGAA -ACGGAAACCACTTTTGCCAGTACG -ACGGAAACCACTTTTGCCATCCGA -ACGGAAACCACTTTTGCCATGGGA -ACGGAAACCACTTTTGCCGTGCAA -ACGGAAACCACTTTTGCCGAGGAA -ACGGAAACCACTTTTGCCCAGGTA -ACGGAAACCACTTTTGCCGACTCT -ACGGAAACCACTTTTGCCAGTCCT -ACGGAAACCACTTTTGCCTAAGCC -ACGGAAACCACTTTTGCCATAGCC -ACGGAAACCACTTTTGCCTAACCG -ACGGAAACCACTTTTGCCATGCCA -ACGGAAACCACTCTTGGTGGAAAC -ACGGAAACCACTCTTGGTAACACC -ACGGAAACCACTCTTGGTATCGAG -ACGGAAACCACTCTTGGTCTCCTT -ACGGAAACCACTCTTGGTCCTGTT -ACGGAAACCACTCTTGGTCGGTTT -ACGGAAACCACTCTTGGTGTGGTT -ACGGAAACCACTCTTGGTGCCTTT -ACGGAAACCACTCTTGGTGGTCTT -ACGGAAACCACTCTTGGTACGCTT -ACGGAAACCACTCTTGGTAGCGTT -ACGGAAACCACTCTTGGTTTCGTC -ACGGAAACCACTCTTGGTTCTCTC -ACGGAAACCACTCTTGGTTGGATC -ACGGAAACCACTCTTGGTCACTTC -ACGGAAACCACTCTTGGTGTACTC -ACGGAAACCACTCTTGGTGATGTC -ACGGAAACCACTCTTGGTACAGTC -ACGGAAACCACTCTTGGTTTGCTG -ACGGAAACCACTCTTGGTTCCATG -ACGGAAACCACTCTTGGTTGTGTG -ACGGAAACCACTCTTGGTCTAGTG -ACGGAAACCACTCTTGGTCATCTG -ACGGAAACCACTCTTGGTGAGTTG -ACGGAAACCACTCTTGGTAGACTG -ACGGAAACCACTCTTGGTTCGGTA -ACGGAAACCACTCTTGGTTGCCTA -ACGGAAACCACTCTTGGTCCACTA -ACGGAAACCACTCTTGGTGGAGTA -ACGGAAACCACTCTTGGTTCGTCT -ACGGAAACCACTCTTGGTTGCACT -ACGGAAACCACTCTTGGTCTGACT -ACGGAAACCACTCTTGGTCAACCT -ACGGAAACCACTCTTGGTGCTACT -ACGGAAACCACTCTTGGTGGATCT -ACGGAAACCACTCTTGGTAAGGCT -ACGGAAACCACTCTTGGTTCAACC -ACGGAAACCACTCTTGGTTGTTCC -ACGGAAACCACTCTTGGTATTCCC -ACGGAAACCACTCTTGGTTTCTCG -ACGGAAACCACTCTTGGTTAGACG -ACGGAAACCACTCTTGGTGTAACG -ACGGAAACCACTCTTGGTACTTCG -ACGGAAACCACTCTTGGTTACGCA -ACGGAAACCACTCTTGGTCTTGCA -ACGGAAACCACTCTTGGTCGAACA -ACGGAAACCACTCTTGGTCAGTCA -ACGGAAACCACTCTTGGTGATCCA -ACGGAAACCACTCTTGGTACGACA -ACGGAAACCACTCTTGGTAGCTCA -ACGGAAACCACTCTTGGTTCACGT -ACGGAAACCACTCTTGGTCGTAGT -ACGGAAACCACTCTTGGTGTCAGT -ACGGAAACCACTCTTGGTGAAGGT -ACGGAAACCACTCTTGGTAACCGT -ACGGAAACCACTCTTGGTTTGTGC -ACGGAAACCACTCTTGGTCTAAGC -ACGGAAACCACTCTTGGTACTAGC -ACGGAAACCACTCTTGGTAGATGC -ACGGAAACCACTCTTGGTTGAAGG -ACGGAAACCACTCTTGGTCAATGG -ACGGAAACCACTCTTGGTATGAGG -ACGGAAACCACTCTTGGTAATGGG -ACGGAAACCACTCTTGGTTCCTGA -ACGGAAACCACTCTTGGTTAGCGA -ACGGAAACCACTCTTGGTCACAGA -ACGGAAACCACTCTTGGTGCAAGA -ACGGAAACCACTCTTGGTGGTTGA -ACGGAAACCACTCTTGGTTCCGAT -ACGGAAACCACTCTTGGTTGGCAT -ACGGAAACCACTCTTGGTCGAGAT -ACGGAAACCACTCTTGGTTACCAC -ACGGAAACCACTCTTGGTCAGAAC -ACGGAAACCACTCTTGGTGTCTAC -ACGGAAACCACTCTTGGTACGTAC -ACGGAAACCACTCTTGGTAGTGAC -ACGGAAACCACTCTTGGTCTGTAG -ACGGAAACCACTCTTGGTCCTAAG -ACGGAAACCACTCTTGGTGTTCAG -ACGGAAACCACTCTTGGTGCATAG -ACGGAAACCACTCTTGGTGACAAG -ACGGAAACCACTCTTGGTAAGCAG -ACGGAAACCACTCTTGGTCGTCAA -ACGGAAACCACTCTTGGTGCTGAA -ACGGAAACCACTCTTGGTAGTACG -ACGGAAACCACTCTTGGTATCCGA -ACGGAAACCACTCTTGGTATGGGA -ACGGAAACCACTCTTGGTGTGCAA -ACGGAAACCACTCTTGGTGAGGAA -ACGGAAACCACTCTTGGTCAGGTA -ACGGAAACCACTCTTGGTGACTCT -ACGGAAACCACTCTTGGTAGTCCT -ACGGAAACCACTCTTGGTTAAGCC -ACGGAAACCACTCTTGGTATAGCC -ACGGAAACCACTCTTGGTTAACCG -ACGGAAACCACTCTTGGTATGCCA -ACGGAAACCACTCTTACGGGAAAC -ACGGAAACCACTCTTACGAACACC -ACGGAAACCACTCTTACGATCGAG -ACGGAAACCACTCTTACGCTCCTT -ACGGAAACCACTCTTACGCCTGTT -ACGGAAACCACTCTTACGCGGTTT -ACGGAAACCACTCTTACGGTGGTT -ACGGAAACCACTCTTACGGCCTTT -ACGGAAACCACTCTTACGGGTCTT -ACGGAAACCACTCTTACGACGCTT -ACGGAAACCACTCTTACGAGCGTT -ACGGAAACCACTCTTACGTTCGTC -ACGGAAACCACTCTTACGTCTCTC -ACGGAAACCACTCTTACGTGGATC -ACGGAAACCACTCTTACGCACTTC -ACGGAAACCACTCTTACGGTACTC -ACGGAAACCACTCTTACGGATGTC -ACGGAAACCACTCTTACGACAGTC -ACGGAAACCACTCTTACGTTGCTG -ACGGAAACCACTCTTACGTCCATG -ACGGAAACCACTCTTACGTGTGTG -ACGGAAACCACTCTTACGCTAGTG -ACGGAAACCACTCTTACGCATCTG -ACGGAAACCACTCTTACGGAGTTG -ACGGAAACCACTCTTACGAGACTG -ACGGAAACCACTCTTACGTCGGTA -ACGGAAACCACTCTTACGTGCCTA -ACGGAAACCACTCTTACGCCACTA -ACGGAAACCACTCTTACGGGAGTA -ACGGAAACCACTCTTACGTCGTCT -ACGGAAACCACTCTTACGTGCACT -ACGGAAACCACTCTTACGCTGACT -ACGGAAACCACTCTTACGCAACCT -ACGGAAACCACTCTTACGGCTACT -ACGGAAACCACTCTTACGGGATCT -ACGGAAACCACTCTTACGAAGGCT -ACGGAAACCACTCTTACGTCAACC -ACGGAAACCACTCTTACGTGTTCC -ACGGAAACCACTCTTACGATTCCC -ACGGAAACCACTCTTACGTTCTCG -ACGGAAACCACTCTTACGTAGACG -ACGGAAACCACTCTTACGGTAACG -ACGGAAACCACTCTTACGACTTCG -ACGGAAACCACTCTTACGTACGCA -ACGGAAACCACTCTTACGCTTGCA -ACGGAAACCACTCTTACGCGAACA -ACGGAAACCACTCTTACGCAGTCA -ACGGAAACCACTCTTACGGATCCA -ACGGAAACCACTCTTACGACGACA -ACGGAAACCACTCTTACGAGCTCA -ACGGAAACCACTCTTACGTCACGT -ACGGAAACCACTCTTACGCGTAGT -ACGGAAACCACTCTTACGGTCAGT -ACGGAAACCACTCTTACGGAAGGT -ACGGAAACCACTCTTACGAACCGT -ACGGAAACCACTCTTACGTTGTGC -ACGGAAACCACTCTTACGCTAAGC -ACGGAAACCACTCTTACGACTAGC -ACGGAAACCACTCTTACGAGATGC -ACGGAAACCACTCTTACGTGAAGG -ACGGAAACCACTCTTACGCAATGG -ACGGAAACCACTCTTACGATGAGG -ACGGAAACCACTCTTACGAATGGG -ACGGAAACCACTCTTACGTCCTGA -ACGGAAACCACTCTTACGTAGCGA -ACGGAAACCACTCTTACGCACAGA -ACGGAAACCACTCTTACGGCAAGA -ACGGAAACCACTCTTACGGGTTGA -ACGGAAACCACTCTTACGTCCGAT -ACGGAAACCACTCTTACGTGGCAT -ACGGAAACCACTCTTACGCGAGAT -ACGGAAACCACTCTTACGTACCAC -ACGGAAACCACTCTTACGCAGAAC -ACGGAAACCACTCTTACGGTCTAC -ACGGAAACCACTCTTACGACGTAC -ACGGAAACCACTCTTACGAGTGAC -ACGGAAACCACTCTTACGCTGTAG -ACGGAAACCACTCTTACGCCTAAG -ACGGAAACCACTCTTACGGTTCAG -ACGGAAACCACTCTTACGGCATAG -ACGGAAACCACTCTTACGGACAAG -ACGGAAACCACTCTTACGAAGCAG -ACGGAAACCACTCTTACGCGTCAA -ACGGAAACCACTCTTACGGCTGAA -ACGGAAACCACTCTTACGAGTACG -ACGGAAACCACTCTTACGATCCGA -ACGGAAACCACTCTTACGATGGGA -ACGGAAACCACTCTTACGGTGCAA -ACGGAAACCACTCTTACGGAGGAA -ACGGAAACCACTCTTACGCAGGTA -ACGGAAACCACTCTTACGGACTCT -ACGGAAACCACTCTTACGAGTCCT -ACGGAAACCACTCTTACGTAAGCC -ACGGAAACCACTCTTACGATAGCC -ACGGAAACCACTCTTACGTAACCG -ACGGAAACCACTCTTACGATGCCA -ACGGAAACCACTGTTAGCGGAAAC -ACGGAAACCACTGTTAGCAACACC -ACGGAAACCACTGTTAGCATCGAG -ACGGAAACCACTGTTAGCCTCCTT -ACGGAAACCACTGTTAGCCCTGTT -ACGGAAACCACTGTTAGCCGGTTT -ACGGAAACCACTGTTAGCGTGGTT -ACGGAAACCACTGTTAGCGCCTTT -ACGGAAACCACTGTTAGCGGTCTT -ACGGAAACCACTGTTAGCACGCTT -ACGGAAACCACTGTTAGCAGCGTT -ACGGAAACCACTGTTAGCTTCGTC -ACGGAAACCACTGTTAGCTCTCTC -ACGGAAACCACTGTTAGCTGGATC -ACGGAAACCACTGTTAGCCACTTC -ACGGAAACCACTGTTAGCGTACTC -ACGGAAACCACTGTTAGCGATGTC -ACGGAAACCACTGTTAGCACAGTC -ACGGAAACCACTGTTAGCTTGCTG -ACGGAAACCACTGTTAGCTCCATG -ACGGAAACCACTGTTAGCTGTGTG -ACGGAAACCACTGTTAGCCTAGTG -ACGGAAACCACTGTTAGCCATCTG -ACGGAAACCACTGTTAGCGAGTTG -ACGGAAACCACTGTTAGCAGACTG -ACGGAAACCACTGTTAGCTCGGTA -ACGGAAACCACTGTTAGCTGCCTA -ACGGAAACCACTGTTAGCCCACTA -ACGGAAACCACTGTTAGCGGAGTA -ACGGAAACCACTGTTAGCTCGTCT -ACGGAAACCACTGTTAGCTGCACT -ACGGAAACCACTGTTAGCCTGACT -ACGGAAACCACTGTTAGCCAACCT -ACGGAAACCACTGTTAGCGCTACT -ACGGAAACCACTGTTAGCGGATCT -ACGGAAACCACTGTTAGCAAGGCT -ACGGAAACCACTGTTAGCTCAACC -ACGGAAACCACTGTTAGCTGTTCC -ACGGAAACCACTGTTAGCATTCCC -ACGGAAACCACTGTTAGCTTCTCG -ACGGAAACCACTGTTAGCTAGACG -ACGGAAACCACTGTTAGCGTAACG -ACGGAAACCACTGTTAGCACTTCG -ACGGAAACCACTGTTAGCTACGCA -ACGGAAACCACTGTTAGCCTTGCA -ACGGAAACCACTGTTAGCCGAACA -ACGGAAACCACTGTTAGCCAGTCA -ACGGAAACCACTGTTAGCGATCCA -ACGGAAACCACTGTTAGCACGACA -ACGGAAACCACTGTTAGCAGCTCA -ACGGAAACCACTGTTAGCTCACGT -ACGGAAACCACTGTTAGCCGTAGT -ACGGAAACCACTGTTAGCGTCAGT -ACGGAAACCACTGTTAGCGAAGGT -ACGGAAACCACTGTTAGCAACCGT -ACGGAAACCACTGTTAGCTTGTGC -ACGGAAACCACTGTTAGCCTAAGC -ACGGAAACCACTGTTAGCACTAGC -ACGGAAACCACTGTTAGCAGATGC -ACGGAAACCACTGTTAGCTGAAGG -ACGGAAACCACTGTTAGCCAATGG -ACGGAAACCACTGTTAGCATGAGG -ACGGAAACCACTGTTAGCAATGGG -ACGGAAACCACTGTTAGCTCCTGA -ACGGAAACCACTGTTAGCTAGCGA -ACGGAAACCACTGTTAGCCACAGA -ACGGAAACCACTGTTAGCGCAAGA -ACGGAAACCACTGTTAGCGGTTGA -ACGGAAACCACTGTTAGCTCCGAT -ACGGAAACCACTGTTAGCTGGCAT -ACGGAAACCACTGTTAGCCGAGAT -ACGGAAACCACTGTTAGCTACCAC -ACGGAAACCACTGTTAGCCAGAAC -ACGGAAACCACTGTTAGCGTCTAC -ACGGAAACCACTGTTAGCACGTAC -ACGGAAACCACTGTTAGCAGTGAC -ACGGAAACCACTGTTAGCCTGTAG -ACGGAAACCACTGTTAGCCCTAAG -ACGGAAACCACTGTTAGCGTTCAG -ACGGAAACCACTGTTAGCGCATAG -ACGGAAACCACTGTTAGCGACAAG -ACGGAAACCACTGTTAGCAAGCAG -ACGGAAACCACTGTTAGCCGTCAA -ACGGAAACCACTGTTAGCGCTGAA -ACGGAAACCACTGTTAGCAGTACG -ACGGAAACCACTGTTAGCATCCGA -ACGGAAACCACTGTTAGCATGGGA -ACGGAAACCACTGTTAGCGTGCAA -ACGGAAACCACTGTTAGCGAGGAA -ACGGAAACCACTGTTAGCCAGGTA -ACGGAAACCACTGTTAGCGACTCT -ACGGAAACCACTGTTAGCAGTCCT -ACGGAAACCACTGTTAGCTAAGCC -ACGGAAACCACTGTTAGCATAGCC -ACGGAAACCACTGTTAGCTAACCG -ACGGAAACCACTGTTAGCATGCCA -ACGGAAACCACTGTCTTCGGAAAC -ACGGAAACCACTGTCTTCAACACC -ACGGAAACCACTGTCTTCATCGAG -ACGGAAACCACTGTCTTCCTCCTT -ACGGAAACCACTGTCTTCCCTGTT -ACGGAAACCACTGTCTTCCGGTTT -ACGGAAACCACTGTCTTCGTGGTT -ACGGAAACCACTGTCTTCGCCTTT -ACGGAAACCACTGTCTTCGGTCTT -ACGGAAACCACTGTCTTCACGCTT -ACGGAAACCACTGTCTTCAGCGTT -ACGGAAACCACTGTCTTCTTCGTC -ACGGAAACCACTGTCTTCTCTCTC -ACGGAAACCACTGTCTTCTGGATC -ACGGAAACCACTGTCTTCCACTTC -ACGGAAACCACTGTCTTCGTACTC -ACGGAAACCACTGTCTTCGATGTC -ACGGAAACCACTGTCTTCACAGTC -ACGGAAACCACTGTCTTCTTGCTG -ACGGAAACCACTGTCTTCTCCATG -ACGGAAACCACTGTCTTCTGTGTG -ACGGAAACCACTGTCTTCCTAGTG -ACGGAAACCACTGTCTTCCATCTG -ACGGAAACCACTGTCTTCGAGTTG -ACGGAAACCACTGTCTTCAGACTG -ACGGAAACCACTGTCTTCTCGGTA -ACGGAAACCACTGTCTTCTGCCTA -ACGGAAACCACTGTCTTCCCACTA -ACGGAAACCACTGTCTTCGGAGTA -ACGGAAACCACTGTCTTCTCGTCT -ACGGAAACCACTGTCTTCTGCACT -ACGGAAACCACTGTCTTCCTGACT -ACGGAAACCACTGTCTTCCAACCT -ACGGAAACCACTGTCTTCGCTACT -ACGGAAACCACTGTCTTCGGATCT -ACGGAAACCACTGTCTTCAAGGCT -ACGGAAACCACTGTCTTCTCAACC -ACGGAAACCACTGTCTTCTGTTCC -ACGGAAACCACTGTCTTCATTCCC -ACGGAAACCACTGTCTTCTTCTCG -ACGGAAACCACTGTCTTCTAGACG -ACGGAAACCACTGTCTTCGTAACG -ACGGAAACCACTGTCTTCACTTCG -ACGGAAACCACTGTCTTCTACGCA -ACGGAAACCACTGTCTTCCTTGCA -ACGGAAACCACTGTCTTCCGAACA -ACGGAAACCACTGTCTTCCAGTCA -ACGGAAACCACTGTCTTCGATCCA -ACGGAAACCACTGTCTTCACGACA -ACGGAAACCACTGTCTTCAGCTCA -ACGGAAACCACTGTCTTCTCACGT -ACGGAAACCACTGTCTTCCGTAGT -ACGGAAACCACTGTCTTCGTCAGT -ACGGAAACCACTGTCTTCGAAGGT -ACGGAAACCACTGTCTTCAACCGT -ACGGAAACCACTGTCTTCTTGTGC -ACGGAAACCACTGTCTTCCTAAGC -ACGGAAACCACTGTCTTCACTAGC -ACGGAAACCACTGTCTTCAGATGC -ACGGAAACCACTGTCTTCTGAAGG -ACGGAAACCACTGTCTTCCAATGG -ACGGAAACCACTGTCTTCATGAGG -ACGGAAACCACTGTCTTCAATGGG -ACGGAAACCACTGTCTTCTCCTGA -ACGGAAACCACTGTCTTCTAGCGA -ACGGAAACCACTGTCTTCCACAGA -ACGGAAACCACTGTCTTCGCAAGA -ACGGAAACCACTGTCTTCGGTTGA -ACGGAAACCACTGTCTTCTCCGAT -ACGGAAACCACTGTCTTCTGGCAT -ACGGAAACCACTGTCTTCCGAGAT -ACGGAAACCACTGTCTTCTACCAC -ACGGAAACCACTGTCTTCCAGAAC -ACGGAAACCACTGTCTTCGTCTAC -ACGGAAACCACTGTCTTCACGTAC -ACGGAAACCACTGTCTTCAGTGAC -ACGGAAACCACTGTCTTCCTGTAG -ACGGAAACCACTGTCTTCCCTAAG -ACGGAAACCACTGTCTTCGTTCAG -ACGGAAACCACTGTCTTCGCATAG -ACGGAAACCACTGTCTTCGACAAG -ACGGAAACCACTGTCTTCAAGCAG -ACGGAAACCACTGTCTTCCGTCAA -ACGGAAACCACTGTCTTCGCTGAA -ACGGAAACCACTGTCTTCAGTACG -ACGGAAACCACTGTCTTCATCCGA -ACGGAAACCACTGTCTTCATGGGA -ACGGAAACCACTGTCTTCGTGCAA -ACGGAAACCACTGTCTTCGAGGAA -ACGGAAACCACTGTCTTCCAGGTA -ACGGAAACCACTGTCTTCGACTCT -ACGGAAACCACTGTCTTCAGTCCT -ACGGAAACCACTGTCTTCTAAGCC -ACGGAAACCACTGTCTTCATAGCC -ACGGAAACCACTGTCTTCTAACCG -ACGGAAACCACTGTCTTCATGCCA -ACGGAAACCACTCTCTCTGGAAAC -ACGGAAACCACTCTCTCTAACACC -ACGGAAACCACTCTCTCTATCGAG -ACGGAAACCACTCTCTCTCTCCTT -ACGGAAACCACTCTCTCTCCTGTT -ACGGAAACCACTCTCTCTCGGTTT -ACGGAAACCACTCTCTCTGTGGTT -ACGGAAACCACTCTCTCTGCCTTT -ACGGAAACCACTCTCTCTGGTCTT -ACGGAAACCACTCTCTCTACGCTT -ACGGAAACCACTCTCTCTAGCGTT -ACGGAAACCACTCTCTCTTTCGTC -ACGGAAACCACTCTCTCTTCTCTC -ACGGAAACCACTCTCTCTTGGATC -ACGGAAACCACTCTCTCTCACTTC -ACGGAAACCACTCTCTCTGTACTC -ACGGAAACCACTCTCTCTGATGTC -ACGGAAACCACTCTCTCTACAGTC -ACGGAAACCACTCTCTCTTTGCTG -ACGGAAACCACTCTCTCTTCCATG -ACGGAAACCACTCTCTCTTGTGTG -ACGGAAACCACTCTCTCTCTAGTG -ACGGAAACCACTCTCTCTCATCTG -ACGGAAACCACTCTCTCTGAGTTG -ACGGAAACCACTCTCTCTAGACTG -ACGGAAACCACTCTCTCTTCGGTA -ACGGAAACCACTCTCTCTTGCCTA -ACGGAAACCACTCTCTCTCCACTA -ACGGAAACCACTCTCTCTGGAGTA -ACGGAAACCACTCTCTCTTCGTCT -ACGGAAACCACTCTCTCTTGCACT -ACGGAAACCACTCTCTCTCTGACT -ACGGAAACCACTCTCTCTCAACCT -ACGGAAACCACTCTCTCTGCTACT -ACGGAAACCACTCTCTCTGGATCT -ACGGAAACCACTCTCTCTAAGGCT -ACGGAAACCACTCTCTCTTCAACC -ACGGAAACCACTCTCTCTTGTTCC -ACGGAAACCACTCTCTCTATTCCC -ACGGAAACCACTCTCTCTTTCTCG -ACGGAAACCACTCTCTCTTAGACG -ACGGAAACCACTCTCTCTGTAACG -ACGGAAACCACTCTCTCTACTTCG -ACGGAAACCACTCTCTCTTACGCA -ACGGAAACCACTCTCTCTCTTGCA -ACGGAAACCACTCTCTCTCGAACA -ACGGAAACCACTCTCTCTCAGTCA -ACGGAAACCACTCTCTCTGATCCA -ACGGAAACCACTCTCTCTACGACA -ACGGAAACCACTCTCTCTAGCTCA -ACGGAAACCACTCTCTCTTCACGT -ACGGAAACCACTCTCTCTCGTAGT -ACGGAAACCACTCTCTCTGTCAGT -ACGGAAACCACTCTCTCTGAAGGT -ACGGAAACCACTCTCTCTAACCGT -ACGGAAACCACTCTCTCTTTGTGC -ACGGAAACCACTCTCTCTCTAAGC -ACGGAAACCACTCTCTCTACTAGC -ACGGAAACCACTCTCTCTAGATGC -ACGGAAACCACTCTCTCTTGAAGG -ACGGAAACCACTCTCTCTCAATGG -ACGGAAACCACTCTCTCTATGAGG -ACGGAAACCACTCTCTCTAATGGG -ACGGAAACCACTCTCTCTTCCTGA -ACGGAAACCACTCTCTCTTAGCGA -ACGGAAACCACTCTCTCTCACAGA -ACGGAAACCACTCTCTCTGCAAGA -ACGGAAACCACTCTCTCTGGTTGA -ACGGAAACCACTCTCTCTTCCGAT -ACGGAAACCACTCTCTCTTGGCAT -ACGGAAACCACTCTCTCTCGAGAT -ACGGAAACCACTCTCTCTTACCAC -ACGGAAACCACTCTCTCTCAGAAC -ACGGAAACCACTCTCTCTGTCTAC -ACGGAAACCACTCTCTCTACGTAC -ACGGAAACCACTCTCTCTAGTGAC -ACGGAAACCACTCTCTCTCTGTAG -ACGGAAACCACTCTCTCTCCTAAG -ACGGAAACCACTCTCTCTGTTCAG -ACGGAAACCACTCTCTCTGCATAG -ACGGAAACCACTCTCTCTGACAAG -ACGGAAACCACTCTCTCTAAGCAG -ACGGAAACCACTCTCTCTCGTCAA -ACGGAAACCACTCTCTCTGCTGAA -ACGGAAACCACTCTCTCTAGTACG -ACGGAAACCACTCTCTCTATCCGA -ACGGAAACCACTCTCTCTATGGGA -ACGGAAACCACTCTCTCTGTGCAA -ACGGAAACCACTCTCTCTGAGGAA -ACGGAAACCACTCTCTCTCAGGTA -ACGGAAACCACTCTCTCTGACTCT -ACGGAAACCACTCTCTCTAGTCCT -ACGGAAACCACTCTCTCTTAAGCC -ACGGAAACCACTCTCTCTATAGCC -ACGGAAACCACTCTCTCTTAACCG -ACGGAAACCACTCTCTCTATGCCA -ACGGAAACCACTATCTGGGGAAAC -ACGGAAACCACTATCTGGAACACC -ACGGAAACCACTATCTGGATCGAG -ACGGAAACCACTATCTGGCTCCTT -ACGGAAACCACTATCTGGCCTGTT -ACGGAAACCACTATCTGGCGGTTT -ACGGAAACCACTATCTGGGTGGTT -ACGGAAACCACTATCTGGGCCTTT -ACGGAAACCACTATCTGGGGTCTT -ACGGAAACCACTATCTGGACGCTT -ACGGAAACCACTATCTGGAGCGTT -ACGGAAACCACTATCTGGTTCGTC -ACGGAAACCACTATCTGGTCTCTC -ACGGAAACCACTATCTGGTGGATC -ACGGAAACCACTATCTGGCACTTC -ACGGAAACCACTATCTGGGTACTC -ACGGAAACCACTATCTGGGATGTC -ACGGAAACCACTATCTGGACAGTC -ACGGAAACCACTATCTGGTTGCTG -ACGGAAACCACTATCTGGTCCATG -ACGGAAACCACTATCTGGTGTGTG -ACGGAAACCACTATCTGGCTAGTG -ACGGAAACCACTATCTGGCATCTG -ACGGAAACCACTATCTGGGAGTTG -ACGGAAACCACTATCTGGAGACTG -ACGGAAACCACTATCTGGTCGGTA -ACGGAAACCACTATCTGGTGCCTA -ACGGAAACCACTATCTGGCCACTA -ACGGAAACCACTATCTGGGGAGTA -ACGGAAACCACTATCTGGTCGTCT -ACGGAAACCACTATCTGGTGCACT -ACGGAAACCACTATCTGGCTGACT -ACGGAAACCACTATCTGGCAACCT -ACGGAAACCACTATCTGGGCTACT -ACGGAAACCACTATCTGGGGATCT -ACGGAAACCACTATCTGGAAGGCT -ACGGAAACCACTATCTGGTCAACC -ACGGAAACCACTATCTGGTGTTCC -ACGGAAACCACTATCTGGATTCCC -ACGGAAACCACTATCTGGTTCTCG -ACGGAAACCACTATCTGGTAGACG -ACGGAAACCACTATCTGGGTAACG -ACGGAAACCACTATCTGGACTTCG -ACGGAAACCACTATCTGGTACGCA -ACGGAAACCACTATCTGGCTTGCA -ACGGAAACCACTATCTGGCGAACA -ACGGAAACCACTATCTGGCAGTCA -ACGGAAACCACTATCTGGGATCCA -ACGGAAACCACTATCTGGACGACA -ACGGAAACCACTATCTGGAGCTCA -ACGGAAACCACTATCTGGTCACGT -ACGGAAACCACTATCTGGCGTAGT -ACGGAAACCACTATCTGGGTCAGT -ACGGAAACCACTATCTGGGAAGGT -ACGGAAACCACTATCTGGAACCGT -ACGGAAACCACTATCTGGTTGTGC -ACGGAAACCACTATCTGGCTAAGC -ACGGAAACCACTATCTGGACTAGC -ACGGAAACCACTATCTGGAGATGC -ACGGAAACCACTATCTGGTGAAGG -ACGGAAACCACTATCTGGCAATGG -ACGGAAACCACTATCTGGATGAGG -ACGGAAACCACTATCTGGAATGGG -ACGGAAACCACTATCTGGTCCTGA -ACGGAAACCACTATCTGGTAGCGA -ACGGAAACCACTATCTGGCACAGA -ACGGAAACCACTATCTGGGCAAGA -ACGGAAACCACTATCTGGGGTTGA -ACGGAAACCACTATCTGGTCCGAT -ACGGAAACCACTATCTGGTGGCAT -ACGGAAACCACTATCTGGCGAGAT -ACGGAAACCACTATCTGGTACCAC -ACGGAAACCACTATCTGGCAGAAC -ACGGAAACCACTATCTGGGTCTAC -ACGGAAACCACTATCTGGACGTAC -ACGGAAACCACTATCTGGAGTGAC -ACGGAAACCACTATCTGGCTGTAG -ACGGAAACCACTATCTGGCCTAAG -ACGGAAACCACTATCTGGGTTCAG -ACGGAAACCACTATCTGGGCATAG -ACGGAAACCACTATCTGGGACAAG -ACGGAAACCACTATCTGGAAGCAG -ACGGAAACCACTATCTGGCGTCAA -ACGGAAACCACTATCTGGGCTGAA -ACGGAAACCACTATCTGGAGTACG -ACGGAAACCACTATCTGGATCCGA -ACGGAAACCACTATCTGGATGGGA -ACGGAAACCACTATCTGGGTGCAA -ACGGAAACCACTATCTGGGAGGAA -ACGGAAACCACTATCTGGCAGGTA -ACGGAAACCACTATCTGGGACTCT -ACGGAAACCACTATCTGGAGTCCT -ACGGAAACCACTATCTGGTAAGCC -ACGGAAACCACTATCTGGATAGCC -ACGGAAACCACTATCTGGTAACCG -ACGGAAACCACTATCTGGATGCCA -ACGGAAACCACTTTCCACGGAAAC -ACGGAAACCACTTTCCACAACACC -ACGGAAACCACTTTCCACATCGAG -ACGGAAACCACTTTCCACCTCCTT -ACGGAAACCACTTTCCACCCTGTT -ACGGAAACCACTTTCCACCGGTTT -ACGGAAACCACTTTCCACGTGGTT -ACGGAAACCACTTTCCACGCCTTT -ACGGAAACCACTTTCCACGGTCTT -ACGGAAACCACTTTCCACACGCTT -ACGGAAACCACTTTCCACAGCGTT -ACGGAAACCACTTTCCACTTCGTC -ACGGAAACCACTTTCCACTCTCTC -ACGGAAACCACTTTCCACTGGATC -ACGGAAACCACTTTCCACCACTTC -ACGGAAACCACTTTCCACGTACTC -ACGGAAACCACTTTCCACGATGTC -ACGGAAACCACTTTCCACACAGTC -ACGGAAACCACTTTCCACTTGCTG -ACGGAAACCACTTTCCACTCCATG -ACGGAAACCACTTTCCACTGTGTG -ACGGAAACCACTTTCCACCTAGTG -ACGGAAACCACTTTCCACCATCTG -ACGGAAACCACTTTCCACGAGTTG -ACGGAAACCACTTTCCACAGACTG -ACGGAAACCACTTTCCACTCGGTA -ACGGAAACCACTTTCCACTGCCTA -ACGGAAACCACTTTCCACCCACTA -ACGGAAACCACTTTCCACGGAGTA -ACGGAAACCACTTTCCACTCGTCT -ACGGAAACCACTTTCCACTGCACT -ACGGAAACCACTTTCCACCTGACT -ACGGAAACCACTTTCCACCAACCT -ACGGAAACCACTTTCCACGCTACT -ACGGAAACCACTTTCCACGGATCT -ACGGAAACCACTTTCCACAAGGCT -ACGGAAACCACTTTCCACTCAACC -ACGGAAACCACTTTCCACTGTTCC -ACGGAAACCACTTTCCACATTCCC -ACGGAAACCACTTTCCACTTCTCG -ACGGAAACCACTTTCCACTAGACG -ACGGAAACCACTTTCCACGTAACG -ACGGAAACCACTTTCCACACTTCG -ACGGAAACCACTTTCCACTACGCA -ACGGAAACCACTTTCCACCTTGCA -ACGGAAACCACTTTCCACCGAACA -ACGGAAACCACTTTCCACCAGTCA -ACGGAAACCACTTTCCACGATCCA -ACGGAAACCACTTTCCACACGACA -ACGGAAACCACTTTCCACAGCTCA -ACGGAAACCACTTTCCACTCACGT -ACGGAAACCACTTTCCACCGTAGT -ACGGAAACCACTTTCCACGTCAGT -ACGGAAACCACTTTCCACGAAGGT -ACGGAAACCACTTTCCACAACCGT -ACGGAAACCACTTTCCACTTGTGC -ACGGAAACCACTTTCCACCTAAGC -ACGGAAACCACTTTCCACACTAGC -ACGGAAACCACTTTCCACAGATGC -ACGGAAACCACTTTCCACTGAAGG -ACGGAAACCACTTTCCACCAATGG -ACGGAAACCACTTTCCACATGAGG -ACGGAAACCACTTTCCACAATGGG -ACGGAAACCACTTTCCACTCCTGA -ACGGAAACCACTTTCCACTAGCGA -ACGGAAACCACTTTCCACCACAGA -ACGGAAACCACTTTCCACGCAAGA -ACGGAAACCACTTTCCACGGTTGA -ACGGAAACCACTTTCCACTCCGAT -ACGGAAACCACTTTCCACTGGCAT -ACGGAAACCACTTTCCACCGAGAT -ACGGAAACCACTTTCCACTACCAC -ACGGAAACCACTTTCCACCAGAAC -ACGGAAACCACTTTCCACGTCTAC -ACGGAAACCACTTTCCACACGTAC -ACGGAAACCACTTTCCACAGTGAC -ACGGAAACCACTTTCCACCTGTAG -ACGGAAACCACTTTCCACCCTAAG -ACGGAAACCACTTTCCACGTTCAG -ACGGAAACCACTTTCCACGCATAG -ACGGAAACCACTTTCCACGACAAG -ACGGAAACCACTTTCCACAAGCAG -ACGGAAACCACTTTCCACCGTCAA -ACGGAAACCACTTTCCACGCTGAA -ACGGAAACCACTTTCCACAGTACG -ACGGAAACCACTTTCCACATCCGA -ACGGAAACCACTTTCCACATGGGA -ACGGAAACCACTTTCCACGTGCAA -ACGGAAACCACTTTCCACGAGGAA -ACGGAAACCACTTTCCACCAGGTA -ACGGAAACCACTTTCCACGACTCT -ACGGAAACCACTTTCCACAGTCCT -ACGGAAACCACTTTCCACTAAGCC -ACGGAAACCACTTTCCACATAGCC -ACGGAAACCACTTTCCACTAACCG -ACGGAAACCACTTTCCACATGCCA -ACGGAAACCACTCTCGTAGGAAAC -ACGGAAACCACTCTCGTAAACACC -ACGGAAACCACTCTCGTAATCGAG -ACGGAAACCACTCTCGTACTCCTT -ACGGAAACCACTCTCGTACCTGTT -ACGGAAACCACTCTCGTACGGTTT -ACGGAAACCACTCTCGTAGTGGTT -ACGGAAACCACTCTCGTAGCCTTT -ACGGAAACCACTCTCGTAGGTCTT -ACGGAAACCACTCTCGTAACGCTT -ACGGAAACCACTCTCGTAAGCGTT -ACGGAAACCACTCTCGTATTCGTC -ACGGAAACCACTCTCGTATCTCTC -ACGGAAACCACTCTCGTATGGATC -ACGGAAACCACTCTCGTACACTTC -ACGGAAACCACTCTCGTAGTACTC -ACGGAAACCACTCTCGTAGATGTC -ACGGAAACCACTCTCGTAACAGTC -ACGGAAACCACTCTCGTATTGCTG -ACGGAAACCACTCTCGTATCCATG -ACGGAAACCACTCTCGTATGTGTG -ACGGAAACCACTCTCGTACTAGTG -ACGGAAACCACTCTCGTACATCTG -ACGGAAACCACTCTCGTAGAGTTG -ACGGAAACCACTCTCGTAAGACTG -ACGGAAACCACTCTCGTATCGGTA -ACGGAAACCACTCTCGTATGCCTA -ACGGAAACCACTCTCGTACCACTA -ACGGAAACCACTCTCGTAGGAGTA -ACGGAAACCACTCTCGTATCGTCT -ACGGAAACCACTCTCGTATGCACT -ACGGAAACCACTCTCGTACTGACT -ACGGAAACCACTCTCGTACAACCT -ACGGAAACCACTCTCGTAGCTACT -ACGGAAACCACTCTCGTAGGATCT -ACGGAAACCACTCTCGTAAAGGCT -ACGGAAACCACTCTCGTATCAACC -ACGGAAACCACTCTCGTATGTTCC -ACGGAAACCACTCTCGTAATTCCC -ACGGAAACCACTCTCGTATTCTCG -ACGGAAACCACTCTCGTATAGACG -ACGGAAACCACTCTCGTAGTAACG -ACGGAAACCACTCTCGTAACTTCG -ACGGAAACCACTCTCGTATACGCA -ACGGAAACCACTCTCGTACTTGCA -ACGGAAACCACTCTCGTACGAACA -ACGGAAACCACTCTCGTACAGTCA -ACGGAAACCACTCTCGTAGATCCA -ACGGAAACCACTCTCGTAACGACA -ACGGAAACCACTCTCGTAAGCTCA -ACGGAAACCACTCTCGTATCACGT -ACGGAAACCACTCTCGTACGTAGT -ACGGAAACCACTCTCGTAGTCAGT -ACGGAAACCACTCTCGTAGAAGGT -ACGGAAACCACTCTCGTAAACCGT -ACGGAAACCACTCTCGTATTGTGC -ACGGAAACCACTCTCGTACTAAGC -ACGGAAACCACTCTCGTAACTAGC -ACGGAAACCACTCTCGTAAGATGC -ACGGAAACCACTCTCGTATGAAGG -ACGGAAACCACTCTCGTACAATGG -ACGGAAACCACTCTCGTAATGAGG -ACGGAAACCACTCTCGTAAATGGG -ACGGAAACCACTCTCGTATCCTGA -ACGGAAACCACTCTCGTATAGCGA -ACGGAAACCACTCTCGTACACAGA -ACGGAAACCACTCTCGTAGCAAGA -ACGGAAACCACTCTCGTAGGTTGA -ACGGAAACCACTCTCGTATCCGAT -ACGGAAACCACTCTCGTATGGCAT -ACGGAAACCACTCTCGTACGAGAT -ACGGAAACCACTCTCGTATACCAC -ACGGAAACCACTCTCGTACAGAAC -ACGGAAACCACTCTCGTAGTCTAC -ACGGAAACCACTCTCGTAACGTAC -ACGGAAACCACTCTCGTAAGTGAC -ACGGAAACCACTCTCGTACTGTAG -ACGGAAACCACTCTCGTACCTAAG -ACGGAAACCACTCTCGTAGTTCAG -ACGGAAACCACTCTCGTAGCATAG -ACGGAAACCACTCTCGTAGACAAG -ACGGAAACCACTCTCGTAAAGCAG -ACGGAAACCACTCTCGTACGTCAA -ACGGAAACCACTCTCGTAGCTGAA -ACGGAAACCACTCTCGTAAGTACG -ACGGAAACCACTCTCGTAATCCGA -ACGGAAACCACTCTCGTAATGGGA -ACGGAAACCACTCTCGTAGTGCAA -ACGGAAACCACTCTCGTAGAGGAA -ACGGAAACCACTCTCGTACAGGTA -ACGGAAACCACTCTCGTAGACTCT -ACGGAAACCACTCTCGTAAGTCCT -ACGGAAACCACTCTCGTATAAGCC -ACGGAAACCACTCTCGTAATAGCC -ACGGAAACCACTCTCGTATAACCG -ACGGAAACCACTCTCGTAATGCCA -ACGGAAACCACTGTCGATGGAAAC -ACGGAAACCACTGTCGATAACACC -ACGGAAACCACTGTCGATATCGAG -ACGGAAACCACTGTCGATCTCCTT -ACGGAAACCACTGTCGATCCTGTT -ACGGAAACCACTGTCGATCGGTTT -ACGGAAACCACTGTCGATGTGGTT -ACGGAAACCACTGTCGATGCCTTT -ACGGAAACCACTGTCGATGGTCTT -ACGGAAACCACTGTCGATACGCTT -ACGGAAACCACTGTCGATAGCGTT -ACGGAAACCACTGTCGATTTCGTC -ACGGAAACCACTGTCGATTCTCTC -ACGGAAACCACTGTCGATTGGATC -ACGGAAACCACTGTCGATCACTTC -ACGGAAACCACTGTCGATGTACTC -ACGGAAACCACTGTCGATGATGTC -ACGGAAACCACTGTCGATACAGTC -ACGGAAACCACTGTCGATTTGCTG -ACGGAAACCACTGTCGATTCCATG -ACGGAAACCACTGTCGATTGTGTG -ACGGAAACCACTGTCGATCTAGTG -ACGGAAACCACTGTCGATCATCTG -ACGGAAACCACTGTCGATGAGTTG -ACGGAAACCACTGTCGATAGACTG -ACGGAAACCACTGTCGATTCGGTA -ACGGAAACCACTGTCGATTGCCTA -ACGGAAACCACTGTCGATCCACTA -ACGGAAACCACTGTCGATGGAGTA -ACGGAAACCACTGTCGATTCGTCT -ACGGAAACCACTGTCGATTGCACT -ACGGAAACCACTGTCGATCTGACT -ACGGAAACCACTGTCGATCAACCT -ACGGAAACCACTGTCGATGCTACT -ACGGAAACCACTGTCGATGGATCT -ACGGAAACCACTGTCGATAAGGCT -ACGGAAACCACTGTCGATTCAACC -ACGGAAACCACTGTCGATTGTTCC -ACGGAAACCACTGTCGATATTCCC -ACGGAAACCACTGTCGATTTCTCG -ACGGAAACCACTGTCGATTAGACG -ACGGAAACCACTGTCGATGTAACG -ACGGAAACCACTGTCGATACTTCG -ACGGAAACCACTGTCGATTACGCA -ACGGAAACCACTGTCGATCTTGCA -ACGGAAACCACTGTCGATCGAACA -ACGGAAACCACTGTCGATCAGTCA -ACGGAAACCACTGTCGATGATCCA -ACGGAAACCACTGTCGATACGACA -ACGGAAACCACTGTCGATAGCTCA -ACGGAAACCACTGTCGATTCACGT -ACGGAAACCACTGTCGATCGTAGT -ACGGAAACCACTGTCGATGTCAGT -ACGGAAACCACTGTCGATGAAGGT -ACGGAAACCACTGTCGATAACCGT -ACGGAAACCACTGTCGATTTGTGC -ACGGAAACCACTGTCGATCTAAGC -ACGGAAACCACTGTCGATACTAGC -ACGGAAACCACTGTCGATAGATGC -ACGGAAACCACTGTCGATTGAAGG -ACGGAAACCACTGTCGATCAATGG -ACGGAAACCACTGTCGATATGAGG -ACGGAAACCACTGTCGATAATGGG -ACGGAAACCACTGTCGATTCCTGA -ACGGAAACCACTGTCGATTAGCGA -ACGGAAACCACTGTCGATCACAGA -ACGGAAACCACTGTCGATGCAAGA -ACGGAAACCACTGTCGATGGTTGA -ACGGAAACCACTGTCGATTCCGAT -ACGGAAACCACTGTCGATTGGCAT -ACGGAAACCACTGTCGATCGAGAT -ACGGAAACCACTGTCGATTACCAC -ACGGAAACCACTGTCGATCAGAAC -ACGGAAACCACTGTCGATGTCTAC -ACGGAAACCACTGTCGATACGTAC -ACGGAAACCACTGTCGATAGTGAC -ACGGAAACCACTGTCGATCTGTAG -ACGGAAACCACTGTCGATCCTAAG -ACGGAAACCACTGTCGATGTTCAG -ACGGAAACCACTGTCGATGCATAG -ACGGAAACCACTGTCGATGACAAG -ACGGAAACCACTGTCGATAAGCAG -ACGGAAACCACTGTCGATCGTCAA -ACGGAAACCACTGTCGATGCTGAA -ACGGAAACCACTGTCGATAGTACG -ACGGAAACCACTGTCGATATCCGA -ACGGAAACCACTGTCGATATGGGA -ACGGAAACCACTGTCGATGTGCAA -ACGGAAACCACTGTCGATGAGGAA -ACGGAAACCACTGTCGATCAGGTA -ACGGAAACCACTGTCGATGACTCT -ACGGAAACCACTGTCGATAGTCCT -ACGGAAACCACTGTCGATTAAGCC -ACGGAAACCACTGTCGATATAGCC -ACGGAAACCACTGTCGATTAACCG -ACGGAAACCACTGTCGATATGCCA -ACGGAAACCACTGTCACAGGAAAC -ACGGAAACCACTGTCACAAACACC -ACGGAAACCACTGTCACAATCGAG -ACGGAAACCACTGTCACACTCCTT -ACGGAAACCACTGTCACACCTGTT -ACGGAAACCACTGTCACACGGTTT -ACGGAAACCACTGTCACAGTGGTT -ACGGAAACCACTGTCACAGCCTTT -ACGGAAACCACTGTCACAGGTCTT -ACGGAAACCACTGTCACAACGCTT -ACGGAAACCACTGTCACAAGCGTT -ACGGAAACCACTGTCACATTCGTC -ACGGAAACCACTGTCACATCTCTC -ACGGAAACCACTGTCACATGGATC -ACGGAAACCACTGTCACACACTTC -ACGGAAACCACTGTCACAGTACTC -ACGGAAACCACTGTCACAGATGTC -ACGGAAACCACTGTCACAACAGTC -ACGGAAACCACTGTCACATTGCTG -ACGGAAACCACTGTCACATCCATG -ACGGAAACCACTGTCACATGTGTG -ACGGAAACCACTGTCACACTAGTG -ACGGAAACCACTGTCACACATCTG -ACGGAAACCACTGTCACAGAGTTG -ACGGAAACCACTGTCACAAGACTG -ACGGAAACCACTGTCACATCGGTA -ACGGAAACCACTGTCACATGCCTA -ACGGAAACCACTGTCACACCACTA -ACGGAAACCACTGTCACAGGAGTA -ACGGAAACCACTGTCACATCGTCT -ACGGAAACCACTGTCACATGCACT -ACGGAAACCACTGTCACACTGACT -ACGGAAACCACTGTCACACAACCT -ACGGAAACCACTGTCACAGCTACT -ACGGAAACCACTGTCACAGGATCT -ACGGAAACCACTGTCACAAAGGCT -ACGGAAACCACTGTCACATCAACC -ACGGAAACCACTGTCACATGTTCC -ACGGAAACCACTGTCACAATTCCC -ACGGAAACCACTGTCACATTCTCG -ACGGAAACCACTGTCACATAGACG -ACGGAAACCACTGTCACAGTAACG -ACGGAAACCACTGTCACAACTTCG -ACGGAAACCACTGTCACATACGCA -ACGGAAACCACTGTCACACTTGCA -ACGGAAACCACTGTCACACGAACA -ACGGAAACCACTGTCACACAGTCA -ACGGAAACCACTGTCACAGATCCA -ACGGAAACCACTGTCACAACGACA -ACGGAAACCACTGTCACAAGCTCA -ACGGAAACCACTGTCACATCACGT -ACGGAAACCACTGTCACACGTAGT -ACGGAAACCACTGTCACAGTCAGT -ACGGAAACCACTGTCACAGAAGGT -ACGGAAACCACTGTCACAAACCGT -ACGGAAACCACTGTCACATTGTGC -ACGGAAACCACTGTCACACTAAGC -ACGGAAACCACTGTCACAACTAGC -ACGGAAACCACTGTCACAAGATGC -ACGGAAACCACTGTCACATGAAGG -ACGGAAACCACTGTCACACAATGG -ACGGAAACCACTGTCACAATGAGG -ACGGAAACCACTGTCACAAATGGG -ACGGAAACCACTGTCACATCCTGA -ACGGAAACCACTGTCACATAGCGA -ACGGAAACCACTGTCACACACAGA -ACGGAAACCACTGTCACAGCAAGA -ACGGAAACCACTGTCACAGGTTGA -ACGGAAACCACTGTCACATCCGAT -ACGGAAACCACTGTCACATGGCAT -ACGGAAACCACTGTCACACGAGAT -ACGGAAACCACTGTCACATACCAC -ACGGAAACCACTGTCACACAGAAC -ACGGAAACCACTGTCACAGTCTAC -ACGGAAACCACTGTCACAACGTAC -ACGGAAACCACTGTCACAAGTGAC -ACGGAAACCACTGTCACACTGTAG -ACGGAAACCACTGTCACACCTAAG -ACGGAAACCACTGTCACAGTTCAG -ACGGAAACCACTGTCACAGCATAG -ACGGAAACCACTGTCACAGACAAG -ACGGAAACCACTGTCACAAAGCAG -ACGGAAACCACTGTCACACGTCAA -ACGGAAACCACTGTCACAGCTGAA -ACGGAAACCACTGTCACAAGTACG -ACGGAAACCACTGTCACAATCCGA -ACGGAAACCACTGTCACAATGGGA -ACGGAAACCACTGTCACAGTGCAA -ACGGAAACCACTGTCACAGAGGAA -ACGGAAACCACTGTCACACAGGTA -ACGGAAACCACTGTCACAGACTCT -ACGGAAACCACTGTCACAAGTCCT -ACGGAAACCACTGTCACATAAGCC -ACGGAAACCACTGTCACAATAGCC -ACGGAAACCACTGTCACATAACCG -ACGGAAACCACTGTCACAATGCCA -ACGGAAACCACTCTGTTGGGAAAC -ACGGAAACCACTCTGTTGAACACC -ACGGAAACCACTCTGTTGATCGAG -ACGGAAACCACTCTGTTGCTCCTT -ACGGAAACCACTCTGTTGCCTGTT -ACGGAAACCACTCTGTTGCGGTTT -ACGGAAACCACTCTGTTGGTGGTT -ACGGAAACCACTCTGTTGGCCTTT -ACGGAAACCACTCTGTTGGGTCTT -ACGGAAACCACTCTGTTGACGCTT -ACGGAAACCACTCTGTTGAGCGTT -ACGGAAACCACTCTGTTGTTCGTC -ACGGAAACCACTCTGTTGTCTCTC -ACGGAAACCACTCTGTTGTGGATC -ACGGAAACCACTCTGTTGCACTTC -ACGGAAACCACTCTGTTGGTACTC -ACGGAAACCACTCTGTTGGATGTC -ACGGAAACCACTCTGTTGACAGTC -ACGGAAACCACTCTGTTGTTGCTG -ACGGAAACCACTCTGTTGTCCATG -ACGGAAACCACTCTGTTGTGTGTG -ACGGAAACCACTCTGTTGCTAGTG -ACGGAAACCACTCTGTTGCATCTG -ACGGAAACCACTCTGTTGGAGTTG -ACGGAAACCACTCTGTTGAGACTG -ACGGAAACCACTCTGTTGTCGGTA -ACGGAAACCACTCTGTTGTGCCTA -ACGGAAACCACTCTGTTGCCACTA -ACGGAAACCACTCTGTTGGGAGTA -ACGGAAACCACTCTGTTGTCGTCT -ACGGAAACCACTCTGTTGTGCACT -ACGGAAACCACTCTGTTGCTGACT -ACGGAAACCACTCTGTTGCAACCT -ACGGAAACCACTCTGTTGGCTACT -ACGGAAACCACTCTGTTGGGATCT -ACGGAAACCACTCTGTTGAAGGCT -ACGGAAACCACTCTGTTGTCAACC -ACGGAAACCACTCTGTTGTGTTCC -ACGGAAACCACTCTGTTGATTCCC -ACGGAAACCACTCTGTTGTTCTCG -ACGGAAACCACTCTGTTGTAGACG -ACGGAAACCACTCTGTTGGTAACG -ACGGAAACCACTCTGTTGACTTCG -ACGGAAACCACTCTGTTGTACGCA -ACGGAAACCACTCTGTTGCTTGCA -ACGGAAACCACTCTGTTGCGAACA -ACGGAAACCACTCTGTTGCAGTCA -ACGGAAACCACTCTGTTGGATCCA -ACGGAAACCACTCTGTTGACGACA -ACGGAAACCACTCTGTTGAGCTCA -ACGGAAACCACTCTGTTGTCACGT -ACGGAAACCACTCTGTTGCGTAGT -ACGGAAACCACTCTGTTGGTCAGT -ACGGAAACCACTCTGTTGGAAGGT -ACGGAAACCACTCTGTTGAACCGT -ACGGAAACCACTCTGTTGTTGTGC -ACGGAAACCACTCTGTTGCTAAGC -ACGGAAACCACTCTGTTGACTAGC -ACGGAAACCACTCTGTTGAGATGC -ACGGAAACCACTCTGTTGTGAAGG -ACGGAAACCACTCTGTTGCAATGG -ACGGAAACCACTCTGTTGATGAGG -ACGGAAACCACTCTGTTGAATGGG -ACGGAAACCACTCTGTTGTCCTGA -ACGGAAACCACTCTGTTGTAGCGA -ACGGAAACCACTCTGTTGCACAGA -ACGGAAACCACTCTGTTGGCAAGA -ACGGAAACCACTCTGTTGGGTTGA -ACGGAAACCACTCTGTTGTCCGAT -ACGGAAACCACTCTGTTGTGGCAT -ACGGAAACCACTCTGTTGCGAGAT -ACGGAAACCACTCTGTTGTACCAC -ACGGAAACCACTCTGTTGCAGAAC -ACGGAAACCACTCTGTTGGTCTAC -ACGGAAACCACTCTGTTGACGTAC -ACGGAAACCACTCTGTTGAGTGAC -ACGGAAACCACTCTGTTGCTGTAG -ACGGAAACCACTCTGTTGCCTAAG -ACGGAAACCACTCTGTTGGTTCAG -ACGGAAACCACTCTGTTGGCATAG -ACGGAAACCACTCTGTTGGACAAG -ACGGAAACCACTCTGTTGAAGCAG -ACGGAAACCACTCTGTTGCGTCAA -ACGGAAACCACTCTGTTGGCTGAA -ACGGAAACCACTCTGTTGAGTACG -ACGGAAACCACTCTGTTGATCCGA -ACGGAAACCACTCTGTTGATGGGA -ACGGAAACCACTCTGTTGGTGCAA -ACGGAAACCACTCTGTTGGAGGAA -ACGGAAACCACTCTGTTGCAGGTA -ACGGAAACCACTCTGTTGGACTCT -ACGGAAACCACTCTGTTGAGTCCT -ACGGAAACCACTCTGTTGTAAGCC -ACGGAAACCACTCTGTTGATAGCC -ACGGAAACCACTCTGTTGTAACCG -ACGGAAACCACTCTGTTGATGCCA -ACGGAAACCACTATGTCCGGAAAC -ACGGAAACCACTATGTCCAACACC -ACGGAAACCACTATGTCCATCGAG -ACGGAAACCACTATGTCCCTCCTT -ACGGAAACCACTATGTCCCCTGTT -ACGGAAACCACTATGTCCCGGTTT -ACGGAAACCACTATGTCCGTGGTT -ACGGAAACCACTATGTCCGCCTTT -ACGGAAACCACTATGTCCGGTCTT -ACGGAAACCACTATGTCCACGCTT -ACGGAAACCACTATGTCCAGCGTT -ACGGAAACCACTATGTCCTTCGTC -ACGGAAACCACTATGTCCTCTCTC -ACGGAAACCACTATGTCCTGGATC -ACGGAAACCACTATGTCCCACTTC -ACGGAAACCACTATGTCCGTACTC -ACGGAAACCACTATGTCCGATGTC -ACGGAAACCACTATGTCCACAGTC -ACGGAAACCACTATGTCCTTGCTG -ACGGAAACCACTATGTCCTCCATG -ACGGAAACCACTATGTCCTGTGTG -ACGGAAACCACTATGTCCCTAGTG -ACGGAAACCACTATGTCCCATCTG -ACGGAAACCACTATGTCCGAGTTG -ACGGAAACCACTATGTCCAGACTG -ACGGAAACCACTATGTCCTCGGTA -ACGGAAACCACTATGTCCTGCCTA -ACGGAAACCACTATGTCCCCACTA -ACGGAAACCACTATGTCCGGAGTA -ACGGAAACCACTATGTCCTCGTCT -ACGGAAACCACTATGTCCTGCACT -ACGGAAACCACTATGTCCCTGACT -ACGGAAACCACTATGTCCCAACCT -ACGGAAACCACTATGTCCGCTACT -ACGGAAACCACTATGTCCGGATCT -ACGGAAACCACTATGTCCAAGGCT -ACGGAAACCACTATGTCCTCAACC -ACGGAAACCACTATGTCCTGTTCC -ACGGAAACCACTATGTCCATTCCC -ACGGAAACCACTATGTCCTTCTCG -ACGGAAACCACTATGTCCTAGACG -ACGGAAACCACTATGTCCGTAACG -ACGGAAACCACTATGTCCACTTCG -ACGGAAACCACTATGTCCTACGCA -ACGGAAACCACTATGTCCCTTGCA -ACGGAAACCACTATGTCCCGAACA -ACGGAAACCACTATGTCCCAGTCA -ACGGAAACCACTATGTCCGATCCA -ACGGAAACCACTATGTCCACGACA -ACGGAAACCACTATGTCCAGCTCA -ACGGAAACCACTATGTCCTCACGT -ACGGAAACCACTATGTCCCGTAGT -ACGGAAACCACTATGTCCGTCAGT -ACGGAAACCACTATGTCCGAAGGT -ACGGAAACCACTATGTCCAACCGT -ACGGAAACCACTATGTCCTTGTGC -ACGGAAACCACTATGTCCCTAAGC -ACGGAAACCACTATGTCCACTAGC -ACGGAAACCACTATGTCCAGATGC -ACGGAAACCACTATGTCCTGAAGG -ACGGAAACCACTATGTCCCAATGG -ACGGAAACCACTATGTCCATGAGG -ACGGAAACCACTATGTCCAATGGG -ACGGAAACCACTATGTCCTCCTGA -ACGGAAACCACTATGTCCTAGCGA -ACGGAAACCACTATGTCCCACAGA -ACGGAAACCACTATGTCCGCAAGA -ACGGAAACCACTATGTCCGGTTGA -ACGGAAACCACTATGTCCTCCGAT -ACGGAAACCACTATGTCCTGGCAT -ACGGAAACCACTATGTCCCGAGAT -ACGGAAACCACTATGTCCTACCAC -ACGGAAACCACTATGTCCCAGAAC -ACGGAAACCACTATGTCCGTCTAC -ACGGAAACCACTATGTCCACGTAC -ACGGAAACCACTATGTCCAGTGAC -ACGGAAACCACTATGTCCCTGTAG -ACGGAAACCACTATGTCCCCTAAG -ACGGAAACCACTATGTCCGTTCAG -ACGGAAACCACTATGTCCGCATAG -ACGGAAACCACTATGTCCGACAAG -ACGGAAACCACTATGTCCAAGCAG -ACGGAAACCACTATGTCCCGTCAA -ACGGAAACCACTATGTCCGCTGAA -ACGGAAACCACTATGTCCAGTACG -ACGGAAACCACTATGTCCATCCGA -ACGGAAACCACTATGTCCATGGGA -ACGGAAACCACTATGTCCGTGCAA -ACGGAAACCACTATGTCCGAGGAA -ACGGAAACCACTATGTCCCAGGTA -ACGGAAACCACTATGTCCGACTCT -ACGGAAACCACTATGTCCAGTCCT -ACGGAAACCACTATGTCCTAAGCC -ACGGAAACCACTATGTCCATAGCC -ACGGAAACCACTATGTCCTAACCG -ACGGAAACCACTATGTCCATGCCA -ACGGAAACCACTGTGTGTGGAAAC -ACGGAAACCACTGTGTGTAACACC -ACGGAAACCACTGTGTGTATCGAG -ACGGAAACCACTGTGTGTCTCCTT -ACGGAAACCACTGTGTGTCCTGTT -ACGGAAACCACTGTGTGTCGGTTT -ACGGAAACCACTGTGTGTGTGGTT -ACGGAAACCACTGTGTGTGCCTTT -ACGGAAACCACTGTGTGTGGTCTT -ACGGAAACCACTGTGTGTACGCTT -ACGGAAACCACTGTGTGTAGCGTT -ACGGAAACCACTGTGTGTTTCGTC -ACGGAAACCACTGTGTGTTCTCTC -ACGGAAACCACTGTGTGTTGGATC -ACGGAAACCACTGTGTGTCACTTC -ACGGAAACCACTGTGTGTGTACTC -ACGGAAACCACTGTGTGTGATGTC -ACGGAAACCACTGTGTGTACAGTC -ACGGAAACCACTGTGTGTTTGCTG -ACGGAAACCACTGTGTGTTCCATG -ACGGAAACCACTGTGTGTTGTGTG -ACGGAAACCACTGTGTGTCTAGTG -ACGGAAACCACTGTGTGTCATCTG -ACGGAAACCACTGTGTGTGAGTTG -ACGGAAACCACTGTGTGTAGACTG -ACGGAAACCACTGTGTGTTCGGTA -ACGGAAACCACTGTGTGTTGCCTA -ACGGAAACCACTGTGTGTCCACTA -ACGGAAACCACTGTGTGTGGAGTA -ACGGAAACCACTGTGTGTTCGTCT -ACGGAAACCACTGTGTGTTGCACT -ACGGAAACCACTGTGTGTCTGACT -ACGGAAACCACTGTGTGTCAACCT -ACGGAAACCACTGTGTGTGCTACT -ACGGAAACCACTGTGTGTGGATCT -ACGGAAACCACTGTGTGTAAGGCT -ACGGAAACCACTGTGTGTTCAACC -ACGGAAACCACTGTGTGTTGTTCC -ACGGAAACCACTGTGTGTATTCCC -ACGGAAACCACTGTGTGTTTCTCG -ACGGAAACCACTGTGTGTTAGACG -ACGGAAACCACTGTGTGTGTAACG -ACGGAAACCACTGTGTGTACTTCG -ACGGAAACCACTGTGTGTTACGCA -ACGGAAACCACTGTGTGTCTTGCA -ACGGAAACCACTGTGTGTCGAACA -ACGGAAACCACTGTGTGTCAGTCA -ACGGAAACCACTGTGTGTGATCCA -ACGGAAACCACTGTGTGTACGACA -ACGGAAACCACTGTGTGTAGCTCA -ACGGAAACCACTGTGTGTTCACGT -ACGGAAACCACTGTGTGTCGTAGT -ACGGAAACCACTGTGTGTGTCAGT -ACGGAAACCACTGTGTGTGAAGGT -ACGGAAACCACTGTGTGTAACCGT -ACGGAAACCACTGTGTGTTTGTGC -ACGGAAACCACTGTGTGTCTAAGC -ACGGAAACCACTGTGTGTACTAGC -ACGGAAACCACTGTGTGTAGATGC -ACGGAAACCACTGTGTGTTGAAGG -ACGGAAACCACTGTGTGTCAATGG -ACGGAAACCACTGTGTGTATGAGG -ACGGAAACCACTGTGTGTAATGGG -ACGGAAACCACTGTGTGTTCCTGA -ACGGAAACCACTGTGTGTTAGCGA -ACGGAAACCACTGTGTGTCACAGA -ACGGAAACCACTGTGTGTGCAAGA -ACGGAAACCACTGTGTGTGGTTGA -ACGGAAACCACTGTGTGTTCCGAT -ACGGAAACCACTGTGTGTTGGCAT -ACGGAAACCACTGTGTGTCGAGAT -ACGGAAACCACTGTGTGTTACCAC -ACGGAAACCACTGTGTGTCAGAAC -ACGGAAACCACTGTGTGTGTCTAC -ACGGAAACCACTGTGTGTACGTAC -ACGGAAACCACTGTGTGTAGTGAC -ACGGAAACCACTGTGTGTCTGTAG -ACGGAAACCACTGTGTGTCCTAAG -ACGGAAACCACTGTGTGTGTTCAG -ACGGAAACCACTGTGTGTGCATAG -ACGGAAACCACTGTGTGTGACAAG -ACGGAAACCACTGTGTGTAAGCAG -ACGGAAACCACTGTGTGTCGTCAA -ACGGAAACCACTGTGTGTGCTGAA -ACGGAAACCACTGTGTGTAGTACG -ACGGAAACCACTGTGTGTATCCGA -ACGGAAACCACTGTGTGTATGGGA -ACGGAAACCACTGTGTGTGTGCAA -ACGGAAACCACTGTGTGTGAGGAA -ACGGAAACCACTGTGTGTCAGGTA -ACGGAAACCACTGTGTGTGACTCT -ACGGAAACCACTGTGTGTAGTCCT -ACGGAAACCACTGTGTGTTAAGCC -ACGGAAACCACTGTGTGTATAGCC -ACGGAAACCACTGTGTGTTAACCG -ACGGAAACCACTGTGTGTATGCCA -ACGGAAACCACTGTGCTAGGAAAC -ACGGAAACCACTGTGCTAAACACC -ACGGAAACCACTGTGCTAATCGAG -ACGGAAACCACTGTGCTACTCCTT -ACGGAAACCACTGTGCTACCTGTT -ACGGAAACCACTGTGCTACGGTTT -ACGGAAACCACTGTGCTAGTGGTT -ACGGAAACCACTGTGCTAGCCTTT -ACGGAAACCACTGTGCTAGGTCTT -ACGGAAACCACTGTGCTAACGCTT -ACGGAAACCACTGTGCTAAGCGTT -ACGGAAACCACTGTGCTATTCGTC -ACGGAAACCACTGTGCTATCTCTC -ACGGAAACCACTGTGCTATGGATC -ACGGAAACCACTGTGCTACACTTC -ACGGAAACCACTGTGCTAGTACTC -ACGGAAACCACTGTGCTAGATGTC -ACGGAAACCACTGTGCTAACAGTC -ACGGAAACCACTGTGCTATTGCTG -ACGGAAACCACTGTGCTATCCATG -ACGGAAACCACTGTGCTATGTGTG -ACGGAAACCACTGTGCTACTAGTG -ACGGAAACCACTGTGCTACATCTG -ACGGAAACCACTGTGCTAGAGTTG -ACGGAAACCACTGTGCTAAGACTG -ACGGAAACCACTGTGCTATCGGTA -ACGGAAACCACTGTGCTATGCCTA -ACGGAAACCACTGTGCTACCACTA -ACGGAAACCACTGTGCTAGGAGTA -ACGGAAACCACTGTGCTATCGTCT -ACGGAAACCACTGTGCTATGCACT -ACGGAAACCACTGTGCTACTGACT -ACGGAAACCACTGTGCTACAACCT -ACGGAAACCACTGTGCTAGCTACT -ACGGAAACCACTGTGCTAGGATCT -ACGGAAACCACTGTGCTAAAGGCT -ACGGAAACCACTGTGCTATCAACC -ACGGAAACCACTGTGCTATGTTCC -ACGGAAACCACTGTGCTAATTCCC -ACGGAAACCACTGTGCTATTCTCG -ACGGAAACCACTGTGCTATAGACG -ACGGAAACCACTGTGCTAGTAACG -ACGGAAACCACTGTGCTAACTTCG -ACGGAAACCACTGTGCTATACGCA -ACGGAAACCACTGTGCTACTTGCA -ACGGAAACCACTGTGCTACGAACA -ACGGAAACCACTGTGCTACAGTCA -ACGGAAACCACTGTGCTAGATCCA -ACGGAAACCACTGTGCTAACGACA -ACGGAAACCACTGTGCTAAGCTCA -ACGGAAACCACTGTGCTATCACGT -ACGGAAACCACTGTGCTACGTAGT -ACGGAAACCACTGTGCTAGTCAGT -ACGGAAACCACTGTGCTAGAAGGT -ACGGAAACCACTGTGCTAAACCGT -ACGGAAACCACTGTGCTATTGTGC -ACGGAAACCACTGTGCTACTAAGC -ACGGAAACCACTGTGCTAACTAGC -ACGGAAACCACTGTGCTAAGATGC -ACGGAAACCACTGTGCTATGAAGG -ACGGAAACCACTGTGCTACAATGG -ACGGAAACCACTGTGCTAATGAGG -ACGGAAACCACTGTGCTAAATGGG -ACGGAAACCACTGTGCTATCCTGA -ACGGAAACCACTGTGCTATAGCGA -ACGGAAACCACTGTGCTACACAGA -ACGGAAACCACTGTGCTAGCAAGA -ACGGAAACCACTGTGCTAGGTTGA -ACGGAAACCACTGTGCTATCCGAT -ACGGAAACCACTGTGCTATGGCAT -ACGGAAACCACTGTGCTACGAGAT -ACGGAAACCACTGTGCTATACCAC -ACGGAAACCACTGTGCTACAGAAC -ACGGAAACCACTGTGCTAGTCTAC -ACGGAAACCACTGTGCTAACGTAC -ACGGAAACCACTGTGCTAAGTGAC -ACGGAAACCACTGTGCTACTGTAG -ACGGAAACCACTGTGCTACCTAAG -ACGGAAACCACTGTGCTAGTTCAG -ACGGAAACCACTGTGCTAGCATAG -ACGGAAACCACTGTGCTAGACAAG -ACGGAAACCACTGTGCTAAAGCAG -ACGGAAACCACTGTGCTACGTCAA -ACGGAAACCACTGTGCTAGCTGAA -ACGGAAACCACTGTGCTAAGTACG -ACGGAAACCACTGTGCTAATCCGA -ACGGAAACCACTGTGCTAATGGGA -ACGGAAACCACTGTGCTAGTGCAA -ACGGAAACCACTGTGCTAGAGGAA -ACGGAAACCACTGTGCTACAGGTA -ACGGAAACCACTGTGCTAGACTCT -ACGGAAACCACTGTGCTAAGTCCT -ACGGAAACCACTGTGCTATAAGCC -ACGGAAACCACTGTGCTAATAGCC -ACGGAAACCACTGTGCTATAACCG -ACGGAAACCACTGTGCTAATGCCA -ACGGAAACCACTCTGCATGGAAAC -ACGGAAACCACTCTGCATAACACC -ACGGAAACCACTCTGCATATCGAG -ACGGAAACCACTCTGCATCTCCTT -ACGGAAACCACTCTGCATCCTGTT -ACGGAAACCACTCTGCATCGGTTT -ACGGAAACCACTCTGCATGTGGTT -ACGGAAACCACTCTGCATGCCTTT -ACGGAAACCACTCTGCATGGTCTT -ACGGAAACCACTCTGCATACGCTT -ACGGAAACCACTCTGCATAGCGTT -ACGGAAACCACTCTGCATTTCGTC -ACGGAAACCACTCTGCATTCTCTC -ACGGAAACCACTCTGCATTGGATC -ACGGAAACCACTCTGCATCACTTC -ACGGAAACCACTCTGCATGTACTC -ACGGAAACCACTCTGCATGATGTC -ACGGAAACCACTCTGCATACAGTC -ACGGAAACCACTCTGCATTTGCTG -ACGGAAACCACTCTGCATTCCATG -ACGGAAACCACTCTGCATTGTGTG -ACGGAAACCACTCTGCATCTAGTG -ACGGAAACCACTCTGCATCATCTG -ACGGAAACCACTCTGCATGAGTTG -ACGGAAACCACTCTGCATAGACTG -ACGGAAACCACTCTGCATTCGGTA -ACGGAAACCACTCTGCATTGCCTA -ACGGAAACCACTCTGCATCCACTA -ACGGAAACCACTCTGCATGGAGTA -ACGGAAACCACTCTGCATTCGTCT -ACGGAAACCACTCTGCATTGCACT -ACGGAAACCACTCTGCATCTGACT -ACGGAAACCACTCTGCATCAACCT -ACGGAAACCACTCTGCATGCTACT -ACGGAAACCACTCTGCATGGATCT -ACGGAAACCACTCTGCATAAGGCT -ACGGAAACCACTCTGCATTCAACC -ACGGAAACCACTCTGCATTGTTCC -ACGGAAACCACTCTGCATATTCCC -ACGGAAACCACTCTGCATTTCTCG -ACGGAAACCACTCTGCATTAGACG -ACGGAAACCACTCTGCATGTAACG -ACGGAAACCACTCTGCATACTTCG -ACGGAAACCACTCTGCATTACGCA -ACGGAAACCACTCTGCATCTTGCA -ACGGAAACCACTCTGCATCGAACA -ACGGAAACCACTCTGCATCAGTCA -ACGGAAACCACTCTGCATGATCCA -ACGGAAACCACTCTGCATACGACA -ACGGAAACCACTCTGCATAGCTCA -ACGGAAACCACTCTGCATTCACGT -ACGGAAACCACTCTGCATCGTAGT -ACGGAAACCACTCTGCATGTCAGT -ACGGAAACCACTCTGCATGAAGGT -ACGGAAACCACTCTGCATAACCGT -ACGGAAACCACTCTGCATTTGTGC -ACGGAAACCACTCTGCATCTAAGC -ACGGAAACCACTCTGCATACTAGC -ACGGAAACCACTCTGCATAGATGC -ACGGAAACCACTCTGCATTGAAGG -ACGGAAACCACTCTGCATCAATGG -ACGGAAACCACTCTGCATATGAGG -ACGGAAACCACTCTGCATAATGGG -ACGGAAACCACTCTGCATTCCTGA -ACGGAAACCACTCTGCATTAGCGA -ACGGAAACCACTCTGCATCACAGA -ACGGAAACCACTCTGCATGCAAGA -ACGGAAACCACTCTGCATGGTTGA -ACGGAAACCACTCTGCATTCCGAT -ACGGAAACCACTCTGCATTGGCAT -ACGGAAACCACTCTGCATCGAGAT -ACGGAAACCACTCTGCATTACCAC -ACGGAAACCACTCTGCATCAGAAC -ACGGAAACCACTCTGCATGTCTAC -ACGGAAACCACTCTGCATACGTAC -ACGGAAACCACTCTGCATAGTGAC -ACGGAAACCACTCTGCATCTGTAG -ACGGAAACCACTCTGCATCCTAAG -ACGGAAACCACTCTGCATGTTCAG -ACGGAAACCACTCTGCATGCATAG -ACGGAAACCACTCTGCATGACAAG -ACGGAAACCACTCTGCATAAGCAG -ACGGAAACCACTCTGCATCGTCAA -ACGGAAACCACTCTGCATGCTGAA -ACGGAAACCACTCTGCATAGTACG -ACGGAAACCACTCTGCATATCCGA -ACGGAAACCACTCTGCATATGGGA -ACGGAAACCACTCTGCATGTGCAA -ACGGAAACCACTCTGCATGAGGAA -ACGGAAACCACTCTGCATCAGGTA -ACGGAAACCACTCTGCATGACTCT -ACGGAAACCACTCTGCATAGTCCT -ACGGAAACCACTCTGCATTAAGCC -ACGGAAACCACTCTGCATATAGCC -ACGGAAACCACTCTGCATTAACCG -ACGGAAACCACTCTGCATATGCCA -ACGGAAACCACTTTGGAGGGAAAC -ACGGAAACCACTTTGGAGAACACC -ACGGAAACCACTTTGGAGATCGAG -ACGGAAACCACTTTGGAGCTCCTT -ACGGAAACCACTTTGGAGCCTGTT -ACGGAAACCACTTTGGAGCGGTTT -ACGGAAACCACTTTGGAGGTGGTT -ACGGAAACCACTTTGGAGGCCTTT -ACGGAAACCACTTTGGAGGGTCTT -ACGGAAACCACTTTGGAGACGCTT -ACGGAAACCACTTTGGAGAGCGTT -ACGGAAACCACTTTGGAGTTCGTC -ACGGAAACCACTTTGGAGTCTCTC -ACGGAAACCACTTTGGAGTGGATC -ACGGAAACCACTTTGGAGCACTTC -ACGGAAACCACTTTGGAGGTACTC -ACGGAAACCACTTTGGAGGATGTC -ACGGAAACCACTTTGGAGACAGTC -ACGGAAACCACTTTGGAGTTGCTG -ACGGAAACCACTTTGGAGTCCATG -ACGGAAACCACTTTGGAGTGTGTG -ACGGAAACCACTTTGGAGCTAGTG -ACGGAAACCACTTTGGAGCATCTG -ACGGAAACCACTTTGGAGGAGTTG -ACGGAAACCACTTTGGAGAGACTG -ACGGAAACCACTTTGGAGTCGGTA -ACGGAAACCACTTTGGAGTGCCTA -ACGGAAACCACTTTGGAGCCACTA -ACGGAAACCACTTTGGAGGGAGTA -ACGGAAACCACTTTGGAGTCGTCT -ACGGAAACCACTTTGGAGTGCACT -ACGGAAACCACTTTGGAGCTGACT -ACGGAAACCACTTTGGAGCAACCT -ACGGAAACCACTTTGGAGGCTACT -ACGGAAACCACTTTGGAGGGATCT -ACGGAAACCACTTTGGAGAAGGCT -ACGGAAACCACTTTGGAGTCAACC -ACGGAAACCACTTTGGAGTGTTCC -ACGGAAACCACTTTGGAGATTCCC -ACGGAAACCACTTTGGAGTTCTCG -ACGGAAACCACTTTGGAGTAGACG -ACGGAAACCACTTTGGAGGTAACG -ACGGAAACCACTTTGGAGACTTCG -ACGGAAACCACTTTGGAGTACGCA -ACGGAAACCACTTTGGAGCTTGCA -ACGGAAACCACTTTGGAGCGAACA -ACGGAAACCACTTTGGAGCAGTCA -ACGGAAACCACTTTGGAGGATCCA -ACGGAAACCACTTTGGAGACGACA -ACGGAAACCACTTTGGAGAGCTCA -ACGGAAACCACTTTGGAGTCACGT -ACGGAAACCACTTTGGAGCGTAGT -ACGGAAACCACTTTGGAGGTCAGT -ACGGAAACCACTTTGGAGGAAGGT -ACGGAAACCACTTTGGAGAACCGT -ACGGAAACCACTTTGGAGTTGTGC -ACGGAAACCACTTTGGAGCTAAGC -ACGGAAACCACTTTGGAGACTAGC -ACGGAAACCACTTTGGAGAGATGC -ACGGAAACCACTTTGGAGTGAAGG -ACGGAAACCACTTTGGAGCAATGG -ACGGAAACCACTTTGGAGATGAGG -ACGGAAACCACTTTGGAGAATGGG -ACGGAAACCACTTTGGAGTCCTGA -ACGGAAACCACTTTGGAGTAGCGA -ACGGAAACCACTTTGGAGCACAGA -ACGGAAACCACTTTGGAGGCAAGA -ACGGAAACCACTTTGGAGGGTTGA -ACGGAAACCACTTTGGAGTCCGAT -ACGGAAACCACTTTGGAGTGGCAT -ACGGAAACCACTTTGGAGCGAGAT -ACGGAAACCACTTTGGAGTACCAC -ACGGAAACCACTTTGGAGCAGAAC -ACGGAAACCACTTTGGAGGTCTAC -ACGGAAACCACTTTGGAGACGTAC -ACGGAAACCACTTTGGAGAGTGAC -ACGGAAACCACTTTGGAGCTGTAG -ACGGAAACCACTTTGGAGCCTAAG -ACGGAAACCACTTTGGAGGTTCAG -ACGGAAACCACTTTGGAGGCATAG -ACGGAAACCACTTTGGAGGACAAG -ACGGAAACCACTTTGGAGAAGCAG -ACGGAAACCACTTTGGAGCGTCAA -ACGGAAACCACTTTGGAGGCTGAA -ACGGAAACCACTTTGGAGAGTACG -ACGGAAACCACTTTGGAGATCCGA -ACGGAAACCACTTTGGAGATGGGA -ACGGAAACCACTTTGGAGGTGCAA -ACGGAAACCACTTTGGAGGAGGAA -ACGGAAACCACTTTGGAGCAGGTA -ACGGAAACCACTTTGGAGGACTCT -ACGGAAACCACTTTGGAGAGTCCT -ACGGAAACCACTTTGGAGTAAGCC -ACGGAAACCACTTTGGAGATAGCC -ACGGAAACCACTTTGGAGTAACCG -ACGGAAACCACTTTGGAGATGCCA -ACGGAAACCACTCTGAGAGGAAAC -ACGGAAACCACTCTGAGAAACACC -ACGGAAACCACTCTGAGAATCGAG -ACGGAAACCACTCTGAGACTCCTT -ACGGAAACCACTCTGAGACCTGTT -ACGGAAACCACTCTGAGACGGTTT -ACGGAAACCACTCTGAGAGTGGTT -ACGGAAACCACTCTGAGAGCCTTT -ACGGAAACCACTCTGAGAGGTCTT -ACGGAAACCACTCTGAGAACGCTT -ACGGAAACCACTCTGAGAAGCGTT -ACGGAAACCACTCTGAGATTCGTC -ACGGAAACCACTCTGAGATCTCTC -ACGGAAACCACTCTGAGATGGATC -ACGGAAACCACTCTGAGACACTTC -ACGGAAACCACTCTGAGAGTACTC -ACGGAAACCACTCTGAGAGATGTC -ACGGAAACCACTCTGAGAACAGTC -ACGGAAACCACTCTGAGATTGCTG -ACGGAAACCACTCTGAGATCCATG -ACGGAAACCACTCTGAGATGTGTG -ACGGAAACCACTCTGAGACTAGTG -ACGGAAACCACTCTGAGACATCTG -ACGGAAACCACTCTGAGAGAGTTG -ACGGAAACCACTCTGAGAAGACTG -ACGGAAACCACTCTGAGATCGGTA -ACGGAAACCACTCTGAGATGCCTA -ACGGAAACCACTCTGAGACCACTA -ACGGAAACCACTCTGAGAGGAGTA -ACGGAAACCACTCTGAGATCGTCT -ACGGAAACCACTCTGAGATGCACT -ACGGAAACCACTCTGAGACTGACT -ACGGAAACCACTCTGAGACAACCT -ACGGAAACCACTCTGAGAGCTACT -ACGGAAACCACTCTGAGAGGATCT -ACGGAAACCACTCTGAGAAAGGCT -ACGGAAACCACTCTGAGATCAACC -ACGGAAACCACTCTGAGATGTTCC -ACGGAAACCACTCTGAGAATTCCC -ACGGAAACCACTCTGAGATTCTCG -ACGGAAACCACTCTGAGATAGACG -ACGGAAACCACTCTGAGAGTAACG -ACGGAAACCACTCTGAGAACTTCG -ACGGAAACCACTCTGAGATACGCA -ACGGAAACCACTCTGAGACTTGCA -ACGGAAACCACTCTGAGACGAACA -ACGGAAACCACTCTGAGACAGTCA -ACGGAAACCACTCTGAGAGATCCA -ACGGAAACCACTCTGAGAACGACA -ACGGAAACCACTCTGAGAAGCTCA -ACGGAAACCACTCTGAGATCACGT -ACGGAAACCACTCTGAGACGTAGT -ACGGAAACCACTCTGAGAGTCAGT -ACGGAAACCACTCTGAGAGAAGGT -ACGGAAACCACTCTGAGAAACCGT -ACGGAAACCACTCTGAGATTGTGC -ACGGAAACCACTCTGAGACTAAGC -ACGGAAACCACTCTGAGAACTAGC -ACGGAAACCACTCTGAGAAGATGC -ACGGAAACCACTCTGAGATGAAGG -ACGGAAACCACTCTGAGACAATGG -ACGGAAACCACTCTGAGAATGAGG -ACGGAAACCACTCTGAGAAATGGG -ACGGAAACCACTCTGAGATCCTGA -ACGGAAACCACTCTGAGATAGCGA -ACGGAAACCACTCTGAGACACAGA -ACGGAAACCACTCTGAGAGCAAGA -ACGGAAACCACTCTGAGAGGTTGA -ACGGAAACCACTCTGAGATCCGAT -ACGGAAACCACTCTGAGATGGCAT -ACGGAAACCACTCTGAGACGAGAT -ACGGAAACCACTCTGAGATACCAC -ACGGAAACCACTCTGAGACAGAAC -ACGGAAACCACTCTGAGAGTCTAC -ACGGAAACCACTCTGAGAACGTAC -ACGGAAACCACTCTGAGAAGTGAC -ACGGAAACCACTCTGAGACTGTAG -ACGGAAACCACTCTGAGACCTAAG -ACGGAAACCACTCTGAGAGTTCAG -ACGGAAACCACTCTGAGAGCATAG -ACGGAAACCACTCTGAGAGACAAG -ACGGAAACCACTCTGAGAAAGCAG -ACGGAAACCACTCTGAGACGTCAA -ACGGAAACCACTCTGAGAGCTGAA -ACGGAAACCACTCTGAGAAGTACG -ACGGAAACCACTCTGAGAATCCGA -ACGGAAACCACTCTGAGAATGGGA -ACGGAAACCACTCTGAGAGTGCAA -ACGGAAACCACTCTGAGAGAGGAA -ACGGAAACCACTCTGAGACAGGTA -ACGGAAACCACTCTGAGAGACTCT -ACGGAAACCACTCTGAGAAGTCCT -ACGGAAACCACTCTGAGATAAGCC -ACGGAAACCACTCTGAGAATAGCC -ACGGAAACCACTCTGAGATAACCG -ACGGAAACCACTCTGAGAATGCCA -ACGGAAACCACTGTATCGGGAAAC -ACGGAAACCACTGTATCGAACACC -ACGGAAACCACTGTATCGATCGAG -ACGGAAACCACTGTATCGCTCCTT -ACGGAAACCACTGTATCGCCTGTT -ACGGAAACCACTGTATCGCGGTTT -ACGGAAACCACTGTATCGGTGGTT -ACGGAAACCACTGTATCGGCCTTT -ACGGAAACCACTGTATCGGGTCTT -ACGGAAACCACTGTATCGACGCTT -ACGGAAACCACTGTATCGAGCGTT -ACGGAAACCACTGTATCGTTCGTC -ACGGAAACCACTGTATCGTCTCTC -ACGGAAACCACTGTATCGTGGATC -ACGGAAACCACTGTATCGCACTTC -ACGGAAACCACTGTATCGGTACTC -ACGGAAACCACTGTATCGGATGTC -ACGGAAACCACTGTATCGACAGTC -ACGGAAACCACTGTATCGTTGCTG -ACGGAAACCACTGTATCGTCCATG -ACGGAAACCACTGTATCGTGTGTG -ACGGAAACCACTGTATCGCTAGTG -ACGGAAACCACTGTATCGCATCTG -ACGGAAACCACTGTATCGGAGTTG -ACGGAAACCACTGTATCGAGACTG -ACGGAAACCACTGTATCGTCGGTA -ACGGAAACCACTGTATCGTGCCTA -ACGGAAACCACTGTATCGCCACTA -ACGGAAACCACTGTATCGGGAGTA -ACGGAAACCACTGTATCGTCGTCT -ACGGAAACCACTGTATCGTGCACT -ACGGAAACCACTGTATCGCTGACT -ACGGAAACCACTGTATCGCAACCT -ACGGAAACCACTGTATCGGCTACT -ACGGAAACCACTGTATCGGGATCT -ACGGAAACCACTGTATCGAAGGCT -ACGGAAACCACTGTATCGTCAACC -ACGGAAACCACTGTATCGTGTTCC -ACGGAAACCACTGTATCGATTCCC -ACGGAAACCACTGTATCGTTCTCG -ACGGAAACCACTGTATCGTAGACG -ACGGAAACCACTGTATCGGTAACG -ACGGAAACCACTGTATCGACTTCG -ACGGAAACCACTGTATCGTACGCA -ACGGAAACCACTGTATCGCTTGCA -ACGGAAACCACTGTATCGCGAACA -ACGGAAACCACTGTATCGCAGTCA -ACGGAAACCACTGTATCGGATCCA -ACGGAAACCACTGTATCGACGACA -ACGGAAACCACTGTATCGAGCTCA -ACGGAAACCACTGTATCGTCACGT -ACGGAAACCACTGTATCGCGTAGT -ACGGAAACCACTGTATCGGTCAGT -ACGGAAACCACTGTATCGGAAGGT -ACGGAAACCACTGTATCGAACCGT -ACGGAAACCACTGTATCGTTGTGC -ACGGAAACCACTGTATCGCTAAGC -ACGGAAACCACTGTATCGACTAGC -ACGGAAACCACTGTATCGAGATGC -ACGGAAACCACTGTATCGTGAAGG -ACGGAAACCACTGTATCGCAATGG -ACGGAAACCACTGTATCGATGAGG -ACGGAAACCACTGTATCGAATGGG -ACGGAAACCACTGTATCGTCCTGA -ACGGAAACCACTGTATCGTAGCGA -ACGGAAACCACTGTATCGCACAGA -ACGGAAACCACTGTATCGGCAAGA -ACGGAAACCACTGTATCGGGTTGA -ACGGAAACCACTGTATCGTCCGAT -ACGGAAACCACTGTATCGTGGCAT -ACGGAAACCACTGTATCGCGAGAT -ACGGAAACCACTGTATCGTACCAC -ACGGAAACCACTGTATCGCAGAAC -ACGGAAACCACTGTATCGGTCTAC -ACGGAAACCACTGTATCGACGTAC -ACGGAAACCACTGTATCGAGTGAC -ACGGAAACCACTGTATCGCTGTAG -ACGGAAACCACTGTATCGCCTAAG -ACGGAAACCACTGTATCGGTTCAG -ACGGAAACCACTGTATCGGCATAG -ACGGAAACCACTGTATCGGACAAG -ACGGAAACCACTGTATCGAAGCAG -ACGGAAACCACTGTATCGCGTCAA -ACGGAAACCACTGTATCGGCTGAA -ACGGAAACCACTGTATCGAGTACG -ACGGAAACCACTGTATCGATCCGA -ACGGAAACCACTGTATCGATGGGA -ACGGAAACCACTGTATCGGTGCAA -ACGGAAACCACTGTATCGGAGGAA -ACGGAAACCACTGTATCGCAGGTA -ACGGAAACCACTGTATCGGACTCT -ACGGAAACCACTGTATCGAGTCCT -ACGGAAACCACTGTATCGTAAGCC -ACGGAAACCACTGTATCGATAGCC -ACGGAAACCACTGTATCGTAACCG -ACGGAAACCACTGTATCGATGCCA -ACGGAAACCACTCTATGCGGAAAC -ACGGAAACCACTCTATGCAACACC -ACGGAAACCACTCTATGCATCGAG -ACGGAAACCACTCTATGCCTCCTT -ACGGAAACCACTCTATGCCCTGTT -ACGGAAACCACTCTATGCCGGTTT -ACGGAAACCACTCTATGCGTGGTT -ACGGAAACCACTCTATGCGCCTTT -ACGGAAACCACTCTATGCGGTCTT -ACGGAAACCACTCTATGCACGCTT -ACGGAAACCACTCTATGCAGCGTT -ACGGAAACCACTCTATGCTTCGTC -ACGGAAACCACTCTATGCTCTCTC -ACGGAAACCACTCTATGCTGGATC -ACGGAAACCACTCTATGCCACTTC -ACGGAAACCACTCTATGCGTACTC -ACGGAAACCACTCTATGCGATGTC -ACGGAAACCACTCTATGCACAGTC -ACGGAAACCACTCTATGCTTGCTG -ACGGAAACCACTCTATGCTCCATG -ACGGAAACCACTCTATGCTGTGTG -ACGGAAACCACTCTATGCCTAGTG -ACGGAAACCACTCTATGCCATCTG -ACGGAAACCACTCTATGCGAGTTG -ACGGAAACCACTCTATGCAGACTG -ACGGAAACCACTCTATGCTCGGTA -ACGGAAACCACTCTATGCTGCCTA -ACGGAAACCACTCTATGCCCACTA -ACGGAAACCACTCTATGCGGAGTA -ACGGAAACCACTCTATGCTCGTCT -ACGGAAACCACTCTATGCTGCACT -ACGGAAACCACTCTATGCCTGACT -ACGGAAACCACTCTATGCCAACCT -ACGGAAACCACTCTATGCGCTACT -ACGGAAACCACTCTATGCGGATCT -ACGGAAACCACTCTATGCAAGGCT -ACGGAAACCACTCTATGCTCAACC -ACGGAAACCACTCTATGCTGTTCC -ACGGAAACCACTCTATGCATTCCC -ACGGAAACCACTCTATGCTTCTCG -ACGGAAACCACTCTATGCTAGACG -ACGGAAACCACTCTATGCGTAACG -ACGGAAACCACTCTATGCACTTCG -ACGGAAACCACTCTATGCTACGCA -ACGGAAACCACTCTATGCCTTGCA -ACGGAAACCACTCTATGCCGAACA -ACGGAAACCACTCTATGCCAGTCA -ACGGAAACCACTCTATGCGATCCA -ACGGAAACCACTCTATGCACGACA -ACGGAAACCACTCTATGCAGCTCA -ACGGAAACCACTCTATGCTCACGT -ACGGAAACCACTCTATGCCGTAGT -ACGGAAACCACTCTATGCGTCAGT -ACGGAAACCACTCTATGCGAAGGT -ACGGAAACCACTCTATGCAACCGT -ACGGAAACCACTCTATGCTTGTGC -ACGGAAACCACTCTATGCCTAAGC -ACGGAAACCACTCTATGCACTAGC -ACGGAAACCACTCTATGCAGATGC -ACGGAAACCACTCTATGCTGAAGG -ACGGAAACCACTCTATGCCAATGG -ACGGAAACCACTCTATGCATGAGG -ACGGAAACCACTCTATGCAATGGG -ACGGAAACCACTCTATGCTCCTGA -ACGGAAACCACTCTATGCTAGCGA -ACGGAAACCACTCTATGCCACAGA -ACGGAAACCACTCTATGCGCAAGA -ACGGAAACCACTCTATGCGGTTGA -ACGGAAACCACTCTATGCTCCGAT -ACGGAAACCACTCTATGCTGGCAT -ACGGAAACCACTCTATGCCGAGAT -ACGGAAACCACTCTATGCTACCAC -ACGGAAACCACTCTATGCCAGAAC -ACGGAAACCACTCTATGCGTCTAC -ACGGAAACCACTCTATGCACGTAC -ACGGAAACCACTCTATGCAGTGAC -ACGGAAACCACTCTATGCCTGTAG -ACGGAAACCACTCTATGCCCTAAG -ACGGAAACCACTCTATGCGTTCAG -ACGGAAACCACTCTATGCGCATAG -ACGGAAACCACTCTATGCGACAAG -ACGGAAACCACTCTATGCAAGCAG -ACGGAAACCACTCTATGCCGTCAA -ACGGAAACCACTCTATGCGCTGAA -ACGGAAACCACTCTATGCAGTACG -ACGGAAACCACTCTATGCATCCGA -ACGGAAACCACTCTATGCATGGGA -ACGGAAACCACTCTATGCGTGCAA -ACGGAAACCACTCTATGCGAGGAA -ACGGAAACCACTCTATGCCAGGTA -ACGGAAACCACTCTATGCGACTCT -ACGGAAACCACTCTATGCAGTCCT -ACGGAAACCACTCTATGCTAAGCC -ACGGAAACCACTCTATGCATAGCC -ACGGAAACCACTCTATGCTAACCG -ACGGAAACCACTCTATGCATGCCA -ACGGAAACCACTCTACCAGGAAAC -ACGGAAACCACTCTACCAAACACC -ACGGAAACCACTCTACCAATCGAG -ACGGAAACCACTCTACCACTCCTT -ACGGAAACCACTCTACCACCTGTT -ACGGAAACCACTCTACCACGGTTT -ACGGAAACCACTCTACCAGTGGTT -ACGGAAACCACTCTACCAGCCTTT -ACGGAAACCACTCTACCAGGTCTT -ACGGAAACCACTCTACCAACGCTT -ACGGAAACCACTCTACCAAGCGTT -ACGGAAACCACTCTACCATTCGTC -ACGGAAACCACTCTACCATCTCTC -ACGGAAACCACTCTACCATGGATC -ACGGAAACCACTCTACCACACTTC -ACGGAAACCACTCTACCAGTACTC -ACGGAAACCACTCTACCAGATGTC -ACGGAAACCACTCTACCAACAGTC -ACGGAAACCACTCTACCATTGCTG -ACGGAAACCACTCTACCATCCATG -ACGGAAACCACTCTACCATGTGTG -ACGGAAACCACTCTACCACTAGTG -ACGGAAACCACTCTACCACATCTG -ACGGAAACCACTCTACCAGAGTTG -ACGGAAACCACTCTACCAAGACTG -ACGGAAACCACTCTACCATCGGTA -ACGGAAACCACTCTACCATGCCTA -ACGGAAACCACTCTACCACCACTA -ACGGAAACCACTCTACCAGGAGTA -ACGGAAACCACTCTACCATCGTCT -ACGGAAACCACTCTACCATGCACT -ACGGAAACCACTCTACCACTGACT -ACGGAAACCACTCTACCACAACCT -ACGGAAACCACTCTACCAGCTACT -ACGGAAACCACTCTACCAGGATCT -ACGGAAACCACTCTACCAAAGGCT -ACGGAAACCACTCTACCATCAACC -ACGGAAACCACTCTACCATGTTCC -ACGGAAACCACTCTACCAATTCCC -ACGGAAACCACTCTACCATTCTCG -ACGGAAACCACTCTACCATAGACG -ACGGAAACCACTCTACCAGTAACG -ACGGAAACCACTCTACCAACTTCG -ACGGAAACCACTCTACCATACGCA -ACGGAAACCACTCTACCACTTGCA -ACGGAAACCACTCTACCACGAACA -ACGGAAACCACTCTACCACAGTCA -ACGGAAACCACTCTACCAGATCCA -ACGGAAACCACTCTACCAACGACA -ACGGAAACCACTCTACCAAGCTCA -ACGGAAACCACTCTACCATCACGT -ACGGAAACCACTCTACCACGTAGT -ACGGAAACCACTCTACCAGTCAGT -ACGGAAACCACTCTACCAGAAGGT -ACGGAAACCACTCTACCAAACCGT -ACGGAAACCACTCTACCATTGTGC -ACGGAAACCACTCTACCACTAAGC -ACGGAAACCACTCTACCAACTAGC -ACGGAAACCACTCTACCAAGATGC -ACGGAAACCACTCTACCATGAAGG -ACGGAAACCACTCTACCACAATGG -ACGGAAACCACTCTACCAATGAGG -ACGGAAACCACTCTACCAAATGGG -ACGGAAACCACTCTACCATCCTGA -ACGGAAACCACTCTACCATAGCGA -ACGGAAACCACTCTACCACACAGA -ACGGAAACCACTCTACCAGCAAGA -ACGGAAACCACTCTACCAGGTTGA -ACGGAAACCACTCTACCATCCGAT -ACGGAAACCACTCTACCATGGCAT -ACGGAAACCACTCTACCACGAGAT -ACGGAAACCACTCTACCATACCAC -ACGGAAACCACTCTACCACAGAAC -ACGGAAACCACTCTACCAGTCTAC -ACGGAAACCACTCTACCAACGTAC -ACGGAAACCACTCTACCAAGTGAC -ACGGAAACCACTCTACCACTGTAG -ACGGAAACCACTCTACCACCTAAG -ACGGAAACCACTCTACCAGTTCAG -ACGGAAACCACTCTACCAGCATAG -ACGGAAACCACTCTACCAGACAAG -ACGGAAACCACTCTACCAAAGCAG -ACGGAAACCACTCTACCACGTCAA -ACGGAAACCACTCTACCAGCTGAA -ACGGAAACCACTCTACCAAGTACG -ACGGAAACCACTCTACCAATCCGA -ACGGAAACCACTCTACCAATGGGA -ACGGAAACCACTCTACCAGTGCAA -ACGGAAACCACTCTACCAGAGGAA -ACGGAAACCACTCTACCACAGGTA -ACGGAAACCACTCTACCAGACTCT -ACGGAAACCACTCTACCAAGTCCT -ACGGAAACCACTCTACCATAAGCC -ACGGAAACCACTCTACCAATAGCC -ACGGAAACCACTCTACCATAACCG -ACGGAAACCACTCTACCAATGCCA -ACGGAAACCACTGTAGGAGGAAAC -ACGGAAACCACTGTAGGAAACACC -ACGGAAACCACTGTAGGAATCGAG -ACGGAAACCACTGTAGGACTCCTT -ACGGAAACCACTGTAGGACCTGTT -ACGGAAACCACTGTAGGACGGTTT -ACGGAAACCACTGTAGGAGTGGTT -ACGGAAACCACTGTAGGAGCCTTT -ACGGAAACCACTGTAGGAGGTCTT -ACGGAAACCACTGTAGGAACGCTT -ACGGAAACCACTGTAGGAAGCGTT -ACGGAAACCACTGTAGGATTCGTC -ACGGAAACCACTGTAGGATCTCTC -ACGGAAACCACTGTAGGATGGATC -ACGGAAACCACTGTAGGACACTTC -ACGGAAACCACTGTAGGAGTACTC -ACGGAAACCACTGTAGGAGATGTC -ACGGAAACCACTGTAGGAACAGTC -ACGGAAACCACTGTAGGATTGCTG -ACGGAAACCACTGTAGGATCCATG -ACGGAAACCACTGTAGGATGTGTG -ACGGAAACCACTGTAGGACTAGTG -ACGGAAACCACTGTAGGACATCTG -ACGGAAACCACTGTAGGAGAGTTG -ACGGAAACCACTGTAGGAAGACTG -ACGGAAACCACTGTAGGATCGGTA -ACGGAAACCACTGTAGGATGCCTA -ACGGAAACCACTGTAGGACCACTA -ACGGAAACCACTGTAGGAGGAGTA -ACGGAAACCACTGTAGGATCGTCT -ACGGAAACCACTGTAGGATGCACT -ACGGAAACCACTGTAGGACTGACT -ACGGAAACCACTGTAGGACAACCT -ACGGAAACCACTGTAGGAGCTACT -ACGGAAACCACTGTAGGAGGATCT -ACGGAAACCACTGTAGGAAAGGCT -ACGGAAACCACTGTAGGATCAACC -ACGGAAACCACTGTAGGATGTTCC -ACGGAAACCACTGTAGGAATTCCC -ACGGAAACCACTGTAGGATTCTCG -ACGGAAACCACTGTAGGATAGACG -ACGGAAACCACTGTAGGAGTAACG -ACGGAAACCACTGTAGGAACTTCG -ACGGAAACCACTGTAGGATACGCA -ACGGAAACCACTGTAGGACTTGCA -ACGGAAACCACTGTAGGACGAACA -ACGGAAACCACTGTAGGACAGTCA -ACGGAAACCACTGTAGGAGATCCA -ACGGAAACCACTGTAGGAACGACA -ACGGAAACCACTGTAGGAAGCTCA -ACGGAAACCACTGTAGGATCACGT -ACGGAAACCACTGTAGGACGTAGT -ACGGAAACCACTGTAGGAGTCAGT -ACGGAAACCACTGTAGGAGAAGGT -ACGGAAACCACTGTAGGAAACCGT -ACGGAAACCACTGTAGGATTGTGC -ACGGAAACCACTGTAGGACTAAGC -ACGGAAACCACTGTAGGAACTAGC -ACGGAAACCACTGTAGGAAGATGC -ACGGAAACCACTGTAGGATGAAGG -ACGGAAACCACTGTAGGACAATGG -ACGGAAACCACTGTAGGAATGAGG -ACGGAAACCACTGTAGGAAATGGG -ACGGAAACCACTGTAGGATCCTGA -ACGGAAACCACTGTAGGATAGCGA -ACGGAAACCACTGTAGGACACAGA -ACGGAAACCACTGTAGGAGCAAGA -ACGGAAACCACTGTAGGAGGTTGA -ACGGAAACCACTGTAGGATCCGAT -ACGGAAACCACTGTAGGATGGCAT -ACGGAAACCACTGTAGGACGAGAT -ACGGAAACCACTGTAGGATACCAC -ACGGAAACCACTGTAGGACAGAAC -ACGGAAACCACTGTAGGAGTCTAC -ACGGAAACCACTGTAGGAACGTAC -ACGGAAACCACTGTAGGAAGTGAC -ACGGAAACCACTGTAGGACTGTAG -ACGGAAACCACTGTAGGACCTAAG -ACGGAAACCACTGTAGGAGTTCAG -ACGGAAACCACTGTAGGAGCATAG -ACGGAAACCACTGTAGGAGACAAG -ACGGAAACCACTGTAGGAAAGCAG -ACGGAAACCACTGTAGGACGTCAA -ACGGAAACCACTGTAGGAGCTGAA -ACGGAAACCACTGTAGGAAGTACG -ACGGAAACCACTGTAGGAATCCGA -ACGGAAACCACTGTAGGAATGGGA -ACGGAAACCACTGTAGGAGTGCAA -ACGGAAACCACTGTAGGAGAGGAA -ACGGAAACCACTGTAGGACAGGTA -ACGGAAACCACTGTAGGAGACTCT -ACGGAAACCACTGTAGGAAGTCCT -ACGGAAACCACTGTAGGATAAGCC -ACGGAAACCACTGTAGGAATAGCC -ACGGAAACCACTGTAGGATAACCG -ACGGAAACCACTGTAGGAATGCCA -ACGGAAACCACTTCTTCGGGAAAC -ACGGAAACCACTTCTTCGAACACC -ACGGAAACCACTTCTTCGATCGAG -ACGGAAACCACTTCTTCGCTCCTT -ACGGAAACCACTTCTTCGCCTGTT -ACGGAAACCACTTCTTCGCGGTTT -ACGGAAACCACTTCTTCGGTGGTT -ACGGAAACCACTTCTTCGGCCTTT -ACGGAAACCACTTCTTCGGGTCTT -ACGGAAACCACTTCTTCGACGCTT -ACGGAAACCACTTCTTCGAGCGTT -ACGGAAACCACTTCTTCGTTCGTC -ACGGAAACCACTTCTTCGTCTCTC -ACGGAAACCACTTCTTCGTGGATC -ACGGAAACCACTTCTTCGCACTTC -ACGGAAACCACTTCTTCGGTACTC -ACGGAAACCACTTCTTCGGATGTC -ACGGAAACCACTTCTTCGACAGTC -ACGGAAACCACTTCTTCGTTGCTG -ACGGAAACCACTTCTTCGTCCATG -ACGGAAACCACTTCTTCGTGTGTG -ACGGAAACCACTTCTTCGCTAGTG -ACGGAAACCACTTCTTCGCATCTG -ACGGAAACCACTTCTTCGGAGTTG -ACGGAAACCACTTCTTCGAGACTG -ACGGAAACCACTTCTTCGTCGGTA -ACGGAAACCACTTCTTCGTGCCTA -ACGGAAACCACTTCTTCGCCACTA -ACGGAAACCACTTCTTCGGGAGTA -ACGGAAACCACTTCTTCGTCGTCT -ACGGAAACCACTTCTTCGTGCACT -ACGGAAACCACTTCTTCGCTGACT -ACGGAAACCACTTCTTCGCAACCT -ACGGAAACCACTTCTTCGGCTACT -ACGGAAACCACTTCTTCGGGATCT -ACGGAAACCACTTCTTCGAAGGCT -ACGGAAACCACTTCTTCGTCAACC -ACGGAAACCACTTCTTCGTGTTCC -ACGGAAACCACTTCTTCGATTCCC -ACGGAAACCACTTCTTCGTTCTCG -ACGGAAACCACTTCTTCGTAGACG -ACGGAAACCACTTCTTCGGTAACG -ACGGAAACCACTTCTTCGACTTCG -ACGGAAACCACTTCTTCGTACGCA -ACGGAAACCACTTCTTCGCTTGCA -ACGGAAACCACTTCTTCGCGAACA -ACGGAAACCACTTCTTCGCAGTCA -ACGGAAACCACTTCTTCGGATCCA -ACGGAAACCACTTCTTCGACGACA -ACGGAAACCACTTCTTCGAGCTCA -ACGGAAACCACTTCTTCGTCACGT -ACGGAAACCACTTCTTCGCGTAGT -ACGGAAACCACTTCTTCGGTCAGT -ACGGAAACCACTTCTTCGGAAGGT -ACGGAAACCACTTCTTCGAACCGT -ACGGAAACCACTTCTTCGTTGTGC -ACGGAAACCACTTCTTCGCTAAGC -ACGGAAACCACTTCTTCGACTAGC -ACGGAAACCACTTCTTCGAGATGC -ACGGAAACCACTTCTTCGTGAAGG -ACGGAAACCACTTCTTCGCAATGG -ACGGAAACCACTTCTTCGATGAGG -ACGGAAACCACTTCTTCGAATGGG -ACGGAAACCACTTCTTCGTCCTGA -ACGGAAACCACTTCTTCGTAGCGA -ACGGAAACCACTTCTTCGCACAGA -ACGGAAACCACTTCTTCGGCAAGA -ACGGAAACCACTTCTTCGGGTTGA -ACGGAAACCACTTCTTCGTCCGAT -ACGGAAACCACTTCTTCGTGGCAT -ACGGAAACCACTTCTTCGCGAGAT -ACGGAAACCACTTCTTCGTACCAC -ACGGAAACCACTTCTTCGCAGAAC -ACGGAAACCACTTCTTCGGTCTAC -ACGGAAACCACTTCTTCGACGTAC -ACGGAAACCACTTCTTCGAGTGAC -ACGGAAACCACTTCTTCGCTGTAG -ACGGAAACCACTTCTTCGCCTAAG -ACGGAAACCACTTCTTCGGTTCAG -ACGGAAACCACTTCTTCGGCATAG -ACGGAAACCACTTCTTCGGACAAG -ACGGAAACCACTTCTTCGAAGCAG -ACGGAAACCACTTCTTCGCGTCAA -ACGGAAACCACTTCTTCGGCTGAA -ACGGAAACCACTTCTTCGAGTACG -ACGGAAACCACTTCTTCGATCCGA -ACGGAAACCACTTCTTCGATGGGA -ACGGAAACCACTTCTTCGGTGCAA -ACGGAAACCACTTCTTCGGAGGAA -ACGGAAACCACTTCTTCGCAGGTA -ACGGAAACCACTTCTTCGGACTCT -ACGGAAACCACTTCTTCGAGTCCT -ACGGAAACCACTTCTTCGTAAGCC -ACGGAAACCACTTCTTCGATAGCC -ACGGAAACCACTTCTTCGTAACCG -ACGGAAACCACTTCTTCGATGCCA -ACGGAAACCACTACTTGCGGAAAC -ACGGAAACCACTACTTGCAACACC -ACGGAAACCACTACTTGCATCGAG -ACGGAAACCACTACTTGCCTCCTT -ACGGAAACCACTACTTGCCCTGTT -ACGGAAACCACTACTTGCCGGTTT -ACGGAAACCACTACTTGCGTGGTT -ACGGAAACCACTACTTGCGCCTTT -ACGGAAACCACTACTTGCGGTCTT -ACGGAAACCACTACTTGCACGCTT -ACGGAAACCACTACTTGCAGCGTT -ACGGAAACCACTACTTGCTTCGTC -ACGGAAACCACTACTTGCTCTCTC -ACGGAAACCACTACTTGCTGGATC -ACGGAAACCACTACTTGCCACTTC -ACGGAAACCACTACTTGCGTACTC -ACGGAAACCACTACTTGCGATGTC -ACGGAAACCACTACTTGCACAGTC -ACGGAAACCACTACTTGCTTGCTG -ACGGAAACCACTACTTGCTCCATG -ACGGAAACCACTACTTGCTGTGTG -ACGGAAACCACTACTTGCCTAGTG -ACGGAAACCACTACTTGCCATCTG -ACGGAAACCACTACTTGCGAGTTG -ACGGAAACCACTACTTGCAGACTG -ACGGAAACCACTACTTGCTCGGTA -ACGGAAACCACTACTTGCTGCCTA -ACGGAAACCACTACTTGCCCACTA -ACGGAAACCACTACTTGCGGAGTA -ACGGAAACCACTACTTGCTCGTCT -ACGGAAACCACTACTTGCTGCACT -ACGGAAACCACTACTTGCCTGACT -ACGGAAACCACTACTTGCCAACCT -ACGGAAACCACTACTTGCGCTACT -ACGGAAACCACTACTTGCGGATCT -ACGGAAACCACTACTTGCAAGGCT -ACGGAAACCACTACTTGCTCAACC -ACGGAAACCACTACTTGCTGTTCC -ACGGAAACCACTACTTGCATTCCC -ACGGAAACCACTACTTGCTTCTCG -ACGGAAACCACTACTTGCTAGACG -ACGGAAACCACTACTTGCGTAACG -ACGGAAACCACTACTTGCACTTCG -ACGGAAACCACTACTTGCTACGCA -ACGGAAACCACTACTTGCCTTGCA -ACGGAAACCACTACTTGCCGAACA -ACGGAAACCACTACTTGCCAGTCA -ACGGAAACCACTACTTGCGATCCA -ACGGAAACCACTACTTGCACGACA -ACGGAAACCACTACTTGCAGCTCA -ACGGAAACCACTACTTGCTCACGT -ACGGAAACCACTACTTGCCGTAGT -ACGGAAACCACTACTTGCGTCAGT -ACGGAAACCACTACTTGCGAAGGT -ACGGAAACCACTACTTGCAACCGT -ACGGAAACCACTACTTGCTTGTGC -ACGGAAACCACTACTTGCCTAAGC -ACGGAAACCACTACTTGCACTAGC -ACGGAAACCACTACTTGCAGATGC -ACGGAAACCACTACTTGCTGAAGG -ACGGAAACCACTACTTGCCAATGG -ACGGAAACCACTACTTGCATGAGG -ACGGAAACCACTACTTGCAATGGG -ACGGAAACCACTACTTGCTCCTGA -ACGGAAACCACTACTTGCTAGCGA -ACGGAAACCACTACTTGCCACAGA -ACGGAAACCACTACTTGCGCAAGA -ACGGAAACCACTACTTGCGGTTGA -ACGGAAACCACTACTTGCTCCGAT -ACGGAAACCACTACTTGCTGGCAT -ACGGAAACCACTACTTGCCGAGAT -ACGGAAACCACTACTTGCTACCAC -ACGGAAACCACTACTTGCCAGAAC -ACGGAAACCACTACTTGCGTCTAC -ACGGAAACCACTACTTGCACGTAC -ACGGAAACCACTACTTGCAGTGAC -ACGGAAACCACTACTTGCCTGTAG -ACGGAAACCACTACTTGCCCTAAG -ACGGAAACCACTACTTGCGTTCAG -ACGGAAACCACTACTTGCGCATAG -ACGGAAACCACTACTTGCGACAAG -ACGGAAACCACTACTTGCAAGCAG -ACGGAAACCACTACTTGCCGTCAA -ACGGAAACCACTACTTGCGCTGAA -ACGGAAACCACTACTTGCAGTACG -ACGGAAACCACTACTTGCATCCGA -ACGGAAACCACTACTTGCATGGGA -ACGGAAACCACTACTTGCGTGCAA -ACGGAAACCACTACTTGCGAGGAA -ACGGAAACCACTACTTGCCAGGTA -ACGGAAACCACTACTTGCGACTCT -ACGGAAACCACTACTTGCAGTCCT -ACGGAAACCACTACTTGCTAAGCC -ACGGAAACCACTACTTGCATAGCC -ACGGAAACCACTACTTGCTAACCG -ACGGAAACCACTACTTGCATGCCA -ACGGAAACCACTACTCTGGGAAAC -ACGGAAACCACTACTCTGAACACC -ACGGAAACCACTACTCTGATCGAG -ACGGAAACCACTACTCTGCTCCTT -ACGGAAACCACTACTCTGCCTGTT -ACGGAAACCACTACTCTGCGGTTT -ACGGAAACCACTACTCTGGTGGTT -ACGGAAACCACTACTCTGGCCTTT -ACGGAAACCACTACTCTGGGTCTT -ACGGAAACCACTACTCTGACGCTT -ACGGAAACCACTACTCTGAGCGTT -ACGGAAACCACTACTCTGTTCGTC -ACGGAAACCACTACTCTGTCTCTC -ACGGAAACCACTACTCTGTGGATC -ACGGAAACCACTACTCTGCACTTC -ACGGAAACCACTACTCTGGTACTC -ACGGAAACCACTACTCTGGATGTC -ACGGAAACCACTACTCTGACAGTC -ACGGAAACCACTACTCTGTTGCTG -ACGGAAACCACTACTCTGTCCATG -ACGGAAACCACTACTCTGTGTGTG -ACGGAAACCACTACTCTGCTAGTG -ACGGAAACCACTACTCTGCATCTG -ACGGAAACCACTACTCTGGAGTTG -ACGGAAACCACTACTCTGAGACTG -ACGGAAACCACTACTCTGTCGGTA -ACGGAAACCACTACTCTGTGCCTA -ACGGAAACCACTACTCTGCCACTA -ACGGAAACCACTACTCTGGGAGTA -ACGGAAACCACTACTCTGTCGTCT -ACGGAAACCACTACTCTGTGCACT -ACGGAAACCACTACTCTGCTGACT -ACGGAAACCACTACTCTGCAACCT -ACGGAAACCACTACTCTGGCTACT -ACGGAAACCACTACTCTGGGATCT -ACGGAAACCACTACTCTGAAGGCT -ACGGAAACCACTACTCTGTCAACC -ACGGAAACCACTACTCTGTGTTCC -ACGGAAACCACTACTCTGATTCCC -ACGGAAACCACTACTCTGTTCTCG -ACGGAAACCACTACTCTGTAGACG -ACGGAAACCACTACTCTGGTAACG -ACGGAAACCACTACTCTGACTTCG -ACGGAAACCACTACTCTGTACGCA -ACGGAAACCACTACTCTGCTTGCA -ACGGAAACCACTACTCTGCGAACA -ACGGAAACCACTACTCTGCAGTCA -ACGGAAACCACTACTCTGGATCCA -ACGGAAACCACTACTCTGACGACA -ACGGAAACCACTACTCTGAGCTCA -ACGGAAACCACTACTCTGTCACGT -ACGGAAACCACTACTCTGCGTAGT -ACGGAAACCACTACTCTGGTCAGT -ACGGAAACCACTACTCTGGAAGGT -ACGGAAACCACTACTCTGAACCGT -ACGGAAACCACTACTCTGTTGTGC -ACGGAAACCACTACTCTGCTAAGC -ACGGAAACCACTACTCTGACTAGC -ACGGAAACCACTACTCTGAGATGC -ACGGAAACCACTACTCTGTGAAGG -ACGGAAACCACTACTCTGCAATGG -ACGGAAACCACTACTCTGATGAGG -ACGGAAACCACTACTCTGAATGGG -ACGGAAACCACTACTCTGTCCTGA -ACGGAAACCACTACTCTGTAGCGA -ACGGAAACCACTACTCTGCACAGA -ACGGAAACCACTACTCTGGCAAGA -ACGGAAACCACTACTCTGGGTTGA -ACGGAAACCACTACTCTGTCCGAT -ACGGAAACCACTACTCTGTGGCAT -ACGGAAACCACTACTCTGCGAGAT -ACGGAAACCACTACTCTGTACCAC -ACGGAAACCACTACTCTGCAGAAC -ACGGAAACCACTACTCTGGTCTAC -ACGGAAACCACTACTCTGACGTAC -ACGGAAACCACTACTCTGAGTGAC -ACGGAAACCACTACTCTGCTGTAG -ACGGAAACCACTACTCTGCCTAAG -ACGGAAACCACTACTCTGGTTCAG -ACGGAAACCACTACTCTGGCATAG -ACGGAAACCACTACTCTGGACAAG -ACGGAAACCACTACTCTGAAGCAG -ACGGAAACCACTACTCTGCGTCAA -ACGGAAACCACTACTCTGGCTGAA -ACGGAAACCACTACTCTGAGTACG -ACGGAAACCACTACTCTGATCCGA -ACGGAAACCACTACTCTGATGGGA -ACGGAAACCACTACTCTGGTGCAA -ACGGAAACCACTACTCTGGAGGAA -ACGGAAACCACTACTCTGCAGGTA -ACGGAAACCACTACTCTGGACTCT -ACGGAAACCACTACTCTGAGTCCT -ACGGAAACCACTACTCTGTAAGCC -ACGGAAACCACTACTCTGATAGCC -ACGGAAACCACTACTCTGTAACCG -ACGGAAACCACTACTCTGATGCCA -ACGGAAACCACTCCTCAAGGAAAC -ACGGAAACCACTCCTCAAAACACC -ACGGAAACCACTCCTCAAATCGAG -ACGGAAACCACTCCTCAACTCCTT -ACGGAAACCACTCCTCAACCTGTT -ACGGAAACCACTCCTCAACGGTTT -ACGGAAACCACTCCTCAAGTGGTT -ACGGAAACCACTCCTCAAGCCTTT -ACGGAAACCACTCCTCAAGGTCTT -ACGGAAACCACTCCTCAAACGCTT -ACGGAAACCACTCCTCAAAGCGTT -ACGGAAACCACTCCTCAATTCGTC -ACGGAAACCACTCCTCAATCTCTC -ACGGAAACCACTCCTCAATGGATC -ACGGAAACCACTCCTCAACACTTC -ACGGAAACCACTCCTCAAGTACTC -ACGGAAACCACTCCTCAAGATGTC -ACGGAAACCACTCCTCAAACAGTC -ACGGAAACCACTCCTCAATTGCTG -ACGGAAACCACTCCTCAATCCATG -ACGGAAACCACTCCTCAATGTGTG -ACGGAAACCACTCCTCAACTAGTG -ACGGAAACCACTCCTCAACATCTG -ACGGAAACCACTCCTCAAGAGTTG -ACGGAAACCACTCCTCAAAGACTG -ACGGAAACCACTCCTCAATCGGTA -ACGGAAACCACTCCTCAATGCCTA -ACGGAAACCACTCCTCAACCACTA -ACGGAAACCACTCCTCAAGGAGTA -ACGGAAACCACTCCTCAATCGTCT -ACGGAAACCACTCCTCAATGCACT -ACGGAAACCACTCCTCAACTGACT -ACGGAAACCACTCCTCAACAACCT -ACGGAAACCACTCCTCAAGCTACT -ACGGAAACCACTCCTCAAGGATCT -ACGGAAACCACTCCTCAAAAGGCT -ACGGAAACCACTCCTCAATCAACC -ACGGAAACCACTCCTCAATGTTCC -ACGGAAACCACTCCTCAAATTCCC -ACGGAAACCACTCCTCAATTCTCG -ACGGAAACCACTCCTCAATAGACG -ACGGAAACCACTCCTCAAGTAACG -ACGGAAACCACTCCTCAAACTTCG -ACGGAAACCACTCCTCAATACGCA -ACGGAAACCACTCCTCAACTTGCA -ACGGAAACCACTCCTCAACGAACA -ACGGAAACCACTCCTCAACAGTCA -ACGGAAACCACTCCTCAAGATCCA -ACGGAAACCACTCCTCAAACGACA -ACGGAAACCACTCCTCAAAGCTCA -ACGGAAACCACTCCTCAATCACGT -ACGGAAACCACTCCTCAACGTAGT -ACGGAAACCACTCCTCAAGTCAGT -ACGGAAACCACTCCTCAAGAAGGT -ACGGAAACCACTCCTCAAAACCGT -ACGGAAACCACTCCTCAATTGTGC -ACGGAAACCACTCCTCAACTAAGC -ACGGAAACCACTCCTCAAACTAGC -ACGGAAACCACTCCTCAAAGATGC -ACGGAAACCACTCCTCAATGAAGG -ACGGAAACCACTCCTCAACAATGG -ACGGAAACCACTCCTCAAATGAGG -ACGGAAACCACTCCTCAAAATGGG -ACGGAAACCACTCCTCAATCCTGA -ACGGAAACCACTCCTCAATAGCGA -ACGGAAACCACTCCTCAACACAGA -ACGGAAACCACTCCTCAAGCAAGA -ACGGAAACCACTCCTCAAGGTTGA -ACGGAAACCACTCCTCAATCCGAT -ACGGAAACCACTCCTCAATGGCAT -ACGGAAACCACTCCTCAACGAGAT -ACGGAAACCACTCCTCAATACCAC -ACGGAAACCACTCCTCAACAGAAC -ACGGAAACCACTCCTCAAGTCTAC -ACGGAAACCACTCCTCAAACGTAC -ACGGAAACCACTCCTCAAAGTGAC -ACGGAAACCACTCCTCAACTGTAG -ACGGAAACCACTCCTCAACCTAAG -ACGGAAACCACTCCTCAAGTTCAG -ACGGAAACCACTCCTCAAGCATAG -ACGGAAACCACTCCTCAAGACAAG -ACGGAAACCACTCCTCAAAAGCAG -ACGGAAACCACTCCTCAACGTCAA -ACGGAAACCACTCCTCAAGCTGAA -ACGGAAACCACTCCTCAAAGTACG -ACGGAAACCACTCCTCAAATCCGA -ACGGAAACCACTCCTCAAATGGGA -ACGGAAACCACTCCTCAAGTGCAA -ACGGAAACCACTCCTCAAGAGGAA -ACGGAAACCACTCCTCAACAGGTA -ACGGAAACCACTCCTCAAGACTCT -ACGGAAACCACTCCTCAAAGTCCT -ACGGAAACCACTCCTCAATAAGCC -ACGGAAACCACTCCTCAAATAGCC -ACGGAAACCACTCCTCAATAACCG -ACGGAAACCACTCCTCAAATGCCA -ACGGAAACCACTACTGCTGGAAAC -ACGGAAACCACTACTGCTAACACC -ACGGAAACCACTACTGCTATCGAG -ACGGAAACCACTACTGCTCTCCTT -ACGGAAACCACTACTGCTCCTGTT -ACGGAAACCACTACTGCTCGGTTT -ACGGAAACCACTACTGCTGTGGTT -ACGGAAACCACTACTGCTGCCTTT -ACGGAAACCACTACTGCTGGTCTT -ACGGAAACCACTACTGCTACGCTT -ACGGAAACCACTACTGCTAGCGTT -ACGGAAACCACTACTGCTTTCGTC -ACGGAAACCACTACTGCTTCTCTC -ACGGAAACCACTACTGCTTGGATC -ACGGAAACCACTACTGCTCACTTC -ACGGAAACCACTACTGCTGTACTC -ACGGAAACCACTACTGCTGATGTC -ACGGAAACCACTACTGCTACAGTC -ACGGAAACCACTACTGCTTTGCTG -ACGGAAACCACTACTGCTTCCATG -ACGGAAACCACTACTGCTTGTGTG -ACGGAAACCACTACTGCTCTAGTG -ACGGAAACCACTACTGCTCATCTG -ACGGAAACCACTACTGCTGAGTTG -ACGGAAACCACTACTGCTAGACTG -ACGGAAACCACTACTGCTTCGGTA -ACGGAAACCACTACTGCTTGCCTA -ACGGAAACCACTACTGCTCCACTA -ACGGAAACCACTACTGCTGGAGTA -ACGGAAACCACTACTGCTTCGTCT -ACGGAAACCACTACTGCTTGCACT -ACGGAAACCACTACTGCTCTGACT -ACGGAAACCACTACTGCTCAACCT -ACGGAAACCACTACTGCTGCTACT -ACGGAAACCACTACTGCTGGATCT -ACGGAAACCACTACTGCTAAGGCT -ACGGAAACCACTACTGCTTCAACC -ACGGAAACCACTACTGCTTGTTCC -ACGGAAACCACTACTGCTATTCCC -ACGGAAACCACTACTGCTTTCTCG -ACGGAAACCACTACTGCTTAGACG -ACGGAAACCACTACTGCTGTAACG -ACGGAAACCACTACTGCTACTTCG -ACGGAAACCACTACTGCTTACGCA -ACGGAAACCACTACTGCTCTTGCA -ACGGAAACCACTACTGCTCGAACA -ACGGAAACCACTACTGCTCAGTCA -ACGGAAACCACTACTGCTGATCCA -ACGGAAACCACTACTGCTACGACA -ACGGAAACCACTACTGCTAGCTCA -ACGGAAACCACTACTGCTTCACGT -ACGGAAACCACTACTGCTCGTAGT -ACGGAAACCACTACTGCTGTCAGT -ACGGAAACCACTACTGCTGAAGGT -ACGGAAACCACTACTGCTAACCGT -ACGGAAACCACTACTGCTTTGTGC -ACGGAAACCACTACTGCTCTAAGC -ACGGAAACCACTACTGCTACTAGC -ACGGAAACCACTACTGCTAGATGC -ACGGAAACCACTACTGCTTGAAGG -ACGGAAACCACTACTGCTCAATGG -ACGGAAACCACTACTGCTATGAGG -ACGGAAACCACTACTGCTAATGGG -ACGGAAACCACTACTGCTTCCTGA -ACGGAAACCACTACTGCTTAGCGA -ACGGAAACCACTACTGCTCACAGA -ACGGAAACCACTACTGCTGCAAGA -ACGGAAACCACTACTGCTGGTTGA -ACGGAAACCACTACTGCTTCCGAT -ACGGAAACCACTACTGCTTGGCAT -ACGGAAACCACTACTGCTCGAGAT -ACGGAAACCACTACTGCTTACCAC -ACGGAAACCACTACTGCTCAGAAC -ACGGAAACCACTACTGCTGTCTAC -ACGGAAACCACTACTGCTACGTAC -ACGGAAACCACTACTGCTAGTGAC -ACGGAAACCACTACTGCTCTGTAG -ACGGAAACCACTACTGCTCCTAAG -ACGGAAACCACTACTGCTGTTCAG -ACGGAAACCACTACTGCTGCATAG -ACGGAAACCACTACTGCTGACAAG -ACGGAAACCACTACTGCTAAGCAG -ACGGAAACCACTACTGCTCGTCAA -ACGGAAACCACTACTGCTGCTGAA -ACGGAAACCACTACTGCTAGTACG -ACGGAAACCACTACTGCTATCCGA -ACGGAAACCACTACTGCTATGGGA -ACGGAAACCACTACTGCTGTGCAA -ACGGAAACCACTACTGCTGAGGAA -ACGGAAACCACTACTGCTCAGGTA -ACGGAAACCACTACTGCTGACTCT -ACGGAAACCACTACTGCTAGTCCT -ACGGAAACCACTACTGCTTAAGCC -ACGGAAACCACTACTGCTATAGCC -ACGGAAACCACTACTGCTTAACCG -ACGGAAACCACTACTGCTATGCCA -ACGGAAACCACTTCTGGAGGAAAC -ACGGAAACCACTTCTGGAAACACC -ACGGAAACCACTTCTGGAATCGAG -ACGGAAACCACTTCTGGACTCCTT -ACGGAAACCACTTCTGGACCTGTT -ACGGAAACCACTTCTGGACGGTTT -ACGGAAACCACTTCTGGAGTGGTT -ACGGAAACCACTTCTGGAGCCTTT -ACGGAAACCACTTCTGGAGGTCTT -ACGGAAACCACTTCTGGAACGCTT -ACGGAAACCACTTCTGGAAGCGTT -ACGGAAACCACTTCTGGATTCGTC -ACGGAAACCACTTCTGGATCTCTC -ACGGAAACCACTTCTGGATGGATC -ACGGAAACCACTTCTGGACACTTC -ACGGAAACCACTTCTGGAGTACTC -ACGGAAACCACTTCTGGAGATGTC -ACGGAAACCACTTCTGGAACAGTC -ACGGAAACCACTTCTGGATTGCTG -ACGGAAACCACTTCTGGATCCATG -ACGGAAACCACTTCTGGATGTGTG -ACGGAAACCACTTCTGGACTAGTG -ACGGAAACCACTTCTGGACATCTG -ACGGAAACCACTTCTGGAGAGTTG -ACGGAAACCACTTCTGGAAGACTG -ACGGAAACCACTTCTGGATCGGTA -ACGGAAACCACTTCTGGATGCCTA -ACGGAAACCACTTCTGGACCACTA -ACGGAAACCACTTCTGGAGGAGTA -ACGGAAACCACTTCTGGATCGTCT -ACGGAAACCACTTCTGGATGCACT -ACGGAAACCACTTCTGGACTGACT -ACGGAAACCACTTCTGGACAACCT -ACGGAAACCACTTCTGGAGCTACT -ACGGAAACCACTTCTGGAGGATCT -ACGGAAACCACTTCTGGAAAGGCT -ACGGAAACCACTTCTGGATCAACC -ACGGAAACCACTTCTGGATGTTCC -ACGGAAACCACTTCTGGAATTCCC -ACGGAAACCACTTCTGGATTCTCG -ACGGAAACCACTTCTGGATAGACG -ACGGAAACCACTTCTGGAGTAACG -ACGGAAACCACTTCTGGAACTTCG -ACGGAAACCACTTCTGGATACGCA -ACGGAAACCACTTCTGGACTTGCA -ACGGAAACCACTTCTGGACGAACA -ACGGAAACCACTTCTGGACAGTCA -ACGGAAACCACTTCTGGAGATCCA -ACGGAAACCACTTCTGGAACGACA -ACGGAAACCACTTCTGGAAGCTCA -ACGGAAACCACTTCTGGATCACGT -ACGGAAACCACTTCTGGACGTAGT -ACGGAAACCACTTCTGGAGTCAGT -ACGGAAACCACTTCTGGAGAAGGT -ACGGAAACCACTTCTGGAAACCGT -ACGGAAACCACTTCTGGATTGTGC -ACGGAAACCACTTCTGGACTAAGC -ACGGAAACCACTTCTGGAACTAGC -ACGGAAACCACTTCTGGAAGATGC -ACGGAAACCACTTCTGGATGAAGG -ACGGAAACCACTTCTGGACAATGG -ACGGAAACCACTTCTGGAATGAGG -ACGGAAACCACTTCTGGAAATGGG -ACGGAAACCACTTCTGGATCCTGA -ACGGAAACCACTTCTGGATAGCGA -ACGGAAACCACTTCTGGACACAGA -ACGGAAACCACTTCTGGAGCAAGA -ACGGAAACCACTTCTGGAGGTTGA -ACGGAAACCACTTCTGGATCCGAT -ACGGAAACCACTTCTGGATGGCAT -ACGGAAACCACTTCTGGACGAGAT -ACGGAAACCACTTCTGGATACCAC -ACGGAAACCACTTCTGGACAGAAC -ACGGAAACCACTTCTGGAGTCTAC -ACGGAAACCACTTCTGGAACGTAC -ACGGAAACCACTTCTGGAAGTGAC -ACGGAAACCACTTCTGGACTGTAG -ACGGAAACCACTTCTGGACCTAAG -ACGGAAACCACTTCTGGAGTTCAG -ACGGAAACCACTTCTGGAGCATAG -ACGGAAACCACTTCTGGAGACAAG -ACGGAAACCACTTCTGGAAAGCAG -ACGGAAACCACTTCTGGACGTCAA -ACGGAAACCACTTCTGGAGCTGAA -ACGGAAACCACTTCTGGAAGTACG -ACGGAAACCACTTCTGGAATCCGA -ACGGAAACCACTTCTGGAATGGGA -ACGGAAACCACTTCTGGAGTGCAA -ACGGAAACCACTTCTGGAGAGGAA -ACGGAAACCACTTCTGGACAGGTA -ACGGAAACCACTTCTGGAGACTCT -ACGGAAACCACTTCTGGAAGTCCT -ACGGAAACCACTTCTGGATAAGCC -ACGGAAACCACTTCTGGAATAGCC -ACGGAAACCACTTCTGGATAACCG -ACGGAAACCACTTCTGGAATGCCA -ACGGAAACCACTGCTAAGGGAAAC -ACGGAAACCACTGCTAAGAACACC -ACGGAAACCACTGCTAAGATCGAG -ACGGAAACCACTGCTAAGCTCCTT -ACGGAAACCACTGCTAAGCCTGTT -ACGGAAACCACTGCTAAGCGGTTT -ACGGAAACCACTGCTAAGGTGGTT -ACGGAAACCACTGCTAAGGCCTTT -ACGGAAACCACTGCTAAGGGTCTT -ACGGAAACCACTGCTAAGACGCTT -ACGGAAACCACTGCTAAGAGCGTT -ACGGAAACCACTGCTAAGTTCGTC -ACGGAAACCACTGCTAAGTCTCTC -ACGGAAACCACTGCTAAGTGGATC -ACGGAAACCACTGCTAAGCACTTC -ACGGAAACCACTGCTAAGGTACTC -ACGGAAACCACTGCTAAGGATGTC -ACGGAAACCACTGCTAAGACAGTC -ACGGAAACCACTGCTAAGTTGCTG -ACGGAAACCACTGCTAAGTCCATG -ACGGAAACCACTGCTAAGTGTGTG -ACGGAAACCACTGCTAAGCTAGTG -ACGGAAACCACTGCTAAGCATCTG -ACGGAAACCACTGCTAAGGAGTTG -ACGGAAACCACTGCTAAGAGACTG -ACGGAAACCACTGCTAAGTCGGTA -ACGGAAACCACTGCTAAGTGCCTA -ACGGAAACCACTGCTAAGCCACTA -ACGGAAACCACTGCTAAGGGAGTA -ACGGAAACCACTGCTAAGTCGTCT -ACGGAAACCACTGCTAAGTGCACT -ACGGAAACCACTGCTAAGCTGACT -ACGGAAACCACTGCTAAGCAACCT -ACGGAAACCACTGCTAAGGCTACT -ACGGAAACCACTGCTAAGGGATCT -ACGGAAACCACTGCTAAGAAGGCT -ACGGAAACCACTGCTAAGTCAACC -ACGGAAACCACTGCTAAGTGTTCC -ACGGAAACCACTGCTAAGATTCCC -ACGGAAACCACTGCTAAGTTCTCG -ACGGAAACCACTGCTAAGTAGACG -ACGGAAACCACTGCTAAGGTAACG -ACGGAAACCACTGCTAAGACTTCG -ACGGAAACCACTGCTAAGTACGCA -ACGGAAACCACTGCTAAGCTTGCA -ACGGAAACCACTGCTAAGCGAACA -ACGGAAACCACTGCTAAGCAGTCA -ACGGAAACCACTGCTAAGGATCCA -ACGGAAACCACTGCTAAGACGACA -ACGGAAACCACTGCTAAGAGCTCA -ACGGAAACCACTGCTAAGTCACGT -ACGGAAACCACTGCTAAGCGTAGT -ACGGAAACCACTGCTAAGGTCAGT -ACGGAAACCACTGCTAAGGAAGGT -ACGGAAACCACTGCTAAGAACCGT -ACGGAAACCACTGCTAAGTTGTGC -ACGGAAACCACTGCTAAGCTAAGC -ACGGAAACCACTGCTAAGACTAGC -ACGGAAACCACTGCTAAGAGATGC -ACGGAAACCACTGCTAAGTGAAGG -ACGGAAACCACTGCTAAGCAATGG -ACGGAAACCACTGCTAAGATGAGG -ACGGAAACCACTGCTAAGAATGGG -ACGGAAACCACTGCTAAGTCCTGA -ACGGAAACCACTGCTAAGTAGCGA -ACGGAAACCACTGCTAAGCACAGA -ACGGAAACCACTGCTAAGGCAAGA -ACGGAAACCACTGCTAAGGGTTGA -ACGGAAACCACTGCTAAGTCCGAT -ACGGAAACCACTGCTAAGTGGCAT -ACGGAAACCACTGCTAAGCGAGAT -ACGGAAACCACTGCTAAGTACCAC -ACGGAAACCACTGCTAAGCAGAAC -ACGGAAACCACTGCTAAGGTCTAC -ACGGAAACCACTGCTAAGACGTAC -ACGGAAACCACTGCTAAGAGTGAC -ACGGAAACCACTGCTAAGCTGTAG -ACGGAAACCACTGCTAAGCCTAAG -ACGGAAACCACTGCTAAGGTTCAG -ACGGAAACCACTGCTAAGGCATAG -ACGGAAACCACTGCTAAGGACAAG -ACGGAAACCACTGCTAAGAAGCAG -ACGGAAACCACTGCTAAGCGTCAA -ACGGAAACCACTGCTAAGGCTGAA -ACGGAAACCACTGCTAAGAGTACG -ACGGAAACCACTGCTAAGATCCGA -ACGGAAACCACTGCTAAGATGGGA -ACGGAAACCACTGCTAAGGTGCAA -ACGGAAACCACTGCTAAGGAGGAA -ACGGAAACCACTGCTAAGCAGGTA -ACGGAAACCACTGCTAAGGACTCT -ACGGAAACCACTGCTAAGAGTCCT -ACGGAAACCACTGCTAAGTAAGCC -ACGGAAACCACTGCTAAGATAGCC -ACGGAAACCACTGCTAAGTAACCG -ACGGAAACCACTGCTAAGATGCCA -ACGGAAACCACTACCTCAGGAAAC -ACGGAAACCACTACCTCAAACACC -ACGGAAACCACTACCTCAATCGAG -ACGGAAACCACTACCTCACTCCTT -ACGGAAACCACTACCTCACCTGTT -ACGGAAACCACTACCTCACGGTTT -ACGGAAACCACTACCTCAGTGGTT -ACGGAAACCACTACCTCAGCCTTT -ACGGAAACCACTACCTCAGGTCTT -ACGGAAACCACTACCTCAACGCTT -ACGGAAACCACTACCTCAAGCGTT -ACGGAAACCACTACCTCATTCGTC -ACGGAAACCACTACCTCATCTCTC -ACGGAAACCACTACCTCATGGATC -ACGGAAACCACTACCTCACACTTC -ACGGAAACCACTACCTCAGTACTC -ACGGAAACCACTACCTCAGATGTC -ACGGAAACCACTACCTCAACAGTC -ACGGAAACCACTACCTCATTGCTG -ACGGAAACCACTACCTCATCCATG -ACGGAAACCACTACCTCATGTGTG -ACGGAAACCACTACCTCACTAGTG -ACGGAAACCACTACCTCACATCTG -ACGGAAACCACTACCTCAGAGTTG -ACGGAAACCACTACCTCAAGACTG -ACGGAAACCACTACCTCATCGGTA -ACGGAAACCACTACCTCATGCCTA -ACGGAAACCACTACCTCACCACTA -ACGGAAACCACTACCTCAGGAGTA -ACGGAAACCACTACCTCATCGTCT -ACGGAAACCACTACCTCATGCACT -ACGGAAACCACTACCTCACTGACT -ACGGAAACCACTACCTCACAACCT -ACGGAAACCACTACCTCAGCTACT -ACGGAAACCACTACCTCAGGATCT -ACGGAAACCACTACCTCAAAGGCT -ACGGAAACCACTACCTCATCAACC -ACGGAAACCACTACCTCATGTTCC -ACGGAAACCACTACCTCAATTCCC -ACGGAAACCACTACCTCATTCTCG -ACGGAAACCACTACCTCATAGACG -ACGGAAACCACTACCTCAGTAACG -ACGGAAACCACTACCTCAACTTCG -ACGGAAACCACTACCTCATACGCA -ACGGAAACCACTACCTCACTTGCA -ACGGAAACCACTACCTCACGAACA -ACGGAAACCACTACCTCACAGTCA -ACGGAAACCACTACCTCAGATCCA -ACGGAAACCACTACCTCAACGACA -ACGGAAACCACTACCTCAAGCTCA -ACGGAAACCACTACCTCATCACGT -ACGGAAACCACTACCTCACGTAGT -ACGGAAACCACTACCTCAGTCAGT -ACGGAAACCACTACCTCAGAAGGT -ACGGAAACCACTACCTCAAACCGT -ACGGAAACCACTACCTCATTGTGC -ACGGAAACCACTACCTCACTAAGC -ACGGAAACCACTACCTCAACTAGC -ACGGAAACCACTACCTCAAGATGC -ACGGAAACCACTACCTCATGAAGG -ACGGAAACCACTACCTCACAATGG -ACGGAAACCACTACCTCAATGAGG -ACGGAAACCACTACCTCAAATGGG -ACGGAAACCACTACCTCATCCTGA -ACGGAAACCACTACCTCATAGCGA -ACGGAAACCACTACCTCACACAGA -ACGGAAACCACTACCTCAGCAAGA -ACGGAAACCACTACCTCAGGTTGA -ACGGAAACCACTACCTCATCCGAT -ACGGAAACCACTACCTCATGGCAT -ACGGAAACCACTACCTCACGAGAT -ACGGAAACCACTACCTCATACCAC -ACGGAAACCACTACCTCACAGAAC -ACGGAAACCACTACCTCAGTCTAC -ACGGAAACCACTACCTCAACGTAC -ACGGAAACCACTACCTCAAGTGAC -ACGGAAACCACTACCTCACTGTAG -ACGGAAACCACTACCTCACCTAAG -ACGGAAACCACTACCTCAGTTCAG -ACGGAAACCACTACCTCAGCATAG -ACGGAAACCACTACCTCAGACAAG -ACGGAAACCACTACCTCAAAGCAG -ACGGAAACCACTACCTCACGTCAA -ACGGAAACCACTACCTCAGCTGAA -ACGGAAACCACTACCTCAAGTACG -ACGGAAACCACTACCTCAATCCGA -ACGGAAACCACTACCTCAATGGGA -ACGGAAACCACTACCTCAGTGCAA -ACGGAAACCACTACCTCAGAGGAA -ACGGAAACCACTACCTCACAGGTA -ACGGAAACCACTACCTCAGACTCT -ACGGAAACCACTACCTCAAGTCCT -ACGGAAACCACTACCTCATAAGCC -ACGGAAACCACTACCTCAATAGCC -ACGGAAACCACTACCTCATAACCG -ACGGAAACCACTACCTCAATGCCA -ACGGAAACCACTTCCTGTGGAAAC -ACGGAAACCACTTCCTGTAACACC -ACGGAAACCACTTCCTGTATCGAG -ACGGAAACCACTTCCTGTCTCCTT -ACGGAAACCACTTCCTGTCCTGTT -ACGGAAACCACTTCCTGTCGGTTT -ACGGAAACCACTTCCTGTGTGGTT -ACGGAAACCACTTCCTGTGCCTTT -ACGGAAACCACTTCCTGTGGTCTT -ACGGAAACCACTTCCTGTACGCTT -ACGGAAACCACTTCCTGTAGCGTT -ACGGAAACCACTTCCTGTTTCGTC -ACGGAAACCACTTCCTGTTCTCTC -ACGGAAACCACTTCCTGTTGGATC -ACGGAAACCACTTCCTGTCACTTC -ACGGAAACCACTTCCTGTGTACTC -ACGGAAACCACTTCCTGTGATGTC -ACGGAAACCACTTCCTGTACAGTC -ACGGAAACCACTTCCTGTTTGCTG -ACGGAAACCACTTCCTGTTCCATG -ACGGAAACCACTTCCTGTTGTGTG -ACGGAAACCACTTCCTGTCTAGTG -ACGGAAACCACTTCCTGTCATCTG -ACGGAAACCACTTCCTGTGAGTTG -ACGGAAACCACTTCCTGTAGACTG -ACGGAAACCACTTCCTGTTCGGTA -ACGGAAACCACTTCCTGTTGCCTA -ACGGAAACCACTTCCTGTCCACTA -ACGGAAACCACTTCCTGTGGAGTA -ACGGAAACCACTTCCTGTTCGTCT -ACGGAAACCACTTCCTGTTGCACT -ACGGAAACCACTTCCTGTCTGACT -ACGGAAACCACTTCCTGTCAACCT -ACGGAAACCACTTCCTGTGCTACT -ACGGAAACCACTTCCTGTGGATCT -ACGGAAACCACTTCCTGTAAGGCT -ACGGAAACCACTTCCTGTTCAACC -ACGGAAACCACTTCCTGTTGTTCC -ACGGAAACCACTTCCTGTATTCCC -ACGGAAACCACTTCCTGTTTCTCG -ACGGAAACCACTTCCTGTTAGACG -ACGGAAACCACTTCCTGTGTAACG -ACGGAAACCACTTCCTGTACTTCG -ACGGAAACCACTTCCTGTTACGCA -ACGGAAACCACTTCCTGTCTTGCA -ACGGAAACCACTTCCTGTCGAACA -ACGGAAACCACTTCCTGTCAGTCA -ACGGAAACCACTTCCTGTGATCCA -ACGGAAACCACTTCCTGTACGACA -ACGGAAACCACTTCCTGTAGCTCA -ACGGAAACCACTTCCTGTTCACGT -ACGGAAACCACTTCCTGTCGTAGT -ACGGAAACCACTTCCTGTGTCAGT -ACGGAAACCACTTCCTGTGAAGGT -ACGGAAACCACTTCCTGTAACCGT -ACGGAAACCACTTCCTGTTTGTGC -ACGGAAACCACTTCCTGTCTAAGC -ACGGAAACCACTTCCTGTACTAGC -ACGGAAACCACTTCCTGTAGATGC -ACGGAAACCACTTCCTGTTGAAGG -ACGGAAACCACTTCCTGTCAATGG -ACGGAAACCACTTCCTGTATGAGG -ACGGAAACCACTTCCTGTAATGGG -ACGGAAACCACTTCCTGTTCCTGA -ACGGAAACCACTTCCTGTTAGCGA -ACGGAAACCACTTCCTGTCACAGA -ACGGAAACCACTTCCTGTGCAAGA -ACGGAAACCACTTCCTGTGGTTGA -ACGGAAACCACTTCCTGTTCCGAT -ACGGAAACCACTTCCTGTTGGCAT -ACGGAAACCACTTCCTGTCGAGAT -ACGGAAACCACTTCCTGTTACCAC -ACGGAAACCACTTCCTGTCAGAAC -ACGGAAACCACTTCCTGTGTCTAC -ACGGAAACCACTTCCTGTACGTAC -ACGGAAACCACTTCCTGTAGTGAC -ACGGAAACCACTTCCTGTCTGTAG -ACGGAAACCACTTCCTGTCCTAAG -ACGGAAACCACTTCCTGTGTTCAG -ACGGAAACCACTTCCTGTGCATAG -ACGGAAACCACTTCCTGTGACAAG -ACGGAAACCACTTCCTGTAAGCAG -ACGGAAACCACTTCCTGTCGTCAA -ACGGAAACCACTTCCTGTGCTGAA -ACGGAAACCACTTCCTGTAGTACG -ACGGAAACCACTTCCTGTATCCGA -ACGGAAACCACTTCCTGTATGGGA -ACGGAAACCACTTCCTGTGTGCAA -ACGGAAACCACTTCCTGTGAGGAA -ACGGAAACCACTTCCTGTCAGGTA -ACGGAAACCACTTCCTGTGACTCT -ACGGAAACCACTTCCTGTAGTCCT -ACGGAAACCACTTCCTGTTAAGCC -ACGGAAACCACTTCCTGTATAGCC -ACGGAAACCACTTCCTGTTAACCG -ACGGAAACCACTTCCTGTATGCCA -ACGGAAACCACTCCCATTGGAAAC -ACGGAAACCACTCCCATTAACACC -ACGGAAACCACTCCCATTATCGAG -ACGGAAACCACTCCCATTCTCCTT -ACGGAAACCACTCCCATTCCTGTT -ACGGAAACCACTCCCATTCGGTTT -ACGGAAACCACTCCCATTGTGGTT -ACGGAAACCACTCCCATTGCCTTT -ACGGAAACCACTCCCATTGGTCTT -ACGGAAACCACTCCCATTACGCTT -ACGGAAACCACTCCCATTAGCGTT -ACGGAAACCACTCCCATTTTCGTC -ACGGAAACCACTCCCATTTCTCTC -ACGGAAACCACTCCCATTTGGATC -ACGGAAACCACTCCCATTCACTTC -ACGGAAACCACTCCCATTGTACTC -ACGGAAACCACTCCCATTGATGTC -ACGGAAACCACTCCCATTACAGTC -ACGGAAACCACTCCCATTTTGCTG -ACGGAAACCACTCCCATTTCCATG -ACGGAAACCACTCCCATTTGTGTG -ACGGAAACCACTCCCATTCTAGTG -ACGGAAACCACTCCCATTCATCTG -ACGGAAACCACTCCCATTGAGTTG -ACGGAAACCACTCCCATTAGACTG -ACGGAAACCACTCCCATTTCGGTA -ACGGAAACCACTCCCATTTGCCTA -ACGGAAACCACTCCCATTCCACTA -ACGGAAACCACTCCCATTGGAGTA -ACGGAAACCACTCCCATTTCGTCT -ACGGAAACCACTCCCATTTGCACT -ACGGAAACCACTCCCATTCTGACT -ACGGAAACCACTCCCATTCAACCT -ACGGAAACCACTCCCATTGCTACT -ACGGAAACCACTCCCATTGGATCT -ACGGAAACCACTCCCATTAAGGCT -ACGGAAACCACTCCCATTTCAACC -ACGGAAACCACTCCCATTTGTTCC -ACGGAAACCACTCCCATTATTCCC -ACGGAAACCACTCCCATTTTCTCG -ACGGAAACCACTCCCATTTAGACG -ACGGAAACCACTCCCATTGTAACG -ACGGAAACCACTCCCATTACTTCG -ACGGAAACCACTCCCATTTACGCA -ACGGAAACCACTCCCATTCTTGCA -ACGGAAACCACTCCCATTCGAACA -ACGGAAACCACTCCCATTCAGTCA -ACGGAAACCACTCCCATTGATCCA -ACGGAAACCACTCCCATTACGACA -ACGGAAACCACTCCCATTAGCTCA -ACGGAAACCACTCCCATTTCACGT -ACGGAAACCACTCCCATTCGTAGT -ACGGAAACCACTCCCATTGTCAGT -ACGGAAACCACTCCCATTGAAGGT -ACGGAAACCACTCCCATTAACCGT -ACGGAAACCACTCCCATTTTGTGC -ACGGAAACCACTCCCATTCTAAGC -ACGGAAACCACTCCCATTACTAGC -ACGGAAACCACTCCCATTAGATGC -ACGGAAACCACTCCCATTTGAAGG -ACGGAAACCACTCCCATTCAATGG -ACGGAAACCACTCCCATTATGAGG -ACGGAAACCACTCCCATTAATGGG -ACGGAAACCACTCCCATTTCCTGA -ACGGAAACCACTCCCATTTAGCGA -ACGGAAACCACTCCCATTCACAGA -ACGGAAACCACTCCCATTGCAAGA -ACGGAAACCACTCCCATTGGTTGA -ACGGAAACCACTCCCATTTCCGAT -ACGGAAACCACTCCCATTTGGCAT -ACGGAAACCACTCCCATTCGAGAT -ACGGAAACCACTCCCATTTACCAC -ACGGAAACCACTCCCATTCAGAAC -ACGGAAACCACTCCCATTGTCTAC -ACGGAAACCACTCCCATTACGTAC -ACGGAAACCACTCCCATTAGTGAC -ACGGAAACCACTCCCATTCTGTAG -ACGGAAACCACTCCCATTCCTAAG -ACGGAAACCACTCCCATTGTTCAG -ACGGAAACCACTCCCATTGCATAG -ACGGAAACCACTCCCATTGACAAG -ACGGAAACCACTCCCATTAAGCAG -ACGGAAACCACTCCCATTCGTCAA -ACGGAAACCACTCCCATTGCTGAA -ACGGAAACCACTCCCATTAGTACG -ACGGAAACCACTCCCATTATCCGA -ACGGAAACCACTCCCATTATGGGA -ACGGAAACCACTCCCATTGTGCAA -ACGGAAACCACTCCCATTGAGGAA -ACGGAAACCACTCCCATTCAGGTA -ACGGAAACCACTCCCATTGACTCT -ACGGAAACCACTCCCATTAGTCCT -ACGGAAACCACTCCCATTTAAGCC -ACGGAAACCACTCCCATTATAGCC -ACGGAAACCACTCCCATTTAACCG -ACGGAAACCACTCCCATTATGCCA -ACGGAAACCACTTCGTTCGGAAAC -ACGGAAACCACTTCGTTCAACACC -ACGGAAACCACTTCGTTCATCGAG -ACGGAAACCACTTCGTTCCTCCTT -ACGGAAACCACTTCGTTCCCTGTT -ACGGAAACCACTTCGTTCCGGTTT -ACGGAAACCACTTCGTTCGTGGTT -ACGGAAACCACTTCGTTCGCCTTT -ACGGAAACCACTTCGTTCGGTCTT -ACGGAAACCACTTCGTTCACGCTT -ACGGAAACCACTTCGTTCAGCGTT -ACGGAAACCACTTCGTTCTTCGTC -ACGGAAACCACTTCGTTCTCTCTC -ACGGAAACCACTTCGTTCTGGATC -ACGGAAACCACTTCGTTCCACTTC -ACGGAAACCACTTCGTTCGTACTC -ACGGAAACCACTTCGTTCGATGTC -ACGGAAACCACTTCGTTCACAGTC -ACGGAAACCACTTCGTTCTTGCTG -ACGGAAACCACTTCGTTCTCCATG -ACGGAAACCACTTCGTTCTGTGTG -ACGGAAACCACTTCGTTCCTAGTG -ACGGAAACCACTTCGTTCCATCTG -ACGGAAACCACTTCGTTCGAGTTG -ACGGAAACCACTTCGTTCAGACTG -ACGGAAACCACTTCGTTCTCGGTA -ACGGAAACCACTTCGTTCTGCCTA -ACGGAAACCACTTCGTTCCCACTA -ACGGAAACCACTTCGTTCGGAGTA -ACGGAAACCACTTCGTTCTCGTCT -ACGGAAACCACTTCGTTCTGCACT -ACGGAAACCACTTCGTTCCTGACT -ACGGAAACCACTTCGTTCCAACCT -ACGGAAACCACTTCGTTCGCTACT -ACGGAAACCACTTCGTTCGGATCT -ACGGAAACCACTTCGTTCAAGGCT -ACGGAAACCACTTCGTTCTCAACC -ACGGAAACCACTTCGTTCTGTTCC -ACGGAAACCACTTCGTTCATTCCC -ACGGAAACCACTTCGTTCTTCTCG -ACGGAAACCACTTCGTTCTAGACG -ACGGAAACCACTTCGTTCGTAACG -ACGGAAACCACTTCGTTCACTTCG -ACGGAAACCACTTCGTTCTACGCA -ACGGAAACCACTTCGTTCCTTGCA -ACGGAAACCACTTCGTTCCGAACA -ACGGAAACCACTTCGTTCCAGTCA -ACGGAAACCACTTCGTTCGATCCA -ACGGAAACCACTTCGTTCACGACA -ACGGAAACCACTTCGTTCAGCTCA -ACGGAAACCACTTCGTTCTCACGT -ACGGAAACCACTTCGTTCCGTAGT -ACGGAAACCACTTCGTTCGTCAGT -ACGGAAACCACTTCGTTCGAAGGT -ACGGAAACCACTTCGTTCAACCGT -ACGGAAACCACTTCGTTCTTGTGC -ACGGAAACCACTTCGTTCCTAAGC -ACGGAAACCACTTCGTTCACTAGC -ACGGAAACCACTTCGTTCAGATGC -ACGGAAACCACTTCGTTCTGAAGG -ACGGAAACCACTTCGTTCCAATGG -ACGGAAACCACTTCGTTCATGAGG -ACGGAAACCACTTCGTTCAATGGG -ACGGAAACCACTTCGTTCTCCTGA -ACGGAAACCACTTCGTTCTAGCGA -ACGGAAACCACTTCGTTCCACAGA -ACGGAAACCACTTCGTTCGCAAGA -ACGGAAACCACTTCGTTCGGTTGA -ACGGAAACCACTTCGTTCTCCGAT -ACGGAAACCACTTCGTTCTGGCAT -ACGGAAACCACTTCGTTCCGAGAT -ACGGAAACCACTTCGTTCTACCAC -ACGGAAACCACTTCGTTCCAGAAC -ACGGAAACCACTTCGTTCGTCTAC -ACGGAAACCACTTCGTTCACGTAC -ACGGAAACCACTTCGTTCAGTGAC -ACGGAAACCACTTCGTTCCTGTAG -ACGGAAACCACTTCGTTCCCTAAG -ACGGAAACCACTTCGTTCGTTCAG -ACGGAAACCACTTCGTTCGCATAG -ACGGAAACCACTTCGTTCGACAAG -ACGGAAACCACTTCGTTCAAGCAG -ACGGAAACCACTTCGTTCCGTCAA -ACGGAAACCACTTCGTTCGCTGAA -ACGGAAACCACTTCGTTCAGTACG -ACGGAAACCACTTCGTTCATCCGA -ACGGAAACCACTTCGTTCATGGGA -ACGGAAACCACTTCGTTCGTGCAA -ACGGAAACCACTTCGTTCGAGGAA -ACGGAAACCACTTCGTTCCAGGTA -ACGGAAACCACTTCGTTCGACTCT -ACGGAAACCACTTCGTTCAGTCCT -ACGGAAACCACTTCGTTCTAAGCC -ACGGAAACCACTTCGTTCATAGCC -ACGGAAACCACTTCGTTCTAACCG -ACGGAAACCACTTCGTTCATGCCA -ACGGAAACCACTACGTAGGGAAAC -ACGGAAACCACTACGTAGAACACC -ACGGAAACCACTACGTAGATCGAG -ACGGAAACCACTACGTAGCTCCTT -ACGGAAACCACTACGTAGCCTGTT -ACGGAAACCACTACGTAGCGGTTT -ACGGAAACCACTACGTAGGTGGTT -ACGGAAACCACTACGTAGGCCTTT -ACGGAAACCACTACGTAGGGTCTT -ACGGAAACCACTACGTAGACGCTT -ACGGAAACCACTACGTAGAGCGTT -ACGGAAACCACTACGTAGTTCGTC -ACGGAAACCACTACGTAGTCTCTC -ACGGAAACCACTACGTAGTGGATC -ACGGAAACCACTACGTAGCACTTC -ACGGAAACCACTACGTAGGTACTC -ACGGAAACCACTACGTAGGATGTC -ACGGAAACCACTACGTAGACAGTC -ACGGAAACCACTACGTAGTTGCTG -ACGGAAACCACTACGTAGTCCATG -ACGGAAACCACTACGTAGTGTGTG -ACGGAAACCACTACGTAGCTAGTG -ACGGAAACCACTACGTAGCATCTG -ACGGAAACCACTACGTAGGAGTTG -ACGGAAACCACTACGTAGAGACTG -ACGGAAACCACTACGTAGTCGGTA -ACGGAAACCACTACGTAGTGCCTA -ACGGAAACCACTACGTAGCCACTA -ACGGAAACCACTACGTAGGGAGTA -ACGGAAACCACTACGTAGTCGTCT -ACGGAAACCACTACGTAGTGCACT -ACGGAAACCACTACGTAGCTGACT -ACGGAAACCACTACGTAGCAACCT -ACGGAAACCACTACGTAGGCTACT -ACGGAAACCACTACGTAGGGATCT -ACGGAAACCACTACGTAGAAGGCT -ACGGAAACCACTACGTAGTCAACC -ACGGAAACCACTACGTAGTGTTCC -ACGGAAACCACTACGTAGATTCCC -ACGGAAACCACTACGTAGTTCTCG -ACGGAAACCACTACGTAGTAGACG -ACGGAAACCACTACGTAGGTAACG -ACGGAAACCACTACGTAGACTTCG -ACGGAAACCACTACGTAGTACGCA -ACGGAAACCACTACGTAGCTTGCA -ACGGAAACCACTACGTAGCGAACA -ACGGAAACCACTACGTAGCAGTCA -ACGGAAACCACTACGTAGGATCCA -ACGGAAACCACTACGTAGACGACA -ACGGAAACCACTACGTAGAGCTCA -ACGGAAACCACTACGTAGTCACGT -ACGGAAACCACTACGTAGCGTAGT -ACGGAAACCACTACGTAGGTCAGT -ACGGAAACCACTACGTAGGAAGGT -ACGGAAACCACTACGTAGAACCGT -ACGGAAACCACTACGTAGTTGTGC -ACGGAAACCACTACGTAGCTAAGC -ACGGAAACCACTACGTAGACTAGC -ACGGAAACCACTACGTAGAGATGC -ACGGAAACCACTACGTAGTGAAGG -ACGGAAACCACTACGTAGCAATGG -ACGGAAACCACTACGTAGATGAGG -ACGGAAACCACTACGTAGAATGGG -ACGGAAACCACTACGTAGTCCTGA -ACGGAAACCACTACGTAGTAGCGA -ACGGAAACCACTACGTAGCACAGA -ACGGAAACCACTACGTAGGCAAGA -ACGGAAACCACTACGTAGGGTTGA -ACGGAAACCACTACGTAGTCCGAT -ACGGAAACCACTACGTAGTGGCAT -ACGGAAACCACTACGTAGCGAGAT -ACGGAAACCACTACGTAGTACCAC -ACGGAAACCACTACGTAGCAGAAC -ACGGAAACCACTACGTAGGTCTAC -ACGGAAACCACTACGTAGACGTAC -ACGGAAACCACTACGTAGAGTGAC -ACGGAAACCACTACGTAGCTGTAG -ACGGAAACCACTACGTAGCCTAAG -ACGGAAACCACTACGTAGGTTCAG -ACGGAAACCACTACGTAGGCATAG -ACGGAAACCACTACGTAGGACAAG -ACGGAAACCACTACGTAGAAGCAG -ACGGAAACCACTACGTAGCGTCAA -ACGGAAACCACTACGTAGGCTGAA -ACGGAAACCACTACGTAGAGTACG -ACGGAAACCACTACGTAGATCCGA -ACGGAAACCACTACGTAGATGGGA -ACGGAAACCACTACGTAGGTGCAA -ACGGAAACCACTACGTAGGAGGAA -ACGGAAACCACTACGTAGCAGGTA -ACGGAAACCACTACGTAGGACTCT -ACGGAAACCACTACGTAGAGTCCT -ACGGAAACCACTACGTAGTAAGCC -ACGGAAACCACTACGTAGATAGCC -ACGGAAACCACTACGTAGTAACCG -ACGGAAACCACTACGTAGATGCCA -ACGGAAACCACTACGGTAGGAAAC -ACGGAAACCACTACGGTAAACACC -ACGGAAACCACTACGGTAATCGAG -ACGGAAACCACTACGGTACTCCTT -ACGGAAACCACTACGGTACCTGTT -ACGGAAACCACTACGGTACGGTTT -ACGGAAACCACTACGGTAGTGGTT -ACGGAAACCACTACGGTAGCCTTT -ACGGAAACCACTACGGTAGGTCTT -ACGGAAACCACTACGGTAACGCTT -ACGGAAACCACTACGGTAAGCGTT -ACGGAAACCACTACGGTATTCGTC -ACGGAAACCACTACGGTATCTCTC -ACGGAAACCACTACGGTATGGATC -ACGGAAACCACTACGGTACACTTC -ACGGAAACCACTACGGTAGTACTC -ACGGAAACCACTACGGTAGATGTC -ACGGAAACCACTACGGTAACAGTC -ACGGAAACCACTACGGTATTGCTG -ACGGAAACCACTACGGTATCCATG -ACGGAAACCACTACGGTATGTGTG -ACGGAAACCACTACGGTACTAGTG -ACGGAAACCACTACGGTACATCTG -ACGGAAACCACTACGGTAGAGTTG -ACGGAAACCACTACGGTAAGACTG -ACGGAAACCACTACGGTATCGGTA -ACGGAAACCACTACGGTATGCCTA -ACGGAAACCACTACGGTACCACTA -ACGGAAACCACTACGGTAGGAGTA -ACGGAAACCACTACGGTATCGTCT -ACGGAAACCACTACGGTATGCACT -ACGGAAACCACTACGGTACTGACT -ACGGAAACCACTACGGTACAACCT -ACGGAAACCACTACGGTAGCTACT -ACGGAAACCACTACGGTAGGATCT -ACGGAAACCACTACGGTAAAGGCT -ACGGAAACCACTACGGTATCAACC -ACGGAAACCACTACGGTATGTTCC -ACGGAAACCACTACGGTAATTCCC -ACGGAAACCACTACGGTATTCTCG -ACGGAAACCACTACGGTATAGACG -ACGGAAACCACTACGGTAGTAACG -ACGGAAACCACTACGGTAACTTCG -ACGGAAACCACTACGGTATACGCA -ACGGAAACCACTACGGTACTTGCA -ACGGAAACCACTACGGTACGAACA -ACGGAAACCACTACGGTACAGTCA -ACGGAAACCACTACGGTAGATCCA -ACGGAAACCACTACGGTAACGACA -ACGGAAACCACTACGGTAAGCTCA -ACGGAAACCACTACGGTATCACGT -ACGGAAACCACTACGGTACGTAGT -ACGGAAACCACTACGGTAGTCAGT -ACGGAAACCACTACGGTAGAAGGT -ACGGAAACCACTACGGTAAACCGT -ACGGAAACCACTACGGTATTGTGC -ACGGAAACCACTACGGTACTAAGC -ACGGAAACCACTACGGTAACTAGC -ACGGAAACCACTACGGTAAGATGC -ACGGAAACCACTACGGTATGAAGG -ACGGAAACCACTACGGTACAATGG -ACGGAAACCACTACGGTAATGAGG -ACGGAAACCACTACGGTAAATGGG -ACGGAAACCACTACGGTATCCTGA -ACGGAAACCACTACGGTATAGCGA -ACGGAAACCACTACGGTACACAGA -ACGGAAACCACTACGGTAGCAAGA -ACGGAAACCACTACGGTAGGTTGA -ACGGAAACCACTACGGTATCCGAT -ACGGAAACCACTACGGTATGGCAT -ACGGAAACCACTACGGTACGAGAT -ACGGAAACCACTACGGTATACCAC -ACGGAAACCACTACGGTACAGAAC -ACGGAAACCACTACGGTAGTCTAC -ACGGAAACCACTACGGTAACGTAC -ACGGAAACCACTACGGTAAGTGAC -ACGGAAACCACTACGGTACTGTAG -ACGGAAACCACTACGGTACCTAAG -ACGGAAACCACTACGGTAGTTCAG -ACGGAAACCACTACGGTAGCATAG -ACGGAAACCACTACGGTAGACAAG -ACGGAAACCACTACGGTAAAGCAG -ACGGAAACCACTACGGTACGTCAA -ACGGAAACCACTACGGTAGCTGAA -ACGGAAACCACTACGGTAAGTACG -ACGGAAACCACTACGGTAATCCGA -ACGGAAACCACTACGGTAATGGGA -ACGGAAACCACTACGGTAGTGCAA -ACGGAAACCACTACGGTAGAGGAA -ACGGAAACCACTACGGTACAGGTA -ACGGAAACCACTACGGTAGACTCT -ACGGAAACCACTACGGTAAGTCCT -ACGGAAACCACTACGGTATAAGCC -ACGGAAACCACTACGGTAATAGCC -ACGGAAACCACTACGGTATAACCG -ACGGAAACCACTACGGTAATGCCA -ACGGAAACCACTTCGACTGGAAAC -ACGGAAACCACTTCGACTAACACC -ACGGAAACCACTTCGACTATCGAG -ACGGAAACCACTTCGACTCTCCTT -ACGGAAACCACTTCGACTCCTGTT -ACGGAAACCACTTCGACTCGGTTT -ACGGAAACCACTTCGACTGTGGTT -ACGGAAACCACTTCGACTGCCTTT -ACGGAAACCACTTCGACTGGTCTT -ACGGAAACCACTTCGACTACGCTT -ACGGAAACCACTTCGACTAGCGTT -ACGGAAACCACTTCGACTTTCGTC -ACGGAAACCACTTCGACTTCTCTC -ACGGAAACCACTTCGACTTGGATC -ACGGAAACCACTTCGACTCACTTC -ACGGAAACCACTTCGACTGTACTC -ACGGAAACCACTTCGACTGATGTC -ACGGAAACCACTTCGACTACAGTC -ACGGAAACCACTTCGACTTTGCTG -ACGGAAACCACTTCGACTTCCATG -ACGGAAACCACTTCGACTTGTGTG -ACGGAAACCACTTCGACTCTAGTG -ACGGAAACCACTTCGACTCATCTG -ACGGAAACCACTTCGACTGAGTTG -ACGGAAACCACTTCGACTAGACTG -ACGGAAACCACTTCGACTTCGGTA -ACGGAAACCACTTCGACTTGCCTA -ACGGAAACCACTTCGACTCCACTA -ACGGAAACCACTTCGACTGGAGTA -ACGGAAACCACTTCGACTTCGTCT -ACGGAAACCACTTCGACTTGCACT -ACGGAAACCACTTCGACTCTGACT -ACGGAAACCACTTCGACTCAACCT -ACGGAAACCACTTCGACTGCTACT -ACGGAAACCACTTCGACTGGATCT -ACGGAAACCACTTCGACTAAGGCT -ACGGAAACCACTTCGACTTCAACC -ACGGAAACCACTTCGACTTGTTCC -ACGGAAACCACTTCGACTATTCCC -ACGGAAACCACTTCGACTTTCTCG -ACGGAAACCACTTCGACTTAGACG -ACGGAAACCACTTCGACTGTAACG -ACGGAAACCACTTCGACTACTTCG -ACGGAAACCACTTCGACTTACGCA -ACGGAAACCACTTCGACTCTTGCA -ACGGAAACCACTTCGACTCGAACA -ACGGAAACCACTTCGACTCAGTCA -ACGGAAACCACTTCGACTGATCCA -ACGGAAACCACTTCGACTACGACA -ACGGAAACCACTTCGACTAGCTCA -ACGGAAACCACTTCGACTTCACGT -ACGGAAACCACTTCGACTCGTAGT -ACGGAAACCACTTCGACTGTCAGT -ACGGAAACCACTTCGACTGAAGGT -ACGGAAACCACTTCGACTAACCGT -ACGGAAACCACTTCGACTTTGTGC -ACGGAAACCACTTCGACTCTAAGC -ACGGAAACCACTTCGACTACTAGC -ACGGAAACCACTTCGACTAGATGC -ACGGAAACCACTTCGACTTGAAGG -ACGGAAACCACTTCGACTCAATGG -ACGGAAACCACTTCGACTATGAGG -ACGGAAACCACTTCGACTAATGGG -ACGGAAACCACTTCGACTTCCTGA -ACGGAAACCACTTCGACTTAGCGA -ACGGAAACCACTTCGACTCACAGA -ACGGAAACCACTTCGACTGCAAGA -ACGGAAACCACTTCGACTGGTTGA -ACGGAAACCACTTCGACTTCCGAT -ACGGAAACCACTTCGACTTGGCAT -ACGGAAACCACTTCGACTCGAGAT -ACGGAAACCACTTCGACTTACCAC -ACGGAAACCACTTCGACTCAGAAC -ACGGAAACCACTTCGACTGTCTAC -ACGGAAACCACTTCGACTACGTAC -ACGGAAACCACTTCGACTAGTGAC -ACGGAAACCACTTCGACTCTGTAG -ACGGAAACCACTTCGACTCCTAAG -ACGGAAACCACTTCGACTGTTCAG -ACGGAAACCACTTCGACTGCATAG -ACGGAAACCACTTCGACTGACAAG -ACGGAAACCACTTCGACTAAGCAG -ACGGAAACCACTTCGACTCGTCAA -ACGGAAACCACTTCGACTGCTGAA -ACGGAAACCACTTCGACTAGTACG -ACGGAAACCACTTCGACTATCCGA -ACGGAAACCACTTCGACTATGGGA -ACGGAAACCACTTCGACTGTGCAA -ACGGAAACCACTTCGACTGAGGAA -ACGGAAACCACTTCGACTCAGGTA -ACGGAAACCACTTCGACTGACTCT -ACGGAAACCACTTCGACTAGTCCT -ACGGAAACCACTTCGACTTAAGCC -ACGGAAACCACTTCGACTATAGCC -ACGGAAACCACTTCGACTTAACCG -ACGGAAACCACTTCGACTATGCCA -ACGGAAACCACTGCATACGGAAAC -ACGGAAACCACTGCATACAACACC -ACGGAAACCACTGCATACATCGAG -ACGGAAACCACTGCATACCTCCTT -ACGGAAACCACTGCATACCCTGTT -ACGGAAACCACTGCATACCGGTTT -ACGGAAACCACTGCATACGTGGTT -ACGGAAACCACTGCATACGCCTTT -ACGGAAACCACTGCATACGGTCTT -ACGGAAACCACTGCATACACGCTT -ACGGAAACCACTGCATACAGCGTT -ACGGAAACCACTGCATACTTCGTC -ACGGAAACCACTGCATACTCTCTC -ACGGAAACCACTGCATACTGGATC -ACGGAAACCACTGCATACCACTTC -ACGGAAACCACTGCATACGTACTC -ACGGAAACCACTGCATACGATGTC -ACGGAAACCACTGCATACACAGTC -ACGGAAACCACTGCATACTTGCTG -ACGGAAACCACTGCATACTCCATG -ACGGAAACCACTGCATACTGTGTG -ACGGAAACCACTGCATACCTAGTG -ACGGAAACCACTGCATACCATCTG -ACGGAAACCACTGCATACGAGTTG -ACGGAAACCACTGCATACAGACTG -ACGGAAACCACTGCATACTCGGTA -ACGGAAACCACTGCATACTGCCTA -ACGGAAACCACTGCATACCCACTA -ACGGAAACCACTGCATACGGAGTA -ACGGAAACCACTGCATACTCGTCT -ACGGAAACCACTGCATACTGCACT -ACGGAAACCACTGCATACCTGACT -ACGGAAACCACTGCATACCAACCT -ACGGAAACCACTGCATACGCTACT -ACGGAAACCACTGCATACGGATCT -ACGGAAACCACTGCATACAAGGCT -ACGGAAACCACTGCATACTCAACC -ACGGAAACCACTGCATACTGTTCC -ACGGAAACCACTGCATACATTCCC -ACGGAAACCACTGCATACTTCTCG -ACGGAAACCACTGCATACTAGACG -ACGGAAACCACTGCATACGTAACG -ACGGAAACCACTGCATACACTTCG -ACGGAAACCACTGCATACTACGCA -ACGGAAACCACTGCATACCTTGCA -ACGGAAACCACTGCATACCGAACA -ACGGAAACCACTGCATACCAGTCA -ACGGAAACCACTGCATACGATCCA -ACGGAAACCACTGCATACACGACA -ACGGAAACCACTGCATACAGCTCA -ACGGAAACCACTGCATACTCACGT -ACGGAAACCACTGCATACCGTAGT -ACGGAAACCACTGCATACGTCAGT -ACGGAAACCACTGCATACGAAGGT -ACGGAAACCACTGCATACAACCGT -ACGGAAACCACTGCATACTTGTGC -ACGGAAACCACTGCATACCTAAGC -ACGGAAACCACTGCATACACTAGC -ACGGAAACCACTGCATACAGATGC -ACGGAAACCACTGCATACTGAAGG -ACGGAAACCACTGCATACCAATGG -ACGGAAACCACTGCATACATGAGG -ACGGAAACCACTGCATACAATGGG -ACGGAAACCACTGCATACTCCTGA -ACGGAAACCACTGCATACTAGCGA -ACGGAAACCACTGCATACCACAGA -ACGGAAACCACTGCATACGCAAGA -ACGGAAACCACTGCATACGGTTGA -ACGGAAACCACTGCATACTCCGAT -ACGGAAACCACTGCATACTGGCAT -ACGGAAACCACTGCATACCGAGAT -ACGGAAACCACTGCATACTACCAC -ACGGAAACCACTGCATACCAGAAC -ACGGAAACCACTGCATACGTCTAC -ACGGAAACCACTGCATACACGTAC -ACGGAAACCACTGCATACAGTGAC -ACGGAAACCACTGCATACCTGTAG -ACGGAAACCACTGCATACCCTAAG -ACGGAAACCACTGCATACGTTCAG -ACGGAAACCACTGCATACGCATAG -ACGGAAACCACTGCATACGACAAG -ACGGAAACCACTGCATACAAGCAG -ACGGAAACCACTGCATACCGTCAA -ACGGAAACCACTGCATACGCTGAA -ACGGAAACCACTGCATACAGTACG -ACGGAAACCACTGCATACATCCGA -ACGGAAACCACTGCATACATGGGA -ACGGAAACCACTGCATACGTGCAA -ACGGAAACCACTGCATACGAGGAA -ACGGAAACCACTGCATACCAGGTA -ACGGAAACCACTGCATACGACTCT -ACGGAAACCACTGCATACAGTCCT -ACGGAAACCACTGCATACTAAGCC -ACGGAAACCACTGCATACATAGCC -ACGGAAACCACTGCATACTAACCG -ACGGAAACCACTGCATACATGCCA -ACGGAAACCACTGCACTTGGAAAC -ACGGAAACCACTGCACTTAACACC -ACGGAAACCACTGCACTTATCGAG -ACGGAAACCACTGCACTTCTCCTT -ACGGAAACCACTGCACTTCCTGTT -ACGGAAACCACTGCACTTCGGTTT -ACGGAAACCACTGCACTTGTGGTT -ACGGAAACCACTGCACTTGCCTTT -ACGGAAACCACTGCACTTGGTCTT -ACGGAAACCACTGCACTTACGCTT -ACGGAAACCACTGCACTTAGCGTT -ACGGAAACCACTGCACTTTTCGTC -ACGGAAACCACTGCACTTTCTCTC -ACGGAAACCACTGCACTTTGGATC -ACGGAAACCACTGCACTTCACTTC -ACGGAAACCACTGCACTTGTACTC -ACGGAAACCACTGCACTTGATGTC -ACGGAAACCACTGCACTTACAGTC -ACGGAAACCACTGCACTTTTGCTG -ACGGAAACCACTGCACTTTCCATG -ACGGAAACCACTGCACTTTGTGTG -ACGGAAACCACTGCACTTCTAGTG -ACGGAAACCACTGCACTTCATCTG -ACGGAAACCACTGCACTTGAGTTG -ACGGAAACCACTGCACTTAGACTG -ACGGAAACCACTGCACTTTCGGTA -ACGGAAACCACTGCACTTTGCCTA -ACGGAAACCACTGCACTTCCACTA -ACGGAAACCACTGCACTTGGAGTA -ACGGAAACCACTGCACTTTCGTCT -ACGGAAACCACTGCACTTTGCACT -ACGGAAACCACTGCACTTCTGACT -ACGGAAACCACTGCACTTCAACCT -ACGGAAACCACTGCACTTGCTACT -ACGGAAACCACTGCACTTGGATCT -ACGGAAACCACTGCACTTAAGGCT -ACGGAAACCACTGCACTTTCAACC -ACGGAAACCACTGCACTTTGTTCC -ACGGAAACCACTGCACTTATTCCC -ACGGAAACCACTGCACTTTTCTCG -ACGGAAACCACTGCACTTTAGACG -ACGGAAACCACTGCACTTGTAACG -ACGGAAACCACTGCACTTACTTCG -ACGGAAACCACTGCACTTTACGCA -ACGGAAACCACTGCACTTCTTGCA -ACGGAAACCACTGCACTTCGAACA -ACGGAAACCACTGCACTTCAGTCA -ACGGAAACCACTGCACTTGATCCA -ACGGAAACCACTGCACTTACGACA -ACGGAAACCACTGCACTTAGCTCA -ACGGAAACCACTGCACTTTCACGT -ACGGAAACCACTGCACTTCGTAGT -ACGGAAACCACTGCACTTGTCAGT -ACGGAAACCACTGCACTTGAAGGT -ACGGAAACCACTGCACTTAACCGT -ACGGAAACCACTGCACTTTTGTGC -ACGGAAACCACTGCACTTCTAAGC -ACGGAAACCACTGCACTTACTAGC -ACGGAAACCACTGCACTTAGATGC -ACGGAAACCACTGCACTTTGAAGG -ACGGAAACCACTGCACTTCAATGG -ACGGAAACCACTGCACTTATGAGG -ACGGAAACCACTGCACTTAATGGG -ACGGAAACCACTGCACTTTCCTGA -ACGGAAACCACTGCACTTTAGCGA -ACGGAAACCACTGCACTTCACAGA -ACGGAAACCACTGCACTTGCAAGA -ACGGAAACCACTGCACTTGGTTGA -ACGGAAACCACTGCACTTTCCGAT -ACGGAAACCACTGCACTTTGGCAT -ACGGAAACCACTGCACTTCGAGAT -ACGGAAACCACTGCACTTTACCAC -ACGGAAACCACTGCACTTCAGAAC -ACGGAAACCACTGCACTTGTCTAC -ACGGAAACCACTGCACTTACGTAC -ACGGAAACCACTGCACTTAGTGAC -ACGGAAACCACTGCACTTCTGTAG -ACGGAAACCACTGCACTTCCTAAG -ACGGAAACCACTGCACTTGTTCAG -ACGGAAACCACTGCACTTGCATAG -ACGGAAACCACTGCACTTGACAAG -ACGGAAACCACTGCACTTAAGCAG -ACGGAAACCACTGCACTTCGTCAA -ACGGAAACCACTGCACTTGCTGAA -ACGGAAACCACTGCACTTAGTACG -ACGGAAACCACTGCACTTATCCGA -ACGGAAACCACTGCACTTATGGGA -ACGGAAACCACTGCACTTGTGCAA -ACGGAAACCACTGCACTTGAGGAA -ACGGAAACCACTGCACTTCAGGTA -ACGGAAACCACTGCACTTGACTCT -ACGGAAACCACTGCACTTAGTCCT -ACGGAAACCACTGCACTTTAAGCC -ACGGAAACCACTGCACTTATAGCC -ACGGAAACCACTGCACTTTAACCG -ACGGAAACCACTGCACTTATGCCA -ACGGAAACCACTACACGAGGAAAC -ACGGAAACCACTACACGAAACACC -ACGGAAACCACTACACGAATCGAG -ACGGAAACCACTACACGACTCCTT -ACGGAAACCACTACACGACCTGTT -ACGGAAACCACTACACGACGGTTT -ACGGAAACCACTACACGAGTGGTT -ACGGAAACCACTACACGAGCCTTT -ACGGAAACCACTACACGAGGTCTT -ACGGAAACCACTACACGAACGCTT -ACGGAAACCACTACACGAAGCGTT -ACGGAAACCACTACACGATTCGTC -ACGGAAACCACTACACGATCTCTC -ACGGAAACCACTACACGATGGATC -ACGGAAACCACTACACGACACTTC -ACGGAAACCACTACACGAGTACTC -ACGGAAACCACTACACGAGATGTC -ACGGAAACCACTACACGAACAGTC -ACGGAAACCACTACACGATTGCTG -ACGGAAACCACTACACGATCCATG -ACGGAAACCACTACACGATGTGTG -ACGGAAACCACTACACGACTAGTG -ACGGAAACCACTACACGACATCTG -ACGGAAACCACTACACGAGAGTTG -ACGGAAACCACTACACGAAGACTG -ACGGAAACCACTACACGATCGGTA -ACGGAAACCACTACACGATGCCTA -ACGGAAACCACTACACGACCACTA -ACGGAAACCACTACACGAGGAGTA -ACGGAAACCACTACACGATCGTCT -ACGGAAACCACTACACGATGCACT -ACGGAAACCACTACACGACTGACT -ACGGAAACCACTACACGACAACCT -ACGGAAACCACTACACGAGCTACT -ACGGAAACCACTACACGAGGATCT -ACGGAAACCACTACACGAAAGGCT -ACGGAAACCACTACACGATCAACC -ACGGAAACCACTACACGATGTTCC -ACGGAAACCACTACACGAATTCCC -ACGGAAACCACTACACGATTCTCG -ACGGAAACCACTACACGATAGACG -ACGGAAACCACTACACGAGTAACG -ACGGAAACCACTACACGAACTTCG -ACGGAAACCACTACACGATACGCA -ACGGAAACCACTACACGACTTGCA -ACGGAAACCACTACACGACGAACA -ACGGAAACCACTACACGACAGTCA -ACGGAAACCACTACACGAGATCCA -ACGGAAACCACTACACGAACGACA -ACGGAAACCACTACACGAAGCTCA -ACGGAAACCACTACACGATCACGT -ACGGAAACCACTACACGACGTAGT -ACGGAAACCACTACACGAGTCAGT -ACGGAAACCACTACACGAGAAGGT -ACGGAAACCACTACACGAAACCGT -ACGGAAACCACTACACGATTGTGC -ACGGAAACCACTACACGACTAAGC -ACGGAAACCACTACACGAACTAGC -ACGGAAACCACTACACGAAGATGC -ACGGAAACCACTACACGATGAAGG -ACGGAAACCACTACACGACAATGG -ACGGAAACCACTACACGAATGAGG -ACGGAAACCACTACACGAAATGGG -ACGGAAACCACTACACGATCCTGA -ACGGAAACCACTACACGATAGCGA -ACGGAAACCACTACACGACACAGA -ACGGAAACCACTACACGAGCAAGA -ACGGAAACCACTACACGAGGTTGA -ACGGAAACCACTACACGATCCGAT -ACGGAAACCACTACACGATGGCAT -ACGGAAACCACTACACGACGAGAT -ACGGAAACCACTACACGATACCAC -ACGGAAACCACTACACGACAGAAC -ACGGAAACCACTACACGAGTCTAC -ACGGAAACCACTACACGAACGTAC -ACGGAAACCACTACACGAAGTGAC -ACGGAAACCACTACACGACTGTAG -ACGGAAACCACTACACGACCTAAG -ACGGAAACCACTACACGAGTTCAG -ACGGAAACCACTACACGAGCATAG -ACGGAAACCACTACACGAGACAAG -ACGGAAACCACTACACGAAAGCAG -ACGGAAACCACTACACGACGTCAA -ACGGAAACCACTACACGAGCTGAA -ACGGAAACCACTACACGAAGTACG -ACGGAAACCACTACACGAATCCGA -ACGGAAACCACTACACGAATGGGA -ACGGAAACCACTACACGAGTGCAA -ACGGAAACCACTACACGAGAGGAA -ACGGAAACCACTACACGACAGGTA -ACGGAAACCACTACACGAGACTCT -ACGGAAACCACTACACGAAGTCCT -ACGGAAACCACTACACGATAAGCC -ACGGAAACCACTACACGAATAGCC -ACGGAAACCACTACACGATAACCG -ACGGAAACCACTACACGAATGCCA -ACGGAAACCACTTCACAGGGAAAC -ACGGAAACCACTTCACAGAACACC -ACGGAAACCACTTCACAGATCGAG -ACGGAAACCACTTCACAGCTCCTT -ACGGAAACCACTTCACAGCCTGTT -ACGGAAACCACTTCACAGCGGTTT -ACGGAAACCACTTCACAGGTGGTT -ACGGAAACCACTTCACAGGCCTTT -ACGGAAACCACTTCACAGGGTCTT -ACGGAAACCACTTCACAGACGCTT -ACGGAAACCACTTCACAGAGCGTT -ACGGAAACCACTTCACAGTTCGTC -ACGGAAACCACTTCACAGTCTCTC -ACGGAAACCACTTCACAGTGGATC -ACGGAAACCACTTCACAGCACTTC -ACGGAAACCACTTCACAGGTACTC -ACGGAAACCACTTCACAGGATGTC -ACGGAAACCACTTCACAGACAGTC -ACGGAAACCACTTCACAGTTGCTG -ACGGAAACCACTTCACAGTCCATG -ACGGAAACCACTTCACAGTGTGTG -ACGGAAACCACTTCACAGCTAGTG -ACGGAAACCACTTCACAGCATCTG -ACGGAAACCACTTCACAGGAGTTG -ACGGAAACCACTTCACAGAGACTG -ACGGAAACCACTTCACAGTCGGTA -ACGGAAACCACTTCACAGTGCCTA -ACGGAAACCACTTCACAGCCACTA -ACGGAAACCACTTCACAGGGAGTA -ACGGAAACCACTTCACAGTCGTCT -ACGGAAACCACTTCACAGTGCACT -ACGGAAACCACTTCACAGCTGACT -ACGGAAACCACTTCACAGCAACCT -ACGGAAACCACTTCACAGGCTACT -ACGGAAACCACTTCACAGGGATCT -ACGGAAACCACTTCACAGAAGGCT -ACGGAAACCACTTCACAGTCAACC -ACGGAAACCACTTCACAGTGTTCC -ACGGAAACCACTTCACAGATTCCC -ACGGAAACCACTTCACAGTTCTCG -ACGGAAACCACTTCACAGTAGACG -ACGGAAACCACTTCACAGGTAACG -ACGGAAACCACTTCACAGACTTCG -ACGGAAACCACTTCACAGTACGCA -ACGGAAACCACTTCACAGCTTGCA -ACGGAAACCACTTCACAGCGAACA -ACGGAAACCACTTCACAGCAGTCA -ACGGAAACCACTTCACAGGATCCA -ACGGAAACCACTTCACAGACGACA -ACGGAAACCACTTCACAGAGCTCA -ACGGAAACCACTTCACAGTCACGT -ACGGAAACCACTTCACAGCGTAGT -ACGGAAACCACTTCACAGGTCAGT -ACGGAAACCACTTCACAGGAAGGT -ACGGAAACCACTTCACAGAACCGT -ACGGAAACCACTTCACAGTTGTGC -ACGGAAACCACTTCACAGCTAAGC -ACGGAAACCACTTCACAGACTAGC -ACGGAAACCACTTCACAGAGATGC -ACGGAAACCACTTCACAGTGAAGG -ACGGAAACCACTTCACAGCAATGG -ACGGAAACCACTTCACAGATGAGG -ACGGAAACCACTTCACAGAATGGG -ACGGAAACCACTTCACAGTCCTGA -ACGGAAACCACTTCACAGTAGCGA -ACGGAAACCACTTCACAGCACAGA -ACGGAAACCACTTCACAGGCAAGA -ACGGAAACCACTTCACAGGGTTGA -ACGGAAACCACTTCACAGTCCGAT -ACGGAAACCACTTCACAGTGGCAT -ACGGAAACCACTTCACAGCGAGAT -ACGGAAACCACTTCACAGTACCAC -ACGGAAACCACTTCACAGCAGAAC -ACGGAAACCACTTCACAGGTCTAC -ACGGAAACCACTTCACAGACGTAC -ACGGAAACCACTTCACAGAGTGAC -ACGGAAACCACTTCACAGCTGTAG -ACGGAAACCACTTCACAGCCTAAG -ACGGAAACCACTTCACAGGTTCAG -ACGGAAACCACTTCACAGGCATAG -ACGGAAACCACTTCACAGGACAAG -ACGGAAACCACTTCACAGAAGCAG -ACGGAAACCACTTCACAGCGTCAA -ACGGAAACCACTTCACAGGCTGAA -ACGGAAACCACTTCACAGAGTACG -ACGGAAACCACTTCACAGATCCGA -ACGGAAACCACTTCACAGATGGGA -ACGGAAACCACTTCACAGGTGCAA -ACGGAAACCACTTCACAGGAGGAA -ACGGAAACCACTTCACAGCAGGTA -ACGGAAACCACTTCACAGGACTCT -ACGGAAACCACTTCACAGAGTCCT -ACGGAAACCACTTCACAGTAAGCC -ACGGAAACCACTTCACAGATAGCC -ACGGAAACCACTTCACAGTAACCG -ACGGAAACCACTTCACAGATGCCA -ACGGAAACCACTCCAGATGGAAAC -ACGGAAACCACTCCAGATAACACC -ACGGAAACCACTCCAGATATCGAG -ACGGAAACCACTCCAGATCTCCTT -ACGGAAACCACTCCAGATCCTGTT -ACGGAAACCACTCCAGATCGGTTT -ACGGAAACCACTCCAGATGTGGTT -ACGGAAACCACTCCAGATGCCTTT -ACGGAAACCACTCCAGATGGTCTT -ACGGAAACCACTCCAGATACGCTT -ACGGAAACCACTCCAGATAGCGTT -ACGGAAACCACTCCAGATTTCGTC -ACGGAAACCACTCCAGATTCTCTC -ACGGAAACCACTCCAGATTGGATC -ACGGAAACCACTCCAGATCACTTC -ACGGAAACCACTCCAGATGTACTC -ACGGAAACCACTCCAGATGATGTC -ACGGAAACCACTCCAGATACAGTC -ACGGAAACCACTCCAGATTTGCTG -ACGGAAACCACTCCAGATTCCATG -ACGGAAACCACTCCAGATTGTGTG -ACGGAAACCACTCCAGATCTAGTG -ACGGAAACCACTCCAGATCATCTG -ACGGAAACCACTCCAGATGAGTTG -ACGGAAACCACTCCAGATAGACTG -ACGGAAACCACTCCAGATTCGGTA -ACGGAAACCACTCCAGATTGCCTA -ACGGAAACCACTCCAGATCCACTA -ACGGAAACCACTCCAGATGGAGTA -ACGGAAACCACTCCAGATTCGTCT -ACGGAAACCACTCCAGATTGCACT -ACGGAAACCACTCCAGATCTGACT -ACGGAAACCACTCCAGATCAACCT -ACGGAAACCACTCCAGATGCTACT -ACGGAAACCACTCCAGATGGATCT -ACGGAAACCACTCCAGATAAGGCT -ACGGAAACCACTCCAGATTCAACC -ACGGAAACCACTCCAGATTGTTCC -ACGGAAACCACTCCAGATATTCCC -ACGGAAACCACTCCAGATTTCTCG -ACGGAAACCACTCCAGATTAGACG -ACGGAAACCACTCCAGATGTAACG -ACGGAAACCACTCCAGATACTTCG -ACGGAAACCACTCCAGATTACGCA -ACGGAAACCACTCCAGATCTTGCA -ACGGAAACCACTCCAGATCGAACA -ACGGAAACCACTCCAGATCAGTCA -ACGGAAACCACTCCAGATGATCCA -ACGGAAACCACTCCAGATACGACA -ACGGAAACCACTCCAGATAGCTCA -ACGGAAACCACTCCAGATTCACGT -ACGGAAACCACTCCAGATCGTAGT -ACGGAAACCACTCCAGATGTCAGT -ACGGAAACCACTCCAGATGAAGGT -ACGGAAACCACTCCAGATAACCGT -ACGGAAACCACTCCAGATTTGTGC -ACGGAAACCACTCCAGATCTAAGC -ACGGAAACCACTCCAGATACTAGC -ACGGAAACCACTCCAGATAGATGC -ACGGAAACCACTCCAGATTGAAGG -ACGGAAACCACTCCAGATCAATGG -ACGGAAACCACTCCAGATATGAGG -ACGGAAACCACTCCAGATAATGGG -ACGGAAACCACTCCAGATTCCTGA -ACGGAAACCACTCCAGATTAGCGA -ACGGAAACCACTCCAGATCACAGA -ACGGAAACCACTCCAGATGCAAGA -ACGGAAACCACTCCAGATGGTTGA -ACGGAAACCACTCCAGATTCCGAT -ACGGAAACCACTCCAGATTGGCAT -ACGGAAACCACTCCAGATCGAGAT -ACGGAAACCACTCCAGATTACCAC -ACGGAAACCACTCCAGATCAGAAC -ACGGAAACCACTCCAGATGTCTAC -ACGGAAACCACTCCAGATACGTAC -ACGGAAACCACTCCAGATAGTGAC -ACGGAAACCACTCCAGATCTGTAG -ACGGAAACCACTCCAGATCCTAAG -ACGGAAACCACTCCAGATGTTCAG -ACGGAAACCACTCCAGATGCATAG -ACGGAAACCACTCCAGATGACAAG -ACGGAAACCACTCCAGATAAGCAG -ACGGAAACCACTCCAGATCGTCAA -ACGGAAACCACTCCAGATGCTGAA -ACGGAAACCACTCCAGATAGTACG -ACGGAAACCACTCCAGATATCCGA -ACGGAAACCACTCCAGATATGGGA -ACGGAAACCACTCCAGATGTGCAA -ACGGAAACCACTCCAGATGAGGAA -ACGGAAACCACTCCAGATCAGGTA -ACGGAAACCACTCCAGATGACTCT -ACGGAAACCACTCCAGATAGTCCT -ACGGAAACCACTCCAGATTAAGCC -ACGGAAACCACTCCAGATATAGCC -ACGGAAACCACTCCAGATTAACCG -ACGGAAACCACTCCAGATATGCCA -ACGGAAACCACTACAACGGGAAAC -ACGGAAACCACTACAACGAACACC -ACGGAAACCACTACAACGATCGAG -ACGGAAACCACTACAACGCTCCTT -ACGGAAACCACTACAACGCCTGTT -ACGGAAACCACTACAACGCGGTTT -ACGGAAACCACTACAACGGTGGTT -ACGGAAACCACTACAACGGCCTTT -ACGGAAACCACTACAACGGGTCTT -ACGGAAACCACTACAACGACGCTT -ACGGAAACCACTACAACGAGCGTT -ACGGAAACCACTACAACGTTCGTC -ACGGAAACCACTACAACGTCTCTC -ACGGAAACCACTACAACGTGGATC -ACGGAAACCACTACAACGCACTTC -ACGGAAACCACTACAACGGTACTC -ACGGAAACCACTACAACGGATGTC -ACGGAAACCACTACAACGACAGTC -ACGGAAACCACTACAACGTTGCTG -ACGGAAACCACTACAACGTCCATG -ACGGAAACCACTACAACGTGTGTG -ACGGAAACCACTACAACGCTAGTG -ACGGAAACCACTACAACGCATCTG -ACGGAAACCACTACAACGGAGTTG -ACGGAAACCACTACAACGAGACTG -ACGGAAACCACTACAACGTCGGTA -ACGGAAACCACTACAACGTGCCTA -ACGGAAACCACTACAACGCCACTA -ACGGAAACCACTACAACGGGAGTA -ACGGAAACCACTACAACGTCGTCT -ACGGAAACCACTACAACGTGCACT -ACGGAAACCACTACAACGCTGACT -ACGGAAACCACTACAACGCAACCT -ACGGAAACCACTACAACGGCTACT -ACGGAAACCACTACAACGGGATCT -ACGGAAACCACTACAACGAAGGCT -ACGGAAACCACTACAACGTCAACC -ACGGAAACCACTACAACGTGTTCC -ACGGAAACCACTACAACGATTCCC -ACGGAAACCACTACAACGTTCTCG -ACGGAAACCACTACAACGTAGACG -ACGGAAACCACTACAACGGTAACG -ACGGAAACCACTACAACGACTTCG -ACGGAAACCACTACAACGTACGCA -ACGGAAACCACTACAACGCTTGCA -ACGGAAACCACTACAACGCGAACA -ACGGAAACCACTACAACGCAGTCA -ACGGAAACCACTACAACGGATCCA -ACGGAAACCACTACAACGACGACA -ACGGAAACCACTACAACGAGCTCA -ACGGAAACCACTACAACGTCACGT -ACGGAAACCACTACAACGCGTAGT -ACGGAAACCACTACAACGGTCAGT -ACGGAAACCACTACAACGGAAGGT -ACGGAAACCACTACAACGAACCGT -ACGGAAACCACTACAACGTTGTGC -ACGGAAACCACTACAACGCTAAGC -ACGGAAACCACTACAACGACTAGC -ACGGAAACCACTACAACGAGATGC -ACGGAAACCACTACAACGTGAAGG -ACGGAAACCACTACAACGCAATGG -ACGGAAACCACTACAACGATGAGG -ACGGAAACCACTACAACGAATGGG -ACGGAAACCACTACAACGTCCTGA -ACGGAAACCACTACAACGTAGCGA -ACGGAAACCACTACAACGCACAGA -ACGGAAACCACTACAACGGCAAGA -ACGGAAACCACTACAACGGGTTGA -ACGGAAACCACTACAACGTCCGAT -ACGGAAACCACTACAACGTGGCAT -ACGGAAACCACTACAACGCGAGAT -ACGGAAACCACTACAACGTACCAC -ACGGAAACCACTACAACGCAGAAC -ACGGAAACCACTACAACGGTCTAC -ACGGAAACCACTACAACGACGTAC -ACGGAAACCACTACAACGAGTGAC -ACGGAAACCACTACAACGCTGTAG -ACGGAAACCACTACAACGCCTAAG -ACGGAAACCACTACAACGGTTCAG -ACGGAAACCACTACAACGGCATAG -ACGGAAACCACTACAACGGACAAG -ACGGAAACCACTACAACGAAGCAG -ACGGAAACCACTACAACGCGTCAA -ACGGAAACCACTACAACGGCTGAA -ACGGAAACCACTACAACGAGTACG -ACGGAAACCACTACAACGATCCGA -ACGGAAACCACTACAACGATGGGA -ACGGAAACCACTACAACGGTGCAA -ACGGAAACCACTACAACGGAGGAA -ACGGAAACCACTACAACGCAGGTA -ACGGAAACCACTACAACGGACTCT -ACGGAAACCACTACAACGAGTCCT -ACGGAAACCACTACAACGTAAGCC -ACGGAAACCACTACAACGATAGCC -ACGGAAACCACTACAACGTAACCG -ACGGAAACCACTACAACGATGCCA -ACGGAAACCACTTCAAGCGGAAAC -ACGGAAACCACTTCAAGCAACACC -ACGGAAACCACTTCAAGCATCGAG -ACGGAAACCACTTCAAGCCTCCTT -ACGGAAACCACTTCAAGCCCTGTT -ACGGAAACCACTTCAAGCCGGTTT -ACGGAAACCACTTCAAGCGTGGTT -ACGGAAACCACTTCAAGCGCCTTT -ACGGAAACCACTTCAAGCGGTCTT -ACGGAAACCACTTCAAGCACGCTT -ACGGAAACCACTTCAAGCAGCGTT -ACGGAAACCACTTCAAGCTTCGTC -ACGGAAACCACTTCAAGCTCTCTC -ACGGAAACCACTTCAAGCTGGATC -ACGGAAACCACTTCAAGCCACTTC -ACGGAAACCACTTCAAGCGTACTC -ACGGAAACCACTTCAAGCGATGTC -ACGGAAACCACTTCAAGCACAGTC -ACGGAAACCACTTCAAGCTTGCTG -ACGGAAACCACTTCAAGCTCCATG -ACGGAAACCACTTCAAGCTGTGTG -ACGGAAACCACTTCAAGCCTAGTG -ACGGAAACCACTTCAAGCCATCTG -ACGGAAACCACTTCAAGCGAGTTG -ACGGAAACCACTTCAAGCAGACTG -ACGGAAACCACTTCAAGCTCGGTA -ACGGAAACCACTTCAAGCTGCCTA -ACGGAAACCACTTCAAGCCCACTA -ACGGAAACCACTTCAAGCGGAGTA -ACGGAAACCACTTCAAGCTCGTCT -ACGGAAACCACTTCAAGCTGCACT -ACGGAAACCACTTCAAGCCTGACT -ACGGAAACCACTTCAAGCCAACCT -ACGGAAACCACTTCAAGCGCTACT -ACGGAAACCACTTCAAGCGGATCT -ACGGAAACCACTTCAAGCAAGGCT -ACGGAAACCACTTCAAGCTCAACC -ACGGAAACCACTTCAAGCTGTTCC -ACGGAAACCACTTCAAGCATTCCC -ACGGAAACCACTTCAAGCTTCTCG -ACGGAAACCACTTCAAGCTAGACG -ACGGAAACCACTTCAAGCGTAACG -ACGGAAACCACTTCAAGCACTTCG -ACGGAAACCACTTCAAGCTACGCA -ACGGAAACCACTTCAAGCCTTGCA -ACGGAAACCACTTCAAGCCGAACA -ACGGAAACCACTTCAAGCCAGTCA -ACGGAAACCACTTCAAGCGATCCA -ACGGAAACCACTTCAAGCACGACA -ACGGAAACCACTTCAAGCAGCTCA -ACGGAAACCACTTCAAGCTCACGT -ACGGAAACCACTTCAAGCCGTAGT -ACGGAAACCACTTCAAGCGTCAGT -ACGGAAACCACTTCAAGCGAAGGT -ACGGAAACCACTTCAAGCAACCGT -ACGGAAACCACTTCAAGCTTGTGC -ACGGAAACCACTTCAAGCCTAAGC -ACGGAAACCACTTCAAGCACTAGC -ACGGAAACCACTTCAAGCAGATGC -ACGGAAACCACTTCAAGCTGAAGG -ACGGAAACCACTTCAAGCCAATGG -ACGGAAACCACTTCAAGCATGAGG -ACGGAAACCACTTCAAGCAATGGG -ACGGAAACCACTTCAAGCTCCTGA -ACGGAAACCACTTCAAGCTAGCGA -ACGGAAACCACTTCAAGCCACAGA -ACGGAAACCACTTCAAGCGCAAGA -ACGGAAACCACTTCAAGCGGTTGA -ACGGAAACCACTTCAAGCTCCGAT -ACGGAAACCACTTCAAGCTGGCAT -ACGGAAACCACTTCAAGCCGAGAT -ACGGAAACCACTTCAAGCTACCAC -ACGGAAACCACTTCAAGCCAGAAC -ACGGAAACCACTTCAAGCGTCTAC -ACGGAAACCACTTCAAGCACGTAC -ACGGAAACCACTTCAAGCAGTGAC -ACGGAAACCACTTCAAGCCTGTAG -ACGGAAACCACTTCAAGCCCTAAG -ACGGAAACCACTTCAAGCGTTCAG -ACGGAAACCACTTCAAGCGCATAG -ACGGAAACCACTTCAAGCGACAAG -ACGGAAACCACTTCAAGCAAGCAG -ACGGAAACCACTTCAAGCCGTCAA -ACGGAAACCACTTCAAGCGCTGAA -ACGGAAACCACTTCAAGCAGTACG -ACGGAAACCACTTCAAGCATCCGA -ACGGAAACCACTTCAAGCATGGGA -ACGGAAACCACTTCAAGCGTGCAA -ACGGAAACCACTTCAAGCGAGGAA -ACGGAAACCACTTCAAGCCAGGTA -ACGGAAACCACTTCAAGCGACTCT -ACGGAAACCACTTCAAGCAGTCCT -ACGGAAACCACTTCAAGCTAAGCC -ACGGAAACCACTTCAAGCATAGCC -ACGGAAACCACTTCAAGCTAACCG -ACGGAAACCACTTCAAGCATGCCA -ACGGAAACCACTCGTTCAGGAAAC -ACGGAAACCACTCGTTCAAACACC -ACGGAAACCACTCGTTCAATCGAG -ACGGAAACCACTCGTTCACTCCTT -ACGGAAACCACTCGTTCACCTGTT -ACGGAAACCACTCGTTCACGGTTT -ACGGAAACCACTCGTTCAGTGGTT -ACGGAAACCACTCGTTCAGCCTTT -ACGGAAACCACTCGTTCAGGTCTT -ACGGAAACCACTCGTTCAACGCTT -ACGGAAACCACTCGTTCAAGCGTT -ACGGAAACCACTCGTTCATTCGTC -ACGGAAACCACTCGTTCATCTCTC -ACGGAAACCACTCGTTCATGGATC -ACGGAAACCACTCGTTCACACTTC -ACGGAAACCACTCGTTCAGTACTC -ACGGAAACCACTCGTTCAGATGTC -ACGGAAACCACTCGTTCAACAGTC -ACGGAAACCACTCGTTCATTGCTG -ACGGAAACCACTCGTTCATCCATG -ACGGAAACCACTCGTTCATGTGTG -ACGGAAACCACTCGTTCACTAGTG -ACGGAAACCACTCGTTCACATCTG -ACGGAAACCACTCGTTCAGAGTTG -ACGGAAACCACTCGTTCAAGACTG -ACGGAAACCACTCGTTCATCGGTA -ACGGAAACCACTCGTTCATGCCTA -ACGGAAACCACTCGTTCACCACTA -ACGGAAACCACTCGTTCAGGAGTA -ACGGAAACCACTCGTTCATCGTCT -ACGGAAACCACTCGTTCATGCACT -ACGGAAACCACTCGTTCACTGACT -ACGGAAACCACTCGTTCACAACCT -ACGGAAACCACTCGTTCAGCTACT -ACGGAAACCACTCGTTCAGGATCT -ACGGAAACCACTCGTTCAAAGGCT -ACGGAAACCACTCGTTCATCAACC -ACGGAAACCACTCGTTCATGTTCC -ACGGAAACCACTCGTTCAATTCCC -ACGGAAACCACTCGTTCATTCTCG -ACGGAAACCACTCGTTCATAGACG -ACGGAAACCACTCGTTCAGTAACG -ACGGAAACCACTCGTTCAACTTCG -ACGGAAACCACTCGTTCATACGCA -ACGGAAACCACTCGTTCACTTGCA -ACGGAAACCACTCGTTCACGAACA -ACGGAAACCACTCGTTCACAGTCA -ACGGAAACCACTCGTTCAGATCCA -ACGGAAACCACTCGTTCAACGACA -ACGGAAACCACTCGTTCAAGCTCA -ACGGAAACCACTCGTTCATCACGT -ACGGAAACCACTCGTTCACGTAGT -ACGGAAACCACTCGTTCAGTCAGT -ACGGAAACCACTCGTTCAGAAGGT -ACGGAAACCACTCGTTCAAACCGT -ACGGAAACCACTCGTTCATTGTGC -ACGGAAACCACTCGTTCACTAAGC -ACGGAAACCACTCGTTCAACTAGC -ACGGAAACCACTCGTTCAAGATGC -ACGGAAACCACTCGTTCATGAAGG -ACGGAAACCACTCGTTCACAATGG -ACGGAAACCACTCGTTCAATGAGG -ACGGAAACCACTCGTTCAAATGGG -ACGGAAACCACTCGTTCATCCTGA -ACGGAAACCACTCGTTCATAGCGA -ACGGAAACCACTCGTTCACACAGA -ACGGAAACCACTCGTTCAGCAAGA -ACGGAAACCACTCGTTCAGGTTGA -ACGGAAACCACTCGTTCATCCGAT -ACGGAAACCACTCGTTCATGGCAT -ACGGAAACCACTCGTTCACGAGAT -ACGGAAACCACTCGTTCATACCAC -ACGGAAACCACTCGTTCACAGAAC -ACGGAAACCACTCGTTCAGTCTAC -ACGGAAACCACTCGTTCAACGTAC -ACGGAAACCACTCGTTCAAGTGAC -ACGGAAACCACTCGTTCACTGTAG -ACGGAAACCACTCGTTCACCTAAG -ACGGAAACCACTCGTTCAGTTCAG -ACGGAAACCACTCGTTCAGCATAG -ACGGAAACCACTCGTTCAGACAAG -ACGGAAACCACTCGTTCAAAGCAG -ACGGAAACCACTCGTTCACGTCAA -ACGGAAACCACTCGTTCAGCTGAA -ACGGAAACCACTCGTTCAAGTACG -ACGGAAACCACTCGTTCAATCCGA -ACGGAAACCACTCGTTCAATGGGA -ACGGAAACCACTCGTTCAGTGCAA -ACGGAAACCACTCGTTCAGAGGAA -ACGGAAACCACTCGTTCACAGGTA -ACGGAAACCACTCGTTCAGACTCT -ACGGAAACCACTCGTTCAAGTCCT -ACGGAAACCACTCGTTCATAAGCC -ACGGAAACCACTCGTTCAATAGCC -ACGGAAACCACTCGTTCATAACCG -ACGGAAACCACTCGTTCAATGCCA -ACGGAAACCACTAGTCGTGGAAAC -ACGGAAACCACTAGTCGTAACACC -ACGGAAACCACTAGTCGTATCGAG -ACGGAAACCACTAGTCGTCTCCTT -ACGGAAACCACTAGTCGTCCTGTT -ACGGAAACCACTAGTCGTCGGTTT -ACGGAAACCACTAGTCGTGTGGTT -ACGGAAACCACTAGTCGTGCCTTT -ACGGAAACCACTAGTCGTGGTCTT -ACGGAAACCACTAGTCGTACGCTT -ACGGAAACCACTAGTCGTAGCGTT -ACGGAAACCACTAGTCGTTTCGTC -ACGGAAACCACTAGTCGTTCTCTC -ACGGAAACCACTAGTCGTTGGATC -ACGGAAACCACTAGTCGTCACTTC -ACGGAAACCACTAGTCGTGTACTC -ACGGAAACCACTAGTCGTGATGTC -ACGGAAACCACTAGTCGTACAGTC -ACGGAAACCACTAGTCGTTTGCTG -ACGGAAACCACTAGTCGTTCCATG -ACGGAAACCACTAGTCGTTGTGTG -ACGGAAACCACTAGTCGTCTAGTG -ACGGAAACCACTAGTCGTCATCTG -ACGGAAACCACTAGTCGTGAGTTG -ACGGAAACCACTAGTCGTAGACTG -ACGGAAACCACTAGTCGTTCGGTA -ACGGAAACCACTAGTCGTTGCCTA -ACGGAAACCACTAGTCGTCCACTA -ACGGAAACCACTAGTCGTGGAGTA -ACGGAAACCACTAGTCGTTCGTCT -ACGGAAACCACTAGTCGTTGCACT -ACGGAAACCACTAGTCGTCTGACT -ACGGAAACCACTAGTCGTCAACCT -ACGGAAACCACTAGTCGTGCTACT -ACGGAAACCACTAGTCGTGGATCT -ACGGAAACCACTAGTCGTAAGGCT -ACGGAAACCACTAGTCGTTCAACC -ACGGAAACCACTAGTCGTTGTTCC -ACGGAAACCACTAGTCGTATTCCC -ACGGAAACCACTAGTCGTTTCTCG -ACGGAAACCACTAGTCGTTAGACG -ACGGAAACCACTAGTCGTGTAACG -ACGGAAACCACTAGTCGTACTTCG -ACGGAAACCACTAGTCGTTACGCA -ACGGAAACCACTAGTCGTCTTGCA -ACGGAAACCACTAGTCGTCGAACA -ACGGAAACCACTAGTCGTCAGTCA -ACGGAAACCACTAGTCGTGATCCA -ACGGAAACCACTAGTCGTACGACA -ACGGAAACCACTAGTCGTAGCTCA -ACGGAAACCACTAGTCGTTCACGT -ACGGAAACCACTAGTCGTCGTAGT -ACGGAAACCACTAGTCGTGTCAGT -ACGGAAACCACTAGTCGTGAAGGT -ACGGAAACCACTAGTCGTAACCGT -ACGGAAACCACTAGTCGTTTGTGC -ACGGAAACCACTAGTCGTCTAAGC -ACGGAAACCACTAGTCGTACTAGC -ACGGAAACCACTAGTCGTAGATGC -ACGGAAACCACTAGTCGTTGAAGG -ACGGAAACCACTAGTCGTCAATGG -ACGGAAACCACTAGTCGTATGAGG -ACGGAAACCACTAGTCGTAATGGG -ACGGAAACCACTAGTCGTTCCTGA -ACGGAAACCACTAGTCGTTAGCGA -ACGGAAACCACTAGTCGTCACAGA -ACGGAAACCACTAGTCGTGCAAGA -ACGGAAACCACTAGTCGTGGTTGA -ACGGAAACCACTAGTCGTTCCGAT -ACGGAAACCACTAGTCGTTGGCAT -ACGGAAACCACTAGTCGTCGAGAT -ACGGAAACCACTAGTCGTTACCAC -ACGGAAACCACTAGTCGTCAGAAC -ACGGAAACCACTAGTCGTGTCTAC -ACGGAAACCACTAGTCGTACGTAC -ACGGAAACCACTAGTCGTAGTGAC -ACGGAAACCACTAGTCGTCTGTAG -ACGGAAACCACTAGTCGTCCTAAG -ACGGAAACCACTAGTCGTGTTCAG -ACGGAAACCACTAGTCGTGCATAG -ACGGAAACCACTAGTCGTGACAAG -ACGGAAACCACTAGTCGTAAGCAG -ACGGAAACCACTAGTCGTCGTCAA -ACGGAAACCACTAGTCGTGCTGAA -ACGGAAACCACTAGTCGTAGTACG -ACGGAAACCACTAGTCGTATCCGA -ACGGAAACCACTAGTCGTATGGGA -ACGGAAACCACTAGTCGTGTGCAA -ACGGAAACCACTAGTCGTGAGGAA -ACGGAAACCACTAGTCGTCAGGTA -ACGGAAACCACTAGTCGTGACTCT -ACGGAAACCACTAGTCGTAGTCCT -ACGGAAACCACTAGTCGTTAAGCC -ACGGAAACCACTAGTCGTATAGCC -ACGGAAACCACTAGTCGTTAACCG -ACGGAAACCACTAGTCGTATGCCA -ACGGAAACCACTAGTGTCGGAAAC -ACGGAAACCACTAGTGTCAACACC -ACGGAAACCACTAGTGTCATCGAG -ACGGAAACCACTAGTGTCCTCCTT -ACGGAAACCACTAGTGTCCCTGTT -ACGGAAACCACTAGTGTCCGGTTT -ACGGAAACCACTAGTGTCGTGGTT -ACGGAAACCACTAGTGTCGCCTTT -ACGGAAACCACTAGTGTCGGTCTT -ACGGAAACCACTAGTGTCACGCTT -ACGGAAACCACTAGTGTCAGCGTT -ACGGAAACCACTAGTGTCTTCGTC -ACGGAAACCACTAGTGTCTCTCTC -ACGGAAACCACTAGTGTCTGGATC -ACGGAAACCACTAGTGTCCACTTC -ACGGAAACCACTAGTGTCGTACTC -ACGGAAACCACTAGTGTCGATGTC -ACGGAAACCACTAGTGTCACAGTC -ACGGAAACCACTAGTGTCTTGCTG -ACGGAAACCACTAGTGTCTCCATG -ACGGAAACCACTAGTGTCTGTGTG -ACGGAAACCACTAGTGTCCTAGTG -ACGGAAACCACTAGTGTCCATCTG -ACGGAAACCACTAGTGTCGAGTTG -ACGGAAACCACTAGTGTCAGACTG -ACGGAAACCACTAGTGTCTCGGTA -ACGGAAACCACTAGTGTCTGCCTA -ACGGAAACCACTAGTGTCCCACTA -ACGGAAACCACTAGTGTCGGAGTA -ACGGAAACCACTAGTGTCTCGTCT -ACGGAAACCACTAGTGTCTGCACT -ACGGAAACCACTAGTGTCCTGACT -ACGGAAACCACTAGTGTCCAACCT -ACGGAAACCACTAGTGTCGCTACT -ACGGAAACCACTAGTGTCGGATCT -ACGGAAACCACTAGTGTCAAGGCT -ACGGAAACCACTAGTGTCTCAACC -ACGGAAACCACTAGTGTCTGTTCC -ACGGAAACCACTAGTGTCATTCCC -ACGGAAACCACTAGTGTCTTCTCG -ACGGAAACCACTAGTGTCTAGACG -ACGGAAACCACTAGTGTCGTAACG -ACGGAAACCACTAGTGTCACTTCG -ACGGAAACCACTAGTGTCTACGCA -ACGGAAACCACTAGTGTCCTTGCA -ACGGAAACCACTAGTGTCCGAACA -ACGGAAACCACTAGTGTCCAGTCA -ACGGAAACCACTAGTGTCGATCCA -ACGGAAACCACTAGTGTCACGACA -ACGGAAACCACTAGTGTCAGCTCA -ACGGAAACCACTAGTGTCTCACGT -ACGGAAACCACTAGTGTCCGTAGT -ACGGAAACCACTAGTGTCGTCAGT -ACGGAAACCACTAGTGTCGAAGGT -ACGGAAACCACTAGTGTCAACCGT -ACGGAAACCACTAGTGTCTTGTGC -ACGGAAACCACTAGTGTCCTAAGC -ACGGAAACCACTAGTGTCACTAGC -ACGGAAACCACTAGTGTCAGATGC -ACGGAAACCACTAGTGTCTGAAGG -ACGGAAACCACTAGTGTCCAATGG -ACGGAAACCACTAGTGTCATGAGG -ACGGAAACCACTAGTGTCAATGGG -ACGGAAACCACTAGTGTCTCCTGA -ACGGAAACCACTAGTGTCTAGCGA -ACGGAAACCACTAGTGTCCACAGA -ACGGAAACCACTAGTGTCGCAAGA -ACGGAAACCACTAGTGTCGGTTGA -ACGGAAACCACTAGTGTCTCCGAT -ACGGAAACCACTAGTGTCTGGCAT -ACGGAAACCACTAGTGTCCGAGAT -ACGGAAACCACTAGTGTCTACCAC -ACGGAAACCACTAGTGTCCAGAAC -ACGGAAACCACTAGTGTCGTCTAC -ACGGAAACCACTAGTGTCACGTAC -ACGGAAACCACTAGTGTCAGTGAC -ACGGAAACCACTAGTGTCCTGTAG -ACGGAAACCACTAGTGTCCCTAAG -ACGGAAACCACTAGTGTCGTTCAG -ACGGAAACCACTAGTGTCGCATAG -ACGGAAACCACTAGTGTCGACAAG -ACGGAAACCACTAGTGTCAAGCAG -ACGGAAACCACTAGTGTCCGTCAA -ACGGAAACCACTAGTGTCGCTGAA -ACGGAAACCACTAGTGTCAGTACG -ACGGAAACCACTAGTGTCATCCGA -ACGGAAACCACTAGTGTCATGGGA -ACGGAAACCACTAGTGTCGTGCAA -ACGGAAACCACTAGTGTCGAGGAA -ACGGAAACCACTAGTGTCCAGGTA -ACGGAAACCACTAGTGTCGACTCT -ACGGAAACCACTAGTGTCAGTCCT -ACGGAAACCACTAGTGTCTAAGCC -ACGGAAACCACTAGTGTCATAGCC -ACGGAAACCACTAGTGTCTAACCG -ACGGAAACCACTAGTGTCATGCCA -ACGGAAACCACTGGTGAAGGAAAC -ACGGAAACCACTGGTGAAAACACC -ACGGAAACCACTGGTGAAATCGAG -ACGGAAACCACTGGTGAACTCCTT -ACGGAAACCACTGGTGAACCTGTT -ACGGAAACCACTGGTGAACGGTTT -ACGGAAACCACTGGTGAAGTGGTT -ACGGAAACCACTGGTGAAGCCTTT -ACGGAAACCACTGGTGAAGGTCTT -ACGGAAACCACTGGTGAAACGCTT -ACGGAAACCACTGGTGAAAGCGTT -ACGGAAACCACTGGTGAATTCGTC -ACGGAAACCACTGGTGAATCTCTC -ACGGAAACCACTGGTGAATGGATC -ACGGAAACCACTGGTGAACACTTC -ACGGAAACCACTGGTGAAGTACTC -ACGGAAACCACTGGTGAAGATGTC -ACGGAAACCACTGGTGAAACAGTC -ACGGAAACCACTGGTGAATTGCTG -ACGGAAACCACTGGTGAATCCATG -ACGGAAACCACTGGTGAATGTGTG -ACGGAAACCACTGGTGAACTAGTG -ACGGAAACCACTGGTGAACATCTG -ACGGAAACCACTGGTGAAGAGTTG -ACGGAAACCACTGGTGAAAGACTG -ACGGAAACCACTGGTGAATCGGTA -ACGGAAACCACTGGTGAATGCCTA -ACGGAAACCACTGGTGAACCACTA -ACGGAAACCACTGGTGAAGGAGTA -ACGGAAACCACTGGTGAATCGTCT -ACGGAAACCACTGGTGAATGCACT -ACGGAAACCACTGGTGAACTGACT -ACGGAAACCACTGGTGAACAACCT -ACGGAAACCACTGGTGAAGCTACT -ACGGAAACCACTGGTGAAGGATCT -ACGGAAACCACTGGTGAAAAGGCT -ACGGAAACCACTGGTGAATCAACC -ACGGAAACCACTGGTGAATGTTCC -ACGGAAACCACTGGTGAAATTCCC -ACGGAAACCACTGGTGAATTCTCG -ACGGAAACCACTGGTGAATAGACG -ACGGAAACCACTGGTGAAGTAACG -ACGGAAACCACTGGTGAAACTTCG -ACGGAAACCACTGGTGAATACGCA -ACGGAAACCACTGGTGAACTTGCA -ACGGAAACCACTGGTGAACGAACA -ACGGAAACCACTGGTGAACAGTCA -ACGGAAACCACTGGTGAAGATCCA -ACGGAAACCACTGGTGAAACGACA -ACGGAAACCACTGGTGAAAGCTCA -ACGGAAACCACTGGTGAATCACGT -ACGGAAACCACTGGTGAACGTAGT -ACGGAAACCACTGGTGAAGTCAGT -ACGGAAACCACTGGTGAAGAAGGT -ACGGAAACCACTGGTGAAAACCGT -ACGGAAACCACTGGTGAATTGTGC -ACGGAAACCACTGGTGAACTAAGC -ACGGAAACCACTGGTGAAACTAGC -ACGGAAACCACTGGTGAAAGATGC -ACGGAAACCACTGGTGAATGAAGG -ACGGAAACCACTGGTGAACAATGG -ACGGAAACCACTGGTGAAATGAGG -ACGGAAACCACTGGTGAAAATGGG -ACGGAAACCACTGGTGAATCCTGA -ACGGAAACCACTGGTGAATAGCGA -ACGGAAACCACTGGTGAACACAGA -ACGGAAACCACTGGTGAAGCAAGA -ACGGAAACCACTGGTGAAGGTTGA -ACGGAAACCACTGGTGAATCCGAT -ACGGAAACCACTGGTGAATGGCAT -ACGGAAACCACTGGTGAACGAGAT -ACGGAAACCACTGGTGAATACCAC -ACGGAAACCACTGGTGAACAGAAC -ACGGAAACCACTGGTGAAGTCTAC -ACGGAAACCACTGGTGAAACGTAC -ACGGAAACCACTGGTGAAAGTGAC -ACGGAAACCACTGGTGAACTGTAG -ACGGAAACCACTGGTGAACCTAAG -ACGGAAACCACTGGTGAAGTTCAG -ACGGAAACCACTGGTGAAGCATAG -ACGGAAACCACTGGTGAAGACAAG -ACGGAAACCACTGGTGAAAAGCAG -ACGGAAACCACTGGTGAACGTCAA -ACGGAAACCACTGGTGAAGCTGAA -ACGGAAACCACTGGTGAAAGTACG -ACGGAAACCACTGGTGAAATCCGA -ACGGAAACCACTGGTGAAATGGGA -ACGGAAACCACTGGTGAAGTGCAA -ACGGAAACCACTGGTGAAGAGGAA -ACGGAAACCACTGGTGAACAGGTA -ACGGAAACCACTGGTGAAGACTCT -ACGGAAACCACTGGTGAAAGTCCT -ACGGAAACCACTGGTGAATAAGCC -ACGGAAACCACTGGTGAAATAGCC -ACGGAAACCACTGGTGAATAACCG -ACGGAAACCACTGGTGAAATGCCA -ACGGAAACCACTCGTAACGGAAAC -ACGGAAACCACTCGTAACAACACC -ACGGAAACCACTCGTAACATCGAG -ACGGAAACCACTCGTAACCTCCTT -ACGGAAACCACTCGTAACCCTGTT -ACGGAAACCACTCGTAACCGGTTT -ACGGAAACCACTCGTAACGTGGTT -ACGGAAACCACTCGTAACGCCTTT -ACGGAAACCACTCGTAACGGTCTT -ACGGAAACCACTCGTAACACGCTT -ACGGAAACCACTCGTAACAGCGTT -ACGGAAACCACTCGTAACTTCGTC -ACGGAAACCACTCGTAACTCTCTC -ACGGAAACCACTCGTAACTGGATC -ACGGAAACCACTCGTAACCACTTC -ACGGAAACCACTCGTAACGTACTC -ACGGAAACCACTCGTAACGATGTC -ACGGAAACCACTCGTAACACAGTC -ACGGAAACCACTCGTAACTTGCTG -ACGGAAACCACTCGTAACTCCATG -ACGGAAACCACTCGTAACTGTGTG -ACGGAAACCACTCGTAACCTAGTG -ACGGAAACCACTCGTAACCATCTG -ACGGAAACCACTCGTAACGAGTTG -ACGGAAACCACTCGTAACAGACTG -ACGGAAACCACTCGTAACTCGGTA -ACGGAAACCACTCGTAACTGCCTA -ACGGAAACCACTCGTAACCCACTA -ACGGAAACCACTCGTAACGGAGTA -ACGGAAACCACTCGTAACTCGTCT -ACGGAAACCACTCGTAACTGCACT -ACGGAAACCACTCGTAACCTGACT -ACGGAAACCACTCGTAACCAACCT -ACGGAAACCACTCGTAACGCTACT -ACGGAAACCACTCGTAACGGATCT -ACGGAAACCACTCGTAACAAGGCT -ACGGAAACCACTCGTAACTCAACC -ACGGAAACCACTCGTAACTGTTCC -ACGGAAACCACTCGTAACATTCCC -ACGGAAACCACTCGTAACTTCTCG -ACGGAAACCACTCGTAACTAGACG -ACGGAAACCACTCGTAACGTAACG -ACGGAAACCACTCGTAACACTTCG -ACGGAAACCACTCGTAACTACGCA -ACGGAAACCACTCGTAACCTTGCA -ACGGAAACCACTCGTAACCGAACA -ACGGAAACCACTCGTAACCAGTCA -ACGGAAACCACTCGTAACGATCCA -ACGGAAACCACTCGTAACACGACA -ACGGAAACCACTCGTAACAGCTCA -ACGGAAACCACTCGTAACTCACGT -ACGGAAACCACTCGTAACCGTAGT -ACGGAAACCACTCGTAACGTCAGT -ACGGAAACCACTCGTAACGAAGGT -ACGGAAACCACTCGTAACAACCGT -ACGGAAACCACTCGTAACTTGTGC -ACGGAAACCACTCGTAACCTAAGC -ACGGAAACCACTCGTAACACTAGC -ACGGAAACCACTCGTAACAGATGC -ACGGAAACCACTCGTAACTGAAGG -ACGGAAACCACTCGTAACCAATGG -ACGGAAACCACTCGTAACATGAGG -ACGGAAACCACTCGTAACAATGGG -ACGGAAACCACTCGTAACTCCTGA -ACGGAAACCACTCGTAACTAGCGA -ACGGAAACCACTCGTAACCACAGA -ACGGAAACCACTCGTAACGCAAGA -ACGGAAACCACTCGTAACGGTTGA -ACGGAAACCACTCGTAACTCCGAT -ACGGAAACCACTCGTAACTGGCAT -ACGGAAACCACTCGTAACCGAGAT -ACGGAAACCACTCGTAACTACCAC -ACGGAAACCACTCGTAACCAGAAC -ACGGAAACCACTCGTAACGTCTAC -ACGGAAACCACTCGTAACACGTAC -ACGGAAACCACTCGTAACAGTGAC -ACGGAAACCACTCGTAACCTGTAG -ACGGAAACCACTCGTAACCCTAAG -ACGGAAACCACTCGTAACGTTCAG -ACGGAAACCACTCGTAACGCATAG -ACGGAAACCACTCGTAACGACAAG -ACGGAAACCACTCGTAACAAGCAG -ACGGAAACCACTCGTAACCGTCAA -ACGGAAACCACTCGTAACGCTGAA -ACGGAAACCACTCGTAACAGTACG -ACGGAAACCACTCGTAACATCCGA -ACGGAAACCACTCGTAACATGGGA -ACGGAAACCACTCGTAACGTGCAA -ACGGAAACCACTCGTAACGAGGAA -ACGGAAACCACTCGTAACCAGGTA -ACGGAAACCACTCGTAACGACTCT -ACGGAAACCACTCGTAACAGTCCT -ACGGAAACCACTCGTAACTAAGCC -ACGGAAACCACTCGTAACATAGCC -ACGGAAACCACTCGTAACTAACCG -ACGGAAACCACTCGTAACATGCCA -ACGGAAACCACTTGCTTGGGAAAC -ACGGAAACCACTTGCTTGAACACC -ACGGAAACCACTTGCTTGATCGAG -ACGGAAACCACTTGCTTGCTCCTT -ACGGAAACCACTTGCTTGCCTGTT -ACGGAAACCACTTGCTTGCGGTTT -ACGGAAACCACTTGCTTGGTGGTT -ACGGAAACCACTTGCTTGGCCTTT -ACGGAAACCACTTGCTTGGGTCTT -ACGGAAACCACTTGCTTGACGCTT -ACGGAAACCACTTGCTTGAGCGTT -ACGGAAACCACTTGCTTGTTCGTC -ACGGAAACCACTTGCTTGTCTCTC -ACGGAAACCACTTGCTTGTGGATC -ACGGAAACCACTTGCTTGCACTTC -ACGGAAACCACTTGCTTGGTACTC -ACGGAAACCACTTGCTTGGATGTC -ACGGAAACCACTTGCTTGACAGTC -ACGGAAACCACTTGCTTGTTGCTG -ACGGAAACCACTTGCTTGTCCATG -ACGGAAACCACTTGCTTGTGTGTG -ACGGAAACCACTTGCTTGCTAGTG -ACGGAAACCACTTGCTTGCATCTG -ACGGAAACCACTTGCTTGGAGTTG -ACGGAAACCACTTGCTTGAGACTG -ACGGAAACCACTTGCTTGTCGGTA -ACGGAAACCACTTGCTTGTGCCTA -ACGGAAACCACTTGCTTGCCACTA -ACGGAAACCACTTGCTTGGGAGTA -ACGGAAACCACTTGCTTGTCGTCT -ACGGAAACCACTTGCTTGTGCACT -ACGGAAACCACTTGCTTGCTGACT -ACGGAAACCACTTGCTTGCAACCT -ACGGAAACCACTTGCTTGGCTACT -ACGGAAACCACTTGCTTGGGATCT -ACGGAAACCACTTGCTTGAAGGCT -ACGGAAACCACTTGCTTGTCAACC -ACGGAAACCACTTGCTTGTGTTCC -ACGGAAACCACTTGCTTGATTCCC -ACGGAAACCACTTGCTTGTTCTCG -ACGGAAACCACTTGCTTGTAGACG -ACGGAAACCACTTGCTTGGTAACG -ACGGAAACCACTTGCTTGACTTCG -ACGGAAACCACTTGCTTGTACGCA -ACGGAAACCACTTGCTTGCTTGCA -ACGGAAACCACTTGCTTGCGAACA -ACGGAAACCACTTGCTTGCAGTCA -ACGGAAACCACTTGCTTGGATCCA -ACGGAAACCACTTGCTTGACGACA -ACGGAAACCACTTGCTTGAGCTCA -ACGGAAACCACTTGCTTGTCACGT -ACGGAAACCACTTGCTTGCGTAGT -ACGGAAACCACTTGCTTGGTCAGT -ACGGAAACCACTTGCTTGGAAGGT -ACGGAAACCACTTGCTTGAACCGT -ACGGAAACCACTTGCTTGTTGTGC -ACGGAAACCACTTGCTTGCTAAGC -ACGGAAACCACTTGCTTGACTAGC -ACGGAAACCACTTGCTTGAGATGC -ACGGAAACCACTTGCTTGTGAAGG -ACGGAAACCACTTGCTTGCAATGG -ACGGAAACCACTTGCTTGATGAGG -ACGGAAACCACTTGCTTGAATGGG -ACGGAAACCACTTGCTTGTCCTGA -ACGGAAACCACTTGCTTGTAGCGA -ACGGAAACCACTTGCTTGCACAGA -ACGGAAACCACTTGCTTGGCAAGA -ACGGAAACCACTTGCTTGGGTTGA -ACGGAAACCACTTGCTTGTCCGAT -ACGGAAACCACTTGCTTGTGGCAT -ACGGAAACCACTTGCTTGCGAGAT -ACGGAAACCACTTGCTTGTACCAC -ACGGAAACCACTTGCTTGCAGAAC -ACGGAAACCACTTGCTTGGTCTAC -ACGGAAACCACTTGCTTGACGTAC -ACGGAAACCACTTGCTTGAGTGAC -ACGGAAACCACTTGCTTGCTGTAG -ACGGAAACCACTTGCTTGCCTAAG -ACGGAAACCACTTGCTTGGTTCAG -ACGGAAACCACTTGCTTGGCATAG -ACGGAAACCACTTGCTTGGACAAG -ACGGAAACCACTTGCTTGAAGCAG -ACGGAAACCACTTGCTTGCGTCAA -ACGGAAACCACTTGCTTGGCTGAA -ACGGAAACCACTTGCTTGAGTACG -ACGGAAACCACTTGCTTGATCCGA -ACGGAAACCACTTGCTTGATGGGA -ACGGAAACCACTTGCTTGGTGCAA -ACGGAAACCACTTGCTTGGAGGAA -ACGGAAACCACTTGCTTGCAGGTA -ACGGAAACCACTTGCTTGGACTCT -ACGGAAACCACTTGCTTGAGTCCT -ACGGAAACCACTTGCTTGTAAGCC -ACGGAAACCACTTGCTTGATAGCC -ACGGAAACCACTTGCTTGTAACCG -ACGGAAACCACTTGCTTGATGCCA -ACGGAAACCACTAGCCTAGGAAAC -ACGGAAACCACTAGCCTAAACACC -ACGGAAACCACTAGCCTAATCGAG -ACGGAAACCACTAGCCTACTCCTT -ACGGAAACCACTAGCCTACCTGTT -ACGGAAACCACTAGCCTACGGTTT -ACGGAAACCACTAGCCTAGTGGTT -ACGGAAACCACTAGCCTAGCCTTT -ACGGAAACCACTAGCCTAGGTCTT -ACGGAAACCACTAGCCTAACGCTT -ACGGAAACCACTAGCCTAAGCGTT -ACGGAAACCACTAGCCTATTCGTC -ACGGAAACCACTAGCCTATCTCTC -ACGGAAACCACTAGCCTATGGATC -ACGGAAACCACTAGCCTACACTTC -ACGGAAACCACTAGCCTAGTACTC -ACGGAAACCACTAGCCTAGATGTC -ACGGAAACCACTAGCCTAACAGTC -ACGGAAACCACTAGCCTATTGCTG -ACGGAAACCACTAGCCTATCCATG -ACGGAAACCACTAGCCTATGTGTG -ACGGAAACCACTAGCCTACTAGTG -ACGGAAACCACTAGCCTACATCTG -ACGGAAACCACTAGCCTAGAGTTG -ACGGAAACCACTAGCCTAAGACTG -ACGGAAACCACTAGCCTATCGGTA -ACGGAAACCACTAGCCTATGCCTA -ACGGAAACCACTAGCCTACCACTA -ACGGAAACCACTAGCCTAGGAGTA -ACGGAAACCACTAGCCTATCGTCT -ACGGAAACCACTAGCCTATGCACT -ACGGAAACCACTAGCCTACTGACT -ACGGAAACCACTAGCCTACAACCT -ACGGAAACCACTAGCCTAGCTACT -ACGGAAACCACTAGCCTAGGATCT -ACGGAAACCACTAGCCTAAAGGCT -ACGGAAACCACTAGCCTATCAACC -ACGGAAACCACTAGCCTATGTTCC -ACGGAAACCACTAGCCTAATTCCC -ACGGAAACCACTAGCCTATTCTCG -ACGGAAACCACTAGCCTATAGACG -ACGGAAACCACTAGCCTAGTAACG -ACGGAAACCACTAGCCTAACTTCG -ACGGAAACCACTAGCCTATACGCA -ACGGAAACCACTAGCCTACTTGCA -ACGGAAACCACTAGCCTACGAACA -ACGGAAACCACTAGCCTACAGTCA -ACGGAAACCACTAGCCTAGATCCA -ACGGAAACCACTAGCCTAACGACA -ACGGAAACCACTAGCCTAAGCTCA -ACGGAAACCACTAGCCTATCACGT -ACGGAAACCACTAGCCTACGTAGT -ACGGAAACCACTAGCCTAGTCAGT -ACGGAAACCACTAGCCTAGAAGGT -ACGGAAACCACTAGCCTAAACCGT -ACGGAAACCACTAGCCTATTGTGC -ACGGAAACCACTAGCCTACTAAGC -ACGGAAACCACTAGCCTAACTAGC -ACGGAAACCACTAGCCTAAGATGC -ACGGAAACCACTAGCCTATGAAGG -ACGGAAACCACTAGCCTACAATGG -ACGGAAACCACTAGCCTAATGAGG -ACGGAAACCACTAGCCTAAATGGG -ACGGAAACCACTAGCCTATCCTGA -ACGGAAACCACTAGCCTATAGCGA -ACGGAAACCACTAGCCTACACAGA -ACGGAAACCACTAGCCTAGCAAGA -ACGGAAACCACTAGCCTAGGTTGA -ACGGAAACCACTAGCCTATCCGAT -ACGGAAACCACTAGCCTATGGCAT -ACGGAAACCACTAGCCTACGAGAT -ACGGAAACCACTAGCCTATACCAC -ACGGAAACCACTAGCCTACAGAAC -ACGGAAACCACTAGCCTAGTCTAC -ACGGAAACCACTAGCCTAACGTAC -ACGGAAACCACTAGCCTAAGTGAC -ACGGAAACCACTAGCCTACTGTAG -ACGGAAACCACTAGCCTACCTAAG -ACGGAAACCACTAGCCTAGTTCAG -ACGGAAACCACTAGCCTAGCATAG -ACGGAAACCACTAGCCTAGACAAG -ACGGAAACCACTAGCCTAAAGCAG -ACGGAAACCACTAGCCTACGTCAA -ACGGAAACCACTAGCCTAGCTGAA -ACGGAAACCACTAGCCTAAGTACG -ACGGAAACCACTAGCCTAATCCGA -ACGGAAACCACTAGCCTAATGGGA -ACGGAAACCACTAGCCTAGTGCAA -ACGGAAACCACTAGCCTAGAGGAA -ACGGAAACCACTAGCCTACAGGTA -ACGGAAACCACTAGCCTAGACTCT -ACGGAAACCACTAGCCTAAGTCCT -ACGGAAACCACTAGCCTATAAGCC -ACGGAAACCACTAGCCTAATAGCC -ACGGAAACCACTAGCCTATAACCG -ACGGAAACCACTAGCCTAATGCCA -ACGGAAACCACTAGCACTGGAAAC -ACGGAAACCACTAGCACTAACACC -ACGGAAACCACTAGCACTATCGAG -ACGGAAACCACTAGCACTCTCCTT -ACGGAAACCACTAGCACTCCTGTT -ACGGAAACCACTAGCACTCGGTTT -ACGGAAACCACTAGCACTGTGGTT -ACGGAAACCACTAGCACTGCCTTT -ACGGAAACCACTAGCACTGGTCTT -ACGGAAACCACTAGCACTACGCTT -ACGGAAACCACTAGCACTAGCGTT -ACGGAAACCACTAGCACTTTCGTC -ACGGAAACCACTAGCACTTCTCTC -ACGGAAACCACTAGCACTTGGATC -ACGGAAACCACTAGCACTCACTTC -ACGGAAACCACTAGCACTGTACTC -ACGGAAACCACTAGCACTGATGTC -ACGGAAACCACTAGCACTACAGTC -ACGGAAACCACTAGCACTTTGCTG -ACGGAAACCACTAGCACTTCCATG -ACGGAAACCACTAGCACTTGTGTG -ACGGAAACCACTAGCACTCTAGTG -ACGGAAACCACTAGCACTCATCTG -ACGGAAACCACTAGCACTGAGTTG -ACGGAAACCACTAGCACTAGACTG -ACGGAAACCACTAGCACTTCGGTA -ACGGAAACCACTAGCACTTGCCTA -ACGGAAACCACTAGCACTCCACTA -ACGGAAACCACTAGCACTGGAGTA -ACGGAAACCACTAGCACTTCGTCT -ACGGAAACCACTAGCACTTGCACT -ACGGAAACCACTAGCACTCTGACT -ACGGAAACCACTAGCACTCAACCT -ACGGAAACCACTAGCACTGCTACT -ACGGAAACCACTAGCACTGGATCT -ACGGAAACCACTAGCACTAAGGCT -ACGGAAACCACTAGCACTTCAACC -ACGGAAACCACTAGCACTTGTTCC -ACGGAAACCACTAGCACTATTCCC -ACGGAAACCACTAGCACTTTCTCG -ACGGAAACCACTAGCACTTAGACG -ACGGAAACCACTAGCACTGTAACG -ACGGAAACCACTAGCACTACTTCG -ACGGAAACCACTAGCACTTACGCA -ACGGAAACCACTAGCACTCTTGCA -ACGGAAACCACTAGCACTCGAACA -ACGGAAACCACTAGCACTCAGTCA -ACGGAAACCACTAGCACTGATCCA -ACGGAAACCACTAGCACTACGACA -ACGGAAACCACTAGCACTAGCTCA -ACGGAAACCACTAGCACTTCACGT -ACGGAAACCACTAGCACTCGTAGT -ACGGAAACCACTAGCACTGTCAGT -ACGGAAACCACTAGCACTGAAGGT -ACGGAAACCACTAGCACTAACCGT -ACGGAAACCACTAGCACTTTGTGC -ACGGAAACCACTAGCACTCTAAGC -ACGGAAACCACTAGCACTACTAGC -ACGGAAACCACTAGCACTAGATGC -ACGGAAACCACTAGCACTTGAAGG -ACGGAAACCACTAGCACTCAATGG -ACGGAAACCACTAGCACTATGAGG -ACGGAAACCACTAGCACTAATGGG -ACGGAAACCACTAGCACTTCCTGA -ACGGAAACCACTAGCACTTAGCGA -ACGGAAACCACTAGCACTCACAGA -ACGGAAACCACTAGCACTGCAAGA -ACGGAAACCACTAGCACTGGTTGA -ACGGAAACCACTAGCACTTCCGAT -ACGGAAACCACTAGCACTTGGCAT -ACGGAAACCACTAGCACTCGAGAT -ACGGAAACCACTAGCACTTACCAC -ACGGAAACCACTAGCACTCAGAAC -ACGGAAACCACTAGCACTGTCTAC -ACGGAAACCACTAGCACTACGTAC -ACGGAAACCACTAGCACTAGTGAC -ACGGAAACCACTAGCACTCTGTAG -ACGGAAACCACTAGCACTCCTAAG -ACGGAAACCACTAGCACTGTTCAG -ACGGAAACCACTAGCACTGCATAG -ACGGAAACCACTAGCACTGACAAG -ACGGAAACCACTAGCACTAAGCAG -ACGGAAACCACTAGCACTCGTCAA -ACGGAAACCACTAGCACTGCTGAA -ACGGAAACCACTAGCACTAGTACG -ACGGAAACCACTAGCACTATCCGA -ACGGAAACCACTAGCACTATGGGA -ACGGAAACCACTAGCACTGTGCAA -ACGGAAACCACTAGCACTGAGGAA -ACGGAAACCACTAGCACTCAGGTA -ACGGAAACCACTAGCACTGACTCT -ACGGAAACCACTAGCACTAGTCCT -ACGGAAACCACTAGCACTTAAGCC -ACGGAAACCACTAGCACTATAGCC -ACGGAAACCACTAGCACTTAACCG -ACGGAAACCACTAGCACTATGCCA -ACGGAAACCACTTGCAGAGGAAAC -ACGGAAACCACTTGCAGAAACACC -ACGGAAACCACTTGCAGAATCGAG -ACGGAAACCACTTGCAGACTCCTT -ACGGAAACCACTTGCAGACCTGTT -ACGGAAACCACTTGCAGACGGTTT -ACGGAAACCACTTGCAGAGTGGTT -ACGGAAACCACTTGCAGAGCCTTT -ACGGAAACCACTTGCAGAGGTCTT -ACGGAAACCACTTGCAGAACGCTT -ACGGAAACCACTTGCAGAAGCGTT -ACGGAAACCACTTGCAGATTCGTC -ACGGAAACCACTTGCAGATCTCTC -ACGGAAACCACTTGCAGATGGATC -ACGGAAACCACTTGCAGACACTTC -ACGGAAACCACTTGCAGAGTACTC -ACGGAAACCACTTGCAGAGATGTC -ACGGAAACCACTTGCAGAACAGTC -ACGGAAACCACTTGCAGATTGCTG -ACGGAAACCACTTGCAGATCCATG -ACGGAAACCACTTGCAGATGTGTG -ACGGAAACCACTTGCAGACTAGTG -ACGGAAACCACTTGCAGACATCTG -ACGGAAACCACTTGCAGAGAGTTG -ACGGAAACCACTTGCAGAAGACTG -ACGGAAACCACTTGCAGATCGGTA -ACGGAAACCACTTGCAGATGCCTA -ACGGAAACCACTTGCAGACCACTA -ACGGAAACCACTTGCAGAGGAGTA -ACGGAAACCACTTGCAGATCGTCT -ACGGAAACCACTTGCAGATGCACT -ACGGAAACCACTTGCAGACTGACT -ACGGAAACCACTTGCAGACAACCT -ACGGAAACCACTTGCAGAGCTACT -ACGGAAACCACTTGCAGAGGATCT -ACGGAAACCACTTGCAGAAAGGCT -ACGGAAACCACTTGCAGATCAACC -ACGGAAACCACTTGCAGATGTTCC -ACGGAAACCACTTGCAGAATTCCC -ACGGAAACCACTTGCAGATTCTCG -ACGGAAACCACTTGCAGATAGACG -ACGGAAACCACTTGCAGAGTAACG -ACGGAAACCACTTGCAGAACTTCG -ACGGAAACCACTTGCAGATACGCA -ACGGAAACCACTTGCAGACTTGCA -ACGGAAACCACTTGCAGACGAACA -ACGGAAACCACTTGCAGACAGTCA -ACGGAAACCACTTGCAGAGATCCA -ACGGAAACCACTTGCAGAACGACA -ACGGAAACCACTTGCAGAAGCTCA -ACGGAAACCACTTGCAGATCACGT -ACGGAAACCACTTGCAGACGTAGT -ACGGAAACCACTTGCAGAGTCAGT -ACGGAAACCACTTGCAGAGAAGGT -ACGGAAACCACTTGCAGAAACCGT -ACGGAAACCACTTGCAGATTGTGC -ACGGAAACCACTTGCAGACTAAGC -ACGGAAACCACTTGCAGAACTAGC -ACGGAAACCACTTGCAGAAGATGC -ACGGAAACCACTTGCAGATGAAGG -ACGGAAACCACTTGCAGACAATGG -ACGGAAACCACTTGCAGAATGAGG -ACGGAAACCACTTGCAGAAATGGG -ACGGAAACCACTTGCAGATCCTGA -ACGGAAACCACTTGCAGATAGCGA -ACGGAAACCACTTGCAGACACAGA -ACGGAAACCACTTGCAGAGCAAGA -ACGGAAACCACTTGCAGAGGTTGA -ACGGAAACCACTTGCAGATCCGAT -ACGGAAACCACTTGCAGATGGCAT -ACGGAAACCACTTGCAGACGAGAT -ACGGAAACCACTTGCAGATACCAC -ACGGAAACCACTTGCAGACAGAAC -ACGGAAACCACTTGCAGAGTCTAC -ACGGAAACCACTTGCAGAACGTAC -ACGGAAACCACTTGCAGAAGTGAC -ACGGAAACCACTTGCAGACTGTAG -ACGGAAACCACTTGCAGACCTAAG -ACGGAAACCACTTGCAGAGTTCAG -ACGGAAACCACTTGCAGAGCATAG -ACGGAAACCACTTGCAGAGACAAG -ACGGAAACCACTTGCAGAAAGCAG -ACGGAAACCACTTGCAGACGTCAA -ACGGAAACCACTTGCAGAGCTGAA -ACGGAAACCACTTGCAGAAGTACG -ACGGAAACCACTTGCAGAATCCGA -ACGGAAACCACTTGCAGAATGGGA -ACGGAAACCACTTGCAGAGTGCAA -ACGGAAACCACTTGCAGAGAGGAA -ACGGAAACCACTTGCAGACAGGTA -ACGGAAACCACTTGCAGAGACTCT -ACGGAAACCACTTGCAGAAGTCCT -ACGGAAACCACTTGCAGATAAGCC -ACGGAAACCACTTGCAGAATAGCC -ACGGAAACCACTTGCAGATAACCG -ACGGAAACCACTTGCAGAATGCCA -ACGGAAACCACTAGGTGAGGAAAC -ACGGAAACCACTAGGTGAAACACC -ACGGAAACCACTAGGTGAATCGAG -ACGGAAACCACTAGGTGACTCCTT -ACGGAAACCACTAGGTGACCTGTT -ACGGAAACCACTAGGTGACGGTTT -ACGGAAACCACTAGGTGAGTGGTT -ACGGAAACCACTAGGTGAGCCTTT -ACGGAAACCACTAGGTGAGGTCTT -ACGGAAACCACTAGGTGAACGCTT -ACGGAAACCACTAGGTGAAGCGTT -ACGGAAACCACTAGGTGATTCGTC -ACGGAAACCACTAGGTGATCTCTC -ACGGAAACCACTAGGTGATGGATC -ACGGAAACCACTAGGTGACACTTC -ACGGAAACCACTAGGTGAGTACTC -ACGGAAACCACTAGGTGAGATGTC -ACGGAAACCACTAGGTGAACAGTC -ACGGAAACCACTAGGTGATTGCTG -ACGGAAACCACTAGGTGATCCATG -ACGGAAACCACTAGGTGATGTGTG -ACGGAAACCACTAGGTGACTAGTG -ACGGAAACCACTAGGTGACATCTG -ACGGAAACCACTAGGTGAGAGTTG -ACGGAAACCACTAGGTGAAGACTG -ACGGAAACCACTAGGTGATCGGTA -ACGGAAACCACTAGGTGATGCCTA -ACGGAAACCACTAGGTGACCACTA -ACGGAAACCACTAGGTGAGGAGTA -ACGGAAACCACTAGGTGATCGTCT -ACGGAAACCACTAGGTGATGCACT -ACGGAAACCACTAGGTGACTGACT -ACGGAAACCACTAGGTGACAACCT -ACGGAAACCACTAGGTGAGCTACT -ACGGAAACCACTAGGTGAGGATCT -ACGGAAACCACTAGGTGAAAGGCT -ACGGAAACCACTAGGTGATCAACC -ACGGAAACCACTAGGTGATGTTCC -ACGGAAACCACTAGGTGAATTCCC -ACGGAAACCACTAGGTGATTCTCG -ACGGAAACCACTAGGTGATAGACG -ACGGAAACCACTAGGTGAGTAACG -ACGGAAACCACTAGGTGAACTTCG -ACGGAAACCACTAGGTGATACGCA -ACGGAAACCACTAGGTGACTTGCA -ACGGAAACCACTAGGTGACGAACA -ACGGAAACCACTAGGTGACAGTCA -ACGGAAACCACTAGGTGAGATCCA -ACGGAAACCACTAGGTGAACGACA -ACGGAAACCACTAGGTGAAGCTCA -ACGGAAACCACTAGGTGATCACGT -ACGGAAACCACTAGGTGACGTAGT -ACGGAAACCACTAGGTGAGTCAGT -ACGGAAACCACTAGGTGAGAAGGT -ACGGAAACCACTAGGTGAAACCGT -ACGGAAACCACTAGGTGATTGTGC -ACGGAAACCACTAGGTGACTAAGC -ACGGAAACCACTAGGTGAACTAGC -ACGGAAACCACTAGGTGAAGATGC -ACGGAAACCACTAGGTGATGAAGG -ACGGAAACCACTAGGTGACAATGG -ACGGAAACCACTAGGTGAATGAGG -ACGGAAACCACTAGGTGAAATGGG -ACGGAAACCACTAGGTGATCCTGA -ACGGAAACCACTAGGTGATAGCGA -ACGGAAACCACTAGGTGACACAGA -ACGGAAACCACTAGGTGAGCAAGA -ACGGAAACCACTAGGTGAGGTTGA -ACGGAAACCACTAGGTGATCCGAT -ACGGAAACCACTAGGTGATGGCAT -ACGGAAACCACTAGGTGACGAGAT -ACGGAAACCACTAGGTGATACCAC -ACGGAAACCACTAGGTGACAGAAC -ACGGAAACCACTAGGTGAGTCTAC -ACGGAAACCACTAGGTGAACGTAC -ACGGAAACCACTAGGTGAAGTGAC -ACGGAAACCACTAGGTGACTGTAG -ACGGAAACCACTAGGTGACCTAAG -ACGGAAACCACTAGGTGAGTTCAG -ACGGAAACCACTAGGTGAGCATAG -ACGGAAACCACTAGGTGAGACAAG -ACGGAAACCACTAGGTGAAAGCAG -ACGGAAACCACTAGGTGACGTCAA -ACGGAAACCACTAGGTGAGCTGAA -ACGGAAACCACTAGGTGAAGTACG -ACGGAAACCACTAGGTGAATCCGA -ACGGAAACCACTAGGTGAATGGGA -ACGGAAACCACTAGGTGAGTGCAA -ACGGAAACCACTAGGTGAGAGGAA -ACGGAAACCACTAGGTGACAGGTA -ACGGAAACCACTAGGTGAGACTCT -ACGGAAACCACTAGGTGAAGTCCT -ACGGAAACCACTAGGTGATAAGCC -ACGGAAACCACTAGGTGAATAGCC -ACGGAAACCACTAGGTGATAACCG -ACGGAAACCACTAGGTGAATGCCA -ACGGAAACCACTTGGCAAGGAAAC -ACGGAAACCACTTGGCAAAACACC -ACGGAAACCACTTGGCAAATCGAG -ACGGAAACCACTTGGCAACTCCTT -ACGGAAACCACTTGGCAACCTGTT -ACGGAAACCACTTGGCAACGGTTT -ACGGAAACCACTTGGCAAGTGGTT -ACGGAAACCACTTGGCAAGCCTTT -ACGGAAACCACTTGGCAAGGTCTT -ACGGAAACCACTTGGCAAACGCTT -ACGGAAACCACTTGGCAAAGCGTT -ACGGAAACCACTTGGCAATTCGTC -ACGGAAACCACTTGGCAATCTCTC -ACGGAAACCACTTGGCAATGGATC -ACGGAAACCACTTGGCAACACTTC -ACGGAAACCACTTGGCAAGTACTC -ACGGAAACCACTTGGCAAGATGTC -ACGGAAACCACTTGGCAAACAGTC -ACGGAAACCACTTGGCAATTGCTG -ACGGAAACCACTTGGCAATCCATG -ACGGAAACCACTTGGCAATGTGTG -ACGGAAACCACTTGGCAACTAGTG -ACGGAAACCACTTGGCAACATCTG -ACGGAAACCACTTGGCAAGAGTTG -ACGGAAACCACTTGGCAAAGACTG -ACGGAAACCACTTGGCAATCGGTA -ACGGAAACCACTTGGCAATGCCTA -ACGGAAACCACTTGGCAACCACTA -ACGGAAACCACTTGGCAAGGAGTA -ACGGAAACCACTTGGCAATCGTCT -ACGGAAACCACTTGGCAATGCACT -ACGGAAACCACTTGGCAACTGACT -ACGGAAACCACTTGGCAACAACCT -ACGGAAACCACTTGGCAAGCTACT -ACGGAAACCACTTGGCAAGGATCT -ACGGAAACCACTTGGCAAAAGGCT -ACGGAAACCACTTGGCAATCAACC -ACGGAAACCACTTGGCAATGTTCC -ACGGAAACCACTTGGCAAATTCCC -ACGGAAACCACTTGGCAATTCTCG -ACGGAAACCACTTGGCAATAGACG -ACGGAAACCACTTGGCAAGTAACG -ACGGAAACCACTTGGCAAACTTCG -ACGGAAACCACTTGGCAATACGCA -ACGGAAACCACTTGGCAACTTGCA -ACGGAAACCACTTGGCAACGAACA -ACGGAAACCACTTGGCAACAGTCA -ACGGAAACCACTTGGCAAGATCCA -ACGGAAACCACTTGGCAAACGACA -ACGGAAACCACTTGGCAAAGCTCA -ACGGAAACCACTTGGCAATCACGT -ACGGAAACCACTTGGCAACGTAGT -ACGGAAACCACTTGGCAAGTCAGT -ACGGAAACCACTTGGCAAGAAGGT -ACGGAAACCACTTGGCAAAACCGT -ACGGAAACCACTTGGCAATTGTGC -ACGGAAACCACTTGGCAACTAAGC -ACGGAAACCACTTGGCAAACTAGC -ACGGAAACCACTTGGCAAAGATGC -ACGGAAACCACTTGGCAATGAAGG -ACGGAAACCACTTGGCAACAATGG -ACGGAAACCACTTGGCAAATGAGG -ACGGAAACCACTTGGCAAAATGGG -ACGGAAACCACTTGGCAATCCTGA -ACGGAAACCACTTGGCAATAGCGA -ACGGAAACCACTTGGCAACACAGA -ACGGAAACCACTTGGCAAGCAAGA -ACGGAAACCACTTGGCAAGGTTGA -ACGGAAACCACTTGGCAATCCGAT -ACGGAAACCACTTGGCAATGGCAT -ACGGAAACCACTTGGCAACGAGAT -ACGGAAACCACTTGGCAATACCAC -ACGGAAACCACTTGGCAACAGAAC -ACGGAAACCACTTGGCAAGTCTAC -ACGGAAACCACTTGGCAAACGTAC -ACGGAAACCACTTGGCAAAGTGAC -ACGGAAACCACTTGGCAACTGTAG -ACGGAAACCACTTGGCAACCTAAG -ACGGAAACCACTTGGCAAGTTCAG -ACGGAAACCACTTGGCAAGCATAG -ACGGAAACCACTTGGCAAGACAAG -ACGGAAACCACTTGGCAAAAGCAG -ACGGAAACCACTTGGCAACGTCAA -ACGGAAACCACTTGGCAAGCTGAA -ACGGAAACCACTTGGCAAAGTACG -ACGGAAACCACTTGGCAAATCCGA -ACGGAAACCACTTGGCAAATGGGA -ACGGAAACCACTTGGCAAGTGCAA -ACGGAAACCACTTGGCAAGAGGAA -ACGGAAACCACTTGGCAACAGGTA -ACGGAAACCACTTGGCAAGACTCT -ACGGAAACCACTTGGCAAAGTCCT -ACGGAAACCACTTGGCAATAAGCC -ACGGAAACCACTTGGCAAATAGCC -ACGGAAACCACTTGGCAATAACCG -ACGGAAACCACTTGGCAAATGCCA -ACGGAAACCACTAGGATGGGAAAC -ACGGAAACCACTAGGATGAACACC -ACGGAAACCACTAGGATGATCGAG -ACGGAAACCACTAGGATGCTCCTT -ACGGAAACCACTAGGATGCCTGTT -ACGGAAACCACTAGGATGCGGTTT -ACGGAAACCACTAGGATGGTGGTT -ACGGAAACCACTAGGATGGCCTTT -ACGGAAACCACTAGGATGGGTCTT -ACGGAAACCACTAGGATGACGCTT -ACGGAAACCACTAGGATGAGCGTT -ACGGAAACCACTAGGATGTTCGTC -ACGGAAACCACTAGGATGTCTCTC -ACGGAAACCACTAGGATGTGGATC -ACGGAAACCACTAGGATGCACTTC -ACGGAAACCACTAGGATGGTACTC -ACGGAAACCACTAGGATGGATGTC -ACGGAAACCACTAGGATGACAGTC -ACGGAAACCACTAGGATGTTGCTG -ACGGAAACCACTAGGATGTCCATG -ACGGAAACCACTAGGATGTGTGTG -ACGGAAACCACTAGGATGCTAGTG -ACGGAAACCACTAGGATGCATCTG -ACGGAAACCACTAGGATGGAGTTG -ACGGAAACCACTAGGATGAGACTG -ACGGAAACCACTAGGATGTCGGTA -ACGGAAACCACTAGGATGTGCCTA -ACGGAAACCACTAGGATGCCACTA -ACGGAAACCACTAGGATGGGAGTA -ACGGAAACCACTAGGATGTCGTCT -ACGGAAACCACTAGGATGTGCACT -ACGGAAACCACTAGGATGCTGACT -ACGGAAACCACTAGGATGCAACCT -ACGGAAACCACTAGGATGGCTACT -ACGGAAACCACTAGGATGGGATCT -ACGGAAACCACTAGGATGAAGGCT -ACGGAAACCACTAGGATGTCAACC -ACGGAAACCACTAGGATGTGTTCC -ACGGAAACCACTAGGATGATTCCC -ACGGAAACCACTAGGATGTTCTCG -ACGGAAACCACTAGGATGTAGACG -ACGGAAACCACTAGGATGGTAACG -ACGGAAACCACTAGGATGACTTCG -ACGGAAACCACTAGGATGTACGCA -ACGGAAACCACTAGGATGCTTGCA -ACGGAAACCACTAGGATGCGAACA -ACGGAAACCACTAGGATGCAGTCA -ACGGAAACCACTAGGATGGATCCA -ACGGAAACCACTAGGATGACGACA -ACGGAAACCACTAGGATGAGCTCA -ACGGAAACCACTAGGATGTCACGT -ACGGAAACCACTAGGATGCGTAGT -ACGGAAACCACTAGGATGGTCAGT -ACGGAAACCACTAGGATGGAAGGT -ACGGAAACCACTAGGATGAACCGT -ACGGAAACCACTAGGATGTTGTGC -ACGGAAACCACTAGGATGCTAAGC -ACGGAAACCACTAGGATGACTAGC -ACGGAAACCACTAGGATGAGATGC -ACGGAAACCACTAGGATGTGAAGG -ACGGAAACCACTAGGATGCAATGG -ACGGAAACCACTAGGATGATGAGG -ACGGAAACCACTAGGATGAATGGG -ACGGAAACCACTAGGATGTCCTGA -ACGGAAACCACTAGGATGTAGCGA -ACGGAAACCACTAGGATGCACAGA -ACGGAAACCACTAGGATGGCAAGA -ACGGAAACCACTAGGATGGGTTGA -ACGGAAACCACTAGGATGTCCGAT -ACGGAAACCACTAGGATGTGGCAT -ACGGAAACCACTAGGATGCGAGAT -ACGGAAACCACTAGGATGTACCAC -ACGGAAACCACTAGGATGCAGAAC -ACGGAAACCACTAGGATGGTCTAC -ACGGAAACCACTAGGATGACGTAC -ACGGAAACCACTAGGATGAGTGAC -ACGGAAACCACTAGGATGCTGTAG -ACGGAAACCACTAGGATGCCTAAG -ACGGAAACCACTAGGATGGTTCAG -ACGGAAACCACTAGGATGGCATAG -ACGGAAACCACTAGGATGGACAAG -ACGGAAACCACTAGGATGAAGCAG -ACGGAAACCACTAGGATGCGTCAA -ACGGAAACCACTAGGATGGCTGAA -ACGGAAACCACTAGGATGAGTACG -ACGGAAACCACTAGGATGATCCGA -ACGGAAACCACTAGGATGATGGGA -ACGGAAACCACTAGGATGGTGCAA -ACGGAAACCACTAGGATGGAGGAA -ACGGAAACCACTAGGATGCAGGTA -ACGGAAACCACTAGGATGGACTCT -ACGGAAACCACTAGGATGAGTCCT -ACGGAAACCACTAGGATGTAAGCC -ACGGAAACCACTAGGATGATAGCC -ACGGAAACCACTAGGATGTAACCG -ACGGAAACCACTAGGATGATGCCA -ACGGAAACCACTGGGAATGGAAAC -ACGGAAACCACTGGGAATAACACC -ACGGAAACCACTGGGAATATCGAG -ACGGAAACCACTGGGAATCTCCTT -ACGGAAACCACTGGGAATCCTGTT -ACGGAAACCACTGGGAATCGGTTT -ACGGAAACCACTGGGAATGTGGTT -ACGGAAACCACTGGGAATGCCTTT -ACGGAAACCACTGGGAATGGTCTT -ACGGAAACCACTGGGAATACGCTT -ACGGAAACCACTGGGAATAGCGTT -ACGGAAACCACTGGGAATTTCGTC -ACGGAAACCACTGGGAATTCTCTC -ACGGAAACCACTGGGAATTGGATC -ACGGAAACCACTGGGAATCACTTC -ACGGAAACCACTGGGAATGTACTC -ACGGAAACCACTGGGAATGATGTC -ACGGAAACCACTGGGAATACAGTC -ACGGAAACCACTGGGAATTTGCTG -ACGGAAACCACTGGGAATTCCATG -ACGGAAACCACTGGGAATTGTGTG -ACGGAAACCACTGGGAATCTAGTG -ACGGAAACCACTGGGAATCATCTG -ACGGAAACCACTGGGAATGAGTTG -ACGGAAACCACTGGGAATAGACTG -ACGGAAACCACTGGGAATTCGGTA -ACGGAAACCACTGGGAATTGCCTA -ACGGAAACCACTGGGAATCCACTA -ACGGAAACCACTGGGAATGGAGTA -ACGGAAACCACTGGGAATTCGTCT -ACGGAAACCACTGGGAATTGCACT -ACGGAAACCACTGGGAATCTGACT -ACGGAAACCACTGGGAATCAACCT -ACGGAAACCACTGGGAATGCTACT -ACGGAAACCACTGGGAATGGATCT -ACGGAAACCACTGGGAATAAGGCT -ACGGAAACCACTGGGAATTCAACC -ACGGAAACCACTGGGAATTGTTCC -ACGGAAACCACTGGGAATATTCCC -ACGGAAACCACTGGGAATTTCTCG -ACGGAAACCACTGGGAATTAGACG -ACGGAAACCACTGGGAATGTAACG -ACGGAAACCACTGGGAATACTTCG -ACGGAAACCACTGGGAATTACGCA -ACGGAAACCACTGGGAATCTTGCA -ACGGAAACCACTGGGAATCGAACA -ACGGAAACCACTGGGAATCAGTCA -ACGGAAACCACTGGGAATGATCCA -ACGGAAACCACTGGGAATACGACA -ACGGAAACCACTGGGAATAGCTCA -ACGGAAACCACTGGGAATTCACGT -ACGGAAACCACTGGGAATCGTAGT -ACGGAAACCACTGGGAATGTCAGT -ACGGAAACCACTGGGAATGAAGGT -ACGGAAACCACTGGGAATAACCGT -ACGGAAACCACTGGGAATTTGTGC -ACGGAAACCACTGGGAATCTAAGC -ACGGAAACCACTGGGAATACTAGC -ACGGAAACCACTGGGAATAGATGC -ACGGAAACCACTGGGAATTGAAGG -ACGGAAACCACTGGGAATCAATGG -ACGGAAACCACTGGGAATATGAGG -ACGGAAACCACTGGGAATAATGGG -ACGGAAACCACTGGGAATTCCTGA -ACGGAAACCACTGGGAATTAGCGA -ACGGAAACCACTGGGAATCACAGA -ACGGAAACCACTGGGAATGCAAGA -ACGGAAACCACTGGGAATGGTTGA -ACGGAAACCACTGGGAATTCCGAT -ACGGAAACCACTGGGAATTGGCAT -ACGGAAACCACTGGGAATCGAGAT -ACGGAAACCACTGGGAATTACCAC -ACGGAAACCACTGGGAATCAGAAC -ACGGAAACCACTGGGAATGTCTAC -ACGGAAACCACTGGGAATACGTAC -ACGGAAACCACTGGGAATAGTGAC -ACGGAAACCACTGGGAATCTGTAG -ACGGAAACCACTGGGAATCCTAAG -ACGGAAACCACTGGGAATGTTCAG -ACGGAAACCACTGGGAATGCATAG -ACGGAAACCACTGGGAATGACAAG -ACGGAAACCACTGGGAATAAGCAG -ACGGAAACCACTGGGAATCGTCAA -ACGGAAACCACTGGGAATGCTGAA -ACGGAAACCACTGGGAATAGTACG -ACGGAAACCACTGGGAATATCCGA -ACGGAAACCACTGGGAATATGGGA -ACGGAAACCACTGGGAATGTGCAA -ACGGAAACCACTGGGAATGAGGAA -ACGGAAACCACTGGGAATCAGGTA -ACGGAAACCACTGGGAATGACTCT -ACGGAAACCACTGGGAATAGTCCT -ACGGAAACCACTGGGAATTAAGCC -ACGGAAACCACTGGGAATATAGCC -ACGGAAACCACTGGGAATTAACCG -ACGGAAACCACTGGGAATATGCCA -ACGGAAACCACTTGATCCGGAAAC -ACGGAAACCACTTGATCCAACACC -ACGGAAACCACTTGATCCATCGAG -ACGGAAACCACTTGATCCCTCCTT -ACGGAAACCACTTGATCCCCTGTT -ACGGAAACCACTTGATCCCGGTTT -ACGGAAACCACTTGATCCGTGGTT -ACGGAAACCACTTGATCCGCCTTT -ACGGAAACCACTTGATCCGGTCTT -ACGGAAACCACTTGATCCACGCTT -ACGGAAACCACTTGATCCAGCGTT -ACGGAAACCACTTGATCCTTCGTC -ACGGAAACCACTTGATCCTCTCTC -ACGGAAACCACTTGATCCTGGATC -ACGGAAACCACTTGATCCCACTTC -ACGGAAACCACTTGATCCGTACTC -ACGGAAACCACTTGATCCGATGTC -ACGGAAACCACTTGATCCACAGTC -ACGGAAACCACTTGATCCTTGCTG -ACGGAAACCACTTGATCCTCCATG -ACGGAAACCACTTGATCCTGTGTG -ACGGAAACCACTTGATCCCTAGTG -ACGGAAACCACTTGATCCCATCTG -ACGGAAACCACTTGATCCGAGTTG -ACGGAAACCACTTGATCCAGACTG -ACGGAAACCACTTGATCCTCGGTA -ACGGAAACCACTTGATCCTGCCTA -ACGGAAACCACTTGATCCCCACTA -ACGGAAACCACTTGATCCGGAGTA -ACGGAAACCACTTGATCCTCGTCT -ACGGAAACCACTTGATCCTGCACT -ACGGAAACCACTTGATCCCTGACT -ACGGAAACCACTTGATCCCAACCT -ACGGAAACCACTTGATCCGCTACT -ACGGAAACCACTTGATCCGGATCT -ACGGAAACCACTTGATCCAAGGCT -ACGGAAACCACTTGATCCTCAACC -ACGGAAACCACTTGATCCTGTTCC -ACGGAAACCACTTGATCCATTCCC -ACGGAAACCACTTGATCCTTCTCG -ACGGAAACCACTTGATCCTAGACG -ACGGAAACCACTTGATCCGTAACG -ACGGAAACCACTTGATCCACTTCG -ACGGAAACCACTTGATCCTACGCA -ACGGAAACCACTTGATCCCTTGCA -ACGGAAACCACTTGATCCCGAACA -ACGGAAACCACTTGATCCCAGTCA -ACGGAAACCACTTGATCCGATCCA -ACGGAAACCACTTGATCCACGACA -ACGGAAACCACTTGATCCAGCTCA -ACGGAAACCACTTGATCCTCACGT -ACGGAAACCACTTGATCCCGTAGT -ACGGAAACCACTTGATCCGTCAGT -ACGGAAACCACTTGATCCGAAGGT -ACGGAAACCACTTGATCCAACCGT -ACGGAAACCACTTGATCCTTGTGC -ACGGAAACCACTTGATCCCTAAGC -ACGGAAACCACTTGATCCACTAGC -ACGGAAACCACTTGATCCAGATGC -ACGGAAACCACTTGATCCTGAAGG -ACGGAAACCACTTGATCCCAATGG -ACGGAAACCACTTGATCCATGAGG -ACGGAAACCACTTGATCCAATGGG -ACGGAAACCACTTGATCCTCCTGA -ACGGAAACCACTTGATCCTAGCGA -ACGGAAACCACTTGATCCCACAGA -ACGGAAACCACTTGATCCGCAAGA -ACGGAAACCACTTGATCCGGTTGA -ACGGAAACCACTTGATCCTCCGAT -ACGGAAACCACTTGATCCTGGCAT -ACGGAAACCACTTGATCCCGAGAT -ACGGAAACCACTTGATCCTACCAC -ACGGAAACCACTTGATCCCAGAAC -ACGGAAACCACTTGATCCGTCTAC -ACGGAAACCACTTGATCCACGTAC -ACGGAAACCACTTGATCCAGTGAC -ACGGAAACCACTTGATCCCTGTAG -ACGGAAACCACTTGATCCCCTAAG -ACGGAAACCACTTGATCCGTTCAG -ACGGAAACCACTTGATCCGCATAG -ACGGAAACCACTTGATCCGACAAG -ACGGAAACCACTTGATCCAAGCAG -ACGGAAACCACTTGATCCCGTCAA -ACGGAAACCACTTGATCCGCTGAA -ACGGAAACCACTTGATCCAGTACG -ACGGAAACCACTTGATCCATCCGA -ACGGAAACCACTTGATCCATGGGA -ACGGAAACCACTTGATCCGTGCAA -ACGGAAACCACTTGATCCGAGGAA -ACGGAAACCACTTGATCCCAGGTA -ACGGAAACCACTTGATCCGACTCT -ACGGAAACCACTTGATCCAGTCCT -ACGGAAACCACTTGATCCTAAGCC -ACGGAAACCACTTGATCCATAGCC -ACGGAAACCACTTGATCCTAACCG -ACGGAAACCACTTGATCCATGCCA -ACGGAAACCACTCGATAGGGAAAC -ACGGAAACCACTCGATAGAACACC -ACGGAAACCACTCGATAGATCGAG -ACGGAAACCACTCGATAGCTCCTT -ACGGAAACCACTCGATAGCCTGTT -ACGGAAACCACTCGATAGCGGTTT -ACGGAAACCACTCGATAGGTGGTT -ACGGAAACCACTCGATAGGCCTTT -ACGGAAACCACTCGATAGGGTCTT -ACGGAAACCACTCGATAGACGCTT -ACGGAAACCACTCGATAGAGCGTT -ACGGAAACCACTCGATAGTTCGTC -ACGGAAACCACTCGATAGTCTCTC -ACGGAAACCACTCGATAGTGGATC -ACGGAAACCACTCGATAGCACTTC -ACGGAAACCACTCGATAGGTACTC -ACGGAAACCACTCGATAGGATGTC -ACGGAAACCACTCGATAGACAGTC -ACGGAAACCACTCGATAGTTGCTG -ACGGAAACCACTCGATAGTCCATG -ACGGAAACCACTCGATAGTGTGTG -ACGGAAACCACTCGATAGCTAGTG -ACGGAAACCACTCGATAGCATCTG -ACGGAAACCACTCGATAGGAGTTG -ACGGAAACCACTCGATAGAGACTG -ACGGAAACCACTCGATAGTCGGTA -ACGGAAACCACTCGATAGTGCCTA -ACGGAAACCACTCGATAGCCACTA -ACGGAAACCACTCGATAGGGAGTA -ACGGAAACCACTCGATAGTCGTCT -ACGGAAACCACTCGATAGTGCACT -ACGGAAACCACTCGATAGCTGACT -ACGGAAACCACTCGATAGCAACCT -ACGGAAACCACTCGATAGGCTACT -ACGGAAACCACTCGATAGGGATCT -ACGGAAACCACTCGATAGAAGGCT -ACGGAAACCACTCGATAGTCAACC -ACGGAAACCACTCGATAGTGTTCC -ACGGAAACCACTCGATAGATTCCC -ACGGAAACCACTCGATAGTTCTCG -ACGGAAACCACTCGATAGTAGACG -ACGGAAACCACTCGATAGGTAACG -ACGGAAACCACTCGATAGACTTCG -ACGGAAACCACTCGATAGTACGCA -ACGGAAACCACTCGATAGCTTGCA -ACGGAAACCACTCGATAGCGAACA -ACGGAAACCACTCGATAGCAGTCA -ACGGAAACCACTCGATAGGATCCA -ACGGAAACCACTCGATAGACGACA -ACGGAAACCACTCGATAGAGCTCA -ACGGAAACCACTCGATAGTCACGT -ACGGAAACCACTCGATAGCGTAGT -ACGGAAACCACTCGATAGGTCAGT -ACGGAAACCACTCGATAGGAAGGT -ACGGAAACCACTCGATAGAACCGT -ACGGAAACCACTCGATAGTTGTGC -ACGGAAACCACTCGATAGCTAAGC -ACGGAAACCACTCGATAGACTAGC -ACGGAAACCACTCGATAGAGATGC -ACGGAAACCACTCGATAGTGAAGG -ACGGAAACCACTCGATAGCAATGG -ACGGAAACCACTCGATAGATGAGG -ACGGAAACCACTCGATAGAATGGG -ACGGAAACCACTCGATAGTCCTGA -ACGGAAACCACTCGATAGTAGCGA -ACGGAAACCACTCGATAGCACAGA -ACGGAAACCACTCGATAGGCAAGA -ACGGAAACCACTCGATAGGGTTGA -ACGGAAACCACTCGATAGTCCGAT -ACGGAAACCACTCGATAGTGGCAT -ACGGAAACCACTCGATAGCGAGAT -ACGGAAACCACTCGATAGTACCAC -ACGGAAACCACTCGATAGCAGAAC -ACGGAAACCACTCGATAGGTCTAC -ACGGAAACCACTCGATAGACGTAC -ACGGAAACCACTCGATAGAGTGAC -ACGGAAACCACTCGATAGCTGTAG -ACGGAAACCACTCGATAGCCTAAG -ACGGAAACCACTCGATAGGTTCAG -ACGGAAACCACTCGATAGGCATAG -ACGGAAACCACTCGATAGGACAAG -ACGGAAACCACTCGATAGAAGCAG -ACGGAAACCACTCGATAGCGTCAA -ACGGAAACCACTCGATAGGCTGAA -ACGGAAACCACTCGATAGAGTACG -ACGGAAACCACTCGATAGATCCGA -ACGGAAACCACTCGATAGATGGGA -ACGGAAACCACTCGATAGGTGCAA -ACGGAAACCACTCGATAGGAGGAA -ACGGAAACCACTCGATAGCAGGTA -ACGGAAACCACTCGATAGGACTCT -ACGGAAACCACTCGATAGAGTCCT -ACGGAAACCACTCGATAGTAAGCC -ACGGAAACCACTCGATAGATAGCC -ACGGAAACCACTCGATAGTAACCG -ACGGAAACCACTCGATAGATGCCA -ACGGAAACCACTAGACACGGAAAC -ACGGAAACCACTAGACACAACACC -ACGGAAACCACTAGACACATCGAG -ACGGAAACCACTAGACACCTCCTT -ACGGAAACCACTAGACACCCTGTT -ACGGAAACCACTAGACACCGGTTT -ACGGAAACCACTAGACACGTGGTT -ACGGAAACCACTAGACACGCCTTT -ACGGAAACCACTAGACACGGTCTT -ACGGAAACCACTAGACACACGCTT -ACGGAAACCACTAGACACAGCGTT -ACGGAAACCACTAGACACTTCGTC -ACGGAAACCACTAGACACTCTCTC -ACGGAAACCACTAGACACTGGATC -ACGGAAACCACTAGACACCACTTC -ACGGAAACCACTAGACACGTACTC -ACGGAAACCACTAGACACGATGTC -ACGGAAACCACTAGACACACAGTC -ACGGAAACCACTAGACACTTGCTG -ACGGAAACCACTAGACACTCCATG -ACGGAAACCACTAGACACTGTGTG -ACGGAAACCACTAGACACCTAGTG -ACGGAAACCACTAGACACCATCTG -ACGGAAACCACTAGACACGAGTTG -ACGGAAACCACTAGACACAGACTG -ACGGAAACCACTAGACACTCGGTA -ACGGAAACCACTAGACACTGCCTA -ACGGAAACCACTAGACACCCACTA -ACGGAAACCACTAGACACGGAGTA -ACGGAAACCACTAGACACTCGTCT -ACGGAAACCACTAGACACTGCACT -ACGGAAACCACTAGACACCTGACT -ACGGAAACCACTAGACACCAACCT -ACGGAAACCACTAGACACGCTACT -ACGGAAACCACTAGACACGGATCT -ACGGAAACCACTAGACACAAGGCT -ACGGAAACCACTAGACACTCAACC -ACGGAAACCACTAGACACTGTTCC -ACGGAAACCACTAGACACATTCCC -ACGGAAACCACTAGACACTTCTCG -ACGGAAACCACTAGACACTAGACG -ACGGAAACCACTAGACACGTAACG -ACGGAAACCACTAGACACACTTCG -ACGGAAACCACTAGACACTACGCA -ACGGAAACCACTAGACACCTTGCA -ACGGAAACCACTAGACACCGAACA -ACGGAAACCACTAGACACCAGTCA -ACGGAAACCACTAGACACGATCCA -ACGGAAACCACTAGACACACGACA -ACGGAAACCACTAGACACAGCTCA -ACGGAAACCACTAGACACTCACGT -ACGGAAACCACTAGACACCGTAGT -ACGGAAACCACTAGACACGTCAGT -ACGGAAACCACTAGACACGAAGGT -ACGGAAACCACTAGACACAACCGT -ACGGAAACCACTAGACACTTGTGC -ACGGAAACCACTAGACACCTAAGC -ACGGAAACCACTAGACACACTAGC -ACGGAAACCACTAGACACAGATGC -ACGGAAACCACTAGACACTGAAGG -ACGGAAACCACTAGACACCAATGG -ACGGAAACCACTAGACACATGAGG -ACGGAAACCACTAGACACAATGGG -ACGGAAACCACTAGACACTCCTGA -ACGGAAACCACTAGACACTAGCGA -ACGGAAACCACTAGACACCACAGA -ACGGAAACCACTAGACACGCAAGA -ACGGAAACCACTAGACACGGTTGA -ACGGAAACCACTAGACACTCCGAT -ACGGAAACCACTAGACACTGGCAT -ACGGAAACCACTAGACACCGAGAT -ACGGAAACCACTAGACACTACCAC -ACGGAAACCACTAGACACCAGAAC -ACGGAAACCACTAGACACGTCTAC -ACGGAAACCACTAGACACACGTAC -ACGGAAACCACTAGACACAGTGAC -ACGGAAACCACTAGACACCTGTAG -ACGGAAACCACTAGACACCCTAAG -ACGGAAACCACTAGACACGTTCAG -ACGGAAACCACTAGACACGCATAG -ACGGAAACCACTAGACACGACAAG -ACGGAAACCACTAGACACAAGCAG -ACGGAAACCACTAGACACCGTCAA -ACGGAAACCACTAGACACGCTGAA -ACGGAAACCACTAGACACAGTACG -ACGGAAACCACTAGACACATCCGA -ACGGAAACCACTAGACACATGGGA -ACGGAAACCACTAGACACGTGCAA -ACGGAAACCACTAGACACGAGGAA -ACGGAAACCACTAGACACCAGGTA -ACGGAAACCACTAGACACGACTCT -ACGGAAACCACTAGACACAGTCCT -ACGGAAACCACTAGACACTAAGCC -ACGGAAACCACTAGACACATAGCC -ACGGAAACCACTAGACACTAACCG -ACGGAAACCACTAGACACATGCCA -ACGGAAACCACTAGAGCAGGAAAC -ACGGAAACCACTAGAGCAAACACC -ACGGAAACCACTAGAGCAATCGAG -ACGGAAACCACTAGAGCACTCCTT -ACGGAAACCACTAGAGCACCTGTT -ACGGAAACCACTAGAGCACGGTTT -ACGGAAACCACTAGAGCAGTGGTT -ACGGAAACCACTAGAGCAGCCTTT -ACGGAAACCACTAGAGCAGGTCTT -ACGGAAACCACTAGAGCAACGCTT -ACGGAAACCACTAGAGCAAGCGTT -ACGGAAACCACTAGAGCATTCGTC -ACGGAAACCACTAGAGCATCTCTC -ACGGAAACCACTAGAGCATGGATC -ACGGAAACCACTAGAGCACACTTC -ACGGAAACCACTAGAGCAGTACTC -ACGGAAACCACTAGAGCAGATGTC -ACGGAAACCACTAGAGCAACAGTC -ACGGAAACCACTAGAGCATTGCTG -ACGGAAACCACTAGAGCATCCATG -ACGGAAACCACTAGAGCATGTGTG -ACGGAAACCACTAGAGCACTAGTG -ACGGAAACCACTAGAGCACATCTG -ACGGAAACCACTAGAGCAGAGTTG -ACGGAAACCACTAGAGCAAGACTG -ACGGAAACCACTAGAGCATCGGTA -ACGGAAACCACTAGAGCATGCCTA -ACGGAAACCACTAGAGCACCACTA -ACGGAAACCACTAGAGCAGGAGTA -ACGGAAACCACTAGAGCATCGTCT -ACGGAAACCACTAGAGCATGCACT -ACGGAAACCACTAGAGCACTGACT -ACGGAAACCACTAGAGCACAACCT -ACGGAAACCACTAGAGCAGCTACT -ACGGAAACCACTAGAGCAGGATCT -ACGGAAACCACTAGAGCAAAGGCT -ACGGAAACCACTAGAGCATCAACC -ACGGAAACCACTAGAGCATGTTCC -ACGGAAACCACTAGAGCAATTCCC -ACGGAAACCACTAGAGCATTCTCG -ACGGAAACCACTAGAGCATAGACG -ACGGAAACCACTAGAGCAGTAACG -ACGGAAACCACTAGAGCAACTTCG -ACGGAAACCACTAGAGCATACGCA -ACGGAAACCACTAGAGCACTTGCA -ACGGAAACCACTAGAGCACGAACA -ACGGAAACCACTAGAGCACAGTCA -ACGGAAACCACTAGAGCAGATCCA -ACGGAAACCACTAGAGCAACGACA -ACGGAAACCACTAGAGCAAGCTCA -ACGGAAACCACTAGAGCATCACGT -ACGGAAACCACTAGAGCACGTAGT -ACGGAAACCACTAGAGCAGTCAGT -ACGGAAACCACTAGAGCAGAAGGT -ACGGAAACCACTAGAGCAAACCGT -ACGGAAACCACTAGAGCATTGTGC -ACGGAAACCACTAGAGCACTAAGC -ACGGAAACCACTAGAGCAACTAGC -ACGGAAACCACTAGAGCAAGATGC -ACGGAAACCACTAGAGCATGAAGG -ACGGAAACCACTAGAGCACAATGG -ACGGAAACCACTAGAGCAATGAGG -ACGGAAACCACTAGAGCAAATGGG -ACGGAAACCACTAGAGCATCCTGA -ACGGAAACCACTAGAGCATAGCGA -ACGGAAACCACTAGAGCACACAGA -ACGGAAACCACTAGAGCAGCAAGA -ACGGAAACCACTAGAGCAGGTTGA -ACGGAAACCACTAGAGCATCCGAT -ACGGAAACCACTAGAGCATGGCAT -ACGGAAACCACTAGAGCACGAGAT -ACGGAAACCACTAGAGCATACCAC -ACGGAAACCACTAGAGCACAGAAC -ACGGAAACCACTAGAGCAGTCTAC -ACGGAAACCACTAGAGCAACGTAC -ACGGAAACCACTAGAGCAAGTGAC -ACGGAAACCACTAGAGCACTGTAG -ACGGAAACCACTAGAGCACCTAAG -ACGGAAACCACTAGAGCAGTTCAG -ACGGAAACCACTAGAGCAGCATAG -ACGGAAACCACTAGAGCAGACAAG -ACGGAAACCACTAGAGCAAAGCAG -ACGGAAACCACTAGAGCACGTCAA -ACGGAAACCACTAGAGCAGCTGAA -ACGGAAACCACTAGAGCAAGTACG -ACGGAAACCACTAGAGCAATCCGA -ACGGAAACCACTAGAGCAATGGGA -ACGGAAACCACTAGAGCAGTGCAA -ACGGAAACCACTAGAGCAGAGGAA -ACGGAAACCACTAGAGCACAGGTA -ACGGAAACCACTAGAGCAGACTCT -ACGGAAACCACTAGAGCAAGTCCT -ACGGAAACCACTAGAGCATAAGCC -ACGGAAACCACTAGAGCAATAGCC -ACGGAAACCACTAGAGCATAACCG -ACGGAAACCACTAGAGCAATGCCA -ACGGAAACCACTTGAGGTGGAAAC -ACGGAAACCACTTGAGGTAACACC -ACGGAAACCACTTGAGGTATCGAG -ACGGAAACCACTTGAGGTCTCCTT -ACGGAAACCACTTGAGGTCCTGTT -ACGGAAACCACTTGAGGTCGGTTT -ACGGAAACCACTTGAGGTGTGGTT -ACGGAAACCACTTGAGGTGCCTTT -ACGGAAACCACTTGAGGTGGTCTT -ACGGAAACCACTTGAGGTACGCTT -ACGGAAACCACTTGAGGTAGCGTT -ACGGAAACCACTTGAGGTTTCGTC -ACGGAAACCACTTGAGGTTCTCTC -ACGGAAACCACTTGAGGTTGGATC -ACGGAAACCACTTGAGGTCACTTC -ACGGAAACCACTTGAGGTGTACTC -ACGGAAACCACTTGAGGTGATGTC -ACGGAAACCACTTGAGGTACAGTC -ACGGAAACCACTTGAGGTTTGCTG -ACGGAAACCACTTGAGGTTCCATG -ACGGAAACCACTTGAGGTTGTGTG -ACGGAAACCACTTGAGGTCTAGTG -ACGGAAACCACTTGAGGTCATCTG -ACGGAAACCACTTGAGGTGAGTTG -ACGGAAACCACTTGAGGTAGACTG -ACGGAAACCACTTGAGGTTCGGTA -ACGGAAACCACTTGAGGTTGCCTA -ACGGAAACCACTTGAGGTCCACTA -ACGGAAACCACTTGAGGTGGAGTA -ACGGAAACCACTTGAGGTTCGTCT -ACGGAAACCACTTGAGGTTGCACT -ACGGAAACCACTTGAGGTCTGACT -ACGGAAACCACTTGAGGTCAACCT -ACGGAAACCACTTGAGGTGCTACT -ACGGAAACCACTTGAGGTGGATCT -ACGGAAACCACTTGAGGTAAGGCT -ACGGAAACCACTTGAGGTTCAACC -ACGGAAACCACTTGAGGTTGTTCC -ACGGAAACCACTTGAGGTATTCCC -ACGGAAACCACTTGAGGTTTCTCG -ACGGAAACCACTTGAGGTTAGACG -ACGGAAACCACTTGAGGTGTAACG -ACGGAAACCACTTGAGGTACTTCG -ACGGAAACCACTTGAGGTTACGCA -ACGGAAACCACTTGAGGTCTTGCA -ACGGAAACCACTTGAGGTCGAACA -ACGGAAACCACTTGAGGTCAGTCA -ACGGAAACCACTTGAGGTGATCCA -ACGGAAACCACTTGAGGTACGACA -ACGGAAACCACTTGAGGTAGCTCA -ACGGAAACCACTTGAGGTTCACGT -ACGGAAACCACTTGAGGTCGTAGT -ACGGAAACCACTTGAGGTGTCAGT -ACGGAAACCACTTGAGGTGAAGGT -ACGGAAACCACTTGAGGTAACCGT -ACGGAAACCACTTGAGGTTTGTGC -ACGGAAACCACTTGAGGTCTAAGC -ACGGAAACCACTTGAGGTACTAGC -ACGGAAACCACTTGAGGTAGATGC -ACGGAAACCACTTGAGGTTGAAGG -ACGGAAACCACTTGAGGTCAATGG -ACGGAAACCACTTGAGGTATGAGG -ACGGAAACCACTTGAGGTAATGGG -ACGGAAACCACTTGAGGTTCCTGA -ACGGAAACCACTTGAGGTTAGCGA -ACGGAAACCACTTGAGGTCACAGA -ACGGAAACCACTTGAGGTGCAAGA -ACGGAAACCACTTGAGGTGGTTGA -ACGGAAACCACTTGAGGTTCCGAT -ACGGAAACCACTTGAGGTTGGCAT -ACGGAAACCACTTGAGGTCGAGAT -ACGGAAACCACTTGAGGTTACCAC -ACGGAAACCACTTGAGGTCAGAAC -ACGGAAACCACTTGAGGTGTCTAC -ACGGAAACCACTTGAGGTACGTAC -ACGGAAACCACTTGAGGTAGTGAC -ACGGAAACCACTTGAGGTCTGTAG -ACGGAAACCACTTGAGGTCCTAAG -ACGGAAACCACTTGAGGTGTTCAG -ACGGAAACCACTTGAGGTGCATAG -ACGGAAACCACTTGAGGTGACAAG -ACGGAAACCACTTGAGGTAAGCAG -ACGGAAACCACTTGAGGTCGTCAA -ACGGAAACCACTTGAGGTGCTGAA -ACGGAAACCACTTGAGGTAGTACG -ACGGAAACCACTTGAGGTATCCGA -ACGGAAACCACTTGAGGTATGGGA -ACGGAAACCACTTGAGGTGTGCAA -ACGGAAACCACTTGAGGTGAGGAA -ACGGAAACCACTTGAGGTCAGGTA -ACGGAAACCACTTGAGGTGACTCT -ACGGAAACCACTTGAGGTAGTCCT -ACGGAAACCACTTGAGGTTAAGCC -ACGGAAACCACTTGAGGTATAGCC -ACGGAAACCACTTGAGGTTAACCG -ACGGAAACCACTTGAGGTATGCCA -ACGGAAACCACTGATTCCGGAAAC -ACGGAAACCACTGATTCCAACACC -ACGGAAACCACTGATTCCATCGAG -ACGGAAACCACTGATTCCCTCCTT -ACGGAAACCACTGATTCCCCTGTT -ACGGAAACCACTGATTCCCGGTTT -ACGGAAACCACTGATTCCGTGGTT -ACGGAAACCACTGATTCCGCCTTT -ACGGAAACCACTGATTCCGGTCTT -ACGGAAACCACTGATTCCACGCTT -ACGGAAACCACTGATTCCAGCGTT -ACGGAAACCACTGATTCCTTCGTC -ACGGAAACCACTGATTCCTCTCTC -ACGGAAACCACTGATTCCTGGATC -ACGGAAACCACTGATTCCCACTTC -ACGGAAACCACTGATTCCGTACTC -ACGGAAACCACTGATTCCGATGTC -ACGGAAACCACTGATTCCACAGTC -ACGGAAACCACTGATTCCTTGCTG -ACGGAAACCACTGATTCCTCCATG -ACGGAAACCACTGATTCCTGTGTG -ACGGAAACCACTGATTCCCTAGTG -ACGGAAACCACTGATTCCCATCTG -ACGGAAACCACTGATTCCGAGTTG -ACGGAAACCACTGATTCCAGACTG -ACGGAAACCACTGATTCCTCGGTA -ACGGAAACCACTGATTCCTGCCTA -ACGGAAACCACTGATTCCCCACTA -ACGGAAACCACTGATTCCGGAGTA -ACGGAAACCACTGATTCCTCGTCT -ACGGAAACCACTGATTCCTGCACT -ACGGAAACCACTGATTCCCTGACT -ACGGAAACCACTGATTCCCAACCT -ACGGAAACCACTGATTCCGCTACT -ACGGAAACCACTGATTCCGGATCT -ACGGAAACCACTGATTCCAAGGCT -ACGGAAACCACTGATTCCTCAACC -ACGGAAACCACTGATTCCTGTTCC -ACGGAAACCACTGATTCCATTCCC -ACGGAAACCACTGATTCCTTCTCG -ACGGAAACCACTGATTCCTAGACG -ACGGAAACCACTGATTCCGTAACG -ACGGAAACCACTGATTCCACTTCG -ACGGAAACCACTGATTCCTACGCA -ACGGAAACCACTGATTCCCTTGCA -ACGGAAACCACTGATTCCCGAACA -ACGGAAACCACTGATTCCCAGTCA -ACGGAAACCACTGATTCCGATCCA -ACGGAAACCACTGATTCCACGACA -ACGGAAACCACTGATTCCAGCTCA -ACGGAAACCACTGATTCCTCACGT -ACGGAAACCACTGATTCCCGTAGT -ACGGAAACCACTGATTCCGTCAGT -ACGGAAACCACTGATTCCGAAGGT -ACGGAAACCACTGATTCCAACCGT -ACGGAAACCACTGATTCCTTGTGC -ACGGAAACCACTGATTCCCTAAGC -ACGGAAACCACTGATTCCACTAGC -ACGGAAACCACTGATTCCAGATGC -ACGGAAACCACTGATTCCTGAAGG -ACGGAAACCACTGATTCCCAATGG -ACGGAAACCACTGATTCCATGAGG -ACGGAAACCACTGATTCCAATGGG -ACGGAAACCACTGATTCCTCCTGA -ACGGAAACCACTGATTCCTAGCGA -ACGGAAACCACTGATTCCCACAGA -ACGGAAACCACTGATTCCGCAAGA -ACGGAAACCACTGATTCCGGTTGA -ACGGAAACCACTGATTCCTCCGAT -ACGGAAACCACTGATTCCTGGCAT -ACGGAAACCACTGATTCCCGAGAT -ACGGAAACCACTGATTCCTACCAC -ACGGAAACCACTGATTCCCAGAAC -ACGGAAACCACTGATTCCGTCTAC -ACGGAAACCACTGATTCCACGTAC -ACGGAAACCACTGATTCCAGTGAC -ACGGAAACCACTGATTCCCTGTAG -ACGGAAACCACTGATTCCCCTAAG -ACGGAAACCACTGATTCCGTTCAG -ACGGAAACCACTGATTCCGCATAG -ACGGAAACCACTGATTCCGACAAG -ACGGAAACCACTGATTCCAAGCAG -ACGGAAACCACTGATTCCCGTCAA -ACGGAAACCACTGATTCCGCTGAA -ACGGAAACCACTGATTCCAGTACG -ACGGAAACCACTGATTCCATCCGA -ACGGAAACCACTGATTCCATGGGA -ACGGAAACCACTGATTCCGTGCAA -ACGGAAACCACTGATTCCGAGGAA -ACGGAAACCACTGATTCCCAGGTA -ACGGAAACCACTGATTCCGACTCT -ACGGAAACCACTGATTCCAGTCCT -ACGGAAACCACTGATTCCTAAGCC -ACGGAAACCACTGATTCCATAGCC -ACGGAAACCACTGATTCCTAACCG -ACGGAAACCACTGATTCCATGCCA -ACGGAAACCACTCATTGGGGAAAC -ACGGAAACCACTCATTGGAACACC -ACGGAAACCACTCATTGGATCGAG -ACGGAAACCACTCATTGGCTCCTT -ACGGAAACCACTCATTGGCCTGTT -ACGGAAACCACTCATTGGCGGTTT -ACGGAAACCACTCATTGGGTGGTT -ACGGAAACCACTCATTGGGCCTTT -ACGGAAACCACTCATTGGGGTCTT -ACGGAAACCACTCATTGGACGCTT -ACGGAAACCACTCATTGGAGCGTT -ACGGAAACCACTCATTGGTTCGTC -ACGGAAACCACTCATTGGTCTCTC -ACGGAAACCACTCATTGGTGGATC -ACGGAAACCACTCATTGGCACTTC -ACGGAAACCACTCATTGGGTACTC -ACGGAAACCACTCATTGGGATGTC -ACGGAAACCACTCATTGGACAGTC -ACGGAAACCACTCATTGGTTGCTG -ACGGAAACCACTCATTGGTCCATG -ACGGAAACCACTCATTGGTGTGTG -ACGGAAACCACTCATTGGCTAGTG -ACGGAAACCACTCATTGGCATCTG -ACGGAAACCACTCATTGGGAGTTG -ACGGAAACCACTCATTGGAGACTG -ACGGAAACCACTCATTGGTCGGTA -ACGGAAACCACTCATTGGTGCCTA -ACGGAAACCACTCATTGGCCACTA -ACGGAAACCACTCATTGGGGAGTA -ACGGAAACCACTCATTGGTCGTCT -ACGGAAACCACTCATTGGTGCACT -ACGGAAACCACTCATTGGCTGACT -ACGGAAACCACTCATTGGCAACCT -ACGGAAACCACTCATTGGGCTACT -ACGGAAACCACTCATTGGGGATCT -ACGGAAACCACTCATTGGAAGGCT -ACGGAAACCACTCATTGGTCAACC -ACGGAAACCACTCATTGGTGTTCC -ACGGAAACCACTCATTGGATTCCC -ACGGAAACCACTCATTGGTTCTCG -ACGGAAACCACTCATTGGTAGACG -ACGGAAACCACTCATTGGGTAACG -ACGGAAACCACTCATTGGACTTCG -ACGGAAACCACTCATTGGTACGCA -ACGGAAACCACTCATTGGCTTGCA -ACGGAAACCACTCATTGGCGAACA -ACGGAAACCACTCATTGGCAGTCA -ACGGAAACCACTCATTGGGATCCA -ACGGAAACCACTCATTGGACGACA -ACGGAAACCACTCATTGGAGCTCA -ACGGAAACCACTCATTGGTCACGT -ACGGAAACCACTCATTGGCGTAGT -ACGGAAACCACTCATTGGGTCAGT -ACGGAAACCACTCATTGGGAAGGT -ACGGAAACCACTCATTGGAACCGT -ACGGAAACCACTCATTGGTTGTGC -ACGGAAACCACTCATTGGCTAAGC -ACGGAAACCACTCATTGGACTAGC -ACGGAAACCACTCATTGGAGATGC -ACGGAAACCACTCATTGGTGAAGG -ACGGAAACCACTCATTGGCAATGG -ACGGAAACCACTCATTGGATGAGG -ACGGAAACCACTCATTGGAATGGG -ACGGAAACCACTCATTGGTCCTGA -ACGGAAACCACTCATTGGTAGCGA -ACGGAAACCACTCATTGGCACAGA -ACGGAAACCACTCATTGGGCAAGA -ACGGAAACCACTCATTGGGGTTGA -ACGGAAACCACTCATTGGTCCGAT -ACGGAAACCACTCATTGGTGGCAT -ACGGAAACCACTCATTGGCGAGAT -ACGGAAACCACTCATTGGTACCAC -ACGGAAACCACTCATTGGCAGAAC -ACGGAAACCACTCATTGGGTCTAC -ACGGAAACCACTCATTGGACGTAC -ACGGAAACCACTCATTGGAGTGAC -ACGGAAACCACTCATTGGCTGTAG -ACGGAAACCACTCATTGGCCTAAG -ACGGAAACCACTCATTGGGTTCAG -ACGGAAACCACTCATTGGGCATAG -ACGGAAACCACTCATTGGGACAAG -ACGGAAACCACTCATTGGAAGCAG -ACGGAAACCACTCATTGGCGTCAA -ACGGAAACCACTCATTGGGCTGAA -ACGGAAACCACTCATTGGAGTACG -ACGGAAACCACTCATTGGATCCGA -ACGGAAACCACTCATTGGATGGGA -ACGGAAACCACTCATTGGGTGCAA -ACGGAAACCACTCATTGGGAGGAA -ACGGAAACCACTCATTGGCAGGTA -ACGGAAACCACTCATTGGGACTCT -ACGGAAACCACTCATTGGAGTCCT -ACGGAAACCACTCATTGGTAAGCC -ACGGAAACCACTCATTGGATAGCC -ACGGAAACCACTCATTGGTAACCG -ACGGAAACCACTCATTGGATGCCA -ACGGAAACCACTGATCGAGGAAAC -ACGGAAACCACTGATCGAAACACC -ACGGAAACCACTGATCGAATCGAG -ACGGAAACCACTGATCGACTCCTT -ACGGAAACCACTGATCGACCTGTT -ACGGAAACCACTGATCGACGGTTT -ACGGAAACCACTGATCGAGTGGTT -ACGGAAACCACTGATCGAGCCTTT -ACGGAAACCACTGATCGAGGTCTT -ACGGAAACCACTGATCGAACGCTT -ACGGAAACCACTGATCGAAGCGTT -ACGGAAACCACTGATCGATTCGTC -ACGGAAACCACTGATCGATCTCTC -ACGGAAACCACTGATCGATGGATC -ACGGAAACCACTGATCGACACTTC -ACGGAAACCACTGATCGAGTACTC -ACGGAAACCACTGATCGAGATGTC -ACGGAAACCACTGATCGAACAGTC -ACGGAAACCACTGATCGATTGCTG -ACGGAAACCACTGATCGATCCATG -ACGGAAACCACTGATCGATGTGTG -ACGGAAACCACTGATCGACTAGTG -ACGGAAACCACTGATCGACATCTG -ACGGAAACCACTGATCGAGAGTTG -ACGGAAACCACTGATCGAAGACTG -ACGGAAACCACTGATCGATCGGTA -ACGGAAACCACTGATCGATGCCTA -ACGGAAACCACTGATCGACCACTA -ACGGAAACCACTGATCGAGGAGTA -ACGGAAACCACTGATCGATCGTCT -ACGGAAACCACTGATCGATGCACT -ACGGAAACCACTGATCGACTGACT -ACGGAAACCACTGATCGACAACCT -ACGGAAACCACTGATCGAGCTACT -ACGGAAACCACTGATCGAGGATCT -ACGGAAACCACTGATCGAAAGGCT -ACGGAAACCACTGATCGATCAACC -ACGGAAACCACTGATCGATGTTCC -ACGGAAACCACTGATCGAATTCCC -ACGGAAACCACTGATCGATTCTCG -ACGGAAACCACTGATCGATAGACG -ACGGAAACCACTGATCGAGTAACG -ACGGAAACCACTGATCGAACTTCG -ACGGAAACCACTGATCGATACGCA -ACGGAAACCACTGATCGACTTGCA -ACGGAAACCACTGATCGACGAACA -ACGGAAACCACTGATCGACAGTCA -ACGGAAACCACTGATCGAGATCCA -ACGGAAACCACTGATCGAACGACA -ACGGAAACCACTGATCGAAGCTCA -ACGGAAACCACTGATCGATCACGT -ACGGAAACCACTGATCGACGTAGT -ACGGAAACCACTGATCGAGTCAGT -ACGGAAACCACTGATCGAGAAGGT -ACGGAAACCACTGATCGAAACCGT -ACGGAAACCACTGATCGATTGTGC -ACGGAAACCACTGATCGACTAAGC -ACGGAAACCACTGATCGAACTAGC -ACGGAAACCACTGATCGAAGATGC -ACGGAAACCACTGATCGATGAAGG -ACGGAAACCACTGATCGACAATGG -ACGGAAACCACTGATCGAATGAGG -ACGGAAACCACTGATCGAAATGGG -ACGGAAACCACTGATCGATCCTGA -ACGGAAACCACTGATCGATAGCGA -ACGGAAACCACTGATCGACACAGA -ACGGAAACCACTGATCGAGCAAGA -ACGGAAACCACTGATCGAGGTTGA -ACGGAAACCACTGATCGATCCGAT -ACGGAAACCACTGATCGATGGCAT -ACGGAAACCACTGATCGACGAGAT -ACGGAAACCACTGATCGATACCAC -ACGGAAACCACTGATCGACAGAAC -ACGGAAACCACTGATCGAGTCTAC -ACGGAAACCACTGATCGAACGTAC -ACGGAAACCACTGATCGAAGTGAC -ACGGAAACCACTGATCGACTGTAG -ACGGAAACCACTGATCGACCTAAG -ACGGAAACCACTGATCGAGTTCAG -ACGGAAACCACTGATCGAGCATAG -ACGGAAACCACTGATCGAGACAAG -ACGGAAACCACTGATCGAAAGCAG -ACGGAAACCACTGATCGACGTCAA -ACGGAAACCACTGATCGAGCTGAA -ACGGAAACCACTGATCGAAGTACG -ACGGAAACCACTGATCGAATCCGA -ACGGAAACCACTGATCGAATGGGA -ACGGAAACCACTGATCGAGTGCAA -ACGGAAACCACTGATCGAGAGGAA -ACGGAAACCACTGATCGACAGGTA -ACGGAAACCACTGATCGAGACTCT -ACGGAAACCACTGATCGAAGTCCT -ACGGAAACCACTGATCGATAAGCC -ACGGAAACCACTGATCGAATAGCC -ACGGAAACCACTGATCGATAACCG -ACGGAAACCACTGATCGAATGCCA -ACGGAAACCACTCACTACGGAAAC -ACGGAAACCACTCACTACAACACC -ACGGAAACCACTCACTACATCGAG -ACGGAAACCACTCACTACCTCCTT -ACGGAAACCACTCACTACCCTGTT -ACGGAAACCACTCACTACCGGTTT -ACGGAAACCACTCACTACGTGGTT -ACGGAAACCACTCACTACGCCTTT -ACGGAAACCACTCACTACGGTCTT -ACGGAAACCACTCACTACACGCTT -ACGGAAACCACTCACTACAGCGTT -ACGGAAACCACTCACTACTTCGTC -ACGGAAACCACTCACTACTCTCTC -ACGGAAACCACTCACTACTGGATC -ACGGAAACCACTCACTACCACTTC -ACGGAAACCACTCACTACGTACTC -ACGGAAACCACTCACTACGATGTC -ACGGAAACCACTCACTACACAGTC -ACGGAAACCACTCACTACTTGCTG -ACGGAAACCACTCACTACTCCATG -ACGGAAACCACTCACTACTGTGTG -ACGGAAACCACTCACTACCTAGTG -ACGGAAACCACTCACTACCATCTG -ACGGAAACCACTCACTACGAGTTG -ACGGAAACCACTCACTACAGACTG -ACGGAAACCACTCACTACTCGGTA -ACGGAAACCACTCACTACTGCCTA -ACGGAAACCACTCACTACCCACTA -ACGGAAACCACTCACTACGGAGTA -ACGGAAACCACTCACTACTCGTCT -ACGGAAACCACTCACTACTGCACT -ACGGAAACCACTCACTACCTGACT -ACGGAAACCACTCACTACCAACCT -ACGGAAACCACTCACTACGCTACT -ACGGAAACCACTCACTACGGATCT -ACGGAAACCACTCACTACAAGGCT -ACGGAAACCACTCACTACTCAACC -ACGGAAACCACTCACTACTGTTCC -ACGGAAACCACTCACTACATTCCC -ACGGAAACCACTCACTACTTCTCG -ACGGAAACCACTCACTACTAGACG -ACGGAAACCACTCACTACGTAACG -ACGGAAACCACTCACTACACTTCG -ACGGAAACCACTCACTACTACGCA -ACGGAAACCACTCACTACCTTGCA -ACGGAAACCACTCACTACCGAACA -ACGGAAACCACTCACTACCAGTCA -ACGGAAACCACTCACTACGATCCA -ACGGAAACCACTCACTACACGACA -ACGGAAACCACTCACTACAGCTCA -ACGGAAACCACTCACTACTCACGT -ACGGAAACCACTCACTACCGTAGT -ACGGAAACCACTCACTACGTCAGT -ACGGAAACCACTCACTACGAAGGT -ACGGAAACCACTCACTACAACCGT -ACGGAAACCACTCACTACTTGTGC -ACGGAAACCACTCACTACCTAAGC -ACGGAAACCACTCACTACACTAGC -ACGGAAACCACTCACTACAGATGC -ACGGAAACCACTCACTACTGAAGG -ACGGAAACCACTCACTACCAATGG -ACGGAAACCACTCACTACATGAGG -ACGGAAACCACTCACTACAATGGG -ACGGAAACCACTCACTACTCCTGA -ACGGAAACCACTCACTACTAGCGA -ACGGAAACCACTCACTACCACAGA -ACGGAAACCACTCACTACGCAAGA -ACGGAAACCACTCACTACGGTTGA -ACGGAAACCACTCACTACTCCGAT -ACGGAAACCACTCACTACTGGCAT -ACGGAAACCACTCACTACCGAGAT -ACGGAAACCACTCACTACTACCAC -ACGGAAACCACTCACTACCAGAAC -ACGGAAACCACTCACTACGTCTAC -ACGGAAACCACTCACTACACGTAC -ACGGAAACCACTCACTACAGTGAC -ACGGAAACCACTCACTACCTGTAG -ACGGAAACCACTCACTACCCTAAG -ACGGAAACCACTCACTACGTTCAG -ACGGAAACCACTCACTACGCATAG -ACGGAAACCACTCACTACGACAAG -ACGGAAACCACTCACTACAAGCAG -ACGGAAACCACTCACTACCGTCAA -ACGGAAACCACTCACTACGCTGAA -ACGGAAACCACTCACTACAGTACG -ACGGAAACCACTCACTACATCCGA -ACGGAAACCACTCACTACATGGGA -ACGGAAACCACTCACTACGTGCAA -ACGGAAACCACTCACTACGAGGAA -ACGGAAACCACTCACTACCAGGTA -ACGGAAACCACTCACTACGACTCT -ACGGAAACCACTCACTACAGTCCT -ACGGAAACCACTCACTACTAAGCC -ACGGAAACCACTCACTACATAGCC -ACGGAAACCACTCACTACTAACCG -ACGGAAACCACTCACTACATGCCA -ACGGAAACCACTAACCAGGGAAAC -ACGGAAACCACTAACCAGAACACC -ACGGAAACCACTAACCAGATCGAG -ACGGAAACCACTAACCAGCTCCTT -ACGGAAACCACTAACCAGCCTGTT -ACGGAAACCACTAACCAGCGGTTT -ACGGAAACCACTAACCAGGTGGTT -ACGGAAACCACTAACCAGGCCTTT -ACGGAAACCACTAACCAGGGTCTT -ACGGAAACCACTAACCAGACGCTT -ACGGAAACCACTAACCAGAGCGTT -ACGGAAACCACTAACCAGTTCGTC -ACGGAAACCACTAACCAGTCTCTC -ACGGAAACCACTAACCAGTGGATC -ACGGAAACCACTAACCAGCACTTC -ACGGAAACCACTAACCAGGTACTC -ACGGAAACCACTAACCAGGATGTC -ACGGAAACCACTAACCAGACAGTC -ACGGAAACCACTAACCAGTTGCTG -ACGGAAACCACTAACCAGTCCATG -ACGGAAACCACTAACCAGTGTGTG -ACGGAAACCACTAACCAGCTAGTG -ACGGAAACCACTAACCAGCATCTG -ACGGAAACCACTAACCAGGAGTTG -ACGGAAACCACTAACCAGAGACTG -ACGGAAACCACTAACCAGTCGGTA -ACGGAAACCACTAACCAGTGCCTA -ACGGAAACCACTAACCAGCCACTA -ACGGAAACCACTAACCAGGGAGTA -ACGGAAACCACTAACCAGTCGTCT -ACGGAAACCACTAACCAGTGCACT -ACGGAAACCACTAACCAGCTGACT -ACGGAAACCACTAACCAGCAACCT -ACGGAAACCACTAACCAGGCTACT -ACGGAAACCACTAACCAGGGATCT -ACGGAAACCACTAACCAGAAGGCT -ACGGAAACCACTAACCAGTCAACC -ACGGAAACCACTAACCAGTGTTCC -ACGGAAACCACTAACCAGATTCCC -ACGGAAACCACTAACCAGTTCTCG -ACGGAAACCACTAACCAGTAGACG -ACGGAAACCACTAACCAGGTAACG -ACGGAAACCACTAACCAGACTTCG -ACGGAAACCACTAACCAGTACGCA -ACGGAAACCACTAACCAGCTTGCA -ACGGAAACCACTAACCAGCGAACA -ACGGAAACCACTAACCAGCAGTCA -ACGGAAACCACTAACCAGGATCCA -ACGGAAACCACTAACCAGACGACA -ACGGAAACCACTAACCAGAGCTCA -ACGGAAACCACTAACCAGTCACGT -ACGGAAACCACTAACCAGCGTAGT -ACGGAAACCACTAACCAGGTCAGT -ACGGAAACCACTAACCAGGAAGGT -ACGGAAACCACTAACCAGAACCGT -ACGGAAACCACTAACCAGTTGTGC -ACGGAAACCACTAACCAGCTAAGC -ACGGAAACCACTAACCAGACTAGC -ACGGAAACCACTAACCAGAGATGC -ACGGAAACCACTAACCAGTGAAGG -ACGGAAACCACTAACCAGCAATGG -ACGGAAACCACTAACCAGATGAGG -ACGGAAACCACTAACCAGAATGGG -ACGGAAACCACTAACCAGTCCTGA -ACGGAAACCACTAACCAGTAGCGA -ACGGAAACCACTAACCAGCACAGA -ACGGAAACCACTAACCAGGCAAGA -ACGGAAACCACTAACCAGGGTTGA -ACGGAAACCACTAACCAGTCCGAT -ACGGAAACCACTAACCAGTGGCAT -ACGGAAACCACTAACCAGCGAGAT -ACGGAAACCACTAACCAGTACCAC -ACGGAAACCACTAACCAGCAGAAC -ACGGAAACCACTAACCAGGTCTAC -ACGGAAACCACTAACCAGACGTAC -ACGGAAACCACTAACCAGAGTGAC -ACGGAAACCACTAACCAGCTGTAG -ACGGAAACCACTAACCAGCCTAAG -ACGGAAACCACTAACCAGGTTCAG -ACGGAAACCACTAACCAGGCATAG -ACGGAAACCACTAACCAGGACAAG -ACGGAAACCACTAACCAGAAGCAG -ACGGAAACCACTAACCAGCGTCAA -ACGGAAACCACTAACCAGGCTGAA -ACGGAAACCACTAACCAGAGTACG -ACGGAAACCACTAACCAGATCCGA -ACGGAAACCACTAACCAGATGGGA -ACGGAAACCACTAACCAGGTGCAA -ACGGAAACCACTAACCAGGAGGAA -ACGGAAACCACTAACCAGCAGGTA -ACGGAAACCACTAACCAGGACTCT -ACGGAAACCACTAACCAGAGTCCT -ACGGAAACCACTAACCAGTAAGCC -ACGGAAACCACTAACCAGATAGCC -ACGGAAACCACTAACCAGTAACCG -ACGGAAACCACTAACCAGATGCCA -ACGGAAACCACTTACGTCGGAAAC -ACGGAAACCACTTACGTCAACACC -ACGGAAACCACTTACGTCATCGAG -ACGGAAACCACTTACGTCCTCCTT -ACGGAAACCACTTACGTCCCTGTT -ACGGAAACCACTTACGTCCGGTTT -ACGGAAACCACTTACGTCGTGGTT -ACGGAAACCACTTACGTCGCCTTT -ACGGAAACCACTTACGTCGGTCTT -ACGGAAACCACTTACGTCACGCTT -ACGGAAACCACTTACGTCAGCGTT -ACGGAAACCACTTACGTCTTCGTC -ACGGAAACCACTTACGTCTCTCTC -ACGGAAACCACTTACGTCTGGATC -ACGGAAACCACTTACGTCCACTTC -ACGGAAACCACTTACGTCGTACTC -ACGGAAACCACTTACGTCGATGTC -ACGGAAACCACTTACGTCACAGTC -ACGGAAACCACTTACGTCTTGCTG -ACGGAAACCACTTACGTCTCCATG -ACGGAAACCACTTACGTCTGTGTG -ACGGAAACCACTTACGTCCTAGTG -ACGGAAACCACTTACGTCCATCTG -ACGGAAACCACTTACGTCGAGTTG -ACGGAAACCACTTACGTCAGACTG -ACGGAAACCACTTACGTCTCGGTA -ACGGAAACCACTTACGTCTGCCTA -ACGGAAACCACTTACGTCCCACTA -ACGGAAACCACTTACGTCGGAGTA -ACGGAAACCACTTACGTCTCGTCT -ACGGAAACCACTTACGTCTGCACT -ACGGAAACCACTTACGTCCTGACT -ACGGAAACCACTTACGTCCAACCT -ACGGAAACCACTTACGTCGCTACT -ACGGAAACCACTTACGTCGGATCT -ACGGAAACCACTTACGTCAAGGCT -ACGGAAACCACTTACGTCTCAACC -ACGGAAACCACTTACGTCTGTTCC -ACGGAAACCACTTACGTCATTCCC -ACGGAAACCACTTACGTCTTCTCG -ACGGAAACCACTTACGTCTAGACG -ACGGAAACCACTTACGTCGTAACG -ACGGAAACCACTTACGTCACTTCG -ACGGAAACCACTTACGTCTACGCA -ACGGAAACCACTTACGTCCTTGCA -ACGGAAACCACTTACGTCCGAACA -ACGGAAACCACTTACGTCCAGTCA -ACGGAAACCACTTACGTCGATCCA -ACGGAAACCACTTACGTCACGACA -ACGGAAACCACTTACGTCAGCTCA -ACGGAAACCACTTACGTCTCACGT -ACGGAAACCACTTACGTCCGTAGT -ACGGAAACCACTTACGTCGTCAGT -ACGGAAACCACTTACGTCGAAGGT -ACGGAAACCACTTACGTCAACCGT -ACGGAAACCACTTACGTCTTGTGC -ACGGAAACCACTTACGTCCTAAGC -ACGGAAACCACTTACGTCACTAGC -ACGGAAACCACTTACGTCAGATGC -ACGGAAACCACTTACGTCTGAAGG -ACGGAAACCACTTACGTCCAATGG -ACGGAAACCACTTACGTCATGAGG -ACGGAAACCACTTACGTCAATGGG -ACGGAAACCACTTACGTCTCCTGA -ACGGAAACCACTTACGTCTAGCGA -ACGGAAACCACTTACGTCCACAGA -ACGGAAACCACTTACGTCGCAAGA -ACGGAAACCACTTACGTCGGTTGA -ACGGAAACCACTTACGTCTCCGAT -ACGGAAACCACTTACGTCTGGCAT -ACGGAAACCACTTACGTCCGAGAT -ACGGAAACCACTTACGTCTACCAC -ACGGAAACCACTTACGTCCAGAAC -ACGGAAACCACTTACGTCGTCTAC -ACGGAAACCACTTACGTCACGTAC -ACGGAAACCACTTACGTCAGTGAC -ACGGAAACCACTTACGTCCTGTAG -ACGGAAACCACTTACGTCCCTAAG -ACGGAAACCACTTACGTCGTTCAG -ACGGAAACCACTTACGTCGCATAG -ACGGAAACCACTTACGTCGACAAG -ACGGAAACCACTTACGTCAAGCAG -ACGGAAACCACTTACGTCCGTCAA -ACGGAAACCACTTACGTCGCTGAA -ACGGAAACCACTTACGTCAGTACG -ACGGAAACCACTTACGTCATCCGA -ACGGAAACCACTTACGTCATGGGA -ACGGAAACCACTTACGTCGTGCAA -ACGGAAACCACTTACGTCGAGGAA -ACGGAAACCACTTACGTCCAGGTA -ACGGAAACCACTTACGTCGACTCT -ACGGAAACCACTTACGTCAGTCCT -ACGGAAACCACTTACGTCTAAGCC -ACGGAAACCACTTACGTCATAGCC -ACGGAAACCACTTACGTCTAACCG -ACGGAAACCACTTACGTCATGCCA -ACGGAAACCACTTACACGGGAAAC -ACGGAAACCACTTACACGAACACC -ACGGAAACCACTTACACGATCGAG -ACGGAAACCACTTACACGCTCCTT -ACGGAAACCACTTACACGCCTGTT -ACGGAAACCACTTACACGCGGTTT -ACGGAAACCACTTACACGGTGGTT -ACGGAAACCACTTACACGGCCTTT -ACGGAAACCACTTACACGGGTCTT -ACGGAAACCACTTACACGACGCTT -ACGGAAACCACTTACACGAGCGTT -ACGGAAACCACTTACACGTTCGTC -ACGGAAACCACTTACACGTCTCTC -ACGGAAACCACTTACACGTGGATC -ACGGAAACCACTTACACGCACTTC -ACGGAAACCACTTACACGGTACTC -ACGGAAACCACTTACACGGATGTC -ACGGAAACCACTTACACGACAGTC -ACGGAAACCACTTACACGTTGCTG -ACGGAAACCACTTACACGTCCATG -ACGGAAACCACTTACACGTGTGTG -ACGGAAACCACTTACACGCTAGTG -ACGGAAACCACTTACACGCATCTG -ACGGAAACCACTTACACGGAGTTG -ACGGAAACCACTTACACGAGACTG -ACGGAAACCACTTACACGTCGGTA -ACGGAAACCACTTACACGTGCCTA -ACGGAAACCACTTACACGCCACTA -ACGGAAACCACTTACACGGGAGTA -ACGGAAACCACTTACACGTCGTCT -ACGGAAACCACTTACACGTGCACT -ACGGAAACCACTTACACGCTGACT -ACGGAAACCACTTACACGCAACCT -ACGGAAACCACTTACACGGCTACT -ACGGAAACCACTTACACGGGATCT -ACGGAAACCACTTACACGAAGGCT -ACGGAAACCACTTACACGTCAACC -ACGGAAACCACTTACACGTGTTCC -ACGGAAACCACTTACACGATTCCC -ACGGAAACCACTTACACGTTCTCG -ACGGAAACCACTTACACGTAGACG -ACGGAAACCACTTACACGGTAACG -ACGGAAACCACTTACACGACTTCG -ACGGAAACCACTTACACGTACGCA -ACGGAAACCACTTACACGCTTGCA -ACGGAAACCACTTACACGCGAACA -ACGGAAACCACTTACACGCAGTCA -ACGGAAACCACTTACACGGATCCA -ACGGAAACCACTTACACGACGACA -ACGGAAACCACTTACACGAGCTCA -ACGGAAACCACTTACACGTCACGT -ACGGAAACCACTTACACGCGTAGT -ACGGAAACCACTTACACGGTCAGT -ACGGAAACCACTTACACGGAAGGT -ACGGAAACCACTTACACGAACCGT -ACGGAAACCACTTACACGTTGTGC -ACGGAAACCACTTACACGCTAAGC -ACGGAAACCACTTACACGACTAGC -ACGGAAACCACTTACACGAGATGC -ACGGAAACCACTTACACGTGAAGG -ACGGAAACCACTTACACGCAATGG -ACGGAAACCACTTACACGATGAGG -ACGGAAACCACTTACACGAATGGG -ACGGAAACCACTTACACGTCCTGA -ACGGAAACCACTTACACGTAGCGA -ACGGAAACCACTTACACGCACAGA -ACGGAAACCACTTACACGGCAAGA -ACGGAAACCACTTACACGGGTTGA -ACGGAAACCACTTACACGTCCGAT -ACGGAAACCACTTACACGTGGCAT -ACGGAAACCACTTACACGCGAGAT -ACGGAAACCACTTACACGTACCAC -ACGGAAACCACTTACACGCAGAAC -ACGGAAACCACTTACACGGTCTAC -ACGGAAACCACTTACACGACGTAC -ACGGAAACCACTTACACGAGTGAC -ACGGAAACCACTTACACGCTGTAG -ACGGAAACCACTTACACGCCTAAG -ACGGAAACCACTTACACGGTTCAG -ACGGAAACCACTTACACGGCATAG -ACGGAAACCACTTACACGGACAAG -ACGGAAACCACTTACACGAAGCAG -ACGGAAACCACTTACACGCGTCAA -ACGGAAACCACTTACACGGCTGAA -ACGGAAACCACTTACACGAGTACG -ACGGAAACCACTTACACGATCCGA -ACGGAAACCACTTACACGATGGGA -ACGGAAACCACTTACACGGTGCAA -ACGGAAACCACTTACACGGAGGAA -ACGGAAACCACTTACACGCAGGTA -ACGGAAACCACTTACACGGACTCT -ACGGAAACCACTTACACGAGTCCT -ACGGAAACCACTTACACGTAAGCC -ACGGAAACCACTTACACGATAGCC -ACGGAAACCACTTACACGTAACCG -ACGGAAACCACTTACACGATGCCA -ACGGAAACCACTGACAGTGGAAAC -ACGGAAACCACTGACAGTAACACC -ACGGAAACCACTGACAGTATCGAG -ACGGAAACCACTGACAGTCTCCTT -ACGGAAACCACTGACAGTCCTGTT -ACGGAAACCACTGACAGTCGGTTT -ACGGAAACCACTGACAGTGTGGTT -ACGGAAACCACTGACAGTGCCTTT -ACGGAAACCACTGACAGTGGTCTT -ACGGAAACCACTGACAGTACGCTT -ACGGAAACCACTGACAGTAGCGTT -ACGGAAACCACTGACAGTTTCGTC -ACGGAAACCACTGACAGTTCTCTC -ACGGAAACCACTGACAGTTGGATC -ACGGAAACCACTGACAGTCACTTC -ACGGAAACCACTGACAGTGTACTC -ACGGAAACCACTGACAGTGATGTC -ACGGAAACCACTGACAGTACAGTC -ACGGAAACCACTGACAGTTTGCTG -ACGGAAACCACTGACAGTTCCATG -ACGGAAACCACTGACAGTTGTGTG -ACGGAAACCACTGACAGTCTAGTG -ACGGAAACCACTGACAGTCATCTG -ACGGAAACCACTGACAGTGAGTTG -ACGGAAACCACTGACAGTAGACTG -ACGGAAACCACTGACAGTTCGGTA -ACGGAAACCACTGACAGTTGCCTA -ACGGAAACCACTGACAGTCCACTA -ACGGAAACCACTGACAGTGGAGTA -ACGGAAACCACTGACAGTTCGTCT -ACGGAAACCACTGACAGTTGCACT -ACGGAAACCACTGACAGTCTGACT -ACGGAAACCACTGACAGTCAACCT -ACGGAAACCACTGACAGTGCTACT -ACGGAAACCACTGACAGTGGATCT -ACGGAAACCACTGACAGTAAGGCT -ACGGAAACCACTGACAGTTCAACC -ACGGAAACCACTGACAGTTGTTCC -ACGGAAACCACTGACAGTATTCCC -ACGGAAACCACTGACAGTTTCTCG -ACGGAAACCACTGACAGTTAGACG -ACGGAAACCACTGACAGTGTAACG -ACGGAAACCACTGACAGTACTTCG -ACGGAAACCACTGACAGTTACGCA -ACGGAAACCACTGACAGTCTTGCA -ACGGAAACCACTGACAGTCGAACA -ACGGAAACCACTGACAGTCAGTCA -ACGGAAACCACTGACAGTGATCCA -ACGGAAACCACTGACAGTACGACA -ACGGAAACCACTGACAGTAGCTCA -ACGGAAACCACTGACAGTTCACGT -ACGGAAACCACTGACAGTCGTAGT -ACGGAAACCACTGACAGTGTCAGT -ACGGAAACCACTGACAGTGAAGGT -ACGGAAACCACTGACAGTAACCGT -ACGGAAACCACTGACAGTTTGTGC -ACGGAAACCACTGACAGTCTAAGC -ACGGAAACCACTGACAGTACTAGC -ACGGAAACCACTGACAGTAGATGC -ACGGAAACCACTGACAGTTGAAGG -ACGGAAACCACTGACAGTCAATGG -ACGGAAACCACTGACAGTATGAGG -ACGGAAACCACTGACAGTAATGGG -ACGGAAACCACTGACAGTTCCTGA -ACGGAAACCACTGACAGTTAGCGA -ACGGAAACCACTGACAGTCACAGA -ACGGAAACCACTGACAGTGCAAGA -ACGGAAACCACTGACAGTGGTTGA -ACGGAAACCACTGACAGTTCCGAT -ACGGAAACCACTGACAGTTGGCAT -ACGGAAACCACTGACAGTCGAGAT -ACGGAAACCACTGACAGTTACCAC -ACGGAAACCACTGACAGTCAGAAC -ACGGAAACCACTGACAGTGTCTAC -ACGGAAACCACTGACAGTACGTAC -ACGGAAACCACTGACAGTAGTGAC -ACGGAAACCACTGACAGTCTGTAG -ACGGAAACCACTGACAGTCCTAAG -ACGGAAACCACTGACAGTGTTCAG -ACGGAAACCACTGACAGTGCATAG -ACGGAAACCACTGACAGTGACAAG -ACGGAAACCACTGACAGTAAGCAG -ACGGAAACCACTGACAGTCGTCAA -ACGGAAACCACTGACAGTGCTGAA -ACGGAAACCACTGACAGTAGTACG -ACGGAAACCACTGACAGTATCCGA -ACGGAAACCACTGACAGTATGGGA -ACGGAAACCACTGACAGTGTGCAA -ACGGAAACCACTGACAGTGAGGAA -ACGGAAACCACTGACAGTCAGGTA -ACGGAAACCACTGACAGTGACTCT -ACGGAAACCACTGACAGTAGTCCT -ACGGAAACCACTGACAGTTAAGCC -ACGGAAACCACTGACAGTATAGCC -ACGGAAACCACTGACAGTTAACCG -ACGGAAACCACTGACAGTATGCCA -ACGGAAACCACTTAGCTGGGAAAC -ACGGAAACCACTTAGCTGAACACC -ACGGAAACCACTTAGCTGATCGAG -ACGGAAACCACTTAGCTGCTCCTT -ACGGAAACCACTTAGCTGCCTGTT -ACGGAAACCACTTAGCTGCGGTTT -ACGGAAACCACTTAGCTGGTGGTT -ACGGAAACCACTTAGCTGGCCTTT -ACGGAAACCACTTAGCTGGGTCTT -ACGGAAACCACTTAGCTGACGCTT -ACGGAAACCACTTAGCTGAGCGTT -ACGGAAACCACTTAGCTGTTCGTC -ACGGAAACCACTTAGCTGTCTCTC -ACGGAAACCACTTAGCTGTGGATC -ACGGAAACCACTTAGCTGCACTTC -ACGGAAACCACTTAGCTGGTACTC -ACGGAAACCACTTAGCTGGATGTC -ACGGAAACCACTTAGCTGACAGTC -ACGGAAACCACTTAGCTGTTGCTG -ACGGAAACCACTTAGCTGTCCATG -ACGGAAACCACTTAGCTGTGTGTG -ACGGAAACCACTTAGCTGCTAGTG -ACGGAAACCACTTAGCTGCATCTG -ACGGAAACCACTTAGCTGGAGTTG -ACGGAAACCACTTAGCTGAGACTG -ACGGAAACCACTTAGCTGTCGGTA -ACGGAAACCACTTAGCTGTGCCTA -ACGGAAACCACTTAGCTGCCACTA -ACGGAAACCACTTAGCTGGGAGTA -ACGGAAACCACTTAGCTGTCGTCT -ACGGAAACCACTTAGCTGTGCACT -ACGGAAACCACTTAGCTGCTGACT -ACGGAAACCACTTAGCTGCAACCT -ACGGAAACCACTTAGCTGGCTACT -ACGGAAACCACTTAGCTGGGATCT -ACGGAAACCACTTAGCTGAAGGCT -ACGGAAACCACTTAGCTGTCAACC -ACGGAAACCACTTAGCTGTGTTCC -ACGGAAACCACTTAGCTGATTCCC -ACGGAAACCACTTAGCTGTTCTCG -ACGGAAACCACTTAGCTGTAGACG -ACGGAAACCACTTAGCTGGTAACG -ACGGAAACCACTTAGCTGACTTCG -ACGGAAACCACTTAGCTGTACGCA -ACGGAAACCACTTAGCTGCTTGCA -ACGGAAACCACTTAGCTGCGAACA -ACGGAAACCACTTAGCTGCAGTCA -ACGGAAACCACTTAGCTGGATCCA -ACGGAAACCACTTAGCTGACGACA -ACGGAAACCACTTAGCTGAGCTCA -ACGGAAACCACTTAGCTGTCACGT -ACGGAAACCACTTAGCTGCGTAGT -ACGGAAACCACTTAGCTGGTCAGT -ACGGAAACCACTTAGCTGGAAGGT -ACGGAAACCACTTAGCTGAACCGT -ACGGAAACCACTTAGCTGTTGTGC -ACGGAAACCACTTAGCTGCTAAGC -ACGGAAACCACTTAGCTGACTAGC -ACGGAAACCACTTAGCTGAGATGC -ACGGAAACCACTTAGCTGTGAAGG -ACGGAAACCACTTAGCTGCAATGG -ACGGAAACCACTTAGCTGATGAGG -ACGGAAACCACTTAGCTGAATGGG -ACGGAAACCACTTAGCTGTCCTGA -ACGGAAACCACTTAGCTGTAGCGA -ACGGAAACCACTTAGCTGCACAGA -ACGGAAACCACTTAGCTGGCAAGA -ACGGAAACCACTTAGCTGGGTTGA -ACGGAAACCACTTAGCTGTCCGAT -ACGGAAACCACTTAGCTGTGGCAT -ACGGAAACCACTTAGCTGCGAGAT -ACGGAAACCACTTAGCTGTACCAC -ACGGAAACCACTTAGCTGCAGAAC -ACGGAAACCACTTAGCTGGTCTAC -ACGGAAACCACTTAGCTGACGTAC -ACGGAAACCACTTAGCTGAGTGAC -ACGGAAACCACTTAGCTGCTGTAG -ACGGAAACCACTTAGCTGCCTAAG -ACGGAAACCACTTAGCTGGTTCAG -ACGGAAACCACTTAGCTGGCATAG -ACGGAAACCACTTAGCTGGACAAG -ACGGAAACCACTTAGCTGAAGCAG -ACGGAAACCACTTAGCTGCGTCAA -ACGGAAACCACTTAGCTGGCTGAA -ACGGAAACCACTTAGCTGAGTACG -ACGGAAACCACTTAGCTGATCCGA -ACGGAAACCACTTAGCTGATGGGA -ACGGAAACCACTTAGCTGGTGCAA -ACGGAAACCACTTAGCTGGAGGAA -ACGGAAACCACTTAGCTGCAGGTA -ACGGAAACCACTTAGCTGGACTCT -ACGGAAACCACTTAGCTGAGTCCT -ACGGAAACCACTTAGCTGTAAGCC -ACGGAAACCACTTAGCTGATAGCC -ACGGAAACCACTTAGCTGTAACCG -ACGGAAACCACTTAGCTGATGCCA -ACGGAAACCACTAAGCCTGGAAAC -ACGGAAACCACTAAGCCTAACACC -ACGGAAACCACTAAGCCTATCGAG -ACGGAAACCACTAAGCCTCTCCTT -ACGGAAACCACTAAGCCTCCTGTT -ACGGAAACCACTAAGCCTCGGTTT -ACGGAAACCACTAAGCCTGTGGTT -ACGGAAACCACTAAGCCTGCCTTT -ACGGAAACCACTAAGCCTGGTCTT -ACGGAAACCACTAAGCCTACGCTT -ACGGAAACCACTAAGCCTAGCGTT -ACGGAAACCACTAAGCCTTTCGTC -ACGGAAACCACTAAGCCTTCTCTC -ACGGAAACCACTAAGCCTTGGATC -ACGGAAACCACTAAGCCTCACTTC -ACGGAAACCACTAAGCCTGTACTC -ACGGAAACCACTAAGCCTGATGTC -ACGGAAACCACTAAGCCTACAGTC -ACGGAAACCACTAAGCCTTTGCTG -ACGGAAACCACTAAGCCTTCCATG -ACGGAAACCACTAAGCCTTGTGTG -ACGGAAACCACTAAGCCTCTAGTG -ACGGAAACCACTAAGCCTCATCTG -ACGGAAACCACTAAGCCTGAGTTG -ACGGAAACCACTAAGCCTAGACTG -ACGGAAACCACTAAGCCTTCGGTA -ACGGAAACCACTAAGCCTTGCCTA -ACGGAAACCACTAAGCCTCCACTA -ACGGAAACCACTAAGCCTGGAGTA -ACGGAAACCACTAAGCCTTCGTCT -ACGGAAACCACTAAGCCTTGCACT -ACGGAAACCACTAAGCCTCTGACT -ACGGAAACCACTAAGCCTCAACCT -ACGGAAACCACTAAGCCTGCTACT -ACGGAAACCACTAAGCCTGGATCT -ACGGAAACCACTAAGCCTAAGGCT -ACGGAAACCACTAAGCCTTCAACC -ACGGAAACCACTAAGCCTTGTTCC -ACGGAAACCACTAAGCCTATTCCC -ACGGAAACCACTAAGCCTTTCTCG -ACGGAAACCACTAAGCCTTAGACG -ACGGAAACCACTAAGCCTGTAACG -ACGGAAACCACTAAGCCTACTTCG -ACGGAAACCACTAAGCCTTACGCA -ACGGAAACCACTAAGCCTCTTGCA -ACGGAAACCACTAAGCCTCGAACA -ACGGAAACCACTAAGCCTCAGTCA -ACGGAAACCACTAAGCCTGATCCA -ACGGAAACCACTAAGCCTACGACA -ACGGAAACCACTAAGCCTAGCTCA -ACGGAAACCACTAAGCCTTCACGT -ACGGAAACCACTAAGCCTCGTAGT -ACGGAAACCACTAAGCCTGTCAGT -ACGGAAACCACTAAGCCTGAAGGT -ACGGAAACCACTAAGCCTAACCGT -ACGGAAACCACTAAGCCTTTGTGC -ACGGAAACCACTAAGCCTCTAAGC -ACGGAAACCACTAAGCCTACTAGC -ACGGAAACCACTAAGCCTAGATGC -ACGGAAACCACTAAGCCTTGAAGG -ACGGAAACCACTAAGCCTCAATGG -ACGGAAACCACTAAGCCTATGAGG -ACGGAAACCACTAAGCCTAATGGG -ACGGAAACCACTAAGCCTTCCTGA -ACGGAAACCACTAAGCCTTAGCGA -ACGGAAACCACTAAGCCTCACAGA -ACGGAAACCACTAAGCCTGCAAGA -ACGGAAACCACTAAGCCTGGTTGA -ACGGAAACCACTAAGCCTTCCGAT -ACGGAAACCACTAAGCCTTGGCAT -ACGGAAACCACTAAGCCTCGAGAT -ACGGAAACCACTAAGCCTTACCAC -ACGGAAACCACTAAGCCTCAGAAC -ACGGAAACCACTAAGCCTGTCTAC -ACGGAAACCACTAAGCCTACGTAC -ACGGAAACCACTAAGCCTAGTGAC -ACGGAAACCACTAAGCCTCTGTAG -ACGGAAACCACTAAGCCTCCTAAG -ACGGAAACCACTAAGCCTGTTCAG -ACGGAAACCACTAAGCCTGCATAG -ACGGAAACCACTAAGCCTGACAAG -ACGGAAACCACTAAGCCTAAGCAG -ACGGAAACCACTAAGCCTCGTCAA -ACGGAAACCACTAAGCCTGCTGAA -ACGGAAACCACTAAGCCTAGTACG -ACGGAAACCACTAAGCCTATCCGA -ACGGAAACCACTAAGCCTATGGGA -ACGGAAACCACTAAGCCTGTGCAA -ACGGAAACCACTAAGCCTGAGGAA -ACGGAAACCACTAAGCCTCAGGTA -ACGGAAACCACTAAGCCTGACTCT -ACGGAAACCACTAAGCCTAGTCCT -ACGGAAACCACTAAGCCTTAAGCC -ACGGAAACCACTAAGCCTATAGCC -ACGGAAACCACTAAGCCTTAACCG -ACGGAAACCACTAAGCCTATGCCA -ACGGAAACCACTCAGGTTGGAAAC -ACGGAAACCACTCAGGTTAACACC -ACGGAAACCACTCAGGTTATCGAG -ACGGAAACCACTCAGGTTCTCCTT -ACGGAAACCACTCAGGTTCCTGTT -ACGGAAACCACTCAGGTTCGGTTT -ACGGAAACCACTCAGGTTGTGGTT -ACGGAAACCACTCAGGTTGCCTTT -ACGGAAACCACTCAGGTTGGTCTT -ACGGAAACCACTCAGGTTACGCTT -ACGGAAACCACTCAGGTTAGCGTT -ACGGAAACCACTCAGGTTTTCGTC -ACGGAAACCACTCAGGTTTCTCTC -ACGGAAACCACTCAGGTTTGGATC -ACGGAAACCACTCAGGTTCACTTC -ACGGAAACCACTCAGGTTGTACTC -ACGGAAACCACTCAGGTTGATGTC -ACGGAAACCACTCAGGTTACAGTC -ACGGAAACCACTCAGGTTTTGCTG -ACGGAAACCACTCAGGTTTCCATG -ACGGAAACCACTCAGGTTTGTGTG -ACGGAAACCACTCAGGTTCTAGTG -ACGGAAACCACTCAGGTTCATCTG -ACGGAAACCACTCAGGTTGAGTTG -ACGGAAACCACTCAGGTTAGACTG -ACGGAAACCACTCAGGTTTCGGTA -ACGGAAACCACTCAGGTTTGCCTA -ACGGAAACCACTCAGGTTCCACTA -ACGGAAACCACTCAGGTTGGAGTA -ACGGAAACCACTCAGGTTTCGTCT -ACGGAAACCACTCAGGTTTGCACT -ACGGAAACCACTCAGGTTCTGACT -ACGGAAACCACTCAGGTTCAACCT -ACGGAAACCACTCAGGTTGCTACT -ACGGAAACCACTCAGGTTGGATCT -ACGGAAACCACTCAGGTTAAGGCT -ACGGAAACCACTCAGGTTTCAACC -ACGGAAACCACTCAGGTTTGTTCC -ACGGAAACCACTCAGGTTATTCCC -ACGGAAACCACTCAGGTTTTCTCG -ACGGAAACCACTCAGGTTTAGACG -ACGGAAACCACTCAGGTTGTAACG -ACGGAAACCACTCAGGTTACTTCG -ACGGAAACCACTCAGGTTTACGCA -ACGGAAACCACTCAGGTTCTTGCA -ACGGAAACCACTCAGGTTCGAACA -ACGGAAACCACTCAGGTTCAGTCA -ACGGAAACCACTCAGGTTGATCCA -ACGGAAACCACTCAGGTTACGACA -ACGGAAACCACTCAGGTTAGCTCA -ACGGAAACCACTCAGGTTTCACGT -ACGGAAACCACTCAGGTTCGTAGT -ACGGAAACCACTCAGGTTGTCAGT -ACGGAAACCACTCAGGTTGAAGGT -ACGGAAACCACTCAGGTTAACCGT -ACGGAAACCACTCAGGTTTTGTGC -ACGGAAACCACTCAGGTTCTAAGC -ACGGAAACCACTCAGGTTACTAGC -ACGGAAACCACTCAGGTTAGATGC -ACGGAAACCACTCAGGTTTGAAGG -ACGGAAACCACTCAGGTTCAATGG -ACGGAAACCACTCAGGTTATGAGG -ACGGAAACCACTCAGGTTAATGGG -ACGGAAACCACTCAGGTTTCCTGA -ACGGAAACCACTCAGGTTTAGCGA -ACGGAAACCACTCAGGTTCACAGA -ACGGAAACCACTCAGGTTGCAAGA -ACGGAAACCACTCAGGTTGGTTGA -ACGGAAACCACTCAGGTTTCCGAT -ACGGAAACCACTCAGGTTTGGCAT -ACGGAAACCACTCAGGTTCGAGAT -ACGGAAACCACTCAGGTTTACCAC -ACGGAAACCACTCAGGTTCAGAAC -ACGGAAACCACTCAGGTTGTCTAC -ACGGAAACCACTCAGGTTACGTAC -ACGGAAACCACTCAGGTTAGTGAC -ACGGAAACCACTCAGGTTCTGTAG -ACGGAAACCACTCAGGTTCCTAAG -ACGGAAACCACTCAGGTTGTTCAG -ACGGAAACCACTCAGGTTGCATAG -ACGGAAACCACTCAGGTTGACAAG -ACGGAAACCACTCAGGTTAAGCAG -ACGGAAACCACTCAGGTTCGTCAA -ACGGAAACCACTCAGGTTGCTGAA -ACGGAAACCACTCAGGTTAGTACG -ACGGAAACCACTCAGGTTATCCGA -ACGGAAACCACTCAGGTTATGGGA -ACGGAAACCACTCAGGTTGTGCAA -ACGGAAACCACTCAGGTTGAGGAA -ACGGAAACCACTCAGGTTCAGGTA -ACGGAAACCACTCAGGTTGACTCT -ACGGAAACCACTCAGGTTAGTCCT -ACGGAAACCACTCAGGTTTAAGCC -ACGGAAACCACTCAGGTTATAGCC -ACGGAAACCACTCAGGTTTAACCG -ACGGAAACCACTCAGGTTATGCCA -ACGGAAACCACTTAGGCAGGAAAC -ACGGAAACCACTTAGGCAAACACC -ACGGAAACCACTTAGGCAATCGAG -ACGGAAACCACTTAGGCACTCCTT -ACGGAAACCACTTAGGCACCTGTT -ACGGAAACCACTTAGGCACGGTTT -ACGGAAACCACTTAGGCAGTGGTT -ACGGAAACCACTTAGGCAGCCTTT -ACGGAAACCACTTAGGCAGGTCTT -ACGGAAACCACTTAGGCAACGCTT -ACGGAAACCACTTAGGCAAGCGTT -ACGGAAACCACTTAGGCATTCGTC -ACGGAAACCACTTAGGCATCTCTC -ACGGAAACCACTTAGGCATGGATC -ACGGAAACCACTTAGGCACACTTC -ACGGAAACCACTTAGGCAGTACTC -ACGGAAACCACTTAGGCAGATGTC -ACGGAAACCACTTAGGCAACAGTC -ACGGAAACCACTTAGGCATTGCTG -ACGGAAACCACTTAGGCATCCATG -ACGGAAACCACTTAGGCATGTGTG -ACGGAAACCACTTAGGCACTAGTG -ACGGAAACCACTTAGGCACATCTG -ACGGAAACCACTTAGGCAGAGTTG -ACGGAAACCACTTAGGCAAGACTG -ACGGAAACCACTTAGGCATCGGTA -ACGGAAACCACTTAGGCATGCCTA -ACGGAAACCACTTAGGCACCACTA -ACGGAAACCACTTAGGCAGGAGTA -ACGGAAACCACTTAGGCATCGTCT -ACGGAAACCACTTAGGCATGCACT -ACGGAAACCACTTAGGCACTGACT -ACGGAAACCACTTAGGCACAACCT -ACGGAAACCACTTAGGCAGCTACT -ACGGAAACCACTTAGGCAGGATCT -ACGGAAACCACTTAGGCAAAGGCT -ACGGAAACCACTTAGGCATCAACC -ACGGAAACCACTTAGGCATGTTCC -ACGGAAACCACTTAGGCAATTCCC -ACGGAAACCACTTAGGCATTCTCG -ACGGAAACCACTTAGGCATAGACG -ACGGAAACCACTTAGGCAGTAACG -ACGGAAACCACTTAGGCAACTTCG -ACGGAAACCACTTAGGCATACGCA -ACGGAAACCACTTAGGCACTTGCA -ACGGAAACCACTTAGGCACGAACA -ACGGAAACCACTTAGGCACAGTCA -ACGGAAACCACTTAGGCAGATCCA -ACGGAAACCACTTAGGCAACGACA -ACGGAAACCACTTAGGCAAGCTCA -ACGGAAACCACTTAGGCATCACGT -ACGGAAACCACTTAGGCACGTAGT -ACGGAAACCACTTAGGCAGTCAGT -ACGGAAACCACTTAGGCAGAAGGT -ACGGAAACCACTTAGGCAAACCGT -ACGGAAACCACTTAGGCATTGTGC -ACGGAAACCACTTAGGCACTAAGC -ACGGAAACCACTTAGGCAACTAGC -ACGGAAACCACTTAGGCAAGATGC -ACGGAAACCACTTAGGCATGAAGG -ACGGAAACCACTTAGGCACAATGG -ACGGAAACCACTTAGGCAATGAGG -ACGGAAACCACTTAGGCAAATGGG -ACGGAAACCACTTAGGCATCCTGA -ACGGAAACCACTTAGGCATAGCGA -ACGGAAACCACTTAGGCACACAGA -ACGGAAACCACTTAGGCAGCAAGA -ACGGAAACCACTTAGGCAGGTTGA -ACGGAAACCACTTAGGCATCCGAT -ACGGAAACCACTTAGGCATGGCAT -ACGGAAACCACTTAGGCACGAGAT -ACGGAAACCACTTAGGCATACCAC -ACGGAAACCACTTAGGCACAGAAC -ACGGAAACCACTTAGGCAGTCTAC -ACGGAAACCACTTAGGCAACGTAC -ACGGAAACCACTTAGGCAAGTGAC -ACGGAAACCACTTAGGCACTGTAG -ACGGAAACCACTTAGGCACCTAAG -ACGGAAACCACTTAGGCAGTTCAG -ACGGAAACCACTTAGGCAGCATAG -ACGGAAACCACTTAGGCAGACAAG -ACGGAAACCACTTAGGCAAAGCAG -ACGGAAACCACTTAGGCACGTCAA -ACGGAAACCACTTAGGCAGCTGAA -ACGGAAACCACTTAGGCAAGTACG -ACGGAAACCACTTAGGCAATCCGA -ACGGAAACCACTTAGGCAATGGGA -ACGGAAACCACTTAGGCAGTGCAA -ACGGAAACCACTTAGGCAGAGGAA -ACGGAAACCACTTAGGCACAGGTA -ACGGAAACCACTTAGGCAGACTCT -ACGGAAACCACTTAGGCAAGTCCT -ACGGAAACCACTTAGGCATAAGCC -ACGGAAACCACTTAGGCAATAGCC -ACGGAAACCACTTAGGCATAACCG -ACGGAAACCACTTAGGCAATGCCA -ACGGAAACCACTAAGGACGGAAAC -ACGGAAACCACTAAGGACAACACC -ACGGAAACCACTAAGGACATCGAG -ACGGAAACCACTAAGGACCTCCTT -ACGGAAACCACTAAGGACCCTGTT -ACGGAAACCACTAAGGACCGGTTT -ACGGAAACCACTAAGGACGTGGTT -ACGGAAACCACTAAGGACGCCTTT -ACGGAAACCACTAAGGACGGTCTT -ACGGAAACCACTAAGGACACGCTT -ACGGAAACCACTAAGGACAGCGTT -ACGGAAACCACTAAGGACTTCGTC -ACGGAAACCACTAAGGACTCTCTC -ACGGAAACCACTAAGGACTGGATC -ACGGAAACCACTAAGGACCACTTC -ACGGAAACCACTAAGGACGTACTC -ACGGAAACCACTAAGGACGATGTC -ACGGAAACCACTAAGGACACAGTC -ACGGAAACCACTAAGGACTTGCTG -ACGGAAACCACTAAGGACTCCATG -ACGGAAACCACTAAGGACTGTGTG -ACGGAAACCACTAAGGACCTAGTG -ACGGAAACCACTAAGGACCATCTG -ACGGAAACCACTAAGGACGAGTTG -ACGGAAACCACTAAGGACAGACTG -ACGGAAACCACTAAGGACTCGGTA -ACGGAAACCACTAAGGACTGCCTA -ACGGAAACCACTAAGGACCCACTA -ACGGAAACCACTAAGGACGGAGTA -ACGGAAACCACTAAGGACTCGTCT -ACGGAAACCACTAAGGACTGCACT -ACGGAAACCACTAAGGACCTGACT -ACGGAAACCACTAAGGACCAACCT -ACGGAAACCACTAAGGACGCTACT -ACGGAAACCACTAAGGACGGATCT -ACGGAAACCACTAAGGACAAGGCT -ACGGAAACCACTAAGGACTCAACC -ACGGAAACCACTAAGGACTGTTCC -ACGGAAACCACTAAGGACATTCCC -ACGGAAACCACTAAGGACTTCTCG -ACGGAAACCACTAAGGACTAGACG -ACGGAAACCACTAAGGACGTAACG -ACGGAAACCACTAAGGACACTTCG -ACGGAAACCACTAAGGACTACGCA -ACGGAAACCACTAAGGACCTTGCA -ACGGAAACCACTAAGGACCGAACA -ACGGAAACCACTAAGGACCAGTCA -ACGGAAACCACTAAGGACGATCCA -ACGGAAACCACTAAGGACACGACA -ACGGAAACCACTAAGGACAGCTCA -ACGGAAACCACTAAGGACTCACGT -ACGGAAACCACTAAGGACCGTAGT -ACGGAAACCACTAAGGACGTCAGT -ACGGAAACCACTAAGGACGAAGGT -ACGGAAACCACTAAGGACAACCGT -ACGGAAACCACTAAGGACTTGTGC -ACGGAAACCACTAAGGACCTAAGC -ACGGAAACCACTAAGGACACTAGC -ACGGAAACCACTAAGGACAGATGC -ACGGAAACCACTAAGGACTGAAGG -ACGGAAACCACTAAGGACCAATGG -ACGGAAACCACTAAGGACATGAGG -ACGGAAACCACTAAGGACAATGGG -ACGGAAACCACTAAGGACTCCTGA -ACGGAAACCACTAAGGACTAGCGA -ACGGAAACCACTAAGGACCACAGA -ACGGAAACCACTAAGGACGCAAGA -ACGGAAACCACTAAGGACGGTTGA -ACGGAAACCACTAAGGACTCCGAT -ACGGAAACCACTAAGGACTGGCAT -ACGGAAACCACTAAGGACCGAGAT -ACGGAAACCACTAAGGACTACCAC -ACGGAAACCACTAAGGACCAGAAC -ACGGAAACCACTAAGGACGTCTAC -ACGGAAACCACTAAGGACACGTAC -ACGGAAACCACTAAGGACAGTGAC -ACGGAAACCACTAAGGACCTGTAG -ACGGAAACCACTAAGGACCCTAAG -ACGGAAACCACTAAGGACGTTCAG -ACGGAAACCACTAAGGACGCATAG -ACGGAAACCACTAAGGACGACAAG -ACGGAAACCACTAAGGACAAGCAG -ACGGAAACCACTAAGGACCGTCAA -ACGGAAACCACTAAGGACGCTGAA -ACGGAAACCACTAAGGACAGTACG -ACGGAAACCACTAAGGACATCCGA -ACGGAAACCACTAAGGACATGGGA -ACGGAAACCACTAAGGACGTGCAA -ACGGAAACCACTAAGGACGAGGAA -ACGGAAACCACTAAGGACCAGGTA -ACGGAAACCACTAAGGACGACTCT -ACGGAAACCACTAAGGACAGTCCT -ACGGAAACCACTAAGGACTAAGCC -ACGGAAACCACTAAGGACATAGCC -ACGGAAACCACTAAGGACTAACCG -ACGGAAACCACTAAGGACATGCCA -ACGGAAACCACTCAGAAGGGAAAC -ACGGAAACCACTCAGAAGAACACC -ACGGAAACCACTCAGAAGATCGAG -ACGGAAACCACTCAGAAGCTCCTT -ACGGAAACCACTCAGAAGCCTGTT -ACGGAAACCACTCAGAAGCGGTTT -ACGGAAACCACTCAGAAGGTGGTT -ACGGAAACCACTCAGAAGGCCTTT -ACGGAAACCACTCAGAAGGGTCTT -ACGGAAACCACTCAGAAGACGCTT -ACGGAAACCACTCAGAAGAGCGTT -ACGGAAACCACTCAGAAGTTCGTC -ACGGAAACCACTCAGAAGTCTCTC -ACGGAAACCACTCAGAAGTGGATC -ACGGAAACCACTCAGAAGCACTTC -ACGGAAACCACTCAGAAGGTACTC -ACGGAAACCACTCAGAAGGATGTC -ACGGAAACCACTCAGAAGACAGTC -ACGGAAACCACTCAGAAGTTGCTG -ACGGAAACCACTCAGAAGTCCATG -ACGGAAACCACTCAGAAGTGTGTG -ACGGAAACCACTCAGAAGCTAGTG -ACGGAAACCACTCAGAAGCATCTG -ACGGAAACCACTCAGAAGGAGTTG -ACGGAAACCACTCAGAAGAGACTG -ACGGAAACCACTCAGAAGTCGGTA -ACGGAAACCACTCAGAAGTGCCTA -ACGGAAACCACTCAGAAGCCACTA -ACGGAAACCACTCAGAAGGGAGTA -ACGGAAACCACTCAGAAGTCGTCT -ACGGAAACCACTCAGAAGTGCACT -ACGGAAACCACTCAGAAGCTGACT -ACGGAAACCACTCAGAAGCAACCT -ACGGAAACCACTCAGAAGGCTACT -ACGGAAACCACTCAGAAGGGATCT -ACGGAAACCACTCAGAAGAAGGCT -ACGGAAACCACTCAGAAGTCAACC -ACGGAAACCACTCAGAAGTGTTCC -ACGGAAACCACTCAGAAGATTCCC -ACGGAAACCACTCAGAAGTTCTCG -ACGGAAACCACTCAGAAGTAGACG -ACGGAAACCACTCAGAAGGTAACG -ACGGAAACCACTCAGAAGACTTCG -ACGGAAACCACTCAGAAGTACGCA -ACGGAAACCACTCAGAAGCTTGCA -ACGGAAACCACTCAGAAGCGAACA -ACGGAAACCACTCAGAAGCAGTCA -ACGGAAACCACTCAGAAGGATCCA -ACGGAAACCACTCAGAAGACGACA -ACGGAAACCACTCAGAAGAGCTCA -ACGGAAACCACTCAGAAGTCACGT -ACGGAAACCACTCAGAAGCGTAGT -ACGGAAACCACTCAGAAGGTCAGT -ACGGAAACCACTCAGAAGGAAGGT -ACGGAAACCACTCAGAAGAACCGT -ACGGAAACCACTCAGAAGTTGTGC -ACGGAAACCACTCAGAAGCTAAGC -ACGGAAACCACTCAGAAGACTAGC -ACGGAAACCACTCAGAAGAGATGC -ACGGAAACCACTCAGAAGTGAAGG -ACGGAAACCACTCAGAAGCAATGG -ACGGAAACCACTCAGAAGATGAGG -ACGGAAACCACTCAGAAGAATGGG -ACGGAAACCACTCAGAAGTCCTGA -ACGGAAACCACTCAGAAGTAGCGA -ACGGAAACCACTCAGAAGCACAGA -ACGGAAACCACTCAGAAGGCAAGA -ACGGAAACCACTCAGAAGGGTTGA -ACGGAAACCACTCAGAAGTCCGAT -ACGGAAACCACTCAGAAGTGGCAT -ACGGAAACCACTCAGAAGCGAGAT -ACGGAAACCACTCAGAAGTACCAC -ACGGAAACCACTCAGAAGCAGAAC -ACGGAAACCACTCAGAAGGTCTAC -ACGGAAACCACTCAGAAGACGTAC -ACGGAAACCACTCAGAAGAGTGAC -ACGGAAACCACTCAGAAGCTGTAG -ACGGAAACCACTCAGAAGCCTAAG -ACGGAAACCACTCAGAAGGTTCAG -ACGGAAACCACTCAGAAGGCATAG -ACGGAAACCACTCAGAAGGACAAG -ACGGAAACCACTCAGAAGAAGCAG -ACGGAAACCACTCAGAAGCGTCAA -ACGGAAACCACTCAGAAGGCTGAA -ACGGAAACCACTCAGAAGAGTACG -ACGGAAACCACTCAGAAGATCCGA -ACGGAAACCACTCAGAAGATGGGA -ACGGAAACCACTCAGAAGGTGCAA -ACGGAAACCACTCAGAAGGAGGAA -ACGGAAACCACTCAGAAGCAGGTA -ACGGAAACCACTCAGAAGGACTCT -ACGGAAACCACTCAGAAGAGTCCT -ACGGAAACCACTCAGAAGTAAGCC -ACGGAAACCACTCAGAAGATAGCC -ACGGAAACCACTCAGAAGTAACCG -ACGGAAACCACTCAGAAGATGCCA -ACGGAAACCACTCAACGTGGAAAC -ACGGAAACCACTCAACGTAACACC -ACGGAAACCACTCAACGTATCGAG -ACGGAAACCACTCAACGTCTCCTT -ACGGAAACCACTCAACGTCCTGTT -ACGGAAACCACTCAACGTCGGTTT -ACGGAAACCACTCAACGTGTGGTT -ACGGAAACCACTCAACGTGCCTTT -ACGGAAACCACTCAACGTGGTCTT -ACGGAAACCACTCAACGTACGCTT -ACGGAAACCACTCAACGTAGCGTT -ACGGAAACCACTCAACGTTTCGTC -ACGGAAACCACTCAACGTTCTCTC -ACGGAAACCACTCAACGTTGGATC -ACGGAAACCACTCAACGTCACTTC -ACGGAAACCACTCAACGTGTACTC -ACGGAAACCACTCAACGTGATGTC -ACGGAAACCACTCAACGTACAGTC -ACGGAAACCACTCAACGTTTGCTG -ACGGAAACCACTCAACGTTCCATG -ACGGAAACCACTCAACGTTGTGTG -ACGGAAACCACTCAACGTCTAGTG -ACGGAAACCACTCAACGTCATCTG -ACGGAAACCACTCAACGTGAGTTG -ACGGAAACCACTCAACGTAGACTG -ACGGAAACCACTCAACGTTCGGTA -ACGGAAACCACTCAACGTTGCCTA -ACGGAAACCACTCAACGTCCACTA -ACGGAAACCACTCAACGTGGAGTA -ACGGAAACCACTCAACGTTCGTCT -ACGGAAACCACTCAACGTTGCACT -ACGGAAACCACTCAACGTCTGACT -ACGGAAACCACTCAACGTCAACCT -ACGGAAACCACTCAACGTGCTACT -ACGGAAACCACTCAACGTGGATCT -ACGGAAACCACTCAACGTAAGGCT -ACGGAAACCACTCAACGTTCAACC -ACGGAAACCACTCAACGTTGTTCC -ACGGAAACCACTCAACGTATTCCC -ACGGAAACCACTCAACGTTTCTCG -ACGGAAACCACTCAACGTTAGACG -ACGGAAACCACTCAACGTGTAACG -ACGGAAACCACTCAACGTACTTCG -ACGGAAACCACTCAACGTTACGCA -ACGGAAACCACTCAACGTCTTGCA -ACGGAAACCACTCAACGTCGAACA -ACGGAAACCACTCAACGTCAGTCA -ACGGAAACCACTCAACGTGATCCA -ACGGAAACCACTCAACGTACGACA -ACGGAAACCACTCAACGTAGCTCA -ACGGAAACCACTCAACGTTCACGT -ACGGAAACCACTCAACGTCGTAGT -ACGGAAACCACTCAACGTGTCAGT -ACGGAAACCACTCAACGTGAAGGT -ACGGAAACCACTCAACGTAACCGT -ACGGAAACCACTCAACGTTTGTGC -ACGGAAACCACTCAACGTCTAAGC -ACGGAAACCACTCAACGTACTAGC -ACGGAAACCACTCAACGTAGATGC -ACGGAAACCACTCAACGTTGAAGG -ACGGAAACCACTCAACGTCAATGG -ACGGAAACCACTCAACGTATGAGG -ACGGAAACCACTCAACGTAATGGG -ACGGAAACCACTCAACGTTCCTGA -ACGGAAACCACTCAACGTTAGCGA -ACGGAAACCACTCAACGTCACAGA -ACGGAAACCACTCAACGTGCAAGA -ACGGAAACCACTCAACGTGGTTGA -ACGGAAACCACTCAACGTTCCGAT -ACGGAAACCACTCAACGTTGGCAT -ACGGAAACCACTCAACGTCGAGAT -ACGGAAACCACTCAACGTTACCAC -ACGGAAACCACTCAACGTCAGAAC -ACGGAAACCACTCAACGTGTCTAC -ACGGAAACCACTCAACGTACGTAC -ACGGAAACCACTCAACGTAGTGAC -ACGGAAACCACTCAACGTCTGTAG -ACGGAAACCACTCAACGTCCTAAG -ACGGAAACCACTCAACGTGTTCAG -ACGGAAACCACTCAACGTGCATAG -ACGGAAACCACTCAACGTGACAAG -ACGGAAACCACTCAACGTAAGCAG -ACGGAAACCACTCAACGTCGTCAA -ACGGAAACCACTCAACGTGCTGAA -ACGGAAACCACTCAACGTAGTACG -ACGGAAACCACTCAACGTATCCGA -ACGGAAACCACTCAACGTATGGGA -ACGGAAACCACTCAACGTGTGCAA -ACGGAAACCACTCAACGTGAGGAA -ACGGAAACCACTCAACGTCAGGTA -ACGGAAACCACTCAACGTGACTCT -ACGGAAACCACTCAACGTAGTCCT -ACGGAAACCACTCAACGTTAAGCC -ACGGAAACCACTCAACGTATAGCC -ACGGAAACCACTCAACGTTAACCG -ACGGAAACCACTCAACGTATGCCA -ACGGAAACCACTGAAGCTGGAAAC -ACGGAAACCACTGAAGCTAACACC -ACGGAAACCACTGAAGCTATCGAG -ACGGAAACCACTGAAGCTCTCCTT -ACGGAAACCACTGAAGCTCCTGTT -ACGGAAACCACTGAAGCTCGGTTT -ACGGAAACCACTGAAGCTGTGGTT -ACGGAAACCACTGAAGCTGCCTTT -ACGGAAACCACTGAAGCTGGTCTT -ACGGAAACCACTGAAGCTACGCTT -ACGGAAACCACTGAAGCTAGCGTT -ACGGAAACCACTGAAGCTTTCGTC -ACGGAAACCACTGAAGCTTCTCTC -ACGGAAACCACTGAAGCTTGGATC -ACGGAAACCACTGAAGCTCACTTC -ACGGAAACCACTGAAGCTGTACTC -ACGGAAACCACTGAAGCTGATGTC -ACGGAAACCACTGAAGCTACAGTC -ACGGAAACCACTGAAGCTTTGCTG -ACGGAAACCACTGAAGCTTCCATG -ACGGAAACCACTGAAGCTTGTGTG -ACGGAAACCACTGAAGCTCTAGTG -ACGGAAACCACTGAAGCTCATCTG -ACGGAAACCACTGAAGCTGAGTTG -ACGGAAACCACTGAAGCTAGACTG -ACGGAAACCACTGAAGCTTCGGTA -ACGGAAACCACTGAAGCTTGCCTA -ACGGAAACCACTGAAGCTCCACTA -ACGGAAACCACTGAAGCTGGAGTA -ACGGAAACCACTGAAGCTTCGTCT -ACGGAAACCACTGAAGCTTGCACT -ACGGAAACCACTGAAGCTCTGACT -ACGGAAACCACTGAAGCTCAACCT -ACGGAAACCACTGAAGCTGCTACT -ACGGAAACCACTGAAGCTGGATCT -ACGGAAACCACTGAAGCTAAGGCT -ACGGAAACCACTGAAGCTTCAACC -ACGGAAACCACTGAAGCTTGTTCC -ACGGAAACCACTGAAGCTATTCCC -ACGGAAACCACTGAAGCTTTCTCG -ACGGAAACCACTGAAGCTTAGACG -ACGGAAACCACTGAAGCTGTAACG -ACGGAAACCACTGAAGCTACTTCG -ACGGAAACCACTGAAGCTTACGCA -ACGGAAACCACTGAAGCTCTTGCA -ACGGAAACCACTGAAGCTCGAACA -ACGGAAACCACTGAAGCTCAGTCA -ACGGAAACCACTGAAGCTGATCCA -ACGGAAACCACTGAAGCTACGACA -ACGGAAACCACTGAAGCTAGCTCA -ACGGAAACCACTGAAGCTTCACGT -ACGGAAACCACTGAAGCTCGTAGT -ACGGAAACCACTGAAGCTGTCAGT -ACGGAAACCACTGAAGCTGAAGGT -ACGGAAACCACTGAAGCTAACCGT -ACGGAAACCACTGAAGCTTTGTGC -ACGGAAACCACTGAAGCTCTAAGC -ACGGAAACCACTGAAGCTACTAGC -ACGGAAACCACTGAAGCTAGATGC -ACGGAAACCACTGAAGCTTGAAGG -ACGGAAACCACTGAAGCTCAATGG -ACGGAAACCACTGAAGCTATGAGG -ACGGAAACCACTGAAGCTAATGGG -ACGGAAACCACTGAAGCTTCCTGA -ACGGAAACCACTGAAGCTTAGCGA -ACGGAAACCACTGAAGCTCACAGA -ACGGAAACCACTGAAGCTGCAAGA -ACGGAAACCACTGAAGCTGGTTGA -ACGGAAACCACTGAAGCTTCCGAT -ACGGAAACCACTGAAGCTTGGCAT -ACGGAAACCACTGAAGCTCGAGAT -ACGGAAACCACTGAAGCTTACCAC -ACGGAAACCACTGAAGCTCAGAAC -ACGGAAACCACTGAAGCTGTCTAC -ACGGAAACCACTGAAGCTACGTAC -ACGGAAACCACTGAAGCTAGTGAC -ACGGAAACCACTGAAGCTCTGTAG -ACGGAAACCACTGAAGCTCCTAAG -ACGGAAACCACTGAAGCTGTTCAG -ACGGAAACCACTGAAGCTGCATAG -ACGGAAACCACTGAAGCTGACAAG -ACGGAAACCACTGAAGCTAAGCAG -ACGGAAACCACTGAAGCTCGTCAA -ACGGAAACCACTGAAGCTGCTGAA -ACGGAAACCACTGAAGCTAGTACG -ACGGAAACCACTGAAGCTATCCGA -ACGGAAACCACTGAAGCTATGGGA -ACGGAAACCACTGAAGCTGTGCAA -ACGGAAACCACTGAAGCTGAGGAA -ACGGAAACCACTGAAGCTCAGGTA -ACGGAAACCACTGAAGCTGACTCT -ACGGAAACCACTGAAGCTAGTCCT -ACGGAAACCACTGAAGCTTAAGCC -ACGGAAACCACTGAAGCTATAGCC -ACGGAAACCACTGAAGCTTAACCG -ACGGAAACCACTGAAGCTATGCCA -ACGGAAACCACTACGAGTGGAAAC -ACGGAAACCACTACGAGTAACACC -ACGGAAACCACTACGAGTATCGAG -ACGGAAACCACTACGAGTCTCCTT -ACGGAAACCACTACGAGTCCTGTT -ACGGAAACCACTACGAGTCGGTTT -ACGGAAACCACTACGAGTGTGGTT -ACGGAAACCACTACGAGTGCCTTT -ACGGAAACCACTACGAGTGGTCTT -ACGGAAACCACTACGAGTACGCTT -ACGGAAACCACTACGAGTAGCGTT -ACGGAAACCACTACGAGTTTCGTC -ACGGAAACCACTACGAGTTCTCTC -ACGGAAACCACTACGAGTTGGATC -ACGGAAACCACTACGAGTCACTTC -ACGGAAACCACTACGAGTGTACTC -ACGGAAACCACTACGAGTGATGTC -ACGGAAACCACTACGAGTACAGTC -ACGGAAACCACTACGAGTTTGCTG -ACGGAAACCACTACGAGTTCCATG -ACGGAAACCACTACGAGTTGTGTG -ACGGAAACCACTACGAGTCTAGTG -ACGGAAACCACTACGAGTCATCTG -ACGGAAACCACTACGAGTGAGTTG -ACGGAAACCACTACGAGTAGACTG -ACGGAAACCACTACGAGTTCGGTA -ACGGAAACCACTACGAGTTGCCTA -ACGGAAACCACTACGAGTCCACTA -ACGGAAACCACTACGAGTGGAGTA -ACGGAAACCACTACGAGTTCGTCT -ACGGAAACCACTACGAGTTGCACT -ACGGAAACCACTACGAGTCTGACT -ACGGAAACCACTACGAGTCAACCT -ACGGAAACCACTACGAGTGCTACT -ACGGAAACCACTACGAGTGGATCT -ACGGAAACCACTACGAGTAAGGCT -ACGGAAACCACTACGAGTTCAACC -ACGGAAACCACTACGAGTTGTTCC -ACGGAAACCACTACGAGTATTCCC -ACGGAAACCACTACGAGTTTCTCG -ACGGAAACCACTACGAGTTAGACG -ACGGAAACCACTACGAGTGTAACG -ACGGAAACCACTACGAGTACTTCG -ACGGAAACCACTACGAGTTACGCA -ACGGAAACCACTACGAGTCTTGCA -ACGGAAACCACTACGAGTCGAACA -ACGGAAACCACTACGAGTCAGTCA -ACGGAAACCACTACGAGTGATCCA -ACGGAAACCACTACGAGTACGACA -ACGGAAACCACTACGAGTAGCTCA -ACGGAAACCACTACGAGTTCACGT -ACGGAAACCACTACGAGTCGTAGT -ACGGAAACCACTACGAGTGTCAGT -ACGGAAACCACTACGAGTGAAGGT -ACGGAAACCACTACGAGTAACCGT -ACGGAAACCACTACGAGTTTGTGC -ACGGAAACCACTACGAGTCTAAGC -ACGGAAACCACTACGAGTACTAGC -ACGGAAACCACTACGAGTAGATGC -ACGGAAACCACTACGAGTTGAAGG -ACGGAAACCACTACGAGTCAATGG -ACGGAAACCACTACGAGTATGAGG -ACGGAAACCACTACGAGTAATGGG -ACGGAAACCACTACGAGTTCCTGA -ACGGAAACCACTACGAGTTAGCGA -ACGGAAACCACTACGAGTCACAGA -ACGGAAACCACTACGAGTGCAAGA -ACGGAAACCACTACGAGTGGTTGA -ACGGAAACCACTACGAGTTCCGAT -ACGGAAACCACTACGAGTTGGCAT -ACGGAAACCACTACGAGTCGAGAT -ACGGAAACCACTACGAGTTACCAC -ACGGAAACCACTACGAGTCAGAAC -ACGGAAACCACTACGAGTGTCTAC -ACGGAAACCACTACGAGTACGTAC -ACGGAAACCACTACGAGTAGTGAC -ACGGAAACCACTACGAGTCTGTAG -ACGGAAACCACTACGAGTCCTAAG -ACGGAAACCACTACGAGTGTTCAG -ACGGAAACCACTACGAGTGCATAG -ACGGAAACCACTACGAGTGACAAG -ACGGAAACCACTACGAGTAAGCAG -ACGGAAACCACTACGAGTCGTCAA -ACGGAAACCACTACGAGTGCTGAA -ACGGAAACCACTACGAGTAGTACG -ACGGAAACCACTACGAGTATCCGA -ACGGAAACCACTACGAGTATGGGA -ACGGAAACCACTACGAGTGTGCAA -ACGGAAACCACTACGAGTGAGGAA -ACGGAAACCACTACGAGTCAGGTA -ACGGAAACCACTACGAGTGACTCT -ACGGAAACCACTACGAGTAGTCCT -ACGGAAACCACTACGAGTTAAGCC -ACGGAAACCACTACGAGTATAGCC -ACGGAAACCACTACGAGTTAACCG -ACGGAAACCACTACGAGTATGCCA -ACGGAAACCACTCGAATCGGAAAC -ACGGAAACCACTCGAATCAACACC -ACGGAAACCACTCGAATCATCGAG -ACGGAAACCACTCGAATCCTCCTT -ACGGAAACCACTCGAATCCCTGTT -ACGGAAACCACTCGAATCCGGTTT -ACGGAAACCACTCGAATCGTGGTT -ACGGAAACCACTCGAATCGCCTTT -ACGGAAACCACTCGAATCGGTCTT -ACGGAAACCACTCGAATCACGCTT -ACGGAAACCACTCGAATCAGCGTT -ACGGAAACCACTCGAATCTTCGTC -ACGGAAACCACTCGAATCTCTCTC -ACGGAAACCACTCGAATCTGGATC -ACGGAAACCACTCGAATCCACTTC -ACGGAAACCACTCGAATCGTACTC -ACGGAAACCACTCGAATCGATGTC -ACGGAAACCACTCGAATCACAGTC -ACGGAAACCACTCGAATCTTGCTG -ACGGAAACCACTCGAATCTCCATG -ACGGAAACCACTCGAATCTGTGTG -ACGGAAACCACTCGAATCCTAGTG -ACGGAAACCACTCGAATCCATCTG -ACGGAAACCACTCGAATCGAGTTG -ACGGAAACCACTCGAATCAGACTG -ACGGAAACCACTCGAATCTCGGTA -ACGGAAACCACTCGAATCTGCCTA -ACGGAAACCACTCGAATCCCACTA -ACGGAAACCACTCGAATCGGAGTA -ACGGAAACCACTCGAATCTCGTCT -ACGGAAACCACTCGAATCTGCACT -ACGGAAACCACTCGAATCCTGACT -ACGGAAACCACTCGAATCCAACCT -ACGGAAACCACTCGAATCGCTACT -ACGGAAACCACTCGAATCGGATCT -ACGGAAACCACTCGAATCAAGGCT -ACGGAAACCACTCGAATCTCAACC -ACGGAAACCACTCGAATCTGTTCC -ACGGAAACCACTCGAATCATTCCC -ACGGAAACCACTCGAATCTTCTCG -ACGGAAACCACTCGAATCTAGACG -ACGGAAACCACTCGAATCGTAACG -ACGGAAACCACTCGAATCACTTCG -ACGGAAACCACTCGAATCTACGCA -ACGGAAACCACTCGAATCCTTGCA -ACGGAAACCACTCGAATCCGAACA -ACGGAAACCACTCGAATCCAGTCA -ACGGAAACCACTCGAATCGATCCA -ACGGAAACCACTCGAATCACGACA -ACGGAAACCACTCGAATCAGCTCA -ACGGAAACCACTCGAATCTCACGT -ACGGAAACCACTCGAATCCGTAGT -ACGGAAACCACTCGAATCGTCAGT -ACGGAAACCACTCGAATCGAAGGT -ACGGAAACCACTCGAATCAACCGT -ACGGAAACCACTCGAATCTTGTGC -ACGGAAACCACTCGAATCCTAAGC -ACGGAAACCACTCGAATCACTAGC -ACGGAAACCACTCGAATCAGATGC -ACGGAAACCACTCGAATCTGAAGG -ACGGAAACCACTCGAATCCAATGG -ACGGAAACCACTCGAATCATGAGG -ACGGAAACCACTCGAATCAATGGG -ACGGAAACCACTCGAATCTCCTGA -ACGGAAACCACTCGAATCTAGCGA -ACGGAAACCACTCGAATCCACAGA -ACGGAAACCACTCGAATCGCAAGA -ACGGAAACCACTCGAATCGGTTGA -ACGGAAACCACTCGAATCTCCGAT -ACGGAAACCACTCGAATCTGGCAT -ACGGAAACCACTCGAATCCGAGAT -ACGGAAACCACTCGAATCTACCAC -ACGGAAACCACTCGAATCCAGAAC -ACGGAAACCACTCGAATCGTCTAC -ACGGAAACCACTCGAATCACGTAC -ACGGAAACCACTCGAATCAGTGAC -ACGGAAACCACTCGAATCCTGTAG -ACGGAAACCACTCGAATCCCTAAG -ACGGAAACCACTCGAATCGTTCAG -ACGGAAACCACTCGAATCGCATAG -ACGGAAACCACTCGAATCGACAAG -ACGGAAACCACTCGAATCAAGCAG -ACGGAAACCACTCGAATCCGTCAA -ACGGAAACCACTCGAATCGCTGAA -ACGGAAACCACTCGAATCAGTACG -ACGGAAACCACTCGAATCATCCGA -ACGGAAACCACTCGAATCATGGGA -ACGGAAACCACTCGAATCGTGCAA -ACGGAAACCACTCGAATCGAGGAA -ACGGAAACCACTCGAATCCAGGTA -ACGGAAACCACTCGAATCGACTCT -ACGGAAACCACTCGAATCAGTCCT -ACGGAAACCACTCGAATCTAAGCC -ACGGAAACCACTCGAATCATAGCC -ACGGAAACCACTCGAATCTAACCG -ACGGAAACCACTCGAATCATGCCA -ACGGAAACCACTGGAATGGGAAAC -ACGGAAACCACTGGAATGAACACC -ACGGAAACCACTGGAATGATCGAG -ACGGAAACCACTGGAATGCTCCTT -ACGGAAACCACTGGAATGCCTGTT -ACGGAAACCACTGGAATGCGGTTT -ACGGAAACCACTGGAATGGTGGTT -ACGGAAACCACTGGAATGGCCTTT -ACGGAAACCACTGGAATGGGTCTT -ACGGAAACCACTGGAATGACGCTT -ACGGAAACCACTGGAATGAGCGTT -ACGGAAACCACTGGAATGTTCGTC -ACGGAAACCACTGGAATGTCTCTC -ACGGAAACCACTGGAATGTGGATC -ACGGAAACCACTGGAATGCACTTC -ACGGAAACCACTGGAATGGTACTC -ACGGAAACCACTGGAATGGATGTC -ACGGAAACCACTGGAATGACAGTC -ACGGAAACCACTGGAATGTTGCTG -ACGGAAACCACTGGAATGTCCATG -ACGGAAACCACTGGAATGTGTGTG -ACGGAAACCACTGGAATGCTAGTG -ACGGAAACCACTGGAATGCATCTG -ACGGAAACCACTGGAATGGAGTTG -ACGGAAACCACTGGAATGAGACTG -ACGGAAACCACTGGAATGTCGGTA -ACGGAAACCACTGGAATGTGCCTA -ACGGAAACCACTGGAATGCCACTA -ACGGAAACCACTGGAATGGGAGTA -ACGGAAACCACTGGAATGTCGTCT -ACGGAAACCACTGGAATGTGCACT -ACGGAAACCACTGGAATGCTGACT -ACGGAAACCACTGGAATGCAACCT -ACGGAAACCACTGGAATGGCTACT -ACGGAAACCACTGGAATGGGATCT -ACGGAAACCACTGGAATGAAGGCT -ACGGAAACCACTGGAATGTCAACC -ACGGAAACCACTGGAATGTGTTCC -ACGGAAACCACTGGAATGATTCCC -ACGGAAACCACTGGAATGTTCTCG -ACGGAAACCACTGGAATGTAGACG -ACGGAAACCACTGGAATGGTAACG -ACGGAAACCACTGGAATGACTTCG -ACGGAAACCACTGGAATGTACGCA -ACGGAAACCACTGGAATGCTTGCA -ACGGAAACCACTGGAATGCGAACA -ACGGAAACCACTGGAATGCAGTCA -ACGGAAACCACTGGAATGGATCCA -ACGGAAACCACTGGAATGACGACA -ACGGAAACCACTGGAATGAGCTCA -ACGGAAACCACTGGAATGTCACGT -ACGGAAACCACTGGAATGCGTAGT -ACGGAAACCACTGGAATGGTCAGT -ACGGAAACCACTGGAATGGAAGGT -ACGGAAACCACTGGAATGAACCGT -ACGGAAACCACTGGAATGTTGTGC -ACGGAAACCACTGGAATGCTAAGC -ACGGAAACCACTGGAATGACTAGC -ACGGAAACCACTGGAATGAGATGC -ACGGAAACCACTGGAATGTGAAGG -ACGGAAACCACTGGAATGCAATGG -ACGGAAACCACTGGAATGATGAGG -ACGGAAACCACTGGAATGAATGGG -ACGGAAACCACTGGAATGTCCTGA -ACGGAAACCACTGGAATGTAGCGA -ACGGAAACCACTGGAATGCACAGA -ACGGAAACCACTGGAATGGCAAGA -ACGGAAACCACTGGAATGGGTTGA -ACGGAAACCACTGGAATGTCCGAT -ACGGAAACCACTGGAATGTGGCAT -ACGGAAACCACTGGAATGCGAGAT -ACGGAAACCACTGGAATGTACCAC -ACGGAAACCACTGGAATGCAGAAC -ACGGAAACCACTGGAATGGTCTAC -ACGGAAACCACTGGAATGACGTAC -ACGGAAACCACTGGAATGAGTGAC -ACGGAAACCACTGGAATGCTGTAG -ACGGAAACCACTGGAATGCCTAAG -ACGGAAACCACTGGAATGGTTCAG -ACGGAAACCACTGGAATGGCATAG -ACGGAAACCACTGGAATGGACAAG -ACGGAAACCACTGGAATGAAGCAG -ACGGAAACCACTGGAATGCGTCAA -ACGGAAACCACTGGAATGGCTGAA -ACGGAAACCACTGGAATGAGTACG -ACGGAAACCACTGGAATGATCCGA -ACGGAAACCACTGGAATGATGGGA -ACGGAAACCACTGGAATGGTGCAA -ACGGAAACCACTGGAATGGAGGAA -ACGGAAACCACTGGAATGCAGGTA -ACGGAAACCACTGGAATGGACTCT -ACGGAAACCACTGGAATGAGTCCT -ACGGAAACCACTGGAATGTAAGCC -ACGGAAACCACTGGAATGATAGCC -ACGGAAACCACTGGAATGTAACCG -ACGGAAACCACTGGAATGATGCCA -ACGGAAACCACTCAAGTGGGAAAC -ACGGAAACCACTCAAGTGAACACC -ACGGAAACCACTCAAGTGATCGAG -ACGGAAACCACTCAAGTGCTCCTT -ACGGAAACCACTCAAGTGCCTGTT -ACGGAAACCACTCAAGTGCGGTTT -ACGGAAACCACTCAAGTGGTGGTT -ACGGAAACCACTCAAGTGGCCTTT -ACGGAAACCACTCAAGTGGGTCTT -ACGGAAACCACTCAAGTGACGCTT -ACGGAAACCACTCAAGTGAGCGTT -ACGGAAACCACTCAAGTGTTCGTC -ACGGAAACCACTCAAGTGTCTCTC -ACGGAAACCACTCAAGTGTGGATC -ACGGAAACCACTCAAGTGCACTTC -ACGGAAACCACTCAAGTGGTACTC -ACGGAAACCACTCAAGTGGATGTC -ACGGAAACCACTCAAGTGACAGTC -ACGGAAACCACTCAAGTGTTGCTG -ACGGAAACCACTCAAGTGTCCATG -ACGGAAACCACTCAAGTGTGTGTG -ACGGAAACCACTCAAGTGCTAGTG -ACGGAAACCACTCAAGTGCATCTG -ACGGAAACCACTCAAGTGGAGTTG -ACGGAAACCACTCAAGTGAGACTG -ACGGAAACCACTCAAGTGTCGGTA -ACGGAAACCACTCAAGTGTGCCTA -ACGGAAACCACTCAAGTGCCACTA -ACGGAAACCACTCAAGTGGGAGTA -ACGGAAACCACTCAAGTGTCGTCT -ACGGAAACCACTCAAGTGTGCACT -ACGGAAACCACTCAAGTGCTGACT -ACGGAAACCACTCAAGTGCAACCT -ACGGAAACCACTCAAGTGGCTACT -ACGGAAACCACTCAAGTGGGATCT -ACGGAAACCACTCAAGTGAAGGCT -ACGGAAACCACTCAAGTGTCAACC -ACGGAAACCACTCAAGTGTGTTCC -ACGGAAACCACTCAAGTGATTCCC -ACGGAAACCACTCAAGTGTTCTCG -ACGGAAACCACTCAAGTGTAGACG -ACGGAAACCACTCAAGTGGTAACG -ACGGAAACCACTCAAGTGACTTCG -ACGGAAACCACTCAAGTGTACGCA -ACGGAAACCACTCAAGTGCTTGCA -ACGGAAACCACTCAAGTGCGAACA -ACGGAAACCACTCAAGTGCAGTCA -ACGGAAACCACTCAAGTGGATCCA -ACGGAAACCACTCAAGTGACGACA -ACGGAAACCACTCAAGTGAGCTCA -ACGGAAACCACTCAAGTGTCACGT -ACGGAAACCACTCAAGTGCGTAGT -ACGGAAACCACTCAAGTGGTCAGT -ACGGAAACCACTCAAGTGGAAGGT -ACGGAAACCACTCAAGTGAACCGT -ACGGAAACCACTCAAGTGTTGTGC -ACGGAAACCACTCAAGTGCTAAGC -ACGGAAACCACTCAAGTGACTAGC -ACGGAAACCACTCAAGTGAGATGC -ACGGAAACCACTCAAGTGTGAAGG -ACGGAAACCACTCAAGTGCAATGG -ACGGAAACCACTCAAGTGATGAGG -ACGGAAACCACTCAAGTGAATGGG -ACGGAAACCACTCAAGTGTCCTGA -ACGGAAACCACTCAAGTGTAGCGA -ACGGAAACCACTCAAGTGCACAGA -ACGGAAACCACTCAAGTGGCAAGA -ACGGAAACCACTCAAGTGGGTTGA -ACGGAAACCACTCAAGTGTCCGAT -ACGGAAACCACTCAAGTGTGGCAT -ACGGAAACCACTCAAGTGCGAGAT -ACGGAAACCACTCAAGTGTACCAC -ACGGAAACCACTCAAGTGCAGAAC -ACGGAAACCACTCAAGTGGTCTAC -ACGGAAACCACTCAAGTGACGTAC -ACGGAAACCACTCAAGTGAGTGAC -ACGGAAACCACTCAAGTGCTGTAG -ACGGAAACCACTCAAGTGCCTAAG -ACGGAAACCACTCAAGTGGTTCAG -ACGGAAACCACTCAAGTGGCATAG -ACGGAAACCACTCAAGTGGACAAG -ACGGAAACCACTCAAGTGAAGCAG -ACGGAAACCACTCAAGTGCGTCAA -ACGGAAACCACTCAAGTGGCTGAA -ACGGAAACCACTCAAGTGAGTACG -ACGGAAACCACTCAAGTGATCCGA -ACGGAAACCACTCAAGTGATGGGA -ACGGAAACCACTCAAGTGGTGCAA -ACGGAAACCACTCAAGTGGAGGAA -ACGGAAACCACTCAAGTGCAGGTA -ACGGAAACCACTCAAGTGGACTCT -ACGGAAACCACTCAAGTGAGTCCT -ACGGAAACCACTCAAGTGTAAGCC -ACGGAAACCACTCAAGTGATAGCC -ACGGAAACCACTCAAGTGTAACCG -ACGGAAACCACTCAAGTGATGCCA -ACGGAAACCACTGAAGAGGGAAAC -ACGGAAACCACTGAAGAGAACACC -ACGGAAACCACTGAAGAGATCGAG -ACGGAAACCACTGAAGAGCTCCTT -ACGGAAACCACTGAAGAGCCTGTT -ACGGAAACCACTGAAGAGCGGTTT -ACGGAAACCACTGAAGAGGTGGTT -ACGGAAACCACTGAAGAGGCCTTT -ACGGAAACCACTGAAGAGGGTCTT -ACGGAAACCACTGAAGAGACGCTT -ACGGAAACCACTGAAGAGAGCGTT -ACGGAAACCACTGAAGAGTTCGTC -ACGGAAACCACTGAAGAGTCTCTC -ACGGAAACCACTGAAGAGTGGATC -ACGGAAACCACTGAAGAGCACTTC -ACGGAAACCACTGAAGAGGTACTC -ACGGAAACCACTGAAGAGGATGTC -ACGGAAACCACTGAAGAGACAGTC -ACGGAAACCACTGAAGAGTTGCTG -ACGGAAACCACTGAAGAGTCCATG -ACGGAAACCACTGAAGAGTGTGTG -ACGGAAACCACTGAAGAGCTAGTG -ACGGAAACCACTGAAGAGCATCTG -ACGGAAACCACTGAAGAGGAGTTG -ACGGAAACCACTGAAGAGAGACTG -ACGGAAACCACTGAAGAGTCGGTA -ACGGAAACCACTGAAGAGTGCCTA -ACGGAAACCACTGAAGAGCCACTA -ACGGAAACCACTGAAGAGGGAGTA -ACGGAAACCACTGAAGAGTCGTCT -ACGGAAACCACTGAAGAGTGCACT -ACGGAAACCACTGAAGAGCTGACT -ACGGAAACCACTGAAGAGCAACCT -ACGGAAACCACTGAAGAGGCTACT -ACGGAAACCACTGAAGAGGGATCT -ACGGAAACCACTGAAGAGAAGGCT -ACGGAAACCACTGAAGAGTCAACC -ACGGAAACCACTGAAGAGTGTTCC -ACGGAAACCACTGAAGAGATTCCC -ACGGAAACCACTGAAGAGTTCTCG -ACGGAAACCACTGAAGAGTAGACG -ACGGAAACCACTGAAGAGGTAACG -ACGGAAACCACTGAAGAGACTTCG -ACGGAAACCACTGAAGAGTACGCA -ACGGAAACCACTGAAGAGCTTGCA -ACGGAAACCACTGAAGAGCGAACA -ACGGAAACCACTGAAGAGCAGTCA -ACGGAAACCACTGAAGAGGATCCA -ACGGAAACCACTGAAGAGACGACA -ACGGAAACCACTGAAGAGAGCTCA -ACGGAAACCACTGAAGAGTCACGT -ACGGAAACCACTGAAGAGCGTAGT -ACGGAAACCACTGAAGAGGTCAGT -ACGGAAACCACTGAAGAGGAAGGT -ACGGAAACCACTGAAGAGAACCGT -ACGGAAACCACTGAAGAGTTGTGC -ACGGAAACCACTGAAGAGCTAAGC -ACGGAAACCACTGAAGAGACTAGC -ACGGAAACCACTGAAGAGAGATGC -ACGGAAACCACTGAAGAGTGAAGG -ACGGAAACCACTGAAGAGCAATGG -ACGGAAACCACTGAAGAGATGAGG -ACGGAAACCACTGAAGAGAATGGG -ACGGAAACCACTGAAGAGTCCTGA -ACGGAAACCACTGAAGAGTAGCGA -ACGGAAACCACTGAAGAGCACAGA -ACGGAAACCACTGAAGAGGCAAGA -ACGGAAACCACTGAAGAGGGTTGA -ACGGAAACCACTGAAGAGTCCGAT -ACGGAAACCACTGAAGAGTGGCAT -ACGGAAACCACTGAAGAGCGAGAT -ACGGAAACCACTGAAGAGTACCAC -ACGGAAACCACTGAAGAGCAGAAC -ACGGAAACCACTGAAGAGGTCTAC -ACGGAAACCACTGAAGAGACGTAC -ACGGAAACCACTGAAGAGAGTGAC -ACGGAAACCACTGAAGAGCTGTAG -ACGGAAACCACTGAAGAGCCTAAG -ACGGAAACCACTGAAGAGGTTCAG -ACGGAAACCACTGAAGAGGCATAG -ACGGAAACCACTGAAGAGGACAAG -ACGGAAACCACTGAAGAGAAGCAG -ACGGAAACCACTGAAGAGCGTCAA -ACGGAAACCACTGAAGAGGCTGAA -ACGGAAACCACTGAAGAGAGTACG -ACGGAAACCACTGAAGAGATCCGA -ACGGAAACCACTGAAGAGATGGGA -ACGGAAACCACTGAAGAGGTGCAA -ACGGAAACCACTGAAGAGGAGGAA -ACGGAAACCACTGAAGAGCAGGTA -ACGGAAACCACTGAAGAGGACTCT -ACGGAAACCACTGAAGAGAGTCCT -ACGGAAACCACTGAAGAGTAAGCC -ACGGAAACCACTGAAGAGATAGCC -ACGGAAACCACTGAAGAGTAACCG -ACGGAAACCACTGAAGAGATGCCA -ACGGAAACCACTGTACAGGGAAAC -ACGGAAACCACTGTACAGAACACC -ACGGAAACCACTGTACAGATCGAG -ACGGAAACCACTGTACAGCTCCTT -ACGGAAACCACTGTACAGCCTGTT -ACGGAAACCACTGTACAGCGGTTT -ACGGAAACCACTGTACAGGTGGTT -ACGGAAACCACTGTACAGGCCTTT -ACGGAAACCACTGTACAGGGTCTT -ACGGAAACCACTGTACAGACGCTT -ACGGAAACCACTGTACAGAGCGTT -ACGGAAACCACTGTACAGTTCGTC -ACGGAAACCACTGTACAGTCTCTC -ACGGAAACCACTGTACAGTGGATC -ACGGAAACCACTGTACAGCACTTC -ACGGAAACCACTGTACAGGTACTC -ACGGAAACCACTGTACAGGATGTC -ACGGAAACCACTGTACAGACAGTC -ACGGAAACCACTGTACAGTTGCTG -ACGGAAACCACTGTACAGTCCATG -ACGGAAACCACTGTACAGTGTGTG -ACGGAAACCACTGTACAGCTAGTG -ACGGAAACCACTGTACAGCATCTG -ACGGAAACCACTGTACAGGAGTTG -ACGGAAACCACTGTACAGAGACTG -ACGGAAACCACTGTACAGTCGGTA -ACGGAAACCACTGTACAGTGCCTA -ACGGAAACCACTGTACAGCCACTA -ACGGAAACCACTGTACAGGGAGTA -ACGGAAACCACTGTACAGTCGTCT -ACGGAAACCACTGTACAGTGCACT -ACGGAAACCACTGTACAGCTGACT -ACGGAAACCACTGTACAGCAACCT -ACGGAAACCACTGTACAGGCTACT -ACGGAAACCACTGTACAGGGATCT -ACGGAAACCACTGTACAGAAGGCT -ACGGAAACCACTGTACAGTCAACC -ACGGAAACCACTGTACAGTGTTCC -ACGGAAACCACTGTACAGATTCCC -ACGGAAACCACTGTACAGTTCTCG -ACGGAAACCACTGTACAGTAGACG -ACGGAAACCACTGTACAGGTAACG -ACGGAAACCACTGTACAGACTTCG -ACGGAAACCACTGTACAGTACGCA -ACGGAAACCACTGTACAGCTTGCA -ACGGAAACCACTGTACAGCGAACA -ACGGAAACCACTGTACAGCAGTCA -ACGGAAACCACTGTACAGGATCCA -ACGGAAACCACTGTACAGACGACA -ACGGAAACCACTGTACAGAGCTCA -ACGGAAACCACTGTACAGTCACGT -ACGGAAACCACTGTACAGCGTAGT -ACGGAAACCACTGTACAGGTCAGT -ACGGAAACCACTGTACAGGAAGGT -ACGGAAACCACTGTACAGAACCGT -ACGGAAACCACTGTACAGTTGTGC -ACGGAAACCACTGTACAGCTAAGC -ACGGAAACCACTGTACAGACTAGC -ACGGAAACCACTGTACAGAGATGC -ACGGAAACCACTGTACAGTGAAGG -ACGGAAACCACTGTACAGCAATGG -ACGGAAACCACTGTACAGATGAGG -ACGGAAACCACTGTACAGAATGGG -ACGGAAACCACTGTACAGTCCTGA -ACGGAAACCACTGTACAGTAGCGA -ACGGAAACCACTGTACAGCACAGA -ACGGAAACCACTGTACAGGCAAGA -ACGGAAACCACTGTACAGGGTTGA -ACGGAAACCACTGTACAGTCCGAT -ACGGAAACCACTGTACAGTGGCAT -ACGGAAACCACTGTACAGCGAGAT -ACGGAAACCACTGTACAGTACCAC -ACGGAAACCACTGTACAGCAGAAC -ACGGAAACCACTGTACAGGTCTAC -ACGGAAACCACTGTACAGACGTAC -ACGGAAACCACTGTACAGAGTGAC -ACGGAAACCACTGTACAGCTGTAG -ACGGAAACCACTGTACAGCCTAAG -ACGGAAACCACTGTACAGGTTCAG -ACGGAAACCACTGTACAGGCATAG -ACGGAAACCACTGTACAGGACAAG -ACGGAAACCACTGTACAGAAGCAG -ACGGAAACCACTGTACAGCGTCAA -ACGGAAACCACTGTACAGGCTGAA -ACGGAAACCACTGTACAGAGTACG -ACGGAAACCACTGTACAGATCCGA -ACGGAAACCACTGTACAGATGGGA -ACGGAAACCACTGTACAGGTGCAA -ACGGAAACCACTGTACAGGAGGAA -ACGGAAACCACTGTACAGCAGGTA -ACGGAAACCACTGTACAGGACTCT -ACGGAAACCACTGTACAGAGTCCT -ACGGAAACCACTGTACAGTAAGCC -ACGGAAACCACTGTACAGATAGCC -ACGGAAACCACTGTACAGTAACCG -ACGGAAACCACTGTACAGATGCCA -ACGGAAACCACTTCTGACGGAAAC -ACGGAAACCACTTCTGACAACACC -ACGGAAACCACTTCTGACATCGAG -ACGGAAACCACTTCTGACCTCCTT -ACGGAAACCACTTCTGACCCTGTT -ACGGAAACCACTTCTGACCGGTTT -ACGGAAACCACTTCTGACGTGGTT -ACGGAAACCACTTCTGACGCCTTT -ACGGAAACCACTTCTGACGGTCTT -ACGGAAACCACTTCTGACACGCTT -ACGGAAACCACTTCTGACAGCGTT -ACGGAAACCACTTCTGACTTCGTC -ACGGAAACCACTTCTGACTCTCTC -ACGGAAACCACTTCTGACTGGATC -ACGGAAACCACTTCTGACCACTTC -ACGGAAACCACTTCTGACGTACTC -ACGGAAACCACTTCTGACGATGTC -ACGGAAACCACTTCTGACACAGTC -ACGGAAACCACTTCTGACTTGCTG -ACGGAAACCACTTCTGACTCCATG -ACGGAAACCACTTCTGACTGTGTG -ACGGAAACCACTTCTGACCTAGTG -ACGGAAACCACTTCTGACCATCTG -ACGGAAACCACTTCTGACGAGTTG -ACGGAAACCACTTCTGACAGACTG -ACGGAAACCACTTCTGACTCGGTA -ACGGAAACCACTTCTGACTGCCTA -ACGGAAACCACTTCTGACCCACTA -ACGGAAACCACTTCTGACGGAGTA -ACGGAAACCACTTCTGACTCGTCT -ACGGAAACCACTTCTGACTGCACT -ACGGAAACCACTTCTGACCTGACT -ACGGAAACCACTTCTGACCAACCT -ACGGAAACCACTTCTGACGCTACT -ACGGAAACCACTTCTGACGGATCT -ACGGAAACCACTTCTGACAAGGCT -ACGGAAACCACTTCTGACTCAACC -ACGGAAACCACTTCTGACTGTTCC -ACGGAAACCACTTCTGACATTCCC -ACGGAAACCACTTCTGACTTCTCG -ACGGAAACCACTTCTGACTAGACG -ACGGAAACCACTTCTGACGTAACG -ACGGAAACCACTTCTGACACTTCG -ACGGAAACCACTTCTGACTACGCA -ACGGAAACCACTTCTGACCTTGCA -ACGGAAACCACTTCTGACCGAACA -ACGGAAACCACTTCTGACCAGTCA -ACGGAAACCACTTCTGACGATCCA -ACGGAAACCACTTCTGACACGACA -ACGGAAACCACTTCTGACAGCTCA -ACGGAAACCACTTCTGACTCACGT -ACGGAAACCACTTCTGACCGTAGT -ACGGAAACCACTTCTGACGTCAGT -ACGGAAACCACTTCTGACGAAGGT -ACGGAAACCACTTCTGACAACCGT -ACGGAAACCACTTCTGACTTGTGC -ACGGAAACCACTTCTGACCTAAGC -ACGGAAACCACTTCTGACACTAGC -ACGGAAACCACTTCTGACAGATGC -ACGGAAACCACTTCTGACTGAAGG -ACGGAAACCACTTCTGACCAATGG -ACGGAAACCACTTCTGACATGAGG -ACGGAAACCACTTCTGACAATGGG -ACGGAAACCACTTCTGACTCCTGA -ACGGAAACCACTTCTGACTAGCGA -ACGGAAACCACTTCTGACCACAGA -ACGGAAACCACTTCTGACGCAAGA -ACGGAAACCACTTCTGACGGTTGA -ACGGAAACCACTTCTGACTCCGAT -ACGGAAACCACTTCTGACTGGCAT -ACGGAAACCACTTCTGACCGAGAT -ACGGAAACCACTTCTGACTACCAC -ACGGAAACCACTTCTGACCAGAAC -ACGGAAACCACTTCTGACGTCTAC -ACGGAAACCACTTCTGACACGTAC -ACGGAAACCACTTCTGACAGTGAC -ACGGAAACCACTTCTGACCTGTAG -ACGGAAACCACTTCTGACCCTAAG -ACGGAAACCACTTCTGACGTTCAG -ACGGAAACCACTTCTGACGCATAG -ACGGAAACCACTTCTGACGACAAG -ACGGAAACCACTTCTGACAAGCAG -ACGGAAACCACTTCTGACCGTCAA -ACGGAAACCACTTCTGACGCTGAA -ACGGAAACCACTTCTGACAGTACG -ACGGAAACCACTTCTGACATCCGA -ACGGAAACCACTTCTGACATGGGA -ACGGAAACCACTTCTGACGTGCAA -ACGGAAACCACTTCTGACGAGGAA -ACGGAAACCACTTCTGACCAGGTA -ACGGAAACCACTTCTGACGACTCT -ACGGAAACCACTTCTGACAGTCCT -ACGGAAACCACTTCTGACTAAGCC -ACGGAAACCACTTCTGACATAGCC -ACGGAAACCACTTCTGACTAACCG -ACGGAAACCACTTCTGACATGCCA -ACGGAAACCACTCCTAGTGGAAAC -ACGGAAACCACTCCTAGTAACACC -ACGGAAACCACTCCTAGTATCGAG -ACGGAAACCACTCCTAGTCTCCTT -ACGGAAACCACTCCTAGTCCTGTT -ACGGAAACCACTCCTAGTCGGTTT -ACGGAAACCACTCCTAGTGTGGTT -ACGGAAACCACTCCTAGTGCCTTT -ACGGAAACCACTCCTAGTGGTCTT -ACGGAAACCACTCCTAGTACGCTT -ACGGAAACCACTCCTAGTAGCGTT -ACGGAAACCACTCCTAGTTTCGTC -ACGGAAACCACTCCTAGTTCTCTC -ACGGAAACCACTCCTAGTTGGATC -ACGGAAACCACTCCTAGTCACTTC -ACGGAAACCACTCCTAGTGTACTC -ACGGAAACCACTCCTAGTGATGTC -ACGGAAACCACTCCTAGTACAGTC -ACGGAAACCACTCCTAGTTTGCTG -ACGGAAACCACTCCTAGTTCCATG -ACGGAAACCACTCCTAGTTGTGTG -ACGGAAACCACTCCTAGTCTAGTG -ACGGAAACCACTCCTAGTCATCTG -ACGGAAACCACTCCTAGTGAGTTG -ACGGAAACCACTCCTAGTAGACTG -ACGGAAACCACTCCTAGTTCGGTA -ACGGAAACCACTCCTAGTTGCCTA -ACGGAAACCACTCCTAGTCCACTA -ACGGAAACCACTCCTAGTGGAGTA -ACGGAAACCACTCCTAGTTCGTCT -ACGGAAACCACTCCTAGTTGCACT -ACGGAAACCACTCCTAGTCTGACT -ACGGAAACCACTCCTAGTCAACCT -ACGGAAACCACTCCTAGTGCTACT -ACGGAAACCACTCCTAGTGGATCT -ACGGAAACCACTCCTAGTAAGGCT -ACGGAAACCACTCCTAGTTCAACC -ACGGAAACCACTCCTAGTTGTTCC -ACGGAAACCACTCCTAGTATTCCC -ACGGAAACCACTCCTAGTTTCTCG -ACGGAAACCACTCCTAGTTAGACG -ACGGAAACCACTCCTAGTGTAACG -ACGGAAACCACTCCTAGTACTTCG -ACGGAAACCACTCCTAGTTACGCA -ACGGAAACCACTCCTAGTCTTGCA -ACGGAAACCACTCCTAGTCGAACA -ACGGAAACCACTCCTAGTCAGTCA -ACGGAAACCACTCCTAGTGATCCA -ACGGAAACCACTCCTAGTACGACA -ACGGAAACCACTCCTAGTAGCTCA -ACGGAAACCACTCCTAGTTCACGT -ACGGAAACCACTCCTAGTCGTAGT -ACGGAAACCACTCCTAGTGTCAGT -ACGGAAACCACTCCTAGTGAAGGT -ACGGAAACCACTCCTAGTAACCGT -ACGGAAACCACTCCTAGTTTGTGC -ACGGAAACCACTCCTAGTCTAAGC -ACGGAAACCACTCCTAGTACTAGC -ACGGAAACCACTCCTAGTAGATGC -ACGGAAACCACTCCTAGTTGAAGG -ACGGAAACCACTCCTAGTCAATGG -ACGGAAACCACTCCTAGTATGAGG -ACGGAAACCACTCCTAGTAATGGG -ACGGAAACCACTCCTAGTTCCTGA -ACGGAAACCACTCCTAGTTAGCGA -ACGGAAACCACTCCTAGTCACAGA -ACGGAAACCACTCCTAGTGCAAGA -ACGGAAACCACTCCTAGTGGTTGA -ACGGAAACCACTCCTAGTTCCGAT -ACGGAAACCACTCCTAGTTGGCAT -ACGGAAACCACTCCTAGTCGAGAT -ACGGAAACCACTCCTAGTTACCAC -ACGGAAACCACTCCTAGTCAGAAC -ACGGAAACCACTCCTAGTGTCTAC -ACGGAAACCACTCCTAGTACGTAC -ACGGAAACCACTCCTAGTAGTGAC -ACGGAAACCACTCCTAGTCTGTAG -ACGGAAACCACTCCTAGTCCTAAG -ACGGAAACCACTCCTAGTGTTCAG -ACGGAAACCACTCCTAGTGCATAG -ACGGAAACCACTCCTAGTGACAAG -ACGGAAACCACTCCTAGTAAGCAG -ACGGAAACCACTCCTAGTCGTCAA -ACGGAAACCACTCCTAGTGCTGAA -ACGGAAACCACTCCTAGTAGTACG -ACGGAAACCACTCCTAGTATCCGA -ACGGAAACCACTCCTAGTATGGGA -ACGGAAACCACTCCTAGTGTGCAA -ACGGAAACCACTCCTAGTGAGGAA -ACGGAAACCACTCCTAGTCAGGTA -ACGGAAACCACTCCTAGTGACTCT -ACGGAAACCACTCCTAGTAGTCCT -ACGGAAACCACTCCTAGTTAAGCC -ACGGAAACCACTCCTAGTATAGCC -ACGGAAACCACTCCTAGTTAACCG -ACGGAAACCACTCCTAGTATGCCA -ACGGAAACCACTGCCTAAGGAAAC -ACGGAAACCACTGCCTAAAACACC -ACGGAAACCACTGCCTAAATCGAG -ACGGAAACCACTGCCTAACTCCTT -ACGGAAACCACTGCCTAACCTGTT -ACGGAAACCACTGCCTAACGGTTT -ACGGAAACCACTGCCTAAGTGGTT -ACGGAAACCACTGCCTAAGCCTTT -ACGGAAACCACTGCCTAAGGTCTT -ACGGAAACCACTGCCTAAACGCTT -ACGGAAACCACTGCCTAAAGCGTT -ACGGAAACCACTGCCTAATTCGTC -ACGGAAACCACTGCCTAATCTCTC -ACGGAAACCACTGCCTAATGGATC -ACGGAAACCACTGCCTAACACTTC -ACGGAAACCACTGCCTAAGTACTC -ACGGAAACCACTGCCTAAGATGTC -ACGGAAACCACTGCCTAAACAGTC -ACGGAAACCACTGCCTAATTGCTG -ACGGAAACCACTGCCTAATCCATG -ACGGAAACCACTGCCTAATGTGTG -ACGGAAACCACTGCCTAACTAGTG -ACGGAAACCACTGCCTAACATCTG -ACGGAAACCACTGCCTAAGAGTTG -ACGGAAACCACTGCCTAAAGACTG -ACGGAAACCACTGCCTAATCGGTA -ACGGAAACCACTGCCTAATGCCTA -ACGGAAACCACTGCCTAACCACTA -ACGGAAACCACTGCCTAAGGAGTA -ACGGAAACCACTGCCTAATCGTCT -ACGGAAACCACTGCCTAATGCACT -ACGGAAACCACTGCCTAACTGACT -ACGGAAACCACTGCCTAACAACCT -ACGGAAACCACTGCCTAAGCTACT -ACGGAAACCACTGCCTAAGGATCT -ACGGAAACCACTGCCTAAAAGGCT -ACGGAAACCACTGCCTAATCAACC -ACGGAAACCACTGCCTAATGTTCC -ACGGAAACCACTGCCTAAATTCCC -ACGGAAACCACTGCCTAATTCTCG -ACGGAAACCACTGCCTAATAGACG -ACGGAAACCACTGCCTAAGTAACG -ACGGAAACCACTGCCTAAACTTCG -ACGGAAACCACTGCCTAATACGCA -ACGGAAACCACTGCCTAACTTGCA -ACGGAAACCACTGCCTAACGAACA -ACGGAAACCACTGCCTAACAGTCA -ACGGAAACCACTGCCTAAGATCCA -ACGGAAACCACTGCCTAAACGACA -ACGGAAACCACTGCCTAAAGCTCA -ACGGAAACCACTGCCTAATCACGT -ACGGAAACCACTGCCTAACGTAGT -ACGGAAACCACTGCCTAAGTCAGT -ACGGAAACCACTGCCTAAGAAGGT -ACGGAAACCACTGCCTAAAACCGT -ACGGAAACCACTGCCTAATTGTGC -ACGGAAACCACTGCCTAACTAAGC -ACGGAAACCACTGCCTAAACTAGC -ACGGAAACCACTGCCTAAAGATGC -ACGGAAACCACTGCCTAATGAAGG -ACGGAAACCACTGCCTAACAATGG -ACGGAAACCACTGCCTAAATGAGG -ACGGAAACCACTGCCTAAAATGGG -ACGGAAACCACTGCCTAATCCTGA -ACGGAAACCACTGCCTAATAGCGA -ACGGAAACCACTGCCTAACACAGA -ACGGAAACCACTGCCTAAGCAAGA -ACGGAAACCACTGCCTAAGGTTGA -ACGGAAACCACTGCCTAATCCGAT -ACGGAAACCACTGCCTAATGGCAT -ACGGAAACCACTGCCTAACGAGAT -ACGGAAACCACTGCCTAATACCAC -ACGGAAACCACTGCCTAACAGAAC -ACGGAAACCACTGCCTAAGTCTAC -ACGGAAACCACTGCCTAAACGTAC -ACGGAAACCACTGCCTAAAGTGAC -ACGGAAACCACTGCCTAACTGTAG -ACGGAAACCACTGCCTAACCTAAG -ACGGAAACCACTGCCTAAGTTCAG -ACGGAAACCACTGCCTAAGCATAG -ACGGAAACCACTGCCTAAGACAAG -ACGGAAACCACTGCCTAAAAGCAG -ACGGAAACCACTGCCTAACGTCAA -ACGGAAACCACTGCCTAAGCTGAA -ACGGAAACCACTGCCTAAAGTACG -ACGGAAACCACTGCCTAAATCCGA -ACGGAAACCACTGCCTAAATGGGA -ACGGAAACCACTGCCTAAGTGCAA -ACGGAAACCACTGCCTAAGAGGAA -ACGGAAACCACTGCCTAACAGGTA -ACGGAAACCACTGCCTAAGACTCT -ACGGAAACCACTGCCTAAAGTCCT -ACGGAAACCACTGCCTAATAAGCC -ACGGAAACCACTGCCTAAATAGCC -ACGGAAACCACTGCCTAATAACCG -ACGGAAACCACTGCCTAAATGCCA -ACGGAAACCACTGCCATAGGAAAC -ACGGAAACCACTGCCATAAACACC -ACGGAAACCACTGCCATAATCGAG -ACGGAAACCACTGCCATACTCCTT -ACGGAAACCACTGCCATACCTGTT -ACGGAAACCACTGCCATACGGTTT -ACGGAAACCACTGCCATAGTGGTT -ACGGAAACCACTGCCATAGCCTTT -ACGGAAACCACTGCCATAGGTCTT -ACGGAAACCACTGCCATAACGCTT -ACGGAAACCACTGCCATAAGCGTT -ACGGAAACCACTGCCATATTCGTC -ACGGAAACCACTGCCATATCTCTC -ACGGAAACCACTGCCATATGGATC -ACGGAAACCACTGCCATACACTTC -ACGGAAACCACTGCCATAGTACTC -ACGGAAACCACTGCCATAGATGTC -ACGGAAACCACTGCCATAACAGTC -ACGGAAACCACTGCCATATTGCTG -ACGGAAACCACTGCCATATCCATG -ACGGAAACCACTGCCATATGTGTG -ACGGAAACCACTGCCATACTAGTG -ACGGAAACCACTGCCATACATCTG -ACGGAAACCACTGCCATAGAGTTG -ACGGAAACCACTGCCATAAGACTG -ACGGAAACCACTGCCATATCGGTA -ACGGAAACCACTGCCATATGCCTA -ACGGAAACCACTGCCATACCACTA -ACGGAAACCACTGCCATAGGAGTA -ACGGAAACCACTGCCATATCGTCT -ACGGAAACCACTGCCATATGCACT -ACGGAAACCACTGCCATACTGACT -ACGGAAACCACTGCCATACAACCT -ACGGAAACCACTGCCATAGCTACT -ACGGAAACCACTGCCATAGGATCT -ACGGAAACCACTGCCATAAAGGCT -ACGGAAACCACTGCCATATCAACC -ACGGAAACCACTGCCATATGTTCC -ACGGAAACCACTGCCATAATTCCC -ACGGAAACCACTGCCATATTCTCG -ACGGAAACCACTGCCATATAGACG -ACGGAAACCACTGCCATAGTAACG -ACGGAAACCACTGCCATAACTTCG -ACGGAAACCACTGCCATATACGCA -ACGGAAACCACTGCCATACTTGCA -ACGGAAACCACTGCCATACGAACA -ACGGAAACCACTGCCATACAGTCA -ACGGAAACCACTGCCATAGATCCA -ACGGAAACCACTGCCATAACGACA -ACGGAAACCACTGCCATAAGCTCA -ACGGAAACCACTGCCATATCACGT -ACGGAAACCACTGCCATACGTAGT -ACGGAAACCACTGCCATAGTCAGT -ACGGAAACCACTGCCATAGAAGGT -ACGGAAACCACTGCCATAAACCGT -ACGGAAACCACTGCCATATTGTGC -ACGGAAACCACTGCCATACTAAGC -ACGGAAACCACTGCCATAACTAGC -ACGGAAACCACTGCCATAAGATGC -ACGGAAACCACTGCCATATGAAGG -ACGGAAACCACTGCCATACAATGG -ACGGAAACCACTGCCATAATGAGG -ACGGAAACCACTGCCATAAATGGG -ACGGAAACCACTGCCATATCCTGA -ACGGAAACCACTGCCATATAGCGA -ACGGAAACCACTGCCATACACAGA -ACGGAAACCACTGCCATAGCAAGA -ACGGAAACCACTGCCATAGGTTGA -ACGGAAACCACTGCCATATCCGAT -ACGGAAACCACTGCCATATGGCAT -ACGGAAACCACTGCCATACGAGAT -ACGGAAACCACTGCCATATACCAC -ACGGAAACCACTGCCATACAGAAC -ACGGAAACCACTGCCATAGTCTAC -ACGGAAACCACTGCCATAACGTAC -ACGGAAACCACTGCCATAAGTGAC -ACGGAAACCACTGCCATACTGTAG -ACGGAAACCACTGCCATACCTAAG -ACGGAAACCACTGCCATAGTTCAG -ACGGAAACCACTGCCATAGCATAG -ACGGAAACCACTGCCATAGACAAG -ACGGAAACCACTGCCATAAAGCAG -ACGGAAACCACTGCCATACGTCAA -ACGGAAACCACTGCCATAGCTGAA -ACGGAAACCACTGCCATAAGTACG -ACGGAAACCACTGCCATAATCCGA -ACGGAAACCACTGCCATAATGGGA -ACGGAAACCACTGCCATAGTGCAA -ACGGAAACCACTGCCATAGAGGAA -ACGGAAACCACTGCCATACAGGTA -ACGGAAACCACTGCCATAGACTCT -ACGGAAACCACTGCCATAAGTCCT -ACGGAAACCACTGCCATATAAGCC -ACGGAAACCACTGCCATAATAGCC -ACGGAAACCACTGCCATATAACCG -ACGGAAACCACTGCCATAATGCCA -ACGGAAACCACTCCGTAAGGAAAC -ACGGAAACCACTCCGTAAAACACC -ACGGAAACCACTCCGTAAATCGAG -ACGGAAACCACTCCGTAACTCCTT -ACGGAAACCACTCCGTAACCTGTT -ACGGAAACCACTCCGTAACGGTTT -ACGGAAACCACTCCGTAAGTGGTT -ACGGAAACCACTCCGTAAGCCTTT -ACGGAAACCACTCCGTAAGGTCTT -ACGGAAACCACTCCGTAAACGCTT -ACGGAAACCACTCCGTAAAGCGTT -ACGGAAACCACTCCGTAATTCGTC -ACGGAAACCACTCCGTAATCTCTC -ACGGAAACCACTCCGTAATGGATC -ACGGAAACCACTCCGTAACACTTC -ACGGAAACCACTCCGTAAGTACTC -ACGGAAACCACTCCGTAAGATGTC -ACGGAAACCACTCCGTAAACAGTC -ACGGAAACCACTCCGTAATTGCTG -ACGGAAACCACTCCGTAATCCATG -ACGGAAACCACTCCGTAATGTGTG -ACGGAAACCACTCCGTAACTAGTG -ACGGAAACCACTCCGTAACATCTG -ACGGAAACCACTCCGTAAGAGTTG -ACGGAAACCACTCCGTAAAGACTG -ACGGAAACCACTCCGTAATCGGTA -ACGGAAACCACTCCGTAATGCCTA -ACGGAAACCACTCCGTAACCACTA -ACGGAAACCACTCCGTAAGGAGTA -ACGGAAACCACTCCGTAATCGTCT -ACGGAAACCACTCCGTAATGCACT -ACGGAAACCACTCCGTAACTGACT -ACGGAAACCACTCCGTAACAACCT -ACGGAAACCACTCCGTAAGCTACT -ACGGAAACCACTCCGTAAGGATCT -ACGGAAACCACTCCGTAAAAGGCT -ACGGAAACCACTCCGTAATCAACC -ACGGAAACCACTCCGTAATGTTCC -ACGGAAACCACTCCGTAAATTCCC -ACGGAAACCACTCCGTAATTCTCG -ACGGAAACCACTCCGTAATAGACG -ACGGAAACCACTCCGTAAGTAACG -ACGGAAACCACTCCGTAAACTTCG -ACGGAAACCACTCCGTAATACGCA -ACGGAAACCACTCCGTAACTTGCA -ACGGAAACCACTCCGTAACGAACA -ACGGAAACCACTCCGTAACAGTCA -ACGGAAACCACTCCGTAAGATCCA -ACGGAAACCACTCCGTAAACGACA -ACGGAAACCACTCCGTAAAGCTCA -ACGGAAACCACTCCGTAATCACGT -ACGGAAACCACTCCGTAACGTAGT -ACGGAAACCACTCCGTAAGTCAGT -ACGGAAACCACTCCGTAAGAAGGT -ACGGAAACCACTCCGTAAAACCGT -ACGGAAACCACTCCGTAATTGTGC -ACGGAAACCACTCCGTAACTAAGC -ACGGAAACCACTCCGTAAACTAGC -ACGGAAACCACTCCGTAAAGATGC -ACGGAAACCACTCCGTAATGAAGG -ACGGAAACCACTCCGTAACAATGG -ACGGAAACCACTCCGTAAATGAGG -ACGGAAACCACTCCGTAAAATGGG -ACGGAAACCACTCCGTAATCCTGA -ACGGAAACCACTCCGTAATAGCGA -ACGGAAACCACTCCGTAACACAGA -ACGGAAACCACTCCGTAAGCAAGA -ACGGAAACCACTCCGTAAGGTTGA -ACGGAAACCACTCCGTAATCCGAT -ACGGAAACCACTCCGTAATGGCAT -ACGGAAACCACTCCGTAACGAGAT -ACGGAAACCACTCCGTAATACCAC -ACGGAAACCACTCCGTAACAGAAC -ACGGAAACCACTCCGTAAGTCTAC -ACGGAAACCACTCCGTAAACGTAC -ACGGAAACCACTCCGTAAAGTGAC -ACGGAAACCACTCCGTAACTGTAG -ACGGAAACCACTCCGTAACCTAAG -ACGGAAACCACTCCGTAAGTTCAG -ACGGAAACCACTCCGTAAGCATAG -ACGGAAACCACTCCGTAAGACAAG -ACGGAAACCACTCCGTAAAAGCAG -ACGGAAACCACTCCGTAACGTCAA -ACGGAAACCACTCCGTAAGCTGAA -ACGGAAACCACTCCGTAAAGTACG -ACGGAAACCACTCCGTAAATCCGA -ACGGAAACCACTCCGTAAATGGGA -ACGGAAACCACTCCGTAAGTGCAA -ACGGAAACCACTCCGTAAGAGGAA -ACGGAAACCACTCCGTAACAGGTA -ACGGAAACCACTCCGTAAGACTCT -ACGGAAACCACTCCGTAAAGTCCT -ACGGAAACCACTCCGTAATAAGCC -ACGGAAACCACTCCGTAAATAGCC -ACGGAAACCACTCCGTAATAACCG -ACGGAAACCACTCCGTAAATGCCA -ACGGAAACCACTCCAATGGGAAAC -ACGGAAACCACTCCAATGAACACC -ACGGAAACCACTCCAATGATCGAG -ACGGAAACCACTCCAATGCTCCTT -ACGGAAACCACTCCAATGCCTGTT -ACGGAAACCACTCCAATGCGGTTT -ACGGAAACCACTCCAATGGTGGTT -ACGGAAACCACTCCAATGGCCTTT -ACGGAAACCACTCCAATGGGTCTT -ACGGAAACCACTCCAATGACGCTT -ACGGAAACCACTCCAATGAGCGTT -ACGGAAACCACTCCAATGTTCGTC -ACGGAAACCACTCCAATGTCTCTC -ACGGAAACCACTCCAATGTGGATC -ACGGAAACCACTCCAATGCACTTC -ACGGAAACCACTCCAATGGTACTC -ACGGAAACCACTCCAATGGATGTC -ACGGAAACCACTCCAATGACAGTC -ACGGAAACCACTCCAATGTTGCTG -ACGGAAACCACTCCAATGTCCATG -ACGGAAACCACTCCAATGTGTGTG -ACGGAAACCACTCCAATGCTAGTG -ACGGAAACCACTCCAATGCATCTG -ACGGAAACCACTCCAATGGAGTTG -ACGGAAACCACTCCAATGAGACTG -ACGGAAACCACTCCAATGTCGGTA -ACGGAAACCACTCCAATGTGCCTA -ACGGAAACCACTCCAATGCCACTA -ACGGAAACCACTCCAATGGGAGTA -ACGGAAACCACTCCAATGTCGTCT -ACGGAAACCACTCCAATGTGCACT -ACGGAAACCACTCCAATGCTGACT -ACGGAAACCACTCCAATGCAACCT -ACGGAAACCACTCCAATGGCTACT -ACGGAAACCACTCCAATGGGATCT -ACGGAAACCACTCCAATGAAGGCT -ACGGAAACCACTCCAATGTCAACC -ACGGAAACCACTCCAATGTGTTCC -ACGGAAACCACTCCAATGATTCCC -ACGGAAACCACTCCAATGTTCTCG -ACGGAAACCACTCCAATGTAGACG -ACGGAAACCACTCCAATGGTAACG -ACGGAAACCACTCCAATGACTTCG -ACGGAAACCACTCCAATGTACGCA -ACGGAAACCACTCCAATGCTTGCA -ACGGAAACCACTCCAATGCGAACA -ACGGAAACCACTCCAATGCAGTCA -ACGGAAACCACTCCAATGGATCCA -ACGGAAACCACTCCAATGACGACA -ACGGAAACCACTCCAATGAGCTCA -ACGGAAACCACTCCAATGTCACGT -ACGGAAACCACTCCAATGCGTAGT -ACGGAAACCACTCCAATGGTCAGT -ACGGAAACCACTCCAATGGAAGGT -ACGGAAACCACTCCAATGAACCGT -ACGGAAACCACTCCAATGTTGTGC -ACGGAAACCACTCCAATGCTAAGC -ACGGAAACCACTCCAATGACTAGC -ACGGAAACCACTCCAATGAGATGC -ACGGAAACCACTCCAATGTGAAGG -ACGGAAACCACTCCAATGCAATGG -ACGGAAACCACTCCAATGATGAGG -ACGGAAACCACTCCAATGAATGGG -ACGGAAACCACTCCAATGTCCTGA -ACGGAAACCACTCCAATGTAGCGA -ACGGAAACCACTCCAATGCACAGA -ACGGAAACCACTCCAATGGCAAGA -ACGGAAACCACTCCAATGGGTTGA -ACGGAAACCACTCCAATGTCCGAT -ACGGAAACCACTCCAATGTGGCAT -ACGGAAACCACTCCAATGCGAGAT -ACGGAAACCACTCCAATGTACCAC -ACGGAAACCACTCCAATGCAGAAC -ACGGAAACCACTCCAATGGTCTAC -ACGGAAACCACTCCAATGACGTAC -ACGGAAACCACTCCAATGAGTGAC -ACGGAAACCACTCCAATGCTGTAG -ACGGAAACCACTCCAATGCCTAAG -ACGGAAACCACTCCAATGGTTCAG -ACGGAAACCACTCCAATGGCATAG -ACGGAAACCACTCCAATGGACAAG -ACGGAAACCACTCCAATGAAGCAG -ACGGAAACCACTCCAATGCGTCAA -ACGGAAACCACTCCAATGGCTGAA -ACGGAAACCACTCCAATGAGTACG -ACGGAAACCACTCCAATGATCCGA -ACGGAAACCACTCCAATGATGGGA -ACGGAAACCACTCCAATGGTGCAA -ACGGAAACCACTCCAATGGAGGAA -ACGGAAACCACTCCAATGCAGGTA -ACGGAAACCACTCCAATGGACTCT -ACGGAAACCACTCCAATGAGTCCT -ACGGAAACCACTCCAATGTAAGCC -ACGGAAACCACTCCAATGATAGCC -ACGGAAACCACTCCAATGTAACCG -ACGGAAACCACTCCAATGATGCCA -ACGGAAAGAACCAACGGAGGAAAC -ACGGAAAGAACCAACGGAAACACC -ACGGAAAGAACCAACGGAATCGAG -ACGGAAAGAACCAACGGACTCCTT -ACGGAAAGAACCAACGGACCTGTT -ACGGAAAGAACCAACGGACGGTTT -ACGGAAAGAACCAACGGAGTGGTT -ACGGAAAGAACCAACGGAGCCTTT -ACGGAAAGAACCAACGGAGGTCTT -ACGGAAAGAACCAACGGAACGCTT -ACGGAAAGAACCAACGGAAGCGTT -ACGGAAAGAACCAACGGATTCGTC -ACGGAAAGAACCAACGGATCTCTC -ACGGAAAGAACCAACGGATGGATC -ACGGAAAGAACCAACGGACACTTC -ACGGAAAGAACCAACGGAGTACTC -ACGGAAAGAACCAACGGAGATGTC -ACGGAAAGAACCAACGGAACAGTC -ACGGAAAGAACCAACGGATTGCTG -ACGGAAAGAACCAACGGATCCATG -ACGGAAAGAACCAACGGATGTGTG -ACGGAAAGAACCAACGGACTAGTG -ACGGAAAGAACCAACGGACATCTG -ACGGAAAGAACCAACGGAGAGTTG -ACGGAAAGAACCAACGGAAGACTG -ACGGAAAGAACCAACGGATCGGTA -ACGGAAAGAACCAACGGATGCCTA -ACGGAAAGAACCAACGGACCACTA -ACGGAAAGAACCAACGGAGGAGTA -ACGGAAAGAACCAACGGATCGTCT -ACGGAAAGAACCAACGGATGCACT -ACGGAAAGAACCAACGGACTGACT -ACGGAAAGAACCAACGGACAACCT -ACGGAAAGAACCAACGGAGCTACT -ACGGAAAGAACCAACGGAGGATCT -ACGGAAAGAACCAACGGAAAGGCT -ACGGAAAGAACCAACGGATCAACC -ACGGAAAGAACCAACGGATGTTCC -ACGGAAAGAACCAACGGAATTCCC -ACGGAAAGAACCAACGGATTCTCG -ACGGAAAGAACCAACGGATAGACG -ACGGAAAGAACCAACGGAGTAACG -ACGGAAAGAACCAACGGAACTTCG -ACGGAAAGAACCAACGGATACGCA -ACGGAAAGAACCAACGGACTTGCA -ACGGAAAGAACCAACGGACGAACA -ACGGAAAGAACCAACGGACAGTCA -ACGGAAAGAACCAACGGAGATCCA -ACGGAAAGAACCAACGGAACGACA -ACGGAAAGAACCAACGGAAGCTCA -ACGGAAAGAACCAACGGATCACGT -ACGGAAAGAACCAACGGACGTAGT -ACGGAAAGAACCAACGGAGTCAGT -ACGGAAAGAACCAACGGAGAAGGT -ACGGAAAGAACCAACGGAAACCGT -ACGGAAAGAACCAACGGATTGTGC -ACGGAAAGAACCAACGGACTAAGC -ACGGAAAGAACCAACGGAACTAGC -ACGGAAAGAACCAACGGAAGATGC -ACGGAAAGAACCAACGGATGAAGG -ACGGAAAGAACCAACGGACAATGG -ACGGAAAGAACCAACGGAATGAGG -ACGGAAAGAACCAACGGAAATGGG -ACGGAAAGAACCAACGGATCCTGA -ACGGAAAGAACCAACGGATAGCGA -ACGGAAAGAACCAACGGACACAGA -ACGGAAAGAACCAACGGAGCAAGA -ACGGAAAGAACCAACGGAGGTTGA -ACGGAAAGAACCAACGGATCCGAT -ACGGAAAGAACCAACGGATGGCAT -ACGGAAAGAACCAACGGACGAGAT -ACGGAAAGAACCAACGGATACCAC -ACGGAAAGAACCAACGGACAGAAC -ACGGAAAGAACCAACGGAGTCTAC -ACGGAAAGAACCAACGGAACGTAC -ACGGAAAGAACCAACGGAAGTGAC -ACGGAAAGAACCAACGGACTGTAG -ACGGAAAGAACCAACGGACCTAAG -ACGGAAAGAACCAACGGAGTTCAG -ACGGAAAGAACCAACGGAGCATAG -ACGGAAAGAACCAACGGAGACAAG -ACGGAAAGAACCAACGGAAAGCAG -ACGGAAAGAACCAACGGACGTCAA -ACGGAAAGAACCAACGGAGCTGAA -ACGGAAAGAACCAACGGAAGTACG -ACGGAAAGAACCAACGGAATCCGA -ACGGAAAGAACCAACGGAATGGGA -ACGGAAAGAACCAACGGAGTGCAA -ACGGAAAGAACCAACGGAGAGGAA -ACGGAAAGAACCAACGGACAGGTA -ACGGAAAGAACCAACGGAGACTCT -ACGGAAAGAACCAACGGAAGTCCT -ACGGAAAGAACCAACGGATAAGCC -ACGGAAAGAACCAACGGAATAGCC -ACGGAAAGAACCAACGGATAACCG -ACGGAAAGAACCAACGGAATGCCA -ACGGAAAGAACCACCAACGGAAAC -ACGGAAAGAACCACCAACAACACC -ACGGAAAGAACCACCAACATCGAG -ACGGAAAGAACCACCAACCTCCTT -ACGGAAAGAACCACCAACCCTGTT -ACGGAAAGAACCACCAACCGGTTT -ACGGAAAGAACCACCAACGTGGTT -ACGGAAAGAACCACCAACGCCTTT -ACGGAAAGAACCACCAACGGTCTT -ACGGAAAGAACCACCAACACGCTT -ACGGAAAGAACCACCAACAGCGTT -ACGGAAAGAACCACCAACTTCGTC -ACGGAAAGAACCACCAACTCTCTC -ACGGAAAGAACCACCAACTGGATC -ACGGAAAGAACCACCAACCACTTC -ACGGAAAGAACCACCAACGTACTC -ACGGAAAGAACCACCAACGATGTC -ACGGAAAGAACCACCAACACAGTC -ACGGAAAGAACCACCAACTTGCTG -ACGGAAAGAACCACCAACTCCATG -ACGGAAAGAACCACCAACTGTGTG -ACGGAAAGAACCACCAACCTAGTG -ACGGAAAGAACCACCAACCATCTG -ACGGAAAGAACCACCAACGAGTTG -ACGGAAAGAACCACCAACAGACTG -ACGGAAAGAACCACCAACTCGGTA -ACGGAAAGAACCACCAACTGCCTA -ACGGAAAGAACCACCAACCCACTA -ACGGAAAGAACCACCAACGGAGTA -ACGGAAAGAACCACCAACTCGTCT -ACGGAAAGAACCACCAACTGCACT -ACGGAAAGAACCACCAACCTGACT -ACGGAAAGAACCACCAACCAACCT -ACGGAAAGAACCACCAACGCTACT -ACGGAAAGAACCACCAACGGATCT -ACGGAAAGAACCACCAACAAGGCT -ACGGAAAGAACCACCAACTCAACC -ACGGAAAGAACCACCAACTGTTCC -ACGGAAAGAACCACCAACATTCCC -ACGGAAAGAACCACCAACTTCTCG -ACGGAAAGAACCACCAACTAGACG -ACGGAAAGAACCACCAACGTAACG -ACGGAAAGAACCACCAACACTTCG -ACGGAAAGAACCACCAACTACGCA -ACGGAAAGAACCACCAACCTTGCA -ACGGAAAGAACCACCAACCGAACA -ACGGAAAGAACCACCAACCAGTCA -ACGGAAAGAACCACCAACGATCCA -ACGGAAAGAACCACCAACACGACA -ACGGAAAGAACCACCAACAGCTCA -ACGGAAAGAACCACCAACTCACGT -ACGGAAAGAACCACCAACCGTAGT -ACGGAAAGAACCACCAACGTCAGT -ACGGAAAGAACCACCAACGAAGGT -ACGGAAAGAACCACCAACAACCGT -ACGGAAAGAACCACCAACTTGTGC -ACGGAAAGAACCACCAACCTAAGC -ACGGAAAGAACCACCAACACTAGC -ACGGAAAGAACCACCAACAGATGC -ACGGAAAGAACCACCAACTGAAGG -ACGGAAAGAACCACCAACCAATGG -ACGGAAAGAACCACCAACATGAGG -ACGGAAAGAACCACCAACAATGGG -ACGGAAAGAACCACCAACTCCTGA -ACGGAAAGAACCACCAACTAGCGA -ACGGAAAGAACCACCAACCACAGA -ACGGAAAGAACCACCAACGCAAGA -ACGGAAAGAACCACCAACGGTTGA -ACGGAAAGAACCACCAACTCCGAT -ACGGAAAGAACCACCAACTGGCAT -ACGGAAAGAACCACCAACCGAGAT -ACGGAAAGAACCACCAACTACCAC -ACGGAAAGAACCACCAACCAGAAC -ACGGAAAGAACCACCAACGTCTAC -ACGGAAAGAACCACCAACACGTAC -ACGGAAAGAACCACCAACAGTGAC -ACGGAAAGAACCACCAACCTGTAG -ACGGAAAGAACCACCAACCCTAAG -ACGGAAAGAACCACCAACGTTCAG -ACGGAAAGAACCACCAACGCATAG -ACGGAAAGAACCACCAACGACAAG -ACGGAAAGAACCACCAACAAGCAG -ACGGAAAGAACCACCAACCGTCAA -ACGGAAAGAACCACCAACGCTGAA -ACGGAAAGAACCACCAACAGTACG -ACGGAAAGAACCACCAACATCCGA -ACGGAAAGAACCACCAACATGGGA -ACGGAAAGAACCACCAACGTGCAA -ACGGAAAGAACCACCAACGAGGAA -ACGGAAAGAACCACCAACCAGGTA -ACGGAAAGAACCACCAACGACTCT -ACGGAAAGAACCACCAACAGTCCT -ACGGAAAGAACCACCAACTAAGCC -ACGGAAAGAACCACCAACATAGCC -ACGGAAAGAACCACCAACTAACCG -ACGGAAAGAACCACCAACATGCCA -ACGGAAAGAACCGAGATCGGAAAC -ACGGAAAGAACCGAGATCAACACC -ACGGAAAGAACCGAGATCATCGAG -ACGGAAAGAACCGAGATCCTCCTT -ACGGAAAGAACCGAGATCCCTGTT -ACGGAAAGAACCGAGATCCGGTTT -ACGGAAAGAACCGAGATCGTGGTT -ACGGAAAGAACCGAGATCGCCTTT -ACGGAAAGAACCGAGATCGGTCTT -ACGGAAAGAACCGAGATCACGCTT -ACGGAAAGAACCGAGATCAGCGTT -ACGGAAAGAACCGAGATCTTCGTC -ACGGAAAGAACCGAGATCTCTCTC -ACGGAAAGAACCGAGATCTGGATC -ACGGAAAGAACCGAGATCCACTTC -ACGGAAAGAACCGAGATCGTACTC -ACGGAAAGAACCGAGATCGATGTC -ACGGAAAGAACCGAGATCACAGTC -ACGGAAAGAACCGAGATCTTGCTG -ACGGAAAGAACCGAGATCTCCATG -ACGGAAAGAACCGAGATCTGTGTG -ACGGAAAGAACCGAGATCCTAGTG -ACGGAAAGAACCGAGATCCATCTG -ACGGAAAGAACCGAGATCGAGTTG -ACGGAAAGAACCGAGATCAGACTG -ACGGAAAGAACCGAGATCTCGGTA -ACGGAAAGAACCGAGATCTGCCTA -ACGGAAAGAACCGAGATCCCACTA -ACGGAAAGAACCGAGATCGGAGTA -ACGGAAAGAACCGAGATCTCGTCT -ACGGAAAGAACCGAGATCTGCACT -ACGGAAAGAACCGAGATCCTGACT -ACGGAAAGAACCGAGATCCAACCT -ACGGAAAGAACCGAGATCGCTACT -ACGGAAAGAACCGAGATCGGATCT -ACGGAAAGAACCGAGATCAAGGCT -ACGGAAAGAACCGAGATCTCAACC -ACGGAAAGAACCGAGATCTGTTCC -ACGGAAAGAACCGAGATCATTCCC -ACGGAAAGAACCGAGATCTTCTCG -ACGGAAAGAACCGAGATCTAGACG -ACGGAAAGAACCGAGATCGTAACG -ACGGAAAGAACCGAGATCACTTCG -ACGGAAAGAACCGAGATCTACGCA -ACGGAAAGAACCGAGATCCTTGCA -ACGGAAAGAACCGAGATCCGAACA -ACGGAAAGAACCGAGATCCAGTCA -ACGGAAAGAACCGAGATCGATCCA -ACGGAAAGAACCGAGATCACGACA -ACGGAAAGAACCGAGATCAGCTCA -ACGGAAAGAACCGAGATCTCACGT -ACGGAAAGAACCGAGATCCGTAGT -ACGGAAAGAACCGAGATCGTCAGT -ACGGAAAGAACCGAGATCGAAGGT -ACGGAAAGAACCGAGATCAACCGT -ACGGAAAGAACCGAGATCTTGTGC -ACGGAAAGAACCGAGATCCTAAGC -ACGGAAAGAACCGAGATCACTAGC -ACGGAAAGAACCGAGATCAGATGC -ACGGAAAGAACCGAGATCTGAAGG -ACGGAAAGAACCGAGATCCAATGG -ACGGAAAGAACCGAGATCATGAGG -ACGGAAAGAACCGAGATCAATGGG -ACGGAAAGAACCGAGATCTCCTGA -ACGGAAAGAACCGAGATCTAGCGA -ACGGAAAGAACCGAGATCCACAGA -ACGGAAAGAACCGAGATCGCAAGA -ACGGAAAGAACCGAGATCGGTTGA -ACGGAAAGAACCGAGATCTCCGAT -ACGGAAAGAACCGAGATCTGGCAT -ACGGAAAGAACCGAGATCCGAGAT -ACGGAAAGAACCGAGATCTACCAC -ACGGAAAGAACCGAGATCCAGAAC -ACGGAAAGAACCGAGATCGTCTAC -ACGGAAAGAACCGAGATCACGTAC -ACGGAAAGAACCGAGATCAGTGAC -ACGGAAAGAACCGAGATCCTGTAG -ACGGAAAGAACCGAGATCCCTAAG -ACGGAAAGAACCGAGATCGTTCAG -ACGGAAAGAACCGAGATCGCATAG -ACGGAAAGAACCGAGATCGACAAG -ACGGAAAGAACCGAGATCAAGCAG -ACGGAAAGAACCGAGATCCGTCAA -ACGGAAAGAACCGAGATCGCTGAA -ACGGAAAGAACCGAGATCAGTACG -ACGGAAAGAACCGAGATCATCCGA -ACGGAAAGAACCGAGATCATGGGA -ACGGAAAGAACCGAGATCGTGCAA -ACGGAAAGAACCGAGATCGAGGAA -ACGGAAAGAACCGAGATCCAGGTA -ACGGAAAGAACCGAGATCGACTCT -ACGGAAAGAACCGAGATCAGTCCT -ACGGAAAGAACCGAGATCTAAGCC -ACGGAAAGAACCGAGATCATAGCC -ACGGAAAGAACCGAGATCTAACCG -ACGGAAAGAACCGAGATCATGCCA -ACGGAAAGAACCCTTCTCGGAAAC -ACGGAAAGAACCCTTCTCAACACC -ACGGAAAGAACCCTTCTCATCGAG -ACGGAAAGAACCCTTCTCCTCCTT -ACGGAAAGAACCCTTCTCCCTGTT -ACGGAAAGAACCCTTCTCCGGTTT -ACGGAAAGAACCCTTCTCGTGGTT -ACGGAAAGAACCCTTCTCGCCTTT -ACGGAAAGAACCCTTCTCGGTCTT -ACGGAAAGAACCCTTCTCACGCTT -ACGGAAAGAACCCTTCTCAGCGTT -ACGGAAAGAACCCTTCTCTTCGTC -ACGGAAAGAACCCTTCTCTCTCTC -ACGGAAAGAACCCTTCTCTGGATC -ACGGAAAGAACCCTTCTCCACTTC -ACGGAAAGAACCCTTCTCGTACTC -ACGGAAAGAACCCTTCTCGATGTC -ACGGAAAGAACCCTTCTCACAGTC -ACGGAAAGAACCCTTCTCTTGCTG -ACGGAAAGAACCCTTCTCTCCATG -ACGGAAAGAACCCTTCTCTGTGTG -ACGGAAAGAACCCTTCTCCTAGTG -ACGGAAAGAACCCTTCTCCATCTG -ACGGAAAGAACCCTTCTCGAGTTG -ACGGAAAGAACCCTTCTCAGACTG -ACGGAAAGAACCCTTCTCTCGGTA -ACGGAAAGAACCCTTCTCTGCCTA -ACGGAAAGAACCCTTCTCCCACTA -ACGGAAAGAACCCTTCTCGGAGTA -ACGGAAAGAACCCTTCTCTCGTCT -ACGGAAAGAACCCTTCTCTGCACT -ACGGAAAGAACCCTTCTCCTGACT -ACGGAAAGAACCCTTCTCCAACCT -ACGGAAAGAACCCTTCTCGCTACT -ACGGAAAGAACCCTTCTCGGATCT -ACGGAAAGAACCCTTCTCAAGGCT -ACGGAAAGAACCCTTCTCTCAACC -ACGGAAAGAACCCTTCTCTGTTCC -ACGGAAAGAACCCTTCTCATTCCC -ACGGAAAGAACCCTTCTCTTCTCG -ACGGAAAGAACCCTTCTCTAGACG -ACGGAAAGAACCCTTCTCGTAACG -ACGGAAAGAACCCTTCTCACTTCG -ACGGAAAGAACCCTTCTCTACGCA -ACGGAAAGAACCCTTCTCCTTGCA -ACGGAAAGAACCCTTCTCCGAACA -ACGGAAAGAACCCTTCTCCAGTCA -ACGGAAAGAACCCTTCTCGATCCA -ACGGAAAGAACCCTTCTCACGACA -ACGGAAAGAACCCTTCTCAGCTCA -ACGGAAAGAACCCTTCTCTCACGT -ACGGAAAGAACCCTTCTCCGTAGT -ACGGAAAGAACCCTTCTCGTCAGT -ACGGAAAGAACCCTTCTCGAAGGT -ACGGAAAGAACCCTTCTCAACCGT -ACGGAAAGAACCCTTCTCTTGTGC -ACGGAAAGAACCCTTCTCCTAAGC -ACGGAAAGAACCCTTCTCACTAGC -ACGGAAAGAACCCTTCTCAGATGC -ACGGAAAGAACCCTTCTCTGAAGG -ACGGAAAGAACCCTTCTCCAATGG -ACGGAAAGAACCCTTCTCATGAGG -ACGGAAAGAACCCTTCTCAATGGG -ACGGAAAGAACCCTTCTCTCCTGA -ACGGAAAGAACCCTTCTCTAGCGA -ACGGAAAGAACCCTTCTCCACAGA -ACGGAAAGAACCCTTCTCGCAAGA -ACGGAAAGAACCCTTCTCGGTTGA -ACGGAAAGAACCCTTCTCTCCGAT -ACGGAAAGAACCCTTCTCTGGCAT -ACGGAAAGAACCCTTCTCCGAGAT -ACGGAAAGAACCCTTCTCTACCAC -ACGGAAAGAACCCTTCTCCAGAAC -ACGGAAAGAACCCTTCTCGTCTAC -ACGGAAAGAACCCTTCTCACGTAC -ACGGAAAGAACCCTTCTCAGTGAC -ACGGAAAGAACCCTTCTCCTGTAG -ACGGAAAGAACCCTTCTCCCTAAG -ACGGAAAGAACCCTTCTCGTTCAG -ACGGAAAGAACCCTTCTCGCATAG -ACGGAAAGAACCCTTCTCGACAAG -ACGGAAAGAACCCTTCTCAAGCAG -ACGGAAAGAACCCTTCTCCGTCAA -ACGGAAAGAACCCTTCTCGCTGAA -ACGGAAAGAACCCTTCTCAGTACG -ACGGAAAGAACCCTTCTCATCCGA -ACGGAAAGAACCCTTCTCATGGGA -ACGGAAAGAACCCTTCTCGTGCAA -ACGGAAAGAACCCTTCTCGAGGAA -ACGGAAAGAACCCTTCTCCAGGTA -ACGGAAAGAACCCTTCTCGACTCT -ACGGAAAGAACCCTTCTCAGTCCT -ACGGAAAGAACCCTTCTCTAAGCC -ACGGAAAGAACCCTTCTCATAGCC -ACGGAAAGAACCCTTCTCTAACCG -ACGGAAAGAACCCTTCTCATGCCA -ACGGAAAGAACCGTTCCTGGAAAC -ACGGAAAGAACCGTTCCTAACACC -ACGGAAAGAACCGTTCCTATCGAG -ACGGAAAGAACCGTTCCTCTCCTT -ACGGAAAGAACCGTTCCTCCTGTT -ACGGAAAGAACCGTTCCTCGGTTT -ACGGAAAGAACCGTTCCTGTGGTT -ACGGAAAGAACCGTTCCTGCCTTT -ACGGAAAGAACCGTTCCTGGTCTT -ACGGAAAGAACCGTTCCTACGCTT -ACGGAAAGAACCGTTCCTAGCGTT -ACGGAAAGAACCGTTCCTTTCGTC -ACGGAAAGAACCGTTCCTTCTCTC -ACGGAAAGAACCGTTCCTTGGATC -ACGGAAAGAACCGTTCCTCACTTC -ACGGAAAGAACCGTTCCTGTACTC -ACGGAAAGAACCGTTCCTGATGTC -ACGGAAAGAACCGTTCCTACAGTC -ACGGAAAGAACCGTTCCTTTGCTG -ACGGAAAGAACCGTTCCTTCCATG -ACGGAAAGAACCGTTCCTTGTGTG -ACGGAAAGAACCGTTCCTCTAGTG -ACGGAAAGAACCGTTCCTCATCTG -ACGGAAAGAACCGTTCCTGAGTTG -ACGGAAAGAACCGTTCCTAGACTG -ACGGAAAGAACCGTTCCTTCGGTA -ACGGAAAGAACCGTTCCTTGCCTA -ACGGAAAGAACCGTTCCTCCACTA -ACGGAAAGAACCGTTCCTGGAGTA -ACGGAAAGAACCGTTCCTTCGTCT -ACGGAAAGAACCGTTCCTTGCACT -ACGGAAAGAACCGTTCCTCTGACT -ACGGAAAGAACCGTTCCTCAACCT -ACGGAAAGAACCGTTCCTGCTACT -ACGGAAAGAACCGTTCCTGGATCT -ACGGAAAGAACCGTTCCTAAGGCT -ACGGAAAGAACCGTTCCTTCAACC -ACGGAAAGAACCGTTCCTTGTTCC -ACGGAAAGAACCGTTCCTATTCCC -ACGGAAAGAACCGTTCCTTTCTCG -ACGGAAAGAACCGTTCCTTAGACG -ACGGAAAGAACCGTTCCTGTAACG -ACGGAAAGAACCGTTCCTACTTCG -ACGGAAAGAACCGTTCCTTACGCA -ACGGAAAGAACCGTTCCTCTTGCA -ACGGAAAGAACCGTTCCTCGAACA -ACGGAAAGAACCGTTCCTCAGTCA -ACGGAAAGAACCGTTCCTGATCCA -ACGGAAAGAACCGTTCCTACGACA -ACGGAAAGAACCGTTCCTAGCTCA -ACGGAAAGAACCGTTCCTTCACGT -ACGGAAAGAACCGTTCCTCGTAGT -ACGGAAAGAACCGTTCCTGTCAGT -ACGGAAAGAACCGTTCCTGAAGGT -ACGGAAAGAACCGTTCCTAACCGT -ACGGAAAGAACCGTTCCTTTGTGC -ACGGAAAGAACCGTTCCTCTAAGC -ACGGAAAGAACCGTTCCTACTAGC -ACGGAAAGAACCGTTCCTAGATGC -ACGGAAAGAACCGTTCCTTGAAGG -ACGGAAAGAACCGTTCCTCAATGG -ACGGAAAGAACCGTTCCTATGAGG -ACGGAAAGAACCGTTCCTAATGGG -ACGGAAAGAACCGTTCCTTCCTGA -ACGGAAAGAACCGTTCCTTAGCGA -ACGGAAAGAACCGTTCCTCACAGA -ACGGAAAGAACCGTTCCTGCAAGA -ACGGAAAGAACCGTTCCTGGTTGA -ACGGAAAGAACCGTTCCTTCCGAT -ACGGAAAGAACCGTTCCTTGGCAT -ACGGAAAGAACCGTTCCTCGAGAT -ACGGAAAGAACCGTTCCTTACCAC -ACGGAAAGAACCGTTCCTCAGAAC -ACGGAAAGAACCGTTCCTGTCTAC -ACGGAAAGAACCGTTCCTACGTAC -ACGGAAAGAACCGTTCCTAGTGAC -ACGGAAAGAACCGTTCCTCTGTAG -ACGGAAAGAACCGTTCCTCCTAAG -ACGGAAAGAACCGTTCCTGTTCAG -ACGGAAAGAACCGTTCCTGCATAG -ACGGAAAGAACCGTTCCTGACAAG -ACGGAAAGAACCGTTCCTAAGCAG -ACGGAAAGAACCGTTCCTCGTCAA -ACGGAAAGAACCGTTCCTGCTGAA -ACGGAAAGAACCGTTCCTAGTACG -ACGGAAAGAACCGTTCCTATCCGA -ACGGAAAGAACCGTTCCTATGGGA -ACGGAAAGAACCGTTCCTGTGCAA -ACGGAAAGAACCGTTCCTGAGGAA -ACGGAAAGAACCGTTCCTCAGGTA -ACGGAAAGAACCGTTCCTGACTCT -ACGGAAAGAACCGTTCCTAGTCCT -ACGGAAAGAACCGTTCCTTAAGCC -ACGGAAAGAACCGTTCCTATAGCC -ACGGAAAGAACCGTTCCTTAACCG -ACGGAAAGAACCGTTCCTATGCCA -ACGGAAAGAACCTTTCGGGGAAAC -ACGGAAAGAACCTTTCGGAACACC -ACGGAAAGAACCTTTCGGATCGAG -ACGGAAAGAACCTTTCGGCTCCTT -ACGGAAAGAACCTTTCGGCCTGTT -ACGGAAAGAACCTTTCGGCGGTTT -ACGGAAAGAACCTTTCGGGTGGTT -ACGGAAAGAACCTTTCGGGCCTTT -ACGGAAAGAACCTTTCGGGGTCTT -ACGGAAAGAACCTTTCGGACGCTT -ACGGAAAGAACCTTTCGGAGCGTT -ACGGAAAGAACCTTTCGGTTCGTC -ACGGAAAGAACCTTTCGGTCTCTC -ACGGAAAGAACCTTTCGGTGGATC -ACGGAAAGAACCTTTCGGCACTTC -ACGGAAAGAACCTTTCGGGTACTC -ACGGAAAGAACCTTTCGGGATGTC -ACGGAAAGAACCTTTCGGACAGTC -ACGGAAAGAACCTTTCGGTTGCTG -ACGGAAAGAACCTTTCGGTCCATG -ACGGAAAGAACCTTTCGGTGTGTG -ACGGAAAGAACCTTTCGGCTAGTG -ACGGAAAGAACCTTTCGGCATCTG -ACGGAAAGAACCTTTCGGGAGTTG -ACGGAAAGAACCTTTCGGAGACTG -ACGGAAAGAACCTTTCGGTCGGTA -ACGGAAAGAACCTTTCGGTGCCTA -ACGGAAAGAACCTTTCGGCCACTA -ACGGAAAGAACCTTTCGGGGAGTA -ACGGAAAGAACCTTTCGGTCGTCT -ACGGAAAGAACCTTTCGGTGCACT -ACGGAAAGAACCTTTCGGCTGACT -ACGGAAAGAACCTTTCGGCAACCT -ACGGAAAGAACCTTTCGGGCTACT -ACGGAAAGAACCTTTCGGGGATCT -ACGGAAAGAACCTTTCGGAAGGCT -ACGGAAAGAACCTTTCGGTCAACC -ACGGAAAGAACCTTTCGGTGTTCC -ACGGAAAGAACCTTTCGGATTCCC -ACGGAAAGAACCTTTCGGTTCTCG -ACGGAAAGAACCTTTCGGTAGACG -ACGGAAAGAACCTTTCGGGTAACG -ACGGAAAGAACCTTTCGGACTTCG -ACGGAAAGAACCTTTCGGTACGCA -ACGGAAAGAACCTTTCGGCTTGCA -ACGGAAAGAACCTTTCGGCGAACA -ACGGAAAGAACCTTTCGGCAGTCA -ACGGAAAGAACCTTTCGGGATCCA -ACGGAAAGAACCTTTCGGACGACA -ACGGAAAGAACCTTTCGGAGCTCA -ACGGAAAGAACCTTTCGGTCACGT -ACGGAAAGAACCTTTCGGCGTAGT -ACGGAAAGAACCTTTCGGGTCAGT -ACGGAAAGAACCTTTCGGGAAGGT -ACGGAAAGAACCTTTCGGAACCGT -ACGGAAAGAACCTTTCGGTTGTGC -ACGGAAAGAACCTTTCGGCTAAGC -ACGGAAAGAACCTTTCGGACTAGC -ACGGAAAGAACCTTTCGGAGATGC -ACGGAAAGAACCTTTCGGTGAAGG -ACGGAAAGAACCTTTCGGCAATGG -ACGGAAAGAACCTTTCGGATGAGG -ACGGAAAGAACCTTTCGGAATGGG -ACGGAAAGAACCTTTCGGTCCTGA -ACGGAAAGAACCTTTCGGTAGCGA -ACGGAAAGAACCTTTCGGCACAGA -ACGGAAAGAACCTTTCGGGCAAGA -ACGGAAAGAACCTTTCGGGGTTGA -ACGGAAAGAACCTTTCGGTCCGAT -ACGGAAAGAACCTTTCGGTGGCAT -ACGGAAAGAACCTTTCGGCGAGAT -ACGGAAAGAACCTTTCGGTACCAC -ACGGAAAGAACCTTTCGGCAGAAC -ACGGAAAGAACCTTTCGGGTCTAC -ACGGAAAGAACCTTTCGGACGTAC -ACGGAAAGAACCTTTCGGAGTGAC -ACGGAAAGAACCTTTCGGCTGTAG -ACGGAAAGAACCTTTCGGCCTAAG -ACGGAAAGAACCTTTCGGGTTCAG -ACGGAAAGAACCTTTCGGGCATAG -ACGGAAAGAACCTTTCGGGACAAG -ACGGAAAGAACCTTTCGGAAGCAG -ACGGAAAGAACCTTTCGGCGTCAA -ACGGAAAGAACCTTTCGGGCTGAA -ACGGAAAGAACCTTTCGGAGTACG -ACGGAAAGAACCTTTCGGATCCGA -ACGGAAAGAACCTTTCGGATGGGA -ACGGAAAGAACCTTTCGGGTGCAA -ACGGAAAGAACCTTTCGGGAGGAA -ACGGAAAGAACCTTTCGGCAGGTA -ACGGAAAGAACCTTTCGGGACTCT -ACGGAAAGAACCTTTCGGAGTCCT -ACGGAAAGAACCTTTCGGTAAGCC -ACGGAAAGAACCTTTCGGATAGCC -ACGGAAAGAACCTTTCGGTAACCG -ACGGAAAGAACCTTTCGGATGCCA -ACGGAAAGAACCGTTGTGGGAAAC -ACGGAAAGAACCGTTGTGAACACC -ACGGAAAGAACCGTTGTGATCGAG -ACGGAAAGAACCGTTGTGCTCCTT -ACGGAAAGAACCGTTGTGCCTGTT -ACGGAAAGAACCGTTGTGCGGTTT -ACGGAAAGAACCGTTGTGGTGGTT -ACGGAAAGAACCGTTGTGGCCTTT -ACGGAAAGAACCGTTGTGGGTCTT -ACGGAAAGAACCGTTGTGACGCTT -ACGGAAAGAACCGTTGTGAGCGTT -ACGGAAAGAACCGTTGTGTTCGTC -ACGGAAAGAACCGTTGTGTCTCTC -ACGGAAAGAACCGTTGTGTGGATC -ACGGAAAGAACCGTTGTGCACTTC -ACGGAAAGAACCGTTGTGGTACTC -ACGGAAAGAACCGTTGTGGATGTC -ACGGAAAGAACCGTTGTGACAGTC -ACGGAAAGAACCGTTGTGTTGCTG -ACGGAAAGAACCGTTGTGTCCATG -ACGGAAAGAACCGTTGTGTGTGTG -ACGGAAAGAACCGTTGTGCTAGTG -ACGGAAAGAACCGTTGTGCATCTG -ACGGAAAGAACCGTTGTGGAGTTG -ACGGAAAGAACCGTTGTGAGACTG -ACGGAAAGAACCGTTGTGTCGGTA -ACGGAAAGAACCGTTGTGTGCCTA -ACGGAAAGAACCGTTGTGCCACTA -ACGGAAAGAACCGTTGTGGGAGTA -ACGGAAAGAACCGTTGTGTCGTCT -ACGGAAAGAACCGTTGTGTGCACT -ACGGAAAGAACCGTTGTGCTGACT -ACGGAAAGAACCGTTGTGCAACCT -ACGGAAAGAACCGTTGTGGCTACT -ACGGAAAGAACCGTTGTGGGATCT -ACGGAAAGAACCGTTGTGAAGGCT -ACGGAAAGAACCGTTGTGTCAACC -ACGGAAAGAACCGTTGTGTGTTCC -ACGGAAAGAACCGTTGTGATTCCC -ACGGAAAGAACCGTTGTGTTCTCG -ACGGAAAGAACCGTTGTGTAGACG -ACGGAAAGAACCGTTGTGGTAACG -ACGGAAAGAACCGTTGTGACTTCG -ACGGAAAGAACCGTTGTGTACGCA -ACGGAAAGAACCGTTGTGCTTGCA -ACGGAAAGAACCGTTGTGCGAACA -ACGGAAAGAACCGTTGTGCAGTCA -ACGGAAAGAACCGTTGTGGATCCA -ACGGAAAGAACCGTTGTGACGACA -ACGGAAAGAACCGTTGTGAGCTCA -ACGGAAAGAACCGTTGTGTCACGT -ACGGAAAGAACCGTTGTGCGTAGT -ACGGAAAGAACCGTTGTGGTCAGT -ACGGAAAGAACCGTTGTGGAAGGT -ACGGAAAGAACCGTTGTGAACCGT -ACGGAAAGAACCGTTGTGTTGTGC -ACGGAAAGAACCGTTGTGCTAAGC -ACGGAAAGAACCGTTGTGACTAGC -ACGGAAAGAACCGTTGTGAGATGC -ACGGAAAGAACCGTTGTGTGAAGG -ACGGAAAGAACCGTTGTGCAATGG -ACGGAAAGAACCGTTGTGATGAGG -ACGGAAAGAACCGTTGTGAATGGG -ACGGAAAGAACCGTTGTGTCCTGA -ACGGAAAGAACCGTTGTGTAGCGA -ACGGAAAGAACCGTTGTGCACAGA -ACGGAAAGAACCGTTGTGGCAAGA -ACGGAAAGAACCGTTGTGGGTTGA -ACGGAAAGAACCGTTGTGTCCGAT -ACGGAAAGAACCGTTGTGTGGCAT -ACGGAAAGAACCGTTGTGCGAGAT -ACGGAAAGAACCGTTGTGTACCAC -ACGGAAAGAACCGTTGTGCAGAAC -ACGGAAAGAACCGTTGTGGTCTAC -ACGGAAAGAACCGTTGTGACGTAC -ACGGAAAGAACCGTTGTGAGTGAC -ACGGAAAGAACCGTTGTGCTGTAG -ACGGAAAGAACCGTTGTGCCTAAG -ACGGAAAGAACCGTTGTGGTTCAG -ACGGAAAGAACCGTTGTGGCATAG -ACGGAAAGAACCGTTGTGGACAAG -ACGGAAAGAACCGTTGTGAAGCAG -ACGGAAAGAACCGTTGTGCGTCAA -ACGGAAAGAACCGTTGTGGCTGAA -ACGGAAAGAACCGTTGTGAGTACG -ACGGAAAGAACCGTTGTGATCCGA -ACGGAAAGAACCGTTGTGATGGGA -ACGGAAAGAACCGTTGTGGTGCAA -ACGGAAAGAACCGTTGTGGAGGAA -ACGGAAAGAACCGTTGTGCAGGTA -ACGGAAAGAACCGTTGTGGACTCT -ACGGAAAGAACCGTTGTGAGTCCT -ACGGAAAGAACCGTTGTGTAAGCC -ACGGAAAGAACCGTTGTGATAGCC -ACGGAAAGAACCGTTGTGTAACCG -ACGGAAAGAACCGTTGTGATGCCA -ACGGAAAGAACCTTTGCCGGAAAC -ACGGAAAGAACCTTTGCCAACACC -ACGGAAAGAACCTTTGCCATCGAG -ACGGAAAGAACCTTTGCCCTCCTT -ACGGAAAGAACCTTTGCCCCTGTT -ACGGAAAGAACCTTTGCCCGGTTT -ACGGAAAGAACCTTTGCCGTGGTT -ACGGAAAGAACCTTTGCCGCCTTT -ACGGAAAGAACCTTTGCCGGTCTT -ACGGAAAGAACCTTTGCCACGCTT -ACGGAAAGAACCTTTGCCAGCGTT -ACGGAAAGAACCTTTGCCTTCGTC -ACGGAAAGAACCTTTGCCTCTCTC -ACGGAAAGAACCTTTGCCTGGATC -ACGGAAAGAACCTTTGCCCACTTC -ACGGAAAGAACCTTTGCCGTACTC -ACGGAAAGAACCTTTGCCGATGTC -ACGGAAAGAACCTTTGCCACAGTC -ACGGAAAGAACCTTTGCCTTGCTG -ACGGAAAGAACCTTTGCCTCCATG -ACGGAAAGAACCTTTGCCTGTGTG -ACGGAAAGAACCTTTGCCCTAGTG -ACGGAAAGAACCTTTGCCCATCTG -ACGGAAAGAACCTTTGCCGAGTTG -ACGGAAAGAACCTTTGCCAGACTG -ACGGAAAGAACCTTTGCCTCGGTA -ACGGAAAGAACCTTTGCCTGCCTA -ACGGAAAGAACCTTTGCCCCACTA -ACGGAAAGAACCTTTGCCGGAGTA -ACGGAAAGAACCTTTGCCTCGTCT -ACGGAAAGAACCTTTGCCTGCACT -ACGGAAAGAACCTTTGCCCTGACT -ACGGAAAGAACCTTTGCCCAACCT -ACGGAAAGAACCTTTGCCGCTACT -ACGGAAAGAACCTTTGCCGGATCT -ACGGAAAGAACCTTTGCCAAGGCT -ACGGAAAGAACCTTTGCCTCAACC -ACGGAAAGAACCTTTGCCTGTTCC -ACGGAAAGAACCTTTGCCATTCCC -ACGGAAAGAACCTTTGCCTTCTCG -ACGGAAAGAACCTTTGCCTAGACG -ACGGAAAGAACCTTTGCCGTAACG -ACGGAAAGAACCTTTGCCACTTCG -ACGGAAAGAACCTTTGCCTACGCA -ACGGAAAGAACCTTTGCCCTTGCA -ACGGAAAGAACCTTTGCCCGAACA -ACGGAAAGAACCTTTGCCCAGTCA -ACGGAAAGAACCTTTGCCGATCCA -ACGGAAAGAACCTTTGCCACGACA -ACGGAAAGAACCTTTGCCAGCTCA -ACGGAAAGAACCTTTGCCTCACGT -ACGGAAAGAACCTTTGCCCGTAGT -ACGGAAAGAACCTTTGCCGTCAGT -ACGGAAAGAACCTTTGCCGAAGGT -ACGGAAAGAACCTTTGCCAACCGT -ACGGAAAGAACCTTTGCCTTGTGC -ACGGAAAGAACCTTTGCCCTAAGC -ACGGAAAGAACCTTTGCCACTAGC -ACGGAAAGAACCTTTGCCAGATGC -ACGGAAAGAACCTTTGCCTGAAGG -ACGGAAAGAACCTTTGCCCAATGG -ACGGAAAGAACCTTTGCCATGAGG -ACGGAAAGAACCTTTGCCAATGGG -ACGGAAAGAACCTTTGCCTCCTGA -ACGGAAAGAACCTTTGCCTAGCGA -ACGGAAAGAACCTTTGCCCACAGA -ACGGAAAGAACCTTTGCCGCAAGA -ACGGAAAGAACCTTTGCCGGTTGA -ACGGAAAGAACCTTTGCCTCCGAT -ACGGAAAGAACCTTTGCCTGGCAT -ACGGAAAGAACCTTTGCCCGAGAT -ACGGAAAGAACCTTTGCCTACCAC -ACGGAAAGAACCTTTGCCCAGAAC -ACGGAAAGAACCTTTGCCGTCTAC -ACGGAAAGAACCTTTGCCACGTAC -ACGGAAAGAACCTTTGCCAGTGAC -ACGGAAAGAACCTTTGCCCTGTAG -ACGGAAAGAACCTTTGCCCCTAAG -ACGGAAAGAACCTTTGCCGTTCAG -ACGGAAAGAACCTTTGCCGCATAG -ACGGAAAGAACCTTTGCCGACAAG -ACGGAAAGAACCTTTGCCAAGCAG -ACGGAAAGAACCTTTGCCCGTCAA -ACGGAAAGAACCTTTGCCGCTGAA -ACGGAAAGAACCTTTGCCAGTACG -ACGGAAAGAACCTTTGCCATCCGA -ACGGAAAGAACCTTTGCCATGGGA -ACGGAAAGAACCTTTGCCGTGCAA -ACGGAAAGAACCTTTGCCGAGGAA -ACGGAAAGAACCTTTGCCCAGGTA -ACGGAAAGAACCTTTGCCGACTCT -ACGGAAAGAACCTTTGCCAGTCCT -ACGGAAAGAACCTTTGCCTAAGCC -ACGGAAAGAACCTTTGCCATAGCC -ACGGAAAGAACCTTTGCCTAACCG -ACGGAAAGAACCTTTGCCATGCCA -ACGGAAAGAACCCTTGGTGGAAAC -ACGGAAAGAACCCTTGGTAACACC -ACGGAAAGAACCCTTGGTATCGAG -ACGGAAAGAACCCTTGGTCTCCTT -ACGGAAAGAACCCTTGGTCCTGTT -ACGGAAAGAACCCTTGGTCGGTTT -ACGGAAAGAACCCTTGGTGTGGTT -ACGGAAAGAACCCTTGGTGCCTTT -ACGGAAAGAACCCTTGGTGGTCTT -ACGGAAAGAACCCTTGGTACGCTT -ACGGAAAGAACCCTTGGTAGCGTT -ACGGAAAGAACCCTTGGTTTCGTC -ACGGAAAGAACCCTTGGTTCTCTC -ACGGAAAGAACCCTTGGTTGGATC -ACGGAAAGAACCCTTGGTCACTTC -ACGGAAAGAACCCTTGGTGTACTC -ACGGAAAGAACCCTTGGTGATGTC -ACGGAAAGAACCCTTGGTACAGTC -ACGGAAAGAACCCTTGGTTTGCTG -ACGGAAAGAACCCTTGGTTCCATG -ACGGAAAGAACCCTTGGTTGTGTG -ACGGAAAGAACCCTTGGTCTAGTG -ACGGAAAGAACCCTTGGTCATCTG -ACGGAAAGAACCCTTGGTGAGTTG -ACGGAAAGAACCCTTGGTAGACTG -ACGGAAAGAACCCTTGGTTCGGTA -ACGGAAAGAACCCTTGGTTGCCTA -ACGGAAAGAACCCTTGGTCCACTA -ACGGAAAGAACCCTTGGTGGAGTA -ACGGAAAGAACCCTTGGTTCGTCT -ACGGAAAGAACCCTTGGTTGCACT -ACGGAAAGAACCCTTGGTCTGACT -ACGGAAAGAACCCTTGGTCAACCT -ACGGAAAGAACCCTTGGTGCTACT -ACGGAAAGAACCCTTGGTGGATCT -ACGGAAAGAACCCTTGGTAAGGCT -ACGGAAAGAACCCTTGGTTCAACC -ACGGAAAGAACCCTTGGTTGTTCC -ACGGAAAGAACCCTTGGTATTCCC -ACGGAAAGAACCCTTGGTTTCTCG -ACGGAAAGAACCCTTGGTTAGACG -ACGGAAAGAACCCTTGGTGTAACG -ACGGAAAGAACCCTTGGTACTTCG -ACGGAAAGAACCCTTGGTTACGCA -ACGGAAAGAACCCTTGGTCTTGCA -ACGGAAAGAACCCTTGGTCGAACA -ACGGAAAGAACCCTTGGTCAGTCA -ACGGAAAGAACCCTTGGTGATCCA -ACGGAAAGAACCCTTGGTACGACA -ACGGAAAGAACCCTTGGTAGCTCA -ACGGAAAGAACCCTTGGTTCACGT -ACGGAAAGAACCCTTGGTCGTAGT -ACGGAAAGAACCCTTGGTGTCAGT -ACGGAAAGAACCCTTGGTGAAGGT -ACGGAAAGAACCCTTGGTAACCGT -ACGGAAAGAACCCTTGGTTTGTGC -ACGGAAAGAACCCTTGGTCTAAGC -ACGGAAAGAACCCTTGGTACTAGC -ACGGAAAGAACCCTTGGTAGATGC -ACGGAAAGAACCCTTGGTTGAAGG -ACGGAAAGAACCCTTGGTCAATGG -ACGGAAAGAACCCTTGGTATGAGG -ACGGAAAGAACCCTTGGTAATGGG -ACGGAAAGAACCCTTGGTTCCTGA -ACGGAAAGAACCCTTGGTTAGCGA -ACGGAAAGAACCCTTGGTCACAGA -ACGGAAAGAACCCTTGGTGCAAGA -ACGGAAAGAACCCTTGGTGGTTGA -ACGGAAAGAACCCTTGGTTCCGAT -ACGGAAAGAACCCTTGGTTGGCAT -ACGGAAAGAACCCTTGGTCGAGAT -ACGGAAAGAACCCTTGGTTACCAC -ACGGAAAGAACCCTTGGTCAGAAC -ACGGAAAGAACCCTTGGTGTCTAC -ACGGAAAGAACCCTTGGTACGTAC -ACGGAAAGAACCCTTGGTAGTGAC -ACGGAAAGAACCCTTGGTCTGTAG -ACGGAAAGAACCCTTGGTCCTAAG -ACGGAAAGAACCCTTGGTGTTCAG -ACGGAAAGAACCCTTGGTGCATAG -ACGGAAAGAACCCTTGGTGACAAG -ACGGAAAGAACCCTTGGTAAGCAG -ACGGAAAGAACCCTTGGTCGTCAA -ACGGAAAGAACCCTTGGTGCTGAA -ACGGAAAGAACCCTTGGTAGTACG -ACGGAAAGAACCCTTGGTATCCGA -ACGGAAAGAACCCTTGGTATGGGA -ACGGAAAGAACCCTTGGTGTGCAA -ACGGAAAGAACCCTTGGTGAGGAA -ACGGAAAGAACCCTTGGTCAGGTA -ACGGAAAGAACCCTTGGTGACTCT -ACGGAAAGAACCCTTGGTAGTCCT -ACGGAAAGAACCCTTGGTTAAGCC -ACGGAAAGAACCCTTGGTATAGCC -ACGGAAAGAACCCTTGGTTAACCG -ACGGAAAGAACCCTTGGTATGCCA -ACGGAAAGAACCCTTACGGGAAAC -ACGGAAAGAACCCTTACGAACACC -ACGGAAAGAACCCTTACGATCGAG -ACGGAAAGAACCCTTACGCTCCTT -ACGGAAAGAACCCTTACGCCTGTT -ACGGAAAGAACCCTTACGCGGTTT -ACGGAAAGAACCCTTACGGTGGTT -ACGGAAAGAACCCTTACGGCCTTT -ACGGAAAGAACCCTTACGGGTCTT -ACGGAAAGAACCCTTACGACGCTT -ACGGAAAGAACCCTTACGAGCGTT -ACGGAAAGAACCCTTACGTTCGTC -ACGGAAAGAACCCTTACGTCTCTC -ACGGAAAGAACCCTTACGTGGATC -ACGGAAAGAACCCTTACGCACTTC -ACGGAAAGAACCCTTACGGTACTC -ACGGAAAGAACCCTTACGGATGTC -ACGGAAAGAACCCTTACGACAGTC -ACGGAAAGAACCCTTACGTTGCTG -ACGGAAAGAACCCTTACGTCCATG -ACGGAAAGAACCCTTACGTGTGTG -ACGGAAAGAACCCTTACGCTAGTG -ACGGAAAGAACCCTTACGCATCTG -ACGGAAAGAACCCTTACGGAGTTG -ACGGAAAGAACCCTTACGAGACTG -ACGGAAAGAACCCTTACGTCGGTA -ACGGAAAGAACCCTTACGTGCCTA -ACGGAAAGAACCCTTACGCCACTA -ACGGAAAGAACCCTTACGGGAGTA -ACGGAAAGAACCCTTACGTCGTCT -ACGGAAAGAACCCTTACGTGCACT -ACGGAAAGAACCCTTACGCTGACT -ACGGAAAGAACCCTTACGCAACCT -ACGGAAAGAACCCTTACGGCTACT -ACGGAAAGAACCCTTACGGGATCT -ACGGAAAGAACCCTTACGAAGGCT -ACGGAAAGAACCCTTACGTCAACC -ACGGAAAGAACCCTTACGTGTTCC -ACGGAAAGAACCCTTACGATTCCC -ACGGAAAGAACCCTTACGTTCTCG -ACGGAAAGAACCCTTACGTAGACG -ACGGAAAGAACCCTTACGGTAACG -ACGGAAAGAACCCTTACGACTTCG -ACGGAAAGAACCCTTACGTACGCA -ACGGAAAGAACCCTTACGCTTGCA -ACGGAAAGAACCCTTACGCGAACA -ACGGAAAGAACCCTTACGCAGTCA -ACGGAAAGAACCCTTACGGATCCA -ACGGAAAGAACCCTTACGACGACA -ACGGAAAGAACCCTTACGAGCTCA -ACGGAAAGAACCCTTACGTCACGT -ACGGAAAGAACCCTTACGCGTAGT -ACGGAAAGAACCCTTACGGTCAGT -ACGGAAAGAACCCTTACGGAAGGT -ACGGAAAGAACCCTTACGAACCGT -ACGGAAAGAACCCTTACGTTGTGC -ACGGAAAGAACCCTTACGCTAAGC -ACGGAAAGAACCCTTACGACTAGC -ACGGAAAGAACCCTTACGAGATGC -ACGGAAAGAACCCTTACGTGAAGG -ACGGAAAGAACCCTTACGCAATGG -ACGGAAAGAACCCTTACGATGAGG -ACGGAAAGAACCCTTACGAATGGG -ACGGAAAGAACCCTTACGTCCTGA -ACGGAAAGAACCCTTACGTAGCGA -ACGGAAAGAACCCTTACGCACAGA -ACGGAAAGAACCCTTACGGCAAGA -ACGGAAAGAACCCTTACGGGTTGA -ACGGAAAGAACCCTTACGTCCGAT -ACGGAAAGAACCCTTACGTGGCAT -ACGGAAAGAACCCTTACGCGAGAT -ACGGAAAGAACCCTTACGTACCAC -ACGGAAAGAACCCTTACGCAGAAC -ACGGAAAGAACCCTTACGGTCTAC -ACGGAAAGAACCCTTACGACGTAC -ACGGAAAGAACCCTTACGAGTGAC -ACGGAAAGAACCCTTACGCTGTAG -ACGGAAAGAACCCTTACGCCTAAG -ACGGAAAGAACCCTTACGGTTCAG -ACGGAAAGAACCCTTACGGCATAG -ACGGAAAGAACCCTTACGGACAAG -ACGGAAAGAACCCTTACGAAGCAG -ACGGAAAGAACCCTTACGCGTCAA -ACGGAAAGAACCCTTACGGCTGAA -ACGGAAAGAACCCTTACGAGTACG -ACGGAAAGAACCCTTACGATCCGA -ACGGAAAGAACCCTTACGATGGGA -ACGGAAAGAACCCTTACGGTGCAA -ACGGAAAGAACCCTTACGGAGGAA -ACGGAAAGAACCCTTACGCAGGTA -ACGGAAAGAACCCTTACGGACTCT -ACGGAAAGAACCCTTACGAGTCCT -ACGGAAAGAACCCTTACGTAAGCC -ACGGAAAGAACCCTTACGATAGCC -ACGGAAAGAACCCTTACGTAACCG -ACGGAAAGAACCCTTACGATGCCA -ACGGAAAGAACCGTTAGCGGAAAC -ACGGAAAGAACCGTTAGCAACACC -ACGGAAAGAACCGTTAGCATCGAG -ACGGAAAGAACCGTTAGCCTCCTT -ACGGAAAGAACCGTTAGCCCTGTT -ACGGAAAGAACCGTTAGCCGGTTT -ACGGAAAGAACCGTTAGCGTGGTT -ACGGAAAGAACCGTTAGCGCCTTT -ACGGAAAGAACCGTTAGCGGTCTT -ACGGAAAGAACCGTTAGCACGCTT -ACGGAAAGAACCGTTAGCAGCGTT -ACGGAAAGAACCGTTAGCTTCGTC -ACGGAAAGAACCGTTAGCTCTCTC -ACGGAAAGAACCGTTAGCTGGATC -ACGGAAAGAACCGTTAGCCACTTC -ACGGAAAGAACCGTTAGCGTACTC -ACGGAAAGAACCGTTAGCGATGTC -ACGGAAAGAACCGTTAGCACAGTC -ACGGAAAGAACCGTTAGCTTGCTG -ACGGAAAGAACCGTTAGCTCCATG -ACGGAAAGAACCGTTAGCTGTGTG -ACGGAAAGAACCGTTAGCCTAGTG -ACGGAAAGAACCGTTAGCCATCTG -ACGGAAAGAACCGTTAGCGAGTTG -ACGGAAAGAACCGTTAGCAGACTG -ACGGAAAGAACCGTTAGCTCGGTA -ACGGAAAGAACCGTTAGCTGCCTA -ACGGAAAGAACCGTTAGCCCACTA -ACGGAAAGAACCGTTAGCGGAGTA -ACGGAAAGAACCGTTAGCTCGTCT -ACGGAAAGAACCGTTAGCTGCACT -ACGGAAAGAACCGTTAGCCTGACT -ACGGAAAGAACCGTTAGCCAACCT -ACGGAAAGAACCGTTAGCGCTACT -ACGGAAAGAACCGTTAGCGGATCT -ACGGAAAGAACCGTTAGCAAGGCT -ACGGAAAGAACCGTTAGCTCAACC -ACGGAAAGAACCGTTAGCTGTTCC -ACGGAAAGAACCGTTAGCATTCCC -ACGGAAAGAACCGTTAGCTTCTCG -ACGGAAAGAACCGTTAGCTAGACG -ACGGAAAGAACCGTTAGCGTAACG -ACGGAAAGAACCGTTAGCACTTCG -ACGGAAAGAACCGTTAGCTACGCA -ACGGAAAGAACCGTTAGCCTTGCA -ACGGAAAGAACCGTTAGCCGAACA -ACGGAAAGAACCGTTAGCCAGTCA -ACGGAAAGAACCGTTAGCGATCCA -ACGGAAAGAACCGTTAGCACGACA -ACGGAAAGAACCGTTAGCAGCTCA -ACGGAAAGAACCGTTAGCTCACGT -ACGGAAAGAACCGTTAGCCGTAGT -ACGGAAAGAACCGTTAGCGTCAGT -ACGGAAAGAACCGTTAGCGAAGGT -ACGGAAAGAACCGTTAGCAACCGT -ACGGAAAGAACCGTTAGCTTGTGC -ACGGAAAGAACCGTTAGCCTAAGC -ACGGAAAGAACCGTTAGCACTAGC -ACGGAAAGAACCGTTAGCAGATGC -ACGGAAAGAACCGTTAGCTGAAGG -ACGGAAAGAACCGTTAGCCAATGG -ACGGAAAGAACCGTTAGCATGAGG -ACGGAAAGAACCGTTAGCAATGGG -ACGGAAAGAACCGTTAGCTCCTGA -ACGGAAAGAACCGTTAGCTAGCGA -ACGGAAAGAACCGTTAGCCACAGA -ACGGAAAGAACCGTTAGCGCAAGA -ACGGAAAGAACCGTTAGCGGTTGA -ACGGAAAGAACCGTTAGCTCCGAT -ACGGAAAGAACCGTTAGCTGGCAT -ACGGAAAGAACCGTTAGCCGAGAT -ACGGAAAGAACCGTTAGCTACCAC -ACGGAAAGAACCGTTAGCCAGAAC -ACGGAAAGAACCGTTAGCGTCTAC -ACGGAAAGAACCGTTAGCACGTAC -ACGGAAAGAACCGTTAGCAGTGAC -ACGGAAAGAACCGTTAGCCTGTAG -ACGGAAAGAACCGTTAGCCCTAAG -ACGGAAAGAACCGTTAGCGTTCAG -ACGGAAAGAACCGTTAGCGCATAG -ACGGAAAGAACCGTTAGCGACAAG -ACGGAAAGAACCGTTAGCAAGCAG -ACGGAAAGAACCGTTAGCCGTCAA -ACGGAAAGAACCGTTAGCGCTGAA -ACGGAAAGAACCGTTAGCAGTACG -ACGGAAAGAACCGTTAGCATCCGA -ACGGAAAGAACCGTTAGCATGGGA -ACGGAAAGAACCGTTAGCGTGCAA -ACGGAAAGAACCGTTAGCGAGGAA -ACGGAAAGAACCGTTAGCCAGGTA -ACGGAAAGAACCGTTAGCGACTCT -ACGGAAAGAACCGTTAGCAGTCCT -ACGGAAAGAACCGTTAGCTAAGCC -ACGGAAAGAACCGTTAGCATAGCC -ACGGAAAGAACCGTTAGCTAACCG -ACGGAAAGAACCGTTAGCATGCCA -ACGGAAAGAACCGTCTTCGGAAAC -ACGGAAAGAACCGTCTTCAACACC -ACGGAAAGAACCGTCTTCATCGAG -ACGGAAAGAACCGTCTTCCTCCTT -ACGGAAAGAACCGTCTTCCCTGTT -ACGGAAAGAACCGTCTTCCGGTTT -ACGGAAAGAACCGTCTTCGTGGTT -ACGGAAAGAACCGTCTTCGCCTTT -ACGGAAAGAACCGTCTTCGGTCTT -ACGGAAAGAACCGTCTTCACGCTT -ACGGAAAGAACCGTCTTCAGCGTT -ACGGAAAGAACCGTCTTCTTCGTC -ACGGAAAGAACCGTCTTCTCTCTC -ACGGAAAGAACCGTCTTCTGGATC -ACGGAAAGAACCGTCTTCCACTTC -ACGGAAAGAACCGTCTTCGTACTC -ACGGAAAGAACCGTCTTCGATGTC -ACGGAAAGAACCGTCTTCACAGTC -ACGGAAAGAACCGTCTTCTTGCTG -ACGGAAAGAACCGTCTTCTCCATG -ACGGAAAGAACCGTCTTCTGTGTG -ACGGAAAGAACCGTCTTCCTAGTG -ACGGAAAGAACCGTCTTCCATCTG -ACGGAAAGAACCGTCTTCGAGTTG -ACGGAAAGAACCGTCTTCAGACTG -ACGGAAAGAACCGTCTTCTCGGTA -ACGGAAAGAACCGTCTTCTGCCTA -ACGGAAAGAACCGTCTTCCCACTA -ACGGAAAGAACCGTCTTCGGAGTA -ACGGAAAGAACCGTCTTCTCGTCT -ACGGAAAGAACCGTCTTCTGCACT -ACGGAAAGAACCGTCTTCCTGACT -ACGGAAAGAACCGTCTTCCAACCT -ACGGAAAGAACCGTCTTCGCTACT -ACGGAAAGAACCGTCTTCGGATCT -ACGGAAAGAACCGTCTTCAAGGCT -ACGGAAAGAACCGTCTTCTCAACC -ACGGAAAGAACCGTCTTCTGTTCC -ACGGAAAGAACCGTCTTCATTCCC -ACGGAAAGAACCGTCTTCTTCTCG -ACGGAAAGAACCGTCTTCTAGACG -ACGGAAAGAACCGTCTTCGTAACG -ACGGAAAGAACCGTCTTCACTTCG -ACGGAAAGAACCGTCTTCTACGCA -ACGGAAAGAACCGTCTTCCTTGCA -ACGGAAAGAACCGTCTTCCGAACA -ACGGAAAGAACCGTCTTCCAGTCA -ACGGAAAGAACCGTCTTCGATCCA -ACGGAAAGAACCGTCTTCACGACA -ACGGAAAGAACCGTCTTCAGCTCA -ACGGAAAGAACCGTCTTCTCACGT -ACGGAAAGAACCGTCTTCCGTAGT -ACGGAAAGAACCGTCTTCGTCAGT -ACGGAAAGAACCGTCTTCGAAGGT -ACGGAAAGAACCGTCTTCAACCGT -ACGGAAAGAACCGTCTTCTTGTGC -ACGGAAAGAACCGTCTTCCTAAGC -ACGGAAAGAACCGTCTTCACTAGC -ACGGAAAGAACCGTCTTCAGATGC -ACGGAAAGAACCGTCTTCTGAAGG -ACGGAAAGAACCGTCTTCCAATGG -ACGGAAAGAACCGTCTTCATGAGG -ACGGAAAGAACCGTCTTCAATGGG -ACGGAAAGAACCGTCTTCTCCTGA -ACGGAAAGAACCGTCTTCTAGCGA -ACGGAAAGAACCGTCTTCCACAGA -ACGGAAAGAACCGTCTTCGCAAGA -ACGGAAAGAACCGTCTTCGGTTGA -ACGGAAAGAACCGTCTTCTCCGAT -ACGGAAAGAACCGTCTTCTGGCAT -ACGGAAAGAACCGTCTTCCGAGAT -ACGGAAAGAACCGTCTTCTACCAC -ACGGAAAGAACCGTCTTCCAGAAC -ACGGAAAGAACCGTCTTCGTCTAC -ACGGAAAGAACCGTCTTCACGTAC -ACGGAAAGAACCGTCTTCAGTGAC -ACGGAAAGAACCGTCTTCCTGTAG -ACGGAAAGAACCGTCTTCCCTAAG -ACGGAAAGAACCGTCTTCGTTCAG -ACGGAAAGAACCGTCTTCGCATAG -ACGGAAAGAACCGTCTTCGACAAG -ACGGAAAGAACCGTCTTCAAGCAG -ACGGAAAGAACCGTCTTCCGTCAA -ACGGAAAGAACCGTCTTCGCTGAA -ACGGAAAGAACCGTCTTCAGTACG -ACGGAAAGAACCGTCTTCATCCGA -ACGGAAAGAACCGTCTTCATGGGA -ACGGAAAGAACCGTCTTCGTGCAA -ACGGAAAGAACCGTCTTCGAGGAA -ACGGAAAGAACCGTCTTCCAGGTA -ACGGAAAGAACCGTCTTCGACTCT -ACGGAAAGAACCGTCTTCAGTCCT -ACGGAAAGAACCGTCTTCTAAGCC -ACGGAAAGAACCGTCTTCATAGCC -ACGGAAAGAACCGTCTTCTAACCG -ACGGAAAGAACCGTCTTCATGCCA -ACGGAAAGAACCCTCTCTGGAAAC -ACGGAAAGAACCCTCTCTAACACC -ACGGAAAGAACCCTCTCTATCGAG -ACGGAAAGAACCCTCTCTCTCCTT -ACGGAAAGAACCCTCTCTCCTGTT -ACGGAAAGAACCCTCTCTCGGTTT -ACGGAAAGAACCCTCTCTGTGGTT -ACGGAAAGAACCCTCTCTGCCTTT -ACGGAAAGAACCCTCTCTGGTCTT -ACGGAAAGAACCCTCTCTACGCTT -ACGGAAAGAACCCTCTCTAGCGTT -ACGGAAAGAACCCTCTCTTTCGTC -ACGGAAAGAACCCTCTCTTCTCTC -ACGGAAAGAACCCTCTCTTGGATC -ACGGAAAGAACCCTCTCTCACTTC -ACGGAAAGAACCCTCTCTGTACTC -ACGGAAAGAACCCTCTCTGATGTC -ACGGAAAGAACCCTCTCTACAGTC -ACGGAAAGAACCCTCTCTTTGCTG -ACGGAAAGAACCCTCTCTTCCATG -ACGGAAAGAACCCTCTCTTGTGTG -ACGGAAAGAACCCTCTCTCTAGTG -ACGGAAAGAACCCTCTCTCATCTG -ACGGAAAGAACCCTCTCTGAGTTG -ACGGAAAGAACCCTCTCTAGACTG -ACGGAAAGAACCCTCTCTTCGGTA -ACGGAAAGAACCCTCTCTTGCCTA -ACGGAAAGAACCCTCTCTCCACTA -ACGGAAAGAACCCTCTCTGGAGTA -ACGGAAAGAACCCTCTCTTCGTCT -ACGGAAAGAACCCTCTCTTGCACT -ACGGAAAGAACCCTCTCTCTGACT -ACGGAAAGAACCCTCTCTCAACCT -ACGGAAAGAACCCTCTCTGCTACT -ACGGAAAGAACCCTCTCTGGATCT -ACGGAAAGAACCCTCTCTAAGGCT -ACGGAAAGAACCCTCTCTTCAACC -ACGGAAAGAACCCTCTCTTGTTCC -ACGGAAAGAACCCTCTCTATTCCC -ACGGAAAGAACCCTCTCTTTCTCG -ACGGAAAGAACCCTCTCTTAGACG -ACGGAAAGAACCCTCTCTGTAACG -ACGGAAAGAACCCTCTCTACTTCG -ACGGAAAGAACCCTCTCTTACGCA -ACGGAAAGAACCCTCTCTCTTGCA -ACGGAAAGAACCCTCTCTCGAACA -ACGGAAAGAACCCTCTCTCAGTCA -ACGGAAAGAACCCTCTCTGATCCA -ACGGAAAGAACCCTCTCTACGACA -ACGGAAAGAACCCTCTCTAGCTCA -ACGGAAAGAACCCTCTCTTCACGT -ACGGAAAGAACCCTCTCTCGTAGT -ACGGAAAGAACCCTCTCTGTCAGT -ACGGAAAGAACCCTCTCTGAAGGT -ACGGAAAGAACCCTCTCTAACCGT -ACGGAAAGAACCCTCTCTTTGTGC -ACGGAAAGAACCCTCTCTCTAAGC -ACGGAAAGAACCCTCTCTACTAGC -ACGGAAAGAACCCTCTCTAGATGC -ACGGAAAGAACCCTCTCTTGAAGG -ACGGAAAGAACCCTCTCTCAATGG -ACGGAAAGAACCCTCTCTATGAGG -ACGGAAAGAACCCTCTCTAATGGG -ACGGAAAGAACCCTCTCTTCCTGA -ACGGAAAGAACCCTCTCTTAGCGA -ACGGAAAGAACCCTCTCTCACAGA -ACGGAAAGAACCCTCTCTGCAAGA -ACGGAAAGAACCCTCTCTGGTTGA -ACGGAAAGAACCCTCTCTTCCGAT -ACGGAAAGAACCCTCTCTTGGCAT -ACGGAAAGAACCCTCTCTCGAGAT -ACGGAAAGAACCCTCTCTTACCAC -ACGGAAAGAACCCTCTCTCAGAAC -ACGGAAAGAACCCTCTCTGTCTAC -ACGGAAAGAACCCTCTCTACGTAC -ACGGAAAGAACCCTCTCTAGTGAC -ACGGAAAGAACCCTCTCTCTGTAG -ACGGAAAGAACCCTCTCTCCTAAG -ACGGAAAGAACCCTCTCTGTTCAG -ACGGAAAGAACCCTCTCTGCATAG -ACGGAAAGAACCCTCTCTGACAAG -ACGGAAAGAACCCTCTCTAAGCAG -ACGGAAAGAACCCTCTCTCGTCAA -ACGGAAAGAACCCTCTCTGCTGAA -ACGGAAAGAACCCTCTCTAGTACG -ACGGAAAGAACCCTCTCTATCCGA -ACGGAAAGAACCCTCTCTATGGGA -ACGGAAAGAACCCTCTCTGTGCAA -ACGGAAAGAACCCTCTCTGAGGAA -ACGGAAAGAACCCTCTCTCAGGTA -ACGGAAAGAACCCTCTCTGACTCT -ACGGAAAGAACCCTCTCTAGTCCT -ACGGAAAGAACCCTCTCTTAAGCC -ACGGAAAGAACCCTCTCTATAGCC -ACGGAAAGAACCCTCTCTTAACCG -ACGGAAAGAACCCTCTCTATGCCA -ACGGAAAGAACCATCTGGGGAAAC -ACGGAAAGAACCATCTGGAACACC -ACGGAAAGAACCATCTGGATCGAG -ACGGAAAGAACCATCTGGCTCCTT -ACGGAAAGAACCATCTGGCCTGTT -ACGGAAAGAACCATCTGGCGGTTT -ACGGAAAGAACCATCTGGGTGGTT -ACGGAAAGAACCATCTGGGCCTTT -ACGGAAAGAACCATCTGGGGTCTT -ACGGAAAGAACCATCTGGACGCTT -ACGGAAAGAACCATCTGGAGCGTT -ACGGAAAGAACCATCTGGTTCGTC -ACGGAAAGAACCATCTGGTCTCTC -ACGGAAAGAACCATCTGGTGGATC -ACGGAAAGAACCATCTGGCACTTC -ACGGAAAGAACCATCTGGGTACTC -ACGGAAAGAACCATCTGGGATGTC -ACGGAAAGAACCATCTGGACAGTC -ACGGAAAGAACCATCTGGTTGCTG -ACGGAAAGAACCATCTGGTCCATG -ACGGAAAGAACCATCTGGTGTGTG -ACGGAAAGAACCATCTGGCTAGTG -ACGGAAAGAACCATCTGGCATCTG -ACGGAAAGAACCATCTGGGAGTTG -ACGGAAAGAACCATCTGGAGACTG -ACGGAAAGAACCATCTGGTCGGTA -ACGGAAAGAACCATCTGGTGCCTA -ACGGAAAGAACCATCTGGCCACTA -ACGGAAAGAACCATCTGGGGAGTA -ACGGAAAGAACCATCTGGTCGTCT -ACGGAAAGAACCATCTGGTGCACT -ACGGAAAGAACCATCTGGCTGACT -ACGGAAAGAACCATCTGGCAACCT -ACGGAAAGAACCATCTGGGCTACT -ACGGAAAGAACCATCTGGGGATCT -ACGGAAAGAACCATCTGGAAGGCT -ACGGAAAGAACCATCTGGTCAACC -ACGGAAAGAACCATCTGGTGTTCC -ACGGAAAGAACCATCTGGATTCCC -ACGGAAAGAACCATCTGGTTCTCG -ACGGAAAGAACCATCTGGTAGACG -ACGGAAAGAACCATCTGGGTAACG -ACGGAAAGAACCATCTGGACTTCG -ACGGAAAGAACCATCTGGTACGCA -ACGGAAAGAACCATCTGGCTTGCA -ACGGAAAGAACCATCTGGCGAACA -ACGGAAAGAACCATCTGGCAGTCA -ACGGAAAGAACCATCTGGGATCCA -ACGGAAAGAACCATCTGGACGACA -ACGGAAAGAACCATCTGGAGCTCA -ACGGAAAGAACCATCTGGTCACGT -ACGGAAAGAACCATCTGGCGTAGT -ACGGAAAGAACCATCTGGGTCAGT -ACGGAAAGAACCATCTGGGAAGGT -ACGGAAAGAACCATCTGGAACCGT -ACGGAAAGAACCATCTGGTTGTGC -ACGGAAAGAACCATCTGGCTAAGC -ACGGAAAGAACCATCTGGACTAGC -ACGGAAAGAACCATCTGGAGATGC -ACGGAAAGAACCATCTGGTGAAGG -ACGGAAAGAACCATCTGGCAATGG -ACGGAAAGAACCATCTGGATGAGG -ACGGAAAGAACCATCTGGAATGGG -ACGGAAAGAACCATCTGGTCCTGA -ACGGAAAGAACCATCTGGTAGCGA -ACGGAAAGAACCATCTGGCACAGA -ACGGAAAGAACCATCTGGGCAAGA -ACGGAAAGAACCATCTGGGGTTGA -ACGGAAAGAACCATCTGGTCCGAT -ACGGAAAGAACCATCTGGTGGCAT -ACGGAAAGAACCATCTGGCGAGAT -ACGGAAAGAACCATCTGGTACCAC -ACGGAAAGAACCATCTGGCAGAAC -ACGGAAAGAACCATCTGGGTCTAC -ACGGAAAGAACCATCTGGACGTAC -ACGGAAAGAACCATCTGGAGTGAC -ACGGAAAGAACCATCTGGCTGTAG -ACGGAAAGAACCATCTGGCCTAAG -ACGGAAAGAACCATCTGGGTTCAG -ACGGAAAGAACCATCTGGGCATAG -ACGGAAAGAACCATCTGGGACAAG -ACGGAAAGAACCATCTGGAAGCAG -ACGGAAAGAACCATCTGGCGTCAA -ACGGAAAGAACCATCTGGGCTGAA -ACGGAAAGAACCATCTGGAGTACG -ACGGAAAGAACCATCTGGATCCGA -ACGGAAAGAACCATCTGGATGGGA -ACGGAAAGAACCATCTGGGTGCAA -ACGGAAAGAACCATCTGGGAGGAA -ACGGAAAGAACCATCTGGCAGGTA -ACGGAAAGAACCATCTGGGACTCT -ACGGAAAGAACCATCTGGAGTCCT -ACGGAAAGAACCATCTGGTAAGCC -ACGGAAAGAACCATCTGGATAGCC -ACGGAAAGAACCATCTGGTAACCG -ACGGAAAGAACCATCTGGATGCCA -ACGGAAAGAACCTTCCACGGAAAC -ACGGAAAGAACCTTCCACAACACC -ACGGAAAGAACCTTCCACATCGAG -ACGGAAAGAACCTTCCACCTCCTT -ACGGAAAGAACCTTCCACCCTGTT -ACGGAAAGAACCTTCCACCGGTTT -ACGGAAAGAACCTTCCACGTGGTT -ACGGAAAGAACCTTCCACGCCTTT -ACGGAAAGAACCTTCCACGGTCTT -ACGGAAAGAACCTTCCACACGCTT -ACGGAAAGAACCTTCCACAGCGTT -ACGGAAAGAACCTTCCACTTCGTC -ACGGAAAGAACCTTCCACTCTCTC -ACGGAAAGAACCTTCCACTGGATC -ACGGAAAGAACCTTCCACCACTTC -ACGGAAAGAACCTTCCACGTACTC -ACGGAAAGAACCTTCCACGATGTC -ACGGAAAGAACCTTCCACACAGTC -ACGGAAAGAACCTTCCACTTGCTG -ACGGAAAGAACCTTCCACTCCATG -ACGGAAAGAACCTTCCACTGTGTG -ACGGAAAGAACCTTCCACCTAGTG -ACGGAAAGAACCTTCCACCATCTG -ACGGAAAGAACCTTCCACGAGTTG -ACGGAAAGAACCTTCCACAGACTG -ACGGAAAGAACCTTCCACTCGGTA -ACGGAAAGAACCTTCCACTGCCTA -ACGGAAAGAACCTTCCACCCACTA -ACGGAAAGAACCTTCCACGGAGTA -ACGGAAAGAACCTTCCACTCGTCT -ACGGAAAGAACCTTCCACTGCACT -ACGGAAAGAACCTTCCACCTGACT -ACGGAAAGAACCTTCCACCAACCT -ACGGAAAGAACCTTCCACGCTACT -ACGGAAAGAACCTTCCACGGATCT -ACGGAAAGAACCTTCCACAAGGCT -ACGGAAAGAACCTTCCACTCAACC -ACGGAAAGAACCTTCCACTGTTCC -ACGGAAAGAACCTTCCACATTCCC -ACGGAAAGAACCTTCCACTTCTCG -ACGGAAAGAACCTTCCACTAGACG -ACGGAAAGAACCTTCCACGTAACG -ACGGAAAGAACCTTCCACACTTCG -ACGGAAAGAACCTTCCACTACGCA -ACGGAAAGAACCTTCCACCTTGCA -ACGGAAAGAACCTTCCACCGAACA -ACGGAAAGAACCTTCCACCAGTCA -ACGGAAAGAACCTTCCACGATCCA -ACGGAAAGAACCTTCCACACGACA -ACGGAAAGAACCTTCCACAGCTCA -ACGGAAAGAACCTTCCACTCACGT -ACGGAAAGAACCTTCCACCGTAGT -ACGGAAAGAACCTTCCACGTCAGT -ACGGAAAGAACCTTCCACGAAGGT -ACGGAAAGAACCTTCCACAACCGT -ACGGAAAGAACCTTCCACTTGTGC -ACGGAAAGAACCTTCCACCTAAGC -ACGGAAAGAACCTTCCACACTAGC -ACGGAAAGAACCTTCCACAGATGC -ACGGAAAGAACCTTCCACTGAAGG -ACGGAAAGAACCTTCCACCAATGG -ACGGAAAGAACCTTCCACATGAGG -ACGGAAAGAACCTTCCACAATGGG -ACGGAAAGAACCTTCCACTCCTGA -ACGGAAAGAACCTTCCACTAGCGA -ACGGAAAGAACCTTCCACCACAGA -ACGGAAAGAACCTTCCACGCAAGA -ACGGAAAGAACCTTCCACGGTTGA -ACGGAAAGAACCTTCCACTCCGAT -ACGGAAAGAACCTTCCACTGGCAT -ACGGAAAGAACCTTCCACCGAGAT -ACGGAAAGAACCTTCCACTACCAC -ACGGAAAGAACCTTCCACCAGAAC -ACGGAAAGAACCTTCCACGTCTAC -ACGGAAAGAACCTTCCACACGTAC -ACGGAAAGAACCTTCCACAGTGAC -ACGGAAAGAACCTTCCACCTGTAG -ACGGAAAGAACCTTCCACCCTAAG -ACGGAAAGAACCTTCCACGTTCAG -ACGGAAAGAACCTTCCACGCATAG -ACGGAAAGAACCTTCCACGACAAG -ACGGAAAGAACCTTCCACAAGCAG -ACGGAAAGAACCTTCCACCGTCAA -ACGGAAAGAACCTTCCACGCTGAA -ACGGAAAGAACCTTCCACAGTACG -ACGGAAAGAACCTTCCACATCCGA -ACGGAAAGAACCTTCCACATGGGA -ACGGAAAGAACCTTCCACGTGCAA -ACGGAAAGAACCTTCCACGAGGAA -ACGGAAAGAACCTTCCACCAGGTA -ACGGAAAGAACCTTCCACGACTCT -ACGGAAAGAACCTTCCACAGTCCT -ACGGAAAGAACCTTCCACTAAGCC -ACGGAAAGAACCTTCCACATAGCC -ACGGAAAGAACCTTCCACTAACCG -ACGGAAAGAACCTTCCACATGCCA -ACGGAAAGAACCCTCGTAGGAAAC -ACGGAAAGAACCCTCGTAAACACC -ACGGAAAGAACCCTCGTAATCGAG -ACGGAAAGAACCCTCGTACTCCTT -ACGGAAAGAACCCTCGTACCTGTT -ACGGAAAGAACCCTCGTACGGTTT -ACGGAAAGAACCCTCGTAGTGGTT -ACGGAAAGAACCCTCGTAGCCTTT -ACGGAAAGAACCCTCGTAGGTCTT -ACGGAAAGAACCCTCGTAACGCTT -ACGGAAAGAACCCTCGTAAGCGTT -ACGGAAAGAACCCTCGTATTCGTC -ACGGAAAGAACCCTCGTATCTCTC -ACGGAAAGAACCCTCGTATGGATC -ACGGAAAGAACCCTCGTACACTTC -ACGGAAAGAACCCTCGTAGTACTC -ACGGAAAGAACCCTCGTAGATGTC -ACGGAAAGAACCCTCGTAACAGTC -ACGGAAAGAACCCTCGTATTGCTG -ACGGAAAGAACCCTCGTATCCATG -ACGGAAAGAACCCTCGTATGTGTG -ACGGAAAGAACCCTCGTACTAGTG -ACGGAAAGAACCCTCGTACATCTG -ACGGAAAGAACCCTCGTAGAGTTG -ACGGAAAGAACCCTCGTAAGACTG -ACGGAAAGAACCCTCGTATCGGTA -ACGGAAAGAACCCTCGTATGCCTA -ACGGAAAGAACCCTCGTACCACTA -ACGGAAAGAACCCTCGTAGGAGTA -ACGGAAAGAACCCTCGTATCGTCT -ACGGAAAGAACCCTCGTATGCACT -ACGGAAAGAACCCTCGTACTGACT -ACGGAAAGAACCCTCGTACAACCT -ACGGAAAGAACCCTCGTAGCTACT -ACGGAAAGAACCCTCGTAGGATCT -ACGGAAAGAACCCTCGTAAAGGCT -ACGGAAAGAACCCTCGTATCAACC -ACGGAAAGAACCCTCGTATGTTCC -ACGGAAAGAACCCTCGTAATTCCC -ACGGAAAGAACCCTCGTATTCTCG -ACGGAAAGAACCCTCGTATAGACG -ACGGAAAGAACCCTCGTAGTAACG -ACGGAAAGAACCCTCGTAACTTCG -ACGGAAAGAACCCTCGTATACGCA -ACGGAAAGAACCCTCGTACTTGCA -ACGGAAAGAACCCTCGTACGAACA -ACGGAAAGAACCCTCGTACAGTCA -ACGGAAAGAACCCTCGTAGATCCA -ACGGAAAGAACCCTCGTAACGACA -ACGGAAAGAACCCTCGTAAGCTCA -ACGGAAAGAACCCTCGTATCACGT -ACGGAAAGAACCCTCGTACGTAGT -ACGGAAAGAACCCTCGTAGTCAGT -ACGGAAAGAACCCTCGTAGAAGGT -ACGGAAAGAACCCTCGTAAACCGT -ACGGAAAGAACCCTCGTATTGTGC -ACGGAAAGAACCCTCGTACTAAGC -ACGGAAAGAACCCTCGTAACTAGC -ACGGAAAGAACCCTCGTAAGATGC -ACGGAAAGAACCCTCGTATGAAGG -ACGGAAAGAACCCTCGTACAATGG -ACGGAAAGAACCCTCGTAATGAGG -ACGGAAAGAACCCTCGTAAATGGG -ACGGAAAGAACCCTCGTATCCTGA -ACGGAAAGAACCCTCGTATAGCGA -ACGGAAAGAACCCTCGTACACAGA -ACGGAAAGAACCCTCGTAGCAAGA -ACGGAAAGAACCCTCGTAGGTTGA -ACGGAAAGAACCCTCGTATCCGAT -ACGGAAAGAACCCTCGTATGGCAT -ACGGAAAGAACCCTCGTACGAGAT -ACGGAAAGAACCCTCGTATACCAC -ACGGAAAGAACCCTCGTACAGAAC -ACGGAAAGAACCCTCGTAGTCTAC -ACGGAAAGAACCCTCGTAACGTAC -ACGGAAAGAACCCTCGTAAGTGAC -ACGGAAAGAACCCTCGTACTGTAG -ACGGAAAGAACCCTCGTACCTAAG -ACGGAAAGAACCCTCGTAGTTCAG -ACGGAAAGAACCCTCGTAGCATAG -ACGGAAAGAACCCTCGTAGACAAG -ACGGAAAGAACCCTCGTAAAGCAG -ACGGAAAGAACCCTCGTACGTCAA -ACGGAAAGAACCCTCGTAGCTGAA -ACGGAAAGAACCCTCGTAAGTACG -ACGGAAAGAACCCTCGTAATCCGA -ACGGAAAGAACCCTCGTAATGGGA -ACGGAAAGAACCCTCGTAGTGCAA -ACGGAAAGAACCCTCGTAGAGGAA -ACGGAAAGAACCCTCGTACAGGTA -ACGGAAAGAACCCTCGTAGACTCT -ACGGAAAGAACCCTCGTAAGTCCT -ACGGAAAGAACCCTCGTATAAGCC -ACGGAAAGAACCCTCGTAATAGCC -ACGGAAAGAACCCTCGTATAACCG -ACGGAAAGAACCCTCGTAATGCCA -ACGGAAAGAACCGTCGATGGAAAC -ACGGAAAGAACCGTCGATAACACC -ACGGAAAGAACCGTCGATATCGAG -ACGGAAAGAACCGTCGATCTCCTT -ACGGAAAGAACCGTCGATCCTGTT -ACGGAAAGAACCGTCGATCGGTTT -ACGGAAAGAACCGTCGATGTGGTT -ACGGAAAGAACCGTCGATGCCTTT -ACGGAAAGAACCGTCGATGGTCTT -ACGGAAAGAACCGTCGATACGCTT -ACGGAAAGAACCGTCGATAGCGTT -ACGGAAAGAACCGTCGATTTCGTC -ACGGAAAGAACCGTCGATTCTCTC -ACGGAAAGAACCGTCGATTGGATC -ACGGAAAGAACCGTCGATCACTTC -ACGGAAAGAACCGTCGATGTACTC -ACGGAAAGAACCGTCGATGATGTC -ACGGAAAGAACCGTCGATACAGTC -ACGGAAAGAACCGTCGATTTGCTG -ACGGAAAGAACCGTCGATTCCATG -ACGGAAAGAACCGTCGATTGTGTG -ACGGAAAGAACCGTCGATCTAGTG -ACGGAAAGAACCGTCGATCATCTG -ACGGAAAGAACCGTCGATGAGTTG -ACGGAAAGAACCGTCGATAGACTG -ACGGAAAGAACCGTCGATTCGGTA -ACGGAAAGAACCGTCGATTGCCTA -ACGGAAAGAACCGTCGATCCACTA -ACGGAAAGAACCGTCGATGGAGTA -ACGGAAAGAACCGTCGATTCGTCT -ACGGAAAGAACCGTCGATTGCACT -ACGGAAAGAACCGTCGATCTGACT -ACGGAAAGAACCGTCGATCAACCT -ACGGAAAGAACCGTCGATGCTACT -ACGGAAAGAACCGTCGATGGATCT -ACGGAAAGAACCGTCGATAAGGCT -ACGGAAAGAACCGTCGATTCAACC -ACGGAAAGAACCGTCGATTGTTCC -ACGGAAAGAACCGTCGATATTCCC -ACGGAAAGAACCGTCGATTTCTCG -ACGGAAAGAACCGTCGATTAGACG -ACGGAAAGAACCGTCGATGTAACG -ACGGAAAGAACCGTCGATACTTCG -ACGGAAAGAACCGTCGATTACGCA -ACGGAAAGAACCGTCGATCTTGCA -ACGGAAAGAACCGTCGATCGAACA -ACGGAAAGAACCGTCGATCAGTCA -ACGGAAAGAACCGTCGATGATCCA -ACGGAAAGAACCGTCGATACGACA -ACGGAAAGAACCGTCGATAGCTCA -ACGGAAAGAACCGTCGATTCACGT -ACGGAAAGAACCGTCGATCGTAGT -ACGGAAAGAACCGTCGATGTCAGT -ACGGAAAGAACCGTCGATGAAGGT -ACGGAAAGAACCGTCGATAACCGT -ACGGAAAGAACCGTCGATTTGTGC -ACGGAAAGAACCGTCGATCTAAGC -ACGGAAAGAACCGTCGATACTAGC -ACGGAAAGAACCGTCGATAGATGC -ACGGAAAGAACCGTCGATTGAAGG -ACGGAAAGAACCGTCGATCAATGG -ACGGAAAGAACCGTCGATATGAGG -ACGGAAAGAACCGTCGATAATGGG -ACGGAAAGAACCGTCGATTCCTGA -ACGGAAAGAACCGTCGATTAGCGA -ACGGAAAGAACCGTCGATCACAGA -ACGGAAAGAACCGTCGATGCAAGA -ACGGAAAGAACCGTCGATGGTTGA -ACGGAAAGAACCGTCGATTCCGAT -ACGGAAAGAACCGTCGATTGGCAT -ACGGAAAGAACCGTCGATCGAGAT -ACGGAAAGAACCGTCGATTACCAC -ACGGAAAGAACCGTCGATCAGAAC -ACGGAAAGAACCGTCGATGTCTAC -ACGGAAAGAACCGTCGATACGTAC -ACGGAAAGAACCGTCGATAGTGAC -ACGGAAAGAACCGTCGATCTGTAG -ACGGAAAGAACCGTCGATCCTAAG -ACGGAAAGAACCGTCGATGTTCAG -ACGGAAAGAACCGTCGATGCATAG -ACGGAAAGAACCGTCGATGACAAG -ACGGAAAGAACCGTCGATAAGCAG -ACGGAAAGAACCGTCGATCGTCAA -ACGGAAAGAACCGTCGATGCTGAA -ACGGAAAGAACCGTCGATAGTACG -ACGGAAAGAACCGTCGATATCCGA -ACGGAAAGAACCGTCGATATGGGA -ACGGAAAGAACCGTCGATGTGCAA -ACGGAAAGAACCGTCGATGAGGAA -ACGGAAAGAACCGTCGATCAGGTA -ACGGAAAGAACCGTCGATGACTCT -ACGGAAAGAACCGTCGATAGTCCT -ACGGAAAGAACCGTCGATTAAGCC -ACGGAAAGAACCGTCGATATAGCC -ACGGAAAGAACCGTCGATTAACCG -ACGGAAAGAACCGTCGATATGCCA -ACGGAAAGAACCGTCACAGGAAAC -ACGGAAAGAACCGTCACAAACACC -ACGGAAAGAACCGTCACAATCGAG -ACGGAAAGAACCGTCACACTCCTT -ACGGAAAGAACCGTCACACCTGTT -ACGGAAAGAACCGTCACACGGTTT -ACGGAAAGAACCGTCACAGTGGTT -ACGGAAAGAACCGTCACAGCCTTT -ACGGAAAGAACCGTCACAGGTCTT -ACGGAAAGAACCGTCACAACGCTT -ACGGAAAGAACCGTCACAAGCGTT -ACGGAAAGAACCGTCACATTCGTC -ACGGAAAGAACCGTCACATCTCTC -ACGGAAAGAACCGTCACATGGATC -ACGGAAAGAACCGTCACACACTTC -ACGGAAAGAACCGTCACAGTACTC -ACGGAAAGAACCGTCACAGATGTC -ACGGAAAGAACCGTCACAACAGTC -ACGGAAAGAACCGTCACATTGCTG -ACGGAAAGAACCGTCACATCCATG -ACGGAAAGAACCGTCACATGTGTG -ACGGAAAGAACCGTCACACTAGTG -ACGGAAAGAACCGTCACACATCTG -ACGGAAAGAACCGTCACAGAGTTG -ACGGAAAGAACCGTCACAAGACTG -ACGGAAAGAACCGTCACATCGGTA -ACGGAAAGAACCGTCACATGCCTA -ACGGAAAGAACCGTCACACCACTA -ACGGAAAGAACCGTCACAGGAGTA -ACGGAAAGAACCGTCACATCGTCT -ACGGAAAGAACCGTCACATGCACT -ACGGAAAGAACCGTCACACTGACT -ACGGAAAGAACCGTCACACAACCT -ACGGAAAGAACCGTCACAGCTACT -ACGGAAAGAACCGTCACAGGATCT -ACGGAAAGAACCGTCACAAAGGCT -ACGGAAAGAACCGTCACATCAACC -ACGGAAAGAACCGTCACATGTTCC -ACGGAAAGAACCGTCACAATTCCC -ACGGAAAGAACCGTCACATTCTCG -ACGGAAAGAACCGTCACATAGACG -ACGGAAAGAACCGTCACAGTAACG -ACGGAAAGAACCGTCACAACTTCG -ACGGAAAGAACCGTCACATACGCA -ACGGAAAGAACCGTCACACTTGCA -ACGGAAAGAACCGTCACACGAACA -ACGGAAAGAACCGTCACACAGTCA -ACGGAAAGAACCGTCACAGATCCA -ACGGAAAGAACCGTCACAACGACA -ACGGAAAGAACCGTCACAAGCTCA -ACGGAAAGAACCGTCACATCACGT -ACGGAAAGAACCGTCACACGTAGT -ACGGAAAGAACCGTCACAGTCAGT -ACGGAAAGAACCGTCACAGAAGGT -ACGGAAAGAACCGTCACAAACCGT -ACGGAAAGAACCGTCACATTGTGC -ACGGAAAGAACCGTCACACTAAGC -ACGGAAAGAACCGTCACAACTAGC -ACGGAAAGAACCGTCACAAGATGC -ACGGAAAGAACCGTCACATGAAGG -ACGGAAAGAACCGTCACACAATGG -ACGGAAAGAACCGTCACAATGAGG -ACGGAAAGAACCGTCACAAATGGG -ACGGAAAGAACCGTCACATCCTGA -ACGGAAAGAACCGTCACATAGCGA -ACGGAAAGAACCGTCACACACAGA -ACGGAAAGAACCGTCACAGCAAGA -ACGGAAAGAACCGTCACAGGTTGA -ACGGAAAGAACCGTCACATCCGAT -ACGGAAAGAACCGTCACATGGCAT -ACGGAAAGAACCGTCACACGAGAT -ACGGAAAGAACCGTCACATACCAC -ACGGAAAGAACCGTCACACAGAAC -ACGGAAAGAACCGTCACAGTCTAC -ACGGAAAGAACCGTCACAACGTAC -ACGGAAAGAACCGTCACAAGTGAC -ACGGAAAGAACCGTCACACTGTAG -ACGGAAAGAACCGTCACACCTAAG -ACGGAAAGAACCGTCACAGTTCAG -ACGGAAAGAACCGTCACAGCATAG -ACGGAAAGAACCGTCACAGACAAG -ACGGAAAGAACCGTCACAAAGCAG -ACGGAAAGAACCGTCACACGTCAA -ACGGAAAGAACCGTCACAGCTGAA -ACGGAAAGAACCGTCACAAGTACG -ACGGAAAGAACCGTCACAATCCGA -ACGGAAAGAACCGTCACAATGGGA -ACGGAAAGAACCGTCACAGTGCAA -ACGGAAAGAACCGTCACAGAGGAA -ACGGAAAGAACCGTCACACAGGTA -ACGGAAAGAACCGTCACAGACTCT -ACGGAAAGAACCGTCACAAGTCCT -ACGGAAAGAACCGTCACATAAGCC -ACGGAAAGAACCGTCACAATAGCC -ACGGAAAGAACCGTCACATAACCG -ACGGAAAGAACCGTCACAATGCCA -ACGGAAAGAACCCTGTTGGGAAAC -ACGGAAAGAACCCTGTTGAACACC -ACGGAAAGAACCCTGTTGATCGAG -ACGGAAAGAACCCTGTTGCTCCTT -ACGGAAAGAACCCTGTTGCCTGTT -ACGGAAAGAACCCTGTTGCGGTTT -ACGGAAAGAACCCTGTTGGTGGTT -ACGGAAAGAACCCTGTTGGCCTTT -ACGGAAAGAACCCTGTTGGGTCTT -ACGGAAAGAACCCTGTTGACGCTT -ACGGAAAGAACCCTGTTGAGCGTT -ACGGAAAGAACCCTGTTGTTCGTC -ACGGAAAGAACCCTGTTGTCTCTC -ACGGAAAGAACCCTGTTGTGGATC -ACGGAAAGAACCCTGTTGCACTTC -ACGGAAAGAACCCTGTTGGTACTC -ACGGAAAGAACCCTGTTGGATGTC -ACGGAAAGAACCCTGTTGACAGTC -ACGGAAAGAACCCTGTTGTTGCTG -ACGGAAAGAACCCTGTTGTCCATG -ACGGAAAGAACCCTGTTGTGTGTG -ACGGAAAGAACCCTGTTGCTAGTG -ACGGAAAGAACCCTGTTGCATCTG -ACGGAAAGAACCCTGTTGGAGTTG -ACGGAAAGAACCCTGTTGAGACTG -ACGGAAAGAACCCTGTTGTCGGTA -ACGGAAAGAACCCTGTTGTGCCTA -ACGGAAAGAACCCTGTTGCCACTA -ACGGAAAGAACCCTGTTGGGAGTA -ACGGAAAGAACCCTGTTGTCGTCT -ACGGAAAGAACCCTGTTGTGCACT -ACGGAAAGAACCCTGTTGCTGACT -ACGGAAAGAACCCTGTTGCAACCT -ACGGAAAGAACCCTGTTGGCTACT -ACGGAAAGAACCCTGTTGGGATCT -ACGGAAAGAACCCTGTTGAAGGCT -ACGGAAAGAACCCTGTTGTCAACC -ACGGAAAGAACCCTGTTGTGTTCC -ACGGAAAGAACCCTGTTGATTCCC -ACGGAAAGAACCCTGTTGTTCTCG -ACGGAAAGAACCCTGTTGTAGACG -ACGGAAAGAACCCTGTTGGTAACG -ACGGAAAGAACCCTGTTGACTTCG -ACGGAAAGAACCCTGTTGTACGCA -ACGGAAAGAACCCTGTTGCTTGCA -ACGGAAAGAACCCTGTTGCGAACA -ACGGAAAGAACCCTGTTGCAGTCA -ACGGAAAGAACCCTGTTGGATCCA -ACGGAAAGAACCCTGTTGACGACA -ACGGAAAGAACCCTGTTGAGCTCA -ACGGAAAGAACCCTGTTGTCACGT -ACGGAAAGAACCCTGTTGCGTAGT -ACGGAAAGAACCCTGTTGGTCAGT -ACGGAAAGAACCCTGTTGGAAGGT -ACGGAAAGAACCCTGTTGAACCGT -ACGGAAAGAACCCTGTTGTTGTGC -ACGGAAAGAACCCTGTTGCTAAGC -ACGGAAAGAACCCTGTTGACTAGC -ACGGAAAGAACCCTGTTGAGATGC -ACGGAAAGAACCCTGTTGTGAAGG -ACGGAAAGAACCCTGTTGCAATGG -ACGGAAAGAACCCTGTTGATGAGG -ACGGAAAGAACCCTGTTGAATGGG -ACGGAAAGAACCCTGTTGTCCTGA -ACGGAAAGAACCCTGTTGTAGCGA -ACGGAAAGAACCCTGTTGCACAGA -ACGGAAAGAACCCTGTTGGCAAGA -ACGGAAAGAACCCTGTTGGGTTGA -ACGGAAAGAACCCTGTTGTCCGAT -ACGGAAAGAACCCTGTTGTGGCAT -ACGGAAAGAACCCTGTTGCGAGAT -ACGGAAAGAACCCTGTTGTACCAC -ACGGAAAGAACCCTGTTGCAGAAC -ACGGAAAGAACCCTGTTGGTCTAC -ACGGAAAGAACCCTGTTGACGTAC -ACGGAAAGAACCCTGTTGAGTGAC -ACGGAAAGAACCCTGTTGCTGTAG -ACGGAAAGAACCCTGTTGCCTAAG -ACGGAAAGAACCCTGTTGGTTCAG -ACGGAAAGAACCCTGTTGGCATAG -ACGGAAAGAACCCTGTTGGACAAG -ACGGAAAGAACCCTGTTGAAGCAG -ACGGAAAGAACCCTGTTGCGTCAA -ACGGAAAGAACCCTGTTGGCTGAA -ACGGAAAGAACCCTGTTGAGTACG -ACGGAAAGAACCCTGTTGATCCGA -ACGGAAAGAACCCTGTTGATGGGA -ACGGAAAGAACCCTGTTGGTGCAA -ACGGAAAGAACCCTGTTGGAGGAA -ACGGAAAGAACCCTGTTGCAGGTA -ACGGAAAGAACCCTGTTGGACTCT -ACGGAAAGAACCCTGTTGAGTCCT -ACGGAAAGAACCCTGTTGTAAGCC -ACGGAAAGAACCCTGTTGATAGCC -ACGGAAAGAACCCTGTTGTAACCG -ACGGAAAGAACCCTGTTGATGCCA -ACGGAAAGAACCATGTCCGGAAAC -ACGGAAAGAACCATGTCCAACACC -ACGGAAAGAACCATGTCCATCGAG -ACGGAAAGAACCATGTCCCTCCTT -ACGGAAAGAACCATGTCCCCTGTT -ACGGAAAGAACCATGTCCCGGTTT -ACGGAAAGAACCATGTCCGTGGTT -ACGGAAAGAACCATGTCCGCCTTT -ACGGAAAGAACCATGTCCGGTCTT -ACGGAAAGAACCATGTCCACGCTT -ACGGAAAGAACCATGTCCAGCGTT -ACGGAAAGAACCATGTCCTTCGTC -ACGGAAAGAACCATGTCCTCTCTC -ACGGAAAGAACCATGTCCTGGATC -ACGGAAAGAACCATGTCCCACTTC -ACGGAAAGAACCATGTCCGTACTC -ACGGAAAGAACCATGTCCGATGTC -ACGGAAAGAACCATGTCCACAGTC -ACGGAAAGAACCATGTCCTTGCTG -ACGGAAAGAACCATGTCCTCCATG -ACGGAAAGAACCATGTCCTGTGTG -ACGGAAAGAACCATGTCCCTAGTG -ACGGAAAGAACCATGTCCCATCTG -ACGGAAAGAACCATGTCCGAGTTG -ACGGAAAGAACCATGTCCAGACTG -ACGGAAAGAACCATGTCCTCGGTA -ACGGAAAGAACCATGTCCTGCCTA -ACGGAAAGAACCATGTCCCCACTA -ACGGAAAGAACCATGTCCGGAGTA -ACGGAAAGAACCATGTCCTCGTCT -ACGGAAAGAACCATGTCCTGCACT -ACGGAAAGAACCATGTCCCTGACT -ACGGAAAGAACCATGTCCCAACCT -ACGGAAAGAACCATGTCCGCTACT -ACGGAAAGAACCATGTCCGGATCT -ACGGAAAGAACCATGTCCAAGGCT -ACGGAAAGAACCATGTCCTCAACC -ACGGAAAGAACCATGTCCTGTTCC -ACGGAAAGAACCATGTCCATTCCC -ACGGAAAGAACCATGTCCTTCTCG -ACGGAAAGAACCATGTCCTAGACG -ACGGAAAGAACCATGTCCGTAACG -ACGGAAAGAACCATGTCCACTTCG -ACGGAAAGAACCATGTCCTACGCA -ACGGAAAGAACCATGTCCCTTGCA -ACGGAAAGAACCATGTCCCGAACA -ACGGAAAGAACCATGTCCCAGTCA -ACGGAAAGAACCATGTCCGATCCA -ACGGAAAGAACCATGTCCACGACA -ACGGAAAGAACCATGTCCAGCTCA -ACGGAAAGAACCATGTCCTCACGT -ACGGAAAGAACCATGTCCCGTAGT -ACGGAAAGAACCATGTCCGTCAGT -ACGGAAAGAACCATGTCCGAAGGT -ACGGAAAGAACCATGTCCAACCGT -ACGGAAAGAACCATGTCCTTGTGC -ACGGAAAGAACCATGTCCCTAAGC -ACGGAAAGAACCATGTCCACTAGC -ACGGAAAGAACCATGTCCAGATGC -ACGGAAAGAACCATGTCCTGAAGG -ACGGAAAGAACCATGTCCCAATGG -ACGGAAAGAACCATGTCCATGAGG -ACGGAAAGAACCATGTCCAATGGG -ACGGAAAGAACCATGTCCTCCTGA -ACGGAAAGAACCATGTCCTAGCGA -ACGGAAAGAACCATGTCCCACAGA -ACGGAAAGAACCATGTCCGCAAGA -ACGGAAAGAACCATGTCCGGTTGA -ACGGAAAGAACCATGTCCTCCGAT -ACGGAAAGAACCATGTCCTGGCAT -ACGGAAAGAACCATGTCCCGAGAT -ACGGAAAGAACCATGTCCTACCAC -ACGGAAAGAACCATGTCCCAGAAC -ACGGAAAGAACCATGTCCGTCTAC -ACGGAAAGAACCATGTCCACGTAC -ACGGAAAGAACCATGTCCAGTGAC -ACGGAAAGAACCATGTCCCTGTAG -ACGGAAAGAACCATGTCCCCTAAG -ACGGAAAGAACCATGTCCGTTCAG -ACGGAAAGAACCATGTCCGCATAG -ACGGAAAGAACCATGTCCGACAAG -ACGGAAAGAACCATGTCCAAGCAG -ACGGAAAGAACCATGTCCCGTCAA -ACGGAAAGAACCATGTCCGCTGAA -ACGGAAAGAACCATGTCCAGTACG -ACGGAAAGAACCATGTCCATCCGA -ACGGAAAGAACCATGTCCATGGGA -ACGGAAAGAACCATGTCCGTGCAA -ACGGAAAGAACCATGTCCGAGGAA -ACGGAAAGAACCATGTCCCAGGTA -ACGGAAAGAACCATGTCCGACTCT -ACGGAAAGAACCATGTCCAGTCCT -ACGGAAAGAACCATGTCCTAAGCC -ACGGAAAGAACCATGTCCATAGCC -ACGGAAAGAACCATGTCCTAACCG -ACGGAAAGAACCATGTCCATGCCA -ACGGAAAGAACCGTGTGTGGAAAC -ACGGAAAGAACCGTGTGTAACACC -ACGGAAAGAACCGTGTGTATCGAG -ACGGAAAGAACCGTGTGTCTCCTT -ACGGAAAGAACCGTGTGTCCTGTT -ACGGAAAGAACCGTGTGTCGGTTT -ACGGAAAGAACCGTGTGTGTGGTT -ACGGAAAGAACCGTGTGTGCCTTT -ACGGAAAGAACCGTGTGTGGTCTT -ACGGAAAGAACCGTGTGTACGCTT -ACGGAAAGAACCGTGTGTAGCGTT -ACGGAAAGAACCGTGTGTTTCGTC -ACGGAAAGAACCGTGTGTTCTCTC -ACGGAAAGAACCGTGTGTTGGATC -ACGGAAAGAACCGTGTGTCACTTC -ACGGAAAGAACCGTGTGTGTACTC -ACGGAAAGAACCGTGTGTGATGTC -ACGGAAAGAACCGTGTGTACAGTC -ACGGAAAGAACCGTGTGTTTGCTG -ACGGAAAGAACCGTGTGTTCCATG -ACGGAAAGAACCGTGTGTTGTGTG -ACGGAAAGAACCGTGTGTCTAGTG -ACGGAAAGAACCGTGTGTCATCTG -ACGGAAAGAACCGTGTGTGAGTTG -ACGGAAAGAACCGTGTGTAGACTG -ACGGAAAGAACCGTGTGTTCGGTA -ACGGAAAGAACCGTGTGTTGCCTA -ACGGAAAGAACCGTGTGTCCACTA -ACGGAAAGAACCGTGTGTGGAGTA -ACGGAAAGAACCGTGTGTTCGTCT -ACGGAAAGAACCGTGTGTTGCACT -ACGGAAAGAACCGTGTGTCTGACT -ACGGAAAGAACCGTGTGTCAACCT -ACGGAAAGAACCGTGTGTGCTACT -ACGGAAAGAACCGTGTGTGGATCT -ACGGAAAGAACCGTGTGTAAGGCT -ACGGAAAGAACCGTGTGTTCAACC -ACGGAAAGAACCGTGTGTTGTTCC -ACGGAAAGAACCGTGTGTATTCCC -ACGGAAAGAACCGTGTGTTTCTCG -ACGGAAAGAACCGTGTGTTAGACG -ACGGAAAGAACCGTGTGTGTAACG -ACGGAAAGAACCGTGTGTACTTCG -ACGGAAAGAACCGTGTGTTACGCA -ACGGAAAGAACCGTGTGTCTTGCA -ACGGAAAGAACCGTGTGTCGAACA -ACGGAAAGAACCGTGTGTCAGTCA -ACGGAAAGAACCGTGTGTGATCCA -ACGGAAAGAACCGTGTGTACGACA -ACGGAAAGAACCGTGTGTAGCTCA -ACGGAAAGAACCGTGTGTTCACGT -ACGGAAAGAACCGTGTGTCGTAGT -ACGGAAAGAACCGTGTGTGTCAGT -ACGGAAAGAACCGTGTGTGAAGGT -ACGGAAAGAACCGTGTGTAACCGT -ACGGAAAGAACCGTGTGTTTGTGC -ACGGAAAGAACCGTGTGTCTAAGC -ACGGAAAGAACCGTGTGTACTAGC -ACGGAAAGAACCGTGTGTAGATGC -ACGGAAAGAACCGTGTGTTGAAGG -ACGGAAAGAACCGTGTGTCAATGG -ACGGAAAGAACCGTGTGTATGAGG -ACGGAAAGAACCGTGTGTAATGGG -ACGGAAAGAACCGTGTGTTCCTGA -ACGGAAAGAACCGTGTGTTAGCGA -ACGGAAAGAACCGTGTGTCACAGA -ACGGAAAGAACCGTGTGTGCAAGA -ACGGAAAGAACCGTGTGTGGTTGA -ACGGAAAGAACCGTGTGTTCCGAT -ACGGAAAGAACCGTGTGTTGGCAT -ACGGAAAGAACCGTGTGTCGAGAT -ACGGAAAGAACCGTGTGTTACCAC -ACGGAAAGAACCGTGTGTCAGAAC -ACGGAAAGAACCGTGTGTGTCTAC -ACGGAAAGAACCGTGTGTACGTAC -ACGGAAAGAACCGTGTGTAGTGAC -ACGGAAAGAACCGTGTGTCTGTAG -ACGGAAAGAACCGTGTGTCCTAAG -ACGGAAAGAACCGTGTGTGTTCAG -ACGGAAAGAACCGTGTGTGCATAG -ACGGAAAGAACCGTGTGTGACAAG -ACGGAAAGAACCGTGTGTAAGCAG -ACGGAAAGAACCGTGTGTCGTCAA -ACGGAAAGAACCGTGTGTGCTGAA -ACGGAAAGAACCGTGTGTAGTACG -ACGGAAAGAACCGTGTGTATCCGA -ACGGAAAGAACCGTGTGTATGGGA -ACGGAAAGAACCGTGTGTGTGCAA -ACGGAAAGAACCGTGTGTGAGGAA -ACGGAAAGAACCGTGTGTCAGGTA -ACGGAAAGAACCGTGTGTGACTCT -ACGGAAAGAACCGTGTGTAGTCCT -ACGGAAAGAACCGTGTGTTAAGCC -ACGGAAAGAACCGTGTGTATAGCC -ACGGAAAGAACCGTGTGTTAACCG -ACGGAAAGAACCGTGTGTATGCCA -ACGGAAAGAACCGTGCTAGGAAAC -ACGGAAAGAACCGTGCTAAACACC -ACGGAAAGAACCGTGCTAATCGAG -ACGGAAAGAACCGTGCTACTCCTT -ACGGAAAGAACCGTGCTACCTGTT -ACGGAAAGAACCGTGCTACGGTTT -ACGGAAAGAACCGTGCTAGTGGTT -ACGGAAAGAACCGTGCTAGCCTTT -ACGGAAAGAACCGTGCTAGGTCTT -ACGGAAAGAACCGTGCTAACGCTT -ACGGAAAGAACCGTGCTAAGCGTT -ACGGAAAGAACCGTGCTATTCGTC -ACGGAAAGAACCGTGCTATCTCTC -ACGGAAAGAACCGTGCTATGGATC -ACGGAAAGAACCGTGCTACACTTC -ACGGAAAGAACCGTGCTAGTACTC -ACGGAAAGAACCGTGCTAGATGTC -ACGGAAAGAACCGTGCTAACAGTC -ACGGAAAGAACCGTGCTATTGCTG -ACGGAAAGAACCGTGCTATCCATG -ACGGAAAGAACCGTGCTATGTGTG -ACGGAAAGAACCGTGCTACTAGTG -ACGGAAAGAACCGTGCTACATCTG -ACGGAAAGAACCGTGCTAGAGTTG -ACGGAAAGAACCGTGCTAAGACTG -ACGGAAAGAACCGTGCTATCGGTA -ACGGAAAGAACCGTGCTATGCCTA -ACGGAAAGAACCGTGCTACCACTA -ACGGAAAGAACCGTGCTAGGAGTA -ACGGAAAGAACCGTGCTATCGTCT -ACGGAAAGAACCGTGCTATGCACT -ACGGAAAGAACCGTGCTACTGACT -ACGGAAAGAACCGTGCTACAACCT -ACGGAAAGAACCGTGCTAGCTACT -ACGGAAAGAACCGTGCTAGGATCT -ACGGAAAGAACCGTGCTAAAGGCT -ACGGAAAGAACCGTGCTATCAACC -ACGGAAAGAACCGTGCTATGTTCC -ACGGAAAGAACCGTGCTAATTCCC -ACGGAAAGAACCGTGCTATTCTCG -ACGGAAAGAACCGTGCTATAGACG -ACGGAAAGAACCGTGCTAGTAACG -ACGGAAAGAACCGTGCTAACTTCG -ACGGAAAGAACCGTGCTATACGCA -ACGGAAAGAACCGTGCTACTTGCA -ACGGAAAGAACCGTGCTACGAACA -ACGGAAAGAACCGTGCTACAGTCA -ACGGAAAGAACCGTGCTAGATCCA -ACGGAAAGAACCGTGCTAACGACA -ACGGAAAGAACCGTGCTAAGCTCA -ACGGAAAGAACCGTGCTATCACGT -ACGGAAAGAACCGTGCTACGTAGT -ACGGAAAGAACCGTGCTAGTCAGT -ACGGAAAGAACCGTGCTAGAAGGT -ACGGAAAGAACCGTGCTAAACCGT -ACGGAAAGAACCGTGCTATTGTGC -ACGGAAAGAACCGTGCTACTAAGC -ACGGAAAGAACCGTGCTAACTAGC -ACGGAAAGAACCGTGCTAAGATGC -ACGGAAAGAACCGTGCTATGAAGG -ACGGAAAGAACCGTGCTACAATGG -ACGGAAAGAACCGTGCTAATGAGG -ACGGAAAGAACCGTGCTAAATGGG -ACGGAAAGAACCGTGCTATCCTGA -ACGGAAAGAACCGTGCTATAGCGA -ACGGAAAGAACCGTGCTACACAGA -ACGGAAAGAACCGTGCTAGCAAGA -ACGGAAAGAACCGTGCTAGGTTGA -ACGGAAAGAACCGTGCTATCCGAT -ACGGAAAGAACCGTGCTATGGCAT -ACGGAAAGAACCGTGCTACGAGAT -ACGGAAAGAACCGTGCTATACCAC -ACGGAAAGAACCGTGCTACAGAAC -ACGGAAAGAACCGTGCTAGTCTAC -ACGGAAAGAACCGTGCTAACGTAC -ACGGAAAGAACCGTGCTAAGTGAC -ACGGAAAGAACCGTGCTACTGTAG -ACGGAAAGAACCGTGCTACCTAAG -ACGGAAAGAACCGTGCTAGTTCAG -ACGGAAAGAACCGTGCTAGCATAG -ACGGAAAGAACCGTGCTAGACAAG -ACGGAAAGAACCGTGCTAAAGCAG -ACGGAAAGAACCGTGCTACGTCAA -ACGGAAAGAACCGTGCTAGCTGAA -ACGGAAAGAACCGTGCTAAGTACG -ACGGAAAGAACCGTGCTAATCCGA -ACGGAAAGAACCGTGCTAATGGGA -ACGGAAAGAACCGTGCTAGTGCAA -ACGGAAAGAACCGTGCTAGAGGAA -ACGGAAAGAACCGTGCTACAGGTA -ACGGAAAGAACCGTGCTAGACTCT -ACGGAAAGAACCGTGCTAAGTCCT -ACGGAAAGAACCGTGCTATAAGCC -ACGGAAAGAACCGTGCTAATAGCC -ACGGAAAGAACCGTGCTATAACCG -ACGGAAAGAACCGTGCTAATGCCA -ACGGAAAGAACCCTGCATGGAAAC -ACGGAAAGAACCCTGCATAACACC -ACGGAAAGAACCCTGCATATCGAG -ACGGAAAGAACCCTGCATCTCCTT -ACGGAAAGAACCCTGCATCCTGTT -ACGGAAAGAACCCTGCATCGGTTT -ACGGAAAGAACCCTGCATGTGGTT -ACGGAAAGAACCCTGCATGCCTTT -ACGGAAAGAACCCTGCATGGTCTT -ACGGAAAGAACCCTGCATACGCTT -ACGGAAAGAACCCTGCATAGCGTT -ACGGAAAGAACCCTGCATTTCGTC -ACGGAAAGAACCCTGCATTCTCTC -ACGGAAAGAACCCTGCATTGGATC -ACGGAAAGAACCCTGCATCACTTC -ACGGAAAGAACCCTGCATGTACTC -ACGGAAAGAACCCTGCATGATGTC -ACGGAAAGAACCCTGCATACAGTC -ACGGAAAGAACCCTGCATTTGCTG -ACGGAAAGAACCCTGCATTCCATG -ACGGAAAGAACCCTGCATTGTGTG -ACGGAAAGAACCCTGCATCTAGTG -ACGGAAAGAACCCTGCATCATCTG -ACGGAAAGAACCCTGCATGAGTTG -ACGGAAAGAACCCTGCATAGACTG -ACGGAAAGAACCCTGCATTCGGTA -ACGGAAAGAACCCTGCATTGCCTA -ACGGAAAGAACCCTGCATCCACTA -ACGGAAAGAACCCTGCATGGAGTA -ACGGAAAGAACCCTGCATTCGTCT -ACGGAAAGAACCCTGCATTGCACT -ACGGAAAGAACCCTGCATCTGACT -ACGGAAAGAACCCTGCATCAACCT -ACGGAAAGAACCCTGCATGCTACT -ACGGAAAGAACCCTGCATGGATCT -ACGGAAAGAACCCTGCATAAGGCT -ACGGAAAGAACCCTGCATTCAACC -ACGGAAAGAACCCTGCATTGTTCC -ACGGAAAGAACCCTGCATATTCCC -ACGGAAAGAACCCTGCATTTCTCG -ACGGAAAGAACCCTGCATTAGACG -ACGGAAAGAACCCTGCATGTAACG -ACGGAAAGAACCCTGCATACTTCG -ACGGAAAGAACCCTGCATTACGCA -ACGGAAAGAACCCTGCATCTTGCA -ACGGAAAGAACCCTGCATCGAACA -ACGGAAAGAACCCTGCATCAGTCA -ACGGAAAGAACCCTGCATGATCCA -ACGGAAAGAACCCTGCATACGACA -ACGGAAAGAACCCTGCATAGCTCA -ACGGAAAGAACCCTGCATTCACGT -ACGGAAAGAACCCTGCATCGTAGT -ACGGAAAGAACCCTGCATGTCAGT -ACGGAAAGAACCCTGCATGAAGGT -ACGGAAAGAACCCTGCATAACCGT -ACGGAAAGAACCCTGCATTTGTGC -ACGGAAAGAACCCTGCATCTAAGC -ACGGAAAGAACCCTGCATACTAGC -ACGGAAAGAACCCTGCATAGATGC -ACGGAAAGAACCCTGCATTGAAGG -ACGGAAAGAACCCTGCATCAATGG -ACGGAAAGAACCCTGCATATGAGG -ACGGAAAGAACCCTGCATAATGGG -ACGGAAAGAACCCTGCATTCCTGA -ACGGAAAGAACCCTGCATTAGCGA -ACGGAAAGAACCCTGCATCACAGA -ACGGAAAGAACCCTGCATGCAAGA -ACGGAAAGAACCCTGCATGGTTGA -ACGGAAAGAACCCTGCATTCCGAT -ACGGAAAGAACCCTGCATTGGCAT -ACGGAAAGAACCCTGCATCGAGAT -ACGGAAAGAACCCTGCATTACCAC -ACGGAAAGAACCCTGCATCAGAAC -ACGGAAAGAACCCTGCATGTCTAC -ACGGAAAGAACCCTGCATACGTAC -ACGGAAAGAACCCTGCATAGTGAC -ACGGAAAGAACCCTGCATCTGTAG -ACGGAAAGAACCCTGCATCCTAAG -ACGGAAAGAACCCTGCATGTTCAG -ACGGAAAGAACCCTGCATGCATAG -ACGGAAAGAACCCTGCATGACAAG -ACGGAAAGAACCCTGCATAAGCAG -ACGGAAAGAACCCTGCATCGTCAA -ACGGAAAGAACCCTGCATGCTGAA -ACGGAAAGAACCCTGCATAGTACG -ACGGAAAGAACCCTGCATATCCGA -ACGGAAAGAACCCTGCATATGGGA -ACGGAAAGAACCCTGCATGTGCAA -ACGGAAAGAACCCTGCATGAGGAA -ACGGAAAGAACCCTGCATCAGGTA -ACGGAAAGAACCCTGCATGACTCT -ACGGAAAGAACCCTGCATAGTCCT -ACGGAAAGAACCCTGCATTAAGCC -ACGGAAAGAACCCTGCATATAGCC -ACGGAAAGAACCCTGCATTAACCG -ACGGAAAGAACCCTGCATATGCCA -ACGGAAAGAACCTTGGAGGGAAAC -ACGGAAAGAACCTTGGAGAACACC -ACGGAAAGAACCTTGGAGATCGAG -ACGGAAAGAACCTTGGAGCTCCTT -ACGGAAAGAACCTTGGAGCCTGTT -ACGGAAAGAACCTTGGAGCGGTTT -ACGGAAAGAACCTTGGAGGTGGTT -ACGGAAAGAACCTTGGAGGCCTTT -ACGGAAAGAACCTTGGAGGGTCTT -ACGGAAAGAACCTTGGAGACGCTT -ACGGAAAGAACCTTGGAGAGCGTT -ACGGAAAGAACCTTGGAGTTCGTC -ACGGAAAGAACCTTGGAGTCTCTC -ACGGAAAGAACCTTGGAGTGGATC -ACGGAAAGAACCTTGGAGCACTTC -ACGGAAAGAACCTTGGAGGTACTC -ACGGAAAGAACCTTGGAGGATGTC -ACGGAAAGAACCTTGGAGACAGTC -ACGGAAAGAACCTTGGAGTTGCTG -ACGGAAAGAACCTTGGAGTCCATG -ACGGAAAGAACCTTGGAGTGTGTG -ACGGAAAGAACCTTGGAGCTAGTG -ACGGAAAGAACCTTGGAGCATCTG -ACGGAAAGAACCTTGGAGGAGTTG -ACGGAAAGAACCTTGGAGAGACTG -ACGGAAAGAACCTTGGAGTCGGTA -ACGGAAAGAACCTTGGAGTGCCTA -ACGGAAAGAACCTTGGAGCCACTA -ACGGAAAGAACCTTGGAGGGAGTA -ACGGAAAGAACCTTGGAGTCGTCT -ACGGAAAGAACCTTGGAGTGCACT -ACGGAAAGAACCTTGGAGCTGACT -ACGGAAAGAACCTTGGAGCAACCT -ACGGAAAGAACCTTGGAGGCTACT -ACGGAAAGAACCTTGGAGGGATCT -ACGGAAAGAACCTTGGAGAAGGCT -ACGGAAAGAACCTTGGAGTCAACC -ACGGAAAGAACCTTGGAGTGTTCC -ACGGAAAGAACCTTGGAGATTCCC -ACGGAAAGAACCTTGGAGTTCTCG -ACGGAAAGAACCTTGGAGTAGACG -ACGGAAAGAACCTTGGAGGTAACG -ACGGAAAGAACCTTGGAGACTTCG -ACGGAAAGAACCTTGGAGTACGCA -ACGGAAAGAACCTTGGAGCTTGCA -ACGGAAAGAACCTTGGAGCGAACA -ACGGAAAGAACCTTGGAGCAGTCA -ACGGAAAGAACCTTGGAGGATCCA -ACGGAAAGAACCTTGGAGACGACA -ACGGAAAGAACCTTGGAGAGCTCA -ACGGAAAGAACCTTGGAGTCACGT -ACGGAAAGAACCTTGGAGCGTAGT -ACGGAAAGAACCTTGGAGGTCAGT -ACGGAAAGAACCTTGGAGGAAGGT -ACGGAAAGAACCTTGGAGAACCGT -ACGGAAAGAACCTTGGAGTTGTGC -ACGGAAAGAACCTTGGAGCTAAGC -ACGGAAAGAACCTTGGAGACTAGC -ACGGAAAGAACCTTGGAGAGATGC -ACGGAAAGAACCTTGGAGTGAAGG -ACGGAAAGAACCTTGGAGCAATGG -ACGGAAAGAACCTTGGAGATGAGG -ACGGAAAGAACCTTGGAGAATGGG -ACGGAAAGAACCTTGGAGTCCTGA -ACGGAAAGAACCTTGGAGTAGCGA -ACGGAAAGAACCTTGGAGCACAGA -ACGGAAAGAACCTTGGAGGCAAGA -ACGGAAAGAACCTTGGAGGGTTGA -ACGGAAAGAACCTTGGAGTCCGAT -ACGGAAAGAACCTTGGAGTGGCAT -ACGGAAAGAACCTTGGAGCGAGAT -ACGGAAAGAACCTTGGAGTACCAC -ACGGAAAGAACCTTGGAGCAGAAC -ACGGAAAGAACCTTGGAGGTCTAC -ACGGAAAGAACCTTGGAGACGTAC -ACGGAAAGAACCTTGGAGAGTGAC -ACGGAAAGAACCTTGGAGCTGTAG -ACGGAAAGAACCTTGGAGCCTAAG -ACGGAAAGAACCTTGGAGGTTCAG -ACGGAAAGAACCTTGGAGGCATAG -ACGGAAAGAACCTTGGAGGACAAG -ACGGAAAGAACCTTGGAGAAGCAG -ACGGAAAGAACCTTGGAGCGTCAA -ACGGAAAGAACCTTGGAGGCTGAA -ACGGAAAGAACCTTGGAGAGTACG -ACGGAAAGAACCTTGGAGATCCGA -ACGGAAAGAACCTTGGAGATGGGA -ACGGAAAGAACCTTGGAGGTGCAA -ACGGAAAGAACCTTGGAGGAGGAA -ACGGAAAGAACCTTGGAGCAGGTA -ACGGAAAGAACCTTGGAGGACTCT -ACGGAAAGAACCTTGGAGAGTCCT -ACGGAAAGAACCTTGGAGTAAGCC -ACGGAAAGAACCTTGGAGATAGCC -ACGGAAAGAACCTTGGAGTAACCG -ACGGAAAGAACCTTGGAGATGCCA -ACGGAAAGAACCCTGAGAGGAAAC -ACGGAAAGAACCCTGAGAAACACC -ACGGAAAGAACCCTGAGAATCGAG -ACGGAAAGAACCCTGAGACTCCTT -ACGGAAAGAACCCTGAGACCTGTT -ACGGAAAGAACCCTGAGACGGTTT -ACGGAAAGAACCCTGAGAGTGGTT -ACGGAAAGAACCCTGAGAGCCTTT -ACGGAAAGAACCCTGAGAGGTCTT -ACGGAAAGAACCCTGAGAACGCTT -ACGGAAAGAACCCTGAGAAGCGTT -ACGGAAAGAACCCTGAGATTCGTC -ACGGAAAGAACCCTGAGATCTCTC -ACGGAAAGAACCCTGAGATGGATC -ACGGAAAGAACCCTGAGACACTTC -ACGGAAAGAACCCTGAGAGTACTC -ACGGAAAGAACCCTGAGAGATGTC -ACGGAAAGAACCCTGAGAACAGTC -ACGGAAAGAACCCTGAGATTGCTG -ACGGAAAGAACCCTGAGATCCATG -ACGGAAAGAACCCTGAGATGTGTG -ACGGAAAGAACCCTGAGACTAGTG -ACGGAAAGAACCCTGAGACATCTG -ACGGAAAGAACCCTGAGAGAGTTG -ACGGAAAGAACCCTGAGAAGACTG -ACGGAAAGAACCCTGAGATCGGTA -ACGGAAAGAACCCTGAGATGCCTA -ACGGAAAGAACCCTGAGACCACTA -ACGGAAAGAACCCTGAGAGGAGTA -ACGGAAAGAACCCTGAGATCGTCT -ACGGAAAGAACCCTGAGATGCACT -ACGGAAAGAACCCTGAGACTGACT -ACGGAAAGAACCCTGAGACAACCT -ACGGAAAGAACCCTGAGAGCTACT -ACGGAAAGAACCCTGAGAGGATCT -ACGGAAAGAACCCTGAGAAAGGCT -ACGGAAAGAACCCTGAGATCAACC -ACGGAAAGAACCCTGAGATGTTCC -ACGGAAAGAACCCTGAGAATTCCC -ACGGAAAGAACCCTGAGATTCTCG -ACGGAAAGAACCCTGAGATAGACG -ACGGAAAGAACCCTGAGAGTAACG -ACGGAAAGAACCCTGAGAACTTCG -ACGGAAAGAACCCTGAGATACGCA -ACGGAAAGAACCCTGAGACTTGCA -ACGGAAAGAACCCTGAGACGAACA -ACGGAAAGAACCCTGAGACAGTCA -ACGGAAAGAACCCTGAGAGATCCA -ACGGAAAGAACCCTGAGAACGACA -ACGGAAAGAACCCTGAGAAGCTCA -ACGGAAAGAACCCTGAGATCACGT -ACGGAAAGAACCCTGAGACGTAGT -ACGGAAAGAACCCTGAGAGTCAGT -ACGGAAAGAACCCTGAGAGAAGGT -ACGGAAAGAACCCTGAGAAACCGT -ACGGAAAGAACCCTGAGATTGTGC -ACGGAAAGAACCCTGAGACTAAGC -ACGGAAAGAACCCTGAGAACTAGC -ACGGAAAGAACCCTGAGAAGATGC -ACGGAAAGAACCCTGAGATGAAGG -ACGGAAAGAACCCTGAGACAATGG -ACGGAAAGAACCCTGAGAATGAGG -ACGGAAAGAACCCTGAGAAATGGG -ACGGAAAGAACCCTGAGATCCTGA -ACGGAAAGAACCCTGAGATAGCGA -ACGGAAAGAACCCTGAGACACAGA -ACGGAAAGAACCCTGAGAGCAAGA -ACGGAAAGAACCCTGAGAGGTTGA -ACGGAAAGAACCCTGAGATCCGAT -ACGGAAAGAACCCTGAGATGGCAT -ACGGAAAGAACCCTGAGACGAGAT -ACGGAAAGAACCCTGAGATACCAC -ACGGAAAGAACCCTGAGACAGAAC -ACGGAAAGAACCCTGAGAGTCTAC -ACGGAAAGAACCCTGAGAACGTAC -ACGGAAAGAACCCTGAGAAGTGAC -ACGGAAAGAACCCTGAGACTGTAG -ACGGAAAGAACCCTGAGACCTAAG -ACGGAAAGAACCCTGAGAGTTCAG -ACGGAAAGAACCCTGAGAGCATAG -ACGGAAAGAACCCTGAGAGACAAG -ACGGAAAGAACCCTGAGAAAGCAG -ACGGAAAGAACCCTGAGACGTCAA -ACGGAAAGAACCCTGAGAGCTGAA -ACGGAAAGAACCCTGAGAAGTACG -ACGGAAAGAACCCTGAGAATCCGA -ACGGAAAGAACCCTGAGAATGGGA -ACGGAAAGAACCCTGAGAGTGCAA -ACGGAAAGAACCCTGAGAGAGGAA -ACGGAAAGAACCCTGAGACAGGTA -ACGGAAAGAACCCTGAGAGACTCT -ACGGAAAGAACCCTGAGAAGTCCT -ACGGAAAGAACCCTGAGATAAGCC -ACGGAAAGAACCCTGAGAATAGCC -ACGGAAAGAACCCTGAGATAACCG -ACGGAAAGAACCCTGAGAATGCCA -ACGGAAAGAACCGTATCGGGAAAC -ACGGAAAGAACCGTATCGAACACC -ACGGAAAGAACCGTATCGATCGAG -ACGGAAAGAACCGTATCGCTCCTT -ACGGAAAGAACCGTATCGCCTGTT -ACGGAAAGAACCGTATCGCGGTTT -ACGGAAAGAACCGTATCGGTGGTT -ACGGAAAGAACCGTATCGGCCTTT -ACGGAAAGAACCGTATCGGGTCTT -ACGGAAAGAACCGTATCGACGCTT -ACGGAAAGAACCGTATCGAGCGTT -ACGGAAAGAACCGTATCGTTCGTC -ACGGAAAGAACCGTATCGTCTCTC -ACGGAAAGAACCGTATCGTGGATC -ACGGAAAGAACCGTATCGCACTTC -ACGGAAAGAACCGTATCGGTACTC -ACGGAAAGAACCGTATCGGATGTC -ACGGAAAGAACCGTATCGACAGTC -ACGGAAAGAACCGTATCGTTGCTG -ACGGAAAGAACCGTATCGTCCATG -ACGGAAAGAACCGTATCGTGTGTG -ACGGAAAGAACCGTATCGCTAGTG -ACGGAAAGAACCGTATCGCATCTG -ACGGAAAGAACCGTATCGGAGTTG -ACGGAAAGAACCGTATCGAGACTG -ACGGAAAGAACCGTATCGTCGGTA -ACGGAAAGAACCGTATCGTGCCTA -ACGGAAAGAACCGTATCGCCACTA -ACGGAAAGAACCGTATCGGGAGTA -ACGGAAAGAACCGTATCGTCGTCT -ACGGAAAGAACCGTATCGTGCACT -ACGGAAAGAACCGTATCGCTGACT -ACGGAAAGAACCGTATCGCAACCT -ACGGAAAGAACCGTATCGGCTACT -ACGGAAAGAACCGTATCGGGATCT -ACGGAAAGAACCGTATCGAAGGCT -ACGGAAAGAACCGTATCGTCAACC -ACGGAAAGAACCGTATCGTGTTCC -ACGGAAAGAACCGTATCGATTCCC -ACGGAAAGAACCGTATCGTTCTCG -ACGGAAAGAACCGTATCGTAGACG -ACGGAAAGAACCGTATCGGTAACG -ACGGAAAGAACCGTATCGACTTCG -ACGGAAAGAACCGTATCGTACGCA -ACGGAAAGAACCGTATCGCTTGCA -ACGGAAAGAACCGTATCGCGAACA -ACGGAAAGAACCGTATCGCAGTCA -ACGGAAAGAACCGTATCGGATCCA -ACGGAAAGAACCGTATCGACGACA -ACGGAAAGAACCGTATCGAGCTCA -ACGGAAAGAACCGTATCGTCACGT -ACGGAAAGAACCGTATCGCGTAGT -ACGGAAAGAACCGTATCGGTCAGT -ACGGAAAGAACCGTATCGGAAGGT -ACGGAAAGAACCGTATCGAACCGT -ACGGAAAGAACCGTATCGTTGTGC -ACGGAAAGAACCGTATCGCTAAGC -ACGGAAAGAACCGTATCGACTAGC -ACGGAAAGAACCGTATCGAGATGC -ACGGAAAGAACCGTATCGTGAAGG -ACGGAAAGAACCGTATCGCAATGG -ACGGAAAGAACCGTATCGATGAGG -ACGGAAAGAACCGTATCGAATGGG -ACGGAAAGAACCGTATCGTCCTGA -ACGGAAAGAACCGTATCGTAGCGA -ACGGAAAGAACCGTATCGCACAGA -ACGGAAAGAACCGTATCGGCAAGA -ACGGAAAGAACCGTATCGGGTTGA -ACGGAAAGAACCGTATCGTCCGAT -ACGGAAAGAACCGTATCGTGGCAT -ACGGAAAGAACCGTATCGCGAGAT -ACGGAAAGAACCGTATCGTACCAC -ACGGAAAGAACCGTATCGCAGAAC -ACGGAAAGAACCGTATCGGTCTAC -ACGGAAAGAACCGTATCGACGTAC -ACGGAAAGAACCGTATCGAGTGAC -ACGGAAAGAACCGTATCGCTGTAG -ACGGAAAGAACCGTATCGCCTAAG -ACGGAAAGAACCGTATCGGTTCAG -ACGGAAAGAACCGTATCGGCATAG -ACGGAAAGAACCGTATCGGACAAG -ACGGAAAGAACCGTATCGAAGCAG -ACGGAAAGAACCGTATCGCGTCAA -ACGGAAAGAACCGTATCGGCTGAA -ACGGAAAGAACCGTATCGAGTACG -ACGGAAAGAACCGTATCGATCCGA -ACGGAAAGAACCGTATCGATGGGA -ACGGAAAGAACCGTATCGGTGCAA -ACGGAAAGAACCGTATCGGAGGAA -ACGGAAAGAACCGTATCGCAGGTA -ACGGAAAGAACCGTATCGGACTCT -ACGGAAAGAACCGTATCGAGTCCT -ACGGAAAGAACCGTATCGTAAGCC -ACGGAAAGAACCGTATCGATAGCC -ACGGAAAGAACCGTATCGTAACCG -ACGGAAAGAACCGTATCGATGCCA -ACGGAAAGAACCCTATGCGGAAAC -ACGGAAAGAACCCTATGCAACACC -ACGGAAAGAACCCTATGCATCGAG -ACGGAAAGAACCCTATGCCTCCTT -ACGGAAAGAACCCTATGCCCTGTT -ACGGAAAGAACCCTATGCCGGTTT -ACGGAAAGAACCCTATGCGTGGTT -ACGGAAAGAACCCTATGCGCCTTT -ACGGAAAGAACCCTATGCGGTCTT -ACGGAAAGAACCCTATGCACGCTT -ACGGAAAGAACCCTATGCAGCGTT -ACGGAAAGAACCCTATGCTTCGTC -ACGGAAAGAACCCTATGCTCTCTC -ACGGAAAGAACCCTATGCTGGATC -ACGGAAAGAACCCTATGCCACTTC -ACGGAAAGAACCCTATGCGTACTC -ACGGAAAGAACCCTATGCGATGTC -ACGGAAAGAACCCTATGCACAGTC -ACGGAAAGAACCCTATGCTTGCTG -ACGGAAAGAACCCTATGCTCCATG -ACGGAAAGAACCCTATGCTGTGTG -ACGGAAAGAACCCTATGCCTAGTG -ACGGAAAGAACCCTATGCCATCTG -ACGGAAAGAACCCTATGCGAGTTG -ACGGAAAGAACCCTATGCAGACTG -ACGGAAAGAACCCTATGCTCGGTA -ACGGAAAGAACCCTATGCTGCCTA -ACGGAAAGAACCCTATGCCCACTA -ACGGAAAGAACCCTATGCGGAGTA -ACGGAAAGAACCCTATGCTCGTCT -ACGGAAAGAACCCTATGCTGCACT -ACGGAAAGAACCCTATGCCTGACT -ACGGAAAGAACCCTATGCCAACCT -ACGGAAAGAACCCTATGCGCTACT -ACGGAAAGAACCCTATGCGGATCT -ACGGAAAGAACCCTATGCAAGGCT -ACGGAAAGAACCCTATGCTCAACC -ACGGAAAGAACCCTATGCTGTTCC -ACGGAAAGAACCCTATGCATTCCC -ACGGAAAGAACCCTATGCTTCTCG -ACGGAAAGAACCCTATGCTAGACG -ACGGAAAGAACCCTATGCGTAACG -ACGGAAAGAACCCTATGCACTTCG -ACGGAAAGAACCCTATGCTACGCA -ACGGAAAGAACCCTATGCCTTGCA -ACGGAAAGAACCCTATGCCGAACA -ACGGAAAGAACCCTATGCCAGTCA -ACGGAAAGAACCCTATGCGATCCA -ACGGAAAGAACCCTATGCACGACA -ACGGAAAGAACCCTATGCAGCTCA -ACGGAAAGAACCCTATGCTCACGT -ACGGAAAGAACCCTATGCCGTAGT -ACGGAAAGAACCCTATGCGTCAGT -ACGGAAAGAACCCTATGCGAAGGT -ACGGAAAGAACCCTATGCAACCGT -ACGGAAAGAACCCTATGCTTGTGC -ACGGAAAGAACCCTATGCCTAAGC -ACGGAAAGAACCCTATGCACTAGC -ACGGAAAGAACCCTATGCAGATGC -ACGGAAAGAACCCTATGCTGAAGG -ACGGAAAGAACCCTATGCCAATGG -ACGGAAAGAACCCTATGCATGAGG -ACGGAAAGAACCCTATGCAATGGG -ACGGAAAGAACCCTATGCTCCTGA -ACGGAAAGAACCCTATGCTAGCGA -ACGGAAAGAACCCTATGCCACAGA -ACGGAAAGAACCCTATGCGCAAGA -ACGGAAAGAACCCTATGCGGTTGA -ACGGAAAGAACCCTATGCTCCGAT -ACGGAAAGAACCCTATGCTGGCAT -ACGGAAAGAACCCTATGCCGAGAT -ACGGAAAGAACCCTATGCTACCAC -ACGGAAAGAACCCTATGCCAGAAC -ACGGAAAGAACCCTATGCGTCTAC -ACGGAAAGAACCCTATGCACGTAC -ACGGAAAGAACCCTATGCAGTGAC -ACGGAAAGAACCCTATGCCTGTAG -ACGGAAAGAACCCTATGCCCTAAG -ACGGAAAGAACCCTATGCGTTCAG -ACGGAAAGAACCCTATGCGCATAG -ACGGAAAGAACCCTATGCGACAAG -ACGGAAAGAACCCTATGCAAGCAG -ACGGAAAGAACCCTATGCCGTCAA -ACGGAAAGAACCCTATGCGCTGAA -ACGGAAAGAACCCTATGCAGTACG -ACGGAAAGAACCCTATGCATCCGA -ACGGAAAGAACCCTATGCATGGGA -ACGGAAAGAACCCTATGCGTGCAA -ACGGAAAGAACCCTATGCGAGGAA -ACGGAAAGAACCCTATGCCAGGTA -ACGGAAAGAACCCTATGCGACTCT -ACGGAAAGAACCCTATGCAGTCCT -ACGGAAAGAACCCTATGCTAAGCC -ACGGAAAGAACCCTATGCATAGCC -ACGGAAAGAACCCTATGCTAACCG -ACGGAAAGAACCCTATGCATGCCA -ACGGAAAGAACCCTACCAGGAAAC -ACGGAAAGAACCCTACCAAACACC -ACGGAAAGAACCCTACCAATCGAG -ACGGAAAGAACCCTACCACTCCTT -ACGGAAAGAACCCTACCACCTGTT -ACGGAAAGAACCCTACCACGGTTT -ACGGAAAGAACCCTACCAGTGGTT -ACGGAAAGAACCCTACCAGCCTTT -ACGGAAAGAACCCTACCAGGTCTT -ACGGAAAGAACCCTACCAACGCTT -ACGGAAAGAACCCTACCAAGCGTT -ACGGAAAGAACCCTACCATTCGTC -ACGGAAAGAACCCTACCATCTCTC -ACGGAAAGAACCCTACCATGGATC -ACGGAAAGAACCCTACCACACTTC -ACGGAAAGAACCCTACCAGTACTC -ACGGAAAGAACCCTACCAGATGTC -ACGGAAAGAACCCTACCAACAGTC -ACGGAAAGAACCCTACCATTGCTG -ACGGAAAGAACCCTACCATCCATG -ACGGAAAGAACCCTACCATGTGTG -ACGGAAAGAACCCTACCACTAGTG -ACGGAAAGAACCCTACCACATCTG -ACGGAAAGAACCCTACCAGAGTTG -ACGGAAAGAACCCTACCAAGACTG -ACGGAAAGAACCCTACCATCGGTA -ACGGAAAGAACCCTACCATGCCTA -ACGGAAAGAACCCTACCACCACTA -ACGGAAAGAACCCTACCAGGAGTA -ACGGAAAGAACCCTACCATCGTCT -ACGGAAAGAACCCTACCATGCACT -ACGGAAAGAACCCTACCACTGACT -ACGGAAAGAACCCTACCACAACCT -ACGGAAAGAACCCTACCAGCTACT -ACGGAAAGAACCCTACCAGGATCT -ACGGAAAGAACCCTACCAAAGGCT -ACGGAAAGAACCCTACCATCAACC -ACGGAAAGAACCCTACCATGTTCC -ACGGAAAGAACCCTACCAATTCCC -ACGGAAAGAACCCTACCATTCTCG -ACGGAAAGAACCCTACCATAGACG -ACGGAAAGAACCCTACCAGTAACG -ACGGAAAGAACCCTACCAACTTCG -ACGGAAAGAACCCTACCATACGCA -ACGGAAAGAACCCTACCACTTGCA -ACGGAAAGAACCCTACCACGAACA -ACGGAAAGAACCCTACCACAGTCA -ACGGAAAGAACCCTACCAGATCCA -ACGGAAAGAACCCTACCAACGACA -ACGGAAAGAACCCTACCAAGCTCA -ACGGAAAGAACCCTACCATCACGT -ACGGAAAGAACCCTACCACGTAGT -ACGGAAAGAACCCTACCAGTCAGT -ACGGAAAGAACCCTACCAGAAGGT -ACGGAAAGAACCCTACCAAACCGT -ACGGAAAGAACCCTACCATTGTGC -ACGGAAAGAACCCTACCACTAAGC -ACGGAAAGAACCCTACCAACTAGC -ACGGAAAGAACCCTACCAAGATGC -ACGGAAAGAACCCTACCATGAAGG -ACGGAAAGAACCCTACCACAATGG -ACGGAAAGAACCCTACCAATGAGG -ACGGAAAGAACCCTACCAAATGGG -ACGGAAAGAACCCTACCATCCTGA -ACGGAAAGAACCCTACCATAGCGA -ACGGAAAGAACCCTACCACACAGA -ACGGAAAGAACCCTACCAGCAAGA -ACGGAAAGAACCCTACCAGGTTGA -ACGGAAAGAACCCTACCATCCGAT -ACGGAAAGAACCCTACCATGGCAT -ACGGAAAGAACCCTACCACGAGAT -ACGGAAAGAACCCTACCATACCAC -ACGGAAAGAACCCTACCACAGAAC -ACGGAAAGAACCCTACCAGTCTAC -ACGGAAAGAACCCTACCAACGTAC -ACGGAAAGAACCCTACCAAGTGAC -ACGGAAAGAACCCTACCACTGTAG -ACGGAAAGAACCCTACCACCTAAG -ACGGAAAGAACCCTACCAGTTCAG -ACGGAAAGAACCCTACCAGCATAG -ACGGAAAGAACCCTACCAGACAAG -ACGGAAAGAACCCTACCAAAGCAG -ACGGAAAGAACCCTACCACGTCAA -ACGGAAAGAACCCTACCAGCTGAA -ACGGAAAGAACCCTACCAAGTACG -ACGGAAAGAACCCTACCAATCCGA -ACGGAAAGAACCCTACCAATGGGA -ACGGAAAGAACCCTACCAGTGCAA -ACGGAAAGAACCCTACCAGAGGAA -ACGGAAAGAACCCTACCACAGGTA -ACGGAAAGAACCCTACCAGACTCT -ACGGAAAGAACCCTACCAAGTCCT -ACGGAAAGAACCCTACCATAAGCC -ACGGAAAGAACCCTACCAATAGCC -ACGGAAAGAACCCTACCATAACCG -ACGGAAAGAACCCTACCAATGCCA -ACGGAAAGAACCGTAGGAGGAAAC -ACGGAAAGAACCGTAGGAAACACC -ACGGAAAGAACCGTAGGAATCGAG -ACGGAAAGAACCGTAGGACTCCTT -ACGGAAAGAACCGTAGGACCTGTT -ACGGAAAGAACCGTAGGACGGTTT -ACGGAAAGAACCGTAGGAGTGGTT -ACGGAAAGAACCGTAGGAGCCTTT -ACGGAAAGAACCGTAGGAGGTCTT -ACGGAAAGAACCGTAGGAACGCTT -ACGGAAAGAACCGTAGGAAGCGTT -ACGGAAAGAACCGTAGGATTCGTC -ACGGAAAGAACCGTAGGATCTCTC -ACGGAAAGAACCGTAGGATGGATC -ACGGAAAGAACCGTAGGACACTTC -ACGGAAAGAACCGTAGGAGTACTC -ACGGAAAGAACCGTAGGAGATGTC -ACGGAAAGAACCGTAGGAACAGTC -ACGGAAAGAACCGTAGGATTGCTG -ACGGAAAGAACCGTAGGATCCATG -ACGGAAAGAACCGTAGGATGTGTG -ACGGAAAGAACCGTAGGACTAGTG -ACGGAAAGAACCGTAGGACATCTG -ACGGAAAGAACCGTAGGAGAGTTG -ACGGAAAGAACCGTAGGAAGACTG -ACGGAAAGAACCGTAGGATCGGTA -ACGGAAAGAACCGTAGGATGCCTA -ACGGAAAGAACCGTAGGACCACTA -ACGGAAAGAACCGTAGGAGGAGTA -ACGGAAAGAACCGTAGGATCGTCT -ACGGAAAGAACCGTAGGATGCACT -ACGGAAAGAACCGTAGGACTGACT -ACGGAAAGAACCGTAGGACAACCT -ACGGAAAGAACCGTAGGAGCTACT -ACGGAAAGAACCGTAGGAGGATCT -ACGGAAAGAACCGTAGGAAAGGCT -ACGGAAAGAACCGTAGGATCAACC -ACGGAAAGAACCGTAGGATGTTCC -ACGGAAAGAACCGTAGGAATTCCC -ACGGAAAGAACCGTAGGATTCTCG -ACGGAAAGAACCGTAGGATAGACG -ACGGAAAGAACCGTAGGAGTAACG -ACGGAAAGAACCGTAGGAACTTCG -ACGGAAAGAACCGTAGGATACGCA -ACGGAAAGAACCGTAGGACTTGCA -ACGGAAAGAACCGTAGGACGAACA -ACGGAAAGAACCGTAGGACAGTCA -ACGGAAAGAACCGTAGGAGATCCA -ACGGAAAGAACCGTAGGAACGACA -ACGGAAAGAACCGTAGGAAGCTCA -ACGGAAAGAACCGTAGGATCACGT -ACGGAAAGAACCGTAGGACGTAGT -ACGGAAAGAACCGTAGGAGTCAGT -ACGGAAAGAACCGTAGGAGAAGGT -ACGGAAAGAACCGTAGGAAACCGT -ACGGAAAGAACCGTAGGATTGTGC -ACGGAAAGAACCGTAGGACTAAGC -ACGGAAAGAACCGTAGGAACTAGC -ACGGAAAGAACCGTAGGAAGATGC -ACGGAAAGAACCGTAGGATGAAGG -ACGGAAAGAACCGTAGGACAATGG -ACGGAAAGAACCGTAGGAATGAGG -ACGGAAAGAACCGTAGGAAATGGG -ACGGAAAGAACCGTAGGATCCTGA -ACGGAAAGAACCGTAGGATAGCGA -ACGGAAAGAACCGTAGGACACAGA -ACGGAAAGAACCGTAGGAGCAAGA -ACGGAAAGAACCGTAGGAGGTTGA -ACGGAAAGAACCGTAGGATCCGAT -ACGGAAAGAACCGTAGGATGGCAT -ACGGAAAGAACCGTAGGACGAGAT -ACGGAAAGAACCGTAGGATACCAC -ACGGAAAGAACCGTAGGACAGAAC -ACGGAAAGAACCGTAGGAGTCTAC -ACGGAAAGAACCGTAGGAACGTAC -ACGGAAAGAACCGTAGGAAGTGAC -ACGGAAAGAACCGTAGGACTGTAG -ACGGAAAGAACCGTAGGACCTAAG -ACGGAAAGAACCGTAGGAGTTCAG -ACGGAAAGAACCGTAGGAGCATAG -ACGGAAAGAACCGTAGGAGACAAG -ACGGAAAGAACCGTAGGAAAGCAG -ACGGAAAGAACCGTAGGACGTCAA -ACGGAAAGAACCGTAGGAGCTGAA -ACGGAAAGAACCGTAGGAAGTACG -ACGGAAAGAACCGTAGGAATCCGA -ACGGAAAGAACCGTAGGAATGGGA -ACGGAAAGAACCGTAGGAGTGCAA -ACGGAAAGAACCGTAGGAGAGGAA -ACGGAAAGAACCGTAGGACAGGTA -ACGGAAAGAACCGTAGGAGACTCT -ACGGAAAGAACCGTAGGAAGTCCT -ACGGAAAGAACCGTAGGATAAGCC -ACGGAAAGAACCGTAGGAATAGCC -ACGGAAAGAACCGTAGGATAACCG -ACGGAAAGAACCGTAGGAATGCCA -ACGGAAAGAACCTCTTCGGGAAAC -ACGGAAAGAACCTCTTCGAACACC -ACGGAAAGAACCTCTTCGATCGAG -ACGGAAAGAACCTCTTCGCTCCTT -ACGGAAAGAACCTCTTCGCCTGTT -ACGGAAAGAACCTCTTCGCGGTTT -ACGGAAAGAACCTCTTCGGTGGTT -ACGGAAAGAACCTCTTCGGCCTTT -ACGGAAAGAACCTCTTCGGGTCTT -ACGGAAAGAACCTCTTCGACGCTT -ACGGAAAGAACCTCTTCGAGCGTT -ACGGAAAGAACCTCTTCGTTCGTC -ACGGAAAGAACCTCTTCGTCTCTC -ACGGAAAGAACCTCTTCGTGGATC -ACGGAAAGAACCTCTTCGCACTTC -ACGGAAAGAACCTCTTCGGTACTC -ACGGAAAGAACCTCTTCGGATGTC -ACGGAAAGAACCTCTTCGACAGTC -ACGGAAAGAACCTCTTCGTTGCTG -ACGGAAAGAACCTCTTCGTCCATG -ACGGAAAGAACCTCTTCGTGTGTG -ACGGAAAGAACCTCTTCGCTAGTG -ACGGAAAGAACCTCTTCGCATCTG -ACGGAAAGAACCTCTTCGGAGTTG -ACGGAAAGAACCTCTTCGAGACTG -ACGGAAAGAACCTCTTCGTCGGTA -ACGGAAAGAACCTCTTCGTGCCTA -ACGGAAAGAACCTCTTCGCCACTA -ACGGAAAGAACCTCTTCGGGAGTA -ACGGAAAGAACCTCTTCGTCGTCT -ACGGAAAGAACCTCTTCGTGCACT -ACGGAAAGAACCTCTTCGCTGACT -ACGGAAAGAACCTCTTCGCAACCT -ACGGAAAGAACCTCTTCGGCTACT -ACGGAAAGAACCTCTTCGGGATCT -ACGGAAAGAACCTCTTCGAAGGCT -ACGGAAAGAACCTCTTCGTCAACC -ACGGAAAGAACCTCTTCGTGTTCC -ACGGAAAGAACCTCTTCGATTCCC -ACGGAAAGAACCTCTTCGTTCTCG -ACGGAAAGAACCTCTTCGTAGACG -ACGGAAAGAACCTCTTCGGTAACG -ACGGAAAGAACCTCTTCGACTTCG -ACGGAAAGAACCTCTTCGTACGCA -ACGGAAAGAACCTCTTCGCTTGCA -ACGGAAAGAACCTCTTCGCGAACA -ACGGAAAGAACCTCTTCGCAGTCA -ACGGAAAGAACCTCTTCGGATCCA -ACGGAAAGAACCTCTTCGACGACA -ACGGAAAGAACCTCTTCGAGCTCA -ACGGAAAGAACCTCTTCGTCACGT -ACGGAAAGAACCTCTTCGCGTAGT -ACGGAAAGAACCTCTTCGGTCAGT -ACGGAAAGAACCTCTTCGGAAGGT -ACGGAAAGAACCTCTTCGAACCGT -ACGGAAAGAACCTCTTCGTTGTGC -ACGGAAAGAACCTCTTCGCTAAGC -ACGGAAAGAACCTCTTCGACTAGC -ACGGAAAGAACCTCTTCGAGATGC -ACGGAAAGAACCTCTTCGTGAAGG -ACGGAAAGAACCTCTTCGCAATGG -ACGGAAAGAACCTCTTCGATGAGG -ACGGAAAGAACCTCTTCGAATGGG -ACGGAAAGAACCTCTTCGTCCTGA -ACGGAAAGAACCTCTTCGTAGCGA -ACGGAAAGAACCTCTTCGCACAGA -ACGGAAAGAACCTCTTCGGCAAGA -ACGGAAAGAACCTCTTCGGGTTGA -ACGGAAAGAACCTCTTCGTCCGAT -ACGGAAAGAACCTCTTCGTGGCAT -ACGGAAAGAACCTCTTCGCGAGAT -ACGGAAAGAACCTCTTCGTACCAC -ACGGAAAGAACCTCTTCGCAGAAC -ACGGAAAGAACCTCTTCGGTCTAC -ACGGAAAGAACCTCTTCGACGTAC -ACGGAAAGAACCTCTTCGAGTGAC -ACGGAAAGAACCTCTTCGCTGTAG -ACGGAAAGAACCTCTTCGCCTAAG -ACGGAAAGAACCTCTTCGGTTCAG -ACGGAAAGAACCTCTTCGGCATAG -ACGGAAAGAACCTCTTCGGACAAG -ACGGAAAGAACCTCTTCGAAGCAG -ACGGAAAGAACCTCTTCGCGTCAA -ACGGAAAGAACCTCTTCGGCTGAA -ACGGAAAGAACCTCTTCGAGTACG -ACGGAAAGAACCTCTTCGATCCGA -ACGGAAAGAACCTCTTCGATGGGA -ACGGAAAGAACCTCTTCGGTGCAA -ACGGAAAGAACCTCTTCGGAGGAA -ACGGAAAGAACCTCTTCGCAGGTA -ACGGAAAGAACCTCTTCGGACTCT -ACGGAAAGAACCTCTTCGAGTCCT -ACGGAAAGAACCTCTTCGTAAGCC -ACGGAAAGAACCTCTTCGATAGCC -ACGGAAAGAACCTCTTCGTAACCG -ACGGAAAGAACCTCTTCGATGCCA -ACGGAAAGAACCACTTGCGGAAAC -ACGGAAAGAACCACTTGCAACACC -ACGGAAAGAACCACTTGCATCGAG -ACGGAAAGAACCACTTGCCTCCTT -ACGGAAAGAACCACTTGCCCTGTT -ACGGAAAGAACCACTTGCCGGTTT -ACGGAAAGAACCACTTGCGTGGTT -ACGGAAAGAACCACTTGCGCCTTT -ACGGAAAGAACCACTTGCGGTCTT -ACGGAAAGAACCACTTGCACGCTT -ACGGAAAGAACCACTTGCAGCGTT -ACGGAAAGAACCACTTGCTTCGTC -ACGGAAAGAACCACTTGCTCTCTC -ACGGAAAGAACCACTTGCTGGATC -ACGGAAAGAACCACTTGCCACTTC -ACGGAAAGAACCACTTGCGTACTC -ACGGAAAGAACCACTTGCGATGTC -ACGGAAAGAACCACTTGCACAGTC -ACGGAAAGAACCACTTGCTTGCTG -ACGGAAAGAACCACTTGCTCCATG -ACGGAAAGAACCACTTGCTGTGTG -ACGGAAAGAACCACTTGCCTAGTG -ACGGAAAGAACCACTTGCCATCTG -ACGGAAAGAACCACTTGCGAGTTG -ACGGAAAGAACCACTTGCAGACTG -ACGGAAAGAACCACTTGCTCGGTA -ACGGAAAGAACCACTTGCTGCCTA -ACGGAAAGAACCACTTGCCCACTA -ACGGAAAGAACCACTTGCGGAGTA -ACGGAAAGAACCACTTGCTCGTCT -ACGGAAAGAACCACTTGCTGCACT -ACGGAAAGAACCACTTGCCTGACT -ACGGAAAGAACCACTTGCCAACCT -ACGGAAAGAACCACTTGCGCTACT -ACGGAAAGAACCACTTGCGGATCT -ACGGAAAGAACCACTTGCAAGGCT -ACGGAAAGAACCACTTGCTCAACC -ACGGAAAGAACCACTTGCTGTTCC -ACGGAAAGAACCACTTGCATTCCC -ACGGAAAGAACCACTTGCTTCTCG -ACGGAAAGAACCACTTGCTAGACG -ACGGAAAGAACCACTTGCGTAACG -ACGGAAAGAACCACTTGCACTTCG -ACGGAAAGAACCACTTGCTACGCA -ACGGAAAGAACCACTTGCCTTGCA -ACGGAAAGAACCACTTGCCGAACA -ACGGAAAGAACCACTTGCCAGTCA -ACGGAAAGAACCACTTGCGATCCA -ACGGAAAGAACCACTTGCACGACA -ACGGAAAGAACCACTTGCAGCTCA -ACGGAAAGAACCACTTGCTCACGT -ACGGAAAGAACCACTTGCCGTAGT -ACGGAAAGAACCACTTGCGTCAGT -ACGGAAAGAACCACTTGCGAAGGT -ACGGAAAGAACCACTTGCAACCGT -ACGGAAAGAACCACTTGCTTGTGC -ACGGAAAGAACCACTTGCCTAAGC -ACGGAAAGAACCACTTGCACTAGC -ACGGAAAGAACCACTTGCAGATGC -ACGGAAAGAACCACTTGCTGAAGG -ACGGAAAGAACCACTTGCCAATGG -ACGGAAAGAACCACTTGCATGAGG -ACGGAAAGAACCACTTGCAATGGG -ACGGAAAGAACCACTTGCTCCTGA -ACGGAAAGAACCACTTGCTAGCGA -ACGGAAAGAACCACTTGCCACAGA -ACGGAAAGAACCACTTGCGCAAGA -ACGGAAAGAACCACTTGCGGTTGA -ACGGAAAGAACCACTTGCTCCGAT -ACGGAAAGAACCACTTGCTGGCAT -ACGGAAAGAACCACTTGCCGAGAT -ACGGAAAGAACCACTTGCTACCAC -ACGGAAAGAACCACTTGCCAGAAC -ACGGAAAGAACCACTTGCGTCTAC -ACGGAAAGAACCACTTGCACGTAC -ACGGAAAGAACCACTTGCAGTGAC -ACGGAAAGAACCACTTGCCTGTAG -ACGGAAAGAACCACTTGCCCTAAG -ACGGAAAGAACCACTTGCGTTCAG -ACGGAAAGAACCACTTGCGCATAG -ACGGAAAGAACCACTTGCGACAAG -ACGGAAAGAACCACTTGCAAGCAG -ACGGAAAGAACCACTTGCCGTCAA -ACGGAAAGAACCACTTGCGCTGAA -ACGGAAAGAACCACTTGCAGTACG -ACGGAAAGAACCACTTGCATCCGA -ACGGAAAGAACCACTTGCATGGGA -ACGGAAAGAACCACTTGCGTGCAA -ACGGAAAGAACCACTTGCGAGGAA -ACGGAAAGAACCACTTGCCAGGTA -ACGGAAAGAACCACTTGCGACTCT -ACGGAAAGAACCACTTGCAGTCCT -ACGGAAAGAACCACTTGCTAAGCC -ACGGAAAGAACCACTTGCATAGCC -ACGGAAAGAACCACTTGCTAACCG -ACGGAAAGAACCACTTGCATGCCA -ACGGAAAGAACCACTCTGGGAAAC -ACGGAAAGAACCACTCTGAACACC -ACGGAAAGAACCACTCTGATCGAG -ACGGAAAGAACCACTCTGCTCCTT -ACGGAAAGAACCACTCTGCCTGTT -ACGGAAAGAACCACTCTGCGGTTT -ACGGAAAGAACCACTCTGGTGGTT -ACGGAAAGAACCACTCTGGCCTTT -ACGGAAAGAACCACTCTGGGTCTT -ACGGAAAGAACCACTCTGACGCTT -ACGGAAAGAACCACTCTGAGCGTT -ACGGAAAGAACCACTCTGTTCGTC -ACGGAAAGAACCACTCTGTCTCTC -ACGGAAAGAACCACTCTGTGGATC -ACGGAAAGAACCACTCTGCACTTC -ACGGAAAGAACCACTCTGGTACTC -ACGGAAAGAACCACTCTGGATGTC -ACGGAAAGAACCACTCTGACAGTC -ACGGAAAGAACCACTCTGTTGCTG -ACGGAAAGAACCACTCTGTCCATG -ACGGAAAGAACCACTCTGTGTGTG -ACGGAAAGAACCACTCTGCTAGTG -ACGGAAAGAACCACTCTGCATCTG -ACGGAAAGAACCACTCTGGAGTTG -ACGGAAAGAACCACTCTGAGACTG -ACGGAAAGAACCACTCTGTCGGTA -ACGGAAAGAACCACTCTGTGCCTA -ACGGAAAGAACCACTCTGCCACTA -ACGGAAAGAACCACTCTGGGAGTA -ACGGAAAGAACCACTCTGTCGTCT -ACGGAAAGAACCACTCTGTGCACT -ACGGAAAGAACCACTCTGCTGACT -ACGGAAAGAACCACTCTGCAACCT -ACGGAAAGAACCACTCTGGCTACT -ACGGAAAGAACCACTCTGGGATCT -ACGGAAAGAACCACTCTGAAGGCT -ACGGAAAGAACCACTCTGTCAACC -ACGGAAAGAACCACTCTGTGTTCC -ACGGAAAGAACCACTCTGATTCCC -ACGGAAAGAACCACTCTGTTCTCG -ACGGAAAGAACCACTCTGTAGACG -ACGGAAAGAACCACTCTGGTAACG -ACGGAAAGAACCACTCTGACTTCG -ACGGAAAGAACCACTCTGTACGCA -ACGGAAAGAACCACTCTGCTTGCA -ACGGAAAGAACCACTCTGCGAACA -ACGGAAAGAACCACTCTGCAGTCA -ACGGAAAGAACCACTCTGGATCCA -ACGGAAAGAACCACTCTGACGACA -ACGGAAAGAACCACTCTGAGCTCA -ACGGAAAGAACCACTCTGTCACGT -ACGGAAAGAACCACTCTGCGTAGT -ACGGAAAGAACCACTCTGGTCAGT -ACGGAAAGAACCACTCTGGAAGGT -ACGGAAAGAACCACTCTGAACCGT -ACGGAAAGAACCACTCTGTTGTGC -ACGGAAAGAACCACTCTGCTAAGC -ACGGAAAGAACCACTCTGACTAGC -ACGGAAAGAACCACTCTGAGATGC -ACGGAAAGAACCACTCTGTGAAGG -ACGGAAAGAACCACTCTGCAATGG -ACGGAAAGAACCACTCTGATGAGG -ACGGAAAGAACCACTCTGAATGGG -ACGGAAAGAACCACTCTGTCCTGA -ACGGAAAGAACCACTCTGTAGCGA -ACGGAAAGAACCACTCTGCACAGA -ACGGAAAGAACCACTCTGGCAAGA -ACGGAAAGAACCACTCTGGGTTGA -ACGGAAAGAACCACTCTGTCCGAT -ACGGAAAGAACCACTCTGTGGCAT -ACGGAAAGAACCACTCTGCGAGAT -ACGGAAAGAACCACTCTGTACCAC -ACGGAAAGAACCACTCTGCAGAAC -ACGGAAAGAACCACTCTGGTCTAC -ACGGAAAGAACCACTCTGACGTAC -ACGGAAAGAACCACTCTGAGTGAC -ACGGAAAGAACCACTCTGCTGTAG -ACGGAAAGAACCACTCTGCCTAAG -ACGGAAAGAACCACTCTGGTTCAG -ACGGAAAGAACCACTCTGGCATAG -ACGGAAAGAACCACTCTGGACAAG -ACGGAAAGAACCACTCTGAAGCAG -ACGGAAAGAACCACTCTGCGTCAA -ACGGAAAGAACCACTCTGGCTGAA -ACGGAAAGAACCACTCTGAGTACG -ACGGAAAGAACCACTCTGATCCGA -ACGGAAAGAACCACTCTGATGGGA -ACGGAAAGAACCACTCTGGTGCAA -ACGGAAAGAACCACTCTGGAGGAA -ACGGAAAGAACCACTCTGCAGGTA -ACGGAAAGAACCACTCTGGACTCT -ACGGAAAGAACCACTCTGAGTCCT -ACGGAAAGAACCACTCTGTAAGCC -ACGGAAAGAACCACTCTGATAGCC -ACGGAAAGAACCACTCTGTAACCG -ACGGAAAGAACCACTCTGATGCCA -ACGGAAAGAACCCCTCAAGGAAAC -ACGGAAAGAACCCCTCAAAACACC -ACGGAAAGAACCCCTCAAATCGAG -ACGGAAAGAACCCCTCAACTCCTT -ACGGAAAGAACCCCTCAACCTGTT -ACGGAAAGAACCCCTCAACGGTTT -ACGGAAAGAACCCCTCAAGTGGTT -ACGGAAAGAACCCCTCAAGCCTTT -ACGGAAAGAACCCCTCAAGGTCTT -ACGGAAAGAACCCCTCAAACGCTT -ACGGAAAGAACCCCTCAAAGCGTT -ACGGAAAGAACCCCTCAATTCGTC -ACGGAAAGAACCCCTCAATCTCTC -ACGGAAAGAACCCCTCAATGGATC -ACGGAAAGAACCCCTCAACACTTC -ACGGAAAGAACCCCTCAAGTACTC -ACGGAAAGAACCCCTCAAGATGTC -ACGGAAAGAACCCCTCAAACAGTC -ACGGAAAGAACCCCTCAATTGCTG -ACGGAAAGAACCCCTCAATCCATG -ACGGAAAGAACCCCTCAATGTGTG -ACGGAAAGAACCCCTCAACTAGTG -ACGGAAAGAACCCCTCAACATCTG -ACGGAAAGAACCCCTCAAGAGTTG -ACGGAAAGAACCCCTCAAAGACTG -ACGGAAAGAACCCCTCAATCGGTA -ACGGAAAGAACCCCTCAATGCCTA -ACGGAAAGAACCCCTCAACCACTA -ACGGAAAGAACCCCTCAAGGAGTA -ACGGAAAGAACCCCTCAATCGTCT -ACGGAAAGAACCCCTCAATGCACT -ACGGAAAGAACCCCTCAACTGACT -ACGGAAAGAACCCCTCAACAACCT -ACGGAAAGAACCCCTCAAGCTACT -ACGGAAAGAACCCCTCAAGGATCT -ACGGAAAGAACCCCTCAAAAGGCT -ACGGAAAGAACCCCTCAATCAACC -ACGGAAAGAACCCCTCAATGTTCC -ACGGAAAGAACCCCTCAAATTCCC -ACGGAAAGAACCCCTCAATTCTCG -ACGGAAAGAACCCCTCAATAGACG -ACGGAAAGAACCCCTCAAGTAACG -ACGGAAAGAACCCCTCAAACTTCG -ACGGAAAGAACCCCTCAATACGCA -ACGGAAAGAACCCCTCAACTTGCA -ACGGAAAGAACCCCTCAACGAACA -ACGGAAAGAACCCCTCAACAGTCA -ACGGAAAGAACCCCTCAAGATCCA -ACGGAAAGAACCCCTCAAACGACA -ACGGAAAGAACCCCTCAAAGCTCA -ACGGAAAGAACCCCTCAATCACGT -ACGGAAAGAACCCCTCAACGTAGT -ACGGAAAGAACCCCTCAAGTCAGT -ACGGAAAGAACCCCTCAAGAAGGT -ACGGAAAGAACCCCTCAAAACCGT -ACGGAAAGAACCCCTCAATTGTGC -ACGGAAAGAACCCCTCAACTAAGC -ACGGAAAGAACCCCTCAAACTAGC -ACGGAAAGAACCCCTCAAAGATGC -ACGGAAAGAACCCCTCAATGAAGG -ACGGAAAGAACCCCTCAACAATGG -ACGGAAAGAACCCCTCAAATGAGG -ACGGAAAGAACCCCTCAAAATGGG -ACGGAAAGAACCCCTCAATCCTGA -ACGGAAAGAACCCCTCAATAGCGA -ACGGAAAGAACCCCTCAACACAGA -ACGGAAAGAACCCCTCAAGCAAGA -ACGGAAAGAACCCCTCAAGGTTGA -ACGGAAAGAACCCCTCAATCCGAT -ACGGAAAGAACCCCTCAATGGCAT -ACGGAAAGAACCCCTCAACGAGAT -ACGGAAAGAACCCCTCAATACCAC -ACGGAAAGAACCCCTCAACAGAAC -ACGGAAAGAACCCCTCAAGTCTAC -ACGGAAAGAACCCCTCAAACGTAC -ACGGAAAGAACCCCTCAAAGTGAC -ACGGAAAGAACCCCTCAACTGTAG -ACGGAAAGAACCCCTCAACCTAAG -ACGGAAAGAACCCCTCAAGTTCAG -ACGGAAAGAACCCCTCAAGCATAG -ACGGAAAGAACCCCTCAAGACAAG -ACGGAAAGAACCCCTCAAAAGCAG -ACGGAAAGAACCCCTCAACGTCAA -ACGGAAAGAACCCCTCAAGCTGAA -ACGGAAAGAACCCCTCAAAGTACG -ACGGAAAGAACCCCTCAAATCCGA -ACGGAAAGAACCCCTCAAATGGGA -ACGGAAAGAACCCCTCAAGTGCAA -ACGGAAAGAACCCCTCAAGAGGAA -ACGGAAAGAACCCCTCAACAGGTA -ACGGAAAGAACCCCTCAAGACTCT -ACGGAAAGAACCCCTCAAAGTCCT -ACGGAAAGAACCCCTCAATAAGCC -ACGGAAAGAACCCCTCAAATAGCC -ACGGAAAGAACCCCTCAATAACCG -ACGGAAAGAACCCCTCAAATGCCA -ACGGAAAGAACCACTGCTGGAAAC -ACGGAAAGAACCACTGCTAACACC -ACGGAAAGAACCACTGCTATCGAG -ACGGAAAGAACCACTGCTCTCCTT -ACGGAAAGAACCACTGCTCCTGTT -ACGGAAAGAACCACTGCTCGGTTT -ACGGAAAGAACCACTGCTGTGGTT -ACGGAAAGAACCACTGCTGCCTTT -ACGGAAAGAACCACTGCTGGTCTT -ACGGAAAGAACCACTGCTACGCTT -ACGGAAAGAACCACTGCTAGCGTT -ACGGAAAGAACCACTGCTTTCGTC -ACGGAAAGAACCACTGCTTCTCTC -ACGGAAAGAACCACTGCTTGGATC -ACGGAAAGAACCACTGCTCACTTC -ACGGAAAGAACCACTGCTGTACTC -ACGGAAAGAACCACTGCTGATGTC -ACGGAAAGAACCACTGCTACAGTC -ACGGAAAGAACCACTGCTTTGCTG -ACGGAAAGAACCACTGCTTCCATG -ACGGAAAGAACCACTGCTTGTGTG -ACGGAAAGAACCACTGCTCTAGTG -ACGGAAAGAACCACTGCTCATCTG -ACGGAAAGAACCACTGCTGAGTTG -ACGGAAAGAACCACTGCTAGACTG -ACGGAAAGAACCACTGCTTCGGTA -ACGGAAAGAACCACTGCTTGCCTA -ACGGAAAGAACCACTGCTCCACTA -ACGGAAAGAACCACTGCTGGAGTA -ACGGAAAGAACCACTGCTTCGTCT -ACGGAAAGAACCACTGCTTGCACT -ACGGAAAGAACCACTGCTCTGACT -ACGGAAAGAACCACTGCTCAACCT -ACGGAAAGAACCACTGCTGCTACT -ACGGAAAGAACCACTGCTGGATCT -ACGGAAAGAACCACTGCTAAGGCT -ACGGAAAGAACCACTGCTTCAACC -ACGGAAAGAACCACTGCTTGTTCC -ACGGAAAGAACCACTGCTATTCCC -ACGGAAAGAACCACTGCTTTCTCG -ACGGAAAGAACCACTGCTTAGACG -ACGGAAAGAACCACTGCTGTAACG -ACGGAAAGAACCACTGCTACTTCG -ACGGAAAGAACCACTGCTTACGCA -ACGGAAAGAACCACTGCTCTTGCA -ACGGAAAGAACCACTGCTCGAACA -ACGGAAAGAACCACTGCTCAGTCA -ACGGAAAGAACCACTGCTGATCCA -ACGGAAAGAACCACTGCTACGACA -ACGGAAAGAACCACTGCTAGCTCA -ACGGAAAGAACCACTGCTTCACGT -ACGGAAAGAACCACTGCTCGTAGT -ACGGAAAGAACCACTGCTGTCAGT -ACGGAAAGAACCACTGCTGAAGGT -ACGGAAAGAACCACTGCTAACCGT -ACGGAAAGAACCACTGCTTTGTGC -ACGGAAAGAACCACTGCTCTAAGC -ACGGAAAGAACCACTGCTACTAGC -ACGGAAAGAACCACTGCTAGATGC -ACGGAAAGAACCACTGCTTGAAGG -ACGGAAAGAACCACTGCTCAATGG -ACGGAAAGAACCACTGCTATGAGG -ACGGAAAGAACCACTGCTAATGGG -ACGGAAAGAACCACTGCTTCCTGA -ACGGAAAGAACCACTGCTTAGCGA -ACGGAAAGAACCACTGCTCACAGA -ACGGAAAGAACCACTGCTGCAAGA -ACGGAAAGAACCACTGCTGGTTGA -ACGGAAAGAACCACTGCTTCCGAT -ACGGAAAGAACCACTGCTTGGCAT -ACGGAAAGAACCACTGCTCGAGAT -ACGGAAAGAACCACTGCTTACCAC -ACGGAAAGAACCACTGCTCAGAAC -ACGGAAAGAACCACTGCTGTCTAC -ACGGAAAGAACCACTGCTACGTAC -ACGGAAAGAACCACTGCTAGTGAC -ACGGAAAGAACCACTGCTCTGTAG -ACGGAAAGAACCACTGCTCCTAAG -ACGGAAAGAACCACTGCTGTTCAG -ACGGAAAGAACCACTGCTGCATAG -ACGGAAAGAACCACTGCTGACAAG -ACGGAAAGAACCACTGCTAAGCAG -ACGGAAAGAACCACTGCTCGTCAA -ACGGAAAGAACCACTGCTGCTGAA -ACGGAAAGAACCACTGCTAGTACG -ACGGAAAGAACCACTGCTATCCGA -ACGGAAAGAACCACTGCTATGGGA -ACGGAAAGAACCACTGCTGTGCAA -ACGGAAAGAACCACTGCTGAGGAA -ACGGAAAGAACCACTGCTCAGGTA -ACGGAAAGAACCACTGCTGACTCT -ACGGAAAGAACCACTGCTAGTCCT -ACGGAAAGAACCACTGCTTAAGCC -ACGGAAAGAACCACTGCTATAGCC -ACGGAAAGAACCACTGCTTAACCG -ACGGAAAGAACCACTGCTATGCCA -ACGGAAAGAACCTCTGGAGGAAAC -ACGGAAAGAACCTCTGGAAACACC -ACGGAAAGAACCTCTGGAATCGAG -ACGGAAAGAACCTCTGGACTCCTT -ACGGAAAGAACCTCTGGACCTGTT -ACGGAAAGAACCTCTGGACGGTTT -ACGGAAAGAACCTCTGGAGTGGTT -ACGGAAAGAACCTCTGGAGCCTTT -ACGGAAAGAACCTCTGGAGGTCTT -ACGGAAAGAACCTCTGGAACGCTT -ACGGAAAGAACCTCTGGAAGCGTT -ACGGAAAGAACCTCTGGATTCGTC -ACGGAAAGAACCTCTGGATCTCTC -ACGGAAAGAACCTCTGGATGGATC -ACGGAAAGAACCTCTGGACACTTC -ACGGAAAGAACCTCTGGAGTACTC -ACGGAAAGAACCTCTGGAGATGTC -ACGGAAAGAACCTCTGGAACAGTC -ACGGAAAGAACCTCTGGATTGCTG -ACGGAAAGAACCTCTGGATCCATG -ACGGAAAGAACCTCTGGATGTGTG -ACGGAAAGAACCTCTGGACTAGTG -ACGGAAAGAACCTCTGGACATCTG -ACGGAAAGAACCTCTGGAGAGTTG -ACGGAAAGAACCTCTGGAAGACTG -ACGGAAAGAACCTCTGGATCGGTA -ACGGAAAGAACCTCTGGATGCCTA -ACGGAAAGAACCTCTGGACCACTA -ACGGAAAGAACCTCTGGAGGAGTA -ACGGAAAGAACCTCTGGATCGTCT -ACGGAAAGAACCTCTGGATGCACT -ACGGAAAGAACCTCTGGACTGACT -ACGGAAAGAACCTCTGGACAACCT -ACGGAAAGAACCTCTGGAGCTACT -ACGGAAAGAACCTCTGGAGGATCT -ACGGAAAGAACCTCTGGAAAGGCT -ACGGAAAGAACCTCTGGATCAACC -ACGGAAAGAACCTCTGGATGTTCC -ACGGAAAGAACCTCTGGAATTCCC -ACGGAAAGAACCTCTGGATTCTCG -ACGGAAAGAACCTCTGGATAGACG -ACGGAAAGAACCTCTGGAGTAACG -ACGGAAAGAACCTCTGGAACTTCG -ACGGAAAGAACCTCTGGATACGCA -ACGGAAAGAACCTCTGGACTTGCA -ACGGAAAGAACCTCTGGACGAACA -ACGGAAAGAACCTCTGGACAGTCA -ACGGAAAGAACCTCTGGAGATCCA -ACGGAAAGAACCTCTGGAACGACA -ACGGAAAGAACCTCTGGAAGCTCA -ACGGAAAGAACCTCTGGATCACGT -ACGGAAAGAACCTCTGGACGTAGT -ACGGAAAGAACCTCTGGAGTCAGT -ACGGAAAGAACCTCTGGAGAAGGT -ACGGAAAGAACCTCTGGAAACCGT -ACGGAAAGAACCTCTGGATTGTGC -ACGGAAAGAACCTCTGGACTAAGC -ACGGAAAGAACCTCTGGAACTAGC -ACGGAAAGAACCTCTGGAAGATGC -ACGGAAAGAACCTCTGGATGAAGG -ACGGAAAGAACCTCTGGACAATGG -ACGGAAAGAACCTCTGGAATGAGG -ACGGAAAGAACCTCTGGAAATGGG -ACGGAAAGAACCTCTGGATCCTGA -ACGGAAAGAACCTCTGGATAGCGA -ACGGAAAGAACCTCTGGACACAGA -ACGGAAAGAACCTCTGGAGCAAGA -ACGGAAAGAACCTCTGGAGGTTGA -ACGGAAAGAACCTCTGGATCCGAT -ACGGAAAGAACCTCTGGATGGCAT -ACGGAAAGAACCTCTGGACGAGAT -ACGGAAAGAACCTCTGGATACCAC -ACGGAAAGAACCTCTGGACAGAAC -ACGGAAAGAACCTCTGGAGTCTAC -ACGGAAAGAACCTCTGGAACGTAC -ACGGAAAGAACCTCTGGAAGTGAC -ACGGAAAGAACCTCTGGACTGTAG -ACGGAAAGAACCTCTGGACCTAAG -ACGGAAAGAACCTCTGGAGTTCAG -ACGGAAAGAACCTCTGGAGCATAG -ACGGAAAGAACCTCTGGAGACAAG -ACGGAAAGAACCTCTGGAAAGCAG -ACGGAAAGAACCTCTGGACGTCAA -ACGGAAAGAACCTCTGGAGCTGAA -ACGGAAAGAACCTCTGGAAGTACG -ACGGAAAGAACCTCTGGAATCCGA -ACGGAAAGAACCTCTGGAATGGGA -ACGGAAAGAACCTCTGGAGTGCAA -ACGGAAAGAACCTCTGGAGAGGAA -ACGGAAAGAACCTCTGGACAGGTA -ACGGAAAGAACCTCTGGAGACTCT -ACGGAAAGAACCTCTGGAAGTCCT -ACGGAAAGAACCTCTGGATAAGCC -ACGGAAAGAACCTCTGGAATAGCC -ACGGAAAGAACCTCTGGATAACCG -ACGGAAAGAACCTCTGGAATGCCA -ACGGAAAGAACCGCTAAGGGAAAC -ACGGAAAGAACCGCTAAGAACACC -ACGGAAAGAACCGCTAAGATCGAG -ACGGAAAGAACCGCTAAGCTCCTT -ACGGAAAGAACCGCTAAGCCTGTT -ACGGAAAGAACCGCTAAGCGGTTT -ACGGAAAGAACCGCTAAGGTGGTT -ACGGAAAGAACCGCTAAGGCCTTT -ACGGAAAGAACCGCTAAGGGTCTT -ACGGAAAGAACCGCTAAGACGCTT -ACGGAAAGAACCGCTAAGAGCGTT -ACGGAAAGAACCGCTAAGTTCGTC -ACGGAAAGAACCGCTAAGTCTCTC -ACGGAAAGAACCGCTAAGTGGATC -ACGGAAAGAACCGCTAAGCACTTC -ACGGAAAGAACCGCTAAGGTACTC -ACGGAAAGAACCGCTAAGGATGTC -ACGGAAAGAACCGCTAAGACAGTC -ACGGAAAGAACCGCTAAGTTGCTG -ACGGAAAGAACCGCTAAGTCCATG -ACGGAAAGAACCGCTAAGTGTGTG -ACGGAAAGAACCGCTAAGCTAGTG -ACGGAAAGAACCGCTAAGCATCTG -ACGGAAAGAACCGCTAAGGAGTTG -ACGGAAAGAACCGCTAAGAGACTG -ACGGAAAGAACCGCTAAGTCGGTA -ACGGAAAGAACCGCTAAGTGCCTA -ACGGAAAGAACCGCTAAGCCACTA -ACGGAAAGAACCGCTAAGGGAGTA -ACGGAAAGAACCGCTAAGTCGTCT -ACGGAAAGAACCGCTAAGTGCACT -ACGGAAAGAACCGCTAAGCTGACT -ACGGAAAGAACCGCTAAGCAACCT -ACGGAAAGAACCGCTAAGGCTACT -ACGGAAAGAACCGCTAAGGGATCT -ACGGAAAGAACCGCTAAGAAGGCT -ACGGAAAGAACCGCTAAGTCAACC -ACGGAAAGAACCGCTAAGTGTTCC -ACGGAAAGAACCGCTAAGATTCCC -ACGGAAAGAACCGCTAAGTTCTCG -ACGGAAAGAACCGCTAAGTAGACG -ACGGAAAGAACCGCTAAGGTAACG -ACGGAAAGAACCGCTAAGACTTCG -ACGGAAAGAACCGCTAAGTACGCA -ACGGAAAGAACCGCTAAGCTTGCA -ACGGAAAGAACCGCTAAGCGAACA -ACGGAAAGAACCGCTAAGCAGTCA -ACGGAAAGAACCGCTAAGGATCCA -ACGGAAAGAACCGCTAAGACGACA -ACGGAAAGAACCGCTAAGAGCTCA -ACGGAAAGAACCGCTAAGTCACGT -ACGGAAAGAACCGCTAAGCGTAGT -ACGGAAAGAACCGCTAAGGTCAGT -ACGGAAAGAACCGCTAAGGAAGGT -ACGGAAAGAACCGCTAAGAACCGT -ACGGAAAGAACCGCTAAGTTGTGC -ACGGAAAGAACCGCTAAGCTAAGC -ACGGAAAGAACCGCTAAGACTAGC -ACGGAAAGAACCGCTAAGAGATGC -ACGGAAAGAACCGCTAAGTGAAGG -ACGGAAAGAACCGCTAAGCAATGG -ACGGAAAGAACCGCTAAGATGAGG -ACGGAAAGAACCGCTAAGAATGGG -ACGGAAAGAACCGCTAAGTCCTGA -ACGGAAAGAACCGCTAAGTAGCGA -ACGGAAAGAACCGCTAAGCACAGA -ACGGAAAGAACCGCTAAGGCAAGA -ACGGAAAGAACCGCTAAGGGTTGA -ACGGAAAGAACCGCTAAGTCCGAT -ACGGAAAGAACCGCTAAGTGGCAT -ACGGAAAGAACCGCTAAGCGAGAT -ACGGAAAGAACCGCTAAGTACCAC -ACGGAAAGAACCGCTAAGCAGAAC -ACGGAAAGAACCGCTAAGGTCTAC -ACGGAAAGAACCGCTAAGACGTAC -ACGGAAAGAACCGCTAAGAGTGAC -ACGGAAAGAACCGCTAAGCTGTAG -ACGGAAAGAACCGCTAAGCCTAAG -ACGGAAAGAACCGCTAAGGTTCAG -ACGGAAAGAACCGCTAAGGCATAG -ACGGAAAGAACCGCTAAGGACAAG -ACGGAAAGAACCGCTAAGAAGCAG -ACGGAAAGAACCGCTAAGCGTCAA -ACGGAAAGAACCGCTAAGGCTGAA -ACGGAAAGAACCGCTAAGAGTACG -ACGGAAAGAACCGCTAAGATCCGA -ACGGAAAGAACCGCTAAGATGGGA -ACGGAAAGAACCGCTAAGGTGCAA -ACGGAAAGAACCGCTAAGGAGGAA -ACGGAAAGAACCGCTAAGCAGGTA -ACGGAAAGAACCGCTAAGGACTCT -ACGGAAAGAACCGCTAAGAGTCCT -ACGGAAAGAACCGCTAAGTAAGCC -ACGGAAAGAACCGCTAAGATAGCC -ACGGAAAGAACCGCTAAGTAACCG -ACGGAAAGAACCGCTAAGATGCCA -ACGGAAAGAACCACCTCAGGAAAC -ACGGAAAGAACCACCTCAAACACC -ACGGAAAGAACCACCTCAATCGAG -ACGGAAAGAACCACCTCACTCCTT -ACGGAAAGAACCACCTCACCTGTT -ACGGAAAGAACCACCTCACGGTTT -ACGGAAAGAACCACCTCAGTGGTT -ACGGAAAGAACCACCTCAGCCTTT -ACGGAAAGAACCACCTCAGGTCTT -ACGGAAAGAACCACCTCAACGCTT -ACGGAAAGAACCACCTCAAGCGTT -ACGGAAAGAACCACCTCATTCGTC -ACGGAAAGAACCACCTCATCTCTC -ACGGAAAGAACCACCTCATGGATC -ACGGAAAGAACCACCTCACACTTC -ACGGAAAGAACCACCTCAGTACTC -ACGGAAAGAACCACCTCAGATGTC -ACGGAAAGAACCACCTCAACAGTC -ACGGAAAGAACCACCTCATTGCTG -ACGGAAAGAACCACCTCATCCATG -ACGGAAAGAACCACCTCATGTGTG -ACGGAAAGAACCACCTCACTAGTG -ACGGAAAGAACCACCTCACATCTG -ACGGAAAGAACCACCTCAGAGTTG -ACGGAAAGAACCACCTCAAGACTG -ACGGAAAGAACCACCTCATCGGTA -ACGGAAAGAACCACCTCATGCCTA -ACGGAAAGAACCACCTCACCACTA -ACGGAAAGAACCACCTCAGGAGTA -ACGGAAAGAACCACCTCATCGTCT -ACGGAAAGAACCACCTCATGCACT -ACGGAAAGAACCACCTCACTGACT -ACGGAAAGAACCACCTCACAACCT -ACGGAAAGAACCACCTCAGCTACT -ACGGAAAGAACCACCTCAGGATCT -ACGGAAAGAACCACCTCAAAGGCT -ACGGAAAGAACCACCTCATCAACC -ACGGAAAGAACCACCTCATGTTCC -ACGGAAAGAACCACCTCAATTCCC -ACGGAAAGAACCACCTCATTCTCG -ACGGAAAGAACCACCTCATAGACG -ACGGAAAGAACCACCTCAGTAACG -ACGGAAAGAACCACCTCAACTTCG -ACGGAAAGAACCACCTCATACGCA -ACGGAAAGAACCACCTCACTTGCA -ACGGAAAGAACCACCTCACGAACA -ACGGAAAGAACCACCTCACAGTCA -ACGGAAAGAACCACCTCAGATCCA -ACGGAAAGAACCACCTCAACGACA -ACGGAAAGAACCACCTCAAGCTCA -ACGGAAAGAACCACCTCATCACGT -ACGGAAAGAACCACCTCACGTAGT -ACGGAAAGAACCACCTCAGTCAGT -ACGGAAAGAACCACCTCAGAAGGT -ACGGAAAGAACCACCTCAAACCGT -ACGGAAAGAACCACCTCATTGTGC -ACGGAAAGAACCACCTCACTAAGC -ACGGAAAGAACCACCTCAACTAGC -ACGGAAAGAACCACCTCAAGATGC -ACGGAAAGAACCACCTCATGAAGG -ACGGAAAGAACCACCTCACAATGG -ACGGAAAGAACCACCTCAATGAGG -ACGGAAAGAACCACCTCAAATGGG -ACGGAAAGAACCACCTCATCCTGA -ACGGAAAGAACCACCTCATAGCGA -ACGGAAAGAACCACCTCACACAGA -ACGGAAAGAACCACCTCAGCAAGA -ACGGAAAGAACCACCTCAGGTTGA -ACGGAAAGAACCACCTCATCCGAT -ACGGAAAGAACCACCTCATGGCAT -ACGGAAAGAACCACCTCACGAGAT -ACGGAAAGAACCACCTCATACCAC -ACGGAAAGAACCACCTCACAGAAC -ACGGAAAGAACCACCTCAGTCTAC -ACGGAAAGAACCACCTCAACGTAC -ACGGAAAGAACCACCTCAAGTGAC -ACGGAAAGAACCACCTCACTGTAG -ACGGAAAGAACCACCTCACCTAAG -ACGGAAAGAACCACCTCAGTTCAG -ACGGAAAGAACCACCTCAGCATAG -ACGGAAAGAACCACCTCAGACAAG -ACGGAAAGAACCACCTCAAAGCAG -ACGGAAAGAACCACCTCACGTCAA -ACGGAAAGAACCACCTCAGCTGAA -ACGGAAAGAACCACCTCAAGTACG -ACGGAAAGAACCACCTCAATCCGA -ACGGAAAGAACCACCTCAATGGGA -ACGGAAAGAACCACCTCAGTGCAA -ACGGAAAGAACCACCTCAGAGGAA -ACGGAAAGAACCACCTCACAGGTA -ACGGAAAGAACCACCTCAGACTCT -ACGGAAAGAACCACCTCAAGTCCT -ACGGAAAGAACCACCTCATAAGCC -ACGGAAAGAACCACCTCAATAGCC -ACGGAAAGAACCACCTCATAACCG -ACGGAAAGAACCACCTCAATGCCA -ACGGAAAGAACCTCCTGTGGAAAC -ACGGAAAGAACCTCCTGTAACACC -ACGGAAAGAACCTCCTGTATCGAG -ACGGAAAGAACCTCCTGTCTCCTT -ACGGAAAGAACCTCCTGTCCTGTT -ACGGAAAGAACCTCCTGTCGGTTT -ACGGAAAGAACCTCCTGTGTGGTT -ACGGAAAGAACCTCCTGTGCCTTT -ACGGAAAGAACCTCCTGTGGTCTT -ACGGAAAGAACCTCCTGTACGCTT -ACGGAAAGAACCTCCTGTAGCGTT -ACGGAAAGAACCTCCTGTTTCGTC -ACGGAAAGAACCTCCTGTTCTCTC -ACGGAAAGAACCTCCTGTTGGATC -ACGGAAAGAACCTCCTGTCACTTC -ACGGAAAGAACCTCCTGTGTACTC -ACGGAAAGAACCTCCTGTGATGTC -ACGGAAAGAACCTCCTGTACAGTC -ACGGAAAGAACCTCCTGTTTGCTG -ACGGAAAGAACCTCCTGTTCCATG -ACGGAAAGAACCTCCTGTTGTGTG -ACGGAAAGAACCTCCTGTCTAGTG -ACGGAAAGAACCTCCTGTCATCTG -ACGGAAAGAACCTCCTGTGAGTTG -ACGGAAAGAACCTCCTGTAGACTG -ACGGAAAGAACCTCCTGTTCGGTA -ACGGAAAGAACCTCCTGTTGCCTA -ACGGAAAGAACCTCCTGTCCACTA -ACGGAAAGAACCTCCTGTGGAGTA -ACGGAAAGAACCTCCTGTTCGTCT -ACGGAAAGAACCTCCTGTTGCACT -ACGGAAAGAACCTCCTGTCTGACT -ACGGAAAGAACCTCCTGTCAACCT -ACGGAAAGAACCTCCTGTGCTACT -ACGGAAAGAACCTCCTGTGGATCT -ACGGAAAGAACCTCCTGTAAGGCT -ACGGAAAGAACCTCCTGTTCAACC -ACGGAAAGAACCTCCTGTTGTTCC -ACGGAAAGAACCTCCTGTATTCCC -ACGGAAAGAACCTCCTGTTTCTCG -ACGGAAAGAACCTCCTGTTAGACG -ACGGAAAGAACCTCCTGTGTAACG -ACGGAAAGAACCTCCTGTACTTCG -ACGGAAAGAACCTCCTGTTACGCA -ACGGAAAGAACCTCCTGTCTTGCA -ACGGAAAGAACCTCCTGTCGAACA -ACGGAAAGAACCTCCTGTCAGTCA -ACGGAAAGAACCTCCTGTGATCCA -ACGGAAAGAACCTCCTGTACGACA -ACGGAAAGAACCTCCTGTAGCTCA -ACGGAAAGAACCTCCTGTTCACGT -ACGGAAAGAACCTCCTGTCGTAGT -ACGGAAAGAACCTCCTGTGTCAGT -ACGGAAAGAACCTCCTGTGAAGGT -ACGGAAAGAACCTCCTGTAACCGT -ACGGAAAGAACCTCCTGTTTGTGC -ACGGAAAGAACCTCCTGTCTAAGC -ACGGAAAGAACCTCCTGTACTAGC -ACGGAAAGAACCTCCTGTAGATGC -ACGGAAAGAACCTCCTGTTGAAGG -ACGGAAAGAACCTCCTGTCAATGG -ACGGAAAGAACCTCCTGTATGAGG -ACGGAAAGAACCTCCTGTAATGGG -ACGGAAAGAACCTCCTGTTCCTGA -ACGGAAAGAACCTCCTGTTAGCGA -ACGGAAAGAACCTCCTGTCACAGA -ACGGAAAGAACCTCCTGTGCAAGA -ACGGAAAGAACCTCCTGTGGTTGA -ACGGAAAGAACCTCCTGTTCCGAT -ACGGAAAGAACCTCCTGTTGGCAT -ACGGAAAGAACCTCCTGTCGAGAT -ACGGAAAGAACCTCCTGTTACCAC -ACGGAAAGAACCTCCTGTCAGAAC -ACGGAAAGAACCTCCTGTGTCTAC -ACGGAAAGAACCTCCTGTACGTAC -ACGGAAAGAACCTCCTGTAGTGAC -ACGGAAAGAACCTCCTGTCTGTAG -ACGGAAAGAACCTCCTGTCCTAAG -ACGGAAAGAACCTCCTGTGTTCAG -ACGGAAAGAACCTCCTGTGCATAG -ACGGAAAGAACCTCCTGTGACAAG -ACGGAAAGAACCTCCTGTAAGCAG -ACGGAAAGAACCTCCTGTCGTCAA -ACGGAAAGAACCTCCTGTGCTGAA -ACGGAAAGAACCTCCTGTAGTACG -ACGGAAAGAACCTCCTGTATCCGA -ACGGAAAGAACCTCCTGTATGGGA -ACGGAAAGAACCTCCTGTGTGCAA -ACGGAAAGAACCTCCTGTGAGGAA -ACGGAAAGAACCTCCTGTCAGGTA -ACGGAAAGAACCTCCTGTGACTCT -ACGGAAAGAACCTCCTGTAGTCCT -ACGGAAAGAACCTCCTGTTAAGCC -ACGGAAAGAACCTCCTGTATAGCC -ACGGAAAGAACCTCCTGTTAACCG -ACGGAAAGAACCTCCTGTATGCCA -ACGGAAAGAACCCCCATTGGAAAC -ACGGAAAGAACCCCCATTAACACC -ACGGAAAGAACCCCCATTATCGAG -ACGGAAAGAACCCCCATTCTCCTT -ACGGAAAGAACCCCCATTCCTGTT -ACGGAAAGAACCCCCATTCGGTTT -ACGGAAAGAACCCCCATTGTGGTT -ACGGAAAGAACCCCCATTGCCTTT -ACGGAAAGAACCCCCATTGGTCTT -ACGGAAAGAACCCCCATTACGCTT -ACGGAAAGAACCCCCATTAGCGTT -ACGGAAAGAACCCCCATTTTCGTC -ACGGAAAGAACCCCCATTTCTCTC -ACGGAAAGAACCCCCATTTGGATC -ACGGAAAGAACCCCCATTCACTTC -ACGGAAAGAACCCCCATTGTACTC -ACGGAAAGAACCCCCATTGATGTC -ACGGAAAGAACCCCCATTACAGTC -ACGGAAAGAACCCCCATTTTGCTG -ACGGAAAGAACCCCCATTTCCATG -ACGGAAAGAACCCCCATTTGTGTG -ACGGAAAGAACCCCCATTCTAGTG -ACGGAAAGAACCCCCATTCATCTG -ACGGAAAGAACCCCCATTGAGTTG -ACGGAAAGAACCCCCATTAGACTG -ACGGAAAGAACCCCCATTTCGGTA -ACGGAAAGAACCCCCATTTGCCTA -ACGGAAAGAACCCCCATTCCACTA -ACGGAAAGAACCCCCATTGGAGTA -ACGGAAAGAACCCCCATTTCGTCT -ACGGAAAGAACCCCCATTTGCACT -ACGGAAAGAACCCCCATTCTGACT -ACGGAAAGAACCCCCATTCAACCT -ACGGAAAGAACCCCCATTGCTACT -ACGGAAAGAACCCCCATTGGATCT -ACGGAAAGAACCCCCATTAAGGCT -ACGGAAAGAACCCCCATTTCAACC -ACGGAAAGAACCCCCATTTGTTCC -ACGGAAAGAACCCCCATTATTCCC -ACGGAAAGAACCCCCATTTTCTCG -ACGGAAAGAACCCCCATTTAGACG -ACGGAAAGAACCCCCATTGTAACG -ACGGAAAGAACCCCCATTACTTCG -ACGGAAAGAACCCCCATTTACGCA -ACGGAAAGAACCCCCATTCTTGCA -ACGGAAAGAACCCCCATTCGAACA -ACGGAAAGAACCCCCATTCAGTCA -ACGGAAAGAACCCCCATTGATCCA -ACGGAAAGAACCCCCATTACGACA -ACGGAAAGAACCCCCATTAGCTCA -ACGGAAAGAACCCCCATTTCACGT -ACGGAAAGAACCCCCATTCGTAGT -ACGGAAAGAACCCCCATTGTCAGT -ACGGAAAGAACCCCCATTGAAGGT -ACGGAAAGAACCCCCATTAACCGT -ACGGAAAGAACCCCCATTTTGTGC -ACGGAAAGAACCCCCATTCTAAGC -ACGGAAAGAACCCCCATTACTAGC -ACGGAAAGAACCCCCATTAGATGC -ACGGAAAGAACCCCCATTTGAAGG -ACGGAAAGAACCCCCATTCAATGG -ACGGAAAGAACCCCCATTATGAGG -ACGGAAAGAACCCCCATTAATGGG -ACGGAAAGAACCCCCATTTCCTGA -ACGGAAAGAACCCCCATTTAGCGA -ACGGAAAGAACCCCCATTCACAGA -ACGGAAAGAACCCCCATTGCAAGA -ACGGAAAGAACCCCCATTGGTTGA -ACGGAAAGAACCCCCATTTCCGAT -ACGGAAAGAACCCCCATTTGGCAT -ACGGAAAGAACCCCCATTCGAGAT -ACGGAAAGAACCCCCATTTACCAC -ACGGAAAGAACCCCCATTCAGAAC -ACGGAAAGAACCCCCATTGTCTAC -ACGGAAAGAACCCCCATTACGTAC -ACGGAAAGAACCCCCATTAGTGAC -ACGGAAAGAACCCCCATTCTGTAG -ACGGAAAGAACCCCCATTCCTAAG -ACGGAAAGAACCCCCATTGTTCAG -ACGGAAAGAACCCCCATTGCATAG -ACGGAAAGAACCCCCATTGACAAG -ACGGAAAGAACCCCCATTAAGCAG -ACGGAAAGAACCCCCATTCGTCAA -ACGGAAAGAACCCCCATTGCTGAA -ACGGAAAGAACCCCCATTAGTACG -ACGGAAAGAACCCCCATTATCCGA -ACGGAAAGAACCCCCATTATGGGA -ACGGAAAGAACCCCCATTGTGCAA -ACGGAAAGAACCCCCATTGAGGAA -ACGGAAAGAACCCCCATTCAGGTA -ACGGAAAGAACCCCCATTGACTCT -ACGGAAAGAACCCCCATTAGTCCT -ACGGAAAGAACCCCCATTTAAGCC -ACGGAAAGAACCCCCATTATAGCC -ACGGAAAGAACCCCCATTTAACCG -ACGGAAAGAACCCCCATTATGCCA -ACGGAAAGAACCTCGTTCGGAAAC -ACGGAAAGAACCTCGTTCAACACC -ACGGAAAGAACCTCGTTCATCGAG -ACGGAAAGAACCTCGTTCCTCCTT -ACGGAAAGAACCTCGTTCCCTGTT -ACGGAAAGAACCTCGTTCCGGTTT -ACGGAAAGAACCTCGTTCGTGGTT -ACGGAAAGAACCTCGTTCGCCTTT -ACGGAAAGAACCTCGTTCGGTCTT -ACGGAAAGAACCTCGTTCACGCTT -ACGGAAAGAACCTCGTTCAGCGTT -ACGGAAAGAACCTCGTTCTTCGTC -ACGGAAAGAACCTCGTTCTCTCTC -ACGGAAAGAACCTCGTTCTGGATC -ACGGAAAGAACCTCGTTCCACTTC -ACGGAAAGAACCTCGTTCGTACTC -ACGGAAAGAACCTCGTTCGATGTC -ACGGAAAGAACCTCGTTCACAGTC -ACGGAAAGAACCTCGTTCTTGCTG -ACGGAAAGAACCTCGTTCTCCATG -ACGGAAAGAACCTCGTTCTGTGTG -ACGGAAAGAACCTCGTTCCTAGTG -ACGGAAAGAACCTCGTTCCATCTG -ACGGAAAGAACCTCGTTCGAGTTG -ACGGAAAGAACCTCGTTCAGACTG -ACGGAAAGAACCTCGTTCTCGGTA -ACGGAAAGAACCTCGTTCTGCCTA -ACGGAAAGAACCTCGTTCCCACTA -ACGGAAAGAACCTCGTTCGGAGTA -ACGGAAAGAACCTCGTTCTCGTCT -ACGGAAAGAACCTCGTTCTGCACT -ACGGAAAGAACCTCGTTCCTGACT -ACGGAAAGAACCTCGTTCCAACCT -ACGGAAAGAACCTCGTTCGCTACT -ACGGAAAGAACCTCGTTCGGATCT -ACGGAAAGAACCTCGTTCAAGGCT -ACGGAAAGAACCTCGTTCTCAACC -ACGGAAAGAACCTCGTTCTGTTCC -ACGGAAAGAACCTCGTTCATTCCC -ACGGAAAGAACCTCGTTCTTCTCG -ACGGAAAGAACCTCGTTCTAGACG -ACGGAAAGAACCTCGTTCGTAACG -ACGGAAAGAACCTCGTTCACTTCG -ACGGAAAGAACCTCGTTCTACGCA -ACGGAAAGAACCTCGTTCCTTGCA -ACGGAAAGAACCTCGTTCCGAACA -ACGGAAAGAACCTCGTTCCAGTCA -ACGGAAAGAACCTCGTTCGATCCA -ACGGAAAGAACCTCGTTCACGACA -ACGGAAAGAACCTCGTTCAGCTCA -ACGGAAAGAACCTCGTTCTCACGT -ACGGAAAGAACCTCGTTCCGTAGT -ACGGAAAGAACCTCGTTCGTCAGT -ACGGAAAGAACCTCGTTCGAAGGT -ACGGAAAGAACCTCGTTCAACCGT -ACGGAAAGAACCTCGTTCTTGTGC -ACGGAAAGAACCTCGTTCCTAAGC -ACGGAAAGAACCTCGTTCACTAGC -ACGGAAAGAACCTCGTTCAGATGC -ACGGAAAGAACCTCGTTCTGAAGG -ACGGAAAGAACCTCGTTCCAATGG -ACGGAAAGAACCTCGTTCATGAGG -ACGGAAAGAACCTCGTTCAATGGG -ACGGAAAGAACCTCGTTCTCCTGA -ACGGAAAGAACCTCGTTCTAGCGA -ACGGAAAGAACCTCGTTCCACAGA -ACGGAAAGAACCTCGTTCGCAAGA -ACGGAAAGAACCTCGTTCGGTTGA -ACGGAAAGAACCTCGTTCTCCGAT -ACGGAAAGAACCTCGTTCTGGCAT -ACGGAAAGAACCTCGTTCCGAGAT -ACGGAAAGAACCTCGTTCTACCAC -ACGGAAAGAACCTCGTTCCAGAAC -ACGGAAAGAACCTCGTTCGTCTAC -ACGGAAAGAACCTCGTTCACGTAC -ACGGAAAGAACCTCGTTCAGTGAC -ACGGAAAGAACCTCGTTCCTGTAG -ACGGAAAGAACCTCGTTCCCTAAG -ACGGAAAGAACCTCGTTCGTTCAG -ACGGAAAGAACCTCGTTCGCATAG -ACGGAAAGAACCTCGTTCGACAAG -ACGGAAAGAACCTCGTTCAAGCAG -ACGGAAAGAACCTCGTTCCGTCAA -ACGGAAAGAACCTCGTTCGCTGAA -ACGGAAAGAACCTCGTTCAGTACG -ACGGAAAGAACCTCGTTCATCCGA -ACGGAAAGAACCTCGTTCATGGGA -ACGGAAAGAACCTCGTTCGTGCAA -ACGGAAAGAACCTCGTTCGAGGAA -ACGGAAAGAACCTCGTTCCAGGTA -ACGGAAAGAACCTCGTTCGACTCT -ACGGAAAGAACCTCGTTCAGTCCT -ACGGAAAGAACCTCGTTCTAAGCC -ACGGAAAGAACCTCGTTCATAGCC -ACGGAAAGAACCTCGTTCTAACCG -ACGGAAAGAACCTCGTTCATGCCA -ACGGAAAGAACCACGTAGGGAAAC -ACGGAAAGAACCACGTAGAACACC -ACGGAAAGAACCACGTAGATCGAG -ACGGAAAGAACCACGTAGCTCCTT -ACGGAAAGAACCACGTAGCCTGTT -ACGGAAAGAACCACGTAGCGGTTT -ACGGAAAGAACCACGTAGGTGGTT -ACGGAAAGAACCACGTAGGCCTTT -ACGGAAAGAACCACGTAGGGTCTT -ACGGAAAGAACCACGTAGACGCTT -ACGGAAAGAACCACGTAGAGCGTT -ACGGAAAGAACCACGTAGTTCGTC -ACGGAAAGAACCACGTAGTCTCTC -ACGGAAAGAACCACGTAGTGGATC -ACGGAAAGAACCACGTAGCACTTC -ACGGAAAGAACCACGTAGGTACTC -ACGGAAAGAACCACGTAGGATGTC -ACGGAAAGAACCACGTAGACAGTC -ACGGAAAGAACCACGTAGTTGCTG -ACGGAAAGAACCACGTAGTCCATG -ACGGAAAGAACCACGTAGTGTGTG -ACGGAAAGAACCACGTAGCTAGTG -ACGGAAAGAACCACGTAGCATCTG -ACGGAAAGAACCACGTAGGAGTTG -ACGGAAAGAACCACGTAGAGACTG -ACGGAAAGAACCACGTAGTCGGTA -ACGGAAAGAACCACGTAGTGCCTA -ACGGAAAGAACCACGTAGCCACTA -ACGGAAAGAACCACGTAGGGAGTA -ACGGAAAGAACCACGTAGTCGTCT -ACGGAAAGAACCACGTAGTGCACT -ACGGAAAGAACCACGTAGCTGACT -ACGGAAAGAACCACGTAGCAACCT -ACGGAAAGAACCACGTAGGCTACT -ACGGAAAGAACCACGTAGGGATCT -ACGGAAAGAACCACGTAGAAGGCT -ACGGAAAGAACCACGTAGTCAACC -ACGGAAAGAACCACGTAGTGTTCC -ACGGAAAGAACCACGTAGATTCCC -ACGGAAAGAACCACGTAGTTCTCG -ACGGAAAGAACCACGTAGTAGACG -ACGGAAAGAACCACGTAGGTAACG -ACGGAAAGAACCACGTAGACTTCG -ACGGAAAGAACCACGTAGTACGCA -ACGGAAAGAACCACGTAGCTTGCA -ACGGAAAGAACCACGTAGCGAACA -ACGGAAAGAACCACGTAGCAGTCA -ACGGAAAGAACCACGTAGGATCCA -ACGGAAAGAACCACGTAGACGACA -ACGGAAAGAACCACGTAGAGCTCA -ACGGAAAGAACCACGTAGTCACGT -ACGGAAAGAACCACGTAGCGTAGT -ACGGAAAGAACCACGTAGGTCAGT -ACGGAAAGAACCACGTAGGAAGGT -ACGGAAAGAACCACGTAGAACCGT -ACGGAAAGAACCACGTAGTTGTGC -ACGGAAAGAACCACGTAGCTAAGC -ACGGAAAGAACCACGTAGACTAGC -ACGGAAAGAACCACGTAGAGATGC -ACGGAAAGAACCACGTAGTGAAGG -ACGGAAAGAACCACGTAGCAATGG -ACGGAAAGAACCACGTAGATGAGG -ACGGAAAGAACCACGTAGAATGGG -ACGGAAAGAACCACGTAGTCCTGA -ACGGAAAGAACCACGTAGTAGCGA -ACGGAAAGAACCACGTAGCACAGA -ACGGAAAGAACCACGTAGGCAAGA -ACGGAAAGAACCACGTAGGGTTGA -ACGGAAAGAACCACGTAGTCCGAT -ACGGAAAGAACCACGTAGTGGCAT -ACGGAAAGAACCACGTAGCGAGAT -ACGGAAAGAACCACGTAGTACCAC -ACGGAAAGAACCACGTAGCAGAAC -ACGGAAAGAACCACGTAGGTCTAC -ACGGAAAGAACCACGTAGACGTAC -ACGGAAAGAACCACGTAGAGTGAC -ACGGAAAGAACCACGTAGCTGTAG -ACGGAAAGAACCACGTAGCCTAAG -ACGGAAAGAACCACGTAGGTTCAG -ACGGAAAGAACCACGTAGGCATAG -ACGGAAAGAACCACGTAGGACAAG -ACGGAAAGAACCACGTAGAAGCAG -ACGGAAAGAACCACGTAGCGTCAA -ACGGAAAGAACCACGTAGGCTGAA -ACGGAAAGAACCACGTAGAGTACG -ACGGAAAGAACCACGTAGATCCGA -ACGGAAAGAACCACGTAGATGGGA -ACGGAAAGAACCACGTAGGTGCAA -ACGGAAAGAACCACGTAGGAGGAA -ACGGAAAGAACCACGTAGCAGGTA -ACGGAAAGAACCACGTAGGACTCT -ACGGAAAGAACCACGTAGAGTCCT -ACGGAAAGAACCACGTAGTAAGCC -ACGGAAAGAACCACGTAGATAGCC -ACGGAAAGAACCACGTAGTAACCG -ACGGAAAGAACCACGTAGATGCCA -ACGGAAAGAACCACGGTAGGAAAC -ACGGAAAGAACCACGGTAAACACC -ACGGAAAGAACCACGGTAATCGAG -ACGGAAAGAACCACGGTACTCCTT -ACGGAAAGAACCACGGTACCTGTT -ACGGAAAGAACCACGGTACGGTTT -ACGGAAAGAACCACGGTAGTGGTT -ACGGAAAGAACCACGGTAGCCTTT -ACGGAAAGAACCACGGTAGGTCTT -ACGGAAAGAACCACGGTAACGCTT -ACGGAAAGAACCACGGTAAGCGTT -ACGGAAAGAACCACGGTATTCGTC -ACGGAAAGAACCACGGTATCTCTC -ACGGAAAGAACCACGGTATGGATC -ACGGAAAGAACCACGGTACACTTC -ACGGAAAGAACCACGGTAGTACTC -ACGGAAAGAACCACGGTAGATGTC -ACGGAAAGAACCACGGTAACAGTC -ACGGAAAGAACCACGGTATTGCTG -ACGGAAAGAACCACGGTATCCATG -ACGGAAAGAACCACGGTATGTGTG -ACGGAAAGAACCACGGTACTAGTG -ACGGAAAGAACCACGGTACATCTG -ACGGAAAGAACCACGGTAGAGTTG -ACGGAAAGAACCACGGTAAGACTG -ACGGAAAGAACCACGGTATCGGTA -ACGGAAAGAACCACGGTATGCCTA -ACGGAAAGAACCACGGTACCACTA -ACGGAAAGAACCACGGTAGGAGTA -ACGGAAAGAACCACGGTATCGTCT -ACGGAAAGAACCACGGTATGCACT -ACGGAAAGAACCACGGTACTGACT -ACGGAAAGAACCACGGTACAACCT -ACGGAAAGAACCACGGTAGCTACT -ACGGAAAGAACCACGGTAGGATCT -ACGGAAAGAACCACGGTAAAGGCT -ACGGAAAGAACCACGGTATCAACC -ACGGAAAGAACCACGGTATGTTCC -ACGGAAAGAACCACGGTAATTCCC -ACGGAAAGAACCACGGTATTCTCG -ACGGAAAGAACCACGGTATAGACG -ACGGAAAGAACCACGGTAGTAACG -ACGGAAAGAACCACGGTAACTTCG -ACGGAAAGAACCACGGTATACGCA -ACGGAAAGAACCACGGTACTTGCA -ACGGAAAGAACCACGGTACGAACA -ACGGAAAGAACCACGGTACAGTCA -ACGGAAAGAACCACGGTAGATCCA -ACGGAAAGAACCACGGTAACGACA -ACGGAAAGAACCACGGTAAGCTCA -ACGGAAAGAACCACGGTATCACGT -ACGGAAAGAACCACGGTACGTAGT -ACGGAAAGAACCACGGTAGTCAGT -ACGGAAAGAACCACGGTAGAAGGT -ACGGAAAGAACCACGGTAAACCGT -ACGGAAAGAACCACGGTATTGTGC -ACGGAAAGAACCACGGTACTAAGC -ACGGAAAGAACCACGGTAACTAGC -ACGGAAAGAACCACGGTAAGATGC -ACGGAAAGAACCACGGTATGAAGG -ACGGAAAGAACCACGGTACAATGG -ACGGAAAGAACCACGGTAATGAGG -ACGGAAAGAACCACGGTAAATGGG -ACGGAAAGAACCACGGTATCCTGA -ACGGAAAGAACCACGGTATAGCGA -ACGGAAAGAACCACGGTACACAGA -ACGGAAAGAACCACGGTAGCAAGA -ACGGAAAGAACCACGGTAGGTTGA -ACGGAAAGAACCACGGTATCCGAT -ACGGAAAGAACCACGGTATGGCAT -ACGGAAAGAACCACGGTACGAGAT -ACGGAAAGAACCACGGTATACCAC -ACGGAAAGAACCACGGTACAGAAC -ACGGAAAGAACCACGGTAGTCTAC -ACGGAAAGAACCACGGTAACGTAC -ACGGAAAGAACCACGGTAAGTGAC -ACGGAAAGAACCACGGTACTGTAG -ACGGAAAGAACCACGGTACCTAAG -ACGGAAAGAACCACGGTAGTTCAG -ACGGAAAGAACCACGGTAGCATAG -ACGGAAAGAACCACGGTAGACAAG -ACGGAAAGAACCACGGTAAAGCAG -ACGGAAAGAACCACGGTACGTCAA -ACGGAAAGAACCACGGTAGCTGAA -ACGGAAAGAACCACGGTAAGTACG -ACGGAAAGAACCACGGTAATCCGA -ACGGAAAGAACCACGGTAATGGGA -ACGGAAAGAACCACGGTAGTGCAA -ACGGAAAGAACCACGGTAGAGGAA -ACGGAAAGAACCACGGTACAGGTA -ACGGAAAGAACCACGGTAGACTCT -ACGGAAAGAACCACGGTAAGTCCT -ACGGAAAGAACCACGGTATAAGCC -ACGGAAAGAACCACGGTAATAGCC -ACGGAAAGAACCACGGTATAACCG -ACGGAAAGAACCACGGTAATGCCA -ACGGAAAGAACCTCGACTGGAAAC -ACGGAAAGAACCTCGACTAACACC -ACGGAAAGAACCTCGACTATCGAG -ACGGAAAGAACCTCGACTCTCCTT -ACGGAAAGAACCTCGACTCCTGTT -ACGGAAAGAACCTCGACTCGGTTT -ACGGAAAGAACCTCGACTGTGGTT -ACGGAAAGAACCTCGACTGCCTTT -ACGGAAAGAACCTCGACTGGTCTT -ACGGAAAGAACCTCGACTACGCTT -ACGGAAAGAACCTCGACTAGCGTT -ACGGAAAGAACCTCGACTTTCGTC -ACGGAAAGAACCTCGACTTCTCTC -ACGGAAAGAACCTCGACTTGGATC -ACGGAAAGAACCTCGACTCACTTC -ACGGAAAGAACCTCGACTGTACTC -ACGGAAAGAACCTCGACTGATGTC -ACGGAAAGAACCTCGACTACAGTC -ACGGAAAGAACCTCGACTTTGCTG -ACGGAAAGAACCTCGACTTCCATG -ACGGAAAGAACCTCGACTTGTGTG -ACGGAAAGAACCTCGACTCTAGTG -ACGGAAAGAACCTCGACTCATCTG -ACGGAAAGAACCTCGACTGAGTTG -ACGGAAAGAACCTCGACTAGACTG -ACGGAAAGAACCTCGACTTCGGTA -ACGGAAAGAACCTCGACTTGCCTA -ACGGAAAGAACCTCGACTCCACTA -ACGGAAAGAACCTCGACTGGAGTA -ACGGAAAGAACCTCGACTTCGTCT -ACGGAAAGAACCTCGACTTGCACT -ACGGAAAGAACCTCGACTCTGACT -ACGGAAAGAACCTCGACTCAACCT -ACGGAAAGAACCTCGACTGCTACT -ACGGAAAGAACCTCGACTGGATCT -ACGGAAAGAACCTCGACTAAGGCT -ACGGAAAGAACCTCGACTTCAACC -ACGGAAAGAACCTCGACTTGTTCC -ACGGAAAGAACCTCGACTATTCCC -ACGGAAAGAACCTCGACTTTCTCG -ACGGAAAGAACCTCGACTTAGACG -ACGGAAAGAACCTCGACTGTAACG -ACGGAAAGAACCTCGACTACTTCG -ACGGAAAGAACCTCGACTTACGCA -ACGGAAAGAACCTCGACTCTTGCA -ACGGAAAGAACCTCGACTCGAACA -ACGGAAAGAACCTCGACTCAGTCA -ACGGAAAGAACCTCGACTGATCCA -ACGGAAAGAACCTCGACTACGACA -ACGGAAAGAACCTCGACTAGCTCA -ACGGAAAGAACCTCGACTTCACGT -ACGGAAAGAACCTCGACTCGTAGT -ACGGAAAGAACCTCGACTGTCAGT -ACGGAAAGAACCTCGACTGAAGGT -ACGGAAAGAACCTCGACTAACCGT -ACGGAAAGAACCTCGACTTTGTGC -ACGGAAAGAACCTCGACTCTAAGC -ACGGAAAGAACCTCGACTACTAGC -ACGGAAAGAACCTCGACTAGATGC -ACGGAAAGAACCTCGACTTGAAGG -ACGGAAAGAACCTCGACTCAATGG -ACGGAAAGAACCTCGACTATGAGG -ACGGAAAGAACCTCGACTAATGGG -ACGGAAAGAACCTCGACTTCCTGA -ACGGAAAGAACCTCGACTTAGCGA -ACGGAAAGAACCTCGACTCACAGA -ACGGAAAGAACCTCGACTGCAAGA -ACGGAAAGAACCTCGACTGGTTGA -ACGGAAAGAACCTCGACTTCCGAT -ACGGAAAGAACCTCGACTTGGCAT -ACGGAAAGAACCTCGACTCGAGAT -ACGGAAAGAACCTCGACTTACCAC -ACGGAAAGAACCTCGACTCAGAAC -ACGGAAAGAACCTCGACTGTCTAC -ACGGAAAGAACCTCGACTACGTAC -ACGGAAAGAACCTCGACTAGTGAC -ACGGAAAGAACCTCGACTCTGTAG -ACGGAAAGAACCTCGACTCCTAAG -ACGGAAAGAACCTCGACTGTTCAG -ACGGAAAGAACCTCGACTGCATAG -ACGGAAAGAACCTCGACTGACAAG -ACGGAAAGAACCTCGACTAAGCAG -ACGGAAAGAACCTCGACTCGTCAA -ACGGAAAGAACCTCGACTGCTGAA -ACGGAAAGAACCTCGACTAGTACG -ACGGAAAGAACCTCGACTATCCGA -ACGGAAAGAACCTCGACTATGGGA -ACGGAAAGAACCTCGACTGTGCAA -ACGGAAAGAACCTCGACTGAGGAA -ACGGAAAGAACCTCGACTCAGGTA -ACGGAAAGAACCTCGACTGACTCT -ACGGAAAGAACCTCGACTAGTCCT -ACGGAAAGAACCTCGACTTAAGCC -ACGGAAAGAACCTCGACTATAGCC -ACGGAAAGAACCTCGACTTAACCG -ACGGAAAGAACCTCGACTATGCCA -ACGGAAAGAACCGCATACGGAAAC -ACGGAAAGAACCGCATACAACACC -ACGGAAAGAACCGCATACATCGAG -ACGGAAAGAACCGCATACCTCCTT -ACGGAAAGAACCGCATACCCTGTT -ACGGAAAGAACCGCATACCGGTTT -ACGGAAAGAACCGCATACGTGGTT -ACGGAAAGAACCGCATACGCCTTT -ACGGAAAGAACCGCATACGGTCTT -ACGGAAAGAACCGCATACACGCTT -ACGGAAAGAACCGCATACAGCGTT -ACGGAAAGAACCGCATACTTCGTC -ACGGAAAGAACCGCATACTCTCTC -ACGGAAAGAACCGCATACTGGATC -ACGGAAAGAACCGCATACCACTTC -ACGGAAAGAACCGCATACGTACTC -ACGGAAAGAACCGCATACGATGTC -ACGGAAAGAACCGCATACACAGTC -ACGGAAAGAACCGCATACTTGCTG -ACGGAAAGAACCGCATACTCCATG -ACGGAAAGAACCGCATACTGTGTG -ACGGAAAGAACCGCATACCTAGTG -ACGGAAAGAACCGCATACCATCTG -ACGGAAAGAACCGCATACGAGTTG -ACGGAAAGAACCGCATACAGACTG -ACGGAAAGAACCGCATACTCGGTA -ACGGAAAGAACCGCATACTGCCTA -ACGGAAAGAACCGCATACCCACTA -ACGGAAAGAACCGCATACGGAGTA -ACGGAAAGAACCGCATACTCGTCT -ACGGAAAGAACCGCATACTGCACT -ACGGAAAGAACCGCATACCTGACT -ACGGAAAGAACCGCATACCAACCT -ACGGAAAGAACCGCATACGCTACT -ACGGAAAGAACCGCATACGGATCT -ACGGAAAGAACCGCATACAAGGCT -ACGGAAAGAACCGCATACTCAACC -ACGGAAAGAACCGCATACTGTTCC -ACGGAAAGAACCGCATACATTCCC -ACGGAAAGAACCGCATACTTCTCG -ACGGAAAGAACCGCATACTAGACG -ACGGAAAGAACCGCATACGTAACG -ACGGAAAGAACCGCATACACTTCG -ACGGAAAGAACCGCATACTACGCA -ACGGAAAGAACCGCATACCTTGCA -ACGGAAAGAACCGCATACCGAACA -ACGGAAAGAACCGCATACCAGTCA -ACGGAAAGAACCGCATACGATCCA -ACGGAAAGAACCGCATACACGACA -ACGGAAAGAACCGCATACAGCTCA -ACGGAAAGAACCGCATACTCACGT -ACGGAAAGAACCGCATACCGTAGT -ACGGAAAGAACCGCATACGTCAGT -ACGGAAAGAACCGCATACGAAGGT -ACGGAAAGAACCGCATACAACCGT -ACGGAAAGAACCGCATACTTGTGC -ACGGAAAGAACCGCATACCTAAGC -ACGGAAAGAACCGCATACACTAGC -ACGGAAAGAACCGCATACAGATGC -ACGGAAAGAACCGCATACTGAAGG -ACGGAAAGAACCGCATACCAATGG -ACGGAAAGAACCGCATACATGAGG -ACGGAAAGAACCGCATACAATGGG -ACGGAAAGAACCGCATACTCCTGA -ACGGAAAGAACCGCATACTAGCGA -ACGGAAAGAACCGCATACCACAGA -ACGGAAAGAACCGCATACGCAAGA -ACGGAAAGAACCGCATACGGTTGA -ACGGAAAGAACCGCATACTCCGAT -ACGGAAAGAACCGCATACTGGCAT -ACGGAAAGAACCGCATACCGAGAT -ACGGAAAGAACCGCATACTACCAC -ACGGAAAGAACCGCATACCAGAAC -ACGGAAAGAACCGCATACGTCTAC -ACGGAAAGAACCGCATACACGTAC -ACGGAAAGAACCGCATACAGTGAC -ACGGAAAGAACCGCATACCTGTAG -ACGGAAAGAACCGCATACCCTAAG -ACGGAAAGAACCGCATACGTTCAG -ACGGAAAGAACCGCATACGCATAG -ACGGAAAGAACCGCATACGACAAG -ACGGAAAGAACCGCATACAAGCAG -ACGGAAAGAACCGCATACCGTCAA -ACGGAAAGAACCGCATACGCTGAA -ACGGAAAGAACCGCATACAGTACG -ACGGAAAGAACCGCATACATCCGA -ACGGAAAGAACCGCATACATGGGA -ACGGAAAGAACCGCATACGTGCAA -ACGGAAAGAACCGCATACGAGGAA -ACGGAAAGAACCGCATACCAGGTA -ACGGAAAGAACCGCATACGACTCT -ACGGAAAGAACCGCATACAGTCCT -ACGGAAAGAACCGCATACTAAGCC -ACGGAAAGAACCGCATACATAGCC -ACGGAAAGAACCGCATACTAACCG -ACGGAAAGAACCGCATACATGCCA -ACGGAAAGAACCGCACTTGGAAAC -ACGGAAAGAACCGCACTTAACACC -ACGGAAAGAACCGCACTTATCGAG -ACGGAAAGAACCGCACTTCTCCTT -ACGGAAAGAACCGCACTTCCTGTT -ACGGAAAGAACCGCACTTCGGTTT -ACGGAAAGAACCGCACTTGTGGTT -ACGGAAAGAACCGCACTTGCCTTT -ACGGAAAGAACCGCACTTGGTCTT -ACGGAAAGAACCGCACTTACGCTT -ACGGAAAGAACCGCACTTAGCGTT -ACGGAAAGAACCGCACTTTTCGTC -ACGGAAAGAACCGCACTTTCTCTC -ACGGAAAGAACCGCACTTTGGATC -ACGGAAAGAACCGCACTTCACTTC -ACGGAAAGAACCGCACTTGTACTC -ACGGAAAGAACCGCACTTGATGTC -ACGGAAAGAACCGCACTTACAGTC -ACGGAAAGAACCGCACTTTTGCTG -ACGGAAAGAACCGCACTTTCCATG -ACGGAAAGAACCGCACTTTGTGTG -ACGGAAAGAACCGCACTTCTAGTG -ACGGAAAGAACCGCACTTCATCTG -ACGGAAAGAACCGCACTTGAGTTG -ACGGAAAGAACCGCACTTAGACTG -ACGGAAAGAACCGCACTTTCGGTA -ACGGAAAGAACCGCACTTTGCCTA -ACGGAAAGAACCGCACTTCCACTA -ACGGAAAGAACCGCACTTGGAGTA -ACGGAAAGAACCGCACTTTCGTCT -ACGGAAAGAACCGCACTTTGCACT -ACGGAAAGAACCGCACTTCTGACT -ACGGAAAGAACCGCACTTCAACCT -ACGGAAAGAACCGCACTTGCTACT -ACGGAAAGAACCGCACTTGGATCT -ACGGAAAGAACCGCACTTAAGGCT -ACGGAAAGAACCGCACTTTCAACC -ACGGAAAGAACCGCACTTTGTTCC -ACGGAAAGAACCGCACTTATTCCC -ACGGAAAGAACCGCACTTTTCTCG -ACGGAAAGAACCGCACTTTAGACG -ACGGAAAGAACCGCACTTGTAACG -ACGGAAAGAACCGCACTTACTTCG -ACGGAAAGAACCGCACTTTACGCA -ACGGAAAGAACCGCACTTCTTGCA -ACGGAAAGAACCGCACTTCGAACA -ACGGAAAGAACCGCACTTCAGTCA -ACGGAAAGAACCGCACTTGATCCA -ACGGAAAGAACCGCACTTACGACA -ACGGAAAGAACCGCACTTAGCTCA -ACGGAAAGAACCGCACTTTCACGT -ACGGAAAGAACCGCACTTCGTAGT -ACGGAAAGAACCGCACTTGTCAGT -ACGGAAAGAACCGCACTTGAAGGT -ACGGAAAGAACCGCACTTAACCGT -ACGGAAAGAACCGCACTTTTGTGC -ACGGAAAGAACCGCACTTCTAAGC -ACGGAAAGAACCGCACTTACTAGC -ACGGAAAGAACCGCACTTAGATGC -ACGGAAAGAACCGCACTTTGAAGG -ACGGAAAGAACCGCACTTCAATGG -ACGGAAAGAACCGCACTTATGAGG -ACGGAAAGAACCGCACTTAATGGG -ACGGAAAGAACCGCACTTTCCTGA -ACGGAAAGAACCGCACTTTAGCGA -ACGGAAAGAACCGCACTTCACAGA -ACGGAAAGAACCGCACTTGCAAGA -ACGGAAAGAACCGCACTTGGTTGA -ACGGAAAGAACCGCACTTTCCGAT -ACGGAAAGAACCGCACTTTGGCAT -ACGGAAAGAACCGCACTTCGAGAT -ACGGAAAGAACCGCACTTTACCAC -ACGGAAAGAACCGCACTTCAGAAC -ACGGAAAGAACCGCACTTGTCTAC -ACGGAAAGAACCGCACTTACGTAC -ACGGAAAGAACCGCACTTAGTGAC -ACGGAAAGAACCGCACTTCTGTAG -ACGGAAAGAACCGCACTTCCTAAG -ACGGAAAGAACCGCACTTGTTCAG -ACGGAAAGAACCGCACTTGCATAG -ACGGAAAGAACCGCACTTGACAAG -ACGGAAAGAACCGCACTTAAGCAG -ACGGAAAGAACCGCACTTCGTCAA -ACGGAAAGAACCGCACTTGCTGAA -ACGGAAAGAACCGCACTTAGTACG -ACGGAAAGAACCGCACTTATCCGA -ACGGAAAGAACCGCACTTATGGGA -ACGGAAAGAACCGCACTTGTGCAA -ACGGAAAGAACCGCACTTGAGGAA -ACGGAAAGAACCGCACTTCAGGTA -ACGGAAAGAACCGCACTTGACTCT -ACGGAAAGAACCGCACTTAGTCCT -ACGGAAAGAACCGCACTTTAAGCC -ACGGAAAGAACCGCACTTATAGCC -ACGGAAAGAACCGCACTTTAACCG -ACGGAAAGAACCGCACTTATGCCA -ACGGAAAGAACCACACGAGGAAAC -ACGGAAAGAACCACACGAAACACC -ACGGAAAGAACCACACGAATCGAG -ACGGAAAGAACCACACGACTCCTT -ACGGAAAGAACCACACGACCTGTT -ACGGAAAGAACCACACGACGGTTT -ACGGAAAGAACCACACGAGTGGTT -ACGGAAAGAACCACACGAGCCTTT -ACGGAAAGAACCACACGAGGTCTT -ACGGAAAGAACCACACGAACGCTT -ACGGAAAGAACCACACGAAGCGTT -ACGGAAAGAACCACACGATTCGTC -ACGGAAAGAACCACACGATCTCTC -ACGGAAAGAACCACACGATGGATC -ACGGAAAGAACCACACGACACTTC -ACGGAAAGAACCACACGAGTACTC -ACGGAAAGAACCACACGAGATGTC -ACGGAAAGAACCACACGAACAGTC -ACGGAAAGAACCACACGATTGCTG -ACGGAAAGAACCACACGATCCATG -ACGGAAAGAACCACACGATGTGTG -ACGGAAAGAACCACACGACTAGTG -ACGGAAAGAACCACACGACATCTG -ACGGAAAGAACCACACGAGAGTTG -ACGGAAAGAACCACACGAAGACTG -ACGGAAAGAACCACACGATCGGTA -ACGGAAAGAACCACACGATGCCTA -ACGGAAAGAACCACACGACCACTA -ACGGAAAGAACCACACGAGGAGTA -ACGGAAAGAACCACACGATCGTCT -ACGGAAAGAACCACACGATGCACT -ACGGAAAGAACCACACGACTGACT -ACGGAAAGAACCACACGACAACCT -ACGGAAAGAACCACACGAGCTACT -ACGGAAAGAACCACACGAGGATCT -ACGGAAAGAACCACACGAAAGGCT -ACGGAAAGAACCACACGATCAACC -ACGGAAAGAACCACACGATGTTCC -ACGGAAAGAACCACACGAATTCCC -ACGGAAAGAACCACACGATTCTCG -ACGGAAAGAACCACACGATAGACG -ACGGAAAGAACCACACGAGTAACG -ACGGAAAGAACCACACGAACTTCG -ACGGAAAGAACCACACGATACGCA -ACGGAAAGAACCACACGACTTGCA -ACGGAAAGAACCACACGACGAACA -ACGGAAAGAACCACACGACAGTCA -ACGGAAAGAACCACACGAGATCCA -ACGGAAAGAACCACACGAACGACA -ACGGAAAGAACCACACGAAGCTCA -ACGGAAAGAACCACACGATCACGT -ACGGAAAGAACCACACGACGTAGT -ACGGAAAGAACCACACGAGTCAGT -ACGGAAAGAACCACACGAGAAGGT -ACGGAAAGAACCACACGAAACCGT -ACGGAAAGAACCACACGATTGTGC -ACGGAAAGAACCACACGACTAAGC -ACGGAAAGAACCACACGAACTAGC -ACGGAAAGAACCACACGAAGATGC -ACGGAAAGAACCACACGATGAAGG -ACGGAAAGAACCACACGACAATGG -ACGGAAAGAACCACACGAATGAGG -ACGGAAAGAACCACACGAAATGGG -ACGGAAAGAACCACACGATCCTGA -ACGGAAAGAACCACACGATAGCGA -ACGGAAAGAACCACACGACACAGA -ACGGAAAGAACCACACGAGCAAGA -ACGGAAAGAACCACACGAGGTTGA -ACGGAAAGAACCACACGATCCGAT -ACGGAAAGAACCACACGATGGCAT -ACGGAAAGAACCACACGACGAGAT -ACGGAAAGAACCACACGATACCAC -ACGGAAAGAACCACACGACAGAAC -ACGGAAAGAACCACACGAGTCTAC -ACGGAAAGAACCACACGAACGTAC -ACGGAAAGAACCACACGAAGTGAC -ACGGAAAGAACCACACGACTGTAG -ACGGAAAGAACCACACGACCTAAG -ACGGAAAGAACCACACGAGTTCAG -ACGGAAAGAACCACACGAGCATAG -ACGGAAAGAACCACACGAGACAAG -ACGGAAAGAACCACACGAAAGCAG -ACGGAAAGAACCACACGACGTCAA -ACGGAAAGAACCACACGAGCTGAA -ACGGAAAGAACCACACGAAGTACG -ACGGAAAGAACCACACGAATCCGA -ACGGAAAGAACCACACGAATGGGA -ACGGAAAGAACCACACGAGTGCAA -ACGGAAAGAACCACACGAGAGGAA -ACGGAAAGAACCACACGACAGGTA -ACGGAAAGAACCACACGAGACTCT -ACGGAAAGAACCACACGAAGTCCT -ACGGAAAGAACCACACGATAAGCC -ACGGAAAGAACCACACGAATAGCC -ACGGAAAGAACCACACGATAACCG -ACGGAAAGAACCACACGAATGCCA -ACGGAAAGAACCTCACAGGGAAAC -ACGGAAAGAACCTCACAGAACACC -ACGGAAAGAACCTCACAGATCGAG -ACGGAAAGAACCTCACAGCTCCTT -ACGGAAAGAACCTCACAGCCTGTT -ACGGAAAGAACCTCACAGCGGTTT -ACGGAAAGAACCTCACAGGTGGTT -ACGGAAAGAACCTCACAGGCCTTT -ACGGAAAGAACCTCACAGGGTCTT -ACGGAAAGAACCTCACAGACGCTT -ACGGAAAGAACCTCACAGAGCGTT -ACGGAAAGAACCTCACAGTTCGTC -ACGGAAAGAACCTCACAGTCTCTC -ACGGAAAGAACCTCACAGTGGATC -ACGGAAAGAACCTCACAGCACTTC -ACGGAAAGAACCTCACAGGTACTC -ACGGAAAGAACCTCACAGGATGTC -ACGGAAAGAACCTCACAGACAGTC -ACGGAAAGAACCTCACAGTTGCTG -ACGGAAAGAACCTCACAGTCCATG -ACGGAAAGAACCTCACAGTGTGTG -ACGGAAAGAACCTCACAGCTAGTG -ACGGAAAGAACCTCACAGCATCTG -ACGGAAAGAACCTCACAGGAGTTG -ACGGAAAGAACCTCACAGAGACTG -ACGGAAAGAACCTCACAGTCGGTA -ACGGAAAGAACCTCACAGTGCCTA -ACGGAAAGAACCTCACAGCCACTA -ACGGAAAGAACCTCACAGGGAGTA -ACGGAAAGAACCTCACAGTCGTCT -ACGGAAAGAACCTCACAGTGCACT -ACGGAAAGAACCTCACAGCTGACT -ACGGAAAGAACCTCACAGCAACCT -ACGGAAAGAACCTCACAGGCTACT -ACGGAAAGAACCTCACAGGGATCT -ACGGAAAGAACCTCACAGAAGGCT -ACGGAAAGAACCTCACAGTCAACC -ACGGAAAGAACCTCACAGTGTTCC -ACGGAAAGAACCTCACAGATTCCC -ACGGAAAGAACCTCACAGTTCTCG -ACGGAAAGAACCTCACAGTAGACG -ACGGAAAGAACCTCACAGGTAACG -ACGGAAAGAACCTCACAGACTTCG -ACGGAAAGAACCTCACAGTACGCA -ACGGAAAGAACCTCACAGCTTGCA -ACGGAAAGAACCTCACAGCGAACA -ACGGAAAGAACCTCACAGCAGTCA -ACGGAAAGAACCTCACAGGATCCA -ACGGAAAGAACCTCACAGACGACA -ACGGAAAGAACCTCACAGAGCTCA -ACGGAAAGAACCTCACAGTCACGT -ACGGAAAGAACCTCACAGCGTAGT -ACGGAAAGAACCTCACAGGTCAGT -ACGGAAAGAACCTCACAGGAAGGT -ACGGAAAGAACCTCACAGAACCGT -ACGGAAAGAACCTCACAGTTGTGC -ACGGAAAGAACCTCACAGCTAAGC -ACGGAAAGAACCTCACAGACTAGC -ACGGAAAGAACCTCACAGAGATGC -ACGGAAAGAACCTCACAGTGAAGG -ACGGAAAGAACCTCACAGCAATGG -ACGGAAAGAACCTCACAGATGAGG -ACGGAAAGAACCTCACAGAATGGG -ACGGAAAGAACCTCACAGTCCTGA -ACGGAAAGAACCTCACAGTAGCGA -ACGGAAAGAACCTCACAGCACAGA -ACGGAAAGAACCTCACAGGCAAGA -ACGGAAAGAACCTCACAGGGTTGA -ACGGAAAGAACCTCACAGTCCGAT -ACGGAAAGAACCTCACAGTGGCAT -ACGGAAAGAACCTCACAGCGAGAT -ACGGAAAGAACCTCACAGTACCAC -ACGGAAAGAACCTCACAGCAGAAC -ACGGAAAGAACCTCACAGGTCTAC -ACGGAAAGAACCTCACAGACGTAC -ACGGAAAGAACCTCACAGAGTGAC -ACGGAAAGAACCTCACAGCTGTAG -ACGGAAAGAACCTCACAGCCTAAG -ACGGAAAGAACCTCACAGGTTCAG -ACGGAAAGAACCTCACAGGCATAG -ACGGAAAGAACCTCACAGGACAAG -ACGGAAAGAACCTCACAGAAGCAG -ACGGAAAGAACCTCACAGCGTCAA -ACGGAAAGAACCTCACAGGCTGAA -ACGGAAAGAACCTCACAGAGTACG -ACGGAAAGAACCTCACAGATCCGA -ACGGAAAGAACCTCACAGATGGGA -ACGGAAAGAACCTCACAGGTGCAA -ACGGAAAGAACCTCACAGGAGGAA -ACGGAAAGAACCTCACAGCAGGTA -ACGGAAAGAACCTCACAGGACTCT -ACGGAAAGAACCTCACAGAGTCCT -ACGGAAAGAACCTCACAGTAAGCC -ACGGAAAGAACCTCACAGATAGCC -ACGGAAAGAACCTCACAGTAACCG -ACGGAAAGAACCTCACAGATGCCA -ACGGAAAGAACCCCAGATGGAAAC -ACGGAAAGAACCCCAGATAACACC -ACGGAAAGAACCCCAGATATCGAG -ACGGAAAGAACCCCAGATCTCCTT -ACGGAAAGAACCCCAGATCCTGTT -ACGGAAAGAACCCCAGATCGGTTT -ACGGAAAGAACCCCAGATGTGGTT -ACGGAAAGAACCCCAGATGCCTTT -ACGGAAAGAACCCCAGATGGTCTT -ACGGAAAGAACCCCAGATACGCTT -ACGGAAAGAACCCCAGATAGCGTT -ACGGAAAGAACCCCAGATTTCGTC -ACGGAAAGAACCCCAGATTCTCTC -ACGGAAAGAACCCCAGATTGGATC -ACGGAAAGAACCCCAGATCACTTC -ACGGAAAGAACCCCAGATGTACTC -ACGGAAAGAACCCCAGATGATGTC -ACGGAAAGAACCCCAGATACAGTC -ACGGAAAGAACCCCAGATTTGCTG -ACGGAAAGAACCCCAGATTCCATG -ACGGAAAGAACCCCAGATTGTGTG -ACGGAAAGAACCCCAGATCTAGTG -ACGGAAAGAACCCCAGATCATCTG -ACGGAAAGAACCCCAGATGAGTTG -ACGGAAAGAACCCCAGATAGACTG -ACGGAAAGAACCCCAGATTCGGTA -ACGGAAAGAACCCCAGATTGCCTA -ACGGAAAGAACCCCAGATCCACTA -ACGGAAAGAACCCCAGATGGAGTA -ACGGAAAGAACCCCAGATTCGTCT -ACGGAAAGAACCCCAGATTGCACT -ACGGAAAGAACCCCAGATCTGACT -ACGGAAAGAACCCCAGATCAACCT -ACGGAAAGAACCCCAGATGCTACT -ACGGAAAGAACCCCAGATGGATCT -ACGGAAAGAACCCCAGATAAGGCT -ACGGAAAGAACCCCAGATTCAACC -ACGGAAAGAACCCCAGATTGTTCC -ACGGAAAGAACCCCAGATATTCCC -ACGGAAAGAACCCCAGATTTCTCG -ACGGAAAGAACCCCAGATTAGACG -ACGGAAAGAACCCCAGATGTAACG -ACGGAAAGAACCCCAGATACTTCG -ACGGAAAGAACCCCAGATTACGCA -ACGGAAAGAACCCCAGATCTTGCA -ACGGAAAGAACCCCAGATCGAACA -ACGGAAAGAACCCCAGATCAGTCA -ACGGAAAGAACCCCAGATGATCCA -ACGGAAAGAACCCCAGATACGACA -ACGGAAAGAACCCCAGATAGCTCA -ACGGAAAGAACCCCAGATTCACGT -ACGGAAAGAACCCCAGATCGTAGT -ACGGAAAGAACCCCAGATGTCAGT -ACGGAAAGAACCCCAGATGAAGGT -ACGGAAAGAACCCCAGATAACCGT -ACGGAAAGAACCCCAGATTTGTGC -ACGGAAAGAACCCCAGATCTAAGC -ACGGAAAGAACCCCAGATACTAGC -ACGGAAAGAACCCCAGATAGATGC -ACGGAAAGAACCCCAGATTGAAGG -ACGGAAAGAACCCCAGATCAATGG -ACGGAAAGAACCCCAGATATGAGG -ACGGAAAGAACCCCAGATAATGGG -ACGGAAAGAACCCCAGATTCCTGA -ACGGAAAGAACCCCAGATTAGCGA -ACGGAAAGAACCCCAGATCACAGA -ACGGAAAGAACCCCAGATGCAAGA -ACGGAAAGAACCCCAGATGGTTGA -ACGGAAAGAACCCCAGATTCCGAT -ACGGAAAGAACCCCAGATTGGCAT -ACGGAAAGAACCCCAGATCGAGAT -ACGGAAAGAACCCCAGATTACCAC -ACGGAAAGAACCCCAGATCAGAAC -ACGGAAAGAACCCCAGATGTCTAC -ACGGAAAGAACCCCAGATACGTAC -ACGGAAAGAACCCCAGATAGTGAC -ACGGAAAGAACCCCAGATCTGTAG -ACGGAAAGAACCCCAGATCCTAAG -ACGGAAAGAACCCCAGATGTTCAG -ACGGAAAGAACCCCAGATGCATAG -ACGGAAAGAACCCCAGATGACAAG -ACGGAAAGAACCCCAGATAAGCAG -ACGGAAAGAACCCCAGATCGTCAA -ACGGAAAGAACCCCAGATGCTGAA -ACGGAAAGAACCCCAGATAGTACG -ACGGAAAGAACCCCAGATATCCGA -ACGGAAAGAACCCCAGATATGGGA -ACGGAAAGAACCCCAGATGTGCAA -ACGGAAAGAACCCCAGATGAGGAA -ACGGAAAGAACCCCAGATCAGGTA -ACGGAAAGAACCCCAGATGACTCT -ACGGAAAGAACCCCAGATAGTCCT -ACGGAAAGAACCCCAGATTAAGCC -ACGGAAAGAACCCCAGATATAGCC -ACGGAAAGAACCCCAGATTAACCG -ACGGAAAGAACCCCAGATATGCCA -ACGGAAAGAACCACAACGGGAAAC -ACGGAAAGAACCACAACGAACACC -ACGGAAAGAACCACAACGATCGAG -ACGGAAAGAACCACAACGCTCCTT -ACGGAAAGAACCACAACGCCTGTT -ACGGAAAGAACCACAACGCGGTTT -ACGGAAAGAACCACAACGGTGGTT -ACGGAAAGAACCACAACGGCCTTT -ACGGAAAGAACCACAACGGGTCTT -ACGGAAAGAACCACAACGACGCTT -ACGGAAAGAACCACAACGAGCGTT -ACGGAAAGAACCACAACGTTCGTC -ACGGAAAGAACCACAACGTCTCTC -ACGGAAAGAACCACAACGTGGATC -ACGGAAAGAACCACAACGCACTTC -ACGGAAAGAACCACAACGGTACTC -ACGGAAAGAACCACAACGGATGTC -ACGGAAAGAACCACAACGACAGTC -ACGGAAAGAACCACAACGTTGCTG -ACGGAAAGAACCACAACGTCCATG -ACGGAAAGAACCACAACGTGTGTG -ACGGAAAGAACCACAACGCTAGTG -ACGGAAAGAACCACAACGCATCTG -ACGGAAAGAACCACAACGGAGTTG -ACGGAAAGAACCACAACGAGACTG -ACGGAAAGAACCACAACGTCGGTA -ACGGAAAGAACCACAACGTGCCTA -ACGGAAAGAACCACAACGCCACTA -ACGGAAAGAACCACAACGGGAGTA -ACGGAAAGAACCACAACGTCGTCT -ACGGAAAGAACCACAACGTGCACT -ACGGAAAGAACCACAACGCTGACT -ACGGAAAGAACCACAACGCAACCT -ACGGAAAGAACCACAACGGCTACT -ACGGAAAGAACCACAACGGGATCT -ACGGAAAGAACCACAACGAAGGCT -ACGGAAAGAACCACAACGTCAACC -ACGGAAAGAACCACAACGTGTTCC -ACGGAAAGAACCACAACGATTCCC -ACGGAAAGAACCACAACGTTCTCG -ACGGAAAGAACCACAACGTAGACG -ACGGAAAGAACCACAACGGTAACG -ACGGAAAGAACCACAACGACTTCG -ACGGAAAGAACCACAACGTACGCA -ACGGAAAGAACCACAACGCTTGCA -ACGGAAAGAACCACAACGCGAACA -ACGGAAAGAACCACAACGCAGTCA -ACGGAAAGAACCACAACGGATCCA -ACGGAAAGAACCACAACGACGACA -ACGGAAAGAACCACAACGAGCTCA -ACGGAAAGAACCACAACGTCACGT -ACGGAAAGAACCACAACGCGTAGT -ACGGAAAGAACCACAACGGTCAGT -ACGGAAAGAACCACAACGGAAGGT -ACGGAAAGAACCACAACGAACCGT -ACGGAAAGAACCACAACGTTGTGC -ACGGAAAGAACCACAACGCTAAGC -ACGGAAAGAACCACAACGACTAGC -ACGGAAAGAACCACAACGAGATGC -ACGGAAAGAACCACAACGTGAAGG -ACGGAAAGAACCACAACGCAATGG -ACGGAAAGAACCACAACGATGAGG -ACGGAAAGAACCACAACGAATGGG -ACGGAAAGAACCACAACGTCCTGA -ACGGAAAGAACCACAACGTAGCGA -ACGGAAAGAACCACAACGCACAGA -ACGGAAAGAACCACAACGGCAAGA -ACGGAAAGAACCACAACGGGTTGA -ACGGAAAGAACCACAACGTCCGAT -ACGGAAAGAACCACAACGTGGCAT -ACGGAAAGAACCACAACGCGAGAT -ACGGAAAGAACCACAACGTACCAC -ACGGAAAGAACCACAACGCAGAAC -ACGGAAAGAACCACAACGGTCTAC -ACGGAAAGAACCACAACGACGTAC -ACGGAAAGAACCACAACGAGTGAC -ACGGAAAGAACCACAACGCTGTAG -ACGGAAAGAACCACAACGCCTAAG -ACGGAAAGAACCACAACGGTTCAG -ACGGAAAGAACCACAACGGCATAG -ACGGAAAGAACCACAACGGACAAG -ACGGAAAGAACCACAACGAAGCAG -ACGGAAAGAACCACAACGCGTCAA -ACGGAAAGAACCACAACGGCTGAA -ACGGAAAGAACCACAACGAGTACG -ACGGAAAGAACCACAACGATCCGA -ACGGAAAGAACCACAACGATGGGA -ACGGAAAGAACCACAACGGTGCAA -ACGGAAAGAACCACAACGGAGGAA -ACGGAAAGAACCACAACGCAGGTA -ACGGAAAGAACCACAACGGACTCT -ACGGAAAGAACCACAACGAGTCCT -ACGGAAAGAACCACAACGTAAGCC -ACGGAAAGAACCACAACGATAGCC -ACGGAAAGAACCACAACGTAACCG -ACGGAAAGAACCACAACGATGCCA -ACGGAAAGAACCTCAAGCGGAAAC -ACGGAAAGAACCTCAAGCAACACC -ACGGAAAGAACCTCAAGCATCGAG -ACGGAAAGAACCTCAAGCCTCCTT -ACGGAAAGAACCTCAAGCCCTGTT -ACGGAAAGAACCTCAAGCCGGTTT -ACGGAAAGAACCTCAAGCGTGGTT -ACGGAAAGAACCTCAAGCGCCTTT -ACGGAAAGAACCTCAAGCGGTCTT -ACGGAAAGAACCTCAAGCACGCTT -ACGGAAAGAACCTCAAGCAGCGTT -ACGGAAAGAACCTCAAGCTTCGTC -ACGGAAAGAACCTCAAGCTCTCTC -ACGGAAAGAACCTCAAGCTGGATC -ACGGAAAGAACCTCAAGCCACTTC -ACGGAAAGAACCTCAAGCGTACTC -ACGGAAAGAACCTCAAGCGATGTC -ACGGAAAGAACCTCAAGCACAGTC -ACGGAAAGAACCTCAAGCTTGCTG -ACGGAAAGAACCTCAAGCTCCATG -ACGGAAAGAACCTCAAGCTGTGTG -ACGGAAAGAACCTCAAGCCTAGTG -ACGGAAAGAACCTCAAGCCATCTG -ACGGAAAGAACCTCAAGCGAGTTG -ACGGAAAGAACCTCAAGCAGACTG -ACGGAAAGAACCTCAAGCTCGGTA -ACGGAAAGAACCTCAAGCTGCCTA -ACGGAAAGAACCTCAAGCCCACTA -ACGGAAAGAACCTCAAGCGGAGTA -ACGGAAAGAACCTCAAGCTCGTCT -ACGGAAAGAACCTCAAGCTGCACT -ACGGAAAGAACCTCAAGCCTGACT -ACGGAAAGAACCTCAAGCCAACCT -ACGGAAAGAACCTCAAGCGCTACT -ACGGAAAGAACCTCAAGCGGATCT -ACGGAAAGAACCTCAAGCAAGGCT -ACGGAAAGAACCTCAAGCTCAACC -ACGGAAAGAACCTCAAGCTGTTCC -ACGGAAAGAACCTCAAGCATTCCC -ACGGAAAGAACCTCAAGCTTCTCG -ACGGAAAGAACCTCAAGCTAGACG -ACGGAAAGAACCTCAAGCGTAACG -ACGGAAAGAACCTCAAGCACTTCG -ACGGAAAGAACCTCAAGCTACGCA -ACGGAAAGAACCTCAAGCCTTGCA -ACGGAAAGAACCTCAAGCCGAACA -ACGGAAAGAACCTCAAGCCAGTCA -ACGGAAAGAACCTCAAGCGATCCA -ACGGAAAGAACCTCAAGCACGACA -ACGGAAAGAACCTCAAGCAGCTCA -ACGGAAAGAACCTCAAGCTCACGT -ACGGAAAGAACCTCAAGCCGTAGT -ACGGAAAGAACCTCAAGCGTCAGT -ACGGAAAGAACCTCAAGCGAAGGT -ACGGAAAGAACCTCAAGCAACCGT -ACGGAAAGAACCTCAAGCTTGTGC -ACGGAAAGAACCTCAAGCCTAAGC -ACGGAAAGAACCTCAAGCACTAGC -ACGGAAAGAACCTCAAGCAGATGC -ACGGAAAGAACCTCAAGCTGAAGG -ACGGAAAGAACCTCAAGCCAATGG -ACGGAAAGAACCTCAAGCATGAGG -ACGGAAAGAACCTCAAGCAATGGG -ACGGAAAGAACCTCAAGCTCCTGA -ACGGAAAGAACCTCAAGCTAGCGA -ACGGAAAGAACCTCAAGCCACAGA -ACGGAAAGAACCTCAAGCGCAAGA -ACGGAAAGAACCTCAAGCGGTTGA -ACGGAAAGAACCTCAAGCTCCGAT -ACGGAAAGAACCTCAAGCTGGCAT -ACGGAAAGAACCTCAAGCCGAGAT -ACGGAAAGAACCTCAAGCTACCAC -ACGGAAAGAACCTCAAGCCAGAAC -ACGGAAAGAACCTCAAGCGTCTAC -ACGGAAAGAACCTCAAGCACGTAC -ACGGAAAGAACCTCAAGCAGTGAC -ACGGAAAGAACCTCAAGCCTGTAG -ACGGAAAGAACCTCAAGCCCTAAG -ACGGAAAGAACCTCAAGCGTTCAG -ACGGAAAGAACCTCAAGCGCATAG -ACGGAAAGAACCTCAAGCGACAAG -ACGGAAAGAACCTCAAGCAAGCAG -ACGGAAAGAACCTCAAGCCGTCAA -ACGGAAAGAACCTCAAGCGCTGAA -ACGGAAAGAACCTCAAGCAGTACG -ACGGAAAGAACCTCAAGCATCCGA -ACGGAAAGAACCTCAAGCATGGGA -ACGGAAAGAACCTCAAGCGTGCAA -ACGGAAAGAACCTCAAGCGAGGAA -ACGGAAAGAACCTCAAGCCAGGTA -ACGGAAAGAACCTCAAGCGACTCT -ACGGAAAGAACCTCAAGCAGTCCT -ACGGAAAGAACCTCAAGCTAAGCC -ACGGAAAGAACCTCAAGCATAGCC -ACGGAAAGAACCTCAAGCTAACCG -ACGGAAAGAACCTCAAGCATGCCA -ACGGAAAGAACCCGTTCAGGAAAC -ACGGAAAGAACCCGTTCAAACACC -ACGGAAAGAACCCGTTCAATCGAG -ACGGAAAGAACCCGTTCACTCCTT -ACGGAAAGAACCCGTTCACCTGTT -ACGGAAAGAACCCGTTCACGGTTT -ACGGAAAGAACCCGTTCAGTGGTT -ACGGAAAGAACCCGTTCAGCCTTT -ACGGAAAGAACCCGTTCAGGTCTT -ACGGAAAGAACCCGTTCAACGCTT -ACGGAAAGAACCCGTTCAAGCGTT -ACGGAAAGAACCCGTTCATTCGTC -ACGGAAAGAACCCGTTCATCTCTC -ACGGAAAGAACCCGTTCATGGATC -ACGGAAAGAACCCGTTCACACTTC -ACGGAAAGAACCCGTTCAGTACTC -ACGGAAAGAACCCGTTCAGATGTC -ACGGAAAGAACCCGTTCAACAGTC -ACGGAAAGAACCCGTTCATTGCTG -ACGGAAAGAACCCGTTCATCCATG -ACGGAAAGAACCCGTTCATGTGTG -ACGGAAAGAACCCGTTCACTAGTG -ACGGAAAGAACCCGTTCACATCTG -ACGGAAAGAACCCGTTCAGAGTTG -ACGGAAAGAACCCGTTCAAGACTG -ACGGAAAGAACCCGTTCATCGGTA -ACGGAAAGAACCCGTTCATGCCTA -ACGGAAAGAACCCGTTCACCACTA -ACGGAAAGAACCCGTTCAGGAGTA -ACGGAAAGAACCCGTTCATCGTCT -ACGGAAAGAACCCGTTCATGCACT -ACGGAAAGAACCCGTTCACTGACT -ACGGAAAGAACCCGTTCACAACCT -ACGGAAAGAACCCGTTCAGCTACT -ACGGAAAGAACCCGTTCAGGATCT -ACGGAAAGAACCCGTTCAAAGGCT -ACGGAAAGAACCCGTTCATCAACC -ACGGAAAGAACCCGTTCATGTTCC -ACGGAAAGAACCCGTTCAATTCCC -ACGGAAAGAACCCGTTCATTCTCG -ACGGAAAGAACCCGTTCATAGACG -ACGGAAAGAACCCGTTCAGTAACG -ACGGAAAGAACCCGTTCAACTTCG -ACGGAAAGAACCCGTTCATACGCA -ACGGAAAGAACCCGTTCACTTGCA -ACGGAAAGAACCCGTTCACGAACA -ACGGAAAGAACCCGTTCACAGTCA -ACGGAAAGAACCCGTTCAGATCCA -ACGGAAAGAACCCGTTCAACGACA -ACGGAAAGAACCCGTTCAAGCTCA -ACGGAAAGAACCCGTTCATCACGT -ACGGAAAGAACCCGTTCACGTAGT -ACGGAAAGAACCCGTTCAGTCAGT -ACGGAAAGAACCCGTTCAGAAGGT -ACGGAAAGAACCCGTTCAAACCGT -ACGGAAAGAACCCGTTCATTGTGC -ACGGAAAGAACCCGTTCACTAAGC -ACGGAAAGAACCCGTTCAACTAGC -ACGGAAAGAACCCGTTCAAGATGC -ACGGAAAGAACCCGTTCATGAAGG -ACGGAAAGAACCCGTTCACAATGG -ACGGAAAGAACCCGTTCAATGAGG -ACGGAAAGAACCCGTTCAAATGGG -ACGGAAAGAACCCGTTCATCCTGA -ACGGAAAGAACCCGTTCATAGCGA -ACGGAAAGAACCCGTTCACACAGA -ACGGAAAGAACCCGTTCAGCAAGA -ACGGAAAGAACCCGTTCAGGTTGA -ACGGAAAGAACCCGTTCATCCGAT -ACGGAAAGAACCCGTTCATGGCAT -ACGGAAAGAACCCGTTCACGAGAT -ACGGAAAGAACCCGTTCATACCAC -ACGGAAAGAACCCGTTCACAGAAC -ACGGAAAGAACCCGTTCAGTCTAC -ACGGAAAGAACCCGTTCAACGTAC -ACGGAAAGAACCCGTTCAAGTGAC -ACGGAAAGAACCCGTTCACTGTAG -ACGGAAAGAACCCGTTCACCTAAG -ACGGAAAGAACCCGTTCAGTTCAG -ACGGAAAGAACCCGTTCAGCATAG -ACGGAAAGAACCCGTTCAGACAAG -ACGGAAAGAACCCGTTCAAAGCAG -ACGGAAAGAACCCGTTCACGTCAA -ACGGAAAGAACCCGTTCAGCTGAA -ACGGAAAGAACCCGTTCAAGTACG -ACGGAAAGAACCCGTTCAATCCGA -ACGGAAAGAACCCGTTCAATGGGA -ACGGAAAGAACCCGTTCAGTGCAA -ACGGAAAGAACCCGTTCAGAGGAA -ACGGAAAGAACCCGTTCACAGGTA -ACGGAAAGAACCCGTTCAGACTCT -ACGGAAAGAACCCGTTCAAGTCCT -ACGGAAAGAACCCGTTCATAAGCC -ACGGAAAGAACCCGTTCAATAGCC -ACGGAAAGAACCCGTTCATAACCG -ACGGAAAGAACCCGTTCAATGCCA -ACGGAAAGAACCAGTCGTGGAAAC -ACGGAAAGAACCAGTCGTAACACC -ACGGAAAGAACCAGTCGTATCGAG -ACGGAAAGAACCAGTCGTCTCCTT -ACGGAAAGAACCAGTCGTCCTGTT -ACGGAAAGAACCAGTCGTCGGTTT -ACGGAAAGAACCAGTCGTGTGGTT -ACGGAAAGAACCAGTCGTGCCTTT -ACGGAAAGAACCAGTCGTGGTCTT -ACGGAAAGAACCAGTCGTACGCTT -ACGGAAAGAACCAGTCGTAGCGTT -ACGGAAAGAACCAGTCGTTTCGTC -ACGGAAAGAACCAGTCGTTCTCTC -ACGGAAAGAACCAGTCGTTGGATC -ACGGAAAGAACCAGTCGTCACTTC -ACGGAAAGAACCAGTCGTGTACTC -ACGGAAAGAACCAGTCGTGATGTC -ACGGAAAGAACCAGTCGTACAGTC -ACGGAAAGAACCAGTCGTTTGCTG -ACGGAAAGAACCAGTCGTTCCATG -ACGGAAAGAACCAGTCGTTGTGTG -ACGGAAAGAACCAGTCGTCTAGTG -ACGGAAAGAACCAGTCGTCATCTG -ACGGAAAGAACCAGTCGTGAGTTG -ACGGAAAGAACCAGTCGTAGACTG -ACGGAAAGAACCAGTCGTTCGGTA -ACGGAAAGAACCAGTCGTTGCCTA -ACGGAAAGAACCAGTCGTCCACTA -ACGGAAAGAACCAGTCGTGGAGTA -ACGGAAAGAACCAGTCGTTCGTCT -ACGGAAAGAACCAGTCGTTGCACT -ACGGAAAGAACCAGTCGTCTGACT -ACGGAAAGAACCAGTCGTCAACCT -ACGGAAAGAACCAGTCGTGCTACT -ACGGAAAGAACCAGTCGTGGATCT -ACGGAAAGAACCAGTCGTAAGGCT -ACGGAAAGAACCAGTCGTTCAACC -ACGGAAAGAACCAGTCGTTGTTCC -ACGGAAAGAACCAGTCGTATTCCC -ACGGAAAGAACCAGTCGTTTCTCG -ACGGAAAGAACCAGTCGTTAGACG -ACGGAAAGAACCAGTCGTGTAACG -ACGGAAAGAACCAGTCGTACTTCG -ACGGAAAGAACCAGTCGTTACGCA -ACGGAAAGAACCAGTCGTCTTGCA -ACGGAAAGAACCAGTCGTCGAACA -ACGGAAAGAACCAGTCGTCAGTCA -ACGGAAAGAACCAGTCGTGATCCA -ACGGAAAGAACCAGTCGTACGACA -ACGGAAAGAACCAGTCGTAGCTCA -ACGGAAAGAACCAGTCGTTCACGT -ACGGAAAGAACCAGTCGTCGTAGT -ACGGAAAGAACCAGTCGTGTCAGT -ACGGAAAGAACCAGTCGTGAAGGT -ACGGAAAGAACCAGTCGTAACCGT -ACGGAAAGAACCAGTCGTTTGTGC -ACGGAAAGAACCAGTCGTCTAAGC -ACGGAAAGAACCAGTCGTACTAGC -ACGGAAAGAACCAGTCGTAGATGC -ACGGAAAGAACCAGTCGTTGAAGG -ACGGAAAGAACCAGTCGTCAATGG -ACGGAAAGAACCAGTCGTATGAGG -ACGGAAAGAACCAGTCGTAATGGG -ACGGAAAGAACCAGTCGTTCCTGA -ACGGAAAGAACCAGTCGTTAGCGA -ACGGAAAGAACCAGTCGTCACAGA -ACGGAAAGAACCAGTCGTGCAAGA -ACGGAAAGAACCAGTCGTGGTTGA -ACGGAAAGAACCAGTCGTTCCGAT -ACGGAAAGAACCAGTCGTTGGCAT -ACGGAAAGAACCAGTCGTCGAGAT -ACGGAAAGAACCAGTCGTTACCAC -ACGGAAAGAACCAGTCGTCAGAAC -ACGGAAAGAACCAGTCGTGTCTAC -ACGGAAAGAACCAGTCGTACGTAC -ACGGAAAGAACCAGTCGTAGTGAC -ACGGAAAGAACCAGTCGTCTGTAG -ACGGAAAGAACCAGTCGTCCTAAG -ACGGAAAGAACCAGTCGTGTTCAG -ACGGAAAGAACCAGTCGTGCATAG -ACGGAAAGAACCAGTCGTGACAAG -ACGGAAAGAACCAGTCGTAAGCAG -ACGGAAAGAACCAGTCGTCGTCAA -ACGGAAAGAACCAGTCGTGCTGAA -ACGGAAAGAACCAGTCGTAGTACG -ACGGAAAGAACCAGTCGTATCCGA -ACGGAAAGAACCAGTCGTATGGGA -ACGGAAAGAACCAGTCGTGTGCAA -ACGGAAAGAACCAGTCGTGAGGAA -ACGGAAAGAACCAGTCGTCAGGTA -ACGGAAAGAACCAGTCGTGACTCT -ACGGAAAGAACCAGTCGTAGTCCT -ACGGAAAGAACCAGTCGTTAAGCC -ACGGAAAGAACCAGTCGTATAGCC -ACGGAAAGAACCAGTCGTTAACCG -ACGGAAAGAACCAGTCGTATGCCA -ACGGAAAGAACCAGTGTCGGAAAC -ACGGAAAGAACCAGTGTCAACACC -ACGGAAAGAACCAGTGTCATCGAG -ACGGAAAGAACCAGTGTCCTCCTT -ACGGAAAGAACCAGTGTCCCTGTT -ACGGAAAGAACCAGTGTCCGGTTT -ACGGAAAGAACCAGTGTCGTGGTT -ACGGAAAGAACCAGTGTCGCCTTT -ACGGAAAGAACCAGTGTCGGTCTT -ACGGAAAGAACCAGTGTCACGCTT -ACGGAAAGAACCAGTGTCAGCGTT -ACGGAAAGAACCAGTGTCTTCGTC -ACGGAAAGAACCAGTGTCTCTCTC -ACGGAAAGAACCAGTGTCTGGATC -ACGGAAAGAACCAGTGTCCACTTC -ACGGAAAGAACCAGTGTCGTACTC -ACGGAAAGAACCAGTGTCGATGTC -ACGGAAAGAACCAGTGTCACAGTC -ACGGAAAGAACCAGTGTCTTGCTG -ACGGAAAGAACCAGTGTCTCCATG -ACGGAAAGAACCAGTGTCTGTGTG -ACGGAAAGAACCAGTGTCCTAGTG -ACGGAAAGAACCAGTGTCCATCTG -ACGGAAAGAACCAGTGTCGAGTTG -ACGGAAAGAACCAGTGTCAGACTG -ACGGAAAGAACCAGTGTCTCGGTA -ACGGAAAGAACCAGTGTCTGCCTA -ACGGAAAGAACCAGTGTCCCACTA -ACGGAAAGAACCAGTGTCGGAGTA -ACGGAAAGAACCAGTGTCTCGTCT -ACGGAAAGAACCAGTGTCTGCACT -ACGGAAAGAACCAGTGTCCTGACT -ACGGAAAGAACCAGTGTCCAACCT -ACGGAAAGAACCAGTGTCGCTACT -ACGGAAAGAACCAGTGTCGGATCT -ACGGAAAGAACCAGTGTCAAGGCT -ACGGAAAGAACCAGTGTCTCAACC -ACGGAAAGAACCAGTGTCTGTTCC -ACGGAAAGAACCAGTGTCATTCCC -ACGGAAAGAACCAGTGTCTTCTCG -ACGGAAAGAACCAGTGTCTAGACG -ACGGAAAGAACCAGTGTCGTAACG -ACGGAAAGAACCAGTGTCACTTCG -ACGGAAAGAACCAGTGTCTACGCA -ACGGAAAGAACCAGTGTCCTTGCA -ACGGAAAGAACCAGTGTCCGAACA -ACGGAAAGAACCAGTGTCCAGTCA -ACGGAAAGAACCAGTGTCGATCCA -ACGGAAAGAACCAGTGTCACGACA -ACGGAAAGAACCAGTGTCAGCTCA -ACGGAAAGAACCAGTGTCTCACGT -ACGGAAAGAACCAGTGTCCGTAGT -ACGGAAAGAACCAGTGTCGTCAGT -ACGGAAAGAACCAGTGTCGAAGGT -ACGGAAAGAACCAGTGTCAACCGT -ACGGAAAGAACCAGTGTCTTGTGC -ACGGAAAGAACCAGTGTCCTAAGC -ACGGAAAGAACCAGTGTCACTAGC -ACGGAAAGAACCAGTGTCAGATGC -ACGGAAAGAACCAGTGTCTGAAGG -ACGGAAAGAACCAGTGTCCAATGG -ACGGAAAGAACCAGTGTCATGAGG -ACGGAAAGAACCAGTGTCAATGGG -ACGGAAAGAACCAGTGTCTCCTGA -ACGGAAAGAACCAGTGTCTAGCGA -ACGGAAAGAACCAGTGTCCACAGA -ACGGAAAGAACCAGTGTCGCAAGA -ACGGAAAGAACCAGTGTCGGTTGA -ACGGAAAGAACCAGTGTCTCCGAT -ACGGAAAGAACCAGTGTCTGGCAT -ACGGAAAGAACCAGTGTCCGAGAT -ACGGAAAGAACCAGTGTCTACCAC -ACGGAAAGAACCAGTGTCCAGAAC -ACGGAAAGAACCAGTGTCGTCTAC -ACGGAAAGAACCAGTGTCACGTAC -ACGGAAAGAACCAGTGTCAGTGAC -ACGGAAAGAACCAGTGTCCTGTAG -ACGGAAAGAACCAGTGTCCCTAAG -ACGGAAAGAACCAGTGTCGTTCAG -ACGGAAAGAACCAGTGTCGCATAG -ACGGAAAGAACCAGTGTCGACAAG -ACGGAAAGAACCAGTGTCAAGCAG -ACGGAAAGAACCAGTGTCCGTCAA -ACGGAAAGAACCAGTGTCGCTGAA -ACGGAAAGAACCAGTGTCAGTACG -ACGGAAAGAACCAGTGTCATCCGA -ACGGAAAGAACCAGTGTCATGGGA -ACGGAAAGAACCAGTGTCGTGCAA -ACGGAAAGAACCAGTGTCGAGGAA -ACGGAAAGAACCAGTGTCCAGGTA -ACGGAAAGAACCAGTGTCGACTCT -ACGGAAAGAACCAGTGTCAGTCCT -ACGGAAAGAACCAGTGTCTAAGCC -ACGGAAAGAACCAGTGTCATAGCC -ACGGAAAGAACCAGTGTCTAACCG -ACGGAAAGAACCAGTGTCATGCCA -ACGGAAAGAACCGGTGAAGGAAAC -ACGGAAAGAACCGGTGAAAACACC -ACGGAAAGAACCGGTGAAATCGAG -ACGGAAAGAACCGGTGAACTCCTT -ACGGAAAGAACCGGTGAACCTGTT -ACGGAAAGAACCGGTGAACGGTTT -ACGGAAAGAACCGGTGAAGTGGTT -ACGGAAAGAACCGGTGAAGCCTTT -ACGGAAAGAACCGGTGAAGGTCTT -ACGGAAAGAACCGGTGAAACGCTT -ACGGAAAGAACCGGTGAAAGCGTT -ACGGAAAGAACCGGTGAATTCGTC -ACGGAAAGAACCGGTGAATCTCTC -ACGGAAAGAACCGGTGAATGGATC -ACGGAAAGAACCGGTGAACACTTC -ACGGAAAGAACCGGTGAAGTACTC -ACGGAAAGAACCGGTGAAGATGTC -ACGGAAAGAACCGGTGAAACAGTC -ACGGAAAGAACCGGTGAATTGCTG -ACGGAAAGAACCGGTGAATCCATG -ACGGAAAGAACCGGTGAATGTGTG -ACGGAAAGAACCGGTGAACTAGTG -ACGGAAAGAACCGGTGAACATCTG -ACGGAAAGAACCGGTGAAGAGTTG -ACGGAAAGAACCGGTGAAAGACTG -ACGGAAAGAACCGGTGAATCGGTA -ACGGAAAGAACCGGTGAATGCCTA -ACGGAAAGAACCGGTGAACCACTA -ACGGAAAGAACCGGTGAAGGAGTA -ACGGAAAGAACCGGTGAATCGTCT -ACGGAAAGAACCGGTGAATGCACT -ACGGAAAGAACCGGTGAACTGACT -ACGGAAAGAACCGGTGAACAACCT -ACGGAAAGAACCGGTGAAGCTACT -ACGGAAAGAACCGGTGAAGGATCT -ACGGAAAGAACCGGTGAAAAGGCT -ACGGAAAGAACCGGTGAATCAACC -ACGGAAAGAACCGGTGAATGTTCC -ACGGAAAGAACCGGTGAAATTCCC -ACGGAAAGAACCGGTGAATTCTCG -ACGGAAAGAACCGGTGAATAGACG -ACGGAAAGAACCGGTGAAGTAACG -ACGGAAAGAACCGGTGAAACTTCG -ACGGAAAGAACCGGTGAATACGCA -ACGGAAAGAACCGGTGAACTTGCA -ACGGAAAGAACCGGTGAACGAACA -ACGGAAAGAACCGGTGAACAGTCA -ACGGAAAGAACCGGTGAAGATCCA -ACGGAAAGAACCGGTGAAACGACA -ACGGAAAGAACCGGTGAAAGCTCA -ACGGAAAGAACCGGTGAATCACGT -ACGGAAAGAACCGGTGAACGTAGT -ACGGAAAGAACCGGTGAAGTCAGT -ACGGAAAGAACCGGTGAAGAAGGT -ACGGAAAGAACCGGTGAAAACCGT -ACGGAAAGAACCGGTGAATTGTGC -ACGGAAAGAACCGGTGAACTAAGC -ACGGAAAGAACCGGTGAAACTAGC -ACGGAAAGAACCGGTGAAAGATGC -ACGGAAAGAACCGGTGAATGAAGG -ACGGAAAGAACCGGTGAACAATGG -ACGGAAAGAACCGGTGAAATGAGG -ACGGAAAGAACCGGTGAAAATGGG -ACGGAAAGAACCGGTGAATCCTGA -ACGGAAAGAACCGGTGAATAGCGA -ACGGAAAGAACCGGTGAACACAGA -ACGGAAAGAACCGGTGAAGCAAGA -ACGGAAAGAACCGGTGAAGGTTGA -ACGGAAAGAACCGGTGAATCCGAT -ACGGAAAGAACCGGTGAATGGCAT -ACGGAAAGAACCGGTGAACGAGAT -ACGGAAAGAACCGGTGAATACCAC -ACGGAAAGAACCGGTGAACAGAAC -ACGGAAAGAACCGGTGAAGTCTAC -ACGGAAAGAACCGGTGAAACGTAC -ACGGAAAGAACCGGTGAAAGTGAC -ACGGAAAGAACCGGTGAACTGTAG -ACGGAAAGAACCGGTGAACCTAAG -ACGGAAAGAACCGGTGAAGTTCAG -ACGGAAAGAACCGGTGAAGCATAG -ACGGAAAGAACCGGTGAAGACAAG -ACGGAAAGAACCGGTGAAAAGCAG -ACGGAAAGAACCGGTGAACGTCAA -ACGGAAAGAACCGGTGAAGCTGAA -ACGGAAAGAACCGGTGAAAGTACG -ACGGAAAGAACCGGTGAAATCCGA -ACGGAAAGAACCGGTGAAATGGGA -ACGGAAAGAACCGGTGAAGTGCAA -ACGGAAAGAACCGGTGAAGAGGAA -ACGGAAAGAACCGGTGAACAGGTA -ACGGAAAGAACCGGTGAAGACTCT -ACGGAAAGAACCGGTGAAAGTCCT -ACGGAAAGAACCGGTGAATAAGCC -ACGGAAAGAACCGGTGAAATAGCC -ACGGAAAGAACCGGTGAATAACCG -ACGGAAAGAACCGGTGAAATGCCA -ACGGAAAGAACCCGTAACGGAAAC -ACGGAAAGAACCCGTAACAACACC -ACGGAAAGAACCCGTAACATCGAG -ACGGAAAGAACCCGTAACCTCCTT -ACGGAAAGAACCCGTAACCCTGTT -ACGGAAAGAACCCGTAACCGGTTT -ACGGAAAGAACCCGTAACGTGGTT -ACGGAAAGAACCCGTAACGCCTTT -ACGGAAAGAACCCGTAACGGTCTT -ACGGAAAGAACCCGTAACACGCTT -ACGGAAAGAACCCGTAACAGCGTT -ACGGAAAGAACCCGTAACTTCGTC -ACGGAAAGAACCCGTAACTCTCTC -ACGGAAAGAACCCGTAACTGGATC -ACGGAAAGAACCCGTAACCACTTC -ACGGAAAGAACCCGTAACGTACTC -ACGGAAAGAACCCGTAACGATGTC -ACGGAAAGAACCCGTAACACAGTC -ACGGAAAGAACCCGTAACTTGCTG -ACGGAAAGAACCCGTAACTCCATG -ACGGAAAGAACCCGTAACTGTGTG -ACGGAAAGAACCCGTAACCTAGTG -ACGGAAAGAACCCGTAACCATCTG -ACGGAAAGAACCCGTAACGAGTTG -ACGGAAAGAACCCGTAACAGACTG -ACGGAAAGAACCCGTAACTCGGTA -ACGGAAAGAACCCGTAACTGCCTA -ACGGAAAGAACCCGTAACCCACTA -ACGGAAAGAACCCGTAACGGAGTA -ACGGAAAGAACCCGTAACTCGTCT -ACGGAAAGAACCCGTAACTGCACT -ACGGAAAGAACCCGTAACCTGACT -ACGGAAAGAACCCGTAACCAACCT -ACGGAAAGAACCCGTAACGCTACT -ACGGAAAGAACCCGTAACGGATCT -ACGGAAAGAACCCGTAACAAGGCT -ACGGAAAGAACCCGTAACTCAACC -ACGGAAAGAACCCGTAACTGTTCC -ACGGAAAGAACCCGTAACATTCCC -ACGGAAAGAACCCGTAACTTCTCG -ACGGAAAGAACCCGTAACTAGACG -ACGGAAAGAACCCGTAACGTAACG -ACGGAAAGAACCCGTAACACTTCG -ACGGAAAGAACCCGTAACTACGCA -ACGGAAAGAACCCGTAACCTTGCA -ACGGAAAGAACCCGTAACCGAACA -ACGGAAAGAACCCGTAACCAGTCA -ACGGAAAGAACCCGTAACGATCCA -ACGGAAAGAACCCGTAACACGACA -ACGGAAAGAACCCGTAACAGCTCA -ACGGAAAGAACCCGTAACTCACGT -ACGGAAAGAACCCGTAACCGTAGT -ACGGAAAGAACCCGTAACGTCAGT -ACGGAAAGAACCCGTAACGAAGGT -ACGGAAAGAACCCGTAACAACCGT -ACGGAAAGAACCCGTAACTTGTGC -ACGGAAAGAACCCGTAACCTAAGC -ACGGAAAGAACCCGTAACACTAGC -ACGGAAAGAACCCGTAACAGATGC -ACGGAAAGAACCCGTAACTGAAGG -ACGGAAAGAACCCGTAACCAATGG -ACGGAAAGAACCCGTAACATGAGG -ACGGAAAGAACCCGTAACAATGGG -ACGGAAAGAACCCGTAACTCCTGA -ACGGAAAGAACCCGTAACTAGCGA -ACGGAAAGAACCCGTAACCACAGA -ACGGAAAGAACCCGTAACGCAAGA -ACGGAAAGAACCCGTAACGGTTGA -ACGGAAAGAACCCGTAACTCCGAT -ACGGAAAGAACCCGTAACTGGCAT -ACGGAAAGAACCCGTAACCGAGAT -ACGGAAAGAACCCGTAACTACCAC -ACGGAAAGAACCCGTAACCAGAAC -ACGGAAAGAACCCGTAACGTCTAC -ACGGAAAGAACCCGTAACACGTAC -ACGGAAAGAACCCGTAACAGTGAC -ACGGAAAGAACCCGTAACCTGTAG -ACGGAAAGAACCCGTAACCCTAAG -ACGGAAAGAACCCGTAACGTTCAG -ACGGAAAGAACCCGTAACGCATAG -ACGGAAAGAACCCGTAACGACAAG -ACGGAAAGAACCCGTAACAAGCAG -ACGGAAAGAACCCGTAACCGTCAA -ACGGAAAGAACCCGTAACGCTGAA -ACGGAAAGAACCCGTAACAGTACG -ACGGAAAGAACCCGTAACATCCGA -ACGGAAAGAACCCGTAACATGGGA -ACGGAAAGAACCCGTAACGTGCAA -ACGGAAAGAACCCGTAACGAGGAA -ACGGAAAGAACCCGTAACCAGGTA -ACGGAAAGAACCCGTAACGACTCT -ACGGAAAGAACCCGTAACAGTCCT -ACGGAAAGAACCCGTAACTAAGCC -ACGGAAAGAACCCGTAACATAGCC -ACGGAAAGAACCCGTAACTAACCG -ACGGAAAGAACCCGTAACATGCCA -ACGGAAAGAACCTGCTTGGGAAAC -ACGGAAAGAACCTGCTTGAACACC -ACGGAAAGAACCTGCTTGATCGAG -ACGGAAAGAACCTGCTTGCTCCTT -ACGGAAAGAACCTGCTTGCCTGTT -ACGGAAAGAACCTGCTTGCGGTTT -ACGGAAAGAACCTGCTTGGTGGTT -ACGGAAAGAACCTGCTTGGCCTTT -ACGGAAAGAACCTGCTTGGGTCTT -ACGGAAAGAACCTGCTTGACGCTT -ACGGAAAGAACCTGCTTGAGCGTT -ACGGAAAGAACCTGCTTGTTCGTC -ACGGAAAGAACCTGCTTGTCTCTC -ACGGAAAGAACCTGCTTGTGGATC -ACGGAAAGAACCTGCTTGCACTTC -ACGGAAAGAACCTGCTTGGTACTC -ACGGAAAGAACCTGCTTGGATGTC -ACGGAAAGAACCTGCTTGACAGTC -ACGGAAAGAACCTGCTTGTTGCTG -ACGGAAAGAACCTGCTTGTCCATG -ACGGAAAGAACCTGCTTGTGTGTG -ACGGAAAGAACCTGCTTGCTAGTG -ACGGAAAGAACCTGCTTGCATCTG -ACGGAAAGAACCTGCTTGGAGTTG -ACGGAAAGAACCTGCTTGAGACTG -ACGGAAAGAACCTGCTTGTCGGTA -ACGGAAAGAACCTGCTTGTGCCTA -ACGGAAAGAACCTGCTTGCCACTA -ACGGAAAGAACCTGCTTGGGAGTA -ACGGAAAGAACCTGCTTGTCGTCT -ACGGAAAGAACCTGCTTGTGCACT -ACGGAAAGAACCTGCTTGCTGACT -ACGGAAAGAACCTGCTTGCAACCT -ACGGAAAGAACCTGCTTGGCTACT -ACGGAAAGAACCTGCTTGGGATCT -ACGGAAAGAACCTGCTTGAAGGCT -ACGGAAAGAACCTGCTTGTCAACC -ACGGAAAGAACCTGCTTGTGTTCC -ACGGAAAGAACCTGCTTGATTCCC -ACGGAAAGAACCTGCTTGTTCTCG -ACGGAAAGAACCTGCTTGTAGACG -ACGGAAAGAACCTGCTTGGTAACG -ACGGAAAGAACCTGCTTGACTTCG -ACGGAAAGAACCTGCTTGTACGCA -ACGGAAAGAACCTGCTTGCTTGCA -ACGGAAAGAACCTGCTTGCGAACA -ACGGAAAGAACCTGCTTGCAGTCA -ACGGAAAGAACCTGCTTGGATCCA -ACGGAAAGAACCTGCTTGACGACA -ACGGAAAGAACCTGCTTGAGCTCA -ACGGAAAGAACCTGCTTGTCACGT -ACGGAAAGAACCTGCTTGCGTAGT -ACGGAAAGAACCTGCTTGGTCAGT -ACGGAAAGAACCTGCTTGGAAGGT -ACGGAAAGAACCTGCTTGAACCGT -ACGGAAAGAACCTGCTTGTTGTGC -ACGGAAAGAACCTGCTTGCTAAGC -ACGGAAAGAACCTGCTTGACTAGC -ACGGAAAGAACCTGCTTGAGATGC -ACGGAAAGAACCTGCTTGTGAAGG -ACGGAAAGAACCTGCTTGCAATGG -ACGGAAAGAACCTGCTTGATGAGG -ACGGAAAGAACCTGCTTGAATGGG -ACGGAAAGAACCTGCTTGTCCTGA -ACGGAAAGAACCTGCTTGTAGCGA -ACGGAAAGAACCTGCTTGCACAGA -ACGGAAAGAACCTGCTTGGCAAGA -ACGGAAAGAACCTGCTTGGGTTGA -ACGGAAAGAACCTGCTTGTCCGAT -ACGGAAAGAACCTGCTTGTGGCAT -ACGGAAAGAACCTGCTTGCGAGAT -ACGGAAAGAACCTGCTTGTACCAC -ACGGAAAGAACCTGCTTGCAGAAC -ACGGAAAGAACCTGCTTGGTCTAC -ACGGAAAGAACCTGCTTGACGTAC -ACGGAAAGAACCTGCTTGAGTGAC -ACGGAAAGAACCTGCTTGCTGTAG -ACGGAAAGAACCTGCTTGCCTAAG -ACGGAAAGAACCTGCTTGGTTCAG -ACGGAAAGAACCTGCTTGGCATAG -ACGGAAAGAACCTGCTTGGACAAG -ACGGAAAGAACCTGCTTGAAGCAG -ACGGAAAGAACCTGCTTGCGTCAA -ACGGAAAGAACCTGCTTGGCTGAA -ACGGAAAGAACCTGCTTGAGTACG -ACGGAAAGAACCTGCTTGATCCGA -ACGGAAAGAACCTGCTTGATGGGA -ACGGAAAGAACCTGCTTGGTGCAA -ACGGAAAGAACCTGCTTGGAGGAA -ACGGAAAGAACCTGCTTGCAGGTA -ACGGAAAGAACCTGCTTGGACTCT -ACGGAAAGAACCTGCTTGAGTCCT -ACGGAAAGAACCTGCTTGTAAGCC -ACGGAAAGAACCTGCTTGATAGCC -ACGGAAAGAACCTGCTTGTAACCG -ACGGAAAGAACCTGCTTGATGCCA -ACGGAAAGAACCAGCCTAGGAAAC -ACGGAAAGAACCAGCCTAAACACC -ACGGAAAGAACCAGCCTAATCGAG -ACGGAAAGAACCAGCCTACTCCTT -ACGGAAAGAACCAGCCTACCTGTT -ACGGAAAGAACCAGCCTACGGTTT -ACGGAAAGAACCAGCCTAGTGGTT -ACGGAAAGAACCAGCCTAGCCTTT -ACGGAAAGAACCAGCCTAGGTCTT -ACGGAAAGAACCAGCCTAACGCTT -ACGGAAAGAACCAGCCTAAGCGTT -ACGGAAAGAACCAGCCTATTCGTC -ACGGAAAGAACCAGCCTATCTCTC -ACGGAAAGAACCAGCCTATGGATC -ACGGAAAGAACCAGCCTACACTTC -ACGGAAAGAACCAGCCTAGTACTC -ACGGAAAGAACCAGCCTAGATGTC -ACGGAAAGAACCAGCCTAACAGTC -ACGGAAAGAACCAGCCTATTGCTG -ACGGAAAGAACCAGCCTATCCATG -ACGGAAAGAACCAGCCTATGTGTG -ACGGAAAGAACCAGCCTACTAGTG -ACGGAAAGAACCAGCCTACATCTG -ACGGAAAGAACCAGCCTAGAGTTG -ACGGAAAGAACCAGCCTAAGACTG -ACGGAAAGAACCAGCCTATCGGTA -ACGGAAAGAACCAGCCTATGCCTA -ACGGAAAGAACCAGCCTACCACTA -ACGGAAAGAACCAGCCTAGGAGTA -ACGGAAAGAACCAGCCTATCGTCT -ACGGAAAGAACCAGCCTATGCACT -ACGGAAAGAACCAGCCTACTGACT -ACGGAAAGAACCAGCCTACAACCT -ACGGAAAGAACCAGCCTAGCTACT -ACGGAAAGAACCAGCCTAGGATCT -ACGGAAAGAACCAGCCTAAAGGCT -ACGGAAAGAACCAGCCTATCAACC -ACGGAAAGAACCAGCCTATGTTCC -ACGGAAAGAACCAGCCTAATTCCC -ACGGAAAGAACCAGCCTATTCTCG -ACGGAAAGAACCAGCCTATAGACG -ACGGAAAGAACCAGCCTAGTAACG -ACGGAAAGAACCAGCCTAACTTCG -ACGGAAAGAACCAGCCTATACGCA -ACGGAAAGAACCAGCCTACTTGCA -ACGGAAAGAACCAGCCTACGAACA -ACGGAAAGAACCAGCCTACAGTCA -ACGGAAAGAACCAGCCTAGATCCA -ACGGAAAGAACCAGCCTAACGACA -ACGGAAAGAACCAGCCTAAGCTCA -ACGGAAAGAACCAGCCTATCACGT -ACGGAAAGAACCAGCCTACGTAGT -ACGGAAAGAACCAGCCTAGTCAGT -ACGGAAAGAACCAGCCTAGAAGGT -ACGGAAAGAACCAGCCTAAACCGT -ACGGAAAGAACCAGCCTATTGTGC -ACGGAAAGAACCAGCCTACTAAGC -ACGGAAAGAACCAGCCTAACTAGC -ACGGAAAGAACCAGCCTAAGATGC -ACGGAAAGAACCAGCCTATGAAGG -ACGGAAAGAACCAGCCTACAATGG -ACGGAAAGAACCAGCCTAATGAGG -ACGGAAAGAACCAGCCTAAATGGG -ACGGAAAGAACCAGCCTATCCTGA -ACGGAAAGAACCAGCCTATAGCGA -ACGGAAAGAACCAGCCTACACAGA -ACGGAAAGAACCAGCCTAGCAAGA -ACGGAAAGAACCAGCCTAGGTTGA -ACGGAAAGAACCAGCCTATCCGAT -ACGGAAAGAACCAGCCTATGGCAT -ACGGAAAGAACCAGCCTACGAGAT -ACGGAAAGAACCAGCCTATACCAC -ACGGAAAGAACCAGCCTACAGAAC -ACGGAAAGAACCAGCCTAGTCTAC -ACGGAAAGAACCAGCCTAACGTAC -ACGGAAAGAACCAGCCTAAGTGAC -ACGGAAAGAACCAGCCTACTGTAG -ACGGAAAGAACCAGCCTACCTAAG -ACGGAAAGAACCAGCCTAGTTCAG -ACGGAAAGAACCAGCCTAGCATAG -ACGGAAAGAACCAGCCTAGACAAG -ACGGAAAGAACCAGCCTAAAGCAG -ACGGAAAGAACCAGCCTACGTCAA -ACGGAAAGAACCAGCCTAGCTGAA -ACGGAAAGAACCAGCCTAAGTACG -ACGGAAAGAACCAGCCTAATCCGA -ACGGAAAGAACCAGCCTAATGGGA -ACGGAAAGAACCAGCCTAGTGCAA -ACGGAAAGAACCAGCCTAGAGGAA -ACGGAAAGAACCAGCCTACAGGTA -ACGGAAAGAACCAGCCTAGACTCT -ACGGAAAGAACCAGCCTAAGTCCT -ACGGAAAGAACCAGCCTATAAGCC -ACGGAAAGAACCAGCCTAATAGCC -ACGGAAAGAACCAGCCTATAACCG -ACGGAAAGAACCAGCCTAATGCCA -ACGGAAAGAACCAGCACTGGAAAC -ACGGAAAGAACCAGCACTAACACC -ACGGAAAGAACCAGCACTATCGAG -ACGGAAAGAACCAGCACTCTCCTT -ACGGAAAGAACCAGCACTCCTGTT -ACGGAAAGAACCAGCACTCGGTTT -ACGGAAAGAACCAGCACTGTGGTT -ACGGAAAGAACCAGCACTGCCTTT -ACGGAAAGAACCAGCACTGGTCTT -ACGGAAAGAACCAGCACTACGCTT -ACGGAAAGAACCAGCACTAGCGTT -ACGGAAAGAACCAGCACTTTCGTC -ACGGAAAGAACCAGCACTTCTCTC -ACGGAAAGAACCAGCACTTGGATC -ACGGAAAGAACCAGCACTCACTTC -ACGGAAAGAACCAGCACTGTACTC -ACGGAAAGAACCAGCACTGATGTC -ACGGAAAGAACCAGCACTACAGTC -ACGGAAAGAACCAGCACTTTGCTG -ACGGAAAGAACCAGCACTTCCATG -ACGGAAAGAACCAGCACTTGTGTG -ACGGAAAGAACCAGCACTCTAGTG -ACGGAAAGAACCAGCACTCATCTG -ACGGAAAGAACCAGCACTGAGTTG -ACGGAAAGAACCAGCACTAGACTG -ACGGAAAGAACCAGCACTTCGGTA -ACGGAAAGAACCAGCACTTGCCTA -ACGGAAAGAACCAGCACTCCACTA -ACGGAAAGAACCAGCACTGGAGTA -ACGGAAAGAACCAGCACTTCGTCT -ACGGAAAGAACCAGCACTTGCACT -ACGGAAAGAACCAGCACTCTGACT -ACGGAAAGAACCAGCACTCAACCT -ACGGAAAGAACCAGCACTGCTACT -ACGGAAAGAACCAGCACTGGATCT -ACGGAAAGAACCAGCACTAAGGCT -ACGGAAAGAACCAGCACTTCAACC -ACGGAAAGAACCAGCACTTGTTCC -ACGGAAAGAACCAGCACTATTCCC -ACGGAAAGAACCAGCACTTTCTCG -ACGGAAAGAACCAGCACTTAGACG -ACGGAAAGAACCAGCACTGTAACG -ACGGAAAGAACCAGCACTACTTCG -ACGGAAAGAACCAGCACTTACGCA -ACGGAAAGAACCAGCACTCTTGCA -ACGGAAAGAACCAGCACTCGAACA -ACGGAAAGAACCAGCACTCAGTCA -ACGGAAAGAACCAGCACTGATCCA -ACGGAAAGAACCAGCACTACGACA -ACGGAAAGAACCAGCACTAGCTCA -ACGGAAAGAACCAGCACTTCACGT -ACGGAAAGAACCAGCACTCGTAGT -ACGGAAAGAACCAGCACTGTCAGT -ACGGAAAGAACCAGCACTGAAGGT -ACGGAAAGAACCAGCACTAACCGT -ACGGAAAGAACCAGCACTTTGTGC -ACGGAAAGAACCAGCACTCTAAGC -ACGGAAAGAACCAGCACTACTAGC -ACGGAAAGAACCAGCACTAGATGC -ACGGAAAGAACCAGCACTTGAAGG -ACGGAAAGAACCAGCACTCAATGG -ACGGAAAGAACCAGCACTATGAGG -ACGGAAAGAACCAGCACTAATGGG -ACGGAAAGAACCAGCACTTCCTGA -ACGGAAAGAACCAGCACTTAGCGA -ACGGAAAGAACCAGCACTCACAGA -ACGGAAAGAACCAGCACTGCAAGA -ACGGAAAGAACCAGCACTGGTTGA -ACGGAAAGAACCAGCACTTCCGAT -ACGGAAAGAACCAGCACTTGGCAT -ACGGAAAGAACCAGCACTCGAGAT -ACGGAAAGAACCAGCACTTACCAC -ACGGAAAGAACCAGCACTCAGAAC -ACGGAAAGAACCAGCACTGTCTAC -ACGGAAAGAACCAGCACTACGTAC -ACGGAAAGAACCAGCACTAGTGAC -ACGGAAAGAACCAGCACTCTGTAG -ACGGAAAGAACCAGCACTCCTAAG -ACGGAAAGAACCAGCACTGTTCAG -ACGGAAAGAACCAGCACTGCATAG -ACGGAAAGAACCAGCACTGACAAG -ACGGAAAGAACCAGCACTAAGCAG -ACGGAAAGAACCAGCACTCGTCAA -ACGGAAAGAACCAGCACTGCTGAA -ACGGAAAGAACCAGCACTAGTACG -ACGGAAAGAACCAGCACTATCCGA -ACGGAAAGAACCAGCACTATGGGA -ACGGAAAGAACCAGCACTGTGCAA -ACGGAAAGAACCAGCACTGAGGAA -ACGGAAAGAACCAGCACTCAGGTA -ACGGAAAGAACCAGCACTGACTCT -ACGGAAAGAACCAGCACTAGTCCT -ACGGAAAGAACCAGCACTTAAGCC -ACGGAAAGAACCAGCACTATAGCC -ACGGAAAGAACCAGCACTTAACCG -ACGGAAAGAACCAGCACTATGCCA -ACGGAAAGAACCTGCAGAGGAAAC -ACGGAAAGAACCTGCAGAAACACC -ACGGAAAGAACCTGCAGAATCGAG -ACGGAAAGAACCTGCAGACTCCTT -ACGGAAAGAACCTGCAGACCTGTT -ACGGAAAGAACCTGCAGACGGTTT -ACGGAAAGAACCTGCAGAGTGGTT -ACGGAAAGAACCTGCAGAGCCTTT -ACGGAAAGAACCTGCAGAGGTCTT -ACGGAAAGAACCTGCAGAACGCTT -ACGGAAAGAACCTGCAGAAGCGTT -ACGGAAAGAACCTGCAGATTCGTC -ACGGAAAGAACCTGCAGATCTCTC -ACGGAAAGAACCTGCAGATGGATC -ACGGAAAGAACCTGCAGACACTTC -ACGGAAAGAACCTGCAGAGTACTC -ACGGAAAGAACCTGCAGAGATGTC -ACGGAAAGAACCTGCAGAACAGTC -ACGGAAAGAACCTGCAGATTGCTG -ACGGAAAGAACCTGCAGATCCATG -ACGGAAAGAACCTGCAGATGTGTG -ACGGAAAGAACCTGCAGACTAGTG -ACGGAAAGAACCTGCAGACATCTG -ACGGAAAGAACCTGCAGAGAGTTG -ACGGAAAGAACCTGCAGAAGACTG -ACGGAAAGAACCTGCAGATCGGTA -ACGGAAAGAACCTGCAGATGCCTA -ACGGAAAGAACCTGCAGACCACTA -ACGGAAAGAACCTGCAGAGGAGTA -ACGGAAAGAACCTGCAGATCGTCT -ACGGAAAGAACCTGCAGATGCACT -ACGGAAAGAACCTGCAGACTGACT -ACGGAAAGAACCTGCAGACAACCT -ACGGAAAGAACCTGCAGAGCTACT -ACGGAAAGAACCTGCAGAGGATCT -ACGGAAAGAACCTGCAGAAAGGCT -ACGGAAAGAACCTGCAGATCAACC -ACGGAAAGAACCTGCAGATGTTCC -ACGGAAAGAACCTGCAGAATTCCC -ACGGAAAGAACCTGCAGATTCTCG -ACGGAAAGAACCTGCAGATAGACG -ACGGAAAGAACCTGCAGAGTAACG -ACGGAAAGAACCTGCAGAACTTCG -ACGGAAAGAACCTGCAGATACGCA -ACGGAAAGAACCTGCAGACTTGCA -ACGGAAAGAACCTGCAGACGAACA -ACGGAAAGAACCTGCAGACAGTCA -ACGGAAAGAACCTGCAGAGATCCA -ACGGAAAGAACCTGCAGAACGACA -ACGGAAAGAACCTGCAGAAGCTCA -ACGGAAAGAACCTGCAGATCACGT -ACGGAAAGAACCTGCAGACGTAGT -ACGGAAAGAACCTGCAGAGTCAGT -ACGGAAAGAACCTGCAGAGAAGGT -ACGGAAAGAACCTGCAGAAACCGT -ACGGAAAGAACCTGCAGATTGTGC -ACGGAAAGAACCTGCAGACTAAGC -ACGGAAAGAACCTGCAGAACTAGC -ACGGAAAGAACCTGCAGAAGATGC -ACGGAAAGAACCTGCAGATGAAGG -ACGGAAAGAACCTGCAGACAATGG -ACGGAAAGAACCTGCAGAATGAGG -ACGGAAAGAACCTGCAGAAATGGG -ACGGAAAGAACCTGCAGATCCTGA -ACGGAAAGAACCTGCAGATAGCGA -ACGGAAAGAACCTGCAGACACAGA -ACGGAAAGAACCTGCAGAGCAAGA -ACGGAAAGAACCTGCAGAGGTTGA -ACGGAAAGAACCTGCAGATCCGAT -ACGGAAAGAACCTGCAGATGGCAT -ACGGAAAGAACCTGCAGACGAGAT -ACGGAAAGAACCTGCAGATACCAC -ACGGAAAGAACCTGCAGACAGAAC -ACGGAAAGAACCTGCAGAGTCTAC -ACGGAAAGAACCTGCAGAACGTAC -ACGGAAAGAACCTGCAGAAGTGAC -ACGGAAAGAACCTGCAGACTGTAG -ACGGAAAGAACCTGCAGACCTAAG -ACGGAAAGAACCTGCAGAGTTCAG -ACGGAAAGAACCTGCAGAGCATAG -ACGGAAAGAACCTGCAGAGACAAG -ACGGAAAGAACCTGCAGAAAGCAG -ACGGAAAGAACCTGCAGACGTCAA -ACGGAAAGAACCTGCAGAGCTGAA -ACGGAAAGAACCTGCAGAAGTACG -ACGGAAAGAACCTGCAGAATCCGA -ACGGAAAGAACCTGCAGAATGGGA -ACGGAAAGAACCTGCAGAGTGCAA -ACGGAAAGAACCTGCAGAGAGGAA -ACGGAAAGAACCTGCAGACAGGTA -ACGGAAAGAACCTGCAGAGACTCT -ACGGAAAGAACCTGCAGAAGTCCT -ACGGAAAGAACCTGCAGATAAGCC -ACGGAAAGAACCTGCAGAATAGCC -ACGGAAAGAACCTGCAGATAACCG -ACGGAAAGAACCTGCAGAATGCCA -ACGGAAAGAACCAGGTGAGGAAAC -ACGGAAAGAACCAGGTGAAACACC -ACGGAAAGAACCAGGTGAATCGAG -ACGGAAAGAACCAGGTGACTCCTT -ACGGAAAGAACCAGGTGACCTGTT -ACGGAAAGAACCAGGTGACGGTTT -ACGGAAAGAACCAGGTGAGTGGTT -ACGGAAAGAACCAGGTGAGCCTTT -ACGGAAAGAACCAGGTGAGGTCTT -ACGGAAAGAACCAGGTGAACGCTT -ACGGAAAGAACCAGGTGAAGCGTT -ACGGAAAGAACCAGGTGATTCGTC -ACGGAAAGAACCAGGTGATCTCTC -ACGGAAAGAACCAGGTGATGGATC -ACGGAAAGAACCAGGTGACACTTC -ACGGAAAGAACCAGGTGAGTACTC -ACGGAAAGAACCAGGTGAGATGTC -ACGGAAAGAACCAGGTGAACAGTC -ACGGAAAGAACCAGGTGATTGCTG -ACGGAAAGAACCAGGTGATCCATG -ACGGAAAGAACCAGGTGATGTGTG -ACGGAAAGAACCAGGTGACTAGTG -ACGGAAAGAACCAGGTGACATCTG -ACGGAAAGAACCAGGTGAGAGTTG -ACGGAAAGAACCAGGTGAAGACTG -ACGGAAAGAACCAGGTGATCGGTA -ACGGAAAGAACCAGGTGATGCCTA -ACGGAAAGAACCAGGTGACCACTA -ACGGAAAGAACCAGGTGAGGAGTA -ACGGAAAGAACCAGGTGATCGTCT -ACGGAAAGAACCAGGTGATGCACT -ACGGAAAGAACCAGGTGACTGACT -ACGGAAAGAACCAGGTGACAACCT -ACGGAAAGAACCAGGTGAGCTACT -ACGGAAAGAACCAGGTGAGGATCT -ACGGAAAGAACCAGGTGAAAGGCT -ACGGAAAGAACCAGGTGATCAACC -ACGGAAAGAACCAGGTGATGTTCC -ACGGAAAGAACCAGGTGAATTCCC -ACGGAAAGAACCAGGTGATTCTCG -ACGGAAAGAACCAGGTGATAGACG -ACGGAAAGAACCAGGTGAGTAACG -ACGGAAAGAACCAGGTGAACTTCG -ACGGAAAGAACCAGGTGATACGCA -ACGGAAAGAACCAGGTGACTTGCA -ACGGAAAGAACCAGGTGACGAACA -ACGGAAAGAACCAGGTGACAGTCA -ACGGAAAGAACCAGGTGAGATCCA -ACGGAAAGAACCAGGTGAACGACA -ACGGAAAGAACCAGGTGAAGCTCA -ACGGAAAGAACCAGGTGATCACGT -ACGGAAAGAACCAGGTGACGTAGT -ACGGAAAGAACCAGGTGAGTCAGT -ACGGAAAGAACCAGGTGAGAAGGT -ACGGAAAGAACCAGGTGAAACCGT -ACGGAAAGAACCAGGTGATTGTGC -ACGGAAAGAACCAGGTGACTAAGC -ACGGAAAGAACCAGGTGAACTAGC -ACGGAAAGAACCAGGTGAAGATGC -ACGGAAAGAACCAGGTGATGAAGG -ACGGAAAGAACCAGGTGACAATGG -ACGGAAAGAACCAGGTGAATGAGG -ACGGAAAGAACCAGGTGAAATGGG -ACGGAAAGAACCAGGTGATCCTGA -ACGGAAAGAACCAGGTGATAGCGA -ACGGAAAGAACCAGGTGACACAGA -ACGGAAAGAACCAGGTGAGCAAGA -ACGGAAAGAACCAGGTGAGGTTGA -ACGGAAAGAACCAGGTGATCCGAT -ACGGAAAGAACCAGGTGATGGCAT -ACGGAAAGAACCAGGTGACGAGAT -ACGGAAAGAACCAGGTGATACCAC -ACGGAAAGAACCAGGTGACAGAAC -ACGGAAAGAACCAGGTGAGTCTAC -ACGGAAAGAACCAGGTGAACGTAC -ACGGAAAGAACCAGGTGAAGTGAC -ACGGAAAGAACCAGGTGACTGTAG -ACGGAAAGAACCAGGTGACCTAAG -ACGGAAAGAACCAGGTGAGTTCAG -ACGGAAAGAACCAGGTGAGCATAG -ACGGAAAGAACCAGGTGAGACAAG -ACGGAAAGAACCAGGTGAAAGCAG -ACGGAAAGAACCAGGTGACGTCAA -ACGGAAAGAACCAGGTGAGCTGAA -ACGGAAAGAACCAGGTGAAGTACG -ACGGAAAGAACCAGGTGAATCCGA -ACGGAAAGAACCAGGTGAATGGGA -ACGGAAAGAACCAGGTGAGTGCAA -ACGGAAAGAACCAGGTGAGAGGAA -ACGGAAAGAACCAGGTGACAGGTA -ACGGAAAGAACCAGGTGAGACTCT -ACGGAAAGAACCAGGTGAAGTCCT -ACGGAAAGAACCAGGTGATAAGCC -ACGGAAAGAACCAGGTGAATAGCC -ACGGAAAGAACCAGGTGATAACCG -ACGGAAAGAACCAGGTGAATGCCA -ACGGAAAGAACCTGGCAAGGAAAC -ACGGAAAGAACCTGGCAAAACACC -ACGGAAAGAACCTGGCAAATCGAG -ACGGAAAGAACCTGGCAACTCCTT -ACGGAAAGAACCTGGCAACCTGTT -ACGGAAAGAACCTGGCAACGGTTT -ACGGAAAGAACCTGGCAAGTGGTT -ACGGAAAGAACCTGGCAAGCCTTT -ACGGAAAGAACCTGGCAAGGTCTT -ACGGAAAGAACCTGGCAAACGCTT -ACGGAAAGAACCTGGCAAAGCGTT -ACGGAAAGAACCTGGCAATTCGTC -ACGGAAAGAACCTGGCAATCTCTC -ACGGAAAGAACCTGGCAATGGATC -ACGGAAAGAACCTGGCAACACTTC -ACGGAAAGAACCTGGCAAGTACTC -ACGGAAAGAACCTGGCAAGATGTC -ACGGAAAGAACCTGGCAAACAGTC -ACGGAAAGAACCTGGCAATTGCTG -ACGGAAAGAACCTGGCAATCCATG -ACGGAAAGAACCTGGCAATGTGTG -ACGGAAAGAACCTGGCAACTAGTG -ACGGAAAGAACCTGGCAACATCTG -ACGGAAAGAACCTGGCAAGAGTTG -ACGGAAAGAACCTGGCAAAGACTG -ACGGAAAGAACCTGGCAATCGGTA -ACGGAAAGAACCTGGCAATGCCTA -ACGGAAAGAACCTGGCAACCACTA -ACGGAAAGAACCTGGCAAGGAGTA -ACGGAAAGAACCTGGCAATCGTCT -ACGGAAAGAACCTGGCAATGCACT -ACGGAAAGAACCTGGCAACTGACT -ACGGAAAGAACCTGGCAACAACCT -ACGGAAAGAACCTGGCAAGCTACT -ACGGAAAGAACCTGGCAAGGATCT -ACGGAAAGAACCTGGCAAAAGGCT -ACGGAAAGAACCTGGCAATCAACC -ACGGAAAGAACCTGGCAATGTTCC -ACGGAAAGAACCTGGCAAATTCCC -ACGGAAAGAACCTGGCAATTCTCG -ACGGAAAGAACCTGGCAATAGACG -ACGGAAAGAACCTGGCAAGTAACG -ACGGAAAGAACCTGGCAAACTTCG -ACGGAAAGAACCTGGCAATACGCA -ACGGAAAGAACCTGGCAACTTGCA -ACGGAAAGAACCTGGCAACGAACA -ACGGAAAGAACCTGGCAACAGTCA -ACGGAAAGAACCTGGCAAGATCCA -ACGGAAAGAACCTGGCAAACGACA -ACGGAAAGAACCTGGCAAAGCTCA -ACGGAAAGAACCTGGCAATCACGT -ACGGAAAGAACCTGGCAACGTAGT -ACGGAAAGAACCTGGCAAGTCAGT -ACGGAAAGAACCTGGCAAGAAGGT -ACGGAAAGAACCTGGCAAAACCGT -ACGGAAAGAACCTGGCAATTGTGC -ACGGAAAGAACCTGGCAACTAAGC -ACGGAAAGAACCTGGCAAACTAGC -ACGGAAAGAACCTGGCAAAGATGC -ACGGAAAGAACCTGGCAATGAAGG -ACGGAAAGAACCTGGCAACAATGG -ACGGAAAGAACCTGGCAAATGAGG -ACGGAAAGAACCTGGCAAAATGGG -ACGGAAAGAACCTGGCAATCCTGA -ACGGAAAGAACCTGGCAATAGCGA -ACGGAAAGAACCTGGCAACACAGA -ACGGAAAGAACCTGGCAAGCAAGA -ACGGAAAGAACCTGGCAAGGTTGA -ACGGAAAGAACCTGGCAATCCGAT -ACGGAAAGAACCTGGCAATGGCAT -ACGGAAAGAACCTGGCAACGAGAT -ACGGAAAGAACCTGGCAATACCAC -ACGGAAAGAACCTGGCAACAGAAC -ACGGAAAGAACCTGGCAAGTCTAC -ACGGAAAGAACCTGGCAAACGTAC -ACGGAAAGAACCTGGCAAAGTGAC -ACGGAAAGAACCTGGCAACTGTAG -ACGGAAAGAACCTGGCAACCTAAG -ACGGAAAGAACCTGGCAAGTTCAG -ACGGAAAGAACCTGGCAAGCATAG -ACGGAAAGAACCTGGCAAGACAAG -ACGGAAAGAACCTGGCAAAAGCAG -ACGGAAAGAACCTGGCAACGTCAA -ACGGAAAGAACCTGGCAAGCTGAA -ACGGAAAGAACCTGGCAAAGTACG -ACGGAAAGAACCTGGCAAATCCGA -ACGGAAAGAACCTGGCAAATGGGA -ACGGAAAGAACCTGGCAAGTGCAA -ACGGAAAGAACCTGGCAAGAGGAA -ACGGAAAGAACCTGGCAACAGGTA -ACGGAAAGAACCTGGCAAGACTCT -ACGGAAAGAACCTGGCAAAGTCCT -ACGGAAAGAACCTGGCAATAAGCC -ACGGAAAGAACCTGGCAAATAGCC -ACGGAAAGAACCTGGCAATAACCG -ACGGAAAGAACCTGGCAAATGCCA -ACGGAAAGAACCAGGATGGGAAAC -ACGGAAAGAACCAGGATGAACACC -ACGGAAAGAACCAGGATGATCGAG -ACGGAAAGAACCAGGATGCTCCTT -ACGGAAAGAACCAGGATGCCTGTT -ACGGAAAGAACCAGGATGCGGTTT -ACGGAAAGAACCAGGATGGTGGTT -ACGGAAAGAACCAGGATGGCCTTT -ACGGAAAGAACCAGGATGGGTCTT -ACGGAAAGAACCAGGATGACGCTT -ACGGAAAGAACCAGGATGAGCGTT -ACGGAAAGAACCAGGATGTTCGTC -ACGGAAAGAACCAGGATGTCTCTC -ACGGAAAGAACCAGGATGTGGATC -ACGGAAAGAACCAGGATGCACTTC -ACGGAAAGAACCAGGATGGTACTC -ACGGAAAGAACCAGGATGGATGTC -ACGGAAAGAACCAGGATGACAGTC -ACGGAAAGAACCAGGATGTTGCTG -ACGGAAAGAACCAGGATGTCCATG -ACGGAAAGAACCAGGATGTGTGTG -ACGGAAAGAACCAGGATGCTAGTG -ACGGAAAGAACCAGGATGCATCTG -ACGGAAAGAACCAGGATGGAGTTG -ACGGAAAGAACCAGGATGAGACTG -ACGGAAAGAACCAGGATGTCGGTA -ACGGAAAGAACCAGGATGTGCCTA -ACGGAAAGAACCAGGATGCCACTA -ACGGAAAGAACCAGGATGGGAGTA -ACGGAAAGAACCAGGATGTCGTCT -ACGGAAAGAACCAGGATGTGCACT -ACGGAAAGAACCAGGATGCTGACT -ACGGAAAGAACCAGGATGCAACCT -ACGGAAAGAACCAGGATGGCTACT -ACGGAAAGAACCAGGATGGGATCT -ACGGAAAGAACCAGGATGAAGGCT -ACGGAAAGAACCAGGATGTCAACC -ACGGAAAGAACCAGGATGTGTTCC -ACGGAAAGAACCAGGATGATTCCC -ACGGAAAGAACCAGGATGTTCTCG -ACGGAAAGAACCAGGATGTAGACG -ACGGAAAGAACCAGGATGGTAACG -ACGGAAAGAACCAGGATGACTTCG -ACGGAAAGAACCAGGATGTACGCA -ACGGAAAGAACCAGGATGCTTGCA -ACGGAAAGAACCAGGATGCGAACA -ACGGAAAGAACCAGGATGCAGTCA -ACGGAAAGAACCAGGATGGATCCA -ACGGAAAGAACCAGGATGACGACA -ACGGAAAGAACCAGGATGAGCTCA -ACGGAAAGAACCAGGATGTCACGT -ACGGAAAGAACCAGGATGCGTAGT -ACGGAAAGAACCAGGATGGTCAGT -ACGGAAAGAACCAGGATGGAAGGT -ACGGAAAGAACCAGGATGAACCGT -ACGGAAAGAACCAGGATGTTGTGC -ACGGAAAGAACCAGGATGCTAAGC -ACGGAAAGAACCAGGATGACTAGC -ACGGAAAGAACCAGGATGAGATGC -ACGGAAAGAACCAGGATGTGAAGG -ACGGAAAGAACCAGGATGCAATGG -ACGGAAAGAACCAGGATGATGAGG -ACGGAAAGAACCAGGATGAATGGG -ACGGAAAGAACCAGGATGTCCTGA -ACGGAAAGAACCAGGATGTAGCGA -ACGGAAAGAACCAGGATGCACAGA -ACGGAAAGAACCAGGATGGCAAGA -ACGGAAAGAACCAGGATGGGTTGA -ACGGAAAGAACCAGGATGTCCGAT -ACGGAAAGAACCAGGATGTGGCAT -ACGGAAAGAACCAGGATGCGAGAT -ACGGAAAGAACCAGGATGTACCAC -ACGGAAAGAACCAGGATGCAGAAC -ACGGAAAGAACCAGGATGGTCTAC -ACGGAAAGAACCAGGATGACGTAC -ACGGAAAGAACCAGGATGAGTGAC -ACGGAAAGAACCAGGATGCTGTAG -ACGGAAAGAACCAGGATGCCTAAG -ACGGAAAGAACCAGGATGGTTCAG -ACGGAAAGAACCAGGATGGCATAG -ACGGAAAGAACCAGGATGGACAAG -ACGGAAAGAACCAGGATGAAGCAG -ACGGAAAGAACCAGGATGCGTCAA -ACGGAAAGAACCAGGATGGCTGAA -ACGGAAAGAACCAGGATGAGTACG -ACGGAAAGAACCAGGATGATCCGA -ACGGAAAGAACCAGGATGATGGGA -ACGGAAAGAACCAGGATGGTGCAA -ACGGAAAGAACCAGGATGGAGGAA -ACGGAAAGAACCAGGATGCAGGTA -ACGGAAAGAACCAGGATGGACTCT -ACGGAAAGAACCAGGATGAGTCCT -ACGGAAAGAACCAGGATGTAAGCC -ACGGAAAGAACCAGGATGATAGCC -ACGGAAAGAACCAGGATGTAACCG -ACGGAAAGAACCAGGATGATGCCA -ACGGAAAGAACCGGGAATGGAAAC -ACGGAAAGAACCGGGAATAACACC -ACGGAAAGAACCGGGAATATCGAG -ACGGAAAGAACCGGGAATCTCCTT -ACGGAAAGAACCGGGAATCCTGTT -ACGGAAAGAACCGGGAATCGGTTT -ACGGAAAGAACCGGGAATGTGGTT -ACGGAAAGAACCGGGAATGCCTTT -ACGGAAAGAACCGGGAATGGTCTT -ACGGAAAGAACCGGGAATACGCTT -ACGGAAAGAACCGGGAATAGCGTT -ACGGAAAGAACCGGGAATTTCGTC -ACGGAAAGAACCGGGAATTCTCTC -ACGGAAAGAACCGGGAATTGGATC -ACGGAAAGAACCGGGAATCACTTC -ACGGAAAGAACCGGGAATGTACTC -ACGGAAAGAACCGGGAATGATGTC -ACGGAAAGAACCGGGAATACAGTC -ACGGAAAGAACCGGGAATTTGCTG -ACGGAAAGAACCGGGAATTCCATG -ACGGAAAGAACCGGGAATTGTGTG -ACGGAAAGAACCGGGAATCTAGTG -ACGGAAAGAACCGGGAATCATCTG -ACGGAAAGAACCGGGAATGAGTTG -ACGGAAAGAACCGGGAATAGACTG -ACGGAAAGAACCGGGAATTCGGTA -ACGGAAAGAACCGGGAATTGCCTA -ACGGAAAGAACCGGGAATCCACTA -ACGGAAAGAACCGGGAATGGAGTA -ACGGAAAGAACCGGGAATTCGTCT -ACGGAAAGAACCGGGAATTGCACT -ACGGAAAGAACCGGGAATCTGACT -ACGGAAAGAACCGGGAATCAACCT -ACGGAAAGAACCGGGAATGCTACT -ACGGAAAGAACCGGGAATGGATCT -ACGGAAAGAACCGGGAATAAGGCT -ACGGAAAGAACCGGGAATTCAACC -ACGGAAAGAACCGGGAATTGTTCC -ACGGAAAGAACCGGGAATATTCCC -ACGGAAAGAACCGGGAATTTCTCG -ACGGAAAGAACCGGGAATTAGACG -ACGGAAAGAACCGGGAATGTAACG -ACGGAAAGAACCGGGAATACTTCG -ACGGAAAGAACCGGGAATTACGCA -ACGGAAAGAACCGGGAATCTTGCA -ACGGAAAGAACCGGGAATCGAACA -ACGGAAAGAACCGGGAATCAGTCA -ACGGAAAGAACCGGGAATGATCCA -ACGGAAAGAACCGGGAATACGACA -ACGGAAAGAACCGGGAATAGCTCA -ACGGAAAGAACCGGGAATTCACGT -ACGGAAAGAACCGGGAATCGTAGT -ACGGAAAGAACCGGGAATGTCAGT -ACGGAAAGAACCGGGAATGAAGGT -ACGGAAAGAACCGGGAATAACCGT -ACGGAAAGAACCGGGAATTTGTGC -ACGGAAAGAACCGGGAATCTAAGC -ACGGAAAGAACCGGGAATACTAGC -ACGGAAAGAACCGGGAATAGATGC -ACGGAAAGAACCGGGAATTGAAGG -ACGGAAAGAACCGGGAATCAATGG -ACGGAAAGAACCGGGAATATGAGG -ACGGAAAGAACCGGGAATAATGGG -ACGGAAAGAACCGGGAATTCCTGA -ACGGAAAGAACCGGGAATTAGCGA -ACGGAAAGAACCGGGAATCACAGA -ACGGAAAGAACCGGGAATGCAAGA -ACGGAAAGAACCGGGAATGGTTGA -ACGGAAAGAACCGGGAATTCCGAT -ACGGAAAGAACCGGGAATTGGCAT -ACGGAAAGAACCGGGAATCGAGAT -ACGGAAAGAACCGGGAATTACCAC -ACGGAAAGAACCGGGAATCAGAAC -ACGGAAAGAACCGGGAATGTCTAC -ACGGAAAGAACCGGGAATACGTAC -ACGGAAAGAACCGGGAATAGTGAC -ACGGAAAGAACCGGGAATCTGTAG -ACGGAAAGAACCGGGAATCCTAAG -ACGGAAAGAACCGGGAATGTTCAG -ACGGAAAGAACCGGGAATGCATAG -ACGGAAAGAACCGGGAATGACAAG -ACGGAAAGAACCGGGAATAAGCAG -ACGGAAAGAACCGGGAATCGTCAA -ACGGAAAGAACCGGGAATGCTGAA -ACGGAAAGAACCGGGAATAGTACG -ACGGAAAGAACCGGGAATATCCGA -ACGGAAAGAACCGGGAATATGGGA -ACGGAAAGAACCGGGAATGTGCAA -ACGGAAAGAACCGGGAATGAGGAA -ACGGAAAGAACCGGGAATCAGGTA -ACGGAAAGAACCGGGAATGACTCT -ACGGAAAGAACCGGGAATAGTCCT -ACGGAAAGAACCGGGAATTAAGCC -ACGGAAAGAACCGGGAATATAGCC -ACGGAAAGAACCGGGAATTAACCG -ACGGAAAGAACCGGGAATATGCCA -ACGGAAAGAACCTGATCCGGAAAC -ACGGAAAGAACCTGATCCAACACC -ACGGAAAGAACCTGATCCATCGAG -ACGGAAAGAACCTGATCCCTCCTT -ACGGAAAGAACCTGATCCCCTGTT -ACGGAAAGAACCTGATCCCGGTTT -ACGGAAAGAACCTGATCCGTGGTT -ACGGAAAGAACCTGATCCGCCTTT -ACGGAAAGAACCTGATCCGGTCTT -ACGGAAAGAACCTGATCCACGCTT -ACGGAAAGAACCTGATCCAGCGTT -ACGGAAAGAACCTGATCCTTCGTC -ACGGAAAGAACCTGATCCTCTCTC -ACGGAAAGAACCTGATCCTGGATC -ACGGAAAGAACCTGATCCCACTTC -ACGGAAAGAACCTGATCCGTACTC -ACGGAAAGAACCTGATCCGATGTC -ACGGAAAGAACCTGATCCACAGTC -ACGGAAAGAACCTGATCCTTGCTG -ACGGAAAGAACCTGATCCTCCATG -ACGGAAAGAACCTGATCCTGTGTG -ACGGAAAGAACCTGATCCCTAGTG -ACGGAAAGAACCTGATCCCATCTG -ACGGAAAGAACCTGATCCGAGTTG -ACGGAAAGAACCTGATCCAGACTG -ACGGAAAGAACCTGATCCTCGGTA -ACGGAAAGAACCTGATCCTGCCTA -ACGGAAAGAACCTGATCCCCACTA -ACGGAAAGAACCTGATCCGGAGTA -ACGGAAAGAACCTGATCCTCGTCT -ACGGAAAGAACCTGATCCTGCACT -ACGGAAAGAACCTGATCCCTGACT -ACGGAAAGAACCTGATCCCAACCT -ACGGAAAGAACCTGATCCGCTACT -ACGGAAAGAACCTGATCCGGATCT -ACGGAAAGAACCTGATCCAAGGCT -ACGGAAAGAACCTGATCCTCAACC -ACGGAAAGAACCTGATCCTGTTCC -ACGGAAAGAACCTGATCCATTCCC -ACGGAAAGAACCTGATCCTTCTCG -ACGGAAAGAACCTGATCCTAGACG -ACGGAAAGAACCTGATCCGTAACG -ACGGAAAGAACCTGATCCACTTCG -ACGGAAAGAACCTGATCCTACGCA -ACGGAAAGAACCTGATCCCTTGCA -ACGGAAAGAACCTGATCCCGAACA -ACGGAAAGAACCTGATCCCAGTCA -ACGGAAAGAACCTGATCCGATCCA -ACGGAAAGAACCTGATCCACGACA -ACGGAAAGAACCTGATCCAGCTCA -ACGGAAAGAACCTGATCCTCACGT -ACGGAAAGAACCTGATCCCGTAGT -ACGGAAAGAACCTGATCCGTCAGT -ACGGAAAGAACCTGATCCGAAGGT -ACGGAAAGAACCTGATCCAACCGT -ACGGAAAGAACCTGATCCTTGTGC -ACGGAAAGAACCTGATCCCTAAGC -ACGGAAAGAACCTGATCCACTAGC -ACGGAAAGAACCTGATCCAGATGC -ACGGAAAGAACCTGATCCTGAAGG -ACGGAAAGAACCTGATCCCAATGG -ACGGAAAGAACCTGATCCATGAGG -ACGGAAAGAACCTGATCCAATGGG -ACGGAAAGAACCTGATCCTCCTGA -ACGGAAAGAACCTGATCCTAGCGA -ACGGAAAGAACCTGATCCCACAGA -ACGGAAAGAACCTGATCCGCAAGA -ACGGAAAGAACCTGATCCGGTTGA -ACGGAAAGAACCTGATCCTCCGAT -ACGGAAAGAACCTGATCCTGGCAT -ACGGAAAGAACCTGATCCCGAGAT -ACGGAAAGAACCTGATCCTACCAC -ACGGAAAGAACCTGATCCCAGAAC -ACGGAAAGAACCTGATCCGTCTAC -ACGGAAAGAACCTGATCCACGTAC -ACGGAAAGAACCTGATCCAGTGAC -ACGGAAAGAACCTGATCCCTGTAG -ACGGAAAGAACCTGATCCCCTAAG -ACGGAAAGAACCTGATCCGTTCAG -ACGGAAAGAACCTGATCCGCATAG -ACGGAAAGAACCTGATCCGACAAG -ACGGAAAGAACCTGATCCAAGCAG -ACGGAAAGAACCTGATCCCGTCAA -ACGGAAAGAACCTGATCCGCTGAA -ACGGAAAGAACCTGATCCAGTACG -ACGGAAAGAACCTGATCCATCCGA -ACGGAAAGAACCTGATCCATGGGA -ACGGAAAGAACCTGATCCGTGCAA -ACGGAAAGAACCTGATCCGAGGAA -ACGGAAAGAACCTGATCCCAGGTA -ACGGAAAGAACCTGATCCGACTCT -ACGGAAAGAACCTGATCCAGTCCT -ACGGAAAGAACCTGATCCTAAGCC -ACGGAAAGAACCTGATCCATAGCC -ACGGAAAGAACCTGATCCTAACCG -ACGGAAAGAACCTGATCCATGCCA -ACGGAAAGAACCCGATAGGGAAAC -ACGGAAAGAACCCGATAGAACACC -ACGGAAAGAACCCGATAGATCGAG -ACGGAAAGAACCCGATAGCTCCTT -ACGGAAAGAACCCGATAGCCTGTT -ACGGAAAGAACCCGATAGCGGTTT -ACGGAAAGAACCCGATAGGTGGTT -ACGGAAAGAACCCGATAGGCCTTT -ACGGAAAGAACCCGATAGGGTCTT -ACGGAAAGAACCCGATAGACGCTT -ACGGAAAGAACCCGATAGAGCGTT -ACGGAAAGAACCCGATAGTTCGTC -ACGGAAAGAACCCGATAGTCTCTC -ACGGAAAGAACCCGATAGTGGATC -ACGGAAAGAACCCGATAGCACTTC -ACGGAAAGAACCCGATAGGTACTC -ACGGAAAGAACCCGATAGGATGTC -ACGGAAAGAACCCGATAGACAGTC -ACGGAAAGAACCCGATAGTTGCTG -ACGGAAAGAACCCGATAGTCCATG -ACGGAAAGAACCCGATAGTGTGTG -ACGGAAAGAACCCGATAGCTAGTG -ACGGAAAGAACCCGATAGCATCTG -ACGGAAAGAACCCGATAGGAGTTG -ACGGAAAGAACCCGATAGAGACTG -ACGGAAAGAACCCGATAGTCGGTA -ACGGAAAGAACCCGATAGTGCCTA -ACGGAAAGAACCCGATAGCCACTA -ACGGAAAGAACCCGATAGGGAGTA -ACGGAAAGAACCCGATAGTCGTCT -ACGGAAAGAACCCGATAGTGCACT -ACGGAAAGAACCCGATAGCTGACT -ACGGAAAGAACCCGATAGCAACCT -ACGGAAAGAACCCGATAGGCTACT -ACGGAAAGAACCCGATAGGGATCT -ACGGAAAGAACCCGATAGAAGGCT -ACGGAAAGAACCCGATAGTCAACC -ACGGAAAGAACCCGATAGTGTTCC -ACGGAAAGAACCCGATAGATTCCC -ACGGAAAGAACCCGATAGTTCTCG -ACGGAAAGAACCCGATAGTAGACG -ACGGAAAGAACCCGATAGGTAACG -ACGGAAAGAACCCGATAGACTTCG -ACGGAAAGAACCCGATAGTACGCA -ACGGAAAGAACCCGATAGCTTGCA -ACGGAAAGAACCCGATAGCGAACA -ACGGAAAGAACCCGATAGCAGTCA -ACGGAAAGAACCCGATAGGATCCA -ACGGAAAGAACCCGATAGACGACA -ACGGAAAGAACCCGATAGAGCTCA -ACGGAAAGAACCCGATAGTCACGT -ACGGAAAGAACCCGATAGCGTAGT -ACGGAAAGAACCCGATAGGTCAGT -ACGGAAAGAACCCGATAGGAAGGT -ACGGAAAGAACCCGATAGAACCGT -ACGGAAAGAACCCGATAGTTGTGC -ACGGAAAGAACCCGATAGCTAAGC -ACGGAAAGAACCCGATAGACTAGC -ACGGAAAGAACCCGATAGAGATGC -ACGGAAAGAACCCGATAGTGAAGG -ACGGAAAGAACCCGATAGCAATGG -ACGGAAAGAACCCGATAGATGAGG -ACGGAAAGAACCCGATAGAATGGG -ACGGAAAGAACCCGATAGTCCTGA -ACGGAAAGAACCCGATAGTAGCGA -ACGGAAAGAACCCGATAGCACAGA -ACGGAAAGAACCCGATAGGCAAGA -ACGGAAAGAACCCGATAGGGTTGA -ACGGAAAGAACCCGATAGTCCGAT -ACGGAAAGAACCCGATAGTGGCAT -ACGGAAAGAACCCGATAGCGAGAT -ACGGAAAGAACCCGATAGTACCAC -ACGGAAAGAACCCGATAGCAGAAC -ACGGAAAGAACCCGATAGGTCTAC -ACGGAAAGAACCCGATAGACGTAC -ACGGAAAGAACCCGATAGAGTGAC -ACGGAAAGAACCCGATAGCTGTAG -ACGGAAAGAACCCGATAGCCTAAG -ACGGAAAGAACCCGATAGGTTCAG -ACGGAAAGAACCCGATAGGCATAG -ACGGAAAGAACCCGATAGGACAAG -ACGGAAAGAACCCGATAGAAGCAG -ACGGAAAGAACCCGATAGCGTCAA -ACGGAAAGAACCCGATAGGCTGAA -ACGGAAAGAACCCGATAGAGTACG -ACGGAAAGAACCCGATAGATCCGA -ACGGAAAGAACCCGATAGATGGGA -ACGGAAAGAACCCGATAGGTGCAA -ACGGAAAGAACCCGATAGGAGGAA -ACGGAAAGAACCCGATAGCAGGTA -ACGGAAAGAACCCGATAGGACTCT -ACGGAAAGAACCCGATAGAGTCCT -ACGGAAAGAACCCGATAGTAAGCC -ACGGAAAGAACCCGATAGATAGCC -ACGGAAAGAACCCGATAGTAACCG -ACGGAAAGAACCCGATAGATGCCA -ACGGAAAGAACCAGACACGGAAAC -ACGGAAAGAACCAGACACAACACC -ACGGAAAGAACCAGACACATCGAG -ACGGAAAGAACCAGACACCTCCTT -ACGGAAAGAACCAGACACCCTGTT -ACGGAAAGAACCAGACACCGGTTT -ACGGAAAGAACCAGACACGTGGTT -ACGGAAAGAACCAGACACGCCTTT -ACGGAAAGAACCAGACACGGTCTT -ACGGAAAGAACCAGACACACGCTT -ACGGAAAGAACCAGACACAGCGTT -ACGGAAAGAACCAGACACTTCGTC -ACGGAAAGAACCAGACACTCTCTC -ACGGAAAGAACCAGACACTGGATC -ACGGAAAGAACCAGACACCACTTC -ACGGAAAGAACCAGACACGTACTC -ACGGAAAGAACCAGACACGATGTC -ACGGAAAGAACCAGACACACAGTC -ACGGAAAGAACCAGACACTTGCTG -ACGGAAAGAACCAGACACTCCATG -ACGGAAAGAACCAGACACTGTGTG -ACGGAAAGAACCAGACACCTAGTG -ACGGAAAGAACCAGACACCATCTG -ACGGAAAGAACCAGACACGAGTTG -ACGGAAAGAACCAGACACAGACTG -ACGGAAAGAACCAGACACTCGGTA -ACGGAAAGAACCAGACACTGCCTA -ACGGAAAGAACCAGACACCCACTA -ACGGAAAGAACCAGACACGGAGTA -ACGGAAAGAACCAGACACTCGTCT -ACGGAAAGAACCAGACACTGCACT -ACGGAAAGAACCAGACACCTGACT -ACGGAAAGAACCAGACACCAACCT -ACGGAAAGAACCAGACACGCTACT -ACGGAAAGAACCAGACACGGATCT -ACGGAAAGAACCAGACACAAGGCT -ACGGAAAGAACCAGACACTCAACC -ACGGAAAGAACCAGACACTGTTCC -ACGGAAAGAACCAGACACATTCCC -ACGGAAAGAACCAGACACTTCTCG -ACGGAAAGAACCAGACACTAGACG -ACGGAAAGAACCAGACACGTAACG -ACGGAAAGAACCAGACACACTTCG -ACGGAAAGAACCAGACACTACGCA -ACGGAAAGAACCAGACACCTTGCA -ACGGAAAGAACCAGACACCGAACA -ACGGAAAGAACCAGACACCAGTCA -ACGGAAAGAACCAGACACGATCCA -ACGGAAAGAACCAGACACACGACA -ACGGAAAGAACCAGACACAGCTCA -ACGGAAAGAACCAGACACTCACGT -ACGGAAAGAACCAGACACCGTAGT -ACGGAAAGAACCAGACACGTCAGT -ACGGAAAGAACCAGACACGAAGGT -ACGGAAAGAACCAGACACAACCGT -ACGGAAAGAACCAGACACTTGTGC -ACGGAAAGAACCAGACACCTAAGC -ACGGAAAGAACCAGACACACTAGC -ACGGAAAGAACCAGACACAGATGC -ACGGAAAGAACCAGACACTGAAGG -ACGGAAAGAACCAGACACCAATGG -ACGGAAAGAACCAGACACATGAGG -ACGGAAAGAACCAGACACAATGGG -ACGGAAAGAACCAGACACTCCTGA -ACGGAAAGAACCAGACACTAGCGA -ACGGAAAGAACCAGACACCACAGA -ACGGAAAGAACCAGACACGCAAGA -ACGGAAAGAACCAGACACGGTTGA -ACGGAAAGAACCAGACACTCCGAT -ACGGAAAGAACCAGACACTGGCAT -ACGGAAAGAACCAGACACCGAGAT -ACGGAAAGAACCAGACACTACCAC -ACGGAAAGAACCAGACACCAGAAC -ACGGAAAGAACCAGACACGTCTAC -ACGGAAAGAACCAGACACACGTAC -ACGGAAAGAACCAGACACAGTGAC -ACGGAAAGAACCAGACACCTGTAG -ACGGAAAGAACCAGACACCCTAAG -ACGGAAAGAACCAGACACGTTCAG -ACGGAAAGAACCAGACACGCATAG -ACGGAAAGAACCAGACACGACAAG -ACGGAAAGAACCAGACACAAGCAG -ACGGAAAGAACCAGACACCGTCAA -ACGGAAAGAACCAGACACGCTGAA -ACGGAAAGAACCAGACACAGTACG -ACGGAAAGAACCAGACACATCCGA -ACGGAAAGAACCAGACACATGGGA -ACGGAAAGAACCAGACACGTGCAA -ACGGAAAGAACCAGACACGAGGAA -ACGGAAAGAACCAGACACCAGGTA -ACGGAAAGAACCAGACACGACTCT -ACGGAAAGAACCAGACACAGTCCT -ACGGAAAGAACCAGACACTAAGCC -ACGGAAAGAACCAGACACATAGCC -ACGGAAAGAACCAGACACTAACCG -ACGGAAAGAACCAGACACATGCCA -ACGGAAAGAACCAGAGCAGGAAAC -ACGGAAAGAACCAGAGCAAACACC -ACGGAAAGAACCAGAGCAATCGAG -ACGGAAAGAACCAGAGCACTCCTT -ACGGAAAGAACCAGAGCACCTGTT -ACGGAAAGAACCAGAGCACGGTTT -ACGGAAAGAACCAGAGCAGTGGTT -ACGGAAAGAACCAGAGCAGCCTTT -ACGGAAAGAACCAGAGCAGGTCTT -ACGGAAAGAACCAGAGCAACGCTT -ACGGAAAGAACCAGAGCAAGCGTT -ACGGAAAGAACCAGAGCATTCGTC -ACGGAAAGAACCAGAGCATCTCTC -ACGGAAAGAACCAGAGCATGGATC -ACGGAAAGAACCAGAGCACACTTC -ACGGAAAGAACCAGAGCAGTACTC -ACGGAAAGAACCAGAGCAGATGTC -ACGGAAAGAACCAGAGCAACAGTC -ACGGAAAGAACCAGAGCATTGCTG -ACGGAAAGAACCAGAGCATCCATG -ACGGAAAGAACCAGAGCATGTGTG -ACGGAAAGAACCAGAGCACTAGTG -ACGGAAAGAACCAGAGCACATCTG -ACGGAAAGAACCAGAGCAGAGTTG -ACGGAAAGAACCAGAGCAAGACTG -ACGGAAAGAACCAGAGCATCGGTA -ACGGAAAGAACCAGAGCATGCCTA -ACGGAAAGAACCAGAGCACCACTA -ACGGAAAGAACCAGAGCAGGAGTA -ACGGAAAGAACCAGAGCATCGTCT -ACGGAAAGAACCAGAGCATGCACT -ACGGAAAGAACCAGAGCACTGACT -ACGGAAAGAACCAGAGCACAACCT -ACGGAAAGAACCAGAGCAGCTACT -ACGGAAAGAACCAGAGCAGGATCT -ACGGAAAGAACCAGAGCAAAGGCT -ACGGAAAGAACCAGAGCATCAACC -ACGGAAAGAACCAGAGCATGTTCC -ACGGAAAGAACCAGAGCAATTCCC -ACGGAAAGAACCAGAGCATTCTCG -ACGGAAAGAACCAGAGCATAGACG -ACGGAAAGAACCAGAGCAGTAACG -ACGGAAAGAACCAGAGCAACTTCG -ACGGAAAGAACCAGAGCATACGCA -ACGGAAAGAACCAGAGCACTTGCA -ACGGAAAGAACCAGAGCACGAACA -ACGGAAAGAACCAGAGCACAGTCA -ACGGAAAGAACCAGAGCAGATCCA -ACGGAAAGAACCAGAGCAACGACA -ACGGAAAGAACCAGAGCAAGCTCA -ACGGAAAGAACCAGAGCATCACGT -ACGGAAAGAACCAGAGCACGTAGT -ACGGAAAGAACCAGAGCAGTCAGT -ACGGAAAGAACCAGAGCAGAAGGT -ACGGAAAGAACCAGAGCAAACCGT -ACGGAAAGAACCAGAGCATTGTGC -ACGGAAAGAACCAGAGCACTAAGC -ACGGAAAGAACCAGAGCAACTAGC -ACGGAAAGAACCAGAGCAAGATGC -ACGGAAAGAACCAGAGCATGAAGG -ACGGAAAGAACCAGAGCACAATGG -ACGGAAAGAACCAGAGCAATGAGG -ACGGAAAGAACCAGAGCAAATGGG -ACGGAAAGAACCAGAGCATCCTGA -ACGGAAAGAACCAGAGCATAGCGA -ACGGAAAGAACCAGAGCACACAGA -ACGGAAAGAACCAGAGCAGCAAGA -ACGGAAAGAACCAGAGCAGGTTGA -ACGGAAAGAACCAGAGCATCCGAT -ACGGAAAGAACCAGAGCATGGCAT -ACGGAAAGAACCAGAGCACGAGAT -ACGGAAAGAACCAGAGCATACCAC -ACGGAAAGAACCAGAGCACAGAAC -ACGGAAAGAACCAGAGCAGTCTAC -ACGGAAAGAACCAGAGCAACGTAC -ACGGAAAGAACCAGAGCAAGTGAC -ACGGAAAGAACCAGAGCACTGTAG -ACGGAAAGAACCAGAGCACCTAAG -ACGGAAAGAACCAGAGCAGTTCAG -ACGGAAAGAACCAGAGCAGCATAG -ACGGAAAGAACCAGAGCAGACAAG -ACGGAAAGAACCAGAGCAAAGCAG -ACGGAAAGAACCAGAGCACGTCAA -ACGGAAAGAACCAGAGCAGCTGAA -ACGGAAAGAACCAGAGCAAGTACG -ACGGAAAGAACCAGAGCAATCCGA -ACGGAAAGAACCAGAGCAATGGGA -ACGGAAAGAACCAGAGCAGTGCAA -ACGGAAAGAACCAGAGCAGAGGAA -ACGGAAAGAACCAGAGCACAGGTA -ACGGAAAGAACCAGAGCAGACTCT -ACGGAAAGAACCAGAGCAAGTCCT -ACGGAAAGAACCAGAGCATAAGCC -ACGGAAAGAACCAGAGCAATAGCC -ACGGAAAGAACCAGAGCATAACCG -ACGGAAAGAACCAGAGCAATGCCA -ACGGAAAGAACCTGAGGTGGAAAC -ACGGAAAGAACCTGAGGTAACACC -ACGGAAAGAACCTGAGGTATCGAG -ACGGAAAGAACCTGAGGTCTCCTT -ACGGAAAGAACCTGAGGTCCTGTT -ACGGAAAGAACCTGAGGTCGGTTT -ACGGAAAGAACCTGAGGTGTGGTT -ACGGAAAGAACCTGAGGTGCCTTT -ACGGAAAGAACCTGAGGTGGTCTT -ACGGAAAGAACCTGAGGTACGCTT -ACGGAAAGAACCTGAGGTAGCGTT -ACGGAAAGAACCTGAGGTTTCGTC -ACGGAAAGAACCTGAGGTTCTCTC -ACGGAAAGAACCTGAGGTTGGATC -ACGGAAAGAACCTGAGGTCACTTC -ACGGAAAGAACCTGAGGTGTACTC -ACGGAAAGAACCTGAGGTGATGTC -ACGGAAAGAACCTGAGGTACAGTC -ACGGAAAGAACCTGAGGTTTGCTG -ACGGAAAGAACCTGAGGTTCCATG -ACGGAAAGAACCTGAGGTTGTGTG -ACGGAAAGAACCTGAGGTCTAGTG -ACGGAAAGAACCTGAGGTCATCTG -ACGGAAAGAACCTGAGGTGAGTTG -ACGGAAAGAACCTGAGGTAGACTG -ACGGAAAGAACCTGAGGTTCGGTA -ACGGAAAGAACCTGAGGTTGCCTA -ACGGAAAGAACCTGAGGTCCACTA -ACGGAAAGAACCTGAGGTGGAGTA -ACGGAAAGAACCTGAGGTTCGTCT -ACGGAAAGAACCTGAGGTTGCACT -ACGGAAAGAACCTGAGGTCTGACT -ACGGAAAGAACCTGAGGTCAACCT -ACGGAAAGAACCTGAGGTGCTACT -ACGGAAAGAACCTGAGGTGGATCT -ACGGAAAGAACCTGAGGTAAGGCT -ACGGAAAGAACCTGAGGTTCAACC -ACGGAAAGAACCTGAGGTTGTTCC -ACGGAAAGAACCTGAGGTATTCCC -ACGGAAAGAACCTGAGGTTTCTCG -ACGGAAAGAACCTGAGGTTAGACG -ACGGAAAGAACCTGAGGTGTAACG -ACGGAAAGAACCTGAGGTACTTCG -ACGGAAAGAACCTGAGGTTACGCA -ACGGAAAGAACCTGAGGTCTTGCA -ACGGAAAGAACCTGAGGTCGAACA -ACGGAAAGAACCTGAGGTCAGTCA -ACGGAAAGAACCTGAGGTGATCCA -ACGGAAAGAACCTGAGGTACGACA -ACGGAAAGAACCTGAGGTAGCTCA -ACGGAAAGAACCTGAGGTTCACGT -ACGGAAAGAACCTGAGGTCGTAGT -ACGGAAAGAACCTGAGGTGTCAGT -ACGGAAAGAACCTGAGGTGAAGGT -ACGGAAAGAACCTGAGGTAACCGT -ACGGAAAGAACCTGAGGTTTGTGC -ACGGAAAGAACCTGAGGTCTAAGC -ACGGAAAGAACCTGAGGTACTAGC -ACGGAAAGAACCTGAGGTAGATGC -ACGGAAAGAACCTGAGGTTGAAGG -ACGGAAAGAACCTGAGGTCAATGG -ACGGAAAGAACCTGAGGTATGAGG -ACGGAAAGAACCTGAGGTAATGGG -ACGGAAAGAACCTGAGGTTCCTGA -ACGGAAAGAACCTGAGGTTAGCGA -ACGGAAAGAACCTGAGGTCACAGA -ACGGAAAGAACCTGAGGTGCAAGA -ACGGAAAGAACCTGAGGTGGTTGA -ACGGAAAGAACCTGAGGTTCCGAT -ACGGAAAGAACCTGAGGTTGGCAT -ACGGAAAGAACCTGAGGTCGAGAT -ACGGAAAGAACCTGAGGTTACCAC -ACGGAAAGAACCTGAGGTCAGAAC -ACGGAAAGAACCTGAGGTGTCTAC -ACGGAAAGAACCTGAGGTACGTAC -ACGGAAAGAACCTGAGGTAGTGAC -ACGGAAAGAACCTGAGGTCTGTAG -ACGGAAAGAACCTGAGGTCCTAAG -ACGGAAAGAACCTGAGGTGTTCAG -ACGGAAAGAACCTGAGGTGCATAG -ACGGAAAGAACCTGAGGTGACAAG -ACGGAAAGAACCTGAGGTAAGCAG -ACGGAAAGAACCTGAGGTCGTCAA -ACGGAAAGAACCTGAGGTGCTGAA -ACGGAAAGAACCTGAGGTAGTACG -ACGGAAAGAACCTGAGGTATCCGA -ACGGAAAGAACCTGAGGTATGGGA -ACGGAAAGAACCTGAGGTGTGCAA -ACGGAAAGAACCTGAGGTGAGGAA -ACGGAAAGAACCTGAGGTCAGGTA -ACGGAAAGAACCTGAGGTGACTCT -ACGGAAAGAACCTGAGGTAGTCCT -ACGGAAAGAACCTGAGGTTAAGCC -ACGGAAAGAACCTGAGGTATAGCC -ACGGAAAGAACCTGAGGTTAACCG -ACGGAAAGAACCTGAGGTATGCCA -ACGGAAAGAACCGATTCCGGAAAC -ACGGAAAGAACCGATTCCAACACC -ACGGAAAGAACCGATTCCATCGAG -ACGGAAAGAACCGATTCCCTCCTT -ACGGAAAGAACCGATTCCCCTGTT -ACGGAAAGAACCGATTCCCGGTTT -ACGGAAAGAACCGATTCCGTGGTT -ACGGAAAGAACCGATTCCGCCTTT -ACGGAAAGAACCGATTCCGGTCTT -ACGGAAAGAACCGATTCCACGCTT -ACGGAAAGAACCGATTCCAGCGTT -ACGGAAAGAACCGATTCCTTCGTC -ACGGAAAGAACCGATTCCTCTCTC -ACGGAAAGAACCGATTCCTGGATC -ACGGAAAGAACCGATTCCCACTTC -ACGGAAAGAACCGATTCCGTACTC -ACGGAAAGAACCGATTCCGATGTC -ACGGAAAGAACCGATTCCACAGTC -ACGGAAAGAACCGATTCCTTGCTG -ACGGAAAGAACCGATTCCTCCATG -ACGGAAAGAACCGATTCCTGTGTG -ACGGAAAGAACCGATTCCCTAGTG -ACGGAAAGAACCGATTCCCATCTG -ACGGAAAGAACCGATTCCGAGTTG -ACGGAAAGAACCGATTCCAGACTG -ACGGAAAGAACCGATTCCTCGGTA -ACGGAAAGAACCGATTCCTGCCTA -ACGGAAAGAACCGATTCCCCACTA -ACGGAAAGAACCGATTCCGGAGTA -ACGGAAAGAACCGATTCCTCGTCT -ACGGAAAGAACCGATTCCTGCACT -ACGGAAAGAACCGATTCCCTGACT -ACGGAAAGAACCGATTCCCAACCT -ACGGAAAGAACCGATTCCGCTACT -ACGGAAAGAACCGATTCCGGATCT -ACGGAAAGAACCGATTCCAAGGCT -ACGGAAAGAACCGATTCCTCAACC -ACGGAAAGAACCGATTCCTGTTCC -ACGGAAAGAACCGATTCCATTCCC -ACGGAAAGAACCGATTCCTTCTCG -ACGGAAAGAACCGATTCCTAGACG -ACGGAAAGAACCGATTCCGTAACG -ACGGAAAGAACCGATTCCACTTCG -ACGGAAAGAACCGATTCCTACGCA -ACGGAAAGAACCGATTCCCTTGCA -ACGGAAAGAACCGATTCCCGAACA -ACGGAAAGAACCGATTCCCAGTCA -ACGGAAAGAACCGATTCCGATCCA -ACGGAAAGAACCGATTCCACGACA -ACGGAAAGAACCGATTCCAGCTCA -ACGGAAAGAACCGATTCCTCACGT -ACGGAAAGAACCGATTCCCGTAGT -ACGGAAAGAACCGATTCCGTCAGT -ACGGAAAGAACCGATTCCGAAGGT -ACGGAAAGAACCGATTCCAACCGT -ACGGAAAGAACCGATTCCTTGTGC -ACGGAAAGAACCGATTCCCTAAGC -ACGGAAAGAACCGATTCCACTAGC -ACGGAAAGAACCGATTCCAGATGC -ACGGAAAGAACCGATTCCTGAAGG -ACGGAAAGAACCGATTCCCAATGG -ACGGAAAGAACCGATTCCATGAGG -ACGGAAAGAACCGATTCCAATGGG -ACGGAAAGAACCGATTCCTCCTGA -ACGGAAAGAACCGATTCCTAGCGA -ACGGAAAGAACCGATTCCCACAGA -ACGGAAAGAACCGATTCCGCAAGA -ACGGAAAGAACCGATTCCGGTTGA -ACGGAAAGAACCGATTCCTCCGAT -ACGGAAAGAACCGATTCCTGGCAT -ACGGAAAGAACCGATTCCCGAGAT -ACGGAAAGAACCGATTCCTACCAC -ACGGAAAGAACCGATTCCCAGAAC -ACGGAAAGAACCGATTCCGTCTAC -ACGGAAAGAACCGATTCCACGTAC -ACGGAAAGAACCGATTCCAGTGAC -ACGGAAAGAACCGATTCCCTGTAG -ACGGAAAGAACCGATTCCCCTAAG -ACGGAAAGAACCGATTCCGTTCAG -ACGGAAAGAACCGATTCCGCATAG -ACGGAAAGAACCGATTCCGACAAG -ACGGAAAGAACCGATTCCAAGCAG -ACGGAAAGAACCGATTCCCGTCAA -ACGGAAAGAACCGATTCCGCTGAA -ACGGAAAGAACCGATTCCAGTACG -ACGGAAAGAACCGATTCCATCCGA -ACGGAAAGAACCGATTCCATGGGA -ACGGAAAGAACCGATTCCGTGCAA -ACGGAAAGAACCGATTCCGAGGAA -ACGGAAAGAACCGATTCCCAGGTA -ACGGAAAGAACCGATTCCGACTCT -ACGGAAAGAACCGATTCCAGTCCT -ACGGAAAGAACCGATTCCTAAGCC -ACGGAAAGAACCGATTCCATAGCC -ACGGAAAGAACCGATTCCTAACCG -ACGGAAAGAACCGATTCCATGCCA -ACGGAAAGAACCCATTGGGGAAAC -ACGGAAAGAACCCATTGGAACACC -ACGGAAAGAACCCATTGGATCGAG -ACGGAAAGAACCCATTGGCTCCTT -ACGGAAAGAACCCATTGGCCTGTT -ACGGAAAGAACCCATTGGCGGTTT -ACGGAAAGAACCCATTGGGTGGTT -ACGGAAAGAACCCATTGGGCCTTT -ACGGAAAGAACCCATTGGGGTCTT -ACGGAAAGAACCCATTGGACGCTT -ACGGAAAGAACCCATTGGAGCGTT -ACGGAAAGAACCCATTGGTTCGTC -ACGGAAAGAACCCATTGGTCTCTC -ACGGAAAGAACCCATTGGTGGATC -ACGGAAAGAACCCATTGGCACTTC -ACGGAAAGAACCCATTGGGTACTC -ACGGAAAGAACCCATTGGGATGTC -ACGGAAAGAACCCATTGGACAGTC -ACGGAAAGAACCCATTGGTTGCTG -ACGGAAAGAACCCATTGGTCCATG -ACGGAAAGAACCCATTGGTGTGTG -ACGGAAAGAACCCATTGGCTAGTG -ACGGAAAGAACCCATTGGCATCTG -ACGGAAAGAACCCATTGGGAGTTG -ACGGAAAGAACCCATTGGAGACTG -ACGGAAAGAACCCATTGGTCGGTA -ACGGAAAGAACCCATTGGTGCCTA -ACGGAAAGAACCCATTGGCCACTA -ACGGAAAGAACCCATTGGGGAGTA -ACGGAAAGAACCCATTGGTCGTCT -ACGGAAAGAACCCATTGGTGCACT -ACGGAAAGAACCCATTGGCTGACT -ACGGAAAGAACCCATTGGCAACCT -ACGGAAAGAACCCATTGGGCTACT -ACGGAAAGAACCCATTGGGGATCT -ACGGAAAGAACCCATTGGAAGGCT -ACGGAAAGAACCCATTGGTCAACC -ACGGAAAGAACCCATTGGTGTTCC -ACGGAAAGAACCCATTGGATTCCC -ACGGAAAGAACCCATTGGTTCTCG -ACGGAAAGAACCCATTGGTAGACG -ACGGAAAGAACCCATTGGGTAACG -ACGGAAAGAACCCATTGGACTTCG -ACGGAAAGAACCCATTGGTACGCA -ACGGAAAGAACCCATTGGCTTGCA -ACGGAAAGAACCCATTGGCGAACA -ACGGAAAGAACCCATTGGCAGTCA -ACGGAAAGAACCCATTGGGATCCA -ACGGAAAGAACCCATTGGACGACA -ACGGAAAGAACCCATTGGAGCTCA -ACGGAAAGAACCCATTGGTCACGT -ACGGAAAGAACCCATTGGCGTAGT -ACGGAAAGAACCCATTGGGTCAGT -ACGGAAAGAACCCATTGGGAAGGT -ACGGAAAGAACCCATTGGAACCGT -ACGGAAAGAACCCATTGGTTGTGC -ACGGAAAGAACCCATTGGCTAAGC -ACGGAAAGAACCCATTGGACTAGC -ACGGAAAGAACCCATTGGAGATGC -ACGGAAAGAACCCATTGGTGAAGG -ACGGAAAGAACCCATTGGCAATGG -ACGGAAAGAACCCATTGGATGAGG -ACGGAAAGAACCCATTGGAATGGG -ACGGAAAGAACCCATTGGTCCTGA -ACGGAAAGAACCCATTGGTAGCGA -ACGGAAAGAACCCATTGGCACAGA -ACGGAAAGAACCCATTGGGCAAGA -ACGGAAAGAACCCATTGGGGTTGA -ACGGAAAGAACCCATTGGTCCGAT -ACGGAAAGAACCCATTGGTGGCAT -ACGGAAAGAACCCATTGGCGAGAT -ACGGAAAGAACCCATTGGTACCAC -ACGGAAAGAACCCATTGGCAGAAC -ACGGAAAGAACCCATTGGGTCTAC -ACGGAAAGAACCCATTGGACGTAC -ACGGAAAGAACCCATTGGAGTGAC -ACGGAAAGAACCCATTGGCTGTAG -ACGGAAAGAACCCATTGGCCTAAG -ACGGAAAGAACCCATTGGGTTCAG -ACGGAAAGAACCCATTGGGCATAG -ACGGAAAGAACCCATTGGGACAAG -ACGGAAAGAACCCATTGGAAGCAG -ACGGAAAGAACCCATTGGCGTCAA -ACGGAAAGAACCCATTGGGCTGAA -ACGGAAAGAACCCATTGGAGTACG -ACGGAAAGAACCCATTGGATCCGA -ACGGAAAGAACCCATTGGATGGGA -ACGGAAAGAACCCATTGGGTGCAA -ACGGAAAGAACCCATTGGGAGGAA -ACGGAAAGAACCCATTGGCAGGTA -ACGGAAAGAACCCATTGGGACTCT -ACGGAAAGAACCCATTGGAGTCCT -ACGGAAAGAACCCATTGGTAAGCC -ACGGAAAGAACCCATTGGATAGCC -ACGGAAAGAACCCATTGGTAACCG -ACGGAAAGAACCCATTGGATGCCA -ACGGAAAGAACCGATCGAGGAAAC -ACGGAAAGAACCGATCGAAACACC -ACGGAAAGAACCGATCGAATCGAG -ACGGAAAGAACCGATCGACTCCTT -ACGGAAAGAACCGATCGACCTGTT -ACGGAAAGAACCGATCGACGGTTT -ACGGAAAGAACCGATCGAGTGGTT -ACGGAAAGAACCGATCGAGCCTTT -ACGGAAAGAACCGATCGAGGTCTT -ACGGAAAGAACCGATCGAACGCTT -ACGGAAAGAACCGATCGAAGCGTT -ACGGAAAGAACCGATCGATTCGTC -ACGGAAAGAACCGATCGATCTCTC -ACGGAAAGAACCGATCGATGGATC -ACGGAAAGAACCGATCGACACTTC -ACGGAAAGAACCGATCGAGTACTC -ACGGAAAGAACCGATCGAGATGTC -ACGGAAAGAACCGATCGAACAGTC -ACGGAAAGAACCGATCGATTGCTG -ACGGAAAGAACCGATCGATCCATG -ACGGAAAGAACCGATCGATGTGTG -ACGGAAAGAACCGATCGACTAGTG -ACGGAAAGAACCGATCGACATCTG -ACGGAAAGAACCGATCGAGAGTTG -ACGGAAAGAACCGATCGAAGACTG -ACGGAAAGAACCGATCGATCGGTA -ACGGAAAGAACCGATCGATGCCTA -ACGGAAAGAACCGATCGACCACTA -ACGGAAAGAACCGATCGAGGAGTA -ACGGAAAGAACCGATCGATCGTCT -ACGGAAAGAACCGATCGATGCACT -ACGGAAAGAACCGATCGACTGACT -ACGGAAAGAACCGATCGACAACCT -ACGGAAAGAACCGATCGAGCTACT -ACGGAAAGAACCGATCGAGGATCT -ACGGAAAGAACCGATCGAAAGGCT -ACGGAAAGAACCGATCGATCAACC -ACGGAAAGAACCGATCGATGTTCC -ACGGAAAGAACCGATCGAATTCCC -ACGGAAAGAACCGATCGATTCTCG -ACGGAAAGAACCGATCGATAGACG -ACGGAAAGAACCGATCGAGTAACG -ACGGAAAGAACCGATCGAACTTCG -ACGGAAAGAACCGATCGATACGCA -ACGGAAAGAACCGATCGACTTGCA -ACGGAAAGAACCGATCGACGAACA -ACGGAAAGAACCGATCGACAGTCA -ACGGAAAGAACCGATCGAGATCCA -ACGGAAAGAACCGATCGAACGACA -ACGGAAAGAACCGATCGAAGCTCA -ACGGAAAGAACCGATCGATCACGT -ACGGAAAGAACCGATCGACGTAGT -ACGGAAAGAACCGATCGAGTCAGT -ACGGAAAGAACCGATCGAGAAGGT -ACGGAAAGAACCGATCGAAACCGT -ACGGAAAGAACCGATCGATTGTGC -ACGGAAAGAACCGATCGACTAAGC -ACGGAAAGAACCGATCGAACTAGC -ACGGAAAGAACCGATCGAAGATGC -ACGGAAAGAACCGATCGATGAAGG -ACGGAAAGAACCGATCGACAATGG -ACGGAAAGAACCGATCGAATGAGG -ACGGAAAGAACCGATCGAAATGGG -ACGGAAAGAACCGATCGATCCTGA -ACGGAAAGAACCGATCGATAGCGA -ACGGAAAGAACCGATCGACACAGA -ACGGAAAGAACCGATCGAGCAAGA -ACGGAAAGAACCGATCGAGGTTGA -ACGGAAAGAACCGATCGATCCGAT -ACGGAAAGAACCGATCGATGGCAT -ACGGAAAGAACCGATCGACGAGAT -ACGGAAAGAACCGATCGATACCAC -ACGGAAAGAACCGATCGACAGAAC -ACGGAAAGAACCGATCGAGTCTAC -ACGGAAAGAACCGATCGAACGTAC -ACGGAAAGAACCGATCGAAGTGAC -ACGGAAAGAACCGATCGACTGTAG -ACGGAAAGAACCGATCGACCTAAG -ACGGAAAGAACCGATCGAGTTCAG -ACGGAAAGAACCGATCGAGCATAG -ACGGAAAGAACCGATCGAGACAAG -ACGGAAAGAACCGATCGAAAGCAG -ACGGAAAGAACCGATCGACGTCAA -ACGGAAAGAACCGATCGAGCTGAA -ACGGAAAGAACCGATCGAAGTACG -ACGGAAAGAACCGATCGAATCCGA -ACGGAAAGAACCGATCGAATGGGA -ACGGAAAGAACCGATCGAGTGCAA -ACGGAAAGAACCGATCGAGAGGAA -ACGGAAAGAACCGATCGACAGGTA -ACGGAAAGAACCGATCGAGACTCT -ACGGAAAGAACCGATCGAAGTCCT -ACGGAAAGAACCGATCGATAAGCC -ACGGAAAGAACCGATCGAATAGCC -ACGGAAAGAACCGATCGATAACCG -ACGGAAAGAACCGATCGAATGCCA -ACGGAAAGAACCCACTACGGAAAC -ACGGAAAGAACCCACTACAACACC -ACGGAAAGAACCCACTACATCGAG -ACGGAAAGAACCCACTACCTCCTT -ACGGAAAGAACCCACTACCCTGTT -ACGGAAAGAACCCACTACCGGTTT -ACGGAAAGAACCCACTACGTGGTT -ACGGAAAGAACCCACTACGCCTTT -ACGGAAAGAACCCACTACGGTCTT -ACGGAAAGAACCCACTACACGCTT -ACGGAAAGAACCCACTACAGCGTT -ACGGAAAGAACCCACTACTTCGTC -ACGGAAAGAACCCACTACTCTCTC -ACGGAAAGAACCCACTACTGGATC -ACGGAAAGAACCCACTACCACTTC -ACGGAAAGAACCCACTACGTACTC -ACGGAAAGAACCCACTACGATGTC -ACGGAAAGAACCCACTACACAGTC -ACGGAAAGAACCCACTACTTGCTG -ACGGAAAGAACCCACTACTCCATG -ACGGAAAGAACCCACTACTGTGTG -ACGGAAAGAACCCACTACCTAGTG -ACGGAAAGAACCCACTACCATCTG -ACGGAAAGAACCCACTACGAGTTG -ACGGAAAGAACCCACTACAGACTG -ACGGAAAGAACCCACTACTCGGTA -ACGGAAAGAACCCACTACTGCCTA -ACGGAAAGAACCCACTACCCACTA -ACGGAAAGAACCCACTACGGAGTA -ACGGAAAGAACCCACTACTCGTCT -ACGGAAAGAACCCACTACTGCACT -ACGGAAAGAACCCACTACCTGACT -ACGGAAAGAACCCACTACCAACCT -ACGGAAAGAACCCACTACGCTACT -ACGGAAAGAACCCACTACGGATCT -ACGGAAAGAACCCACTACAAGGCT -ACGGAAAGAACCCACTACTCAACC -ACGGAAAGAACCCACTACTGTTCC -ACGGAAAGAACCCACTACATTCCC -ACGGAAAGAACCCACTACTTCTCG -ACGGAAAGAACCCACTACTAGACG -ACGGAAAGAACCCACTACGTAACG -ACGGAAAGAACCCACTACACTTCG -ACGGAAAGAACCCACTACTACGCA -ACGGAAAGAACCCACTACCTTGCA -ACGGAAAGAACCCACTACCGAACA -ACGGAAAGAACCCACTACCAGTCA -ACGGAAAGAACCCACTACGATCCA -ACGGAAAGAACCCACTACACGACA -ACGGAAAGAACCCACTACAGCTCA -ACGGAAAGAACCCACTACTCACGT -ACGGAAAGAACCCACTACCGTAGT -ACGGAAAGAACCCACTACGTCAGT -ACGGAAAGAACCCACTACGAAGGT -ACGGAAAGAACCCACTACAACCGT -ACGGAAAGAACCCACTACTTGTGC -ACGGAAAGAACCCACTACCTAAGC -ACGGAAAGAACCCACTACACTAGC -ACGGAAAGAACCCACTACAGATGC -ACGGAAAGAACCCACTACTGAAGG -ACGGAAAGAACCCACTACCAATGG -ACGGAAAGAACCCACTACATGAGG -ACGGAAAGAACCCACTACAATGGG -ACGGAAAGAACCCACTACTCCTGA -ACGGAAAGAACCCACTACTAGCGA -ACGGAAAGAACCCACTACCACAGA -ACGGAAAGAACCCACTACGCAAGA -ACGGAAAGAACCCACTACGGTTGA -ACGGAAAGAACCCACTACTCCGAT -ACGGAAAGAACCCACTACTGGCAT -ACGGAAAGAACCCACTACCGAGAT -ACGGAAAGAACCCACTACTACCAC -ACGGAAAGAACCCACTACCAGAAC -ACGGAAAGAACCCACTACGTCTAC -ACGGAAAGAACCCACTACACGTAC -ACGGAAAGAACCCACTACAGTGAC -ACGGAAAGAACCCACTACCTGTAG -ACGGAAAGAACCCACTACCCTAAG -ACGGAAAGAACCCACTACGTTCAG -ACGGAAAGAACCCACTACGCATAG -ACGGAAAGAACCCACTACGACAAG -ACGGAAAGAACCCACTACAAGCAG -ACGGAAAGAACCCACTACCGTCAA -ACGGAAAGAACCCACTACGCTGAA -ACGGAAAGAACCCACTACAGTACG -ACGGAAAGAACCCACTACATCCGA -ACGGAAAGAACCCACTACATGGGA -ACGGAAAGAACCCACTACGTGCAA -ACGGAAAGAACCCACTACGAGGAA -ACGGAAAGAACCCACTACCAGGTA -ACGGAAAGAACCCACTACGACTCT -ACGGAAAGAACCCACTACAGTCCT -ACGGAAAGAACCCACTACTAAGCC -ACGGAAAGAACCCACTACATAGCC -ACGGAAAGAACCCACTACTAACCG -ACGGAAAGAACCCACTACATGCCA -ACGGAAAGAACCAACCAGGGAAAC -ACGGAAAGAACCAACCAGAACACC -ACGGAAAGAACCAACCAGATCGAG -ACGGAAAGAACCAACCAGCTCCTT -ACGGAAAGAACCAACCAGCCTGTT -ACGGAAAGAACCAACCAGCGGTTT -ACGGAAAGAACCAACCAGGTGGTT -ACGGAAAGAACCAACCAGGCCTTT -ACGGAAAGAACCAACCAGGGTCTT -ACGGAAAGAACCAACCAGACGCTT -ACGGAAAGAACCAACCAGAGCGTT -ACGGAAAGAACCAACCAGTTCGTC -ACGGAAAGAACCAACCAGTCTCTC -ACGGAAAGAACCAACCAGTGGATC -ACGGAAAGAACCAACCAGCACTTC -ACGGAAAGAACCAACCAGGTACTC -ACGGAAAGAACCAACCAGGATGTC -ACGGAAAGAACCAACCAGACAGTC -ACGGAAAGAACCAACCAGTTGCTG -ACGGAAAGAACCAACCAGTCCATG -ACGGAAAGAACCAACCAGTGTGTG -ACGGAAAGAACCAACCAGCTAGTG -ACGGAAAGAACCAACCAGCATCTG -ACGGAAAGAACCAACCAGGAGTTG -ACGGAAAGAACCAACCAGAGACTG -ACGGAAAGAACCAACCAGTCGGTA -ACGGAAAGAACCAACCAGTGCCTA -ACGGAAAGAACCAACCAGCCACTA -ACGGAAAGAACCAACCAGGGAGTA -ACGGAAAGAACCAACCAGTCGTCT -ACGGAAAGAACCAACCAGTGCACT -ACGGAAAGAACCAACCAGCTGACT -ACGGAAAGAACCAACCAGCAACCT -ACGGAAAGAACCAACCAGGCTACT -ACGGAAAGAACCAACCAGGGATCT -ACGGAAAGAACCAACCAGAAGGCT -ACGGAAAGAACCAACCAGTCAACC -ACGGAAAGAACCAACCAGTGTTCC -ACGGAAAGAACCAACCAGATTCCC -ACGGAAAGAACCAACCAGTTCTCG -ACGGAAAGAACCAACCAGTAGACG -ACGGAAAGAACCAACCAGGTAACG -ACGGAAAGAACCAACCAGACTTCG -ACGGAAAGAACCAACCAGTACGCA -ACGGAAAGAACCAACCAGCTTGCA -ACGGAAAGAACCAACCAGCGAACA -ACGGAAAGAACCAACCAGCAGTCA -ACGGAAAGAACCAACCAGGATCCA -ACGGAAAGAACCAACCAGACGACA -ACGGAAAGAACCAACCAGAGCTCA -ACGGAAAGAACCAACCAGTCACGT -ACGGAAAGAACCAACCAGCGTAGT -ACGGAAAGAACCAACCAGGTCAGT -ACGGAAAGAACCAACCAGGAAGGT -ACGGAAAGAACCAACCAGAACCGT -ACGGAAAGAACCAACCAGTTGTGC -ACGGAAAGAACCAACCAGCTAAGC -ACGGAAAGAACCAACCAGACTAGC -ACGGAAAGAACCAACCAGAGATGC -ACGGAAAGAACCAACCAGTGAAGG -ACGGAAAGAACCAACCAGCAATGG -ACGGAAAGAACCAACCAGATGAGG -ACGGAAAGAACCAACCAGAATGGG -ACGGAAAGAACCAACCAGTCCTGA -ACGGAAAGAACCAACCAGTAGCGA -ACGGAAAGAACCAACCAGCACAGA -ACGGAAAGAACCAACCAGGCAAGA -ACGGAAAGAACCAACCAGGGTTGA -ACGGAAAGAACCAACCAGTCCGAT -ACGGAAAGAACCAACCAGTGGCAT -ACGGAAAGAACCAACCAGCGAGAT -ACGGAAAGAACCAACCAGTACCAC -ACGGAAAGAACCAACCAGCAGAAC -ACGGAAAGAACCAACCAGGTCTAC -ACGGAAAGAACCAACCAGACGTAC -ACGGAAAGAACCAACCAGAGTGAC -ACGGAAAGAACCAACCAGCTGTAG -ACGGAAAGAACCAACCAGCCTAAG -ACGGAAAGAACCAACCAGGTTCAG -ACGGAAAGAACCAACCAGGCATAG -ACGGAAAGAACCAACCAGGACAAG -ACGGAAAGAACCAACCAGAAGCAG -ACGGAAAGAACCAACCAGCGTCAA -ACGGAAAGAACCAACCAGGCTGAA -ACGGAAAGAACCAACCAGAGTACG -ACGGAAAGAACCAACCAGATCCGA -ACGGAAAGAACCAACCAGATGGGA -ACGGAAAGAACCAACCAGGTGCAA -ACGGAAAGAACCAACCAGGAGGAA -ACGGAAAGAACCAACCAGCAGGTA -ACGGAAAGAACCAACCAGGACTCT -ACGGAAAGAACCAACCAGAGTCCT -ACGGAAAGAACCAACCAGTAAGCC -ACGGAAAGAACCAACCAGATAGCC -ACGGAAAGAACCAACCAGTAACCG -ACGGAAAGAACCAACCAGATGCCA -ACGGAAAGAACCTACGTCGGAAAC -ACGGAAAGAACCTACGTCAACACC -ACGGAAAGAACCTACGTCATCGAG -ACGGAAAGAACCTACGTCCTCCTT -ACGGAAAGAACCTACGTCCCTGTT -ACGGAAAGAACCTACGTCCGGTTT -ACGGAAAGAACCTACGTCGTGGTT -ACGGAAAGAACCTACGTCGCCTTT -ACGGAAAGAACCTACGTCGGTCTT -ACGGAAAGAACCTACGTCACGCTT -ACGGAAAGAACCTACGTCAGCGTT -ACGGAAAGAACCTACGTCTTCGTC -ACGGAAAGAACCTACGTCTCTCTC -ACGGAAAGAACCTACGTCTGGATC -ACGGAAAGAACCTACGTCCACTTC -ACGGAAAGAACCTACGTCGTACTC -ACGGAAAGAACCTACGTCGATGTC -ACGGAAAGAACCTACGTCACAGTC -ACGGAAAGAACCTACGTCTTGCTG -ACGGAAAGAACCTACGTCTCCATG -ACGGAAAGAACCTACGTCTGTGTG -ACGGAAAGAACCTACGTCCTAGTG -ACGGAAAGAACCTACGTCCATCTG -ACGGAAAGAACCTACGTCGAGTTG -ACGGAAAGAACCTACGTCAGACTG -ACGGAAAGAACCTACGTCTCGGTA -ACGGAAAGAACCTACGTCTGCCTA -ACGGAAAGAACCTACGTCCCACTA -ACGGAAAGAACCTACGTCGGAGTA -ACGGAAAGAACCTACGTCTCGTCT -ACGGAAAGAACCTACGTCTGCACT -ACGGAAAGAACCTACGTCCTGACT -ACGGAAAGAACCTACGTCCAACCT -ACGGAAAGAACCTACGTCGCTACT -ACGGAAAGAACCTACGTCGGATCT -ACGGAAAGAACCTACGTCAAGGCT -ACGGAAAGAACCTACGTCTCAACC -ACGGAAAGAACCTACGTCTGTTCC -ACGGAAAGAACCTACGTCATTCCC -ACGGAAAGAACCTACGTCTTCTCG -ACGGAAAGAACCTACGTCTAGACG -ACGGAAAGAACCTACGTCGTAACG -ACGGAAAGAACCTACGTCACTTCG -ACGGAAAGAACCTACGTCTACGCA -ACGGAAAGAACCTACGTCCTTGCA -ACGGAAAGAACCTACGTCCGAACA -ACGGAAAGAACCTACGTCCAGTCA -ACGGAAAGAACCTACGTCGATCCA -ACGGAAAGAACCTACGTCACGACA -ACGGAAAGAACCTACGTCAGCTCA -ACGGAAAGAACCTACGTCTCACGT -ACGGAAAGAACCTACGTCCGTAGT -ACGGAAAGAACCTACGTCGTCAGT -ACGGAAAGAACCTACGTCGAAGGT -ACGGAAAGAACCTACGTCAACCGT -ACGGAAAGAACCTACGTCTTGTGC -ACGGAAAGAACCTACGTCCTAAGC -ACGGAAAGAACCTACGTCACTAGC -ACGGAAAGAACCTACGTCAGATGC -ACGGAAAGAACCTACGTCTGAAGG -ACGGAAAGAACCTACGTCCAATGG -ACGGAAAGAACCTACGTCATGAGG -ACGGAAAGAACCTACGTCAATGGG -ACGGAAAGAACCTACGTCTCCTGA -ACGGAAAGAACCTACGTCTAGCGA -ACGGAAAGAACCTACGTCCACAGA -ACGGAAAGAACCTACGTCGCAAGA -ACGGAAAGAACCTACGTCGGTTGA -ACGGAAAGAACCTACGTCTCCGAT -ACGGAAAGAACCTACGTCTGGCAT -ACGGAAAGAACCTACGTCCGAGAT -ACGGAAAGAACCTACGTCTACCAC -ACGGAAAGAACCTACGTCCAGAAC -ACGGAAAGAACCTACGTCGTCTAC -ACGGAAAGAACCTACGTCACGTAC -ACGGAAAGAACCTACGTCAGTGAC -ACGGAAAGAACCTACGTCCTGTAG -ACGGAAAGAACCTACGTCCCTAAG -ACGGAAAGAACCTACGTCGTTCAG -ACGGAAAGAACCTACGTCGCATAG -ACGGAAAGAACCTACGTCGACAAG -ACGGAAAGAACCTACGTCAAGCAG -ACGGAAAGAACCTACGTCCGTCAA -ACGGAAAGAACCTACGTCGCTGAA -ACGGAAAGAACCTACGTCAGTACG -ACGGAAAGAACCTACGTCATCCGA -ACGGAAAGAACCTACGTCATGGGA -ACGGAAAGAACCTACGTCGTGCAA -ACGGAAAGAACCTACGTCGAGGAA -ACGGAAAGAACCTACGTCCAGGTA -ACGGAAAGAACCTACGTCGACTCT -ACGGAAAGAACCTACGTCAGTCCT -ACGGAAAGAACCTACGTCTAAGCC -ACGGAAAGAACCTACGTCATAGCC -ACGGAAAGAACCTACGTCTAACCG -ACGGAAAGAACCTACGTCATGCCA -ACGGAAAGAACCTACACGGGAAAC -ACGGAAAGAACCTACACGAACACC -ACGGAAAGAACCTACACGATCGAG -ACGGAAAGAACCTACACGCTCCTT -ACGGAAAGAACCTACACGCCTGTT -ACGGAAAGAACCTACACGCGGTTT -ACGGAAAGAACCTACACGGTGGTT -ACGGAAAGAACCTACACGGCCTTT -ACGGAAAGAACCTACACGGGTCTT -ACGGAAAGAACCTACACGACGCTT -ACGGAAAGAACCTACACGAGCGTT -ACGGAAAGAACCTACACGTTCGTC -ACGGAAAGAACCTACACGTCTCTC -ACGGAAAGAACCTACACGTGGATC -ACGGAAAGAACCTACACGCACTTC -ACGGAAAGAACCTACACGGTACTC -ACGGAAAGAACCTACACGGATGTC -ACGGAAAGAACCTACACGACAGTC -ACGGAAAGAACCTACACGTTGCTG -ACGGAAAGAACCTACACGTCCATG -ACGGAAAGAACCTACACGTGTGTG -ACGGAAAGAACCTACACGCTAGTG -ACGGAAAGAACCTACACGCATCTG -ACGGAAAGAACCTACACGGAGTTG -ACGGAAAGAACCTACACGAGACTG -ACGGAAAGAACCTACACGTCGGTA -ACGGAAAGAACCTACACGTGCCTA -ACGGAAAGAACCTACACGCCACTA -ACGGAAAGAACCTACACGGGAGTA -ACGGAAAGAACCTACACGTCGTCT -ACGGAAAGAACCTACACGTGCACT -ACGGAAAGAACCTACACGCTGACT -ACGGAAAGAACCTACACGCAACCT -ACGGAAAGAACCTACACGGCTACT -ACGGAAAGAACCTACACGGGATCT -ACGGAAAGAACCTACACGAAGGCT -ACGGAAAGAACCTACACGTCAACC -ACGGAAAGAACCTACACGTGTTCC -ACGGAAAGAACCTACACGATTCCC -ACGGAAAGAACCTACACGTTCTCG -ACGGAAAGAACCTACACGTAGACG -ACGGAAAGAACCTACACGGTAACG -ACGGAAAGAACCTACACGACTTCG -ACGGAAAGAACCTACACGTACGCA -ACGGAAAGAACCTACACGCTTGCA -ACGGAAAGAACCTACACGCGAACA -ACGGAAAGAACCTACACGCAGTCA -ACGGAAAGAACCTACACGGATCCA -ACGGAAAGAACCTACACGACGACA -ACGGAAAGAACCTACACGAGCTCA -ACGGAAAGAACCTACACGTCACGT -ACGGAAAGAACCTACACGCGTAGT -ACGGAAAGAACCTACACGGTCAGT -ACGGAAAGAACCTACACGGAAGGT -ACGGAAAGAACCTACACGAACCGT -ACGGAAAGAACCTACACGTTGTGC -ACGGAAAGAACCTACACGCTAAGC -ACGGAAAGAACCTACACGACTAGC -ACGGAAAGAACCTACACGAGATGC -ACGGAAAGAACCTACACGTGAAGG -ACGGAAAGAACCTACACGCAATGG -ACGGAAAGAACCTACACGATGAGG -ACGGAAAGAACCTACACGAATGGG -ACGGAAAGAACCTACACGTCCTGA -ACGGAAAGAACCTACACGTAGCGA -ACGGAAAGAACCTACACGCACAGA -ACGGAAAGAACCTACACGGCAAGA -ACGGAAAGAACCTACACGGGTTGA -ACGGAAAGAACCTACACGTCCGAT -ACGGAAAGAACCTACACGTGGCAT -ACGGAAAGAACCTACACGCGAGAT -ACGGAAAGAACCTACACGTACCAC -ACGGAAAGAACCTACACGCAGAAC -ACGGAAAGAACCTACACGGTCTAC -ACGGAAAGAACCTACACGACGTAC -ACGGAAAGAACCTACACGAGTGAC -ACGGAAAGAACCTACACGCTGTAG -ACGGAAAGAACCTACACGCCTAAG -ACGGAAAGAACCTACACGGTTCAG -ACGGAAAGAACCTACACGGCATAG -ACGGAAAGAACCTACACGGACAAG -ACGGAAAGAACCTACACGAAGCAG -ACGGAAAGAACCTACACGCGTCAA -ACGGAAAGAACCTACACGGCTGAA -ACGGAAAGAACCTACACGAGTACG -ACGGAAAGAACCTACACGATCCGA -ACGGAAAGAACCTACACGATGGGA -ACGGAAAGAACCTACACGGTGCAA -ACGGAAAGAACCTACACGGAGGAA -ACGGAAAGAACCTACACGCAGGTA -ACGGAAAGAACCTACACGGACTCT -ACGGAAAGAACCTACACGAGTCCT -ACGGAAAGAACCTACACGTAAGCC -ACGGAAAGAACCTACACGATAGCC -ACGGAAAGAACCTACACGTAACCG -ACGGAAAGAACCTACACGATGCCA -ACGGAAAGAACCGACAGTGGAAAC -ACGGAAAGAACCGACAGTAACACC -ACGGAAAGAACCGACAGTATCGAG -ACGGAAAGAACCGACAGTCTCCTT -ACGGAAAGAACCGACAGTCCTGTT -ACGGAAAGAACCGACAGTCGGTTT -ACGGAAAGAACCGACAGTGTGGTT -ACGGAAAGAACCGACAGTGCCTTT -ACGGAAAGAACCGACAGTGGTCTT -ACGGAAAGAACCGACAGTACGCTT -ACGGAAAGAACCGACAGTAGCGTT -ACGGAAAGAACCGACAGTTTCGTC -ACGGAAAGAACCGACAGTTCTCTC -ACGGAAAGAACCGACAGTTGGATC -ACGGAAAGAACCGACAGTCACTTC -ACGGAAAGAACCGACAGTGTACTC -ACGGAAAGAACCGACAGTGATGTC -ACGGAAAGAACCGACAGTACAGTC -ACGGAAAGAACCGACAGTTTGCTG -ACGGAAAGAACCGACAGTTCCATG -ACGGAAAGAACCGACAGTTGTGTG -ACGGAAAGAACCGACAGTCTAGTG -ACGGAAAGAACCGACAGTCATCTG -ACGGAAAGAACCGACAGTGAGTTG -ACGGAAAGAACCGACAGTAGACTG -ACGGAAAGAACCGACAGTTCGGTA -ACGGAAAGAACCGACAGTTGCCTA -ACGGAAAGAACCGACAGTCCACTA -ACGGAAAGAACCGACAGTGGAGTA -ACGGAAAGAACCGACAGTTCGTCT -ACGGAAAGAACCGACAGTTGCACT -ACGGAAAGAACCGACAGTCTGACT -ACGGAAAGAACCGACAGTCAACCT -ACGGAAAGAACCGACAGTGCTACT -ACGGAAAGAACCGACAGTGGATCT -ACGGAAAGAACCGACAGTAAGGCT -ACGGAAAGAACCGACAGTTCAACC -ACGGAAAGAACCGACAGTTGTTCC -ACGGAAAGAACCGACAGTATTCCC -ACGGAAAGAACCGACAGTTTCTCG -ACGGAAAGAACCGACAGTTAGACG -ACGGAAAGAACCGACAGTGTAACG -ACGGAAAGAACCGACAGTACTTCG -ACGGAAAGAACCGACAGTTACGCA -ACGGAAAGAACCGACAGTCTTGCA -ACGGAAAGAACCGACAGTCGAACA -ACGGAAAGAACCGACAGTCAGTCA -ACGGAAAGAACCGACAGTGATCCA -ACGGAAAGAACCGACAGTACGACA -ACGGAAAGAACCGACAGTAGCTCA -ACGGAAAGAACCGACAGTTCACGT -ACGGAAAGAACCGACAGTCGTAGT -ACGGAAAGAACCGACAGTGTCAGT -ACGGAAAGAACCGACAGTGAAGGT -ACGGAAAGAACCGACAGTAACCGT -ACGGAAAGAACCGACAGTTTGTGC -ACGGAAAGAACCGACAGTCTAAGC -ACGGAAAGAACCGACAGTACTAGC -ACGGAAAGAACCGACAGTAGATGC -ACGGAAAGAACCGACAGTTGAAGG -ACGGAAAGAACCGACAGTCAATGG -ACGGAAAGAACCGACAGTATGAGG -ACGGAAAGAACCGACAGTAATGGG -ACGGAAAGAACCGACAGTTCCTGA -ACGGAAAGAACCGACAGTTAGCGA -ACGGAAAGAACCGACAGTCACAGA -ACGGAAAGAACCGACAGTGCAAGA -ACGGAAAGAACCGACAGTGGTTGA -ACGGAAAGAACCGACAGTTCCGAT -ACGGAAAGAACCGACAGTTGGCAT -ACGGAAAGAACCGACAGTCGAGAT -ACGGAAAGAACCGACAGTTACCAC -ACGGAAAGAACCGACAGTCAGAAC -ACGGAAAGAACCGACAGTGTCTAC -ACGGAAAGAACCGACAGTACGTAC -ACGGAAAGAACCGACAGTAGTGAC -ACGGAAAGAACCGACAGTCTGTAG -ACGGAAAGAACCGACAGTCCTAAG -ACGGAAAGAACCGACAGTGTTCAG -ACGGAAAGAACCGACAGTGCATAG -ACGGAAAGAACCGACAGTGACAAG -ACGGAAAGAACCGACAGTAAGCAG -ACGGAAAGAACCGACAGTCGTCAA -ACGGAAAGAACCGACAGTGCTGAA -ACGGAAAGAACCGACAGTAGTACG -ACGGAAAGAACCGACAGTATCCGA -ACGGAAAGAACCGACAGTATGGGA -ACGGAAAGAACCGACAGTGTGCAA -ACGGAAAGAACCGACAGTGAGGAA -ACGGAAAGAACCGACAGTCAGGTA -ACGGAAAGAACCGACAGTGACTCT -ACGGAAAGAACCGACAGTAGTCCT -ACGGAAAGAACCGACAGTTAAGCC -ACGGAAAGAACCGACAGTATAGCC -ACGGAAAGAACCGACAGTTAACCG -ACGGAAAGAACCGACAGTATGCCA -ACGGAAAGAACCTAGCTGGGAAAC -ACGGAAAGAACCTAGCTGAACACC -ACGGAAAGAACCTAGCTGATCGAG -ACGGAAAGAACCTAGCTGCTCCTT -ACGGAAAGAACCTAGCTGCCTGTT -ACGGAAAGAACCTAGCTGCGGTTT -ACGGAAAGAACCTAGCTGGTGGTT -ACGGAAAGAACCTAGCTGGCCTTT -ACGGAAAGAACCTAGCTGGGTCTT -ACGGAAAGAACCTAGCTGACGCTT -ACGGAAAGAACCTAGCTGAGCGTT -ACGGAAAGAACCTAGCTGTTCGTC -ACGGAAAGAACCTAGCTGTCTCTC -ACGGAAAGAACCTAGCTGTGGATC -ACGGAAAGAACCTAGCTGCACTTC -ACGGAAAGAACCTAGCTGGTACTC -ACGGAAAGAACCTAGCTGGATGTC -ACGGAAAGAACCTAGCTGACAGTC -ACGGAAAGAACCTAGCTGTTGCTG -ACGGAAAGAACCTAGCTGTCCATG -ACGGAAAGAACCTAGCTGTGTGTG -ACGGAAAGAACCTAGCTGCTAGTG -ACGGAAAGAACCTAGCTGCATCTG -ACGGAAAGAACCTAGCTGGAGTTG -ACGGAAAGAACCTAGCTGAGACTG -ACGGAAAGAACCTAGCTGTCGGTA -ACGGAAAGAACCTAGCTGTGCCTA -ACGGAAAGAACCTAGCTGCCACTA -ACGGAAAGAACCTAGCTGGGAGTA -ACGGAAAGAACCTAGCTGTCGTCT -ACGGAAAGAACCTAGCTGTGCACT -ACGGAAAGAACCTAGCTGCTGACT -ACGGAAAGAACCTAGCTGCAACCT -ACGGAAAGAACCTAGCTGGCTACT -ACGGAAAGAACCTAGCTGGGATCT -ACGGAAAGAACCTAGCTGAAGGCT -ACGGAAAGAACCTAGCTGTCAACC -ACGGAAAGAACCTAGCTGTGTTCC -ACGGAAAGAACCTAGCTGATTCCC -ACGGAAAGAACCTAGCTGTTCTCG -ACGGAAAGAACCTAGCTGTAGACG -ACGGAAAGAACCTAGCTGGTAACG -ACGGAAAGAACCTAGCTGACTTCG -ACGGAAAGAACCTAGCTGTACGCA -ACGGAAAGAACCTAGCTGCTTGCA -ACGGAAAGAACCTAGCTGCGAACA -ACGGAAAGAACCTAGCTGCAGTCA -ACGGAAAGAACCTAGCTGGATCCA -ACGGAAAGAACCTAGCTGACGACA -ACGGAAAGAACCTAGCTGAGCTCA -ACGGAAAGAACCTAGCTGTCACGT -ACGGAAAGAACCTAGCTGCGTAGT -ACGGAAAGAACCTAGCTGGTCAGT -ACGGAAAGAACCTAGCTGGAAGGT -ACGGAAAGAACCTAGCTGAACCGT -ACGGAAAGAACCTAGCTGTTGTGC -ACGGAAAGAACCTAGCTGCTAAGC -ACGGAAAGAACCTAGCTGACTAGC -ACGGAAAGAACCTAGCTGAGATGC -ACGGAAAGAACCTAGCTGTGAAGG -ACGGAAAGAACCTAGCTGCAATGG -ACGGAAAGAACCTAGCTGATGAGG -ACGGAAAGAACCTAGCTGAATGGG -ACGGAAAGAACCTAGCTGTCCTGA -ACGGAAAGAACCTAGCTGTAGCGA -ACGGAAAGAACCTAGCTGCACAGA -ACGGAAAGAACCTAGCTGGCAAGA -ACGGAAAGAACCTAGCTGGGTTGA -ACGGAAAGAACCTAGCTGTCCGAT -ACGGAAAGAACCTAGCTGTGGCAT -ACGGAAAGAACCTAGCTGCGAGAT -ACGGAAAGAACCTAGCTGTACCAC -ACGGAAAGAACCTAGCTGCAGAAC -ACGGAAAGAACCTAGCTGGTCTAC -ACGGAAAGAACCTAGCTGACGTAC -ACGGAAAGAACCTAGCTGAGTGAC -ACGGAAAGAACCTAGCTGCTGTAG -ACGGAAAGAACCTAGCTGCCTAAG -ACGGAAAGAACCTAGCTGGTTCAG -ACGGAAAGAACCTAGCTGGCATAG -ACGGAAAGAACCTAGCTGGACAAG -ACGGAAAGAACCTAGCTGAAGCAG -ACGGAAAGAACCTAGCTGCGTCAA -ACGGAAAGAACCTAGCTGGCTGAA -ACGGAAAGAACCTAGCTGAGTACG -ACGGAAAGAACCTAGCTGATCCGA -ACGGAAAGAACCTAGCTGATGGGA -ACGGAAAGAACCTAGCTGGTGCAA -ACGGAAAGAACCTAGCTGGAGGAA -ACGGAAAGAACCTAGCTGCAGGTA -ACGGAAAGAACCTAGCTGGACTCT -ACGGAAAGAACCTAGCTGAGTCCT -ACGGAAAGAACCTAGCTGTAAGCC -ACGGAAAGAACCTAGCTGATAGCC -ACGGAAAGAACCTAGCTGTAACCG -ACGGAAAGAACCTAGCTGATGCCA -ACGGAAAGAACCAAGCCTGGAAAC -ACGGAAAGAACCAAGCCTAACACC -ACGGAAAGAACCAAGCCTATCGAG -ACGGAAAGAACCAAGCCTCTCCTT -ACGGAAAGAACCAAGCCTCCTGTT -ACGGAAAGAACCAAGCCTCGGTTT -ACGGAAAGAACCAAGCCTGTGGTT -ACGGAAAGAACCAAGCCTGCCTTT -ACGGAAAGAACCAAGCCTGGTCTT -ACGGAAAGAACCAAGCCTACGCTT -ACGGAAAGAACCAAGCCTAGCGTT -ACGGAAAGAACCAAGCCTTTCGTC -ACGGAAAGAACCAAGCCTTCTCTC -ACGGAAAGAACCAAGCCTTGGATC -ACGGAAAGAACCAAGCCTCACTTC -ACGGAAAGAACCAAGCCTGTACTC -ACGGAAAGAACCAAGCCTGATGTC -ACGGAAAGAACCAAGCCTACAGTC -ACGGAAAGAACCAAGCCTTTGCTG -ACGGAAAGAACCAAGCCTTCCATG -ACGGAAAGAACCAAGCCTTGTGTG -ACGGAAAGAACCAAGCCTCTAGTG -ACGGAAAGAACCAAGCCTCATCTG -ACGGAAAGAACCAAGCCTGAGTTG -ACGGAAAGAACCAAGCCTAGACTG -ACGGAAAGAACCAAGCCTTCGGTA -ACGGAAAGAACCAAGCCTTGCCTA -ACGGAAAGAACCAAGCCTCCACTA -ACGGAAAGAACCAAGCCTGGAGTA -ACGGAAAGAACCAAGCCTTCGTCT -ACGGAAAGAACCAAGCCTTGCACT -ACGGAAAGAACCAAGCCTCTGACT -ACGGAAAGAACCAAGCCTCAACCT -ACGGAAAGAACCAAGCCTGCTACT -ACGGAAAGAACCAAGCCTGGATCT -ACGGAAAGAACCAAGCCTAAGGCT -ACGGAAAGAACCAAGCCTTCAACC -ACGGAAAGAACCAAGCCTTGTTCC -ACGGAAAGAACCAAGCCTATTCCC -ACGGAAAGAACCAAGCCTTTCTCG -ACGGAAAGAACCAAGCCTTAGACG -ACGGAAAGAACCAAGCCTGTAACG -ACGGAAAGAACCAAGCCTACTTCG -ACGGAAAGAACCAAGCCTTACGCA -ACGGAAAGAACCAAGCCTCTTGCA -ACGGAAAGAACCAAGCCTCGAACA -ACGGAAAGAACCAAGCCTCAGTCA -ACGGAAAGAACCAAGCCTGATCCA -ACGGAAAGAACCAAGCCTACGACA -ACGGAAAGAACCAAGCCTAGCTCA -ACGGAAAGAACCAAGCCTTCACGT -ACGGAAAGAACCAAGCCTCGTAGT -ACGGAAAGAACCAAGCCTGTCAGT -ACGGAAAGAACCAAGCCTGAAGGT -ACGGAAAGAACCAAGCCTAACCGT -ACGGAAAGAACCAAGCCTTTGTGC -ACGGAAAGAACCAAGCCTCTAAGC -ACGGAAAGAACCAAGCCTACTAGC -ACGGAAAGAACCAAGCCTAGATGC -ACGGAAAGAACCAAGCCTTGAAGG -ACGGAAAGAACCAAGCCTCAATGG -ACGGAAAGAACCAAGCCTATGAGG -ACGGAAAGAACCAAGCCTAATGGG -ACGGAAAGAACCAAGCCTTCCTGA -ACGGAAAGAACCAAGCCTTAGCGA -ACGGAAAGAACCAAGCCTCACAGA -ACGGAAAGAACCAAGCCTGCAAGA -ACGGAAAGAACCAAGCCTGGTTGA -ACGGAAAGAACCAAGCCTTCCGAT -ACGGAAAGAACCAAGCCTTGGCAT -ACGGAAAGAACCAAGCCTCGAGAT -ACGGAAAGAACCAAGCCTTACCAC -ACGGAAAGAACCAAGCCTCAGAAC -ACGGAAAGAACCAAGCCTGTCTAC -ACGGAAAGAACCAAGCCTACGTAC -ACGGAAAGAACCAAGCCTAGTGAC -ACGGAAAGAACCAAGCCTCTGTAG -ACGGAAAGAACCAAGCCTCCTAAG -ACGGAAAGAACCAAGCCTGTTCAG -ACGGAAAGAACCAAGCCTGCATAG -ACGGAAAGAACCAAGCCTGACAAG -ACGGAAAGAACCAAGCCTAAGCAG -ACGGAAAGAACCAAGCCTCGTCAA -ACGGAAAGAACCAAGCCTGCTGAA -ACGGAAAGAACCAAGCCTAGTACG -ACGGAAAGAACCAAGCCTATCCGA -ACGGAAAGAACCAAGCCTATGGGA -ACGGAAAGAACCAAGCCTGTGCAA -ACGGAAAGAACCAAGCCTGAGGAA -ACGGAAAGAACCAAGCCTCAGGTA -ACGGAAAGAACCAAGCCTGACTCT -ACGGAAAGAACCAAGCCTAGTCCT -ACGGAAAGAACCAAGCCTTAAGCC -ACGGAAAGAACCAAGCCTATAGCC -ACGGAAAGAACCAAGCCTTAACCG -ACGGAAAGAACCAAGCCTATGCCA -ACGGAAAGAACCCAGGTTGGAAAC -ACGGAAAGAACCCAGGTTAACACC -ACGGAAAGAACCCAGGTTATCGAG -ACGGAAAGAACCCAGGTTCTCCTT -ACGGAAAGAACCCAGGTTCCTGTT -ACGGAAAGAACCCAGGTTCGGTTT -ACGGAAAGAACCCAGGTTGTGGTT -ACGGAAAGAACCCAGGTTGCCTTT -ACGGAAAGAACCCAGGTTGGTCTT -ACGGAAAGAACCCAGGTTACGCTT -ACGGAAAGAACCCAGGTTAGCGTT -ACGGAAAGAACCCAGGTTTTCGTC -ACGGAAAGAACCCAGGTTTCTCTC -ACGGAAAGAACCCAGGTTTGGATC -ACGGAAAGAACCCAGGTTCACTTC -ACGGAAAGAACCCAGGTTGTACTC -ACGGAAAGAACCCAGGTTGATGTC -ACGGAAAGAACCCAGGTTACAGTC -ACGGAAAGAACCCAGGTTTTGCTG -ACGGAAAGAACCCAGGTTTCCATG -ACGGAAAGAACCCAGGTTTGTGTG -ACGGAAAGAACCCAGGTTCTAGTG -ACGGAAAGAACCCAGGTTCATCTG -ACGGAAAGAACCCAGGTTGAGTTG -ACGGAAAGAACCCAGGTTAGACTG -ACGGAAAGAACCCAGGTTTCGGTA -ACGGAAAGAACCCAGGTTTGCCTA -ACGGAAAGAACCCAGGTTCCACTA -ACGGAAAGAACCCAGGTTGGAGTA -ACGGAAAGAACCCAGGTTTCGTCT -ACGGAAAGAACCCAGGTTTGCACT -ACGGAAAGAACCCAGGTTCTGACT -ACGGAAAGAACCCAGGTTCAACCT -ACGGAAAGAACCCAGGTTGCTACT -ACGGAAAGAACCCAGGTTGGATCT -ACGGAAAGAACCCAGGTTAAGGCT -ACGGAAAGAACCCAGGTTTCAACC -ACGGAAAGAACCCAGGTTTGTTCC -ACGGAAAGAACCCAGGTTATTCCC -ACGGAAAGAACCCAGGTTTTCTCG -ACGGAAAGAACCCAGGTTTAGACG -ACGGAAAGAACCCAGGTTGTAACG -ACGGAAAGAACCCAGGTTACTTCG -ACGGAAAGAACCCAGGTTTACGCA -ACGGAAAGAACCCAGGTTCTTGCA -ACGGAAAGAACCCAGGTTCGAACA -ACGGAAAGAACCCAGGTTCAGTCA -ACGGAAAGAACCCAGGTTGATCCA -ACGGAAAGAACCCAGGTTACGACA -ACGGAAAGAACCCAGGTTAGCTCA -ACGGAAAGAACCCAGGTTTCACGT -ACGGAAAGAACCCAGGTTCGTAGT -ACGGAAAGAACCCAGGTTGTCAGT -ACGGAAAGAACCCAGGTTGAAGGT -ACGGAAAGAACCCAGGTTAACCGT -ACGGAAAGAACCCAGGTTTTGTGC -ACGGAAAGAACCCAGGTTCTAAGC -ACGGAAAGAACCCAGGTTACTAGC -ACGGAAAGAACCCAGGTTAGATGC -ACGGAAAGAACCCAGGTTTGAAGG -ACGGAAAGAACCCAGGTTCAATGG -ACGGAAAGAACCCAGGTTATGAGG -ACGGAAAGAACCCAGGTTAATGGG -ACGGAAAGAACCCAGGTTTCCTGA -ACGGAAAGAACCCAGGTTTAGCGA -ACGGAAAGAACCCAGGTTCACAGA -ACGGAAAGAACCCAGGTTGCAAGA -ACGGAAAGAACCCAGGTTGGTTGA -ACGGAAAGAACCCAGGTTTCCGAT -ACGGAAAGAACCCAGGTTTGGCAT -ACGGAAAGAACCCAGGTTCGAGAT -ACGGAAAGAACCCAGGTTTACCAC -ACGGAAAGAACCCAGGTTCAGAAC -ACGGAAAGAACCCAGGTTGTCTAC -ACGGAAAGAACCCAGGTTACGTAC -ACGGAAAGAACCCAGGTTAGTGAC -ACGGAAAGAACCCAGGTTCTGTAG -ACGGAAAGAACCCAGGTTCCTAAG -ACGGAAAGAACCCAGGTTGTTCAG -ACGGAAAGAACCCAGGTTGCATAG -ACGGAAAGAACCCAGGTTGACAAG -ACGGAAAGAACCCAGGTTAAGCAG -ACGGAAAGAACCCAGGTTCGTCAA -ACGGAAAGAACCCAGGTTGCTGAA -ACGGAAAGAACCCAGGTTAGTACG -ACGGAAAGAACCCAGGTTATCCGA -ACGGAAAGAACCCAGGTTATGGGA -ACGGAAAGAACCCAGGTTGTGCAA -ACGGAAAGAACCCAGGTTGAGGAA -ACGGAAAGAACCCAGGTTCAGGTA -ACGGAAAGAACCCAGGTTGACTCT -ACGGAAAGAACCCAGGTTAGTCCT -ACGGAAAGAACCCAGGTTTAAGCC -ACGGAAAGAACCCAGGTTATAGCC -ACGGAAAGAACCCAGGTTTAACCG -ACGGAAAGAACCCAGGTTATGCCA -ACGGAAAGAACCTAGGCAGGAAAC -ACGGAAAGAACCTAGGCAAACACC -ACGGAAAGAACCTAGGCAATCGAG -ACGGAAAGAACCTAGGCACTCCTT -ACGGAAAGAACCTAGGCACCTGTT -ACGGAAAGAACCTAGGCACGGTTT -ACGGAAAGAACCTAGGCAGTGGTT -ACGGAAAGAACCTAGGCAGCCTTT -ACGGAAAGAACCTAGGCAGGTCTT -ACGGAAAGAACCTAGGCAACGCTT -ACGGAAAGAACCTAGGCAAGCGTT -ACGGAAAGAACCTAGGCATTCGTC -ACGGAAAGAACCTAGGCATCTCTC -ACGGAAAGAACCTAGGCATGGATC -ACGGAAAGAACCTAGGCACACTTC -ACGGAAAGAACCTAGGCAGTACTC -ACGGAAAGAACCTAGGCAGATGTC -ACGGAAAGAACCTAGGCAACAGTC -ACGGAAAGAACCTAGGCATTGCTG -ACGGAAAGAACCTAGGCATCCATG -ACGGAAAGAACCTAGGCATGTGTG -ACGGAAAGAACCTAGGCACTAGTG -ACGGAAAGAACCTAGGCACATCTG -ACGGAAAGAACCTAGGCAGAGTTG -ACGGAAAGAACCTAGGCAAGACTG -ACGGAAAGAACCTAGGCATCGGTA -ACGGAAAGAACCTAGGCATGCCTA -ACGGAAAGAACCTAGGCACCACTA -ACGGAAAGAACCTAGGCAGGAGTA -ACGGAAAGAACCTAGGCATCGTCT -ACGGAAAGAACCTAGGCATGCACT -ACGGAAAGAACCTAGGCACTGACT -ACGGAAAGAACCTAGGCACAACCT -ACGGAAAGAACCTAGGCAGCTACT -ACGGAAAGAACCTAGGCAGGATCT -ACGGAAAGAACCTAGGCAAAGGCT -ACGGAAAGAACCTAGGCATCAACC -ACGGAAAGAACCTAGGCATGTTCC -ACGGAAAGAACCTAGGCAATTCCC -ACGGAAAGAACCTAGGCATTCTCG -ACGGAAAGAACCTAGGCATAGACG -ACGGAAAGAACCTAGGCAGTAACG -ACGGAAAGAACCTAGGCAACTTCG -ACGGAAAGAACCTAGGCATACGCA -ACGGAAAGAACCTAGGCACTTGCA -ACGGAAAGAACCTAGGCACGAACA -ACGGAAAGAACCTAGGCACAGTCA -ACGGAAAGAACCTAGGCAGATCCA -ACGGAAAGAACCTAGGCAACGACA -ACGGAAAGAACCTAGGCAAGCTCA -ACGGAAAGAACCTAGGCATCACGT -ACGGAAAGAACCTAGGCACGTAGT -ACGGAAAGAACCTAGGCAGTCAGT -ACGGAAAGAACCTAGGCAGAAGGT -ACGGAAAGAACCTAGGCAAACCGT -ACGGAAAGAACCTAGGCATTGTGC -ACGGAAAGAACCTAGGCACTAAGC -ACGGAAAGAACCTAGGCAACTAGC -ACGGAAAGAACCTAGGCAAGATGC -ACGGAAAGAACCTAGGCATGAAGG -ACGGAAAGAACCTAGGCACAATGG -ACGGAAAGAACCTAGGCAATGAGG -ACGGAAAGAACCTAGGCAAATGGG -ACGGAAAGAACCTAGGCATCCTGA -ACGGAAAGAACCTAGGCATAGCGA -ACGGAAAGAACCTAGGCACACAGA -ACGGAAAGAACCTAGGCAGCAAGA -ACGGAAAGAACCTAGGCAGGTTGA -ACGGAAAGAACCTAGGCATCCGAT -ACGGAAAGAACCTAGGCATGGCAT -ACGGAAAGAACCTAGGCACGAGAT -ACGGAAAGAACCTAGGCATACCAC -ACGGAAAGAACCTAGGCACAGAAC -ACGGAAAGAACCTAGGCAGTCTAC -ACGGAAAGAACCTAGGCAACGTAC -ACGGAAAGAACCTAGGCAAGTGAC -ACGGAAAGAACCTAGGCACTGTAG -ACGGAAAGAACCTAGGCACCTAAG -ACGGAAAGAACCTAGGCAGTTCAG -ACGGAAAGAACCTAGGCAGCATAG -ACGGAAAGAACCTAGGCAGACAAG -ACGGAAAGAACCTAGGCAAAGCAG -ACGGAAAGAACCTAGGCACGTCAA -ACGGAAAGAACCTAGGCAGCTGAA -ACGGAAAGAACCTAGGCAAGTACG -ACGGAAAGAACCTAGGCAATCCGA -ACGGAAAGAACCTAGGCAATGGGA -ACGGAAAGAACCTAGGCAGTGCAA -ACGGAAAGAACCTAGGCAGAGGAA -ACGGAAAGAACCTAGGCACAGGTA -ACGGAAAGAACCTAGGCAGACTCT -ACGGAAAGAACCTAGGCAAGTCCT -ACGGAAAGAACCTAGGCATAAGCC -ACGGAAAGAACCTAGGCAATAGCC -ACGGAAAGAACCTAGGCATAACCG -ACGGAAAGAACCTAGGCAATGCCA -ACGGAAAGAACCAAGGACGGAAAC -ACGGAAAGAACCAAGGACAACACC -ACGGAAAGAACCAAGGACATCGAG -ACGGAAAGAACCAAGGACCTCCTT -ACGGAAAGAACCAAGGACCCTGTT -ACGGAAAGAACCAAGGACCGGTTT -ACGGAAAGAACCAAGGACGTGGTT -ACGGAAAGAACCAAGGACGCCTTT -ACGGAAAGAACCAAGGACGGTCTT -ACGGAAAGAACCAAGGACACGCTT -ACGGAAAGAACCAAGGACAGCGTT -ACGGAAAGAACCAAGGACTTCGTC -ACGGAAAGAACCAAGGACTCTCTC -ACGGAAAGAACCAAGGACTGGATC -ACGGAAAGAACCAAGGACCACTTC -ACGGAAAGAACCAAGGACGTACTC -ACGGAAAGAACCAAGGACGATGTC -ACGGAAAGAACCAAGGACACAGTC -ACGGAAAGAACCAAGGACTTGCTG -ACGGAAAGAACCAAGGACTCCATG -ACGGAAAGAACCAAGGACTGTGTG -ACGGAAAGAACCAAGGACCTAGTG -ACGGAAAGAACCAAGGACCATCTG -ACGGAAAGAACCAAGGACGAGTTG -ACGGAAAGAACCAAGGACAGACTG -ACGGAAAGAACCAAGGACTCGGTA -ACGGAAAGAACCAAGGACTGCCTA -ACGGAAAGAACCAAGGACCCACTA -ACGGAAAGAACCAAGGACGGAGTA -ACGGAAAGAACCAAGGACTCGTCT -ACGGAAAGAACCAAGGACTGCACT -ACGGAAAGAACCAAGGACCTGACT -ACGGAAAGAACCAAGGACCAACCT -ACGGAAAGAACCAAGGACGCTACT -ACGGAAAGAACCAAGGACGGATCT -ACGGAAAGAACCAAGGACAAGGCT -ACGGAAAGAACCAAGGACTCAACC -ACGGAAAGAACCAAGGACTGTTCC -ACGGAAAGAACCAAGGACATTCCC -ACGGAAAGAACCAAGGACTTCTCG -ACGGAAAGAACCAAGGACTAGACG -ACGGAAAGAACCAAGGACGTAACG -ACGGAAAGAACCAAGGACACTTCG -ACGGAAAGAACCAAGGACTACGCA -ACGGAAAGAACCAAGGACCTTGCA -ACGGAAAGAACCAAGGACCGAACA -ACGGAAAGAACCAAGGACCAGTCA -ACGGAAAGAACCAAGGACGATCCA -ACGGAAAGAACCAAGGACACGACA -ACGGAAAGAACCAAGGACAGCTCA -ACGGAAAGAACCAAGGACTCACGT -ACGGAAAGAACCAAGGACCGTAGT -ACGGAAAGAACCAAGGACGTCAGT -ACGGAAAGAACCAAGGACGAAGGT -ACGGAAAGAACCAAGGACAACCGT -ACGGAAAGAACCAAGGACTTGTGC -ACGGAAAGAACCAAGGACCTAAGC -ACGGAAAGAACCAAGGACACTAGC -ACGGAAAGAACCAAGGACAGATGC -ACGGAAAGAACCAAGGACTGAAGG -ACGGAAAGAACCAAGGACCAATGG -ACGGAAAGAACCAAGGACATGAGG -ACGGAAAGAACCAAGGACAATGGG -ACGGAAAGAACCAAGGACTCCTGA -ACGGAAAGAACCAAGGACTAGCGA -ACGGAAAGAACCAAGGACCACAGA -ACGGAAAGAACCAAGGACGCAAGA -ACGGAAAGAACCAAGGACGGTTGA -ACGGAAAGAACCAAGGACTCCGAT -ACGGAAAGAACCAAGGACTGGCAT -ACGGAAAGAACCAAGGACCGAGAT -ACGGAAAGAACCAAGGACTACCAC -ACGGAAAGAACCAAGGACCAGAAC -ACGGAAAGAACCAAGGACGTCTAC -ACGGAAAGAACCAAGGACACGTAC -ACGGAAAGAACCAAGGACAGTGAC -ACGGAAAGAACCAAGGACCTGTAG -ACGGAAAGAACCAAGGACCCTAAG -ACGGAAAGAACCAAGGACGTTCAG -ACGGAAAGAACCAAGGACGCATAG -ACGGAAAGAACCAAGGACGACAAG -ACGGAAAGAACCAAGGACAAGCAG -ACGGAAAGAACCAAGGACCGTCAA -ACGGAAAGAACCAAGGACGCTGAA -ACGGAAAGAACCAAGGACAGTACG -ACGGAAAGAACCAAGGACATCCGA -ACGGAAAGAACCAAGGACATGGGA -ACGGAAAGAACCAAGGACGTGCAA -ACGGAAAGAACCAAGGACGAGGAA -ACGGAAAGAACCAAGGACCAGGTA -ACGGAAAGAACCAAGGACGACTCT -ACGGAAAGAACCAAGGACAGTCCT -ACGGAAAGAACCAAGGACTAAGCC -ACGGAAAGAACCAAGGACATAGCC -ACGGAAAGAACCAAGGACTAACCG -ACGGAAAGAACCAAGGACATGCCA -ACGGAAAGAACCCAGAAGGGAAAC -ACGGAAAGAACCCAGAAGAACACC -ACGGAAAGAACCCAGAAGATCGAG -ACGGAAAGAACCCAGAAGCTCCTT -ACGGAAAGAACCCAGAAGCCTGTT -ACGGAAAGAACCCAGAAGCGGTTT -ACGGAAAGAACCCAGAAGGTGGTT -ACGGAAAGAACCCAGAAGGCCTTT -ACGGAAAGAACCCAGAAGGGTCTT -ACGGAAAGAACCCAGAAGACGCTT -ACGGAAAGAACCCAGAAGAGCGTT -ACGGAAAGAACCCAGAAGTTCGTC -ACGGAAAGAACCCAGAAGTCTCTC -ACGGAAAGAACCCAGAAGTGGATC -ACGGAAAGAACCCAGAAGCACTTC -ACGGAAAGAACCCAGAAGGTACTC -ACGGAAAGAACCCAGAAGGATGTC -ACGGAAAGAACCCAGAAGACAGTC -ACGGAAAGAACCCAGAAGTTGCTG -ACGGAAAGAACCCAGAAGTCCATG -ACGGAAAGAACCCAGAAGTGTGTG -ACGGAAAGAACCCAGAAGCTAGTG -ACGGAAAGAACCCAGAAGCATCTG -ACGGAAAGAACCCAGAAGGAGTTG -ACGGAAAGAACCCAGAAGAGACTG -ACGGAAAGAACCCAGAAGTCGGTA -ACGGAAAGAACCCAGAAGTGCCTA -ACGGAAAGAACCCAGAAGCCACTA -ACGGAAAGAACCCAGAAGGGAGTA -ACGGAAAGAACCCAGAAGTCGTCT -ACGGAAAGAACCCAGAAGTGCACT -ACGGAAAGAACCCAGAAGCTGACT -ACGGAAAGAACCCAGAAGCAACCT -ACGGAAAGAACCCAGAAGGCTACT -ACGGAAAGAACCCAGAAGGGATCT -ACGGAAAGAACCCAGAAGAAGGCT -ACGGAAAGAACCCAGAAGTCAACC -ACGGAAAGAACCCAGAAGTGTTCC -ACGGAAAGAACCCAGAAGATTCCC -ACGGAAAGAACCCAGAAGTTCTCG -ACGGAAAGAACCCAGAAGTAGACG -ACGGAAAGAACCCAGAAGGTAACG -ACGGAAAGAACCCAGAAGACTTCG -ACGGAAAGAACCCAGAAGTACGCA -ACGGAAAGAACCCAGAAGCTTGCA -ACGGAAAGAACCCAGAAGCGAACA -ACGGAAAGAACCCAGAAGCAGTCA -ACGGAAAGAACCCAGAAGGATCCA -ACGGAAAGAACCCAGAAGACGACA -ACGGAAAGAACCCAGAAGAGCTCA -ACGGAAAGAACCCAGAAGTCACGT -ACGGAAAGAACCCAGAAGCGTAGT -ACGGAAAGAACCCAGAAGGTCAGT -ACGGAAAGAACCCAGAAGGAAGGT -ACGGAAAGAACCCAGAAGAACCGT -ACGGAAAGAACCCAGAAGTTGTGC -ACGGAAAGAACCCAGAAGCTAAGC -ACGGAAAGAACCCAGAAGACTAGC -ACGGAAAGAACCCAGAAGAGATGC -ACGGAAAGAACCCAGAAGTGAAGG -ACGGAAAGAACCCAGAAGCAATGG -ACGGAAAGAACCCAGAAGATGAGG -ACGGAAAGAACCCAGAAGAATGGG -ACGGAAAGAACCCAGAAGTCCTGA -ACGGAAAGAACCCAGAAGTAGCGA -ACGGAAAGAACCCAGAAGCACAGA -ACGGAAAGAACCCAGAAGGCAAGA -ACGGAAAGAACCCAGAAGGGTTGA -ACGGAAAGAACCCAGAAGTCCGAT -ACGGAAAGAACCCAGAAGTGGCAT -ACGGAAAGAACCCAGAAGCGAGAT -ACGGAAAGAACCCAGAAGTACCAC -ACGGAAAGAACCCAGAAGCAGAAC -ACGGAAAGAACCCAGAAGGTCTAC -ACGGAAAGAACCCAGAAGACGTAC -ACGGAAAGAACCCAGAAGAGTGAC -ACGGAAAGAACCCAGAAGCTGTAG -ACGGAAAGAACCCAGAAGCCTAAG -ACGGAAAGAACCCAGAAGGTTCAG -ACGGAAAGAACCCAGAAGGCATAG -ACGGAAAGAACCCAGAAGGACAAG -ACGGAAAGAACCCAGAAGAAGCAG -ACGGAAAGAACCCAGAAGCGTCAA -ACGGAAAGAACCCAGAAGGCTGAA -ACGGAAAGAACCCAGAAGAGTACG -ACGGAAAGAACCCAGAAGATCCGA -ACGGAAAGAACCCAGAAGATGGGA -ACGGAAAGAACCCAGAAGGTGCAA -ACGGAAAGAACCCAGAAGGAGGAA -ACGGAAAGAACCCAGAAGCAGGTA -ACGGAAAGAACCCAGAAGGACTCT -ACGGAAAGAACCCAGAAGAGTCCT -ACGGAAAGAACCCAGAAGTAAGCC -ACGGAAAGAACCCAGAAGATAGCC -ACGGAAAGAACCCAGAAGTAACCG -ACGGAAAGAACCCAGAAGATGCCA -ACGGAAAGAACCCAACGTGGAAAC -ACGGAAAGAACCCAACGTAACACC -ACGGAAAGAACCCAACGTATCGAG -ACGGAAAGAACCCAACGTCTCCTT -ACGGAAAGAACCCAACGTCCTGTT -ACGGAAAGAACCCAACGTCGGTTT -ACGGAAAGAACCCAACGTGTGGTT -ACGGAAAGAACCCAACGTGCCTTT -ACGGAAAGAACCCAACGTGGTCTT -ACGGAAAGAACCCAACGTACGCTT -ACGGAAAGAACCCAACGTAGCGTT -ACGGAAAGAACCCAACGTTTCGTC -ACGGAAAGAACCCAACGTTCTCTC -ACGGAAAGAACCCAACGTTGGATC -ACGGAAAGAACCCAACGTCACTTC -ACGGAAAGAACCCAACGTGTACTC -ACGGAAAGAACCCAACGTGATGTC -ACGGAAAGAACCCAACGTACAGTC -ACGGAAAGAACCCAACGTTTGCTG -ACGGAAAGAACCCAACGTTCCATG -ACGGAAAGAACCCAACGTTGTGTG -ACGGAAAGAACCCAACGTCTAGTG -ACGGAAAGAACCCAACGTCATCTG -ACGGAAAGAACCCAACGTGAGTTG -ACGGAAAGAACCCAACGTAGACTG -ACGGAAAGAACCCAACGTTCGGTA -ACGGAAAGAACCCAACGTTGCCTA -ACGGAAAGAACCCAACGTCCACTA -ACGGAAAGAACCCAACGTGGAGTA -ACGGAAAGAACCCAACGTTCGTCT -ACGGAAAGAACCCAACGTTGCACT -ACGGAAAGAACCCAACGTCTGACT -ACGGAAAGAACCCAACGTCAACCT -ACGGAAAGAACCCAACGTGCTACT -ACGGAAAGAACCCAACGTGGATCT -ACGGAAAGAACCCAACGTAAGGCT -ACGGAAAGAACCCAACGTTCAACC -ACGGAAAGAACCCAACGTTGTTCC -ACGGAAAGAACCCAACGTATTCCC -ACGGAAAGAACCCAACGTTTCTCG -ACGGAAAGAACCCAACGTTAGACG -ACGGAAAGAACCCAACGTGTAACG -ACGGAAAGAACCCAACGTACTTCG -ACGGAAAGAACCCAACGTTACGCA -ACGGAAAGAACCCAACGTCTTGCA -ACGGAAAGAACCCAACGTCGAACA -ACGGAAAGAACCCAACGTCAGTCA -ACGGAAAGAACCCAACGTGATCCA -ACGGAAAGAACCCAACGTACGACA -ACGGAAAGAACCCAACGTAGCTCA -ACGGAAAGAACCCAACGTTCACGT -ACGGAAAGAACCCAACGTCGTAGT -ACGGAAAGAACCCAACGTGTCAGT -ACGGAAAGAACCCAACGTGAAGGT -ACGGAAAGAACCCAACGTAACCGT -ACGGAAAGAACCCAACGTTTGTGC -ACGGAAAGAACCCAACGTCTAAGC -ACGGAAAGAACCCAACGTACTAGC -ACGGAAAGAACCCAACGTAGATGC -ACGGAAAGAACCCAACGTTGAAGG -ACGGAAAGAACCCAACGTCAATGG -ACGGAAAGAACCCAACGTATGAGG -ACGGAAAGAACCCAACGTAATGGG -ACGGAAAGAACCCAACGTTCCTGA -ACGGAAAGAACCCAACGTTAGCGA -ACGGAAAGAACCCAACGTCACAGA -ACGGAAAGAACCCAACGTGCAAGA -ACGGAAAGAACCCAACGTGGTTGA -ACGGAAAGAACCCAACGTTCCGAT -ACGGAAAGAACCCAACGTTGGCAT -ACGGAAAGAACCCAACGTCGAGAT -ACGGAAAGAACCCAACGTTACCAC -ACGGAAAGAACCCAACGTCAGAAC -ACGGAAAGAACCCAACGTGTCTAC -ACGGAAAGAACCCAACGTACGTAC -ACGGAAAGAACCCAACGTAGTGAC -ACGGAAAGAACCCAACGTCTGTAG -ACGGAAAGAACCCAACGTCCTAAG -ACGGAAAGAACCCAACGTGTTCAG -ACGGAAAGAACCCAACGTGCATAG -ACGGAAAGAACCCAACGTGACAAG -ACGGAAAGAACCCAACGTAAGCAG -ACGGAAAGAACCCAACGTCGTCAA -ACGGAAAGAACCCAACGTGCTGAA -ACGGAAAGAACCCAACGTAGTACG -ACGGAAAGAACCCAACGTATCCGA -ACGGAAAGAACCCAACGTATGGGA -ACGGAAAGAACCCAACGTGTGCAA -ACGGAAAGAACCCAACGTGAGGAA -ACGGAAAGAACCCAACGTCAGGTA -ACGGAAAGAACCCAACGTGACTCT -ACGGAAAGAACCCAACGTAGTCCT -ACGGAAAGAACCCAACGTTAAGCC -ACGGAAAGAACCCAACGTATAGCC -ACGGAAAGAACCCAACGTTAACCG -ACGGAAAGAACCCAACGTATGCCA -ACGGAAAGAACCGAAGCTGGAAAC -ACGGAAAGAACCGAAGCTAACACC -ACGGAAAGAACCGAAGCTATCGAG -ACGGAAAGAACCGAAGCTCTCCTT -ACGGAAAGAACCGAAGCTCCTGTT -ACGGAAAGAACCGAAGCTCGGTTT -ACGGAAAGAACCGAAGCTGTGGTT -ACGGAAAGAACCGAAGCTGCCTTT -ACGGAAAGAACCGAAGCTGGTCTT -ACGGAAAGAACCGAAGCTACGCTT -ACGGAAAGAACCGAAGCTAGCGTT -ACGGAAAGAACCGAAGCTTTCGTC -ACGGAAAGAACCGAAGCTTCTCTC -ACGGAAAGAACCGAAGCTTGGATC -ACGGAAAGAACCGAAGCTCACTTC -ACGGAAAGAACCGAAGCTGTACTC -ACGGAAAGAACCGAAGCTGATGTC -ACGGAAAGAACCGAAGCTACAGTC -ACGGAAAGAACCGAAGCTTTGCTG -ACGGAAAGAACCGAAGCTTCCATG -ACGGAAAGAACCGAAGCTTGTGTG -ACGGAAAGAACCGAAGCTCTAGTG -ACGGAAAGAACCGAAGCTCATCTG -ACGGAAAGAACCGAAGCTGAGTTG -ACGGAAAGAACCGAAGCTAGACTG -ACGGAAAGAACCGAAGCTTCGGTA -ACGGAAAGAACCGAAGCTTGCCTA -ACGGAAAGAACCGAAGCTCCACTA -ACGGAAAGAACCGAAGCTGGAGTA -ACGGAAAGAACCGAAGCTTCGTCT -ACGGAAAGAACCGAAGCTTGCACT -ACGGAAAGAACCGAAGCTCTGACT -ACGGAAAGAACCGAAGCTCAACCT -ACGGAAAGAACCGAAGCTGCTACT -ACGGAAAGAACCGAAGCTGGATCT -ACGGAAAGAACCGAAGCTAAGGCT -ACGGAAAGAACCGAAGCTTCAACC -ACGGAAAGAACCGAAGCTTGTTCC -ACGGAAAGAACCGAAGCTATTCCC -ACGGAAAGAACCGAAGCTTTCTCG -ACGGAAAGAACCGAAGCTTAGACG -ACGGAAAGAACCGAAGCTGTAACG -ACGGAAAGAACCGAAGCTACTTCG -ACGGAAAGAACCGAAGCTTACGCA -ACGGAAAGAACCGAAGCTCTTGCA -ACGGAAAGAACCGAAGCTCGAACA -ACGGAAAGAACCGAAGCTCAGTCA -ACGGAAAGAACCGAAGCTGATCCA -ACGGAAAGAACCGAAGCTACGACA -ACGGAAAGAACCGAAGCTAGCTCA -ACGGAAAGAACCGAAGCTTCACGT -ACGGAAAGAACCGAAGCTCGTAGT -ACGGAAAGAACCGAAGCTGTCAGT -ACGGAAAGAACCGAAGCTGAAGGT -ACGGAAAGAACCGAAGCTAACCGT -ACGGAAAGAACCGAAGCTTTGTGC -ACGGAAAGAACCGAAGCTCTAAGC -ACGGAAAGAACCGAAGCTACTAGC -ACGGAAAGAACCGAAGCTAGATGC -ACGGAAAGAACCGAAGCTTGAAGG -ACGGAAAGAACCGAAGCTCAATGG -ACGGAAAGAACCGAAGCTATGAGG -ACGGAAAGAACCGAAGCTAATGGG -ACGGAAAGAACCGAAGCTTCCTGA -ACGGAAAGAACCGAAGCTTAGCGA -ACGGAAAGAACCGAAGCTCACAGA -ACGGAAAGAACCGAAGCTGCAAGA -ACGGAAAGAACCGAAGCTGGTTGA -ACGGAAAGAACCGAAGCTTCCGAT -ACGGAAAGAACCGAAGCTTGGCAT -ACGGAAAGAACCGAAGCTCGAGAT -ACGGAAAGAACCGAAGCTTACCAC -ACGGAAAGAACCGAAGCTCAGAAC -ACGGAAAGAACCGAAGCTGTCTAC -ACGGAAAGAACCGAAGCTACGTAC -ACGGAAAGAACCGAAGCTAGTGAC -ACGGAAAGAACCGAAGCTCTGTAG -ACGGAAAGAACCGAAGCTCCTAAG -ACGGAAAGAACCGAAGCTGTTCAG -ACGGAAAGAACCGAAGCTGCATAG -ACGGAAAGAACCGAAGCTGACAAG -ACGGAAAGAACCGAAGCTAAGCAG -ACGGAAAGAACCGAAGCTCGTCAA -ACGGAAAGAACCGAAGCTGCTGAA -ACGGAAAGAACCGAAGCTAGTACG -ACGGAAAGAACCGAAGCTATCCGA -ACGGAAAGAACCGAAGCTATGGGA -ACGGAAAGAACCGAAGCTGTGCAA -ACGGAAAGAACCGAAGCTGAGGAA -ACGGAAAGAACCGAAGCTCAGGTA -ACGGAAAGAACCGAAGCTGACTCT -ACGGAAAGAACCGAAGCTAGTCCT -ACGGAAAGAACCGAAGCTTAAGCC -ACGGAAAGAACCGAAGCTATAGCC -ACGGAAAGAACCGAAGCTTAACCG -ACGGAAAGAACCGAAGCTATGCCA -ACGGAAAGAACCACGAGTGGAAAC -ACGGAAAGAACCACGAGTAACACC -ACGGAAAGAACCACGAGTATCGAG -ACGGAAAGAACCACGAGTCTCCTT -ACGGAAAGAACCACGAGTCCTGTT -ACGGAAAGAACCACGAGTCGGTTT -ACGGAAAGAACCACGAGTGTGGTT -ACGGAAAGAACCACGAGTGCCTTT -ACGGAAAGAACCACGAGTGGTCTT -ACGGAAAGAACCACGAGTACGCTT -ACGGAAAGAACCACGAGTAGCGTT -ACGGAAAGAACCACGAGTTTCGTC -ACGGAAAGAACCACGAGTTCTCTC -ACGGAAAGAACCACGAGTTGGATC -ACGGAAAGAACCACGAGTCACTTC -ACGGAAAGAACCACGAGTGTACTC -ACGGAAAGAACCACGAGTGATGTC -ACGGAAAGAACCACGAGTACAGTC -ACGGAAAGAACCACGAGTTTGCTG -ACGGAAAGAACCACGAGTTCCATG -ACGGAAAGAACCACGAGTTGTGTG -ACGGAAAGAACCACGAGTCTAGTG -ACGGAAAGAACCACGAGTCATCTG -ACGGAAAGAACCACGAGTGAGTTG -ACGGAAAGAACCACGAGTAGACTG -ACGGAAAGAACCACGAGTTCGGTA -ACGGAAAGAACCACGAGTTGCCTA -ACGGAAAGAACCACGAGTCCACTA -ACGGAAAGAACCACGAGTGGAGTA -ACGGAAAGAACCACGAGTTCGTCT -ACGGAAAGAACCACGAGTTGCACT -ACGGAAAGAACCACGAGTCTGACT -ACGGAAAGAACCACGAGTCAACCT -ACGGAAAGAACCACGAGTGCTACT -ACGGAAAGAACCACGAGTGGATCT -ACGGAAAGAACCACGAGTAAGGCT -ACGGAAAGAACCACGAGTTCAACC -ACGGAAAGAACCACGAGTTGTTCC -ACGGAAAGAACCACGAGTATTCCC -ACGGAAAGAACCACGAGTTTCTCG -ACGGAAAGAACCACGAGTTAGACG -ACGGAAAGAACCACGAGTGTAACG -ACGGAAAGAACCACGAGTACTTCG -ACGGAAAGAACCACGAGTTACGCA -ACGGAAAGAACCACGAGTCTTGCA -ACGGAAAGAACCACGAGTCGAACA -ACGGAAAGAACCACGAGTCAGTCA -ACGGAAAGAACCACGAGTGATCCA -ACGGAAAGAACCACGAGTACGACA -ACGGAAAGAACCACGAGTAGCTCA -ACGGAAAGAACCACGAGTTCACGT -ACGGAAAGAACCACGAGTCGTAGT -ACGGAAAGAACCACGAGTGTCAGT -ACGGAAAGAACCACGAGTGAAGGT -ACGGAAAGAACCACGAGTAACCGT -ACGGAAAGAACCACGAGTTTGTGC -ACGGAAAGAACCACGAGTCTAAGC -ACGGAAAGAACCACGAGTACTAGC -ACGGAAAGAACCACGAGTAGATGC -ACGGAAAGAACCACGAGTTGAAGG -ACGGAAAGAACCACGAGTCAATGG -ACGGAAAGAACCACGAGTATGAGG -ACGGAAAGAACCACGAGTAATGGG -ACGGAAAGAACCACGAGTTCCTGA -ACGGAAAGAACCACGAGTTAGCGA -ACGGAAAGAACCACGAGTCACAGA -ACGGAAAGAACCACGAGTGCAAGA -ACGGAAAGAACCACGAGTGGTTGA -ACGGAAAGAACCACGAGTTCCGAT -ACGGAAAGAACCACGAGTTGGCAT -ACGGAAAGAACCACGAGTCGAGAT -ACGGAAAGAACCACGAGTTACCAC -ACGGAAAGAACCACGAGTCAGAAC -ACGGAAAGAACCACGAGTGTCTAC -ACGGAAAGAACCACGAGTACGTAC -ACGGAAAGAACCACGAGTAGTGAC -ACGGAAAGAACCACGAGTCTGTAG -ACGGAAAGAACCACGAGTCCTAAG -ACGGAAAGAACCACGAGTGTTCAG -ACGGAAAGAACCACGAGTGCATAG -ACGGAAAGAACCACGAGTGACAAG -ACGGAAAGAACCACGAGTAAGCAG -ACGGAAAGAACCACGAGTCGTCAA -ACGGAAAGAACCACGAGTGCTGAA -ACGGAAAGAACCACGAGTAGTACG -ACGGAAAGAACCACGAGTATCCGA -ACGGAAAGAACCACGAGTATGGGA -ACGGAAAGAACCACGAGTGTGCAA -ACGGAAAGAACCACGAGTGAGGAA -ACGGAAAGAACCACGAGTCAGGTA -ACGGAAAGAACCACGAGTGACTCT -ACGGAAAGAACCACGAGTAGTCCT -ACGGAAAGAACCACGAGTTAAGCC -ACGGAAAGAACCACGAGTATAGCC -ACGGAAAGAACCACGAGTTAACCG -ACGGAAAGAACCACGAGTATGCCA -ACGGAAAGAACCCGAATCGGAAAC -ACGGAAAGAACCCGAATCAACACC -ACGGAAAGAACCCGAATCATCGAG -ACGGAAAGAACCCGAATCCTCCTT -ACGGAAAGAACCCGAATCCCTGTT -ACGGAAAGAACCCGAATCCGGTTT -ACGGAAAGAACCCGAATCGTGGTT -ACGGAAAGAACCCGAATCGCCTTT -ACGGAAAGAACCCGAATCGGTCTT -ACGGAAAGAACCCGAATCACGCTT -ACGGAAAGAACCCGAATCAGCGTT -ACGGAAAGAACCCGAATCTTCGTC -ACGGAAAGAACCCGAATCTCTCTC -ACGGAAAGAACCCGAATCTGGATC -ACGGAAAGAACCCGAATCCACTTC -ACGGAAAGAACCCGAATCGTACTC -ACGGAAAGAACCCGAATCGATGTC -ACGGAAAGAACCCGAATCACAGTC -ACGGAAAGAACCCGAATCTTGCTG -ACGGAAAGAACCCGAATCTCCATG -ACGGAAAGAACCCGAATCTGTGTG -ACGGAAAGAACCCGAATCCTAGTG -ACGGAAAGAACCCGAATCCATCTG -ACGGAAAGAACCCGAATCGAGTTG -ACGGAAAGAACCCGAATCAGACTG -ACGGAAAGAACCCGAATCTCGGTA -ACGGAAAGAACCCGAATCTGCCTA -ACGGAAAGAACCCGAATCCCACTA -ACGGAAAGAACCCGAATCGGAGTA -ACGGAAAGAACCCGAATCTCGTCT -ACGGAAAGAACCCGAATCTGCACT -ACGGAAAGAACCCGAATCCTGACT -ACGGAAAGAACCCGAATCCAACCT -ACGGAAAGAACCCGAATCGCTACT -ACGGAAAGAACCCGAATCGGATCT -ACGGAAAGAACCCGAATCAAGGCT -ACGGAAAGAACCCGAATCTCAACC -ACGGAAAGAACCCGAATCTGTTCC -ACGGAAAGAACCCGAATCATTCCC -ACGGAAAGAACCCGAATCTTCTCG -ACGGAAAGAACCCGAATCTAGACG -ACGGAAAGAACCCGAATCGTAACG -ACGGAAAGAACCCGAATCACTTCG -ACGGAAAGAACCCGAATCTACGCA -ACGGAAAGAACCCGAATCCTTGCA -ACGGAAAGAACCCGAATCCGAACA -ACGGAAAGAACCCGAATCCAGTCA -ACGGAAAGAACCCGAATCGATCCA -ACGGAAAGAACCCGAATCACGACA -ACGGAAAGAACCCGAATCAGCTCA -ACGGAAAGAACCCGAATCTCACGT -ACGGAAAGAACCCGAATCCGTAGT -ACGGAAAGAACCCGAATCGTCAGT -ACGGAAAGAACCCGAATCGAAGGT -ACGGAAAGAACCCGAATCAACCGT -ACGGAAAGAACCCGAATCTTGTGC -ACGGAAAGAACCCGAATCCTAAGC -ACGGAAAGAACCCGAATCACTAGC -ACGGAAAGAACCCGAATCAGATGC -ACGGAAAGAACCCGAATCTGAAGG -ACGGAAAGAACCCGAATCCAATGG -ACGGAAAGAACCCGAATCATGAGG -ACGGAAAGAACCCGAATCAATGGG -ACGGAAAGAACCCGAATCTCCTGA -ACGGAAAGAACCCGAATCTAGCGA -ACGGAAAGAACCCGAATCCACAGA -ACGGAAAGAACCCGAATCGCAAGA -ACGGAAAGAACCCGAATCGGTTGA -ACGGAAAGAACCCGAATCTCCGAT -ACGGAAAGAACCCGAATCTGGCAT -ACGGAAAGAACCCGAATCCGAGAT -ACGGAAAGAACCCGAATCTACCAC -ACGGAAAGAACCCGAATCCAGAAC -ACGGAAAGAACCCGAATCGTCTAC -ACGGAAAGAACCCGAATCACGTAC -ACGGAAAGAACCCGAATCAGTGAC -ACGGAAAGAACCCGAATCCTGTAG -ACGGAAAGAACCCGAATCCCTAAG -ACGGAAAGAACCCGAATCGTTCAG -ACGGAAAGAACCCGAATCGCATAG -ACGGAAAGAACCCGAATCGACAAG -ACGGAAAGAACCCGAATCAAGCAG -ACGGAAAGAACCCGAATCCGTCAA -ACGGAAAGAACCCGAATCGCTGAA -ACGGAAAGAACCCGAATCAGTACG -ACGGAAAGAACCCGAATCATCCGA -ACGGAAAGAACCCGAATCATGGGA -ACGGAAAGAACCCGAATCGTGCAA -ACGGAAAGAACCCGAATCGAGGAA -ACGGAAAGAACCCGAATCCAGGTA -ACGGAAAGAACCCGAATCGACTCT -ACGGAAAGAACCCGAATCAGTCCT -ACGGAAAGAACCCGAATCTAAGCC -ACGGAAAGAACCCGAATCATAGCC -ACGGAAAGAACCCGAATCTAACCG -ACGGAAAGAACCCGAATCATGCCA -ACGGAAAGAACCGGAATGGGAAAC -ACGGAAAGAACCGGAATGAACACC -ACGGAAAGAACCGGAATGATCGAG -ACGGAAAGAACCGGAATGCTCCTT -ACGGAAAGAACCGGAATGCCTGTT -ACGGAAAGAACCGGAATGCGGTTT -ACGGAAAGAACCGGAATGGTGGTT -ACGGAAAGAACCGGAATGGCCTTT -ACGGAAAGAACCGGAATGGGTCTT -ACGGAAAGAACCGGAATGACGCTT -ACGGAAAGAACCGGAATGAGCGTT -ACGGAAAGAACCGGAATGTTCGTC -ACGGAAAGAACCGGAATGTCTCTC -ACGGAAAGAACCGGAATGTGGATC -ACGGAAAGAACCGGAATGCACTTC -ACGGAAAGAACCGGAATGGTACTC -ACGGAAAGAACCGGAATGGATGTC -ACGGAAAGAACCGGAATGACAGTC -ACGGAAAGAACCGGAATGTTGCTG -ACGGAAAGAACCGGAATGTCCATG -ACGGAAAGAACCGGAATGTGTGTG -ACGGAAAGAACCGGAATGCTAGTG -ACGGAAAGAACCGGAATGCATCTG -ACGGAAAGAACCGGAATGGAGTTG -ACGGAAAGAACCGGAATGAGACTG -ACGGAAAGAACCGGAATGTCGGTA -ACGGAAAGAACCGGAATGTGCCTA -ACGGAAAGAACCGGAATGCCACTA -ACGGAAAGAACCGGAATGGGAGTA -ACGGAAAGAACCGGAATGTCGTCT -ACGGAAAGAACCGGAATGTGCACT -ACGGAAAGAACCGGAATGCTGACT -ACGGAAAGAACCGGAATGCAACCT -ACGGAAAGAACCGGAATGGCTACT -ACGGAAAGAACCGGAATGGGATCT -ACGGAAAGAACCGGAATGAAGGCT -ACGGAAAGAACCGGAATGTCAACC -ACGGAAAGAACCGGAATGTGTTCC -ACGGAAAGAACCGGAATGATTCCC -ACGGAAAGAACCGGAATGTTCTCG -ACGGAAAGAACCGGAATGTAGACG -ACGGAAAGAACCGGAATGGTAACG -ACGGAAAGAACCGGAATGACTTCG -ACGGAAAGAACCGGAATGTACGCA -ACGGAAAGAACCGGAATGCTTGCA -ACGGAAAGAACCGGAATGCGAACA -ACGGAAAGAACCGGAATGCAGTCA -ACGGAAAGAACCGGAATGGATCCA -ACGGAAAGAACCGGAATGACGACA -ACGGAAAGAACCGGAATGAGCTCA -ACGGAAAGAACCGGAATGTCACGT -ACGGAAAGAACCGGAATGCGTAGT -ACGGAAAGAACCGGAATGGTCAGT -ACGGAAAGAACCGGAATGGAAGGT -ACGGAAAGAACCGGAATGAACCGT -ACGGAAAGAACCGGAATGTTGTGC -ACGGAAAGAACCGGAATGCTAAGC -ACGGAAAGAACCGGAATGACTAGC -ACGGAAAGAACCGGAATGAGATGC -ACGGAAAGAACCGGAATGTGAAGG -ACGGAAAGAACCGGAATGCAATGG -ACGGAAAGAACCGGAATGATGAGG -ACGGAAAGAACCGGAATGAATGGG -ACGGAAAGAACCGGAATGTCCTGA -ACGGAAAGAACCGGAATGTAGCGA -ACGGAAAGAACCGGAATGCACAGA -ACGGAAAGAACCGGAATGGCAAGA -ACGGAAAGAACCGGAATGGGTTGA -ACGGAAAGAACCGGAATGTCCGAT -ACGGAAAGAACCGGAATGTGGCAT -ACGGAAAGAACCGGAATGCGAGAT -ACGGAAAGAACCGGAATGTACCAC -ACGGAAAGAACCGGAATGCAGAAC -ACGGAAAGAACCGGAATGGTCTAC -ACGGAAAGAACCGGAATGACGTAC -ACGGAAAGAACCGGAATGAGTGAC -ACGGAAAGAACCGGAATGCTGTAG -ACGGAAAGAACCGGAATGCCTAAG -ACGGAAAGAACCGGAATGGTTCAG -ACGGAAAGAACCGGAATGGCATAG -ACGGAAAGAACCGGAATGGACAAG -ACGGAAAGAACCGGAATGAAGCAG -ACGGAAAGAACCGGAATGCGTCAA -ACGGAAAGAACCGGAATGGCTGAA -ACGGAAAGAACCGGAATGAGTACG -ACGGAAAGAACCGGAATGATCCGA -ACGGAAAGAACCGGAATGATGGGA -ACGGAAAGAACCGGAATGGTGCAA -ACGGAAAGAACCGGAATGGAGGAA -ACGGAAAGAACCGGAATGCAGGTA -ACGGAAAGAACCGGAATGGACTCT -ACGGAAAGAACCGGAATGAGTCCT -ACGGAAAGAACCGGAATGTAAGCC -ACGGAAAGAACCGGAATGATAGCC -ACGGAAAGAACCGGAATGTAACCG -ACGGAAAGAACCGGAATGATGCCA -ACGGAAAGAACCCAAGTGGGAAAC -ACGGAAAGAACCCAAGTGAACACC -ACGGAAAGAACCCAAGTGATCGAG -ACGGAAAGAACCCAAGTGCTCCTT -ACGGAAAGAACCCAAGTGCCTGTT -ACGGAAAGAACCCAAGTGCGGTTT -ACGGAAAGAACCCAAGTGGTGGTT -ACGGAAAGAACCCAAGTGGCCTTT -ACGGAAAGAACCCAAGTGGGTCTT -ACGGAAAGAACCCAAGTGACGCTT -ACGGAAAGAACCCAAGTGAGCGTT -ACGGAAAGAACCCAAGTGTTCGTC -ACGGAAAGAACCCAAGTGTCTCTC -ACGGAAAGAACCCAAGTGTGGATC -ACGGAAAGAACCCAAGTGCACTTC -ACGGAAAGAACCCAAGTGGTACTC -ACGGAAAGAACCCAAGTGGATGTC -ACGGAAAGAACCCAAGTGACAGTC -ACGGAAAGAACCCAAGTGTTGCTG -ACGGAAAGAACCCAAGTGTCCATG -ACGGAAAGAACCCAAGTGTGTGTG -ACGGAAAGAACCCAAGTGCTAGTG -ACGGAAAGAACCCAAGTGCATCTG -ACGGAAAGAACCCAAGTGGAGTTG -ACGGAAAGAACCCAAGTGAGACTG -ACGGAAAGAACCCAAGTGTCGGTA -ACGGAAAGAACCCAAGTGTGCCTA -ACGGAAAGAACCCAAGTGCCACTA -ACGGAAAGAACCCAAGTGGGAGTA -ACGGAAAGAACCCAAGTGTCGTCT -ACGGAAAGAACCCAAGTGTGCACT -ACGGAAAGAACCCAAGTGCTGACT -ACGGAAAGAACCCAAGTGCAACCT -ACGGAAAGAACCCAAGTGGCTACT -ACGGAAAGAACCCAAGTGGGATCT -ACGGAAAGAACCCAAGTGAAGGCT -ACGGAAAGAACCCAAGTGTCAACC -ACGGAAAGAACCCAAGTGTGTTCC -ACGGAAAGAACCCAAGTGATTCCC -ACGGAAAGAACCCAAGTGTTCTCG -ACGGAAAGAACCCAAGTGTAGACG -ACGGAAAGAACCCAAGTGGTAACG -ACGGAAAGAACCCAAGTGACTTCG -ACGGAAAGAACCCAAGTGTACGCA -ACGGAAAGAACCCAAGTGCTTGCA -ACGGAAAGAACCCAAGTGCGAACA -ACGGAAAGAACCCAAGTGCAGTCA -ACGGAAAGAACCCAAGTGGATCCA -ACGGAAAGAACCCAAGTGACGACA -ACGGAAAGAACCCAAGTGAGCTCA -ACGGAAAGAACCCAAGTGTCACGT -ACGGAAAGAACCCAAGTGCGTAGT -ACGGAAAGAACCCAAGTGGTCAGT -ACGGAAAGAACCCAAGTGGAAGGT -ACGGAAAGAACCCAAGTGAACCGT -ACGGAAAGAACCCAAGTGTTGTGC -ACGGAAAGAACCCAAGTGCTAAGC -ACGGAAAGAACCCAAGTGACTAGC -ACGGAAAGAACCCAAGTGAGATGC -ACGGAAAGAACCCAAGTGTGAAGG -ACGGAAAGAACCCAAGTGCAATGG -ACGGAAAGAACCCAAGTGATGAGG -ACGGAAAGAACCCAAGTGAATGGG -ACGGAAAGAACCCAAGTGTCCTGA -ACGGAAAGAACCCAAGTGTAGCGA -ACGGAAAGAACCCAAGTGCACAGA -ACGGAAAGAACCCAAGTGGCAAGA -ACGGAAAGAACCCAAGTGGGTTGA -ACGGAAAGAACCCAAGTGTCCGAT -ACGGAAAGAACCCAAGTGTGGCAT -ACGGAAAGAACCCAAGTGCGAGAT -ACGGAAAGAACCCAAGTGTACCAC -ACGGAAAGAACCCAAGTGCAGAAC -ACGGAAAGAACCCAAGTGGTCTAC -ACGGAAAGAACCCAAGTGACGTAC -ACGGAAAGAACCCAAGTGAGTGAC -ACGGAAAGAACCCAAGTGCTGTAG -ACGGAAAGAACCCAAGTGCCTAAG -ACGGAAAGAACCCAAGTGGTTCAG -ACGGAAAGAACCCAAGTGGCATAG -ACGGAAAGAACCCAAGTGGACAAG -ACGGAAAGAACCCAAGTGAAGCAG -ACGGAAAGAACCCAAGTGCGTCAA -ACGGAAAGAACCCAAGTGGCTGAA -ACGGAAAGAACCCAAGTGAGTACG -ACGGAAAGAACCCAAGTGATCCGA -ACGGAAAGAACCCAAGTGATGGGA -ACGGAAAGAACCCAAGTGGTGCAA -ACGGAAAGAACCCAAGTGGAGGAA -ACGGAAAGAACCCAAGTGCAGGTA -ACGGAAAGAACCCAAGTGGACTCT -ACGGAAAGAACCCAAGTGAGTCCT -ACGGAAAGAACCCAAGTGTAAGCC -ACGGAAAGAACCCAAGTGATAGCC -ACGGAAAGAACCCAAGTGTAACCG -ACGGAAAGAACCCAAGTGATGCCA -ACGGAAAGAACCGAAGAGGGAAAC -ACGGAAAGAACCGAAGAGAACACC -ACGGAAAGAACCGAAGAGATCGAG -ACGGAAAGAACCGAAGAGCTCCTT -ACGGAAAGAACCGAAGAGCCTGTT -ACGGAAAGAACCGAAGAGCGGTTT -ACGGAAAGAACCGAAGAGGTGGTT -ACGGAAAGAACCGAAGAGGCCTTT -ACGGAAAGAACCGAAGAGGGTCTT -ACGGAAAGAACCGAAGAGACGCTT -ACGGAAAGAACCGAAGAGAGCGTT -ACGGAAAGAACCGAAGAGTTCGTC -ACGGAAAGAACCGAAGAGTCTCTC -ACGGAAAGAACCGAAGAGTGGATC -ACGGAAAGAACCGAAGAGCACTTC -ACGGAAAGAACCGAAGAGGTACTC -ACGGAAAGAACCGAAGAGGATGTC -ACGGAAAGAACCGAAGAGACAGTC -ACGGAAAGAACCGAAGAGTTGCTG -ACGGAAAGAACCGAAGAGTCCATG -ACGGAAAGAACCGAAGAGTGTGTG -ACGGAAAGAACCGAAGAGCTAGTG -ACGGAAAGAACCGAAGAGCATCTG -ACGGAAAGAACCGAAGAGGAGTTG -ACGGAAAGAACCGAAGAGAGACTG -ACGGAAAGAACCGAAGAGTCGGTA -ACGGAAAGAACCGAAGAGTGCCTA -ACGGAAAGAACCGAAGAGCCACTA -ACGGAAAGAACCGAAGAGGGAGTA -ACGGAAAGAACCGAAGAGTCGTCT -ACGGAAAGAACCGAAGAGTGCACT -ACGGAAAGAACCGAAGAGCTGACT -ACGGAAAGAACCGAAGAGCAACCT -ACGGAAAGAACCGAAGAGGCTACT -ACGGAAAGAACCGAAGAGGGATCT -ACGGAAAGAACCGAAGAGAAGGCT -ACGGAAAGAACCGAAGAGTCAACC -ACGGAAAGAACCGAAGAGTGTTCC -ACGGAAAGAACCGAAGAGATTCCC -ACGGAAAGAACCGAAGAGTTCTCG -ACGGAAAGAACCGAAGAGTAGACG -ACGGAAAGAACCGAAGAGGTAACG -ACGGAAAGAACCGAAGAGACTTCG -ACGGAAAGAACCGAAGAGTACGCA -ACGGAAAGAACCGAAGAGCTTGCA -ACGGAAAGAACCGAAGAGCGAACA -ACGGAAAGAACCGAAGAGCAGTCA -ACGGAAAGAACCGAAGAGGATCCA -ACGGAAAGAACCGAAGAGACGACA -ACGGAAAGAACCGAAGAGAGCTCA -ACGGAAAGAACCGAAGAGTCACGT -ACGGAAAGAACCGAAGAGCGTAGT -ACGGAAAGAACCGAAGAGGTCAGT -ACGGAAAGAACCGAAGAGGAAGGT -ACGGAAAGAACCGAAGAGAACCGT -ACGGAAAGAACCGAAGAGTTGTGC -ACGGAAAGAACCGAAGAGCTAAGC -ACGGAAAGAACCGAAGAGACTAGC -ACGGAAAGAACCGAAGAGAGATGC -ACGGAAAGAACCGAAGAGTGAAGG -ACGGAAAGAACCGAAGAGCAATGG -ACGGAAAGAACCGAAGAGATGAGG -ACGGAAAGAACCGAAGAGAATGGG -ACGGAAAGAACCGAAGAGTCCTGA -ACGGAAAGAACCGAAGAGTAGCGA -ACGGAAAGAACCGAAGAGCACAGA -ACGGAAAGAACCGAAGAGGCAAGA -ACGGAAAGAACCGAAGAGGGTTGA -ACGGAAAGAACCGAAGAGTCCGAT -ACGGAAAGAACCGAAGAGTGGCAT -ACGGAAAGAACCGAAGAGCGAGAT -ACGGAAAGAACCGAAGAGTACCAC -ACGGAAAGAACCGAAGAGCAGAAC -ACGGAAAGAACCGAAGAGGTCTAC -ACGGAAAGAACCGAAGAGACGTAC -ACGGAAAGAACCGAAGAGAGTGAC -ACGGAAAGAACCGAAGAGCTGTAG -ACGGAAAGAACCGAAGAGCCTAAG -ACGGAAAGAACCGAAGAGGTTCAG -ACGGAAAGAACCGAAGAGGCATAG -ACGGAAAGAACCGAAGAGGACAAG -ACGGAAAGAACCGAAGAGAAGCAG -ACGGAAAGAACCGAAGAGCGTCAA -ACGGAAAGAACCGAAGAGGCTGAA -ACGGAAAGAACCGAAGAGAGTACG -ACGGAAAGAACCGAAGAGATCCGA -ACGGAAAGAACCGAAGAGATGGGA -ACGGAAAGAACCGAAGAGGTGCAA -ACGGAAAGAACCGAAGAGGAGGAA -ACGGAAAGAACCGAAGAGCAGGTA -ACGGAAAGAACCGAAGAGGACTCT -ACGGAAAGAACCGAAGAGAGTCCT -ACGGAAAGAACCGAAGAGTAAGCC -ACGGAAAGAACCGAAGAGATAGCC -ACGGAAAGAACCGAAGAGTAACCG -ACGGAAAGAACCGAAGAGATGCCA -ACGGAAAGAACCGTACAGGGAAAC -ACGGAAAGAACCGTACAGAACACC -ACGGAAAGAACCGTACAGATCGAG -ACGGAAAGAACCGTACAGCTCCTT -ACGGAAAGAACCGTACAGCCTGTT -ACGGAAAGAACCGTACAGCGGTTT -ACGGAAAGAACCGTACAGGTGGTT -ACGGAAAGAACCGTACAGGCCTTT -ACGGAAAGAACCGTACAGGGTCTT -ACGGAAAGAACCGTACAGACGCTT -ACGGAAAGAACCGTACAGAGCGTT -ACGGAAAGAACCGTACAGTTCGTC -ACGGAAAGAACCGTACAGTCTCTC -ACGGAAAGAACCGTACAGTGGATC -ACGGAAAGAACCGTACAGCACTTC -ACGGAAAGAACCGTACAGGTACTC -ACGGAAAGAACCGTACAGGATGTC -ACGGAAAGAACCGTACAGACAGTC -ACGGAAAGAACCGTACAGTTGCTG -ACGGAAAGAACCGTACAGTCCATG -ACGGAAAGAACCGTACAGTGTGTG -ACGGAAAGAACCGTACAGCTAGTG -ACGGAAAGAACCGTACAGCATCTG -ACGGAAAGAACCGTACAGGAGTTG -ACGGAAAGAACCGTACAGAGACTG -ACGGAAAGAACCGTACAGTCGGTA -ACGGAAAGAACCGTACAGTGCCTA -ACGGAAAGAACCGTACAGCCACTA -ACGGAAAGAACCGTACAGGGAGTA -ACGGAAAGAACCGTACAGTCGTCT -ACGGAAAGAACCGTACAGTGCACT -ACGGAAAGAACCGTACAGCTGACT -ACGGAAAGAACCGTACAGCAACCT -ACGGAAAGAACCGTACAGGCTACT -ACGGAAAGAACCGTACAGGGATCT -ACGGAAAGAACCGTACAGAAGGCT -ACGGAAAGAACCGTACAGTCAACC -ACGGAAAGAACCGTACAGTGTTCC -ACGGAAAGAACCGTACAGATTCCC -ACGGAAAGAACCGTACAGTTCTCG -ACGGAAAGAACCGTACAGTAGACG -ACGGAAAGAACCGTACAGGTAACG -ACGGAAAGAACCGTACAGACTTCG -ACGGAAAGAACCGTACAGTACGCA -ACGGAAAGAACCGTACAGCTTGCA -ACGGAAAGAACCGTACAGCGAACA -ACGGAAAGAACCGTACAGCAGTCA -ACGGAAAGAACCGTACAGGATCCA -ACGGAAAGAACCGTACAGACGACA -ACGGAAAGAACCGTACAGAGCTCA -ACGGAAAGAACCGTACAGTCACGT -ACGGAAAGAACCGTACAGCGTAGT -ACGGAAAGAACCGTACAGGTCAGT -ACGGAAAGAACCGTACAGGAAGGT -ACGGAAAGAACCGTACAGAACCGT -ACGGAAAGAACCGTACAGTTGTGC -ACGGAAAGAACCGTACAGCTAAGC -ACGGAAAGAACCGTACAGACTAGC -ACGGAAAGAACCGTACAGAGATGC -ACGGAAAGAACCGTACAGTGAAGG -ACGGAAAGAACCGTACAGCAATGG -ACGGAAAGAACCGTACAGATGAGG -ACGGAAAGAACCGTACAGAATGGG -ACGGAAAGAACCGTACAGTCCTGA -ACGGAAAGAACCGTACAGTAGCGA -ACGGAAAGAACCGTACAGCACAGA -ACGGAAAGAACCGTACAGGCAAGA -ACGGAAAGAACCGTACAGGGTTGA -ACGGAAAGAACCGTACAGTCCGAT -ACGGAAAGAACCGTACAGTGGCAT -ACGGAAAGAACCGTACAGCGAGAT -ACGGAAAGAACCGTACAGTACCAC -ACGGAAAGAACCGTACAGCAGAAC -ACGGAAAGAACCGTACAGGTCTAC -ACGGAAAGAACCGTACAGACGTAC -ACGGAAAGAACCGTACAGAGTGAC -ACGGAAAGAACCGTACAGCTGTAG -ACGGAAAGAACCGTACAGCCTAAG -ACGGAAAGAACCGTACAGGTTCAG -ACGGAAAGAACCGTACAGGCATAG -ACGGAAAGAACCGTACAGGACAAG -ACGGAAAGAACCGTACAGAAGCAG -ACGGAAAGAACCGTACAGCGTCAA -ACGGAAAGAACCGTACAGGCTGAA -ACGGAAAGAACCGTACAGAGTACG -ACGGAAAGAACCGTACAGATCCGA -ACGGAAAGAACCGTACAGATGGGA -ACGGAAAGAACCGTACAGGTGCAA -ACGGAAAGAACCGTACAGGAGGAA -ACGGAAAGAACCGTACAGCAGGTA -ACGGAAAGAACCGTACAGGACTCT -ACGGAAAGAACCGTACAGAGTCCT -ACGGAAAGAACCGTACAGTAAGCC -ACGGAAAGAACCGTACAGATAGCC -ACGGAAAGAACCGTACAGTAACCG -ACGGAAAGAACCGTACAGATGCCA -ACGGAAAGAACCTCTGACGGAAAC -ACGGAAAGAACCTCTGACAACACC -ACGGAAAGAACCTCTGACATCGAG -ACGGAAAGAACCTCTGACCTCCTT -ACGGAAAGAACCTCTGACCCTGTT -ACGGAAAGAACCTCTGACCGGTTT -ACGGAAAGAACCTCTGACGTGGTT -ACGGAAAGAACCTCTGACGCCTTT -ACGGAAAGAACCTCTGACGGTCTT -ACGGAAAGAACCTCTGACACGCTT -ACGGAAAGAACCTCTGACAGCGTT -ACGGAAAGAACCTCTGACTTCGTC -ACGGAAAGAACCTCTGACTCTCTC -ACGGAAAGAACCTCTGACTGGATC -ACGGAAAGAACCTCTGACCACTTC -ACGGAAAGAACCTCTGACGTACTC -ACGGAAAGAACCTCTGACGATGTC -ACGGAAAGAACCTCTGACACAGTC -ACGGAAAGAACCTCTGACTTGCTG -ACGGAAAGAACCTCTGACTCCATG -ACGGAAAGAACCTCTGACTGTGTG -ACGGAAAGAACCTCTGACCTAGTG -ACGGAAAGAACCTCTGACCATCTG -ACGGAAAGAACCTCTGACGAGTTG -ACGGAAAGAACCTCTGACAGACTG -ACGGAAAGAACCTCTGACTCGGTA -ACGGAAAGAACCTCTGACTGCCTA -ACGGAAAGAACCTCTGACCCACTA -ACGGAAAGAACCTCTGACGGAGTA -ACGGAAAGAACCTCTGACTCGTCT -ACGGAAAGAACCTCTGACTGCACT -ACGGAAAGAACCTCTGACCTGACT -ACGGAAAGAACCTCTGACCAACCT -ACGGAAAGAACCTCTGACGCTACT -ACGGAAAGAACCTCTGACGGATCT -ACGGAAAGAACCTCTGACAAGGCT -ACGGAAAGAACCTCTGACTCAACC -ACGGAAAGAACCTCTGACTGTTCC -ACGGAAAGAACCTCTGACATTCCC -ACGGAAAGAACCTCTGACTTCTCG -ACGGAAAGAACCTCTGACTAGACG -ACGGAAAGAACCTCTGACGTAACG -ACGGAAAGAACCTCTGACACTTCG -ACGGAAAGAACCTCTGACTACGCA -ACGGAAAGAACCTCTGACCTTGCA -ACGGAAAGAACCTCTGACCGAACA -ACGGAAAGAACCTCTGACCAGTCA -ACGGAAAGAACCTCTGACGATCCA -ACGGAAAGAACCTCTGACACGACA -ACGGAAAGAACCTCTGACAGCTCA -ACGGAAAGAACCTCTGACTCACGT -ACGGAAAGAACCTCTGACCGTAGT -ACGGAAAGAACCTCTGACGTCAGT -ACGGAAAGAACCTCTGACGAAGGT -ACGGAAAGAACCTCTGACAACCGT -ACGGAAAGAACCTCTGACTTGTGC -ACGGAAAGAACCTCTGACCTAAGC -ACGGAAAGAACCTCTGACACTAGC -ACGGAAAGAACCTCTGACAGATGC -ACGGAAAGAACCTCTGACTGAAGG -ACGGAAAGAACCTCTGACCAATGG -ACGGAAAGAACCTCTGACATGAGG -ACGGAAAGAACCTCTGACAATGGG -ACGGAAAGAACCTCTGACTCCTGA -ACGGAAAGAACCTCTGACTAGCGA -ACGGAAAGAACCTCTGACCACAGA -ACGGAAAGAACCTCTGACGCAAGA -ACGGAAAGAACCTCTGACGGTTGA -ACGGAAAGAACCTCTGACTCCGAT -ACGGAAAGAACCTCTGACTGGCAT -ACGGAAAGAACCTCTGACCGAGAT -ACGGAAAGAACCTCTGACTACCAC -ACGGAAAGAACCTCTGACCAGAAC -ACGGAAAGAACCTCTGACGTCTAC -ACGGAAAGAACCTCTGACACGTAC -ACGGAAAGAACCTCTGACAGTGAC -ACGGAAAGAACCTCTGACCTGTAG -ACGGAAAGAACCTCTGACCCTAAG -ACGGAAAGAACCTCTGACGTTCAG -ACGGAAAGAACCTCTGACGCATAG -ACGGAAAGAACCTCTGACGACAAG -ACGGAAAGAACCTCTGACAAGCAG -ACGGAAAGAACCTCTGACCGTCAA -ACGGAAAGAACCTCTGACGCTGAA -ACGGAAAGAACCTCTGACAGTACG -ACGGAAAGAACCTCTGACATCCGA -ACGGAAAGAACCTCTGACATGGGA -ACGGAAAGAACCTCTGACGTGCAA -ACGGAAAGAACCTCTGACGAGGAA -ACGGAAAGAACCTCTGACCAGGTA -ACGGAAAGAACCTCTGACGACTCT -ACGGAAAGAACCTCTGACAGTCCT -ACGGAAAGAACCTCTGACTAAGCC -ACGGAAAGAACCTCTGACATAGCC -ACGGAAAGAACCTCTGACTAACCG -ACGGAAAGAACCTCTGACATGCCA -ACGGAAAGAACCCCTAGTGGAAAC -ACGGAAAGAACCCCTAGTAACACC -ACGGAAAGAACCCCTAGTATCGAG -ACGGAAAGAACCCCTAGTCTCCTT -ACGGAAAGAACCCCTAGTCCTGTT -ACGGAAAGAACCCCTAGTCGGTTT -ACGGAAAGAACCCCTAGTGTGGTT -ACGGAAAGAACCCCTAGTGCCTTT -ACGGAAAGAACCCCTAGTGGTCTT -ACGGAAAGAACCCCTAGTACGCTT -ACGGAAAGAACCCCTAGTAGCGTT -ACGGAAAGAACCCCTAGTTTCGTC -ACGGAAAGAACCCCTAGTTCTCTC -ACGGAAAGAACCCCTAGTTGGATC -ACGGAAAGAACCCCTAGTCACTTC -ACGGAAAGAACCCCTAGTGTACTC -ACGGAAAGAACCCCTAGTGATGTC -ACGGAAAGAACCCCTAGTACAGTC -ACGGAAAGAACCCCTAGTTTGCTG -ACGGAAAGAACCCCTAGTTCCATG -ACGGAAAGAACCCCTAGTTGTGTG -ACGGAAAGAACCCCTAGTCTAGTG -ACGGAAAGAACCCCTAGTCATCTG -ACGGAAAGAACCCCTAGTGAGTTG -ACGGAAAGAACCCCTAGTAGACTG -ACGGAAAGAACCCCTAGTTCGGTA -ACGGAAAGAACCCCTAGTTGCCTA -ACGGAAAGAACCCCTAGTCCACTA -ACGGAAAGAACCCCTAGTGGAGTA -ACGGAAAGAACCCCTAGTTCGTCT -ACGGAAAGAACCCCTAGTTGCACT -ACGGAAAGAACCCCTAGTCTGACT -ACGGAAAGAACCCCTAGTCAACCT -ACGGAAAGAACCCCTAGTGCTACT -ACGGAAAGAACCCCTAGTGGATCT -ACGGAAAGAACCCCTAGTAAGGCT -ACGGAAAGAACCCCTAGTTCAACC -ACGGAAAGAACCCCTAGTTGTTCC -ACGGAAAGAACCCCTAGTATTCCC -ACGGAAAGAACCCCTAGTTTCTCG -ACGGAAAGAACCCCTAGTTAGACG -ACGGAAAGAACCCCTAGTGTAACG -ACGGAAAGAACCCCTAGTACTTCG -ACGGAAAGAACCCCTAGTTACGCA -ACGGAAAGAACCCCTAGTCTTGCA -ACGGAAAGAACCCCTAGTCGAACA -ACGGAAAGAACCCCTAGTCAGTCA -ACGGAAAGAACCCCTAGTGATCCA -ACGGAAAGAACCCCTAGTACGACA -ACGGAAAGAACCCCTAGTAGCTCA -ACGGAAAGAACCCCTAGTTCACGT -ACGGAAAGAACCCCTAGTCGTAGT -ACGGAAAGAACCCCTAGTGTCAGT -ACGGAAAGAACCCCTAGTGAAGGT -ACGGAAAGAACCCCTAGTAACCGT -ACGGAAAGAACCCCTAGTTTGTGC -ACGGAAAGAACCCCTAGTCTAAGC -ACGGAAAGAACCCCTAGTACTAGC -ACGGAAAGAACCCCTAGTAGATGC -ACGGAAAGAACCCCTAGTTGAAGG -ACGGAAAGAACCCCTAGTCAATGG -ACGGAAAGAACCCCTAGTATGAGG -ACGGAAAGAACCCCTAGTAATGGG -ACGGAAAGAACCCCTAGTTCCTGA -ACGGAAAGAACCCCTAGTTAGCGA -ACGGAAAGAACCCCTAGTCACAGA -ACGGAAAGAACCCCTAGTGCAAGA -ACGGAAAGAACCCCTAGTGGTTGA -ACGGAAAGAACCCCTAGTTCCGAT -ACGGAAAGAACCCCTAGTTGGCAT -ACGGAAAGAACCCCTAGTCGAGAT -ACGGAAAGAACCCCTAGTTACCAC -ACGGAAAGAACCCCTAGTCAGAAC -ACGGAAAGAACCCCTAGTGTCTAC -ACGGAAAGAACCCCTAGTACGTAC -ACGGAAAGAACCCCTAGTAGTGAC -ACGGAAAGAACCCCTAGTCTGTAG -ACGGAAAGAACCCCTAGTCCTAAG -ACGGAAAGAACCCCTAGTGTTCAG -ACGGAAAGAACCCCTAGTGCATAG -ACGGAAAGAACCCCTAGTGACAAG -ACGGAAAGAACCCCTAGTAAGCAG -ACGGAAAGAACCCCTAGTCGTCAA -ACGGAAAGAACCCCTAGTGCTGAA -ACGGAAAGAACCCCTAGTAGTACG -ACGGAAAGAACCCCTAGTATCCGA -ACGGAAAGAACCCCTAGTATGGGA -ACGGAAAGAACCCCTAGTGTGCAA -ACGGAAAGAACCCCTAGTGAGGAA -ACGGAAAGAACCCCTAGTCAGGTA -ACGGAAAGAACCCCTAGTGACTCT -ACGGAAAGAACCCCTAGTAGTCCT -ACGGAAAGAACCCCTAGTTAAGCC -ACGGAAAGAACCCCTAGTATAGCC -ACGGAAAGAACCCCTAGTTAACCG -ACGGAAAGAACCCCTAGTATGCCA -ACGGAAAGAACCGCCTAAGGAAAC -ACGGAAAGAACCGCCTAAAACACC -ACGGAAAGAACCGCCTAAATCGAG -ACGGAAAGAACCGCCTAACTCCTT -ACGGAAAGAACCGCCTAACCTGTT -ACGGAAAGAACCGCCTAACGGTTT -ACGGAAAGAACCGCCTAAGTGGTT -ACGGAAAGAACCGCCTAAGCCTTT -ACGGAAAGAACCGCCTAAGGTCTT -ACGGAAAGAACCGCCTAAACGCTT -ACGGAAAGAACCGCCTAAAGCGTT -ACGGAAAGAACCGCCTAATTCGTC -ACGGAAAGAACCGCCTAATCTCTC -ACGGAAAGAACCGCCTAATGGATC -ACGGAAAGAACCGCCTAACACTTC -ACGGAAAGAACCGCCTAAGTACTC -ACGGAAAGAACCGCCTAAGATGTC -ACGGAAAGAACCGCCTAAACAGTC -ACGGAAAGAACCGCCTAATTGCTG -ACGGAAAGAACCGCCTAATCCATG -ACGGAAAGAACCGCCTAATGTGTG -ACGGAAAGAACCGCCTAACTAGTG -ACGGAAAGAACCGCCTAACATCTG -ACGGAAAGAACCGCCTAAGAGTTG -ACGGAAAGAACCGCCTAAAGACTG -ACGGAAAGAACCGCCTAATCGGTA -ACGGAAAGAACCGCCTAATGCCTA -ACGGAAAGAACCGCCTAACCACTA -ACGGAAAGAACCGCCTAAGGAGTA -ACGGAAAGAACCGCCTAATCGTCT -ACGGAAAGAACCGCCTAATGCACT -ACGGAAAGAACCGCCTAACTGACT -ACGGAAAGAACCGCCTAACAACCT -ACGGAAAGAACCGCCTAAGCTACT -ACGGAAAGAACCGCCTAAGGATCT -ACGGAAAGAACCGCCTAAAAGGCT -ACGGAAAGAACCGCCTAATCAACC -ACGGAAAGAACCGCCTAATGTTCC -ACGGAAAGAACCGCCTAAATTCCC -ACGGAAAGAACCGCCTAATTCTCG -ACGGAAAGAACCGCCTAATAGACG -ACGGAAAGAACCGCCTAAGTAACG -ACGGAAAGAACCGCCTAAACTTCG -ACGGAAAGAACCGCCTAATACGCA -ACGGAAAGAACCGCCTAACTTGCA -ACGGAAAGAACCGCCTAACGAACA -ACGGAAAGAACCGCCTAACAGTCA -ACGGAAAGAACCGCCTAAGATCCA -ACGGAAAGAACCGCCTAAACGACA -ACGGAAAGAACCGCCTAAAGCTCA -ACGGAAAGAACCGCCTAATCACGT -ACGGAAAGAACCGCCTAACGTAGT -ACGGAAAGAACCGCCTAAGTCAGT -ACGGAAAGAACCGCCTAAGAAGGT -ACGGAAAGAACCGCCTAAAACCGT -ACGGAAAGAACCGCCTAATTGTGC -ACGGAAAGAACCGCCTAACTAAGC -ACGGAAAGAACCGCCTAAACTAGC -ACGGAAAGAACCGCCTAAAGATGC -ACGGAAAGAACCGCCTAATGAAGG -ACGGAAAGAACCGCCTAACAATGG -ACGGAAAGAACCGCCTAAATGAGG -ACGGAAAGAACCGCCTAAAATGGG -ACGGAAAGAACCGCCTAATCCTGA -ACGGAAAGAACCGCCTAATAGCGA -ACGGAAAGAACCGCCTAACACAGA -ACGGAAAGAACCGCCTAAGCAAGA -ACGGAAAGAACCGCCTAAGGTTGA -ACGGAAAGAACCGCCTAATCCGAT -ACGGAAAGAACCGCCTAATGGCAT -ACGGAAAGAACCGCCTAACGAGAT -ACGGAAAGAACCGCCTAATACCAC -ACGGAAAGAACCGCCTAACAGAAC -ACGGAAAGAACCGCCTAAGTCTAC -ACGGAAAGAACCGCCTAAACGTAC -ACGGAAAGAACCGCCTAAAGTGAC -ACGGAAAGAACCGCCTAACTGTAG -ACGGAAAGAACCGCCTAACCTAAG -ACGGAAAGAACCGCCTAAGTTCAG -ACGGAAAGAACCGCCTAAGCATAG -ACGGAAAGAACCGCCTAAGACAAG -ACGGAAAGAACCGCCTAAAAGCAG -ACGGAAAGAACCGCCTAACGTCAA -ACGGAAAGAACCGCCTAAGCTGAA -ACGGAAAGAACCGCCTAAAGTACG -ACGGAAAGAACCGCCTAAATCCGA -ACGGAAAGAACCGCCTAAATGGGA -ACGGAAAGAACCGCCTAAGTGCAA -ACGGAAAGAACCGCCTAAGAGGAA -ACGGAAAGAACCGCCTAACAGGTA -ACGGAAAGAACCGCCTAAGACTCT -ACGGAAAGAACCGCCTAAAGTCCT -ACGGAAAGAACCGCCTAATAAGCC -ACGGAAAGAACCGCCTAAATAGCC -ACGGAAAGAACCGCCTAATAACCG -ACGGAAAGAACCGCCTAAATGCCA -ACGGAAAGAACCGCCATAGGAAAC -ACGGAAAGAACCGCCATAAACACC -ACGGAAAGAACCGCCATAATCGAG -ACGGAAAGAACCGCCATACTCCTT -ACGGAAAGAACCGCCATACCTGTT -ACGGAAAGAACCGCCATACGGTTT -ACGGAAAGAACCGCCATAGTGGTT -ACGGAAAGAACCGCCATAGCCTTT -ACGGAAAGAACCGCCATAGGTCTT -ACGGAAAGAACCGCCATAACGCTT -ACGGAAAGAACCGCCATAAGCGTT -ACGGAAAGAACCGCCATATTCGTC -ACGGAAAGAACCGCCATATCTCTC -ACGGAAAGAACCGCCATATGGATC -ACGGAAAGAACCGCCATACACTTC -ACGGAAAGAACCGCCATAGTACTC -ACGGAAAGAACCGCCATAGATGTC -ACGGAAAGAACCGCCATAACAGTC -ACGGAAAGAACCGCCATATTGCTG -ACGGAAAGAACCGCCATATCCATG -ACGGAAAGAACCGCCATATGTGTG -ACGGAAAGAACCGCCATACTAGTG -ACGGAAAGAACCGCCATACATCTG -ACGGAAAGAACCGCCATAGAGTTG -ACGGAAAGAACCGCCATAAGACTG -ACGGAAAGAACCGCCATATCGGTA -ACGGAAAGAACCGCCATATGCCTA -ACGGAAAGAACCGCCATACCACTA -ACGGAAAGAACCGCCATAGGAGTA -ACGGAAAGAACCGCCATATCGTCT -ACGGAAAGAACCGCCATATGCACT -ACGGAAAGAACCGCCATACTGACT -ACGGAAAGAACCGCCATACAACCT -ACGGAAAGAACCGCCATAGCTACT -ACGGAAAGAACCGCCATAGGATCT -ACGGAAAGAACCGCCATAAAGGCT -ACGGAAAGAACCGCCATATCAACC -ACGGAAAGAACCGCCATATGTTCC -ACGGAAAGAACCGCCATAATTCCC -ACGGAAAGAACCGCCATATTCTCG -ACGGAAAGAACCGCCATATAGACG -ACGGAAAGAACCGCCATAGTAACG -ACGGAAAGAACCGCCATAACTTCG -ACGGAAAGAACCGCCATATACGCA -ACGGAAAGAACCGCCATACTTGCA -ACGGAAAGAACCGCCATACGAACA -ACGGAAAGAACCGCCATACAGTCA -ACGGAAAGAACCGCCATAGATCCA -ACGGAAAGAACCGCCATAACGACA -ACGGAAAGAACCGCCATAAGCTCA -ACGGAAAGAACCGCCATATCACGT -ACGGAAAGAACCGCCATACGTAGT -ACGGAAAGAACCGCCATAGTCAGT -ACGGAAAGAACCGCCATAGAAGGT -ACGGAAAGAACCGCCATAAACCGT -ACGGAAAGAACCGCCATATTGTGC -ACGGAAAGAACCGCCATACTAAGC -ACGGAAAGAACCGCCATAACTAGC -ACGGAAAGAACCGCCATAAGATGC -ACGGAAAGAACCGCCATATGAAGG -ACGGAAAGAACCGCCATACAATGG -ACGGAAAGAACCGCCATAATGAGG -ACGGAAAGAACCGCCATAAATGGG -ACGGAAAGAACCGCCATATCCTGA -ACGGAAAGAACCGCCATATAGCGA -ACGGAAAGAACCGCCATACACAGA -ACGGAAAGAACCGCCATAGCAAGA -ACGGAAAGAACCGCCATAGGTTGA -ACGGAAAGAACCGCCATATCCGAT -ACGGAAAGAACCGCCATATGGCAT -ACGGAAAGAACCGCCATACGAGAT -ACGGAAAGAACCGCCATATACCAC -ACGGAAAGAACCGCCATACAGAAC -ACGGAAAGAACCGCCATAGTCTAC -ACGGAAAGAACCGCCATAACGTAC -ACGGAAAGAACCGCCATAAGTGAC -ACGGAAAGAACCGCCATACTGTAG -ACGGAAAGAACCGCCATACCTAAG -ACGGAAAGAACCGCCATAGTTCAG -ACGGAAAGAACCGCCATAGCATAG -ACGGAAAGAACCGCCATAGACAAG -ACGGAAAGAACCGCCATAAAGCAG -ACGGAAAGAACCGCCATACGTCAA -ACGGAAAGAACCGCCATAGCTGAA -ACGGAAAGAACCGCCATAAGTACG -ACGGAAAGAACCGCCATAATCCGA -ACGGAAAGAACCGCCATAATGGGA -ACGGAAAGAACCGCCATAGTGCAA -ACGGAAAGAACCGCCATAGAGGAA -ACGGAAAGAACCGCCATACAGGTA -ACGGAAAGAACCGCCATAGACTCT -ACGGAAAGAACCGCCATAAGTCCT -ACGGAAAGAACCGCCATATAAGCC -ACGGAAAGAACCGCCATAATAGCC -ACGGAAAGAACCGCCATATAACCG -ACGGAAAGAACCGCCATAATGCCA -ACGGAAAGAACCCCGTAAGGAAAC -ACGGAAAGAACCCCGTAAAACACC -ACGGAAAGAACCCCGTAAATCGAG -ACGGAAAGAACCCCGTAACTCCTT -ACGGAAAGAACCCCGTAACCTGTT -ACGGAAAGAACCCCGTAACGGTTT -ACGGAAAGAACCCCGTAAGTGGTT -ACGGAAAGAACCCCGTAAGCCTTT -ACGGAAAGAACCCCGTAAGGTCTT -ACGGAAAGAACCCCGTAAACGCTT -ACGGAAAGAACCCCGTAAAGCGTT -ACGGAAAGAACCCCGTAATTCGTC -ACGGAAAGAACCCCGTAATCTCTC -ACGGAAAGAACCCCGTAATGGATC -ACGGAAAGAACCCCGTAACACTTC -ACGGAAAGAACCCCGTAAGTACTC -ACGGAAAGAACCCCGTAAGATGTC -ACGGAAAGAACCCCGTAAACAGTC -ACGGAAAGAACCCCGTAATTGCTG -ACGGAAAGAACCCCGTAATCCATG -ACGGAAAGAACCCCGTAATGTGTG -ACGGAAAGAACCCCGTAACTAGTG -ACGGAAAGAACCCCGTAACATCTG -ACGGAAAGAACCCCGTAAGAGTTG -ACGGAAAGAACCCCGTAAAGACTG -ACGGAAAGAACCCCGTAATCGGTA -ACGGAAAGAACCCCGTAATGCCTA -ACGGAAAGAACCCCGTAACCACTA -ACGGAAAGAACCCCGTAAGGAGTA -ACGGAAAGAACCCCGTAATCGTCT -ACGGAAAGAACCCCGTAATGCACT -ACGGAAAGAACCCCGTAACTGACT -ACGGAAAGAACCCCGTAACAACCT -ACGGAAAGAACCCCGTAAGCTACT -ACGGAAAGAACCCCGTAAGGATCT -ACGGAAAGAACCCCGTAAAAGGCT -ACGGAAAGAACCCCGTAATCAACC -ACGGAAAGAACCCCGTAATGTTCC -ACGGAAAGAACCCCGTAAATTCCC -ACGGAAAGAACCCCGTAATTCTCG -ACGGAAAGAACCCCGTAATAGACG -ACGGAAAGAACCCCGTAAGTAACG -ACGGAAAGAACCCCGTAAACTTCG -ACGGAAAGAACCCCGTAATACGCA -ACGGAAAGAACCCCGTAACTTGCA -ACGGAAAGAACCCCGTAACGAACA -ACGGAAAGAACCCCGTAACAGTCA -ACGGAAAGAACCCCGTAAGATCCA -ACGGAAAGAACCCCGTAAACGACA -ACGGAAAGAACCCCGTAAAGCTCA -ACGGAAAGAACCCCGTAATCACGT -ACGGAAAGAACCCCGTAACGTAGT -ACGGAAAGAACCCCGTAAGTCAGT -ACGGAAAGAACCCCGTAAGAAGGT -ACGGAAAGAACCCCGTAAAACCGT -ACGGAAAGAACCCCGTAATTGTGC -ACGGAAAGAACCCCGTAACTAAGC -ACGGAAAGAACCCCGTAAACTAGC -ACGGAAAGAACCCCGTAAAGATGC -ACGGAAAGAACCCCGTAATGAAGG -ACGGAAAGAACCCCGTAACAATGG -ACGGAAAGAACCCCGTAAATGAGG -ACGGAAAGAACCCCGTAAAATGGG -ACGGAAAGAACCCCGTAATCCTGA -ACGGAAAGAACCCCGTAATAGCGA -ACGGAAAGAACCCCGTAACACAGA -ACGGAAAGAACCCCGTAAGCAAGA -ACGGAAAGAACCCCGTAAGGTTGA -ACGGAAAGAACCCCGTAATCCGAT -ACGGAAAGAACCCCGTAATGGCAT -ACGGAAAGAACCCCGTAACGAGAT -ACGGAAAGAACCCCGTAATACCAC -ACGGAAAGAACCCCGTAACAGAAC -ACGGAAAGAACCCCGTAAGTCTAC -ACGGAAAGAACCCCGTAAACGTAC -ACGGAAAGAACCCCGTAAAGTGAC -ACGGAAAGAACCCCGTAACTGTAG -ACGGAAAGAACCCCGTAACCTAAG -ACGGAAAGAACCCCGTAAGTTCAG -ACGGAAAGAACCCCGTAAGCATAG -ACGGAAAGAACCCCGTAAGACAAG -ACGGAAAGAACCCCGTAAAAGCAG -ACGGAAAGAACCCCGTAACGTCAA -ACGGAAAGAACCCCGTAAGCTGAA -ACGGAAAGAACCCCGTAAAGTACG -ACGGAAAGAACCCCGTAAATCCGA -ACGGAAAGAACCCCGTAAATGGGA -ACGGAAAGAACCCCGTAAGTGCAA -ACGGAAAGAACCCCGTAAGAGGAA -ACGGAAAGAACCCCGTAACAGGTA -ACGGAAAGAACCCCGTAAGACTCT -ACGGAAAGAACCCCGTAAAGTCCT -ACGGAAAGAACCCCGTAATAAGCC -ACGGAAAGAACCCCGTAAATAGCC -ACGGAAAGAACCCCGTAATAACCG -ACGGAAAGAACCCCGTAAATGCCA -ACGGAAAGAACCCCAATGGGAAAC -ACGGAAAGAACCCCAATGAACACC -ACGGAAAGAACCCCAATGATCGAG -ACGGAAAGAACCCCAATGCTCCTT -ACGGAAAGAACCCCAATGCCTGTT -ACGGAAAGAACCCCAATGCGGTTT -ACGGAAAGAACCCCAATGGTGGTT -ACGGAAAGAACCCCAATGGCCTTT -ACGGAAAGAACCCCAATGGGTCTT -ACGGAAAGAACCCCAATGACGCTT -ACGGAAAGAACCCCAATGAGCGTT -ACGGAAAGAACCCCAATGTTCGTC -ACGGAAAGAACCCCAATGTCTCTC -ACGGAAAGAACCCCAATGTGGATC -ACGGAAAGAACCCCAATGCACTTC -ACGGAAAGAACCCCAATGGTACTC -ACGGAAAGAACCCCAATGGATGTC -ACGGAAAGAACCCCAATGACAGTC -ACGGAAAGAACCCCAATGTTGCTG -ACGGAAAGAACCCCAATGTCCATG -ACGGAAAGAACCCCAATGTGTGTG -ACGGAAAGAACCCCAATGCTAGTG -ACGGAAAGAACCCCAATGCATCTG -ACGGAAAGAACCCCAATGGAGTTG -ACGGAAAGAACCCCAATGAGACTG -ACGGAAAGAACCCCAATGTCGGTA -ACGGAAAGAACCCCAATGTGCCTA -ACGGAAAGAACCCCAATGCCACTA -ACGGAAAGAACCCCAATGGGAGTA -ACGGAAAGAACCCCAATGTCGTCT -ACGGAAAGAACCCCAATGTGCACT -ACGGAAAGAACCCCAATGCTGACT -ACGGAAAGAACCCCAATGCAACCT -ACGGAAAGAACCCCAATGGCTACT -ACGGAAAGAACCCCAATGGGATCT -ACGGAAAGAACCCCAATGAAGGCT -ACGGAAAGAACCCCAATGTCAACC -ACGGAAAGAACCCCAATGTGTTCC -ACGGAAAGAACCCCAATGATTCCC -ACGGAAAGAACCCCAATGTTCTCG -ACGGAAAGAACCCCAATGTAGACG -ACGGAAAGAACCCCAATGGTAACG -ACGGAAAGAACCCCAATGACTTCG -ACGGAAAGAACCCCAATGTACGCA -ACGGAAAGAACCCCAATGCTTGCA -ACGGAAAGAACCCCAATGCGAACA -ACGGAAAGAACCCCAATGCAGTCA -ACGGAAAGAACCCCAATGGATCCA -ACGGAAAGAACCCCAATGACGACA -ACGGAAAGAACCCCAATGAGCTCA -ACGGAAAGAACCCCAATGTCACGT -ACGGAAAGAACCCCAATGCGTAGT -ACGGAAAGAACCCCAATGGTCAGT -ACGGAAAGAACCCCAATGGAAGGT -ACGGAAAGAACCCCAATGAACCGT -ACGGAAAGAACCCCAATGTTGTGC -ACGGAAAGAACCCCAATGCTAAGC -ACGGAAAGAACCCCAATGACTAGC -ACGGAAAGAACCCCAATGAGATGC -ACGGAAAGAACCCCAATGTGAAGG -ACGGAAAGAACCCCAATGCAATGG -ACGGAAAGAACCCCAATGATGAGG -ACGGAAAGAACCCCAATGAATGGG -ACGGAAAGAACCCCAATGTCCTGA -ACGGAAAGAACCCCAATGTAGCGA -ACGGAAAGAACCCCAATGCACAGA -ACGGAAAGAACCCCAATGGCAAGA -ACGGAAAGAACCCCAATGGGTTGA -ACGGAAAGAACCCCAATGTCCGAT -ACGGAAAGAACCCCAATGTGGCAT -ACGGAAAGAACCCCAATGCGAGAT -ACGGAAAGAACCCCAATGTACCAC -ACGGAAAGAACCCCAATGCAGAAC -ACGGAAAGAACCCCAATGGTCTAC -ACGGAAAGAACCCCAATGACGTAC -ACGGAAAGAACCCCAATGAGTGAC -ACGGAAAGAACCCCAATGCTGTAG -ACGGAAAGAACCCCAATGCCTAAG -ACGGAAAGAACCCCAATGGTTCAG -ACGGAAAGAACCCCAATGGCATAG -ACGGAAAGAACCCCAATGGACAAG -ACGGAAAGAACCCCAATGAAGCAG -ACGGAAAGAACCCCAATGCGTCAA -ACGGAAAGAACCCCAATGGCTGAA -ACGGAAAGAACCCCAATGAGTACG -ACGGAAAGAACCCCAATGATCCGA -ACGGAAAGAACCCCAATGATGGGA -ACGGAAAGAACCCCAATGGTGCAA -ACGGAAAGAACCCCAATGGAGGAA -ACGGAAAGAACCCCAATGCAGGTA -ACGGAAAGAACCCCAATGGACTCT -ACGGAAAGAACCCCAATGAGTCCT -ACGGAAAGAACCCCAATGTAAGCC -ACGGAAAGAACCCCAATGATAGCC -ACGGAAAGAACCCCAATGTAACCG -ACGGAAAGAACCCCAATGATGCCA -ACGGAATCTACGAACGGAGGAAAC -ACGGAATCTACGAACGGAAACACC -ACGGAATCTACGAACGGAATCGAG -ACGGAATCTACGAACGGACTCCTT -ACGGAATCTACGAACGGACCTGTT -ACGGAATCTACGAACGGACGGTTT -ACGGAATCTACGAACGGAGTGGTT -ACGGAATCTACGAACGGAGCCTTT -ACGGAATCTACGAACGGAGGTCTT -ACGGAATCTACGAACGGAACGCTT -ACGGAATCTACGAACGGAAGCGTT -ACGGAATCTACGAACGGATTCGTC -ACGGAATCTACGAACGGATCTCTC -ACGGAATCTACGAACGGATGGATC -ACGGAATCTACGAACGGACACTTC -ACGGAATCTACGAACGGAGTACTC -ACGGAATCTACGAACGGAGATGTC -ACGGAATCTACGAACGGAACAGTC -ACGGAATCTACGAACGGATTGCTG -ACGGAATCTACGAACGGATCCATG -ACGGAATCTACGAACGGATGTGTG -ACGGAATCTACGAACGGACTAGTG -ACGGAATCTACGAACGGACATCTG -ACGGAATCTACGAACGGAGAGTTG -ACGGAATCTACGAACGGAAGACTG -ACGGAATCTACGAACGGATCGGTA -ACGGAATCTACGAACGGATGCCTA -ACGGAATCTACGAACGGACCACTA -ACGGAATCTACGAACGGAGGAGTA -ACGGAATCTACGAACGGATCGTCT -ACGGAATCTACGAACGGATGCACT -ACGGAATCTACGAACGGACTGACT -ACGGAATCTACGAACGGACAACCT -ACGGAATCTACGAACGGAGCTACT -ACGGAATCTACGAACGGAGGATCT -ACGGAATCTACGAACGGAAAGGCT -ACGGAATCTACGAACGGATCAACC -ACGGAATCTACGAACGGATGTTCC -ACGGAATCTACGAACGGAATTCCC -ACGGAATCTACGAACGGATTCTCG -ACGGAATCTACGAACGGATAGACG -ACGGAATCTACGAACGGAGTAACG -ACGGAATCTACGAACGGAACTTCG -ACGGAATCTACGAACGGATACGCA -ACGGAATCTACGAACGGACTTGCA -ACGGAATCTACGAACGGACGAACA -ACGGAATCTACGAACGGACAGTCA -ACGGAATCTACGAACGGAGATCCA -ACGGAATCTACGAACGGAACGACA -ACGGAATCTACGAACGGAAGCTCA -ACGGAATCTACGAACGGATCACGT -ACGGAATCTACGAACGGACGTAGT -ACGGAATCTACGAACGGAGTCAGT -ACGGAATCTACGAACGGAGAAGGT -ACGGAATCTACGAACGGAAACCGT -ACGGAATCTACGAACGGATTGTGC -ACGGAATCTACGAACGGACTAAGC -ACGGAATCTACGAACGGAACTAGC -ACGGAATCTACGAACGGAAGATGC -ACGGAATCTACGAACGGATGAAGG -ACGGAATCTACGAACGGACAATGG -ACGGAATCTACGAACGGAATGAGG -ACGGAATCTACGAACGGAAATGGG -ACGGAATCTACGAACGGATCCTGA -ACGGAATCTACGAACGGATAGCGA -ACGGAATCTACGAACGGACACAGA -ACGGAATCTACGAACGGAGCAAGA -ACGGAATCTACGAACGGAGGTTGA -ACGGAATCTACGAACGGATCCGAT -ACGGAATCTACGAACGGATGGCAT -ACGGAATCTACGAACGGACGAGAT -ACGGAATCTACGAACGGATACCAC -ACGGAATCTACGAACGGACAGAAC -ACGGAATCTACGAACGGAGTCTAC -ACGGAATCTACGAACGGAACGTAC -ACGGAATCTACGAACGGAAGTGAC -ACGGAATCTACGAACGGACTGTAG -ACGGAATCTACGAACGGACCTAAG -ACGGAATCTACGAACGGAGTTCAG -ACGGAATCTACGAACGGAGCATAG -ACGGAATCTACGAACGGAGACAAG -ACGGAATCTACGAACGGAAAGCAG -ACGGAATCTACGAACGGACGTCAA -ACGGAATCTACGAACGGAGCTGAA -ACGGAATCTACGAACGGAAGTACG -ACGGAATCTACGAACGGAATCCGA -ACGGAATCTACGAACGGAATGGGA -ACGGAATCTACGAACGGAGTGCAA -ACGGAATCTACGAACGGAGAGGAA -ACGGAATCTACGAACGGACAGGTA -ACGGAATCTACGAACGGAGACTCT -ACGGAATCTACGAACGGAAGTCCT -ACGGAATCTACGAACGGATAAGCC -ACGGAATCTACGAACGGAATAGCC -ACGGAATCTACGAACGGATAACCG -ACGGAATCTACGAACGGAATGCCA -ACGGAATCTACGACCAACGGAAAC -ACGGAATCTACGACCAACAACACC -ACGGAATCTACGACCAACATCGAG -ACGGAATCTACGACCAACCTCCTT -ACGGAATCTACGACCAACCCTGTT -ACGGAATCTACGACCAACCGGTTT -ACGGAATCTACGACCAACGTGGTT -ACGGAATCTACGACCAACGCCTTT -ACGGAATCTACGACCAACGGTCTT -ACGGAATCTACGACCAACACGCTT -ACGGAATCTACGACCAACAGCGTT -ACGGAATCTACGACCAACTTCGTC -ACGGAATCTACGACCAACTCTCTC -ACGGAATCTACGACCAACTGGATC -ACGGAATCTACGACCAACCACTTC -ACGGAATCTACGACCAACGTACTC -ACGGAATCTACGACCAACGATGTC -ACGGAATCTACGACCAACACAGTC -ACGGAATCTACGACCAACTTGCTG -ACGGAATCTACGACCAACTCCATG -ACGGAATCTACGACCAACTGTGTG -ACGGAATCTACGACCAACCTAGTG -ACGGAATCTACGACCAACCATCTG -ACGGAATCTACGACCAACGAGTTG -ACGGAATCTACGACCAACAGACTG -ACGGAATCTACGACCAACTCGGTA -ACGGAATCTACGACCAACTGCCTA -ACGGAATCTACGACCAACCCACTA -ACGGAATCTACGACCAACGGAGTA -ACGGAATCTACGACCAACTCGTCT -ACGGAATCTACGACCAACTGCACT -ACGGAATCTACGACCAACCTGACT -ACGGAATCTACGACCAACCAACCT -ACGGAATCTACGACCAACGCTACT -ACGGAATCTACGACCAACGGATCT -ACGGAATCTACGACCAACAAGGCT -ACGGAATCTACGACCAACTCAACC -ACGGAATCTACGACCAACTGTTCC -ACGGAATCTACGACCAACATTCCC -ACGGAATCTACGACCAACTTCTCG -ACGGAATCTACGACCAACTAGACG -ACGGAATCTACGACCAACGTAACG -ACGGAATCTACGACCAACACTTCG -ACGGAATCTACGACCAACTACGCA -ACGGAATCTACGACCAACCTTGCA -ACGGAATCTACGACCAACCGAACA -ACGGAATCTACGACCAACCAGTCA -ACGGAATCTACGACCAACGATCCA -ACGGAATCTACGACCAACACGACA -ACGGAATCTACGACCAACAGCTCA -ACGGAATCTACGACCAACTCACGT -ACGGAATCTACGACCAACCGTAGT -ACGGAATCTACGACCAACGTCAGT -ACGGAATCTACGACCAACGAAGGT -ACGGAATCTACGACCAACAACCGT -ACGGAATCTACGACCAACTTGTGC -ACGGAATCTACGACCAACCTAAGC -ACGGAATCTACGACCAACACTAGC -ACGGAATCTACGACCAACAGATGC -ACGGAATCTACGACCAACTGAAGG -ACGGAATCTACGACCAACCAATGG -ACGGAATCTACGACCAACATGAGG -ACGGAATCTACGACCAACAATGGG -ACGGAATCTACGACCAACTCCTGA -ACGGAATCTACGACCAACTAGCGA -ACGGAATCTACGACCAACCACAGA -ACGGAATCTACGACCAACGCAAGA -ACGGAATCTACGACCAACGGTTGA -ACGGAATCTACGACCAACTCCGAT -ACGGAATCTACGACCAACTGGCAT -ACGGAATCTACGACCAACCGAGAT -ACGGAATCTACGACCAACTACCAC -ACGGAATCTACGACCAACCAGAAC -ACGGAATCTACGACCAACGTCTAC -ACGGAATCTACGACCAACACGTAC -ACGGAATCTACGACCAACAGTGAC -ACGGAATCTACGACCAACCTGTAG -ACGGAATCTACGACCAACCCTAAG -ACGGAATCTACGACCAACGTTCAG -ACGGAATCTACGACCAACGCATAG -ACGGAATCTACGACCAACGACAAG -ACGGAATCTACGACCAACAAGCAG -ACGGAATCTACGACCAACCGTCAA -ACGGAATCTACGACCAACGCTGAA -ACGGAATCTACGACCAACAGTACG -ACGGAATCTACGACCAACATCCGA -ACGGAATCTACGACCAACATGGGA -ACGGAATCTACGACCAACGTGCAA -ACGGAATCTACGACCAACGAGGAA -ACGGAATCTACGACCAACCAGGTA -ACGGAATCTACGACCAACGACTCT -ACGGAATCTACGACCAACAGTCCT -ACGGAATCTACGACCAACTAAGCC -ACGGAATCTACGACCAACATAGCC -ACGGAATCTACGACCAACTAACCG -ACGGAATCTACGACCAACATGCCA -ACGGAATCTACGGAGATCGGAAAC -ACGGAATCTACGGAGATCAACACC -ACGGAATCTACGGAGATCATCGAG -ACGGAATCTACGGAGATCCTCCTT -ACGGAATCTACGGAGATCCCTGTT -ACGGAATCTACGGAGATCCGGTTT -ACGGAATCTACGGAGATCGTGGTT -ACGGAATCTACGGAGATCGCCTTT -ACGGAATCTACGGAGATCGGTCTT -ACGGAATCTACGGAGATCACGCTT -ACGGAATCTACGGAGATCAGCGTT -ACGGAATCTACGGAGATCTTCGTC -ACGGAATCTACGGAGATCTCTCTC -ACGGAATCTACGGAGATCTGGATC -ACGGAATCTACGGAGATCCACTTC -ACGGAATCTACGGAGATCGTACTC -ACGGAATCTACGGAGATCGATGTC -ACGGAATCTACGGAGATCACAGTC -ACGGAATCTACGGAGATCTTGCTG -ACGGAATCTACGGAGATCTCCATG -ACGGAATCTACGGAGATCTGTGTG -ACGGAATCTACGGAGATCCTAGTG -ACGGAATCTACGGAGATCCATCTG -ACGGAATCTACGGAGATCGAGTTG -ACGGAATCTACGGAGATCAGACTG -ACGGAATCTACGGAGATCTCGGTA -ACGGAATCTACGGAGATCTGCCTA -ACGGAATCTACGGAGATCCCACTA -ACGGAATCTACGGAGATCGGAGTA -ACGGAATCTACGGAGATCTCGTCT -ACGGAATCTACGGAGATCTGCACT -ACGGAATCTACGGAGATCCTGACT -ACGGAATCTACGGAGATCCAACCT -ACGGAATCTACGGAGATCGCTACT -ACGGAATCTACGGAGATCGGATCT -ACGGAATCTACGGAGATCAAGGCT -ACGGAATCTACGGAGATCTCAACC -ACGGAATCTACGGAGATCTGTTCC -ACGGAATCTACGGAGATCATTCCC -ACGGAATCTACGGAGATCTTCTCG -ACGGAATCTACGGAGATCTAGACG -ACGGAATCTACGGAGATCGTAACG -ACGGAATCTACGGAGATCACTTCG -ACGGAATCTACGGAGATCTACGCA -ACGGAATCTACGGAGATCCTTGCA -ACGGAATCTACGGAGATCCGAACA -ACGGAATCTACGGAGATCCAGTCA -ACGGAATCTACGGAGATCGATCCA -ACGGAATCTACGGAGATCACGACA -ACGGAATCTACGGAGATCAGCTCA -ACGGAATCTACGGAGATCTCACGT -ACGGAATCTACGGAGATCCGTAGT -ACGGAATCTACGGAGATCGTCAGT -ACGGAATCTACGGAGATCGAAGGT -ACGGAATCTACGGAGATCAACCGT -ACGGAATCTACGGAGATCTTGTGC -ACGGAATCTACGGAGATCCTAAGC -ACGGAATCTACGGAGATCACTAGC -ACGGAATCTACGGAGATCAGATGC -ACGGAATCTACGGAGATCTGAAGG -ACGGAATCTACGGAGATCCAATGG -ACGGAATCTACGGAGATCATGAGG -ACGGAATCTACGGAGATCAATGGG -ACGGAATCTACGGAGATCTCCTGA -ACGGAATCTACGGAGATCTAGCGA -ACGGAATCTACGGAGATCCACAGA -ACGGAATCTACGGAGATCGCAAGA -ACGGAATCTACGGAGATCGGTTGA -ACGGAATCTACGGAGATCTCCGAT -ACGGAATCTACGGAGATCTGGCAT -ACGGAATCTACGGAGATCCGAGAT -ACGGAATCTACGGAGATCTACCAC -ACGGAATCTACGGAGATCCAGAAC -ACGGAATCTACGGAGATCGTCTAC -ACGGAATCTACGGAGATCACGTAC -ACGGAATCTACGGAGATCAGTGAC -ACGGAATCTACGGAGATCCTGTAG -ACGGAATCTACGGAGATCCCTAAG -ACGGAATCTACGGAGATCGTTCAG -ACGGAATCTACGGAGATCGCATAG -ACGGAATCTACGGAGATCGACAAG -ACGGAATCTACGGAGATCAAGCAG -ACGGAATCTACGGAGATCCGTCAA -ACGGAATCTACGGAGATCGCTGAA -ACGGAATCTACGGAGATCAGTACG -ACGGAATCTACGGAGATCATCCGA -ACGGAATCTACGGAGATCATGGGA -ACGGAATCTACGGAGATCGTGCAA -ACGGAATCTACGGAGATCGAGGAA -ACGGAATCTACGGAGATCCAGGTA -ACGGAATCTACGGAGATCGACTCT -ACGGAATCTACGGAGATCAGTCCT -ACGGAATCTACGGAGATCTAAGCC -ACGGAATCTACGGAGATCATAGCC -ACGGAATCTACGGAGATCTAACCG -ACGGAATCTACGGAGATCATGCCA -ACGGAATCTACGCTTCTCGGAAAC -ACGGAATCTACGCTTCTCAACACC -ACGGAATCTACGCTTCTCATCGAG -ACGGAATCTACGCTTCTCCTCCTT -ACGGAATCTACGCTTCTCCCTGTT -ACGGAATCTACGCTTCTCCGGTTT -ACGGAATCTACGCTTCTCGTGGTT -ACGGAATCTACGCTTCTCGCCTTT -ACGGAATCTACGCTTCTCGGTCTT -ACGGAATCTACGCTTCTCACGCTT -ACGGAATCTACGCTTCTCAGCGTT -ACGGAATCTACGCTTCTCTTCGTC -ACGGAATCTACGCTTCTCTCTCTC -ACGGAATCTACGCTTCTCTGGATC -ACGGAATCTACGCTTCTCCACTTC -ACGGAATCTACGCTTCTCGTACTC -ACGGAATCTACGCTTCTCGATGTC -ACGGAATCTACGCTTCTCACAGTC -ACGGAATCTACGCTTCTCTTGCTG -ACGGAATCTACGCTTCTCTCCATG -ACGGAATCTACGCTTCTCTGTGTG -ACGGAATCTACGCTTCTCCTAGTG -ACGGAATCTACGCTTCTCCATCTG -ACGGAATCTACGCTTCTCGAGTTG -ACGGAATCTACGCTTCTCAGACTG -ACGGAATCTACGCTTCTCTCGGTA -ACGGAATCTACGCTTCTCTGCCTA -ACGGAATCTACGCTTCTCCCACTA -ACGGAATCTACGCTTCTCGGAGTA -ACGGAATCTACGCTTCTCTCGTCT -ACGGAATCTACGCTTCTCTGCACT -ACGGAATCTACGCTTCTCCTGACT -ACGGAATCTACGCTTCTCCAACCT -ACGGAATCTACGCTTCTCGCTACT -ACGGAATCTACGCTTCTCGGATCT -ACGGAATCTACGCTTCTCAAGGCT -ACGGAATCTACGCTTCTCTCAACC -ACGGAATCTACGCTTCTCTGTTCC -ACGGAATCTACGCTTCTCATTCCC -ACGGAATCTACGCTTCTCTTCTCG -ACGGAATCTACGCTTCTCTAGACG -ACGGAATCTACGCTTCTCGTAACG -ACGGAATCTACGCTTCTCACTTCG -ACGGAATCTACGCTTCTCTACGCA -ACGGAATCTACGCTTCTCCTTGCA -ACGGAATCTACGCTTCTCCGAACA -ACGGAATCTACGCTTCTCCAGTCA -ACGGAATCTACGCTTCTCGATCCA -ACGGAATCTACGCTTCTCACGACA -ACGGAATCTACGCTTCTCAGCTCA -ACGGAATCTACGCTTCTCTCACGT -ACGGAATCTACGCTTCTCCGTAGT -ACGGAATCTACGCTTCTCGTCAGT -ACGGAATCTACGCTTCTCGAAGGT -ACGGAATCTACGCTTCTCAACCGT -ACGGAATCTACGCTTCTCTTGTGC -ACGGAATCTACGCTTCTCCTAAGC -ACGGAATCTACGCTTCTCACTAGC -ACGGAATCTACGCTTCTCAGATGC -ACGGAATCTACGCTTCTCTGAAGG -ACGGAATCTACGCTTCTCCAATGG -ACGGAATCTACGCTTCTCATGAGG -ACGGAATCTACGCTTCTCAATGGG -ACGGAATCTACGCTTCTCTCCTGA -ACGGAATCTACGCTTCTCTAGCGA -ACGGAATCTACGCTTCTCCACAGA -ACGGAATCTACGCTTCTCGCAAGA -ACGGAATCTACGCTTCTCGGTTGA -ACGGAATCTACGCTTCTCTCCGAT -ACGGAATCTACGCTTCTCTGGCAT -ACGGAATCTACGCTTCTCCGAGAT -ACGGAATCTACGCTTCTCTACCAC -ACGGAATCTACGCTTCTCCAGAAC -ACGGAATCTACGCTTCTCGTCTAC -ACGGAATCTACGCTTCTCACGTAC -ACGGAATCTACGCTTCTCAGTGAC -ACGGAATCTACGCTTCTCCTGTAG -ACGGAATCTACGCTTCTCCCTAAG -ACGGAATCTACGCTTCTCGTTCAG -ACGGAATCTACGCTTCTCGCATAG -ACGGAATCTACGCTTCTCGACAAG -ACGGAATCTACGCTTCTCAAGCAG -ACGGAATCTACGCTTCTCCGTCAA -ACGGAATCTACGCTTCTCGCTGAA -ACGGAATCTACGCTTCTCAGTACG -ACGGAATCTACGCTTCTCATCCGA -ACGGAATCTACGCTTCTCATGGGA -ACGGAATCTACGCTTCTCGTGCAA -ACGGAATCTACGCTTCTCGAGGAA -ACGGAATCTACGCTTCTCCAGGTA -ACGGAATCTACGCTTCTCGACTCT -ACGGAATCTACGCTTCTCAGTCCT -ACGGAATCTACGCTTCTCTAAGCC -ACGGAATCTACGCTTCTCATAGCC -ACGGAATCTACGCTTCTCTAACCG -ACGGAATCTACGCTTCTCATGCCA -ACGGAATCTACGGTTCCTGGAAAC -ACGGAATCTACGGTTCCTAACACC -ACGGAATCTACGGTTCCTATCGAG -ACGGAATCTACGGTTCCTCTCCTT -ACGGAATCTACGGTTCCTCCTGTT -ACGGAATCTACGGTTCCTCGGTTT -ACGGAATCTACGGTTCCTGTGGTT -ACGGAATCTACGGTTCCTGCCTTT -ACGGAATCTACGGTTCCTGGTCTT -ACGGAATCTACGGTTCCTACGCTT -ACGGAATCTACGGTTCCTAGCGTT -ACGGAATCTACGGTTCCTTTCGTC -ACGGAATCTACGGTTCCTTCTCTC -ACGGAATCTACGGTTCCTTGGATC -ACGGAATCTACGGTTCCTCACTTC -ACGGAATCTACGGTTCCTGTACTC -ACGGAATCTACGGTTCCTGATGTC -ACGGAATCTACGGTTCCTACAGTC -ACGGAATCTACGGTTCCTTTGCTG -ACGGAATCTACGGTTCCTTCCATG -ACGGAATCTACGGTTCCTTGTGTG -ACGGAATCTACGGTTCCTCTAGTG -ACGGAATCTACGGTTCCTCATCTG -ACGGAATCTACGGTTCCTGAGTTG -ACGGAATCTACGGTTCCTAGACTG -ACGGAATCTACGGTTCCTTCGGTA -ACGGAATCTACGGTTCCTTGCCTA -ACGGAATCTACGGTTCCTCCACTA -ACGGAATCTACGGTTCCTGGAGTA -ACGGAATCTACGGTTCCTTCGTCT -ACGGAATCTACGGTTCCTTGCACT -ACGGAATCTACGGTTCCTCTGACT -ACGGAATCTACGGTTCCTCAACCT -ACGGAATCTACGGTTCCTGCTACT -ACGGAATCTACGGTTCCTGGATCT -ACGGAATCTACGGTTCCTAAGGCT -ACGGAATCTACGGTTCCTTCAACC -ACGGAATCTACGGTTCCTTGTTCC -ACGGAATCTACGGTTCCTATTCCC -ACGGAATCTACGGTTCCTTTCTCG -ACGGAATCTACGGTTCCTTAGACG -ACGGAATCTACGGTTCCTGTAACG -ACGGAATCTACGGTTCCTACTTCG -ACGGAATCTACGGTTCCTTACGCA -ACGGAATCTACGGTTCCTCTTGCA -ACGGAATCTACGGTTCCTCGAACA -ACGGAATCTACGGTTCCTCAGTCA -ACGGAATCTACGGTTCCTGATCCA -ACGGAATCTACGGTTCCTACGACA -ACGGAATCTACGGTTCCTAGCTCA -ACGGAATCTACGGTTCCTTCACGT -ACGGAATCTACGGTTCCTCGTAGT -ACGGAATCTACGGTTCCTGTCAGT -ACGGAATCTACGGTTCCTGAAGGT -ACGGAATCTACGGTTCCTAACCGT -ACGGAATCTACGGTTCCTTTGTGC -ACGGAATCTACGGTTCCTCTAAGC -ACGGAATCTACGGTTCCTACTAGC -ACGGAATCTACGGTTCCTAGATGC -ACGGAATCTACGGTTCCTTGAAGG -ACGGAATCTACGGTTCCTCAATGG -ACGGAATCTACGGTTCCTATGAGG -ACGGAATCTACGGTTCCTAATGGG -ACGGAATCTACGGTTCCTTCCTGA -ACGGAATCTACGGTTCCTTAGCGA -ACGGAATCTACGGTTCCTCACAGA -ACGGAATCTACGGTTCCTGCAAGA -ACGGAATCTACGGTTCCTGGTTGA -ACGGAATCTACGGTTCCTTCCGAT -ACGGAATCTACGGTTCCTTGGCAT -ACGGAATCTACGGTTCCTCGAGAT -ACGGAATCTACGGTTCCTTACCAC -ACGGAATCTACGGTTCCTCAGAAC -ACGGAATCTACGGTTCCTGTCTAC -ACGGAATCTACGGTTCCTACGTAC -ACGGAATCTACGGTTCCTAGTGAC -ACGGAATCTACGGTTCCTCTGTAG -ACGGAATCTACGGTTCCTCCTAAG -ACGGAATCTACGGTTCCTGTTCAG -ACGGAATCTACGGTTCCTGCATAG -ACGGAATCTACGGTTCCTGACAAG -ACGGAATCTACGGTTCCTAAGCAG -ACGGAATCTACGGTTCCTCGTCAA -ACGGAATCTACGGTTCCTGCTGAA -ACGGAATCTACGGTTCCTAGTACG -ACGGAATCTACGGTTCCTATCCGA -ACGGAATCTACGGTTCCTATGGGA -ACGGAATCTACGGTTCCTGTGCAA -ACGGAATCTACGGTTCCTGAGGAA -ACGGAATCTACGGTTCCTCAGGTA -ACGGAATCTACGGTTCCTGACTCT -ACGGAATCTACGGTTCCTAGTCCT -ACGGAATCTACGGTTCCTTAAGCC -ACGGAATCTACGGTTCCTATAGCC -ACGGAATCTACGGTTCCTTAACCG -ACGGAATCTACGGTTCCTATGCCA -ACGGAATCTACGTTTCGGGGAAAC -ACGGAATCTACGTTTCGGAACACC -ACGGAATCTACGTTTCGGATCGAG -ACGGAATCTACGTTTCGGCTCCTT -ACGGAATCTACGTTTCGGCCTGTT -ACGGAATCTACGTTTCGGCGGTTT -ACGGAATCTACGTTTCGGGTGGTT -ACGGAATCTACGTTTCGGGCCTTT -ACGGAATCTACGTTTCGGGGTCTT -ACGGAATCTACGTTTCGGACGCTT -ACGGAATCTACGTTTCGGAGCGTT -ACGGAATCTACGTTTCGGTTCGTC -ACGGAATCTACGTTTCGGTCTCTC -ACGGAATCTACGTTTCGGTGGATC -ACGGAATCTACGTTTCGGCACTTC -ACGGAATCTACGTTTCGGGTACTC -ACGGAATCTACGTTTCGGGATGTC -ACGGAATCTACGTTTCGGACAGTC -ACGGAATCTACGTTTCGGTTGCTG -ACGGAATCTACGTTTCGGTCCATG -ACGGAATCTACGTTTCGGTGTGTG -ACGGAATCTACGTTTCGGCTAGTG -ACGGAATCTACGTTTCGGCATCTG -ACGGAATCTACGTTTCGGGAGTTG -ACGGAATCTACGTTTCGGAGACTG -ACGGAATCTACGTTTCGGTCGGTA -ACGGAATCTACGTTTCGGTGCCTA -ACGGAATCTACGTTTCGGCCACTA -ACGGAATCTACGTTTCGGGGAGTA -ACGGAATCTACGTTTCGGTCGTCT -ACGGAATCTACGTTTCGGTGCACT -ACGGAATCTACGTTTCGGCTGACT -ACGGAATCTACGTTTCGGCAACCT -ACGGAATCTACGTTTCGGGCTACT -ACGGAATCTACGTTTCGGGGATCT -ACGGAATCTACGTTTCGGAAGGCT -ACGGAATCTACGTTTCGGTCAACC -ACGGAATCTACGTTTCGGTGTTCC -ACGGAATCTACGTTTCGGATTCCC -ACGGAATCTACGTTTCGGTTCTCG -ACGGAATCTACGTTTCGGTAGACG -ACGGAATCTACGTTTCGGGTAACG -ACGGAATCTACGTTTCGGACTTCG -ACGGAATCTACGTTTCGGTACGCA -ACGGAATCTACGTTTCGGCTTGCA -ACGGAATCTACGTTTCGGCGAACA -ACGGAATCTACGTTTCGGCAGTCA -ACGGAATCTACGTTTCGGGATCCA -ACGGAATCTACGTTTCGGACGACA -ACGGAATCTACGTTTCGGAGCTCA -ACGGAATCTACGTTTCGGTCACGT -ACGGAATCTACGTTTCGGCGTAGT -ACGGAATCTACGTTTCGGGTCAGT -ACGGAATCTACGTTTCGGGAAGGT -ACGGAATCTACGTTTCGGAACCGT -ACGGAATCTACGTTTCGGTTGTGC -ACGGAATCTACGTTTCGGCTAAGC -ACGGAATCTACGTTTCGGACTAGC -ACGGAATCTACGTTTCGGAGATGC -ACGGAATCTACGTTTCGGTGAAGG -ACGGAATCTACGTTTCGGCAATGG -ACGGAATCTACGTTTCGGATGAGG -ACGGAATCTACGTTTCGGAATGGG -ACGGAATCTACGTTTCGGTCCTGA -ACGGAATCTACGTTTCGGTAGCGA -ACGGAATCTACGTTTCGGCACAGA -ACGGAATCTACGTTTCGGGCAAGA -ACGGAATCTACGTTTCGGGGTTGA -ACGGAATCTACGTTTCGGTCCGAT -ACGGAATCTACGTTTCGGTGGCAT -ACGGAATCTACGTTTCGGCGAGAT -ACGGAATCTACGTTTCGGTACCAC -ACGGAATCTACGTTTCGGCAGAAC -ACGGAATCTACGTTTCGGGTCTAC -ACGGAATCTACGTTTCGGACGTAC -ACGGAATCTACGTTTCGGAGTGAC -ACGGAATCTACGTTTCGGCTGTAG -ACGGAATCTACGTTTCGGCCTAAG -ACGGAATCTACGTTTCGGGTTCAG -ACGGAATCTACGTTTCGGGCATAG -ACGGAATCTACGTTTCGGGACAAG -ACGGAATCTACGTTTCGGAAGCAG -ACGGAATCTACGTTTCGGCGTCAA -ACGGAATCTACGTTTCGGGCTGAA -ACGGAATCTACGTTTCGGAGTACG -ACGGAATCTACGTTTCGGATCCGA -ACGGAATCTACGTTTCGGATGGGA -ACGGAATCTACGTTTCGGGTGCAA -ACGGAATCTACGTTTCGGGAGGAA -ACGGAATCTACGTTTCGGCAGGTA -ACGGAATCTACGTTTCGGGACTCT -ACGGAATCTACGTTTCGGAGTCCT -ACGGAATCTACGTTTCGGTAAGCC -ACGGAATCTACGTTTCGGATAGCC -ACGGAATCTACGTTTCGGTAACCG -ACGGAATCTACGTTTCGGATGCCA -ACGGAATCTACGGTTGTGGGAAAC -ACGGAATCTACGGTTGTGAACACC -ACGGAATCTACGGTTGTGATCGAG -ACGGAATCTACGGTTGTGCTCCTT -ACGGAATCTACGGTTGTGCCTGTT -ACGGAATCTACGGTTGTGCGGTTT -ACGGAATCTACGGTTGTGGTGGTT -ACGGAATCTACGGTTGTGGCCTTT -ACGGAATCTACGGTTGTGGGTCTT -ACGGAATCTACGGTTGTGACGCTT -ACGGAATCTACGGTTGTGAGCGTT -ACGGAATCTACGGTTGTGTTCGTC -ACGGAATCTACGGTTGTGTCTCTC -ACGGAATCTACGGTTGTGTGGATC -ACGGAATCTACGGTTGTGCACTTC -ACGGAATCTACGGTTGTGGTACTC -ACGGAATCTACGGTTGTGGATGTC -ACGGAATCTACGGTTGTGACAGTC -ACGGAATCTACGGTTGTGTTGCTG -ACGGAATCTACGGTTGTGTCCATG -ACGGAATCTACGGTTGTGTGTGTG -ACGGAATCTACGGTTGTGCTAGTG -ACGGAATCTACGGTTGTGCATCTG -ACGGAATCTACGGTTGTGGAGTTG -ACGGAATCTACGGTTGTGAGACTG -ACGGAATCTACGGTTGTGTCGGTA -ACGGAATCTACGGTTGTGTGCCTA -ACGGAATCTACGGTTGTGCCACTA -ACGGAATCTACGGTTGTGGGAGTA -ACGGAATCTACGGTTGTGTCGTCT -ACGGAATCTACGGTTGTGTGCACT -ACGGAATCTACGGTTGTGCTGACT -ACGGAATCTACGGTTGTGCAACCT -ACGGAATCTACGGTTGTGGCTACT -ACGGAATCTACGGTTGTGGGATCT -ACGGAATCTACGGTTGTGAAGGCT -ACGGAATCTACGGTTGTGTCAACC -ACGGAATCTACGGTTGTGTGTTCC -ACGGAATCTACGGTTGTGATTCCC -ACGGAATCTACGGTTGTGTTCTCG -ACGGAATCTACGGTTGTGTAGACG -ACGGAATCTACGGTTGTGGTAACG -ACGGAATCTACGGTTGTGACTTCG -ACGGAATCTACGGTTGTGTACGCA -ACGGAATCTACGGTTGTGCTTGCA -ACGGAATCTACGGTTGTGCGAACA -ACGGAATCTACGGTTGTGCAGTCA -ACGGAATCTACGGTTGTGGATCCA -ACGGAATCTACGGTTGTGACGACA -ACGGAATCTACGGTTGTGAGCTCA -ACGGAATCTACGGTTGTGTCACGT -ACGGAATCTACGGTTGTGCGTAGT -ACGGAATCTACGGTTGTGGTCAGT -ACGGAATCTACGGTTGTGGAAGGT -ACGGAATCTACGGTTGTGAACCGT -ACGGAATCTACGGTTGTGTTGTGC -ACGGAATCTACGGTTGTGCTAAGC -ACGGAATCTACGGTTGTGACTAGC -ACGGAATCTACGGTTGTGAGATGC -ACGGAATCTACGGTTGTGTGAAGG -ACGGAATCTACGGTTGTGCAATGG -ACGGAATCTACGGTTGTGATGAGG -ACGGAATCTACGGTTGTGAATGGG -ACGGAATCTACGGTTGTGTCCTGA -ACGGAATCTACGGTTGTGTAGCGA -ACGGAATCTACGGTTGTGCACAGA -ACGGAATCTACGGTTGTGGCAAGA -ACGGAATCTACGGTTGTGGGTTGA -ACGGAATCTACGGTTGTGTCCGAT -ACGGAATCTACGGTTGTGTGGCAT -ACGGAATCTACGGTTGTGCGAGAT -ACGGAATCTACGGTTGTGTACCAC -ACGGAATCTACGGTTGTGCAGAAC -ACGGAATCTACGGTTGTGGTCTAC -ACGGAATCTACGGTTGTGACGTAC -ACGGAATCTACGGTTGTGAGTGAC -ACGGAATCTACGGTTGTGCTGTAG -ACGGAATCTACGGTTGTGCCTAAG -ACGGAATCTACGGTTGTGGTTCAG -ACGGAATCTACGGTTGTGGCATAG -ACGGAATCTACGGTTGTGGACAAG -ACGGAATCTACGGTTGTGAAGCAG -ACGGAATCTACGGTTGTGCGTCAA -ACGGAATCTACGGTTGTGGCTGAA -ACGGAATCTACGGTTGTGAGTACG -ACGGAATCTACGGTTGTGATCCGA -ACGGAATCTACGGTTGTGATGGGA -ACGGAATCTACGGTTGTGGTGCAA -ACGGAATCTACGGTTGTGGAGGAA -ACGGAATCTACGGTTGTGCAGGTA -ACGGAATCTACGGTTGTGGACTCT -ACGGAATCTACGGTTGTGAGTCCT -ACGGAATCTACGGTTGTGTAAGCC -ACGGAATCTACGGTTGTGATAGCC -ACGGAATCTACGGTTGTGTAACCG -ACGGAATCTACGGTTGTGATGCCA -ACGGAATCTACGTTTGCCGGAAAC -ACGGAATCTACGTTTGCCAACACC -ACGGAATCTACGTTTGCCATCGAG -ACGGAATCTACGTTTGCCCTCCTT -ACGGAATCTACGTTTGCCCCTGTT -ACGGAATCTACGTTTGCCCGGTTT -ACGGAATCTACGTTTGCCGTGGTT -ACGGAATCTACGTTTGCCGCCTTT -ACGGAATCTACGTTTGCCGGTCTT -ACGGAATCTACGTTTGCCACGCTT -ACGGAATCTACGTTTGCCAGCGTT -ACGGAATCTACGTTTGCCTTCGTC -ACGGAATCTACGTTTGCCTCTCTC -ACGGAATCTACGTTTGCCTGGATC -ACGGAATCTACGTTTGCCCACTTC -ACGGAATCTACGTTTGCCGTACTC -ACGGAATCTACGTTTGCCGATGTC -ACGGAATCTACGTTTGCCACAGTC -ACGGAATCTACGTTTGCCTTGCTG -ACGGAATCTACGTTTGCCTCCATG -ACGGAATCTACGTTTGCCTGTGTG -ACGGAATCTACGTTTGCCCTAGTG -ACGGAATCTACGTTTGCCCATCTG -ACGGAATCTACGTTTGCCGAGTTG -ACGGAATCTACGTTTGCCAGACTG -ACGGAATCTACGTTTGCCTCGGTA -ACGGAATCTACGTTTGCCTGCCTA -ACGGAATCTACGTTTGCCCCACTA -ACGGAATCTACGTTTGCCGGAGTA -ACGGAATCTACGTTTGCCTCGTCT -ACGGAATCTACGTTTGCCTGCACT -ACGGAATCTACGTTTGCCCTGACT -ACGGAATCTACGTTTGCCCAACCT -ACGGAATCTACGTTTGCCGCTACT -ACGGAATCTACGTTTGCCGGATCT -ACGGAATCTACGTTTGCCAAGGCT -ACGGAATCTACGTTTGCCTCAACC -ACGGAATCTACGTTTGCCTGTTCC -ACGGAATCTACGTTTGCCATTCCC -ACGGAATCTACGTTTGCCTTCTCG -ACGGAATCTACGTTTGCCTAGACG -ACGGAATCTACGTTTGCCGTAACG -ACGGAATCTACGTTTGCCACTTCG -ACGGAATCTACGTTTGCCTACGCA -ACGGAATCTACGTTTGCCCTTGCA -ACGGAATCTACGTTTGCCCGAACA -ACGGAATCTACGTTTGCCCAGTCA -ACGGAATCTACGTTTGCCGATCCA -ACGGAATCTACGTTTGCCACGACA -ACGGAATCTACGTTTGCCAGCTCA -ACGGAATCTACGTTTGCCTCACGT -ACGGAATCTACGTTTGCCCGTAGT -ACGGAATCTACGTTTGCCGTCAGT -ACGGAATCTACGTTTGCCGAAGGT -ACGGAATCTACGTTTGCCAACCGT -ACGGAATCTACGTTTGCCTTGTGC -ACGGAATCTACGTTTGCCCTAAGC -ACGGAATCTACGTTTGCCACTAGC -ACGGAATCTACGTTTGCCAGATGC -ACGGAATCTACGTTTGCCTGAAGG -ACGGAATCTACGTTTGCCCAATGG -ACGGAATCTACGTTTGCCATGAGG -ACGGAATCTACGTTTGCCAATGGG -ACGGAATCTACGTTTGCCTCCTGA -ACGGAATCTACGTTTGCCTAGCGA -ACGGAATCTACGTTTGCCCACAGA -ACGGAATCTACGTTTGCCGCAAGA -ACGGAATCTACGTTTGCCGGTTGA -ACGGAATCTACGTTTGCCTCCGAT -ACGGAATCTACGTTTGCCTGGCAT -ACGGAATCTACGTTTGCCCGAGAT -ACGGAATCTACGTTTGCCTACCAC -ACGGAATCTACGTTTGCCCAGAAC -ACGGAATCTACGTTTGCCGTCTAC -ACGGAATCTACGTTTGCCACGTAC -ACGGAATCTACGTTTGCCAGTGAC -ACGGAATCTACGTTTGCCCTGTAG -ACGGAATCTACGTTTGCCCCTAAG -ACGGAATCTACGTTTGCCGTTCAG -ACGGAATCTACGTTTGCCGCATAG -ACGGAATCTACGTTTGCCGACAAG -ACGGAATCTACGTTTGCCAAGCAG -ACGGAATCTACGTTTGCCCGTCAA -ACGGAATCTACGTTTGCCGCTGAA -ACGGAATCTACGTTTGCCAGTACG -ACGGAATCTACGTTTGCCATCCGA -ACGGAATCTACGTTTGCCATGGGA -ACGGAATCTACGTTTGCCGTGCAA -ACGGAATCTACGTTTGCCGAGGAA -ACGGAATCTACGTTTGCCCAGGTA -ACGGAATCTACGTTTGCCGACTCT -ACGGAATCTACGTTTGCCAGTCCT -ACGGAATCTACGTTTGCCTAAGCC -ACGGAATCTACGTTTGCCATAGCC -ACGGAATCTACGTTTGCCTAACCG -ACGGAATCTACGTTTGCCATGCCA -ACGGAATCTACGCTTGGTGGAAAC -ACGGAATCTACGCTTGGTAACACC -ACGGAATCTACGCTTGGTATCGAG -ACGGAATCTACGCTTGGTCTCCTT -ACGGAATCTACGCTTGGTCCTGTT -ACGGAATCTACGCTTGGTCGGTTT -ACGGAATCTACGCTTGGTGTGGTT -ACGGAATCTACGCTTGGTGCCTTT -ACGGAATCTACGCTTGGTGGTCTT -ACGGAATCTACGCTTGGTACGCTT -ACGGAATCTACGCTTGGTAGCGTT -ACGGAATCTACGCTTGGTTTCGTC -ACGGAATCTACGCTTGGTTCTCTC -ACGGAATCTACGCTTGGTTGGATC -ACGGAATCTACGCTTGGTCACTTC -ACGGAATCTACGCTTGGTGTACTC -ACGGAATCTACGCTTGGTGATGTC -ACGGAATCTACGCTTGGTACAGTC -ACGGAATCTACGCTTGGTTTGCTG -ACGGAATCTACGCTTGGTTCCATG -ACGGAATCTACGCTTGGTTGTGTG -ACGGAATCTACGCTTGGTCTAGTG -ACGGAATCTACGCTTGGTCATCTG -ACGGAATCTACGCTTGGTGAGTTG -ACGGAATCTACGCTTGGTAGACTG -ACGGAATCTACGCTTGGTTCGGTA -ACGGAATCTACGCTTGGTTGCCTA -ACGGAATCTACGCTTGGTCCACTA -ACGGAATCTACGCTTGGTGGAGTA -ACGGAATCTACGCTTGGTTCGTCT -ACGGAATCTACGCTTGGTTGCACT -ACGGAATCTACGCTTGGTCTGACT -ACGGAATCTACGCTTGGTCAACCT -ACGGAATCTACGCTTGGTGCTACT -ACGGAATCTACGCTTGGTGGATCT -ACGGAATCTACGCTTGGTAAGGCT -ACGGAATCTACGCTTGGTTCAACC -ACGGAATCTACGCTTGGTTGTTCC -ACGGAATCTACGCTTGGTATTCCC -ACGGAATCTACGCTTGGTTTCTCG -ACGGAATCTACGCTTGGTTAGACG -ACGGAATCTACGCTTGGTGTAACG -ACGGAATCTACGCTTGGTACTTCG -ACGGAATCTACGCTTGGTTACGCA -ACGGAATCTACGCTTGGTCTTGCA -ACGGAATCTACGCTTGGTCGAACA -ACGGAATCTACGCTTGGTCAGTCA -ACGGAATCTACGCTTGGTGATCCA -ACGGAATCTACGCTTGGTACGACA -ACGGAATCTACGCTTGGTAGCTCA -ACGGAATCTACGCTTGGTTCACGT -ACGGAATCTACGCTTGGTCGTAGT -ACGGAATCTACGCTTGGTGTCAGT -ACGGAATCTACGCTTGGTGAAGGT -ACGGAATCTACGCTTGGTAACCGT -ACGGAATCTACGCTTGGTTTGTGC -ACGGAATCTACGCTTGGTCTAAGC -ACGGAATCTACGCTTGGTACTAGC -ACGGAATCTACGCTTGGTAGATGC -ACGGAATCTACGCTTGGTTGAAGG -ACGGAATCTACGCTTGGTCAATGG -ACGGAATCTACGCTTGGTATGAGG -ACGGAATCTACGCTTGGTAATGGG -ACGGAATCTACGCTTGGTTCCTGA -ACGGAATCTACGCTTGGTTAGCGA -ACGGAATCTACGCTTGGTCACAGA -ACGGAATCTACGCTTGGTGCAAGA -ACGGAATCTACGCTTGGTGGTTGA -ACGGAATCTACGCTTGGTTCCGAT -ACGGAATCTACGCTTGGTTGGCAT -ACGGAATCTACGCTTGGTCGAGAT -ACGGAATCTACGCTTGGTTACCAC -ACGGAATCTACGCTTGGTCAGAAC -ACGGAATCTACGCTTGGTGTCTAC -ACGGAATCTACGCTTGGTACGTAC -ACGGAATCTACGCTTGGTAGTGAC -ACGGAATCTACGCTTGGTCTGTAG -ACGGAATCTACGCTTGGTCCTAAG -ACGGAATCTACGCTTGGTGTTCAG -ACGGAATCTACGCTTGGTGCATAG -ACGGAATCTACGCTTGGTGACAAG -ACGGAATCTACGCTTGGTAAGCAG -ACGGAATCTACGCTTGGTCGTCAA -ACGGAATCTACGCTTGGTGCTGAA -ACGGAATCTACGCTTGGTAGTACG -ACGGAATCTACGCTTGGTATCCGA -ACGGAATCTACGCTTGGTATGGGA -ACGGAATCTACGCTTGGTGTGCAA -ACGGAATCTACGCTTGGTGAGGAA -ACGGAATCTACGCTTGGTCAGGTA -ACGGAATCTACGCTTGGTGACTCT -ACGGAATCTACGCTTGGTAGTCCT -ACGGAATCTACGCTTGGTTAAGCC -ACGGAATCTACGCTTGGTATAGCC -ACGGAATCTACGCTTGGTTAACCG -ACGGAATCTACGCTTGGTATGCCA -ACGGAATCTACGCTTACGGGAAAC -ACGGAATCTACGCTTACGAACACC -ACGGAATCTACGCTTACGATCGAG -ACGGAATCTACGCTTACGCTCCTT -ACGGAATCTACGCTTACGCCTGTT -ACGGAATCTACGCTTACGCGGTTT -ACGGAATCTACGCTTACGGTGGTT -ACGGAATCTACGCTTACGGCCTTT -ACGGAATCTACGCTTACGGGTCTT -ACGGAATCTACGCTTACGACGCTT -ACGGAATCTACGCTTACGAGCGTT -ACGGAATCTACGCTTACGTTCGTC -ACGGAATCTACGCTTACGTCTCTC -ACGGAATCTACGCTTACGTGGATC -ACGGAATCTACGCTTACGCACTTC -ACGGAATCTACGCTTACGGTACTC -ACGGAATCTACGCTTACGGATGTC -ACGGAATCTACGCTTACGACAGTC -ACGGAATCTACGCTTACGTTGCTG -ACGGAATCTACGCTTACGTCCATG -ACGGAATCTACGCTTACGTGTGTG -ACGGAATCTACGCTTACGCTAGTG -ACGGAATCTACGCTTACGCATCTG -ACGGAATCTACGCTTACGGAGTTG -ACGGAATCTACGCTTACGAGACTG -ACGGAATCTACGCTTACGTCGGTA -ACGGAATCTACGCTTACGTGCCTA -ACGGAATCTACGCTTACGCCACTA -ACGGAATCTACGCTTACGGGAGTA -ACGGAATCTACGCTTACGTCGTCT -ACGGAATCTACGCTTACGTGCACT -ACGGAATCTACGCTTACGCTGACT -ACGGAATCTACGCTTACGCAACCT -ACGGAATCTACGCTTACGGCTACT -ACGGAATCTACGCTTACGGGATCT -ACGGAATCTACGCTTACGAAGGCT -ACGGAATCTACGCTTACGTCAACC -ACGGAATCTACGCTTACGTGTTCC -ACGGAATCTACGCTTACGATTCCC -ACGGAATCTACGCTTACGTTCTCG -ACGGAATCTACGCTTACGTAGACG -ACGGAATCTACGCTTACGGTAACG -ACGGAATCTACGCTTACGACTTCG -ACGGAATCTACGCTTACGTACGCA -ACGGAATCTACGCTTACGCTTGCA -ACGGAATCTACGCTTACGCGAACA -ACGGAATCTACGCTTACGCAGTCA -ACGGAATCTACGCTTACGGATCCA -ACGGAATCTACGCTTACGACGACA -ACGGAATCTACGCTTACGAGCTCA -ACGGAATCTACGCTTACGTCACGT -ACGGAATCTACGCTTACGCGTAGT -ACGGAATCTACGCTTACGGTCAGT -ACGGAATCTACGCTTACGGAAGGT -ACGGAATCTACGCTTACGAACCGT -ACGGAATCTACGCTTACGTTGTGC -ACGGAATCTACGCTTACGCTAAGC -ACGGAATCTACGCTTACGACTAGC -ACGGAATCTACGCTTACGAGATGC -ACGGAATCTACGCTTACGTGAAGG -ACGGAATCTACGCTTACGCAATGG -ACGGAATCTACGCTTACGATGAGG -ACGGAATCTACGCTTACGAATGGG -ACGGAATCTACGCTTACGTCCTGA -ACGGAATCTACGCTTACGTAGCGA -ACGGAATCTACGCTTACGCACAGA -ACGGAATCTACGCTTACGGCAAGA -ACGGAATCTACGCTTACGGGTTGA -ACGGAATCTACGCTTACGTCCGAT -ACGGAATCTACGCTTACGTGGCAT -ACGGAATCTACGCTTACGCGAGAT -ACGGAATCTACGCTTACGTACCAC -ACGGAATCTACGCTTACGCAGAAC -ACGGAATCTACGCTTACGGTCTAC -ACGGAATCTACGCTTACGACGTAC -ACGGAATCTACGCTTACGAGTGAC -ACGGAATCTACGCTTACGCTGTAG -ACGGAATCTACGCTTACGCCTAAG -ACGGAATCTACGCTTACGGTTCAG -ACGGAATCTACGCTTACGGCATAG -ACGGAATCTACGCTTACGGACAAG -ACGGAATCTACGCTTACGAAGCAG -ACGGAATCTACGCTTACGCGTCAA -ACGGAATCTACGCTTACGGCTGAA -ACGGAATCTACGCTTACGAGTACG -ACGGAATCTACGCTTACGATCCGA -ACGGAATCTACGCTTACGATGGGA -ACGGAATCTACGCTTACGGTGCAA -ACGGAATCTACGCTTACGGAGGAA -ACGGAATCTACGCTTACGCAGGTA -ACGGAATCTACGCTTACGGACTCT -ACGGAATCTACGCTTACGAGTCCT -ACGGAATCTACGCTTACGTAAGCC -ACGGAATCTACGCTTACGATAGCC -ACGGAATCTACGCTTACGTAACCG -ACGGAATCTACGCTTACGATGCCA -ACGGAATCTACGGTTAGCGGAAAC -ACGGAATCTACGGTTAGCAACACC -ACGGAATCTACGGTTAGCATCGAG -ACGGAATCTACGGTTAGCCTCCTT -ACGGAATCTACGGTTAGCCCTGTT -ACGGAATCTACGGTTAGCCGGTTT -ACGGAATCTACGGTTAGCGTGGTT -ACGGAATCTACGGTTAGCGCCTTT -ACGGAATCTACGGTTAGCGGTCTT -ACGGAATCTACGGTTAGCACGCTT -ACGGAATCTACGGTTAGCAGCGTT -ACGGAATCTACGGTTAGCTTCGTC -ACGGAATCTACGGTTAGCTCTCTC -ACGGAATCTACGGTTAGCTGGATC -ACGGAATCTACGGTTAGCCACTTC -ACGGAATCTACGGTTAGCGTACTC -ACGGAATCTACGGTTAGCGATGTC -ACGGAATCTACGGTTAGCACAGTC -ACGGAATCTACGGTTAGCTTGCTG -ACGGAATCTACGGTTAGCTCCATG -ACGGAATCTACGGTTAGCTGTGTG -ACGGAATCTACGGTTAGCCTAGTG -ACGGAATCTACGGTTAGCCATCTG -ACGGAATCTACGGTTAGCGAGTTG -ACGGAATCTACGGTTAGCAGACTG -ACGGAATCTACGGTTAGCTCGGTA -ACGGAATCTACGGTTAGCTGCCTA -ACGGAATCTACGGTTAGCCCACTA -ACGGAATCTACGGTTAGCGGAGTA -ACGGAATCTACGGTTAGCTCGTCT -ACGGAATCTACGGTTAGCTGCACT -ACGGAATCTACGGTTAGCCTGACT -ACGGAATCTACGGTTAGCCAACCT -ACGGAATCTACGGTTAGCGCTACT -ACGGAATCTACGGTTAGCGGATCT -ACGGAATCTACGGTTAGCAAGGCT -ACGGAATCTACGGTTAGCTCAACC -ACGGAATCTACGGTTAGCTGTTCC -ACGGAATCTACGGTTAGCATTCCC -ACGGAATCTACGGTTAGCTTCTCG -ACGGAATCTACGGTTAGCTAGACG -ACGGAATCTACGGTTAGCGTAACG -ACGGAATCTACGGTTAGCACTTCG -ACGGAATCTACGGTTAGCTACGCA -ACGGAATCTACGGTTAGCCTTGCA -ACGGAATCTACGGTTAGCCGAACA -ACGGAATCTACGGTTAGCCAGTCA -ACGGAATCTACGGTTAGCGATCCA -ACGGAATCTACGGTTAGCACGACA -ACGGAATCTACGGTTAGCAGCTCA -ACGGAATCTACGGTTAGCTCACGT -ACGGAATCTACGGTTAGCCGTAGT -ACGGAATCTACGGTTAGCGTCAGT -ACGGAATCTACGGTTAGCGAAGGT -ACGGAATCTACGGTTAGCAACCGT -ACGGAATCTACGGTTAGCTTGTGC -ACGGAATCTACGGTTAGCCTAAGC -ACGGAATCTACGGTTAGCACTAGC -ACGGAATCTACGGTTAGCAGATGC -ACGGAATCTACGGTTAGCTGAAGG -ACGGAATCTACGGTTAGCCAATGG -ACGGAATCTACGGTTAGCATGAGG -ACGGAATCTACGGTTAGCAATGGG -ACGGAATCTACGGTTAGCTCCTGA -ACGGAATCTACGGTTAGCTAGCGA -ACGGAATCTACGGTTAGCCACAGA -ACGGAATCTACGGTTAGCGCAAGA -ACGGAATCTACGGTTAGCGGTTGA -ACGGAATCTACGGTTAGCTCCGAT -ACGGAATCTACGGTTAGCTGGCAT -ACGGAATCTACGGTTAGCCGAGAT -ACGGAATCTACGGTTAGCTACCAC -ACGGAATCTACGGTTAGCCAGAAC -ACGGAATCTACGGTTAGCGTCTAC -ACGGAATCTACGGTTAGCACGTAC -ACGGAATCTACGGTTAGCAGTGAC -ACGGAATCTACGGTTAGCCTGTAG -ACGGAATCTACGGTTAGCCCTAAG -ACGGAATCTACGGTTAGCGTTCAG -ACGGAATCTACGGTTAGCGCATAG -ACGGAATCTACGGTTAGCGACAAG -ACGGAATCTACGGTTAGCAAGCAG -ACGGAATCTACGGTTAGCCGTCAA -ACGGAATCTACGGTTAGCGCTGAA -ACGGAATCTACGGTTAGCAGTACG -ACGGAATCTACGGTTAGCATCCGA -ACGGAATCTACGGTTAGCATGGGA -ACGGAATCTACGGTTAGCGTGCAA -ACGGAATCTACGGTTAGCGAGGAA -ACGGAATCTACGGTTAGCCAGGTA -ACGGAATCTACGGTTAGCGACTCT -ACGGAATCTACGGTTAGCAGTCCT -ACGGAATCTACGGTTAGCTAAGCC -ACGGAATCTACGGTTAGCATAGCC -ACGGAATCTACGGTTAGCTAACCG -ACGGAATCTACGGTTAGCATGCCA -ACGGAATCTACGGTCTTCGGAAAC -ACGGAATCTACGGTCTTCAACACC -ACGGAATCTACGGTCTTCATCGAG -ACGGAATCTACGGTCTTCCTCCTT -ACGGAATCTACGGTCTTCCCTGTT -ACGGAATCTACGGTCTTCCGGTTT -ACGGAATCTACGGTCTTCGTGGTT -ACGGAATCTACGGTCTTCGCCTTT -ACGGAATCTACGGTCTTCGGTCTT -ACGGAATCTACGGTCTTCACGCTT -ACGGAATCTACGGTCTTCAGCGTT -ACGGAATCTACGGTCTTCTTCGTC -ACGGAATCTACGGTCTTCTCTCTC -ACGGAATCTACGGTCTTCTGGATC -ACGGAATCTACGGTCTTCCACTTC -ACGGAATCTACGGTCTTCGTACTC -ACGGAATCTACGGTCTTCGATGTC -ACGGAATCTACGGTCTTCACAGTC -ACGGAATCTACGGTCTTCTTGCTG -ACGGAATCTACGGTCTTCTCCATG -ACGGAATCTACGGTCTTCTGTGTG -ACGGAATCTACGGTCTTCCTAGTG -ACGGAATCTACGGTCTTCCATCTG -ACGGAATCTACGGTCTTCGAGTTG -ACGGAATCTACGGTCTTCAGACTG -ACGGAATCTACGGTCTTCTCGGTA -ACGGAATCTACGGTCTTCTGCCTA -ACGGAATCTACGGTCTTCCCACTA -ACGGAATCTACGGTCTTCGGAGTA -ACGGAATCTACGGTCTTCTCGTCT -ACGGAATCTACGGTCTTCTGCACT -ACGGAATCTACGGTCTTCCTGACT -ACGGAATCTACGGTCTTCCAACCT -ACGGAATCTACGGTCTTCGCTACT -ACGGAATCTACGGTCTTCGGATCT -ACGGAATCTACGGTCTTCAAGGCT -ACGGAATCTACGGTCTTCTCAACC -ACGGAATCTACGGTCTTCTGTTCC -ACGGAATCTACGGTCTTCATTCCC -ACGGAATCTACGGTCTTCTTCTCG -ACGGAATCTACGGTCTTCTAGACG -ACGGAATCTACGGTCTTCGTAACG -ACGGAATCTACGGTCTTCACTTCG -ACGGAATCTACGGTCTTCTACGCA -ACGGAATCTACGGTCTTCCTTGCA -ACGGAATCTACGGTCTTCCGAACA -ACGGAATCTACGGTCTTCCAGTCA -ACGGAATCTACGGTCTTCGATCCA -ACGGAATCTACGGTCTTCACGACA -ACGGAATCTACGGTCTTCAGCTCA -ACGGAATCTACGGTCTTCTCACGT -ACGGAATCTACGGTCTTCCGTAGT -ACGGAATCTACGGTCTTCGTCAGT -ACGGAATCTACGGTCTTCGAAGGT -ACGGAATCTACGGTCTTCAACCGT -ACGGAATCTACGGTCTTCTTGTGC -ACGGAATCTACGGTCTTCCTAAGC -ACGGAATCTACGGTCTTCACTAGC -ACGGAATCTACGGTCTTCAGATGC -ACGGAATCTACGGTCTTCTGAAGG -ACGGAATCTACGGTCTTCCAATGG -ACGGAATCTACGGTCTTCATGAGG -ACGGAATCTACGGTCTTCAATGGG -ACGGAATCTACGGTCTTCTCCTGA -ACGGAATCTACGGTCTTCTAGCGA -ACGGAATCTACGGTCTTCCACAGA -ACGGAATCTACGGTCTTCGCAAGA -ACGGAATCTACGGTCTTCGGTTGA -ACGGAATCTACGGTCTTCTCCGAT -ACGGAATCTACGGTCTTCTGGCAT -ACGGAATCTACGGTCTTCCGAGAT -ACGGAATCTACGGTCTTCTACCAC -ACGGAATCTACGGTCTTCCAGAAC -ACGGAATCTACGGTCTTCGTCTAC -ACGGAATCTACGGTCTTCACGTAC -ACGGAATCTACGGTCTTCAGTGAC -ACGGAATCTACGGTCTTCCTGTAG -ACGGAATCTACGGTCTTCCCTAAG -ACGGAATCTACGGTCTTCGTTCAG -ACGGAATCTACGGTCTTCGCATAG -ACGGAATCTACGGTCTTCGACAAG -ACGGAATCTACGGTCTTCAAGCAG -ACGGAATCTACGGTCTTCCGTCAA -ACGGAATCTACGGTCTTCGCTGAA -ACGGAATCTACGGTCTTCAGTACG -ACGGAATCTACGGTCTTCATCCGA -ACGGAATCTACGGTCTTCATGGGA -ACGGAATCTACGGTCTTCGTGCAA -ACGGAATCTACGGTCTTCGAGGAA -ACGGAATCTACGGTCTTCCAGGTA -ACGGAATCTACGGTCTTCGACTCT -ACGGAATCTACGGTCTTCAGTCCT -ACGGAATCTACGGTCTTCTAAGCC -ACGGAATCTACGGTCTTCATAGCC -ACGGAATCTACGGTCTTCTAACCG -ACGGAATCTACGGTCTTCATGCCA -ACGGAATCTACGCTCTCTGGAAAC -ACGGAATCTACGCTCTCTAACACC -ACGGAATCTACGCTCTCTATCGAG -ACGGAATCTACGCTCTCTCTCCTT -ACGGAATCTACGCTCTCTCCTGTT -ACGGAATCTACGCTCTCTCGGTTT -ACGGAATCTACGCTCTCTGTGGTT -ACGGAATCTACGCTCTCTGCCTTT -ACGGAATCTACGCTCTCTGGTCTT -ACGGAATCTACGCTCTCTACGCTT -ACGGAATCTACGCTCTCTAGCGTT -ACGGAATCTACGCTCTCTTTCGTC -ACGGAATCTACGCTCTCTTCTCTC -ACGGAATCTACGCTCTCTTGGATC -ACGGAATCTACGCTCTCTCACTTC -ACGGAATCTACGCTCTCTGTACTC -ACGGAATCTACGCTCTCTGATGTC -ACGGAATCTACGCTCTCTACAGTC -ACGGAATCTACGCTCTCTTTGCTG -ACGGAATCTACGCTCTCTTCCATG -ACGGAATCTACGCTCTCTTGTGTG -ACGGAATCTACGCTCTCTCTAGTG -ACGGAATCTACGCTCTCTCATCTG -ACGGAATCTACGCTCTCTGAGTTG -ACGGAATCTACGCTCTCTAGACTG -ACGGAATCTACGCTCTCTTCGGTA -ACGGAATCTACGCTCTCTTGCCTA -ACGGAATCTACGCTCTCTCCACTA -ACGGAATCTACGCTCTCTGGAGTA -ACGGAATCTACGCTCTCTTCGTCT -ACGGAATCTACGCTCTCTTGCACT -ACGGAATCTACGCTCTCTCTGACT -ACGGAATCTACGCTCTCTCAACCT -ACGGAATCTACGCTCTCTGCTACT -ACGGAATCTACGCTCTCTGGATCT -ACGGAATCTACGCTCTCTAAGGCT -ACGGAATCTACGCTCTCTTCAACC -ACGGAATCTACGCTCTCTTGTTCC -ACGGAATCTACGCTCTCTATTCCC -ACGGAATCTACGCTCTCTTTCTCG -ACGGAATCTACGCTCTCTTAGACG -ACGGAATCTACGCTCTCTGTAACG -ACGGAATCTACGCTCTCTACTTCG -ACGGAATCTACGCTCTCTTACGCA -ACGGAATCTACGCTCTCTCTTGCA -ACGGAATCTACGCTCTCTCGAACA -ACGGAATCTACGCTCTCTCAGTCA -ACGGAATCTACGCTCTCTGATCCA -ACGGAATCTACGCTCTCTACGACA -ACGGAATCTACGCTCTCTAGCTCA -ACGGAATCTACGCTCTCTTCACGT -ACGGAATCTACGCTCTCTCGTAGT -ACGGAATCTACGCTCTCTGTCAGT -ACGGAATCTACGCTCTCTGAAGGT -ACGGAATCTACGCTCTCTAACCGT -ACGGAATCTACGCTCTCTTTGTGC -ACGGAATCTACGCTCTCTCTAAGC -ACGGAATCTACGCTCTCTACTAGC -ACGGAATCTACGCTCTCTAGATGC -ACGGAATCTACGCTCTCTTGAAGG -ACGGAATCTACGCTCTCTCAATGG -ACGGAATCTACGCTCTCTATGAGG -ACGGAATCTACGCTCTCTAATGGG -ACGGAATCTACGCTCTCTTCCTGA -ACGGAATCTACGCTCTCTTAGCGA -ACGGAATCTACGCTCTCTCACAGA -ACGGAATCTACGCTCTCTGCAAGA -ACGGAATCTACGCTCTCTGGTTGA -ACGGAATCTACGCTCTCTTCCGAT -ACGGAATCTACGCTCTCTTGGCAT -ACGGAATCTACGCTCTCTCGAGAT -ACGGAATCTACGCTCTCTTACCAC -ACGGAATCTACGCTCTCTCAGAAC -ACGGAATCTACGCTCTCTGTCTAC -ACGGAATCTACGCTCTCTACGTAC -ACGGAATCTACGCTCTCTAGTGAC -ACGGAATCTACGCTCTCTCTGTAG -ACGGAATCTACGCTCTCTCCTAAG -ACGGAATCTACGCTCTCTGTTCAG -ACGGAATCTACGCTCTCTGCATAG -ACGGAATCTACGCTCTCTGACAAG -ACGGAATCTACGCTCTCTAAGCAG -ACGGAATCTACGCTCTCTCGTCAA -ACGGAATCTACGCTCTCTGCTGAA -ACGGAATCTACGCTCTCTAGTACG -ACGGAATCTACGCTCTCTATCCGA -ACGGAATCTACGCTCTCTATGGGA -ACGGAATCTACGCTCTCTGTGCAA -ACGGAATCTACGCTCTCTGAGGAA -ACGGAATCTACGCTCTCTCAGGTA -ACGGAATCTACGCTCTCTGACTCT -ACGGAATCTACGCTCTCTAGTCCT -ACGGAATCTACGCTCTCTTAAGCC -ACGGAATCTACGCTCTCTATAGCC -ACGGAATCTACGCTCTCTTAACCG -ACGGAATCTACGCTCTCTATGCCA -ACGGAATCTACGATCTGGGGAAAC -ACGGAATCTACGATCTGGAACACC -ACGGAATCTACGATCTGGATCGAG -ACGGAATCTACGATCTGGCTCCTT -ACGGAATCTACGATCTGGCCTGTT -ACGGAATCTACGATCTGGCGGTTT -ACGGAATCTACGATCTGGGTGGTT -ACGGAATCTACGATCTGGGCCTTT -ACGGAATCTACGATCTGGGGTCTT -ACGGAATCTACGATCTGGACGCTT -ACGGAATCTACGATCTGGAGCGTT -ACGGAATCTACGATCTGGTTCGTC -ACGGAATCTACGATCTGGTCTCTC -ACGGAATCTACGATCTGGTGGATC -ACGGAATCTACGATCTGGCACTTC -ACGGAATCTACGATCTGGGTACTC -ACGGAATCTACGATCTGGGATGTC -ACGGAATCTACGATCTGGACAGTC -ACGGAATCTACGATCTGGTTGCTG -ACGGAATCTACGATCTGGTCCATG -ACGGAATCTACGATCTGGTGTGTG -ACGGAATCTACGATCTGGCTAGTG -ACGGAATCTACGATCTGGCATCTG -ACGGAATCTACGATCTGGGAGTTG -ACGGAATCTACGATCTGGAGACTG -ACGGAATCTACGATCTGGTCGGTA -ACGGAATCTACGATCTGGTGCCTA -ACGGAATCTACGATCTGGCCACTA -ACGGAATCTACGATCTGGGGAGTA -ACGGAATCTACGATCTGGTCGTCT -ACGGAATCTACGATCTGGTGCACT -ACGGAATCTACGATCTGGCTGACT -ACGGAATCTACGATCTGGCAACCT -ACGGAATCTACGATCTGGGCTACT -ACGGAATCTACGATCTGGGGATCT -ACGGAATCTACGATCTGGAAGGCT -ACGGAATCTACGATCTGGTCAACC -ACGGAATCTACGATCTGGTGTTCC -ACGGAATCTACGATCTGGATTCCC -ACGGAATCTACGATCTGGTTCTCG -ACGGAATCTACGATCTGGTAGACG -ACGGAATCTACGATCTGGGTAACG -ACGGAATCTACGATCTGGACTTCG -ACGGAATCTACGATCTGGTACGCA -ACGGAATCTACGATCTGGCTTGCA -ACGGAATCTACGATCTGGCGAACA -ACGGAATCTACGATCTGGCAGTCA -ACGGAATCTACGATCTGGGATCCA -ACGGAATCTACGATCTGGACGACA -ACGGAATCTACGATCTGGAGCTCA -ACGGAATCTACGATCTGGTCACGT -ACGGAATCTACGATCTGGCGTAGT -ACGGAATCTACGATCTGGGTCAGT -ACGGAATCTACGATCTGGGAAGGT -ACGGAATCTACGATCTGGAACCGT -ACGGAATCTACGATCTGGTTGTGC -ACGGAATCTACGATCTGGCTAAGC -ACGGAATCTACGATCTGGACTAGC -ACGGAATCTACGATCTGGAGATGC -ACGGAATCTACGATCTGGTGAAGG -ACGGAATCTACGATCTGGCAATGG -ACGGAATCTACGATCTGGATGAGG -ACGGAATCTACGATCTGGAATGGG -ACGGAATCTACGATCTGGTCCTGA -ACGGAATCTACGATCTGGTAGCGA -ACGGAATCTACGATCTGGCACAGA -ACGGAATCTACGATCTGGGCAAGA -ACGGAATCTACGATCTGGGGTTGA -ACGGAATCTACGATCTGGTCCGAT -ACGGAATCTACGATCTGGTGGCAT -ACGGAATCTACGATCTGGCGAGAT -ACGGAATCTACGATCTGGTACCAC -ACGGAATCTACGATCTGGCAGAAC -ACGGAATCTACGATCTGGGTCTAC -ACGGAATCTACGATCTGGACGTAC -ACGGAATCTACGATCTGGAGTGAC -ACGGAATCTACGATCTGGCTGTAG -ACGGAATCTACGATCTGGCCTAAG -ACGGAATCTACGATCTGGGTTCAG -ACGGAATCTACGATCTGGGCATAG -ACGGAATCTACGATCTGGGACAAG -ACGGAATCTACGATCTGGAAGCAG -ACGGAATCTACGATCTGGCGTCAA -ACGGAATCTACGATCTGGGCTGAA -ACGGAATCTACGATCTGGAGTACG -ACGGAATCTACGATCTGGATCCGA -ACGGAATCTACGATCTGGATGGGA -ACGGAATCTACGATCTGGGTGCAA -ACGGAATCTACGATCTGGGAGGAA -ACGGAATCTACGATCTGGCAGGTA -ACGGAATCTACGATCTGGGACTCT -ACGGAATCTACGATCTGGAGTCCT -ACGGAATCTACGATCTGGTAAGCC -ACGGAATCTACGATCTGGATAGCC -ACGGAATCTACGATCTGGTAACCG -ACGGAATCTACGATCTGGATGCCA -ACGGAATCTACGTTCCACGGAAAC -ACGGAATCTACGTTCCACAACACC -ACGGAATCTACGTTCCACATCGAG -ACGGAATCTACGTTCCACCTCCTT -ACGGAATCTACGTTCCACCCTGTT -ACGGAATCTACGTTCCACCGGTTT -ACGGAATCTACGTTCCACGTGGTT -ACGGAATCTACGTTCCACGCCTTT -ACGGAATCTACGTTCCACGGTCTT -ACGGAATCTACGTTCCACACGCTT -ACGGAATCTACGTTCCACAGCGTT -ACGGAATCTACGTTCCACTTCGTC -ACGGAATCTACGTTCCACTCTCTC -ACGGAATCTACGTTCCACTGGATC -ACGGAATCTACGTTCCACCACTTC -ACGGAATCTACGTTCCACGTACTC -ACGGAATCTACGTTCCACGATGTC -ACGGAATCTACGTTCCACACAGTC -ACGGAATCTACGTTCCACTTGCTG -ACGGAATCTACGTTCCACTCCATG -ACGGAATCTACGTTCCACTGTGTG -ACGGAATCTACGTTCCACCTAGTG -ACGGAATCTACGTTCCACCATCTG -ACGGAATCTACGTTCCACGAGTTG -ACGGAATCTACGTTCCACAGACTG -ACGGAATCTACGTTCCACTCGGTA -ACGGAATCTACGTTCCACTGCCTA -ACGGAATCTACGTTCCACCCACTA -ACGGAATCTACGTTCCACGGAGTA -ACGGAATCTACGTTCCACTCGTCT -ACGGAATCTACGTTCCACTGCACT -ACGGAATCTACGTTCCACCTGACT -ACGGAATCTACGTTCCACCAACCT -ACGGAATCTACGTTCCACGCTACT -ACGGAATCTACGTTCCACGGATCT -ACGGAATCTACGTTCCACAAGGCT -ACGGAATCTACGTTCCACTCAACC -ACGGAATCTACGTTCCACTGTTCC -ACGGAATCTACGTTCCACATTCCC -ACGGAATCTACGTTCCACTTCTCG -ACGGAATCTACGTTCCACTAGACG -ACGGAATCTACGTTCCACGTAACG -ACGGAATCTACGTTCCACACTTCG -ACGGAATCTACGTTCCACTACGCA -ACGGAATCTACGTTCCACCTTGCA -ACGGAATCTACGTTCCACCGAACA -ACGGAATCTACGTTCCACCAGTCA -ACGGAATCTACGTTCCACGATCCA -ACGGAATCTACGTTCCACACGACA -ACGGAATCTACGTTCCACAGCTCA -ACGGAATCTACGTTCCACTCACGT -ACGGAATCTACGTTCCACCGTAGT -ACGGAATCTACGTTCCACGTCAGT -ACGGAATCTACGTTCCACGAAGGT -ACGGAATCTACGTTCCACAACCGT -ACGGAATCTACGTTCCACTTGTGC -ACGGAATCTACGTTCCACCTAAGC -ACGGAATCTACGTTCCACACTAGC -ACGGAATCTACGTTCCACAGATGC -ACGGAATCTACGTTCCACTGAAGG -ACGGAATCTACGTTCCACCAATGG -ACGGAATCTACGTTCCACATGAGG -ACGGAATCTACGTTCCACAATGGG -ACGGAATCTACGTTCCACTCCTGA -ACGGAATCTACGTTCCACTAGCGA -ACGGAATCTACGTTCCACCACAGA -ACGGAATCTACGTTCCACGCAAGA -ACGGAATCTACGTTCCACGGTTGA -ACGGAATCTACGTTCCACTCCGAT -ACGGAATCTACGTTCCACTGGCAT -ACGGAATCTACGTTCCACCGAGAT -ACGGAATCTACGTTCCACTACCAC -ACGGAATCTACGTTCCACCAGAAC -ACGGAATCTACGTTCCACGTCTAC -ACGGAATCTACGTTCCACACGTAC -ACGGAATCTACGTTCCACAGTGAC -ACGGAATCTACGTTCCACCTGTAG -ACGGAATCTACGTTCCACCCTAAG -ACGGAATCTACGTTCCACGTTCAG -ACGGAATCTACGTTCCACGCATAG -ACGGAATCTACGTTCCACGACAAG -ACGGAATCTACGTTCCACAAGCAG -ACGGAATCTACGTTCCACCGTCAA -ACGGAATCTACGTTCCACGCTGAA -ACGGAATCTACGTTCCACAGTACG -ACGGAATCTACGTTCCACATCCGA -ACGGAATCTACGTTCCACATGGGA -ACGGAATCTACGTTCCACGTGCAA -ACGGAATCTACGTTCCACGAGGAA -ACGGAATCTACGTTCCACCAGGTA -ACGGAATCTACGTTCCACGACTCT -ACGGAATCTACGTTCCACAGTCCT -ACGGAATCTACGTTCCACTAAGCC -ACGGAATCTACGTTCCACATAGCC -ACGGAATCTACGTTCCACTAACCG -ACGGAATCTACGTTCCACATGCCA -ACGGAATCTACGCTCGTAGGAAAC -ACGGAATCTACGCTCGTAAACACC -ACGGAATCTACGCTCGTAATCGAG -ACGGAATCTACGCTCGTACTCCTT -ACGGAATCTACGCTCGTACCTGTT -ACGGAATCTACGCTCGTACGGTTT -ACGGAATCTACGCTCGTAGTGGTT -ACGGAATCTACGCTCGTAGCCTTT -ACGGAATCTACGCTCGTAGGTCTT -ACGGAATCTACGCTCGTAACGCTT -ACGGAATCTACGCTCGTAAGCGTT -ACGGAATCTACGCTCGTATTCGTC -ACGGAATCTACGCTCGTATCTCTC -ACGGAATCTACGCTCGTATGGATC -ACGGAATCTACGCTCGTACACTTC -ACGGAATCTACGCTCGTAGTACTC -ACGGAATCTACGCTCGTAGATGTC -ACGGAATCTACGCTCGTAACAGTC -ACGGAATCTACGCTCGTATTGCTG -ACGGAATCTACGCTCGTATCCATG -ACGGAATCTACGCTCGTATGTGTG -ACGGAATCTACGCTCGTACTAGTG -ACGGAATCTACGCTCGTACATCTG -ACGGAATCTACGCTCGTAGAGTTG -ACGGAATCTACGCTCGTAAGACTG -ACGGAATCTACGCTCGTATCGGTA -ACGGAATCTACGCTCGTATGCCTA -ACGGAATCTACGCTCGTACCACTA -ACGGAATCTACGCTCGTAGGAGTA -ACGGAATCTACGCTCGTATCGTCT -ACGGAATCTACGCTCGTATGCACT -ACGGAATCTACGCTCGTACTGACT -ACGGAATCTACGCTCGTACAACCT -ACGGAATCTACGCTCGTAGCTACT -ACGGAATCTACGCTCGTAGGATCT -ACGGAATCTACGCTCGTAAAGGCT -ACGGAATCTACGCTCGTATCAACC -ACGGAATCTACGCTCGTATGTTCC -ACGGAATCTACGCTCGTAATTCCC -ACGGAATCTACGCTCGTATTCTCG -ACGGAATCTACGCTCGTATAGACG -ACGGAATCTACGCTCGTAGTAACG -ACGGAATCTACGCTCGTAACTTCG -ACGGAATCTACGCTCGTATACGCA -ACGGAATCTACGCTCGTACTTGCA -ACGGAATCTACGCTCGTACGAACA -ACGGAATCTACGCTCGTACAGTCA -ACGGAATCTACGCTCGTAGATCCA -ACGGAATCTACGCTCGTAACGACA -ACGGAATCTACGCTCGTAAGCTCA -ACGGAATCTACGCTCGTATCACGT -ACGGAATCTACGCTCGTACGTAGT -ACGGAATCTACGCTCGTAGTCAGT -ACGGAATCTACGCTCGTAGAAGGT -ACGGAATCTACGCTCGTAAACCGT -ACGGAATCTACGCTCGTATTGTGC -ACGGAATCTACGCTCGTACTAAGC -ACGGAATCTACGCTCGTAACTAGC -ACGGAATCTACGCTCGTAAGATGC -ACGGAATCTACGCTCGTATGAAGG -ACGGAATCTACGCTCGTACAATGG -ACGGAATCTACGCTCGTAATGAGG -ACGGAATCTACGCTCGTAAATGGG -ACGGAATCTACGCTCGTATCCTGA -ACGGAATCTACGCTCGTATAGCGA -ACGGAATCTACGCTCGTACACAGA -ACGGAATCTACGCTCGTAGCAAGA -ACGGAATCTACGCTCGTAGGTTGA -ACGGAATCTACGCTCGTATCCGAT -ACGGAATCTACGCTCGTATGGCAT -ACGGAATCTACGCTCGTACGAGAT -ACGGAATCTACGCTCGTATACCAC -ACGGAATCTACGCTCGTACAGAAC -ACGGAATCTACGCTCGTAGTCTAC -ACGGAATCTACGCTCGTAACGTAC -ACGGAATCTACGCTCGTAAGTGAC -ACGGAATCTACGCTCGTACTGTAG -ACGGAATCTACGCTCGTACCTAAG -ACGGAATCTACGCTCGTAGTTCAG -ACGGAATCTACGCTCGTAGCATAG -ACGGAATCTACGCTCGTAGACAAG -ACGGAATCTACGCTCGTAAAGCAG -ACGGAATCTACGCTCGTACGTCAA -ACGGAATCTACGCTCGTAGCTGAA -ACGGAATCTACGCTCGTAAGTACG -ACGGAATCTACGCTCGTAATCCGA -ACGGAATCTACGCTCGTAATGGGA -ACGGAATCTACGCTCGTAGTGCAA -ACGGAATCTACGCTCGTAGAGGAA -ACGGAATCTACGCTCGTACAGGTA -ACGGAATCTACGCTCGTAGACTCT -ACGGAATCTACGCTCGTAAGTCCT -ACGGAATCTACGCTCGTATAAGCC -ACGGAATCTACGCTCGTAATAGCC -ACGGAATCTACGCTCGTATAACCG -ACGGAATCTACGCTCGTAATGCCA -ACGGAATCTACGGTCGATGGAAAC -ACGGAATCTACGGTCGATAACACC -ACGGAATCTACGGTCGATATCGAG -ACGGAATCTACGGTCGATCTCCTT -ACGGAATCTACGGTCGATCCTGTT -ACGGAATCTACGGTCGATCGGTTT -ACGGAATCTACGGTCGATGTGGTT -ACGGAATCTACGGTCGATGCCTTT -ACGGAATCTACGGTCGATGGTCTT -ACGGAATCTACGGTCGATACGCTT -ACGGAATCTACGGTCGATAGCGTT -ACGGAATCTACGGTCGATTTCGTC -ACGGAATCTACGGTCGATTCTCTC -ACGGAATCTACGGTCGATTGGATC -ACGGAATCTACGGTCGATCACTTC -ACGGAATCTACGGTCGATGTACTC -ACGGAATCTACGGTCGATGATGTC -ACGGAATCTACGGTCGATACAGTC -ACGGAATCTACGGTCGATTTGCTG -ACGGAATCTACGGTCGATTCCATG -ACGGAATCTACGGTCGATTGTGTG -ACGGAATCTACGGTCGATCTAGTG -ACGGAATCTACGGTCGATCATCTG -ACGGAATCTACGGTCGATGAGTTG -ACGGAATCTACGGTCGATAGACTG -ACGGAATCTACGGTCGATTCGGTA -ACGGAATCTACGGTCGATTGCCTA -ACGGAATCTACGGTCGATCCACTA -ACGGAATCTACGGTCGATGGAGTA -ACGGAATCTACGGTCGATTCGTCT -ACGGAATCTACGGTCGATTGCACT -ACGGAATCTACGGTCGATCTGACT -ACGGAATCTACGGTCGATCAACCT -ACGGAATCTACGGTCGATGCTACT -ACGGAATCTACGGTCGATGGATCT -ACGGAATCTACGGTCGATAAGGCT -ACGGAATCTACGGTCGATTCAACC -ACGGAATCTACGGTCGATTGTTCC -ACGGAATCTACGGTCGATATTCCC -ACGGAATCTACGGTCGATTTCTCG -ACGGAATCTACGGTCGATTAGACG -ACGGAATCTACGGTCGATGTAACG -ACGGAATCTACGGTCGATACTTCG -ACGGAATCTACGGTCGATTACGCA -ACGGAATCTACGGTCGATCTTGCA -ACGGAATCTACGGTCGATCGAACA -ACGGAATCTACGGTCGATCAGTCA -ACGGAATCTACGGTCGATGATCCA -ACGGAATCTACGGTCGATACGACA -ACGGAATCTACGGTCGATAGCTCA -ACGGAATCTACGGTCGATTCACGT -ACGGAATCTACGGTCGATCGTAGT -ACGGAATCTACGGTCGATGTCAGT -ACGGAATCTACGGTCGATGAAGGT -ACGGAATCTACGGTCGATAACCGT -ACGGAATCTACGGTCGATTTGTGC -ACGGAATCTACGGTCGATCTAAGC -ACGGAATCTACGGTCGATACTAGC -ACGGAATCTACGGTCGATAGATGC -ACGGAATCTACGGTCGATTGAAGG -ACGGAATCTACGGTCGATCAATGG -ACGGAATCTACGGTCGATATGAGG -ACGGAATCTACGGTCGATAATGGG -ACGGAATCTACGGTCGATTCCTGA -ACGGAATCTACGGTCGATTAGCGA -ACGGAATCTACGGTCGATCACAGA -ACGGAATCTACGGTCGATGCAAGA -ACGGAATCTACGGTCGATGGTTGA -ACGGAATCTACGGTCGATTCCGAT -ACGGAATCTACGGTCGATTGGCAT -ACGGAATCTACGGTCGATCGAGAT -ACGGAATCTACGGTCGATTACCAC -ACGGAATCTACGGTCGATCAGAAC -ACGGAATCTACGGTCGATGTCTAC -ACGGAATCTACGGTCGATACGTAC -ACGGAATCTACGGTCGATAGTGAC -ACGGAATCTACGGTCGATCTGTAG -ACGGAATCTACGGTCGATCCTAAG -ACGGAATCTACGGTCGATGTTCAG -ACGGAATCTACGGTCGATGCATAG -ACGGAATCTACGGTCGATGACAAG -ACGGAATCTACGGTCGATAAGCAG -ACGGAATCTACGGTCGATCGTCAA -ACGGAATCTACGGTCGATGCTGAA -ACGGAATCTACGGTCGATAGTACG -ACGGAATCTACGGTCGATATCCGA -ACGGAATCTACGGTCGATATGGGA -ACGGAATCTACGGTCGATGTGCAA -ACGGAATCTACGGTCGATGAGGAA -ACGGAATCTACGGTCGATCAGGTA -ACGGAATCTACGGTCGATGACTCT -ACGGAATCTACGGTCGATAGTCCT -ACGGAATCTACGGTCGATTAAGCC -ACGGAATCTACGGTCGATATAGCC -ACGGAATCTACGGTCGATTAACCG -ACGGAATCTACGGTCGATATGCCA -ACGGAATCTACGGTCACAGGAAAC -ACGGAATCTACGGTCACAAACACC -ACGGAATCTACGGTCACAATCGAG -ACGGAATCTACGGTCACACTCCTT -ACGGAATCTACGGTCACACCTGTT -ACGGAATCTACGGTCACACGGTTT -ACGGAATCTACGGTCACAGTGGTT -ACGGAATCTACGGTCACAGCCTTT -ACGGAATCTACGGTCACAGGTCTT -ACGGAATCTACGGTCACAACGCTT -ACGGAATCTACGGTCACAAGCGTT -ACGGAATCTACGGTCACATTCGTC -ACGGAATCTACGGTCACATCTCTC -ACGGAATCTACGGTCACATGGATC -ACGGAATCTACGGTCACACACTTC -ACGGAATCTACGGTCACAGTACTC -ACGGAATCTACGGTCACAGATGTC -ACGGAATCTACGGTCACAACAGTC -ACGGAATCTACGGTCACATTGCTG -ACGGAATCTACGGTCACATCCATG -ACGGAATCTACGGTCACATGTGTG -ACGGAATCTACGGTCACACTAGTG -ACGGAATCTACGGTCACACATCTG -ACGGAATCTACGGTCACAGAGTTG -ACGGAATCTACGGTCACAAGACTG -ACGGAATCTACGGTCACATCGGTA -ACGGAATCTACGGTCACATGCCTA -ACGGAATCTACGGTCACACCACTA -ACGGAATCTACGGTCACAGGAGTA -ACGGAATCTACGGTCACATCGTCT -ACGGAATCTACGGTCACATGCACT -ACGGAATCTACGGTCACACTGACT -ACGGAATCTACGGTCACACAACCT -ACGGAATCTACGGTCACAGCTACT -ACGGAATCTACGGTCACAGGATCT -ACGGAATCTACGGTCACAAAGGCT -ACGGAATCTACGGTCACATCAACC -ACGGAATCTACGGTCACATGTTCC -ACGGAATCTACGGTCACAATTCCC -ACGGAATCTACGGTCACATTCTCG -ACGGAATCTACGGTCACATAGACG -ACGGAATCTACGGTCACAGTAACG -ACGGAATCTACGGTCACAACTTCG -ACGGAATCTACGGTCACATACGCA -ACGGAATCTACGGTCACACTTGCA -ACGGAATCTACGGTCACACGAACA -ACGGAATCTACGGTCACACAGTCA -ACGGAATCTACGGTCACAGATCCA -ACGGAATCTACGGTCACAACGACA -ACGGAATCTACGGTCACAAGCTCA -ACGGAATCTACGGTCACATCACGT -ACGGAATCTACGGTCACACGTAGT -ACGGAATCTACGGTCACAGTCAGT -ACGGAATCTACGGTCACAGAAGGT -ACGGAATCTACGGTCACAAACCGT -ACGGAATCTACGGTCACATTGTGC -ACGGAATCTACGGTCACACTAAGC -ACGGAATCTACGGTCACAACTAGC -ACGGAATCTACGGTCACAAGATGC -ACGGAATCTACGGTCACATGAAGG -ACGGAATCTACGGTCACACAATGG -ACGGAATCTACGGTCACAATGAGG -ACGGAATCTACGGTCACAAATGGG -ACGGAATCTACGGTCACATCCTGA -ACGGAATCTACGGTCACATAGCGA -ACGGAATCTACGGTCACACACAGA -ACGGAATCTACGGTCACAGCAAGA -ACGGAATCTACGGTCACAGGTTGA -ACGGAATCTACGGTCACATCCGAT -ACGGAATCTACGGTCACATGGCAT -ACGGAATCTACGGTCACACGAGAT -ACGGAATCTACGGTCACATACCAC -ACGGAATCTACGGTCACACAGAAC -ACGGAATCTACGGTCACAGTCTAC -ACGGAATCTACGGTCACAACGTAC -ACGGAATCTACGGTCACAAGTGAC -ACGGAATCTACGGTCACACTGTAG -ACGGAATCTACGGTCACACCTAAG -ACGGAATCTACGGTCACAGTTCAG -ACGGAATCTACGGTCACAGCATAG -ACGGAATCTACGGTCACAGACAAG -ACGGAATCTACGGTCACAAAGCAG -ACGGAATCTACGGTCACACGTCAA -ACGGAATCTACGGTCACAGCTGAA -ACGGAATCTACGGTCACAAGTACG -ACGGAATCTACGGTCACAATCCGA -ACGGAATCTACGGTCACAATGGGA -ACGGAATCTACGGTCACAGTGCAA -ACGGAATCTACGGTCACAGAGGAA -ACGGAATCTACGGTCACACAGGTA -ACGGAATCTACGGTCACAGACTCT -ACGGAATCTACGGTCACAAGTCCT -ACGGAATCTACGGTCACATAAGCC -ACGGAATCTACGGTCACAATAGCC -ACGGAATCTACGGTCACATAACCG -ACGGAATCTACGGTCACAATGCCA -ACGGAATCTACGCTGTTGGGAAAC -ACGGAATCTACGCTGTTGAACACC -ACGGAATCTACGCTGTTGATCGAG -ACGGAATCTACGCTGTTGCTCCTT -ACGGAATCTACGCTGTTGCCTGTT -ACGGAATCTACGCTGTTGCGGTTT -ACGGAATCTACGCTGTTGGTGGTT -ACGGAATCTACGCTGTTGGCCTTT -ACGGAATCTACGCTGTTGGGTCTT -ACGGAATCTACGCTGTTGACGCTT -ACGGAATCTACGCTGTTGAGCGTT -ACGGAATCTACGCTGTTGTTCGTC -ACGGAATCTACGCTGTTGTCTCTC -ACGGAATCTACGCTGTTGTGGATC -ACGGAATCTACGCTGTTGCACTTC -ACGGAATCTACGCTGTTGGTACTC -ACGGAATCTACGCTGTTGGATGTC -ACGGAATCTACGCTGTTGACAGTC -ACGGAATCTACGCTGTTGTTGCTG -ACGGAATCTACGCTGTTGTCCATG -ACGGAATCTACGCTGTTGTGTGTG -ACGGAATCTACGCTGTTGCTAGTG -ACGGAATCTACGCTGTTGCATCTG -ACGGAATCTACGCTGTTGGAGTTG -ACGGAATCTACGCTGTTGAGACTG -ACGGAATCTACGCTGTTGTCGGTA -ACGGAATCTACGCTGTTGTGCCTA -ACGGAATCTACGCTGTTGCCACTA -ACGGAATCTACGCTGTTGGGAGTA -ACGGAATCTACGCTGTTGTCGTCT -ACGGAATCTACGCTGTTGTGCACT -ACGGAATCTACGCTGTTGCTGACT -ACGGAATCTACGCTGTTGCAACCT -ACGGAATCTACGCTGTTGGCTACT -ACGGAATCTACGCTGTTGGGATCT -ACGGAATCTACGCTGTTGAAGGCT -ACGGAATCTACGCTGTTGTCAACC -ACGGAATCTACGCTGTTGTGTTCC -ACGGAATCTACGCTGTTGATTCCC -ACGGAATCTACGCTGTTGTTCTCG -ACGGAATCTACGCTGTTGTAGACG -ACGGAATCTACGCTGTTGGTAACG -ACGGAATCTACGCTGTTGACTTCG -ACGGAATCTACGCTGTTGTACGCA -ACGGAATCTACGCTGTTGCTTGCA -ACGGAATCTACGCTGTTGCGAACA -ACGGAATCTACGCTGTTGCAGTCA -ACGGAATCTACGCTGTTGGATCCA -ACGGAATCTACGCTGTTGACGACA -ACGGAATCTACGCTGTTGAGCTCA -ACGGAATCTACGCTGTTGTCACGT -ACGGAATCTACGCTGTTGCGTAGT -ACGGAATCTACGCTGTTGGTCAGT -ACGGAATCTACGCTGTTGGAAGGT -ACGGAATCTACGCTGTTGAACCGT -ACGGAATCTACGCTGTTGTTGTGC -ACGGAATCTACGCTGTTGCTAAGC -ACGGAATCTACGCTGTTGACTAGC -ACGGAATCTACGCTGTTGAGATGC -ACGGAATCTACGCTGTTGTGAAGG -ACGGAATCTACGCTGTTGCAATGG -ACGGAATCTACGCTGTTGATGAGG -ACGGAATCTACGCTGTTGAATGGG -ACGGAATCTACGCTGTTGTCCTGA -ACGGAATCTACGCTGTTGTAGCGA -ACGGAATCTACGCTGTTGCACAGA -ACGGAATCTACGCTGTTGGCAAGA -ACGGAATCTACGCTGTTGGGTTGA -ACGGAATCTACGCTGTTGTCCGAT -ACGGAATCTACGCTGTTGTGGCAT -ACGGAATCTACGCTGTTGCGAGAT -ACGGAATCTACGCTGTTGTACCAC -ACGGAATCTACGCTGTTGCAGAAC -ACGGAATCTACGCTGTTGGTCTAC -ACGGAATCTACGCTGTTGACGTAC -ACGGAATCTACGCTGTTGAGTGAC -ACGGAATCTACGCTGTTGCTGTAG -ACGGAATCTACGCTGTTGCCTAAG -ACGGAATCTACGCTGTTGGTTCAG -ACGGAATCTACGCTGTTGGCATAG -ACGGAATCTACGCTGTTGGACAAG -ACGGAATCTACGCTGTTGAAGCAG -ACGGAATCTACGCTGTTGCGTCAA -ACGGAATCTACGCTGTTGGCTGAA -ACGGAATCTACGCTGTTGAGTACG -ACGGAATCTACGCTGTTGATCCGA -ACGGAATCTACGCTGTTGATGGGA -ACGGAATCTACGCTGTTGGTGCAA -ACGGAATCTACGCTGTTGGAGGAA -ACGGAATCTACGCTGTTGCAGGTA -ACGGAATCTACGCTGTTGGACTCT -ACGGAATCTACGCTGTTGAGTCCT -ACGGAATCTACGCTGTTGTAAGCC -ACGGAATCTACGCTGTTGATAGCC -ACGGAATCTACGCTGTTGTAACCG -ACGGAATCTACGCTGTTGATGCCA -ACGGAATCTACGATGTCCGGAAAC -ACGGAATCTACGATGTCCAACACC -ACGGAATCTACGATGTCCATCGAG -ACGGAATCTACGATGTCCCTCCTT -ACGGAATCTACGATGTCCCCTGTT -ACGGAATCTACGATGTCCCGGTTT -ACGGAATCTACGATGTCCGTGGTT -ACGGAATCTACGATGTCCGCCTTT -ACGGAATCTACGATGTCCGGTCTT -ACGGAATCTACGATGTCCACGCTT -ACGGAATCTACGATGTCCAGCGTT -ACGGAATCTACGATGTCCTTCGTC -ACGGAATCTACGATGTCCTCTCTC -ACGGAATCTACGATGTCCTGGATC -ACGGAATCTACGATGTCCCACTTC -ACGGAATCTACGATGTCCGTACTC -ACGGAATCTACGATGTCCGATGTC -ACGGAATCTACGATGTCCACAGTC -ACGGAATCTACGATGTCCTTGCTG -ACGGAATCTACGATGTCCTCCATG -ACGGAATCTACGATGTCCTGTGTG -ACGGAATCTACGATGTCCCTAGTG -ACGGAATCTACGATGTCCCATCTG -ACGGAATCTACGATGTCCGAGTTG -ACGGAATCTACGATGTCCAGACTG -ACGGAATCTACGATGTCCTCGGTA -ACGGAATCTACGATGTCCTGCCTA -ACGGAATCTACGATGTCCCCACTA -ACGGAATCTACGATGTCCGGAGTA -ACGGAATCTACGATGTCCTCGTCT -ACGGAATCTACGATGTCCTGCACT -ACGGAATCTACGATGTCCCTGACT -ACGGAATCTACGATGTCCCAACCT -ACGGAATCTACGATGTCCGCTACT -ACGGAATCTACGATGTCCGGATCT -ACGGAATCTACGATGTCCAAGGCT -ACGGAATCTACGATGTCCTCAACC -ACGGAATCTACGATGTCCTGTTCC -ACGGAATCTACGATGTCCATTCCC -ACGGAATCTACGATGTCCTTCTCG -ACGGAATCTACGATGTCCTAGACG -ACGGAATCTACGATGTCCGTAACG -ACGGAATCTACGATGTCCACTTCG -ACGGAATCTACGATGTCCTACGCA -ACGGAATCTACGATGTCCCTTGCA -ACGGAATCTACGATGTCCCGAACA -ACGGAATCTACGATGTCCCAGTCA -ACGGAATCTACGATGTCCGATCCA -ACGGAATCTACGATGTCCACGACA -ACGGAATCTACGATGTCCAGCTCA -ACGGAATCTACGATGTCCTCACGT -ACGGAATCTACGATGTCCCGTAGT -ACGGAATCTACGATGTCCGTCAGT -ACGGAATCTACGATGTCCGAAGGT -ACGGAATCTACGATGTCCAACCGT -ACGGAATCTACGATGTCCTTGTGC -ACGGAATCTACGATGTCCCTAAGC -ACGGAATCTACGATGTCCACTAGC -ACGGAATCTACGATGTCCAGATGC -ACGGAATCTACGATGTCCTGAAGG -ACGGAATCTACGATGTCCCAATGG -ACGGAATCTACGATGTCCATGAGG -ACGGAATCTACGATGTCCAATGGG -ACGGAATCTACGATGTCCTCCTGA -ACGGAATCTACGATGTCCTAGCGA -ACGGAATCTACGATGTCCCACAGA -ACGGAATCTACGATGTCCGCAAGA -ACGGAATCTACGATGTCCGGTTGA -ACGGAATCTACGATGTCCTCCGAT -ACGGAATCTACGATGTCCTGGCAT -ACGGAATCTACGATGTCCCGAGAT -ACGGAATCTACGATGTCCTACCAC -ACGGAATCTACGATGTCCCAGAAC -ACGGAATCTACGATGTCCGTCTAC -ACGGAATCTACGATGTCCACGTAC -ACGGAATCTACGATGTCCAGTGAC -ACGGAATCTACGATGTCCCTGTAG -ACGGAATCTACGATGTCCCCTAAG -ACGGAATCTACGATGTCCGTTCAG -ACGGAATCTACGATGTCCGCATAG -ACGGAATCTACGATGTCCGACAAG -ACGGAATCTACGATGTCCAAGCAG -ACGGAATCTACGATGTCCCGTCAA -ACGGAATCTACGATGTCCGCTGAA -ACGGAATCTACGATGTCCAGTACG -ACGGAATCTACGATGTCCATCCGA -ACGGAATCTACGATGTCCATGGGA -ACGGAATCTACGATGTCCGTGCAA -ACGGAATCTACGATGTCCGAGGAA -ACGGAATCTACGATGTCCCAGGTA -ACGGAATCTACGATGTCCGACTCT -ACGGAATCTACGATGTCCAGTCCT -ACGGAATCTACGATGTCCTAAGCC -ACGGAATCTACGATGTCCATAGCC -ACGGAATCTACGATGTCCTAACCG -ACGGAATCTACGATGTCCATGCCA -ACGGAATCTACGGTGTGTGGAAAC -ACGGAATCTACGGTGTGTAACACC -ACGGAATCTACGGTGTGTATCGAG -ACGGAATCTACGGTGTGTCTCCTT -ACGGAATCTACGGTGTGTCCTGTT -ACGGAATCTACGGTGTGTCGGTTT -ACGGAATCTACGGTGTGTGTGGTT -ACGGAATCTACGGTGTGTGCCTTT -ACGGAATCTACGGTGTGTGGTCTT -ACGGAATCTACGGTGTGTACGCTT -ACGGAATCTACGGTGTGTAGCGTT -ACGGAATCTACGGTGTGTTTCGTC -ACGGAATCTACGGTGTGTTCTCTC -ACGGAATCTACGGTGTGTTGGATC -ACGGAATCTACGGTGTGTCACTTC -ACGGAATCTACGGTGTGTGTACTC -ACGGAATCTACGGTGTGTGATGTC -ACGGAATCTACGGTGTGTACAGTC -ACGGAATCTACGGTGTGTTTGCTG -ACGGAATCTACGGTGTGTTCCATG -ACGGAATCTACGGTGTGTTGTGTG -ACGGAATCTACGGTGTGTCTAGTG -ACGGAATCTACGGTGTGTCATCTG -ACGGAATCTACGGTGTGTGAGTTG -ACGGAATCTACGGTGTGTAGACTG -ACGGAATCTACGGTGTGTTCGGTA -ACGGAATCTACGGTGTGTTGCCTA -ACGGAATCTACGGTGTGTCCACTA -ACGGAATCTACGGTGTGTGGAGTA -ACGGAATCTACGGTGTGTTCGTCT -ACGGAATCTACGGTGTGTTGCACT -ACGGAATCTACGGTGTGTCTGACT -ACGGAATCTACGGTGTGTCAACCT -ACGGAATCTACGGTGTGTGCTACT -ACGGAATCTACGGTGTGTGGATCT -ACGGAATCTACGGTGTGTAAGGCT -ACGGAATCTACGGTGTGTTCAACC -ACGGAATCTACGGTGTGTTGTTCC -ACGGAATCTACGGTGTGTATTCCC -ACGGAATCTACGGTGTGTTTCTCG -ACGGAATCTACGGTGTGTTAGACG -ACGGAATCTACGGTGTGTGTAACG -ACGGAATCTACGGTGTGTACTTCG -ACGGAATCTACGGTGTGTTACGCA -ACGGAATCTACGGTGTGTCTTGCA -ACGGAATCTACGGTGTGTCGAACA -ACGGAATCTACGGTGTGTCAGTCA -ACGGAATCTACGGTGTGTGATCCA -ACGGAATCTACGGTGTGTACGACA -ACGGAATCTACGGTGTGTAGCTCA -ACGGAATCTACGGTGTGTTCACGT -ACGGAATCTACGGTGTGTCGTAGT -ACGGAATCTACGGTGTGTGTCAGT -ACGGAATCTACGGTGTGTGAAGGT -ACGGAATCTACGGTGTGTAACCGT -ACGGAATCTACGGTGTGTTTGTGC -ACGGAATCTACGGTGTGTCTAAGC -ACGGAATCTACGGTGTGTACTAGC -ACGGAATCTACGGTGTGTAGATGC -ACGGAATCTACGGTGTGTTGAAGG -ACGGAATCTACGGTGTGTCAATGG -ACGGAATCTACGGTGTGTATGAGG -ACGGAATCTACGGTGTGTAATGGG -ACGGAATCTACGGTGTGTTCCTGA -ACGGAATCTACGGTGTGTTAGCGA -ACGGAATCTACGGTGTGTCACAGA -ACGGAATCTACGGTGTGTGCAAGA -ACGGAATCTACGGTGTGTGGTTGA -ACGGAATCTACGGTGTGTTCCGAT -ACGGAATCTACGGTGTGTTGGCAT -ACGGAATCTACGGTGTGTCGAGAT -ACGGAATCTACGGTGTGTTACCAC -ACGGAATCTACGGTGTGTCAGAAC -ACGGAATCTACGGTGTGTGTCTAC -ACGGAATCTACGGTGTGTACGTAC -ACGGAATCTACGGTGTGTAGTGAC -ACGGAATCTACGGTGTGTCTGTAG -ACGGAATCTACGGTGTGTCCTAAG -ACGGAATCTACGGTGTGTGTTCAG -ACGGAATCTACGGTGTGTGCATAG -ACGGAATCTACGGTGTGTGACAAG -ACGGAATCTACGGTGTGTAAGCAG -ACGGAATCTACGGTGTGTCGTCAA -ACGGAATCTACGGTGTGTGCTGAA -ACGGAATCTACGGTGTGTAGTACG -ACGGAATCTACGGTGTGTATCCGA -ACGGAATCTACGGTGTGTATGGGA -ACGGAATCTACGGTGTGTGTGCAA -ACGGAATCTACGGTGTGTGAGGAA -ACGGAATCTACGGTGTGTCAGGTA -ACGGAATCTACGGTGTGTGACTCT -ACGGAATCTACGGTGTGTAGTCCT -ACGGAATCTACGGTGTGTTAAGCC -ACGGAATCTACGGTGTGTATAGCC -ACGGAATCTACGGTGTGTTAACCG -ACGGAATCTACGGTGTGTATGCCA -ACGGAATCTACGGTGCTAGGAAAC -ACGGAATCTACGGTGCTAAACACC -ACGGAATCTACGGTGCTAATCGAG -ACGGAATCTACGGTGCTACTCCTT -ACGGAATCTACGGTGCTACCTGTT -ACGGAATCTACGGTGCTACGGTTT -ACGGAATCTACGGTGCTAGTGGTT -ACGGAATCTACGGTGCTAGCCTTT -ACGGAATCTACGGTGCTAGGTCTT -ACGGAATCTACGGTGCTAACGCTT -ACGGAATCTACGGTGCTAAGCGTT -ACGGAATCTACGGTGCTATTCGTC -ACGGAATCTACGGTGCTATCTCTC -ACGGAATCTACGGTGCTATGGATC -ACGGAATCTACGGTGCTACACTTC -ACGGAATCTACGGTGCTAGTACTC -ACGGAATCTACGGTGCTAGATGTC -ACGGAATCTACGGTGCTAACAGTC -ACGGAATCTACGGTGCTATTGCTG -ACGGAATCTACGGTGCTATCCATG -ACGGAATCTACGGTGCTATGTGTG -ACGGAATCTACGGTGCTACTAGTG -ACGGAATCTACGGTGCTACATCTG -ACGGAATCTACGGTGCTAGAGTTG -ACGGAATCTACGGTGCTAAGACTG -ACGGAATCTACGGTGCTATCGGTA -ACGGAATCTACGGTGCTATGCCTA -ACGGAATCTACGGTGCTACCACTA -ACGGAATCTACGGTGCTAGGAGTA -ACGGAATCTACGGTGCTATCGTCT -ACGGAATCTACGGTGCTATGCACT -ACGGAATCTACGGTGCTACTGACT -ACGGAATCTACGGTGCTACAACCT -ACGGAATCTACGGTGCTAGCTACT -ACGGAATCTACGGTGCTAGGATCT -ACGGAATCTACGGTGCTAAAGGCT -ACGGAATCTACGGTGCTATCAACC -ACGGAATCTACGGTGCTATGTTCC -ACGGAATCTACGGTGCTAATTCCC -ACGGAATCTACGGTGCTATTCTCG -ACGGAATCTACGGTGCTATAGACG -ACGGAATCTACGGTGCTAGTAACG -ACGGAATCTACGGTGCTAACTTCG -ACGGAATCTACGGTGCTATACGCA -ACGGAATCTACGGTGCTACTTGCA -ACGGAATCTACGGTGCTACGAACA -ACGGAATCTACGGTGCTACAGTCA -ACGGAATCTACGGTGCTAGATCCA -ACGGAATCTACGGTGCTAACGACA -ACGGAATCTACGGTGCTAAGCTCA -ACGGAATCTACGGTGCTATCACGT -ACGGAATCTACGGTGCTACGTAGT -ACGGAATCTACGGTGCTAGTCAGT -ACGGAATCTACGGTGCTAGAAGGT -ACGGAATCTACGGTGCTAAACCGT -ACGGAATCTACGGTGCTATTGTGC -ACGGAATCTACGGTGCTACTAAGC -ACGGAATCTACGGTGCTAACTAGC -ACGGAATCTACGGTGCTAAGATGC -ACGGAATCTACGGTGCTATGAAGG -ACGGAATCTACGGTGCTACAATGG -ACGGAATCTACGGTGCTAATGAGG -ACGGAATCTACGGTGCTAAATGGG -ACGGAATCTACGGTGCTATCCTGA -ACGGAATCTACGGTGCTATAGCGA -ACGGAATCTACGGTGCTACACAGA -ACGGAATCTACGGTGCTAGCAAGA -ACGGAATCTACGGTGCTAGGTTGA -ACGGAATCTACGGTGCTATCCGAT -ACGGAATCTACGGTGCTATGGCAT -ACGGAATCTACGGTGCTACGAGAT -ACGGAATCTACGGTGCTATACCAC -ACGGAATCTACGGTGCTACAGAAC -ACGGAATCTACGGTGCTAGTCTAC -ACGGAATCTACGGTGCTAACGTAC -ACGGAATCTACGGTGCTAAGTGAC -ACGGAATCTACGGTGCTACTGTAG -ACGGAATCTACGGTGCTACCTAAG -ACGGAATCTACGGTGCTAGTTCAG -ACGGAATCTACGGTGCTAGCATAG -ACGGAATCTACGGTGCTAGACAAG -ACGGAATCTACGGTGCTAAAGCAG -ACGGAATCTACGGTGCTACGTCAA -ACGGAATCTACGGTGCTAGCTGAA -ACGGAATCTACGGTGCTAAGTACG -ACGGAATCTACGGTGCTAATCCGA -ACGGAATCTACGGTGCTAATGGGA -ACGGAATCTACGGTGCTAGTGCAA -ACGGAATCTACGGTGCTAGAGGAA -ACGGAATCTACGGTGCTACAGGTA -ACGGAATCTACGGTGCTAGACTCT -ACGGAATCTACGGTGCTAAGTCCT -ACGGAATCTACGGTGCTATAAGCC -ACGGAATCTACGGTGCTAATAGCC -ACGGAATCTACGGTGCTATAACCG -ACGGAATCTACGGTGCTAATGCCA -ACGGAATCTACGCTGCATGGAAAC -ACGGAATCTACGCTGCATAACACC -ACGGAATCTACGCTGCATATCGAG -ACGGAATCTACGCTGCATCTCCTT -ACGGAATCTACGCTGCATCCTGTT -ACGGAATCTACGCTGCATCGGTTT -ACGGAATCTACGCTGCATGTGGTT -ACGGAATCTACGCTGCATGCCTTT -ACGGAATCTACGCTGCATGGTCTT -ACGGAATCTACGCTGCATACGCTT -ACGGAATCTACGCTGCATAGCGTT -ACGGAATCTACGCTGCATTTCGTC -ACGGAATCTACGCTGCATTCTCTC -ACGGAATCTACGCTGCATTGGATC -ACGGAATCTACGCTGCATCACTTC -ACGGAATCTACGCTGCATGTACTC -ACGGAATCTACGCTGCATGATGTC -ACGGAATCTACGCTGCATACAGTC -ACGGAATCTACGCTGCATTTGCTG -ACGGAATCTACGCTGCATTCCATG -ACGGAATCTACGCTGCATTGTGTG -ACGGAATCTACGCTGCATCTAGTG -ACGGAATCTACGCTGCATCATCTG -ACGGAATCTACGCTGCATGAGTTG -ACGGAATCTACGCTGCATAGACTG -ACGGAATCTACGCTGCATTCGGTA -ACGGAATCTACGCTGCATTGCCTA -ACGGAATCTACGCTGCATCCACTA -ACGGAATCTACGCTGCATGGAGTA -ACGGAATCTACGCTGCATTCGTCT -ACGGAATCTACGCTGCATTGCACT -ACGGAATCTACGCTGCATCTGACT -ACGGAATCTACGCTGCATCAACCT -ACGGAATCTACGCTGCATGCTACT -ACGGAATCTACGCTGCATGGATCT -ACGGAATCTACGCTGCATAAGGCT -ACGGAATCTACGCTGCATTCAACC -ACGGAATCTACGCTGCATTGTTCC -ACGGAATCTACGCTGCATATTCCC -ACGGAATCTACGCTGCATTTCTCG -ACGGAATCTACGCTGCATTAGACG -ACGGAATCTACGCTGCATGTAACG -ACGGAATCTACGCTGCATACTTCG -ACGGAATCTACGCTGCATTACGCA -ACGGAATCTACGCTGCATCTTGCA -ACGGAATCTACGCTGCATCGAACA -ACGGAATCTACGCTGCATCAGTCA -ACGGAATCTACGCTGCATGATCCA -ACGGAATCTACGCTGCATACGACA -ACGGAATCTACGCTGCATAGCTCA -ACGGAATCTACGCTGCATTCACGT -ACGGAATCTACGCTGCATCGTAGT -ACGGAATCTACGCTGCATGTCAGT -ACGGAATCTACGCTGCATGAAGGT -ACGGAATCTACGCTGCATAACCGT -ACGGAATCTACGCTGCATTTGTGC -ACGGAATCTACGCTGCATCTAAGC -ACGGAATCTACGCTGCATACTAGC -ACGGAATCTACGCTGCATAGATGC -ACGGAATCTACGCTGCATTGAAGG -ACGGAATCTACGCTGCATCAATGG -ACGGAATCTACGCTGCATATGAGG -ACGGAATCTACGCTGCATAATGGG -ACGGAATCTACGCTGCATTCCTGA -ACGGAATCTACGCTGCATTAGCGA -ACGGAATCTACGCTGCATCACAGA -ACGGAATCTACGCTGCATGCAAGA -ACGGAATCTACGCTGCATGGTTGA -ACGGAATCTACGCTGCATTCCGAT -ACGGAATCTACGCTGCATTGGCAT -ACGGAATCTACGCTGCATCGAGAT -ACGGAATCTACGCTGCATTACCAC -ACGGAATCTACGCTGCATCAGAAC -ACGGAATCTACGCTGCATGTCTAC -ACGGAATCTACGCTGCATACGTAC -ACGGAATCTACGCTGCATAGTGAC -ACGGAATCTACGCTGCATCTGTAG -ACGGAATCTACGCTGCATCCTAAG -ACGGAATCTACGCTGCATGTTCAG -ACGGAATCTACGCTGCATGCATAG -ACGGAATCTACGCTGCATGACAAG -ACGGAATCTACGCTGCATAAGCAG -ACGGAATCTACGCTGCATCGTCAA -ACGGAATCTACGCTGCATGCTGAA -ACGGAATCTACGCTGCATAGTACG -ACGGAATCTACGCTGCATATCCGA -ACGGAATCTACGCTGCATATGGGA -ACGGAATCTACGCTGCATGTGCAA -ACGGAATCTACGCTGCATGAGGAA -ACGGAATCTACGCTGCATCAGGTA -ACGGAATCTACGCTGCATGACTCT -ACGGAATCTACGCTGCATAGTCCT -ACGGAATCTACGCTGCATTAAGCC -ACGGAATCTACGCTGCATATAGCC -ACGGAATCTACGCTGCATTAACCG -ACGGAATCTACGCTGCATATGCCA -ACGGAATCTACGTTGGAGGGAAAC -ACGGAATCTACGTTGGAGAACACC -ACGGAATCTACGTTGGAGATCGAG -ACGGAATCTACGTTGGAGCTCCTT -ACGGAATCTACGTTGGAGCCTGTT -ACGGAATCTACGTTGGAGCGGTTT -ACGGAATCTACGTTGGAGGTGGTT -ACGGAATCTACGTTGGAGGCCTTT -ACGGAATCTACGTTGGAGGGTCTT -ACGGAATCTACGTTGGAGACGCTT -ACGGAATCTACGTTGGAGAGCGTT -ACGGAATCTACGTTGGAGTTCGTC -ACGGAATCTACGTTGGAGTCTCTC -ACGGAATCTACGTTGGAGTGGATC -ACGGAATCTACGTTGGAGCACTTC -ACGGAATCTACGTTGGAGGTACTC -ACGGAATCTACGTTGGAGGATGTC -ACGGAATCTACGTTGGAGACAGTC -ACGGAATCTACGTTGGAGTTGCTG -ACGGAATCTACGTTGGAGTCCATG -ACGGAATCTACGTTGGAGTGTGTG -ACGGAATCTACGTTGGAGCTAGTG -ACGGAATCTACGTTGGAGCATCTG -ACGGAATCTACGTTGGAGGAGTTG -ACGGAATCTACGTTGGAGAGACTG -ACGGAATCTACGTTGGAGTCGGTA -ACGGAATCTACGTTGGAGTGCCTA -ACGGAATCTACGTTGGAGCCACTA -ACGGAATCTACGTTGGAGGGAGTA -ACGGAATCTACGTTGGAGTCGTCT -ACGGAATCTACGTTGGAGTGCACT -ACGGAATCTACGTTGGAGCTGACT -ACGGAATCTACGTTGGAGCAACCT -ACGGAATCTACGTTGGAGGCTACT -ACGGAATCTACGTTGGAGGGATCT -ACGGAATCTACGTTGGAGAAGGCT -ACGGAATCTACGTTGGAGTCAACC -ACGGAATCTACGTTGGAGTGTTCC -ACGGAATCTACGTTGGAGATTCCC -ACGGAATCTACGTTGGAGTTCTCG -ACGGAATCTACGTTGGAGTAGACG -ACGGAATCTACGTTGGAGGTAACG -ACGGAATCTACGTTGGAGACTTCG -ACGGAATCTACGTTGGAGTACGCA -ACGGAATCTACGTTGGAGCTTGCA -ACGGAATCTACGTTGGAGCGAACA -ACGGAATCTACGTTGGAGCAGTCA -ACGGAATCTACGTTGGAGGATCCA -ACGGAATCTACGTTGGAGACGACA -ACGGAATCTACGTTGGAGAGCTCA -ACGGAATCTACGTTGGAGTCACGT -ACGGAATCTACGTTGGAGCGTAGT -ACGGAATCTACGTTGGAGGTCAGT -ACGGAATCTACGTTGGAGGAAGGT -ACGGAATCTACGTTGGAGAACCGT -ACGGAATCTACGTTGGAGTTGTGC -ACGGAATCTACGTTGGAGCTAAGC -ACGGAATCTACGTTGGAGACTAGC -ACGGAATCTACGTTGGAGAGATGC -ACGGAATCTACGTTGGAGTGAAGG -ACGGAATCTACGTTGGAGCAATGG -ACGGAATCTACGTTGGAGATGAGG -ACGGAATCTACGTTGGAGAATGGG -ACGGAATCTACGTTGGAGTCCTGA -ACGGAATCTACGTTGGAGTAGCGA -ACGGAATCTACGTTGGAGCACAGA -ACGGAATCTACGTTGGAGGCAAGA -ACGGAATCTACGTTGGAGGGTTGA -ACGGAATCTACGTTGGAGTCCGAT -ACGGAATCTACGTTGGAGTGGCAT -ACGGAATCTACGTTGGAGCGAGAT -ACGGAATCTACGTTGGAGTACCAC -ACGGAATCTACGTTGGAGCAGAAC -ACGGAATCTACGTTGGAGGTCTAC -ACGGAATCTACGTTGGAGACGTAC -ACGGAATCTACGTTGGAGAGTGAC -ACGGAATCTACGTTGGAGCTGTAG -ACGGAATCTACGTTGGAGCCTAAG -ACGGAATCTACGTTGGAGGTTCAG -ACGGAATCTACGTTGGAGGCATAG -ACGGAATCTACGTTGGAGGACAAG -ACGGAATCTACGTTGGAGAAGCAG -ACGGAATCTACGTTGGAGCGTCAA -ACGGAATCTACGTTGGAGGCTGAA -ACGGAATCTACGTTGGAGAGTACG -ACGGAATCTACGTTGGAGATCCGA -ACGGAATCTACGTTGGAGATGGGA -ACGGAATCTACGTTGGAGGTGCAA -ACGGAATCTACGTTGGAGGAGGAA -ACGGAATCTACGTTGGAGCAGGTA -ACGGAATCTACGTTGGAGGACTCT -ACGGAATCTACGTTGGAGAGTCCT -ACGGAATCTACGTTGGAGTAAGCC -ACGGAATCTACGTTGGAGATAGCC -ACGGAATCTACGTTGGAGTAACCG -ACGGAATCTACGTTGGAGATGCCA -ACGGAATCTACGCTGAGAGGAAAC -ACGGAATCTACGCTGAGAAACACC -ACGGAATCTACGCTGAGAATCGAG -ACGGAATCTACGCTGAGACTCCTT -ACGGAATCTACGCTGAGACCTGTT -ACGGAATCTACGCTGAGACGGTTT -ACGGAATCTACGCTGAGAGTGGTT -ACGGAATCTACGCTGAGAGCCTTT -ACGGAATCTACGCTGAGAGGTCTT -ACGGAATCTACGCTGAGAACGCTT -ACGGAATCTACGCTGAGAAGCGTT -ACGGAATCTACGCTGAGATTCGTC -ACGGAATCTACGCTGAGATCTCTC -ACGGAATCTACGCTGAGATGGATC -ACGGAATCTACGCTGAGACACTTC -ACGGAATCTACGCTGAGAGTACTC -ACGGAATCTACGCTGAGAGATGTC -ACGGAATCTACGCTGAGAACAGTC -ACGGAATCTACGCTGAGATTGCTG -ACGGAATCTACGCTGAGATCCATG -ACGGAATCTACGCTGAGATGTGTG -ACGGAATCTACGCTGAGACTAGTG -ACGGAATCTACGCTGAGACATCTG -ACGGAATCTACGCTGAGAGAGTTG -ACGGAATCTACGCTGAGAAGACTG -ACGGAATCTACGCTGAGATCGGTA -ACGGAATCTACGCTGAGATGCCTA -ACGGAATCTACGCTGAGACCACTA -ACGGAATCTACGCTGAGAGGAGTA -ACGGAATCTACGCTGAGATCGTCT -ACGGAATCTACGCTGAGATGCACT -ACGGAATCTACGCTGAGACTGACT -ACGGAATCTACGCTGAGACAACCT -ACGGAATCTACGCTGAGAGCTACT -ACGGAATCTACGCTGAGAGGATCT -ACGGAATCTACGCTGAGAAAGGCT -ACGGAATCTACGCTGAGATCAACC -ACGGAATCTACGCTGAGATGTTCC -ACGGAATCTACGCTGAGAATTCCC -ACGGAATCTACGCTGAGATTCTCG -ACGGAATCTACGCTGAGATAGACG -ACGGAATCTACGCTGAGAGTAACG -ACGGAATCTACGCTGAGAACTTCG -ACGGAATCTACGCTGAGATACGCA -ACGGAATCTACGCTGAGACTTGCA -ACGGAATCTACGCTGAGACGAACA -ACGGAATCTACGCTGAGACAGTCA -ACGGAATCTACGCTGAGAGATCCA -ACGGAATCTACGCTGAGAACGACA -ACGGAATCTACGCTGAGAAGCTCA -ACGGAATCTACGCTGAGATCACGT -ACGGAATCTACGCTGAGACGTAGT -ACGGAATCTACGCTGAGAGTCAGT -ACGGAATCTACGCTGAGAGAAGGT -ACGGAATCTACGCTGAGAAACCGT -ACGGAATCTACGCTGAGATTGTGC -ACGGAATCTACGCTGAGACTAAGC -ACGGAATCTACGCTGAGAACTAGC -ACGGAATCTACGCTGAGAAGATGC -ACGGAATCTACGCTGAGATGAAGG -ACGGAATCTACGCTGAGACAATGG -ACGGAATCTACGCTGAGAATGAGG -ACGGAATCTACGCTGAGAAATGGG -ACGGAATCTACGCTGAGATCCTGA -ACGGAATCTACGCTGAGATAGCGA -ACGGAATCTACGCTGAGACACAGA -ACGGAATCTACGCTGAGAGCAAGA -ACGGAATCTACGCTGAGAGGTTGA -ACGGAATCTACGCTGAGATCCGAT -ACGGAATCTACGCTGAGATGGCAT -ACGGAATCTACGCTGAGACGAGAT -ACGGAATCTACGCTGAGATACCAC -ACGGAATCTACGCTGAGACAGAAC -ACGGAATCTACGCTGAGAGTCTAC -ACGGAATCTACGCTGAGAACGTAC -ACGGAATCTACGCTGAGAAGTGAC -ACGGAATCTACGCTGAGACTGTAG -ACGGAATCTACGCTGAGACCTAAG -ACGGAATCTACGCTGAGAGTTCAG -ACGGAATCTACGCTGAGAGCATAG -ACGGAATCTACGCTGAGAGACAAG -ACGGAATCTACGCTGAGAAAGCAG -ACGGAATCTACGCTGAGACGTCAA -ACGGAATCTACGCTGAGAGCTGAA -ACGGAATCTACGCTGAGAAGTACG -ACGGAATCTACGCTGAGAATCCGA -ACGGAATCTACGCTGAGAATGGGA -ACGGAATCTACGCTGAGAGTGCAA -ACGGAATCTACGCTGAGAGAGGAA -ACGGAATCTACGCTGAGACAGGTA -ACGGAATCTACGCTGAGAGACTCT -ACGGAATCTACGCTGAGAAGTCCT -ACGGAATCTACGCTGAGATAAGCC -ACGGAATCTACGCTGAGAATAGCC -ACGGAATCTACGCTGAGATAACCG -ACGGAATCTACGCTGAGAATGCCA -ACGGAATCTACGGTATCGGGAAAC -ACGGAATCTACGGTATCGAACACC -ACGGAATCTACGGTATCGATCGAG -ACGGAATCTACGGTATCGCTCCTT -ACGGAATCTACGGTATCGCCTGTT -ACGGAATCTACGGTATCGCGGTTT -ACGGAATCTACGGTATCGGTGGTT -ACGGAATCTACGGTATCGGCCTTT -ACGGAATCTACGGTATCGGGTCTT -ACGGAATCTACGGTATCGACGCTT -ACGGAATCTACGGTATCGAGCGTT -ACGGAATCTACGGTATCGTTCGTC -ACGGAATCTACGGTATCGTCTCTC -ACGGAATCTACGGTATCGTGGATC -ACGGAATCTACGGTATCGCACTTC -ACGGAATCTACGGTATCGGTACTC -ACGGAATCTACGGTATCGGATGTC -ACGGAATCTACGGTATCGACAGTC -ACGGAATCTACGGTATCGTTGCTG -ACGGAATCTACGGTATCGTCCATG -ACGGAATCTACGGTATCGTGTGTG -ACGGAATCTACGGTATCGCTAGTG -ACGGAATCTACGGTATCGCATCTG -ACGGAATCTACGGTATCGGAGTTG -ACGGAATCTACGGTATCGAGACTG -ACGGAATCTACGGTATCGTCGGTA -ACGGAATCTACGGTATCGTGCCTA -ACGGAATCTACGGTATCGCCACTA -ACGGAATCTACGGTATCGGGAGTA -ACGGAATCTACGGTATCGTCGTCT -ACGGAATCTACGGTATCGTGCACT -ACGGAATCTACGGTATCGCTGACT -ACGGAATCTACGGTATCGCAACCT -ACGGAATCTACGGTATCGGCTACT -ACGGAATCTACGGTATCGGGATCT -ACGGAATCTACGGTATCGAAGGCT -ACGGAATCTACGGTATCGTCAACC -ACGGAATCTACGGTATCGTGTTCC -ACGGAATCTACGGTATCGATTCCC -ACGGAATCTACGGTATCGTTCTCG -ACGGAATCTACGGTATCGTAGACG -ACGGAATCTACGGTATCGGTAACG -ACGGAATCTACGGTATCGACTTCG -ACGGAATCTACGGTATCGTACGCA -ACGGAATCTACGGTATCGCTTGCA -ACGGAATCTACGGTATCGCGAACA -ACGGAATCTACGGTATCGCAGTCA -ACGGAATCTACGGTATCGGATCCA -ACGGAATCTACGGTATCGACGACA -ACGGAATCTACGGTATCGAGCTCA -ACGGAATCTACGGTATCGTCACGT -ACGGAATCTACGGTATCGCGTAGT -ACGGAATCTACGGTATCGGTCAGT -ACGGAATCTACGGTATCGGAAGGT -ACGGAATCTACGGTATCGAACCGT -ACGGAATCTACGGTATCGTTGTGC -ACGGAATCTACGGTATCGCTAAGC -ACGGAATCTACGGTATCGACTAGC -ACGGAATCTACGGTATCGAGATGC -ACGGAATCTACGGTATCGTGAAGG -ACGGAATCTACGGTATCGCAATGG -ACGGAATCTACGGTATCGATGAGG -ACGGAATCTACGGTATCGAATGGG -ACGGAATCTACGGTATCGTCCTGA -ACGGAATCTACGGTATCGTAGCGA -ACGGAATCTACGGTATCGCACAGA -ACGGAATCTACGGTATCGGCAAGA -ACGGAATCTACGGTATCGGGTTGA -ACGGAATCTACGGTATCGTCCGAT -ACGGAATCTACGGTATCGTGGCAT -ACGGAATCTACGGTATCGCGAGAT -ACGGAATCTACGGTATCGTACCAC -ACGGAATCTACGGTATCGCAGAAC -ACGGAATCTACGGTATCGGTCTAC -ACGGAATCTACGGTATCGACGTAC -ACGGAATCTACGGTATCGAGTGAC -ACGGAATCTACGGTATCGCTGTAG -ACGGAATCTACGGTATCGCCTAAG -ACGGAATCTACGGTATCGGTTCAG -ACGGAATCTACGGTATCGGCATAG -ACGGAATCTACGGTATCGGACAAG -ACGGAATCTACGGTATCGAAGCAG -ACGGAATCTACGGTATCGCGTCAA -ACGGAATCTACGGTATCGGCTGAA -ACGGAATCTACGGTATCGAGTACG -ACGGAATCTACGGTATCGATCCGA -ACGGAATCTACGGTATCGATGGGA -ACGGAATCTACGGTATCGGTGCAA -ACGGAATCTACGGTATCGGAGGAA -ACGGAATCTACGGTATCGCAGGTA -ACGGAATCTACGGTATCGGACTCT -ACGGAATCTACGGTATCGAGTCCT -ACGGAATCTACGGTATCGTAAGCC -ACGGAATCTACGGTATCGATAGCC -ACGGAATCTACGGTATCGTAACCG -ACGGAATCTACGGTATCGATGCCA -ACGGAATCTACGCTATGCGGAAAC -ACGGAATCTACGCTATGCAACACC -ACGGAATCTACGCTATGCATCGAG -ACGGAATCTACGCTATGCCTCCTT -ACGGAATCTACGCTATGCCCTGTT -ACGGAATCTACGCTATGCCGGTTT -ACGGAATCTACGCTATGCGTGGTT -ACGGAATCTACGCTATGCGCCTTT -ACGGAATCTACGCTATGCGGTCTT -ACGGAATCTACGCTATGCACGCTT -ACGGAATCTACGCTATGCAGCGTT -ACGGAATCTACGCTATGCTTCGTC -ACGGAATCTACGCTATGCTCTCTC -ACGGAATCTACGCTATGCTGGATC -ACGGAATCTACGCTATGCCACTTC -ACGGAATCTACGCTATGCGTACTC -ACGGAATCTACGCTATGCGATGTC -ACGGAATCTACGCTATGCACAGTC -ACGGAATCTACGCTATGCTTGCTG -ACGGAATCTACGCTATGCTCCATG -ACGGAATCTACGCTATGCTGTGTG -ACGGAATCTACGCTATGCCTAGTG -ACGGAATCTACGCTATGCCATCTG -ACGGAATCTACGCTATGCGAGTTG -ACGGAATCTACGCTATGCAGACTG -ACGGAATCTACGCTATGCTCGGTA -ACGGAATCTACGCTATGCTGCCTA -ACGGAATCTACGCTATGCCCACTA -ACGGAATCTACGCTATGCGGAGTA -ACGGAATCTACGCTATGCTCGTCT -ACGGAATCTACGCTATGCTGCACT -ACGGAATCTACGCTATGCCTGACT -ACGGAATCTACGCTATGCCAACCT -ACGGAATCTACGCTATGCGCTACT -ACGGAATCTACGCTATGCGGATCT -ACGGAATCTACGCTATGCAAGGCT -ACGGAATCTACGCTATGCTCAACC -ACGGAATCTACGCTATGCTGTTCC -ACGGAATCTACGCTATGCATTCCC -ACGGAATCTACGCTATGCTTCTCG -ACGGAATCTACGCTATGCTAGACG -ACGGAATCTACGCTATGCGTAACG -ACGGAATCTACGCTATGCACTTCG -ACGGAATCTACGCTATGCTACGCA -ACGGAATCTACGCTATGCCTTGCA -ACGGAATCTACGCTATGCCGAACA -ACGGAATCTACGCTATGCCAGTCA -ACGGAATCTACGCTATGCGATCCA -ACGGAATCTACGCTATGCACGACA -ACGGAATCTACGCTATGCAGCTCA -ACGGAATCTACGCTATGCTCACGT -ACGGAATCTACGCTATGCCGTAGT -ACGGAATCTACGCTATGCGTCAGT -ACGGAATCTACGCTATGCGAAGGT -ACGGAATCTACGCTATGCAACCGT -ACGGAATCTACGCTATGCTTGTGC -ACGGAATCTACGCTATGCCTAAGC -ACGGAATCTACGCTATGCACTAGC -ACGGAATCTACGCTATGCAGATGC -ACGGAATCTACGCTATGCTGAAGG -ACGGAATCTACGCTATGCCAATGG -ACGGAATCTACGCTATGCATGAGG -ACGGAATCTACGCTATGCAATGGG -ACGGAATCTACGCTATGCTCCTGA -ACGGAATCTACGCTATGCTAGCGA -ACGGAATCTACGCTATGCCACAGA -ACGGAATCTACGCTATGCGCAAGA -ACGGAATCTACGCTATGCGGTTGA -ACGGAATCTACGCTATGCTCCGAT -ACGGAATCTACGCTATGCTGGCAT -ACGGAATCTACGCTATGCCGAGAT -ACGGAATCTACGCTATGCTACCAC -ACGGAATCTACGCTATGCCAGAAC -ACGGAATCTACGCTATGCGTCTAC -ACGGAATCTACGCTATGCACGTAC -ACGGAATCTACGCTATGCAGTGAC -ACGGAATCTACGCTATGCCTGTAG -ACGGAATCTACGCTATGCCCTAAG -ACGGAATCTACGCTATGCGTTCAG -ACGGAATCTACGCTATGCGCATAG -ACGGAATCTACGCTATGCGACAAG -ACGGAATCTACGCTATGCAAGCAG -ACGGAATCTACGCTATGCCGTCAA -ACGGAATCTACGCTATGCGCTGAA -ACGGAATCTACGCTATGCAGTACG -ACGGAATCTACGCTATGCATCCGA -ACGGAATCTACGCTATGCATGGGA -ACGGAATCTACGCTATGCGTGCAA -ACGGAATCTACGCTATGCGAGGAA -ACGGAATCTACGCTATGCCAGGTA -ACGGAATCTACGCTATGCGACTCT -ACGGAATCTACGCTATGCAGTCCT -ACGGAATCTACGCTATGCTAAGCC -ACGGAATCTACGCTATGCATAGCC -ACGGAATCTACGCTATGCTAACCG -ACGGAATCTACGCTATGCATGCCA -ACGGAATCTACGCTACCAGGAAAC -ACGGAATCTACGCTACCAAACACC -ACGGAATCTACGCTACCAATCGAG -ACGGAATCTACGCTACCACTCCTT -ACGGAATCTACGCTACCACCTGTT -ACGGAATCTACGCTACCACGGTTT -ACGGAATCTACGCTACCAGTGGTT -ACGGAATCTACGCTACCAGCCTTT -ACGGAATCTACGCTACCAGGTCTT -ACGGAATCTACGCTACCAACGCTT -ACGGAATCTACGCTACCAAGCGTT -ACGGAATCTACGCTACCATTCGTC -ACGGAATCTACGCTACCATCTCTC -ACGGAATCTACGCTACCATGGATC -ACGGAATCTACGCTACCACACTTC -ACGGAATCTACGCTACCAGTACTC -ACGGAATCTACGCTACCAGATGTC -ACGGAATCTACGCTACCAACAGTC -ACGGAATCTACGCTACCATTGCTG -ACGGAATCTACGCTACCATCCATG -ACGGAATCTACGCTACCATGTGTG -ACGGAATCTACGCTACCACTAGTG -ACGGAATCTACGCTACCACATCTG -ACGGAATCTACGCTACCAGAGTTG -ACGGAATCTACGCTACCAAGACTG -ACGGAATCTACGCTACCATCGGTA -ACGGAATCTACGCTACCATGCCTA -ACGGAATCTACGCTACCACCACTA -ACGGAATCTACGCTACCAGGAGTA -ACGGAATCTACGCTACCATCGTCT -ACGGAATCTACGCTACCATGCACT -ACGGAATCTACGCTACCACTGACT -ACGGAATCTACGCTACCACAACCT -ACGGAATCTACGCTACCAGCTACT -ACGGAATCTACGCTACCAGGATCT -ACGGAATCTACGCTACCAAAGGCT -ACGGAATCTACGCTACCATCAACC -ACGGAATCTACGCTACCATGTTCC -ACGGAATCTACGCTACCAATTCCC -ACGGAATCTACGCTACCATTCTCG -ACGGAATCTACGCTACCATAGACG -ACGGAATCTACGCTACCAGTAACG -ACGGAATCTACGCTACCAACTTCG -ACGGAATCTACGCTACCATACGCA -ACGGAATCTACGCTACCACTTGCA -ACGGAATCTACGCTACCACGAACA -ACGGAATCTACGCTACCACAGTCA -ACGGAATCTACGCTACCAGATCCA -ACGGAATCTACGCTACCAACGACA -ACGGAATCTACGCTACCAAGCTCA -ACGGAATCTACGCTACCATCACGT -ACGGAATCTACGCTACCACGTAGT -ACGGAATCTACGCTACCAGTCAGT -ACGGAATCTACGCTACCAGAAGGT -ACGGAATCTACGCTACCAAACCGT -ACGGAATCTACGCTACCATTGTGC -ACGGAATCTACGCTACCACTAAGC -ACGGAATCTACGCTACCAACTAGC -ACGGAATCTACGCTACCAAGATGC -ACGGAATCTACGCTACCATGAAGG -ACGGAATCTACGCTACCACAATGG -ACGGAATCTACGCTACCAATGAGG -ACGGAATCTACGCTACCAAATGGG -ACGGAATCTACGCTACCATCCTGA -ACGGAATCTACGCTACCATAGCGA -ACGGAATCTACGCTACCACACAGA -ACGGAATCTACGCTACCAGCAAGA -ACGGAATCTACGCTACCAGGTTGA -ACGGAATCTACGCTACCATCCGAT -ACGGAATCTACGCTACCATGGCAT -ACGGAATCTACGCTACCACGAGAT -ACGGAATCTACGCTACCATACCAC -ACGGAATCTACGCTACCACAGAAC -ACGGAATCTACGCTACCAGTCTAC -ACGGAATCTACGCTACCAACGTAC -ACGGAATCTACGCTACCAAGTGAC -ACGGAATCTACGCTACCACTGTAG -ACGGAATCTACGCTACCACCTAAG -ACGGAATCTACGCTACCAGTTCAG -ACGGAATCTACGCTACCAGCATAG -ACGGAATCTACGCTACCAGACAAG -ACGGAATCTACGCTACCAAAGCAG -ACGGAATCTACGCTACCACGTCAA -ACGGAATCTACGCTACCAGCTGAA -ACGGAATCTACGCTACCAAGTACG -ACGGAATCTACGCTACCAATCCGA -ACGGAATCTACGCTACCAATGGGA -ACGGAATCTACGCTACCAGTGCAA -ACGGAATCTACGCTACCAGAGGAA -ACGGAATCTACGCTACCACAGGTA -ACGGAATCTACGCTACCAGACTCT -ACGGAATCTACGCTACCAAGTCCT -ACGGAATCTACGCTACCATAAGCC -ACGGAATCTACGCTACCAATAGCC -ACGGAATCTACGCTACCATAACCG -ACGGAATCTACGCTACCAATGCCA -ACGGAATCTACGGTAGGAGGAAAC -ACGGAATCTACGGTAGGAAACACC -ACGGAATCTACGGTAGGAATCGAG -ACGGAATCTACGGTAGGACTCCTT -ACGGAATCTACGGTAGGACCTGTT -ACGGAATCTACGGTAGGACGGTTT -ACGGAATCTACGGTAGGAGTGGTT -ACGGAATCTACGGTAGGAGCCTTT -ACGGAATCTACGGTAGGAGGTCTT -ACGGAATCTACGGTAGGAACGCTT -ACGGAATCTACGGTAGGAAGCGTT -ACGGAATCTACGGTAGGATTCGTC -ACGGAATCTACGGTAGGATCTCTC -ACGGAATCTACGGTAGGATGGATC -ACGGAATCTACGGTAGGACACTTC -ACGGAATCTACGGTAGGAGTACTC -ACGGAATCTACGGTAGGAGATGTC -ACGGAATCTACGGTAGGAACAGTC -ACGGAATCTACGGTAGGATTGCTG -ACGGAATCTACGGTAGGATCCATG -ACGGAATCTACGGTAGGATGTGTG -ACGGAATCTACGGTAGGACTAGTG -ACGGAATCTACGGTAGGACATCTG -ACGGAATCTACGGTAGGAGAGTTG -ACGGAATCTACGGTAGGAAGACTG -ACGGAATCTACGGTAGGATCGGTA -ACGGAATCTACGGTAGGATGCCTA -ACGGAATCTACGGTAGGACCACTA -ACGGAATCTACGGTAGGAGGAGTA -ACGGAATCTACGGTAGGATCGTCT -ACGGAATCTACGGTAGGATGCACT -ACGGAATCTACGGTAGGACTGACT -ACGGAATCTACGGTAGGACAACCT -ACGGAATCTACGGTAGGAGCTACT -ACGGAATCTACGGTAGGAGGATCT -ACGGAATCTACGGTAGGAAAGGCT -ACGGAATCTACGGTAGGATCAACC -ACGGAATCTACGGTAGGATGTTCC -ACGGAATCTACGGTAGGAATTCCC -ACGGAATCTACGGTAGGATTCTCG -ACGGAATCTACGGTAGGATAGACG -ACGGAATCTACGGTAGGAGTAACG -ACGGAATCTACGGTAGGAACTTCG -ACGGAATCTACGGTAGGATACGCA -ACGGAATCTACGGTAGGACTTGCA -ACGGAATCTACGGTAGGACGAACA -ACGGAATCTACGGTAGGACAGTCA -ACGGAATCTACGGTAGGAGATCCA -ACGGAATCTACGGTAGGAACGACA -ACGGAATCTACGGTAGGAAGCTCA -ACGGAATCTACGGTAGGATCACGT -ACGGAATCTACGGTAGGACGTAGT -ACGGAATCTACGGTAGGAGTCAGT -ACGGAATCTACGGTAGGAGAAGGT -ACGGAATCTACGGTAGGAAACCGT -ACGGAATCTACGGTAGGATTGTGC -ACGGAATCTACGGTAGGACTAAGC -ACGGAATCTACGGTAGGAACTAGC -ACGGAATCTACGGTAGGAAGATGC -ACGGAATCTACGGTAGGATGAAGG -ACGGAATCTACGGTAGGACAATGG -ACGGAATCTACGGTAGGAATGAGG -ACGGAATCTACGGTAGGAAATGGG -ACGGAATCTACGGTAGGATCCTGA -ACGGAATCTACGGTAGGATAGCGA -ACGGAATCTACGGTAGGACACAGA -ACGGAATCTACGGTAGGAGCAAGA -ACGGAATCTACGGTAGGAGGTTGA -ACGGAATCTACGGTAGGATCCGAT -ACGGAATCTACGGTAGGATGGCAT -ACGGAATCTACGGTAGGACGAGAT -ACGGAATCTACGGTAGGATACCAC -ACGGAATCTACGGTAGGACAGAAC -ACGGAATCTACGGTAGGAGTCTAC -ACGGAATCTACGGTAGGAACGTAC -ACGGAATCTACGGTAGGAAGTGAC -ACGGAATCTACGGTAGGACTGTAG -ACGGAATCTACGGTAGGACCTAAG -ACGGAATCTACGGTAGGAGTTCAG -ACGGAATCTACGGTAGGAGCATAG -ACGGAATCTACGGTAGGAGACAAG -ACGGAATCTACGGTAGGAAAGCAG -ACGGAATCTACGGTAGGACGTCAA -ACGGAATCTACGGTAGGAGCTGAA -ACGGAATCTACGGTAGGAAGTACG -ACGGAATCTACGGTAGGAATCCGA -ACGGAATCTACGGTAGGAATGGGA -ACGGAATCTACGGTAGGAGTGCAA -ACGGAATCTACGGTAGGAGAGGAA -ACGGAATCTACGGTAGGACAGGTA -ACGGAATCTACGGTAGGAGACTCT -ACGGAATCTACGGTAGGAAGTCCT -ACGGAATCTACGGTAGGATAAGCC -ACGGAATCTACGGTAGGAATAGCC -ACGGAATCTACGGTAGGATAACCG -ACGGAATCTACGGTAGGAATGCCA -ACGGAATCTACGTCTTCGGGAAAC -ACGGAATCTACGTCTTCGAACACC -ACGGAATCTACGTCTTCGATCGAG -ACGGAATCTACGTCTTCGCTCCTT -ACGGAATCTACGTCTTCGCCTGTT -ACGGAATCTACGTCTTCGCGGTTT -ACGGAATCTACGTCTTCGGTGGTT -ACGGAATCTACGTCTTCGGCCTTT -ACGGAATCTACGTCTTCGGGTCTT -ACGGAATCTACGTCTTCGACGCTT -ACGGAATCTACGTCTTCGAGCGTT -ACGGAATCTACGTCTTCGTTCGTC -ACGGAATCTACGTCTTCGTCTCTC -ACGGAATCTACGTCTTCGTGGATC -ACGGAATCTACGTCTTCGCACTTC -ACGGAATCTACGTCTTCGGTACTC -ACGGAATCTACGTCTTCGGATGTC -ACGGAATCTACGTCTTCGACAGTC -ACGGAATCTACGTCTTCGTTGCTG -ACGGAATCTACGTCTTCGTCCATG -ACGGAATCTACGTCTTCGTGTGTG -ACGGAATCTACGTCTTCGCTAGTG -ACGGAATCTACGTCTTCGCATCTG -ACGGAATCTACGTCTTCGGAGTTG -ACGGAATCTACGTCTTCGAGACTG -ACGGAATCTACGTCTTCGTCGGTA -ACGGAATCTACGTCTTCGTGCCTA -ACGGAATCTACGTCTTCGCCACTA -ACGGAATCTACGTCTTCGGGAGTA -ACGGAATCTACGTCTTCGTCGTCT -ACGGAATCTACGTCTTCGTGCACT -ACGGAATCTACGTCTTCGCTGACT -ACGGAATCTACGTCTTCGCAACCT -ACGGAATCTACGTCTTCGGCTACT -ACGGAATCTACGTCTTCGGGATCT -ACGGAATCTACGTCTTCGAAGGCT -ACGGAATCTACGTCTTCGTCAACC -ACGGAATCTACGTCTTCGTGTTCC -ACGGAATCTACGTCTTCGATTCCC -ACGGAATCTACGTCTTCGTTCTCG -ACGGAATCTACGTCTTCGTAGACG -ACGGAATCTACGTCTTCGGTAACG -ACGGAATCTACGTCTTCGACTTCG -ACGGAATCTACGTCTTCGTACGCA -ACGGAATCTACGTCTTCGCTTGCA -ACGGAATCTACGTCTTCGCGAACA -ACGGAATCTACGTCTTCGCAGTCA -ACGGAATCTACGTCTTCGGATCCA -ACGGAATCTACGTCTTCGACGACA -ACGGAATCTACGTCTTCGAGCTCA -ACGGAATCTACGTCTTCGTCACGT -ACGGAATCTACGTCTTCGCGTAGT -ACGGAATCTACGTCTTCGGTCAGT -ACGGAATCTACGTCTTCGGAAGGT -ACGGAATCTACGTCTTCGAACCGT -ACGGAATCTACGTCTTCGTTGTGC -ACGGAATCTACGTCTTCGCTAAGC -ACGGAATCTACGTCTTCGACTAGC -ACGGAATCTACGTCTTCGAGATGC -ACGGAATCTACGTCTTCGTGAAGG -ACGGAATCTACGTCTTCGCAATGG -ACGGAATCTACGTCTTCGATGAGG -ACGGAATCTACGTCTTCGAATGGG -ACGGAATCTACGTCTTCGTCCTGA -ACGGAATCTACGTCTTCGTAGCGA -ACGGAATCTACGTCTTCGCACAGA -ACGGAATCTACGTCTTCGGCAAGA -ACGGAATCTACGTCTTCGGGTTGA -ACGGAATCTACGTCTTCGTCCGAT -ACGGAATCTACGTCTTCGTGGCAT -ACGGAATCTACGTCTTCGCGAGAT -ACGGAATCTACGTCTTCGTACCAC -ACGGAATCTACGTCTTCGCAGAAC -ACGGAATCTACGTCTTCGGTCTAC -ACGGAATCTACGTCTTCGACGTAC -ACGGAATCTACGTCTTCGAGTGAC -ACGGAATCTACGTCTTCGCTGTAG -ACGGAATCTACGTCTTCGCCTAAG -ACGGAATCTACGTCTTCGGTTCAG -ACGGAATCTACGTCTTCGGCATAG -ACGGAATCTACGTCTTCGGACAAG -ACGGAATCTACGTCTTCGAAGCAG -ACGGAATCTACGTCTTCGCGTCAA -ACGGAATCTACGTCTTCGGCTGAA -ACGGAATCTACGTCTTCGAGTACG -ACGGAATCTACGTCTTCGATCCGA -ACGGAATCTACGTCTTCGATGGGA -ACGGAATCTACGTCTTCGGTGCAA -ACGGAATCTACGTCTTCGGAGGAA -ACGGAATCTACGTCTTCGCAGGTA -ACGGAATCTACGTCTTCGGACTCT -ACGGAATCTACGTCTTCGAGTCCT -ACGGAATCTACGTCTTCGTAAGCC -ACGGAATCTACGTCTTCGATAGCC -ACGGAATCTACGTCTTCGTAACCG -ACGGAATCTACGTCTTCGATGCCA -ACGGAATCTACGACTTGCGGAAAC -ACGGAATCTACGACTTGCAACACC -ACGGAATCTACGACTTGCATCGAG -ACGGAATCTACGACTTGCCTCCTT -ACGGAATCTACGACTTGCCCTGTT -ACGGAATCTACGACTTGCCGGTTT -ACGGAATCTACGACTTGCGTGGTT -ACGGAATCTACGACTTGCGCCTTT -ACGGAATCTACGACTTGCGGTCTT -ACGGAATCTACGACTTGCACGCTT -ACGGAATCTACGACTTGCAGCGTT -ACGGAATCTACGACTTGCTTCGTC -ACGGAATCTACGACTTGCTCTCTC -ACGGAATCTACGACTTGCTGGATC -ACGGAATCTACGACTTGCCACTTC -ACGGAATCTACGACTTGCGTACTC -ACGGAATCTACGACTTGCGATGTC -ACGGAATCTACGACTTGCACAGTC -ACGGAATCTACGACTTGCTTGCTG -ACGGAATCTACGACTTGCTCCATG -ACGGAATCTACGACTTGCTGTGTG -ACGGAATCTACGACTTGCCTAGTG -ACGGAATCTACGACTTGCCATCTG -ACGGAATCTACGACTTGCGAGTTG -ACGGAATCTACGACTTGCAGACTG -ACGGAATCTACGACTTGCTCGGTA -ACGGAATCTACGACTTGCTGCCTA -ACGGAATCTACGACTTGCCCACTA -ACGGAATCTACGACTTGCGGAGTA -ACGGAATCTACGACTTGCTCGTCT -ACGGAATCTACGACTTGCTGCACT -ACGGAATCTACGACTTGCCTGACT -ACGGAATCTACGACTTGCCAACCT -ACGGAATCTACGACTTGCGCTACT -ACGGAATCTACGACTTGCGGATCT -ACGGAATCTACGACTTGCAAGGCT -ACGGAATCTACGACTTGCTCAACC -ACGGAATCTACGACTTGCTGTTCC -ACGGAATCTACGACTTGCATTCCC -ACGGAATCTACGACTTGCTTCTCG -ACGGAATCTACGACTTGCTAGACG -ACGGAATCTACGACTTGCGTAACG -ACGGAATCTACGACTTGCACTTCG -ACGGAATCTACGACTTGCTACGCA -ACGGAATCTACGACTTGCCTTGCA -ACGGAATCTACGACTTGCCGAACA -ACGGAATCTACGACTTGCCAGTCA -ACGGAATCTACGACTTGCGATCCA -ACGGAATCTACGACTTGCACGACA -ACGGAATCTACGACTTGCAGCTCA -ACGGAATCTACGACTTGCTCACGT -ACGGAATCTACGACTTGCCGTAGT -ACGGAATCTACGACTTGCGTCAGT -ACGGAATCTACGACTTGCGAAGGT -ACGGAATCTACGACTTGCAACCGT -ACGGAATCTACGACTTGCTTGTGC -ACGGAATCTACGACTTGCCTAAGC -ACGGAATCTACGACTTGCACTAGC -ACGGAATCTACGACTTGCAGATGC -ACGGAATCTACGACTTGCTGAAGG -ACGGAATCTACGACTTGCCAATGG -ACGGAATCTACGACTTGCATGAGG -ACGGAATCTACGACTTGCAATGGG -ACGGAATCTACGACTTGCTCCTGA -ACGGAATCTACGACTTGCTAGCGA -ACGGAATCTACGACTTGCCACAGA -ACGGAATCTACGACTTGCGCAAGA -ACGGAATCTACGACTTGCGGTTGA -ACGGAATCTACGACTTGCTCCGAT -ACGGAATCTACGACTTGCTGGCAT -ACGGAATCTACGACTTGCCGAGAT -ACGGAATCTACGACTTGCTACCAC -ACGGAATCTACGACTTGCCAGAAC -ACGGAATCTACGACTTGCGTCTAC -ACGGAATCTACGACTTGCACGTAC -ACGGAATCTACGACTTGCAGTGAC -ACGGAATCTACGACTTGCCTGTAG -ACGGAATCTACGACTTGCCCTAAG -ACGGAATCTACGACTTGCGTTCAG -ACGGAATCTACGACTTGCGCATAG -ACGGAATCTACGACTTGCGACAAG -ACGGAATCTACGACTTGCAAGCAG -ACGGAATCTACGACTTGCCGTCAA -ACGGAATCTACGACTTGCGCTGAA -ACGGAATCTACGACTTGCAGTACG -ACGGAATCTACGACTTGCATCCGA -ACGGAATCTACGACTTGCATGGGA -ACGGAATCTACGACTTGCGTGCAA -ACGGAATCTACGACTTGCGAGGAA -ACGGAATCTACGACTTGCCAGGTA -ACGGAATCTACGACTTGCGACTCT -ACGGAATCTACGACTTGCAGTCCT -ACGGAATCTACGACTTGCTAAGCC -ACGGAATCTACGACTTGCATAGCC -ACGGAATCTACGACTTGCTAACCG -ACGGAATCTACGACTTGCATGCCA -ACGGAATCTACGACTCTGGGAAAC -ACGGAATCTACGACTCTGAACACC -ACGGAATCTACGACTCTGATCGAG -ACGGAATCTACGACTCTGCTCCTT -ACGGAATCTACGACTCTGCCTGTT -ACGGAATCTACGACTCTGCGGTTT -ACGGAATCTACGACTCTGGTGGTT -ACGGAATCTACGACTCTGGCCTTT -ACGGAATCTACGACTCTGGGTCTT -ACGGAATCTACGACTCTGACGCTT -ACGGAATCTACGACTCTGAGCGTT -ACGGAATCTACGACTCTGTTCGTC -ACGGAATCTACGACTCTGTCTCTC -ACGGAATCTACGACTCTGTGGATC -ACGGAATCTACGACTCTGCACTTC -ACGGAATCTACGACTCTGGTACTC -ACGGAATCTACGACTCTGGATGTC -ACGGAATCTACGACTCTGACAGTC -ACGGAATCTACGACTCTGTTGCTG -ACGGAATCTACGACTCTGTCCATG -ACGGAATCTACGACTCTGTGTGTG -ACGGAATCTACGACTCTGCTAGTG -ACGGAATCTACGACTCTGCATCTG -ACGGAATCTACGACTCTGGAGTTG -ACGGAATCTACGACTCTGAGACTG -ACGGAATCTACGACTCTGTCGGTA -ACGGAATCTACGACTCTGTGCCTA -ACGGAATCTACGACTCTGCCACTA -ACGGAATCTACGACTCTGGGAGTA -ACGGAATCTACGACTCTGTCGTCT -ACGGAATCTACGACTCTGTGCACT -ACGGAATCTACGACTCTGCTGACT -ACGGAATCTACGACTCTGCAACCT -ACGGAATCTACGACTCTGGCTACT -ACGGAATCTACGACTCTGGGATCT -ACGGAATCTACGACTCTGAAGGCT -ACGGAATCTACGACTCTGTCAACC -ACGGAATCTACGACTCTGTGTTCC -ACGGAATCTACGACTCTGATTCCC -ACGGAATCTACGACTCTGTTCTCG -ACGGAATCTACGACTCTGTAGACG -ACGGAATCTACGACTCTGGTAACG -ACGGAATCTACGACTCTGACTTCG -ACGGAATCTACGACTCTGTACGCA -ACGGAATCTACGACTCTGCTTGCA -ACGGAATCTACGACTCTGCGAACA -ACGGAATCTACGACTCTGCAGTCA -ACGGAATCTACGACTCTGGATCCA -ACGGAATCTACGACTCTGACGACA -ACGGAATCTACGACTCTGAGCTCA -ACGGAATCTACGACTCTGTCACGT -ACGGAATCTACGACTCTGCGTAGT -ACGGAATCTACGACTCTGGTCAGT -ACGGAATCTACGACTCTGGAAGGT -ACGGAATCTACGACTCTGAACCGT -ACGGAATCTACGACTCTGTTGTGC -ACGGAATCTACGACTCTGCTAAGC -ACGGAATCTACGACTCTGACTAGC -ACGGAATCTACGACTCTGAGATGC -ACGGAATCTACGACTCTGTGAAGG -ACGGAATCTACGACTCTGCAATGG -ACGGAATCTACGACTCTGATGAGG -ACGGAATCTACGACTCTGAATGGG -ACGGAATCTACGACTCTGTCCTGA -ACGGAATCTACGACTCTGTAGCGA -ACGGAATCTACGACTCTGCACAGA -ACGGAATCTACGACTCTGGCAAGA -ACGGAATCTACGACTCTGGGTTGA -ACGGAATCTACGACTCTGTCCGAT -ACGGAATCTACGACTCTGTGGCAT -ACGGAATCTACGACTCTGCGAGAT -ACGGAATCTACGACTCTGTACCAC -ACGGAATCTACGACTCTGCAGAAC -ACGGAATCTACGACTCTGGTCTAC -ACGGAATCTACGACTCTGACGTAC -ACGGAATCTACGACTCTGAGTGAC -ACGGAATCTACGACTCTGCTGTAG -ACGGAATCTACGACTCTGCCTAAG -ACGGAATCTACGACTCTGGTTCAG -ACGGAATCTACGACTCTGGCATAG -ACGGAATCTACGACTCTGGACAAG -ACGGAATCTACGACTCTGAAGCAG -ACGGAATCTACGACTCTGCGTCAA -ACGGAATCTACGACTCTGGCTGAA -ACGGAATCTACGACTCTGAGTACG -ACGGAATCTACGACTCTGATCCGA -ACGGAATCTACGACTCTGATGGGA -ACGGAATCTACGACTCTGGTGCAA -ACGGAATCTACGACTCTGGAGGAA -ACGGAATCTACGACTCTGCAGGTA -ACGGAATCTACGACTCTGGACTCT -ACGGAATCTACGACTCTGAGTCCT -ACGGAATCTACGACTCTGTAAGCC -ACGGAATCTACGACTCTGATAGCC -ACGGAATCTACGACTCTGTAACCG -ACGGAATCTACGACTCTGATGCCA -ACGGAATCTACGCCTCAAGGAAAC -ACGGAATCTACGCCTCAAAACACC -ACGGAATCTACGCCTCAAATCGAG -ACGGAATCTACGCCTCAACTCCTT -ACGGAATCTACGCCTCAACCTGTT -ACGGAATCTACGCCTCAACGGTTT -ACGGAATCTACGCCTCAAGTGGTT -ACGGAATCTACGCCTCAAGCCTTT -ACGGAATCTACGCCTCAAGGTCTT -ACGGAATCTACGCCTCAAACGCTT -ACGGAATCTACGCCTCAAAGCGTT -ACGGAATCTACGCCTCAATTCGTC -ACGGAATCTACGCCTCAATCTCTC -ACGGAATCTACGCCTCAATGGATC -ACGGAATCTACGCCTCAACACTTC -ACGGAATCTACGCCTCAAGTACTC -ACGGAATCTACGCCTCAAGATGTC -ACGGAATCTACGCCTCAAACAGTC -ACGGAATCTACGCCTCAATTGCTG -ACGGAATCTACGCCTCAATCCATG -ACGGAATCTACGCCTCAATGTGTG -ACGGAATCTACGCCTCAACTAGTG -ACGGAATCTACGCCTCAACATCTG -ACGGAATCTACGCCTCAAGAGTTG -ACGGAATCTACGCCTCAAAGACTG -ACGGAATCTACGCCTCAATCGGTA -ACGGAATCTACGCCTCAATGCCTA -ACGGAATCTACGCCTCAACCACTA -ACGGAATCTACGCCTCAAGGAGTA -ACGGAATCTACGCCTCAATCGTCT -ACGGAATCTACGCCTCAATGCACT -ACGGAATCTACGCCTCAACTGACT -ACGGAATCTACGCCTCAACAACCT -ACGGAATCTACGCCTCAAGCTACT -ACGGAATCTACGCCTCAAGGATCT -ACGGAATCTACGCCTCAAAAGGCT -ACGGAATCTACGCCTCAATCAACC -ACGGAATCTACGCCTCAATGTTCC -ACGGAATCTACGCCTCAAATTCCC -ACGGAATCTACGCCTCAATTCTCG -ACGGAATCTACGCCTCAATAGACG -ACGGAATCTACGCCTCAAGTAACG -ACGGAATCTACGCCTCAAACTTCG -ACGGAATCTACGCCTCAATACGCA -ACGGAATCTACGCCTCAACTTGCA -ACGGAATCTACGCCTCAACGAACA -ACGGAATCTACGCCTCAACAGTCA -ACGGAATCTACGCCTCAAGATCCA -ACGGAATCTACGCCTCAAACGACA -ACGGAATCTACGCCTCAAAGCTCA -ACGGAATCTACGCCTCAATCACGT -ACGGAATCTACGCCTCAACGTAGT -ACGGAATCTACGCCTCAAGTCAGT -ACGGAATCTACGCCTCAAGAAGGT -ACGGAATCTACGCCTCAAAACCGT -ACGGAATCTACGCCTCAATTGTGC -ACGGAATCTACGCCTCAACTAAGC -ACGGAATCTACGCCTCAAACTAGC -ACGGAATCTACGCCTCAAAGATGC -ACGGAATCTACGCCTCAATGAAGG -ACGGAATCTACGCCTCAACAATGG -ACGGAATCTACGCCTCAAATGAGG -ACGGAATCTACGCCTCAAAATGGG -ACGGAATCTACGCCTCAATCCTGA -ACGGAATCTACGCCTCAATAGCGA -ACGGAATCTACGCCTCAACACAGA -ACGGAATCTACGCCTCAAGCAAGA -ACGGAATCTACGCCTCAAGGTTGA -ACGGAATCTACGCCTCAATCCGAT -ACGGAATCTACGCCTCAATGGCAT -ACGGAATCTACGCCTCAACGAGAT -ACGGAATCTACGCCTCAATACCAC -ACGGAATCTACGCCTCAACAGAAC -ACGGAATCTACGCCTCAAGTCTAC -ACGGAATCTACGCCTCAAACGTAC -ACGGAATCTACGCCTCAAAGTGAC -ACGGAATCTACGCCTCAACTGTAG -ACGGAATCTACGCCTCAACCTAAG -ACGGAATCTACGCCTCAAGTTCAG -ACGGAATCTACGCCTCAAGCATAG -ACGGAATCTACGCCTCAAGACAAG -ACGGAATCTACGCCTCAAAAGCAG -ACGGAATCTACGCCTCAACGTCAA -ACGGAATCTACGCCTCAAGCTGAA -ACGGAATCTACGCCTCAAAGTACG -ACGGAATCTACGCCTCAAATCCGA -ACGGAATCTACGCCTCAAATGGGA -ACGGAATCTACGCCTCAAGTGCAA -ACGGAATCTACGCCTCAAGAGGAA -ACGGAATCTACGCCTCAACAGGTA -ACGGAATCTACGCCTCAAGACTCT -ACGGAATCTACGCCTCAAAGTCCT -ACGGAATCTACGCCTCAATAAGCC -ACGGAATCTACGCCTCAAATAGCC -ACGGAATCTACGCCTCAATAACCG -ACGGAATCTACGCCTCAAATGCCA -ACGGAATCTACGACTGCTGGAAAC -ACGGAATCTACGACTGCTAACACC -ACGGAATCTACGACTGCTATCGAG -ACGGAATCTACGACTGCTCTCCTT -ACGGAATCTACGACTGCTCCTGTT -ACGGAATCTACGACTGCTCGGTTT -ACGGAATCTACGACTGCTGTGGTT -ACGGAATCTACGACTGCTGCCTTT -ACGGAATCTACGACTGCTGGTCTT -ACGGAATCTACGACTGCTACGCTT -ACGGAATCTACGACTGCTAGCGTT -ACGGAATCTACGACTGCTTTCGTC -ACGGAATCTACGACTGCTTCTCTC -ACGGAATCTACGACTGCTTGGATC -ACGGAATCTACGACTGCTCACTTC -ACGGAATCTACGACTGCTGTACTC -ACGGAATCTACGACTGCTGATGTC -ACGGAATCTACGACTGCTACAGTC -ACGGAATCTACGACTGCTTTGCTG -ACGGAATCTACGACTGCTTCCATG -ACGGAATCTACGACTGCTTGTGTG -ACGGAATCTACGACTGCTCTAGTG -ACGGAATCTACGACTGCTCATCTG -ACGGAATCTACGACTGCTGAGTTG -ACGGAATCTACGACTGCTAGACTG -ACGGAATCTACGACTGCTTCGGTA -ACGGAATCTACGACTGCTTGCCTA -ACGGAATCTACGACTGCTCCACTA -ACGGAATCTACGACTGCTGGAGTA -ACGGAATCTACGACTGCTTCGTCT -ACGGAATCTACGACTGCTTGCACT -ACGGAATCTACGACTGCTCTGACT -ACGGAATCTACGACTGCTCAACCT -ACGGAATCTACGACTGCTGCTACT -ACGGAATCTACGACTGCTGGATCT -ACGGAATCTACGACTGCTAAGGCT -ACGGAATCTACGACTGCTTCAACC -ACGGAATCTACGACTGCTTGTTCC -ACGGAATCTACGACTGCTATTCCC -ACGGAATCTACGACTGCTTTCTCG -ACGGAATCTACGACTGCTTAGACG -ACGGAATCTACGACTGCTGTAACG -ACGGAATCTACGACTGCTACTTCG -ACGGAATCTACGACTGCTTACGCA -ACGGAATCTACGACTGCTCTTGCA -ACGGAATCTACGACTGCTCGAACA -ACGGAATCTACGACTGCTCAGTCA -ACGGAATCTACGACTGCTGATCCA -ACGGAATCTACGACTGCTACGACA -ACGGAATCTACGACTGCTAGCTCA -ACGGAATCTACGACTGCTTCACGT -ACGGAATCTACGACTGCTCGTAGT -ACGGAATCTACGACTGCTGTCAGT -ACGGAATCTACGACTGCTGAAGGT -ACGGAATCTACGACTGCTAACCGT -ACGGAATCTACGACTGCTTTGTGC -ACGGAATCTACGACTGCTCTAAGC -ACGGAATCTACGACTGCTACTAGC -ACGGAATCTACGACTGCTAGATGC -ACGGAATCTACGACTGCTTGAAGG -ACGGAATCTACGACTGCTCAATGG -ACGGAATCTACGACTGCTATGAGG -ACGGAATCTACGACTGCTAATGGG -ACGGAATCTACGACTGCTTCCTGA -ACGGAATCTACGACTGCTTAGCGA -ACGGAATCTACGACTGCTCACAGA -ACGGAATCTACGACTGCTGCAAGA -ACGGAATCTACGACTGCTGGTTGA -ACGGAATCTACGACTGCTTCCGAT -ACGGAATCTACGACTGCTTGGCAT -ACGGAATCTACGACTGCTCGAGAT -ACGGAATCTACGACTGCTTACCAC -ACGGAATCTACGACTGCTCAGAAC -ACGGAATCTACGACTGCTGTCTAC -ACGGAATCTACGACTGCTACGTAC -ACGGAATCTACGACTGCTAGTGAC -ACGGAATCTACGACTGCTCTGTAG -ACGGAATCTACGACTGCTCCTAAG -ACGGAATCTACGACTGCTGTTCAG -ACGGAATCTACGACTGCTGCATAG -ACGGAATCTACGACTGCTGACAAG -ACGGAATCTACGACTGCTAAGCAG -ACGGAATCTACGACTGCTCGTCAA -ACGGAATCTACGACTGCTGCTGAA -ACGGAATCTACGACTGCTAGTACG -ACGGAATCTACGACTGCTATCCGA -ACGGAATCTACGACTGCTATGGGA -ACGGAATCTACGACTGCTGTGCAA -ACGGAATCTACGACTGCTGAGGAA -ACGGAATCTACGACTGCTCAGGTA -ACGGAATCTACGACTGCTGACTCT -ACGGAATCTACGACTGCTAGTCCT -ACGGAATCTACGACTGCTTAAGCC -ACGGAATCTACGACTGCTATAGCC -ACGGAATCTACGACTGCTTAACCG -ACGGAATCTACGACTGCTATGCCA -ACGGAATCTACGTCTGGAGGAAAC -ACGGAATCTACGTCTGGAAACACC -ACGGAATCTACGTCTGGAATCGAG -ACGGAATCTACGTCTGGACTCCTT -ACGGAATCTACGTCTGGACCTGTT -ACGGAATCTACGTCTGGACGGTTT -ACGGAATCTACGTCTGGAGTGGTT -ACGGAATCTACGTCTGGAGCCTTT -ACGGAATCTACGTCTGGAGGTCTT -ACGGAATCTACGTCTGGAACGCTT -ACGGAATCTACGTCTGGAAGCGTT -ACGGAATCTACGTCTGGATTCGTC -ACGGAATCTACGTCTGGATCTCTC -ACGGAATCTACGTCTGGATGGATC -ACGGAATCTACGTCTGGACACTTC -ACGGAATCTACGTCTGGAGTACTC -ACGGAATCTACGTCTGGAGATGTC -ACGGAATCTACGTCTGGAACAGTC -ACGGAATCTACGTCTGGATTGCTG -ACGGAATCTACGTCTGGATCCATG -ACGGAATCTACGTCTGGATGTGTG -ACGGAATCTACGTCTGGACTAGTG -ACGGAATCTACGTCTGGACATCTG -ACGGAATCTACGTCTGGAGAGTTG -ACGGAATCTACGTCTGGAAGACTG -ACGGAATCTACGTCTGGATCGGTA -ACGGAATCTACGTCTGGATGCCTA -ACGGAATCTACGTCTGGACCACTA -ACGGAATCTACGTCTGGAGGAGTA -ACGGAATCTACGTCTGGATCGTCT -ACGGAATCTACGTCTGGATGCACT -ACGGAATCTACGTCTGGACTGACT -ACGGAATCTACGTCTGGACAACCT -ACGGAATCTACGTCTGGAGCTACT -ACGGAATCTACGTCTGGAGGATCT -ACGGAATCTACGTCTGGAAAGGCT -ACGGAATCTACGTCTGGATCAACC -ACGGAATCTACGTCTGGATGTTCC -ACGGAATCTACGTCTGGAATTCCC -ACGGAATCTACGTCTGGATTCTCG -ACGGAATCTACGTCTGGATAGACG -ACGGAATCTACGTCTGGAGTAACG -ACGGAATCTACGTCTGGAACTTCG -ACGGAATCTACGTCTGGATACGCA -ACGGAATCTACGTCTGGACTTGCA -ACGGAATCTACGTCTGGACGAACA -ACGGAATCTACGTCTGGACAGTCA -ACGGAATCTACGTCTGGAGATCCA -ACGGAATCTACGTCTGGAACGACA -ACGGAATCTACGTCTGGAAGCTCA -ACGGAATCTACGTCTGGATCACGT -ACGGAATCTACGTCTGGACGTAGT -ACGGAATCTACGTCTGGAGTCAGT -ACGGAATCTACGTCTGGAGAAGGT -ACGGAATCTACGTCTGGAAACCGT -ACGGAATCTACGTCTGGATTGTGC -ACGGAATCTACGTCTGGACTAAGC -ACGGAATCTACGTCTGGAACTAGC -ACGGAATCTACGTCTGGAAGATGC -ACGGAATCTACGTCTGGATGAAGG -ACGGAATCTACGTCTGGACAATGG -ACGGAATCTACGTCTGGAATGAGG -ACGGAATCTACGTCTGGAAATGGG -ACGGAATCTACGTCTGGATCCTGA -ACGGAATCTACGTCTGGATAGCGA -ACGGAATCTACGTCTGGACACAGA -ACGGAATCTACGTCTGGAGCAAGA -ACGGAATCTACGTCTGGAGGTTGA -ACGGAATCTACGTCTGGATCCGAT -ACGGAATCTACGTCTGGATGGCAT -ACGGAATCTACGTCTGGACGAGAT -ACGGAATCTACGTCTGGATACCAC -ACGGAATCTACGTCTGGACAGAAC -ACGGAATCTACGTCTGGAGTCTAC -ACGGAATCTACGTCTGGAACGTAC -ACGGAATCTACGTCTGGAAGTGAC -ACGGAATCTACGTCTGGACTGTAG -ACGGAATCTACGTCTGGACCTAAG -ACGGAATCTACGTCTGGAGTTCAG -ACGGAATCTACGTCTGGAGCATAG -ACGGAATCTACGTCTGGAGACAAG -ACGGAATCTACGTCTGGAAAGCAG -ACGGAATCTACGTCTGGACGTCAA -ACGGAATCTACGTCTGGAGCTGAA -ACGGAATCTACGTCTGGAAGTACG -ACGGAATCTACGTCTGGAATCCGA -ACGGAATCTACGTCTGGAATGGGA -ACGGAATCTACGTCTGGAGTGCAA -ACGGAATCTACGTCTGGAGAGGAA -ACGGAATCTACGTCTGGACAGGTA -ACGGAATCTACGTCTGGAGACTCT -ACGGAATCTACGTCTGGAAGTCCT -ACGGAATCTACGTCTGGATAAGCC -ACGGAATCTACGTCTGGAATAGCC -ACGGAATCTACGTCTGGATAACCG -ACGGAATCTACGTCTGGAATGCCA -ACGGAATCTACGGCTAAGGGAAAC -ACGGAATCTACGGCTAAGAACACC -ACGGAATCTACGGCTAAGATCGAG -ACGGAATCTACGGCTAAGCTCCTT -ACGGAATCTACGGCTAAGCCTGTT -ACGGAATCTACGGCTAAGCGGTTT -ACGGAATCTACGGCTAAGGTGGTT -ACGGAATCTACGGCTAAGGCCTTT -ACGGAATCTACGGCTAAGGGTCTT -ACGGAATCTACGGCTAAGACGCTT -ACGGAATCTACGGCTAAGAGCGTT -ACGGAATCTACGGCTAAGTTCGTC -ACGGAATCTACGGCTAAGTCTCTC -ACGGAATCTACGGCTAAGTGGATC -ACGGAATCTACGGCTAAGCACTTC -ACGGAATCTACGGCTAAGGTACTC -ACGGAATCTACGGCTAAGGATGTC -ACGGAATCTACGGCTAAGACAGTC -ACGGAATCTACGGCTAAGTTGCTG -ACGGAATCTACGGCTAAGTCCATG -ACGGAATCTACGGCTAAGTGTGTG -ACGGAATCTACGGCTAAGCTAGTG -ACGGAATCTACGGCTAAGCATCTG -ACGGAATCTACGGCTAAGGAGTTG -ACGGAATCTACGGCTAAGAGACTG -ACGGAATCTACGGCTAAGTCGGTA -ACGGAATCTACGGCTAAGTGCCTA -ACGGAATCTACGGCTAAGCCACTA -ACGGAATCTACGGCTAAGGGAGTA -ACGGAATCTACGGCTAAGTCGTCT -ACGGAATCTACGGCTAAGTGCACT -ACGGAATCTACGGCTAAGCTGACT -ACGGAATCTACGGCTAAGCAACCT -ACGGAATCTACGGCTAAGGCTACT -ACGGAATCTACGGCTAAGGGATCT -ACGGAATCTACGGCTAAGAAGGCT -ACGGAATCTACGGCTAAGTCAACC -ACGGAATCTACGGCTAAGTGTTCC -ACGGAATCTACGGCTAAGATTCCC -ACGGAATCTACGGCTAAGTTCTCG -ACGGAATCTACGGCTAAGTAGACG -ACGGAATCTACGGCTAAGGTAACG -ACGGAATCTACGGCTAAGACTTCG -ACGGAATCTACGGCTAAGTACGCA -ACGGAATCTACGGCTAAGCTTGCA -ACGGAATCTACGGCTAAGCGAACA -ACGGAATCTACGGCTAAGCAGTCA -ACGGAATCTACGGCTAAGGATCCA -ACGGAATCTACGGCTAAGACGACA -ACGGAATCTACGGCTAAGAGCTCA -ACGGAATCTACGGCTAAGTCACGT -ACGGAATCTACGGCTAAGCGTAGT -ACGGAATCTACGGCTAAGGTCAGT -ACGGAATCTACGGCTAAGGAAGGT -ACGGAATCTACGGCTAAGAACCGT -ACGGAATCTACGGCTAAGTTGTGC -ACGGAATCTACGGCTAAGCTAAGC -ACGGAATCTACGGCTAAGACTAGC -ACGGAATCTACGGCTAAGAGATGC -ACGGAATCTACGGCTAAGTGAAGG -ACGGAATCTACGGCTAAGCAATGG -ACGGAATCTACGGCTAAGATGAGG -ACGGAATCTACGGCTAAGAATGGG -ACGGAATCTACGGCTAAGTCCTGA -ACGGAATCTACGGCTAAGTAGCGA -ACGGAATCTACGGCTAAGCACAGA -ACGGAATCTACGGCTAAGGCAAGA -ACGGAATCTACGGCTAAGGGTTGA -ACGGAATCTACGGCTAAGTCCGAT -ACGGAATCTACGGCTAAGTGGCAT -ACGGAATCTACGGCTAAGCGAGAT -ACGGAATCTACGGCTAAGTACCAC -ACGGAATCTACGGCTAAGCAGAAC -ACGGAATCTACGGCTAAGGTCTAC -ACGGAATCTACGGCTAAGACGTAC -ACGGAATCTACGGCTAAGAGTGAC -ACGGAATCTACGGCTAAGCTGTAG -ACGGAATCTACGGCTAAGCCTAAG -ACGGAATCTACGGCTAAGGTTCAG -ACGGAATCTACGGCTAAGGCATAG -ACGGAATCTACGGCTAAGGACAAG -ACGGAATCTACGGCTAAGAAGCAG -ACGGAATCTACGGCTAAGCGTCAA -ACGGAATCTACGGCTAAGGCTGAA -ACGGAATCTACGGCTAAGAGTACG -ACGGAATCTACGGCTAAGATCCGA -ACGGAATCTACGGCTAAGATGGGA -ACGGAATCTACGGCTAAGGTGCAA -ACGGAATCTACGGCTAAGGAGGAA -ACGGAATCTACGGCTAAGCAGGTA -ACGGAATCTACGGCTAAGGACTCT -ACGGAATCTACGGCTAAGAGTCCT -ACGGAATCTACGGCTAAGTAAGCC -ACGGAATCTACGGCTAAGATAGCC -ACGGAATCTACGGCTAAGTAACCG -ACGGAATCTACGGCTAAGATGCCA -ACGGAATCTACGACCTCAGGAAAC -ACGGAATCTACGACCTCAAACACC -ACGGAATCTACGACCTCAATCGAG -ACGGAATCTACGACCTCACTCCTT -ACGGAATCTACGACCTCACCTGTT -ACGGAATCTACGACCTCACGGTTT -ACGGAATCTACGACCTCAGTGGTT -ACGGAATCTACGACCTCAGCCTTT -ACGGAATCTACGACCTCAGGTCTT -ACGGAATCTACGACCTCAACGCTT -ACGGAATCTACGACCTCAAGCGTT -ACGGAATCTACGACCTCATTCGTC -ACGGAATCTACGACCTCATCTCTC -ACGGAATCTACGACCTCATGGATC -ACGGAATCTACGACCTCACACTTC -ACGGAATCTACGACCTCAGTACTC -ACGGAATCTACGACCTCAGATGTC -ACGGAATCTACGACCTCAACAGTC -ACGGAATCTACGACCTCATTGCTG -ACGGAATCTACGACCTCATCCATG -ACGGAATCTACGACCTCATGTGTG -ACGGAATCTACGACCTCACTAGTG -ACGGAATCTACGACCTCACATCTG -ACGGAATCTACGACCTCAGAGTTG -ACGGAATCTACGACCTCAAGACTG -ACGGAATCTACGACCTCATCGGTA -ACGGAATCTACGACCTCATGCCTA -ACGGAATCTACGACCTCACCACTA -ACGGAATCTACGACCTCAGGAGTA -ACGGAATCTACGACCTCATCGTCT -ACGGAATCTACGACCTCATGCACT -ACGGAATCTACGACCTCACTGACT -ACGGAATCTACGACCTCACAACCT -ACGGAATCTACGACCTCAGCTACT -ACGGAATCTACGACCTCAGGATCT -ACGGAATCTACGACCTCAAAGGCT -ACGGAATCTACGACCTCATCAACC -ACGGAATCTACGACCTCATGTTCC -ACGGAATCTACGACCTCAATTCCC -ACGGAATCTACGACCTCATTCTCG -ACGGAATCTACGACCTCATAGACG -ACGGAATCTACGACCTCAGTAACG -ACGGAATCTACGACCTCAACTTCG -ACGGAATCTACGACCTCATACGCA -ACGGAATCTACGACCTCACTTGCA -ACGGAATCTACGACCTCACGAACA -ACGGAATCTACGACCTCACAGTCA -ACGGAATCTACGACCTCAGATCCA -ACGGAATCTACGACCTCAACGACA -ACGGAATCTACGACCTCAAGCTCA -ACGGAATCTACGACCTCATCACGT -ACGGAATCTACGACCTCACGTAGT -ACGGAATCTACGACCTCAGTCAGT -ACGGAATCTACGACCTCAGAAGGT -ACGGAATCTACGACCTCAAACCGT -ACGGAATCTACGACCTCATTGTGC -ACGGAATCTACGACCTCACTAAGC -ACGGAATCTACGACCTCAACTAGC -ACGGAATCTACGACCTCAAGATGC -ACGGAATCTACGACCTCATGAAGG -ACGGAATCTACGACCTCACAATGG -ACGGAATCTACGACCTCAATGAGG -ACGGAATCTACGACCTCAAATGGG -ACGGAATCTACGACCTCATCCTGA -ACGGAATCTACGACCTCATAGCGA -ACGGAATCTACGACCTCACACAGA -ACGGAATCTACGACCTCAGCAAGA -ACGGAATCTACGACCTCAGGTTGA -ACGGAATCTACGACCTCATCCGAT -ACGGAATCTACGACCTCATGGCAT -ACGGAATCTACGACCTCACGAGAT -ACGGAATCTACGACCTCATACCAC -ACGGAATCTACGACCTCACAGAAC -ACGGAATCTACGACCTCAGTCTAC -ACGGAATCTACGACCTCAACGTAC -ACGGAATCTACGACCTCAAGTGAC -ACGGAATCTACGACCTCACTGTAG -ACGGAATCTACGACCTCACCTAAG -ACGGAATCTACGACCTCAGTTCAG -ACGGAATCTACGACCTCAGCATAG -ACGGAATCTACGACCTCAGACAAG -ACGGAATCTACGACCTCAAAGCAG -ACGGAATCTACGACCTCACGTCAA -ACGGAATCTACGACCTCAGCTGAA -ACGGAATCTACGACCTCAAGTACG -ACGGAATCTACGACCTCAATCCGA -ACGGAATCTACGACCTCAATGGGA -ACGGAATCTACGACCTCAGTGCAA -ACGGAATCTACGACCTCAGAGGAA -ACGGAATCTACGACCTCACAGGTA -ACGGAATCTACGACCTCAGACTCT -ACGGAATCTACGACCTCAAGTCCT -ACGGAATCTACGACCTCATAAGCC -ACGGAATCTACGACCTCAATAGCC -ACGGAATCTACGACCTCATAACCG -ACGGAATCTACGACCTCAATGCCA -ACGGAATCTACGTCCTGTGGAAAC -ACGGAATCTACGTCCTGTAACACC -ACGGAATCTACGTCCTGTATCGAG -ACGGAATCTACGTCCTGTCTCCTT -ACGGAATCTACGTCCTGTCCTGTT -ACGGAATCTACGTCCTGTCGGTTT -ACGGAATCTACGTCCTGTGTGGTT -ACGGAATCTACGTCCTGTGCCTTT -ACGGAATCTACGTCCTGTGGTCTT -ACGGAATCTACGTCCTGTACGCTT -ACGGAATCTACGTCCTGTAGCGTT -ACGGAATCTACGTCCTGTTTCGTC -ACGGAATCTACGTCCTGTTCTCTC -ACGGAATCTACGTCCTGTTGGATC -ACGGAATCTACGTCCTGTCACTTC -ACGGAATCTACGTCCTGTGTACTC -ACGGAATCTACGTCCTGTGATGTC -ACGGAATCTACGTCCTGTACAGTC -ACGGAATCTACGTCCTGTTTGCTG -ACGGAATCTACGTCCTGTTCCATG -ACGGAATCTACGTCCTGTTGTGTG -ACGGAATCTACGTCCTGTCTAGTG -ACGGAATCTACGTCCTGTCATCTG -ACGGAATCTACGTCCTGTGAGTTG -ACGGAATCTACGTCCTGTAGACTG -ACGGAATCTACGTCCTGTTCGGTA -ACGGAATCTACGTCCTGTTGCCTA -ACGGAATCTACGTCCTGTCCACTA -ACGGAATCTACGTCCTGTGGAGTA -ACGGAATCTACGTCCTGTTCGTCT -ACGGAATCTACGTCCTGTTGCACT -ACGGAATCTACGTCCTGTCTGACT -ACGGAATCTACGTCCTGTCAACCT -ACGGAATCTACGTCCTGTGCTACT -ACGGAATCTACGTCCTGTGGATCT -ACGGAATCTACGTCCTGTAAGGCT -ACGGAATCTACGTCCTGTTCAACC -ACGGAATCTACGTCCTGTTGTTCC -ACGGAATCTACGTCCTGTATTCCC -ACGGAATCTACGTCCTGTTTCTCG -ACGGAATCTACGTCCTGTTAGACG -ACGGAATCTACGTCCTGTGTAACG -ACGGAATCTACGTCCTGTACTTCG -ACGGAATCTACGTCCTGTTACGCA -ACGGAATCTACGTCCTGTCTTGCA -ACGGAATCTACGTCCTGTCGAACA -ACGGAATCTACGTCCTGTCAGTCA -ACGGAATCTACGTCCTGTGATCCA -ACGGAATCTACGTCCTGTACGACA -ACGGAATCTACGTCCTGTAGCTCA -ACGGAATCTACGTCCTGTTCACGT -ACGGAATCTACGTCCTGTCGTAGT -ACGGAATCTACGTCCTGTGTCAGT -ACGGAATCTACGTCCTGTGAAGGT -ACGGAATCTACGTCCTGTAACCGT -ACGGAATCTACGTCCTGTTTGTGC -ACGGAATCTACGTCCTGTCTAAGC -ACGGAATCTACGTCCTGTACTAGC -ACGGAATCTACGTCCTGTAGATGC -ACGGAATCTACGTCCTGTTGAAGG -ACGGAATCTACGTCCTGTCAATGG -ACGGAATCTACGTCCTGTATGAGG -ACGGAATCTACGTCCTGTAATGGG -ACGGAATCTACGTCCTGTTCCTGA -ACGGAATCTACGTCCTGTTAGCGA -ACGGAATCTACGTCCTGTCACAGA -ACGGAATCTACGTCCTGTGCAAGA -ACGGAATCTACGTCCTGTGGTTGA -ACGGAATCTACGTCCTGTTCCGAT -ACGGAATCTACGTCCTGTTGGCAT -ACGGAATCTACGTCCTGTCGAGAT -ACGGAATCTACGTCCTGTTACCAC -ACGGAATCTACGTCCTGTCAGAAC -ACGGAATCTACGTCCTGTGTCTAC -ACGGAATCTACGTCCTGTACGTAC -ACGGAATCTACGTCCTGTAGTGAC -ACGGAATCTACGTCCTGTCTGTAG -ACGGAATCTACGTCCTGTCCTAAG -ACGGAATCTACGTCCTGTGTTCAG -ACGGAATCTACGTCCTGTGCATAG -ACGGAATCTACGTCCTGTGACAAG -ACGGAATCTACGTCCTGTAAGCAG -ACGGAATCTACGTCCTGTCGTCAA -ACGGAATCTACGTCCTGTGCTGAA -ACGGAATCTACGTCCTGTAGTACG -ACGGAATCTACGTCCTGTATCCGA -ACGGAATCTACGTCCTGTATGGGA -ACGGAATCTACGTCCTGTGTGCAA -ACGGAATCTACGTCCTGTGAGGAA -ACGGAATCTACGTCCTGTCAGGTA -ACGGAATCTACGTCCTGTGACTCT -ACGGAATCTACGTCCTGTAGTCCT -ACGGAATCTACGTCCTGTTAAGCC -ACGGAATCTACGTCCTGTATAGCC -ACGGAATCTACGTCCTGTTAACCG -ACGGAATCTACGTCCTGTATGCCA -ACGGAATCTACGCCCATTGGAAAC -ACGGAATCTACGCCCATTAACACC -ACGGAATCTACGCCCATTATCGAG -ACGGAATCTACGCCCATTCTCCTT -ACGGAATCTACGCCCATTCCTGTT -ACGGAATCTACGCCCATTCGGTTT -ACGGAATCTACGCCCATTGTGGTT -ACGGAATCTACGCCCATTGCCTTT -ACGGAATCTACGCCCATTGGTCTT -ACGGAATCTACGCCCATTACGCTT -ACGGAATCTACGCCCATTAGCGTT -ACGGAATCTACGCCCATTTTCGTC -ACGGAATCTACGCCCATTTCTCTC -ACGGAATCTACGCCCATTTGGATC -ACGGAATCTACGCCCATTCACTTC -ACGGAATCTACGCCCATTGTACTC -ACGGAATCTACGCCCATTGATGTC -ACGGAATCTACGCCCATTACAGTC -ACGGAATCTACGCCCATTTTGCTG -ACGGAATCTACGCCCATTTCCATG -ACGGAATCTACGCCCATTTGTGTG -ACGGAATCTACGCCCATTCTAGTG -ACGGAATCTACGCCCATTCATCTG -ACGGAATCTACGCCCATTGAGTTG -ACGGAATCTACGCCCATTAGACTG -ACGGAATCTACGCCCATTTCGGTA -ACGGAATCTACGCCCATTTGCCTA -ACGGAATCTACGCCCATTCCACTA -ACGGAATCTACGCCCATTGGAGTA -ACGGAATCTACGCCCATTTCGTCT -ACGGAATCTACGCCCATTTGCACT -ACGGAATCTACGCCCATTCTGACT -ACGGAATCTACGCCCATTCAACCT -ACGGAATCTACGCCCATTGCTACT -ACGGAATCTACGCCCATTGGATCT -ACGGAATCTACGCCCATTAAGGCT -ACGGAATCTACGCCCATTTCAACC -ACGGAATCTACGCCCATTTGTTCC -ACGGAATCTACGCCCATTATTCCC -ACGGAATCTACGCCCATTTTCTCG -ACGGAATCTACGCCCATTTAGACG -ACGGAATCTACGCCCATTGTAACG -ACGGAATCTACGCCCATTACTTCG -ACGGAATCTACGCCCATTTACGCA -ACGGAATCTACGCCCATTCTTGCA -ACGGAATCTACGCCCATTCGAACA -ACGGAATCTACGCCCATTCAGTCA -ACGGAATCTACGCCCATTGATCCA -ACGGAATCTACGCCCATTACGACA -ACGGAATCTACGCCCATTAGCTCA -ACGGAATCTACGCCCATTTCACGT -ACGGAATCTACGCCCATTCGTAGT -ACGGAATCTACGCCCATTGTCAGT -ACGGAATCTACGCCCATTGAAGGT -ACGGAATCTACGCCCATTAACCGT -ACGGAATCTACGCCCATTTTGTGC -ACGGAATCTACGCCCATTCTAAGC -ACGGAATCTACGCCCATTACTAGC -ACGGAATCTACGCCCATTAGATGC -ACGGAATCTACGCCCATTTGAAGG -ACGGAATCTACGCCCATTCAATGG -ACGGAATCTACGCCCATTATGAGG -ACGGAATCTACGCCCATTAATGGG -ACGGAATCTACGCCCATTTCCTGA -ACGGAATCTACGCCCATTTAGCGA -ACGGAATCTACGCCCATTCACAGA -ACGGAATCTACGCCCATTGCAAGA -ACGGAATCTACGCCCATTGGTTGA -ACGGAATCTACGCCCATTTCCGAT -ACGGAATCTACGCCCATTTGGCAT -ACGGAATCTACGCCCATTCGAGAT -ACGGAATCTACGCCCATTTACCAC -ACGGAATCTACGCCCATTCAGAAC -ACGGAATCTACGCCCATTGTCTAC -ACGGAATCTACGCCCATTACGTAC -ACGGAATCTACGCCCATTAGTGAC -ACGGAATCTACGCCCATTCTGTAG -ACGGAATCTACGCCCATTCCTAAG -ACGGAATCTACGCCCATTGTTCAG -ACGGAATCTACGCCCATTGCATAG -ACGGAATCTACGCCCATTGACAAG -ACGGAATCTACGCCCATTAAGCAG -ACGGAATCTACGCCCATTCGTCAA -ACGGAATCTACGCCCATTGCTGAA -ACGGAATCTACGCCCATTAGTACG -ACGGAATCTACGCCCATTATCCGA -ACGGAATCTACGCCCATTATGGGA -ACGGAATCTACGCCCATTGTGCAA -ACGGAATCTACGCCCATTGAGGAA -ACGGAATCTACGCCCATTCAGGTA -ACGGAATCTACGCCCATTGACTCT -ACGGAATCTACGCCCATTAGTCCT -ACGGAATCTACGCCCATTTAAGCC -ACGGAATCTACGCCCATTATAGCC -ACGGAATCTACGCCCATTTAACCG -ACGGAATCTACGCCCATTATGCCA -ACGGAATCTACGTCGTTCGGAAAC -ACGGAATCTACGTCGTTCAACACC -ACGGAATCTACGTCGTTCATCGAG -ACGGAATCTACGTCGTTCCTCCTT -ACGGAATCTACGTCGTTCCCTGTT -ACGGAATCTACGTCGTTCCGGTTT -ACGGAATCTACGTCGTTCGTGGTT -ACGGAATCTACGTCGTTCGCCTTT -ACGGAATCTACGTCGTTCGGTCTT -ACGGAATCTACGTCGTTCACGCTT -ACGGAATCTACGTCGTTCAGCGTT -ACGGAATCTACGTCGTTCTTCGTC -ACGGAATCTACGTCGTTCTCTCTC -ACGGAATCTACGTCGTTCTGGATC -ACGGAATCTACGTCGTTCCACTTC -ACGGAATCTACGTCGTTCGTACTC -ACGGAATCTACGTCGTTCGATGTC -ACGGAATCTACGTCGTTCACAGTC -ACGGAATCTACGTCGTTCTTGCTG -ACGGAATCTACGTCGTTCTCCATG -ACGGAATCTACGTCGTTCTGTGTG -ACGGAATCTACGTCGTTCCTAGTG -ACGGAATCTACGTCGTTCCATCTG -ACGGAATCTACGTCGTTCGAGTTG -ACGGAATCTACGTCGTTCAGACTG -ACGGAATCTACGTCGTTCTCGGTA -ACGGAATCTACGTCGTTCTGCCTA -ACGGAATCTACGTCGTTCCCACTA -ACGGAATCTACGTCGTTCGGAGTA -ACGGAATCTACGTCGTTCTCGTCT -ACGGAATCTACGTCGTTCTGCACT -ACGGAATCTACGTCGTTCCTGACT -ACGGAATCTACGTCGTTCCAACCT -ACGGAATCTACGTCGTTCGCTACT -ACGGAATCTACGTCGTTCGGATCT -ACGGAATCTACGTCGTTCAAGGCT -ACGGAATCTACGTCGTTCTCAACC -ACGGAATCTACGTCGTTCTGTTCC -ACGGAATCTACGTCGTTCATTCCC -ACGGAATCTACGTCGTTCTTCTCG -ACGGAATCTACGTCGTTCTAGACG -ACGGAATCTACGTCGTTCGTAACG -ACGGAATCTACGTCGTTCACTTCG -ACGGAATCTACGTCGTTCTACGCA -ACGGAATCTACGTCGTTCCTTGCA -ACGGAATCTACGTCGTTCCGAACA -ACGGAATCTACGTCGTTCCAGTCA -ACGGAATCTACGTCGTTCGATCCA -ACGGAATCTACGTCGTTCACGACA -ACGGAATCTACGTCGTTCAGCTCA -ACGGAATCTACGTCGTTCTCACGT -ACGGAATCTACGTCGTTCCGTAGT -ACGGAATCTACGTCGTTCGTCAGT -ACGGAATCTACGTCGTTCGAAGGT -ACGGAATCTACGTCGTTCAACCGT -ACGGAATCTACGTCGTTCTTGTGC -ACGGAATCTACGTCGTTCCTAAGC -ACGGAATCTACGTCGTTCACTAGC -ACGGAATCTACGTCGTTCAGATGC -ACGGAATCTACGTCGTTCTGAAGG -ACGGAATCTACGTCGTTCCAATGG -ACGGAATCTACGTCGTTCATGAGG -ACGGAATCTACGTCGTTCAATGGG -ACGGAATCTACGTCGTTCTCCTGA -ACGGAATCTACGTCGTTCTAGCGA -ACGGAATCTACGTCGTTCCACAGA -ACGGAATCTACGTCGTTCGCAAGA -ACGGAATCTACGTCGTTCGGTTGA -ACGGAATCTACGTCGTTCTCCGAT -ACGGAATCTACGTCGTTCTGGCAT -ACGGAATCTACGTCGTTCCGAGAT -ACGGAATCTACGTCGTTCTACCAC -ACGGAATCTACGTCGTTCCAGAAC -ACGGAATCTACGTCGTTCGTCTAC -ACGGAATCTACGTCGTTCACGTAC -ACGGAATCTACGTCGTTCAGTGAC -ACGGAATCTACGTCGTTCCTGTAG -ACGGAATCTACGTCGTTCCCTAAG -ACGGAATCTACGTCGTTCGTTCAG -ACGGAATCTACGTCGTTCGCATAG -ACGGAATCTACGTCGTTCGACAAG -ACGGAATCTACGTCGTTCAAGCAG -ACGGAATCTACGTCGTTCCGTCAA -ACGGAATCTACGTCGTTCGCTGAA -ACGGAATCTACGTCGTTCAGTACG -ACGGAATCTACGTCGTTCATCCGA -ACGGAATCTACGTCGTTCATGGGA -ACGGAATCTACGTCGTTCGTGCAA -ACGGAATCTACGTCGTTCGAGGAA -ACGGAATCTACGTCGTTCCAGGTA -ACGGAATCTACGTCGTTCGACTCT -ACGGAATCTACGTCGTTCAGTCCT -ACGGAATCTACGTCGTTCTAAGCC -ACGGAATCTACGTCGTTCATAGCC -ACGGAATCTACGTCGTTCTAACCG -ACGGAATCTACGTCGTTCATGCCA -ACGGAATCTACGACGTAGGGAAAC -ACGGAATCTACGACGTAGAACACC -ACGGAATCTACGACGTAGATCGAG -ACGGAATCTACGACGTAGCTCCTT -ACGGAATCTACGACGTAGCCTGTT -ACGGAATCTACGACGTAGCGGTTT -ACGGAATCTACGACGTAGGTGGTT -ACGGAATCTACGACGTAGGCCTTT -ACGGAATCTACGACGTAGGGTCTT -ACGGAATCTACGACGTAGACGCTT -ACGGAATCTACGACGTAGAGCGTT -ACGGAATCTACGACGTAGTTCGTC -ACGGAATCTACGACGTAGTCTCTC -ACGGAATCTACGACGTAGTGGATC -ACGGAATCTACGACGTAGCACTTC -ACGGAATCTACGACGTAGGTACTC -ACGGAATCTACGACGTAGGATGTC -ACGGAATCTACGACGTAGACAGTC -ACGGAATCTACGACGTAGTTGCTG -ACGGAATCTACGACGTAGTCCATG -ACGGAATCTACGACGTAGTGTGTG -ACGGAATCTACGACGTAGCTAGTG -ACGGAATCTACGACGTAGCATCTG -ACGGAATCTACGACGTAGGAGTTG -ACGGAATCTACGACGTAGAGACTG -ACGGAATCTACGACGTAGTCGGTA -ACGGAATCTACGACGTAGTGCCTA -ACGGAATCTACGACGTAGCCACTA -ACGGAATCTACGACGTAGGGAGTA -ACGGAATCTACGACGTAGTCGTCT -ACGGAATCTACGACGTAGTGCACT -ACGGAATCTACGACGTAGCTGACT -ACGGAATCTACGACGTAGCAACCT -ACGGAATCTACGACGTAGGCTACT -ACGGAATCTACGACGTAGGGATCT -ACGGAATCTACGACGTAGAAGGCT -ACGGAATCTACGACGTAGTCAACC -ACGGAATCTACGACGTAGTGTTCC -ACGGAATCTACGACGTAGATTCCC -ACGGAATCTACGACGTAGTTCTCG -ACGGAATCTACGACGTAGTAGACG -ACGGAATCTACGACGTAGGTAACG -ACGGAATCTACGACGTAGACTTCG -ACGGAATCTACGACGTAGTACGCA -ACGGAATCTACGACGTAGCTTGCA -ACGGAATCTACGACGTAGCGAACA -ACGGAATCTACGACGTAGCAGTCA -ACGGAATCTACGACGTAGGATCCA -ACGGAATCTACGACGTAGACGACA -ACGGAATCTACGACGTAGAGCTCA -ACGGAATCTACGACGTAGTCACGT -ACGGAATCTACGACGTAGCGTAGT -ACGGAATCTACGACGTAGGTCAGT -ACGGAATCTACGACGTAGGAAGGT -ACGGAATCTACGACGTAGAACCGT -ACGGAATCTACGACGTAGTTGTGC -ACGGAATCTACGACGTAGCTAAGC -ACGGAATCTACGACGTAGACTAGC -ACGGAATCTACGACGTAGAGATGC -ACGGAATCTACGACGTAGTGAAGG -ACGGAATCTACGACGTAGCAATGG -ACGGAATCTACGACGTAGATGAGG -ACGGAATCTACGACGTAGAATGGG -ACGGAATCTACGACGTAGTCCTGA -ACGGAATCTACGACGTAGTAGCGA -ACGGAATCTACGACGTAGCACAGA -ACGGAATCTACGACGTAGGCAAGA -ACGGAATCTACGACGTAGGGTTGA -ACGGAATCTACGACGTAGTCCGAT -ACGGAATCTACGACGTAGTGGCAT -ACGGAATCTACGACGTAGCGAGAT -ACGGAATCTACGACGTAGTACCAC -ACGGAATCTACGACGTAGCAGAAC -ACGGAATCTACGACGTAGGTCTAC -ACGGAATCTACGACGTAGACGTAC -ACGGAATCTACGACGTAGAGTGAC -ACGGAATCTACGACGTAGCTGTAG -ACGGAATCTACGACGTAGCCTAAG -ACGGAATCTACGACGTAGGTTCAG -ACGGAATCTACGACGTAGGCATAG -ACGGAATCTACGACGTAGGACAAG -ACGGAATCTACGACGTAGAAGCAG -ACGGAATCTACGACGTAGCGTCAA -ACGGAATCTACGACGTAGGCTGAA -ACGGAATCTACGACGTAGAGTACG -ACGGAATCTACGACGTAGATCCGA -ACGGAATCTACGACGTAGATGGGA -ACGGAATCTACGACGTAGGTGCAA -ACGGAATCTACGACGTAGGAGGAA -ACGGAATCTACGACGTAGCAGGTA -ACGGAATCTACGACGTAGGACTCT -ACGGAATCTACGACGTAGAGTCCT -ACGGAATCTACGACGTAGTAAGCC -ACGGAATCTACGACGTAGATAGCC -ACGGAATCTACGACGTAGTAACCG -ACGGAATCTACGACGTAGATGCCA -ACGGAATCTACGACGGTAGGAAAC -ACGGAATCTACGACGGTAAACACC -ACGGAATCTACGACGGTAATCGAG -ACGGAATCTACGACGGTACTCCTT -ACGGAATCTACGACGGTACCTGTT -ACGGAATCTACGACGGTACGGTTT -ACGGAATCTACGACGGTAGTGGTT -ACGGAATCTACGACGGTAGCCTTT -ACGGAATCTACGACGGTAGGTCTT -ACGGAATCTACGACGGTAACGCTT -ACGGAATCTACGACGGTAAGCGTT -ACGGAATCTACGACGGTATTCGTC -ACGGAATCTACGACGGTATCTCTC -ACGGAATCTACGACGGTATGGATC -ACGGAATCTACGACGGTACACTTC -ACGGAATCTACGACGGTAGTACTC -ACGGAATCTACGACGGTAGATGTC -ACGGAATCTACGACGGTAACAGTC -ACGGAATCTACGACGGTATTGCTG -ACGGAATCTACGACGGTATCCATG -ACGGAATCTACGACGGTATGTGTG -ACGGAATCTACGACGGTACTAGTG -ACGGAATCTACGACGGTACATCTG -ACGGAATCTACGACGGTAGAGTTG -ACGGAATCTACGACGGTAAGACTG -ACGGAATCTACGACGGTATCGGTA -ACGGAATCTACGACGGTATGCCTA -ACGGAATCTACGACGGTACCACTA -ACGGAATCTACGACGGTAGGAGTA -ACGGAATCTACGACGGTATCGTCT -ACGGAATCTACGACGGTATGCACT -ACGGAATCTACGACGGTACTGACT -ACGGAATCTACGACGGTACAACCT -ACGGAATCTACGACGGTAGCTACT -ACGGAATCTACGACGGTAGGATCT -ACGGAATCTACGACGGTAAAGGCT -ACGGAATCTACGACGGTATCAACC -ACGGAATCTACGACGGTATGTTCC -ACGGAATCTACGACGGTAATTCCC -ACGGAATCTACGACGGTATTCTCG -ACGGAATCTACGACGGTATAGACG -ACGGAATCTACGACGGTAGTAACG -ACGGAATCTACGACGGTAACTTCG -ACGGAATCTACGACGGTATACGCA -ACGGAATCTACGACGGTACTTGCA -ACGGAATCTACGACGGTACGAACA -ACGGAATCTACGACGGTACAGTCA -ACGGAATCTACGACGGTAGATCCA -ACGGAATCTACGACGGTAACGACA -ACGGAATCTACGACGGTAAGCTCA -ACGGAATCTACGACGGTATCACGT -ACGGAATCTACGACGGTACGTAGT -ACGGAATCTACGACGGTAGTCAGT -ACGGAATCTACGACGGTAGAAGGT -ACGGAATCTACGACGGTAAACCGT -ACGGAATCTACGACGGTATTGTGC -ACGGAATCTACGACGGTACTAAGC -ACGGAATCTACGACGGTAACTAGC -ACGGAATCTACGACGGTAAGATGC -ACGGAATCTACGACGGTATGAAGG -ACGGAATCTACGACGGTACAATGG -ACGGAATCTACGACGGTAATGAGG -ACGGAATCTACGACGGTAAATGGG -ACGGAATCTACGACGGTATCCTGA -ACGGAATCTACGACGGTATAGCGA -ACGGAATCTACGACGGTACACAGA -ACGGAATCTACGACGGTAGCAAGA -ACGGAATCTACGACGGTAGGTTGA -ACGGAATCTACGACGGTATCCGAT -ACGGAATCTACGACGGTATGGCAT -ACGGAATCTACGACGGTACGAGAT -ACGGAATCTACGACGGTATACCAC -ACGGAATCTACGACGGTACAGAAC -ACGGAATCTACGACGGTAGTCTAC -ACGGAATCTACGACGGTAACGTAC -ACGGAATCTACGACGGTAAGTGAC -ACGGAATCTACGACGGTACTGTAG -ACGGAATCTACGACGGTACCTAAG -ACGGAATCTACGACGGTAGTTCAG -ACGGAATCTACGACGGTAGCATAG -ACGGAATCTACGACGGTAGACAAG -ACGGAATCTACGACGGTAAAGCAG -ACGGAATCTACGACGGTACGTCAA -ACGGAATCTACGACGGTAGCTGAA -ACGGAATCTACGACGGTAAGTACG -ACGGAATCTACGACGGTAATCCGA -ACGGAATCTACGACGGTAATGGGA -ACGGAATCTACGACGGTAGTGCAA -ACGGAATCTACGACGGTAGAGGAA -ACGGAATCTACGACGGTACAGGTA -ACGGAATCTACGACGGTAGACTCT -ACGGAATCTACGACGGTAAGTCCT -ACGGAATCTACGACGGTATAAGCC -ACGGAATCTACGACGGTAATAGCC -ACGGAATCTACGACGGTATAACCG -ACGGAATCTACGACGGTAATGCCA -ACGGAATCTACGTCGACTGGAAAC -ACGGAATCTACGTCGACTAACACC -ACGGAATCTACGTCGACTATCGAG -ACGGAATCTACGTCGACTCTCCTT -ACGGAATCTACGTCGACTCCTGTT -ACGGAATCTACGTCGACTCGGTTT -ACGGAATCTACGTCGACTGTGGTT -ACGGAATCTACGTCGACTGCCTTT -ACGGAATCTACGTCGACTGGTCTT -ACGGAATCTACGTCGACTACGCTT -ACGGAATCTACGTCGACTAGCGTT -ACGGAATCTACGTCGACTTTCGTC -ACGGAATCTACGTCGACTTCTCTC -ACGGAATCTACGTCGACTTGGATC -ACGGAATCTACGTCGACTCACTTC -ACGGAATCTACGTCGACTGTACTC -ACGGAATCTACGTCGACTGATGTC -ACGGAATCTACGTCGACTACAGTC -ACGGAATCTACGTCGACTTTGCTG -ACGGAATCTACGTCGACTTCCATG -ACGGAATCTACGTCGACTTGTGTG -ACGGAATCTACGTCGACTCTAGTG -ACGGAATCTACGTCGACTCATCTG -ACGGAATCTACGTCGACTGAGTTG -ACGGAATCTACGTCGACTAGACTG -ACGGAATCTACGTCGACTTCGGTA -ACGGAATCTACGTCGACTTGCCTA -ACGGAATCTACGTCGACTCCACTA -ACGGAATCTACGTCGACTGGAGTA -ACGGAATCTACGTCGACTTCGTCT -ACGGAATCTACGTCGACTTGCACT -ACGGAATCTACGTCGACTCTGACT -ACGGAATCTACGTCGACTCAACCT -ACGGAATCTACGTCGACTGCTACT -ACGGAATCTACGTCGACTGGATCT -ACGGAATCTACGTCGACTAAGGCT -ACGGAATCTACGTCGACTTCAACC -ACGGAATCTACGTCGACTTGTTCC -ACGGAATCTACGTCGACTATTCCC -ACGGAATCTACGTCGACTTTCTCG -ACGGAATCTACGTCGACTTAGACG -ACGGAATCTACGTCGACTGTAACG -ACGGAATCTACGTCGACTACTTCG -ACGGAATCTACGTCGACTTACGCA -ACGGAATCTACGTCGACTCTTGCA -ACGGAATCTACGTCGACTCGAACA -ACGGAATCTACGTCGACTCAGTCA -ACGGAATCTACGTCGACTGATCCA -ACGGAATCTACGTCGACTACGACA -ACGGAATCTACGTCGACTAGCTCA -ACGGAATCTACGTCGACTTCACGT -ACGGAATCTACGTCGACTCGTAGT -ACGGAATCTACGTCGACTGTCAGT -ACGGAATCTACGTCGACTGAAGGT -ACGGAATCTACGTCGACTAACCGT -ACGGAATCTACGTCGACTTTGTGC -ACGGAATCTACGTCGACTCTAAGC -ACGGAATCTACGTCGACTACTAGC -ACGGAATCTACGTCGACTAGATGC -ACGGAATCTACGTCGACTTGAAGG -ACGGAATCTACGTCGACTCAATGG -ACGGAATCTACGTCGACTATGAGG -ACGGAATCTACGTCGACTAATGGG -ACGGAATCTACGTCGACTTCCTGA -ACGGAATCTACGTCGACTTAGCGA -ACGGAATCTACGTCGACTCACAGA -ACGGAATCTACGTCGACTGCAAGA -ACGGAATCTACGTCGACTGGTTGA -ACGGAATCTACGTCGACTTCCGAT -ACGGAATCTACGTCGACTTGGCAT -ACGGAATCTACGTCGACTCGAGAT -ACGGAATCTACGTCGACTTACCAC -ACGGAATCTACGTCGACTCAGAAC -ACGGAATCTACGTCGACTGTCTAC -ACGGAATCTACGTCGACTACGTAC -ACGGAATCTACGTCGACTAGTGAC -ACGGAATCTACGTCGACTCTGTAG -ACGGAATCTACGTCGACTCCTAAG -ACGGAATCTACGTCGACTGTTCAG -ACGGAATCTACGTCGACTGCATAG -ACGGAATCTACGTCGACTGACAAG -ACGGAATCTACGTCGACTAAGCAG -ACGGAATCTACGTCGACTCGTCAA -ACGGAATCTACGTCGACTGCTGAA -ACGGAATCTACGTCGACTAGTACG -ACGGAATCTACGTCGACTATCCGA -ACGGAATCTACGTCGACTATGGGA -ACGGAATCTACGTCGACTGTGCAA -ACGGAATCTACGTCGACTGAGGAA -ACGGAATCTACGTCGACTCAGGTA -ACGGAATCTACGTCGACTGACTCT -ACGGAATCTACGTCGACTAGTCCT -ACGGAATCTACGTCGACTTAAGCC -ACGGAATCTACGTCGACTATAGCC -ACGGAATCTACGTCGACTTAACCG -ACGGAATCTACGTCGACTATGCCA -ACGGAATCTACGGCATACGGAAAC -ACGGAATCTACGGCATACAACACC -ACGGAATCTACGGCATACATCGAG -ACGGAATCTACGGCATACCTCCTT -ACGGAATCTACGGCATACCCTGTT -ACGGAATCTACGGCATACCGGTTT -ACGGAATCTACGGCATACGTGGTT -ACGGAATCTACGGCATACGCCTTT -ACGGAATCTACGGCATACGGTCTT -ACGGAATCTACGGCATACACGCTT -ACGGAATCTACGGCATACAGCGTT -ACGGAATCTACGGCATACTTCGTC -ACGGAATCTACGGCATACTCTCTC -ACGGAATCTACGGCATACTGGATC -ACGGAATCTACGGCATACCACTTC -ACGGAATCTACGGCATACGTACTC -ACGGAATCTACGGCATACGATGTC -ACGGAATCTACGGCATACACAGTC -ACGGAATCTACGGCATACTTGCTG -ACGGAATCTACGGCATACTCCATG -ACGGAATCTACGGCATACTGTGTG -ACGGAATCTACGGCATACCTAGTG -ACGGAATCTACGGCATACCATCTG -ACGGAATCTACGGCATACGAGTTG -ACGGAATCTACGGCATACAGACTG -ACGGAATCTACGGCATACTCGGTA -ACGGAATCTACGGCATACTGCCTA -ACGGAATCTACGGCATACCCACTA -ACGGAATCTACGGCATACGGAGTA -ACGGAATCTACGGCATACTCGTCT -ACGGAATCTACGGCATACTGCACT -ACGGAATCTACGGCATACCTGACT -ACGGAATCTACGGCATACCAACCT -ACGGAATCTACGGCATACGCTACT -ACGGAATCTACGGCATACGGATCT -ACGGAATCTACGGCATACAAGGCT -ACGGAATCTACGGCATACTCAACC -ACGGAATCTACGGCATACTGTTCC -ACGGAATCTACGGCATACATTCCC -ACGGAATCTACGGCATACTTCTCG -ACGGAATCTACGGCATACTAGACG -ACGGAATCTACGGCATACGTAACG -ACGGAATCTACGGCATACACTTCG -ACGGAATCTACGGCATACTACGCA -ACGGAATCTACGGCATACCTTGCA -ACGGAATCTACGGCATACCGAACA -ACGGAATCTACGGCATACCAGTCA -ACGGAATCTACGGCATACGATCCA -ACGGAATCTACGGCATACACGACA -ACGGAATCTACGGCATACAGCTCA -ACGGAATCTACGGCATACTCACGT -ACGGAATCTACGGCATACCGTAGT -ACGGAATCTACGGCATACGTCAGT -ACGGAATCTACGGCATACGAAGGT -ACGGAATCTACGGCATACAACCGT -ACGGAATCTACGGCATACTTGTGC -ACGGAATCTACGGCATACCTAAGC -ACGGAATCTACGGCATACACTAGC -ACGGAATCTACGGCATACAGATGC -ACGGAATCTACGGCATACTGAAGG -ACGGAATCTACGGCATACCAATGG -ACGGAATCTACGGCATACATGAGG -ACGGAATCTACGGCATACAATGGG -ACGGAATCTACGGCATACTCCTGA -ACGGAATCTACGGCATACTAGCGA -ACGGAATCTACGGCATACCACAGA -ACGGAATCTACGGCATACGCAAGA -ACGGAATCTACGGCATACGGTTGA -ACGGAATCTACGGCATACTCCGAT -ACGGAATCTACGGCATACTGGCAT -ACGGAATCTACGGCATACCGAGAT -ACGGAATCTACGGCATACTACCAC -ACGGAATCTACGGCATACCAGAAC -ACGGAATCTACGGCATACGTCTAC -ACGGAATCTACGGCATACACGTAC -ACGGAATCTACGGCATACAGTGAC -ACGGAATCTACGGCATACCTGTAG -ACGGAATCTACGGCATACCCTAAG -ACGGAATCTACGGCATACGTTCAG -ACGGAATCTACGGCATACGCATAG -ACGGAATCTACGGCATACGACAAG -ACGGAATCTACGGCATACAAGCAG -ACGGAATCTACGGCATACCGTCAA -ACGGAATCTACGGCATACGCTGAA -ACGGAATCTACGGCATACAGTACG -ACGGAATCTACGGCATACATCCGA -ACGGAATCTACGGCATACATGGGA -ACGGAATCTACGGCATACGTGCAA -ACGGAATCTACGGCATACGAGGAA -ACGGAATCTACGGCATACCAGGTA -ACGGAATCTACGGCATACGACTCT -ACGGAATCTACGGCATACAGTCCT -ACGGAATCTACGGCATACTAAGCC -ACGGAATCTACGGCATACATAGCC -ACGGAATCTACGGCATACTAACCG -ACGGAATCTACGGCATACATGCCA -ACGGAATCTACGGCACTTGGAAAC -ACGGAATCTACGGCACTTAACACC -ACGGAATCTACGGCACTTATCGAG -ACGGAATCTACGGCACTTCTCCTT -ACGGAATCTACGGCACTTCCTGTT -ACGGAATCTACGGCACTTCGGTTT -ACGGAATCTACGGCACTTGTGGTT -ACGGAATCTACGGCACTTGCCTTT -ACGGAATCTACGGCACTTGGTCTT -ACGGAATCTACGGCACTTACGCTT -ACGGAATCTACGGCACTTAGCGTT -ACGGAATCTACGGCACTTTTCGTC -ACGGAATCTACGGCACTTTCTCTC -ACGGAATCTACGGCACTTTGGATC -ACGGAATCTACGGCACTTCACTTC -ACGGAATCTACGGCACTTGTACTC -ACGGAATCTACGGCACTTGATGTC -ACGGAATCTACGGCACTTACAGTC -ACGGAATCTACGGCACTTTTGCTG -ACGGAATCTACGGCACTTTCCATG -ACGGAATCTACGGCACTTTGTGTG -ACGGAATCTACGGCACTTCTAGTG -ACGGAATCTACGGCACTTCATCTG -ACGGAATCTACGGCACTTGAGTTG -ACGGAATCTACGGCACTTAGACTG -ACGGAATCTACGGCACTTTCGGTA -ACGGAATCTACGGCACTTTGCCTA -ACGGAATCTACGGCACTTCCACTA -ACGGAATCTACGGCACTTGGAGTA -ACGGAATCTACGGCACTTTCGTCT -ACGGAATCTACGGCACTTTGCACT -ACGGAATCTACGGCACTTCTGACT -ACGGAATCTACGGCACTTCAACCT -ACGGAATCTACGGCACTTGCTACT -ACGGAATCTACGGCACTTGGATCT -ACGGAATCTACGGCACTTAAGGCT -ACGGAATCTACGGCACTTTCAACC -ACGGAATCTACGGCACTTTGTTCC -ACGGAATCTACGGCACTTATTCCC -ACGGAATCTACGGCACTTTTCTCG -ACGGAATCTACGGCACTTTAGACG -ACGGAATCTACGGCACTTGTAACG -ACGGAATCTACGGCACTTACTTCG -ACGGAATCTACGGCACTTTACGCA -ACGGAATCTACGGCACTTCTTGCA -ACGGAATCTACGGCACTTCGAACA -ACGGAATCTACGGCACTTCAGTCA -ACGGAATCTACGGCACTTGATCCA -ACGGAATCTACGGCACTTACGACA -ACGGAATCTACGGCACTTAGCTCA -ACGGAATCTACGGCACTTTCACGT -ACGGAATCTACGGCACTTCGTAGT -ACGGAATCTACGGCACTTGTCAGT -ACGGAATCTACGGCACTTGAAGGT -ACGGAATCTACGGCACTTAACCGT -ACGGAATCTACGGCACTTTTGTGC -ACGGAATCTACGGCACTTCTAAGC -ACGGAATCTACGGCACTTACTAGC -ACGGAATCTACGGCACTTAGATGC -ACGGAATCTACGGCACTTTGAAGG -ACGGAATCTACGGCACTTCAATGG -ACGGAATCTACGGCACTTATGAGG -ACGGAATCTACGGCACTTAATGGG -ACGGAATCTACGGCACTTTCCTGA -ACGGAATCTACGGCACTTTAGCGA -ACGGAATCTACGGCACTTCACAGA -ACGGAATCTACGGCACTTGCAAGA -ACGGAATCTACGGCACTTGGTTGA -ACGGAATCTACGGCACTTTCCGAT -ACGGAATCTACGGCACTTTGGCAT -ACGGAATCTACGGCACTTCGAGAT -ACGGAATCTACGGCACTTTACCAC -ACGGAATCTACGGCACTTCAGAAC -ACGGAATCTACGGCACTTGTCTAC -ACGGAATCTACGGCACTTACGTAC -ACGGAATCTACGGCACTTAGTGAC -ACGGAATCTACGGCACTTCTGTAG -ACGGAATCTACGGCACTTCCTAAG -ACGGAATCTACGGCACTTGTTCAG -ACGGAATCTACGGCACTTGCATAG -ACGGAATCTACGGCACTTGACAAG -ACGGAATCTACGGCACTTAAGCAG -ACGGAATCTACGGCACTTCGTCAA -ACGGAATCTACGGCACTTGCTGAA -ACGGAATCTACGGCACTTAGTACG -ACGGAATCTACGGCACTTATCCGA -ACGGAATCTACGGCACTTATGGGA -ACGGAATCTACGGCACTTGTGCAA -ACGGAATCTACGGCACTTGAGGAA -ACGGAATCTACGGCACTTCAGGTA -ACGGAATCTACGGCACTTGACTCT -ACGGAATCTACGGCACTTAGTCCT -ACGGAATCTACGGCACTTTAAGCC -ACGGAATCTACGGCACTTATAGCC -ACGGAATCTACGGCACTTTAACCG -ACGGAATCTACGGCACTTATGCCA -ACGGAATCTACGACACGAGGAAAC -ACGGAATCTACGACACGAAACACC -ACGGAATCTACGACACGAATCGAG -ACGGAATCTACGACACGACTCCTT -ACGGAATCTACGACACGACCTGTT -ACGGAATCTACGACACGACGGTTT -ACGGAATCTACGACACGAGTGGTT -ACGGAATCTACGACACGAGCCTTT -ACGGAATCTACGACACGAGGTCTT -ACGGAATCTACGACACGAACGCTT -ACGGAATCTACGACACGAAGCGTT -ACGGAATCTACGACACGATTCGTC -ACGGAATCTACGACACGATCTCTC -ACGGAATCTACGACACGATGGATC -ACGGAATCTACGACACGACACTTC -ACGGAATCTACGACACGAGTACTC -ACGGAATCTACGACACGAGATGTC -ACGGAATCTACGACACGAACAGTC -ACGGAATCTACGACACGATTGCTG -ACGGAATCTACGACACGATCCATG -ACGGAATCTACGACACGATGTGTG -ACGGAATCTACGACACGACTAGTG -ACGGAATCTACGACACGACATCTG -ACGGAATCTACGACACGAGAGTTG -ACGGAATCTACGACACGAAGACTG -ACGGAATCTACGACACGATCGGTA -ACGGAATCTACGACACGATGCCTA -ACGGAATCTACGACACGACCACTA -ACGGAATCTACGACACGAGGAGTA -ACGGAATCTACGACACGATCGTCT -ACGGAATCTACGACACGATGCACT -ACGGAATCTACGACACGACTGACT -ACGGAATCTACGACACGACAACCT -ACGGAATCTACGACACGAGCTACT -ACGGAATCTACGACACGAGGATCT -ACGGAATCTACGACACGAAAGGCT -ACGGAATCTACGACACGATCAACC -ACGGAATCTACGACACGATGTTCC -ACGGAATCTACGACACGAATTCCC -ACGGAATCTACGACACGATTCTCG -ACGGAATCTACGACACGATAGACG -ACGGAATCTACGACACGAGTAACG -ACGGAATCTACGACACGAACTTCG -ACGGAATCTACGACACGATACGCA -ACGGAATCTACGACACGACTTGCA -ACGGAATCTACGACACGACGAACA -ACGGAATCTACGACACGACAGTCA -ACGGAATCTACGACACGAGATCCA -ACGGAATCTACGACACGAACGACA -ACGGAATCTACGACACGAAGCTCA -ACGGAATCTACGACACGATCACGT -ACGGAATCTACGACACGACGTAGT -ACGGAATCTACGACACGAGTCAGT -ACGGAATCTACGACACGAGAAGGT -ACGGAATCTACGACACGAAACCGT -ACGGAATCTACGACACGATTGTGC -ACGGAATCTACGACACGACTAAGC -ACGGAATCTACGACACGAACTAGC -ACGGAATCTACGACACGAAGATGC -ACGGAATCTACGACACGATGAAGG -ACGGAATCTACGACACGACAATGG -ACGGAATCTACGACACGAATGAGG -ACGGAATCTACGACACGAAATGGG -ACGGAATCTACGACACGATCCTGA -ACGGAATCTACGACACGATAGCGA -ACGGAATCTACGACACGACACAGA -ACGGAATCTACGACACGAGCAAGA -ACGGAATCTACGACACGAGGTTGA -ACGGAATCTACGACACGATCCGAT -ACGGAATCTACGACACGATGGCAT -ACGGAATCTACGACACGACGAGAT -ACGGAATCTACGACACGATACCAC -ACGGAATCTACGACACGACAGAAC -ACGGAATCTACGACACGAGTCTAC -ACGGAATCTACGACACGAACGTAC -ACGGAATCTACGACACGAAGTGAC -ACGGAATCTACGACACGACTGTAG -ACGGAATCTACGACACGACCTAAG -ACGGAATCTACGACACGAGTTCAG -ACGGAATCTACGACACGAGCATAG -ACGGAATCTACGACACGAGACAAG -ACGGAATCTACGACACGAAAGCAG -ACGGAATCTACGACACGACGTCAA -ACGGAATCTACGACACGAGCTGAA -ACGGAATCTACGACACGAAGTACG -ACGGAATCTACGACACGAATCCGA -ACGGAATCTACGACACGAATGGGA -ACGGAATCTACGACACGAGTGCAA -ACGGAATCTACGACACGAGAGGAA -ACGGAATCTACGACACGACAGGTA -ACGGAATCTACGACACGAGACTCT -ACGGAATCTACGACACGAAGTCCT -ACGGAATCTACGACACGATAAGCC -ACGGAATCTACGACACGAATAGCC -ACGGAATCTACGACACGATAACCG -ACGGAATCTACGACACGAATGCCA -ACGGAATCTACGTCACAGGGAAAC -ACGGAATCTACGTCACAGAACACC -ACGGAATCTACGTCACAGATCGAG -ACGGAATCTACGTCACAGCTCCTT -ACGGAATCTACGTCACAGCCTGTT -ACGGAATCTACGTCACAGCGGTTT -ACGGAATCTACGTCACAGGTGGTT -ACGGAATCTACGTCACAGGCCTTT -ACGGAATCTACGTCACAGGGTCTT -ACGGAATCTACGTCACAGACGCTT -ACGGAATCTACGTCACAGAGCGTT -ACGGAATCTACGTCACAGTTCGTC -ACGGAATCTACGTCACAGTCTCTC -ACGGAATCTACGTCACAGTGGATC -ACGGAATCTACGTCACAGCACTTC -ACGGAATCTACGTCACAGGTACTC -ACGGAATCTACGTCACAGGATGTC -ACGGAATCTACGTCACAGACAGTC -ACGGAATCTACGTCACAGTTGCTG -ACGGAATCTACGTCACAGTCCATG -ACGGAATCTACGTCACAGTGTGTG -ACGGAATCTACGTCACAGCTAGTG -ACGGAATCTACGTCACAGCATCTG -ACGGAATCTACGTCACAGGAGTTG -ACGGAATCTACGTCACAGAGACTG -ACGGAATCTACGTCACAGTCGGTA -ACGGAATCTACGTCACAGTGCCTA -ACGGAATCTACGTCACAGCCACTA -ACGGAATCTACGTCACAGGGAGTA -ACGGAATCTACGTCACAGTCGTCT -ACGGAATCTACGTCACAGTGCACT -ACGGAATCTACGTCACAGCTGACT -ACGGAATCTACGTCACAGCAACCT -ACGGAATCTACGTCACAGGCTACT -ACGGAATCTACGTCACAGGGATCT -ACGGAATCTACGTCACAGAAGGCT -ACGGAATCTACGTCACAGTCAACC -ACGGAATCTACGTCACAGTGTTCC -ACGGAATCTACGTCACAGATTCCC -ACGGAATCTACGTCACAGTTCTCG -ACGGAATCTACGTCACAGTAGACG -ACGGAATCTACGTCACAGGTAACG -ACGGAATCTACGTCACAGACTTCG -ACGGAATCTACGTCACAGTACGCA -ACGGAATCTACGTCACAGCTTGCA -ACGGAATCTACGTCACAGCGAACA -ACGGAATCTACGTCACAGCAGTCA -ACGGAATCTACGTCACAGGATCCA -ACGGAATCTACGTCACAGACGACA -ACGGAATCTACGTCACAGAGCTCA -ACGGAATCTACGTCACAGTCACGT -ACGGAATCTACGTCACAGCGTAGT -ACGGAATCTACGTCACAGGTCAGT -ACGGAATCTACGTCACAGGAAGGT -ACGGAATCTACGTCACAGAACCGT -ACGGAATCTACGTCACAGTTGTGC -ACGGAATCTACGTCACAGCTAAGC -ACGGAATCTACGTCACAGACTAGC -ACGGAATCTACGTCACAGAGATGC -ACGGAATCTACGTCACAGTGAAGG -ACGGAATCTACGTCACAGCAATGG -ACGGAATCTACGTCACAGATGAGG -ACGGAATCTACGTCACAGAATGGG -ACGGAATCTACGTCACAGTCCTGA -ACGGAATCTACGTCACAGTAGCGA -ACGGAATCTACGTCACAGCACAGA -ACGGAATCTACGTCACAGGCAAGA -ACGGAATCTACGTCACAGGGTTGA -ACGGAATCTACGTCACAGTCCGAT -ACGGAATCTACGTCACAGTGGCAT -ACGGAATCTACGTCACAGCGAGAT -ACGGAATCTACGTCACAGTACCAC -ACGGAATCTACGTCACAGCAGAAC -ACGGAATCTACGTCACAGGTCTAC -ACGGAATCTACGTCACAGACGTAC -ACGGAATCTACGTCACAGAGTGAC -ACGGAATCTACGTCACAGCTGTAG -ACGGAATCTACGTCACAGCCTAAG -ACGGAATCTACGTCACAGGTTCAG -ACGGAATCTACGTCACAGGCATAG -ACGGAATCTACGTCACAGGACAAG -ACGGAATCTACGTCACAGAAGCAG -ACGGAATCTACGTCACAGCGTCAA -ACGGAATCTACGTCACAGGCTGAA -ACGGAATCTACGTCACAGAGTACG -ACGGAATCTACGTCACAGATCCGA -ACGGAATCTACGTCACAGATGGGA -ACGGAATCTACGTCACAGGTGCAA -ACGGAATCTACGTCACAGGAGGAA -ACGGAATCTACGTCACAGCAGGTA -ACGGAATCTACGTCACAGGACTCT -ACGGAATCTACGTCACAGAGTCCT -ACGGAATCTACGTCACAGTAAGCC -ACGGAATCTACGTCACAGATAGCC -ACGGAATCTACGTCACAGTAACCG -ACGGAATCTACGTCACAGATGCCA -ACGGAATCTACGCCAGATGGAAAC -ACGGAATCTACGCCAGATAACACC -ACGGAATCTACGCCAGATATCGAG -ACGGAATCTACGCCAGATCTCCTT -ACGGAATCTACGCCAGATCCTGTT -ACGGAATCTACGCCAGATCGGTTT -ACGGAATCTACGCCAGATGTGGTT -ACGGAATCTACGCCAGATGCCTTT -ACGGAATCTACGCCAGATGGTCTT -ACGGAATCTACGCCAGATACGCTT -ACGGAATCTACGCCAGATAGCGTT -ACGGAATCTACGCCAGATTTCGTC -ACGGAATCTACGCCAGATTCTCTC -ACGGAATCTACGCCAGATTGGATC -ACGGAATCTACGCCAGATCACTTC -ACGGAATCTACGCCAGATGTACTC -ACGGAATCTACGCCAGATGATGTC -ACGGAATCTACGCCAGATACAGTC -ACGGAATCTACGCCAGATTTGCTG -ACGGAATCTACGCCAGATTCCATG -ACGGAATCTACGCCAGATTGTGTG -ACGGAATCTACGCCAGATCTAGTG -ACGGAATCTACGCCAGATCATCTG -ACGGAATCTACGCCAGATGAGTTG -ACGGAATCTACGCCAGATAGACTG -ACGGAATCTACGCCAGATTCGGTA -ACGGAATCTACGCCAGATTGCCTA -ACGGAATCTACGCCAGATCCACTA -ACGGAATCTACGCCAGATGGAGTA -ACGGAATCTACGCCAGATTCGTCT -ACGGAATCTACGCCAGATTGCACT -ACGGAATCTACGCCAGATCTGACT -ACGGAATCTACGCCAGATCAACCT -ACGGAATCTACGCCAGATGCTACT -ACGGAATCTACGCCAGATGGATCT -ACGGAATCTACGCCAGATAAGGCT -ACGGAATCTACGCCAGATTCAACC -ACGGAATCTACGCCAGATTGTTCC -ACGGAATCTACGCCAGATATTCCC -ACGGAATCTACGCCAGATTTCTCG -ACGGAATCTACGCCAGATTAGACG -ACGGAATCTACGCCAGATGTAACG -ACGGAATCTACGCCAGATACTTCG -ACGGAATCTACGCCAGATTACGCA -ACGGAATCTACGCCAGATCTTGCA -ACGGAATCTACGCCAGATCGAACA -ACGGAATCTACGCCAGATCAGTCA -ACGGAATCTACGCCAGATGATCCA -ACGGAATCTACGCCAGATACGACA -ACGGAATCTACGCCAGATAGCTCA -ACGGAATCTACGCCAGATTCACGT -ACGGAATCTACGCCAGATCGTAGT -ACGGAATCTACGCCAGATGTCAGT -ACGGAATCTACGCCAGATGAAGGT -ACGGAATCTACGCCAGATAACCGT -ACGGAATCTACGCCAGATTTGTGC -ACGGAATCTACGCCAGATCTAAGC -ACGGAATCTACGCCAGATACTAGC -ACGGAATCTACGCCAGATAGATGC -ACGGAATCTACGCCAGATTGAAGG -ACGGAATCTACGCCAGATCAATGG -ACGGAATCTACGCCAGATATGAGG -ACGGAATCTACGCCAGATAATGGG -ACGGAATCTACGCCAGATTCCTGA -ACGGAATCTACGCCAGATTAGCGA -ACGGAATCTACGCCAGATCACAGA -ACGGAATCTACGCCAGATGCAAGA -ACGGAATCTACGCCAGATGGTTGA -ACGGAATCTACGCCAGATTCCGAT -ACGGAATCTACGCCAGATTGGCAT -ACGGAATCTACGCCAGATCGAGAT -ACGGAATCTACGCCAGATTACCAC -ACGGAATCTACGCCAGATCAGAAC -ACGGAATCTACGCCAGATGTCTAC -ACGGAATCTACGCCAGATACGTAC -ACGGAATCTACGCCAGATAGTGAC -ACGGAATCTACGCCAGATCTGTAG -ACGGAATCTACGCCAGATCCTAAG -ACGGAATCTACGCCAGATGTTCAG -ACGGAATCTACGCCAGATGCATAG -ACGGAATCTACGCCAGATGACAAG -ACGGAATCTACGCCAGATAAGCAG -ACGGAATCTACGCCAGATCGTCAA -ACGGAATCTACGCCAGATGCTGAA -ACGGAATCTACGCCAGATAGTACG -ACGGAATCTACGCCAGATATCCGA -ACGGAATCTACGCCAGATATGGGA -ACGGAATCTACGCCAGATGTGCAA -ACGGAATCTACGCCAGATGAGGAA -ACGGAATCTACGCCAGATCAGGTA -ACGGAATCTACGCCAGATGACTCT -ACGGAATCTACGCCAGATAGTCCT -ACGGAATCTACGCCAGATTAAGCC -ACGGAATCTACGCCAGATATAGCC -ACGGAATCTACGCCAGATTAACCG -ACGGAATCTACGCCAGATATGCCA -ACGGAATCTACGACAACGGGAAAC -ACGGAATCTACGACAACGAACACC -ACGGAATCTACGACAACGATCGAG -ACGGAATCTACGACAACGCTCCTT -ACGGAATCTACGACAACGCCTGTT -ACGGAATCTACGACAACGCGGTTT -ACGGAATCTACGACAACGGTGGTT -ACGGAATCTACGACAACGGCCTTT -ACGGAATCTACGACAACGGGTCTT -ACGGAATCTACGACAACGACGCTT -ACGGAATCTACGACAACGAGCGTT -ACGGAATCTACGACAACGTTCGTC -ACGGAATCTACGACAACGTCTCTC -ACGGAATCTACGACAACGTGGATC -ACGGAATCTACGACAACGCACTTC -ACGGAATCTACGACAACGGTACTC -ACGGAATCTACGACAACGGATGTC -ACGGAATCTACGACAACGACAGTC -ACGGAATCTACGACAACGTTGCTG -ACGGAATCTACGACAACGTCCATG -ACGGAATCTACGACAACGTGTGTG -ACGGAATCTACGACAACGCTAGTG -ACGGAATCTACGACAACGCATCTG -ACGGAATCTACGACAACGGAGTTG -ACGGAATCTACGACAACGAGACTG -ACGGAATCTACGACAACGTCGGTA -ACGGAATCTACGACAACGTGCCTA -ACGGAATCTACGACAACGCCACTA -ACGGAATCTACGACAACGGGAGTA -ACGGAATCTACGACAACGTCGTCT -ACGGAATCTACGACAACGTGCACT -ACGGAATCTACGACAACGCTGACT -ACGGAATCTACGACAACGCAACCT -ACGGAATCTACGACAACGGCTACT -ACGGAATCTACGACAACGGGATCT -ACGGAATCTACGACAACGAAGGCT -ACGGAATCTACGACAACGTCAACC -ACGGAATCTACGACAACGTGTTCC -ACGGAATCTACGACAACGATTCCC -ACGGAATCTACGACAACGTTCTCG -ACGGAATCTACGACAACGTAGACG -ACGGAATCTACGACAACGGTAACG -ACGGAATCTACGACAACGACTTCG -ACGGAATCTACGACAACGTACGCA -ACGGAATCTACGACAACGCTTGCA -ACGGAATCTACGACAACGCGAACA -ACGGAATCTACGACAACGCAGTCA -ACGGAATCTACGACAACGGATCCA -ACGGAATCTACGACAACGACGACA -ACGGAATCTACGACAACGAGCTCA -ACGGAATCTACGACAACGTCACGT -ACGGAATCTACGACAACGCGTAGT -ACGGAATCTACGACAACGGTCAGT -ACGGAATCTACGACAACGGAAGGT -ACGGAATCTACGACAACGAACCGT -ACGGAATCTACGACAACGTTGTGC -ACGGAATCTACGACAACGCTAAGC -ACGGAATCTACGACAACGACTAGC -ACGGAATCTACGACAACGAGATGC -ACGGAATCTACGACAACGTGAAGG -ACGGAATCTACGACAACGCAATGG -ACGGAATCTACGACAACGATGAGG -ACGGAATCTACGACAACGAATGGG -ACGGAATCTACGACAACGTCCTGA -ACGGAATCTACGACAACGTAGCGA -ACGGAATCTACGACAACGCACAGA -ACGGAATCTACGACAACGGCAAGA -ACGGAATCTACGACAACGGGTTGA -ACGGAATCTACGACAACGTCCGAT -ACGGAATCTACGACAACGTGGCAT -ACGGAATCTACGACAACGCGAGAT -ACGGAATCTACGACAACGTACCAC -ACGGAATCTACGACAACGCAGAAC -ACGGAATCTACGACAACGGTCTAC -ACGGAATCTACGACAACGACGTAC -ACGGAATCTACGACAACGAGTGAC -ACGGAATCTACGACAACGCTGTAG -ACGGAATCTACGACAACGCCTAAG -ACGGAATCTACGACAACGGTTCAG -ACGGAATCTACGACAACGGCATAG -ACGGAATCTACGACAACGGACAAG -ACGGAATCTACGACAACGAAGCAG -ACGGAATCTACGACAACGCGTCAA -ACGGAATCTACGACAACGGCTGAA -ACGGAATCTACGACAACGAGTACG -ACGGAATCTACGACAACGATCCGA -ACGGAATCTACGACAACGATGGGA -ACGGAATCTACGACAACGGTGCAA -ACGGAATCTACGACAACGGAGGAA -ACGGAATCTACGACAACGCAGGTA -ACGGAATCTACGACAACGGACTCT -ACGGAATCTACGACAACGAGTCCT -ACGGAATCTACGACAACGTAAGCC -ACGGAATCTACGACAACGATAGCC -ACGGAATCTACGACAACGTAACCG -ACGGAATCTACGACAACGATGCCA -ACGGAATCTACGTCAAGCGGAAAC -ACGGAATCTACGTCAAGCAACACC -ACGGAATCTACGTCAAGCATCGAG -ACGGAATCTACGTCAAGCCTCCTT -ACGGAATCTACGTCAAGCCCTGTT -ACGGAATCTACGTCAAGCCGGTTT -ACGGAATCTACGTCAAGCGTGGTT -ACGGAATCTACGTCAAGCGCCTTT -ACGGAATCTACGTCAAGCGGTCTT -ACGGAATCTACGTCAAGCACGCTT -ACGGAATCTACGTCAAGCAGCGTT -ACGGAATCTACGTCAAGCTTCGTC -ACGGAATCTACGTCAAGCTCTCTC -ACGGAATCTACGTCAAGCTGGATC -ACGGAATCTACGTCAAGCCACTTC -ACGGAATCTACGTCAAGCGTACTC -ACGGAATCTACGTCAAGCGATGTC -ACGGAATCTACGTCAAGCACAGTC -ACGGAATCTACGTCAAGCTTGCTG -ACGGAATCTACGTCAAGCTCCATG -ACGGAATCTACGTCAAGCTGTGTG -ACGGAATCTACGTCAAGCCTAGTG -ACGGAATCTACGTCAAGCCATCTG -ACGGAATCTACGTCAAGCGAGTTG -ACGGAATCTACGTCAAGCAGACTG -ACGGAATCTACGTCAAGCTCGGTA -ACGGAATCTACGTCAAGCTGCCTA -ACGGAATCTACGTCAAGCCCACTA -ACGGAATCTACGTCAAGCGGAGTA -ACGGAATCTACGTCAAGCTCGTCT -ACGGAATCTACGTCAAGCTGCACT -ACGGAATCTACGTCAAGCCTGACT -ACGGAATCTACGTCAAGCCAACCT -ACGGAATCTACGTCAAGCGCTACT -ACGGAATCTACGTCAAGCGGATCT -ACGGAATCTACGTCAAGCAAGGCT -ACGGAATCTACGTCAAGCTCAACC -ACGGAATCTACGTCAAGCTGTTCC -ACGGAATCTACGTCAAGCATTCCC -ACGGAATCTACGTCAAGCTTCTCG -ACGGAATCTACGTCAAGCTAGACG -ACGGAATCTACGTCAAGCGTAACG -ACGGAATCTACGTCAAGCACTTCG -ACGGAATCTACGTCAAGCTACGCA -ACGGAATCTACGTCAAGCCTTGCA -ACGGAATCTACGTCAAGCCGAACA -ACGGAATCTACGTCAAGCCAGTCA -ACGGAATCTACGTCAAGCGATCCA -ACGGAATCTACGTCAAGCACGACA -ACGGAATCTACGTCAAGCAGCTCA -ACGGAATCTACGTCAAGCTCACGT -ACGGAATCTACGTCAAGCCGTAGT -ACGGAATCTACGTCAAGCGTCAGT -ACGGAATCTACGTCAAGCGAAGGT -ACGGAATCTACGTCAAGCAACCGT -ACGGAATCTACGTCAAGCTTGTGC -ACGGAATCTACGTCAAGCCTAAGC -ACGGAATCTACGTCAAGCACTAGC -ACGGAATCTACGTCAAGCAGATGC -ACGGAATCTACGTCAAGCTGAAGG -ACGGAATCTACGTCAAGCCAATGG -ACGGAATCTACGTCAAGCATGAGG -ACGGAATCTACGTCAAGCAATGGG -ACGGAATCTACGTCAAGCTCCTGA -ACGGAATCTACGTCAAGCTAGCGA -ACGGAATCTACGTCAAGCCACAGA -ACGGAATCTACGTCAAGCGCAAGA -ACGGAATCTACGTCAAGCGGTTGA -ACGGAATCTACGTCAAGCTCCGAT -ACGGAATCTACGTCAAGCTGGCAT -ACGGAATCTACGTCAAGCCGAGAT -ACGGAATCTACGTCAAGCTACCAC -ACGGAATCTACGTCAAGCCAGAAC -ACGGAATCTACGTCAAGCGTCTAC -ACGGAATCTACGTCAAGCACGTAC -ACGGAATCTACGTCAAGCAGTGAC -ACGGAATCTACGTCAAGCCTGTAG -ACGGAATCTACGTCAAGCCCTAAG -ACGGAATCTACGTCAAGCGTTCAG -ACGGAATCTACGTCAAGCGCATAG -ACGGAATCTACGTCAAGCGACAAG -ACGGAATCTACGTCAAGCAAGCAG -ACGGAATCTACGTCAAGCCGTCAA -ACGGAATCTACGTCAAGCGCTGAA -ACGGAATCTACGTCAAGCAGTACG -ACGGAATCTACGTCAAGCATCCGA -ACGGAATCTACGTCAAGCATGGGA -ACGGAATCTACGTCAAGCGTGCAA -ACGGAATCTACGTCAAGCGAGGAA -ACGGAATCTACGTCAAGCCAGGTA -ACGGAATCTACGTCAAGCGACTCT -ACGGAATCTACGTCAAGCAGTCCT -ACGGAATCTACGTCAAGCTAAGCC -ACGGAATCTACGTCAAGCATAGCC -ACGGAATCTACGTCAAGCTAACCG -ACGGAATCTACGTCAAGCATGCCA -ACGGAATCTACGCGTTCAGGAAAC -ACGGAATCTACGCGTTCAAACACC -ACGGAATCTACGCGTTCAATCGAG -ACGGAATCTACGCGTTCACTCCTT -ACGGAATCTACGCGTTCACCTGTT -ACGGAATCTACGCGTTCACGGTTT -ACGGAATCTACGCGTTCAGTGGTT -ACGGAATCTACGCGTTCAGCCTTT -ACGGAATCTACGCGTTCAGGTCTT -ACGGAATCTACGCGTTCAACGCTT -ACGGAATCTACGCGTTCAAGCGTT -ACGGAATCTACGCGTTCATTCGTC -ACGGAATCTACGCGTTCATCTCTC -ACGGAATCTACGCGTTCATGGATC -ACGGAATCTACGCGTTCACACTTC -ACGGAATCTACGCGTTCAGTACTC -ACGGAATCTACGCGTTCAGATGTC -ACGGAATCTACGCGTTCAACAGTC -ACGGAATCTACGCGTTCATTGCTG -ACGGAATCTACGCGTTCATCCATG -ACGGAATCTACGCGTTCATGTGTG -ACGGAATCTACGCGTTCACTAGTG -ACGGAATCTACGCGTTCACATCTG -ACGGAATCTACGCGTTCAGAGTTG -ACGGAATCTACGCGTTCAAGACTG -ACGGAATCTACGCGTTCATCGGTA -ACGGAATCTACGCGTTCATGCCTA -ACGGAATCTACGCGTTCACCACTA -ACGGAATCTACGCGTTCAGGAGTA -ACGGAATCTACGCGTTCATCGTCT -ACGGAATCTACGCGTTCATGCACT -ACGGAATCTACGCGTTCACTGACT -ACGGAATCTACGCGTTCACAACCT -ACGGAATCTACGCGTTCAGCTACT -ACGGAATCTACGCGTTCAGGATCT -ACGGAATCTACGCGTTCAAAGGCT -ACGGAATCTACGCGTTCATCAACC -ACGGAATCTACGCGTTCATGTTCC -ACGGAATCTACGCGTTCAATTCCC -ACGGAATCTACGCGTTCATTCTCG -ACGGAATCTACGCGTTCATAGACG -ACGGAATCTACGCGTTCAGTAACG -ACGGAATCTACGCGTTCAACTTCG -ACGGAATCTACGCGTTCATACGCA -ACGGAATCTACGCGTTCACTTGCA -ACGGAATCTACGCGTTCACGAACA -ACGGAATCTACGCGTTCACAGTCA -ACGGAATCTACGCGTTCAGATCCA -ACGGAATCTACGCGTTCAACGACA -ACGGAATCTACGCGTTCAAGCTCA -ACGGAATCTACGCGTTCATCACGT -ACGGAATCTACGCGTTCACGTAGT -ACGGAATCTACGCGTTCAGTCAGT -ACGGAATCTACGCGTTCAGAAGGT -ACGGAATCTACGCGTTCAAACCGT -ACGGAATCTACGCGTTCATTGTGC -ACGGAATCTACGCGTTCACTAAGC -ACGGAATCTACGCGTTCAACTAGC -ACGGAATCTACGCGTTCAAGATGC -ACGGAATCTACGCGTTCATGAAGG -ACGGAATCTACGCGTTCACAATGG -ACGGAATCTACGCGTTCAATGAGG -ACGGAATCTACGCGTTCAAATGGG -ACGGAATCTACGCGTTCATCCTGA -ACGGAATCTACGCGTTCATAGCGA -ACGGAATCTACGCGTTCACACAGA -ACGGAATCTACGCGTTCAGCAAGA -ACGGAATCTACGCGTTCAGGTTGA -ACGGAATCTACGCGTTCATCCGAT -ACGGAATCTACGCGTTCATGGCAT -ACGGAATCTACGCGTTCACGAGAT -ACGGAATCTACGCGTTCATACCAC -ACGGAATCTACGCGTTCACAGAAC -ACGGAATCTACGCGTTCAGTCTAC -ACGGAATCTACGCGTTCAACGTAC -ACGGAATCTACGCGTTCAAGTGAC -ACGGAATCTACGCGTTCACTGTAG -ACGGAATCTACGCGTTCACCTAAG -ACGGAATCTACGCGTTCAGTTCAG -ACGGAATCTACGCGTTCAGCATAG -ACGGAATCTACGCGTTCAGACAAG -ACGGAATCTACGCGTTCAAAGCAG -ACGGAATCTACGCGTTCACGTCAA -ACGGAATCTACGCGTTCAGCTGAA -ACGGAATCTACGCGTTCAAGTACG -ACGGAATCTACGCGTTCAATCCGA -ACGGAATCTACGCGTTCAATGGGA -ACGGAATCTACGCGTTCAGTGCAA -ACGGAATCTACGCGTTCAGAGGAA -ACGGAATCTACGCGTTCACAGGTA -ACGGAATCTACGCGTTCAGACTCT -ACGGAATCTACGCGTTCAAGTCCT -ACGGAATCTACGCGTTCATAAGCC -ACGGAATCTACGCGTTCAATAGCC -ACGGAATCTACGCGTTCATAACCG -ACGGAATCTACGCGTTCAATGCCA -ACGGAATCTACGAGTCGTGGAAAC -ACGGAATCTACGAGTCGTAACACC -ACGGAATCTACGAGTCGTATCGAG -ACGGAATCTACGAGTCGTCTCCTT -ACGGAATCTACGAGTCGTCCTGTT -ACGGAATCTACGAGTCGTCGGTTT -ACGGAATCTACGAGTCGTGTGGTT -ACGGAATCTACGAGTCGTGCCTTT -ACGGAATCTACGAGTCGTGGTCTT -ACGGAATCTACGAGTCGTACGCTT -ACGGAATCTACGAGTCGTAGCGTT -ACGGAATCTACGAGTCGTTTCGTC -ACGGAATCTACGAGTCGTTCTCTC -ACGGAATCTACGAGTCGTTGGATC -ACGGAATCTACGAGTCGTCACTTC -ACGGAATCTACGAGTCGTGTACTC -ACGGAATCTACGAGTCGTGATGTC -ACGGAATCTACGAGTCGTACAGTC -ACGGAATCTACGAGTCGTTTGCTG -ACGGAATCTACGAGTCGTTCCATG -ACGGAATCTACGAGTCGTTGTGTG -ACGGAATCTACGAGTCGTCTAGTG -ACGGAATCTACGAGTCGTCATCTG -ACGGAATCTACGAGTCGTGAGTTG -ACGGAATCTACGAGTCGTAGACTG -ACGGAATCTACGAGTCGTTCGGTA -ACGGAATCTACGAGTCGTTGCCTA -ACGGAATCTACGAGTCGTCCACTA -ACGGAATCTACGAGTCGTGGAGTA -ACGGAATCTACGAGTCGTTCGTCT -ACGGAATCTACGAGTCGTTGCACT -ACGGAATCTACGAGTCGTCTGACT -ACGGAATCTACGAGTCGTCAACCT -ACGGAATCTACGAGTCGTGCTACT -ACGGAATCTACGAGTCGTGGATCT -ACGGAATCTACGAGTCGTAAGGCT -ACGGAATCTACGAGTCGTTCAACC -ACGGAATCTACGAGTCGTTGTTCC -ACGGAATCTACGAGTCGTATTCCC -ACGGAATCTACGAGTCGTTTCTCG -ACGGAATCTACGAGTCGTTAGACG -ACGGAATCTACGAGTCGTGTAACG -ACGGAATCTACGAGTCGTACTTCG -ACGGAATCTACGAGTCGTTACGCA -ACGGAATCTACGAGTCGTCTTGCA -ACGGAATCTACGAGTCGTCGAACA -ACGGAATCTACGAGTCGTCAGTCA -ACGGAATCTACGAGTCGTGATCCA -ACGGAATCTACGAGTCGTACGACA -ACGGAATCTACGAGTCGTAGCTCA -ACGGAATCTACGAGTCGTTCACGT -ACGGAATCTACGAGTCGTCGTAGT -ACGGAATCTACGAGTCGTGTCAGT -ACGGAATCTACGAGTCGTGAAGGT -ACGGAATCTACGAGTCGTAACCGT -ACGGAATCTACGAGTCGTTTGTGC -ACGGAATCTACGAGTCGTCTAAGC -ACGGAATCTACGAGTCGTACTAGC -ACGGAATCTACGAGTCGTAGATGC -ACGGAATCTACGAGTCGTTGAAGG -ACGGAATCTACGAGTCGTCAATGG -ACGGAATCTACGAGTCGTATGAGG -ACGGAATCTACGAGTCGTAATGGG -ACGGAATCTACGAGTCGTTCCTGA -ACGGAATCTACGAGTCGTTAGCGA -ACGGAATCTACGAGTCGTCACAGA -ACGGAATCTACGAGTCGTGCAAGA -ACGGAATCTACGAGTCGTGGTTGA -ACGGAATCTACGAGTCGTTCCGAT -ACGGAATCTACGAGTCGTTGGCAT -ACGGAATCTACGAGTCGTCGAGAT -ACGGAATCTACGAGTCGTTACCAC -ACGGAATCTACGAGTCGTCAGAAC -ACGGAATCTACGAGTCGTGTCTAC -ACGGAATCTACGAGTCGTACGTAC -ACGGAATCTACGAGTCGTAGTGAC -ACGGAATCTACGAGTCGTCTGTAG -ACGGAATCTACGAGTCGTCCTAAG -ACGGAATCTACGAGTCGTGTTCAG -ACGGAATCTACGAGTCGTGCATAG -ACGGAATCTACGAGTCGTGACAAG -ACGGAATCTACGAGTCGTAAGCAG -ACGGAATCTACGAGTCGTCGTCAA -ACGGAATCTACGAGTCGTGCTGAA -ACGGAATCTACGAGTCGTAGTACG -ACGGAATCTACGAGTCGTATCCGA -ACGGAATCTACGAGTCGTATGGGA -ACGGAATCTACGAGTCGTGTGCAA -ACGGAATCTACGAGTCGTGAGGAA -ACGGAATCTACGAGTCGTCAGGTA -ACGGAATCTACGAGTCGTGACTCT -ACGGAATCTACGAGTCGTAGTCCT -ACGGAATCTACGAGTCGTTAAGCC -ACGGAATCTACGAGTCGTATAGCC -ACGGAATCTACGAGTCGTTAACCG -ACGGAATCTACGAGTCGTATGCCA -ACGGAATCTACGAGTGTCGGAAAC -ACGGAATCTACGAGTGTCAACACC -ACGGAATCTACGAGTGTCATCGAG -ACGGAATCTACGAGTGTCCTCCTT -ACGGAATCTACGAGTGTCCCTGTT -ACGGAATCTACGAGTGTCCGGTTT -ACGGAATCTACGAGTGTCGTGGTT -ACGGAATCTACGAGTGTCGCCTTT -ACGGAATCTACGAGTGTCGGTCTT -ACGGAATCTACGAGTGTCACGCTT -ACGGAATCTACGAGTGTCAGCGTT -ACGGAATCTACGAGTGTCTTCGTC -ACGGAATCTACGAGTGTCTCTCTC -ACGGAATCTACGAGTGTCTGGATC -ACGGAATCTACGAGTGTCCACTTC -ACGGAATCTACGAGTGTCGTACTC -ACGGAATCTACGAGTGTCGATGTC -ACGGAATCTACGAGTGTCACAGTC -ACGGAATCTACGAGTGTCTTGCTG -ACGGAATCTACGAGTGTCTCCATG -ACGGAATCTACGAGTGTCTGTGTG -ACGGAATCTACGAGTGTCCTAGTG -ACGGAATCTACGAGTGTCCATCTG -ACGGAATCTACGAGTGTCGAGTTG -ACGGAATCTACGAGTGTCAGACTG -ACGGAATCTACGAGTGTCTCGGTA -ACGGAATCTACGAGTGTCTGCCTA -ACGGAATCTACGAGTGTCCCACTA -ACGGAATCTACGAGTGTCGGAGTA -ACGGAATCTACGAGTGTCTCGTCT -ACGGAATCTACGAGTGTCTGCACT -ACGGAATCTACGAGTGTCCTGACT -ACGGAATCTACGAGTGTCCAACCT -ACGGAATCTACGAGTGTCGCTACT -ACGGAATCTACGAGTGTCGGATCT -ACGGAATCTACGAGTGTCAAGGCT -ACGGAATCTACGAGTGTCTCAACC -ACGGAATCTACGAGTGTCTGTTCC -ACGGAATCTACGAGTGTCATTCCC -ACGGAATCTACGAGTGTCTTCTCG -ACGGAATCTACGAGTGTCTAGACG -ACGGAATCTACGAGTGTCGTAACG -ACGGAATCTACGAGTGTCACTTCG -ACGGAATCTACGAGTGTCTACGCA -ACGGAATCTACGAGTGTCCTTGCA -ACGGAATCTACGAGTGTCCGAACA -ACGGAATCTACGAGTGTCCAGTCA -ACGGAATCTACGAGTGTCGATCCA -ACGGAATCTACGAGTGTCACGACA -ACGGAATCTACGAGTGTCAGCTCA -ACGGAATCTACGAGTGTCTCACGT -ACGGAATCTACGAGTGTCCGTAGT -ACGGAATCTACGAGTGTCGTCAGT -ACGGAATCTACGAGTGTCGAAGGT -ACGGAATCTACGAGTGTCAACCGT -ACGGAATCTACGAGTGTCTTGTGC -ACGGAATCTACGAGTGTCCTAAGC -ACGGAATCTACGAGTGTCACTAGC -ACGGAATCTACGAGTGTCAGATGC -ACGGAATCTACGAGTGTCTGAAGG -ACGGAATCTACGAGTGTCCAATGG -ACGGAATCTACGAGTGTCATGAGG -ACGGAATCTACGAGTGTCAATGGG -ACGGAATCTACGAGTGTCTCCTGA -ACGGAATCTACGAGTGTCTAGCGA -ACGGAATCTACGAGTGTCCACAGA -ACGGAATCTACGAGTGTCGCAAGA -ACGGAATCTACGAGTGTCGGTTGA -ACGGAATCTACGAGTGTCTCCGAT -ACGGAATCTACGAGTGTCTGGCAT -ACGGAATCTACGAGTGTCCGAGAT -ACGGAATCTACGAGTGTCTACCAC -ACGGAATCTACGAGTGTCCAGAAC -ACGGAATCTACGAGTGTCGTCTAC -ACGGAATCTACGAGTGTCACGTAC -ACGGAATCTACGAGTGTCAGTGAC -ACGGAATCTACGAGTGTCCTGTAG -ACGGAATCTACGAGTGTCCCTAAG -ACGGAATCTACGAGTGTCGTTCAG -ACGGAATCTACGAGTGTCGCATAG -ACGGAATCTACGAGTGTCGACAAG -ACGGAATCTACGAGTGTCAAGCAG -ACGGAATCTACGAGTGTCCGTCAA -ACGGAATCTACGAGTGTCGCTGAA -ACGGAATCTACGAGTGTCAGTACG -ACGGAATCTACGAGTGTCATCCGA -ACGGAATCTACGAGTGTCATGGGA -ACGGAATCTACGAGTGTCGTGCAA -ACGGAATCTACGAGTGTCGAGGAA -ACGGAATCTACGAGTGTCCAGGTA -ACGGAATCTACGAGTGTCGACTCT -ACGGAATCTACGAGTGTCAGTCCT -ACGGAATCTACGAGTGTCTAAGCC -ACGGAATCTACGAGTGTCATAGCC -ACGGAATCTACGAGTGTCTAACCG -ACGGAATCTACGAGTGTCATGCCA -ACGGAATCTACGGGTGAAGGAAAC -ACGGAATCTACGGGTGAAAACACC -ACGGAATCTACGGGTGAAATCGAG -ACGGAATCTACGGGTGAACTCCTT -ACGGAATCTACGGGTGAACCTGTT -ACGGAATCTACGGGTGAACGGTTT -ACGGAATCTACGGGTGAAGTGGTT -ACGGAATCTACGGGTGAAGCCTTT -ACGGAATCTACGGGTGAAGGTCTT -ACGGAATCTACGGGTGAAACGCTT -ACGGAATCTACGGGTGAAAGCGTT -ACGGAATCTACGGGTGAATTCGTC -ACGGAATCTACGGGTGAATCTCTC -ACGGAATCTACGGGTGAATGGATC -ACGGAATCTACGGGTGAACACTTC -ACGGAATCTACGGGTGAAGTACTC -ACGGAATCTACGGGTGAAGATGTC -ACGGAATCTACGGGTGAAACAGTC -ACGGAATCTACGGGTGAATTGCTG -ACGGAATCTACGGGTGAATCCATG -ACGGAATCTACGGGTGAATGTGTG -ACGGAATCTACGGGTGAACTAGTG -ACGGAATCTACGGGTGAACATCTG -ACGGAATCTACGGGTGAAGAGTTG -ACGGAATCTACGGGTGAAAGACTG -ACGGAATCTACGGGTGAATCGGTA -ACGGAATCTACGGGTGAATGCCTA -ACGGAATCTACGGGTGAACCACTA -ACGGAATCTACGGGTGAAGGAGTA -ACGGAATCTACGGGTGAATCGTCT -ACGGAATCTACGGGTGAATGCACT -ACGGAATCTACGGGTGAACTGACT -ACGGAATCTACGGGTGAACAACCT -ACGGAATCTACGGGTGAAGCTACT -ACGGAATCTACGGGTGAAGGATCT -ACGGAATCTACGGGTGAAAAGGCT -ACGGAATCTACGGGTGAATCAACC -ACGGAATCTACGGGTGAATGTTCC -ACGGAATCTACGGGTGAAATTCCC -ACGGAATCTACGGGTGAATTCTCG -ACGGAATCTACGGGTGAATAGACG -ACGGAATCTACGGGTGAAGTAACG -ACGGAATCTACGGGTGAAACTTCG -ACGGAATCTACGGGTGAATACGCA -ACGGAATCTACGGGTGAACTTGCA -ACGGAATCTACGGGTGAACGAACA -ACGGAATCTACGGGTGAACAGTCA -ACGGAATCTACGGGTGAAGATCCA -ACGGAATCTACGGGTGAAACGACA -ACGGAATCTACGGGTGAAAGCTCA -ACGGAATCTACGGGTGAATCACGT -ACGGAATCTACGGGTGAACGTAGT -ACGGAATCTACGGGTGAAGTCAGT -ACGGAATCTACGGGTGAAGAAGGT -ACGGAATCTACGGGTGAAAACCGT -ACGGAATCTACGGGTGAATTGTGC -ACGGAATCTACGGGTGAACTAAGC -ACGGAATCTACGGGTGAAACTAGC -ACGGAATCTACGGGTGAAAGATGC -ACGGAATCTACGGGTGAATGAAGG -ACGGAATCTACGGGTGAACAATGG -ACGGAATCTACGGGTGAAATGAGG -ACGGAATCTACGGGTGAAAATGGG -ACGGAATCTACGGGTGAATCCTGA -ACGGAATCTACGGGTGAATAGCGA -ACGGAATCTACGGGTGAACACAGA -ACGGAATCTACGGGTGAAGCAAGA -ACGGAATCTACGGGTGAAGGTTGA -ACGGAATCTACGGGTGAATCCGAT -ACGGAATCTACGGGTGAATGGCAT -ACGGAATCTACGGGTGAACGAGAT -ACGGAATCTACGGGTGAATACCAC -ACGGAATCTACGGGTGAACAGAAC -ACGGAATCTACGGGTGAAGTCTAC -ACGGAATCTACGGGTGAAACGTAC -ACGGAATCTACGGGTGAAAGTGAC -ACGGAATCTACGGGTGAACTGTAG -ACGGAATCTACGGGTGAACCTAAG -ACGGAATCTACGGGTGAAGTTCAG -ACGGAATCTACGGGTGAAGCATAG -ACGGAATCTACGGGTGAAGACAAG -ACGGAATCTACGGGTGAAAAGCAG -ACGGAATCTACGGGTGAACGTCAA -ACGGAATCTACGGGTGAAGCTGAA -ACGGAATCTACGGGTGAAAGTACG -ACGGAATCTACGGGTGAAATCCGA -ACGGAATCTACGGGTGAAATGGGA -ACGGAATCTACGGGTGAAGTGCAA -ACGGAATCTACGGGTGAAGAGGAA -ACGGAATCTACGGGTGAACAGGTA -ACGGAATCTACGGGTGAAGACTCT -ACGGAATCTACGGGTGAAAGTCCT -ACGGAATCTACGGGTGAATAAGCC -ACGGAATCTACGGGTGAAATAGCC -ACGGAATCTACGGGTGAATAACCG -ACGGAATCTACGGGTGAAATGCCA -ACGGAATCTACGCGTAACGGAAAC -ACGGAATCTACGCGTAACAACACC -ACGGAATCTACGCGTAACATCGAG -ACGGAATCTACGCGTAACCTCCTT -ACGGAATCTACGCGTAACCCTGTT -ACGGAATCTACGCGTAACCGGTTT -ACGGAATCTACGCGTAACGTGGTT -ACGGAATCTACGCGTAACGCCTTT -ACGGAATCTACGCGTAACGGTCTT -ACGGAATCTACGCGTAACACGCTT -ACGGAATCTACGCGTAACAGCGTT -ACGGAATCTACGCGTAACTTCGTC -ACGGAATCTACGCGTAACTCTCTC -ACGGAATCTACGCGTAACTGGATC -ACGGAATCTACGCGTAACCACTTC -ACGGAATCTACGCGTAACGTACTC -ACGGAATCTACGCGTAACGATGTC -ACGGAATCTACGCGTAACACAGTC -ACGGAATCTACGCGTAACTTGCTG -ACGGAATCTACGCGTAACTCCATG -ACGGAATCTACGCGTAACTGTGTG -ACGGAATCTACGCGTAACCTAGTG -ACGGAATCTACGCGTAACCATCTG -ACGGAATCTACGCGTAACGAGTTG -ACGGAATCTACGCGTAACAGACTG -ACGGAATCTACGCGTAACTCGGTA -ACGGAATCTACGCGTAACTGCCTA -ACGGAATCTACGCGTAACCCACTA -ACGGAATCTACGCGTAACGGAGTA -ACGGAATCTACGCGTAACTCGTCT -ACGGAATCTACGCGTAACTGCACT -ACGGAATCTACGCGTAACCTGACT -ACGGAATCTACGCGTAACCAACCT -ACGGAATCTACGCGTAACGCTACT -ACGGAATCTACGCGTAACGGATCT -ACGGAATCTACGCGTAACAAGGCT -ACGGAATCTACGCGTAACTCAACC -ACGGAATCTACGCGTAACTGTTCC -ACGGAATCTACGCGTAACATTCCC -ACGGAATCTACGCGTAACTTCTCG -ACGGAATCTACGCGTAACTAGACG -ACGGAATCTACGCGTAACGTAACG -ACGGAATCTACGCGTAACACTTCG -ACGGAATCTACGCGTAACTACGCA -ACGGAATCTACGCGTAACCTTGCA -ACGGAATCTACGCGTAACCGAACA -ACGGAATCTACGCGTAACCAGTCA -ACGGAATCTACGCGTAACGATCCA -ACGGAATCTACGCGTAACACGACA -ACGGAATCTACGCGTAACAGCTCA -ACGGAATCTACGCGTAACTCACGT -ACGGAATCTACGCGTAACCGTAGT -ACGGAATCTACGCGTAACGTCAGT -ACGGAATCTACGCGTAACGAAGGT -ACGGAATCTACGCGTAACAACCGT -ACGGAATCTACGCGTAACTTGTGC -ACGGAATCTACGCGTAACCTAAGC -ACGGAATCTACGCGTAACACTAGC -ACGGAATCTACGCGTAACAGATGC -ACGGAATCTACGCGTAACTGAAGG -ACGGAATCTACGCGTAACCAATGG -ACGGAATCTACGCGTAACATGAGG -ACGGAATCTACGCGTAACAATGGG -ACGGAATCTACGCGTAACTCCTGA -ACGGAATCTACGCGTAACTAGCGA -ACGGAATCTACGCGTAACCACAGA -ACGGAATCTACGCGTAACGCAAGA -ACGGAATCTACGCGTAACGGTTGA -ACGGAATCTACGCGTAACTCCGAT -ACGGAATCTACGCGTAACTGGCAT -ACGGAATCTACGCGTAACCGAGAT -ACGGAATCTACGCGTAACTACCAC -ACGGAATCTACGCGTAACCAGAAC -ACGGAATCTACGCGTAACGTCTAC -ACGGAATCTACGCGTAACACGTAC -ACGGAATCTACGCGTAACAGTGAC -ACGGAATCTACGCGTAACCTGTAG -ACGGAATCTACGCGTAACCCTAAG -ACGGAATCTACGCGTAACGTTCAG -ACGGAATCTACGCGTAACGCATAG -ACGGAATCTACGCGTAACGACAAG -ACGGAATCTACGCGTAACAAGCAG -ACGGAATCTACGCGTAACCGTCAA -ACGGAATCTACGCGTAACGCTGAA -ACGGAATCTACGCGTAACAGTACG -ACGGAATCTACGCGTAACATCCGA -ACGGAATCTACGCGTAACATGGGA -ACGGAATCTACGCGTAACGTGCAA -ACGGAATCTACGCGTAACGAGGAA -ACGGAATCTACGCGTAACCAGGTA -ACGGAATCTACGCGTAACGACTCT -ACGGAATCTACGCGTAACAGTCCT -ACGGAATCTACGCGTAACTAAGCC -ACGGAATCTACGCGTAACATAGCC -ACGGAATCTACGCGTAACTAACCG -ACGGAATCTACGCGTAACATGCCA -ACGGAATCTACGTGCTTGGGAAAC -ACGGAATCTACGTGCTTGAACACC -ACGGAATCTACGTGCTTGATCGAG -ACGGAATCTACGTGCTTGCTCCTT -ACGGAATCTACGTGCTTGCCTGTT -ACGGAATCTACGTGCTTGCGGTTT -ACGGAATCTACGTGCTTGGTGGTT -ACGGAATCTACGTGCTTGGCCTTT -ACGGAATCTACGTGCTTGGGTCTT -ACGGAATCTACGTGCTTGACGCTT -ACGGAATCTACGTGCTTGAGCGTT -ACGGAATCTACGTGCTTGTTCGTC -ACGGAATCTACGTGCTTGTCTCTC -ACGGAATCTACGTGCTTGTGGATC -ACGGAATCTACGTGCTTGCACTTC -ACGGAATCTACGTGCTTGGTACTC -ACGGAATCTACGTGCTTGGATGTC -ACGGAATCTACGTGCTTGACAGTC -ACGGAATCTACGTGCTTGTTGCTG -ACGGAATCTACGTGCTTGTCCATG -ACGGAATCTACGTGCTTGTGTGTG -ACGGAATCTACGTGCTTGCTAGTG -ACGGAATCTACGTGCTTGCATCTG -ACGGAATCTACGTGCTTGGAGTTG -ACGGAATCTACGTGCTTGAGACTG -ACGGAATCTACGTGCTTGTCGGTA -ACGGAATCTACGTGCTTGTGCCTA -ACGGAATCTACGTGCTTGCCACTA -ACGGAATCTACGTGCTTGGGAGTA -ACGGAATCTACGTGCTTGTCGTCT -ACGGAATCTACGTGCTTGTGCACT -ACGGAATCTACGTGCTTGCTGACT -ACGGAATCTACGTGCTTGCAACCT -ACGGAATCTACGTGCTTGGCTACT -ACGGAATCTACGTGCTTGGGATCT -ACGGAATCTACGTGCTTGAAGGCT -ACGGAATCTACGTGCTTGTCAACC -ACGGAATCTACGTGCTTGTGTTCC -ACGGAATCTACGTGCTTGATTCCC -ACGGAATCTACGTGCTTGTTCTCG -ACGGAATCTACGTGCTTGTAGACG -ACGGAATCTACGTGCTTGGTAACG -ACGGAATCTACGTGCTTGACTTCG -ACGGAATCTACGTGCTTGTACGCA -ACGGAATCTACGTGCTTGCTTGCA -ACGGAATCTACGTGCTTGCGAACA -ACGGAATCTACGTGCTTGCAGTCA -ACGGAATCTACGTGCTTGGATCCA -ACGGAATCTACGTGCTTGACGACA -ACGGAATCTACGTGCTTGAGCTCA -ACGGAATCTACGTGCTTGTCACGT -ACGGAATCTACGTGCTTGCGTAGT -ACGGAATCTACGTGCTTGGTCAGT -ACGGAATCTACGTGCTTGGAAGGT -ACGGAATCTACGTGCTTGAACCGT -ACGGAATCTACGTGCTTGTTGTGC -ACGGAATCTACGTGCTTGCTAAGC -ACGGAATCTACGTGCTTGACTAGC -ACGGAATCTACGTGCTTGAGATGC -ACGGAATCTACGTGCTTGTGAAGG -ACGGAATCTACGTGCTTGCAATGG -ACGGAATCTACGTGCTTGATGAGG -ACGGAATCTACGTGCTTGAATGGG -ACGGAATCTACGTGCTTGTCCTGA -ACGGAATCTACGTGCTTGTAGCGA -ACGGAATCTACGTGCTTGCACAGA -ACGGAATCTACGTGCTTGGCAAGA -ACGGAATCTACGTGCTTGGGTTGA -ACGGAATCTACGTGCTTGTCCGAT -ACGGAATCTACGTGCTTGTGGCAT -ACGGAATCTACGTGCTTGCGAGAT -ACGGAATCTACGTGCTTGTACCAC -ACGGAATCTACGTGCTTGCAGAAC -ACGGAATCTACGTGCTTGGTCTAC -ACGGAATCTACGTGCTTGACGTAC -ACGGAATCTACGTGCTTGAGTGAC -ACGGAATCTACGTGCTTGCTGTAG -ACGGAATCTACGTGCTTGCCTAAG -ACGGAATCTACGTGCTTGGTTCAG -ACGGAATCTACGTGCTTGGCATAG -ACGGAATCTACGTGCTTGGACAAG -ACGGAATCTACGTGCTTGAAGCAG -ACGGAATCTACGTGCTTGCGTCAA -ACGGAATCTACGTGCTTGGCTGAA -ACGGAATCTACGTGCTTGAGTACG -ACGGAATCTACGTGCTTGATCCGA -ACGGAATCTACGTGCTTGATGGGA -ACGGAATCTACGTGCTTGGTGCAA -ACGGAATCTACGTGCTTGGAGGAA -ACGGAATCTACGTGCTTGCAGGTA -ACGGAATCTACGTGCTTGGACTCT -ACGGAATCTACGTGCTTGAGTCCT -ACGGAATCTACGTGCTTGTAAGCC -ACGGAATCTACGTGCTTGATAGCC -ACGGAATCTACGTGCTTGTAACCG -ACGGAATCTACGTGCTTGATGCCA -ACGGAATCTACGAGCCTAGGAAAC -ACGGAATCTACGAGCCTAAACACC -ACGGAATCTACGAGCCTAATCGAG -ACGGAATCTACGAGCCTACTCCTT -ACGGAATCTACGAGCCTACCTGTT -ACGGAATCTACGAGCCTACGGTTT -ACGGAATCTACGAGCCTAGTGGTT -ACGGAATCTACGAGCCTAGCCTTT -ACGGAATCTACGAGCCTAGGTCTT -ACGGAATCTACGAGCCTAACGCTT -ACGGAATCTACGAGCCTAAGCGTT -ACGGAATCTACGAGCCTATTCGTC -ACGGAATCTACGAGCCTATCTCTC -ACGGAATCTACGAGCCTATGGATC -ACGGAATCTACGAGCCTACACTTC -ACGGAATCTACGAGCCTAGTACTC -ACGGAATCTACGAGCCTAGATGTC -ACGGAATCTACGAGCCTAACAGTC -ACGGAATCTACGAGCCTATTGCTG -ACGGAATCTACGAGCCTATCCATG -ACGGAATCTACGAGCCTATGTGTG -ACGGAATCTACGAGCCTACTAGTG -ACGGAATCTACGAGCCTACATCTG -ACGGAATCTACGAGCCTAGAGTTG -ACGGAATCTACGAGCCTAAGACTG -ACGGAATCTACGAGCCTATCGGTA -ACGGAATCTACGAGCCTATGCCTA -ACGGAATCTACGAGCCTACCACTA -ACGGAATCTACGAGCCTAGGAGTA -ACGGAATCTACGAGCCTATCGTCT -ACGGAATCTACGAGCCTATGCACT -ACGGAATCTACGAGCCTACTGACT -ACGGAATCTACGAGCCTACAACCT -ACGGAATCTACGAGCCTAGCTACT -ACGGAATCTACGAGCCTAGGATCT -ACGGAATCTACGAGCCTAAAGGCT -ACGGAATCTACGAGCCTATCAACC -ACGGAATCTACGAGCCTATGTTCC -ACGGAATCTACGAGCCTAATTCCC -ACGGAATCTACGAGCCTATTCTCG -ACGGAATCTACGAGCCTATAGACG -ACGGAATCTACGAGCCTAGTAACG -ACGGAATCTACGAGCCTAACTTCG -ACGGAATCTACGAGCCTATACGCA -ACGGAATCTACGAGCCTACTTGCA -ACGGAATCTACGAGCCTACGAACA -ACGGAATCTACGAGCCTACAGTCA -ACGGAATCTACGAGCCTAGATCCA -ACGGAATCTACGAGCCTAACGACA -ACGGAATCTACGAGCCTAAGCTCA -ACGGAATCTACGAGCCTATCACGT -ACGGAATCTACGAGCCTACGTAGT -ACGGAATCTACGAGCCTAGTCAGT -ACGGAATCTACGAGCCTAGAAGGT -ACGGAATCTACGAGCCTAAACCGT -ACGGAATCTACGAGCCTATTGTGC -ACGGAATCTACGAGCCTACTAAGC -ACGGAATCTACGAGCCTAACTAGC -ACGGAATCTACGAGCCTAAGATGC -ACGGAATCTACGAGCCTATGAAGG -ACGGAATCTACGAGCCTACAATGG -ACGGAATCTACGAGCCTAATGAGG -ACGGAATCTACGAGCCTAAATGGG -ACGGAATCTACGAGCCTATCCTGA -ACGGAATCTACGAGCCTATAGCGA -ACGGAATCTACGAGCCTACACAGA -ACGGAATCTACGAGCCTAGCAAGA -ACGGAATCTACGAGCCTAGGTTGA -ACGGAATCTACGAGCCTATCCGAT -ACGGAATCTACGAGCCTATGGCAT -ACGGAATCTACGAGCCTACGAGAT -ACGGAATCTACGAGCCTATACCAC -ACGGAATCTACGAGCCTACAGAAC -ACGGAATCTACGAGCCTAGTCTAC -ACGGAATCTACGAGCCTAACGTAC -ACGGAATCTACGAGCCTAAGTGAC -ACGGAATCTACGAGCCTACTGTAG -ACGGAATCTACGAGCCTACCTAAG -ACGGAATCTACGAGCCTAGTTCAG -ACGGAATCTACGAGCCTAGCATAG -ACGGAATCTACGAGCCTAGACAAG -ACGGAATCTACGAGCCTAAAGCAG -ACGGAATCTACGAGCCTACGTCAA -ACGGAATCTACGAGCCTAGCTGAA -ACGGAATCTACGAGCCTAAGTACG -ACGGAATCTACGAGCCTAATCCGA -ACGGAATCTACGAGCCTAATGGGA -ACGGAATCTACGAGCCTAGTGCAA -ACGGAATCTACGAGCCTAGAGGAA -ACGGAATCTACGAGCCTACAGGTA -ACGGAATCTACGAGCCTAGACTCT -ACGGAATCTACGAGCCTAAGTCCT -ACGGAATCTACGAGCCTATAAGCC -ACGGAATCTACGAGCCTAATAGCC -ACGGAATCTACGAGCCTATAACCG -ACGGAATCTACGAGCCTAATGCCA -ACGGAATCTACGAGCACTGGAAAC -ACGGAATCTACGAGCACTAACACC -ACGGAATCTACGAGCACTATCGAG -ACGGAATCTACGAGCACTCTCCTT -ACGGAATCTACGAGCACTCCTGTT -ACGGAATCTACGAGCACTCGGTTT -ACGGAATCTACGAGCACTGTGGTT -ACGGAATCTACGAGCACTGCCTTT -ACGGAATCTACGAGCACTGGTCTT -ACGGAATCTACGAGCACTACGCTT -ACGGAATCTACGAGCACTAGCGTT -ACGGAATCTACGAGCACTTTCGTC -ACGGAATCTACGAGCACTTCTCTC -ACGGAATCTACGAGCACTTGGATC -ACGGAATCTACGAGCACTCACTTC -ACGGAATCTACGAGCACTGTACTC -ACGGAATCTACGAGCACTGATGTC -ACGGAATCTACGAGCACTACAGTC -ACGGAATCTACGAGCACTTTGCTG -ACGGAATCTACGAGCACTTCCATG -ACGGAATCTACGAGCACTTGTGTG -ACGGAATCTACGAGCACTCTAGTG -ACGGAATCTACGAGCACTCATCTG -ACGGAATCTACGAGCACTGAGTTG -ACGGAATCTACGAGCACTAGACTG -ACGGAATCTACGAGCACTTCGGTA -ACGGAATCTACGAGCACTTGCCTA -ACGGAATCTACGAGCACTCCACTA -ACGGAATCTACGAGCACTGGAGTA -ACGGAATCTACGAGCACTTCGTCT -ACGGAATCTACGAGCACTTGCACT -ACGGAATCTACGAGCACTCTGACT -ACGGAATCTACGAGCACTCAACCT -ACGGAATCTACGAGCACTGCTACT -ACGGAATCTACGAGCACTGGATCT -ACGGAATCTACGAGCACTAAGGCT -ACGGAATCTACGAGCACTTCAACC -ACGGAATCTACGAGCACTTGTTCC -ACGGAATCTACGAGCACTATTCCC -ACGGAATCTACGAGCACTTTCTCG -ACGGAATCTACGAGCACTTAGACG -ACGGAATCTACGAGCACTGTAACG -ACGGAATCTACGAGCACTACTTCG -ACGGAATCTACGAGCACTTACGCA -ACGGAATCTACGAGCACTCTTGCA -ACGGAATCTACGAGCACTCGAACA -ACGGAATCTACGAGCACTCAGTCA -ACGGAATCTACGAGCACTGATCCA -ACGGAATCTACGAGCACTACGACA -ACGGAATCTACGAGCACTAGCTCA -ACGGAATCTACGAGCACTTCACGT -ACGGAATCTACGAGCACTCGTAGT -ACGGAATCTACGAGCACTGTCAGT -ACGGAATCTACGAGCACTGAAGGT -ACGGAATCTACGAGCACTAACCGT -ACGGAATCTACGAGCACTTTGTGC -ACGGAATCTACGAGCACTCTAAGC -ACGGAATCTACGAGCACTACTAGC -ACGGAATCTACGAGCACTAGATGC -ACGGAATCTACGAGCACTTGAAGG -ACGGAATCTACGAGCACTCAATGG -ACGGAATCTACGAGCACTATGAGG -ACGGAATCTACGAGCACTAATGGG -ACGGAATCTACGAGCACTTCCTGA -ACGGAATCTACGAGCACTTAGCGA -ACGGAATCTACGAGCACTCACAGA -ACGGAATCTACGAGCACTGCAAGA -ACGGAATCTACGAGCACTGGTTGA -ACGGAATCTACGAGCACTTCCGAT -ACGGAATCTACGAGCACTTGGCAT -ACGGAATCTACGAGCACTCGAGAT -ACGGAATCTACGAGCACTTACCAC -ACGGAATCTACGAGCACTCAGAAC -ACGGAATCTACGAGCACTGTCTAC -ACGGAATCTACGAGCACTACGTAC -ACGGAATCTACGAGCACTAGTGAC -ACGGAATCTACGAGCACTCTGTAG -ACGGAATCTACGAGCACTCCTAAG -ACGGAATCTACGAGCACTGTTCAG -ACGGAATCTACGAGCACTGCATAG -ACGGAATCTACGAGCACTGACAAG -ACGGAATCTACGAGCACTAAGCAG -ACGGAATCTACGAGCACTCGTCAA -ACGGAATCTACGAGCACTGCTGAA -ACGGAATCTACGAGCACTAGTACG -ACGGAATCTACGAGCACTATCCGA -ACGGAATCTACGAGCACTATGGGA -ACGGAATCTACGAGCACTGTGCAA -ACGGAATCTACGAGCACTGAGGAA -ACGGAATCTACGAGCACTCAGGTA -ACGGAATCTACGAGCACTGACTCT -ACGGAATCTACGAGCACTAGTCCT -ACGGAATCTACGAGCACTTAAGCC -ACGGAATCTACGAGCACTATAGCC -ACGGAATCTACGAGCACTTAACCG -ACGGAATCTACGAGCACTATGCCA -ACGGAATCTACGTGCAGAGGAAAC -ACGGAATCTACGTGCAGAAACACC -ACGGAATCTACGTGCAGAATCGAG -ACGGAATCTACGTGCAGACTCCTT -ACGGAATCTACGTGCAGACCTGTT -ACGGAATCTACGTGCAGACGGTTT -ACGGAATCTACGTGCAGAGTGGTT -ACGGAATCTACGTGCAGAGCCTTT -ACGGAATCTACGTGCAGAGGTCTT -ACGGAATCTACGTGCAGAACGCTT -ACGGAATCTACGTGCAGAAGCGTT -ACGGAATCTACGTGCAGATTCGTC -ACGGAATCTACGTGCAGATCTCTC -ACGGAATCTACGTGCAGATGGATC -ACGGAATCTACGTGCAGACACTTC -ACGGAATCTACGTGCAGAGTACTC -ACGGAATCTACGTGCAGAGATGTC -ACGGAATCTACGTGCAGAACAGTC -ACGGAATCTACGTGCAGATTGCTG -ACGGAATCTACGTGCAGATCCATG -ACGGAATCTACGTGCAGATGTGTG -ACGGAATCTACGTGCAGACTAGTG -ACGGAATCTACGTGCAGACATCTG -ACGGAATCTACGTGCAGAGAGTTG -ACGGAATCTACGTGCAGAAGACTG -ACGGAATCTACGTGCAGATCGGTA -ACGGAATCTACGTGCAGATGCCTA -ACGGAATCTACGTGCAGACCACTA -ACGGAATCTACGTGCAGAGGAGTA -ACGGAATCTACGTGCAGATCGTCT -ACGGAATCTACGTGCAGATGCACT -ACGGAATCTACGTGCAGACTGACT -ACGGAATCTACGTGCAGACAACCT -ACGGAATCTACGTGCAGAGCTACT -ACGGAATCTACGTGCAGAGGATCT -ACGGAATCTACGTGCAGAAAGGCT -ACGGAATCTACGTGCAGATCAACC -ACGGAATCTACGTGCAGATGTTCC -ACGGAATCTACGTGCAGAATTCCC -ACGGAATCTACGTGCAGATTCTCG -ACGGAATCTACGTGCAGATAGACG -ACGGAATCTACGTGCAGAGTAACG -ACGGAATCTACGTGCAGAACTTCG -ACGGAATCTACGTGCAGATACGCA -ACGGAATCTACGTGCAGACTTGCA -ACGGAATCTACGTGCAGACGAACA -ACGGAATCTACGTGCAGACAGTCA -ACGGAATCTACGTGCAGAGATCCA -ACGGAATCTACGTGCAGAACGACA -ACGGAATCTACGTGCAGAAGCTCA -ACGGAATCTACGTGCAGATCACGT -ACGGAATCTACGTGCAGACGTAGT -ACGGAATCTACGTGCAGAGTCAGT -ACGGAATCTACGTGCAGAGAAGGT -ACGGAATCTACGTGCAGAAACCGT -ACGGAATCTACGTGCAGATTGTGC -ACGGAATCTACGTGCAGACTAAGC -ACGGAATCTACGTGCAGAACTAGC -ACGGAATCTACGTGCAGAAGATGC -ACGGAATCTACGTGCAGATGAAGG -ACGGAATCTACGTGCAGACAATGG -ACGGAATCTACGTGCAGAATGAGG -ACGGAATCTACGTGCAGAAATGGG -ACGGAATCTACGTGCAGATCCTGA -ACGGAATCTACGTGCAGATAGCGA -ACGGAATCTACGTGCAGACACAGA -ACGGAATCTACGTGCAGAGCAAGA -ACGGAATCTACGTGCAGAGGTTGA -ACGGAATCTACGTGCAGATCCGAT -ACGGAATCTACGTGCAGATGGCAT -ACGGAATCTACGTGCAGACGAGAT -ACGGAATCTACGTGCAGATACCAC -ACGGAATCTACGTGCAGACAGAAC -ACGGAATCTACGTGCAGAGTCTAC -ACGGAATCTACGTGCAGAACGTAC -ACGGAATCTACGTGCAGAAGTGAC -ACGGAATCTACGTGCAGACTGTAG -ACGGAATCTACGTGCAGACCTAAG -ACGGAATCTACGTGCAGAGTTCAG -ACGGAATCTACGTGCAGAGCATAG -ACGGAATCTACGTGCAGAGACAAG -ACGGAATCTACGTGCAGAAAGCAG -ACGGAATCTACGTGCAGACGTCAA -ACGGAATCTACGTGCAGAGCTGAA -ACGGAATCTACGTGCAGAAGTACG -ACGGAATCTACGTGCAGAATCCGA -ACGGAATCTACGTGCAGAATGGGA -ACGGAATCTACGTGCAGAGTGCAA -ACGGAATCTACGTGCAGAGAGGAA -ACGGAATCTACGTGCAGACAGGTA -ACGGAATCTACGTGCAGAGACTCT -ACGGAATCTACGTGCAGAAGTCCT -ACGGAATCTACGTGCAGATAAGCC -ACGGAATCTACGTGCAGAATAGCC -ACGGAATCTACGTGCAGATAACCG -ACGGAATCTACGTGCAGAATGCCA -ACGGAATCTACGAGGTGAGGAAAC -ACGGAATCTACGAGGTGAAACACC -ACGGAATCTACGAGGTGAATCGAG -ACGGAATCTACGAGGTGACTCCTT -ACGGAATCTACGAGGTGACCTGTT -ACGGAATCTACGAGGTGACGGTTT -ACGGAATCTACGAGGTGAGTGGTT -ACGGAATCTACGAGGTGAGCCTTT -ACGGAATCTACGAGGTGAGGTCTT -ACGGAATCTACGAGGTGAACGCTT -ACGGAATCTACGAGGTGAAGCGTT -ACGGAATCTACGAGGTGATTCGTC -ACGGAATCTACGAGGTGATCTCTC -ACGGAATCTACGAGGTGATGGATC -ACGGAATCTACGAGGTGACACTTC -ACGGAATCTACGAGGTGAGTACTC -ACGGAATCTACGAGGTGAGATGTC -ACGGAATCTACGAGGTGAACAGTC -ACGGAATCTACGAGGTGATTGCTG -ACGGAATCTACGAGGTGATCCATG -ACGGAATCTACGAGGTGATGTGTG -ACGGAATCTACGAGGTGACTAGTG -ACGGAATCTACGAGGTGACATCTG -ACGGAATCTACGAGGTGAGAGTTG -ACGGAATCTACGAGGTGAAGACTG -ACGGAATCTACGAGGTGATCGGTA -ACGGAATCTACGAGGTGATGCCTA -ACGGAATCTACGAGGTGACCACTA -ACGGAATCTACGAGGTGAGGAGTA -ACGGAATCTACGAGGTGATCGTCT -ACGGAATCTACGAGGTGATGCACT -ACGGAATCTACGAGGTGACTGACT -ACGGAATCTACGAGGTGACAACCT -ACGGAATCTACGAGGTGAGCTACT -ACGGAATCTACGAGGTGAGGATCT -ACGGAATCTACGAGGTGAAAGGCT -ACGGAATCTACGAGGTGATCAACC -ACGGAATCTACGAGGTGATGTTCC -ACGGAATCTACGAGGTGAATTCCC -ACGGAATCTACGAGGTGATTCTCG -ACGGAATCTACGAGGTGATAGACG -ACGGAATCTACGAGGTGAGTAACG -ACGGAATCTACGAGGTGAACTTCG -ACGGAATCTACGAGGTGATACGCA -ACGGAATCTACGAGGTGACTTGCA -ACGGAATCTACGAGGTGACGAACA -ACGGAATCTACGAGGTGACAGTCA -ACGGAATCTACGAGGTGAGATCCA -ACGGAATCTACGAGGTGAACGACA -ACGGAATCTACGAGGTGAAGCTCA -ACGGAATCTACGAGGTGATCACGT -ACGGAATCTACGAGGTGACGTAGT -ACGGAATCTACGAGGTGAGTCAGT -ACGGAATCTACGAGGTGAGAAGGT -ACGGAATCTACGAGGTGAAACCGT -ACGGAATCTACGAGGTGATTGTGC -ACGGAATCTACGAGGTGACTAAGC -ACGGAATCTACGAGGTGAACTAGC -ACGGAATCTACGAGGTGAAGATGC -ACGGAATCTACGAGGTGATGAAGG -ACGGAATCTACGAGGTGACAATGG -ACGGAATCTACGAGGTGAATGAGG -ACGGAATCTACGAGGTGAAATGGG -ACGGAATCTACGAGGTGATCCTGA -ACGGAATCTACGAGGTGATAGCGA -ACGGAATCTACGAGGTGACACAGA -ACGGAATCTACGAGGTGAGCAAGA -ACGGAATCTACGAGGTGAGGTTGA -ACGGAATCTACGAGGTGATCCGAT -ACGGAATCTACGAGGTGATGGCAT -ACGGAATCTACGAGGTGACGAGAT -ACGGAATCTACGAGGTGATACCAC -ACGGAATCTACGAGGTGACAGAAC -ACGGAATCTACGAGGTGAGTCTAC -ACGGAATCTACGAGGTGAACGTAC -ACGGAATCTACGAGGTGAAGTGAC -ACGGAATCTACGAGGTGACTGTAG -ACGGAATCTACGAGGTGACCTAAG -ACGGAATCTACGAGGTGAGTTCAG -ACGGAATCTACGAGGTGAGCATAG -ACGGAATCTACGAGGTGAGACAAG -ACGGAATCTACGAGGTGAAAGCAG -ACGGAATCTACGAGGTGACGTCAA -ACGGAATCTACGAGGTGAGCTGAA -ACGGAATCTACGAGGTGAAGTACG -ACGGAATCTACGAGGTGAATCCGA -ACGGAATCTACGAGGTGAATGGGA -ACGGAATCTACGAGGTGAGTGCAA -ACGGAATCTACGAGGTGAGAGGAA -ACGGAATCTACGAGGTGACAGGTA -ACGGAATCTACGAGGTGAGACTCT -ACGGAATCTACGAGGTGAAGTCCT -ACGGAATCTACGAGGTGATAAGCC -ACGGAATCTACGAGGTGAATAGCC -ACGGAATCTACGAGGTGATAACCG -ACGGAATCTACGAGGTGAATGCCA -ACGGAATCTACGTGGCAAGGAAAC -ACGGAATCTACGTGGCAAAACACC -ACGGAATCTACGTGGCAAATCGAG -ACGGAATCTACGTGGCAACTCCTT -ACGGAATCTACGTGGCAACCTGTT -ACGGAATCTACGTGGCAACGGTTT -ACGGAATCTACGTGGCAAGTGGTT -ACGGAATCTACGTGGCAAGCCTTT -ACGGAATCTACGTGGCAAGGTCTT -ACGGAATCTACGTGGCAAACGCTT -ACGGAATCTACGTGGCAAAGCGTT -ACGGAATCTACGTGGCAATTCGTC -ACGGAATCTACGTGGCAATCTCTC -ACGGAATCTACGTGGCAATGGATC -ACGGAATCTACGTGGCAACACTTC -ACGGAATCTACGTGGCAAGTACTC -ACGGAATCTACGTGGCAAGATGTC -ACGGAATCTACGTGGCAAACAGTC -ACGGAATCTACGTGGCAATTGCTG -ACGGAATCTACGTGGCAATCCATG -ACGGAATCTACGTGGCAATGTGTG -ACGGAATCTACGTGGCAACTAGTG -ACGGAATCTACGTGGCAACATCTG -ACGGAATCTACGTGGCAAGAGTTG -ACGGAATCTACGTGGCAAAGACTG -ACGGAATCTACGTGGCAATCGGTA -ACGGAATCTACGTGGCAATGCCTA -ACGGAATCTACGTGGCAACCACTA -ACGGAATCTACGTGGCAAGGAGTA -ACGGAATCTACGTGGCAATCGTCT -ACGGAATCTACGTGGCAATGCACT -ACGGAATCTACGTGGCAACTGACT -ACGGAATCTACGTGGCAACAACCT -ACGGAATCTACGTGGCAAGCTACT -ACGGAATCTACGTGGCAAGGATCT -ACGGAATCTACGTGGCAAAAGGCT -ACGGAATCTACGTGGCAATCAACC -ACGGAATCTACGTGGCAATGTTCC -ACGGAATCTACGTGGCAAATTCCC -ACGGAATCTACGTGGCAATTCTCG -ACGGAATCTACGTGGCAATAGACG -ACGGAATCTACGTGGCAAGTAACG -ACGGAATCTACGTGGCAAACTTCG -ACGGAATCTACGTGGCAATACGCA -ACGGAATCTACGTGGCAACTTGCA -ACGGAATCTACGTGGCAACGAACA -ACGGAATCTACGTGGCAACAGTCA -ACGGAATCTACGTGGCAAGATCCA -ACGGAATCTACGTGGCAAACGACA -ACGGAATCTACGTGGCAAAGCTCA -ACGGAATCTACGTGGCAATCACGT -ACGGAATCTACGTGGCAACGTAGT -ACGGAATCTACGTGGCAAGTCAGT -ACGGAATCTACGTGGCAAGAAGGT -ACGGAATCTACGTGGCAAAACCGT -ACGGAATCTACGTGGCAATTGTGC -ACGGAATCTACGTGGCAACTAAGC -ACGGAATCTACGTGGCAAACTAGC -ACGGAATCTACGTGGCAAAGATGC -ACGGAATCTACGTGGCAATGAAGG -ACGGAATCTACGTGGCAACAATGG -ACGGAATCTACGTGGCAAATGAGG -ACGGAATCTACGTGGCAAAATGGG -ACGGAATCTACGTGGCAATCCTGA -ACGGAATCTACGTGGCAATAGCGA -ACGGAATCTACGTGGCAACACAGA -ACGGAATCTACGTGGCAAGCAAGA -ACGGAATCTACGTGGCAAGGTTGA -ACGGAATCTACGTGGCAATCCGAT -ACGGAATCTACGTGGCAATGGCAT -ACGGAATCTACGTGGCAACGAGAT -ACGGAATCTACGTGGCAATACCAC -ACGGAATCTACGTGGCAACAGAAC -ACGGAATCTACGTGGCAAGTCTAC -ACGGAATCTACGTGGCAAACGTAC -ACGGAATCTACGTGGCAAAGTGAC -ACGGAATCTACGTGGCAACTGTAG -ACGGAATCTACGTGGCAACCTAAG -ACGGAATCTACGTGGCAAGTTCAG -ACGGAATCTACGTGGCAAGCATAG -ACGGAATCTACGTGGCAAGACAAG -ACGGAATCTACGTGGCAAAAGCAG -ACGGAATCTACGTGGCAACGTCAA -ACGGAATCTACGTGGCAAGCTGAA -ACGGAATCTACGTGGCAAAGTACG -ACGGAATCTACGTGGCAAATCCGA -ACGGAATCTACGTGGCAAATGGGA -ACGGAATCTACGTGGCAAGTGCAA -ACGGAATCTACGTGGCAAGAGGAA -ACGGAATCTACGTGGCAACAGGTA -ACGGAATCTACGTGGCAAGACTCT -ACGGAATCTACGTGGCAAAGTCCT -ACGGAATCTACGTGGCAATAAGCC -ACGGAATCTACGTGGCAAATAGCC -ACGGAATCTACGTGGCAATAACCG -ACGGAATCTACGTGGCAAATGCCA -ACGGAATCTACGAGGATGGGAAAC -ACGGAATCTACGAGGATGAACACC -ACGGAATCTACGAGGATGATCGAG -ACGGAATCTACGAGGATGCTCCTT -ACGGAATCTACGAGGATGCCTGTT -ACGGAATCTACGAGGATGCGGTTT -ACGGAATCTACGAGGATGGTGGTT -ACGGAATCTACGAGGATGGCCTTT -ACGGAATCTACGAGGATGGGTCTT -ACGGAATCTACGAGGATGACGCTT -ACGGAATCTACGAGGATGAGCGTT -ACGGAATCTACGAGGATGTTCGTC -ACGGAATCTACGAGGATGTCTCTC -ACGGAATCTACGAGGATGTGGATC -ACGGAATCTACGAGGATGCACTTC -ACGGAATCTACGAGGATGGTACTC -ACGGAATCTACGAGGATGGATGTC -ACGGAATCTACGAGGATGACAGTC -ACGGAATCTACGAGGATGTTGCTG -ACGGAATCTACGAGGATGTCCATG -ACGGAATCTACGAGGATGTGTGTG -ACGGAATCTACGAGGATGCTAGTG -ACGGAATCTACGAGGATGCATCTG -ACGGAATCTACGAGGATGGAGTTG -ACGGAATCTACGAGGATGAGACTG -ACGGAATCTACGAGGATGTCGGTA -ACGGAATCTACGAGGATGTGCCTA -ACGGAATCTACGAGGATGCCACTA -ACGGAATCTACGAGGATGGGAGTA -ACGGAATCTACGAGGATGTCGTCT -ACGGAATCTACGAGGATGTGCACT -ACGGAATCTACGAGGATGCTGACT -ACGGAATCTACGAGGATGCAACCT -ACGGAATCTACGAGGATGGCTACT -ACGGAATCTACGAGGATGGGATCT -ACGGAATCTACGAGGATGAAGGCT -ACGGAATCTACGAGGATGTCAACC -ACGGAATCTACGAGGATGTGTTCC -ACGGAATCTACGAGGATGATTCCC -ACGGAATCTACGAGGATGTTCTCG -ACGGAATCTACGAGGATGTAGACG -ACGGAATCTACGAGGATGGTAACG -ACGGAATCTACGAGGATGACTTCG -ACGGAATCTACGAGGATGTACGCA -ACGGAATCTACGAGGATGCTTGCA -ACGGAATCTACGAGGATGCGAACA -ACGGAATCTACGAGGATGCAGTCA -ACGGAATCTACGAGGATGGATCCA -ACGGAATCTACGAGGATGACGACA -ACGGAATCTACGAGGATGAGCTCA -ACGGAATCTACGAGGATGTCACGT -ACGGAATCTACGAGGATGCGTAGT -ACGGAATCTACGAGGATGGTCAGT -ACGGAATCTACGAGGATGGAAGGT -ACGGAATCTACGAGGATGAACCGT -ACGGAATCTACGAGGATGTTGTGC -ACGGAATCTACGAGGATGCTAAGC -ACGGAATCTACGAGGATGACTAGC -ACGGAATCTACGAGGATGAGATGC -ACGGAATCTACGAGGATGTGAAGG -ACGGAATCTACGAGGATGCAATGG -ACGGAATCTACGAGGATGATGAGG -ACGGAATCTACGAGGATGAATGGG -ACGGAATCTACGAGGATGTCCTGA -ACGGAATCTACGAGGATGTAGCGA -ACGGAATCTACGAGGATGCACAGA -ACGGAATCTACGAGGATGGCAAGA -ACGGAATCTACGAGGATGGGTTGA -ACGGAATCTACGAGGATGTCCGAT -ACGGAATCTACGAGGATGTGGCAT -ACGGAATCTACGAGGATGCGAGAT -ACGGAATCTACGAGGATGTACCAC -ACGGAATCTACGAGGATGCAGAAC -ACGGAATCTACGAGGATGGTCTAC -ACGGAATCTACGAGGATGACGTAC -ACGGAATCTACGAGGATGAGTGAC -ACGGAATCTACGAGGATGCTGTAG -ACGGAATCTACGAGGATGCCTAAG -ACGGAATCTACGAGGATGGTTCAG -ACGGAATCTACGAGGATGGCATAG -ACGGAATCTACGAGGATGGACAAG -ACGGAATCTACGAGGATGAAGCAG -ACGGAATCTACGAGGATGCGTCAA -ACGGAATCTACGAGGATGGCTGAA -ACGGAATCTACGAGGATGAGTACG -ACGGAATCTACGAGGATGATCCGA -ACGGAATCTACGAGGATGATGGGA -ACGGAATCTACGAGGATGGTGCAA -ACGGAATCTACGAGGATGGAGGAA -ACGGAATCTACGAGGATGCAGGTA -ACGGAATCTACGAGGATGGACTCT -ACGGAATCTACGAGGATGAGTCCT -ACGGAATCTACGAGGATGTAAGCC -ACGGAATCTACGAGGATGATAGCC -ACGGAATCTACGAGGATGTAACCG -ACGGAATCTACGAGGATGATGCCA -ACGGAATCTACGGGGAATGGAAAC -ACGGAATCTACGGGGAATAACACC -ACGGAATCTACGGGGAATATCGAG -ACGGAATCTACGGGGAATCTCCTT -ACGGAATCTACGGGGAATCCTGTT -ACGGAATCTACGGGGAATCGGTTT -ACGGAATCTACGGGGAATGTGGTT -ACGGAATCTACGGGGAATGCCTTT -ACGGAATCTACGGGGAATGGTCTT -ACGGAATCTACGGGGAATACGCTT -ACGGAATCTACGGGGAATAGCGTT -ACGGAATCTACGGGGAATTTCGTC -ACGGAATCTACGGGGAATTCTCTC -ACGGAATCTACGGGGAATTGGATC -ACGGAATCTACGGGGAATCACTTC -ACGGAATCTACGGGGAATGTACTC -ACGGAATCTACGGGGAATGATGTC -ACGGAATCTACGGGGAATACAGTC -ACGGAATCTACGGGGAATTTGCTG -ACGGAATCTACGGGGAATTCCATG -ACGGAATCTACGGGGAATTGTGTG -ACGGAATCTACGGGGAATCTAGTG -ACGGAATCTACGGGGAATCATCTG -ACGGAATCTACGGGGAATGAGTTG -ACGGAATCTACGGGGAATAGACTG -ACGGAATCTACGGGGAATTCGGTA -ACGGAATCTACGGGGAATTGCCTA -ACGGAATCTACGGGGAATCCACTA -ACGGAATCTACGGGGAATGGAGTA -ACGGAATCTACGGGGAATTCGTCT -ACGGAATCTACGGGGAATTGCACT -ACGGAATCTACGGGGAATCTGACT -ACGGAATCTACGGGGAATCAACCT -ACGGAATCTACGGGGAATGCTACT -ACGGAATCTACGGGGAATGGATCT -ACGGAATCTACGGGGAATAAGGCT -ACGGAATCTACGGGGAATTCAACC -ACGGAATCTACGGGGAATTGTTCC -ACGGAATCTACGGGGAATATTCCC -ACGGAATCTACGGGGAATTTCTCG -ACGGAATCTACGGGGAATTAGACG -ACGGAATCTACGGGGAATGTAACG -ACGGAATCTACGGGGAATACTTCG -ACGGAATCTACGGGGAATTACGCA -ACGGAATCTACGGGGAATCTTGCA -ACGGAATCTACGGGGAATCGAACA -ACGGAATCTACGGGGAATCAGTCA -ACGGAATCTACGGGGAATGATCCA -ACGGAATCTACGGGGAATACGACA -ACGGAATCTACGGGGAATAGCTCA -ACGGAATCTACGGGGAATTCACGT -ACGGAATCTACGGGGAATCGTAGT -ACGGAATCTACGGGGAATGTCAGT -ACGGAATCTACGGGGAATGAAGGT -ACGGAATCTACGGGGAATAACCGT -ACGGAATCTACGGGGAATTTGTGC -ACGGAATCTACGGGGAATCTAAGC -ACGGAATCTACGGGGAATACTAGC -ACGGAATCTACGGGGAATAGATGC -ACGGAATCTACGGGGAATTGAAGG -ACGGAATCTACGGGGAATCAATGG -ACGGAATCTACGGGGAATATGAGG -ACGGAATCTACGGGGAATAATGGG -ACGGAATCTACGGGGAATTCCTGA -ACGGAATCTACGGGGAATTAGCGA -ACGGAATCTACGGGGAATCACAGA -ACGGAATCTACGGGGAATGCAAGA -ACGGAATCTACGGGGAATGGTTGA -ACGGAATCTACGGGGAATTCCGAT -ACGGAATCTACGGGGAATTGGCAT -ACGGAATCTACGGGGAATCGAGAT -ACGGAATCTACGGGGAATTACCAC -ACGGAATCTACGGGGAATCAGAAC -ACGGAATCTACGGGGAATGTCTAC -ACGGAATCTACGGGGAATACGTAC -ACGGAATCTACGGGGAATAGTGAC -ACGGAATCTACGGGGAATCTGTAG -ACGGAATCTACGGGGAATCCTAAG -ACGGAATCTACGGGGAATGTTCAG -ACGGAATCTACGGGGAATGCATAG -ACGGAATCTACGGGGAATGACAAG -ACGGAATCTACGGGGAATAAGCAG -ACGGAATCTACGGGGAATCGTCAA -ACGGAATCTACGGGGAATGCTGAA -ACGGAATCTACGGGGAATAGTACG -ACGGAATCTACGGGGAATATCCGA -ACGGAATCTACGGGGAATATGGGA -ACGGAATCTACGGGGAATGTGCAA -ACGGAATCTACGGGGAATGAGGAA -ACGGAATCTACGGGGAATCAGGTA -ACGGAATCTACGGGGAATGACTCT -ACGGAATCTACGGGGAATAGTCCT -ACGGAATCTACGGGGAATTAAGCC -ACGGAATCTACGGGGAATATAGCC -ACGGAATCTACGGGGAATTAACCG -ACGGAATCTACGGGGAATATGCCA -ACGGAATCTACGTGATCCGGAAAC -ACGGAATCTACGTGATCCAACACC -ACGGAATCTACGTGATCCATCGAG -ACGGAATCTACGTGATCCCTCCTT -ACGGAATCTACGTGATCCCCTGTT -ACGGAATCTACGTGATCCCGGTTT -ACGGAATCTACGTGATCCGTGGTT -ACGGAATCTACGTGATCCGCCTTT -ACGGAATCTACGTGATCCGGTCTT -ACGGAATCTACGTGATCCACGCTT -ACGGAATCTACGTGATCCAGCGTT -ACGGAATCTACGTGATCCTTCGTC -ACGGAATCTACGTGATCCTCTCTC -ACGGAATCTACGTGATCCTGGATC -ACGGAATCTACGTGATCCCACTTC -ACGGAATCTACGTGATCCGTACTC -ACGGAATCTACGTGATCCGATGTC -ACGGAATCTACGTGATCCACAGTC -ACGGAATCTACGTGATCCTTGCTG -ACGGAATCTACGTGATCCTCCATG -ACGGAATCTACGTGATCCTGTGTG -ACGGAATCTACGTGATCCCTAGTG -ACGGAATCTACGTGATCCCATCTG -ACGGAATCTACGTGATCCGAGTTG -ACGGAATCTACGTGATCCAGACTG -ACGGAATCTACGTGATCCTCGGTA -ACGGAATCTACGTGATCCTGCCTA -ACGGAATCTACGTGATCCCCACTA -ACGGAATCTACGTGATCCGGAGTA -ACGGAATCTACGTGATCCTCGTCT -ACGGAATCTACGTGATCCTGCACT -ACGGAATCTACGTGATCCCTGACT -ACGGAATCTACGTGATCCCAACCT -ACGGAATCTACGTGATCCGCTACT -ACGGAATCTACGTGATCCGGATCT -ACGGAATCTACGTGATCCAAGGCT -ACGGAATCTACGTGATCCTCAACC -ACGGAATCTACGTGATCCTGTTCC -ACGGAATCTACGTGATCCATTCCC -ACGGAATCTACGTGATCCTTCTCG -ACGGAATCTACGTGATCCTAGACG -ACGGAATCTACGTGATCCGTAACG -ACGGAATCTACGTGATCCACTTCG -ACGGAATCTACGTGATCCTACGCA -ACGGAATCTACGTGATCCCTTGCA -ACGGAATCTACGTGATCCCGAACA -ACGGAATCTACGTGATCCCAGTCA -ACGGAATCTACGTGATCCGATCCA -ACGGAATCTACGTGATCCACGACA -ACGGAATCTACGTGATCCAGCTCA -ACGGAATCTACGTGATCCTCACGT -ACGGAATCTACGTGATCCCGTAGT -ACGGAATCTACGTGATCCGTCAGT -ACGGAATCTACGTGATCCGAAGGT -ACGGAATCTACGTGATCCAACCGT -ACGGAATCTACGTGATCCTTGTGC -ACGGAATCTACGTGATCCCTAAGC -ACGGAATCTACGTGATCCACTAGC -ACGGAATCTACGTGATCCAGATGC -ACGGAATCTACGTGATCCTGAAGG -ACGGAATCTACGTGATCCCAATGG -ACGGAATCTACGTGATCCATGAGG -ACGGAATCTACGTGATCCAATGGG -ACGGAATCTACGTGATCCTCCTGA -ACGGAATCTACGTGATCCTAGCGA -ACGGAATCTACGTGATCCCACAGA -ACGGAATCTACGTGATCCGCAAGA -ACGGAATCTACGTGATCCGGTTGA -ACGGAATCTACGTGATCCTCCGAT -ACGGAATCTACGTGATCCTGGCAT -ACGGAATCTACGTGATCCCGAGAT -ACGGAATCTACGTGATCCTACCAC -ACGGAATCTACGTGATCCCAGAAC -ACGGAATCTACGTGATCCGTCTAC -ACGGAATCTACGTGATCCACGTAC -ACGGAATCTACGTGATCCAGTGAC -ACGGAATCTACGTGATCCCTGTAG -ACGGAATCTACGTGATCCCCTAAG -ACGGAATCTACGTGATCCGTTCAG -ACGGAATCTACGTGATCCGCATAG -ACGGAATCTACGTGATCCGACAAG -ACGGAATCTACGTGATCCAAGCAG -ACGGAATCTACGTGATCCCGTCAA -ACGGAATCTACGTGATCCGCTGAA -ACGGAATCTACGTGATCCAGTACG -ACGGAATCTACGTGATCCATCCGA -ACGGAATCTACGTGATCCATGGGA -ACGGAATCTACGTGATCCGTGCAA -ACGGAATCTACGTGATCCGAGGAA -ACGGAATCTACGTGATCCCAGGTA -ACGGAATCTACGTGATCCGACTCT -ACGGAATCTACGTGATCCAGTCCT -ACGGAATCTACGTGATCCTAAGCC -ACGGAATCTACGTGATCCATAGCC -ACGGAATCTACGTGATCCTAACCG -ACGGAATCTACGTGATCCATGCCA -ACGGAATCTACGCGATAGGGAAAC -ACGGAATCTACGCGATAGAACACC -ACGGAATCTACGCGATAGATCGAG -ACGGAATCTACGCGATAGCTCCTT -ACGGAATCTACGCGATAGCCTGTT -ACGGAATCTACGCGATAGCGGTTT -ACGGAATCTACGCGATAGGTGGTT -ACGGAATCTACGCGATAGGCCTTT -ACGGAATCTACGCGATAGGGTCTT -ACGGAATCTACGCGATAGACGCTT -ACGGAATCTACGCGATAGAGCGTT -ACGGAATCTACGCGATAGTTCGTC -ACGGAATCTACGCGATAGTCTCTC -ACGGAATCTACGCGATAGTGGATC -ACGGAATCTACGCGATAGCACTTC -ACGGAATCTACGCGATAGGTACTC -ACGGAATCTACGCGATAGGATGTC -ACGGAATCTACGCGATAGACAGTC -ACGGAATCTACGCGATAGTTGCTG -ACGGAATCTACGCGATAGTCCATG -ACGGAATCTACGCGATAGTGTGTG -ACGGAATCTACGCGATAGCTAGTG -ACGGAATCTACGCGATAGCATCTG -ACGGAATCTACGCGATAGGAGTTG -ACGGAATCTACGCGATAGAGACTG -ACGGAATCTACGCGATAGTCGGTA -ACGGAATCTACGCGATAGTGCCTA -ACGGAATCTACGCGATAGCCACTA -ACGGAATCTACGCGATAGGGAGTA -ACGGAATCTACGCGATAGTCGTCT -ACGGAATCTACGCGATAGTGCACT -ACGGAATCTACGCGATAGCTGACT -ACGGAATCTACGCGATAGCAACCT -ACGGAATCTACGCGATAGGCTACT -ACGGAATCTACGCGATAGGGATCT -ACGGAATCTACGCGATAGAAGGCT -ACGGAATCTACGCGATAGTCAACC -ACGGAATCTACGCGATAGTGTTCC -ACGGAATCTACGCGATAGATTCCC -ACGGAATCTACGCGATAGTTCTCG -ACGGAATCTACGCGATAGTAGACG -ACGGAATCTACGCGATAGGTAACG -ACGGAATCTACGCGATAGACTTCG -ACGGAATCTACGCGATAGTACGCA -ACGGAATCTACGCGATAGCTTGCA -ACGGAATCTACGCGATAGCGAACA -ACGGAATCTACGCGATAGCAGTCA -ACGGAATCTACGCGATAGGATCCA -ACGGAATCTACGCGATAGACGACA -ACGGAATCTACGCGATAGAGCTCA -ACGGAATCTACGCGATAGTCACGT -ACGGAATCTACGCGATAGCGTAGT -ACGGAATCTACGCGATAGGTCAGT -ACGGAATCTACGCGATAGGAAGGT -ACGGAATCTACGCGATAGAACCGT -ACGGAATCTACGCGATAGTTGTGC -ACGGAATCTACGCGATAGCTAAGC -ACGGAATCTACGCGATAGACTAGC -ACGGAATCTACGCGATAGAGATGC -ACGGAATCTACGCGATAGTGAAGG -ACGGAATCTACGCGATAGCAATGG -ACGGAATCTACGCGATAGATGAGG -ACGGAATCTACGCGATAGAATGGG -ACGGAATCTACGCGATAGTCCTGA -ACGGAATCTACGCGATAGTAGCGA -ACGGAATCTACGCGATAGCACAGA -ACGGAATCTACGCGATAGGCAAGA -ACGGAATCTACGCGATAGGGTTGA -ACGGAATCTACGCGATAGTCCGAT -ACGGAATCTACGCGATAGTGGCAT -ACGGAATCTACGCGATAGCGAGAT -ACGGAATCTACGCGATAGTACCAC -ACGGAATCTACGCGATAGCAGAAC -ACGGAATCTACGCGATAGGTCTAC -ACGGAATCTACGCGATAGACGTAC -ACGGAATCTACGCGATAGAGTGAC -ACGGAATCTACGCGATAGCTGTAG -ACGGAATCTACGCGATAGCCTAAG -ACGGAATCTACGCGATAGGTTCAG -ACGGAATCTACGCGATAGGCATAG -ACGGAATCTACGCGATAGGACAAG -ACGGAATCTACGCGATAGAAGCAG -ACGGAATCTACGCGATAGCGTCAA -ACGGAATCTACGCGATAGGCTGAA -ACGGAATCTACGCGATAGAGTACG -ACGGAATCTACGCGATAGATCCGA -ACGGAATCTACGCGATAGATGGGA -ACGGAATCTACGCGATAGGTGCAA -ACGGAATCTACGCGATAGGAGGAA -ACGGAATCTACGCGATAGCAGGTA -ACGGAATCTACGCGATAGGACTCT -ACGGAATCTACGCGATAGAGTCCT -ACGGAATCTACGCGATAGTAAGCC -ACGGAATCTACGCGATAGATAGCC -ACGGAATCTACGCGATAGTAACCG -ACGGAATCTACGCGATAGATGCCA -ACGGAATCTACGAGACACGGAAAC -ACGGAATCTACGAGACACAACACC -ACGGAATCTACGAGACACATCGAG -ACGGAATCTACGAGACACCTCCTT -ACGGAATCTACGAGACACCCTGTT -ACGGAATCTACGAGACACCGGTTT -ACGGAATCTACGAGACACGTGGTT -ACGGAATCTACGAGACACGCCTTT -ACGGAATCTACGAGACACGGTCTT -ACGGAATCTACGAGACACACGCTT -ACGGAATCTACGAGACACAGCGTT -ACGGAATCTACGAGACACTTCGTC -ACGGAATCTACGAGACACTCTCTC -ACGGAATCTACGAGACACTGGATC -ACGGAATCTACGAGACACCACTTC -ACGGAATCTACGAGACACGTACTC -ACGGAATCTACGAGACACGATGTC -ACGGAATCTACGAGACACACAGTC -ACGGAATCTACGAGACACTTGCTG -ACGGAATCTACGAGACACTCCATG -ACGGAATCTACGAGACACTGTGTG -ACGGAATCTACGAGACACCTAGTG -ACGGAATCTACGAGACACCATCTG -ACGGAATCTACGAGACACGAGTTG -ACGGAATCTACGAGACACAGACTG -ACGGAATCTACGAGACACTCGGTA -ACGGAATCTACGAGACACTGCCTA -ACGGAATCTACGAGACACCCACTA -ACGGAATCTACGAGACACGGAGTA -ACGGAATCTACGAGACACTCGTCT -ACGGAATCTACGAGACACTGCACT -ACGGAATCTACGAGACACCTGACT -ACGGAATCTACGAGACACCAACCT -ACGGAATCTACGAGACACGCTACT -ACGGAATCTACGAGACACGGATCT -ACGGAATCTACGAGACACAAGGCT -ACGGAATCTACGAGACACTCAACC -ACGGAATCTACGAGACACTGTTCC -ACGGAATCTACGAGACACATTCCC -ACGGAATCTACGAGACACTTCTCG -ACGGAATCTACGAGACACTAGACG -ACGGAATCTACGAGACACGTAACG -ACGGAATCTACGAGACACACTTCG -ACGGAATCTACGAGACACTACGCA -ACGGAATCTACGAGACACCTTGCA -ACGGAATCTACGAGACACCGAACA -ACGGAATCTACGAGACACCAGTCA -ACGGAATCTACGAGACACGATCCA -ACGGAATCTACGAGACACACGACA -ACGGAATCTACGAGACACAGCTCA -ACGGAATCTACGAGACACTCACGT -ACGGAATCTACGAGACACCGTAGT -ACGGAATCTACGAGACACGTCAGT -ACGGAATCTACGAGACACGAAGGT -ACGGAATCTACGAGACACAACCGT -ACGGAATCTACGAGACACTTGTGC -ACGGAATCTACGAGACACCTAAGC -ACGGAATCTACGAGACACACTAGC -ACGGAATCTACGAGACACAGATGC -ACGGAATCTACGAGACACTGAAGG -ACGGAATCTACGAGACACCAATGG -ACGGAATCTACGAGACACATGAGG -ACGGAATCTACGAGACACAATGGG -ACGGAATCTACGAGACACTCCTGA -ACGGAATCTACGAGACACTAGCGA -ACGGAATCTACGAGACACCACAGA -ACGGAATCTACGAGACACGCAAGA -ACGGAATCTACGAGACACGGTTGA -ACGGAATCTACGAGACACTCCGAT -ACGGAATCTACGAGACACTGGCAT -ACGGAATCTACGAGACACCGAGAT -ACGGAATCTACGAGACACTACCAC -ACGGAATCTACGAGACACCAGAAC -ACGGAATCTACGAGACACGTCTAC -ACGGAATCTACGAGACACACGTAC -ACGGAATCTACGAGACACAGTGAC -ACGGAATCTACGAGACACCTGTAG -ACGGAATCTACGAGACACCCTAAG -ACGGAATCTACGAGACACGTTCAG -ACGGAATCTACGAGACACGCATAG -ACGGAATCTACGAGACACGACAAG -ACGGAATCTACGAGACACAAGCAG -ACGGAATCTACGAGACACCGTCAA -ACGGAATCTACGAGACACGCTGAA -ACGGAATCTACGAGACACAGTACG -ACGGAATCTACGAGACACATCCGA -ACGGAATCTACGAGACACATGGGA -ACGGAATCTACGAGACACGTGCAA -ACGGAATCTACGAGACACGAGGAA -ACGGAATCTACGAGACACCAGGTA -ACGGAATCTACGAGACACGACTCT -ACGGAATCTACGAGACACAGTCCT -ACGGAATCTACGAGACACTAAGCC -ACGGAATCTACGAGACACATAGCC -ACGGAATCTACGAGACACTAACCG -ACGGAATCTACGAGACACATGCCA -ACGGAATCTACGAGAGCAGGAAAC -ACGGAATCTACGAGAGCAAACACC -ACGGAATCTACGAGAGCAATCGAG -ACGGAATCTACGAGAGCACTCCTT -ACGGAATCTACGAGAGCACCTGTT -ACGGAATCTACGAGAGCACGGTTT -ACGGAATCTACGAGAGCAGTGGTT -ACGGAATCTACGAGAGCAGCCTTT -ACGGAATCTACGAGAGCAGGTCTT -ACGGAATCTACGAGAGCAACGCTT -ACGGAATCTACGAGAGCAAGCGTT -ACGGAATCTACGAGAGCATTCGTC -ACGGAATCTACGAGAGCATCTCTC -ACGGAATCTACGAGAGCATGGATC -ACGGAATCTACGAGAGCACACTTC -ACGGAATCTACGAGAGCAGTACTC -ACGGAATCTACGAGAGCAGATGTC -ACGGAATCTACGAGAGCAACAGTC -ACGGAATCTACGAGAGCATTGCTG -ACGGAATCTACGAGAGCATCCATG -ACGGAATCTACGAGAGCATGTGTG -ACGGAATCTACGAGAGCACTAGTG -ACGGAATCTACGAGAGCACATCTG -ACGGAATCTACGAGAGCAGAGTTG -ACGGAATCTACGAGAGCAAGACTG -ACGGAATCTACGAGAGCATCGGTA -ACGGAATCTACGAGAGCATGCCTA -ACGGAATCTACGAGAGCACCACTA -ACGGAATCTACGAGAGCAGGAGTA -ACGGAATCTACGAGAGCATCGTCT -ACGGAATCTACGAGAGCATGCACT -ACGGAATCTACGAGAGCACTGACT -ACGGAATCTACGAGAGCACAACCT -ACGGAATCTACGAGAGCAGCTACT -ACGGAATCTACGAGAGCAGGATCT -ACGGAATCTACGAGAGCAAAGGCT -ACGGAATCTACGAGAGCATCAACC -ACGGAATCTACGAGAGCATGTTCC -ACGGAATCTACGAGAGCAATTCCC -ACGGAATCTACGAGAGCATTCTCG -ACGGAATCTACGAGAGCATAGACG -ACGGAATCTACGAGAGCAGTAACG -ACGGAATCTACGAGAGCAACTTCG -ACGGAATCTACGAGAGCATACGCA -ACGGAATCTACGAGAGCACTTGCA -ACGGAATCTACGAGAGCACGAACA -ACGGAATCTACGAGAGCACAGTCA -ACGGAATCTACGAGAGCAGATCCA -ACGGAATCTACGAGAGCAACGACA -ACGGAATCTACGAGAGCAAGCTCA -ACGGAATCTACGAGAGCATCACGT -ACGGAATCTACGAGAGCACGTAGT -ACGGAATCTACGAGAGCAGTCAGT -ACGGAATCTACGAGAGCAGAAGGT -ACGGAATCTACGAGAGCAAACCGT -ACGGAATCTACGAGAGCATTGTGC -ACGGAATCTACGAGAGCACTAAGC -ACGGAATCTACGAGAGCAACTAGC -ACGGAATCTACGAGAGCAAGATGC -ACGGAATCTACGAGAGCATGAAGG -ACGGAATCTACGAGAGCACAATGG -ACGGAATCTACGAGAGCAATGAGG -ACGGAATCTACGAGAGCAAATGGG -ACGGAATCTACGAGAGCATCCTGA -ACGGAATCTACGAGAGCATAGCGA -ACGGAATCTACGAGAGCACACAGA -ACGGAATCTACGAGAGCAGCAAGA -ACGGAATCTACGAGAGCAGGTTGA -ACGGAATCTACGAGAGCATCCGAT -ACGGAATCTACGAGAGCATGGCAT -ACGGAATCTACGAGAGCACGAGAT -ACGGAATCTACGAGAGCATACCAC -ACGGAATCTACGAGAGCACAGAAC -ACGGAATCTACGAGAGCAGTCTAC -ACGGAATCTACGAGAGCAACGTAC -ACGGAATCTACGAGAGCAAGTGAC -ACGGAATCTACGAGAGCACTGTAG -ACGGAATCTACGAGAGCACCTAAG -ACGGAATCTACGAGAGCAGTTCAG -ACGGAATCTACGAGAGCAGCATAG -ACGGAATCTACGAGAGCAGACAAG -ACGGAATCTACGAGAGCAAAGCAG -ACGGAATCTACGAGAGCACGTCAA -ACGGAATCTACGAGAGCAGCTGAA -ACGGAATCTACGAGAGCAAGTACG -ACGGAATCTACGAGAGCAATCCGA -ACGGAATCTACGAGAGCAATGGGA -ACGGAATCTACGAGAGCAGTGCAA -ACGGAATCTACGAGAGCAGAGGAA -ACGGAATCTACGAGAGCACAGGTA -ACGGAATCTACGAGAGCAGACTCT -ACGGAATCTACGAGAGCAAGTCCT -ACGGAATCTACGAGAGCATAAGCC -ACGGAATCTACGAGAGCAATAGCC -ACGGAATCTACGAGAGCATAACCG -ACGGAATCTACGAGAGCAATGCCA -ACGGAATCTACGTGAGGTGGAAAC -ACGGAATCTACGTGAGGTAACACC -ACGGAATCTACGTGAGGTATCGAG -ACGGAATCTACGTGAGGTCTCCTT -ACGGAATCTACGTGAGGTCCTGTT -ACGGAATCTACGTGAGGTCGGTTT -ACGGAATCTACGTGAGGTGTGGTT -ACGGAATCTACGTGAGGTGCCTTT -ACGGAATCTACGTGAGGTGGTCTT -ACGGAATCTACGTGAGGTACGCTT -ACGGAATCTACGTGAGGTAGCGTT -ACGGAATCTACGTGAGGTTTCGTC -ACGGAATCTACGTGAGGTTCTCTC -ACGGAATCTACGTGAGGTTGGATC -ACGGAATCTACGTGAGGTCACTTC -ACGGAATCTACGTGAGGTGTACTC -ACGGAATCTACGTGAGGTGATGTC -ACGGAATCTACGTGAGGTACAGTC -ACGGAATCTACGTGAGGTTTGCTG -ACGGAATCTACGTGAGGTTCCATG -ACGGAATCTACGTGAGGTTGTGTG -ACGGAATCTACGTGAGGTCTAGTG -ACGGAATCTACGTGAGGTCATCTG -ACGGAATCTACGTGAGGTGAGTTG -ACGGAATCTACGTGAGGTAGACTG -ACGGAATCTACGTGAGGTTCGGTA -ACGGAATCTACGTGAGGTTGCCTA -ACGGAATCTACGTGAGGTCCACTA -ACGGAATCTACGTGAGGTGGAGTA -ACGGAATCTACGTGAGGTTCGTCT -ACGGAATCTACGTGAGGTTGCACT -ACGGAATCTACGTGAGGTCTGACT -ACGGAATCTACGTGAGGTCAACCT -ACGGAATCTACGTGAGGTGCTACT -ACGGAATCTACGTGAGGTGGATCT -ACGGAATCTACGTGAGGTAAGGCT -ACGGAATCTACGTGAGGTTCAACC -ACGGAATCTACGTGAGGTTGTTCC -ACGGAATCTACGTGAGGTATTCCC -ACGGAATCTACGTGAGGTTTCTCG -ACGGAATCTACGTGAGGTTAGACG -ACGGAATCTACGTGAGGTGTAACG -ACGGAATCTACGTGAGGTACTTCG -ACGGAATCTACGTGAGGTTACGCA -ACGGAATCTACGTGAGGTCTTGCA -ACGGAATCTACGTGAGGTCGAACA -ACGGAATCTACGTGAGGTCAGTCA -ACGGAATCTACGTGAGGTGATCCA -ACGGAATCTACGTGAGGTACGACA -ACGGAATCTACGTGAGGTAGCTCA -ACGGAATCTACGTGAGGTTCACGT -ACGGAATCTACGTGAGGTCGTAGT -ACGGAATCTACGTGAGGTGTCAGT -ACGGAATCTACGTGAGGTGAAGGT -ACGGAATCTACGTGAGGTAACCGT -ACGGAATCTACGTGAGGTTTGTGC -ACGGAATCTACGTGAGGTCTAAGC -ACGGAATCTACGTGAGGTACTAGC -ACGGAATCTACGTGAGGTAGATGC -ACGGAATCTACGTGAGGTTGAAGG -ACGGAATCTACGTGAGGTCAATGG -ACGGAATCTACGTGAGGTATGAGG -ACGGAATCTACGTGAGGTAATGGG -ACGGAATCTACGTGAGGTTCCTGA -ACGGAATCTACGTGAGGTTAGCGA -ACGGAATCTACGTGAGGTCACAGA -ACGGAATCTACGTGAGGTGCAAGA -ACGGAATCTACGTGAGGTGGTTGA -ACGGAATCTACGTGAGGTTCCGAT -ACGGAATCTACGTGAGGTTGGCAT -ACGGAATCTACGTGAGGTCGAGAT -ACGGAATCTACGTGAGGTTACCAC -ACGGAATCTACGTGAGGTCAGAAC -ACGGAATCTACGTGAGGTGTCTAC -ACGGAATCTACGTGAGGTACGTAC -ACGGAATCTACGTGAGGTAGTGAC -ACGGAATCTACGTGAGGTCTGTAG -ACGGAATCTACGTGAGGTCCTAAG -ACGGAATCTACGTGAGGTGTTCAG -ACGGAATCTACGTGAGGTGCATAG -ACGGAATCTACGTGAGGTGACAAG -ACGGAATCTACGTGAGGTAAGCAG -ACGGAATCTACGTGAGGTCGTCAA -ACGGAATCTACGTGAGGTGCTGAA -ACGGAATCTACGTGAGGTAGTACG -ACGGAATCTACGTGAGGTATCCGA -ACGGAATCTACGTGAGGTATGGGA -ACGGAATCTACGTGAGGTGTGCAA -ACGGAATCTACGTGAGGTGAGGAA -ACGGAATCTACGTGAGGTCAGGTA -ACGGAATCTACGTGAGGTGACTCT -ACGGAATCTACGTGAGGTAGTCCT -ACGGAATCTACGTGAGGTTAAGCC -ACGGAATCTACGTGAGGTATAGCC -ACGGAATCTACGTGAGGTTAACCG -ACGGAATCTACGTGAGGTATGCCA -ACGGAATCTACGGATTCCGGAAAC -ACGGAATCTACGGATTCCAACACC -ACGGAATCTACGGATTCCATCGAG -ACGGAATCTACGGATTCCCTCCTT -ACGGAATCTACGGATTCCCCTGTT -ACGGAATCTACGGATTCCCGGTTT -ACGGAATCTACGGATTCCGTGGTT -ACGGAATCTACGGATTCCGCCTTT -ACGGAATCTACGGATTCCGGTCTT -ACGGAATCTACGGATTCCACGCTT -ACGGAATCTACGGATTCCAGCGTT -ACGGAATCTACGGATTCCTTCGTC -ACGGAATCTACGGATTCCTCTCTC -ACGGAATCTACGGATTCCTGGATC -ACGGAATCTACGGATTCCCACTTC -ACGGAATCTACGGATTCCGTACTC -ACGGAATCTACGGATTCCGATGTC -ACGGAATCTACGGATTCCACAGTC -ACGGAATCTACGGATTCCTTGCTG -ACGGAATCTACGGATTCCTCCATG -ACGGAATCTACGGATTCCTGTGTG -ACGGAATCTACGGATTCCCTAGTG -ACGGAATCTACGGATTCCCATCTG -ACGGAATCTACGGATTCCGAGTTG -ACGGAATCTACGGATTCCAGACTG -ACGGAATCTACGGATTCCTCGGTA -ACGGAATCTACGGATTCCTGCCTA -ACGGAATCTACGGATTCCCCACTA -ACGGAATCTACGGATTCCGGAGTA -ACGGAATCTACGGATTCCTCGTCT -ACGGAATCTACGGATTCCTGCACT -ACGGAATCTACGGATTCCCTGACT -ACGGAATCTACGGATTCCCAACCT -ACGGAATCTACGGATTCCGCTACT -ACGGAATCTACGGATTCCGGATCT -ACGGAATCTACGGATTCCAAGGCT -ACGGAATCTACGGATTCCTCAACC -ACGGAATCTACGGATTCCTGTTCC -ACGGAATCTACGGATTCCATTCCC -ACGGAATCTACGGATTCCTTCTCG -ACGGAATCTACGGATTCCTAGACG -ACGGAATCTACGGATTCCGTAACG -ACGGAATCTACGGATTCCACTTCG -ACGGAATCTACGGATTCCTACGCA -ACGGAATCTACGGATTCCCTTGCA -ACGGAATCTACGGATTCCCGAACA -ACGGAATCTACGGATTCCCAGTCA -ACGGAATCTACGGATTCCGATCCA -ACGGAATCTACGGATTCCACGACA -ACGGAATCTACGGATTCCAGCTCA -ACGGAATCTACGGATTCCTCACGT -ACGGAATCTACGGATTCCCGTAGT -ACGGAATCTACGGATTCCGTCAGT -ACGGAATCTACGGATTCCGAAGGT -ACGGAATCTACGGATTCCAACCGT -ACGGAATCTACGGATTCCTTGTGC -ACGGAATCTACGGATTCCCTAAGC -ACGGAATCTACGGATTCCACTAGC -ACGGAATCTACGGATTCCAGATGC -ACGGAATCTACGGATTCCTGAAGG -ACGGAATCTACGGATTCCCAATGG -ACGGAATCTACGGATTCCATGAGG -ACGGAATCTACGGATTCCAATGGG -ACGGAATCTACGGATTCCTCCTGA -ACGGAATCTACGGATTCCTAGCGA -ACGGAATCTACGGATTCCCACAGA -ACGGAATCTACGGATTCCGCAAGA -ACGGAATCTACGGATTCCGGTTGA -ACGGAATCTACGGATTCCTCCGAT -ACGGAATCTACGGATTCCTGGCAT -ACGGAATCTACGGATTCCCGAGAT -ACGGAATCTACGGATTCCTACCAC -ACGGAATCTACGGATTCCCAGAAC -ACGGAATCTACGGATTCCGTCTAC -ACGGAATCTACGGATTCCACGTAC -ACGGAATCTACGGATTCCAGTGAC -ACGGAATCTACGGATTCCCTGTAG -ACGGAATCTACGGATTCCCCTAAG -ACGGAATCTACGGATTCCGTTCAG -ACGGAATCTACGGATTCCGCATAG -ACGGAATCTACGGATTCCGACAAG -ACGGAATCTACGGATTCCAAGCAG -ACGGAATCTACGGATTCCCGTCAA -ACGGAATCTACGGATTCCGCTGAA -ACGGAATCTACGGATTCCAGTACG -ACGGAATCTACGGATTCCATCCGA -ACGGAATCTACGGATTCCATGGGA -ACGGAATCTACGGATTCCGTGCAA -ACGGAATCTACGGATTCCGAGGAA -ACGGAATCTACGGATTCCCAGGTA -ACGGAATCTACGGATTCCGACTCT -ACGGAATCTACGGATTCCAGTCCT -ACGGAATCTACGGATTCCTAAGCC -ACGGAATCTACGGATTCCATAGCC -ACGGAATCTACGGATTCCTAACCG -ACGGAATCTACGGATTCCATGCCA -ACGGAATCTACGCATTGGGGAAAC -ACGGAATCTACGCATTGGAACACC -ACGGAATCTACGCATTGGATCGAG -ACGGAATCTACGCATTGGCTCCTT -ACGGAATCTACGCATTGGCCTGTT -ACGGAATCTACGCATTGGCGGTTT -ACGGAATCTACGCATTGGGTGGTT -ACGGAATCTACGCATTGGGCCTTT -ACGGAATCTACGCATTGGGGTCTT -ACGGAATCTACGCATTGGACGCTT -ACGGAATCTACGCATTGGAGCGTT -ACGGAATCTACGCATTGGTTCGTC -ACGGAATCTACGCATTGGTCTCTC -ACGGAATCTACGCATTGGTGGATC -ACGGAATCTACGCATTGGCACTTC -ACGGAATCTACGCATTGGGTACTC -ACGGAATCTACGCATTGGGATGTC -ACGGAATCTACGCATTGGACAGTC -ACGGAATCTACGCATTGGTTGCTG -ACGGAATCTACGCATTGGTCCATG -ACGGAATCTACGCATTGGTGTGTG -ACGGAATCTACGCATTGGCTAGTG -ACGGAATCTACGCATTGGCATCTG -ACGGAATCTACGCATTGGGAGTTG -ACGGAATCTACGCATTGGAGACTG -ACGGAATCTACGCATTGGTCGGTA -ACGGAATCTACGCATTGGTGCCTA -ACGGAATCTACGCATTGGCCACTA -ACGGAATCTACGCATTGGGGAGTA -ACGGAATCTACGCATTGGTCGTCT -ACGGAATCTACGCATTGGTGCACT -ACGGAATCTACGCATTGGCTGACT -ACGGAATCTACGCATTGGCAACCT -ACGGAATCTACGCATTGGGCTACT -ACGGAATCTACGCATTGGGGATCT -ACGGAATCTACGCATTGGAAGGCT -ACGGAATCTACGCATTGGTCAACC -ACGGAATCTACGCATTGGTGTTCC -ACGGAATCTACGCATTGGATTCCC -ACGGAATCTACGCATTGGTTCTCG -ACGGAATCTACGCATTGGTAGACG -ACGGAATCTACGCATTGGGTAACG -ACGGAATCTACGCATTGGACTTCG -ACGGAATCTACGCATTGGTACGCA -ACGGAATCTACGCATTGGCTTGCA -ACGGAATCTACGCATTGGCGAACA -ACGGAATCTACGCATTGGCAGTCA -ACGGAATCTACGCATTGGGATCCA -ACGGAATCTACGCATTGGACGACA -ACGGAATCTACGCATTGGAGCTCA -ACGGAATCTACGCATTGGTCACGT -ACGGAATCTACGCATTGGCGTAGT -ACGGAATCTACGCATTGGGTCAGT -ACGGAATCTACGCATTGGGAAGGT -ACGGAATCTACGCATTGGAACCGT -ACGGAATCTACGCATTGGTTGTGC -ACGGAATCTACGCATTGGCTAAGC -ACGGAATCTACGCATTGGACTAGC -ACGGAATCTACGCATTGGAGATGC -ACGGAATCTACGCATTGGTGAAGG -ACGGAATCTACGCATTGGCAATGG -ACGGAATCTACGCATTGGATGAGG -ACGGAATCTACGCATTGGAATGGG -ACGGAATCTACGCATTGGTCCTGA -ACGGAATCTACGCATTGGTAGCGA -ACGGAATCTACGCATTGGCACAGA -ACGGAATCTACGCATTGGGCAAGA -ACGGAATCTACGCATTGGGGTTGA -ACGGAATCTACGCATTGGTCCGAT -ACGGAATCTACGCATTGGTGGCAT -ACGGAATCTACGCATTGGCGAGAT -ACGGAATCTACGCATTGGTACCAC -ACGGAATCTACGCATTGGCAGAAC -ACGGAATCTACGCATTGGGTCTAC -ACGGAATCTACGCATTGGACGTAC -ACGGAATCTACGCATTGGAGTGAC -ACGGAATCTACGCATTGGCTGTAG -ACGGAATCTACGCATTGGCCTAAG -ACGGAATCTACGCATTGGGTTCAG -ACGGAATCTACGCATTGGGCATAG -ACGGAATCTACGCATTGGGACAAG -ACGGAATCTACGCATTGGAAGCAG -ACGGAATCTACGCATTGGCGTCAA -ACGGAATCTACGCATTGGGCTGAA -ACGGAATCTACGCATTGGAGTACG -ACGGAATCTACGCATTGGATCCGA -ACGGAATCTACGCATTGGATGGGA -ACGGAATCTACGCATTGGGTGCAA -ACGGAATCTACGCATTGGGAGGAA -ACGGAATCTACGCATTGGCAGGTA -ACGGAATCTACGCATTGGGACTCT -ACGGAATCTACGCATTGGAGTCCT -ACGGAATCTACGCATTGGTAAGCC -ACGGAATCTACGCATTGGATAGCC -ACGGAATCTACGCATTGGTAACCG -ACGGAATCTACGCATTGGATGCCA -ACGGAATCTACGGATCGAGGAAAC -ACGGAATCTACGGATCGAAACACC -ACGGAATCTACGGATCGAATCGAG -ACGGAATCTACGGATCGACTCCTT -ACGGAATCTACGGATCGACCTGTT -ACGGAATCTACGGATCGACGGTTT -ACGGAATCTACGGATCGAGTGGTT -ACGGAATCTACGGATCGAGCCTTT -ACGGAATCTACGGATCGAGGTCTT -ACGGAATCTACGGATCGAACGCTT -ACGGAATCTACGGATCGAAGCGTT -ACGGAATCTACGGATCGATTCGTC -ACGGAATCTACGGATCGATCTCTC -ACGGAATCTACGGATCGATGGATC -ACGGAATCTACGGATCGACACTTC -ACGGAATCTACGGATCGAGTACTC -ACGGAATCTACGGATCGAGATGTC -ACGGAATCTACGGATCGAACAGTC -ACGGAATCTACGGATCGATTGCTG -ACGGAATCTACGGATCGATCCATG -ACGGAATCTACGGATCGATGTGTG -ACGGAATCTACGGATCGACTAGTG -ACGGAATCTACGGATCGACATCTG -ACGGAATCTACGGATCGAGAGTTG -ACGGAATCTACGGATCGAAGACTG -ACGGAATCTACGGATCGATCGGTA -ACGGAATCTACGGATCGATGCCTA -ACGGAATCTACGGATCGACCACTA -ACGGAATCTACGGATCGAGGAGTA -ACGGAATCTACGGATCGATCGTCT -ACGGAATCTACGGATCGATGCACT -ACGGAATCTACGGATCGACTGACT -ACGGAATCTACGGATCGACAACCT -ACGGAATCTACGGATCGAGCTACT -ACGGAATCTACGGATCGAGGATCT -ACGGAATCTACGGATCGAAAGGCT -ACGGAATCTACGGATCGATCAACC -ACGGAATCTACGGATCGATGTTCC -ACGGAATCTACGGATCGAATTCCC -ACGGAATCTACGGATCGATTCTCG -ACGGAATCTACGGATCGATAGACG -ACGGAATCTACGGATCGAGTAACG -ACGGAATCTACGGATCGAACTTCG -ACGGAATCTACGGATCGATACGCA -ACGGAATCTACGGATCGACTTGCA -ACGGAATCTACGGATCGACGAACA -ACGGAATCTACGGATCGACAGTCA -ACGGAATCTACGGATCGAGATCCA -ACGGAATCTACGGATCGAACGACA -ACGGAATCTACGGATCGAAGCTCA -ACGGAATCTACGGATCGATCACGT -ACGGAATCTACGGATCGACGTAGT -ACGGAATCTACGGATCGAGTCAGT -ACGGAATCTACGGATCGAGAAGGT -ACGGAATCTACGGATCGAAACCGT -ACGGAATCTACGGATCGATTGTGC -ACGGAATCTACGGATCGACTAAGC -ACGGAATCTACGGATCGAACTAGC -ACGGAATCTACGGATCGAAGATGC -ACGGAATCTACGGATCGATGAAGG -ACGGAATCTACGGATCGACAATGG -ACGGAATCTACGGATCGAATGAGG -ACGGAATCTACGGATCGAAATGGG -ACGGAATCTACGGATCGATCCTGA -ACGGAATCTACGGATCGATAGCGA -ACGGAATCTACGGATCGACACAGA -ACGGAATCTACGGATCGAGCAAGA -ACGGAATCTACGGATCGAGGTTGA -ACGGAATCTACGGATCGATCCGAT -ACGGAATCTACGGATCGATGGCAT -ACGGAATCTACGGATCGACGAGAT -ACGGAATCTACGGATCGATACCAC -ACGGAATCTACGGATCGACAGAAC -ACGGAATCTACGGATCGAGTCTAC -ACGGAATCTACGGATCGAACGTAC -ACGGAATCTACGGATCGAAGTGAC -ACGGAATCTACGGATCGACTGTAG -ACGGAATCTACGGATCGACCTAAG -ACGGAATCTACGGATCGAGTTCAG -ACGGAATCTACGGATCGAGCATAG -ACGGAATCTACGGATCGAGACAAG -ACGGAATCTACGGATCGAAAGCAG -ACGGAATCTACGGATCGACGTCAA -ACGGAATCTACGGATCGAGCTGAA -ACGGAATCTACGGATCGAAGTACG -ACGGAATCTACGGATCGAATCCGA -ACGGAATCTACGGATCGAATGGGA -ACGGAATCTACGGATCGAGTGCAA -ACGGAATCTACGGATCGAGAGGAA -ACGGAATCTACGGATCGACAGGTA -ACGGAATCTACGGATCGAGACTCT -ACGGAATCTACGGATCGAAGTCCT -ACGGAATCTACGGATCGATAAGCC -ACGGAATCTACGGATCGAATAGCC -ACGGAATCTACGGATCGATAACCG -ACGGAATCTACGGATCGAATGCCA -ACGGAATCTACGCACTACGGAAAC -ACGGAATCTACGCACTACAACACC -ACGGAATCTACGCACTACATCGAG -ACGGAATCTACGCACTACCTCCTT -ACGGAATCTACGCACTACCCTGTT -ACGGAATCTACGCACTACCGGTTT -ACGGAATCTACGCACTACGTGGTT -ACGGAATCTACGCACTACGCCTTT -ACGGAATCTACGCACTACGGTCTT -ACGGAATCTACGCACTACACGCTT -ACGGAATCTACGCACTACAGCGTT -ACGGAATCTACGCACTACTTCGTC -ACGGAATCTACGCACTACTCTCTC -ACGGAATCTACGCACTACTGGATC -ACGGAATCTACGCACTACCACTTC -ACGGAATCTACGCACTACGTACTC -ACGGAATCTACGCACTACGATGTC -ACGGAATCTACGCACTACACAGTC -ACGGAATCTACGCACTACTTGCTG -ACGGAATCTACGCACTACTCCATG -ACGGAATCTACGCACTACTGTGTG -ACGGAATCTACGCACTACCTAGTG -ACGGAATCTACGCACTACCATCTG -ACGGAATCTACGCACTACGAGTTG -ACGGAATCTACGCACTACAGACTG -ACGGAATCTACGCACTACTCGGTA -ACGGAATCTACGCACTACTGCCTA -ACGGAATCTACGCACTACCCACTA -ACGGAATCTACGCACTACGGAGTA -ACGGAATCTACGCACTACTCGTCT -ACGGAATCTACGCACTACTGCACT -ACGGAATCTACGCACTACCTGACT -ACGGAATCTACGCACTACCAACCT -ACGGAATCTACGCACTACGCTACT -ACGGAATCTACGCACTACGGATCT -ACGGAATCTACGCACTACAAGGCT -ACGGAATCTACGCACTACTCAACC -ACGGAATCTACGCACTACTGTTCC -ACGGAATCTACGCACTACATTCCC -ACGGAATCTACGCACTACTTCTCG -ACGGAATCTACGCACTACTAGACG -ACGGAATCTACGCACTACGTAACG -ACGGAATCTACGCACTACACTTCG -ACGGAATCTACGCACTACTACGCA -ACGGAATCTACGCACTACCTTGCA -ACGGAATCTACGCACTACCGAACA -ACGGAATCTACGCACTACCAGTCA -ACGGAATCTACGCACTACGATCCA -ACGGAATCTACGCACTACACGACA -ACGGAATCTACGCACTACAGCTCA -ACGGAATCTACGCACTACTCACGT -ACGGAATCTACGCACTACCGTAGT -ACGGAATCTACGCACTACGTCAGT -ACGGAATCTACGCACTACGAAGGT -ACGGAATCTACGCACTACAACCGT -ACGGAATCTACGCACTACTTGTGC -ACGGAATCTACGCACTACCTAAGC -ACGGAATCTACGCACTACACTAGC -ACGGAATCTACGCACTACAGATGC -ACGGAATCTACGCACTACTGAAGG -ACGGAATCTACGCACTACCAATGG -ACGGAATCTACGCACTACATGAGG -ACGGAATCTACGCACTACAATGGG -ACGGAATCTACGCACTACTCCTGA -ACGGAATCTACGCACTACTAGCGA -ACGGAATCTACGCACTACCACAGA -ACGGAATCTACGCACTACGCAAGA -ACGGAATCTACGCACTACGGTTGA -ACGGAATCTACGCACTACTCCGAT -ACGGAATCTACGCACTACTGGCAT -ACGGAATCTACGCACTACCGAGAT -ACGGAATCTACGCACTACTACCAC -ACGGAATCTACGCACTACCAGAAC -ACGGAATCTACGCACTACGTCTAC -ACGGAATCTACGCACTACACGTAC -ACGGAATCTACGCACTACAGTGAC -ACGGAATCTACGCACTACCTGTAG -ACGGAATCTACGCACTACCCTAAG -ACGGAATCTACGCACTACGTTCAG -ACGGAATCTACGCACTACGCATAG -ACGGAATCTACGCACTACGACAAG -ACGGAATCTACGCACTACAAGCAG -ACGGAATCTACGCACTACCGTCAA -ACGGAATCTACGCACTACGCTGAA -ACGGAATCTACGCACTACAGTACG -ACGGAATCTACGCACTACATCCGA -ACGGAATCTACGCACTACATGGGA -ACGGAATCTACGCACTACGTGCAA -ACGGAATCTACGCACTACGAGGAA -ACGGAATCTACGCACTACCAGGTA -ACGGAATCTACGCACTACGACTCT -ACGGAATCTACGCACTACAGTCCT -ACGGAATCTACGCACTACTAAGCC -ACGGAATCTACGCACTACATAGCC -ACGGAATCTACGCACTACTAACCG -ACGGAATCTACGCACTACATGCCA -ACGGAATCTACGAACCAGGGAAAC -ACGGAATCTACGAACCAGAACACC -ACGGAATCTACGAACCAGATCGAG -ACGGAATCTACGAACCAGCTCCTT -ACGGAATCTACGAACCAGCCTGTT -ACGGAATCTACGAACCAGCGGTTT -ACGGAATCTACGAACCAGGTGGTT -ACGGAATCTACGAACCAGGCCTTT -ACGGAATCTACGAACCAGGGTCTT -ACGGAATCTACGAACCAGACGCTT -ACGGAATCTACGAACCAGAGCGTT -ACGGAATCTACGAACCAGTTCGTC -ACGGAATCTACGAACCAGTCTCTC -ACGGAATCTACGAACCAGTGGATC -ACGGAATCTACGAACCAGCACTTC -ACGGAATCTACGAACCAGGTACTC -ACGGAATCTACGAACCAGGATGTC -ACGGAATCTACGAACCAGACAGTC -ACGGAATCTACGAACCAGTTGCTG -ACGGAATCTACGAACCAGTCCATG -ACGGAATCTACGAACCAGTGTGTG -ACGGAATCTACGAACCAGCTAGTG -ACGGAATCTACGAACCAGCATCTG -ACGGAATCTACGAACCAGGAGTTG -ACGGAATCTACGAACCAGAGACTG -ACGGAATCTACGAACCAGTCGGTA -ACGGAATCTACGAACCAGTGCCTA -ACGGAATCTACGAACCAGCCACTA -ACGGAATCTACGAACCAGGGAGTA -ACGGAATCTACGAACCAGTCGTCT -ACGGAATCTACGAACCAGTGCACT -ACGGAATCTACGAACCAGCTGACT -ACGGAATCTACGAACCAGCAACCT -ACGGAATCTACGAACCAGGCTACT -ACGGAATCTACGAACCAGGGATCT -ACGGAATCTACGAACCAGAAGGCT -ACGGAATCTACGAACCAGTCAACC -ACGGAATCTACGAACCAGTGTTCC -ACGGAATCTACGAACCAGATTCCC -ACGGAATCTACGAACCAGTTCTCG -ACGGAATCTACGAACCAGTAGACG -ACGGAATCTACGAACCAGGTAACG -ACGGAATCTACGAACCAGACTTCG -ACGGAATCTACGAACCAGTACGCA -ACGGAATCTACGAACCAGCTTGCA -ACGGAATCTACGAACCAGCGAACA -ACGGAATCTACGAACCAGCAGTCA -ACGGAATCTACGAACCAGGATCCA -ACGGAATCTACGAACCAGACGACA -ACGGAATCTACGAACCAGAGCTCA -ACGGAATCTACGAACCAGTCACGT -ACGGAATCTACGAACCAGCGTAGT -ACGGAATCTACGAACCAGGTCAGT -ACGGAATCTACGAACCAGGAAGGT -ACGGAATCTACGAACCAGAACCGT -ACGGAATCTACGAACCAGTTGTGC -ACGGAATCTACGAACCAGCTAAGC -ACGGAATCTACGAACCAGACTAGC -ACGGAATCTACGAACCAGAGATGC -ACGGAATCTACGAACCAGTGAAGG -ACGGAATCTACGAACCAGCAATGG -ACGGAATCTACGAACCAGATGAGG -ACGGAATCTACGAACCAGAATGGG -ACGGAATCTACGAACCAGTCCTGA -ACGGAATCTACGAACCAGTAGCGA -ACGGAATCTACGAACCAGCACAGA -ACGGAATCTACGAACCAGGCAAGA -ACGGAATCTACGAACCAGGGTTGA -ACGGAATCTACGAACCAGTCCGAT -ACGGAATCTACGAACCAGTGGCAT -ACGGAATCTACGAACCAGCGAGAT -ACGGAATCTACGAACCAGTACCAC -ACGGAATCTACGAACCAGCAGAAC -ACGGAATCTACGAACCAGGTCTAC -ACGGAATCTACGAACCAGACGTAC -ACGGAATCTACGAACCAGAGTGAC -ACGGAATCTACGAACCAGCTGTAG -ACGGAATCTACGAACCAGCCTAAG -ACGGAATCTACGAACCAGGTTCAG -ACGGAATCTACGAACCAGGCATAG -ACGGAATCTACGAACCAGGACAAG -ACGGAATCTACGAACCAGAAGCAG -ACGGAATCTACGAACCAGCGTCAA -ACGGAATCTACGAACCAGGCTGAA -ACGGAATCTACGAACCAGAGTACG -ACGGAATCTACGAACCAGATCCGA -ACGGAATCTACGAACCAGATGGGA -ACGGAATCTACGAACCAGGTGCAA -ACGGAATCTACGAACCAGGAGGAA -ACGGAATCTACGAACCAGCAGGTA -ACGGAATCTACGAACCAGGACTCT -ACGGAATCTACGAACCAGAGTCCT -ACGGAATCTACGAACCAGTAAGCC -ACGGAATCTACGAACCAGATAGCC -ACGGAATCTACGAACCAGTAACCG -ACGGAATCTACGAACCAGATGCCA -ACGGAATCTACGTACGTCGGAAAC -ACGGAATCTACGTACGTCAACACC -ACGGAATCTACGTACGTCATCGAG -ACGGAATCTACGTACGTCCTCCTT -ACGGAATCTACGTACGTCCCTGTT -ACGGAATCTACGTACGTCCGGTTT -ACGGAATCTACGTACGTCGTGGTT -ACGGAATCTACGTACGTCGCCTTT -ACGGAATCTACGTACGTCGGTCTT -ACGGAATCTACGTACGTCACGCTT -ACGGAATCTACGTACGTCAGCGTT -ACGGAATCTACGTACGTCTTCGTC -ACGGAATCTACGTACGTCTCTCTC -ACGGAATCTACGTACGTCTGGATC -ACGGAATCTACGTACGTCCACTTC -ACGGAATCTACGTACGTCGTACTC -ACGGAATCTACGTACGTCGATGTC -ACGGAATCTACGTACGTCACAGTC -ACGGAATCTACGTACGTCTTGCTG -ACGGAATCTACGTACGTCTCCATG -ACGGAATCTACGTACGTCTGTGTG -ACGGAATCTACGTACGTCCTAGTG -ACGGAATCTACGTACGTCCATCTG -ACGGAATCTACGTACGTCGAGTTG -ACGGAATCTACGTACGTCAGACTG -ACGGAATCTACGTACGTCTCGGTA -ACGGAATCTACGTACGTCTGCCTA -ACGGAATCTACGTACGTCCCACTA -ACGGAATCTACGTACGTCGGAGTA -ACGGAATCTACGTACGTCTCGTCT -ACGGAATCTACGTACGTCTGCACT -ACGGAATCTACGTACGTCCTGACT -ACGGAATCTACGTACGTCCAACCT -ACGGAATCTACGTACGTCGCTACT -ACGGAATCTACGTACGTCGGATCT -ACGGAATCTACGTACGTCAAGGCT -ACGGAATCTACGTACGTCTCAACC -ACGGAATCTACGTACGTCTGTTCC -ACGGAATCTACGTACGTCATTCCC -ACGGAATCTACGTACGTCTTCTCG -ACGGAATCTACGTACGTCTAGACG -ACGGAATCTACGTACGTCGTAACG -ACGGAATCTACGTACGTCACTTCG -ACGGAATCTACGTACGTCTACGCA -ACGGAATCTACGTACGTCCTTGCA -ACGGAATCTACGTACGTCCGAACA -ACGGAATCTACGTACGTCCAGTCA -ACGGAATCTACGTACGTCGATCCA -ACGGAATCTACGTACGTCACGACA -ACGGAATCTACGTACGTCAGCTCA -ACGGAATCTACGTACGTCTCACGT -ACGGAATCTACGTACGTCCGTAGT -ACGGAATCTACGTACGTCGTCAGT -ACGGAATCTACGTACGTCGAAGGT -ACGGAATCTACGTACGTCAACCGT -ACGGAATCTACGTACGTCTTGTGC -ACGGAATCTACGTACGTCCTAAGC -ACGGAATCTACGTACGTCACTAGC -ACGGAATCTACGTACGTCAGATGC -ACGGAATCTACGTACGTCTGAAGG -ACGGAATCTACGTACGTCCAATGG -ACGGAATCTACGTACGTCATGAGG -ACGGAATCTACGTACGTCAATGGG -ACGGAATCTACGTACGTCTCCTGA -ACGGAATCTACGTACGTCTAGCGA -ACGGAATCTACGTACGTCCACAGA -ACGGAATCTACGTACGTCGCAAGA -ACGGAATCTACGTACGTCGGTTGA -ACGGAATCTACGTACGTCTCCGAT -ACGGAATCTACGTACGTCTGGCAT -ACGGAATCTACGTACGTCCGAGAT -ACGGAATCTACGTACGTCTACCAC -ACGGAATCTACGTACGTCCAGAAC -ACGGAATCTACGTACGTCGTCTAC -ACGGAATCTACGTACGTCACGTAC -ACGGAATCTACGTACGTCAGTGAC -ACGGAATCTACGTACGTCCTGTAG -ACGGAATCTACGTACGTCCCTAAG -ACGGAATCTACGTACGTCGTTCAG -ACGGAATCTACGTACGTCGCATAG -ACGGAATCTACGTACGTCGACAAG -ACGGAATCTACGTACGTCAAGCAG -ACGGAATCTACGTACGTCCGTCAA -ACGGAATCTACGTACGTCGCTGAA -ACGGAATCTACGTACGTCAGTACG -ACGGAATCTACGTACGTCATCCGA -ACGGAATCTACGTACGTCATGGGA -ACGGAATCTACGTACGTCGTGCAA -ACGGAATCTACGTACGTCGAGGAA -ACGGAATCTACGTACGTCCAGGTA -ACGGAATCTACGTACGTCGACTCT -ACGGAATCTACGTACGTCAGTCCT -ACGGAATCTACGTACGTCTAAGCC -ACGGAATCTACGTACGTCATAGCC -ACGGAATCTACGTACGTCTAACCG -ACGGAATCTACGTACGTCATGCCA -ACGGAATCTACGTACACGGGAAAC -ACGGAATCTACGTACACGAACACC -ACGGAATCTACGTACACGATCGAG -ACGGAATCTACGTACACGCTCCTT -ACGGAATCTACGTACACGCCTGTT -ACGGAATCTACGTACACGCGGTTT -ACGGAATCTACGTACACGGTGGTT -ACGGAATCTACGTACACGGCCTTT -ACGGAATCTACGTACACGGGTCTT -ACGGAATCTACGTACACGACGCTT -ACGGAATCTACGTACACGAGCGTT -ACGGAATCTACGTACACGTTCGTC -ACGGAATCTACGTACACGTCTCTC -ACGGAATCTACGTACACGTGGATC -ACGGAATCTACGTACACGCACTTC -ACGGAATCTACGTACACGGTACTC -ACGGAATCTACGTACACGGATGTC -ACGGAATCTACGTACACGACAGTC -ACGGAATCTACGTACACGTTGCTG -ACGGAATCTACGTACACGTCCATG -ACGGAATCTACGTACACGTGTGTG -ACGGAATCTACGTACACGCTAGTG -ACGGAATCTACGTACACGCATCTG -ACGGAATCTACGTACACGGAGTTG -ACGGAATCTACGTACACGAGACTG -ACGGAATCTACGTACACGTCGGTA -ACGGAATCTACGTACACGTGCCTA -ACGGAATCTACGTACACGCCACTA -ACGGAATCTACGTACACGGGAGTA -ACGGAATCTACGTACACGTCGTCT -ACGGAATCTACGTACACGTGCACT -ACGGAATCTACGTACACGCTGACT -ACGGAATCTACGTACACGCAACCT -ACGGAATCTACGTACACGGCTACT -ACGGAATCTACGTACACGGGATCT -ACGGAATCTACGTACACGAAGGCT -ACGGAATCTACGTACACGTCAACC -ACGGAATCTACGTACACGTGTTCC -ACGGAATCTACGTACACGATTCCC -ACGGAATCTACGTACACGTTCTCG -ACGGAATCTACGTACACGTAGACG -ACGGAATCTACGTACACGGTAACG -ACGGAATCTACGTACACGACTTCG -ACGGAATCTACGTACACGTACGCA -ACGGAATCTACGTACACGCTTGCA -ACGGAATCTACGTACACGCGAACA -ACGGAATCTACGTACACGCAGTCA -ACGGAATCTACGTACACGGATCCA -ACGGAATCTACGTACACGACGACA -ACGGAATCTACGTACACGAGCTCA -ACGGAATCTACGTACACGTCACGT -ACGGAATCTACGTACACGCGTAGT -ACGGAATCTACGTACACGGTCAGT -ACGGAATCTACGTACACGGAAGGT -ACGGAATCTACGTACACGAACCGT -ACGGAATCTACGTACACGTTGTGC -ACGGAATCTACGTACACGCTAAGC -ACGGAATCTACGTACACGACTAGC -ACGGAATCTACGTACACGAGATGC -ACGGAATCTACGTACACGTGAAGG -ACGGAATCTACGTACACGCAATGG -ACGGAATCTACGTACACGATGAGG -ACGGAATCTACGTACACGAATGGG -ACGGAATCTACGTACACGTCCTGA -ACGGAATCTACGTACACGTAGCGA -ACGGAATCTACGTACACGCACAGA -ACGGAATCTACGTACACGGCAAGA -ACGGAATCTACGTACACGGGTTGA -ACGGAATCTACGTACACGTCCGAT -ACGGAATCTACGTACACGTGGCAT -ACGGAATCTACGTACACGCGAGAT -ACGGAATCTACGTACACGTACCAC -ACGGAATCTACGTACACGCAGAAC -ACGGAATCTACGTACACGGTCTAC -ACGGAATCTACGTACACGACGTAC -ACGGAATCTACGTACACGAGTGAC -ACGGAATCTACGTACACGCTGTAG -ACGGAATCTACGTACACGCCTAAG -ACGGAATCTACGTACACGGTTCAG -ACGGAATCTACGTACACGGCATAG -ACGGAATCTACGTACACGGACAAG -ACGGAATCTACGTACACGAAGCAG -ACGGAATCTACGTACACGCGTCAA -ACGGAATCTACGTACACGGCTGAA -ACGGAATCTACGTACACGAGTACG -ACGGAATCTACGTACACGATCCGA -ACGGAATCTACGTACACGATGGGA -ACGGAATCTACGTACACGGTGCAA -ACGGAATCTACGTACACGGAGGAA -ACGGAATCTACGTACACGCAGGTA -ACGGAATCTACGTACACGGACTCT -ACGGAATCTACGTACACGAGTCCT -ACGGAATCTACGTACACGTAAGCC -ACGGAATCTACGTACACGATAGCC -ACGGAATCTACGTACACGTAACCG -ACGGAATCTACGTACACGATGCCA -ACGGAATCTACGGACAGTGGAAAC -ACGGAATCTACGGACAGTAACACC -ACGGAATCTACGGACAGTATCGAG -ACGGAATCTACGGACAGTCTCCTT -ACGGAATCTACGGACAGTCCTGTT -ACGGAATCTACGGACAGTCGGTTT -ACGGAATCTACGGACAGTGTGGTT -ACGGAATCTACGGACAGTGCCTTT -ACGGAATCTACGGACAGTGGTCTT -ACGGAATCTACGGACAGTACGCTT -ACGGAATCTACGGACAGTAGCGTT -ACGGAATCTACGGACAGTTTCGTC -ACGGAATCTACGGACAGTTCTCTC -ACGGAATCTACGGACAGTTGGATC -ACGGAATCTACGGACAGTCACTTC -ACGGAATCTACGGACAGTGTACTC -ACGGAATCTACGGACAGTGATGTC -ACGGAATCTACGGACAGTACAGTC -ACGGAATCTACGGACAGTTTGCTG -ACGGAATCTACGGACAGTTCCATG -ACGGAATCTACGGACAGTTGTGTG -ACGGAATCTACGGACAGTCTAGTG -ACGGAATCTACGGACAGTCATCTG -ACGGAATCTACGGACAGTGAGTTG -ACGGAATCTACGGACAGTAGACTG -ACGGAATCTACGGACAGTTCGGTA -ACGGAATCTACGGACAGTTGCCTA -ACGGAATCTACGGACAGTCCACTA -ACGGAATCTACGGACAGTGGAGTA -ACGGAATCTACGGACAGTTCGTCT -ACGGAATCTACGGACAGTTGCACT -ACGGAATCTACGGACAGTCTGACT -ACGGAATCTACGGACAGTCAACCT -ACGGAATCTACGGACAGTGCTACT -ACGGAATCTACGGACAGTGGATCT -ACGGAATCTACGGACAGTAAGGCT -ACGGAATCTACGGACAGTTCAACC -ACGGAATCTACGGACAGTTGTTCC -ACGGAATCTACGGACAGTATTCCC -ACGGAATCTACGGACAGTTTCTCG -ACGGAATCTACGGACAGTTAGACG -ACGGAATCTACGGACAGTGTAACG -ACGGAATCTACGGACAGTACTTCG -ACGGAATCTACGGACAGTTACGCA -ACGGAATCTACGGACAGTCTTGCA -ACGGAATCTACGGACAGTCGAACA -ACGGAATCTACGGACAGTCAGTCA -ACGGAATCTACGGACAGTGATCCA -ACGGAATCTACGGACAGTACGACA -ACGGAATCTACGGACAGTAGCTCA -ACGGAATCTACGGACAGTTCACGT -ACGGAATCTACGGACAGTCGTAGT -ACGGAATCTACGGACAGTGTCAGT -ACGGAATCTACGGACAGTGAAGGT -ACGGAATCTACGGACAGTAACCGT -ACGGAATCTACGGACAGTTTGTGC -ACGGAATCTACGGACAGTCTAAGC -ACGGAATCTACGGACAGTACTAGC -ACGGAATCTACGGACAGTAGATGC -ACGGAATCTACGGACAGTTGAAGG -ACGGAATCTACGGACAGTCAATGG -ACGGAATCTACGGACAGTATGAGG -ACGGAATCTACGGACAGTAATGGG -ACGGAATCTACGGACAGTTCCTGA -ACGGAATCTACGGACAGTTAGCGA -ACGGAATCTACGGACAGTCACAGA -ACGGAATCTACGGACAGTGCAAGA -ACGGAATCTACGGACAGTGGTTGA -ACGGAATCTACGGACAGTTCCGAT -ACGGAATCTACGGACAGTTGGCAT -ACGGAATCTACGGACAGTCGAGAT -ACGGAATCTACGGACAGTTACCAC -ACGGAATCTACGGACAGTCAGAAC -ACGGAATCTACGGACAGTGTCTAC -ACGGAATCTACGGACAGTACGTAC -ACGGAATCTACGGACAGTAGTGAC -ACGGAATCTACGGACAGTCTGTAG -ACGGAATCTACGGACAGTCCTAAG -ACGGAATCTACGGACAGTGTTCAG -ACGGAATCTACGGACAGTGCATAG -ACGGAATCTACGGACAGTGACAAG -ACGGAATCTACGGACAGTAAGCAG -ACGGAATCTACGGACAGTCGTCAA -ACGGAATCTACGGACAGTGCTGAA -ACGGAATCTACGGACAGTAGTACG -ACGGAATCTACGGACAGTATCCGA -ACGGAATCTACGGACAGTATGGGA -ACGGAATCTACGGACAGTGTGCAA -ACGGAATCTACGGACAGTGAGGAA -ACGGAATCTACGGACAGTCAGGTA -ACGGAATCTACGGACAGTGACTCT -ACGGAATCTACGGACAGTAGTCCT -ACGGAATCTACGGACAGTTAAGCC -ACGGAATCTACGGACAGTATAGCC -ACGGAATCTACGGACAGTTAACCG -ACGGAATCTACGGACAGTATGCCA -ACGGAATCTACGTAGCTGGGAAAC -ACGGAATCTACGTAGCTGAACACC -ACGGAATCTACGTAGCTGATCGAG -ACGGAATCTACGTAGCTGCTCCTT -ACGGAATCTACGTAGCTGCCTGTT -ACGGAATCTACGTAGCTGCGGTTT -ACGGAATCTACGTAGCTGGTGGTT -ACGGAATCTACGTAGCTGGCCTTT -ACGGAATCTACGTAGCTGGGTCTT -ACGGAATCTACGTAGCTGACGCTT -ACGGAATCTACGTAGCTGAGCGTT -ACGGAATCTACGTAGCTGTTCGTC -ACGGAATCTACGTAGCTGTCTCTC -ACGGAATCTACGTAGCTGTGGATC -ACGGAATCTACGTAGCTGCACTTC -ACGGAATCTACGTAGCTGGTACTC -ACGGAATCTACGTAGCTGGATGTC -ACGGAATCTACGTAGCTGACAGTC -ACGGAATCTACGTAGCTGTTGCTG -ACGGAATCTACGTAGCTGTCCATG -ACGGAATCTACGTAGCTGTGTGTG -ACGGAATCTACGTAGCTGCTAGTG -ACGGAATCTACGTAGCTGCATCTG -ACGGAATCTACGTAGCTGGAGTTG -ACGGAATCTACGTAGCTGAGACTG -ACGGAATCTACGTAGCTGTCGGTA -ACGGAATCTACGTAGCTGTGCCTA -ACGGAATCTACGTAGCTGCCACTA -ACGGAATCTACGTAGCTGGGAGTA -ACGGAATCTACGTAGCTGTCGTCT -ACGGAATCTACGTAGCTGTGCACT -ACGGAATCTACGTAGCTGCTGACT -ACGGAATCTACGTAGCTGCAACCT -ACGGAATCTACGTAGCTGGCTACT -ACGGAATCTACGTAGCTGGGATCT -ACGGAATCTACGTAGCTGAAGGCT -ACGGAATCTACGTAGCTGTCAACC -ACGGAATCTACGTAGCTGTGTTCC -ACGGAATCTACGTAGCTGATTCCC -ACGGAATCTACGTAGCTGTTCTCG -ACGGAATCTACGTAGCTGTAGACG -ACGGAATCTACGTAGCTGGTAACG -ACGGAATCTACGTAGCTGACTTCG -ACGGAATCTACGTAGCTGTACGCA -ACGGAATCTACGTAGCTGCTTGCA -ACGGAATCTACGTAGCTGCGAACA -ACGGAATCTACGTAGCTGCAGTCA -ACGGAATCTACGTAGCTGGATCCA -ACGGAATCTACGTAGCTGACGACA -ACGGAATCTACGTAGCTGAGCTCA -ACGGAATCTACGTAGCTGTCACGT -ACGGAATCTACGTAGCTGCGTAGT -ACGGAATCTACGTAGCTGGTCAGT -ACGGAATCTACGTAGCTGGAAGGT -ACGGAATCTACGTAGCTGAACCGT -ACGGAATCTACGTAGCTGTTGTGC -ACGGAATCTACGTAGCTGCTAAGC -ACGGAATCTACGTAGCTGACTAGC -ACGGAATCTACGTAGCTGAGATGC -ACGGAATCTACGTAGCTGTGAAGG -ACGGAATCTACGTAGCTGCAATGG -ACGGAATCTACGTAGCTGATGAGG -ACGGAATCTACGTAGCTGAATGGG -ACGGAATCTACGTAGCTGTCCTGA -ACGGAATCTACGTAGCTGTAGCGA -ACGGAATCTACGTAGCTGCACAGA -ACGGAATCTACGTAGCTGGCAAGA -ACGGAATCTACGTAGCTGGGTTGA -ACGGAATCTACGTAGCTGTCCGAT -ACGGAATCTACGTAGCTGTGGCAT -ACGGAATCTACGTAGCTGCGAGAT -ACGGAATCTACGTAGCTGTACCAC -ACGGAATCTACGTAGCTGCAGAAC -ACGGAATCTACGTAGCTGGTCTAC -ACGGAATCTACGTAGCTGACGTAC -ACGGAATCTACGTAGCTGAGTGAC -ACGGAATCTACGTAGCTGCTGTAG -ACGGAATCTACGTAGCTGCCTAAG -ACGGAATCTACGTAGCTGGTTCAG -ACGGAATCTACGTAGCTGGCATAG -ACGGAATCTACGTAGCTGGACAAG -ACGGAATCTACGTAGCTGAAGCAG -ACGGAATCTACGTAGCTGCGTCAA -ACGGAATCTACGTAGCTGGCTGAA -ACGGAATCTACGTAGCTGAGTACG -ACGGAATCTACGTAGCTGATCCGA -ACGGAATCTACGTAGCTGATGGGA -ACGGAATCTACGTAGCTGGTGCAA -ACGGAATCTACGTAGCTGGAGGAA -ACGGAATCTACGTAGCTGCAGGTA -ACGGAATCTACGTAGCTGGACTCT -ACGGAATCTACGTAGCTGAGTCCT -ACGGAATCTACGTAGCTGTAAGCC -ACGGAATCTACGTAGCTGATAGCC -ACGGAATCTACGTAGCTGTAACCG -ACGGAATCTACGTAGCTGATGCCA -ACGGAATCTACGAAGCCTGGAAAC -ACGGAATCTACGAAGCCTAACACC -ACGGAATCTACGAAGCCTATCGAG -ACGGAATCTACGAAGCCTCTCCTT -ACGGAATCTACGAAGCCTCCTGTT -ACGGAATCTACGAAGCCTCGGTTT -ACGGAATCTACGAAGCCTGTGGTT -ACGGAATCTACGAAGCCTGCCTTT -ACGGAATCTACGAAGCCTGGTCTT -ACGGAATCTACGAAGCCTACGCTT -ACGGAATCTACGAAGCCTAGCGTT -ACGGAATCTACGAAGCCTTTCGTC -ACGGAATCTACGAAGCCTTCTCTC -ACGGAATCTACGAAGCCTTGGATC -ACGGAATCTACGAAGCCTCACTTC -ACGGAATCTACGAAGCCTGTACTC -ACGGAATCTACGAAGCCTGATGTC -ACGGAATCTACGAAGCCTACAGTC -ACGGAATCTACGAAGCCTTTGCTG -ACGGAATCTACGAAGCCTTCCATG -ACGGAATCTACGAAGCCTTGTGTG -ACGGAATCTACGAAGCCTCTAGTG -ACGGAATCTACGAAGCCTCATCTG -ACGGAATCTACGAAGCCTGAGTTG -ACGGAATCTACGAAGCCTAGACTG -ACGGAATCTACGAAGCCTTCGGTA -ACGGAATCTACGAAGCCTTGCCTA -ACGGAATCTACGAAGCCTCCACTA -ACGGAATCTACGAAGCCTGGAGTA -ACGGAATCTACGAAGCCTTCGTCT -ACGGAATCTACGAAGCCTTGCACT -ACGGAATCTACGAAGCCTCTGACT -ACGGAATCTACGAAGCCTCAACCT -ACGGAATCTACGAAGCCTGCTACT -ACGGAATCTACGAAGCCTGGATCT -ACGGAATCTACGAAGCCTAAGGCT -ACGGAATCTACGAAGCCTTCAACC -ACGGAATCTACGAAGCCTTGTTCC -ACGGAATCTACGAAGCCTATTCCC -ACGGAATCTACGAAGCCTTTCTCG -ACGGAATCTACGAAGCCTTAGACG -ACGGAATCTACGAAGCCTGTAACG -ACGGAATCTACGAAGCCTACTTCG -ACGGAATCTACGAAGCCTTACGCA -ACGGAATCTACGAAGCCTCTTGCA -ACGGAATCTACGAAGCCTCGAACA -ACGGAATCTACGAAGCCTCAGTCA -ACGGAATCTACGAAGCCTGATCCA -ACGGAATCTACGAAGCCTACGACA -ACGGAATCTACGAAGCCTAGCTCA -ACGGAATCTACGAAGCCTTCACGT -ACGGAATCTACGAAGCCTCGTAGT -ACGGAATCTACGAAGCCTGTCAGT -ACGGAATCTACGAAGCCTGAAGGT -ACGGAATCTACGAAGCCTAACCGT -ACGGAATCTACGAAGCCTTTGTGC -ACGGAATCTACGAAGCCTCTAAGC -ACGGAATCTACGAAGCCTACTAGC -ACGGAATCTACGAAGCCTAGATGC -ACGGAATCTACGAAGCCTTGAAGG -ACGGAATCTACGAAGCCTCAATGG -ACGGAATCTACGAAGCCTATGAGG -ACGGAATCTACGAAGCCTAATGGG -ACGGAATCTACGAAGCCTTCCTGA -ACGGAATCTACGAAGCCTTAGCGA -ACGGAATCTACGAAGCCTCACAGA -ACGGAATCTACGAAGCCTGCAAGA -ACGGAATCTACGAAGCCTGGTTGA -ACGGAATCTACGAAGCCTTCCGAT -ACGGAATCTACGAAGCCTTGGCAT -ACGGAATCTACGAAGCCTCGAGAT -ACGGAATCTACGAAGCCTTACCAC -ACGGAATCTACGAAGCCTCAGAAC -ACGGAATCTACGAAGCCTGTCTAC -ACGGAATCTACGAAGCCTACGTAC -ACGGAATCTACGAAGCCTAGTGAC -ACGGAATCTACGAAGCCTCTGTAG -ACGGAATCTACGAAGCCTCCTAAG -ACGGAATCTACGAAGCCTGTTCAG -ACGGAATCTACGAAGCCTGCATAG -ACGGAATCTACGAAGCCTGACAAG -ACGGAATCTACGAAGCCTAAGCAG -ACGGAATCTACGAAGCCTCGTCAA -ACGGAATCTACGAAGCCTGCTGAA -ACGGAATCTACGAAGCCTAGTACG -ACGGAATCTACGAAGCCTATCCGA -ACGGAATCTACGAAGCCTATGGGA -ACGGAATCTACGAAGCCTGTGCAA -ACGGAATCTACGAAGCCTGAGGAA -ACGGAATCTACGAAGCCTCAGGTA -ACGGAATCTACGAAGCCTGACTCT -ACGGAATCTACGAAGCCTAGTCCT -ACGGAATCTACGAAGCCTTAAGCC -ACGGAATCTACGAAGCCTATAGCC -ACGGAATCTACGAAGCCTTAACCG -ACGGAATCTACGAAGCCTATGCCA -ACGGAATCTACGCAGGTTGGAAAC -ACGGAATCTACGCAGGTTAACACC -ACGGAATCTACGCAGGTTATCGAG -ACGGAATCTACGCAGGTTCTCCTT -ACGGAATCTACGCAGGTTCCTGTT -ACGGAATCTACGCAGGTTCGGTTT -ACGGAATCTACGCAGGTTGTGGTT -ACGGAATCTACGCAGGTTGCCTTT -ACGGAATCTACGCAGGTTGGTCTT -ACGGAATCTACGCAGGTTACGCTT -ACGGAATCTACGCAGGTTAGCGTT -ACGGAATCTACGCAGGTTTTCGTC -ACGGAATCTACGCAGGTTTCTCTC -ACGGAATCTACGCAGGTTTGGATC -ACGGAATCTACGCAGGTTCACTTC -ACGGAATCTACGCAGGTTGTACTC -ACGGAATCTACGCAGGTTGATGTC -ACGGAATCTACGCAGGTTACAGTC -ACGGAATCTACGCAGGTTTTGCTG -ACGGAATCTACGCAGGTTTCCATG -ACGGAATCTACGCAGGTTTGTGTG -ACGGAATCTACGCAGGTTCTAGTG -ACGGAATCTACGCAGGTTCATCTG -ACGGAATCTACGCAGGTTGAGTTG -ACGGAATCTACGCAGGTTAGACTG -ACGGAATCTACGCAGGTTTCGGTA -ACGGAATCTACGCAGGTTTGCCTA -ACGGAATCTACGCAGGTTCCACTA -ACGGAATCTACGCAGGTTGGAGTA -ACGGAATCTACGCAGGTTTCGTCT -ACGGAATCTACGCAGGTTTGCACT -ACGGAATCTACGCAGGTTCTGACT -ACGGAATCTACGCAGGTTCAACCT -ACGGAATCTACGCAGGTTGCTACT -ACGGAATCTACGCAGGTTGGATCT -ACGGAATCTACGCAGGTTAAGGCT -ACGGAATCTACGCAGGTTTCAACC -ACGGAATCTACGCAGGTTTGTTCC -ACGGAATCTACGCAGGTTATTCCC -ACGGAATCTACGCAGGTTTTCTCG -ACGGAATCTACGCAGGTTTAGACG -ACGGAATCTACGCAGGTTGTAACG -ACGGAATCTACGCAGGTTACTTCG -ACGGAATCTACGCAGGTTTACGCA -ACGGAATCTACGCAGGTTCTTGCA -ACGGAATCTACGCAGGTTCGAACA -ACGGAATCTACGCAGGTTCAGTCA -ACGGAATCTACGCAGGTTGATCCA -ACGGAATCTACGCAGGTTACGACA -ACGGAATCTACGCAGGTTAGCTCA -ACGGAATCTACGCAGGTTTCACGT -ACGGAATCTACGCAGGTTCGTAGT -ACGGAATCTACGCAGGTTGTCAGT -ACGGAATCTACGCAGGTTGAAGGT -ACGGAATCTACGCAGGTTAACCGT -ACGGAATCTACGCAGGTTTTGTGC -ACGGAATCTACGCAGGTTCTAAGC -ACGGAATCTACGCAGGTTACTAGC -ACGGAATCTACGCAGGTTAGATGC -ACGGAATCTACGCAGGTTTGAAGG -ACGGAATCTACGCAGGTTCAATGG -ACGGAATCTACGCAGGTTATGAGG -ACGGAATCTACGCAGGTTAATGGG -ACGGAATCTACGCAGGTTTCCTGA -ACGGAATCTACGCAGGTTTAGCGA -ACGGAATCTACGCAGGTTCACAGA -ACGGAATCTACGCAGGTTGCAAGA -ACGGAATCTACGCAGGTTGGTTGA -ACGGAATCTACGCAGGTTTCCGAT -ACGGAATCTACGCAGGTTTGGCAT -ACGGAATCTACGCAGGTTCGAGAT -ACGGAATCTACGCAGGTTTACCAC -ACGGAATCTACGCAGGTTCAGAAC -ACGGAATCTACGCAGGTTGTCTAC -ACGGAATCTACGCAGGTTACGTAC -ACGGAATCTACGCAGGTTAGTGAC -ACGGAATCTACGCAGGTTCTGTAG -ACGGAATCTACGCAGGTTCCTAAG -ACGGAATCTACGCAGGTTGTTCAG -ACGGAATCTACGCAGGTTGCATAG -ACGGAATCTACGCAGGTTGACAAG -ACGGAATCTACGCAGGTTAAGCAG -ACGGAATCTACGCAGGTTCGTCAA -ACGGAATCTACGCAGGTTGCTGAA -ACGGAATCTACGCAGGTTAGTACG -ACGGAATCTACGCAGGTTATCCGA -ACGGAATCTACGCAGGTTATGGGA -ACGGAATCTACGCAGGTTGTGCAA -ACGGAATCTACGCAGGTTGAGGAA -ACGGAATCTACGCAGGTTCAGGTA -ACGGAATCTACGCAGGTTGACTCT -ACGGAATCTACGCAGGTTAGTCCT -ACGGAATCTACGCAGGTTTAAGCC -ACGGAATCTACGCAGGTTATAGCC -ACGGAATCTACGCAGGTTTAACCG -ACGGAATCTACGCAGGTTATGCCA -ACGGAATCTACGTAGGCAGGAAAC -ACGGAATCTACGTAGGCAAACACC -ACGGAATCTACGTAGGCAATCGAG -ACGGAATCTACGTAGGCACTCCTT -ACGGAATCTACGTAGGCACCTGTT -ACGGAATCTACGTAGGCACGGTTT -ACGGAATCTACGTAGGCAGTGGTT -ACGGAATCTACGTAGGCAGCCTTT -ACGGAATCTACGTAGGCAGGTCTT -ACGGAATCTACGTAGGCAACGCTT -ACGGAATCTACGTAGGCAAGCGTT -ACGGAATCTACGTAGGCATTCGTC -ACGGAATCTACGTAGGCATCTCTC -ACGGAATCTACGTAGGCATGGATC -ACGGAATCTACGTAGGCACACTTC -ACGGAATCTACGTAGGCAGTACTC -ACGGAATCTACGTAGGCAGATGTC -ACGGAATCTACGTAGGCAACAGTC -ACGGAATCTACGTAGGCATTGCTG -ACGGAATCTACGTAGGCATCCATG -ACGGAATCTACGTAGGCATGTGTG -ACGGAATCTACGTAGGCACTAGTG -ACGGAATCTACGTAGGCACATCTG -ACGGAATCTACGTAGGCAGAGTTG -ACGGAATCTACGTAGGCAAGACTG -ACGGAATCTACGTAGGCATCGGTA -ACGGAATCTACGTAGGCATGCCTA -ACGGAATCTACGTAGGCACCACTA -ACGGAATCTACGTAGGCAGGAGTA -ACGGAATCTACGTAGGCATCGTCT -ACGGAATCTACGTAGGCATGCACT -ACGGAATCTACGTAGGCACTGACT -ACGGAATCTACGTAGGCACAACCT -ACGGAATCTACGTAGGCAGCTACT -ACGGAATCTACGTAGGCAGGATCT -ACGGAATCTACGTAGGCAAAGGCT -ACGGAATCTACGTAGGCATCAACC -ACGGAATCTACGTAGGCATGTTCC -ACGGAATCTACGTAGGCAATTCCC -ACGGAATCTACGTAGGCATTCTCG -ACGGAATCTACGTAGGCATAGACG -ACGGAATCTACGTAGGCAGTAACG -ACGGAATCTACGTAGGCAACTTCG -ACGGAATCTACGTAGGCATACGCA -ACGGAATCTACGTAGGCACTTGCA -ACGGAATCTACGTAGGCACGAACA -ACGGAATCTACGTAGGCACAGTCA -ACGGAATCTACGTAGGCAGATCCA -ACGGAATCTACGTAGGCAACGACA -ACGGAATCTACGTAGGCAAGCTCA -ACGGAATCTACGTAGGCATCACGT -ACGGAATCTACGTAGGCACGTAGT -ACGGAATCTACGTAGGCAGTCAGT -ACGGAATCTACGTAGGCAGAAGGT -ACGGAATCTACGTAGGCAAACCGT -ACGGAATCTACGTAGGCATTGTGC -ACGGAATCTACGTAGGCACTAAGC -ACGGAATCTACGTAGGCAACTAGC -ACGGAATCTACGTAGGCAAGATGC -ACGGAATCTACGTAGGCATGAAGG -ACGGAATCTACGTAGGCACAATGG -ACGGAATCTACGTAGGCAATGAGG -ACGGAATCTACGTAGGCAAATGGG -ACGGAATCTACGTAGGCATCCTGA -ACGGAATCTACGTAGGCATAGCGA -ACGGAATCTACGTAGGCACACAGA -ACGGAATCTACGTAGGCAGCAAGA -ACGGAATCTACGTAGGCAGGTTGA -ACGGAATCTACGTAGGCATCCGAT -ACGGAATCTACGTAGGCATGGCAT -ACGGAATCTACGTAGGCACGAGAT -ACGGAATCTACGTAGGCATACCAC -ACGGAATCTACGTAGGCACAGAAC -ACGGAATCTACGTAGGCAGTCTAC -ACGGAATCTACGTAGGCAACGTAC -ACGGAATCTACGTAGGCAAGTGAC -ACGGAATCTACGTAGGCACTGTAG -ACGGAATCTACGTAGGCACCTAAG -ACGGAATCTACGTAGGCAGTTCAG -ACGGAATCTACGTAGGCAGCATAG -ACGGAATCTACGTAGGCAGACAAG -ACGGAATCTACGTAGGCAAAGCAG -ACGGAATCTACGTAGGCACGTCAA -ACGGAATCTACGTAGGCAGCTGAA -ACGGAATCTACGTAGGCAAGTACG -ACGGAATCTACGTAGGCAATCCGA -ACGGAATCTACGTAGGCAATGGGA -ACGGAATCTACGTAGGCAGTGCAA -ACGGAATCTACGTAGGCAGAGGAA -ACGGAATCTACGTAGGCACAGGTA -ACGGAATCTACGTAGGCAGACTCT -ACGGAATCTACGTAGGCAAGTCCT -ACGGAATCTACGTAGGCATAAGCC -ACGGAATCTACGTAGGCAATAGCC -ACGGAATCTACGTAGGCATAACCG -ACGGAATCTACGTAGGCAATGCCA -ACGGAATCTACGAAGGACGGAAAC -ACGGAATCTACGAAGGACAACACC -ACGGAATCTACGAAGGACATCGAG -ACGGAATCTACGAAGGACCTCCTT -ACGGAATCTACGAAGGACCCTGTT -ACGGAATCTACGAAGGACCGGTTT -ACGGAATCTACGAAGGACGTGGTT -ACGGAATCTACGAAGGACGCCTTT -ACGGAATCTACGAAGGACGGTCTT -ACGGAATCTACGAAGGACACGCTT -ACGGAATCTACGAAGGACAGCGTT -ACGGAATCTACGAAGGACTTCGTC -ACGGAATCTACGAAGGACTCTCTC -ACGGAATCTACGAAGGACTGGATC -ACGGAATCTACGAAGGACCACTTC -ACGGAATCTACGAAGGACGTACTC -ACGGAATCTACGAAGGACGATGTC -ACGGAATCTACGAAGGACACAGTC -ACGGAATCTACGAAGGACTTGCTG -ACGGAATCTACGAAGGACTCCATG -ACGGAATCTACGAAGGACTGTGTG -ACGGAATCTACGAAGGACCTAGTG -ACGGAATCTACGAAGGACCATCTG -ACGGAATCTACGAAGGACGAGTTG -ACGGAATCTACGAAGGACAGACTG -ACGGAATCTACGAAGGACTCGGTA -ACGGAATCTACGAAGGACTGCCTA -ACGGAATCTACGAAGGACCCACTA -ACGGAATCTACGAAGGACGGAGTA -ACGGAATCTACGAAGGACTCGTCT -ACGGAATCTACGAAGGACTGCACT -ACGGAATCTACGAAGGACCTGACT -ACGGAATCTACGAAGGACCAACCT -ACGGAATCTACGAAGGACGCTACT -ACGGAATCTACGAAGGACGGATCT -ACGGAATCTACGAAGGACAAGGCT -ACGGAATCTACGAAGGACTCAACC -ACGGAATCTACGAAGGACTGTTCC -ACGGAATCTACGAAGGACATTCCC -ACGGAATCTACGAAGGACTTCTCG -ACGGAATCTACGAAGGACTAGACG -ACGGAATCTACGAAGGACGTAACG -ACGGAATCTACGAAGGACACTTCG -ACGGAATCTACGAAGGACTACGCA -ACGGAATCTACGAAGGACCTTGCA -ACGGAATCTACGAAGGACCGAACA -ACGGAATCTACGAAGGACCAGTCA -ACGGAATCTACGAAGGACGATCCA -ACGGAATCTACGAAGGACACGACA -ACGGAATCTACGAAGGACAGCTCA -ACGGAATCTACGAAGGACTCACGT -ACGGAATCTACGAAGGACCGTAGT -ACGGAATCTACGAAGGACGTCAGT -ACGGAATCTACGAAGGACGAAGGT -ACGGAATCTACGAAGGACAACCGT -ACGGAATCTACGAAGGACTTGTGC -ACGGAATCTACGAAGGACCTAAGC -ACGGAATCTACGAAGGACACTAGC -ACGGAATCTACGAAGGACAGATGC -ACGGAATCTACGAAGGACTGAAGG -ACGGAATCTACGAAGGACCAATGG -ACGGAATCTACGAAGGACATGAGG -ACGGAATCTACGAAGGACAATGGG -ACGGAATCTACGAAGGACTCCTGA -ACGGAATCTACGAAGGACTAGCGA -ACGGAATCTACGAAGGACCACAGA -ACGGAATCTACGAAGGACGCAAGA -ACGGAATCTACGAAGGACGGTTGA -ACGGAATCTACGAAGGACTCCGAT -ACGGAATCTACGAAGGACTGGCAT -ACGGAATCTACGAAGGACCGAGAT -ACGGAATCTACGAAGGACTACCAC -ACGGAATCTACGAAGGACCAGAAC -ACGGAATCTACGAAGGACGTCTAC -ACGGAATCTACGAAGGACACGTAC -ACGGAATCTACGAAGGACAGTGAC -ACGGAATCTACGAAGGACCTGTAG -ACGGAATCTACGAAGGACCCTAAG -ACGGAATCTACGAAGGACGTTCAG -ACGGAATCTACGAAGGACGCATAG -ACGGAATCTACGAAGGACGACAAG -ACGGAATCTACGAAGGACAAGCAG -ACGGAATCTACGAAGGACCGTCAA -ACGGAATCTACGAAGGACGCTGAA -ACGGAATCTACGAAGGACAGTACG -ACGGAATCTACGAAGGACATCCGA -ACGGAATCTACGAAGGACATGGGA -ACGGAATCTACGAAGGACGTGCAA -ACGGAATCTACGAAGGACGAGGAA -ACGGAATCTACGAAGGACCAGGTA -ACGGAATCTACGAAGGACGACTCT -ACGGAATCTACGAAGGACAGTCCT -ACGGAATCTACGAAGGACTAAGCC -ACGGAATCTACGAAGGACATAGCC -ACGGAATCTACGAAGGACTAACCG -ACGGAATCTACGAAGGACATGCCA -ACGGAATCTACGCAGAAGGGAAAC -ACGGAATCTACGCAGAAGAACACC -ACGGAATCTACGCAGAAGATCGAG -ACGGAATCTACGCAGAAGCTCCTT -ACGGAATCTACGCAGAAGCCTGTT -ACGGAATCTACGCAGAAGCGGTTT -ACGGAATCTACGCAGAAGGTGGTT -ACGGAATCTACGCAGAAGGCCTTT -ACGGAATCTACGCAGAAGGGTCTT -ACGGAATCTACGCAGAAGACGCTT -ACGGAATCTACGCAGAAGAGCGTT -ACGGAATCTACGCAGAAGTTCGTC -ACGGAATCTACGCAGAAGTCTCTC -ACGGAATCTACGCAGAAGTGGATC -ACGGAATCTACGCAGAAGCACTTC -ACGGAATCTACGCAGAAGGTACTC -ACGGAATCTACGCAGAAGGATGTC -ACGGAATCTACGCAGAAGACAGTC -ACGGAATCTACGCAGAAGTTGCTG -ACGGAATCTACGCAGAAGTCCATG -ACGGAATCTACGCAGAAGTGTGTG -ACGGAATCTACGCAGAAGCTAGTG -ACGGAATCTACGCAGAAGCATCTG -ACGGAATCTACGCAGAAGGAGTTG -ACGGAATCTACGCAGAAGAGACTG -ACGGAATCTACGCAGAAGTCGGTA -ACGGAATCTACGCAGAAGTGCCTA -ACGGAATCTACGCAGAAGCCACTA -ACGGAATCTACGCAGAAGGGAGTA -ACGGAATCTACGCAGAAGTCGTCT -ACGGAATCTACGCAGAAGTGCACT -ACGGAATCTACGCAGAAGCTGACT -ACGGAATCTACGCAGAAGCAACCT -ACGGAATCTACGCAGAAGGCTACT -ACGGAATCTACGCAGAAGGGATCT -ACGGAATCTACGCAGAAGAAGGCT -ACGGAATCTACGCAGAAGTCAACC -ACGGAATCTACGCAGAAGTGTTCC -ACGGAATCTACGCAGAAGATTCCC -ACGGAATCTACGCAGAAGTTCTCG -ACGGAATCTACGCAGAAGTAGACG -ACGGAATCTACGCAGAAGGTAACG -ACGGAATCTACGCAGAAGACTTCG -ACGGAATCTACGCAGAAGTACGCA -ACGGAATCTACGCAGAAGCTTGCA -ACGGAATCTACGCAGAAGCGAACA -ACGGAATCTACGCAGAAGCAGTCA -ACGGAATCTACGCAGAAGGATCCA -ACGGAATCTACGCAGAAGACGACA -ACGGAATCTACGCAGAAGAGCTCA -ACGGAATCTACGCAGAAGTCACGT -ACGGAATCTACGCAGAAGCGTAGT -ACGGAATCTACGCAGAAGGTCAGT -ACGGAATCTACGCAGAAGGAAGGT -ACGGAATCTACGCAGAAGAACCGT -ACGGAATCTACGCAGAAGTTGTGC -ACGGAATCTACGCAGAAGCTAAGC -ACGGAATCTACGCAGAAGACTAGC -ACGGAATCTACGCAGAAGAGATGC -ACGGAATCTACGCAGAAGTGAAGG -ACGGAATCTACGCAGAAGCAATGG -ACGGAATCTACGCAGAAGATGAGG -ACGGAATCTACGCAGAAGAATGGG -ACGGAATCTACGCAGAAGTCCTGA -ACGGAATCTACGCAGAAGTAGCGA -ACGGAATCTACGCAGAAGCACAGA -ACGGAATCTACGCAGAAGGCAAGA -ACGGAATCTACGCAGAAGGGTTGA -ACGGAATCTACGCAGAAGTCCGAT -ACGGAATCTACGCAGAAGTGGCAT -ACGGAATCTACGCAGAAGCGAGAT -ACGGAATCTACGCAGAAGTACCAC -ACGGAATCTACGCAGAAGCAGAAC -ACGGAATCTACGCAGAAGGTCTAC -ACGGAATCTACGCAGAAGACGTAC -ACGGAATCTACGCAGAAGAGTGAC -ACGGAATCTACGCAGAAGCTGTAG -ACGGAATCTACGCAGAAGCCTAAG -ACGGAATCTACGCAGAAGGTTCAG -ACGGAATCTACGCAGAAGGCATAG -ACGGAATCTACGCAGAAGGACAAG -ACGGAATCTACGCAGAAGAAGCAG -ACGGAATCTACGCAGAAGCGTCAA -ACGGAATCTACGCAGAAGGCTGAA -ACGGAATCTACGCAGAAGAGTACG -ACGGAATCTACGCAGAAGATCCGA -ACGGAATCTACGCAGAAGATGGGA -ACGGAATCTACGCAGAAGGTGCAA -ACGGAATCTACGCAGAAGGAGGAA -ACGGAATCTACGCAGAAGCAGGTA -ACGGAATCTACGCAGAAGGACTCT -ACGGAATCTACGCAGAAGAGTCCT -ACGGAATCTACGCAGAAGTAAGCC -ACGGAATCTACGCAGAAGATAGCC -ACGGAATCTACGCAGAAGTAACCG -ACGGAATCTACGCAGAAGATGCCA -ACGGAATCTACGCAACGTGGAAAC -ACGGAATCTACGCAACGTAACACC -ACGGAATCTACGCAACGTATCGAG -ACGGAATCTACGCAACGTCTCCTT -ACGGAATCTACGCAACGTCCTGTT -ACGGAATCTACGCAACGTCGGTTT -ACGGAATCTACGCAACGTGTGGTT -ACGGAATCTACGCAACGTGCCTTT -ACGGAATCTACGCAACGTGGTCTT -ACGGAATCTACGCAACGTACGCTT -ACGGAATCTACGCAACGTAGCGTT -ACGGAATCTACGCAACGTTTCGTC -ACGGAATCTACGCAACGTTCTCTC -ACGGAATCTACGCAACGTTGGATC -ACGGAATCTACGCAACGTCACTTC -ACGGAATCTACGCAACGTGTACTC -ACGGAATCTACGCAACGTGATGTC -ACGGAATCTACGCAACGTACAGTC -ACGGAATCTACGCAACGTTTGCTG -ACGGAATCTACGCAACGTTCCATG -ACGGAATCTACGCAACGTTGTGTG -ACGGAATCTACGCAACGTCTAGTG -ACGGAATCTACGCAACGTCATCTG -ACGGAATCTACGCAACGTGAGTTG -ACGGAATCTACGCAACGTAGACTG -ACGGAATCTACGCAACGTTCGGTA -ACGGAATCTACGCAACGTTGCCTA -ACGGAATCTACGCAACGTCCACTA -ACGGAATCTACGCAACGTGGAGTA -ACGGAATCTACGCAACGTTCGTCT -ACGGAATCTACGCAACGTTGCACT -ACGGAATCTACGCAACGTCTGACT -ACGGAATCTACGCAACGTCAACCT -ACGGAATCTACGCAACGTGCTACT -ACGGAATCTACGCAACGTGGATCT -ACGGAATCTACGCAACGTAAGGCT -ACGGAATCTACGCAACGTTCAACC -ACGGAATCTACGCAACGTTGTTCC -ACGGAATCTACGCAACGTATTCCC -ACGGAATCTACGCAACGTTTCTCG -ACGGAATCTACGCAACGTTAGACG -ACGGAATCTACGCAACGTGTAACG -ACGGAATCTACGCAACGTACTTCG -ACGGAATCTACGCAACGTTACGCA -ACGGAATCTACGCAACGTCTTGCA -ACGGAATCTACGCAACGTCGAACA -ACGGAATCTACGCAACGTCAGTCA -ACGGAATCTACGCAACGTGATCCA -ACGGAATCTACGCAACGTACGACA -ACGGAATCTACGCAACGTAGCTCA -ACGGAATCTACGCAACGTTCACGT -ACGGAATCTACGCAACGTCGTAGT -ACGGAATCTACGCAACGTGTCAGT -ACGGAATCTACGCAACGTGAAGGT -ACGGAATCTACGCAACGTAACCGT -ACGGAATCTACGCAACGTTTGTGC -ACGGAATCTACGCAACGTCTAAGC -ACGGAATCTACGCAACGTACTAGC -ACGGAATCTACGCAACGTAGATGC -ACGGAATCTACGCAACGTTGAAGG -ACGGAATCTACGCAACGTCAATGG -ACGGAATCTACGCAACGTATGAGG -ACGGAATCTACGCAACGTAATGGG -ACGGAATCTACGCAACGTTCCTGA -ACGGAATCTACGCAACGTTAGCGA -ACGGAATCTACGCAACGTCACAGA -ACGGAATCTACGCAACGTGCAAGA -ACGGAATCTACGCAACGTGGTTGA -ACGGAATCTACGCAACGTTCCGAT -ACGGAATCTACGCAACGTTGGCAT -ACGGAATCTACGCAACGTCGAGAT -ACGGAATCTACGCAACGTTACCAC -ACGGAATCTACGCAACGTCAGAAC -ACGGAATCTACGCAACGTGTCTAC -ACGGAATCTACGCAACGTACGTAC -ACGGAATCTACGCAACGTAGTGAC -ACGGAATCTACGCAACGTCTGTAG -ACGGAATCTACGCAACGTCCTAAG -ACGGAATCTACGCAACGTGTTCAG -ACGGAATCTACGCAACGTGCATAG -ACGGAATCTACGCAACGTGACAAG -ACGGAATCTACGCAACGTAAGCAG -ACGGAATCTACGCAACGTCGTCAA -ACGGAATCTACGCAACGTGCTGAA -ACGGAATCTACGCAACGTAGTACG -ACGGAATCTACGCAACGTATCCGA -ACGGAATCTACGCAACGTATGGGA -ACGGAATCTACGCAACGTGTGCAA -ACGGAATCTACGCAACGTGAGGAA -ACGGAATCTACGCAACGTCAGGTA -ACGGAATCTACGCAACGTGACTCT -ACGGAATCTACGCAACGTAGTCCT -ACGGAATCTACGCAACGTTAAGCC -ACGGAATCTACGCAACGTATAGCC -ACGGAATCTACGCAACGTTAACCG -ACGGAATCTACGCAACGTATGCCA -ACGGAATCTACGGAAGCTGGAAAC -ACGGAATCTACGGAAGCTAACACC -ACGGAATCTACGGAAGCTATCGAG -ACGGAATCTACGGAAGCTCTCCTT -ACGGAATCTACGGAAGCTCCTGTT -ACGGAATCTACGGAAGCTCGGTTT -ACGGAATCTACGGAAGCTGTGGTT -ACGGAATCTACGGAAGCTGCCTTT -ACGGAATCTACGGAAGCTGGTCTT -ACGGAATCTACGGAAGCTACGCTT -ACGGAATCTACGGAAGCTAGCGTT -ACGGAATCTACGGAAGCTTTCGTC -ACGGAATCTACGGAAGCTTCTCTC -ACGGAATCTACGGAAGCTTGGATC -ACGGAATCTACGGAAGCTCACTTC -ACGGAATCTACGGAAGCTGTACTC -ACGGAATCTACGGAAGCTGATGTC -ACGGAATCTACGGAAGCTACAGTC -ACGGAATCTACGGAAGCTTTGCTG -ACGGAATCTACGGAAGCTTCCATG -ACGGAATCTACGGAAGCTTGTGTG -ACGGAATCTACGGAAGCTCTAGTG -ACGGAATCTACGGAAGCTCATCTG -ACGGAATCTACGGAAGCTGAGTTG -ACGGAATCTACGGAAGCTAGACTG -ACGGAATCTACGGAAGCTTCGGTA -ACGGAATCTACGGAAGCTTGCCTA -ACGGAATCTACGGAAGCTCCACTA -ACGGAATCTACGGAAGCTGGAGTA -ACGGAATCTACGGAAGCTTCGTCT -ACGGAATCTACGGAAGCTTGCACT -ACGGAATCTACGGAAGCTCTGACT -ACGGAATCTACGGAAGCTCAACCT -ACGGAATCTACGGAAGCTGCTACT -ACGGAATCTACGGAAGCTGGATCT -ACGGAATCTACGGAAGCTAAGGCT -ACGGAATCTACGGAAGCTTCAACC -ACGGAATCTACGGAAGCTTGTTCC -ACGGAATCTACGGAAGCTATTCCC -ACGGAATCTACGGAAGCTTTCTCG -ACGGAATCTACGGAAGCTTAGACG -ACGGAATCTACGGAAGCTGTAACG -ACGGAATCTACGGAAGCTACTTCG -ACGGAATCTACGGAAGCTTACGCA -ACGGAATCTACGGAAGCTCTTGCA -ACGGAATCTACGGAAGCTCGAACA -ACGGAATCTACGGAAGCTCAGTCA -ACGGAATCTACGGAAGCTGATCCA -ACGGAATCTACGGAAGCTACGACA -ACGGAATCTACGGAAGCTAGCTCA -ACGGAATCTACGGAAGCTTCACGT -ACGGAATCTACGGAAGCTCGTAGT -ACGGAATCTACGGAAGCTGTCAGT -ACGGAATCTACGGAAGCTGAAGGT -ACGGAATCTACGGAAGCTAACCGT -ACGGAATCTACGGAAGCTTTGTGC -ACGGAATCTACGGAAGCTCTAAGC -ACGGAATCTACGGAAGCTACTAGC -ACGGAATCTACGGAAGCTAGATGC -ACGGAATCTACGGAAGCTTGAAGG -ACGGAATCTACGGAAGCTCAATGG -ACGGAATCTACGGAAGCTATGAGG -ACGGAATCTACGGAAGCTAATGGG -ACGGAATCTACGGAAGCTTCCTGA -ACGGAATCTACGGAAGCTTAGCGA -ACGGAATCTACGGAAGCTCACAGA -ACGGAATCTACGGAAGCTGCAAGA -ACGGAATCTACGGAAGCTGGTTGA -ACGGAATCTACGGAAGCTTCCGAT -ACGGAATCTACGGAAGCTTGGCAT -ACGGAATCTACGGAAGCTCGAGAT -ACGGAATCTACGGAAGCTTACCAC -ACGGAATCTACGGAAGCTCAGAAC -ACGGAATCTACGGAAGCTGTCTAC -ACGGAATCTACGGAAGCTACGTAC -ACGGAATCTACGGAAGCTAGTGAC -ACGGAATCTACGGAAGCTCTGTAG -ACGGAATCTACGGAAGCTCCTAAG -ACGGAATCTACGGAAGCTGTTCAG -ACGGAATCTACGGAAGCTGCATAG -ACGGAATCTACGGAAGCTGACAAG -ACGGAATCTACGGAAGCTAAGCAG -ACGGAATCTACGGAAGCTCGTCAA -ACGGAATCTACGGAAGCTGCTGAA -ACGGAATCTACGGAAGCTAGTACG -ACGGAATCTACGGAAGCTATCCGA -ACGGAATCTACGGAAGCTATGGGA -ACGGAATCTACGGAAGCTGTGCAA -ACGGAATCTACGGAAGCTGAGGAA -ACGGAATCTACGGAAGCTCAGGTA -ACGGAATCTACGGAAGCTGACTCT -ACGGAATCTACGGAAGCTAGTCCT -ACGGAATCTACGGAAGCTTAAGCC -ACGGAATCTACGGAAGCTATAGCC -ACGGAATCTACGGAAGCTTAACCG -ACGGAATCTACGGAAGCTATGCCA -ACGGAATCTACGACGAGTGGAAAC -ACGGAATCTACGACGAGTAACACC -ACGGAATCTACGACGAGTATCGAG -ACGGAATCTACGACGAGTCTCCTT -ACGGAATCTACGACGAGTCCTGTT -ACGGAATCTACGACGAGTCGGTTT -ACGGAATCTACGACGAGTGTGGTT -ACGGAATCTACGACGAGTGCCTTT -ACGGAATCTACGACGAGTGGTCTT -ACGGAATCTACGACGAGTACGCTT -ACGGAATCTACGACGAGTAGCGTT -ACGGAATCTACGACGAGTTTCGTC -ACGGAATCTACGACGAGTTCTCTC -ACGGAATCTACGACGAGTTGGATC -ACGGAATCTACGACGAGTCACTTC -ACGGAATCTACGACGAGTGTACTC -ACGGAATCTACGACGAGTGATGTC -ACGGAATCTACGACGAGTACAGTC -ACGGAATCTACGACGAGTTTGCTG -ACGGAATCTACGACGAGTTCCATG -ACGGAATCTACGACGAGTTGTGTG -ACGGAATCTACGACGAGTCTAGTG -ACGGAATCTACGACGAGTCATCTG -ACGGAATCTACGACGAGTGAGTTG -ACGGAATCTACGACGAGTAGACTG -ACGGAATCTACGACGAGTTCGGTA -ACGGAATCTACGACGAGTTGCCTA -ACGGAATCTACGACGAGTCCACTA -ACGGAATCTACGACGAGTGGAGTA -ACGGAATCTACGACGAGTTCGTCT -ACGGAATCTACGACGAGTTGCACT -ACGGAATCTACGACGAGTCTGACT -ACGGAATCTACGACGAGTCAACCT -ACGGAATCTACGACGAGTGCTACT -ACGGAATCTACGACGAGTGGATCT -ACGGAATCTACGACGAGTAAGGCT -ACGGAATCTACGACGAGTTCAACC -ACGGAATCTACGACGAGTTGTTCC -ACGGAATCTACGACGAGTATTCCC -ACGGAATCTACGACGAGTTTCTCG -ACGGAATCTACGACGAGTTAGACG -ACGGAATCTACGACGAGTGTAACG -ACGGAATCTACGACGAGTACTTCG -ACGGAATCTACGACGAGTTACGCA -ACGGAATCTACGACGAGTCTTGCA -ACGGAATCTACGACGAGTCGAACA -ACGGAATCTACGACGAGTCAGTCA -ACGGAATCTACGACGAGTGATCCA -ACGGAATCTACGACGAGTACGACA -ACGGAATCTACGACGAGTAGCTCA -ACGGAATCTACGACGAGTTCACGT -ACGGAATCTACGACGAGTCGTAGT -ACGGAATCTACGACGAGTGTCAGT -ACGGAATCTACGACGAGTGAAGGT -ACGGAATCTACGACGAGTAACCGT -ACGGAATCTACGACGAGTTTGTGC -ACGGAATCTACGACGAGTCTAAGC -ACGGAATCTACGACGAGTACTAGC -ACGGAATCTACGACGAGTAGATGC -ACGGAATCTACGACGAGTTGAAGG -ACGGAATCTACGACGAGTCAATGG -ACGGAATCTACGACGAGTATGAGG -ACGGAATCTACGACGAGTAATGGG -ACGGAATCTACGACGAGTTCCTGA -ACGGAATCTACGACGAGTTAGCGA -ACGGAATCTACGACGAGTCACAGA -ACGGAATCTACGACGAGTGCAAGA -ACGGAATCTACGACGAGTGGTTGA -ACGGAATCTACGACGAGTTCCGAT -ACGGAATCTACGACGAGTTGGCAT -ACGGAATCTACGACGAGTCGAGAT -ACGGAATCTACGACGAGTTACCAC -ACGGAATCTACGACGAGTCAGAAC -ACGGAATCTACGACGAGTGTCTAC -ACGGAATCTACGACGAGTACGTAC -ACGGAATCTACGACGAGTAGTGAC -ACGGAATCTACGACGAGTCTGTAG -ACGGAATCTACGACGAGTCCTAAG -ACGGAATCTACGACGAGTGTTCAG -ACGGAATCTACGACGAGTGCATAG -ACGGAATCTACGACGAGTGACAAG -ACGGAATCTACGACGAGTAAGCAG -ACGGAATCTACGACGAGTCGTCAA -ACGGAATCTACGACGAGTGCTGAA -ACGGAATCTACGACGAGTAGTACG -ACGGAATCTACGACGAGTATCCGA -ACGGAATCTACGACGAGTATGGGA -ACGGAATCTACGACGAGTGTGCAA -ACGGAATCTACGACGAGTGAGGAA -ACGGAATCTACGACGAGTCAGGTA -ACGGAATCTACGACGAGTGACTCT -ACGGAATCTACGACGAGTAGTCCT -ACGGAATCTACGACGAGTTAAGCC -ACGGAATCTACGACGAGTATAGCC -ACGGAATCTACGACGAGTTAACCG -ACGGAATCTACGACGAGTATGCCA -ACGGAATCTACGCGAATCGGAAAC -ACGGAATCTACGCGAATCAACACC -ACGGAATCTACGCGAATCATCGAG -ACGGAATCTACGCGAATCCTCCTT -ACGGAATCTACGCGAATCCCTGTT -ACGGAATCTACGCGAATCCGGTTT -ACGGAATCTACGCGAATCGTGGTT -ACGGAATCTACGCGAATCGCCTTT -ACGGAATCTACGCGAATCGGTCTT -ACGGAATCTACGCGAATCACGCTT -ACGGAATCTACGCGAATCAGCGTT -ACGGAATCTACGCGAATCTTCGTC -ACGGAATCTACGCGAATCTCTCTC -ACGGAATCTACGCGAATCTGGATC -ACGGAATCTACGCGAATCCACTTC -ACGGAATCTACGCGAATCGTACTC -ACGGAATCTACGCGAATCGATGTC -ACGGAATCTACGCGAATCACAGTC -ACGGAATCTACGCGAATCTTGCTG -ACGGAATCTACGCGAATCTCCATG -ACGGAATCTACGCGAATCTGTGTG -ACGGAATCTACGCGAATCCTAGTG -ACGGAATCTACGCGAATCCATCTG -ACGGAATCTACGCGAATCGAGTTG -ACGGAATCTACGCGAATCAGACTG -ACGGAATCTACGCGAATCTCGGTA -ACGGAATCTACGCGAATCTGCCTA -ACGGAATCTACGCGAATCCCACTA -ACGGAATCTACGCGAATCGGAGTA -ACGGAATCTACGCGAATCTCGTCT -ACGGAATCTACGCGAATCTGCACT -ACGGAATCTACGCGAATCCTGACT -ACGGAATCTACGCGAATCCAACCT -ACGGAATCTACGCGAATCGCTACT -ACGGAATCTACGCGAATCGGATCT -ACGGAATCTACGCGAATCAAGGCT -ACGGAATCTACGCGAATCTCAACC -ACGGAATCTACGCGAATCTGTTCC -ACGGAATCTACGCGAATCATTCCC -ACGGAATCTACGCGAATCTTCTCG -ACGGAATCTACGCGAATCTAGACG -ACGGAATCTACGCGAATCGTAACG -ACGGAATCTACGCGAATCACTTCG -ACGGAATCTACGCGAATCTACGCA -ACGGAATCTACGCGAATCCTTGCA -ACGGAATCTACGCGAATCCGAACA -ACGGAATCTACGCGAATCCAGTCA -ACGGAATCTACGCGAATCGATCCA -ACGGAATCTACGCGAATCACGACA -ACGGAATCTACGCGAATCAGCTCA -ACGGAATCTACGCGAATCTCACGT -ACGGAATCTACGCGAATCCGTAGT -ACGGAATCTACGCGAATCGTCAGT -ACGGAATCTACGCGAATCGAAGGT -ACGGAATCTACGCGAATCAACCGT -ACGGAATCTACGCGAATCTTGTGC -ACGGAATCTACGCGAATCCTAAGC -ACGGAATCTACGCGAATCACTAGC -ACGGAATCTACGCGAATCAGATGC -ACGGAATCTACGCGAATCTGAAGG -ACGGAATCTACGCGAATCCAATGG -ACGGAATCTACGCGAATCATGAGG -ACGGAATCTACGCGAATCAATGGG -ACGGAATCTACGCGAATCTCCTGA -ACGGAATCTACGCGAATCTAGCGA -ACGGAATCTACGCGAATCCACAGA -ACGGAATCTACGCGAATCGCAAGA -ACGGAATCTACGCGAATCGGTTGA -ACGGAATCTACGCGAATCTCCGAT -ACGGAATCTACGCGAATCTGGCAT -ACGGAATCTACGCGAATCCGAGAT -ACGGAATCTACGCGAATCTACCAC -ACGGAATCTACGCGAATCCAGAAC -ACGGAATCTACGCGAATCGTCTAC -ACGGAATCTACGCGAATCACGTAC -ACGGAATCTACGCGAATCAGTGAC -ACGGAATCTACGCGAATCCTGTAG -ACGGAATCTACGCGAATCCCTAAG -ACGGAATCTACGCGAATCGTTCAG -ACGGAATCTACGCGAATCGCATAG -ACGGAATCTACGCGAATCGACAAG -ACGGAATCTACGCGAATCAAGCAG -ACGGAATCTACGCGAATCCGTCAA -ACGGAATCTACGCGAATCGCTGAA -ACGGAATCTACGCGAATCAGTACG -ACGGAATCTACGCGAATCATCCGA -ACGGAATCTACGCGAATCATGGGA -ACGGAATCTACGCGAATCGTGCAA -ACGGAATCTACGCGAATCGAGGAA -ACGGAATCTACGCGAATCCAGGTA -ACGGAATCTACGCGAATCGACTCT -ACGGAATCTACGCGAATCAGTCCT -ACGGAATCTACGCGAATCTAAGCC -ACGGAATCTACGCGAATCATAGCC -ACGGAATCTACGCGAATCTAACCG -ACGGAATCTACGCGAATCATGCCA -ACGGAATCTACGGGAATGGGAAAC -ACGGAATCTACGGGAATGAACACC -ACGGAATCTACGGGAATGATCGAG -ACGGAATCTACGGGAATGCTCCTT -ACGGAATCTACGGGAATGCCTGTT -ACGGAATCTACGGGAATGCGGTTT -ACGGAATCTACGGGAATGGTGGTT -ACGGAATCTACGGGAATGGCCTTT -ACGGAATCTACGGGAATGGGTCTT -ACGGAATCTACGGGAATGACGCTT -ACGGAATCTACGGGAATGAGCGTT -ACGGAATCTACGGGAATGTTCGTC -ACGGAATCTACGGGAATGTCTCTC -ACGGAATCTACGGGAATGTGGATC -ACGGAATCTACGGGAATGCACTTC -ACGGAATCTACGGGAATGGTACTC -ACGGAATCTACGGGAATGGATGTC -ACGGAATCTACGGGAATGACAGTC -ACGGAATCTACGGGAATGTTGCTG -ACGGAATCTACGGGAATGTCCATG -ACGGAATCTACGGGAATGTGTGTG -ACGGAATCTACGGGAATGCTAGTG -ACGGAATCTACGGGAATGCATCTG -ACGGAATCTACGGGAATGGAGTTG -ACGGAATCTACGGGAATGAGACTG -ACGGAATCTACGGGAATGTCGGTA -ACGGAATCTACGGGAATGTGCCTA -ACGGAATCTACGGGAATGCCACTA -ACGGAATCTACGGGAATGGGAGTA -ACGGAATCTACGGGAATGTCGTCT -ACGGAATCTACGGGAATGTGCACT -ACGGAATCTACGGGAATGCTGACT -ACGGAATCTACGGGAATGCAACCT -ACGGAATCTACGGGAATGGCTACT -ACGGAATCTACGGGAATGGGATCT -ACGGAATCTACGGGAATGAAGGCT -ACGGAATCTACGGGAATGTCAACC -ACGGAATCTACGGGAATGTGTTCC -ACGGAATCTACGGGAATGATTCCC -ACGGAATCTACGGGAATGTTCTCG -ACGGAATCTACGGGAATGTAGACG -ACGGAATCTACGGGAATGGTAACG -ACGGAATCTACGGGAATGACTTCG -ACGGAATCTACGGGAATGTACGCA -ACGGAATCTACGGGAATGCTTGCA -ACGGAATCTACGGGAATGCGAACA -ACGGAATCTACGGGAATGCAGTCA -ACGGAATCTACGGGAATGGATCCA -ACGGAATCTACGGGAATGACGACA -ACGGAATCTACGGGAATGAGCTCA -ACGGAATCTACGGGAATGTCACGT -ACGGAATCTACGGGAATGCGTAGT -ACGGAATCTACGGGAATGGTCAGT -ACGGAATCTACGGGAATGGAAGGT -ACGGAATCTACGGGAATGAACCGT -ACGGAATCTACGGGAATGTTGTGC -ACGGAATCTACGGGAATGCTAAGC -ACGGAATCTACGGGAATGACTAGC -ACGGAATCTACGGGAATGAGATGC -ACGGAATCTACGGGAATGTGAAGG -ACGGAATCTACGGGAATGCAATGG -ACGGAATCTACGGGAATGATGAGG -ACGGAATCTACGGGAATGAATGGG -ACGGAATCTACGGGAATGTCCTGA -ACGGAATCTACGGGAATGTAGCGA -ACGGAATCTACGGGAATGCACAGA -ACGGAATCTACGGGAATGGCAAGA -ACGGAATCTACGGGAATGGGTTGA -ACGGAATCTACGGGAATGTCCGAT -ACGGAATCTACGGGAATGTGGCAT -ACGGAATCTACGGGAATGCGAGAT -ACGGAATCTACGGGAATGTACCAC -ACGGAATCTACGGGAATGCAGAAC -ACGGAATCTACGGGAATGGTCTAC -ACGGAATCTACGGGAATGACGTAC -ACGGAATCTACGGGAATGAGTGAC -ACGGAATCTACGGGAATGCTGTAG -ACGGAATCTACGGGAATGCCTAAG -ACGGAATCTACGGGAATGGTTCAG -ACGGAATCTACGGGAATGGCATAG -ACGGAATCTACGGGAATGGACAAG -ACGGAATCTACGGGAATGAAGCAG -ACGGAATCTACGGGAATGCGTCAA -ACGGAATCTACGGGAATGGCTGAA -ACGGAATCTACGGGAATGAGTACG -ACGGAATCTACGGGAATGATCCGA -ACGGAATCTACGGGAATGATGGGA -ACGGAATCTACGGGAATGGTGCAA -ACGGAATCTACGGGAATGGAGGAA -ACGGAATCTACGGGAATGCAGGTA -ACGGAATCTACGGGAATGGACTCT -ACGGAATCTACGGGAATGAGTCCT -ACGGAATCTACGGGAATGTAAGCC -ACGGAATCTACGGGAATGATAGCC -ACGGAATCTACGGGAATGTAACCG -ACGGAATCTACGGGAATGATGCCA -ACGGAATCTACGCAAGTGGGAAAC -ACGGAATCTACGCAAGTGAACACC -ACGGAATCTACGCAAGTGATCGAG -ACGGAATCTACGCAAGTGCTCCTT -ACGGAATCTACGCAAGTGCCTGTT -ACGGAATCTACGCAAGTGCGGTTT -ACGGAATCTACGCAAGTGGTGGTT -ACGGAATCTACGCAAGTGGCCTTT -ACGGAATCTACGCAAGTGGGTCTT -ACGGAATCTACGCAAGTGACGCTT -ACGGAATCTACGCAAGTGAGCGTT -ACGGAATCTACGCAAGTGTTCGTC -ACGGAATCTACGCAAGTGTCTCTC -ACGGAATCTACGCAAGTGTGGATC -ACGGAATCTACGCAAGTGCACTTC -ACGGAATCTACGCAAGTGGTACTC -ACGGAATCTACGCAAGTGGATGTC -ACGGAATCTACGCAAGTGACAGTC -ACGGAATCTACGCAAGTGTTGCTG -ACGGAATCTACGCAAGTGTCCATG -ACGGAATCTACGCAAGTGTGTGTG -ACGGAATCTACGCAAGTGCTAGTG -ACGGAATCTACGCAAGTGCATCTG -ACGGAATCTACGCAAGTGGAGTTG -ACGGAATCTACGCAAGTGAGACTG -ACGGAATCTACGCAAGTGTCGGTA -ACGGAATCTACGCAAGTGTGCCTA -ACGGAATCTACGCAAGTGCCACTA -ACGGAATCTACGCAAGTGGGAGTA -ACGGAATCTACGCAAGTGTCGTCT -ACGGAATCTACGCAAGTGTGCACT -ACGGAATCTACGCAAGTGCTGACT -ACGGAATCTACGCAAGTGCAACCT -ACGGAATCTACGCAAGTGGCTACT -ACGGAATCTACGCAAGTGGGATCT -ACGGAATCTACGCAAGTGAAGGCT -ACGGAATCTACGCAAGTGTCAACC -ACGGAATCTACGCAAGTGTGTTCC -ACGGAATCTACGCAAGTGATTCCC -ACGGAATCTACGCAAGTGTTCTCG -ACGGAATCTACGCAAGTGTAGACG -ACGGAATCTACGCAAGTGGTAACG -ACGGAATCTACGCAAGTGACTTCG -ACGGAATCTACGCAAGTGTACGCA -ACGGAATCTACGCAAGTGCTTGCA -ACGGAATCTACGCAAGTGCGAACA -ACGGAATCTACGCAAGTGCAGTCA -ACGGAATCTACGCAAGTGGATCCA -ACGGAATCTACGCAAGTGACGACA -ACGGAATCTACGCAAGTGAGCTCA -ACGGAATCTACGCAAGTGTCACGT -ACGGAATCTACGCAAGTGCGTAGT -ACGGAATCTACGCAAGTGGTCAGT -ACGGAATCTACGCAAGTGGAAGGT -ACGGAATCTACGCAAGTGAACCGT -ACGGAATCTACGCAAGTGTTGTGC -ACGGAATCTACGCAAGTGCTAAGC -ACGGAATCTACGCAAGTGACTAGC -ACGGAATCTACGCAAGTGAGATGC -ACGGAATCTACGCAAGTGTGAAGG -ACGGAATCTACGCAAGTGCAATGG -ACGGAATCTACGCAAGTGATGAGG -ACGGAATCTACGCAAGTGAATGGG -ACGGAATCTACGCAAGTGTCCTGA -ACGGAATCTACGCAAGTGTAGCGA -ACGGAATCTACGCAAGTGCACAGA -ACGGAATCTACGCAAGTGGCAAGA -ACGGAATCTACGCAAGTGGGTTGA -ACGGAATCTACGCAAGTGTCCGAT -ACGGAATCTACGCAAGTGTGGCAT -ACGGAATCTACGCAAGTGCGAGAT -ACGGAATCTACGCAAGTGTACCAC -ACGGAATCTACGCAAGTGCAGAAC -ACGGAATCTACGCAAGTGGTCTAC -ACGGAATCTACGCAAGTGACGTAC -ACGGAATCTACGCAAGTGAGTGAC -ACGGAATCTACGCAAGTGCTGTAG -ACGGAATCTACGCAAGTGCCTAAG -ACGGAATCTACGCAAGTGGTTCAG -ACGGAATCTACGCAAGTGGCATAG -ACGGAATCTACGCAAGTGGACAAG -ACGGAATCTACGCAAGTGAAGCAG -ACGGAATCTACGCAAGTGCGTCAA -ACGGAATCTACGCAAGTGGCTGAA -ACGGAATCTACGCAAGTGAGTACG -ACGGAATCTACGCAAGTGATCCGA -ACGGAATCTACGCAAGTGATGGGA -ACGGAATCTACGCAAGTGGTGCAA -ACGGAATCTACGCAAGTGGAGGAA -ACGGAATCTACGCAAGTGCAGGTA -ACGGAATCTACGCAAGTGGACTCT -ACGGAATCTACGCAAGTGAGTCCT -ACGGAATCTACGCAAGTGTAAGCC -ACGGAATCTACGCAAGTGATAGCC -ACGGAATCTACGCAAGTGTAACCG -ACGGAATCTACGCAAGTGATGCCA -ACGGAATCTACGGAAGAGGGAAAC -ACGGAATCTACGGAAGAGAACACC -ACGGAATCTACGGAAGAGATCGAG -ACGGAATCTACGGAAGAGCTCCTT -ACGGAATCTACGGAAGAGCCTGTT -ACGGAATCTACGGAAGAGCGGTTT -ACGGAATCTACGGAAGAGGTGGTT -ACGGAATCTACGGAAGAGGCCTTT -ACGGAATCTACGGAAGAGGGTCTT -ACGGAATCTACGGAAGAGACGCTT -ACGGAATCTACGGAAGAGAGCGTT -ACGGAATCTACGGAAGAGTTCGTC -ACGGAATCTACGGAAGAGTCTCTC -ACGGAATCTACGGAAGAGTGGATC -ACGGAATCTACGGAAGAGCACTTC -ACGGAATCTACGGAAGAGGTACTC -ACGGAATCTACGGAAGAGGATGTC -ACGGAATCTACGGAAGAGACAGTC -ACGGAATCTACGGAAGAGTTGCTG -ACGGAATCTACGGAAGAGTCCATG -ACGGAATCTACGGAAGAGTGTGTG -ACGGAATCTACGGAAGAGCTAGTG -ACGGAATCTACGGAAGAGCATCTG -ACGGAATCTACGGAAGAGGAGTTG -ACGGAATCTACGGAAGAGAGACTG -ACGGAATCTACGGAAGAGTCGGTA -ACGGAATCTACGGAAGAGTGCCTA -ACGGAATCTACGGAAGAGCCACTA -ACGGAATCTACGGAAGAGGGAGTA -ACGGAATCTACGGAAGAGTCGTCT -ACGGAATCTACGGAAGAGTGCACT -ACGGAATCTACGGAAGAGCTGACT -ACGGAATCTACGGAAGAGCAACCT -ACGGAATCTACGGAAGAGGCTACT -ACGGAATCTACGGAAGAGGGATCT -ACGGAATCTACGGAAGAGAAGGCT -ACGGAATCTACGGAAGAGTCAACC -ACGGAATCTACGGAAGAGTGTTCC -ACGGAATCTACGGAAGAGATTCCC -ACGGAATCTACGGAAGAGTTCTCG -ACGGAATCTACGGAAGAGTAGACG -ACGGAATCTACGGAAGAGGTAACG -ACGGAATCTACGGAAGAGACTTCG -ACGGAATCTACGGAAGAGTACGCA -ACGGAATCTACGGAAGAGCTTGCA -ACGGAATCTACGGAAGAGCGAACA -ACGGAATCTACGGAAGAGCAGTCA -ACGGAATCTACGGAAGAGGATCCA -ACGGAATCTACGGAAGAGACGACA -ACGGAATCTACGGAAGAGAGCTCA -ACGGAATCTACGGAAGAGTCACGT -ACGGAATCTACGGAAGAGCGTAGT -ACGGAATCTACGGAAGAGGTCAGT -ACGGAATCTACGGAAGAGGAAGGT -ACGGAATCTACGGAAGAGAACCGT -ACGGAATCTACGGAAGAGTTGTGC -ACGGAATCTACGGAAGAGCTAAGC -ACGGAATCTACGGAAGAGACTAGC -ACGGAATCTACGGAAGAGAGATGC -ACGGAATCTACGGAAGAGTGAAGG -ACGGAATCTACGGAAGAGCAATGG -ACGGAATCTACGGAAGAGATGAGG -ACGGAATCTACGGAAGAGAATGGG -ACGGAATCTACGGAAGAGTCCTGA -ACGGAATCTACGGAAGAGTAGCGA -ACGGAATCTACGGAAGAGCACAGA -ACGGAATCTACGGAAGAGGCAAGA -ACGGAATCTACGGAAGAGGGTTGA -ACGGAATCTACGGAAGAGTCCGAT -ACGGAATCTACGGAAGAGTGGCAT -ACGGAATCTACGGAAGAGCGAGAT -ACGGAATCTACGGAAGAGTACCAC -ACGGAATCTACGGAAGAGCAGAAC -ACGGAATCTACGGAAGAGGTCTAC -ACGGAATCTACGGAAGAGACGTAC -ACGGAATCTACGGAAGAGAGTGAC -ACGGAATCTACGGAAGAGCTGTAG -ACGGAATCTACGGAAGAGCCTAAG -ACGGAATCTACGGAAGAGGTTCAG -ACGGAATCTACGGAAGAGGCATAG -ACGGAATCTACGGAAGAGGACAAG -ACGGAATCTACGGAAGAGAAGCAG -ACGGAATCTACGGAAGAGCGTCAA -ACGGAATCTACGGAAGAGGCTGAA -ACGGAATCTACGGAAGAGAGTACG -ACGGAATCTACGGAAGAGATCCGA -ACGGAATCTACGGAAGAGATGGGA -ACGGAATCTACGGAAGAGGTGCAA -ACGGAATCTACGGAAGAGGAGGAA -ACGGAATCTACGGAAGAGCAGGTA -ACGGAATCTACGGAAGAGGACTCT -ACGGAATCTACGGAAGAGAGTCCT -ACGGAATCTACGGAAGAGTAAGCC -ACGGAATCTACGGAAGAGATAGCC -ACGGAATCTACGGAAGAGTAACCG -ACGGAATCTACGGAAGAGATGCCA -ACGGAATCTACGGTACAGGGAAAC -ACGGAATCTACGGTACAGAACACC -ACGGAATCTACGGTACAGATCGAG -ACGGAATCTACGGTACAGCTCCTT -ACGGAATCTACGGTACAGCCTGTT -ACGGAATCTACGGTACAGCGGTTT -ACGGAATCTACGGTACAGGTGGTT -ACGGAATCTACGGTACAGGCCTTT -ACGGAATCTACGGTACAGGGTCTT -ACGGAATCTACGGTACAGACGCTT -ACGGAATCTACGGTACAGAGCGTT -ACGGAATCTACGGTACAGTTCGTC -ACGGAATCTACGGTACAGTCTCTC -ACGGAATCTACGGTACAGTGGATC -ACGGAATCTACGGTACAGCACTTC -ACGGAATCTACGGTACAGGTACTC -ACGGAATCTACGGTACAGGATGTC -ACGGAATCTACGGTACAGACAGTC -ACGGAATCTACGGTACAGTTGCTG -ACGGAATCTACGGTACAGTCCATG -ACGGAATCTACGGTACAGTGTGTG -ACGGAATCTACGGTACAGCTAGTG -ACGGAATCTACGGTACAGCATCTG -ACGGAATCTACGGTACAGGAGTTG -ACGGAATCTACGGTACAGAGACTG -ACGGAATCTACGGTACAGTCGGTA -ACGGAATCTACGGTACAGTGCCTA -ACGGAATCTACGGTACAGCCACTA -ACGGAATCTACGGTACAGGGAGTA -ACGGAATCTACGGTACAGTCGTCT -ACGGAATCTACGGTACAGTGCACT -ACGGAATCTACGGTACAGCTGACT -ACGGAATCTACGGTACAGCAACCT -ACGGAATCTACGGTACAGGCTACT -ACGGAATCTACGGTACAGGGATCT -ACGGAATCTACGGTACAGAAGGCT -ACGGAATCTACGGTACAGTCAACC -ACGGAATCTACGGTACAGTGTTCC -ACGGAATCTACGGTACAGATTCCC -ACGGAATCTACGGTACAGTTCTCG -ACGGAATCTACGGTACAGTAGACG -ACGGAATCTACGGTACAGGTAACG -ACGGAATCTACGGTACAGACTTCG -ACGGAATCTACGGTACAGTACGCA -ACGGAATCTACGGTACAGCTTGCA -ACGGAATCTACGGTACAGCGAACA -ACGGAATCTACGGTACAGCAGTCA -ACGGAATCTACGGTACAGGATCCA -ACGGAATCTACGGTACAGACGACA -ACGGAATCTACGGTACAGAGCTCA -ACGGAATCTACGGTACAGTCACGT -ACGGAATCTACGGTACAGCGTAGT -ACGGAATCTACGGTACAGGTCAGT -ACGGAATCTACGGTACAGGAAGGT -ACGGAATCTACGGTACAGAACCGT -ACGGAATCTACGGTACAGTTGTGC -ACGGAATCTACGGTACAGCTAAGC -ACGGAATCTACGGTACAGACTAGC -ACGGAATCTACGGTACAGAGATGC -ACGGAATCTACGGTACAGTGAAGG -ACGGAATCTACGGTACAGCAATGG -ACGGAATCTACGGTACAGATGAGG -ACGGAATCTACGGTACAGAATGGG -ACGGAATCTACGGTACAGTCCTGA -ACGGAATCTACGGTACAGTAGCGA -ACGGAATCTACGGTACAGCACAGA -ACGGAATCTACGGTACAGGCAAGA -ACGGAATCTACGGTACAGGGTTGA -ACGGAATCTACGGTACAGTCCGAT -ACGGAATCTACGGTACAGTGGCAT -ACGGAATCTACGGTACAGCGAGAT -ACGGAATCTACGGTACAGTACCAC -ACGGAATCTACGGTACAGCAGAAC -ACGGAATCTACGGTACAGGTCTAC -ACGGAATCTACGGTACAGACGTAC -ACGGAATCTACGGTACAGAGTGAC -ACGGAATCTACGGTACAGCTGTAG -ACGGAATCTACGGTACAGCCTAAG -ACGGAATCTACGGTACAGGTTCAG -ACGGAATCTACGGTACAGGCATAG -ACGGAATCTACGGTACAGGACAAG -ACGGAATCTACGGTACAGAAGCAG -ACGGAATCTACGGTACAGCGTCAA -ACGGAATCTACGGTACAGGCTGAA -ACGGAATCTACGGTACAGAGTACG -ACGGAATCTACGGTACAGATCCGA -ACGGAATCTACGGTACAGATGGGA -ACGGAATCTACGGTACAGGTGCAA -ACGGAATCTACGGTACAGGAGGAA -ACGGAATCTACGGTACAGCAGGTA -ACGGAATCTACGGTACAGGACTCT -ACGGAATCTACGGTACAGAGTCCT -ACGGAATCTACGGTACAGTAAGCC -ACGGAATCTACGGTACAGATAGCC -ACGGAATCTACGGTACAGTAACCG -ACGGAATCTACGGTACAGATGCCA -ACGGAATCTACGTCTGACGGAAAC -ACGGAATCTACGTCTGACAACACC -ACGGAATCTACGTCTGACATCGAG -ACGGAATCTACGTCTGACCTCCTT -ACGGAATCTACGTCTGACCCTGTT -ACGGAATCTACGTCTGACCGGTTT -ACGGAATCTACGTCTGACGTGGTT -ACGGAATCTACGTCTGACGCCTTT -ACGGAATCTACGTCTGACGGTCTT -ACGGAATCTACGTCTGACACGCTT -ACGGAATCTACGTCTGACAGCGTT -ACGGAATCTACGTCTGACTTCGTC -ACGGAATCTACGTCTGACTCTCTC -ACGGAATCTACGTCTGACTGGATC -ACGGAATCTACGTCTGACCACTTC -ACGGAATCTACGTCTGACGTACTC -ACGGAATCTACGTCTGACGATGTC -ACGGAATCTACGTCTGACACAGTC -ACGGAATCTACGTCTGACTTGCTG -ACGGAATCTACGTCTGACTCCATG -ACGGAATCTACGTCTGACTGTGTG -ACGGAATCTACGTCTGACCTAGTG -ACGGAATCTACGTCTGACCATCTG -ACGGAATCTACGTCTGACGAGTTG -ACGGAATCTACGTCTGACAGACTG -ACGGAATCTACGTCTGACTCGGTA -ACGGAATCTACGTCTGACTGCCTA -ACGGAATCTACGTCTGACCCACTA -ACGGAATCTACGTCTGACGGAGTA -ACGGAATCTACGTCTGACTCGTCT -ACGGAATCTACGTCTGACTGCACT -ACGGAATCTACGTCTGACCTGACT -ACGGAATCTACGTCTGACCAACCT -ACGGAATCTACGTCTGACGCTACT -ACGGAATCTACGTCTGACGGATCT -ACGGAATCTACGTCTGACAAGGCT -ACGGAATCTACGTCTGACTCAACC -ACGGAATCTACGTCTGACTGTTCC -ACGGAATCTACGTCTGACATTCCC -ACGGAATCTACGTCTGACTTCTCG -ACGGAATCTACGTCTGACTAGACG -ACGGAATCTACGTCTGACGTAACG -ACGGAATCTACGTCTGACACTTCG -ACGGAATCTACGTCTGACTACGCA -ACGGAATCTACGTCTGACCTTGCA -ACGGAATCTACGTCTGACCGAACA -ACGGAATCTACGTCTGACCAGTCA -ACGGAATCTACGTCTGACGATCCA -ACGGAATCTACGTCTGACACGACA -ACGGAATCTACGTCTGACAGCTCA -ACGGAATCTACGTCTGACTCACGT -ACGGAATCTACGTCTGACCGTAGT -ACGGAATCTACGTCTGACGTCAGT -ACGGAATCTACGTCTGACGAAGGT -ACGGAATCTACGTCTGACAACCGT -ACGGAATCTACGTCTGACTTGTGC -ACGGAATCTACGTCTGACCTAAGC -ACGGAATCTACGTCTGACACTAGC -ACGGAATCTACGTCTGACAGATGC -ACGGAATCTACGTCTGACTGAAGG -ACGGAATCTACGTCTGACCAATGG -ACGGAATCTACGTCTGACATGAGG -ACGGAATCTACGTCTGACAATGGG -ACGGAATCTACGTCTGACTCCTGA -ACGGAATCTACGTCTGACTAGCGA -ACGGAATCTACGTCTGACCACAGA -ACGGAATCTACGTCTGACGCAAGA -ACGGAATCTACGTCTGACGGTTGA -ACGGAATCTACGTCTGACTCCGAT -ACGGAATCTACGTCTGACTGGCAT -ACGGAATCTACGTCTGACCGAGAT -ACGGAATCTACGTCTGACTACCAC -ACGGAATCTACGTCTGACCAGAAC -ACGGAATCTACGTCTGACGTCTAC -ACGGAATCTACGTCTGACACGTAC -ACGGAATCTACGTCTGACAGTGAC -ACGGAATCTACGTCTGACCTGTAG -ACGGAATCTACGTCTGACCCTAAG -ACGGAATCTACGTCTGACGTTCAG -ACGGAATCTACGTCTGACGCATAG -ACGGAATCTACGTCTGACGACAAG -ACGGAATCTACGTCTGACAAGCAG -ACGGAATCTACGTCTGACCGTCAA -ACGGAATCTACGTCTGACGCTGAA -ACGGAATCTACGTCTGACAGTACG -ACGGAATCTACGTCTGACATCCGA -ACGGAATCTACGTCTGACATGGGA -ACGGAATCTACGTCTGACGTGCAA -ACGGAATCTACGTCTGACGAGGAA -ACGGAATCTACGTCTGACCAGGTA -ACGGAATCTACGTCTGACGACTCT -ACGGAATCTACGTCTGACAGTCCT -ACGGAATCTACGTCTGACTAAGCC -ACGGAATCTACGTCTGACATAGCC -ACGGAATCTACGTCTGACTAACCG -ACGGAATCTACGTCTGACATGCCA -ACGGAATCTACGCCTAGTGGAAAC -ACGGAATCTACGCCTAGTAACACC -ACGGAATCTACGCCTAGTATCGAG -ACGGAATCTACGCCTAGTCTCCTT -ACGGAATCTACGCCTAGTCCTGTT -ACGGAATCTACGCCTAGTCGGTTT -ACGGAATCTACGCCTAGTGTGGTT -ACGGAATCTACGCCTAGTGCCTTT -ACGGAATCTACGCCTAGTGGTCTT -ACGGAATCTACGCCTAGTACGCTT -ACGGAATCTACGCCTAGTAGCGTT -ACGGAATCTACGCCTAGTTTCGTC -ACGGAATCTACGCCTAGTTCTCTC -ACGGAATCTACGCCTAGTTGGATC -ACGGAATCTACGCCTAGTCACTTC -ACGGAATCTACGCCTAGTGTACTC -ACGGAATCTACGCCTAGTGATGTC -ACGGAATCTACGCCTAGTACAGTC -ACGGAATCTACGCCTAGTTTGCTG -ACGGAATCTACGCCTAGTTCCATG -ACGGAATCTACGCCTAGTTGTGTG -ACGGAATCTACGCCTAGTCTAGTG -ACGGAATCTACGCCTAGTCATCTG -ACGGAATCTACGCCTAGTGAGTTG -ACGGAATCTACGCCTAGTAGACTG -ACGGAATCTACGCCTAGTTCGGTA -ACGGAATCTACGCCTAGTTGCCTA -ACGGAATCTACGCCTAGTCCACTA -ACGGAATCTACGCCTAGTGGAGTA -ACGGAATCTACGCCTAGTTCGTCT -ACGGAATCTACGCCTAGTTGCACT -ACGGAATCTACGCCTAGTCTGACT -ACGGAATCTACGCCTAGTCAACCT -ACGGAATCTACGCCTAGTGCTACT -ACGGAATCTACGCCTAGTGGATCT -ACGGAATCTACGCCTAGTAAGGCT -ACGGAATCTACGCCTAGTTCAACC -ACGGAATCTACGCCTAGTTGTTCC -ACGGAATCTACGCCTAGTATTCCC -ACGGAATCTACGCCTAGTTTCTCG -ACGGAATCTACGCCTAGTTAGACG -ACGGAATCTACGCCTAGTGTAACG -ACGGAATCTACGCCTAGTACTTCG -ACGGAATCTACGCCTAGTTACGCA -ACGGAATCTACGCCTAGTCTTGCA -ACGGAATCTACGCCTAGTCGAACA -ACGGAATCTACGCCTAGTCAGTCA -ACGGAATCTACGCCTAGTGATCCA -ACGGAATCTACGCCTAGTACGACA -ACGGAATCTACGCCTAGTAGCTCA -ACGGAATCTACGCCTAGTTCACGT -ACGGAATCTACGCCTAGTCGTAGT -ACGGAATCTACGCCTAGTGTCAGT -ACGGAATCTACGCCTAGTGAAGGT -ACGGAATCTACGCCTAGTAACCGT -ACGGAATCTACGCCTAGTTTGTGC -ACGGAATCTACGCCTAGTCTAAGC -ACGGAATCTACGCCTAGTACTAGC -ACGGAATCTACGCCTAGTAGATGC -ACGGAATCTACGCCTAGTTGAAGG -ACGGAATCTACGCCTAGTCAATGG -ACGGAATCTACGCCTAGTATGAGG -ACGGAATCTACGCCTAGTAATGGG -ACGGAATCTACGCCTAGTTCCTGA -ACGGAATCTACGCCTAGTTAGCGA -ACGGAATCTACGCCTAGTCACAGA -ACGGAATCTACGCCTAGTGCAAGA -ACGGAATCTACGCCTAGTGGTTGA -ACGGAATCTACGCCTAGTTCCGAT -ACGGAATCTACGCCTAGTTGGCAT -ACGGAATCTACGCCTAGTCGAGAT -ACGGAATCTACGCCTAGTTACCAC -ACGGAATCTACGCCTAGTCAGAAC -ACGGAATCTACGCCTAGTGTCTAC -ACGGAATCTACGCCTAGTACGTAC -ACGGAATCTACGCCTAGTAGTGAC -ACGGAATCTACGCCTAGTCTGTAG -ACGGAATCTACGCCTAGTCCTAAG -ACGGAATCTACGCCTAGTGTTCAG -ACGGAATCTACGCCTAGTGCATAG -ACGGAATCTACGCCTAGTGACAAG -ACGGAATCTACGCCTAGTAAGCAG -ACGGAATCTACGCCTAGTCGTCAA -ACGGAATCTACGCCTAGTGCTGAA -ACGGAATCTACGCCTAGTAGTACG -ACGGAATCTACGCCTAGTATCCGA -ACGGAATCTACGCCTAGTATGGGA -ACGGAATCTACGCCTAGTGTGCAA -ACGGAATCTACGCCTAGTGAGGAA -ACGGAATCTACGCCTAGTCAGGTA -ACGGAATCTACGCCTAGTGACTCT -ACGGAATCTACGCCTAGTAGTCCT -ACGGAATCTACGCCTAGTTAAGCC -ACGGAATCTACGCCTAGTATAGCC -ACGGAATCTACGCCTAGTTAACCG -ACGGAATCTACGCCTAGTATGCCA -ACGGAATCTACGGCCTAAGGAAAC -ACGGAATCTACGGCCTAAAACACC -ACGGAATCTACGGCCTAAATCGAG -ACGGAATCTACGGCCTAACTCCTT -ACGGAATCTACGGCCTAACCTGTT -ACGGAATCTACGGCCTAACGGTTT -ACGGAATCTACGGCCTAAGTGGTT -ACGGAATCTACGGCCTAAGCCTTT -ACGGAATCTACGGCCTAAGGTCTT -ACGGAATCTACGGCCTAAACGCTT -ACGGAATCTACGGCCTAAAGCGTT -ACGGAATCTACGGCCTAATTCGTC -ACGGAATCTACGGCCTAATCTCTC -ACGGAATCTACGGCCTAATGGATC -ACGGAATCTACGGCCTAACACTTC -ACGGAATCTACGGCCTAAGTACTC -ACGGAATCTACGGCCTAAGATGTC -ACGGAATCTACGGCCTAAACAGTC -ACGGAATCTACGGCCTAATTGCTG -ACGGAATCTACGGCCTAATCCATG -ACGGAATCTACGGCCTAATGTGTG -ACGGAATCTACGGCCTAACTAGTG -ACGGAATCTACGGCCTAACATCTG -ACGGAATCTACGGCCTAAGAGTTG -ACGGAATCTACGGCCTAAAGACTG -ACGGAATCTACGGCCTAATCGGTA -ACGGAATCTACGGCCTAATGCCTA -ACGGAATCTACGGCCTAACCACTA -ACGGAATCTACGGCCTAAGGAGTA -ACGGAATCTACGGCCTAATCGTCT -ACGGAATCTACGGCCTAATGCACT -ACGGAATCTACGGCCTAACTGACT -ACGGAATCTACGGCCTAACAACCT -ACGGAATCTACGGCCTAAGCTACT -ACGGAATCTACGGCCTAAGGATCT -ACGGAATCTACGGCCTAAAAGGCT -ACGGAATCTACGGCCTAATCAACC -ACGGAATCTACGGCCTAATGTTCC -ACGGAATCTACGGCCTAAATTCCC -ACGGAATCTACGGCCTAATTCTCG -ACGGAATCTACGGCCTAATAGACG -ACGGAATCTACGGCCTAAGTAACG -ACGGAATCTACGGCCTAAACTTCG -ACGGAATCTACGGCCTAATACGCA -ACGGAATCTACGGCCTAACTTGCA -ACGGAATCTACGGCCTAACGAACA -ACGGAATCTACGGCCTAACAGTCA -ACGGAATCTACGGCCTAAGATCCA -ACGGAATCTACGGCCTAAACGACA -ACGGAATCTACGGCCTAAAGCTCA -ACGGAATCTACGGCCTAATCACGT -ACGGAATCTACGGCCTAACGTAGT -ACGGAATCTACGGCCTAAGTCAGT -ACGGAATCTACGGCCTAAGAAGGT -ACGGAATCTACGGCCTAAAACCGT -ACGGAATCTACGGCCTAATTGTGC -ACGGAATCTACGGCCTAACTAAGC -ACGGAATCTACGGCCTAAACTAGC -ACGGAATCTACGGCCTAAAGATGC -ACGGAATCTACGGCCTAATGAAGG -ACGGAATCTACGGCCTAACAATGG -ACGGAATCTACGGCCTAAATGAGG -ACGGAATCTACGGCCTAAAATGGG -ACGGAATCTACGGCCTAATCCTGA -ACGGAATCTACGGCCTAATAGCGA -ACGGAATCTACGGCCTAACACAGA -ACGGAATCTACGGCCTAAGCAAGA -ACGGAATCTACGGCCTAAGGTTGA -ACGGAATCTACGGCCTAATCCGAT -ACGGAATCTACGGCCTAATGGCAT -ACGGAATCTACGGCCTAACGAGAT -ACGGAATCTACGGCCTAATACCAC -ACGGAATCTACGGCCTAACAGAAC -ACGGAATCTACGGCCTAAGTCTAC -ACGGAATCTACGGCCTAAACGTAC -ACGGAATCTACGGCCTAAAGTGAC -ACGGAATCTACGGCCTAACTGTAG -ACGGAATCTACGGCCTAACCTAAG -ACGGAATCTACGGCCTAAGTTCAG -ACGGAATCTACGGCCTAAGCATAG -ACGGAATCTACGGCCTAAGACAAG -ACGGAATCTACGGCCTAAAAGCAG -ACGGAATCTACGGCCTAACGTCAA -ACGGAATCTACGGCCTAAGCTGAA -ACGGAATCTACGGCCTAAAGTACG -ACGGAATCTACGGCCTAAATCCGA -ACGGAATCTACGGCCTAAATGGGA -ACGGAATCTACGGCCTAAGTGCAA -ACGGAATCTACGGCCTAAGAGGAA -ACGGAATCTACGGCCTAACAGGTA -ACGGAATCTACGGCCTAAGACTCT -ACGGAATCTACGGCCTAAAGTCCT -ACGGAATCTACGGCCTAATAAGCC -ACGGAATCTACGGCCTAAATAGCC -ACGGAATCTACGGCCTAATAACCG -ACGGAATCTACGGCCTAAATGCCA -ACGGAATCTACGGCCATAGGAAAC -ACGGAATCTACGGCCATAAACACC -ACGGAATCTACGGCCATAATCGAG -ACGGAATCTACGGCCATACTCCTT -ACGGAATCTACGGCCATACCTGTT -ACGGAATCTACGGCCATACGGTTT -ACGGAATCTACGGCCATAGTGGTT -ACGGAATCTACGGCCATAGCCTTT -ACGGAATCTACGGCCATAGGTCTT -ACGGAATCTACGGCCATAACGCTT -ACGGAATCTACGGCCATAAGCGTT -ACGGAATCTACGGCCATATTCGTC -ACGGAATCTACGGCCATATCTCTC -ACGGAATCTACGGCCATATGGATC -ACGGAATCTACGGCCATACACTTC -ACGGAATCTACGGCCATAGTACTC -ACGGAATCTACGGCCATAGATGTC -ACGGAATCTACGGCCATAACAGTC -ACGGAATCTACGGCCATATTGCTG -ACGGAATCTACGGCCATATCCATG -ACGGAATCTACGGCCATATGTGTG -ACGGAATCTACGGCCATACTAGTG -ACGGAATCTACGGCCATACATCTG -ACGGAATCTACGGCCATAGAGTTG -ACGGAATCTACGGCCATAAGACTG -ACGGAATCTACGGCCATATCGGTA -ACGGAATCTACGGCCATATGCCTA -ACGGAATCTACGGCCATACCACTA -ACGGAATCTACGGCCATAGGAGTA -ACGGAATCTACGGCCATATCGTCT -ACGGAATCTACGGCCATATGCACT -ACGGAATCTACGGCCATACTGACT -ACGGAATCTACGGCCATACAACCT -ACGGAATCTACGGCCATAGCTACT -ACGGAATCTACGGCCATAGGATCT -ACGGAATCTACGGCCATAAAGGCT -ACGGAATCTACGGCCATATCAACC -ACGGAATCTACGGCCATATGTTCC -ACGGAATCTACGGCCATAATTCCC -ACGGAATCTACGGCCATATTCTCG -ACGGAATCTACGGCCATATAGACG -ACGGAATCTACGGCCATAGTAACG -ACGGAATCTACGGCCATAACTTCG -ACGGAATCTACGGCCATATACGCA -ACGGAATCTACGGCCATACTTGCA -ACGGAATCTACGGCCATACGAACA -ACGGAATCTACGGCCATACAGTCA -ACGGAATCTACGGCCATAGATCCA -ACGGAATCTACGGCCATAACGACA -ACGGAATCTACGGCCATAAGCTCA -ACGGAATCTACGGCCATATCACGT -ACGGAATCTACGGCCATACGTAGT -ACGGAATCTACGGCCATAGTCAGT -ACGGAATCTACGGCCATAGAAGGT -ACGGAATCTACGGCCATAAACCGT -ACGGAATCTACGGCCATATTGTGC -ACGGAATCTACGGCCATACTAAGC -ACGGAATCTACGGCCATAACTAGC -ACGGAATCTACGGCCATAAGATGC -ACGGAATCTACGGCCATATGAAGG -ACGGAATCTACGGCCATACAATGG -ACGGAATCTACGGCCATAATGAGG -ACGGAATCTACGGCCATAAATGGG -ACGGAATCTACGGCCATATCCTGA -ACGGAATCTACGGCCATATAGCGA -ACGGAATCTACGGCCATACACAGA -ACGGAATCTACGGCCATAGCAAGA -ACGGAATCTACGGCCATAGGTTGA -ACGGAATCTACGGCCATATCCGAT -ACGGAATCTACGGCCATATGGCAT -ACGGAATCTACGGCCATACGAGAT -ACGGAATCTACGGCCATATACCAC -ACGGAATCTACGGCCATACAGAAC -ACGGAATCTACGGCCATAGTCTAC -ACGGAATCTACGGCCATAACGTAC -ACGGAATCTACGGCCATAAGTGAC -ACGGAATCTACGGCCATACTGTAG -ACGGAATCTACGGCCATACCTAAG -ACGGAATCTACGGCCATAGTTCAG -ACGGAATCTACGGCCATAGCATAG -ACGGAATCTACGGCCATAGACAAG -ACGGAATCTACGGCCATAAAGCAG -ACGGAATCTACGGCCATACGTCAA -ACGGAATCTACGGCCATAGCTGAA -ACGGAATCTACGGCCATAAGTACG -ACGGAATCTACGGCCATAATCCGA -ACGGAATCTACGGCCATAATGGGA -ACGGAATCTACGGCCATAGTGCAA -ACGGAATCTACGGCCATAGAGGAA -ACGGAATCTACGGCCATACAGGTA -ACGGAATCTACGGCCATAGACTCT -ACGGAATCTACGGCCATAAGTCCT -ACGGAATCTACGGCCATATAAGCC -ACGGAATCTACGGCCATAATAGCC -ACGGAATCTACGGCCATATAACCG -ACGGAATCTACGGCCATAATGCCA -ACGGAATCTACGCCGTAAGGAAAC -ACGGAATCTACGCCGTAAAACACC -ACGGAATCTACGCCGTAAATCGAG -ACGGAATCTACGCCGTAACTCCTT -ACGGAATCTACGCCGTAACCTGTT -ACGGAATCTACGCCGTAACGGTTT -ACGGAATCTACGCCGTAAGTGGTT -ACGGAATCTACGCCGTAAGCCTTT -ACGGAATCTACGCCGTAAGGTCTT -ACGGAATCTACGCCGTAAACGCTT -ACGGAATCTACGCCGTAAAGCGTT -ACGGAATCTACGCCGTAATTCGTC -ACGGAATCTACGCCGTAATCTCTC -ACGGAATCTACGCCGTAATGGATC -ACGGAATCTACGCCGTAACACTTC -ACGGAATCTACGCCGTAAGTACTC -ACGGAATCTACGCCGTAAGATGTC -ACGGAATCTACGCCGTAAACAGTC -ACGGAATCTACGCCGTAATTGCTG -ACGGAATCTACGCCGTAATCCATG -ACGGAATCTACGCCGTAATGTGTG -ACGGAATCTACGCCGTAACTAGTG -ACGGAATCTACGCCGTAACATCTG -ACGGAATCTACGCCGTAAGAGTTG -ACGGAATCTACGCCGTAAAGACTG -ACGGAATCTACGCCGTAATCGGTA -ACGGAATCTACGCCGTAATGCCTA -ACGGAATCTACGCCGTAACCACTA -ACGGAATCTACGCCGTAAGGAGTA -ACGGAATCTACGCCGTAATCGTCT -ACGGAATCTACGCCGTAATGCACT -ACGGAATCTACGCCGTAACTGACT -ACGGAATCTACGCCGTAACAACCT -ACGGAATCTACGCCGTAAGCTACT -ACGGAATCTACGCCGTAAGGATCT -ACGGAATCTACGCCGTAAAAGGCT -ACGGAATCTACGCCGTAATCAACC -ACGGAATCTACGCCGTAATGTTCC -ACGGAATCTACGCCGTAAATTCCC -ACGGAATCTACGCCGTAATTCTCG -ACGGAATCTACGCCGTAATAGACG -ACGGAATCTACGCCGTAAGTAACG -ACGGAATCTACGCCGTAAACTTCG -ACGGAATCTACGCCGTAATACGCA -ACGGAATCTACGCCGTAACTTGCA -ACGGAATCTACGCCGTAACGAACA -ACGGAATCTACGCCGTAACAGTCA -ACGGAATCTACGCCGTAAGATCCA -ACGGAATCTACGCCGTAAACGACA -ACGGAATCTACGCCGTAAAGCTCA -ACGGAATCTACGCCGTAATCACGT -ACGGAATCTACGCCGTAACGTAGT -ACGGAATCTACGCCGTAAGTCAGT -ACGGAATCTACGCCGTAAGAAGGT -ACGGAATCTACGCCGTAAAACCGT -ACGGAATCTACGCCGTAATTGTGC -ACGGAATCTACGCCGTAACTAAGC -ACGGAATCTACGCCGTAAACTAGC -ACGGAATCTACGCCGTAAAGATGC -ACGGAATCTACGCCGTAATGAAGG -ACGGAATCTACGCCGTAACAATGG -ACGGAATCTACGCCGTAAATGAGG -ACGGAATCTACGCCGTAAAATGGG -ACGGAATCTACGCCGTAATCCTGA -ACGGAATCTACGCCGTAATAGCGA -ACGGAATCTACGCCGTAACACAGA -ACGGAATCTACGCCGTAAGCAAGA -ACGGAATCTACGCCGTAAGGTTGA -ACGGAATCTACGCCGTAATCCGAT -ACGGAATCTACGCCGTAATGGCAT -ACGGAATCTACGCCGTAACGAGAT -ACGGAATCTACGCCGTAATACCAC -ACGGAATCTACGCCGTAACAGAAC -ACGGAATCTACGCCGTAAGTCTAC -ACGGAATCTACGCCGTAAACGTAC -ACGGAATCTACGCCGTAAAGTGAC -ACGGAATCTACGCCGTAACTGTAG -ACGGAATCTACGCCGTAACCTAAG -ACGGAATCTACGCCGTAAGTTCAG -ACGGAATCTACGCCGTAAGCATAG -ACGGAATCTACGCCGTAAGACAAG -ACGGAATCTACGCCGTAAAAGCAG -ACGGAATCTACGCCGTAACGTCAA -ACGGAATCTACGCCGTAAGCTGAA -ACGGAATCTACGCCGTAAAGTACG -ACGGAATCTACGCCGTAAATCCGA -ACGGAATCTACGCCGTAAATGGGA -ACGGAATCTACGCCGTAAGTGCAA -ACGGAATCTACGCCGTAAGAGGAA -ACGGAATCTACGCCGTAACAGGTA -ACGGAATCTACGCCGTAAGACTCT -ACGGAATCTACGCCGTAAAGTCCT -ACGGAATCTACGCCGTAATAAGCC -ACGGAATCTACGCCGTAAATAGCC -ACGGAATCTACGCCGTAATAACCG -ACGGAATCTACGCCGTAAATGCCA -ACGGAATCTACGCCAATGGGAAAC -ACGGAATCTACGCCAATGAACACC -ACGGAATCTACGCCAATGATCGAG -ACGGAATCTACGCCAATGCTCCTT -ACGGAATCTACGCCAATGCCTGTT -ACGGAATCTACGCCAATGCGGTTT -ACGGAATCTACGCCAATGGTGGTT -ACGGAATCTACGCCAATGGCCTTT -ACGGAATCTACGCCAATGGGTCTT -ACGGAATCTACGCCAATGACGCTT -ACGGAATCTACGCCAATGAGCGTT -ACGGAATCTACGCCAATGTTCGTC -ACGGAATCTACGCCAATGTCTCTC -ACGGAATCTACGCCAATGTGGATC -ACGGAATCTACGCCAATGCACTTC -ACGGAATCTACGCCAATGGTACTC -ACGGAATCTACGCCAATGGATGTC -ACGGAATCTACGCCAATGACAGTC -ACGGAATCTACGCCAATGTTGCTG -ACGGAATCTACGCCAATGTCCATG -ACGGAATCTACGCCAATGTGTGTG -ACGGAATCTACGCCAATGCTAGTG -ACGGAATCTACGCCAATGCATCTG -ACGGAATCTACGCCAATGGAGTTG -ACGGAATCTACGCCAATGAGACTG -ACGGAATCTACGCCAATGTCGGTA -ACGGAATCTACGCCAATGTGCCTA -ACGGAATCTACGCCAATGCCACTA -ACGGAATCTACGCCAATGGGAGTA -ACGGAATCTACGCCAATGTCGTCT -ACGGAATCTACGCCAATGTGCACT -ACGGAATCTACGCCAATGCTGACT -ACGGAATCTACGCCAATGCAACCT -ACGGAATCTACGCCAATGGCTACT -ACGGAATCTACGCCAATGGGATCT -ACGGAATCTACGCCAATGAAGGCT -ACGGAATCTACGCCAATGTCAACC -ACGGAATCTACGCCAATGTGTTCC -ACGGAATCTACGCCAATGATTCCC -ACGGAATCTACGCCAATGTTCTCG -ACGGAATCTACGCCAATGTAGACG -ACGGAATCTACGCCAATGGTAACG -ACGGAATCTACGCCAATGACTTCG -ACGGAATCTACGCCAATGTACGCA -ACGGAATCTACGCCAATGCTTGCA -ACGGAATCTACGCCAATGCGAACA -ACGGAATCTACGCCAATGCAGTCA -ACGGAATCTACGCCAATGGATCCA -ACGGAATCTACGCCAATGACGACA -ACGGAATCTACGCCAATGAGCTCA -ACGGAATCTACGCCAATGTCACGT -ACGGAATCTACGCCAATGCGTAGT -ACGGAATCTACGCCAATGGTCAGT -ACGGAATCTACGCCAATGGAAGGT -ACGGAATCTACGCCAATGAACCGT -ACGGAATCTACGCCAATGTTGTGC -ACGGAATCTACGCCAATGCTAAGC -ACGGAATCTACGCCAATGACTAGC -ACGGAATCTACGCCAATGAGATGC -ACGGAATCTACGCCAATGTGAAGG -ACGGAATCTACGCCAATGCAATGG -ACGGAATCTACGCCAATGATGAGG -ACGGAATCTACGCCAATGAATGGG -ACGGAATCTACGCCAATGTCCTGA -ACGGAATCTACGCCAATGTAGCGA -ACGGAATCTACGCCAATGCACAGA -ACGGAATCTACGCCAATGGCAAGA -ACGGAATCTACGCCAATGGGTTGA -ACGGAATCTACGCCAATGTCCGAT -ACGGAATCTACGCCAATGTGGCAT -ACGGAATCTACGCCAATGCGAGAT -ACGGAATCTACGCCAATGTACCAC -ACGGAATCTACGCCAATGCAGAAC -ACGGAATCTACGCCAATGGTCTAC -ACGGAATCTACGCCAATGACGTAC -ACGGAATCTACGCCAATGAGTGAC -ACGGAATCTACGCCAATGCTGTAG -ACGGAATCTACGCCAATGCCTAAG -ACGGAATCTACGCCAATGGTTCAG -ACGGAATCTACGCCAATGGCATAG -ACGGAATCTACGCCAATGGACAAG -ACGGAATCTACGCCAATGAAGCAG -ACGGAATCTACGCCAATGCGTCAA -ACGGAATCTACGCCAATGGCTGAA -ACGGAATCTACGCCAATGAGTACG -ACGGAATCTACGCCAATGATCCGA -ACGGAATCTACGCCAATGATGGGA -ACGGAATCTACGCCAATGGTGCAA -ACGGAATCTACGCCAATGGAGGAA -ACGGAATCTACGCCAATGCAGGTA -ACGGAATCTACGCCAATGGACTCT -ACGGAATCTACGCCAATGAGTCCT -ACGGAATCTACGCCAATGTAAGCC -ACGGAATCTACGCCAATGATAGCC -ACGGAATCTACGCCAATGTAACCG -ACGGAATCTACGCCAATGATGCCA -ACGGAACGTACAAACGGAGGAAAC -ACGGAACGTACAAACGGAAACACC -ACGGAACGTACAAACGGAATCGAG -ACGGAACGTACAAACGGACTCCTT -ACGGAACGTACAAACGGACCTGTT -ACGGAACGTACAAACGGACGGTTT -ACGGAACGTACAAACGGAGTGGTT -ACGGAACGTACAAACGGAGCCTTT -ACGGAACGTACAAACGGAGGTCTT -ACGGAACGTACAAACGGAACGCTT -ACGGAACGTACAAACGGAAGCGTT -ACGGAACGTACAAACGGATTCGTC -ACGGAACGTACAAACGGATCTCTC -ACGGAACGTACAAACGGATGGATC -ACGGAACGTACAAACGGACACTTC -ACGGAACGTACAAACGGAGTACTC -ACGGAACGTACAAACGGAGATGTC -ACGGAACGTACAAACGGAACAGTC -ACGGAACGTACAAACGGATTGCTG -ACGGAACGTACAAACGGATCCATG -ACGGAACGTACAAACGGATGTGTG -ACGGAACGTACAAACGGACTAGTG -ACGGAACGTACAAACGGACATCTG -ACGGAACGTACAAACGGAGAGTTG -ACGGAACGTACAAACGGAAGACTG -ACGGAACGTACAAACGGATCGGTA -ACGGAACGTACAAACGGATGCCTA -ACGGAACGTACAAACGGACCACTA -ACGGAACGTACAAACGGAGGAGTA -ACGGAACGTACAAACGGATCGTCT -ACGGAACGTACAAACGGATGCACT -ACGGAACGTACAAACGGACTGACT -ACGGAACGTACAAACGGACAACCT -ACGGAACGTACAAACGGAGCTACT -ACGGAACGTACAAACGGAGGATCT -ACGGAACGTACAAACGGAAAGGCT -ACGGAACGTACAAACGGATCAACC -ACGGAACGTACAAACGGATGTTCC -ACGGAACGTACAAACGGAATTCCC -ACGGAACGTACAAACGGATTCTCG -ACGGAACGTACAAACGGATAGACG -ACGGAACGTACAAACGGAGTAACG -ACGGAACGTACAAACGGAACTTCG -ACGGAACGTACAAACGGATACGCA -ACGGAACGTACAAACGGACTTGCA -ACGGAACGTACAAACGGACGAACA -ACGGAACGTACAAACGGACAGTCA -ACGGAACGTACAAACGGAGATCCA -ACGGAACGTACAAACGGAACGACA -ACGGAACGTACAAACGGAAGCTCA -ACGGAACGTACAAACGGATCACGT -ACGGAACGTACAAACGGACGTAGT -ACGGAACGTACAAACGGAGTCAGT -ACGGAACGTACAAACGGAGAAGGT -ACGGAACGTACAAACGGAAACCGT -ACGGAACGTACAAACGGATTGTGC -ACGGAACGTACAAACGGACTAAGC -ACGGAACGTACAAACGGAACTAGC -ACGGAACGTACAAACGGAAGATGC -ACGGAACGTACAAACGGATGAAGG -ACGGAACGTACAAACGGACAATGG -ACGGAACGTACAAACGGAATGAGG -ACGGAACGTACAAACGGAAATGGG -ACGGAACGTACAAACGGATCCTGA -ACGGAACGTACAAACGGATAGCGA -ACGGAACGTACAAACGGACACAGA -ACGGAACGTACAAACGGAGCAAGA -ACGGAACGTACAAACGGAGGTTGA -ACGGAACGTACAAACGGATCCGAT -ACGGAACGTACAAACGGATGGCAT -ACGGAACGTACAAACGGACGAGAT -ACGGAACGTACAAACGGATACCAC -ACGGAACGTACAAACGGACAGAAC -ACGGAACGTACAAACGGAGTCTAC -ACGGAACGTACAAACGGAACGTAC -ACGGAACGTACAAACGGAAGTGAC -ACGGAACGTACAAACGGACTGTAG -ACGGAACGTACAAACGGACCTAAG -ACGGAACGTACAAACGGAGTTCAG -ACGGAACGTACAAACGGAGCATAG -ACGGAACGTACAAACGGAGACAAG -ACGGAACGTACAAACGGAAAGCAG -ACGGAACGTACAAACGGACGTCAA -ACGGAACGTACAAACGGAGCTGAA -ACGGAACGTACAAACGGAAGTACG -ACGGAACGTACAAACGGAATCCGA -ACGGAACGTACAAACGGAATGGGA -ACGGAACGTACAAACGGAGTGCAA -ACGGAACGTACAAACGGAGAGGAA -ACGGAACGTACAAACGGACAGGTA -ACGGAACGTACAAACGGAGACTCT -ACGGAACGTACAAACGGAAGTCCT -ACGGAACGTACAAACGGATAAGCC -ACGGAACGTACAAACGGAATAGCC -ACGGAACGTACAAACGGATAACCG -ACGGAACGTACAAACGGAATGCCA -ACGGAACGTACAACCAACGGAAAC -ACGGAACGTACAACCAACAACACC -ACGGAACGTACAACCAACATCGAG -ACGGAACGTACAACCAACCTCCTT -ACGGAACGTACAACCAACCCTGTT -ACGGAACGTACAACCAACCGGTTT -ACGGAACGTACAACCAACGTGGTT -ACGGAACGTACAACCAACGCCTTT -ACGGAACGTACAACCAACGGTCTT -ACGGAACGTACAACCAACACGCTT -ACGGAACGTACAACCAACAGCGTT -ACGGAACGTACAACCAACTTCGTC -ACGGAACGTACAACCAACTCTCTC -ACGGAACGTACAACCAACTGGATC -ACGGAACGTACAACCAACCACTTC -ACGGAACGTACAACCAACGTACTC -ACGGAACGTACAACCAACGATGTC -ACGGAACGTACAACCAACACAGTC -ACGGAACGTACAACCAACTTGCTG -ACGGAACGTACAACCAACTCCATG -ACGGAACGTACAACCAACTGTGTG -ACGGAACGTACAACCAACCTAGTG -ACGGAACGTACAACCAACCATCTG -ACGGAACGTACAACCAACGAGTTG -ACGGAACGTACAACCAACAGACTG -ACGGAACGTACAACCAACTCGGTA -ACGGAACGTACAACCAACTGCCTA -ACGGAACGTACAACCAACCCACTA -ACGGAACGTACAACCAACGGAGTA -ACGGAACGTACAACCAACTCGTCT -ACGGAACGTACAACCAACTGCACT -ACGGAACGTACAACCAACCTGACT -ACGGAACGTACAACCAACCAACCT -ACGGAACGTACAACCAACGCTACT -ACGGAACGTACAACCAACGGATCT -ACGGAACGTACAACCAACAAGGCT -ACGGAACGTACAACCAACTCAACC -ACGGAACGTACAACCAACTGTTCC -ACGGAACGTACAACCAACATTCCC -ACGGAACGTACAACCAACTTCTCG -ACGGAACGTACAACCAACTAGACG -ACGGAACGTACAACCAACGTAACG -ACGGAACGTACAACCAACACTTCG -ACGGAACGTACAACCAACTACGCA -ACGGAACGTACAACCAACCTTGCA -ACGGAACGTACAACCAACCGAACA -ACGGAACGTACAACCAACCAGTCA -ACGGAACGTACAACCAACGATCCA -ACGGAACGTACAACCAACACGACA -ACGGAACGTACAACCAACAGCTCA -ACGGAACGTACAACCAACTCACGT -ACGGAACGTACAACCAACCGTAGT -ACGGAACGTACAACCAACGTCAGT -ACGGAACGTACAACCAACGAAGGT -ACGGAACGTACAACCAACAACCGT -ACGGAACGTACAACCAACTTGTGC -ACGGAACGTACAACCAACCTAAGC -ACGGAACGTACAACCAACACTAGC -ACGGAACGTACAACCAACAGATGC -ACGGAACGTACAACCAACTGAAGG -ACGGAACGTACAACCAACCAATGG -ACGGAACGTACAACCAACATGAGG -ACGGAACGTACAACCAACAATGGG -ACGGAACGTACAACCAACTCCTGA -ACGGAACGTACAACCAACTAGCGA -ACGGAACGTACAACCAACCACAGA -ACGGAACGTACAACCAACGCAAGA -ACGGAACGTACAACCAACGGTTGA -ACGGAACGTACAACCAACTCCGAT -ACGGAACGTACAACCAACTGGCAT -ACGGAACGTACAACCAACCGAGAT -ACGGAACGTACAACCAACTACCAC -ACGGAACGTACAACCAACCAGAAC -ACGGAACGTACAACCAACGTCTAC -ACGGAACGTACAACCAACACGTAC -ACGGAACGTACAACCAACAGTGAC -ACGGAACGTACAACCAACCTGTAG -ACGGAACGTACAACCAACCCTAAG -ACGGAACGTACAACCAACGTTCAG -ACGGAACGTACAACCAACGCATAG -ACGGAACGTACAACCAACGACAAG -ACGGAACGTACAACCAACAAGCAG -ACGGAACGTACAACCAACCGTCAA -ACGGAACGTACAACCAACGCTGAA -ACGGAACGTACAACCAACAGTACG -ACGGAACGTACAACCAACATCCGA -ACGGAACGTACAACCAACATGGGA -ACGGAACGTACAACCAACGTGCAA -ACGGAACGTACAACCAACGAGGAA -ACGGAACGTACAACCAACCAGGTA -ACGGAACGTACAACCAACGACTCT -ACGGAACGTACAACCAACAGTCCT -ACGGAACGTACAACCAACTAAGCC -ACGGAACGTACAACCAACATAGCC -ACGGAACGTACAACCAACTAACCG -ACGGAACGTACAACCAACATGCCA -ACGGAACGTACAGAGATCGGAAAC -ACGGAACGTACAGAGATCAACACC -ACGGAACGTACAGAGATCATCGAG -ACGGAACGTACAGAGATCCTCCTT -ACGGAACGTACAGAGATCCCTGTT -ACGGAACGTACAGAGATCCGGTTT -ACGGAACGTACAGAGATCGTGGTT -ACGGAACGTACAGAGATCGCCTTT -ACGGAACGTACAGAGATCGGTCTT -ACGGAACGTACAGAGATCACGCTT -ACGGAACGTACAGAGATCAGCGTT -ACGGAACGTACAGAGATCTTCGTC -ACGGAACGTACAGAGATCTCTCTC -ACGGAACGTACAGAGATCTGGATC -ACGGAACGTACAGAGATCCACTTC -ACGGAACGTACAGAGATCGTACTC -ACGGAACGTACAGAGATCGATGTC -ACGGAACGTACAGAGATCACAGTC -ACGGAACGTACAGAGATCTTGCTG -ACGGAACGTACAGAGATCTCCATG -ACGGAACGTACAGAGATCTGTGTG -ACGGAACGTACAGAGATCCTAGTG -ACGGAACGTACAGAGATCCATCTG -ACGGAACGTACAGAGATCGAGTTG -ACGGAACGTACAGAGATCAGACTG -ACGGAACGTACAGAGATCTCGGTA -ACGGAACGTACAGAGATCTGCCTA -ACGGAACGTACAGAGATCCCACTA -ACGGAACGTACAGAGATCGGAGTA -ACGGAACGTACAGAGATCTCGTCT -ACGGAACGTACAGAGATCTGCACT -ACGGAACGTACAGAGATCCTGACT -ACGGAACGTACAGAGATCCAACCT -ACGGAACGTACAGAGATCGCTACT -ACGGAACGTACAGAGATCGGATCT -ACGGAACGTACAGAGATCAAGGCT -ACGGAACGTACAGAGATCTCAACC -ACGGAACGTACAGAGATCTGTTCC -ACGGAACGTACAGAGATCATTCCC -ACGGAACGTACAGAGATCTTCTCG -ACGGAACGTACAGAGATCTAGACG -ACGGAACGTACAGAGATCGTAACG -ACGGAACGTACAGAGATCACTTCG -ACGGAACGTACAGAGATCTACGCA -ACGGAACGTACAGAGATCCTTGCA -ACGGAACGTACAGAGATCCGAACA -ACGGAACGTACAGAGATCCAGTCA -ACGGAACGTACAGAGATCGATCCA -ACGGAACGTACAGAGATCACGACA -ACGGAACGTACAGAGATCAGCTCA -ACGGAACGTACAGAGATCTCACGT -ACGGAACGTACAGAGATCCGTAGT -ACGGAACGTACAGAGATCGTCAGT -ACGGAACGTACAGAGATCGAAGGT -ACGGAACGTACAGAGATCAACCGT -ACGGAACGTACAGAGATCTTGTGC -ACGGAACGTACAGAGATCCTAAGC -ACGGAACGTACAGAGATCACTAGC -ACGGAACGTACAGAGATCAGATGC -ACGGAACGTACAGAGATCTGAAGG -ACGGAACGTACAGAGATCCAATGG -ACGGAACGTACAGAGATCATGAGG -ACGGAACGTACAGAGATCAATGGG -ACGGAACGTACAGAGATCTCCTGA -ACGGAACGTACAGAGATCTAGCGA -ACGGAACGTACAGAGATCCACAGA -ACGGAACGTACAGAGATCGCAAGA -ACGGAACGTACAGAGATCGGTTGA -ACGGAACGTACAGAGATCTCCGAT -ACGGAACGTACAGAGATCTGGCAT -ACGGAACGTACAGAGATCCGAGAT -ACGGAACGTACAGAGATCTACCAC -ACGGAACGTACAGAGATCCAGAAC -ACGGAACGTACAGAGATCGTCTAC -ACGGAACGTACAGAGATCACGTAC -ACGGAACGTACAGAGATCAGTGAC -ACGGAACGTACAGAGATCCTGTAG -ACGGAACGTACAGAGATCCCTAAG -ACGGAACGTACAGAGATCGTTCAG -ACGGAACGTACAGAGATCGCATAG -ACGGAACGTACAGAGATCGACAAG -ACGGAACGTACAGAGATCAAGCAG -ACGGAACGTACAGAGATCCGTCAA -ACGGAACGTACAGAGATCGCTGAA -ACGGAACGTACAGAGATCAGTACG -ACGGAACGTACAGAGATCATCCGA -ACGGAACGTACAGAGATCATGGGA -ACGGAACGTACAGAGATCGTGCAA -ACGGAACGTACAGAGATCGAGGAA -ACGGAACGTACAGAGATCCAGGTA -ACGGAACGTACAGAGATCGACTCT -ACGGAACGTACAGAGATCAGTCCT -ACGGAACGTACAGAGATCTAAGCC -ACGGAACGTACAGAGATCATAGCC -ACGGAACGTACAGAGATCTAACCG -ACGGAACGTACAGAGATCATGCCA -ACGGAACGTACACTTCTCGGAAAC -ACGGAACGTACACTTCTCAACACC -ACGGAACGTACACTTCTCATCGAG -ACGGAACGTACACTTCTCCTCCTT -ACGGAACGTACACTTCTCCCTGTT -ACGGAACGTACACTTCTCCGGTTT -ACGGAACGTACACTTCTCGTGGTT -ACGGAACGTACACTTCTCGCCTTT -ACGGAACGTACACTTCTCGGTCTT -ACGGAACGTACACTTCTCACGCTT -ACGGAACGTACACTTCTCAGCGTT -ACGGAACGTACACTTCTCTTCGTC -ACGGAACGTACACTTCTCTCTCTC -ACGGAACGTACACTTCTCTGGATC -ACGGAACGTACACTTCTCCACTTC -ACGGAACGTACACTTCTCGTACTC -ACGGAACGTACACTTCTCGATGTC -ACGGAACGTACACTTCTCACAGTC -ACGGAACGTACACTTCTCTTGCTG -ACGGAACGTACACTTCTCTCCATG -ACGGAACGTACACTTCTCTGTGTG -ACGGAACGTACACTTCTCCTAGTG -ACGGAACGTACACTTCTCCATCTG -ACGGAACGTACACTTCTCGAGTTG -ACGGAACGTACACTTCTCAGACTG -ACGGAACGTACACTTCTCTCGGTA -ACGGAACGTACACTTCTCTGCCTA -ACGGAACGTACACTTCTCCCACTA -ACGGAACGTACACTTCTCGGAGTA -ACGGAACGTACACTTCTCTCGTCT -ACGGAACGTACACTTCTCTGCACT -ACGGAACGTACACTTCTCCTGACT -ACGGAACGTACACTTCTCCAACCT -ACGGAACGTACACTTCTCGCTACT -ACGGAACGTACACTTCTCGGATCT -ACGGAACGTACACTTCTCAAGGCT -ACGGAACGTACACTTCTCTCAACC -ACGGAACGTACACTTCTCTGTTCC -ACGGAACGTACACTTCTCATTCCC -ACGGAACGTACACTTCTCTTCTCG -ACGGAACGTACACTTCTCTAGACG -ACGGAACGTACACTTCTCGTAACG -ACGGAACGTACACTTCTCACTTCG -ACGGAACGTACACTTCTCTACGCA -ACGGAACGTACACTTCTCCTTGCA -ACGGAACGTACACTTCTCCGAACA -ACGGAACGTACACTTCTCCAGTCA -ACGGAACGTACACTTCTCGATCCA -ACGGAACGTACACTTCTCACGACA -ACGGAACGTACACTTCTCAGCTCA -ACGGAACGTACACTTCTCTCACGT -ACGGAACGTACACTTCTCCGTAGT -ACGGAACGTACACTTCTCGTCAGT -ACGGAACGTACACTTCTCGAAGGT -ACGGAACGTACACTTCTCAACCGT -ACGGAACGTACACTTCTCTTGTGC -ACGGAACGTACACTTCTCCTAAGC -ACGGAACGTACACTTCTCACTAGC -ACGGAACGTACACTTCTCAGATGC -ACGGAACGTACACTTCTCTGAAGG -ACGGAACGTACACTTCTCCAATGG -ACGGAACGTACACTTCTCATGAGG -ACGGAACGTACACTTCTCAATGGG -ACGGAACGTACACTTCTCTCCTGA -ACGGAACGTACACTTCTCTAGCGA -ACGGAACGTACACTTCTCCACAGA -ACGGAACGTACACTTCTCGCAAGA -ACGGAACGTACACTTCTCGGTTGA -ACGGAACGTACACTTCTCTCCGAT -ACGGAACGTACACTTCTCTGGCAT -ACGGAACGTACACTTCTCCGAGAT -ACGGAACGTACACTTCTCTACCAC -ACGGAACGTACACTTCTCCAGAAC -ACGGAACGTACACTTCTCGTCTAC -ACGGAACGTACACTTCTCACGTAC -ACGGAACGTACACTTCTCAGTGAC -ACGGAACGTACACTTCTCCTGTAG -ACGGAACGTACACTTCTCCCTAAG -ACGGAACGTACACTTCTCGTTCAG -ACGGAACGTACACTTCTCGCATAG -ACGGAACGTACACTTCTCGACAAG -ACGGAACGTACACTTCTCAAGCAG -ACGGAACGTACACTTCTCCGTCAA -ACGGAACGTACACTTCTCGCTGAA -ACGGAACGTACACTTCTCAGTACG -ACGGAACGTACACTTCTCATCCGA -ACGGAACGTACACTTCTCATGGGA -ACGGAACGTACACTTCTCGTGCAA -ACGGAACGTACACTTCTCGAGGAA -ACGGAACGTACACTTCTCCAGGTA -ACGGAACGTACACTTCTCGACTCT -ACGGAACGTACACTTCTCAGTCCT -ACGGAACGTACACTTCTCTAAGCC -ACGGAACGTACACTTCTCATAGCC -ACGGAACGTACACTTCTCTAACCG -ACGGAACGTACACTTCTCATGCCA -ACGGAACGTACAGTTCCTGGAAAC -ACGGAACGTACAGTTCCTAACACC -ACGGAACGTACAGTTCCTATCGAG -ACGGAACGTACAGTTCCTCTCCTT -ACGGAACGTACAGTTCCTCCTGTT -ACGGAACGTACAGTTCCTCGGTTT -ACGGAACGTACAGTTCCTGTGGTT -ACGGAACGTACAGTTCCTGCCTTT -ACGGAACGTACAGTTCCTGGTCTT -ACGGAACGTACAGTTCCTACGCTT -ACGGAACGTACAGTTCCTAGCGTT -ACGGAACGTACAGTTCCTTTCGTC -ACGGAACGTACAGTTCCTTCTCTC -ACGGAACGTACAGTTCCTTGGATC -ACGGAACGTACAGTTCCTCACTTC -ACGGAACGTACAGTTCCTGTACTC -ACGGAACGTACAGTTCCTGATGTC -ACGGAACGTACAGTTCCTACAGTC -ACGGAACGTACAGTTCCTTTGCTG -ACGGAACGTACAGTTCCTTCCATG -ACGGAACGTACAGTTCCTTGTGTG -ACGGAACGTACAGTTCCTCTAGTG -ACGGAACGTACAGTTCCTCATCTG -ACGGAACGTACAGTTCCTGAGTTG -ACGGAACGTACAGTTCCTAGACTG -ACGGAACGTACAGTTCCTTCGGTA -ACGGAACGTACAGTTCCTTGCCTA -ACGGAACGTACAGTTCCTCCACTA -ACGGAACGTACAGTTCCTGGAGTA -ACGGAACGTACAGTTCCTTCGTCT -ACGGAACGTACAGTTCCTTGCACT -ACGGAACGTACAGTTCCTCTGACT -ACGGAACGTACAGTTCCTCAACCT -ACGGAACGTACAGTTCCTGCTACT -ACGGAACGTACAGTTCCTGGATCT -ACGGAACGTACAGTTCCTAAGGCT -ACGGAACGTACAGTTCCTTCAACC -ACGGAACGTACAGTTCCTTGTTCC -ACGGAACGTACAGTTCCTATTCCC -ACGGAACGTACAGTTCCTTTCTCG -ACGGAACGTACAGTTCCTTAGACG -ACGGAACGTACAGTTCCTGTAACG -ACGGAACGTACAGTTCCTACTTCG -ACGGAACGTACAGTTCCTTACGCA -ACGGAACGTACAGTTCCTCTTGCA -ACGGAACGTACAGTTCCTCGAACA -ACGGAACGTACAGTTCCTCAGTCA -ACGGAACGTACAGTTCCTGATCCA -ACGGAACGTACAGTTCCTACGACA -ACGGAACGTACAGTTCCTAGCTCA -ACGGAACGTACAGTTCCTTCACGT -ACGGAACGTACAGTTCCTCGTAGT -ACGGAACGTACAGTTCCTGTCAGT -ACGGAACGTACAGTTCCTGAAGGT -ACGGAACGTACAGTTCCTAACCGT -ACGGAACGTACAGTTCCTTTGTGC -ACGGAACGTACAGTTCCTCTAAGC -ACGGAACGTACAGTTCCTACTAGC -ACGGAACGTACAGTTCCTAGATGC -ACGGAACGTACAGTTCCTTGAAGG -ACGGAACGTACAGTTCCTCAATGG -ACGGAACGTACAGTTCCTATGAGG -ACGGAACGTACAGTTCCTAATGGG -ACGGAACGTACAGTTCCTTCCTGA -ACGGAACGTACAGTTCCTTAGCGA -ACGGAACGTACAGTTCCTCACAGA -ACGGAACGTACAGTTCCTGCAAGA -ACGGAACGTACAGTTCCTGGTTGA -ACGGAACGTACAGTTCCTTCCGAT -ACGGAACGTACAGTTCCTTGGCAT -ACGGAACGTACAGTTCCTCGAGAT -ACGGAACGTACAGTTCCTTACCAC -ACGGAACGTACAGTTCCTCAGAAC -ACGGAACGTACAGTTCCTGTCTAC -ACGGAACGTACAGTTCCTACGTAC -ACGGAACGTACAGTTCCTAGTGAC -ACGGAACGTACAGTTCCTCTGTAG -ACGGAACGTACAGTTCCTCCTAAG -ACGGAACGTACAGTTCCTGTTCAG -ACGGAACGTACAGTTCCTGCATAG -ACGGAACGTACAGTTCCTGACAAG -ACGGAACGTACAGTTCCTAAGCAG -ACGGAACGTACAGTTCCTCGTCAA -ACGGAACGTACAGTTCCTGCTGAA -ACGGAACGTACAGTTCCTAGTACG -ACGGAACGTACAGTTCCTATCCGA -ACGGAACGTACAGTTCCTATGGGA -ACGGAACGTACAGTTCCTGTGCAA -ACGGAACGTACAGTTCCTGAGGAA -ACGGAACGTACAGTTCCTCAGGTA -ACGGAACGTACAGTTCCTGACTCT -ACGGAACGTACAGTTCCTAGTCCT -ACGGAACGTACAGTTCCTTAAGCC -ACGGAACGTACAGTTCCTATAGCC -ACGGAACGTACAGTTCCTTAACCG -ACGGAACGTACAGTTCCTATGCCA -ACGGAACGTACATTTCGGGGAAAC -ACGGAACGTACATTTCGGAACACC -ACGGAACGTACATTTCGGATCGAG -ACGGAACGTACATTTCGGCTCCTT -ACGGAACGTACATTTCGGCCTGTT -ACGGAACGTACATTTCGGCGGTTT -ACGGAACGTACATTTCGGGTGGTT -ACGGAACGTACATTTCGGGCCTTT -ACGGAACGTACATTTCGGGGTCTT -ACGGAACGTACATTTCGGACGCTT -ACGGAACGTACATTTCGGAGCGTT -ACGGAACGTACATTTCGGTTCGTC -ACGGAACGTACATTTCGGTCTCTC -ACGGAACGTACATTTCGGTGGATC -ACGGAACGTACATTTCGGCACTTC -ACGGAACGTACATTTCGGGTACTC -ACGGAACGTACATTTCGGGATGTC -ACGGAACGTACATTTCGGACAGTC -ACGGAACGTACATTTCGGTTGCTG -ACGGAACGTACATTTCGGTCCATG -ACGGAACGTACATTTCGGTGTGTG -ACGGAACGTACATTTCGGCTAGTG -ACGGAACGTACATTTCGGCATCTG -ACGGAACGTACATTTCGGGAGTTG -ACGGAACGTACATTTCGGAGACTG -ACGGAACGTACATTTCGGTCGGTA -ACGGAACGTACATTTCGGTGCCTA -ACGGAACGTACATTTCGGCCACTA -ACGGAACGTACATTTCGGGGAGTA -ACGGAACGTACATTTCGGTCGTCT -ACGGAACGTACATTTCGGTGCACT -ACGGAACGTACATTTCGGCTGACT -ACGGAACGTACATTTCGGCAACCT -ACGGAACGTACATTTCGGGCTACT -ACGGAACGTACATTTCGGGGATCT -ACGGAACGTACATTTCGGAAGGCT -ACGGAACGTACATTTCGGTCAACC -ACGGAACGTACATTTCGGTGTTCC -ACGGAACGTACATTTCGGATTCCC -ACGGAACGTACATTTCGGTTCTCG -ACGGAACGTACATTTCGGTAGACG -ACGGAACGTACATTTCGGGTAACG -ACGGAACGTACATTTCGGACTTCG -ACGGAACGTACATTTCGGTACGCA -ACGGAACGTACATTTCGGCTTGCA -ACGGAACGTACATTTCGGCGAACA -ACGGAACGTACATTTCGGCAGTCA -ACGGAACGTACATTTCGGGATCCA -ACGGAACGTACATTTCGGACGACA -ACGGAACGTACATTTCGGAGCTCA -ACGGAACGTACATTTCGGTCACGT -ACGGAACGTACATTTCGGCGTAGT -ACGGAACGTACATTTCGGGTCAGT -ACGGAACGTACATTTCGGGAAGGT -ACGGAACGTACATTTCGGAACCGT -ACGGAACGTACATTTCGGTTGTGC -ACGGAACGTACATTTCGGCTAAGC -ACGGAACGTACATTTCGGACTAGC -ACGGAACGTACATTTCGGAGATGC -ACGGAACGTACATTTCGGTGAAGG -ACGGAACGTACATTTCGGCAATGG -ACGGAACGTACATTTCGGATGAGG -ACGGAACGTACATTTCGGAATGGG -ACGGAACGTACATTTCGGTCCTGA -ACGGAACGTACATTTCGGTAGCGA -ACGGAACGTACATTTCGGCACAGA -ACGGAACGTACATTTCGGGCAAGA -ACGGAACGTACATTTCGGGGTTGA -ACGGAACGTACATTTCGGTCCGAT -ACGGAACGTACATTTCGGTGGCAT -ACGGAACGTACATTTCGGCGAGAT -ACGGAACGTACATTTCGGTACCAC -ACGGAACGTACATTTCGGCAGAAC -ACGGAACGTACATTTCGGGTCTAC -ACGGAACGTACATTTCGGACGTAC -ACGGAACGTACATTTCGGAGTGAC -ACGGAACGTACATTTCGGCTGTAG -ACGGAACGTACATTTCGGCCTAAG -ACGGAACGTACATTTCGGGTTCAG -ACGGAACGTACATTTCGGGCATAG -ACGGAACGTACATTTCGGGACAAG -ACGGAACGTACATTTCGGAAGCAG -ACGGAACGTACATTTCGGCGTCAA -ACGGAACGTACATTTCGGGCTGAA -ACGGAACGTACATTTCGGAGTACG -ACGGAACGTACATTTCGGATCCGA -ACGGAACGTACATTTCGGATGGGA -ACGGAACGTACATTTCGGGTGCAA -ACGGAACGTACATTTCGGGAGGAA -ACGGAACGTACATTTCGGCAGGTA -ACGGAACGTACATTTCGGGACTCT -ACGGAACGTACATTTCGGAGTCCT -ACGGAACGTACATTTCGGTAAGCC -ACGGAACGTACATTTCGGATAGCC -ACGGAACGTACATTTCGGTAACCG -ACGGAACGTACATTTCGGATGCCA -ACGGAACGTACAGTTGTGGGAAAC -ACGGAACGTACAGTTGTGAACACC -ACGGAACGTACAGTTGTGATCGAG -ACGGAACGTACAGTTGTGCTCCTT -ACGGAACGTACAGTTGTGCCTGTT -ACGGAACGTACAGTTGTGCGGTTT -ACGGAACGTACAGTTGTGGTGGTT -ACGGAACGTACAGTTGTGGCCTTT -ACGGAACGTACAGTTGTGGGTCTT -ACGGAACGTACAGTTGTGACGCTT -ACGGAACGTACAGTTGTGAGCGTT -ACGGAACGTACAGTTGTGTTCGTC -ACGGAACGTACAGTTGTGTCTCTC -ACGGAACGTACAGTTGTGTGGATC -ACGGAACGTACAGTTGTGCACTTC -ACGGAACGTACAGTTGTGGTACTC -ACGGAACGTACAGTTGTGGATGTC -ACGGAACGTACAGTTGTGACAGTC -ACGGAACGTACAGTTGTGTTGCTG -ACGGAACGTACAGTTGTGTCCATG -ACGGAACGTACAGTTGTGTGTGTG -ACGGAACGTACAGTTGTGCTAGTG -ACGGAACGTACAGTTGTGCATCTG -ACGGAACGTACAGTTGTGGAGTTG -ACGGAACGTACAGTTGTGAGACTG -ACGGAACGTACAGTTGTGTCGGTA -ACGGAACGTACAGTTGTGTGCCTA -ACGGAACGTACAGTTGTGCCACTA -ACGGAACGTACAGTTGTGGGAGTA -ACGGAACGTACAGTTGTGTCGTCT -ACGGAACGTACAGTTGTGTGCACT -ACGGAACGTACAGTTGTGCTGACT -ACGGAACGTACAGTTGTGCAACCT -ACGGAACGTACAGTTGTGGCTACT -ACGGAACGTACAGTTGTGGGATCT -ACGGAACGTACAGTTGTGAAGGCT -ACGGAACGTACAGTTGTGTCAACC -ACGGAACGTACAGTTGTGTGTTCC -ACGGAACGTACAGTTGTGATTCCC -ACGGAACGTACAGTTGTGTTCTCG -ACGGAACGTACAGTTGTGTAGACG -ACGGAACGTACAGTTGTGGTAACG -ACGGAACGTACAGTTGTGACTTCG -ACGGAACGTACAGTTGTGTACGCA -ACGGAACGTACAGTTGTGCTTGCA -ACGGAACGTACAGTTGTGCGAACA -ACGGAACGTACAGTTGTGCAGTCA -ACGGAACGTACAGTTGTGGATCCA -ACGGAACGTACAGTTGTGACGACA -ACGGAACGTACAGTTGTGAGCTCA -ACGGAACGTACAGTTGTGTCACGT -ACGGAACGTACAGTTGTGCGTAGT -ACGGAACGTACAGTTGTGGTCAGT -ACGGAACGTACAGTTGTGGAAGGT -ACGGAACGTACAGTTGTGAACCGT -ACGGAACGTACAGTTGTGTTGTGC -ACGGAACGTACAGTTGTGCTAAGC -ACGGAACGTACAGTTGTGACTAGC -ACGGAACGTACAGTTGTGAGATGC -ACGGAACGTACAGTTGTGTGAAGG -ACGGAACGTACAGTTGTGCAATGG -ACGGAACGTACAGTTGTGATGAGG -ACGGAACGTACAGTTGTGAATGGG -ACGGAACGTACAGTTGTGTCCTGA -ACGGAACGTACAGTTGTGTAGCGA -ACGGAACGTACAGTTGTGCACAGA -ACGGAACGTACAGTTGTGGCAAGA -ACGGAACGTACAGTTGTGGGTTGA -ACGGAACGTACAGTTGTGTCCGAT -ACGGAACGTACAGTTGTGTGGCAT -ACGGAACGTACAGTTGTGCGAGAT -ACGGAACGTACAGTTGTGTACCAC -ACGGAACGTACAGTTGTGCAGAAC -ACGGAACGTACAGTTGTGGTCTAC -ACGGAACGTACAGTTGTGACGTAC -ACGGAACGTACAGTTGTGAGTGAC -ACGGAACGTACAGTTGTGCTGTAG -ACGGAACGTACAGTTGTGCCTAAG -ACGGAACGTACAGTTGTGGTTCAG -ACGGAACGTACAGTTGTGGCATAG -ACGGAACGTACAGTTGTGGACAAG -ACGGAACGTACAGTTGTGAAGCAG -ACGGAACGTACAGTTGTGCGTCAA -ACGGAACGTACAGTTGTGGCTGAA -ACGGAACGTACAGTTGTGAGTACG -ACGGAACGTACAGTTGTGATCCGA -ACGGAACGTACAGTTGTGATGGGA -ACGGAACGTACAGTTGTGGTGCAA -ACGGAACGTACAGTTGTGGAGGAA -ACGGAACGTACAGTTGTGCAGGTA -ACGGAACGTACAGTTGTGGACTCT -ACGGAACGTACAGTTGTGAGTCCT -ACGGAACGTACAGTTGTGTAAGCC -ACGGAACGTACAGTTGTGATAGCC -ACGGAACGTACAGTTGTGTAACCG -ACGGAACGTACAGTTGTGATGCCA -ACGGAACGTACATTTGCCGGAAAC -ACGGAACGTACATTTGCCAACACC -ACGGAACGTACATTTGCCATCGAG -ACGGAACGTACATTTGCCCTCCTT -ACGGAACGTACATTTGCCCCTGTT -ACGGAACGTACATTTGCCCGGTTT -ACGGAACGTACATTTGCCGTGGTT -ACGGAACGTACATTTGCCGCCTTT -ACGGAACGTACATTTGCCGGTCTT -ACGGAACGTACATTTGCCACGCTT -ACGGAACGTACATTTGCCAGCGTT -ACGGAACGTACATTTGCCTTCGTC -ACGGAACGTACATTTGCCTCTCTC -ACGGAACGTACATTTGCCTGGATC -ACGGAACGTACATTTGCCCACTTC -ACGGAACGTACATTTGCCGTACTC -ACGGAACGTACATTTGCCGATGTC -ACGGAACGTACATTTGCCACAGTC -ACGGAACGTACATTTGCCTTGCTG -ACGGAACGTACATTTGCCTCCATG -ACGGAACGTACATTTGCCTGTGTG -ACGGAACGTACATTTGCCCTAGTG -ACGGAACGTACATTTGCCCATCTG -ACGGAACGTACATTTGCCGAGTTG -ACGGAACGTACATTTGCCAGACTG -ACGGAACGTACATTTGCCTCGGTA -ACGGAACGTACATTTGCCTGCCTA -ACGGAACGTACATTTGCCCCACTA -ACGGAACGTACATTTGCCGGAGTA -ACGGAACGTACATTTGCCTCGTCT -ACGGAACGTACATTTGCCTGCACT -ACGGAACGTACATTTGCCCTGACT -ACGGAACGTACATTTGCCCAACCT -ACGGAACGTACATTTGCCGCTACT -ACGGAACGTACATTTGCCGGATCT -ACGGAACGTACATTTGCCAAGGCT -ACGGAACGTACATTTGCCTCAACC -ACGGAACGTACATTTGCCTGTTCC -ACGGAACGTACATTTGCCATTCCC -ACGGAACGTACATTTGCCTTCTCG -ACGGAACGTACATTTGCCTAGACG -ACGGAACGTACATTTGCCGTAACG -ACGGAACGTACATTTGCCACTTCG -ACGGAACGTACATTTGCCTACGCA -ACGGAACGTACATTTGCCCTTGCA -ACGGAACGTACATTTGCCCGAACA -ACGGAACGTACATTTGCCCAGTCA -ACGGAACGTACATTTGCCGATCCA -ACGGAACGTACATTTGCCACGACA -ACGGAACGTACATTTGCCAGCTCA -ACGGAACGTACATTTGCCTCACGT -ACGGAACGTACATTTGCCCGTAGT -ACGGAACGTACATTTGCCGTCAGT -ACGGAACGTACATTTGCCGAAGGT -ACGGAACGTACATTTGCCAACCGT -ACGGAACGTACATTTGCCTTGTGC -ACGGAACGTACATTTGCCCTAAGC -ACGGAACGTACATTTGCCACTAGC -ACGGAACGTACATTTGCCAGATGC -ACGGAACGTACATTTGCCTGAAGG -ACGGAACGTACATTTGCCCAATGG -ACGGAACGTACATTTGCCATGAGG -ACGGAACGTACATTTGCCAATGGG -ACGGAACGTACATTTGCCTCCTGA -ACGGAACGTACATTTGCCTAGCGA -ACGGAACGTACATTTGCCCACAGA -ACGGAACGTACATTTGCCGCAAGA -ACGGAACGTACATTTGCCGGTTGA -ACGGAACGTACATTTGCCTCCGAT -ACGGAACGTACATTTGCCTGGCAT -ACGGAACGTACATTTGCCCGAGAT -ACGGAACGTACATTTGCCTACCAC -ACGGAACGTACATTTGCCCAGAAC -ACGGAACGTACATTTGCCGTCTAC -ACGGAACGTACATTTGCCACGTAC -ACGGAACGTACATTTGCCAGTGAC -ACGGAACGTACATTTGCCCTGTAG -ACGGAACGTACATTTGCCCCTAAG -ACGGAACGTACATTTGCCGTTCAG -ACGGAACGTACATTTGCCGCATAG -ACGGAACGTACATTTGCCGACAAG -ACGGAACGTACATTTGCCAAGCAG -ACGGAACGTACATTTGCCCGTCAA -ACGGAACGTACATTTGCCGCTGAA -ACGGAACGTACATTTGCCAGTACG -ACGGAACGTACATTTGCCATCCGA -ACGGAACGTACATTTGCCATGGGA -ACGGAACGTACATTTGCCGTGCAA -ACGGAACGTACATTTGCCGAGGAA -ACGGAACGTACATTTGCCCAGGTA -ACGGAACGTACATTTGCCGACTCT -ACGGAACGTACATTTGCCAGTCCT -ACGGAACGTACATTTGCCTAAGCC -ACGGAACGTACATTTGCCATAGCC -ACGGAACGTACATTTGCCTAACCG -ACGGAACGTACATTTGCCATGCCA -ACGGAACGTACACTTGGTGGAAAC -ACGGAACGTACACTTGGTAACACC -ACGGAACGTACACTTGGTATCGAG -ACGGAACGTACACTTGGTCTCCTT -ACGGAACGTACACTTGGTCCTGTT -ACGGAACGTACACTTGGTCGGTTT -ACGGAACGTACACTTGGTGTGGTT -ACGGAACGTACACTTGGTGCCTTT -ACGGAACGTACACTTGGTGGTCTT -ACGGAACGTACACTTGGTACGCTT -ACGGAACGTACACTTGGTAGCGTT -ACGGAACGTACACTTGGTTTCGTC -ACGGAACGTACACTTGGTTCTCTC -ACGGAACGTACACTTGGTTGGATC -ACGGAACGTACACTTGGTCACTTC -ACGGAACGTACACTTGGTGTACTC -ACGGAACGTACACTTGGTGATGTC -ACGGAACGTACACTTGGTACAGTC -ACGGAACGTACACTTGGTTTGCTG -ACGGAACGTACACTTGGTTCCATG -ACGGAACGTACACTTGGTTGTGTG -ACGGAACGTACACTTGGTCTAGTG -ACGGAACGTACACTTGGTCATCTG -ACGGAACGTACACTTGGTGAGTTG -ACGGAACGTACACTTGGTAGACTG -ACGGAACGTACACTTGGTTCGGTA -ACGGAACGTACACTTGGTTGCCTA -ACGGAACGTACACTTGGTCCACTA -ACGGAACGTACACTTGGTGGAGTA -ACGGAACGTACACTTGGTTCGTCT -ACGGAACGTACACTTGGTTGCACT -ACGGAACGTACACTTGGTCTGACT -ACGGAACGTACACTTGGTCAACCT -ACGGAACGTACACTTGGTGCTACT -ACGGAACGTACACTTGGTGGATCT -ACGGAACGTACACTTGGTAAGGCT -ACGGAACGTACACTTGGTTCAACC -ACGGAACGTACACTTGGTTGTTCC -ACGGAACGTACACTTGGTATTCCC -ACGGAACGTACACTTGGTTTCTCG -ACGGAACGTACACTTGGTTAGACG -ACGGAACGTACACTTGGTGTAACG -ACGGAACGTACACTTGGTACTTCG -ACGGAACGTACACTTGGTTACGCA -ACGGAACGTACACTTGGTCTTGCA -ACGGAACGTACACTTGGTCGAACA -ACGGAACGTACACTTGGTCAGTCA -ACGGAACGTACACTTGGTGATCCA -ACGGAACGTACACTTGGTACGACA -ACGGAACGTACACTTGGTAGCTCA -ACGGAACGTACACTTGGTTCACGT -ACGGAACGTACACTTGGTCGTAGT -ACGGAACGTACACTTGGTGTCAGT -ACGGAACGTACACTTGGTGAAGGT -ACGGAACGTACACTTGGTAACCGT -ACGGAACGTACACTTGGTTTGTGC -ACGGAACGTACACTTGGTCTAAGC -ACGGAACGTACACTTGGTACTAGC -ACGGAACGTACACTTGGTAGATGC -ACGGAACGTACACTTGGTTGAAGG -ACGGAACGTACACTTGGTCAATGG -ACGGAACGTACACTTGGTATGAGG -ACGGAACGTACACTTGGTAATGGG -ACGGAACGTACACTTGGTTCCTGA -ACGGAACGTACACTTGGTTAGCGA -ACGGAACGTACACTTGGTCACAGA -ACGGAACGTACACTTGGTGCAAGA -ACGGAACGTACACTTGGTGGTTGA -ACGGAACGTACACTTGGTTCCGAT -ACGGAACGTACACTTGGTTGGCAT -ACGGAACGTACACTTGGTCGAGAT -ACGGAACGTACACTTGGTTACCAC -ACGGAACGTACACTTGGTCAGAAC -ACGGAACGTACACTTGGTGTCTAC -ACGGAACGTACACTTGGTACGTAC -ACGGAACGTACACTTGGTAGTGAC -ACGGAACGTACACTTGGTCTGTAG -ACGGAACGTACACTTGGTCCTAAG -ACGGAACGTACACTTGGTGTTCAG -ACGGAACGTACACTTGGTGCATAG -ACGGAACGTACACTTGGTGACAAG -ACGGAACGTACACTTGGTAAGCAG -ACGGAACGTACACTTGGTCGTCAA -ACGGAACGTACACTTGGTGCTGAA -ACGGAACGTACACTTGGTAGTACG -ACGGAACGTACACTTGGTATCCGA -ACGGAACGTACACTTGGTATGGGA -ACGGAACGTACACTTGGTGTGCAA -ACGGAACGTACACTTGGTGAGGAA -ACGGAACGTACACTTGGTCAGGTA -ACGGAACGTACACTTGGTGACTCT -ACGGAACGTACACTTGGTAGTCCT -ACGGAACGTACACTTGGTTAAGCC -ACGGAACGTACACTTGGTATAGCC -ACGGAACGTACACTTGGTTAACCG -ACGGAACGTACACTTGGTATGCCA -ACGGAACGTACACTTACGGGAAAC -ACGGAACGTACACTTACGAACACC -ACGGAACGTACACTTACGATCGAG -ACGGAACGTACACTTACGCTCCTT -ACGGAACGTACACTTACGCCTGTT -ACGGAACGTACACTTACGCGGTTT -ACGGAACGTACACTTACGGTGGTT -ACGGAACGTACACTTACGGCCTTT -ACGGAACGTACACTTACGGGTCTT -ACGGAACGTACACTTACGACGCTT -ACGGAACGTACACTTACGAGCGTT -ACGGAACGTACACTTACGTTCGTC -ACGGAACGTACACTTACGTCTCTC -ACGGAACGTACACTTACGTGGATC -ACGGAACGTACACTTACGCACTTC -ACGGAACGTACACTTACGGTACTC -ACGGAACGTACACTTACGGATGTC -ACGGAACGTACACTTACGACAGTC -ACGGAACGTACACTTACGTTGCTG -ACGGAACGTACACTTACGTCCATG -ACGGAACGTACACTTACGTGTGTG -ACGGAACGTACACTTACGCTAGTG -ACGGAACGTACACTTACGCATCTG -ACGGAACGTACACTTACGGAGTTG -ACGGAACGTACACTTACGAGACTG -ACGGAACGTACACTTACGTCGGTA -ACGGAACGTACACTTACGTGCCTA -ACGGAACGTACACTTACGCCACTA -ACGGAACGTACACTTACGGGAGTA -ACGGAACGTACACTTACGTCGTCT -ACGGAACGTACACTTACGTGCACT -ACGGAACGTACACTTACGCTGACT -ACGGAACGTACACTTACGCAACCT -ACGGAACGTACACTTACGGCTACT -ACGGAACGTACACTTACGGGATCT -ACGGAACGTACACTTACGAAGGCT -ACGGAACGTACACTTACGTCAACC -ACGGAACGTACACTTACGTGTTCC -ACGGAACGTACACTTACGATTCCC -ACGGAACGTACACTTACGTTCTCG -ACGGAACGTACACTTACGTAGACG -ACGGAACGTACACTTACGGTAACG -ACGGAACGTACACTTACGACTTCG -ACGGAACGTACACTTACGTACGCA -ACGGAACGTACACTTACGCTTGCA -ACGGAACGTACACTTACGCGAACA -ACGGAACGTACACTTACGCAGTCA -ACGGAACGTACACTTACGGATCCA -ACGGAACGTACACTTACGACGACA -ACGGAACGTACACTTACGAGCTCA -ACGGAACGTACACTTACGTCACGT -ACGGAACGTACACTTACGCGTAGT -ACGGAACGTACACTTACGGTCAGT -ACGGAACGTACACTTACGGAAGGT -ACGGAACGTACACTTACGAACCGT -ACGGAACGTACACTTACGTTGTGC -ACGGAACGTACACTTACGCTAAGC -ACGGAACGTACACTTACGACTAGC -ACGGAACGTACACTTACGAGATGC -ACGGAACGTACACTTACGTGAAGG -ACGGAACGTACACTTACGCAATGG -ACGGAACGTACACTTACGATGAGG -ACGGAACGTACACTTACGAATGGG -ACGGAACGTACACTTACGTCCTGA -ACGGAACGTACACTTACGTAGCGA -ACGGAACGTACACTTACGCACAGA -ACGGAACGTACACTTACGGCAAGA -ACGGAACGTACACTTACGGGTTGA -ACGGAACGTACACTTACGTCCGAT -ACGGAACGTACACTTACGTGGCAT -ACGGAACGTACACTTACGCGAGAT -ACGGAACGTACACTTACGTACCAC -ACGGAACGTACACTTACGCAGAAC -ACGGAACGTACACTTACGGTCTAC -ACGGAACGTACACTTACGACGTAC -ACGGAACGTACACTTACGAGTGAC -ACGGAACGTACACTTACGCTGTAG -ACGGAACGTACACTTACGCCTAAG -ACGGAACGTACACTTACGGTTCAG -ACGGAACGTACACTTACGGCATAG -ACGGAACGTACACTTACGGACAAG -ACGGAACGTACACTTACGAAGCAG -ACGGAACGTACACTTACGCGTCAA -ACGGAACGTACACTTACGGCTGAA -ACGGAACGTACACTTACGAGTACG -ACGGAACGTACACTTACGATCCGA -ACGGAACGTACACTTACGATGGGA -ACGGAACGTACACTTACGGTGCAA -ACGGAACGTACACTTACGGAGGAA -ACGGAACGTACACTTACGCAGGTA -ACGGAACGTACACTTACGGACTCT -ACGGAACGTACACTTACGAGTCCT -ACGGAACGTACACTTACGTAAGCC -ACGGAACGTACACTTACGATAGCC -ACGGAACGTACACTTACGTAACCG -ACGGAACGTACACTTACGATGCCA -ACGGAACGTACAGTTAGCGGAAAC -ACGGAACGTACAGTTAGCAACACC -ACGGAACGTACAGTTAGCATCGAG -ACGGAACGTACAGTTAGCCTCCTT -ACGGAACGTACAGTTAGCCCTGTT -ACGGAACGTACAGTTAGCCGGTTT -ACGGAACGTACAGTTAGCGTGGTT -ACGGAACGTACAGTTAGCGCCTTT -ACGGAACGTACAGTTAGCGGTCTT -ACGGAACGTACAGTTAGCACGCTT -ACGGAACGTACAGTTAGCAGCGTT -ACGGAACGTACAGTTAGCTTCGTC -ACGGAACGTACAGTTAGCTCTCTC -ACGGAACGTACAGTTAGCTGGATC -ACGGAACGTACAGTTAGCCACTTC -ACGGAACGTACAGTTAGCGTACTC -ACGGAACGTACAGTTAGCGATGTC -ACGGAACGTACAGTTAGCACAGTC -ACGGAACGTACAGTTAGCTTGCTG -ACGGAACGTACAGTTAGCTCCATG -ACGGAACGTACAGTTAGCTGTGTG -ACGGAACGTACAGTTAGCCTAGTG -ACGGAACGTACAGTTAGCCATCTG -ACGGAACGTACAGTTAGCGAGTTG -ACGGAACGTACAGTTAGCAGACTG -ACGGAACGTACAGTTAGCTCGGTA -ACGGAACGTACAGTTAGCTGCCTA -ACGGAACGTACAGTTAGCCCACTA -ACGGAACGTACAGTTAGCGGAGTA -ACGGAACGTACAGTTAGCTCGTCT -ACGGAACGTACAGTTAGCTGCACT -ACGGAACGTACAGTTAGCCTGACT -ACGGAACGTACAGTTAGCCAACCT -ACGGAACGTACAGTTAGCGCTACT -ACGGAACGTACAGTTAGCGGATCT -ACGGAACGTACAGTTAGCAAGGCT -ACGGAACGTACAGTTAGCTCAACC -ACGGAACGTACAGTTAGCTGTTCC -ACGGAACGTACAGTTAGCATTCCC -ACGGAACGTACAGTTAGCTTCTCG -ACGGAACGTACAGTTAGCTAGACG -ACGGAACGTACAGTTAGCGTAACG -ACGGAACGTACAGTTAGCACTTCG -ACGGAACGTACAGTTAGCTACGCA -ACGGAACGTACAGTTAGCCTTGCA -ACGGAACGTACAGTTAGCCGAACA -ACGGAACGTACAGTTAGCCAGTCA -ACGGAACGTACAGTTAGCGATCCA -ACGGAACGTACAGTTAGCACGACA -ACGGAACGTACAGTTAGCAGCTCA -ACGGAACGTACAGTTAGCTCACGT -ACGGAACGTACAGTTAGCCGTAGT -ACGGAACGTACAGTTAGCGTCAGT -ACGGAACGTACAGTTAGCGAAGGT -ACGGAACGTACAGTTAGCAACCGT -ACGGAACGTACAGTTAGCTTGTGC -ACGGAACGTACAGTTAGCCTAAGC -ACGGAACGTACAGTTAGCACTAGC -ACGGAACGTACAGTTAGCAGATGC -ACGGAACGTACAGTTAGCTGAAGG -ACGGAACGTACAGTTAGCCAATGG -ACGGAACGTACAGTTAGCATGAGG -ACGGAACGTACAGTTAGCAATGGG -ACGGAACGTACAGTTAGCTCCTGA -ACGGAACGTACAGTTAGCTAGCGA -ACGGAACGTACAGTTAGCCACAGA -ACGGAACGTACAGTTAGCGCAAGA -ACGGAACGTACAGTTAGCGGTTGA -ACGGAACGTACAGTTAGCTCCGAT -ACGGAACGTACAGTTAGCTGGCAT -ACGGAACGTACAGTTAGCCGAGAT -ACGGAACGTACAGTTAGCTACCAC -ACGGAACGTACAGTTAGCCAGAAC -ACGGAACGTACAGTTAGCGTCTAC -ACGGAACGTACAGTTAGCACGTAC -ACGGAACGTACAGTTAGCAGTGAC -ACGGAACGTACAGTTAGCCTGTAG -ACGGAACGTACAGTTAGCCCTAAG -ACGGAACGTACAGTTAGCGTTCAG -ACGGAACGTACAGTTAGCGCATAG -ACGGAACGTACAGTTAGCGACAAG -ACGGAACGTACAGTTAGCAAGCAG -ACGGAACGTACAGTTAGCCGTCAA -ACGGAACGTACAGTTAGCGCTGAA -ACGGAACGTACAGTTAGCAGTACG -ACGGAACGTACAGTTAGCATCCGA -ACGGAACGTACAGTTAGCATGGGA -ACGGAACGTACAGTTAGCGTGCAA -ACGGAACGTACAGTTAGCGAGGAA -ACGGAACGTACAGTTAGCCAGGTA -ACGGAACGTACAGTTAGCGACTCT -ACGGAACGTACAGTTAGCAGTCCT -ACGGAACGTACAGTTAGCTAAGCC -ACGGAACGTACAGTTAGCATAGCC -ACGGAACGTACAGTTAGCTAACCG -ACGGAACGTACAGTTAGCATGCCA -ACGGAACGTACAGTCTTCGGAAAC -ACGGAACGTACAGTCTTCAACACC -ACGGAACGTACAGTCTTCATCGAG -ACGGAACGTACAGTCTTCCTCCTT -ACGGAACGTACAGTCTTCCCTGTT -ACGGAACGTACAGTCTTCCGGTTT -ACGGAACGTACAGTCTTCGTGGTT -ACGGAACGTACAGTCTTCGCCTTT -ACGGAACGTACAGTCTTCGGTCTT -ACGGAACGTACAGTCTTCACGCTT -ACGGAACGTACAGTCTTCAGCGTT -ACGGAACGTACAGTCTTCTTCGTC -ACGGAACGTACAGTCTTCTCTCTC -ACGGAACGTACAGTCTTCTGGATC -ACGGAACGTACAGTCTTCCACTTC -ACGGAACGTACAGTCTTCGTACTC -ACGGAACGTACAGTCTTCGATGTC -ACGGAACGTACAGTCTTCACAGTC -ACGGAACGTACAGTCTTCTTGCTG -ACGGAACGTACAGTCTTCTCCATG -ACGGAACGTACAGTCTTCTGTGTG -ACGGAACGTACAGTCTTCCTAGTG -ACGGAACGTACAGTCTTCCATCTG -ACGGAACGTACAGTCTTCGAGTTG -ACGGAACGTACAGTCTTCAGACTG -ACGGAACGTACAGTCTTCTCGGTA -ACGGAACGTACAGTCTTCTGCCTA -ACGGAACGTACAGTCTTCCCACTA -ACGGAACGTACAGTCTTCGGAGTA -ACGGAACGTACAGTCTTCTCGTCT -ACGGAACGTACAGTCTTCTGCACT -ACGGAACGTACAGTCTTCCTGACT -ACGGAACGTACAGTCTTCCAACCT -ACGGAACGTACAGTCTTCGCTACT -ACGGAACGTACAGTCTTCGGATCT -ACGGAACGTACAGTCTTCAAGGCT -ACGGAACGTACAGTCTTCTCAACC -ACGGAACGTACAGTCTTCTGTTCC -ACGGAACGTACAGTCTTCATTCCC -ACGGAACGTACAGTCTTCTTCTCG -ACGGAACGTACAGTCTTCTAGACG -ACGGAACGTACAGTCTTCGTAACG -ACGGAACGTACAGTCTTCACTTCG -ACGGAACGTACAGTCTTCTACGCA -ACGGAACGTACAGTCTTCCTTGCA -ACGGAACGTACAGTCTTCCGAACA -ACGGAACGTACAGTCTTCCAGTCA -ACGGAACGTACAGTCTTCGATCCA -ACGGAACGTACAGTCTTCACGACA -ACGGAACGTACAGTCTTCAGCTCA -ACGGAACGTACAGTCTTCTCACGT -ACGGAACGTACAGTCTTCCGTAGT -ACGGAACGTACAGTCTTCGTCAGT -ACGGAACGTACAGTCTTCGAAGGT -ACGGAACGTACAGTCTTCAACCGT -ACGGAACGTACAGTCTTCTTGTGC -ACGGAACGTACAGTCTTCCTAAGC -ACGGAACGTACAGTCTTCACTAGC -ACGGAACGTACAGTCTTCAGATGC -ACGGAACGTACAGTCTTCTGAAGG -ACGGAACGTACAGTCTTCCAATGG -ACGGAACGTACAGTCTTCATGAGG -ACGGAACGTACAGTCTTCAATGGG -ACGGAACGTACAGTCTTCTCCTGA -ACGGAACGTACAGTCTTCTAGCGA -ACGGAACGTACAGTCTTCCACAGA -ACGGAACGTACAGTCTTCGCAAGA -ACGGAACGTACAGTCTTCGGTTGA -ACGGAACGTACAGTCTTCTCCGAT -ACGGAACGTACAGTCTTCTGGCAT -ACGGAACGTACAGTCTTCCGAGAT -ACGGAACGTACAGTCTTCTACCAC -ACGGAACGTACAGTCTTCCAGAAC -ACGGAACGTACAGTCTTCGTCTAC -ACGGAACGTACAGTCTTCACGTAC -ACGGAACGTACAGTCTTCAGTGAC -ACGGAACGTACAGTCTTCCTGTAG -ACGGAACGTACAGTCTTCCCTAAG -ACGGAACGTACAGTCTTCGTTCAG -ACGGAACGTACAGTCTTCGCATAG -ACGGAACGTACAGTCTTCGACAAG -ACGGAACGTACAGTCTTCAAGCAG -ACGGAACGTACAGTCTTCCGTCAA -ACGGAACGTACAGTCTTCGCTGAA -ACGGAACGTACAGTCTTCAGTACG -ACGGAACGTACAGTCTTCATCCGA -ACGGAACGTACAGTCTTCATGGGA -ACGGAACGTACAGTCTTCGTGCAA -ACGGAACGTACAGTCTTCGAGGAA -ACGGAACGTACAGTCTTCCAGGTA -ACGGAACGTACAGTCTTCGACTCT -ACGGAACGTACAGTCTTCAGTCCT -ACGGAACGTACAGTCTTCTAAGCC -ACGGAACGTACAGTCTTCATAGCC -ACGGAACGTACAGTCTTCTAACCG -ACGGAACGTACAGTCTTCATGCCA -ACGGAACGTACACTCTCTGGAAAC -ACGGAACGTACACTCTCTAACACC -ACGGAACGTACACTCTCTATCGAG -ACGGAACGTACACTCTCTCTCCTT -ACGGAACGTACACTCTCTCCTGTT -ACGGAACGTACACTCTCTCGGTTT -ACGGAACGTACACTCTCTGTGGTT -ACGGAACGTACACTCTCTGCCTTT -ACGGAACGTACACTCTCTGGTCTT -ACGGAACGTACACTCTCTACGCTT -ACGGAACGTACACTCTCTAGCGTT -ACGGAACGTACACTCTCTTTCGTC -ACGGAACGTACACTCTCTTCTCTC -ACGGAACGTACACTCTCTTGGATC -ACGGAACGTACACTCTCTCACTTC -ACGGAACGTACACTCTCTGTACTC -ACGGAACGTACACTCTCTGATGTC -ACGGAACGTACACTCTCTACAGTC -ACGGAACGTACACTCTCTTTGCTG -ACGGAACGTACACTCTCTTCCATG -ACGGAACGTACACTCTCTTGTGTG -ACGGAACGTACACTCTCTCTAGTG -ACGGAACGTACACTCTCTCATCTG -ACGGAACGTACACTCTCTGAGTTG -ACGGAACGTACACTCTCTAGACTG -ACGGAACGTACACTCTCTTCGGTA -ACGGAACGTACACTCTCTTGCCTA -ACGGAACGTACACTCTCTCCACTA -ACGGAACGTACACTCTCTGGAGTA -ACGGAACGTACACTCTCTTCGTCT -ACGGAACGTACACTCTCTTGCACT -ACGGAACGTACACTCTCTCTGACT -ACGGAACGTACACTCTCTCAACCT -ACGGAACGTACACTCTCTGCTACT -ACGGAACGTACACTCTCTGGATCT -ACGGAACGTACACTCTCTAAGGCT -ACGGAACGTACACTCTCTTCAACC -ACGGAACGTACACTCTCTTGTTCC -ACGGAACGTACACTCTCTATTCCC -ACGGAACGTACACTCTCTTTCTCG -ACGGAACGTACACTCTCTTAGACG -ACGGAACGTACACTCTCTGTAACG -ACGGAACGTACACTCTCTACTTCG -ACGGAACGTACACTCTCTTACGCA -ACGGAACGTACACTCTCTCTTGCA -ACGGAACGTACACTCTCTCGAACA -ACGGAACGTACACTCTCTCAGTCA -ACGGAACGTACACTCTCTGATCCA -ACGGAACGTACACTCTCTACGACA -ACGGAACGTACACTCTCTAGCTCA -ACGGAACGTACACTCTCTTCACGT -ACGGAACGTACACTCTCTCGTAGT -ACGGAACGTACACTCTCTGTCAGT -ACGGAACGTACACTCTCTGAAGGT -ACGGAACGTACACTCTCTAACCGT -ACGGAACGTACACTCTCTTTGTGC -ACGGAACGTACACTCTCTCTAAGC -ACGGAACGTACACTCTCTACTAGC -ACGGAACGTACACTCTCTAGATGC -ACGGAACGTACACTCTCTTGAAGG -ACGGAACGTACACTCTCTCAATGG -ACGGAACGTACACTCTCTATGAGG -ACGGAACGTACACTCTCTAATGGG -ACGGAACGTACACTCTCTTCCTGA -ACGGAACGTACACTCTCTTAGCGA -ACGGAACGTACACTCTCTCACAGA -ACGGAACGTACACTCTCTGCAAGA -ACGGAACGTACACTCTCTGGTTGA -ACGGAACGTACACTCTCTTCCGAT -ACGGAACGTACACTCTCTTGGCAT -ACGGAACGTACACTCTCTCGAGAT -ACGGAACGTACACTCTCTTACCAC -ACGGAACGTACACTCTCTCAGAAC -ACGGAACGTACACTCTCTGTCTAC -ACGGAACGTACACTCTCTACGTAC -ACGGAACGTACACTCTCTAGTGAC -ACGGAACGTACACTCTCTCTGTAG -ACGGAACGTACACTCTCTCCTAAG -ACGGAACGTACACTCTCTGTTCAG -ACGGAACGTACACTCTCTGCATAG -ACGGAACGTACACTCTCTGACAAG -ACGGAACGTACACTCTCTAAGCAG -ACGGAACGTACACTCTCTCGTCAA -ACGGAACGTACACTCTCTGCTGAA -ACGGAACGTACACTCTCTAGTACG -ACGGAACGTACACTCTCTATCCGA -ACGGAACGTACACTCTCTATGGGA -ACGGAACGTACACTCTCTGTGCAA -ACGGAACGTACACTCTCTGAGGAA -ACGGAACGTACACTCTCTCAGGTA -ACGGAACGTACACTCTCTGACTCT -ACGGAACGTACACTCTCTAGTCCT -ACGGAACGTACACTCTCTTAAGCC -ACGGAACGTACACTCTCTATAGCC -ACGGAACGTACACTCTCTTAACCG -ACGGAACGTACACTCTCTATGCCA -ACGGAACGTACAATCTGGGGAAAC -ACGGAACGTACAATCTGGAACACC -ACGGAACGTACAATCTGGATCGAG -ACGGAACGTACAATCTGGCTCCTT -ACGGAACGTACAATCTGGCCTGTT -ACGGAACGTACAATCTGGCGGTTT -ACGGAACGTACAATCTGGGTGGTT -ACGGAACGTACAATCTGGGCCTTT -ACGGAACGTACAATCTGGGGTCTT -ACGGAACGTACAATCTGGACGCTT -ACGGAACGTACAATCTGGAGCGTT -ACGGAACGTACAATCTGGTTCGTC -ACGGAACGTACAATCTGGTCTCTC -ACGGAACGTACAATCTGGTGGATC -ACGGAACGTACAATCTGGCACTTC -ACGGAACGTACAATCTGGGTACTC -ACGGAACGTACAATCTGGGATGTC -ACGGAACGTACAATCTGGACAGTC -ACGGAACGTACAATCTGGTTGCTG -ACGGAACGTACAATCTGGTCCATG -ACGGAACGTACAATCTGGTGTGTG -ACGGAACGTACAATCTGGCTAGTG -ACGGAACGTACAATCTGGCATCTG -ACGGAACGTACAATCTGGGAGTTG -ACGGAACGTACAATCTGGAGACTG -ACGGAACGTACAATCTGGTCGGTA -ACGGAACGTACAATCTGGTGCCTA -ACGGAACGTACAATCTGGCCACTA -ACGGAACGTACAATCTGGGGAGTA -ACGGAACGTACAATCTGGTCGTCT -ACGGAACGTACAATCTGGTGCACT -ACGGAACGTACAATCTGGCTGACT -ACGGAACGTACAATCTGGCAACCT -ACGGAACGTACAATCTGGGCTACT -ACGGAACGTACAATCTGGGGATCT -ACGGAACGTACAATCTGGAAGGCT -ACGGAACGTACAATCTGGTCAACC -ACGGAACGTACAATCTGGTGTTCC -ACGGAACGTACAATCTGGATTCCC -ACGGAACGTACAATCTGGTTCTCG -ACGGAACGTACAATCTGGTAGACG -ACGGAACGTACAATCTGGGTAACG -ACGGAACGTACAATCTGGACTTCG -ACGGAACGTACAATCTGGTACGCA -ACGGAACGTACAATCTGGCTTGCA -ACGGAACGTACAATCTGGCGAACA -ACGGAACGTACAATCTGGCAGTCA -ACGGAACGTACAATCTGGGATCCA -ACGGAACGTACAATCTGGACGACA -ACGGAACGTACAATCTGGAGCTCA -ACGGAACGTACAATCTGGTCACGT -ACGGAACGTACAATCTGGCGTAGT -ACGGAACGTACAATCTGGGTCAGT -ACGGAACGTACAATCTGGGAAGGT -ACGGAACGTACAATCTGGAACCGT -ACGGAACGTACAATCTGGTTGTGC -ACGGAACGTACAATCTGGCTAAGC -ACGGAACGTACAATCTGGACTAGC -ACGGAACGTACAATCTGGAGATGC -ACGGAACGTACAATCTGGTGAAGG -ACGGAACGTACAATCTGGCAATGG -ACGGAACGTACAATCTGGATGAGG -ACGGAACGTACAATCTGGAATGGG -ACGGAACGTACAATCTGGTCCTGA -ACGGAACGTACAATCTGGTAGCGA -ACGGAACGTACAATCTGGCACAGA -ACGGAACGTACAATCTGGGCAAGA -ACGGAACGTACAATCTGGGGTTGA -ACGGAACGTACAATCTGGTCCGAT -ACGGAACGTACAATCTGGTGGCAT -ACGGAACGTACAATCTGGCGAGAT -ACGGAACGTACAATCTGGTACCAC -ACGGAACGTACAATCTGGCAGAAC -ACGGAACGTACAATCTGGGTCTAC -ACGGAACGTACAATCTGGACGTAC -ACGGAACGTACAATCTGGAGTGAC -ACGGAACGTACAATCTGGCTGTAG -ACGGAACGTACAATCTGGCCTAAG -ACGGAACGTACAATCTGGGTTCAG -ACGGAACGTACAATCTGGGCATAG -ACGGAACGTACAATCTGGGACAAG -ACGGAACGTACAATCTGGAAGCAG -ACGGAACGTACAATCTGGCGTCAA -ACGGAACGTACAATCTGGGCTGAA -ACGGAACGTACAATCTGGAGTACG -ACGGAACGTACAATCTGGATCCGA -ACGGAACGTACAATCTGGATGGGA -ACGGAACGTACAATCTGGGTGCAA -ACGGAACGTACAATCTGGGAGGAA -ACGGAACGTACAATCTGGCAGGTA -ACGGAACGTACAATCTGGGACTCT -ACGGAACGTACAATCTGGAGTCCT -ACGGAACGTACAATCTGGTAAGCC -ACGGAACGTACAATCTGGATAGCC -ACGGAACGTACAATCTGGTAACCG -ACGGAACGTACAATCTGGATGCCA -ACGGAACGTACATTCCACGGAAAC -ACGGAACGTACATTCCACAACACC -ACGGAACGTACATTCCACATCGAG -ACGGAACGTACATTCCACCTCCTT -ACGGAACGTACATTCCACCCTGTT -ACGGAACGTACATTCCACCGGTTT -ACGGAACGTACATTCCACGTGGTT -ACGGAACGTACATTCCACGCCTTT -ACGGAACGTACATTCCACGGTCTT -ACGGAACGTACATTCCACACGCTT -ACGGAACGTACATTCCACAGCGTT -ACGGAACGTACATTCCACTTCGTC -ACGGAACGTACATTCCACTCTCTC -ACGGAACGTACATTCCACTGGATC -ACGGAACGTACATTCCACCACTTC -ACGGAACGTACATTCCACGTACTC -ACGGAACGTACATTCCACGATGTC -ACGGAACGTACATTCCACACAGTC -ACGGAACGTACATTCCACTTGCTG -ACGGAACGTACATTCCACTCCATG -ACGGAACGTACATTCCACTGTGTG -ACGGAACGTACATTCCACCTAGTG -ACGGAACGTACATTCCACCATCTG -ACGGAACGTACATTCCACGAGTTG -ACGGAACGTACATTCCACAGACTG -ACGGAACGTACATTCCACTCGGTA -ACGGAACGTACATTCCACTGCCTA -ACGGAACGTACATTCCACCCACTA -ACGGAACGTACATTCCACGGAGTA -ACGGAACGTACATTCCACTCGTCT -ACGGAACGTACATTCCACTGCACT -ACGGAACGTACATTCCACCTGACT -ACGGAACGTACATTCCACCAACCT -ACGGAACGTACATTCCACGCTACT -ACGGAACGTACATTCCACGGATCT -ACGGAACGTACATTCCACAAGGCT -ACGGAACGTACATTCCACTCAACC -ACGGAACGTACATTCCACTGTTCC -ACGGAACGTACATTCCACATTCCC -ACGGAACGTACATTCCACTTCTCG -ACGGAACGTACATTCCACTAGACG -ACGGAACGTACATTCCACGTAACG -ACGGAACGTACATTCCACACTTCG -ACGGAACGTACATTCCACTACGCA -ACGGAACGTACATTCCACCTTGCA -ACGGAACGTACATTCCACCGAACA -ACGGAACGTACATTCCACCAGTCA -ACGGAACGTACATTCCACGATCCA -ACGGAACGTACATTCCACACGACA -ACGGAACGTACATTCCACAGCTCA -ACGGAACGTACATTCCACTCACGT -ACGGAACGTACATTCCACCGTAGT -ACGGAACGTACATTCCACGTCAGT -ACGGAACGTACATTCCACGAAGGT -ACGGAACGTACATTCCACAACCGT -ACGGAACGTACATTCCACTTGTGC -ACGGAACGTACATTCCACCTAAGC -ACGGAACGTACATTCCACACTAGC -ACGGAACGTACATTCCACAGATGC -ACGGAACGTACATTCCACTGAAGG -ACGGAACGTACATTCCACCAATGG -ACGGAACGTACATTCCACATGAGG -ACGGAACGTACATTCCACAATGGG -ACGGAACGTACATTCCACTCCTGA -ACGGAACGTACATTCCACTAGCGA -ACGGAACGTACATTCCACCACAGA -ACGGAACGTACATTCCACGCAAGA -ACGGAACGTACATTCCACGGTTGA -ACGGAACGTACATTCCACTCCGAT -ACGGAACGTACATTCCACTGGCAT -ACGGAACGTACATTCCACCGAGAT -ACGGAACGTACATTCCACTACCAC -ACGGAACGTACATTCCACCAGAAC -ACGGAACGTACATTCCACGTCTAC -ACGGAACGTACATTCCACACGTAC -ACGGAACGTACATTCCACAGTGAC -ACGGAACGTACATTCCACCTGTAG -ACGGAACGTACATTCCACCCTAAG -ACGGAACGTACATTCCACGTTCAG -ACGGAACGTACATTCCACGCATAG -ACGGAACGTACATTCCACGACAAG -ACGGAACGTACATTCCACAAGCAG -ACGGAACGTACATTCCACCGTCAA -ACGGAACGTACATTCCACGCTGAA -ACGGAACGTACATTCCACAGTACG -ACGGAACGTACATTCCACATCCGA -ACGGAACGTACATTCCACATGGGA -ACGGAACGTACATTCCACGTGCAA -ACGGAACGTACATTCCACGAGGAA -ACGGAACGTACATTCCACCAGGTA -ACGGAACGTACATTCCACGACTCT -ACGGAACGTACATTCCACAGTCCT -ACGGAACGTACATTCCACTAAGCC -ACGGAACGTACATTCCACATAGCC -ACGGAACGTACATTCCACTAACCG -ACGGAACGTACATTCCACATGCCA -ACGGAACGTACACTCGTAGGAAAC -ACGGAACGTACACTCGTAAACACC -ACGGAACGTACACTCGTAATCGAG -ACGGAACGTACACTCGTACTCCTT -ACGGAACGTACACTCGTACCTGTT -ACGGAACGTACACTCGTACGGTTT -ACGGAACGTACACTCGTAGTGGTT -ACGGAACGTACACTCGTAGCCTTT -ACGGAACGTACACTCGTAGGTCTT -ACGGAACGTACACTCGTAACGCTT -ACGGAACGTACACTCGTAAGCGTT -ACGGAACGTACACTCGTATTCGTC -ACGGAACGTACACTCGTATCTCTC -ACGGAACGTACACTCGTATGGATC -ACGGAACGTACACTCGTACACTTC -ACGGAACGTACACTCGTAGTACTC -ACGGAACGTACACTCGTAGATGTC -ACGGAACGTACACTCGTAACAGTC -ACGGAACGTACACTCGTATTGCTG -ACGGAACGTACACTCGTATCCATG -ACGGAACGTACACTCGTATGTGTG -ACGGAACGTACACTCGTACTAGTG -ACGGAACGTACACTCGTACATCTG -ACGGAACGTACACTCGTAGAGTTG -ACGGAACGTACACTCGTAAGACTG -ACGGAACGTACACTCGTATCGGTA -ACGGAACGTACACTCGTATGCCTA -ACGGAACGTACACTCGTACCACTA -ACGGAACGTACACTCGTAGGAGTA -ACGGAACGTACACTCGTATCGTCT -ACGGAACGTACACTCGTATGCACT -ACGGAACGTACACTCGTACTGACT -ACGGAACGTACACTCGTACAACCT -ACGGAACGTACACTCGTAGCTACT -ACGGAACGTACACTCGTAGGATCT -ACGGAACGTACACTCGTAAAGGCT -ACGGAACGTACACTCGTATCAACC -ACGGAACGTACACTCGTATGTTCC -ACGGAACGTACACTCGTAATTCCC -ACGGAACGTACACTCGTATTCTCG -ACGGAACGTACACTCGTATAGACG -ACGGAACGTACACTCGTAGTAACG -ACGGAACGTACACTCGTAACTTCG -ACGGAACGTACACTCGTATACGCA -ACGGAACGTACACTCGTACTTGCA -ACGGAACGTACACTCGTACGAACA -ACGGAACGTACACTCGTACAGTCA -ACGGAACGTACACTCGTAGATCCA -ACGGAACGTACACTCGTAACGACA -ACGGAACGTACACTCGTAAGCTCA -ACGGAACGTACACTCGTATCACGT -ACGGAACGTACACTCGTACGTAGT -ACGGAACGTACACTCGTAGTCAGT -ACGGAACGTACACTCGTAGAAGGT -ACGGAACGTACACTCGTAAACCGT -ACGGAACGTACACTCGTATTGTGC -ACGGAACGTACACTCGTACTAAGC -ACGGAACGTACACTCGTAACTAGC -ACGGAACGTACACTCGTAAGATGC -ACGGAACGTACACTCGTATGAAGG -ACGGAACGTACACTCGTACAATGG -ACGGAACGTACACTCGTAATGAGG -ACGGAACGTACACTCGTAAATGGG -ACGGAACGTACACTCGTATCCTGA -ACGGAACGTACACTCGTATAGCGA -ACGGAACGTACACTCGTACACAGA -ACGGAACGTACACTCGTAGCAAGA -ACGGAACGTACACTCGTAGGTTGA -ACGGAACGTACACTCGTATCCGAT -ACGGAACGTACACTCGTATGGCAT -ACGGAACGTACACTCGTACGAGAT -ACGGAACGTACACTCGTATACCAC -ACGGAACGTACACTCGTACAGAAC -ACGGAACGTACACTCGTAGTCTAC -ACGGAACGTACACTCGTAACGTAC -ACGGAACGTACACTCGTAAGTGAC -ACGGAACGTACACTCGTACTGTAG -ACGGAACGTACACTCGTACCTAAG -ACGGAACGTACACTCGTAGTTCAG -ACGGAACGTACACTCGTAGCATAG -ACGGAACGTACACTCGTAGACAAG -ACGGAACGTACACTCGTAAAGCAG -ACGGAACGTACACTCGTACGTCAA -ACGGAACGTACACTCGTAGCTGAA -ACGGAACGTACACTCGTAAGTACG -ACGGAACGTACACTCGTAATCCGA -ACGGAACGTACACTCGTAATGGGA -ACGGAACGTACACTCGTAGTGCAA -ACGGAACGTACACTCGTAGAGGAA -ACGGAACGTACACTCGTACAGGTA -ACGGAACGTACACTCGTAGACTCT -ACGGAACGTACACTCGTAAGTCCT -ACGGAACGTACACTCGTATAAGCC -ACGGAACGTACACTCGTAATAGCC -ACGGAACGTACACTCGTATAACCG -ACGGAACGTACACTCGTAATGCCA -ACGGAACGTACAGTCGATGGAAAC -ACGGAACGTACAGTCGATAACACC -ACGGAACGTACAGTCGATATCGAG -ACGGAACGTACAGTCGATCTCCTT -ACGGAACGTACAGTCGATCCTGTT -ACGGAACGTACAGTCGATCGGTTT -ACGGAACGTACAGTCGATGTGGTT -ACGGAACGTACAGTCGATGCCTTT -ACGGAACGTACAGTCGATGGTCTT -ACGGAACGTACAGTCGATACGCTT -ACGGAACGTACAGTCGATAGCGTT -ACGGAACGTACAGTCGATTTCGTC -ACGGAACGTACAGTCGATTCTCTC -ACGGAACGTACAGTCGATTGGATC -ACGGAACGTACAGTCGATCACTTC -ACGGAACGTACAGTCGATGTACTC -ACGGAACGTACAGTCGATGATGTC -ACGGAACGTACAGTCGATACAGTC -ACGGAACGTACAGTCGATTTGCTG -ACGGAACGTACAGTCGATTCCATG -ACGGAACGTACAGTCGATTGTGTG -ACGGAACGTACAGTCGATCTAGTG -ACGGAACGTACAGTCGATCATCTG -ACGGAACGTACAGTCGATGAGTTG -ACGGAACGTACAGTCGATAGACTG -ACGGAACGTACAGTCGATTCGGTA -ACGGAACGTACAGTCGATTGCCTA -ACGGAACGTACAGTCGATCCACTA -ACGGAACGTACAGTCGATGGAGTA -ACGGAACGTACAGTCGATTCGTCT -ACGGAACGTACAGTCGATTGCACT -ACGGAACGTACAGTCGATCTGACT -ACGGAACGTACAGTCGATCAACCT -ACGGAACGTACAGTCGATGCTACT -ACGGAACGTACAGTCGATGGATCT -ACGGAACGTACAGTCGATAAGGCT -ACGGAACGTACAGTCGATTCAACC -ACGGAACGTACAGTCGATTGTTCC -ACGGAACGTACAGTCGATATTCCC -ACGGAACGTACAGTCGATTTCTCG -ACGGAACGTACAGTCGATTAGACG -ACGGAACGTACAGTCGATGTAACG -ACGGAACGTACAGTCGATACTTCG -ACGGAACGTACAGTCGATTACGCA -ACGGAACGTACAGTCGATCTTGCA -ACGGAACGTACAGTCGATCGAACA -ACGGAACGTACAGTCGATCAGTCA -ACGGAACGTACAGTCGATGATCCA -ACGGAACGTACAGTCGATACGACA -ACGGAACGTACAGTCGATAGCTCA -ACGGAACGTACAGTCGATTCACGT -ACGGAACGTACAGTCGATCGTAGT -ACGGAACGTACAGTCGATGTCAGT -ACGGAACGTACAGTCGATGAAGGT -ACGGAACGTACAGTCGATAACCGT -ACGGAACGTACAGTCGATTTGTGC -ACGGAACGTACAGTCGATCTAAGC -ACGGAACGTACAGTCGATACTAGC -ACGGAACGTACAGTCGATAGATGC -ACGGAACGTACAGTCGATTGAAGG -ACGGAACGTACAGTCGATCAATGG -ACGGAACGTACAGTCGATATGAGG -ACGGAACGTACAGTCGATAATGGG -ACGGAACGTACAGTCGATTCCTGA -ACGGAACGTACAGTCGATTAGCGA -ACGGAACGTACAGTCGATCACAGA -ACGGAACGTACAGTCGATGCAAGA -ACGGAACGTACAGTCGATGGTTGA -ACGGAACGTACAGTCGATTCCGAT -ACGGAACGTACAGTCGATTGGCAT -ACGGAACGTACAGTCGATCGAGAT -ACGGAACGTACAGTCGATTACCAC -ACGGAACGTACAGTCGATCAGAAC -ACGGAACGTACAGTCGATGTCTAC -ACGGAACGTACAGTCGATACGTAC -ACGGAACGTACAGTCGATAGTGAC -ACGGAACGTACAGTCGATCTGTAG -ACGGAACGTACAGTCGATCCTAAG -ACGGAACGTACAGTCGATGTTCAG -ACGGAACGTACAGTCGATGCATAG -ACGGAACGTACAGTCGATGACAAG -ACGGAACGTACAGTCGATAAGCAG -ACGGAACGTACAGTCGATCGTCAA -ACGGAACGTACAGTCGATGCTGAA -ACGGAACGTACAGTCGATAGTACG -ACGGAACGTACAGTCGATATCCGA -ACGGAACGTACAGTCGATATGGGA -ACGGAACGTACAGTCGATGTGCAA -ACGGAACGTACAGTCGATGAGGAA -ACGGAACGTACAGTCGATCAGGTA -ACGGAACGTACAGTCGATGACTCT -ACGGAACGTACAGTCGATAGTCCT -ACGGAACGTACAGTCGATTAAGCC -ACGGAACGTACAGTCGATATAGCC -ACGGAACGTACAGTCGATTAACCG -ACGGAACGTACAGTCGATATGCCA -ACGGAACGTACAGTCACAGGAAAC -ACGGAACGTACAGTCACAAACACC -ACGGAACGTACAGTCACAATCGAG -ACGGAACGTACAGTCACACTCCTT -ACGGAACGTACAGTCACACCTGTT -ACGGAACGTACAGTCACACGGTTT -ACGGAACGTACAGTCACAGTGGTT -ACGGAACGTACAGTCACAGCCTTT -ACGGAACGTACAGTCACAGGTCTT -ACGGAACGTACAGTCACAACGCTT -ACGGAACGTACAGTCACAAGCGTT -ACGGAACGTACAGTCACATTCGTC -ACGGAACGTACAGTCACATCTCTC -ACGGAACGTACAGTCACATGGATC -ACGGAACGTACAGTCACACACTTC -ACGGAACGTACAGTCACAGTACTC -ACGGAACGTACAGTCACAGATGTC -ACGGAACGTACAGTCACAACAGTC -ACGGAACGTACAGTCACATTGCTG -ACGGAACGTACAGTCACATCCATG -ACGGAACGTACAGTCACATGTGTG -ACGGAACGTACAGTCACACTAGTG -ACGGAACGTACAGTCACACATCTG -ACGGAACGTACAGTCACAGAGTTG -ACGGAACGTACAGTCACAAGACTG -ACGGAACGTACAGTCACATCGGTA -ACGGAACGTACAGTCACATGCCTA -ACGGAACGTACAGTCACACCACTA -ACGGAACGTACAGTCACAGGAGTA -ACGGAACGTACAGTCACATCGTCT -ACGGAACGTACAGTCACATGCACT -ACGGAACGTACAGTCACACTGACT -ACGGAACGTACAGTCACACAACCT -ACGGAACGTACAGTCACAGCTACT -ACGGAACGTACAGTCACAGGATCT -ACGGAACGTACAGTCACAAAGGCT -ACGGAACGTACAGTCACATCAACC -ACGGAACGTACAGTCACATGTTCC -ACGGAACGTACAGTCACAATTCCC -ACGGAACGTACAGTCACATTCTCG -ACGGAACGTACAGTCACATAGACG -ACGGAACGTACAGTCACAGTAACG -ACGGAACGTACAGTCACAACTTCG -ACGGAACGTACAGTCACATACGCA -ACGGAACGTACAGTCACACTTGCA -ACGGAACGTACAGTCACACGAACA -ACGGAACGTACAGTCACACAGTCA -ACGGAACGTACAGTCACAGATCCA -ACGGAACGTACAGTCACAACGACA -ACGGAACGTACAGTCACAAGCTCA -ACGGAACGTACAGTCACATCACGT -ACGGAACGTACAGTCACACGTAGT -ACGGAACGTACAGTCACAGTCAGT -ACGGAACGTACAGTCACAGAAGGT -ACGGAACGTACAGTCACAAACCGT -ACGGAACGTACAGTCACATTGTGC -ACGGAACGTACAGTCACACTAAGC -ACGGAACGTACAGTCACAACTAGC -ACGGAACGTACAGTCACAAGATGC -ACGGAACGTACAGTCACATGAAGG -ACGGAACGTACAGTCACACAATGG -ACGGAACGTACAGTCACAATGAGG -ACGGAACGTACAGTCACAAATGGG -ACGGAACGTACAGTCACATCCTGA -ACGGAACGTACAGTCACATAGCGA -ACGGAACGTACAGTCACACACAGA -ACGGAACGTACAGTCACAGCAAGA -ACGGAACGTACAGTCACAGGTTGA -ACGGAACGTACAGTCACATCCGAT -ACGGAACGTACAGTCACATGGCAT -ACGGAACGTACAGTCACACGAGAT -ACGGAACGTACAGTCACATACCAC -ACGGAACGTACAGTCACACAGAAC -ACGGAACGTACAGTCACAGTCTAC -ACGGAACGTACAGTCACAACGTAC -ACGGAACGTACAGTCACAAGTGAC -ACGGAACGTACAGTCACACTGTAG -ACGGAACGTACAGTCACACCTAAG -ACGGAACGTACAGTCACAGTTCAG -ACGGAACGTACAGTCACAGCATAG -ACGGAACGTACAGTCACAGACAAG -ACGGAACGTACAGTCACAAAGCAG -ACGGAACGTACAGTCACACGTCAA -ACGGAACGTACAGTCACAGCTGAA -ACGGAACGTACAGTCACAAGTACG -ACGGAACGTACAGTCACAATCCGA -ACGGAACGTACAGTCACAATGGGA -ACGGAACGTACAGTCACAGTGCAA -ACGGAACGTACAGTCACAGAGGAA -ACGGAACGTACAGTCACACAGGTA -ACGGAACGTACAGTCACAGACTCT -ACGGAACGTACAGTCACAAGTCCT -ACGGAACGTACAGTCACATAAGCC -ACGGAACGTACAGTCACAATAGCC -ACGGAACGTACAGTCACATAACCG -ACGGAACGTACAGTCACAATGCCA -ACGGAACGTACACTGTTGGGAAAC -ACGGAACGTACACTGTTGAACACC -ACGGAACGTACACTGTTGATCGAG -ACGGAACGTACACTGTTGCTCCTT -ACGGAACGTACACTGTTGCCTGTT -ACGGAACGTACACTGTTGCGGTTT -ACGGAACGTACACTGTTGGTGGTT -ACGGAACGTACACTGTTGGCCTTT -ACGGAACGTACACTGTTGGGTCTT -ACGGAACGTACACTGTTGACGCTT -ACGGAACGTACACTGTTGAGCGTT -ACGGAACGTACACTGTTGTTCGTC -ACGGAACGTACACTGTTGTCTCTC -ACGGAACGTACACTGTTGTGGATC -ACGGAACGTACACTGTTGCACTTC -ACGGAACGTACACTGTTGGTACTC -ACGGAACGTACACTGTTGGATGTC -ACGGAACGTACACTGTTGACAGTC -ACGGAACGTACACTGTTGTTGCTG -ACGGAACGTACACTGTTGTCCATG -ACGGAACGTACACTGTTGTGTGTG -ACGGAACGTACACTGTTGCTAGTG -ACGGAACGTACACTGTTGCATCTG -ACGGAACGTACACTGTTGGAGTTG -ACGGAACGTACACTGTTGAGACTG -ACGGAACGTACACTGTTGTCGGTA -ACGGAACGTACACTGTTGTGCCTA -ACGGAACGTACACTGTTGCCACTA -ACGGAACGTACACTGTTGGGAGTA -ACGGAACGTACACTGTTGTCGTCT -ACGGAACGTACACTGTTGTGCACT -ACGGAACGTACACTGTTGCTGACT -ACGGAACGTACACTGTTGCAACCT -ACGGAACGTACACTGTTGGCTACT -ACGGAACGTACACTGTTGGGATCT -ACGGAACGTACACTGTTGAAGGCT -ACGGAACGTACACTGTTGTCAACC -ACGGAACGTACACTGTTGTGTTCC -ACGGAACGTACACTGTTGATTCCC -ACGGAACGTACACTGTTGTTCTCG -ACGGAACGTACACTGTTGTAGACG -ACGGAACGTACACTGTTGGTAACG -ACGGAACGTACACTGTTGACTTCG -ACGGAACGTACACTGTTGTACGCA -ACGGAACGTACACTGTTGCTTGCA -ACGGAACGTACACTGTTGCGAACA -ACGGAACGTACACTGTTGCAGTCA -ACGGAACGTACACTGTTGGATCCA -ACGGAACGTACACTGTTGACGACA -ACGGAACGTACACTGTTGAGCTCA -ACGGAACGTACACTGTTGTCACGT -ACGGAACGTACACTGTTGCGTAGT -ACGGAACGTACACTGTTGGTCAGT -ACGGAACGTACACTGTTGGAAGGT -ACGGAACGTACACTGTTGAACCGT -ACGGAACGTACACTGTTGTTGTGC -ACGGAACGTACACTGTTGCTAAGC -ACGGAACGTACACTGTTGACTAGC -ACGGAACGTACACTGTTGAGATGC -ACGGAACGTACACTGTTGTGAAGG -ACGGAACGTACACTGTTGCAATGG -ACGGAACGTACACTGTTGATGAGG -ACGGAACGTACACTGTTGAATGGG -ACGGAACGTACACTGTTGTCCTGA -ACGGAACGTACACTGTTGTAGCGA -ACGGAACGTACACTGTTGCACAGA -ACGGAACGTACACTGTTGGCAAGA -ACGGAACGTACACTGTTGGGTTGA -ACGGAACGTACACTGTTGTCCGAT -ACGGAACGTACACTGTTGTGGCAT -ACGGAACGTACACTGTTGCGAGAT -ACGGAACGTACACTGTTGTACCAC -ACGGAACGTACACTGTTGCAGAAC -ACGGAACGTACACTGTTGGTCTAC -ACGGAACGTACACTGTTGACGTAC -ACGGAACGTACACTGTTGAGTGAC -ACGGAACGTACACTGTTGCTGTAG -ACGGAACGTACACTGTTGCCTAAG -ACGGAACGTACACTGTTGGTTCAG -ACGGAACGTACACTGTTGGCATAG -ACGGAACGTACACTGTTGGACAAG -ACGGAACGTACACTGTTGAAGCAG -ACGGAACGTACACTGTTGCGTCAA -ACGGAACGTACACTGTTGGCTGAA -ACGGAACGTACACTGTTGAGTACG -ACGGAACGTACACTGTTGATCCGA -ACGGAACGTACACTGTTGATGGGA -ACGGAACGTACACTGTTGGTGCAA -ACGGAACGTACACTGTTGGAGGAA -ACGGAACGTACACTGTTGCAGGTA -ACGGAACGTACACTGTTGGACTCT -ACGGAACGTACACTGTTGAGTCCT -ACGGAACGTACACTGTTGTAAGCC -ACGGAACGTACACTGTTGATAGCC -ACGGAACGTACACTGTTGTAACCG -ACGGAACGTACACTGTTGATGCCA -ACGGAACGTACAATGTCCGGAAAC -ACGGAACGTACAATGTCCAACACC -ACGGAACGTACAATGTCCATCGAG -ACGGAACGTACAATGTCCCTCCTT -ACGGAACGTACAATGTCCCCTGTT -ACGGAACGTACAATGTCCCGGTTT -ACGGAACGTACAATGTCCGTGGTT -ACGGAACGTACAATGTCCGCCTTT -ACGGAACGTACAATGTCCGGTCTT -ACGGAACGTACAATGTCCACGCTT -ACGGAACGTACAATGTCCAGCGTT -ACGGAACGTACAATGTCCTTCGTC -ACGGAACGTACAATGTCCTCTCTC -ACGGAACGTACAATGTCCTGGATC -ACGGAACGTACAATGTCCCACTTC -ACGGAACGTACAATGTCCGTACTC -ACGGAACGTACAATGTCCGATGTC -ACGGAACGTACAATGTCCACAGTC -ACGGAACGTACAATGTCCTTGCTG -ACGGAACGTACAATGTCCTCCATG -ACGGAACGTACAATGTCCTGTGTG -ACGGAACGTACAATGTCCCTAGTG -ACGGAACGTACAATGTCCCATCTG -ACGGAACGTACAATGTCCGAGTTG -ACGGAACGTACAATGTCCAGACTG -ACGGAACGTACAATGTCCTCGGTA -ACGGAACGTACAATGTCCTGCCTA -ACGGAACGTACAATGTCCCCACTA -ACGGAACGTACAATGTCCGGAGTA -ACGGAACGTACAATGTCCTCGTCT -ACGGAACGTACAATGTCCTGCACT -ACGGAACGTACAATGTCCCTGACT -ACGGAACGTACAATGTCCCAACCT -ACGGAACGTACAATGTCCGCTACT -ACGGAACGTACAATGTCCGGATCT -ACGGAACGTACAATGTCCAAGGCT -ACGGAACGTACAATGTCCTCAACC -ACGGAACGTACAATGTCCTGTTCC -ACGGAACGTACAATGTCCATTCCC -ACGGAACGTACAATGTCCTTCTCG -ACGGAACGTACAATGTCCTAGACG -ACGGAACGTACAATGTCCGTAACG -ACGGAACGTACAATGTCCACTTCG -ACGGAACGTACAATGTCCTACGCA -ACGGAACGTACAATGTCCCTTGCA -ACGGAACGTACAATGTCCCGAACA -ACGGAACGTACAATGTCCCAGTCA -ACGGAACGTACAATGTCCGATCCA -ACGGAACGTACAATGTCCACGACA -ACGGAACGTACAATGTCCAGCTCA -ACGGAACGTACAATGTCCTCACGT -ACGGAACGTACAATGTCCCGTAGT -ACGGAACGTACAATGTCCGTCAGT -ACGGAACGTACAATGTCCGAAGGT -ACGGAACGTACAATGTCCAACCGT -ACGGAACGTACAATGTCCTTGTGC -ACGGAACGTACAATGTCCCTAAGC -ACGGAACGTACAATGTCCACTAGC -ACGGAACGTACAATGTCCAGATGC -ACGGAACGTACAATGTCCTGAAGG -ACGGAACGTACAATGTCCCAATGG -ACGGAACGTACAATGTCCATGAGG -ACGGAACGTACAATGTCCAATGGG -ACGGAACGTACAATGTCCTCCTGA -ACGGAACGTACAATGTCCTAGCGA -ACGGAACGTACAATGTCCCACAGA -ACGGAACGTACAATGTCCGCAAGA -ACGGAACGTACAATGTCCGGTTGA -ACGGAACGTACAATGTCCTCCGAT -ACGGAACGTACAATGTCCTGGCAT -ACGGAACGTACAATGTCCCGAGAT -ACGGAACGTACAATGTCCTACCAC -ACGGAACGTACAATGTCCCAGAAC -ACGGAACGTACAATGTCCGTCTAC -ACGGAACGTACAATGTCCACGTAC -ACGGAACGTACAATGTCCAGTGAC -ACGGAACGTACAATGTCCCTGTAG -ACGGAACGTACAATGTCCCCTAAG -ACGGAACGTACAATGTCCGTTCAG -ACGGAACGTACAATGTCCGCATAG -ACGGAACGTACAATGTCCGACAAG -ACGGAACGTACAATGTCCAAGCAG -ACGGAACGTACAATGTCCCGTCAA -ACGGAACGTACAATGTCCGCTGAA -ACGGAACGTACAATGTCCAGTACG -ACGGAACGTACAATGTCCATCCGA -ACGGAACGTACAATGTCCATGGGA -ACGGAACGTACAATGTCCGTGCAA -ACGGAACGTACAATGTCCGAGGAA -ACGGAACGTACAATGTCCCAGGTA -ACGGAACGTACAATGTCCGACTCT -ACGGAACGTACAATGTCCAGTCCT -ACGGAACGTACAATGTCCTAAGCC -ACGGAACGTACAATGTCCATAGCC -ACGGAACGTACAATGTCCTAACCG -ACGGAACGTACAATGTCCATGCCA -ACGGAACGTACAGTGTGTGGAAAC -ACGGAACGTACAGTGTGTAACACC -ACGGAACGTACAGTGTGTATCGAG -ACGGAACGTACAGTGTGTCTCCTT -ACGGAACGTACAGTGTGTCCTGTT -ACGGAACGTACAGTGTGTCGGTTT -ACGGAACGTACAGTGTGTGTGGTT -ACGGAACGTACAGTGTGTGCCTTT -ACGGAACGTACAGTGTGTGGTCTT -ACGGAACGTACAGTGTGTACGCTT -ACGGAACGTACAGTGTGTAGCGTT -ACGGAACGTACAGTGTGTTTCGTC -ACGGAACGTACAGTGTGTTCTCTC -ACGGAACGTACAGTGTGTTGGATC -ACGGAACGTACAGTGTGTCACTTC -ACGGAACGTACAGTGTGTGTACTC -ACGGAACGTACAGTGTGTGATGTC -ACGGAACGTACAGTGTGTACAGTC -ACGGAACGTACAGTGTGTTTGCTG -ACGGAACGTACAGTGTGTTCCATG -ACGGAACGTACAGTGTGTTGTGTG -ACGGAACGTACAGTGTGTCTAGTG -ACGGAACGTACAGTGTGTCATCTG -ACGGAACGTACAGTGTGTGAGTTG -ACGGAACGTACAGTGTGTAGACTG -ACGGAACGTACAGTGTGTTCGGTA -ACGGAACGTACAGTGTGTTGCCTA -ACGGAACGTACAGTGTGTCCACTA -ACGGAACGTACAGTGTGTGGAGTA -ACGGAACGTACAGTGTGTTCGTCT -ACGGAACGTACAGTGTGTTGCACT -ACGGAACGTACAGTGTGTCTGACT -ACGGAACGTACAGTGTGTCAACCT -ACGGAACGTACAGTGTGTGCTACT -ACGGAACGTACAGTGTGTGGATCT -ACGGAACGTACAGTGTGTAAGGCT -ACGGAACGTACAGTGTGTTCAACC -ACGGAACGTACAGTGTGTTGTTCC -ACGGAACGTACAGTGTGTATTCCC -ACGGAACGTACAGTGTGTTTCTCG -ACGGAACGTACAGTGTGTTAGACG -ACGGAACGTACAGTGTGTGTAACG -ACGGAACGTACAGTGTGTACTTCG -ACGGAACGTACAGTGTGTTACGCA -ACGGAACGTACAGTGTGTCTTGCA -ACGGAACGTACAGTGTGTCGAACA -ACGGAACGTACAGTGTGTCAGTCA -ACGGAACGTACAGTGTGTGATCCA -ACGGAACGTACAGTGTGTACGACA -ACGGAACGTACAGTGTGTAGCTCA -ACGGAACGTACAGTGTGTTCACGT -ACGGAACGTACAGTGTGTCGTAGT -ACGGAACGTACAGTGTGTGTCAGT -ACGGAACGTACAGTGTGTGAAGGT -ACGGAACGTACAGTGTGTAACCGT -ACGGAACGTACAGTGTGTTTGTGC -ACGGAACGTACAGTGTGTCTAAGC -ACGGAACGTACAGTGTGTACTAGC -ACGGAACGTACAGTGTGTAGATGC -ACGGAACGTACAGTGTGTTGAAGG -ACGGAACGTACAGTGTGTCAATGG -ACGGAACGTACAGTGTGTATGAGG -ACGGAACGTACAGTGTGTAATGGG -ACGGAACGTACAGTGTGTTCCTGA -ACGGAACGTACAGTGTGTTAGCGA -ACGGAACGTACAGTGTGTCACAGA -ACGGAACGTACAGTGTGTGCAAGA -ACGGAACGTACAGTGTGTGGTTGA -ACGGAACGTACAGTGTGTTCCGAT -ACGGAACGTACAGTGTGTTGGCAT -ACGGAACGTACAGTGTGTCGAGAT -ACGGAACGTACAGTGTGTTACCAC -ACGGAACGTACAGTGTGTCAGAAC -ACGGAACGTACAGTGTGTGTCTAC -ACGGAACGTACAGTGTGTACGTAC -ACGGAACGTACAGTGTGTAGTGAC -ACGGAACGTACAGTGTGTCTGTAG -ACGGAACGTACAGTGTGTCCTAAG -ACGGAACGTACAGTGTGTGTTCAG -ACGGAACGTACAGTGTGTGCATAG -ACGGAACGTACAGTGTGTGACAAG -ACGGAACGTACAGTGTGTAAGCAG -ACGGAACGTACAGTGTGTCGTCAA -ACGGAACGTACAGTGTGTGCTGAA -ACGGAACGTACAGTGTGTAGTACG -ACGGAACGTACAGTGTGTATCCGA -ACGGAACGTACAGTGTGTATGGGA -ACGGAACGTACAGTGTGTGTGCAA -ACGGAACGTACAGTGTGTGAGGAA -ACGGAACGTACAGTGTGTCAGGTA -ACGGAACGTACAGTGTGTGACTCT -ACGGAACGTACAGTGTGTAGTCCT -ACGGAACGTACAGTGTGTTAAGCC -ACGGAACGTACAGTGTGTATAGCC -ACGGAACGTACAGTGTGTTAACCG -ACGGAACGTACAGTGTGTATGCCA -ACGGAACGTACAGTGCTAGGAAAC -ACGGAACGTACAGTGCTAAACACC -ACGGAACGTACAGTGCTAATCGAG -ACGGAACGTACAGTGCTACTCCTT -ACGGAACGTACAGTGCTACCTGTT -ACGGAACGTACAGTGCTACGGTTT -ACGGAACGTACAGTGCTAGTGGTT -ACGGAACGTACAGTGCTAGCCTTT -ACGGAACGTACAGTGCTAGGTCTT -ACGGAACGTACAGTGCTAACGCTT -ACGGAACGTACAGTGCTAAGCGTT -ACGGAACGTACAGTGCTATTCGTC -ACGGAACGTACAGTGCTATCTCTC -ACGGAACGTACAGTGCTATGGATC -ACGGAACGTACAGTGCTACACTTC -ACGGAACGTACAGTGCTAGTACTC -ACGGAACGTACAGTGCTAGATGTC -ACGGAACGTACAGTGCTAACAGTC -ACGGAACGTACAGTGCTATTGCTG -ACGGAACGTACAGTGCTATCCATG -ACGGAACGTACAGTGCTATGTGTG -ACGGAACGTACAGTGCTACTAGTG -ACGGAACGTACAGTGCTACATCTG -ACGGAACGTACAGTGCTAGAGTTG -ACGGAACGTACAGTGCTAAGACTG -ACGGAACGTACAGTGCTATCGGTA -ACGGAACGTACAGTGCTATGCCTA -ACGGAACGTACAGTGCTACCACTA -ACGGAACGTACAGTGCTAGGAGTA -ACGGAACGTACAGTGCTATCGTCT -ACGGAACGTACAGTGCTATGCACT -ACGGAACGTACAGTGCTACTGACT -ACGGAACGTACAGTGCTACAACCT -ACGGAACGTACAGTGCTAGCTACT -ACGGAACGTACAGTGCTAGGATCT -ACGGAACGTACAGTGCTAAAGGCT -ACGGAACGTACAGTGCTATCAACC -ACGGAACGTACAGTGCTATGTTCC -ACGGAACGTACAGTGCTAATTCCC -ACGGAACGTACAGTGCTATTCTCG -ACGGAACGTACAGTGCTATAGACG -ACGGAACGTACAGTGCTAGTAACG -ACGGAACGTACAGTGCTAACTTCG -ACGGAACGTACAGTGCTATACGCA -ACGGAACGTACAGTGCTACTTGCA -ACGGAACGTACAGTGCTACGAACA -ACGGAACGTACAGTGCTACAGTCA -ACGGAACGTACAGTGCTAGATCCA -ACGGAACGTACAGTGCTAACGACA -ACGGAACGTACAGTGCTAAGCTCA -ACGGAACGTACAGTGCTATCACGT -ACGGAACGTACAGTGCTACGTAGT -ACGGAACGTACAGTGCTAGTCAGT -ACGGAACGTACAGTGCTAGAAGGT -ACGGAACGTACAGTGCTAAACCGT -ACGGAACGTACAGTGCTATTGTGC -ACGGAACGTACAGTGCTACTAAGC -ACGGAACGTACAGTGCTAACTAGC -ACGGAACGTACAGTGCTAAGATGC -ACGGAACGTACAGTGCTATGAAGG -ACGGAACGTACAGTGCTACAATGG -ACGGAACGTACAGTGCTAATGAGG -ACGGAACGTACAGTGCTAAATGGG -ACGGAACGTACAGTGCTATCCTGA -ACGGAACGTACAGTGCTATAGCGA -ACGGAACGTACAGTGCTACACAGA -ACGGAACGTACAGTGCTAGCAAGA -ACGGAACGTACAGTGCTAGGTTGA -ACGGAACGTACAGTGCTATCCGAT -ACGGAACGTACAGTGCTATGGCAT -ACGGAACGTACAGTGCTACGAGAT -ACGGAACGTACAGTGCTATACCAC -ACGGAACGTACAGTGCTACAGAAC -ACGGAACGTACAGTGCTAGTCTAC -ACGGAACGTACAGTGCTAACGTAC -ACGGAACGTACAGTGCTAAGTGAC -ACGGAACGTACAGTGCTACTGTAG -ACGGAACGTACAGTGCTACCTAAG -ACGGAACGTACAGTGCTAGTTCAG -ACGGAACGTACAGTGCTAGCATAG -ACGGAACGTACAGTGCTAGACAAG -ACGGAACGTACAGTGCTAAAGCAG -ACGGAACGTACAGTGCTACGTCAA -ACGGAACGTACAGTGCTAGCTGAA -ACGGAACGTACAGTGCTAAGTACG -ACGGAACGTACAGTGCTAATCCGA -ACGGAACGTACAGTGCTAATGGGA -ACGGAACGTACAGTGCTAGTGCAA -ACGGAACGTACAGTGCTAGAGGAA -ACGGAACGTACAGTGCTACAGGTA -ACGGAACGTACAGTGCTAGACTCT -ACGGAACGTACAGTGCTAAGTCCT -ACGGAACGTACAGTGCTATAAGCC -ACGGAACGTACAGTGCTAATAGCC -ACGGAACGTACAGTGCTATAACCG -ACGGAACGTACAGTGCTAATGCCA -ACGGAACGTACACTGCATGGAAAC -ACGGAACGTACACTGCATAACACC -ACGGAACGTACACTGCATATCGAG -ACGGAACGTACACTGCATCTCCTT -ACGGAACGTACACTGCATCCTGTT -ACGGAACGTACACTGCATCGGTTT -ACGGAACGTACACTGCATGTGGTT -ACGGAACGTACACTGCATGCCTTT -ACGGAACGTACACTGCATGGTCTT -ACGGAACGTACACTGCATACGCTT -ACGGAACGTACACTGCATAGCGTT -ACGGAACGTACACTGCATTTCGTC -ACGGAACGTACACTGCATTCTCTC -ACGGAACGTACACTGCATTGGATC -ACGGAACGTACACTGCATCACTTC -ACGGAACGTACACTGCATGTACTC -ACGGAACGTACACTGCATGATGTC -ACGGAACGTACACTGCATACAGTC -ACGGAACGTACACTGCATTTGCTG -ACGGAACGTACACTGCATTCCATG -ACGGAACGTACACTGCATTGTGTG -ACGGAACGTACACTGCATCTAGTG -ACGGAACGTACACTGCATCATCTG -ACGGAACGTACACTGCATGAGTTG -ACGGAACGTACACTGCATAGACTG -ACGGAACGTACACTGCATTCGGTA -ACGGAACGTACACTGCATTGCCTA -ACGGAACGTACACTGCATCCACTA -ACGGAACGTACACTGCATGGAGTA -ACGGAACGTACACTGCATTCGTCT -ACGGAACGTACACTGCATTGCACT -ACGGAACGTACACTGCATCTGACT -ACGGAACGTACACTGCATCAACCT -ACGGAACGTACACTGCATGCTACT -ACGGAACGTACACTGCATGGATCT -ACGGAACGTACACTGCATAAGGCT -ACGGAACGTACACTGCATTCAACC -ACGGAACGTACACTGCATTGTTCC -ACGGAACGTACACTGCATATTCCC -ACGGAACGTACACTGCATTTCTCG -ACGGAACGTACACTGCATTAGACG -ACGGAACGTACACTGCATGTAACG -ACGGAACGTACACTGCATACTTCG -ACGGAACGTACACTGCATTACGCA -ACGGAACGTACACTGCATCTTGCA -ACGGAACGTACACTGCATCGAACA -ACGGAACGTACACTGCATCAGTCA -ACGGAACGTACACTGCATGATCCA -ACGGAACGTACACTGCATACGACA -ACGGAACGTACACTGCATAGCTCA -ACGGAACGTACACTGCATTCACGT -ACGGAACGTACACTGCATCGTAGT -ACGGAACGTACACTGCATGTCAGT -ACGGAACGTACACTGCATGAAGGT -ACGGAACGTACACTGCATAACCGT -ACGGAACGTACACTGCATTTGTGC -ACGGAACGTACACTGCATCTAAGC -ACGGAACGTACACTGCATACTAGC -ACGGAACGTACACTGCATAGATGC -ACGGAACGTACACTGCATTGAAGG -ACGGAACGTACACTGCATCAATGG -ACGGAACGTACACTGCATATGAGG -ACGGAACGTACACTGCATAATGGG -ACGGAACGTACACTGCATTCCTGA -ACGGAACGTACACTGCATTAGCGA -ACGGAACGTACACTGCATCACAGA -ACGGAACGTACACTGCATGCAAGA -ACGGAACGTACACTGCATGGTTGA -ACGGAACGTACACTGCATTCCGAT -ACGGAACGTACACTGCATTGGCAT -ACGGAACGTACACTGCATCGAGAT -ACGGAACGTACACTGCATTACCAC -ACGGAACGTACACTGCATCAGAAC -ACGGAACGTACACTGCATGTCTAC -ACGGAACGTACACTGCATACGTAC -ACGGAACGTACACTGCATAGTGAC -ACGGAACGTACACTGCATCTGTAG -ACGGAACGTACACTGCATCCTAAG -ACGGAACGTACACTGCATGTTCAG -ACGGAACGTACACTGCATGCATAG -ACGGAACGTACACTGCATGACAAG -ACGGAACGTACACTGCATAAGCAG -ACGGAACGTACACTGCATCGTCAA -ACGGAACGTACACTGCATGCTGAA -ACGGAACGTACACTGCATAGTACG -ACGGAACGTACACTGCATATCCGA -ACGGAACGTACACTGCATATGGGA -ACGGAACGTACACTGCATGTGCAA -ACGGAACGTACACTGCATGAGGAA -ACGGAACGTACACTGCATCAGGTA -ACGGAACGTACACTGCATGACTCT -ACGGAACGTACACTGCATAGTCCT -ACGGAACGTACACTGCATTAAGCC -ACGGAACGTACACTGCATATAGCC -ACGGAACGTACACTGCATTAACCG -ACGGAACGTACACTGCATATGCCA -ACGGAACGTACATTGGAGGGAAAC -ACGGAACGTACATTGGAGAACACC -ACGGAACGTACATTGGAGATCGAG -ACGGAACGTACATTGGAGCTCCTT -ACGGAACGTACATTGGAGCCTGTT -ACGGAACGTACATTGGAGCGGTTT -ACGGAACGTACATTGGAGGTGGTT -ACGGAACGTACATTGGAGGCCTTT -ACGGAACGTACATTGGAGGGTCTT -ACGGAACGTACATTGGAGACGCTT -ACGGAACGTACATTGGAGAGCGTT -ACGGAACGTACATTGGAGTTCGTC -ACGGAACGTACATTGGAGTCTCTC -ACGGAACGTACATTGGAGTGGATC -ACGGAACGTACATTGGAGCACTTC -ACGGAACGTACATTGGAGGTACTC -ACGGAACGTACATTGGAGGATGTC -ACGGAACGTACATTGGAGACAGTC -ACGGAACGTACATTGGAGTTGCTG -ACGGAACGTACATTGGAGTCCATG -ACGGAACGTACATTGGAGTGTGTG -ACGGAACGTACATTGGAGCTAGTG -ACGGAACGTACATTGGAGCATCTG -ACGGAACGTACATTGGAGGAGTTG -ACGGAACGTACATTGGAGAGACTG -ACGGAACGTACATTGGAGTCGGTA -ACGGAACGTACATTGGAGTGCCTA -ACGGAACGTACATTGGAGCCACTA -ACGGAACGTACATTGGAGGGAGTA -ACGGAACGTACATTGGAGTCGTCT -ACGGAACGTACATTGGAGTGCACT -ACGGAACGTACATTGGAGCTGACT -ACGGAACGTACATTGGAGCAACCT -ACGGAACGTACATTGGAGGCTACT -ACGGAACGTACATTGGAGGGATCT -ACGGAACGTACATTGGAGAAGGCT -ACGGAACGTACATTGGAGTCAACC -ACGGAACGTACATTGGAGTGTTCC -ACGGAACGTACATTGGAGATTCCC -ACGGAACGTACATTGGAGTTCTCG -ACGGAACGTACATTGGAGTAGACG -ACGGAACGTACATTGGAGGTAACG -ACGGAACGTACATTGGAGACTTCG -ACGGAACGTACATTGGAGTACGCA -ACGGAACGTACATTGGAGCTTGCA -ACGGAACGTACATTGGAGCGAACA -ACGGAACGTACATTGGAGCAGTCA -ACGGAACGTACATTGGAGGATCCA -ACGGAACGTACATTGGAGACGACA -ACGGAACGTACATTGGAGAGCTCA -ACGGAACGTACATTGGAGTCACGT -ACGGAACGTACATTGGAGCGTAGT -ACGGAACGTACATTGGAGGTCAGT -ACGGAACGTACATTGGAGGAAGGT -ACGGAACGTACATTGGAGAACCGT -ACGGAACGTACATTGGAGTTGTGC -ACGGAACGTACATTGGAGCTAAGC -ACGGAACGTACATTGGAGACTAGC -ACGGAACGTACATTGGAGAGATGC -ACGGAACGTACATTGGAGTGAAGG -ACGGAACGTACATTGGAGCAATGG -ACGGAACGTACATTGGAGATGAGG -ACGGAACGTACATTGGAGAATGGG -ACGGAACGTACATTGGAGTCCTGA -ACGGAACGTACATTGGAGTAGCGA -ACGGAACGTACATTGGAGCACAGA -ACGGAACGTACATTGGAGGCAAGA -ACGGAACGTACATTGGAGGGTTGA -ACGGAACGTACATTGGAGTCCGAT -ACGGAACGTACATTGGAGTGGCAT -ACGGAACGTACATTGGAGCGAGAT -ACGGAACGTACATTGGAGTACCAC -ACGGAACGTACATTGGAGCAGAAC -ACGGAACGTACATTGGAGGTCTAC -ACGGAACGTACATTGGAGACGTAC -ACGGAACGTACATTGGAGAGTGAC -ACGGAACGTACATTGGAGCTGTAG -ACGGAACGTACATTGGAGCCTAAG -ACGGAACGTACATTGGAGGTTCAG -ACGGAACGTACATTGGAGGCATAG -ACGGAACGTACATTGGAGGACAAG -ACGGAACGTACATTGGAGAAGCAG -ACGGAACGTACATTGGAGCGTCAA -ACGGAACGTACATTGGAGGCTGAA -ACGGAACGTACATTGGAGAGTACG -ACGGAACGTACATTGGAGATCCGA -ACGGAACGTACATTGGAGATGGGA -ACGGAACGTACATTGGAGGTGCAA -ACGGAACGTACATTGGAGGAGGAA -ACGGAACGTACATTGGAGCAGGTA -ACGGAACGTACATTGGAGGACTCT -ACGGAACGTACATTGGAGAGTCCT -ACGGAACGTACATTGGAGTAAGCC -ACGGAACGTACATTGGAGATAGCC -ACGGAACGTACATTGGAGTAACCG -ACGGAACGTACATTGGAGATGCCA -ACGGAACGTACACTGAGAGGAAAC -ACGGAACGTACACTGAGAAACACC -ACGGAACGTACACTGAGAATCGAG -ACGGAACGTACACTGAGACTCCTT -ACGGAACGTACACTGAGACCTGTT -ACGGAACGTACACTGAGACGGTTT -ACGGAACGTACACTGAGAGTGGTT -ACGGAACGTACACTGAGAGCCTTT -ACGGAACGTACACTGAGAGGTCTT -ACGGAACGTACACTGAGAACGCTT -ACGGAACGTACACTGAGAAGCGTT -ACGGAACGTACACTGAGATTCGTC -ACGGAACGTACACTGAGATCTCTC -ACGGAACGTACACTGAGATGGATC -ACGGAACGTACACTGAGACACTTC -ACGGAACGTACACTGAGAGTACTC -ACGGAACGTACACTGAGAGATGTC -ACGGAACGTACACTGAGAACAGTC -ACGGAACGTACACTGAGATTGCTG -ACGGAACGTACACTGAGATCCATG -ACGGAACGTACACTGAGATGTGTG -ACGGAACGTACACTGAGACTAGTG -ACGGAACGTACACTGAGACATCTG -ACGGAACGTACACTGAGAGAGTTG -ACGGAACGTACACTGAGAAGACTG -ACGGAACGTACACTGAGATCGGTA -ACGGAACGTACACTGAGATGCCTA -ACGGAACGTACACTGAGACCACTA -ACGGAACGTACACTGAGAGGAGTA -ACGGAACGTACACTGAGATCGTCT -ACGGAACGTACACTGAGATGCACT -ACGGAACGTACACTGAGACTGACT -ACGGAACGTACACTGAGACAACCT -ACGGAACGTACACTGAGAGCTACT -ACGGAACGTACACTGAGAGGATCT -ACGGAACGTACACTGAGAAAGGCT -ACGGAACGTACACTGAGATCAACC -ACGGAACGTACACTGAGATGTTCC -ACGGAACGTACACTGAGAATTCCC -ACGGAACGTACACTGAGATTCTCG -ACGGAACGTACACTGAGATAGACG -ACGGAACGTACACTGAGAGTAACG -ACGGAACGTACACTGAGAACTTCG -ACGGAACGTACACTGAGATACGCA -ACGGAACGTACACTGAGACTTGCA -ACGGAACGTACACTGAGACGAACA -ACGGAACGTACACTGAGACAGTCA -ACGGAACGTACACTGAGAGATCCA -ACGGAACGTACACTGAGAACGACA -ACGGAACGTACACTGAGAAGCTCA -ACGGAACGTACACTGAGATCACGT -ACGGAACGTACACTGAGACGTAGT -ACGGAACGTACACTGAGAGTCAGT -ACGGAACGTACACTGAGAGAAGGT -ACGGAACGTACACTGAGAAACCGT -ACGGAACGTACACTGAGATTGTGC -ACGGAACGTACACTGAGACTAAGC -ACGGAACGTACACTGAGAACTAGC -ACGGAACGTACACTGAGAAGATGC -ACGGAACGTACACTGAGATGAAGG -ACGGAACGTACACTGAGACAATGG -ACGGAACGTACACTGAGAATGAGG -ACGGAACGTACACTGAGAAATGGG -ACGGAACGTACACTGAGATCCTGA -ACGGAACGTACACTGAGATAGCGA -ACGGAACGTACACTGAGACACAGA -ACGGAACGTACACTGAGAGCAAGA -ACGGAACGTACACTGAGAGGTTGA -ACGGAACGTACACTGAGATCCGAT -ACGGAACGTACACTGAGATGGCAT -ACGGAACGTACACTGAGACGAGAT -ACGGAACGTACACTGAGATACCAC -ACGGAACGTACACTGAGACAGAAC -ACGGAACGTACACTGAGAGTCTAC -ACGGAACGTACACTGAGAACGTAC -ACGGAACGTACACTGAGAAGTGAC -ACGGAACGTACACTGAGACTGTAG -ACGGAACGTACACTGAGACCTAAG -ACGGAACGTACACTGAGAGTTCAG -ACGGAACGTACACTGAGAGCATAG -ACGGAACGTACACTGAGAGACAAG -ACGGAACGTACACTGAGAAAGCAG -ACGGAACGTACACTGAGACGTCAA -ACGGAACGTACACTGAGAGCTGAA -ACGGAACGTACACTGAGAAGTACG -ACGGAACGTACACTGAGAATCCGA -ACGGAACGTACACTGAGAATGGGA -ACGGAACGTACACTGAGAGTGCAA -ACGGAACGTACACTGAGAGAGGAA -ACGGAACGTACACTGAGACAGGTA -ACGGAACGTACACTGAGAGACTCT -ACGGAACGTACACTGAGAAGTCCT -ACGGAACGTACACTGAGATAAGCC -ACGGAACGTACACTGAGAATAGCC -ACGGAACGTACACTGAGATAACCG -ACGGAACGTACACTGAGAATGCCA -ACGGAACGTACAGTATCGGGAAAC -ACGGAACGTACAGTATCGAACACC -ACGGAACGTACAGTATCGATCGAG -ACGGAACGTACAGTATCGCTCCTT -ACGGAACGTACAGTATCGCCTGTT -ACGGAACGTACAGTATCGCGGTTT -ACGGAACGTACAGTATCGGTGGTT -ACGGAACGTACAGTATCGGCCTTT -ACGGAACGTACAGTATCGGGTCTT -ACGGAACGTACAGTATCGACGCTT -ACGGAACGTACAGTATCGAGCGTT -ACGGAACGTACAGTATCGTTCGTC -ACGGAACGTACAGTATCGTCTCTC -ACGGAACGTACAGTATCGTGGATC -ACGGAACGTACAGTATCGCACTTC -ACGGAACGTACAGTATCGGTACTC -ACGGAACGTACAGTATCGGATGTC -ACGGAACGTACAGTATCGACAGTC -ACGGAACGTACAGTATCGTTGCTG -ACGGAACGTACAGTATCGTCCATG -ACGGAACGTACAGTATCGTGTGTG -ACGGAACGTACAGTATCGCTAGTG -ACGGAACGTACAGTATCGCATCTG -ACGGAACGTACAGTATCGGAGTTG -ACGGAACGTACAGTATCGAGACTG -ACGGAACGTACAGTATCGTCGGTA -ACGGAACGTACAGTATCGTGCCTA -ACGGAACGTACAGTATCGCCACTA -ACGGAACGTACAGTATCGGGAGTA -ACGGAACGTACAGTATCGTCGTCT -ACGGAACGTACAGTATCGTGCACT -ACGGAACGTACAGTATCGCTGACT -ACGGAACGTACAGTATCGCAACCT -ACGGAACGTACAGTATCGGCTACT -ACGGAACGTACAGTATCGGGATCT -ACGGAACGTACAGTATCGAAGGCT -ACGGAACGTACAGTATCGTCAACC -ACGGAACGTACAGTATCGTGTTCC -ACGGAACGTACAGTATCGATTCCC -ACGGAACGTACAGTATCGTTCTCG -ACGGAACGTACAGTATCGTAGACG -ACGGAACGTACAGTATCGGTAACG -ACGGAACGTACAGTATCGACTTCG -ACGGAACGTACAGTATCGTACGCA -ACGGAACGTACAGTATCGCTTGCA -ACGGAACGTACAGTATCGCGAACA -ACGGAACGTACAGTATCGCAGTCA -ACGGAACGTACAGTATCGGATCCA -ACGGAACGTACAGTATCGACGACA -ACGGAACGTACAGTATCGAGCTCA -ACGGAACGTACAGTATCGTCACGT -ACGGAACGTACAGTATCGCGTAGT -ACGGAACGTACAGTATCGGTCAGT -ACGGAACGTACAGTATCGGAAGGT -ACGGAACGTACAGTATCGAACCGT -ACGGAACGTACAGTATCGTTGTGC -ACGGAACGTACAGTATCGCTAAGC -ACGGAACGTACAGTATCGACTAGC -ACGGAACGTACAGTATCGAGATGC -ACGGAACGTACAGTATCGTGAAGG -ACGGAACGTACAGTATCGCAATGG -ACGGAACGTACAGTATCGATGAGG -ACGGAACGTACAGTATCGAATGGG -ACGGAACGTACAGTATCGTCCTGA -ACGGAACGTACAGTATCGTAGCGA -ACGGAACGTACAGTATCGCACAGA -ACGGAACGTACAGTATCGGCAAGA -ACGGAACGTACAGTATCGGGTTGA -ACGGAACGTACAGTATCGTCCGAT -ACGGAACGTACAGTATCGTGGCAT -ACGGAACGTACAGTATCGCGAGAT -ACGGAACGTACAGTATCGTACCAC -ACGGAACGTACAGTATCGCAGAAC -ACGGAACGTACAGTATCGGTCTAC -ACGGAACGTACAGTATCGACGTAC -ACGGAACGTACAGTATCGAGTGAC -ACGGAACGTACAGTATCGCTGTAG -ACGGAACGTACAGTATCGCCTAAG -ACGGAACGTACAGTATCGGTTCAG -ACGGAACGTACAGTATCGGCATAG -ACGGAACGTACAGTATCGGACAAG -ACGGAACGTACAGTATCGAAGCAG -ACGGAACGTACAGTATCGCGTCAA -ACGGAACGTACAGTATCGGCTGAA -ACGGAACGTACAGTATCGAGTACG -ACGGAACGTACAGTATCGATCCGA -ACGGAACGTACAGTATCGATGGGA -ACGGAACGTACAGTATCGGTGCAA -ACGGAACGTACAGTATCGGAGGAA -ACGGAACGTACAGTATCGCAGGTA -ACGGAACGTACAGTATCGGACTCT -ACGGAACGTACAGTATCGAGTCCT -ACGGAACGTACAGTATCGTAAGCC -ACGGAACGTACAGTATCGATAGCC -ACGGAACGTACAGTATCGTAACCG -ACGGAACGTACAGTATCGATGCCA -ACGGAACGTACACTATGCGGAAAC -ACGGAACGTACACTATGCAACACC -ACGGAACGTACACTATGCATCGAG -ACGGAACGTACACTATGCCTCCTT -ACGGAACGTACACTATGCCCTGTT -ACGGAACGTACACTATGCCGGTTT -ACGGAACGTACACTATGCGTGGTT -ACGGAACGTACACTATGCGCCTTT -ACGGAACGTACACTATGCGGTCTT -ACGGAACGTACACTATGCACGCTT -ACGGAACGTACACTATGCAGCGTT -ACGGAACGTACACTATGCTTCGTC -ACGGAACGTACACTATGCTCTCTC -ACGGAACGTACACTATGCTGGATC -ACGGAACGTACACTATGCCACTTC -ACGGAACGTACACTATGCGTACTC -ACGGAACGTACACTATGCGATGTC -ACGGAACGTACACTATGCACAGTC -ACGGAACGTACACTATGCTTGCTG -ACGGAACGTACACTATGCTCCATG -ACGGAACGTACACTATGCTGTGTG -ACGGAACGTACACTATGCCTAGTG -ACGGAACGTACACTATGCCATCTG -ACGGAACGTACACTATGCGAGTTG -ACGGAACGTACACTATGCAGACTG -ACGGAACGTACACTATGCTCGGTA -ACGGAACGTACACTATGCTGCCTA -ACGGAACGTACACTATGCCCACTA -ACGGAACGTACACTATGCGGAGTA -ACGGAACGTACACTATGCTCGTCT -ACGGAACGTACACTATGCTGCACT -ACGGAACGTACACTATGCCTGACT -ACGGAACGTACACTATGCCAACCT -ACGGAACGTACACTATGCGCTACT -ACGGAACGTACACTATGCGGATCT -ACGGAACGTACACTATGCAAGGCT -ACGGAACGTACACTATGCTCAACC -ACGGAACGTACACTATGCTGTTCC -ACGGAACGTACACTATGCATTCCC -ACGGAACGTACACTATGCTTCTCG -ACGGAACGTACACTATGCTAGACG -ACGGAACGTACACTATGCGTAACG -ACGGAACGTACACTATGCACTTCG -ACGGAACGTACACTATGCTACGCA -ACGGAACGTACACTATGCCTTGCA -ACGGAACGTACACTATGCCGAACA -ACGGAACGTACACTATGCCAGTCA -ACGGAACGTACACTATGCGATCCA -ACGGAACGTACACTATGCACGACA -ACGGAACGTACACTATGCAGCTCA -ACGGAACGTACACTATGCTCACGT -ACGGAACGTACACTATGCCGTAGT -ACGGAACGTACACTATGCGTCAGT -ACGGAACGTACACTATGCGAAGGT -ACGGAACGTACACTATGCAACCGT -ACGGAACGTACACTATGCTTGTGC -ACGGAACGTACACTATGCCTAAGC -ACGGAACGTACACTATGCACTAGC -ACGGAACGTACACTATGCAGATGC -ACGGAACGTACACTATGCTGAAGG -ACGGAACGTACACTATGCCAATGG -ACGGAACGTACACTATGCATGAGG -ACGGAACGTACACTATGCAATGGG -ACGGAACGTACACTATGCTCCTGA -ACGGAACGTACACTATGCTAGCGA -ACGGAACGTACACTATGCCACAGA -ACGGAACGTACACTATGCGCAAGA -ACGGAACGTACACTATGCGGTTGA -ACGGAACGTACACTATGCTCCGAT -ACGGAACGTACACTATGCTGGCAT -ACGGAACGTACACTATGCCGAGAT -ACGGAACGTACACTATGCTACCAC -ACGGAACGTACACTATGCCAGAAC -ACGGAACGTACACTATGCGTCTAC -ACGGAACGTACACTATGCACGTAC -ACGGAACGTACACTATGCAGTGAC -ACGGAACGTACACTATGCCTGTAG -ACGGAACGTACACTATGCCCTAAG -ACGGAACGTACACTATGCGTTCAG -ACGGAACGTACACTATGCGCATAG -ACGGAACGTACACTATGCGACAAG -ACGGAACGTACACTATGCAAGCAG -ACGGAACGTACACTATGCCGTCAA -ACGGAACGTACACTATGCGCTGAA -ACGGAACGTACACTATGCAGTACG -ACGGAACGTACACTATGCATCCGA -ACGGAACGTACACTATGCATGGGA -ACGGAACGTACACTATGCGTGCAA -ACGGAACGTACACTATGCGAGGAA -ACGGAACGTACACTATGCCAGGTA -ACGGAACGTACACTATGCGACTCT -ACGGAACGTACACTATGCAGTCCT -ACGGAACGTACACTATGCTAAGCC -ACGGAACGTACACTATGCATAGCC -ACGGAACGTACACTATGCTAACCG -ACGGAACGTACACTATGCATGCCA -ACGGAACGTACACTACCAGGAAAC -ACGGAACGTACACTACCAAACACC -ACGGAACGTACACTACCAATCGAG -ACGGAACGTACACTACCACTCCTT -ACGGAACGTACACTACCACCTGTT -ACGGAACGTACACTACCACGGTTT -ACGGAACGTACACTACCAGTGGTT -ACGGAACGTACACTACCAGCCTTT -ACGGAACGTACACTACCAGGTCTT -ACGGAACGTACACTACCAACGCTT -ACGGAACGTACACTACCAAGCGTT -ACGGAACGTACACTACCATTCGTC -ACGGAACGTACACTACCATCTCTC -ACGGAACGTACACTACCATGGATC -ACGGAACGTACACTACCACACTTC -ACGGAACGTACACTACCAGTACTC -ACGGAACGTACACTACCAGATGTC -ACGGAACGTACACTACCAACAGTC -ACGGAACGTACACTACCATTGCTG -ACGGAACGTACACTACCATCCATG -ACGGAACGTACACTACCATGTGTG -ACGGAACGTACACTACCACTAGTG -ACGGAACGTACACTACCACATCTG -ACGGAACGTACACTACCAGAGTTG -ACGGAACGTACACTACCAAGACTG -ACGGAACGTACACTACCATCGGTA -ACGGAACGTACACTACCATGCCTA -ACGGAACGTACACTACCACCACTA -ACGGAACGTACACTACCAGGAGTA -ACGGAACGTACACTACCATCGTCT -ACGGAACGTACACTACCATGCACT -ACGGAACGTACACTACCACTGACT -ACGGAACGTACACTACCACAACCT -ACGGAACGTACACTACCAGCTACT -ACGGAACGTACACTACCAGGATCT -ACGGAACGTACACTACCAAAGGCT -ACGGAACGTACACTACCATCAACC -ACGGAACGTACACTACCATGTTCC -ACGGAACGTACACTACCAATTCCC -ACGGAACGTACACTACCATTCTCG -ACGGAACGTACACTACCATAGACG -ACGGAACGTACACTACCAGTAACG -ACGGAACGTACACTACCAACTTCG -ACGGAACGTACACTACCATACGCA -ACGGAACGTACACTACCACTTGCA -ACGGAACGTACACTACCACGAACA -ACGGAACGTACACTACCACAGTCA -ACGGAACGTACACTACCAGATCCA -ACGGAACGTACACTACCAACGACA -ACGGAACGTACACTACCAAGCTCA -ACGGAACGTACACTACCATCACGT -ACGGAACGTACACTACCACGTAGT -ACGGAACGTACACTACCAGTCAGT -ACGGAACGTACACTACCAGAAGGT -ACGGAACGTACACTACCAAACCGT -ACGGAACGTACACTACCATTGTGC -ACGGAACGTACACTACCACTAAGC -ACGGAACGTACACTACCAACTAGC -ACGGAACGTACACTACCAAGATGC -ACGGAACGTACACTACCATGAAGG -ACGGAACGTACACTACCACAATGG -ACGGAACGTACACTACCAATGAGG -ACGGAACGTACACTACCAAATGGG -ACGGAACGTACACTACCATCCTGA -ACGGAACGTACACTACCATAGCGA -ACGGAACGTACACTACCACACAGA -ACGGAACGTACACTACCAGCAAGA -ACGGAACGTACACTACCAGGTTGA -ACGGAACGTACACTACCATCCGAT -ACGGAACGTACACTACCATGGCAT -ACGGAACGTACACTACCACGAGAT -ACGGAACGTACACTACCATACCAC -ACGGAACGTACACTACCACAGAAC -ACGGAACGTACACTACCAGTCTAC -ACGGAACGTACACTACCAACGTAC -ACGGAACGTACACTACCAAGTGAC -ACGGAACGTACACTACCACTGTAG -ACGGAACGTACACTACCACCTAAG -ACGGAACGTACACTACCAGTTCAG -ACGGAACGTACACTACCAGCATAG -ACGGAACGTACACTACCAGACAAG -ACGGAACGTACACTACCAAAGCAG -ACGGAACGTACACTACCACGTCAA -ACGGAACGTACACTACCAGCTGAA -ACGGAACGTACACTACCAAGTACG -ACGGAACGTACACTACCAATCCGA -ACGGAACGTACACTACCAATGGGA -ACGGAACGTACACTACCAGTGCAA -ACGGAACGTACACTACCAGAGGAA -ACGGAACGTACACTACCACAGGTA -ACGGAACGTACACTACCAGACTCT -ACGGAACGTACACTACCAAGTCCT -ACGGAACGTACACTACCATAAGCC -ACGGAACGTACACTACCAATAGCC -ACGGAACGTACACTACCATAACCG -ACGGAACGTACACTACCAATGCCA -ACGGAACGTACAGTAGGAGGAAAC -ACGGAACGTACAGTAGGAAACACC -ACGGAACGTACAGTAGGAATCGAG -ACGGAACGTACAGTAGGACTCCTT -ACGGAACGTACAGTAGGACCTGTT -ACGGAACGTACAGTAGGACGGTTT -ACGGAACGTACAGTAGGAGTGGTT -ACGGAACGTACAGTAGGAGCCTTT -ACGGAACGTACAGTAGGAGGTCTT -ACGGAACGTACAGTAGGAACGCTT -ACGGAACGTACAGTAGGAAGCGTT -ACGGAACGTACAGTAGGATTCGTC -ACGGAACGTACAGTAGGATCTCTC -ACGGAACGTACAGTAGGATGGATC -ACGGAACGTACAGTAGGACACTTC -ACGGAACGTACAGTAGGAGTACTC -ACGGAACGTACAGTAGGAGATGTC -ACGGAACGTACAGTAGGAACAGTC -ACGGAACGTACAGTAGGATTGCTG -ACGGAACGTACAGTAGGATCCATG -ACGGAACGTACAGTAGGATGTGTG -ACGGAACGTACAGTAGGACTAGTG -ACGGAACGTACAGTAGGACATCTG -ACGGAACGTACAGTAGGAGAGTTG -ACGGAACGTACAGTAGGAAGACTG -ACGGAACGTACAGTAGGATCGGTA -ACGGAACGTACAGTAGGATGCCTA -ACGGAACGTACAGTAGGACCACTA -ACGGAACGTACAGTAGGAGGAGTA -ACGGAACGTACAGTAGGATCGTCT -ACGGAACGTACAGTAGGATGCACT -ACGGAACGTACAGTAGGACTGACT -ACGGAACGTACAGTAGGACAACCT -ACGGAACGTACAGTAGGAGCTACT -ACGGAACGTACAGTAGGAGGATCT -ACGGAACGTACAGTAGGAAAGGCT -ACGGAACGTACAGTAGGATCAACC -ACGGAACGTACAGTAGGATGTTCC -ACGGAACGTACAGTAGGAATTCCC -ACGGAACGTACAGTAGGATTCTCG -ACGGAACGTACAGTAGGATAGACG -ACGGAACGTACAGTAGGAGTAACG -ACGGAACGTACAGTAGGAACTTCG -ACGGAACGTACAGTAGGATACGCA -ACGGAACGTACAGTAGGACTTGCA -ACGGAACGTACAGTAGGACGAACA -ACGGAACGTACAGTAGGACAGTCA -ACGGAACGTACAGTAGGAGATCCA -ACGGAACGTACAGTAGGAACGACA -ACGGAACGTACAGTAGGAAGCTCA -ACGGAACGTACAGTAGGATCACGT -ACGGAACGTACAGTAGGACGTAGT -ACGGAACGTACAGTAGGAGTCAGT -ACGGAACGTACAGTAGGAGAAGGT -ACGGAACGTACAGTAGGAAACCGT -ACGGAACGTACAGTAGGATTGTGC -ACGGAACGTACAGTAGGACTAAGC -ACGGAACGTACAGTAGGAACTAGC -ACGGAACGTACAGTAGGAAGATGC -ACGGAACGTACAGTAGGATGAAGG -ACGGAACGTACAGTAGGACAATGG -ACGGAACGTACAGTAGGAATGAGG -ACGGAACGTACAGTAGGAAATGGG -ACGGAACGTACAGTAGGATCCTGA -ACGGAACGTACAGTAGGATAGCGA -ACGGAACGTACAGTAGGACACAGA -ACGGAACGTACAGTAGGAGCAAGA -ACGGAACGTACAGTAGGAGGTTGA -ACGGAACGTACAGTAGGATCCGAT -ACGGAACGTACAGTAGGATGGCAT -ACGGAACGTACAGTAGGACGAGAT -ACGGAACGTACAGTAGGATACCAC -ACGGAACGTACAGTAGGACAGAAC -ACGGAACGTACAGTAGGAGTCTAC -ACGGAACGTACAGTAGGAACGTAC -ACGGAACGTACAGTAGGAAGTGAC -ACGGAACGTACAGTAGGACTGTAG -ACGGAACGTACAGTAGGACCTAAG -ACGGAACGTACAGTAGGAGTTCAG -ACGGAACGTACAGTAGGAGCATAG -ACGGAACGTACAGTAGGAGACAAG -ACGGAACGTACAGTAGGAAAGCAG -ACGGAACGTACAGTAGGACGTCAA -ACGGAACGTACAGTAGGAGCTGAA -ACGGAACGTACAGTAGGAAGTACG -ACGGAACGTACAGTAGGAATCCGA -ACGGAACGTACAGTAGGAATGGGA -ACGGAACGTACAGTAGGAGTGCAA -ACGGAACGTACAGTAGGAGAGGAA -ACGGAACGTACAGTAGGACAGGTA -ACGGAACGTACAGTAGGAGACTCT -ACGGAACGTACAGTAGGAAGTCCT -ACGGAACGTACAGTAGGATAAGCC -ACGGAACGTACAGTAGGAATAGCC -ACGGAACGTACAGTAGGATAACCG -ACGGAACGTACAGTAGGAATGCCA -ACGGAACGTACATCTTCGGGAAAC -ACGGAACGTACATCTTCGAACACC -ACGGAACGTACATCTTCGATCGAG -ACGGAACGTACATCTTCGCTCCTT -ACGGAACGTACATCTTCGCCTGTT -ACGGAACGTACATCTTCGCGGTTT -ACGGAACGTACATCTTCGGTGGTT -ACGGAACGTACATCTTCGGCCTTT -ACGGAACGTACATCTTCGGGTCTT -ACGGAACGTACATCTTCGACGCTT -ACGGAACGTACATCTTCGAGCGTT -ACGGAACGTACATCTTCGTTCGTC -ACGGAACGTACATCTTCGTCTCTC -ACGGAACGTACATCTTCGTGGATC -ACGGAACGTACATCTTCGCACTTC -ACGGAACGTACATCTTCGGTACTC -ACGGAACGTACATCTTCGGATGTC -ACGGAACGTACATCTTCGACAGTC -ACGGAACGTACATCTTCGTTGCTG -ACGGAACGTACATCTTCGTCCATG -ACGGAACGTACATCTTCGTGTGTG -ACGGAACGTACATCTTCGCTAGTG -ACGGAACGTACATCTTCGCATCTG -ACGGAACGTACATCTTCGGAGTTG -ACGGAACGTACATCTTCGAGACTG -ACGGAACGTACATCTTCGTCGGTA -ACGGAACGTACATCTTCGTGCCTA -ACGGAACGTACATCTTCGCCACTA -ACGGAACGTACATCTTCGGGAGTA -ACGGAACGTACATCTTCGTCGTCT -ACGGAACGTACATCTTCGTGCACT -ACGGAACGTACATCTTCGCTGACT -ACGGAACGTACATCTTCGCAACCT -ACGGAACGTACATCTTCGGCTACT -ACGGAACGTACATCTTCGGGATCT -ACGGAACGTACATCTTCGAAGGCT -ACGGAACGTACATCTTCGTCAACC -ACGGAACGTACATCTTCGTGTTCC -ACGGAACGTACATCTTCGATTCCC -ACGGAACGTACATCTTCGTTCTCG -ACGGAACGTACATCTTCGTAGACG -ACGGAACGTACATCTTCGGTAACG -ACGGAACGTACATCTTCGACTTCG -ACGGAACGTACATCTTCGTACGCA -ACGGAACGTACATCTTCGCTTGCA -ACGGAACGTACATCTTCGCGAACA -ACGGAACGTACATCTTCGCAGTCA -ACGGAACGTACATCTTCGGATCCA -ACGGAACGTACATCTTCGACGACA -ACGGAACGTACATCTTCGAGCTCA -ACGGAACGTACATCTTCGTCACGT -ACGGAACGTACATCTTCGCGTAGT -ACGGAACGTACATCTTCGGTCAGT -ACGGAACGTACATCTTCGGAAGGT -ACGGAACGTACATCTTCGAACCGT -ACGGAACGTACATCTTCGTTGTGC -ACGGAACGTACATCTTCGCTAAGC -ACGGAACGTACATCTTCGACTAGC -ACGGAACGTACATCTTCGAGATGC -ACGGAACGTACATCTTCGTGAAGG -ACGGAACGTACATCTTCGCAATGG -ACGGAACGTACATCTTCGATGAGG -ACGGAACGTACATCTTCGAATGGG -ACGGAACGTACATCTTCGTCCTGA -ACGGAACGTACATCTTCGTAGCGA -ACGGAACGTACATCTTCGCACAGA -ACGGAACGTACATCTTCGGCAAGA -ACGGAACGTACATCTTCGGGTTGA -ACGGAACGTACATCTTCGTCCGAT -ACGGAACGTACATCTTCGTGGCAT -ACGGAACGTACATCTTCGCGAGAT -ACGGAACGTACATCTTCGTACCAC -ACGGAACGTACATCTTCGCAGAAC -ACGGAACGTACATCTTCGGTCTAC -ACGGAACGTACATCTTCGACGTAC -ACGGAACGTACATCTTCGAGTGAC -ACGGAACGTACATCTTCGCTGTAG -ACGGAACGTACATCTTCGCCTAAG -ACGGAACGTACATCTTCGGTTCAG -ACGGAACGTACATCTTCGGCATAG -ACGGAACGTACATCTTCGGACAAG -ACGGAACGTACATCTTCGAAGCAG -ACGGAACGTACATCTTCGCGTCAA -ACGGAACGTACATCTTCGGCTGAA -ACGGAACGTACATCTTCGAGTACG -ACGGAACGTACATCTTCGATCCGA -ACGGAACGTACATCTTCGATGGGA -ACGGAACGTACATCTTCGGTGCAA -ACGGAACGTACATCTTCGGAGGAA -ACGGAACGTACATCTTCGCAGGTA -ACGGAACGTACATCTTCGGACTCT -ACGGAACGTACATCTTCGAGTCCT -ACGGAACGTACATCTTCGTAAGCC -ACGGAACGTACATCTTCGATAGCC -ACGGAACGTACATCTTCGTAACCG -ACGGAACGTACATCTTCGATGCCA -ACGGAACGTACAACTTGCGGAAAC -ACGGAACGTACAACTTGCAACACC -ACGGAACGTACAACTTGCATCGAG -ACGGAACGTACAACTTGCCTCCTT -ACGGAACGTACAACTTGCCCTGTT -ACGGAACGTACAACTTGCCGGTTT -ACGGAACGTACAACTTGCGTGGTT -ACGGAACGTACAACTTGCGCCTTT -ACGGAACGTACAACTTGCGGTCTT -ACGGAACGTACAACTTGCACGCTT -ACGGAACGTACAACTTGCAGCGTT -ACGGAACGTACAACTTGCTTCGTC -ACGGAACGTACAACTTGCTCTCTC -ACGGAACGTACAACTTGCTGGATC -ACGGAACGTACAACTTGCCACTTC -ACGGAACGTACAACTTGCGTACTC -ACGGAACGTACAACTTGCGATGTC -ACGGAACGTACAACTTGCACAGTC -ACGGAACGTACAACTTGCTTGCTG -ACGGAACGTACAACTTGCTCCATG -ACGGAACGTACAACTTGCTGTGTG -ACGGAACGTACAACTTGCCTAGTG -ACGGAACGTACAACTTGCCATCTG -ACGGAACGTACAACTTGCGAGTTG -ACGGAACGTACAACTTGCAGACTG -ACGGAACGTACAACTTGCTCGGTA -ACGGAACGTACAACTTGCTGCCTA -ACGGAACGTACAACTTGCCCACTA -ACGGAACGTACAACTTGCGGAGTA -ACGGAACGTACAACTTGCTCGTCT -ACGGAACGTACAACTTGCTGCACT -ACGGAACGTACAACTTGCCTGACT -ACGGAACGTACAACTTGCCAACCT -ACGGAACGTACAACTTGCGCTACT -ACGGAACGTACAACTTGCGGATCT -ACGGAACGTACAACTTGCAAGGCT -ACGGAACGTACAACTTGCTCAACC -ACGGAACGTACAACTTGCTGTTCC -ACGGAACGTACAACTTGCATTCCC -ACGGAACGTACAACTTGCTTCTCG -ACGGAACGTACAACTTGCTAGACG -ACGGAACGTACAACTTGCGTAACG -ACGGAACGTACAACTTGCACTTCG -ACGGAACGTACAACTTGCTACGCA -ACGGAACGTACAACTTGCCTTGCA -ACGGAACGTACAACTTGCCGAACA -ACGGAACGTACAACTTGCCAGTCA -ACGGAACGTACAACTTGCGATCCA -ACGGAACGTACAACTTGCACGACA -ACGGAACGTACAACTTGCAGCTCA -ACGGAACGTACAACTTGCTCACGT -ACGGAACGTACAACTTGCCGTAGT -ACGGAACGTACAACTTGCGTCAGT -ACGGAACGTACAACTTGCGAAGGT -ACGGAACGTACAACTTGCAACCGT -ACGGAACGTACAACTTGCTTGTGC -ACGGAACGTACAACTTGCCTAAGC -ACGGAACGTACAACTTGCACTAGC -ACGGAACGTACAACTTGCAGATGC -ACGGAACGTACAACTTGCTGAAGG -ACGGAACGTACAACTTGCCAATGG -ACGGAACGTACAACTTGCATGAGG -ACGGAACGTACAACTTGCAATGGG -ACGGAACGTACAACTTGCTCCTGA -ACGGAACGTACAACTTGCTAGCGA -ACGGAACGTACAACTTGCCACAGA -ACGGAACGTACAACTTGCGCAAGA -ACGGAACGTACAACTTGCGGTTGA -ACGGAACGTACAACTTGCTCCGAT -ACGGAACGTACAACTTGCTGGCAT -ACGGAACGTACAACTTGCCGAGAT -ACGGAACGTACAACTTGCTACCAC -ACGGAACGTACAACTTGCCAGAAC -ACGGAACGTACAACTTGCGTCTAC -ACGGAACGTACAACTTGCACGTAC -ACGGAACGTACAACTTGCAGTGAC -ACGGAACGTACAACTTGCCTGTAG -ACGGAACGTACAACTTGCCCTAAG -ACGGAACGTACAACTTGCGTTCAG -ACGGAACGTACAACTTGCGCATAG -ACGGAACGTACAACTTGCGACAAG -ACGGAACGTACAACTTGCAAGCAG -ACGGAACGTACAACTTGCCGTCAA -ACGGAACGTACAACTTGCGCTGAA -ACGGAACGTACAACTTGCAGTACG -ACGGAACGTACAACTTGCATCCGA -ACGGAACGTACAACTTGCATGGGA -ACGGAACGTACAACTTGCGTGCAA -ACGGAACGTACAACTTGCGAGGAA -ACGGAACGTACAACTTGCCAGGTA -ACGGAACGTACAACTTGCGACTCT -ACGGAACGTACAACTTGCAGTCCT -ACGGAACGTACAACTTGCTAAGCC -ACGGAACGTACAACTTGCATAGCC -ACGGAACGTACAACTTGCTAACCG -ACGGAACGTACAACTTGCATGCCA -ACGGAACGTACAACTCTGGGAAAC -ACGGAACGTACAACTCTGAACACC -ACGGAACGTACAACTCTGATCGAG -ACGGAACGTACAACTCTGCTCCTT -ACGGAACGTACAACTCTGCCTGTT -ACGGAACGTACAACTCTGCGGTTT -ACGGAACGTACAACTCTGGTGGTT -ACGGAACGTACAACTCTGGCCTTT -ACGGAACGTACAACTCTGGGTCTT -ACGGAACGTACAACTCTGACGCTT -ACGGAACGTACAACTCTGAGCGTT -ACGGAACGTACAACTCTGTTCGTC -ACGGAACGTACAACTCTGTCTCTC -ACGGAACGTACAACTCTGTGGATC -ACGGAACGTACAACTCTGCACTTC -ACGGAACGTACAACTCTGGTACTC -ACGGAACGTACAACTCTGGATGTC -ACGGAACGTACAACTCTGACAGTC -ACGGAACGTACAACTCTGTTGCTG -ACGGAACGTACAACTCTGTCCATG -ACGGAACGTACAACTCTGTGTGTG -ACGGAACGTACAACTCTGCTAGTG -ACGGAACGTACAACTCTGCATCTG -ACGGAACGTACAACTCTGGAGTTG -ACGGAACGTACAACTCTGAGACTG -ACGGAACGTACAACTCTGTCGGTA -ACGGAACGTACAACTCTGTGCCTA -ACGGAACGTACAACTCTGCCACTA -ACGGAACGTACAACTCTGGGAGTA -ACGGAACGTACAACTCTGTCGTCT -ACGGAACGTACAACTCTGTGCACT -ACGGAACGTACAACTCTGCTGACT -ACGGAACGTACAACTCTGCAACCT -ACGGAACGTACAACTCTGGCTACT -ACGGAACGTACAACTCTGGGATCT -ACGGAACGTACAACTCTGAAGGCT -ACGGAACGTACAACTCTGTCAACC -ACGGAACGTACAACTCTGTGTTCC -ACGGAACGTACAACTCTGATTCCC -ACGGAACGTACAACTCTGTTCTCG -ACGGAACGTACAACTCTGTAGACG -ACGGAACGTACAACTCTGGTAACG -ACGGAACGTACAACTCTGACTTCG -ACGGAACGTACAACTCTGTACGCA -ACGGAACGTACAACTCTGCTTGCA -ACGGAACGTACAACTCTGCGAACA -ACGGAACGTACAACTCTGCAGTCA -ACGGAACGTACAACTCTGGATCCA -ACGGAACGTACAACTCTGACGACA -ACGGAACGTACAACTCTGAGCTCA -ACGGAACGTACAACTCTGTCACGT -ACGGAACGTACAACTCTGCGTAGT -ACGGAACGTACAACTCTGGTCAGT -ACGGAACGTACAACTCTGGAAGGT -ACGGAACGTACAACTCTGAACCGT -ACGGAACGTACAACTCTGTTGTGC -ACGGAACGTACAACTCTGCTAAGC -ACGGAACGTACAACTCTGACTAGC -ACGGAACGTACAACTCTGAGATGC -ACGGAACGTACAACTCTGTGAAGG -ACGGAACGTACAACTCTGCAATGG -ACGGAACGTACAACTCTGATGAGG -ACGGAACGTACAACTCTGAATGGG -ACGGAACGTACAACTCTGTCCTGA -ACGGAACGTACAACTCTGTAGCGA -ACGGAACGTACAACTCTGCACAGA -ACGGAACGTACAACTCTGGCAAGA -ACGGAACGTACAACTCTGGGTTGA -ACGGAACGTACAACTCTGTCCGAT -ACGGAACGTACAACTCTGTGGCAT -ACGGAACGTACAACTCTGCGAGAT -ACGGAACGTACAACTCTGTACCAC -ACGGAACGTACAACTCTGCAGAAC -ACGGAACGTACAACTCTGGTCTAC -ACGGAACGTACAACTCTGACGTAC -ACGGAACGTACAACTCTGAGTGAC -ACGGAACGTACAACTCTGCTGTAG -ACGGAACGTACAACTCTGCCTAAG -ACGGAACGTACAACTCTGGTTCAG -ACGGAACGTACAACTCTGGCATAG -ACGGAACGTACAACTCTGGACAAG -ACGGAACGTACAACTCTGAAGCAG -ACGGAACGTACAACTCTGCGTCAA -ACGGAACGTACAACTCTGGCTGAA -ACGGAACGTACAACTCTGAGTACG -ACGGAACGTACAACTCTGATCCGA -ACGGAACGTACAACTCTGATGGGA -ACGGAACGTACAACTCTGGTGCAA -ACGGAACGTACAACTCTGGAGGAA -ACGGAACGTACAACTCTGCAGGTA -ACGGAACGTACAACTCTGGACTCT -ACGGAACGTACAACTCTGAGTCCT -ACGGAACGTACAACTCTGTAAGCC -ACGGAACGTACAACTCTGATAGCC -ACGGAACGTACAACTCTGTAACCG -ACGGAACGTACAACTCTGATGCCA -ACGGAACGTACACCTCAAGGAAAC -ACGGAACGTACACCTCAAAACACC -ACGGAACGTACACCTCAAATCGAG -ACGGAACGTACACCTCAACTCCTT -ACGGAACGTACACCTCAACCTGTT -ACGGAACGTACACCTCAACGGTTT -ACGGAACGTACACCTCAAGTGGTT -ACGGAACGTACACCTCAAGCCTTT -ACGGAACGTACACCTCAAGGTCTT -ACGGAACGTACACCTCAAACGCTT -ACGGAACGTACACCTCAAAGCGTT -ACGGAACGTACACCTCAATTCGTC -ACGGAACGTACACCTCAATCTCTC -ACGGAACGTACACCTCAATGGATC -ACGGAACGTACACCTCAACACTTC -ACGGAACGTACACCTCAAGTACTC -ACGGAACGTACACCTCAAGATGTC -ACGGAACGTACACCTCAAACAGTC -ACGGAACGTACACCTCAATTGCTG -ACGGAACGTACACCTCAATCCATG -ACGGAACGTACACCTCAATGTGTG -ACGGAACGTACACCTCAACTAGTG -ACGGAACGTACACCTCAACATCTG -ACGGAACGTACACCTCAAGAGTTG -ACGGAACGTACACCTCAAAGACTG -ACGGAACGTACACCTCAATCGGTA -ACGGAACGTACACCTCAATGCCTA -ACGGAACGTACACCTCAACCACTA -ACGGAACGTACACCTCAAGGAGTA -ACGGAACGTACACCTCAATCGTCT -ACGGAACGTACACCTCAATGCACT -ACGGAACGTACACCTCAACTGACT -ACGGAACGTACACCTCAACAACCT -ACGGAACGTACACCTCAAGCTACT -ACGGAACGTACACCTCAAGGATCT -ACGGAACGTACACCTCAAAAGGCT -ACGGAACGTACACCTCAATCAACC -ACGGAACGTACACCTCAATGTTCC -ACGGAACGTACACCTCAAATTCCC -ACGGAACGTACACCTCAATTCTCG -ACGGAACGTACACCTCAATAGACG -ACGGAACGTACACCTCAAGTAACG -ACGGAACGTACACCTCAAACTTCG -ACGGAACGTACACCTCAATACGCA -ACGGAACGTACACCTCAACTTGCA -ACGGAACGTACACCTCAACGAACA -ACGGAACGTACACCTCAACAGTCA -ACGGAACGTACACCTCAAGATCCA -ACGGAACGTACACCTCAAACGACA -ACGGAACGTACACCTCAAAGCTCA -ACGGAACGTACACCTCAATCACGT -ACGGAACGTACACCTCAACGTAGT -ACGGAACGTACACCTCAAGTCAGT -ACGGAACGTACACCTCAAGAAGGT -ACGGAACGTACACCTCAAAACCGT -ACGGAACGTACACCTCAATTGTGC -ACGGAACGTACACCTCAACTAAGC -ACGGAACGTACACCTCAAACTAGC -ACGGAACGTACACCTCAAAGATGC -ACGGAACGTACACCTCAATGAAGG -ACGGAACGTACACCTCAACAATGG -ACGGAACGTACACCTCAAATGAGG -ACGGAACGTACACCTCAAAATGGG -ACGGAACGTACACCTCAATCCTGA -ACGGAACGTACACCTCAATAGCGA -ACGGAACGTACACCTCAACACAGA -ACGGAACGTACACCTCAAGCAAGA -ACGGAACGTACACCTCAAGGTTGA -ACGGAACGTACACCTCAATCCGAT -ACGGAACGTACACCTCAATGGCAT -ACGGAACGTACACCTCAACGAGAT -ACGGAACGTACACCTCAATACCAC -ACGGAACGTACACCTCAACAGAAC -ACGGAACGTACACCTCAAGTCTAC -ACGGAACGTACACCTCAAACGTAC -ACGGAACGTACACCTCAAAGTGAC -ACGGAACGTACACCTCAACTGTAG -ACGGAACGTACACCTCAACCTAAG -ACGGAACGTACACCTCAAGTTCAG -ACGGAACGTACACCTCAAGCATAG -ACGGAACGTACACCTCAAGACAAG -ACGGAACGTACACCTCAAAAGCAG -ACGGAACGTACACCTCAACGTCAA -ACGGAACGTACACCTCAAGCTGAA -ACGGAACGTACACCTCAAAGTACG -ACGGAACGTACACCTCAAATCCGA -ACGGAACGTACACCTCAAATGGGA -ACGGAACGTACACCTCAAGTGCAA -ACGGAACGTACACCTCAAGAGGAA -ACGGAACGTACACCTCAACAGGTA -ACGGAACGTACACCTCAAGACTCT -ACGGAACGTACACCTCAAAGTCCT -ACGGAACGTACACCTCAATAAGCC -ACGGAACGTACACCTCAAATAGCC -ACGGAACGTACACCTCAATAACCG -ACGGAACGTACACCTCAAATGCCA -ACGGAACGTACAACTGCTGGAAAC -ACGGAACGTACAACTGCTAACACC -ACGGAACGTACAACTGCTATCGAG -ACGGAACGTACAACTGCTCTCCTT -ACGGAACGTACAACTGCTCCTGTT -ACGGAACGTACAACTGCTCGGTTT -ACGGAACGTACAACTGCTGTGGTT -ACGGAACGTACAACTGCTGCCTTT -ACGGAACGTACAACTGCTGGTCTT -ACGGAACGTACAACTGCTACGCTT -ACGGAACGTACAACTGCTAGCGTT -ACGGAACGTACAACTGCTTTCGTC -ACGGAACGTACAACTGCTTCTCTC -ACGGAACGTACAACTGCTTGGATC -ACGGAACGTACAACTGCTCACTTC -ACGGAACGTACAACTGCTGTACTC -ACGGAACGTACAACTGCTGATGTC -ACGGAACGTACAACTGCTACAGTC -ACGGAACGTACAACTGCTTTGCTG -ACGGAACGTACAACTGCTTCCATG -ACGGAACGTACAACTGCTTGTGTG -ACGGAACGTACAACTGCTCTAGTG -ACGGAACGTACAACTGCTCATCTG -ACGGAACGTACAACTGCTGAGTTG -ACGGAACGTACAACTGCTAGACTG -ACGGAACGTACAACTGCTTCGGTA -ACGGAACGTACAACTGCTTGCCTA -ACGGAACGTACAACTGCTCCACTA -ACGGAACGTACAACTGCTGGAGTA -ACGGAACGTACAACTGCTTCGTCT -ACGGAACGTACAACTGCTTGCACT -ACGGAACGTACAACTGCTCTGACT -ACGGAACGTACAACTGCTCAACCT -ACGGAACGTACAACTGCTGCTACT -ACGGAACGTACAACTGCTGGATCT -ACGGAACGTACAACTGCTAAGGCT -ACGGAACGTACAACTGCTTCAACC -ACGGAACGTACAACTGCTTGTTCC -ACGGAACGTACAACTGCTATTCCC -ACGGAACGTACAACTGCTTTCTCG -ACGGAACGTACAACTGCTTAGACG -ACGGAACGTACAACTGCTGTAACG -ACGGAACGTACAACTGCTACTTCG -ACGGAACGTACAACTGCTTACGCA -ACGGAACGTACAACTGCTCTTGCA -ACGGAACGTACAACTGCTCGAACA -ACGGAACGTACAACTGCTCAGTCA -ACGGAACGTACAACTGCTGATCCA -ACGGAACGTACAACTGCTACGACA -ACGGAACGTACAACTGCTAGCTCA -ACGGAACGTACAACTGCTTCACGT -ACGGAACGTACAACTGCTCGTAGT -ACGGAACGTACAACTGCTGTCAGT -ACGGAACGTACAACTGCTGAAGGT -ACGGAACGTACAACTGCTAACCGT -ACGGAACGTACAACTGCTTTGTGC -ACGGAACGTACAACTGCTCTAAGC -ACGGAACGTACAACTGCTACTAGC -ACGGAACGTACAACTGCTAGATGC -ACGGAACGTACAACTGCTTGAAGG -ACGGAACGTACAACTGCTCAATGG -ACGGAACGTACAACTGCTATGAGG -ACGGAACGTACAACTGCTAATGGG -ACGGAACGTACAACTGCTTCCTGA -ACGGAACGTACAACTGCTTAGCGA -ACGGAACGTACAACTGCTCACAGA -ACGGAACGTACAACTGCTGCAAGA -ACGGAACGTACAACTGCTGGTTGA -ACGGAACGTACAACTGCTTCCGAT -ACGGAACGTACAACTGCTTGGCAT -ACGGAACGTACAACTGCTCGAGAT -ACGGAACGTACAACTGCTTACCAC -ACGGAACGTACAACTGCTCAGAAC -ACGGAACGTACAACTGCTGTCTAC -ACGGAACGTACAACTGCTACGTAC -ACGGAACGTACAACTGCTAGTGAC -ACGGAACGTACAACTGCTCTGTAG -ACGGAACGTACAACTGCTCCTAAG -ACGGAACGTACAACTGCTGTTCAG -ACGGAACGTACAACTGCTGCATAG -ACGGAACGTACAACTGCTGACAAG -ACGGAACGTACAACTGCTAAGCAG -ACGGAACGTACAACTGCTCGTCAA -ACGGAACGTACAACTGCTGCTGAA -ACGGAACGTACAACTGCTAGTACG -ACGGAACGTACAACTGCTATCCGA -ACGGAACGTACAACTGCTATGGGA -ACGGAACGTACAACTGCTGTGCAA -ACGGAACGTACAACTGCTGAGGAA -ACGGAACGTACAACTGCTCAGGTA -ACGGAACGTACAACTGCTGACTCT -ACGGAACGTACAACTGCTAGTCCT -ACGGAACGTACAACTGCTTAAGCC -ACGGAACGTACAACTGCTATAGCC -ACGGAACGTACAACTGCTTAACCG -ACGGAACGTACAACTGCTATGCCA -ACGGAACGTACATCTGGAGGAAAC -ACGGAACGTACATCTGGAAACACC -ACGGAACGTACATCTGGAATCGAG -ACGGAACGTACATCTGGACTCCTT -ACGGAACGTACATCTGGACCTGTT -ACGGAACGTACATCTGGACGGTTT -ACGGAACGTACATCTGGAGTGGTT -ACGGAACGTACATCTGGAGCCTTT -ACGGAACGTACATCTGGAGGTCTT -ACGGAACGTACATCTGGAACGCTT -ACGGAACGTACATCTGGAAGCGTT -ACGGAACGTACATCTGGATTCGTC -ACGGAACGTACATCTGGATCTCTC -ACGGAACGTACATCTGGATGGATC -ACGGAACGTACATCTGGACACTTC -ACGGAACGTACATCTGGAGTACTC -ACGGAACGTACATCTGGAGATGTC -ACGGAACGTACATCTGGAACAGTC -ACGGAACGTACATCTGGATTGCTG -ACGGAACGTACATCTGGATCCATG -ACGGAACGTACATCTGGATGTGTG -ACGGAACGTACATCTGGACTAGTG -ACGGAACGTACATCTGGACATCTG -ACGGAACGTACATCTGGAGAGTTG -ACGGAACGTACATCTGGAAGACTG -ACGGAACGTACATCTGGATCGGTA -ACGGAACGTACATCTGGATGCCTA -ACGGAACGTACATCTGGACCACTA -ACGGAACGTACATCTGGAGGAGTA -ACGGAACGTACATCTGGATCGTCT -ACGGAACGTACATCTGGATGCACT -ACGGAACGTACATCTGGACTGACT -ACGGAACGTACATCTGGACAACCT -ACGGAACGTACATCTGGAGCTACT -ACGGAACGTACATCTGGAGGATCT -ACGGAACGTACATCTGGAAAGGCT -ACGGAACGTACATCTGGATCAACC -ACGGAACGTACATCTGGATGTTCC -ACGGAACGTACATCTGGAATTCCC -ACGGAACGTACATCTGGATTCTCG -ACGGAACGTACATCTGGATAGACG -ACGGAACGTACATCTGGAGTAACG -ACGGAACGTACATCTGGAACTTCG -ACGGAACGTACATCTGGATACGCA -ACGGAACGTACATCTGGACTTGCA -ACGGAACGTACATCTGGACGAACA -ACGGAACGTACATCTGGACAGTCA -ACGGAACGTACATCTGGAGATCCA -ACGGAACGTACATCTGGAACGACA -ACGGAACGTACATCTGGAAGCTCA -ACGGAACGTACATCTGGATCACGT -ACGGAACGTACATCTGGACGTAGT -ACGGAACGTACATCTGGAGTCAGT -ACGGAACGTACATCTGGAGAAGGT -ACGGAACGTACATCTGGAAACCGT -ACGGAACGTACATCTGGATTGTGC -ACGGAACGTACATCTGGACTAAGC -ACGGAACGTACATCTGGAACTAGC -ACGGAACGTACATCTGGAAGATGC -ACGGAACGTACATCTGGATGAAGG -ACGGAACGTACATCTGGACAATGG -ACGGAACGTACATCTGGAATGAGG -ACGGAACGTACATCTGGAAATGGG -ACGGAACGTACATCTGGATCCTGA -ACGGAACGTACATCTGGATAGCGA -ACGGAACGTACATCTGGACACAGA -ACGGAACGTACATCTGGAGCAAGA -ACGGAACGTACATCTGGAGGTTGA -ACGGAACGTACATCTGGATCCGAT -ACGGAACGTACATCTGGATGGCAT -ACGGAACGTACATCTGGACGAGAT -ACGGAACGTACATCTGGATACCAC -ACGGAACGTACATCTGGACAGAAC -ACGGAACGTACATCTGGAGTCTAC -ACGGAACGTACATCTGGAACGTAC -ACGGAACGTACATCTGGAAGTGAC -ACGGAACGTACATCTGGACTGTAG -ACGGAACGTACATCTGGACCTAAG -ACGGAACGTACATCTGGAGTTCAG -ACGGAACGTACATCTGGAGCATAG -ACGGAACGTACATCTGGAGACAAG -ACGGAACGTACATCTGGAAAGCAG -ACGGAACGTACATCTGGACGTCAA -ACGGAACGTACATCTGGAGCTGAA -ACGGAACGTACATCTGGAAGTACG -ACGGAACGTACATCTGGAATCCGA -ACGGAACGTACATCTGGAATGGGA -ACGGAACGTACATCTGGAGTGCAA -ACGGAACGTACATCTGGAGAGGAA -ACGGAACGTACATCTGGACAGGTA -ACGGAACGTACATCTGGAGACTCT -ACGGAACGTACATCTGGAAGTCCT -ACGGAACGTACATCTGGATAAGCC -ACGGAACGTACATCTGGAATAGCC -ACGGAACGTACATCTGGATAACCG -ACGGAACGTACATCTGGAATGCCA -ACGGAACGTACAGCTAAGGGAAAC -ACGGAACGTACAGCTAAGAACACC -ACGGAACGTACAGCTAAGATCGAG -ACGGAACGTACAGCTAAGCTCCTT -ACGGAACGTACAGCTAAGCCTGTT -ACGGAACGTACAGCTAAGCGGTTT -ACGGAACGTACAGCTAAGGTGGTT -ACGGAACGTACAGCTAAGGCCTTT -ACGGAACGTACAGCTAAGGGTCTT -ACGGAACGTACAGCTAAGACGCTT -ACGGAACGTACAGCTAAGAGCGTT -ACGGAACGTACAGCTAAGTTCGTC -ACGGAACGTACAGCTAAGTCTCTC -ACGGAACGTACAGCTAAGTGGATC -ACGGAACGTACAGCTAAGCACTTC -ACGGAACGTACAGCTAAGGTACTC -ACGGAACGTACAGCTAAGGATGTC -ACGGAACGTACAGCTAAGACAGTC -ACGGAACGTACAGCTAAGTTGCTG -ACGGAACGTACAGCTAAGTCCATG -ACGGAACGTACAGCTAAGTGTGTG -ACGGAACGTACAGCTAAGCTAGTG -ACGGAACGTACAGCTAAGCATCTG -ACGGAACGTACAGCTAAGGAGTTG -ACGGAACGTACAGCTAAGAGACTG -ACGGAACGTACAGCTAAGTCGGTA -ACGGAACGTACAGCTAAGTGCCTA -ACGGAACGTACAGCTAAGCCACTA -ACGGAACGTACAGCTAAGGGAGTA -ACGGAACGTACAGCTAAGTCGTCT -ACGGAACGTACAGCTAAGTGCACT -ACGGAACGTACAGCTAAGCTGACT -ACGGAACGTACAGCTAAGCAACCT -ACGGAACGTACAGCTAAGGCTACT -ACGGAACGTACAGCTAAGGGATCT -ACGGAACGTACAGCTAAGAAGGCT -ACGGAACGTACAGCTAAGTCAACC -ACGGAACGTACAGCTAAGTGTTCC -ACGGAACGTACAGCTAAGATTCCC -ACGGAACGTACAGCTAAGTTCTCG -ACGGAACGTACAGCTAAGTAGACG -ACGGAACGTACAGCTAAGGTAACG -ACGGAACGTACAGCTAAGACTTCG -ACGGAACGTACAGCTAAGTACGCA -ACGGAACGTACAGCTAAGCTTGCA -ACGGAACGTACAGCTAAGCGAACA -ACGGAACGTACAGCTAAGCAGTCA -ACGGAACGTACAGCTAAGGATCCA -ACGGAACGTACAGCTAAGACGACA -ACGGAACGTACAGCTAAGAGCTCA -ACGGAACGTACAGCTAAGTCACGT -ACGGAACGTACAGCTAAGCGTAGT -ACGGAACGTACAGCTAAGGTCAGT -ACGGAACGTACAGCTAAGGAAGGT -ACGGAACGTACAGCTAAGAACCGT -ACGGAACGTACAGCTAAGTTGTGC -ACGGAACGTACAGCTAAGCTAAGC -ACGGAACGTACAGCTAAGACTAGC -ACGGAACGTACAGCTAAGAGATGC -ACGGAACGTACAGCTAAGTGAAGG -ACGGAACGTACAGCTAAGCAATGG -ACGGAACGTACAGCTAAGATGAGG -ACGGAACGTACAGCTAAGAATGGG -ACGGAACGTACAGCTAAGTCCTGA -ACGGAACGTACAGCTAAGTAGCGA -ACGGAACGTACAGCTAAGCACAGA -ACGGAACGTACAGCTAAGGCAAGA -ACGGAACGTACAGCTAAGGGTTGA -ACGGAACGTACAGCTAAGTCCGAT -ACGGAACGTACAGCTAAGTGGCAT -ACGGAACGTACAGCTAAGCGAGAT -ACGGAACGTACAGCTAAGTACCAC -ACGGAACGTACAGCTAAGCAGAAC -ACGGAACGTACAGCTAAGGTCTAC -ACGGAACGTACAGCTAAGACGTAC -ACGGAACGTACAGCTAAGAGTGAC -ACGGAACGTACAGCTAAGCTGTAG -ACGGAACGTACAGCTAAGCCTAAG -ACGGAACGTACAGCTAAGGTTCAG -ACGGAACGTACAGCTAAGGCATAG -ACGGAACGTACAGCTAAGGACAAG -ACGGAACGTACAGCTAAGAAGCAG -ACGGAACGTACAGCTAAGCGTCAA -ACGGAACGTACAGCTAAGGCTGAA -ACGGAACGTACAGCTAAGAGTACG -ACGGAACGTACAGCTAAGATCCGA -ACGGAACGTACAGCTAAGATGGGA -ACGGAACGTACAGCTAAGGTGCAA -ACGGAACGTACAGCTAAGGAGGAA -ACGGAACGTACAGCTAAGCAGGTA -ACGGAACGTACAGCTAAGGACTCT -ACGGAACGTACAGCTAAGAGTCCT -ACGGAACGTACAGCTAAGTAAGCC -ACGGAACGTACAGCTAAGATAGCC -ACGGAACGTACAGCTAAGTAACCG -ACGGAACGTACAGCTAAGATGCCA -ACGGAACGTACAACCTCAGGAAAC -ACGGAACGTACAACCTCAAACACC -ACGGAACGTACAACCTCAATCGAG -ACGGAACGTACAACCTCACTCCTT -ACGGAACGTACAACCTCACCTGTT -ACGGAACGTACAACCTCACGGTTT -ACGGAACGTACAACCTCAGTGGTT -ACGGAACGTACAACCTCAGCCTTT -ACGGAACGTACAACCTCAGGTCTT -ACGGAACGTACAACCTCAACGCTT -ACGGAACGTACAACCTCAAGCGTT -ACGGAACGTACAACCTCATTCGTC -ACGGAACGTACAACCTCATCTCTC -ACGGAACGTACAACCTCATGGATC -ACGGAACGTACAACCTCACACTTC -ACGGAACGTACAACCTCAGTACTC -ACGGAACGTACAACCTCAGATGTC -ACGGAACGTACAACCTCAACAGTC -ACGGAACGTACAACCTCATTGCTG -ACGGAACGTACAACCTCATCCATG -ACGGAACGTACAACCTCATGTGTG -ACGGAACGTACAACCTCACTAGTG -ACGGAACGTACAACCTCACATCTG -ACGGAACGTACAACCTCAGAGTTG -ACGGAACGTACAACCTCAAGACTG -ACGGAACGTACAACCTCATCGGTA -ACGGAACGTACAACCTCATGCCTA -ACGGAACGTACAACCTCACCACTA -ACGGAACGTACAACCTCAGGAGTA -ACGGAACGTACAACCTCATCGTCT -ACGGAACGTACAACCTCATGCACT -ACGGAACGTACAACCTCACTGACT -ACGGAACGTACAACCTCACAACCT -ACGGAACGTACAACCTCAGCTACT -ACGGAACGTACAACCTCAGGATCT -ACGGAACGTACAACCTCAAAGGCT -ACGGAACGTACAACCTCATCAACC -ACGGAACGTACAACCTCATGTTCC -ACGGAACGTACAACCTCAATTCCC -ACGGAACGTACAACCTCATTCTCG -ACGGAACGTACAACCTCATAGACG -ACGGAACGTACAACCTCAGTAACG -ACGGAACGTACAACCTCAACTTCG -ACGGAACGTACAACCTCATACGCA -ACGGAACGTACAACCTCACTTGCA -ACGGAACGTACAACCTCACGAACA -ACGGAACGTACAACCTCACAGTCA -ACGGAACGTACAACCTCAGATCCA -ACGGAACGTACAACCTCAACGACA -ACGGAACGTACAACCTCAAGCTCA -ACGGAACGTACAACCTCATCACGT -ACGGAACGTACAACCTCACGTAGT -ACGGAACGTACAACCTCAGTCAGT -ACGGAACGTACAACCTCAGAAGGT -ACGGAACGTACAACCTCAAACCGT -ACGGAACGTACAACCTCATTGTGC -ACGGAACGTACAACCTCACTAAGC -ACGGAACGTACAACCTCAACTAGC -ACGGAACGTACAACCTCAAGATGC -ACGGAACGTACAACCTCATGAAGG -ACGGAACGTACAACCTCACAATGG -ACGGAACGTACAACCTCAATGAGG -ACGGAACGTACAACCTCAAATGGG -ACGGAACGTACAACCTCATCCTGA -ACGGAACGTACAACCTCATAGCGA -ACGGAACGTACAACCTCACACAGA -ACGGAACGTACAACCTCAGCAAGA -ACGGAACGTACAACCTCAGGTTGA -ACGGAACGTACAACCTCATCCGAT -ACGGAACGTACAACCTCATGGCAT -ACGGAACGTACAACCTCACGAGAT -ACGGAACGTACAACCTCATACCAC -ACGGAACGTACAACCTCACAGAAC -ACGGAACGTACAACCTCAGTCTAC -ACGGAACGTACAACCTCAACGTAC -ACGGAACGTACAACCTCAAGTGAC -ACGGAACGTACAACCTCACTGTAG -ACGGAACGTACAACCTCACCTAAG -ACGGAACGTACAACCTCAGTTCAG -ACGGAACGTACAACCTCAGCATAG -ACGGAACGTACAACCTCAGACAAG -ACGGAACGTACAACCTCAAAGCAG -ACGGAACGTACAACCTCACGTCAA -ACGGAACGTACAACCTCAGCTGAA -ACGGAACGTACAACCTCAAGTACG -ACGGAACGTACAACCTCAATCCGA -ACGGAACGTACAACCTCAATGGGA -ACGGAACGTACAACCTCAGTGCAA -ACGGAACGTACAACCTCAGAGGAA -ACGGAACGTACAACCTCACAGGTA -ACGGAACGTACAACCTCAGACTCT -ACGGAACGTACAACCTCAAGTCCT -ACGGAACGTACAACCTCATAAGCC -ACGGAACGTACAACCTCAATAGCC -ACGGAACGTACAACCTCATAACCG -ACGGAACGTACAACCTCAATGCCA -ACGGAACGTACATCCTGTGGAAAC -ACGGAACGTACATCCTGTAACACC -ACGGAACGTACATCCTGTATCGAG -ACGGAACGTACATCCTGTCTCCTT -ACGGAACGTACATCCTGTCCTGTT -ACGGAACGTACATCCTGTCGGTTT -ACGGAACGTACATCCTGTGTGGTT -ACGGAACGTACATCCTGTGCCTTT -ACGGAACGTACATCCTGTGGTCTT -ACGGAACGTACATCCTGTACGCTT -ACGGAACGTACATCCTGTAGCGTT -ACGGAACGTACATCCTGTTTCGTC -ACGGAACGTACATCCTGTTCTCTC -ACGGAACGTACATCCTGTTGGATC -ACGGAACGTACATCCTGTCACTTC -ACGGAACGTACATCCTGTGTACTC -ACGGAACGTACATCCTGTGATGTC -ACGGAACGTACATCCTGTACAGTC -ACGGAACGTACATCCTGTTTGCTG -ACGGAACGTACATCCTGTTCCATG -ACGGAACGTACATCCTGTTGTGTG -ACGGAACGTACATCCTGTCTAGTG -ACGGAACGTACATCCTGTCATCTG -ACGGAACGTACATCCTGTGAGTTG -ACGGAACGTACATCCTGTAGACTG -ACGGAACGTACATCCTGTTCGGTA -ACGGAACGTACATCCTGTTGCCTA -ACGGAACGTACATCCTGTCCACTA -ACGGAACGTACATCCTGTGGAGTA -ACGGAACGTACATCCTGTTCGTCT -ACGGAACGTACATCCTGTTGCACT -ACGGAACGTACATCCTGTCTGACT -ACGGAACGTACATCCTGTCAACCT -ACGGAACGTACATCCTGTGCTACT -ACGGAACGTACATCCTGTGGATCT -ACGGAACGTACATCCTGTAAGGCT -ACGGAACGTACATCCTGTTCAACC -ACGGAACGTACATCCTGTTGTTCC -ACGGAACGTACATCCTGTATTCCC -ACGGAACGTACATCCTGTTTCTCG -ACGGAACGTACATCCTGTTAGACG -ACGGAACGTACATCCTGTGTAACG -ACGGAACGTACATCCTGTACTTCG -ACGGAACGTACATCCTGTTACGCA -ACGGAACGTACATCCTGTCTTGCA -ACGGAACGTACATCCTGTCGAACA -ACGGAACGTACATCCTGTCAGTCA -ACGGAACGTACATCCTGTGATCCA -ACGGAACGTACATCCTGTACGACA -ACGGAACGTACATCCTGTAGCTCA -ACGGAACGTACATCCTGTTCACGT -ACGGAACGTACATCCTGTCGTAGT -ACGGAACGTACATCCTGTGTCAGT -ACGGAACGTACATCCTGTGAAGGT -ACGGAACGTACATCCTGTAACCGT -ACGGAACGTACATCCTGTTTGTGC -ACGGAACGTACATCCTGTCTAAGC -ACGGAACGTACATCCTGTACTAGC -ACGGAACGTACATCCTGTAGATGC -ACGGAACGTACATCCTGTTGAAGG -ACGGAACGTACATCCTGTCAATGG -ACGGAACGTACATCCTGTATGAGG -ACGGAACGTACATCCTGTAATGGG -ACGGAACGTACATCCTGTTCCTGA -ACGGAACGTACATCCTGTTAGCGA -ACGGAACGTACATCCTGTCACAGA -ACGGAACGTACATCCTGTGCAAGA -ACGGAACGTACATCCTGTGGTTGA -ACGGAACGTACATCCTGTTCCGAT -ACGGAACGTACATCCTGTTGGCAT -ACGGAACGTACATCCTGTCGAGAT -ACGGAACGTACATCCTGTTACCAC -ACGGAACGTACATCCTGTCAGAAC -ACGGAACGTACATCCTGTGTCTAC -ACGGAACGTACATCCTGTACGTAC -ACGGAACGTACATCCTGTAGTGAC -ACGGAACGTACATCCTGTCTGTAG -ACGGAACGTACATCCTGTCCTAAG -ACGGAACGTACATCCTGTGTTCAG -ACGGAACGTACATCCTGTGCATAG -ACGGAACGTACATCCTGTGACAAG -ACGGAACGTACATCCTGTAAGCAG -ACGGAACGTACATCCTGTCGTCAA -ACGGAACGTACATCCTGTGCTGAA -ACGGAACGTACATCCTGTAGTACG -ACGGAACGTACATCCTGTATCCGA -ACGGAACGTACATCCTGTATGGGA -ACGGAACGTACATCCTGTGTGCAA -ACGGAACGTACATCCTGTGAGGAA -ACGGAACGTACATCCTGTCAGGTA -ACGGAACGTACATCCTGTGACTCT -ACGGAACGTACATCCTGTAGTCCT -ACGGAACGTACATCCTGTTAAGCC -ACGGAACGTACATCCTGTATAGCC -ACGGAACGTACATCCTGTTAACCG -ACGGAACGTACATCCTGTATGCCA -ACGGAACGTACACCCATTGGAAAC -ACGGAACGTACACCCATTAACACC -ACGGAACGTACACCCATTATCGAG -ACGGAACGTACACCCATTCTCCTT -ACGGAACGTACACCCATTCCTGTT -ACGGAACGTACACCCATTCGGTTT -ACGGAACGTACACCCATTGTGGTT -ACGGAACGTACACCCATTGCCTTT -ACGGAACGTACACCCATTGGTCTT -ACGGAACGTACACCCATTACGCTT -ACGGAACGTACACCCATTAGCGTT -ACGGAACGTACACCCATTTTCGTC -ACGGAACGTACACCCATTTCTCTC -ACGGAACGTACACCCATTTGGATC -ACGGAACGTACACCCATTCACTTC -ACGGAACGTACACCCATTGTACTC -ACGGAACGTACACCCATTGATGTC -ACGGAACGTACACCCATTACAGTC -ACGGAACGTACACCCATTTTGCTG -ACGGAACGTACACCCATTTCCATG -ACGGAACGTACACCCATTTGTGTG -ACGGAACGTACACCCATTCTAGTG -ACGGAACGTACACCCATTCATCTG -ACGGAACGTACACCCATTGAGTTG -ACGGAACGTACACCCATTAGACTG -ACGGAACGTACACCCATTTCGGTA -ACGGAACGTACACCCATTTGCCTA -ACGGAACGTACACCCATTCCACTA -ACGGAACGTACACCCATTGGAGTA -ACGGAACGTACACCCATTTCGTCT -ACGGAACGTACACCCATTTGCACT -ACGGAACGTACACCCATTCTGACT -ACGGAACGTACACCCATTCAACCT -ACGGAACGTACACCCATTGCTACT -ACGGAACGTACACCCATTGGATCT -ACGGAACGTACACCCATTAAGGCT -ACGGAACGTACACCCATTTCAACC -ACGGAACGTACACCCATTTGTTCC -ACGGAACGTACACCCATTATTCCC -ACGGAACGTACACCCATTTTCTCG -ACGGAACGTACACCCATTTAGACG -ACGGAACGTACACCCATTGTAACG -ACGGAACGTACACCCATTACTTCG -ACGGAACGTACACCCATTTACGCA -ACGGAACGTACACCCATTCTTGCA -ACGGAACGTACACCCATTCGAACA -ACGGAACGTACACCCATTCAGTCA -ACGGAACGTACACCCATTGATCCA -ACGGAACGTACACCCATTACGACA -ACGGAACGTACACCCATTAGCTCA -ACGGAACGTACACCCATTTCACGT -ACGGAACGTACACCCATTCGTAGT -ACGGAACGTACACCCATTGTCAGT -ACGGAACGTACACCCATTGAAGGT -ACGGAACGTACACCCATTAACCGT -ACGGAACGTACACCCATTTTGTGC -ACGGAACGTACACCCATTCTAAGC -ACGGAACGTACACCCATTACTAGC -ACGGAACGTACACCCATTAGATGC -ACGGAACGTACACCCATTTGAAGG -ACGGAACGTACACCCATTCAATGG -ACGGAACGTACACCCATTATGAGG -ACGGAACGTACACCCATTAATGGG -ACGGAACGTACACCCATTTCCTGA -ACGGAACGTACACCCATTTAGCGA -ACGGAACGTACACCCATTCACAGA -ACGGAACGTACACCCATTGCAAGA -ACGGAACGTACACCCATTGGTTGA -ACGGAACGTACACCCATTTCCGAT -ACGGAACGTACACCCATTTGGCAT -ACGGAACGTACACCCATTCGAGAT -ACGGAACGTACACCCATTTACCAC -ACGGAACGTACACCCATTCAGAAC -ACGGAACGTACACCCATTGTCTAC -ACGGAACGTACACCCATTACGTAC -ACGGAACGTACACCCATTAGTGAC -ACGGAACGTACACCCATTCTGTAG -ACGGAACGTACACCCATTCCTAAG -ACGGAACGTACACCCATTGTTCAG -ACGGAACGTACACCCATTGCATAG -ACGGAACGTACACCCATTGACAAG -ACGGAACGTACACCCATTAAGCAG -ACGGAACGTACACCCATTCGTCAA -ACGGAACGTACACCCATTGCTGAA -ACGGAACGTACACCCATTAGTACG -ACGGAACGTACACCCATTATCCGA -ACGGAACGTACACCCATTATGGGA -ACGGAACGTACACCCATTGTGCAA -ACGGAACGTACACCCATTGAGGAA -ACGGAACGTACACCCATTCAGGTA -ACGGAACGTACACCCATTGACTCT -ACGGAACGTACACCCATTAGTCCT -ACGGAACGTACACCCATTTAAGCC -ACGGAACGTACACCCATTATAGCC -ACGGAACGTACACCCATTTAACCG -ACGGAACGTACACCCATTATGCCA -ACGGAACGTACATCGTTCGGAAAC -ACGGAACGTACATCGTTCAACACC -ACGGAACGTACATCGTTCATCGAG -ACGGAACGTACATCGTTCCTCCTT -ACGGAACGTACATCGTTCCCTGTT -ACGGAACGTACATCGTTCCGGTTT -ACGGAACGTACATCGTTCGTGGTT -ACGGAACGTACATCGTTCGCCTTT -ACGGAACGTACATCGTTCGGTCTT -ACGGAACGTACATCGTTCACGCTT -ACGGAACGTACATCGTTCAGCGTT -ACGGAACGTACATCGTTCTTCGTC -ACGGAACGTACATCGTTCTCTCTC -ACGGAACGTACATCGTTCTGGATC -ACGGAACGTACATCGTTCCACTTC -ACGGAACGTACATCGTTCGTACTC -ACGGAACGTACATCGTTCGATGTC -ACGGAACGTACATCGTTCACAGTC -ACGGAACGTACATCGTTCTTGCTG -ACGGAACGTACATCGTTCTCCATG -ACGGAACGTACATCGTTCTGTGTG -ACGGAACGTACATCGTTCCTAGTG -ACGGAACGTACATCGTTCCATCTG -ACGGAACGTACATCGTTCGAGTTG -ACGGAACGTACATCGTTCAGACTG -ACGGAACGTACATCGTTCTCGGTA -ACGGAACGTACATCGTTCTGCCTA -ACGGAACGTACATCGTTCCCACTA -ACGGAACGTACATCGTTCGGAGTA -ACGGAACGTACATCGTTCTCGTCT -ACGGAACGTACATCGTTCTGCACT -ACGGAACGTACATCGTTCCTGACT -ACGGAACGTACATCGTTCCAACCT -ACGGAACGTACATCGTTCGCTACT -ACGGAACGTACATCGTTCGGATCT -ACGGAACGTACATCGTTCAAGGCT -ACGGAACGTACATCGTTCTCAACC -ACGGAACGTACATCGTTCTGTTCC -ACGGAACGTACATCGTTCATTCCC -ACGGAACGTACATCGTTCTTCTCG -ACGGAACGTACATCGTTCTAGACG -ACGGAACGTACATCGTTCGTAACG -ACGGAACGTACATCGTTCACTTCG -ACGGAACGTACATCGTTCTACGCA -ACGGAACGTACATCGTTCCTTGCA -ACGGAACGTACATCGTTCCGAACA -ACGGAACGTACATCGTTCCAGTCA -ACGGAACGTACATCGTTCGATCCA -ACGGAACGTACATCGTTCACGACA -ACGGAACGTACATCGTTCAGCTCA -ACGGAACGTACATCGTTCTCACGT -ACGGAACGTACATCGTTCCGTAGT -ACGGAACGTACATCGTTCGTCAGT -ACGGAACGTACATCGTTCGAAGGT -ACGGAACGTACATCGTTCAACCGT -ACGGAACGTACATCGTTCTTGTGC -ACGGAACGTACATCGTTCCTAAGC -ACGGAACGTACATCGTTCACTAGC -ACGGAACGTACATCGTTCAGATGC -ACGGAACGTACATCGTTCTGAAGG -ACGGAACGTACATCGTTCCAATGG -ACGGAACGTACATCGTTCATGAGG -ACGGAACGTACATCGTTCAATGGG -ACGGAACGTACATCGTTCTCCTGA -ACGGAACGTACATCGTTCTAGCGA -ACGGAACGTACATCGTTCCACAGA -ACGGAACGTACATCGTTCGCAAGA -ACGGAACGTACATCGTTCGGTTGA -ACGGAACGTACATCGTTCTCCGAT -ACGGAACGTACATCGTTCTGGCAT -ACGGAACGTACATCGTTCCGAGAT -ACGGAACGTACATCGTTCTACCAC -ACGGAACGTACATCGTTCCAGAAC -ACGGAACGTACATCGTTCGTCTAC -ACGGAACGTACATCGTTCACGTAC -ACGGAACGTACATCGTTCAGTGAC -ACGGAACGTACATCGTTCCTGTAG -ACGGAACGTACATCGTTCCCTAAG -ACGGAACGTACATCGTTCGTTCAG -ACGGAACGTACATCGTTCGCATAG -ACGGAACGTACATCGTTCGACAAG -ACGGAACGTACATCGTTCAAGCAG -ACGGAACGTACATCGTTCCGTCAA -ACGGAACGTACATCGTTCGCTGAA -ACGGAACGTACATCGTTCAGTACG -ACGGAACGTACATCGTTCATCCGA -ACGGAACGTACATCGTTCATGGGA -ACGGAACGTACATCGTTCGTGCAA -ACGGAACGTACATCGTTCGAGGAA -ACGGAACGTACATCGTTCCAGGTA -ACGGAACGTACATCGTTCGACTCT -ACGGAACGTACATCGTTCAGTCCT -ACGGAACGTACATCGTTCTAAGCC -ACGGAACGTACATCGTTCATAGCC -ACGGAACGTACATCGTTCTAACCG -ACGGAACGTACATCGTTCATGCCA -ACGGAACGTACAACGTAGGGAAAC -ACGGAACGTACAACGTAGAACACC -ACGGAACGTACAACGTAGATCGAG -ACGGAACGTACAACGTAGCTCCTT -ACGGAACGTACAACGTAGCCTGTT -ACGGAACGTACAACGTAGCGGTTT -ACGGAACGTACAACGTAGGTGGTT -ACGGAACGTACAACGTAGGCCTTT -ACGGAACGTACAACGTAGGGTCTT -ACGGAACGTACAACGTAGACGCTT -ACGGAACGTACAACGTAGAGCGTT -ACGGAACGTACAACGTAGTTCGTC -ACGGAACGTACAACGTAGTCTCTC -ACGGAACGTACAACGTAGTGGATC -ACGGAACGTACAACGTAGCACTTC -ACGGAACGTACAACGTAGGTACTC -ACGGAACGTACAACGTAGGATGTC -ACGGAACGTACAACGTAGACAGTC -ACGGAACGTACAACGTAGTTGCTG -ACGGAACGTACAACGTAGTCCATG -ACGGAACGTACAACGTAGTGTGTG -ACGGAACGTACAACGTAGCTAGTG -ACGGAACGTACAACGTAGCATCTG -ACGGAACGTACAACGTAGGAGTTG -ACGGAACGTACAACGTAGAGACTG -ACGGAACGTACAACGTAGTCGGTA -ACGGAACGTACAACGTAGTGCCTA -ACGGAACGTACAACGTAGCCACTA -ACGGAACGTACAACGTAGGGAGTA -ACGGAACGTACAACGTAGTCGTCT -ACGGAACGTACAACGTAGTGCACT -ACGGAACGTACAACGTAGCTGACT -ACGGAACGTACAACGTAGCAACCT -ACGGAACGTACAACGTAGGCTACT -ACGGAACGTACAACGTAGGGATCT -ACGGAACGTACAACGTAGAAGGCT -ACGGAACGTACAACGTAGTCAACC -ACGGAACGTACAACGTAGTGTTCC -ACGGAACGTACAACGTAGATTCCC -ACGGAACGTACAACGTAGTTCTCG -ACGGAACGTACAACGTAGTAGACG -ACGGAACGTACAACGTAGGTAACG -ACGGAACGTACAACGTAGACTTCG -ACGGAACGTACAACGTAGTACGCA -ACGGAACGTACAACGTAGCTTGCA -ACGGAACGTACAACGTAGCGAACA -ACGGAACGTACAACGTAGCAGTCA -ACGGAACGTACAACGTAGGATCCA -ACGGAACGTACAACGTAGACGACA -ACGGAACGTACAACGTAGAGCTCA -ACGGAACGTACAACGTAGTCACGT -ACGGAACGTACAACGTAGCGTAGT -ACGGAACGTACAACGTAGGTCAGT -ACGGAACGTACAACGTAGGAAGGT -ACGGAACGTACAACGTAGAACCGT -ACGGAACGTACAACGTAGTTGTGC -ACGGAACGTACAACGTAGCTAAGC -ACGGAACGTACAACGTAGACTAGC -ACGGAACGTACAACGTAGAGATGC -ACGGAACGTACAACGTAGTGAAGG -ACGGAACGTACAACGTAGCAATGG -ACGGAACGTACAACGTAGATGAGG -ACGGAACGTACAACGTAGAATGGG -ACGGAACGTACAACGTAGTCCTGA -ACGGAACGTACAACGTAGTAGCGA -ACGGAACGTACAACGTAGCACAGA -ACGGAACGTACAACGTAGGCAAGA -ACGGAACGTACAACGTAGGGTTGA -ACGGAACGTACAACGTAGTCCGAT -ACGGAACGTACAACGTAGTGGCAT -ACGGAACGTACAACGTAGCGAGAT -ACGGAACGTACAACGTAGTACCAC -ACGGAACGTACAACGTAGCAGAAC -ACGGAACGTACAACGTAGGTCTAC -ACGGAACGTACAACGTAGACGTAC -ACGGAACGTACAACGTAGAGTGAC -ACGGAACGTACAACGTAGCTGTAG -ACGGAACGTACAACGTAGCCTAAG -ACGGAACGTACAACGTAGGTTCAG -ACGGAACGTACAACGTAGGCATAG -ACGGAACGTACAACGTAGGACAAG -ACGGAACGTACAACGTAGAAGCAG -ACGGAACGTACAACGTAGCGTCAA -ACGGAACGTACAACGTAGGCTGAA -ACGGAACGTACAACGTAGAGTACG -ACGGAACGTACAACGTAGATCCGA -ACGGAACGTACAACGTAGATGGGA -ACGGAACGTACAACGTAGGTGCAA -ACGGAACGTACAACGTAGGAGGAA -ACGGAACGTACAACGTAGCAGGTA -ACGGAACGTACAACGTAGGACTCT -ACGGAACGTACAACGTAGAGTCCT -ACGGAACGTACAACGTAGTAAGCC -ACGGAACGTACAACGTAGATAGCC -ACGGAACGTACAACGTAGTAACCG -ACGGAACGTACAACGTAGATGCCA -ACGGAACGTACAACGGTAGGAAAC -ACGGAACGTACAACGGTAAACACC -ACGGAACGTACAACGGTAATCGAG -ACGGAACGTACAACGGTACTCCTT -ACGGAACGTACAACGGTACCTGTT -ACGGAACGTACAACGGTACGGTTT -ACGGAACGTACAACGGTAGTGGTT -ACGGAACGTACAACGGTAGCCTTT -ACGGAACGTACAACGGTAGGTCTT -ACGGAACGTACAACGGTAACGCTT -ACGGAACGTACAACGGTAAGCGTT -ACGGAACGTACAACGGTATTCGTC -ACGGAACGTACAACGGTATCTCTC -ACGGAACGTACAACGGTATGGATC -ACGGAACGTACAACGGTACACTTC -ACGGAACGTACAACGGTAGTACTC -ACGGAACGTACAACGGTAGATGTC -ACGGAACGTACAACGGTAACAGTC -ACGGAACGTACAACGGTATTGCTG -ACGGAACGTACAACGGTATCCATG -ACGGAACGTACAACGGTATGTGTG -ACGGAACGTACAACGGTACTAGTG -ACGGAACGTACAACGGTACATCTG -ACGGAACGTACAACGGTAGAGTTG -ACGGAACGTACAACGGTAAGACTG -ACGGAACGTACAACGGTATCGGTA -ACGGAACGTACAACGGTATGCCTA -ACGGAACGTACAACGGTACCACTA -ACGGAACGTACAACGGTAGGAGTA -ACGGAACGTACAACGGTATCGTCT -ACGGAACGTACAACGGTATGCACT -ACGGAACGTACAACGGTACTGACT -ACGGAACGTACAACGGTACAACCT -ACGGAACGTACAACGGTAGCTACT -ACGGAACGTACAACGGTAGGATCT -ACGGAACGTACAACGGTAAAGGCT -ACGGAACGTACAACGGTATCAACC -ACGGAACGTACAACGGTATGTTCC -ACGGAACGTACAACGGTAATTCCC -ACGGAACGTACAACGGTATTCTCG -ACGGAACGTACAACGGTATAGACG -ACGGAACGTACAACGGTAGTAACG -ACGGAACGTACAACGGTAACTTCG -ACGGAACGTACAACGGTATACGCA -ACGGAACGTACAACGGTACTTGCA -ACGGAACGTACAACGGTACGAACA -ACGGAACGTACAACGGTACAGTCA -ACGGAACGTACAACGGTAGATCCA -ACGGAACGTACAACGGTAACGACA -ACGGAACGTACAACGGTAAGCTCA -ACGGAACGTACAACGGTATCACGT -ACGGAACGTACAACGGTACGTAGT -ACGGAACGTACAACGGTAGTCAGT -ACGGAACGTACAACGGTAGAAGGT -ACGGAACGTACAACGGTAAACCGT -ACGGAACGTACAACGGTATTGTGC -ACGGAACGTACAACGGTACTAAGC -ACGGAACGTACAACGGTAACTAGC -ACGGAACGTACAACGGTAAGATGC -ACGGAACGTACAACGGTATGAAGG -ACGGAACGTACAACGGTACAATGG -ACGGAACGTACAACGGTAATGAGG -ACGGAACGTACAACGGTAAATGGG -ACGGAACGTACAACGGTATCCTGA -ACGGAACGTACAACGGTATAGCGA -ACGGAACGTACAACGGTACACAGA -ACGGAACGTACAACGGTAGCAAGA -ACGGAACGTACAACGGTAGGTTGA -ACGGAACGTACAACGGTATCCGAT -ACGGAACGTACAACGGTATGGCAT -ACGGAACGTACAACGGTACGAGAT -ACGGAACGTACAACGGTATACCAC -ACGGAACGTACAACGGTACAGAAC -ACGGAACGTACAACGGTAGTCTAC -ACGGAACGTACAACGGTAACGTAC -ACGGAACGTACAACGGTAAGTGAC -ACGGAACGTACAACGGTACTGTAG -ACGGAACGTACAACGGTACCTAAG -ACGGAACGTACAACGGTAGTTCAG -ACGGAACGTACAACGGTAGCATAG -ACGGAACGTACAACGGTAGACAAG -ACGGAACGTACAACGGTAAAGCAG -ACGGAACGTACAACGGTACGTCAA -ACGGAACGTACAACGGTAGCTGAA -ACGGAACGTACAACGGTAAGTACG -ACGGAACGTACAACGGTAATCCGA -ACGGAACGTACAACGGTAATGGGA -ACGGAACGTACAACGGTAGTGCAA -ACGGAACGTACAACGGTAGAGGAA -ACGGAACGTACAACGGTACAGGTA -ACGGAACGTACAACGGTAGACTCT -ACGGAACGTACAACGGTAAGTCCT -ACGGAACGTACAACGGTATAAGCC -ACGGAACGTACAACGGTAATAGCC -ACGGAACGTACAACGGTATAACCG -ACGGAACGTACAACGGTAATGCCA -ACGGAACGTACATCGACTGGAAAC -ACGGAACGTACATCGACTAACACC -ACGGAACGTACATCGACTATCGAG -ACGGAACGTACATCGACTCTCCTT -ACGGAACGTACATCGACTCCTGTT -ACGGAACGTACATCGACTCGGTTT -ACGGAACGTACATCGACTGTGGTT -ACGGAACGTACATCGACTGCCTTT -ACGGAACGTACATCGACTGGTCTT -ACGGAACGTACATCGACTACGCTT -ACGGAACGTACATCGACTAGCGTT -ACGGAACGTACATCGACTTTCGTC -ACGGAACGTACATCGACTTCTCTC -ACGGAACGTACATCGACTTGGATC -ACGGAACGTACATCGACTCACTTC -ACGGAACGTACATCGACTGTACTC -ACGGAACGTACATCGACTGATGTC -ACGGAACGTACATCGACTACAGTC -ACGGAACGTACATCGACTTTGCTG -ACGGAACGTACATCGACTTCCATG -ACGGAACGTACATCGACTTGTGTG -ACGGAACGTACATCGACTCTAGTG -ACGGAACGTACATCGACTCATCTG -ACGGAACGTACATCGACTGAGTTG -ACGGAACGTACATCGACTAGACTG -ACGGAACGTACATCGACTTCGGTA -ACGGAACGTACATCGACTTGCCTA -ACGGAACGTACATCGACTCCACTA -ACGGAACGTACATCGACTGGAGTA -ACGGAACGTACATCGACTTCGTCT -ACGGAACGTACATCGACTTGCACT -ACGGAACGTACATCGACTCTGACT -ACGGAACGTACATCGACTCAACCT -ACGGAACGTACATCGACTGCTACT -ACGGAACGTACATCGACTGGATCT -ACGGAACGTACATCGACTAAGGCT -ACGGAACGTACATCGACTTCAACC -ACGGAACGTACATCGACTTGTTCC -ACGGAACGTACATCGACTATTCCC -ACGGAACGTACATCGACTTTCTCG -ACGGAACGTACATCGACTTAGACG -ACGGAACGTACATCGACTGTAACG -ACGGAACGTACATCGACTACTTCG -ACGGAACGTACATCGACTTACGCA -ACGGAACGTACATCGACTCTTGCA -ACGGAACGTACATCGACTCGAACA -ACGGAACGTACATCGACTCAGTCA -ACGGAACGTACATCGACTGATCCA -ACGGAACGTACATCGACTACGACA -ACGGAACGTACATCGACTAGCTCA -ACGGAACGTACATCGACTTCACGT -ACGGAACGTACATCGACTCGTAGT -ACGGAACGTACATCGACTGTCAGT -ACGGAACGTACATCGACTGAAGGT -ACGGAACGTACATCGACTAACCGT -ACGGAACGTACATCGACTTTGTGC -ACGGAACGTACATCGACTCTAAGC -ACGGAACGTACATCGACTACTAGC -ACGGAACGTACATCGACTAGATGC -ACGGAACGTACATCGACTTGAAGG -ACGGAACGTACATCGACTCAATGG -ACGGAACGTACATCGACTATGAGG -ACGGAACGTACATCGACTAATGGG -ACGGAACGTACATCGACTTCCTGA -ACGGAACGTACATCGACTTAGCGA -ACGGAACGTACATCGACTCACAGA -ACGGAACGTACATCGACTGCAAGA -ACGGAACGTACATCGACTGGTTGA -ACGGAACGTACATCGACTTCCGAT -ACGGAACGTACATCGACTTGGCAT -ACGGAACGTACATCGACTCGAGAT -ACGGAACGTACATCGACTTACCAC -ACGGAACGTACATCGACTCAGAAC -ACGGAACGTACATCGACTGTCTAC -ACGGAACGTACATCGACTACGTAC -ACGGAACGTACATCGACTAGTGAC -ACGGAACGTACATCGACTCTGTAG -ACGGAACGTACATCGACTCCTAAG -ACGGAACGTACATCGACTGTTCAG -ACGGAACGTACATCGACTGCATAG -ACGGAACGTACATCGACTGACAAG -ACGGAACGTACATCGACTAAGCAG -ACGGAACGTACATCGACTCGTCAA -ACGGAACGTACATCGACTGCTGAA -ACGGAACGTACATCGACTAGTACG -ACGGAACGTACATCGACTATCCGA -ACGGAACGTACATCGACTATGGGA -ACGGAACGTACATCGACTGTGCAA -ACGGAACGTACATCGACTGAGGAA -ACGGAACGTACATCGACTCAGGTA -ACGGAACGTACATCGACTGACTCT -ACGGAACGTACATCGACTAGTCCT -ACGGAACGTACATCGACTTAAGCC -ACGGAACGTACATCGACTATAGCC -ACGGAACGTACATCGACTTAACCG -ACGGAACGTACATCGACTATGCCA -ACGGAACGTACAGCATACGGAAAC -ACGGAACGTACAGCATACAACACC -ACGGAACGTACAGCATACATCGAG -ACGGAACGTACAGCATACCTCCTT -ACGGAACGTACAGCATACCCTGTT -ACGGAACGTACAGCATACCGGTTT -ACGGAACGTACAGCATACGTGGTT -ACGGAACGTACAGCATACGCCTTT -ACGGAACGTACAGCATACGGTCTT -ACGGAACGTACAGCATACACGCTT -ACGGAACGTACAGCATACAGCGTT -ACGGAACGTACAGCATACTTCGTC -ACGGAACGTACAGCATACTCTCTC -ACGGAACGTACAGCATACTGGATC -ACGGAACGTACAGCATACCACTTC -ACGGAACGTACAGCATACGTACTC -ACGGAACGTACAGCATACGATGTC -ACGGAACGTACAGCATACACAGTC -ACGGAACGTACAGCATACTTGCTG -ACGGAACGTACAGCATACTCCATG -ACGGAACGTACAGCATACTGTGTG -ACGGAACGTACAGCATACCTAGTG -ACGGAACGTACAGCATACCATCTG -ACGGAACGTACAGCATACGAGTTG -ACGGAACGTACAGCATACAGACTG -ACGGAACGTACAGCATACTCGGTA -ACGGAACGTACAGCATACTGCCTA -ACGGAACGTACAGCATACCCACTA -ACGGAACGTACAGCATACGGAGTA -ACGGAACGTACAGCATACTCGTCT -ACGGAACGTACAGCATACTGCACT -ACGGAACGTACAGCATACCTGACT -ACGGAACGTACAGCATACCAACCT -ACGGAACGTACAGCATACGCTACT -ACGGAACGTACAGCATACGGATCT -ACGGAACGTACAGCATACAAGGCT -ACGGAACGTACAGCATACTCAACC -ACGGAACGTACAGCATACTGTTCC -ACGGAACGTACAGCATACATTCCC -ACGGAACGTACAGCATACTTCTCG -ACGGAACGTACAGCATACTAGACG -ACGGAACGTACAGCATACGTAACG -ACGGAACGTACAGCATACACTTCG -ACGGAACGTACAGCATACTACGCA -ACGGAACGTACAGCATACCTTGCA -ACGGAACGTACAGCATACCGAACA -ACGGAACGTACAGCATACCAGTCA -ACGGAACGTACAGCATACGATCCA -ACGGAACGTACAGCATACACGACA -ACGGAACGTACAGCATACAGCTCA -ACGGAACGTACAGCATACTCACGT -ACGGAACGTACAGCATACCGTAGT -ACGGAACGTACAGCATACGTCAGT -ACGGAACGTACAGCATACGAAGGT -ACGGAACGTACAGCATACAACCGT -ACGGAACGTACAGCATACTTGTGC -ACGGAACGTACAGCATACCTAAGC -ACGGAACGTACAGCATACACTAGC -ACGGAACGTACAGCATACAGATGC -ACGGAACGTACAGCATACTGAAGG -ACGGAACGTACAGCATACCAATGG -ACGGAACGTACAGCATACATGAGG -ACGGAACGTACAGCATACAATGGG -ACGGAACGTACAGCATACTCCTGA -ACGGAACGTACAGCATACTAGCGA -ACGGAACGTACAGCATACCACAGA -ACGGAACGTACAGCATACGCAAGA -ACGGAACGTACAGCATACGGTTGA -ACGGAACGTACAGCATACTCCGAT -ACGGAACGTACAGCATACTGGCAT -ACGGAACGTACAGCATACCGAGAT -ACGGAACGTACAGCATACTACCAC -ACGGAACGTACAGCATACCAGAAC -ACGGAACGTACAGCATACGTCTAC -ACGGAACGTACAGCATACACGTAC -ACGGAACGTACAGCATACAGTGAC -ACGGAACGTACAGCATACCTGTAG -ACGGAACGTACAGCATACCCTAAG -ACGGAACGTACAGCATACGTTCAG -ACGGAACGTACAGCATACGCATAG -ACGGAACGTACAGCATACGACAAG -ACGGAACGTACAGCATACAAGCAG -ACGGAACGTACAGCATACCGTCAA -ACGGAACGTACAGCATACGCTGAA -ACGGAACGTACAGCATACAGTACG -ACGGAACGTACAGCATACATCCGA -ACGGAACGTACAGCATACATGGGA -ACGGAACGTACAGCATACGTGCAA -ACGGAACGTACAGCATACGAGGAA -ACGGAACGTACAGCATACCAGGTA -ACGGAACGTACAGCATACGACTCT -ACGGAACGTACAGCATACAGTCCT -ACGGAACGTACAGCATACTAAGCC -ACGGAACGTACAGCATACATAGCC -ACGGAACGTACAGCATACTAACCG -ACGGAACGTACAGCATACATGCCA -ACGGAACGTACAGCACTTGGAAAC -ACGGAACGTACAGCACTTAACACC -ACGGAACGTACAGCACTTATCGAG -ACGGAACGTACAGCACTTCTCCTT -ACGGAACGTACAGCACTTCCTGTT -ACGGAACGTACAGCACTTCGGTTT -ACGGAACGTACAGCACTTGTGGTT -ACGGAACGTACAGCACTTGCCTTT -ACGGAACGTACAGCACTTGGTCTT -ACGGAACGTACAGCACTTACGCTT -ACGGAACGTACAGCACTTAGCGTT -ACGGAACGTACAGCACTTTTCGTC -ACGGAACGTACAGCACTTTCTCTC -ACGGAACGTACAGCACTTTGGATC -ACGGAACGTACAGCACTTCACTTC -ACGGAACGTACAGCACTTGTACTC -ACGGAACGTACAGCACTTGATGTC -ACGGAACGTACAGCACTTACAGTC -ACGGAACGTACAGCACTTTTGCTG -ACGGAACGTACAGCACTTTCCATG -ACGGAACGTACAGCACTTTGTGTG -ACGGAACGTACAGCACTTCTAGTG -ACGGAACGTACAGCACTTCATCTG -ACGGAACGTACAGCACTTGAGTTG -ACGGAACGTACAGCACTTAGACTG -ACGGAACGTACAGCACTTTCGGTA -ACGGAACGTACAGCACTTTGCCTA -ACGGAACGTACAGCACTTCCACTA -ACGGAACGTACAGCACTTGGAGTA -ACGGAACGTACAGCACTTTCGTCT -ACGGAACGTACAGCACTTTGCACT -ACGGAACGTACAGCACTTCTGACT -ACGGAACGTACAGCACTTCAACCT -ACGGAACGTACAGCACTTGCTACT -ACGGAACGTACAGCACTTGGATCT -ACGGAACGTACAGCACTTAAGGCT -ACGGAACGTACAGCACTTTCAACC -ACGGAACGTACAGCACTTTGTTCC -ACGGAACGTACAGCACTTATTCCC -ACGGAACGTACAGCACTTTTCTCG -ACGGAACGTACAGCACTTTAGACG -ACGGAACGTACAGCACTTGTAACG -ACGGAACGTACAGCACTTACTTCG -ACGGAACGTACAGCACTTTACGCA -ACGGAACGTACAGCACTTCTTGCA -ACGGAACGTACAGCACTTCGAACA -ACGGAACGTACAGCACTTCAGTCA -ACGGAACGTACAGCACTTGATCCA -ACGGAACGTACAGCACTTACGACA -ACGGAACGTACAGCACTTAGCTCA -ACGGAACGTACAGCACTTTCACGT -ACGGAACGTACAGCACTTCGTAGT -ACGGAACGTACAGCACTTGTCAGT -ACGGAACGTACAGCACTTGAAGGT -ACGGAACGTACAGCACTTAACCGT -ACGGAACGTACAGCACTTTTGTGC -ACGGAACGTACAGCACTTCTAAGC -ACGGAACGTACAGCACTTACTAGC -ACGGAACGTACAGCACTTAGATGC -ACGGAACGTACAGCACTTTGAAGG -ACGGAACGTACAGCACTTCAATGG -ACGGAACGTACAGCACTTATGAGG -ACGGAACGTACAGCACTTAATGGG -ACGGAACGTACAGCACTTTCCTGA -ACGGAACGTACAGCACTTTAGCGA -ACGGAACGTACAGCACTTCACAGA -ACGGAACGTACAGCACTTGCAAGA -ACGGAACGTACAGCACTTGGTTGA -ACGGAACGTACAGCACTTTCCGAT -ACGGAACGTACAGCACTTTGGCAT -ACGGAACGTACAGCACTTCGAGAT -ACGGAACGTACAGCACTTTACCAC -ACGGAACGTACAGCACTTCAGAAC -ACGGAACGTACAGCACTTGTCTAC -ACGGAACGTACAGCACTTACGTAC -ACGGAACGTACAGCACTTAGTGAC -ACGGAACGTACAGCACTTCTGTAG -ACGGAACGTACAGCACTTCCTAAG -ACGGAACGTACAGCACTTGTTCAG -ACGGAACGTACAGCACTTGCATAG -ACGGAACGTACAGCACTTGACAAG -ACGGAACGTACAGCACTTAAGCAG -ACGGAACGTACAGCACTTCGTCAA -ACGGAACGTACAGCACTTGCTGAA -ACGGAACGTACAGCACTTAGTACG -ACGGAACGTACAGCACTTATCCGA -ACGGAACGTACAGCACTTATGGGA -ACGGAACGTACAGCACTTGTGCAA -ACGGAACGTACAGCACTTGAGGAA -ACGGAACGTACAGCACTTCAGGTA -ACGGAACGTACAGCACTTGACTCT -ACGGAACGTACAGCACTTAGTCCT -ACGGAACGTACAGCACTTTAAGCC -ACGGAACGTACAGCACTTATAGCC -ACGGAACGTACAGCACTTTAACCG -ACGGAACGTACAGCACTTATGCCA -ACGGAACGTACAACACGAGGAAAC -ACGGAACGTACAACACGAAACACC -ACGGAACGTACAACACGAATCGAG -ACGGAACGTACAACACGACTCCTT -ACGGAACGTACAACACGACCTGTT -ACGGAACGTACAACACGACGGTTT -ACGGAACGTACAACACGAGTGGTT -ACGGAACGTACAACACGAGCCTTT -ACGGAACGTACAACACGAGGTCTT -ACGGAACGTACAACACGAACGCTT -ACGGAACGTACAACACGAAGCGTT -ACGGAACGTACAACACGATTCGTC -ACGGAACGTACAACACGATCTCTC -ACGGAACGTACAACACGATGGATC -ACGGAACGTACAACACGACACTTC -ACGGAACGTACAACACGAGTACTC -ACGGAACGTACAACACGAGATGTC -ACGGAACGTACAACACGAACAGTC -ACGGAACGTACAACACGATTGCTG -ACGGAACGTACAACACGATCCATG -ACGGAACGTACAACACGATGTGTG -ACGGAACGTACAACACGACTAGTG -ACGGAACGTACAACACGACATCTG -ACGGAACGTACAACACGAGAGTTG -ACGGAACGTACAACACGAAGACTG -ACGGAACGTACAACACGATCGGTA -ACGGAACGTACAACACGATGCCTA -ACGGAACGTACAACACGACCACTA -ACGGAACGTACAACACGAGGAGTA -ACGGAACGTACAACACGATCGTCT -ACGGAACGTACAACACGATGCACT -ACGGAACGTACAACACGACTGACT -ACGGAACGTACAACACGACAACCT -ACGGAACGTACAACACGAGCTACT -ACGGAACGTACAACACGAGGATCT -ACGGAACGTACAACACGAAAGGCT -ACGGAACGTACAACACGATCAACC -ACGGAACGTACAACACGATGTTCC -ACGGAACGTACAACACGAATTCCC -ACGGAACGTACAACACGATTCTCG -ACGGAACGTACAACACGATAGACG -ACGGAACGTACAACACGAGTAACG -ACGGAACGTACAACACGAACTTCG -ACGGAACGTACAACACGATACGCA -ACGGAACGTACAACACGACTTGCA -ACGGAACGTACAACACGACGAACA -ACGGAACGTACAACACGACAGTCA -ACGGAACGTACAACACGAGATCCA -ACGGAACGTACAACACGAACGACA -ACGGAACGTACAACACGAAGCTCA -ACGGAACGTACAACACGATCACGT -ACGGAACGTACAACACGACGTAGT -ACGGAACGTACAACACGAGTCAGT -ACGGAACGTACAACACGAGAAGGT -ACGGAACGTACAACACGAAACCGT -ACGGAACGTACAACACGATTGTGC -ACGGAACGTACAACACGACTAAGC -ACGGAACGTACAACACGAACTAGC -ACGGAACGTACAACACGAAGATGC -ACGGAACGTACAACACGATGAAGG -ACGGAACGTACAACACGACAATGG -ACGGAACGTACAACACGAATGAGG -ACGGAACGTACAACACGAAATGGG -ACGGAACGTACAACACGATCCTGA -ACGGAACGTACAACACGATAGCGA -ACGGAACGTACAACACGACACAGA -ACGGAACGTACAACACGAGCAAGA -ACGGAACGTACAACACGAGGTTGA -ACGGAACGTACAACACGATCCGAT -ACGGAACGTACAACACGATGGCAT -ACGGAACGTACAACACGACGAGAT -ACGGAACGTACAACACGATACCAC -ACGGAACGTACAACACGACAGAAC -ACGGAACGTACAACACGAGTCTAC -ACGGAACGTACAACACGAACGTAC -ACGGAACGTACAACACGAAGTGAC -ACGGAACGTACAACACGACTGTAG -ACGGAACGTACAACACGACCTAAG -ACGGAACGTACAACACGAGTTCAG -ACGGAACGTACAACACGAGCATAG -ACGGAACGTACAACACGAGACAAG -ACGGAACGTACAACACGAAAGCAG -ACGGAACGTACAACACGACGTCAA -ACGGAACGTACAACACGAGCTGAA -ACGGAACGTACAACACGAAGTACG -ACGGAACGTACAACACGAATCCGA -ACGGAACGTACAACACGAATGGGA -ACGGAACGTACAACACGAGTGCAA -ACGGAACGTACAACACGAGAGGAA -ACGGAACGTACAACACGACAGGTA -ACGGAACGTACAACACGAGACTCT -ACGGAACGTACAACACGAAGTCCT -ACGGAACGTACAACACGATAAGCC -ACGGAACGTACAACACGAATAGCC -ACGGAACGTACAACACGATAACCG -ACGGAACGTACAACACGAATGCCA -ACGGAACGTACATCACAGGGAAAC -ACGGAACGTACATCACAGAACACC -ACGGAACGTACATCACAGATCGAG -ACGGAACGTACATCACAGCTCCTT -ACGGAACGTACATCACAGCCTGTT -ACGGAACGTACATCACAGCGGTTT -ACGGAACGTACATCACAGGTGGTT -ACGGAACGTACATCACAGGCCTTT -ACGGAACGTACATCACAGGGTCTT -ACGGAACGTACATCACAGACGCTT -ACGGAACGTACATCACAGAGCGTT -ACGGAACGTACATCACAGTTCGTC -ACGGAACGTACATCACAGTCTCTC -ACGGAACGTACATCACAGTGGATC -ACGGAACGTACATCACAGCACTTC -ACGGAACGTACATCACAGGTACTC -ACGGAACGTACATCACAGGATGTC -ACGGAACGTACATCACAGACAGTC -ACGGAACGTACATCACAGTTGCTG -ACGGAACGTACATCACAGTCCATG -ACGGAACGTACATCACAGTGTGTG -ACGGAACGTACATCACAGCTAGTG -ACGGAACGTACATCACAGCATCTG -ACGGAACGTACATCACAGGAGTTG -ACGGAACGTACATCACAGAGACTG -ACGGAACGTACATCACAGTCGGTA -ACGGAACGTACATCACAGTGCCTA -ACGGAACGTACATCACAGCCACTA -ACGGAACGTACATCACAGGGAGTA -ACGGAACGTACATCACAGTCGTCT -ACGGAACGTACATCACAGTGCACT -ACGGAACGTACATCACAGCTGACT -ACGGAACGTACATCACAGCAACCT -ACGGAACGTACATCACAGGCTACT -ACGGAACGTACATCACAGGGATCT -ACGGAACGTACATCACAGAAGGCT -ACGGAACGTACATCACAGTCAACC -ACGGAACGTACATCACAGTGTTCC -ACGGAACGTACATCACAGATTCCC -ACGGAACGTACATCACAGTTCTCG -ACGGAACGTACATCACAGTAGACG -ACGGAACGTACATCACAGGTAACG -ACGGAACGTACATCACAGACTTCG -ACGGAACGTACATCACAGTACGCA -ACGGAACGTACATCACAGCTTGCA -ACGGAACGTACATCACAGCGAACA -ACGGAACGTACATCACAGCAGTCA -ACGGAACGTACATCACAGGATCCA -ACGGAACGTACATCACAGACGACA -ACGGAACGTACATCACAGAGCTCA -ACGGAACGTACATCACAGTCACGT -ACGGAACGTACATCACAGCGTAGT -ACGGAACGTACATCACAGGTCAGT -ACGGAACGTACATCACAGGAAGGT -ACGGAACGTACATCACAGAACCGT -ACGGAACGTACATCACAGTTGTGC -ACGGAACGTACATCACAGCTAAGC -ACGGAACGTACATCACAGACTAGC -ACGGAACGTACATCACAGAGATGC -ACGGAACGTACATCACAGTGAAGG -ACGGAACGTACATCACAGCAATGG -ACGGAACGTACATCACAGATGAGG -ACGGAACGTACATCACAGAATGGG -ACGGAACGTACATCACAGTCCTGA -ACGGAACGTACATCACAGTAGCGA -ACGGAACGTACATCACAGCACAGA -ACGGAACGTACATCACAGGCAAGA -ACGGAACGTACATCACAGGGTTGA -ACGGAACGTACATCACAGTCCGAT -ACGGAACGTACATCACAGTGGCAT -ACGGAACGTACATCACAGCGAGAT -ACGGAACGTACATCACAGTACCAC -ACGGAACGTACATCACAGCAGAAC -ACGGAACGTACATCACAGGTCTAC -ACGGAACGTACATCACAGACGTAC -ACGGAACGTACATCACAGAGTGAC -ACGGAACGTACATCACAGCTGTAG -ACGGAACGTACATCACAGCCTAAG -ACGGAACGTACATCACAGGTTCAG -ACGGAACGTACATCACAGGCATAG -ACGGAACGTACATCACAGGACAAG -ACGGAACGTACATCACAGAAGCAG -ACGGAACGTACATCACAGCGTCAA -ACGGAACGTACATCACAGGCTGAA -ACGGAACGTACATCACAGAGTACG -ACGGAACGTACATCACAGATCCGA -ACGGAACGTACATCACAGATGGGA -ACGGAACGTACATCACAGGTGCAA -ACGGAACGTACATCACAGGAGGAA -ACGGAACGTACATCACAGCAGGTA -ACGGAACGTACATCACAGGACTCT -ACGGAACGTACATCACAGAGTCCT -ACGGAACGTACATCACAGTAAGCC -ACGGAACGTACATCACAGATAGCC -ACGGAACGTACATCACAGTAACCG -ACGGAACGTACATCACAGATGCCA -ACGGAACGTACACCAGATGGAAAC -ACGGAACGTACACCAGATAACACC -ACGGAACGTACACCAGATATCGAG -ACGGAACGTACACCAGATCTCCTT -ACGGAACGTACACCAGATCCTGTT -ACGGAACGTACACCAGATCGGTTT -ACGGAACGTACACCAGATGTGGTT -ACGGAACGTACACCAGATGCCTTT -ACGGAACGTACACCAGATGGTCTT -ACGGAACGTACACCAGATACGCTT -ACGGAACGTACACCAGATAGCGTT -ACGGAACGTACACCAGATTTCGTC -ACGGAACGTACACCAGATTCTCTC -ACGGAACGTACACCAGATTGGATC -ACGGAACGTACACCAGATCACTTC -ACGGAACGTACACCAGATGTACTC -ACGGAACGTACACCAGATGATGTC -ACGGAACGTACACCAGATACAGTC -ACGGAACGTACACCAGATTTGCTG -ACGGAACGTACACCAGATTCCATG -ACGGAACGTACACCAGATTGTGTG -ACGGAACGTACACCAGATCTAGTG -ACGGAACGTACACCAGATCATCTG -ACGGAACGTACACCAGATGAGTTG -ACGGAACGTACACCAGATAGACTG -ACGGAACGTACACCAGATTCGGTA -ACGGAACGTACACCAGATTGCCTA -ACGGAACGTACACCAGATCCACTA -ACGGAACGTACACCAGATGGAGTA -ACGGAACGTACACCAGATTCGTCT -ACGGAACGTACACCAGATTGCACT -ACGGAACGTACACCAGATCTGACT -ACGGAACGTACACCAGATCAACCT -ACGGAACGTACACCAGATGCTACT -ACGGAACGTACACCAGATGGATCT -ACGGAACGTACACCAGATAAGGCT -ACGGAACGTACACCAGATTCAACC -ACGGAACGTACACCAGATTGTTCC -ACGGAACGTACACCAGATATTCCC -ACGGAACGTACACCAGATTTCTCG -ACGGAACGTACACCAGATTAGACG -ACGGAACGTACACCAGATGTAACG -ACGGAACGTACACCAGATACTTCG -ACGGAACGTACACCAGATTACGCA -ACGGAACGTACACCAGATCTTGCA -ACGGAACGTACACCAGATCGAACA -ACGGAACGTACACCAGATCAGTCA -ACGGAACGTACACCAGATGATCCA -ACGGAACGTACACCAGATACGACA -ACGGAACGTACACCAGATAGCTCA -ACGGAACGTACACCAGATTCACGT -ACGGAACGTACACCAGATCGTAGT -ACGGAACGTACACCAGATGTCAGT -ACGGAACGTACACCAGATGAAGGT -ACGGAACGTACACCAGATAACCGT -ACGGAACGTACACCAGATTTGTGC -ACGGAACGTACACCAGATCTAAGC -ACGGAACGTACACCAGATACTAGC -ACGGAACGTACACCAGATAGATGC -ACGGAACGTACACCAGATTGAAGG -ACGGAACGTACACCAGATCAATGG -ACGGAACGTACACCAGATATGAGG -ACGGAACGTACACCAGATAATGGG -ACGGAACGTACACCAGATTCCTGA -ACGGAACGTACACCAGATTAGCGA -ACGGAACGTACACCAGATCACAGA -ACGGAACGTACACCAGATGCAAGA -ACGGAACGTACACCAGATGGTTGA -ACGGAACGTACACCAGATTCCGAT -ACGGAACGTACACCAGATTGGCAT -ACGGAACGTACACCAGATCGAGAT -ACGGAACGTACACCAGATTACCAC -ACGGAACGTACACCAGATCAGAAC -ACGGAACGTACACCAGATGTCTAC -ACGGAACGTACACCAGATACGTAC -ACGGAACGTACACCAGATAGTGAC -ACGGAACGTACACCAGATCTGTAG -ACGGAACGTACACCAGATCCTAAG -ACGGAACGTACACCAGATGTTCAG -ACGGAACGTACACCAGATGCATAG -ACGGAACGTACACCAGATGACAAG -ACGGAACGTACACCAGATAAGCAG -ACGGAACGTACACCAGATCGTCAA -ACGGAACGTACACCAGATGCTGAA -ACGGAACGTACACCAGATAGTACG -ACGGAACGTACACCAGATATCCGA -ACGGAACGTACACCAGATATGGGA -ACGGAACGTACACCAGATGTGCAA -ACGGAACGTACACCAGATGAGGAA -ACGGAACGTACACCAGATCAGGTA -ACGGAACGTACACCAGATGACTCT -ACGGAACGTACACCAGATAGTCCT -ACGGAACGTACACCAGATTAAGCC -ACGGAACGTACACCAGATATAGCC -ACGGAACGTACACCAGATTAACCG -ACGGAACGTACACCAGATATGCCA -ACGGAACGTACAACAACGGGAAAC -ACGGAACGTACAACAACGAACACC -ACGGAACGTACAACAACGATCGAG -ACGGAACGTACAACAACGCTCCTT -ACGGAACGTACAACAACGCCTGTT -ACGGAACGTACAACAACGCGGTTT -ACGGAACGTACAACAACGGTGGTT -ACGGAACGTACAACAACGGCCTTT -ACGGAACGTACAACAACGGGTCTT -ACGGAACGTACAACAACGACGCTT -ACGGAACGTACAACAACGAGCGTT -ACGGAACGTACAACAACGTTCGTC -ACGGAACGTACAACAACGTCTCTC -ACGGAACGTACAACAACGTGGATC -ACGGAACGTACAACAACGCACTTC -ACGGAACGTACAACAACGGTACTC -ACGGAACGTACAACAACGGATGTC -ACGGAACGTACAACAACGACAGTC -ACGGAACGTACAACAACGTTGCTG -ACGGAACGTACAACAACGTCCATG -ACGGAACGTACAACAACGTGTGTG -ACGGAACGTACAACAACGCTAGTG -ACGGAACGTACAACAACGCATCTG -ACGGAACGTACAACAACGGAGTTG -ACGGAACGTACAACAACGAGACTG -ACGGAACGTACAACAACGTCGGTA -ACGGAACGTACAACAACGTGCCTA -ACGGAACGTACAACAACGCCACTA -ACGGAACGTACAACAACGGGAGTA -ACGGAACGTACAACAACGTCGTCT -ACGGAACGTACAACAACGTGCACT -ACGGAACGTACAACAACGCTGACT -ACGGAACGTACAACAACGCAACCT -ACGGAACGTACAACAACGGCTACT -ACGGAACGTACAACAACGGGATCT -ACGGAACGTACAACAACGAAGGCT -ACGGAACGTACAACAACGTCAACC -ACGGAACGTACAACAACGTGTTCC -ACGGAACGTACAACAACGATTCCC -ACGGAACGTACAACAACGTTCTCG -ACGGAACGTACAACAACGTAGACG -ACGGAACGTACAACAACGGTAACG -ACGGAACGTACAACAACGACTTCG -ACGGAACGTACAACAACGTACGCA -ACGGAACGTACAACAACGCTTGCA -ACGGAACGTACAACAACGCGAACA -ACGGAACGTACAACAACGCAGTCA -ACGGAACGTACAACAACGGATCCA -ACGGAACGTACAACAACGACGACA -ACGGAACGTACAACAACGAGCTCA -ACGGAACGTACAACAACGTCACGT -ACGGAACGTACAACAACGCGTAGT -ACGGAACGTACAACAACGGTCAGT -ACGGAACGTACAACAACGGAAGGT -ACGGAACGTACAACAACGAACCGT -ACGGAACGTACAACAACGTTGTGC -ACGGAACGTACAACAACGCTAAGC -ACGGAACGTACAACAACGACTAGC -ACGGAACGTACAACAACGAGATGC -ACGGAACGTACAACAACGTGAAGG -ACGGAACGTACAACAACGCAATGG -ACGGAACGTACAACAACGATGAGG -ACGGAACGTACAACAACGAATGGG -ACGGAACGTACAACAACGTCCTGA -ACGGAACGTACAACAACGTAGCGA -ACGGAACGTACAACAACGCACAGA -ACGGAACGTACAACAACGGCAAGA -ACGGAACGTACAACAACGGGTTGA -ACGGAACGTACAACAACGTCCGAT -ACGGAACGTACAACAACGTGGCAT -ACGGAACGTACAACAACGCGAGAT -ACGGAACGTACAACAACGTACCAC -ACGGAACGTACAACAACGCAGAAC -ACGGAACGTACAACAACGGTCTAC -ACGGAACGTACAACAACGACGTAC -ACGGAACGTACAACAACGAGTGAC -ACGGAACGTACAACAACGCTGTAG -ACGGAACGTACAACAACGCCTAAG -ACGGAACGTACAACAACGGTTCAG -ACGGAACGTACAACAACGGCATAG -ACGGAACGTACAACAACGGACAAG -ACGGAACGTACAACAACGAAGCAG -ACGGAACGTACAACAACGCGTCAA -ACGGAACGTACAACAACGGCTGAA -ACGGAACGTACAACAACGAGTACG -ACGGAACGTACAACAACGATCCGA -ACGGAACGTACAACAACGATGGGA -ACGGAACGTACAACAACGGTGCAA -ACGGAACGTACAACAACGGAGGAA -ACGGAACGTACAACAACGCAGGTA -ACGGAACGTACAACAACGGACTCT -ACGGAACGTACAACAACGAGTCCT -ACGGAACGTACAACAACGTAAGCC -ACGGAACGTACAACAACGATAGCC -ACGGAACGTACAACAACGTAACCG -ACGGAACGTACAACAACGATGCCA -ACGGAACGTACATCAAGCGGAAAC -ACGGAACGTACATCAAGCAACACC -ACGGAACGTACATCAAGCATCGAG -ACGGAACGTACATCAAGCCTCCTT -ACGGAACGTACATCAAGCCCTGTT -ACGGAACGTACATCAAGCCGGTTT -ACGGAACGTACATCAAGCGTGGTT -ACGGAACGTACATCAAGCGCCTTT -ACGGAACGTACATCAAGCGGTCTT -ACGGAACGTACATCAAGCACGCTT -ACGGAACGTACATCAAGCAGCGTT -ACGGAACGTACATCAAGCTTCGTC -ACGGAACGTACATCAAGCTCTCTC -ACGGAACGTACATCAAGCTGGATC -ACGGAACGTACATCAAGCCACTTC -ACGGAACGTACATCAAGCGTACTC -ACGGAACGTACATCAAGCGATGTC -ACGGAACGTACATCAAGCACAGTC -ACGGAACGTACATCAAGCTTGCTG -ACGGAACGTACATCAAGCTCCATG -ACGGAACGTACATCAAGCTGTGTG -ACGGAACGTACATCAAGCCTAGTG -ACGGAACGTACATCAAGCCATCTG -ACGGAACGTACATCAAGCGAGTTG -ACGGAACGTACATCAAGCAGACTG -ACGGAACGTACATCAAGCTCGGTA -ACGGAACGTACATCAAGCTGCCTA -ACGGAACGTACATCAAGCCCACTA -ACGGAACGTACATCAAGCGGAGTA -ACGGAACGTACATCAAGCTCGTCT -ACGGAACGTACATCAAGCTGCACT -ACGGAACGTACATCAAGCCTGACT -ACGGAACGTACATCAAGCCAACCT -ACGGAACGTACATCAAGCGCTACT -ACGGAACGTACATCAAGCGGATCT -ACGGAACGTACATCAAGCAAGGCT -ACGGAACGTACATCAAGCTCAACC -ACGGAACGTACATCAAGCTGTTCC -ACGGAACGTACATCAAGCATTCCC -ACGGAACGTACATCAAGCTTCTCG -ACGGAACGTACATCAAGCTAGACG -ACGGAACGTACATCAAGCGTAACG -ACGGAACGTACATCAAGCACTTCG -ACGGAACGTACATCAAGCTACGCA -ACGGAACGTACATCAAGCCTTGCA -ACGGAACGTACATCAAGCCGAACA -ACGGAACGTACATCAAGCCAGTCA -ACGGAACGTACATCAAGCGATCCA -ACGGAACGTACATCAAGCACGACA -ACGGAACGTACATCAAGCAGCTCA -ACGGAACGTACATCAAGCTCACGT -ACGGAACGTACATCAAGCCGTAGT -ACGGAACGTACATCAAGCGTCAGT -ACGGAACGTACATCAAGCGAAGGT -ACGGAACGTACATCAAGCAACCGT -ACGGAACGTACATCAAGCTTGTGC -ACGGAACGTACATCAAGCCTAAGC -ACGGAACGTACATCAAGCACTAGC -ACGGAACGTACATCAAGCAGATGC -ACGGAACGTACATCAAGCTGAAGG -ACGGAACGTACATCAAGCCAATGG -ACGGAACGTACATCAAGCATGAGG -ACGGAACGTACATCAAGCAATGGG -ACGGAACGTACATCAAGCTCCTGA -ACGGAACGTACATCAAGCTAGCGA -ACGGAACGTACATCAAGCCACAGA -ACGGAACGTACATCAAGCGCAAGA -ACGGAACGTACATCAAGCGGTTGA -ACGGAACGTACATCAAGCTCCGAT -ACGGAACGTACATCAAGCTGGCAT -ACGGAACGTACATCAAGCCGAGAT -ACGGAACGTACATCAAGCTACCAC -ACGGAACGTACATCAAGCCAGAAC -ACGGAACGTACATCAAGCGTCTAC -ACGGAACGTACATCAAGCACGTAC -ACGGAACGTACATCAAGCAGTGAC -ACGGAACGTACATCAAGCCTGTAG -ACGGAACGTACATCAAGCCCTAAG -ACGGAACGTACATCAAGCGTTCAG -ACGGAACGTACATCAAGCGCATAG -ACGGAACGTACATCAAGCGACAAG -ACGGAACGTACATCAAGCAAGCAG -ACGGAACGTACATCAAGCCGTCAA -ACGGAACGTACATCAAGCGCTGAA -ACGGAACGTACATCAAGCAGTACG -ACGGAACGTACATCAAGCATCCGA -ACGGAACGTACATCAAGCATGGGA -ACGGAACGTACATCAAGCGTGCAA -ACGGAACGTACATCAAGCGAGGAA -ACGGAACGTACATCAAGCCAGGTA -ACGGAACGTACATCAAGCGACTCT -ACGGAACGTACATCAAGCAGTCCT -ACGGAACGTACATCAAGCTAAGCC -ACGGAACGTACATCAAGCATAGCC -ACGGAACGTACATCAAGCTAACCG -ACGGAACGTACATCAAGCATGCCA -ACGGAACGTACACGTTCAGGAAAC -ACGGAACGTACACGTTCAAACACC -ACGGAACGTACACGTTCAATCGAG -ACGGAACGTACACGTTCACTCCTT -ACGGAACGTACACGTTCACCTGTT -ACGGAACGTACACGTTCACGGTTT -ACGGAACGTACACGTTCAGTGGTT -ACGGAACGTACACGTTCAGCCTTT -ACGGAACGTACACGTTCAGGTCTT -ACGGAACGTACACGTTCAACGCTT -ACGGAACGTACACGTTCAAGCGTT -ACGGAACGTACACGTTCATTCGTC -ACGGAACGTACACGTTCATCTCTC -ACGGAACGTACACGTTCATGGATC -ACGGAACGTACACGTTCACACTTC -ACGGAACGTACACGTTCAGTACTC -ACGGAACGTACACGTTCAGATGTC -ACGGAACGTACACGTTCAACAGTC -ACGGAACGTACACGTTCATTGCTG -ACGGAACGTACACGTTCATCCATG -ACGGAACGTACACGTTCATGTGTG -ACGGAACGTACACGTTCACTAGTG -ACGGAACGTACACGTTCACATCTG -ACGGAACGTACACGTTCAGAGTTG -ACGGAACGTACACGTTCAAGACTG -ACGGAACGTACACGTTCATCGGTA -ACGGAACGTACACGTTCATGCCTA -ACGGAACGTACACGTTCACCACTA -ACGGAACGTACACGTTCAGGAGTA -ACGGAACGTACACGTTCATCGTCT -ACGGAACGTACACGTTCATGCACT -ACGGAACGTACACGTTCACTGACT -ACGGAACGTACACGTTCACAACCT -ACGGAACGTACACGTTCAGCTACT -ACGGAACGTACACGTTCAGGATCT -ACGGAACGTACACGTTCAAAGGCT -ACGGAACGTACACGTTCATCAACC -ACGGAACGTACACGTTCATGTTCC -ACGGAACGTACACGTTCAATTCCC -ACGGAACGTACACGTTCATTCTCG -ACGGAACGTACACGTTCATAGACG -ACGGAACGTACACGTTCAGTAACG -ACGGAACGTACACGTTCAACTTCG -ACGGAACGTACACGTTCATACGCA -ACGGAACGTACACGTTCACTTGCA -ACGGAACGTACACGTTCACGAACA -ACGGAACGTACACGTTCACAGTCA -ACGGAACGTACACGTTCAGATCCA -ACGGAACGTACACGTTCAACGACA -ACGGAACGTACACGTTCAAGCTCA -ACGGAACGTACACGTTCATCACGT -ACGGAACGTACACGTTCACGTAGT -ACGGAACGTACACGTTCAGTCAGT -ACGGAACGTACACGTTCAGAAGGT -ACGGAACGTACACGTTCAAACCGT -ACGGAACGTACACGTTCATTGTGC -ACGGAACGTACACGTTCACTAAGC -ACGGAACGTACACGTTCAACTAGC -ACGGAACGTACACGTTCAAGATGC -ACGGAACGTACACGTTCATGAAGG -ACGGAACGTACACGTTCACAATGG -ACGGAACGTACACGTTCAATGAGG -ACGGAACGTACACGTTCAAATGGG -ACGGAACGTACACGTTCATCCTGA -ACGGAACGTACACGTTCATAGCGA -ACGGAACGTACACGTTCACACAGA -ACGGAACGTACACGTTCAGCAAGA -ACGGAACGTACACGTTCAGGTTGA -ACGGAACGTACACGTTCATCCGAT -ACGGAACGTACACGTTCATGGCAT -ACGGAACGTACACGTTCACGAGAT -ACGGAACGTACACGTTCATACCAC -ACGGAACGTACACGTTCACAGAAC -ACGGAACGTACACGTTCAGTCTAC -ACGGAACGTACACGTTCAACGTAC -ACGGAACGTACACGTTCAAGTGAC -ACGGAACGTACACGTTCACTGTAG -ACGGAACGTACACGTTCACCTAAG -ACGGAACGTACACGTTCAGTTCAG -ACGGAACGTACACGTTCAGCATAG -ACGGAACGTACACGTTCAGACAAG -ACGGAACGTACACGTTCAAAGCAG -ACGGAACGTACACGTTCACGTCAA -ACGGAACGTACACGTTCAGCTGAA -ACGGAACGTACACGTTCAAGTACG -ACGGAACGTACACGTTCAATCCGA -ACGGAACGTACACGTTCAATGGGA -ACGGAACGTACACGTTCAGTGCAA -ACGGAACGTACACGTTCAGAGGAA -ACGGAACGTACACGTTCACAGGTA -ACGGAACGTACACGTTCAGACTCT -ACGGAACGTACACGTTCAAGTCCT -ACGGAACGTACACGTTCATAAGCC -ACGGAACGTACACGTTCAATAGCC -ACGGAACGTACACGTTCATAACCG -ACGGAACGTACACGTTCAATGCCA -ACGGAACGTACAAGTCGTGGAAAC -ACGGAACGTACAAGTCGTAACACC -ACGGAACGTACAAGTCGTATCGAG -ACGGAACGTACAAGTCGTCTCCTT -ACGGAACGTACAAGTCGTCCTGTT -ACGGAACGTACAAGTCGTCGGTTT -ACGGAACGTACAAGTCGTGTGGTT -ACGGAACGTACAAGTCGTGCCTTT -ACGGAACGTACAAGTCGTGGTCTT -ACGGAACGTACAAGTCGTACGCTT -ACGGAACGTACAAGTCGTAGCGTT -ACGGAACGTACAAGTCGTTTCGTC -ACGGAACGTACAAGTCGTTCTCTC -ACGGAACGTACAAGTCGTTGGATC -ACGGAACGTACAAGTCGTCACTTC -ACGGAACGTACAAGTCGTGTACTC -ACGGAACGTACAAGTCGTGATGTC -ACGGAACGTACAAGTCGTACAGTC -ACGGAACGTACAAGTCGTTTGCTG -ACGGAACGTACAAGTCGTTCCATG -ACGGAACGTACAAGTCGTTGTGTG -ACGGAACGTACAAGTCGTCTAGTG -ACGGAACGTACAAGTCGTCATCTG -ACGGAACGTACAAGTCGTGAGTTG -ACGGAACGTACAAGTCGTAGACTG -ACGGAACGTACAAGTCGTTCGGTA -ACGGAACGTACAAGTCGTTGCCTA -ACGGAACGTACAAGTCGTCCACTA -ACGGAACGTACAAGTCGTGGAGTA -ACGGAACGTACAAGTCGTTCGTCT -ACGGAACGTACAAGTCGTTGCACT -ACGGAACGTACAAGTCGTCTGACT -ACGGAACGTACAAGTCGTCAACCT -ACGGAACGTACAAGTCGTGCTACT -ACGGAACGTACAAGTCGTGGATCT -ACGGAACGTACAAGTCGTAAGGCT -ACGGAACGTACAAGTCGTTCAACC -ACGGAACGTACAAGTCGTTGTTCC -ACGGAACGTACAAGTCGTATTCCC -ACGGAACGTACAAGTCGTTTCTCG -ACGGAACGTACAAGTCGTTAGACG -ACGGAACGTACAAGTCGTGTAACG -ACGGAACGTACAAGTCGTACTTCG -ACGGAACGTACAAGTCGTTACGCA -ACGGAACGTACAAGTCGTCTTGCA -ACGGAACGTACAAGTCGTCGAACA -ACGGAACGTACAAGTCGTCAGTCA -ACGGAACGTACAAGTCGTGATCCA -ACGGAACGTACAAGTCGTACGACA -ACGGAACGTACAAGTCGTAGCTCA -ACGGAACGTACAAGTCGTTCACGT -ACGGAACGTACAAGTCGTCGTAGT -ACGGAACGTACAAGTCGTGTCAGT -ACGGAACGTACAAGTCGTGAAGGT -ACGGAACGTACAAGTCGTAACCGT -ACGGAACGTACAAGTCGTTTGTGC -ACGGAACGTACAAGTCGTCTAAGC -ACGGAACGTACAAGTCGTACTAGC -ACGGAACGTACAAGTCGTAGATGC -ACGGAACGTACAAGTCGTTGAAGG -ACGGAACGTACAAGTCGTCAATGG -ACGGAACGTACAAGTCGTATGAGG -ACGGAACGTACAAGTCGTAATGGG -ACGGAACGTACAAGTCGTTCCTGA -ACGGAACGTACAAGTCGTTAGCGA -ACGGAACGTACAAGTCGTCACAGA -ACGGAACGTACAAGTCGTGCAAGA -ACGGAACGTACAAGTCGTGGTTGA -ACGGAACGTACAAGTCGTTCCGAT -ACGGAACGTACAAGTCGTTGGCAT -ACGGAACGTACAAGTCGTCGAGAT -ACGGAACGTACAAGTCGTTACCAC -ACGGAACGTACAAGTCGTCAGAAC -ACGGAACGTACAAGTCGTGTCTAC -ACGGAACGTACAAGTCGTACGTAC -ACGGAACGTACAAGTCGTAGTGAC -ACGGAACGTACAAGTCGTCTGTAG -ACGGAACGTACAAGTCGTCCTAAG -ACGGAACGTACAAGTCGTGTTCAG -ACGGAACGTACAAGTCGTGCATAG -ACGGAACGTACAAGTCGTGACAAG -ACGGAACGTACAAGTCGTAAGCAG -ACGGAACGTACAAGTCGTCGTCAA -ACGGAACGTACAAGTCGTGCTGAA -ACGGAACGTACAAGTCGTAGTACG -ACGGAACGTACAAGTCGTATCCGA -ACGGAACGTACAAGTCGTATGGGA -ACGGAACGTACAAGTCGTGTGCAA -ACGGAACGTACAAGTCGTGAGGAA -ACGGAACGTACAAGTCGTCAGGTA -ACGGAACGTACAAGTCGTGACTCT -ACGGAACGTACAAGTCGTAGTCCT -ACGGAACGTACAAGTCGTTAAGCC -ACGGAACGTACAAGTCGTATAGCC -ACGGAACGTACAAGTCGTTAACCG -ACGGAACGTACAAGTCGTATGCCA -ACGGAACGTACAAGTGTCGGAAAC -ACGGAACGTACAAGTGTCAACACC -ACGGAACGTACAAGTGTCATCGAG -ACGGAACGTACAAGTGTCCTCCTT -ACGGAACGTACAAGTGTCCCTGTT -ACGGAACGTACAAGTGTCCGGTTT -ACGGAACGTACAAGTGTCGTGGTT -ACGGAACGTACAAGTGTCGCCTTT -ACGGAACGTACAAGTGTCGGTCTT -ACGGAACGTACAAGTGTCACGCTT -ACGGAACGTACAAGTGTCAGCGTT -ACGGAACGTACAAGTGTCTTCGTC -ACGGAACGTACAAGTGTCTCTCTC -ACGGAACGTACAAGTGTCTGGATC -ACGGAACGTACAAGTGTCCACTTC -ACGGAACGTACAAGTGTCGTACTC -ACGGAACGTACAAGTGTCGATGTC -ACGGAACGTACAAGTGTCACAGTC -ACGGAACGTACAAGTGTCTTGCTG -ACGGAACGTACAAGTGTCTCCATG -ACGGAACGTACAAGTGTCTGTGTG -ACGGAACGTACAAGTGTCCTAGTG -ACGGAACGTACAAGTGTCCATCTG -ACGGAACGTACAAGTGTCGAGTTG -ACGGAACGTACAAGTGTCAGACTG -ACGGAACGTACAAGTGTCTCGGTA -ACGGAACGTACAAGTGTCTGCCTA -ACGGAACGTACAAGTGTCCCACTA -ACGGAACGTACAAGTGTCGGAGTA -ACGGAACGTACAAGTGTCTCGTCT -ACGGAACGTACAAGTGTCTGCACT -ACGGAACGTACAAGTGTCCTGACT -ACGGAACGTACAAGTGTCCAACCT -ACGGAACGTACAAGTGTCGCTACT -ACGGAACGTACAAGTGTCGGATCT -ACGGAACGTACAAGTGTCAAGGCT -ACGGAACGTACAAGTGTCTCAACC -ACGGAACGTACAAGTGTCTGTTCC -ACGGAACGTACAAGTGTCATTCCC -ACGGAACGTACAAGTGTCTTCTCG -ACGGAACGTACAAGTGTCTAGACG -ACGGAACGTACAAGTGTCGTAACG -ACGGAACGTACAAGTGTCACTTCG -ACGGAACGTACAAGTGTCTACGCA -ACGGAACGTACAAGTGTCCTTGCA -ACGGAACGTACAAGTGTCCGAACA -ACGGAACGTACAAGTGTCCAGTCA -ACGGAACGTACAAGTGTCGATCCA -ACGGAACGTACAAGTGTCACGACA -ACGGAACGTACAAGTGTCAGCTCA -ACGGAACGTACAAGTGTCTCACGT -ACGGAACGTACAAGTGTCCGTAGT -ACGGAACGTACAAGTGTCGTCAGT -ACGGAACGTACAAGTGTCGAAGGT -ACGGAACGTACAAGTGTCAACCGT -ACGGAACGTACAAGTGTCTTGTGC -ACGGAACGTACAAGTGTCCTAAGC -ACGGAACGTACAAGTGTCACTAGC -ACGGAACGTACAAGTGTCAGATGC -ACGGAACGTACAAGTGTCTGAAGG -ACGGAACGTACAAGTGTCCAATGG -ACGGAACGTACAAGTGTCATGAGG -ACGGAACGTACAAGTGTCAATGGG -ACGGAACGTACAAGTGTCTCCTGA -ACGGAACGTACAAGTGTCTAGCGA -ACGGAACGTACAAGTGTCCACAGA -ACGGAACGTACAAGTGTCGCAAGA -ACGGAACGTACAAGTGTCGGTTGA -ACGGAACGTACAAGTGTCTCCGAT -ACGGAACGTACAAGTGTCTGGCAT -ACGGAACGTACAAGTGTCCGAGAT -ACGGAACGTACAAGTGTCTACCAC -ACGGAACGTACAAGTGTCCAGAAC -ACGGAACGTACAAGTGTCGTCTAC -ACGGAACGTACAAGTGTCACGTAC -ACGGAACGTACAAGTGTCAGTGAC -ACGGAACGTACAAGTGTCCTGTAG -ACGGAACGTACAAGTGTCCCTAAG -ACGGAACGTACAAGTGTCGTTCAG -ACGGAACGTACAAGTGTCGCATAG -ACGGAACGTACAAGTGTCGACAAG -ACGGAACGTACAAGTGTCAAGCAG -ACGGAACGTACAAGTGTCCGTCAA -ACGGAACGTACAAGTGTCGCTGAA -ACGGAACGTACAAGTGTCAGTACG -ACGGAACGTACAAGTGTCATCCGA -ACGGAACGTACAAGTGTCATGGGA -ACGGAACGTACAAGTGTCGTGCAA -ACGGAACGTACAAGTGTCGAGGAA -ACGGAACGTACAAGTGTCCAGGTA -ACGGAACGTACAAGTGTCGACTCT -ACGGAACGTACAAGTGTCAGTCCT -ACGGAACGTACAAGTGTCTAAGCC -ACGGAACGTACAAGTGTCATAGCC -ACGGAACGTACAAGTGTCTAACCG -ACGGAACGTACAAGTGTCATGCCA -ACGGAACGTACAGGTGAAGGAAAC -ACGGAACGTACAGGTGAAAACACC -ACGGAACGTACAGGTGAAATCGAG -ACGGAACGTACAGGTGAACTCCTT -ACGGAACGTACAGGTGAACCTGTT -ACGGAACGTACAGGTGAACGGTTT -ACGGAACGTACAGGTGAAGTGGTT -ACGGAACGTACAGGTGAAGCCTTT -ACGGAACGTACAGGTGAAGGTCTT -ACGGAACGTACAGGTGAAACGCTT -ACGGAACGTACAGGTGAAAGCGTT -ACGGAACGTACAGGTGAATTCGTC -ACGGAACGTACAGGTGAATCTCTC -ACGGAACGTACAGGTGAATGGATC -ACGGAACGTACAGGTGAACACTTC -ACGGAACGTACAGGTGAAGTACTC -ACGGAACGTACAGGTGAAGATGTC -ACGGAACGTACAGGTGAAACAGTC -ACGGAACGTACAGGTGAATTGCTG -ACGGAACGTACAGGTGAATCCATG -ACGGAACGTACAGGTGAATGTGTG -ACGGAACGTACAGGTGAACTAGTG -ACGGAACGTACAGGTGAACATCTG -ACGGAACGTACAGGTGAAGAGTTG -ACGGAACGTACAGGTGAAAGACTG -ACGGAACGTACAGGTGAATCGGTA -ACGGAACGTACAGGTGAATGCCTA -ACGGAACGTACAGGTGAACCACTA -ACGGAACGTACAGGTGAAGGAGTA -ACGGAACGTACAGGTGAATCGTCT -ACGGAACGTACAGGTGAATGCACT -ACGGAACGTACAGGTGAACTGACT -ACGGAACGTACAGGTGAACAACCT -ACGGAACGTACAGGTGAAGCTACT -ACGGAACGTACAGGTGAAGGATCT -ACGGAACGTACAGGTGAAAAGGCT -ACGGAACGTACAGGTGAATCAACC -ACGGAACGTACAGGTGAATGTTCC -ACGGAACGTACAGGTGAAATTCCC -ACGGAACGTACAGGTGAATTCTCG -ACGGAACGTACAGGTGAATAGACG -ACGGAACGTACAGGTGAAGTAACG -ACGGAACGTACAGGTGAAACTTCG -ACGGAACGTACAGGTGAATACGCA -ACGGAACGTACAGGTGAACTTGCA -ACGGAACGTACAGGTGAACGAACA -ACGGAACGTACAGGTGAACAGTCA -ACGGAACGTACAGGTGAAGATCCA -ACGGAACGTACAGGTGAAACGACA -ACGGAACGTACAGGTGAAAGCTCA -ACGGAACGTACAGGTGAATCACGT -ACGGAACGTACAGGTGAACGTAGT -ACGGAACGTACAGGTGAAGTCAGT -ACGGAACGTACAGGTGAAGAAGGT -ACGGAACGTACAGGTGAAAACCGT -ACGGAACGTACAGGTGAATTGTGC -ACGGAACGTACAGGTGAACTAAGC -ACGGAACGTACAGGTGAAACTAGC -ACGGAACGTACAGGTGAAAGATGC -ACGGAACGTACAGGTGAATGAAGG -ACGGAACGTACAGGTGAACAATGG -ACGGAACGTACAGGTGAAATGAGG -ACGGAACGTACAGGTGAAAATGGG -ACGGAACGTACAGGTGAATCCTGA -ACGGAACGTACAGGTGAATAGCGA -ACGGAACGTACAGGTGAACACAGA -ACGGAACGTACAGGTGAAGCAAGA -ACGGAACGTACAGGTGAAGGTTGA -ACGGAACGTACAGGTGAATCCGAT -ACGGAACGTACAGGTGAATGGCAT -ACGGAACGTACAGGTGAACGAGAT -ACGGAACGTACAGGTGAATACCAC -ACGGAACGTACAGGTGAACAGAAC -ACGGAACGTACAGGTGAAGTCTAC -ACGGAACGTACAGGTGAAACGTAC -ACGGAACGTACAGGTGAAAGTGAC -ACGGAACGTACAGGTGAACTGTAG -ACGGAACGTACAGGTGAACCTAAG -ACGGAACGTACAGGTGAAGTTCAG -ACGGAACGTACAGGTGAAGCATAG -ACGGAACGTACAGGTGAAGACAAG -ACGGAACGTACAGGTGAAAAGCAG -ACGGAACGTACAGGTGAACGTCAA -ACGGAACGTACAGGTGAAGCTGAA -ACGGAACGTACAGGTGAAAGTACG -ACGGAACGTACAGGTGAAATCCGA -ACGGAACGTACAGGTGAAATGGGA -ACGGAACGTACAGGTGAAGTGCAA -ACGGAACGTACAGGTGAAGAGGAA -ACGGAACGTACAGGTGAACAGGTA -ACGGAACGTACAGGTGAAGACTCT -ACGGAACGTACAGGTGAAAGTCCT -ACGGAACGTACAGGTGAATAAGCC -ACGGAACGTACAGGTGAAATAGCC -ACGGAACGTACAGGTGAATAACCG -ACGGAACGTACAGGTGAAATGCCA -ACGGAACGTACACGTAACGGAAAC -ACGGAACGTACACGTAACAACACC -ACGGAACGTACACGTAACATCGAG -ACGGAACGTACACGTAACCTCCTT -ACGGAACGTACACGTAACCCTGTT -ACGGAACGTACACGTAACCGGTTT -ACGGAACGTACACGTAACGTGGTT -ACGGAACGTACACGTAACGCCTTT -ACGGAACGTACACGTAACGGTCTT -ACGGAACGTACACGTAACACGCTT -ACGGAACGTACACGTAACAGCGTT -ACGGAACGTACACGTAACTTCGTC -ACGGAACGTACACGTAACTCTCTC -ACGGAACGTACACGTAACTGGATC -ACGGAACGTACACGTAACCACTTC -ACGGAACGTACACGTAACGTACTC -ACGGAACGTACACGTAACGATGTC -ACGGAACGTACACGTAACACAGTC -ACGGAACGTACACGTAACTTGCTG -ACGGAACGTACACGTAACTCCATG -ACGGAACGTACACGTAACTGTGTG -ACGGAACGTACACGTAACCTAGTG -ACGGAACGTACACGTAACCATCTG -ACGGAACGTACACGTAACGAGTTG -ACGGAACGTACACGTAACAGACTG -ACGGAACGTACACGTAACTCGGTA -ACGGAACGTACACGTAACTGCCTA -ACGGAACGTACACGTAACCCACTA -ACGGAACGTACACGTAACGGAGTA -ACGGAACGTACACGTAACTCGTCT -ACGGAACGTACACGTAACTGCACT -ACGGAACGTACACGTAACCTGACT -ACGGAACGTACACGTAACCAACCT -ACGGAACGTACACGTAACGCTACT -ACGGAACGTACACGTAACGGATCT -ACGGAACGTACACGTAACAAGGCT -ACGGAACGTACACGTAACTCAACC -ACGGAACGTACACGTAACTGTTCC -ACGGAACGTACACGTAACATTCCC -ACGGAACGTACACGTAACTTCTCG -ACGGAACGTACACGTAACTAGACG -ACGGAACGTACACGTAACGTAACG -ACGGAACGTACACGTAACACTTCG -ACGGAACGTACACGTAACTACGCA -ACGGAACGTACACGTAACCTTGCA -ACGGAACGTACACGTAACCGAACA -ACGGAACGTACACGTAACCAGTCA -ACGGAACGTACACGTAACGATCCA -ACGGAACGTACACGTAACACGACA -ACGGAACGTACACGTAACAGCTCA -ACGGAACGTACACGTAACTCACGT -ACGGAACGTACACGTAACCGTAGT -ACGGAACGTACACGTAACGTCAGT -ACGGAACGTACACGTAACGAAGGT -ACGGAACGTACACGTAACAACCGT -ACGGAACGTACACGTAACTTGTGC -ACGGAACGTACACGTAACCTAAGC -ACGGAACGTACACGTAACACTAGC -ACGGAACGTACACGTAACAGATGC -ACGGAACGTACACGTAACTGAAGG -ACGGAACGTACACGTAACCAATGG -ACGGAACGTACACGTAACATGAGG -ACGGAACGTACACGTAACAATGGG -ACGGAACGTACACGTAACTCCTGA -ACGGAACGTACACGTAACTAGCGA -ACGGAACGTACACGTAACCACAGA -ACGGAACGTACACGTAACGCAAGA -ACGGAACGTACACGTAACGGTTGA -ACGGAACGTACACGTAACTCCGAT -ACGGAACGTACACGTAACTGGCAT -ACGGAACGTACACGTAACCGAGAT -ACGGAACGTACACGTAACTACCAC -ACGGAACGTACACGTAACCAGAAC -ACGGAACGTACACGTAACGTCTAC -ACGGAACGTACACGTAACACGTAC -ACGGAACGTACACGTAACAGTGAC -ACGGAACGTACACGTAACCTGTAG -ACGGAACGTACACGTAACCCTAAG -ACGGAACGTACACGTAACGTTCAG -ACGGAACGTACACGTAACGCATAG -ACGGAACGTACACGTAACGACAAG -ACGGAACGTACACGTAACAAGCAG -ACGGAACGTACACGTAACCGTCAA -ACGGAACGTACACGTAACGCTGAA -ACGGAACGTACACGTAACAGTACG -ACGGAACGTACACGTAACATCCGA -ACGGAACGTACACGTAACATGGGA -ACGGAACGTACACGTAACGTGCAA -ACGGAACGTACACGTAACGAGGAA -ACGGAACGTACACGTAACCAGGTA -ACGGAACGTACACGTAACGACTCT -ACGGAACGTACACGTAACAGTCCT -ACGGAACGTACACGTAACTAAGCC -ACGGAACGTACACGTAACATAGCC -ACGGAACGTACACGTAACTAACCG -ACGGAACGTACACGTAACATGCCA -ACGGAACGTACATGCTTGGGAAAC -ACGGAACGTACATGCTTGAACACC -ACGGAACGTACATGCTTGATCGAG -ACGGAACGTACATGCTTGCTCCTT -ACGGAACGTACATGCTTGCCTGTT -ACGGAACGTACATGCTTGCGGTTT -ACGGAACGTACATGCTTGGTGGTT -ACGGAACGTACATGCTTGGCCTTT -ACGGAACGTACATGCTTGGGTCTT -ACGGAACGTACATGCTTGACGCTT -ACGGAACGTACATGCTTGAGCGTT -ACGGAACGTACATGCTTGTTCGTC -ACGGAACGTACATGCTTGTCTCTC -ACGGAACGTACATGCTTGTGGATC -ACGGAACGTACATGCTTGCACTTC -ACGGAACGTACATGCTTGGTACTC -ACGGAACGTACATGCTTGGATGTC -ACGGAACGTACATGCTTGACAGTC -ACGGAACGTACATGCTTGTTGCTG -ACGGAACGTACATGCTTGTCCATG -ACGGAACGTACATGCTTGTGTGTG -ACGGAACGTACATGCTTGCTAGTG -ACGGAACGTACATGCTTGCATCTG -ACGGAACGTACATGCTTGGAGTTG -ACGGAACGTACATGCTTGAGACTG -ACGGAACGTACATGCTTGTCGGTA -ACGGAACGTACATGCTTGTGCCTA -ACGGAACGTACATGCTTGCCACTA -ACGGAACGTACATGCTTGGGAGTA -ACGGAACGTACATGCTTGTCGTCT -ACGGAACGTACATGCTTGTGCACT -ACGGAACGTACATGCTTGCTGACT -ACGGAACGTACATGCTTGCAACCT -ACGGAACGTACATGCTTGGCTACT -ACGGAACGTACATGCTTGGGATCT -ACGGAACGTACATGCTTGAAGGCT -ACGGAACGTACATGCTTGTCAACC -ACGGAACGTACATGCTTGTGTTCC -ACGGAACGTACATGCTTGATTCCC -ACGGAACGTACATGCTTGTTCTCG -ACGGAACGTACATGCTTGTAGACG -ACGGAACGTACATGCTTGGTAACG -ACGGAACGTACATGCTTGACTTCG -ACGGAACGTACATGCTTGTACGCA -ACGGAACGTACATGCTTGCTTGCA -ACGGAACGTACATGCTTGCGAACA -ACGGAACGTACATGCTTGCAGTCA -ACGGAACGTACATGCTTGGATCCA -ACGGAACGTACATGCTTGACGACA -ACGGAACGTACATGCTTGAGCTCA -ACGGAACGTACATGCTTGTCACGT -ACGGAACGTACATGCTTGCGTAGT -ACGGAACGTACATGCTTGGTCAGT -ACGGAACGTACATGCTTGGAAGGT -ACGGAACGTACATGCTTGAACCGT -ACGGAACGTACATGCTTGTTGTGC -ACGGAACGTACATGCTTGCTAAGC -ACGGAACGTACATGCTTGACTAGC -ACGGAACGTACATGCTTGAGATGC -ACGGAACGTACATGCTTGTGAAGG -ACGGAACGTACATGCTTGCAATGG -ACGGAACGTACATGCTTGATGAGG -ACGGAACGTACATGCTTGAATGGG -ACGGAACGTACATGCTTGTCCTGA -ACGGAACGTACATGCTTGTAGCGA -ACGGAACGTACATGCTTGCACAGA -ACGGAACGTACATGCTTGGCAAGA -ACGGAACGTACATGCTTGGGTTGA -ACGGAACGTACATGCTTGTCCGAT -ACGGAACGTACATGCTTGTGGCAT -ACGGAACGTACATGCTTGCGAGAT -ACGGAACGTACATGCTTGTACCAC -ACGGAACGTACATGCTTGCAGAAC -ACGGAACGTACATGCTTGGTCTAC -ACGGAACGTACATGCTTGACGTAC -ACGGAACGTACATGCTTGAGTGAC -ACGGAACGTACATGCTTGCTGTAG -ACGGAACGTACATGCTTGCCTAAG -ACGGAACGTACATGCTTGGTTCAG -ACGGAACGTACATGCTTGGCATAG -ACGGAACGTACATGCTTGGACAAG -ACGGAACGTACATGCTTGAAGCAG -ACGGAACGTACATGCTTGCGTCAA -ACGGAACGTACATGCTTGGCTGAA -ACGGAACGTACATGCTTGAGTACG -ACGGAACGTACATGCTTGATCCGA -ACGGAACGTACATGCTTGATGGGA -ACGGAACGTACATGCTTGGTGCAA -ACGGAACGTACATGCTTGGAGGAA -ACGGAACGTACATGCTTGCAGGTA -ACGGAACGTACATGCTTGGACTCT -ACGGAACGTACATGCTTGAGTCCT -ACGGAACGTACATGCTTGTAAGCC -ACGGAACGTACATGCTTGATAGCC -ACGGAACGTACATGCTTGTAACCG -ACGGAACGTACATGCTTGATGCCA -ACGGAACGTACAAGCCTAGGAAAC -ACGGAACGTACAAGCCTAAACACC -ACGGAACGTACAAGCCTAATCGAG -ACGGAACGTACAAGCCTACTCCTT -ACGGAACGTACAAGCCTACCTGTT -ACGGAACGTACAAGCCTACGGTTT -ACGGAACGTACAAGCCTAGTGGTT -ACGGAACGTACAAGCCTAGCCTTT -ACGGAACGTACAAGCCTAGGTCTT -ACGGAACGTACAAGCCTAACGCTT -ACGGAACGTACAAGCCTAAGCGTT -ACGGAACGTACAAGCCTATTCGTC -ACGGAACGTACAAGCCTATCTCTC -ACGGAACGTACAAGCCTATGGATC -ACGGAACGTACAAGCCTACACTTC -ACGGAACGTACAAGCCTAGTACTC -ACGGAACGTACAAGCCTAGATGTC -ACGGAACGTACAAGCCTAACAGTC -ACGGAACGTACAAGCCTATTGCTG -ACGGAACGTACAAGCCTATCCATG -ACGGAACGTACAAGCCTATGTGTG -ACGGAACGTACAAGCCTACTAGTG -ACGGAACGTACAAGCCTACATCTG -ACGGAACGTACAAGCCTAGAGTTG -ACGGAACGTACAAGCCTAAGACTG -ACGGAACGTACAAGCCTATCGGTA -ACGGAACGTACAAGCCTATGCCTA -ACGGAACGTACAAGCCTACCACTA -ACGGAACGTACAAGCCTAGGAGTA -ACGGAACGTACAAGCCTATCGTCT -ACGGAACGTACAAGCCTATGCACT -ACGGAACGTACAAGCCTACTGACT -ACGGAACGTACAAGCCTACAACCT -ACGGAACGTACAAGCCTAGCTACT -ACGGAACGTACAAGCCTAGGATCT -ACGGAACGTACAAGCCTAAAGGCT -ACGGAACGTACAAGCCTATCAACC -ACGGAACGTACAAGCCTATGTTCC -ACGGAACGTACAAGCCTAATTCCC -ACGGAACGTACAAGCCTATTCTCG -ACGGAACGTACAAGCCTATAGACG -ACGGAACGTACAAGCCTAGTAACG -ACGGAACGTACAAGCCTAACTTCG -ACGGAACGTACAAGCCTATACGCA -ACGGAACGTACAAGCCTACTTGCA -ACGGAACGTACAAGCCTACGAACA -ACGGAACGTACAAGCCTACAGTCA -ACGGAACGTACAAGCCTAGATCCA -ACGGAACGTACAAGCCTAACGACA -ACGGAACGTACAAGCCTAAGCTCA -ACGGAACGTACAAGCCTATCACGT -ACGGAACGTACAAGCCTACGTAGT -ACGGAACGTACAAGCCTAGTCAGT -ACGGAACGTACAAGCCTAGAAGGT -ACGGAACGTACAAGCCTAAACCGT -ACGGAACGTACAAGCCTATTGTGC -ACGGAACGTACAAGCCTACTAAGC -ACGGAACGTACAAGCCTAACTAGC -ACGGAACGTACAAGCCTAAGATGC -ACGGAACGTACAAGCCTATGAAGG -ACGGAACGTACAAGCCTACAATGG -ACGGAACGTACAAGCCTAATGAGG -ACGGAACGTACAAGCCTAAATGGG -ACGGAACGTACAAGCCTATCCTGA -ACGGAACGTACAAGCCTATAGCGA -ACGGAACGTACAAGCCTACACAGA -ACGGAACGTACAAGCCTAGCAAGA -ACGGAACGTACAAGCCTAGGTTGA -ACGGAACGTACAAGCCTATCCGAT -ACGGAACGTACAAGCCTATGGCAT -ACGGAACGTACAAGCCTACGAGAT -ACGGAACGTACAAGCCTATACCAC -ACGGAACGTACAAGCCTACAGAAC -ACGGAACGTACAAGCCTAGTCTAC -ACGGAACGTACAAGCCTAACGTAC -ACGGAACGTACAAGCCTAAGTGAC -ACGGAACGTACAAGCCTACTGTAG -ACGGAACGTACAAGCCTACCTAAG -ACGGAACGTACAAGCCTAGTTCAG -ACGGAACGTACAAGCCTAGCATAG -ACGGAACGTACAAGCCTAGACAAG -ACGGAACGTACAAGCCTAAAGCAG -ACGGAACGTACAAGCCTACGTCAA -ACGGAACGTACAAGCCTAGCTGAA -ACGGAACGTACAAGCCTAAGTACG -ACGGAACGTACAAGCCTAATCCGA -ACGGAACGTACAAGCCTAATGGGA -ACGGAACGTACAAGCCTAGTGCAA -ACGGAACGTACAAGCCTAGAGGAA -ACGGAACGTACAAGCCTACAGGTA -ACGGAACGTACAAGCCTAGACTCT -ACGGAACGTACAAGCCTAAGTCCT -ACGGAACGTACAAGCCTATAAGCC -ACGGAACGTACAAGCCTAATAGCC -ACGGAACGTACAAGCCTATAACCG -ACGGAACGTACAAGCCTAATGCCA -ACGGAACGTACAAGCACTGGAAAC -ACGGAACGTACAAGCACTAACACC -ACGGAACGTACAAGCACTATCGAG -ACGGAACGTACAAGCACTCTCCTT -ACGGAACGTACAAGCACTCCTGTT -ACGGAACGTACAAGCACTCGGTTT -ACGGAACGTACAAGCACTGTGGTT -ACGGAACGTACAAGCACTGCCTTT -ACGGAACGTACAAGCACTGGTCTT -ACGGAACGTACAAGCACTACGCTT -ACGGAACGTACAAGCACTAGCGTT -ACGGAACGTACAAGCACTTTCGTC -ACGGAACGTACAAGCACTTCTCTC -ACGGAACGTACAAGCACTTGGATC -ACGGAACGTACAAGCACTCACTTC -ACGGAACGTACAAGCACTGTACTC -ACGGAACGTACAAGCACTGATGTC -ACGGAACGTACAAGCACTACAGTC -ACGGAACGTACAAGCACTTTGCTG -ACGGAACGTACAAGCACTTCCATG -ACGGAACGTACAAGCACTTGTGTG -ACGGAACGTACAAGCACTCTAGTG -ACGGAACGTACAAGCACTCATCTG -ACGGAACGTACAAGCACTGAGTTG -ACGGAACGTACAAGCACTAGACTG -ACGGAACGTACAAGCACTTCGGTA -ACGGAACGTACAAGCACTTGCCTA -ACGGAACGTACAAGCACTCCACTA -ACGGAACGTACAAGCACTGGAGTA -ACGGAACGTACAAGCACTTCGTCT -ACGGAACGTACAAGCACTTGCACT -ACGGAACGTACAAGCACTCTGACT -ACGGAACGTACAAGCACTCAACCT -ACGGAACGTACAAGCACTGCTACT -ACGGAACGTACAAGCACTGGATCT -ACGGAACGTACAAGCACTAAGGCT -ACGGAACGTACAAGCACTTCAACC -ACGGAACGTACAAGCACTTGTTCC -ACGGAACGTACAAGCACTATTCCC -ACGGAACGTACAAGCACTTTCTCG -ACGGAACGTACAAGCACTTAGACG -ACGGAACGTACAAGCACTGTAACG -ACGGAACGTACAAGCACTACTTCG -ACGGAACGTACAAGCACTTACGCA -ACGGAACGTACAAGCACTCTTGCA -ACGGAACGTACAAGCACTCGAACA -ACGGAACGTACAAGCACTCAGTCA -ACGGAACGTACAAGCACTGATCCA -ACGGAACGTACAAGCACTACGACA -ACGGAACGTACAAGCACTAGCTCA -ACGGAACGTACAAGCACTTCACGT -ACGGAACGTACAAGCACTCGTAGT -ACGGAACGTACAAGCACTGTCAGT -ACGGAACGTACAAGCACTGAAGGT -ACGGAACGTACAAGCACTAACCGT -ACGGAACGTACAAGCACTTTGTGC -ACGGAACGTACAAGCACTCTAAGC -ACGGAACGTACAAGCACTACTAGC -ACGGAACGTACAAGCACTAGATGC -ACGGAACGTACAAGCACTTGAAGG -ACGGAACGTACAAGCACTCAATGG -ACGGAACGTACAAGCACTATGAGG -ACGGAACGTACAAGCACTAATGGG -ACGGAACGTACAAGCACTTCCTGA -ACGGAACGTACAAGCACTTAGCGA -ACGGAACGTACAAGCACTCACAGA -ACGGAACGTACAAGCACTGCAAGA -ACGGAACGTACAAGCACTGGTTGA -ACGGAACGTACAAGCACTTCCGAT -ACGGAACGTACAAGCACTTGGCAT -ACGGAACGTACAAGCACTCGAGAT -ACGGAACGTACAAGCACTTACCAC -ACGGAACGTACAAGCACTCAGAAC -ACGGAACGTACAAGCACTGTCTAC -ACGGAACGTACAAGCACTACGTAC -ACGGAACGTACAAGCACTAGTGAC -ACGGAACGTACAAGCACTCTGTAG -ACGGAACGTACAAGCACTCCTAAG -ACGGAACGTACAAGCACTGTTCAG -ACGGAACGTACAAGCACTGCATAG -ACGGAACGTACAAGCACTGACAAG -ACGGAACGTACAAGCACTAAGCAG -ACGGAACGTACAAGCACTCGTCAA -ACGGAACGTACAAGCACTGCTGAA -ACGGAACGTACAAGCACTAGTACG -ACGGAACGTACAAGCACTATCCGA -ACGGAACGTACAAGCACTATGGGA -ACGGAACGTACAAGCACTGTGCAA -ACGGAACGTACAAGCACTGAGGAA -ACGGAACGTACAAGCACTCAGGTA -ACGGAACGTACAAGCACTGACTCT -ACGGAACGTACAAGCACTAGTCCT -ACGGAACGTACAAGCACTTAAGCC -ACGGAACGTACAAGCACTATAGCC -ACGGAACGTACAAGCACTTAACCG -ACGGAACGTACAAGCACTATGCCA -ACGGAACGTACATGCAGAGGAAAC -ACGGAACGTACATGCAGAAACACC -ACGGAACGTACATGCAGAATCGAG -ACGGAACGTACATGCAGACTCCTT -ACGGAACGTACATGCAGACCTGTT -ACGGAACGTACATGCAGACGGTTT -ACGGAACGTACATGCAGAGTGGTT -ACGGAACGTACATGCAGAGCCTTT -ACGGAACGTACATGCAGAGGTCTT -ACGGAACGTACATGCAGAACGCTT -ACGGAACGTACATGCAGAAGCGTT -ACGGAACGTACATGCAGATTCGTC -ACGGAACGTACATGCAGATCTCTC -ACGGAACGTACATGCAGATGGATC -ACGGAACGTACATGCAGACACTTC -ACGGAACGTACATGCAGAGTACTC -ACGGAACGTACATGCAGAGATGTC -ACGGAACGTACATGCAGAACAGTC -ACGGAACGTACATGCAGATTGCTG -ACGGAACGTACATGCAGATCCATG -ACGGAACGTACATGCAGATGTGTG -ACGGAACGTACATGCAGACTAGTG -ACGGAACGTACATGCAGACATCTG -ACGGAACGTACATGCAGAGAGTTG -ACGGAACGTACATGCAGAAGACTG -ACGGAACGTACATGCAGATCGGTA -ACGGAACGTACATGCAGATGCCTA -ACGGAACGTACATGCAGACCACTA -ACGGAACGTACATGCAGAGGAGTA -ACGGAACGTACATGCAGATCGTCT -ACGGAACGTACATGCAGATGCACT -ACGGAACGTACATGCAGACTGACT -ACGGAACGTACATGCAGACAACCT -ACGGAACGTACATGCAGAGCTACT -ACGGAACGTACATGCAGAGGATCT -ACGGAACGTACATGCAGAAAGGCT -ACGGAACGTACATGCAGATCAACC -ACGGAACGTACATGCAGATGTTCC -ACGGAACGTACATGCAGAATTCCC -ACGGAACGTACATGCAGATTCTCG -ACGGAACGTACATGCAGATAGACG -ACGGAACGTACATGCAGAGTAACG -ACGGAACGTACATGCAGAACTTCG -ACGGAACGTACATGCAGATACGCA -ACGGAACGTACATGCAGACTTGCA -ACGGAACGTACATGCAGACGAACA -ACGGAACGTACATGCAGACAGTCA -ACGGAACGTACATGCAGAGATCCA -ACGGAACGTACATGCAGAACGACA -ACGGAACGTACATGCAGAAGCTCA -ACGGAACGTACATGCAGATCACGT -ACGGAACGTACATGCAGACGTAGT -ACGGAACGTACATGCAGAGTCAGT -ACGGAACGTACATGCAGAGAAGGT -ACGGAACGTACATGCAGAAACCGT -ACGGAACGTACATGCAGATTGTGC -ACGGAACGTACATGCAGACTAAGC -ACGGAACGTACATGCAGAACTAGC -ACGGAACGTACATGCAGAAGATGC -ACGGAACGTACATGCAGATGAAGG -ACGGAACGTACATGCAGACAATGG -ACGGAACGTACATGCAGAATGAGG -ACGGAACGTACATGCAGAAATGGG -ACGGAACGTACATGCAGATCCTGA -ACGGAACGTACATGCAGATAGCGA -ACGGAACGTACATGCAGACACAGA -ACGGAACGTACATGCAGAGCAAGA -ACGGAACGTACATGCAGAGGTTGA -ACGGAACGTACATGCAGATCCGAT -ACGGAACGTACATGCAGATGGCAT -ACGGAACGTACATGCAGACGAGAT -ACGGAACGTACATGCAGATACCAC -ACGGAACGTACATGCAGACAGAAC -ACGGAACGTACATGCAGAGTCTAC -ACGGAACGTACATGCAGAACGTAC -ACGGAACGTACATGCAGAAGTGAC -ACGGAACGTACATGCAGACTGTAG -ACGGAACGTACATGCAGACCTAAG -ACGGAACGTACATGCAGAGTTCAG -ACGGAACGTACATGCAGAGCATAG -ACGGAACGTACATGCAGAGACAAG -ACGGAACGTACATGCAGAAAGCAG -ACGGAACGTACATGCAGACGTCAA -ACGGAACGTACATGCAGAGCTGAA -ACGGAACGTACATGCAGAAGTACG -ACGGAACGTACATGCAGAATCCGA -ACGGAACGTACATGCAGAATGGGA -ACGGAACGTACATGCAGAGTGCAA -ACGGAACGTACATGCAGAGAGGAA -ACGGAACGTACATGCAGACAGGTA -ACGGAACGTACATGCAGAGACTCT -ACGGAACGTACATGCAGAAGTCCT -ACGGAACGTACATGCAGATAAGCC -ACGGAACGTACATGCAGAATAGCC -ACGGAACGTACATGCAGATAACCG -ACGGAACGTACATGCAGAATGCCA -ACGGAACGTACAAGGTGAGGAAAC -ACGGAACGTACAAGGTGAAACACC -ACGGAACGTACAAGGTGAATCGAG -ACGGAACGTACAAGGTGACTCCTT -ACGGAACGTACAAGGTGACCTGTT -ACGGAACGTACAAGGTGACGGTTT -ACGGAACGTACAAGGTGAGTGGTT -ACGGAACGTACAAGGTGAGCCTTT -ACGGAACGTACAAGGTGAGGTCTT -ACGGAACGTACAAGGTGAACGCTT -ACGGAACGTACAAGGTGAAGCGTT -ACGGAACGTACAAGGTGATTCGTC -ACGGAACGTACAAGGTGATCTCTC -ACGGAACGTACAAGGTGATGGATC -ACGGAACGTACAAGGTGACACTTC -ACGGAACGTACAAGGTGAGTACTC -ACGGAACGTACAAGGTGAGATGTC -ACGGAACGTACAAGGTGAACAGTC -ACGGAACGTACAAGGTGATTGCTG -ACGGAACGTACAAGGTGATCCATG -ACGGAACGTACAAGGTGATGTGTG -ACGGAACGTACAAGGTGACTAGTG -ACGGAACGTACAAGGTGACATCTG -ACGGAACGTACAAGGTGAGAGTTG -ACGGAACGTACAAGGTGAAGACTG -ACGGAACGTACAAGGTGATCGGTA -ACGGAACGTACAAGGTGATGCCTA -ACGGAACGTACAAGGTGACCACTA -ACGGAACGTACAAGGTGAGGAGTA -ACGGAACGTACAAGGTGATCGTCT -ACGGAACGTACAAGGTGATGCACT -ACGGAACGTACAAGGTGACTGACT -ACGGAACGTACAAGGTGACAACCT -ACGGAACGTACAAGGTGAGCTACT -ACGGAACGTACAAGGTGAGGATCT -ACGGAACGTACAAGGTGAAAGGCT -ACGGAACGTACAAGGTGATCAACC -ACGGAACGTACAAGGTGATGTTCC -ACGGAACGTACAAGGTGAATTCCC -ACGGAACGTACAAGGTGATTCTCG -ACGGAACGTACAAGGTGATAGACG -ACGGAACGTACAAGGTGAGTAACG -ACGGAACGTACAAGGTGAACTTCG -ACGGAACGTACAAGGTGATACGCA -ACGGAACGTACAAGGTGACTTGCA -ACGGAACGTACAAGGTGACGAACA -ACGGAACGTACAAGGTGACAGTCA -ACGGAACGTACAAGGTGAGATCCA -ACGGAACGTACAAGGTGAACGACA -ACGGAACGTACAAGGTGAAGCTCA -ACGGAACGTACAAGGTGATCACGT -ACGGAACGTACAAGGTGACGTAGT -ACGGAACGTACAAGGTGAGTCAGT -ACGGAACGTACAAGGTGAGAAGGT -ACGGAACGTACAAGGTGAAACCGT -ACGGAACGTACAAGGTGATTGTGC -ACGGAACGTACAAGGTGACTAAGC -ACGGAACGTACAAGGTGAACTAGC -ACGGAACGTACAAGGTGAAGATGC -ACGGAACGTACAAGGTGATGAAGG -ACGGAACGTACAAGGTGACAATGG -ACGGAACGTACAAGGTGAATGAGG -ACGGAACGTACAAGGTGAAATGGG -ACGGAACGTACAAGGTGATCCTGA -ACGGAACGTACAAGGTGATAGCGA -ACGGAACGTACAAGGTGACACAGA -ACGGAACGTACAAGGTGAGCAAGA -ACGGAACGTACAAGGTGAGGTTGA -ACGGAACGTACAAGGTGATCCGAT -ACGGAACGTACAAGGTGATGGCAT -ACGGAACGTACAAGGTGACGAGAT -ACGGAACGTACAAGGTGATACCAC -ACGGAACGTACAAGGTGACAGAAC -ACGGAACGTACAAGGTGAGTCTAC -ACGGAACGTACAAGGTGAACGTAC -ACGGAACGTACAAGGTGAAGTGAC -ACGGAACGTACAAGGTGACTGTAG -ACGGAACGTACAAGGTGACCTAAG -ACGGAACGTACAAGGTGAGTTCAG -ACGGAACGTACAAGGTGAGCATAG -ACGGAACGTACAAGGTGAGACAAG -ACGGAACGTACAAGGTGAAAGCAG -ACGGAACGTACAAGGTGACGTCAA -ACGGAACGTACAAGGTGAGCTGAA -ACGGAACGTACAAGGTGAAGTACG -ACGGAACGTACAAGGTGAATCCGA -ACGGAACGTACAAGGTGAATGGGA -ACGGAACGTACAAGGTGAGTGCAA -ACGGAACGTACAAGGTGAGAGGAA -ACGGAACGTACAAGGTGACAGGTA -ACGGAACGTACAAGGTGAGACTCT -ACGGAACGTACAAGGTGAAGTCCT -ACGGAACGTACAAGGTGATAAGCC -ACGGAACGTACAAGGTGAATAGCC -ACGGAACGTACAAGGTGATAACCG -ACGGAACGTACAAGGTGAATGCCA -ACGGAACGTACATGGCAAGGAAAC -ACGGAACGTACATGGCAAAACACC -ACGGAACGTACATGGCAAATCGAG -ACGGAACGTACATGGCAACTCCTT -ACGGAACGTACATGGCAACCTGTT -ACGGAACGTACATGGCAACGGTTT -ACGGAACGTACATGGCAAGTGGTT -ACGGAACGTACATGGCAAGCCTTT -ACGGAACGTACATGGCAAGGTCTT -ACGGAACGTACATGGCAAACGCTT -ACGGAACGTACATGGCAAAGCGTT -ACGGAACGTACATGGCAATTCGTC -ACGGAACGTACATGGCAATCTCTC -ACGGAACGTACATGGCAATGGATC -ACGGAACGTACATGGCAACACTTC -ACGGAACGTACATGGCAAGTACTC -ACGGAACGTACATGGCAAGATGTC -ACGGAACGTACATGGCAAACAGTC -ACGGAACGTACATGGCAATTGCTG -ACGGAACGTACATGGCAATCCATG -ACGGAACGTACATGGCAATGTGTG -ACGGAACGTACATGGCAACTAGTG -ACGGAACGTACATGGCAACATCTG -ACGGAACGTACATGGCAAGAGTTG -ACGGAACGTACATGGCAAAGACTG -ACGGAACGTACATGGCAATCGGTA -ACGGAACGTACATGGCAATGCCTA -ACGGAACGTACATGGCAACCACTA -ACGGAACGTACATGGCAAGGAGTA -ACGGAACGTACATGGCAATCGTCT -ACGGAACGTACATGGCAATGCACT -ACGGAACGTACATGGCAACTGACT -ACGGAACGTACATGGCAACAACCT -ACGGAACGTACATGGCAAGCTACT -ACGGAACGTACATGGCAAGGATCT -ACGGAACGTACATGGCAAAAGGCT -ACGGAACGTACATGGCAATCAACC -ACGGAACGTACATGGCAATGTTCC -ACGGAACGTACATGGCAAATTCCC -ACGGAACGTACATGGCAATTCTCG -ACGGAACGTACATGGCAATAGACG -ACGGAACGTACATGGCAAGTAACG -ACGGAACGTACATGGCAAACTTCG -ACGGAACGTACATGGCAATACGCA -ACGGAACGTACATGGCAACTTGCA -ACGGAACGTACATGGCAACGAACA -ACGGAACGTACATGGCAACAGTCA -ACGGAACGTACATGGCAAGATCCA -ACGGAACGTACATGGCAAACGACA -ACGGAACGTACATGGCAAAGCTCA -ACGGAACGTACATGGCAATCACGT -ACGGAACGTACATGGCAACGTAGT -ACGGAACGTACATGGCAAGTCAGT -ACGGAACGTACATGGCAAGAAGGT -ACGGAACGTACATGGCAAAACCGT -ACGGAACGTACATGGCAATTGTGC -ACGGAACGTACATGGCAACTAAGC -ACGGAACGTACATGGCAAACTAGC -ACGGAACGTACATGGCAAAGATGC -ACGGAACGTACATGGCAATGAAGG -ACGGAACGTACATGGCAACAATGG -ACGGAACGTACATGGCAAATGAGG -ACGGAACGTACATGGCAAAATGGG -ACGGAACGTACATGGCAATCCTGA -ACGGAACGTACATGGCAATAGCGA -ACGGAACGTACATGGCAACACAGA -ACGGAACGTACATGGCAAGCAAGA -ACGGAACGTACATGGCAAGGTTGA -ACGGAACGTACATGGCAATCCGAT -ACGGAACGTACATGGCAATGGCAT -ACGGAACGTACATGGCAACGAGAT -ACGGAACGTACATGGCAATACCAC -ACGGAACGTACATGGCAACAGAAC -ACGGAACGTACATGGCAAGTCTAC -ACGGAACGTACATGGCAAACGTAC -ACGGAACGTACATGGCAAAGTGAC -ACGGAACGTACATGGCAACTGTAG -ACGGAACGTACATGGCAACCTAAG -ACGGAACGTACATGGCAAGTTCAG -ACGGAACGTACATGGCAAGCATAG -ACGGAACGTACATGGCAAGACAAG -ACGGAACGTACATGGCAAAAGCAG -ACGGAACGTACATGGCAACGTCAA -ACGGAACGTACATGGCAAGCTGAA -ACGGAACGTACATGGCAAAGTACG -ACGGAACGTACATGGCAAATCCGA -ACGGAACGTACATGGCAAATGGGA -ACGGAACGTACATGGCAAGTGCAA -ACGGAACGTACATGGCAAGAGGAA -ACGGAACGTACATGGCAACAGGTA -ACGGAACGTACATGGCAAGACTCT -ACGGAACGTACATGGCAAAGTCCT -ACGGAACGTACATGGCAATAAGCC -ACGGAACGTACATGGCAAATAGCC -ACGGAACGTACATGGCAATAACCG -ACGGAACGTACATGGCAAATGCCA -ACGGAACGTACAAGGATGGGAAAC -ACGGAACGTACAAGGATGAACACC -ACGGAACGTACAAGGATGATCGAG -ACGGAACGTACAAGGATGCTCCTT -ACGGAACGTACAAGGATGCCTGTT -ACGGAACGTACAAGGATGCGGTTT -ACGGAACGTACAAGGATGGTGGTT -ACGGAACGTACAAGGATGGCCTTT -ACGGAACGTACAAGGATGGGTCTT -ACGGAACGTACAAGGATGACGCTT -ACGGAACGTACAAGGATGAGCGTT -ACGGAACGTACAAGGATGTTCGTC -ACGGAACGTACAAGGATGTCTCTC -ACGGAACGTACAAGGATGTGGATC -ACGGAACGTACAAGGATGCACTTC -ACGGAACGTACAAGGATGGTACTC -ACGGAACGTACAAGGATGGATGTC -ACGGAACGTACAAGGATGACAGTC -ACGGAACGTACAAGGATGTTGCTG -ACGGAACGTACAAGGATGTCCATG -ACGGAACGTACAAGGATGTGTGTG -ACGGAACGTACAAGGATGCTAGTG -ACGGAACGTACAAGGATGCATCTG -ACGGAACGTACAAGGATGGAGTTG -ACGGAACGTACAAGGATGAGACTG -ACGGAACGTACAAGGATGTCGGTA -ACGGAACGTACAAGGATGTGCCTA -ACGGAACGTACAAGGATGCCACTA -ACGGAACGTACAAGGATGGGAGTA -ACGGAACGTACAAGGATGTCGTCT -ACGGAACGTACAAGGATGTGCACT -ACGGAACGTACAAGGATGCTGACT -ACGGAACGTACAAGGATGCAACCT -ACGGAACGTACAAGGATGGCTACT -ACGGAACGTACAAGGATGGGATCT -ACGGAACGTACAAGGATGAAGGCT -ACGGAACGTACAAGGATGTCAACC -ACGGAACGTACAAGGATGTGTTCC -ACGGAACGTACAAGGATGATTCCC -ACGGAACGTACAAGGATGTTCTCG -ACGGAACGTACAAGGATGTAGACG -ACGGAACGTACAAGGATGGTAACG -ACGGAACGTACAAGGATGACTTCG -ACGGAACGTACAAGGATGTACGCA -ACGGAACGTACAAGGATGCTTGCA -ACGGAACGTACAAGGATGCGAACA -ACGGAACGTACAAGGATGCAGTCA -ACGGAACGTACAAGGATGGATCCA -ACGGAACGTACAAGGATGACGACA -ACGGAACGTACAAGGATGAGCTCA -ACGGAACGTACAAGGATGTCACGT -ACGGAACGTACAAGGATGCGTAGT -ACGGAACGTACAAGGATGGTCAGT -ACGGAACGTACAAGGATGGAAGGT -ACGGAACGTACAAGGATGAACCGT -ACGGAACGTACAAGGATGTTGTGC -ACGGAACGTACAAGGATGCTAAGC -ACGGAACGTACAAGGATGACTAGC -ACGGAACGTACAAGGATGAGATGC -ACGGAACGTACAAGGATGTGAAGG -ACGGAACGTACAAGGATGCAATGG -ACGGAACGTACAAGGATGATGAGG -ACGGAACGTACAAGGATGAATGGG -ACGGAACGTACAAGGATGTCCTGA -ACGGAACGTACAAGGATGTAGCGA -ACGGAACGTACAAGGATGCACAGA -ACGGAACGTACAAGGATGGCAAGA -ACGGAACGTACAAGGATGGGTTGA -ACGGAACGTACAAGGATGTCCGAT -ACGGAACGTACAAGGATGTGGCAT -ACGGAACGTACAAGGATGCGAGAT -ACGGAACGTACAAGGATGTACCAC -ACGGAACGTACAAGGATGCAGAAC -ACGGAACGTACAAGGATGGTCTAC -ACGGAACGTACAAGGATGACGTAC -ACGGAACGTACAAGGATGAGTGAC -ACGGAACGTACAAGGATGCTGTAG -ACGGAACGTACAAGGATGCCTAAG -ACGGAACGTACAAGGATGGTTCAG -ACGGAACGTACAAGGATGGCATAG -ACGGAACGTACAAGGATGGACAAG -ACGGAACGTACAAGGATGAAGCAG -ACGGAACGTACAAGGATGCGTCAA -ACGGAACGTACAAGGATGGCTGAA -ACGGAACGTACAAGGATGAGTACG -ACGGAACGTACAAGGATGATCCGA -ACGGAACGTACAAGGATGATGGGA -ACGGAACGTACAAGGATGGTGCAA -ACGGAACGTACAAGGATGGAGGAA -ACGGAACGTACAAGGATGCAGGTA -ACGGAACGTACAAGGATGGACTCT -ACGGAACGTACAAGGATGAGTCCT -ACGGAACGTACAAGGATGTAAGCC -ACGGAACGTACAAGGATGATAGCC -ACGGAACGTACAAGGATGTAACCG -ACGGAACGTACAAGGATGATGCCA -ACGGAACGTACAGGGAATGGAAAC -ACGGAACGTACAGGGAATAACACC -ACGGAACGTACAGGGAATATCGAG -ACGGAACGTACAGGGAATCTCCTT -ACGGAACGTACAGGGAATCCTGTT -ACGGAACGTACAGGGAATCGGTTT -ACGGAACGTACAGGGAATGTGGTT -ACGGAACGTACAGGGAATGCCTTT -ACGGAACGTACAGGGAATGGTCTT -ACGGAACGTACAGGGAATACGCTT -ACGGAACGTACAGGGAATAGCGTT -ACGGAACGTACAGGGAATTTCGTC -ACGGAACGTACAGGGAATTCTCTC -ACGGAACGTACAGGGAATTGGATC -ACGGAACGTACAGGGAATCACTTC -ACGGAACGTACAGGGAATGTACTC -ACGGAACGTACAGGGAATGATGTC -ACGGAACGTACAGGGAATACAGTC -ACGGAACGTACAGGGAATTTGCTG -ACGGAACGTACAGGGAATTCCATG -ACGGAACGTACAGGGAATTGTGTG -ACGGAACGTACAGGGAATCTAGTG -ACGGAACGTACAGGGAATCATCTG -ACGGAACGTACAGGGAATGAGTTG -ACGGAACGTACAGGGAATAGACTG -ACGGAACGTACAGGGAATTCGGTA -ACGGAACGTACAGGGAATTGCCTA -ACGGAACGTACAGGGAATCCACTA -ACGGAACGTACAGGGAATGGAGTA -ACGGAACGTACAGGGAATTCGTCT -ACGGAACGTACAGGGAATTGCACT -ACGGAACGTACAGGGAATCTGACT -ACGGAACGTACAGGGAATCAACCT -ACGGAACGTACAGGGAATGCTACT -ACGGAACGTACAGGGAATGGATCT -ACGGAACGTACAGGGAATAAGGCT -ACGGAACGTACAGGGAATTCAACC -ACGGAACGTACAGGGAATTGTTCC -ACGGAACGTACAGGGAATATTCCC -ACGGAACGTACAGGGAATTTCTCG -ACGGAACGTACAGGGAATTAGACG -ACGGAACGTACAGGGAATGTAACG -ACGGAACGTACAGGGAATACTTCG -ACGGAACGTACAGGGAATTACGCA -ACGGAACGTACAGGGAATCTTGCA -ACGGAACGTACAGGGAATCGAACA -ACGGAACGTACAGGGAATCAGTCA -ACGGAACGTACAGGGAATGATCCA -ACGGAACGTACAGGGAATACGACA -ACGGAACGTACAGGGAATAGCTCA -ACGGAACGTACAGGGAATTCACGT -ACGGAACGTACAGGGAATCGTAGT -ACGGAACGTACAGGGAATGTCAGT -ACGGAACGTACAGGGAATGAAGGT -ACGGAACGTACAGGGAATAACCGT -ACGGAACGTACAGGGAATTTGTGC -ACGGAACGTACAGGGAATCTAAGC -ACGGAACGTACAGGGAATACTAGC -ACGGAACGTACAGGGAATAGATGC -ACGGAACGTACAGGGAATTGAAGG -ACGGAACGTACAGGGAATCAATGG -ACGGAACGTACAGGGAATATGAGG -ACGGAACGTACAGGGAATAATGGG -ACGGAACGTACAGGGAATTCCTGA -ACGGAACGTACAGGGAATTAGCGA -ACGGAACGTACAGGGAATCACAGA -ACGGAACGTACAGGGAATGCAAGA -ACGGAACGTACAGGGAATGGTTGA -ACGGAACGTACAGGGAATTCCGAT -ACGGAACGTACAGGGAATTGGCAT -ACGGAACGTACAGGGAATCGAGAT -ACGGAACGTACAGGGAATTACCAC -ACGGAACGTACAGGGAATCAGAAC -ACGGAACGTACAGGGAATGTCTAC -ACGGAACGTACAGGGAATACGTAC -ACGGAACGTACAGGGAATAGTGAC -ACGGAACGTACAGGGAATCTGTAG -ACGGAACGTACAGGGAATCCTAAG -ACGGAACGTACAGGGAATGTTCAG -ACGGAACGTACAGGGAATGCATAG -ACGGAACGTACAGGGAATGACAAG -ACGGAACGTACAGGGAATAAGCAG -ACGGAACGTACAGGGAATCGTCAA -ACGGAACGTACAGGGAATGCTGAA -ACGGAACGTACAGGGAATAGTACG -ACGGAACGTACAGGGAATATCCGA -ACGGAACGTACAGGGAATATGGGA -ACGGAACGTACAGGGAATGTGCAA -ACGGAACGTACAGGGAATGAGGAA -ACGGAACGTACAGGGAATCAGGTA -ACGGAACGTACAGGGAATGACTCT -ACGGAACGTACAGGGAATAGTCCT -ACGGAACGTACAGGGAATTAAGCC -ACGGAACGTACAGGGAATATAGCC -ACGGAACGTACAGGGAATTAACCG -ACGGAACGTACAGGGAATATGCCA -ACGGAACGTACATGATCCGGAAAC -ACGGAACGTACATGATCCAACACC -ACGGAACGTACATGATCCATCGAG -ACGGAACGTACATGATCCCTCCTT -ACGGAACGTACATGATCCCCTGTT -ACGGAACGTACATGATCCCGGTTT -ACGGAACGTACATGATCCGTGGTT -ACGGAACGTACATGATCCGCCTTT -ACGGAACGTACATGATCCGGTCTT -ACGGAACGTACATGATCCACGCTT -ACGGAACGTACATGATCCAGCGTT -ACGGAACGTACATGATCCTTCGTC -ACGGAACGTACATGATCCTCTCTC -ACGGAACGTACATGATCCTGGATC -ACGGAACGTACATGATCCCACTTC -ACGGAACGTACATGATCCGTACTC -ACGGAACGTACATGATCCGATGTC -ACGGAACGTACATGATCCACAGTC -ACGGAACGTACATGATCCTTGCTG -ACGGAACGTACATGATCCTCCATG -ACGGAACGTACATGATCCTGTGTG -ACGGAACGTACATGATCCCTAGTG -ACGGAACGTACATGATCCCATCTG -ACGGAACGTACATGATCCGAGTTG -ACGGAACGTACATGATCCAGACTG -ACGGAACGTACATGATCCTCGGTA -ACGGAACGTACATGATCCTGCCTA -ACGGAACGTACATGATCCCCACTA -ACGGAACGTACATGATCCGGAGTA -ACGGAACGTACATGATCCTCGTCT -ACGGAACGTACATGATCCTGCACT -ACGGAACGTACATGATCCCTGACT -ACGGAACGTACATGATCCCAACCT -ACGGAACGTACATGATCCGCTACT -ACGGAACGTACATGATCCGGATCT -ACGGAACGTACATGATCCAAGGCT -ACGGAACGTACATGATCCTCAACC -ACGGAACGTACATGATCCTGTTCC -ACGGAACGTACATGATCCATTCCC -ACGGAACGTACATGATCCTTCTCG -ACGGAACGTACATGATCCTAGACG -ACGGAACGTACATGATCCGTAACG -ACGGAACGTACATGATCCACTTCG -ACGGAACGTACATGATCCTACGCA -ACGGAACGTACATGATCCCTTGCA -ACGGAACGTACATGATCCCGAACA -ACGGAACGTACATGATCCCAGTCA -ACGGAACGTACATGATCCGATCCA -ACGGAACGTACATGATCCACGACA -ACGGAACGTACATGATCCAGCTCA -ACGGAACGTACATGATCCTCACGT -ACGGAACGTACATGATCCCGTAGT -ACGGAACGTACATGATCCGTCAGT -ACGGAACGTACATGATCCGAAGGT -ACGGAACGTACATGATCCAACCGT -ACGGAACGTACATGATCCTTGTGC -ACGGAACGTACATGATCCCTAAGC -ACGGAACGTACATGATCCACTAGC -ACGGAACGTACATGATCCAGATGC -ACGGAACGTACATGATCCTGAAGG -ACGGAACGTACATGATCCCAATGG -ACGGAACGTACATGATCCATGAGG -ACGGAACGTACATGATCCAATGGG -ACGGAACGTACATGATCCTCCTGA -ACGGAACGTACATGATCCTAGCGA -ACGGAACGTACATGATCCCACAGA -ACGGAACGTACATGATCCGCAAGA -ACGGAACGTACATGATCCGGTTGA -ACGGAACGTACATGATCCTCCGAT -ACGGAACGTACATGATCCTGGCAT -ACGGAACGTACATGATCCCGAGAT -ACGGAACGTACATGATCCTACCAC -ACGGAACGTACATGATCCCAGAAC -ACGGAACGTACATGATCCGTCTAC -ACGGAACGTACATGATCCACGTAC -ACGGAACGTACATGATCCAGTGAC -ACGGAACGTACATGATCCCTGTAG -ACGGAACGTACATGATCCCCTAAG -ACGGAACGTACATGATCCGTTCAG -ACGGAACGTACATGATCCGCATAG -ACGGAACGTACATGATCCGACAAG -ACGGAACGTACATGATCCAAGCAG -ACGGAACGTACATGATCCCGTCAA -ACGGAACGTACATGATCCGCTGAA -ACGGAACGTACATGATCCAGTACG -ACGGAACGTACATGATCCATCCGA -ACGGAACGTACATGATCCATGGGA -ACGGAACGTACATGATCCGTGCAA -ACGGAACGTACATGATCCGAGGAA -ACGGAACGTACATGATCCCAGGTA -ACGGAACGTACATGATCCGACTCT -ACGGAACGTACATGATCCAGTCCT -ACGGAACGTACATGATCCTAAGCC -ACGGAACGTACATGATCCATAGCC -ACGGAACGTACATGATCCTAACCG -ACGGAACGTACATGATCCATGCCA -ACGGAACGTACACGATAGGGAAAC -ACGGAACGTACACGATAGAACACC -ACGGAACGTACACGATAGATCGAG -ACGGAACGTACACGATAGCTCCTT -ACGGAACGTACACGATAGCCTGTT -ACGGAACGTACACGATAGCGGTTT -ACGGAACGTACACGATAGGTGGTT -ACGGAACGTACACGATAGGCCTTT -ACGGAACGTACACGATAGGGTCTT -ACGGAACGTACACGATAGACGCTT -ACGGAACGTACACGATAGAGCGTT -ACGGAACGTACACGATAGTTCGTC -ACGGAACGTACACGATAGTCTCTC -ACGGAACGTACACGATAGTGGATC -ACGGAACGTACACGATAGCACTTC -ACGGAACGTACACGATAGGTACTC -ACGGAACGTACACGATAGGATGTC -ACGGAACGTACACGATAGACAGTC -ACGGAACGTACACGATAGTTGCTG -ACGGAACGTACACGATAGTCCATG -ACGGAACGTACACGATAGTGTGTG -ACGGAACGTACACGATAGCTAGTG -ACGGAACGTACACGATAGCATCTG -ACGGAACGTACACGATAGGAGTTG -ACGGAACGTACACGATAGAGACTG -ACGGAACGTACACGATAGTCGGTA -ACGGAACGTACACGATAGTGCCTA -ACGGAACGTACACGATAGCCACTA -ACGGAACGTACACGATAGGGAGTA -ACGGAACGTACACGATAGTCGTCT -ACGGAACGTACACGATAGTGCACT -ACGGAACGTACACGATAGCTGACT -ACGGAACGTACACGATAGCAACCT -ACGGAACGTACACGATAGGCTACT -ACGGAACGTACACGATAGGGATCT -ACGGAACGTACACGATAGAAGGCT -ACGGAACGTACACGATAGTCAACC -ACGGAACGTACACGATAGTGTTCC -ACGGAACGTACACGATAGATTCCC -ACGGAACGTACACGATAGTTCTCG -ACGGAACGTACACGATAGTAGACG -ACGGAACGTACACGATAGGTAACG -ACGGAACGTACACGATAGACTTCG -ACGGAACGTACACGATAGTACGCA -ACGGAACGTACACGATAGCTTGCA -ACGGAACGTACACGATAGCGAACA -ACGGAACGTACACGATAGCAGTCA -ACGGAACGTACACGATAGGATCCA -ACGGAACGTACACGATAGACGACA -ACGGAACGTACACGATAGAGCTCA -ACGGAACGTACACGATAGTCACGT -ACGGAACGTACACGATAGCGTAGT -ACGGAACGTACACGATAGGTCAGT -ACGGAACGTACACGATAGGAAGGT -ACGGAACGTACACGATAGAACCGT -ACGGAACGTACACGATAGTTGTGC -ACGGAACGTACACGATAGCTAAGC -ACGGAACGTACACGATAGACTAGC -ACGGAACGTACACGATAGAGATGC -ACGGAACGTACACGATAGTGAAGG -ACGGAACGTACACGATAGCAATGG -ACGGAACGTACACGATAGATGAGG -ACGGAACGTACACGATAGAATGGG -ACGGAACGTACACGATAGTCCTGA -ACGGAACGTACACGATAGTAGCGA -ACGGAACGTACACGATAGCACAGA -ACGGAACGTACACGATAGGCAAGA -ACGGAACGTACACGATAGGGTTGA -ACGGAACGTACACGATAGTCCGAT -ACGGAACGTACACGATAGTGGCAT -ACGGAACGTACACGATAGCGAGAT -ACGGAACGTACACGATAGTACCAC -ACGGAACGTACACGATAGCAGAAC -ACGGAACGTACACGATAGGTCTAC -ACGGAACGTACACGATAGACGTAC -ACGGAACGTACACGATAGAGTGAC -ACGGAACGTACACGATAGCTGTAG -ACGGAACGTACACGATAGCCTAAG -ACGGAACGTACACGATAGGTTCAG -ACGGAACGTACACGATAGGCATAG -ACGGAACGTACACGATAGGACAAG -ACGGAACGTACACGATAGAAGCAG -ACGGAACGTACACGATAGCGTCAA -ACGGAACGTACACGATAGGCTGAA -ACGGAACGTACACGATAGAGTACG -ACGGAACGTACACGATAGATCCGA -ACGGAACGTACACGATAGATGGGA -ACGGAACGTACACGATAGGTGCAA -ACGGAACGTACACGATAGGAGGAA -ACGGAACGTACACGATAGCAGGTA -ACGGAACGTACACGATAGGACTCT -ACGGAACGTACACGATAGAGTCCT -ACGGAACGTACACGATAGTAAGCC -ACGGAACGTACACGATAGATAGCC -ACGGAACGTACACGATAGTAACCG -ACGGAACGTACACGATAGATGCCA -ACGGAACGTACAAGACACGGAAAC -ACGGAACGTACAAGACACAACACC -ACGGAACGTACAAGACACATCGAG -ACGGAACGTACAAGACACCTCCTT -ACGGAACGTACAAGACACCCTGTT -ACGGAACGTACAAGACACCGGTTT -ACGGAACGTACAAGACACGTGGTT -ACGGAACGTACAAGACACGCCTTT -ACGGAACGTACAAGACACGGTCTT -ACGGAACGTACAAGACACACGCTT -ACGGAACGTACAAGACACAGCGTT -ACGGAACGTACAAGACACTTCGTC -ACGGAACGTACAAGACACTCTCTC -ACGGAACGTACAAGACACTGGATC -ACGGAACGTACAAGACACCACTTC -ACGGAACGTACAAGACACGTACTC -ACGGAACGTACAAGACACGATGTC -ACGGAACGTACAAGACACACAGTC -ACGGAACGTACAAGACACTTGCTG -ACGGAACGTACAAGACACTCCATG -ACGGAACGTACAAGACACTGTGTG -ACGGAACGTACAAGACACCTAGTG -ACGGAACGTACAAGACACCATCTG -ACGGAACGTACAAGACACGAGTTG -ACGGAACGTACAAGACACAGACTG -ACGGAACGTACAAGACACTCGGTA -ACGGAACGTACAAGACACTGCCTA -ACGGAACGTACAAGACACCCACTA -ACGGAACGTACAAGACACGGAGTA -ACGGAACGTACAAGACACTCGTCT -ACGGAACGTACAAGACACTGCACT -ACGGAACGTACAAGACACCTGACT -ACGGAACGTACAAGACACCAACCT -ACGGAACGTACAAGACACGCTACT -ACGGAACGTACAAGACACGGATCT -ACGGAACGTACAAGACACAAGGCT -ACGGAACGTACAAGACACTCAACC -ACGGAACGTACAAGACACTGTTCC -ACGGAACGTACAAGACACATTCCC -ACGGAACGTACAAGACACTTCTCG -ACGGAACGTACAAGACACTAGACG -ACGGAACGTACAAGACACGTAACG -ACGGAACGTACAAGACACACTTCG -ACGGAACGTACAAGACACTACGCA -ACGGAACGTACAAGACACCTTGCA -ACGGAACGTACAAGACACCGAACA -ACGGAACGTACAAGACACCAGTCA -ACGGAACGTACAAGACACGATCCA -ACGGAACGTACAAGACACACGACA -ACGGAACGTACAAGACACAGCTCA -ACGGAACGTACAAGACACTCACGT -ACGGAACGTACAAGACACCGTAGT -ACGGAACGTACAAGACACGTCAGT -ACGGAACGTACAAGACACGAAGGT -ACGGAACGTACAAGACACAACCGT -ACGGAACGTACAAGACACTTGTGC -ACGGAACGTACAAGACACCTAAGC -ACGGAACGTACAAGACACACTAGC -ACGGAACGTACAAGACACAGATGC -ACGGAACGTACAAGACACTGAAGG -ACGGAACGTACAAGACACCAATGG -ACGGAACGTACAAGACACATGAGG -ACGGAACGTACAAGACACAATGGG -ACGGAACGTACAAGACACTCCTGA -ACGGAACGTACAAGACACTAGCGA -ACGGAACGTACAAGACACCACAGA -ACGGAACGTACAAGACACGCAAGA -ACGGAACGTACAAGACACGGTTGA -ACGGAACGTACAAGACACTCCGAT -ACGGAACGTACAAGACACTGGCAT -ACGGAACGTACAAGACACCGAGAT -ACGGAACGTACAAGACACTACCAC -ACGGAACGTACAAGACACCAGAAC -ACGGAACGTACAAGACACGTCTAC -ACGGAACGTACAAGACACACGTAC -ACGGAACGTACAAGACACAGTGAC -ACGGAACGTACAAGACACCTGTAG -ACGGAACGTACAAGACACCCTAAG -ACGGAACGTACAAGACACGTTCAG -ACGGAACGTACAAGACACGCATAG -ACGGAACGTACAAGACACGACAAG -ACGGAACGTACAAGACACAAGCAG -ACGGAACGTACAAGACACCGTCAA -ACGGAACGTACAAGACACGCTGAA -ACGGAACGTACAAGACACAGTACG -ACGGAACGTACAAGACACATCCGA -ACGGAACGTACAAGACACATGGGA -ACGGAACGTACAAGACACGTGCAA -ACGGAACGTACAAGACACGAGGAA -ACGGAACGTACAAGACACCAGGTA -ACGGAACGTACAAGACACGACTCT -ACGGAACGTACAAGACACAGTCCT -ACGGAACGTACAAGACACTAAGCC -ACGGAACGTACAAGACACATAGCC -ACGGAACGTACAAGACACTAACCG -ACGGAACGTACAAGACACATGCCA -ACGGAACGTACAAGAGCAGGAAAC -ACGGAACGTACAAGAGCAAACACC -ACGGAACGTACAAGAGCAATCGAG -ACGGAACGTACAAGAGCACTCCTT -ACGGAACGTACAAGAGCACCTGTT -ACGGAACGTACAAGAGCACGGTTT -ACGGAACGTACAAGAGCAGTGGTT -ACGGAACGTACAAGAGCAGCCTTT -ACGGAACGTACAAGAGCAGGTCTT -ACGGAACGTACAAGAGCAACGCTT -ACGGAACGTACAAGAGCAAGCGTT -ACGGAACGTACAAGAGCATTCGTC -ACGGAACGTACAAGAGCATCTCTC -ACGGAACGTACAAGAGCATGGATC -ACGGAACGTACAAGAGCACACTTC -ACGGAACGTACAAGAGCAGTACTC -ACGGAACGTACAAGAGCAGATGTC -ACGGAACGTACAAGAGCAACAGTC -ACGGAACGTACAAGAGCATTGCTG -ACGGAACGTACAAGAGCATCCATG -ACGGAACGTACAAGAGCATGTGTG -ACGGAACGTACAAGAGCACTAGTG -ACGGAACGTACAAGAGCACATCTG -ACGGAACGTACAAGAGCAGAGTTG -ACGGAACGTACAAGAGCAAGACTG -ACGGAACGTACAAGAGCATCGGTA -ACGGAACGTACAAGAGCATGCCTA -ACGGAACGTACAAGAGCACCACTA -ACGGAACGTACAAGAGCAGGAGTA -ACGGAACGTACAAGAGCATCGTCT -ACGGAACGTACAAGAGCATGCACT -ACGGAACGTACAAGAGCACTGACT -ACGGAACGTACAAGAGCACAACCT -ACGGAACGTACAAGAGCAGCTACT -ACGGAACGTACAAGAGCAGGATCT -ACGGAACGTACAAGAGCAAAGGCT -ACGGAACGTACAAGAGCATCAACC -ACGGAACGTACAAGAGCATGTTCC -ACGGAACGTACAAGAGCAATTCCC -ACGGAACGTACAAGAGCATTCTCG -ACGGAACGTACAAGAGCATAGACG -ACGGAACGTACAAGAGCAGTAACG -ACGGAACGTACAAGAGCAACTTCG -ACGGAACGTACAAGAGCATACGCA -ACGGAACGTACAAGAGCACTTGCA -ACGGAACGTACAAGAGCACGAACA -ACGGAACGTACAAGAGCACAGTCA -ACGGAACGTACAAGAGCAGATCCA -ACGGAACGTACAAGAGCAACGACA -ACGGAACGTACAAGAGCAAGCTCA -ACGGAACGTACAAGAGCATCACGT -ACGGAACGTACAAGAGCACGTAGT -ACGGAACGTACAAGAGCAGTCAGT -ACGGAACGTACAAGAGCAGAAGGT -ACGGAACGTACAAGAGCAAACCGT -ACGGAACGTACAAGAGCATTGTGC -ACGGAACGTACAAGAGCACTAAGC -ACGGAACGTACAAGAGCAACTAGC -ACGGAACGTACAAGAGCAAGATGC -ACGGAACGTACAAGAGCATGAAGG -ACGGAACGTACAAGAGCACAATGG -ACGGAACGTACAAGAGCAATGAGG -ACGGAACGTACAAGAGCAAATGGG -ACGGAACGTACAAGAGCATCCTGA -ACGGAACGTACAAGAGCATAGCGA -ACGGAACGTACAAGAGCACACAGA -ACGGAACGTACAAGAGCAGCAAGA -ACGGAACGTACAAGAGCAGGTTGA -ACGGAACGTACAAGAGCATCCGAT -ACGGAACGTACAAGAGCATGGCAT -ACGGAACGTACAAGAGCACGAGAT -ACGGAACGTACAAGAGCATACCAC -ACGGAACGTACAAGAGCACAGAAC -ACGGAACGTACAAGAGCAGTCTAC -ACGGAACGTACAAGAGCAACGTAC -ACGGAACGTACAAGAGCAAGTGAC -ACGGAACGTACAAGAGCACTGTAG -ACGGAACGTACAAGAGCACCTAAG -ACGGAACGTACAAGAGCAGTTCAG -ACGGAACGTACAAGAGCAGCATAG -ACGGAACGTACAAGAGCAGACAAG -ACGGAACGTACAAGAGCAAAGCAG -ACGGAACGTACAAGAGCACGTCAA -ACGGAACGTACAAGAGCAGCTGAA -ACGGAACGTACAAGAGCAAGTACG -ACGGAACGTACAAGAGCAATCCGA -ACGGAACGTACAAGAGCAATGGGA -ACGGAACGTACAAGAGCAGTGCAA -ACGGAACGTACAAGAGCAGAGGAA -ACGGAACGTACAAGAGCACAGGTA -ACGGAACGTACAAGAGCAGACTCT -ACGGAACGTACAAGAGCAAGTCCT -ACGGAACGTACAAGAGCATAAGCC -ACGGAACGTACAAGAGCAATAGCC -ACGGAACGTACAAGAGCATAACCG -ACGGAACGTACAAGAGCAATGCCA -ACGGAACGTACATGAGGTGGAAAC -ACGGAACGTACATGAGGTAACACC -ACGGAACGTACATGAGGTATCGAG -ACGGAACGTACATGAGGTCTCCTT -ACGGAACGTACATGAGGTCCTGTT -ACGGAACGTACATGAGGTCGGTTT -ACGGAACGTACATGAGGTGTGGTT -ACGGAACGTACATGAGGTGCCTTT -ACGGAACGTACATGAGGTGGTCTT -ACGGAACGTACATGAGGTACGCTT -ACGGAACGTACATGAGGTAGCGTT -ACGGAACGTACATGAGGTTTCGTC -ACGGAACGTACATGAGGTTCTCTC -ACGGAACGTACATGAGGTTGGATC -ACGGAACGTACATGAGGTCACTTC -ACGGAACGTACATGAGGTGTACTC -ACGGAACGTACATGAGGTGATGTC -ACGGAACGTACATGAGGTACAGTC -ACGGAACGTACATGAGGTTTGCTG -ACGGAACGTACATGAGGTTCCATG -ACGGAACGTACATGAGGTTGTGTG -ACGGAACGTACATGAGGTCTAGTG -ACGGAACGTACATGAGGTCATCTG -ACGGAACGTACATGAGGTGAGTTG -ACGGAACGTACATGAGGTAGACTG -ACGGAACGTACATGAGGTTCGGTA -ACGGAACGTACATGAGGTTGCCTA -ACGGAACGTACATGAGGTCCACTA -ACGGAACGTACATGAGGTGGAGTA -ACGGAACGTACATGAGGTTCGTCT -ACGGAACGTACATGAGGTTGCACT -ACGGAACGTACATGAGGTCTGACT -ACGGAACGTACATGAGGTCAACCT -ACGGAACGTACATGAGGTGCTACT -ACGGAACGTACATGAGGTGGATCT -ACGGAACGTACATGAGGTAAGGCT -ACGGAACGTACATGAGGTTCAACC -ACGGAACGTACATGAGGTTGTTCC -ACGGAACGTACATGAGGTATTCCC -ACGGAACGTACATGAGGTTTCTCG -ACGGAACGTACATGAGGTTAGACG -ACGGAACGTACATGAGGTGTAACG -ACGGAACGTACATGAGGTACTTCG -ACGGAACGTACATGAGGTTACGCA -ACGGAACGTACATGAGGTCTTGCA -ACGGAACGTACATGAGGTCGAACA -ACGGAACGTACATGAGGTCAGTCA -ACGGAACGTACATGAGGTGATCCA -ACGGAACGTACATGAGGTACGACA -ACGGAACGTACATGAGGTAGCTCA -ACGGAACGTACATGAGGTTCACGT -ACGGAACGTACATGAGGTCGTAGT -ACGGAACGTACATGAGGTGTCAGT -ACGGAACGTACATGAGGTGAAGGT -ACGGAACGTACATGAGGTAACCGT -ACGGAACGTACATGAGGTTTGTGC -ACGGAACGTACATGAGGTCTAAGC -ACGGAACGTACATGAGGTACTAGC -ACGGAACGTACATGAGGTAGATGC -ACGGAACGTACATGAGGTTGAAGG -ACGGAACGTACATGAGGTCAATGG -ACGGAACGTACATGAGGTATGAGG -ACGGAACGTACATGAGGTAATGGG -ACGGAACGTACATGAGGTTCCTGA -ACGGAACGTACATGAGGTTAGCGA -ACGGAACGTACATGAGGTCACAGA -ACGGAACGTACATGAGGTGCAAGA -ACGGAACGTACATGAGGTGGTTGA -ACGGAACGTACATGAGGTTCCGAT -ACGGAACGTACATGAGGTTGGCAT -ACGGAACGTACATGAGGTCGAGAT -ACGGAACGTACATGAGGTTACCAC -ACGGAACGTACATGAGGTCAGAAC -ACGGAACGTACATGAGGTGTCTAC -ACGGAACGTACATGAGGTACGTAC -ACGGAACGTACATGAGGTAGTGAC -ACGGAACGTACATGAGGTCTGTAG -ACGGAACGTACATGAGGTCCTAAG -ACGGAACGTACATGAGGTGTTCAG -ACGGAACGTACATGAGGTGCATAG -ACGGAACGTACATGAGGTGACAAG -ACGGAACGTACATGAGGTAAGCAG -ACGGAACGTACATGAGGTCGTCAA -ACGGAACGTACATGAGGTGCTGAA -ACGGAACGTACATGAGGTAGTACG -ACGGAACGTACATGAGGTATCCGA -ACGGAACGTACATGAGGTATGGGA -ACGGAACGTACATGAGGTGTGCAA -ACGGAACGTACATGAGGTGAGGAA -ACGGAACGTACATGAGGTCAGGTA -ACGGAACGTACATGAGGTGACTCT -ACGGAACGTACATGAGGTAGTCCT -ACGGAACGTACATGAGGTTAAGCC -ACGGAACGTACATGAGGTATAGCC -ACGGAACGTACATGAGGTTAACCG -ACGGAACGTACATGAGGTATGCCA -ACGGAACGTACAGATTCCGGAAAC -ACGGAACGTACAGATTCCAACACC -ACGGAACGTACAGATTCCATCGAG -ACGGAACGTACAGATTCCCTCCTT -ACGGAACGTACAGATTCCCCTGTT -ACGGAACGTACAGATTCCCGGTTT -ACGGAACGTACAGATTCCGTGGTT -ACGGAACGTACAGATTCCGCCTTT -ACGGAACGTACAGATTCCGGTCTT -ACGGAACGTACAGATTCCACGCTT -ACGGAACGTACAGATTCCAGCGTT -ACGGAACGTACAGATTCCTTCGTC -ACGGAACGTACAGATTCCTCTCTC -ACGGAACGTACAGATTCCTGGATC -ACGGAACGTACAGATTCCCACTTC -ACGGAACGTACAGATTCCGTACTC -ACGGAACGTACAGATTCCGATGTC -ACGGAACGTACAGATTCCACAGTC -ACGGAACGTACAGATTCCTTGCTG -ACGGAACGTACAGATTCCTCCATG -ACGGAACGTACAGATTCCTGTGTG -ACGGAACGTACAGATTCCCTAGTG -ACGGAACGTACAGATTCCCATCTG -ACGGAACGTACAGATTCCGAGTTG -ACGGAACGTACAGATTCCAGACTG -ACGGAACGTACAGATTCCTCGGTA -ACGGAACGTACAGATTCCTGCCTA -ACGGAACGTACAGATTCCCCACTA -ACGGAACGTACAGATTCCGGAGTA -ACGGAACGTACAGATTCCTCGTCT -ACGGAACGTACAGATTCCTGCACT -ACGGAACGTACAGATTCCCTGACT -ACGGAACGTACAGATTCCCAACCT -ACGGAACGTACAGATTCCGCTACT -ACGGAACGTACAGATTCCGGATCT -ACGGAACGTACAGATTCCAAGGCT -ACGGAACGTACAGATTCCTCAACC -ACGGAACGTACAGATTCCTGTTCC -ACGGAACGTACAGATTCCATTCCC -ACGGAACGTACAGATTCCTTCTCG -ACGGAACGTACAGATTCCTAGACG -ACGGAACGTACAGATTCCGTAACG -ACGGAACGTACAGATTCCACTTCG -ACGGAACGTACAGATTCCTACGCA -ACGGAACGTACAGATTCCCTTGCA -ACGGAACGTACAGATTCCCGAACA -ACGGAACGTACAGATTCCCAGTCA -ACGGAACGTACAGATTCCGATCCA -ACGGAACGTACAGATTCCACGACA -ACGGAACGTACAGATTCCAGCTCA -ACGGAACGTACAGATTCCTCACGT -ACGGAACGTACAGATTCCCGTAGT -ACGGAACGTACAGATTCCGTCAGT -ACGGAACGTACAGATTCCGAAGGT -ACGGAACGTACAGATTCCAACCGT -ACGGAACGTACAGATTCCTTGTGC -ACGGAACGTACAGATTCCCTAAGC -ACGGAACGTACAGATTCCACTAGC -ACGGAACGTACAGATTCCAGATGC -ACGGAACGTACAGATTCCTGAAGG -ACGGAACGTACAGATTCCCAATGG -ACGGAACGTACAGATTCCATGAGG -ACGGAACGTACAGATTCCAATGGG -ACGGAACGTACAGATTCCTCCTGA -ACGGAACGTACAGATTCCTAGCGA -ACGGAACGTACAGATTCCCACAGA -ACGGAACGTACAGATTCCGCAAGA -ACGGAACGTACAGATTCCGGTTGA -ACGGAACGTACAGATTCCTCCGAT -ACGGAACGTACAGATTCCTGGCAT -ACGGAACGTACAGATTCCCGAGAT -ACGGAACGTACAGATTCCTACCAC -ACGGAACGTACAGATTCCCAGAAC -ACGGAACGTACAGATTCCGTCTAC -ACGGAACGTACAGATTCCACGTAC -ACGGAACGTACAGATTCCAGTGAC -ACGGAACGTACAGATTCCCTGTAG -ACGGAACGTACAGATTCCCCTAAG -ACGGAACGTACAGATTCCGTTCAG -ACGGAACGTACAGATTCCGCATAG -ACGGAACGTACAGATTCCGACAAG -ACGGAACGTACAGATTCCAAGCAG -ACGGAACGTACAGATTCCCGTCAA -ACGGAACGTACAGATTCCGCTGAA -ACGGAACGTACAGATTCCAGTACG -ACGGAACGTACAGATTCCATCCGA -ACGGAACGTACAGATTCCATGGGA -ACGGAACGTACAGATTCCGTGCAA -ACGGAACGTACAGATTCCGAGGAA -ACGGAACGTACAGATTCCCAGGTA -ACGGAACGTACAGATTCCGACTCT -ACGGAACGTACAGATTCCAGTCCT -ACGGAACGTACAGATTCCTAAGCC -ACGGAACGTACAGATTCCATAGCC -ACGGAACGTACAGATTCCTAACCG -ACGGAACGTACAGATTCCATGCCA -ACGGAACGTACACATTGGGGAAAC -ACGGAACGTACACATTGGAACACC -ACGGAACGTACACATTGGATCGAG -ACGGAACGTACACATTGGCTCCTT -ACGGAACGTACACATTGGCCTGTT -ACGGAACGTACACATTGGCGGTTT -ACGGAACGTACACATTGGGTGGTT -ACGGAACGTACACATTGGGCCTTT -ACGGAACGTACACATTGGGGTCTT -ACGGAACGTACACATTGGACGCTT -ACGGAACGTACACATTGGAGCGTT -ACGGAACGTACACATTGGTTCGTC -ACGGAACGTACACATTGGTCTCTC -ACGGAACGTACACATTGGTGGATC -ACGGAACGTACACATTGGCACTTC -ACGGAACGTACACATTGGGTACTC -ACGGAACGTACACATTGGGATGTC -ACGGAACGTACACATTGGACAGTC -ACGGAACGTACACATTGGTTGCTG -ACGGAACGTACACATTGGTCCATG -ACGGAACGTACACATTGGTGTGTG -ACGGAACGTACACATTGGCTAGTG -ACGGAACGTACACATTGGCATCTG -ACGGAACGTACACATTGGGAGTTG -ACGGAACGTACACATTGGAGACTG -ACGGAACGTACACATTGGTCGGTA -ACGGAACGTACACATTGGTGCCTA -ACGGAACGTACACATTGGCCACTA -ACGGAACGTACACATTGGGGAGTA -ACGGAACGTACACATTGGTCGTCT -ACGGAACGTACACATTGGTGCACT -ACGGAACGTACACATTGGCTGACT -ACGGAACGTACACATTGGCAACCT -ACGGAACGTACACATTGGGCTACT -ACGGAACGTACACATTGGGGATCT -ACGGAACGTACACATTGGAAGGCT -ACGGAACGTACACATTGGTCAACC -ACGGAACGTACACATTGGTGTTCC -ACGGAACGTACACATTGGATTCCC -ACGGAACGTACACATTGGTTCTCG -ACGGAACGTACACATTGGTAGACG -ACGGAACGTACACATTGGGTAACG -ACGGAACGTACACATTGGACTTCG -ACGGAACGTACACATTGGTACGCA -ACGGAACGTACACATTGGCTTGCA -ACGGAACGTACACATTGGCGAACA -ACGGAACGTACACATTGGCAGTCA -ACGGAACGTACACATTGGGATCCA -ACGGAACGTACACATTGGACGACA -ACGGAACGTACACATTGGAGCTCA -ACGGAACGTACACATTGGTCACGT -ACGGAACGTACACATTGGCGTAGT -ACGGAACGTACACATTGGGTCAGT -ACGGAACGTACACATTGGGAAGGT -ACGGAACGTACACATTGGAACCGT -ACGGAACGTACACATTGGTTGTGC -ACGGAACGTACACATTGGCTAAGC -ACGGAACGTACACATTGGACTAGC -ACGGAACGTACACATTGGAGATGC -ACGGAACGTACACATTGGTGAAGG -ACGGAACGTACACATTGGCAATGG -ACGGAACGTACACATTGGATGAGG -ACGGAACGTACACATTGGAATGGG -ACGGAACGTACACATTGGTCCTGA -ACGGAACGTACACATTGGTAGCGA -ACGGAACGTACACATTGGCACAGA -ACGGAACGTACACATTGGGCAAGA -ACGGAACGTACACATTGGGGTTGA -ACGGAACGTACACATTGGTCCGAT -ACGGAACGTACACATTGGTGGCAT -ACGGAACGTACACATTGGCGAGAT -ACGGAACGTACACATTGGTACCAC -ACGGAACGTACACATTGGCAGAAC -ACGGAACGTACACATTGGGTCTAC -ACGGAACGTACACATTGGACGTAC -ACGGAACGTACACATTGGAGTGAC -ACGGAACGTACACATTGGCTGTAG -ACGGAACGTACACATTGGCCTAAG -ACGGAACGTACACATTGGGTTCAG -ACGGAACGTACACATTGGGCATAG -ACGGAACGTACACATTGGGACAAG -ACGGAACGTACACATTGGAAGCAG -ACGGAACGTACACATTGGCGTCAA -ACGGAACGTACACATTGGGCTGAA -ACGGAACGTACACATTGGAGTACG -ACGGAACGTACACATTGGATCCGA -ACGGAACGTACACATTGGATGGGA -ACGGAACGTACACATTGGGTGCAA -ACGGAACGTACACATTGGGAGGAA -ACGGAACGTACACATTGGCAGGTA -ACGGAACGTACACATTGGGACTCT -ACGGAACGTACACATTGGAGTCCT -ACGGAACGTACACATTGGTAAGCC -ACGGAACGTACACATTGGATAGCC -ACGGAACGTACACATTGGTAACCG -ACGGAACGTACACATTGGATGCCA -ACGGAACGTACAGATCGAGGAAAC -ACGGAACGTACAGATCGAAACACC -ACGGAACGTACAGATCGAATCGAG -ACGGAACGTACAGATCGACTCCTT -ACGGAACGTACAGATCGACCTGTT -ACGGAACGTACAGATCGACGGTTT -ACGGAACGTACAGATCGAGTGGTT -ACGGAACGTACAGATCGAGCCTTT -ACGGAACGTACAGATCGAGGTCTT -ACGGAACGTACAGATCGAACGCTT -ACGGAACGTACAGATCGAAGCGTT -ACGGAACGTACAGATCGATTCGTC -ACGGAACGTACAGATCGATCTCTC -ACGGAACGTACAGATCGATGGATC -ACGGAACGTACAGATCGACACTTC -ACGGAACGTACAGATCGAGTACTC -ACGGAACGTACAGATCGAGATGTC -ACGGAACGTACAGATCGAACAGTC -ACGGAACGTACAGATCGATTGCTG -ACGGAACGTACAGATCGATCCATG -ACGGAACGTACAGATCGATGTGTG -ACGGAACGTACAGATCGACTAGTG -ACGGAACGTACAGATCGACATCTG -ACGGAACGTACAGATCGAGAGTTG -ACGGAACGTACAGATCGAAGACTG -ACGGAACGTACAGATCGATCGGTA -ACGGAACGTACAGATCGATGCCTA -ACGGAACGTACAGATCGACCACTA -ACGGAACGTACAGATCGAGGAGTA -ACGGAACGTACAGATCGATCGTCT -ACGGAACGTACAGATCGATGCACT -ACGGAACGTACAGATCGACTGACT -ACGGAACGTACAGATCGACAACCT -ACGGAACGTACAGATCGAGCTACT -ACGGAACGTACAGATCGAGGATCT -ACGGAACGTACAGATCGAAAGGCT -ACGGAACGTACAGATCGATCAACC -ACGGAACGTACAGATCGATGTTCC -ACGGAACGTACAGATCGAATTCCC -ACGGAACGTACAGATCGATTCTCG -ACGGAACGTACAGATCGATAGACG -ACGGAACGTACAGATCGAGTAACG -ACGGAACGTACAGATCGAACTTCG -ACGGAACGTACAGATCGATACGCA -ACGGAACGTACAGATCGACTTGCA -ACGGAACGTACAGATCGACGAACA -ACGGAACGTACAGATCGACAGTCA -ACGGAACGTACAGATCGAGATCCA -ACGGAACGTACAGATCGAACGACA -ACGGAACGTACAGATCGAAGCTCA -ACGGAACGTACAGATCGATCACGT -ACGGAACGTACAGATCGACGTAGT -ACGGAACGTACAGATCGAGTCAGT -ACGGAACGTACAGATCGAGAAGGT -ACGGAACGTACAGATCGAAACCGT -ACGGAACGTACAGATCGATTGTGC -ACGGAACGTACAGATCGACTAAGC -ACGGAACGTACAGATCGAACTAGC -ACGGAACGTACAGATCGAAGATGC -ACGGAACGTACAGATCGATGAAGG -ACGGAACGTACAGATCGACAATGG -ACGGAACGTACAGATCGAATGAGG -ACGGAACGTACAGATCGAAATGGG -ACGGAACGTACAGATCGATCCTGA -ACGGAACGTACAGATCGATAGCGA -ACGGAACGTACAGATCGACACAGA -ACGGAACGTACAGATCGAGCAAGA -ACGGAACGTACAGATCGAGGTTGA -ACGGAACGTACAGATCGATCCGAT -ACGGAACGTACAGATCGATGGCAT -ACGGAACGTACAGATCGACGAGAT -ACGGAACGTACAGATCGATACCAC -ACGGAACGTACAGATCGACAGAAC -ACGGAACGTACAGATCGAGTCTAC -ACGGAACGTACAGATCGAACGTAC -ACGGAACGTACAGATCGAAGTGAC -ACGGAACGTACAGATCGACTGTAG -ACGGAACGTACAGATCGACCTAAG -ACGGAACGTACAGATCGAGTTCAG -ACGGAACGTACAGATCGAGCATAG -ACGGAACGTACAGATCGAGACAAG -ACGGAACGTACAGATCGAAAGCAG -ACGGAACGTACAGATCGACGTCAA -ACGGAACGTACAGATCGAGCTGAA -ACGGAACGTACAGATCGAAGTACG -ACGGAACGTACAGATCGAATCCGA -ACGGAACGTACAGATCGAATGGGA -ACGGAACGTACAGATCGAGTGCAA -ACGGAACGTACAGATCGAGAGGAA -ACGGAACGTACAGATCGACAGGTA -ACGGAACGTACAGATCGAGACTCT -ACGGAACGTACAGATCGAAGTCCT -ACGGAACGTACAGATCGATAAGCC -ACGGAACGTACAGATCGAATAGCC -ACGGAACGTACAGATCGATAACCG -ACGGAACGTACAGATCGAATGCCA -ACGGAACGTACACACTACGGAAAC -ACGGAACGTACACACTACAACACC -ACGGAACGTACACACTACATCGAG -ACGGAACGTACACACTACCTCCTT -ACGGAACGTACACACTACCCTGTT -ACGGAACGTACACACTACCGGTTT -ACGGAACGTACACACTACGTGGTT -ACGGAACGTACACACTACGCCTTT -ACGGAACGTACACACTACGGTCTT -ACGGAACGTACACACTACACGCTT -ACGGAACGTACACACTACAGCGTT -ACGGAACGTACACACTACTTCGTC -ACGGAACGTACACACTACTCTCTC -ACGGAACGTACACACTACTGGATC -ACGGAACGTACACACTACCACTTC -ACGGAACGTACACACTACGTACTC -ACGGAACGTACACACTACGATGTC -ACGGAACGTACACACTACACAGTC -ACGGAACGTACACACTACTTGCTG -ACGGAACGTACACACTACTCCATG -ACGGAACGTACACACTACTGTGTG -ACGGAACGTACACACTACCTAGTG -ACGGAACGTACACACTACCATCTG -ACGGAACGTACACACTACGAGTTG -ACGGAACGTACACACTACAGACTG -ACGGAACGTACACACTACTCGGTA -ACGGAACGTACACACTACTGCCTA -ACGGAACGTACACACTACCCACTA -ACGGAACGTACACACTACGGAGTA -ACGGAACGTACACACTACTCGTCT -ACGGAACGTACACACTACTGCACT -ACGGAACGTACACACTACCTGACT -ACGGAACGTACACACTACCAACCT -ACGGAACGTACACACTACGCTACT -ACGGAACGTACACACTACGGATCT -ACGGAACGTACACACTACAAGGCT -ACGGAACGTACACACTACTCAACC -ACGGAACGTACACACTACTGTTCC -ACGGAACGTACACACTACATTCCC -ACGGAACGTACACACTACTTCTCG -ACGGAACGTACACACTACTAGACG -ACGGAACGTACACACTACGTAACG -ACGGAACGTACACACTACACTTCG -ACGGAACGTACACACTACTACGCA -ACGGAACGTACACACTACCTTGCA -ACGGAACGTACACACTACCGAACA -ACGGAACGTACACACTACCAGTCA -ACGGAACGTACACACTACGATCCA -ACGGAACGTACACACTACACGACA -ACGGAACGTACACACTACAGCTCA -ACGGAACGTACACACTACTCACGT -ACGGAACGTACACACTACCGTAGT -ACGGAACGTACACACTACGTCAGT -ACGGAACGTACACACTACGAAGGT -ACGGAACGTACACACTACAACCGT -ACGGAACGTACACACTACTTGTGC -ACGGAACGTACACACTACCTAAGC -ACGGAACGTACACACTACACTAGC -ACGGAACGTACACACTACAGATGC -ACGGAACGTACACACTACTGAAGG -ACGGAACGTACACACTACCAATGG -ACGGAACGTACACACTACATGAGG -ACGGAACGTACACACTACAATGGG -ACGGAACGTACACACTACTCCTGA -ACGGAACGTACACACTACTAGCGA -ACGGAACGTACACACTACCACAGA -ACGGAACGTACACACTACGCAAGA -ACGGAACGTACACACTACGGTTGA -ACGGAACGTACACACTACTCCGAT -ACGGAACGTACACACTACTGGCAT -ACGGAACGTACACACTACCGAGAT -ACGGAACGTACACACTACTACCAC -ACGGAACGTACACACTACCAGAAC -ACGGAACGTACACACTACGTCTAC -ACGGAACGTACACACTACACGTAC -ACGGAACGTACACACTACAGTGAC -ACGGAACGTACACACTACCTGTAG -ACGGAACGTACACACTACCCTAAG -ACGGAACGTACACACTACGTTCAG -ACGGAACGTACACACTACGCATAG -ACGGAACGTACACACTACGACAAG -ACGGAACGTACACACTACAAGCAG -ACGGAACGTACACACTACCGTCAA -ACGGAACGTACACACTACGCTGAA -ACGGAACGTACACACTACAGTACG -ACGGAACGTACACACTACATCCGA -ACGGAACGTACACACTACATGGGA -ACGGAACGTACACACTACGTGCAA -ACGGAACGTACACACTACGAGGAA -ACGGAACGTACACACTACCAGGTA -ACGGAACGTACACACTACGACTCT -ACGGAACGTACACACTACAGTCCT -ACGGAACGTACACACTACTAAGCC -ACGGAACGTACACACTACATAGCC -ACGGAACGTACACACTACTAACCG -ACGGAACGTACACACTACATGCCA -ACGGAACGTACAAACCAGGGAAAC -ACGGAACGTACAAACCAGAACACC -ACGGAACGTACAAACCAGATCGAG -ACGGAACGTACAAACCAGCTCCTT -ACGGAACGTACAAACCAGCCTGTT -ACGGAACGTACAAACCAGCGGTTT -ACGGAACGTACAAACCAGGTGGTT -ACGGAACGTACAAACCAGGCCTTT -ACGGAACGTACAAACCAGGGTCTT -ACGGAACGTACAAACCAGACGCTT -ACGGAACGTACAAACCAGAGCGTT -ACGGAACGTACAAACCAGTTCGTC -ACGGAACGTACAAACCAGTCTCTC -ACGGAACGTACAAACCAGTGGATC -ACGGAACGTACAAACCAGCACTTC -ACGGAACGTACAAACCAGGTACTC -ACGGAACGTACAAACCAGGATGTC -ACGGAACGTACAAACCAGACAGTC -ACGGAACGTACAAACCAGTTGCTG -ACGGAACGTACAAACCAGTCCATG -ACGGAACGTACAAACCAGTGTGTG -ACGGAACGTACAAACCAGCTAGTG -ACGGAACGTACAAACCAGCATCTG -ACGGAACGTACAAACCAGGAGTTG -ACGGAACGTACAAACCAGAGACTG -ACGGAACGTACAAACCAGTCGGTA -ACGGAACGTACAAACCAGTGCCTA -ACGGAACGTACAAACCAGCCACTA -ACGGAACGTACAAACCAGGGAGTA -ACGGAACGTACAAACCAGTCGTCT -ACGGAACGTACAAACCAGTGCACT -ACGGAACGTACAAACCAGCTGACT -ACGGAACGTACAAACCAGCAACCT -ACGGAACGTACAAACCAGGCTACT -ACGGAACGTACAAACCAGGGATCT -ACGGAACGTACAAACCAGAAGGCT -ACGGAACGTACAAACCAGTCAACC -ACGGAACGTACAAACCAGTGTTCC -ACGGAACGTACAAACCAGATTCCC -ACGGAACGTACAAACCAGTTCTCG -ACGGAACGTACAAACCAGTAGACG -ACGGAACGTACAAACCAGGTAACG -ACGGAACGTACAAACCAGACTTCG -ACGGAACGTACAAACCAGTACGCA -ACGGAACGTACAAACCAGCTTGCA -ACGGAACGTACAAACCAGCGAACA -ACGGAACGTACAAACCAGCAGTCA -ACGGAACGTACAAACCAGGATCCA -ACGGAACGTACAAACCAGACGACA -ACGGAACGTACAAACCAGAGCTCA -ACGGAACGTACAAACCAGTCACGT -ACGGAACGTACAAACCAGCGTAGT -ACGGAACGTACAAACCAGGTCAGT -ACGGAACGTACAAACCAGGAAGGT -ACGGAACGTACAAACCAGAACCGT -ACGGAACGTACAAACCAGTTGTGC -ACGGAACGTACAAACCAGCTAAGC -ACGGAACGTACAAACCAGACTAGC -ACGGAACGTACAAACCAGAGATGC -ACGGAACGTACAAACCAGTGAAGG -ACGGAACGTACAAACCAGCAATGG -ACGGAACGTACAAACCAGATGAGG -ACGGAACGTACAAACCAGAATGGG -ACGGAACGTACAAACCAGTCCTGA -ACGGAACGTACAAACCAGTAGCGA -ACGGAACGTACAAACCAGCACAGA -ACGGAACGTACAAACCAGGCAAGA -ACGGAACGTACAAACCAGGGTTGA -ACGGAACGTACAAACCAGTCCGAT -ACGGAACGTACAAACCAGTGGCAT -ACGGAACGTACAAACCAGCGAGAT -ACGGAACGTACAAACCAGTACCAC -ACGGAACGTACAAACCAGCAGAAC -ACGGAACGTACAAACCAGGTCTAC -ACGGAACGTACAAACCAGACGTAC -ACGGAACGTACAAACCAGAGTGAC -ACGGAACGTACAAACCAGCTGTAG -ACGGAACGTACAAACCAGCCTAAG -ACGGAACGTACAAACCAGGTTCAG -ACGGAACGTACAAACCAGGCATAG -ACGGAACGTACAAACCAGGACAAG -ACGGAACGTACAAACCAGAAGCAG -ACGGAACGTACAAACCAGCGTCAA -ACGGAACGTACAAACCAGGCTGAA -ACGGAACGTACAAACCAGAGTACG -ACGGAACGTACAAACCAGATCCGA -ACGGAACGTACAAACCAGATGGGA -ACGGAACGTACAAACCAGGTGCAA -ACGGAACGTACAAACCAGGAGGAA -ACGGAACGTACAAACCAGCAGGTA -ACGGAACGTACAAACCAGGACTCT -ACGGAACGTACAAACCAGAGTCCT -ACGGAACGTACAAACCAGTAAGCC -ACGGAACGTACAAACCAGATAGCC -ACGGAACGTACAAACCAGTAACCG -ACGGAACGTACAAACCAGATGCCA -ACGGAACGTACATACGTCGGAAAC -ACGGAACGTACATACGTCAACACC -ACGGAACGTACATACGTCATCGAG -ACGGAACGTACATACGTCCTCCTT -ACGGAACGTACATACGTCCCTGTT -ACGGAACGTACATACGTCCGGTTT -ACGGAACGTACATACGTCGTGGTT -ACGGAACGTACATACGTCGCCTTT -ACGGAACGTACATACGTCGGTCTT -ACGGAACGTACATACGTCACGCTT -ACGGAACGTACATACGTCAGCGTT -ACGGAACGTACATACGTCTTCGTC -ACGGAACGTACATACGTCTCTCTC -ACGGAACGTACATACGTCTGGATC -ACGGAACGTACATACGTCCACTTC -ACGGAACGTACATACGTCGTACTC -ACGGAACGTACATACGTCGATGTC -ACGGAACGTACATACGTCACAGTC -ACGGAACGTACATACGTCTTGCTG -ACGGAACGTACATACGTCTCCATG -ACGGAACGTACATACGTCTGTGTG -ACGGAACGTACATACGTCCTAGTG -ACGGAACGTACATACGTCCATCTG -ACGGAACGTACATACGTCGAGTTG -ACGGAACGTACATACGTCAGACTG -ACGGAACGTACATACGTCTCGGTA -ACGGAACGTACATACGTCTGCCTA -ACGGAACGTACATACGTCCCACTA -ACGGAACGTACATACGTCGGAGTA -ACGGAACGTACATACGTCTCGTCT -ACGGAACGTACATACGTCTGCACT -ACGGAACGTACATACGTCCTGACT -ACGGAACGTACATACGTCCAACCT -ACGGAACGTACATACGTCGCTACT -ACGGAACGTACATACGTCGGATCT -ACGGAACGTACATACGTCAAGGCT -ACGGAACGTACATACGTCTCAACC -ACGGAACGTACATACGTCTGTTCC -ACGGAACGTACATACGTCATTCCC -ACGGAACGTACATACGTCTTCTCG -ACGGAACGTACATACGTCTAGACG -ACGGAACGTACATACGTCGTAACG -ACGGAACGTACATACGTCACTTCG -ACGGAACGTACATACGTCTACGCA -ACGGAACGTACATACGTCCTTGCA -ACGGAACGTACATACGTCCGAACA -ACGGAACGTACATACGTCCAGTCA -ACGGAACGTACATACGTCGATCCA -ACGGAACGTACATACGTCACGACA -ACGGAACGTACATACGTCAGCTCA -ACGGAACGTACATACGTCTCACGT -ACGGAACGTACATACGTCCGTAGT -ACGGAACGTACATACGTCGTCAGT -ACGGAACGTACATACGTCGAAGGT -ACGGAACGTACATACGTCAACCGT -ACGGAACGTACATACGTCTTGTGC -ACGGAACGTACATACGTCCTAAGC -ACGGAACGTACATACGTCACTAGC -ACGGAACGTACATACGTCAGATGC -ACGGAACGTACATACGTCTGAAGG -ACGGAACGTACATACGTCCAATGG -ACGGAACGTACATACGTCATGAGG -ACGGAACGTACATACGTCAATGGG -ACGGAACGTACATACGTCTCCTGA -ACGGAACGTACATACGTCTAGCGA -ACGGAACGTACATACGTCCACAGA -ACGGAACGTACATACGTCGCAAGA -ACGGAACGTACATACGTCGGTTGA -ACGGAACGTACATACGTCTCCGAT -ACGGAACGTACATACGTCTGGCAT -ACGGAACGTACATACGTCCGAGAT -ACGGAACGTACATACGTCTACCAC -ACGGAACGTACATACGTCCAGAAC -ACGGAACGTACATACGTCGTCTAC -ACGGAACGTACATACGTCACGTAC -ACGGAACGTACATACGTCAGTGAC -ACGGAACGTACATACGTCCTGTAG -ACGGAACGTACATACGTCCCTAAG -ACGGAACGTACATACGTCGTTCAG -ACGGAACGTACATACGTCGCATAG -ACGGAACGTACATACGTCGACAAG -ACGGAACGTACATACGTCAAGCAG -ACGGAACGTACATACGTCCGTCAA -ACGGAACGTACATACGTCGCTGAA -ACGGAACGTACATACGTCAGTACG -ACGGAACGTACATACGTCATCCGA -ACGGAACGTACATACGTCATGGGA -ACGGAACGTACATACGTCGTGCAA -ACGGAACGTACATACGTCGAGGAA -ACGGAACGTACATACGTCCAGGTA -ACGGAACGTACATACGTCGACTCT -ACGGAACGTACATACGTCAGTCCT -ACGGAACGTACATACGTCTAAGCC -ACGGAACGTACATACGTCATAGCC -ACGGAACGTACATACGTCTAACCG -ACGGAACGTACATACGTCATGCCA -ACGGAACGTACATACACGGGAAAC -ACGGAACGTACATACACGAACACC -ACGGAACGTACATACACGATCGAG -ACGGAACGTACATACACGCTCCTT -ACGGAACGTACATACACGCCTGTT -ACGGAACGTACATACACGCGGTTT -ACGGAACGTACATACACGGTGGTT -ACGGAACGTACATACACGGCCTTT -ACGGAACGTACATACACGGGTCTT -ACGGAACGTACATACACGACGCTT -ACGGAACGTACATACACGAGCGTT -ACGGAACGTACATACACGTTCGTC -ACGGAACGTACATACACGTCTCTC -ACGGAACGTACATACACGTGGATC -ACGGAACGTACATACACGCACTTC -ACGGAACGTACATACACGGTACTC -ACGGAACGTACATACACGGATGTC -ACGGAACGTACATACACGACAGTC -ACGGAACGTACATACACGTTGCTG -ACGGAACGTACATACACGTCCATG -ACGGAACGTACATACACGTGTGTG -ACGGAACGTACATACACGCTAGTG -ACGGAACGTACATACACGCATCTG -ACGGAACGTACATACACGGAGTTG -ACGGAACGTACATACACGAGACTG -ACGGAACGTACATACACGTCGGTA -ACGGAACGTACATACACGTGCCTA -ACGGAACGTACATACACGCCACTA -ACGGAACGTACATACACGGGAGTA -ACGGAACGTACATACACGTCGTCT -ACGGAACGTACATACACGTGCACT -ACGGAACGTACATACACGCTGACT -ACGGAACGTACATACACGCAACCT -ACGGAACGTACATACACGGCTACT -ACGGAACGTACATACACGGGATCT -ACGGAACGTACATACACGAAGGCT -ACGGAACGTACATACACGTCAACC -ACGGAACGTACATACACGTGTTCC -ACGGAACGTACATACACGATTCCC -ACGGAACGTACATACACGTTCTCG -ACGGAACGTACATACACGTAGACG -ACGGAACGTACATACACGGTAACG -ACGGAACGTACATACACGACTTCG -ACGGAACGTACATACACGTACGCA -ACGGAACGTACATACACGCTTGCA -ACGGAACGTACATACACGCGAACA -ACGGAACGTACATACACGCAGTCA -ACGGAACGTACATACACGGATCCA -ACGGAACGTACATACACGACGACA -ACGGAACGTACATACACGAGCTCA -ACGGAACGTACATACACGTCACGT -ACGGAACGTACATACACGCGTAGT -ACGGAACGTACATACACGGTCAGT -ACGGAACGTACATACACGGAAGGT -ACGGAACGTACATACACGAACCGT -ACGGAACGTACATACACGTTGTGC -ACGGAACGTACATACACGCTAAGC -ACGGAACGTACATACACGACTAGC -ACGGAACGTACATACACGAGATGC -ACGGAACGTACATACACGTGAAGG -ACGGAACGTACATACACGCAATGG -ACGGAACGTACATACACGATGAGG -ACGGAACGTACATACACGAATGGG -ACGGAACGTACATACACGTCCTGA -ACGGAACGTACATACACGTAGCGA -ACGGAACGTACATACACGCACAGA -ACGGAACGTACATACACGGCAAGA -ACGGAACGTACATACACGGGTTGA -ACGGAACGTACATACACGTCCGAT -ACGGAACGTACATACACGTGGCAT -ACGGAACGTACATACACGCGAGAT -ACGGAACGTACATACACGTACCAC -ACGGAACGTACATACACGCAGAAC -ACGGAACGTACATACACGGTCTAC -ACGGAACGTACATACACGACGTAC -ACGGAACGTACATACACGAGTGAC -ACGGAACGTACATACACGCTGTAG -ACGGAACGTACATACACGCCTAAG -ACGGAACGTACATACACGGTTCAG -ACGGAACGTACATACACGGCATAG -ACGGAACGTACATACACGGACAAG -ACGGAACGTACATACACGAAGCAG -ACGGAACGTACATACACGCGTCAA -ACGGAACGTACATACACGGCTGAA -ACGGAACGTACATACACGAGTACG -ACGGAACGTACATACACGATCCGA -ACGGAACGTACATACACGATGGGA -ACGGAACGTACATACACGGTGCAA -ACGGAACGTACATACACGGAGGAA -ACGGAACGTACATACACGCAGGTA -ACGGAACGTACATACACGGACTCT -ACGGAACGTACATACACGAGTCCT -ACGGAACGTACATACACGTAAGCC -ACGGAACGTACATACACGATAGCC -ACGGAACGTACATACACGTAACCG -ACGGAACGTACATACACGATGCCA -ACGGAACGTACAGACAGTGGAAAC -ACGGAACGTACAGACAGTAACACC -ACGGAACGTACAGACAGTATCGAG -ACGGAACGTACAGACAGTCTCCTT -ACGGAACGTACAGACAGTCCTGTT -ACGGAACGTACAGACAGTCGGTTT -ACGGAACGTACAGACAGTGTGGTT -ACGGAACGTACAGACAGTGCCTTT -ACGGAACGTACAGACAGTGGTCTT -ACGGAACGTACAGACAGTACGCTT -ACGGAACGTACAGACAGTAGCGTT -ACGGAACGTACAGACAGTTTCGTC -ACGGAACGTACAGACAGTTCTCTC -ACGGAACGTACAGACAGTTGGATC -ACGGAACGTACAGACAGTCACTTC -ACGGAACGTACAGACAGTGTACTC -ACGGAACGTACAGACAGTGATGTC -ACGGAACGTACAGACAGTACAGTC -ACGGAACGTACAGACAGTTTGCTG -ACGGAACGTACAGACAGTTCCATG -ACGGAACGTACAGACAGTTGTGTG -ACGGAACGTACAGACAGTCTAGTG -ACGGAACGTACAGACAGTCATCTG -ACGGAACGTACAGACAGTGAGTTG -ACGGAACGTACAGACAGTAGACTG -ACGGAACGTACAGACAGTTCGGTA -ACGGAACGTACAGACAGTTGCCTA -ACGGAACGTACAGACAGTCCACTA -ACGGAACGTACAGACAGTGGAGTA -ACGGAACGTACAGACAGTTCGTCT -ACGGAACGTACAGACAGTTGCACT -ACGGAACGTACAGACAGTCTGACT -ACGGAACGTACAGACAGTCAACCT -ACGGAACGTACAGACAGTGCTACT -ACGGAACGTACAGACAGTGGATCT -ACGGAACGTACAGACAGTAAGGCT -ACGGAACGTACAGACAGTTCAACC -ACGGAACGTACAGACAGTTGTTCC -ACGGAACGTACAGACAGTATTCCC -ACGGAACGTACAGACAGTTTCTCG -ACGGAACGTACAGACAGTTAGACG -ACGGAACGTACAGACAGTGTAACG -ACGGAACGTACAGACAGTACTTCG -ACGGAACGTACAGACAGTTACGCA -ACGGAACGTACAGACAGTCTTGCA -ACGGAACGTACAGACAGTCGAACA -ACGGAACGTACAGACAGTCAGTCA -ACGGAACGTACAGACAGTGATCCA -ACGGAACGTACAGACAGTACGACA -ACGGAACGTACAGACAGTAGCTCA -ACGGAACGTACAGACAGTTCACGT -ACGGAACGTACAGACAGTCGTAGT -ACGGAACGTACAGACAGTGTCAGT -ACGGAACGTACAGACAGTGAAGGT -ACGGAACGTACAGACAGTAACCGT -ACGGAACGTACAGACAGTTTGTGC -ACGGAACGTACAGACAGTCTAAGC -ACGGAACGTACAGACAGTACTAGC -ACGGAACGTACAGACAGTAGATGC -ACGGAACGTACAGACAGTTGAAGG -ACGGAACGTACAGACAGTCAATGG -ACGGAACGTACAGACAGTATGAGG -ACGGAACGTACAGACAGTAATGGG -ACGGAACGTACAGACAGTTCCTGA -ACGGAACGTACAGACAGTTAGCGA -ACGGAACGTACAGACAGTCACAGA -ACGGAACGTACAGACAGTGCAAGA -ACGGAACGTACAGACAGTGGTTGA -ACGGAACGTACAGACAGTTCCGAT -ACGGAACGTACAGACAGTTGGCAT -ACGGAACGTACAGACAGTCGAGAT -ACGGAACGTACAGACAGTTACCAC -ACGGAACGTACAGACAGTCAGAAC -ACGGAACGTACAGACAGTGTCTAC -ACGGAACGTACAGACAGTACGTAC -ACGGAACGTACAGACAGTAGTGAC -ACGGAACGTACAGACAGTCTGTAG -ACGGAACGTACAGACAGTCCTAAG -ACGGAACGTACAGACAGTGTTCAG -ACGGAACGTACAGACAGTGCATAG -ACGGAACGTACAGACAGTGACAAG -ACGGAACGTACAGACAGTAAGCAG -ACGGAACGTACAGACAGTCGTCAA -ACGGAACGTACAGACAGTGCTGAA -ACGGAACGTACAGACAGTAGTACG -ACGGAACGTACAGACAGTATCCGA -ACGGAACGTACAGACAGTATGGGA -ACGGAACGTACAGACAGTGTGCAA -ACGGAACGTACAGACAGTGAGGAA -ACGGAACGTACAGACAGTCAGGTA -ACGGAACGTACAGACAGTGACTCT -ACGGAACGTACAGACAGTAGTCCT -ACGGAACGTACAGACAGTTAAGCC -ACGGAACGTACAGACAGTATAGCC -ACGGAACGTACAGACAGTTAACCG -ACGGAACGTACAGACAGTATGCCA -ACGGAACGTACATAGCTGGGAAAC -ACGGAACGTACATAGCTGAACACC -ACGGAACGTACATAGCTGATCGAG -ACGGAACGTACATAGCTGCTCCTT -ACGGAACGTACATAGCTGCCTGTT -ACGGAACGTACATAGCTGCGGTTT -ACGGAACGTACATAGCTGGTGGTT -ACGGAACGTACATAGCTGGCCTTT -ACGGAACGTACATAGCTGGGTCTT -ACGGAACGTACATAGCTGACGCTT -ACGGAACGTACATAGCTGAGCGTT -ACGGAACGTACATAGCTGTTCGTC -ACGGAACGTACATAGCTGTCTCTC -ACGGAACGTACATAGCTGTGGATC -ACGGAACGTACATAGCTGCACTTC -ACGGAACGTACATAGCTGGTACTC -ACGGAACGTACATAGCTGGATGTC -ACGGAACGTACATAGCTGACAGTC -ACGGAACGTACATAGCTGTTGCTG -ACGGAACGTACATAGCTGTCCATG -ACGGAACGTACATAGCTGTGTGTG -ACGGAACGTACATAGCTGCTAGTG -ACGGAACGTACATAGCTGCATCTG -ACGGAACGTACATAGCTGGAGTTG -ACGGAACGTACATAGCTGAGACTG -ACGGAACGTACATAGCTGTCGGTA -ACGGAACGTACATAGCTGTGCCTA -ACGGAACGTACATAGCTGCCACTA -ACGGAACGTACATAGCTGGGAGTA -ACGGAACGTACATAGCTGTCGTCT -ACGGAACGTACATAGCTGTGCACT -ACGGAACGTACATAGCTGCTGACT -ACGGAACGTACATAGCTGCAACCT -ACGGAACGTACATAGCTGGCTACT -ACGGAACGTACATAGCTGGGATCT -ACGGAACGTACATAGCTGAAGGCT -ACGGAACGTACATAGCTGTCAACC -ACGGAACGTACATAGCTGTGTTCC -ACGGAACGTACATAGCTGATTCCC -ACGGAACGTACATAGCTGTTCTCG -ACGGAACGTACATAGCTGTAGACG -ACGGAACGTACATAGCTGGTAACG -ACGGAACGTACATAGCTGACTTCG -ACGGAACGTACATAGCTGTACGCA -ACGGAACGTACATAGCTGCTTGCA -ACGGAACGTACATAGCTGCGAACA -ACGGAACGTACATAGCTGCAGTCA -ACGGAACGTACATAGCTGGATCCA -ACGGAACGTACATAGCTGACGACA -ACGGAACGTACATAGCTGAGCTCA -ACGGAACGTACATAGCTGTCACGT -ACGGAACGTACATAGCTGCGTAGT -ACGGAACGTACATAGCTGGTCAGT -ACGGAACGTACATAGCTGGAAGGT -ACGGAACGTACATAGCTGAACCGT -ACGGAACGTACATAGCTGTTGTGC -ACGGAACGTACATAGCTGCTAAGC -ACGGAACGTACATAGCTGACTAGC -ACGGAACGTACATAGCTGAGATGC -ACGGAACGTACATAGCTGTGAAGG -ACGGAACGTACATAGCTGCAATGG -ACGGAACGTACATAGCTGATGAGG -ACGGAACGTACATAGCTGAATGGG -ACGGAACGTACATAGCTGTCCTGA -ACGGAACGTACATAGCTGTAGCGA -ACGGAACGTACATAGCTGCACAGA -ACGGAACGTACATAGCTGGCAAGA -ACGGAACGTACATAGCTGGGTTGA -ACGGAACGTACATAGCTGTCCGAT -ACGGAACGTACATAGCTGTGGCAT -ACGGAACGTACATAGCTGCGAGAT -ACGGAACGTACATAGCTGTACCAC -ACGGAACGTACATAGCTGCAGAAC -ACGGAACGTACATAGCTGGTCTAC -ACGGAACGTACATAGCTGACGTAC -ACGGAACGTACATAGCTGAGTGAC -ACGGAACGTACATAGCTGCTGTAG -ACGGAACGTACATAGCTGCCTAAG -ACGGAACGTACATAGCTGGTTCAG -ACGGAACGTACATAGCTGGCATAG -ACGGAACGTACATAGCTGGACAAG -ACGGAACGTACATAGCTGAAGCAG -ACGGAACGTACATAGCTGCGTCAA -ACGGAACGTACATAGCTGGCTGAA -ACGGAACGTACATAGCTGAGTACG -ACGGAACGTACATAGCTGATCCGA -ACGGAACGTACATAGCTGATGGGA -ACGGAACGTACATAGCTGGTGCAA -ACGGAACGTACATAGCTGGAGGAA -ACGGAACGTACATAGCTGCAGGTA -ACGGAACGTACATAGCTGGACTCT -ACGGAACGTACATAGCTGAGTCCT -ACGGAACGTACATAGCTGTAAGCC -ACGGAACGTACATAGCTGATAGCC -ACGGAACGTACATAGCTGTAACCG -ACGGAACGTACATAGCTGATGCCA -ACGGAACGTACAAAGCCTGGAAAC -ACGGAACGTACAAAGCCTAACACC -ACGGAACGTACAAAGCCTATCGAG -ACGGAACGTACAAAGCCTCTCCTT -ACGGAACGTACAAAGCCTCCTGTT -ACGGAACGTACAAAGCCTCGGTTT -ACGGAACGTACAAAGCCTGTGGTT -ACGGAACGTACAAAGCCTGCCTTT -ACGGAACGTACAAAGCCTGGTCTT -ACGGAACGTACAAAGCCTACGCTT -ACGGAACGTACAAAGCCTAGCGTT -ACGGAACGTACAAAGCCTTTCGTC -ACGGAACGTACAAAGCCTTCTCTC -ACGGAACGTACAAAGCCTTGGATC -ACGGAACGTACAAAGCCTCACTTC -ACGGAACGTACAAAGCCTGTACTC -ACGGAACGTACAAAGCCTGATGTC -ACGGAACGTACAAAGCCTACAGTC -ACGGAACGTACAAAGCCTTTGCTG -ACGGAACGTACAAAGCCTTCCATG -ACGGAACGTACAAAGCCTTGTGTG -ACGGAACGTACAAAGCCTCTAGTG -ACGGAACGTACAAAGCCTCATCTG -ACGGAACGTACAAAGCCTGAGTTG -ACGGAACGTACAAAGCCTAGACTG -ACGGAACGTACAAAGCCTTCGGTA -ACGGAACGTACAAAGCCTTGCCTA -ACGGAACGTACAAAGCCTCCACTA -ACGGAACGTACAAAGCCTGGAGTA -ACGGAACGTACAAAGCCTTCGTCT -ACGGAACGTACAAAGCCTTGCACT -ACGGAACGTACAAAGCCTCTGACT -ACGGAACGTACAAAGCCTCAACCT -ACGGAACGTACAAAGCCTGCTACT -ACGGAACGTACAAAGCCTGGATCT -ACGGAACGTACAAAGCCTAAGGCT -ACGGAACGTACAAAGCCTTCAACC -ACGGAACGTACAAAGCCTTGTTCC -ACGGAACGTACAAAGCCTATTCCC -ACGGAACGTACAAAGCCTTTCTCG -ACGGAACGTACAAAGCCTTAGACG -ACGGAACGTACAAAGCCTGTAACG -ACGGAACGTACAAAGCCTACTTCG -ACGGAACGTACAAAGCCTTACGCA -ACGGAACGTACAAAGCCTCTTGCA -ACGGAACGTACAAAGCCTCGAACA -ACGGAACGTACAAAGCCTCAGTCA -ACGGAACGTACAAAGCCTGATCCA -ACGGAACGTACAAAGCCTACGACA -ACGGAACGTACAAAGCCTAGCTCA -ACGGAACGTACAAAGCCTTCACGT -ACGGAACGTACAAAGCCTCGTAGT -ACGGAACGTACAAAGCCTGTCAGT -ACGGAACGTACAAAGCCTGAAGGT -ACGGAACGTACAAAGCCTAACCGT -ACGGAACGTACAAAGCCTTTGTGC -ACGGAACGTACAAAGCCTCTAAGC -ACGGAACGTACAAAGCCTACTAGC -ACGGAACGTACAAAGCCTAGATGC -ACGGAACGTACAAAGCCTTGAAGG -ACGGAACGTACAAAGCCTCAATGG -ACGGAACGTACAAAGCCTATGAGG -ACGGAACGTACAAAGCCTAATGGG -ACGGAACGTACAAAGCCTTCCTGA -ACGGAACGTACAAAGCCTTAGCGA -ACGGAACGTACAAAGCCTCACAGA -ACGGAACGTACAAAGCCTGCAAGA -ACGGAACGTACAAAGCCTGGTTGA -ACGGAACGTACAAAGCCTTCCGAT -ACGGAACGTACAAAGCCTTGGCAT -ACGGAACGTACAAAGCCTCGAGAT -ACGGAACGTACAAAGCCTTACCAC -ACGGAACGTACAAAGCCTCAGAAC -ACGGAACGTACAAAGCCTGTCTAC -ACGGAACGTACAAAGCCTACGTAC -ACGGAACGTACAAAGCCTAGTGAC -ACGGAACGTACAAAGCCTCTGTAG -ACGGAACGTACAAAGCCTCCTAAG -ACGGAACGTACAAAGCCTGTTCAG -ACGGAACGTACAAAGCCTGCATAG -ACGGAACGTACAAAGCCTGACAAG -ACGGAACGTACAAAGCCTAAGCAG -ACGGAACGTACAAAGCCTCGTCAA -ACGGAACGTACAAAGCCTGCTGAA -ACGGAACGTACAAAGCCTAGTACG -ACGGAACGTACAAAGCCTATCCGA -ACGGAACGTACAAAGCCTATGGGA -ACGGAACGTACAAAGCCTGTGCAA -ACGGAACGTACAAAGCCTGAGGAA -ACGGAACGTACAAAGCCTCAGGTA -ACGGAACGTACAAAGCCTGACTCT -ACGGAACGTACAAAGCCTAGTCCT -ACGGAACGTACAAAGCCTTAAGCC -ACGGAACGTACAAAGCCTATAGCC -ACGGAACGTACAAAGCCTTAACCG -ACGGAACGTACAAAGCCTATGCCA -ACGGAACGTACACAGGTTGGAAAC -ACGGAACGTACACAGGTTAACACC -ACGGAACGTACACAGGTTATCGAG -ACGGAACGTACACAGGTTCTCCTT -ACGGAACGTACACAGGTTCCTGTT -ACGGAACGTACACAGGTTCGGTTT -ACGGAACGTACACAGGTTGTGGTT -ACGGAACGTACACAGGTTGCCTTT -ACGGAACGTACACAGGTTGGTCTT -ACGGAACGTACACAGGTTACGCTT -ACGGAACGTACACAGGTTAGCGTT -ACGGAACGTACACAGGTTTTCGTC -ACGGAACGTACACAGGTTTCTCTC -ACGGAACGTACACAGGTTTGGATC -ACGGAACGTACACAGGTTCACTTC -ACGGAACGTACACAGGTTGTACTC -ACGGAACGTACACAGGTTGATGTC -ACGGAACGTACACAGGTTACAGTC -ACGGAACGTACACAGGTTTTGCTG -ACGGAACGTACACAGGTTTCCATG -ACGGAACGTACACAGGTTTGTGTG -ACGGAACGTACACAGGTTCTAGTG -ACGGAACGTACACAGGTTCATCTG -ACGGAACGTACACAGGTTGAGTTG -ACGGAACGTACACAGGTTAGACTG -ACGGAACGTACACAGGTTTCGGTA -ACGGAACGTACACAGGTTTGCCTA -ACGGAACGTACACAGGTTCCACTA -ACGGAACGTACACAGGTTGGAGTA -ACGGAACGTACACAGGTTTCGTCT -ACGGAACGTACACAGGTTTGCACT -ACGGAACGTACACAGGTTCTGACT -ACGGAACGTACACAGGTTCAACCT -ACGGAACGTACACAGGTTGCTACT -ACGGAACGTACACAGGTTGGATCT -ACGGAACGTACACAGGTTAAGGCT -ACGGAACGTACACAGGTTTCAACC -ACGGAACGTACACAGGTTTGTTCC -ACGGAACGTACACAGGTTATTCCC -ACGGAACGTACACAGGTTTTCTCG -ACGGAACGTACACAGGTTTAGACG -ACGGAACGTACACAGGTTGTAACG -ACGGAACGTACACAGGTTACTTCG -ACGGAACGTACACAGGTTTACGCA -ACGGAACGTACACAGGTTCTTGCA -ACGGAACGTACACAGGTTCGAACA -ACGGAACGTACACAGGTTCAGTCA -ACGGAACGTACACAGGTTGATCCA -ACGGAACGTACACAGGTTACGACA -ACGGAACGTACACAGGTTAGCTCA -ACGGAACGTACACAGGTTTCACGT -ACGGAACGTACACAGGTTCGTAGT -ACGGAACGTACACAGGTTGTCAGT -ACGGAACGTACACAGGTTGAAGGT -ACGGAACGTACACAGGTTAACCGT -ACGGAACGTACACAGGTTTTGTGC -ACGGAACGTACACAGGTTCTAAGC -ACGGAACGTACACAGGTTACTAGC -ACGGAACGTACACAGGTTAGATGC -ACGGAACGTACACAGGTTTGAAGG -ACGGAACGTACACAGGTTCAATGG -ACGGAACGTACACAGGTTATGAGG -ACGGAACGTACACAGGTTAATGGG -ACGGAACGTACACAGGTTTCCTGA -ACGGAACGTACACAGGTTTAGCGA -ACGGAACGTACACAGGTTCACAGA -ACGGAACGTACACAGGTTGCAAGA -ACGGAACGTACACAGGTTGGTTGA -ACGGAACGTACACAGGTTTCCGAT -ACGGAACGTACACAGGTTTGGCAT -ACGGAACGTACACAGGTTCGAGAT -ACGGAACGTACACAGGTTTACCAC -ACGGAACGTACACAGGTTCAGAAC -ACGGAACGTACACAGGTTGTCTAC -ACGGAACGTACACAGGTTACGTAC -ACGGAACGTACACAGGTTAGTGAC -ACGGAACGTACACAGGTTCTGTAG -ACGGAACGTACACAGGTTCCTAAG -ACGGAACGTACACAGGTTGTTCAG -ACGGAACGTACACAGGTTGCATAG -ACGGAACGTACACAGGTTGACAAG -ACGGAACGTACACAGGTTAAGCAG -ACGGAACGTACACAGGTTCGTCAA -ACGGAACGTACACAGGTTGCTGAA -ACGGAACGTACACAGGTTAGTACG -ACGGAACGTACACAGGTTATCCGA -ACGGAACGTACACAGGTTATGGGA -ACGGAACGTACACAGGTTGTGCAA -ACGGAACGTACACAGGTTGAGGAA -ACGGAACGTACACAGGTTCAGGTA -ACGGAACGTACACAGGTTGACTCT -ACGGAACGTACACAGGTTAGTCCT -ACGGAACGTACACAGGTTTAAGCC -ACGGAACGTACACAGGTTATAGCC -ACGGAACGTACACAGGTTTAACCG -ACGGAACGTACACAGGTTATGCCA -ACGGAACGTACATAGGCAGGAAAC -ACGGAACGTACATAGGCAAACACC -ACGGAACGTACATAGGCAATCGAG -ACGGAACGTACATAGGCACTCCTT -ACGGAACGTACATAGGCACCTGTT -ACGGAACGTACATAGGCACGGTTT -ACGGAACGTACATAGGCAGTGGTT -ACGGAACGTACATAGGCAGCCTTT -ACGGAACGTACATAGGCAGGTCTT -ACGGAACGTACATAGGCAACGCTT -ACGGAACGTACATAGGCAAGCGTT -ACGGAACGTACATAGGCATTCGTC -ACGGAACGTACATAGGCATCTCTC -ACGGAACGTACATAGGCATGGATC -ACGGAACGTACATAGGCACACTTC -ACGGAACGTACATAGGCAGTACTC -ACGGAACGTACATAGGCAGATGTC -ACGGAACGTACATAGGCAACAGTC -ACGGAACGTACATAGGCATTGCTG -ACGGAACGTACATAGGCATCCATG -ACGGAACGTACATAGGCATGTGTG -ACGGAACGTACATAGGCACTAGTG -ACGGAACGTACATAGGCACATCTG -ACGGAACGTACATAGGCAGAGTTG -ACGGAACGTACATAGGCAAGACTG -ACGGAACGTACATAGGCATCGGTA -ACGGAACGTACATAGGCATGCCTA -ACGGAACGTACATAGGCACCACTA -ACGGAACGTACATAGGCAGGAGTA -ACGGAACGTACATAGGCATCGTCT -ACGGAACGTACATAGGCATGCACT -ACGGAACGTACATAGGCACTGACT -ACGGAACGTACATAGGCACAACCT -ACGGAACGTACATAGGCAGCTACT -ACGGAACGTACATAGGCAGGATCT -ACGGAACGTACATAGGCAAAGGCT -ACGGAACGTACATAGGCATCAACC -ACGGAACGTACATAGGCATGTTCC -ACGGAACGTACATAGGCAATTCCC -ACGGAACGTACATAGGCATTCTCG -ACGGAACGTACATAGGCATAGACG -ACGGAACGTACATAGGCAGTAACG -ACGGAACGTACATAGGCAACTTCG -ACGGAACGTACATAGGCATACGCA -ACGGAACGTACATAGGCACTTGCA -ACGGAACGTACATAGGCACGAACA -ACGGAACGTACATAGGCACAGTCA -ACGGAACGTACATAGGCAGATCCA -ACGGAACGTACATAGGCAACGACA -ACGGAACGTACATAGGCAAGCTCA -ACGGAACGTACATAGGCATCACGT -ACGGAACGTACATAGGCACGTAGT -ACGGAACGTACATAGGCAGTCAGT -ACGGAACGTACATAGGCAGAAGGT -ACGGAACGTACATAGGCAAACCGT -ACGGAACGTACATAGGCATTGTGC -ACGGAACGTACATAGGCACTAAGC -ACGGAACGTACATAGGCAACTAGC -ACGGAACGTACATAGGCAAGATGC -ACGGAACGTACATAGGCATGAAGG -ACGGAACGTACATAGGCACAATGG -ACGGAACGTACATAGGCAATGAGG -ACGGAACGTACATAGGCAAATGGG -ACGGAACGTACATAGGCATCCTGA -ACGGAACGTACATAGGCATAGCGA -ACGGAACGTACATAGGCACACAGA -ACGGAACGTACATAGGCAGCAAGA -ACGGAACGTACATAGGCAGGTTGA -ACGGAACGTACATAGGCATCCGAT -ACGGAACGTACATAGGCATGGCAT -ACGGAACGTACATAGGCACGAGAT -ACGGAACGTACATAGGCATACCAC -ACGGAACGTACATAGGCACAGAAC -ACGGAACGTACATAGGCAGTCTAC -ACGGAACGTACATAGGCAACGTAC -ACGGAACGTACATAGGCAAGTGAC -ACGGAACGTACATAGGCACTGTAG -ACGGAACGTACATAGGCACCTAAG -ACGGAACGTACATAGGCAGTTCAG -ACGGAACGTACATAGGCAGCATAG -ACGGAACGTACATAGGCAGACAAG -ACGGAACGTACATAGGCAAAGCAG -ACGGAACGTACATAGGCACGTCAA -ACGGAACGTACATAGGCAGCTGAA -ACGGAACGTACATAGGCAAGTACG -ACGGAACGTACATAGGCAATCCGA -ACGGAACGTACATAGGCAATGGGA -ACGGAACGTACATAGGCAGTGCAA -ACGGAACGTACATAGGCAGAGGAA -ACGGAACGTACATAGGCACAGGTA -ACGGAACGTACATAGGCAGACTCT -ACGGAACGTACATAGGCAAGTCCT -ACGGAACGTACATAGGCATAAGCC -ACGGAACGTACATAGGCAATAGCC -ACGGAACGTACATAGGCATAACCG -ACGGAACGTACATAGGCAATGCCA -ACGGAACGTACAAAGGACGGAAAC -ACGGAACGTACAAAGGACAACACC -ACGGAACGTACAAAGGACATCGAG -ACGGAACGTACAAAGGACCTCCTT -ACGGAACGTACAAAGGACCCTGTT -ACGGAACGTACAAAGGACCGGTTT -ACGGAACGTACAAAGGACGTGGTT -ACGGAACGTACAAAGGACGCCTTT -ACGGAACGTACAAAGGACGGTCTT -ACGGAACGTACAAAGGACACGCTT -ACGGAACGTACAAAGGACAGCGTT -ACGGAACGTACAAAGGACTTCGTC -ACGGAACGTACAAAGGACTCTCTC -ACGGAACGTACAAAGGACTGGATC -ACGGAACGTACAAAGGACCACTTC -ACGGAACGTACAAAGGACGTACTC -ACGGAACGTACAAAGGACGATGTC -ACGGAACGTACAAAGGACACAGTC -ACGGAACGTACAAAGGACTTGCTG -ACGGAACGTACAAAGGACTCCATG -ACGGAACGTACAAAGGACTGTGTG -ACGGAACGTACAAAGGACCTAGTG -ACGGAACGTACAAAGGACCATCTG -ACGGAACGTACAAAGGACGAGTTG -ACGGAACGTACAAAGGACAGACTG -ACGGAACGTACAAAGGACTCGGTA -ACGGAACGTACAAAGGACTGCCTA -ACGGAACGTACAAAGGACCCACTA -ACGGAACGTACAAAGGACGGAGTA -ACGGAACGTACAAAGGACTCGTCT -ACGGAACGTACAAAGGACTGCACT -ACGGAACGTACAAAGGACCTGACT -ACGGAACGTACAAAGGACCAACCT -ACGGAACGTACAAAGGACGCTACT -ACGGAACGTACAAAGGACGGATCT -ACGGAACGTACAAAGGACAAGGCT -ACGGAACGTACAAAGGACTCAACC -ACGGAACGTACAAAGGACTGTTCC -ACGGAACGTACAAAGGACATTCCC -ACGGAACGTACAAAGGACTTCTCG -ACGGAACGTACAAAGGACTAGACG -ACGGAACGTACAAAGGACGTAACG -ACGGAACGTACAAAGGACACTTCG -ACGGAACGTACAAAGGACTACGCA -ACGGAACGTACAAAGGACCTTGCA -ACGGAACGTACAAAGGACCGAACA -ACGGAACGTACAAAGGACCAGTCA -ACGGAACGTACAAAGGACGATCCA -ACGGAACGTACAAAGGACACGACA -ACGGAACGTACAAAGGACAGCTCA -ACGGAACGTACAAAGGACTCACGT -ACGGAACGTACAAAGGACCGTAGT -ACGGAACGTACAAAGGACGTCAGT -ACGGAACGTACAAAGGACGAAGGT -ACGGAACGTACAAAGGACAACCGT -ACGGAACGTACAAAGGACTTGTGC -ACGGAACGTACAAAGGACCTAAGC -ACGGAACGTACAAAGGACACTAGC -ACGGAACGTACAAAGGACAGATGC -ACGGAACGTACAAAGGACTGAAGG -ACGGAACGTACAAAGGACCAATGG -ACGGAACGTACAAAGGACATGAGG -ACGGAACGTACAAAGGACAATGGG -ACGGAACGTACAAAGGACTCCTGA -ACGGAACGTACAAAGGACTAGCGA -ACGGAACGTACAAAGGACCACAGA -ACGGAACGTACAAAGGACGCAAGA -ACGGAACGTACAAAGGACGGTTGA -ACGGAACGTACAAAGGACTCCGAT -ACGGAACGTACAAAGGACTGGCAT -ACGGAACGTACAAAGGACCGAGAT -ACGGAACGTACAAAGGACTACCAC -ACGGAACGTACAAAGGACCAGAAC -ACGGAACGTACAAAGGACGTCTAC -ACGGAACGTACAAAGGACACGTAC -ACGGAACGTACAAAGGACAGTGAC -ACGGAACGTACAAAGGACCTGTAG -ACGGAACGTACAAAGGACCCTAAG -ACGGAACGTACAAAGGACGTTCAG -ACGGAACGTACAAAGGACGCATAG -ACGGAACGTACAAAGGACGACAAG -ACGGAACGTACAAAGGACAAGCAG -ACGGAACGTACAAAGGACCGTCAA -ACGGAACGTACAAAGGACGCTGAA -ACGGAACGTACAAAGGACAGTACG -ACGGAACGTACAAAGGACATCCGA -ACGGAACGTACAAAGGACATGGGA -ACGGAACGTACAAAGGACGTGCAA -ACGGAACGTACAAAGGACGAGGAA -ACGGAACGTACAAAGGACCAGGTA -ACGGAACGTACAAAGGACGACTCT -ACGGAACGTACAAAGGACAGTCCT -ACGGAACGTACAAAGGACTAAGCC -ACGGAACGTACAAAGGACATAGCC -ACGGAACGTACAAAGGACTAACCG -ACGGAACGTACAAAGGACATGCCA -ACGGAACGTACACAGAAGGGAAAC -ACGGAACGTACACAGAAGAACACC -ACGGAACGTACACAGAAGATCGAG -ACGGAACGTACACAGAAGCTCCTT -ACGGAACGTACACAGAAGCCTGTT -ACGGAACGTACACAGAAGCGGTTT -ACGGAACGTACACAGAAGGTGGTT -ACGGAACGTACACAGAAGGCCTTT -ACGGAACGTACACAGAAGGGTCTT -ACGGAACGTACACAGAAGACGCTT -ACGGAACGTACACAGAAGAGCGTT -ACGGAACGTACACAGAAGTTCGTC -ACGGAACGTACACAGAAGTCTCTC -ACGGAACGTACACAGAAGTGGATC -ACGGAACGTACACAGAAGCACTTC -ACGGAACGTACACAGAAGGTACTC -ACGGAACGTACACAGAAGGATGTC -ACGGAACGTACACAGAAGACAGTC -ACGGAACGTACACAGAAGTTGCTG -ACGGAACGTACACAGAAGTCCATG -ACGGAACGTACACAGAAGTGTGTG -ACGGAACGTACACAGAAGCTAGTG -ACGGAACGTACACAGAAGCATCTG -ACGGAACGTACACAGAAGGAGTTG -ACGGAACGTACACAGAAGAGACTG -ACGGAACGTACACAGAAGTCGGTA -ACGGAACGTACACAGAAGTGCCTA -ACGGAACGTACACAGAAGCCACTA -ACGGAACGTACACAGAAGGGAGTA -ACGGAACGTACACAGAAGTCGTCT -ACGGAACGTACACAGAAGTGCACT -ACGGAACGTACACAGAAGCTGACT -ACGGAACGTACACAGAAGCAACCT -ACGGAACGTACACAGAAGGCTACT -ACGGAACGTACACAGAAGGGATCT -ACGGAACGTACACAGAAGAAGGCT -ACGGAACGTACACAGAAGTCAACC -ACGGAACGTACACAGAAGTGTTCC -ACGGAACGTACACAGAAGATTCCC -ACGGAACGTACACAGAAGTTCTCG -ACGGAACGTACACAGAAGTAGACG -ACGGAACGTACACAGAAGGTAACG -ACGGAACGTACACAGAAGACTTCG -ACGGAACGTACACAGAAGTACGCA -ACGGAACGTACACAGAAGCTTGCA -ACGGAACGTACACAGAAGCGAACA -ACGGAACGTACACAGAAGCAGTCA -ACGGAACGTACACAGAAGGATCCA -ACGGAACGTACACAGAAGACGACA -ACGGAACGTACACAGAAGAGCTCA -ACGGAACGTACACAGAAGTCACGT -ACGGAACGTACACAGAAGCGTAGT -ACGGAACGTACACAGAAGGTCAGT -ACGGAACGTACACAGAAGGAAGGT -ACGGAACGTACACAGAAGAACCGT -ACGGAACGTACACAGAAGTTGTGC -ACGGAACGTACACAGAAGCTAAGC -ACGGAACGTACACAGAAGACTAGC -ACGGAACGTACACAGAAGAGATGC -ACGGAACGTACACAGAAGTGAAGG -ACGGAACGTACACAGAAGCAATGG -ACGGAACGTACACAGAAGATGAGG -ACGGAACGTACACAGAAGAATGGG -ACGGAACGTACACAGAAGTCCTGA -ACGGAACGTACACAGAAGTAGCGA -ACGGAACGTACACAGAAGCACAGA -ACGGAACGTACACAGAAGGCAAGA -ACGGAACGTACACAGAAGGGTTGA -ACGGAACGTACACAGAAGTCCGAT -ACGGAACGTACACAGAAGTGGCAT -ACGGAACGTACACAGAAGCGAGAT -ACGGAACGTACACAGAAGTACCAC -ACGGAACGTACACAGAAGCAGAAC -ACGGAACGTACACAGAAGGTCTAC -ACGGAACGTACACAGAAGACGTAC -ACGGAACGTACACAGAAGAGTGAC -ACGGAACGTACACAGAAGCTGTAG -ACGGAACGTACACAGAAGCCTAAG -ACGGAACGTACACAGAAGGTTCAG -ACGGAACGTACACAGAAGGCATAG -ACGGAACGTACACAGAAGGACAAG -ACGGAACGTACACAGAAGAAGCAG -ACGGAACGTACACAGAAGCGTCAA -ACGGAACGTACACAGAAGGCTGAA -ACGGAACGTACACAGAAGAGTACG -ACGGAACGTACACAGAAGATCCGA -ACGGAACGTACACAGAAGATGGGA -ACGGAACGTACACAGAAGGTGCAA -ACGGAACGTACACAGAAGGAGGAA -ACGGAACGTACACAGAAGCAGGTA -ACGGAACGTACACAGAAGGACTCT -ACGGAACGTACACAGAAGAGTCCT -ACGGAACGTACACAGAAGTAAGCC -ACGGAACGTACACAGAAGATAGCC -ACGGAACGTACACAGAAGTAACCG -ACGGAACGTACACAGAAGATGCCA -ACGGAACGTACACAACGTGGAAAC -ACGGAACGTACACAACGTAACACC -ACGGAACGTACACAACGTATCGAG -ACGGAACGTACACAACGTCTCCTT -ACGGAACGTACACAACGTCCTGTT -ACGGAACGTACACAACGTCGGTTT -ACGGAACGTACACAACGTGTGGTT -ACGGAACGTACACAACGTGCCTTT -ACGGAACGTACACAACGTGGTCTT -ACGGAACGTACACAACGTACGCTT -ACGGAACGTACACAACGTAGCGTT -ACGGAACGTACACAACGTTTCGTC -ACGGAACGTACACAACGTTCTCTC -ACGGAACGTACACAACGTTGGATC -ACGGAACGTACACAACGTCACTTC -ACGGAACGTACACAACGTGTACTC -ACGGAACGTACACAACGTGATGTC -ACGGAACGTACACAACGTACAGTC -ACGGAACGTACACAACGTTTGCTG -ACGGAACGTACACAACGTTCCATG -ACGGAACGTACACAACGTTGTGTG -ACGGAACGTACACAACGTCTAGTG -ACGGAACGTACACAACGTCATCTG -ACGGAACGTACACAACGTGAGTTG -ACGGAACGTACACAACGTAGACTG -ACGGAACGTACACAACGTTCGGTA -ACGGAACGTACACAACGTTGCCTA -ACGGAACGTACACAACGTCCACTA -ACGGAACGTACACAACGTGGAGTA -ACGGAACGTACACAACGTTCGTCT -ACGGAACGTACACAACGTTGCACT -ACGGAACGTACACAACGTCTGACT -ACGGAACGTACACAACGTCAACCT -ACGGAACGTACACAACGTGCTACT -ACGGAACGTACACAACGTGGATCT -ACGGAACGTACACAACGTAAGGCT -ACGGAACGTACACAACGTTCAACC -ACGGAACGTACACAACGTTGTTCC -ACGGAACGTACACAACGTATTCCC -ACGGAACGTACACAACGTTTCTCG -ACGGAACGTACACAACGTTAGACG -ACGGAACGTACACAACGTGTAACG -ACGGAACGTACACAACGTACTTCG -ACGGAACGTACACAACGTTACGCA -ACGGAACGTACACAACGTCTTGCA -ACGGAACGTACACAACGTCGAACA -ACGGAACGTACACAACGTCAGTCA -ACGGAACGTACACAACGTGATCCA -ACGGAACGTACACAACGTACGACA -ACGGAACGTACACAACGTAGCTCA -ACGGAACGTACACAACGTTCACGT -ACGGAACGTACACAACGTCGTAGT -ACGGAACGTACACAACGTGTCAGT -ACGGAACGTACACAACGTGAAGGT -ACGGAACGTACACAACGTAACCGT -ACGGAACGTACACAACGTTTGTGC -ACGGAACGTACACAACGTCTAAGC -ACGGAACGTACACAACGTACTAGC -ACGGAACGTACACAACGTAGATGC -ACGGAACGTACACAACGTTGAAGG -ACGGAACGTACACAACGTCAATGG -ACGGAACGTACACAACGTATGAGG -ACGGAACGTACACAACGTAATGGG -ACGGAACGTACACAACGTTCCTGA -ACGGAACGTACACAACGTTAGCGA -ACGGAACGTACACAACGTCACAGA -ACGGAACGTACACAACGTGCAAGA -ACGGAACGTACACAACGTGGTTGA -ACGGAACGTACACAACGTTCCGAT -ACGGAACGTACACAACGTTGGCAT -ACGGAACGTACACAACGTCGAGAT -ACGGAACGTACACAACGTTACCAC -ACGGAACGTACACAACGTCAGAAC -ACGGAACGTACACAACGTGTCTAC -ACGGAACGTACACAACGTACGTAC -ACGGAACGTACACAACGTAGTGAC -ACGGAACGTACACAACGTCTGTAG -ACGGAACGTACACAACGTCCTAAG -ACGGAACGTACACAACGTGTTCAG -ACGGAACGTACACAACGTGCATAG -ACGGAACGTACACAACGTGACAAG -ACGGAACGTACACAACGTAAGCAG -ACGGAACGTACACAACGTCGTCAA -ACGGAACGTACACAACGTGCTGAA -ACGGAACGTACACAACGTAGTACG -ACGGAACGTACACAACGTATCCGA -ACGGAACGTACACAACGTATGGGA -ACGGAACGTACACAACGTGTGCAA -ACGGAACGTACACAACGTGAGGAA -ACGGAACGTACACAACGTCAGGTA -ACGGAACGTACACAACGTGACTCT -ACGGAACGTACACAACGTAGTCCT -ACGGAACGTACACAACGTTAAGCC -ACGGAACGTACACAACGTATAGCC -ACGGAACGTACACAACGTTAACCG -ACGGAACGTACACAACGTATGCCA -ACGGAACGTACAGAAGCTGGAAAC -ACGGAACGTACAGAAGCTAACACC -ACGGAACGTACAGAAGCTATCGAG -ACGGAACGTACAGAAGCTCTCCTT -ACGGAACGTACAGAAGCTCCTGTT -ACGGAACGTACAGAAGCTCGGTTT -ACGGAACGTACAGAAGCTGTGGTT -ACGGAACGTACAGAAGCTGCCTTT -ACGGAACGTACAGAAGCTGGTCTT -ACGGAACGTACAGAAGCTACGCTT -ACGGAACGTACAGAAGCTAGCGTT -ACGGAACGTACAGAAGCTTTCGTC -ACGGAACGTACAGAAGCTTCTCTC -ACGGAACGTACAGAAGCTTGGATC -ACGGAACGTACAGAAGCTCACTTC -ACGGAACGTACAGAAGCTGTACTC -ACGGAACGTACAGAAGCTGATGTC -ACGGAACGTACAGAAGCTACAGTC -ACGGAACGTACAGAAGCTTTGCTG -ACGGAACGTACAGAAGCTTCCATG -ACGGAACGTACAGAAGCTTGTGTG -ACGGAACGTACAGAAGCTCTAGTG -ACGGAACGTACAGAAGCTCATCTG -ACGGAACGTACAGAAGCTGAGTTG -ACGGAACGTACAGAAGCTAGACTG -ACGGAACGTACAGAAGCTTCGGTA -ACGGAACGTACAGAAGCTTGCCTA -ACGGAACGTACAGAAGCTCCACTA -ACGGAACGTACAGAAGCTGGAGTA -ACGGAACGTACAGAAGCTTCGTCT -ACGGAACGTACAGAAGCTTGCACT -ACGGAACGTACAGAAGCTCTGACT -ACGGAACGTACAGAAGCTCAACCT -ACGGAACGTACAGAAGCTGCTACT -ACGGAACGTACAGAAGCTGGATCT -ACGGAACGTACAGAAGCTAAGGCT -ACGGAACGTACAGAAGCTTCAACC -ACGGAACGTACAGAAGCTTGTTCC -ACGGAACGTACAGAAGCTATTCCC -ACGGAACGTACAGAAGCTTTCTCG -ACGGAACGTACAGAAGCTTAGACG -ACGGAACGTACAGAAGCTGTAACG -ACGGAACGTACAGAAGCTACTTCG -ACGGAACGTACAGAAGCTTACGCA -ACGGAACGTACAGAAGCTCTTGCA -ACGGAACGTACAGAAGCTCGAACA -ACGGAACGTACAGAAGCTCAGTCA -ACGGAACGTACAGAAGCTGATCCA -ACGGAACGTACAGAAGCTACGACA -ACGGAACGTACAGAAGCTAGCTCA -ACGGAACGTACAGAAGCTTCACGT -ACGGAACGTACAGAAGCTCGTAGT -ACGGAACGTACAGAAGCTGTCAGT -ACGGAACGTACAGAAGCTGAAGGT -ACGGAACGTACAGAAGCTAACCGT -ACGGAACGTACAGAAGCTTTGTGC -ACGGAACGTACAGAAGCTCTAAGC -ACGGAACGTACAGAAGCTACTAGC -ACGGAACGTACAGAAGCTAGATGC -ACGGAACGTACAGAAGCTTGAAGG -ACGGAACGTACAGAAGCTCAATGG -ACGGAACGTACAGAAGCTATGAGG -ACGGAACGTACAGAAGCTAATGGG -ACGGAACGTACAGAAGCTTCCTGA -ACGGAACGTACAGAAGCTTAGCGA -ACGGAACGTACAGAAGCTCACAGA -ACGGAACGTACAGAAGCTGCAAGA -ACGGAACGTACAGAAGCTGGTTGA -ACGGAACGTACAGAAGCTTCCGAT -ACGGAACGTACAGAAGCTTGGCAT -ACGGAACGTACAGAAGCTCGAGAT -ACGGAACGTACAGAAGCTTACCAC -ACGGAACGTACAGAAGCTCAGAAC -ACGGAACGTACAGAAGCTGTCTAC -ACGGAACGTACAGAAGCTACGTAC -ACGGAACGTACAGAAGCTAGTGAC -ACGGAACGTACAGAAGCTCTGTAG -ACGGAACGTACAGAAGCTCCTAAG -ACGGAACGTACAGAAGCTGTTCAG -ACGGAACGTACAGAAGCTGCATAG -ACGGAACGTACAGAAGCTGACAAG -ACGGAACGTACAGAAGCTAAGCAG -ACGGAACGTACAGAAGCTCGTCAA -ACGGAACGTACAGAAGCTGCTGAA -ACGGAACGTACAGAAGCTAGTACG -ACGGAACGTACAGAAGCTATCCGA -ACGGAACGTACAGAAGCTATGGGA -ACGGAACGTACAGAAGCTGTGCAA -ACGGAACGTACAGAAGCTGAGGAA -ACGGAACGTACAGAAGCTCAGGTA -ACGGAACGTACAGAAGCTGACTCT -ACGGAACGTACAGAAGCTAGTCCT -ACGGAACGTACAGAAGCTTAAGCC -ACGGAACGTACAGAAGCTATAGCC -ACGGAACGTACAGAAGCTTAACCG -ACGGAACGTACAGAAGCTATGCCA -ACGGAACGTACAACGAGTGGAAAC -ACGGAACGTACAACGAGTAACACC -ACGGAACGTACAACGAGTATCGAG -ACGGAACGTACAACGAGTCTCCTT -ACGGAACGTACAACGAGTCCTGTT -ACGGAACGTACAACGAGTCGGTTT -ACGGAACGTACAACGAGTGTGGTT -ACGGAACGTACAACGAGTGCCTTT -ACGGAACGTACAACGAGTGGTCTT -ACGGAACGTACAACGAGTACGCTT -ACGGAACGTACAACGAGTAGCGTT -ACGGAACGTACAACGAGTTTCGTC -ACGGAACGTACAACGAGTTCTCTC -ACGGAACGTACAACGAGTTGGATC -ACGGAACGTACAACGAGTCACTTC -ACGGAACGTACAACGAGTGTACTC -ACGGAACGTACAACGAGTGATGTC -ACGGAACGTACAACGAGTACAGTC -ACGGAACGTACAACGAGTTTGCTG -ACGGAACGTACAACGAGTTCCATG -ACGGAACGTACAACGAGTTGTGTG -ACGGAACGTACAACGAGTCTAGTG -ACGGAACGTACAACGAGTCATCTG -ACGGAACGTACAACGAGTGAGTTG -ACGGAACGTACAACGAGTAGACTG -ACGGAACGTACAACGAGTTCGGTA -ACGGAACGTACAACGAGTTGCCTA -ACGGAACGTACAACGAGTCCACTA -ACGGAACGTACAACGAGTGGAGTA -ACGGAACGTACAACGAGTTCGTCT -ACGGAACGTACAACGAGTTGCACT -ACGGAACGTACAACGAGTCTGACT -ACGGAACGTACAACGAGTCAACCT -ACGGAACGTACAACGAGTGCTACT -ACGGAACGTACAACGAGTGGATCT -ACGGAACGTACAACGAGTAAGGCT -ACGGAACGTACAACGAGTTCAACC -ACGGAACGTACAACGAGTTGTTCC -ACGGAACGTACAACGAGTATTCCC -ACGGAACGTACAACGAGTTTCTCG -ACGGAACGTACAACGAGTTAGACG -ACGGAACGTACAACGAGTGTAACG -ACGGAACGTACAACGAGTACTTCG -ACGGAACGTACAACGAGTTACGCA -ACGGAACGTACAACGAGTCTTGCA -ACGGAACGTACAACGAGTCGAACA -ACGGAACGTACAACGAGTCAGTCA -ACGGAACGTACAACGAGTGATCCA -ACGGAACGTACAACGAGTACGACA -ACGGAACGTACAACGAGTAGCTCA -ACGGAACGTACAACGAGTTCACGT -ACGGAACGTACAACGAGTCGTAGT -ACGGAACGTACAACGAGTGTCAGT -ACGGAACGTACAACGAGTGAAGGT -ACGGAACGTACAACGAGTAACCGT -ACGGAACGTACAACGAGTTTGTGC -ACGGAACGTACAACGAGTCTAAGC -ACGGAACGTACAACGAGTACTAGC -ACGGAACGTACAACGAGTAGATGC -ACGGAACGTACAACGAGTTGAAGG -ACGGAACGTACAACGAGTCAATGG -ACGGAACGTACAACGAGTATGAGG -ACGGAACGTACAACGAGTAATGGG -ACGGAACGTACAACGAGTTCCTGA -ACGGAACGTACAACGAGTTAGCGA -ACGGAACGTACAACGAGTCACAGA -ACGGAACGTACAACGAGTGCAAGA -ACGGAACGTACAACGAGTGGTTGA -ACGGAACGTACAACGAGTTCCGAT -ACGGAACGTACAACGAGTTGGCAT -ACGGAACGTACAACGAGTCGAGAT -ACGGAACGTACAACGAGTTACCAC -ACGGAACGTACAACGAGTCAGAAC -ACGGAACGTACAACGAGTGTCTAC -ACGGAACGTACAACGAGTACGTAC -ACGGAACGTACAACGAGTAGTGAC -ACGGAACGTACAACGAGTCTGTAG -ACGGAACGTACAACGAGTCCTAAG -ACGGAACGTACAACGAGTGTTCAG -ACGGAACGTACAACGAGTGCATAG -ACGGAACGTACAACGAGTGACAAG -ACGGAACGTACAACGAGTAAGCAG -ACGGAACGTACAACGAGTCGTCAA -ACGGAACGTACAACGAGTGCTGAA -ACGGAACGTACAACGAGTAGTACG -ACGGAACGTACAACGAGTATCCGA -ACGGAACGTACAACGAGTATGGGA -ACGGAACGTACAACGAGTGTGCAA -ACGGAACGTACAACGAGTGAGGAA -ACGGAACGTACAACGAGTCAGGTA -ACGGAACGTACAACGAGTGACTCT -ACGGAACGTACAACGAGTAGTCCT -ACGGAACGTACAACGAGTTAAGCC -ACGGAACGTACAACGAGTATAGCC -ACGGAACGTACAACGAGTTAACCG -ACGGAACGTACAACGAGTATGCCA -ACGGAACGTACACGAATCGGAAAC -ACGGAACGTACACGAATCAACACC -ACGGAACGTACACGAATCATCGAG -ACGGAACGTACACGAATCCTCCTT -ACGGAACGTACACGAATCCCTGTT -ACGGAACGTACACGAATCCGGTTT -ACGGAACGTACACGAATCGTGGTT -ACGGAACGTACACGAATCGCCTTT -ACGGAACGTACACGAATCGGTCTT -ACGGAACGTACACGAATCACGCTT -ACGGAACGTACACGAATCAGCGTT -ACGGAACGTACACGAATCTTCGTC -ACGGAACGTACACGAATCTCTCTC -ACGGAACGTACACGAATCTGGATC -ACGGAACGTACACGAATCCACTTC -ACGGAACGTACACGAATCGTACTC -ACGGAACGTACACGAATCGATGTC -ACGGAACGTACACGAATCACAGTC -ACGGAACGTACACGAATCTTGCTG -ACGGAACGTACACGAATCTCCATG -ACGGAACGTACACGAATCTGTGTG -ACGGAACGTACACGAATCCTAGTG -ACGGAACGTACACGAATCCATCTG -ACGGAACGTACACGAATCGAGTTG -ACGGAACGTACACGAATCAGACTG -ACGGAACGTACACGAATCTCGGTA -ACGGAACGTACACGAATCTGCCTA -ACGGAACGTACACGAATCCCACTA -ACGGAACGTACACGAATCGGAGTA -ACGGAACGTACACGAATCTCGTCT -ACGGAACGTACACGAATCTGCACT -ACGGAACGTACACGAATCCTGACT -ACGGAACGTACACGAATCCAACCT -ACGGAACGTACACGAATCGCTACT -ACGGAACGTACACGAATCGGATCT -ACGGAACGTACACGAATCAAGGCT -ACGGAACGTACACGAATCTCAACC -ACGGAACGTACACGAATCTGTTCC -ACGGAACGTACACGAATCATTCCC -ACGGAACGTACACGAATCTTCTCG -ACGGAACGTACACGAATCTAGACG -ACGGAACGTACACGAATCGTAACG -ACGGAACGTACACGAATCACTTCG -ACGGAACGTACACGAATCTACGCA -ACGGAACGTACACGAATCCTTGCA -ACGGAACGTACACGAATCCGAACA -ACGGAACGTACACGAATCCAGTCA -ACGGAACGTACACGAATCGATCCA -ACGGAACGTACACGAATCACGACA -ACGGAACGTACACGAATCAGCTCA -ACGGAACGTACACGAATCTCACGT -ACGGAACGTACACGAATCCGTAGT -ACGGAACGTACACGAATCGTCAGT -ACGGAACGTACACGAATCGAAGGT -ACGGAACGTACACGAATCAACCGT -ACGGAACGTACACGAATCTTGTGC -ACGGAACGTACACGAATCCTAAGC -ACGGAACGTACACGAATCACTAGC -ACGGAACGTACACGAATCAGATGC -ACGGAACGTACACGAATCTGAAGG -ACGGAACGTACACGAATCCAATGG -ACGGAACGTACACGAATCATGAGG -ACGGAACGTACACGAATCAATGGG -ACGGAACGTACACGAATCTCCTGA -ACGGAACGTACACGAATCTAGCGA -ACGGAACGTACACGAATCCACAGA -ACGGAACGTACACGAATCGCAAGA -ACGGAACGTACACGAATCGGTTGA -ACGGAACGTACACGAATCTCCGAT -ACGGAACGTACACGAATCTGGCAT -ACGGAACGTACACGAATCCGAGAT -ACGGAACGTACACGAATCTACCAC -ACGGAACGTACACGAATCCAGAAC -ACGGAACGTACACGAATCGTCTAC -ACGGAACGTACACGAATCACGTAC -ACGGAACGTACACGAATCAGTGAC -ACGGAACGTACACGAATCCTGTAG -ACGGAACGTACACGAATCCCTAAG -ACGGAACGTACACGAATCGTTCAG -ACGGAACGTACACGAATCGCATAG -ACGGAACGTACACGAATCGACAAG -ACGGAACGTACACGAATCAAGCAG -ACGGAACGTACACGAATCCGTCAA -ACGGAACGTACACGAATCGCTGAA -ACGGAACGTACACGAATCAGTACG -ACGGAACGTACACGAATCATCCGA -ACGGAACGTACACGAATCATGGGA -ACGGAACGTACACGAATCGTGCAA -ACGGAACGTACACGAATCGAGGAA -ACGGAACGTACACGAATCCAGGTA -ACGGAACGTACACGAATCGACTCT -ACGGAACGTACACGAATCAGTCCT -ACGGAACGTACACGAATCTAAGCC -ACGGAACGTACACGAATCATAGCC -ACGGAACGTACACGAATCTAACCG -ACGGAACGTACACGAATCATGCCA -ACGGAACGTACAGGAATGGGAAAC -ACGGAACGTACAGGAATGAACACC -ACGGAACGTACAGGAATGATCGAG -ACGGAACGTACAGGAATGCTCCTT -ACGGAACGTACAGGAATGCCTGTT -ACGGAACGTACAGGAATGCGGTTT -ACGGAACGTACAGGAATGGTGGTT -ACGGAACGTACAGGAATGGCCTTT -ACGGAACGTACAGGAATGGGTCTT -ACGGAACGTACAGGAATGACGCTT -ACGGAACGTACAGGAATGAGCGTT -ACGGAACGTACAGGAATGTTCGTC -ACGGAACGTACAGGAATGTCTCTC -ACGGAACGTACAGGAATGTGGATC -ACGGAACGTACAGGAATGCACTTC -ACGGAACGTACAGGAATGGTACTC -ACGGAACGTACAGGAATGGATGTC -ACGGAACGTACAGGAATGACAGTC -ACGGAACGTACAGGAATGTTGCTG -ACGGAACGTACAGGAATGTCCATG -ACGGAACGTACAGGAATGTGTGTG -ACGGAACGTACAGGAATGCTAGTG -ACGGAACGTACAGGAATGCATCTG -ACGGAACGTACAGGAATGGAGTTG -ACGGAACGTACAGGAATGAGACTG -ACGGAACGTACAGGAATGTCGGTA -ACGGAACGTACAGGAATGTGCCTA -ACGGAACGTACAGGAATGCCACTA -ACGGAACGTACAGGAATGGGAGTA -ACGGAACGTACAGGAATGTCGTCT -ACGGAACGTACAGGAATGTGCACT -ACGGAACGTACAGGAATGCTGACT -ACGGAACGTACAGGAATGCAACCT -ACGGAACGTACAGGAATGGCTACT -ACGGAACGTACAGGAATGGGATCT -ACGGAACGTACAGGAATGAAGGCT -ACGGAACGTACAGGAATGTCAACC -ACGGAACGTACAGGAATGTGTTCC -ACGGAACGTACAGGAATGATTCCC -ACGGAACGTACAGGAATGTTCTCG -ACGGAACGTACAGGAATGTAGACG -ACGGAACGTACAGGAATGGTAACG -ACGGAACGTACAGGAATGACTTCG -ACGGAACGTACAGGAATGTACGCA -ACGGAACGTACAGGAATGCTTGCA -ACGGAACGTACAGGAATGCGAACA -ACGGAACGTACAGGAATGCAGTCA -ACGGAACGTACAGGAATGGATCCA -ACGGAACGTACAGGAATGACGACA -ACGGAACGTACAGGAATGAGCTCA -ACGGAACGTACAGGAATGTCACGT -ACGGAACGTACAGGAATGCGTAGT -ACGGAACGTACAGGAATGGTCAGT -ACGGAACGTACAGGAATGGAAGGT -ACGGAACGTACAGGAATGAACCGT -ACGGAACGTACAGGAATGTTGTGC -ACGGAACGTACAGGAATGCTAAGC -ACGGAACGTACAGGAATGACTAGC -ACGGAACGTACAGGAATGAGATGC -ACGGAACGTACAGGAATGTGAAGG -ACGGAACGTACAGGAATGCAATGG -ACGGAACGTACAGGAATGATGAGG -ACGGAACGTACAGGAATGAATGGG -ACGGAACGTACAGGAATGTCCTGA -ACGGAACGTACAGGAATGTAGCGA -ACGGAACGTACAGGAATGCACAGA -ACGGAACGTACAGGAATGGCAAGA -ACGGAACGTACAGGAATGGGTTGA -ACGGAACGTACAGGAATGTCCGAT -ACGGAACGTACAGGAATGTGGCAT -ACGGAACGTACAGGAATGCGAGAT -ACGGAACGTACAGGAATGTACCAC -ACGGAACGTACAGGAATGCAGAAC -ACGGAACGTACAGGAATGGTCTAC -ACGGAACGTACAGGAATGACGTAC -ACGGAACGTACAGGAATGAGTGAC -ACGGAACGTACAGGAATGCTGTAG -ACGGAACGTACAGGAATGCCTAAG -ACGGAACGTACAGGAATGGTTCAG -ACGGAACGTACAGGAATGGCATAG -ACGGAACGTACAGGAATGGACAAG -ACGGAACGTACAGGAATGAAGCAG -ACGGAACGTACAGGAATGCGTCAA -ACGGAACGTACAGGAATGGCTGAA -ACGGAACGTACAGGAATGAGTACG -ACGGAACGTACAGGAATGATCCGA -ACGGAACGTACAGGAATGATGGGA -ACGGAACGTACAGGAATGGTGCAA -ACGGAACGTACAGGAATGGAGGAA -ACGGAACGTACAGGAATGCAGGTA -ACGGAACGTACAGGAATGGACTCT -ACGGAACGTACAGGAATGAGTCCT -ACGGAACGTACAGGAATGTAAGCC -ACGGAACGTACAGGAATGATAGCC -ACGGAACGTACAGGAATGTAACCG -ACGGAACGTACAGGAATGATGCCA -ACGGAACGTACACAAGTGGGAAAC -ACGGAACGTACACAAGTGAACACC -ACGGAACGTACACAAGTGATCGAG -ACGGAACGTACACAAGTGCTCCTT -ACGGAACGTACACAAGTGCCTGTT -ACGGAACGTACACAAGTGCGGTTT -ACGGAACGTACACAAGTGGTGGTT -ACGGAACGTACACAAGTGGCCTTT -ACGGAACGTACACAAGTGGGTCTT -ACGGAACGTACACAAGTGACGCTT -ACGGAACGTACACAAGTGAGCGTT -ACGGAACGTACACAAGTGTTCGTC -ACGGAACGTACACAAGTGTCTCTC -ACGGAACGTACACAAGTGTGGATC -ACGGAACGTACACAAGTGCACTTC -ACGGAACGTACACAAGTGGTACTC -ACGGAACGTACACAAGTGGATGTC -ACGGAACGTACACAAGTGACAGTC -ACGGAACGTACACAAGTGTTGCTG -ACGGAACGTACACAAGTGTCCATG -ACGGAACGTACACAAGTGTGTGTG -ACGGAACGTACACAAGTGCTAGTG -ACGGAACGTACACAAGTGCATCTG -ACGGAACGTACACAAGTGGAGTTG -ACGGAACGTACACAAGTGAGACTG -ACGGAACGTACACAAGTGTCGGTA -ACGGAACGTACACAAGTGTGCCTA -ACGGAACGTACACAAGTGCCACTA -ACGGAACGTACACAAGTGGGAGTA -ACGGAACGTACACAAGTGTCGTCT -ACGGAACGTACACAAGTGTGCACT -ACGGAACGTACACAAGTGCTGACT -ACGGAACGTACACAAGTGCAACCT -ACGGAACGTACACAAGTGGCTACT -ACGGAACGTACACAAGTGGGATCT -ACGGAACGTACACAAGTGAAGGCT -ACGGAACGTACACAAGTGTCAACC -ACGGAACGTACACAAGTGTGTTCC -ACGGAACGTACACAAGTGATTCCC -ACGGAACGTACACAAGTGTTCTCG -ACGGAACGTACACAAGTGTAGACG -ACGGAACGTACACAAGTGGTAACG -ACGGAACGTACACAAGTGACTTCG -ACGGAACGTACACAAGTGTACGCA -ACGGAACGTACACAAGTGCTTGCA -ACGGAACGTACACAAGTGCGAACA -ACGGAACGTACACAAGTGCAGTCA -ACGGAACGTACACAAGTGGATCCA -ACGGAACGTACACAAGTGACGACA -ACGGAACGTACACAAGTGAGCTCA -ACGGAACGTACACAAGTGTCACGT -ACGGAACGTACACAAGTGCGTAGT -ACGGAACGTACACAAGTGGTCAGT -ACGGAACGTACACAAGTGGAAGGT -ACGGAACGTACACAAGTGAACCGT -ACGGAACGTACACAAGTGTTGTGC -ACGGAACGTACACAAGTGCTAAGC -ACGGAACGTACACAAGTGACTAGC -ACGGAACGTACACAAGTGAGATGC -ACGGAACGTACACAAGTGTGAAGG -ACGGAACGTACACAAGTGCAATGG -ACGGAACGTACACAAGTGATGAGG -ACGGAACGTACACAAGTGAATGGG -ACGGAACGTACACAAGTGTCCTGA -ACGGAACGTACACAAGTGTAGCGA -ACGGAACGTACACAAGTGCACAGA -ACGGAACGTACACAAGTGGCAAGA -ACGGAACGTACACAAGTGGGTTGA -ACGGAACGTACACAAGTGTCCGAT -ACGGAACGTACACAAGTGTGGCAT -ACGGAACGTACACAAGTGCGAGAT -ACGGAACGTACACAAGTGTACCAC -ACGGAACGTACACAAGTGCAGAAC -ACGGAACGTACACAAGTGGTCTAC -ACGGAACGTACACAAGTGACGTAC -ACGGAACGTACACAAGTGAGTGAC -ACGGAACGTACACAAGTGCTGTAG -ACGGAACGTACACAAGTGCCTAAG -ACGGAACGTACACAAGTGGTTCAG -ACGGAACGTACACAAGTGGCATAG -ACGGAACGTACACAAGTGGACAAG -ACGGAACGTACACAAGTGAAGCAG -ACGGAACGTACACAAGTGCGTCAA -ACGGAACGTACACAAGTGGCTGAA -ACGGAACGTACACAAGTGAGTACG -ACGGAACGTACACAAGTGATCCGA -ACGGAACGTACACAAGTGATGGGA -ACGGAACGTACACAAGTGGTGCAA -ACGGAACGTACACAAGTGGAGGAA -ACGGAACGTACACAAGTGCAGGTA -ACGGAACGTACACAAGTGGACTCT -ACGGAACGTACACAAGTGAGTCCT -ACGGAACGTACACAAGTGTAAGCC -ACGGAACGTACACAAGTGATAGCC -ACGGAACGTACACAAGTGTAACCG -ACGGAACGTACACAAGTGATGCCA -ACGGAACGTACAGAAGAGGGAAAC -ACGGAACGTACAGAAGAGAACACC -ACGGAACGTACAGAAGAGATCGAG -ACGGAACGTACAGAAGAGCTCCTT -ACGGAACGTACAGAAGAGCCTGTT -ACGGAACGTACAGAAGAGCGGTTT -ACGGAACGTACAGAAGAGGTGGTT -ACGGAACGTACAGAAGAGGCCTTT -ACGGAACGTACAGAAGAGGGTCTT -ACGGAACGTACAGAAGAGACGCTT -ACGGAACGTACAGAAGAGAGCGTT -ACGGAACGTACAGAAGAGTTCGTC -ACGGAACGTACAGAAGAGTCTCTC -ACGGAACGTACAGAAGAGTGGATC -ACGGAACGTACAGAAGAGCACTTC -ACGGAACGTACAGAAGAGGTACTC -ACGGAACGTACAGAAGAGGATGTC -ACGGAACGTACAGAAGAGACAGTC -ACGGAACGTACAGAAGAGTTGCTG -ACGGAACGTACAGAAGAGTCCATG -ACGGAACGTACAGAAGAGTGTGTG -ACGGAACGTACAGAAGAGCTAGTG -ACGGAACGTACAGAAGAGCATCTG -ACGGAACGTACAGAAGAGGAGTTG -ACGGAACGTACAGAAGAGAGACTG -ACGGAACGTACAGAAGAGTCGGTA -ACGGAACGTACAGAAGAGTGCCTA -ACGGAACGTACAGAAGAGCCACTA -ACGGAACGTACAGAAGAGGGAGTA -ACGGAACGTACAGAAGAGTCGTCT -ACGGAACGTACAGAAGAGTGCACT -ACGGAACGTACAGAAGAGCTGACT -ACGGAACGTACAGAAGAGCAACCT -ACGGAACGTACAGAAGAGGCTACT -ACGGAACGTACAGAAGAGGGATCT -ACGGAACGTACAGAAGAGAAGGCT -ACGGAACGTACAGAAGAGTCAACC -ACGGAACGTACAGAAGAGTGTTCC -ACGGAACGTACAGAAGAGATTCCC -ACGGAACGTACAGAAGAGTTCTCG -ACGGAACGTACAGAAGAGTAGACG -ACGGAACGTACAGAAGAGGTAACG -ACGGAACGTACAGAAGAGACTTCG -ACGGAACGTACAGAAGAGTACGCA -ACGGAACGTACAGAAGAGCTTGCA -ACGGAACGTACAGAAGAGCGAACA -ACGGAACGTACAGAAGAGCAGTCA -ACGGAACGTACAGAAGAGGATCCA -ACGGAACGTACAGAAGAGACGACA -ACGGAACGTACAGAAGAGAGCTCA -ACGGAACGTACAGAAGAGTCACGT -ACGGAACGTACAGAAGAGCGTAGT -ACGGAACGTACAGAAGAGGTCAGT -ACGGAACGTACAGAAGAGGAAGGT -ACGGAACGTACAGAAGAGAACCGT -ACGGAACGTACAGAAGAGTTGTGC -ACGGAACGTACAGAAGAGCTAAGC -ACGGAACGTACAGAAGAGACTAGC -ACGGAACGTACAGAAGAGAGATGC -ACGGAACGTACAGAAGAGTGAAGG -ACGGAACGTACAGAAGAGCAATGG -ACGGAACGTACAGAAGAGATGAGG -ACGGAACGTACAGAAGAGAATGGG -ACGGAACGTACAGAAGAGTCCTGA -ACGGAACGTACAGAAGAGTAGCGA -ACGGAACGTACAGAAGAGCACAGA -ACGGAACGTACAGAAGAGGCAAGA -ACGGAACGTACAGAAGAGGGTTGA -ACGGAACGTACAGAAGAGTCCGAT -ACGGAACGTACAGAAGAGTGGCAT -ACGGAACGTACAGAAGAGCGAGAT -ACGGAACGTACAGAAGAGTACCAC -ACGGAACGTACAGAAGAGCAGAAC -ACGGAACGTACAGAAGAGGTCTAC -ACGGAACGTACAGAAGAGACGTAC -ACGGAACGTACAGAAGAGAGTGAC -ACGGAACGTACAGAAGAGCTGTAG -ACGGAACGTACAGAAGAGCCTAAG -ACGGAACGTACAGAAGAGGTTCAG -ACGGAACGTACAGAAGAGGCATAG -ACGGAACGTACAGAAGAGGACAAG -ACGGAACGTACAGAAGAGAAGCAG -ACGGAACGTACAGAAGAGCGTCAA -ACGGAACGTACAGAAGAGGCTGAA -ACGGAACGTACAGAAGAGAGTACG -ACGGAACGTACAGAAGAGATCCGA -ACGGAACGTACAGAAGAGATGGGA -ACGGAACGTACAGAAGAGGTGCAA -ACGGAACGTACAGAAGAGGAGGAA -ACGGAACGTACAGAAGAGCAGGTA -ACGGAACGTACAGAAGAGGACTCT -ACGGAACGTACAGAAGAGAGTCCT -ACGGAACGTACAGAAGAGTAAGCC -ACGGAACGTACAGAAGAGATAGCC -ACGGAACGTACAGAAGAGTAACCG -ACGGAACGTACAGAAGAGATGCCA -ACGGAACGTACAGTACAGGGAAAC -ACGGAACGTACAGTACAGAACACC -ACGGAACGTACAGTACAGATCGAG -ACGGAACGTACAGTACAGCTCCTT -ACGGAACGTACAGTACAGCCTGTT -ACGGAACGTACAGTACAGCGGTTT -ACGGAACGTACAGTACAGGTGGTT -ACGGAACGTACAGTACAGGCCTTT -ACGGAACGTACAGTACAGGGTCTT -ACGGAACGTACAGTACAGACGCTT -ACGGAACGTACAGTACAGAGCGTT -ACGGAACGTACAGTACAGTTCGTC -ACGGAACGTACAGTACAGTCTCTC -ACGGAACGTACAGTACAGTGGATC -ACGGAACGTACAGTACAGCACTTC -ACGGAACGTACAGTACAGGTACTC -ACGGAACGTACAGTACAGGATGTC -ACGGAACGTACAGTACAGACAGTC -ACGGAACGTACAGTACAGTTGCTG -ACGGAACGTACAGTACAGTCCATG -ACGGAACGTACAGTACAGTGTGTG -ACGGAACGTACAGTACAGCTAGTG -ACGGAACGTACAGTACAGCATCTG -ACGGAACGTACAGTACAGGAGTTG -ACGGAACGTACAGTACAGAGACTG -ACGGAACGTACAGTACAGTCGGTA -ACGGAACGTACAGTACAGTGCCTA -ACGGAACGTACAGTACAGCCACTA -ACGGAACGTACAGTACAGGGAGTA -ACGGAACGTACAGTACAGTCGTCT -ACGGAACGTACAGTACAGTGCACT -ACGGAACGTACAGTACAGCTGACT -ACGGAACGTACAGTACAGCAACCT -ACGGAACGTACAGTACAGGCTACT -ACGGAACGTACAGTACAGGGATCT -ACGGAACGTACAGTACAGAAGGCT -ACGGAACGTACAGTACAGTCAACC -ACGGAACGTACAGTACAGTGTTCC -ACGGAACGTACAGTACAGATTCCC -ACGGAACGTACAGTACAGTTCTCG -ACGGAACGTACAGTACAGTAGACG -ACGGAACGTACAGTACAGGTAACG -ACGGAACGTACAGTACAGACTTCG -ACGGAACGTACAGTACAGTACGCA -ACGGAACGTACAGTACAGCTTGCA -ACGGAACGTACAGTACAGCGAACA -ACGGAACGTACAGTACAGCAGTCA -ACGGAACGTACAGTACAGGATCCA -ACGGAACGTACAGTACAGACGACA -ACGGAACGTACAGTACAGAGCTCA -ACGGAACGTACAGTACAGTCACGT -ACGGAACGTACAGTACAGCGTAGT -ACGGAACGTACAGTACAGGTCAGT -ACGGAACGTACAGTACAGGAAGGT -ACGGAACGTACAGTACAGAACCGT -ACGGAACGTACAGTACAGTTGTGC -ACGGAACGTACAGTACAGCTAAGC -ACGGAACGTACAGTACAGACTAGC -ACGGAACGTACAGTACAGAGATGC -ACGGAACGTACAGTACAGTGAAGG -ACGGAACGTACAGTACAGCAATGG -ACGGAACGTACAGTACAGATGAGG -ACGGAACGTACAGTACAGAATGGG -ACGGAACGTACAGTACAGTCCTGA -ACGGAACGTACAGTACAGTAGCGA -ACGGAACGTACAGTACAGCACAGA -ACGGAACGTACAGTACAGGCAAGA -ACGGAACGTACAGTACAGGGTTGA -ACGGAACGTACAGTACAGTCCGAT -ACGGAACGTACAGTACAGTGGCAT -ACGGAACGTACAGTACAGCGAGAT -ACGGAACGTACAGTACAGTACCAC -ACGGAACGTACAGTACAGCAGAAC -ACGGAACGTACAGTACAGGTCTAC -ACGGAACGTACAGTACAGACGTAC -ACGGAACGTACAGTACAGAGTGAC -ACGGAACGTACAGTACAGCTGTAG -ACGGAACGTACAGTACAGCCTAAG -ACGGAACGTACAGTACAGGTTCAG -ACGGAACGTACAGTACAGGCATAG -ACGGAACGTACAGTACAGGACAAG -ACGGAACGTACAGTACAGAAGCAG -ACGGAACGTACAGTACAGCGTCAA -ACGGAACGTACAGTACAGGCTGAA -ACGGAACGTACAGTACAGAGTACG -ACGGAACGTACAGTACAGATCCGA -ACGGAACGTACAGTACAGATGGGA -ACGGAACGTACAGTACAGGTGCAA -ACGGAACGTACAGTACAGGAGGAA -ACGGAACGTACAGTACAGCAGGTA -ACGGAACGTACAGTACAGGACTCT -ACGGAACGTACAGTACAGAGTCCT -ACGGAACGTACAGTACAGTAAGCC -ACGGAACGTACAGTACAGATAGCC -ACGGAACGTACAGTACAGTAACCG -ACGGAACGTACAGTACAGATGCCA -ACGGAACGTACATCTGACGGAAAC -ACGGAACGTACATCTGACAACACC -ACGGAACGTACATCTGACATCGAG -ACGGAACGTACATCTGACCTCCTT -ACGGAACGTACATCTGACCCTGTT -ACGGAACGTACATCTGACCGGTTT -ACGGAACGTACATCTGACGTGGTT -ACGGAACGTACATCTGACGCCTTT -ACGGAACGTACATCTGACGGTCTT -ACGGAACGTACATCTGACACGCTT -ACGGAACGTACATCTGACAGCGTT -ACGGAACGTACATCTGACTTCGTC -ACGGAACGTACATCTGACTCTCTC -ACGGAACGTACATCTGACTGGATC -ACGGAACGTACATCTGACCACTTC -ACGGAACGTACATCTGACGTACTC -ACGGAACGTACATCTGACGATGTC -ACGGAACGTACATCTGACACAGTC -ACGGAACGTACATCTGACTTGCTG -ACGGAACGTACATCTGACTCCATG -ACGGAACGTACATCTGACTGTGTG -ACGGAACGTACATCTGACCTAGTG -ACGGAACGTACATCTGACCATCTG -ACGGAACGTACATCTGACGAGTTG -ACGGAACGTACATCTGACAGACTG -ACGGAACGTACATCTGACTCGGTA -ACGGAACGTACATCTGACTGCCTA -ACGGAACGTACATCTGACCCACTA -ACGGAACGTACATCTGACGGAGTA -ACGGAACGTACATCTGACTCGTCT -ACGGAACGTACATCTGACTGCACT -ACGGAACGTACATCTGACCTGACT -ACGGAACGTACATCTGACCAACCT -ACGGAACGTACATCTGACGCTACT -ACGGAACGTACATCTGACGGATCT -ACGGAACGTACATCTGACAAGGCT -ACGGAACGTACATCTGACTCAACC -ACGGAACGTACATCTGACTGTTCC -ACGGAACGTACATCTGACATTCCC -ACGGAACGTACATCTGACTTCTCG -ACGGAACGTACATCTGACTAGACG -ACGGAACGTACATCTGACGTAACG -ACGGAACGTACATCTGACACTTCG -ACGGAACGTACATCTGACTACGCA -ACGGAACGTACATCTGACCTTGCA -ACGGAACGTACATCTGACCGAACA -ACGGAACGTACATCTGACCAGTCA -ACGGAACGTACATCTGACGATCCA -ACGGAACGTACATCTGACACGACA -ACGGAACGTACATCTGACAGCTCA -ACGGAACGTACATCTGACTCACGT -ACGGAACGTACATCTGACCGTAGT -ACGGAACGTACATCTGACGTCAGT -ACGGAACGTACATCTGACGAAGGT -ACGGAACGTACATCTGACAACCGT -ACGGAACGTACATCTGACTTGTGC -ACGGAACGTACATCTGACCTAAGC -ACGGAACGTACATCTGACACTAGC -ACGGAACGTACATCTGACAGATGC -ACGGAACGTACATCTGACTGAAGG -ACGGAACGTACATCTGACCAATGG -ACGGAACGTACATCTGACATGAGG -ACGGAACGTACATCTGACAATGGG -ACGGAACGTACATCTGACTCCTGA -ACGGAACGTACATCTGACTAGCGA -ACGGAACGTACATCTGACCACAGA -ACGGAACGTACATCTGACGCAAGA -ACGGAACGTACATCTGACGGTTGA -ACGGAACGTACATCTGACTCCGAT -ACGGAACGTACATCTGACTGGCAT -ACGGAACGTACATCTGACCGAGAT -ACGGAACGTACATCTGACTACCAC -ACGGAACGTACATCTGACCAGAAC -ACGGAACGTACATCTGACGTCTAC -ACGGAACGTACATCTGACACGTAC -ACGGAACGTACATCTGACAGTGAC -ACGGAACGTACATCTGACCTGTAG -ACGGAACGTACATCTGACCCTAAG -ACGGAACGTACATCTGACGTTCAG -ACGGAACGTACATCTGACGCATAG -ACGGAACGTACATCTGACGACAAG -ACGGAACGTACATCTGACAAGCAG -ACGGAACGTACATCTGACCGTCAA -ACGGAACGTACATCTGACGCTGAA -ACGGAACGTACATCTGACAGTACG -ACGGAACGTACATCTGACATCCGA -ACGGAACGTACATCTGACATGGGA -ACGGAACGTACATCTGACGTGCAA -ACGGAACGTACATCTGACGAGGAA -ACGGAACGTACATCTGACCAGGTA -ACGGAACGTACATCTGACGACTCT -ACGGAACGTACATCTGACAGTCCT -ACGGAACGTACATCTGACTAAGCC -ACGGAACGTACATCTGACATAGCC -ACGGAACGTACATCTGACTAACCG -ACGGAACGTACATCTGACATGCCA -ACGGAACGTACACCTAGTGGAAAC -ACGGAACGTACACCTAGTAACACC -ACGGAACGTACACCTAGTATCGAG -ACGGAACGTACACCTAGTCTCCTT -ACGGAACGTACACCTAGTCCTGTT -ACGGAACGTACACCTAGTCGGTTT -ACGGAACGTACACCTAGTGTGGTT -ACGGAACGTACACCTAGTGCCTTT -ACGGAACGTACACCTAGTGGTCTT -ACGGAACGTACACCTAGTACGCTT -ACGGAACGTACACCTAGTAGCGTT -ACGGAACGTACACCTAGTTTCGTC -ACGGAACGTACACCTAGTTCTCTC -ACGGAACGTACACCTAGTTGGATC -ACGGAACGTACACCTAGTCACTTC -ACGGAACGTACACCTAGTGTACTC -ACGGAACGTACACCTAGTGATGTC -ACGGAACGTACACCTAGTACAGTC -ACGGAACGTACACCTAGTTTGCTG -ACGGAACGTACACCTAGTTCCATG -ACGGAACGTACACCTAGTTGTGTG -ACGGAACGTACACCTAGTCTAGTG -ACGGAACGTACACCTAGTCATCTG -ACGGAACGTACACCTAGTGAGTTG -ACGGAACGTACACCTAGTAGACTG -ACGGAACGTACACCTAGTTCGGTA -ACGGAACGTACACCTAGTTGCCTA -ACGGAACGTACACCTAGTCCACTA -ACGGAACGTACACCTAGTGGAGTA -ACGGAACGTACACCTAGTTCGTCT -ACGGAACGTACACCTAGTTGCACT -ACGGAACGTACACCTAGTCTGACT -ACGGAACGTACACCTAGTCAACCT -ACGGAACGTACACCTAGTGCTACT -ACGGAACGTACACCTAGTGGATCT -ACGGAACGTACACCTAGTAAGGCT -ACGGAACGTACACCTAGTTCAACC -ACGGAACGTACACCTAGTTGTTCC -ACGGAACGTACACCTAGTATTCCC -ACGGAACGTACACCTAGTTTCTCG -ACGGAACGTACACCTAGTTAGACG -ACGGAACGTACACCTAGTGTAACG -ACGGAACGTACACCTAGTACTTCG -ACGGAACGTACACCTAGTTACGCA -ACGGAACGTACACCTAGTCTTGCA -ACGGAACGTACACCTAGTCGAACA -ACGGAACGTACACCTAGTCAGTCA -ACGGAACGTACACCTAGTGATCCA -ACGGAACGTACACCTAGTACGACA -ACGGAACGTACACCTAGTAGCTCA -ACGGAACGTACACCTAGTTCACGT -ACGGAACGTACACCTAGTCGTAGT -ACGGAACGTACACCTAGTGTCAGT -ACGGAACGTACACCTAGTGAAGGT -ACGGAACGTACACCTAGTAACCGT -ACGGAACGTACACCTAGTTTGTGC -ACGGAACGTACACCTAGTCTAAGC -ACGGAACGTACACCTAGTACTAGC -ACGGAACGTACACCTAGTAGATGC -ACGGAACGTACACCTAGTTGAAGG -ACGGAACGTACACCTAGTCAATGG -ACGGAACGTACACCTAGTATGAGG -ACGGAACGTACACCTAGTAATGGG -ACGGAACGTACACCTAGTTCCTGA -ACGGAACGTACACCTAGTTAGCGA -ACGGAACGTACACCTAGTCACAGA -ACGGAACGTACACCTAGTGCAAGA -ACGGAACGTACACCTAGTGGTTGA -ACGGAACGTACACCTAGTTCCGAT -ACGGAACGTACACCTAGTTGGCAT -ACGGAACGTACACCTAGTCGAGAT -ACGGAACGTACACCTAGTTACCAC -ACGGAACGTACACCTAGTCAGAAC -ACGGAACGTACACCTAGTGTCTAC -ACGGAACGTACACCTAGTACGTAC -ACGGAACGTACACCTAGTAGTGAC -ACGGAACGTACACCTAGTCTGTAG -ACGGAACGTACACCTAGTCCTAAG -ACGGAACGTACACCTAGTGTTCAG -ACGGAACGTACACCTAGTGCATAG -ACGGAACGTACACCTAGTGACAAG -ACGGAACGTACACCTAGTAAGCAG -ACGGAACGTACACCTAGTCGTCAA -ACGGAACGTACACCTAGTGCTGAA -ACGGAACGTACACCTAGTAGTACG -ACGGAACGTACACCTAGTATCCGA -ACGGAACGTACACCTAGTATGGGA -ACGGAACGTACACCTAGTGTGCAA -ACGGAACGTACACCTAGTGAGGAA -ACGGAACGTACACCTAGTCAGGTA -ACGGAACGTACACCTAGTGACTCT -ACGGAACGTACACCTAGTAGTCCT -ACGGAACGTACACCTAGTTAAGCC -ACGGAACGTACACCTAGTATAGCC -ACGGAACGTACACCTAGTTAACCG -ACGGAACGTACACCTAGTATGCCA -ACGGAACGTACAGCCTAAGGAAAC -ACGGAACGTACAGCCTAAAACACC -ACGGAACGTACAGCCTAAATCGAG -ACGGAACGTACAGCCTAACTCCTT -ACGGAACGTACAGCCTAACCTGTT -ACGGAACGTACAGCCTAACGGTTT -ACGGAACGTACAGCCTAAGTGGTT -ACGGAACGTACAGCCTAAGCCTTT -ACGGAACGTACAGCCTAAGGTCTT -ACGGAACGTACAGCCTAAACGCTT -ACGGAACGTACAGCCTAAAGCGTT -ACGGAACGTACAGCCTAATTCGTC -ACGGAACGTACAGCCTAATCTCTC -ACGGAACGTACAGCCTAATGGATC -ACGGAACGTACAGCCTAACACTTC -ACGGAACGTACAGCCTAAGTACTC -ACGGAACGTACAGCCTAAGATGTC -ACGGAACGTACAGCCTAAACAGTC -ACGGAACGTACAGCCTAATTGCTG -ACGGAACGTACAGCCTAATCCATG -ACGGAACGTACAGCCTAATGTGTG -ACGGAACGTACAGCCTAACTAGTG -ACGGAACGTACAGCCTAACATCTG -ACGGAACGTACAGCCTAAGAGTTG -ACGGAACGTACAGCCTAAAGACTG -ACGGAACGTACAGCCTAATCGGTA -ACGGAACGTACAGCCTAATGCCTA -ACGGAACGTACAGCCTAACCACTA -ACGGAACGTACAGCCTAAGGAGTA -ACGGAACGTACAGCCTAATCGTCT -ACGGAACGTACAGCCTAATGCACT -ACGGAACGTACAGCCTAACTGACT -ACGGAACGTACAGCCTAACAACCT -ACGGAACGTACAGCCTAAGCTACT -ACGGAACGTACAGCCTAAGGATCT -ACGGAACGTACAGCCTAAAAGGCT -ACGGAACGTACAGCCTAATCAACC -ACGGAACGTACAGCCTAATGTTCC -ACGGAACGTACAGCCTAAATTCCC -ACGGAACGTACAGCCTAATTCTCG -ACGGAACGTACAGCCTAATAGACG -ACGGAACGTACAGCCTAAGTAACG -ACGGAACGTACAGCCTAAACTTCG -ACGGAACGTACAGCCTAATACGCA -ACGGAACGTACAGCCTAACTTGCA -ACGGAACGTACAGCCTAACGAACA -ACGGAACGTACAGCCTAACAGTCA -ACGGAACGTACAGCCTAAGATCCA -ACGGAACGTACAGCCTAAACGACA -ACGGAACGTACAGCCTAAAGCTCA -ACGGAACGTACAGCCTAATCACGT -ACGGAACGTACAGCCTAACGTAGT -ACGGAACGTACAGCCTAAGTCAGT -ACGGAACGTACAGCCTAAGAAGGT -ACGGAACGTACAGCCTAAAACCGT -ACGGAACGTACAGCCTAATTGTGC -ACGGAACGTACAGCCTAACTAAGC -ACGGAACGTACAGCCTAAACTAGC -ACGGAACGTACAGCCTAAAGATGC -ACGGAACGTACAGCCTAATGAAGG -ACGGAACGTACAGCCTAACAATGG -ACGGAACGTACAGCCTAAATGAGG -ACGGAACGTACAGCCTAAAATGGG -ACGGAACGTACAGCCTAATCCTGA -ACGGAACGTACAGCCTAATAGCGA -ACGGAACGTACAGCCTAACACAGA -ACGGAACGTACAGCCTAAGCAAGA -ACGGAACGTACAGCCTAAGGTTGA -ACGGAACGTACAGCCTAATCCGAT -ACGGAACGTACAGCCTAATGGCAT -ACGGAACGTACAGCCTAACGAGAT -ACGGAACGTACAGCCTAATACCAC -ACGGAACGTACAGCCTAACAGAAC -ACGGAACGTACAGCCTAAGTCTAC -ACGGAACGTACAGCCTAAACGTAC -ACGGAACGTACAGCCTAAAGTGAC -ACGGAACGTACAGCCTAACTGTAG -ACGGAACGTACAGCCTAACCTAAG -ACGGAACGTACAGCCTAAGTTCAG -ACGGAACGTACAGCCTAAGCATAG -ACGGAACGTACAGCCTAAGACAAG -ACGGAACGTACAGCCTAAAAGCAG -ACGGAACGTACAGCCTAACGTCAA -ACGGAACGTACAGCCTAAGCTGAA -ACGGAACGTACAGCCTAAAGTACG -ACGGAACGTACAGCCTAAATCCGA -ACGGAACGTACAGCCTAAATGGGA -ACGGAACGTACAGCCTAAGTGCAA -ACGGAACGTACAGCCTAAGAGGAA -ACGGAACGTACAGCCTAACAGGTA -ACGGAACGTACAGCCTAAGACTCT -ACGGAACGTACAGCCTAAAGTCCT -ACGGAACGTACAGCCTAATAAGCC -ACGGAACGTACAGCCTAAATAGCC -ACGGAACGTACAGCCTAATAACCG -ACGGAACGTACAGCCTAAATGCCA -ACGGAACGTACAGCCATAGGAAAC -ACGGAACGTACAGCCATAAACACC -ACGGAACGTACAGCCATAATCGAG -ACGGAACGTACAGCCATACTCCTT -ACGGAACGTACAGCCATACCTGTT -ACGGAACGTACAGCCATACGGTTT -ACGGAACGTACAGCCATAGTGGTT -ACGGAACGTACAGCCATAGCCTTT -ACGGAACGTACAGCCATAGGTCTT -ACGGAACGTACAGCCATAACGCTT -ACGGAACGTACAGCCATAAGCGTT -ACGGAACGTACAGCCATATTCGTC -ACGGAACGTACAGCCATATCTCTC -ACGGAACGTACAGCCATATGGATC -ACGGAACGTACAGCCATACACTTC -ACGGAACGTACAGCCATAGTACTC -ACGGAACGTACAGCCATAGATGTC -ACGGAACGTACAGCCATAACAGTC -ACGGAACGTACAGCCATATTGCTG -ACGGAACGTACAGCCATATCCATG -ACGGAACGTACAGCCATATGTGTG -ACGGAACGTACAGCCATACTAGTG -ACGGAACGTACAGCCATACATCTG -ACGGAACGTACAGCCATAGAGTTG -ACGGAACGTACAGCCATAAGACTG -ACGGAACGTACAGCCATATCGGTA -ACGGAACGTACAGCCATATGCCTA -ACGGAACGTACAGCCATACCACTA -ACGGAACGTACAGCCATAGGAGTA -ACGGAACGTACAGCCATATCGTCT -ACGGAACGTACAGCCATATGCACT -ACGGAACGTACAGCCATACTGACT -ACGGAACGTACAGCCATACAACCT -ACGGAACGTACAGCCATAGCTACT -ACGGAACGTACAGCCATAGGATCT -ACGGAACGTACAGCCATAAAGGCT -ACGGAACGTACAGCCATATCAACC -ACGGAACGTACAGCCATATGTTCC -ACGGAACGTACAGCCATAATTCCC -ACGGAACGTACAGCCATATTCTCG -ACGGAACGTACAGCCATATAGACG -ACGGAACGTACAGCCATAGTAACG -ACGGAACGTACAGCCATAACTTCG -ACGGAACGTACAGCCATATACGCA -ACGGAACGTACAGCCATACTTGCA -ACGGAACGTACAGCCATACGAACA -ACGGAACGTACAGCCATACAGTCA -ACGGAACGTACAGCCATAGATCCA -ACGGAACGTACAGCCATAACGACA -ACGGAACGTACAGCCATAAGCTCA -ACGGAACGTACAGCCATATCACGT -ACGGAACGTACAGCCATACGTAGT -ACGGAACGTACAGCCATAGTCAGT -ACGGAACGTACAGCCATAGAAGGT -ACGGAACGTACAGCCATAAACCGT -ACGGAACGTACAGCCATATTGTGC -ACGGAACGTACAGCCATACTAAGC -ACGGAACGTACAGCCATAACTAGC -ACGGAACGTACAGCCATAAGATGC -ACGGAACGTACAGCCATATGAAGG -ACGGAACGTACAGCCATACAATGG -ACGGAACGTACAGCCATAATGAGG -ACGGAACGTACAGCCATAAATGGG -ACGGAACGTACAGCCATATCCTGA -ACGGAACGTACAGCCATATAGCGA -ACGGAACGTACAGCCATACACAGA -ACGGAACGTACAGCCATAGCAAGA -ACGGAACGTACAGCCATAGGTTGA -ACGGAACGTACAGCCATATCCGAT -ACGGAACGTACAGCCATATGGCAT -ACGGAACGTACAGCCATACGAGAT -ACGGAACGTACAGCCATATACCAC -ACGGAACGTACAGCCATACAGAAC -ACGGAACGTACAGCCATAGTCTAC -ACGGAACGTACAGCCATAACGTAC -ACGGAACGTACAGCCATAAGTGAC -ACGGAACGTACAGCCATACTGTAG -ACGGAACGTACAGCCATACCTAAG -ACGGAACGTACAGCCATAGTTCAG -ACGGAACGTACAGCCATAGCATAG -ACGGAACGTACAGCCATAGACAAG -ACGGAACGTACAGCCATAAAGCAG -ACGGAACGTACAGCCATACGTCAA -ACGGAACGTACAGCCATAGCTGAA -ACGGAACGTACAGCCATAAGTACG -ACGGAACGTACAGCCATAATCCGA -ACGGAACGTACAGCCATAATGGGA -ACGGAACGTACAGCCATAGTGCAA -ACGGAACGTACAGCCATAGAGGAA -ACGGAACGTACAGCCATACAGGTA -ACGGAACGTACAGCCATAGACTCT -ACGGAACGTACAGCCATAAGTCCT -ACGGAACGTACAGCCATATAAGCC -ACGGAACGTACAGCCATAATAGCC -ACGGAACGTACAGCCATATAACCG -ACGGAACGTACAGCCATAATGCCA -ACGGAACGTACACCGTAAGGAAAC -ACGGAACGTACACCGTAAAACACC -ACGGAACGTACACCGTAAATCGAG -ACGGAACGTACACCGTAACTCCTT -ACGGAACGTACACCGTAACCTGTT -ACGGAACGTACACCGTAACGGTTT -ACGGAACGTACACCGTAAGTGGTT -ACGGAACGTACACCGTAAGCCTTT -ACGGAACGTACACCGTAAGGTCTT -ACGGAACGTACACCGTAAACGCTT -ACGGAACGTACACCGTAAAGCGTT -ACGGAACGTACACCGTAATTCGTC -ACGGAACGTACACCGTAATCTCTC -ACGGAACGTACACCGTAATGGATC -ACGGAACGTACACCGTAACACTTC -ACGGAACGTACACCGTAAGTACTC -ACGGAACGTACACCGTAAGATGTC -ACGGAACGTACACCGTAAACAGTC -ACGGAACGTACACCGTAATTGCTG -ACGGAACGTACACCGTAATCCATG -ACGGAACGTACACCGTAATGTGTG -ACGGAACGTACACCGTAACTAGTG -ACGGAACGTACACCGTAACATCTG -ACGGAACGTACACCGTAAGAGTTG -ACGGAACGTACACCGTAAAGACTG -ACGGAACGTACACCGTAATCGGTA -ACGGAACGTACACCGTAATGCCTA -ACGGAACGTACACCGTAACCACTA -ACGGAACGTACACCGTAAGGAGTA -ACGGAACGTACACCGTAATCGTCT -ACGGAACGTACACCGTAATGCACT -ACGGAACGTACACCGTAACTGACT -ACGGAACGTACACCGTAACAACCT -ACGGAACGTACACCGTAAGCTACT -ACGGAACGTACACCGTAAGGATCT -ACGGAACGTACACCGTAAAAGGCT -ACGGAACGTACACCGTAATCAACC -ACGGAACGTACACCGTAATGTTCC -ACGGAACGTACACCGTAAATTCCC -ACGGAACGTACACCGTAATTCTCG -ACGGAACGTACACCGTAATAGACG -ACGGAACGTACACCGTAAGTAACG -ACGGAACGTACACCGTAAACTTCG -ACGGAACGTACACCGTAATACGCA -ACGGAACGTACACCGTAACTTGCA -ACGGAACGTACACCGTAACGAACA -ACGGAACGTACACCGTAACAGTCA -ACGGAACGTACACCGTAAGATCCA -ACGGAACGTACACCGTAAACGACA -ACGGAACGTACACCGTAAAGCTCA -ACGGAACGTACACCGTAATCACGT -ACGGAACGTACACCGTAACGTAGT -ACGGAACGTACACCGTAAGTCAGT -ACGGAACGTACACCGTAAGAAGGT -ACGGAACGTACACCGTAAAACCGT -ACGGAACGTACACCGTAATTGTGC -ACGGAACGTACACCGTAACTAAGC -ACGGAACGTACACCGTAAACTAGC -ACGGAACGTACACCGTAAAGATGC -ACGGAACGTACACCGTAATGAAGG -ACGGAACGTACACCGTAACAATGG -ACGGAACGTACACCGTAAATGAGG -ACGGAACGTACACCGTAAAATGGG -ACGGAACGTACACCGTAATCCTGA -ACGGAACGTACACCGTAATAGCGA -ACGGAACGTACACCGTAACACAGA -ACGGAACGTACACCGTAAGCAAGA -ACGGAACGTACACCGTAAGGTTGA -ACGGAACGTACACCGTAATCCGAT -ACGGAACGTACACCGTAATGGCAT -ACGGAACGTACACCGTAACGAGAT -ACGGAACGTACACCGTAATACCAC -ACGGAACGTACACCGTAACAGAAC -ACGGAACGTACACCGTAAGTCTAC -ACGGAACGTACACCGTAAACGTAC -ACGGAACGTACACCGTAAAGTGAC -ACGGAACGTACACCGTAACTGTAG -ACGGAACGTACACCGTAACCTAAG -ACGGAACGTACACCGTAAGTTCAG -ACGGAACGTACACCGTAAGCATAG -ACGGAACGTACACCGTAAGACAAG -ACGGAACGTACACCGTAAAAGCAG -ACGGAACGTACACCGTAACGTCAA -ACGGAACGTACACCGTAAGCTGAA -ACGGAACGTACACCGTAAAGTACG -ACGGAACGTACACCGTAAATCCGA -ACGGAACGTACACCGTAAATGGGA -ACGGAACGTACACCGTAAGTGCAA -ACGGAACGTACACCGTAAGAGGAA -ACGGAACGTACACCGTAACAGGTA -ACGGAACGTACACCGTAAGACTCT -ACGGAACGTACACCGTAAAGTCCT -ACGGAACGTACACCGTAATAAGCC -ACGGAACGTACACCGTAAATAGCC -ACGGAACGTACACCGTAATAACCG -ACGGAACGTACACCGTAAATGCCA -ACGGAACGTACACCAATGGGAAAC -ACGGAACGTACACCAATGAACACC -ACGGAACGTACACCAATGATCGAG -ACGGAACGTACACCAATGCTCCTT -ACGGAACGTACACCAATGCCTGTT -ACGGAACGTACACCAATGCGGTTT -ACGGAACGTACACCAATGGTGGTT -ACGGAACGTACACCAATGGCCTTT -ACGGAACGTACACCAATGGGTCTT -ACGGAACGTACACCAATGACGCTT -ACGGAACGTACACCAATGAGCGTT -ACGGAACGTACACCAATGTTCGTC -ACGGAACGTACACCAATGTCTCTC -ACGGAACGTACACCAATGTGGATC -ACGGAACGTACACCAATGCACTTC -ACGGAACGTACACCAATGGTACTC -ACGGAACGTACACCAATGGATGTC -ACGGAACGTACACCAATGACAGTC -ACGGAACGTACACCAATGTTGCTG -ACGGAACGTACACCAATGTCCATG -ACGGAACGTACACCAATGTGTGTG -ACGGAACGTACACCAATGCTAGTG -ACGGAACGTACACCAATGCATCTG -ACGGAACGTACACCAATGGAGTTG -ACGGAACGTACACCAATGAGACTG -ACGGAACGTACACCAATGTCGGTA -ACGGAACGTACACCAATGTGCCTA -ACGGAACGTACACCAATGCCACTA -ACGGAACGTACACCAATGGGAGTA -ACGGAACGTACACCAATGTCGTCT -ACGGAACGTACACCAATGTGCACT -ACGGAACGTACACCAATGCTGACT -ACGGAACGTACACCAATGCAACCT -ACGGAACGTACACCAATGGCTACT -ACGGAACGTACACCAATGGGATCT -ACGGAACGTACACCAATGAAGGCT -ACGGAACGTACACCAATGTCAACC -ACGGAACGTACACCAATGTGTTCC -ACGGAACGTACACCAATGATTCCC -ACGGAACGTACACCAATGTTCTCG -ACGGAACGTACACCAATGTAGACG -ACGGAACGTACACCAATGGTAACG -ACGGAACGTACACCAATGACTTCG -ACGGAACGTACACCAATGTACGCA -ACGGAACGTACACCAATGCTTGCA -ACGGAACGTACACCAATGCGAACA -ACGGAACGTACACCAATGCAGTCA -ACGGAACGTACACCAATGGATCCA -ACGGAACGTACACCAATGACGACA -ACGGAACGTACACCAATGAGCTCA -ACGGAACGTACACCAATGTCACGT -ACGGAACGTACACCAATGCGTAGT -ACGGAACGTACACCAATGGTCAGT -ACGGAACGTACACCAATGGAAGGT -ACGGAACGTACACCAATGAACCGT -ACGGAACGTACACCAATGTTGTGC -ACGGAACGTACACCAATGCTAAGC -ACGGAACGTACACCAATGACTAGC -ACGGAACGTACACCAATGAGATGC -ACGGAACGTACACCAATGTGAAGG -ACGGAACGTACACCAATGCAATGG -ACGGAACGTACACCAATGATGAGG -ACGGAACGTACACCAATGAATGGG -ACGGAACGTACACCAATGTCCTGA -ACGGAACGTACACCAATGTAGCGA -ACGGAACGTACACCAATGCACAGA -ACGGAACGTACACCAATGGCAAGA -ACGGAACGTACACCAATGGGTTGA -ACGGAACGTACACCAATGTCCGAT -ACGGAACGTACACCAATGTGGCAT -ACGGAACGTACACCAATGCGAGAT -ACGGAACGTACACCAATGTACCAC -ACGGAACGTACACCAATGCAGAAC -ACGGAACGTACACCAATGGTCTAC -ACGGAACGTACACCAATGACGTAC -ACGGAACGTACACCAATGAGTGAC -ACGGAACGTACACCAATGCTGTAG -ACGGAACGTACACCAATGCCTAAG -ACGGAACGTACACCAATGGTTCAG -ACGGAACGTACACCAATGGCATAG -ACGGAACGTACACCAATGGACAAG -ACGGAACGTACACCAATGAAGCAG -ACGGAACGTACACCAATGCGTCAA -ACGGAACGTACACCAATGGCTGAA -ACGGAACGTACACCAATGAGTACG -ACGGAACGTACACCAATGATCCGA -ACGGAACGTACACCAATGATGGGA -ACGGAACGTACACCAATGGTGCAA -ACGGAACGTACACCAATGGAGGAA -ACGGAACGTACACCAATGCAGGTA -ACGGAACGTACACCAATGGACTCT -ACGGAACGTACACCAATGAGTCCT -ACGGAACGTACACCAATGTAAGCC -ACGGAACGTACACCAATGATAGCC -ACGGAACGTACACCAATGTAACCG -ACGGAACGTACACCAATGATGCCA -ACGGAAGTGACAAACGGAGGAAAC -ACGGAAGTGACAAACGGAAACACC -ACGGAAGTGACAAACGGAATCGAG -ACGGAAGTGACAAACGGACTCCTT -ACGGAAGTGACAAACGGACCTGTT -ACGGAAGTGACAAACGGACGGTTT -ACGGAAGTGACAAACGGAGTGGTT -ACGGAAGTGACAAACGGAGCCTTT -ACGGAAGTGACAAACGGAGGTCTT -ACGGAAGTGACAAACGGAACGCTT -ACGGAAGTGACAAACGGAAGCGTT -ACGGAAGTGACAAACGGATTCGTC -ACGGAAGTGACAAACGGATCTCTC -ACGGAAGTGACAAACGGATGGATC -ACGGAAGTGACAAACGGACACTTC -ACGGAAGTGACAAACGGAGTACTC -ACGGAAGTGACAAACGGAGATGTC -ACGGAAGTGACAAACGGAACAGTC -ACGGAAGTGACAAACGGATTGCTG -ACGGAAGTGACAAACGGATCCATG -ACGGAAGTGACAAACGGATGTGTG -ACGGAAGTGACAAACGGACTAGTG -ACGGAAGTGACAAACGGACATCTG -ACGGAAGTGACAAACGGAGAGTTG -ACGGAAGTGACAAACGGAAGACTG -ACGGAAGTGACAAACGGATCGGTA -ACGGAAGTGACAAACGGATGCCTA -ACGGAAGTGACAAACGGACCACTA -ACGGAAGTGACAAACGGAGGAGTA -ACGGAAGTGACAAACGGATCGTCT -ACGGAAGTGACAAACGGATGCACT -ACGGAAGTGACAAACGGACTGACT -ACGGAAGTGACAAACGGACAACCT -ACGGAAGTGACAAACGGAGCTACT -ACGGAAGTGACAAACGGAGGATCT -ACGGAAGTGACAAACGGAAAGGCT -ACGGAAGTGACAAACGGATCAACC -ACGGAAGTGACAAACGGATGTTCC -ACGGAAGTGACAAACGGAATTCCC -ACGGAAGTGACAAACGGATTCTCG -ACGGAAGTGACAAACGGATAGACG -ACGGAAGTGACAAACGGAGTAACG -ACGGAAGTGACAAACGGAACTTCG -ACGGAAGTGACAAACGGATACGCA -ACGGAAGTGACAAACGGACTTGCA -ACGGAAGTGACAAACGGACGAACA -ACGGAAGTGACAAACGGACAGTCA -ACGGAAGTGACAAACGGAGATCCA -ACGGAAGTGACAAACGGAACGACA -ACGGAAGTGACAAACGGAAGCTCA -ACGGAAGTGACAAACGGATCACGT -ACGGAAGTGACAAACGGACGTAGT -ACGGAAGTGACAAACGGAGTCAGT -ACGGAAGTGACAAACGGAGAAGGT -ACGGAAGTGACAAACGGAAACCGT -ACGGAAGTGACAAACGGATTGTGC -ACGGAAGTGACAAACGGACTAAGC -ACGGAAGTGACAAACGGAACTAGC -ACGGAAGTGACAAACGGAAGATGC -ACGGAAGTGACAAACGGATGAAGG -ACGGAAGTGACAAACGGACAATGG -ACGGAAGTGACAAACGGAATGAGG -ACGGAAGTGACAAACGGAAATGGG -ACGGAAGTGACAAACGGATCCTGA -ACGGAAGTGACAAACGGATAGCGA -ACGGAAGTGACAAACGGACACAGA -ACGGAAGTGACAAACGGAGCAAGA -ACGGAAGTGACAAACGGAGGTTGA -ACGGAAGTGACAAACGGATCCGAT -ACGGAAGTGACAAACGGATGGCAT -ACGGAAGTGACAAACGGACGAGAT -ACGGAAGTGACAAACGGATACCAC -ACGGAAGTGACAAACGGACAGAAC -ACGGAAGTGACAAACGGAGTCTAC -ACGGAAGTGACAAACGGAACGTAC -ACGGAAGTGACAAACGGAAGTGAC -ACGGAAGTGACAAACGGACTGTAG -ACGGAAGTGACAAACGGACCTAAG -ACGGAAGTGACAAACGGAGTTCAG -ACGGAAGTGACAAACGGAGCATAG -ACGGAAGTGACAAACGGAGACAAG -ACGGAAGTGACAAACGGAAAGCAG -ACGGAAGTGACAAACGGACGTCAA -ACGGAAGTGACAAACGGAGCTGAA -ACGGAAGTGACAAACGGAAGTACG -ACGGAAGTGACAAACGGAATCCGA -ACGGAAGTGACAAACGGAATGGGA -ACGGAAGTGACAAACGGAGTGCAA -ACGGAAGTGACAAACGGAGAGGAA -ACGGAAGTGACAAACGGACAGGTA -ACGGAAGTGACAAACGGAGACTCT -ACGGAAGTGACAAACGGAAGTCCT -ACGGAAGTGACAAACGGATAAGCC -ACGGAAGTGACAAACGGAATAGCC -ACGGAAGTGACAAACGGATAACCG -ACGGAAGTGACAAACGGAATGCCA -ACGGAAGTGACAACCAACGGAAAC -ACGGAAGTGACAACCAACAACACC -ACGGAAGTGACAACCAACATCGAG -ACGGAAGTGACAACCAACCTCCTT -ACGGAAGTGACAACCAACCCTGTT -ACGGAAGTGACAACCAACCGGTTT -ACGGAAGTGACAACCAACGTGGTT -ACGGAAGTGACAACCAACGCCTTT -ACGGAAGTGACAACCAACGGTCTT -ACGGAAGTGACAACCAACACGCTT -ACGGAAGTGACAACCAACAGCGTT -ACGGAAGTGACAACCAACTTCGTC -ACGGAAGTGACAACCAACTCTCTC -ACGGAAGTGACAACCAACTGGATC -ACGGAAGTGACAACCAACCACTTC -ACGGAAGTGACAACCAACGTACTC -ACGGAAGTGACAACCAACGATGTC -ACGGAAGTGACAACCAACACAGTC -ACGGAAGTGACAACCAACTTGCTG -ACGGAAGTGACAACCAACTCCATG -ACGGAAGTGACAACCAACTGTGTG -ACGGAAGTGACAACCAACCTAGTG -ACGGAAGTGACAACCAACCATCTG -ACGGAAGTGACAACCAACGAGTTG -ACGGAAGTGACAACCAACAGACTG -ACGGAAGTGACAACCAACTCGGTA -ACGGAAGTGACAACCAACTGCCTA -ACGGAAGTGACAACCAACCCACTA -ACGGAAGTGACAACCAACGGAGTA -ACGGAAGTGACAACCAACTCGTCT -ACGGAAGTGACAACCAACTGCACT -ACGGAAGTGACAACCAACCTGACT -ACGGAAGTGACAACCAACCAACCT -ACGGAAGTGACAACCAACGCTACT -ACGGAAGTGACAACCAACGGATCT -ACGGAAGTGACAACCAACAAGGCT -ACGGAAGTGACAACCAACTCAACC -ACGGAAGTGACAACCAACTGTTCC -ACGGAAGTGACAACCAACATTCCC -ACGGAAGTGACAACCAACTTCTCG -ACGGAAGTGACAACCAACTAGACG -ACGGAAGTGACAACCAACGTAACG -ACGGAAGTGACAACCAACACTTCG -ACGGAAGTGACAACCAACTACGCA -ACGGAAGTGACAACCAACCTTGCA -ACGGAAGTGACAACCAACCGAACA -ACGGAAGTGACAACCAACCAGTCA -ACGGAAGTGACAACCAACGATCCA -ACGGAAGTGACAACCAACACGACA -ACGGAAGTGACAACCAACAGCTCA -ACGGAAGTGACAACCAACTCACGT -ACGGAAGTGACAACCAACCGTAGT -ACGGAAGTGACAACCAACGTCAGT -ACGGAAGTGACAACCAACGAAGGT -ACGGAAGTGACAACCAACAACCGT -ACGGAAGTGACAACCAACTTGTGC -ACGGAAGTGACAACCAACCTAAGC -ACGGAAGTGACAACCAACACTAGC -ACGGAAGTGACAACCAACAGATGC -ACGGAAGTGACAACCAACTGAAGG -ACGGAAGTGACAACCAACCAATGG -ACGGAAGTGACAACCAACATGAGG -ACGGAAGTGACAACCAACAATGGG -ACGGAAGTGACAACCAACTCCTGA -ACGGAAGTGACAACCAACTAGCGA -ACGGAAGTGACAACCAACCACAGA -ACGGAAGTGACAACCAACGCAAGA -ACGGAAGTGACAACCAACGGTTGA -ACGGAAGTGACAACCAACTCCGAT -ACGGAAGTGACAACCAACTGGCAT -ACGGAAGTGACAACCAACCGAGAT -ACGGAAGTGACAACCAACTACCAC -ACGGAAGTGACAACCAACCAGAAC -ACGGAAGTGACAACCAACGTCTAC -ACGGAAGTGACAACCAACACGTAC -ACGGAAGTGACAACCAACAGTGAC -ACGGAAGTGACAACCAACCTGTAG -ACGGAAGTGACAACCAACCCTAAG -ACGGAAGTGACAACCAACGTTCAG -ACGGAAGTGACAACCAACGCATAG -ACGGAAGTGACAACCAACGACAAG -ACGGAAGTGACAACCAACAAGCAG -ACGGAAGTGACAACCAACCGTCAA -ACGGAAGTGACAACCAACGCTGAA -ACGGAAGTGACAACCAACAGTACG -ACGGAAGTGACAACCAACATCCGA -ACGGAAGTGACAACCAACATGGGA -ACGGAAGTGACAACCAACGTGCAA -ACGGAAGTGACAACCAACGAGGAA -ACGGAAGTGACAACCAACCAGGTA -ACGGAAGTGACAACCAACGACTCT -ACGGAAGTGACAACCAACAGTCCT -ACGGAAGTGACAACCAACTAAGCC -ACGGAAGTGACAACCAACATAGCC -ACGGAAGTGACAACCAACTAACCG -ACGGAAGTGACAACCAACATGCCA -ACGGAAGTGACAGAGATCGGAAAC -ACGGAAGTGACAGAGATCAACACC -ACGGAAGTGACAGAGATCATCGAG -ACGGAAGTGACAGAGATCCTCCTT -ACGGAAGTGACAGAGATCCCTGTT -ACGGAAGTGACAGAGATCCGGTTT -ACGGAAGTGACAGAGATCGTGGTT -ACGGAAGTGACAGAGATCGCCTTT -ACGGAAGTGACAGAGATCGGTCTT -ACGGAAGTGACAGAGATCACGCTT -ACGGAAGTGACAGAGATCAGCGTT -ACGGAAGTGACAGAGATCTTCGTC -ACGGAAGTGACAGAGATCTCTCTC -ACGGAAGTGACAGAGATCTGGATC -ACGGAAGTGACAGAGATCCACTTC -ACGGAAGTGACAGAGATCGTACTC -ACGGAAGTGACAGAGATCGATGTC -ACGGAAGTGACAGAGATCACAGTC -ACGGAAGTGACAGAGATCTTGCTG -ACGGAAGTGACAGAGATCTCCATG -ACGGAAGTGACAGAGATCTGTGTG -ACGGAAGTGACAGAGATCCTAGTG -ACGGAAGTGACAGAGATCCATCTG -ACGGAAGTGACAGAGATCGAGTTG -ACGGAAGTGACAGAGATCAGACTG -ACGGAAGTGACAGAGATCTCGGTA -ACGGAAGTGACAGAGATCTGCCTA -ACGGAAGTGACAGAGATCCCACTA -ACGGAAGTGACAGAGATCGGAGTA -ACGGAAGTGACAGAGATCTCGTCT -ACGGAAGTGACAGAGATCTGCACT -ACGGAAGTGACAGAGATCCTGACT -ACGGAAGTGACAGAGATCCAACCT -ACGGAAGTGACAGAGATCGCTACT -ACGGAAGTGACAGAGATCGGATCT -ACGGAAGTGACAGAGATCAAGGCT -ACGGAAGTGACAGAGATCTCAACC -ACGGAAGTGACAGAGATCTGTTCC -ACGGAAGTGACAGAGATCATTCCC -ACGGAAGTGACAGAGATCTTCTCG -ACGGAAGTGACAGAGATCTAGACG -ACGGAAGTGACAGAGATCGTAACG -ACGGAAGTGACAGAGATCACTTCG -ACGGAAGTGACAGAGATCTACGCA -ACGGAAGTGACAGAGATCCTTGCA -ACGGAAGTGACAGAGATCCGAACA -ACGGAAGTGACAGAGATCCAGTCA -ACGGAAGTGACAGAGATCGATCCA -ACGGAAGTGACAGAGATCACGACA -ACGGAAGTGACAGAGATCAGCTCA -ACGGAAGTGACAGAGATCTCACGT -ACGGAAGTGACAGAGATCCGTAGT -ACGGAAGTGACAGAGATCGTCAGT -ACGGAAGTGACAGAGATCGAAGGT -ACGGAAGTGACAGAGATCAACCGT -ACGGAAGTGACAGAGATCTTGTGC -ACGGAAGTGACAGAGATCCTAAGC -ACGGAAGTGACAGAGATCACTAGC -ACGGAAGTGACAGAGATCAGATGC -ACGGAAGTGACAGAGATCTGAAGG -ACGGAAGTGACAGAGATCCAATGG -ACGGAAGTGACAGAGATCATGAGG -ACGGAAGTGACAGAGATCAATGGG -ACGGAAGTGACAGAGATCTCCTGA -ACGGAAGTGACAGAGATCTAGCGA -ACGGAAGTGACAGAGATCCACAGA -ACGGAAGTGACAGAGATCGCAAGA -ACGGAAGTGACAGAGATCGGTTGA -ACGGAAGTGACAGAGATCTCCGAT -ACGGAAGTGACAGAGATCTGGCAT -ACGGAAGTGACAGAGATCCGAGAT -ACGGAAGTGACAGAGATCTACCAC -ACGGAAGTGACAGAGATCCAGAAC -ACGGAAGTGACAGAGATCGTCTAC -ACGGAAGTGACAGAGATCACGTAC -ACGGAAGTGACAGAGATCAGTGAC -ACGGAAGTGACAGAGATCCTGTAG -ACGGAAGTGACAGAGATCCCTAAG -ACGGAAGTGACAGAGATCGTTCAG -ACGGAAGTGACAGAGATCGCATAG -ACGGAAGTGACAGAGATCGACAAG -ACGGAAGTGACAGAGATCAAGCAG -ACGGAAGTGACAGAGATCCGTCAA -ACGGAAGTGACAGAGATCGCTGAA -ACGGAAGTGACAGAGATCAGTACG -ACGGAAGTGACAGAGATCATCCGA -ACGGAAGTGACAGAGATCATGGGA -ACGGAAGTGACAGAGATCGTGCAA -ACGGAAGTGACAGAGATCGAGGAA -ACGGAAGTGACAGAGATCCAGGTA -ACGGAAGTGACAGAGATCGACTCT -ACGGAAGTGACAGAGATCAGTCCT -ACGGAAGTGACAGAGATCTAAGCC -ACGGAAGTGACAGAGATCATAGCC -ACGGAAGTGACAGAGATCTAACCG -ACGGAAGTGACAGAGATCATGCCA -ACGGAAGTGACACTTCTCGGAAAC -ACGGAAGTGACACTTCTCAACACC -ACGGAAGTGACACTTCTCATCGAG -ACGGAAGTGACACTTCTCCTCCTT -ACGGAAGTGACACTTCTCCCTGTT -ACGGAAGTGACACTTCTCCGGTTT -ACGGAAGTGACACTTCTCGTGGTT -ACGGAAGTGACACTTCTCGCCTTT -ACGGAAGTGACACTTCTCGGTCTT -ACGGAAGTGACACTTCTCACGCTT -ACGGAAGTGACACTTCTCAGCGTT -ACGGAAGTGACACTTCTCTTCGTC -ACGGAAGTGACACTTCTCTCTCTC -ACGGAAGTGACACTTCTCTGGATC -ACGGAAGTGACACTTCTCCACTTC -ACGGAAGTGACACTTCTCGTACTC -ACGGAAGTGACACTTCTCGATGTC -ACGGAAGTGACACTTCTCACAGTC -ACGGAAGTGACACTTCTCTTGCTG -ACGGAAGTGACACTTCTCTCCATG -ACGGAAGTGACACTTCTCTGTGTG -ACGGAAGTGACACTTCTCCTAGTG -ACGGAAGTGACACTTCTCCATCTG -ACGGAAGTGACACTTCTCGAGTTG -ACGGAAGTGACACTTCTCAGACTG -ACGGAAGTGACACTTCTCTCGGTA -ACGGAAGTGACACTTCTCTGCCTA -ACGGAAGTGACACTTCTCCCACTA -ACGGAAGTGACACTTCTCGGAGTA -ACGGAAGTGACACTTCTCTCGTCT -ACGGAAGTGACACTTCTCTGCACT -ACGGAAGTGACACTTCTCCTGACT -ACGGAAGTGACACTTCTCCAACCT -ACGGAAGTGACACTTCTCGCTACT -ACGGAAGTGACACTTCTCGGATCT -ACGGAAGTGACACTTCTCAAGGCT -ACGGAAGTGACACTTCTCTCAACC -ACGGAAGTGACACTTCTCTGTTCC -ACGGAAGTGACACTTCTCATTCCC -ACGGAAGTGACACTTCTCTTCTCG -ACGGAAGTGACACTTCTCTAGACG -ACGGAAGTGACACTTCTCGTAACG -ACGGAAGTGACACTTCTCACTTCG -ACGGAAGTGACACTTCTCTACGCA -ACGGAAGTGACACTTCTCCTTGCA -ACGGAAGTGACACTTCTCCGAACA -ACGGAAGTGACACTTCTCCAGTCA -ACGGAAGTGACACTTCTCGATCCA -ACGGAAGTGACACTTCTCACGACA -ACGGAAGTGACACTTCTCAGCTCA -ACGGAAGTGACACTTCTCTCACGT -ACGGAAGTGACACTTCTCCGTAGT -ACGGAAGTGACACTTCTCGTCAGT -ACGGAAGTGACACTTCTCGAAGGT -ACGGAAGTGACACTTCTCAACCGT -ACGGAAGTGACACTTCTCTTGTGC -ACGGAAGTGACACTTCTCCTAAGC -ACGGAAGTGACACTTCTCACTAGC -ACGGAAGTGACACTTCTCAGATGC -ACGGAAGTGACACTTCTCTGAAGG -ACGGAAGTGACACTTCTCCAATGG -ACGGAAGTGACACTTCTCATGAGG -ACGGAAGTGACACTTCTCAATGGG -ACGGAAGTGACACTTCTCTCCTGA -ACGGAAGTGACACTTCTCTAGCGA -ACGGAAGTGACACTTCTCCACAGA -ACGGAAGTGACACTTCTCGCAAGA -ACGGAAGTGACACTTCTCGGTTGA -ACGGAAGTGACACTTCTCTCCGAT -ACGGAAGTGACACTTCTCTGGCAT -ACGGAAGTGACACTTCTCCGAGAT -ACGGAAGTGACACTTCTCTACCAC -ACGGAAGTGACACTTCTCCAGAAC -ACGGAAGTGACACTTCTCGTCTAC -ACGGAAGTGACACTTCTCACGTAC -ACGGAAGTGACACTTCTCAGTGAC -ACGGAAGTGACACTTCTCCTGTAG -ACGGAAGTGACACTTCTCCCTAAG -ACGGAAGTGACACTTCTCGTTCAG -ACGGAAGTGACACTTCTCGCATAG -ACGGAAGTGACACTTCTCGACAAG -ACGGAAGTGACACTTCTCAAGCAG -ACGGAAGTGACACTTCTCCGTCAA -ACGGAAGTGACACTTCTCGCTGAA -ACGGAAGTGACACTTCTCAGTACG -ACGGAAGTGACACTTCTCATCCGA -ACGGAAGTGACACTTCTCATGGGA -ACGGAAGTGACACTTCTCGTGCAA -ACGGAAGTGACACTTCTCGAGGAA -ACGGAAGTGACACTTCTCCAGGTA -ACGGAAGTGACACTTCTCGACTCT -ACGGAAGTGACACTTCTCAGTCCT -ACGGAAGTGACACTTCTCTAAGCC -ACGGAAGTGACACTTCTCATAGCC -ACGGAAGTGACACTTCTCTAACCG -ACGGAAGTGACACTTCTCATGCCA -ACGGAAGTGACAGTTCCTGGAAAC -ACGGAAGTGACAGTTCCTAACACC -ACGGAAGTGACAGTTCCTATCGAG -ACGGAAGTGACAGTTCCTCTCCTT -ACGGAAGTGACAGTTCCTCCTGTT -ACGGAAGTGACAGTTCCTCGGTTT -ACGGAAGTGACAGTTCCTGTGGTT -ACGGAAGTGACAGTTCCTGCCTTT -ACGGAAGTGACAGTTCCTGGTCTT -ACGGAAGTGACAGTTCCTACGCTT -ACGGAAGTGACAGTTCCTAGCGTT -ACGGAAGTGACAGTTCCTTTCGTC -ACGGAAGTGACAGTTCCTTCTCTC -ACGGAAGTGACAGTTCCTTGGATC -ACGGAAGTGACAGTTCCTCACTTC -ACGGAAGTGACAGTTCCTGTACTC -ACGGAAGTGACAGTTCCTGATGTC -ACGGAAGTGACAGTTCCTACAGTC -ACGGAAGTGACAGTTCCTTTGCTG -ACGGAAGTGACAGTTCCTTCCATG -ACGGAAGTGACAGTTCCTTGTGTG -ACGGAAGTGACAGTTCCTCTAGTG -ACGGAAGTGACAGTTCCTCATCTG -ACGGAAGTGACAGTTCCTGAGTTG -ACGGAAGTGACAGTTCCTAGACTG -ACGGAAGTGACAGTTCCTTCGGTA -ACGGAAGTGACAGTTCCTTGCCTA -ACGGAAGTGACAGTTCCTCCACTA -ACGGAAGTGACAGTTCCTGGAGTA -ACGGAAGTGACAGTTCCTTCGTCT -ACGGAAGTGACAGTTCCTTGCACT -ACGGAAGTGACAGTTCCTCTGACT -ACGGAAGTGACAGTTCCTCAACCT -ACGGAAGTGACAGTTCCTGCTACT -ACGGAAGTGACAGTTCCTGGATCT -ACGGAAGTGACAGTTCCTAAGGCT -ACGGAAGTGACAGTTCCTTCAACC -ACGGAAGTGACAGTTCCTTGTTCC -ACGGAAGTGACAGTTCCTATTCCC -ACGGAAGTGACAGTTCCTTTCTCG -ACGGAAGTGACAGTTCCTTAGACG -ACGGAAGTGACAGTTCCTGTAACG -ACGGAAGTGACAGTTCCTACTTCG -ACGGAAGTGACAGTTCCTTACGCA -ACGGAAGTGACAGTTCCTCTTGCA -ACGGAAGTGACAGTTCCTCGAACA -ACGGAAGTGACAGTTCCTCAGTCA -ACGGAAGTGACAGTTCCTGATCCA -ACGGAAGTGACAGTTCCTACGACA -ACGGAAGTGACAGTTCCTAGCTCA -ACGGAAGTGACAGTTCCTTCACGT -ACGGAAGTGACAGTTCCTCGTAGT -ACGGAAGTGACAGTTCCTGTCAGT -ACGGAAGTGACAGTTCCTGAAGGT -ACGGAAGTGACAGTTCCTAACCGT -ACGGAAGTGACAGTTCCTTTGTGC -ACGGAAGTGACAGTTCCTCTAAGC -ACGGAAGTGACAGTTCCTACTAGC -ACGGAAGTGACAGTTCCTAGATGC -ACGGAAGTGACAGTTCCTTGAAGG -ACGGAAGTGACAGTTCCTCAATGG -ACGGAAGTGACAGTTCCTATGAGG -ACGGAAGTGACAGTTCCTAATGGG -ACGGAAGTGACAGTTCCTTCCTGA -ACGGAAGTGACAGTTCCTTAGCGA -ACGGAAGTGACAGTTCCTCACAGA -ACGGAAGTGACAGTTCCTGCAAGA -ACGGAAGTGACAGTTCCTGGTTGA -ACGGAAGTGACAGTTCCTTCCGAT -ACGGAAGTGACAGTTCCTTGGCAT -ACGGAAGTGACAGTTCCTCGAGAT -ACGGAAGTGACAGTTCCTTACCAC -ACGGAAGTGACAGTTCCTCAGAAC -ACGGAAGTGACAGTTCCTGTCTAC -ACGGAAGTGACAGTTCCTACGTAC -ACGGAAGTGACAGTTCCTAGTGAC -ACGGAAGTGACAGTTCCTCTGTAG -ACGGAAGTGACAGTTCCTCCTAAG -ACGGAAGTGACAGTTCCTGTTCAG -ACGGAAGTGACAGTTCCTGCATAG -ACGGAAGTGACAGTTCCTGACAAG -ACGGAAGTGACAGTTCCTAAGCAG -ACGGAAGTGACAGTTCCTCGTCAA -ACGGAAGTGACAGTTCCTGCTGAA -ACGGAAGTGACAGTTCCTAGTACG -ACGGAAGTGACAGTTCCTATCCGA -ACGGAAGTGACAGTTCCTATGGGA -ACGGAAGTGACAGTTCCTGTGCAA -ACGGAAGTGACAGTTCCTGAGGAA -ACGGAAGTGACAGTTCCTCAGGTA -ACGGAAGTGACAGTTCCTGACTCT -ACGGAAGTGACAGTTCCTAGTCCT -ACGGAAGTGACAGTTCCTTAAGCC -ACGGAAGTGACAGTTCCTATAGCC -ACGGAAGTGACAGTTCCTTAACCG -ACGGAAGTGACAGTTCCTATGCCA -ACGGAAGTGACATTTCGGGGAAAC -ACGGAAGTGACATTTCGGAACACC -ACGGAAGTGACATTTCGGATCGAG -ACGGAAGTGACATTTCGGCTCCTT -ACGGAAGTGACATTTCGGCCTGTT -ACGGAAGTGACATTTCGGCGGTTT -ACGGAAGTGACATTTCGGGTGGTT -ACGGAAGTGACATTTCGGGCCTTT -ACGGAAGTGACATTTCGGGGTCTT -ACGGAAGTGACATTTCGGACGCTT -ACGGAAGTGACATTTCGGAGCGTT -ACGGAAGTGACATTTCGGTTCGTC -ACGGAAGTGACATTTCGGTCTCTC -ACGGAAGTGACATTTCGGTGGATC -ACGGAAGTGACATTTCGGCACTTC -ACGGAAGTGACATTTCGGGTACTC -ACGGAAGTGACATTTCGGGATGTC -ACGGAAGTGACATTTCGGACAGTC -ACGGAAGTGACATTTCGGTTGCTG -ACGGAAGTGACATTTCGGTCCATG -ACGGAAGTGACATTTCGGTGTGTG -ACGGAAGTGACATTTCGGCTAGTG -ACGGAAGTGACATTTCGGCATCTG -ACGGAAGTGACATTTCGGGAGTTG -ACGGAAGTGACATTTCGGAGACTG -ACGGAAGTGACATTTCGGTCGGTA -ACGGAAGTGACATTTCGGTGCCTA -ACGGAAGTGACATTTCGGCCACTA -ACGGAAGTGACATTTCGGGGAGTA -ACGGAAGTGACATTTCGGTCGTCT -ACGGAAGTGACATTTCGGTGCACT -ACGGAAGTGACATTTCGGCTGACT -ACGGAAGTGACATTTCGGCAACCT -ACGGAAGTGACATTTCGGGCTACT -ACGGAAGTGACATTTCGGGGATCT -ACGGAAGTGACATTTCGGAAGGCT -ACGGAAGTGACATTTCGGTCAACC -ACGGAAGTGACATTTCGGTGTTCC -ACGGAAGTGACATTTCGGATTCCC -ACGGAAGTGACATTTCGGTTCTCG -ACGGAAGTGACATTTCGGTAGACG -ACGGAAGTGACATTTCGGGTAACG -ACGGAAGTGACATTTCGGACTTCG -ACGGAAGTGACATTTCGGTACGCA -ACGGAAGTGACATTTCGGCTTGCA -ACGGAAGTGACATTTCGGCGAACA -ACGGAAGTGACATTTCGGCAGTCA -ACGGAAGTGACATTTCGGGATCCA -ACGGAAGTGACATTTCGGACGACA -ACGGAAGTGACATTTCGGAGCTCA -ACGGAAGTGACATTTCGGTCACGT -ACGGAAGTGACATTTCGGCGTAGT -ACGGAAGTGACATTTCGGGTCAGT -ACGGAAGTGACATTTCGGGAAGGT -ACGGAAGTGACATTTCGGAACCGT -ACGGAAGTGACATTTCGGTTGTGC -ACGGAAGTGACATTTCGGCTAAGC -ACGGAAGTGACATTTCGGACTAGC -ACGGAAGTGACATTTCGGAGATGC -ACGGAAGTGACATTTCGGTGAAGG -ACGGAAGTGACATTTCGGCAATGG -ACGGAAGTGACATTTCGGATGAGG -ACGGAAGTGACATTTCGGAATGGG -ACGGAAGTGACATTTCGGTCCTGA -ACGGAAGTGACATTTCGGTAGCGA -ACGGAAGTGACATTTCGGCACAGA -ACGGAAGTGACATTTCGGGCAAGA -ACGGAAGTGACATTTCGGGGTTGA -ACGGAAGTGACATTTCGGTCCGAT -ACGGAAGTGACATTTCGGTGGCAT -ACGGAAGTGACATTTCGGCGAGAT -ACGGAAGTGACATTTCGGTACCAC -ACGGAAGTGACATTTCGGCAGAAC -ACGGAAGTGACATTTCGGGTCTAC -ACGGAAGTGACATTTCGGACGTAC -ACGGAAGTGACATTTCGGAGTGAC -ACGGAAGTGACATTTCGGCTGTAG -ACGGAAGTGACATTTCGGCCTAAG -ACGGAAGTGACATTTCGGGTTCAG -ACGGAAGTGACATTTCGGGCATAG -ACGGAAGTGACATTTCGGGACAAG -ACGGAAGTGACATTTCGGAAGCAG -ACGGAAGTGACATTTCGGCGTCAA -ACGGAAGTGACATTTCGGGCTGAA -ACGGAAGTGACATTTCGGAGTACG -ACGGAAGTGACATTTCGGATCCGA -ACGGAAGTGACATTTCGGATGGGA -ACGGAAGTGACATTTCGGGTGCAA -ACGGAAGTGACATTTCGGGAGGAA -ACGGAAGTGACATTTCGGCAGGTA -ACGGAAGTGACATTTCGGGACTCT -ACGGAAGTGACATTTCGGAGTCCT -ACGGAAGTGACATTTCGGTAAGCC -ACGGAAGTGACATTTCGGATAGCC -ACGGAAGTGACATTTCGGTAACCG -ACGGAAGTGACATTTCGGATGCCA -ACGGAAGTGACAGTTGTGGGAAAC -ACGGAAGTGACAGTTGTGAACACC -ACGGAAGTGACAGTTGTGATCGAG -ACGGAAGTGACAGTTGTGCTCCTT -ACGGAAGTGACAGTTGTGCCTGTT -ACGGAAGTGACAGTTGTGCGGTTT -ACGGAAGTGACAGTTGTGGTGGTT -ACGGAAGTGACAGTTGTGGCCTTT -ACGGAAGTGACAGTTGTGGGTCTT -ACGGAAGTGACAGTTGTGACGCTT -ACGGAAGTGACAGTTGTGAGCGTT -ACGGAAGTGACAGTTGTGTTCGTC -ACGGAAGTGACAGTTGTGTCTCTC -ACGGAAGTGACAGTTGTGTGGATC -ACGGAAGTGACAGTTGTGCACTTC -ACGGAAGTGACAGTTGTGGTACTC -ACGGAAGTGACAGTTGTGGATGTC -ACGGAAGTGACAGTTGTGACAGTC -ACGGAAGTGACAGTTGTGTTGCTG -ACGGAAGTGACAGTTGTGTCCATG -ACGGAAGTGACAGTTGTGTGTGTG -ACGGAAGTGACAGTTGTGCTAGTG -ACGGAAGTGACAGTTGTGCATCTG -ACGGAAGTGACAGTTGTGGAGTTG -ACGGAAGTGACAGTTGTGAGACTG -ACGGAAGTGACAGTTGTGTCGGTA -ACGGAAGTGACAGTTGTGTGCCTA -ACGGAAGTGACAGTTGTGCCACTA -ACGGAAGTGACAGTTGTGGGAGTA -ACGGAAGTGACAGTTGTGTCGTCT -ACGGAAGTGACAGTTGTGTGCACT -ACGGAAGTGACAGTTGTGCTGACT -ACGGAAGTGACAGTTGTGCAACCT -ACGGAAGTGACAGTTGTGGCTACT -ACGGAAGTGACAGTTGTGGGATCT -ACGGAAGTGACAGTTGTGAAGGCT -ACGGAAGTGACAGTTGTGTCAACC -ACGGAAGTGACAGTTGTGTGTTCC -ACGGAAGTGACAGTTGTGATTCCC -ACGGAAGTGACAGTTGTGTTCTCG -ACGGAAGTGACAGTTGTGTAGACG -ACGGAAGTGACAGTTGTGGTAACG -ACGGAAGTGACAGTTGTGACTTCG -ACGGAAGTGACAGTTGTGTACGCA -ACGGAAGTGACAGTTGTGCTTGCA -ACGGAAGTGACAGTTGTGCGAACA -ACGGAAGTGACAGTTGTGCAGTCA -ACGGAAGTGACAGTTGTGGATCCA -ACGGAAGTGACAGTTGTGACGACA -ACGGAAGTGACAGTTGTGAGCTCA -ACGGAAGTGACAGTTGTGTCACGT -ACGGAAGTGACAGTTGTGCGTAGT -ACGGAAGTGACAGTTGTGGTCAGT -ACGGAAGTGACAGTTGTGGAAGGT -ACGGAAGTGACAGTTGTGAACCGT -ACGGAAGTGACAGTTGTGTTGTGC -ACGGAAGTGACAGTTGTGCTAAGC -ACGGAAGTGACAGTTGTGACTAGC -ACGGAAGTGACAGTTGTGAGATGC -ACGGAAGTGACAGTTGTGTGAAGG -ACGGAAGTGACAGTTGTGCAATGG -ACGGAAGTGACAGTTGTGATGAGG -ACGGAAGTGACAGTTGTGAATGGG -ACGGAAGTGACAGTTGTGTCCTGA -ACGGAAGTGACAGTTGTGTAGCGA -ACGGAAGTGACAGTTGTGCACAGA -ACGGAAGTGACAGTTGTGGCAAGA -ACGGAAGTGACAGTTGTGGGTTGA -ACGGAAGTGACAGTTGTGTCCGAT -ACGGAAGTGACAGTTGTGTGGCAT -ACGGAAGTGACAGTTGTGCGAGAT -ACGGAAGTGACAGTTGTGTACCAC -ACGGAAGTGACAGTTGTGCAGAAC -ACGGAAGTGACAGTTGTGGTCTAC -ACGGAAGTGACAGTTGTGACGTAC -ACGGAAGTGACAGTTGTGAGTGAC -ACGGAAGTGACAGTTGTGCTGTAG -ACGGAAGTGACAGTTGTGCCTAAG -ACGGAAGTGACAGTTGTGGTTCAG -ACGGAAGTGACAGTTGTGGCATAG -ACGGAAGTGACAGTTGTGGACAAG -ACGGAAGTGACAGTTGTGAAGCAG -ACGGAAGTGACAGTTGTGCGTCAA -ACGGAAGTGACAGTTGTGGCTGAA -ACGGAAGTGACAGTTGTGAGTACG -ACGGAAGTGACAGTTGTGATCCGA -ACGGAAGTGACAGTTGTGATGGGA -ACGGAAGTGACAGTTGTGGTGCAA -ACGGAAGTGACAGTTGTGGAGGAA -ACGGAAGTGACAGTTGTGCAGGTA -ACGGAAGTGACAGTTGTGGACTCT -ACGGAAGTGACAGTTGTGAGTCCT -ACGGAAGTGACAGTTGTGTAAGCC -ACGGAAGTGACAGTTGTGATAGCC -ACGGAAGTGACAGTTGTGTAACCG -ACGGAAGTGACAGTTGTGATGCCA -ACGGAAGTGACATTTGCCGGAAAC -ACGGAAGTGACATTTGCCAACACC -ACGGAAGTGACATTTGCCATCGAG -ACGGAAGTGACATTTGCCCTCCTT -ACGGAAGTGACATTTGCCCCTGTT -ACGGAAGTGACATTTGCCCGGTTT -ACGGAAGTGACATTTGCCGTGGTT -ACGGAAGTGACATTTGCCGCCTTT -ACGGAAGTGACATTTGCCGGTCTT -ACGGAAGTGACATTTGCCACGCTT -ACGGAAGTGACATTTGCCAGCGTT -ACGGAAGTGACATTTGCCTTCGTC -ACGGAAGTGACATTTGCCTCTCTC -ACGGAAGTGACATTTGCCTGGATC -ACGGAAGTGACATTTGCCCACTTC -ACGGAAGTGACATTTGCCGTACTC -ACGGAAGTGACATTTGCCGATGTC -ACGGAAGTGACATTTGCCACAGTC -ACGGAAGTGACATTTGCCTTGCTG -ACGGAAGTGACATTTGCCTCCATG -ACGGAAGTGACATTTGCCTGTGTG -ACGGAAGTGACATTTGCCCTAGTG -ACGGAAGTGACATTTGCCCATCTG -ACGGAAGTGACATTTGCCGAGTTG -ACGGAAGTGACATTTGCCAGACTG -ACGGAAGTGACATTTGCCTCGGTA -ACGGAAGTGACATTTGCCTGCCTA -ACGGAAGTGACATTTGCCCCACTA -ACGGAAGTGACATTTGCCGGAGTA -ACGGAAGTGACATTTGCCTCGTCT -ACGGAAGTGACATTTGCCTGCACT -ACGGAAGTGACATTTGCCCTGACT -ACGGAAGTGACATTTGCCCAACCT -ACGGAAGTGACATTTGCCGCTACT -ACGGAAGTGACATTTGCCGGATCT -ACGGAAGTGACATTTGCCAAGGCT -ACGGAAGTGACATTTGCCTCAACC -ACGGAAGTGACATTTGCCTGTTCC -ACGGAAGTGACATTTGCCATTCCC -ACGGAAGTGACATTTGCCTTCTCG -ACGGAAGTGACATTTGCCTAGACG -ACGGAAGTGACATTTGCCGTAACG -ACGGAAGTGACATTTGCCACTTCG -ACGGAAGTGACATTTGCCTACGCA -ACGGAAGTGACATTTGCCCTTGCA -ACGGAAGTGACATTTGCCCGAACA -ACGGAAGTGACATTTGCCCAGTCA -ACGGAAGTGACATTTGCCGATCCA -ACGGAAGTGACATTTGCCACGACA -ACGGAAGTGACATTTGCCAGCTCA -ACGGAAGTGACATTTGCCTCACGT -ACGGAAGTGACATTTGCCCGTAGT -ACGGAAGTGACATTTGCCGTCAGT -ACGGAAGTGACATTTGCCGAAGGT -ACGGAAGTGACATTTGCCAACCGT -ACGGAAGTGACATTTGCCTTGTGC -ACGGAAGTGACATTTGCCCTAAGC -ACGGAAGTGACATTTGCCACTAGC -ACGGAAGTGACATTTGCCAGATGC -ACGGAAGTGACATTTGCCTGAAGG -ACGGAAGTGACATTTGCCCAATGG -ACGGAAGTGACATTTGCCATGAGG -ACGGAAGTGACATTTGCCAATGGG -ACGGAAGTGACATTTGCCTCCTGA -ACGGAAGTGACATTTGCCTAGCGA -ACGGAAGTGACATTTGCCCACAGA -ACGGAAGTGACATTTGCCGCAAGA -ACGGAAGTGACATTTGCCGGTTGA -ACGGAAGTGACATTTGCCTCCGAT -ACGGAAGTGACATTTGCCTGGCAT -ACGGAAGTGACATTTGCCCGAGAT -ACGGAAGTGACATTTGCCTACCAC -ACGGAAGTGACATTTGCCCAGAAC -ACGGAAGTGACATTTGCCGTCTAC -ACGGAAGTGACATTTGCCACGTAC -ACGGAAGTGACATTTGCCAGTGAC -ACGGAAGTGACATTTGCCCTGTAG -ACGGAAGTGACATTTGCCCCTAAG -ACGGAAGTGACATTTGCCGTTCAG -ACGGAAGTGACATTTGCCGCATAG -ACGGAAGTGACATTTGCCGACAAG -ACGGAAGTGACATTTGCCAAGCAG -ACGGAAGTGACATTTGCCCGTCAA -ACGGAAGTGACATTTGCCGCTGAA -ACGGAAGTGACATTTGCCAGTACG -ACGGAAGTGACATTTGCCATCCGA -ACGGAAGTGACATTTGCCATGGGA -ACGGAAGTGACATTTGCCGTGCAA -ACGGAAGTGACATTTGCCGAGGAA -ACGGAAGTGACATTTGCCCAGGTA -ACGGAAGTGACATTTGCCGACTCT -ACGGAAGTGACATTTGCCAGTCCT -ACGGAAGTGACATTTGCCTAAGCC -ACGGAAGTGACATTTGCCATAGCC -ACGGAAGTGACATTTGCCTAACCG -ACGGAAGTGACATTTGCCATGCCA -ACGGAAGTGACACTTGGTGGAAAC -ACGGAAGTGACACTTGGTAACACC -ACGGAAGTGACACTTGGTATCGAG -ACGGAAGTGACACTTGGTCTCCTT -ACGGAAGTGACACTTGGTCCTGTT -ACGGAAGTGACACTTGGTCGGTTT -ACGGAAGTGACACTTGGTGTGGTT -ACGGAAGTGACACTTGGTGCCTTT -ACGGAAGTGACACTTGGTGGTCTT -ACGGAAGTGACACTTGGTACGCTT -ACGGAAGTGACACTTGGTAGCGTT -ACGGAAGTGACACTTGGTTTCGTC -ACGGAAGTGACACTTGGTTCTCTC -ACGGAAGTGACACTTGGTTGGATC -ACGGAAGTGACACTTGGTCACTTC -ACGGAAGTGACACTTGGTGTACTC -ACGGAAGTGACACTTGGTGATGTC -ACGGAAGTGACACTTGGTACAGTC -ACGGAAGTGACACTTGGTTTGCTG -ACGGAAGTGACACTTGGTTCCATG -ACGGAAGTGACACTTGGTTGTGTG -ACGGAAGTGACACTTGGTCTAGTG -ACGGAAGTGACACTTGGTCATCTG -ACGGAAGTGACACTTGGTGAGTTG -ACGGAAGTGACACTTGGTAGACTG -ACGGAAGTGACACTTGGTTCGGTA -ACGGAAGTGACACTTGGTTGCCTA -ACGGAAGTGACACTTGGTCCACTA -ACGGAAGTGACACTTGGTGGAGTA -ACGGAAGTGACACTTGGTTCGTCT -ACGGAAGTGACACTTGGTTGCACT -ACGGAAGTGACACTTGGTCTGACT -ACGGAAGTGACACTTGGTCAACCT -ACGGAAGTGACACTTGGTGCTACT -ACGGAAGTGACACTTGGTGGATCT -ACGGAAGTGACACTTGGTAAGGCT -ACGGAAGTGACACTTGGTTCAACC -ACGGAAGTGACACTTGGTTGTTCC -ACGGAAGTGACACTTGGTATTCCC -ACGGAAGTGACACTTGGTTTCTCG -ACGGAAGTGACACTTGGTTAGACG -ACGGAAGTGACACTTGGTGTAACG -ACGGAAGTGACACTTGGTACTTCG -ACGGAAGTGACACTTGGTTACGCA -ACGGAAGTGACACTTGGTCTTGCA -ACGGAAGTGACACTTGGTCGAACA -ACGGAAGTGACACTTGGTCAGTCA -ACGGAAGTGACACTTGGTGATCCA -ACGGAAGTGACACTTGGTACGACA -ACGGAAGTGACACTTGGTAGCTCA -ACGGAAGTGACACTTGGTTCACGT -ACGGAAGTGACACTTGGTCGTAGT -ACGGAAGTGACACTTGGTGTCAGT -ACGGAAGTGACACTTGGTGAAGGT -ACGGAAGTGACACTTGGTAACCGT -ACGGAAGTGACACTTGGTTTGTGC -ACGGAAGTGACACTTGGTCTAAGC -ACGGAAGTGACACTTGGTACTAGC -ACGGAAGTGACACTTGGTAGATGC -ACGGAAGTGACACTTGGTTGAAGG -ACGGAAGTGACACTTGGTCAATGG -ACGGAAGTGACACTTGGTATGAGG -ACGGAAGTGACACTTGGTAATGGG -ACGGAAGTGACACTTGGTTCCTGA -ACGGAAGTGACACTTGGTTAGCGA -ACGGAAGTGACACTTGGTCACAGA -ACGGAAGTGACACTTGGTGCAAGA -ACGGAAGTGACACTTGGTGGTTGA -ACGGAAGTGACACTTGGTTCCGAT -ACGGAAGTGACACTTGGTTGGCAT -ACGGAAGTGACACTTGGTCGAGAT -ACGGAAGTGACACTTGGTTACCAC -ACGGAAGTGACACTTGGTCAGAAC -ACGGAAGTGACACTTGGTGTCTAC -ACGGAAGTGACACTTGGTACGTAC -ACGGAAGTGACACTTGGTAGTGAC -ACGGAAGTGACACTTGGTCTGTAG -ACGGAAGTGACACTTGGTCCTAAG -ACGGAAGTGACACTTGGTGTTCAG -ACGGAAGTGACACTTGGTGCATAG -ACGGAAGTGACACTTGGTGACAAG -ACGGAAGTGACACTTGGTAAGCAG -ACGGAAGTGACACTTGGTCGTCAA -ACGGAAGTGACACTTGGTGCTGAA -ACGGAAGTGACACTTGGTAGTACG -ACGGAAGTGACACTTGGTATCCGA -ACGGAAGTGACACTTGGTATGGGA -ACGGAAGTGACACTTGGTGTGCAA -ACGGAAGTGACACTTGGTGAGGAA -ACGGAAGTGACACTTGGTCAGGTA -ACGGAAGTGACACTTGGTGACTCT -ACGGAAGTGACACTTGGTAGTCCT -ACGGAAGTGACACTTGGTTAAGCC -ACGGAAGTGACACTTGGTATAGCC -ACGGAAGTGACACTTGGTTAACCG -ACGGAAGTGACACTTGGTATGCCA -ACGGAAGTGACACTTACGGGAAAC -ACGGAAGTGACACTTACGAACACC -ACGGAAGTGACACTTACGATCGAG -ACGGAAGTGACACTTACGCTCCTT -ACGGAAGTGACACTTACGCCTGTT -ACGGAAGTGACACTTACGCGGTTT -ACGGAAGTGACACTTACGGTGGTT -ACGGAAGTGACACTTACGGCCTTT -ACGGAAGTGACACTTACGGGTCTT -ACGGAAGTGACACTTACGACGCTT -ACGGAAGTGACACTTACGAGCGTT -ACGGAAGTGACACTTACGTTCGTC -ACGGAAGTGACACTTACGTCTCTC -ACGGAAGTGACACTTACGTGGATC -ACGGAAGTGACACTTACGCACTTC -ACGGAAGTGACACTTACGGTACTC -ACGGAAGTGACACTTACGGATGTC -ACGGAAGTGACACTTACGACAGTC -ACGGAAGTGACACTTACGTTGCTG -ACGGAAGTGACACTTACGTCCATG -ACGGAAGTGACACTTACGTGTGTG -ACGGAAGTGACACTTACGCTAGTG -ACGGAAGTGACACTTACGCATCTG -ACGGAAGTGACACTTACGGAGTTG -ACGGAAGTGACACTTACGAGACTG -ACGGAAGTGACACTTACGTCGGTA -ACGGAAGTGACACTTACGTGCCTA -ACGGAAGTGACACTTACGCCACTA -ACGGAAGTGACACTTACGGGAGTA -ACGGAAGTGACACTTACGTCGTCT -ACGGAAGTGACACTTACGTGCACT -ACGGAAGTGACACTTACGCTGACT -ACGGAAGTGACACTTACGCAACCT -ACGGAAGTGACACTTACGGCTACT -ACGGAAGTGACACTTACGGGATCT -ACGGAAGTGACACTTACGAAGGCT -ACGGAAGTGACACTTACGTCAACC -ACGGAAGTGACACTTACGTGTTCC -ACGGAAGTGACACTTACGATTCCC -ACGGAAGTGACACTTACGTTCTCG -ACGGAAGTGACACTTACGTAGACG -ACGGAAGTGACACTTACGGTAACG -ACGGAAGTGACACTTACGACTTCG -ACGGAAGTGACACTTACGTACGCA -ACGGAAGTGACACTTACGCTTGCA -ACGGAAGTGACACTTACGCGAACA -ACGGAAGTGACACTTACGCAGTCA -ACGGAAGTGACACTTACGGATCCA -ACGGAAGTGACACTTACGACGACA -ACGGAAGTGACACTTACGAGCTCA -ACGGAAGTGACACTTACGTCACGT -ACGGAAGTGACACTTACGCGTAGT -ACGGAAGTGACACTTACGGTCAGT -ACGGAAGTGACACTTACGGAAGGT -ACGGAAGTGACACTTACGAACCGT -ACGGAAGTGACACTTACGTTGTGC -ACGGAAGTGACACTTACGCTAAGC -ACGGAAGTGACACTTACGACTAGC -ACGGAAGTGACACTTACGAGATGC -ACGGAAGTGACACTTACGTGAAGG -ACGGAAGTGACACTTACGCAATGG -ACGGAAGTGACACTTACGATGAGG -ACGGAAGTGACACTTACGAATGGG -ACGGAAGTGACACTTACGTCCTGA -ACGGAAGTGACACTTACGTAGCGA -ACGGAAGTGACACTTACGCACAGA -ACGGAAGTGACACTTACGGCAAGA -ACGGAAGTGACACTTACGGGTTGA -ACGGAAGTGACACTTACGTCCGAT -ACGGAAGTGACACTTACGTGGCAT -ACGGAAGTGACACTTACGCGAGAT -ACGGAAGTGACACTTACGTACCAC -ACGGAAGTGACACTTACGCAGAAC -ACGGAAGTGACACTTACGGTCTAC -ACGGAAGTGACACTTACGACGTAC -ACGGAAGTGACACTTACGAGTGAC -ACGGAAGTGACACTTACGCTGTAG -ACGGAAGTGACACTTACGCCTAAG -ACGGAAGTGACACTTACGGTTCAG -ACGGAAGTGACACTTACGGCATAG -ACGGAAGTGACACTTACGGACAAG -ACGGAAGTGACACTTACGAAGCAG -ACGGAAGTGACACTTACGCGTCAA -ACGGAAGTGACACTTACGGCTGAA -ACGGAAGTGACACTTACGAGTACG -ACGGAAGTGACACTTACGATCCGA -ACGGAAGTGACACTTACGATGGGA -ACGGAAGTGACACTTACGGTGCAA -ACGGAAGTGACACTTACGGAGGAA -ACGGAAGTGACACTTACGCAGGTA -ACGGAAGTGACACTTACGGACTCT -ACGGAAGTGACACTTACGAGTCCT -ACGGAAGTGACACTTACGTAAGCC -ACGGAAGTGACACTTACGATAGCC -ACGGAAGTGACACTTACGTAACCG -ACGGAAGTGACACTTACGATGCCA -ACGGAAGTGACAGTTAGCGGAAAC -ACGGAAGTGACAGTTAGCAACACC -ACGGAAGTGACAGTTAGCATCGAG -ACGGAAGTGACAGTTAGCCTCCTT -ACGGAAGTGACAGTTAGCCCTGTT -ACGGAAGTGACAGTTAGCCGGTTT -ACGGAAGTGACAGTTAGCGTGGTT -ACGGAAGTGACAGTTAGCGCCTTT -ACGGAAGTGACAGTTAGCGGTCTT -ACGGAAGTGACAGTTAGCACGCTT -ACGGAAGTGACAGTTAGCAGCGTT -ACGGAAGTGACAGTTAGCTTCGTC -ACGGAAGTGACAGTTAGCTCTCTC -ACGGAAGTGACAGTTAGCTGGATC -ACGGAAGTGACAGTTAGCCACTTC -ACGGAAGTGACAGTTAGCGTACTC -ACGGAAGTGACAGTTAGCGATGTC -ACGGAAGTGACAGTTAGCACAGTC -ACGGAAGTGACAGTTAGCTTGCTG -ACGGAAGTGACAGTTAGCTCCATG -ACGGAAGTGACAGTTAGCTGTGTG -ACGGAAGTGACAGTTAGCCTAGTG -ACGGAAGTGACAGTTAGCCATCTG -ACGGAAGTGACAGTTAGCGAGTTG -ACGGAAGTGACAGTTAGCAGACTG -ACGGAAGTGACAGTTAGCTCGGTA -ACGGAAGTGACAGTTAGCTGCCTA -ACGGAAGTGACAGTTAGCCCACTA -ACGGAAGTGACAGTTAGCGGAGTA -ACGGAAGTGACAGTTAGCTCGTCT -ACGGAAGTGACAGTTAGCTGCACT -ACGGAAGTGACAGTTAGCCTGACT -ACGGAAGTGACAGTTAGCCAACCT -ACGGAAGTGACAGTTAGCGCTACT -ACGGAAGTGACAGTTAGCGGATCT -ACGGAAGTGACAGTTAGCAAGGCT -ACGGAAGTGACAGTTAGCTCAACC -ACGGAAGTGACAGTTAGCTGTTCC -ACGGAAGTGACAGTTAGCATTCCC -ACGGAAGTGACAGTTAGCTTCTCG -ACGGAAGTGACAGTTAGCTAGACG -ACGGAAGTGACAGTTAGCGTAACG -ACGGAAGTGACAGTTAGCACTTCG -ACGGAAGTGACAGTTAGCTACGCA -ACGGAAGTGACAGTTAGCCTTGCA -ACGGAAGTGACAGTTAGCCGAACA -ACGGAAGTGACAGTTAGCCAGTCA -ACGGAAGTGACAGTTAGCGATCCA -ACGGAAGTGACAGTTAGCACGACA -ACGGAAGTGACAGTTAGCAGCTCA -ACGGAAGTGACAGTTAGCTCACGT -ACGGAAGTGACAGTTAGCCGTAGT -ACGGAAGTGACAGTTAGCGTCAGT -ACGGAAGTGACAGTTAGCGAAGGT -ACGGAAGTGACAGTTAGCAACCGT -ACGGAAGTGACAGTTAGCTTGTGC -ACGGAAGTGACAGTTAGCCTAAGC -ACGGAAGTGACAGTTAGCACTAGC -ACGGAAGTGACAGTTAGCAGATGC -ACGGAAGTGACAGTTAGCTGAAGG -ACGGAAGTGACAGTTAGCCAATGG -ACGGAAGTGACAGTTAGCATGAGG -ACGGAAGTGACAGTTAGCAATGGG -ACGGAAGTGACAGTTAGCTCCTGA -ACGGAAGTGACAGTTAGCTAGCGA -ACGGAAGTGACAGTTAGCCACAGA -ACGGAAGTGACAGTTAGCGCAAGA -ACGGAAGTGACAGTTAGCGGTTGA -ACGGAAGTGACAGTTAGCTCCGAT -ACGGAAGTGACAGTTAGCTGGCAT -ACGGAAGTGACAGTTAGCCGAGAT -ACGGAAGTGACAGTTAGCTACCAC -ACGGAAGTGACAGTTAGCCAGAAC -ACGGAAGTGACAGTTAGCGTCTAC -ACGGAAGTGACAGTTAGCACGTAC -ACGGAAGTGACAGTTAGCAGTGAC -ACGGAAGTGACAGTTAGCCTGTAG -ACGGAAGTGACAGTTAGCCCTAAG -ACGGAAGTGACAGTTAGCGTTCAG -ACGGAAGTGACAGTTAGCGCATAG -ACGGAAGTGACAGTTAGCGACAAG -ACGGAAGTGACAGTTAGCAAGCAG -ACGGAAGTGACAGTTAGCCGTCAA -ACGGAAGTGACAGTTAGCGCTGAA -ACGGAAGTGACAGTTAGCAGTACG -ACGGAAGTGACAGTTAGCATCCGA -ACGGAAGTGACAGTTAGCATGGGA -ACGGAAGTGACAGTTAGCGTGCAA -ACGGAAGTGACAGTTAGCGAGGAA -ACGGAAGTGACAGTTAGCCAGGTA -ACGGAAGTGACAGTTAGCGACTCT -ACGGAAGTGACAGTTAGCAGTCCT -ACGGAAGTGACAGTTAGCTAAGCC -ACGGAAGTGACAGTTAGCATAGCC -ACGGAAGTGACAGTTAGCTAACCG -ACGGAAGTGACAGTTAGCATGCCA -ACGGAAGTGACAGTCTTCGGAAAC -ACGGAAGTGACAGTCTTCAACACC -ACGGAAGTGACAGTCTTCATCGAG -ACGGAAGTGACAGTCTTCCTCCTT -ACGGAAGTGACAGTCTTCCCTGTT -ACGGAAGTGACAGTCTTCCGGTTT -ACGGAAGTGACAGTCTTCGTGGTT -ACGGAAGTGACAGTCTTCGCCTTT -ACGGAAGTGACAGTCTTCGGTCTT -ACGGAAGTGACAGTCTTCACGCTT -ACGGAAGTGACAGTCTTCAGCGTT -ACGGAAGTGACAGTCTTCTTCGTC -ACGGAAGTGACAGTCTTCTCTCTC -ACGGAAGTGACAGTCTTCTGGATC -ACGGAAGTGACAGTCTTCCACTTC -ACGGAAGTGACAGTCTTCGTACTC -ACGGAAGTGACAGTCTTCGATGTC -ACGGAAGTGACAGTCTTCACAGTC -ACGGAAGTGACAGTCTTCTTGCTG -ACGGAAGTGACAGTCTTCTCCATG -ACGGAAGTGACAGTCTTCTGTGTG -ACGGAAGTGACAGTCTTCCTAGTG -ACGGAAGTGACAGTCTTCCATCTG -ACGGAAGTGACAGTCTTCGAGTTG -ACGGAAGTGACAGTCTTCAGACTG -ACGGAAGTGACAGTCTTCTCGGTA -ACGGAAGTGACAGTCTTCTGCCTA -ACGGAAGTGACAGTCTTCCCACTA -ACGGAAGTGACAGTCTTCGGAGTA -ACGGAAGTGACAGTCTTCTCGTCT -ACGGAAGTGACAGTCTTCTGCACT -ACGGAAGTGACAGTCTTCCTGACT -ACGGAAGTGACAGTCTTCCAACCT -ACGGAAGTGACAGTCTTCGCTACT -ACGGAAGTGACAGTCTTCGGATCT -ACGGAAGTGACAGTCTTCAAGGCT -ACGGAAGTGACAGTCTTCTCAACC -ACGGAAGTGACAGTCTTCTGTTCC -ACGGAAGTGACAGTCTTCATTCCC -ACGGAAGTGACAGTCTTCTTCTCG -ACGGAAGTGACAGTCTTCTAGACG -ACGGAAGTGACAGTCTTCGTAACG -ACGGAAGTGACAGTCTTCACTTCG -ACGGAAGTGACAGTCTTCTACGCA -ACGGAAGTGACAGTCTTCCTTGCA -ACGGAAGTGACAGTCTTCCGAACA -ACGGAAGTGACAGTCTTCCAGTCA -ACGGAAGTGACAGTCTTCGATCCA -ACGGAAGTGACAGTCTTCACGACA -ACGGAAGTGACAGTCTTCAGCTCA -ACGGAAGTGACAGTCTTCTCACGT -ACGGAAGTGACAGTCTTCCGTAGT -ACGGAAGTGACAGTCTTCGTCAGT -ACGGAAGTGACAGTCTTCGAAGGT -ACGGAAGTGACAGTCTTCAACCGT -ACGGAAGTGACAGTCTTCTTGTGC -ACGGAAGTGACAGTCTTCCTAAGC -ACGGAAGTGACAGTCTTCACTAGC -ACGGAAGTGACAGTCTTCAGATGC -ACGGAAGTGACAGTCTTCTGAAGG -ACGGAAGTGACAGTCTTCCAATGG -ACGGAAGTGACAGTCTTCATGAGG -ACGGAAGTGACAGTCTTCAATGGG -ACGGAAGTGACAGTCTTCTCCTGA -ACGGAAGTGACAGTCTTCTAGCGA -ACGGAAGTGACAGTCTTCCACAGA -ACGGAAGTGACAGTCTTCGCAAGA -ACGGAAGTGACAGTCTTCGGTTGA -ACGGAAGTGACAGTCTTCTCCGAT -ACGGAAGTGACAGTCTTCTGGCAT -ACGGAAGTGACAGTCTTCCGAGAT -ACGGAAGTGACAGTCTTCTACCAC -ACGGAAGTGACAGTCTTCCAGAAC -ACGGAAGTGACAGTCTTCGTCTAC -ACGGAAGTGACAGTCTTCACGTAC -ACGGAAGTGACAGTCTTCAGTGAC -ACGGAAGTGACAGTCTTCCTGTAG -ACGGAAGTGACAGTCTTCCCTAAG -ACGGAAGTGACAGTCTTCGTTCAG -ACGGAAGTGACAGTCTTCGCATAG -ACGGAAGTGACAGTCTTCGACAAG -ACGGAAGTGACAGTCTTCAAGCAG -ACGGAAGTGACAGTCTTCCGTCAA -ACGGAAGTGACAGTCTTCGCTGAA -ACGGAAGTGACAGTCTTCAGTACG -ACGGAAGTGACAGTCTTCATCCGA -ACGGAAGTGACAGTCTTCATGGGA -ACGGAAGTGACAGTCTTCGTGCAA -ACGGAAGTGACAGTCTTCGAGGAA -ACGGAAGTGACAGTCTTCCAGGTA -ACGGAAGTGACAGTCTTCGACTCT -ACGGAAGTGACAGTCTTCAGTCCT -ACGGAAGTGACAGTCTTCTAAGCC -ACGGAAGTGACAGTCTTCATAGCC -ACGGAAGTGACAGTCTTCTAACCG -ACGGAAGTGACAGTCTTCATGCCA -ACGGAAGTGACACTCTCTGGAAAC -ACGGAAGTGACACTCTCTAACACC -ACGGAAGTGACACTCTCTATCGAG -ACGGAAGTGACACTCTCTCTCCTT -ACGGAAGTGACACTCTCTCCTGTT -ACGGAAGTGACACTCTCTCGGTTT -ACGGAAGTGACACTCTCTGTGGTT -ACGGAAGTGACACTCTCTGCCTTT -ACGGAAGTGACACTCTCTGGTCTT -ACGGAAGTGACACTCTCTACGCTT -ACGGAAGTGACACTCTCTAGCGTT -ACGGAAGTGACACTCTCTTTCGTC -ACGGAAGTGACACTCTCTTCTCTC -ACGGAAGTGACACTCTCTTGGATC -ACGGAAGTGACACTCTCTCACTTC -ACGGAAGTGACACTCTCTGTACTC -ACGGAAGTGACACTCTCTGATGTC -ACGGAAGTGACACTCTCTACAGTC -ACGGAAGTGACACTCTCTTTGCTG -ACGGAAGTGACACTCTCTTCCATG -ACGGAAGTGACACTCTCTTGTGTG -ACGGAAGTGACACTCTCTCTAGTG -ACGGAAGTGACACTCTCTCATCTG -ACGGAAGTGACACTCTCTGAGTTG -ACGGAAGTGACACTCTCTAGACTG -ACGGAAGTGACACTCTCTTCGGTA -ACGGAAGTGACACTCTCTTGCCTA -ACGGAAGTGACACTCTCTCCACTA -ACGGAAGTGACACTCTCTGGAGTA -ACGGAAGTGACACTCTCTTCGTCT -ACGGAAGTGACACTCTCTTGCACT -ACGGAAGTGACACTCTCTCTGACT -ACGGAAGTGACACTCTCTCAACCT -ACGGAAGTGACACTCTCTGCTACT -ACGGAAGTGACACTCTCTGGATCT -ACGGAAGTGACACTCTCTAAGGCT -ACGGAAGTGACACTCTCTTCAACC -ACGGAAGTGACACTCTCTTGTTCC -ACGGAAGTGACACTCTCTATTCCC -ACGGAAGTGACACTCTCTTTCTCG -ACGGAAGTGACACTCTCTTAGACG -ACGGAAGTGACACTCTCTGTAACG -ACGGAAGTGACACTCTCTACTTCG -ACGGAAGTGACACTCTCTTACGCA -ACGGAAGTGACACTCTCTCTTGCA -ACGGAAGTGACACTCTCTCGAACA -ACGGAAGTGACACTCTCTCAGTCA -ACGGAAGTGACACTCTCTGATCCA -ACGGAAGTGACACTCTCTACGACA -ACGGAAGTGACACTCTCTAGCTCA -ACGGAAGTGACACTCTCTTCACGT -ACGGAAGTGACACTCTCTCGTAGT -ACGGAAGTGACACTCTCTGTCAGT -ACGGAAGTGACACTCTCTGAAGGT -ACGGAAGTGACACTCTCTAACCGT -ACGGAAGTGACACTCTCTTTGTGC -ACGGAAGTGACACTCTCTCTAAGC -ACGGAAGTGACACTCTCTACTAGC -ACGGAAGTGACACTCTCTAGATGC -ACGGAAGTGACACTCTCTTGAAGG -ACGGAAGTGACACTCTCTCAATGG -ACGGAAGTGACACTCTCTATGAGG -ACGGAAGTGACACTCTCTAATGGG -ACGGAAGTGACACTCTCTTCCTGA -ACGGAAGTGACACTCTCTTAGCGA -ACGGAAGTGACACTCTCTCACAGA -ACGGAAGTGACACTCTCTGCAAGA -ACGGAAGTGACACTCTCTGGTTGA -ACGGAAGTGACACTCTCTTCCGAT -ACGGAAGTGACACTCTCTTGGCAT -ACGGAAGTGACACTCTCTCGAGAT -ACGGAAGTGACACTCTCTTACCAC -ACGGAAGTGACACTCTCTCAGAAC -ACGGAAGTGACACTCTCTGTCTAC -ACGGAAGTGACACTCTCTACGTAC -ACGGAAGTGACACTCTCTAGTGAC -ACGGAAGTGACACTCTCTCTGTAG -ACGGAAGTGACACTCTCTCCTAAG -ACGGAAGTGACACTCTCTGTTCAG -ACGGAAGTGACACTCTCTGCATAG -ACGGAAGTGACACTCTCTGACAAG -ACGGAAGTGACACTCTCTAAGCAG -ACGGAAGTGACACTCTCTCGTCAA -ACGGAAGTGACACTCTCTGCTGAA -ACGGAAGTGACACTCTCTAGTACG -ACGGAAGTGACACTCTCTATCCGA -ACGGAAGTGACACTCTCTATGGGA -ACGGAAGTGACACTCTCTGTGCAA -ACGGAAGTGACACTCTCTGAGGAA -ACGGAAGTGACACTCTCTCAGGTA -ACGGAAGTGACACTCTCTGACTCT -ACGGAAGTGACACTCTCTAGTCCT -ACGGAAGTGACACTCTCTTAAGCC -ACGGAAGTGACACTCTCTATAGCC -ACGGAAGTGACACTCTCTTAACCG -ACGGAAGTGACACTCTCTATGCCA -ACGGAAGTGACAATCTGGGGAAAC -ACGGAAGTGACAATCTGGAACACC -ACGGAAGTGACAATCTGGATCGAG -ACGGAAGTGACAATCTGGCTCCTT -ACGGAAGTGACAATCTGGCCTGTT -ACGGAAGTGACAATCTGGCGGTTT -ACGGAAGTGACAATCTGGGTGGTT -ACGGAAGTGACAATCTGGGCCTTT -ACGGAAGTGACAATCTGGGGTCTT -ACGGAAGTGACAATCTGGACGCTT -ACGGAAGTGACAATCTGGAGCGTT -ACGGAAGTGACAATCTGGTTCGTC -ACGGAAGTGACAATCTGGTCTCTC -ACGGAAGTGACAATCTGGTGGATC -ACGGAAGTGACAATCTGGCACTTC -ACGGAAGTGACAATCTGGGTACTC -ACGGAAGTGACAATCTGGGATGTC -ACGGAAGTGACAATCTGGACAGTC -ACGGAAGTGACAATCTGGTTGCTG -ACGGAAGTGACAATCTGGTCCATG -ACGGAAGTGACAATCTGGTGTGTG -ACGGAAGTGACAATCTGGCTAGTG -ACGGAAGTGACAATCTGGCATCTG -ACGGAAGTGACAATCTGGGAGTTG -ACGGAAGTGACAATCTGGAGACTG -ACGGAAGTGACAATCTGGTCGGTA -ACGGAAGTGACAATCTGGTGCCTA -ACGGAAGTGACAATCTGGCCACTA -ACGGAAGTGACAATCTGGGGAGTA -ACGGAAGTGACAATCTGGTCGTCT -ACGGAAGTGACAATCTGGTGCACT -ACGGAAGTGACAATCTGGCTGACT -ACGGAAGTGACAATCTGGCAACCT -ACGGAAGTGACAATCTGGGCTACT -ACGGAAGTGACAATCTGGGGATCT -ACGGAAGTGACAATCTGGAAGGCT -ACGGAAGTGACAATCTGGTCAACC -ACGGAAGTGACAATCTGGTGTTCC -ACGGAAGTGACAATCTGGATTCCC -ACGGAAGTGACAATCTGGTTCTCG -ACGGAAGTGACAATCTGGTAGACG -ACGGAAGTGACAATCTGGGTAACG -ACGGAAGTGACAATCTGGACTTCG -ACGGAAGTGACAATCTGGTACGCA -ACGGAAGTGACAATCTGGCTTGCA -ACGGAAGTGACAATCTGGCGAACA -ACGGAAGTGACAATCTGGCAGTCA -ACGGAAGTGACAATCTGGGATCCA -ACGGAAGTGACAATCTGGACGACA -ACGGAAGTGACAATCTGGAGCTCA -ACGGAAGTGACAATCTGGTCACGT -ACGGAAGTGACAATCTGGCGTAGT -ACGGAAGTGACAATCTGGGTCAGT -ACGGAAGTGACAATCTGGGAAGGT -ACGGAAGTGACAATCTGGAACCGT -ACGGAAGTGACAATCTGGTTGTGC -ACGGAAGTGACAATCTGGCTAAGC -ACGGAAGTGACAATCTGGACTAGC -ACGGAAGTGACAATCTGGAGATGC -ACGGAAGTGACAATCTGGTGAAGG -ACGGAAGTGACAATCTGGCAATGG -ACGGAAGTGACAATCTGGATGAGG -ACGGAAGTGACAATCTGGAATGGG -ACGGAAGTGACAATCTGGTCCTGA -ACGGAAGTGACAATCTGGTAGCGA -ACGGAAGTGACAATCTGGCACAGA -ACGGAAGTGACAATCTGGGCAAGA -ACGGAAGTGACAATCTGGGGTTGA -ACGGAAGTGACAATCTGGTCCGAT -ACGGAAGTGACAATCTGGTGGCAT -ACGGAAGTGACAATCTGGCGAGAT -ACGGAAGTGACAATCTGGTACCAC -ACGGAAGTGACAATCTGGCAGAAC -ACGGAAGTGACAATCTGGGTCTAC -ACGGAAGTGACAATCTGGACGTAC -ACGGAAGTGACAATCTGGAGTGAC -ACGGAAGTGACAATCTGGCTGTAG -ACGGAAGTGACAATCTGGCCTAAG -ACGGAAGTGACAATCTGGGTTCAG -ACGGAAGTGACAATCTGGGCATAG -ACGGAAGTGACAATCTGGGACAAG -ACGGAAGTGACAATCTGGAAGCAG -ACGGAAGTGACAATCTGGCGTCAA -ACGGAAGTGACAATCTGGGCTGAA -ACGGAAGTGACAATCTGGAGTACG -ACGGAAGTGACAATCTGGATCCGA -ACGGAAGTGACAATCTGGATGGGA -ACGGAAGTGACAATCTGGGTGCAA -ACGGAAGTGACAATCTGGGAGGAA -ACGGAAGTGACAATCTGGCAGGTA -ACGGAAGTGACAATCTGGGACTCT -ACGGAAGTGACAATCTGGAGTCCT -ACGGAAGTGACAATCTGGTAAGCC -ACGGAAGTGACAATCTGGATAGCC -ACGGAAGTGACAATCTGGTAACCG -ACGGAAGTGACAATCTGGATGCCA -ACGGAAGTGACATTCCACGGAAAC -ACGGAAGTGACATTCCACAACACC -ACGGAAGTGACATTCCACATCGAG -ACGGAAGTGACATTCCACCTCCTT -ACGGAAGTGACATTCCACCCTGTT -ACGGAAGTGACATTCCACCGGTTT -ACGGAAGTGACATTCCACGTGGTT -ACGGAAGTGACATTCCACGCCTTT -ACGGAAGTGACATTCCACGGTCTT -ACGGAAGTGACATTCCACACGCTT -ACGGAAGTGACATTCCACAGCGTT -ACGGAAGTGACATTCCACTTCGTC -ACGGAAGTGACATTCCACTCTCTC -ACGGAAGTGACATTCCACTGGATC -ACGGAAGTGACATTCCACCACTTC -ACGGAAGTGACATTCCACGTACTC -ACGGAAGTGACATTCCACGATGTC -ACGGAAGTGACATTCCACACAGTC -ACGGAAGTGACATTCCACTTGCTG -ACGGAAGTGACATTCCACTCCATG -ACGGAAGTGACATTCCACTGTGTG -ACGGAAGTGACATTCCACCTAGTG -ACGGAAGTGACATTCCACCATCTG -ACGGAAGTGACATTCCACGAGTTG -ACGGAAGTGACATTCCACAGACTG -ACGGAAGTGACATTCCACTCGGTA -ACGGAAGTGACATTCCACTGCCTA -ACGGAAGTGACATTCCACCCACTA -ACGGAAGTGACATTCCACGGAGTA -ACGGAAGTGACATTCCACTCGTCT -ACGGAAGTGACATTCCACTGCACT -ACGGAAGTGACATTCCACCTGACT -ACGGAAGTGACATTCCACCAACCT -ACGGAAGTGACATTCCACGCTACT -ACGGAAGTGACATTCCACGGATCT -ACGGAAGTGACATTCCACAAGGCT -ACGGAAGTGACATTCCACTCAACC -ACGGAAGTGACATTCCACTGTTCC -ACGGAAGTGACATTCCACATTCCC -ACGGAAGTGACATTCCACTTCTCG -ACGGAAGTGACATTCCACTAGACG -ACGGAAGTGACATTCCACGTAACG -ACGGAAGTGACATTCCACACTTCG -ACGGAAGTGACATTCCACTACGCA -ACGGAAGTGACATTCCACCTTGCA -ACGGAAGTGACATTCCACCGAACA -ACGGAAGTGACATTCCACCAGTCA -ACGGAAGTGACATTCCACGATCCA -ACGGAAGTGACATTCCACACGACA -ACGGAAGTGACATTCCACAGCTCA -ACGGAAGTGACATTCCACTCACGT -ACGGAAGTGACATTCCACCGTAGT -ACGGAAGTGACATTCCACGTCAGT -ACGGAAGTGACATTCCACGAAGGT -ACGGAAGTGACATTCCACAACCGT -ACGGAAGTGACATTCCACTTGTGC -ACGGAAGTGACATTCCACCTAAGC -ACGGAAGTGACATTCCACACTAGC -ACGGAAGTGACATTCCACAGATGC -ACGGAAGTGACATTCCACTGAAGG -ACGGAAGTGACATTCCACCAATGG -ACGGAAGTGACATTCCACATGAGG -ACGGAAGTGACATTCCACAATGGG -ACGGAAGTGACATTCCACTCCTGA -ACGGAAGTGACATTCCACTAGCGA -ACGGAAGTGACATTCCACCACAGA -ACGGAAGTGACATTCCACGCAAGA -ACGGAAGTGACATTCCACGGTTGA -ACGGAAGTGACATTCCACTCCGAT -ACGGAAGTGACATTCCACTGGCAT -ACGGAAGTGACATTCCACCGAGAT -ACGGAAGTGACATTCCACTACCAC -ACGGAAGTGACATTCCACCAGAAC -ACGGAAGTGACATTCCACGTCTAC -ACGGAAGTGACATTCCACACGTAC -ACGGAAGTGACATTCCACAGTGAC -ACGGAAGTGACATTCCACCTGTAG -ACGGAAGTGACATTCCACCCTAAG -ACGGAAGTGACATTCCACGTTCAG -ACGGAAGTGACATTCCACGCATAG -ACGGAAGTGACATTCCACGACAAG -ACGGAAGTGACATTCCACAAGCAG -ACGGAAGTGACATTCCACCGTCAA -ACGGAAGTGACATTCCACGCTGAA -ACGGAAGTGACATTCCACAGTACG -ACGGAAGTGACATTCCACATCCGA -ACGGAAGTGACATTCCACATGGGA -ACGGAAGTGACATTCCACGTGCAA -ACGGAAGTGACATTCCACGAGGAA -ACGGAAGTGACATTCCACCAGGTA -ACGGAAGTGACATTCCACGACTCT -ACGGAAGTGACATTCCACAGTCCT -ACGGAAGTGACATTCCACTAAGCC -ACGGAAGTGACATTCCACATAGCC -ACGGAAGTGACATTCCACTAACCG -ACGGAAGTGACATTCCACATGCCA -ACGGAAGTGACACTCGTAGGAAAC -ACGGAAGTGACACTCGTAAACACC -ACGGAAGTGACACTCGTAATCGAG -ACGGAAGTGACACTCGTACTCCTT -ACGGAAGTGACACTCGTACCTGTT -ACGGAAGTGACACTCGTACGGTTT -ACGGAAGTGACACTCGTAGTGGTT -ACGGAAGTGACACTCGTAGCCTTT -ACGGAAGTGACACTCGTAGGTCTT -ACGGAAGTGACACTCGTAACGCTT -ACGGAAGTGACACTCGTAAGCGTT -ACGGAAGTGACACTCGTATTCGTC -ACGGAAGTGACACTCGTATCTCTC -ACGGAAGTGACACTCGTATGGATC -ACGGAAGTGACACTCGTACACTTC -ACGGAAGTGACACTCGTAGTACTC -ACGGAAGTGACACTCGTAGATGTC -ACGGAAGTGACACTCGTAACAGTC -ACGGAAGTGACACTCGTATTGCTG -ACGGAAGTGACACTCGTATCCATG -ACGGAAGTGACACTCGTATGTGTG -ACGGAAGTGACACTCGTACTAGTG -ACGGAAGTGACACTCGTACATCTG -ACGGAAGTGACACTCGTAGAGTTG -ACGGAAGTGACACTCGTAAGACTG -ACGGAAGTGACACTCGTATCGGTA -ACGGAAGTGACACTCGTATGCCTA -ACGGAAGTGACACTCGTACCACTA -ACGGAAGTGACACTCGTAGGAGTA -ACGGAAGTGACACTCGTATCGTCT -ACGGAAGTGACACTCGTATGCACT -ACGGAAGTGACACTCGTACTGACT -ACGGAAGTGACACTCGTACAACCT -ACGGAAGTGACACTCGTAGCTACT -ACGGAAGTGACACTCGTAGGATCT -ACGGAAGTGACACTCGTAAAGGCT -ACGGAAGTGACACTCGTATCAACC -ACGGAAGTGACACTCGTATGTTCC -ACGGAAGTGACACTCGTAATTCCC -ACGGAAGTGACACTCGTATTCTCG -ACGGAAGTGACACTCGTATAGACG -ACGGAAGTGACACTCGTAGTAACG -ACGGAAGTGACACTCGTAACTTCG -ACGGAAGTGACACTCGTATACGCA -ACGGAAGTGACACTCGTACTTGCA -ACGGAAGTGACACTCGTACGAACA -ACGGAAGTGACACTCGTACAGTCA -ACGGAAGTGACACTCGTAGATCCA -ACGGAAGTGACACTCGTAACGACA -ACGGAAGTGACACTCGTAAGCTCA -ACGGAAGTGACACTCGTATCACGT -ACGGAAGTGACACTCGTACGTAGT -ACGGAAGTGACACTCGTAGTCAGT -ACGGAAGTGACACTCGTAGAAGGT -ACGGAAGTGACACTCGTAAACCGT -ACGGAAGTGACACTCGTATTGTGC -ACGGAAGTGACACTCGTACTAAGC -ACGGAAGTGACACTCGTAACTAGC -ACGGAAGTGACACTCGTAAGATGC -ACGGAAGTGACACTCGTATGAAGG -ACGGAAGTGACACTCGTACAATGG -ACGGAAGTGACACTCGTAATGAGG -ACGGAAGTGACACTCGTAAATGGG -ACGGAAGTGACACTCGTATCCTGA -ACGGAAGTGACACTCGTATAGCGA -ACGGAAGTGACACTCGTACACAGA -ACGGAAGTGACACTCGTAGCAAGA -ACGGAAGTGACACTCGTAGGTTGA -ACGGAAGTGACACTCGTATCCGAT -ACGGAAGTGACACTCGTATGGCAT -ACGGAAGTGACACTCGTACGAGAT -ACGGAAGTGACACTCGTATACCAC -ACGGAAGTGACACTCGTACAGAAC -ACGGAAGTGACACTCGTAGTCTAC -ACGGAAGTGACACTCGTAACGTAC -ACGGAAGTGACACTCGTAAGTGAC -ACGGAAGTGACACTCGTACTGTAG -ACGGAAGTGACACTCGTACCTAAG -ACGGAAGTGACACTCGTAGTTCAG -ACGGAAGTGACACTCGTAGCATAG -ACGGAAGTGACACTCGTAGACAAG -ACGGAAGTGACACTCGTAAAGCAG -ACGGAAGTGACACTCGTACGTCAA -ACGGAAGTGACACTCGTAGCTGAA -ACGGAAGTGACACTCGTAAGTACG -ACGGAAGTGACACTCGTAATCCGA -ACGGAAGTGACACTCGTAATGGGA -ACGGAAGTGACACTCGTAGTGCAA -ACGGAAGTGACACTCGTAGAGGAA -ACGGAAGTGACACTCGTACAGGTA -ACGGAAGTGACACTCGTAGACTCT -ACGGAAGTGACACTCGTAAGTCCT -ACGGAAGTGACACTCGTATAAGCC -ACGGAAGTGACACTCGTAATAGCC -ACGGAAGTGACACTCGTATAACCG -ACGGAAGTGACACTCGTAATGCCA -ACGGAAGTGACAGTCGATGGAAAC -ACGGAAGTGACAGTCGATAACACC -ACGGAAGTGACAGTCGATATCGAG -ACGGAAGTGACAGTCGATCTCCTT -ACGGAAGTGACAGTCGATCCTGTT -ACGGAAGTGACAGTCGATCGGTTT -ACGGAAGTGACAGTCGATGTGGTT -ACGGAAGTGACAGTCGATGCCTTT -ACGGAAGTGACAGTCGATGGTCTT -ACGGAAGTGACAGTCGATACGCTT -ACGGAAGTGACAGTCGATAGCGTT -ACGGAAGTGACAGTCGATTTCGTC -ACGGAAGTGACAGTCGATTCTCTC -ACGGAAGTGACAGTCGATTGGATC -ACGGAAGTGACAGTCGATCACTTC -ACGGAAGTGACAGTCGATGTACTC -ACGGAAGTGACAGTCGATGATGTC -ACGGAAGTGACAGTCGATACAGTC -ACGGAAGTGACAGTCGATTTGCTG -ACGGAAGTGACAGTCGATTCCATG -ACGGAAGTGACAGTCGATTGTGTG -ACGGAAGTGACAGTCGATCTAGTG -ACGGAAGTGACAGTCGATCATCTG -ACGGAAGTGACAGTCGATGAGTTG -ACGGAAGTGACAGTCGATAGACTG -ACGGAAGTGACAGTCGATTCGGTA -ACGGAAGTGACAGTCGATTGCCTA -ACGGAAGTGACAGTCGATCCACTA -ACGGAAGTGACAGTCGATGGAGTA -ACGGAAGTGACAGTCGATTCGTCT -ACGGAAGTGACAGTCGATTGCACT -ACGGAAGTGACAGTCGATCTGACT -ACGGAAGTGACAGTCGATCAACCT -ACGGAAGTGACAGTCGATGCTACT -ACGGAAGTGACAGTCGATGGATCT -ACGGAAGTGACAGTCGATAAGGCT -ACGGAAGTGACAGTCGATTCAACC -ACGGAAGTGACAGTCGATTGTTCC -ACGGAAGTGACAGTCGATATTCCC -ACGGAAGTGACAGTCGATTTCTCG -ACGGAAGTGACAGTCGATTAGACG -ACGGAAGTGACAGTCGATGTAACG -ACGGAAGTGACAGTCGATACTTCG -ACGGAAGTGACAGTCGATTACGCA -ACGGAAGTGACAGTCGATCTTGCA -ACGGAAGTGACAGTCGATCGAACA -ACGGAAGTGACAGTCGATCAGTCA -ACGGAAGTGACAGTCGATGATCCA -ACGGAAGTGACAGTCGATACGACA -ACGGAAGTGACAGTCGATAGCTCA -ACGGAAGTGACAGTCGATTCACGT -ACGGAAGTGACAGTCGATCGTAGT -ACGGAAGTGACAGTCGATGTCAGT -ACGGAAGTGACAGTCGATGAAGGT -ACGGAAGTGACAGTCGATAACCGT -ACGGAAGTGACAGTCGATTTGTGC -ACGGAAGTGACAGTCGATCTAAGC -ACGGAAGTGACAGTCGATACTAGC -ACGGAAGTGACAGTCGATAGATGC -ACGGAAGTGACAGTCGATTGAAGG -ACGGAAGTGACAGTCGATCAATGG -ACGGAAGTGACAGTCGATATGAGG -ACGGAAGTGACAGTCGATAATGGG -ACGGAAGTGACAGTCGATTCCTGA -ACGGAAGTGACAGTCGATTAGCGA -ACGGAAGTGACAGTCGATCACAGA -ACGGAAGTGACAGTCGATGCAAGA -ACGGAAGTGACAGTCGATGGTTGA -ACGGAAGTGACAGTCGATTCCGAT -ACGGAAGTGACAGTCGATTGGCAT -ACGGAAGTGACAGTCGATCGAGAT -ACGGAAGTGACAGTCGATTACCAC -ACGGAAGTGACAGTCGATCAGAAC -ACGGAAGTGACAGTCGATGTCTAC -ACGGAAGTGACAGTCGATACGTAC -ACGGAAGTGACAGTCGATAGTGAC -ACGGAAGTGACAGTCGATCTGTAG -ACGGAAGTGACAGTCGATCCTAAG -ACGGAAGTGACAGTCGATGTTCAG -ACGGAAGTGACAGTCGATGCATAG -ACGGAAGTGACAGTCGATGACAAG -ACGGAAGTGACAGTCGATAAGCAG -ACGGAAGTGACAGTCGATCGTCAA -ACGGAAGTGACAGTCGATGCTGAA -ACGGAAGTGACAGTCGATAGTACG -ACGGAAGTGACAGTCGATATCCGA -ACGGAAGTGACAGTCGATATGGGA -ACGGAAGTGACAGTCGATGTGCAA -ACGGAAGTGACAGTCGATGAGGAA -ACGGAAGTGACAGTCGATCAGGTA -ACGGAAGTGACAGTCGATGACTCT -ACGGAAGTGACAGTCGATAGTCCT -ACGGAAGTGACAGTCGATTAAGCC -ACGGAAGTGACAGTCGATATAGCC -ACGGAAGTGACAGTCGATTAACCG -ACGGAAGTGACAGTCGATATGCCA -ACGGAAGTGACAGTCACAGGAAAC -ACGGAAGTGACAGTCACAAACACC -ACGGAAGTGACAGTCACAATCGAG -ACGGAAGTGACAGTCACACTCCTT -ACGGAAGTGACAGTCACACCTGTT -ACGGAAGTGACAGTCACACGGTTT -ACGGAAGTGACAGTCACAGTGGTT -ACGGAAGTGACAGTCACAGCCTTT -ACGGAAGTGACAGTCACAGGTCTT -ACGGAAGTGACAGTCACAACGCTT -ACGGAAGTGACAGTCACAAGCGTT -ACGGAAGTGACAGTCACATTCGTC -ACGGAAGTGACAGTCACATCTCTC -ACGGAAGTGACAGTCACATGGATC -ACGGAAGTGACAGTCACACACTTC -ACGGAAGTGACAGTCACAGTACTC -ACGGAAGTGACAGTCACAGATGTC -ACGGAAGTGACAGTCACAACAGTC -ACGGAAGTGACAGTCACATTGCTG -ACGGAAGTGACAGTCACATCCATG -ACGGAAGTGACAGTCACATGTGTG -ACGGAAGTGACAGTCACACTAGTG -ACGGAAGTGACAGTCACACATCTG -ACGGAAGTGACAGTCACAGAGTTG -ACGGAAGTGACAGTCACAAGACTG -ACGGAAGTGACAGTCACATCGGTA -ACGGAAGTGACAGTCACATGCCTA -ACGGAAGTGACAGTCACACCACTA -ACGGAAGTGACAGTCACAGGAGTA -ACGGAAGTGACAGTCACATCGTCT -ACGGAAGTGACAGTCACATGCACT -ACGGAAGTGACAGTCACACTGACT -ACGGAAGTGACAGTCACACAACCT -ACGGAAGTGACAGTCACAGCTACT -ACGGAAGTGACAGTCACAGGATCT -ACGGAAGTGACAGTCACAAAGGCT -ACGGAAGTGACAGTCACATCAACC -ACGGAAGTGACAGTCACATGTTCC -ACGGAAGTGACAGTCACAATTCCC -ACGGAAGTGACAGTCACATTCTCG -ACGGAAGTGACAGTCACATAGACG -ACGGAAGTGACAGTCACAGTAACG -ACGGAAGTGACAGTCACAACTTCG -ACGGAAGTGACAGTCACATACGCA -ACGGAAGTGACAGTCACACTTGCA -ACGGAAGTGACAGTCACACGAACA -ACGGAAGTGACAGTCACACAGTCA -ACGGAAGTGACAGTCACAGATCCA -ACGGAAGTGACAGTCACAACGACA -ACGGAAGTGACAGTCACAAGCTCA -ACGGAAGTGACAGTCACATCACGT -ACGGAAGTGACAGTCACACGTAGT -ACGGAAGTGACAGTCACAGTCAGT -ACGGAAGTGACAGTCACAGAAGGT -ACGGAAGTGACAGTCACAAACCGT -ACGGAAGTGACAGTCACATTGTGC -ACGGAAGTGACAGTCACACTAAGC -ACGGAAGTGACAGTCACAACTAGC -ACGGAAGTGACAGTCACAAGATGC -ACGGAAGTGACAGTCACATGAAGG -ACGGAAGTGACAGTCACACAATGG -ACGGAAGTGACAGTCACAATGAGG -ACGGAAGTGACAGTCACAAATGGG -ACGGAAGTGACAGTCACATCCTGA -ACGGAAGTGACAGTCACATAGCGA -ACGGAAGTGACAGTCACACACAGA -ACGGAAGTGACAGTCACAGCAAGA -ACGGAAGTGACAGTCACAGGTTGA -ACGGAAGTGACAGTCACATCCGAT -ACGGAAGTGACAGTCACATGGCAT -ACGGAAGTGACAGTCACACGAGAT -ACGGAAGTGACAGTCACATACCAC -ACGGAAGTGACAGTCACACAGAAC -ACGGAAGTGACAGTCACAGTCTAC -ACGGAAGTGACAGTCACAACGTAC -ACGGAAGTGACAGTCACAAGTGAC -ACGGAAGTGACAGTCACACTGTAG -ACGGAAGTGACAGTCACACCTAAG -ACGGAAGTGACAGTCACAGTTCAG -ACGGAAGTGACAGTCACAGCATAG -ACGGAAGTGACAGTCACAGACAAG -ACGGAAGTGACAGTCACAAAGCAG -ACGGAAGTGACAGTCACACGTCAA -ACGGAAGTGACAGTCACAGCTGAA -ACGGAAGTGACAGTCACAAGTACG -ACGGAAGTGACAGTCACAATCCGA -ACGGAAGTGACAGTCACAATGGGA -ACGGAAGTGACAGTCACAGTGCAA -ACGGAAGTGACAGTCACAGAGGAA -ACGGAAGTGACAGTCACACAGGTA -ACGGAAGTGACAGTCACAGACTCT -ACGGAAGTGACAGTCACAAGTCCT -ACGGAAGTGACAGTCACATAAGCC -ACGGAAGTGACAGTCACAATAGCC -ACGGAAGTGACAGTCACATAACCG -ACGGAAGTGACAGTCACAATGCCA -ACGGAAGTGACACTGTTGGGAAAC -ACGGAAGTGACACTGTTGAACACC -ACGGAAGTGACACTGTTGATCGAG -ACGGAAGTGACACTGTTGCTCCTT -ACGGAAGTGACACTGTTGCCTGTT -ACGGAAGTGACACTGTTGCGGTTT -ACGGAAGTGACACTGTTGGTGGTT -ACGGAAGTGACACTGTTGGCCTTT -ACGGAAGTGACACTGTTGGGTCTT -ACGGAAGTGACACTGTTGACGCTT -ACGGAAGTGACACTGTTGAGCGTT -ACGGAAGTGACACTGTTGTTCGTC -ACGGAAGTGACACTGTTGTCTCTC -ACGGAAGTGACACTGTTGTGGATC -ACGGAAGTGACACTGTTGCACTTC -ACGGAAGTGACACTGTTGGTACTC -ACGGAAGTGACACTGTTGGATGTC -ACGGAAGTGACACTGTTGACAGTC -ACGGAAGTGACACTGTTGTTGCTG -ACGGAAGTGACACTGTTGTCCATG -ACGGAAGTGACACTGTTGTGTGTG -ACGGAAGTGACACTGTTGCTAGTG -ACGGAAGTGACACTGTTGCATCTG -ACGGAAGTGACACTGTTGGAGTTG -ACGGAAGTGACACTGTTGAGACTG -ACGGAAGTGACACTGTTGTCGGTA -ACGGAAGTGACACTGTTGTGCCTA -ACGGAAGTGACACTGTTGCCACTA -ACGGAAGTGACACTGTTGGGAGTA -ACGGAAGTGACACTGTTGTCGTCT -ACGGAAGTGACACTGTTGTGCACT -ACGGAAGTGACACTGTTGCTGACT -ACGGAAGTGACACTGTTGCAACCT -ACGGAAGTGACACTGTTGGCTACT -ACGGAAGTGACACTGTTGGGATCT -ACGGAAGTGACACTGTTGAAGGCT -ACGGAAGTGACACTGTTGTCAACC -ACGGAAGTGACACTGTTGTGTTCC -ACGGAAGTGACACTGTTGATTCCC -ACGGAAGTGACACTGTTGTTCTCG -ACGGAAGTGACACTGTTGTAGACG -ACGGAAGTGACACTGTTGGTAACG -ACGGAAGTGACACTGTTGACTTCG -ACGGAAGTGACACTGTTGTACGCA -ACGGAAGTGACACTGTTGCTTGCA -ACGGAAGTGACACTGTTGCGAACA -ACGGAAGTGACACTGTTGCAGTCA -ACGGAAGTGACACTGTTGGATCCA -ACGGAAGTGACACTGTTGACGACA -ACGGAAGTGACACTGTTGAGCTCA -ACGGAAGTGACACTGTTGTCACGT -ACGGAAGTGACACTGTTGCGTAGT -ACGGAAGTGACACTGTTGGTCAGT -ACGGAAGTGACACTGTTGGAAGGT -ACGGAAGTGACACTGTTGAACCGT -ACGGAAGTGACACTGTTGTTGTGC -ACGGAAGTGACACTGTTGCTAAGC -ACGGAAGTGACACTGTTGACTAGC -ACGGAAGTGACACTGTTGAGATGC -ACGGAAGTGACACTGTTGTGAAGG -ACGGAAGTGACACTGTTGCAATGG -ACGGAAGTGACACTGTTGATGAGG -ACGGAAGTGACACTGTTGAATGGG -ACGGAAGTGACACTGTTGTCCTGA -ACGGAAGTGACACTGTTGTAGCGA -ACGGAAGTGACACTGTTGCACAGA -ACGGAAGTGACACTGTTGGCAAGA -ACGGAAGTGACACTGTTGGGTTGA -ACGGAAGTGACACTGTTGTCCGAT -ACGGAAGTGACACTGTTGTGGCAT -ACGGAAGTGACACTGTTGCGAGAT -ACGGAAGTGACACTGTTGTACCAC -ACGGAAGTGACACTGTTGCAGAAC -ACGGAAGTGACACTGTTGGTCTAC -ACGGAAGTGACACTGTTGACGTAC -ACGGAAGTGACACTGTTGAGTGAC -ACGGAAGTGACACTGTTGCTGTAG -ACGGAAGTGACACTGTTGCCTAAG -ACGGAAGTGACACTGTTGGTTCAG -ACGGAAGTGACACTGTTGGCATAG -ACGGAAGTGACACTGTTGGACAAG -ACGGAAGTGACACTGTTGAAGCAG -ACGGAAGTGACACTGTTGCGTCAA -ACGGAAGTGACACTGTTGGCTGAA -ACGGAAGTGACACTGTTGAGTACG -ACGGAAGTGACACTGTTGATCCGA -ACGGAAGTGACACTGTTGATGGGA -ACGGAAGTGACACTGTTGGTGCAA -ACGGAAGTGACACTGTTGGAGGAA -ACGGAAGTGACACTGTTGCAGGTA -ACGGAAGTGACACTGTTGGACTCT -ACGGAAGTGACACTGTTGAGTCCT -ACGGAAGTGACACTGTTGTAAGCC -ACGGAAGTGACACTGTTGATAGCC -ACGGAAGTGACACTGTTGTAACCG -ACGGAAGTGACACTGTTGATGCCA -ACGGAAGTGACAATGTCCGGAAAC -ACGGAAGTGACAATGTCCAACACC -ACGGAAGTGACAATGTCCATCGAG -ACGGAAGTGACAATGTCCCTCCTT -ACGGAAGTGACAATGTCCCCTGTT -ACGGAAGTGACAATGTCCCGGTTT -ACGGAAGTGACAATGTCCGTGGTT -ACGGAAGTGACAATGTCCGCCTTT -ACGGAAGTGACAATGTCCGGTCTT -ACGGAAGTGACAATGTCCACGCTT -ACGGAAGTGACAATGTCCAGCGTT -ACGGAAGTGACAATGTCCTTCGTC -ACGGAAGTGACAATGTCCTCTCTC -ACGGAAGTGACAATGTCCTGGATC -ACGGAAGTGACAATGTCCCACTTC -ACGGAAGTGACAATGTCCGTACTC -ACGGAAGTGACAATGTCCGATGTC -ACGGAAGTGACAATGTCCACAGTC -ACGGAAGTGACAATGTCCTTGCTG -ACGGAAGTGACAATGTCCTCCATG -ACGGAAGTGACAATGTCCTGTGTG -ACGGAAGTGACAATGTCCCTAGTG -ACGGAAGTGACAATGTCCCATCTG -ACGGAAGTGACAATGTCCGAGTTG -ACGGAAGTGACAATGTCCAGACTG -ACGGAAGTGACAATGTCCTCGGTA -ACGGAAGTGACAATGTCCTGCCTA -ACGGAAGTGACAATGTCCCCACTA -ACGGAAGTGACAATGTCCGGAGTA -ACGGAAGTGACAATGTCCTCGTCT -ACGGAAGTGACAATGTCCTGCACT -ACGGAAGTGACAATGTCCCTGACT -ACGGAAGTGACAATGTCCCAACCT -ACGGAAGTGACAATGTCCGCTACT -ACGGAAGTGACAATGTCCGGATCT -ACGGAAGTGACAATGTCCAAGGCT -ACGGAAGTGACAATGTCCTCAACC -ACGGAAGTGACAATGTCCTGTTCC -ACGGAAGTGACAATGTCCATTCCC -ACGGAAGTGACAATGTCCTTCTCG -ACGGAAGTGACAATGTCCTAGACG -ACGGAAGTGACAATGTCCGTAACG -ACGGAAGTGACAATGTCCACTTCG -ACGGAAGTGACAATGTCCTACGCA -ACGGAAGTGACAATGTCCCTTGCA -ACGGAAGTGACAATGTCCCGAACA -ACGGAAGTGACAATGTCCCAGTCA -ACGGAAGTGACAATGTCCGATCCA -ACGGAAGTGACAATGTCCACGACA -ACGGAAGTGACAATGTCCAGCTCA -ACGGAAGTGACAATGTCCTCACGT -ACGGAAGTGACAATGTCCCGTAGT -ACGGAAGTGACAATGTCCGTCAGT -ACGGAAGTGACAATGTCCGAAGGT -ACGGAAGTGACAATGTCCAACCGT -ACGGAAGTGACAATGTCCTTGTGC -ACGGAAGTGACAATGTCCCTAAGC -ACGGAAGTGACAATGTCCACTAGC -ACGGAAGTGACAATGTCCAGATGC -ACGGAAGTGACAATGTCCTGAAGG -ACGGAAGTGACAATGTCCCAATGG -ACGGAAGTGACAATGTCCATGAGG -ACGGAAGTGACAATGTCCAATGGG -ACGGAAGTGACAATGTCCTCCTGA -ACGGAAGTGACAATGTCCTAGCGA -ACGGAAGTGACAATGTCCCACAGA -ACGGAAGTGACAATGTCCGCAAGA -ACGGAAGTGACAATGTCCGGTTGA -ACGGAAGTGACAATGTCCTCCGAT -ACGGAAGTGACAATGTCCTGGCAT -ACGGAAGTGACAATGTCCCGAGAT -ACGGAAGTGACAATGTCCTACCAC -ACGGAAGTGACAATGTCCCAGAAC -ACGGAAGTGACAATGTCCGTCTAC -ACGGAAGTGACAATGTCCACGTAC -ACGGAAGTGACAATGTCCAGTGAC -ACGGAAGTGACAATGTCCCTGTAG -ACGGAAGTGACAATGTCCCCTAAG -ACGGAAGTGACAATGTCCGTTCAG -ACGGAAGTGACAATGTCCGCATAG -ACGGAAGTGACAATGTCCGACAAG -ACGGAAGTGACAATGTCCAAGCAG -ACGGAAGTGACAATGTCCCGTCAA -ACGGAAGTGACAATGTCCGCTGAA -ACGGAAGTGACAATGTCCAGTACG -ACGGAAGTGACAATGTCCATCCGA -ACGGAAGTGACAATGTCCATGGGA -ACGGAAGTGACAATGTCCGTGCAA -ACGGAAGTGACAATGTCCGAGGAA -ACGGAAGTGACAATGTCCCAGGTA -ACGGAAGTGACAATGTCCGACTCT -ACGGAAGTGACAATGTCCAGTCCT -ACGGAAGTGACAATGTCCTAAGCC -ACGGAAGTGACAATGTCCATAGCC -ACGGAAGTGACAATGTCCTAACCG -ACGGAAGTGACAATGTCCATGCCA -ACGGAAGTGACAGTGTGTGGAAAC -ACGGAAGTGACAGTGTGTAACACC -ACGGAAGTGACAGTGTGTATCGAG -ACGGAAGTGACAGTGTGTCTCCTT -ACGGAAGTGACAGTGTGTCCTGTT -ACGGAAGTGACAGTGTGTCGGTTT -ACGGAAGTGACAGTGTGTGTGGTT -ACGGAAGTGACAGTGTGTGCCTTT -ACGGAAGTGACAGTGTGTGGTCTT -ACGGAAGTGACAGTGTGTACGCTT -ACGGAAGTGACAGTGTGTAGCGTT -ACGGAAGTGACAGTGTGTTTCGTC -ACGGAAGTGACAGTGTGTTCTCTC -ACGGAAGTGACAGTGTGTTGGATC -ACGGAAGTGACAGTGTGTCACTTC -ACGGAAGTGACAGTGTGTGTACTC -ACGGAAGTGACAGTGTGTGATGTC -ACGGAAGTGACAGTGTGTACAGTC -ACGGAAGTGACAGTGTGTTTGCTG -ACGGAAGTGACAGTGTGTTCCATG -ACGGAAGTGACAGTGTGTTGTGTG -ACGGAAGTGACAGTGTGTCTAGTG -ACGGAAGTGACAGTGTGTCATCTG -ACGGAAGTGACAGTGTGTGAGTTG -ACGGAAGTGACAGTGTGTAGACTG -ACGGAAGTGACAGTGTGTTCGGTA -ACGGAAGTGACAGTGTGTTGCCTA -ACGGAAGTGACAGTGTGTCCACTA -ACGGAAGTGACAGTGTGTGGAGTA -ACGGAAGTGACAGTGTGTTCGTCT -ACGGAAGTGACAGTGTGTTGCACT -ACGGAAGTGACAGTGTGTCTGACT -ACGGAAGTGACAGTGTGTCAACCT -ACGGAAGTGACAGTGTGTGCTACT -ACGGAAGTGACAGTGTGTGGATCT -ACGGAAGTGACAGTGTGTAAGGCT -ACGGAAGTGACAGTGTGTTCAACC -ACGGAAGTGACAGTGTGTTGTTCC -ACGGAAGTGACAGTGTGTATTCCC -ACGGAAGTGACAGTGTGTTTCTCG -ACGGAAGTGACAGTGTGTTAGACG -ACGGAAGTGACAGTGTGTGTAACG -ACGGAAGTGACAGTGTGTACTTCG -ACGGAAGTGACAGTGTGTTACGCA -ACGGAAGTGACAGTGTGTCTTGCA -ACGGAAGTGACAGTGTGTCGAACA -ACGGAAGTGACAGTGTGTCAGTCA -ACGGAAGTGACAGTGTGTGATCCA -ACGGAAGTGACAGTGTGTACGACA -ACGGAAGTGACAGTGTGTAGCTCA -ACGGAAGTGACAGTGTGTTCACGT -ACGGAAGTGACAGTGTGTCGTAGT -ACGGAAGTGACAGTGTGTGTCAGT -ACGGAAGTGACAGTGTGTGAAGGT -ACGGAAGTGACAGTGTGTAACCGT -ACGGAAGTGACAGTGTGTTTGTGC -ACGGAAGTGACAGTGTGTCTAAGC -ACGGAAGTGACAGTGTGTACTAGC -ACGGAAGTGACAGTGTGTAGATGC -ACGGAAGTGACAGTGTGTTGAAGG -ACGGAAGTGACAGTGTGTCAATGG -ACGGAAGTGACAGTGTGTATGAGG -ACGGAAGTGACAGTGTGTAATGGG -ACGGAAGTGACAGTGTGTTCCTGA -ACGGAAGTGACAGTGTGTTAGCGA -ACGGAAGTGACAGTGTGTCACAGA -ACGGAAGTGACAGTGTGTGCAAGA -ACGGAAGTGACAGTGTGTGGTTGA -ACGGAAGTGACAGTGTGTTCCGAT -ACGGAAGTGACAGTGTGTTGGCAT -ACGGAAGTGACAGTGTGTCGAGAT -ACGGAAGTGACAGTGTGTTACCAC -ACGGAAGTGACAGTGTGTCAGAAC -ACGGAAGTGACAGTGTGTGTCTAC -ACGGAAGTGACAGTGTGTACGTAC -ACGGAAGTGACAGTGTGTAGTGAC -ACGGAAGTGACAGTGTGTCTGTAG -ACGGAAGTGACAGTGTGTCCTAAG -ACGGAAGTGACAGTGTGTGTTCAG -ACGGAAGTGACAGTGTGTGCATAG -ACGGAAGTGACAGTGTGTGACAAG -ACGGAAGTGACAGTGTGTAAGCAG -ACGGAAGTGACAGTGTGTCGTCAA -ACGGAAGTGACAGTGTGTGCTGAA -ACGGAAGTGACAGTGTGTAGTACG -ACGGAAGTGACAGTGTGTATCCGA -ACGGAAGTGACAGTGTGTATGGGA -ACGGAAGTGACAGTGTGTGTGCAA -ACGGAAGTGACAGTGTGTGAGGAA -ACGGAAGTGACAGTGTGTCAGGTA -ACGGAAGTGACAGTGTGTGACTCT -ACGGAAGTGACAGTGTGTAGTCCT -ACGGAAGTGACAGTGTGTTAAGCC -ACGGAAGTGACAGTGTGTATAGCC -ACGGAAGTGACAGTGTGTTAACCG -ACGGAAGTGACAGTGTGTATGCCA -ACGGAAGTGACAGTGCTAGGAAAC -ACGGAAGTGACAGTGCTAAACACC -ACGGAAGTGACAGTGCTAATCGAG -ACGGAAGTGACAGTGCTACTCCTT -ACGGAAGTGACAGTGCTACCTGTT -ACGGAAGTGACAGTGCTACGGTTT -ACGGAAGTGACAGTGCTAGTGGTT -ACGGAAGTGACAGTGCTAGCCTTT -ACGGAAGTGACAGTGCTAGGTCTT -ACGGAAGTGACAGTGCTAACGCTT -ACGGAAGTGACAGTGCTAAGCGTT -ACGGAAGTGACAGTGCTATTCGTC -ACGGAAGTGACAGTGCTATCTCTC -ACGGAAGTGACAGTGCTATGGATC -ACGGAAGTGACAGTGCTACACTTC -ACGGAAGTGACAGTGCTAGTACTC -ACGGAAGTGACAGTGCTAGATGTC -ACGGAAGTGACAGTGCTAACAGTC -ACGGAAGTGACAGTGCTATTGCTG -ACGGAAGTGACAGTGCTATCCATG -ACGGAAGTGACAGTGCTATGTGTG -ACGGAAGTGACAGTGCTACTAGTG -ACGGAAGTGACAGTGCTACATCTG -ACGGAAGTGACAGTGCTAGAGTTG -ACGGAAGTGACAGTGCTAAGACTG -ACGGAAGTGACAGTGCTATCGGTA -ACGGAAGTGACAGTGCTATGCCTA -ACGGAAGTGACAGTGCTACCACTA -ACGGAAGTGACAGTGCTAGGAGTA -ACGGAAGTGACAGTGCTATCGTCT -ACGGAAGTGACAGTGCTATGCACT -ACGGAAGTGACAGTGCTACTGACT -ACGGAAGTGACAGTGCTACAACCT -ACGGAAGTGACAGTGCTAGCTACT -ACGGAAGTGACAGTGCTAGGATCT -ACGGAAGTGACAGTGCTAAAGGCT -ACGGAAGTGACAGTGCTATCAACC -ACGGAAGTGACAGTGCTATGTTCC -ACGGAAGTGACAGTGCTAATTCCC -ACGGAAGTGACAGTGCTATTCTCG -ACGGAAGTGACAGTGCTATAGACG -ACGGAAGTGACAGTGCTAGTAACG -ACGGAAGTGACAGTGCTAACTTCG -ACGGAAGTGACAGTGCTATACGCA -ACGGAAGTGACAGTGCTACTTGCA -ACGGAAGTGACAGTGCTACGAACA -ACGGAAGTGACAGTGCTACAGTCA -ACGGAAGTGACAGTGCTAGATCCA -ACGGAAGTGACAGTGCTAACGACA -ACGGAAGTGACAGTGCTAAGCTCA -ACGGAAGTGACAGTGCTATCACGT -ACGGAAGTGACAGTGCTACGTAGT -ACGGAAGTGACAGTGCTAGTCAGT -ACGGAAGTGACAGTGCTAGAAGGT -ACGGAAGTGACAGTGCTAAACCGT -ACGGAAGTGACAGTGCTATTGTGC -ACGGAAGTGACAGTGCTACTAAGC -ACGGAAGTGACAGTGCTAACTAGC -ACGGAAGTGACAGTGCTAAGATGC -ACGGAAGTGACAGTGCTATGAAGG -ACGGAAGTGACAGTGCTACAATGG -ACGGAAGTGACAGTGCTAATGAGG -ACGGAAGTGACAGTGCTAAATGGG -ACGGAAGTGACAGTGCTATCCTGA -ACGGAAGTGACAGTGCTATAGCGA -ACGGAAGTGACAGTGCTACACAGA -ACGGAAGTGACAGTGCTAGCAAGA -ACGGAAGTGACAGTGCTAGGTTGA -ACGGAAGTGACAGTGCTATCCGAT -ACGGAAGTGACAGTGCTATGGCAT -ACGGAAGTGACAGTGCTACGAGAT -ACGGAAGTGACAGTGCTATACCAC -ACGGAAGTGACAGTGCTACAGAAC -ACGGAAGTGACAGTGCTAGTCTAC -ACGGAAGTGACAGTGCTAACGTAC -ACGGAAGTGACAGTGCTAAGTGAC -ACGGAAGTGACAGTGCTACTGTAG -ACGGAAGTGACAGTGCTACCTAAG -ACGGAAGTGACAGTGCTAGTTCAG -ACGGAAGTGACAGTGCTAGCATAG -ACGGAAGTGACAGTGCTAGACAAG -ACGGAAGTGACAGTGCTAAAGCAG -ACGGAAGTGACAGTGCTACGTCAA -ACGGAAGTGACAGTGCTAGCTGAA -ACGGAAGTGACAGTGCTAAGTACG -ACGGAAGTGACAGTGCTAATCCGA -ACGGAAGTGACAGTGCTAATGGGA -ACGGAAGTGACAGTGCTAGTGCAA -ACGGAAGTGACAGTGCTAGAGGAA -ACGGAAGTGACAGTGCTACAGGTA -ACGGAAGTGACAGTGCTAGACTCT -ACGGAAGTGACAGTGCTAAGTCCT -ACGGAAGTGACAGTGCTATAAGCC -ACGGAAGTGACAGTGCTAATAGCC -ACGGAAGTGACAGTGCTATAACCG -ACGGAAGTGACAGTGCTAATGCCA -ACGGAAGTGACACTGCATGGAAAC -ACGGAAGTGACACTGCATAACACC -ACGGAAGTGACACTGCATATCGAG -ACGGAAGTGACACTGCATCTCCTT -ACGGAAGTGACACTGCATCCTGTT -ACGGAAGTGACACTGCATCGGTTT -ACGGAAGTGACACTGCATGTGGTT -ACGGAAGTGACACTGCATGCCTTT -ACGGAAGTGACACTGCATGGTCTT -ACGGAAGTGACACTGCATACGCTT -ACGGAAGTGACACTGCATAGCGTT -ACGGAAGTGACACTGCATTTCGTC -ACGGAAGTGACACTGCATTCTCTC -ACGGAAGTGACACTGCATTGGATC -ACGGAAGTGACACTGCATCACTTC -ACGGAAGTGACACTGCATGTACTC -ACGGAAGTGACACTGCATGATGTC -ACGGAAGTGACACTGCATACAGTC -ACGGAAGTGACACTGCATTTGCTG -ACGGAAGTGACACTGCATTCCATG -ACGGAAGTGACACTGCATTGTGTG -ACGGAAGTGACACTGCATCTAGTG -ACGGAAGTGACACTGCATCATCTG -ACGGAAGTGACACTGCATGAGTTG -ACGGAAGTGACACTGCATAGACTG -ACGGAAGTGACACTGCATTCGGTA -ACGGAAGTGACACTGCATTGCCTA -ACGGAAGTGACACTGCATCCACTA -ACGGAAGTGACACTGCATGGAGTA -ACGGAAGTGACACTGCATTCGTCT -ACGGAAGTGACACTGCATTGCACT -ACGGAAGTGACACTGCATCTGACT -ACGGAAGTGACACTGCATCAACCT -ACGGAAGTGACACTGCATGCTACT -ACGGAAGTGACACTGCATGGATCT -ACGGAAGTGACACTGCATAAGGCT -ACGGAAGTGACACTGCATTCAACC -ACGGAAGTGACACTGCATTGTTCC -ACGGAAGTGACACTGCATATTCCC -ACGGAAGTGACACTGCATTTCTCG -ACGGAAGTGACACTGCATTAGACG -ACGGAAGTGACACTGCATGTAACG -ACGGAAGTGACACTGCATACTTCG -ACGGAAGTGACACTGCATTACGCA -ACGGAAGTGACACTGCATCTTGCA -ACGGAAGTGACACTGCATCGAACA -ACGGAAGTGACACTGCATCAGTCA -ACGGAAGTGACACTGCATGATCCA -ACGGAAGTGACACTGCATACGACA -ACGGAAGTGACACTGCATAGCTCA -ACGGAAGTGACACTGCATTCACGT -ACGGAAGTGACACTGCATCGTAGT -ACGGAAGTGACACTGCATGTCAGT -ACGGAAGTGACACTGCATGAAGGT -ACGGAAGTGACACTGCATAACCGT -ACGGAAGTGACACTGCATTTGTGC -ACGGAAGTGACACTGCATCTAAGC -ACGGAAGTGACACTGCATACTAGC -ACGGAAGTGACACTGCATAGATGC -ACGGAAGTGACACTGCATTGAAGG -ACGGAAGTGACACTGCATCAATGG -ACGGAAGTGACACTGCATATGAGG -ACGGAAGTGACACTGCATAATGGG -ACGGAAGTGACACTGCATTCCTGA -ACGGAAGTGACACTGCATTAGCGA -ACGGAAGTGACACTGCATCACAGA -ACGGAAGTGACACTGCATGCAAGA -ACGGAAGTGACACTGCATGGTTGA -ACGGAAGTGACACTGCATTCCGAT -ACGGAAGTGACACTGCATTGGCAT -ACGGAAGTGACACTGCATCGAGAT -ACGGAAGTGACACTGCATTACCAC -ACGGAAGTGACACTGCATCAGAAC -ACGGAAGTGACACTGCATGTCTAC -ACGGAAGTGACACTGCATACGTAC -ACGGAAGTGACACTGCATAGTGAC -ACGGAAGTGACACTGCATCTGTAG -ACGGAAGTGACACTGCATCCTAAG -ACGGAAGTGACACTGCATGTTCAG -ACGGAAGTGACACTGCATGCATAG -ACGGAAGTGACACTGCATGACAAG -ACGGAAGTGACACTGCATAAGCAG -ACGGAAGTGACACTGCATCGTCAA -ACGGAAGTGACACTGCATGCTGAA -ACGGAAGTGACACTGCATAGTACG -ACGGAAGTGACACTGCATATCCGA -ACGGAAGTGACACTGCATATGGGA -ACGGAAGTGACACTGCATGTGCAA -ACGGAAGTGACACTGCATGAGGAA -ACGGAAGTGACACTGCATCAGGTA -ACGGAAGTGACACTGCATGACTCT -ACGGAAGTGACACTGCATAGTCCT -ACGGAAGTGACACTGCATTAAGCC -ACGGAAGTGACACTGCATATAGCC -ACGGAAGTGACACTGCATTAACCG -ACGGAAGTGACACTGCATATGCCA -ACGGAAGTGACATTGGAGGGAAAC -ACGGAAGTGACATTGGAGAACACC -ACGGAAGTGACATTGGAGATCGAG -ACGGAAGTGACATTGGAGCTCCTT -ACGGAAGTGACATTGGAGCCTGTT -ACGGAAGTGACATTGGAGCGGTTT -ACGGAAGTGACATTGGAGGTGGTT -ACGGAAGTGACATTGGAGGCCTTT -ACGGAAGTGACATTGGAGGGTCTT -ACGGAAGTGACATTGGAGACGCTT -ACGGAAGTGACATTGGAGAGCGTT -ACGGAAGTGACATTGGAGTTCGTC -ACGGAAGTGACATTGGAGTCTCTC -ACGGAAGTGACATTGGAGTGGATC -ACGGAAGTGACATTGGAGCACTTC -ACGGAAGTGACATTGGAGGTACTC -ACGGAAGTGACATTGGAGGATGTC -ACGGAAGTGACATTGGAGACAGTC -ACGGAAGTGACATTGGAGTTGCTG -ACGGAAGTGACATTGGAGTCCATG -ACGGAAGTGACATTGGAGTGTGTG -ACGGAAGTGACATTGGAGCTAGTG -ACGGAAGTGACATTGGAGCATCTG -ACGGAAGTGACATTGGAGGAGTTG -ACGGAAGTGACATTGGAGAGACTG -ACGGAAGTGACATTGGAGTCGGTA -ACGGAAGTGACATTGGAGTGCCTA -ACGGAAGTGACATTGGAGCCACTA -ACGGAAGTGACATTGGAGGGAGTA -ACGGAAGTGACATTGGAGTCGTCT -ACGGAAGTGACATTGGAGTGCACT -ACGGAAGTGACATTGGAGCTGACT -ACGGAAGTGACATTGGAGCAACCT -ACGGAAGTGACATTGGAGGCTACT -ACGGAAGTGACATTGGAGGGATCT -ACGGAAGTGACATTGGAGAAGGCT -ACGGAAGTGACATTGGAGTCAACC -ACGGAAGTGACATTGGAGTGTTCC -ACGGAAGTGACATTGGAGATTCCC -ACGGAAGTGACATTGGAGTTCTCG -ACGGAAGTGACATTGGAGTAGACG -ACGGAAGTGACATTGGAGGTAACG -ACGGAAGTGACATTGGAGACTTCG -ACGGAAGTGACATTGGAGTACGCA -ACGGAAGTGACATTGGAGCTTGCA -ACGGAAGTGACATTGGAGCGAACA -ACGGAAGTGACATTGGAGCAGTCA -ACGGAAGTGACATTGGAGGATCCA -ACGGAAGTGACATTGGAGACGACA -ACGGAAGTGACATTGGAGAGCTCA -ACGGAAGTGACATTGGAGTCACGT -ACGGAAGTGACATTGGAGCGTAGT -ACGGAAGTGACATTGGAGGTCAGT -ACGGAAGTGACATTGGAGGAAGGT -ACGGAAGTGACATTGGAGAACCGT -ACGGAAGTGACATTGGAGTTGTGC -ACGGAAGTGACATTGGAGCTAAGC -ACGGAAGTGACATTGGAGACTAGC -ACGGAAGTGACATTGGAGAGATGC -ACGGAAGTGACATTGGAGTGAAGG -ACGGAAGTGACATTGGAGCAATGG -ACGGAAGTGACATTGGAGATGAGG -ACGGAAGTGACATTGGAGAATGGG -ACGGAAGTGACATTGGAGTCCTGA -ACGGAAGTGACATTGGAGTAGCGA -ACGGAAGTGACATTGGAGCACAGA -ACGGAAGTGACATTGGAGGCAAGA -ACGGAAGTGACATTGGAGGGTTGA -ACGGAAGTGACATTGGAGTCCGAT -ACGGAAGTGACATTGGAGTGGCAT -ACGGAAGTGACATTGGAGCGAGAT -ACGGAAGTGACATTGGAGTACCAC -ACGGAAGTGACATTGGAGCAGAAC -ACGGAAGTGACATTGGAGGTCTAC -ACGGAAGTGACATTGGAGACGTAC -ACGGAAGTGACATTGGAGAGTGAC -ACGGAAGTGACATTGGAGCTGTAG -ACGGAAGTGACATTGGAGCCTAAG -ACGGAAGTGACATTGGAGGTTCAG -ACGGAAGTGACATTGGAGGCATAG -ACGGAAGTGACATTGGAGGACAAG -ACGGAAGTGACATTGGAGAAGCAG -ACGGAAGTGACATTGGAGCGTCAA -ACGGAAGTGACATTGGAGGCTGAA -ACGGAAGTGACATTGGAGAGTACG -ACGGAAGTGACATTGGAGATCCGA -ACGGAAGTGACATTGGAGATGGGA -ACGGAAGTGACATTGGAGGTGCAA -ACGGAAGTGACATTGGAGGAGGAA -ACGGAAGTGACATTGGAGCAGGTA -ACGGAAGTGACATTGGAGGACTCT -ACGGAAGTGACATTGGAGAGTCCT -ACGGAAGTGACATTGGAGTAAGCC -ACGGAAGTGACATTGGAGATAGCC -ACGGAAGTGACATTGGAGTAACCG -ACGGAAGTGACATTGGAGATGCCA -ACGGAAGTGACACTGAGAGGAAAC -ACGGAAGTGACACTGAGAAACACC -ACGGAAGTGACACTGAGAATCGAG -ACGGAAGTGACACTGAGACTCCTT -ACGGAAGTGACACTGAGACCTGTT -ACGGAAGTGACACTGAGACGGTTT -ACGGAAGTGACACTGAGAGTGGTT -ACGGAAGTGACACTGAGAGCCTTT -ACGGAAGTGACACTGAGAGGTCTT -ACGGAAGTGACACTGAGAACGCTT -ACGGAAGTGACACTGAGAAGCGTT -ACGGAAGTGACACTGAGATTCGTC -ACGGAAGTGACACTGAGATCTCTC -ACGGAAGTGACACTGAGATGGATC -ACGGAAGTGACACTGAGACACTTC -ACGGAAGTGACACTGAGAGTACTC -ACGGAAGTGACACTGAGAGATGTC -ACGGAAGTGACACTGAGAACAGTC -ACGGAAGTGACACTGAGATTGCTG -ACGGAAGTGACACTGAGATCCATG -ACGGAAGTGACACTGAGATGTGTG -ACGGAAGTGACACTGAGACTAGTG -ACGGAAGTGACACTGAGACATCTG -ACGGAAGTGACACTGAGAGAGTTG -ACGGAAGTGACACTGAGAAGACTG -ACGGAAGTGACACTGAGATCGGTA -ACGGAAGTGACACTGAGATGCCTA -ACGGAAGTGACACTGAGACCACTA -ACGGAAGTGACACTGAGAGGAGTA -ACGGAAGTGACACTGAGATCGTCT -ACGGAAGTGACACTGAGATGCACT -ACGGAAGTGACACTGAGACTGACT -ACGGAAGTGACACTGAGACAACCT -ACGGAAGTGACACTGAGAGCTACT -ACGGAAGTGACACTGAGAGGATCT -ACGGAAGTGACACTGAGAAAGGCT -ACGGAAGTGACACTGAGATCAACC -ACGGAAGTGACACTGAGATGTTCC -ACGGAAGTGACACTGAGAATTCCC -ACGGAAGTGACACTGAGATTCTCG -ACGGAAGTGACACTGAGATAGACG -ACGGAAGTGACACTGAGAGTAACG -ACGGAAGTGACACTGAGAACTTCG -ACGGAAGTGACACTGAGATACGCA -ACGGAAGTGACACTGAGACTTGCA -ACGGAAGTGACACTGAGACGAACA -ACGGAAGTGACACTGAGACAGTCA -ACGGAAGTGACACTGAGAGATCCA -ACGGAAGTGACACTGAGAACGACA -ACGGAAGTGACACTGAGAAGCTCA -ACGGAAGTGACACTGAGATCACGT -ACGGAAGTGACACTGAGACGTAGT -ACGGAAGTGACACTGAGAGTCAGT -ACGGAAGTGACACTGAGAGAAGGT -ACGGAAGTGACACTGAGAAACCGT -ACGGAAGTGACACTGAGATTGTGC -ACGGAAGTGACACTGAGACTAAGC -ACGGAAGTGACACTGAGAACTAGC -ACGGAAGTGACACTGAGAAGATGC -ACGGAAGTGACACTGAGATGAAGG -ACGGAAGTGACACTGAGACAATGG -ACGGAAGTGACACTGAGAATGAGG -ACGGAAGTGACACTGAGAAATGGG -ACGGAAGTGACACTGAGATCCTGA -ACGGAAGTGACACTGAGATAGCGA -ACGGAAGTGACACTGAGACACAGA -ACGGAAGTGACACTGAGAGCAAGA -ACGGAAGTGACACTGAGAGGTTGA -ACGGAAGTGACACTGAGATCCGAT -ACGGAAGTGACACTGAGATGGCAT -ACGGAAGTGACACTGAGACGAGAT -ACGGAAGTGACACTGAGATACCAC -ACGGAAGTGACACTGAGACAGAAC -ACGGAAGTGACACTGAGAGTCTAC -ACGGAAGTGACACTGAGAACGTAC -ACGGAAGTGACACTGAGAAGTGAC -ACGGAAGTGACACTGAGACTGTAG -ACGGAAGTGACACTGAGACCTAAG -ACGGAAGTGACACTGAGAGTTCAG -ACGGAAGTGACACTGAGAGCATAG -ACGGAAGTGACACTGAGAGACAAG -ACGGAAGTGACACTGAGAAAGCAG -ACGGAAGTGACACTGAGACGTCAA -ACGGAAGTGACACTGAGAGCTGAA -ACGGAAGTGACACTGAGAAGTACG -ACGGAAGTGACACTGAGAATCCGA -ACGGAAGTGACACTGAGAATGGGA -ACGGAAGTGACACTGAGAGTGCAA -ACGGAAGTGACACTGAGAGAGGAA -ACGGAAGTGACACTGAGACAGGTA -ACGGAAGTGACACTGAGAGACTCT -ACGGAAGTGACACTGAGAAGTCCT -ACGGAAGTGACACTGAGATAAGCC -ACGGAAGTGACACTGAGAATAGCC -ACGGAAGTGACACTGAGATAACCG -ACGGAAGTGACACTGAGAATGCCA -ACGGAAGTGACAGTATCGGGAAAC -ACGGAAGTGACAGTATCGAACACC -ACGGAAGTGACAGTATCGATCGAG -ACGGAAGTGACAGTATCGCTCCTT -ACGGAAGTGACAGTATCGCCTGTT -ACGGAAGTGACAGTATCGCGGTTT -ACGGAAGTGACAGTATCGGTGGTT -ACGGAAGTGACAGTATCGGCCTTT -ACGGAAGTGACAGTATCGGGTCTT -ACGGAAGTGACAGTATCGACGCTT -ACGGAAGTGACAGTATCGAGCGTT -ACGGAAGTGACAGTATCGTTCGTC -ACGGAAGTGACAGTATCGTCTCTC -ACGGAAGTGACAGTATCGTGGATC -ACGGAAGTGACAGTATCGCACTTC -ACGGAAGTGACAGTATCGGTACTC -ACGGAAGTGACAGTATCGGATGTC -ACGGAAGTGACAGTATCGACAGTC -ACGGAAGTGACAGTATCGTTGCTG -ACGGAAGTGACAGTATCGTCCATG -ACGGAAGTGACAGTATCGTGTGTG -ACGGAAGTGACAGTATCGCTAGTG -ACGGAAGTGACAGTATCGCATCTG -ACGGAAGTGACAGTATCGGAGTTG -ACGGAAGTGACAGTATCGAGACTG -ACGGAAGTGACAGTATCGTCGGTA -ACGGAAGTGACAGTATCGTGCCTA -ACGGAAGTGACAGTATCGCCACTA -ACGGAAGTGACAGTATCGGGAGTA -ACGGAAGTGACAGTATCGTCGTCT -ACGGAAGTGACAGTATCGTGCACT -ACGGAAGTGACAGTATCGCTGACT -ACGGAAGTGACAGTATCGCAACCT -ACGGAAGTGACAGTATCGGCTACT -ACGGAAGTGACAGTATCGGGATCT -ACGGAAGTGACAGTATCGAAGGCT -ACGGAAGTGACAGTATCGTCAACC -ACGGAAGTGACAGTATCGTGTTCC -ACGGAAGTGACAGTATCGATTCCC -ACGGAAGTGACAGTATCGTTCTCG -ACGGAAGTGACAGTATCGTAGACG -ACGGAAGTGACAGTATCGGTAACG -ACGGAAGTGACAGTATCGACTTCG -ACGGAAGTGACAGTATCGTACGCA -ACGGAAGTGACAGTATCGCTTGCA -ACGGAAGTGACAGTATCGCGAACA -ACGGAAGTGACAGTATCGCAGTCA -ACGGAAGTGACAGTATCGGATCCA -ACGGAAGTGACAGTATCGACGACA -ACGGAAGTGACAGTATCGAGCTCA -ACGGAAGTGACAGTATCGTCACGT -ACGGAAGTGACAGTATCGCGTAGT -ACGGAAGTGACAGTATCGGTCAGT -ACGGAAGTGACAGTATCGGAAGGT -ACGGAAGTGACAGTATCGAACCGT -ACGGAAGTGACAGTATCGTTGTGC -ACGGAAGTGACAGTATCGCTAAGC -ACGGAAGTGACAGTATCGACTAGC -ACGGAAGTGACAGTATCGAGATGC -ACGGAAGTGACAGTATCGTGAAGG -ACGGAAGTGACAGTATCGCAATGG -ACGGAAGTGACAGTATCGATGAGG -ACGGAAGTGACAGTATCGAATGGG -ACGGAAGTGACAGTATCGTCCTGA -ACGGAAGTGACAGTATCGTAGCGA -ACGGAAGTGACAGTATCGCACAGA -ACGGAAGTGACAGTATCGGCAAGA -ACGGAAGTGACAGTATCGGGTTGA -ACGGAAGTGACAGTATCGTCCGAT -ACGGAAGTGACAGTATCGTGGCAT -ACGGAAGTGACAGTATCGCGAGAT -ACGGAAGTGACAGTATCGTACCAC -ACGGAAGTGACAGTATCGCAGAAC -ACGGAAGTGACAGTATCGGTCTAC -ACGGAAGTGACAGTATCGACGTAC -ACGGAAGTGACAGTATCGAGTGAC -ACGGAAGTGACAGTATCGCTGTAG -ACGGAAGTGACAGTATCGCCTAAG -ACGGAAGTGACAGTATCGGTTCAG -ACGGAAGTGACAGTATCGGCATAG -ACGGAAGTGACAGTATCGGACAAG -ACGGAAGTGACAGTATCGAAGCAG -ACGGAAGTGACAGTATCGCGTCAA -ACGGAAGTGACAGTATCGGCTGAA -ACGGAAGTGACAGTATCGAGTACG -ACGGAAGTGACAGTATCGATCCGA -ACGGAAGTGACAGTATCGATGGGA -ACGGAAGTGACAGTATCGGTGCAA -ACGGAAGTGACAGTATCGGAGGAA -ACGGAAGTGACAGTATCGCAGGTA -ACGGAAGTGACAGTATCGGACTCT -ACGGAAGTGACAGTATCGAGTCCT -ACGGAAGTGACAGTATCGTAAGCC -ACGGAAGTGACAGTATCGATAGCC -ACGGAAGTGACAGTATCGTAACCG -ACGGAAGTGACAGTATCGATGCCA -ACGGAAGTGACACTATGCGGAAAC -ACGGAAGTGACACTATGCAACACC -ACGGAAGTGACACTATGCATCGAG -ACGGAAGTGACACTATGCCTCCTT -ACGGAAGTGACACTATGCCCTGTT -ACGGAAGTGACACTATGCCGGTTT -ACGGAAGTGACACTATGCGTGGTT -ACGGAAGTGACACTATGCGCCTTT -ACGGAAGTGACACTATGCGGTCTT -ACGGAAGTGACACTATGCACGCTT -ACGGAAGTGACACTATGCAGCGTT -ACGGAAGTGACACTATGCTTCGTC -ACGGAAGTGACACTATGCTCTCTC -ACGGAAGTGACACTATGCTGGATC -ACGGAAGTGACACTATGCCACTTC -ACGGAAGTGACACTATGCGTACTC -ACGGAAGTGACACTATGCGATGTC -ACGGAAGTGACACTATGCACAGTC -ACGGAAGTGACACTATGCTTGCTG -ACGGAAGTGACACTATGCTCCATG -ACGGAAGTGACACTATGCTGTGTG -ACGGAAGTGACACTATGCCTAGTG -ACGGAAGTGACACTATGCCATCTG -ACGGAAGTGACACTATGCGAGTTG -ACGGAAGTGACACTATGCAGACTG -ACGGAAGTGACACTATGCTCGGTA -ACGGAAGTGACACTATGCTGCCTA -ACGGAAGTGACACTATGCCCACTA -ACGGAAGTGACACTATGCGGAGTA -ACGGAAGTGACACTATGCTCGTCT -ACGGAAGTGACACTATGCTGCACT -ACGGAAGTGACACTATGCCTGACT -ACGGAAGTGACACTATGCCAACCT -ACGGAAGTGACACTATGCGCTACT -ACGGAAGTGACACTATGCGGATCT -ACGGAAGTGACACTATGCAAGGCT -ACGGAAGTGACACTATGCTCAACC -ACGGAAGTGACACTATGCTGTTCC -ACGGAAGTGACACTATGCATTCCC -ACGGAAGTGACACTATGCTTCTCG -ACGGAAGTGACACTATGCTAGACG -ACGGAAGTGACACTATGCGTAACG -ACGGAAGTGACACTATGCACTTCG -ACGGAAGTGACACTATGCTACGCA -ACGGAAGTGACACTATGCCTTGCA -ACGGAAGTGACACTATGCCGAACA -ACGGAAGTGACACTATGCCAGTCA -ACGGAAGTGACACTATGCGATCCA -ACGGAAGTGACACTATGCACGACA -ACGGAAGTGACACTATGCAGCTCA -ACGGAAGTGACACTATGCTCACGT -ACGGAAGTGACACTATGCCGTAGT -ACGGAAGTGACACTATGCGTCAGT -ACGGAAGTGACACTATGCGAAGGT -ACGGAAGTGACACTATGCAACCGT -ACGGAAGTGACACTATGCTTGTGC -ACGGAAGTGACACTATGCCTAAGC -ACGGAAGTGACACTATGCACTAGC -ACGGAAGTGACACTATGCAGATGC -ACGGAAGTGACACTATGCTGAAGG -ACGGAAGTGACACTATGCCAATGG -ACGGAAGTGACACTATGCATGAGG -ACGGAAGTGACACTATGCAATGGG -ACGGAAGTGACACTATGCTCCTGA -ACGGAAGTGACACTATGCTAGCGA -ACGGAAGTGACACTATGCCACAGA -ACGGAAGTGACACTATGCGCAAGA -ACGGAAGTGACACTATGCGGTTGA -ACGGAAGTGACACTATGCTCCGAT -ACGGAAGTGACACTATGCTGGCAT -ACGGAAGTGACACTATGCCGAGAT -ACGGAAGTGACACTATGCTACCAC -ACGGAAGTGACACTATGCCAGAAC -ACGGAAGTGACACTATGCGTCTAC -ACGGAAGTGACACTATGCACGTAC -ACGGAAGTGACACTATGCAGTGAC -ACGGAAGTGACACTATGCCTGTAG -ACGGAAGTGACACTATGCCCTAAG -ACGGAAGTGACACTATGCGTTCAG -ACGGAAGTGACACTATGCGCATAG -ACGGAAGTGACACTATGCGACAAG -ACGGAAGTGACACTATGCAAGCAG -ACGGAAGTGACACTATGCCGTCAA -ACGGAAGTGACACTATGCGCTGAA -ACGGAAGTGACACTATGCAGTACG -ACGGAAGTGACACTATGCATCCGA -ACGGAAGTGACACTATGCATGGGA -ACGGAAGTGACACTATGCGTGCAA -ACGGAAGTGACACTATGCGAGGAA -ACGGAAGTGACACTATGCCAGGTA -ACGGAAGTGACACTATGCGACTCT -ACGGAAGTGACACTATGCAGTCCT -ACGGAAGTGACACTATGCTAAGCC -ACGGAAGTGACACTATGCATAGCC -ACGGAAGTGACACTATGCTAACCG -ACGGAAGTGACACTATGCATGCCA -ACGGAAGTGACACTACCAGGAAAC -ACGGAAGTGACACTACCAAACACC -ACGGAAGTGACACTACCAATCGAG -ACGGAAGTGACACTACCACTCCTT -ACGGAAGTGACACTACCACCTGTT -ACGGAAGTGACACTACCACGGTTT -ACGGAAGTGACACTACCAGTGGTT -ACGGAAGTGACACTACCAGCCTTT -ACGGAAGTGACACTACCAGGTCTT -ACGGAAGTGACACTACCAACGCTT -ACGGAAGTGACACTACCAAGCGTT -ACGGAAGTGACACTACCATTCGTC -ACGGAAGTGACACTACCATCTCTC -ACGGAAGTGACACTACCATGGATC -ACGGAAGTGACACTACCACACTTC -ACGGAAGTGACACTACCAGTACTC -ACGGAAGTGACACTACCAGATGTC -ACGGAAGTGACACTACCAACAGTC -ACGGAAGTGACACTACCATTGCTG -ACGGAAGTGACACTACCATCCATG -ACGGAAGTGACACTACCATGTGTG -ACGGAAGTGACACTACCACTAGTG -ACGGAAGTGACACTACCACATCTG -ACGGAAGTGACACTACCAGAGTTG -ACGGAAGTGACACTACCAAGACTG -ACGGAAGTGACACTACCATCGGTA -ACGGAAGTGACACTACCATGCCTA -ACGGAAGTGACACTACCACCACTA -ACGGAAGTGACACTACCAGGAGTA -ACGGAAGTGACACTACCATCGTCT -ACGGAAGTGACACTACCATGCACT -ACGGAAGTGACACTACCACTGACT -ACGGAAGTGACACTACCACAACCT -ACGGAAGTGACACTACCAGCTACT -ACGGAAGTGACACTACCAGGATCT -ACGGAAGTGACACTACCAAAGGCT -ACGGAAGTGACACTACCATCAACC -ACGGAAGTGACACTACCATGTTCC -ACGGAAGTGACACTACCAATTCCC -ACGGAAGTGACACTACCATTCTCG -ACGGAAGTGACACTACCATAGACG -ACGGAAGTGACACTACCAGTAACG -ACGGAAGTGACACTACCAACTTCG -ACGGAAGTGACACTACCATACGCA -ACGGAAGTGACACTACCACTTGCA -ACGGAAGTGACACTACCACGAACA -ACGGAAGTGACACTACCACAGTCA -ACGGAAGTGACACTACCAGATCCA -ACGGAAGTGACACTACCAACGACA -ACGGAAGTGACACTACCAAGCTCA -ACGGAAGTGACACTACCATCACGT -ACGGAAGTGACACTACCACGTAGT -ACGGAAGTGACACTACCAGTCAGT -ACGGAAGTGACACTACCAGAAGGT -ACGGAAGTGACACTACCAAACCGT -ACGGAAGTGACACTACCATTGTGC -ACGGAAGTGACACTACCACTAAGC -ACGGAAGTGACACTACCAACTAGC -ACGGAAGTGACACTACCAAGATGC -ACGGAAGTGACACTACCATGAAGG -ACGGAAGTGACACTACCACAATGG -ACGGAAGTGACACTACCAATGAGG -ACGGAAGTGACACTACCAAATGGG -ACGGAAGTGACACTACCATCCTGA -ACGGAAGTGACACTACCATAGCGA -ACGGAAGTGACACTACCACACAGA -ACGGAAGTGACACTACCAGCAAGA -ACGGAAGTGACACTACCAGGTTGA -ACGGAAGTGACACTACCATCCGAT -ACGGAAGTGACACTACCATGGCAT -ACGGAAGTGACACTACCACGAGAT -ACGGAAGTGACACTACCATACCAC -ACGGAAGTGACACTACCACAGAAC -ACGGAAGTGACACTACCAGTCTAC -ACGGAAGTGACACTACCAACGTAC -ACGGAAGTGACACTACCAAGTGAC -ACGGAAGTGACACTACCACTGTAG -ACGGAAGTGACACTACCACCTAAG -ACGGAAGTGACACTACCAGTTCAG -ACGGAAGTGACACTACCAGCATAG -ACGGAAGTGACACTACCAGACAAG -ACGGAAGTGACACTACCAAAGCAG -ACGGAAGTGACACTACCACGTCAA -ACGGAAGTGACACTACCAGCTGAA -ACGGAAGTGACACTACCAAGTACG -ACGGAAGTGACACTACCAATCCGA -ACGGAAGTGACACTACCAATGGGA -ACGGAAGTGACACTACCAGTGCAA -ACGGAAGTGACACTACCAGAGGAA -ACGGAAGTGACACTACCACAGGTA -ACGGAAGTGACACTACCAGACTCT -ACGGAAGTGACACTACCAAGTCCT -ACGGAAGTGACACTACCATAAGCC -ACGGAAGTGACACTACCAATAGCC -ACGGAAGTGACACTACCATAACCG -ACGGAAGTGACACTACCAATGCCA -ACGGAAGTGACAGTAGGAGGAAAC -ACGGAAGTGACAGTAGGAAACACC -ACGGAAGTGACAGTAGGAATCGAG -ACGGAAGTGACAGTAGGACTCCTT -ACGGAAGTGACAGTAGGACCTGTT -ACGGAAGTGACAGTAGGACGGTTT -ACGGAAGTGACAGTAGGAGTGGTT -ACGGAAGTGACAGTAGGAGCCTTT -ACGGAAGTGACAGTAGGAGGTCTT -ACGGAAGTGACAGTAGGAACGCTT -ACGGAAGTGACAGTAGGAAGCGTT -ACGGAAGTGACAGTAGGATTCGTC -ACGGAAGTGACAGTAGGATCTCTC -ACGGAAGTGACAGTAGGATGGATC -ACGGAAGTGACAGTAGGACACTTC -ACGGAAGTGACAGTAGGAGTACTC -ACGGAAGTGACAGTAGGAGATGTC -ACGGAAGTGACAGTAGGAACAGTC -ACGGAAGTGACAGTAGGATTGCTG -ACGGAAGTGACAGTAGGATCCATG -ACGGAAGTGACAGTAGGATGTGTG -ACGGAAGTGACAGTAGGACTAGTG -ACGGAAGTGACAGTAGGACATCTG -ACGGAAGTGACAGTAGGAGAGTTG -ACGGAAGTGACAGTAGGAAGACTG -ACGGAAGTGACAGTAGGATCGGTA -ACGGAAGTGACAGTAGGATGCCTA -ACGGAAGTGACAGTAGGACCACTA -ACGGAAGTGACAGTAGGAGGAGTA -ACGGAAGTGACAGTAGGATCGTCT -ACGGAAGTGACAGTAGGATGCACT -ACGGAAGTGACAGTAGGACTGACT -ACGGAAGTGACAGTAGGACAACCT -ACGGAAGTGACAGTAGGAGCTACT -ACGGAAGTGACAGTAGGAGGATCT -ACGGAAGTGACAGTAGGAAAGGCT -ACGGAAGTGACAGTAGGATCAACC -ACGGAAGTGACAGTAGGATGTTCC -ACGGAAGTGACAGTAGGAATTCCC -ACGGAAGTGACAGTAGGATTCTCG -ACGGAAGTGACAGTAGGATAGACG -ACGGAAGTGACAGTAGGAGTAACG -ACGGAAGTGACAGTAGGAACTTCG -ACGGAAGTGACAGTAGGATACGCA -ACGGAAGTGACAGTAGGACTTGCA -ACGGAAGTGACAGTAGGACGAACA -ACGGAAGTGACAGTAGGACAGTCA -ACGGAAGTGACAGTAGGAGATCCA -ACGGAAGTGACAGTAGGAACGACA -ACGGAAGTGACAGTAGGAAGCTCA -ACGGAAGTGACAGTAGGATCACGT -ACGGAAGTGACAGTAGGACGTAGT -ACGGAAGTGACAGTAGGAGTCAGT -ACGGAAGTGACAGTAGGAGAAGGT -ACGGAAGTGACAGTAGGAAACCGT -ACGGAAGTGACAGTAGGATTGTGC -ACGGAAGTGACAGTAGGACTAAGC -ACGGAAGTGACAGTAGGAACTAGC -ACGGAAGTGACAGTAGGAAGATGC -ACGGAAGTGACAGTAGGATGAAGG -ACGGAAGTGACAGTAGGACAATGG -ACGGAAGTGACAGTAGGAATGAGG -ACGGAAGTGACAGTAGGAAATGGG -ACGGAAGTGACAGTAGGATCCTGA -ACGGAAGTGACAGTAGGATAGCGA -ACGGAAGTGACAGTAGGACACAGA -ACGGAAGTGACAGTAGGAGCAAGA -ACGGAAGTGACAGTAGGAGGTTGA -ACGGAAGTGACAGTAGGATCCGAT -ACGGAAGTGACAGTAGGATGGCAT -ACGGAAGTGACAGTAGGACGAGAT -ACGGAAGTGACAGTAGGATACCAC -ACGGAAGTGACAGTAGGACAGAAC -ACGGAAGTGACAGTAGGAGTCTAC -ACGGAAGTGACAGTAGGAACGTAC -ACGGAAGTGACAGTAGGAAGTGAC -ACGGAAGTGACAGTAGGACTGTAG -ACGGAAGTGACAGTAGGACCTAAG -ACGGAAGTGACAGTAGGAGTTCAG -ACGGAAGTGACAGTAGGAGCATAG -ACGGAAGTGACAGTAGGAGACAAG -ACGGAAGTGACAGTAGGAAAGCAG -ACGGAAGTGACAGTAGGACGTCAA -ACGGAAGTGACAGTAGGAGCTGAA -ACGGAAGTGACAGTAGGAAGTACG -ACGGAAGTGACAGTAGGAATCCGA -ACGGAAGTGACAGTAGGAATGGGA -ACGGAAGTGACAGTAGGAGTGCAA -ACGGAAGTGACAGTAGGAGAGGAA -ACGGAAGTGACAGTAGGACAGGTA -ACGGAAGTGACAGTAGGAGACTCT -ACGGAAGTGACAGTAGGAAGTCCT -ACGGAAGTGACAGTAGGATAAGCC -ACGGAAGTGACAGTAGGAATAGCC -ACGGAAGTGACAGTAGGATAACCG -ACGGAAGTGACAGTAGGAATGCCA -ACGGAAGTGACATCTTCGGGAAAC -ACGGAAGTGACATCTTCGAACACC -ACGGAAGTGACATCTTCGATCGAG -ACGGAAGTGACATCTTCGCTCCTT -ACGGAAGTGACATCTTCGCCTGTT -ACGGAAGTGACATCTTCGCGGTTT -ACGGAAGTGACATCTTCGGTGGTT -ACGGAAGTGACATCTTCGGCCTTT -ACGGAAGTGACATCTTCGGGTCTT -ACGGAAGTGACATCTTCGACGCTT -ACGGAAGTGACATCTTCGAGCGTT -ACGGAAGTGACATCTTCGTTCGTC -ACGGAAGTGACATCTTCGTCTCTC -ACGGAAGTGACATCTTCGTGGATC -ACGGAAGTGACATCTTCGCACTTC -ACGGAAGTGACATCTTCGGTACTC -ACGGAAGTGACATCTTCGGATGTC -ACGGAAGTGACATCTTCGACAGTC -ACGGAAGTGACATCTTCGTTGCTG -ACGGAAGTGACATCTTCGTCCATG -ACGGAAGTGACATCTTCGTGTGTG -ACGGAAGTGACATCTTCGCTAGTG -ACGGAAGTGACATCTTCGCATCTG -ACGGAAGTGACATCTTCGGAGTTG -ACGGAAGTGACATCTTCGAGACTG -ACGGAAGTGACATCTTCGTCGGTA -ACGGAAGTGACATCTTCGTGCCTA -ACGGAAGTGACATCTTCGCCACTA -ACGGAAGTGACATCTTCGGGAGTA -ACGGAAGTGACATCTTCGTCGTCT -ACGGAAGTGACATCTTCGTGCACT -ACGGAAGTGACATCTTCGCTGACT -ACGGAAGTGACATCTTCGCAACCT -ACGGAAGTGACATCTTCGGCTACT -ACGGAAGTGACATCTTCGGGATCT -ACGGAAGTGACATCTTCGAAGGCT -ACGGAAGTGACATCTTCGTCAACC -ACGGAAGTGACATCTTCGTGTTCC -ACGGAAGTGACATCTTCGATTCCC -ACGGAAGTGACATCTTCGTTCTCG -ACGGAAGTGACATCTTCGTAGACG -ACGGAAGTGACATCTTCGGTAACG -ACGGAAGTGACATCTTCGACTTCG -ACGGAAGTGACATCTTCGTACGCA -ACGGAAGTGACATCTTCGCTTGCA -ACGGAAGTGACATCTTCGCGAACA -ACGGAAGTGACATCTTCGCAGTCA -ACGGAAGTGACATCTTCGGATCCA -ACGGAAGTGACATCTTCGACGACA -ACGGAAGTGACATCTTCGAGCTCA -ACGGAAGTGACATCTTCGTCACGT -ACGGAAGTGACATCTTCGCGTAGT -ACGGAAGTGACATCTTCGGTCAGT -ACGGAAGTGACATCTTCGGAAGGT -ACGGAAGTGACATCTTCGAACCGT -ACGGAAGTGACATCTTCGTTGTGC -ACGGAAGTGACATCTTCGCTAAGC -ACGGAAGTGACATCTTCGACTAGC -ACGGAAGTGACATCTTCGAGATGC -ACGGAAGTGACATCTTCGTGAAGG -ACGGAAGTGACATCTTCGCAATGG -ACGGAAGTGACATCTTCGATGAGG -ACGGAAGTGACATCTTCGAATGGG -ACGGAAGTGACATCTTCGTCCTGA -ACGGAAGTGACATCTTCGTAGCGA -ACGGAAGTGACATCTTCGCACAGA -ACGGAAGTGACATCTTCGGCAAGA -ACGGAAGTGACATCTTCGGGTTGA -ACGGAAGTGACATCTTCGTCCGAT -ACGGAAGTGACATCTTCGTGGCAT -ACGGAAGTGACATCTTCGCGAGAT -ACGGAAGTGACATCTTCGTACCAC -ACGGAAGTGACATCTTCGCAGAAC -ACGGAAGTGACATCTTCGGTCTAC -ACGGAAGTGACATCTTCGACGTAC -ACGGAAGTGACATCTTCGAGTGAC -ACGGAAGTGACATCTTCGCTGTAG -ACGGAAGTGACATCTTCGCCTAAG -ACGGAAGTGACATCTTCGGTTCAG -ACGGAAGTGACATCTTCGGCATAG -ACGGAAGTGACATCTTCGGACAAG -ACGGAAGTGACATCTTCGAAGCAG -ACGGAAGTGACATCTTCGCGTCAA -ACGGAAGTGACATCTTCGGCTGAA -ACGGAAGTGACATCTTCGAGTACG -ACGGAAGTGACATCTTCGATCCGA -ACGGAAGTGACATCTTCGATGGGA -ACGGAAGTGACATCTTCGGTGCAA -ACGGAAGTGACATCTTCGGAGGAA -ACGGAAGTGACATCTTCGCAGGTA -ACGGAAGTGACATCTTCGGACTCT -ACGGAAGTGACATCTTCGAGTCCT -ACGGAAGTGACATCTTCGTAAGCC -ACGGAAGTGACATCTTCGATAGCC -ACGGAAGTGACATCTTCGTAACCG -ACGGAAGTGACATCTTCGATGCCA -ACGGAAGTGACAACTTGCGGAAAC -ACGGAAGTGACAACTTGCAACACC -ACGGAAGTGACAACTTGCATCGAG -ACGGAAGTGACAACTTGCCTCCTT -ACGGAAGTGACAACTTGCCCTGTT -ACGGAAGTGACAACTTGCCGGTTT -ACGGAAGTGACAACTTGCGTGGTT -ACGGAAGTGACAACTTGCGCCTTT -ACGGAAGTGACAACTTGCGGTCTT -ACGGAAGTGACAACTTGCACGCTT -ACGGAAGTGACAACTTGCAGCGTT -ACGGAAGTGACAACTTGCTTCGTC -ACGGAAGTGACAACTTGCTCTCTC -ACGGAAGTGACAACTTGCTGGATC -ACGGAAGTGACAACTTGCCACTTC -ACGGAAGTGACAACTTGCGTACTC -ACGGAAGTGACAACTTGCGATGTC -ACGGAAGTGACAACTTGCACAGTC -ACGGAAGTGACAACTTGCTTGCTG -ACGGAAGTGACAACTTGCTCCATG -ACGGAAGTGACAACTTGCTGTGTG -ACGGAAGTGACAACTTGCCTAGTG -ACGGAAGTGACAACTTGCCATCTG -ACGGAAGTGACAACTTGCGAGTTG -ACGGAAGTGACAACTTGCAGACTG -ACGGAAGTGACAACTTGCTCGGTA -ACGGAAGTGACAACTTGCTGCCTA -ACGGAAGTGACAACTTGCCCACTA -ACGGAAGTGACAACTTGCGGAGTA -ACGGAAGTGACAACTTGCTCGTCT -ACGGAAGTGACAACTTGCTGCACT -ACGGAAGTGACAACTTGCCTGACT -ACGGAAGTGACAACTTGCCAACCT -ACGGAAGTGACAACTTGCGCTACT -ACGGAAGTGACAACTTGCGGATCT -ACGGAAGTGACAACTTGCAAGGCT -ACGGAAGTGACAACTTGCTCAACC -ACGGAAGTGACAACTTGCTGTTCC -ACGGAAGTGACAACTTGCATTCCC -ACGGAAGTGACAACTTGCTTCTCG -ACGGAAGTGACAACTTGCTAGACG -ACGGAAGTGACAACTTGCGTAACG -ACGGAAGTGACAACTTGCACTTCG -ACGGAAGTGACAACTTGCTACGCA -ACGGAAGTGACAACTTGCCTTGCA -ACGGAAGTGACAACTTGCCGAACA -ACGGAAGTGACAACTTGCCAGTCA -ACGGAAGTGACAACTTGCGATCCA -ACGGAAGTGACAACTTGCACGACA -ACGGAAGTGACAACTTGCAGCTCA -ACGGAAGTGACAACTTGCTCACGT -ACGGAAGTGACAACTTGCCGTAGT -ACGGAAGTGACAACTTGCGTCAGT -ACGGAAGTGACAACTTGCGAAGGT -ACGGAAGTGACAACTTGCAACCGT -ACGGAAGTGACAACTTGCTTGTGC -ACGGAAGTGACAACTTGCCTAAGC -ACGGAAGTGACAACTTGCACTAGC -ACGGAAGTGACAACTTGCAGATGC -ACGGAAGTGACAACTTGCTGAAGG -ACGGAAGTGACAACTTGCCAATGG -ACGGAAGTGACAACTTGCATGAGG -ACGGAAGTGACAACTTGCAATGGG -ACGGAAGTGACAACTTGCTCCTGA -ACGGAAGTGACAACTTGCTAGCGA -ACGGAAGTGACAACTTGCCACAGA -ACGGAAGTGACAACTTGCGCAAGA -ACGGAAGTGACAACTTGCGGTTGA -ACGGAAGTGACAACTTGCTCCGAT -ACGGAAGTGACAACTTGCTGGCAT -ACGGAAGTGACAACTTGCCGAGAT -ACGGAAGTGACAACTTGCTACCAC -ACGGAAGTGACAACTTGCCAGAAC -ACGGAAGTGACAACTTGCGTCTAC -ACGGAAGTGACAACTTGCACGTAC -ACGGAAGTGACAACTTGCAGTGAC -ACGGAAGTGACAACTTGCCTGTAG -ACGGAAGTGACAACTTGCCCTAAG -ACGGAAGTGACAACTTGCGTTCAG -ACGGAAGTGACAACTTGCGCATAG -ACGGAAGTGACAACTTGCGACAAG -ACGGAAGTGACAACTTGCAAGCAG -ACGGAAGTGACAACTTGCCGTCAA -ACGGAAGTGACAACTTGCGCTGAA -ACGGAAGTGACAACTTGCAGTACG -ACGGAAGTGACAACTTGCATCCGA -ACGGAAGTGACAACTTGCATGGGA -ACGGAAGTGACAACTTGCGTGCAA -ACGGAAGTGACAACTTGCGAGGAA -ACGGAAGTGACAACTTGCCAGGTA -ACGGAAGTGACAACTTGCGACTCT -ACGGAAGTGACAACTTGCAGTCCT -ACGGAAGTGACAACTTGCTAAGCC -ACGGAAGTGACAACTTGCATAGCC -ACGGAAGTGACAACTTGCTAACCG -ACGGAAGTGACAACTTGCATGCCA -ACGGAAGTGACAACTCTGGGAAAC -ACGGAAGTGACAACTCTGAACACC -ACGGAAGTGACAACTCTGATCGAG -ACGGAAGTGACAACTCTGCTCCTT -ACGGAAGTGACAACTCTGCCTGTT -ACGGAAGTGACAACTCTGCGGTTT -ACGGAAGTGACAACTCTGGTGGTT -ACGGAAGTGACAACTCTGGCCTTT -ACGGAAGTGACAACTCTGGGTCTT -ACGGAAGTGACAACTCTGACGCTT -ACGGAAGTGACAACTCTGAGCGTT -ACGGAAGTGACAACTCTGTTCGTC -ACGGAAGTGACAACTCTGTCTCTC -ACGGAAGTGACAACTCTGTGGATC -ACGGAAGTGACAACTCTGCACTTC -ACGGAAGTGACAACTCTGGTACTC -ACGGAAGTGACAACTCTGGATGTC -ACGGAAGTGACAACTCTGACAGTC -ACGGAAGTGACAACTCTGTTGCTG -ACGGAAGTGACAACTCTGTCCATG -ACGGAAGTGACAACTCTGTGTGTG -ACGGAAGTGACAACTCTGCTAGTG -ACGGAAGTGACAACTCTGCATCTG -ACGGAAGTGACAACTCTGGAGTTG -ACGGAAGTGACAACTCTGAGACTG -ACGGAAGTGACAACTCTGTCGGTA -ACGGAAGTGACAACTCTGTGCCTA -ACGGAAGTGACAACTCTGCCACTA -ACGGAAGTGACAACTCTGGGAGTA -ACGGAAGTGACAACTCTGTCGTCT -ACGGAAGTGACAACTCTGTGCACT -ACGGAAGTGACAACTCTGCTGACT -ACGGAAGTGACAACTCTGCAACCT -ACGGAAGTGACAACTCTGGCTACT -ACGGAAGTGACAACTCTGGGATCT -ACGGAAGTGACAACTCTGAAGGCT -ACGGAAGTGACAACTCTGTCAACC -ACGGAAGTGACAACTCTGTGTTCC -ACGGAAGTGACAACTCTGATTCCC -ACGGAAGTGACAACTCTGTTCTCG -ACGGAAGTGACAACTCTGTAGACG -ACGGAAGTGACAACTCTGGTAACG -ACGGAAGTGACAACTCTGACTTCG -ACGGAAGTGACAACTCTGTACGCA -ACGGAAGTGACAACTCTGCTTGCA -ACGGAAGTGACAACTCTGCGAACA -ACGGAAGTGACAACTCTGCAGTCA -ACGGAAGTGACAACTCTGGATCCA -ACGGAAGTGACAACTCTGACGACA -ACGGAAGTGACAACTCTGAGCTCA -ACGGAAGTGACAACTCTGTCACGT -ACGGAAGTGACAACTCTGCGTAGT -ACGGAAGTGACAACTCTGGTCAGT -ACGGAAGTGACAACTCTGGAAGGT -ACGGAAGTGACAACTCTGAACCGT -ACGGAAGTGACAACTCTGTTGTGC -ACGGAAGTGACAACTCTGCTAAGC -ACGGAAGTGACAACTCTGACTAGC -ACGGAAGTGACAACTCTGAGATGC -ACGGAAGTGACAACTCTGTGAAGG -ACGGAAGTGACAACTCTGCAATGG -ACGGAAGTGACAACTCTGATGAGG -ACGGAAGTGACAACTCTGAATGGG -ACGGAAGTGACAACTCTGTCCTGA -ACGGAAGTGACAACTCTGTAGCGA -ACGGAAGTGACAACTCTGCACAGA -ACGGAAGTGACAACTCTGGCAAGA -ACGGAAGTGACAACTCTGGGTTGA -ACGGAAGTGACAACTCTGTCCGAT -ACGGAAGTGACAACTCTGTGGCAT -ACGGAAGTGACAACTCTGCGAGAT -ACGGAAGTGACAACTCTGTACCAC -ACGGAAGTGACAACTCTGCAGAAC -ACGGAAGTGACAACTCTGGTCTAC -ACGGAAGTGACAACTCTGACGTAC -ACGGAAGTGACAACTCTGAGTGAC -ACGGAAGTGACAACTCTGCTGTAG -ACGGAAGTGACAACTCTGCCTAAG -ACGGAAGTGACAACTCTGGTTCAG -ACGGAAGTGACAACTCTGGCATAG -ACGGAAGTGACAACTCTGGACAAG -ACGGAAGTGACAACTCTGAAGCAG -ACGGAAGTGACAACTCTGCGTCAA -ACGGAAGTGACAACTCTGGCTGAA -ACGGAAGTGACAACTCTGAGTACG -ACGGAAGTGACAACTCTGATCCGA -ACGGAAGTGACAACTCTGATGGGA -ACGGAAGTGACAACTCTGGTGCAA -ACGGAAGTGACAACTCTGGAGGAA -ACGGAAGTGACAACTCTGCAGGTA -ACGGAAGTGACAACTCTGGACTCT -ACGGAAGTGACAACTCTGAGTCCT -ACGGAAGTGACAACTCTGTAAGCC -ACGGAAGTGACAACTCTGATAGCC -ACGGAAGTGACAACTCTGTAACCG -ACGGAAGTGACAACTCTGATGCCA -ACGGAAGTGACACCTCAAGGAAAC -ACGGAAGTGACACCTCAAAACACC -ACGGAAGTGACACCTCAAATCGAG -ACGGAAGTGACACCTCAACTCCTT -ACGGAAGTGACACCTCAACCTGTT -ACGGAAGTGACACCTCAACGGTTT -ACGGAAGTGACACCTCAAGTGGTT -ACGGAAGTGACACCTCAAGCCTTT -ACGGAAGTGACACCTCAAGGTCTT -ACGGAAGTGACACCTCAAACGCTT -ACGGAAGTGACACCTCAAAGCGTT -ACGGAAGTGACACCTCAATTCGTC -ACGGAAGTGACACCTCAATCTCTC -ACGGAAGTGACACCTCAATGGATC -ACGGAAGTGACACCTCAACACTTC -ACGGAAGTGACACCTCAAGTACTC -ACGGAAGTGACACCTCAAGATGTC -ACGGAAGTGACACCTCAAACAGTC -ACGGAAGTGACACCTCAATTGCTG -ACGGAAGTGACACCTCAATCCATG -ACGGAAGTGACACCTCAATGTGTG -ACGGAAGTGACACCTCAACTAGTG -ACGGAAGTGACACCTCAACATCTG -ACGGAAGTGACACCTCAAGAGTTG -ACGGAAGTGACACCTCAAAGACTG -ACGGAAGTGACACCTCAATCGGTA -ACGGAAGTGACACCTCAATGCCTA -ACGGAAGTGACACCTCAACCACTA -ACGGAAGTGACACCTCAAGGAGTA -ACGGAAGTGACACCTCAATCGTCT -ACGGAAGTGACACCTCAATGCACT -ACGGAAGTGACACCTCAACTGACT -ACGGAAGTGACACCTCAACAACCT -ACGGAAGTGACACCTCAAGCTACT -ACGGAAGTGACACCTCAAGGATCT -ACGGAAGTGACACCTCAAAAGGCT -ACGGAAGTGACACCTCAATCAACC -ACGGAAGTGACACCTCAATGTTCC -ACGGAAGTGACACCTCAAATTCCC -ACGGAAGTGACACCTCAATTCTCG -ACGGAAGTGACACCTCAATAGACG -ACGGAAGTGACACCTCAAGTAACG -ACGGAAGTGACACCTCAAACTTCG -ACGGAAGTGACACCTCAATACGCA -ACGGAAGTGACACCTCAACTTGCA -ACGGAAGTGACACCTCAACGAACA -ACGGAAGTGACACCTCAACAGTCA -ACGGAAGTGACACCTCAAGATCCA -ACGGAAGTGACACCTCAAACGACA -ACGGAAGTGACACCTCAAAGCTCA -ACGGAAGTGACACCTCAATCACGT -ACGGAAGTGACACCTCAACGTAGT -ACGGAAGTGACACCTCAAGTCAGT -ACGGAAGTGACACCTCAAGAAGGT -ACGGAAGTGACACCTCAAAACCGT -ACGGAAGTGACACCTCAATTGTGC -ACGGAAGTGACACCTCAACTAAGC -ACGGAAGTGACACCTCAAACTAGC -ACGGAAGTGACACCTCAAAGATGC -ACGGAAGTGACACCTCAATGAAGG -ACGGAAGTGACACCTCAACAATGG -ACGGAAGTGACACCTCAAATGAGG -ACGGAAGTGACACCTCAAAATGGG -ACGGAAGTGACACCTCAATCCTGA -ACGGAAGTGACACCTCAATAGCGA -ACGGAAGTGACACCTCAACACAGA -ACGGAAGTGACACCTCAAGCAAGA -ACGGAAGTGACACCTCAAGGTTGA -ACGGAAGTGACACCTCAATCCGAT -ACGGAAGTGACACCTCAATGGCAT -ACGGAAGTGACACCTCAACGAGAT -ACGGAAGTGACACCTCAATACCAC -ACGGAAGTGACACCTCAACAGAAC -ACGGAAGTGACACCTCAAGTCTAC -ACGGAAGTGACACCTCAAACGTAC -ACGGAAGTGACACCTCAAAGTGAC -ACGGAAGTGACACCTCAACTGTAG -ACGGAAGTGACACCTCAACCTAAG -ACGGAAGTGACACCTCAAGTTCAG -ACGGAAGTGACACCTCAAGCATAG -ACGGAAGTGACACCTCAAGACAAG -ACGGAAGTGACACCTCAAAAGCAG -ACGGAAGTGACACCTCAACGTCAA -ACGGAAGTGACACCTCAAGCTGAA -ACGGAAGTGACACCTCAAAGTACG -ACGGAAGTGACACCTCAAATCCGA -ACGGAAGTGACACCTCAAATGGGA -ACGGAAGTGACACCTCAAGTGCAA -ACGGAAGTGACACCTCAAGAGGAA -ACGGAAGTGACACCTCAACAGGTA -ACGGAAGTGACACCTCAAGACTCT -ACGGAAGTGACACCTCAAAGTCCT -ACGGAAGTGACACCTCAATAAGCC -ACGGAAGTGACACCTCAAATAGCC -ACGGAAGTGACACCTCAATAACCG -ACGGAAGTGACACCTCAAATGCCA -ACGGAAGTGACAACTGCTGGAAAC -ACGGAAGTGACAACTGCTAACACC -ACGGAAGTGACAACTGCTATCGAG -ACGGAAGTGACAACTGCTCTCCTT -ACGGAAGTGACAACTGCTCCTGTT -ACGGAAGTGACAACTGCTCGGTTT -ACGGAAGTGACAACTGCTGTGGTT -ACGGAAGTGACAACTGCTGCCTTT -ACGGAAGTGACAACTGCTGGTCTT -ACGGAAGTGACAACTGCTACGCTT -ACGGAAGTGACAACTGCTAGCGTT -ACGGAAGTGACAACTGCTTTCGTC -ACGGAAGTGACAACTGCTTCTCTC -ACGGAAGTGACAACTGCTTGGATC -ACGGAAGTGACAACTGCTCACTTC -ACGGAAGTGACAACTGCTGTACTC -ACGGAAGTGACAACTGCTGATGTC -ACGGAAGTGACAACTGCTACAGTC -ACGGAAGTGACAACTGCTTTGCTG -ACGGAAGTGACAACTGCTTCCATG -ACGGAAGTGACAACTGCTTGTGTG -ACGGAAGTGACAACTGCTCTAGTG -ACGGAAGTGACAACTGCTCATCTG -ACGGAAGTGACAACTGCTGAGTTG -ACGGAAGTGACAACTGCTAGACTG -ACGGAAGTGACAACTGCTTCGGTA -ACGGAAGTGACAACTGCTTGCCTA -ACGGAAGTGACAACTGCTCCACTA -ACGGAAGTGACAACTGCTGGAGTA -ACGGAAGTGACAACTGCTTCGTCT -ACGGAAGTGACAACTGCTTGCACT -ACGGAAGTGACAACTGCTCTGACT -ACGGAAGTGACAACTGCTCAACCT -ACGGAAGTGACAACTGCTGCTACT -ACGGAAGTGACAACTGCTGGATCT -ACGGAAGTGACAACTGCTAAGGCT -ACGGAAGTGACAACTGCTTCAACC -ACGGAAGTGACAACTGCTTGTTCC -ACGGAAGTGACAACTGCTATTCCC -ACGGAAGTGACAACTGCTTTCTCG -ACGGAAGTGACAACTGCTTAGACG -ACGGAAGTGACAACTGCTGTAACG -ACGGAAGTGACAACTGCTACTTCG -ACGGAAGTGACAACTGCTTACGCA -ACGGAAGTGACAACTGCTCTTGCA -ACGGAAGTGACAACTGCTCGAACA -ACGGAAGTGACAACTGCTCAGTCA -ACGGAAGTGACAACTGCTGATCCA -ACGGAAGTGACAACTGCTACGACA -ACGGAAGTGACAACTGCTAGCTCA -ACGGAAGTGACAACTGCTTCACGT -ACGGAAGTGACAACTGCTCGTAGT -ACGGAAGTGACAACTGCTGTCAGT -ACGGAAGTGACAACTGCTGAAGGT -ACGGAAGTGACAACTGCTAACCGT -ACGGAAGTGACAACTGCTTTGTGC -ACGGAAGTGACAACTGCTCTAAGC -ACGGAAGTGACAACTGCTACTAGC -ACGGAAGTGACAACTGCTAGATGC -ACGGAAGTGACAACTGCTTGAAGG -ACGGAAGTGACAACTGCTCAATGG -ACGGAAGTGACAACTGCTATGAGG -ACGGAAGTGACAACTGCTAATGGG -ACGGAAGTGACAACTGCTTCCTGA -ACGGAAGTGACAACTGCTTAGCGA -ACGGAAGTGACAACTGCTCACAGA -ACGGAAGTGACAACTGCTGCAAGA -ACGGAAGTGACAACTGCTGGTTGA -ACGGAAGTGACAACTGCTTCCGAT -ACGGAAGTGACAACTGCTTGGCAT -ACGGAAGTGACAACTGCTCGAGAT -ACGGAAGTGACAACTGCTTACCAC -ACGGAAGTGACAACTGCTCAGAAC -ACGGAAGTGACAACTGCTGTCTAC -ACGGAAGTGACAACTGCTACGTAC -ACGGAAGTGACAACTGCTAGTGAC -ACGGAAGTGACAACTGCTCTGTAG -ACGGAAGTGACAACTGCTCCTAAG -ACGGAAGTGACAACTGCTGTTCAG -ACGGAAGTGACAACTGCTGCATAG -ACGGAAGTGACAACTGCTGACAAG -ACGGAAGTGACAACTGCTAAGCAG -ACGGAAGTGACAACTGCTCGTCAA -ACGGAAGTGACAACTGCTGCTGAA -ACGGAAGTGACAACTGCTAGTACG -ACGGAAGTGACAACTGCTATCCGA -ACGGAAGTGACAACTGCTATGGGA -ACGGAAGTGACAACTGCTGTGCAA -ACGGAAGTGACAACTGCTGAGGAA -ACGGAAGTGACAACTGCTCAGGTA -ACGGAAGTGACAACTGCTGACTCT -ACGGAAGTGACAACTGCTAGTCCT -ACGGAAGTGACAACTGCTTAAGCC -ACGGAAGTGACAACTGCTATAGCC -ACGGAAGTGACAACTGCTTAACCG -ACGGAAGTGACAACTGCTATGCCA -ACGGAAGTGACATCTGGAGGAAAC -ACGGAAGTGACATCTGGAAACACC -ACGGAAGTGACATCTGGAATCGAG -ACGGAAGTGACATCTGGACTCCTT -ACGGAAGTGACATCTGGACCTGTT -ACGGAAGTGACATCTGGACGGTTT -ACGGAAGTGACATCTGGAGTGGTT -ACGGAAGTGACATCTGGAGCCTTT -ACGGAAGTGACATCTGGAGGTCTT -ACGGAAGTGACATCTGGAACGCTT -ACGGAAGTGACATCTGGAAGCGTT -ACGGAAGTGACATCTGGATTCGTC -ACGGAAGTGACATCTGGATCTCTC -ACGGAAGTGACATCTGGATGGATC -ACGGAAGTGACATCTGGACACTTC -ACGGAAGTGACATCTGGAGTACTC -ACGGAAGTGACATCTGGAGATGTC -ACGGAAGTGACATCTGGAACAGTC -ACGGAAGTGACATCTGGATTGCTG -ACGGAAGTGACATCTGGATCCATG -ACGGAAGTGACATCTGGATGTGTG -ACGGAAGTGACATCTGGACTAGTG -ACGGAAGTGACATCTGGACATCTG -ACGGAAGTGACATCTGGAGAGTTG -ACGGAAGTGACATCTGGAAGACTG -ACGGAAGTGACATCTGGATCGGTA -ACGGAAGTGACATCTGGATGCCTA -ACGGAAGTGACATCTGGACCACTA -ACGGAAGTGACATCTGGAGGAGTA -ACGGAAGTGACATCTGGATCGTCT -ACGGAAGTGACATCTGGATGCACT -ACGGAAGTGACATCTGGACTGACT -ACGGAAGTGACATCTGGACAACCT -ACGGAAGTGACATCTGGAGCTACT -ACGGAAGTGACATCTGGAGGATCT -ACGGAAGTGACATCTGGAAAGGCT -ACGGAAGTGACATCTGGATCAACC -ACGGAAGTGACATCTGGATGTTCC -ACGGAAGTGACATCTGGAATTCCC -ACGGAAGTGACATCTGGATTCTCG -ACGGAAGTGACATCTGGATAGACG -ACGGAAGTGACATCTGGAGTAACG -ACGGAAGTGACATCTGGAACTTCG -ACGGAAGTGACATCTGGATACGCA -ACGGAAGTGACATCTGGACTTGCA -ACGGAAGTGACATCTGGACGAACA -ACGGAAGTGACATCTGGACAGTCA -ACGGAAGTGACATCTGGAGATCCA -ACGGAAGTGACATCTGGAACGACA -ACGGAAGTGACATCTGGAAGCTCA -ACGGAAGTGACATCTGGATCACGT -ACGGAAGTGACATCTGGACGTAGT -ACGGAAGTGACATCTGGAGTCAGT -ACGGAAGTGACATCTGGAGAAGGT -ACGGAAGTGACATCTGGAAACCGT -ACGGAAGTGACATCTGGATTGTGC -ACGGAAGTGACATCTGGACTAAGC -ACGGAAGTGACATCTGGAACTAGC -ACGGAAGTGACATCTGGAAGATGC -ACGGAAGTGACATCTGGATGAAGG -ACGGAAGTGACATCTGGACAATGG -ACGGAAGTGACATCTGGAATGAGG -ACGGAAGTGACATCTGGAAATGGG -ACGGAAGTGACATCTGGATCCTGA -ACGGAAGTGACATCTGGATAGCGA -ACGGAAGTGACATCTGGACACAGA -ACGGAAGTGACATCTGGAGCAAGA -ACGGAAGTGACATCTGGAGGTTGA -ACGGAAGTGACATCTGGATCCGAT -ACGGAAGTGACATCTGGATGGCAT -ACGGAAGTGACATCTGGACGAGAT -ACGGAAGTGACATCTGGATACCAC -ACGGAAGTGACATCTGGACAGAAC -ACGGAAGTGACATCTGGAGTCTAC -ACGGAAGTGACATCTGGAACGTAC -ACGGAAGTGACATCTGGAAGTGAC -ACGGAAGTGACATCTGGACTGTAG -ACGGAAGTGACATCTGGACCTAAG -ACGGAAGTGACATCTGGAGTTCAG -ACGGAAGTGACATCTGGAGCATAG -ACGGAAGTGACATCTGGAGACAAG -ACGGAAGTGACATCTGGAAAGCAG -ACGGAAGTGACATCTGGACGTCAA -ACGGAAGTGACATCTGGAGCTGAA -ACGGAAGTGACATCTGGAAGTACG -ACGGAAGTGACATCTGGAATCCGA -ACGGAAGTGACATCTGGAATGGGA -ACGGAAGTGACATCTGGAGTGCAA -ACGGAAGTGACATCTGGAGAGGAA -ACGGAAGTGACATCTGGACAGGTA -ACGGAAGTGACATCTGGAGACTCT -ACGGAAGTGACATCTGGAAGTCCT -ACGGAAGTGACATCTGGATAAGCC -ACGGAAGTGACATCTGGAATAGCC -ACGGAAGTGACATCTGGATAACCG -ACGGAAGTGACATCTGGAATGCCA -ACGGAAGTGACAGCTAAGGGAAAC -ACGGAAGTGACAGCTAAGAACACC -ACGGAAGTGACAGCTAAGATCGAG -ACGGAAGTGACAGCTAAGCTCCTT -ACGGAAGTGACAGCTAAGCCTGTT -ACGGAAGTGACAGCTAAGCGGTTT -ACGGAAGTGACAGCTAAGGTGGTT -ACGGAAGTGACAGCTAAGGCCTTT -ACGGAAGTGACAGCTAAGGGTCTT -ACGGAAGTGACAGCTAAGACGCTT -ACGGAAGTGACAGCTAAGAGCGTT -ACGGAAGTGACAGCTAAGTTCGTC -ACGGAAGTGACAGCTAAGTCTCTC -ACGGAAGTGACAGCTAAGTGGATC -ACGGAAGTGACAGCTAAGCACTTC -ACGGAAGTGACAGCTAAGGTACTC -ACGGAAGTGACAGCTAAGGATGTC -ACGGAAGTGACAGCTAAGACAGTC -ACGGAAGTGACAGCTAAGTTGCTG -ACGGAAGTGACAGCTAAGTCCATG -ACGGAAGTGACAGCTAAGTGTGTG -ACGGAAGTGACAGCTAAGCTAGTG -ACGGAAGTGACAGCTAAGCATCTG -ACGGAAGTGACAGCTAAGGAGTTG -ACGGAAGTGACAGCTAAGAGACTG -ACGGAAGTGACAGCTAAGTCGGTA -ACGGAAGTGACAGCTAAGTGCCTA -ACGGAAGTGACAGCTAAGCCACTA -ACGGAAGTGACAGCTAAGGGAGTA -ACGGAAGTGACAGCTAAGTCGTCT -ACGGAAGTGACAGCTAAGTGCACT -ACGGAAGTGACAGCTAAGCTGACT -ACGGAAGTGACAGCTAAGCAACCT -ACGGAAGTGACAGCTAAGGCTACT -ACGGAAGTGACAGCTAAGGGATCT -ACGGAAGTGACAGCTAAGAAGGCT -ACGGAAGTGACAGCTAAGTCAACC -ACGGAAGTGACAGCTAAGTGTTCC -ACGGAAGTGACAGCTAAGATTCCC -ACGGAAGTGACAGCTAAGTTCTCG -ACGGAAGTGACAGCTAAGTAGACG -ACGGAAGTGACAGCTAAGGTAACG -ACGGAAGTGACAGCTAAGACTTCG -ACGGAAGTGACAGCTAAGTACGCA -ACGGAAGTGACAGCTAAGCTTGCA -ACGGAAGTGACAGCTAAGCGAACA -ACGGAAGTGACAGCTAAGCAGTCA -ACGGAAGTGACAGCTAAGGATCCA -ACGGAAGTGACAGCTAAGACGACA -ACGGAAGTGACAGCTAAGAGCTCA -ACGGAAGTGACAGCTAAGTCACGT -ACGGAAGTGACAGCTAAGCGTAGT -ACGGAAGTGACAGCTAAGGTCAGT -ACGGAAGTGACAGCTAAGGAAGGT -ACGGAAGTGACAGCTAAGAACCGT -ACGGAAGTGACAGCTAAGTTGTGC -ACGGAAGTGACAGCTAAGCTAAGC -ACGGAAGTGACAGCTAAGACTAGC -ACGGAAGTGACAGCTAAGAGATGC -ACGGAAGTGACAGCTAAGTGAAGG -ACGGAAGTGACAGCTAAGCAATGG -ACGGAAGTGACAGCTAAGATGAGG -ACGGAAGTGACAGCTAAGAATGGG -ACGGAAGTGACAGCTAAGTCCTGA -ACGGAAGTGACAGCTAAGTAGCGA -ACGGAAGTGACAGCTAAGCACAGA -ACGGAAGTGACAGCTAAGGCAAGA -ACGGAAGTGACAGCTAAGGGTTGA -ACGGAAGTGACAGCTAAGTCCGAT -ACGGAAGTGACAGCTAAGTGGCAT -ACGGAAGTGACAGCTAAGCGAGAT -ACGGAAGTGACAGCTAAGTACCAC -ACGGAAGTGACAGCTAAGCAGAAC -ACGGAAGTGACAGCTAAGGTCTAC -ACGGAAGTGACAGCTAAGACGTAC -ACGGAAGTGACAGCTAAGAGTGAC -ACGGAAGTGACAGCTAAGCTGTAG -ACGGAAGTGACAGCTAAGCCTAAG -ACGGAAGTGACAGCTAAGGTTCAG -ACGGAAGTGACAGCTAAGGCATAG -ACGGAAGTGACAGCTAAGGACAAG -ACGGAAGTGACAGCTAAGAAGCAG -ACGGAAGTGACAGCTAAGCGTCAA -ACGGAAGTGACAGCTAAGGCTGAA -ACGGAAGTGACAGCTAAGAGTACG -ACGGAAGTGACAGCTAAGATCCGA -ACGGAAGTGACAGCTAAGATGGGA -ACGGAAGTGACAGCTAAGGTGCAA -ACGGAAGTGACAGCTAAGGAGGAA -ACGGAAGTGACAGCTAAGCAGGTA -ACGGAAGTGACAGCTAAGGACTCT -ACGGAAGTGACAGCTAAGAGTCCT -ACGGAAGTGACAGCTAAGTAAGCC -ACGGAAGTGACAGCTAAGATAGCC -ACGGAAGTGACAGCTAAGTAACCG -ACGGAAGTGACAGCTAAGATGCCA -ACGGAAGTGACAACCTCAGGAAAC -ACGGAAGTGACAACCTCAAACACC -ACGGAAGTGACAACCTCAATCGAG -ACGGAAGTGACAACCTCACTCCTT -ACGGAAGTGACAACCTCACCTGTT -ACGGAAGTGACAACCTCACGGTTT -ACGGAAGTGACAACCTCAGTGGTT -ACGGAAGTGACAACCTCAGCCTTT -ACGGAAGTGACAACCTCAGGTCTT -ACGGAAGTGACAACCTCAACGCTT -ACGGAAGTGACAACCTCAAGCGTT -ACGGAAGTGACAACCTCATTCGTC -ACGGAAGTGACAACCTCATCTCTC -ACGGAAGTGACAACCTCATGGATC -ACGGAAGTGACAACCTCACACTTC -ACGGAAGTGACAACCTCAGTACTC -ACGGAAGTGACAACCTCAGATGTC -ACGGAAGTGACAACCTCAACAGTC -ACGGAAGTGACAACCTCATTGCTG -ACGGAAGTGACAACCTCATCCATG -ACGGAAGTGACAACCTCATGTGTG -ACGGAAGTGACAACCTCACTAGTG -ACGGAAGTGACAACCTCACATCTG -ACGGAAGTGACAACCTCAGAGTTG -ACGGAAGTGACAACCTCAAGACTG -ACGGAAGTGACAACCTCATCGGTA -ACGGAAGTGACAACCTCATGCCTA -ACGGAAGTGACAACCTCACCACTA -ACGGAAGTGACAACCTCAGGAGTA -ACGGAAGTGACAACCTCATCGTCT -ACGGAAGTGACAACCTCATGCACT -ACGGAAGTGACAACCTCACTGACT -ACGGAAGTGACAACCTCACAACCT -ACGGAAGTGACAACCTCAGCTACT -ACGGAAGTGACAACCTCAGGATCT -ACGGAAGTGACAACCTCAAAGGCT -ACGGAAGTGACAACCTCATCAACC -ACGGAAGTGACAACCTCATGTTCC -ACGGAAGTGACAACCTCAATTCCC -ACGGAAGTGACAACCTCATTCTCG -ACGGAAGTGACAACCTCATAGACG -ACGGAAGTGACAACCTCAGTAACG -ACGGAAGTGACAACCTCAACTTCG -ACGGAAGTGACAACCTCATACGCA -ACGGAAGTGACAACCTCACTTGCA -ACGGAAGTGACAACCTCACGAACA -ACGGAAGTGACAACCTCACAGTCA -ACGGAAGTGACAACCTCAGATCCA -ACGGAAGTGACAACCTCAACGACA -ACGGAAGTGACAACCTCAAGCTCA -ACGGAAGTGACAACCTCATCACGT -ACGGAAGTGACAACCTCACGTAGT -ACGGAAGTGACAACCTCAGTCAGT -ACGGAAGTGACAACCTCAGAAGGT -ACGGAAGTGACAACCTCAAACCGT -ACGGAAGTGACAACCTCATTGTGC -ACGGAAGTGACAACCTCACTAAGC -ACGGAAGTGACAACCTCAACTAGC -ACGGAAGTGACAACCTCAAGATGC -ACGGAAGTGACAACCTCATGAAGG -ACGGAAGTGACAACCTCACAATGG -ACGGAAGTGACAACCTCAATGAGG -ACGGAAGTGACAACCTCAAATGGG -ACGGAAGTGACAACCTCATCCTGA -ACGGAAGTGACAACCTCATAGCGA -ACGGAAGTGACAACCTCACACAGA -ACGGAAGTGACAACCTCAGCAAGA -ACGGAAGTGACAACCTCAGGTTGA -ACGGAAGTGACAACCTCATCCGAT -ACGGAAGTGACAACCTCATGGCAT -ACGGAAGTGACAACCTCACGAGAT -ACGGAAGTGACAACCTCATACCAC -ACGGAAGTGACAACCTCACAGAAC -ACGGAAGTGACAACCTCAGTCTAC -ACGGAAGTGACAACCTCAACGTAC -ACGGAAGTGACAACCTCAAGTGAC -ACGGAAGTGACAACCTCACTGTAG -ACGGAAGTGACAACCTCACCTAAG -ACGGAAGTGACAACCTCAGTTCAG -ACGGAAGTGACAACCTCAGCATAG -ACGGAAGTGACAACCTCAGACAAG -ACGGAAGTGACAACCTCAAAGCAG -ACGGAAGTGACAACCTCACGTCAA -ACGGAAGTGACAACCTCAGCTGAA -ACGGAAGTGACAACCTCAAGTACG -ACGGAAGTGACAACCTCAATCCGA -ACGGAAGTGACAACCTCAATGGGA -ACGGAAGTGACAACCTCAGTGCAA -ACGGAAGTGACAACCTCAGAGGAA -ACGGAAGTGACAACCTCACAGGTA -ACGGAAGTGACAACCTCAGACTCT -ACGGAAGTGACAACCTCAAGTCCT -ACGGAAGTGACAACCTCATAAGCC -ACGGAAGTGACAACCTCAATAGCC -ACGGAAGTGACAACCTCATAACCG -ACGGAAGTGACAACCTCAATGCCA -ACGGAAGTGACATCCTGTGGAAAC -ACGGAAGTGACATCCTGTAACACC -ACGGAAGTGACATCCTGTATCGAG -ACGGAAGTGACATCCTGTCTCCTT -ACGGAAGTGACATCCTGTCCTGTT -ACGGAAGTGACATCCTGTCGGTTT -ACGGAAGTGACATCCTGTGTGGTT -ACGGAAGTGACATCCTGTGCCTTT -ACGGAAGTGACATCCTGTGGTCTT -ACGGAAGTGACATCCTGTACGCTT -ACGGAAGTGACATCCTGTAGCGTT -ACGGAAGTGACATCCTGTTTCGTC -ACGGAAGTGACATCCTGTTCTCTC -ACGGAAGTGACATCCTGTTGGATC -ACGGAAGTGACATCCTGTCACTTC -ACGGAAGTGACATCCTGTGTACTC -ACGGAAGTGACATCCTGTGATGTC -ACGGAAGTGACATCCTGTACAGTC -ACGGAAGTGACATCCTGTTTGCTG -ACGGAAGTGACATCCTGTTCCATG -ACGGAAGTGACATCCTGTTGTGTG -ACGGAAGTGACATCCTGTCTAGTG -ACGGAAGTGACATCCTGTCATCTG -ACGGAAGTGACATCCTGTGAGTTG -ACGGAAGTGACATCCTGTAGACTG -ACGGAAGTGACATCCTGTTCGGTA -ACGGAAGTGACATCCTGTTGCCTA -ACGGAAGTGACATCCTGTCCACTA -ACGGAAGTGACATCCTGTGGAGTA -ACGGAAGTGACATCCTGTTCGTCT -ACGGAAGTGACATCCTGTTGCACT -ACGGAAGTGACATCCTGTCTGACT -ACGGAAGTGACATCCTGTCAACCT -ACGGAAGTGACATCCTGTGCTACT -ACGGAAGTGACATCCTGTGGATCT -ACGGAAGTGACATCCTGTAAGGCT -ACGGAAGTGACATCCTGTTCAACC -ACGGAAGTGACATCCTGTTGTTCC -ACGGAAGTGACATCCTGTATTCCC -ACGGAAGTGACATCCTGTTTCTCG -ACGGAAGTGACATCCTGTTAGACG -ACGGAAGTGACATCCTGTGTAACG -ACGGAAGTGACATCCTGTACTTCG -ACGGAAGTGACATCCTGTTACGCA -ACGGAAGTGACATCCTGTCTTGCA -ACGGAAGTGACATCCTGTCGAACA -ACGGAAGTGACATCCTGTCAGTCA -ACGGAAGTGACATCCTGTGATCCA -ACGGAAGTGACATCCTGTACGACA -ACGGAAGTGACATCCTGTAGCTCA -ACGGAAGTGACATCCTGTTCACGT -ACGGAAGTGACATCCTGTCGTAGT -ACGGAAGTGACATCCTGTGTCAGT -ACGGAAGTGACATCCTGTGAAGGT -ACGGAAGTGACATCCTGTAACCGT -ACGGAAGTGACATCCTGTTTGTGC -ACGGAAGTGACATCCTGTCTAAGC -ACGGAAGTGACATCCTGTACTAGC -ACGGAAGTGACATCCTGTAGATGC -ACGGAAGTGACATCCTGTTGAAGG -ACGGAAGTGACATCCTGTCAATGG -ACGGAAGTGACATCCTGTATGAGG -ACGGAAGTGACATCCTGTAATGGG -ACGGAAGTGACATCCTGTTCCTGA -ACGGAAGTGACATCCTGTTAGCGA -ACGGAAGTGACATCCTGTCACAGA -ACGGAAGTGACATCCTGTGCAAGA -ACGGAAGTGACATCCTGTGGTTGA -ACGGAAGTGACATCCTGTTCCGAT -ACGGAAGTGACATCCTGTTGGCAT -ACGGAAGTGACATCCTGTCGAGAT -ACGGAAGTGACATCCTGTTACCAC -ACGGAAGTGACATCCTGTCAGAAC -ACGGAAGTGACATCCTGTGTCTAC -ACGGAAGTGACATCCTGTACGTAC -ACGGAAGTGACATCCTGTAGTGAC -ACGGAAGTGACATCCTGTCTGTAG -ACGGAAGTGACATCCTGTCCTAAG -ACGGAAGTGACATCCTGTGTTCAG -ACGGAAGTGACATCCTGTGCATAG -ACGGAAGTGACATCCTGTGACAAG -ACGGAAGTGACATCCTGTAAGCAG -ACGGAAGTGACATCCTGTCGTCAA -ACGGAAGTGACATCCTGTGCTGAA -ACGGAAGTGACATCCTGTAGTACG -ACGGAAGTGACATCCTGTATCCGA -ACGGAAGTGACATCCTGTATGGGA -ACGGAAGTGACATCCTGTGTGCAA -ACGGAAGTGACATCCTGTGAGGAA -ACGGAAGTGACATCCTGTCAGGTA -ACGGAAGTGACATCCTGTGACTCT -ACGGAAGTGACATCCTGTAGTCCT -ACGGAAGTGACATCCTGTTAAGCC -ACGGAAGTGACATCCTGTATAGCC -ACGGAAGTGACATCCTGTTAACCG -ACGGAAGTGACATCCTGTATGCCA -ACGGAAGTGACACCCATTGGAAAC -ACGGAAGTGACACCCATTAACACC -ACGGAAGTGACACCCATTATCGAG -ACGGAAGTGACACCCATTCTCCTT -ACGGAAGTGACACCCATTCCTGTT -ACGGAAGTGACACCCATTCGGTTT -ACGGAAGTGACACCCATTGTGGTT -ACGGAAGTGACACCCATTGCCTTT -ACGGAAGTGACACCCATTGGTCTT -ACGGAAGTGACACCCATTACGCTT -ACGGAAGTGACACCCATTAGCGTT -ACGGAAGTGACACCCATTTTCGTC -ACGGAAGTGACACCCATTTCTCTC -ACGGAAGTGACACCCATTTGGATC -ACGGAAGTGACACCCATTCACTTC -ACGGAAGTGACACCCATTGTACTC -ACGGAAGTGACACCCATTGATGTC -ACGGAAGTGACACCCATTACAGTC -ACGGAAGTGACACCCATTTTGCTG -ACGGAAGTGACACCCATTTCCATG -ACGGAAGTGACACCCATTTGTGTG -ACGGAAGTGACACCCATTCTAGTG -ACGGAAGTGACACCCATTCATCTG -ACGGAAGTGACACCCATTGAGTTG -ACGGAAGTGACACCCATTAGACTG -ACGGAAGTGACACCCATTTCGGTA -ACGGAAGTGACACCCATTTGCCTA -ACGGAAGTGACACCCATTCCACTA -ACGGAAGTGACACCCATTGGAGTA -ACGGAAGTGACACCCATTTCGTCT -ACGGAAGTGACACCCATTTGCACT -ACGGAAGTGACACCCATTCTGACT -ACGGAAGTGACACCCATTCAACCT -ACGGAAGTGACACCCATTGCTACT -ACGGAAGTGACACCCATTGGATCT -ACGGAAGTGACACCCATTAAGGCT -ACGGAAGTGACACCCATTTCAACC -ACGGAAGTGACACCCATTTGTTCC -ACGGAAGTGACACCCATTATTCCC -ACGGAAGTGACACCCATTTTCTCG -ACGGAAGTGACACCCATTTAGACG -ACGGAAGTGACACCCATTGTAACG -ACGGAAGTGACACCCATTACTTCG -ACGGAAGTGACACCCATTTACGCA -ACGGAAGTGACACCCATTCTTGCA -ACGGAAGTGACACCCATTCGAACA -ACGGAAGTGACACCCATTCAGTCA -ACGGAAGTGACACCCATTGATCCA -ACGGAAGTGACACCCATTACGACA -ACGGAAGTGACACCCATTAGCTCA -ACGGAAGTGACACCCATTTCACGT -ACGGAAGTGACACCCATTCGTAGT -ACGGAAGTGACACCCATTGTCAGT -ACGGAAGTGACACCCATTGAAGGT -ACGGAAGTGACACCCATTAACCGT -ACGGAAGTGACACCCATTTTGTGC -ACGGAAGTGACACCCATTCTAAGC -ACGGAAGTGACACCCATTACTAGC -ACGGAAGTGACACCCATTAGATGC -ACGGAAGTGACACCCATTTGAAGG -ACGGAAGTGACACCCATTCAATGG -ACGGAAGTGACACCCATTATGAGG -ACGGAAGTGACACCCATTAATGGG -ACGGAAGTGACACCCATTTCCTGA -ACGGAAGTGACACCCATTTAGCGA -ACGGAAGTGACACCCATTCACAGA -ACGGAAGTGACACCCATTGCAAGA -ACGGAAGTGACACCCATTGGTTGA -ACGGAAGTGACACCCATTTCCGAT -ACGGAAGTGACACCCATTTGGCAT -ACGGAAGTGACACCCATTCGAGAT -ACGGAAGTGACACCCATTTACCAC -ACGGAAGTGACACCCATTCAGAAC -ACGGAAGTGACACCCATTGTCTAC -ACGGAAGTGACACCCATTACGTAC -ACGGAAGTGACACCCATTAGTGAC -ACGGAAGTGACACCCATTCTGTAG -ACGGAAGTGACACCCATTCCTAAG -ACGGAAGTGACACCCATTGTTCAG -ACGGAAGTGACACCCATTGCATAG -ACGGAAGTGACACCCATTGACAAG -ACGGAAGTGACACCCATTAAGCAG -ACGGAAGTGACACCCATTCGTCAA -ACGGAAGTGACACCCATTGCTGAA -ACGGAAGTGACACCCATTAGTACG -ACGGAAGTGACACCCATTATCCGA -ACGGAAGTGACACCCATTATGGGA -ACGGAAGTGACACCCATTGTGCAA -ACGGAAGTGACACCCATTGAGGAA -ACGGAAGTGACACCCATTCAGGTA -ACGGAAGTGACACCCATTGACTCT -ACGGAAGTGACACCCATTAGTCCT -ACGGAAGTGACACCCATTTAAGCC -ACGGAAGTGACACCCATTATAGCC -ACGGAAGTGACACCCATTTAACCG -ACGGAAGTGACACCCATTATGCCA -ACGGAAGTGACATCGTTCGGAAAC -ACGGAAGTGACATCGTTCAACACC -ACGGAAGTGACATCGTTCATCGAG -ACGGAAGTGACATCGTTCCTCCTT -ACGGAAGTGACATCGTTCCCTGTT -ACGGAAGTGACATCGTTCCGGTTT -ACGGAAGTGACATCGTTCGTGGTT -ACGGAAGTGACATCGTTCGCCTTT -ACGGAAGTGACATCGTTCGGTCTT -ACGGAAGTGACATCGTTCACGCTT -ACGGAAGTGACATCGTTCAGCGTT -ACGGAAGTGACATCGTTCTTCGTC -ACGGAAGTGACATCGTTCTCTCTC -ACGGAAGTGACATCGTTCTGGATC -ACGGAAGTGACATCGTTCCACTTC -ACGGAAGTGACATCGTTCGTACTC -ACGGAAGTGACATCGTTCGATGTC -ACGGAAGTGACATCGTTCACAGTC -ACGGAAGTGACATCGTTCTTGCTG -ACGGAAGTGACATCGTTCTCCATG -ACGGAAGTGACATCGTTCTGTGTG -ACGGAAGTGACATCGTTCCTAGTG -ACGGAAGTGACATCGTTCCATCTG -ACGGAAGTGACATCGTTCGAGTTG -ACGGAAGTGACATCGTTCAGACTG -ACGGAAGTGACATCGTTCTCGGTA -ACGGAAGTGACATCGTTCTGCCTA -ACGGAAGTGACATCGTTCCCACTA -ACGGAAGTGACATCGTTCGGAGTA -ACGGAAGTGACATCGTTCTCGTCT -ACGGAAGTGACATCGTTCTGCACT -ACGGAAGTGACATCGTTCCTGACT -ACGGAAGTGACATCGTTCCAACCT -ACGGAAGTGACATCGTTCGCTACT -ACGGAAGTGACATCGTTCGGATCT -ACGGAAGTGACATCGTTCAAGGCT -ACGGAAGTGACATCGTTCTCAACC -ACGGAAGTGACATCGTTCTGTTCC -ACGGAAGTGACATCGTTCATTCCC -ACGGAAGTGACATCGTTCTTCTCG -ACGGAAGTGACATCGTTCTAGACG -ACGGAAGTGACATCGTTCGTAACG -ACGGAAGTGACATCGTTCACTTCG -ACGGAAGTGACATCGTTCTACGCA -ACGGAAGTGACATCGTTCCTTGCA -ACGGAAGTGACATCGTTCCGAACA -ACGGAAGTGACATCGTTCCAGTCA -ACGGAAGTGACATCGTTCGATCCA -ACGGAAGTGACATCGTTCACGACA -ACGGAAGTGACATCGTTCAGCTCA -ACGGAAGTGACATCGTTCTCACGT -ACGGAAGTGACATCGTTCCGTAGT -ACGGAAGTGACATCGTTCGTCAGT -ACGGAAGTGACATCGTTCGAAGGT -ACGGAAGTGACATCGTTCAACCGT -ACGGAAGTGACATCGTTCTTGTGC -ACGGAAGTGACATCGTTCCTAAGC -ACGGAAGTGACATCGTTCACTAGC -ACGGAAGTGACATCGTTCAGATGC -ACGGAAGTGACATCGTTCTGAAGG -ACGGAAGTGACATCGTTCCAATGG -ACGGAAGTGACATCGTTCATGAGG -ACGGAAGTGACATCGTTCAATGGG -ACGGAAGTGACATCGTTCTCCTGA -ACGGAAGTGACATCGTTCTAGCGA -ACGGAAGTGACATCGTTCCACAGA -ACGGAAGTGACATCGTTCGCAAGA -ACGGAAGTGACATCGTTCGGTTGA -ACGGAAGTGACATCGTTCTCCGAT -ACGGAAGTGACATCGTTCTGGCAT -ACGGAAGTGACATCGTTCCGAGAT -ACGGAAGTGACATCGTTCTACCAC -ACGGAAGTGACATCGTTCCAGAAC -ACGGAAGTGACATCGTTCGTCTAC -ACGGAAGTGACATCGTTCACGTAC -ACGGAAGTGACATCGTTCAGTGAC -ACGGAAGTGACATCGTTCCTGTAG -ACGGAAGTGACATCGTTCCCTAAG -ACGGAAGTGACATCGTTCGTTCAG -ACGGAAGTGACATCGTTCGCATAG -ACGGAAGTGACATCGTTCGACAAG -ACGGAAGTGACATCGTTCAAGCAG -ACGGAAGTGACATCGTTCCGTCAA -ACGGAAGTGACATCGTTCGCTGAA -ACGGAAGTGACATCGTTCAGTACG -ACGGAAGTGACATCGTTCATCCGA -ACGGAAGTGACATCGTTCATGGGA -ACGGAAGTGACATCGTTCGTGCAA -ACGGAAGTGACATCGTTCGAGGAA -ACGGAAGTGACATCGTTCCAGGTA -ACGGAAGTGACATCGTTCGACTCT -ACGGAAGTGACATCGTTCAGTCCT -ACGGAAGTGACATCGTTCTAAGCC -ACGGAAGTGACATCGTTCATAGCC -ACGGAAGTGACATCGTTCTAACCG -ACGGAAGTGACATCGTTCATGCCA -ACGGAAGTGACAACGTAGGGAAAC -ACGGAAGTGACAACGTAGAACACC -ACGGAAGTGACAACGTAGATCGAG -ACGGAAGTGACAACGTAGCTCCTT -ACGGAAGTGACAACGTAGCCTGTT -ACGGAAGTGACAACGTAGCGGTTT -ACGGAAGTGACAACGTAGGTGGTT -ACGGAAGTGACAACGTAGGCCTTT -ACGGAAGTGACAACGTAGGGTCTT -ACGGAAGTGACAACGTAGACGCTT -ACGGAAGTGACAACGTAGAGCGTT -ACGGAAGTGACAACGTAGTTCGTC -ACGGAAGTGACAACGTAGTCTCTC -ACGGAAGTGACAACGTAGTGGATC -ACGGAAGTGACAACGTAGCACTTC -ACGGAAGTGACAACGTAGGTACTC -ACGGAAGTGACAACGTAGGATGTC -ACGGAAGTGACAACGTAGACAGTC -ACGGAAGTGACAACGTAGTTGCTG -ACGGAAGTGACAACGTAGTCCATG -ACGGAAGTGACAACGTAGTGTGTG -ACGGAAGTGACAACGTAGCTAGTG -ACGGAAGTGACAACGTAGCATCTG -ACGGAAGTGACAACGTAGGAGTTG -ACGGAAGTGACAACGTAGAGACTG -ACGGAAGTGACAACGTAGTCGGTA -ACGGAAGTGACAACGTAGTGCCTA -ACGGAAGTGACAACGTAGCCACTA -ACGGAAGTGACAACGTAGGGAGTA -ACGGAAGTGACAACGTAGTCGTCT -ACGGAAGTGACAACGTAGTGCACT -ACGGAAGTGACAACGTAGCTGACT -ACGGAAGTGACAACGTAGCAACCT -ACGGAAGTGACAACGTAGGCTACT -ACGGAAGTGACAACGTAGGGATCT -ACGGAAGTGACAACGTAGAAGGCT -ACGGAAGTGACAACGTAGTCAACC -ACGGAAGTGACAACGTAGTGTTCC -ACGGAAGTGACAACGTAGATTCCC -ACGGAAGTGACAACGTAGTTCTCG -ACGGAAGTGACAACGTAGTAGACG -ACGGAAGTGACAACGTAGGTAACG -ACGGAAGTGACAACGTAGACTTCG -ACGGAAGTGACAACGTAGTACGCA -ACGGAAGTGACAACGTAGCTTGCA -ACGGAAGTGACAACGTAGCGAACA -ACGGAAGTGACAACGTAGCAGTCA -ACGGAAGTGACAACGTAGGATCCA -ACGGAAGTGACAACGTAGACGACA -ACGGAAGTGACAACGTAGAGCTCA -ACGGAAGTGACAACGTAGTCACGT -ACGGAAGTGACAACGTAGCGTAGT -ACGGAAGTGACAACGTAGGTCAGT -ACGGAAGTGACAACGTAGGAAGGT -ACGGAAGTGACAACGTAGAACCGT -ACGGAAGTGACAACGTAGTTGTGC -ACGGAAGTGACAACGTAGCTAAGC -ACGGAAGTGACAACGTAGACTAGC -ACGGAAGTGACAACGTAGAGATGC -ACGGAAGTGACAACGTAGTGAAGG -ACGGAAGTGACAACGTAGCAATGG -ACGGAAGTGACAACGTAGATGAGG -ACGGAAGTGACAACGTAGAATGGG -ACGGAAGTGACAACGTAGTCCTGA -ACGGAAGTGACAACGTAGTAGCGA -ACGGAAGTGACAACGTAGCACAGA -ACGGAAGTGACAACGTAGGCAAGA -ACGGAAGTGACAACGTAGGGTTGA -ACGGAAGTGACAACGTAGTCCGAT -ACGGAAGTGACAACGTAGTGGCAT -ACGGAAGTGACAACGTAGCGAGAT -ACGGAAGTGACAACGTAGTACCAC -ACGGAAGTGACAACGTAGCAGAAC -ACGGAAGTGACAACGTAGGTCTAC -ACGGAAGTGACAACGTAGACGTAC -ACGGAAGTGACAACGTAGAGTGAC -ACGGAAGTGACAACGTAGCTGTAG -ACGGAAGTGACAACGTAGCCTAAG -ACGGAAGTGACAACGTAGGTTCAG -ACGGAAGTGACAACGTAGGCATAG -ACGGAAGTGACAACGTAGGACAAG -ACGGAAGTGACAACGTAGAAGCAG -ACGGAAGTGACAACGTAGCGTCAA -ACGGAAGTGACAACGTAGGCTGAA -ACGGAAGTGACAACGTAGAGTACG -ACGGAAGTGACAACGTAGATCCGA -ACGGAAGTGACAACGTAGATGGGA -ACGGAAGTGACAACGTAGGTGCAA -ACGGAAGTGACAACGTAGGAGGAA -ACGGAAGTGACAACGTAGCAGGTA -ACGGAAGTGACAACGTAGGACTCT -ACGGAAGTGACAACGTAGAGTCCT -ACGGAAGTGACAACGTAGTAAGCC -ACGGAAGTGACAACGTAGATAGCC -ACGGAAGTGACAACGTAGTAACCG -ACGGAAGTGACAACGTAGATGCCA -ACGGAAGTGACAACGGTAGGAAAC -ACGGAAGTGACAACGGTAAACACC -ACGGAAGTGACAACGGTAATCGAG -ACGGAAGTGACAACGGTACTCCTT -ACGGAAGTGACAACGGTACCTGTT -ACGGAAGTGACAACGGTACGGTTT -ACGGAAGTGACAACGGTAGTGGTT -ACGGAAGTGACAACGGTAGCCTTT -ACGGAAGTGACAACGGTAGGTCTT -ACGGAAGTGACAACGGTAACGCTT -ACGGAAGTGACAACGGTAAGCGTT -ACGGAAGTGACAACGGTATTCGTC -ACGGAAGTGACAACGGTATCTCTC -ACGGAAGTGACAACGGTATGGATC -ACGGAAGTGACAACGGTACACTTC -ACGGAAGTGACAACGGTAGTACTC -ACGGAAGTGACAACGGTAGATGTC -ACGGAAGTGACAACGGTAACAGTC -ACGGAAGTGACAACGGTATTGCTG -ACGGAAGTGACAACGGTATCCATG -ACGGAAGTGACAACGGTATGTGTG -ACGGAAGTGACAACGGTACTAGTG -ACGGAAGTGACAACGGTACATCTG -ACGGAAGTGACAACGGTAGAGTTG -ACGGAAGTGACAACGGTAAGACTG -ACGGAAGTGACAACGGTATCGGTA -ACGGAAGTGACAACGGTATGCCTA -ACGGAAGTGACAACGGTACCACTA -ACGGAAGTGACAACGGTAGGAGTA -ACGGAAGTGACAACGGTATCGTCT -ACGGAAGTGACAACGGTATGCACT -ACGGAAGTGACAACGGTACTGACT -ACGGAAGTGACAACGGTACAACCT -ACGGAAGTGACAACGGTAGCTACT -ACGGAAGTGACAACGGTAGGATCT -ACGGAAGTGACAACGGTAAAGGCT -ACGGAAGTGACAACGGTATCAACC -ACGGAAGTGACAACGGTATGTTCC -ACGGAAGTGACAACGGTAATTCCC -ACGGAAGTGACAACGGTATTCTCG -ACGGAAGTGACAACGGTATAGACG -ACGGAAGTGACAACGGTAGTAACG -ACGGAAGTGACAACGGTAACTTCG -ACGGAAGTGACAACGGTATACGCA -ACGGAAGTGACAACGGTACTTGCA -ACGGAAGTGACAACGGTACGAACA -ACGGAAGTGACAACGGTACAGTCA -ACGGAAGTGACAACGGTAGATCCA -ACGGAAGTGACAACGGTAACGACA -ACGGAAGTGACAACGGTAAGCTCA -ACGGAAGTGACAACGGTATCACGT -ACGGAAGTGACAACGGTACGTAGT -ACGGAAGTGACAACGGTAGTCAGT -ACGGAAGTGACAACGGTAGAAGGT -ACGGAAGTGACAACGGTAAACCGT -ACGGAAGTGACAACGGTATTGTGC -ACGGAAGTGACAACGGTACTAAGC -ACGGAAGTGACAACGGTAACTAGC -ACGGAAGTGACAACGGTAAGATGC -ACGGAAGTGACAACGGTATGAAGG -ACGGAAGTGACAACGGTACAATGG -ACGGAAGTGACAACGGTAATGAGG -ACGGAAGTGACAACGGTAAATGGG -ACGGAAGTGACAACGGTATCCTGA -ACGGAAGTGACAACGGTATAGCGA -ACGGAAGTGACAACGGTACACAGA -ACGGAAGTGACAACGGTAGCAAGA -ACGGAAGTGACAACGGTAGGTTGA -ACGGAAGTGACAACGGTATCCGAT -ACGGAAGTGACAACGGTATGGCAT -ACGGAAGTGACAACGGTACGAGAT -ACGGAAGTGACAACGGTATACCAC -ACGGAAGTGACAACGGTACAGAAC -ACGGAAGTGACAACGGTAGTCTAC -ACGGAAGTGACAACGGTAACGTAC -ACGGAAGTGACAACGGTAAGTGAC -ACGGAAGTGACAACGGTACTGTAG -ACGGAAGTGACAACGGTACCTAAG -ACGGAAGTGACAACGGTAGTTCAG -ACGGAAGTGACAACGGTAGCATAG -ACGGAAGTGACAACGGTAGACAAG -ACGGAAGTGACAACGGTAAAGCAG -ACGGAAGTGACAACGGTACGTCAA -ACGGAAGTGACAACGGTAGCTGAA -ACGGAAGTGACAACGGTAAGTACG -ACGGAAGTGACAACGGTAATCCGA -ACGGAAGTGACAACGGTAATGGGA -ACGGAAGTGACAACGGTAGTGCAA -ACGGAAGTGACAACGGTAGAGGAA -ACGGAAGTGACAACGGTACAGGTA -ACGGAAGTGACAACGGTAGACTCT -ACGGAAGTGACAACGGTAAGTCCT -ACGGAAGTGACAACGGTATAAGCC -ACGGAAGTGACAACGGTAATAGCC -ACGGAAGTGACAACGGTATAACCG -ACGGAAGTGACAACGGTAATGCCA -ACGGAAGTGACATCGACTGGAAAC -ACGGAAGTGACATCGACTAACACC -ACGGAAGTGACATCGACTATCGAG -ACGGAAGTGACATCGACTCTCCTT -ACGGAAGTGACATCGACTCCTGTT -ACGGAAGTGACATCGACTCGGTTT -ACGGAAGTGACATCGACTGTGGTT -ACGGAAGTGACATCGACTGCCTTT -ACGGAAGTGACATCGACTGGTCTT -ACGGAAGTGACATCGACTACGCTT -ACGGAAGTGACATCGACTAGCGTT -ACGGAAGTGACATCGACTTTCGTC -ACGGAAGTGACATCGACTTCTCTC -ACGGAAGTGACATCGACTTGGATC -ACGGAAGTGACATCGACTCACTTC -ACGGAAGTGACATCGACTGTACTC -ACGGAAGTGACATCGACTGATGTC -ACGGAAGTGACATCGACTACAGTC -ACGGAAGTGACATCGACTTTGCTG -ACGGAAGTGACATCGACTTCCATG -ACGGAAGTGACATCGACTTGTGTG -ACGGAAGTGACATCGACTCTAGTG -ACGGAAGTGACATCGACTCATCTG -ACGGAAGTGACATCGACTGAGTTG -ACGGAAGTGACATCGACTAGACTG -ACGGAAGTGACATCGACTTCGGTA -ACGGAAGTGACATCGACTTGCCTA -ACGGAAGTGACATCGACTCCACTA -ACGGAAGTGACATCGACTGGAGTA -ACGGAAGTGACATCGACTTCGTCT -ACGGAAGTGACATCGACTTGCACT -ACGGAAGTGACATCGACTCTGACT -ACGGAAGTGACATCGACTCAACCT -ACGGAAGTGACATCGACTGCTACT -ACGGAAGTGACATCGACTGGATCT -ACGGAAGTGACATCGACTAAGGCT -ACGGAAGTGACATCGACTTCAACC -ACGGAAGTGACATCGACTTGTTCC -ACGGAAGTGACATCGACTATTCCC -ACGGAAGTGACATCGACTTTCTCG -ACGGAAGTGACATCGACTTAGACG -ACGGAAGTGACATCGACTGTAACG -ACGGAAGTGACATCGACTACTTCG -ACGGAAGTGACATCGACTTACGCA -ACGGAAGTGACATCGACTCTTGCA -ACGGAAGTGACATCGACTCGAACA -ACGGAAGTGACATCGACTCAGTCA -ACGGAAGTGACATCGACTGATCCA -ACGGAAGTGACATCGACTACGACA -ACGGAAGTGACATCGACTAGCTCA -ACGGAAGTGACATCGACTTCACGT -ACGGAAGTGACATCGACTCGTAGT -ACGGAAGTGACATCGACTGTCAGT -ACGGAAGTGACATCGACTGAAGGT -ACGGAAGTGACATCGACTAACCGT -ACGGAAGTGACATCGACTTTGTGC -ACGGAAGTGACATCGACTCTAAGC -ACGGAAGTGACATCGACTACTAGC -ACGGAAGTGACATCGACTAGATGC -ACGGAAGTGACATCGACTTGAAGG -ACGGAAGTGACATCGACTCAATGG -ACGGAAGTGACATCGACTATGAGG -ACGGAAGTGACATCGACTAATGGG -ACGGAAGTGACATCGACTTCCTGA -ACGGAAGTGACATCGACTTAGCGA -ACGGAAGTGACATCGACTCACAGA -ACGGAAGTGACATCGACTGCAAGA -ACGGAAGTGACATCGACTGGTTGA -ACGGAAGTGACATCGACTTCCGAT -ACGGAAGTGACATCGACTTGGCAT -ACGGAAGTGACATCGACTCGAGAT -ACGGAAGTGACATCGACTTACCAC -ACGGAAGTGACATCGACTCAGAAC -ACGGAAGTGACATCGACTGTCTAC -ACGGAAGTGACATCGACTACGTAC -ACGGAAGTGACATCGACTAGTGAC -ACGGAAGTGACATCGACTCTGTAG -ACGGAAGTGACATCGACTCCTAAG -ACGGAAGTGACATCGACTGTTCAG -ACGGAAGTGACATCGACTGCATAG -ACGGAAGTGACATCGACTGACAAG -ACGGAAGTGACATCGACTAAGCAG -ACGGAAGTGACATCGACTCGTCAA -ACGGAAGTGACATCGACTGCTGAA -ACGGAAGTGACATCGACTAGTACG -ACGGAAGTGACATCGACTATCCGA -ACGGAAGTGACATCGACTATGGGA -ACGGAAGTGACATCGACTGTGCAA -ACGGAAGTGACATCGACTGAGGAA -ACGGAAGTGACATCGACTCAGGTA -ACGGAAGTGACATCGACTGACTCT -ACGGAAGTGACATCGACTAGTCCT -ACGGAAGTGACATCGACTTAAGCC -ACGGAAGTGACATCGACTATAGCC -ACGGAAGTGACATCGACTTAACCG -ACGGAAGTGACATCGACTATGCCA -ACGGAAGTGACAGCATACGGAAAC -ACGGAAGTGACAGCATACAACACC -ACGGAAGTGACAGCATACATCGAG -ACGGAAGTGACAGCATACCTCCTT -ACGGAAGTGACAGCATACCCTGTT -ACGGAAGTGACAGCATACCGGTTT -ACGGAAGTGACAGCATACGTGGTT -ACGGAAGTGACAGCATACGCCTTT -ACGGAAGTGACAGCATACGGTCTT -ACGGAAGTGACAGCATACACGCTT -ACGGAAGTGACAGCATACAGCGTT -ACGGAAGTGACAGCATACTTCGTC -ACGGAAGTGACAGCATACTCTCTC -ACGGAAGTGACAGCATACTGGATC -ACGGAAGTGACAGCATACCACTTC -ACGGAAGTGACAGCATACGTACTC -ACGGAAGTGACAGCATACGATGTC -ACGGAAGTGACAGCATACACAGTC -ACGGAAGTGACAGCATACTTGCTG -ACGGAAGTGACAGCATACTCCATG -ACGGAAGTGACAGCATACTGTGTG -ACGGAAGTGACAGCATACCTAGTG -ACGGAAGTGACAGCATACCATCTG -ACGGAAGTGACAGCATACGAGTTG -ACGGAAGTGACAGCATACAGACTG -ACGGAAGTGACAGCATACTCGGTA -ACGGAAGTGACAGCATACTGCCTA -ACGGAAGTGACAGCATACCCACTA -ACGGAAGTGACAGCATACGGAGTA -ACGGAAGTGACAGCATACTCGTCT -ACGGAAGTGACAGCATACTGCACT -ACGGAAGTGACAGCATACCTGACT -ACGGAAGTGACAGCATACCAACCT -ACGGAAGTGACAGCATACGCTACT -ACGGAAGTGACAGCATACGGATCT -ACGGAAGTGACAGCATACAAGGCT -ACGGAAGTGACAGCATACTCAACC -ACGGAAGTGACAGCATACTGTTCC -ACGGAAGTGACAGCATACATTCCC -ACGGAAGTGACAGCATACTTCTCG -ACGGAAGTGACAGCATACTAGACG -ACGGAAGTGACAGCATACGTAACG -ACGGAAGTGACAGCATACACTTCG -ACGGAAGTGACAGCATACTACGCA -ACGGAAGTGACAGCATACCTTGCA -ACGGAAGTGACAGCATACCGAACA -ACGGAAGTGACAGCATACCAGTCA -ACGGAAGTGACAGCATACGATCCA -ACGGAAGTGACAGCATACACGACA -ACGGAAGTGACAGCATACAGCTCA -ACGGAAGTGACAGCATACTCACGT -ACGGAAGTGACAGCATACCGTAGT -ACGGAAGTGACAGCATACGTCAGT -ACGGAAGTGACAGCATACGAAGGT -ACGGAAGTGACAGCATACAACCGT -ACGGAAGTGACAGCATACTTGTGC -ACGGAAGTGACAGCATACCTAAGC -ACGGAAGTGACAGCATACACTAGC -ACGGAAGTGACAGCATACAGATGC -ACGGAAGTGACAGCATACTGAAGG -ACGGAAGTGACAGCATACCAATGG -ACGGAAGTGACAGCATACATGAGG -ACGGAAGTGACAGCATACAATGGG -ACGGAAGTGACAGCATACTCCTGA -ACGGAAGTGACAGCATACTAGCGA -ACGGAAGTGACAGCATACCACAGA -ACGGAAGTGACAGCATACGCAAGA -ACGGAAGTGACAGCATACGGTTGA -ACGGAAGTGACAGCATACTCCGAT -ACGGAAGTGACAGCATACTGGCAT -ACGGAAGTGACAGCATACCGAGAT -ACGGAAGTGACAGCATACTACCAC -ACGGAAGTGACAGCATACCAGAAC -ACGGAAGTGACAGCATACGTCTAC -ACGGAAGTGACAGCATACACGTAC -ACGGAAGTGACAGCATACAGTGAC -ACGGAAGTGACAGCATACCTGTAG -ACGGAAGTGACAGCATACCCTAAG -ACGGAAGTGACAGCATACGTTCAG -ACGGAAGTGACAGCATACGCATAG -ACGGAAGTGACAGCATACGACAAG -ACGGAAGTGACAGCATACAAGCAG -ACGGAAGTGACAGCATACCGTCAA -ACGGAAGTGACAGCATACGCTGAA -ACGGAAGTGACAGCATACAGTACG -ACGGAAGTGACAGCATACATCCGA -ACGGAAGTGACAGCATACATGGGA -ACGGAAGTGACAGCATACGTGCAA -ACGGAAGTGACAGCATACGAGGAA -ACGGAAGTGACAGCATACCAGGTA -ACGGAAGTGACAGCATACGACTCT -ACGGAAGTGACAGCATACAGTCCT -ACGGAAGTGACAGCATACTAAGCC -ACGGAAGTGACAGCATACATAGCC -ACGGAAGTGACAGCATACTAACCG -ACGGAAGTGACAGCATACATGCCA -ACGGAAGTGACAGCACTTGGAAAC -ACGGAAGTGACAGCACTTAACACC -ACGGAAGTGACAGCACTTATCGAG -ACGGAAGTGACAGCACTTCTCCTT -ACGGAAGTGACAGCACTTCCTGTT -ACGGAAGTGACAGCACTTCGGTTT -ACGGAAGTGACAGCACTTGTGGTT -ACGGAAGTGACAGCACTTGCCTTT -ACGGAAGTGACAGCACTTGGTCTT -ACGGAAGTGACAGCACTTACGCTT -ACGGAAGTGACAGCACTTAGCGTT -ACGGAAGTGACAGCACTTTTCGTC -ACGGAAGTGACAGCACTTTCTCTC -ACGGAAGTGACAGCACTTTGGATC -ACGGAAGTGACAGCACTTCACTTC -ACGGAAGTGACAGCACTTGTACTC -ACGGAAGTGACAGCACTTGATGTC -ACGGAAGTGACAGCACTTACAGTC -ACGGAAGTGACAGCACTTTTGCTG -ACGGAAGTGACAGCACTTTCCATG -ACGGAAGTGACAGCACTTTGTGTG -ACGGAAGTGACAGCACTTCTAGTG -ACGGAAGTGACAGCACTTCATCTG -ACGGAAGTGACAGCACTTGAGTTG -ACGGAAGTGACAGCACTTAGACTG -ACGGAAGTGACAGCACTTTCGGTA -ACGGAAGTGACAGCACTTTGCCTA -ACGGAAGTGACAGCACTTCCACTA -ACGGAAGTGACAGCACTTGGAGTA -ACGGAAGTGACAGCACTTTCGTCT -ACGGAAGTGACAGCACTTTGCACT -ACGGAAGTGACAGCACTTCTGACT -ACGGAAGTGACAGCACTTCAACCT -ACGGAAGTGACAGCACTTGCTACT -ACGGAAGTGACAGCACTTGGATCT -ACGGAAGTGACAGCACTTAAGGCT -ACGGAAGTGACAGCACTTTCAACC -ACGGAAGTGACAGCACTTTGTTCC -ACGGAAGTGACAGCACTTATTCCC -ACGGAAGTGACAGCACTTTTCTCG -ACGGAAGTGACAGCACTTTAGACG -ACGGAAGTGACAGCACTTGTAACG -ACGGAAGTGACAGCACTTACTTCG -ACGGAAGTGACAGCACTTTACGCA -ACGGAAGTGACAGCACTTCTTGCA -ACGGAAGTGACAGCACTTCGAACA -ACGGAAGTGACAGCACTTCAGTCA -ACGGAAGTGACAGCACTTGATCCA -ACGGAAGTGACAGCACTTACGACA -ACGGAAGTGACAGCACTTAGCTCA -ACGGAAGTGACAGCACTTTCACGT -ACGGAAGTGACAGCACTTCGTAGT -ACGGAAGTGACAGCACTTGTCAGT -ACGGAAGTGACAGCACTTGAAGGT -ACGGAAGTGACAGCACTTAACCGT -ACGGAAGTGACAGCACTTTTGTGC -ACGGAAGTGACAGCACTTCTAAGC -ACGGAAGTGACAGCACTTACTAGC -ACGGAAGTGACAGCACTTAGATGC -ACGGAAGTGACAGCACTTTGAAGG -ACGGAAGTGACAGCACTTCAATGG -ACGGAAGTGACAGCACTTATGAGG -ACGGAAGTGACAGCACTTAATGGG -ACGGAAGTGACAGCACTTTCCTGA -ACGGAAGTGACAGCACTTTAGCGA -ACGGAAGTGACAGCACTTCACAGA -ACGGAAGTGACAGCACTTGCAAGA -ACGGAAGTGACAGCACTTGGTTGA -ACGGAAGTGACAGCACTTTCCGAT -ACGGAAGTGACAGCACTTTGGCAT -ACGGAAGTGACAGCACTTCGAGAT -ACGGAAGTGACAGCACTTTACCAC -ACGGAAGTGACAGCACTTCAGAAC -ACGGAAGTGACAGCACTTGTCTAC -ACGGAAGTGACAGCACTTACGTAC -ACGGAAGTGACAGCACTTAGTGAC -ACGGAAGTGACAGCACTTCTGTAG -ACGGAAGTGACAGCACTTCCTAAG -ACGGAAGTGACAGCACTTGTTCAG -ACGGAAGTGACAGCACTTGCATAG -ACGGAAGTGACAGCACTTGACAAG -ACGGAAGTGACAGCACTTAAGCAG -ACGGAAGTGACAGCACTTCGTCAA -ACGGAAGTGACAGCACTTGCTGAA -ACGGAAGTGACAGCACTTAGTACG -ACGGAAGTGACAGCACTTATCCGA -ACGGAAGTGACAGCACTTATGGGA -ACGGAAGTGACAGCACTTGTGCAA -ACGGAAGTGACAGCACTTGAGGAA -ACGGAAGTGACAGCACTTCAGGTA -ACGGAAGTGACAGCACTTGACTCT -ACGGAAGTGACAGCACTTAGTCCT -ACGGAAGTGACAGCACTTTAAGCC -ACGGAAGTGACAGCACTTATAGCC -ACGGAAGTGACAGCACTTTAACCG -ACGGAAGTGACAGCACTTATGCCA -ACGGAAGTGACAACACGAGGAAAC -ACGGAAGTGACAACACGAAACACC -ACGGAAGTGACAACACGAATCGAG -ACGGAAGTGACAACACGACTCCTT -ACGGAAGTGACAACACGACCTGTT -ACGGAAGTGACAACACGACGGTTT -ACGGAAGTGACAACACGAGTGGTT -ACGGAAGTGACAACACGAGCCTTT -ACGGAAGTGACAACACGAGGTCTT -ACGGAAGTGACAACACGAACGCTT -ACGGAAGTGACAACACGAAGCGTT -ACGGAAGTGACAACACGATTCGTC -ACGGAAGTGACAACACGATCTCTC -ACGGAAGTGACAACACGATGGATC -ACGGAAGTGACAACACGACACTTC -ACGGAAGTGACAACACGAGTACTC -ACGGAAGTGACAACACGAGATGTC -ACGGAAGTGACAACACGAACAGTC -ACGGAAGTGACAACACGATTGCTG -ACGGAAGTGACAACACGATCCATG -ACGGAAGTGACAACACGATGTGTG -ACGGAAGTGACAACACGACTAGTG -ACGGAAGTGACAACACGACATCTG -ACGGAAGTGACAACACGAGAGTTG -ACGGAAGTGACAACACGAAGACTG -ACGGAAGTGACAACACGATCGGTA -ACGGAAGTGACAACACGATGCCTA -ACGGAAGTGACAACACGACCACTA -ACGGAAGTGACAACACGAGGAGTA -ACGGAAGTGACAACACGATCGTCT -ACGGAAGTGACAACACGATGCACT -ACGGAAGTGACAACACGACTGACT -ACGGAAGTGACAACACGACAACCT -ACGGAAGTGACAACACGAGCTACT -ACGGAAGTGACAACACGAGGATCT -ACGGAAGTGACAACACGAAAGGCT -ACGGAAGTGACAACACGATCAACC -ACGGAAGTGACAACACGATGTTCC -ACGGAAGTGACAACACGAATTCCC -ACGGAAGTGACAACACGATTCTCG -ACGGAAGTGACAACACGATAGACG -ACGGAAGTGACAACACGAGTAACG -ACGGAAGTGACAACACGAACTTCG -ACGGAAGTGACAACACGATACGCA -ACGGAAGTGACAACACGACTTGCA -ACGGAAGTGACAACACGACGAACA -ACGGAAGTGACAACACGACAGTCA -ACGGAAGTGACAACACGAGATCCA -ACGGAAGTGACAACACGAACGACA -ACGGAAGTGACAACACGAAGCTCA -ACGGAAGTGACAACACGATCACGT -ACGGAAGTGACAACACGACGTAGT -ACGGAAGTGACAACACGAGTCAGT -ACGGAAGTGACAACACGAGAAGGT -ACGGAAGTGACAACACGAAACCGT -ACGGAAGTGACAACACGATTGTGC -ACGGAAGTGACAACACGACTAAGC -ACGGAAGTGACAACACGAACTAGC -ACGGAAGTGACAACACGAAGATGC -ACGGAAGTGACAACACGATGAAGG -ACGGAAGTGACAACACGACAATGG -ACGGAAGTGACAACACGAATGAGG -ACGGAAGTGACAACACGAAATGGG -ACGGAAGTGACAACACGATCCTGA -ACGGAAGTGACAACACGATAGCGA -ACGGAAGTGACAACACGACACAGA -ACGGAAGTGACAACACGAGCAAGA -ACGGAAGTGACAACACGAGGTTGA -ACGGAAGTGACAACACGATCCGAT -ACGGAAGTGACAACACGATGGCAT -ACGGAAGTGACAACACGACGAGAT -ACGGAAGTGACAACACGATACCAC -ACGGAAGTGACAACACGACAGAAC -ACGGAAGTGACAACACGAGTCTAC -ACGGAAGTGACAACACGAACGTAC -ACGGAAGTGACAACACGAAGTGAC -ACGGAAGTGACAACACGACTGTAG -ACGGAAGTGACAACACGACCTAAG -ACGGAAGTGACAACACGAGTTCAG -ACGGAAGTGACAACACGAGCATAG -ACGGAAGTGACAACACGAGACAAG -ACGGAAGTGACAACACGAAAGCAG -ACGGAAGTGACAACACGACGTCAA -ACGGAAGTGACAACACGAGCTGAA -ACGGAAGTGACAACACGAAGTACG -ACGGAAGTGACAACACGAATCCGA -ACGGAAGTGACAACACGAATGGGA -ACGGAAGTGACAACACGAGTGCAA -ACGGAAGTGACAACACGAGAGGAA -ACGGAAGTGACAACACGACAGGTA -ACGGAAGTGACAACACGAGACTCT -ACGGAAGTGACAACACGAAGTCCT -ACGGAAGTGACAACACGATAAGCC -ACGGAAGTGACAACACGAATAGCC -ACGGAAGTGACAACACGATAACCG -ACGGAAGTGACAACACGAATGCCA -ACGGAAGTGACATCACAGGGAAAC -ACGGAAGTGACATCACAGAACACC -ACGGAAGTGACATCACAGATCGAG -ACGGAAGTGACATCACAGCTCCTT -ACGGAAGTGACATCACAGCCTGTT -ACGGAAGTGACATCACAGCGGTTT -ACGGAAGTGACATCACAGGTGGTT -ACGGAAGTGACATCACAGGCCTTT -ACGGAAGTGACATCACAGGGTCTT -ACGGAAGTGACATCACAGACGCTT -ACGGAAGTGACATCACAGAGCGTT -ACGGAAGTGACATCACAGTTCGTC -ACGGAAGTGACATCACAGTCTCTC -ACGGAAGTGACATCACAGTGGATC -ACGGAAGTGACATCACAGCACTTC -ACGGAAGTGACATCACAGGTACTC -ACGGAAGTGACATCACAGGATGTC -ACGGAAGTGACATCACAGACAGTC -ACGGAAGTGACATCACAGTTGCTG -ACGGAAGTGACATCACAGTCCATG -ACGGAAGTGACATCACAGTGTGTG -ACGGAAGTGACATCACAGCTAGTG -ACGGAAGTGACATCACAGCATCTG -ACGGAAGTGACATCACAGGAGTTG -ACGGAAGTGACATCACAGAGACTG -ACGGAAGTGACATCACAGTCGGTA -ACGGAAGTGACATCACAGTGCCTA -ACGGAAGTGACATCACAGCCACTA -ACGGAAGTGACATCACAGGGAGTA -ACGGAAGTGACATCACAGTCGTCT -ACGGAAGTGACATCACAGTGCACT -ACGGAAGTGACATCACAGCTGACT -ACGGAAGTGACATCACAGCAACCT -ACGGAAGTGACATCACAGGCTACT -ACGGAAGTGACATCACAGGGATCT -ACGGAAGTGACATCACAGAAGGCT -ACGGAAGTGACATCACAGTCAACC -ACGGAAGTGACATCACAGTGTTCC -ACGGAAGTGACATCACAGATTCCC -ACGGAAGTGACATCACAGTTCTCG -ACGGAAGTGACATCACAGTAGACG -ACGGAAGTGACATCACAGGTAACG -ACGGAAGTGACATCACAGACTTCG -ACGGAAGTGACATCACAGTACGCA -ACGGAAGTGACATCACAGCTTGCA -ACGGAAGTGACATCACAGCGAACA -ACGGAAGTGACATCACAGCAGTCA -ACGGAAGTGACATCACAGGATCCA -ACGGAAGTGACATCACAGACGACA -ACGGAAGTGACATCACAGAGCTCA -ACGGAAGTGACATCACAGTCACGT -ACGGAAGTGACATCACAGCGTAGT -ACGGAAGTGACATCACAGGTCAGT -ACGGAAGTGACATCACAGGAAGGT -ACGGAAGTGACATCACAGAACCGT -ACGGAAGTGACATCACAGTTGTGC -ACGGAAGTGACATCACAGCTAAGC -ACGGAAGTGACATCACAGACTAGC -ACGGAAGTGACATCACAGAGATGC -ACGGAAGTGACATCACAGTGAAGG -ACGGAAGTGACATCACAGCAATGG -ACGGAAGTGACATCACAGATGAGG -ACGGAAGTGACATCACAGAATGGG -ACGGAAGTGACATCACAGTCCTGA -ACGGAAGTGACATCACAGTAGCGA -ACGGAAGTGACATCACAGCACAGA -ACGGAAGTGACATCACAGGCAAGA -ACGGAAGTGACATCACAGGGTTGA -ACGGAAGTGACATCACAGTCCGAT -ACGGAAGTGACATCACAGTGGCAT -ACGGAAGTGACATCACAGCGAGAT -ACGGAAGTGACATCACAGTACCAC -ACGGAAGTGACATCACAGCAGAAC -ACGGAAGTGACATCACAGGTCTAC -ACGGAAGTGACATCACAGACGTAC -ACGGAAGTGACATCACAGAGTGAC -ACGGAAGTGACATCACAGCTGTAG -ACGGAAGTGACATCACAGCCTAAG -ACGGAAGTGACATCACAGGTTCAG -ACGGAAGTGACATCACAGGCATAG -ACGGAAGTGACATCACAGGACAAG -ACGGAAGTGACATCACAGAAGCAG -ACGGAAGTGACATCACAGCGTCAA -ACGGAAGTGACATCACAGGCTGAA -ACGGAAGTGACATCACAGAGTACG -ACGGAAGTGACATCACAGATCCGA -ACGGAAGTGACATCACAGATGGGA -ACGGAAGTGACATCACAGGTGCAA -ACGGAAGTGACATCACAGGAGGAA -ACGGAAGTGACATCACAGCAGGTA -ACGGAAGTGACATCACAGGACTCT -ACGGAAGTGACATCACAGAGTCCT -ACGGAAGTGACATCACAGTAAGCC -ACGGAAGTGACATCACAGATAGCC -ACGGAAGTGACATCACAGTAACCG -ACGGAAGTGACATCACAGATGCCA -ACGGAAGTGACACCAGATGGAAAC -ACGGAAGTGACACCAGATAACACC -ACGGAAGTGACACCAGATATCGAG -ACGGAAGTGACACCAGATCTCCTT -ACGGAAGTGACACCAGATCCTGTT -ACGGAAGTGACACCAGATCGGTTT -ACGGAAGTGACACCAGATGTGGTT -ACGGAAGTGACACCAGATGCCTTT -ACGGAAGTGACACCAGATGGTCTT -ACGGAAGTGACACCAGATACGCTT -ACGGAAGTGACACCAGATAGCGTT -ACGGAAGTGACACCAGATTTCGTC -ACGGAAGTGACACCAGATTCTCTC -ACGGAAGTGACACCAGATTGGATC -ACGGAAGTGACACCAGATCACTTC -ACGGAAGTGACACCAGATGTACTC -ACGGAAGTGACACCAGATGATGTC -ACGGAAGTGACACCAGATACAGTC -ACGGAAGTGACACCAGATTTGCTG -ACGGAAGTGACACCAGATTCCATG -ACGGAAGTGACACCAGATTGTGTG -ACGGAAGTGACACCAGATCTAGTG -ACGGAAGTGACACCAGATCATCTG -ACGGAAGTGACACCAGATGAGTTG -ACGGAAGTGACACCAGATAGACTG -ACGGAAGTGACACCAGATTCGGTA -ACGGAAGTGACACCAGATTGCCTA -ACGGAAGTGACACCAGATCCACTA -ACGGAAGTGACACCAGATGGAGTA -ACGGAAGTGACACCAGATTCGTCT -ACGGAAGTGACACCAGATTGCACT -ACGGAAGTGACACCAGATCTGACT -ACGGAAGTGACACCAGATCAACCT -ACGGAAGTGACACCAGATGCTACT -ACGGAAGTGACACCAGATGGATCT -ACGGAAGTGACACCAGATAAGGCT -ACGGAAGTGACACCAGATTCAACC -ACGGAAGTGACACCAGATTGTTCC -ACGGAAGTGACACCAGATATTCCC -ACGGAAGTGACACCAGATTTCTCG -ACGGAAGTGACACCAGATTAGACG -ACGGAAGTGACACCAGATGTAACG -ACGGAAGTGACACCAGATACTTCG -ACGGAAGTGACACCAGATTACGCA -ACGGAAGTGACACCAGATCTTGCA -ACGGAAGTGACACCAGATCGAACA -ACGGAAGTGACACCAGATCAGTCA -ACGGAAGTGACACCAGATGATCCA -ACGGAAGTGACACCAGATACGACA -ACGGAAGTGACACCAGATAGCTCA -ACGGAAGTGACACCAGATTCACGT -ACGGAAGTGACACCAGATCGTAGT -ACGGAAGTGACACCAGATGTCAGT -ACGGAAGTGACACCAGATGAAGGT -ACGGAAGTGACACCAGATAACCGT -ACGGAAGTGACACCAGATTTGTGC -ACGGAAGTGACACCAGATCTAAGC -ACGGAAGTGACACCAGATACTAGC -ACGGAAGTGACACCAGATAGATGC -ACGGAAGTGACACCAGATTGAAGG -ACGGAAGTGACACCAGATCAATGG -ACGGAAGTGACACCAGATATGAGG -ACGGAAGTGACACCAGATAATGGG -ACGGAAGTGACACCAGATTCCTGA -ACGGAAGTGACACCAGATTAGCGA -ACGGAAGTGACACCAGATCACAGA -ACGGAAGTGACACCAGATGCAAGA -ACGGAAGTGACACCAGATGGTTGA -ACGGAAGTGACACCAGATTCCGAT -ACGGAAGTGACACCAGATTGGCAT -ACGGAAGTGACACCAGATCGAGAT -ACGGAAGTGACACCAGATTACCAC -ACGGAAGTGACACCAGATCAGAAC -ACGGAAGTGACACCAGATGTCTAC -ACGGAAGTGACACCAGATACGTAC -ACGGAAGTGACACCAGATAGTGAC -ACGGAAGTGACACCAGATCTGTAG -ACGGAAGTGACACCAGATCCTAAG -ACGGAAGTGACACCAGATGTTCAG -ACGGAAGTGACACCAGATGCATAG -ACGGAAGTGACACCAGATGACAAG -ACGGAAGTGACACCAGATAAGCAG -ACGGAAGTGACACCAGATCGTCAA -ACGGAAGTGACACCAGATGCTGAA -ACGGAAGTGACACCAGATAGTACG -ACGGAAGTGACACCAGATATCCGA -ACGGAAGTGACACCAGATATGGGA -ACGGAAGTGACACCAGATGTGCAA -ACGGAAGTGACACCAGATGAGGAA -ACGGAAGTGACACCAGATCAGGTA -ACGGAAGTGACACCAGATGACTCT -ACGGAAGTGACACCAGATAGTCCT -ACGGAAGTGACACCAGATTAAGCC -ACGGAAGTGACACCAGATATAGCC -ACGGAAGTGACACCAGATTAACCG -ACGGAAGTGACACCAGATATGCCA -ACGGAAGTGACAACAACGGGAAAC -ACGGAAGTGACAACAACGAACACC -ACGGAAGTGACAACAACGATCGAG -ACGGAAGTGACAACAACGCTCCTT -ACGGAAGTGACAACAACGCCTGTT -ACGGAAGTGACAACAACGCGGTTT -ACGGAAGTGACAACAACGGTGGTT -ACGGAAGTGACAACAACGGCCTTT -ACGGAAGTGACAACAACGGGTCTT -ACGGAAGTGACAACAACGACGCTT -ACGGAAGTGACAACAACGAGCGTT -ACGGAAGTGACAACAACGTTCGTC -ACGGAAGTGACAACAACGTCTCTC -ACGGAAGTGACAACAACGTGGATC -ACGGAAGTGACAACAACGCACTTC -ACGGAAGTGACAACAACGGTACTC -ACGGAAGTGACAACAACGGATGTC -ACGGAAGTGACAACAACGACAGTC -ACGGAAGTGACAACAACGTTGCTG -ACGGAAGTGACAACAACGTCCATG -ACGGAAGTGACAACAACGTGTGTG -ACGGAAGTGACAACAACGCTAGTG -ACGGAAGTGACAACAACGCATCTG -ACGGAAGTGACAACAACGGAGTTG -ACGGAAGTGACAACAACGAGACTG -ACGGAAGTGACAACAACGTCGGTA -ACGGAAGTGACAACAACGTGCCTA -ACGGAAGTGACAACAACGCCACTA -ACGGAAGTGACAACAACGGGAGTA -ACGGAAGTGACAACAACGTCGTCT -ACGGAAGTGACAACAACGTGCACT -ACGGAAGTGACAACAACGCTGACT -ACGGAAGTGACAACAACGCAACCT -ACGGAAGTGACAACAACGGCTACT -ACGGAAGTGACAACAACGGGATCT -ACGGAAGTGACAACAACGAAGGCT -ACGGAAGTGACAACAACGTCAACC -ACGGAAGTGACAACAACGTGTTCC -ACGGAAGTGACAACAACGATTCCC -ACGGAAGTGACAACAACGTTCTCG -ACGGAAGTGACAACAACGTAGACG -ACGGAAGTGACAACAACGGTAACG -ACGGAAGTGACAACAACGACTTCG -ACGGAAGTGACAACAACGTACGCA -ACGGAAGTGACAACAACGCTTGCA -ACGGAAGTGACAACAACGCGAACA -ACGGAAGTGACAACAACGCAGTCA -ACGGAAGTGACAACAACGGATCCA -ACGGAAGTGACAACAACGACGACA -ACGGAAGTGACAACAACGAGCTCA -ACGGAAGTGACAACAACGTCACGT -ACGGAAGTGACAACAACGCGTAGT -ACGGAAGTGACAACAACGGTCAGT -ACGGAAGTGACAACAACGGAAGGT -ACGGAAGTGACAACAACGAACCGT -ACGGAAGTGACAACAACGTTGTGC -ACGGAAGTGACAACAACGCTAAGC -ACGGAAGTGACAACAACGACTAGC -ACGGAAGTGACAACAACGAGATGC -ACGGAAGTGACAACAACGTGAAGG -ACGGAAGTGACAACAACGCAATGG -ACGGAAGTGACAACAACGATGAGG -ACGGAAGTGACAACAACGAATGGG -ACGGAAGTGACAACAACGTCCTGA -ACGGAAGTGACAACAACGTAGCGA -ACGGAAGTGACAACAACGCACAGA -ACGGAAGTGACAACAACGGCAAGA -ACGGAAGTGACAACAACGGGTTGA -ACGGAAGTGACAACAACGTCCGAT -ACGGAAGTGACAACAACGTGGCAT -ACGGAAGTGACAACAACGCGAGAT -ACGGAAGTGACAACAACGTACCAC -ACGGAAGTGACAACAACGCAGAAC -ACGGAAGTGACAACAACGGTCTAC -ACGGAAGTGACAACAACGACGTAC -ACGGAAGTGACAACAACGAGTGAC -ACGGAAGTGACAACAACGCTGTAG -ACGGAAGTGACAACAACGCCTAAG -ACGGAAGTGACAACAACGGTTCAG -ACGGAAGTGACAACAACGGCATAG -ACGGAAGTGACAACAACGGACAAG -ACGGAAGTGACAACAACGAAGCAG -ACGGAAGTGACAACAACGCGTCAA -ACGGAAGTGACAACAACGGCTGAA -ACGGAAGTGACAACAACGAGTACG -ACGGAAGTGACAACAACGATCCGA -ACGGAAGTGACAACAACGATGGGA -ACGGAAGTGACAACAACGGTGCAA -ACGGAAGTGACAACAACGGAGGAA -ACGGAAGTGACAACAACGCAGGTA -ACGGAAGTGACAACAACGGACTCT -ACGGAAGTGACAACAACGAGTCCT -ACGGAAGTGACAACAACGTAAGCC -ACGGAAGTGACAACAACGATAGCC -ACGGAAGTGACAACAACGTAACCG -ACGGAAGTGACAACAACGATGCCA -ACGGAAGTGACATCAAGCGGAAAC -ACGGAAGTGACATCAAGCAACACC -ACGGAAGTGACATCAAGCATCGAG -ACGGAAGTGACATCAAGCCTCCTT -ACGGAAGTGACATCAAGCCCTGTT -ACGGAAGTGACATCAAGCCGGTTT -ACGGAAGTGACATCAAGCGTGGTT -ACGGAAGTGACATCAAGCGCCTTT -ACGGAAGTGACATCAAGCGGTCTT -ACGGAAGTGACATCAAGCACGCTT -ACGGAAGTGACATCAAGCAGCGTT -ACGGAAGTGACATCAAGCTTCGTC -ACGGAAGTGACATCAAGCTCTCTC -ACGGAAGTGACATCAAGCTGGATC -ACGGAAGTGACATCAAGCCACTTC -ACGGAAGTGACATCAAGCGTACTC -ACGGAAGTGACATCAAGCGATGTC -ACGGAAGTGACATCAAGCACAGTC -ACGGAAGTGACATCAAGCTTGCTG -ACGGAAGTGACATCAAGCTCCATG -ACGGAAGTGACATCAAGCTGTGTG -ACGGAAGTGACATCAAGCCTAGTG -ACGGAAGTGACATCAAGCCATCTG -ACGGAAGTGACATCAAGCGAGTTG -ACGGAAGTGACATCAAGCAGACTG -ACGGAAGTGACATCAAGCTCGGTA -ACGGAAGTGACATCAAGCTGCCTA -ACGGAAGTGACATCAAGCCCACTA -ACGGAAGTGACATCAAGCGGAGTA -ACGGAAGTGACATCAAGCTCGTCT -ACGGAAGTGACATCAAGCTGCACT -ACGGAAGTGACATCAAGCCTGACT -ACGGAAGTGACATCAAGCCAACCT -ACGGAAGTGACATCAAGCGCTACT -ACGGAAGTGACATCAAGCGGATCT -ACGGAAGTGACATCAAGCAAGGCT -ACGGAAGTGACATCAAGCTCAACC -ACGGAAGTGACATCAAGCTGTTCC -ACGGAAGTGACATCAAGCATTCCC -ACGGAAGTGACATCAAGCTTCTCG -ACGGAAGTGACATCAAGCTAGACG -ACGGAAGTGACATCAAGCGTAACG -ACGGAAGTGACATCAAGCACTTCG -ACGGAAGTGACATCAAGCTACGCA -ACGGAAGTGACATCAAGCCTTGCA -ACGGAAGTGACATCAAGCCGAACA -ACGGAAGTGACATCAAGCCAGTCA -ACGGAAGTGACATCAAGCGATCCA -ACGGAAGTGACATCAAGCACGACA -ACGGAAGTGACATCAAGCAGCTCA -ACGGAAGTGACATCAAGCTCACGT -ACGGAAGTGACATCAAGCCGTAGT -ACGGAAGTGACATCAAGCGTCAGT -ACGGAAGTGACATCAAGCGAAGGT -ACGGAAGTGACATCAAGCAACCGT -ACGGAAGTGACATCAAGCTTGTGC -ACGGAAGTGACATCAAGCCTAAGC -ACGGAAGTGACATCAAGCACTAGC -ACGGAAGTGACATCAAGCAGATGC -ACGGAAGTGACATCAAGCTGAAGG -ACGGAAGTGACATCAAGCCAATGG -ACGGAAGTGACATCAAGCATGAGG -ACGGAAGTGACATCAAGCAATGGG -ACGGAAGTGACATCAAGCTCCTGA -ACGGAAGTGACATCAAGCTAGCGA -ACGGAAGTGACATCAAGCCACAGA -ACGGAAGTGACATCAAGCGCAAGA -ACGGAAGTGACATCAAGCGGTTGA -ACGGAAGTGACATCAAGCTCCGAT -ACGGAAGTGACATCAAGCTGGCAT -ACGGAAGTGACATCAAGCCGAGAT -ACGGAAGTGACATCAAGCTACCAC -ACGGAAGTGACATCAAGCCAGAAC -ACGGAAGTGACATCAAGCGTCTAC -ACGGAAGTGACATCAAGCACGTAC -ACGGAAGTGACATCAAGCAGTGAC -ACGGAAGTGACATCAAGCCTGTAG -ACGGAAGTGACATCAAGCCCTAAG -ACGGAAGTGACATCAAGCGTTCAG -ACGGAAGTGACATCAAGCGCATAG -ACGGAAGTGACATCAAGCGACAAG -ACGGAAGTGACATCAAGCAAGCAG -ACGGAAGTGACATCAAGCCGTCAA -ACGGAAGTGACATCAAGCGCTGAA -ACGGAAGTGACATCAAGCAGTACG -ACGGAAGTGACATCAAGCATCCGA -ACGGAAGTGACATCAAGCATGGGA -ACGGAAGTGACATCAAGCGTGCAA -ACGGAAGTGACATCAAGCGAGGAA -ACGGAAGTGACATCAAGCCAGGTA -ACGGAAGTGACATCAAGCGACTCT -ACGGAAGTGACATCAAGCAGTCCT -ACGGAAGTGACATCAAGCTAAGCC -ACGGAAGTGACATCAAGCATAGCC -ACGGAAGTGACATCAAGCTAACCG -ACGGAAGTGACATCAAGCATGCCA -ACGGAAGTGACACGTTCAGGAAAC -ACGGAAGTGACACGTTCAAACACC -ACGGAAGTGACACGTTCAATCGAG -ACGGAAGTGACACGTTCACTCCTT -ACGGAAGTGACACGTTCACCTGTT -ACGGAAGTGACACGTTCACGGTTT -ACGGAAGTGACACGTTCAGTGGTT -ACGGAAGTGACACGTTCAGCCTTT -ACGGAAGTGACACGTTCAGGTCTT -ACGGAAGTGACACGTTCAACGCTT -ACGGAAGTGACACGTTCAAGCGTT -ACGGAAGTGACACGTTCATTCGTC -ACGGAAGTGACACGTTCATCTCTC -ACGGAAGTGACACGTTCATGGATC -ACGGAAGTGACACGTTCACACTTC -ACGGAAGTGACACGTTCAGTACTC -ACGGAAGTGACACGTTCAGATGTC -ACGGAAGTGACACGTTCAACAGTC -ACGGAAGTGACACGTTCATTGCTG -ACGGAAGTGACACGTTCATCCATG -ACGGAAGTGACACGTTCATGTGTG -ACGGAAGTGACACGTTCACTAGTG -ACGGAAGTGACACGTTCACATCTG -ACGGAAGTGACACGTTCAGAGTTG -ACGGAAGTGACACGTTCAAGACTG -ACGGAAGTGACACGTTCATCGGTA -ACGGAAGTGACACGTTCATGCCTA -ACGGAAGTGACACGTTCACCACTA -ACGGAAGTGACACGTTCAGGAGTA -ACGGAAGTGACACGTTCATCGTCT -ACGGAAGTGACACGTTCATGCACT -ACGGAAGTGACACGTTCACTGACT -ACGGAAGTGACACGTTCACAACCT -ACGGAAGTGACACGTTCAGCTACT -ACGGAAGTGACACGTTCAGGATCT -ACGGAAGTGACACGTTCAAAGGCT -ACGGAAGTGACACGTTCATCAACC -ACGGAAGTGACACGTTCATGTTCC -ACGGAAGTGACACGTTCAATTCCC -ACGGAAGTGACACGTTCATTCTCG -ACGGAAGTGACACGTTCATAGACG -ACGGAAGTGACACGTTCAGTAACG -ACGGAAGTGACACGTTCAACTTCG -ACGGAAGTGACACGTTCATACGCA -ACGGAAGTGACACGTTCACTTGCA -ACGGAAGTGACACGTTCACGAACA -ACGGAAGTGACACGTTCACAGTCA -ACGGAAGTGACACGTTCAGATCCA -ACGGAAGTGACACGTTCAACGACA -ACGGAAGTGACACGTTCAAGCTCA -ACGGAAGTGACACGTTCATCACGT -ACGGAAGTGACACGTTCACGTAGT -ACGGAAGTGACACGTTCAGTCAGT -ACGGAAGTGACACGTTCAGAAGGT -ACGGAAGTGACACGTTCAAACCGT -ACGGAAGTGACACGTTCATTGTGC -ACGGAAGTGACACGTTCACTAAGC -ACGGAAGTGACACGTTCAACTAGC -ACGGAAGTGACACGTTCAAGATGC -ACGGAAGTGACACGTTCATGAAGG -ACGGAAGTGACACGTTCACAATGG -ACGGAAGTGACACGTTCAATGAGG -ACGGAAGTGACACGTTCAAATGGG -ACGGAAGTGACACGTTCATCCTGA -ACGGAAGTGACACGTTCATAGCGA -ACGGAAGTGACACGTTCACACAGA -ACGGAAGTGACACGTTCAGCAAGA -ACGGAAGTGACACGTTCAGGTTGA -ACGGAAGTGACACGTTCATCCGAT -ACGGAAGTGACACGTTCATGGCAT -ACGGAAGTGACACGTTCACGAGAT -ACGGAAGTGACACGTTCATACCAC -ACGGAAGTGACACGTTCACAGAAC -ACGGAAGTGACACGTTCAGTCTAC -ACGGAAGTGACACGTTCAACGTAC -ACGGAAGTGACACGTTCAAGTGAC -ACGGAAGTGACACGTTCACTGTAG -ACGGAAGTGACACGTTCACCTAAG -ACGGAAGTGACACGTTCAGTTCAG -ACGGAAGTGACACGTTCAGCATAG -ACGGAAGTGACACGTTCAGACAAG -ACGGAAGTGACACGTTCAAAGCAG -ACGGAAGTGACACGTTCACGTCAA -ACGGAAGTGACACGTTCAGCTGAA -ACGGAAGTGACACGTTCAAGTACG -ACGGAAGTGACACGTTCAATCCGA -ACGGAAGTGACACGTTCAATGGGA -ACGGAAGTGACACGTTCAGTGCAA -ACGGAAGTGACACGTTCAGAGGAA -ACGGAAGTGACACGTTCACAGGTA -ACGGAAGTGACACGTTCAGACTCT -ACGGAAGTGACACGTTCAAGTCCT -ACGGAAGTGACACGTTCATAAGCC -ACGGAAGTGACACGTTCAATAGCC -ACGGAAGTGACACGTTCATAACCG -ACGGAAGTGACACGTTCAATGCCA -ACGGAAGTGACAAGTCGTGGAAAC -ACGGAAGTGACAAGTCGTAACACC -ACGGAAGTGACAAGTCGTATCGAG -ACGGAAGTGACAAGTCGTCTCCTT -ACGGAAGTGACAAGTCGTCCTGTT -ACGGAAGTGACAAGTCGTCGGTTT -ACGGAAGTGACAAGTCGTGTGGTT -ACGGAAGTGACAAGTCGTGCCTTT -ACGGAAGTGACAAGTCGTGGTCTT -ACGGAAGTGACAAGTCGTACGCTT -ACGGAAGTGACAAGTCGTAGCGTT -ACGGAAGTGACAAGTCGTTTCGTC -ACGGAAGTGACAAGTCGTTCTCTC -ACGGAAGTGACAAGTCGTTGGATC -ACGGAAGTGACAAGTCGTCACTTC -ACGGAAGTGACAAGTCGTGTACTC -ACGGAAGTGACAAGTCGTGATGTC -ACGGAAGTGACAAGTCGTACAGTC -ACGGAAGTGACAAGTCGTTTGCTG -ACGGAAGTGACAAGTCGTTCCATG -ACGGAAGTGACAAGTCGTTGTGTG -ACGGAAGTGACAAGTCGTCTAGTG -ACGGAAGTGACAAGTCGTCATCTG -ACGGAAGTGACAAGTCGTGAGTTG -ACGGAAGTGACAAGTCGTAGACTG -ACGGAAGTGACAAGTCGTTCGGTA -ACGGAAGTGACAAGTCGTTGCCTA -ACGGAAGTGACAAGTCGTCCACTA -ACGGAAGTGACAAGTCGTGGAGTA -ACGGAAGTGACAAGTCGTTCGTCT -ACGGAAGTGACAAGTCGTTGCACT -ACGGAAGTGACAAGTCGTCTGACT -ACGGAAGTGACAAGTCGTCAACCT -ACGGAAGTGACAAGTCGTGCTACT -ACGGAAGTGACAAGTCGTGGATCT -ACGGAAGTGACAAGTCGTAAGGCT -ACGGAAGTGACAAGTCGTTCAACC -ACGGAAGTGACAAGTCGTTGTTCC -ACGGAAGTGACAAGTCGTATTCCC -ACGGAAGTGACAAGTCGTTTCTCG -ACGGAAGTGACAAGTCGTTAGACG -ACGGAAGTGACAAGTCGTGTAACG -ACGGAAGTGACAAGTCGTACTTCG -ACGGAAGTGACAAGTCGTTACGCA -ACGGAAGTGACAAGTCGTCTTGCA -ACGGAAGTGACAAGTCGTCGAACA -ACGGAAGTGACAAGTCGTCAGTCA -ACGGAAGTGACAAGTCGTGATCCA -ACGGAAGTGACAAGTCGTACGACA -ACGGAAGTGACAAGTCGTAGCTCA -ACGGAAGTGACAAGTCGTTCACGT -ACGGAAGTGACAAGTCGTCGTAGT -ACGGAAGTGACAAGTCGTGTCAGT -ACGGAAGTGACAAGTCGTGAAGGT -ACGGAAGTGACAAGTCGTAACCGT -ACGGAAGTGACAAGTCGTTTGTGC -ACGGAAGTGACAAGTCGTCTAAGC -ACGGAAGTGACAAGTCGTACTAGC -ACGGAAGTGACAAGTCGTAGATGC -ACGGAAGTGACAAGTCGTTGAAGG -ACGGAAGTGACAAGTCGTCAATGG -ACGGAAGTGACAAGTCGTATGAGG -ACGGAAGTGACAAGTCGTAATGGG -ACGGAAGTGACAAGTCGTTCCTGA -ACGGAAGTGACAAGTCGTTAGCGA -ACGGAAGTGACAAGTCGTCACAGA -ACGGAAGTGACAAGTCGTGCAAGA -ACGGAAGTGACAAGTCGTGGTTGA -ACGGAAGTGACAAGTCGTTCCGAT -ACGGAAGTGACAAGTCGTTGGCAT -ACGGAAGTGACAAGTCGTCGAGAT -ACGGAAGTGACAAGTCGTTACCAC -ACGGAAGTGACAAGTCGTCAGAAC -ACGGAAGTGACAAGTCGTGTCTAC -ACGGAAGTGACAAGTCGTACGTAC -ACGGAAGTGACAAGTCGTAGTGAC -ACGGAAGTGACAAGTCGTCTGTAG -ACGGAAGTGACAAGTCGTCCTAAG -ACGGAAGTGACAAGTCGTGTTCAG -ACGGAAGTGACAAGTCGTGCATAG -ACGGAAGTGACAAGTCGTGACAAG -ACGGAAGTGACAAGTCGTAAGCAG -ACGGAAGTGACAAGTCGTCGTCAA -ACGGAAGTGACAAGTCGTGCTGAA -ACGGAAGTGACAAGTCGTAGTACG -ACGGAAGTGACAAGTCGTATCCGA -ACGGAAGTGACAAGTCGTATGGGA -ACGGAAGTGACAAGTCGTGTGCAA -ACGGAAGTGACAAGTCGTGAGGAA -ACGGAAGTGACAAGTCGTCAGGTA -ACGGAAGTGACAAGTCGTGACTCT -ACGGAAGTGACAAGTCGTAGTCCT -ACGGAAGTGACAAGTCGTTAAGCC -ACGGAAGTGACAAGTCGTATAGCC -ACGGAAGTGACAAGTCGTTAACCG -ACGGAAGTGACAAGTCGTATGCCA -ACGGAAGTGACAAGTGTCGGAAAC -ACGGAAGTGACAAGTGTCAACACC -ACGGAAGTGACAAGTGTCATCGAG -ACGGAAGTGACAAGTGTCCTCCTT -ACGGAAGTGACAAGTGTCCCTGTT -ACGGAAGTGACAAGTGTCCGGTTT -ACGGAAGTGACAAGTGTCGTGGTT -ACGGAAGTGACAAGTGTCGCCTTT -ACGGAAGTGACAAGTGTCGGTCTT -ACGGAAGTGACAAGTGTCACGCTT -ACGGAAGTGACAAGTGTCAGCGTT -ACGGAAGTGACAAGTGTCTTCGTC -ACGGAAGTGACAAGTGTCTCTCTC -ACGGAAGTGACAAGTGTCTGGATC -ACGGAAGTGACAAGTGTCCACTTC -ACGGAAGTGACAAGTGTCGTACTC -ACGGAAGTGACAAGTGTCGATGTC -ACGGAAGTGACAAGTGTCACAGTC -ACGGAAGTGACAAGTGTCTTGCTG -ACGGAAGTGACAAGTGTCTCCATG -ACGGAAGTGACAAGTGTCTGTGTG -ACGGAAGTGACAAGTGTCCTAGTG -ACGGAAGTGACAAGTGTCCATCTG -ACGGAAGTGACAAGTGTCGAGTTG -ACGGAAGTGACAAGTGTCAGACTG -ACGGAAGTGACAAGTGTCTCGGTA -ACGGAAGTGACAAGTGTCTGCCTA -ACGGAAGTGACAAGTGTCCCACTA -ACGGAAGTGACAAGTGTCGGAGTA -ACGGAAGTGACAAGTGTCTCGTCT -ACGGAAGTGACAAGTGTCTGCACT -ACGGAAGTGACAAGTGTCCTGACT -ACGGAAGTGACAAGTGTCCAACCT -ACGGAAGTGACAAGTGTCGCTACT -ACGGAAGTGACAAGTGTCGGATCT -ACGGAAGTGACAAGTGTCAAGGCT -ACGGAAGTGACAAGTGTCTCAACC -ACGGAAGTGACAAGTGTCTGTTCC -ACGGAAGTGACAAGTGTCATTCCC -ACGGAAGTGACAAGTGTCTTCTCG -ACGGAAGTGACAAGTGTCTAGACG -ACGGAAGTGACAAGTGTCGTAACG -ACGGAAGTGACAAGTGTCACTTCG -ACGGAAGTGACAAGTGTCTACGCA -ACGGAAGTGACAAGTGTCCTTGCA -ACGGAAGTGACAAGTGTCCGAACA -ACGGAAGTGACAAGTGTCCAGTCA -ACGGAAGTGACAAGTGTCGATCCA -ACGGAAGTGACAAGTGTCACGACA -ACGGAAGTGACAAGTGTCAGCTCA -ACGGAAGTGACAAGTGTCTCACGT -ACGGAAGTGACAAGTGTCCGTAGT -ACGGAAGTGACAAGTGTCGTCAGT -ACGGAAGTGACAAGTGTCGAAGGT -ACGGAAGTGACAAGTGTCAACCGT -ACGGAAGTGACAAGTGTCTTGTGC -ACGGAAGTGACAAGTGTCCTAAGC -ACGGAAGTGACAAGTGTCACTAGC -ACGGAAGTGACAAGTGTCAGATGC -ACGGAAGTGACAAGTGTCTGAAGG -ACGGAAGTGACAAGTGTCCAATGG -ACGGAAGTGACAAGTGTCATGAGG -ACGGAAGTGACAAGTGTCAATGGG -ACGGAAGTGACAAGTGTCTCCTGA -ACGGAAGTGACAAGTGTCTAGCGA -ACGGAAGTGACAAGTGTCCACAGA -ACGGAAGTGACAAGTGTCGCAAGA -ACGGAAGTGACAAGTGTCGGTTGA -ACGGAAGTGACAAGTGTCTCCGAT -ACGGAAGTGACAAGTGTCTGGCAT -ACGGAAGTGACAAGTGTCCGAGAT -ACGGAAGTGACAAGTGTCTACCAC -ACGGAAGTGACAAGTGTCCAGAAC -ACGGAAGTGACAAGTGTCGTCTAC -ACGGAAGTGACAAGTGTCACGTAC -ACGGAAGTGACAAGTGTCAGTGAC -ACGGAAGTGACAAGTGTCCTGTAG -ACGGAAGTGACAAGTGTCCCTAAG -ACGGAAGTGACAAGTGTCGTTCAG -ACGGAAGTGACAAGTGTCGCATAG -ACGGAAGTGACAAGTGTCGACAAG -ACGGAAGTGACAAGTGTCAAGCAG -ACGGAAGTGACAAGTGTCCGTCAA -ACGGAAGTGACAAGTGTCGCTGAA -ACGGAAGTGACAAGTGTCAGTACG -ACGGAAGTGACAAGTGTCATCCGA -ACGGAAGTGACAAGTGTCATGGGA -ACGGAAGTGACAAGTGTCGTGCAA -ACGGAAGTGACAAGTGTCGAGGAA -ACGGAAGTGACAAGTGTCCAGGTA -ACGGAAGTGACAAGTGTCGACTCT -ACGGAAGTGACAAGTGTCAGTCCT -ACGGAAGTGACAAGTGTCTAAGCC -ACGGAAGTGACAAGTGTCATAGCC -ACGGAAGTGACAAGTGTCTAACCG -ACGGAAGTGACAAGTGTCATGCCA -ACGGAAGTGACAGGTGAAGGAAAC -ACGGAAGTGACAGGTGAAAACACC -ACGGAAGTGACAGGTGAAATCGAG -ACGGAAGTGACAGGTGAACTCCTT -ACGGAAGTGACAGGTGAACCTGTT -ACGGAAGTGACAGGTGAACGGTTT -ACGGAAGTGACAGGTGAAGTGGTT -ACGGAAGTGACAGGTGAAGCCTTT -ACGGAAGTGACAGGTGAAGGTCTT -ACGGAAGTGACAGGTGAAACGCTT -ACGGAAGTGACAGGTGAAAGCGTT -ACGGAAGTGACAGGTGAATTCGTC -ACGGAAGTGACAGGTGAATCTCTC -ACGGAAGTGACAGGTGAATGGATC -ACGGAAGTGACAGGTGAACACTTC -ACGGAAGTGACAGGTGAAGTACTC -ACGGAAGTGACAGGTGAAGATGTC -ACGGAAGTGACAGGTGAAACAGTC -ACGGAAGTGACAGGTGAATTGCTG -ACGGAAGTGACAGGTGAATCCATG -ACGGAAGTGACAGGTGAATGTGTG -ACGGAAGTGACAGGTGAACTAGTG -ACGGAAGTGACAGGTGAACATCTG -ACGGAAGTGACAGGTGAAGAGTTG -ACGGAAGTGACAGGTGAAAGACTG -ACGGAAGTGACAGGTGAATCGGTA -ACGGAAGTGACAGGTGAATGCCTA -ACGGAAGTGACAGGTGAACCACTA -ACGGAAGTGACAGGTGAAGGAGTA -ACGGAAGTGACAGGTGAATCGTCT -ACGGAAGTGACAGGTGAATGCACT -ACGGAAGTGACAGGTGAACTGACT -ACGGAAGTGACAGGTGAACAACCT -ACGGAAGTGACAGGTGAAGCTACT -ACGGAAGTGACAGGTGAAGGATCT -ACGGAAGTGACAGGTGAAAAGGCT -ACGGAAGTGACAGGTGAATCAACC -ACGGAAGTGACAGGTGAATGTTCC -ACGGAAGTGACAGGTGAAATTCCC -ACGGAAGTGACAGGTGAATTCTCG -ACGGAAGTGACAGGTGAATAGACG -ACGGAAGTGACAGGTGAAGTAACG -ACGGAAGTGACAGGTGAAACTTCG -ACGGAAGTGACAGGTGAATACGCA -ACGGAAGTGACAGGTGAACTTGCA -ACGGAAGTGACAGGTGAACGAACA -ACGGAAGTGACAGGTGAACAGTCA -ACGGAAGTGACAGGTGAAGATCCA -ACGGAAGTGACAGGTGAAACGACA -ACGGAAGTGACAGGTGAAAGCTCA -ACGGAAGTGACAGGTGAATCACGT -ACGGAAGTGACAGGTGAACGTAGT -ACGGAAGTGACAGGTGAAGTCAGT -ACGGAAGTGACAGGTGAAGAAGGT -ACGGAAGTGACAGGTGAAAACCGT -ACGGAAGTGACAGGTGAATTGTGC -ACGGAAGTGACAGGTGAACTAAGC -ACGGAAGTGACAGGTGAAACTAGC -ACGGAAGTGACAGGTGAAAGATGC -ACGGAAGTGACAGGTGAATGAAGG -ACGGAAGTGACAGGTGAACAATGG -ACGGAAGTGACAGGTGAAATGAGG -ACGGAAGTGACAGGTGAAAATGGG -ACGGAAGTGACAGGTGAATCCTGA -ACGGAAGTGACAGGTGAATAGCGA -ACGGAAGTGACAGGTGAACACAGA -ACGGAAGTGACAGGTGAAGCAAGA -ACGGAAGTGACAGGTGAAGGTTGA -ACGGAAGTGACAGGTGAATCCGAT -ACGGAAGTGACAGGTGAATGGCAT -ACGGAAGTGACAGGTGAACGAGAT -ACGGAAGTGACAGGTGAATACCAC -ACGGAAGTGACAGGTGAACAGAAC -ACGGAAGTGACAGGTGAAGTCTAC -ACGGAAGTGACAGGTGAAACGTAC -ACGGAAGTGACAGGTGAAAGTGAC -ACGGAAGTGACAGGTGAACTGTAG -ACGGAAGTGACAGGTGAACCTAAG -ACGGAAGTGACAGGTGAAGTTCAG -ACGGAAGTGACAGGTGAAGCATAG -ACGGAAGTGACAGGTGAAGACAAG -ACGGAAGTGACAGGTGAAAAGCAG -ACGGAAGTGACAGGTGAACGTCAA -ACGGAAGTGACAGGTGAAGCTGAA -ACGGAAGTGACAGGTGAAAGTACG -ACGGAAGTGACAGGTGAAATCCGA -ACGGAAGTGACAGGTGAAATGGGA -ACGGAAGTGACAGGTGAAGTGCAA -ACGGAAGTGACAGGTGAAGAGGAA -ACGGAAGTGACAGGTGAACAGGTA -ACGGAAGTGACAGGTGAAGACTCT -ACGGAAGTGACAGGTGAAAGTCCT -ACGGAAGTGACAGGTGAATAAGCC -ACGGAAGTGACAGGTGAAATAGCC -ACGGAAGTGACAGGTGAATAACCG -ACGGAAGTGACAGGTGAAATGCCA -ACGGAAGTGACACGTAACGGAAAC -ACGGAAGTGACACGTAACAACACC -ACGGAAGTGACACGTAACATCGAG -ACGGAAGTGACACGTAACCTCCTT -ACGGAAGTGACACGTAACCCTGTT -ACGGAAGTGACACGTAACCGGTTT -ACGGAAGTGACACGTAACGTGGTT -ACGGAAGTGACACGTAACGCCTTT -ACGGAAGTGACACGTAACGGTCTT -ACGGAAGTGACACGTAACACGCTT -ACGGAAGTGACACGTAACAGCGTT -ACGGAAGTGACACGTAACTTCGTC -ACGGAAGTGACACGTAACTCTCTC -ACGGAAGTGACACGTAACTGGATC -ACGGAAGTGACACGTAACCACTTC -ACGGAAGTGACACGTAACGTACTC -ACGGAAGTGACACGTAACGATGTC -ACGGAAGTGACACGTAACACAGTC -ACGGAAGTGACACGTAACTTGCTG -ACGGAAGTGACACGTAACTCCATG -ACGGAAGTGACACGTAACTGTGTG -ACGGAAGTGACACGTAACCTAGTG -ACGGAAGTGACACGTAACCATCTG -ACGGAAGTGACACGTAACGAGTTG -ACGGAAGTGACACGTAACAGACTG -ACGGAAGTGACACGTAACTCGGTA -ACGGAAGTGACACGTAACTGCCTA -ACGGAAGTGACACGTAACCCACTA -ACGGAAGTGACACGTAACGGAGTA -ACGGAAGTGACACGTAACTCGTCT -ACGGAAGTGACACGTAACTGCACT -ACGGAAGTGACACGTAACCTGACT -ACGGAAGTGACACGTAACCAACCT -ACGGAAGTGACACGTAACGCTACT -ACGGAAGTGACACGTAACGGATCT -ACGGAAGTGACACGTAACAAGGCT -ACGGAAGTGACACGTAACTCAACC -ACGGAAGTGACACGTAACTGTTCC -ACGGAAGTGACACGTAACATTCCC -ACGGAAGTGACACGTAACTTCTCG -ACGGAAGTGACACGTAACTAGACG -ACGGAAGTGACACGTAACGTAACG -ACGGAAGTGACACGTAACACTTCG -ACGGAAGTGACACGTAACTACGCA -ACGGAAGTGACACGTAACCTTGCA -ACGGAAGTGACACGTAACCGAACA -ACGGAAGTGACACGTAACCAGTCA -ACGGAAGTGACACGTAACGATCCA -ACGGAAGTGACACGTAACACGACA -ACGGAAGTGACACGTAACAGCTCA -ACGGAAGTGACACGTAACTCACGT -ACGGAAGTGACACGTAACCGTAGT -ACGGAAGTGACACGTAACGTCAGT -ACGGAAGTGACACGTAACGAAGGT -ACGGAAGTGACACGTAACAACCGT -ACGGAAGTGACACGTAACTTGTGC -ACGGAAGTGACACGTAACCTAAGC -ACGGAAGTGACACGTAACACTAGC -ACGGAAGTGACACGTAACAGATGC -ACGGAAGTGACACGTAACTGAAGG -ACGGAAGTGACACGTAACCAATGG -ACGGAAGTGACACGTAACATGAGG -ACGGAAGTGACACGTAACAATGGG -ACGGAAGTGACACGTAACTCCTGA -ACGGAAGTGACACGTAACTAGCGA -ACGGAAGTGACACGTAACCACAGA -ACGGAAGTGACACGTAACGCAAGA -ACGGAAGTGACACGTAACGGTTGA -ACGGAAGTGACACGTAACTCCGAT -ACGGAAGTGACACGTAACTGGCAT -ACGGAAGTGACACGTAACCGAGAT -ACGGAAGTGACACGTAACTACCAC -ACGGAAGTGACACGTAACCAGAAC -ACGGAAGTGACACGTAACGTCTAC -ACGGAAGTGACACGTAACACGTAC -ACGGAAGTGACACGTAACAGTGAC -ACGGAAGTGACACGTAACCTGTAG -ACGGAAGTGACACGTAACCCTAAG -ACGGAAGTGACACGTAACGTTCAG -ACGGAAGTGACACGTAACGCATAG -ACGGAAGTGACACGTAACGACAAG -ACGGAAGTGACACGTAACAAGCAG -ACGGAAGTGACACGTAACCGTCAA -ACGGAAGTGACACGTAACGCTGAA -ACGGAAGTGACACGTAACAGTACG -ACGGAAGTGACACGTAACATCCGA -ACGGAAGTGACACGTAACATGGGA -ACGGAAGTGACACGTAACGTGCAA -ACGGAAGTGACACGTAACGAGGAA -ACGGAAGTGACACGTAACCAGGTA -ACGGAAGTGACACGTAACGACTCT -ACGGAAGTGACACGTAACAGTCCT -ACGGAAGTGACACGTAACTAAGCC -ACGGAAGTGACACGTAACATAGCC -ACGGAAGTGACACGTAACTAACCG -ACGGAAGTGACACGTAACATGCCA -ACGGAAGTGACATGCTTGGGAAAC -ACGGAAGTGACATGCTTGAACACC -ACGGAAGTGACATGCTTGATCGAG -ACGGAAGTGACATGCTTGCTCCTT -ACGGAAGTGACATGCTTGCCTGTT -ACGGAAGTGACATGCTTGCGGTTT -ACGGAAGTGACATGCTTGGTGGTT -ACGGAAGTGACATGCTTGGCCTTT -ACGGAAGTGACATGCTTGGGTCTT -ACGGAAGTGACATGCTTGACGCTT -ACGGAAGTGACATGCTTGAGCGTT -ACGGAAGTGACATGCTTGTTCGTC -ACGGAAGTGACATGCTTGTCTCTC -ACGGAAGTGACATGCTTGTGGATC -ACGGAAGTGACATGCTTGCACTTC -ACGGAAGTGACATGCTTGGTACTC -ACGGAAGTGACATGCTTGGATGTC -ACGGAAGTGACATGCTTGACAGTC -ACGGAAGTGACATGCTTGTTGCTG -ACGGAAGTGACATGCTTGTCCATG -ACGGAAGTGACATGCTTGTGTGTG -ACGGAAGTGACATGCTTGCTAGTG -ACGGAAGTGACATGCTTGCATCTG -ACGGAAGTGACATGCTTGGAGTTG -ACGGAAGTGACATGCTTGAGACTG -ACGGAAGTGACATGCTTGTCGGTA -ACGGAAGTGACATGCTTGTGCCTA -ACGGAAGTGACATGCTTGCCACTA -ACGGAAGTGACATGCTTGGGAGTA -ACGGAAGTGACATGCTTGTCGTCT -ACGGAAGTGACATGCTTGTGCACT -ACGGAAGTGACATGCTTGCTGACT -ACGGAAGTGACATGCTTGCAACCT -ACGGAAGTGACATGCTTGGCTACT -ACGGAAGTGACATGCTTGGGATCT -ACGGAAGTGACATGCTTGAAGGCT -ACGGAAGTGACATGCTTGTCAACC -ACGGAAGTGACATGCTTGTGTTCC -ACGGAAGTGACATGCTTGATTCCC -ACGGAAGTGACATGCTTGTTCTCG -ACGGAAGTGACATGCTTGTAGACG -ACGGAAGTGACATGCTTGGTAACG -ACGGAAGTGACATGCTTGACTTCG -ACGGAAGTGACATGCTTGTACGCA -ACGGAAGTGACATGCTTGCTTGCA -ACGGAAGTGACATGCTTGCGAACA -ACGGAAGTGACATGCTTGCAGTCA -ACGGAAGTGACATGCTTGGATCCA -ACGGAAGTGACATGCTTGACGACA -ACGGAAGTGACATGCTTGAGCTCA -ACGGAAGTGACATGCTTGTCACGT -ACGGAAGTGACATGCTTGCGTAGT -ACGGAAGTGACATGCTTGGTCAGT -ACGGAAGTGACATGCTTGGAAGGT -ACGGAAGTGACATGCTTGAACCGT -ACGGAAGTGACATGCTTGTTGTGC -ACGGAAGTGACATGCTTGCTAAGC -ACGGAAGTGACATGCTTGACTAGC -ACGGAAGTGACATGCTTGAGATGC -ACGGAAGTGACATGCTTGTGAAGG -ACGGAAGTGACATGCTTGCAATGG -ACGGAAGTGACATGCTTGATGAGG -ACGGAAGTGACATGCTTGAATGGG -ACGGAAGTGACATGCTTGTCCTGA -ACGGAAGTGACATGCTTGTAGCGA -ACGGAAGTGACATGCTTGCACAGA -ACGGAAGTGACATGCTTGGCAAGA -ACGGAAGTGACATGCTTGGGTTGA -ACGGAAGTGACATGCTTGTCCGAT -ACGGAAGTGACATGCTTGTGGCAT -ACGGAAGTGACATGCTTGCGAGAT -ACGGAAGTGACATGCTTGTACCAC -ACGGAAGTGACATGCTTGCAGAAC -ACGGAAGTGACATGCTTGGTCTAC -ACGGAAGTGACATGCTTGACGTAC -ACGGAAGTGACATGCTTGAGTGAC -ACGGAAGTGACATGCTTGCTGTAG -ACGGAAGTGACATGCTTGCCTAAG -ACGGAAGTGACATGCTTGGTTCAG -ACGGAAGTGACATGCTTGGCATAG -ACGGAAGTGACATGCTTGGACAAG -ACGGAAGTGACATGCTTGAAGCAG -ACGGAAGTGACATGCTTGCGTCAA -ACGGAAGTGACATGCTTGGCTGAA -ACGGAAGTGACATGCTTGAGTACG -ACGGAAGTGACATGCTTGATCCGA -ACGGAAGTGACATGCTTGATGGGA -ACGGAAGTGACATGCTTGGTGCAA -ACGGAAGTGACATGCTTGGAGGAA -ACGGAAGTGACATGCTTGCAGGTA -ACGGAAGTGACATGCTTGGACTCT -ACGGAAGTGACATGCTTGAGTCCT -ACGGAAGTGACATGCTTGTAAGCC -ACGGAAGTGACATGCTTGATAGCC -ACGGAAGTGACATGCTTGTAACCG -ACGGAAGTGACATGCTTGATGCCA -ACGGAAGTGACAAGCCTAGGAAAC -ACGGAAGTGACAAGCCTAAACACC -ACGGAAGTGACAAGCCTAATCGAG -ACGGAAGTGACAAGCCTACTCCTT -ACGGAAGTGACAAGCCTACCTGTT -ACGGAAGTGACAAGCCTACGGTTT -ACGGAAGTGACAAGCCTAGTGGTT -ACGGAAGTGACAAGCCTAGCCTTT -ACGGAAGTGACAAGCCTAGGTCTT -ACGGAAGTGACAAGCCTAACGCTT -ACGGAAGTGACAAGCCTAAGCGTT -ACGGAAGTGACAAGCCTATTCGTC -ACGGAAGTGACAAGCCTATCTCTC -ACGGAAGTGACAAGCCTATGGATC -ACGGAAGTGACAAGCCTACACTTC -ACGGAAGTGACAAGCCTAGTACTC -ACGGAAGTGACAAGCCTAGATGTC -ACGGAAGTGACAAGCCTAACAGTC -ACGGAAGTGACAAGCCTATTGCTG -ACGGAAGTGACAAGCCTATCCATG -ACGGAAGTGACAAGCCTATGTGTG -ACGGAAGTGACAAGCCTACTAGTG -ACGGAAGTGACAAGCCTACATCTG -ACGGAAGTGACAAGCCTAGAGTTG -ACGGAAGTGACAAGCCTAAGACTG -ACGGAAGTGACAAGCCTATCGGTA -ACGGAAGTGACAAGCCTATGCCTA -ACGGAAGTGACAAGCCTACCACTA -ACGGAAGTGACAAGCCTAGGAGTA -ACGGAAGTGACAAGCCTATCGTCT -ACGGAAGTGACAAGCCTATGCACT -ACGGAAGTGACAAGCCTACTGACT -ACGGAAGTGACAAGCCTACAACCT -ACGGAAGTGACAAGCCTAGCTACT -ACGGAAGTGACAAGCCTAGGATCT -ACGGAAGTGACAAGCCTAAAGGCT -ACGGAAGTGACAAGCCTATCAACC -ACGGAAGTGACAAGCCTATGTTCC -ACGGAAGTGACAAGCCTAATTCCC -ACGGAAGTGACAAGCCTATTCTCG -ACGGAAGTGACAAGCCTATAGACG -ACGGAAGTGACAAGCCTAGTAACG -ACGGAAGTGACAAGCCTAACTTCG -ACGGAAGTGACAAGCCTATACGCA -ACGGAAGTGACAAGCCTACTTGCA -ACGGAAGTGACAAGCCTACGAACA -ACGGAAGTGACAAGCCTACAGTCA -ACGGAAGTGACAAGCCTAGATCCA -ACGGAAGTGACAAGCCTAACGACA -ACGGAAGTGACAAGCCTAAGCTCA -ACGGAAGTGACAAGCCTATCACGT -ACGGAAGTGACAAGCCTACGTAGT -ACGGAAGTGACAAGCCTAGTCAGT -ACGGAAGTGACAAGCCTAGAAGGT -ACGGAAGTGACAAGCCTAAACCGT -ACGGAAGTGACAAGCCTATTGTGC -ACGGAAGTGACAAGCCTACTAAGC -ACGGAAGTGACAAGCCTAACTAGC -ACGGAAGTGACAAGCCTAAGATGC -ACGGAAGTGACAAGCCTATGAAGG -ACGGAAGTGACAAGCCTACAATGG -ACGGAAGTGACAAGCCTAATGAGG -ACGGAAGTGACAAGCCTAAATGGG -ACGGAAGTGACAAGCCTATCCTGA -ACGGAAGTGACAAGCCTATAGCGA -ACGGAAGTGACAAGCCTACACAGA -ACGGAAGTGACAAGCCTAGCAAGA -ACGGAAGTGACAAGCCTAGGTTGA -ACGGAAGTGACAAGCCTATCCGAT -ACGGAAGTGACAAGCCTATGGCAT -ACGGAAGTGACAAGCCTACGAGAT -ACGGAAGTGACAAGCCTATACCAC -ACGGAAGTGACAAGCCTACAGAAC -ACGGAAGTGACAAGCCTAGTCTAC -ACGGAAGTGACAAGCCTAACGTAC -ACGGAAGTGACAAGCCTAAGTGAC -ACGGAAGTGACAAGCCTACTGTAG -ACGGAAGTGACAAGCCTACCTAAG -ACGGAAGTGACAAGCCTAGTTCAG -ACGGAAGTGACAAGCCTAGCATAG -ACGGAAGTGACAAGCCTAGACAAG -ACGGAAGTGACAAGCCTAAAGCAG -ACGGAAGTGACAAGCCTACGTCAA -ACGGAAGTGACAAGCCTAGCTGAA -ACGGAAGTGACAAGCCTAAGTACG -ACGGAAGTGACAAGCCTAATCCGA -ACGGAAGTGACAAGCCTAATGGGA -ACGGAAGTGACAAGCCTAGTGCAA -ACGGAAGTGACAAGCCTAGAGGAA -ACGGAAGTGACAAGCCTACAGGTA -ACGGAAGTGACAAGCCTAGACTCT -ACGGAAGTGACAAGCCTAAGTCCT -ACGGAAGTGACAAGCCTATAAGCC -ACGGAAGTGACAAGCCTAATAGCC -ACGGAAGTGACAAGCCTATAACCG -ACGGAAGTGACAAGCCTAATGCCA -ACGGAAGTGACAAGCACTGGAAAC -ACGGAAGTGACAAGCACTAACACC -ACGGAAGTGACAAGCACTATCGAG -ACGGAAGTGACAAGCACTCTCCTT -ACGGAAGTGACAAGCACTCCTGTT -ACGGAAGTGACAAGCACTCGGTTT -ACGGAAGTGACAAGCACTGTGGTT -ACGGAAGTGACAAGCACTGCCTTT -ACGGAAGTGACAAGCACTGGTCTT -ACGGAAGTGACAAGCACTACGCTT -ACGGAAGTGACAAGCACTAGCGTT -ACGGAAGTGACAAGCACTTTCGTC -ACGGAAGTGACAAGCACTTCTCTC -ACGGAAGTGACAAGCACTTGGATC -ACGGAAGTGACAAGCACTCACTTC -ACGGAAGTGACAAGCACTGTACTC -ACGGAAGTGACAAGCACTGATGTC -ACGGAAGTGACAAGCACTACAGTC -ACGGAAGTGACAAGCACTTTGCTG -ACGGAAGTGACAAGCACTTCCATG -ACGGAAGTGACAAGCACTTGTGTG -ACGGAAGTGACAAGCACTCTAGTG -ACGGAAGTGACAAGCACTCATCTG -ACGGAAGTGACAAGCACTGAGTTG -ACGGAAGTGACAAGCACTAGACTG -ACGGAAGTGACAAGCACTTCGGTA -ACGGAAGTGACAAGCACTTGCCTA -ACGGAAGTGACAAGCACTCCACTA -ACGGAAGTGACAAGCACTGGAGTA -ACGGAAGTGACAAGCACTTCGTCT -ACGGAAGTGACAAGCACTTGCACT -ACGGAAGTGACAAGCACTCTGACT -ACGGAAGTGACAAGCACTCAACCT -ACGGAAGTGACAAGCACTGCTACT -ACGGAAGTGACAAGCACTGGATCT -ACGGAAGTGACAAGCACTAAGGCT -ACGGAAGTGACAAGCACTTCAACC -ACGGAAGTGACAAGCACTTGTTCC -ACGGAAGTGACAAGCACTATTCCC -ACGGAAGTGACAAGCACTTTCTCG -ACGGAAGTGACAAGCACTTAGACG -ACGGAAGTGACAAGCACTGTAACG -ACGGAAGTGACAAGCACTACTTCG -ACGGAAGTGACAAGCACTTACGCA -ACGGAAGTGACAAGCACTCTTGCA -ACGGAAGTGACAAGCACTCGAACA -ACGGAAGTGACAAGCACTCAGTCA -ACGGAAGTGACAAGCACTGATCCA -ACGGAAGTGACAAGCACTACGACA -ACGGAAGTGACAAGCACTAGCTCA -ACGGAAGTGACAAGCACTTCACGT -ACGGAAGTGACAAGCACTCGTAGT -ACGGAAGTGACAAGCACTGTCAGT -ACGGAAGTGACAAGCACTGAAGGT -ACGGAAGTGACAAGCACTAACCGT -ACGGAAGTGACAAGCACTTTGTGC -ACGGAAGTGACAAGCACTCTAAGC -ACGGAAGTGACAAGCACTACTAGC -ACGGAAGTGACAAGCACTAGATGC -ACGGAAGTGACAAGCACTTGAAGG -ACGGAAGTGACAAGCACTCAATGG -ACGGAAGTGACAAGCACTATGAGG -ACGGAAGTGACAAGCACTAATGGG -ACGGAAGTGACAAGCACTTCCTGA -ACGGAAGTGACAAGCACTTAGCGA -ACGGAAGTGACAAGCACTCACAGA -ACGGAAGTGACAAGCACTGCAAGA -ACGGAAGTGACAAGCACTGGTTGA -ACGGAAGTGACAAGCACTTCCGAT -ACGGAAGTGACAAGCACTTGGCAT -ACGGAAGTGACAAGCACTCGAGAT -ACGGAAGTGACAAGCACTTACCAC -ACGGAAGTGACAAGCACTCAGAAC -ACGGAAGTGACAAGCACTGTCTAC -ACGGAAGTGACAAGCACTACGTAC -ACGGAAGTGACAAGCACTAGTGAC -ACGGAAGTGACAAGCACTCTGTAG -ACGGAAGTGACAAGCACTCCTAAG -ACGGAAGTGACAAGCACTGTTCAG -ACGGAAGTGACAAGCACTGCATAG -ACGGAAGTGACAAGCACTGACAAG -ACGGAAGTGACAAGCACTAAGCAG -ACGGAAGTGACAAGCACTCGTCAA -ACGGAAGTGACAAGCACTGCTGAA -ACGGAAGTGACAAGCACTAGTACG -ACGGAAGTGACAAGCACTATCCGA -ACGGAAGTGACAAGCACTATGGGA -ACGGAAGTGACAAGCACTGTGCAA -ACGGAAGTGACAAGCACTGAGGAA -ACGGAAGTGACAAGCACTCAGGTA -ACGGAAGTGACAAGCACTGACTCT -ACGGAAGTGACAAGCACTAGTCCT -ACGGAAGTGACAAGCACTTAAGCC -ACGGAAGTGACAAGCACTATAGCC -ACGGAAGTGACAAGCACTTAACCG -ACGGAAGTGACAAGCACTATGCCA -ACGGAAGTGACATGCAGAGGAAAC -ACGGAAGTGACATGCAGAAACACC -ACGGAAGTGACATGCAGAATCGAG -ACGGAAGTGACATGCAGACTCCTT -ACGGAAGTGACATGCAGACCTGTT -ACGGAAGTGACATGCAGACGGTTT -ACGGAAGTGACATGCAGAGTGGTT -ACGGAAGTGACATGCAGAGCCTTT -ACGGAAGTGACATGCAGAGGTCTT -ACGGAAGTGACATGCAGAACGCTT -ACGGAAGTGACATGCAGAAGCGTT -ACGGAAGTGACATGCAGATTCGTC -ACGGAAGTGACATGCAGATCTCTC -ACGGAAGTGACATGCAGATGGATC -ACGGAAGTGACATGCAGACACTTC -ACGGAAGTGACATGCAGAGTACTC -ACGGAAGTGACATGCAGAGATGTC -ACGGAAGTGACATGCAGAACAGTC -ACGGAAGTGACATGCAGATTGCTG -ACGGAAGTGACATGCAGATCCATG -ACGGAAGTGACATGCAGATGTGTG -ACGGAAGTGACATGCAGACTAGTG -ACGGAAGTGACATGCAGACATCTG -ACGGAAGTGACATGCAGAGAGTTG -ACGGAAGTGACATGCAGAAGACTG -ACGGAAGTGACATGCAGATCGGTA -ACGGAAGTGACATGCAGATGCCTA -ACGGAAGTGACATGCAGACCACTA -ACGGAAGTGACATGCAGAGGAGTA -ACGGAAGTGACATGCAGATCGTCT -ACGGAAGTGACATGCAGATGCACT -ACGGAAGTGACATGCAGACTGACT -ACGGAAGTGACATGCAGACAACCT -ACGGAAGTGACATGCAGAGCTACT -ACGGAAGTGACATGCAGAGGATCT -ACGGAAGTGACATGCAGAAAGGCT -ACGGAAGTGACATGCAGATCAACC -ACGGAAGTGACATGCAGATGTTCC -ACGGAAGTGACATGCAGAATTCCC -ACGGAAGTGACATGCAGATTCTCG -ACGGAAGTGACATGCAGATAGACG -ACGGAAGTGACATGCAGAGTAACG -ACGGAAGTGACATGCAGAACTTCG -ACGGAAGTGACATGCAGATACGCA -ACGGAAGTGACATGCAGACTTGCA -ACGGAAGTGACATGCAGACGAACA -ACGGAAGTGACATGCAGACAGTCA -ACGGAAGTGACATGCAGAGATCCA -ACGGAAGTGACATGCAGAACGACA -ACGGAAGTGACATGCAGAAGCTCA -ACGGAAGTGACATGCAGATCACGT -ACGGAAGTGACATGCAGACGTAGT -ACGGAAGTGACATGCAGAGTCAGT -ACGGAAGTGACATGCAGAGAAGGT -ACGGAAGTGACATGCAGAAACCGT -ACGGAAGTGACATGCAGATTGTGC -ACGGAAGTGACATGCAGACTAAGC -ACGGAAGTGACATGCAGAACTAGC -ACGGAAGTGACATGCAGAAGATGC -ACGGAAGTGACATGCAGATGAAGG -ACGGAAGTGACATGCAGACAATGG -ACGGAAGTGACATGCAGAATGAGG -ACGGAAGTGACATGCAGAAATGGG -ACGGAAGTGACATGCAGATCCTGA -ACGGAAGTGACATGCAGATAGCGA -ACGGAAGTGACATGCAGACACAGA -ACGGAAGTGACATGCAGAGCAAGA -ACGGAAGTGACATGCAGAGGTTGA -ACGGAAGTGACATGCAGATCCGAT -ACGGAAGTGACATGCAGATGGCAT -ACGGAAGTGACATGCAGACGAGAT -ACGGAAGTGACATGCAGATACCAC -ACGGAAGTGACATGCAGACAGAAC -ACGGAAGTGACATGCAGAGTCTAC -ACGGAAGTGACATGCAGAACGTAC -ACGGAAGTGACATGCAGAAGTGAC -ACGGAAGTGACATGCAGACTGTAG -ACGGAAGTGACATGCAGACCTAAG -ACGGAAGTGACATGCAGAGTTCAG -ACGGAAGTGACATGCAGAGCATAG -ACGGAAGTGACATGCAGAGACAAG -ACGGAAGTGACATGCAGAAAGCAG -ACGGAAGTGACATGCAGACGTCAA -ACGGAAGTGACATGCAGAGCTGAA -ACGGAAGTGACATGCAGAAGTACG -ACGGAAGTGACATGCAGAATCCGA -ACGGAAGTGACATGCAGAATGGGA -ACGGAAGTGACATGCAGAGTGCAA -ACGGAAGTGACATGCAGAGAGGAA -ACGGAAGTGACATGCAGACAGGTA -ACGGAAGTGACATGCAGAGACTCT -ACGGAAGTGACATGCAGAAGTCCT -ACGGAAGTGACATGCAGATAAGCC -ACGGAAGTGACATGCAGAATAGCC -ACGGAAGTGACATGCAGATAACCG -ACGGAAGTGACATGCAGAATGCCA -ACGGAAGTGACAAGGTGAGGAAAC -ACGGAAGTGACAAGGTGAAACACC -ACGGAAGTGACAAGGTGAATCGAG -ACGGAAGTGACAAGGTGACTCCTT -ACGGAAGTGACAAGGTGACCTGTT -ACGGAAGTGACAAGGTGACGGTTT -ACGGAAGTGACAAGGTGAGTGGTT -ACGGAAGTGACAAGGTGAGCCTTT -ACGGAAGTGACAAGGTGAGGTCTT -ACGGAAGTGACAAGGTGAACGCTT -ACGGAAGTGACAAGGTGAAGCGTT -ACGGAAGTGACAAGGTGATTCGTC -ACGGAAGTGACAAGGTGATCTCTC -ACGGAAGTGACAAGGTGATGGATC -ACGGAAGTGACAAGGTGACACTTC -ACGGAAGTGACAAGGTGAGTACTC -ACGGAAGTGACAAGGTGAGATGTC -ACGGAAGTGACAAGGTGAACAGTC -ACGGAAGTGACAAGGTGATTGCTG -ACGGAAGTGACAAGGTGATCCATG -ACGGAAGTGACAAGGTGATGTGTG -ACGGAAGTGACAAGGTGACTAGTG -ACGGAAGTGACAAGGTGACATCTG -ACGGAAGTGACAAGGTGAGAGTTG -ACGGAAGTGACAAGGTGAAGACTG -ACGGAAGTGACAAGGTGATCGGTA -ACGGAAGTGACAAGGTGATGCCTA -ACGGAAGTGACAAGGTGACCACTA -ACGGAAGTGACAAGGTGAGGAGTA -ACGGAAGTGACAAGGTGATCGTCT -ACGGAAGTGACAAGGTGATGCACT -ACGGAAGTGACAAGGTGACTGACT -ACGGAAGTGACAAGGTGACAACCT -ACGGAAGTGACAAGGTGAGCTACT -ACGGAAGTGACAAGGTGAGGATCT -ACGGAAGTGACAAGGTGAAAGGCT -ACGGAAGTGACAAGGTGATCAACC -ACGGAAGTGACAAGGTGATGTTCC -ACGGAAGTGACAAGGTGAATTCCC -ACGGAAGTGACAAGGTGATTCTCG -ACGGAAGTGACAAGGTGATAGACG -ACGGAAGTGACAAGGTGAGTAACG -ACGGAAGTGACAAGGTGAACTTCG -ACGGAAGTGACAAGGTGATACGCA -ACGGAAGTGACAAGGTGACTTGCA -ACGGAAGTGACAAGGTGACGAACA -ACGGAAGTGACAAGGTGACAGTCA -ACGGAAGTGACAAGGTGAGATCCA -ACGGAAGTGACAAGGTGAACGACA -ACGGAAGTGACAAGGTGAAGCTCA -ACGGAAGTGACAAGGTGATCACGT -ACGGAAGTGACAAGGTGACGTAGT -ACGGAAGTGACAAGGTGAGTCAGT -ACGGAAGTGACAAGGTGAGAAGGT -ACGGAAGTGACAAGGTGAAACCGT -ACGGAAGTGACAAGGTGATTGTGC -ACGGAAGTGACAAGGTGACTAAGC -ACGGAAGTGACAAGGTGAACTAGC -ACGGAAGTGACAAGGTGAAGATGC -ACGGAAGTGACAAGGTGATGAAGG -ACGGAAGTGACAAGGTGACAATGG -ACGGAAGTGACAAGGTGAATGAGG -ACGGAAGTGACAAGGTGAAATGGG -ACGGAAGTGACAAGGTGATCCTGA -ACGGAAGTGACAAGGTGATAGCGA -ACGGAAGTGACAAGGTGACACAGA -ACGGAAGTGACAAGGTGAGCAAGA -ACGGAAGTGACAAGGTGAGGTTGA -ACGGAAGTGACAAGGTGATCCGAT -ACGGAAGTGACAAGGTGATGGCAT -ACGGAAGTGACAAGGTGACGAGAT -ACGGAAGTGACAAGGTGATACCAC -ACGGAAGTGACAAGGTGACAGAAC -ACGGAAGTGACAAGGTGAGTCTAC -ACGGAAGTGACAAGGTGAACGTAC -ACGGAAGTGACAAGGTGAAGTGAC -ACGGAAGTGACAAGGTGACTGTAG -ACGGAAGTGACAAGGTGACCTAAG -ACGGAAGTGACAAGGTGAGTTCAG -ACGGAAGTGACAAGGTGAGCATAG -ACGGAAGTGACAAGGTGAGACAAG -ACGGAAGTGACAAGGTGAAAGCAG -ACGGAAGTGACAAGGTGACGTCAA -ACGGAAGTGACAAGGTGAGCTGAA -ACGGAAGTGACAAGGTGAAGTACG -ACGGAAGTGACAAGGTGAATCCGA -ACGGAAGTGACAAGGTGAATGGGA -ACGGAAGTGACAAGGTGAGTGCAA -ACGGAAGTGACAAGGTGAGAGGAA -ACGGAAGTGACAAGGTGACAGGTA -ACGGAAGTGACAAGGTGAGACTCT -ACGGAAGTGACAAGGTGAAGTCCT -ACGGAAGTGACAAGGTGATAAGCC -ACGGAAGTGACAAGGTGAATAGCC -ACGGAAGTGACAAGGTGATAACCG -ACGGAAGTGACAAGGTGAATGCCA -ACGGAAGTGACATGGCAAGGAAAC -ACGGAAGTGACATGGCAAAACACC -ACGGAAGTGACATGGCAAATCGAG -ACGGAAGTGACATGGCAACTCCTT -ACGGAAGTGACATGGCAACCTGTT -ACGGAAGTGACATGGCAACGGTTT -ACGGAAGTGACATGGCAAGTGGTT -ACGGAAGTGACATGGCAAGCCTTT -ACGGAAGTGACATGGCAAGGTCTT -ACGGAAGTGACATGGCAAACGCTT -ACGGAAGTGACATGGCAAAGCGTT -ACGGAAGTGACATGGCAATTCGTC -ACGGAAGTGACATGGCAATCTCTC -ACGGAAGTGACATGGCAATGGATC -ACGGAAGTGACATGGCAACACTTC -ACGGAAGTGACATGGCAAGTACTC -ACGGAAGTGACATGGCAAGATGTC -ACGGAAGTGACATGGCAAACAGTC -ACGGAAGTGACATGGCAATTGCTG -ACGGAAGTGACATGGCAATCCATG -ACGGAAGTGACATGGCAATGTGTG -ACGGAAGTGACATGGCAACTAGTG -ACGGAAGTGACATGGCAACATCTG -ACGGAAGTGACATGGCAAGAGTTG -ACGGAAGTGACATGGCAAAGACTG -ACGGAAGTGACATGGCAATCGGTA -ACGGAAGTGACATGGCAATGCCTA -ACGGAAGTGACATGGCAACCACTA -ACGGAAGTGACATGGCAAGGAGTA -ACGGAAGTGACATGGCAATCGTCT -ACGGAAGTGACATGGCAATGCACT -ACGGAAGTGACATGGCAACTGACT -ACGGAAGTGACATGGCAACAACCT -ACGGAAGTGACATGGCAAGCTACT -ACGGAAGTGACATGGCAAGGATCT -ACGGAAGTGACATGGCAAAAGGCT -ACGGAAGTGACATGGCAATCAACC -ACGGAAGTGACATGGCAATGTTCC -ACGGAAGTGACATGGCAAATTCCC -ACGGAAGTGACATGGCAATTCTCG -ACGGAAGTGACATGGCAATAGACG -ACGGAAGTGACATGGCAAGTAACG -ACGGAAGTGACATGGCAAACTTCG -ACGGAAGTGACATGGCAATACGCA -ACGGAAGTGACATGGCAACTTGCA -ACGGAAGTGACATGGCAACGAACA -ACGGAAGTGACATGGCAACAGTCA -ACGGAAGTGACATGGCAAGATCCA -ACGGAAGTGACATGGCAAACGACA -ACGGAAGTGACATGGCAAAGCTCA -ACGGAAGTGACATGGCAATCACGT -ACGGAAGTGACATGGCAACGTAGT -ACGGAAGTGACATGGCAAGTCAGT -ACGGAAGTGACATGGCAAGAAGGT -ACGGAAGTGACATGGCAAAACCGT -ACGGAAGTGACATGGCAATTGTGC -ACGGAAGTGACATGGCAACTAAGC -ACGGAAGTGACATGGCAAACTAGC -ACGGAAGTGACATGGCAAAGATGC -ACGGAAGTGACATGGCAATGAAGG -ACGGAAGTGACATGGCAACAATGG -ACGGAAGTGACATGGCAAATGAGG -ACGGAAGTGACATGGCAAAATGGG -ACGGAAGTGACATGGCAATCCTGA -ACGGAAGTGACATGGCAATAGCGA -ACGGAAGTGACATGGCAACACAGA -ACGGAAGTGACATGGCAAGCAAGA -ACGGAAGTGACATGGCAAGGTTGA -ACGGAAGTGACATGGCAATCCGAT -ACGGAAGTGACATGGCAATGGCAT -ACGGAAGTGACATGGCAACGAGAT -ACGGAAGTGACATGGCAATACCAC -ACGGAAGTGACATGGCAACAGAAC -ACGGAAGTGACATGGCAAGTCTAC -ACGGAAGTGACATGGCAAACGTAC -ACGGAAGTGACATGGCAAAGTGAC -ACGGAAGTGACATGGCAACTGTAG -ACGGAAGTGACATGGCAACCTAAG -ACGGAAGTGACATGGCAAGTTCAG -ACGGAAGTGACATGGCAAGCATAG -ACGGAAGTGACATGGCAAGACAAG -ACGGAAGTGACATGGCAAAAGCAG -ACGGAAGTGACATGGCAACGTCAA -ACGGAAGTGACATGGCAAGCTGAA -ACGGAAGTGACATGGCAAAGTACG -ACGGAAGTGACATGGCAAATCCGA -ACGGAAGTGACATGGCAAATGGGA -ACGGAAGTGACATGGCAAGTGCAA -ACGGAAGTGACATGGCAAGAGGAA -ACGGAAGTGACATGGCAACAGGTA -ACGGAAGTGACATGGCAAGACTCT -ACGGAAGTGACATGGCAAAGTCCT -ACGGAAGTGACATGGCAATAAGCC -ACGGAAGTGACATGGCAAATAGCC -ACGGAAGTGACATGGCAATAACCG -ACGGAAGTGACATGGCAAATGCCA -ACGGAAGTGACAAGGATGGGAAAC -ACGGAAGTGACAAGGATGAACACC -ACGGAAGTGACAAGGATGATCGAG -ACGGAAGTGACAAGGATGCTCCTT -ACGGAAGTGACAAGGATGCCTGTT -ACGGAAGTGACAAGGATGCGGTTT -ACGGAAGTGACAAGGATGGTGGTT -ACGGAAGTGACAAGGATGGCCTTT -ACGGAAGTGACAAGGATGGGTCTT -ACGGAAGTGACAAGGATGACGCTT -ACGGAAGTGACAAGGATGAGCGTT -ACGGAAGTGACAAGGATGTTCGTC -ACGGAAGTGACAAGGATGTCTCTC -ACGGAAGTGACAAGGATGTGGATC -ACGGAAGTGACAAGGATGCACTTC -ACGGAAGTGACAAGGATGGTACTC -ACGGAAGTGACAAGGATGGATGTC -ACGGAAGTGACAAGGATGACAGTC -ACGGAAGTGACAAGGATGTTGCTG -ACGGAAGTGACAAGGATGTCCATG -ACGGAAGTGACAAGGATGTGTGTG -ACGGAAGTGACAAGGATGCTAGTG -ACGGAAGTGACAAGGATGCATCTG -ACGGAAGTGACAAGGATGGAGTTG -ACGGAAGTGACAAGGATGAGACTG -ACGGAAGTGACAAGGATGTCGGTA -ACGGAAGTGACAAGGATGTGCCTA -ACGGAAGTGACAAGGATGCCACTA -ACGGAAGTGACAAGGATGGGAGTA -ACGGAAGTGACAAGGATGTCGTCT -ACGGAAGTGACAAGGATGTGCACT -ACGGAAGTGACAAGGATGCTGACT -ACGGAAGTGACAAGGATGCAACCT -ACGGAAGTGACAAGGATGGCTACT -ACGGAAGTGACAAGGATGGGATCT -ACGGAAGTGACAAGGATGAAGGCT -ACGGAAGTGACAAGGATGTCAACC -ACGGAAGTGACAAGGATGTGTTCC -ACGGAAGTGACAAGGATGATTCCC -ACGGAAGTGACAAGGATGTTCTCG -ACGGAAGTGACAAGGATGTAGACG -ACGGAAGTGACAAGGATGGTAACG -ACGGAAGTGACAAGGATGACTTCG -ACGGAAGTGACAAGGATGTACGCA -ACGGAAGTGACAAGGATGCTTGCA -ACGGAAGTGACAAGGATGCGAACA -ACGGAAGTGACAAGGATGCAGTCA -ACGGAAGTGACAAGGATGGATCCA -ACGGAAGTGACAAGGATGACGACA -ACGGAAGTGACAAGGATGAGCTCA -ACGGAAGTGACAAGGATGTCACGT -ACGGAAGTGACAAGGATGCGTAGT -ACGGAAGTGACAAGGATGGTCAGT -ACGGAAGTGACAAGGATGGAAGGT -ACGGAAGTGACAAGGATGAACCGT -ACGGAAGTGACAAGGATGTTGTGC -ACGGAAGTGACAAGGATGCTAAGC -ACGGAAGTGACAAGGATGACTAGC -ACGGAAGTGACAAGGATGAGATGC -ACGGAAGTGACAAGGATGTGAAGG -ACGGAAGTGACAAGGATGCAATGG -ACGGAAGTGACAAGGATGATGAGG -ACGGAAGTGACAAGGATGAATGGG -ACGGAAGTGACAAGGATGTCCTGA -ACGGAAGTGACAAGGATGTAGCGA -ACGGAAGTGACAAGGATGCACAGA -ACGGAAGTGACAAGGATGGCAAGA -ACGGAAGTGACAAGGATGGGTTGA -ACGGAAGTGACAAGGATGTCCGAT -ACGGAAGTGACAAGGATGTGGCAT -ACGGAAGTGACAAGGATGCGAGAT -ACGGAAGTGACAAGGATGTACCAC -ACGGAAGTGACAAGGATGCAGAAC -ACGGAAGTGACAAGGATGGTCTAC -ACGGAAGTGACAAGGATGACGTAC -ACGGAAGTGACAAGGATGAGTGAC -ACGGAAGTGACAAGGATGCTGTAG -ACGGAAGTGACAAGGATGCCTAAG -ACGGAAGTGACAAGGATGGTTCAG -ACGGAAGTGACAAGGATGGCATAG -ACGGAAGTGACAAGGATGGACAAG -ACGGAAGTGACAAGGATGAAGCAG -ACGGAAGTGACAAGGATGCGTCAA -ACGGAAGTGACAAGGATGGCTGAA -ACGGAAGTGACAAGGATGAGTACG -ACGGAAGTGACAAGGATGATCCGA -ACGGAAGTGACAAGGATGATGGGA -ACGGAAGTGACAAGGATGGTGCAA -ACGGAAGTGACAAGGATGGAGGAA -ACGGAAGTGACAAGGATGCAGGTA -ACGGAAGTGACAAGGATGGACTCT -ACGGAAGTGACAAGGATGAGTCCT -ACGGAAGTGACAAGGATGTAAGCC -ACGGAAGTGACAAGGATGATAGCC -ACGGAAGTGACAAGGATGTAACCG -ACGGAAGTGACAAGGATGATGCCA -ACGGAAGTGACAGGGAATGGAAAC -ACGGAAGTGACAGGGAATAACACC -ACGGAAGTGACAGGGAATATCGAG -ACGGAAGTGACAGGGAATCTCCTT -ACGGAAGTGACAGGGAATCCTGTT -ACGGAAGTGACAGGGAATCGGTTT -ACGGAAGTGACAGGGAATGTGGTT -ACGGAAGTGACAGGGAATGCCTTT -ACGGAAGTGACAGGGAATGGTCTT -ACGGAAGTGACAGGGAATACGCTT -ACGGAAGTGACAGGGAATAGCGTT -ACGGAAGTGACAGGGAATTTCGTC -ACGGAAGTGACAGGGAATTCTCTC -ACGGAAGTGACAGGGAATTGGATC -ACGGAAGTGACAGGGAATCACTTC -ACGGAAGTGACAGGGAATGTACTC -ACGGAAGTGACAGGGAATGATGTC -ACGGAAGTGACAGGGAATACAGTC -ACGGAAGTGACAGGGAATTTGCTG -ACGGAAGTGACAGGGAATTCCATG -ACGGAAGTGACAGGGAATTGTGTG -ACGGAAGTGACAGGGAATCTAGTG -ACGGAAGTGACAGGGAATCATCTG -ACGGAAGTGACAGGGAATGAGTTG -ACGGAAGTGACAGGGAATAGACTG -ACGGAAGTGACAGGGAATTCGGTA -ACGGAAGTGACAGGGAATTGCCTA -ACGGAAGTGACAGGGAATCCACTA -ACGGAAGTGACAGGGAATGGAGTA -ACGGAAGTGACAGGGAATTCGTCT -ACGGAAGTGACAGGGAATTGCACT -ACGGAAGTGACAGGGAATCTGACT -ACGGAAGTGACAGGGAATCAACCT -ACGGAAGTGACAGGGAATGCTACT -ACGGAAGTGACAGGGAATGGATCT -ACGGAAGTGACAGGGAATAAGGCT -ACGGAAGTGACAGGGAATTCAACC -ACGGAAGTGACAGGGAATTGTTCC -ACGGAAGTGACAGGGAATATTCCC -ACGGAAGTGACAGGGAATTTCTCG -ACGGAAGTGACAGGGAATTAGACG -ACGGAAGTGACAGGGAATGTAACG -ACGGAAGTGACAGGGAATACTTCG -ACGGAAGTGACAGGGAATTACGCA -ACGGAAGTGACAGGGAATCTTGCA -ACGGAAGTGACAGGGAATCGAACA -ACGGAAGTGACAGGGAATCAGTCA -ACGGAAGTGACAGGGAATGATCCA -ACGGAAGTGACAGGGAATACGACA -ACGGAAGTGACAGGGAATAGCTCA -ACGGAAGTGACAGGGAATTCACGT -ACGGAAGTGACAGGGAATCGTAGT -ACGGAAGTGACAGGGAATGTCAGT -ACGGAAGTGACAGGGAATGAAGGT -ACGGAAGTGACAGGGAATAACCGT -ACGGAAGTGACAGGGAATTTGTGC -ACGGAAGTGACAGGGAATCTAAGC -ACGGAAGTGACAGGGAATACTAGC -ACGGAAGTGACAGGGAATAGATGC -ACGGAAGTGACAGGGAATTGAAGG -ACGGAAGTGACAGGGAATCAATGG -ACGGAAGTGACAGGGAATATGAGG -ACGGAAGTGACAGGGAATAATGGG -ACGGAAGTGACAGGGAATTCCTGA -ACGGAAGTGACAGGGAATTAGCGA -ACGGAAGTGACAGGGAATCACAGA -ACGGAAGTGACAGGGAATGCAAGA -ACGGAAGTGACAGGGAATGGTTGA -ACGGAAGTGACAGGGAATTCCGAT -ACGGAAGTGACAGGGAATTGGCAT -ACGGAAGTGACAGGGAATCGAGAT -ACGGAAGTGACAGGGAATTACCAC -ACGGAAGTGACAGGGAATCAGAAC -ACGGAAGTGACAGGGAATGTCTAC -ACGGAAGTGACAGGGAATACGTAC -ACGGAAGTGACAGGGAATAGTGAC -ACGGAAGTGACAGGGAATCTGTAG -ACGGAAGTGACAGGGAATCCTAAG -ACGGAAGTGACAGGGAATGTTCAG -ACGGAAGTGACAGGGAATGCATAG -ACGGAAGTGACAGGGAATGACAAG -ACGGAAGTGACAGGGAATAAGCAG -ACGGAAGTGACAGGGAATCGTCAA -ACGGAAGTGACAGGGAATGCTGAA -ACGGAAGTGACAGGGAATAGTACG -ACGGAAGTGACAGGGAATATCCGA -ACGGAAGTGACAGGGAATATGGGA -ACGGAAGTGACAGGGAATGTGCAA -ACGGAAGTGACAGGGAATGAGGAA -ACGGAAGTGACAGGGAATCAGGTA -ACGGAAGTGACAGGGAATGACTCT -ACGGAAGTGACAGGGAATAGTCCT -ACGGAAGTGACAGGGAATTAAGCC -ACGGAAGTGACAGGGAATATAGCC -ACGGAAGTGACAGGGAATTAACCG -ACGGAAGTGACAGGGAATATGCCA -ACGGAAGTGACATGATCCGGAAAC -ACGGAAGTGACATGATCCAACACC -ACGGAAGTGACATGATCCATCGAG -ACGGAAGTGACATGATCCCTCCTT -ACGGAAGTGACATGATCCCCTGTT -ACGGAAGTGACATGATCCCGGTTT -ACGGAAGTGACATGATCCGTGGTT -ACGGAAGTGACATGATCCGCCTTT -ACGGAAGTGACATGATCCGGTCTT -ACGGAAGTGACATGATCCACGCTT -ACGGAAGTGACATGATCCAGCGTT -ACGGAAGTGACATGATCCTTCGTC -ACGGAAGTGACATGATCCTCTCTC -ACGGAAGTGACATGATCCTGGATC -ACGGAAGTGACATGATCCCACTTC -ACGGAAGTGACATGATCCGTACTC -ACGGAAGTGACATGATCCGATGTC -ACGGAAGTGACATGATCCACAGTC -ACGGAAGTGACATGATCCTTGCTG -ACGGAAGTGACATGATCCTCCATG -ACGGAAGTGACATGATCCTGTGTG -ACGGAAGTGACATGATCCCTAGTG -ACGGAAGTGACATGATCCCATCTG -ACGGAAGTGACATGATCCGAGTTG -ACGGAAGTGACATGATCCAGACTG -ACGGAAGTGACATGATCCTCGGTA -ACGGAAGTGACATGATCCTGCCTA -ACGGAAGTGACATGATCCCCACTA -ACGGAAGTGACATGATCCGGAGTA -ACGGAAGTGACATGATCCTCGTCT -ACGGAAGTGACATGATCCTGCACT -ACGGAAGTGACATGATCCCTGACT -ACGGAAGTGACATGATCCCAACCT -ACGGAAGTGACATGATCCGCTACT -ACGGAAGTGACATGATCCGGATCT -ACGGAAGTGACATGATCCAAGGCT -ACGGAAGTGACATGATCCTCAACC -ACGGAAGTGACATGATCCTGTTCC -ACGGAAGTGACATGATCCATTCCC -ACGGAAGTGACATGATCCTTCTCG -ACGGAAGTGACATGATCCTAGACG -ACGGAAGTGACATGATCCGTAACG -ACGGAAGTGACATGATCCACTTCG -ACGGAAGTGACATGATCCTACGCA -ACGGAAGTGACATGATCCCTTGCA -ACGGAAGTGACATGATCCCGAACA -ACGGAAGTGACATGATCCCAGTCA -ACGGAAGTGACATGATCCGATCCA -ACGGAAGTGACATGATCCACGACA -ACGGAAGTGACATGATCCAGCTCA -ACGGAAGTGACATGATCCTCACGT -ACGGAAGTGACATGATCCCGTAGT -ACGGAAGTGACATGATCCGTCAGT -ACGGAAGTGACATGATCCGAAGGT -ACGGAAGTGACATGATCCAACCGT -ACGGAAGTGACATGATCCTTGTGC -ACGGAAGTGACATGATCCCTAAGC -ACGGAAGTGACATGATCCACTAGC -ACGGAAGTGACATGATCCAGATGC -ACGGAAGTGACATGATCCTGAAGG -ACGGAAGTGACATGATCCCAATGG -ACGGAAGTGACATGATCCATGAGG -ACGGAAGTGACATGATCCAATGGG -ACGGAAGTGACATGATCCTCCTGA -ACGGAAGTGACATGATCCTAGCGA -ACGGAAGTGACATGATCCCACAGA -ACGGAAGTGACATGATCCGCAAGA -ACGGAAGTGACATGATCCGGTTGA -ACGGAAGTGACATGATCCTCCGAT -ACGGAAGTGACATGATCCTGGCAT -ACGGAAGTGACATGATCCCGAGAT -ACGGAAGTGACATGATCCTACCAC -ACGGAAGTGACATGATCCCAGAAC -ACGGAAGTGACATGATCCGTCTAC -ACGGAAGTGACATGATCCACGTAC -ACGGAAGTGACATGATCCAGTGAC -ACGGAAGTGACATGATCCCTGTAG -ACGGAAGTGACATGATCCCCTAAG -ACGGAAGTGACATGATCCGTTCAG -ACGGAAGTGACATGATCCGCATAG -ACGGAAGTGACATGATCCGACAAG -ACGGAAGTGACATGATCCAAGCAG -ACGGAAGTGACATGATCCCGTCAA -ACGGAAGTGACATGATCCGCTGAA -ACGGAAGTGACATGATCCAGTACG -ACGGAAGTGACATGATCCATCCGA -ACGGAAGTGACATGATCCATGGGA -ACGGAAGTGACATGATCCGTGCAA -ACGGAAGTGACATGATCCGAGGAA -ACGGAAGTGACATGATCCCAGGTA -ACGGAAGTGACATGATCCGACTCT -ACGGAAGTGACATGATCCAGTCCT -ACGGAAGTGACATGATCCTAAGCC -ACGGAAGTGACATGATCCATAGCC -ACGGAAGTGACATGATCCTAACCG -ACGGAAGTGACATGATCCATGCCA -ACGGAAGTGACACGATAGGGAAAC -ACGGAAGTGACACGATAGAACACC -ACGGAAGTGACACGATAGATCGAG -ACGGAAGTGACACGATAGCTCCTT -ACGGAAGTGACACGATAGCCTGTT -ACGGAAGTGACACGATAGCGGTTT -ACGGAAGTGACACGATAGGTGGTT -ACGGAAGTGACACGATAGGCCTTT -ACGGAAGTGACACGATAGGGTCTT -ACGGAAGTGACACGATAGACGCTT -ACGGAAGTGACACGATAGAGCGTT -ACGGAAGTGACACGATAGTTCGTC -ACGGAAGTGACACGATAGTCTCTC -ACGGAAGTGACACGATAGTGGATC -ACGGAAGTGACACGATAGCACTTC -ACGGAAGTGACACGATAGGTACTC -ACGGAAGTGACACGATAGGATGTC -ACGGAAGTGACACGATAGACAGTC -ACGGAAGTGACACGATAGTTGCTG -ACGGAAGTGACACGATAGTCCATG -ACGGAAGTGACACGATAGTGTGTG -ACGGAAGTGACACGATAGCTAGTG -ACGGAAGTGACACGATAGCATCTG -ACGGAAGTGACACGATAGGAGTTG -ACGGAAGTGACACGATAGAGACTG -ACGGAAGTGACACGATAGTCGGTA -ACGGAAGTGACACGATAGTGCCTA -ACGGAAGTGACACGATAGCCACTA -ACGGAAGTGACACGATAGGGAGTA -ACGGAAGTGACACGATAGTCGTCT -ACGGAAGTGACACGATAGTGCACT -ACGGAAGTGACACGATAGCTGACT -ACGGAAGTGACACGATAGCAACCT -ACGGAAGTGACACGATAGGCTACT -ACGGAAGTGACACGATAGGGATCT -ACGGAAGTGACACGATAGAAGGCT -ACGGAAGTGACACGATAGTCAACC -ACGGAAGTGACACGATAGTGTTCC -ACGGAAGTGACACGATAGATTCCC -ACGGAAGTGACACGATAGTTCTCG -ACGGAAGTGACACGATAGTAGACG -ACGGAAGTGACACGATAGGTAACG -ACGGAAGTGACACGATAGACTTCG -ACGGAAGTGACACGATAGTACGCA -ACGGAAGTGACACGATAGCTTGCA -ACGGAAGTGACACGATAGCGAACA -ACGGAAGTGACACGATAGCAGTCA -ACGGAAGTGACACGATAGGATCCA -ACGGAAGTGACACGATAGACGACA -ACGGAAGTGACACGATAGAGCTCA -ACGGAAGTGACACGATAGTCACGT -ACGGAAGTGACACGATAGCGTAGT -ACGGAAGTGACACGATAGGTCAGT -ACGGAAGTGACACGATAGGAAGGT -ACGGAAGTGACACGATAGAACCGT -ACGGAAGTGACACGATAGTTGTGC -ACGGAAGTGACACGATAGCTAAGC -ACGGAAGTGACACGATAGACTAGC -ACGGAAGTGACACGATAGAGATGC -ACGGAAGTGACACGATAGTGAAGG -ACGGAAGTGACACGATAGCAATGG -ACGGAAGTGACACGATAGATGAGG -ACGGAAGTGACACGATAGAATGGG -ACGGAAGTGACACGATAGTCCTGA -ACGGAAGTGACACGATAGTAGCGA -ACGGAAGTGACACGATAGCACAGA -ACGGAAGTGACACGATAGGCAAGA -ACGGAAGTGACACGATAGGGTTGA -ACGGAAGTGACACGATAGTCCGAT -ACGGAAGTGACACGATAGTGGCAT -ACGGAAGTGACACGATAGCGAGAT -ACGGAAGTGACACGATAGTACCAC -ACGGAAGTGACACGATAGCAGAAC -ACGGAAGTGACACGATAGGTCTAC -ACGGAAGTGACACGATAGACGTAC -ACGGAAGTGACACGATAGAGTGAC -ACGGAAGTGACACGATAGCTGTAG -ACGGAAGTGACACGATAGCCTAAG -ACGGAAGTGACACGATAGGTTCAG -ACGGAAGTGACACGATAGGCATAG -ACGGAAGTGACACGATAGGACAAG -ACGGAAGTGACACGATAGAAGCAG -ACGGAAGTGACACGATAGCGTCAA -ACGGAAGTGACACGATAGGCTGAA -ACGGAAGTGACACGATAGAGTACG -ACGGAAGTGACACGATAGATCCGA -ACGGAAGTGACACGATAGATGGGA -ACGGAAGTGACACGATAGGTGCAA -ACGGAAGTGACACGATAGGAGGAA -ACGGAAGTGACACGATAGCAGGTA -ACGGAAGTGACACGATAGGACTCT -ACGGAAGTGACACGATAGAGTCCT -ACGGAAGTGACACGATAGTAAGCC -ACGGAAGTGACACGATAGATAGCC -ACGGAAGTGACACGATAGTAACCG -ACGGAAGTGACACGATAGATGCCA -ACGGAAGTGACAAGACACGGAAAC -ACGGAAGTGACAAGACACAACACC -ACGGAAGTGACAAGACACATCGAG -ACGGAAGTGACAAGACACCTCCTT -ACGGAAGTGACAAGACACCCTGTT -ACGGAAGTGACAAGACACCGGTTT -ACGGAAGTGACAAGACACGTGGTT -ACGGAAGTGACAAGACACGCCTTT -ACGGAAGTGACAAGACACGGTCTT -ACGGAAGTGACAAGACACACGCTT -ACGGAAGTGACAAGACACAGCGTT -ACGGAAGTGACAAGACACTTCGTC -ACGGAAGTGACAAGACACTCTCTC -ACGGAAGTGACAAGACACTGGATC -ACGGAAGTGACAAGACACCACTTC -ACGGAAGTGACAAGACACGTACTC -ACGGAAGTGACAAGACACGATGTC -ACGGAAGTGACAAGACACACAGTC -ACGGAAGTGACAAGACACTTGCTG -ACGGAAGTGACAAGACACTCCATG -ACGGAAGTGACAAGACACTGTGTG -ACGGAAGTGACAAGACACCTAGTG -ACGGAAGTGACAAGACACCATCTG -ACGGAAGTGACAAGACACGAGTTG -ACGGAAGTGACAAGACACAGACTG -ACGGAAGTGACAAGACACTCGGTA -ACGGAAGTGACAAGACACTGCCTA -ACGGAAGTGACAAGACACCCACTA -ACGGAAGTGACAAGACACGGAGTA -ACGGAAGTGACAAGACACTCGTCT -ACGGAAGTGACAAGACACTGCACT -ACGGAAGTGACAAGACACCTGACT -ACGGAAGTGACAAGACACCAACCT -ACGGAAGTGACAAGACACGCTACT -ACGGAAGTGACAAGACACGGATCT -ACGGAAGTGACAAGACACAAGGCT -ACGGAAGTGACAAGACACTCAACC -ACGGAAGTGACAAGACACTGTTCC -ACGGAAGTGACAAGACACATTCCC -ACGGAAGTGACAAGACACTTCTCG -ACGGAAGTGACAAGACACTAGACG -ACGGAAGTGACAAGACACGTAACG -ACGGAAGTGACAAGACACACTTCG -ACGGAAGTGACAAGACACTACGCA -ACGGAAGTGACAAGACACCTTGCA -ACGGAAGTGACAAGACACCGAACA -ACGGAAGTGACAAGACACCAGTCA -ACGGAAGTGACAAGACACGATCCA -ACGGAAGTGACAAGACACACGACA -ACGGAAGTGACAAGACACAGCTCA -ACGGAAGTGACAAGACACTCACGT -ACGGAAGTGACAAGACACCGTAGT -ACGGAAGTGACAAGACACGTCAGT -ACGGAAGTGACAAGACACGAAGGT -ACGGAAGTGACAAGACACAACCGT -ACGGAAGTGACAAGACACTTGTGC -ACGGAAGTGACAAGACACCTAAGC -ACGGAAGTGACAAGACACACTAGC -ACGGAAGTGACAAGACACAGATGC -ACGGAAGTGACAAGACACTGAAGG -ACGGAAGTGACAAGACACCAATGG -ACGGAAGTGACAAGACACATGAGG -ACGGAAGTGACAAGACACAATGGG -ACGGAAGTGACAAGACACTCCTGA -ACGGAAGTGACAAGACACTAGCGA -ACGGAAGTGACAAGACACCACAGA -ACGGAAGTGACAAGACACGCAAGA -ACGGAAGTGACAAGACACGGTTGA -ACGGAAGTGACAAGACACTCCGAT -ACGGAAGTGACAAGACACTGGCAT -ACGGAAGTGACAAGACACCGAGAT -ACGGAAGTGACAAGACACTACCAC -ACGGAAGTGACAAGACACCAGAAC -ACGGAAGTGACAAGACACGTCTAC -ACGGAAGTGACAAGACACACGTAC -ACGGAAGTGACAAGACACAGTGAC -ACGGAAGTGACAAGACACCTGTAG -ACGGAAGTGACAAGACACCCTAAG -ACGGAAGTGACAAGACACGTTCAG -ACGGAAGTGACAAGACACGCATAG -ACGGAAGTGACAAGACACGACAAG -ACGGAAGTGACAAGACACAAGCAG -ACGGAAGTGACAAGACACCGTCAA -ACGGAAGTGACAAGACACGCTGAA -ACGGAAGTGACAAGACACAGTACG -ACGGAAGTGACAAGACACATCCGA -ACGGAAGTGACAAGACACATGGGA -ACGGAAGTGACAAGACACGTGCAA -ACGGAAGTGACAAGACACGAGGAA -ACGGAAGTGACAAGACACCAGGTA -ACGGAAGTGACAAGACACGACTCT -ACGGAAGTGACAAGACACAGTCCT -ACGGAAGTGACAAGACACTAAGCC -ACGGAAGTGACAAGACACATAGCC -ACGGAAGTGACAAGACACTAACCG -ACGGAAGTGACAAGACACATGCCA -ACGGAAGTGACAAGAGCAGGAAAC -ACGGAAGTGACAAGAGCAAACACC -ACGGAAGTGACAAGAGCAATCGAG -ACGGAAGTGACAAGAGCACTCCTT -ACGGAAGTGACAAGAGCACCTGTT -ACGGAAGTGACAAGAGCACGGTTT -ACGGAAGTGACAAGAGCAGTGGTT -ACGGAAGTGACAAGAGCAGCCTTT -ACGGAAGTGACAAGAGCAGGTCTT -ACGGAAGTGACAAGAGCAACGCTT -ACGGAAGTGACAAGAGCAAGCGTT -ACGGAAGTGACAAGAGCATTCGTC -ACGGAAGTGACAAGAGCATCTCTC -ACGGAAGTGACAAGAGCATGGATC -ACGGAAGTGACAAGAGCACACTTC -ACGGAAGTGACAAGAGCAGTACTC -ACGGAAGTGACAAGAGCAGATGTC -ACGGAAGTGACAAGAGCAACAGTC -ACGGAAGTGACAAGAGCATTGCTG -ACGGAAGTGACAAGAGCATCCATG -ACGGAAGTGACAAGAGCATGTGTG -ACGGAAGTGACAAGAGCACTAGTG -ACGGAAGTGACAAGAGCACATCTG -ACGGAAGTGACAAGAGCAGAGTTG -ACGGAAGTGACAAGAGCAAGACTG -ACGGAAGTGACAAGAGCATCGGTA -ACGGAAGTGACAAGAGCATGCCTA -ACGGAAGTGACAAGAGCACCACTA -ACGGAAGTGACAAGAGCAGGAGTA -ACGGAAGTGACAAGAGCATCGTCT -ACGGAAGTGACAAGAGCATGCACT -ACGGAAGTGACAAGAGCACTGACT -ACGGAAGTGACAAGAGCACAACCT -ACGGAAGTGACAAGAGCAGCTACT -ACGGAAGTGACAAGAGCAGGATCT -ACGGAAGTGACAAGAGCAAAGGCT -ACGGAAGTGACAAGAGCATCAACC -ACGGAAGTGACAAGAGCATGTTCC -ACGGAAGTGACAAGAGCAATTCCC -ACGGAAGTGACAAGAGCATTCTCG -ACGGAAGTGACAAGAGCATAGACG -ACGGAAGTGACAAGAGCAGTAACG -ACGGAAGTGACAAGAGCAACTTCG -ACGGAAGTGACAAGAGCATACGCA -ACGGAAGTGACAAGAGCACTTGCA -ACGGAAGTGACAAGAGCACGAACA -ACGGAAGTGACAAGAGCACAGTCA -ACGGAAGTGACAAGAGCAGATCCA -ACGGAAGTGACAAGAGCAACGACA -ACGGAAGTGACAAGAGCAAGCTCA -ACGGAAGTGACAAGAGCATCACGT -ACGGAAGTGACAAGAGCACGTAGT -ACGGAAGTGACAAGAGCAGTCAGT -ACGGAAGTGACAAGAGCAGAAGGT -ACGGAAGTGACAAGAGCAAACCGT -ACGGAAGTGACAAGAGCATTGTGC -ACGGAAGTGACAAGAGCACTAAGC -ACGGAAGTGACAAGAGCAACTAGC -ACGGAAGTGACAAGAGCAAGATGC -ACGGAAGTGACAAGAGCATGAAGG -ACGGAAGTGACAAGAGCACAATGG -ACGGAAGTGACAAGAGCAATGAGG -ACGGAAGTGACAAGAGCAAATGGG -ACGGAAGTGACAAGAGCATCCTGA -ACGGAAGTGACAAGAGCATAGCGA -ACGGAAGTGACAAGAGCACACAGA -ACGGAAGTGACAAGAGCAGCAAGA -ACGGAAGTGACAAGAGCAGGTTGA -ACGGAAGTGACAAGAGCATCCGAT -ACGGAAGTGACAAGAGCATGGCAT -ACGGAAGTGACAAGAGCACGAGAT -ACGGAAGTGACAAGAGCATACCAC -ACGGAAGTGACAAGAGCACAGAAC -ACGGAAGTGACAAGAGCAGTCTAC -ACGGAAGTGACAAGAGCAACGTAC -ACGGAAGTGACAAGAGCAAGTGAC -ACGGAAGTGACAAGAGCACTGTAG -ACGGAAGTGACAAGAGCACCTAAG -ACGGAAGTGACAAGAGCAGTTCAG -ACGGAAGTGACAAGAGCAGCATAG -ACGGAAGTGACAAGAGCAGACAAG -ACGGAAGTGACAAGAGCAAAGCAG -ACGGAAGTGACAAGAGCACGTCAA -ACGGAAGTGACAAGAGCAGCTGAA -ACGGAAGTGACAAGAGCAAGTACG -ACGGAAGTGACAAGAGCAATCCGA -ACGGAAGTGACAAGAGCAATGGGA -ACGGAAGTGACAAGAGCAGTGCAA -ACGGAAGTGACAAGAGCAGAGGAA -ACGGAAGTGACAAGAGCACAGGTA -ACGGAAGTGACAAGAGCAGACTCT -ACGGAAGTGACAAGAGCAAGTCCT -ACGGAAGTGACAAGAGCATAAGCC -ACGGAAGTGACAAGAGCAATAGCC -ACGGAAGTGACAAGAGCATAACCG -ACGGAAGTGACAAGAGCAATGCCA -ACGGAAGTGACATGAGGTGGAAAC -ACGGAAGTGACATGAGGTAACACC -ACGGAAGTGACATGAGGTATCGAG -ACGGAAGTGACATGAGGTCTCCTT -ACGGAAGTGACATGAGGTCCTGTT -ACGGAAGTGACATGAGGTCGGTTT -ACGGAAGTGACATGAGGTGTGGTT -ACGGAAGTGACATGAGGTGCCTTT -ACGGAAGTGACATGAGGTGGTCTT -ACGGAAGTGACATGAGGTACGCTT -ACGGAAGTGACATGAGGTAGCGTT -ACGGAAGTGACATGAGGTTTCGTC -ACGGAAGTGACATGAGGTTCTCTC -ACGGAAGTGACATGAGGTTGGATC -ACGGAAGTGACATGAGGTCACTTC -ACGGAAGTGACATGAGGTGTACTC -ACGGAAGTGACATGAGGTGATGTC -ACGGAAGTGACATGAGGTACAGTC -ACGGAAGTGACATGAGGTTTGCTG -ACGGAAGTGACATGAGGTTCCATG -ACGGAAGTGACATGAGGTTGTGTG -ACGGAAGTGACATGAGGTCTAGTG -ACGGAAGTGACATGAGGTCATCTG -ACGGAAGTGACATGAGGTGAGTTG -ACGGAAGTGACATGAGGTAGACTG -ACGGAAGTGACATGAGGTTCGGTA -ACGGAAGTGACATGAGGTTGCCTA -ACGGAAGTGACATGAGGTCCACTA -ACGGAAGTGACATGAGGTGGAGTA -ACGGAAGTGACATGAGGTTCGTCT -ACGGAAGTGACATGAGGTTGCACT -ACGGAAGTGACATGAGGTCTGACT -ACGGAAGTGACATGAGGTCAACCT -ACGGAAGTGACATGAGGTGCTACT -ACGGAAGTGACATGAGGTGGATCT -ACGGAAGTGACATGAGGTAAGGCT -ACGGAAGTGACATGAGGTTCAACC -ACGGAAGTGACATGAGGTTGTTCC -ACGGAAGTGACATGAGGTATTCCC -ACGGAAGTGACATGAGGTTTCTCG -ACGGAAGTGACATGAGGTTAGACG -ACGGAAGTGACATGAGGTGTAACG -ACGGAAGTGACATGAGGTACTTCG -ACGGAAGTGACATGAGGTTACGCA -ACGGAAGTGACATGAGGTCTTGCA -ACGGAAGTGACATGAGGTCGAACA -ACGGAAGTGACATGAGGTCAGTCA -ACGGAAGTGACATGAGGTGATCCA -ACGGAAGTGACATGAGGTACGACA -ACGGAAGTGACATGAGGTAGCTCA -ACGGAAGTGACATGAGGTTCACGT -ACGGAAGTGACATGAGGTCGTAGT -ACGGAAGTGACATGAGGTGTCAGT -ACGGAAGTGACATGAGGTGAAGGT -ACGGAAGTGACATGAGGTAACCGT -ACGGAAGTGACATGAGGTTTGTGC -ACGGAAGTGACATGAGGTCTAAGC -ACGGAAGTGACATGAGGTACTAGC -ACGGAAGTGACATGAGGTAGATGC -ACGGAAGTGACATGAGGTTGAAGG -ACGGAAGTGACATGAGGTCAATGG -ACGGAAGTGACATGAGGTATGAGG -ACGGAAGTGACATGAGGTAATGGG -ACGGAAGTGACATGAGGTTCCTGA -ACGGAAGTGACATGAGGTTAGCGA -ACGGAAGTGACATGAGGTCACAGA -ACGGAAGTGACATGAGGTGCAAGA -ACGGAAGTGACATGAGGTGGTTGA -ACGGAAGTGACATGAGGTTCCGAT -ACGGAAGTGACATGAGGTTGGCAT -ACGGAAGTGACATGAGGTCGAGAT -ACGGAAGTGACATGAGGTTACCAC -ACGGAAGTGACATGAGGTCAGAAC -ACGGAAGTGACATGAGGTGTCTAC -ACGGAAGTGACATGAGGTACGTAC -ACGGAAGTGACATGAGGTAGTGAC -ACGGAAGTGACATGAGGTCTGTAG -ACGGAAGTGACATGAGGTCCTAAG -ACGGAAGTGACATGAGGTGTTCAG -ACGGAAGTGACATGAGGTGCATAG -ACGGAAGTGACATGAGGTGACAAG -ACGGAAGTGACATGAGGTAAGCAG -ACGGAAGTGACATGAGGTCGTCAA -ACGGAAGTGACATGAGGTGCTGAA -ACGGAAGTGACATGAGGTAGTACG -ACGGAAGTGACATGAGGTATCCGA -ACGGAAGTGACATGAGGTATGGGA -ACGGAAGTGACATGAGGTGTGCAA -ACGGAAGTGACATGAGGTGAGGAA -ACGGAAGTGACATGAGGTCAGGTA -ACGGAAGTGACATGAGGTGACTCT -ACGGAAGTGACATGAGGTAGTCCT -ACGGAAGTGACATGAGGTTAAGCC -ACGGAAGTGACATGAGGTATAGCC -ACGGAAGTGACATGAGGTTAACCG -ACGGAAGTGACATGAGGTATGCCA -ACGGAAGTGACAGATTCCGGAAAC -ACGGAAGTGACAGATTCCAACACC -ACGGAAGTGACAGATTCCATCGAG -ACGGAAGTGACAGATTCCCTCCTT -ACGGAAGTGACAGATTCCCCTGTT -ACGGAAGTGACAGATTCCCGGTTT -ACGGAAGTGACAGATTCCGTGGTT -ACGGAAGTGACAGATTCCGCCTTT -ACGGAAGTGACAGATTCCGGTCTT -ACGGAAGTGACAGATTCCACGCTT -ACGGAAGTGACAGATTCCAGCGTT -ACGGAAGTGACAGATTCCTTCGTC -ACGGAAGTGACAGATTCCTCTCTC -ACGGAAGTGACAGATTCCTGGATC -ACGGAAGTGACAGATTCCCACTTC -ACGGAAGTGACAGATTCCGTACTC -ACGGAAGTGACAGATTCCGATGTC -ACGGAAGTGACAGATTCCACAGTC -ACGGAAGTGACAGATTCCTTGCTG -ACGGAAGTGACAGATTCCTCCATG -ACGGAAGTGACAGATTCCTGTGTG -ACGGAAGTGACAGATTCCCTAGTG -ACGGAAGTGACAGATTCCCATCTG -ACGGAAGTGACAGATTCCGAGTTG -ACGGAAGTGACAGATTCCAGACTG -ACGGAAGTGACAGATTCCTCGGTA -ACGGAAGTGACAGATTCCTGCCTA -ACGGAAGTGACAGATTCCCCACTA -ACGGAAGTGACAGATTCCGGAGTA -ACGGAAGTGACAGATTCCTCGTCT -ACGGAAGTGACAGATTCCTGCACT -ACGGAAGTGACAGATTCCCTGACT -ACGGAAGTGACAGATTCCCAACCT -ACGGAAGTGACAGATTCCGCTACT -ACGGAAGTGACAGATTCCGGATCT -ACGGAAGTGACAGATTCCAAGGCT -ACGGAAGTGACAGATTCCTCAACC -ACGGAAGTGACAGATTCCTGTTCC -ACGGAAGTGACAGATTCCATTCCC -ACGGAAGTGACAGATTCCTTCTCG -ACGGAAGTGACAGATTCCTAGACG -ACGGAAGTGACAGATTCCGTAACG -ACGGAAGTGACAGATTCCACTTCG -ACGGAAGTGACAGATTCCTACGCA -ACGGAAGTGACAGATTCCCTTGCA -ACGGAAGTGACAGATTCCCGAACA -ACGGAAGTGACAGATTCCCAGTCA -ACGGAAGTGACAGATTCCGATCCA -ACGGAAGTGACAGATTCCACGACA -ACGGAAGTGACAGATTCCAGCTCA -ACGGAAGTGACAGATTCCTCACGT -ACGGAAGTGACAGATTCCCGTAGT -ACGGAAGTGACAGATTCCGTCAGT -ACGGAAGTGACAGATTCCGAAGGT -ACGGAAGTGACAGATTCCAACCGT -ACGGAAGTGACAGATTCCTTGTGC -ACGGAAGTGACAGATTCCCTAAGC -ACGGAAGTGACAGATTCCACTAGC -ACGGAAGTGACAGATTCCAGATGC -ACGGAAGTGACAGATTCCTGAAGG -ACGGAAGTGACAGATTCCCAATGG -ACGGAAGTGACAGATTCCATGAGG -ACGGAAGTGACAGATTCCAATGGG -ACGGAAGTGACAGATTCCTCCTGA -ACGGAAGTGACAGATTCCTAGCGA -ACGGAAGTGACAGATTCCCACAGA -ACGGAAGTGACAGATTCCGCAAGA -ACGGAAGTGACAGATTCCGGTTGA -ACGGAAGTGACAGATTCCTCCGAT -ACGGAAGTGACAGATTCCTGGCAT -ACGGAAGTGACAGATTCCCGAGAT -ACGGAAGTGACAGATTCCTACCAC -ACGGAAGTGACAGATTCCCAGAAC -ACGGAAGTGACAGATTCCGTCTAC -ACGGAAGTGACAGATTCCACGTAC -ACGGAAGTGACAGATTCCAGTGAC -ACGGAAGTGACAGATTCCCTGTAG -ACGGAAGTGACAGATTCCCCTAAG -ACGGAAGTGACAGATTCCGTTCAG -ACGGAAGTGACAGATTCCGCATAG -ACGGAAGTGACAGATTCCGACAAG -ACGGAAGTGACAGATTCCAAGCAG -ACGGAAGTGACAGATTCCCGTCAA -ACGGAAGTGACAGATTCCGCTGAA -ACGGAAGTGACAGATTCCAGTACG -ACGGAAGTGACAGATTCCATCCGA -ACGGAAGTGACAGATTCCATGGGA -ACGGAAGTGACAGATTCCGTGCAA -ACGGAAGTGACAGATTCCGAGGAA -ACGGAAGTGACAGATTCCCAGGTA -ACGGAAGTGACAGATTCCGACTCT -ACGGAAGTGACAGATTCCAGTCCT -ACGGAAGTGACAGATTCCTAAGCC -ACGGAAGTGACAGATTCCATAGCC -ACGGAAGTGACAGATTCCTAACCG -ACGGAAGTGACAGATTCCATGCCA -ACGGAAGTGACACATTGGGGAAAC -ACGGAAGTGACACATTGGAACACC -ACGGAAGTGACACATTGGATCGAG -ACGGAAGTGACACATTGGCTCCTT -ACGGAAGTGACACATTGGCCTGTT -ACGGAAGTGACACATTGGCGGTTT -ACGGAAGTGACACATTGGGTGGTT -ACGGAAGTGACACATTGGGCCTTT -ACGGAAGTGACACATTGGGGTCTT -ACGGAAGTGACACATTGGACGCTT -ACGGAAGTGACACATTGGAGCGTT -ACGGAAGTGACACATTGGTTCGTC -ACGGAAGTGACACATTGGTCTCTC -ACGGAAGTGACACATTGGTGGATC -ACGGAAGTGACACATTGGCACTTC -ACGGAAGTGACACATTGGGTACTC -ACGGAAGTGACACATTGGGATGTC -ACGGAAGTGACACATTGGACAGTC -ACGGAAGTGACACATTGGTTGCTG -ACGGAAGTGACACATTGGTCCATG -ACGGAAGTGACACATTGGTGTGTG -ACGGAAGTGACACATTGGCTAGTG -ACGGAAGTGACACATTGGCATCTG -ACGGAAGTGACACATTGGGAGTTG -ACGGAAGTGACACATTGGAGACTG -ACGGAAGTGACACATTGGTCGGTA -ACGGAAGTGACACATTGGTGCCTA -ACGGAAGTGACACATTGGCCACTA -ACGGAAGTGACACATTGGGGAGTA -ACGGAAGTGACACATTGGTCGTCT -ACGGAAGTGACACATTGGTGCACT -ACGGAAGTGACACATTGGCTGACT -ACGGAAGTGACACATTGGCAACCT -ACGGAAGTGACACATTGGGCTACT -ACGGAAGTGACACATTGGGGATCT -ACGGAAGTGACACATTGGAAGGCT -ACGGAAGTGACACATTGGTCAACC -ACGGAAGTGACACATTGGTGTTCC -ACGGAAGTGACACATTGGATTCCC -ACGGAAGTGACACATTGGTTCTCG -ACGGAAGTGACACATTGGTAGACG -ACGGAAGTGACACATTGGGTAACG -ACGGAAGTGACACATTGGACTTCG -ACGGAAGTGACACATTGGTACGCA -ACGGAAGTGACACATTGGCTTGCA -ACGGAAGTGACACATTGGCGAACA -ACGGAAGTGACACATTGGCAGTCA -ACGGAAGTGACACATTGGGATCCA -ACGGAAGTGACACATTGGACGACA -ACGGAAGTGACACATTGGAGCTCA -ACGGAAGTGACACATTGGTCACGT -ACGGAAGTGACACATTGGCGTAGT -ACGGAAGTGACACATTGGGTCAGT -ACGGAAGTGACACATTGGGAAGGT -ACGGAAGTGACACATTGGAACCGT -ACGGAAGTGACACATTGGTTGTGC -ACGGAAGTGACACATTGGCTAAGC -ACGGAAGTGACACATTGGACTAGC -ACGGAAGTGACACATTGGAGATGC -ACGGAAGTGACACATTGGTGAAGG -ACGGAAGTGACACATTGGCAATGG -ACGGAAGTGACACATTGGATGAGG -ACGGAAGTGACACATTGGAATGGG -ACGGAAGTGACACATTGGTCCTGA -ACGGAAGTGACACATTGGTAGCGA -ACGGAAGTGACACATTGGCACAGA -ACGGAAGTGACACATTGGGCAAGA -ACGGAAGTGACACATTGGGGTTGA -ACGGAAGTGACACATTGGTCCGAT -ACGGAAGTGACACATTGGTGGCAT -ACGGAAGTGACACATTGGCGAGAT -ACGGAAGTGACACATTGGTACCAC -ACGGAAGTGACACATTGGCAGAAC -ACGGAAGTGACACATTGGGTCTAC -ACGGAAGTGACACATTGGACGTAC -ACGGAAGTGACACATTGGAGTGAC -ACGGAAGTGACACATTGGCTGTAG -ACGGAAGTGACACATTGGCCTAAG -ACGGAAGTGACACATTGGGTTCAG -ACGGAAGTGACACATTGGGCATAG -ACGGAAGTGACACATTGGGACAAG -ACGGAAGTGACACATTGGAAGCAG -ACGGAAGTGACACATTGGCGTCAA -ACGGAAGTGACACATTGGGCTGAA -ACGGAAGTGACACATTGGAGTACG -ACGGAAGTGACACATTGGATCCGA -ACGGAAGTGACACATTGGATGGGA -ACGGAAGTGACACATTGGGTGCAA -ACGGAAGTGACACATTGGGAGGAA -ACGGAAGTGACACATTGGCAGGTA -ACGGAAGTGACACATTGGGACTCT -ACGGAAGTGACACATTGGAGTCCT -ACGGAAGTGACACATTGGTAAGCC -ACGGAAGTGACACATTGGATAGCC -ACGGAAGTGACACATTGGTAACCG -ACGGAAGTGACACATTGGATGCCA -ACGGAAGTGACAGATCGAGGAAAC -ACGGAAGTGACAGATCGAAACACC -ACGGAAGTGACAGATCGAATCGAG -ACGGAAGTGACAGATCGACTCCTT -ACGGAAGTGACAGATCGACCTGTT -ACGGAAGTGACAGATCGACGGTTT -ACGGAAGTGACAGATCGAGTGGTT -ACGGAAGTGACAGATCGAGCCTTT -ACGGAAGTGACAGATCGAGGTCTT -ACGGAAGTGACAGATCGAACGCTT -ACGGAAGTGACAGATCGAAGCGTT -ACGGAAGTGACAGATCGATTCGTC -ACGGAAGTGACAGATCGATCTCTC -ACGGAAGTGACAGATCGATGGATC -ACGGAAGTGACAGATCGACACTTC -ACGGAAGTGACAGATCGAGTACTC -ACGGAAGTGACAGATCGAGATGTC -ACGGAAGTGACAGATCGAACAGTC -ACGGAAGTGACAGATCGATTGCTG -ACGGAAGTGACAGATCGATCCATG -ACGGAAGTGACAGATCGATGTGTG -ACGGAAGTGACAGATCGACTAGTG -ACGGAAGTGACAGATCGACATCTG -ACGGAAGTGACAGATCGAGAGTTG -ACGGAAGTGACAGATCGAAGACTG -ACGGAAGTGACAGATCGATCGGTA -ACGGAAGTGACAGATCGATGCCTA -ACGGAAGTGACAGATCGACCACTA -ACGGAAGTGACAGATCGAGGAGTA -ACGGAAGTGACAGATCGATCGTCT -ACGGAAGTGACAGATCGATGCACT -ACGGAAGTGACAGATCGACTGACT -ACGGAAGTGACAGATCGACAACCT -ACGGAAGTGACAGATCGAGCTACT -ACGGAAGTGACAGATCGAGGATCT -ACGGAAGTGACAGATCGAAAGGCT -ACGGAAGTGACAGATCGATCAACC -ACGGAAGTGACAGATCGATGTTCC -ACGGAAGTGACAGATCGAATTCCC -ACGGAAGTGACAGATCGATTCTCG -ACGGAAGTGACAGATCGATAGACG -ACGGAAGTGACAGATCGAGTAACG -ACGGAAGTGACAGATCGAACTTCG -ACGGAAGTGACAGATCGATACGCA -ACGGAAGTGACAGATCGACTTGCA -ACGGAAGTGACAGATCGACGAACA -ACGGAAGTGACAGATCGACAGTCA -ACGGAAGTGACAGATCGAGATCCA -ACGGAAGTGACAGATCGAACGACA -ACGGAAGTGACAGATCGAAGCTCA -ACGGAAGTGACAGATCGATCACGT -ACGGAAGTGACAGATCGACGTAGT -ACGGAAGTGACAGATCGAGTCAGT -ACGGAAGTGACAGATCGAGAAGGT -ACGGAAGTGACAGATCGAAACCGT -ACGGAAGTGACAGATCGATTGTGC -ACGGAAGTGACAGATCGACTAAGC -ACGGAAGTGACAGATCGAACTAGC -ACGGAAGTGACAGATCGAAGATGC -ACGGAAGTGACAGATCGATGAAGG -ACGGAAGTGACAGATCGACAATGG -ACGGAAGTGACAGATCGAATGAGG -ACGGAAGTGACAGATCGAAATGGG -ACGGAAGTGACAGATCGATCCTGA -ACGGAAGTGACAGATCGATAGCGA -ACGGAAGTGACAGATCGACACAGA -ACGGAAGTGACAGATCGAGCAAGA -ACGGAAGTGACAGATCGAGGTTGA -ACGGAAGTGACAGATCGATCCGAT -ACGGAAGTGACAGATCGATGGCAT -ACGGAAGTGACAGATCGACGAGAT -ACGGAAGTGACAGATCGATACCAC -ACGGAAGTGACAGATCGACAGAAC -ACGGAAGTGACAGATCGAGTCTAC -ACGGAAGTGACAGATCGAACGTAC -ACGGAAGTGACAGATCGAAGTGAC -ACGGAAGTGACAGATCGACTGTAG -ACGGAAGTGACAGATCGACCTAAG -ACGGAAGTGACAGATCGAGTTCAG -ACGGAAGTGACAGATCGAGCATAG -ACGGAAGTGACAGATCGAGACAAG -ACGGAAGTGACAGATCGAAAGCAG -ACGGAAGTGACAGATCGACGTCAA -ACGGAAGTGACAGATCGAGCTGAA -ACGGAAGTGACAGATCGAAGTACG -ACGGAAGTGACAGATCGAATCCGA -ACGGAAGTGACAGATCGAATGGGA -ACGGAAGTGACAGATCGAGTGCAA -ACGGAAGTGACAGATCGAGAGGAA -ACGGAAGTGACAGATCGACAGGTA -ACGGAAGTGACAGATCGAGACTCT -ACGGAAGTGACAGATCGAAGTCCT -ACGGAAGTGACAGATCGATAAGCC -ACGGAAGTGACAGATCGAATAGCC -ACGGAAGTGACAGATCGATAACCG -ACGGAAGTGACAGATCGAATGCCA -ACGGAAGTGACACACTACGGAAAC -ACGGAAGTGACACACTACAACACC -ACGGAAGTGACACACTACATCGAG -ACGGAAGTGACACACTACCTCCTT -ACGGAAGTGACACACTACCCTGTT -ACGGAAGTGACACACTACCGGTTT -ACGGAAGTGACACACTACGTGGTT -ACGGAAGTGACACACTACGCCTTT -ACGGAAGTGACACACTACGGTCTT -ACGGAAGTGACACACTACACGCTT -ACGGAAGTGACACACTACAGCGTT -ACGGAAGTGACACACTACTTCGTC -ACGGAAGTGACACACTACTCTCTC -ACGGAAGTGACACACTACTGGATC -ACGGAAGTGACACACTACCACTTC -ACGGAAGTGACACACTACGTACTC -ACGGAAGTGACACACTACGATGTC -ACGGAAGTGACACACTACACAGTC -ACGGAAGTGACACACTACTTGCTG -ACGGAAGTGACACACTACTCCATG -ACGGAAGTGACACACTACTGTGTG -ACGGAAGTGACACACTACCTAGTG -ACGGAAGTGACACACTACCATCTG -ACGGAAGTGACACACTACGAGTTG -ACGGAAGTGACACACTACAGACTG -ACGGAAGTGACACACTACTCGGTA -ACGGAAGTGACACACTACTGCCTA -ACGGAAGTGACACACTACCCACTA -ACGGAAGTGACACACTACGGAGTA -ACGGAAGTGACACACTACTCGTCT -ACGGAAGTGACACACTACTGCACT -ACGGAAGTGACACACTACCTGACT -ACGGAAGTGACACACTACCAACCT -ACGGAAGTGACACACTACGCTACT -ACGGAAGTGACACACTACGGATCT -ACGGAAGTGACACACTACAAGGCT -ACGGAAGTGACACACTACTCAACC -ACGGAAGTGACACACTACTGTTCC -ACGGAAGTGACACACTACATTCCC -ACGGAAGTGACACACTACTTCTCG -ACGGAAGTGACACACTACTAGACG -ACGGAAGTGACACACTACGTAACG -ACGGAAGTGACACACTACACTTCG -ACGGAAGTGACACACTACTACGCA -ACGGAAGTGACACACTACCTTGCA -ACGGAAGTGACACACTACCGAACA -ACGGAAGTGACACACTACCAGTCA -ACGGAAGTGACACACTACGATCCA -ACGGAAGTGACACACTACACGACA -ACGGAAGTGACACACTACAGCTCA -ACGGAAGTGACACACTACTCACGT -ACGGAAGTGACACACTACCGTAGT -ACGGAAGTGACACACTACGTCAGT -ACGGAAGTGACACACTACGAAGGT -ACGGAAGTGACACACTACAACCGT -ACGGAAGTGACACACTACTTGTGC -ACGGAAGTGACACACTACCTAAGC -ACGGAAGTGACACACTACACTAGC -ACGGAAGTGACACACTACAGATGC -ACGGAAGTGACACACTACTGAAGG -ACGGAAGTGACACACTACCAATGG -ACGGAAGTGACACACTACATGAGG -ACGGAAGTGACACACTACAATGGG -ACGGAAGTGACACACTACTCCTGA -ACGGAAGTGACACACTACTAGCGA -ACGGAAGTGACACACTACCACAGA -ACGGAAGTGACACACTACGCAAGA -ACGGAAGTGACACACTACGGTTGA -ACGGAAGTGACACACTACTCCGAT -ACGGAAGTGACACACTACTGGCAT -ACGGAAGTGACACACTACCGAGAT -ACGGAAGTGACACACTACTACCAC -ACGGAAGTGACACACTACCAGAAC -ACGGAAGTGACACACTACGTCTAC -ACGGAAGTGACACACTACACGTAC -ACGGAAGTGACACACTACAGTGAC -ACGGAAGTGACACACTACCTGTAG -ACGGAAGTGACACACTACCCTAAG -ACGGAAGTGACACACTACGTTCAG -ACGGAAGTGACACACTACGCATAG -ACGGAAGTGACACACTACGACAAG -ACGGAAGTGACACACTACAAGCAG -ACGGAAGTGACACACTACCGTCAA -ACGGAAGTGACACACTACGCTGAA -ACGGAAGTGACACACTACAGTACG -ACGGAAGTGACACACTACATCCGA -ACGGAAGTGACACACTACATGGGA -ACGGAAGTGACACACTACGTGCAA -ACGGAAGTGACACACTACGAGGAA -ACGGAAGTGACACACTACCAGGTA -ACGGAAGTGACACACTACGACTCT -ACGGAAGTGACACACTACAGTCCT -ACGGAAGTGACACACTACTAAGCC -ACGGAAGTGACACACTACATAGCC -ACGGAAGTGACACACTACTAACCG -ACGGAAGTGACACACTACATGCCA -ACGGAAGTGACAAACCAGGGAAAC -ACGGAAGTGACAAACCAGAACACC -ACGGAAGTGACAAACCAGATCGAG -ACGGAAGTGACAAACCAGCTCCTT -ACGGAAGTGACAAACCAGCCTGTT -ACGGAAGTGACAAACCAGCGGTTT -ACGGAAGTGACAAACCAGGTGGTT -ACGGAAGTGACAAACCAGGCCTTT -ACGGAAGTGACAAACCAGGGTCTT -ACGGAAGTGACAAACCAGACGCTT -ACGGAAGTGACAAACCAGAGCGTT -ACGGAAGTGACAAACCAGTTCGTC -ACGGAAGTGACAAACCAGTCTCTC -ACGGAAGTGACAAACCAGTGGATC -ACGGAAGTGACAAACCAGCACTTC -ACGGAAGTGACAAACCAGGTACTC -ACGGAAGTGACAAACCAGGATGTC -ACGGAAGTGACAAACCAGACAGTC -ACGGAAGTGACAAACCAGTTGCTG -ACGGAAGTGACAAACCAGTCCATG -ACGGAAGTGACAAACCAGTGTGTG -ACGGAAGTGACAAACCAGCTAGTG -ACGGAAGTGACAAACCAGCATCTG -ACGGAAGTGACAAACCAGGAGTTG -ACGGAAGTGACAAACCAGAGACTG -ACGGAAGTGACAAACCAGTCGGTA -ACGGAAGTGACAAACCAGTGCCTA -ACGGAAGTGACAAACCAGCCACTA -ACGGAAGTGACAAACCAGGGAGTA -ACGGAAGTGACAAACCAGTCGTCT -ACGGAAGTGACAAACCAGTGCACT -ACGGAAGTGACAAACCAGCTGACT -ACGGAAGTGACAAACCAGCAACCT -ACGGAAGTGACAAACCAGGCTACT -ACGGAAGTGACAAACCAGGGATCT -ACGGAAGTGACAAACCAGAAGGCT -ACGGAAGTGACAAACCAGTCAACC -ACGGAAGTGACAAACCAGTGTTCC -ACGGAAGTGACAAACCAGATTCCC -ACGGAAGTGACAAACCAGTTCTCG -ACGGAAGTGACAAACCAGTAGACG -ACGGAAGTGACAAACCAGGTAACG -ACGGAAGTGACAAACCAGACTTCG -ACGGAAGTGACAAACCAGTACGCA -ACGGAAGTGACAAACCAGCTTGCA -ACGGAAGTGACAAACCAGCGAACA -ACGGAAGTGACAAACCAGCAGTCA -ACGGAAGTGACAAACCAGGATCCA -ACGGAAGTGACAAACCAGACGACA -ACGGAAGTGACAAACCAGAGCTCA -ACGGAAGTGACAAACCAGTCACGT -ACGGAAGTGACAAACCAGCGTAGT -ACGGAAGTGACAAACCAGGTCAGT -ACGGAAGTGACAAACCAGGAAGGT -ACGGAAGTGACAAACCAGAACCGT -ACGGAAGTGACAAACCAGTTGTGC -ACGGAAGTGACAAACCAGCTAAGC -ACGGAAGTGACAAACCAGACTAGC -ACGGAAGTGACAAACCAGAGATGC -ACGGAAGTGACAAACCAGTGAAGG -ACGGAAGTGACAAACCAGCAATGG -ACGGAAGTGACAAACCAGATGAGG -ACGGAAGTGACAAACCAGAATGGG -ACGGAAGTGACAAACCAGTCCTGA -ACGGAAGTGACAAACCAGTAGCGA -ACGGAAGTGACAAACCAGCACAGA -ACGGAAGTGACAAACCAGGCAAGA -ACGGAAGTGACAAACCAGGGTTGA -ACGGAAGTGACAAACCAGTCCGAT -ACGGAAGTGACAAACCAGTGGCAT -ACGGAAGTGACAAACCAGCGAGAT -ACGGAAGTGACAAACCAGTACCAC -ACGGAAGTGACAAACCAGCAGAAC -ACGGAAGTGACAAACCAGGTCTAC -ACGGAAGTGACAAACCAGACGTAC -ACGGAAGTGACAAACCAGAGTGAC -ACGGAAGTGACAAACCAGCTGTAG -ACGGAAGTGACAAACCAGCCTAAG -ACGGAAGTGACAAACCAGGTTCAG -ACGGAAGTGACAAACCAGGCATAG -ACGGAAGTGACAAACCAGGACAAG -ACGGAAGTGACAAACCAGAAGCAG -ACGGAAGTGACAAACCAGCGTCAA -ACGGAAGTGACAAACCAGGCTGAA -ACGGAAGTGACAAACCAGAGTACG -ACGGAAGTGACAAACCAGATCCGA -ACGGAAGTGACAAACCAGATGGGA -ACGGAAGTGACAAACCAGGTGCAA -ACGGAAGTGACAAACCAGGAGGAA -ACGGAAGTGACAAACCAGCAGGTA -ACGGAAGTGACAAACCAGGACTCT -ACGGAAGTGACAAACCAGAGTCCT -ACGGAAGTGACAAACCAGTAAGCC -ACGGAAGTGACAAACCAGATAGCC -ACGGAAGTGACAAACCAGTAACCG -ACGGAAGTGACAAACCAGATGCCA -ACGGAAGTGACATACGTCGGAAAC -ACGGAAGTGACATACGTCAACACC -ACGGAAGTGACATACGTCATCGAG -ACGGAAGTGACATACGTCCTCCTT -ACGGAAGTGACATACGTCCCTGTT -ACGGAAGTGACATACGTCCGGTTT -ACGGAAGTGACATACGTCGTGGTT -ACGGAAGTGACATACGTCGCCTTT -ACGGAAGTGACATACGTCGGTCTT -ACGGAAGTGACATACGTCACGCTT -ACGGAAGTGACATACGTCAGCGTT -ACGGAAGTGACATACGTCTTCGTC -ACGGAAGTGACATACGTCTCTCTC -ACGGAAGTGACATACGTCTGGATC -ACGGAAGTGACATACGTCCACTTC -ACGGAAGTGACATACGTCGTACTC -ACGGAAGTGACATACGTCGATGTC -ACGGAAGTGACATACGTCACAGTC -ACGGAAGTGACATACGTCTTGCTG -ACGGAAGTGACATACGTCTCCATG -ACGGAAGTGACATACGTCTGTGTG -ACGGAAGTGACATACGTCCTAGTG -ACGGAAGTGACATACGTCCATCTG -ACGGAAGTGACATACGTCGAGTTG -ACGGAAGTGACATACGTCAGACTG -ACGGAAGTGACATACGTCTCGGTA -ACGGAAGTGACATACGTCTGCCTA -ACGGAAGTGACATACGTCCCACTA -ACGGAAGTGACATACGTCGGAGTA -ACGGAAGTGACATACGTCTCGTCT -ACGGAAGTGACATACGTCTGCACT -ACGGAAGTGACATACGTCCTGACT -ACGGAAGTGACATACGTCCAACCT -ACGGAAGTGACATACGTCGCTACT -ACGGAAGTGACATACGTCGGATCT -ACGGAAGTGACATACGTCAAGGCT -ACGGAAGTGACATACGTCTCAACC -ACGGAAGTGACATACGTCTGTTCC -ACGGAAGTGACATACGTCATTCCC -ACGGAAGTGACATACGTCTTCTCG -ACGGAAGTGACATACGTCTAGACG -ACGGAAGTGACATACGTCGTAACG -ACGGAAGTGACATACGTCACTTCG -ACGGAAGTGACATACGTCTACGCA -ACGGAAGTGACATACGTCCTTGCA -ACGGAAGTGACATACGTCCGAACA -ACGGAAGTGACATACGTCCAGTCA -ACGGAAGTGACATACGTCGATCCA -ACGGAAGTGACATACGTCACGACA -ACGGAAGTGACATACGTCAGCTCA -ACGGAAGTGACATACGTCTCACGT -ACGGAAGTGACATACGTCCGTAGT -ACGGAAGTGACATACGTCGTCAGT -ACGGAAGTGACATACGTCGAAGGT -ACGGAAGTGACATACGTCAACCGT -ACGGAAGTGACATACGTCTTGTGC -ACGGAAGTGACATACGTCCTAAGC -ACGGAAGTGACATACGTCACTAGC -ACGGAAGTGACATACGTCAGATGC -ACGGAAGTGACATACGTCTGAAGG -ACGGAAGTGACATACGTCCAATGG -ACGGAAGTGACATACGTCATGAGG -ACGGAAGTGACATACGTCAATGGG -ACGGAAGTGACATACGTCTCCTGA -ACGGAAGTGACATACGTCTAGCGA -ACGGAAGTGACATACGTCCACAGA -ACGGAAGTGACATACGTCGCAAGA -ACGGAAGTGACATACGTCGGTTGA -ACGGAAGTGACATACGTCTCCGAT -ACGGAAGTGACATACGTCTGGCAT -ACGGAAGTGACATACGTCCGAGAT -ACGGAAGTGACATACGTCTACCAC -ACGGAAGTGACATACGTCCAGAAC -ACGGAAGTGACATACGTCGTCTAC -ACGGAAGTGACATACGTCACGTAC -ACGGAAGTGACATACGTCAGTGAC -ACGGAAGTGACATACGTCCTGTAG -ACGGAAGTGACATACGTCCCTAAG -ACGGAAGTGACATACGTCGTTCAG -ACGGAAGTGACATACGTCGCATAG -ACGGAAGTGACATACGTCGACAAG -ACGGAAGTGACATACGTCAAGCAG -ACGGAAGTGACATACGTCCGTCAA -ACGGAAGTGACATACGTCGCTGAA -ACGGAAGTGACATACGTCAGTACG -ACGGAAGTGACATACGTCATCCGA -ACGGAAGTGACATACGTCATGGGA -ACGGAAGTGACATACGTCGTGCAA -ACGGAAGTGACATACGTCGAGGAA -ACGGAAGTGACATACGTCCAGGTA -ACGGAAGTGACATACGTCGACTCT -ACGGAAGTGACATACGTCAGTCCT -ACGGAAGTGACATACGTCTAAGCC -ACGGAAGTGACATACGTCATAGCC -ACGGAAGTGACATACGTCTAACCG -ACGGAAGTGACATACGTCATGCCA -ACGGAAGTGACATACACGGGAAAC -ACGGAAGTGACATACACGAACACC -ACGGAAGTGACATACACGATCGAG -ACGGAAGTGACATACACGCTCCTT -ACGGAAGTGACATACACGCCTGTT -ACGGAAGTGACATACACGCGGTTT -ACGGAAGTGACATACACGGTGGTT -ACGGAAGTGACATACACGGCCTTT -ACGGAAGTGACATACACGGGTCTT -ACGGAAGTGACATACACGACGCTT -ACGGAAGTGACATACACGAGCGTT -ACGGAAGTGACATACACGTTCGTC -ACGGAAGTGACATACACGTCTCTC -ACGGAAGTGACATACACGTGGATC -ACGGAAGTGACATACACGCACTTC -ACGGAAGTGACATACACGGTACTC -ACGGAAGTGACATACACGGATGTC -ACGGAAGTGACATACACGACAGTC -ACGGAAGTGACATACACGTTGCTG -ACGGAAGTGACATACACGTCCATG -ACGGAAGTGACATACACGTGTGTG -ACGGAAGTGACATACACGCTAGTG -ACGGAAGTGACATACACGCATCTG -ACGGAAGTGACATACACGGAGTTG -ACGGAAGTGACATACACGAGACTG -ACGGAAGTGACATACACGTCGGTA -ACGGAAGTGACATACACGTGCCTA -ACGGAAGTGACATACACGCCACTA -ACGGAAGTGACATACACGGGAGTA -ACGGAAGTGACATACACGTCGTCT -ACGGAAGTGACATACACGTGCACT -ACGGAAGTGACATACACGCTGACT -ACGGAAGTGACATACACGCAACCT -ACGGAAGTGACATACACGGCTACT -ACGGAAGTGACATACACGGGATCT -ACGGAAGTGACATACACGAAGGCT -ACGGAAGTGACATACACGTCAACC -ACGGAAGTGACATACACGTGTTCC -ACGGAAGTGACATACACGATTCCC -ACGGAAGTGACATACACGTTCTCG -ACGGAAGTGACATACACGTAGACG -ACGGAAGTGACATACACGGTAACG -ACGGAAGTGACATACACGACTTCG -ACGGAAGTGACATACACGTACGCA -ACGGAAGTGACATACACGCTTGCA -ACGGAAGTGACATACACGCGAACA -ACGGAAGTGACATACACGCAGTCA -ACGGAAGTGACATACACGGATCCA -ACGGAAGTGACATACACGACGACA -ACGGAAGTGACATACACGAGCTCA -ACGGAAGTGACATACACGTCACGT -ACGGAAGTGACATACACGCGTAGT -ACGGAAGTGACATACACGGTCAGT -ACGGAAGTGACATACACGGAAGGT -ACGGAAGTGACATACACGAACCGT -ACGGAAGTGACATACACGTTGTGC -ACGGAAGTGACATACACGCTAAGC -ACGGAAGTGACATACACGACTAGC -ACGGAAGTGACATACACGAGATGC -ACGGAAGTGACATACACGTGAAGG -ACGGAAGTGACATACACGCAATGG -ACGGAAGTGACATACACGATGAGG -ACGGAAGTGACATACACGAATGGG -ACGGAAGTGACATACACGTCCTGA -ACGGAAGTGACATACACGTAGCGA -ACGGAAGTGACATACACGCACAGA -ACGGAAGTGACATACACGGCAAGA -ACGGAAGTGACATACACGGGTTGA -ACGGAAGTGACATACACGTCCGAT -ACGGAAGTGACATACACGTGGCAT -ACGGAAGTGACATACACGCGAGAT -ACGGAAGTGACATACACGTACCAC -ACGGAAGTGACATACACGCAGAAC -ACGGAAGTGACATACACGGTCTAC -ACGGAAGTGACATACACGACGTAC -ACGGAAGTGACATACACGAGTGAC -ACGGAAGTGACATACACGCTGTAG -ACGGAAGTGACATACACGCCTAAG -ACGGAAGTGACATACACGGTTCAG -ACGGAAGTGACATACACGGCATAG -ACGGAAGTGACATACACGGACAAG -ACGGAAGTGACATACACGAAGCAG -ACGGAAGTGACATACACGCGTCAA -ACGGAAGTGACATACACGGCTGAA -ACGGAAGTGACATACACGAGTACG -ACGGAAGTGACATACACGATCCGA -ACGGAAGTGACATACACGATGGGA -ACGGAAGTGACATACACGGTGCAA -ACGGAAGTGACATACACGGAGGAA -ACGGAAGTGACATACACGCAGGTA -ACGGAAGTGACATACACGGACTCT -ACGGAAGTGACATACACGAGTCCT -ACGGAAGTGACATACACGTAAGCC -ACGGAAGTGACATACACGATAGCC -ACGGAAGTGACATACACGTAACCG -ACGGAAGTGACATACACGATGCCA -ACGGAAGTGACAGACAGTGGAAAC -ACGGAAGTGACAGACAGTAACACC -ACGGAAGTGACAGACAGTATCGAG -ACGGAAGTGACAGACAGTCTCCTT -ACGGAAGTGACAGACAGTCCTGTT -ACGGAAGTGACAGACAGTCGGTTT -ACGGAAGTGACAGACAGTGTGGTT -ACGGAAGTGACAGACAGTGCCTTT -ACGGAAGTGACAGACAGTGGTCTT -ACGGAAGTGACAGACAGTACGCTT -ACGGAAGTGACAGACAGTAGCGTT -ACGGAAGTGACAGACAGTTTCGTC -ACGGAAGTGACAGACAGTTCTCTC -ACGGAAGTGACAGACAGTTGGATC -ACGGAAGTGACAGACAGTCACTTC -ACGGAAGTGACAGACAGTGTACTC -ACGGAAGTGACAGACAGTGATGTC -ACGGAAGTGACAGACAGTACAGTC -ACGGAAGTGACAGACAGTTTGCTG -ACGGAAGTGACAGACAGTTCCATG -ACGGAAGTGACAGACAGTTGTGTG -ACGGAAGTGACAGACAGTCTAGTG -ACGGAAGTGACAGACAGTCATCTG -ACGGAAGTGACAGACAGTGAGTTG -ACGGAAGTGACAGACAGTAGACTG -ACGGAAGTGACAGACAGTTCGGTA -ACGGAAGTGACAGACAGTTGCCTA -ACGGAAGTGACAGACAGTCCACTA -ACGGAAGTGACAGACAGTGGAGTA -ACGGAAGTGACAGACAGTTCGTCT -ACGGAAGTGACAGACAGTTGCACT -ACGGAAGTGACAGACAGTCTGACT -ACGGAAGTGACAGACAGTCAACCT -ACGGAAGTGACAGACAGTGCTACT -ACGGAAGTGACAGACAGTGGATCT -ACGGAAGTGACAGACAGTAAGGCT -ACGGAAGTGACAGACAGTTCAACC -ACGGAAGTGACAGACAGTTGTTCC -ACGGAAGTGACAGACAGTATTCCC -ACGGAAGTGACAGACAGTTTCTCG -ACGGAAGTGACAGACAGTTAGACG -ACGGAAGTGACAGACAGTGTAACG -ACGGAAGTGACAGACAGTACTTCG -ACGGAAGTGACAGACAGTTACGCA -ACGGAAGTGACAGACAGTCTTGCA -ACGGAAGTGACAGACAGTCGAACA -ACGGAAGTGACAGACAGTCAGTCA -ACGGAAGTGACAGACAGTGATCCA -ACGGAAGTGACAGACAGTACGACA -ACGGAAGTGACAGACAGTAGCTCA -ACGGAAGTGACAGACAGTTCACGT -ACGGAAGTGACAGACAGTCGTAGT -ACGGAAGTGACAGACAGTGTCAGT -ACGGAAGTGACAGACAGTGAAGGT -ACGGAAGTGACAGACAGTAACCGT -ACGGAAGTGACAGACAGTTTGTGC -ACGGAAGTGACAGACAGTCTAAGC -ACGGAAGTGACAGACAGTACTAGC -ACGGAAGTGACAGACAGTAGATGC -ACGGAAGTGACAGACAGTTGAAGG -ACGGAAGTGACAGACAGTCAATGG -ACGGAAGTGACAGACAGTATGAGG -ACGGAAGTGACAGACAGTAATGGG -ACGGAAGTGACAGACAGTTCCTGA -ACGGAAGTGACAGACAGTTAGCGA -ACGGAAGTGACAGACAGTCACAGA -ACGGAAGTGACAGACAGTGCAAGA -ACGGAAGTGACAGACAGTGGTTGA -ACGGAAGTGACAGACAGTTCCGAT -ACGGAAGTGACAGACAGTTGGCAT -ACGGAAGTGACAGACAGTCGAGAT -ACGGAAGTGACAGACAGTTACCAC -ACGGAAGTGACAGACAGTCAGAAC -ACGGAAGTGACAGACAGTGTCTAC -ACGGAAGTGACAGACAGTACGTAC -ACGGAAGTGACAGACAGTAGTGAC -ACGGAAGTGACAGACAGTCTGTAG -ACGGAAGTGACAGACAGTCCTAAG -ACGGAAGTGACAGACAGTGTTCAG -ACGGAAGTGACAGACAGTGCATAG -ACGGAAGTGACAGACAGTGACAAG -ACGGAAGTGACAGACAGTAAGCAG -ACGGAAGTGACAGACAGTCGTCAA -ACGGAAGTGACAGACAGTGCTGAA -ACGGAAGTGACAGACAGTAGTACG -ACGGAAGTGACAGACAGTATCCGA -ACGGAAGTGACAGACAGTATGGGA -ACGGAAGTGACAGACAGTGTGCAA -ACGGAAGTGACAGACAGTGAGGAA -ACGGAAGTGACAGACAGTCAGGTA -ACGGAAGTGACAGACAGTGACTCT -ACGGAAGTGACAGACAGTAGTCCT -ACGGAAGTGACAGACAGTTAAGCC -ACGGAAGTGACAGACAGTATAGCC -ACGGAAGTGACAGACAGTTAACCG -ACGGAAGTGACAGACAGTATGCCA -ACGGAAGTGACATAGCTGGGAAAC -ACGGAAGTGACATAGCTGAACACC -ACGGAAGTGACATAGCTGATCGAG -ACGGAAGTGACATAGCTGCTCCTT -ACGGAAGTGACATAGCTGCCTGTT -ACGGAAGTGACATAGCTGCGGTTT -ACGGAAGTGACATAGCTGGTGGTT -ACGGAAGTGACATAGCTGGCCTTT -ACGGAAGTGACATAGCTGGGTCTT -ACGGAAGTGACATAGCTGACGCTT -ACGGAAGTGACATAGCTGAGCGTT -ACGGAAGTGACATAGCTGTTCGTC -ACGGAAGTGACATAGCTGTCTCTC -ACGGAAGTGACATAGCTGTGGATC -ACGGAAGTGACATAGCTGCACTTC -ACGGAAGTGACATAGCTGGTACTC -ACGGAAGTGACATAGCTGGATGTC -ACGGAAGTGACATAGCTGACAGTC -ACGGAAGTGACATAGCTGTTGCTG -ACGGAAGTGACATAGCTGTCCATG -ACGGAAGTGACATAGCTGTGTGTG -ACGGAAGTGACATAGCTGCTAGTG -ACGGAAGTGACATAGCTGCATCTG -ACGGAAGTGACATAGCTGGAGTTG -ACGGAAGTGACATAGCTGAGACTG -ACGGAAGTGACATAGCTGTCGGTA -ACGGAAGTGACATAGCTGTGCCTA -ACGGAAGTGACATAGCTGCCACTA -ACGGAAGTGACATAGCTGGGAGTA -ACGGAAGTGACATAGCTGTCGTCT -ACGGAAGTGACATAGCTGTGCACT -ACGGAAGTGACATAGCTGCTGACT -ACGGAAGTGACATAGCTGCAACCT -ACGGAAGTGACATAGCTGGCTACT -ACGGAAGTGACATAGCTGGGATCT -ACGGAAGTGACATAGCTGAAGGCT -ACGGAAGTGACATAGCTGTCAACC -ACGGAAGTGACATAGCTGTGTTCC -ACGGAAGTGACATAGCTGATTCCC -ACGGAAGTGACATAGCTGTTCTCG -ACGGAAGTGACATAGCTGTAGACG -ACGGAAGTGACATAGCTGGTAACG -ACGGAAGTGACATAGCTGACTTCG -ACGGAAGTGACATAGCTGTACGCA -ACGGAAGTGACATAGCTGCTTGCA -ACGGAAGTGACATAGCTGCGAACA -ACGGAAGTGACATAGCTGCAGTCA -ACGGAAGTGACATAGCTGGATCCA -ACGGAAGTGACATAGCTGACGACA -ACGGAAGTGACATAGCTGAGCTCA -ACGGAAGTGACATAGCTGTCACGT -ACGGAAGTGACATAGCTGCGTAGT -ACGGAAGTGACATAGCTGGTCAGT -ACGGAAGTGACATAGCTGGAAGGT -ACGGAAGTGACATAGCTGAACCGT -ACGGAAGTGACATAGCTGTTGTGC -ACGGAAGTGACATAGCTGCTAAGC -ACGGAAGTGACATAGCTGACTAGC -ACGGAAGTGACATAGCTGAGATGC -ACGGAAGTGACATAGCTGTGAAGG -ACGGAAGTGACATAGCTGCAATGG -ACGGAAGTGACATAGCTGATGAGG -ACGGAAGTGACATAGCTGAATGGG -ACGGAAGTGACATAGCTGTCCTGA -ACGGAAGTGACATAGCTGTAGCGA -ACGGAAGTGACATAGCTGCACAGA -ACGGAAGTGACATAGCTGGCAAGA -ACGGAAGTGACATAGCTGGGTTGA -ACGGAAGTGACATAGCTGTCCGAT -ACGGAAGTGACATAGCTGTGGCAT -ACGGAAGTGACATAGCTGCGAGAT -ACGGAAGTGACATAGCTGTACCAC -ACGGAAGTGACATAGCTGCAGAAC -ACGGAAGTGACATAGCTGGTCTAC -ACGGAAGTGACATAGCTGACGTAC -ACGGAAGTGACATAGCTGAGTGAC -ACGGAAGTGACATAGCTGCTGTAG -ACGGAAGTGACATAGCTGCCTAAG -ACGGAAGTGACATAGCTGGTTCAG -ACGGAAGTGACATAGCTGGCATAG -ACGGAAGTGACATAGCTGGACAAG -ACGGAAGTGACATAGCTGAAGCAG -ACGGAAGTGACATAGCTGCGTCAA -ACGGAAGTGACATAGCTGGCTGAA -ACGGAAGTGACATAGCTGAGTACG -ACGGAAGTGACATAGCTGATCCGA -ACGGAAGTGACATAGCTGATGGGA -ACGGAAGTGACATAGCTGGTGCAA -ACGGAAGTGACATAGCTGGAGGAA -ACGGAAGTGACATAGCTGCAGGTA -ACGGAAGTGACATAGCTGGACTCT -ACGGAAGTGACATAGCTGAGTCCT -ACGGAAGTGACATAGCTGTAAGCC -ACGGAAGTGACATAGCTGATAGCC -ACGGAAGTGACATAGCTGTAACCG -ACGGAAGTGACATAGCTGATGCCA -ACGGAAGTGACAAAGCCTGGAAAC -ACGGAAGTGACAAAGCCTAACACC -ACGGAAGTGACAAAGCCTATCGAG -ACGGAAGTGACAAAGCCTCTCCTT -ACGGAAGTGACAAAGCCTCCTGTT -ACGGAAGTGACAAAGCCTCGGTTT -ACGGAAGTGACAAAGCCTGTGGTT -ACGGAAGTGACAAAGCCTGCCTTT -ACGGAAGTGACAAAGCCTGGTCTT -ACGGAAGTGACAAAGCCTACGCTT -ACGGAAGTGACAAAGCCTAGCGTT -ACGGAAGTGACAAAGCCTTTCGTC -ACGGAAGTGACAAAGCCTTCTCTC -ACGGAAGTGACAAAGCCTTGGATC -ACGGAAGTGACAAAGCCTCACTTC -ACGGAAGTGACAAAGCCTGTACTC -ACGGAAGTGACAAAGCCTGATGTC -ACGGAAGTGACAAAGCCTACAGTC -ACGGAAGTGACAAAGCCTTTGCTG -ACGGAAGTGACAAAGCCTTCCATG -ACGGAAGTGACAAAGCCTTGTGTG -ACGGAAGTGACAAAGCCTCTAGTG -ACGGAAGTGACAAAGCCTCATCTG -ACGGAAGTGACAAAGCCTGAGTTG -ACGGAAGTGACAAAGCCTAGACTG -ACGGAAGTGACAAAGCCTTCGGTA -ACGGAAGTGACAAAGCCTTGCCTA -ACGGAAGTGACAAAGCCTCCACTA -ACGGAAGTGACAAAGCCTGGAGTA -ACGGAAGTGACAAAGCCTTCGTCT -ACGGAAGTGACAAAGCCTTGCACT -ACGGAAGTGACAAAGCCTCTGACT -ACGGAAGTGACAAAGCCTCAACCT -ACGGAAGTGACAAAGCCTGCTACT -ACGGAAGTGACAAAGCCTGGATCT -ACGGAAGTGACAAAGCCTAAGGCT -ACGGAAGTGACAAAGCCTTCAACC -ACGGAAGTGACAAAGCCTTGTTCC -ACGGAAGTGACAAAGCCTATTCCC -ACGGAAGTGACAAAGCCTTTCTCG -ACGGAAGTGACAAAGCCTTAGACG -ACGGAAGTGACAAAGCCTGTAACG -ACGGAAGTGACAAAGCCTACTTCG -ACGGAAGTGACAAAGCCTTACGCA -ACGGAAGTGACAAAGCCTCTTGCA -ACGGAAGTGACAAAGCCTCGAACA -ACGGAAGTGACAAAGCCTCAGTCA -ACGGAAGTGACAAAGCCTGATCCA -ACGGAAGTGACAAAGCCTACGACA -ACGGAAGTGACAAAGCCTAGCTCA -ACGGAAGTGACAAAGCCTTCACGT -ACGGAAGTGACAAAGCCTCGTAGT -ACGGAAGTGACAAAGCCTGTCAGT -ACGGAAGTGACAAAGCCTGAAGGT -ACGGAAGTGACAAAGCCTAACCGT -ACGGAAGTGACAAAGCCTTTGTGC -ACGGAAGTGACAAAGCCTCTAAGC -ACGGAAGTGACAAAGCCTACTAGC -ACGGAAGTGACAAAGCCTAGATGC -ACGGAAGTGACAAAGCCTTGAAGG -ACGGAAGTGACAAAGCCTCAATGG -ACGGAAGTGACAAAGCCTATGAGG -ACGGAAGTGACAAAGCCTAATGGG -ACGGAAGTGACAAAGCCTTCCTGA -ACGGAAGTGACAAAGCCTTAGCGA -ACGGAAGTGACAAAGCCTCACAGA -ACGGAAGTGACAAAGCCTGCAAGA -ACGGAAGTGACAAAGCCTGGTTGA -ACGGAAGTGACAAAGCCTTCCGAT -ACGGAAGTGACAAAGCCTTGGCAT -ACGGAAGTGACAAAGCCTCGAGAT -ACGGAAGTGACAAAGCCTTACCAC -ACGGAAGTGACAAAGCCTCAGAAC -ACGGAAGTGACAAAGCCTGTCTAC -ACGGAAGTGACAAAGCCTACGTAC -ACGGAAGTGACAAAGCCTAGTGAC -ACGGAAGTGACAAAGCCTCTGTAG -ACGGAAGTGACAAAGCCTCCTAAG -ACGGAAGTGACAAAGCCTGTTCAG -ACGGAAGTGACAAAGCCTGCATAG -ACGGAAGTGACAAAGCCTGACAAG -ACGGAAGTGACAAAGCCTAAGCAG -ACGGAAGTGACAAAGCCTCGTCAA -ACGGAAGTGACAAAGCCTGCTGAA -ACGGAAGTGACAAAGCCTAGTACG -ACGGAAGTGACAAAGCCTATCCGA -ACGGAAGTGACAAAGCCTATGGGA -ACGGAAGTGACAAAGCCTGTGCAA -ACGGAAGTGACAAAGCCTGAGGAA -ACGGAAGTGACAAAGCCTCAGGTA -ACGGAAGTGACAAAGCCTGACTCT -ACGGAAGTGACAAAGCCTAGTCCT -ACGGAAGTGACAAAGCCTTAAGCC -ACGGAAGTGACAAAGCCTATAGCC -ACGGAAGTGACAAAGCCTTAACCG -ACGGAAGTGACAAAGCCTATGCCA -ACGGAAGTGACACAGGTTGGAAAC -ACGGAAGTGACACAGGTTAACACC -ACGGAAGTGACACAGGTTATCGAG -ACGGAAGTGACACAGGTTCTCCTT -ACGGAAGTGACACAGGTTCCTGTT -ACGGAAGTGACACAGGTTCGGTTT -ACGGAAGTGACACAGGTTGTGGTT -ACGGAAGTGACACAGGTTGCCTTT -ACGGAAGTGACACAGGTTGGTCTT -ACGGAAGTGACACAGGTTACGCTT -ACGGAAGTGACACAGGTTAGCGTT -ACGGAAGTGACACAGGTTTTCGTC -ACGGAAGTGACACAGGTTTCTCTC -ACGGAAGTGACACAGGTTTGGATC -ACGGAAGTGACACAGGTTCACTTC -ACGGAAGTGACACAGGTTGTACTC -ACGGAAGTGACACAGGTTGATGTC -ACGGAAGTGACACAGGTTACAGTC -ACGGAAGTGACACAGGTTTTGCTG -ACGGAAGTGACACAGGTTTCCATG -ACGGAAGTGACACAGGTTTGTGTG -ACGGAAGTGACACAGGTTCTAGTG -ACGGAAGTGACACAGGTTCATCTG -ACGGAAGTGACACAGGTTGAGTTG -ACGGAAGTGACACAGGTTAGACTG -ACGGAAGTGACACAGGTTTCGGTA -ACGGAAGTGACACAGGTTTGCCTA -ACGGAAGTGACACAGGTTCCACTA -ACGGAAGTGACACAGGTTGGAGTA -ACGGAAGTGACACAGGTTTCGTCT -ACGGAAGTGACACAGGTTTGCACT -ACGGAAGTGACACAGGTTCTGACT -ACGGAAGTGACACAGGTTCAACCT -ACGGAAGTGACACAGGTTGCTACT -ACGGAAGTGACACAGGTTGGATCT -ACGGAAGTGACACAGGTTAAGGCT -ACGGAAGTGACACAGGTTTCAACC -ACGGAAGTGACACAGGTTTGTTCC -ACGGAAGTGACACAGGTTATTCCC -ACGGAAGTGACACAGGTTTTCTCG -ACGGAAGTGACACAGGTTTAGACG -ACGGAAGTGACACAGGTTGTAACG -ACGGAAGTGACACAGGTTACTTCG -ACGGAAGTGACACAGGTTTACGCA -ACGGAAGTGACACAGGTTCTTGCA -ACGGAAGTGACACAGGTTCGAACA -ACGGAAGTGACACAGGTTCAGTCA -ACGGAAGTGACACAGGTTGATCCA -ACGGAAGTGACACAGGTTACGACA -ACGGAAGTGACACAGGTTAGCTCA -ACGGAAGTGACACAGGTTTCACGT -ACGGAAGTGACACAGGTTCGTAGT -ACGGAAGTGACACAGGTTGTCAGT -ACGGAAGTGACACAGGTTGAAGGT -ACGGAAGTGACACAGGTTAACCGT -ACGGAAGTGACACAGGTTTTGTGC -ACGGAAGTGACACAGGTTCTAAGC -ACGGAAGTGACACAGGTTACTAGC -ACGGAAGTGACACAGGTTAGATGC -ACGGAAGTGACACAGGTTTGAAGG -ACGGAAGTGACACAGGTTCAATGG -ACGGAAGTGACACAGGTTATGAGG -ACGGAAGTGACACAGGTTAATGGG -ACGGAAGTGACACAGGTTTCCTGA -ACGGAAGTGACACAGGTTTAGCGA -ACGGAAGTGACACAGGTTCACAGA -ACGGAAGTGACACAGGTTGCAAGA -ACGGAAGTGACACAGGTTGGTTGA -ACGGAAGTGACACAGGTTTCCGAT -ACGGAAGTGACACAGGTTTGGCAT -ACGGAAGTGACACAGGTTCGAGAT -ACGGAAGTGACACAGGTTTACCAC -ACGGAAGTGACACAGGTTCAGAAC -ACGGAAGTGACACAGGTTGTCTAC -ACGGAAGTGACACAGGTTACGTAC -ACGGAAGTGACACAGGTTAGTGAC -ACGGAAGTGACACAGGTTCTGTAG -ACGGAAGTGACACAGGTTCCTAAG -ACGGAAGTGACACAGGTTGTTCAG -ACGGAAGTGACACAGGTTGCATAG -ACGGAAGTGACACAGGTTGACAAG -ACGGAAGTGACACAGGTTAAGCAG -ACGGAAGTGACACAGGTTCGTCAA -ACGGAAGTGACACAGGTTGCTGAA -ACGGAAGTGACACAGGTTAGTACG -ACGGAAGTGACACAGGTTATCCGA -ACGGAAGTGACACAGGTTATGGGA -ACGGAAGTGACACAGGTTGTGCAA -ACGGAAGTGACACAGGTTGAGGAA -ACGGAAGTGACACAGGTTCAGGTA -ACGGAAGTGACACAGGTTGACTCT -ACGGAAGTGACACAGGTTAGTCCT -ACGGAAGTGACACAGGTTTAAGCC -ACGGAAGTGACACAGGTTATAGCC -ACGGAAGTGACACAGGTTTAACCG -ACGGAAGTGACACAGGTTATGCCA -ACGGAAGTGACATAGGCAGGAAAC -ACGGAAGTGACATAGGCAAACACC -ACGGAAGTGACATAGGCAATCGAG -ACGGAAGTGACATAGGCACTCCTT -ACGGAAGTGACATAGGCACCTGTT -ACGGAAGTGACATAGGCACGGTTT -ACGGAAGTGACATAGGCAGTGGTT -ACGGAAGTGACATAGGCAGCCTTT -ACGGAAGTGACATAGGCAGGTCTT -ACGGAAGTGACATAGGCAACGCTT -ACGGAAGTGACATAGGCAAGCGTT -ACGGAAGTGACATAGGCATTCGTC -ACGGAAGTGACATAGGCATCTCTC -ACGGAAGTGACATAGGCATGGATC -ACGGAAGTGACATAGGCACACTTC -ACGGAAGTGACATAGGCAGTACTC -ACGGAAGTGACATAGGCAGATGTC -ACGGAAGTGACATAGGCAACAGTC -ACGGAAGTGACATAGGCATTGCTG -ACGGAAGTGACATAGGCATCCATG -ACGGAAGTGACATAGGCATGTGTG -ACGGAAGTGACATAGGCACTAGTG -ACGGAAGTGACATAGGCACATCTG -ACGGAAGTGACATAGGCAGAGTTG -ACGGAAGTGACATAGGCAAGACTG -ACGGAAGTGACATAGGCATCGGTA -ACGGAAGTGACATAGGCATGCCTA -ACGGAAGTGACATAGGCACCACTA -ACGGAAGTGACATAGGCAGGAGTA -ACGGAAGTGACATAGGCATCGTCT -ACGGAAGTGACATAGGCATGCACT -ACGGAAGTGACATAGGCACTGACT -ACGGAAGTGACATAGGCACAACCT -ACGGAAGTGACATAGGCAGCTACT -ACGGAAGTGACATAGGCAGGATCT -ACGGAAGTGACATAGGCAAAGGCT -ACGGAAGTGACATAGGCATCAACC -ACGGAAGTGACATAGGCATGTTCC -ACGGAAGTGACATAGGCAATTCCC -ACGGAAGTGACATAGGCATTCTCG -ACGGAAGTGACATAGGCATAGACG -ACGGAAGTGACATAGGCAGTAACG -ACGGAAGTGACATAGGCAACTTCG -ACGGAAGTGACATAGGCATACGCA -ACGGAAGTGACATAGGCACTTGCA -ACGGAAGTGACATAGGCACGAACA -ACGGAAGTGACATAGGCACAGTCA -ACGGAAGTGACATAGGCAGATCCA -ACGGAAGTGACATAGGCAACGACA -ACGGAAGTGACATAGGCAAGCTCA -ACGGAAGTGACATAGGCATCACGT -ACGGAAGTGACATAGGCACGTAGT -ACGGAAGTGACATAGGCAGTCAGT -ACGGAAGTGACATAGGCAGAAGGT -ACGGAAGTGACATAGGCAAACCGT -ACGGAAGTGACATAGGCATTGTGC -ACGGAAGTGACATAGGCACTAAGC -ACGGAAGTGACATAGGCAACTAGC -ACGGAAGTGACATAGGCAAGATGC -ACGGAAGTGACATAGGCATGAAGG -ACGGAAGTGACATAGGCACAATGG -ACGGAAGTGACATAGGCAATGAGG -ACGGAAGTGACATAGGCAAATGGG -ACGGAAGTGACATAGGCATCCTGA -ACGGAAGTGACATAGGCATAGCGA -ACGGAAGTGACATAGGCACACAGA -ACGGAAGTGACATAGGCAGCAAGA -ACGGAAGTGACATAGGCAGGTTGA -ACGGAAGTGACATAGGCATCCGAT -ACGGAAGTGACATAGGCATGGCAT -ACGGAAGTGACATAGGCACGAGAT -ACGGAAGTGACATAGGCATACCAC -ACGGAAGTGACATAGGCACAGAAC -ACGGAAGTGACATAGGCAGTCTAC -ACGGAAGTGACATAGGCAACGTAC -ACGGAAGTGACATAGGCAAGTGAC -ACGGAAGTGACATAGGCACTGTAG -ACGGAAGTGACATAGGCACCTAAG -ACGGAAGTGACATAGGCAGTTCAG -ACGGAAGTGACATAGGCAGCATAG -ACGGAAGTGACATAGGCAGACAAG -ACGGAAGTGACATAGGCAAAGCAG -ACGGAAGTGACATAGGCACGTCAA -ACGGAAGTGACATAGGCAGCTGAA -ACGGAAGTGACATAGGCAAGTACG -ACGGAAGTGACATAGGCAATCCGA -ACGGAAGTGACATAGGCAATGGGA -ACGGAAGTGACATAGGCAGTGCAA -ACGGAAGTGACATAGGCAGAGGAA -ACGGAAGTGACATAGGCACAGGTA -ACGGAAGTGACATAGGCAGACTCT -ACGGAAGTGACATAGGCAAGTCCT -ACGGAAGTGACATAGGCATAAGCC -ACGGAAGTGACATAGGCAATAGCC -ACGGAAGTGACATAGGCATAACCG -ACGGAAGTGACATAGGCAATGCCA -ACGGAAGTGACAAAGGACGGAAAC -ACGGAAGTGACAAAGGACAACACC -ACGGAAGTGACAAAGGACATCGAG -ACGGAAGTGACAAAGGACCTCCTT -ACGGAAGTGACAAAGGACCCTGTT -ACGGAAGTGACAAAGGACCGGTTT -ACGGAAGTGACAAAGGACGTGGTT -ACGGAAGTGACAAAGGACGCCTTT -ACGGAAGTGACAAAGGACGGTCTT -ACGGAAGTGACAAAGGACACGCTT -ACGGAAGTGACAAAGGACAGCGTT -ACGGAAGTGACAAAGGACTTCGTC -ACGGAAGTGACAAAGGACTCTCTC -ACGGAAGTGACAAAGGACTGGATC -ACGGAAGTGACAAAGGACCACTTC -ACGGAAGTGACAAAGGACGTACTC -ACGGAAGTGACAAAGGACGATGTC -ACGGAAGTGACAAAGGACACAGTC -ACGGAAGTGACAAAGGACTTGCTG -ACGGAAGTGACAAAGGACTCCATG -ACGGAAGTGACAAAGGACTGTGTG -ACGGAAGTGACAAAGGACCTAGTG -ACGGAAGTGACAAAGGACCATCTG -ACGGAAGTGACAAAGGACGAGTTG -ACGGAAGTGACAAAGGACAGACTG -ACGGAAGTGACAAAGGACTCGGTA -ACGGAAGTGACAAAGGACTGCCTA -ACGGAAGTGACAAAGGACCCACTA -ACGGAAGTGACAAAGGACGGAGTA -ACGGAAGTGACAAAGGACTCGTCT -ACGGAAGTGACAAAGGACTGCACT -ACGGAAGTGACAAAGGACCTGACT -ACGGAAGTGACAAAGGACCAACCT -ACGGAAGTGACAAAGGACGCTACT -ACGGAAGTGACAAAGGACGGATCT -ACGGAAGTGACAAAGGACAAGGCT -ACGGAAGTGACAAAGGACTCAACC -ACGGAAGTGACAAAGGACTGTTCC -ACGGAAGTGACAAAGGACATTCCC -ACGGAAGTGACAAAGGACTTCTCG -ACGGAAGTGACAAAGGACTAGACG -ACGGAAGTGACAAAGGACGTAACG -ACGGAAGTGACAAAGGACACTTCG -ACGGAAGTGACAAAGGACTACGCA -ACGGAAGTGACAAAGGACCTTGCA -ACGGAAGTGACAAAGGACCGAACA -ACGGAAGTGACAAAGGACCAGTCA -ACGGAAGTGACAAAGGACGATCCA -ACGGAAGTGACAAAGGACACGACA -ACGGAAGTGACAAAGGACAGCTCA -ACGGAAGTGACAAAGGACTCACGT -ACGGAAGTGACAAAGGACCGTAGT -ACGGAAGTGACAAAGGACGTCAGT -ACGGAAGTGACAAAGGACGAAGGT -ACGGAAGTGACAAAGGACAACCGT -ACGGAAGTGACAAAGGACTTGTGC -ACGGAAGTGACAAAGGACCTAAGC -ACGGAAGTGACAAAGGACACTAGC -ACGGAAGTGACAAAGGACAGATGC -ACGGAAGTGACAAAGGACTGAAGG -ACGGAAGTGACAAAGGACCAATGG -ACGGAAGTGACAAAGGACATGAGG -ACGGAAGTGACAAAGGACAATGGG -ACGGAAGTGACAAAGGACTCCTGA -ACGGAAGTGACAAAGGACTAGCGA -ACGGAAGTGACAAAGGACCACAGA -ACGGAAGTGACAAAGGACGCAAGA -ACGGAAGTGACAAAGGACGGTTGA -ACGGAAGTGACAAAGGACTCCGAT -ACGGAAGTGACAAAGGACTGGCAT -ACGGAAGTGACAAAGGACCGAGAT -ACGGAAGTGACAAAGGACTACCAC -ACGGAAGTGACAAAGGACCAGAAC -ACGGAAGTGACAAAGGACGTCTAC -ACGGAAGTGACAAAGGACACGTAC -ACGGAAGTGACAAAGGACAGTGAC -ACGGAAGTGACAAAGGACCTGTAG -ACGGAAGTGACAAAGGACCCTAAG -ACGGAAGTGACAAAGGACGTTCAG -ACGGAAGTGACAAAGGACGCATAG -ACGGAAGTGACAAAGGACGACAAG -ACGGAAGTGACAAAGGACAAGCAG -ACGGAAGTGACAAAGGACCGTCAA -ACGGAAGTGACAAAGGACGCTGAA -ACGGAAGTGACAAAGGACAGTACG -ACGGAAGTGACAAAGGACATCCGA -ACGGAAGTGACAAAGGACATGGGA -ACGGAAGTGACAAAGGACGTGCAA -ACGGAAGTGACAAAGGACGAGGAA -ACGGAAGTGACAAAGGACCAGGTA -ACGGAAGTGACAAAGGACGACTCT -ACGGAAGTGACAAAGGACAGTCCT -ACGGAAGTGACAAAGGACTAAGCC -ACGGAAGTGACAAAGGACATAGCC -ACGGAAGTGACAAAGGACTAACCG -ACGGAAGTGACAAAGGACATGCCA -ACGGAAGTGACACAGAAGGGAAAC -ACGGAAGTGACACAGAAGAACACC -ACGGAAGTGACACAGAAGATCGAG -ACGGAAGTGACACAGAAGCTCCTT -ACGGAAGTGACACAGAAGCCTGTT -ACGGAAGTGACACAGAAGCGGTTT -ACGGAAGTGACACAGAAGGTGGTT -ACGGAAGTGACACAGAAGGCCTTT -ACGGAAGTGACACAGAAGGGTCTT -ACGGAAGTGACACAGAAGACGCTT -ACGGAAGTGACACAGAAGAGCGTT -ACGGAAGTGACACAGAAGTTCGTC -ACGGAAGTGACACAGAAGTCTCTC -ACGGAAGTGACACAGAAGTGGATC -ACGGAAGTGACACAGAAGCACTTC -ACGGAAGTGACACAGAAGGTACTC -ACGGAAGTGACACAGAAGGATGTC -ACGGAAGTGACACAGAAGACAGTC -ACGGAAGTGACACAGAAGTTGCTG -ACGGAAGTGACACAGAAGTCCATG -ACGGAAGTGACACAGAAGTGTGTG -ACGGAAGTGACACAGAAGCTAGTG -ACGGAAGTGACACAGAAGCATCTG -ACGGAAGTGACACAGAAGGAGTTG -ACGGAAGTGACACAGAAGAGACTG -ACGGAAGTGACACAGAAGTCGGTA -ACGGAAGTGACACAGAAGTGCCTA -ACGGAAGTGACACAGAAGCCACTA -ACGGAAGTGACACAGAAGGGAGTA -ACGGAAGTGACACAGAAGTCGTCT -ACGGAAGTGACACAGAAGTGCACT -ACGGAAGTGACACAGAAGCTGACT -ACGGAAGTGACACAGAAGCAACCT -ACGGAAGTGACACAGAAGGCTACT -ACGGAAGTGACACAGAAGGGATCT -ACGGAAGTGACACAGAAGAAGGCT -ACGGAAGTGACACAGAAGTCAACC -ACGGAAGTGACACAGAAGTGTTCC -ACGGAAGTGACACAGAAGATTCCC -ACGGAAGTGACACAGAAGTTCTCG -ACGGAAGTGACACAGAAGTAGACG -ACGGAAGTGACACAGAAGGTAACG -ACGGAAGTGACACAGAAGACTTCG -ACGGAAGTGACACAGAAGTACGCA -ACGGAAGTGACACAGAAGCTTGCA -ACGGAAGTGACACAGAAGCGAACA -ACGGAAGTGACACAGAAGCAGTCA -ACGGAAGTGACACAGAAGGATCCA -ACGGAAGTGACACAGAAGACGACA -ACGGAAGTGACACAGAAGAGCTCA -ACGGAAGTGACACAGAAGTCACGT -ACGGAAGTGACACAGAAGCGTAGT -ACGGAAGTGACACAGAAGGTCAGT -ACGGAAGTGACACAGAAGGAAGGT -ACGGAAGTGACACAGAAGAACCGT -ACGGAAGTGACACAGAAGTTGTGC -ACGGAAGTGACACAGAAGCTAAGC -ACGGAAGTGACACAGAAGACTAGC -ACGGAAGTGACACAGAAGAGATGC -ACGGAAGTGACACAGAAGTGAAGG -ACGGAAGTGACACAGAAGCAATGG -ACGGAAGTGACACAGAAGATGAGG -ACGGAAGTGACACAGAAGAATGGG -ACGGAAGTGACACAGAAGTCCTGA -ACGGAAGTGACACAGAAGTAGCGA -ACGGAAGTGACACAGAAGCACAGA -ACGGAAGTGACACAGAAGGCAAGA -ACGGAAGTGACACAGAAGGGTTGA -ACGGAAGTGACACAGAAGTCCGAT -ACGGAAGTGACACAGAAGTGGCAT -ACGGAAGTGACACAGAAGCGAGAT -ACGGAAGTGACACAGAAGTACCAC -ACGGAAGTGACACAGAAGCAGAAC -ACGGAAGTGACACAGAAGGTCTAC -ACGGAAGTGACACAGAAGACGTAC -ACGGAAGTGACACAGAAGAGTGAC -ACGGAAGTGACACAGAAGCTGTAG -ACGGAAGTGACACAGAAGCCTAAG -ACGGAAGTGACACAGAAGGTTCAG -ACGGAAGTGACACAGAAGGCATAG -ACGGAAGTGACACAGAAGGACAAG -ACGGAAGTGACACAGAAGAAGCAG -ACGGAAGTGACACAGAAGCGTCAA -ACGGAAGTGACACAGAAGGCTGAA -ACGGAAGTGACACAGAAGAGTACG -ACGGAAGTGACACAGAAGATCCGA -ACGGAAGTGACACAGAAGATGGGA -ACGGAAGTGACACAGAAGGTGCAA -ACGGAAGTGACACAGAAGGAGGAA -ACGGAAGTGACACAGAAGCAGGTA -ACGGAAGTGACACAGAAGGACTCT -ACGGAAGTGACACAGAAGAGTCCT -ACGGAAGTGACACAGAAGTAAGCC -ACGGAAGTGACACAGAAGATAGCC -ACGGAAGTGACACAGAAGTAACCG -ACGGAAGTGACACAGAAGATGCCA -ACGGAAGTGACACAACGTGGAAAC -ACGGAAGTGACACAACGTAACACC -ACGGAAGTGACACAACGTATCGAG -ACGGAAGTGACACAACGTCTCCTT -ACGGAAGTGACACAACGTCCTGTT -ACGGAAGTGACACAACGTCGGTTT -ACGGAAGTGACACAACGTGTGGTT -ACGGAAGTGACACAACGTGCCTTT -ACGGAAGTGACACAACGTGGTCTT -ACGGAAGTGACACAACGTACGCTT -ACGGAAGTGACACAACGTAGCGTT -ACGGAAGTGACACAACGTTTCGTC -ACGGAAGTGACACAACGTTCTCTC -ACGGAAGTGACACAACGTTGGATC -ACGGAAGTGACACAACGTCACTTC -ACGGAAGTGACACAACGTGTACTC -ACGGAAGTGACACAACGTGATGTC -ACGGAAGTGACACAACGTACAGTC -ACGGAAGTGACACAACGTTTGCTG -ACGGAAGTGACACAACGTTCCATG -ACGGAAGTGACACAACGTTGTGTG -ACGGAAGTGACACAACGTCTAGTG -ACGGAAGTGACACAACGTCATCTG -ACGGAAGTGACACAACGTGAGTTG -ACGGAAGTGACACAACGTAGACTG -ACGGAAGTGACACAACGTTCGGTA -ACGGAAGTGACACAACGTTGCCTA -ACGGAAGTGACACAACGTCCACTA -ACGGAAGTGACACAACGTGGAGTA -ACGGAAGTGACACAACGTTCGTCT -ACGGAAGTGACACAACGTTGCACT -ACGGAAGTGACACAACGTCTGACT -ACGGAAGTGACACAACGTCAACCT -ACGGAAGTGACACAACGTGCTACT -ACGGAAGTGACACAACGTGGATCT -ACGGAAGTGACACAACGTAAGGCT -ACGGAAGTGACACAACGTTCAACC -ACGGAAGTGACACAACGTTGTTCC -ACGGAAGTGACACAACGTATTCCC -ACGGAAGTGACACAACGTTTCTCG -ACGGAAGTGACACAACGTTAGACG -ACGGAAGTGACACAACGTGTAACG -ACGGAAGTGACACAACGTACTTCG -ACGGAAGTGACACAACGTTACGCA -ACGGAAGTGACACAACGTCTTGCA -ACGGAAGTGACACAACGTCGAACA -ACGGAAGTGACACAACGTCAGTCA -ACGGAAGTGACACAACGTGATCCA -ACGGAAGTGACACAACGTACGACA -ACGGAAGTGACACAACGTAGCTCA -ACGGAAGTGACACAACGTTCACGT -ACGGAAGTGACACAACGTCGTAGT -ACGGAAGTGACACAACGTGTCAGT -ACGGAAGTGACACAACGTGAAGGT -ACGGAAGTGACACAACGTAACCGT -ACGGAAGTGACACAACGTTTGTGC -ACGGAAGTGACACAACGTCTAAGC -ACGGAAGTGACACAACGTACTAGC -ACGGAAGTGACACAACGTAGATGC -ACGGAAGTGACACAACGTTGAAGG -ACGGAAGTGACACAACGTCAATGG -ACGGAAGTGACACAACGTATGAGG -ACGGAAGTGACACAACGTAATGGG -ACGGAAGTGACACAACGTTCCTGA -ACGGAAGTGACACAACGTTAGCGA -ACGGAAGTGACACAACGTCACAGA -ACGGAAGTGACACAACGTGCAAGA -ACGGAAGTGACACAACGTGGTTGA -ACGGAAGTGACACAACGTTCCGAT -ACGGAAGTGACACAACGTTGGCAT -ACGGAAGTGACACAACGTCGAGAT -ACGGAAGTGACACAACGTTACCAC -ACGGAAGTGACACAACGTCAGAAC -ACGGAAGTGACACAACGTGTCTAC -ACGGAAGTGACACAACGTACGTAC -ACGGAAGTGACACAACGTAGTGAC -ACGGAAGTGACACAACGTCTGTAG -ACGGAAGTGACACAACGTCCTAAG -ACGGAAGTGACACAACGTGTTCAG -ACGGAAGTGACACAACGTGCATAG -ACGGAAGTGACACAACGTGACAAG -ACGGAAGTGACACAACGTAAGCAG -ACGGAAGTGACACAACGTCGTCAA -ACGGAAGTGACACAACGTGCTGAA -ACGGAAGTGACACAACGTAGTACG -ACGGAAGTGACACAACGTATCCGA -ACGGAAGTGACACAACGTATGGGA -ACGGAAGTGACACAACGTGTGCAA -ACGGAAGTGACACAACGTGAGGAA -ACGGAAGTGACACAACGTCAGGTA -ACGGAAGTGACACAACGTGACTCT -ACGGAAGTGACACAACGTAGTCCT -ACGGAAGTGACACAACGTTAAGCC -ACGGAAGTGACACAACGTATAGCC -ACGGAAGTGACACAACGTTAACCG -ACGGAAGTGACACAACGTATGCCA -ACGGAAGTGACAGAAGCTGGAAAC -ACGGAAGTGACAGAAGCTAACACC -ACGGAAGTGACAGAAGCTATCGAG -ACGGAAGTGACAGAAGCTCTCCTT -ACGGAAGTGACAGAAGCTCCTGTT -ACGGAAGTGACAGAAGCTCGGTTT -ACGGAAGTGACAGAAGCTGTGGTT -ACGGAAGTGACAGAAGCTGCCTTT -ACGGAAGTGACAGAAGCTGGTCTT -ACGGAAGTGACAGAAGCTACGCTT -ACGGAAGTGACAGAAGCTAGCGTT -ACGGAAGTGACAGAAGCTTTCGTC -ACGGAAGTGACAGAAGCTTCTCTC -ACGGAAGTGACAGAAGCTTGGATC -ACGGAAGTGACAGAAGCTCACTTC -ACGGAAGTGACAGAAGCTGTACTC -ACGGAAGTGACAGAAGCTGATGTC -ACGGAAGTGACAGAAGCTACAGTC -ACGGAAGTGACAGAAGCTTTGCTG -ACGGAAGTGACAGAAGCTTCCATG -ACGGAAGTGACAGAAGCTTGTGTG -ACGGAAGTGACAGAAGCTCTAGTG -ACGGAAGTGACAGAAGCTCATCTG -ACGGAAGTGACAGAAGCTGAGTTG -ACGGAAGTGACAGAAGCTAGACTG -ACGGAAGTGACAGAAGCTTCGGTA -ACGGAAGTGACAGAAGCTTGCCTA -ACGGAAGTGACAGAAGCTCCACTA -ACGGAAGTGACAGAAGCTGGAGTA -ACGGAAGTGACAGAAGCTTCGTCT -ACGGAAGTGACAGAAGCTTGCACT -ACGGAAGTGACAGAAGCTCTGACT -ACGGAAGTGACAGAAGCTCAACCT -ACGGAAGTGACAGAAGCTGCTACT -ACGGAAGTGACAGAAGCTGGATCT -ACGGAAGTGACAGAAGCTAAGGCT -ACGGAAGTGACAGAAGCTTCAACC -ACGGAAGTGACAGAAGCTTGTTCC -ACGGAAGTGACAGAAGCTATTCCC -ACGGAAGTGACAGAAGCTTTCTCG -ACGGAAGTGACAGAAGCTTAGACG -ACGGAAGTGACAGAAGCTGTAACG -ACGGAAGTGACAGAAGCTACTTCG -ACGGAAGTGACAGAAGCTTACGCA -ACGGAAGTGACAGAAGCTCTTGCA -ACGGAAGTGACAGAAGCTCGAACA -ACGGAAGTGACAGAAGCTCAGTCA -ACGGAAGTGACAGAAGCTGATCCA -ACGGAAGTGACAGAAGCTACGACA -ACGGAAGTGACAGAAGCTAGCTCA -ACGGAAGTGACAGAAGCTTCACGT -ACGGAAGTGACAGAAGCTCGTAGT -ACGGAAGTGACAGAAGCTGTCAGT -ACGGAAGTGACAGAAGCTGAAGGT -ACGGAAGTGACAGAAGCTAACCGT -ACGGAAGTGACAGAAGCTTTGTGC -ACGGAAGTGACAGAAGCTCTAAGC -ACGGAAGTGACAGAAGCTACTAGC -ACGGAAGTGACAGAAGCTAGATGC -ACGGAAGTGACAGAAGCTTGAAGG -ACGGAAGTGACAGAAGCTCAATGG -ACGGAAGTGACAGAAGCTATGAGG -ACGGAAGTGACAGAAGCTAATGGG -ACGGAAGTGACAGAAGCTTCCTGA -ACGGAAGTGACAGAAGCTTAGCGA -ACGGAAGTGACAGAAGCTCACAGA -ACGGAAGTGACAGAAGCTGCAAGA -ACGGAAGTGACAGAAGCTGGTTGA -ACGGAAGTGACAGAAGCTTCCGAT -ACGGAAGTGACAGAAGCTTGGCAT -ACGGAAGTGACAGAAGCTCGAGAT -ACGGAAGTGACAGAAGCTTACCAC -ACGGAAGTGACAGAAGCTCAGAAC -ACGGAAGTGACAGAAGCTGTCTAC -ACGGAAGTGACAGAAGCTACGTAC -ACGGAAGTGACAGAAGCTAGTGAC -ACGGAAGTGACAGAAGCTCTGTAG -ACGGAAGTGACAGAAGCTCCTAAG -ACGGAAGTGACAGAAGCTGTTCAG -ACGGAAGTGACAGAAGCTGCATAG -ACGGAAGTGACAGAAGCTGACAAG -ACGGAAGTGACAGAAGCTAAGCAG -ACGGAAGTGACAGAAGCTCGTCAA -ACGGAAGTGACAGAAGCTGCTGAA -ACGGAAGTGACAGAAGCTAGTACG -ACGGAAGTGACAGAAGCTATCCGA -ACGGAAGTGACAGAAGCTATGGGA -ACGGAAGTGACAGAAGCTGTGCAA -ACGGAAGTGACAGAAGCTGAGGAA -ACGGAAGTGACAGAAGCTCAGGTA -ACGGAAGTGACAGAAGCTGACTCT -ACGGAAGTGACAGAAGCTAGTCCT -ACGGAAGTGACAGAAGCTTAAGCC -ACGGAAGTGACAGAAGCTATAGCC -ACGGAAGTGACAGAAGCTTAACCG -ACGGAAGTGACAGAAGCTATGCCA -ACGGAAGTGACAACGAGTGGAAAC -ACGGAAGTGACAACGAGTAACACC -ACGGAAGTGACAACGAGTATCGAG -ACGGAAGTGACAACGAGTCTCCTT -ACGGAAGTGACAACGAGTCCTGTT -ACGGAAGTGACAACGAGTCGGTTT -ACGGAAGTGACAACGAGTGTGGTT -ACGGAAGTGACAACGAGTGCCTTT -ACGGAAGTGACAACGAGTGGTCTT -ACGGAAGTGACAACGAGTACGCTT -ACGGAAGTGACAACGAGTAGCGTT -ACGGAAGTGACAACGAGTTTCGTC -ACGGAAGTGACAACGAGTTCTCTC -ACGGAAGTGACAACGAGTTGGATC -ACGGAAGTGACAACGAGTCACTTC -ACGGAAGTGACAACGAGTGTACTC -ACGGAAGTGACAACGAGTGATGTC -ACGGAAGTGACAACGAGTACAGTC -ACGGAAGTGACAACGAGTTTGCTG -ACGGAAGTGACAACGAGTTCCATG -ACGGAAGTGACAACGAGTTGTGTG -ACGGAAGTGACAACGAGTCTAGTG -ACGGAAGTGACAACGAGTCATCTG -ACGGAAGTGACAACGAGTGAGTTG -ACGGAAGTGACAACGAGTAGACTG -ACGGAAGTGACAACGAGTTCGGTA -ACGGAAGTGACAACGAGTTGCCTA -ACGGAAGTGACAACGAGTCCACTA -ACGGAAGTGACAACGAGTGGAGTA -ACGGAAGTGACAACGAGTTCGTCT -ACGGAAGTGACAACGAGTTGCACT -ACGGAAGTGACAACGAGTCTGACT -ACGGAAGTGACAACGAGTCAACCT -ACGGAAGTGACAACGAGTGCTACT -ACGGAAGTGACAACGAGTGGATCT -ACGGAAGTGACAACGAGTAAGGCT -ACGGAAGTGACAACGAGTTCAACC -ACGGAAGTGACAACGAGTTGTTCC -ACGGAAGTGACAACGAGTATTCCC -ACGGAAGTGACAACGAGTTTCTCG -ACGGAAGTGACAACGAGTTAGACG -ACGGAAGTGACAACGAGTGTAACG -ACGGAAGTGACAACGAGTACTTCG -ACGGAAGTGACAACGAGTTACGCA -ACGGAAGTGACAACGAGTCTTGCA -ACGGAAGTGACAACGAGTCGAACA -ACGGAAGTGACAACGAGTCAGTCA -ACGGAAGTGACAACGAGTGATCCA -ACGGAAGTGACAACGAGTACGACA -ACGGAAGTGACAACGAGTAGCTCA -ACGGAAGTGACAACGAGTTCACGT -ACGGAAGTGACAACGAGTCGTAGT -ACGGAAGTGACAACGAGTGTCAGT -ACGGAAGTGACAACGAGTGAAGGT -ACGGAAGTGACAACGAGTAACCGT -ACGGAAGTGACAACGAGTTTGTGC -ACGGAAGTGACAACGAGTCTAAGC -ACGGAAGTGACAACGAGTACTAGC -ACGGAAGTGACAACGAGTAGATGC -ACGGAAGTGACAACGAGTTGAAGG -ACGGAAGTGACAACGAGTCAATGG -ACGGAAGTGACAACGAGTATGAGG -ACGGAAGTGACAACGAGTAATGGG -ACGGAAGTGACAACGAGTTCCTGA -ACGGAAGTGACAACGAGTTAGCGA -ACGGAAGTGACAACGAGTCACAGA -ACGGAAGTGACAACGAGTGCAAGA -ACGGAAGTGACAACGAGTGGTTGA -ACGGAAGTGACAACGAGTTCCGAT -ACGGAAGTGACAACGAGTTGGCAT -ACGGAAGTGACAACGAGTCGAGAT -ACGGAAGTGACAACGAGTTACCAC -ACGGAAGTGACAACGAGTCAGAAC -ACGGAAGTGACAACGAGTGTCTAC -ACGGAAGTGACAACGAGTACGTAC -ACGGAAGTGACAACGAGTAGTGAC -ACGGAAGTGACAACGAGTCTGTAG -ACGGAAGTGACAACGAGTCCTAAG -ACGGAAGTGACAACGAGTGTTCAG -ACGGAAGTGACAACGAGTGCATAG -ACGGAAGTGACAACGAGTGACAAG -ACGGAAGTGACAACGAGTAAGCAG -ACGGAAGTGACAACGAGTCGTCAA -ACGGAAGTGACAACGAGTGCTGAA -ACGGAAGTGACAACGAGTAGTACG -ACGGAAGTGACAACGAGTATCCGA -ACGGAAGTGACAACGAGTATGGGA -ACGGAAGTGACAACGAGTGTGCAA -ACGGAAGTGACAACGAGTGAGGAA -ACGGAAGTGACAACGAGTCAGGTA -ACGGAAGTGACAACGAGTGACTCT -ACGGAAGTGACAACGAGTAGTCCT -ACGGAAGTGACAACGAGTTAAGCC -ACGGAAGTGACAACGAGTATAGCC -ACGGAAGTGACAACGAGTTAACCG -ACGGAAGTGACAACGAGTATGCCA -ACGGAAGTGACACGAATCGGAAAC -ACGGAAGTGACACGAATCAACACC -ACGGAAGTGACACGAATCATCGAG -ACGGAAGTGACACGAATCCTCCTT -ACGGAAGTGACACGAATCCCTGTT -ACGGAAGTGACACGAATCCGGTTT -ACGGAAGTGACACGAATCGTGGTT -ACGGAAGTGACACGAATCGCCTTT -ACGGAAGTGACACGAATCGGTCTT -ACGGAAGTGACACGAATCACGCTT -ACGGAAGTGACACGAATCAGCGTT -ACGGAAGTGACACGAATCTTCGTC -ACGGAAGTGACACGAATCTCTCTC -ACGGAAGTGACACGAATCTGGATC -ACGGAAGTGACACGAATCCACTTC -ACGGAAGTGACACGAATCGTACTC -ACGGAAGTGACACGAATCGATGTC -ACGGAAGTGACACGAATCACAGTC -ACGGAAGTGACACGAATCTTGCTG -ACGGAAGTGACACGAATCTCCATG -ACGGAAGTGACACGAATCTGTGTG -ACGGAAGTGACACGAATCCTAGTG -ACGGAAGTGACACGAATCCATCTG -ACGGAAGTGACACGAATCGAGTTG -ACGGAAGTGACACGAATCAGACTG -ACGGAAGTGACACGAATCTCGGTA -ACGGAAGTGACACGAATCTGCCTA -ACGGAAGTGACACGAATCCCACTA -ACGGAAGTGACACGAATCGGAGTA -ACGGAAGTGACACGAATCTCGTCT -ACGGAAGTGACACGAATCTGCACT -ACGGAAGTGACACGAATCCTGACT -ACGGAAGTGACACGAATCCAACCT -ACGGAAGTGACACGAATCGCTACT -ACGGAAGTGACACGAATCGGATCT -ACGGAAGTGACACGAATCAAGGCT -ACGGAAGTGACACGAATCTCAACC -ACGGAAGTGACACGAATCTGTTCC -ACGGAAGTGACACGAATCATTCCC -ACGGAAGTGACACGAATCTTCTCG -ACGGAAGTGACACGAATCTAGACG -ACGGAAGTGACACGAATCGTAACG -ACGGAAGTGACACGAATCACTTCG -ACGGAAGTGACACGAATCTACGCA -ACGGAAGTGACACGAATCCTTGCA -ACGGAAGTGACACGAATCCGAACA -ACGGAAGTGACACGAATCCAGTCA -ACGGAAGTGACACGAATCGATCCA -ACGGAAGTGACACGAATCACGACA -ACGGAAGTGACACGAATCAGCTCA -ACGGAAGTGACACGAATCTCACGT -ACGGAAGTGACACGAATCCGTAGT -ACGGAAGTGACACGAATCGTCAGT -ACGGAAGTGACACGAATCGAAGGT -ACGGAAGTGACACGAATCAACCGT -ACGGAAGTGACACGAATCTTGTGC -ACGGAAGTGACACGAATCCTAAGC -ACGGAAGTGACACGAATCACTAGC -ACGGAAGTGACACGAATCAGATGC -ACGGAAGTGACACGAATCTGAAGG -ACGGAAGTGACACGAATCCAATGG -ACGGAAGTGACACGAATCATGAGG -ACGGAAGTGACACGAATCAATGGG -ACGGAAGTGACACGAATCTCCTGA -ACGGAAGTGACACGAATCTAGCGA -ACGGAAGTGACACGAATCCACAGA -ACGGAAGTGACACGAATCGCAAGA -ACGGAAGTGACACGAATCGGTTGA -ACGGAAGTGACACGAATCTCCGAT -ACGGAAGTGACACGAATCTGGCAT -ACGGAAGTGACACGAATCCGAGAT -ACGGAAGTGACACGAATCTACCAC -ACGGAAGTGACACGAATCCAGAAC -ACGGAAGTGACACGAATCGTCTAC -ACGGAAGTGACACGAATCACGTAC -ACGGAAGTGACACGAATCAGTGAC -ACGGAAGTGACACGAATCCTGTAG -ACGGAAGTGACACGAATCCCTAAG -ACGGAAGTGACACGAATCGTTCAG -ACGGAAGTGACACGAATCGCATAG -ACGGAAGTGACACGAATCGACAAG -ACGGAAGTGACACGAATCAAGCAG -ACGGAAGTGACACGAATCCGTCAA -ACGGAAGTGACACGAATCGCTGAA -ACGGAAGTGACACGAATCAGTACG -ACGGAAGTGACACGAATCATCCGA -ACGGAAGTGACACGAATCATGGGA -ACGGAAGTGACACGAATCGTGCAA -ACGGAAGTGACACGAATCGAGGAA -ACGGAAGTGACACGAATCCAGGTA -ACGGAAGTGACACGAATCGACTCT -ACGGAAGTGACACGAATCAGTCCT -ACGGAAGTGACACGAATCTAAGCC -ACGGAAGTGACACGAATCATAGCC -ACGGAAGTGACACGAATCTAACCG -ACGGAAGTGACACGAATCATGCCA -ACGGAAGTGACAGGAATGGGAAAC -ACGGAAGTGACAGGAATGAACACC -ACGGAAGTGACAGGAATGATCGAG -ACGGAAGTGACAGGAATGCTCCTT -ACGGAAGTGACAGGAATGCCTGTT -ACGGAAGTGACAGGAATGCGGTTT -ACGGAAGTGACAGGAATGGTGGTT -ACGGAAGTGACAGGAATGGCCTTT -ACGGAAGTGACAGGAATGGGTCTT -ACGGAAGTGACAGGAATGACGCTT -ACGGAAGTGACAGGAATGAGCGTT -ACGGAAGTGACAGGAATGTTCGTC -ACGGAAGTGACAGGAATGTCTCTC -ACGGAAGTGACAGGAATGTGGATC -ACGGAAGTGACAGGAATGCACTTC -ACGGAAGTGACAGGAATGGTACTC -ACGGAAGTGACAGGAATGGATGTC -ACGGAAGTGACAGGAATGACAGTC -ACGGAAGTGACAGGAATGTTGCTG -ACGGAAGTGACAGGAATGTCCATG -ACGGAAGTGACAGGAATGTGTGTG -ACGGAAGTGACAGGAATGCTAGTG -ACGGAAGTGACAGGAATGCATCTG -ACGGAAGTGACAGGAATGGAGTTG -ACGGAAGTGACAGGAATGAGACTG -ACGGAAGTGACAGGAATGTCGGTA -ACGGAAGTGACAGGAATGTGCCTA -ACGGAAGTGACAGGAATGCCACTA -ACGGAAGTGACAGGAATGGGAGTA -ACGGAAGTGACAGGAATGTCGTCT -ACGGAAGTGACAGGAATGTGCACT -ACGGAAGTGACAGGAATGCTGACT -ACGGAAGTGACAGGAATGCAACCT -ACGGAAGTGACAGGAATGGCTACT -ACGGAAGTGACAGGAATGGGATCT -ACGGAAGTGACAGGAATGAAGGCT -ACGGAAGTGACAGGAATGTCAACC -ACGGAAGTGACAGGAATGTGTTCC -ACGGAAGTGACAGGAATGATTCCC -ACGGAAGTGACAGGAATGTTCTCG -ACGGAAGTGACAGGAATGTAGACG -ACGGAAGTGACAGGAATGGTAACG -ACGGAAGTGACAGGAATGACTTCG -ACGGAAGTGACAGGAATGTACGCA -ACGGAAGTGACAGGAATGCTTGCA -ACGGAAGTGACAGGAATGCGAACA -ACGGAAGTGACAGGAATGCAGTCA -ACGGAAGTGACAGGAATGGATCCA -ACGGAAGTGACAGGAATGACGACA -ACGGAAGTGACAGGAATGAGCTCA -ACGGAAGTGACAGGAATGTCACGT -ACGGAAGTGACAGGAATGCGTAGT -ACGGAAGTGACAGGAATGGTCAGT -ACGGAAGTGACAGGAATGGAAGGT -ACGGAAGTGACAGGAATGAACCGT -ACGGAAGTGACAGGAATGTTGTGC -ACGGAAGTGACAGGAATGCTAAGC -ACGGAAGTGACAGGAATGACTAGC -ACGGAAGTGACAGGAATGAGATGC -ACGGAAGTGACAGGAATGTGAAGG -ACGGAAGTGACAGGAATGCAATGG -ACGGAAGTGACAGGAATGATGAGG -ACGGAAGTGACAGGAATGAATGGG -ACGGAAGTGACAGGAATGTCCTGA -ACGGAAGTGACAGGAATGTAGCGA -ACGGAAGTGACAGGAATGCACAGA -ACGGAAGTGACAGGAATGGCAAGA -ACGGAAGTGACAGGAATGGGTTGA -ACGGAAGTGACAGGAATGTCCGAT -ACGGAAGTGACAGGAATGTGGCAT -ACGGAAGTGACAGGAATGCGAGAT -ACGGAAGTGACAGGAATGTACCAC -ACGGAAGTGACAGGAATGCAGAAC -ACGGAAGTGACAGGAATGGTCTAC -ACGGAAGTGACAGGAATGACGTAC -ACGGAAGTGACAGGAATGAGTGAC -ACGGAAGTGACAGGAATGCTGTAG -ACGGAAGTGACAGGAATGCCTAAG -ACGGAAGTGACAGGAATGGTTCAG -ACGGAAGTGACAGGAATGGCATAG -ACGGAAGTGACAGGAATGGACAAG -ACGGAAGTGACAGGAATGAAGCAG -ACGGAAGTGACAGGAATGCGTCAA -ACGGAAGTGACAGGAATGGCTGAA -ACGGAAGTGACAGGAATGAGTACG -ACGGAAGTGACAGGAATGATCCGA -ACGGAAGTGACAGGAATGATGGGA -ACGGAAGTGACAGGAATGGTGCAA -ACGGAAGTGACAGGAATGGAGGAA -ACGGAAGTGACAGGAATGCAGGTA -ACGGAAGTGACAGGAATGGACTCT -ACGGAAGTGACAGGAATGAGTCCT -ACGGAAGTGACAGGAATGTAAGCC -ACGGAAGTGACAGGAATGATAGCC -ACGGAAGTGACAGGAATGTAACCG -ACGGAAGTGACAGGAATGATGCCA -ACGGAAGTGACACAAGTGGGAAAC -ACGGAAGTGACACAAGTGAACACC -ACGGAAGTGACACAAGTGATCGAG -ACGGAAGTGACACAAGTGCTCCTT -ACGGAAGTGACACAAGTGCCTGTT -ACGGAAGTGACACAAGTGCGGTTT -ACGGAAGTGACACAAGTGGTGGTT -ACGGAAGTGACACAAGTGGCCTTT -ACGGAAGTGACACAAGTGGGTCTT -ACGGAAGTGACACAAGTGACGCTT -ACGGAAGTGACACAAGTGAGCGTT -ACGGAAGTGACACAAGTGTTCGTC -ACGGAAGTGACACAAGTGTCTCTC -ACGGAAGTGACACAAGTGTGGATC -ACGGAAGTGACACAAGTGCACTTC -ACGGAAGTGACACAAGTGGTACTC -ACGGAAGTGACACAAGTGGATGTC -ACGGAAGTGACACAAGTGACAGTC -ACGGAAGTGACACAAGTGTTGCTG -ACGGAAGTGACACAAGTGTCCATG -ACGGAAGTGACACAAGTGTGTGTG -ACGGAAGTGACACAAGTGCTAGTG -ACGGAAGTGACACAAGTGCATCTG -ACGGAAGTGACACAAGTGGAGTTG -ACGGAAGTGACACAAGTGAGACTG -ACGGAAGTGACACAAGTGTCGGTA -ACGGAAGTGACACAAGTGTGCCTA -ACGGAAGTGACACAAGTGCCACTA -ACGGAAGTGACACAAGTGGGAGTA -ACGGAAGTGACACAAGTGTCGTCT -ACGGAAGTGACACAAGTGTGCACT -ACGGAAGTGACACAAGTGCTGACT -ACGGAAGTGACACAAGTGCAACCT -ACGGAAGTGACACAAGTGGCTACT -ACGGAAGTGACACAAGTGGGATCT -ACGGAAGTGACACAAGTGAAGGCT -ACGGAAGTGACACAAGTGTCAACC -ACGGAAGTGACACAAGTGTGTTCC -ACGGAAGTGACACAAGTGATTCCC -ACGGAAGTGACACAAGTGTTCTCG -ACGGAAGTGACACAAGTGTAGACG -ACGGAAGTGACACAAGTGGTAACG -ACGGAAGTGACACAAGTGACTTCG -ACGGAAGTGACACAAGTGTACGCA -ACGGAAGTGACACAAGTGCTTGCA -ACGGAAGTGACACAAGTGCGAACA -ACGGAAGTGACACAAGTGCAGTCA -ACGGAAGTGACACAAGTGGATCCA -ACGGAAGTGACACAAGTGACGACA -ACGGAAGTGACACAAGTGAGCTCA -ACGGAAGTGACACAAGTGTCACGT -ACGGAAGTGACACAAGTGCGTAGT -ACGGAAGTGACACAAGTGGTCAGT -ACGGAAGTGACACAAGTGGAAGGT -ACGGAAGTGACACAAGTGAACCGT -ACGGAAGTGACACAAGTGTTGTGC -ACGGAAGTGACACAAGTGCTAAGC -ACGGAAGTGACACAAGTGACTAGC -ACGGAAGTGACACAAGTGAGATGC -ACGGAAGTGACACAAGTGTGAAGG -ACGGAAGTGACACAAGTGCAATGG -ACGGAAGTGACACAAGTGATGAGG -ACGGAAGTGACACAAGTGAATGGG -ACGGAAGTGACACAAGTGTCCTGA -ACGGAAGTGACACAAGTGTAGCGA -ACGGAAGTGACACAAGTGCACAGA -ACGGAAGTGACACAAGTGGCAAGA -ACGGAAGTGACACAAGTGGGTTGA -ACGGAAGTGACACAAGTGTCCGAT -ACGGAAGTGACACAAGTGTGGCAT -ACGGAAGTGACACAAGTGCGAGAT -ACGGAAGTGACACAAGTGTACCAC -ACGGAAGTGACACAAGTGCAGAAC -ACGGAAGTGACACAAGTGGTCTAC -ACGGAAGTGACACAAGTGACGTAC -ACGGAAGTGACACAAGTGAGTGAC -ACGGAAGTGACACAAGTGCTGTAG -ACGGAAGTGACACAAGTGCCTAAG -ACGGAAGTGACACAAGTGGTTCAG -ACGGAAGTGACACAAGTGGCATAG -ACGGAAGTGACACAAGTGGACAAG -ACGGAAGTGACACAAGTGAAGCAG -ACGGAAGTGACACAAGTGCGTCAA -ACGGAAGTGACACAAGTGGCTGAA -ACGGAAGTGACACAAGTGAGTACG -ACGGAAGTGACACAAGTGATCCGA -ACGGAAGTGACACAAGTGATGGGA -ACGGAAGTGACACAAGTGGTGCAA -ACGGAAGTGACACAAGTGGAGGAA -ACGGAAGTGACACAAGTGCAGGTA -ACGGAAGTGACACAAGTGGACTCT -ACGGAAGTGACACAAGTGAGTCCT -ACGGAAGTGACACAAGTGTAAGCC -ACGGAAGTGACACAAGTGATAGCC -ACGGAAGTGACACAAGTGTAACCG -ACGGAAGTGACACAAGTGATGCCA -ACGGAAGTGACAGAAGAGGGAAAC -ACGGAAGTGACAGAAGAGAACACC -ACGGAAGTGACAGAAGAGATCGAG -ACGGAAGTGACAGAAGAGCTCCTT -ACGGAAGTGACAGAAGAGCCTGTT -ACGGAAGTGACAGAAGAGCGGTTT -ACGGAAGTGACAGAAGAGGTGGTT -ACGGAAGTGACAGAAGAGGCCTTT -ACGGAAGTGACAGAAGAGGGTCTT -ACGGAAGTGACAGAAGAGACGCTT -ACGGAAGTGACAGAAGAGAGCGTT -ACGGAAGTGACAGAAGAGTTCGTC -ACGGAAGTGACAGAAGAGTCTCTC -ACGGAAGTGACAGAAGAGTGGATC -ACGGAAGTGACAGAAGAGCACTTC -ACGGAAGTGACAGAAGAGGTACTC -ACGGAAGTGACAGAAGAGGATGTC -ACGGAAGTGACAGAAGAGACAGTC -ACGGAAGTGACAGAAGAGTTGCTG -ACGGAAGTGACAGAAGAGTCCATG -ACGGAAGTGACAGAAGAGTGTGTG -ACGGAAGTGACAGAAGAGCTAGTG -ACGGAAGTGACAGAAGAGCATCTG -ACGGAAGTGACAGAAGAGGAGTTG -ACGGAAGTGACAGAAGAGAGACTG -ACGGAAGTGACAGAAGAGTCGGTA -ACGGAAGTGACAGAAGAGTGCCTA -ACGGAAGTGACAGAAGAGCCACTA -ACGGAAGTGACAGAAGAGGGAGTA -ACGGAAGTGACAGAAGAGTCGTCT -ACGGAAGTGACAGAAGAGTGCACT -ACGGAAGTGACAGAAGAGCTGACT -ACGGAAGTGACAGAAGAGCAACCT -ACGGAAGTGACAGAAGAGGCTACT -ACGGAAGTGACAGAAGAGGGATCT -ACGGAAGTGACAGAAGAGAAGGCT -ACGGAAGTGACAGAAGAGTCAACC -ACGGAAGTGACAGAAGAGTGTTCC -ACGGAAGTGACAGAAGAGATTCCC -ACGGAAGTGACAGAAGAGTTCTCG -ACGGAAGTGACAGAAGAGTAGACG -ACGGAAGTGACAGAAGAGGTAACG -ACGGAAGTGACAGAAGAGACTTCG -ACGGAAGTGACAGAAGAGTACGCA -ACGGAAGTGACAGAAGAGCTTGCA -ACGGAAGTGACAGAAGAGCGAACA -ACGGAAGTGACAGAAGAGCAGTCA -ACGGAAGTGACAGAAGAGGATCCA -ACGGAAGTGACAGAAGAGACGACA -ACGGAAGTGACAGAAGAGAGCTCA -ACGGAAGTGACAGAAGAGTCACGT -ACGGAAGTGACAGAAGAGCGTAGT -ACGGAAGTGACAGAAGAGGTCAGT -ACGGAAGTGACAGAAGAGGAAGGT -ACGGAAGTGACAGAAGAGAACCGT -ACGGAAGTGACAGAAGAGTTGTGC -ACGGAAGTGACAGAAGAGCTAAGC -ACGGAAGTGACAGAAGAGACTAGC -ACGGAAGTGACAGAAGAGAGATGC -ACGGAAGTGACAGAAGAGTGAAGG -ACGGAAGTGACAGAAGAGCAATGG -ACGGAAGTGACAGAAGAGATGAGG -ACGGAAGTGACAGAAGAGAATGGG -ACGGAAGTGACAGAAGAGTCCTGA -ACGGAAGTGACAGAAGAGTAGCGA -ACGGAAGTGACAGAAGAGCACAGA -ACGGAAGTGACAGAAGAGGCAAGA -ACGGAAGTGACAGAAGAGGGTTGA -ACGGAAGTGACAGAAGAGTCCGAT -ACGGAAGTGACAGAAGAGTGGCAT -ACGGAAGTGACAGAAGAGCGAGAT -ACGGAAGTGACAGAAGAGTACCAC -ACGGAAGTGACAGAAGAGCAGAAC -ACGGAAGTGACAGAAGAGGTCTAC -ACGGAAGTGACAGAAGAGACGTAC -ACGGAAGTGACAGAAGAGAGTGAC -ACGGAAGTGACAGAAGAGCTGTAG -ACGGAAGTGACAGAAGAGCCTAAG -ACGGAAGTGACAGAAGAGGTTCAG -ACGGAAGTGACAGAAGAGGCATAG -ACGGAAGTGACAGAAGAGGACAAG -ACGGAAGTGACAGAAGAGAAGCAG -ACGGAAGTGACAGAAGAGCGTCAA -ACGGAAGTGACAGAAGAGGCTGAA -ACGGAAGTGACAGAAGAGAGTACG -ACGGAAGTGACAGAAGAGATCCGA -ACGGAAGTGACAGAAGAGATGGGA -ACGGAAGTGACAGAAGAGGTGCAA -ACGGAAGTGACAGAAGAGGAGGAA -ACGGAAGTGACAGAAGAGCAGGTA -ACGGAAGTGACAGAAGAGGACTCT -ACGGAAGTGACAGAAGAGAGTCCT -ACGGAAGTGACAGAAGAGTAAGCC -ACGGAAGTGACAGAAGAGATAGCC -ACGGAAGTGACAGAAGAGTAACCG -ACGGAAGTGACAGAAGAGATGCCA -ACGGAAGTGACAGTACAGGGAAAC -ACGGAAGTGACAGTACAGAACACC -ACGGAAGTGACAGTACAGATCGAG -ACGGAAGTGACAGTACAGCTCCTT -ACGGAAGTGACAGTACAGCCTGTT -ACGGAAGTGACAGTACAGCGGTTT -ACGGAAGTGACAGTACAGGTGGTT -ACGGAAGTGACAGTACAGGCCTTT -ACGGAAGTGACAGTACAGGGTCTT -ACGGAAGTGACAGTACAGACGCTT -ACGGAAGTGACAGTACAGAGCGTT -ACGGAAGTGACAGTACAGTTCGTC -ACGGAAGTGACAGTACAGTCTCTC -ACGGAAGTGACAGTACAGTGGATC -ACGGAAGTGACAGTACAGCACTTC -ACGGAAGTGACAGTACAGGTACTC -ACGGAAGTGACAGTACAGGATGTC -ACGGAAGTGACAGTACAGACAGTC -ACGGAAGTGACAGTACAGTTGCTG -ACGGAAGTGACAGTACAGTCCATG -ACGGAAGTGACAGTACAGTGTGTG -ACGGAAGTGACAGTACAGCTAGTG -ACGGAAGTGACAGTACAGCATCTG -ACGGAAGTGACAGTACAGGAGTTG -ACGGAAGTGACAGTACAGAGACTG -ACGGAAGTGACAGTACAGTCGGTA -ACGGAAGTGACAGTACAGTGCCTA -ACGGAAGTGACAGTACAGCCACTA -ACGGAAGTGACAGTACAGGGAGTA -ACGGAAGTGACAGTACAGTCGTCT -ACGGAAGTGACAGTACAGTGCACT -ACGGAAGTGACAGTACAGCTGACT -ACGGAAGTGACAGTACAGCAACCT -ACGGAAGTGACAGTACAGGCTACT -ACGGAAGTGACAGTACAGGGATCT -ACGGAAGTGACAGTACAGAAGGCT -ACGGAAGTGACAGTACAGTCAACC -ACGGAAGTGACAGTACAGTGTTCC -ACGGAAGTGACAGTACAGATTCCC -ACGGAAGTGACAGTACAGTTCTCG -ACGGAAGTGACAGTACAGTAGACG -ACGGAAGTGACAGTACAGGTAACG -ACGGAAGTGACAGTACAGACTTCG -ACGGAAGTGACAGTACAGTACGCA -ACGGAAGTGACAGTACAGCTTGCA -ACGGAAGTGACAGTACAGCGAACA -ACGGAAGTGACAGTACAGCAGTCA -ACGGAAGTGACAGTACAGGATCCA -ACGGAAGTGACAGTACAGACGACA -ACGGAAGTGACAGTACAGAGCTCA -ACGGAAGTGACAGTACAGTCACGT -ACGGAAGTGACAGTACAGCGTAGT -ACGGAAGTGACAGTACAGGTCAGT -ACGGAAGTGACAGTACAGGAAGGT -ACGGAAGTGACAGTACAGAACCGT -ACGGAAGTGACAGTACAGTTGTGC -ACGGAAGTGACAGTACAGCTAAGC -ACGGAAGTGACAGTACAGACTAGC -ACGGAAGTGACAGTACAGAGATGC -ACGGAAGTGACAGTACAGTGAAGG -ACGGAAGTGACAGTACAGCAATGG -ACGGAAGTGACAGTACAGATGAGG -ACGGAAGTGACAGTACAGAATGGG -ACGGAAGTGACAGTACAGTCCTGA -ACGGAAGTGACAGTACAGTAGCGA -ACGGAAGTGACAGTACAGCACAGA -ACGGAAGTGACAGTACAGGCAAGA -ACGGAAGTGACAGTACAGGGTTGA -ACGGAAGTGACAGTACAGTCCGAT -ACGGAAGTGACAGTACAGTGGCAT -ACGGAAGTGACAGTACAGCGAGAT -ACGGAAGTGACAGTACAGTACCAC -ACGGAAGTGACAGTACAGCAGAAC -ACGGAAGTGACAGTACAGGTCTAC -ACGGAAGTGACAGTACAGACGTAC -ACGGAAGTGACAGTACAGAGTGAC -ACGGAAGTGACAGTACAGCTGTAG -ACGGAAGTGACAGTACAGCCTAAG -ACGGAAGTGACAGTACAGGTTCAG -ACGGAAGTGACAGTACAGGCATAG -ACGGAAGTGACAGTACAGGACAAG -ACGGAAGTGACAGTACAGAAGCAG -ACGGAAGTGACAGTACAGCGTCAA -ACGGAAGTGACAGTACAGGCTGAA -ACGGAAGTGACAGTACAGAGTACG -ACGGAAGTGACAGTACAGATCCGA -ACGGAAGTGACAGTACAGATGGGA -ACGGAAGTGACAGTACAGGTGCAA -ACGGAAGTGACAGTACAGGAGGAA -ACGGAAGTGACAGTACAGCAGGTA -ACGGAAGTGACAGTACAGGACTCT -ACGGAAGTGACAGTACAGAGTCCT -ACGGAAGTGACAGTACAGTAAGCC -ACGGAAGTGACAGTACAGATAGCC -ACGGAAGTGACAGTACAGTAACCG -ACGGAAGTGACAGTACAGATGCCA -ACGGAAGTGACATCTGACGGAAAC -ACGGAAGTGACATCTGACAACACC -ACGGAAGTGACATCTGACATCGAG -ACGGAAGTGACATCTGACCTCCTT -ACGGAAGTGACATCTGACCCTGTT -ACGGAAGTGACATCTGACCGGTTT -ACGGAAGTGACATCTGACGTGGTT -ACGGAAGTGACATCTGACGCCTTT -ACGGAAGTGACATCTGACGGTCTT -ACGGAAGTGACATCTGACACGCTT -ACGGAAGTGACATCTGACAGCGTT -ACGGAAGTGACATCTGACTTCGTC -ACGGAAGTGACATCTGACTCTCTC -ACGGAAGTGACATCTGACTGGATC -ACGGAAGTGACATCTGACCACTTC -ACGGAAGTGACATCTGACGTACTC -ACGGAAGTGACATCTGACGATGTC -ACGGAAGTGACATCTGACACAGTC -ACGGAAGTGACATCTGACTTGCTG -ACGGAAGTGACATCTGACTCCATG -ACGGAAGTGACATCTGACTGTGTG -ACGGAAGTGACATCTGACCTAGTG -ACGGAAGTGACATCTGACCATCTG -ACGGAAGTGACATCTGACGAGTTG -ACGGAAGTGACATCTGACAGACTG -ACGGAAGTGACATCTGACTCGGTA -ACGGAAGTGACATCTGACTGCCTA -ACGGAAGTGACATCTGACCCACTA -ACGGAAGTGACATCTGACGGAGTA -ACGGAAGTGACATCTGACTCGTCT -ACGGAAGTGACATCTGACTGCACT -ACGGAAGTGACATCTGACCTGACT -ACGGAAGTGACATCTGACCAACCT -ACGGAAGTGACATCTGACGCTACT -ACGGAAGTGACATCTGACGGATCT -ACGGAAGTGACATCTGACAAGGCT -ACGGAAGTGACATCTGACTCAACC -ACGGAAGTGACATCTGACTGTTCC -ACGGAAGTGACATCTGACATTCCC -ACGGAAGTGACATCTGACTTCTCG -ACGGAAGTGACATCTGACTAGACG -ACGGAAGTGACATCTGACGTAACG -ACGGAAGTGACATCTGACACTTCG -ACGGAAGTGACATCTGACTACGCA -ACGGAAGTGACATCTGACCTTGCA -ACGGAAGTGACATCTGACCGAACA -ACGGAAGTGACATCTGACCAGTCA -ACGGAAGTGACATCTGACGATCCA -ACGGAAGTGACATCTGACACGACA -ACGGAAGTGACATCTGACAGCTCA -ACGGAAGTGACATCTGACTCACGT -ACGGAAGTGACATCTGACCGTAGT -ACGGAAGTGACATCTGACGTCAGT -ACGGAAGTGACATCTGACGAAGGT -ACGGAAGTGACATCTGACAACCGT -ACGGAAGTGACATCTGACTTGTGC -ACGGAAGTGACATCTGACCTAAGC -ACGGAAGTGACATCTGACACTAGC -ACGGAAGTGACATCTGACAGATGC -ACGGAAGTGACATCTGACTGAAGG -ACGGAAGTGACATCTGACCAATGG -ACGGAAGTGACATCTGACATGAGG -ACGGAAGTGACATCTGACAATGGG -ACGGAAGTGACATCTGACTCCTGA -ACGGAAGTGACATCTGACTAGCGA -ACGGAAGTGACATCTGACCACAGA -ACGGAAGTGACATCTGACGCAAGA -ACGGAAGTGACATCTGACGGTTGA -ACGGAAGTGACATCTGACTCCGAT -ACGGAAGTGACATCTGACTGGCAT -ACGGAAGTGACATCTGACCGAGAT -ACGGAAGTGACATCTGACTACCAC -ACGGAAGTGACATCTGACCAGAAC -ACGGAAGTGACATCTGACGTCTAC -ACGGAAGTGACATCTGACACGTAC -ACGGAAGTGACATCTGACAGTGAC -ACGGAAGTGACATCTGACCTGTAG -ACGGAAGTGACATCTGACCCTAAG -ACGGAAGTGACATCTGACGTTCAG -ACGGAAGTGACATCTGACGCATAG -ACGGAAGTGACATCTGACGACAAG -ACGGAAGTGACATCTGACAAGCAG -ACGGAAGTGACATCTGACCGTCAA -ACGGAAGTGACATCTGACGCTGAA -ACGGAAGTGACATCTGACAGTACG -ACGGAAGTGACATCTGACATCCGA -ACGGAAGTGACATCTGACATGGGA -ACGGAAGTGACATCTGACGTGCAA -ACGGAAGTGACATCTGACGAGGAA -ACGGAAGTGACATCTGACCAGGTA -ACGGAAGTGACATCTGACGACTCT -ACGGAAGTGACATCTGACAGTCCT -ACGGAAGTGACATCTGACTAAGCC -ACGGAAGTGACATCTGACATAGCC -ACGGAAGTGACATCTGACTAACCG -ACGGAAGTGACATCTGACATGCCA -ACGGAAGTGACACCTAGTGGAAAC -ACGGAAGTGACACCTAGTAACACC -ACGGAAGTGACACCTAGTATCGAG -ACGGAAGTGACACCTAGTCTCCTT -ACGGAAGTGACACCTAGTCCTGTT -ACGGAAGTGACACCTAGTCGGTTT -ACGGAAGTGACACCTAGTGTGGTT -ACGGAAGTGACACCTAGTGCCTTT -ACGGAAGTGACACCTAGTGGTCTT -ACGGAAGTGACACCTAGTACGCTT -ACGGAAGTGACACCTAGTAGCGTT -ACGGAAGTGACACCTAGTTTCGTC -ACGGAAGTGACACCTAGTTCTCTC -ACGGAAGTGACACCTAGTTGGATC -ACGGAAGTGACACCTAGTCACTTC -ACGGAAGTGACACCTAGTGTACTC -ACGGAAGTGACACCTAGTGATGTC -ACGGAAGTGACACCTAGTACAGTC -ACGGAAGTGACACCTAGTTTGCTG -ACGGAAGTGACACCTAGTTCCATG -ACGGAAGTGACACCTAGTTGTGTG -ACGGAAGTGACACCTAGTCTAGTG -ACGGAAGTGACACCTAGTCATCTG -ACGGAAGTGACACCTAGTGAGTTG -ACGGAAGTGACACCTAGTAGACTG -ACGGAAGTGACACCTAGTTCGGTA -ACGGAAGTGACACCTAGTTGCCTA -ACGGAAGTGACACCTAGTCCACTA -ACGGAAGTGACACCTAGTGGAGTA -ACGGAAGTGACACCTAGTTCGTCT -ACGGAAGTGACACCTAGTTGCACT -ACGGAAGTGACACCTAGTCTGACT -ACGGAAGTGACACCTAGTCAACCT -ACGGAAGTGACACCTAGTGCTACT -ACGGAAGTGACACCTAGTGGATCT -ACGGAAGTGACACCTAGTAAGGCT -ACGGAAGTGACACCTAGTTCAACC -ACGGAAGTGACACCTAGTTGTTCC -ACGGAAGTGACACCTAGTATTCCC -ACGGAAGTGACACCTAGTTTCTCG -ACGGAAGTGACACCTAGTTAGACG -ACGGAAGTGACACCTAGTGTAACG -ACGGAAGTGACACCTAGTACTTCG -ACGGAAGTGACACCTAGTTACGCA -ACGGAAGTGACACCTAGTCTTGCA -ACGGAAGTGACACCTAGTCGAACA -ACGGAAGTGACACCTAGTCAGTCA -ACGGAAGTGACACCTAGTGATCCA -ACGGAAGTGACACCTAGTACGACA -ACGGAAGTGACACCTAGTAGCTCA -ACGGAAGTGACACCTAGTTCACGT -ACGGAAGTGACACCTAGTCGTAGT -ACGGAAGTGACACCTAGTGTCAGT -ACGGAAGTGACACCTAGTGAAGGT -ACGGAAGTGACACCTAGTAACCGT -ACGGAAGTGACACCTAGTTTGTGC -ACGGAAGTGACACCTAGTCTAAGC -ACGGAAGTGACACCTAGTACTAGC -ACGGAAGTGACACCTAGTAGATGC -ACGGAAGTGACACCTAGTTGAAGG -ACGGAAGTGACACCTAGTCAATGG -ACGGAAGTGACACCTAGTATGAGG -ACGGAAGTGACACCTAGTAATGGG -ACGGAAGTGACACCTAGTTCCTGA -ACGGAAGTGACACCTAGTTAGCGA -ACGGAAGTGACACCTAGTCACAGA -ACGGAAGTGACACCTAGTGCAAGA -ACGGAAGTGACACCTAGTGGTTGA -ACGGAAGTGACACCTAGTTCCGAT -ACGGAAGTGACACCTAGTTGGCAT -ACGGAAGTGACACCTAGTCGAGAT -ACGGAAGTGACACCTAGTTACCAC -ACGGAAGTGACACCTAGTCAGAAC -ACGGAAGTGACACCTAGTGTCTAC -ACGGAAGTGACACCTAGTACGTAC -ACGGAAGTGACACCTAGTAGTGAC -ACGGAAGTGACACCTAGTCTGTAG -ACGGAAGTGACACCTAGTCCTAAG -ACGGAAGTGACACCTAGTGTTCAG -ACGGAAGTGACACCTAGTGCATAG -ACGGAAGTGACACCTAGTGACAAG -ACGGAAGTGACACCTAGTAAGCAG -ACGGAAGTGACACCTAGTCGTCAA -ACGGAAGTGACACCTAGTGCTGAA -ACGGAAGTGACACCTAGTAGTACG -ACGGAAGTGACACCTAGTATCCGA -ACGGAAGTGACACCTAGTATGGGA -ACGGAAGTGACACCTAGTGTGCAA -ACGGAAGTGACACCTAGTGAGGAA -ACGGAAGTGACACCTAGTCAGGTA -ACGGAAGTGACACCTAGTGACTCT -ACGGAAGTGACACCTAGTAGTCCT -ACGGAAGTGACACCTAGTTAAGCC -ACGGAAGTGACACCTAGTATAGCC -ACGGAAGTGACACCTAGTTAACCG -ACGGAAGTGACACCTAGTATGCCA -ACGGAAGTGACAGCCTAAGGAAAC -ACGGAAGTGACAGCCTAAAACACC -ACGGAAGTGACAGCCTAAATCGAG -ACGGAAGTGACAGCCTAACTCCTT -ACGGAAGTGACAGCCTAACCTGTT -ACGGAAGTGACAGCCTAACGGTTT -ACGGAAGTGACAGCCTAAGTGGTT -ACGGAAGTGACAGCCTAAGCCTTT -ACGGAAGTGACAGCCTAAGGTCTT -ACGGAAGTGACAGCCTAAACGCTT -ACGGAAGTGACAGCCTAAAGCGTT -ACGGAAGTGACAGCCTAATTCGTC -ACGGAAGTGACAGCCTAATCTCTC -ACGGAAGTGACAGCCTAATGGATC -ACGGAAGTGACAGCCTAACACTTC -ACGGAAGTGACAGCCTAAGTACTC -ACGGAAGTGACAGCCTAAGATGTC -ACGGAAGTGACAGCCTAAACAGTC -ACGGAAGTGACAGCCTAATTGCTG -ACGGAAGTGACAGCCTAATCCATG -ACGGAAGTGACAGCCTAATGTGTG -ACGGAAGTGACAGCCTAACTAGTG -ACGGAAGTGACAGCCTAACATCTG -ACGGAAGTGACAGCCTAAGAGTTG -ACGGAAGTGACAGCCTAAAGACTG -ACGGAAGTGACAGCCTAATCGGTA -ACGGAAGTGACAGCCTAATGCCTA -ACGGAAGTGACAGCCTAACCACTA -ACGGAAGTGACAGCCTAAGGAGTA -ACGGAAGTGACAGCCTAATCGTCT -ACGGAAGTGACAGCCTAATGCACT -ACGGAAGTGACAGCCTAACTGACT -ACGGAAGTGACAGCCTAACAACCT -ACGGAAGTGACAGCCTAAGCTACT -ACGGAAGTGACAGCCTAAGGATCT -ACGGAAGTGACAGCCTAAAAGGCT -ACGGAAGTGACAGCCTAATCAACC -ACGGAAGTGACAGCCTAATGTTCC -ACGGAAGTGACAGCCTAAATTCCC -ACGGAAGTGACAGCCTAATTCTCG -ACGGAAGTGACAGCCTAATAGACG -ACGGAAGTGACAGCCTAAGTAACG -ACGGAAGTGACAGCCTAAACTTCG -ACGGAAGTGACAGCCTAATACGCA -ACGGAAGTGACAGCCTAACTTGCA -ACGGAAGTGACAGCCTAACGAACA -ACGGAAGTGACAGCCTAACAGTCA -ACGGAAGTGACAGCCTAAGATCCA -ACGGAAGTGACAGCCTAAACGACA -ACGGAAGTGACAGCCTAAAGCTCA -ACGGAAGTGACAGCCTAATCACGT -ACGGAAGTGACAGCCTAACGTAGT -ACGGAAGTGACAGCCTAAGTCAGT -ACGGAAGTGACAGCCTAAGAAGGT -ACGGAAGTGACAGCCTAAAACCGT -ACGGAAGTGACAGCCTAATTGTGC -ACGGAAGTGACAGCCTAACTAAGC -ACGGAAGTGACAGCCTAAACTAGC -ACGGAAGTGACAGCCTAAAGATGC -ACGGAAGTGACAGCCTAATGAAGG -ACGGAAGTGACAGCCTAACAATGG -ACGGAAGTGACAGCCTAAATGAGG -ACGGAAGTGACAGCCTAAAATGGG -ACGGAAGTGACAGCCTAATCCTGA -ACGGAAGTGACAGCCTAATAGCGA -ACGGAAGTGACAGCCTAACACAGA -ACGGAAGTGACAGCCTAAGCAAGA -ACGGAAGTGACAGCCTAAGGTTGA -ACGGAAGTGACAGCCTAATCCGAT -ACGGAAGTGACAGCCTAATGGCAT -ACGGAAGTGACAGCCTAACGAGAT -ACGGAAGTGACAGCCTAATACCAC -ACGGAAGTGACAGCCTAACAGAAC -ACGGAAGTGACAGCCTAAGTCTAC -ACGGAAGTGACAGCCTAAACGTAC -ACGGAAGTGACAGCCTAAAGTGAC -ACGGAAGTGACAGCCTAACTGTAG -ACGGAAGTGACAGCCTAACCTAAG -ACGGAAGTGACAGCCTAAGTTCAG -ACGGAAGTGACAGCCTAAGCATAG -ACGGAAGTGACAGCCTAAGACAAG -ACGGAAGTGACAGCCTAAAAGCAG -ACGGAAGTGACAGCCTAACGTCAA -ACGGAAGTGACAGCCTAAGCTGAA -ACGGAAGTGACAGCCTAAAGTACG -ACGGAAGTGACAGCCTAAATCCGA -ACGGAAGTGACAGCCTAAATGGGA -ACGGAAGTGACAGCCTAAGTGCAA -ACGGAAGTGACAGCCTAAGAGGAA -ACGGAAGTGACAGCCTAACAGGTA -ACGGAAGTGACAGCCTAAGACTCT -ACGGAAGTGACAGCCTAAAGTCCT -ACGGAAGTGACAGCCTAATAAGCC -ACGGAAGTGACAGCCTAAATAGCC -ACGGAAGTGACAGCCTAATAACCG -ACGGAAGTGACAGCCTAAATGCCA -ACGGAAGTGACAGCCATAGGAAAC -ACGGAAGTGACAGCCATAAACACC -ACGGAAGTGACAGCCATAATCGAG -ACGGAAGTGACAGCCATACTCCTT -ACGGAAGTGACAGCCATACCTGTT -ACGGAAGTGACAGCCATACGGTTT -ACGGAAGTGACAGCCATAGTGGTT -ACGGAAGTGACAGCCATAGCCTTT -ACGGAAGTGACAGCCATAGGTCTT -ACGGAAGTGACAGCCATAACGCTT -ACGGAAGTGACAGCCATAAGCGTT -ACGGAAGTGACAGCCATATTCGTC -ACGGAAGTGACAGCCATATCTCTC -ACGGAAGTGACAGCCATATGGATC -ACGGAAGTGACAGCCATACACTTC -ACGGAAGTGACAGCCATAGTACTC -ACGGAAGTGACAGCCATAGATGTC -ACGGAAGTGACAGCCATAACAGTC -ACGGAAGTGACAGCCATATTGCTG -ACGGAAGTGACAGCCATATCCATG -ACGGAAGTGACAGCCATATGTGTG -ACGGAAGTGACAGCCATACTAGTG -ACGGAAGTGACAGCCATACATCTG -ACGGAAGTGACAGCCATAGAGTTG -ACGGAAGTGACAGCCATAAGACTG -ACGGAAGTGACAGCCATATCGGTA -ACGGAAGTGACAGCCATATGCCTA -ACGGAAGTGACAGCCATACCACTA -ACGGAAGTGACAGCCATAGGAGTA -ACGGAAGTGACAGCCATATCGTCT -ACGGAAGTGACAGCCATATGCACT -ACGGAAGTGACAGCCATACTGACT -ACGGAAGTGACAGCCATACAACCT -ACGGAAGTGACAGCCATAGCTACT -ACGGAAGTGACAGCCATAGGATCT -ACGGAAGTGACAGCCATAAAGGCT -ACGGAAGTGACAGCCATATCAACC -ACGGAAGTGACAGCCATATGTTCC -ACGGAAGTGACAGCCATAATTCCC -ACGGAAGTGACAGCCATATTCTCG -ACGGAAGTGACAGCCATATAGACG -ACGGAAGTGACAGCCATAGTAACG -ACGGAAGTGACAGCCATAACTTCG -ACGGAAGTGACAGCCATATACGCA -ACGGAAGTGACAGCCATACTTGCA -ACGGAAGTGACAGCCATACGAACA -ACGGAAGTGACAGCCATACAGTCA -ACGGAAGTGACAGCCATAGATCCA -ACGGAAGTGACAGCCATAACGACA -ACGGAAGTGACAGCCATAAGCTCA -ACGGAAGTGACAGCCATATCACGT -ACGGAAGTGACAGCCATACGTAGT -ACGGAAGTGACAGCCATAGTCAGT -ACGGAAGTGACAGCCATAGAAGGT -ACGGAAGTGACAGCCATAAACCGT -ACGGAAGTGACAGCCATATTGTGC -ACGGAAGTGACAGCCATACTAAGC -ACGGAAGTGACAGCCATAACTAGC -ACGGAAGTGACAGCCATAAGATGC -ACGGAAGTGACAGCCATATGAAGG -ACGGAAGTGACAGCCATACAATGG -ACGGAAGTGACAGCCATAATGAGG -ACGGAAGTGACAGCCATAAATGGG -ACGGAAGTGACAGCCATATCCTGA -ACGGAAGTGACAGCCATATAGCGA -ACGGAAGTGACAGCCATACACAGA -ACGGAAGTGACAGCCATAGCAAGA -ACGGAAGTGACAGCCATAGGTTGA -ACGGAAGTGACAGCCATATCCGAT -ACGGAAGTGACAGCCATATGGCAT -ACGGAAGTGACAGCCATACGAGAT -ACGGAAGTGACAGCCATATACCAC -ACGGAAGTGACAGCCATACAGAAC -ACGGAAGTGACAGCCATAGTCTAC -ACGGAAGTGACAGCCATAACGTAC -ACGGAAGTGACAGCCATAAGTGAC -ACGGAAGTGACAGCCATACTGTAG -ACGGAAGTGACAGCCATACCTAAG -ACGGAAGTGACAGCCATAGTTCAG -ACGGAAGTGACAGCCATAGCATAG -ACGGAAGTGACAGCCATAGACAAG -ACGGAAGTGACAGCCATAAAGCAG -ACGGAAGTGACAGCCATACGTCAA -ACGGAAGTGACAGCCATAGCTGAA -ACGGAAGTGACAGCCATAAGTACG -ACGGAAGTGACAGCCATAATCCGA -ACGGAAGTGACAGCCATAATGGGA -ACGGAAGTGACAGCCATAGTGCAA -ACGGAAGTGACAGCCATAGAGGAA -ACGGAAGTGACAGCCATACAGGTA -ACGGAAGTGACAGCCATAGACTCT -ACGGAAGTGACAGCCATAAGTCCT -ACGGAAGTGACAGCCATATAAGCC -ACGGAAGTGACAGCCATAATAGCC -ACGGAAGTGACAGCCATATAACCG -ACGGAAGTGACAGCCATAATGCCA -ACGGAAGTGACACCGTAAGGAAAC -ACGGAAGTGACACCGTAAAACACC -ACGGAAGTGACACCGTAAATCGAG -ACGGAAGTGACACCGTAACTCCTT -ACGGAAGTGACACCGTAACCTGTT -ACGGAAGTGACACCGTAACGGTTT -ACGGAAGTGACACCGTAAGTGGTT -ACGGAAGTGACACCGTAAGCCTTT -ACGGAAGTGACACCGTAAGGTCTT -ACGGAAGTGACACCGTAAACGCTT -ACGGAAGTGACACCGTAAAGCGTT -ACGGAAGTGACACCGTAATTCGTC -ACGGAAGTGACACCGTAATCTCTC -ACGGAAGTGACACCGTAATGGATC -ACGGAAGTGACACCGTAACACTTC -ACGGAAGTGACACCGTAAGTACTC -ACGGAAGTGACACCGTAAGATGTC -ACGGAAGTGACACCGTAAACAGTC -ACGGAAGTGACACCGTAATTGCTG -ACGGAAGTGACACCGTAATCCATG -ACGGAAGTGACACCGTAATGTGTG -ACGGAAGTGACACCGTAACTAGTG -ACGGAAGTGACACCGTAACATCTG -ACGGAAGTGACACCGTAAGAGTTG -ACGGAAGTGACACCGTAAAGACTG -ACGGAAGTGACACCGTAATCGGTA -ACGGAAGTGACACCGTAATGCCTA -ACGGAAGTGACACCGTAACCACTA -ACGGAAGTGACACCGTAAGGAGTA -ACGGAAGTGACACCGTAATCGTCT -ACGGAAGTGACACCGTAATGCACT -ACGGAAGTGACACCGTAACTGACT -ACGGAAGTGACACCGTAACAACCT -ACGGAAGTGACACCGTAAGCTACT -ACGGAAGTGACACCGTAAGGATCT -ACGGAAGTGACACCGTAAAAGGCT -ACGGAAGTGACACCGTAATCAACC -ACGGAAGTGACACCGTAATGTTCC -ACGGAAGTGACACCGTAAATTCCC -ACGGAAGTGACACCGTAATTCTCG -ACGGAAGTGACACCGTAATAGACG -ACGGAAGTGACACCGTAAGTAACG -ACGGAAGTGACACCGTAAACTTCG -ACGGAAGTGACACCGTAATACGCA -ACGGAAGTGACACCGTAACTTGCA -ACGGAAGTGACACCGTAACGAACA -ACGGAAGTGACACCGTAACAGTCA -ACGGAAGTGACACCGTAAGATCCA -ACGGAAGTGACACCGTAAACGACA -ACGGAAGTGACACCGTAAAGCTCA -ACGGAAGTGACACCGTAATCACGT -ACGGAAGTGACACCGTAACGTAGT -ACGGAAGTGACACCGTAAGTCAGT -ACGGAAGTGACACCGTAAGAAGGT -ACGGAAGTGACACCGTAAAACCGT -ACGGAAGTGACACCGTAATTGTGC -ACGGAAGTGACACCGTAACTAAGC -ACGGAAGTGACACCGTAAACTAGC -ACGGAAGTGACACCGTAAAGATGC -ACGGAAGTGACACCGTAATGAAGG -ACGGAAGTGACACCGTAACAATGG -ACGGAAGTGACACCGTAAATGAGG -ACGGAAGTGACACCGTAAAATGGG -ACGGAAGTGACACCGTAATCCTGA -ACGGAAGTGACACCGTAATAGCGA -ACGGAAGTGACACCGTAACACAGA -ACGGAAGTGACACCGTAAGCAAGA -ACGGAAGTGACACCGTAAGGTTGA -ACGGAAGTGACACCGTAATCCGAT -ACGGAAGTGACACCGTAATGGCAT -ACGGAAGTGACACCGTAACGAGAT -ACGGAAGTGACACCGTAATACCAC -ACGGAAGTGACACCGTAACAGAAC -ACGGAAGTGACACCGTAAGTCTAC -ACGGAAGTGACACCGTAAACGTAC -ACGGAAGTGACACCGTAAAGTGAC -ACGGAAGTGACACCGTAACTGTAG -ACGGAAGTGACACCGTAACCTAAG -ACGGAAGTGACACCGTAAGTTCAG -ACGGAAGTGACACCGTAAGCATAG -ACGGAAGTGACACCGTAAGACAAG -ACGGAAGTGACACCGTAAAAGCAG -ACGGAAGTGACACCGTAACGTCAA -ACGGAAGTGACACCGTAAGCTGAA -ACGGAAGTGACACCGTAAAGTACG -ACGGAAGTGACACCGTAAATCCGA -ACGGAAGTGACACCGTAAATGGGA -ACGGAAGTGACACCGTAAGTGCAA -ACGGAAGTGACACCGTAAGAGGAA -ACGGAAGTGACACCGTAACAGGTA -ACGGAAGTGACACCGTAAGACTCT -ACGGAAGTGACACCGTAAAGTCCT -ACGGAAGTGACACCGTAATAAGCC -ACGGAAGTGACACCGTAAATAGCC -ACGGAAGTGACACCGTAATAACCG -ACGGAAGTGACACCGTAAATGCCA -ACGGAAGTGACACCAATGGGAAAC -ACGGAAGTGACACCAATGAACACC -ACGGAAGTGACACCAATGATCGAG -ACGGAAGTGACACCAATGCTCCTT -ACGGAAGTGACACCAATGCCTGTT -ACGGAAGTGACACCAATGCGGTTT -ACGGAAGTGACACCAATGGTGGTT -ACGGAAGTGACACCAATGGCCTTT -ACGGAAGTGACACCAATGGGTCTT -ACGGAAGTGACACCAATGACGCTT -ACGGAAGTGACACCAATGAGCGTT -ACGGAAGTGACACCAATGTTCGTC -ACGGAAGTGACACCAATGTCTCTC -ACGGAAGTGACACCAATGTGGATC -ACGGAAGTGACACCAATGCACTTC -ACGGAAGTGACACCAATGGTACTC -ACGGAAGTGACACCAATGGATGTC -ACGGAAGTGACACCAATGACAGTC -ACGGAAGTGACACCAATGTTGCTG -ACGGAAGTGACACCAATGTCCATG -ACGGAAGTGACACCAATGTGTGTG -ACGGAAGTGACACCAATGCTAGTG -ACGGAAGTGACACCAATGCATCTG -ACGGAAGTGACACCAATGGAGTTG -ACGGAAGTGACACCAATGAGACTG -ACGGAAGTGACACCAATGTCGGTA -ACGGAAGTGACACCAATGTGCCTA -ACGGAAGTGACACCAATGCCACTA -ACGGAAGTGACACCAATGGGAGTA -ACGGAAGTGACACCAATGTCGTCT -ACGGAAGTGACACCAATGTGCACT -ACGGAAGTGACACCAATGCTGACT -ACGGAAGTGACACCAATGCAACCT -ACGGAAGTGACACCAATGGCTACT -ACGGAAGTGACACCAATGGGATCT -ACGGAAGTGACACCAATGAAGGCT -ACGGAAGTGACACCAATGTCAACC -ACGGAAGTGACACCAATGTGTTCC -ACGGAAGTGACACCAATGATTCCC -ACGGAAGTGACACCAATGTTCTCG -ACGGAAGTGACACCAATGTAGACG -ACGGAAGTGACACCAATGGTAACG -ACGGAAGTGACACCAATGACTTCG -ACGGAAGTGACACCAATGTACGCA -ACGGAAGTGACACCAATGCTTGCA -ACGGAAGTGACACCAATGCGAACA -ACGGAAGTGACACCAATGCAGTCA -ACGGAAGTGACACCAATGGATCCA -ACGGAAGTGACACCAATGACGACA -ACGGAAGTGACACCAATGAGCTCA -ACGGAAGTGACACCAATGTCACGT -ACGGAAGTGACACCAATGCGTAGT -ACGGAAGTGACACCAATGGTCAGT -ACGGAAGTGACACCAATGGAAGGT -ACGGAAGTGACACCAATGAACCGT -ACGGAAGTGACACCAATGTTGTGC -ACGGAAGTGACACCAATGCTAAGC -ACGGAAGTGACACCAATGACTAGC -ACGGAAGTGACACCAATGAGATGC -ACGGAAGTGACACCAATGTGAAGG -ACGGAAGTGACACCAATGCAATGG -ACGGAAGTGACACCAATGATGAGG -ACGGAAGTGACACCAATGAATGGG -ACGGAAGTGACACCAATGTCCTGA -ACGGAAGTGACACCAATGTAGCGA -ACGGAAGTGACACCAATGCACAGA -ACGGAAGTGACACCAATGGCAAGA -ACGGAAGTGACACCAATGGGTTGA -ACGGAAGTGACACCAATGTCCGAT -ACGGAAGTGACACCAATGTGGCAT -ACGGAAGTGACACCAATGCGAGAT -ACGGAAGTGACACCAATGTACCAC -ACGGAAGTGACACCAATGCAGAAC -ACGGAAGTGACACCAATGGTCTAC -ACGGAAGTGACACCAATGACGTAC -ACGGAAGTGACACCAATGAGTGAC -ACGGAAGTGACACCAATGCTGTAG -ACGGAAGTGACACCAATGCCTAAG -ACGGAAGTGACACCAATGGTTCAG -ACGGAAGTGACACCAATGGCATAG -ACGGAAGTGACACCAATGGACAAG -ACGGAAGTGACACCAATGAAGCAG -ACGGAAGTGACACCAATGCGTCAA -ACGGAAGTGACACCAATGGCTGAA -ACGGAAGTGACACCAATGAGTACG -ACGGAAGTGACACCAATGATCCGA -ACGGAAGTGACACCAATGATGGGA -ACGGAAGTGACACCAATGGTGCAA -ACGGAAGTGACACCAATGGAGGAA -ACGGAAGTGACACCAATGCAGGTA -ACGGAAGTGACACCAATGGACTCT -ACGGAAGTGACACCAATGAGTCCT -ACGGAAGTGACACCAATGTAAGCC -ACGGAAGTGACACCAATGATAGCC -ACGGAAGTGACACCAATGTAACCG -ACGGAAGTGACACCAATGATGCCA -ACGGAATGTAGCAACGGAGGAAAC -ACGGAATGTAGCAACGGAAACACC -ACGGAATGTAGCAACGGAATCGAG -ACGGAATGTAGCAACGGACTCCTT -ACGGAATGTAGCAACGGACCTGTT -ACGGAATGTAGCAACGGACGGTTT -ACGGAATGTAGCAACGGAGTGGTT -ACGGAATGTAGCAACGGAGCCTTT -ACGGAATGTAGCAACGGAGGTCTT -ACGGAATGTAGCAACGGAACGCTT -ACGGAATGTAGCAACGGAAGCGTT -ACGGAATGTAGCAACGGATTCGTC -ACGGAATGTAGCAACGGATCTCTC -ACGGAATGTAGCAACGGATGGATC -ACGGAATGTAGCAACGGACACTTC -ACGGAATGTAGCAACGGAGTACTC -ACGGAATGTAGCAACGGAGATGTC -ACGGAATGTAGCAACGGAACAGTC -ACGGAATGTAGCAACGGATTGCTG -ACGGAATGTAGCAACGGATCCATG -ACGGAATGTAGCAACGGATGTGTG -ACGGAATGTAGCAACGGACTAGTG -ACGGAATGTAGCAACGGACATCTG -ACGGAATGTAGCAACGGAGAGTTG -ACGGAATGTAGCAACGGAAGACTG -ACGGAATGTAGCAACGGATCGGTA -ACGGAATGTAGCAACGGATGCCTA -ACGGAATGTAGCAACGGACCACTA -ACGGAATGTAGCAACGGAGGAGTA -ACGGAATGTAGCAACGGATCGTCT -ACGGAATGTAGCAACGGATGCACT -ACGGAATGTAGCAACGGACTGACT -ACGGAATGTAGCAACGGACAACCT -ACGGAATGTAGCAACGGAGCTACT -ACGGAATGTAGCAACGGAGGATCT -ACGGAATGTAGCAACGGAAAGGCT -ACGGAATGTAGCAACGGATCAACC -ACGGAATGTAGCAACGGATGTTCC -ACGGAATGTAGCAACGGAATTCCC -ACGGAATGTAGCAACGGATTCTCG -ACGGAATGTAGCAACGGATAGACG -ACGGAATGTAGCAACGGAGTAACG -ACGGAATGTAGCAACGGAACTTCG -ACGGAATGTAGCAACGGATACGCA -ACGGAATGTAGCAACGGACTTGCA -ACGGAATGTAGCAACGGACGAACA -ACGGAATGTAGCAACGGACAGTCA -ACGGAATGTAGCAACGGAGATCCA -ACGGAATGTAGCAACGGAACGACA -ACGGAATGTAGCAACGGAAGCTCA -ACGGAATGTAGCAACGGATCACGT -ACGGAATGTAGCAACGGACGTAGT -ACGGAATGTAGCAACGGAGTCAGT -ACGGAATGTAGCAACGGAGAAGGT -ACGGAATGTAGCAACGGAAACCGT -ACGGAATGTAGCAACGGATTGTGC -ACGGAATGTAGCAACGGACTAAGC -ACGGAATGTAGCAACGGAACTAGC -ACGGAATGTAGCAACGGAAGATGC -ACGGAATGTAGCAACGGATGAAGG -ACGGAATGTAGCAACGGACAATGG -ACGGAATGTAGCAACGGAATGAGG -ACGGAATGTAGCAACGGAAATGGG -ACGGAATGTAGCAACGGATCCTGA -ACGGAATGTAGCAACGGATAGCGA -ACGGAATGTAGCAACGGACACAGA -ACGGAATGTAGCAACGGAGCAAGA -ACGGAATGTAGCAACGGAGGTTGA -ACGGAATGTAGCAACGGATCCGAT -ACGGAATGTAGCAACGGATGGCAT -ACGGAATGTAGCAACGGACGAGAT -ACGGAATGTAGCAACGGATACCAC -ACGGAATGTAGCAACGGACAGAAC -ACGGAATGTAGCAACGGAGTCTAC -ACGGAATGTAGCAACGGAACGTAC -ACGGAATGTAGCAACGGAAGTGAC -ACGGAATGTAGCAACGGACTGTAG -ACGGAATGTAGCAACGGACCTAAG -ACGGAATGTAGCAACGGAGTTCAG -ACGGAATGTAGCAACGGAGCATAG -ACGGAATGTAGCAACGGAGACAAG -ACGGAATGTAGCAACGGAAAGCAG -ACGGAATGTAGCAACGGACGTCAA -ACGGAATGTAGCAACGGAGCTGAA -ACGGAATGTAGCAACGGAAGTACG -ACGGAATGTAGCAACGGAATCCGA -ACGGAATGTAGCAACGGAATGGGA -ACGGAATGTAGCAACGGAGTGCAA -ACGGAATGTAGCAACGGAGAGGAA -ACGGAATGTAGCAACGGACAGGTA -ACGGAATGTAGCAACGGAGACTCT -ACGGAATGTAGCAACGGAAGTCCT -ACGGAATGTAGCAACGGATAAGCC -ACGGAATGTAGCAACGGAATAGCC -ACGGAATGTAGCAACGGATAACCG -ACGGAATGTAGCAACGGAATGCCA -ACGGAATGTAGCACCAACGGAAAC -ACGGAATGTAGCACCAACAACACC -ACGGAATGTAGCACCAACATCGAG -ACGGAATGTAGCACCAACCTCCTT -ACGGAATGTAGCACCAACCCTGTT -ACGGAATGTAGCACCAACCGGTTT -ACGGAATGTAGCACCAACGTGGTT -ACGGAATGTAGCACCAACGCCTTT -ACGGAATGTAGCACCAACGGTCTT -ACGGAATGTAGCACCAACACGCTT -ACGGAATGTAGCACCAACAGCGTT -ACGGAATGTAGCACCAACTTCGTC -ACGGAATGTAGCACCAACTCTCTC -ACGGAATGTAGCACCAACTGGATC -ACGGAATGTAGCACCAACCACTTC -ACGGAATGTAGCACCAACGTACTC -ACGGAATGTAGCACCAACGATGTC -ACGGAATGTAGCACCAACACAGTC -ACGGAATGTAGCACCAACTTGCTG -ACGGAATGTAGCACCAACTCCATG -ACGGAATGTAGCACCAACTGTGTG -ACGGAATGTAGCACCAACCTAGTG -ACGGAATGTAGCACCAACCATCTG -ACGGAATGTAGCACCAACGAGTTG -ACGGAATGTAGCACCAACAGACTG -ACGGAATGTAGCACCAACTCGGTA -ACGGAATGTAGCACCAACTGCCTA -ACGGAATGTAGCACCAACCCACTA -ACGGAATGTAGCACCAACGGAGTA -ACGGAATGTAGCACCAACTCGTCT -ACGGAATGTAGCACCAACTGCACT -ACGGAATGTAGCACCAACCTGACT -ACGGAATGTAGCACCAACCAACCT -ACGGAATGTAGCACCAACGCTACT -ACGGAATGTAGCACCAACGGATCT -ACGGAATGTAGCACCAACAAGGCT -ACGGAATGTAGCACCAACTCAACC -ACGGAATGTAGCACCAACTGTTCC -ACGGAATGTAGCACCAACATTCCC -ACGGAATGTAGCACCAACTTCTCG -ACGGAATGTAGCACCAACTAGACG -ACGGAATGTAGCACCAACGTAACG -ACGGAATGTAGCACCAACACTTCG -ACGGAATGTAGCACCAACTACGCA -ACGGAATGTAGCACCAACCTTGCA -ACGGAATGTAGCACCAACCGAACA -ACGGAATGTAGCACCAACCAGTCA -ACGGAATGTAGCACCAACGATCCA -ACGGAATGTAGCACCAACACGACA -ACGGAATGTAGCACCAACAGCTCA -ACGGAATGTAGCACCAACTCACGT -ACGGAATGTAGCACCAACCGTAGT -ACGGAATGTAGCACCAACGTCAGT -ACGGAATGTAGCACCAACGAAGGT -ACGGAATGTAGCACCAACAACCGT -ACGGAATGTAGCACCAACTTGTGC -ACGGAATGTAGCACCAACCTAAGC -ACGGAATGTAGCACCAACACTAGC -ACGGAATGTAGCACCAACAGATGC -ACGGAATGTAGCACCAACTGAAGG -ACGGAATGTAGCACCAACCAATGG -ACGGAATGTAGCACCAACATGAGG -ACGGAATGTAGCACCAACAATGGG -ACGGAATGTAGCACCAACTCCTGA -ACGGAATGTAGCACCAACTAGCGA -ACGGAATGTAGCACCAACCACAGA -ACGGAATGTAGCACCAACGCAAGA -ACGGAATGTAGCACCAACGGTTGA -ACGGAATGTAGCACCAACTCCGAT -ACGGAATGTAGCACCAACTGGCAT -ACGGAATGTAGCACCAACCGAGAT -ACGGAATGTAGCACCAACTACCAC -ACGGAATGTAGCACCAACCAGAAC -ACGGAATGTAGCACCAACGTCTAC -ACGGAATGTAGCACCAACACGTAC -ACGGAATGTAGCACCAACAGTGAC -ACGGAATGTAGCACCAACCTGTAG -ACGGAATGTAGCACCAACCCTAAG -ACGGAATGTAGCACCAACGTTCAG -ACGGAATGTAGCACCAACGCATAG -ACGGAATGTAGCACCAACGACAAG -ACGGAATGTAGCACCAACAAGCAG -ACGGAATGTAGCACCAACCGTCAA -ACGGAATGTAGCACCAACGCTGAA -ACGGAATGTAGCACCAACAGTACG -ACGGAATGTAGCACCAACATCCGA -ACGGAATGTAGCACCAACATGGGA -ACGGAATGTAGCACCAACGTGCAA -ACGGAATGTAGCACCAACGAGGAA -ACGGAATGTAGCACCAACCAGGTA -ACGGAATGTAGCACCAACGACTCT -ACGGAATGTAGCACCAACAGTCCT -ACGGAATGTAGCACCAACTAAGCC -ACGGAATGTAGCACCAACATAGCC -ACGGAATGTAGCACCAACTAACCG -ACGGAATGTAGCACCAACATGCCA -ACGGAATGTAGCGAGATCGGAAAC -ACGGAATGTAGCGAGATCAACACC -ACGGAATGTAGCGAGATCATCGAG -ACGGAATGTAGCGAGATCCTCCTT -ACGGAATGTAGCGAGATCCCTGTT -ACGGAATGTAGCGAGATCCGGTTT -ACGGAATGTAGCGAGATCGTGGTT -ACGGAATGTAGCGAGATCGCCTTT -ACGGAATGTAGCGAGATCGGTCTT -ACGGAATGTAGCGAGATCACGCTT -ACGGAATGTAGCGAGATCAGCGTT -ACGGAATGTAGCGAGATCTTCGTC -ACGGAATGTAGCGAGATCTCTCTC -ACGGAATGTAGCGAGATCTGGATC -ACGGAATGTAGCGAGATCCACTTC -ACGGAATGTAGCGAGATCGTACTC -ACGGAATGTAGCGAGATCGATGTC -ACGGAATGTAGCGAGATCACAGTC -ACGGAATGTAGCGAGATCTTGCTG -ACGGAATGTAGCGAGATCTCCATG -ACGGAATGTAGCGAGATCTGTGTG -ACGGAATGTAGCGAGATCCTAGTG -ACGGAATGTAGCGAGATCCATCTG -ACGGAATGTAGCGAGATCGAGTTG -ACGGAATGTAGCGAGATCAGACTG -ACGGAATGTAGCGAGATCTCGGTA -ACGGAATGTAGCGAGATCTGCCTA -ACGGAATGTAGCGAGATCCCACTA -ACGGAATGTAGCGAGATCGGAGTA -ACGGAATGTAGCGAGATCTCGTCT -ACGGAATGTAGCGAGATCTGCACT -ACGGAATGTAGCGAGATCCTGACT -ACGGAATGTAGCGAGATCCAACCT -ACGGAATGTAGCGAGATCGCTACT -ACGGAATGTAGCGAGATCGGATCT -ACGGAATGTAGCGAGATCAAGGCT -ACGGAATGTAGCGAGATCTCAACC -ACGGAATGTAGCGAGATCTGTTCC -ACGGAATGTAGCGAGATCATTCCC -ACGGAATGTAGCGAGATCTTCTCG -ACGGAATGTAGCGAGATCTAGACG -ACGGAATGTAGCGAGATCGTAACG -ACGGAATGTAGCGAGATCACTTCG -ACGGAATGTAGCGAGATCTACGCA -ACGGAATGTAGCGAGATCCTTGCA -ACGGAATGTAGCGAGATCCGAACA -ACGGAATGTAGCGAGATCCAGTCA -ACGGAATGTAGCGAGATCGATCCA -ACGGAATGTAGCGAGATCACGACA -ACGGAATGTAGCGAGATCAGCTCA -ACGGAATGTAGCGAGATCTCACGT -ACGGAATGTAGCGAGATCCGTAGT -ACGGAATGTAGCGAGATCGTCAGT -ACGGAATGTAGCGAGATCGAAGGT -ACGGAATGTAGCGAGATCAACCGT -ACGGAATGTAGCGAGATCTTGTGC -ACGGAATGTAGCGAGATCCTAAGC -ACGGAATGTAGCGAGATCACTAGC -ACGGAATGTAGCGAGATCAGATGC -ACGGAATGTAGCGAGATCTGAAGG -ACGGAATGTAGCGAGATCCAATGG -ACGGAATGTAGCGAGATCATGAGG -ACGGAATGTAGCGAGATCAATGGG -ACGGAATGTAGCGAGATCTCCTGA -ACGGAATGTAGCGAGATCTAGCGA -ACGGAATGTAGCGAGATCCACAGA -ACGGAATGTAGCGAGATCGCAAGA -ACGGAATGTAGCGAGATCGGTTGA -ACGGAATGTAGCGAGATCTCCGAT -ACGGAATGTAGCGAGATCTGGCAT -ACGGAATGTAGCGAGATCCGAGAT -ACGGAATGTAGCGAGATCTACCAC -ACGGAATGTAGCGAGATCCAGAAC -ACGGAATGTAGCGAGATCGTCTAC -ACGGAATGTAGCGAGATCACGTAC -ACGGAATGTAGCGAGATCAGTGAC -ACGGAATGTAGCGAGATCCTGTAG -ACGGAATGTAGCGAGATCCCTAAG -ACGGAATGTAGCGAGATCGTTCAG -ACGGAATGTAGCGAGATCGCATAG -ACGGAATGTAGCGAGATCGACAAG -ACGGAATGTAGCGAGATCAAGCAG -ACGGAATGTAGCGAGATCCGTCAA -ACGGAATGTAGCGAGATCGCTGAA -ACGGAATGTAGCGAGATCAGTACG -ACGGAATGTAGCGAGATCATCCGA -ACGGAATGTAGCGAGATCATGGGA -ACGGAATGTAGCGAGATCGTGCAA -ACGGAATGTAGCGAGATCGAGGAA -ACGGAATGTAGCGAGATCCAGGTA -ACGGAATGTAGCGAGATCGACTCT -ACGGAATGTAGCGAGATCAGTCCT -ACGGAATGTAGCGAGATCTAAGCC -ACGGAATGTAGCGAGATCATAGCC -ACGGAATGTAGCGAGATCTAACCG -ACGGAATGTAGCGAGATCATGCCA -ACGGAATGTAGCCTTCTCGGAAAC -ACGGAATGTAGCCTTCTCAACACC -ACGGAATGTAGCCTTCTCATCGAG -ACGGAATGTAGCCTTCTCCTCCTT -ACGGAATGTAGCCTTCTCCCTGTT -ACGGAATGTAGCCTTCTCCGGTTT -ACGGAATGTAGCCTTCTCGTGGTT -ACGGAATGTAGCCTTCTCGCCTTT -ACGGAATGTAGCCTTCTCGGTCTT -ACGGAATGTAGCCTTCTCACGCTT -ACGGAATGTAGCCTTCTCAGCGTT -ACGGAATGTAGCCTTCTCTTCGTC -ACGGAATGTAGCCTTCTCTCTCTC -ACGGAATGTAGCCTTCTCTGGATC -ACGGAATGTAGCCTTCTCCACTTC -ACGGAATGTAGCCTTCTCGTACTC -ACGGAATGTAGCCTTCTCGATGTC -ACGGAATGTAGCCTTCTCACAGTC -ACGGAATGTAGCCTTCTCTTGCTG -ACGGAATGTAGCCTTCTCTCCATG -ACGGAATGTAGCCTTCTCTGTGTG -ACGGAATGTAGCCTTCTCCTAGTG -ACGGAATGTAGCCTTCTCCATCTG -ACGGAATGTAGCCTTCTCGAGTTG -ACGGAATGTAGCCTTCTCAGACTG -ACGGAATGTAGCCTTCTCTCGGTA -ACGGAATGTAGCCTTCTCTGCCTA -ACGGAATGTAGCCTTCTCCCACTA -ACGGAATGTAGCCTTCTCGGAGTA -ACGGAATGTAGCCTTCTCTCGTCT -ACGGAATGTAGCCTTCTCTGCACT -ACGGAATGTAGCCTTCTCCTGACT -ACGGAATGTAGCCTTCTCCAACCT -ACGGAATGTAGCCTTCTCGCTACT -ACGGAATGTAGCCTTCTCGGATCT -ACGGAATGTAGCCTTCTCAAGGCT -ACGGAATGTAGCCTTCTCTCAACC -ACGGAATGTAGCCTTCTCTGTTCC -ACGGAATGTAGCCTTCTCATTCCC -ACGGAATGTAGCCTTCTCTTCTCG -ACGGAATGTAGCCTTCTCTAGACG -ACGGAATGTAGCCTTCTCGTAACG -ACGGAATGTAGCCTTCTCACTTCG -ACGGAATGTAGCCTTCTCTACGCA -ACGGAATGTAGCCTTCTCCTTGCA -ACGGAATGTAGCCTTCTCCGAACA -ACGGAATGTAGCCTTCTCCAGTCA -ACGGAATGTAGCCTTCTCGATCCA -ACGGAATGTAGCCTTCTCACGACA -ACGGAATGTAGCCTTCTCAGCTCA -ACGGAATGTAGCCTTCTCTCACGT -ACGGAATGTAGCCTTCTCCGTAGT -ACGGAATGTAGCCTTCTCGTCAGT -ACGGAATGTAGCCTTCTCGAAGGT -ACGGAATGTAGCCTTCTCAACCGT -ACGGAATGTAGCCTTCTCTTGTGC -ACGGAATGTAGCCTTCTCCTAAGC -ACGGAATGTAGCCTTCTCACTAGC -ACGGAATGTAGCCTTCTCAGATGC -ACGGAATGTAGCCTTCTCTGAAGG -ACGGAATGTAGCCTTCTCCAATGG -ACGGAATGTAGCCTTCTCATGAGG -ACGGAATGTAGCCTTCTCAATGGG -ACGGAATGTAGCCTTCTCTCCTGA -ACGGAATGTAGCCTTCTCTAGCGA -ACGGAATGTAGCCTTCTCCACAGA -ACGGAATGTAGCCTTCTCGCAAGA -ACGGAATGTAGCCTTCTCGGTTGA -ACGGAATGTAGCCTTCTCTCCGAT -ACGGAATGTAGCCTTCTCTGGCAT -ACGGAATGTAGCCTTCTCCGAGAT -ACGGAATGTAGCCTTCTCTACCAC -ACGGAATGTAGCCTTCTCCAGAAC -ACGGAATGTAGCCTTCTCGTCTAC -ACGGAATGTAGCCTTCTCACGTAC -ACGGAATGTAGCCTTCTCAGTGAC -ACGGAATGTAGCCTTCTCCTGTAG -ACGGAATGTAGCCTTCTCCCTAAG -ACGGAATGTAGCCTTCTCGTTCAG -ACGGAATGTAGCCTTCTCGCATAG -ACGGAATGTAGCCTTCTCGACAAG -ACGGAATGTAGCCTTCTCAAGCAG -ACGGAATGTAGCCTTCTCCGTCAA -ACGGAATGTAGCCTTCTCGCTGAA -ACGGAATGTAGCCTTCTCAGTACG -ACGGAATGTAGCCTTCTCATCCGA -ACGGAATGTAGCCTTCTCATGGGA -ACGGAATGTAGCCTTCTCGTGCAA -ACGGAATGTAGCCTTCTCGAGGAA -ACGGAATGTAGCCTTCTCCAGGTA -ACGGAATGTAGCCTTCTCGACTCT -ACGGAATGTAGCCTTCTCAGTCCT -ACGGAATGTAGCCTTCTCTAAGCC -ACGGAATGTAGCCTTCTCATAGCC -ACGGAATGTAGCCTTCTCTAACCG -ACGGAATGTAGCCTTCTCATGCCA -ACGGAATGTAGCGTTCCTGGAAAC -ACGGAATGTAGCGTTCCTAACACC -ACGGAATGTAGCGTTCCTATCGAG -ACGGAATGTAGCGTTCCTCTCCTT -ACGGAATGTAGCGTTCCTCCTGTT -ACGGAATGTAGCGTTCCTCGGTTT -ACGGAATGTAGCGTTCCTGTGGTT -ACGGAATGTAGCGTTCCTGCCTTT -ACGGAATGTAGCGTTCCTGGTCTT -ACGGAATGTAGCGTTCCTACGCTT -ACGGAATGTAGCGTTCCTAGCGTT -ACGGAATGTAGCGTTCCTTTCGTC -ACGGAATGTAGCGTTCCTTCTCTC -ACGGAATGTAGCGTTCCTTGGATC -ACGGAATGTAGCGTTCCTCACTTC -ACGGAATGTAGCGTTCCTGTACTC -ACGGAATGTAGCGTTCCTGATGTC -ACGGAATGTAGCGTTCCTACAGTC -ACGGAATGTAGCGTTCCTTTGCTG -ACGGAATGTAGCGTTCCTTCCATG -ACGGAATGTAGCGTTCCTTGTGTG -ACGGAATGTAGCGTTCCTCTAGTG -ACGGAATGTAGCGTTCCTCATCTG -ACGGAATGTAGCGTTCCTGAGTTG -ACGGAATGTAGCGTTCCTAGACTG -ACGGAATGTAGCGTTCCTTCGGTA -ACGGAATGTAGCGTTCCTTGCCTA -ACGGAATGTAGCGTTCCTCCACTA -ACGGAATGTAGCGTTCCTGGAGTA -ACGGAATGTAGCGTTCCTTCGTCT -ACGGAATGTAGCGTTCCTTGCACT -ACGGAATGTAGCGTTCCTCTGACT -ACGGAATGTAGCGTTCCTCAACCT -ACGGAATGTAGCGTTCCTGCTACT -ACGGAATGTAGCGTTCCTGGATCT -ACGGAATGTAGCGTTCCTAAGGCT -ACGGAATGTAGCGTTCCTTCAACC -ACGGAATGTAGCGTTCCTTGTTCC -ACGGAATGTAGCGTTCCTATTCCC -ACGGAATGTAGCGTTCCTTTCTCG -ACGGAATGTAGCGTTCCTTAGACG -ACGGAATGTAGCGTTCCTGTAACG -ACGGAATGTAGCGTTCCTACTTCG -ACGGAATGTAGCGTTCCTTACGCA -ACGGAATGTAGCGTTCCTCTTGCA -ACGGAATGTAGCGTTCCTCGAACA -ACGGAATGTAGCGTTCCTCAGTCA -ACGGAATGTAGCGTTCCTGATCCA -ACGGAATGTAGCGTTCCTACGACA -ACGGAATGTAGCGTTCCTAGCTCA -ACGGAATGTAGCGTTCCTTCACGT -ACGGAATGTAGCGTTCCTCGTAGT -ACGGAATGTAGCGTTCCTGTCAGT -ACGGAATGTAGCGTTCCTGAAGGT -ACGGAATGTAGCGTTCCTAACCGT -ACGGAATGTAGCGTTCCTTTGTGC -ACGGAATGTAGCGTTCCTCTAAGC -ACGGAATGTAGCGTTCCTACTAGC -ACGGAATGTAGCGTTCCTAGATGC -ACGGAATGTAGCGTTCCTTGAAGG -ACGGAATGTAGCGTTCCTCAATGG -ACGGAATGTAGCGTTCCTATGAGG -ACGGAATGTAGCGTTCCTAATGGG -ACGGAATGTAGCGTTCCTTCCTGA -ACGGAATGTAGCGTTCCTTAGCGA -ACGGAATGTAGCGTTCCTCACAGA -ACGGAATGTAGCGTTCCTGCAAGA -ACGGAATGTAGCGTTCCTGGTTGA -ACGGAATGTAGCGTTCCTTCCGAT -ACGGAATGTAGCGTTCCTTGGCAT -ACGGAATGTAGCGTTCCTCGAGAT -ACGGAATGTAGCGTTCCTTACCAC -ACGGAATGTAGCGTTCCTCAGAAC -ACGGAATGTAGCGTTCCTGTCTAC -ACGGAATGTAGCGTTCCTACGTAC -ACGGAATGTAGCGTTCCTAGTGAC -ACGGAATGTAGCGTTCCTCTGTAG -ACGGAATGTAGCGTTCCTCCTAAG -ACGGAATGTAGCGTTCCTGTTCAG -ACGGAATGTAGCGTTCCTGCATAG -ACGGAATGTAGCGTTCCTGACAAG -ACGGAATGTAGCGTTCCTAAGCAG -ACGGAATGTAGCGTTCCTCGTCAA -ACGGAATGTAGCGTTCCTGCTGAA -ACGGAATGTAGCGTTCCTAGTACG -ACGGAATGTAGCGTTCCTATCCGA -ACGGAATGTAGCGTTCCTATGGGA -ACGGAATGTAGCGTTCCTGTGCAA -ACGGAATGTAGCGTTCCTGAGGAA -ACGGAATGTAGCGTTCCTCAGGTA -ACGGAATGTAGCGTTCCTGACTCT -ACGGAATGTAGCGTTCCTAGTCCT -ACGGAATGTAGCGTTCCTTAAGCC -ACGGAATGTAGCGTTCCTATAGCC -ACGGAATGTAGCGTTCCTTAACCG -ACGGAATGTAGCGTTCCTATGCCA -ACGGAATGTAGCTTTCGGGGAAAC -ACGGAATGTAGCTTTCGGAACACC -ACGGAATGTAGCTTTCGGATCGAG -ACGGAATGTAGCTTTCGGCTCCTT -ACGGAATGTAGCTTTCGGCCTGTT -ACGGAATGTAGCTTTCGGCGGTTT -ACGGAATGTAGCTTTCGGGTGGTT -ACGGAATGTAGCTTTCGGGCCTTT -ACGGAATGTAGCTTTCGGGGTCTT -ACGGAATGTAGCTTTCGGACGCTT -ACGGAATGTAGCTTTCGGAGCGTT -ACGGAATGTAGCTTTCGGTTCGTC -ACGGAATGTAGCTTTCGGTCTCTC -ACGGAATGTAGCTTTCGGTGGATC -ACGGAATGTAGCTTTCGGCACTTC -ACGGAATGTAGCTTTCGGGTACTC -ACGGAATGTAGCTTTCGGGATGTC -ACGGAATGTAGCTTTCGGACAGTC -ACGGAATGTAGCTTTCGGTTGCTG -ACGGAATGTAGCTTTCGGTCCATG -ACGGAATGTAGCTTTCGGTGTGTG -ACGGAATGTAGCTTTCGGCTAGTG -ACGGAATGTAGCTTTCGGCATCTG -ACGGAATGTAGCTTTCGGGAGTTG -ACGGAATGTAGCTTTCGGAGACTG -ACGGAATGTAGCTTTCGGTCGGTA -ACGGAATGTAGCTTTCGGTGCCTA -ACGGAATGTAGCTTTCGGCCACTA -ACGGAATGTAGCTTTCGGGGAGTA -ACGGAATGTAGCTTTCGGTCGTCT -ACGGAATGTAGCTTTCGGTGCACT -ACGGAATGTAGCTTTCGGCTGACT -ACGGAATGTAGCTTTCGGCAACCT -ACGGAATGTAGCTTTCGGGCTACT -ACGGAATGTAGCTTTCGGGGATCT -ACGGAATGTAGCTTTCGGAAGGCT -ACGGAATGTAGCTTTCGGTCAACC -ACGGAATGTAGCTTTCGGTGTTCC -ACGGAATGTAGCTTTCGGATTCCC -ACGGAATGTAGCTTTCGGTTCTCG -ACGGAATGTAGCTTTCGGTAGACG -ACGGAATGTAGCTTTCGGGTAACG -ACGGAATGTAGCTTTCGGACTTCG -ACGGAATGTAGCTTTCGGTACGCA -ACGGAATGTAGCTTTCGGCTTGCA -ACGGAATGTAGCTTTCGGCGAACA -ACGGAATGTAGCTTTCGGCAGTCA -ACGGAATGTAGCTTTCGGGATCCA -ACGGAATGTAGCTTTCGGACGACA -ACGGAATGTAGCTTTCGGAGCTCA -ACGGAATGTAGCTTTCGGTCACGT -ACGGAATGTAGCTTTCGGCGTAGT -ACGGAATGTAGCTTTCGGGTCAGT -ACGGAATGTAGCTTTCGGGAAGGT -ACGGAATGTAGCTTTCGGAACCGT -ACGGAATGTAGCTTTCGGTTGTGC -ACGGAATGTAGCTTTCGGCTAAGC -ACGGAATGTAGCTTTCGGACTAGC -ACGGAATGTAGCTTTCGGAGATGC -ACGGAATGTAGCTTTCGGTGAAGG -ACGGAATGTAGCTTTCGGCAATGG -ACGGAATGTAGCTTTCGGATGAGG -ACGGAATGTAGCTTTCGGAATGGG -ACGGAATGTAGCTTTCGGTCCTGA -ACGGAATGTAGCTTTCGGTAGCGA -ACGGAATGTAGCTTTCGGCACAGA -ACGGAATGTAGCTTTCGGGCAAGA -ACGGAATGTAGCTTTCGGGGTTGA -ACGGAATGTAGCTTTCGGTCCGAT -ACGGAATGTAGCTTTCGGTGGCAT -ACGGAATGTAGCTTTCGGCGAGAT -ACGGAATGTAGCTTTCGGTACCAC -ACGGAATGTAGCTTTCGGCAGAAC -ACGGAATGTAGCTTTCGGGTCTAC -ACGGAATGTAGCTTTCGGACGTAC -ACGGAATGTAGCTTTCGGAGTGAC -ACGGAATGTAGCTTTCGGCTGTAG -ACGGAATGTAGCTTTCGGCCTAAG -ACGGAATGTAGCTTTCGGGTTCAG -ACGGAATGTAGCTTTCGGGCATAG -ACGGAATGTAGCTTTCGGGACAAG -ACGGAATGTAGCTTTCGGAAGCAG -ACGGAATGTAGCTTTCGGCGTCAA -ACGGAATGTAGCTTTCGGGCTGAA -ACGGAATGTAGCTTTCGGAGTACG -ACGGAATGTAGCTTTCGGATCCGA -ACGGAATGTAGCTTTCGGATGGGA -ACGGAATGTAGCTTTCGGGTGCAA -ACGGAATGTAGCTTTCGGGAGGAA -ACGGAATGTAGCTTTCGGCAGGTA -ACGGAATGTAGCTTTCGGGACTCT -ACGGAATGTAGCTTTCGGAGTCCT -ACGGAATGTAGCTTTCGGTAAGCC -ACGGAATGTAGCTTTCGGATAGCC -ACGGAATGTAGCTTTCGGTAACCG -ACGGAATGTAGCTTTCGGATGCCA -ACGGAATGTAGCGTTGTGGGAAAC -ACGGAATGTAGCGTTGTGAACACC -ACGGAATGTAGCGTTGTGATCGAG -ACGGAATGTAGCGTTGTGCTCCTT -ACGGAATGTAGCGTTGTGCCTGTT -ACGGAATGTAGCGTTGTGCGGTTT -ACGGAATGTAGCGTTGTGGTGGTT -ACGGAATGTAGCGTTGTGGCCTTT -ACGGAATGTAGCGTTGTGGGTCTT -ACGGAATGTAGCGTTGTGACGCTT -ACGGAATGTAGCGTTGTGAGCGTT -ACGGAATGTAGCGTTGTGTTCGTC -ACGGAATGTAGCGTTGTGTCTCTC -ACGGAATGTAGCGTTGTGTGGATC -ACGGAATGTAGCGTTGTGCACTTC -ACGGAATGTAGCGTTGTGGTACTC -ACGGAATGTAGCGTTGTGGATGTC -ACGGAATGTAGCGTTGTGACAGTC -ACGGAATGTAGCGTTGTGTTGCTG -ACGGAATGTAGCGTTGTGTCCATG -ACGGAATGTAGCGTTGTGTGTGTG -ACGGAATGTAGCGTTGTGCTAGTG -ACGGAATGTAGCGTTGTGCATCTG -ACGGAATGTAGCGTTGTGGAGTTG -ACGGAATGTAGCGTTGTGAGACTG -ACGGAATGTAGCGTTGTGTCGGTA -ACGGAATGTAGCGTTGTGTGCCTA -ACGGAATGTAGCGTTGTGCCACTA -ACGGAATGTAGCGTTGTGGGAGTA -ACGGAATGTAGCGTTGTGTCGTCT -ACGGAATGTAGCGTTGTGTGCACT -ACGGAATGTAGCGTTGTGCTGACT -ACGGAATGTAGCGTTGTGCAACCT -ACGGAATGTAGCGTTGTGGCTACT -ACGGAATGTAGCGTTGTGGGATCT -ACGGAATGTAGCGTTGTGAAGGCT -ACGGAATGTAGCGTTGTGTCAACC -ACGGAATGTAGCGTTGTGTGTTCC -ACGGAATGTAGCGTTGTGATTCCC -ACGGAATGTAGCGTTGTGTTCTCG -ACGGAATGTAGCGTTGTGTAGACG -ACGGAATGTAGCGTTGTGGTAACG -ACGGAATGTAGCGTTGTGACTTCG -ACGGAATGTAGCGTTGTGTACGCA -ACGGAATGTAGCGTTGTGCTTGCA -ACGGAATGTAGCGTTGTGCGAACA -ACGGAATGTAGCGTTGTGCAGTCA -ACGGAATGTAGCGTTGTGGATCCA -ACGGAATGTAGCGTTGTGACGACA -ACGGAATGTAGCGTTGTGAGCTCA -ACGGAATGTAGCGTTGTGTCACGT -ACGGAATGTAGCGTTGTGCGTAGT -ACGGAATGTAGCGTTGTGGTCAGT -ACGGAATGTAGCGTTGTGGAAGGT -ACGGAATGTAGCGTTGTGAACCGT -ACGGAATGTAGCGTTGTGTTGTGC -ACGGAATGTAGCGTTGTGCTAAGC -ACGGAATGTAGCGTTGTGACTAGC -ACGGAATGTAGCGTTGTGAGATGC -ACGGAATGTAGCGTTGTGTGAAGG -ACGGAATGTAGCGTTGTGCAATGG -ACGGAATGTAGCGTTGTGATGAGG -ACGGAATGTAGCGTTGTGAATGGG -ACGGAATGTAGCGTTGTGTCCTGA -ACGGAATGTAGCGTTGTGTAGCGA -ACGGAATGTAGCGTTGTGCACAGA -ACGGAATGTAGCGTTGTGGCAAGA -ACGGAATGTAGCGTTGTGGGTTGA -ACGGAATGTAGCGTTGTGTCCGAT -ACGGAATGTAGCGTTGTGTGGCAT -ACGGAATGTAGCGTTGTGCGAGAT -ACGGAATGTAGCGTTGTGTACCAC -ACGGAATGTAGCGTTGTGCAGAAC -ACGGAATGTAGCGTTGTGGTCTAC -ACGGAATGTAGCGTTGTGACGTAC -ACGGAATGTAGCGTTGTGAGTGAC -ACGGAATGTAGCGTTGTGCTGTAG -ACGGAATGTAGCGTTGTGCCTAAG -ACGGAATGTAGCGTTGTGGTTCAG -ACGGAATGTAGCGTTGTGGCATAG -ACGGAATGTAGCGTTGTGGACAAG -ACGGAATGTAGCGTTGTGAAGCAG -ACGGAATGTAGCGTTGTGCGTCAA -ACGGAATGTAGCGTTGTGGCTGAA -ACGGAATGTAGCGTTGTGAGTACG -ACGGAATGTAGCGTTGTGATCCGA -ACGGAATGTAGCGTTGTGATGGGA -ACGGAATGTAGCGTTGTGGTGCAA -ACGGAATGTAGCGTTGTGGAGGAA -ACGGAATGTAGCGTTGTGCAGGTA -ACGGAATGTAGCGTTGTGGACTCT -ACGGAATGTAGCGTTGTGAGTCCT -ACGGAATGTAGCGTTGTGTAAGCC -ACGGAATGTAGCGTTGTGATAGCC -ACGGAATGTAGCGTTGTGTAACCG -ACGGAATGTAGCGTTGTGATGCCA -ACGGAATGTAGCTTTGCCGGAAAC -ACGGAATGTAGCTTTGCCAACACC -ACGGAATGTAGCTTTGCCATCGAG -ACGGAATGTAGCTTTGCCCTCCTT -ACGGAATGTAGCTTTGCCCCTGTT -ACGGAATGTAGCTTTGCCCGGTTT -ACGGAATGTAGCTTTGCCGTGGTT -ACGGAATGTAGCTTTGCCGCCTTT -ACGGAATGTAGCTTTGCCGGTCTT -ACGGAATGTAGCTTTGCCACGCTT -ACGGAATGTAGCTTTGCCAGCGTT -ACGGAATGTAGCTTTGCCTTCGTC -ACGGAATGTAGCTTTGCCTCTCTC -ACGGAATGTAGCTTTGCCTGGATC -ACGGAATGTAGCTTTGCCCACTTC -ACGGAATGTAGCTTTGCCGTACTC -ACGGAATGTAGCTTTGCCGATGTC -ACGGAATGTAGCTTTGCCACAGTC -ACGGAATGTAGCTTTGCCTTGCTG -ACGGAATGTAGCTTTGCCTCCATG -ACGGAATGTAGCTTTGCCTGTGTG -ACGGAATGTAGCTTTGCCCTAGTG -ACGGAATGTAGCTTTGCCCATCTG -ACGGAATGTAGCTTTGCCGAGTTG -ACGGAATGTAGCTTTGCCAGACTG -ACGGAATGTAGCTTTGCCTCGGTA -ACGGAATGTAGCTTTGCCTGCCTA -ACGGAATGTAGCTTTGCCCCACTA -ACGGAATGTAGCTTTGCCGGAGTA -ACGGAATGTAGCTTTGCCTCGTCT -ACGGAATGTAGCTTTGCCTGCACT -ACGGAATGTAGCTTTGCCCTGACT -ACGGAATGTAGCTTTGCCCAACCT -ACGGAATGTAGCTTTGCCGCTACT -ACGGAATGTAGCTTTGCCGGATCT -ACGGAATGTAGCTTTGCCAAGGCT -ACGGAATGTAGCTTTGCCTCAACC -ACGGAATGTAGCTTTGCCTGTTCC -ACGGAATGTAGCTTTGCCATTCCC -ACGGAATGTAGCTTTGCCTTCTCG -ACGGAATGTAGCTTTGCCTAGACG -ACGGAATGTAGCTTTGCCGTAACG -ACGGAATGTAGCTTTGCCACTTCG -ACGGAATGTAGCTTTGCCTACGCA -ACGGAATGTAGCTTTGCCCTTGCA -ACGGAATGTAGCTTTGCCCGAACA -ACGGAATGTAGCTTTGCCCAGTCA -ACGGAATGTAGCTTTGCCGATCCA -ACGGAATGTAGCTTTGCCACGACA -ACGGAATGTAGCTTTGCCAGCTCA -ACGGAATGTAGCTTTGCCTCACGT -ACGGAATGTAGCTTTGCCCGTAGT -ACGGAATGTAGCTTTGCCGTCAGT -ACGGAATGTAGCTTTGCCGAAGGT -ACGGAATGTAGCTTTGCCAACCGT -ACGGAATGTAGCTTTGCCTTGTGC -ACGGAATGTAGCTTTGCCCTAAGC -ACGGAATGTAGCTTTGCCACTAGC -ACGGAATGTAGCTTTGCCAGATGC -ACGGAATGTAGCTTTGCCTGAAGG -ACGGAATGTAGCTTTGCCCAATGG -ACGGAATGTAGCTTTGCCATGAGG -ACGGAATGTAGCTTTGCCAATGGG -ACGGAATGTAGCTTTGCCTCCTGA -ACGGAATGTAGCTTTGCCTAGCGA -ACGGAATGTAGCTTTGCCCACAGA -ACGGAATGTAGCTTTGCCGCAAGA -ACGGAATGTAGCTTTGCCGGTTGA -ACGGAATGTAGCTTTGCCTCCGAT -ACGGAATGTAGCTTTGCCTGGCAT -ACGGAATGTAGCTTTGCCCGAGAT -ACGGAATGTAGCTTTGCCTACCAC -ACGGAATGTAGCTTTGCCCAGAAC -ACGGAATGTAGCTTTGCCGTCTAC -ACGGAATGTAGCTTTGCCACGTAC -ACGGAATGTAGCTTTGCCAGTGAC -ACGGAATGTAGCTTTGCCCTGTAG -ACGGAATGTAGCTTTGCCCCTAAG -ACGGAATGTAGCTTTGCCGTTCAG -ACGGAATGTAGCTTTGCCGCATAG -ACGGAATGTAGCTTTGCCGACAAG -ACGGAATGTAGCTTTGCCAAGCAG -ACGGAATGTAGCTTTGCCCGTCAA -ACGGAATGTAGCTTTGCCGCTGAA -ACGGAATGTAGCTTTGCCAGTACG -ACGGAATGTAGCTTTGCCATCCGA -ACGGAATGTAGCTTTGCCATGGGA -ACGGAATGTAGCTTTGCCGTGCAA -ACGGAATGTAGCTTTGCCGAGGAA -ACGGAATGTAGCTTTGCCCAGGTA -ACGGAATGTAGCTTTGCCGACTCT -ACGGAATGTAGCTTTGCCAGTCCT -ACGGAATGTAGCTTTGCCTAAGCC -ACGGAATGTAGCTTTGCCATAGCC -ACGGAATGTAGCTTTGCCTAACCG -ACGGAATGTAGCTTTGCCATGCCA -ACGGAATGTAGCCTTGGTGGAAAC -ACGGAATGTAGCCTTGGTAACACC -ACGGAATGTAGCCTTGGTATCGAG -ACGGAATGTAGCCTTGGTCTCCTT -ACGGAATGTAGCCTTGGTCCTGTT -ACGGAATGTAGCCTTGGTCGGTTT -ACGGAATGTAGCCTTGGTGTGGTT -ACGGAATGTAGCCTTGGTGCCTTT -ACGGAATGTAGCCTTGGTGGTCTT -ACGGAATGTAGCCTTGGTACGCTT -ACGGAATGTAGCCTTGGTAGCGTT -ACGGAATGTAGCCTTGGTTTCGTC -ACGGAATGTAGCCTTGGTTCTCTC -ACGGAATGTAGCCTTGGTTGGATC -ACGGAATGTAGCCTTGGTCACTTC -ACGGAATGTAGCCTTGGTGTACTC -ACGGAATGTAGCCTTGGTGATGTC -ACGGAATGTAGCCTTGGTACAGTC -ACGGAATGTAGCCTTGGTTTGCTG -ACGGAATGTAGCCTTGGTTCCATG -ACGGAATGTAGCCTTGGTTGTGTG -ACGGAATGTAGCCTTGGTCTAGTG -ACGGAATGTAGCCTTGGTCATCTG -ACGGAATGTAGCCTTGGTGAGTTG -ACGGAATGTAGCCTTGGTAGACTG -ACGGAATGTAGCCTTGGTTCGGTA -ACGGAATGTAGCCTTGGTTGCCTA -ACGGAATGTAGCCTTGGTCCACTA -ACGGAATGTAGCCTTGGTGGAGTA -ACGGAATGTAGCCTTGGTTCGTCT -ACGGAATGTAGCCTTGGTTGCACT -ACGGAATGTAGCCTTGGTCTGACT -ACGGAATGTAGCCTTGGTCAACCT -ACGGAATGTAGCCTTGGTGCTACT -ACGGAATGTAGCCTTGGTGGATCT -ACGGAATGTAGCCTTGGTAAGGCT -ACGGAATGTAGCCTTGGTTCAACC -ACGGAATGTAGCCTTGGTTGTTCC -ACGGAATGTAGCCTTGGTATTCCC -ACGGAATGTAGCCTTGGTTTCTCG -ACGGAATGTAGCCTTGGTTAGACG -ACGGAATGTAGCCTTGGTGTAACG -ACGGAATGTAGCCTTGGTACTTCG -ACGGAATGTAGCCTTGGTTACGCA -ACGGAATGTAGCCTTGGTCTTGCA -ACGGAATGTAGCCTTGGTCGAACA -ACGGAATGTAGCCTTGGTCAGTCA -ACGGAATGTAGCCTTGGTGATCCA -ACGGAATGTAGCCTTGGTACGACA -ACGGAATGTAGCCTTGGTAGCTCA -ACGGAATGTAGCCTTGGTTCACGT -ACGGAATGTAGCCTTGGTCGTAGT -ACGGAATGTAGCCTTGGTGTCAGT -ACGGAATGTAGCCTTGGTGAAGGT -ACGGAATGTAGCCTTGGTAACCGT -ACGGAATGTAGCCTTGGTTTGTGC -ACGGAATGTAGCCTTGGTCTAAGC -ACGGAATGTAGCCTTGGTACTAGC -ACGGAATGTAGCCTTGGTAGATGC -ACGGAATGTAGCCTTGGTTGAAGG -ACGGAATGTAGCCTTGGTCAATGG -ACGGAATGTAGCCTTGGTATGAGG -ACGGAATGTAGCCTTGGTAATGGG -ACGGAATGTAGCCTTGGTTCCTGA -ACGGAATGTAGCCTTGGTTAGCGA -ACGGAATGTAGCCTTGGTCACAGA -ACGGAATGTAGCCTTGGTGCAAGA -ACGGAATGTAGCCTTGGTGGTTGA -ACGGAATGTAGCCTTGGTTCCGAT -ACGGAATGTAGCCTTGGTTGGCAT -ACGGAATGTAGCCTTGGTCGAGAT -ACGGAATGTAGCCTTGGTTACCAC -ACGGAATGTAGCCTTGGTCAGAAC -ACGGAATGTAGCCTTGGTGTCTAC -ACGGAATGTAGCCTTGGTACGTAC -ACGGAATGTAGCCTTGGTAGTGAC -ACGGAATGTAGCCTTGGTCTGTAG -ACGGAATGTAGCCTTGGTCCTAAG -ACGGAATGTAGCCTTGGTGTTCAG -ACGGAATGTAGCCTTGGTGCATAG -ACGGAATGTAGCCTTGGTGACAAG -ACGGAATGTAGCCTTGGTAAGCAG -ACGGAATGTAGCCTTGGTCGTCAA -ACGGAATGTAGCCTTGGTGCTGAA -ACGGAATGTAGCCTTGGTAGTACG -ACGGAATGTAGCCTTGGTATCCGA -ACGGAATGTAGCCTTGGTATGGGA -ACGGAATGTAGCCTTGGTGTGCAA -ACGGAATGTAGCCTTGGTGAGGAA -ACGGAATGTAGCCTTGGTCAGGTA -ACGGAATGTAGCCTTGGTGACTCT -ACGGAATGTAGCCTTGGTAGTCCT -ACGGAATGTAGCCTTGGTTAAGCC -ACGGAATGTAGCCTTGGTATAGCC -ACGGAATGTAGCCTTGGTTAACCG -ACGGAATGTAGCCTTGGTATGCCA -ACGGAATGTAGCCTTACGGGAAAC -ACGGAATGTAGCCTTACGAACACC -ACGGAATGTAGCCTTACGATCGAG -ACGGAATGTAGCCTTACGCTCCTT -ACGGAATGTAGCCTTACGCCTGTT -ACGGAATGTAGCCTTACGCGGTTT -ACGGAATGTAGCCTTACGGTGGTT -ACGGAATGTAGCCTTACGGCCTTT -ACGGAATGTAGCCTTACGGGTCTT -ACGGAATGTAGCCTTACGACGCTT -ACGGAATGTAGCCTTACGAGCGTT -ACGGAATGTAGCCTTACGTTCGTC -ACGGAATGTAGCCTTACGTCTCTC -ACGGAATGTAGCCTTACGTGGATC -ACGGAATGTAGCCTTACGCACTTC -ACGGAATGTAGCCTTACGGTACTC -ACGGAATGTAGCCTTACGGATGTC -ACGGAATGTAGCCTTACGACAGTC -ACGGAATGTAGCCTTACGTTGCTG -ACGGAATGTAGCCTTACGTCCATG -ACGGAATGTAGCCTTACGTGTGTG -ACGGAATGTAGCCTTACGCTAGTG -ACGGAATGTAGCCTTACGCATCTG -ACGGAATGTAGCCTTACGGAGTTG -ACGGAATGTAGCCTTACGAGACTG -ACGGAATGTAGCCTTACGTCGGTA -ACGGAATGTAGCCTTACGTGCCTA -ACGGAATGTAGCCTTACGCCACTA -ACGGAATGTAGCCTTACGGGAGTA -ACGGAATGTAGCCTTACGTCGTCT -ACGGAATGTAGCCTTACGTGCACT -ACGGAATGTAGCCTTACGCTGACT -ACGGAATGTAGCCTTACGCAACCT -ACGGAATGTAGCCTTACGGCTACT -ACGGAATGTAGCCTTACGGGATCT -ACGGAATGTAGCCTTACGAAGGCT -ACGGAATGTAGCCTTACGTCAACC -ACGGAATGTAGCCTTACGTGTTCC -ACGGAATGTAGCCTTACGATTCCC -ACGGAATGTAGCCTTACGTTCTCG -ACGGAATGTAGCCTTACGTAGACG -ACGGAATGTAGCCTTACGGTAACG -ACGGAATGTAGCCTTACGACTTCG -ACGGAATGTAGCCTTACGTACGCA -ACGGAATGTAGCCTTACGCTTGCA -ACGGAATGTAGCCTTACGCGAACA -ACGGAATGTAGCCTTACGCAGTCA -ACGGAATGTAGCCTTACGGATCCA -ACGGAATGTAGCCTTACGACGACA -ACGGAATGTAGCCTTACGAGCTCA -ACGGAATGTAGCCTTACGTCACGT -ACGGAATGTAGCCTTACGCGTAGT -ACGGAATGTAGCCTTACGGTCAGT -ACGGAATGTAGCCTTACGGAAGGT -ACGGAATGTAGCCTTACGAACCGT -ACGGAATGTAGCCTTACGTTGTGC -ACGGAATGTAGCCTTACGCTAAGC -ACGGAATGTAGCCTTACGACTAGC -ACGGAATGTAGCCTTACGAGATGC -ACGGAATGTAGCCTTACGTGAAGG -ACGGAATGTAGCCTTACGCAATGG -ACGGAATGTAGCCTTACGATGAGG -ACGGAATGTAGCCTTACGAATGGG -ACGGAATGTAGCCTTACGTCCTGA -ACGGAATGTAGCCTTACGTAGCGA -ACGGAATGTAGCCTTACGCACAGA -ACGGAATGTAGCCTTACGGCAAGA -ACGGAATGTAGCCTTACGGGTTGA -ACGGAATGTAGCCTTACGTCCGAT -ACGGAATGTAGCCTTACGTGGCAT -ACGGAATGTAGCCTTACGCGAGAT -ACGGAATGTAGCCTTACGTACCAC -ACGGAATGTAGCCTTACGCAGAAC -ACGGAATGTAGCCTTACGGTCTAC -ACGGAATGTAGCCTTACGACGTAC -ACGGAATGTAGCCTTACGAGTGAC -ACGGAATGTAGCCTTACGCTGTAG -ACGGAATGTAGCCTTACGCCTAAG -ACGGAATGTAGCCTTACGGTTCAG -ACGGAATGTAGCCTTACGGCATAG -ACGGAATGTAGCCTTACGGACAAG -ACGGAATGTAGCCTTACGAAGCAG -ACGGAATGTAGCCTTACGCGTCAA -ACGGAATGTAGCCTTACGGCTGAA -ACGGAATGTAGCCTTACGAGTACG -ACGGAATGTAGCCTTACGATCCGA -ACGGAATGTAGCCTTACGATGGGA -ACGGAATGTAGCCTTACGGTGCAA -ACGGAATGTAGCCTTACGGAGGAA -ACGGAATGTAGCCTTACGCAGGTA -ACGGAATGTAGCCTTACGGACTCT -ACGGAATGTAGCCTTACGAGTCCT -ACGGAATGTAGCCTTACGTAAGCC -ACGGAATGTAGCCTTACGATAGCC -ACGGAATGTAGCCTTACGTAACCG -ACGGAATGTAGCCTTACGATGCCA -ACGGAATGTAGCGTTAGCGGAAAC -ACGGAATGTAGCGTTAGCAACACC -ACGGAATGTAGCGTTAGCATCGAG -ACGGAATGTAGCGTTAGCCTCCTT -ACGGAATGTAGCGTTAGCCCTGTT -ACGGAATGTAGCGTTAGCCGGTTT -ACGGAATGTAGCGTTAGCGTGGTT -ACGGAATGTAGCGTTAGCGCCTTT -ACGGAATGTAGCGTTAGCGGTCTT -ACGGAATGTAGCGTTAGCACGCTT -ACGGAATGTAGCGTTAGCAGCGTT -ACGGAATGTAGCGTTAGCTTCGTC -ACGGAATGTAGCGTTAGCTCTCTC -ACGGAATGTAGCGTTAGCTGGATC -ACGGAATGTAGCGTTAGCCACTTC -ACGGAATGTAGCGTTAGCGTACTC -ACGGAATGTAGCGTTAGCGATGTC -ACGGAATGTAGCGTTAGCACAGTC -ACGGAATGTAGCGTTAGCTTGCTG -ACGGAATGTAGCGTTAGCTCCATG -ACGGAATGTAGCGTTAGCTGTGTG -ACGGAATGTAGCGTTAGCCTAGTG -ACGGAATGTAGCGTTAGCCATCTG -ACGGAATGTAGCGTTAGCGAGTTG -ACGGAATGTAGCGTTAGCAGACTG -ACGGAATGTAGCGTTAGCTCGGTA -ACGGAATGTAGCGTTAGCTGCCTA -ACGGAATGTAGCGTTAGCCCACTA -ACGGAATGTAGCGTTAGCGGAGTA -ACGGAATGTAGCGTTAGCTCGTCT -ACGGAATGTAGCGTTAGCTGCACT -ACGGAATGTAGCGTTAGCCTGACT -ACGGAATGTAGCGTTAGCCAACCT -ACGGAATGTAGCGTTAGCGCTACT -ACGGAATGTAGCGTTAGCGGATCT -ACGGAATGTAGCGTTAGCAAGGCT -ACGGAATGTAGCGTTAGCTCAACC -ACGGAATGTAGCGTTAGCTGTTCC -ACGGAATGTAGCGTTAGCATTCCC -ACGGAATGTAGCGTTAGCTTCTCG -ACGGAATGTAGCGTTAGCTAGACG -ACGGAATGTAGCGTTAGCGTAACG -ACGGAATGTAGCGTTAGCACTTCG -ACGGAATGTAGCGTTAGCTACGCA -ACGGAATGTAGCGTTAGCCTTGCA -ACGGAATGTAGCGTTAGCCGAACA -ACGGAATGTAGCGTTAGCCAGTCA -ACGGAATGTAGCGTTAGCGATCCA -ACGGAATGTAGCGTTAGCACGACA -ACGGAATGTAGCGTTAGCAGCTCA -ACGGAATGTAGCGTTAGCTCACGT -ACGGAATGTAGCGTTAGCCGTAGT -ACGGAATGTAGCGTTAGCGTCAGT -ACGGAATGTAGCGTTAGCGAAGGT -ACGGAATGTAGCGTTAGCAACCGT -ACGGAATGTAGCGTTAGCTTGTGC -ACGGAATGTAGCGTTAGCCTAAGC -ACGGAATGTAGCGTTAGCACTAGC -ACGGAATGTAGCGTTAGCAGATGC -ACGGAATGTAGCGTTAGCTGAAGG -ACGGAATGTAGCGTTAGCCAATGG -ACGGAATGTAGCGTTAGCATGAGG -ACGGAATGTAGCGTTAGCAATGGG -ACGGAATGTAGCGTTAGCTCCTGA -ACGGAATGTAGCGTTAGCTAGCGA -ACGGAATGTAGCGTTAGCCACAGA -ACGGAATGTAGCGTTAGCGCAAGA -ACGGAATGTAGCGTTAGCGGTTGA -ACGGAATGTAGCGTTAGCTCCGAT -ACGGAATGTAGCGTTAGCTGGCAT -ACGGAATGTAGCGTTAGCCGAGAT -ACGGAATGTAGCGTTAGCTACCAC -ACGGAATGTAGCGTTAGCCAGAAC -ACGGAATGTAGCGTTAGCGTCTAC -ACGGAATGTAGCGTTAGCACGTAC -ACGGAATGTAGCGTTAGCAGTGAC -ACGGAATGTAGCGTTAGCCTGTAG -ACGGAATGTAGCGTTAGCCCTAAG -ACGGAATGTAGCGTTAGCGTTCAG -ACGGAATGTAGCGTTAGCGCATAG -ACGGAATGTAGCGTTAGCGACAAG -ACGGAATGTAGCGTTAGCAAGCAG -ACGGAATGTAGCGTTAGCCGTCAA -ACGGAATGTAGCGTTAGCGCTGAA -ACGGAATGTAGCGTTAGCAGTACG -ACGGAATGTAGCGTTAGCATCCGA -ACGGAATGTAGCGTTAGCATGGGA -ACGGAATGTAGCGTTAGCGTGCAA -ACGGAATGTAGCGTTAGCGAGGAA -ACGGAATGTAGCGTTAGCCAGGTA -ACGGAATGTAGCGTTAGCGACTCT -ACGGAATGTAGCGTTAGCAGTCCT -ACGGAATGTAGCGTTAGCTAAGCC -ACGGAATGTAGCGTTAGCATAGCC -ACGGAATGTAGCGTTAGCTAACCG -ACGGAATGTAGCGTTAGCATGCCA -ACGGAATGTAGCGTCTTCGGAAAC -ACGGAATGTAGCGTCTTCAACACC -ACGGAATGTAGCGTCTTCATCGAG -ACGGAATGTAGCGTCTTCCTCCTT -ACGGAATGTAGCGTCTTCCCTGTT -ACGGAATGTAGCGTCTTCCGGTTT -ACGGAATGTAGCGTCTTCGTGGTT -ACGGAATGTAGCGTCTTCGCCTTT -ACGGAATGTAGCGTCTTCGGTCTT -ACGGAATGTAGCGTCTTCACGCTT -ACGGAATGTAGCGTCTTCAGCGTT -ACGGAATGTAGCGTCTTCTTCGTC -ACGGAATGTAGCGTCTTCTCTCTC -ACGGAATGTAGCGTCTTCTGGATC -ACGGAATGTAGCGTCTTCCACTTC -ACGGAATGTAGCGTCTTCGTACTC -ACGGAATGTAGCGTCTTCGATGTC -ACGGAATGTAGCGTCTTCACAGTC -ACGGAATGTAGCGTCTTCTTGCTG -ACGGAATGTAGCGTCTTCTCCATG -ACGGAATGTAGCGTCTTCTGTGTG -ACGGAATGTAGCGTCTTCCTAGTG -ACGGAATGTAGCGTCTTCCATCTG -ACGGAATGTAGCGTCTTCGAGTTG -ACGGAATGTAGCGTCTTCAGACTG -ACGGAATGTAGCGTCTTCTCGGTA -ACGGAATGTAGCGTCTTCTGCCTA -ACGGAATGTAGCGTCTTCCCACTA -ACGGAATGTAGCGTCTTCGGAGTA -ACGGAATGTAGCGTCTTCTCGTCT -ACGGAATGTAGCGTCTTCTGCACT -ACGGAATGTAGCGTCTTCCTGACT -ACGGAATGTAGCGTCTTCCAACCT -ACGGAATGTAGCGTCTTCGCTACT -ACGGAATGTAGCGTCTTCGGATCT -ACGGAATGTAGCGTCTTCAAGGCT -ACGGAATGTAGCGTCTTCTCAACC -ACGGAATGTAGCGTCTTCTGTTCC -ACGGAATGTAGCGTCTTCATTCCC -ACGGAATGTAGCGTCTTCTTCTCG -ACGGAATGTAGCGTCTTCTAGACG -ACGGAATGTAGCGTCTTCGTAACG -ACGGAATGTAGCGTCTTCACTTCG -ACGGAATGTAGCGTCTTCTACGCA -ACGGAATGTAGCGTCTTCCTTGCA -ACGGAATGTAGCGTCTTCCGAACA -ACGGAATGTAGCGTCTTCCAGTCA -ACGGAATGTAGCGTCTTCGATCCA -ACGGAATGTAGCGTCTTCACGACA -ACGGAATGTAGCGTCTTCAGCTCA -ACGGAATGTAGCGTCTTCTCACGT -ACGGAATGTAGCGTCTTCCGTAGT -ACGGAATGTAGCGTCTTCGTCAGT -ACGGAATGTAGCGTCTTCGAAGGT -ACGGAATGTAGCGTCTTCAACCGT -ACGGAATGTAGCGTCTTCTTGTGC -ACGGAATGTAGCGTCTTCCTAAGC -ACGGAATGTAGCGTCTTCACTAGC -ACGGAATGTAGCGTCTTCAGATGC -ACGGAATGTAGCGTCTTCTGAAGG -ACGGAATGTAGCGTCTTCCAATGG -ACGGAATGTAGCGTCTTCATGAGG -ACGGAATGTAGCGTCTTCAATGGG -ACGGAATGTAGCGTCTTCTCCTGA -ACGGAATGTAGCGTCTTCTAGCGA -ACGGAATGTAGCGTCTTCCACAGA -ACGGAATGTAGCGTCTTCGCAAGA -ACGGAATGTAGCGTCTTCGGTTGA -ACGGAATGTAGCGTCTTCTCCGAT -ACGGAATGTAGCGTCTTCTGGCAT -ACGGAATGTAGCGTCTTCCGAGAT -ACGGAATGTAGCGTCTTCTACCAC -ACGGAATGTAGCGTCTTCCAGAAC -ACGGAATGTAGCGTCTTCGTCTAC -ACGGAATGTAGCGTCTTCACGTAC -ACGGAATGTAGCGTCTTCAGTGAC -ACGGAATGTAGCGTCTTCCTGTAG -ACGGAATGTAGCGTCTTCCCTAAG -ACGGAATGTAGCGTCTTCGTTCAG -ACGGAATGTAGCGTCTTCGCATAG -ACGGAATGTAGCGTCTTCGACAAG -ACGGAATGTAGCGTCTTCAAGCAG -ACGGAATGTAGCGTCTTCCGTCAA -ACGGAATGTAGCGTCTTCGCTGAA -ACGGAATGTAGCGTCTTCAGTACG -ACGGAATGTAGCGTCTTCATCCGA -ACGGAATGTAGCGTCTTCATGGGA -ACGGAATGTAGCGTCTTCGTGCAA -ACGGAATGTAGCGTCTTCGAGGAA -ACGGAATGTAGCGTCTTCCAGGTA -ACGGAATGTAGCGTCTTCGACTCT -ACGGAATGTAGCGTCTTCAGTCCT -ACGGAATGTAGCGTCTTCTAAGCC -ACGGAATGTAGCGTCTTCATAGCC -ACGGAATGTAGCGTCTTCTAACCG -ACGGAATGTAGCGTCTTCATGCCA -ACGGAATGTAGCCTCTCTGGAAAC -ACGGAATGTAGCCTCTCTAACACC -ACGGAATGTAGCCTCTCTATCGAG -ACGGAATGTAGCCTCTCTCTCCTT -ACGGAATGTAGCCTCTCTCCTGTT -ACGGAATGTAGCCTCTCTCGGTTT -ACGGAATGTAGCCTCTCTGTGGTT -ACGGAATGTAGCCTCTCTGCCTTT -ACGGAATGTAGCCTCTCTGGTCTT -ACGGAATGTAGCCTCTCTACGCTT -ACGGAATGTAGCCTCTCTAGCGTT -ACGGAATGTAGCCTCTCTTTCGTC -ACGGAATGTAGCCTCTCTTCTCTC -ACGGAATGTAGCCTCTCTTGGATC -ACGGAATGTAGCCTCTCTCACTTC -ACGGAATGTAGCCTCTCTGTACTC -ACGGAATGTAGCCTCTCTGATGTC -ACGGAATGTAGCCTCTCTACAGTC -ACGGAATGTAGCCTCTCTTTGCTG -ACGGAATGTAGCCTCTCTTCCATG -ACGGAATGTAGCCTCTCTTGTGTG -ACGGAATGTAGCCTCTCTCTAGTG -ACGGAATGTAGCCTCTCTCATCTG -ACGGAATGTAGCCTCTCTGAGTTG -ACGGAATGTAGCCTCTCTAGACTG -ACGGAATGTAGCCTCTCTTCGGTA -ACGGAATGTAGCCTCTCTTGCCTA -ACGGAATGTAGCCTCTCTCCACTA -ACGGAATGTAGCCTCTCTGGAGTA -ACGGAATGTAGCCTCTCTTCGTCT -ACGGAATGTAGCCTCTCTTGCACT -ACGGAATGTAGCCTCTCTCTGACT -ACGGAATGTAGCCTCTCTCAACCT -ACGGAATGTAGCCTCTCTGCTACT -ACGGAATGTAGCCTCTCTGGATCT -ACGGAATGTAGCCTCTCTAAGGCT -ACGGAATGTAGCCTCTCTTCAACC -ACGGAATGTAGCCTCTCTTGTTCC -ACGGAATGTAGCCTCTCTATTCCC -ACGGAATGTAGCCTCTCTTTCTCG -ACGGAATGTAGCCTCTCTTAGACG -ACGGAATGTAGCCTCTCTGTAACG -ACGGAATGTAGCCTCTCTACTTCG -ACGGAATGTAGCCTCTCTTACGCA -ACGGAATGTAGCCTCTCTCTTGCA -ACGGAATGTAGCCTCTCTCGAACA -ACGGAATGTAGCCTCTCTCAGTCA -ACGGAATGTAGCCTCTCTGATCCA -ACGGAATGTAGCCTCTCTACGACA -ACGGAATGTAGCCTCTCTAGCTCA -ACGGAATGTAGCCTCTCTTCACGT -ACGGAATGTAGCCTCTCTCGTAGT -ACGGAATGTAGCCTCTCTGTCAGT -ACGGAATGTAGCCTCTCTGAAGGT -ACGGAATGTAGCCTCTCTAACCGT -ACGGAATGTAGCCTCTCTTTGTGC -ACGGAATGTAGCCTCTCTCTAAGC -ACGGAATGTAGCCTCTCTACTAGC -ACGGAATGTAGCCTCTCTAGATGC -ACGGAATGTAGCCTCTCTTGAAGG -ACGGAATGTAGCCTCTCTCAATGG -ACGGAATGTAGCCTCTCTATGAGG -ACGGAATGTAGCCTCTCTAATGGG -ACGGAATGTAGCCTCTCTTCCTGA -ACGGAATGTAGCCTCTCTTAGCGA -ACGGAATGTAGCCTCTCTCACAGA -ACGGAATGTAGCCTCTCTGCAAGA -ACGGAATGTAGCCTCTCTGGTTGA -ACGGAATGTAGCCTCTCTTCCGAT -ACGGAATGTAGCCTCTCTTGGCAT -ACGGAATGTAGCCTCTCTCGAGAT -ACGGAATGTAGCCTCTCTTACCAC -ACGGAATGTAGCCTCTCTCAGAAC -ACGGAATGTAGCCTCTCTGTCTAC -ACGGAATGTAGCCTCTCTACGTAC -ACGGAATGTAGCCTCTCTAGTGAC -ACGGAATGTAGCCTCTCTCTGTAG -ACGGAATGTAGCCTCTCTCCTAAG -ACGGAATGTAGCCTCTCTGTTCAG -ACGGAATGTAGCCTCTCTGCATAG -ACGGAATGTAGCCTCTCTGACAAG -ACGGAATGTAGCCTCTCTAAGCAG -ACGGAATGTAGCCTCTCTCGTCAA -ACGGAATGTAGCCTCTCTGCTGAA -ACGGAATGTAGCCTCTCTAGTACG -ACGGAATGTAGCCTCTCTATCCGA -ACGGAATGTAGCCTCTCTATGGGA -ACGGAATGTAGCCTCTCTGTGCAA -ACGGAATGTAGCCTCTCTGAGGAA -ACGGAATGTAGCCTCTCTCAGGTA -ACGGAATGTAGCCTCTCTGACTCT -ACGGAATGTAGCCTCTCTAGTCCT -ACGGAATGTAGCCTCTCTTAAGCC -ACGGAATGTAGCCTCTCTATAGCC -ACGGAATGTAGCCTCTCTTAACCG -ACGGAATGTAGCCTCTCTATGCCA -ACGGAATGTAGCATCTGGGGAAAC -ACGGAATGTAGCATCTGGAACACC -ACGGAATGTAGCATCTGGATCGAG -ACGGAATGTAGCATCTGGCTCCTT -ACGGAATGTAGCATCTGGCCTGTT -ACGGAATGTAGCATCTGGCGGTTT -ACGGAATGTAGCATCTGGGTGGTT -ACGGAATGTAGCATCTGGGCCTTT -ACGGAATGTAGCATCTGGGGTCTT -ACGGAATGTAGCATCTGGACGCTT -ACGGAATGTAGCATCTGGAGCGTT -ACGGAATGTAGCATCTGGTTCGTC -ACGGAATGTAGCATCTGGTCTCTC -ACGGAATGTAGCATCTGGTGGATC -ACGGAATGTAGCATCTGGCACTTC -ACGGAATGTAGCATCTGGGTACTC -ACGGAATGTAGCATCTGGGATGTC -ACGGAATGTAGCATCTGGACAGTC -ACGGAATGTAGCATCTGGTTGCTG -ACGGAATGTAGCATCTGGTCCATG -ACGGAATGTAGCATCTGGTGTGTG -ACGGAATGTAGCATCTGGCTAGTG -ACGGAATGTAGCATCTGGCATCTG -ACGGAATGTAGCATCTGGGAGTTG -ACGGAATGTAGCATCTGGAGACTG -ACGGAATGTAGCATCTGGTCGGTA -ACGGAATGTAGCATCTGGTGCCTA -ACGGAATGTAGCATCTGGCCACTA -ACGGAATGTAGCATCTGGGGAGTA -ACGGAATGTAGCATCTGGTCGTCT -ACGGAATGTAGCATCTGGTGCACT -ACGGAATGTAGCATCTGGCTGACT -ACGGAATGTAGCATCTGGCAACCT -ACGGAATGTAGCATCTGGGCTACT -ACGGAATGTAGCATCTGGGGATCT -ACGGAATGTAGCATCTGGAAGGCT -ACGGAATGTAGCATCTGGTCAACC -ACGGAATGTAGCATCTGGTGTTCC -ACGGAATGTAGCATCTGGATTCCC -ACGGAATGTAGCATCTGGTTCTCG -ACGGAATGTAGCATCTGGTAGACG -ACGGAATGTAGCATCTGGGTAACG -ACGGAATGTAGCATCTGGACTTCG -ACGGAATGTAGCATCTGGTACGCA -ACGGAATGTAGCATCTGGCTTGCA -ACGGAATGTAGCATCTGGCGAACA -ACGGAATGTAGCATCTGGCAGTCA -ACGGAATGTAGCATCTGGGATCCA -ACGGAATGTAGCATCTGGACGACA -ACGGAATGTAGCATCTGGAGCTCA -ACGGAATGTAGCATCTGGTCACGT -ACGGAATGTAGCATCTGGCGTAGT -ACGGAATGTAGCATCTGGGTCAGT -ACGGAATGTAGCATCTGGGAAGGT -ACGGAATGTAGCATCTGGAACCGT -ACGGAATGTAGCATCTGGTTGTGC -ACGGAATGTAGCATCTGGCTAAGC -ACGGAATGTAGCATCTGGACTAGC -ACGGAATGTAGCATCTGGAGATGC -ACGGAATGTAGCATCTGGTGAAGG -ACGGAATGTAGCATCTGGCAATGG -ACGGAATGTAGCATCTGGATGAGG -ACGGAATGTAGCATCTGGAATGGG -ACGGAATGTAGCATCTGGTCCTGA -ACGGAATGTAGCATCTGGTAGCGA -ACGGAATGTAGCATCTGGCACAGA -ACGGAATGTAGCATCTGGGCAAGA -ACGGAATGTAGCATCTGGGGTTGA -ACGGAATGTAGCATCTGGTCCGAT -ACGGAATGTAGCATCTGGTGGCAT -ACGGAATGTAGCATCTGGCGAGAT -ACGGAATGTAGCATCTGGTACCAC -ACGGAATGTAGCATCTGGCAGAAC -ACGGAATGTAGCATCTGGGTCTAC -ACGGAATGTAGCATCTGGACGTAC -ACGGAATGTAGCATCTGGAGTGAC -ACGGAATGTAGCATCTGGCTGTAG -ACGGAATGTAGCATCTGGCCTAAG -ACGGAATGTAGCATCTGGGTTCAG -ACGGAATGTAGCATCTGGGCATAG -ACGGAATGTAGCATCTGGGACAAG -ACGGAATGTAGCATCTGGAAGCAG -ACGGAATGTAGCATCTGGCGTCAA -ACGGAATGTAGCATCTGGGCTGAA -ACGGAATGTAGCATCTGGAGTACG -ACGGAATGTAGCATCTGGATCCGA -ACGGAATGTAGCATCTGGATGGGA -ACGGAATGTAGCATCTGGGTGCAA -ACGGAATGTAGCATCTGGGAGGAA -ACGGAATGTAGCATCTGGCAGGTA -ACGGAATGTAGCATCTGGGACTCT -ACGGAATGTAGCATCTGGAGTCCT -ACGGAATGTAGCATCTGGTAAGCC -ACGGAATGTAGCATCTGGATAGCC -ACGGAATGTAGCATCTGGTAACCG -ACGGAATGTAGCATCTGGATGCCA -ACGGAATGTAGCTTCCACGGAAAC -ACGGAATGTAGCTTCCACAACACC -ACGGAATGTAGCTTCCACATCGAG -ACGGAATGTAGCTTCCACCTCCTT -ACGGAATGTAGCTTCCACCCTGTT -ACGGAATGTAGCTTCCACCGGTTT -ACGGAATGTAGCTTCCACGTGGTT -ACGGAATGTAGCTTCCACGCCTTT -ACGGAATGTAGCTTCCACGGTCTT -ACGGAATGTAGCTTCCACACGCTT -ACGGAATGTAGCTTCCACAGCGTT -ACGGAATGTAGCTTCCACTTCGTC -ACGGAATGTAGCTTCCACTCTCTC -ACGGAATGTAGCTTCCACTGGATC -ACGGAATGTAGCTTCCACCACTTC -ACGGAATGTAGCTTCCACGTACTC -ACGGAATGTAGCTTCCACGATGTC -ACGGAATGTAGCTTCCACACAGTC -ACGGAATGTAGCTTCCACTTGCTG -ACGGAATGTAGCTTCCACTCCATG -ACGGAATGTAGCTTCCACTGTGTG -ACGGAATGTAGCTTCCACCTAGTG -ACGGAATGTAGCTTCCACCATCTG -ACGGAATGTAGCTTCCACGAGTTG -ACGGAATGTAGCTTCCACAGACTG -ACGGAATGTAGCTTCCACTCGGTA -ACGGAATGTAGCTTCCACTGCCTA -ACGGAATGTAGCTTCCACCCACTA -ACGGAATGTAGCTTCCACGGAGTA -ACGGAATGTAGCTTCCACTCGTCT -ACGGAATGTAGCTTCCACTGCACT -ACGGAATGTAGCTTCCACCTGACT -ACGGAATGTAGCTTCCACCAACCT -ACGGAATGTAGCTTCCACGCTACT -ACGGAATGTAGCTTCCACGGATCT -ACGGAATGTAGCTTCCACAAGGCT -ACGGAATGTAGCTTCCACTCAACC -ACGGAATGTAGCTTCCACTGTTCC -ACGGAATGTAGCTTCCACATTCCC -ACGGAATGTAGCTTCCACTTCTCG -ACGGAATGTAGCTTCCACTAGACG -ACGGAATGTAGCTTCCACGTAACG -ACGGAATGTAGCTTCCACACTTCG -ACGGAATGTAGCTTCCACTACGCA -ACGGAATGTAGCTTCCACCTTGCA -ACGGAATGTAGCTTCCACCGAACA -ACGGAATGTAGCTTCCACCAGTCA -ACGGAATGTAGCTTCCACGATCCA -ACGGAATGTAGCTTCCACACGACA -ACGGAATGTAGCTTCCACAGCTCA -ACGGAATGTAGCTTCCACTCACGT -ACGGAATGTAGCTTCCACCGTAGT -ACGGAATGTAGCTTCCACGTCAGT -ACGGAATGTAGCTTCCACGAAGGT -ACGGAATGTAGCTTCCACAACCGT -ACGGAATGTAGCTTCCACTTGTGC -ACGGAATGTAGCTTCCACCTAAGC -ACGGAATGTAGCTTCCACACTAGC -ACGGAATGTAGCTTCCACAGATGC -ACGGAATGTAGCTTCCACTGAAGG -ACGGAATGTAGCTTCCACCAATGG -ACGGAATGTAGCTTCCACATGAGG -ACGGAATGTAGCTTCCACAATGGG -ACGGAATGTAGCTTCCACTCCTGA -ACGGAATGTAGCTTCCACTAGCGA -ACGGAATGTAGCTTCCACCACAGA -ACGGAATGTAGCTTCCACGCAAGA -ACGGAATGTAGCTTCCACGGTTGA -ACGGAATGTAGCTTCCACTCCGAT -ACGGAATGTAGCTTCCACTGGCAT -ACGGAATGTAGCTTCCACCGAGAT -ACGGAATGTAGCTTCCACTACCAC -ACGGAATGTAGCTTCCACCAGAAC -ACGGAATGTAGCTTCCACGTCTAC -ACGGAATGTAGCTTCCACACGTAC -ACGGAATGTAGCTTCCACAGTGAC -ACGGAATGTAGCTTCCACCTGTAG -ACGGAATGTAGCTTCCACCCTAAG -ACGGAATGTAGCTTCCACGTTCAG -ACGGAATGTAGCTTCCACGCATAG -ACGGAATGTAGCTTCCACGACAAG -ACGGAATGTAGCTTCCACAAGCAG -ACGGAATGTAGCTTCCACCGTCAA -ACGGAATGTAGCTTCCACGCTGAA -ACGGAATGTAGCTTCCACAGTACG -ACGGAATGTAGCTTCCACATCCGA -ACGGAATGTAGCTTCCACATGGGA -ACGGAATGTAGCTTCCACGTGCAA -ACGGAATGTAGCTTCCACGAGGAA -ACGGAATGTAGCTTCCACCAGGTA -ACGGAATGTAGCTTCCACGACTCT -ACGGAATGTAGCTTCCACAGTCCT -ACGGAATGTAGCTTCCACTAAGCC -ACGGAATGTAGCTTCCACATAGCC -ACGGAATGTAGCTTCCACTAACCG -ACGGAATGTAGCTTCCACATGCCA -ACGGAATGTAGCCTCGTAGGAAAC -ACGGAATGTAGCCTCGTAAACACC -ACGGAATGTAGCCTCGTAATCGAG -ACGGAATGTAGCCTCGTACTCCTT -ACGGAATGTAGCCTCGTACCTGTT -ACGGAATGTAGCCTCGTACGGTTT -ACGGAATGTAGCCTCGTAGTGGTT -ACGGAATGTAGCCTCGTAGCCTTT -ACGGAATGTAGCCTCGTAGGTCTT -ACGGAATGTAGCCTCGTAACGCTT -ACGGAATGTAGCCTCGTAAGCGTT -ACGGAATGTAGCCTCGTATTCGTC -ACGGAATGTAGCCTCGTATCTCTC -ACGGAATGTAGCCTCGTATGGATC -ACGGAATGTAGCCTCGTACACTTC -ACGGAATGTAGCCTCGTAGTACTC -ACGGAATGTAGCCTCGTAGATGTC -ACGGAATGTAGCCTCGTAACAGTC -ACGGAATGTAGCCTCGTATTGCTG -ACGGAATGTAGCCTCGTATCCATG -ACGGAATGTAGCCTCGTATGTGTG -ACGGAATGTAGCCTCGTACTAGTG -ACGGAATGTAGCCTCGTACATCTG -ACGGAATGTAGCCTCGTAGAGTTG -ACGGAATGTAGCCTCGTAAGACTG -ACGGAATGTAGCCTCGTATCGGTA -ACGGAATGTAGCCTCGTATGCCTA -ACGGAATGTAGCCTCGTACCACTA -ACGGAATGTAGCCTCGTAGGAGTA -ACGGAATGTAGCCTCGTATCGTCT -ACGGAATGTAGCCTCGTATGCACT -ACGGAATGTAGCCTCGTACTGACT -ACGGAATGTAGCCTCGTACAACCT -ACGGAATGTAGCCTCGTAGCTACT -ACGGAATGTAGCCTCGTAGGATCT -ACGGAATGTAGCCTCGTAAAGGCT -ACGGAATGTAGCCTCGTATCAACC -ACGGAATGTAGCCTCGTATGTTCC -ACGGAATGTAGCCTCGTAATTCCC -ACGGAATGTAGCCTCGTATTCTCG -ACGGAATGTAGCCTCGTATAGACG -ACGGAATGTAGCCTCGTAGTAACG -ACGGAATGTAGCCTCGTAACTTCG -ACGGAATGTAGCCTCGTATACGCA -ACGGAATGTAGCCTCGTACTTGCA -ACGGAATGTAGCCTCGTACGAACA -ACGGAATGTAGCCTCGTACAGTCA -ACGGAATGTAGCCTCGTAGATCCA -ACGGAATGTAGCCTCGTAACGACA -ACGGAATGTAGCCTCGTAAGCTCA -ACGGAATGTAGCCTCGTATCACGT -ACGGAATGTAGCCTCGTACGTAGT -ACGGAATGTAGCCTCGTAGTCAGT -ACGGAATGTAGCCTCGTAGAAGGT -ACGGAATGTAGCCTCGTAAACCGT -ACGGAATGTAGCCTCGTATTGTGC -ACGGAATGTAGCCTCGTACTAAGC -ACGGAATGTAGCCTCGTAACTAGC -ACGGAATGTAGCCTCGTAAGATGC -ACGGAATGTAGCCTCGTATGAAGG -ACGGAATGTAGCCTCGTACAATGG -ACGGAATGTAGCCTCGTAATGAGG -ACGGAATGTAGCCTCGTAAATGGG -ACGGAATGTAGCCTCGTATCCTGA -ACGGAATGTAGCCTCGTATAGCGA -ACGGAATGTAGCCTCGTACACAGA -ACGGAATGTAGCCTCGTAGCAAGA -ACGGAATGTAGCCTCGTAGGTTGA -ACGGAATGTAGCCTCGTATCCGAT -ACGGAATGTAGCCTCGTATGGCAT -ACGGAATGTAGCCTCGTACGAGAT -ACGGAATGTAGCCTCGTATACCAC -ACGGAATGTAGCCTCGTACAGAAC -ACGGAATGTAGCCTCGTAGTCTAC -ACGGAATGTAGCCTCGTAACGTAC -ACGGAATGTAGCCTCGTAAGTGAC -ACGGAATGTAGCCTCGTACTGTAG -ACGGAATGTAGCCTCGTACCTAAG -ACGGAATGTAGCCTCGTAGTTCAG -ACGGAATGTAGCCTCGTAGCATAG -ACGGAATGTAGCCTCGTAGACAAG -ACGGAATGTAGCCTCGTAAAGCAG -ACGGAATGTAGCCTCGTACGTCAA -ACGGAATGTAGCCTCGTAGCTGAA -ACGGAATGTAGCCTCGTAAGTACG -ACGGAATGTAGCCTCGTAATCCGA -ACGGAATGTAGCCTCGTAATGGGA -ACGGAATGTAGCCTCGTAGTGCAA -ACGGAATGTAGCCTCGTAGAGGAA -ACGGAATGTAGCCTCGTACAGGTA -ACGGAATGTAGCCTCGTAGACTCT -ACGGAATGTAGCCTCGTAAGTCCT -ACGGAATGTAGCCTCGTATAAGCC -ACGGAATGTAGCCTCGTAATAGCC -ACGGAATGTAGCCTCGTATAACCG -ACGGAATGTAGCCTCGTAATGCCA -ACGGAATGTAGCGTCGATGGAAAC -ACGGAATGTAGCGTCGATAACACC -ACGGAATGTAGCGTCGATATCGAG -ACGGAATGTAGCGTCGATCTCCTT -ACGGAATGTAGCGTCGATCCTGTT -ACGGAATGTAGCGTCGATCGGTTT -ACGGAATGTAGCGTCGATGTGGTT -ACGGAATGTAGCGTCGATGCCTTT -ACGGAATGTAGCGTCGATGGTCTT -ACGGAATGTAGCGTCGATACGCTT -ACGGAATGTAGCGTCGATAGCGTT -ACGGAATGTAGCGTCGATTTCGTC -ACGGAATGTAGCGTCGATTCTCTC -ACGGAATGTAGCGTCGATTGGATC -ACGGAATGTAGCGTCGATCACTTC -ACGGAATGTAGCGTCGATGTACTC -ACGGAATGTAGCGTCGATGATGTC -ACGGAATGTAGCGTCGATACAGTC -ACGGAATGTAGCGTCGATTTGCTG -ACGGAATGTAGCGTCGATTCCATG -ACGGAATGTAGCGTCGATTGTGTG -ACGGAATGTAGCGTCGATCTAGTG -ACGGAATGTAGCGTCGATCATCTG -ACGGAATGTAGCGTCGATGAGTTG -ACGGAATGTAGCGTCGATAGACTG -ACGGAATGTAGCGTCGATTCGGTA -ACGGAATGTAGCGTCGATTGCCTA -ACGGAATGTAGCGTCGATCCACTA -ACGGAATGTAGCGTCGATGGAGTA -ACGGAATGTAGCGTCGATTCGTCT -ACGGAATGTAGCGTCGATTGCACT -ACGGAATGTAGCGTCGATCTGACT -ACGGAATGTAGCGTCGATCAACCT -ACGGAATGTAGCGTCGATGCTACT -ACGGAATGTAGCGTCGATGGATCT -ACGGAATGTAGCGTCGATAAGGCT -ACGGAATGTAGCGTCGATTCAACC -ACGGAATGTAGCGTCGATTGTTCC -ACGGAATGTAGCGTCGATATTCCC -ACGGAATGTAGCGTCGATTTCTCG -ACGGAATGTAGCGTCGATTAGACG -ACGGAATGTAGCGTCGATGTAACG -ACGGAATGTAGCGTCGATACTTCG -ACGGAATGTAGCGTCGATTACGCA -ACGGAATGTAGCGTCGATCTTGCA -ACGGAATGTAGCGTCGATCGAACA -ACGGAATGTAGCGTCGATCAGTCA -ACGGAATGTAGCGTCGATGATCCA -ACGGAATGTAGCGTCGATACGACA -ACGGAATGTAGCGTCGATAGCTCA -ACGGAATGTAGCGTCGATTCACGT -ACGGAATGTAGCGTCGATCGTAGT -ACGGAATGTAGCGTCGATGTCAGT -ACGGAATGTAGCGTCGATGAAGGT -ACGGAATGTAGCGTCGATAACCGT -ACGGAATGTAGCGTCGATTTGTGC -ACGGAATGTAGCGTCGATCTAAGC -ACGGAATGTAGCGTCGATACTAGC -ACGGAATGTAGCGTCGATAGATGC -ACGGAATGTAGCGTCGATTGAAGG -ACGGAATGTAGCGTCGATCAATGG -ACGGAATGTAGCGTCGATATGAGG -ACGGAATGTAGCGTCGATAATGGG -ACGGAATGTAGCGTCGATTCCTGA -ACGGAATGTAGCGTCGATTAGCGA -ACGGAATGTAGCGTCGATCACAGA -ACGGAATGTAGCGTCGATGCAAGA -ACGGAATGTAGCGTCGATGGTTGA -ACGGAATGTAGCGTCGATTCCGAT -ACGGAATGTAGCGTCGATTGGCAT -ACGGAATGTAGCGTCGATCGAGAT -ACGGAATGTAGCGTCGATTACCAC -ACGGAATGTAGCGTCGATCAGAAC -ACGGAATGTAGCGTCGATGTCTAC -ACGGAATGTAGCGTCGATACGTAC -ACGGAATGTAGCGTCGATAGTGAC -ACGGAATGTAGCGTCGATCTGTAG -ACGGAATGTAGCGTCGATCCTAAG -ACGGAATGTAGCGTCGATGTTCAG -ACGGAATGTAGCGTCGATGCATAG -ACGGAATGTAGCGTCGATGACAAG -ACGGAATGTAGCGTCGATAAGCAG -ACGGAATGTAGCGTCGATCGTCAA -ACGGAATGTAGCGTCGATGCTGAA -ACGGAATGTAGCGTCGATAGTACG -ACGGAATGTAGCGTCGATATCCGA -ACGGAATGTAGCGTCGATATGGGA -ACGGAATGTAGCGTCGATGTGCAA -ACGGAATGTAGCGTCGATGAGGAA -ACGGAATGTAGCGTCGATCAGGTA -ACGGAATGTAGCGTCGATGACTCT -ACGGAATGTAGCGTCGATAGTCCT -ACGGAATGTAGCGTCGATTAAGCC -ACGGAATGTAGCGTCGATATAGCC -ACGGAATGTAGCGTCGATTAACCG -ACGGAATGTAGCGTCGATATGCCA -ACGGAATGTAGCGTCACAGGAAAC -ACGGAATGTAGCGTCACAAACACC -ACGGAATGTAGCGTCACAATCGAG -ACGGAATGTAGCGTCACACTCCTT -ACGGAATGTAGCGTCACACCTGTT -ACGGAATGTAGCGTCACACGGTTT -ACGGAATGTAGCGTCACAGTGGTT -ACGGAATGTAGCGTCACAGCCTTT -ACGGAATGTAGCGTCACAGGTCTT -ACGGAATGTAGCGTCACAACGCTT -ACGGAATGTAGCGTCACAAGCGTT -ACGGAATGTAGCGTCACATTCGTC -ACGGAATGTAGCGTCACATCTCTC -ACGGAATGTAGCGTCACATGGATC -ACGGAATGTAGCGTCACACACTTC -ACGGAATGTAGCGTCACAGTACTC -ACGGAATGTAGCGTCACAGATGTC -ACGGAATGTAGCGTCACAACAGTC -ACGGAATGTAGCGTCACATTGCTG -ACGGAATGTAGCGTCACATCCATG -ACGGAATGTAGCGTCACATGTGTG -ACGGAATGTAGCGTCACACTAGTG -ACGGAATGTAGCGTCACACATCTG -ACGGAATGTAGCGTCACAGAGTTG -ACGGAATGTAGCGTCACAAGACTG -ACGGAATGTAGCGTCACATCGGTA -ACGGAATGTAGCGTCACATGCCTA -ACGGAATGTAGCGTCACACCACTA -ACGGAATGTAGCGTCACAGGAGTA -ACGGAATGTAGCGTCACATCGTCT -ACGGAATGTAGCGTCACATGCACT -ACGGAATGTAGCGTCACACTGACT -ACGGAATGTAGCGTCACACAACCT -ACGGAATGTAGCGTCACAGCTACT -ACGGAATGTAGCGTCACAGGATCT -ACGGAATGTAGCGTCACAAAGGCT -ACGGAATGTAGCGTCACATCAACC -ACGGAATGTAGCGTCACATGTTCC -ACGGAATGTAGCGTCACAATTCCC -ACGGAATGTAGCGTCACATTCTCG -ACGGAATGTAGCGTCACATAGACG -ACGGAATGTAGCGTCACAGTAACG -ACGGAATGTAGCGTCACAACTTCG -ACGGAATGTAGCGTCACATACGCA -ACGGAATGTAGCGTCACACTTGCA -ACGGAATGTAGCGTCACACGAACA -ACGGAATGTAGCGTCACACAGTCA -ACGGAATGTAGCGTCACAGATCCA -ACGGAATGTAGCGTCACAACGACA -ACGGAATGTAGCGTCACAAGCTCA -ACGGAATGTAGCGTCACATCACGT -ACGGAATGTAGCGTCACACGTAGT -ACGGAATGTAGCGTCACAGTCAGT -ACGGAATGTAGCGTCACAGAAGGT -ACGGAATGTAGCGTCACAAACCGT -ACGGAATGTAGCGTCACATTGTGC -ACGGAATGTAGCGTCACACTAAGC -ACGGAATGTAGCGTCACAACTAGC -ACGGAATGTAGCGTCACAAGATGC -ACGGAATGTAGCGTCACATGAAGG -ACGGAATGTAGCGTCACACAATGG -ACGGAATGTAGCGTCACAATGAGG -ACGGAATGTAGCGTCACAAATGGG -ACGGAATGTAGCGTCACATCCTGA -ACGGAATGTAGCGTCACATAGCGA -ACGGAATGTAGCGTCACACACAGA -ACGGAATGTAGCGTCACAGCAAGA -ACGGAATGTAGCGTCACAGGTTGA -ACGGAATGTAGCGTCACATCCGAT -ACGGAATGTAGCGTCACATGGCAT -ACGGAATGTAGCGTCACACGAGAT -ACGGAATGTAGCGTCACATACCAC -ACGGAATGTAGCGTCACACAGAAC -ACGGAATGTAGCGTCACAGTCTAC -ACGGAATGTAGCGTCACAACGTAC -ACGGAATGTAGCGTCACAAGTGAC -ACGGAATGTAGCGTCACACTGTAG -ACGGAATGTAGCGTCACACCTAAG -ACGGAATGTAGCGTCACAGTTCAG -ACGGAATGTAGCGTCACAGCATAG -ACGGAATGTAGCGTCACAGACAAG -ACGGAATGTAGCGTCACAAAGCAG -ACGGAATGTAGCGTCACACGTCAA -ACGGAATGTAGCGTCACAGCTGAA -ACGGAATGTAGCGTCACAAGTACG -ACGGAATGTAGCGTCACAATCCGA -ACGGAATGTAGCGTCACAATGGGA -ACGGAATGTAGCGTCACAGTGCAA -ACGGAATGTAGCGTCACAGAGGAA -ACGGAATGTAGCGTCACACAGGTA -ACGGAATGTAGCGTCACAGACTCT -ACGGAATGTAGCGTCACAAGTCCT -ACGGAATGTAGCGTCACATAAGCC -ACGGAATGTAGCGTCACAATAGCC -ACGGAATGTAGCGTCACATAACCG -ACGGAATGTAGCGTCACAATGCCA -ACGGAATGTAGCCTGTTGGGAAAC -ACGGAATGTAGCCTGTTGAACACC -ACGGAATGTAGCCTGTTGATCGAG -ACGGAATGTAGCCTGTTGCTCCTT -ACGGAATGTAGCCTGTTGCCTGTT -ACGGAATGTAGCCTGTTGCGGTTT -ACGGAATGTAGCCTGTTGGTGGTT -ACGGAATGTAGCCTGTTGGCCTTT -ACGGAATGTAGCCTGTTGGGTCTT -ACGGAATGTAGCCTGTTGACGCTT -ACGGAATGTAGCCTGTTGAGCGTT -ACGGAATGTAGCCTGTTGTTCGTC -ACGGAATGTAGCCTGTTGTCTCTC -ACGGAATGTAGCCTGTTGTGGATC -ACGGAATGTAGCCTGTTGCACTTC -ACGGAATGTAGCCTGTTGGTACTC -ACGGAATGTAGCCTGTTGGATGTC -ACGGAATGTAGCCTGTTGACAGTC -ACGGAATGTAGCCTGTTGTTGCTG -ACGGAATGTAGCCTGTTGTCCATG -ACGGAATGTAGCCTGTTGTGTGTG -ACGGAATGTAGCCTGTTGCTAGTG -ACGGAATGTAGCCTGTTGCATCTG -ACGGAATGTAGCCTGTTGGAGTTG -ACGGAATGTAGCCTGTTGAGACTG -ACGGAATGTAGCCTGTTGTCGGTA -ACGGAATGTAGCCTGTTGTGCCTA -ACGGAATGTAGCCTGTTGCCACTA -ACGGAATGTAGCCTGTTGGGAGTA -ACGGAATGTAGCCTGTTGTCGTCT -ACGGAATGTAGCCTGTTGTGCACT -ACGGAATGTAGCCTGTTGCTGACT -ACGGAATGTAGCCTGTTGCAACCT -ACGGAATGTAGCCTGTTGGCTACT -ACGGAATGTAGCCTGTTGGGATCT -ACGGAATGTAGCCTGTTGAAGGCT -ACGGAATGTAGCCTGTTGTCAACC -ACGGAATGTAGCCTGTTGTGTTCC -ACGGAATGTAGCCTGTTGATTCCC -ACGGAATGTAGCCTGTTGTTCTCG -ACGGAATGTAGCCTGTTGTAGACG -ACGGAATGTAGCCTGTTGGTAACG -ACGGAATGTAGCCTGTTGACTTCG -ACGGAATGTAGCCTGTTGTACGCA -ACGGAATGTAGCCTGTTGCTTGCA -ACGGAATGTAGCCTGTTGCGAACA -ACGGAATGTAGCCTGTTGCAGTCA -ACGGAATGTAGCCTGTTGGATCCA -ACGGAATGTAGCCTGTTGACGACA -ACGGAATGTAGCCTGTTGAGCTCA -ACGGAATGTAGCCTGTTGTCACGT -ACGGAATGTAGCCTGTTGCGTAGT -ACGGAATGTAGCCTGTTGGTCAGT -ACGGAATGTAGCCTGTTGGAAGGT -ACGGAATGTAGCCTGTTGAACCGT -ACGGAATGTAGCCTGTTGTTGTGC -ACGGAATGTAGCCTGTTGCTAAGC -ACGGAATGTAGCCTGTTGACTAGC -ACGGAATGTAGCCTGTTGAGATGC -ACGGAATGTAGCCTGTTGTGAAGG -ACGGAATGTAGCCTGTTGCAATGG -ACGGAATGTAGCCTGTTGATGAGG -ACGGAATGTAGCCTGTTGAATGGG -ACGGAATGTAGCCTGTTGTCCTGA -ACGGAATGTAGCCTGTTGTAGCGA -ACGGAATGTAGCCTGTTGCACAGA -ACGGAATGTAGCCTGTTGGCAAGA -ACGGAATGTAGCCTGTTGGGTTGA -ACGGAATGTAGCCTGTTGTCCGAT -ACGGAATGTAGCCTGTTGTGGCAT -ACGGAATGTAGCCTGTTGCGAGAT -ACGGAATGTAGCCTGTTGTACCAC -ACGGAATGTAGCCTGTTGCAGAAC -ACGGAATGTAGCCTGTTGGTCTAC -ACGGAATGTAGCCTGTTGACGTAC -ACGGAATGTAGCCTGTTGAGTGAC -ACGGAATGTAGCCTGTTGCTGTAG -ACGGAATGTAGCCTGTTGCCTAAG -ACGGAATGTAGCCTGTTGGTTCAG -ACGGAATGTAGCCTGTTGGCATAG -ACGGAATGTAGCCTGTTGGACAAG -ACGGAATGTAGCCTGTTGAAGCAG -ACGGAATGTAGCCTGTTGCGTCAA -ACGGAATGTAGCCTGTTGGCTGAA -ACGGAATGTAGCCTGTTGAGTACG -ACGGAATGTAGCCTGTTGATCCGA -ACGGAATGTAGCCTGTTGATGGGA -ACGGAATGTAGCCTGTTGGTGCAA -ACGGAATGTAGCCTGTTGGAGGAA -ACGGAATGTAGCCTGTTGCAGGTA -ACGGAATGTAGCCTGTTGGACTCT -ACGGAATGTAGCCTGTTGAGTCCT -ACGGAATGTAGCCTGTTGTAAGCC -ACGGAATGTAGCCTGTTGATAGCC -ACGGAATGTAGCCTGTTGTAACCG -ACGGAATGTAGCCTGTTGATGCCA -ACGGAATGTAGCATGTCCGGAAAC -ACGGAATGTAGCATGTCCAACACC -ACGGAATGTAGCATGTCCATCGAG -ACGGAATGTAGCATGTCCCTCCTT -ACGGAATGTAGCATGTCCCCTGTT -ACGGAATGTAGCATGTCCCGGTTT -ACGGAATGTAGCATGTCCGTGGTT -ACGGAATGTAGCATGTCCGCCTTT -ACGGAATGTAGCATGTCCGGTCTT -ACGGAATGTAGCATGTCCACGCTT -ACGGAATGTAGCATGTCCAGCGTT -ACGGAATGTAGCATGTCCTTCGTC -ACGGAATGTAGCATGTCCTCTCTC -ACGGAATGTAGCATGTCCTGGATC -ACGGAATGTAGCATGTCCCACTTC -ACGGAATGTAGCATGTCCGTACTC -ACGGAATGTAGCATGTCCGATGTC -ACGGAATGTAGCATGTCCACAGTC -ACGGAATGTAGCATGTCCTTGCTG -ACGGAATGTAGCATGTCCTCCATG -ACGGAATGTAGCATGTCCTGTGTG -ACGGAATGTAGCATGTCCCTAGTG -ACGGAATGTAGCATGTCCCATCTG -ACGGAATGTAGCATGTCCGAGTTG -ACGGAATGTAGCATGTCCAGACTG -ACGGAATGTAGCATGTCCTCGGTA -ACGGAATGTAGCATGTCCTGCCTA -ACGGAATGTAGCATGTCCCCACTA -ACGGAATGTAGCATGTCCGGAGTA -ACGGAATGTAGCATGTCCTCGTCT -ACGGAATGTAGCATGTCCTGCACT -ACGGAATGTAGCATGTCCCTGACT -ACGGAATGTAGCATGTCCCAACCT -ACGGAATGTAGCATGTCCGCTACT -ACGGAATGTAGCATGTCCGGATCT -ACGGAATGTAGCATGTCCAAGGCT -ACGGAATGTAGCATGTCCTCAACC -ACGGAATGTAGCATGTCCTGTTCC -ACGGAATGTAGCATGTCCATTCCC -ACGGAATGTAGCATGTCCTTCTCG -ACGGAATGTAGCATGTCCTAGACG -ACGGAATGTAGCATGTCCGTAACG -ACGGAATGTAGCATGTCCACTTCG -ACGGAATGTAGCATGTCCTACGCA -ACGGAATGTAGCATGTCCCTTGCA -ACGGAATGTAGCATGTCCCGAACA -ACGGAATGTAGCATGTCCCAGTCA -ACGGAATGTAGCATGTCCGATCCA -ACGGAATGTAGCATGTCCACGACA -ACGGAATGTAGCATGTCCAGCTCA -ACGGAATGTAGCATGTCCTCACGT -ACGGAATGTAGCATGTCCCGTAGT -ACGGAATGTAGCATGTCCGTCAGT -ACGGAATGTAGCATGTCCGAAGGT -ACGGAATGTAGCATGTCCAACCGT -ACGGAATGTAGCATGTCCTTGTGC -ACGGAATGTAGCATGTCCCTAAGC -ACGGAATGTAGCATGTCCACTAGC -ACGGAATGTAGCATGTCCAGATGC -ACGGAATGTAGCATGTCCTGAAGG -ACGGAATGTAGCATGTCCCAATGG -ACGGAATGTAGCATGTCCATGAGG -ACGGAATGTAGCATGTCCAATGGG -ACGGAATGTAGCATGTCCTCCTGA -ACGGAATGTAGCATGTCCTAGCGA -ACGGAATGTAGCATGTCCCACAGA -ACGGAATGTAGCATGTCCGCAAGA -ACGGAATGTAGCATGTCCGGTTGA -ACGGAATGTAGCATGTCCTCCGAT -ACGGAATGTAGCATGTCCTGGCAT -ACGGAATGTAGCATGTCCCGAGAT -ACGGAATGTAGCATGTCCTACCAC -ACGGAATGTAGCATGTCCCAGAAC -ACGGAATGTAGCATGTCCGTCTAC -ACGGAATGTAGCATGTCCACGTAC -ACGGAATGTAGCATGTCCAGTGAC -ACGGAATGTAGCATGTCCCTGTAG -ACGGAATGTAGCATGTCCCCTAAG -ACGGAATGTAGCATGTCCGTTCAG -ACGGAATGTAGCATGTCCGCATAG -ACGGAATGTAGCATGTCCGACAAG -ACGGAATGTAGCATGTCCAAGCAG -ACGGAATGTAGCATGTCCCGTCAA -ACGGAATGTAGCATGTCCGCTGAA -ACGGAATGTAGCATGTCCAGTACG -ACGGAATGTAGCATGTCCATCCGA -ACGGAATGTAGCATGTCCATGGGA -ACGGAATGTAGCATGTCCGTGCAA -ACGGAATGTAGCATGTCCGAGGAA -ACGGAATGTAGCATGTCCCAGGTA -ACGGAATGTAGCATGTCCGACTCT -ACGGAATGTAGCATGTCCAGTCCT -ACGGAATGTAGCATGTCCTAAGCC -ACGGAATGTAGCATGTCCATAGCC -ACGGAATGTAGCATGTCCTAACCG -ACGGAATGTAGCATGTCCATGCCA -ACGGAATGTAGCGTGTGTGGAAAC -ACGGAATGTAGCGTGTGTAACACC -ACGGAATGTAGCGTGTGTATCGAG -ACGGAATGTAGCGTGTGTCTCCTT -ACGGAATGTAGCGTGTGTCCTGTT -ACGGAATGTAGCGTGTGTCGGTTT -ACGGAATGTAGCGTGTGTGTGGTT -ACGGAATGTAGCGTGTGTGCCTTT -ACGGAATGTAGCGTGTGTGGTCTT -ACGGAATGTAGCGTGTGTACGCTT -ACGGAATGTAGCGTGTGTAGCGTT -ACGGAATGTAGCGTGTGTTTCGTC -ACGGAATGTAGCGTGTGTTCTCTC -ACGGAATGTAGCGTGTGTTGGATC -ACGGAATGTAGCGTGTGTCACTTC -ACGGAATGTAGCGTGTGTGTACTC -ACGGAATGTAGCGTGTGTGATGTC -ACGGAATGTAGCGTGTGTACAGTC -ACGGAATGTAGCGTGTGTTTGCTG -ACGGAATGTAGCGTGTGTTCCATG -ACGGAATGTAGCGTGTGTTGTGTG -ACGGAATGTAGCGTGTGTCTAGTG -ACGGAATGTAGCGTGTGTCATCTG -ACGGAATGTAGCGTGTGTGAGTTG -ACGGAATGTAGCGTGTGTAGACTG -ACGGAATGTAGCGTGTGTTCGGTA -ACGGAATGTAGCGTGTGTTGCCTA -ACGGAATGTAGCGTGTGTCCACTA -ACGGAATGTAGCGTGTGTGGAGTA -ACGGAATGTAGCGTGTGTTCGTCT -ACGGAATGTAGCGTGTGTTGCACT -ACGGAATGTAGCGTGTGTCTGACT -ACGGAATGTAGCGTGTGTCAACCT -ACGGAATGTAGCGTGTGTGCTACT -ACGGAATGTAGCGTGTGTGGATCT -ACGGAATGTAGCGTGTGTAAGGCT -ACGGAATGTAGCGTGTGTTCAACC -ACGGAATGTAGCGTGTGTTGTTCC -ACGGAATGTAGCGTGTGTATTCCC -ACGGAATGTAGCGTGTGTTTCTCG -ACGGAATGTAGCGTGTGTTAGACG -ACGGAATGTAGCGTGTGTGTAACG -ACGGAATGTAGCGTGTGTACTTCG -ACGGAATGTAGCGTGTGTTACGCA -ACGGAATGTAGCGTGTGTCTTGCA -ACGGAATGTAGCGTGTGTCGAACA -ACGGAATGTAGCGTGTGTCAGTCA -ACGGAATGTAGCGTGTGTGATCCA -ACGGAATGTAGCGTGTGTACGACA -ACGGAATGTAGCGTGTGTAGCTCA -ACGGAATGTAGCGTGTGTTCACGT -ACGGAATGTAGCGTGTGTCGTAGT -ACGGAATGTAGCGTGTGTGTCAGT -ACGGAATGTAGCGTGTGTGAAGGT -ACGGAATGTAGCGTGTGTAACCGT -ACGGAATGTAGCGTGTGTTTGTGC -ACGGAATGTAGCGTGTGTCTAAGC -ACGGAATGTAGCGTGTGTACTAGC -ACGGAATGTAGCGTGTGTAGATGC -ACGGAATGTAGCGTGTGTTGAAGG -ACGGAATGTAGCGTGTGTCAATGG -ACGGAATGTAGCGTGTGTATGAGG -ACGGAATGTAGCGTGTGTAATGGG -ACGGAATGTAGCGTGTGTTCCTGA -ACGGAATGTAGCGTGTGTTAGCGA -ACGGAATGTAGCGTGTGTCACAGA -ACGGAATGTAGCGTGTGTGCAAGA -ACGGAATGTAGCGTGTGTGGTTGA -ACGGAATGTAGCGTGTGTTCCGAT -ACGGAATGTAGCGTGTGTTGGCAT -ACGGAATGTAGCGTGTGTCGAGAT -ACGGAATGTAGCGTGTGTTACCAC -ACGGAATGTAGCGTGTGTCAGAAC -ACGGAATGTAGCGTGTGTGTCTAC -ACGGAATGTAGCGTGTGTACGTAC -ACGGAATGTAGCGTGTGTAGTGAC -ACGGAATGTAGCGTGTGTCTGTAG -ACGGAATGTAGCGTGTGTCCTAAG -ACGGAATGTAGCGTGTGTGTTCAG -ACGGAATGTAGCGTGTGTGCATAG -ACGGAATGTAGCGTGTGTGACAAG -ACGGAATGTAGCGTGTGTAAGCAG -ACGGAATGTAGCGTGTGTCGTCAA -ACGGAATGTAGCGTGTGTGCTGAA -ACGGAATGTAGCGTGTGTAGTACG -ACGGAATGTAGCGTGTGTATCCGA -ACGGAATGTAGCGTGTGTATGGGA -ACGGAATGTAGCGTGTGTGTGCAA -ACGGAATGTAGCGTGTGTGAGGAA -ACGGAATGTAGCGTGTGTCAGGTA -ACGGAATGTAGCGTGTGTGACTCT -ACGGAATGTAGCGTGTGTAGTCCT -ACGGAATGTAGCGTGTGTTAAGCC -ACGGAATGTAGCGTGTGTATAGCC -ACGGAATGTAGCGTGTGTTAACCG -ACGGAATGTAGCGTGTGTATGCCA -ACGGAATGTAGCGTGCTAGGAAAC -ACGGAATGTAGCGTGCTAAACACC -ACGGAATGTAGCGTGCTAATCGAG -ACGGAATGTAGCGTGCTACTCCTT -ACGGAATGTAGCGTGCTACCTGTT -ACGGAATGTAGCGTGCTACGGTTT -ACGGAATGTAGCGTGCTAGTGGTT -ACGGAATGTAGCGTGCTAGCCTTT -ACGGAATGTAGCGTGCTAGGTCTT -ACGGAATGTAGCGTGCTAACGCTT -ACGGAATGTAGCGTGCTAAGCGTT -ACGGAATGTAGCGTGCTATTCGTC -ACGGAATGTAGCGTGCTATCTCTC -ACGGAATGTAGCGTGCTATGGATC -ACGGAATGTAGCGTGCTACACTTC -ACGGAATGTAGCGTGCTAGTACTC -ACGGAATGTAGCGTGCTAGATGTC -ACGGAATGTAGCGTGCTAACAGTC -ACGGAATGTAGCGTGCTATTGCTG -ACGGAATGTAGCGTGCTATCCATG -ACGGAATGTAGCGTGCTATGTGTG -ACGGAATGTAGCGTGCTACTAGTG -ACGGAATGTAGCGTGCTACATCTG -ACGGAATGTAGCGTGCTAGAGTTG -ACGGAATGTAGCGTGCTAAGACTG -ACGGAATGTAGCGTGCTATCGGTA -ACGGAATGTAGCGTGCTATGCCTA -ACGGAATGTAGCGTGCTACCACTA -ACGGAATGTAGCGTGCTAGGAGTA -ACGGAATGTAGCGTGCTATCGTCT -ACGGAATGTAGCGTGCTATGCACT -ACGGAATGTAGCGTGCTACTGACT -ACGGAATGTAGCGTGCTACAACCT -ACGGAATGTAGCGTGCTAGCTACT -ACGGAATGTAGCGTGCTAGGATCT -ACGGAATGTAGCGTGCTAAAGGCT -ACGGAATGTAGCGTGCTATCAACC -ACGGAATGTAGCGTGCTATGTTCC -ACGGAATGTAGCGTGCTAATTCCC -ACGGAATGTAGCGTGCTATTCTCG -ACGGAATGTAGCGTGCTATAGACG -ACGGAATGTAGCGTGCTAGTAACG -ACGGAATGTAGCGTGCTAACTTCG -ACGGAATGTAGCGTGCTATACGCA -ACGGAATGTAGCGTGCTACTTGCA -ACGGAATGTAGCGTGCTACGAACA -ACGGAATGTAGCGTGCTACAGTCA -ACGGAATGTAGCGTGCTAGATCCA -ACGGAATGTAGCGTGCTAACGACA -ACGGAATGTAGCGTGCTAAGCTCA -ACGGAATGTAGCGTGCTATCACGT -ACGGAATGTAGCGTGCTACGTAGT -ACGGAATGTAGCGTGCTAGTCAGT -ACGGAATGTAGCGTGCTAGAAGGT -ACGGAATGTAGCGTGCTAAACCGT -ACGGAATGTAGCGTGCTATTGTGC -ACGGAATGTAGCGTGCTACTAAGC -ACGGAATGTAGCGTGCTAACTAGC -ACGGAATGTAGCGTGCTAAGATGC -ACGGAATGTAGCGTGCTATGAAGG -ACGGAATGTAGCGTGCTACAATGG -ACGGAATGTAGCGTGCTAATGAGG -ACGGAATGTAGCGTGCTAAATGGG -ACGGAATGTAGCGTGCTATCCTGA -ACGGAATGTAGCGTGCTATAGCGA -ACGGAATGTAGCGTGCTACACAGA -ACGGAATGTAGCGTGCTAGCAAGA -ACGGAATGTAGCGTGCTAGGTTGA -ACGGAATGTAGCGTGCTATCCGAT -ACGGAATGTAGCGTGCTATGGCAT -ACGGAATGTAGCGTGCTACGAGAT -ACGGAATGTAGCGTGCTATACCAC -ACGGAATGTAGCGTGCTACAGAAC -ACGGAATGTAGCGTGCTAGTCTAC -ACGGAATGTAGCGTGCTAACGTAC -ACGGAATGTAGCGTGCTAAGTGAC -ACGGAATGTAGCGTGCTACTGTAG -ACGGAATGTAGCGTGCTACCTAAG -ACGGAATGTAGCGTGCTAGTTCAG -ACGGAATGTAGCGTGCTAGCATAG -ACGGAATGTAGCGTGCTAGACAAG -ACGGAATGTAGCGTGCTAAAGCAG -ACGGAATGTAGCGTGCTACGTCAA -ACGGAATGTAGCGTGCTAGCTGAA -ACGGAATGTAGCGTGCTAAGTACG -ACGGAATGTAGCGTGCTAATCCGA -ACGGAATGTAGCGTGCTAATGGGA -ACGGAATGTAGCGTGCTAGTGCAA -ACGGAATGTAGCGTGCTAGAGGAA -ACGGAATGTAGCGTGCTACAGGTA -ACGGAATGTAGCGTGCTAGACTCT -ACGGAATGTAGCGTGCTAAGTCCT -ACGGAATGTAGCGTGCTATAAGCC -ACGGAATGTAGCGTGCTAATAGCC -ACGGAATGTAGCGTGCTATAACCG -ACGGAATGTAGCGTGCTAATGCCA -ACGGAATGTAGCCTGCATGGAAAC -ACGGAATGTAGCCTGCATAACACC -ACGGAATGTAGCCTGCATATCGAG -ACGGAATGTAGCCTGCATCTCCTT -ACGGAATGTAGCCTGCATCCTGTT -ACGGAATGTAGCCTGCATCGGTTT -ACGGAATGTAGCCTGCATGTGGTT -ACGGAATGTAGCCTGCATGCCTTT -ACGGAATGTAGCCTGCATGGTCTT -ACGGAATGTAGCCTGCATACGCTT -ACGGAATGTAGCCTGCATAGCGTT -ACGGAATGTAGCCTGCATTTCGTC -ACGGAATGTAGCCTGCATTCTCTC -ACGGAATGTAGCCTGCATTGGATC -ACGGAATGTAGCCTGCATCACTTC -ACGGAATGTAGCCTGCATGTACTC -ACGGAATGTAGCCTGCATGATGTC -ACGGAATGTAGCCTGCATACAGTC -ACGGAATGTAGCCTGCATTTGCTG -ACGGAATGTAGCCTGCATTCCATG -ACGGAATGTAGCCTGCATTGTGTG -ACGGAATGTAGCCTGCATCTAGTG -ACGGAATGTAGCCTGCATCATCTG -ACGGAATGTAGCCTGCATGAGTTG -ACGGAATGTAGCCTGCATAGACTG -ACGGAATGTAGCCTGCATTCGGTA -ACGGAATGTAGCCTGCATTGCCTA -ACGGAATGTAGCCTGCATCCACTA -ACGGAATGTAGCCTGCATGGAGTA -ACGGAATGTAGCCTGCATTCGTCT -ACGGAATGTAGCCTGCATTGCACT -ACGGAATGTAGCCTGCATCTGACT -ACGGAATGTAGCCTGCATCAACCT -ACGGAATGTAGCCTGCATGCTACT -ACGGAATGTAGCCTGCATGGATCT -ACGGAATGTAGCCTGCATAAGGCT -ACGGAATGTAGCCTGCATTCAACC -ACGGAATGTAGCCTGCATTGTTCC -ACGGAATGTAGCCTGCATATTCCC -ACGGAATGTAGCCTGCATTTCTCG -ACGGAATGTAGCCTGCATTAGACG -ACGGAATGTAGCCTGCATGTAACG -ACGGAATGTAGCCTGCATACTTCG -ACGGAATGTAGCCTGCATTACGCA -ACGGAATGTAGCCTGCATCTTGCA -ACGGAATGTAGCCTGCATCGAACA -ACGGAATGTAGCCTGCATCAGTCA -ACGGAATGTAGCCTGCATGATCCA -ACGGAATGTAGCCTGCATACGACA -ACGGAATGTAGCCTGCATAGCTCA -ACGGAATGTAGCCTGCATTCACGT -ACGGAATGTAGCCTGCATCGTAGT -ACGGAATGTAGCCTGCATGTCAGT -ACGGAATGTAGCCTGCATGAAGGT -ACGGAATGTAGCCTGCATAACCGT -ACGGAATGTAGCCTGCATTTGTGC -ACGGAATGTAGCCTGCATCTAAGC -ACGGAATGTAGCCTGCATACTAGC -ACGGAATGTAGCCTGCATAGATGC -ACGGAATGTAGCCTGCATTGAAGG -ACGGAATGTAGCCTGCATCAATGG -ACGGAATGTAGCCTGCATATGAGG -ACGGAATGTAGCCTGCATAATGGG -ACGGAATGTAGCCTGCATTCCTGA -ACGGAATGTAGCCTGCATTAGCGA -ACGGAATGTAGCCTGCATCACAGA -ACGGAATGTAGCCTGCATGCAAGA -ACGGAATGTAGCCTGCATGGTTGA -ACGGAATGTAGCCTGCATTCCGAT -ACGGAATGTAGCCTGCATTGGCAT -ACGGAATGTAGCCTGCATCGAGAT -ACGGAATGTAGCCTGCATTACCAC -ACGGAATGTAGCCTGCATCAGAAC -ACGGAATGTAGCCTGCATGTCTAC -ACGGAATGTAGCCTGCATACGTAC -ACGGAATGTAGCCTGCATAGTGAC -ACGGAATGTAGCCTGCATCTGTAG -ACGGAATGTAGCCTGCATCCTAAG -ACGGAATGTAGCCTGCATGTTCAG -ACGGAATGTAGCCTGCATGCATAG -ACGGAATGTAGCCTGCATGACAAG -ACGGAATGTAGCCTGCATAAGCAG -ACGGAATGTAGCCTGCATCGTCAA -ACGGAATGTAGCCTGCATGCTGAA -ACGGAATGTAGCCTGCATAGTACG -ACGGAATGTAGCCTGCATATCCGA -ACGGAATGTAGCCTGCATATGGGA -ACGGAATGTAGCCTGCATGTGCAA -ACGGAATGTAGCCTGCATGAGGAA -ACGGAATGTAGCCTGCATCAGGTA -ACGGAATGTAGCCTGCATGACTCT -ACGGAATGTAGCCTGCATAGTCCT -ACGGAATGTAGCCTGCATTAAGCC -ACGGAATGTAGCCTGCATATAGCC -ACGGAATGTAGCCTGCATTAACCG -ACGGAATGTAGCCTGCATATGCCA -ACGGAATGTAGCTTGGAGGGAAAC -ACGGAATGTAGCTTGGAGAACACC -ACGGAATGTAGCTTGGAGATCGAG -ACGGAATGTAGCTTGGAGCTCCTT -ACGGAATGTAGCTTGGAGCCTGTT -ACGGAATGTAGCTTGGAGCGGTTT -ACGGAATGTAGCTTGGAGGTGGTT -ACGGAATGTAGCTTGGAGGCCTTT -ACGGAATGTAGCTTGGAGGGTCTT -ACGGAATGTAGCTTGGAGACGCTT -ACGGAATGTAGCTTGGAGAGCGTT -ACGGAATGTAGCTTGGAGTTCGTC -ACGGAATGTAGCTTGGAGTCTCTC -ACGGAATGTAGCTTGGAGTGGATC -ACGGAATGTAGCTTGGAGCACTTC -ACGGAATGTAGCTTGGAGGTACTC -ACGGAATGTAGCTTGGAGGATGTC -ACGGAATGTAGCTTGGAGACAGTC -ACGGAATGTAGCTTGGAGTTGCTG -ACGGAATGTAGCTTGGAGTCCATG -ACGGAATGTAGCTTGGAGTGTGTG -ACGGAATGTAGCTTGGAGCTAGTG -ACGGAATGTAGCTTGGAGCATCTG -ACGGAATGTAGCTTGGAGGAGTTG -ACGGAATGTAGCTTGGAGAGACTG -ACGGAATGTAGCTTGGAGTCGGTA -ACGGAATGTAGCTTGGAGTGCCTA -ACGGAATGTAGCTTGGAGCCACTA -ACGGAATGTAGCTTGGAGGGAGTA -ACGGAATGTAGCTTGGAGTCGTCT -ACGGAATGTAGCTTGGAGTGCACT -ACGGAATGTAGCTTGGAGCTGACT -ACGGAATGTAGCTTGGAGCAACCT -ACGGAATGTAGCTTGGAGGCTACT -ACGGAATGTAGCTTGGAGGGATCT -ACGGAATGTAGCTTGGAGAAGGCT -ACGGAATGTAGCTTGGAGTCAACC -ACGGAATGTAGCTTGGAGTGTTCC -ACGGAATGTAGCTTGGAGATTCCC -ACGGAATGTAGCTTGGAGTTCTCG -ACGGAATGTAGCTTGGAGTAGACG -ACGGAATGTAGCTTGGAGGTAACG -ACGGAATGTAGCTTGGAGACTTCG -ACGGAATGTAGCTTGGAGTACGCA -ACGGAATGTAGCTTGGAGCTTGCA -ACGGAATGTAGCTTGGAGCGAACA -ACGGAATGTAGCTTGGAGCAGTCA -ACGGAATGTAGCTTGGAGGATCCA -ACGGAATGTAGCTTGGAGACGACA -ACGGAATGTAGCTTGGAGAGCTCA -ACGGAATGTAGCTTGGAGTCACGT -ACGGAATGTAGCTTGGAGCGTAGT -ACGGAATGTAGCTTGGAGGTCAGT -ACGGAATGTAGCTTGGAGGAAGGT -ACGGAATGTAGCTTGGAGAACCGT -ACGGAATGTAGCTTGGAGTTGTGC -ACGGAATGTAGCTTGGAGCTAAGC -ACGGAATGTAGCTTGGAGACTAGC -ACGGAATGTAGCTTGGAGAGATGC -ACGGAATGTAGCTTGGAGTGAAGG -ACGGAATGTAGCTTGGAGCAATGG -ACGGAATGTAGCTTGGAGATGAGG -ACGGAATGTAGCTTGGAGAATGGG -ACGGAATGTAGCTTGGAGTCCTGA -ACGGAATGTAGCTTGGAGTAGCGA -ACGGAATGTAGCTTGGAGCACAGA -ACGGAATGTAGCTTGGAGGCAAGA -ACGGAATGTAGCTTGGAGGGTTGA -ACGGAATGTAGCTTGGAGTCCGAT -ACGGAATGTAGCTTGGAGTGGCAT -ACGGAATGTAGCTTGGAGCGAGAT -ACGGAATGTAGCTTGGAGTACCAC -ACGGAATGTAGCTTGGAGCAGAAC -ACGGAATGTAGCTTGGAGGTCTAC -ACGGAATGTAGCTTGGAGACGTAC -ACGGAATGTAGCTTGGAGAGTGAC -ACGGAATGTAGCTTGGAGCTGTAG -ACGGAATGTAGCTTGGAGCCTAAG -ACGGAATGTAGCTTGGAGGTTCAG -ACGGAATGTAGCTTGGAGGCATAG -ACGGAATGTAGCTTGGAGGACAAG -ACGGAATGTAGCTTGGAGAAGCAG -ACGGAATGTAGCTTGGAGCGTCAA -ACGGAATGTAGCTTGGAGGCTGAA -ACGGAATGTAGCTTGGAGAGTACG -ACGGAATGTAGCTTGGAGATCCGA -ACGGAATGTAGCTTGGAGATGGGA -ACGGAATGTAGCTTGGAGGTGCAA -ACGGAATGTAGCTTGGAGGAGGAA -ACGGAATGTAGCTTGGAGCAGGTA -ACGGAATGTAGCTTGGAGGACTCT -ACGGAATGTAGCTTGGAGAGTCCT -ACGGAATGTAGCTTGGAGTAAGCC -ACGGAATGTAGCTTGGAGATAGCC -ACGGAATGTAGCTTGGAGTAACCG -ACGGAATGTAGCTTGGAGATGCCA -ACGGAATGTAGCCTGAGAGGAAAC -ACGGAATGTAGCCTGAGAAACACC -ACGGAATGTAGCCTGAGAATCGAG -ACGGAATGTAGCCTGAGACTCCTT -ACGGAATGTAGCCTGAGACCTGTT -ACGGAATGTAGCCTGAGACGGTTT -ACGGAATGTAGCCTGAGAGTGGTT -ACGGAATGTAGCCTGAGAGCCTTT -ACGGAATGTAGCCTGAGAGGTCTT -ACGGAATGTAGCCTGAGAACGCTT -ACGGAATGTAGCCTGAGAAGCGTT -ACGGAATGTAGCCTGAGATTCGTC -ACGGAATGTAGCCTGAGATCTCTC -ACGGAATGTAGCCTGAGATGGATC -ACGGAATGTAGCCTGAGACACTTC -ACGGAATGTAGCCTGAGAGTACTC -ACGGAATGTAGCCTGAGAGATGTC -ACGGAATGTAGCCTGAGAACAGTC -ACGGAATGTAGCCTGAGATTGCTG -ACGGAATGTAGCCTGAGATCCATG -ACGGAATGTAGCCTGAGATGTGTG -ACGGAATGTAGCCTGAGACTAGTG -ACGGAATGTAGCCTGAGACATCTG -ACGGAATGTAGCCTGAGAGAGTTG -ACGGAATGTAGCCTGAGAAGACTG -ACGGAATGTAGCCTGAGATCGGTA -ACGGAATGTAGCCTGAGATGCCTA -ACGGAATGTAGCCTGAGACCACTA -ACGGAATGTAGCCTGAGAGGAGTA -ACGGAATGTAGCCTGAGATCGTCT -ACGGAATGTAGCCTGAGATGCACT -ACGGAATGTAGCCTGAGACTGACT -ACGGAATGTAGCCTGAGACAACCT -ACGGAATGTAGCCTGAGAGCTACT -ACGGAATGTAGCCTGAGAGGATCT -ACGGAATGTAGCCTGAGAAAGGCT -ACGGAATGTAGCCTGAGATCAACC -ACGGAATGTAGCCTGAGATGTTCC -ACGGAATGTAGCCTGAGAATTCCC -ACGGAATGTAGCCTGAGATTCTCG -ACGGAATGTAGCCTGAGATAGACG -ACGGAATGTAGCCTGAGAGTAACG -ACGGAATGTAGCCTGAGAACTTCG -ACGGAATGTAGCCTGAGATACGCA -ACGGAATGTAGCCTGAGACTTGCA -ACGGAATGTAGCCTGAGACGAACA -ACGGAATGTAGCCTGAGACAGTCA -ACGGAATGTAGCCTGAGAGATCCA -ACGGAATGTAGCCTGAGAACGACA -ACGGAATGTAGCCTGAGAAGCTCA -ACGGAATGTAGCCTGAGATCACGT -ACGGAATGTAGCCTGAGACGTAGT -ACGGAATGTAGCCTGAGAGTCAGT -ACGGAATGTAGCCTGAGAGAAGGT -ACGGAATGTAGCCTGAGAAACCGT -ACGGAATGTAGCCTGAGATTGTGC -ACGGAATGTAGCCTGAGACTAAGC -ACGGAATGTAGCCTGAGAACTAGC -ACGGAATGTAGCCTGAGAAGATGC -ACGGAATGTAGCCTGAGATGAAGG -ACGGAATGTAGCCTGAGACAATGG -ACGGAATGTAGCCTGAGAATGAGG -ACGGAATGTAGCCTGAGAAATGGG -ACGGAATGTAGCCTGAGATCCTGA -ACGGAATGTAGCCTGAGATAGCGA -ACGGAATGTAGCCTGAGACACAGA -ACGGAATGTAGCCTGAGAGCAAGA -ACGGAATGTAGCCTGAGAGGTTGA -ACGGAATGTAGCCTGAGATCCGAT -ACGGAATGTAGCCTGAGATGGCAT -ACGGAATGTAGCCTGAGACGAGAT -ACGGAATGTAGCCTGAGATACCAC -ACGGAATGTAGCCTGAGACAGAAC -ACGGAATGTAGCCTGAGAGTCTAC -ACGGAATGTAGCCTGAGAACGTAC -ACGGAATGTAGCCTGAGAAGTGAC -ACGGAATGTAGCCTGAGACTGTAG -ACGGAATGTAGCCTGAGACCTAAG -ACGGAATGTAGCCTGAGAGTTCAG -ACGGAATGTAGCCTGAGAGCATAG -ACGGAATGTAGCCTGAGAGACAAG -ACGGAATGTAGCCTGAGAAAGCAG -ACGGAATGTAGCCTGAGACGTCAA -ACGGAATGTAGCCTGAGAGCTGAA -ACGGAATGTAGCCTGAGAAGTACG -ACGGAATGTAGCCTGAGAATCCGA -ACGGAATGTAGCCTGAGAATGGGA -ACGGAATGTAGCCTGAGAGTGCAA -ACGGAATGTAGCCTGAGAGAGGAA -ACGGAATGTAGCCTGAGACAGGTA -ACGGAATGTAGCCTGAGAGACTCT -ACGGAATGTAGCCTGAGAAGTCCT -ACGGAATGTAGCCTGAGATAAGCC -ACGGAATGTAGCCTGAGAATAGCC -ACGGAATGTAGCCTGAGATAACCG -ACGGAATGTAGCCTGAGAATGCCA -ACGGAATGTAGCGTATCGGGAAAC -ACGGAATGTAGCGTATCGAACACC -ACGGAATGTAGCGTATCGATCGAG -ACGGAATGTAGCGTATCGCTCCTT -ACGGAATGTAGCGTATCGCCTGTT -ACGGAATGTAGCGTATCGCGGTTT -ACGGAATGTAGCGTATCGGTGGTT -ACGGAATGTAGCGTATCGGCCTTT -ACGGAATGTAGCGTATCGGGTCTT -ACGGAATGTAGCGTATCGACGCTT -ACGGAATGTAGCGTATCGAGCGTT -ACGGAATGTAGCGTATCGTTCGTC -ACGGAATGTAGCGTATCGTCTCTC -ACGGAATGTAGCGTATCGTGGATC -ACGGAATGTAGCGTATCGCACTTC -ACGGAATGTAGCGTATCGGTACTC -ACGGAATGTAGCGTATCGGATGTC -ACGGAATGTAGCGTATCGACAGTC -ACGGAATGTAGCGTATCGTTGCTG -ACGGAATGTAGCGTATCGTCCATG -ACGGAATGTAGCGTATCGTGTGTG -ACGGAATGTAGCGTATCGCTAGTG -ACGGAATGTAGCGTATCGCATCTG -ACGGAATGTAGCGTATCGGAGTTG -ACGGAATGTAGCGTATCGAGACTG -ACGGAATGTAGCGTATCGTCGGTA -ACGGAATGTAGCGTATCGTGCCTA -ACGGAATGTAGCGTATCGCCACTA -ACGGAATGTAGCGTATCGGGAGTA -ACGGAATGTAGCGTATCGTCGTCT -ACGGAATGTAGCGTATCGTGCACT -ACGGAATGTAGCGTATCGCTGACT -ACGGAATGTAGCGTATCGCAACCT -ACGGAATGTAGCGTATCGGCTACT -ACGGAATGTAGCGTATCGGGATCT -ACGGAATGTAGCGTATCGAAGGCT -ACGGAATGTAGCGTATCGTCAACC -ACGGAATGTAGCGTATCGTGTTCC -ACGGAATGTAGCGTATCGATTCCC -ACGGAATGTAGCGTATCGTTCTCG -ACGGAATGTAGCGTATCGTAGACG -ACGGAATGTAGCGTATCGGTAACG -ACGGAATGTAGCGTATCGACTTCG -ACGGAATGTAGCGTATCGTACGCA -ACGGAATGTAGCGTATCGCTTGCA -ACGGAATGTAGCGTATCGCGAACA -ACGGAATGTAGCGTATCGCAGTCA -ACGGAATGTAGCGTATCGGATCCA -ACGGAATGTAGCGTATCGACGACA -ACGGAATGTAGCGTATCGAGCTCA -ACGGAATGTAGCGTATCGTCACGT -ACGGAATGTAGCGTATCGCGTAGT -ACGGAATGTAGCGTATCGGTCAGT -ACGGAATGTAGCGTATCGGAAGGT -ACGGAATGTAGCGTATCGAACCGT -ACGGAATGTAGCGTATCGTTGTGC -ACGGAATGTAGCGTATCGCTAAGC -ACGGAATGTAGCGTATCGACTAGC -ACGGAATGTAGCGTATCGAGATGC -ACGGAATGTAGCGTATCGTGAAGG -ACGGAATGTAGCGTATCGCAATGG -ACGGAATGTAGCGTATCGATGAGG -ACGGAATGTAGCGTATCGAATGGG -ACGGAATGTAGCGTATCGTCCTGA -ACGGAATGTAGCGTATCGTAGCGA -ACGGAATGTAGCGTATCGCACAGA -ACGGAATGTAGCGTATCGGCAAGA -ACGGAATGTAGCGTATCGGGTTGA -ACGGAATGTAGCGTATCGTCCGAT -ACGGAATGTAGCGTATCGTGGCAT -ACGGAATGTAGCGTATCGCGAGAT -ACGGAATGTAGCGTATCGTACCAC -ACGGAATGTAGCGTATCGCAGAAC -ACGGAATGTAGCGTATCGGTCTAC -ACGGAATGTAGCGTATCGACGTAC -ACGGAATGTAGCGTATCGAGTGAC -ACGGAATGTAGCGTATCGCTGTAG -ACGGAATGTAGCGTATCGCCTAAG -ACGGAATGTAGCGTATCGGTTCAG -ACGGAATGTAGCGTATCGGCATAG -ACGGAATGTAGCGTATCGGACAAG -ACGGAATGTAGCGTATCGAAGCAG -ACGGAATGTAGCGTATCGCGTCAA -ACGGAATGTAGCGTATCGGCTGAA -ACGGAATGTAGCGTATCGAGTACG -ACGGAATGTAGCGTATCGATCCGA -ACGGAATGTAGCGTATCGATGGGA -ACGGAATGTAGCGTATCGGTGCAA -ACGGAATGTAGCGTATCGGAGGAA -ACGGAATGTAGCGTATCGCAGGTA -ACGGAATGTAGCGTATCGGACTCT -ACGGAATGTAGCGTATCGAGTCCT -ACGGAATGTAGCGTATCGTAAGCC -ACGGAATGTAGCGTATCGATAGCC -ACGGAATGTAGCGTATCGTAACCG -ACGGAATGTAGCGTATCGATGCCA -ACGGAATGTAGCCTATGCGGAAAC -ACGGAATGTAGCCTATGCAACACC -ACGGAATGTAGCCTATGCATCGAG -ACGGAATGTAGCCTATGCCTCCTT -ACGGAATGTAGCCTATGCCCTGTT -ACGGAATGTAGCCTATGCCGGTTT -ACGGAATGTAGCCTATGCGTGGTT -ACGGAATGTAGCCTATGCGCCTTT -ACGGAATGTAGCCTATGCGGTCTT -ACGGAATGTAGCCTATGCACGCTT -ACGGAATGTAGCCTATGCAGCGTT -ACGGAATGTAGCCTATGCTTCGTC -ACGGAATGTAGCCTATGCTCTCTC -ACGGAATGTAGCCTATGCTGGATC -ACGGAATGTAGCCTATGCCACTTC -ACGGAATGTAGCCTATGCGTACTC -ACGGAATGTAGCCTATGCGATGTC -ACGGAATGTAGCCTATGCACAGTC -ACGGAATGTAGCCTATGCTTGCTG -ACGGAATGTAGCCTATGCTCCATG -ACGGAATGTAGCCTATGCTGTGTG -ACGGAATGTAGCCTATGCCTAGTG -ACGGAATGTAGCCTATGCCATCTG -ACGGAATGTAGCCTATGCGAGTTG -ACGGAATGTAGCCTATGCAGACTG -ACGGAATGTAGCCTATGCTCGGTA -ACGGAATGTAGCCTATGCTGCCTA -ACGGAATGTAGCCTATGCCCACTA -ACGGAATGTAGCCTATGCGGAGTA -ACGGAATGTAGCCTATGCTCGTCT -ACGGAATGTAGCCTATGCTGCACT -ACGGAATGTAGCCTATGCCTGACT -ACGGAATGTAGCCTATGCCAACCT -ACGGAATGTAGCCTATGCGCTACT -ACGGAATGTAGCCTATGCGGATCT -ACGGAATGTAGCCTATGCAAGGCT -ACGGAATGTAGCCTATGCTCAACC -ACGGAATGTAGCCTATGCTGTTCC -ACGGAATGTAGCCTATGCATTCCC -ACGGAATGTAGCCTATGCTTCTCG -ACGGAATGTAGCCTATGCTAGACG -ACGGAATGTAGCCTATGCGTAACG -ACGGAATGTAGCCTATGCACTTCG -ACGGAATGTAGCCTATGCTACGCA -ACGGAATGTAGCCTATGCCTTGCA -ACGGAATGTAGCCTATGCCGAACA -ACGGAATGTAGCCTATGCCAGTCA -ACGGAATGTAGCCTATGCGATCCA -ACGGAATGTAGCCTATGCACGACA -ACGGAATGTAGCCTATGCAGCTCA -ACGGAATGTAGCCTATGCTCACGT -ACGGAATGTAGCCTATGCCGTAGT -ACGGAATGTAGCCTATGCGTCAGT -ACGGAATGTAGCCTATGCGAAGGT -ACGGAATGTAGCCTATGCAACCGT -ACGGAATGTAGCCTATGCTTGTGC -ACGGAATGTAGCCTATGCCTAAGC -ACGGAATGTAGCCTATGCACTAGC -ACGGAATGTAGCCTATGCAGATGC -ACGGAATGTAGCCTATGCTGAAGG -ACGGAATGTAGCCTATGCCAATGG -ACGGAATGTAGCCTATGCATGAGG -ACGGAATGTAGCCTATGCAATGGG -ACGGAATGTAGCCTATGCTCCTGA -ACGGAATGTAGCCTATGCTAGCGA -ACGGAATGTAGCCTATGCCACAGA -ACGGAATGTAGCCTATGCGCAAGA -ACGGAATGTAGCCTATGCGGTTGA -ACGGAATGTAGCCTATGCTCCGAT -ACGGAATGTAGCCTATGCTGGCAT -ACGGAATGTAGCCTATGCCGAGAT -ACGGAATGTAGCCTATGCTACCAC -ACGGAATGTAGCCTATGCCAGAAC -ACGGAATGTAGCCTATGCGTCTAC -ACGGAATGTAGCCTATGCACGTAC -ACGGAATGTAGCCTATGCAGTGAC -ACGGAATGTAGCCTATGCCTGTAG -ACGGAATGTAGCCTATGCCCTAAG -ACGGAATGTAGCCTATGCGTTCAG -ACGGAATGTAGCCTATGCGCATAG -ACGGAATGTAGCCTATGCGACAAG -ACGGAATGTAGCCTATGCAAGCAG -ACGGAATGTAGCCTATGCCGTCAA -ACGGAATGTAGCCTATGCGCTGAA -ACGGAATGTAGCCTATGCAGTACG -ACGGAATGTAGCCTATGCATCCGA -ACGGAATGTAGCCTATGCATGGGA -ACGGAATGTAGCCTATGCGTGCAA -ACGGAATGTAGCCTATGCGAGGAA -ACGGAATGTAGCCTATGCCAGGTA -ACGGAATGTAGCCTATGCGACTCT -ACGGAATGTAGCCTATGCAGTCCT -ACGGAATGTAGCCTATGCTAAGCC -ACGGAATGTAGCCTATGCATAGCC -ACGGAATGTAGCCTATGCTAACCG -ACGGAATGTAGCCTATGCATGCCA -ACGGAATGTAGCCTACCAGGAAAC -ACGGAATGTAGCCTACCAAACACC -ACGGAATGTAGCCTACCAATCGAG -ACGGAATGTAGCCTACCACTCCTT -ACGGAATGTAGCCTACCACCTGTT -ACGGAATGTAGCCTACCACGGTTT -ACGGAATGTAGCCTACCAGTGGTT -ACGGAATGTAGCCTACCAGCCTTT -ACGGAATGTAGCCTACCAGGTCTT -ACGGAATGTAGCCTACCAACGCTT -ACGGAATGTAGCCTACCAAGCGTT -ACGGAATGTAGCCTACCATTCGTC -ACGGAATGTAGCCTACCATCTCTC -ACGGAATGTAGCCTACCATGGATC -ACGGAATGTAGCCTACCACACTTC -ACGGAATGTAGCCTACCAGTACTC -ACGGAATGTAGCCTACCAGATGTC -ACGGAATGTAGCCTACCAACAGTC -ACGGAATGTAGCCTACCATTGCTG -ACGGAATGTAGCCTACCATCCATG -ACGGAATGTAGCCTACCATGTGTG -ACGGAATGTAGCCTACCACTAGTG -ACGGAATGTAGCCTACCACATCTG -ACGGAATGTAGCCTACCAGAGTTG -ACGGAATGTAGCCTACCAAGACTG -ACGGAATGTAGCCTACCATCGGTA -ACGGAATGTAGCCTACCATGCCTA -ACGGAATGTAGCCTACCACCACTA -ACGGAATGTAGCCTACCAGGAGTA -ACGGAATGTAGCCTACCATCGTCT -ACGGAATGTAGCCTACCATGCACT -ACGGAATGTAGCCTACCACTGACT -ACGGAATGTAGCCTACCACAACCT -ACGGAATGTAGCCTACCAGCTACT -ACGGAATGTAGCCTACCAGGATCT -ACGGAATGTAGCCTACCAAAGGCT -ACGGAATGTAGCCTACCATCAACC -ACGGAATGTAGCCTACCATGTTCC -ACGGAATGTAGCCTACCAATTCCC -ACGGAATGTAGCCTACCATTCTCG -ACGGAATGTAGCCTACCATAGACG -ACGGAATGTAGCCTACCAGTAACG -ACGGAATGTAGCCTACCAACTTCG -ACGGAATGTAGCCTACCATACGCA -ACGGAATGTAGCCTACCACTTGCA -ACGGAATGTAGCCTACCACGAACA -ACGGAATGTAGCCTACCACAGTCA -ACGGAATGTAGCCTACCAGATCCA -ACGGAATGTAGCCTACCAACGACA -ACGGAATGTAGCCTACCAAGCTCA -ACGGAATGTAGCCTACCATCACGT -ACGGAATGTAGCCTACCACGTAGT -ACGGAATGTAGCCTACCAGTCAGT -ACGGAATGTAGCCTACCAGAAGGT -ACGGAATGTAGCCTACCAAACCGT -ACGGAATGTAGCCTACCATTGTGC -ACGGAATGTAGCCTACCACTAAGC -ACGGAATGTAGCCTACCAACTAGC -ACGGAATGTAGCCTACCAAGATGC -ACGGAATGTAGCCTACCATGAAGG -ACGGAATGTAGCCTACCACAATGG -ACGGAATGTAGCCTACCAATGAGG -ACGGAATGTAGCCTACCAAATGGG -ACGGAATGTAGCCTACCATCCTGA -ACGGAATGTAGCCTACCATAGCGA -ACGGAATGTAGCCTACCACACAGA -ACGGAATGTAGCCTACCAGCAAGA -ACGGAATGTAGCCTACCAGGTTGA -ACGGAATGTAGCCTACCATCCGAT -ACGGAATGTAGCCTACCATGGCAT -ACGGAATGTAGCCTACCACGAGAT -ACGGAATGTAGCCTACCATACCAC -ACGGAATGTAGCCTACCACAGAAC -ACGGAATGTAGCCTACCAGTCTAC -ACGGAATGTAGCCTACCAACGTAC -ACGGAATGTAGCCTACCAAGTGAC -ACGGAATGTAGCCTACCACTGTAG -ACGGAATGTAGCCTACCACCTAAG -ACGGAATGTAGCCTACCAGTTCAG -ACGGAATGTAGCCTACCAGCATAG -ACGGAATGTAGCCTACCAGACAAG -ACGGAATGTAGCCTACCAAAGCAG -ACGGAATGTAGCCTACCACGTCAA -ACGGAATGTAGCCTACCAGCTGAA -ACGGAATGTAGCCTACCAAGTACG -ACGGAATGTAGCCTACCAATCCGA -ACGGAATGTAGCCTACCAATGGGA -ACGGAATGTAGCCTACCAGTGCAA -ACGGAATGTAGCCTACCAGAGGAA -ACGGAATGTAGCCTACCACAGGTA -ACGGAATGTAGCCTACCAGACTCT -ACGGAATGTAGCCTACCAAGTCCT -ACGGAATGTAGCCTACCATAAGCC -ACGGAATGTAGCCTACCAATAGCC -ACGGAATGTAGCCTACCATAACCG -ACGGAATGTAGCCTACCAATGCCA -ACGGAATGTAGCGTAGGAGGAAAC -ACGGAATGTAGCGTAGGAAACACC -ACGGAATGTAGCGTAGGAATCGAG -ACGGAATGTAGCGTAGGACTCCTT -ACGGAATGTAGCGTAGGACCTGTT -ACGGAATGTAGCGTAGGACGGTTT -ACGGAATGTAGCGTAGGAGTGGTT -ACGGAATGTAGCGTAGGAGCCTTT -ACGGAATGTAGCGTAGGAGGTCTT -ACGGAATGTAGCGTAGGAACGCTT -ACGGAATGTAGCGTAGGAAGCGTT -ACGGAATGTAGCGTAGGATTCGTC -ACGGAATGTAGCGTAGGATCTCTC -ACGGAATGTAGCGTAGGATGGATC -ACGGAATGTAGCGTAGGACACTTC -ACGGAATGTAGCGTAGGAGTACTC -ACGGAATGTAGCGTAGGAGATGTC -ACGGAATGTAGCGTAGGAACAGTC -ACGGAATGTAGCGTAGGATTGCTG -ACGGAATGTAGCGTAGGATCCATG -ACGGAATGTAGCGTAGGATGTGTG -ACGGAATGTAGCGTAGGACTAGTG -ACGGAATGTAGCGTAGGACATCTG -ACGGAATGTAGCGTAGGAGAGTTG -ACGGAATGTAGCGTAGGAAGACTG -ACGGAATGTAGCGTAGGATCGGTA -ACGGAATGTAGCGTAGGATGCCTA -ACGGAATGTAGCGTAGGACCACTA -ACGGAATGTAGCGTAGGAGGAGTA -ACGGAATGTAGCGTAGGATCGTCT -ACGGAATGTAGCGTAGGATGCACT -ACGGAATGTAGCGTAGGACTGACT -ACGGAATGTAGCGTAGGACAACCT -ACGGAATGTAGCGTAGGAGCTACT -ACGGAATGTAGCGTAGGAGGATCT -ACGGAATGTAGCGTAGGAAAGGCT -ACGGAATGTAGCGTAGGATCAACC -ACGGAATGTAGCGTAGGATGTTCC -ACGGAATGTAGCGTAGGAATTCCC -ACGGAATGTAGCGTAGGATTCTCG -ACGGAATGTAGCGTAGGATAGACG -ACGGAATGTAGCGTAGGAGTAACG -ACGGAATGTAGCGTAGGAACTTCG -ACGGAATGTAGCGTAGGATACGCA -ACGGAATGTAGCGTAGGACTTGCA -ACGGAATGTAGCGTAGGACGAACA -ACGGAATGTAGCGTAGGACAGTCA -ACGGAATGTAGCGTAGGAGATCCA -ACGGAATGTAGCGTAGGAACGACA -ACGGAATGTAGCGTAGGAAGCTCA -ACGGAATGTAGCGTAGGATCACGT -ACGGAATGTAGCGTAGGACGTAGT -ACGGAATGTAGCGTAGGAGTCAGT -ACGGAATGTAGCGTAGGAGAAGGT -ACGGAATGTAGCGTAGGAAACCGT -ACGGAATGTAGCGTAGGATTGTGC -ACGGAATGTAGCGTAGGACTAAGC -ACGGAATGTAGCGTAGGAACTAGC -ACGGAATGTAGCGTAGGAAGATGC -ACGGAATGTAGCGTAGGATGAAGG -ACGGAATGTAGCGTAGGACAATGG -ACGGAATGTAGCGTAGGAATGAGG -ACGGAATGTAGCGTAGGAAATGGG -ACGGAATGTAGCGTAGGATCCTGA -ACGGAATGTAGCGTAGGATAGCGA -ACGGAATGTAGCGTAGGACACAGA -ACGGAATGTAGCGTAGGAGCAAGA -ACGGAATGTAGCGTAGGAGGTTGA -ACGGAATGTAGCGTAGGATCCGAT -ACGGAATGTAGCGTAGGATGGCAT -ACGGAATGTAGCGTAGGACGAGAT -ACGGAATGTAGCGTAGGATACCAC -ACGGAATGTAGCGTAGGACAGAAC -ACGGAATGTAGCGTAGGAGTCTAC -ACGGAATGTAGCGTAGGAACGTAC -ACGGAATGTAGCGTAGGAAGTGAC -ACGGAATGTAGCGTAGGACTGTAG -ACGGAATGTAGCGTAGGACCTAAG -ACGGAATGTAGCGTAGGAGTTCAG -ACGGAATGTAGCGTAGGAGCATAG -ACGGAATGTAGCGTAGGAGACAAG -ACGGAATGTAGCGTAGGAAAGCAG -ACGGAATGTAGCGTAGGACGTCAA -ACGGAATGTAGCGTAGGAGCTGAA -ACGGAATGTAGCGTAGGAAGTACG -ACGGAATGTAGCGTAGGAATCCGA -ACGGAATGTAGCGTAGGAATGGGA -ACGGAATGTAGCGTAGGAGTGCAA -ACGGAATGTAGCGTAGGAGAGGAA -ACGGAATGTAGCGTAGGACAGGTA -ACGGAATGTAGCGTAGGAGACTCT -ACGGAATGTAGCGTAGGAAGTCCT -ACGGAATGTAGCGTAGGATAAGCC -ACGGAATGTAGCGTAGGAATAGCC -ACGGAATGTAGCGTAGGATAACCG -ACGGAATGTAGCGTAGGAATGCCA -ACGGAATGTAGCTCTTCGGGAAAC -ACGGAATGTAGCTCTTCGAACACC -ACGGAATGTAGCTCTTCGATCGAG -ACGGAATGTAGCTCTTCGCTCCTT -ACGGAATGTAGCTCTTCGCCTGTT -ACGGAATGTAGCTCTTCGCGGTTT -ACGGAATGTAGCTCTTCGGTGGTT -ACGGAATGTAGCTCTTCGGCCTTT -ACGGAATGTAGCTCTTCGGGTCTT -ACGGAATGTAGCTCTTCGACGCTT -ACGGAATGTAGCTCTTCGAGCGTT -ACGGAATGTAGCTCTTCGTTCGTC -ACGGAATGTAGCTCTTCGTCTCTC -ACGGAATGTAGCTCTTCGTGGATC -ACGGAATGTAGCTCTTCGCACTTC -ACGGAATGTAGCTCTTCGGTACTC -ACGGAATGTAGCTCTTCGGATGTC -ACGGAATGTAGCTCTTCGACAGTC -ACGGAATGTAGCTCTTCGTTGCTG -ACGGAATGTAGCTCTTCGTCCATG -ACGGAATGTAGCTCTTCGTGTGTG -ACGGAATGTAGCTCTTCGCTAGTG -ACGGAATGTAGCTCTTCGCATCTG -ACGGAATGTAGCTCTTCGGAGTTG -ACGGAATGTAGCTCTTCGAGACTG -ACGGAATGTAGCTCTTCGTCGGTA -ACGGAATGTAGCTCTTCGTGCCTA -ACGGAATGTAGCTCTTCGCCACTA -ACGGAATGTAGCTCTTCGGGAGTA -ACGGAATGTAGCTCTTCGTCGTCT -ACGGAATGTAGCTCTTCGTGCACT -ACGGAATGTAGCTCTTCGCTGACT -ACGGAATGTAGCTCTTCGCAACCT -ACGGAATGTAGCTCTTCGGCTACT -ACGGAATGTAGCTCTTCGGGATCT -ACGGAATGTAGCTCTTCGAAGGCT -ACGGAATGTAGCTCTTCGTCAACC -ACGGAATGTAGCTCTTCGTGTTCC -ACGGAATGTAGCTCTTCGATTCCC -ACGGAATGTAGCTCTTCGTTCTCG -ACGGAATGTAGCTCTTCGTAGACG -ACGGAATGTAGCTCTTCGGTAACG -ACGGAATGTAGCTCTTCGACTTCG -ACGGAATGTAGCTCTTCGTACGCA -ACGGAATGTAGCTCTTCGCTTGCA -ACGGAATGTAGCTCTTCGCGAACA -ACGGAATGTAGCTCTTCGCAGTCA -ACGGAATGTAGCTCTTCGGATCCA -ACGGAATGTAGCTCTTCGACGACA -ACGGAATGTAGCTCTTCGAGCTCA -ACGGAATGTAGCTCTTCGTCACGT -ACGGAATGTAGCTCTTCGCGTAGT -ACGGAATGTAGCTCTTCGGTCAGT -ACGGAATGTAGCTCTTCGGAAGGT -ACGGAATGTAGCTCTTCGAACCGT -ACGGAATGTAGCTCTTCGTTGTGC -ACGGAATGTAGCTCTTCGCTAAGC -ACGGAATGTAGCTCTTCGACTAGC -ACGGAATGTAGCTCTTCGAGATGC -ACGGAATGTAGCTCTTCGTGAAGG -ACGGAATGTAGCTCTTCGCAATGG -ACGGAATGTAGCTCTTCGATGAGG -ACGGAATGTAGCTCTTCGAATGGG -ACGGAATGTAGCTCTTCGTCCTGA -ACGGAATGTAGCTCTTCGTAGCGA -ACGGAATGTAGCTCTTCGCACAGA -ACGGAATGTAGCTCTTCGGCAAGA -ACGGAATGTAGCTCTTCGGGTTGA -ACGGAATGTAGCTCTTCGTCCGAT -ACGGAATGTAGCTCTTCGTGGCAT -ACGGAATGTAGCTCTTCGCGAGAT -ACGGAATGTAGCTCTTCGTACCAC -ACGGAATGTAGCTCTTCGCAGAAC -ACGGAATGTAGCTCTTCGGTCTAC -ACGGAATGTAGCTCTTCGACGTAC -ACGGAATGTAGCTCTTCGAGTGAC -ACGGAATGTAGCTCTTCGCTGTAG -ACGGAATGTAGCTCTTCGCCTAAG -ACGGAATGTAGCTCTTCGGTTCAG -ACGGAATGTAGCTCTTCGGCATAG -ACGGAATGTAGCTCTTCGGACAAG -ACGGAATGTAGCTCTTCGAAGCAG -ACGGAATGTAGCTCTTCGCGTCAA -ACGGAATGTAGCTCTTCGGCTGAA -ACGGAATGTAGCTCTTCGAGTACG -ACGGAATGTAGCTCTTCGATCCGA -ACGGAATGTAGCTCTTCGATGGGA -ACGGAATGTAGCTCTTCGGTGCAA -ACGGAATGTAGCTCTTCGGAGGAA -ACGGAATGTAGCTCTTCGCAGGTA -ACGGAATGTAGCTCTTCGGACTCT -ACGGAATGTAGCTCTTCGAGTCCT -ACGGAATGTAGCTCTTCGTAAGCC -ACGGAATGTAGCTCTTCGATAGCC -ACGGAATGTAGCTCTTCGTAACCG -ACGGAATGTAGCTCTTCGATGCCA -ACGGAATGTAGCACTTGCGGAAAC -ACGGAATGTAGCACTTGCAACACC -ACGGAATGTAGCACTTGCATCGAG -ACGGAATGTAGCACTTGCCTCCTT -ACGGAATGTAGCACTTGCCCTGTT -ACGGAATGTAGCACTTGCCGGTTT -ACGGAATGTAGCACTTGCGTGGTT -ACGGAATGTAGCACTTGCGCCTTT -ACGGAATGTAGCACTTGCGGTCTT -ACGGAATGTAGCACTTGCACGCTT -ACGGAATGTAGCACTTGCAGCGTT -ACGGAATGTAGCACTTGCTTCGTC -ACGGAATGTAGCACTTGCTCTCTC -ACGGAATGTAGCACTTGCTGGATC -ACGGAATGTAGCACTTGCCACTTC -ACGGAATGTAGCACTTGCGTACTC -ACGGAATGTAGCACTTGCGATGTC -ACGGAATGTAGCACTTGCACAGTC -ACGGAATGTAGCACTTGCTTGCTG -ACGGAATGTAGCACTTGCTCCATG -ACGGAATGTAGCACTTGCTGTGTG -ACGGAATGTAGCACTTGCCTAGTG -ACGGAATGTAGCACTTGCCATCTG -ACGGAATGTAGCACTTGCGAGTTG -ACGGAATGTAGCACTTGCAGACTG -ACGGAATGTAGCACTTGCTCGGTA -ACGGAATGTAGCACTTGCTGCCTA -ACGGAATGTAGCACTTGCCCACTA -ACGGAATGTAGCACTTGCGGAGTA -ACGGAATGTAGCACTTGCTCGTCT -ACGGAATGTAGCACTTGCTGCACT -ACGGAATGTAGCACTTGCCTGACT -ACGGAATGTAGCACTTGCCAACCT -ACGGAATGTAGCACTTGCGCTACT -ACGGAATGTAGCACTTGCGGATCT -ACGGAATGTAGCACTTGCAAGGCT -ACGGAATGTAGCACTTGCTCAACC -ACGGAATGTAGCACTTGCTGTTCC -ACGGAATGTAGCACTTGCATTCCC -ACGGAATGTAGCACTTGCTTCTCG -ACGGAATGTAGCACTTGCTAGACG -ACGGAATGTAGCACTTGCGTAACG -ACGGAATGTAGCACTTGCACTTCG -ACGGAATGTAGCACTTGCTACGCA -ACGGAATGTAGCACTTGCCTTGCA -ACGGAATGTAGCACTTGCCGAACA -ACGGAATGTAGCACTTGCCAGTCA -ACGGAATGTAGCACTTGCGATCCA -ACGGAATGTAGCACTTGCACGACA -ACGGAATGTAGCACTTGCAGCTCA -ACGGAATGTAGCACTTGCTCACGT -ACGGAATGTAGCACTTGCCGTAGT -ACGGAATGTAGCACTTGCGTCAGT -ACGGAATGTAGCACTTGCGAAGGT -ACGGAATGTAGCACTTGCAACCGT -ACGGAATGTAGCACTTGCTTGTGC -ACGGAATGTAGCACTTGCCTAAGC -ACGGAATGTAGCACTTGCACTAGC -ACGGAATGTAGCACTTGCAGATGC -ACGGAATGTAGCACTTGCTGAAGG -ACGGAATGTAGCACTTGCCAATGG -ACGGAATGTAGCACTTGCATGAGG -ACGGAATGTAGCACTTGCAATGGG -ACGGAATGTAGCACTTGCTCCTGA -ACGGAATGTAGCACTTGCTAGCGA -ACGGAATGTAGCACTTGCCACAGA -ACGGAATGTAGCACTTGCGCAAGA -ACGGAATGTAGCACTTGCGGTTGA -ACGGAATGTAGCACTTGCTCCGAT -ACGGAATGTAGCACTTGCTGGCAT -ACGGAATGTAGCACTTGCCGAGAT -ACGGAATGTAGCACTTGCTACCAC -ACGGAATGTAGCACTTGCCAGAAC -ACGGAATGTAGCACTTGCGTCTAC -ACGGAATGTAGCACTTGCACGTAC -ACGGAATGTAGCACTTGCAGTGAC -ACGGAATGTAGCACTTGCCTGTAG -ACGGAATGTAGCACTTGCCCTAAG -ACGGAATGTAGCACTTGCGTTCAG -ACGGAATGTAGCACTTGCGCATAG -ACGGAATGTAGCACTTGCGACAAG -ACGGAATGTAGCACTTGCAAGCAG -ACGGAATGTAGCACTTGCCGTCAA -ACGGAATGTAGCACTTGCGCTGAA -ACGGAATGTAGCACTTGCAGTACG -ACGGAATGTAGCACTTGCATCCGA -ACGGAATGTAGCACTTGCATGGGA -ACGGAATGTAGCACTTGCGTGCAA -ACGGAATGTAGCACTTGCGAGGAA -ACGGAATGTAGCACTTGCCAGGTA -ACGGAATGTAGCACTTGCGACTCT -ACGGAATGTAGCACTTGCAGTCCT -ACGGAATGTAGCACTTGCTAAGCC -ACGGAATGTAGCACTTGCATAGCC -ACGGAATGTAGCACTTGCTAACCG -ACGGAATGTAGCACTTGCATGCCA -ACGGAATGTAGCACTCTGGGAAAC -ACGGAATGTAGCACTCTGAACACC -ACGGAATGTAGCACTCTGATCGAG -ACGGAATGTAGCACTCTGCTCCTT -ACGGAATGTAGCACTCTGCCTGTT -ACGGAATGTAGCACTCTGCGGTTT -ACGGAATGTAGCACTCTGGTGGTT -ACGGAATGTAGCACTCTGGCCTTT -ACGGAATGTAGCACTCTGGGTCTT -ACGGAATGTAGCACTCTGACGCTT -ACGGAATGTAGCACTCTGAGCGTT -ACGGAATGTAGCACTCTGTTCGTC -ACGGAATGTAGCACTCTGTCTCTC -ACGGAATGTAGCACTCTGTGGATC -ACGGAATGTAGCACTCTGCACTTC -ACGGAATGTAGCACTCTGGTACTC -ACGGAATGTAGCACTCTGGATGTC -ACGGAATGTAGCACTCTGACAGTC -ACGGAATGTAGCACTCTGTTGCTG -ACGGAATGTAGCACTCTGTCCATG -ACGGAATGTAGCACTCTGTGTGTG -ACGGAATGTAGCACTCTGCTAGTG -ACGGAATGTAGCACTCTGCATCTG -ACGGAATGTAGCACTCTGGAGTTG -ACGGAATGTAGCACTCTGAGACTG -ACGGAATGTAGCACTCTGTCGGTA -ACGGAATGTAGCACTCTGTGCCTA -ACGGAATGTAGCACTCTGCCACTA -ACGGAATGTAGCACTCTGGGAGTA -ACGGAATGTAGCACTCTGTCGTCT -ACGGAATGTAGCACTCTGTGCACT -ACGGAATGTAGCACTCTGCTGACT -ACGGAATGTAGCACTCTGCAACCT -ACGGAATGTAGCACTCTGGCTACT -ACGGAATGTAGCACTCTGGGATCT -ACGGAATGTAGCACTCTGAAGGCT -ACGGAATGTAGCACTCTGTCAACC -ACGGAATGTAGCACTCTGTGTTCC -ACGGAATGTAGCACTCTGATTCCC -ACGGAATGTAGCACTCTGTTCTCG -ACGGAATGTAGCACTCTGTAGACG -ACGGAATGTAGCACTCTGGTAACG -ACGGAATGTAGCACTCTGACTTCG -ACGGAATGTAGCACTCTGTACGCA -ACGGAATGTAGCACTCTGCTTGCA -ACGGAATGTAGCACTCTGCGAACA -ACGGAATGTAGCACTCTGCAGTCA -ACGGAATGTAGCACTCTGGATCCA -ACGGAATGTAGCACTCTGACGACA -ACGGAATGTAGCACTCTGAGCTCA -ACGGAATGTAGCACTCTGTCACGT -ACGGAATGTAGCACTCTGCGTAGT -ACGGAATGTAGCACTCTGGTCAGT -ACGGAATGTAGCACTCTGGAAGGT -ACGGAATGTAGCACTCTGAACCGT -ACGGAATGTAGCACTCTGTTGTGC -ACGGAATGTAGCACTCTGCTAAGC -ACGGAATGTAGCACTCTGACTAGC -ACGGAATGTAGCACTCTGAGATGC -ACGGAATGTAGCACTCTGTGAAGG -ACGGAATGTAGCACTCTGCAATGG -ACGGAATGTAGCACTCTGATGAGG -ACGGAATGTAGCACTCTGAATGGG -ACGGAATGTAGCACTCTGTCCTGA -ACGGAATGTAGCACTCTGTAGCGA -ACGGAATGTAGCACTCTGCACAGA -ACGGAATGTAGCACTCTGGCAAGA -ACGGAATGTAGCACTCTGGGTTGA -ACGGAATGTAGCACTCTGTCCGAT -ACGGAATGTAGCACTCTGTGGCAT -ACGGAATGTAGCACTCTGCGAGAT -ACGGAATGTAGCACTCTGTACCAC -ACGGAATGTAGCACTCTGCAGAAC -ACGGAATGTAGCACTCTGGTCTAC -ACGGAATGTAGCACTCTGACGTAC -ACGGAATGTAGCACTCTGAGTGAC -ACGGAATGTAGCACTCTGCTGTAG -ACGGAATGTAGCACTCTGCCTAAG -ACGGAATGTAGCACTCTGGTTCAG -ACGGAATGTAGCACTCTGGCATAG -ACGGAATGTAGCACTCTGGACAAG -ACGGAATGTAGCACTCTGAAGCAG -ACGGAATGTAGCACTCTGCGTCAA -ACGGAATGTAGCACTCTGGCTGAA -ACGGAATGTAGCACTCTGAGTACG -ACGGAATGTAGCACTCTGATCCGA -ACGGAATGTAGCACTCTGATGGGA -ACGGAATGTAGCACTCTGGTGCAA -ACGGAATGTAGCACTCTGGAGGAA -ACGGAATGTAGCACTCTGCAGGTA -ACGGAATGTAGCACTCTGGACTCT -ACGGAATGTAGCACTCTGAGTCCT -ACGGAATGTAGCACTCTGTAAGCC -ACGGAATGTAGCACTCTGATAGCC -ACGGAATGTAGCACTCTGTAACCG -ACGGAATGTAGCACTCTGATGCCA -ACGGAATGTAGCCCTCAAGGAAAC -ACGGAATGTAGCCCTCAAAACACC -ACGGAATGTAGCCCTCAAATCGAG -ACGGAATGTAGCCCTCAACTCCTT -ACGGAATGTAGCCCTCAACCTGTT -ACGGAATGTAGCCCTCAACGGTTT -ACGGAATGTAGCCCTCAAGTGGTT -ACGGAATGTAGCCCTCAAGCCTTT -ACGGAATGTAGCCCTCAAGGTCTT -ACGGAATGTAGCCCTCAAACGCTT -ACGGAATGTAGCCCTCAAAGCGTT -ACGGAATGTAGCCCTCAATTCGTC -ACGGAATGTAGCCCTCAATCTCTC -ACGGAATGTAGCCCTCAATGGATC -ACGGAATGTAGCCCTCAACACTTC -ACGGAATGTAGCCCTCAAGTACTC -ACGGAATGTAGCCCTCAAGATGTC -ACGGAATGTAGCCCTCAAACAGTC -ACGGAATGTAGCCCTCAATTGCTG -ACGGAATGTAGCCCTCAATCCATG -ACGGAATGTAGCCCTCAATGTGTG -ACGGAATGTAGCCCTCAACTAGTG -ACGGAATGTAGCCCTCAACATCTG -ACGGAATGTAGCCCTCAAGAGTTG -ACGGAATGTAGCCCTCAAAGACTG -ACGGAATGTAGCCCTCAATCGGTA -ACGGAATGTAGCCCTCAATGCCTA -ACGGAATGTAGCCCTCAACCACTA -ACGGAATGTAGCCCTCAAGGAGTA -ACGGAATGTAGCCCTCAATCGTCT -ACGGAATGTAGCCCTCAATGCACT -ACGGAATGTAGCCCTCAACTGACT -ACGGAATGTAGCCCTCAACAACCT -ACGGAATGTAGCCCTCAAGCTACT -ACGGAATGTAGCCCTCAAGGATCT -ACGGAATGTAGCCCTCAAAAGGCT -ACGGAATGTAGCCCTCAATCAACC -ACGGAATGTAGCCCTCAATGTTCC -ACGGAATGTAGCCCTCAAATTCCC -ACGGAATGTAGCCCTCAATTCTCG -ACGGAATGTAGCCCTCAATAGACG -ACGGAATGTAGCCCTCAAGTAACG -ACGGAATGTAGCCCTCAAACTTCG -ACGGAATGTAGCCCTCAATACGCA -ACGGAATGTAGCCCTCAACTTGCA -ACGGAATGTAGCCCTCAACGAACA -ACGGAATGTAGCCCTCAACAGTCA -ACGGAATGTAGCCCTCAAGATCCA -ACGGAATGTAGCCCTCAAACGACA -ACGGAATGTAGCCCTCAAAGCTCA -ACGGAATGTAGCCCTCAATCACGT -ACGGAATGTAGCCCTCAACGTAGT -ACGGAATGTAGCCCTCAAGTCAGT -ACGGAATGTAGCCCTCAAGAAGGT -ACGGAATGTAGCCCTCAAAACCGT -ACGGAATGTAGCCCTCAATTGTGC -ACGGAATGTAGCCCTCAACTAAGC -ACGGAATGTAGCCCTCAAACTAGC -ACGGAATGTAGCCCTCAAAGATGC -ACGGAATGTAGCCCTCAATGAAGG -ACGGAATGTAGCCCTCAACAATGG -ACGGAATGTAGCCCTCAAATGAGG -ACGGAATGTAGCCCTCAAAATGGG -ACGGAATGTAGCCCTCAATCCTGA -ACGGAATGTAGCCCTCAATAGCGA -ACGGAATGTAGCCCTCAACACAGA -ACGGAATGTAGCCCTCAAGCAAGA -ACGGAATGTAGCCCTCAAGGTTGA -ACGGAATGTAGCCCTCAATCCGAT -ACGGAATGTAGCCCTCAATGGCAT -ACGGAATGTAGCCCTCAACGAGAT -ACGGAATGTAGCCCTCAATACCAC -ACGGAATGTAGCCCTCAACAGAAC -ACGGAATGTAGCCCTCAAGTCTAC -ACGGAATGTAGCCCTCAAACGTAC -ACGGAATGTAGCCCTCAAAGTGAC -ACGGAATGTAGCCCTCAACTGTAG -ACGGAATGTAGCCCTCAACCTAAG -ACGGAATGTAGCCCTCAAGTTCAG -ACGGAATGTAGCCCTCAAGCATAG -ACGGAATGTAGCCCTCAAGACAAG -ACGGAATGTAGCCCTCAAAAGCAG -ACGGAATGTAGCCCTCAACGTCAA -ACGGAATGTAGCCCTCAAGCTGAA -ACGGAATGTAGCCCTCAAAGTACG -ACGGAATGTAGCCCTCAAATCCGA -ACGGAATGTAGCCCTCAAATGGGA -ACGGAATGTAGCCCTCAAGTGCAA -ACGGAATGTAGCCCTCAAGAGGAA -ACGGAATGTAGCCCTCAACAGGTA -ACGGAATGTAGCCCTCAAGACTCT -ACGGAATGTAGCCCTCAAAGTCCT -ACGGAATGTAGCCCTCAATAAGCC -ACGGAATGTAGCCCTCAAATAGCC -ACGGAATGTAGCCCTCAATAACCG -ACGGAATGTAGCCCTCAAATGCCA -ACGGAATGTAGCACTGCTGGAAAC -ACGGAATGTAGCACTGCTAACACC -ACGGAATGTAGCACTGCTATCGAG -ACGGAATGTAGCACTGCTCTCCTT -ACGGAATGTAGCACTGCTCCTGTT -ACGGAATGTAGCACTGCTCGGTTT -ACGGAATGTAGCACTGCTGTGGTT -ACGGAATGTAGCACTGCTGCCTTT -ACGGAATGTAGCACTGCTGGTCTT -ACGGAATGTAGCACTGCTACGCTT -ACGGAATGTAGCACTGCTAGCGTT -ACGGAATGTAGCACTGCTTTCGTC -ACGGAATGTAGCACTGCTTCTCTC -ACGGAATGTAGCACTGCTTGGATC -ACGGAATGTAGCACTGCTCACTTC -ACGGAATGTAGCACTGCTGTACTC -ACGGAATGTAGCACTGCTGATGTC -ACGGAATGTAGCACTGCTACAGTC -ACGGAATGTAGCACTGCTTTGCTG -ACGGAATGTAGCACTGCTTCCATG -ACGGAATGTAGCACTGCTTGTGTG -ACGGAATGTAGCACTGCTCTAGTG -ACGGAATGTAGCACTGCTCATCTG -ACGGAATGTAGCACTGCTGAGTTG -ACGGAATGTAGCACTGCTAGACTG -ACGGAATGTAGCACTGCTTCGGTA -ACGGAATGTAGCACTGCTTGCCTA -ACGGAATGTAGCACTGCTCCACTA -ACGGAATGTAGCACTGCTGGAGTA -ACGGAATGTAGCACTGCTTCGTCT -ACGGAATGTAGCACTGCTTGCACT -ACGGAATGTAGCACTGCTCTGACT -ACGGAATGTAGCACTGCTCAACCT -ACGGAATGTAGCACTGCTGCTACT -ACGGAATGTAGCACTGCTGGATCT -ACGGAATGTAGCACTGCTAAGGCT -ACGGAATGTAGCACTGCTTCAACC -ACGGAATGTAGCACTGCTTGTTCC -ACGGAATGTAGCACTGCTATTCCC -ACGGAATGTAGCACTGCTTTCTCG -ACGGAATGTAGCACTGCTTAGACG -ACGGAATGTAGCACTGCTGTAACG -ACGGAATGTAGCACTGCTACTTCG -ACGGAATGTAGCACTGCTTACGCA -ACGGAATGTAGCACTGCTCTTGCA -ACGGAATGTAGCACTGCTCGAACA -ACGGAATGTAGCACTGCTCAGTCA -ACGGAATGTAGCACTGCTGATCCA -ACGGAATGTAGCACTGCTACGACA -ACGGAATGTAGCACTGCTAGCTCA -ACGGAATGTAGCACTGCTTCACGT -ACGGAATGTAGCACTGCTCGTAGT -ACGGAATGTAGCACTGCTGTCAGT -ACGGAATGTAGCACTGCTGAAGGT -ACGGAATGTAGCACTGCTAACCGT -ACGGAATGTAGCACTGCTTTGTGC -ACGGAATGTAGCACTGCTCTAAGC -ACGGAATGTAGCACTGCTACTAGC -ACGGAATGTAGCACTGCTAGATGC -ACGGAATGTAGCACTGCTTGAAGG -ACGGAATGTAGCACTGCTCAATGG -ACGGAATGTAGCACTGCTATGAGG -ACGGAATGTAGCACTGCTAATGGG -ACGGAATGTAGCACTGCTTCCTGA -ACGGAATGTAGCACTGCTTAGCGA -ACGGAATGTAGCACTGCTCACAGA -ACGGAATGTAGCACTGCTGCAAGA -ACGGAATGTAGCACTGCTGGTTGA -ACGGAATGTAGCACTGCTTCCGAT -ACGGAATGTAGCACTGCTTGGCAT -ACGGAATGTAGCACTGCTCGAGAT -ACGGAATGTAGCACTGCTTACCAC -ACGGAATGTAGCACTGCTCAGAAC -ACGGAATGTAGCACTGCTGTCTAC -ACGGAATGTAGCACTGCTACGTAC -ACGGAATGTAGCACTGCTAGTGAC -ACGGAATGTAGCACTGCTCTGTAG -ACGGAATGTAGCACTGCTCCTAAG -ACGGAATGTAGCACTGCTGTTCAG -ACGGAATGTAGCACTGCTGCATAG -ACGGAATGTAGCACTGCTGACAAG -ACGGAATGTAGCACTGCTAAGCAG -ACGGAATGTAGCACTGCTCGTCAA -ACGGAATGTAGCACTGCTGCTGAA -ACGGAATGTAGCACTGCTAGTACG -ACGGAATGTAGCACTGCTATCCGA -ACGGAATGTAGCACTGCTATGGGA -ACGGAATGTAGCACTGCTGTGCAA -ACGGAATGTAGCACTGCTGAGGAA -ACGGAATGTAGCACTGCTCAGGTA -ACGGAATGTAGCACTGCTGACTCT -ACGGAATGTAGCACTGCTAGTCCT -ACGGAATGTAGCACTGCTTAAGCC -ACGGAATGTAGCACTGCTATAGCC -ACGGAATGTAGCACTGCTTAACCG -ACGGAATGTAGCACTGCTATGCCA -ACGGAATGTAGCTCTGGAGGAAAC -ACGGAATGTAGCTCTGGAAACACC -ACGGAATGTAGCTCTGGAATCGAG -ACGGAATGTAGCTCTGGACTCCTT -ACGGAATGTAGCTCTGGACCTGTT -ACGGAATGTAGCTCTGGACGGTTT -ACGGAATGTAGCTCTGGAGTGGTT -ACGGAATGTAGCTCTGGAGCCTTT -ACGGAATGTAGCTCTGGAGGTCTT -ACGGAATGTAGCTCTGGAACGCTT -ACGGAATGTAGCTCTGGAAGCGTT -ACGGAATGTAGCTCTGGATTCGTC -ACGGAATGTAGCTCTGGATCTCTC -ACGGAATGTAGCTCTGGATGGATC -ACGGAATGTAGCTCTGGACACTTC -ACGGAATGTAGCTCTGGAGTACTC -ACGGAATGTAGCTCTGGAGATGTC -ACGGAATGTAGCTCTGGAACAGTC -ACGGAATGTAGCTCTGGATTGCTG -ACGGAATGTAGCTCTGGATCCATG -ACGGAATGTAGCTCTGGATGTGTG -ACGGAATGTAGCTCTGGACTAGTG -ACGGAATGTAGCTCTGGACATCTG -ACGGAATGTAGCTCTGGAGAGTTG -ACGGAATGTAGCTCTGGAAGACTG -ACGGAATGTAGCTCTGGATCGGTA -ACGGAATGTAGCTCTGGATGCCTA -ACGGAATGTAGCTCTGGACCACTA -ACGGAATGTAGCTCTGGAGGAGTA -ACGGAATGTAGCTCTGGATCGTCT -ACGGAATGTAGCTCTGGATGCACT -ACGGAATGTAGCTCTGGACTGACT -ACGGAATGTAGCTCTGGACAACCT -ACGGAATGTAGCTCTGGAGCTACT -ACGGAATGTAGCTCTGGAGGATCT -ACGGAATGTAGCTCTGGAAAGGCT -ACGGAATGTAGCTCTGGATCAACC -ACGGAATGTAGCTCTGGATGTTCC -ACGGAATGTAGCTCTGGAATTCCC -ACGGAATGTAGCTCTGGATTCTCG -ACGGAATGTAGCTCTGGATAGACG -ACGGAATGTAGCTCTGGAGTAACG -ACGGAATGTAGCTCTGGAACTTCG -ACGGAATGTAGCTCTGGATACGCA -ACGGAATGTAGCTCTGGACTTGCA -ACGGAATGTAGCTCTGGACGAACA -ACGGAATGTAGCTCTGGACAGTCA -ACGGAATGTAGCTCTGGAGATCCA -ACGGAATGTAGCTCTGGAACGACA -ACGGAATGTAGCTCTGGAAGCTCA -ACGGAATGTAGCTCTGGATCACGT -ACGGAATGTAGCTCTGGACGTAGT -ACGGAATGTAGCTCTGGAGTCAGT -ACGGAATGTAGCTCTGGAGAAGGT -ACGGAATGTAGCTCTGGAAACCGT -ACGGAATGTAGCTCTGGATTGTGC -ACGGAATGTAGCTCTGGACTAAGC -ACGGAATGTAGCTCTGGAACTAGC -ACGGAATGTAGCTCTGGAAGATGC -ACGGAATGTAGCTCTGGATGAAGG -ACGGAATGTAGCTCTGGACAATGG -ACGGAATGTAGCTCTGGAATGAGG -ACGGAATGTAGCTCTGGAAATGGG -ACGGAATGTAGCTCTGGATCCTGA -ACGGAATGTAGCTCTGGATAGCGA -ACGGAATGTAGCTCTGGACACAGA -ACGGAATGTAGCTCTGGAGCAAGA -ACGGAATGTAGCTCTGGAGGTTGA -ACGGAATGTAGCTCTGGATCCGAT -ACGGAATGTAGCTCTGGATGGCAT -ACGGAATGTAGCTCTGGACGAGAT -ACGGAATGTAGCTCTGGATACCAC -ACGGAATGTAGCTCTGGACAGAAC -ACGGAATGTAGCTCTGGAGTCTAC -ACGGAATGTAGCTCTGGAACGTAC -ACGGAATGTAGCTCTGGAAGTGAC -ACGGAATGTAGCTCTGGACTGTAG -ACGGAATGTAGCTCTGGACCTAAG -ACGGAATGTAGCTCTGGAGTTCAG -ACGGAATGTAGCTCTGGAGCATAG -ACGGAATGTAGCTCTGGAGACAAG -ACGGAATGTAGCTCTGGAAAGCAG -ACGGAATGTAGCTCTGGACGTCAA -ACGGAATGTAGCTCTGGAGCTGAA -ACGGAATGTAGCTCTGGAAGTACG -ACGGAATGTAGCTCTGGAATCCGA -ACGGAATGTAGCTCTGGAATGGGA -ACGGAATGTAGCTCTGGAGTGCAA -ACGGAATGTAGCTCTGGAGAGGAA -ACGGAATGTAGCTCTGGACAGGTA -ACGGAATGTAGCTCTGGAGACTCT -ACGGAATGTAGCTCTGGAAGTCCT -ACGGAATGTAGCTCTGGATAAGCC -ACGGAATGTAGCTCTGGAATAGCC -ACGGAATGTAGCTCTGGATAACCG -ACGGAATGTAGCTCTGGAATGCCA -ACGGAATGTAGCGCTAAGGGAAAC -ACGGAATGTAGCGCTAAGAACACC -ACGGAATGTAGCGCTAAGATCGAG -ACGGAATGTAGCGCTAAGCTCCTT -ACGGAATGTAGCGCTAAGCCTGTT -ACGGAATGTAGCGCTAAGCGGTTT -ACGGAATGTAGCGCTAAGGTGGTT -ACGGAATGTAGCGCTAAGGCCTTT -ACGGAATGTAGCGCTAAGGGTCTT -ACGGAATGTAGCGCTAAGACGCTT -ACGGAATGTAGCGCTAAGAGCGTT -ACGGAATGTAGCGCTAAGTTCGTC -ACGGAATGTAGCGCTAAGTCTCTC -ACGGAATGTAGCGCTAAGTGGATC -ACGGAATGTAGCGCTAAGCACTTC -ACGGAATGTAGCGCTAAGGTACTC -ACGGAATGTAGCGCTAAGGATGTC -ACGGAATGTAGCGCTAAGACAGTC -ACGGAATGTAGCGCTAAGTTGCTG -ACGGAATGTAGCGCTAAGTCCATG -ACGGAATGTAGCGCTAAGTGTGTG -ACGGAATGTAGCGCTAAGCTAGTG -ACGGAATGTAGCGCTAAGCATCTG -ACGGAATGTAGCGCTAAGGAGTTG -ACGGAATGTAGCGCTAAGAGACTG -ACGGAATGTAGCGCTAAGTCGGTA -ACGGAATGTAGCGCTAAGTGCCTA -ACGGAATGTAGCGCTAAGCCACTA -ACGGAATGTAGCGCTAAGGGAGTA -ACGGAATGTAGCGCTAAGTCGTCT -ACGGAATGTAGCGCTAAGTGCACT -ACGGAATGTAGCGCTAAGCTGACT -ACGGAATGTAGCGCTAAGCAACCT -ACGGAATGTAGCGCTAAGGCTACT -ACGGAATGTAGCGCTAAGGGATCT -ACGGAATGTAGCGCTAAGAAGGCT -ACGGAATGTAGCGCTAAGTCAACC -ACGGAATGTAGCGCTAAGTGTTCC -ACGGAATGTAGCGCTAAGATTCCC -ACGGAATGTAGCGCTAAGTTCTCG -ACGGAATGTAGCGCTAAGTAGACG -ACGGAATGTAGCGCTAAGGTAACG -ACGGAATGTAGCGCTAAGACTTCG -ACGGAATGTAGCGCTAAGTACGCA -ACGGAATGTAGCGCTAAGCTTGCA -ACGGAATGTAGCGCTAAGCGAACA -ACGGAATGTAGCGCTAAGCAGTCA -ACGGAATGTAGCGCTAAGGATCCA -ACGGAATGTAGCGCTAAGACGACA -ACGGAATGTAGCGCTAAGAGCTCA -ACGGAATGTAGCGCTAAGTCACGT -ACGGAATGTAGCGCTAAGCGTAGT -ACGGAATGTAGCGCTAAGGTCAGT -ACGGAATGTAGCGCTAAGGAAGGT -ACGGAATGTAGCGCTAAGAACCGT -ACGGAATGTAGCGCTAAGTTGTGC -ACGGAATGTAGCGCTAAGCTAAGC -ACGGAATGTAGCGCTAAGACTAGC -ACGGAATGTAGCGCTAAGAGATGC -ACGGAATGTAGCGCTAAGTGAAGG -ACGGAATGTAGCGCTAAGCAATGG -ACGGAATGTAGCGCTAAGATGAGG -ACGGAATGTAGCGCTAAGAATGGG -ACGGAATGTAGCGCTAAGTCCTGA -ACGGAATGTAGCGCTAAGTAGCGA -ACGGAATGTAGCGCTAAGCACAGA -ACGGAATGTAGCGCTAAGGCAAGA -ACGGAATGTAGCGCTAAGGGTTGA -ACGGAATGTAGCGCTAAGTCCGAT -ACGGAATGTAGCGCTAAGTGGCAT -ACGGAATGTAGCGCTAAGCGAGAT -ACGGAATGTAGCGCTAAGTACCAC -ACGGAATGTAGCGCTAAGCAGAAC -ACGGAATGTAGCGCTAAGGTCTAC -ACGGAATGTAGCGCTAAGACGTAC -ACGGAATGTAGCGCTAAGAGTGAC -ACGGAATGTAGCGCTAAGCTGTAG -ACGGAATGTAGCGCTAAGCCTAAG -ACGGAATGTAGCGCTAAGGTTCAG -ACGGAATGTAGCGCTAAGGCATAG -ACGGAATGTAGCGCTAAGGACAAG -ACGGAATGTAGCGCTAAGAAGCAG -ACGGAATGTAGCGCTAAGCGTCAA -ACGGAATGTAGCGCTAAGGCTGAA -ACGGAATGTAGCGCTAAGAGTACG -ACGGAATGTAGCGCTAAGATCCGA -ACGGAATGTAGCGCTAAGATGGGA -ACGGAATGTAGCGCTAAGGTGCAA -ACGGAATGTAGCGCTAAGGAGGAA -ACGGAATGTAGCGCTAAGCAGGTA -ACGGAATGTAGCGCTAAGGACTCT -ACGGAATGTAGCGCTAAGAGTCCT -ACGGAATGTAGCGCTAAGTAAGCC -ACGGAATGTAGCGCTAAGATAGCC -ACGGAATGTAGCGCTAAGTAACCG -ACGGAATGTAGCGCTAAGATGCCA -ACGGAATGTAGCACCTCAGGAAAC -ACGGAATGTAGCACCTCAAACACC -ACGGAATGTAGCACCTCAATCGAG -ACGGAATGTAGCACCTCACTCCTT -ACGGAATGTAGCACCTCACCTGTT -ACGGAATGTAGCACCTCACGGTTT -ACGGAATGTAGCACCTCAGTGGTT -ACGGAATGTAGCACCTCAGCCTTT -ACGGAATGTAGCACCTCAGGTCTT -ACGGAATGTAGCACCTCAACGCTT -ACGGAATGTAGCACCTCAAGCGTT -ACGGAATGTAGCACCTCATTCGTC -ACGGAATGTAGCACCTCATCTCTC -ACGGAATGTAGCACCTCATGGATC -ACGGAATGTAGCACCTCACACTTC -ACGGAATGTAGCACCTCAGTACTC -ACGGAATGTAGCACCTCAGATGTC -ACGGAATGTAGCACCTCAACAGTC -ACGGAATGTAGCACCTCATTGCTG -ACGGAATGTAGCACCTCATCCATG -ACGGAATGTAGCACCTCATGTGTG -ACGGAATGTAGCACCTCACTAGTG -ACGGAATGTAGCACCTCACATCTG -ACGGAATGTAGCACCTCAGAGTTG -ACGGAATGTAGCACCTCAAGACTG -ACGGAATGTAGCACCTCATCGGTA -ACGGAATGTAGCACCTCATGCCTA -ACGGAATGTAGCACCTCACCACTA -ACGGAATGTAGCACCTCAGGAGTA -ACGGAATGTAGCACCTCATCGTCT -ACGGAATGTAGCACCTCATGCACT -ACGGAATGTAGCACCTCACTGACT -ACGGAATGTAGCACCTCACAACCT -ACGGAATGTAGCACCTCAGCTACT -ACGGAATGTAGCACCTCAGGATCT -ACGGAATGTAGCACCTCAAAGGCT -ACGGAATGTAGCACCTCATCAACC -ACGGAATGTAGCACCTCATGTTCC -ACGGAATGTAGCACCTCAATTCCC -ACGGAATGTAGCACCTCATTCTCG -ACGGAATGTAGCACCTCATAGACG -ACGGAATGTAGCACCTCAGTAACG -ACGGAATGTAGCACCTCAACTTCG -ACGGAATGTAGCACCTCATACGCA -ACGGAATGTAGCACCTCACTTGCA -ACGGAATGTAGCACCTCACGAACA -ACGGAATGTAGCACCTCACAGTCA -ACGGAATGTAGCACCTCAGATCCA -ACGGAATGTAGCACCTCAACGACA -ACGGAATGTAGCACCTCAAGCTCA -ACGGAATGTAGCACCTCATCACGT -ACGGAATGTAGCACCTCACGTAGT -ACGGAATGTAGCACCTCAGTCAGT -ACGGAATGTAGCACCTCAGAAGGT -ACGGAATGTAGCACCTCAAACCGT -ACGGAATGTAGCACCTCATTGTGC -ACGGAATGTAGCACCTCACTAAGC -ACGGAATGTAGCACCTCAACTAGC -ACGGAATGTAGCACCTCAAGATGC -ACGGAATGTAGCACCTCATGAAGG -ACGGAATGTAGCACCTCACAATGG -ACGGAATGTAGCACCTCAATGAGG -ACGGAATGTAGCACCTCAAATGGG -ACGGAATGTAGCACCTCATCCTGA -ACGGAATGTAGCACCTCATAGCGA -ACGGAATGTAGCACCTCACACAGA -ACGGAATGTAGCACCTCAGCAAGA -ACGGAATGTAGCACCTCAGGTTGA -ACGGAATGTAGCACCTCATCCGAT -ACGGAATGTAGCACCTCATGGCAT -ACGGAATGTAGCACCTCACGAGAT -ACGGAATGTAGCACCTCATACCAC -ACGGAATGTAGCACCTCACAGAAC -ACGGAATGTAGCACCTCAGTCTAC -ACGGAATGTAGCACCTCAACGTAC -ACGGAATGTAGCACCTCAAGTGAC -ACGGAATGTAGCACCTCACTGTAG -ACGGAATGTAGCACCTCACCTAAG -ACGGAATGTAGCACCTCAGTTCAG -ACGGAATGTAGCACCTCAGCATAG -ACGGAATGTAGCACCTCAGACAAG -ACGGAATGTAGCACCTCAAAGCAG -ACGGAATGTAGCACCTCACGTCAA -ACGGAATGTAGCACCTCAGCTGAA -ACGGAATGTAGCACCTCAAGTACG -ACGGAATGTAGCACCTCAATCCGA -ACGGAATGTAGCACCTCAATGGGA -ACGGAATGTAGCACCTCAGTGCAA -ACGGAATGTAGCACCTCAGAGGAA -ACGGAATGTAGCACCTCACAGGTA -ACGGAATGTAGCACCTCAGACTCT -ACGGAATGTAGCACCTCAAGTCCT -ACGGAATGTAGCACCTCATAAGCC -ACGGAATGTAGCACCTCAATAGCC -ACGGAATGTAGCACCTCATAACCG -ACGGAATGTAGCACCTCAATGCCA -ACGGAATGTAGCTCCTGTGGAAAC -ACGGAATGTAGCTCCTGTAACACC -ACGGAATGTAGCTCCTGTATCGAG -ACGGAATGTAGCTCCTGTCTCCTT -ACGGAATGTAGCTCCTGTCCTGTT -ACGGAATGTAGCTCCTGTCGGTTT -ACGGAATGTAGCTCCTGTGTGGTT -ACGGAATGTAGCTCCTGTGCCTTT -ACGGAATGTAGCTCCTGTGGTCTT -ACGGAATGTAGCTCCTGTACGCTT -ACGGAATGTAGCTCCTGTAGCGTT -ACGGAATGTAGCTCCTGTTTCGTC -ACGGAATGTAGCTCCTGTTCTCTC -ACGGAATGTAGCTCCTGTTGGATC -ACGGAATGTAGCTCCTGTCACTTC -ACGGAATGTAGCTCCTGTGTACTC -ACGGAATGTAGCTCCTGTGATGTC -ACGGAATGTAGCTCCTGTACAGTC -ACGGAATGTAGCTCCTGTTTGCTG -ACGGAATGTAGCTCCTGTTCCATG -ACGGAATGTAGCTCCTGTTGTGTG -ACGGAATGTAGCTCCTGTCTAGTG -ACGGAATGTAGCTCCTGTCATCTG -ACGGAATGTAGCTCCTGTGAGTTG -ACGGAATGTAGCTCCTGTAGACTG -ACGGAATGTAGCTCCTGTTCGGTA -ACGGAATGTAGCTCCTGTTGCCTA -ACGGAATGTAGCTCCTGTCCACTA -ACGGAATGTAGCTCCTGTGGAGTA -ACGGAATGTAGCTCCTGTTCGTCT -ACGGAATGTAGCTCCTGTTGCACT -ACGGAATGTAGCTCCTGTCTGACT -ACGGAATGTAGCTCCTGTCAACCT -ACGGAATGTAGCTCCTGTGCTACT -ACGGAATGTAGCTCCTGTGGATCT -ACGGAATGTAGCTCCTGTAAGGCT -ACGGAATGTAGCTCCTGTTCAACC -ACGGAATGTAGCTCCTGTTGTTCC -ACGGAATGTAGCTCCTGTATTCCC -ACGGAATGTAGCTCCTGTTTCTCG -ACGGAATGTAGCTCCTGTTAGACG -ACGGAATGTAGCTCCTGTGTAACG -ACGGAATGTAGCTCCTGTACTTCG -ACGGAATGTAGCTCCTGTTACGCA -ACGGAATGTAGCTCCTGTCTTGCA -ACGGAATGTAGCTCCTGTCGAACA -ACGGAATGTAGCTCCTGTCAGTCA -ACGGAATGTAGCTCCTGTGATCCA -ACGGAATGTAGCTCCTGTACGACA -ACGGAATGTAGCTCCTGTAGCTCA -ACGGAATGTAGCTCCTGTTCACGT -ACGGAATGTAGCTCCTGTCGTAGT -ACGGAATGTAGCTCCTGTGTCAGT -ACGGAATGTAGCTCCTGTGAAGGT -ACGGAATGTAGCTCCTGTAACCGT -ACGGAATGTAGCTCCTGTTTGTGC -ACGGAATGTAGCTCCTGTCTAAGC -ACGGAATGTAGCTCCTGTACTAGC -ACGGAATGTAGCTCCTGTAGATGC -ACGGAATGTAGCTCCTGTTGAAGG -ACGGAATGTAGCTCCTGTCAATGG -ACGGAATGTAGCTCCTGTATGAGG -ACGGAATGTAGCTCCTGTAATGGG -ACGGAATGTAGCTCCTGTTCCTGA -ACGGAATGTAGCTCCTGTTAGCGA -ACGGAATGTAGCTCCTGTCACAGA -ACGGAATGTAGCTCCTGTGCAAGA -ACGGAATGTAGCTCCTGTGGTTGA -ACGGAATGTAGCTCCTGTTCCGAT -ACGGAATGTAGCTCCTGTTGGCAT -ACGGAATGTAGCTCCTGTCGAGAT -ACGGAATGTAGCTCCTGTTACCAC -ACGGAATGTAGCTCCTGTCAGAAC -ACGGAATGTAGCTCCTGTGTCTAC -ACGGAATGTAGCTCCTGTACGTAC -ACGGAATGTAGCTCCTGTAGTGAC -ACGGAATGTAGCTCCTGTCTGTAG -ACGGAATGTAGCTCCTGTCCTAAG -ACGGAATGTAGCTCCTGTGTTCAG -ACGGAATGTAGCTCCTGTGCATAG -ACGGAATGTAGCTCCTGTGACAAG -ACGGAATGTAGCTCCTGTAAGCAG -ACGGAATGTAGCTCCTGTCGTCAA -ACGGAATGTAGCTCCTGTGCTGAA -ACGGAATGTAGCTCCTGTAGTACG -ACGGAATGTAGCTCCTGTATCCGA -ACGGAATGTAGCTCCTGTATGGGA -ACGGAATGTAGCTCCTGTGTGCAA -ACGGAATGTAGCTCCTGTGAGGAA -ACGGAATGTAGCTCCTGTCAGGTA -ACGGAATGTAGCTCCTGTGACTCT -ACGGAATGTAGCTCCTGTAGTCCT -ACGGAATGTAGCTCCTGTTAAGCC -ACGGAATGTAGCTCCTGTATAGCC -ACGGAATGTAGCTCCTGTTAACCG -ACGGAATGTAGCTCCTGTATGCCA -ACGGAATGTAGCCCCATTGGAAAC -ACGGAATGTAGCCCCATTAACACC -ACGGAATGTAGCCCCATTATCGAG -ACGGAATGTAGCCCCATTCTCCTT -ACGGAATGTAGCCCCATTCCTGTT -ACGGAATGTAGCCCCATTCGGTTT -ACGGAATGTAGCCCCATTGTGGTT -ACGGAATGTAGCCCCATTGCCTTT -ACGGAATGTAGCCCCATTGGTCTT -ACGGAATGTAGCCCCATTACGCTT -ACGGAATGTAGCCCCATTAGCGTT -ACGGAATGTAGCCCCATTTTCGTC -ACGGAATGTAGCCCCATTTCTCTC -ACGGAATGTAGCCCCATTTGGATC -ACGGAATGTAGCCCCATTCACTTC -ACGGAATGTAGCCCCATTGTACTC -ACGGAATGTAGCCCCATTGATGTC -ACGGAATGTAGCCCCATTACAGTC -ACGGAATGTAGCCCCATTTTGCTG -ACGGAATGTAGCCCCATTTCCATG -ACGGAATGTAGCCCCATTTGTGTG -ACGGAATGTAGCCCCATTCTAGTG -ACGGAATGTAGCCCCATTCATCTG -ACGGAATGTAGCCCCATTGAGTTG -ACGGAATGTAGCCCCATTAGACTG -ACGGAATGTAGCCCCATTTCGGTA -ACGGAATGTAGCCCCATTTGCCTA -ACGGAATGTAGCCCCATTCCACTA -ACGGAATGTAGCCCCATTGGAGTA -ACGGAATGTAGCCCCATTTCGTCT -ACGGAATGTAGCCCCATTTGCACT -ACGGAATGTAGCCCCATTCTGACT -ACGGAATGTAGCCCCATTCAACCT -ACGGAATGTAGCCCCATTGCTACT -ACGGAATGTAGCCCCATTGGATCT -ACGGAATGTAGCCCCATTAAGGCT -ACGGAATGTAGCCCCATTTCAACC -ACGGAATGTAGCCCCATTTGTTCC -ACGGAATGTAGCCCCATTATTCCC -ACGGAATGTAGCCCCATTTTCTCG -ACGGAATGTAGCCCCATTTAGACG -ACGGAATGTAGCCCCATTGTAACG -ACGGAATGTAGCCCCATTACTTCG -ACGGAATGTAGCCCCATTTACGCA -ACGGAATGTAGCCCCATTCTTGCA -ACGGAATGTAGCCCCATTCGAACA -ACGGAATGTAGCCCCATTCAGTCA -ACGGAATGTAGCCCCATTGATCCA -ACGGAATGTAGCCCCATTACGACA -ACGGAATGTAGCCCCATTAGCTCA -ACGGAATGTAGCCCCATTTCACGT -ACGGAATGTAGCCCCATTCGTAGT -ACGGAATGTAGCCCCATTGTCAGT -ACGGAATGTAGCCCCATTGAAGGT -ACGGAATGTAGCCCCATTAACCGT -ACGGAATGTAGCCCCATTTTGTGC -ACGGAATGTAGCCCCATTCTAAGC -ACGGAATGTAGCCCCATTACTAGC -ACGGAATGTAGCCCCATTAGATGC -ACGGAATGTAGCCCCATTTGAAGG -ACGGAATGTAGCCCCATTCAATGG -ACGGAATGTAGCCCCATTATGAGG -ACGGAATGTAGCCCCATTAATGGG -ACGGAATGTAGCCCCATTTCCTGA -ACGGAATGTAGCCCCATTTAGCGA -ACGGAATGTAGCCCCATTCACAGA -ACGGAATGTAGCCCCATTGCAAGA -ACGGAATGTAGCCCCATTGGTTGA -ACGGAATGTAGCCCCATTTCCGAT -ACGGAATGTAGCCCCATTTGGCAT -ACGGAATGTAGCCCCATTCGAGAT -ACGGAATGTAGCCCCATTTACCAC -ACGGAATGTAGCCCCATTCAGAAC -ACGGAATGTAGCCCCATTGTCTAC -ACGGAATGTAGCCCCATTACGTAC -ACGGAATGTAGCCCCATTAGTGAC -ACGGAATGTAGCCCCATTCTGTAG -ACGGAATGTAGCCCCATTCCTAAG -ACGGAATGTAGCCCCATTGTTCAG -ACGGAATGTAGCCCCATTGCATAG -ACGGAATGTAGCCCCATTGACAAG -ACGGAATGTAGCCCCATTAAGCAG -ACGGAATGTAGCCCCATTCGTCAA -ACGGAATGTAGCCCCATTGCTGAA -ACGGAATGTAGCCCCATTAGTACG -ACGGAATGTAGCCCCATTATCCGA -ACGGAATGTAGCCCCATTATGGGA -ACGGAATGTAGCCCCATTGTGCAA -ACGGAATGTAGCCCCATTGAGGAA -ACGGAATGTAGCCCCATTCAGGTA -ACGGAATGTAGCCCCATTGACTCT -ACGGAATGTAGCCCCATTAGTCCT -ACGGAATGTAGCCCCATTTAAGCC -ACGGAATGTAGCCCCATTATAGCC -ACGGAATGTAGCCCCATTTAACCG -ACGGAATGTAGCCCCATTATGCCA -ACGGAATGTAGCTCGTTCGGAAAC -ACGGAATGTAGCTCGTTCAACACC -ACGGAATGTAGCTCGTTCATCGAG -ACGGAATGTAGCTCGTTCCTCCTT -ACGGAATGTAGCTCGTTCCCTGTT -ACGGAATGTAGCTCGTTCCGGTTT -ACGGAATGTAGCTCGTTCGTGGTT -ACGGAATGTAGCTCGTTCGCCTTT -ACGGAATGTAGCTCGTTCGGTCTT -ACGGAATGTAGCTCGTTCACGCTT -ACGGAATGTAGCTCGTTCAGCGTT -ACGGAATGTAGCTCGTTCTTCGTC -ACGGAATGTAGCTCGTTCTCTCTC -ACGGAATGTAGCTCGTTCTGGATC -ACGGAATGTAGCTCGTTCCACTTC -ACGGAATGTAGCTCGTTCGTACTC -ACGGAATGTAGCTCGTTCGATGTC -ACGGAATGTAGCTCGTTCACAGTC -ACGGAATGTAGCTCGTTCTTGCTG -ACGGAATGTAGCTCGTTCTCCATG -ACGGAATGTAGCTCGTTCTGTGTG -ACGGAATGTAGCTCGTTCCTAGTG -ACGGAATGTAGCTCGTTCCATCTG -ACGGAATGTAGCTCGTTCGAGTTG -ACGGAATGTAGCTCGTTCAGACTG -ACGGAATGTAGCTCGTTCTCGGTA -ACGGAATGTAGCTCGTTCTGCCTA -ACGGAATGTAGCTCGTTCCCACTA -ACGGAATGTAGCTCGTTCGGAGTA -ACGGAATGTAGCTCGTTCTCGTCT -ACGGAATGTAGCTCGTTCTGCACT -ACGGAATGTAGCTCGTTCCTGACT -ACGGAATGTAGCTCGTTCCAACCT -ACGGAATGTAGCTCGTTCGCTACT -ACGGAATGTAGCTCGTTCGGATCT -ACGGAATGTAGCTCGTTCAAGGCT -ACGGAATGTAGCTCGTTCTCAACC -ACGGAATGTAGCTCGTTCTGTTCC -ACGGAATGTAGCTCGTTCATTCCC -ACGGAATGTAGCTCGTTCTTCTCG -ACGGAATGTAGCTCGTTCTAGACG -ACGGAATGTAGCTCGTTCGTAACG -ACGGAATGTAGCTCGTTCACTTCG -ACGGAATGTAGCTCGTTCTACGCA -ACGGAATGTAGCTCGTTCCTTGCA -ACGGAATGTAGCTCGTTCCGAACA -ACGGAATGTAGCTCGTTCCAGTCA -ACGGAATGTAGCTCGTTCGATCCA -ACGGAATGTAGCTCGTTCACGACA -ACGGAATGTAGCTCGTTCAGCTCA -ACGGAATGTAGCTCGTTCTCACGT -ACGGAATGTAGCTCGTTCCGTAGT -ACGGAATGTAGCTCGTTCGTCAGT -ACGGAATGTAGCTCGTTCGAAGGT -ACGGAATGTAGCTCGTTCAACCGT -ACGGAATGTAGCTCGTTCTTGTGC -ACGGAATGTAGCTCGTTCCTAAGC -ACGGAATGTAGCTCGTTCACTAGC -ACGGAATGTAGCTCGTTCAGATGC -ACGGAATGTAGCTCGTTCTGAAGG -ACGGAATGTAGCTCGTTCCAATGG -ACGGAATGTAGCTCGTTCATGAGG -ACGGAATGTAGCTCGTTCAATGGG -ACGGAATGTAGCTCGTTCTCCTGA -ACGGAATGTAGCTCGTTCTAGCGA -ACGGAATGTAGCTCGTTCCACAGA -ACGGAATGTAGCTCGTTCGCAAGA -ACGGAATGTAGCTCGTTCGGTTGA -ACGGAATGTAGCTCGTTCTCCGAT -ACGGAATGTAGCTCGTTCTGGCAT -ACGGAATGTAGCTCGTTCCGAGAT -ACGGAATGTAGCTCGTTCTACCAC -ACGGAATGTAGCTCGTTCCAGAAC -ACGGAATGTAGCTCGTTCGTCTAC -ACGGAATGTAGCTCGTTCACGTAC -ACGGAATGTAGCTCGTTCAGTGAC -ACGGAATGTAGCTCGTTCCTGTAG -ACGGAATGTAGCTCGTTCCCTAAG -ACGGAATGTAGCTCGTTCGTTCAG -ACGGAATGTAGCTCGTTCGCATAG -ACGGAATGTAGCTCGTTCGACAAG -ACGGAATGTAGCTCGTTCAAGCAG -ACGGAATGTAGCTCGTTCCGTCAA -ACGGAATGTAGCTCGTTCGCTGAA -ACGGAATGTAGCTCGTTCAGTACG -ACGGAATGTAGCTCGTTCATCCGA -ACGGAATGTAGCTCGTTCATGGGA -ACGGAATGTAGCTCGTTCGTGCAA -ACGGAATGTAGCTCGTTCGAGGAA -ACGGAATGTAGCTCGTTCCAGGTA -ACGGAATGTAGCTCGTTCGACTCT -ACGGAATGTAGCTCGTTCAGTCCT -ACGGAATGTAGCTCGTTCTAAGCC -ACGGAATGTAGCTCGTTCATAGCC -ACGGAATGTAGCTCGTTCTAACCG -ACGGAATGTAGCTCGTTCATGCCA -ACGGAATGTAGCACGTAGGGAAAC -ACGGAATGTAGCACGTAGAACACC -ACGGAATGTAGCACGTAGATCGAG -ACGGAATGTAGCACGTAGCTCCTT -ACGGAATGTAGCACGTAGCCTGTT -ACGGAATGTAGCACGTAGCGGTTT -ACGGAATGTAGCACGTAGGTGGTT -ACGGAATGTAGCACGTAGGCCTTT -ACGGAATGTAGCACGTAGGGTCTT -ACGGAATGTAGCACGTAGACGCTT -ACGGAATGTAGCACGTAGAGCGTT -ACGGAATGTAGCACGTAGTTCGTC -ACGGAATGTAGCACGTAGTCTCTC -ACGGAATGTAGCACGTAGTGGATC -ACGGAATGTAGCACGTAGCACTTC -ACGGAATGTAGCACGTAGGTACTC -ACGGAATGTAGCACGTAGGATGTC -ACGGAATGTAGCACGTAGACAGTC -ACGGAATGTAGCACGTAGTTGCTG -ACGGAATGTAGCACGTAGTCCATG -ACGGAATGTAGCACGTAGTGTGTG -ACGGAATGTAGCACGTAGCTAGTG -ACGGAATGTAGCACGTAGCATCTG -ACGGAATGTAGCACGTAGGAGTTG -ACGGAATGTAGCACGTAGAGACTG -ACGGAATGTAGCACGTAGTCGGTA -ACGGAATGTAGCACGTAGTGCCTA -ACGGAATGTAGCACGTAGCCACTA -ACGGAATGTAGCACGTAGGGAGTA -ACGGAATGTAGCACGTAGTCGTCT -ACGGAATGTAGCACGTAGTGCACT -ACGGAATGTAGCACGTAGCTGACT -ACGGAATGTAGCACGTAGCAACCT -ACGGAATGTAGCACGTAGGCTACT -ACGGAATGTAGCACGTAGGGATCT -ACGGAATGTAGCACGTAGAAGGCT -ACGGAATGTAGCACGTAGTCAACC -ACGGAATGTAGCACGTAGTGTTCC -ACGGAATGTAGCACGTAGATTCCC -ACGGAATGTAGCACGTAGTTCTCG -ACGGAATGTAGCACGTAGTAGACG -ACGGAATGTAGCACGTAGGTAACG -ACGGAATGTAGCACGTAGACTTCG -ACGGAATGTAGCACGTAGTACGCA -ACGGAATGTAGCACGTAGCTTGCA -ACGGAATGTAGCACGTAGCGAACA -ACGGAATGTAGCACGTAGCAGTCA -ACGGAATGTAGCACGTAGGATCCA -ACGGAATGTAGCACGTAGACGACA -ACGGAATGTAGCACGTAGAGCTCA -ACGGAATGTAGCACGTAGTCACGT -ACGGAATGTAGCACGTAGCGTAGT -ACGGAATGTAGCACGTAGGTCAGT -ACGGAATGTAGCACGTAGGAAGGT -ACGGAATGTAGCACGTAGAACCGT -ACGGAATGTAGCACGTAGTTGTGC -ACGGAATGTAGCACGTAGCTAAGC -ACGGAATGTAGCACGTAGACTAGC -ACGGAATGTAGCACGTAGAGATGC -ACGGAATGTAGCACGTAGTGAAGG -ACGGAATGTAGCACGTAGCAATGG -ACGGAATGTAGCACGTAGATGAGG -ACGGAATGTAGCACGTAGAATGGG -ACGGAATGTAGCACGTAGTCCTGA -ACGGAATGTAGCACGTAGTAGCGA -ACGGAATGTAGCACGTAGCACAGA -ACGGAATGTAGCACGTAGGCAAGA -ACGGAATGTAGCACGTAGGGTTGA -ACGGAATGTAGCACGTAGTCCGAT -ACGGAATGTAGCACGTAGTGGCAT -ACGGAATGTAGCACGTAGCGAGAT -ACGGAATGTAGCACGTAGTACCAC -ACGGAATGTAGCACGTAGCAGAAC -ACGGAATGTAGCACGTAGGTCTAC -ACGGAATGTAGCACGTAGACGTAC -ACGGAATGTAGCACGTAGAGTGAC -ACGGAATGTAGCACGTAGCTGTAG -ACGGAATGTAGCACGTAGCCTAAG -ACGGAATGTAGCACGTAGGTTCAG -ACGGAATGTAGCACGTAGGCATAG -ACGGAATGTAGCACGTAGGACAAG -ACGGAATGTAGCACGTAGAAGCAG -ACGGAATGTAGCACGTAGCGTCAA -ACGGAATGTAGCACGTAGGCTGAA -ACGGAATGTAGCACGTAGAGTACG -ACGGAATGTAGCACGTAGATCCGA -ACGGAATGTAGCACGTAGATGGGA -ACGGAATGTAGCACGTAGGTGCAA -ACGGAATGTAGCACGTAGGAGGAA -ACGGAATGTAGCACGTAGCAGGTA -ACGGAATGTAGCACGTAGGACTCT -ACGGAATGTAGCACGTAGAGTCCT -ACGGAATGTAGCACGTAGTAAGCC -ACGGAATGTAGCACGTAGATAGCC -ACGGAATGTAGCACGTAGTAACCG -ACGGAATGTAGCACGTAGATGCCA -ACGGAATGTAGCACGGTAGGAAAC -ACGGAATGTAGCACGGTAAACACC -ACGGAATGTAGCACGGTAATCGAG -ACGGAATGTAGCACGGTACTCCTT -ACGGAATGTAGCACGGTACCTGTT -ACGGAATGTAGCACGGTACGGTTT -ACGGAATGTAGCACGGTAGTGGTT -ACGGAATGTAGCACGGTAGCCTTT -ACGGAATGTAGCACGGTAGGTCTT -ACGGAATGTAGCACGGTAACGCTT -ACGGAATGTAGCACGGTAAGCGTT -ACGGAATGTAGCACGGTATTCGTC -ACGGAATGTAGCACGGTATCTCTC -ACGGAATGTAGCACGGTATGGATC -ACGGAATGTAGCACGGTACACTTC -ACGGAATGTAGCACGGTAGTACTC -ACGGAATGTAGCACGGTAGATGTC -ACGGAATGTAGCACGGTAACAGTC -ACGGAATGTAGCACGGTATTGCTG -ACGGAATGTAGCACGGTATCCATG -ACGGAATGTAGCACGGTATGTGTG -ACGGAATGTAGCACGGTACTAGTG -ACGGAATGTAGCACGGTACATCTG -ACGGAATGTAGCACGGTAGAGTTG -ACGGAATGTAGCACGGTAAGACTG -ACGGAATGTAGCACGGTATCGGTA -ACGGAATGTAGCACGGTATGCCTA -ACGGAATGTAGCACGGTACCACTA -ACGGAATGTAGCACGGTAGGAGTA -ACGGAATGTAGCACGGTATCGTCT -ACGGAATGTAGCACGGTATGCACT -ACGGAATGTAGCACGGTACTGACT -ACGGAATGTAGCACGGTACAACCT -ACGGAATGTAGCACGGTAGCTACT -ACGGAATGTAGCACGGTAGGATCT -ACGGAATGTAGCACGGTAAAGGCT -ACGGAATGTAGCACGGTATCAACC -ACGGAATGTAGCACGGTATGTTCC -ACGGAATGTAGCACGGTAATTCCC -ACGGAATGTAGCACGGTATTCTCG -ACGGAATGTAGCACGGTATAGACG -ACGGAATGTAGCACGGTAGTAACG -ACGGAATGTAGCACGGTAACTTCG -ACGGAATGTAGCACGGTATACGCA -ACGGAATGTAGCACGGTACTTGCA -ACGGAATGTAGCACGGTACGAACA -ACGGAATGTAGCACGGTACAGTCA -ACGGAATGTAGCACGGTAGATCCA -ACGGAATGTAGCACGGTAACGACA -ACGGAATGTAGCACGGTAAGCTCA -ACGGAATGTAGCACGGTATCACGT -ACGGAATGTAGCACGGTACGTAGT -ACGGAATGTAGCACGGTAGTCAGT -ACGGAATGTAGCACGGTAGAAGGT -ACGGAATGTAGCACGGTAAACCGT -ACGGAATGTAGCACGGTATTGTGC -ACGGAATGTAGCACGGTACTAAGC -ACGGAATGTAGCACGGTAACTAGC -ACGGAATGTAGCACGGTAAGATGC -ACGGAATGTAGCACGGTATGAAGG -ACGGAATGTAGCACGGTACAATGG -ACGGAATGTAGCACGGTAATGAGG -ACGGAATGTAGCACGGTAAATGGG -ACGGAATGTAGCACGGTATCCTGA -ACGGAATGTAGCACGGTATAGCGA -ACGGAATGTAGCACGGTACACAGA -ACGGAATGTAGCACGGTAGCAAGA -ACGGAATGTAGCACGGTAGGTTGA -ACGGAATGTAGCACGGTATCCGAT -ACGGAATGTAGCACGGTATGGCAT -ACGGAATGTAGCACGGTACGAGAT -ACGGAATGTAGCACGGTATACCAC -ACGGAATGTAGCACGGTACAGAAC -ACGGAATGTAGCACGGTAGTCTAC -ACGGAATGTAGCACGGTAACGTAC -ACGGAATGTAGCACGGTAAGTGAC -ACGGAATGTAGCACGGTACTGTAG -ACGGAATGTAGCACGGTACCTAAG -ACGGAATGTAGCACGGTAGTTCAG -ACGGAATGTAGCACGGTAGCATAG -ACGGAATGTAGCACGGTAGACAAG -ACGGAATGTAGCACGGTAAAGCAG -ACGGAATGTAGCACGGTACGTCAA -ACGGAATGTAGCACGGTAGCTGAA -ACGGAATGTAGCACGGTAAGTACG -ACGGAATGTAGCACGGTAATCCGA -ACGGAATGTAGCACGGTAATGGGA -ACGGAATGTAGCACGGTAGTGCAA -ACGGAATGTAGCACGGTAGAGGAA -ACGGAATGTAGCACGGTACAGGTA -ACGGAATGTAGCACGGTAGACTCT -ACGGAATGTAGCACGGTAAGTCCT -ACGGAATGTAGCACGGTATAAGCC -ACGGAATGTAGCACGGTAATAGCC -ACGGAATGTAGCACGGTATAACCG -ACGGAATGTAGCACGGTAATGCCA -ACGGAATGTAGCTCGACTGGAAAC -ACGGAATGTAGCTCGACTAACACC -ACGGAATGTAGCTCGACTATCGAG -ACGGAATGTAGCTCGACTCTCCTT -ACGGAATGTAGCTCGACTCCTGTT -ACGGAATGTAGCTCGACTCGGTTT -ACGGAATGTAGCTCGACTGTGGTT -ACGGAATGTAGCTCGACTGCCTTT -ACGGAATGTAGCTCGACTGGTCTT -ACGGAATGTAGCTCGACTACGCTT -ACGGAATGTAGCTCGACTAGCGTT -ACGGAATGTAGCTCGACTTTCGTC -ACGGAATGTAGCTCGACTTCTCTC -ACGGAATGTAGCTCGACTTGGATC -ACGGAATGTAGCTCGACTCACTTC -ACGGAATGTAGCTCGACTGTACTC -ACGGAATGTAGCTCGACTGATGTC -ACGGAATGTAGCTCGACTACAGTC -ACGGAATGTAGCTCGACTTTGCTG -ACGGAATGTAGCTCGACTTCCATG -ACGGAATGTAGCTCGACTTGTGTG -ACGGAATGTAGCTCGACTCTAGTG -ACGGAATGTAGCTCGACTCATCTG -ACGGAATGTAGCTCGACTGAGTTG -ACGGAATGTAGCTCGACTAGACTG -ACGGAATGTAGCTCGACTTCGGTA -ACGGAATGTAGCTCGACTTGCCTA -ACGGAATGTAGCTCGACTCCACTA -ACGGAATGTAGCTCGACTGGAGTA -ACGGAATGTAGCTCGACTTCGTCT -ACGGAATGTAGCTCGACTTGCACT -ACGGAATGTAGCTCGACTCTGACT -ACGGAATGTAGCTCGACTCAACCT -ACGGAATGTAGCTCGACTGCTACT -ACGGAATGTAGCTCGACTGGATCT -ACGGAATGTAGCTCGACTAAGGCT -ACGGAATGTAGCTCGACTTCAACC -ACGGAATGTAGCTCGACTTGTTCC -ACGGAATGTAGCTCGACTATTCCC -ACGGAATGTAGCTCGACTTTCTCG -ACGGAATGTAGCTCGACTTAGACG -ACGGAATGTAGCTCGACTGTAACG -ACGGAATGTAGCTCGACTACTTCG -ACGGAATGTAGCTCGACTTACGCA -ACGGAATGTAGCTCGACTCTTGCA -ACGGAATGTAGCTCGACTCGAACA -ACGGAATGTAGCTCGACTCAGTCA -ACGGAATGTAGCTCGACTGATCCA -ACGGAATGTAGCTCGACTACGACA -ACGGAATGTAGCTCGACTAGCTCA -ACGGAATGTAGCTCGACTTCACGT -ACGGAATGTAGCTCGACTCGTAGT -ACGGAATGTAGCTCGACTGTCAGT -ACGGAATGTAGCTCGACTGAAGGT -ACGGAATGTAGCTCGACTAACCGT -ACGGAATGTAGCTCGACTTTGTGC -ACGGAATGTAGCTCGACTCTAAGC -ACGGAATGTAGCTCGACTACTAGC -ACGGAATGTAGCTCGACTAGATGC -ACGGAATGTAGCTCGACTTGAAGG -ACGGAATGTAGCTCGACTCAATGG -ACGGAATGTAGCTCGACTATGAGG -ACGGAATGTAGCTCGACTAATGGG -ACGGAATGTAGCTCGACTTCCTGA -ACGGAATGTAGCTCGACTTAGCGA -ACGGAATGTAGCTCGACTCACAGA -ACGGAATGTAGCTCGACTGCAAGA -ACGGAATGTAGCTCGACTGGTTGA -ACGGAATGTAGCTCGACTTCCGAT -ACGGAATGTAGCTCGACTTGGCAT -ACGGAATGTAGCTCGACTCGAGAT -ACGGAATGTAGCTCGACTTACCAC -ACGGAATGTAGCTCGACTCAGAAC -ACGGAATGTAGCTCGACTGTCTAC -ACGGAATGTAGCTCGACTACGTAC -ACGGAATGTAGCTCGACTAGTGAC -ACGGAATGTAGCTCGACTCTGTAG -ACGGAATGTAGCTCGACTCCTAAG -ACGGAATGTAGCTCGACTGTTCAG -ACGGAATGTAGCTCGACTGCATAG -ACGGAATGTAGCTCGACTGACAAG -ACGGAATGTAGCTCGACTAAGCAG -ACGGAATGTAGCTCGACTCGTCAA -ACGGAATGTAGCTCGACTGCTGAA -ACGGAATGTAGCTCGACTAGTACG -ACGGAATGTAGCTCGACTATCCGA -ACGGAATGTAGCTCGACTATGGGA -ACGGAATGTAGCTCGACTGTGCAA -ACGGAATGTAGCTCGACTGAGGAA -ACGGAATGTAGCTCGACTCAGGTA -ACGGAATGTAGCTCGACTGACTCT -ACGGAATGTAGCTCGACTAGTCCT -ACGGAATGTAGCTCGACTTAAGCC -ACGGAATGTAGCTCGACTATAGCC -ACGGAATGTAGCTCGACTTAACCG -ACGGAATGTAGCTCGACTATGCCA -ACGGAATGTAGCGCATACGGAAAC -ACGGAATGTAGCGCATACAACACC -ACGGAATGTAGCGCATACATCGAG -ACGGAATGTAGCGCATACCTCCTT -ACGGAATGTAGCGCATACCCTGTT -ACGGAATGTAGCGCATACCGGTTT -ACGGAATGTAGCGCATACGTGGTT -ACGGAATGTAGCGCATACGCCTTT -ACGGAATGTAGCGCATACGGTCTT -ACGGAATGTAGCGCATACACGCTT -ACGGAATGTAGCGCATACAGCGTT -ACGGAATGTAGCGCATACTTCGTC -ACGGAATGTAGCGCATACTCTCTC -ACGGAATGTAGCGCATACTGGATC -ACGGAATGTAGCGCATACCACTTC -ACGGAATGTAGCGCATACGTACTC -ACGGAATGTAGCGCATACGATGTC -ACGGAATGTAGCGCATACACAGTC -ACGGAATGTAGCGCATACTTGCTG -ACGGAATGTAGCGCATACTCCATG -ACGGAATGTAGCGCATACTGTGTG -ACGGAATGTAGCGCATACCTAGTG -ACGGAATGTAGCGCATACCATCTG -ACGGAATGTAGCGCATACGAGTTG -ACGGAATGTAGCGCATACAGACTG -ACGGAATGTAGCGCATACTCGGTA -ACGGAATGTAGCGCATACTGCCTA -ACGGAATGTAGCGCATACCCACTA -ACGGAATGTAGCGCATACGGAGTA -ACGGAATGTAGCGCATACTCGTCT -ACGGAATGTAGCGCATACTGCACT -ACGGAATGTAGCGCATACCTGACT -ACGGAATGTAGCGCATACCAACCT -ACGGAATGTAGCGCATACGCTACT -ACGGAATGTAGCGCATACGGATCT -ACGGAATGTAGCGCATACAAGGCT -ACGGAATGTAGCGCATACTCAACC -ACGGAATGTAGCGCATACTGTTCC -ACGGAATGTAGCGCATACATTCCC -ACGGAATGTAGCGCATACTTCTCG -ACGGAATGTAGCGCATACTAGACG -ACGGAATGTAGCGCATACGTAACG -ACGGAATGTAGCGCATACACTTCG -ACGGAATGTAGCGCATACTACGCA -ACGGAATGTAGCGCATACCTTGCA -ACGGAATGTAGCGCATACCGAACA -ACGGAATGTAGCGCATACCAGTCA -ACGGAATGTAGCGCATACGATCCA -ACGGAATGTAGCGCATACACGACA -ACGGAATGTAGCGCATACAGCTCA -ACGGAATGTAGCGCATACTCACGT -ACGGAATGTAGCGCATACCGTAGT -ACGGAATGTAGCGCATACGTCAGT -ACGGAATGTAGCGCATACGAAGGT -ACGGAATGTAGCGCATACAACCGT -ACGGAATGTAGCGCATACTTGTGC -ACGGAATGTAGCGCATACCTAAGC -ACGGAATGTAGCGCATACACTAGC -ACGGAATGTAGCGCATACAGATGC -ACGGAATGTAGCGCATACTGAAGG -ACGGAATGTAGCGCATACCAATGG -ACGGAATGTAGCGCATACATGAGG -ACGGAATGTAGCGCATACAATGGG -ACGGAATGTAGCGCATACTCCTGA -ACGGAATGTAGCGCATACTAGCGA -ACGGAATGTAGCGCATACCACAGA -ACGGAATGTAGCGCATACGCAAGA -ACGGAATGTAGCGCATACGGTTGA -ACGGAATGTAGCGCATACTCCGAT -ACGGAATGTAGCGCATACTGGCAT -ACGGAATGTAGCGCATACCGAGAT -ACGGAATGTAGCGCATACTACCAC -ACGGAATGTAGCGCATACCAGAAC -ACGGAATGTAGCGCATACGTCTAC -ACGGAATGTAGCGCATACACGTAC -ACGGAATGTAGCGCATACAGTGAC -ACGGAATGTAGCGCATACCTGTAG -ACGGAATGTAGCGCATACCCTAAG -ACGGAATGTAGCGCATACGTTCAG -ACGGAATGTAGCGCATACGCATAG -ACGGAATGTAGCGCATACGACAAG -ACGGAATGTAGCGCATACAAGCAG -ACGGAATGTAGCGCATACCGTCAA -ACGGAATGTAGCGCATACGCTGAA -ACGGAATGTAGCGCATACAGTACG -ACGGAATGTAGCGCATACATCCGA -ACGGAATGTAGCGCATACATGGGA -ACGGAATGTAGCGCATACGTGCAA -ACGGAATGTAGCGCATACGAGGAA -ACGGAATGTAGCGCATACCAGGTA -ACGGAATGTAGCGCATACGACTCT -ACGGAATGTAGCGCATACAGTCCT -ACGGAATGTAGCGCATACTAAGCC -ACGGAATGTAGCGCATACATAGCC -ACGGAATGTAGCGCATACTAACCG -ACGGAATGTAGCGCATACATGCCA -ACGGAATGTAGCGCACTTGGAAAC -ACGGAATGTAGCGCACTTAACACC -ACGGAATGTAGCGCACTTATCGAG -ACGGAATGTAGCGCACTTCTCCTT -ACGGAATGTAGCGCACTTCCTGTT -ACGGAATGTAGCGCACTTCGGTTT -ACGGAATGTAGCGCACTTGTGGTT -ACGGAATGTAGCGCACTTGCCTTT -ACGGAATGTAGCGCACTTGGTCTT -ACGGAATGTAGCGCACTTACGCTT -ACGGAATGTAGCGCACTTAGCGTT -ACGGAATGTAGCGCACTTTTCGTC -ACGGAATGTAGCGCACTTTCTCTC -ACGGAATGTAGCGCACTTTGGATC -ACGGAATGTAGCGCACTTCACTTC -ACGGAATGTAGCGCACTTGTACTC -ACGGAATGTAGCGCACTTGATGTC -ACGGAATGTAGCGCACTTACAGTC -ACGGAATGTAGCGCACTTTTGCTG -ACGGAATGTAGCGCACTTTCCATG -ACGGAATGTAGCGCACTTTGTGTG -ACGGAATGTAGCGCACTTCTAGTG -ACGGAATGTAGCGCACTTCATCTG -ACGGAATGTAGCGCACTTGAGTTG -ACGGAATGTAGCGCACTTAGACTG -ACGGAATGTAGCGCACTTTCGGTA -ACGGAATGTAGCGCACTTTGCCTA -ACGGAATGTAGCGCACTTCCACTA -ACGGAATGTAGCGCACTTGGAGTA -ACGGAATGTAGCGCACTTTCGTCT -ACGGAATGTAGCGCACTTTGCACT -ACGGAATGTAGCGCACTTCTGACT -ACGGAATGTAGCGCACTTCAACCT -ACGGAATGTAGCGCACTTGCTACT -ACGGAATGTAGCGCACTTGGATCT -ACGGAATGTAGCGCACTTAAGGCT -ACGGAATGTAGCGCACTTTCAACC -ACGGAATGTAGCGCACTTTGTTCC -ACGGAATGTAGCGCACTTATTCCC -ACGGAATGTAGCGCACTTTTCTCG -ACGGAATGTAGCGCACTTTAGACG -ACGGAATGTAGCGCACTTGTAACG -ACGGAATGTAGCGCACTTACTTCG -ACGGAATGTAGCGCACTTTACGCA -ACGGAATGTAGCGCACTTCTTGCA -ACGGAATGTAGCGCACTTCGAACA -ACGGAATGTAGCGCACTTCAGTCA -ACGGAATGTAGCGCACTTGATCCA -ACGGAATGTAGCGCACTTACGACA -ACGGAATGTAGCGCACTTAGCTCA -ACGGAATGTAGCGCACTTTCACGT -ACGGAATGTAGCGCACTTCGTAGT -ACGGAATGTAGCGCACTTGTCAGT -ACGGAATGTAGCGCACTTGAAGGT -ACGGAATGTAGCGCACTTAACCGT -ACGGAATGTAGCGCACTTTTGTGC -ACGGAATGTAGCGCACTTCTAAGC -ACGGAATGTAGCGCACTTACTAGC -ACGGAATGTAGCGCACTTAGATGC -ACGGAATGTAGCGCACTTTGAAGG -ACGGAATGTAGCGCACTTCAATGG -ACGGAATGTAGCGCACTTATGAGG -ACGGAATGTAGCGCACTTAATGGG -ACGGAATGTAGCGCACTTTCCTGA -ACGGAATGTAGCGCACTTTAGCGA -ACGGAATGTAGCGCACTTCACAGA -ACGGAATGTAGCGCACTTGCAAGA -ACGGAATGTAGCGCACTTGGTTGA -ACGGAATGTAGCGCACTTTCCGAT -ACGGAATGTAGCGCACTTTGGCAT -ACGGAATGTAGCGCACTTCGAGAT -ACGGAATGTAGCGCACTTTACCAC -ACGGAATGTAGCGCACTTCAGAAC -ACGGAATGTAGCGCACTTGTCTAC -ACGGAATGTAGCGCACTTACGTAC -ACGGAATGTAGCGCACTTAGTGAC -ACGGAATGTAGCGCACTTCTGTAG -ACGGAATGTAGCGCACTTCCTAAG -ACGGAATGTAGCGCACTTGTTCAG -ACGGAATGTAGCGCACTTGCATAG -ACGGAATGTAGCGCACTTGACAAG -ACGGAATGTAGCGCACTTAAGCAG -ACGGAATGTAGCGCACTTCGTCAA -ACGGAATGTAGCGCACTTGCTGAA -ACGGAATGTAGCGCACTTAGTACG -ACGGAATGTAGCGCACTTATCCGA -ACGGAATGTAGCGCACTTATGGGA -ACGGAATGTAGCGCACTTGTGCAA -ACGGAATGTAGCGCACTTGAGGAA -ACGGAATGTAGCGCACTTCAGGTA -ACGGAATGTAGCGCACTTGACTCT -ACGGAATGTAGCGCACTTAGTCCT -ACGGAATGTAGCGCACTTTAAGCC -ACGGAATGTAGCGCACTTATAGCC -ACGGAATGTAGCGCACTTTAACCG -ACGGAATGTAGCGCACTTATGCCA -ACGGAATGTAGCACACGAGGAAAC -ACGGAATGTAGCACACGAAACACC -ACGGAATGTAGCACACGAATCGAG -ACGGAATGTAGCACACGACTCCTT -ACGGAATGTAGCACACGACCTGTT -ACGGAATGTAGCACACGACGGTTT -ACGGAATGTAGCACACGAGTGGTT -ACGGAATGTAGCACACGAGCCTTT -ACGGAATGTAGCACACGAGGTCTT -ACGGAATGTAGCACACGAACGCTT -ACGGAATGTAGCACACGAAGCGTT -ACGGAATGTAGCACACGATTCGTC -ACGGAATGTAGCACACGATCTCTC -ACGGAATGTAGCACACGATGGATC -ACGGAATGTAGCACACGACACTTC -ACGGAATGTAGCACACGAGTACTC -ACGGAATGTAGCACACGAGATGTC -ACGGAATGTAGCACACGAACAGTC -ACGGAATGTAGCACACGATTGCTG -ACGGAATGTAGCACACGATCCATG -ACGGAATGTAGCACACGATGTGTG -ACGGAATGTAGCACACGACTAGTG -ACGGAATGTAGCACACGACATCTG -ACGGAATGTAGCACACGAGAGTTG -ACGGAATGTAGCACACGAAGACTG -ACGGAATGTAGCACACGATCGGTA -ACGGAATGTAGCACACGATGCCTA -ACGGAATGTAGCACACGACCACTA -ACGGAATGTAGCACACGAGGAGTA -ACGGAATGTAGCACACGATCGTCT -ACGGAATGTAGCACACGATGCACT -ACGGAATGTAGCACACGACTGACT -ACGGAATGTAGCACACGACAACCT -ACGGAATGTAGCACACGAGCTACT -ACGGAATGTAGCACACGAGGATCT -ACGGAATGTAGCACACGAAAGGCT -ACGGAATGTAGCACACGATCAACC -ACGGAATGTAGCACACGATGTTCC -ACGGAATGTAGCACACGAATTCCC -ACGGAATGTAGCACACGATTCTCG -ACGGAATGTAGCACACGATAGACG -ACGGAATGTAGCACACGAGTAACG -ACGGAATGTAGCACACGAACTTCG -ACGGAATGTAGCACACGATACGCA -ACGGAATGTAGCACACGACTTGCA -ACGGAATGTAGCACACGACGAACA -ACGGAATGTAGCACACGACAGTCA -ACGGAATGTAGCACACGAGATCCA -ACGGAATGTAGCACACGAACGACA -ACGGAATGTAGCACACGAAGCTCA -ACGGAATGTAGCACACGATCACGT -ACGGAATGTAGCACACGACGTAGT -ACGGAATGTAGCACACGAGTCAGT -ACGGAATGTAGCACACGAGAAGGT -ACGGAATGTAGCACACGAAACCGT -ACGGAATGTAGCACACGATTGTGC -ACGGAATGTAGCACACGACTAAGC -ACGGAATGTAGCACACGAACTAGC -ACGGAATGTAGCACACGAAGATGC -ACGGAATGTAGCACACGATGAAGG -ACGGAATGTAGCACACGACAATGG -ACGGAATGTAGCACACGAATGAGG -ACGGAATGTAGCACACGAAATGGG -ACGGAATGTAGCACACGATCCTGA -ACGGAATGTAGCACACGATAGCGA -ACGGAATGTAGCACACGACACAGA -ACGGAATGTAGCACACGAGCAAGA -ACGGAATGTAGCACACGAGGTTGA -ACGGAATGTAGCACACGATCCGAT -ACGGAATGTAGCACACGATGGCAT -ACGGAATGTAGCACACGACGAGAT -ACGGAATGTAGCACACGATACCAC -ACGGAATGTAGCACACGACAGAAC -ACGGAATGTAGCACACGAGTCTAC -ACGGAATGTAGCACACGAACGTAC -ACGGAATGTAGCACACGAAGTGAC -ACGGAATGTAGCACACGACTGTAG -ACGGAATGTAGCACACGACCTAAG -ACGGAATGTAGCACACGAGTTCAG -ACGGAATGTAGCACACGAGCATAG -ACGGAATGTAGCACACGAGACAAG -ACGGAATGTAGCACACGAAAGCAG -ACGGAATGTAGCACACGACGTCAA -ACGGAATGTAGCACACGAGCTGAA -ACGGAATGTAGCACACGAAGTACG -ACGGAATGTAGCACACGAATCCGA -ACGGAATGTAGCACACGAATGGGA -ACGGAATGTAGCACACGAGTGCAA -ACGGAATGTAGCACACGAGAGGAA -ACGGAATGTAGCACACGACAGGTA -ACGGAATGTAGCACACGAGACTCT -ACGGAATGTAGCACACGAAGTCCT -ACGGAATGTAGCACACGATAAGCC -ACGGAATGTAGCACACGAATAGCC -ACGGAATGTAGCACACGATAACCG -ACGGAATGTAGCACACGAATGCCA -ACGGAATGTAGCTCACAGGGAAAC -ACGGAATGTAGCTCACAGAACACC -ACGGAATGTAGCTCACAGATCGAG -ACGGAATGTAGCTCACAGCTCCTT -ACGGAATGTAGCTCACAGCCTGTT -ACGGAATGTAGCTCACAGCGGTTT -ACGGAATGTAGCTCACAGGTGGTT -ACGGAATGTAGCTCACAGGCCTTT -ACGGAATGTAGCTCACAGGGTCTT -ACGGAATGTAGCTCACAGACGCTT -ACGGAATGTAGCTCACAGAGCGTT -ACGGAATGTAGCTCACAGTTCGTC -ACGGAATGTAGCTCACAGTCTCTC -ACGGAATGTAGCTCACAGTGGATC -ACGGAATGTAGCTCACAGCACTTC -ACGGAATGTAGCTCACAGGTACTC -ACGGAATGTAGCTCACAGGATGTC -ACGGAATGTAGCTCACAGACAGTC -ACGGAATGTAGCTCACAGTTGCTG -ACGGAATGTAGCTCACAGTCCATG -ACGGAATGTAGCTCACAGTGTGTG -ACGGAATGTAGCTCACAGCTAGTG -ACGGAATGTAGCTCACAGCATCTG -ACGGAATGTAGCTCACAGGAGTTG -ACGGAATGTAGCTCACAGAGACTG -ACGGAATGTAGCTCACAGTCGGTA -ACGGAATGTAGCTCACAGTGCCTA -ACGGAATGTAGCTCACAGCCACTA -ACGGAATGTAGCTCACAGGGAGTA -ACGGAATGTAGCTCACAGTCGTCT -ACGGAATGTAGCTCACAGTGCACT -ACGGAATGTAGCTCACAGCTGACT -ACGGAATGTAGCTCACAGCAACCT -ACGGAATGTAGCTCACAGGCTACT -ACGGAATGTAGCTCACAGGGATCT -ACGGAATGTAGCTCACAGAAGGCT -ACGGAATGTAGCTCACAGTCAACC -ACGGAATGTAGCTCACAGTGTTCC -ACGGAATGTAGCTCACAGATTCCC -ACGGAATGTAGCTCACAGTTCTCG -ACGGAATGTAGCTCACAGTAGACG -ACGGAATGTAGCTCACAGGTAACG -ACGGAATGTAGCTCACAGACTTCG -ACGGAATGTAGCTCACAGTACGCA -ACGGAATGTAGCTCACAGCTTGCA -ACGGAATGTAGCTCACAGCGAACA -ACGGAATGTAGCTCACAGCAGTCA -ACGGAATGTAGCTCACAGGATCCA -ACGGAATGTAGCTCACAGACGACA -ACGGAATGTAGCTCACAGAGCTCA -ACGGAATGTAGCTCACAGTCACGT -ACGGAATGTAGCTCACAGCGTAGT -ACGGAATGTAGCTCACAGGTCAGT -ACGGAATGTAGCTCACAGGAAGGT -ACGGAATGTAGCTCACAGAACCGT -ACGGAATGTAGCTCACAGTTGTGC -ACGGAATGTAGCTCACAGCTAAGC -ACGGAATGTAGCTCACAGACTAGC -ACGGAATGTAGCTCACAGAGATGC -ACGGAATGTAGCTCACAGTGAAGG -ACGGAATGTAGCTCACAGCAATGG -ACGGAATGTAGCTCACAGATGAGG -ACGGAATGTAGCTCACAGAATGGG -ACGGAATGTAGCTCACAGTCCTGA -ACGGAATGTAGCTCACAGTAGCGA -ACGGAATGTAGCTCACAGCACAGA -ACGGAATGTAGCTCACAGGCAAGA -ACGGAATGTAGCTCACAGGGTTGA -ACGGAATGTAGCTCACAGTCCGAT -ACGGAATGTAGCTCACAGTGGCAT -ACGGAATGTAGCTCACAGCGAGAT -ACGGAATGTAGCTCACAGTACCAC -ACGGAATGTAGCTCACAGCAGAAC -ACGGAATGTAGCTCACAGGTCTAC -ACGGAATGTAGCTCACAGACGTAC -ACGGAATGTAGCTCACAGAGTGAC -ACGGAATGTAGCTCACAGCTGTAG -ACGGAATGTAGCTCACAGCCTAAG -ACGGAATGTAGCTCACAGGTTCAG -ACGGAATGTAGCTCACAGGCATAG -ACGGAATGTAGCTCACAGGACAAG -ACGGAATGTAGCTCACAGAAGCAG -ACGGAATGTAGCTCACAGCGTCAA -ACGGAATGTAGCTCACAGGCTGAA -ACGGAATGTAGCTCACAGAGTACG -ACGGAATGTAGCTCACAGATCCGA -ACGGAATGTAGCTCACAGATGGGA -ACGGAATGTAGCTCACAGGTGCAA -ACGGAATGTAGCTCACAGGAGGAA -ACGGAATGTAGCTCACAGCAGGTA -ACGGAATGTAGCTCACAGGACTCT -ACGGAATGTAGCTCACAGAGTCCT -ACGGAATGTAGCTCACAGTAAGCC -ACGGAATGTAGCTCACAGATAGCC -ACGGAATGTAGCTCACAGTAACCG -ACGGAATGTAGCTCACAGATGCCA -ACGGAATGTAGCCCAGATGGAAAC -ACGGAATGTAGCCCAGATAACACC -ACGGAATGTAGCCCAGATATCGAG -ACGGAATGTAGCCCAGATCTCCTT -ACGGAATGTAGCCCAGATCCTGTT -ACGGAATGTAGCCCAGATCGGTTT -ACGGAATGTAGCCCAGATGTGGTT -ACGGAATGTAGCCCAGATGCCTTT -ACGGAATGTAGCCCAGATGGTCTT -ACGGAATGTAGCCCAGATACGCTT -ACGGAATGTAGCCCAGATAGCGTT -ACGGAATGTAGCCCAGATTTCGTC -ACGGAATGTAGCCCAGATTCTCTC -ACGGAATGTAGCCCAGATTGGATC -ACGGAATGTAGCCCAGATCACTTC -ACGGAATGTAGCCCAGATGTACTC -ACGGAATGTAGCCCAGATGATGTC -ACGGAATGTAGCCCAGATACAGTC -ACGGAATGTAGCCCAGATTTGCTG -ACGGAATGTAGCCCAGATTCCATG -ACGGAATGTAGCCCAGATTGTGTG -ACGGAATGTAGCCCAGATCTAGTG -ACGGAATGTAGCCCAGATCATCTG -ACGGAATGTAGCCCAGATGAGTTG -ACGGAATGTAGCCCAGATAGACTG -ACGGAATGTAGCCCAGATTCGGTA -ACGGAATGTAGCCCAGATTGCCTA -ACGGAATGTAGCCCAGATCCACTA -ACGGAATGTAGCCCAGATGGAGTA -ACGGAATGTAGCCCAGATTCGTCT -ACGGAATGTAGCCCAGATTGCACT -ACGGAATGTAGCCCAGATCTGACT -ACGGAATGTAGCCCAGATCAACCT -ACGGAATGTAGCCCAGATGCTACT -ACGGAATGTAGCCCAGATGGATCT -ACGGAATGTAGCCCAGATAAGGCT -ACGGAATGTAGCCCAGATTCAACC -ACGGAATGTAGCCCAGATTGTTCC -ACGGAATGTAGCCCAGATATTCCC -ACGGAATGTAGCCCAGATTTCTCG -ACGGAATGTAGCCCAGATTAGACG -ACGGAATGTAGCCCAGATGTAACG -ACGGAATGTAGCCCAGATACTTCG -ACGGAATGTAGCCCAGATTACGCA -ACGGAATGTAGCCCAGATCTTGCA -ACGGAATGTAGCCCAGATCGAACA -ACGGAATGTAGCCCAGATCAGTCA -ACGGAATGTAGCCCAGATGATCCA -ACGGAATGTAGCCCAGATACGACA -ACGGAATGTAGCCCAGATAGCTCA -ACGGAATGTAGCCCAGATTCACGT -ACGGAATGTAGCCCAGATCGTAGT -ACGGAATGTAGCCCAGATGTCAGT -ACGGAATGTAGCCCAGATGAAGGT -ACGGAATGTAGCCCAGATAACCGT -ACGGAATGTAGCCCAGATTTGTGC -ACGGAATGTAGCCCAGATCTAAGC -ACGGAATGTAGCCCAGATACTAGC -ACGGAATGTAGCCCAGATAGATGC -ACGGAATGTAGCCCAGATTGAAGG -ACGGAATGTAGCCCAGATCAATGG -ACGGAATGTAGCCCAGATATGAGG -ACGGAATGTAGCCCAGATAATGGG -ACGGAATGTAGCCCAGATTCCTGA -ACGGAATGTAGCCCAGATTAGCGA -ACGGAATGTAGCCCAGATCACAGA -ACGGAATGTAGCCCAGATGCAAGA -ACGGAATGTAGCCCAGATGGTTGA -ACGGAATGTAGCCCAGATTCCGAT -ACGGAATGTAGCCCAGATTGGCAT -ACGGAATGTAGCCCAGATCGAGAT -ACGGAATGTAGCCCAGATTACCAC -ACGGAATGTAGCCCAGATCAGAAC -ACGGAATGTAGCCCAGATGTCTAC -ACGGAATGTAGCCCAGATACGTAC -ACGGAATGTAGCCCAGATAGTGAC -ACGGAATGTAGCCCAGATCTGTAG -ACGGAATGTAGCCCAGATCCTAAG -ACGGAATGTAGCCCAGATGTTCAG -ACGGAATGTAGCCCAGATGCATAG -ACGGAATGTAGCCCAGATGACAAG -ACGGAATGTAGCCCAGATAAGCAG -ACGGAATGTAGCCCAGATCGTCAA -ACGGAATGTAGCCCAGATGCTGAA -ACGGAATGTAGCCCAGATAGTACG -ACGGAATGTAGCCCAGATATCCGA -ACGGAATGTAGCCCAGATATGGGA -ACGGAATGTAGCCCAGATGTGCAA -ACGGAATGTAGCCCAGATGAGGAA -ACGGAATGTAGCCCAGATCAGGTA -ACGGAATGTAGCCCAGATGACTCT -ACGGAATGTAGCCCAGATAGTCCT -ACGGAATGTAGCCCAGATTAAGCC -ACGGAATGTAGCCCAGATATAGCC -ACGGAATGTAGCCCAGATTAACCG -ACGGAATGTAGCCCAGATATGCCA -ACGGAATGTAGCACAACGGGAAAC -ACGGAATGTAGCACAACGAACACC -ACGGAATGTAGCACAACGATCGAG -ACGGAATGTAGCACAACGCTCCTT -ACGGAATGTAGCACAACGCCTGTT -ACGGAATGTAGCACAACGCGGTTT -ACGGAATGTAGCACAACGGTGGTT -ACGGAATGTAGCACAACGGCCTTT -ACGGAATGTAGCACAACGGGTCTT -ACGGAATGTAGCACAACGACGCTT -ACGGAATGTAGCACAACGAGCGTT -ACGGAATGTAGCACAACGTTCGTC -ACGGAATGTAGCACAACGTCTCTC -ACGGAATGTAGCACAACGTGGATC -ACGGAATGTAGCACAACGCACTTC -ACGGAATGTAGCACAACGGTACTC -ACGGAATGTAGCACAACGGATGTC -ACGGAATGTAGCACAACGACAGTC -ACGGAATGTAGCACAACGTTGCTG -ACGGAATGTAGCACAACGTCCATG -ACGGAATGTAGCACAACGTGTGTG -ACGGAATGTAGCACAACGCTAGTG -ACGGAATGTAGCACAACGCATCTG -ACGGAATGTAGCACAACGGAGTTG -ACGGAATGTAGCACAACGAGACTG -ACGGAATGTAGCACAACGTCGGTA -ACGGAATGTAGCACAACGTGCCTA -ACGGAATGTAGCACAACGCCACTA -ACGGAATGTAGCACAACGGGAGTA -ACGGAATGTAGCACAACGTCGTCT -ACGGAATGTAGCACAACGTGCACT -ACGGAATGTAGCACAACGCTGACT -ACGGAATGTAGCACAACGCAACCT -ACGGAATGTAGCACAACGGCTACT -ACGGAATGTAGCACAACGGGATCT -ACGGAATGTAGCACAACGAAGGCT -ACGGAATGTAGCACAACGTCAACC -ACGGAATGTAGCACAACGTGTTCC -ACGGAATGTAGCACAACGATTCCC -ACGGAATGTAGCACAACGTTCTCG -ACGGAATGTAGCACAACGTAGACG -ACGGAATGTAGCACAACGGTAACG -ACGGAATGTAGCACAACGACTTCG -ACGGAATGTAGCACAACGTACGCA -ACGGAATGTAGCACAACGCTTGCA -ACGGAATGTAGCACAACGCGAACA -ACGGAATGTAGCACAACGCAGTCA -ACGGAATGTAGCACAACGGATCCA -ACGGAATGTAGCACAACGACGACA -ACGGAATGTAGCACAACGAGCTCA -ACGGAATGTAGCACAACGTCACGT -ACGGAATGTAGCACAACGCGTAGT -ACGGAATGTAGCACAACGGTCAGT -ACGGAATGTAGCACAACGGAAGGT -ACGGAATGTAGCACAACGAACCGT -ACGGAATGTAGCACAACGTTGTGC -ACGGAATGTAGCACAACGCTAAGC -ACGGAATGTAGCACAACGACTAGC -ACGGAATGTAGCACAACGAGATGC -ACGGAATGTAGCACAACGTGAAGG -ACGGAATGTAGCACAACGCAATGG -ACGGAATGTAGCACAACGATGAGG -ACGGAATGTAGCACAACGAATGGG -ACGGAATGTAGCACAACGTCCTGA -ACGGAATGTAGCACAACGTAGCGA -ACGGAATGTAGCACAACGCACAGA -ACGGAATGTAGCACAACGGCAAGA -ACGGAATGTAGCACAACGGGTTGA -ACGGAATGTAGCACAACGTCCGAT -ACGGAATGTAGCACAACGTGGCAT -ACGGAATGTAGCACAACGCGAGAT -ACGGAATGTAGCACAACGTACCAC -ACGGAATGTAGCACAACGCAGAAC -ACGGAATGTAGCACAACGGTCTAC -ACGGAATGTAGCACAACGACGTAC -ACGGAATGTAGCACAACGAGTGAC -ACGGAATGTAGCACAACGCTGTAG -ACGGAATGTAGCACAACGCCTAAG -ACGGAATGTAGCACAACGGTTCAG -ACGGAATGTAGCACAACGGCATAG -ACGGAATGTAGCACAACGGACAAG -ACGGAATGTAGCACAACGAAGCAG -ACGGAATGTAGCACAACGCGTCAA -ACGGAATGTAGCACAACGGCTGAA -ACGGAATGTAGCACAACGAGTACG -ACGGAATGTAGCACAACGATCCGA -ACGGAATGTAGCACAACGATGGGA -ACGGAATGTAGCACAACGGTGCAA -ACGGAATGTAGCACAACGGAGGAA -ACGGAATGTAGCACAACGCAGGTA -ACGGAATGTAGCACAACGGACTCT -ACGGAATGTAGCACAACGAGTCCT -ACGGAATGTAGCACAACGTAAGCC -ACGGAATGTAGCACAACGATAGCC -ACGGAATGTAGCACAACGTAACCG -ACGGAATGTAGCACAACGATGCCA -ACGGAATGTAGCTCAAGCGGAAAC -ACGGAATGTAGCTCAAGCAACACC -ACGGAATGTAGCTCAAGCATCGAG -ACGGAATGTAGCTCAAGCCTCCTT -ACGGAATGTAGCTCAAGCCCTGTT -ACGGAATGTAGCTCAAGCCGGTTT -ACGGAATGTAGCTCAAGCGTGGTT -ACGGAATGTAGCTCAAGCGCCTTT -ACGGAATGTAGCTCAAGCGGTCTT -ACGGAATGTAGCTCAAGCACGCTT -ACGGAATGTAGCTCAAGCAGCGTT -ACGGAATGTAGCTCAAGCTTCGTC -ACGGAATGTAGCTCAAGCTCTCTC -ACGGAATGTAGCTCAAGCTGGATC -ACGGAATGTAGCTCAAGCCACTTC -ACGGAATGTAGCTCAAGCGTACTC -ACGGAATGTAGCTCAAGCGATGTC -ACGGAATGTAGCTCAAGCACAGTC -ACGGAATGTAGCTCAAGCTTGCTG -ACGGAATGTAGCTCAAGCTCCATG -ACGGAATGTAGCTCAAGCTGTGTG -ACGGAATGTAGCTCAAGCCTAGTG -ACGGAATGTAGCTCAAGCCATCTG -ACGGAATGTAGCTCAAGCGAGTTG -ACGGAATGTAGCTCAAGCAGACTG -ACGGAATGTAGCTCAAGCTCGGTA -ACGGAATGTAGCTCAAGCTGCCTA -ACGGAATGTAGCTCAAGCCCACTA -ACGGAATGTAGCTCAAGCGGAGTA -ACGGAATGTAGCTCAAGCTCGTCT -ACGGAATGTAGCTCAAGCTGCACT -ACGGAATGTAGCTCAAGCCTGACT -ACGGAATGTAGCTCAAGCCAACCT -ACGGAATGTAGCTCAAGCGCTACT -ACGGAATGTAGCTCAAGCGGATCT -ACGGAATGTAGCTCAAGCAAGGCT -ACGGAATGTAGCTCAAGCTCAACC -ACGGAATGTAGCTCAAGCTGTTCC -ACGGAATGTAGCTCAAGCATTCCC -ACGGAATGTAGCTCAAGCTTCTCG -ACGGAATGTAGCTCAAGCTAGACG -ACGGAATGTAGCTCAAGCGTAACG -ACGGAATGTAGCTCAAGCACTTCG -ACGGAATGTAGCTCAAGCTACGCA -ACGGAATGTAGCTCAAGCCTTGCA -ACGGAATGTAGCTCAAGCCGAACA -ACGGAATGTAGCTCAAGCCAGTCA -ACGGAATGTAGCTCAAGCGATCCA -ACGGAATGTAGCTCAAGCACGACA -ACGGAATGTAGCTCAAGCAGCTCA -ACGGAATGTAGCTCAAGCTCACGT -ACGGAATGTAGCTCAAGCCGTAGT -ACGGAATGTAGCTCAAGCGTCAGT -ACGGAATGTAGCTCAAGCGAAGGT -ACGGAATGTAGCTCAAGCAACCGT -ACGGAATGTAGCTCAAGCTTGTGC -ACGGAATGTAGCTCAAGCCTAAGC -ACGGAATGTAGCTCAAGCACTAGC -ACGGAATGTAGCTCAAGCAGATGC -ACGGAATGTAGCTCAAGCTGAAGG -ACGGAATGTAGCTCAAGCCAATGG -ACGGAATGTAGCTCAAGCATGAGG -ACGGAATGTAGCTCAAGCAATGGG -ACGGAATGTAGCTCAAGCTCCTGA -ACGGAATGTAGCTCAAGCTAGCGA -ACGGAATGTAGCTCAAGCCACAGA -ACGGAATGTAGCTCAAGCGCAAGA -ACGGAATGTAGCTCAAGCGGTTGA -ACGGAATGTAGCTCAAGCTCCGAT -ACGGAATGTAGCTCAAGCTGGCAT -ACGGAATGTAGCTCAAGCCGAGAT -ACGGAATGTAGCTCAAGCTACCAC -ACGGAATGTAGCTCAAGCCAGAAC -ACGGAATGTAGCTCAAGCGTCTAC -ACGGAATGTAGCTCAAGCACGTAC -ACGGAATGTAGCTCAAGCAGTGAC -ACGGAATGTAGCTCAAGCCTGTAG -ACGGAATGTAGCTCAAGCCCTAAG -ACGGAATGTAGCTCAAGCGTTCAG -ACGGAATGTAGCTCAAGCGCATAG -ACGGAATGTAGCTCAAGCGACAAG -ACGGAATGTAGCTCAAGCAAGCAG -ACGGAATGTAGCTCAAGCCGTCAA -ACGGAATGTAGCTCAAGCGCTGAA -ACGGAATGTAGCTCAAGCAGTACG -ACGGAATGTAGCTCAAGCATCCGA -ACGGAATGTAGCTCAAGCATGGGA -ACGGAATGTAGCTCAAGCGTGCAA -ACGGAATGTAGCTCAAGCGAGGAA -ACGGAATGTAGCTCAAGCCAGGTA -ACGGAATGTAGCTCAAGCGACTCT -ACGGAATGTAGCTCAAGCAGTCCT -ACGGAATGTAGCTCAAGCTAAGCC -ACGGAATGTAGCTCAAGCATAGCC -ACGGAATGTAGCTCAAGCTAACCG -ACGGAATGTAGCTCAAGCATGCCA -ACGGAATGTAGCCGTTCAGGAAAC -ACGGAATGTAGCCGTTCAAACACC -ACGGAATGTAGCCGTTCAATCGAG -ACGGAATGTAGCCGTTCACTCCTT -ACGGAATGTAGCCGTTCACCTGTT -ACGGAATGTAGCCGTTCACGGTTT -ACGGAATGTAGCCGTTCAGTGGTT -ACGGAATGTAGCCGTTCAGCCTTT -ACGGAATGTAGCCGTTCAGGTCTT -ACGGAATGTAGCCGTTCAACGCTT -ACGGAATGTAGCCGTTCAAGCGTT -ACGGAATGTAGCCGTTCATTCGTC -ACGGAATGTAGCCGTTCATCTCTC -ACGGAATGTAGCCGTTCATGGATC -ACGGAATGTAGCCGTTCACACTTC -ACGGAATGTAGCCGTTCAGTACTC -ACGGAATGTAGCCGTTCAGATGTC -ACGGAATGTAGCCGTTCAACAGTC -ACGGAATGTAGCCGTTCATTGCTG -ACGGAATGTAGCCGTTCATCCATG -ACGGAATGTAGCCGTTCATGTGTG -ACGGAATGTAGCCGTTCACTAGTG -ACGGAATGTAGCCGTTCACATCTG -ACGGAATGTAGCCGTTCAGAGTTG -ACGGAATGTAGCCGTTCAAGACTG -ACGGAATGTAGCCGTTCATCGGTA -ACGGAATGTAGCCGTTCATGCCTA -ACGGAATGTAGCCGTTCACCACTA -ACGGAATGTAGCCGTTCAGGAGTA -ACGGAATGTAGCCGTTCATCGTCT -ACGGAATGTAGCCGTTCATGCACT -ACGGAATGTAGCCGTTCACTGACT -ACGGAATGTAGCCGTTCACAACCT -ACGGAATGTAGCCGTTCAGCTACT -ACGGAATGTAGCCGTTCAGGATCT -ACGGAATGTAGCCGTTCAAAGGCT -ACGGAATGTAGCCGTTCATCAACC -ACGGAATGTAGCCGTTCATGTTCC -ACGGAATGTAGCCGTTCAATTCCC -ACGGAATGTAGCCGTTCATTCTCG -ACGGAATGTAGCCGTTCATAGACG -ACGGAATGTAGCCGTTCAGTAACG -ACGGAATGTAGCCGTTCAACTTCG -ACGGAATGTAGCCGTTCATACGCA -ACGGAATGTAGCCGTTCACTTGCA -ACGGAATGTAGCCGTTCACGAACA -ACGGAATGTAGCCGTTCACAGTCA -ACGGAATGTAGCCGTTCAGATCCA -ACGGAATGTAGCCGTTCAACGACA -ACGGAATGTAGCCGTTCAAGCTCA -ACGGAATGTAGCCGTTCATCACGT -ACGGAATGTAGCCGTTCACGTAGT -ACGGAATGTAGCCGTTCAGTCAGT -ACGGAATGTAGCCGTTCAGAAGGT -ACGGAATGTAGCCGTTCAAACCGT -ACGGAATGTAGCCGTTCATTGTGC -ACGGAATGTAGCCGTTCACTAAGC -ACGGAATGTAGCCGTTCAACTAGC -ACGGAATGTAGCCGTTCAAGATGC -ACGGAATGTAGCCGTTCATGAAGG -ACGGAATGTAGCCGTTCACAATGG -ACGGAATGTAGCCGTTCAATGAGG -ACGGAATGTAGCCGTTCAAATGGG -ACGGAATGTAGCCGTTCATCCTGA -ACGGAATGTAGCCGTTCATAGCGA -ACGGAATGTAGCCGTTCACACAGA -ACGGAATGTAGCCGTTCAGCAAGA -ACGGAATGTAGCCGTTCAGGTTGA -ACGGAATGTAGCCGTTCATCCGAT -ACGGAATGTAGCCGTTCATGGCAT -ACGGAATGTAGCCGTTCACGAGAT -ACGGAATGTAGCCGTTCATACCAC -ACGGAATGTAGCCGTTCACAGAAC -ACGGAATGTAGCCGTTCAGTCTAC -ACGGAATGTAGCCGTTCAACGTAC -ACGGAATGTAGCCGTTCAAGTGAC -ACGGAATGTAGCCGTTCACTGTAG -ACGGAATGTAGCCGTTCACCTAAG -ACGGAATGTAGCCGTTCAGTTCAG -ACGGAATGTAGCCGTTCAGCATAG -ACGGAATGTAGCCGTTCAGACAAG -ACGGAATGTAGCCGTTCAAAGCAG -ACGGAATGTAGCCGTTCACGTCAA -ACGGAATGTAGCCGTTCAGCTGAA -ACGGAATGTAGCCGTTCAAGTACG -ACGGAATGTAGCCGTTCAATCCGA -ACGGAATGTAGCCGTTCAATGGGA -ACGGAATGTAGCCGTTCAGTGCAA -ACGGAATGTAGCCGTTCAGAGGAA -ACGGAATGTAGCCGTTCACAGGTA -ACGGAATGTAGCCGTTCAGACTCT -ACGGAATGTAGCCGTTCAAGTCCT -ACGGAATGTAGCCGTTCATAAGCC -ACGGAATGTAGCCGTTCAATAGCC -ACGGAATGTAGCCGTTCATAACCG -ACGGAATGTAGCCGTTCAATGCCA -ACGGAATGTAGCAGTCGTGGAAAC -ACGGAATGTAGCAGTCGTAACACC -ACGGAATGTAGCAGTCGTATCGAG -ACGGAATGTAGCAGTCGTCTCCTT -ACGGAATGTAGCAGTCGTCCTGTT -ACGGAATGTAGCAGTCGTCGGTTT -ACGGAATGTAGCAGTCGTGTGGTT -ACGGAATGTAGCAGTCGTGCCTTT -ACGGAATGTAGCAGTCGTGGTCTT -ACGGAATGTAGCAGTCGTACGCTT -ACGGAATGTAGCAGTCGTAGCGTT -ACGGAATGTAGCAGTCGTTTCGTC -ACGGAATGTAGCAGTCGTTCTCTC -ACGGAATGTAGCAGTCGTTGGATC -ACGGAATGTAGCAGTCGTCACTTC -ACGGAATGTAGCAGTCGTGTACTC -ACGGAATGTAGCAGTCGTGATGTC -ACGGAATGTAGCAGTCGTACAGTC -ACGGAATGTAGCAGTCGTTTGCTG -ACGGAATGTAGCAGTCGTTCCATG -ACGGAATGTAGCAGTCGTTGTGTG -ACGGAATGTAGCAGTCGTCTAGTG -ACGGAATGTAGCAGTCGTCATCTG -ACGGAATGTAGCAGTCGTGAGTTG -ACGGAATGTAGCAGTCGTAGACTG -ACGGAATGTAGCAGTCGTTCGGTA -ACGGAATGTAGCAGTCGTTGCCTA -ACGGAATGTAGCAGTCGTCCACTA -ACGGAATGTAGCAGTCGTGGAGTA -ACGGAATGTAGCAGTCGTTCGTCT -ACGGAATGTAGCAGTCGTTGCACT -ACGGAATGTAGCAGTCGTCTGACT -ACGGAATGTAGCAGTCGTCAACCT -ACGGAATGTAGCAGTCGTGCTACT -ACGGAATGTAGCAGTCGTGGATCT -ACGGAATGTAGCAGTCGTAAGGCT -ACGGAATGTAGCAGTCGTTCAACC -ACGGAATGTAGCAGTCGTTGTTCC -ACGGAATGTAGCAGTCGTATTCCC -ACGGAATGTAGCAGTCGTTTCTCG -ACGGAATGTAGCAGTCGTTAGACG -ACGGAATGTAGCAGTCGTGTAACG -ACGGAATGTAGCAGTCGTACTTCG -ACGGAATGTAGCAGTCGTTACGCA -ACGGAATGTAGCAGTCGTCTTGCA -ACGGAATGTAGCAGTCGTCGAACA -ACGGAATGTAGCAGTCGTCAGTCA -ACGGAATGTAGCAGTCGTGATCCA -ACGGAATGTAGCAGTCGTACGACA -ACGGAATGTAGCAGTCGTAGCTCA -ACGGAATGTAGCAGTCGTTCACGT -ACGGAATGTAGCAGTCGTCGTAGT -ACGGAATGTAGCAGTCGTGTCAGT -ACGGAATGTAGCAGTCGTGAAGGT -ACGGAATGTAGCAGTCGTAACCGT -ACGGAATGTAGCAGTCGTTTGTGC -ACGGAATGTAGCAGTCGTCTAAGC -ACGGAATGTAGCAGTCGTACTAGC -ACGGAATGTAGCAGTCGTAGATGC -ACGGAATGTAGCAGTCGTTGAAGG -ACGGAATGTAGCAGTCGTCAATGG -ACGGAATGTAGCAGTCGTATGAGG -ACGGAATGTAGCAGTCGTAATGGG -ACGGAATGTAGCAGTCGTTCCTGA -ACGGAATGTAGCAGTCGTTAGCGA -ACGGAATGTAGCAGTCGTCACAGA -ACGGAATGTAGCAGTCGTGCAAGA -ACGGAATGTAGCAGTCGTGGTTGA -ACGGAATGTAGCAGTCGTTCCGAT -ACGGAATGTAGCAGTCGTTGGCAT -ACGGAATGTAGCAGTCGTCGAGAT -ACGGAATGTAGCAGTCGTTACCAC -ACGGAATGTAGCAGTCGTCAGAAC -ACGGAATGTAGCAGTCGTGTCTAC -ACGGAATGTAGCAGTCGTACGTAC -ACGGAATGTAGCAGTCGTAGTGAC -ACGGAATGTAGCAGTCGTCTGTAG -ACGGAATGTAGCAGTCGTCCTAAG -ACGGAATGTAGCAGTCGTGTTCAG -ACGGAATGTAGCAGTCGTGCATAG -ACGGAATGTAGCAGTCGTGACAAG -ACGGAATGTAGCAGTCGTAAGCAG -ACGGAATGTAGCAGTCGTCGTCAA -ACGGAATGTAGCAGTCGTGCTGAA -ACGGAATGTAGCAGTCGTAGTACG -ACGGAATGTAGCAGTCGTATCCGA -ACGGAATGTAGCAGTCGTATGGGA -ACGGAATGTAGCAGTCGTGTGCAA -ACGGAATGTAGCAGTCGTGAGGAA -ACGGAATGTAGCAGTCGTCAGGTA -ACGGAATGTAGCAGTCGTGACTCT -ACGGAATGTAGCAGTCGTAGTCCT -ACGGAATGTAGCAGTCGTTAAGCC -ACGGAATGTAGCAGTCGTATAGCC -ACGGAATGTAGCAGTCGTTAACCG -ACGGAATGTAGCAGTCGTATGCCA -ACGGAATGTAGCAGTGTCGGAAAC -ACGGAATGTAGCAGTGTCAACACC -ACGGAATGTAGCAGTGTCATCGAG -ACGGAATGTAGCAGTGTCCTCCTT -ACGGAATGTAGCAGTGTCCCTGTT -ACGGAATGTAGCAGTGTCCGGTTT -ACGGAATGTAGCAGTGTCGTGGTT -ACGGAATGTAGCAGTGTCGCCTTT -ACGGAATGTAGCAGTGTCGGTCTT -ACGGAATGTAGCAGTGTCACGCTT -ACGGAATGTAGCAGTGTCAGCGTT -ACGGAATGTAGCAGTGTCTTCGTC -ACGGAATGTAGCAGTGTCTCTCTC -ACGGAATGTAGCAGTGTCTGGATC -ACGGAATGTAGCAGTGTCCACTTC -ACGGAATGTAGCAGTGTCGTACTC -ACGGAATGTAGCAGTGTCGATGTC -ACGGAATGTAGCAGTGTCACAGTC -ACGGAATGTAGCAGTGTCTTGCTG -ACGGAATGTAGCAGTGTCTCCATG -ACGGAATGTAGCAGTGTCTGTGTG -ACGGAATGTAGCAGTGTCCTAGTG -ACGGAATGTAGCAGTGTCCATCTG -ACGGAATGTAGCAGTGTCGAGTTG -ACGGAATGTAGCAGTGTCAGACTG -ACGGAATGTAGCAGTGTCTCGGTA -ACGGAATGTAGCAGTGTCTGCCTA -ACGGAATGTAGCAGTGTCCCACTA -ACGGAATGTAGCAGTGTCGGAGTA -ACGGAATGTAGCAGTGTCTCGTCT -ACGGAATGTAGCAGTGTCTGCACT -ACGGAATGTAGCAGTGTCCTGACT -ACGGAATGTAGCAGTGTCCAACCT -ACGGAATGTAGCAGTGTCGCTACT -ACGGAATGTAGCAGTGTCGGATCT -ACGGAATGTAGCAGTGTCAAGGCT -ACGGAATGTAGCAGTGTCTCAACC -ACGGAATGTAGCAGTGTCTGTTCC -ACGGAATGTAGCAGTGTCATTCCC -ACGGAATGTAGCAGTGTCTTCTCG -ACGGAATGTAGCAGTGTCTAGACG -ACGGAATGTAGCAGTGTCGTAACG -ACGGAATGTAGCAGTGTCACTTCG -ACGGAATGTAGCAGTGTCTACGCA -ACGGAATGTAGCAGTGTCCTTGCA -ACGGAATGTAGCAGTGTCCGAACA -ACGGAATGTAGCAGTGTCCAGTCA -ACGGAATGTAGCAGTGTCGATCCA -ACGGAATGTAGCAGTGTCACGACA -ACGGAATGTAGCAGTGTCAGCTCA -ACGGAATGTAGCAGTGTCTCACGT -ACGGAATGTAGCAGTGTCCGTAGT -ACGGAATGTAGCAGTGTCGTCAGT -ACGGAATGTAGCAGTGTCGAAGGT -ACGGAATGTAGCAGTGTCAACCGT -ACGGAATGTAGCAGTGTCTTGTGC -ACGGAATGTAGCAGTGTCCTAAGC -ACGGAATGTAGCAGTGTCACTAGC -ACGGAATGTAGCAGTGTCAGATGC -ACGGAATGTAGCAGTGTCTGAAGG -ACGGAATGTAGCAGTGTCCAATGG -ACGGAATGTAGCAGTGTCATGAGG -ACGGAATGTAGCAGTGTCAATGGG -ACGGAATGTAGCAGTGTCTCCTGA -ACGGAATGTAGCAGTGTCTAGCGA -ACGGAATGTAGCAGTGTCCACAGA -ACGGAATGTAGCAGTGTCGCAAGA -ACGGAATGTAGCAGTGTCGGTTGA -ACGGAATGTAGCAGTGTCTCCGAT -ACGGAATGTAGCAGTGTCTGGCAT -ACGGAATGTAGCAGTGTCCGAGAT -ACGGAATGTAGCAGTGTCTACCAC -ACGGAATGTAGCAGTGTCCAGAAC -ACGGAATGTAGCAGTGTCGTCTAC -ACGGAATGTAGCAGTGTCACGTAC -ACGGAATGTAGCAGTGTCAGTGAC -ACGGAATGTAGCAGTGTCCTGTAG -ACGGAATGTAGCAGTGTCCCTAAG -ACGGAATGTAGCAGTGTCGTTCAG -ACGGAATGTAGCAGTGTCGCATAG -ACGGAATGTAGCAGTGTCGACAAG -ACGGAATGTAGCAGTGTCAAGCAG -ACGGAATGTAGCAGTGTCCGTCAA -ACGGAATGTAGCAGTGTCGCTGAA -ACGGAATGTAGCAGTGTCAGTACG -ACGGAATGTAGCAGTGTCATCCGA -ACGGAATGTAGCAGTGTCATGGGA -ACGGAATGTAGCAGTGTCGTGCAA -ACGGAATGTAGCAGTGTCGAGGAA -ACGGAATGTAGCAGTGTCCAGGTA -ACGGAATGTAGCAGTGTCGACTCT -ACGGAATGTAGCAGTGTCAGTCCT -ACGGAATGTAGCAGTGTCTAAGCC -ACGGAATGTAGCAGTGTCATAGCC -ACGGAATGTAGCAGTGTCTAACCG -ACGGAATGTAGCAGTGTCATGCCA -ACGGAATGTAGCGGTGAAGGAAAC -ACGGAATGTAGCGGTGAAAACACC -ACGGAATGTAGCGGTGAAATCGAG -ACGGAATGTAGCGGTGAACTCCTT -ACGGAATGTAGCGGTGAACCTGTT -ACGGAATGTAGCGGTGAACGGTTT -ACGGAATGTAGCGGTGAAGTGGTT -ACGGAATGTAGCGGTGAAGCCTTT -ACGGAATGTAGCGGTGAAGGTCTT -ACGGAATGTAGCGGTGAAACGCTT -ACGGAATGTAGCGGTGAAAGCGTT -ACGGAATGTAGCGGTGAATTCGTC -ACGGAATGTAGCGGTGAATCTCTC -ACGGAATGTAGCGGTGAATGGATC -ACGGAATGTAGCGGTGAACACTTC -ACGGAATGTAGCGGTGAAGTACTC -ACGGAATGTAGCGGTGAAGATGTC -ACGGAATGTAGCGGTGAAACAGTC -ACGGAATGTAGCGGTGAATTGCTG -ACGGAATGTAGCGGTGAATCCATG -ACGGAATGTAGCGGTGAATGTGTG -ACGGAATGTAGCGGTGAACTAGTG -ACGGAATGTAGCGGTGAACATCTG -ACGGAATGTAGCGGTGAAGAGTTG -ACGGAATGTAGCGGTGAAAGACTG -ACGGAATGTAGCGGTGAATCGGTA -ACGGAATGTAGCGGTGAATGCCTA -ACGGAATGTAGCGGTGAACCACTA -ACGGAATGTAGCGGTGAAGGAGTA -ACGGAATGTAGCGGTGAATCGTCT -ACGGAATGTAGCGGTGAATGCACT -ACGGAATGTAGCGGTGAACTGACT -ACGGAATGTAGCGGTGAACAACCT -ACGGAATGTAGCGGTGAAGCTACT -ACGGAATGTAGCGGTGAAGGATCT -ACGGAATGTAGCGGTGAAAAGGCT -ACGGAATGTAGCGGTGAATCAACC -ACGGAATGTAGCGGTGAATGTTCC -ACGGAATGTAGCGGTGAAATTCCC -ACGGAATGTAGCGGTGAATTCTCG -ACGGAATGTAGCGGTGAATAGACG -ACGGAATGTAGCGGTGAAGTAACG -ACGGAATGTAGCGGTGAAACTTCG -ACGGAATGTAGCGGTGAATACGCA -ACGGAATGTAGCGGTGAACTTGCA -ACGGAATGTAGCGGTGAACGAACA -ACGGAATGTAGCGGTGAACAGTCA -ACGGAATGTAGCGGTGAAGATCCA -ACGGAATGTAGCGGTGAAACGACA -ACGGAATGTAGCGGTGAAAGCTCA -ACGGAATGTAGCGGTGAATCACGT -ACGGAATGTAGCGGTGAACGTAGT -ACGGAATGTAGCGGTGAAGTCAGT -ACGGAATGTAGCGGTGAAGAAGGT -ACGGAATGTAGCGGTGAAAACCGT -ACGGAATGTAGCGGTGAATTGTGC -ACGGAATGTAGCGGTGAACTAAGC -ACGGAATGTAGCGGTGAAACTAGC -ACGGAATGTAGCGGTGAAAGATGC -ACGGAATGTAGCGGTGAATGAAGG -ACGGAATGTAGCGGTGAACAATGG -ACGGAATGTAGCGGTGAAATGAGG -ACGGAATGTAGCGGTGAAAATGGG -ACGGAATGTAGCGGTGAATCCTGA -ACGGAATGTAGCGGTGAATAGCGA -ACGGAATGTAGCGGTGAACACAGA -ACGGAATGTAGCGGTGAAGCAAGA -ACGGAATGTAGCGGTGAAGGTTGA -ACGGAATGTAGCGGTGAATCCGAT -ACGGAATGTAGCGGTGAATGGCAT -ACGGAATGTAGCGGTGAACGAGAT -ACGGAATGTAGCGGTGAATACCAC -ACGGAATGTAGCGGTGAACAGAAC -ACGGAATGTAGCGGTGAAGTCTAC -ACGGAATGTAGCGGTGAAACGTAC -ACGGAATGTAGCGGTGAAAGTGAC -ACGGAATGTAGCGGTGAACTGTAG -ACGGAATGTAGCGGTGAACCTAAG -ACGGAATGTAGCGGTGAAGTTCAG -ACGGAATGTAGCGGTGAAGCATAG -ACGGAATGTAGCGGTGAAGACAAG -ACGGAATGTAGCGGTGAAAAGCAG -ACGGAATGTAGCGGTGAACGTCAA -ACGGAATGTAGCGGTGAAGCTGAA -ACGGAATGTAGCGGTGAAAGTACG -ACGGAATGTAGCGGTGAAATCCGA -ACGGAATGTAGCGGTGAAATGGGA -ACGGAATGTAGCGGTGAAGTGCAA -ACGGAATGTAGCGGTGAAGAGGAA -ACGGAATGTAGCGGTGAACAGGTA -ACGGAATGTAGCGGTGAAGACTCT -ACGGAATGTAGCGGTGAAAGTCCT -ACGGAATGTAGCGGTGAATAAGCC -ACGGAATGTAGCGGTGAAATAGCC -ACGGAATGTAGCGGTGAATAACCG -ACGGAATGTAGCGGTGAAATGCCA -ACGGAATGTAGCCGTAACGGAAAC -ACGGAATGTAGCCGTAACAACACC -ACGGAATGTAGCCGTAACATCGAG -ACGGAATGTAGCCGTAACCTCCTT -ACGGAATGTAGCCGTAACCCTGTT -ACGGAATGTAGCCGTAACCGGTTT -ACGGAATGTAGCCGTAACGTGGTT -ACGGAATGTAGCCGTAACGCCTTT -ACGGAATGTAGCCGTAACGGTCTT -ACGGAATGTAGCCGTAACACGCTT -ACGGAATGTAGCCGTAACAGCGTT -ACGGAATGTAGCCGTAACTTCGTC -ACGGAATGTAGCCGTAACTCTCTC -ACGGAATGTAGCCGTAACTGGATC -ACGGAATGTAGCCGTAACCACTTC -ACGGAATGTAGCCGTAACGTACTC -ACGGAATGTAGCCGTAACGATGTC -ACGGAATGTAGCCGTAACACAGTC -ACGGAATGTAGCCGTAACTTGCTG -ACGGAATGTAGCCGTAACTCCATG -ACGGAATGTAGCCGTAACTGTGTG -ACGGAATGTAGCCGTAACCTAGTG -ACGGAATGTAGCCGTAACCATCTG -ACGGAATGTAGCCGTAACGAGTTG -ACGGAATGTAGCCGTAACAGACTG -ACGGAATGTAGCCGTAACTCGGTA -ACGGAATGTAGCCGTAACTGCCTA -ACGGAATGTAGCCGTAACCCACTA -ACGGAATGTAGCCGTAACGGAGTA -ACGGAATGTAGCCGTAACTCGTCT -ACGGAATGTAGCCGTAACTGCACT -ACGGAATGTAGCCGTAACCTGACT -ACGGAATGTAGCCGTAACCAACCT -ACGGAATGTAGCCGTAACGCTACT -ACGGAATGTAGCCGTAACGGATCT -ACGGAATGTAGCCGTAACAAGGCT -ACGGAATGTAGCCGTAACTCAACC -ACGGAATGTAGCCGTAACTGTTCC -ACGGAATGTAGCCGTAACATTCCC -ACGGAATGTAGCCGTAACTTCTCG -ACGGAATGTAGCCGTAACTAGACG -ACGGAATGTAGCCGTAACGTAACG -ACGGAATGTAGCCGTAACACTTCG -ACGGAATGTAGCCGTAACTACGCA -ACGGAATGTAGCCGTAACCTTGCA -ACGGAATGTAGCCGTAACCGAACA -ACGGAATGTAGCCGTAACCAGTCA -ACGGAATGTAGCCGTAACGATCCA -ACGGAATGTAGCCGTAACACGACA -ACGGAATGTAGCCGTAACAGCTCA -ACGGAATGTAGCCGTAACTCACGT -ACGGAATGTAGCCGTAACCGTAGT -ACGGAATGTAGCCGTAACGTCAGT -ACGGAATGTAGCCGTAACGAAGGT -ACGGAATGTAGCCGTAACAACCGT -ACGGAATGTAGCCGTAACTTGTGC -ACGGAATGTAGCCGTAACCTAAGC -ACGGAATGTAGCCGTAACACTAGC -ACGGAATGTAGCCGTAACAGATGC -ACGGAATGTAGCCGTAACTGAAGG -ACGGAATGTAGCCGTAACCAATGG -ACGGAATGTAGCCGTAACATGAGG -ACGGAATGTAGCCGTAACAATGGG -ACGGAATGTAGCCGTAACTCCTGA -ACGGAATGTAGCCGTAACTAGCGA -ACGGAATGTAGCCGTAACCACAGA -ACGGAATGTAGCCGTAACGCAAGA -ACGGAATGTAGCCGTAACGGTTGA -ACGGAATGTAGCCGTAACTCCGAT -ACGGAATGTAGCCGTAACTGGCAT -ACGGAATGTAGCCGTAACCGAGAT -ACGGAATGTAGCCGTAACTACCAC -ACGGAATGTAGCCGTAACCAGAAC -ACGGAATGTAGCCGTAACGTCTAC -ACGGAATGTAGCCGTAACACGTAC -ACGGAATGTAGCCGTAACAGTGAC -ACGGAATGTAGCCGTAACCTGTAG -ACGGAATGTAGCCGTAACCCTAAG -ACGGAATGTAGCCGTAACGTTCAG -ACGGAATGTAGCCGTAACGCATAG -ACGGAATGTAGCCGTAACGACAAG -ACGGAATGTAGCCGTAACAAGCAG -ACGGAATGTAGCCGTAACCGTCAA -ACGGAATGTAGCCGTAACGCTGAA -ACGGAATGTAGCCGTAACAGTACG -ACGGAATGTAGCCGTAACATCCGA -ACGGAATGTAGCCGTAACATGGGA -ACGGAATGTAGCCGTAACGTGCAA -ACGGAATGTAGCCGTAACGAGGAA -ACGGAATGTAGCCGTAACCAGGTA -ACGGAATGTAGCCGTAACGACTCT -ACGGAATGTAGCCGTAACAGTCCT -ACGGAATGTAGCCGTAACTAAGCC -ACGGAATGTAGCCGTAACATAGCC -ACGGAATGTAGCCGTAACTAACCG -ACGGAATGTAGCCGTAACATGCCA -ACGGAATGTAGCTGCTTGGGAAAC -ACGGAATGTAGCTGCTTGAACACC -ACGGAATGTAGCTGCTTGATCGAG -ACGGAATGTAGCTGCTTGCTCCTT -ACGGAATGTAGCTGCTTGCCTGTT -ACGGAATGTAGCTGCTTGCGGTTT -ACGGAATGTAGCTGCTTGGTGGTT -ACGGAATGTAGCTGCTTGGCCTTT -ACGGAATGTAGCTGCTTGGGTCTT -ACGGAATGTAGCTGCTTGACGCTT -ACGGAATGTAGCTGCTTGAGCGTT -ACGGAATGTAGCTGCTTGTTCGTC -ACGGAATGTAGCTGCTTGTCTCTC -ACGGAATGTAGCTGCTTGTGGATC -ACGGAATGTAGCTGCTTGCACTTC -ACGGAATGTAGCTGCTTGGTACTC -ACGGAATGTAGCTGCTTGGATGTC -ACGGAATGTAGCTGCTTGACAGTC -ACGGAATGTAGCTGCTTGTTGCTG -ACGGAATGTAGCTGCTTGTCCATG -ACGGAATGTAGCTGCTTGTGTGTG -ACGGAATGTAGCTGCTTGCTAGTG -ACGGAATGTAGCTGCTTGCATCTG -ACGGAATGTAGCTGCTTGGAGTTG -ACGGAATGTAGCTGCTTGAGACTG -ACGGAATGTAGCTGCTTGTCGGTA -ACGGAATGTAGCTGCTTGTGCCTA -ACGGAATGTAGCTGCTTGCCACTA -ACGGAATGTAGCTGCTTGGGAGTA -ACGGAATGTAGCTGCTTGTCGTCT -ACGGAATGTAGCTGCTTGTGCACT -ACGGAATGTAGCTGCTTGCTGACT -ACGGAATGTAGCTGCTTGCAACCT -ACGGAATGTAGCTGCTTGGCTACT -ACGGAATGTAGCTGCTTGGGATCT -ACGGAATGTAGCTGCTTGAAGGCT -ACGGAATGTAGCTGCTTGTCAACC -ACGGAATGTAGCTGCTTGTGTTCC -ACGGAATGTAGCTGCTTGATTCCC -ACGGAATGTAGCTGCTTGTTCTCG -ACGGAATGTAGCTGCTTGTAGACG -ACGGAATGTAGCTGCTTGGTAACG -ACGGAATGTAGCTGCTTGACTTCG -ACGGAATGTAGCTGCTTGTACGCA -ACGGAATGTAGCTGCTTGCTTGCA -ACGGAATGTAGCTGCTTGCGAACA -ACGGAATGTAGCTGCTTGCAGTCA -ACGGAATGTAGCTGCTTGGATCCA -ACGGAATGTAGCTGCTTGACGACA -ACGGAATGTAGCTGCTTGAGCTCA -ACGGAATGTAGCTGCTTGTCACGT -ACGGAATGTAGCTGCTTGCGTAGT -ACGGAATGTAGCTGCTTGGTCAGT -ACGGAATGTAGCTGCTTGGAAGGT -ACGGAATGTAGCTGCTTGAACCGT -ACGGAATGTAGCTGCTTGTTGTGC -ACGGAATGTAGCTGCTTGCTAAGC -ACGGAATGTAGCTGCTTGACTAGC -ACGGAATGTAGCTGCTTGAGATGC -ACGGAATGTAGCTGCTTGTGAAGG -ACGGAATGTAGCTGCTTGCAATGG -ACGGAATGTAGCTGCTTGATGAGG -ACGGAATGTAGCTGCTTGAATGGG -ACGGAATGTAGCTGCTTGTCCTGA -ACGGAATGTAGCTGCTTGTAGCGA -ACGGAATGTAGCTGCTTGCACAGA -ACGGAATGTAGCTGCTTGGCAAGA -ACGGAATGTAGCTGCTTGGGTTGA -ACGGAATGTAGCTGCTTGTCCGAT -ACGGAATGTAGCTGCTTGTGGCAT -ACGGAATGTAGCTGCTTGCGAGAT -ACGGAATGTAGCTGCTTGTACCAC -ACGGAATGTAGCTGCTTGCAGAAC -ACGGAATGTAGCTGCTTGGTCTAC -ACGGAATGTAGCTGCTTGACGTAC -ACGGAATGTAGCTGCTTGAGTGAC -ACGGAATGTAGCTGCTTGCTGTAG -ACGGAATGTAGCTGCTTGCCTAAG -ACGGAATGTAGCTGCTTGGTTCAG -ACGGAATGTAGCTGCTTGGCATAG -ACGGAATGTAGCTGCTTGGACAAG -ACGGAATGTAGCTGCTTGAAGCAG -ACGGAATGTAGCTGCTTGCGTCAA -ACGGAATGTAGCTGCTTGGCTGAA -ACGGAATGTAGCTGCTTGAGTACG -ACGGAATGTAGCTGCTTGATCCGA -ACGGAATGTAGCTGCTTGATGGGA -ACGGAATGTAGCTGCTTGGTGCAA -ACGGAATGTAGCTGCTTGGAGGAA -ACGGAATGTAGCTGCTTGCAGGTA -ACGGAATGTAGCTGCTTGGACTCT -ACGGAATGTAGCTGCTTGAGTCCT -ACGGAATGTAGCTGCTTGTAAGCC -ACGGAATGTAGCTGCTTGATAGCC -ACGGAATGTAGCTGCTTGTAACCG -ACGGAATGTAGCTGCTTGATGCCA -ACGGAATGTAGCAGCCTAGGAAAC -ACGGAATGTAGCAGCCTAAACACC -ACGGAATGTAGCAGCCTAATCGAG -ACGGAATGTAGCAGCCTACTCCTT -ACGGAATGTAGCAGCCTACCTGTT -ACGGAATGTAGCAGCCTACGGTTT -ACGGAATGTAGCAGCCTAGTGGTT -ACGGAATGTAGCAGCCTAGCCTTT -ACGGAATGTAGCAGCCTAGGTCTT -ACGGAATGTAGCAGCCTAACGCTT -ACGGAATGTAGCAGCCTAAGCGTT -ACGGAATGTAGCAGCCTATTCGTC -ACGGAATGTAGCAGCCTATCTCTC -ACGGAATGTAGCAGCCTATGGATC -ACGGAATGTAGCAGCCTACACTTC -ACGGAATGTAGCAGCCTAGTACTC -ACGGAATGTAGCAGCCTAGATGTC -ACGGAATGTAGCAGCCTAACAGTC -ACGGAATGTAGCAGCCTATTGCTG -ACGGAATGTAGCAGCCTATCCATG -ACGGAATGTAGCAGCCTATGTGTG -ACGGAATGTAGCAGCCTACTAGTG -ACGGAATGTAGCAGCCTACATCTG -ACGGAATGTAGCAGCCTAGAGTTG -ACGGAATGTAGCAGCCTAAGACTG -ACGGAATGTAGCAGCCTATCGGTA -ACGGAATGTAGCAGCCTATGCCTA -ACGGAATGTAGCAGCCTACCACTA -ACGGAATGTAGCAGCCTAGGAGTA -ACGGAATGTAGCAGCCTATCGTCT -ACGGAATGTAGCAGCCTATGCACT -ACGGAATGTAGCAGCCTACTGACT -ACGGAATGTAGCAGCCTACAACCT -ACGGAATGTAGCAGCCTAGCTACT -ACGGAATGTAGCAGCCTAGGATCT -ACGGAATGTAGCAGCCTAAAGGCT -ACGGAATGTAGCAGCCTATCAACC -ACGGAATGTAGCAGCCTATGTTCC -ACGGAATGTAGCAGCCTAATTCCC -ACGGAATGTAGCAGCCTATTCTCG -ACGGAATGTAGCAGCCTATAGACG -ACGGAATGTAGCAGCCTAGTAACG -ACGGAATGTAGCAGCCTAACTTCG -ACGGAATGTAGCAGCCTATACGCA -ACGGAATGTAGCAGCCTACTTGCA -ACGGAATGTAGCAGCCTACGAACA -ACGGAATGTAGCAGCCTACAGTCA -ACGGAATGTAGCAGCCTAGATCCA -ACGGAATGTAGCAGCCTAACGACA -ACGGAATGTAGCAGCCTAAGCTCA -ACGGAATGTAGCAGCCTATCACGT -ACGGAATGTAGCAGCCTACGTAGT -ACGGAATGTAGCAGCCTAGTCAGT -ACGGAATGTAGCAGCCTAGAAGGT -ACGGAATGTAGCAGCCTAAACCGT -ACGGAATGTAGCAGCCTATTGTGC -ACGGAATGTAGCAGCCTACTAAGC -ACGGAATGTAGCAGCCTAACTAGC -ACGGAATGTAGCAGCCTAAGATGC -ACGGAATGTAGCAGCCTATGAAGG -ACGGAATGTAGCAGCCTACAATGG -ACGGAATGTAGCAGCCTAATGAGG -ACGGAATGTAGCAGCCTAAATGGG -ACGGAATGTAGCAGCCTATCCTGA -ACGGAATGTAGCAGCCTATAGCGA -ACGGAATGTAGCAGCCTACACAGA -ACGGAATGTAGCAGCCTAGCAAGA -ACGGAATGTAGCAGCCTAGGTTGA -ACGGAATGTAGCAGCCTATCCGAT -ACGGAATGTAGCAGCCTATGGCAT -ACGGAATGTAGCAGCCTACGAGAT -ACGGAATGTAGCAGCCTATACCAC -ACGGAATGTAGCAGCCTACAGAAC -ACGGAATGTAGCAGCCTAGTCTAC -ACGGAATGTAGCAGCCTAACGTAC -ACGGAATGTAGCAGCCTAAGTGAC -ACGGAATGTAGCAGCCTACTGTAG -ACGGAATGTAGCAGCCTACCTAAG -ACGGAATGTAGCAGCCTAGTTCAG -ACGGAATGTAGCAGCCTAGCATAG -ACGGAATGTAGCAGCCTAGACAAG -ACGGAATGTAGCAGCCTAAAGCAG -ACGGAATGTAGCAGCCTACGTCAA -ACGGAATGTAGCAGCCTAGCTGAA -ACGGAATGTAGCAGCCTAAGTACG -ACGGAATGTAGCAGCCTAATCCGA -ACGGAATGTAGCAGCCTAATGGGA -ACGGAATGTAGCAGCCTAGTGCAA -ACGGAATGTAGCAGCCTAGAGGAA -ACGGAATGTAGCAGCCTACAGGTA -ACGGAATGTAGCAGCCTAGACTCT -ACGGAATGTAGCAGCCTAAGTCCT -ACGGAATGTAGCAGCCTATAAGCC -ACGGAATGTAGCAGCCTAATAGCC -ACGGAATGTAGCAGCCTATAACCG -ACGGAATGTAGCAGCCTAATGCCA -ACGGAATGTAGCAGCACTGGAAAC -ACGGAATGTAGCAGCACTAACACC -ACGGAATGTAGCAGCACTATCGAG -ACGGAATGTAGCAGCACTCTCCTT -ACGGAATGTAGCAGCACTCCTGTT -ACGGAATGTAGCAGCACTCGGTTT -ACGGAATGTAGCAGCACTGTGGTT -ACGGAATGTAGCAGCACTGCCTTT -ACGGAATGTAGCAGCACTGGTCTT -ACGGAATGTAGCAGCACTACGCTT -ACGGAATGTAGCAGCACTAGCGTT -ACGGAATGTAGCAGCACTTTCGTC -ACGGAATGTAGCAGCACTTCTCTC -ACGGAATGTAGCAGCACTTGGATC -ACGGAATGTAGCAGCACTCACTTC -ACGGAATGTAGCAGCACTGTACTC -ACGGAATGTAGCAGCACTGATGTC -ACGGAATGTAGCAGCACTACAGTC -ACGGAATGTAGCAGCACTTTGCTG -ACGGAATGTAGCAGCACTTCCATG -ACGGAATGTAGCAGCACTTGTGTG -ACGGAATGTAGCAGCACTCTAGTG -ACGGAATGTAGCAGCACTCATCTG -ACGGAATGTAGCAGCACTGAGTTG -ACGGAATGTAGCAGCACTAGACTG -ACGGAATGTAGCAGCACTTCGGTA -ACGGAATGTAGCAGCACTTGCCTA -ACGGAATGTAGCAGCACTCCACTA -ACGGAATGTAGCAGCACTGGAGTA -ACGGAATGTAGCAGCACTTCGTCT -ACGGAATGTAGCAGCACTTGCACT -ACGGAATGTAGCAGCACTCTGACT -ACGGAATGTAGCAGCACTCAACCT -ACGGAATGTAGCAGCACTGCTACT -ACGGAATGTAGCAGCACTGGATCT -ACGGAATGTAGCAGCACTAAGGCT -ACGGAATGTAGCAGCACTTCAACC -ACGGAATGTAGCAGCACTTGTTCC -ACGGAATGTAGCAGCACTATTCCC -ACGGAATGTAGCAGCACTTTCTCG -ACGGAATGTAGCAGCACTTAGACG -ACGGAATGTAGCAGCACTGTAACG -ACGGAATGTAGCAGCACTACTTCG -ACGGAATGTAGCAGCACTTACGCA -ACGGAATGTAGCAGCACTCTTGCA -ACGGAATGTAGCAGCACTCGAACA -ACGGAATGTAGCAGCACTCAGTCA -ACGGAATGTAGCAGCACTGATCCA -ACGGAATGTAGCAGCACTACGACA -ACGGAATGTAGCAGCACTAGCTCA -ACGGAATGTAGCAGCACTTCACGT -ACGGAATGTAGCAGCACTCGTAGT -ACGGAATGTAGCAGCACTGTCAGT -ACGGAATGTAGCAGCACTGAAGGT -ACGGAATGTAGCAGCACTAACCGT -ACGGAATGTAGCAGCACTTTGTGC -ACGGAATGTAGCAGCACTCTAAGC -ACGGAATGTAGCAGCACTACTAGC -ACGGAATGTAGCAGCACTAGATGC -ACGGAATGTAGCAGCACTTGAAGG -ACGGAATGTAGCAGCACTCAATGG -ACGGAATGTAGCAGCACTATGAGG -ACGGAATGTAGCAGCACTAATGGG -ACGGAATGTAGCAGCACTTCCTGA -ACGGAATGTAGCAGCACTTAGCGA -ACGGAATGTAGCAGCACTCACAGA -ACGGAATGTAGCAGCACTGCAAGA -ACGGAATGTAGCAGCACTGGTTGA -ACGGAATGTAGCAGCACTTCCGAT -ACGGAATGTAGCAGCACTTGGCAT -ACGGAATGTAGCAGCACTCGAGAT -ACGGAATGTAGCAGCACTTACCAC -ACGGAATGTAGCAGCACTCAGAAC -ACGGAATGTAGCAGCACTGTCTAC -ACGGAATGTAGCAGCACTACGTAC -ACGGAATGTAGCAGCACTAGTGAC -ACGGAATGTAGCAGCACTCTGTAG -ACGGAATGTAGCAGCACTCCTAAG -ACGGAATGTAGCAGCACTGTTCAG -ACGGAATGTAGCAGCACTGCATAG -ACGGAATGTAGCAGCACTGACAAG -ACGGAATGTAGCAGCACTAAGCAG -ACGGAATGTAGCAGCACTCGTCAA -ACGGAATGTAGCAGCACTGCTGAA -ACGGAATGTAGCAGCACTAGTACG -ACGGAATGTAGCAGCACTATCCGA -ACGGAATGTAGCAGCACTATGGGA -ACGGAATGTAGCAGCACTGTGCAA -ACGGAATGTAGCAGCACTGAGGAA -ACGGAATGTAGCAGCACTCAGGTA -ACGGAATGTAGCAGCACTGACTCT -ACGGAATGTAGCAGCACTAGTCCT -ACGGAATGTAGCAGCACTTAAGCC -ACGGAATGTAGCAGCACTATAGCC -ACGGAATGTAGCAGCACTTAACCG -ACGGAATGTAGCAGCACTATGCCA -ACGGAATGTAGCTGCAGAGGAAAC -ACGGAATGTAGCTGCAGAAACACC -ACGGAATGTAGCTGCAGAATCGAG -ACGGAATGTAGCTGCAGACTCCTT -ACGGAATGTAGCTGCAGACCTGTT -ACGGAATGTAGCTGCAGACGGTTT -ACGGAATGTAGCTGCAGAGTGGTT -ACGGAATGTAGCTGCAGAGCCTTT -ACGGAATGTAGCTGCAGAGGTCTT -ACGGAATGTAGCTGCAGAACGCTT -ACGGAATGTAGCTGCAGAAGCGTT -ACGGAATGTAGCTGCAGATTCGTC -ACGGAATGTAGCTGCAGATCTCTC -ACGGAATGTAGCTGCAGATGGATC -ACGGAATGTAGCTGCAGACACTTC -ACGGAATGTAGCTGCAGAGTACTC -ACGGAATGTAGCTGCAGAGATGTC -ACGGAATGTAGCTGCAGAACAGTC -ACGGAATGTAGCTGCAGATTGCTG -ACGGAATGTAGCTGCAGATCCATG -ACGGAATGTAGCTGCAGATGTGTG -ACGGAATGTAGCTGCAGACTAGTG -ACGGAATGTAGCTGCAGACATCTG -ACGGAATGTAGCTGCAGAGAGTTG -ACGGAATGTAGCTGCAGAAGACTG -ACGGAATGTAGCTGCAGATCGGTA -ACGGAATGTAGCTGCAGATGCCTA -ACGGAATGTAGCTGCAGACCACTA -ACGGAATGTAGCTGCAGAGGAGTA -ACGGAATGTAGCTGCAGATCGTCT -ACGGAATGTAGCTGCAGATGCACT -ACGGAATGTAGCTGCAGACTGACT -ACGGAATGTAGCTGCAGACAACCT -ACGGAATGTAGCTGCAGAGCTACT -ACGGAATGTAGCTGCAGAGGATCT -ACGGAATGTAGCTGCAGAAAGGCT -ACGGAATGTAGCTGCAGATCAACC -ACGGAATGTAGCTGCAGATGTTCC -ACGGAATGTAGCTGCAGAATTCCC -ACGGAATGTAGCTGCAGATTCTCG -ACGGAATGTAGCTGCAGATAGACG -ACGGAATGTAGCTGCAGAGTAACG -ACGGAATGTAGCTGCAGAACTTCG -ACGGAATGTAGCTGCAGATACGCA -ACGGAATGTAGCTGCAGACTTGCA -ACGGAATGTAGCTGCAGACGAACA -ACGGAATGTAGCTGCAGACAGTCA -ACGGAATGTAGCTGCAGAGATCCA -ACGGAATGTAGCTGCAGAACGACA -ACGGAATGTAGCTGCAGAAGCTCA -ACGGAATGTAGCTGCAGATCACGT -ACGGAATGTAGCTGCAGACGTAGT -ACGGAATGTAGCTGCAGAGTCAGT -ACGGAATGTAGCTGCAGAGAAGGT -ACGGAATGTAGCTGCAGAAACCGT -ACGGAATGTAGCTGCAGATTGTGC -ACGGAATGTAGCTGCAGACTAAGC -ACGGAATGTAGCTGCAGAACTAGC -ACGGAATGTAGCTGCAGAAGATGC -ACGGAATGTAGCTGCAGATGAAGG -ACGGAATGTAGCTGCAGACAATGG -ACGGAATGTAGCTGCAGAATGAGG -ACGGAATGTAGCTGCAGAAATGGG -ACGGAATGTAGCTGCAGATCCTGA -ACGGAATGTAGCTGCAGATAGCGA -ACGGAATGTAGCTGCAGACACAGA -ACGGAATGTAGCTGCAGAGCAAGA -ACGGAATGTAGCTGCAGAGGTTGA -ACGGAATGTAGCTGCAGATCCGAT -ACGGAATGTAGCTGCAGATGGCAT -ACGGAATGTAGCTGCAGACGAGAT -ACGGAATGTAGCTGCAGATACCAC -ACGGAATGTAGCTGCAGACAGAAC -ACGGAATGTAGCTGCAGAGTCTAC -ACGGAATGTAGCTGCAGAACGTAC -ACGGAATGTAGCTGCAGAAGTGAC -ACGGAATGTAGCTGCAGACTGTAG -ACGGAATGTAGCTGCAGACCTAAG -ACGGAATGTAGCTGCAGAGTTCAG -ACGGAATGTAGCTGCAGAGCATAG -ACGGAATGTAGCTGCAGAGACAAG -ACGGAATGTAGCTGCAGAAAGCAG -ACGGAATGTAGCTGCAGACGTCAA -ACGGAATGTAGCTGCAGAGCTGAA -ACGGAATGTAGCTGCAGAAGTACG -ACGGAATGTAGCTGCAGAATCCGA -ACGGAATGTAGCTGCAGAATGGGA -ACGGAATGTAGCTGCAGAGTGCAA -ACGGAATGTAGCTGCAGAGAGGAA -ACGGAATGTAGCTGCAGACAGGTA -ACGGAATGTAGCTGCAGAGACTCT -ACGGAATGTAGCTGCAGAAGTCCT -ACGGAATGTAGCTGCAGATAAGCC -ACGGAATGTAGCTGCAGAATAGCC -ACGGAATGTAGCTGCAGATAACCG -ACGGAATGTAGCTGCAGAATGCCA -ACGGAATGTAGCAGGTGAGGAAAC -ACGGAATGTAGCAGGTGAAACACC -ACGGAATGTAGCAGGTGAATCGAG -ACGGAATGTAGCAGGTGACTCCTT -ACGGAATGTAGCAGGTGACCTGTT -ACGGAATGTAGCAGGTGACGGTTT -ACGGAATGTAGCAGGTGAGTGGTT -ACGGAATGTAGCAGGTGAGCCTTT -ACGGAATGTAGCAGGTGAGGTCTT -ACGGAATGTAGCAGGTGAACGCTT -ACGGAATGTAGCAGGTGAAGCGTT -ACGGAATGTAGCAGGTGATTCGTC -ACGGAATGTAGCAGGTGATCTCTC -ACGGAATGTAGCAGGTGATGGATC -ACGGAATGTAGCAGGTGACACTTC -ACGGAATGTAGCAGGTGAGTACTC -ACGGAATGTAGCAGGTGAGATGTC -ACGGAATGTAGCAGGTGAACAGTC -ACGGAATGTAGCAGGTGATTGCTG -ACGGAATGTAGCAGGTGATCCATG -ACGGAATGTAGCAGGTGATGTGTG -ACGGAATGTAGCAGGTGACTAGTG -ACGGAATGTAGCAGGTGACATCTG -ACGGAATGTAGCAGGTGAGAGTTG -ACGGAATGTAGCAGGTGAAGACTG -ACGGAATGTAGCAGGTGATCGGTA -ACGGAATGTAGCAGGTGATGCCTA -ACGGAATGTAGCAGGTGACCACTA -ACGGAATGTAGCAGGTGAGGAGTA -ACGGAATGTAGCAGGTGATCGTCT -ACGGAATGTAGCAGGTGATGCACT -ACGGAATGTAGCAGGTGACTGACT -ACGGAATGTAGCAGGTGACAACCT -ACGGAATGTAGCAGGTGAGCTACT -ACGGAATGTAGCAGGTGAGGATCT -ACGGAATGTAGCAGGTGAAAGGCT -ACGGAATGTAGCAGGTGATCAACC -ACGGAATGTAGCAGGTGATGTTCC -ACGGAATGTAGCAGGTGAATTCCC -ACGGAATGTAGCAGGTGATTCTCG -ACGGAATGTAGCAGGTGATAGACG -ACGGAATGTAGCAGGTGAGTAACG -ACGGAATGTAGCAGGTGAACTTCG -ACGGAATGTAGCAGGTGATACGCA -ACGGAATGTAGCAGGTGACTTGCA -ACGGAATGTAGCAGGTGACGAACA -ACGGAATGTAGCAGGTGACAGTCA -ACGGAATGTAGCAGGTGAGATCCA -ACGGAATGTAGCAGGTGAACGACA -ACGGAATGTAGCAGGTGAAGCTCA -ACGGAATGTAGCAGGTGATCACGT -ACGGAATGTAGCAGGTGACGTAGT -ACGGAATGTAGCAGGTGAGTCAGT -ACGGAATGTAGCAGGTGAGAAGGT -ACGGAATGTAGCAGGTGAAACCGT -ACGGAATGTAGCAGGTGATTGTGC -ACGGAATGTAGCAGGTGACTAAGC -ACGGAATGTAGCAGGTGAACTAGC -ACGGAATGTAGCAGGTGAAGATGC -ACGGAATGTAGCAGGTGATGAAGG -ACGGAATGTAGCAGGTGACAATGG -ACGGAATGTAGCAGGTGAATGAGG -ACGGAATGTAGCAGGTGAAATGGG -ACGGAATGTAGCAGGTGATCCTGA -ACGGAATGTAGCAGGTGATAGCGA -ACGGAATGTAGCAGGTGACACAGA -ACGGAATGTAGCAGGTGAGCAAGA -ACGGAATGTAGCAGGTGAGGTTGA -ACGGAATGTAGCAGGTGATCCGAT -ACGGAATGTAGCAGGTGATGGCAT -ACGGAATGTAGCAGGTGACGAGAT -ACGGAATGTAGCAGGTGATACCAC -ACGGAATGTAGCAGGTGACAGAAC -ACGGAATGTAGCAGGTGAGTCTAC -ACGGAATGTAGCAGGTGAACGTAC -ACGGAATGTAGCAGGTGAAGTGAC -ACGGAATGTAGCAGGTGACTGTAG -ACGGAATGTAGCAGGTGACCTAAG -ACGGAATGTAGCAGGTGAGTTCAG -ACGGAATGTAGCAGGTGAGCATAG -ACGGAATGTAGCAGGTGAGACAAG -ACGGAATGTAGCAGGTGAAAGCAG -ACGGAATGTAGCAGGTGACGTCAA -ACGGAATGTAGCAGGTGAGCTGAA -ACGGAATGTAGCAGGTGAAGTACG -ACGGAATGTAGCAGGTGAATCCGA -ACGGAATGTAGCAGGTGAATGGGA -ACGGAATGTAGCAGGTGAGTGCAA -ACGGAATGTAGCAGGTGAGAGGAA -ACGGAATGTAGCAGGTGACAGGTA -ACGGAATGTAGCAGGTGAGACTCT -ACGGAATGTAGCAGGTGAAGTCCT -ACGGAATGTAGCAGGTGATAAGCC -ACGGAATGTAGCAGGTGAATAGCC -ACGGAATGTAGCAGGTGATAACCG -ACGGAATGTAGCAGGTGAATGCCA -ACGGAATGTAGCTGGCAAGGAAAC -ACGGAATGTAGCTGGCAAAACACC -ACGGAATGTAGCTGGCAAATCGAG -ACGGAATGTAGCTGGCAACTCCTT -ACGGAATGTAGCTGGCAACCTGTT -ACGGAATGTAGCTGGCAACGGTTT -ACGGAATGTAGCTGGCAAGTGGTT -ACGGAATGTAGCTGGCAAGCCTTT -ACGGAATGTAGCTGGCAAGGTCTT -ACGGAATGTAGCTGGCAAACGCTT -ACGGAATGTAGCTGGCAAAGCGTT -ACGGAATGTAGCTGGCAATTCGTC -ACGGAATGTAGCTGGCAATCTCTC -ACGGAATGTAGCTGGCAATGGATC -ACGGAATGTAGCTGGCAACACTTC -ACGGAATGTAGCTGGCAAGTACTC -ACGGAATGTAGCTGGCAAGATGTC -ACGGAATGTAGCTGGCAAACAGTC -ACGGAATGTAGCTGGCAATTGCTG -ACGGAATGTAGCTGGCAATCCATG -ACGGAATGTAGCTGGCAATGTGTG -ACGGAATGTAGCTGGCAACTAGTG -ACGGAATGTAGCTGGCAACATCTG -ACGGAATGTAGCTGGCAAGAGTTG -ACGGAATGTAGCTGGCAAAGACTG -ACGGAATGTAGCTGGCAATCGGTA -ACGGAATGTAGCTGGCAATGCCTA -ACGGAATGTAGCTGGCAACCACTA -ACGGAATGTAGCTGGCAAGGAGTA -ACGGAATGTAGCTGGCAATCGTCT -ACGGAATGTAGCTGGCAATGCACT -ACGGAATGTAGCTGGCAACTGACT -ACGGAATGTAGCTGGCAACAACCT -ACGGAATGTAGCTGGCAAGCTACT -ACGGAATGTAGCTGGCAAGGATCT -ACGGAATGTAGCTGGCAAAAGGCT -ACGGAATGTAGCTGGCAATCAACC -ACGGAATGTAGCTGGCAATGTTCC -ACGGAATGTAGCTGGCAAATTCCC -ACGGAATGTAGCTGGCAATTCTCG -ACGGAATGTAGCTGGCAATAGACG -ACGGAATGTAGCTGGCAAGTAACG -ACGGAATGTAGCTGGCAAACTTCG -ACGGAATGTAGCTGGCAATACGCA -ACGGAATGTAGCTGGCAACTTGCA -ACGGAATGTAGCTGGCAACGAACA -ACGGAATGTAGCTGGCAACAGTCA -ACGGAATGTAGCTGGCAAGATCCA -ACGGAATGTAGCTGGCAAACGACA -ACGGAATGTAGCTGGCAAAGCTCA -ACGGAATGTAGCTGGCAATCACGT -ACGGAATGTAGCTGGCAACGTAGT -ACGGAATGTAGCTGGCAAGTCAGT -ACGGAATGTAGCTGGCAAGAAGGT -ACGGAATGTAGCTGGCAAAACCGT -ACGGAATGTAGCTGGCAATTGTGC -ACGGAATGTAGCTGGCAACTAAGC -ACGGAATGTAGCTGGCAAACTAGC -ACGGAATGTAGCTGGCAAAGATGC -ACGGAATGTAGCTGGCAATGAAGG -ACGGAATGTAGCTGGCAACAATGG -ACGGAATGTAGCTGGCAAATGAGG -ACGGAATGTAGCTGGCAAAATGGG -ACGGAATGTAGCTGGCAATCCTGA -ACGGAATGTAGCTGGCAATAGCGA -ACGGAATGTAGCTGGCAACACAGA -ACGGAATGTAGCTGGCAAGCAAGA -ACGGAATGTAGCTGGCAAGGTTGA -ACGGAATGTAGCTGGCAATCCGAT -ACGGAATGTAGCTGGCAATGGCAT -ACGGAATGTAGCTGGCAACGAGAT -ACGGAATGTAGCTGGCAATACCAC -ACGGAATGTAGCTGGCAACAGAAC -ACGGAATGTAGCTGGCAAGTCTAC -ACGGAATGTAGCTGGCAAACGTAC -ACGGAATGTAGCTGGCAAAGTGAC -ACGGAATGTAGCTGGCAACTGTAG -ACGGAATGTAGCTGGCAACCTAAG -ACGGAATGTAGCTGGCAAGTTCAG -ACGGAATGTAGCTGGCAAGCATAG -ACGGAATGTAGCTGGCAAGACAAG -ACGGAATGTAGCTGGCAAAAGCAG -ACGGAATGTAGCTGGCAACGTCAA -ACGGAATGTAGCTGGCAAGCTGAA -ACGGAATGTAGCTGGCAAAGTACG -ACGGAATGTAGCTGGCAAATCCGA -ACGGAATGTAGCTGGCAAATGGGA -ACGGAATGTAGCTGGCAAGTGCAA -ACGGAATGTAGCTGGCAAGAGGAA -ACGGAATGTAGCTGGCAACAGGTA -ACGGAATGTAGCTGGCAAGACTCT -ACGGAATGTAGCTGGCAAAGTCCT -ACGGAATGTAGCTGGCAATAAGCC -ACGGAATGTAGCTGGCAAATAGCC -ACGGAATGTAGCTGGCAATAACCG -ACGGAATGTAGCTGGCAAATGCCA -ACGGAATGTAGCAGGATGGGAAAC -ACGGAATGTAGCAGGATGAACACC -ACGGAATGTAGCAGGATGATCGAG -ACGGAATGTAGCAGGATGCTCCTT -ACGGAATGTAGCAGGATGCCTGTT -ACGGAATGTAGCAGGATGCGGTTT -ACGGAATGTAGCAGGATGGTGGTT -ACGGAATGTAGCAGGATGGCCTTT -ACGGAATGTAGCAGGATGGGTCTT -ACGGAATGTAGCAGGATGACGCTT -ACGGAATGTAGCAGGATGAGCGTT -ACGGAATGTAGCAGGATGTTCGTC -ACGGAATGTAGCAGGATGTCTCTC -ACGGAATGTAGCAGGATGTGGATC -ACGGAATGTAGCAGGATGCACTTC -ACGGAATGTAGCAGGATGGTACTC -ACGGAATGTAGCAGGATGGATGTC -ACGGAATGTAGCAGGATGACAGTC -ACGGAATGTAGCAGGATGTTGCTG -ACGGAATGTAGCAGGATGTCCATG -ACGGAATGTAGCAGGATGTGTGTG -ACGGAATGTAGCAGGATGCTAGTG -ACGGAATGTAGCAGGATGCATCTG -ACGGAATGTAGCAGGATGGAGTTG -ACGGAATGTAGCAGGATGAGACTG -ACGGAATGTAGCAGGATGTCGGTA -ACGGAATGTAGCAGGATGTGCCTA -ACGGAATGTAGCAGGATGCCACTA -ACGGAATGTAGCAGGATGGGAGTA -ACGGAATGTAGCAGGATGTCGTCT -ACGGAATGTAGCAGGATGTGCACT -ACGGAATGTAGCAGGATGCTGACT -ACGGAATGTAGCAGGATGCAACCT -ACGGAATGTAGCAGGATGGCTACT -ACGGAATGTAGCAGGATGGGATCT -ACGGAATGTAGCAGGATGAAGGCT -ACGGAATGTAGCAGGATGTCAACC -ACGGAATGTAGCAGGATGTGTTCC -ACGGAATGTAGCAGGATGATTCCC -ACGGAATGTAGCAGGATGTTCTCG -ACGGAATGTAGCAGGATGTAGACG -ACGGAATGTAGCAGGATGGTAACG -ACGGAATGTAGCAGGATGACTTCG -ACGGAATGTAGCAGGATGTACGCA -ACGGAATGTAGCAGGATGCTTGCA -ACGGAATGTAGCAGGATGCGAACA -ACGGAATGTAGCAGGATGCAGTCA -ACGGAATGTAGCAGGATGGATCCA -ACGGAATGTAGCAGGATGACGACA -ACGGAATGTAGCAGGATGAGCTCA -ACGGAATGTAGCAGGATGTCACGT -ACGGAATGTAGCAGGATGCGTAGT -ACGGAATGTAGCAGGATGGTCAGT -ACGGAATGTAGCAGGATGGAAGGT -ACGGAATGTAGCAGGATGAACCGT -ACGGAATGTAGCAGGATGTTGTGC -ACGGAATGTAGCAGGATGCTAAGC -ACGGAATGTAGCAGGATGACTAGC -ACGGAATGTAGCAGGATGAGATGC -ACGGAATGTAGCAGGATGTGAAGG -ACGGAATGTAGCAGGATGCAATGG -ACGGAATGTAGCAGGATGATGAGG -ACGGAATGTAGCAGGATGAATGGG -ACGGAATGTAGCAGGATGTCCTGA -ACGGAATGTAGCAGGATGTAGCGA -ACGGAATGTAGCAGGATGCACAGA -ACGGAATGTAGCAGGATGGCAAGA -ACGGAATGTAGCAGGATGGGTTGA -ACGGAATGTAGCAGGATGTCCGAT -ACGGAATGTAGCAGGATGTGGCAT -ACGGAATGTAGCAGGATGCGAGAT -ACGGAATGTAGCAGGATGTACCAC -ACGGAATGTAGCAGGATGCAGAAC -ACGGAATGTAGCAGGATGGTCTAC -ACGGAATGTAGCAGGATGACGTAC -ACGGAATGTAGCAGGATGAGTGAC -ACGGAATGTAGCAGGATGCTGTAG -ACGGAATGTAGCAGGATGCCTAAG -ACGGAATGTAGCAGGATGGTTCAG -ACGGAATGTAGCAGGATGGCATAG -ACGGAATGTAGCAGGATGGACAAG -ACGGAATGTAGCAGGATGAAGCAG -ACGGAATGTAGCAGGATGCGTCAA -ACGGAATGTAGCAGGATGGCTGAA -ACGGAATGTAGCAGGATGAGTACG -ACGGAATGTAGCAGGATGATCCGA -ACGGAATGTAGCAGGATGATGGGA -ACGGAATGTAGCAGGATGGTGCAA -ACGGAATGTAGCAGGATGGAGGAA -ACGGAATGTAGCAGGATGCAGGTA -ACGGAATGTAGCAGGATGGACTCT -ACGGAATGTAGCAGGATGAGTCCT -ACGGAATGTAGCAGGATGTAAGCC -ACGGAATGTAGCAGGATGATAGCC -ACGGAATGTAGCAGGATGTAACCG -ACGGAATGTAGCAGGATGATGCCA -ACGGAATGTAGCGGGAATGGAAAC -ACGGAATGTAGCGGGAATAACACC -ACGGAATGTAGCGGGAATATCGAG -ACGGAATGTAGCGGGAATCTCCTT -ACGGAATGTAGCGGGAATCCTGTT -ACGGAATGTAGCGGGAATCGGTTT -ACGGAATGTAGCGGGAATGTGGTT -ACGGAATGTAGCGGGAATGCCTTT -ACGGAATGTAGCGGGAATGGTCTT -ACGGAATGTAGCGGGAATACGCTT -ACGGAATGTAGCGGGAATAGCGTT -ACGGAATGTAGCGGGAATTTCGTC -ACGGAATGTAGCGGGAATTCTCTC -ACGGAATGTAGCGGGAATTGGATC -ACGGAATGTAGCGGGAATCACTTC -ACGGAATGTAGCGGGAATGTACTC -ACGGAATGTAGCGGGAATGATGTC -ACGGAATGTAGCGGGAATACAGTC -ACGGAATGTAGCGGGAATTTGCTG -ACGGAATGTAGCGGGAATTCCATG -ACGGAATGTAGCGGGAATTGTGTG -ACGGAATGTAGCGGGAATCTAGTG -ACGGAATGTAGCGGGAATCATCTG -ACGGAATGTAGCGGGAATGAGTTG -ACGGAATGTAGCGGGAATAGACTG -ACGGAATGTAGCGGGAATTCGGTA -ACGGAATGTAGCGGGAATTGCCTA -ACGGAATGTAGCGGGAATCCACTA -ACGGAATGTAGCGGGAATGGAGTA -ACGGAATGTAGCGGGAATTCGTCT -ACGGAATGTAGCGGGAATTGCACT -ACGGAATGTAGCGGGAATCTGACT -ACGGAATGTAGCGGGAATCAACCT -ACGGAATGTAGCGGGAATGCTACT -ACGGAATGTAGCGGGAATGGATCT -ACGGAATGTAGCGGGAATAAGGCT -ACGGAATGTAGCGGGAATTCAACC -ACGGAATGTAGCGGGAATTGTTCC -ACGGAATGTAGCGGGAATATTCCC -ACGGAATGTAGCGGGAATTTCTCG -ACGGAATGTAGCGGGAATTAGACG -ACGGAATGTAGCGGGAATGTAACG -ACGGAATGTAGCGGGAATACTTCG -ACGGAATGTAGCGGGAATTACGCA -ACGGAATGTAGCGGGAATCTTGCA -ACGGAATGTAGCGGGAATCGAACA -ACGGAATGTAGCGGGAATCAGTCA -ACGGAATGTAGCGGGAATGATCCA -ACGGAATGTAGCGGGAATACGACA -ACGGAATGTAGCGGGAATAGCTCA -ACGGAATGTAGCGGGAATTCACGT -ACGGAATGTAGCGGGAATCGTAGT -ACGGAATGTAGCGGGAATGTCAGT -ACGGAATGTAGCGGGAATGAAGGT -ACGGAATGTAGCGGGAATAACCGT -ACGGAATGTAGCGGGAATTTGTGC -ACGGAATGTAGCGGGAATCTAAGC -ACGGAATGTAGCGGGAATACTAGC -ACGGAATGTAGCGGGAATAGATGC -ACGGAATGTAGCGGGAATTGAAGG -ACGGAATGTAGCGGGAATCAATGG -ACGGAATGTAGCGGGAATATGAGG -ACGGAATGTAGCGGGAATAATGGG -ACGGAATGTAGCGGGAATTCCTGA -ACGGAATGTAGCGGGAATTAGCGA -ACGGAATGTAGCGGGAATCACAGA -ACGGAATGTAGCGGGAATGCAAGA -ACGGAATGTAGCGGGAATGGTTGA -ACGGAATGTAGCGGGAATTCCGAT -ACGGAATGTAGCGGGAATTGGCAT -ACGGAATGTAGCGGGAATCGAGAT -ACGGAATGTAGCGGGAATTACCAC -ACGGAATGTAGCGGGAATCAGAAC -ACGGAATGTAGCGGGAATGTCTAC -ACGGAATGTAGCGGGAATACGTAC -ACGGAATGTAGCGGGAATAGTGAC -ACGGAATGTAGCGGGAATCTGTAG -ACGGAATGTAGCGGGAATCCTAAG -ACGGAATGTAGCGGGAATGTTCAG -ACGGAATGTAGCGGGAATGCATAG -ACGGAATGTAGCGGGAATGACAAG -ACGGAATGTAGCGGGAATAAGCAG -ACGGAATGTAGCGGGAATCGTCAA -ACGGAATGTAGCGGGAATGCTGAA -ACGGAATGTAGCGGGAATAGTACG -ACGGAATGTAGCGGGAATATCCGA -ACGGAATGTAGCGGGAATATGGGA -ACGGAATGTAGCGGGAATGTGCAA -ACGGAATGTAGCGGGAATGAGGAA -ACGGAATGTAGCGGGAATCAGGTA -ACGGAATGTAGCGGGAATGACTCT -ACGGAATGTAGCGGGAATAGTCCT -ACGGAATGTAGCGGGAATTAAGCC -ACGGAATGTAGCGGGAATATAGCC -ACGGAATGTAGCGGGAATTAACCG -ACGGAATGTAGCGGGAATATGCCA -ACGGAATGTAGCTGATCCGGAAAC -ACGGAATGTAGCTGATCCAACACC -ACGGAATGTAGCTGATCCATCGAG -ACGGAATGTAGCTGATCCCTCCTT -ACGGAATGTAGCTGATCCCCTGTT -ACGGAATGTAGCTGATCCCGGTTT -ACGGAATGTAGCTGATCCGTGGTT -ACGGAATGTAGCTGATCCGCCTTT -ACGGAATGTAGCTGATCCGGTCTT -ACGGAATGTAGCTGATCCACGCTT -ACGGAATGTAGCTGATCCAGCGTT -ACGGAATGTAGCTGATCCTTCGTC -ACGGAATGTAGCTGATCCTCTCTC -ACGGAATGTAGCTGATCCTGGATC -ACGGAATGTAGCTGATCCCACTTC -ACGGAATGTAGCTGATCCGTACTC -ACGGAATGTAGCTGATCCGATGTC -ACGGAATGTAGCTGATCCACAGTC -ACGGAATGTAGCTGATCCTTGCTG -ACGGAATGTAGCTGATCCTCCATG -ACGGAATGTAGCTGATCCTGTGTG -ACGGAATGTAGCTGATCCCTAGTG -ACGGAATGTAGCTGATCCCATCTG -ACGGAATGTAGCTGATCCGAGTTG -ACGGAATGTAGCTGATCCAGACTG -ACGGAATGTAGCTGATCCTCGGTA -ACGGAATGTAGCTGATCCTGCCTA -ACGGAATGTAGCTGATCCCCACTA -ACGGAATGTAGCTGATCCGGAGTA -ACGGAATGTAGCTGATCCTCGTCT -ACGGAATGTAGCTGATCCTGCACT -ACGGAATGTAGCTGATCCCTGACT -ACGGAATGTAGCTGATCCCAACCT -ACGGAATGTAGCTGATCCGCTACT -ACGGAATGTAGCTGATCCGGATCT -ACGGAATGTAGCTGATCCAAGGCT -ACGGAATGTAGCTGATCCTCAACC -ACGGAATGTAGCTGATCCTGTTCC -ACGGAATGTAGCTGATCCATTCCC -ACGGAATGTAGCTGATCCTTCTCG -ACGGAATGTAGCTGATCCTAGACG -ACGGAATGTAGCTGATCCGTAACG -ACGGAATGTAGCTGATCCACTTCG -ACGGAATGTAGCTGATCCTACGCA -ACGGAATGTAGCTGATCCCTTGCA -ACGGAATGTAGCTGATCCCGAACA -ACGGAATGTAGCTGATCCCAGTCA -ACGGAATGTAGCTGATCCGATCCA -ACGGAATGTAGCTGATCCACGACA -ACGGAATGTAGCTGATCCAGCTCA -ACGGAATGTAGCTGATCCTCACGT -ACGGAATGTAGCTGATCCCGTAGT -ACGGAATGTAGCTGATCCGTCAGT -ACGGAATGTAGCTGATCCGAAGGT -ACGGAATGTAGCTGATCCAACCGT -ACGGAATGTAGCTGATCCTTGTGC -ACGGAATGTAGCTGATCCCTAAGC -ACGGAATGTAGCTGATCCACTAGC -ACGGAATGTAGCTGATCCAGATGC -ACGGAATGTAGCTGATCCTGAAGG -ACGGAATGTAGCTGATCCCAATGG -ACGGAATGTAGCTGATCCATGAGG -ACGGAATGTAGCTGATCCAATGGG -ACGGAATGTAGCTGATCCTCCTGA -ACGGAATGTAGCTGATCCTAGCGA -ACGGAATGTAGCTGATCCCACAGA -ACGGAATGTAGCTGATCCGCAAGA -ACGGAATGTAGCTGATCCGGTTGA -ACGGAATGTAGCTGATCCTCCGAT -ACGGAATGTAGCTGATCCTGGCAT -ACGGAATGTAGCTGATCCCGAGAT -ACGGAATGTAGCTGATCCTACCAC -ACGGAATGTAGCTGATCCCAGAAC -ACGGAATGTAGCTGATCCGTCTAC -ACGGAATGTAGCTGATCCACGTAC -ACGGAATGTAGCTGATCCAGTGAC -ACGGAATGTAGCTGATCCCTGTAG -ACGGAATGTAGCTGATCCCCTAAG -ACGGAATGTAGCTGATCCGTTCAG -ACGGAATGTAGCTGATCCGCATAG -ACGGAATGTAGCTGATCCGACAAG -ACGGAATGTAGCTGATCCAAGCAG -ACGGAATGTAGCTGATCCCGTCAA -ACGGAATGTAGCTGATCCGCTGAA -ACGGAATGTAGCTGATCCAGTACG -ACGGAATGTAGCTGATCCATCCGA -ACGGAATGTAGCTGATCCATGGGA -ACGGAATGTAGCTGATCCGTGCAA -ACGGAATGTAGCTGATCCGAGGAA -ACGGAATGTAGCTGATCCCAGGTA -ACGGAATGTAGCTGATCCGACTCT -ACGGAATGTAGCTGATCCAGTCCT -ACGGAATGTAGCTGATCCTAAGCC -ACGGAATGTAGCTGATCCATAGCC -ACGGAATGTAGCTGATCCTAACCG -ACGGAATGTAGCTGATCCATGCCA -ACGGAATGTAGCCGATAGGGAAAC -ACGGAATGTAGCCGATAGAACACC -ACGGAATGTAGCCGATAGATCGAG -ACGGAATGTAGCCGATAGCTCCTT -ACGGAATGTAGCCGATAGCCTGTT -ACGGAATGTAGCCGATAGCGGTTT -ACGGAATGTAGCCGATAGGTGGTT -ACGGAATGTAGCCGATAGGCCTTT -ACGGAATGTAGCCGATAGGGTCTT -ACGGAATGTAGCCGATAGACGCTT -ACGGAATGTAGCCGATAGAGCGTT -ACGGAATGTAGCCGATAGTTCGTC -ACGGAATGTAGCCGATAGTCTCTC -ACGGAATGTAGCCGATAGTGGATC -ACGGAATGTAGCCGATAGCACTTC -ACGGAATGTAGCCGATAGGTACTC -ACGGAATGTAGCCGATAGGATGTC -ACGGAATGTAGCCGATAGACAGTC -ACGGAATGTAGCCGATAGTTGCTG -ACGGAATGTAGCCGATAGTCCATG -ACGGAATGTAGCCGATAGTGTGTG -ACGGAATGTAGCCGATAGCTAGTG -ACGGAATGTAGCCGATAGCATCTG -ACGGAATGTAGCCGATAGGAGTTG -ACGGAATGTAGCCGATAGAGACTG -ACGGAATGTAGCCGATAGTCGGTA -ACGGAATGTAGCCGATAGTGCCTA -ACGGAATGTAGCCGATAGCCACTA -ACGGAATGTAGCCGATAGGGAGTA -ACGGAATGTAGCCGATAGTCGTCT -ACGGAATGTAGCCGATAGTGCACT -ACGGAATGTAGCCGATAGCTGACT -ACGGAATGTAGCCGATAGCAACCT -ACGGAATGTAGCCGATAGGCTACT -ACGGAATGTAGCCGATAGGGATCT -ACGGAATGTAGCCGATAGAAGGCT -ACGGAATGTAGCCGATAGTCAACC -ACGGAATGTAGCCGATAGTGTTCC -ACGGAATGTAGCCGATAGATTCCC -ACGGAATGTAGCCGATAGTTCTCG -ACGGAATGTAGCCGATAGTAGACG -ACGGAATGTAGCCGATAGGTAACG -ACGGAATGTAGCCGATAGACTTCG -ACGGAATGTAGCCGATAGTACGCA -ACGGAATGTAGCCGATAGCTTGCA -ACGGAATGTAGCCGATAGCGAACA -ACGGAATGTAGCCGATAGCAGTCA -ACGGAATGTAGCCGATAGGATCCA -ACGGAATGTAGCCGATAGACGACA -ACGGAATGTAGCCGATAGAGCTCA -ACGGAATGTAGCCGATAGTCACGT -ACGGAATGTAGCCGATAGCGTAGT -ACGGAATGTAGCCGATAGGTCAGT -ACGGAATGTAGCCGATAGGAAGGT -ACGGAATGTAGCCGATAGAACCGT -ACGGAATGTAGCCGATAGTTGTGC -ACGGAATGTAGCCGATAGCTAAGC -ACGGAATGTAGCCGATAGACTAGC -ACGGAATGTAGCCGATAGAGATGC -ACGGAATGTAGCCGATAGTGAAGG -ACGGAATGTAGCCGATAGCAATGG -ACGGAATGTAGCCGATAGATGAGG -ACGGAATGTAGCCGATAGAATGGG -ACGGAATGTAGCCGATAGTCCTGA -ACGGAATGTAGCCGATAGTAGCGA -ACGGAATGTAGCCGATAGCACAGA -ACGGAATGTAGCCGATAGGCAAGA -ACGGAATGTAGCCGATAGGGTTGA -ACGGAATGTAGCCGATAGTCCGAT -ACGGAATGTAGCCGATAGTGGCAT -ACGGAATGTAGCCGATAGCGAGAT -ACGGAATGTAGCCGATAGTACCAC -ACGGAATGTAGCCGATAGCAGAAC -ACGGAATGTAGCCGATAGGTCTAC -ACGGAATGTAGCCGATAGACGTAC -ACGGAATGTAGCCGATAGAGTGAC -ACGGAATGTAGCCGATAGCTGTAG -ACGGAATGTAGCCGATAGCCTAAG -ACGGAATGTAGCCGATAGGTTCAG -ACGGAATGTAGCCGATAGGCATAG -ACGGAATGTAGCCGATAGGACAAG -ACGGAATGTAGCCGATAGAAGCAG -ACGGAATGTAGCCGATAGCGTCAA -ACGGAATGTAGCCGATAGGCTGAA -ACGGAATGTAGCCGATAGAGTACG -ACGGAATGTAGCCGATAGATCCGA -ACGGAATGTAGCCGATAGATGGGA -ACGGAATGTAGCCGATAGGTGCAA -ACGGAATGTAGCCGATAGGAGGAA -ACGGAATGTAGCCGATAGCAGGTA -ACGGAATGTAGCCGATAGGACTCT -ACGGAATGTAGCCGATAGAGTCCT -ACGGAATGTAGCCGATAGTAAGCC -ACGGAATGTAGCCGATAGATAGCC -ACGGAATGTAGCCGATAGTAACCG -ACGGAATGTAGCCGATAGATGCCA -ACGGAATGTAGCAGACACGGAAAC -ACGGAATGTAGCAGACACAACACC -ACGGAATGTAGCAGACACATCGAG -ACGGAATGTAGCAGACACCTCCTT -ACGGAATGTAGCAGACACCCTGTT -ACGGAATGTAGCAGACACCGGTTT -ACGGAATGTAGCAGACACGTGGTT -ACGGAATGTAGCAGACACGCCTTT -ACGGAATGTAGCAGACACGGTCTT -ACGGAATGTAGCAGACACACGCTT -ACGGAATGTAGCAGACACAGCGTT -ACGGAATGTAGCAGACACTTCGTC -ACGGAATGTAGCAGACACTCTCTC -ACGGAATGTAGCAGACACTGGATC -ACGGAATGTAGCAGACACCACTTC -ACGGAATGTAGCAGACACGTACTC -ACGGAATGTAGCAGACACGATGTC -ACGGAATGTAGCAGACACACAGTC -ACGGAATGTAGCAGACACTTGCTG -ACGGAATGTAGCAGACACTCCATG -ACGGAATGTAGCAGACACTGTGTG -ACGGAATGTAGCAGACACCTAGTG -ACGGAATGTAGCAGACACCATCTG -ACGGAATGTAGCAGACACGAGTTG -ACGGAATGTAGCAGACACAGACTG -ACGGAATGTAGCAGACACTCGGTA -ACGGAATGTAGCAGACACTGCCTA -ACGGAATGTAGCAGACACCCACTA -ACGGAATGTAGCAGACACGGAGTA -ACGGAATGTAGCAGACACTCGTCT -ACGGAATGTAGCAGACACTGCACT -ACGGAATGTAGCAGACACCTGACT -ACGGAATGTAGCAGACACCAACCT -ACGGAATGTAGCAGACACGCTACT -ACGGAATGTAGCAGACACGGATCT -ACGGAATGTAGCAGACACAAGGCT -ACGGAATGTAGCAGACACTCAACC -ACGGAATGTAGCAGACACTGTTCC -ACGGAATGTAGCAGACACATTCCC -ACGGAATGTAGCAGACACTTCTCG -ACGGAATGTAGCAGACACTAGACG -ACGGAATGTAGCAGACACGTAACG -ACGGAATGTAGCAGACACACTTCG -ACGGAATGTAGCAGACACTACGCA -ACGGAATGTAGCAGACACCTTGCA -ACGGAATGTAGCAGACACCGAACA -ACGGAATGTAGCAGACACCAGTCA -ACGGAATGTAGCAGACACGATCCA -ACGGAATGTAGCAGACACACGACA -ACGGAATGTAGCAGACACAGCTCA -ACGGAATGTAGCAGACACTCACGT -ACGGAATGTAGCAGACACCGTAGT -ACGGAATGTAGCAGACACGTCAGT -ACGGAATGTAGCAGACACGAAGGT -ACGGAATGTAGCAGACACAACCGT -ACGGAATGTAGCAGACACTTGTGC -ACGGAATGTAGCAGACACCTAAGC -ACGGAATGTAGCAGACACACTAGC -ACGGAATGTAGCAGACACAGATGC -ACGGAATGTAGCAGACACTGAAGG -ACGGAATGTAGCAGACACCAATGG -ACGGAATGTAGCAGACACATGAGG -ACGGAATGTAGCAGACACAATGGG -ACGGAATGTAGCAGACACTCCTGA -ACGGAATGTAGCAGACACTAGCGA -ACGGAATGTAGCAGACACCACAGA -ACGGAATGTAGCAGACACGCAAGA -ACGGAATGTAGCAGACACGGTTGA -ACGGAATGTAGCAGACACTCCGAT -ACGGAATGTAGCAGACACTGGCAT -ACGGAATGTAGCAGACACCGAGAT -ACGGAATGTAGCAGACACTACCAC -ACGGAATGTAGCAGACACCAGAAC -ACGGAATGTAGCAGACACGTCTAC -ACGGAATGTAGCAGACACACGTAC -ACGGAATGTAGCAGACACAGTGAC -ACGGAATGTAGCAGACACCTGTAG -ACGGAATGTAGCAGACACCCTAAG -ACGGAATGTAGCAGACACGTTCAG -ACGGAATGTAGCAGACACGCATAG -ACGGAATGTAGCAGACACGACAAG -ACGGAATGTAGCAGACACAAGCAG -ACGGAATGTAGCAGACACCGTCAA -ACGGAATGTAGCAGACACGCTGAA -ACGGAATGTAGCAGACACAGTACG -ACGGAATGTAGCAGACACATCCGA -ACGGAATGTAGCAGACACATGGGA -ACGGAATGTAGCAGACACGTGCAA -ACGGAATGTAGCAGACACGAGGAA -ACGGAATGTAGCAGACACCAGGTA -ACGGAATGTAGCAGACACGACTCT -ACGGAATGTAGCAGACACAGTCCT -ACGGAATGTAGCAGACACTAAGCC -ACGGAATGTAGCAGACACATAGCC -ACGGAATGTAGCAGACACTAACCG -ACGGAATGTAGCAGACACATGCCA -ACGGAATGTAGCAGAGCAGGAAAC -ACGGAATGTAGCAGAGCAAACACC -ACGGAATGTAGCAGAGCAATCGAG -ACGGAATGTAGCAGAGCACTCCTT -ACGGAATGTAGCAGAGCACCTGTT -ACGGAATGTAGCAGAGCACGGTTT -ACGGAATGTAGCAGAGCAGTGGTT -ACGGAATGTAGCAGAGCAGCCTTT -ACGGAATGTAGCAGAGCAGGTCTT -ACGGAATGTAGCAGAGCAACGCTT -ACGGAATGTAGCAGAGCAAGCGTT -ACGGAATGTAGCAGAGCATTCGTC -ACGGAATGTAGCAGAGCATCTCTC -ACGGAATGTAGCAGAGCATGGATC -ACGGAATGTAGCAGAGCACACTTC -ACGGAATGTAGCAGAGCAGTACTC -ACGGAATGTAGCAGAGCAGATGTC -ACGGAATGTAGCAGAGCAACAGTC -ACGGAATGTAGCAGAGCATTGCTG -ACGGAATGTAGCAGAGCATCCATG -ACGGAATGTAGCAGAGCATGTGTG -ACGGAATGTAGCAGAGCACTAGTG -ACGGAATGTAGCAGAGCACATCTG -ACGGAATGTAGCAGAGCAGAGTTG -ACGGAATGTAGCAGAGCAAGACTG -ACGGAATGTAGCAGAGCATCGGTA -ACGGAATGTAGCAGAGCATGCCTA -ACGGAATGTAGCAGAGCACCACTA -ACGGAATGTAGCAGAGCAGGAGTA -ACGGAATGTAGCAGAGCATCGTCT -ACGGAATGTAGCAGAGCATGCACT -ACGGAATGTAGCAGAGCACTGACT -ACGGAATGTAGCAGAGCACAACCT -ACGGAATGTAGCAGAGCAGCTACT -ACGGAATGTAGCAGAGCAGGATCT -ACGGAATGTAGCAGAGCAAAGGCT -ACGGAATGTAGCAGAGCATCAACC -ACGGAATGTAGCAGAGCATGTTCC -ACGGAATGTAGCAGAGCAATTCCC -ACGGAATGTAGCAGAGCATTCTCG -ACGGAATGTAGCAGAGCATAGACG -ACGGAATGTAGCAGAGCAGTAACG -ACGGAATGTAGCAGAGCAACTTCG -ACGGAATGTAGCAGAGCATACGCA -ACGGAATGTAGCAGAGCACTTGCA -ACGGAATGTAGCAGAGCACGAACA -ACGGAATGTAGCAGAGCACAGTCA -ACGGAATGTAGCAGAGCAGATCCA -ACGGAATGTAGCAGAGCAACGACA -ACGGAATGTAGCAGAGCAAGCTCA -ACGGAATGTAGCAGAGCATCACGT -ACGGAATGTAGCAGAGCACGTAGT -ACGGAATGTAGCAGAGCAGTCAGT -ACGGAATGTAGCAGAGCAGAAGGT -ACGGAATGTAGCAGAGCAAACCGT -ACGGAATGTAGCAGAGCATTGTGC -ACGGAATGTAGCAGAGCACTAAGC -ACGGAATGTAGCAGAGCAACTAGC -ACGGAATGTAGCAGAGCAAGATGC -ACGGAATGTAGCAGAGCATGAAGG -ACGGAATGTAGCAGAGCACAATGG -ACGGAATGTAGCAGAGCAATGAGG -ACGGAATGTAGCAGAGCAAATGGG -ACGGAATGTAGCAGAGCATCCTGA -ACGGAATGTAGCAGAGCATAGCGA -ACGGAATGTAGCAGAGCACACAGA -ACGGAATGTAGCAGAGCAGCAAGA -ACGGAATGTAGCAGAGCAGGTTGA -ACGGAATGTAGCAGAGCATCCGAT -ACGGAATGTAGCAGAGCATGGCAT -ACGGAATGTAGCAGAGCACGAGAT -ACGGAATGTAGCAGAGCATACCAC -ACGGAATGTAGCAGAGCACAGAAC -ACGGAATGTAGCAGAGCAGTCTAC -ACGGAATGTAGCAGAGCAACGTAC -ACGGAATGTAGCAGAGCAAGTGAC -ACGGAATGTAGCAGAGCACTGTAG -ACGGAATGTAGCAGAGCACCTAAG -ACGGAATGTAGCAGAGCAGTTCAG -ACGGAATGTAGCAGAGCAGCATAG -ACGGAATGTAGCAGAGCAGACAAG -ACGGAATGTAGCAGAGCAAAGCAG -ACGGAATGTAGCAGAGCACGTCAA -ACGGAATGTAGCAGAGCAGCTGAA -ACGGAATGTAGCAGAGCAAGTACG -ACGGAATGTAGCAGAGCAATCCGA -ACGGAATGTAGCAGAGCAATGGGA -ACGGAATGTAGCAGAGCAGTGCAA -ACGGAATGTAGCAGAGCAGAGGAA -ACGGAATGTAGCAGAGCACAGGTA -ACGGAATGTAGCAGAGCAGACTCT -ACGGAATGTAGCAGAGCAAGTCCT -ACGGAATGTAGCAGAGCATAAGCC -ACGGAATGTAGCAGAGCAATAGCC -ACGGAATGTAGCAGAGCATAACCG -ACGGAATGTAGCAGAGCAATGCCA -ACGGAATGTAGCTGAGGTGGAAAC -ACGGAATGTAGCTGAGGTAACACC -ACGGAATGTAGCTGAGGTATCGAG -ACGGAATGTAGCTGAGGTCTCCTT -ACGGAATGTAGCTGAGGTCCTGTT -ACGGAATGTAGCTGAGGTCGGTTT -ACGGAATGTAGCTGAGGTGTGGTT -ACGGAATGTAGCTGAGGTGCCTTT -ACGGAATGTAGCTGAGGTGGTCTT -ACGGAATGTAGCTGAGGTACGCTT -ACGGAATGTAGCTGAGGTAGCGTT -ACGGAATGTAGCTGAGGTTTCGTC -ACGGAATGTAGCTGAGGTTCTCTC -ACGGAATGTAGCTGAGGTTGGATC -ACGGAATGTAGCTGAGGTCACTTC -ACGGAATGTAGCTGAGGTGTACTC -ACGGAATGTAGCTGAGGTGATGTC -ACGGAATGTAGCTGAGGTACAGTC -ACGGAATGTAGCTGAGGTTTGCTG -ACGGAATGTAGCTGAGGTTCCATG -ACGGAATGTAGCTGAGGTTGTGTG -ACGGAATGTAGCTGAGGTCTAGTG -ACGGAATGTAGCTGAGGTCATCTG -ACGGAATGTAGCTGAGGTGAGTTG -ACGGAATGTAGCTGAGGTAGACTG -ACGGAATGTAGCTGAGGTTCGGTA -ACGGAATGTAGCTGAGGTTGCCTA -ACGGAATGTAGCTGAGGTCCACTA -ACGGAATGTAGCTGAGGTGGAGTA -ACGGAATGTAGCTGAGGTTCGTCT -ACGGAATGTAGCTGAGGTTGCACT -ACGGAATGTAGCTGAGGTCTGACT -ACGGAATGTAGCTGAGGTCAACCT -ACGGAATGTAGCTGAGGTGCTACT -ACGGAATGTAGCTGAGGTGGATCT -ACGGAATGTAGCTGAGGTAAGGCT -ACGGAATGTAGCTGAGGTTCAACC -ACGGAATGTAGCTGAGGTTGTTCC -ACGGAATGTAGCTGAGGTATTCCC -ACGGAATGTAGCTGAGGTTTCTCG -ACGGAATGTAGCTGAGGTTAGACG -ACGGAATGTAGCTGAGGTGTAACG -ACGGAATGTAGCTGAGGTACTTCG -ACGGAATGTAGCTGAGGTTACGCA -ACGGAATGTAGCTGAGGTCTTGCA -ACGGAATGTAGCTGAGGTCGAACA -ACGGAATGTAGCTGAGGTCAGTCA -ACGGAATGTAGCTGAGGTGATCCA -ACGGAATGTAGCTGAGGTACGACA -ACGGAATGTAGCTGAGGTAGCTCA -ACGGAATGTAGCTGAGGTTCACGT -ACGGAATGTAGCTGAGGTCGTAGT -ACGGAATGTAGCTGAGGTGTCAGT -ACGGAATGTAGCTGAGGTGAAGGT -ACGGAATGTAGCTGAGGTAACCGT -ACGGAATGTAGCTGAGGTTTGTGC -ACGGAATGTAGCTGAGGTCTAAGC -ACGGAATGTAGCTGAGGTACTAGC -ACGGAATGTAGCTGAGGTAGATGC -ACGGAATGTAGCTGAGGTTGAAGG -ACGGAATGTAGCTGAGGTCAATGG -ACGGAATGTAGCTGAGGTATGAGG -ACGGAATGTAGCTGAGGTAATGGG -ACGGAATGTAGCTGAGGTTCCTGA -ACGGAATGTAGCTGAGGTTAGCGA -ACGGAATGTAGCTGAGGTCACAGA -ACGGAATGTAGCTGAGGTGCAAGA -ACGGAATGTAGCTGAGGTGGTTGA -ACGGAATGTAGCTGAGGTTCCGAT -ACGGAATGTAGCTGAGGTTGGCAT -ACGGAATGTAGCTGAGGTCGAGAT -ACGGAATGTAGCTGAGGTTACCAC -ACGGAATGTAGCTGAGGTCAGAAC -ACGGAATGTAGCTGAGGTGTCTAC -ACGGAATGTAGCTGAGGTACGTAC -ACGGAATGTAGCTGAGGTAGTGAC -ACGGAATGTAGCTGAGGTCTGTAG -ACGGAATGTAGCTGAGGTCCTAAG -ACGGAATGTAGCTGAGGTGTTCAG -ACGGAATGTAGCTGAGGTGCATAG -ACGGAATGTAGCTGAGGTGACAAG -ACGGAATGTAGCTGAGGTAAGCAG -ACGGAATGTAGCTGAGGTCGTCAA -ACGGAATGTAGCTGAGGTGCTGAA -ACGGAATGTAGCTGAGGTAGTACG -ACGGAATGTAGCTGAGGTATCCGA -ACGGAATGTAGCTGAGGTATGGGA -ACGGAATGTAGCTGAGGTGTGCAA -ACGGAATGTAGCTGAGGTGAGGAA -ACGGAATGTAGCTGAGGTCAGGTA -ACGGAATGTAGCTGAGGTGACTCT -ACGGAATGTAGCTGAGGTAGTCCT -ACGGAATGTAGCTGAGGTTAAGCC -ACGGAATGTAGCTGAGGTATAGCC -ACGGAATGTAGCTGAGGTTAACCG -ACGGAATGTAGCTGAGGTATGCCA -ACGGAATGTAGCGATTCCGGAAAC -ACGGAATGTAGCGATTCCAACACC -ACGGAATGTAGCGATTCCATCGAG -ACGGAATGTAGCGATTCCCTCCTT -ACGGAATGTAGCGATTCCCCTGTT -ACGGAATGTAGCGATTCCCGGTTT -ACGGAATGTAGCGATTCCGTGGTT -ACGGAATGTAGCGATTCCGCCTTT -ACGGAATGTAGCGATTCCGGTCTT -ACGGAATGTAGCGATTCCACGCTT -ACGGAATGTAGCGATTCCAGCGTT -ACGGAATGTAGCGATTCCTTCGTC -ACGGAATGTAGCGATTCCTCTCTC -ACGGAATGTAGCGATTCCTGGATC -ACGGAATGTAGCGATTCCCACTTC -ACGGAATGTAGCGATTCCGTACTC -ACGGAATGTAGCGATTCCGATGTC -ACGGAATGTAGCGATTCCACAGTC -ACGGAATGTAGCGATTCCTTGCTG -ACGGAATGTAGCGATTCCTCCATG -ACGGAATGTAGCGATTCCTGTGTG -ACGGAATGTAGCGATTCCCTAGTG -ACGGAATGTAGCGATTCCCATCTG -ACGGAATGTAGCGATTCCGAGTTG -ACGGAATGTAGCGATTCCAGACTG -ACGGAATGTAGCGATTCCTCGGTA -ACGGAATGTAGCGATTCCTGCCTA -ACGGAATGTAGCGATTCCCCACTA -ACGGAATGTAGCGATTCCGGAGTA -ACGGAATGTAGCGATTCCTCGTCT -ACGGAATGTAGCGATTCCTGCACT -ACGGAATGTAGCGATTCCCTGACT -ACGGAATGTAGCGATTCCCAACCT -ACGGAATGTAGCGATTCCGCTACT -ACGGAATGTAGCGATTCCGGATCT -ACGGAATGTAGCGATTCCAAGGCT -ACGGAATGTAGCGATTCCTCAACC -ACGGAATGTAGCGATTCCTGTTCC -ACGGAATGTAGCGATTCCATTCCC -ACGGAATGTAGCGATTCCTTCTCG -ACGGAATGTAGCGATTCCTAGACG -ACGGAATGTAGCGATTCCGTAACG -ACGGAATGTAGCGATTCCACTTCG -ACGGAATGTAGCGATTCCTACGCA -ACGGAATGTAGCGATTCCCTTGCA -ACGGAATGTAGCGATTCCCGAACA -ACGGAATGTAGCGATTCCCAGTCA -ACGGAATGTAGCGATTCCGATCCA -ACGGAATGTAGCGATTCCACGACA -ACGGAATGTAGCGATTCCAGCTCA -ACGGAATGTAGCGATTCCTCACGT -ACGGAATGTAGCGATTCCCGTAGT -ACGGAATGTAGCGATTCCGTCAGT -ACGGAATGTAGCGATTCCGAAGGT -ACGGAATGTAGCGATTCCAACCGT -ACGGAATGTAGCGATTCCTTGTGC -ACGGAATGTAGCGATTCCCTAAGC -ACGGAATGTAGCGATTCCACTAGC -ACGGAATGTAGCGATTCCAGATGC -ACGGAATGTAGCGATTCCTGAAGG -ACGGAATGTAGCGATTCCCAATGG -ACGGAATGTAGCGATTCCATGAGG -ACGGAATGTAGCGATTCCAATGGG -ACGGAATGTAGCGATTCCTCCTGA -ACGGAATGTAGCGATTCCTAGCGA -ACGGAATGTAGCGATTCCCACAGA -ACGGAATGTAGCGATTCCGCAAGA -ACGGAATGTAGCGATTCCGGTTGA -ACGGAATGTAGCGATTCCTCCGAT -ACGGAATGTAGCGATTCCTGGCAT -ACGGAATGTAGCGATTCCCGAGAT -ACGGAATGTAGCGATTCCTACCAC -ACGGAATGTAGCGATTCCCAGAAC -ACGGAATGTAGCGATTCCGTCTAC -ACGGAATGTAGCGATTCCACGTAC -ACGGAATGTAGCGATTCCAGTGAC -ACGGAATGTAGCGATTCCCTGTAG -ACGGAATGTAGCGATTCCCCTAAG -ACGGAATGTAGCGATTCCGTTCAG -ACGGAATGTAGCGATTCCGCATAG -ACGGAATGTAGCGATTCCGACAAG -ACGGAATGTAGCGATTCCAAGCAG -ACGGAATGTAGCGATTCCCGTCAA -ACGGAATGTAGCGATTCCGCTGAA -ACGGAATGTAGCGATTCCAGTACG -ACGGAATGTAGCGATTCCATCCGA -ACGGAATGTAGCGATTCCATGGGA -ACGGAATGTAGCGATTCCGTGCAA -ACGGAATGTAGCGATTCCGAGGAA -ACGGAATGTAGCGATTCCCAGGTA -ACGGAATGTAGCGATTCCGACTCT -ACGGAATGTAGCGATTCCAGTCCT -ACGGAATGTAGCGATTCCTAAGCC -ACGGAATGTAGCGATTCCATAGCC -ACGGAATGTAGCGATTCCTAACCG -ACGGAATGTAGCGATTCCATGCCA -ACGGAATGTAGCCATTGGGGAAAC -ACGGAATGTAGCCATTGGAACACC -ACGGAATGTAGCCATTGGATCGAG -ACGGAATGTAGCCATTGGCTCCTT -ACGGAATGTAGCCATTGGCCTGTT -ACGGAATGTAGCCATTGGCGGTTT -ACGGAATGTAGCCATTGGGTGGTT -ACGGAATGTAGCCATTGGGCCTTT -ACGGAATGTAGCCATTGGGGTCTT -ACGGAATGTAGCCATTGGACGCTT -ACGGAATGTAGCCATTGGAGCGTT -ACGGAATGTAGCCATTGGTTCGTC -ACGGAATGTAGCCATTGGTCTCTC -ACGGAATGTAGCCATTGGTGGATC -ACGGAATGTAGCCATTGGCACTTC -ACGGAATGTAGCCATTGGGTACTC -ACGGAATGTAGCCATTGGGATGTC -ACGGAATGTAGCCATTGGACAGTC -ACGGAATGTAGCCATTGGTTGCTG -ACGGAATGTAGCCATTGGTCCATG -ACGGAATGTAGCCATTGGTGTGTG -ACGGAATGTAGCCATTGGCTAGTG -ACGGAATGTAGCCATTGGCATCTG -ACGGAATGTAGCCATTGGGAGTTG -ACGGAATGTAGCCATTGGAGACTG -ACGGAATGTAGCCATTGGTCGGTA -ACGGAATGTAGCCATTGGTGCCTA -ACGGAATGTAGCCATTGGCCACTA -ACGGAATGTAGCCATTGGGGAGTA -ACGGAATGTAGCCATTGGTCGTCT -ACGGAATGTAGCCATTGGTGCACT -ACGGAATGTAGCCATTGGCTGACT -ACGGAATGTAGCCATTGGCAACCT -ACGGAATGTAGCCATTGGGCTACT -ACGGAATGTAGCCATTGGGGATCT -ACGGAATGTAGCCATTGGAAGGCT -ACGGAATGTAGCCATTGGTCAACC -ACGGAATGTAGCCATTGGTGTTCC -ACGGAATGTAGCCATTGGATTCCC -ACGGAATGTAGCCATTGGTTCTCG -ACGGAATGTAGCCATTGGTAGACG -ACGGAATGTAGCCATTGGGTAACG -ACGGAATGTAGCCATTGGACTTCG -ACGGAATGTAGCCATTGGTACGCA -ACGGAATGTAGCCATTGGCTTGCA -ACGGAATGTAGCCATTGGCGAACA -ACGGAATGTAGCCATTGGCAGTCA -ACGGAATGTAGCCATTGGGATCCA -ACGGAATGTAGCCATTGGACGACA -ACGGAATGTAGCCATTGGAGCTCA -ACGGAATGTAGCCATTGGTCACGT -ACGGAATGTAGCCATTGGCGTAGT -ACGGAATGTAGCCATTGGGTCAGT -ACGGAATGTAGCCATTGGGAAGGT -ACGGAATGTAGCCATTGGAACCGT -ACGGAATGTAGCCATTGGTTGTGC -ACGGAATGTAGCCATTGGCTAAGC -ACGGAATGTAGCCATTGGACTAGC -ACGGAATGTAGCCATTGGAGATGC -ACGGAATGTAGCCATTGGTGAAGG -ACGGAATGTAGCCATTGGCAATGG -ACGGAATGTAGCCATTGGATGAGG -ACGGAATGTAGCCATTGGAATGGG -ACGGAATGTAGCCATTGGTCCTGA -ACGGAATGTAGCCATTGGTAGCGA -ACGGAATGTAGCCATTGGCACAGA -ACGGAATGTAGCCATTGGGCAAGA -ACGGAATGTAGCCATTGGGGTTGA -ACGGAATGTAGCCATTGGTCCGAT -ACGGAATGTAGCCATTGGTGGCAT -ACGGAATGTAGCCATTGGCGAGAT -ACGGAATGTAGCCATTGGTACCAC -ACGGAATGTAGCCATTGGCAGAAC -ACGGAATGTAGCCATTGGGTCTAC -ACGGAATGTAGCCATTGGACGTAC -ACGGAATGTAGCCATTGGAGTGAC -ACGGAATGTAGCCATTGGCTGTAG -ACGGAATGTAGCCATTGGCCTAAG -ACGGAATGTAGCCATTGGGTTCAG -ACGGAATGTAGCCATTGGGCATAG -ACGGAATGTAGCCATTGGGACAAG -ACGGAATGTAGCCATTGGAAGCAG -ACGGAATGTAGCCATTGGCGTCAA -ACGGAATGTAGCCATTGGGCTGAA -ACGGAATGTAGCCATTGGAGTACG -ACGGAATGTAGCCATTGGATCCGA -ACGGAATGTAGCCATTGGATGGGA -ACGGAATGTAGCCATTGGGTGCAA -ACGGAATGTAGCCATTGGGAGGAA -ACGGAATGTAGCCATTGGCAGGTA -ACGGAATGTAGCCATTGGGACTCT -ACGGAATGTAGCCATTGGAGTCCT -ACGGAATGTAGCCATTGGTAAGCC -ACGGAATGTAGCCATTGGATAGCC -ACGGAATGTAGCCATTGGTAACCG -ACGGAATGTAGCCATTGGATGCCA -ACGGAATGTAGCGATCGAGGAAAC -ACGGAATGTAGCGATCGAAACACC -ACGGAATGTAGCGATCGAATCGAG -ACGGAATGTAGCGATCGACTCCTT -ACGGAATGTAGCGATCGACCTGTT -ACGGAATGTAGCGATCGACGGTTT -ACGGAATGTAGCGATCGAGTGGTT -ACGGAATGTAGCGATCGAGCCTTT -ACGGAATGTAGCGATCGAGGTCTT -ACGGAATGTAGCGATCGAACGCTT -ACGGAATGTAGCGATCGAAGCGTT -ACGGAATGTAGCGATCGATTCGTC -ACGGAATGTAGCGATCGATCTCTC -ACGGAATGTAGCGATCGATGGATC -ACGGAATGTAGCGATCGACACTTC -ACGGAATGTAGCGATCGAGTACTC -ACGGAATGTAGCGATCGAGATGTC -ACGGAATGTAGCGATCGAACAGTC -ACGGAATGTAGCGATCGATTGCTG -ACGGAATGTAGCGATCGATCCATG -ACGGAATGTAGCGATCGATGTGTG -ACGGAATGTAGCGATCGACTAGTG -ACGGAATGTAGCGATCGACATCTG -ACGGAATGTAGCGATCGAGAGTTG -ACGGAATGTAGCGATCGAAGACTG -ACGGAATGTAGCGATCGATCGGTA -ACGGAATGTAGCGATCGATGCCTA -ACGGAATGTAGCGATCGACCACTA -ACGGAATGTAGCGATCGAGGAGTA -ACGGAATGTAGCGATCGATCGTCT -ACGGAATGTAGCGATCGATGCACT -ACGGAATGTAGCGATCGACTGACT -ACGGAATGTAGCGATCGACAACCT -ACGGAATGTAGCGATCGAGCTACT -ACGGAATGTAGCGATCGAGGATCT -ACGGAATGTAGCGATCGAAAGGCT -ACGGAATGTAGCGATCGATCAACC -ACGGAATGTAGCGATCGATGTTCC -ACGGAATGTAGCGATCGAATTCCC -ACGGAATGTAGCGATCGATTCTCG -ACGGAATGTAGCGATCGATAGACG -ACGGAATGTAGCGATCGAGTAACG -ACGGAATGTAGCGATCGAACTTCG -ACGGAATGTAGCGATCGATACGCA -ACGGAATGTAGCGATCGACTTGCA -ACGGAATGTAGCGATCGACGAACA -ACGGAATGTAGCGATCGACAGTCA -ACGGAATGTAGCGATCGAGATCCA -ACGGAATGTAGCGATCGAACGACA -ACGGAATGTAGCGATCGAAGCTCA -ACGGAATGTAGCGATCGATCACGT -ACGGAATGTAGCGATCGACGTAGT -ACGGAATGTAGCGATCGAGTCAGT -ACGGAATGTAGCGATCGAGAAGGT -ACGGAATGTAGCGATCGAAACCGT -ACGGAATGTAGCGATCGATTGTGC -ACGGAATGTAGCGATCGACTAAGC -ACGGAATGTAGCGATCGAACTAGC -ACGGAATGTAGCGATCGAAGATGC -ACGGAATGTAGCGATCGATGAAGG -ACGGAATGTAGCGATCGACAATGG -ACGGAATGTAGCGATCGAATGAGG -ACGGAATGTAGCGATCGAAATGGG -ACGGAATGTAGCGATCGATCCTGA -ACGGAATGTAGCGATCGATAGCGA -ACGGAATGTAGCGATCGACACAGA -ACGGAATGTAGCGATCGAGCAAGA -ACGGAATGTAGCGATCGAGGTTGA -ACGGAATGTAGCGATCGATCCGAT -ACGGAATGTAGCGATCGATGGCAT -ACGGAATGTAGCGATCGACGAGAT -ACGGAATGTAGCGATCGATACCAC -ACGGAATGTAGCGATCGACAGAAC -ACGGAATGTAGCGATCGAGTCTAC -ACGGAATGTAGCGATCGAACGTAC -ACGGAATGTAGCGATCGAAGTGAC -ACGGAATGTAGCGATCGACTGTAG -ACGGAATGTAGCGATCGACCTAAG -ACGGAATGTAGCGATCGAGTTCAG -ACGGAATGTAGCGATCGAGCATAG -ACGGAATGTAGCGATCGAGACAAG -ACGGAATGTAGCGATCGAAAGCAG -ACGGAATGTAGCGATCGACGTCAA -ACGGAATGTAGCGATCGAGCTGAA -ACGGAATGTAGCGATCGAAGTACG -ACGGAATGTAGCGATCGAATCCGA -ACGGAATGTAGCGATCGAATGGGA -ACGGAATGTAGCGATCGAGTGCAA -ACGGAATGTAGCGATCGAGAGGAA -ACGGAATGTAGCGATCGACAGGTA -ACGGAATGTAGCGATCGAGACTCT -ACGGAATGTAGCGATCGAAGTCCT -ACGGAATGTAGCGATCGATAAGCC -ACGGAATGTAGCGATCGAATAGCC -ACGGAATGTAGCGATCGATAACCG -ACGGAATGTAGCGATCGAATGCCA -ACGGAATGTAGCCACTACGGAAAC -ACGGAATGTAGCCACTACAACACC -ACGGAATGTAGCCACTACATCGAG -ACGGAATGTAGCCACTACCTCCTT -ACGGAATGTAGCCACTACCCTGTT -ACGGAATGTAGCCACTACCGGTTT -ACGGAATGTAGCCACTACGTGGTT -ACGGAATGTAGCCACTACGCCTTT -ACGGAATGTAGCCACTACGGTCTT -ACGGAATGTAGCCACTACACGCTT -ACGGAATGTAGCCACTACAGCGTT -ACGGAATGTAGCCACTACTTCGTC -ACGGAATGTAGCCACTACTCTCTC -ACGGAATGTAGCCACTACTGGATC -ACGGAATGTAGCCACTACCACTTC -ACGGAATGTAGCCACTACGTACTC -ACGGAATGTAGCCACTACGATGTC -ACGGAATGTAGCCACTACACAGTC -ACGGAATGTAGCCACTACTTGCTG -ACGGAATGTAGCCACTACTCCATG -ACGGAATGTAGCCACTACTGTGTG -ACGGAATGTAGCCACTACCTAGTG -ACGGAATGTAGCCACTACCATCTG -ACGGAATGTAGCCACTACGAGTTG -ACGGAATGTAGCCACTACAGACTG -ACGGAATGTAGCCACTACTCGGTA -ACGGAATGTAGCCACTACTGCCTA -ACGGAATGTAGCCACTACCCACTA -ACGGAATGTAGCCACTACGGAGTA -ACGGAATGTAGCCACTACTCGTCT -ACGGAATGTAGCCACTACTGCACT -ACGGAATGTAGCCACTACCTGACT -ACGGAATGTAGCCACTACCAACCT -ACGGAATGTAGCCACTACGCTACT -ACGGAATGTAGCCACTACGGATCT -ACGGAATGTAGCCACTACAAGGCT -ACGGAATGTAGCCACTACTCAACC -ACGGAATGTAGCCACTACTGTTCC -ACGGAATGTAGCCACTACATTCCC -ACGGAATGTAGCCACTACTTCTCG -ACGGAATGTAGCCACTACTAGACG -ACGGAATGTAGCCACTACGTAACG -ACGGAATGTAGCCACTACACTTCG -ACGGAATGTAGCCACTACTACGCA -ACGGAATGTAGCCACTACCTTGCA -ACGGAATGTAGCCACTACCGAACA -ACGGAATGTAGCCACTACCAGTCA -ACGGAATGTAGCCACTACGATCCA -ACGGAATGTAGCCACTACACGACA -ACGGAATGTAGCCACTACAGCTCA -ACGGAATGTAGCCACTACTCACGT -ACGGAATGTAGCCACTACCGTAGT -ACGGAATGTAGCCACTACGTCAGT -ACGGAATGTAGCCACTACGAAGGT -ACGGAATGTAGCCACTACAACCGT -ACGGAATGTAGCCACTACTTGTGC -ACGGAATGTAGCCACTACCTAAGC -ACGGAATGTAGCCACTACACTAGC -ACGGAATGTAGCCACTACAGATGC -ACGGAATGTAGCCACTACTGAAGG -ACGGAATGTAGCCACTACCAATGG -ACGGAATGTAGCCACTACATGAGG -ACGGAATGTAGCCACTACAATGGG -ACGGAATGTAGCCACTACTCCTGA -ACGGAATGTAGCCACTACTAGCGA -ACGGAATGTAGCCACTACCACAGA -ACGGAATGTAGCCACTACGCAAGA -ACGGAATGTAGCCACTACGGTTGA -ACGGAATGTAGCCACTACTCCGAT -ACGGAATGTAGCCACTACTGGCAT -ACGGAATGTAGCCACTACCGAGAT -ACGGAATGTAGCCACTACTACCAC -ACGGAATGTAGCCACTACCAGAAC -ACGGAATGTAGCCACTACGTCTAC -ACGGAATGTAGCCACTACACGTAC -ACGGAATGTAGCCACTACAGTGAC -ACGGAATGTAGCCACTACCTGTAG -ACGGAATGTAGCCACTACCCTAAG -ACGGAATGTAGCCACTACGTTCAG -ACGGAATGTAGCCACTACGCATAG -ACGGAATGTAGCCACTACGACAAG -ACGGAATGTAGCCACTACAAGCAG -ACGGAATGTAGCCACTACCGTCAA -ACGGAATGTAGCCACTACGCTGAA -ACGGAATGTAGCCACTACAGTACG -ACGGAATGTAGCCACTACATCCGA -ACGGAATGTAGCCACTACATGGGA -ACGGAATGTAGCCACTACGTGCAA -ACGGAATGTAGCCACTACGAGGAA -ACGGAATGTAGCCACTACCAGGTA -ACGGAATGTAGCCACTACGACTCT -ACGGAATGTAGCCACTACAGTCCT -ACGGAATGTAGCCACTACTAAGCC -ACGGAATGTAGCCACTACATAGCC -ACGGAATGTAGCCACTACTAACCG -ACGGAATGTAGCCACTACATGCCA -ACGGAATGTAGCAACCAGGGAAAC -ACGGAATGTAGCAACCAGAACACC -ACGGAATGTAGCAACCAGATCGAG -ACGGAATGTAGCAACCAGCTCCTT -ACGGAATGTAGCAACCAGCCTGTT -ACGGAATGTAGCAACCAGCGGTTT -ACGGAATGTAGCAACCAGGTGGTT -ACGGAATGTAGCAACCAGGCCTTT -ACGGAATGTAGCAACCAGGGTCTT -ACGGAATGTAGCAACCAGACGCTT -ACGGAATGTAGCAACCAGAGCGTT -ACGGAATGTAGCAACCAGTTCGTC -ACGGAATGTAGCAACCAGTCTCTC -ACGGAATGTAGCAACCAGTGGATC -ACGGAATGTAGCAACCAGCACTTC -ACGGAATGTAGCAACCAGGTACTC -ACGGAATGTAGCAACCAGGATGTC -ACGGAATGTAGCAACCAGACAGTC -ACGGAATGTAGCAACCAGTTGCTG -ACGGAATGTAGCAACCAGTCCATG -ACGGAATGTAGCAACCAGTGTGTG -ACGGAATGTAGCAACCAGCTAGTG -ACGGAATGTAGCAACCAGCATCTG -ACGGAATGTAGCAACCAGGAGTTG -ACGGAATGTAGCAACCAGAGACTG -ACGGAATGTAGCAACCAGTCGGTA -ACGGAATGTAGCAACCAGTGCCTA -ACGGAATGTAGCAACCAGCCACTA -ACGGAATGTAGCAACCAGGGAGTA -ACGGAATGTAGCAACCAGTCGTCT -ACGGAATGTAGCAACCAGTGCACT -ACGGAATGTAGCAACCAGCTGACT -ACGGAATGTAGCAACCAGCAACCT -ACGGAATGTAGCAACCAGGCTACT -ACGGAATGTAGCAACCAGGGATCT -ACGGAATGTAGCAACCAGAAGGCT -ACGGAATGTAGCAACCAGTCAACC -ACGGAATGTAGCAACCAGTGTTCC -ACGGAATGTAGCAACCAGATTCCC -ACGGAATGTAGCAACCAGTTCTCG -ACGGAATGTAGCAACCAGTAGACG -ACGGAATGTAGCAACCAGGTAACG -ACGGAATGTAGCAACCAGACTTCG -ACGGAATGTAGCAACCAGTACGCA -ACGGAATGTAGCAACCAGCTTGCA -ACGGAATGTAGCAACCAGCGAACA -ACGGAATGTAGCAACCAGCAGTCA -ACGGAATGTAGCAACCAGGATCCA -ACGGAATGTAGCAACCAGACGACA -ACGGAATGTAGCAACCAGAGCTCA -ACGGAATGTAGCAACCAGTCACGT -ACGGAATGTAGCAACCAGCGTAGT -ACGGAATGTAGCAACCAGGTCAGT -ACGGAATGTAGCAACCAGGAAGGT -ACGGAATGTAGCAACCAGAACCGT -ACGGAATGTAGCAACCAGTTGTGC -ACGGAATGTAGCAACCAGCTAAGC -ACGGAATGTAGCAACCAGACTAGC -ACGGAATGTAGCAACCAGAGATGC -ACGGAATGTAGCAACCAGTGAAGG -ACGGAATGTAGCAACCAGCAATGG -ACGGAATGTAGCAACCAGATGAGG -ACGGAATGTAGCAACCAGAATGGG -ACGGAATGTAGCAACCAGTCCTGA -ACGGAATGTAGCAACCAGTAGCGA -ACGGAATGTAGCAACCAGCACAGA -ACGGAATGTAGCAACCAGGCAAGA -ACGGAATGTAGCAACCAGGGTTGA -ACGGAATGTAGCAACCAGTCCGAT -ACGGAATGTAGCAACCAGTGGCAT -ACGGAATGTAGCAACCAGCGAGAT -ACGGAATGTAGCAACCAGTACCAC -ACGGAATGTAGCAACCAGCAGAAC -ACGGAATGTAGCAACCAGGTCTAC -ACGGAATGTAGCAACCAGACGTAC -ACGGAATGTAGCAACCAGAGTGAC -ACGGAATGTAGCAACCAGCTGTAG -ACGGAATGTAGCAACCAGCCTAAG -ACGGAATGTAGCAACCAGGTTCAG -ACGGAATGTAGCAACCAGGCATAG -ACGGAATGTAGCAACCAGGACAAG -ACGGAATGTAGCAACCAGAAGCAG -ACGGAATGTAGCAACCAGCGTCAA -ACGGAATGTAGCAACCAGGCTGAA -ACGGAATGTAGCAACCAGAGTACG -ACGGAATGTAGCAACCAGATCCGA -ACGGAATGTAGCAACCAGATGGGA -ACGGAATGTAGCAACCAGGTGCAA -ACGGAATGTAGCAACCAGGAGGAA -ACGGAATGTAGCAACCAGCAGGTA -ACGGAATGTAGCAACCAGGACTCT -ACGGAATGTAGCAACCAGAGTCCT -ACGGAATGTAGCAACCAGTAAGCC -ACGGAATGTAGCAACCAGATAGCC -ACGGAATGTAGCAACCAGTAACCG -ACGGAATGTAGCAACCAGATGCCA -ACGGAATGTAGCTACGTCGGAAAC -ACGGAATGTAGCTACGTCAACACC -ACGGAATGTAGCTACGTCATCGAG -ACGGAATGTAGCTACGTCCTCCTT -ACGGAATGTAGCTACGTCCCTGTT -ACGGAATGTAGCTACGTCCGGTTT -ACGGAATGTAGCTACGTCGTGGTT -ACGGAATGTAGCTACGTCGCCTTT -ACGGAATGTAGCTACGTCGGTCTT -ACGGAATGTAGCTACGTCACGCTT -ACGGAATGTAGCTACGTCAGCGTT -ACGGAATGTAGCTACGTCTTCGTC -ACGGAATGTAGCTACGTCTCTCTC -ACGGAATGTAGCTACGTCTGGATC -ACGGAATGTAGCTACGTCCACTTC -ACGGAATGTAGCTACGTCGTACTC -ACGGAATGTAGCTACGTCGATGTC -ACGGAATGTAGCTACGTCACAGTC -ACGGAATGTAGCTACGTCTTGCTG -ACGGAATGTAGCTACGTCTCCATG -ACGGAATGTAGCTACGTCTGTGTG -ACGGAATGTAGCTACGTCCTAGTG -ACGGAATGTAGCTACGTCCATCTG -ACGGAATGTAGCTACGTCGAGTTG -ACGGAATGTAGCTACGTCAGACTG -ACGGAATGTAGCTACGTCTCGGTA -ACGGAATGTAGCTACGTCTGCCTA -ACGGAATGTAGCTACGTCCCACTA -ACGGAATGTAGCTACGTCGGAGTA -ACGGAATGTAGCTACGTCTCGTCT -ACGGAATGTAGCTACGTCTGCACT -ACGGAATGTAGCTACGTCCTGACT -ACGGAATGTAGCTACGTCCAACCT -ACGGAATGTAGCTACGTCGCTACT -ACGGAATGTAGCTACGTCGGATCT -ACGGAATGTAGCTACGTCAAGGCT -ACGGAATGTAGCTACGTCTCAACC -ACGGAATGTAGCTACGTCTGTTCC -ACGGAATGTAGCTACGTCATTCCC -ACGGAATGTAGCTACGTCTTCTCG -ACGGAATGTAGCTACGTCTAGACG -ACGGAATGTAGCTACGTCGTAACG -ACGGAATGTAGCTACGTCACTTCG -ACGGAATGTAGCTACGTCTACGCA -ACGGAATGTAGCTACGTCCTTGCA -ACGGAATGTAGCTACGTCCGAACA -ACGGAATGTAGCTACGTCCAGTCA -ACGGAATGTAGCTACGTCGATCCA -ACGGAATGTAGCTACGTCACGACA -ACGGAATGTAGCTACGTCAGCTCA -ACGGAATGTAGCTACGTCTCACGT -ACGGAATGTAGCTACGTCCGTAGT -ACGGAATGTAGCTACGTCGTCAGT -ACGGAATGTAGCTACGTCGAAGGT -ACGGAATGTAGCTACGTCAACCGT -ACGGAATGTAGCTACGTCTTGTGC -ACGGAATGTAGCTACGTCCTAAGC -ACGGAATGTAGCTACGTCACTAGC -ACGGAATGTAGCTACGTCAGATGC -ACGGAATGTAGCTACGTCTGAAGG -ACGGAATGTAGCTACGTCCAATGG -ACGGAATGTAGCTACGTCATGAGG -ACGGAATGTAGCTACGTCAATGGG -ACGGAATGTAGCTACGTCTCCTGA -ACGGAATGTAGCTACGTCTAGCGA -ACGGAATGTAGCTACGTCCACAGA -ACGGAATGTAGCTACGTCGCAAGA -ACGGAATGTAGCTACGTCGGTTGA -ACGGAATGTAGCTACGTCTCCGAT -ACGGAATGTAGCTACGTCTGGCAT -ACGGAATGTAGCTACGTCCGAGAT -ACGGAATGTAGCTACGTCTACCAC -ACGGAATGTAGCTACGTCCAGAAC -ACGGAATGTAGCTACGTCGTCTAC -ACGGAATGTAGCTACGTCACGTAC -ACGGAATGTAGCTACGTCAGTGAC -ACGGAATGTAGCTACGTCCTGTAG -ACGGAATGTAGCTACGTCCCTAAG -ACGGAATGTAGCTACGTCGTTCAG -ACGGAATGTAGCTACGTCGCATAG -ACGGAATGTAGCTACGTCGACAAG -ACGGAATGTAGCTACGTCAAGCAG -ACGGAATGTAGCTACGTCCGTCAA -ACGGAATGTAGCTACGTCGCTGAA -ACGGAATGTAGCTACGTCAGTACG -ACGGAATGTAGCTACGTCATCCGA -ACGGAATGTAGCTACGTCATGGGA -ACGGAATGTAGCTACGTCGTGCAA -ACGGAATGTAGCTACGTCGAGGAA -ACGGAATGTAGCTACGTCCAGGTA -ACGGAATGTAGCTACGTCGACTCT -ACGGAATGTAGCTACGTCAGTCCT -ACGGAATGTAGCTACGTCTAAGCC -ACGGAATGTAGCTACGTCATAGCC -ACGGAATGTAGCTACGTCTAACCG -ACGGAATGTAGCTACGTCATGCCA -ACGGAATGTAGCTACACGGGAAAC -ACGGAATGTAGCTACACGAACACC -ACGGAATGTAGCTACACGATCGAG -ACGGAATGTAGCTACACGCTCCTT -ACGGAATGTAGCTACACGCCTGTT -ACGGAATGTAGCTACACGCGGTTT -ACGGAATGTAGCTACACGGTGGTT -ACGGAATGTAGCTACACGGCCTTT -ACGGAATGTAGCTACACGGGTCTT -ACGGAATGTAGCTACACGACGCTT -ACGGAATGTAGCTACACGAGCGTT -ACGGAATGTAGCTACACGTTCGTC -ACGGAATGTAGCTACACGTCTCTC -ACGGAATGTAGCTACACGTGGATC -ACGGAATGTAGCTACACGCACTTC -ACGGAATGTAGCTACACGGTACTC -ACGGAATGTAGCTACACGGATGTC -ACGGAATGTAGCTACACGACAGTC -ACGGAATGTAGCTACACGTTGCTG -ACGGAATGTAGCTACACGTCCATG -ACGGAATGTAGCTACACGTGTGTG -ACGGAATGTAGCTACACGCTAGTG -ACGGAATGTAGCTACACGCATCTG -ACGGAATGTAGCTACACGGAGTTG -ACGGAATGTAGCTACACGAGACTG -ACGGAATGTAGCTACACGTCGGTA -ACGGAATGTAGCTACACGTGCCTA -ACGGAATGTAGCTACACGCCACTA -ACGGAATGTAGCTACACGGGAGTA -ACGGAATGTAGCTACACGTCGTCT -ACGGAATGTAGCTACACGTGCACT -ACGGAATGTAGCTACACGCTGACT -ACGGAATGTAGCTACACGCAACCT -ACGGAATGTAGCTACACGGCTACT -ACGGAATGTAGCTACACGGGATCT -ACGGAATGTAGCTACACGAAGGCT -ACGGAATGTAGCTACACGTCAACC -ACGGAATGTAGCTACACGTGTTCC -ACGGAATGTAGCTACACGATTCCC -ACGGAATGTAGCTACACGTTCTCG -ACGGAATGTAGCTACACGTAGACG -ACGGAATGTAGCTACACGGTAACG -ACGGAATGTAGCTACACGACTTCG -ACGGAATGTAGCTACACGTACGCA -ACGGAATGTAGCTACACGCTTGCA -ACGGAATGTAGCTACACGCGAACA -ACGGAATGTAGCTACACGCAGTCA -ACGGAATGTAGCTACACGGATCCA -ACGGAATGTAGCTACACGACGACA -ACGGAATGTAGCTACACGAGCTCA -ACGGAATGTAGCTACACGTCACGT -ACGGAATGTAGCTACACGCGTAGT -ACGGAATGTAGCTACACGGTCAGT -ACGGAATGTAGCTACACGGAAGGT -ACGGAATGTAGCTACACGAACCGT -ACGGAATGTAGCTACACGTTGTGC -ACGGAATGTAGCTACACGCTAAGC -ACGGAATGTAGCTACACGACTAGC -ACGGAATGTAGCTACACGAGATGC -ACGGAATGTAGCTACACGTGAAGG -ACGGAATGTAGCTACACGCAATGG -ACGGAATGTAGCTACACGATGAGG -ACGGAATGTAGCTACACGAATGGG -ACGGAATGTAGCTACACGTCCTGA -ACGGAATGTAGCTACACGTAGCGA -ACGGAATGTAGCTACACGCACAGA -ACGGAATGTAGCTACACGGCAAGA -ACGGAATGTAGCTACACGGGTTGA -ACGGAATGTAGCTACACGTCCGAT -ACGGAATGTAGCTACACGTGGCAT -ACGGAATGTAGCTACACGCGAGAT -ACGGAATGTAGCTACACGTACCAC -ACGGAATGTAGCTACACGCAGAAC -ACGGAATGTAGCTACACGGTCTAC -ACGGAATGTAGCTACACGACGTAC -ACGGAATGTAGCTACACGAGTGAC -ACGGAATGTAGCTACACGCTGTAG -ACGGAATGTAGCTACACGCCTAAG -ACGGAATGTAGCTACACGGTTCAG -ACGGAATGTAGCTACACGGCATAG -ACGGAATGTAGCTACACGGACAAG -ACGGAATGTAGCTACACGAAGCAG -ACGGAATGTAGCTACACGCGTCAA -ACGGAATGTAGCTACACGGCTGAA -ACGGAATGTAGCTACACGAGTACG -ACGGAATGTAGCTACACGATCCGA -ACGGAATGTAGCTACACGATGGGA -ACGGAATGTAGCTACACGGTGCAA -ACGGAATGTAGCTACACGGAGGAA -ACGGAATGTAGCTACACGCAGGTA -ACGGAATGTAGCTACACGGACTCT -ACGGAATGTAGCTACACGAGTCCT -ACGGAATGTAGCTACACGTAAGCC -ACGGAATGTAGCTACACGATAGCC -ACGGAATGTAGCTACACGTAACCG -ACGGAATGTAGCTACACGATGCCA -ACGGAATGTAGCGACAGTGGAAAC -ACGGAATGTAGCGACAGTAACACC -ACGGAATGTAGCGACAGTATCGAG -ACGGAATGTAGCGACAGTCTCCTT -ACGGAATGTAGCGACAGTCCTGTT -ACGGAATGTAGCGACAGTCGGTTT -ACGGAATGTAGCGACAGTGTGGTT -ACGGAATGTAGCGACAGTGCCTTT -ACGGAATGTAGCGACAGTGGTCTT -ACGGAATGTAGCGACAGTACGCTT -ACGGAATGTAGCGACAGTAGCGTT -ACGGAATGTAGCGACAGTTTCGTC -ACGGAATGTAGCGACAGTTCTCTC -ACGGAATGTAGCGACAGTTGGATC -ACGGAATGTAGCGACAGTCACTTC -ACGGAATGTAGCGACAGTGTACTC -ACGGAATGTAGCGACAGTGATGTC -ACGGAATGTAGCGACAGTACAGTC -ACGGAATGTAGCGACAGTTTGCTG -ACGGAATGTAGCGACAGTTCCATG -ACGGAATGTAGCGACAGTTGTGTG -ACGGAATGTAGCGACAGTCTAGTG -ACGGAATGTAGCGACAGTCATCTG -ACGGAATGTAGCGACAGTGAGTTG -ACGGAATGTAGCGACAGTAGACTG -ACGGAATGTAGCGACAGTTCGGTA -ACGGAATGTAGCGACAGTTGCCTA -ACGGAATGTAGCGACAGTCCACTA -ACGGAATGTAGCGACAGTGGAGTA -ACGGAATGTAGCGACAGTTCGTCT -ACGGAATGTAGCGACAGTTGCACT -ACGGAATGTAGCGACAGTCTGACT -ACGGAATGTAGCGACAGTCAACCT -ACGGAATGTAGCGACAGTGCTACT -ACGGAATGTAGCGACAGTGGATCT -ACGGAATGTAGCGACAGTAAGGCT -ACGGAATGTAGCGACAGTTCAACC -ACGGAATGTAGCGACAGTTGTTCC -ACGGAATGTAGCGACAGTATTCCC -ACGGAATGTAGCGACAGTTTCTCG -ACGGAATGTAGCGACAGTTAGACG -ACGGAATGTAGCGACAGTGTAACG -ACGGAATGTAGCGACAGTACTTCG -ACGGAATGTAGCGACAGTTACGCA -ACGGAATGTAGCGACAGTCTTGCA -ACGGAATGTAGCGACAGTCGAACA -ACGGAATGTAGCGACAGTCAGTCA -ACGGAATGTAGCGACAGTGATCCA -ACGGAATGTAGCGACAGTACGACA -ACGGAATGTAGCGACAGTAGCTCA -ACGGAATGTAGCGACAGTTCACGT -ACGGAATGTAGCGACAGTCGTAGT -ACGGAATGTAGCGACAGTGTCAGT -ACGGAATGTAGCGACAGTGAAGGT -ACGGAATGTAGCGACAGTAACCGT -ACGGAATGTAGCGACAGTTTGTGC -ACGGAATGTAGCGACAGTCTAAGC -ACGGAATGTAGCGACAGTACTAGC -ACGGAATGTAGCGACAGTAGATGC -ACGGAATGTAGCGACAGTTGAAGG -ACGGAATGTAGCGACAGTCAATGG -ACGGAATGTAGCGACAGTATGAGG -ACGGAATGTAGCGACAGTAATGGG -ACGGAATGTAGCGACAGTTCCTGA -ACGGAATGTAGCGACAGTTAGCGA -ACGGAATGTAGCGACAGTCACAGA -ACGGAATGTAGCGACAGTGCAAGA -ACGGAATGTAGCGACAGTGGTTGA -ACGGAATGTAGCGACAGTTCCGAT -ACGGAATGTAGCGACAGTTGGCAT -ACGGAATGTAGCGACAGTCGAGAT -ACGGAATGTAGCGACAGTTACCAC -ACGGAATGTAGCGACAGTCAGAAC -ACGGAATGTAGCGACAGTGTCTAC -ACGGAATGTAGCGACAGTACGTAC -ACGGAATGTAGCGACAGTAGTGAC -ACGGAATGTAGCGACAGTCTGTAG -ACGGAATGTAGCGACAGTCCTAAG -ACGGAATGTAGCGACAGTGTTCAG -ACGGAATGTAGCGACAGTGCATAG -ACGGAATGTAGCGACAGTGACAAG -ACGGAATGTAGCGACAGTAAGCAG -ACGGAATGTAGCGACAGTCGTCAA -ACGGAATGTAGCGACAGTGCTGAA -ACGGAATGTAGCGACAGTAGTACG -ACGGAATGTAGCGACAGTATCCGA -ACGGAATGTAGCGACAGTATGGGA -ACGGAATGTAGCGACAGTGTGCAA -ACGGAATGTAGCGACAGTGAGGAA -ACGGAATGTAGCGACAGTCAGGTA -ACGGAATGTAGCGACAGTGACTCT -ACGGAATGTAGCGACAGTAGTCCT -ACGGAATGTAGCGACAGTTAAGCC -ACGGAATGTAGCGACAGTATAGCC -ACGGAATGTAGCGACAGTTAACCG -ACGGAATGTAGCGACAGTATGCCA -ACGGAATGTAGCTAGCTGGGAAAC -ACGGAATGTAGCTAGCTGAACACC -ACGGAATGTAGCTAGCTGATCGAG -ACGGAATGTAGCTAGCTGCTCCTT -ACGGAATGTAGCTAGCTGCCTGTT -ACGGAATGTAGCTAGCTGCGGTTT -ACGGAATGTAGCTAGCTGGTGGTT -ACGGAATGTAGCTAGCTGGCCTTT -ACGGAATGTAGCTAGCTGGGTCTT -ACGGAATGTAGCTAGCTGACGCTT -ACGGAATGTAGCTAGCTGAGCGTT -ACGGAATGTAGCTAGCTGTTCGTC -ACGGAATGTAGCTAGCTGTCTCTC -ACGGAATGTAGCTAGCTGTGGATC -ACGGAATGTAGCTAGCTGCACTTC -ACGGAATGTAGCTAGCTGGTACTC -ACGGAATGTAGCTAGCTGGATGTC -ACGGAATGTAGCTAGCTGACAGTC -ACGGAATGTAGCTAGCTGTTGCTG -ACGGAATGTAGCTAGCTGTCCATG -ACGGAATGTAGCTAGCTGTGTGTG -ACGGAATGTAGCTAGCTGCTAGTG -ACGGAATGTAGCTAGCTGCATCTG -ACGGAATGTAGCTAGCTGGAGTTG -ACGGAATGTAGCTAGCTGAGACTG -ACGGAATGTAGCTAGCTGTCGGTA -ACGGAATGTAGCTAGCTGTGCCTA -ACGGAATGTAGCTAGCTGCCACTA -ACGGAATGTAGCTAGCTGGGAGTA -ACGGAATGTAGCTAGCTGTCGTCT -ACGGAATGTAGCTAGCTGTGCACT -ACGGAATGTAGCTAGCTGCTGACT -ACGGAATGTAGCTAGCTGCAACCT -ACGGAATGTAGCTAGCTGGCTACT -ACGGAATGTAGCTAGCTGGGATCT -ACGGAATGTAGCTAGCTGAAGGCT -ACGGAATGTAGCTAGCTGTCAACC -ACGGAATGTAGCTAGCTGTGTTCC -ACGGAATGTAGCTAGCTGATTCCC -ACGGAATGTAGCTAGCTGTTCTCG -ACGGAATGTAGCTAGCTGTAGACG -ACGGAATGTAGCTAGCTGGTAACG -ACGGAATGTAGCTAGCTGACTTCG -ACGGAATGTAGCTAGCTGTACGCA -ACGGAATGTAGCTAGCTGCTTGCA -ACGGAATGTAGCTAGCTGCGAACA -ACGGAATGTAGCTAGCTGCAGTCA -ACGGAATGTAGCTAGCTGGATCCA -ACGGAATGTAGCTAGCTGACGACA -ACGGAATGTAGCTAGCTGAGCTCA -ACGGAATGTAGCTAGCTGTCACGT -ACGGAATGTAGCTAGCTGCGTAGT -ACGGAATGTAGCTAGCTGGTCAGT -ACGGAATGTAGCTAGCTGGAAGGT -ACGGAATGTAGCTAGCTGAACCGT -ACGGAATGTAGCTAGCTGTTGTGC -ACGGAATGTAGCTAGCTGCTAAGC -ACGGAATGTAGCTAGCTGACTAGC -ACGGAATGTAGCTAGCTGAGATGC -ACGGAATGTAGCTAGCTGTGAAGG -ACGGAATGTAGCTAGCTGCAATGG -ACGGAATGTAGCTAGCTGATGAGG -ACGGAATGTAGCTAGCTGAATGGG -ACGGAATGTAGCTAGCTGTCCTGA -ACGGAATGTAGCTAGCTGTAGCGA -ACGGAATGTAGCTAGCTGCACAGA -ACGGAATGTAGCTAGCTGGCAAGA -ACGGAATGTAGCTAGCTGGGTTGA -ACGGAATGTAGCTAGCTGTCCGAT -ACGGAATGTAGCTAGCTGTGGCAT -ACGGAATGTAGCTAGCTGCGAGAT -ACGGAATGTAGCTAGCTGTACCAC -ACGGAATGTAGCTAGCTGCAGAAC -ACGGAATGTAGCTAGCTGGTCTAC -ACGGAATGTAGCTAGCTGACGTAC -ACGGAATGTAGCTAGCTGAGTGAC -ACGGAATGTAGCTAGCTGCTGTAG -ACGGAATGTAGCTAGCTGCCTAAG -ACGGAATGTAGCTAGCTGGTTCAG -ACGGAATGTAGCTAGCTGGCATAG -ACGGAATGTAGCTAGCTGGACAAG -ACGGAATGTAGCTAGCTGAAGCAG -ACGGAATGTAGCTAGCTGCGTCAA -ACGGAATGTAGCTAGCTGGCTGAA -ACGGAATGTAGCTAGCTGAGTACG -ACGGAATGTAGCTAGCTGATCCGA -ACGGAATGTAGCTAGCTGATGGGA -ACGGAATGTAGCTAGCTGGTGCAA -ACGGAATGTAGCTAGCTGGAGGAA -ACGGAATGTAGCTAGCTGCAGGTA -ACGGAATGTAGCTAGCTGGACTCT -ACGGAATGTAGCTAGCTGAGTCCT -ACGGAATGTAGCTAGCTGTAAGCC -ACGGAATGTAGCTAGCTGATAGCC -ACGGAATGTAGCTAGCTGTAACCG -ACGGAATGTAGCTAGCTGATGCCA -ACGGAATGTAGCAAGCCTGGAAAC -ACGGAATGTAGCAAGCCTAACACC -ACGGAATGTAGCAAGCCTATCGAG -ACGGAATGTAGCAAGCCTCTCCTT -ACGGAATGTAGCAAGCCTCCTGTT -ACGGAATGTAGCAAGCCTCGGTTT -ACGGAATGTAGCAAGCCTGTGGTT -ACGGAATGTAGCAAGCCTGCCTTT -ACGGAATGTAGCAAGCCTGGTCTT -ACGGAATGTAGCAAGCCTACGCTT -ACGGAATGTAGCAAGCCTAGCGTT -ACGGAATGTAGCAAGCCTTTCGTC -ACGGAATGTAGCAAGCCTTCTCTC -ACGGAATGTAGCAAGCCTTGGATC -ACGGAATGTAGCAAGCCTCACTTC -ACGGAATGTAGCAAGCCTGTACTC -ACGGAATGTAGCAAGCCTGATGTC -ACGGAATGTAGCAAGCCTACAGTC -ACGGAATGTAGCAAGCCTTTGCTG -ACGGAATGTAGCAAGCCTTCCATG -ACGGAATGTAGCAAGCCTTGTGTG -ACGGAATGTAGCAAGCCTCTAGTG -ACGGAATGTAGCAAGCCTCATCTG -ACGGAATGTAGCAAGCCTGAGTTG -ACGGAATGTAGCAAGCCTAGACTG -ACGGAATGTAGCAAGCCTTCGGTA -ACGGAATGTAGCAAGCCTTGCCTA -ACGGAATGTAGCAAGCCTCCACTA -ACGGAATGTAGCAAGCCTGGAGTA -ACGGAATGTAGCAAGCCTTCGTCT -ACGGAATGTAGCAAGCCTTGCACT -ACGGAATGTAGCAAGCCTCTGACT -ACGGAATGTAGCAAGCCTCAACCT -ACGGAATGTAGCAAGCCTGCTACT -ACGGAATGTAGCAAGCCTGGATCT -ACGGAATGTAGCAAGCCTAAGGCT -ACGGAATGTAGCAAGCCTTCAACC -ACGGAATGTAGCAAGCCTTGTTCC -ACGGAATGTAGCAAGCCTATTCCC -ACGGAATGTAGCAAGCCTTTCTCG -ACGGAATGTAGCAAGCCTTAGACG -ACGGAATGTAGCAAGCCTGTAACG -ACGGAATGTAGCAAGCCTACTTCG -ACGGAATGTAGCAAGCCTTACGCA -ACGGAATGTAGCAAGCCTCTTGCA -ACGGAATGTAGCAAGCCTCGAACA -ACGGAATGTAGCAAGCCTCAGTCA -ACGGAATGTAGCAAGCCTGATCCA -ACGGAATGTAGCAAGCCTACGACA -ACGGAATGTAGCAAGCCTAGCTCA -ACGGAATGTAGCAAGCCTTCACGT -ACGGAATGTAGCAAGCCTCGTAGT -ACGGAATGTAGCAAGCCTGTCAGT -ACGGAATGTAGCAAGCCTGAAGGT -ACGGAATGTAGCAAGCCTAACCGT -ACGGAATGTAGCAAGCCTTTGTGC -ACGGAATGTAGCAAGCCTCTAAGC -ACGGAATGTAGCAAGCCTACTAGC -ACGGAATGTAGCAAGCCTAGATGC -ACGGAATGTAGCAAGCCTTGAAGG -ACGGAATGTAGCAAGCCTCAATGG -ACGGAATGTAGCAAGCCTATGAGG -ACGGAATGTAGCAAGCCTAATGGG -ACGGAATGTAGCAAGCCTTCCTGA -ACGGAATGTAGCAAGCCTTAGCGA -ACGGAATGTAGCAAGCCTCACAGA -ACGGAATGTAGCAAGCCTGCAAGA -ACGGAATGTAGCAAGCCTGGTTGA -ACGGAATGTAGCAAGCCTTCCGAT -ACGGAATGTAGCAAGCCTTGGCAT -ACGGAATGTAGCAAGCCTCGAGAT -ACGGAATGTAGCAAGCCTTACCAC -ACGGAATGTAGCAAGCCTCAGAAC -ACGGAATGTAGCAAGCCTGTCTAC -ACGGAATGTAGCAAGCCTACGTAC -ACGGAATGTAGCAAGCCTAGTGAC -ACGGAATGTAGCAAGCCTCTGTAG -ACGGAATGTAGCAAGCCTCCTAAG -ACGGAATGTAGCAAGCCTGTTCAG -ACGGAATGTAGCAAGCCTGCATAG -ACGGAATGTAGCAAGCCTGACAAG -ACGGAATGTAGCAAGCCTAAGCAG -ACGGAATGTAGCAAGCCTCGTCAA -ACGGAATGTAGCAAGCCTGCTGAA -ACGGAATGTAGCAAGCCTAGTACG -ACGGAATGTAGCAAGCCTATCCGA -ACGGAATGTAGCAAGCCTATGGGA -ACGGAATGTAGCAAGCCTGTGCAA -ACGGAATGTAGCAAGCCTGAGGAA -ACGGAATGTAGCAAGCCTCAGGTA -ACGGAATGTAGCAAGCCTGACTCT -ACGGAATGTAGCAAGCCTAGTCCT -ACGGAATGTAGCAAGCCTTAAGCC -ACGGAATGTAGCAAGCCTATAGCC -ACGGAATGTAGCAAGCCTTAACCG -ACGGAATGTAGCAAGCCTATGCCA -ACGGAATGTAGCCAGGTTGGAAAC -ACGGAATGTAGCCAGGTTAACACC -ACGGAATGTAGCCAGGTTATCGAG -ACGGAATGTAGCCAGGTTCTCCTT -ACGGAATGTAGCCAGGTTCCTGTT -ACGGAATGTAGCCAGGTTCGGTTT -ACGGAATGTAGCCAGGTTGTGGTT -ACGGAATGTAGCCAGGTTGCCTTT -ACGGAATGTAGCCAGGTTGGTCTT -ACGGAATGTAGCCAGGTTACGCTT -ACGGAATGTAGCCAGGTTAGCGTT -ACGGAATGTAGCCAGGTTTTCGTC -ACGGAATGTAGCCAGGTTTCTCTC -ACGGAATGTAGCCAGGTTTGGATC -ACGGAATGTAGCCAGGTTCACTTC -ACGGAATGTAGCCAGGTTGTACTC -ACGGAATGTAGCCAGGTTGATGTC -ACGGAATGTAGCCAGGTTACAGTC -ACGGAATGTAGCCAGGTTTTGCTG -ACGGAATGTAGCCAGGTTTCCATG -ACGGAATGTAGCCAGGTTTGTGTG -ACGGAATGTAGCCAGGTTCTAGTG -ACGGAATGTAGCCAGGTTCATCTG -ACGGAATGTAGCCAGGTTGAGTTG -ACGGAATGTAGCCAGGTTAGACTG -ACGGAATGTAGCCAGGTTTCGGTA -ACGGAATGTAGCCAGGTTTGCCTA -ACGGAATGTAGCCAGGTTCCACTA -ACGGAATGTAGCCAGGTTGGAGTA -ACGGAATGTAGCCAGGTTTCGTCT -ACGGAATGTAGCCAGGTTTGCACT -ACGGAATGTAGCCAGGTTCTGACT -ACGGAATGTAGCCAGGTTCAACCT -ACGGAATGTAGCCAGGTTGCTACT -ACGGAATGTAGCCAGGTTGGATCT -ACGGAATGTAGCCAGGTTAAGGCT -ACGGAATGTAGCCAGGTTTCAACC -ACGGAATGTAGCCAGGTTTGTTCC -ACGGAATGTAGCCAGGTTATTCCC -ACGGAATGTAGCCAGGTTTTCTCG -ACGGAATGTAGCCAGGTTTAGACG -ACGGAATGTAGCCAGGTTGTAACG -ACGGAATGTAGCCAGGTTACTTCG -ACGGAATGTAGCCAGGTTTACGCA -ACGGAATGTAGCCAGGTTCTTGCA -ACGGAATGTAGCCAGGTTCGAACA -ACGGAATGTAGCCAGGTTCAGTCA -ACGGAATGTAGCCAGGTTGATCCA -ACGGAATGTAGCCAGGTTACGACA -ACGGAATGTAGCCAGGTTAGCTCA -ACGGAATGTAGCCAGGTTTCACGT -ACGGAATGTAGCCAGGTTCGTAGT -ACGGAATGTAGCCAGGTTGTCAGT -ACGGAATGTAGCCAGGTTGAAGGT -ACGGAATGTAGCCAGGTTAACCGT -ACGGAATGTAGCCAGGTTTTGTGC -ACGGAATGTAGCCAGGTTCTAAGC -ACGGAATGTAGCCAGGTTACTAGC -ACGGAATGTAGCCAGGTTAGATGC -ACGGAATGTAGCCAGGTTTGAAGG -ACGGAATGTAGCCAGGTTCAATGG -ACGGAATGTAGCCAGGTTATGAGG -ACGGAATGTAGCCAGGTTAATGGG -ACGGAATGTAGCCAGGTTTCCTGA -ACGGAATGTAGCCAGGTTTAGCGA -ACGGAATGTAGCCAGGTTCACAGA -ACGGAATGTAGCCAGGTTGCAAGA -ACGGAATGTAGCCAGGTTGGTTGA -ACGGAATGTAGCCAGGTTTCCGAT -ACGGAATGTAGCCAGGTTTGGCAT -ACGGAATGTAGCCAGGTTCGAGAT -ACGGAATGTAGCCAGGTTTACCAC -ACGGAATGTAGCCAGGTTCAGAAC -ACGGAATGTAGCCAGGTTGTCTAC -ACGGAATGTAGCCAGGTTACGTAC -ACGGAATGTAGCCAGGTTAGTGAC -ACGGAATGTAGCCAGGTTCTGTAG -ACGGAATGTAGCCAGGTTCCTAAG -ACGGAATGTAGCCAGGTTGTTCAG -ACGGAATGTAGCCAGGTTGCATAG -ACGGAATGTAGCCAGGTTGACAAG -ACGGAATGTAGCCAGGTTAAGCAG -ACGGAATGTAGCCAGGTTCGTCAA -ACGGAATGTAGCCAGGTTGCTGAA -ACGGAATGTAGCCAGGTTAGTACG -ACGGAATGTAGCCAGGTTATCCGA -ACGGAATGTAGCCAGGTTATGGGA -ACGGAATGTAGCCAGGTTGTGCAA -ACGGAATGTAGCCAGGTTGAGGAA -ACGGAATGTAGCCAGGTTCAGGTA -ACGGAATGTAGCCAGGTTGACTCT -ACGGAATGTAGCCAGGTTAGTCCT -ACGGAATGTAGCCAGGTTTAAGCC -ACGGAATGTAGCCAGGTTATAGCC -ACGGAATGTAGCCAGGTTTAACCG -ACGGAATGTAGCCAGGTTATGCCA -ACGGAATGTAGCTAGGCAGGAAAC -ACGGAATGTAGCTAGGCAAACACC -ACGGAATGTAGCTAGGCAATCGAG -ACGGAATGTAGCTAGGCACTCCTT -ACGGAATGTAGCTAGGCACCTGTT -ACGGAATGTAGCTAGGCACGGTTT -ACGGAATGTAGCTAGGCAGTGGTT -ACGGAATGTAGCTAGGCAGCCTTT -ACGGAATGTAGCTAGGCAGGTCTT -ACGGAATGTAGCTAGGCAACGCTT -ACGGAATGTAGCTAGGCAAGCGTT -ACGGAATGTAGCTAGGCATTCGTC -ACGGAATGTAGCTAGGCATCTCTC -ACGGAATGTAGCTAGGCATGGATC -ACGGAATGTAGCTAGGCACACTTC -ACGGAATGTAGCTAGGCAGTACTC -ACGGAATGTAGCTAGGCAGATGTC -ACGGAATGTAGCTAGGCAACAGTC -ACGGAATGTAGCTAGGCATTGCTG -ACGGAATGTAGCTAGGCATCCATG -ACGGAATGTAGCTAGGCATGTGTG -ACGGAATGTAGCTAGGCACTAGTG -ACGGAATGTAGCTAGGCACATCTG -ACGGAATGTAGCTAGGCAGAGTTG -ACGGAATGTAGCTAGGCAAGACTG -ACGGAATGTAGCTAGGCATCGGTA -ACGGAATGTAGCTAGGCATGCCTA -ACGGAATGTAGCTAGGCACCACTA -ACGGAATGTAGCTAGGCAGGAGTA -ACGGAATGTAGCTAGGCATCGTCT -ACGGAATGTAGCTAGGCATGCACT -ACGGAATGTAGCTAGGCACTGACT -ACGGAATGTAGCTAGGCACAACCT -ACGGAATGTAGCTAGGCAGCTACT -ACGGAATGTAGCTAGGCAGGATCT -ACGGAATGTAGCTAGGCAAAGGCT -ACGGAATGTAGCTAGGCATCAACC -ACGGAATGTAGCTAGGCATGTTCC -ACGGAATGTAGCTAGGCAATTCCC -ACGGAATGTAGCTAGGCATTCTCG -ACGGAATGTAGCTAGGCATAGACG -ACGGAATGTAGCTAGGCAGTAACG -ACGGAATGTAGCTAGGCAACTTCG -ACGGAATGTAGCTAGGCATACGCA -ACGGAATGTAGCTAGGCACTTGCA -ACGGAATGTAGCTAGGCACGAACA -ACGGAATGTAGCTAGGCACAGTCA -ACGGAATGTAGCTAGGCAGATCCA -ACGGAATGTAGCTAGGCAACGACA -ACGGAATGTAGCTAGGCAAGCTCA -ACGGAATGTAGCTAGGCATCACGT -ACGGAATGTAGCTAGGCACGTAGT -ACGGAATGTAGCTAGGCAGTCAGT -ACGGAATGTAGCTAGGCAGAAGGT -ACGGAATGTAGCTAGGCAAACCGT -ACGGAATGTAGCTAGGCATTGTGC -ACGGAATGTAGCTAGGCACTAAGC -ACGGAATGTAGCTAGGCAACTAGC -ACGGAATGTAGCTAGGCAAGATGC -ACGGAATGTAGCTAGGCATGAAGG -ACGGAATGTAGCTAGGCACAATGG -ACGGAATGTAGCTAGGCAATGAGG -ACGGAATGTAGCTAGGCAAATGGG -ACGGAATGTAGCTAGGCATCCTGA -ACGGAATGTAGCTAGGCATAGCGA -ACGGAATGTAGCTAGGCACACAGA -ACGGAATGTAGCTAGGCAGCAAGA -ACGGAATGTAGCTAGGCAGGTTGA -ACGGAATGTAGCTAGGCATCCGAT -ACGGAATGTAGCTAGGCATGGCAT -ACGGAATGTAGCTAGGCACGAGAT -ACGGAATGTAGCTAGGCATACCAC -ACGGAATGTAGCTAGGCACAGAAC -ACGGAATGTAGCTAGGCAGTCTAC -ACGGAATGTAGCTAGGCAACGTAC -ACGGAATGTAGCTAGGCAAGTGAC -ACGGAATGTAGCTAGGCACTGTAG -ACGGAATGTAGCTAGGCACCTAAG -ACGGAATGTAGCTAGGCAGTTCAG -ACGGAATGTAGCTAGGCAGCATAG -ACGGAATGTAGCTAGGCAGACAAG -ACGGAATGTAGCTAGGCAAAGCAG -ACGGAATGTAGCTAGGCACGTCAA -ACGGAATGTAGCTAGGCAGCTGAA -ACGGAATGTAGCTAGGCAAGTACG -ACGGAATGTAGCTAGGCAATCCGA -ACGGAATGTAGCTAGGCAATGGGA -ACGGAATGTAGCTAGGCAGTGCAA -ACGGAATGTAGCTAGGCAGAGGAA -ACGGAATGTAGCTAGGCACAGGTA -ACGGAATGTAGCTAGGCAGACTCT -ACGGAATGTAGCTAGGCAAGTCCT -ACGGAATGTAGCTAGGCATAAGCC -ACGGAATGTAGCTAGGCAATAGCC -ACGGAATGTAGCTAGGCATAACCG -ACGGAATGTAGCTAGGCAATGCCA -ACGGAATGTAGCAAGGACGGAAAC -ACGGAATGTAGCAAGGACAACACC -ACGGAATGTAGCAAGGACATCGAG -ACGGAATGTAGCAAGGACCTCCTT -ACGGAATGTAGCAAGGACCCTGTT -ACGGAATGTAGCAAGGACCGGTTT -ACGGAATGTAGCAAGGACGTGGTT -ACGGAATGTAGCAAGGACGCCTTT -ACGGAATGTAGCAAGGACGGTCTT -ACGGAATGTAGCAAGGACACGCTT -ACGGAATGTAGCAAGGACAGCGTT -ACGGAATGTAGCAAGGACTTCGTC -ACGGAATGTAGCAAGGACTCTCTC -ACGGAATGTAGCAAGGACTGGATC -ACGGAATGTAGCAAGGACCACTTC -ACGGAATGTAGCAAGGACGTACTC -ACGGAATGTAGCAAGGACGATGTC -ACGGAATGTAGCAAGGACACAGTC -ACGGAATGTAGCAAGGACTTGCTG -ACGGAATGTAGCAAGGACTCCATG -ACGGAATGTAGCAAGGACTGTGTG -ACGGAATGTAGCAAGGACCTAGTG -ACGGAATGTAGCAAGGACCATCTG -ACGGAATGTAGCAAGGACGAGTTG -ACGGAATGTAGCAAGGACAGACTG -ACGGAATGTAGCAAGGACTCGGTA -ACGGAATGTAGCAAGGACTGCCTA -ACGGAATGTAGCAAGGACCCACTA -ACGGAATGTAGCAAGGACGGAGTA -ACGGAATGTAGCAAGGACTCGTCT -ACGGAATGTAGCAAGGACTGCACT -ACGGAATGTAGCAAGGACCTGACT -ACGGAATGTAGCAAGGACCAACCT -ACGGAATGTAGCAAGGACGCTACT -ACGGAATGTAGCAAGGACGGATCT -ACGGAATGTAGCAAGGACAAGGCT -ACGGAATGTAGCAAGGACTCAACC -ACGGAATGTAGCAAGGACTGTTCC -ACGGAATGTAGCAAGGACATTCCC -ACGGAATGTAGCAAGGACTTCTCG -ACGGAATGTAGCAAGGACTAGACG -ACGGAATGTAGCAAGGACGTAACG -ACGGAATGTAGCAAGGACACTTCG -ACGGAATGTAGCAAGGACTACGCA -ACGGAATGTAGCAAGGACCTTGCA -ACGGAATGTAGCAAGGACCGAACA -ACGGAATGTAGCAAGGACCAGTCA -ACGGAATGTAGCAAGGACGATCCA -ACGGAATGTAGCAAGGACACGACA -ACGGAATGTAGCAAGGACAGCTCA -ACGGAATGTAGCAAGGACTCACGT -ACGGAATGTAGCAAGGACCGTAGT -ACGGAATGTAGCAAGGACGTCAGT -ACGGAATGTAGCAAGGACGAAGGT -ACGGAATGTAGCAAGGACAACCGT -ACGGAATGTAGCAAGGACTTGTGC -ACGGAATGTAGCAAGGACCTAAGC -ACGGAATGTAGCAAGGACACTAGC -ACGGAATGTAGCAAGGACAGATGC -ACGGAATGTAGCAAGGACTGAAGG -ACGGAATGTAGCAAGGACCAATGG -ACGGAATGTAGCAAGGACATGAGG -ACGGAATGTAGCAAGGACAATGGG -ACGGAATGTAGCAAGGACTCCTGA -ACGGAATGTAGCAAGGACTAGCGA -ACGGAATGTAGCAAGGACCACAGA -ACGGAATGTAGCAAGGACGCAAGA -ACGGAATGTAGCAAGGACGGTTGA -ACGGAATGTAGCAAGGACTCCGAT -ACGGAATGTAGCAAGGACTGGCAT -ACGGAATGTAGCAAGGACCGAGAT -ACGGAATGTAGCAAGGACTACCAC -ACGGAATGTAGCAAGGACCAGAAC -ACGGAATGTAGCAAGGACGTCTAC -ACGGAATGTAGCAAGGACACGTAC -ACGGAATGTAGCAAGGACAGTGAC -ACGGAATGTAGCAAGGACCTGTAG -ACGGAATGTAGCAAGGACCCTAAG -ACGGAATGTAGCAAGGACGTTCAG -ACGGAATGTAGCAAGGACGCATAG -ACGGAATGTAGCAAGGACGACAAG -ACGGAATGTAGCAAGGACAAGCAG -ACGGAATGTAGCAAGGACCGTCAA -ACGGAATGTAGCAAGGACGCTGAA -ACGGAATGTAGCAAGGACAGTACG -ACGGAATGTAGCAAGGACATCCGA -ACGGAATGTAGCAAGGACATGGGA -ACGGAATGTAGCAAGGACGTGCAA -ACGGAATGTAGCAAGGACGAGGAA -ACGGAATGTAGCAAGGACCAGGTA -ACGGAATGTAGCAAGGACGACTCT -ACGGAATGTAGCAAGGACAGTCCT -ACGGAATGTAGCAAGGACTAAGCC -ACGGAATGTAGCAAGGACATAGCC -ACGGAATGTAGCAAGGACTAACCG -ACGGAATGTAGCAAGGACATGCCA -ACGGAATGTAGCCAGAAGGGAAAC -ACGGAATGTAGCCAGAAGAACACC -ACGGAATGTAGCCAGAAGATCGAG -ACGGAATGTAGCCAGAAGCTCCTT -ACGGAATGTAGCCAGAAGCCTGTT -ACGGAATGTAGCCAGAAGCGGTTT -ACGGAATGTAGCCAGAAGGTGGTT -ACGGAATGTAGCCAGAAGGCCTTT -ACGGAATGTAGCCAGAAGGGTCTT -ACGGAATGTAGCCAGAAGACGCTT -ACGGAATGTAGCCAGAAGAGCGTT -ACGGAATGTAGCCAGAAGTTCGTC -ACGGAATGTAGCCAGAAGTCTCTC -ACGGAATGTAGCCAGAAGTGGATC -ACGGAATGTAGCCAGAAGCACTTC -ACGGAATGTAGCCAGAAGGTACTC -ACGGAATGTAGCCAGAAGGATGTC -ACGGAATGTAGCCAGAAGACAGTC -ACGGAATGTAGCCAGAAGTTGCTG -ACGGAATGTAGCCAGAAGTCCATG -ACGGAATGTAGCCAGAAGTGTGTG -ACGGAATGTAGCCAGAAGCTAGTG -ACGGAATGTAGCCAGAAGCATCTG -ACGGAATGTAGCCAGAAGGAGTTG -ACGGAATGTAGCCAGAAGAGACTG -ACGGAATGTAGCCAGAAGTCGGTA -ACGGAATGTAGCCAGAAGTGCCTA -ACGGAATGTAGCCAGAAGCCACTA -ACGGAATGTAGCCAGAAGGGAGTA -ACGGAATGTAGCCAGAAGTCGTCT -ACGGAATGTAGCCAGAAGTGCACT -ACGGAATGTAGCCAGAAGCTGACT -ACGGAATGTAGCCAGAAGCAACCT -ACGGAATGTAGCCAGAAGGCTACT -ACGGAATGTAGCCAGAAGGGATCT -ACGGAATGTAGCCAGAAGAAGGCT -ACGGAATGTAGCCAGAAGTCAACC -ACGGAATGTAGCCAGAAGTGTTCC -ACGGAATGTAGCCAGAAGATTCCC -ACGGAATGTAGCCAGAAGTTCTCG -ACGGAATGTAGCCAGAAGTAGACG -ACGGAATGTAGCCAGAAGGTAACG -ACGGAATGTAGCCAGAAGACTTCG -ACGGAATGTAGCCAGAAGTACGCA -ACGGAATGTAGCCAGAAGCTTGCA -ACGGAATGTAGCCAGAAGCGAACA -ACGGAATGTAGCCAGAAGCAGTCA -ACGGAATGTAGCCAGAAGGATCCA -ACGGAATGTAGCCAGAAGACGACA -ACGGAATGTAGCCAGAAGAGCTCA -ACGGAATGTAGCCAGAAGTCACGT -ACGGAATGTAGCCAGAAGCGTAGT -ACGGAATGTAGCCAGAAGGTCAGT -ACGGAATGTAGCCAGAAGGAAGGT -ACGGAATGTAGCCAGAAGAACCGT -ACGGAATGTAGCCAGAAGTTGTGC -ACGGAATGTAGCCAGAAGCTAAGC -ACGGAATGTAGCCAGAAGACTAGC -ACGGAATGTAGCCAGAAGAGATGC -ACGGAATGTAGCCAGAAGTGAAGG -ACGGAATGTAGCCAGAAGCAATGG -ACGGAATGTAGCCAGAAGATGAGG -ACGGAATGTAGCCAGAAGAATGGG -ACGGAATGTAGCCAGAAGTCCTGA -ACGGAATGTAGCCAGAAGTAGCGA -ACGGAATGTAGCCAGAAGCACAGA -ACGGAATGTAGCCAGAAGGCAAGA -ACGGAATGTAGCCAGAAGGGTTGA -ACGGAATGTAGCCAGAAGTCCGAT -ACGGAATGTAGCCAGAAGTGGCAT -ACGGAATGTAGCCAGAAGCGAGAT -ACGGAATGTAGCCAGAAGTACCAC -ACGGAATGTAGCCAGAAGCAGAAC -ACGGAATGTAGCCAGAAGGTCTAC -ACGGAATGTAGCCAGAAGACGTAC -ACGGAATGTAGCCAGAAGAGTGAC -ACGGAATGTAGCCAGAAGCTGTAG -ACGGAATGTAGCCAGAAGCCTAAG -ACGGAATGTAGCCAGAAGGTTCAG -ACGGAATGTAGCCAGAAGGCATAG -ACGGAATGTAGCCAGAAGGACAAG -ACGGAATGTAGCCAGAAGAAGCAG -ACGGAATGTAGCCAGAAGCGTCAA -ACGGAATGTAGCCAGAAGGCTGAA -ACGGAATGTAGCCAGAAGAGTACG -ACGGAATGTAGCCAGAAGATCCGA -ACGGAATGTAGCCAGAAGATGGGA -ACGGAATGTAGCCAGAAGGTGCAA -ACGGAATGTAGCCAGAAGGAGGAA -ACGGAATGTAGCCAGAAGCAGGTA -ACGGAATGTAGCCAGAAGGACTCT -ACGGAATGTAGCCAGAAGAGTCCT -ACGGAATGTAGCCAGAAGTAAGCC -ACGGAATGTAGCCAGAAGATAGCC -ACGGAATGTAGCCAGAAGTAACCG -ACGGAATGTAGCCAGAAGATGCCA -ACGGAATGTAGCCAACGTGGAAAC -ACGGAATGTAGCCAACGTAACACC -ACGGAATGTAGCCAACGTATCGAG -ACGGAATGTAGCCAACGTCTCCTT -ACGGAATGTAGCCAACGTCCTGTT -ACGGAATGTAGCCAACGTCGGTTT -ACGGAATGTAGCCAACGTGTGGTT -ACGGAATGTAGCCAACGTGCCTTT -ACGGAATGTAGCCAACGTGGTCTT -ACGGAATGTAGCCAACGTACGCTT -ACGGAATGTAGCCAACGTAGCGTT -ACGGAATGTAGCCAACGTTTCGTC -ACGGAATGTAGCCAACGTTCTCTC -ACGGAATGTAGCCAACGTTGGATC -ACGGAATGTAGCCAACGTCACTTC -ACGGAATGTAGCCAACGTGTACTC -ACGGAATGTAGCCAACGTGATGTC -ACGGAATGTAGCCAACGTACAGTC -ACGGAATGTAGCCAACGTTTGCTG -ACGGAATGTAGCCAACGTTCCATG -ACGGAATGTAGCCAACGTTGTGTG -ACGGAATGTAGCCAACGTCTAGTG -ACGGAATGTAGCCAACGTCATCTG -ACGGAATGTAGCCAACGTGAGTTG -ACGGAATGTAGCCAACGTAGACTG -ACGGAATGTAGCCAACGTTCGGTA -ACGGAATGTAGCCAACGTTGCCTA -ACGGAATGTAGCCAACGTCCACTA -ACGGAATGTAGCCAACGTGGAGTA -ACGGAATGTAGCCAACGTTCGTCT -ACGGAATGTAGCCAACGTTGCACT -ACGGAATGTAGCCAACGTCTGACT -ACGGAATGTAGCCAACGTCAACCT -ACGGAATGTAGCCAACGTGCTACT -ACGGAATGTAGCCAACGTGGATCT -ACGGAATGTAGCCAACGTAAGGCT -ACGGAATGTAGCCAACGTTCAACC -ACGGAATGTAGCCAACGTTGTTCC -ACGGAATGTAGCCAACGTATTCCC -ACGGAATGTAGCCAACGTTTCTCG -ACGGAATGTAGCCAACGTTAGACG -ACGGAATGTAGCCAACGTGTAACG -ACGGAATGTAGCCAACGTACTTCG -ACGGAATGTAGCCAACGTTACGCA -ACGGAATGTAGCCAACGTCTTGCA -ACGGAATGTAGCCAACGTCGAACA -ACGGAATGTAGCCAACGTCAGTCA -ACGGAATGTAGCCAACGTGATCCA -ACGGAATGTAGCCAACGTACGACA -ACGGAATGTAGCCAACGTAGCTCA -ACGGAATGTAGCCAACGTTCACGT -ACGGAATGTAGCCAACGTCGTAGT -ACGGAATGTAGCCAACGTGTCAGT -ACGGAATGTAGCCAACGTGAAGGT -ACGGAATGTAGCCAACGTAACCGT -ACGGAATGTAGCCAACGTTTGTGC -ACGGAATGTAGCCAACGTCTAAGC -ACGGAATGTAGCCAACGTACTAGC -ACGGAATGTAGCCAACGTAGATGC -ACGGAATGTAGCCAACGTTGAAGG -ACGGAATGTAGCCAACGTCAATGG -ACGGAATGTAGCCAACGTATGAGG -ACGGAATGTAGCCAACGTAATGGG -ACGGAATGTAGCCAACGTTCCTGA -ACGGAATGTAGCCAACGTTAGCGA -ACGGAATGTAGCCAACGTCACAGA -ACGGAATGTAGCCAACGTGCAAGA -ACGGAATGTAGCCAACGTGGTTGA -ACGGAATGTAGCCAACGTTCCGAT -ACGGAATGTAGCCAACGTTGGCAT -ACGGAATGTAGCCAACGTCGAGAT -ACGGAATGTAGCCAACGTTACCAC -ACGGAATGTAGCCAACGTCAGAAC -ACGGAATGTAGCCAACGTGTCTAC -ACGGAATGTAGCCAACGTACGTAC -ACGGAATGTAGCCAACGTAGTGAC -ACGGAATGTAGCCAACGTCTGTAG -ACGGAATGTAGCCAACGTCCTAAG -ACGGAATGTAGCCAACGTGTTCAG -ACGGAATGTAGCCAACGTGCATAG -ACGGAATGTAGCCAACGTGACAAG -ACGGAATGTAGCCAACGTAAGCAG -ACGGAATGTAGCCAACGTCGTCAA -ACGGAATGTAGCCAACGTGCTGAA -ACGGAATGTAGCCAACGTAGTACG -ACGGAATGTAGCCAACGTATCCGA -ACGGAATGTAGCCAACGTATGGGA -ACGGAATGTAGCCAACGTGTGCAA -ACGGAATGTAGCCAACGTGAGGAA -ACGGAATGTAGCCAACGTCAGGTA -ACGGAATGTAGCCAACGTGACTCT -ACGGAATGTAGCCAACGTAGTCCT -ACGGAATGTAGCCAACGTTAAGCC -ACGGAATGTAGCCAACGTATAGCC -ACGGAATGTAGCCAACGTTAACCG -ACGGAATGTAGCCAACGTATGCCA -ACGGAATGTAGCGAAGCTGGAAAC -ACGGAATGTAGCGAAGCTAACACC -ACGGAATGTAGCGAAGCTATCGAG -ACGGAATGTAGCGAAGCTCTCCTT -ACGGAATGTAGCGAAGCTCCTGTT -ACGGAATGTAGCGAAGCTCGGTTT -ACGGAATGTAGCGAAGCTGTGGTT -ACGGAATGTAGCGAAGCTGCCTTT -ACGGAATGTAGCGAAGCTGGTCTT -ACGGAATGTAGCGAAGCTACGCTT -ACGGAATGTAGCGAAGCTAGCGTT -ACGGAATGTAGCGAAGCTTTCGTC -ACGGAATGTAGCGAAGCTTCTCTC -ACGGAATGTAGCGAAGCTTGGATC -ACGGAATGTAGCGAAGCTCACTTC -ACGGAATGTAGCGAAGCTGTACTC -ACGGAATGTAGCGAAGCTGATGTC -ACGGAATGTAGCGAAGCTACAGTC -ACGGAATGTAGCGAAGCTTTGCTG -ACGGAATGTAGCGAAGCTTCCATG -ACGGAATGTAGCGAAGCTTGTGTG -ACGGAATGTAGCGAAGCTCTAGTG -ACGGAATGTAGCGAAGCTCATCTG -ACGGAATGTAGCGAAGCTGAGTTG -ACGGAATGTAGCGAAGCTAGACTG -ACGGAATGTAGCGAAGCTTCGGTA -ACGGAATGTAGCGAAGCTTGCCTA -ACGGAATGTAGCGAAGCTCCACTA -ACGGAATGTAGCGAAGCTGGAGTA -ACGGAATGTAGCGAAGCTTCGTCT -ACGGAATGTAGCGAAGCTTGCACT -ACGGAATGTAGCGAAGCTCTGACT -ACGGAATGTAGCGAAGCTCAACCT -ACGGAATGTAGCGAAGCTGCTACT -ACGGAATGTAGCGAAGCTGGATCT -ACGGAATGTAGCGAAGCTAAGGCT -ACGGAATGTAGCGAAGCTTCAACC -ACGGAATGTAGCGAAGCTTGTTCC -ACGGAATGTAGCGAAGCTATTCCC -ACGGAATGTAGCGAAGCTTTCTCG -ACGGAATGTAGCGAAGCTTAGACG -ACGGAATGTAGCGAAGCTGTAACG -ACGGAATGTAGCGAAGCTACTTCG -ACGGAATGTAGCGAAGCTTACGCA -ACGGAATGTAGCGAAGCTCTTGCA -ACGGAATGTAGCGAAGCTCGAACA -ACGGAATGTAGCGAAGCTCAGTCA -ACGGAATGTAGCGAAGCTGATCCA -ACGGAATGTAGCGAAGCTACGACA -ACGGAATGTAGCGAAGCTAGCTCA -ACGGAATGTAGCGAAGCTTCACGT -ACGGAATGTAGCGAAGCTCGTAGT -ACGGAATGTAGCGAAGCTGTCAGT -ACGGAATGTAGCGAAGCTGAAGGT -ACGGAATGTAGCGAAGCTAACCGT -ACGGAATGTAGCGAAGCTTTGTGC -ACGGAATGTAGCGAAGCTCTAAGC -ACGGAATGTAGCGAAGCTACTAGC -ACGGAATGTAGCGAAGCTAGATGC -ACGGAATGTAGCGAAGCTTGAAGG -ACGGAATGTAGCGAAGCTCAATGG -ACGGAATGTAGCGAAGCTATGAGG -ACGGAATGTAGCGAAGCTAATGGG -ACGGAATGTAGCGAAGCTTCCTGA -ACGGAATGTAGCGAAGCTTAGCGA -ACGGAATGTAGCGAAGCTCACAGA -ACGGAATGTAGCGAAGCTGCAAGA -ACGGAATGTAGCGAAGCTGGTTGA -ACGGAATGTAGCGAAGCTTCCGAT -ACGGAATGTAGCGAAGCTTGGCAT -ACGGAATGTAGCGAAGCTCGAGAT -ACGGAATGTAGCGAAGCTTACCAC -ACGGAATGTAGCGAAGCTCAGAAC -ACGGAATGTAGCGAAGCTGTCTAC -ACGGAATGTAGCGAAGCTACGTAC -ACGGAATGTAGCGAAGCTAGTGAC -ACGGAATGTAGCGAAGCTCTGTAG -ACGGAATGTAGCGAAGCTCCTAAG -ACGGAATGTAGCGAAGCTGTTCAG -ACGGAATGTAGCGAAGCTGCATAG -ACGGAATGTAGCGAAGCTGACAAG -ACGGAATGTAGCGAAGCTAAGCAG -ACGGAATGTAGCGAAGCTCGTCAA -ACGGAATGTAGCGAAGCTGCTGAA -ACGGAATGTAGCGAAGCTAGTACG -ACGGAATGTAGCGAAGCTATCCGA -ACGGAATGTAGCGAAGCTATGGGA -ACGGAATGTAGCGAAGCTGTGCAA -ACGGAATGTAGCGAAGCTGAGGAA -ACGGAATGTAGCGAAGCTCAGGTA -ACGGAATGTAGCGAAGCTGACTCT -ACGGAATGTAGCGAAGCTAGTCCT -ACGGAATGTAGCGAAGCTTAAGCC -ACGGAATGTAGCGAAGCTATAGCC -ACGGAATGTAGCGAAGCTTAACCG -ACGGAATGTAGCGAAGCTATGCCA -ACGGAATGTAGCACGAGTGGAAAC -ACGGAATGTAGCACGAGTAACACC -ACGGAATGTAGCACGAGTATCGAG -ACGGAATGTAGCACGAGTCTCCTT -ACGGAATGTAGCACGAGTCCTGTT -ACGGAATGTAGCACGAGTCGGTTT -ACGGAATGTAGCACGAGTGTGGTT -ACGGAATGTAGCACGAGTGCCTTT -ACGGAATGTAGCACGAGTGGTCTT -ACGGAATGTAGCACGAGTACGCTT -ACGGAATGTAGCACGAGTAGCGTT -ACGGAATGTAGCACGAGTTTCGTC -ACGGAATGTAGCACGAGTTCTCTC -ACGGAATGTAGCACGAGTTGGATC -ACGGAATGTAGCACGAGTCACTTC -ACGGAATGTAGCACGAGTGTACTC -ACGGAATGTAGCACGAGTGATGTC -ACGGAATGTAGCACGAGTACAGTC -ACGGAATGTAGCACGAGTTTGCTG -ACGGAATGTAGCACGAGTTCCATG -ACGGAATGTAGCACGAGTTGTGTG -ACGGAATGTAGCACGAGTCTAGTG -ACGGAATGTAGCACGAGTCATCTG -ACGGAATGTAGCACGAGTGAGTTG -ACGGAATGTAGCACGAGTAGACTG -ACGGAATGTAGCACGAGTTCGGTA -ACGGAATGTAGCACGAGTTGCCTA -ACGGAATGTAGCACGAGTCCACTA -ACGGAATGTAGCACGAGTGGAGTA -ACGGAATGTAGCACGAGTTCGTCT -ACGGAATGTAGCACGAGTTGCACT -ACGGAATGTAGCACGAGTCTGACT -ACGGAATGTAGCACGAGTCAACCT -ACGGAATGTAGCACGAGTGCTACT -ACGGAATGTAGCACGAGTGGATCT -ACGGAATGTAGCACGAGTAAGGCT -ACGGAATGTAGCACGAGTTCAACC -ACGGAATGTAGCACGAGTTGTTCC -ACGGAATGTAGCACGAGTATTCCC -ACGGAATGTAGCACGAGTTTCTCG -ACGGAATGTAGCACGAGTTAGACG -ACGGAATGTAGCACGAGTGTAACG -ACGGAATGTAGCACGAGTACTTCG -ACGGAATGTAGCACGAGTTACGCA -ACGGAATGTAGCACGAGTCTTGCA -ACGGAATGTAGCACGAGTCGAACA -ACGGAATGTAGCACGAGTCAGTCA -ACGGAATGTAGCACGAGTGATCCA -ACGGAATGTAGCACGAGTACGACA -ACGGAATGTAGCACGAGTAGCTCA -ACGGAATGTAGCACGAGTTCACGT -ACGGAATGTAGCACGAGTCGTAGT -ACGGAATGTAGCACGAGTGTCAGT -ACGGAATGTAGCACGAGTGAAGGT -ACGGAATGTAGCACGAGTAACCGT -ACGGAATGTAGCACGAGTTTGTGC -ACGGAATGTAGCACGAGTCTAAGC -ACGGAATGTAGCACGAGTACTAGC -ACGGAATGTAGCACGAGTAGATGC -ACGGAATGTAGCACGAGTTGAAGG -ACGGAATGTAGCACGAGTCAATGG -ACGGAATGTAGCACGAGTATGAGG -ACGGAATGTAGCACGAGTAATGGG -ACGGAATGTAGCACGAGTTCCTGA -ACGGAATGTAGCACGAGTTAGCGA -ACGGAATGTAGCACGAGTCACAGA -ACGGAATGTAGCACGAGTGCAAGA -ACGGAATGTAGCACGAGTGGTTGA -ACGGAATGTAGCACGAGTTCCGAT -ACGGAATGTAGCACGAGTTGGCAT -ACGGAATGTAGCACGAGTCGAGAT -ACGGAATGTAGCACGAGTTACCAC -ACGGAATGTAGCACGAGTCAGAAC -ACGGAATGTAGCACGAGTGTCTAC -ACGGAATGTAGCACGAGTACGTAC -ACGGAATGTAGCACGAGTAGTGAC -ACGGAATGTAGCACGAGTCTGTAG -ACGGAATGTAGCACGAGTCCTAAG -ACGGAATGTAGCACGAGTGTTCAG -ACGGAATGTAGCACGAGTGCATAG -ACGGAATGTAGCACGAGTGACAAG -ACGGAATGTAGCACGAGTAAGCAG -ACGGAATGTAGCACGAGTCGTCAA -ACGGAATGTAGCACGAGTGCTGAA -ACGGAATGTAGCACGAGTAGTACG -ACGGAATGTAGCACGAGTATCCGA -ACGGAATGTAGCACGAGTATGGGA -ACGGAATGTAGCACGAGTGTGCAA -ACGGAATGTAGCACGAGTGAGGAA -ACGGAATGTAGCACGAGTCAGGTA -ACGGAATGTAGCACGAGTGACTCT -ACGGAATGTAGCACGAGTAGTCCT -ACGGAATGTAGCACGAGTTAAGCC -ACGGAATGTAGCACGAGTATAGCC -ACGGAATGTAGCACGAGTTAACCG -ACGGAATGTAGCACGAGTATGCCA -ACGGAATGTAGCCGAATCGGAAAC -ACGGAATGTAGCCGAATCAACACC -ACGGAATGTAGCCGAATCATCGAG -ACGGAATGTAGCCGAATCCTCCTT -ACGGAATGTAGCCGAATCCCTGTT -ACGGAATGTAGCCGAATCCGGTTT -ACGGAATGTAGCCGAATCGTGGTT -ACGGAATGTAGCCGAATCGCCTTT -ACGGAATGTAGCCGAATCGGTCTT -ACGGAATGTAGCCGAATCACGCTT -ACGGAATGTAGCCGAATCAGCGTT -ACGGAATGTAGCCGAATCTTCGTC -ACGGAATGTAGCCGAATCTCTCTC -ACGGAATGTAGCCGAATCTGGATC -ACGGAATGTAGCCGAATCCACTTC -ACGGAATGTAGCCGAATCGTACTC -ACGGAATGTAGCCGAATCGATGTC -ACGGAATGTAGCCGAATCACAGTC -ACGGAATGTAGCCGAATCTTGCTG -ACGGAATGTAGCCGAATCTCCATG -ACGGAATGTAGCCGAATCTGTGTG -ACGGAATGTAGCCGAATCCTAGTG -ACGGAATGTAGCCGAATCCATCTG -ACGGAATGTAGCCGAATCGAGTTG -ACGGAATGTAGCCGAATCAGACTG -ACGGAATGTAGCCGAATCTCGGTA -ACGGAATGTAGCCGAATCTGCCTA -ACGGAATGTAGCCGAATCCCACTA -ACGGAATGTAGCCGAATCGGAGTA -ACGGAATGTAGCCGAATCTCGTCT -ACGGAATGTAGCCGAATCTGCACT -ACGGAATGTAGCCGAATCCTGACT -ACGGAATGTAGCCGAATCCAACCT -ACGGAATGTAGCCGAATCGCTACT -ACGGAATGTAGCCGAATCGGATCT -ACGGAATGTAGCCGAATCAAGGCT -ACGGAATGTAGCCGAATCTCAACC -ACGGAATGTAGCCGAATCTGTTCC -ACGGAATGTAGCCGAATCATTCCC -ACGGAATGTAGCCGAATCTTCTCG -ACGGAATGTAGCCGAATCTAGACG -ACGGAATGTAGCCGAATCGTAACG -ACGGAATGTAGCCGAATCACTTCG -ACGGAATGTAGCCGAATCTACGCA -ACGGAATGTAGCCGAATCCTTGCA -ACGGAATGTAGCCGAATCCGAACA -ACGGAATGTAGCCGAATCCAGTCA -ACGGAATGTAGCCGAATCGATCCA -ACGGAATGTAGCCGAATCACGACA -ACGGAATGTAGCCGAATCAGCTCA -ACGGAATGTAGCCGAATCTCACGT -ACGGAATGTAGCCGAATCCGTAGT -ACGGAATGTAGCCGAATCGTCAGT -ACGGAATGTAGCCGAATCGAAGGT -ACGGAATGTAGCCGAATCAACCGT -ACGGAATGTAGCCGAATCTTGTGC -ACGGAATGTAGCCGAATCCTAAGC -ACGGAATGTAGCCGAATCACTAGC -ACGGAATGTAGCCGAATCAGATGC -ACGGAATGTAGCCGAATCTGAAGG -ACGGAATGTAGCCGAATCCAATGG -ACGGAATGTAGCCGAATCATGAGG -ACGGAATGTAGCCGAATCAATGGG -ACGGAATGTAGCCGAATCTCCTGA -ACGGAATGTAGCCGAATCTAGCGA -ACGGAATGTAGCCGAATCCACAGA -ACGGAATGTAGCCGAATCGCAAGA -ACGGAATGTAGCCGAATCGGTTGA -ACGGAATGTAGCCGAATCTCCGAT -ACGGAATGTAGCCGAATCTGGCAT -ACGGAATGTAGCCGAATCCGAGAT -ACGGAATGTAGCCGAATCTACCAC -ACGGAATGTAGCCGAATCCAGAAC -ACGGAATGTAGCCGAATCGTCTAC -ACGGAATGTAGCCGAATCACGTAC -ACGGAATGTAGCCGAATCAGTGAC -ACGGAATGTAGCCGAATCCTGTAG -ACGGAATGTAGCCGAATCCCTAAG -ACGGAATGTAGCCGAATCGTTCAG -ACGGAATGTAGCCGAATCGCATAG -ACGGAATGTAGCCGAATCGACAAG -ACGGAATGTAGCCGAATCAAGCAG -ACGGAATGTAGCCGAATCCGTCAA -ACGGAATGTAGCCGAATCGCTGAA -ACGGAATGTAGCCGAATCAGTACG -ACGGAATGTAGCCGAATCATCCGA -ACGGAATGTAGCCGAATCATGGGA -ACGGAATGTAGCCGAATCGTGCAA -ACGGAATGTAGCCGAATCGAGGAA -ACGGAATGTAGCCGAATCCAGGTA -ACGGAATGTAGCCGAATCGACTCT -ACGGAATGTAGCCGAATCAGTCCT -ACGGAATGTAGCCGAATCTAAGCC -ACGGAATGTAGCCGAATCATAGCC -ACGGAATGTAGCCGAATCTAACCG -ACGGAATGTAGCCGAATCATGCCA -ACGGAATGTAGCGGAATGGGAAAC -ACGGAATGTAGCGGAATGAACACC -ACGGAATGTAGCGGAATGATCGAG -ACGGAATGTAGCGGAATGCTCCTT -ACGGAATGTAGCGGAATGCCTGTT -ACGGAATGTAGCGGAATGCGGTTT -ACGGAATGTAGCGGAATGGTGGTT -ACGGAATGTAGCGGAATGGCCTTT -ACGGAATGTAGCGGAATGGGTCTT -ACGGAATGTAGCGGAATGACGCTT -ACGGAATGTAGCGGAATGAGCGTT -ACGGAATGTAGCGGAATGTTCGTC -ACGGAATGTAGCGGAATGTCTCTC -ACGGAATGTAGCGGAATGTGGATC -ACGGAATGTAGCGGAATGCACTTC -ACGGAATGTAGCGGAATGGTACTC -ACGGAATGTAGCGGAATGGATGTC -ACGGAATGTAGCGGAATGACAGTC -ACGGAATGTAGCGGAATGTTGCTG -ACGGAATGTAGCGGAATGTCCATG -ACGGAATGTAGCGGAATGTGTGTG -ACGGAATGTAGCGGAATGCTAGTG -ACGGAATGTAGCGGAATGCATCTG -ACGGAATGTAGCGGAATGGAGTTG -ACGGAATGTAGCGGAATGAGACTG -ACGGAATGTAGCGGAATGTCGGTA -ACGGAATGTAGCGGAATGTGCCTA -ACGGAATGTAGCGGAATGCCACTA -ACGGAATGTAGCGGAATGGGAGTA -ACGGAATGTAGCGGAATGTCGTCT -ACGGAATGTAGCGGAATGTGCACT -ACGGAATGTAGCGGAATGCTGACT -ACGGAATGTAGCGGAATGCAACCT -ACGGAATGTAGCGGAATGGCTACT -ACGGAATGTAGCGGAATGGGATCT -ACGGAATGTAGCGGAATGAAGGCT -ACGGAATGTAGCGGAATGTCAACC -ACGGAATGTAGCGGAATGTGTTCC -ACGGAATGTAGCGGAATGATTCCC -ACGGAATGTAGCGGAATGTTCTCG -ACGGAATGTAGCGGAATGTAGACG -ACGGAATGTAGCGGAATGGTAACG -ACGGAATGTAGCGGAATGACTTCG -ACGGAATGTAGCGGAATGTACGCA -ACGGAATGTAGCGGAATGCTTGCA -ACGGAATGTAGCGGAATGCGAACA -ACGGAATGTAGCGGAATGCAGTCA -ACGGAATGTAGCGGAATGGATCCA -ACGGAATGTAGCGGAATGACGACA -ACGGAATGTAGCGGAATGAGCTCA -ACGGAATGTAGCGGAATGTCACGT -ACGGAATGTAGCGGAATGCGTAGT -ACGGAATGTAGCGGAATGGTCAGT -ACGGAATGTAGCGGAATGGAAGGT -ACGGAATGTAGCGGAATGAACCGT -ACGGAATGTAGCGGAATGTTGTGC -ACGGAATGTAGCGGAATGCTAAGC -ACGGAATGTAGCGGAATGACTAGC -ACGGAATGTAGCGGAATGAGATGC -ACGGAATGTAGCGGAATGTGAAGG -ACGGAATGTAGCGGAATGCAATGG -ACGGAATGTAGCGGAATGATGAGG -ACGGAATGTAGCGGAATGAATGGG -ACGGAATGTAGCGGAATGTCCTGA -ACGGAATGTAGCGGAATGTAGCGA -ACGGAATGTAGCGGAATGCACAGA -ACGGAATGTAGCGGAATGGCAAGA -ACGGAATGTAGCGGAATGGGTTGA -ACGGAATGTAGCGGAATGTCCGAT -ACGGAATGTAGCGGAATGTGGCAT -ACGGAATGTAGCGGAATGCGAGAT -ACGGAATGTAGCGGAATGTACCAC -ACGGAATGTAGCGGAATGCAGAAC -ACGGAATGTAGCGGAATGGTCTAC -ACGGAATGTAGCGGAATGACGTAC -ACGGAATGTAGCGGAATGAGTGAC -ACGGAATGTAGCGGAATGCTGTAG -ACGGAATGTAGCGGAATGCCTAAG -ACGGAATGTAGCGGAATGGTTCAG -ACGGAATGTAGCGGAATGGCATAG -ACGGAATGTAGCGGAATGGACAAG -ACGGAATGTAGCGGAATGAAGCAG -ACGGAATGTAGCGGAATGCGTCAA -ACGGAATGTAGCGGAATGGCTGAA -ACGGAATGTAGCGGAATGAGTACG -ACGGAATGTAGCGGAATGATCCGA -ACGGAATGTAGCGGAATGATGGGA -ACGGAATGTAGCGGAATGGTGCAA -ACGGAATGTAGCGGAATGGAGGAA -ACGGAATGTAGCGGAATGCAGGTA -ACGGAATGTAGCGGAATGGACTCT -ACGGAATGTAGCGGAATGAGTCCT -ACGGAATGTAGCGGAATGTAAGCC -ACGGAATGTAGCGGAATGATAGCC -ACGGAATGTAGCGGAATGTAACCG -ACGGAATGTAGCGGAATGATGCCA -ACGGAATGTAGCCAAGTGGGAAAC -ACGGAATGTAGCCAAGTGAACACC -ACGGAATGTAGCCAAGTGATCGAG -ACGGAATGTAGCCAAGTGCTCCTT -ACGGAATGTAGCCAAGTGCCTGTT -ACGGAATGTAGCCAAGTGCGGTTT -ACGGAATGTAGCCAAGTGGTGGTT -ACGGAATGTAGCCAAGTGGCCTTT -ACGGAATGTAGCCAAGTGGGTCTT -ACGGAATGTAGCCAAGTGACGCTT -ACGGAATGTAGCCAAGTGAGCGTT -ACGGAATGTAGCCAAGTGTTCGTC -ACGGAATGTAGCCAAGTGTCTCTC -ACGGAATGTAGCCAAGTGTGGATC -ACGGAATGTAGCCAAGTGCACTTC -ACGGAATGTAGCCAAGTGGTACTC -ACGGAATGTAGCCAAGTGGATGTC -ACGGAATGTAGCCAAGTGACAGTC -ACGGAATGTAGCCAAGTGTTGCTG -ACGGAATGTAGCCAAGTGTCCATG -ACGGAATGTAGCCAAGTGTGTGTG -ACGGAATGTAGCCAAGTGCTAGTG -ACGGAATGTAGCCAAGTGCATCTG -ACGGAATGTAGCCAAGTGGAGTTG -ACGGAATGTAGCCAAGTGAGACTG -ACGGAATGTAGCCAAGTGTCGGTA -ACGGAATGTAGCCAAGTGTGCCTA -ACGGAATGTAGCCAAGTGCCACTA -ACGGAATGTAGCCAAGTGGGAGTA -ACGGAATGTAGCCAAGTGTCGTCT -ACGGAATGTAGCCAAGTGTGCACT -ACGGAATGTAGCCAAGTGCTGACT -ACGGAATGTAGCCAAGTGCAACCT -ACGGAATGTAGCCAAGTGGCTACT -ACGGAATGTAGCCAAGTGGGATCT -ACGGAATGTAGCCAAGTGAAGGCT -ACGGAATGTAGCCAAGTGTCAACC -ACGGAATGTAGCCAAGTGTGTTCC -ACGGAATGTAGCCAAGTGATTCCC -ACGGAATGTAGCCAAGTGTTCTCG -ACGGAATGTAGCCAAGTGTAGACG -ACGGAATGTAGCCAAGTGGTAACG -ACGGAATGTAGCCAAGTGACTTCG -ACGGAATGTAGCCAAGTGTACGCA -ACGGAATGTAGCCAAGTGCTTGCA -ACGGAATGTAGCCAAGTGCGAACA -ACGGAATGTAGCCAAGTGCAGTCA -ACGGAATGTAGCCAAGTGGATCCA -ACGGAATGTAGCCAAGTGACGACA -ACGGAATGTAGCCAAGTGAGCTCA -ACGGAATGTAGCCAAGTGTCACGT -ACGGAATGTAGCCAAGTGCGTAGT -ACGGAATGTAGCCAAGTGGTCAGT -ACGGAATGTAGCCAAGTGGAAGGT -ACGGAATGTAGCCAAGTGAACCGT -ACGGAATGTAGCCAAGTGTTGTGC -ACGGAATGTAGCCAAGTGCTAAGC -ACGGAATGTAGCCAAGTGACTAGC -ACGGAATGTAGCCAAGTGAGATGC -ACGGAATGTAGCCAAGTGTGAAGG -ACGGAATGTAGCCAAGTGCAATGG -ACGGAATGTAGCCAAGTGATGAGG -ACGGAATGTAGCCAAGTGAATGGG -ACGGAATGTAGCCAAGTGTCCTGA -ACGGAATGTAGCCAAGTGTAGCGA -ACGGAATGTAGCCAAGTGCACAGA -ACGGAATGTAGCCAAGTGGCAAGA -ACGGAATGTAGCCAAGTGGGTTGA -ACGGAATGTAGCCAAGTGTCCGAT -ACGGAATGTAGCCAAGTGTGGCAT -ACGGAATGTAGCCAAGTGCGAGAT -ACGGAATGTAGCCAAGTGTACCAC -ACGGAATGTAGCCAAGTGCAGAAC -ACGGAATGTAGCCAAGTGGTCTAC -ACGGAATGTAGCCAAGTGACGTAC -ACGGAATGTAGCCAAGTGAGTGAC -ACGGAATGTAGCCAAGTGCTGTAG -ACGGAATGTAGCCAAGTGCCTAAG -ACGGAATGTAGCCAAGTGGTTCAG -ACGGAATGTAGCCAAGTGGCATAG -ACGGAATGTAGCCAAGTGGACAAG -ACGGAATGTAGCCAAGTGAAGCAG -ACGGAATGTAGCCAAGTGCGTCAA -ACGGAATGTAGCCAAGTGGCTGAA -ACGGAATGTAGCCAAGTGAGTACG -ACGGAATGTAGCCAAGTGATCCGA -ACGGAATGTAGCCAAGTGATGGGA -ACGGAATGTAGCCAAGTGGTGCAA -ACGGAATGTAGCCAAGTGGAGGAA -ACGGAATGTAGCCAAGTGCAGGTA -ACGGAATGTAGCCAAGTGGACTCT -ACGGAATGTAGCCAAGTGAGTCCT -ACGGAATGTAGCCAAGTGTAAGCC -ACGGAATGTAGCCAAGTGATAGCC -ACGGAATGTAGCCAAGTGTAACCG -ACGGAATGTAGCCAAGTGATGCCA -ACGGAATGTAGCGAAGAGGGAAAC -ACGGAATGTAGCGAAGAGAACACC -ACGGAATGTAGCGAAGAGATCGAG -ACGGAATGTAGCGAAGAGCTCCTT -ACGGAATGTAGCGAAGAGCCTGTT -ACGGAATGTAGCGAAGAGCGGTTT -ACGGAATGTAGCGAAGAGGTGGTT -ACGGAATGTAGCGAAGAGGCCTTT -ACGGAATGTAGCGAAGAGGGTCTT -ACGGAATGTAGCGAAGAGACGCTT -ACGGAATGTAGCGAAGAGAGCGTT -ACGGAATGTAGCGAAGAGTTCGTC -ACGGAATGTAGCGAAGAGTCTCTC -ACGGAATGTAGCGAAGAGTGGATC -ACGGAATGTAGCGAAGAGCACTTC -ACGGAATGTAGCGAAGAGGTACTC -ACGGAATGTAGCGAAGAGGATGTC -ACGGAATGTAGCGAAGAGACAGTC -ACGGAATGTAGCGAAGAGTTGCTG -ACGGAATGTAGCGAAGAGTCCATG -ACGGAATGTAGCGAAGAGTGTGTG -ACGGAATGTAGCGAAGAGCTAGTG -ACGGAATGTAGCGAAGAGCATCTG -ACGGAATGTAGCGAAGAGGAGTTG -ACGGAATGTAGCGAAGAGAGACTG -ACGGAATGTAGCGAAGAGTCGGTA -ACGGAATGTAGCGAAGAGTGCCTA -ACGGAATGTAGCGAAGAGCCACTA -ACGGAATGTAGCGAAGAGGGAGTA -ACGGAATGTAGCGAAGAGTCGTCT -ACGGAATGTAGCGAAGAGTGCACT -ACGGAATGTAGCGAAGAGCTGACT -ACGGAATGTAGCGAAGAGCAACCT -ACGGAATGTAGCGAAGAGGCTACT -ACGGAATGTAGCGAAGAGGGATCT -ACGGAATGTAGCGAAGAGAAGGCT -ACGGAATGTAGCGAAGAGTCAACC -ACGGAATGTAGCGAAGAGTGTTCC -ACGGAATGTAGCGAAGAGATTCCC -ACGGAATGTAGCGAAGAGTTCTCG -ACGGAATGTAGCGAAGAGTAGACG -ACGGAATGTAGCGAAGAGGTAACG -ACGGAATGTAGCGAAGAGACTTCG -ACGGAATGTAGCGAAGAGTACGCA -ACGGAATGTAGCGAAGAGCTTGCA -ACGGAATGTAGCGAAGAGCGAACA -ACGGAATGTAGCGAAGAGCAGTCA -ACGGAATGTAGCGAAGAGGATCCA -ACGGAATGTAGCGAAGAGACGACA -ACGGAATGTAGCGAAGAGAGCTCA -ACGGAATGTAGCGAAGAGTCACGT -ACGGAATGTAGCGAAGAGCGTAGT -ACGGAATGTAGCGAAGAGGTCAGT -ACGGAATGTAGCGAAGAGGAAGGT -ACGGAATGTAGCGAAGAGAACCGT -ACGGAATGTAGCGAAGAGTTGTGC -ACGGAATGTAGCGAAGAGCTAAGC -ACGGAATGTAGCGAAGAGACTAGC -ACGGAATGTAGCGAAGAGAGATGC -ACGGAATGTAGCGAAGAGTGAAGG -ACGGAATGTAGCGAAGAGCAATGG -ACGGAATGTAGCGAAGAGATGAGG -ACGGAATGTAGCGAAGAGAATGGG -ACGGAATGTAGCGAAGAGTCCTGA -ACGGAATGTAGCGAAGAGTAGCGA -ACGGAATGTAGCGAAGAGCACAGA -ACGGAATGTAGCGAAGAGGCAAGA -ACGGAATGTAGCGAAGAGGGTTGA -ACGGAATGTAGCGAAGAGTCCGAT -ACGGAATGTAGCGAAGAGTGGCAT -ACGGAATGTAGCGAAGAGCGAGAT -ACGGAATGTAGCGAAGAGTACCAC -ACGGAATGTAGCGAAGAGCAGAAC -ACGGAATGTAGCGAAGAGGTCTAC -ACGGAATGTAGCGAAGAGACGTAC -ACGGAATGTAGCGAAGAGAGTGAC -ACGGAATGTAGCGAAGAGCTGTAG -ACGGAATGTAGCGAAGAGCCTAAG -ACGGAATGTAGCGAAGAGGTTCAG -ACGGAATGTAGCGAAGAGGCATAG -ACGGAATGTAGCGAAGAGGACAAG -ACGGAATGTAGCGAAGAGAAGCAG -ACGGAATGTAGCGAAGAGCGTCAA -ACGGAATGTAGCGAAGAGGCTGAA -ACGGAATGTAGCGAAGAGAGTACG -ACGGAATGTAGCGAAGAGATCCGA -ACGGAATGTAGCGAAGAGATGGGA -ACGGAATGTAGCGAAGAGGTGCAA -ACGGAATGTAGCGAAGAGGAGGAA -ACGGAATGTAGCGAAGAGCAGGTA -ACGGAATGTAGCGAAGAGGACTCT -ACGGAATGTAGCGAAGAGAGTCCT -ACGGAATGTAGCGAAGAGTAAGCC -ACGGAATGTAGCGAAGAGATAGCC -ACGGAATGTAGCGAAGAGTAACCG -ACGGAATGTAGCGAAGAGATGCCA -ACGGAATGTAGCGTACAGGGAAAC -ACGGAATGTAGCGTACAGAACACC -ACGGAATGTAGCGTACAGATCGAG -ACGGAATGTAGCGTACAGCTCCTT -ACGGAATGTAGCGTACAGCCTGTT -ACGGAATGTAGCGTACAGCGGTTT -ACGGAATGTAGCGTACAGGTGGTT -ACGGAATGTAGCGTACAGGCCTTT -ACGGAATGTAGCGTACAGGGTCTT -ACGGAATGTAGCGTACAGACGCTT -ACGGAATGTAGCGTACAGAGCGTT -ACGGAATGTAGCGTACAGTTCGTC -ACGGAATGTAGCGTACAGTCTCTC -ACGGAATGTAGCGTACAGTGGATC -ACGGAATGTAGCGTACAGCACTTC -ACGGAATGTAGCGTACAGGTACTC -ACGGAATGTAGCGTACAGGATGTC -ACGGAATGTAGCGTACAGACAGTC -ACGGAATGTAGCGTACAGTTGCTG -ACGGAATGTAGCGTACAGTCCATG -ACGGAATGTAGCGTACAGTGTGTG -ACGGAATGTAGCGTACAGCTAGTG -ACGGAATGTAGCGTACAGCATCTG -ACGGAATGTAGCGTACAGGAGTTG -ACGGAATGTAGCGTACAGAGACTG -ACGGAATGTAGCGTACAGTCGGTA -ACGGAATGTAGCGTACAGTGCCTA -ACGGAATGTAGCGTACAGCCACTA -ACGGAATGTAGCGTACAGGGAGTA -ACGGAATGTAGCGTACAGTCGTCT -ACGGAATGTAGCGTACAGTGCACT -ACGGAATGTAGCGTACAGCTGACT -ACGGAATGTAGCGTACAGCAACCT -ACGGAATGTAGCGTACAGGCTACT -ACGGAATGTAGCGTACAGGGATCT -ACGGAATGTAGCGTACAGAAGGCT -ACGGAATGTAGCGTACAGTCAACC -ACGGAATGTAGCGTACAGTGTTCC -ACGGAATGTAGCGTACAGATTCCC -ACGGAATGTAGCGTACAGTTCTCG -ACGGAATGTAGCGTACAGTAGACG -ACGGAATGTAGCGTACAGGTAACG -ACGGAATGTAGCGTACAGACTTCG -ACGGAATGTAGCGTACAGTACGCA -ACGGAATGTAGCGTACAGCTTGCA -ACGGAATGTAGCGTACAGCGAACA -ACGGAATGTAGCGTACAGCAGTCA -ACGGAATGTAGCGTACAGGATCCA -ACGGAATGTAGCGTACAGACGACA -ACGGAATGTAGCGTACAGAGCTCA -ACGGAATGTAGCGTACAGTCACGT -ACGGAATGTAGCGTACAGCGTAGT -ACGGAATGTAGCGTACAGGTCAGT -ACGGAATGTAGCGTACAGGAAGGT -ACGGAATGTAGCGTACAGAACCGT -ACGGAATGTAGCGTACAGTTGTGC -ACGGAATGTAGCGTACAGCTAAGC -ACGGAATGTAGCGTACAGACTAGC -ACGGAATGTAGCGTACAGAGATGC -ACGGAATGTAGCGTACAGTGAAGG -ACGGAATGTAGCGTACAGCAATGG -ACGGAATGTAGCGTACAGATGAGG -ACGGAATGTAGCGTACAGAATGGG -ACGGAATGTAGCGTACAGTCCTGA -ACGGAATGTAGCGTACAGTAGCGA -ACGGAATGTAGCGTACAGCACAGA -ACGGAATGTAGCGTACAGGCAAGA -ACGGAATGTAGCGTACAGGGTTGA -ACGGAATGTAGCGTACAGTCCGAT -ACGGAATGTAGCGTACAGTGGCAT -ACGGAATGTAGCGTACAGCGAGAT -ACGGAATGTAGCGTACAGTACCAC -ACGGAATGTAGCGTACAGCAGAAC -ACGGAATGTAGCGTACAGGTCTAC -ACGGAATGTAGCGTACAGACGTAC -ACGGAATGTAGCGTACAGAGTGAC -ACGGAATGTAGCGTACAGCTGTAG -ACGGAATGTAGCGTACAGCCTAAG -ACGGAATGTAGCGTACAGGTTCAG -ACGGAATGTAGCGTACAGGCATAG -ACGGAATGTAGCGTACAGGACAAG -ACGGAATGTAGCGTACAGAAGCAG -ACGGAATGTAGCGTACAGCGTCAA -ACGGAATGTAGCGTACAGGCTGAA -ACGGAATGTAGCGTACAGAGTACG -ACGGAATGTAGCGTACAGATCCGA -ACGGAATGTAGCGTACAGATGGGA -ACGGAATGTAGCGTACAGGTGCAA -ACGGAATGTAGCGTACAGGAGGAA -ACGGAATGTAGCGTACAGCAGGTA -ACGGAATGTAGCGTACAGGACTCT -ACGGAATGTAGCGTACAGAGTCCT -ACGGAATGTAGCGTACAGTAAGCC -ACGGAATGTAGCGTACAGATAGCC -ACGGAATGTAGCGTACAGTAACCG -ACGGAATGTAGCGTACAGATGCCA -ACGGAATGTAGCTCTGACGGAAAC -ACGGAATGTAGCTCTGACAACACC -ACGGAATGTAGCTCTGACATCGAG -ACGGAATGTAGCTCTGACCTCCTT -ACGGAATGTAGCTCTGACCCTGTT -ACGGAATGTAGCTCTGACCGGTTT -ACGGAATGTAGCTCTGACGTGGTT -ACGGAATGTAGCTCTGACGCCTTT -ACGGAATGTAGCTCTGACGGTCTT -ACGGAATGTAGCTCTGACACGCTT -ACGGAATGTAGCTCTGACAGCGTT -ACGGAATGTAGCTCTGACTTCGTC -ACGGAATGTAGCTCTGACTCTCTC -ACGGAATGTAGCTCTGACTGGATC -ACGGAATGTAGCTCTGACCACTTC -ACGGAATGTAGCTCTGACGTACTC -ACGGAATGTAGCTCTGACGATGTC -ACGGAATGTAGCTCTGACACAGTC -ACGGAATGTAGCTCTGACTTGCTG -ACGGAATGTAGCTCTGACTCCATG -ACGGAATGTAGCTCTGACTGTGTG -ACGGAATGTAGCTCTGACCTAGTG -ACGGAATGTAGCTCTGACCATCTG -ACGGAATGTAGCTCTGACGAGTTG -ACGGAATGTAGCTCTGACAGACTG -ACGGAATGTAGCTCTGACTCGGTA -ACGGAATGTAGCTCTGACTGCCTA -ACGGAATGTAGCTCTGACCCACTA -ACGGAATGTAGCTCTGACGGAGTA -ACGGAATGTAGCTCTGACTCGTCT -ACGGAATGTAGCTCTGACTGCACT -ACGGAATGTAGCTCTGACCTGACT -ACGGAATGTAGCTCTGACCAACCT -ACGGAATGTAGCTCTGACGCTACT -ACGGAATGTAGCTCTGACGGATCT -ACGGAATGTAGCTCTGACAAGGCT -ACGGAATGTAGCTCTGACTCAACC -ACGGAATGTAGCTCTGACTGTTCC -ACGGAATGTAGCTCTGACATTCCC -ACGGAATGTAGCTCTGACTTCTCG -ACGGAATGTAGCTCTGACTAGACG -ACGGAATGTAGCTCTGACGTAACG -ACGGAATGTAGCTCTGACACTTCG -ACGGAATGTAGCTCTGACTACGCA -ACGGAATGTAGCTCTGACCTTGCA -ACGGAATGTAGCTCTGACCGAACA -ACGGAATGTAGCTCTGACCAGTCA -ACGGAATGTAGCTCTGACGATCCA -ACGGAATGTAGCTCTGACACGACA -ACGGAATGTAGCTCTGACAGCTCA -ACGGAATGTAGCTCTGACTCACGT -ACGGAATGTAGCTCTGACCGTAGT -ACGGAATGTAGCTCTGACGTCAGT -ACGGAATGTAGCTCTGACGAAGGT -ACGGAATGTAGCTCTGACAACCGT -ACGGAATGTAGCTCTGACTTGTGC -ACGGAATGTAGCTCTGACCTAAGC -ACGGAATGTAGCTCTGACACTAGC -ACGGAATGTAGCTCTGACAGATGC -ACGGAATGTAGCTCTGACTGAAGG -ACGGAATGTAGCTCTGACCAATGG -ACGGAATGTAGCTCTGACATGAGG -ACGGAATGTAGCTCTGACAATGGG -ACGGAATGTAGCTCTGACTCCTGA -ACGGAATGTAGCTCTGACTAGCGA -ACGGAATGTAGCTCTGACCACAGA -ACGGAATGTAGCTCTGACGCAAGA -ACGGAATGTAGCTCTGACGGTTGA -ACGGAATGTAGCTCTGACTCCGAT -ACGGAATGTAGCTCTGACTGGCAT -ACGGAATGTAGCTCTGACCGAGAT -ACGGAATGTAGCTCTGACTACCAC -ACGGAATGTAGCTCTGACCAGAAC -ACGGAATGTAGCTCTGACGTCTAC -ACGGAATGTAGCTCTGACACGTAC -ACGGAATGTAGCTCTGACAGTGAC -ACGGAATGTAGCTCTGACCTGTAG -ACGGAATGTAGCTCTGACCCTAAG -ACGGAATGTAGCTCTGACGTTCAG -ACGGAATGTAGCTCTGACGCATAG -ACGGAATGTAGCTCTGACGACAAG -ACGGAATGTAGCTCTGACAAGCAG -ACGGAATGTAGCTCTGACCGTCAA -ACGGAATGTAGCTCTGACGCTGAA -ACGGAATGTAGCTCTGACAGTACG -ACGGAATGTAGCTCTGACATCCGA -ACGGAATGTAGCTCTGACATGGGA -ACGGAATGTAGCTCTGACGTGCAA -ACGGAATGTAGCTCTGACGAGGAA -ACGGAATGTAGCTCTGACCAGGTA -ACGGAATGTAGCTCTGACGACTCT -ACGGAATGTAGCTCTGACAGTCCT -ACGGAATGTAGCTCTGACTAAGCC -ACGGAATGTAGCTCTGACATAGCC -ACGGAATGTAGCTCTGACTAACCG -ACGGAATGTAGCTCTGACATGCCA -ACGGAATGTAGCCCTAGTGGAAAC -ACGGAATGTAGCCCTAGTAACACC -ACGGAATGTAGCCCTAGTATCGAG -ACGGAATGTAGCCCTAGTCTCCTT -ACGGAATGTAGCCCTAGTCCTGTT -ACGGAATGTAGCCCTAGTCGGTTT -ACGGAATGTAGCCCTAGTGTGGTT -ACGGAATGTAGCCCTAGTGCCTTT -ACGGAATGTAGCCCTAGTGGTCTT -ACGGAATGTAGCCCTAGTACGCTT -ACGGAATGTAGCCCTAGTAGCGTT -ACGGAATGTAGCCCTAGTTTCGTC -ACGGAATGTAGCCCTAGTTCTCTC -ACGGAATGTAGCCCTAGTTGGATC -ACGGAATGTAGCCCTAGTCACTTC -ACGGAATGTAGCCCTAGTGTACTC -ACGGAATGTAGCCCTAGTGATGTC -ACGGAATGTAGCCCTAGTACAGTC -ACGGAATGTAGCCCTAGTTTGCTG -ACGGAATGTAGCCCTAGTTCCATG -ACGGAATGTAGCCCTAGTTGTGTG -ACGGAATGTAGCCCTAGTCTAGTG -ACGGAATGTAGCCCTAGTCATCTG -ACGGAATGTAGCCCTAGTGAGTTG -ACGGAATGTAGCCCTAGTAGACTG -ACGGAATGTAGCCCTAGTTCGGTA -ACGGAATGTAGCCCTAGTTGCCTA -ACGGAATGTAGCCCTAGTCCACTA -ACGGAATGTAGCCCTAGTGGAGTA -ACGGAATGTAGCCCTAGTTCGTCT -ACGGAATGTAGCCCTAGTTGCACT -ACGGAATGTAGCCCTAGTCTGACT -ACGGAATGTAGCCCTAGTCAACCT -ACGGAATGTAGCCCTAGTGCTACT -ACGGAATGTAGCCCTAGTGGATCT -ACGGAATGTAGCCCTAGTAAGGCT -ACGGAATGTAGCCCTAGTTCAACC -ACGGAATGTAGCCCTAGTTGTTCC -ACGGAATGTAGCCCTAGTATTCCC -ACGGAATGTAGCCCTAGTTTCTCG -ACGGAATGTAGCCCTAGTTAGACG -ACGGAATGTAGCCCTAGTGTAACG -ACGGAATGTAGCCCTAGTACTTCG -ACGGAATGTAGCCCTAGTTACGCA -ACGGAATGTAGCCCTAGTCTTGCA -ACGGAATGTAGCCCTAGTCGAACA -ACGGAATGTAGCCCTAGTCAGTCA -ACGGAATGTAGCCCTAGTGATCCA -ACGGAATGTAGCCCTAGTACGACA -ACGGAATGTAGCCCTAGTAGCTCA -ACGGAATGTAGCCCTAGTTCACGT -ACGGAATGTAGCCCTAGTCGTAGT -ACGGAATGTAGCCCTAGTGTCAGT -ACGGAATGTAGCCCTAGTGAAGGT -ACGGAATGTAGCCCTAGTAACCGT -ACGGAATGTAGCCCTAGTTTGTGC -ACGGAATGTAGCCCTAGTCTAAGC -ACGGAATGTAGCCCTAGTACTAGC -ACGGAATGTAGCCCTAGTAGATGC -ACGGAATGTAGCCCTAGTTGAAGG -ACGGAATGTAGCCCTAGTCAATGG -ACGGAATGTAGCCCTAGTATGAGG -ACGGAATGTAGCCCTAGTAATGGG -ACGGAATGTAGCCCTAGTTCCTGA -ACGGAATGTAGCCCTAGTTAGCGA -ACGGAATGTAGCCCTAGTCACAGA -ACGGAATGTAGCCCTAGTGCAAGA -ACGGAATGTAGCCCTAGTGGTTGA -ACGGAATGTAGCCCTAGTTCCGAT -ACGGAATGTAGCCCTAGTTGGCAT -ACGGAATGTAGCCCTAGTCGAGAT -ACGGAATGTAGCCCTAGTTACCAC -ACGGAATGTAGCCCTAGTCAGAAC -ACGGAATGTAGCCCTAGTGTCTAC -ACGGAATGTAGCCCTAGTACGTAC -ACGGAATGTAGCCCTAGTAGTGAC -ACGGAATGTAGCCCTAGTCTGTAG -ACGGAATGTAGCCCTAGTCCTAAG -ACGGAATGTAGCCCTAGTGTTCAG -ACGGAATGTAGCCCTAGTGCATAG -ACGGAATGTAGCCCTAGTGACAAG -ACGGAATGTAGCCCTAGTAAGCAG -ACGGAATGTAGCCCTAGTCGTCAA -ACGGAATGTAGCCCTAGTGCTGAA -ACGGAATGTAGCCCTAGTAGTACG -ACGGAATGTAGCCCTAGTATCCGA -ACGGAATGTAGCCCTAGTATGGGA -ACGGAATGTAGCCCTAGTGTGCAA -ACGGAATGTAGCCCTAGTGAGGAA -ACGGAATGTAGCCCTAGTCAGGTA -ACGGAATGTAGCCCTAGTGACTCT -ACGGAATGTAGCCCTAGTAGTCCT -ACGGAATGTAGCCCTAGTTAAGCC -ACGGAATGTAGCCCTAGTATAGCC -ACGGAATGTAGCCCTAGTTAACCG -ACGGAATGTAGCCCTAGTATGCCA -ACGGAATGTAGCGCCTAAGGAAAC -ACGGAATGTAGCGCCTAAAACACC -ACGGAATGTAGCGCCTAAATCGAG -ACGGAATGTAGCGCCTAACTCCTT -ACGGAATGTAGCGCCTAACCTGTT -ACGGAATGTAGCGCCTAACGGTTT -ACGGAATGTAGCGCCTAAGTGGTT -ACGGAATGTAGCGCCTAAGCCTTT -ACGGAATGTAGCGCCTAAGGTCTT -ACGGAATGTAGCGCCTAAACGCTT -ACGGAATGTAGCGCCTAAAGCGTT -ACGGAATGTAGCGCCTAATTCGTC -ACGGAATGTAGCGCCTAATCTCTC -ACGGAATGTAGCGCCTAATGGATC -ACGGAATGTAGCGCCTAACACTTC -ACGGAATGTAGCGCCTAAGTACTC -ACGGAATGTAGCGCCTAAGATGTC -ACGGAATGTAGCGCCTAAACAGTC -ACGGAATGTAGCGCCTAATTGCTG -ACGGAATGTAGCGCCTAATCCATG -ACGGAATGTAGCGCCTAATGTGTG -ACGGAATGTAGCGCCTAACTAGTG -ACGGAATGTAGCGCCTAACATCTG -ACGGAATGTAGCGCCTAAGAGTTG -ACGGAATGTAGCGCCTAAAGACTG -ACGGAATGTAGCGCCTAATCGGTA -ACGGAATGTAGCGCCTAATGCCTA -ACGGAATGTAGCGCCTAACCACTA -ACGGAATGTAGCGCCTAAGGAGTA -ACGGAATGTAGCGCCTAATCGTCT -ACGGAATGTAGCGCCTAATGCACT -ACGGAATGTAGCGCCTAACTGACT -ACGGAATGTAGCGCCTAACAACCT -ACGGAATGTAGCGCCTAAGCTACT -ACGGAATGTAGCGCCTAAGGATCT -ACGGAATGTAGCGCCTAAAAGGCT -ACGGAATGTAGCGCCTAATCAACC -ACGGAATGTAGCGCCTAATGTTCC -ACGGAATGTAGCGCCTAAATTCCC -ACGGAATGTAGCGCCTAATTCTCG -ACGGAATGTAGCGCCTAATAGACG -ACGGAATGTAGCGCCTAAGTAACG -ACGGAATGTAGCGCCTAAACTTCG -ACGGAATGTAGCGCCTAATACGCA -ACGGAATGTAGCGCCTAACTTGCA -ACGGAATGTAGCGCCTAACGAACA -ACGGAATGTAGCGCCTAACAGTCA -ACGGAATGTAGCGCCTAAGATCCA -ACGGAATGTAGCGCCTAAACGACA -ACGGAATGTAGCGCCTAAAGCTCA -ACGGAATGTAGCGCCTAATCACGT -ACGGAATGTAGCGCCTAACGTAGT -ACGGAATGTAGCGCCTAAGTCAGT -ACGGAATGTAGCGCCTAAGAAGGT -ACGGAATGTAGCGCCTAAAACCGT -ACGGAATGTAGCGCCTAATTGTGC -ACGGAATGTAGCGCCTAACTAAGC -ACGGAATGTAGCGCCTAAACTAGC -ACGGAATGTAGCGCCTAAAGATGC -ACGGAATGTAGCGCCTAATGAAGG -ACGGAATGTAGCGCCTAACAATGG -ACGGAATGTAGCGCCTAAATGAGG -ACGGAATGTAGCGCCTAAAATGGG -ACGGAATGTAGCGCCTAATCCTGA -ACGGAATGTAGCGCCTAATAGCGA -ACGGAATGTAGCGCCTAACACAGA -ACGGAATGTAGCGCCTAAGCAAGA -ACGGAATGTAGCGCCTAAGGTTGA -ACGGAATGTAGCGCCTAATCCGAT -ACGGAATGTAGCGCCTAATGGCAT -ACGGAATGTAGCGCCTAACGAGAT -ACGGAATGTAGCGCCTAATACCAC -ACGGAATGTAGCGCCTAACAGAAC -ACGGAATGTAGCGCCTAAGTCTAC -ACGGAATGTAGCGCCTAAACGTAC -ACGGAATGTAGCGCCTAAAGTGAC -ACGGAATGTAGCGCCTAACTGTAG -ACGGAATGTAGCGCCTAACCTAAG -ACGGAATGTAGCGCCTAAGTTCAG -ACGGAATGTAGCGCCTAAGCATAG -ACGGAATGTAGCGCCTAAGACAAG -ACGGAATGTAGCGCCTAAAAGCAG -ACGGAATGTAGCGCCTAACGTCAA -ACGGAATGTAGCGCCTAAGCTGAA -ACGGAATGTAGCGCCTAAAGTACG -ACGGAATGTAGCGCCTAAATCCGA -ACGGAATGTAGCGCCTAAATGGGA -ACGGAATGTAGCGCCTAAGTGCAA -ACGGAATGTAGCGCCTAAGAGGAA -ACGGAATGTAGCGCCTAACAGGTA -ACGGAATGTAGCGCCTAAGACTCT -ACGGAATGTAGCGCCTAAAGTCCT -ACGGAATGTAGCGCCTAATAAGCC -ACGGAATGTAGCGCCTAAATAGCC -ACGGAATGTAGCGCCTAATAACCG -ACGGAATGTAGCGCCTAAATGCCA -ACGGAATGTAGCGCCATAGGAAAC -ACGGAATGTAGCGCCATAAACACC -ACGGAATGTAGCGCCATAATCGAG -ACGGAATGTAGCGCCATACTCCTT -ACGGAATGTAGCGCCATACCTGTT -ACGGAATGTAGCGCCATACGGTTT -ACGGAATGTAGCGCCATAGTGGTT -ACGGAATGTAGCGCCATAGCCTTT -ACGGAATGTAGCGCCATAGGTCTT -ACGGAATGTAGCGCCATAACGCTT -ACGGAATGTAGCGCCATAAGCGTT -ACGGAATGTAGCGCCATATTCGTC -ACGGAATGTAGCGCCATATCTCTC -ACGGAATGTAGCGCCATATGGATC -ACGGAATGTAGCGCCATACACTTC -ACGGAATGTAGCGCCATAGTACTC -ACGGAATGTAGCGCCATAGATGTC -ACGGAATGTAGCGCCATAACAGTC -ACGGAATGTAGCGCCATATTGCTG -ACGGAATGTAGCGCCATATCCATG -ACGGAATGTAGCGCCATATGTGTG -ACGGAATGTAGCGCCATACTAGTG -ACGGAATGTAGCGCCATACATCTG -ACGGAATGTAGCGCCATAGAGTTG -ACGGAATGTAGCGCCATAAGACTG -ACGGAATGTAGCGCCATATCGGTA -ACGGAATGTAGCGCCATATGCCTA -ACGGAATGTAGCGCCATACCACTA -ACGGAATGTAGCGCCATAGGAGTA -ACGGAATGTAGCGCCATATCGTCT -ACGGAATGTAGCGCCATATGCACT -ACGGAATGTAGCGCCATACTGACT -ACGGAATGTAGCGCCATACAACCT -ACGGAATGTAGCGCCATAGCTACT -ACGGAATGTAGCGCCATAGGATCT -ACGGAATGTAGCGCCATAAAGGCT -ACGGAATGTAGCGCCATATCAACC -ACGGAATGTAGCGCCATATGTTCC -ACGGAATGTAGCGCCATAATTCCC -ACGGAATGTAGCGCCATATTCTCG -ACGGAATGTAGCGCCATATAGACG -ACGGAATGTAGCGCCATAGTAACG -ACGGAATGTAGCGCCATAACTTCG -ACGGAATGTAGCGCCATATACGCA -ACGGAATGTAGCGCCATACTTGCA -ACGGAATGTAGCGCCATACGAACA -ACGGAATGTAGCGCCATACAGTCA -ACGGAATGTAGCGCCATAGATCCA -ACGGAATGTAGCGCCATAACGACA -ACGGAATGTAGCGCCATAAGCTCA -ACGGAATGTAGCGCCATATCACGT -ACGGAATGTAGCGCCATACGTAGT -ACGGAATGTAGCGCCATAGTCAGT -ACGGAATGTAGCGCCATAGAAGGT -ACGGAATGTAGCGCCATAAACCGT -ACGGAATGTAGCGCCATATTGTGC -ACGGAATGTAGCGCCATACTAAGC -ACGGAATGTAGCGCCATAACTAGC -ACGGAATGTAGCGCCATAAGATGC -ACGGAATGTAGCGCCATATGAAGG -ACGGAATGTAGCGCCATACAATGG -ACGGAATGTAGCGCCATAATGAGG -ACGGAATGTAGCGCCATAAATGGG -ACGGAATGTAGCGCCATATCCTGA -ACGGAATGTAGCGCCATATAGCGA -ACGGAATGTAGCGCCATACACAGA -ACGGAATGTAGCGCCATAGCAAGA -ACGGAATGTAGCGCCATAGGTTGA -ACGGAATGTAGCGCCATATCCGAT -ACGGAATGTAGCGCCATATGGCAT -ACGGAATGTAGCGCCATACGAGAT -ACGGAATGTAGCGCCATATACCAC -ACGGAATGTAGCGCCATACAGAAC -ACGGAATGTAGCGCCATAGTCTAC -ACGGAATGTAGCGCCATAACGTAC -ACGGAATGTAGCGCCATAAGTGAC -ACGGAATGTAGCGCCATACTGTAG -ACGGAATGTAGCGCCATACCTAAG -ACGGAATGTAGCGCCATAGTTCAG -ACGGAATGTAGCGCCATAGCATAG -ACGGAATGTAGCGCCATAGACAAG -ACGGAATGTAGCGCCATAAAGCAG -ACGGAATGTAGCGCCATACGTCAA -ACGGAATGTAGCGCCATAGCTGAA -ACGGAATGTAGCGCCATAAGTACG -ACGGAATGTAGCGCCATAATCCGA -ACGGAATGTAGCGCCATAATGGGA -ACGGAATGTAGCGCCATAGTGCAA -ACGGAATGTAGCGCCATAGAGGAA -ACGGAATGTAGCGCCATACAGGTA -ACGGAATGTAGCGCCATAGACTCT -ACGGAATGTAGCGCCATAAGTCCT -ACGGAATGTAGCGCCATATAAGCC -ACGGAATGTAGCGCCATAATAGCC -ACGGAATGTAGCGCCATATAACCG -ACGGAATGTAGCGCCATAATGCCA -ACGGAATGTAGCCCGTAAGGAAAC -ACGGAATGTAGCCCGTAAAACACC -ACGGAATGTAGCCCGTAAATCGAG -ACGGAATGTAGCCCGTAACTCCTT -ACGGAATGTAGCCCGTAACCTGTT -ACGGAATGTAGCCCGTAACGGTTT -ACGGAATGTAGCCCGTAAGTGGTT -ACGGAATGTAGCCCGTAAGCCTTT -ACGGAATGTAGCCCGTAAGGTCTT -ACGGAATGTAGCCCGTAAACGCTT -ACGGAATGTAGCCCGTAAAGCGTT -ACGGAATGTAGCCCGTAATTCGTC -ACGGAATGTAGCCCGTAATCTCTC -ACGGAATGTAGCCCGTAATGGATC -ACGGAATGTAGCCCGTAACACTTC -ACGGAATGTAGCCCGTAAGTACTC -ACGGAATGTAGCCCGTAAGATGTC -ACGGAATGTAGCCCGTAAACAGTC -ACGGAATGTAGCCCGTAATTGCTG -ACGGAATGTAGCCCGTAATCCATG -ACGGAATGTAGCCCGTAATGTGTG -ACGGAATGTAGCCCGTAACTAGTG -ACGGAATGTAGCCCGTAACATCTG -ACGGAATGTAGCCCGTAAGAGTTG -ACGGAATGTAGCCCGTAAAGACTG -ACGGAATGTAGCCCGTAATCGGTA -ACGGAATGTAGCCCGTAATGCCTA -ACGGAATGTAGCCCGTAACCACTA -ACGGAATGTAGCCCGTAAGGAGTA -ACGGAATGTAGCCCGTAATCGTCT -ACGGAATGTAGCCCGTAATGCACT -ACGGAATGTAGCCCGTAACTGACT -ACGGAATGTAGCCCGTAACAACCT -ACGGAATGTAGCCCGTAAGCTACT -ACGGAATGTAGCCCGTAAGGATCT -ACGGAATGTAGCCCGTAAAAGGCT -ACGGAATGTAGCCCGTAATCAACC -ACGGAATGTAGCCCGTAATGTTCC -ACGGAATGTAGCCCGTAAATTCCC -ACGGAATGTAGCCCGTAATTCTCG -ACGGAATGTAGCCCGTAATAGACG -ACGGAATGTAGCCCGTAAGTAACG -ACGGAATGTAGCCCGTAAACTTCG -ACGGAATGTAGCCCGTAATACGCA -ACGGAATGTAGCCCGTAACTTGCA -ACGGAATGTAGCCCGTAACGAACA -ACGGAATGTAGCCCGTAACAGTCA -ACGGAATGTAGCCCGTAAGATCCA -ACGGAATGTAGCCCGTAAACGACA -ACGGAATGTAGCCCGTAAAGCTCA -ACGGAATGTAGCCCGTAATCACGT -ACGGAATGTAGCCCGTAACGTAGT -ACGGAATGTAGCCCGTAAGTCAGT -ACGGAATGTAGCCCGTAAGAAGGT -ACGGAATGTAGCCCGTAAAACCGT -ACGGAATGTAGCCCGTAATTGTGC -ACGGAATGTAGCCCGTAACTAAGC -ACGGAATGTAGCCCGTAAACTAGC -ACGGAATGTAGCCCGTAAAGATGC -ACGGAATGTAGCCCGTAATGAAGG -ACGGAATGTAGCCCGTAACAATGG -ACGGAATGTAGCCCGTAAATGAGG -ACGGAATGTAGCCCGTAAAATGGG -ACGGAATGTAGCCCGTAATCCTGA -ACGGAATGTAGCCCGTAATAGCGA -ACGGAATGTAGCCCGTAACACAGA -ACGGAATGTAGCCCGTAAGCAAGA -ACGGAATGTAGCCCGTAAGGTTGA -ACGGAATGTAGCCCGTAATCCGAT -ACGGAATGTAGCCCGTAATGGCAT -ACGGAATGTAGCCCGTAACGAGAT -ACGGAATGTAGCCCGTAATACCAC -ACGGAATGTAGCCCGTAACAGAAC -ACGGAATGTAGCCCGTAAGTCTAC -ACGGAATGTAGCCCGTAAACGTAC -ACGGAATGTAGCCCGTAAAGTGAC -ACGGAATGTAGCCCGTAACTGTAG -ACGGAATGTAGCCCGTAACCTAAG -ACGGAATGTAGCCCGTAAGTTCAG -ACGGAATGTAGCCCGTAAGCATAG -ACGGAATGTAGCCCGTAAGACAAG -ACGGAATGTAGCCCGTAAAAGCAG -ACGGAATGTAGCCCGTAACGTCAA -ACGGAATGTAGCCCGTAAGCTGAA -ACGGAATGTAGCCCGTAAAGTACG -ACGGAATGTAGCCCGTAAATCCGA -ACGGAATGTAGCCCGTAAATGGGA -ACGGAATGTAGCCCGTAAGTGCAA -ACGGAATGTAGCCCGTAAGAGGAA -ACGGAATGTAGCCCGTAACAGGTA -ACGGAATGTAGCCCGTAAGACTCT -ACGGAATGTAGCCCGTAAAGTCCT -ACGGAATGTAGCCCGTAATAAGCC -ACGGAATGTAGCCCGTAAATAGCC -ACGGAATGTAGCCCGTAATAACCG -ACGGAATGTAGCCCGTAAATGCCA -ACGGAATGTAGCCCAATGGGAAAC -ACGGAATGTAGCCCAATGAACACC -ACGGAATGTAGCCCAATGATCGAG -ACGGAATGTAGCCCAATGCTCCTT -ACGGAATGTAGCCCAATGCCTGTT -ACGGAATGTAGCCCAATGCGGTTT -ACGGAATGTAGCCCAATGGTGGTT -ACGGAATGTAGCCCAATGGCCTTT -ACGGAATGTAGCCCAATGGGTCTT -ACGGAATGTAGCCCAATGACGCTT -ACGGAATGTAGCCCAATGAGCGTT -ACGGAATGTAGCCCAATGTTCGTC -ACGGAATGTAGCCCAATGTCTCTC -ACGGAATGTAGCCCAATGTGGATC -ACGGAATGTAGCCCAATGCACTTC -ACGGAATGTAGCCCAATGGTACTC -ACGGAATGTAGCCCAATGGATGTC -ACGGAATGTAGCCCAATGACAGTC -ACGGAATGTAGCCCAATGTTGCTG -ACGGAATGTAGCCCAATGTCCATG -ACGGAATGTAGCCCAATGTGTGTG -ACGGAATGTAGCCCAATGCTAGTG -ACGGAATGTAGCCCAATGCATCTG -ACGGAATGTAGCCCAATGGAGTTG -ACGGAATGTAGCCCAATGAGACTG -ACGGAATGTAGCCCAATGTCGGTA -ACGGAATGTAGCCCAATGTGCCTA -ACGGAATGTAGCCCAATGCCACTA -ACGGAATGTAGCCCAATGGGAGTA -ACGGAATGTAGCCCAATGTCGTCT -ACGGAATGTAGCCCAATGTGCACT -ACGGAATGTAGCCCAATGCTGACT -ACGGAATGTAGCCCAATGCAACCT -ACGGAATGTAGCCCAATGGCTACT -ACGGAATGTAGCCCAATGGGATCT -ACGGAATGTAGCCCAATGAAGGCT -ACGGAATGTAGCCCAATGTCAACC -ACGGAATGTAGCCCAATGTGTTCC -ACGGAATGTAGCCCAATGATTCCC -ACGGAATGTAGCCCAATGTTCTCG -ACGGAATGTAGCCCAATGTAGACG -ACGGAATGTAGCCCAATGGTAACG -ACGGAATGTAGCCCAATGACTTCG -ACGGAATGTAGCCCAATGTACGCA -ACGGAATGTAGCCCAATGCTTGCA -ACGGAATGTAGCCCAATGCGAACA -ACGGAATGTAGCCCAATGCAGTCA -ACGGAATGTAGCCCAATGGATCCA -ACGGAATGTAGCCCAATGACGACA -ACGGAATGTAGCCCAATGAGCTCA -ACGGAATGTAGCCCAATGTCACGT -ACGGAATGTAGCCCAATGCGTAGT -ACGGAATGTAGCCCAATGGTCAGT -ACGGAATGTAGCCCAATGGAAGGT -ACGGAATGTAGCCCAATGAACCGT -ACGGAATGTAGCCCAATGTTGTGC -ACGGAATGTAGCCCAATGCTAAGC -ACGGAATGTAGCCCAATGACTAGC -ACGGAATGTAGCCCAATGAGATGC -ACGGAATGTAGCCCAATGTGAAGG -ACGGAATGTAGCCCAATGCAATGG -ACGGAATGTAGCCCAATGATGAGG -ACGGAATGTAGCCCAATGAATGGG -ACGGAATGTAGCCCAATGTCCTGA -ACGGAATGTAGCCCAATGTAGCGA -ACGGAATGTAGCCCAATGCACAGA -ACGGAATGTAGCCCAATGGCAAGA -ACGGAATGTAGCCCAATGGGTTGA -ACGGAATGTAGCCCAATGTCCGAT -ACGGAATGTAGCCCAATGTGGCAT -ACGGAATGTAGCCCAATGCGAGAT -ACGGAATGTAGCCCAATGTACCAC -ACGGAATGTAGCCCAATGCAGAAC -ACGGAATGTAGCCCAATGGTCTAC -ACGGAATGTAGCCCAATGACGTAC -ACGGAATGTAGCCCAATGAGTGAC -ACGGAATGTAGCCCAATGCTGTAG -ACGGAATGTAGCCCAATGCCTAAG -ACGGAATGTAGCCCAATGGTTCAG -ACGGAATGTAGCCCAATGGCATAG -ACGGAATGTAGCCCAATGGACAAG -ACGGAATGTAGCCCAATGAAGCAG -ACGGAATGTAGCCCAATGCGTCAA -ACGGAATGTAGCCCAATGGCTGAA -ACGGAATGTAGCCCAATGAGTACG -ACGGAATGTAGCCCAATGATCCGA -ACGGAATGTAGCCCAATGATGGGA -ACGGAATGTAGCCCAATGGTGCAA -ACGGAATGTAGCCCAATGGAGGAA -ACGGAATGTAGCCCAATGCAGGTA -ACGGAATGTAGCCCAATGGACTCT -ACGGAATGTAGCCCAATGAGTCCT -ACGGAATGTAGCCCAATGTAAGCC -ACGGAATGTAGCCCAATGATAGCC -ACGGAATGTAGCCCAATGTAACCG -ACGGAATGTAGCCCAATGATGCCA -ACGGAACTAAGCAACGGAGGAAAC -ACGGAACTAAGCAACGGAAACACC -ACGGAACTAAGCAACGGAATCGAG -ACGGAACTAAGCAACGGACTCCTT -ACGGAACTAAGCAACGGACCTGTT -ACGGAACTAAGCAACGGACGGTTT -ACGGAACTAAGCAACGGAGTGGTT -ACGGAACTAAGCAACGGAGCCTTT -ACGGAACTAAGCAACGGAGGTCTT -ACGGAACTAAGCAACGGAACGCTT -ACGGAACTAAGCAACGGAAGCGTT -ACGGAACTAAGCAACGGATTCGTC -ACGGAACTAAGCAACGGATCTCTC -ACGGAACTAAGCAACGGATGGATC -ACGGAACTAAGCAACGGACACTTC -ACGGAACTAAGCAACGGAGTACTC -ACGGAACTAAGCAACGGAGATGTC -ACGGAACTAAGCAACGGAACAGTC -ACGGAACTAAGCAACGGATTGCTG -ACGGAACTAAGCAACGGATCCATG -ACGGAACTAAGCAACGGATGTGTG -ACGGAACTAAGCAACGGACTAGTG -ACGGAACTAAGCAACGGACATCTG -ACGGAACTAAGCAACGGAGAGTTG -ACGGAACTAAGCAACGGAAGACTG -ACGGAACTAAGCAACGGATCGGTA -ACGGAACTAAGCAACGGATGCCTA -ACGGAACTAAGCAACGGACCACTA -ACGGAACTAAGCAACGGAGGAGTA -ACGGAACTAAGCAACGGATCGTCT -ACGGAACTAAGCAACGGATGCACT -ACGGAACTAAGCAACGGACTGACT -ACGGAACTAAGCAACGGACAACCT -ACGGAACTAAGCAACGGAGCTACT -ACGGAACTAAGCAACGGAGGATCT -ACGGAACTAAGCAACGGAAAGGCT -ACGGAACTAAGCAACGGATCAACC -ACGGAACTAAGCAACGGATGTTCC -ACGGAACTAAGCAACGGAATTCCC -ACGGAACTAAGCAACGGATTCTCG -ACGGAACTAAGCAACGGATAGACG -ACGGAACTAAGCAACGGAGTAACG -ACGGAACTAAGCAACGGAACTTCG -ACGGAACTAAGCAACGGATACGCA -ACGGAACTAAGCAACGGACTTGCA -ACGGAACTAAGCAACGGACGAACA -ACGGAACTAAGCAACGGACAGTCA -ACGGAACTAAGCAACGGAGATCCA -ACGGAACTAAGCAACGGAACGACA -ACGGAACTAAGCAACGGAAGCTCA -ACGGAACTAAGCAACGGATCACGT -ACGGAACTAAGCAACGGACGTAGT -ACGGAACTAAGCAACGGAGTCAGT -ACGGAACTAAGCAACGGAGAAGGT -ACGGAACTAAGCAACGGAAACCGT -ACGGAACTAAGCAACGGATTGTGC -ACGGAACTAAGCAACGGACTAAGC -ACGGAACTAAGCAACGGAACTAGC -ACGGAACTAAGCAACGGAAGATGC -ACGGAACTAAGCAACGGATGAAGG -ACGGAACTAAGCAACGGACAATGG -ACGGAACTAAGCAACGGAATGAGG -ACGGAACTAAGCAACGGAAATGGG -ACGGAACTAAGCAACGGATCCTGA -ACGGAACTAAGCAACGGATAGCGA -ACGGAACTAAGCAACGGACACAGA -ACGGAACTAAGCAACGGAGCAAGA -ACGGAACTAAGCAACGGAGGTTGA -ACGGAACTAAGCAACGGATCCGAT -ACGGAACTAAGCAACGGATGGCAT -ACGGAACTAAGCAACGGACGAGAT -ACGGAACTAAGCAACGGATACCAC -ACGGAACTAAGCAACGGACAGAAC -ACGGAACTAAGCAACGGAGTCTAC -ACGGAACTAAGCAACGGAACGTAC -ACGGAACTAAGCAACGGAAGTGAC -ACGGAACTAAGCAACGGACTGTAG -ACGGAACTAAGCAACGGACCTAAG -ACGGAACTAAGCAACGGAGTTCAG -ACGGAACTAAGCAACGGAGCATAG -ACGGAACTAAGCAACGGAGACAAG -ACGGAACTAAGCAACGGAAAGCAG -ACGGAACTAAGCAACGGACGTCAA -ACGGAACTAAGCAACGGAGCTGAA -ACGGAACTAAGCAACGGAAGTACG -ACGGAACTAAGCAACGGAATCCGA -ACGGAACTAAGCAACGGAATGGGA -ACGGAACTAAGCAACGGAGTGCAA -ACGGAACTAAGCAACGGAGAGGAA -ACGGAACTAAGCAACGGACAGGTA -ACGGAACTAAGCAACGGAGACTCT -ACGGAACTAAGCAACGGAAGTCCT -ACGGAACTAAGCAACGGATAAGCC -ACGGAACTAAGCAACGGAATAGCC -ACGGAACTAAGCAACGGATAACCG -ACGGAACTAAGCAACGGAATGCCA -ACGGAACTAAGCACCAACGGAAAC -ACGGAACTAAGCACCAACAACACC -ACGGAACTAAGCACCAACATCGAG -ACGGAACTAAGCACCAACCTCCTT -ACGGAACTAAGCACCAACCCTGTT -ACGGAACTAAGCACCAACCGGTTT -ACGGAACTAAGCACCAACGTGGTT -ACGGAACTAAGCACCAACGCCTTT -ACGGAACTAAGCACCAACGGTCTT -ACGGAACTAAGCACCAACACGCTT -ACGGAACTAAGCACCAACAGCGTT -ACGGAACTAAGCACCAACTTCGTC -ACGGAACTAAGCACCAACTCTCTC -ACGGAACTAAGCACCAACTGGATC -ACGGAACTAAGCACCAACCACTTC -ACGGAACTAAGCACCAACGTACTC -ACGGAACTAAGCACCAACGATGTC -ACGGAACTAAGCACCAACACAGTC -ACGGAACTAAGCACCAACTTGCTG -ACGGAACTAAGCACCAACTCCATG -ACGGAACTAAGCACCAACTGTGTG -ACGGAACTAAGCACCAACCTAGTG -ACGGAACTAAGCACCAACCATCTG -ACGGAACTAAGCACCAACGAGTTG -ACGGAACTAAGCACCAACAGACTG -ACGGAACTAAGCACCAACTCGGTA -ACGGAACTAAGCACCAACTGCCTA -ACGGAACTAAGCACCAACCCACTA -ACGGAACTAAGCACCAACGGAGTA -ACGGAACTAAGCACCAACTCGTCT -ACGGAACTAAGCACCAACTGCACT -ACGGAACTAAGCACCAACCTGACT -ACGGAACTAAGCACCAACCAACCT -ACGGAACTAAGCACCAACGCTACT -ACGGAACTAAGCACCAACGGATCT -ACGGAACTAAGCACCAACAAGGCT -ACGGAACTAAGCACCAACTCAACC -ACGGAACTAAGCACCAACTGTTCC -ACGGAACTAAGCACCAACATTCCC -ACGGAACTAAGCACCAACTTCTCG -ACGGAACTAAGCACCAACTAGACG -ACGGAACTAAGCACCAACGTAACG -ACGGAACTAAGCACCAACACTTCG -ACGGAACTAAGCACCAACTACGCA -ACGGAACTAAGCACCAACCTTGCA -ACGGAACTAAGCACCAACCGAACA -ACGGAACTAAGCACCAACCAGTCA -ACGGAACTAAGCACCAACGATCCA -ACGGAACTAAGCACCAACACGACA -ACGGAACTAAGCACCAACAGCTCA -ACGGAACTAAGCACCAACTCACGT -ACGGAACTAAGCACCAACCGTAGT -ACGGAACTAAGCACCAACGTCAGT -ACGGAACTAAGCACCAACGAAGGT -ACGGAACTAAGCACCAACAACCGT -ACGGAACTAAGCACCAACTTGTGC -ACGGAACTAAGCACCAACCTAAGC -ACGGAACTAAGCACCAACACTAGC -ACGGAACTAAGCACCAACAGATGC -ACGGAACTAAGCACCAACTGAAGG -ACGGAACTAAGCACCAACCAATGG -ACGGAACTAAGCACCAACATGAGG -ACGGAACTAAGCACCAACAATGGG -ACGGAACTAAGCACCAACTCCTGA -ACGGAACTAAGCACCAACTAGCGA -ACGGAACTAAGCACCAACCACAGA -ACGGAACTAAGCACCAACGCAAGA -ACGGAACTAAGCACCAACGGTTGA -ACGGAACTAAGCACCAACTCCGAT -ACGGAACTAAGCACCAACTGGCAT -ACGGAACTAAGCACCAACCGAGAT -ACGGAACTAAGCACCAACTACCAC -ACGGAACTAAGCACCAACCAGAAC -ACGGAACTAAGCACCAACGTCTAC -ACGGAACTAAGCACCAACACGTAC -ACGGAACTAAGCACCAACAGTGAC -ACGGAACTAAGCACCAACCTGTAG -ACGGAACTAAGCACCAACCCTAAG -ACGGAACTAAGCACCAACGTTCAG -ACGGAACTAAGCACCAACGCATAG -ACGGAACTAAGCACCAACGACAAG -ACGGAACTAAGCACCAACAAGCAG -ACGGAACTAAGCACCAACCGTCAA -ACGGAACTAAGCACCAACGCTGAA -ACGGAACTAAGCACCAACAGTACG -ACGGAACTAAGCACCAACATCCGA -ACGGAACTAAGCACCAACATGGGA -ACGGAACTAAGCACCAACGTGCAA -ACGGAACTAAGCACCAACGAGGAA -ACGGAACTAAGCACCAACCAGGTA -ACGGAACTAAGCACCAACGACTCT -ACGGAACTAAGCACCAACAGTCCT -ACGGAACTAAGCACCAACTAAGCC -ACGGAACTAAGCACCAACATAGCC -ACGGAACTAAGCACCAACTAACCG -ACGGAACTAAGCACCAACATGCCA -ACGGAACTAAGCGAGATCGGAAAC -ACGGAACTAAGCGAGATCAACACC -ACGGAACTAAGCGAGATCATCGAG -ACGGAACTAAGCGAGATCCTCCTT -ACGGAACTAAGCGAGATCCCTGTT -ACGGAACTAAGCGAGATCCGGTTT -ACGGAACTAAGCGAGATCGTGGTT -ACGGAACTAAGCGAGATCGCCTTT -ACGGAACTAAGCGAGATCGGTCTT -ACGGAACTAAGCGAGATCACGCTT -ACGGAACTAAGCGAGATCAGCGTT -ACGGAACTAAGCGAGATCTTCGTC -ACGGAACTAAGCGAGATCTCTCTC -ACGGAACTAAGCGAGATCTGGATC -ACGGAACTAAGCGAGATCCACTTC -ACGGAACTAAGCGAGATCGTACTC -ACGGAACTAAGCGAGATCGATGTC -ACGGAACTAAGCGAGATCACAGTC -ACGGAACTAAGCGAGATCTTGCTG -ACGGAACTAAGCGAGATCTCCATG -ACGGAACTAAGCGAGATCTGTGTG -ACGGAACTAAGCGAGATCCTAGTG -ACGGAACTAAGCGAGATCCATCTG -ACGGAACTAAGCGAGATCGAGTTG -ACGGAACTAAGCGAGATCAGACTG -ACGGAACTAAGCGAGATCTCGGTA -ACGGAACTAAGCGAGATCTGCCTA -ACGGAACTAAGCGAGATCCCACTA -ACGGAACTAAGCGAGATCGGAGTA -ACGGAACTAAGCGAGATCTCGTCT -ACGGAACTAAGCGAGATCTGCACT -ACGGAACTAAGCGAGATCCTGACT -ACGGAACTAAGCGAGATCCAACCT -ACGGAACTAAGCGAGATCGCTACT -ACGGAACTAAGCGAGATCGGATCT -ACGGAACTAAGCGAGATCAAGGCT -ACGGAACTAAGCGAGATCTCAACC -ACGGAACTAAGCGAGATCTGTTCC -ACGGAACTAAGCGAGATCATTCCC -ACGGAACTAAGCGAGATCTTCTCG -ACGGAACTAAGCGAGATCTAGACG -ACGGAACTAAGCGAGATCGTAACG -ACGGAACTAAGCGAGATCACTTCG -ACGGAACTAAGCGAGATCTACGCA -ACGGAACTAAGCGAGATCCTTGCA -ACGGAACTAAGCGAGATCCGAACA -ACGGAACTAAGCGAGATCCAGTCA -ACGGAACTAAGCGAGATCGATCCA -ACGGAACTAAGCGAGATCACGACA -ACGGAACTAAGCGAGATCAGCTCA -ACGGAACTAAGCGAGATCTCACGT -ACGGAACTAAGCGAGATCCGTAGT -ACGGAACTAAGCGAGATCGTCAGT -ACGGAACTAAGCGAGATCGAAGGT -ACGGAACTAAGCGAGATCAACCGT -ACGGAACTAAGCGAGATCTTGTGC -ACGGAACTAAGCGAGATCCTAAGC -ACGGAACTAAGCGAGATCACTAGC -ACGGAACTAAGCGAGATCAGATGC -ACGGAACTAAGCGAGATCTGAAGG -ACGGAACTAAGCGAGATCCAATGG -ACGGAACTAAGCGAGATCATGAGG -ACGGAACTAAGCGAGATCAATGGG -ACGGAACTAAGCGAGATCTCCTGA -ACGGAACTAAGCGAGATCTAGCGA -ACGGAACTAAGCGAGATCCACAGA -ACGGAACTAAGCGAGATCGCAAGA -ACGGAACTAAGCGAGATCGGTTGA -ACGGAACTAAGCGAGATCTCCGAT -ACGGAACTAAGCGAGATCTGGCAT -ACGGAACTAAGCGAGATCCGAGAT -ACGGAACTAAGCGAGATCTACCAC -ACGGAACTAAGCGAGATCCAGAAC -ACGGAACTAAGCGAGATCGTCTAC -ACGGAACTAAGCGAGATCACGTAC -ACGGAACTAAGCGAGATCAGTGAC -ACGGAACTAAGCGAGATCCTGTAG -ACGGAACTAAGCGAGATCCCTAAG -ACGGAACTAAGCGAGATCGTTCAG -ACGGAACTAAGCGAGATCGCATAG -ACGGAACTAAGCGAGATCGACAAG -ACGGAACTAAGCGAGATCAAGCAG -ACGGAACTAAGCGAGATCCGTCAA -ACGGAACTAAGCGAGATCGCTGAA -ACGGAACTAAGCGAGATCAGTACG -ACGGAACTAAGCGAGATCATCCGA -ACGGAACTAAGCGAGATCATGGGA -ACGGAACTAAGCGAGATCGTGCAA -ACGGAACTAAGCGAGATCGAGGAA -ACGGAACTAAGCGAGATCCAGGTA -ACGGAACTAAGCGAGATCGACTCT -ACGGAACTAAGCGAGATCAGTCCT -ACGGAACTAAGCGAGATCTAAGCC -ACGGAACTAAGCGAGATCATAGCC -ACGGAACTAAGCGAGATCTAACCG -ACGGAACTAAGCGAGATCATGCCA -ACGGAACTAAGCCTTCTCGGAAAC -ACGGAACTAAGCCTTCTCAACACC -ACGGAACTAAGCCTTCTCATCGAG -ACGGAACTAAGCCTTCTCCTCCTT -ACGGAACTAAGCCTTCTCCCTGTT -ACGGAACTAAGCCTTCTCCGGTTT -ACGGAACTAAGCCTTCTCGTGGTT -ACGGAACTAAGCCTTCTCGCCTTT -ACGGAACTAAGCCTTCTCGGTCTT -ACGGAACTAAGCCTTCTCACGCTT -ACGGAACTAAGCCTTCTCAGCGTT -ACGGAACTAAGCCTTCTCTTCGTC -ACGGAACTAAGCCTTCTCTCTCTC -ACGGAACTAAGCCTTCTCTGGATC -ACGGAACTAAGCCTTCTCCACTTC -ACGGAACTAAGCCTTCTCGTACTC -ACGGAACTAAGCCTTCTCGATGTC -ACGGAACTAAGCCTTCTCACAGTC -ACGGAACTAAGCCTTCTCTTGCTG -ACGGAACTAAGCCTTCTCTCCATG -ACGGAACTAAGCCTTCTCTGTGTG -ACGGAACTAAGCCTTCTCCTAGTG -ACGGAACTAAGCCTTCTCCATCTG -ACGGAACTAAGCCTTCTCGAGTTG -ACGGAACTAAGCCTTCTCAGACTG -ACGGAACTAAGCCTTCTCTCGGTA -ACGGAACTAAGCCTTCTCTGCCTA -ACGGAACTAAGCCTTCTCCCACTA -ACGGAACTAAGCCTTCTCGGAGTA -ACGGAACTAAGCCTTCTCTCGTCT -ACGGAACTAAGCCTTCTCTGCACT -ACGGAACTAAGCCTTCTCCTGACT -ACGGAACTAAGCCTTCTCCAACCT -ACGGAACTAAGCCTTCTCGCTACT -ACGGAACTAAGCCTTCTCGGATCT -ACGGAACTAAGCCTTCTCAAGGCT -ACGGAACTAAGCCTTCTCTCAACC -ACGGAACTAAGCCTTCTCTGTTCC -ACGGAACTAAGCCTTCTCATTCCC -ACGGAACTAAGCCTTCTCTTCTCG -ACGGAACTAAGCCTTCTCTAGACG -ACGGAACTAAGCCTTCTCGTAACG -ACGGAACTAAGCCTTCTCACTTCG -ACGGAACTAAGCCTTCTCTACGCA -ACGGAACTAAGCCTTCTCCTTGCA -ACGGAACTAAGCCTTCTCCGAACA -ACGGAACTAAGCCTTCTCCAGTCA -ACGGAACTAAGCCTTCTCGATCCA -ACGGAACTAAGCCTTCTCACGACA -ACGGAACTAAGCCTTCTCAGCTCA -ACGGAACTAAGCCTTCTCTCACGT -ACGGAACTAAGCCTTCTCCGTAGT -ACGGAACTAAGCCTTCTCGTCAGT -ACGGAACTAAGCCTTCTCGAAGGT -ACGGAACTAAGCCTTCTCAACCGT -ACGGAACTAAGCCTTCTCTTGTGC -ACGGAACTAAGCCTTCTCCTAAGC -ACGGAACTAAGCCTTCTCACTAGC -ACGGAACTAAGCCTTCTCAGATGC -ACGGAACTAAGCCTTCTCTGAAGG -ACGGAACTAAGCCTTCTCCAATGG -ACGGAACTAAGCCTTCTCATGAGG -ACGGAACTAAGCCTTCTCAATGGG -ACGGAACTAAGCCTTCTCTCCTGA -ACGGAACTAAGCCTTCTCTAGCGA -ACGGAACTAAGCCTTCTCCACAGA -ACGGAACTAAGCCTTCTCGCAAGA -ACGGAACTAAGCCTTCTCGGTTGA -ACGGAACTAAGCCTTCTCTCCGAT -ACGGAACTAAGCCTTCTCTGGCAT -ACGGAACTAAGCCTTCTCCGAGAT -ACGGAACTAAGCCTTCTCTACCAC -ACGGAACTAAGCCTTCTCCAGAAC -ACGGAACTAAGCCTTCTCGTCTAC -ACGGAACTAAGCCTTCTCACGTAC -ACGGAACTAAGCCTTCTCAGTGAC -ACGGAACTAAGCCTTCTCCTGTAG -ACGGAACTAAGCCTTCTCCCTAAG -ACGGAACTAAGCCTTCTCGTTCAG -ACGGAACTAAGCCTTCTCGCATAG -ACGGAACTAAGCCTTCTCGACAAG -ACGGAACTAAGCCTTCTCAAGCAG -ACGGAACTAAGCCTTCTCCGTCAA -ACGGAACTAAGCCTTCTCGCTGAA -ACGGAACTAAGCCTTCTCAGTACG -ACGGAACTAAGCCTTCTCATCCGA -ACGGAACTAAGCCTTCTCATGGGA -ACGGAACTAAGCCTTCTCGTGCAA -ACGGAACTAAGCCTTCTCGAGGAA -ACGGAACTAAGCCTTCTCCAGGTA -ACGGAACTAAGCCTTCTCGACTCT -ACGGAACTAAGCCTTCTCAGTCCT -ACGGAACTAAGCCTTCTCTAAGCC -ACGGAACTAAGCCTTCTCATAGCC -ACGGAACTAAGCCTTCTCTAACCG -ACGGAACTAAGCCTTCTCATGCCA -ACGGAACTAAGCGTTCCTGGAAAC -ACGGAACTAAGCGTTCCTAACACC -ACGGAACTAAGCGTTCCTATCGAG -ACGGAACTAAGCGTTCCTCTCCTT -ACGGAACTAAGCGTTCCTCCTGTT -ACGGAACTAAGCGTTCCTCGGTTT -ACGGAACTAAGCGTTCCTGTGGTT -ACGGAACTAAGCGTTCCTGCCTTT -ACGGAACTAAGCGTTCCTGGTCTT -ACGGAACTAAGCGTTCCTACGCTT -ACGGAACTAAGCGTTCCTAGCGTT -ACGGAACTAAGCGTTCCTTTCGTC -ACGGAACTAAGCGTTCCTTCTCTC -ACGGAACTAAGCGTTCCTTGGATC -ACGGAACTAAGCGTTCCTCACTTC -ACGGAACTAAGCGTTCCTGTACTC -ACGGAACTAAGCGTTCCTGATGTC -ACGGAACTAAGCGTTCCTACAGTC -ACGGAACTAAGCGTTCCTTTGCTG -ACGGAACTAAGCGTTCCTTCCATG -ACGGAACTAAGCGTTCCTTGTGTG -ACGGAACTAAGCGTTCCTCTAGTG -ACGGAACTAAGCGTTCCTCATCTG -ACGGAACTAAGCGTTCCTGAGTTG -ACGGAACTAAGCGTTCCTAGACTG -ACGGAACTAAGCGTTCCTTCGGTA -ACGGAACTAAGCGTTCCTTGCCTA -ACGGAACTAAGCGTTCCTCCACTA -ACGGAACTAAGCGTTCCTGGAGTA -ACGGAACTAAGCGTTCCTTCGTCT -ACGGAACTAAGCGTTCCTTGCACT -ACGGAACTAAGCGTTCCTCTGACT -ACGGAACTAAGCGTTCCTCAACCT -ACGGAACTAAGCGTTCCTGCTACT -ACGGAACTAAGCGTTCCTGGATCT -ACGGAACTAAGCGTTCCTAAGGCT -ACGGAACTAAGCGTTCCTTCAACC -ACGGAACTAAGCGTTCCTTGTTCC -ACGGAACTAAGCGTTCCTATTCCC -ACGGAACTAAGCGTTCCTTTCTCG -ACGGAACTAAGCGTTCCTTAGACG -ACGGAACTAAGCGTTCCTGTAACG -ACGGAACTAAGCGTTCCTACTTCG -ACGGAACTAAGCGTTCCTTACGCA -ACGGAACTAAGCGTTCCTCTTGCA -ACGGAACTAAGCGTTCCTCGAACA -ACGGAACTAAGCGTTCCTCAGTCA -ACGGAACTAAGCGTTCCTGATCCA -ACGGAACTAAGCGTTCCTACGACA -ACGGAACTAAGCGTTCCTAGCTCA -ACGGAACTAAGCGTTCCTTCACGT -ACGGAACTAAGCGTTCCTCGTAGT -ACGGAACTAAGCGTTCCTGTCAGT -ACGGAACTAAGCGTTCCTGAAGGT -ACGGAACTAAGCGTTCCTAACCGT -ACGGAACTAAGCGTTCCTTTGTGC -ACGGAACTAAGCGTTCCTCTAAGC -ACGGAACTAAGCGTTCCTACTAGC -ACGGAACTAAGCGTTCCTAGATGC -ACGGAACTAAGCGTTCCTTGAAGG -ACGGAACTAAGCGTTCCTCAATGG -ACGGAACTAAGCGTTCCTATGAGG -ACGGAACTAAGCGTTCCTAATGGG -ACGGAACTAAGCGTTCCTTCCTGA -ACGGAACTAAGCGTTCCTTAGCGA -ACGGAACTAAGCGTTCCTCACAGA -ACGGAACTAAGCGTTCCTGCAAGA -ACGGAACTAAGCGTTCCTGGTTGA -ACGGAACTAAGCGTTCCTTCCGAT -ACGGAACTAAGCGTTCCTTGGCAT -ACGGAACTAAGCGTTCCTCGAGAT -ACGGAACTAAGCGTTCCTTACCAC -ACGGAACTAAGCGTTCCTCAGAAC -ACGGAACTAAGCGTTCCTGTCTAC -ACGGAACTAAGCGTTCCTACGTAC -ACGGAACTAAGCGTTCCTAGTGAC -ACGGAACTAAGCGTTCCTCTGTAG -ACGGAACTAAGCGTTCCTCCTAAG -ACGGAACTAAGCGTTCCTGTTCAG -ACGGAACTAAGCGTTCCTGCATAG -ACGGAACTAAGCGTTCCTGACAAG -ACGGAACTAAGCGTTCCTAAGCAG -ACGGAACTAAGCGTTCCTCGTCAA -ACGGAACTAAGCGTTCCTGCTGAA -ACGGAACTAAGCGTTCCTAGTACG -ACGGAACTAAGCGTTCCTATCCGA -ACGGAACTAAGCGTTCCTATGGGA -ACGGAACTAAGCGTTCCTGTGCAA -ACGGAACTAAGCGTTCCTGAGGAA -ACGGAACTAAGCGTTCCTCAGGTA -ACGGAACTAAGCGTTCCTGACTCT -ACGGAACTAAGCGTTCCTAGTCCT -ACGGAACTAAGCGTTCCTTAAGCC -ACGGAACTAAGCGTTCCTATAGCC -ACGGAACTAAGCGTTCCTTAACCG -ACGGAACTAAGCGTTCCTATGCCA -ACGGAACTAAGCTTTCGGGGAAAC -ACGGAACTAAGCTTTCGGAACACC -ACGGAACTAAGCTTTCGGATCGAG -ACGGAACTAAGCTTTCGGCTCCTT -ACGGAACTAAGCTTTCGGCCTGTT -ACGGAACTAAGCTTTCGGCGGTTT -ACGGAACTAAGCTTTCGGGTGGTT -ACGGAACTAAGCTTTCGGGCCTTT -ACGGAACTAAGCTTTCGGGGTCTT -ACGGAACTAAGCTTTCGGACGCTT -ACGGAACTAAGCTTTCGGAGCGTT -ACGGAACTAAGCTTTCGGTTCGTC -ACGGAACTAAGCTTTCGGTCTCTC -ACGGAACTAAGCTTTCGGTGGATC -ACGGAACTAAGCTTTCGGCACTTC -ACGGAACTAAGCTTTCGGGTACTC -ACGGAACTAAGCTTTCGGGATGTC -ACGGAACTAAGCTTTCGGACAGTC -ACGGAACTAAGCTTTCGGTTGCTG -ACGGAACTAAGCTTTCGGTCCATG -ACGGAACTAAGCTTTCGGTGTGTG -ACGGAACTAAGCTTTCGGCTAGTG -ACGGAACTAAGCTTTCGGCATCTG -ACGGAACTAAGCTTTCGGGAGTTG -ACGGAACTAAGCTTTCGGAGACTG -ACGGAACTAAGCTTTCGGTCGGTA -ACGGAACTAAGCTTTCGGTGCCTA -ACGGAACTAAGCTTTCGGCCACTA -ACGGAACTAAGCTTTCGGGGAGTA -ACGGAACTAAGCTTTCGGTCGTCT -ACGGAACTAAGCTTTCGGTGCACT -ACGGAACTAAGCTTTCGGCTGACT -ACGGAACTAAGCTTTCGGCAACCT -ACGGAACTAAGCTTTCGGGCTACT -ACGGAACTAAGCTTTCGGGGATCT -ACGGAACTAAGCTTTCGGAAGGCT -ACGGAACTAAGCTTTCGGTCAACC -ACGGAACTAAGCTTTCGGTGTTCC -ACGGAACTAAGCTTTCGGATTCCC -ACGGAACTAAGCTTTCGGTTCTCG -ACGGAACTAAGCTTTCGGTAGACG -ACGGAACTAAGCTTTCGGGTAACG -ACGGAACTAAGCTTTCGGACTTCG -ACGGAACTAAGCTTTCGGTACGCA -ACGGAACTAAGCTTTCGGCTTGCA -ACGGAACTAAGCTTTCGGCGAACA -ACGGAACTAAGCTTTCGGCAGTCA -ACGGAACTAAGCTTTCGGGATCCA -ACGGAACTAAGCTTTCGGACGACA -ACGGAACTAAGCTTTCGGAGCTCA -ACGGAACTAAGCTTTCGGTCACGT -ACGGAACTAAGCTTTCGGCGTAGT -ACGGAACTAAGCTTTCGGGTCAGT -ACGGAACTAAGCTTTCGGGAAGGT -ACGGAACTAAGCTTTCGGAACCGT -ACGGAACTAAGCTTTCGGTTGTGC -ACGGAACTAAGCTTTCGGCTAAGC -ACGGAACTAAGCTTTCGGACTAGC -ACGGAACTAAGCTTTCGGAGATGC -ACGGAACTAAGCTTTCGGTGAAGG -ACGGAACTAAGCTTTCGGCAATGG -ACGGAACTAAGCTTTCGGATGAGG -ACGGAACTAAGCTTTCGGAATGGG -ACGGAACTAAGCTTTCGGTCCTGA -ACGGAACTAAGCTTTCGGTAGCGA -ACGGAACTAAGCTTTCGGCACAGA -ACGGAACTAAGCTTTCGGGCAAGA -ACGGAACTAAGCTTTCGGGGTTGA -ACGGAACTAAGCTTTCGGTCCGAT -ACGGAACTAAGCTTTCGGTGGCAT -ACGGAACTAAGCTTTCGGCGAGAT -ACGGAACTAAGCTTTCGGTACCAC -ACGGAACTAAGCTTTCGGCAGAAC -ACGGAACTAAGCTTTCGGGTCTAC -ACGGAACTAAGCTTTCGGACGTAC -ACGGAACTAAGCTTTCGGAGTGAC -ACGGAACTAAGCTTTCGGCTGTAG -ACGGAACTAAGCTTTCGGCCTAAG -ACGGAACTAAGCTTTCGGGTTCAG -ACGGAACTAAGCTTTCGGGCATAG -ACGGAACTAAGCTTTCGGGACAAG -ACGGAACTAAGCTTTCGGAAGCAG -ACGGAACTAAGCTTTCGGCGTCAA -ACGGAACTAAGCTTTCGGGCTGAA -ACGGAACTAAGCTTTCGGAGTACG -ACGGAACTAAGCTTTCGGATCCGA -ACGGAACTAAGCTTTCGGATGGGA -ACGGAACTAAGCTTTCGGGTGCAA -ACGGAACTAAGCTTTCGGGAGGAA -ACGGAACTAAGCTTTCGGCAGGTA -ACGGAACTAAGCTTTCGGGACTCT -ACGGAACTAAGCTTTCGGAGTCCT -ACGGAACTAAGCTTTCGGTAAGCC -ACGGAACTAAGCTTTCGGATAGCC -ACGGAACTAAGCTTTCGGTAACCG -ACGGAACTAAGCTTTCGGATGCCA -ACGGAACTAAGCGTTGTGGGAAAC -ACGGAACTAAGCGTTGTGAACACC -ACGGAACTAAGCGTTGTGATCGAG -ACGGAACTAAGCGTTGTGCTCCTT -ACGGAACTAAGCGTTGTGCCTGTT -ACGGAACTAAGCGTTGTGCGGTTT -ACGGAACTAAGCGTTGTGGTGGTT -ACGGAACTAAGCGTTGTGGCCTTT -ACGGAACTAAGCGTTGTGGGTCTT -ACGGAACTAAGCGTTGTGACGCTT -ACGGAACTAAGCGTTGTGAGCGTT -ACGGAACTAAGCGTTGTGTTCGTC -ACGGAACTAAGCGTTGTGTCTCTC -ACGGAACTAAGCGTTGTGTGGATC -ACGGAACTAAGCGTTGTGCACTTC -ACGGAACTAAGCGTTGTGGTACTC -ACGGAACTAAGCGTTGTGGATGTC -ACGGAACTAAGCGTTGTGACAGTC -ACGGAACTAAGCGTTGTGTTGCTG -ACGGAACTAAGCGTTGTGTCCATG -ACGGAACTAAGCGTTGTGTGTGTG -ACGGAACTAAGCGTTGTGCTAGTG -ACGGAACTAAGCGTTGTGCATCTG -ACGGAACTAAGCGTTGTGGAGTTG -ACGGAACTAAGCGTTGTGAGACTG -ACGGAACTAAGCGTTGTGTCGGTA -ACGGAACTAAGCGTTGTGTGCCTA -ACGGAACTAAGCGTTGTGCCACTA -ACGGAACTAAGCGTTGTGGGAGTA -ACGGAACTAAGCGTTGTGTCGTCT -ACGGAACTAAGCGTTGTGTGCACT -ACGGAACTAAGCGTTGTGCTGACT -ACGGAACTAAGCGTTGTGCAACCT -ACGGAACTAAGCGTTGTGGCTACT -ACGGAACTAAGCGTTGTGGGATCT -ACGGAACTAAGCGTTGTGAAGGCT -ACGGAACTAAGCGTTGTGTCAACC -ACGGAACTAAGCGTTGTGTGTTCC -ACGGAACTAAGCGTTGTGATTCCC -ACGGAACTAAGCGTTGTGTTCTCG -ACGGAACTAAGCGTTGTGTAGACG -ACGGAACTAAGCGTTGTGGTAACG -ACGGAACTAAGCGTTGTGACTTCG -ACGGAACTAAGCGTTGTGTACGCA -ACGGAACTAAGCGTTGTGCTTGCA -ACGGAACTAAGCGTTGTGCGAACA -ACGGAACTAAGCGTTGTGCAGTCA -ACGGAACTAAGCGTTGTGGATCCA -ACGGAACTAAGCGTTGTGACGACA -ACGGAACTAAGCGTTGTGAGCTCA -ACGGAACTAAGCGTTGTGTCACGT -ACGGAACTAAGCGTTGTGCGTAGT -ACGGAACTAAGCGTTGTGGTCAGT -ACGGAACTAAGCGTTGTGGAAGGT -ACGGAACTAAGCGTTGTGAACCGT -ACGGAACTAAGCGTTGTGTTGTGC -ACGGAACTAAGCGTTGTGCTAAGC -ACGGAACTAAGCGTTGTGACTAGC -ACGGAACTAAGCGTTGTGAGATGC -ACGGAACTAAGCGTTGTGTGAAGG -ACGGAACTAAGCGTTGTGCAATGG -ACGGAACTAAGCGTTGTGATGAGG -ACGGAACTAAGCGTTGTGAATGGG -ACGGAACTAAGCGTTGTGTCCTGA -ACGGAACTAAGCGTTGTGTAGCGA -ACGGAACTAAGCGTTGTGCACAGA -ACGGAACTAAGCGTTGTGGCAAGA -ACGGAACTAAGCGTTGTGGGTTGA -ACGGAACTAAGCGTTGTGTCCGAT -ACGGAACTAAGCGTTGTGTGGCAT -ACGGAACTAAGCGTTGTGCGAGAT -ACGGAACTAAGCGTTGTGTACCAC -ACGGAACTAAGCGTTGTGCAGAAC -ACGGAACTAAGCGTTGTGGTCTAC -ACGGAACTAAGCGTTGTGACGTAC -ACGGAACTAAGCGTTGTGAGTGAC -ACGGAACTAAGCGTTGTGCTGTAG -ACGGAACTAAGCGTTGTGCCTAAG -ACGGAACTAAGCGTTGTGGTTCAG -ACGGAACTAAGCGTTGTGGCATAG -ACGGAACTAAGCGTTGTGGACAAG -ACGGAACTAAGCGTTGTGAAGCAG -ACGGAACTAAGCGTTGTGCGTCAA -ACGGAACTAAGCGTTGTGGCTGAA -ACGGAACTAAGCGTTGTGAGTACG -ACGGAACTAAGCGTTGTGATCCGA -ACGGAACTAAGCGTTGTGATGGGA -ACGGAACTAAGCGTTGTGGTGCAA -ACGGAACTAAGCGTTGTGGAGGAA -ACGGAACTAAGCGTTGTGCAGGTA -ACGGAACTAAGCGTTGTGGACTCT -ACGGAACTAAGCGTTGTGAGTCCT -ACGGAACTAAGCGTTGTGTAAGCC -ACGGAACTAAGCGTTGTGATAGCC -ACGGAACTAAGCGTTGTGTAACCG -ACGGAACTAAGCGTTGTGATGCCA -ACGGAACTAAGCTTTGCCGGAAAC -ACGGAACTAAGCTTTGCCAACACC -ACGGAACTAAGCTTTGCCATCGAG -ACGGAACTAAGCTTTGCCCTCCTT -ACGGAACTAAGCTTTGCCCCTGTT -ACGGAACTAAGCTTTGCCCGGTTT -ACGGAACTAAGCTTTGCCGTGGTT -ACGGAACTAAGCTTTGCCGCCTTT -ACGGAACTAAGCTTTGCCGGTCTT -ACGGAACTAAGCTTTGCCACGCTT -ACGGAACTAAGCTTTGCCAGCGTT -ACGGAACTAAGCTTTGCCTTCGTC -ACGGAACTAAGCTTTGCCTCTCTC -ACGGAACTAAGCTTTGCCTGGATC -ACGGAACTAAGCTTTGCCCACTTC -ACGGAACTAAGCTTTGCCGTACTC -ACGGAACTAAGCTTTGCCGATGTC -ACGGAACTAAGCTTTGCCACAGTC -ACGGAACTAAGCTTTGCCTTGCTG -ACGGAACTAAGCTTTGCCTCCATG -ACGGAACTAAGCTTTGCCTGTGTG -ACGGAACTAAGCTTTGCCCTAGTG -ACGGAACTAAGCTTTGCCCATCTG -ACGGAACTAAGCTTTGCCGAGTTG -ACGGAACTAAGCTTTGCCAGACTG -ACGGAACTAAGCTTTGCCTCGGTA -ACGGAACTAAGCTTTGCCTGCCTA -ACGGAACTAAGCTTTGCCCCACTA -ACGGAACTAAGCTTTGCCGGAGTA -ACGGAACTAAGCTTTGCCTCGTCT -ACGGAACTAAGCTTTGCCTGCACT -ACGGAACTAAGCTTTGCCCTGACT -ACGGAACTAAGCTTTGCCCAACCT -ACGGAACTAAGCTTTGCCGCTACT -ACGGAACTAAGCTTTGCCGGATCT -ACGGAACTAAGCTTTGCCAAGGCT -ACGGAACTAAGCTTTGCCTCAACC -ACGGAACTAAGCTTTGCCTGTTCC -ACGGAACTAAGCTTTGCCATTCCC -ACGGAACTAAGCTTTGCCTTCTCG -ACGGAACTAAGCTTTGCCTAGACG -ACGGAACTAAGCTTTGCCGTAACG -ACGGAACTAAGCTTTGCCACTTCG -ACGGAACTAAGCTTTGCCTACGCA -ACGGAACTAAGCTTTGCCCTTGCA -ACGGAACTAAGCTTTGCCCGAACA -ACGGAACTAAGCTTTGCCCAGTCA -ACGGAACTAAGCTTTGCCGATCCA -ACGGAACTAAGCTTTGCCACGACA -ACGGAACTAAGCTTTGCCAGCTCA -ACGGAACTAAGCTTTGCCTCACGT -ACGGAACTAAGCTTTGCCCGTAGT -ACGGAACTAAGCTTTGCCGTCAGT -ACGGAACTAAGCTTTGCCGAAGGT -ACGGAACTAAGCTTTGCCAACCGT -ACGGAACTAAGCTTTGCCTTGTGC -ACGGAACTAAGCTTTGCCCTAAGC -ACGGAACTAAGCTTTGCCACTAGC -ACGGAACTAAGCTTTGCCAGATGC -ACGGAACTAAGCTTTGCCTGAAGG -ACGGAACTAAGCTTTGCCCAATGG -ACGGAACTAAGCTTTGCCATGAGG -ACGGAACTAAGCTTTGCCAATGGG -ACGGAACTAAGCTTTGCCTCCTGA -ACGGAACTAAGCTTTGCCTAGCGA -ACGGAACTAAGCTTTGCCCACAGA -ACGGAACTAAGCTTTGCCGCAAGA -ACGGAACTAAGCTTTGCCGGTTGA -ACGGAACTAAGCTTTGCCTCCGAT -ACGGAACTAAGCTTTGCCTGGCAT -ACGGAACTAAGCTTTGCCCGAGAT -ACGGAACTAAGCTTTGCCTACCAC -ACGGAACTAAGCTTTGCCCAGAAC -ACGGAACTAAGCTTTGCCGTCTAC -ACGGAACTAAGCTTTGCCACGTAC -ACGGAACTAAGCTTTGCCAGTGAC -ACGGAACTAAGCTTTGCCCTGTAG -ACGGAACTAAGCTTTGCCCCTAAG -ACGGAACTAAGCTTTGCCGTTCAG -ACGGAACTAAGCTTTGCCGCATAG -ACGGAACTAAGCTTTGCCGACAAG -ACGGAACTAAGCTTTGCCAAGCAG -ACGGAACTAAGCTTTGCCCGTCAA -ACGGAACTAAGCTTTGCCGCTGAA -ACGGAACTAAGCTTTGCCAGTACG -ACGGAACTAAGCTTTGCCATCCGA -ACGGAACTAAGCTTTGCCATGGGA -ACGGAACTAAGCTTTGCCGTGCAA -ACGGAACTAAGCTTTGCCGAGGAA -ACGGAACTAAGCTTTGCCCAGGTA -ACGGAACTAAGCTTTGCCGACTCT -ACGGAACTAAGCTTTGCCAGTCCT -ACGGAACTAAGCTTTGCCTAAGCC -ACGGAACTAAGCTTTGCCATAGCC -ACGGAACTAAGCTTTGCCTAACCG -ACGGAACTAAGCTTTGCCATGCCA -ACGGAACTAAGCCTTGGTGGAAAC -ACGGAACTAAGCCTTGGTAACACC -ACGGAACTAAGCCTTGGTATCGAG -ACGGAACTAAGCCTTGGTCTCCTT -ACGGAACTAAGCCTTGGTCCTGTT -ACGGAACTAAGCCTTGGTCGGTTT -ACGGAACTAAGCCTTGGTGTGGTT -ACGGAACTAAGCCTTGGTGCCTTT -ACGGAACTAAGCCTTGGTGGTCTT -ACGGAACTAAGCCTTGGTACGCTT -ACGGAACTAAGCCTTGGTAGCGTT -ACGGAACTAAGCCTTGGTTTCGTC -ACGGAACTAAGCCTTGGTTCTCTC -ACGGAACTAAGCCTTGGTTGGATC -ACGGAACTAAGCCTTGGTCACTTC -ACGGAACTAAGCCTTGGTGTACTC -ACGGAACTAAGCCTTGGTGATGTC -ACGGAACTAAGCCTTGGTACAGTC -ACGGAACTAAGCCTTGGTTTGCTG -ACGGAACTAAGCCTTGGTTCCATG -ACGGAACTAAGCCTTGGTTGTGTG -ACGGAACTAAGCCTTGGTCTAGTG -ACGGAACTAAGCCTTGGTCATCTG -ACGGAACTAAGCCTTGGTGAGTTG -ACGGAACTAAGCCTTGGTAGACTG -ACGGAACTAAGCCTTGGTTCGGTA -ACGGAACTAAGCCTTGGTTGCCTA -ACGGAACTAAGCCTTGGTCCACTA -ACGGAACTAAGCCTTGGTGGAGTA -ACGGAACTAAGCCTTGGTTCGTCT -ACGGAACTAAGCCTTGGTTGCACT -ACGGAACTAAGCCTTGGTCTGACT -ACGGAACTAAGCCTTGGTCAACCT -ACGGAACTAAGCCTTGGTGCTACT -ACGGAACTAAGCCTTGGTGGATCT -ACGGAACTAAGCCTTGGTAAGGCT -ACGGAACTAAGCCTTGGTTCAACC -ACGGAACTAAGCCTTGGTTGTTCC -ACGGAACTAAGCCTTGGTATTCCC -ACGGAACTAAGCCTTGGTTTCTCG -ACGGAACTAAGCCTTGGTTAGACG -ACGGAACTAAGCCTTGGTGTAACG -ACGGAACTAAGCCTTGGTACTTCG -ACGGAACTAAGCCTTGGTTACGCA -ACGGAACTAAGCCTTGGTCTTGCA -ACGGAACTAAGCCTTGGTCGAACA -ACGGAACTAAGCCTTGGTCAGTCA -ACGGAACTAAGCCTTGGTGATCCA -ACGGAACTAAGCCTTGGTACGACA -ACGGAACTAAGCCTTGGTAGCTCA -ACGGAACTAAGCCTTGGTTCACGT -ACGGAACTAAGCCTTGGTCGTAGT -ACGGAACTAAGCCTTGGTGTCAGT -ACGGAACTAAGCCTTGGTGAAGGT -ACGGAACTAAGCCTTGGTAACCGT -ACGGAACTAAGCCTTGGTTTGTGC -ACGGAACTAAGCCTTGGTCTAAGC -ACGGAACTAAGCCTTGGTACTAGC -ACGGAACTAAGCCTTGGTAGATGC -ACGGAACTAAGCCTTGGTTGAAGG -ACGGAACTAAGCCTTGGTCAATGG -ACGGAACTAAGCCTTGGTATGAGG -ACGGAACTAAGCCTTGGTAATGGG -ACGGAACTAAGCCTTGGTTCCTGA -ACGGAACTAAGCCTTGGTTAGCGA -ACGGAACTAAGCCTTGGTCACAGA -ACGGAACTAAGCCTTGGTGCAAGA -ACGGAACTAAGCCTTGGTGGTTGA -ACGGAACTAAGCCTTGGTTCCGAT -ACGGAACTAAGCCTTGGTTGGCAT -ACGGAACTAAGCCTTGGTCGAGAT -ACGGAACTAAGCCTTGGTTACCAC -ACGGAACTAAGCCTTGGTCAGAAC -ACGGAACTAAGCCTTGGTGTCTAC -ACGGAACTAAGCCTTGGTACGTAC -ACGGAACTAAGCCTTGGTAGTGAC -ACGGAACTAAGCCTTGGTCTGTAG -ACGGAACTAAGCCTTGGTCCTAAG -ACGGAACTAAGCCTTGGTGTTCAG -ACGGAACTAAGCCTTGGTGCATAG -ACGGAACTAAGCCTTGGTGACAAG -ACGGAACTAAGCCTTGGTAAGCAG -ACGGAACTAAGCCTTGGTCGTCAA -ACGGAACTAAGCCTTGGTGCTGAA -ACGGAACTAAGCCTTGGTAGTACG -ACGGAACTAAGCCTTGGTATCCGA -ACGGAACTAAGCCTTGGTATGGGA -ACGGAACTAAGCCTTGGTGTGCAA -ACGGAACTAAGCCTTGGTGAGGAA -ACGGAACTAAGCCTTGGTCAGGTA -ACGGAACTAAGCCTTGGTGACTCT -ACGGAACTAAGCCTTGGTAGTCCT -ACGGAACTAAGCCTTGGTTAAGCC -ACGGAACTAAGCCTTGGTATAGCC -ACGGAACTAAGCCTTGGTTAACCG -ACGGAACTAAGCCTTGGTATGCCA -ACGGAACTAAGCCTTACGGGAAAC -ACGGAACTAAGCCTTACGAACACC -ACGGAACTAAGCCTTACGATCGAG -ACGGAACTAAGCCTTACGCTCCTT -ACGGAACTAAGCCTTACGCCTGTT -ACGGAACTAAGCCTTACGCGGTTT -ACGGAACTAAGCCTTACGGTGGTT -ACGGAACTAAGCCTTACGGCCTTT -ACGGAACTAAGCCTTACGGGTCTT -ACGGAACTAAGCCTTACGACGCTT -ACGGAACTAAGCCTTACGAGCGTT -ACGGAACTAAGCCTTACGTTCGTC -ACGGAACTAAGCCTTACGTCTCTC -ACGGAACTAAGCCTTACGTGGATC -ACGGAACTAAGCCTTACGCACTTC -ACGGAACTAAGCCTTACGGTACTC -ACGGAACTAAGCCTTACGGATGTC -ACGGAACTAAGCCTTACGACAGTC -ACGGAACTAAGCCTTACGTTGCTG -ACGGAACTAAGCCTTACGTCCATG -ACGGAACTAAGCCTTACGTGTGTG -ACGGAACTAAGCCTTACGCTAGTG -ACGGAACTAAGCCTTACGCATCTG -ACGGAACTAAGCCTTACGGAGTTG -ACGGAACTAAGCCTTACGAGACTG -ACGGAACTAAGCCTTACGTCGGTA -ACGGAACTAAGCCTTACGTGCCTA -ACGGAACTAAGCCTTACGCCACTA -ACGGAACTAAGCCTTACGGGAGTA -ACGGAACTAAGCCTTACGTCGTCT -ACGGAACTAAGCCTTACGTGCACT -ACGGAACTAAGCCTTACGCTGACT -ACGGAACTAAGCCTTACGCAACCT -ACGGAACTAAGCCTTACGGCTACT -ACGGAACTAAGCCTTACGGGATCT -ACGGAACTAAGCCTTACGAAGGCT -ACGGAACTAAGCCTTACGTCAACC -ACGGAACTAAGCCTTACGTGTTCC -ACGGAACTAAGCCTTACGATTCCC -ACGGAACTAAGCCTTACGTTCTCG -ACGGAACTAAGCCTTACGTAGACG -ACGGAACTAAGCCTTACGGTAACG -ACGGAACTAAGCCTTACGACTTCG -ACGGAACTAAGCCTTACGTACGCA -ACGGAACTAAGCCTTACGCTTGCA -ACGGAACTAAGCCTTACGCGAACA -ACGGAACTAAGCCTTACGCAGTCA -ACGGAACTAAGCCTTACGGATCCA -ACGGAACTAAGCCTTACGACGACA -ACGGAACTAAGCCTTACGAGCTCA -ACGGAACTAAGCCTTACGTCACGT -ACGGAACTAAGCCTTACGCGTAGT -ACGGAACTAAGCCTTACGGTCAGT -ACGGAACTAAGCCTTACGGAAGGT -ACGGAACTAAGCCTTACGAACCGT -ACGGAACTAAGCCTTACGTTGTGC -ACGGAACTAAGCCTTACGCTAAGC -ACGGAACTAAGCCTTACGACTAGC -ACGGAACTAAGCCTTACGAGATGC -ACGGAACTAAGCCTTACGTGAAGG -ACGGAACTAAGCCTTACGCAATGG -ACGGAACTAAGCCTTACGATGAGG -ACGGAACTAAGCCTTACGAATGGG -ACGGAACTAAGCCTTACGTCCTGA -ACGGAACTAAGCCTTACGTAGCGA -ACGGAACTAAGCCTTACGCACAGA -ACGGAACTAAGCCTTACGGCAAGA -ACGGAACTAAGCCTTACGGGTTGA -ACGGAACTAAGCCTTACGTCCGAT -ACGGAACTAAGCCTTACGTGGCAT -ACGGAACTAAGCCTTACGCGAGAT -ACGGAACTAAGCCTTACGTACCAC -ACGGAACTAAGCCTTACGCAGAAC -ACGGAACTAAGCCTTACGGTCTAC -ACGGAACTAAGCCTTACGACGTAC -ACGGAACTAAGCCTTACGAGTGAC -ACGGAACTAAGCCTTACGCTGTAG -ACGGAACTAAGCCTTACGCCTAAG -ACGGAACTAAGCCTTACGGTTCAG -ACGGAACTAAGCCTTACGGCATAG -ACGGAACTAAGCCTTACGGACAAG -ACGGAACTAAGCCTTACGAAGCAG -ACGGAACTAAGCCTTACGCGTCAA -ACGGAACTAAGCCTTACGGCTGAA -ACGGAACTAAGCCTTACGAGTACG -ACGGAACTAAGCCTTACGATCCGA -ACGGAACTAAGCCTTACGATGGGA -ACGGAACTAAGCCTTACGGTGCAA -ACGGAACTAAGCCTTACGGAGGAA -ACGGAACTAAGCCTTACGCAGGTA -ACGGAACTAAGCCTTACGGACTCT -ACGGAACTAAGCCTTACGAGTCCT -ACGGAACTAAGCCTTACGTAAGCC -ACGGAACTAAGCCTTACGATAGCC -ACGGAACTAAGCCTTACGTAACCG -ACGGAACTAAGCCTTACGATGCCA -ACGGAACTAAGCGTTAGCGGAAAC -ACGGAACTAAGCGTTAGCAACACC -ACGGAACTAAGCGTTAGCATCGAG -ACGGAACTAAGCGTTAGCCTCCTT -ACGGAACTAAGCGTTAGCCCTGTT -ACGGAACTAAGCGTTAGCCGGTTT -ACGGAACTAAGCGTTAGCGTGGTT -ACGGAACTAAGCGTTAGCGCCTTT -ACGGAACTAAGCGTTAGCGGTCTT -ACGGAACTAAGCGTTAGCACGCTT -ACGGAACTAAGCGTTAGCAGCGTT -ACGGAACTAAGCGTTAGCTTCGTC -ACGGAACTAAGCGTTAGCTCTCTC -ACGGAACTAAGCGTTAGCTGGATC -ACGGAACTAAGCGTTAGCCACTTC -ACGGAACTAAGCGTTAGCGTACTC -ACGGAACTAAGCGTTAGCGATGTC -ACGGAACTAAGCGTTAGCACAGTC -ACGGAACTAAGCGTTAGCTTGCTG -ACGGAACTAAGCGTTAGCTCCATG -ACGGAACTAAGCGTTAGCTGTGTG -ACGGAACTAAGCGTTAGCCTAGTG -ACGGAACTAAGCGTTAGCCATCTG -ACGGAACTAAGCGTTAGCGAGTTG -ACGGAACTAAGCGTTAGCAGACTG -ACGGAACTAAGCGTTAGCTCGGTA -ACGGAACTAAGCGTTAGCTGCCTA -ACGGAACTAAGCGTTAGCCCACTA -ACGGAACTAAGCGTTAGCGGAGTA -ACGGAACTAAGCGTTAGCTCGTCT -ACGGAACTAAGCGTTAGCTGCACT -ACGGAACTAAGCGTTAGCCTGACT -ACGGAACTAAGCGTTAGCCAACCT -ACGGAACTAAGCGTTAGCGCTACT -ACGGAACTAAGCGTTAGCGGATCT -ACGGAACTAAGCGTTAGCAAGGCT -ACGGAACTAAGCGTTAGCTCAACC -ACGGAACTAAGCGTTAGCTGTTCC -ACGGAACTAAGCGTTAGCATTCCC -ACGGAACTAAGCGTTAGCTTCTCG -ACGGAACTAAGCGTTAGCTAGACG -ACGGAACTAAGCGTTAGCGTAACG -ACGGAACTAAGCGTTAGCACTTCG -ACGGAACTAAGCGTTAGCTACGCA -ACGGAACTAAGCGTTAGCCTTGCA -ACGGAACTAAGCGTTAGCCGAACA -ACGGAACTAAGCGTTAGCCAGTCA -ACGGAACTAAGCGTTAGCGATCCA -ACGGAACTAAGCGTTAGCACGACA -ACGGAACTAAGCGTTAGCAGCTCA -ACGGAACTAAGCGTTAGCTCACGT -ACGGAACTAAGCGTTAGCCGTAGT -ACGGAACTAAGCGTTAGCGTCAGT -ACGGAACTAAGCGTTAGCGAAGGT -ACGGAACTAAGCGTTAGCAACCGT -ACGGAACTAAGCGTTAGCTTGTGC -ACGGAACTAAGCGTTAGCCTAAGC -ACGGAACTAAGCGTTAGCACTAGC -ACGGAACTAAGCGTTAGCAGATGC -ACGGAACTAAGCGTTAGCTGAAGG -ACGGAACTAAGCGTTAGCCAATGG -ACGGAACTAAGCGTTAGCATGAGG -ACGGAACTAAGCGTTAGCAATGGG -ACGGAACTAAGCGTTAGCTCCTGA -ACGGAACTAAGCGTTAGCTAGCGA -ACGGAACTAAGCGTTAGCCACAGA -ACGGAACTAAGCGTTAGCGCAAGA -ACGGAACTAAGCGTTAGCGGTTGA -ACGGAACTAAGCGTTAGCTCCGAT -ACGGAACTAAGCGTTAGCTGGCAT -ACGGAACTAAGCGTTAGCCGAGAT -ACGGAACTAAGCGTTAGCTACCAC -ACGGAACTAAGCGTTAGCCAGAAC -ACGGAACTAAGCGTTAGCGTCTAC -ACGGAACTAAGCGTTAGCACGTAC -ACGGAACTAAGCGTTAGCAGTGAC -ACGGAACTAAGCGTTAGCCTGTAG -ACGGAACTAAGCGTTAGCCCTAAG -ACGGAACTAAGCGTTAGCGTTCAG -ACGGAACTAAGCGTTAGCGCATAG -ACGGAACTAAGCGTTAGCGACAAG -ACGGAACTAAGCGTTAGCAAGCAG -ACGGAACTAAGCGTTAGCCGTCAA -ACGGAACTAAGCGTTAGCGCTGAA -ACGGAACTAAGCGTTAGCAGTACG -ACGGAACTAAGCGTTAGCATCCGA -ACGGAACTAAGCGTTAGCATGGGA -ACGGAACTAAGCGTTAGCGTGCAA -ACGGAACTAAGCGTTAGCGAGGAA -ACGGAACTAAGCGTTAGCCAGGTA -ACGGAACTAAGCGTTAGCGACTCT -ACGGAACTAAGCGTTAGCAGTCCT -ACGGAACTAAGCGTTAGCTAAGCC -ACGGAACTAAGCGTTAGCATAGCC -ACGGAACTAAGCGTTAGCTAACCG -ACGGAACTAAGCGTTAGCATGCCA -ACGGAACTAAGCGTCTTCGGAAAC -ACGGAACTAAGCGTCTTCAACACC -ACGGAACTAAGCGTCTTCATCGAG -ACGGAACTAAGCGTCTTCCTCCTT -ACGGAACTAAGCGTCTTCCCTGTT -ACGGAACTAAGCGTCTTCCGGTTT -ACGGAACTAAGCGTCTTCGTGGTT -ACGGAACTAAGCGTCTTCGCCTTT -ACGGAACTAAGCGTCTTCGGTCTT -ACGGAACTAAGCGTCTTCACGCTT -ACGGAACTAAGCGTCTTCAGCGTT -ACGGAACTAAGCGTCTTCTTCGTC -ACGGAACTAAGCGTCTTCTCTCTC -ACGGAACTAAGCGTCTTCTGGATC -ACGGAACTAAGCGTCTTCCACTTC -ACGGAACTAAGCGTCTTCGTACTC -ACGGAACTAAGCGTCTTCGATGTC -ACGGAACTAAGCGTCTTCACAGTC -ACGGAACTAAGCGTCTTCTTGCTG -ACGGAACTAAGCGTCTTCTCCATG -ACGGAACTAAGCGTCTTCTGTGTG -ACGGAACTAAGCGTCTTCCTAGTG -ACGGAACTAAGCGTCTTCCATCTG -ACGGAACTAAGCGTCTTCGAGTTG -ACGGAACTAAGCGTCTTCAGACTG -ACGGAACTAAGCGTCTTCTCGGTA -ACGGAACTAAGCGTCTTCTGCCTA -ACGGAACTAAGCGTCTTCCCACTA -ACGGAACTAAGCGTCTTCGGAGTA -ACGGAACTAAGCGTCTTCTCGTCT -ACGGAACTAAGCGTCTTCTGCACT -ACGGAACTAAGCGTCTTCCTGACT -ACGGAACTAAGCGTCTTCCAACCT -ACGGAACTAAGCGTCTTCGCTACT -ACGGAACTAAGCGTCTTCGGATCT -ACGGAACTAAGCGTCTTCAAGGCT -ACGGAACTAAGCGTCTTCTCAACC -ACGGAACTAAGCGTCTTCTGTTCC -ACGGAACTAAGCGTCTTCATTCCC -ACGGAACTAAGCGTCTTCTTCTCG -ACGGAACTAAGCGTCTTCTAGACG -ACGGAACTAAGCGTCTTCGTAACG -ACGGAACTAAGCGTCTTCACTTCG -ACGGAACTAAGCGTCTTCTACGCA -ACGGAACTAAGCGTCTTCCTTGCA -ACGGAACTAAGCGTCTTCCGAACA -ACGGAACTAAGCGTCTTCCAGTCA -ACGGAACTAAGCGTCTTCGATCCA -ACGGAACTAAGCGTCTTCACGACA -ACGGAACTAAGCGTCTTCAGCTCA -ACGGAACTAAGCGTCTTCTCACGT -ACGGAACTAAGCGTCTTCCGTAGT -ACGGAACTAAGCGTCTTCGTCAGT -ACGGAACTAAGCGTCTTCGAAGGT -ACGGAACTAAGCGTCTTCAACCGT -ACGGAACTAAGCGTCTTCTTGTGC -ACGGAACTAAGCGTCTTCCTAAGC -ACGGAACTAAGCGTCTTCACTAGC -ACGGAACTAAGCGTCTTCAGATGC -ACGGAACTAAGCGTCTTCTGAAGG -ACGGAACTAAGCGTCTTCCAATGG -ACGGAACTAAGCGTCTTCATGAGG -ACGGAACTAAGCGTCTTCAATGGG -ACGGAACTAAGCGTCTTCTCCTGA -ACGGAACTAAGCGTCTTCTAGCGA -ACGGAACTAAGCGTCTTCCACAGA -ACGGAACTAAGCGTCTTCGCAAGA -ACGGAACTAAGCGTCTTCGGTTGA -ACGGAACTAAGCGTCTTCTCCGAT -ACGGAACTAAGCGTCTTCTGGCAT -ACGGAACTAAGCGTCTTCCGAGAT -ACGGAACTAAGCGTCTTCTACCAC -ACGGAACTAAGCGTCTTCCAGAAC -ACGGAACTAAGCGTCTTCGTCTAC -ACGGAACTAAGCGTCTTCACGTAC -ACGGAACTAAGCGTCTTCAGTGAC -ACGGAACTAAGCGTCTTCCTGTAG -ACGGAACTAAGCGTCTTCCCTAAG -ACGGAACTAAGCGTCTTCGTTCAG -ACGGAACTAAGCGTCTTCGCATAG -ACGGAACTAAGCGTCTTCGACAAG -ACGGAACTAAGCGTCTTCAAGCAG -ACGGAACTAAGCGTCTTCCGTCAA -ACGGAACTAAGCGTCTTCGCTGAA -ACGGAACTAAGCGTCTTCAGTACG -ACGGAACTAAGCGTCTTCATCCGA -ACGGAACTAAGCGTCTTCATGGGA -ACGGAACTAAGCGTCTTCGTGCAA -ACGGAACTAAGCGTCTTCGAGGAA -ACGGAACTAAGCGTCTTCCAGGTA -ACGGAACTAAGCGTCTTCGACTCT -ACGGAACTAAGCGTCTTCAGTCCT -ACGGAACTAAGCGTCTTCTAAGCC -ACGGAACTAAGCGTCTTCATAGCC -ACGGAACTAAGCGTCTTCTAACCG -ACGGAACTAAGCGTCTTCATGCCA -ACGGAACTAAGCCTCTCTGGAAAC -ACGGAACTAAGCCTCTCTAACACC -ACGGAACTAAGCCTCTCTATCGAG -ACGGAACTAAGCCTCTCTCTCCTT -ACGGAACTAAGCCTCTCTCCTGTT -ACGGAACTAAGCCTCTCTCGGTTT -ACGGAACTAAGCCTCTCTGTGGTT -ACGGAACTAAGCCTCTCTGCCTTT -ACGGAACTAAGCCTCTCTGGTCTT -ACGGAACTAAGCCTCTCTACGCTT -ACGGAACTAAGCCTCTCTAGCGTT -ACGGAACTAAGCCTCTCTTTCGTC -ACGGAACTAAGCCTCTCTTCTCTC -ACGGAACTAAGCCTCTCTTGGATC -ACGGAACTAAGCCTCTCTCACTTC -ACGGAACTAAGCCTCTCTGTACTC -ACGGAACTAAGCCTCTCTGATGTC -ACGGAACTAAGCCTCTCTACAGTC -ACGGAACTAAGCCTCTCTTTGCTG -ACGGAACTAAGCCTCTCTTCCATG -ACGGAACTAAGCCTCTCTTGTGTG -ACGGAACTAAGCCTCTCTCTAGTG -ACGGAACTAAGCCTCTCTCATCTG -ACGGAACTAAGCCTCTCTGAGTTG -ACGGAACTAAGCCTCTCTAGACTG -ACGGAACTAAGCCTCTCTTCGGTA -ACGGAACTAAGCCTCTCTTGCCTA -ACGGAACTAAGCCTCTCTCCACTA -ACGGAACTAAGCCTCTCTGGAGTA -ACGGAACTAAGCCTCTCTTCGTCT -ACGGAACTAAGCCTCTCTTGCACT -ACGGAACTAAGCCTCTCTCTGACT -ACGGAACTAAGCCTCTCTCAACCT -ACGGAACTAAGCCTCTCTGCTACT -ACGGAACTAAGCCTCTCTGGATCT -ACGGAACTAAGCCTCTCTAAGGCT -ACGGAACTAAGCCTCTCTTCAACC -ACGGAACTAAGCCTCTCTTGTTCC -ACGGAACTAAGCCTCTCTATTCCC -ACGGAACTAAGCCTCTCTTTCTCG -ACGGAACTAAGCCTCTCTTAGACG -ACGGAACTAAGCCTCTCTGTAACG -ACGGAACTAAGCCTCTCTACTTCG -ACGGAACTAAGCCTCTCTTACGCA -ACGGAACTAAGCCTCTCTCTTGCA -ACGGAACTAAGCCTCTCTCGAACA -ACGGAACTAAGCCTCTCTCAGTCA -ACGGAACTAAGCCTCTCTGATCCA -ACGGAACTAAGCCTCTCTACGACA -ACGGAACTAAGCCTCTCTAGCTCA -ACGGAACTAAGCCTCTCTTCACGT -ACGGAACTAAGCCTCTCTCGTAGT -ACGGAACTAAGCCTCTCTGTCAGT -ACGGAACTAAGCCTCTCTGAAGGT -ACGGAACTAAGCCTCTCTAACCGT -ACGGAACTAAGCCTCTCTTTGTGC -ACGGAACTAAGCCTCTCTCTAAGC -ACGGAACTAAGCCTCTCTACTAGC -ACGGAACTAAGCCTCTCTAGATGC -ACGGAACTAAGCCTCTCTTGAAGG -ACGGAACTAAGCCTCTCTCAATGG -ACGGAACTAAGCCTCTCTATGAGG -ACGGAACTAAGCCTCTCTAATGGG -ACGGAACTAAGCCTCTCTTCCTGA -ACGGAACTAAGCCTCTCTTAGCGA -ACGGAACTAAGCCTCTCTCACAGA -ACGGAACTAAGCCTCTCTGCAAGA -ACGGAACTAAGCCTCTCTGGTTGA -ACGGAACTAAGCCTCTCTTCCGAT -ACGGAACTAAGCCTCTCTTGGCAT -ACGGAACTAAGCCTCTCTCGAGAT -ACGGAACTAAGCCTCTCTTACCAC -ACGGAACTAAGCCTCTCTCAGAAC -ACGGAACTAAGCCTCTCTGTCTAC -ACGGAACTAAGCCTCTCTACGTAC -ACGGAACTAAGCCTCTCTAGTGAC -ACGGAACTAAGCCTCTCTCTGTAG -ACGGAACTAAGCCTCTCTCCTAAG -ACGGAACTAAGCCTCTCTGTTCAG -ACGGAACTAAGCCTCTCTGCATAG -ACGGAACTAAGCCTCTCTGACAAG -ACGGAACTAAGCCTCTCTAAGCAG -ACGGAACTAAGCCTCTCTCGTCAA -ACGGAACTAAGCCTCTCTGCTGAA -ACGGAACTAAGCCTCTCTAGTACG -ACGGAACTAAGCCTCTCTATCCGA -ACGGAACTAAGCCTCTCTATGGGA -ACGGAACTAAGCCTCTCTGTGCAA -ACGGAACTAAGCCTCTCTGAGGAA -ACGGAACTAAGCCTCTCTCAGGTA -ACGGAACTAAGCCTCTCTGACTCT -ACGGAACTAAGCCTCTCTAGTCCT -ACGGAACTAAGCCTCTCTTAAGCC -ACGGAACTAAGCCTCTCTATAGCC -ACGGAACTAAGCCTCTCTTAACCG -ACGGAACTAAGCCTCTCTATGCCA -ACGGAACTAAGCATCTGGGGAAAC -ACGGAACTAAGCATCTGGAACACC -ACGGAACTAAGCATCTGGATCGAG -ACGGAACTAAGCATCTGGCTCCTT -ACGGAACTAAGCATCTGGCCTGTT -ACGGAACTAAGCATCTGGCGGTTT -ACGGAACTAAGCATCTGGGTGGTT -ACGGAACTAAGCATCTGGGCCTTT -ACGGAACTAAGCATCTGGGGTCTT -ACGGAACTAAGCATCTGGACGCTT -ACGGAACTAAGCATCTGGAGCGTT -ACGGAACTAAGCATCTGGTTCGTC -ACGGAACTAAGCATCTGGTCTCTC -ACGGAACTAAGCATCTGGTGGATC -ACGGAACTAAGCATCTGGCACTTC -ACGGAACTAAGCATCTGGGTACTC -ACGGAACTAAGCATCTGGGATGTC -ACGGAACTAAGCATCTGGACAGTC -ACGGAACTAAGCATCTGGTTGCTG -ACGGAACTAAGCATCTGGTCCATG -ACGGAACTAAGCATCTGGTGTGTG -ACGGAACTAAGCATCTGGCTAGTG -ACGGAACTAAGCATCTGGCATCTG -ACGGAACTAAGCATCTGGGAGTTG -ACGGAACTAAGCATCTGGAGACTG -ACGGAACTAAGCATCTGGTCGGTA -ACGGAACTAAGCATCTGGTGCCTA -ACGGAACTAAGCATCTGGCCACTA -ACGGAACTAAGCATCTGGGGAGTA -ACGGAACTAAGCATCTGGTCGTCT -ACGGAACTAAGCATCTGGTGCACT -ACGGAACTAAGCATCTGGCTGACT -ACGGAACTAAGCATCTGGCAACCT -ACGGAACTAAGCATCTGGGCTACT -ACGGAACTAAGCATCTGGGGATCT -ACGGAACTAAGCATCTGGAAGGCT -ACGGAACTAAGCATCTGGTCAACC -ACGGAACTAAGCATCTGGTGTTCC -ACGGAACTAAGCATCTGGATTCCC -ACGGAACTAAGCATCTGGTTCTCG -ACGGAACTAAGCATCTGGTAGACG -ACGGAACTAAGCATCTGGGTAACG -ACGGAACTAAGCATCTGGACTTCG -ACGGAACTAAGCATCTGGTACGCA -ACGGAACTAAGCATCTGGCTTGCA -ACGGAACTAAGCATCTGGCGAACA -ACGGAACTAAGCATCTGGCAGTCA -ACGGAACTAAGCATCTGGGATCCA -ACGGAACTAAGCATCTGGACGACA -ACGGAACTAAGCATCTGGAGCTCA -ACGGAACTAAGCATCTGGTCACGT -ACGGAACTAAGCATCTGGCGTAGT -ACGGAACTAAGCATCTGGGTCAGT -ACGGAACTAAGCATCTGGGAAGGT -ACGGAACTAAGCATCTGGAACCGT -ACGGAACTAAGCATCTGGTTGTGC -ACGGAACTAAGCATCTGGCTAAGC -ACGGAACTAAGCATCTGGACTAGC -ACGGAACTAAGCATCTGGAGATGC -ACGGAACTAAGCATCTGGTGAAGG -ACGGAACTAAGCATCTGGCAATGG -ACGGAACTAAGCATCTGGATGAGG -ACGGAACTAAGCATCTGGAATGGG -ACGGAACTAAGCATCTGGTCCTGA -ACGGAACTAAGCATCTGGTAGCGA -ACGGAACTAAGCATCTGGCACAGA -ACGGAACTAAGCATCTGGGCAAGA -ACGGAACTAAGCATCTGGGGTTGA -ACGGAACTAAGCATCTGGTCCGAT -ACGGAACTAAGCATCTGGTGGCAT -ACGGAACTAAGCATCTGGCGAGAT -ACGGAACTAAGCATCTGGTACCAC -ACGGAACTAAGCATCTGGCAGAAC -ACGGAACTAAGCATCTGGGTCTAC -ACGGAACTAAGCATCTGGACGTAC -ACGGAACTAAGCATCTGGAGTGAC -ACGGAACTAAGCATCTGGCTGTAG -ACGGAACTAAGCATCTGGCCTAAG -ACGGAACTAAGCATCTGGGTTCAG -ACGGAACTAAGCATCTGGGCATAG -ACGGAACTAAGCATCTGGGACAAG -ACGGAACTAAGCATCTGGAAGCAG -ACGGAACTAAGCATCTGGCGTCAA -ACGGAACTAAGCATCTGGGCTGAA -ACGGAACTAAGCATCTGGAGTACG -ACGGAACTAAGCATCTGGATCCGA -ACGGAACTAAGCATCTGGATGGGA -ACGGAACTAAGCATCTGGGTGCAA -ACGGAACTAAGCATCTGGGAGGAA -ACGGAACTAAGCATCTGGCAGGTA -ACGGAACTAAGCATCTGGGACTCT -ACGGAACTAAGCATCTGGAGTCCT -ACGGAACTAAGCATCTGGTAAGCC -ACGGAACTAAGCATCTGGATAGCC -ACGGAACTAAGCATCTGGTAACCG -ACGGAACTAAGCATCTGGATGCCA -ACGGAACTAAGCTTCCACGGAAAC -ACGGAACTAAGCTTCCACAACACC -ACGGAACTAAGCTTCCACATCGAG -ACGGAACTAAGCTTCCACCTCCTT -ACGGAACTAAGCTTCCACCCTGTT -ACGGAACTAAGCTTCCACCGGTTT -ACGGAACTAAGCTTCCACGTGGTT -ACGGAACTAAGCTTCCACGCCTTT -ACGGAACTAAGCTTCCACGGTCTT -ACGGAACTAAGCTTCCACACGCTT -ACGGAACTAAGCTTCCACAGCGTT -ACGGAACTAAGCTTCCACTTCGTC -ACGGAACTAAGCTTCCACTCTCTC -ACGGAACTAAGCTTCCACTGGATC -ACGGAACTAAGCTTCCACCACTTC -ACGGAACTAAGCTTCCACGTACTC -ACGGAACTAAGCTTCCACGATGTC -ACGGAACTAAGCTTCCACACAGTC -ACGGAACTAAGCTTCCACTTGCTG -ACGGAACTAAGCTTCCACTCCATG -ACGGAACTAAGCTTCCACTGTGTG -ACGGAACTAAGCTTCCACCTAGTG -ACGGAACTAAGCTTCCACCATCTG -ACGGAACTAAGCTTCCACGAGTTG -ACGGAACTAAGCTTCCACAGACTG -ACGGAACTAAGCTTCCACTCGGTA -ACGGAACTAAGCTTCCACTGCCTA -ACGGAACTAAGCTTCCACCCACTA -ACGGAACTAAGCTTCCACGGAGTA -ACGGAACTAAGCTTCCACTCGTCT -ACGGAACTAAGCTTCCACTGCACT -ACGGAACTAAGCTTCCACCTGACT -ACGGAACTAAGCTTCCACCAACCT -ACGGAACTAAGCTTCCACGCTACT -ACGGAACTAAGCTTCCACGGATCT -ACGGAACTAAGCTTCCACAAGGCT -ACGGAACTAAGCTTCCACTCAACC -ACGGAACTAAGCTTCCACTGTTCC -ACGGAACTAAGCTTCCACATTCCC -ACGGAACTAAGCTTCCACTTCTCG -ACGGAACTAAGCTTCCACTAGACG -ACGGAACTAAGCTTCCACGTAACG -ACGGAACTAAGCTTCCACACTTCG -ACGGAACTAAGCTTCCACTACGCA -ACGGAACTAAGCTTCCACCTTGCA -ACGGAACTAAGCTTCCACCGAACA -ACGGAACTAAGCTTCCACCAGTCA -ACGGAACTAAGCTTCCACGATCCA -ACGGAACTAAGCTTCCACACGACA -ACGGAACTAAGCTTCCACAGCTCA -ACGGAACTAAGCTTCCACTCACGT -ACGGAACTAAGCTTCCACCGTAGT -ACGGAACTAAGCTTCCACGTCAGT -ACGGAACTAAGCTTCCACGAAGGT -ACGGAACTAAGCTTCCACAACCGT -ACGGAACTAAGCTTCCACTTGTGC -ACGGAACTAAGCTTCCACCTAAGC -ACGGAACTAAGCTTCCACACTAGC -ACGGAACTAAGCTTCCACAGATGC -ACGGAACTAAGCTTCCACTGAAGG -ACGGAACTAAGCTTCCACCAATGG -ACGGAACTAAGCTTCCACATGAGG -ACGGAACTAAGCTTCCACAATGGG -ACGGAACTAAGCTTCCACTCCTGA -ACGGAACTAAGCTTCCACTAGCGA -ACGGAACTAAGCTTCCACCACAGA -ACGGAACTAAGCTTCCACGCAAGA -ACGGAACTAAGCTTCCACGGTTGA -ACGGAACTAAGCTTCCACTCCGAT -ACGGAACTAAGCTTCCACTGGCAT -ACGGAACTAAGCTTCCACCGAGAT -ACGGAACTAAGCTTCCACTACCAC -ACGGAACTAAGCTTCCACCAGAAC -ACGGAACTAAGCTTCCACGTCTAC -ACGGAACTAAGCTTCCACACGTAC -ACGGAACTAAGCTTCCACAGTGAC -ACGGAACTAAGCTTCCACCTGTAG -ACGGAACTAAGCTTCCACCCTAAG -ACGGAACTAAGCTTCCACGTTCAG -ACGGAACTAAGCTTCCACGCATAG -ACGGAACTAAGCTTCCACGACAAG -ACGGAACTAAGCTTCCACAAGCAG -ACGGAACTAAGCTTCCACCGTCAA -ACGGAACTAAGCTTCCACGCTGAA -ACGGAACTAAGCTTCCACAGTACG -ACGGAACTAAGCTTCCACATCCGA -ACGGAACTAAGCTTCCACATGGGA -ACGGAACTAAGCTTCCACGTGCAA -ACGGAACTAAGCTTCCACGAGGAA -ACGGAACTAAGCTTCCACCAGGTA -ACGGAACTAAGCTTCCACGACTCT -ACGGAACTAAGCTTCCACAGTCCT -ACGGAACTAAGCTTCCACTAAGCC -ACGGAACTAAGCTTCCACATAGCC -ACGGAACTAAGCTTCCACTAACCG -ACGGAACTAAGCTTCCACATGCCA -ACGGAACTAAGCCTCGTAGGAAAC -ACGGAACTAAGCCTCGTAAACACC -ACGGAACTAAGCCTCGTAATCGAG -ACGGAACTAAGCCTCGTACTCCTT -ACGGAACTAAGCCTCGTACCTGTT -ACGGAACTAAGCCTCGTACGGTTT -ACGGAACTAAGCCTCGTAGTGGTT -ACGGAACTAAGCCTCGTAGCCTTT -ACGGAACTAAGCCTCGTAGGTCTT -ACGGAACTAAGCCTCGTAACGCTT -ACGGAACTAAGCCTCGTAAGCGTT -ACGGAACTAAGCCTCGTATTCGTC -ACGGAACTAAGCCTCGTATCTCTC -ACGGAACTAAGCCTCGTATGGATC -ACGGAACTAAGCCTCGTACACTTC -ACGGAACTAAGCCTCGTAGTACTC -ACGGAACTAAGCCTCGTAGATGTC -ACGGAACTAAGCCTCGTAACAGTC -ACGGAACTAAGCCTCGTATTGCTG -ACGGAACTAAGCCTCGTATCCATG -ACGGAACTAAGCCTCGTATGTGTG -ACGGAACTAAGCCTCGTACTAGTG -ACGGAACTAAGCCTCGTACATCTG -ACGGAACTAAGCCTCGTAGAGTTG -ACGGAACTAAGCCTCGTAAGACTG -ACGGAACTAAGCCTCGTATCGGTA -ACGGAACTAAGCCTCGTATGCCTA -ACGGAACTAAGCCTCGTACCACTA -ACGGAACTAAGCCTCGTAGGAGTA -ACGGAACTAAGCCTCGTATCGTCT -ACGGAACTAAGCCTCGTATGCACT -ACGGAACTAAGCCTCGTACTGACT -ACGGAACTAAGCCTCGTACAACCT -ACGGAACTAAGCCTCGTAGCTACT -ACGGAACTAAGCCTCGTAGGATCT -ACGGAACTAAGCCTCGTAAAGGCT -ACGGAACTAAGCCTCGTATCAACC -ACGGAACTAAGCCTCGTATGTTCC -ACGGAACTAAGCCTCGTAATTCCC -ACGGAACTAAGCCTCGTATTCTCG -ACGGAACTAAGCCTCGTATAGACG -ACGGAACTAAGCCTCGTAGTAACG -ACGGAACTAAGCCTCGTAACTTCG -ACGGAACTAAGCCTCGTATACGCA -ACGGAACTAAGCCTCGTACTTGCA -ACGGAACTAAGCCTCGTACGAACA -ACGGAACTAAGCCTCGTACAGTCA -ACGGAACTAAGCCTCGTAGATCCA -ACGGAACTAAGCCTCGTAACGACA -ACGGAACTAAGCCTCGTAAGCTCA -ACGGAACTAAGCCTCGTATCACGT -ACGGAACTAAGCCTCGTACGTAGT -ACGGAACTAAGCCTCGTAGTCAGT -ACGGAACTAAGCCTCGTAGAAGGT -ACGGAACTAAGCCTCGTAAACCGT -ACGGAACTAAGCCTCGTATTGTGC -ACGGAACTAAGCCTCGTACTAAGC -ACGGAACTAAGCCTCGTAACTAGC -ACGGAACTAAGCCTCGTAAGATGC -ACGGAACTAAGCCTCGTATGAAGG -ACGGAACTAAGCCTCGTACAATGG -ACGGAACTAAGCCTCGTAATGAGG -ACGGAACTAAGCCTCGTAAATGGG -ACGGAACTAAGCCTCGTATCCTGA -ACGGAACTAAGCCTCGTATAGCGA -ACGGAACTAAGCCTCGTACACAGA -ACGGAACTAAGCCTCGTAGCAAGA -ACGGAACTAAGCCTCGTAGGTTGA -ACGGAACTAAGCCTCGTATCCGAT -ACGGAACTAAGCCTCGTATGGCAT -ACGGAACTAAGCCTCGTACGAGAT -ACGGAACTAAGCCTCGTATACCAC -ACGGAACTAAGCCTCGTACAGAAC -ACGGAACTAAGCCTCGTAGTCTAC -ACGGAACTAAGCCTCGTAACGTAC -ACGGAACTAAGCCTCGTAAGTGAC -ACGGAACTAAGCCTCGTACTGTAG -ACGGAACTAAGCCTCGTACCTAAG -ACGGAACTAAGCCTCGTAGTTCAG -ACGGAACTAAGCCTCGTAGCATAG -ACGGAACTAAGCCTCGTAGACAAG -ACGGAACTAAGCCTCGTAAAGCAG -ACGGAACTAAGCCTCGTACGTCAA -ACGGAACTAAGCCTCGTAGCTGAA -ACGGAACTAAGCCTCGTAAGTACG -ACGGAACTAAGCCTCGTAATCCGA -ACGGAACTAAGCCTCGTAATGGGA -ACGGAACTAAGCCTCGTAGTGCAA -ACGGAACTAAGCCTCGTAGAGGAA -ACGGAACTAAGCCTCGTACAGGTA -ACGGAACTAAGCCTCGTAGACTCT -ACGGAACTAAGCCTCGTAAGTCCT -ACGGAACTAAGCCTCGTATAAGCC -ACGGAACTAAGCCTCGTAATAGCC -ACGGAACTAAGCCTCGTATAACCG -ACGGAACTAAGCCTCGTAATGCCA -ACGGAACTAAGCGTCGATGGAAAC -ACGGAACTAAGCGTCGATAACACC -ACGGAACTAAGCGTCGATATCGAG -ACGGAACTAAGCGTCGATCTCCTT -ACGGAACTAAGCGTCGATCCTGTT -ACGGAACTAAGCGTCGATCGGTTT -ACGGAACTAAGCGTCGATGTGGTT -ACGGAACTAAGCGTCGATGCCTTT -ACGGAACTAAGCGTCGATGGTCTT -ACGGAACTAAGCGTCGATACGCTT -ACGGAACTAAGCGTCGATAGCGTT -ACGGAACTAAGCGTCGATTTCGTC -ACGGAACTAAGCGTCGATTCTCTC -ACGGAACTAAGCGTCGATTGGATC -ACGGAACTAAGCGTCGATCACTTC -ACGGAACTAAGCGTCGATGTACTC -ACGGAACTAAGCGTCGATGATGTC -ACGGAACTAAGCGTCGATACAGTC -ACGGAACTAAGCGTCGATTTGCTG -ACGGAACTAAGCGTCGATTCCATG -ACGGAACTAAGCGTCGATTGTGTG -ACGGAACTAAGCGTCGATCTAGTG -ACGGAACTAAGCGTCGATCATCTG -ACGGAACTAAGCGTCGATGAGTTG -ACGGAACTAAGCGTCGATAGACTG -ACGGAACTAAGCGTCGATTCGGTA -ACGGAACTAAGCGTCGATTGCCTA -ACGGAACTAAGCGTCGATCCACTA -ACGGAACTAAGCGTCGATGGAGTA -ACGGAACTAAGCGTCGATTCGTCT -ACGGAACTAAGCGTCGATTGCACT -ACGGAACTAAGCGTCGATCTGACT -ACGGAACTAAGCGTCGATCAACCT -ACGGAACTAAGCGTCGATGCTACT -ACGGAACTAAGCGTCGATGGATCT -ACGGAACTAAGCGTCGATAAGGCT -ACGGAACTAAGCGTCGATTCAACC -ACGGAACTAAGCGTCGATTGTTCC -ACGGAACTAAGCGTCGATATTCCC -ACGGAACTAAGCGTCGATTTCTCG -ACGGAACTAAGCGTCGATTAGACG -ACGGAACTAAGCGTCGATGTAACG -ACGGAACTAAGCGTCGATACTTCG -ACGGAACTAAGCGTCGATTACGCA -ACGGAACTAAGCGTCGATCTTGCA -ACGGAACTAAGCGTCGATCGAACA -ACGGAACTAAGCGTCGATCAGTCA -ACGGAACTAAGCGTCGATGATCCA -ACGGAACTAAGCGTCGATACGACA -ACGGAACTAAGCGTCGATAGCTCA -ACGGAACTAAGCGTCGATTCACGT -ACGGAACTAAGCGTCGATCGTAGT -ACGGAACTAAGCGTCGATGTCAGT -ACGGAACTAAGCGTCGATGAAGGT -ACGGAACTAAGCGTCGATAACCGT -ACGGAACTAAGCGTCGATTTGTGC -ACGGAACTAAGCGTCGATCTAAGC -ACGGAACTAAGCGTCGATACTAGC -ACGGAACTAAGCGTCGATAGATGC -ACGGAACTAAGCGTCGATTGAAGG -ACGGAACTAAGCGTCGATCAATGG -ACGGAACTAAGCGTCGATATGAGG -ACGGAACTAAGCGTCGATAATGGG -ACGGAACTAAGCGTCGATTCCTGA -ACGGAACTAAGCGTCGATTAGCGA -ACGGAACTAAGCGTCGATCACAGA -ACGGAACTAAGCGTCGATGCAAGA -ACGGAACTAAGCGTCGATGGTTGA -ACGGAACTAAGCGTCGATTCCGAT -ACGGAACTAAGCGTCGATTGGCAT -ACGGAACTAAGCGTCGATCGAGAT -ACGGAACTAAGCGTCGATTACCAC -ACGGAACTAAGCGTCGATCAGAAC -ACGGAACTAAGCGTCGATGTCTAC -ACGGAACTAAGCGTCGATACGTAC -ACGGAACTAAGCGTCGATAGTGAC -ACGGAACTAAGCGTCGATCTGTAG -ACGGAACTAAGCGTCGATCCTAAG -ACGGAACTAAGCGTCGATGTTCAG -ACGGAACTAAGCGTCGATGCATAG -ACGGAACTAAGCGTCGATGACAAG -ACGGAACTAAGCGTCGATAAGCAG -ACGGAACTAAGCGTCGATCGTCAA -ACGGAACTAAGCGTCGATGCTGAA -ACGGAACTAAGCGTCGATAGTACG -ACGGAACTAAGCGTCGATATCCGA -ACGGAACTAAGCGTCGATATGGGA -ACGGAACTAAGCGTCGATGTGCAA -ACGGAACTAAGCGTCGATGAGGAA -ACGGAACTAAGCGTCGATCAGGTA -ACGGAACTAAGCGTCGATGACTCT -ACGGAACTAAGCGTCGATAGTCCT -ACGGAACTAAGCGTCGATTAAGCC -ACGGAACTAAGCGTCGATATAGCC -ACGGAACTAAGCGTCGATTAACCG -ACGGAACTAAGCGTCGATATGCCA -ACGGAACTAAGCGTCACAGGAAAC -ACGGAACTAAGCGTCACAAACACC -ACGGAACTAAGCGTCACAATCGAG -ACGGAACTAAGCGTCACACTCCTT -ACGGAACTAAGCGTCACACCTGTT -ACGGAACTAAGCGTCACACGGTTT -ACGGAACTAAGCGTCACAGTGGTT -ACGGAACTAAGCGTCACAGCCTTT -ACGGAACTAAGCGTCACAGGTCTT -ACGGAACTAAGCGTCACAACGCTT -ACGGAACTAAGCGTCACAAGCGTT -ACGGAACTAAGCGTCACATTCGTC -ACGGAACTAAGCGTCACATCTCTC -ACGGAACTAAGCGTCACATGGATC -ACGGAACTAAGCGTCACACACTTC -ACGGAACTAAGCGTCACAGTACTC -ACGGAACTAAGCGTCACAGATGTC -ACGGAACTAAGCGTCACAACAGTC -ACGGAACTAAGCGTCACATTGCTG -ACGGAACTAAGCGTCACATCCATG -ACGGAACTAAGCGTCACATGTGTG -ACGGAACTAAGCGTCACACTAGTG -ACGGAACTAAGCGTCACACATCTG -ACGGAACTAAGCGTCACAGAGTTG -ACGGAACTAAGCGTCACAAGACTG -ACGGAACTAAGCGTCACATCGGTA -ACGGAACTAAGCGTCACATGCCTA -ACGGAACTAAGCGTCACACCACTA -ACGGAACTAAGCGTCACAGGAGTA -ACGGAACTAAGCGTCACATCGTCT -ACGGAACTAAGCGTCACATGCACT -ACGGAACTAAGCGTCACACTGACT -ACGGAACTAAGCGTCACACAACCT -ACGGAACTAAGCGTCACAGCTACT -ACGGAACTAAGCGTCACAGGATCT -ACGGAACTAAGCGTCACAAAGGCT -ACGGAACTAAGCGTCACATCAACC -ACGGAACTAAGCGTCACATGTTCC -ACGGAACTAAGCGTCACAATTCCC -ACGGAACTAAGCGTCACATTCTCG -ACGGAACTAAGCGTCACATAGACG -ACGGAACTAAGCGTCACAGTAACG -ACGGAACTAAGCGTCACAACTTCG -ACGGAACTAAGCGTCACATACGCA -ACGGAACTAAGCGTCACACTTGCA -ACGGAACTAAGCGTCACACGAACA -ACGGAACTAAGCGTCACACAGTCA -ACGGAACTAAGCGTCACAGATCCA -ACGGAACTAAGCGTCACAACGACA -ACGGAACTAAGCGTCACAAGCTCA -ACGGAACTAAGCGTCACATCACGT -ACGGAACTAAGCGTCACACGTAGT -ACGGAACTAAGCGTCACAGTCAGT -ACGGAACTAAGCGTCACAGAAGGT -ACGGAACTAAGCGTCACAAACCGT -ACGGAACTAAGCGTCACATTGTGC -ACGGAACTAAGCGTCACACTAAGC -ACGGAACTAAGCGTCACAACTAGC -ACGGAACTAAGCGTCACAAGATGC -ACGGAACTAAGCGTCACATGAAGG -ACGGAACTAAGCGTCACACAATGG -ACGGAACTAAGCGTCACAATGAGG -ACGGAACTAAGCGTCACAAATGGG -ACGGAACTAAGCGTCACATCCTGA -ACGGAACTAAGCGTCACATAGCGA -ACGGAACTAAGCGTCACACACAGA -ACGGAACTAAGCGTCACAGCAAGA -ACGGAACTAAGCGTCACAGGTTGA -ACGGAACTAAGCGTCACATCCGAT -ACGGAACTAAGCGTCACATGGCAT -ACGGAACTAAGCGTCACACGAGAT -ACGGAACTAAGCGTCACATACCAC -ACGGAACTAAGCGTCACACAGAAC -ACGGAACTAAGCGTCACAGTCTAC -ACGGAACTAAGCGTCACAACGTAC -ACGGAACTAAGCGTCACAAGTGAC -ACGGAACTAAGCGTCACACTGTAG -ACGGAACTAAGCGTCACACCTAAG -ACGGAACTAAGCGTCACAGTTCAG -ACGGAACTAAGCGTCACAGCATAG -ACGGAACTAAGCGTCACAGACAAG -ACGGAACTAAGCGTCACAAAGCAG -ACGGAACTAAGCGTCACACGTCAA -ACGGAACTAAGCGTCACAGCTGAA -ACGGAACTAAGCGTCACAAGTACG -ACGGAACTAAGCGTCACAATCCGA -ACGGAACTAAGCGTCACAATGGGA -ACGGAACTAAGCGTCACAGTGCAA -ACGGAACTAAGCGTCACAGAGGAA -ACGGAACTAAGCGTCACACAGGTA -ACGGAACTAAGCGTCACAGACTCT -ACGGAACTAAGCGTCACAAGTCCT -ACGGAACTAAGCGTCACATAAGCC -ACGGAACTAAGCGTCACAATAGCC -ACGGAACTAAGCGTCACATAACCG -ACGGAACTAAGCGTCACAATGCCA -ACGGAACTAAGCCTGTTGGGAAAC -ACGGAACTAAGCCTGTTGAACACC -ACGGAACTAAGCCTGTTGATCGAG -ACGGAACTAAGCCTGTTGCTCCTT -ACGGAACTAAGCCTGTTGCCTGTT -ACGGAACTAAGCCTGTTGCGGTTT -ACGGAACTAAGCCTGTTGGTGGTT -ACGGAACTAAGCCTGTTGGCCTTT -ACGGAACTAAGCCTGTTGGGTCTT -ACGGAACTAAGCCTGTTGACGCTT -ACGGAACTAAGCCTGTTGAGCGTT -ACGGAACTAAGCCTGTTGTTCGTC -ACGGAACTAAGCCTGTTGTCTCTC -ACGGAACTAAGCCTGTTGTGGATC -ACGGAACTAAGCCTGTTGCACTTC -ACGGAACTAAGCCTGTTGGTACTC -ACGGAACTAAGCCTGTTGGATGTC -ACGGAACTAAGCCTGTTGACAGTC -ACGGAACTAAGCCTGTTGTTGCTG -ACGGAACTAAGCCTGTTGTCCATG -ACGGAACTAAGCCTGTTGTGTGTG -ACGGAACTAAGCCTGTTGCTAGTG -ACGGAACTAAGCCTGTTGCATCTG -ACGGAACTAAGCCTGTTGGAGTTG -ACGGAACTAAGCCTGTTGAGACTG -ACGGAACTAAGCCTGTTGTCGGTA -ACGGAACTAAGCCTGTTGTGCCTA -ACGGAACTAAGCCTGTTGCCACTA -ACGGAACTAAGCCTGTTGGGAGTA -ACGGAACTAAGCCTGTTGTCGTCT -ACGGAACTAAGCCTGTTGTGCACT -ACGGAACTAAGCCTGTTGCTGACT -ACGGAACTAAGCCTGTTGCAACCT -ACGGAACTAAGCCTGTTGGCTACT -ACGGAACTAAGCCTGTTGGGATCT -ACGGAACTAAGCCTGTTGAAGGCT -ACGGAACTAAGCCTGTTGTCAACC -ACGGAACTAAGCCTGTTGTGTTCC -ACGGAACTAAGCCTGTTGATTCCC -ACGGAACTAAGCCTGTTGTTCTCG -ACGGAACTAAGCCTGTTGTAGACG -ACGGAACTAAGCCTGTTGGTAACG -ACGGAACTAAGCCTGTTGACTTCG -ACGGAACTAAGCCTGTTGTACGCA -ACGGAACTAAGCCTGTTGCTTGCA -ACGGAACTAAGCCTGTTGCGAACA -ACGGAACTAAGCCTGTTGCAGTCA -ACGGAACTAAGCCTGTTGGATCCA -ACGGAACTAAGCCTGTTGACGACA -ACGGAACTAAGCCTGTTGAGCTCA -ACGGAACTAAGCCTGTTGTCACGT -ACGGAACTAAGCCTGTTGCGTAGT -ACGGAACTAAGCCTGTTGGTCAGT -ACGGAACTAAGCCTGTTGGAAGGT -ACGGAACTAAGCCTGTTGAACCGT -ACGGAACTAAGCCTGTTGTTGTGC -ACGGAACTAAGCCTGTTGCTAAGC -ACGGAACTAAGCCTGTTGACTAGC -ACGGAACTAAGCCTGTTGAGATGC -ACGGAACTAAGCCTGTTGTGAAGG -ACGGAACTAAGCCTGTTGCAATGG -ACGGAACTAAGCCTGTTGATGAGG -ACGGAACTAAGCCTGTTGAATGGG -ACGGAACTAAGCCTGTTGTCCTGA -ACGGAACTAAGCCTGTTGTAGCGA -ACGGAACTAAGCCTGTTGCACAGA -ACGGAACTAAGCCTGTTGGCAAGA -ACGGAACTAAGCCTGTTGGGTTGA -ACGGAACTAAGCCTGTTGTCCGAT -ACGGAACTAAGCCTGTTGTGGCAT -ACGGAACTAAGCCTGTTGCGAGAT -ACGGAACTAAGCCTGTTGTACCAC -ACGGAACTAAGCCTGTTGCAGAAC -ACGGAACTAAGCCTGTTGGTCTAC -ACGGAACTAAGCCTGTTGACGTAC -ACGGAACTAAGCCTGTTGAGTGAC -ACGGAACTAAGCCTGTTGCTGTAG -ACGGAACTAAGCCTGTTGCCTAAG -ACGGAACTAAGCCTGTTGGTTCAG -ACGGAACTAAGCCTGTTGGCATAG -ACGGAACTAAGCCTGTTGGACAAG -ACGGAACTAAGCCTGTTGAAGCAG -ACGGAACTAAGCCTGTTGCGTCAA -ACGGAACTAAGCCTGTTGGCTGAA -ACGGAACTAAGCCTGTTGAGTACG -ACGGAACTAAGCCTGTTGATCCGA -ACGGAACTAAGCCTGTTGATGGGA -ACGGAACTAAGCCTGTTGGTGCAA -ACGGAACTAAGCCTGTTGGAGGAA -ACGGAACTAAGCCTGTTGCAGGTA -ACGGAACTAAGCCTGTTGGACTCT -ACGGAACTAAGCCTGTTGAGTCCT -ACGGAACTAAGCCTGTTGTAAGCC -ACGGAACTAAGCCTGTTGATAGCC -ACGGAACTAAGCCTGTTGTAACCG -ACGGAACTAAGCCTGTTGATGCCA -ACGGAACTAAGCATGTCCGGAAAC -ACGGAACTAAGCATGTCCAACACC -ACGGAACTAAGCATGTCCATCGAG -ACGGAACTAAGCATGTCCCTCCTT -ACGGAACTAAGCATGTCCCCTGTT -ACGGAACTAAGCATGTCCCGGTTT -ACGGAACTAAGCATGTCCGTGGTT -ACGGAACTAAGCATGTCCGCCTTT -ACGGAACTAAGCATGTCCGGTCTT -ACGGAACTAAGCATGTCCACGCTT -ACGGAACTAAGCATGTCCAGCGTT -ACGGAACTAAGCATGTCCTTCGTC -ACGGAACTAAGCATGTCCTCTCTC -ACGGAACTAAGCATGTCCTGGATC -ACGGAACTAAGCATGTCCCACTTC -ACGGAACTAAGCATGTCCGTACTC -ACGGAACTAAGCATGTCCGATGTC -ACGGAACTAAGCATGTCCACAGTC -ACGGAACTAAGCATGTCCTTGCTG -ACGGAACTAAGCATGTCCTCCATG -ACGGAACTAAGCATGTCCTGTGTG -ACGGAACTAAGCATGTCCCTAGTG -ACGGAACTAAGCATGTCCCATCTG -ACGGAACTAAGCATGTCCGAGTTG -ACGGAACTAAGCATGTCCAGACTG -ACGGAACTAAGCATGTCCTCGGTA -ACGGAACTAAGCATGTCCTGCCTA -ACGGAACTAAGCATGTCCCCACTA -ACGGAACTAAGCATGTCCGGAGTA -ACGGAACTAAGCATGTCCTCGTCT -ACGGAACTAAGCATGTCCTGCACT -ACGGAACTAAGCATGTCCCTGACT -ACGGAACTAAGCATGTCCCAACCT -ACGGAACTAAGCATGTCCGCTACT -ACGGAACTAAGCATGTCCGGATCT -ACGGAACTAAGCATGTCCAAGGCT -ACGGAACTAAGCATGTCCTCAACC -ACGGAACTAAGCATGTCCTGTTCC -ACGGAACTAAGCATGTCCATTCCC -ACGGAACTAAGCATGTCCTTCTCG -ACGGAACTAAGCATGTCCTAGACG -ACGGAACTAAGCATGTCCGTAACG -ACGGAACTAAGCATGTCCACTTCG -ACGGAACTAAGCATGTCCTACGCA -ACGGAACTAAGCATGTCCCTTGCA -ACGGAACTAAGCATGTCCCGAACA -ACGGAACTAAGCATGTCCCAGTCA -ACGGAACTAAGCATGTCCGATCCA -ACGGAACTAAGCATGTCCACGACA -ACGGAACTAAGCATGTCCAGCTCA -ACGGAACTAAGCATGTCCTCACGT -ACGGAACTAAGCATGTCCCGTAGT -ACGGAACTAAGCATGTCCGTCAGT -ACGGAACTAAGCATGTCCGAAGGT -ACGGAACTAAGCATGTCCAACCGT -ACGGAACTAAGCATGTCCTTGTGC -ACGGAACTAAGCATGTCCCTAAGC -ACGGAACTAAGCATGTCCACTAGC -ACGGAACTAAGCATGTCCAGATGC -ACGGAACTAAGCATGTCCTGAAGG -ACGGAACTAAGCATGTCCCAATGG -ACGGAACTAAGCATGTCCATGAGG -ACGGAACTAAGCATGTCCAATGGG -ACGGAACTAAGCATGTCCTCCTGA -ACGGAACTAAGCATGTCCTAGCGA -ACGGAACTAAGCATGTCCCACAGA -ACGGAACTAAGCATGTCCGCAAGA -ACGGAACTAAGCATGTCCGGTTGA -ACGGAACTAAGCATGTCCTCCGAT -ACGGAACTAAGCATGTCCTGGCAT -ACGGAACTAAGCATGTCCCGAGAT -ACGGAACTAAGCATGTCCTACCAC -ACGGAACTAAGCATGTCCCAGAAC -ACGGAACTAAGCATGTCCGTCTAC -ACGGAACTAAGCATGTCCACGTAC -ACGGAACTAAGCATGTCCAGTGAC -ACGGAACTAAGCATGTCCCTGTAG -ACGGAACTAAGCATGTCCCCTAAG -ACGGAACTAAGCATGTCCGTTCAG -ACGGAACTAAGCATGTCCGCATAG -ACGGAACTAAGCATGTCCGACAAG -ACGGAACTAAGCATGTCCAAGCAG -ACGGAACTAAGCATGTCCCGTCAA -ACGGAACTAAGCATGTCCGCTGAA -ACGGAACTAAGCATGTCCAGTACG -ACGGAACTAAGCATGTCCATCCGA -ACGGAACTAAGCATGTCCATGGGA -ACGGAACTAAGCATGTCCGTGCAA -ACGGAACTAAGCATGTCCGAGGAA -ACGGAACTAAGCATGTCCCAGGTA -ACGGAACTAAGCATGTCCGACTCT -ACGGAACTAAGCATGTCCAGTCCT -ACGGAACTAAGCATGTCCTAAGCC -ACGGAACTAAGCATGTCCATAGCC -ACGGAACTAAGCATGTCCTAACCG -ACGGAACTAAGCATGTCCATGCCA -ACGGAACTAAGCGTGTGTGGAAAC -ACGGAACTAAGCGTGTGTAACACC -ACGGAACTAAGCGTGTGTATCGAG -ACGGAACTAAGCGTGTGTCTCCTT -ACGGAACTAAGCGTGTGTCCTGTT -ACGGAACTAAGCGTGTGTCGGTTT -ACGGAACTAAGCGTGTGTGTGGTT -ACGGAACTAAGCGTGTGTGCCTTT -ACGGAACTAAGCGTGTGTGGTCTT -ACGGAACTAAGCGTGTGTACGCTT -ACGGAACTAAGCGTGTGTAGCGTT -ACGGAACTAAGCGTGTGTTTCGTC -ACGGAACTAAGCGTGTGTTCTCTC -ACGGAACTAAGCGTGTGTTGGATC -ACGGAACTAAGCGTGTGTCACTTC -ACGGAACTAAGCGTGTGTGTACTC -ACGGAACTAAGCGTGTGTGATGTC -ACGGAACTAAGCGTGTGTACAGTC -ACGGAACTAAGCGTGTGTTTGCTG -ACGGAACTAAGCGTGTGTTCCATG -ACGGAACTAAGCGTGTGTTGTGTG -ACGGAACTAAGCGTGTGTCTAGTG -ACGGAACTAAGCGTGTGTCATCTG -ACGGAACTAAGCGTGTGTGAGTTG -ACGGAACTAAGCGTGTGTAGACTG -ACGGAACTAAGCGTGTGTTCGGTA -ACGGAACTAAGCGTGTGTTGCCTA -ACGGAACTAAGCGTGTGTCCACTA -ACGGAACTAAGCGTGTGTGGAGTA -ACGGAACTAAGCGTGTGTTCGTCT -ACGGAACTAAGCGTGTGTTGCACT -ACGGAACTAAGCGTGTGTCTGACT -ACGGAACTAAGCGTGTGTCAACCT -ACGGAACTAAGCGTGTGTGCTACT -ACGGAACTAAGCGTGTGTGGATCT -ACGGAACTAAGCGTGTGTAAGGCT -ACGGAACTAAGCGTGTGTTCAACC -ACGGAACTAAGCGTGTGTTGTTCC -ACGGAACTAAGCGTGTGTATTCCC -ACGGAACTAAGCGTGTGTTTCTCG -ACGGAACTAAGCGTGTGTTAGACG -ACGGAACTAAGCGTGTGTGTAACG -ACGGAACTAAGCGTGTGTACTTCG -ACGGAACTAAGCGTGTGTTACGCA -ACGGAACTAAGCGTGTGTCTTGCA -ACGGAACTAAGCGTGTGTCGAACA -ACGGAACTAAGCGTGTGTCAGTCA -ACGGAACTAAGCGTGTGTGATCCA -ACGGAACTAAGCGTGTGTACGACA -ACGGAACTAAGCGTGTGTAGCTCA -ACGGAACTAAGCGTGTGTTCACGT -ACGGAACTAAGCGTGTGTCGTAGT -ACGGAACTAAGCGTGTGTGTCAGT -ACGGAACTAAGCGTGTGTGAAGGT -ACGGAACTAAGCGTGTGTAACCGT -ACGGAACTAAGCGTGTGTTTGTGC -ACGGAACTAAGCGTGTGTCTAAGC -ACGGAACTAAGCGTGTGTACTAGC -ACGGAACTAAGCGTGTGTAGATGC -ACGGAACTAAGCGTGTGTTGAAGG -ACGGAACTAAGCGTGTGTCAATGG -ACGGAACTAAGCGTGTGTATGAGG -ACGGAACTAAGCGTGTGTAATGGG -ACGGAACTAAGCGTGTGTTCCTGA -ACGGAACTAAGCGTGTGTTAGCGA -ACGGAACTAAGCGTGTGTCACAGA -ACGGAACTAAGCGTGTGTGCAAGA -ACGGAACTAAGCGTGTGTGGTTGA -ACGGAACTAAGCGTGTGTTCCGAT -ACGGAACTAAGCGTGTGTTGGCAT -ACGGAACTAAGCGTGTGTCGAGAT -ACGGAACTAAGCGTGTGTTACCAC -ACGGAACTAAGCGTGTGTCAGAAC -ACGGAACTAAGCGTGTGTGTCTAC -ACGGAACTAAGCGTGTGTACGTAC -ACGGAACTAAGCGTGTGTAGTGAC -ACGGAACTAAGCGTGTGTCTGTAG -ACGGAACTAAGCGTGTGTCCTAAG -ACGGAACTAAGCGTGTGTGTTCAG -ACGGAACTAAGCGTGTGTGCATAG -ACGGAACTAAGCGTGTGTGACAAG -ACGGAACTAAGCGTGTGTAAGCAG -ACGGAACTAAGCGTGTGTCGTCAA -ACGGAACTAAGCGTGTGTGCTGAA -ACGGAACTAAGCGTGTGTAGTACG -ACGGAACTAAGCGTGTGTATCCGA -ACGGAACTAAGCGTGTGTATGGGA -ACGGAACTAAGCGTGTGTGTGCAA -ACGGAACTAAGCGTGTGTGAGGAA -ACGGAACTAAGCGTGTGTCAGGTA -ACGGAACTAAGCGTGTGTGACTCT -ACGGAACTAAGCGTGTGTAGTCCT -ACGGAACTAAGCGTGTGTTAAGCC -ACGGAACTAAGCGTGTGTATAGCC -ACGGAACTAAGCGTGTGTTAACCG -ACGGAACTAAGCGTGTGTATGCCA -ACGGAACTAAGCGTGCTAGGAAAC -ACGGAACTAAGCGTGCTAAACACC -ACGGAACTAAGCGTGCTAATCGAG -ACGGAACTAAGCGTGCTACTCCTT -ACGGAACTAAGCGTGCTACCTGTT -ACGGAACTAAGCGTGCTACGGTTT -ACGGAACTAAGCGTGCTAGTGGTT -ACGGAACTAAGCGTGCTAGCCTTT -ACGGAACTAAGCGTGCTAGGTCTT -ACGGAACTAAGCGTGCTAACGCTT -ACGGAACTAAGCGTGCTAAGCGTT -ACGGAACTAAGCGTGCTATTCGTC -ACGGAACTAAGCGTGCTATCTCTC -ACGGAACTAAGCGTGCTATGGATC -ACGGAACTAAGCGTGCTACACTTC -ACGGAACTAAGCGTGCTAGTACTC -ACGGAACTAAGCGTGCTAGATGTC -ACGGAACTAAGCGTGCTAACAGTC -ACGGAACTAAGCGTGCTATTGCTG -ACGGAACTAAGCGTGCTATCCATG -ACGGAACTAAGCGTGCTATGTGTG -ACGGAACTAAGCGTGCTACTAGTG -ACGGAACTAAGCGTGCTACATCTG -ACGGAACTAAGCGTGCTAGAGTTG -ACGGAACTAAGCGTGCTAAGACTG -ACGGAACTAAGCGTGCTATCGGTA -ACGGAACTAAGCGTGCTATGCCTA -ACGGAACTAAGCGTGCTACCACTA -ACGGAACTAAGCGTGCTAGGAGTA -ACGGAACTAAGCGTGCTATCGTCT -ACGGAACTAAGCGTGCTATGCACT -ACGGAACTAAGCGTGCTACTGACT -ACGGAACTAAGCGTGCTACAACCT -ACGGAACTAAGCGTGCTAGCTACT -ACGGAACTAAGCGTGCTAGGATCT -ACGGAACTAAGCGTGCTAAAGGCT -ACGGAACTAAGCGTGCTATCAACC -ACGGAACTAAGCGTGCTATGTTCC -ACGGAACTAAGCGTGCTAATTCCC -ACGGAACTAAGCGTGCTATTCTCG -ACGGAACTAAGCGTGCTATAGACG -ACGGAACTAAGCGTGCTAGTAACG -ACGGAACTAAGCGTGCTAACTTCG -ACGGAACTAAGCGTGCTATACGCA -ACGGAACTAAGCGTGCTACTTGCA -ACGGAACTAAGCGTGCTACGAACA -ACGGAACTAAGCGTGCTACAGTCA -ACGGAACTAAGCGTGCTAGATCCA -ACGGAACTAAGCGTGCTAACGACA -ACGGAACTAAGCGTGCTAAGCTCA -ACGGAACTAAGCGTGCTATCACGT -ACGGAACTAAGCGTGCTACGTAGT -ACGGAACTAAGCGTGCTAGTCAGT -ACGGAACTAAGCGTGCTAGAAGGT -ACGGAACTAAGCGTGCTAAACCGT -ACGGAACTAAGCGTGCTATTGTGC -ACGGAACTAAGCGTGCTACTAAGC -ACGGAACTAAGCGTGCTAACTAGC -ACGGAACTAAGCGTGCTAAGATGC -ACGGAACTAAGCGTGCTATGAAGG -ACGGAACTAAGCGTGCTACAATGG -ACGGAACTAAGCGTGCTAATGAGG -ACGGAACTAAGCGTGCTAAATGGG -ACGGAACTAAGCGTGCTATCCTGA -ACGGAACTAAGCGTGCTATAGCGA -ACGGAACTAAGCGTGCTACACAGA -ACGGAACTAAGCGTGCTAGCAAGA -ACGGAACTAAGCGTGCTAGGTTGA -ACGGAACTAAGCGTGCTATCCGAT -ACGGAACTAAGCGTGCTATGGCAT -ACGGAACTAAGCGTGCTACGAGAT -ACGGAACTAAGCGTGCTATACCAC -ACGGAACTAAGCGTGCTACAGAAC -ACGGAACTAAGCGTGCTAGTCTAC -ACGGAACTAAGCGTGCTAACGTAC -ACGGAACTAAGCGTGCTAAGTGAC -ACGGAACTAAGCGTGCTACTGTAG -ACGGAACTAAGCGTGCTACCTAAG -ACGGAACTAAGCGTGCTAGTTCAG -ACGGAACTAAGCGTGCTAGCATAG -ACGGAACTAAGCGTGCTAGACAAG -ACGGAACTAAGCGTGCTAAAGCAG -ACGGAACTAAGCGTGCTACGTCAA -ACGGAACTAAGCGTGCTAGCTGAA -ACGGAACTAAGCGTGCTAAGTACG -ACGGAACTAAGCGTGCTAATCCGA -ACGGAACTAAGCGTGCTAATGGGA -ACGGAACTAAGCGTGCTAGTGCAA -ACGGAACTAAGCGTGCTAGAGGAA -ACGGAACTAAGCGTGCTACAGGTA -ACGGAACTAAGCGTGCTAGACTCT -ACGGAACTAAGCGTGCTAAGTCCT -ACGGAACTAAGCGTGCTATAAGCC -ACGGAACTAAGCGTGCTAATAGCC -ACGGAACTAAGCGTGCTATAACCG -ACGGAACTAAGCGTGCTAATGCCA -ACGGAACTAAGCCTGCATGGAAAC -ACGGAACTAAGCCTGCATAACACC -ACGGAACTAAGCCTGCATATCGAG -ACGGAACTAAGCCTGCATCTCCTT -ACGGAACTAAGCCTGCATCCTGTT -ACGGAACTAAGCCTGCATCGGTTT -ACGGAACTAAGCCTGCATGTGGTT -ACGGAACTAAGCCTGCATGCCTTT -ACGGAACTAAGCCTGCATGGTCTT -ACGGAACTAAGCCTGCATACGCTT -ACGGAACTAAGCCTGCATAGCGTT -ACGGAACTAAGCCTGCATTTCGTC -ACGGAACTAAGCCTGCATTCTCTC -ACGGAACTAAGCCTGCATTGGATC -ACGGAACTAAGCCTGCATCACTTC -ACGGAACTAAGCCTGCATGTACTC -ACGGAACTAAGCCTGCATGATGTC -ACGGAACTAAGCCTGCATACAGTC -ACGGAACTAAGCCTGCATTTGCTG -ACGGAACTAAGCCTGCATTCCATG -ACGGAACTAAGCCTGCATTGTGTG -ACGGAACTAAGCCTGCATCTAGTG -ACGGAACTAAGCCTGCATCATCTG -ACGGAACTAAGCCTGCATGAGTTG -ACGGAACTAAGCCTGCATAGACTG -ACGGAACTAAGCCTGCATTCGGTA -ACGGAACTAAGCCTGCATTGCCTA -ACGGAACTAAGCCTGCATCCACTA -ACGGAACTAAGCCTGCATGGAGTA -ACGGAACTAAGCCTGCATTCGTCT -ACGGAACTAAGCCTGCATTGCACT -ACGGAACTAAGCCTGCATCTGACT -ACGGAACTAAGCCTGCATCAACCT -ACGGAACTAAGCCTGCATGCTACT -ACGGAACTAAGCCTGCATGGATCT -ACGGAACTAAGCCTGCATAAGGCT -ACGGAACTAAGCCTGCATTCAACC -ACGGAACTAAGCCTGCATTGTTCC -ACGGAACTAAGCCTGCATATTCCC -ACGGAACTAAGCCTGCATTTCTCG -ACGGAACTAAGCCTGCATTAGACG -ACGGAACTAAGCCTGCATGTAACG -ACGGAACTAAGCCTGCATACTTCG -ACGGAACTAAGCCTGCATTACGCA -ACGGAACTAAGCCTGCATCTTGCA -ACGGAACTAAGCCTGCATCGAACA -ACGGAACTAAGCCTGCATCAGTCA -ACGGAACTAAGCCTGCATGATCCA -ACGGAACTAAGCCTGCATACGACA -ACGGAACTAAGCCTGCATAGCTCA -ACGGAACTAAGCCTGCATTCACGT -ACGGAACTAAGCCTGCATCGTAGT -ACGGAACTAAGCCTGCATGTCAGT -ACGGAACTAAGCCTGCATGAAGGT -ACGGAACTAAGCCTGCATAACCGT -ACGGAACTAAGCCTGCATTTGTGC -ACGGAACTAAGCCTGCATCTAAGC -ACGGAACTAAGCCTGCATACTAGC -ACGGAACTAAGCCTGCATAGATGC -ACGGAACTAAGCCTGCATTGAAGG -ACGGAACTAAGCCTGCATCAATGG -ACGGAACTAAGCCTGCATATGAGG -ACGGAACTAAGCCTGCATAATGGG -ACGGAACTAAGCCTGCATTCCTGA -ACGGAACTAAGCCTGCATTAGCGA -ACGGAACTAAGCCTGCATCACAGA -ACGGAACTAAGCCTGCATGCAAGA -ACGGAACTAAGCCTGCATGGTTGA -ACGGAACTAAGCCTGCATTCCGAT -ACGGAACTAAGCCTGCATTGGCAT -ACGGAACTAAGCCTGCATCGAGAT -ACGGAACTAAGCCTGCATTACCAC -ACGGAACTAAGCCTGCATCAGAAC -ACGGAACTAAGCCTGCATGTCTAC -ACGGAACTAAGCCTGCATACGTAC -ACGGAACTAAGCCTGCATAGTGAC -ACGGAACTAAGCCTGCATCTGTAG -ACGGAACTAAGCCTGCATCCTAAG -ACGGAACTAAGCCTGCATGTTCAG -ACGGAACTAAGCCTGCATGCATAG -ACGGAACTAAGCCTGCATGACAAG -ACGGAACTAAGCCTGCATAAGCAG -ACGGAACTAAGCCTGCATCGTCAA -ACGGAACTAAGCCTGCATGCTGAA -ACGGAACTAAGCCTGCATAGTACG -ACGGAACTAAGCCTGCATATCCGA -ACGGAACTAAGCCTGCATATGGGA -ACGGAACTAAGCCTGCATGTGCAA -ACGGAACTAAGCCTGCATGAGGAA -ACGGAACTAAGCCTGCATCAGGTA -ACGGAACTAAGCCTGCATGACTCT -ACGGAACTAAGCCTGCATAGTCCT -ACGGAACTAAGCCTGCATTAAGCC -ACGGAACTAAGCCTGCATATAGCC -ACGGAACTAAGCCTGCATTAACCG -ACGGAACTAAGCCTGCATATGCCA -ACGGAACTAAGCTTGGAGGGAAAC -ACGGAACTAAGCTTGGAGAACACC -ACGGAACTAAGCTTGGAGATCGAG -ACGGAACTAAGCTTGGAGCTCCTT -ACGGAACTAAGCTTGGAGCCTGTT -ACGGAACTAAGCTTGGAGCGGTTT -ACGGAACTAAGCTTGGAGGTGGTT -ACGGAACTAAGCTTGGAGGCCTTT -ACGGAACTAAGCTTGGAGGGTCTT -ACGGAACTAAGCTTGGAGACGCTT -ACGGAACTAAGCTTGGAGAGCGTT -ACGGAACTAAGCTTGGAGTTCGTC -ACGGAACTAAGCTTGGAGTCTCTC -ACGGAACTAAGCTTGGAGTGGATC -ACGGAACTAAGCTTGGAGCACTTC -ACGGAACTAAGCTTGGAGGTACTC -ACGGAACTAAGCTTGGAGGATGTC -ACGGAACTAAGCTTGGAGACAGTC -ACGGAACTAAGCTTGGAGTTGCTG -ACGGAACTAAGCTTGGAGTCCATG -ACGGAACTAAGCTTGGAGTGTGTG -ACGGAACTAAGCTTGGAGCTAGTG -ACGGAACTAAGCTTGGAGCATCTG -ACGGAACTAAGCTTGGAGGAGTTG -ACGGAACTAAGCTTGGAGAGACTG -ACGGAACTAAGCTTGGAGTCGGTA -ACGGAACTAAGCTTGGAGTGCCTA -ACGGAACTAAGCTTGGAGCCACTA -ACGGAACTAAGCTTGGAGGGAGTA -ACGGAACTAAGCTTGGAGTCGTCT -ACGGAACTAAGCTTGGAGTGCACT -ACGGAACTAAGCTTGGAGCTGACT -ACGGAACTAAGCTTGGAGCAACCT -ACGGAACTAAGCTTGGAGGCTACT -ACGGAACTAAGCTTGGAGGGATCT -ACGGAACTAAGCTTGGAGAAGGCT -ACGGAACTAAGCTTGGAGTCAACC -ACGGAACTAAGCTTGGAGTGTTCC -ACGGAACTAAGCTTGGAGATTCCC -ACGGAACTAAGCTTGGAGTTCTCG -ACGGAACTAAGCTTGGAGTAGACG -ACGGAACTAAGCTTGGAGGTAACG -ACGGAACTAAGCTTGGAGACTTCG -ACGGAACTAAGCTTGGAGTACGCA -ACGGAACTAAGCTTGGAGCTTGCA -ACGGAACTAAGCTTGGAGCGAACA -ACGGAACTAAGCTTGGAGCAGTCA -ACGGAACTAAGCTTGGAGGATCCA -ACGGAACTAAGCTTGGAGACGACA -ACGGAACTAAGCTTGGAGAGCTCA -ACGGAACTAAGCTTGGAGTCACGT -ACGGAACTAAGCTTGGAGCGTAGT -ACGGAACTAAGCTTGGAGGTCAGT -ACGGAACTAAGCTTGGAGGAAGGT -ACGGAACTAAGCTTGGAGAACCGT -ACGGAACTAAGCTTGGAGTTGTGC -ACGGAACTAAGCTTGGAGCTAAGC -ACGGAACTAAGCTTGGAGACTAGC -ACGGAACTAAGCTTGGAGAGATGC -ACGGAACTAAGCTTGGAGTGAAGG -ACGGAACTAAGCTTGGAGCAATGG -ACGGAACTAAGCTTGGAGATGAGG -ACGGAACTAAGCTTGGAGAATGGG -ACGGAACTAAGCTTGGAGTCCTGA -ACGGAACTAAGCTTGGAGTAGCGA -ACGGAACTAAGCTTGGAGCACAGA -ACGGAACTAAGCTTGGAGGCAAGA -ACGGAACTAAGCTTGGAGGGTTGA -ACGGAACTAAGCTTGGAGTCCGAT -ACGGAACTAAGCTTGGAGTGGCAT -ACGGAACTAAGCTTGGAGCGAGAT -ACGGAACTAAGCTTGGAGTACCAC -ACGGAACTAAGCTTGGAGCAGAAC -ACGGAACTAAGCTTGGAGGTCTAC -ACGGAACTAAGCTTGGAGACGTAC -ACGGAACTAAGCTTGGAGAGTGAC -ACGGAACTAAGCTTGGAGCTGTAG -ACGGAACTAAGCTTGGAGCCTAAG -ACGGAACTAAGCTTGGAGGTTCAG -ACGGAACTAAGCTTGGAGGCATAG -ACGGAACTAAGCTTGGAGGACAAG -ACGGAACTAAGCTTGGAGAAGCAG -ACGGAACTAAGCTTGGAGCGTCAA -ACGGAACTAAGCTTGGAGGCTGAA -ACGGAACTAAGCTTGGAGAGTACG -ACGGAACTAAGCTTGGAGATCCGA -ACGGAACTAAGCTTGGAGATGGGA -ACGGAACTAAGCTTGGAGGTGCAA -ACGGAACTAAGCTTGGAGGAGGAA -ACGGAACTAAGCTTGGAGCAGGTA -ACGGAACTAAGCTTGGAGGACTCT -ACGGAACTAAGCTTGGAGAGTCCT -ACGGAACTAAGCTTGGAGTAAGCC -ACGGAACTAAGCTTGGAGATAGCC -ACGGAACTAAGCTTGGAGTAACCG -ACGGAACTAAGCTTGGAGATGCCA -ACGGAACTAAGCCTGAGAGGAAAC -ACGGAACTAAGCCTGAGAAACACC -ACGGAACTAAGCCTGAGAATCGAG -ACGGAACTAAGCCTGAGACTCCTT -ACGGAACTAAGCCTGAGACCTGTT -ACGGAACTAAGCCTGAGACGGTTT -ACGGAACTAAGCCTGAGAGTGGTT -ACGGAACTAAGCCTGAGAGCCTTT -ACGGAACTAAGCCTGAGAGGTCTT -ACGGAACTAAGCCTGAGAACGCTT -ACGGAACTAAGCCTGAGAAGCGTT -ACGGAACTAAGCCTGAGATTCGTC -ACGGAACTAAGCCTGAGATCTCTC -ACGGAACTAAGCCTGAGATGGATC -ACGGAACTAAGCCTGAGACACTTC -ACGGAACTAAGCCTGAGAGTACTC -ACGGAACTAAGCCTGAGAGATGTC -ACGGAACTAAGCCTGAGAACAGTC -ACGGAACTAAGCCTGAGATTGCTG -ACGGAACTAAGCCTGAGATCCATG -ACGGAACTAAGCCTGAGATGTGTG -ACGGAACTAAGCCTGAGACTAGTG -ACGGAACTAAGCCTGAGACATCTG -ACGGAACTAAGCCTGAGAGAGTTG -ACGGAACTAAGCCTGAGAAGACTG -ACGGAACTAAGCCTGAGATCGGTA -ACGGAACTAAGCCTGAGATGCCTA -ACGGAACTAAGCCTGAGACCACTA -ACGGAACTAAGCCTGAGAGGAGTA -ACGGAACTAAGCCTGAGATCGTCT -ACGGAACTAAGCCTGAGATGCACT -ACGGAACTAAGCCTGAGACTGACT -ACGGAACTAAGCCTGAGACAACCT -ACGGAACTAAGCCTGAGAGCTACT -ACGGAACTAAGCCTGAGAGGATCT -ACGGAACTAAGCCTGAGAAAGGCT -ACGGAACTAAGCCTGAGATCAACC -ACGGAACTAAGCCTGAGATGTTCC -ACGGAACTAAGCCTGAGAATTCCC -ACGGAACTAAGCCTGAGATTCTCG -ACGGAACTAAGCCTGAGATAGACG -ACGGAACTAAGCCTGAGAGTAACG -ACGGAACTAAGCCTGAGAACTTCG -ACGGAACTAAGCCTGAGATACGCA -ACGGAACTAAGCCTGAGACTTGCA -ACGGAACTAAGCCTGAGACGAACA -ACGGAACTAAGCCTGAGACAGTCA -ACGGAACTAAGCCTGAGAGATCCA -ACGGAACTAAGCCTGAGAACGACA -ACGGAACTAAGCCTGAGAAGCTCA -ACGGAACTAAGCCTGAGATCACGT -ACGGAACTAAGCCTGAGACGTAGT -ACGGAACTAAGCCTGAGAGTCAGT -ACGGAACTAAGCCTGAGAGAAGGT -ACGGAACTAAGCCTGAGAAACCGT -ACGGAACTAAGCCTGAGATTGTGC -ACGGAACTAAGCCTGAGACTAAGC -ACGGAACTAAGCCTGAGAACTAGC -ACGGAACTAAGCCTGAGAAGATGC -ACGGAACTAAGCCTGAGATGAAGG -ACGGAACTAAGCCTGAGACAATGG -ACGGAACTAAGCCTGAGAATGAGG -ACGGAACTAAGCCTGAGAAATGGG -ACGGAACTAAGCCTGAGATCCTGA -ACGGAACTAAGCCTGAGATAGCGA -ACGGAACTAAGCCTGAGACACAGA -ACGGAACTAAGCCTGAGAGCAAGA -ACGGAACTAAGCCTGAGAGGTTGA -ACGGAACTAAGCCTGAGATCCGAT -ACGGAACTAAGCCTGAGATGGCAT -ACGGAACTAAGCCTGAGACGAGAT -ACGGAACTAAGCCTGAGATACCAC -ACGGAACTAAGCCTGAGACAGAAC -ACGGAACTAAGCCTGAGAGTCTAC -ACGGAACTAAGCCTGAGAACGTAC -ACGGAACTAAGCCTGAGAAGTGAC -ACGGAACTAAGCCTGAGACTGTAG -ACGGAACTAAGCCTGAGACCTAAG -ACGGAACTAAGCCTGAGAGTTCAG -ACGGAACTAAGCCTGAGAGCATAG -ACGGAACTAAGCCTGAGAGACAAG -ACGGAACTAAGCCTGAGAAAGCAG -ACGGAACTAAGCCTGAGACGTCAA -ACGGAACTAAGCCTGAGAGCTGAA -ACGGAACTAAGCCTGAGAAGTACG -ACGGAACTAAGCCTGAGAATCCGA -ACGGAACTAAGCCTGAGAATGGGA -ACGGAACTAAGCCTGAGAGTGCAA -ACGGAACTAAGCCTGAGAGAGGAA -ACGGAACTAAGCCTGAGACAGGTA -ACGGAACTAAGCCTGAGAGACTCT -ACGGAACTAAGCCTGAGAAGTCCT -ACGGAACTAAGCCTGAGATAAGCC -ACGGAACTAAGCCTGAGAATAGCC -ACGGAACTAAGCCTGAGATAACCG -ACGGAACTAAGCCTGAGAATGCCA -ACGGAACTAAGCGTATCGGGAAAC -ACGGAACTAAGCGTATCGAACACC -ACGGAACTAAGCGTATCGATCGAG -ACGGAACTAAGCGTATCGCTCCTT -ACGGAACTAAGCGTATCGCCTGTT -ACGGAACTAAGCGTATCGCGGTTT -ACGGAACTAAGCGTATCGGTGGTT -ACGGAACTAAGCGTATCGGCCTTT -ACGGAACTAAGCGTATCGGGTCTT -ACGGAACTAAGCGTATCGACGCTT -ACGGAACTAAGCGTATCGAGCGTT -ACGGAACTAAGCGTATCGTTCGTC -ACGGAACTAAGCGTATCGTCTCTC -ACGGAACTAAGCGTATCGTGGATC -ACGGAACTAAGCGTATCGCACTTC -ACGGAACTAAGCGTATCGGTACTC -ACGGAACTAAGCGTATCGGATGTC -ACGGAACTAAGCGTATCGACAGTC -ACGGAACTAAGCGTATCGTTGCTG -ACGGAACTAAGCGTATCGTCCATG -ACGGAACTAAGCGTATCGTGTGTG -ACGGAACTAAGCGTATCGCTAGTG -ACGGAACTAAGCGTATCGCATCTG -ACGGAACTAAGCGTATCGGAGTTG -ACGGAACTAAGCGTATCGAGACTG -ACGGAACTAAGCGTATCGTCGGTA -ACGGAACTAAGCGTATCGTGCCTA -ACGGAACTAAGCGTATCGCCACTA -ACGGAACTAAGCGTATCGGGAGTA -ACGGAACTAAGCGTATCGTCGTCT -ACGGAACTAAGCGTATCGTGCACT -ACGGAACTAAGCGTATCGCTGACT -ACGGAACTAAGCGTATCGCAACCT -ACGGAACTAAGCGTATCGGCTACT -ACGGAACTAAGCGTATCGGGATCT -ACGGAACTAAGCGTATCGAAGGCT -ACGGAACTAAGCGTATCGTCAACC -ACGGAACTAAGCGTATCGTGTTCC -ACGGAACTAAGCGTATCGATTCCC -ACGGAACTAAGCGTATCGTTCTCG -ACGGAACTAAGCGTATCGTAGACG -ACGGAACTAAGCGTATCGGTAACG -ACGGAACTAAGCGTATCGACTTCG -ACGGAACTAAGCGTATCGTACGCA -ACGGAACTAAGCGTATCGCTTGCA -ACGGAACTAAGCGTATCGCGAACA -ACGGAACTAAGCGTATCGCAGTCA -ACGGAACTAAGCGTATCGGATCCA -ACGGAACTAAGCGTATCGACGACA -ACGGAACTAAGCGTATCGAGCTCA -ACGGAACTAAGCGTATCGTCACGT -ACGGAACTAAGCGTATCGCGTAGT -ACGGAACTAAGCGTATCGGTCAGT -ACGGAACTAAGCGTATCGGAAGGT -ACGGAACTAAGCGTATCGAACCGT -ACGGAACTAAGCGTATCGTTGTGC -ACGGAACTAAGCGTATCGCTAAGC -ACGGAACTAAGCGTATCGACTAGC -ACGGAACTAAGCGTATCGAGATGC -ACGGAACTAAGCGTATCGTGAAGG -ACGGAACTAAGCGTATCGCAATGG -ACGGAACTAAGCGTATCGATGAGG -ACGGAACTAAGCGTATCGAATGGG -ACGGAACTAAGCGTATCGTCCTGA -ACGGAACTAAGCGTATCGTAGCGA -ACGGAACTAAGCGTATCGCACAGA -ACGGAACTAAGCGTATCGGCAAGA -ACGGAACTAAGCGTATCGGGTTGA -ACGGAACTAAGCGTATCGTCCGAT -ACGGAACTAAGCGTATCGTGGCAT -ACGGAACTAAGCGTATCGCGAGAT -ACGGAACTAAGCGTATCGTACCAC -ACGGAACTAAGCGTATCGCAGAAC -ACGGAACTAAGCGTATCGGTCTAC -ACGGAACTAAGCGTATCGACGTAC -ACGGAACTAAGCGTATCGAGTGAC -ACGGAACTAAGCGTATCGCTGTAG -ACGGAACTAAGCGTATCGCCTAAG -ACGGAACTAAGCGTATCGGTTCAG -ACGGAACTAAGCGTATCGGCATAG -ACGGAACTAAGCGTATCGGACAAG -ACGGAACTAAGCGTATCGAAGCAG -ACGGAACTAAGCGTATCGCGTCAA -ACGGAACTAAGCGTATCGGCTGAA -ACGGAACTAAGCGTATCGAGTACG -ACGGAACTAAGCGTATCGATCCGA -ACGGAACTAAGCGTATCGATGGGA -ACGGAACTAAGCGTATCGGTGCAA -ACGGAACTAAGCGTATCGGAGGAA -ACGGAACTAAGCGTATCGCAGGTA -ACGGAACTAAGCGTATCGGACTCT -ACGGAACTAAGCGTATCGAGTCCT -ACGGAACTAAGCGTATCGTAAGCC -ACGGAACTAAGCGTATCGATAGCC -ACGGAACTAAGCGTATCGTAACCG -ACGGAACTAAGCGTATCGATGCCA -ACGGAACTAAGCCTATGCGGAAAC -ACGGAACTAAGCCTATGCAACACC -ACGGAACTAAGCCTATGCATCGAG -ACGGAACTAAGCCTATGCCTCCTT -ACGGAACTAAGCCTATGCCCTGTT -ACGGAACTAAGCCTATGCCGGTTT -ACGGAACTAAGCCTATGCGTGGTT -ACGGAACTAAGCCTATGCGCCTTT -ACGGAACTAAGCCTATGCGGTCTT -ACGGAACTAAGCCTATGCACGCTT -ACGGAACTAAGCCTATGCAGCGTT -ACGGAACTAAGCCTATGCTTCGTC -ACGGAACTAAGCCTATGCTCTCTC -ACGGAACTAAGCCTATGCTGGATC -ACGGAACTAAGCCTATGCCACTTC -ACGGAACTAAGCCTATGCGTACTC -ACGGAACTAAGCCTATGCGATGTC -ACGGAACTAAGCCTATGCACAGTC -ACGGAACTAAGCCTATGCTTGCTG -ACGGAACTAAGCCTATGCTCCATG -ACGGAACTAAGCCTATGCTGTGTG -ACGGAACTAAGCCTATGCCTAGTG -ACGGAACTAAGCCTATGCCATCTG -ACGGAACTAAGCCTATGCGAGTTG -ACGGAACTAAGCCTATGCAGACTG -ACGGAACTAAGCCTATGCTCGGTA -ACGGAACTAAGCCTATGCTGCCTA -ACGGAACTAAGCCTATGCCCACTA -ACGGAACTAAGCCTATGCGGAGTA -ACGGAACTAAGCCTATGCTCGTCT -ACGGAACTAAGCCTATGCTGCACT -ACGGAACTAAGCCTATGCCTGACT -ACGGAACTAAGCCTATGCCAACCT -ACGGAACTAAGCCTATGCGCTACT -ACGGAACTAAGCCTATGCGGATCT -ACGGAACTAAGCCTATGCAAGGCT -ACGGAACTAAGCCTATGCTCAACC -ACGGAACTAAGCCTATGCTGTTCC -ACGGAACTAAGCCTATGCATTCCC -ACGGAACTAAGCCTATGCTTCTCG -ACGGAACTAAGCCTATGCTAGACG -ACGGAACTAAGCCTATGCGTAACG -ACGGAACTAAGCCTATGCACTTCG -ACGGAACTAAGCCTATGCTACGCA -ACGGAACTAAGCCTATGCCTTGCA -ACGGAACTAAGCCTATGCCGAACA -ACGGAACTAAGCCTATGCCAGTCA -ACGGAACTAAGCCTATGCGATCCA -ACGGAACTAAGCCTATGCACGACA -ACGGAACTAAGCCTATGCAGCTCA -ACGGAACTAAGCCTATGCTCACGT -ACGGAACTAAGCCTATGCCGTAGT -ACGGAACTAAGCCTATGCGTCAGT -ACGGAACTAAGCCTATGCGAAGGT -ACGGAACTAAGCCTATGCAACCGT -ACGGAACTAAGCCTATGCTTGTGC -ACGGAACTAAGCCTATGCCTAAGC -ACGGAACTAAGCCTATGCACTAGC -ACGGAACTAAGCCTATGCAGATGC -ACGGAACTAAGCCTATGCTGAAGG -ACGGAACTAAGCCTATGCCAATGG -ACGGAACTAAGCCTATGCATGAGG -ACGGAACTAAGCCTATGCAATGGG -ACGGAACTAAGCCTATGCTCCTGA -ACGGAACTAAGCCTATGCTAGCGA -ACGGAACTAAGCCTATGCCACAGA -ACGGAACTAAGCCTATGCGCAAGA -ACGGAACTAAGCCTATGCGGTTGA -ACGGAACTAAGCCTATGCTCCGAT -ACGGAACTAAGCCTATGCTGGCAT -ACGGAACTAAGCCTATGCCGAGAT -ACGGAACTAAGCCTATGCTACCAC -ACGGAACTAAGCCTATGCCAGAAC -ACGGAACTAAGCCTATGCGTCTAC -ACGGAACTAAGCCTATGCACGTAC -ACGGAACTAAGCCTATGCAGTGAC -ACGGAACTAAGCCTATGCCTGTAG -ACGGAACTAAGCCTATGCCCTAAG -ACGGAACTAAGCCTATGCGTTCAG -ACGGAACTAAGCCTATGCGCATAG -ACGGAACTAAGCCTATGCGACAAG -ACGGAACTAAGCCTATGCAAGCAG -ACGGAACTAAGCCTATGCCGTCAA -ACGGAACTAAGCCTATGCGCTGAA -ACGGAACTAAGCCTATGCAGTACG -ACGGAACTAAGCCTATGCATCCGA -ACGGAACTAAGCCTATGCATGGGA -ACGGAACTAAGCCTATGCGTGCAA -ACGGAACTAAGCCTATGCGAGGAA -ACGGAACTAAGCCTATGCCAGGTA -ACGGAACTAAGCCTATGCGACTCT -ACGGAACTAAGCCTATGCAGTCCT -ACGGAACTAAGCCTATGCTAAGCC -ACGGAACTAAGCCTATGCATAGCC -ACGGAACTAAGCCTATGCTAACCG -ACGGAACTAAGCCTATGCATGCCA -ACGGAACTAAGCCTACCAGGAAAC -ACGGAACTAAGCCTACCAAACACC -ACGGAACTAAGCCTACCAATCGAG -ACGGAACTAAGCCTACCACTCCTT -ACGGAACTAAGCCTACCACCTGTT -ACGGAACTAAGCCTACCACGGTTT -ACGGAACTAAGCCTACCAGTGGTT -ACGGAACTAAGCCTACCAGCCTTT -ACGGAACTAAGCCTACCAGGTCTT -ACGGAACTAAGCCTACCAACGCTT -ACGGAACTAAGCCTACCAAGCGTT -ACGGAACTAAGCCTACCATTCGTC -ACGGAACTAAGCCTACCATCTCTC -ACGGAACTAAGCCTACCATGGATC -ACGGAACTAAGCCTACCACACTTC -ACGGAACTAAGCCTACCAGTACTC -ACGGAACTAAGCCTACCAGATGTC -ACGGAACTAAGCCTACCAACAGTC -ACGGAACTAAGCCTACCATTGCTG -ACGGAACTAAGCCTACCATCCATG -ACGGAACTAAGCCTACCATGTGTG -ACGGAACTAAGCCTACCACTAGTG -ACGGAACTAAGCCTACCACATCTG -ACGGAACTAAGCCTACCAGAGTTG -ACGGAACTAAGCCTACCAAGACTG -ACGGAACTAAGCCTACCATCGGTA -ACGGAACTAAGCCTACCATGCCTA -ACGGAACTAAGCCTACCACCACTA -ACGGAACTAAGCCTACCAGGAGTA -ACGGAACTAAGCCTACCATCGTCT -ACGGAACTAAGCCTACCATGCACT -ACGGAACTAAGCCTACCACTGACT -ACGGAACTAAGCCTACCACAACCT -ACGGAACTAAGCCTACCAGCTACT -ACGGAACTAAGCCTACCAGGATCT -ACGGAACTAAGCCTACCAAAGGCT -ACGGAACTAAGCCTACCATCAACC -ACGGAACTAAGCCTACCATGTTCC -ACGGAACTAAGCCTACCAATTCCC -ACGGAACTAAGCCTACCATTCTCG -ACGGAACTAAGCCTACCATAGACG -ACGGAACTAAGCCTACCAGTAACG -ACGGAACTAAGCCTACCAACTTCG -ACGGAACTAAGCCTACCATACGCA -ACGGAACTAAGCCTACCACTTGCA -ACGGAACTAAGCCTACCACGAACA -ACGGAACTAAGCCTACCACAGTCA -ACGGAACTAAGCCTACCAGATCCA -ACGGAACTAAGCCTACCAACGACA -ACGGAACTAAGCCTACCAAGCTCA -ACGGAACTAAGCCTACCATCACGT -ACGGAACTAAGCCTACCACGTAGT -ACGGAACTAAGCCTACCAGTCAGT -ACGGAACTAAGCCTACCAGAAGGT -ACGGAACTAAGCCTACCAAACCGT -ACGGAACTAAGCCTACCATTGTGC -ACGGAACTAAGCCTACCACTAAGC -ACGGAACTAAGCCTACCAACTAGC -ACGGAACTAAGCCTACCAAGATGC -ACGGAACTAAGCCTACCATGAAGG -ACGGAACTAAGCCTACCACAATGG -ACGGAACTAAGCCTACCAATGAGG -ACGGAACTAAGCCTACCAAATGGG -ACGGAACTAAGCCTACCATCCTGA -ACGGAACTAAGCCTACCATAGCGA -ACGGAACTAAGCCTACCACACAGA -ACGGAACTAAGCCTACCAGCAAGA -ACGGAACTAAGCCTACCAGGTTGA -ACGGAACTAAGCCTACCATCCGAT -ACGGAACTAAGCCTACCATGGCAT -ACGGAACTAAGCCTACCACGAGAT -ACGGAACTAAGCCTACCATACCAC -ACGGAACTAAGCCTACCACAGAAC -ACGGAACTAAGCCTACCAGTCTAC -ACGGAACTAAGCCTACCAACGTAC -ACGGAACTAAGCCTACCAAGTGAC -ACGGAACTAAGCCTACCACTGTAG -ACGGAACTAAGCCTACCACCTAAG -ACGGAACTAAGCCTACCAGTTCAG -ACGGAACTAAGCCTACCAGCATAG -ACGGAACTAAGCCTACCAGACAAG -ACGGAACTAAGCCTACCAAAGCAG -ACGGAACTAAGCCTACCACGTCAA -ACGGAACTAAGCCTACCAGCTGAA -ACGGAACTAAGCCTACCAAGTACG -ACGGAACTAAGCCTACCAATCCGA -ACGGAACTAAGCCTACCAATGGGA -ACGGAACTAAGCCTACCAGTGCAA -ACGGAACTAAGCCTACCAGAGGAA -ACGGAACTAAGCCTACCACAGGTA -ACGGAACTAAGCCTACCAGACTCT -ACGGAACTAAGCCTACCAAGTCCT -ACGGAACTAAGCCTACCATAAGCC -ACGGAACTAAGCCTACCAATAGCC -ACGGAACTAAGCCTACCATAACCG -ACGGAACTAAGCCTACCAATGCCA -ACGGAACTAAGCGTAGGAGGAAAC -ACGGAACTAAGCGTAGGAAACACC -ACGGAACTAAGCGTAGGAATCGAG -ACGGAACTAAGCGTAGGACTCCTT -ACGGAACTAAGCGTAGGACCTGTT -ACGGAACTAAGCGTAGGACGGTTT -ACGGAACTAAGCGTAGGAGTGGTT -ACGGAACTAAGCGTAGGAGCCTTT -ACGGAACTAAGCGTAGGAGGTCTT -ACGGAACTAAGCGTAGGAACGCTT -ACGGAACTAAGCGTAGGAAGCGTT -ACGGAACTAAGCGTAGGATTCGTC -ACGGAACTAAGCGTAGGATCTCTC -ACGGAACTAAGCGTAGGATGGATC -ACGGAACTAAGCGTAGGACACTTC -ACGGAACTAAGCGTAGGAGTACTC -ACGGAACTAAGCGTAGGAGATGTC -ACGGAACTAAGCGTAGGAACAGTC -ACGGAACTAAGCGTAGGATTGCTG -ACGGAACTAAGCGTAGGATCCATG -ACGGAACTAAGCGTAGGATGTGTG -ACGGAACTAAGCGTAGGACTAGTG -ACGGAACTAAGCGTAGGACATCTG -ACGGAACTAAGCGTAGGAGAGTTG -ACGGAACTAAGCGTAGGAAGACTG -ACGGAACTAAGCGTAGGATCGGTA -ACGGAACTAAGCGTAGGATGCCTA -ACGGAACTAAGCGTAGGACCACTA -ACGGAACTAAGCGTAGGAGGAGTA -ACGGAACTAAGCGTAGGATCGTCT -ACGGAACTAAGCGTAGGATGCACT -ACGGAACTAAGCGTAGGACTGACT -ACGGAACTAAGCGTAGGACAACCT -ACGGAACTAAGCGTAGGAGCTACT -ACGGAACTAAGCGTAGGAGGATCT -ACGGAACTAAGCGTAGGAAAGGCT -ACGGAACTAAGCGTAGGATCAACC -ACGGAACTAAGCGTAGGATGTTCC -ACGGAACTAAGCGTAGGAATTCCC -ACGGAACTAAGCGTAGGATTCTCG -ACGGAACTAAGCGTAGGATAGACG -ACGGAACTAAGCGTAGGAGTAACG -ACGGAACTAAGCGTAGGAACTTCG -ACGGAACTAAGCGTAGGATACGCA -ACGGAACTAAGCGTAGGACTTGCA -ACGGAACTAAGCGTAGGACGAACA -ACGGAACTAAGCGTAGGACAGTCA -ACGGAACTAAGCGTAGGAGATCCA -ACGGAACTAAGCGTAGGAACGACA -ACGGAACTAAGCGTAGGAAGCTCA -ACGGAACTAAGCGTAGGATCACGT -ACGGAACTAAGCGTAGGACGTAGT -ACGGAACTAAGCGTAGGAGTCAGT -ACGGAACTAAGCGTAGGAGAAGGT -ACGGAACTAAGCGTAGGAAACCGT -ACGGAACTAAGCGTAGGATTGTGC -ACGGAACTAAGCGTAGGACTAAGC -ACGGAACTAAGCGTAGGAACTAGC -ACGGAACTAAGCGTAGGAAGATGC -ACGGAACTAAGCGTAGGATGAAGG -ACGGAACTAAGCGTAGGACAATGG -ACGGAACTAAGCGTAGGAATGAGG -ACGGAACTAAGCGTAGGAAATGGG -ACGGAACTAAGCGTAGGATCCTGA -ACGGAACTAAGCGTAGGATAGCGA -ACGGAACTAAGCGTAGGACACAGA -ACGGAACTAAGCGTAGGAGCAAGA -ACGGAACTAAGCGTAGGAGGTTGA -ACGGAACTAAGCGTAGGATCCGAT -ACGGAACTAAGCGTAGGATGGCAT -ACGGAACTAAGCGTAGGACGAGAT -ACGGAACTAAGCGTAGGATACCAC -ACGGAACTAAGCGTAGGACAGAAC -ACGGAACTAAGCGTAGGAGTCTAC -ACGGAACTAAGCGTAGGAACGTAC -ACGGAACTAAGCGTAGGAAGTGAC -ACGGAACTAAGCGTAGGACTGTAG -ACGGAACTAAGCGTAGGACCTAAG -ACGGAACTAAGCGTAGGAGTTCAG -ACGGAACTAAGCGTAGGAGCATAG -ACGGAACTAAGCGTAGGAGACAAG -ACGGAACTAAGCGTAGGAAAGCAG -ACGGAACTAAGCGTAGGACGTCAA -ACGGAACTAAGCGTAGGAGCTGAA -ACGGAACTAAGCGTAGGAAGTACG -ACGGAACTAAGCGTAGGAATCCGA -ACGGAACTAAGCGTAGGAATGGGA -ACGGAACTAAGCGTAGGAGTGCAA -ACGGAACTAAGCGTAGGAGAGGAA -ACGGAACTAAGCGTAGGACAGGTA -ACGGAACTAAGCGTAGGAGACTCT -ACGGAACTAAGCGTAGGAAGTCCT -ACGGAACTAAGCGTAGGATAAGCC -ACGGAACTAAGCGTAGGAATAGCC -ACGGAACTAAGCGTAGGATAACCG -ACGGAACTAAGCGTAGGAATGCCA -ACGGAACTAAGCTCTTCGGGAAAC -ACGGAACTAAGCTCTTCGAACACC -ACGGAACTAAGCTCTTCGATCGAG -ACGGAACTAAGCTCTTCGCTCCTT -ACGGAACTAAGCTCTTCGCCTGTT -ACGGAACTAAGCTCTTCGCGGTTT -ACGGAACTAAGCTCTTCGGTGGTT -ACGGAACTAAGCTCTTCGGCCTTT -ACGGAACTAAGCTCTTCGGGTCTT -ACGGAACTAAGCTCTTCGACGCTT -ACGGAACTAAGCTCTTCGAGCGTT -ACGGAACTAAGCTCTTCGTTCGTC -ACGGAACTAAGCTCTTCGTCTCTC -ACGGAACTAAGCTCTTCGTGGATC -ACGGAACTAAGCTCTTCGCACTTC -ACGGAACTAAGCTCTTCGGTACTC -ACGGAACTAAGCTCTTCGGATGTC -ACGGAACTAAGCTCTTCGACAGTC -ACGGAACTAAGCTCTTCGTTGCTG -ACGGAACTAAGCTCTTCGTCCATG -ACGGAACTAAGCTCTTCGTGTGTG -ACGGAACTAAGCTCTTCGCTAGTG -ACGGAACTAAGCTCTTCGCATCTG -ACGGAACTAAGCTCTTCGGAGTTG -ACGGAACTAAGCTCTTCGAGACTG -ACGGAACTAAGCTCTTCGTCGGTA -ACGGAACTAAGCTCTTCGTGCCTA -ACGGAACTAAGCTCTTCGCCACTA -ACGGAACTAAGCTCTTCGGGAGTA -ACGGAACTAAGCTCTTCGTCGTCT -ACGGAACTAAGCTCTTCGTGCACT -ACGGAACTAAGCTCTTCGCTGACT -ACGGAACTAAGCTCTTCGCAACCT -ACGGAACTAAGCTCTTCGGCTACT -ACGGAACTAAGCTCTTCGGGATCT -ACGGAACTAAGCTCTTCGAAGGCT -ACGGAACTAAGCTCTTCGTCAACC -ACGGAACTAAGCTCTTCGTGTTCC -ACGGAACTAAGCTCTTCGATTCCC -ACGGAACTAAGCTCTTCGTTCTCG -ACGGAACTAAGCTCTTCGTAGACG -ACGGAACTAAGCTCTTCGGTAACG -ACGGAACTAAGCTCTTCGACTTCG -ACGGAACTAAGCTCTTCGTACGCA -ACGGAACTAAGCTCTTCGCTTGCA -ACGGAACTAAGCTCTTCGCGAACA -ACGGAACTAAGCTCTTCGCAGTCA -ACGGAACTAAGCTCTTCGGATCCA -ACGGAACTAAGCTCTTCGACGACA -ACGGAACTAAGCTCTTCGAGCTCA -ACGGAACTAAGCTCTTCGTCACGT -ACGGAACTAAGCTCTTCGCGTAGT -ACGGAACTAAGCTCTTCGGTCAGT -ACGGAACTAAGCTCTTCGGAAGGT -ACGGAACTAAGCTCTTCGAACCGT -ACGGAACTAAGCTCTTCGTTGTGC -ACGGAACTAAGCTCTTCGCTAAGC -ACGGAACTAAGCTCTTCGACTAGC -ACGGAACTAAGCTCTTCGAGATGC -ACGGAACTAAGCTCTTCGTGAAGG -ACGGAACTAAGCTCTTCGCAATGG -ACGGAACTAAGCTCTTCGATGAGG -ACGGAACTAAGCTCTTCGAATGGG -ACGGAACTAAGCTCTTCGTCCTGA -ACGGAACTAAGCTCTTCGTAGCGA -ACGGAACTAAGCTCTTCGCACAGA -ACGGAACTAAGCTCTTCGGCAAGA -ACGGAACTAAGCTCTTCGGGTTGA -ACGGAACTAAGCTCTTCGTCCGAT -ACGGAACTAAGCTCTTCGTGGCAT -ACGGAACTAAGCTCTTCGCGAGAT -ACGGAACTAAGCTCTTCGTACCAC -ACGGAACTAAGCTCTTCGCAGAAC -ACGGAACTAAGCTCTTCGGTCTAC -ACGGAACTAAGCTCTTCGACGTAC -ACGGAACTAAGCTCTTCGAGTGAC -ACGGAACTAAGCTCTTCGCTGTAG -ACGGAACTAAGCTCTTCGCCTAAG -ACGGAACTAAGCTCTTCGGTTCAG -ACGGAACTAAGCTCTTCGGCATAG -ACGGAACTAAGCTCTTCGGACAAG -ACGGAACTAAGCTCTTCGAAGCAG -ACGGAACTAAGCTCTTCGCGTCAA -ACGGAACTAAGCTCTTCGGCTGAA -ACGGAACTAAGCTCTTCGAGTACG -ACGGAACTAAGCTCTTCGATCCGA -ACGGAACTAAGCTCTTCGATGGGA -ACGGAACTAAGCTCTTCGGTGCAA -ACGGAACTAAGCTCTTCGGAGGAA -ACGGAACTAAGCTCTTCGCAGGTA -ACGGAACTAAGCTCTTCGGACTCT -ACGGAACTAAGCTCTTCGAGTCCT -ACGGAACTAAGCTCTTCGTAAGCC -ACGGAACTAAGCTCTTCGATAGCC -ACGGAACTAAGCTCTTCGTAACCG -ACGGAACTAAGCTCTTCGATGCCA -ACGGAACTAAGCACTTGCGGAAAC -ACGGAACTAAGCACTTGCAACACC -ACGGAACTAAGCACTTGCATCGAG -ACGGAACTAAGCACTTGCCTCCTT -ACGGAACTAAGCACTTGCCCTGTT -ACGGAACTAAGCACTTGCCGGTTT -ACGGAACTAAGCACTTGCGTGGTT -ACGGAACTAAGCACTTGCGCCTTT -ACGGAACTAAGCACTTGCGGTCTT -ACGGAACTAAGCACTTGCACGCTT -ACGGAACTAAGCACTTGCAGCGTT -ACGGAACTAAGCACTTGCTTCGTC -ACGGAACTAAGCACTTGCTCTCTC -ACGGAACTAAGCACTTGCTGGATC -ACGGAACTAAGCACTTGCCACTTC -ACGGAACTAAGCACTTGCGTACTC -ACGGAACTAAGCACTTGCGATGTC -ACGGAACTAAGCACTTGCACAGTC -ACGGAACTAAGCACTTGCTTGCTG -ACGGAACTAAGCACTTGCTCCATG -ACGGAACTAAGCACTTGCTGTGTG -ACGGAACTAAGCACTTGCCTAGTG -ACGGAACTAAGCACTTGCCATCTG -ACGGAACTAAGCACTTGCGAGTTG -ACGGAACTAAGCACTTGCAGACTG -ACGGAACTAAGCACTTGCTCGGTA -ACGGAACTAAGCACTTGCTGCCTA -ACGGAACTAAGCACTTGCCCACTA -ACGGAACTAAGCACTTGCGGAGTA -ACGGAACTAAGCACTTGCTCGTCT -ACGGAACTAAGCACTTGCTGCACT -ACGGAACTAAGCACTTGCCTGACT -ACGGAACTAAGCACTTGCCAACCT -ACGGAACTAAGCACTTGCGCTACT -ACGGAACTAAGCACTTGCGGATCT -ACGGAACTAAGCACTTGCAAGGCT -ACGGAACTAAGCACTTGCTCAACC -ACGGAACTAAGCACTTGCTGTTCC -ACGGAACTAAGCACTTGCATTCCC -ACGGAACTAAGCACTTGCTTCTCG -ACGGAACTAAGCACTTGCTAGACG -ACGGAACTAAGCACTTGCGTAACG -ACGGAACTAAGCACTTGCACTTCG -ACGGAACTAAGCACTTGCTACGCA -ACGGAACTAAGCACTTGCCTTGCA -ACGGAACTAAGCACTTGCCGAACA -ACGGAACTAAGCACTTGCCAGTCA -ACGGAACTAAGCACTTGCGATCCA -ACGGAACTAAGCACTTGCACGACA -ACGGAACTAAGCACTTGCAGCTCA -ACGGAACTAAGCACTTGCTCACGT -ACGGAACTAAGCACTTGCCGTAGT -ACGGAACTAAGCACTTGCGTCAGT -ACGGAACTAAGCACTTGCGAAGGT -ACGGAACTAAGCACTTGCAACCGT -ACGGAACTAAGCACTTGCTTGTGC -ACGGAACTAAGCACTTGCCTAAGC -ACGGAACTAAGCACTTGCACTAGC -ACGGAACTAAGCACTTGCAGATGC -ACGGAACTAAGCACTTGCTGAAGG -ACGGAACTAAGCACTTGCCAATGG -ACGGAACTAAGCACTTGCATGAGG -ACGGAACTAAGCACTTGCAATGGG -ACGGAACTAAGCACTTGCTCCTGA -ACGGAACTAAGCACTTGCTAGCGA -ACGGAACTAAGCACTTGCCACAGA -ACGGAACTAAGCACTTGCGCAAGA -ACGGAACTAAGCACTTGCGGTTGA -ACGGAACTAAGCACTTGCTCCGAT -ACGGAACTAAGCACTTGCTGGCAT -ACGGAACTAAGCACTTGCCGAGAT -ACGGAACTAAGCACTTGCTACCAC -ACGGAACTAAGCACTTGCCAGAAC -ACGGAACTAAGCACTTGCGTCTAC -ACGGAACTAAGCACTTGCACGTAC -ACGGAACTAAGCACTTGCAGTGAC -ACGGAACTAAGCACTTGCCTGTAG -ACGGAACTAAGCACTTGCCCTAAG -ACGGAACTAAGCACTTGCGTTCAG -ACGGAACTAAGCACTTGCGCATAG -ACGGAACTAAGCACTTGCGACAAG -ACGGAACTAAGCACTTGCAAGCAG -ACGGAACTAAGCACTTGCCGTCAA -ACGGAACTAAGCACTTGCGCTGAA -ACGGAACTAAGCACTTGCAGTACG -ACGGAACTAAGCACTTGCATCCGA -ACGGAACTAAGCACTTGCATGGGA -ACGGAACTAAGCACTTGCGTGCAA -ACGGAACTAAGCACTTGCGAGGAA -ACGGAACTAAGCACTTGCCAGGTA -ACGGAACTAAGCACTTGCGACTCT -ACGGAACTAAGCACTTGCAGTCCT -ACGGAACTAAGCACTTGCTAAGCC -ACGGAACTAAGCACTTGCATAGCC -ACGGAACTAAGCACTTGCTAACCG -ACGGAACTAAGCACTTGCATGCCA -ACGGAACTAAGCACTCTGGGAAAC -ACGGAACTAAGCACTCTGAACACC -ACGGAACTAAGCACTCTGATCGAG -ACGGAACTAAGCACTCTGCTCCTT -ACGGAACTAAGCACTCTGCCTGTT -ACGGAACTAAGCACTCTGCGGTTT -ACGGAACTAAGCACTCTGGTGGTT -ACGGAACTAAGCACTCTGGCCTTT -ACGGAACTAAGCACTCTGGGTCTT -ACGGAACTAAGCACTCTGACGCTT -ACGGAACTAAGCACTCTGAGCGTT -ACGGAACTAAGCACTCTGTTCGTC -ACGGAACTAAGCACTCTGTCTCTC -ACGGAACTAAGCACTCTGTGGATC -ACGGAACTAAGCACTCTGCACTTC -ACGGAACTAAGCACTCTGGTACTC -ACGGAACTAAGCACTCTGGATGTC -ACGGAACTAAGCACTCTGACAGTC -ACGGAACTAAGCACTCTGTTGCTG -ACGGAACTAAGCACTCTGTCCATG -ACGGAACTAAGCACTCTGTGTGTG -ACGGAACTAAGCACTCTGCTAGTG -ACGGAACTAAGCACTCTGCATCTG -ACGGAACTAAGCACTCTGGAGTTG -ACGGAACTAAGCACTCTGAGACTG -ACGGAACTAAGCACTCTGTCGGTA -ACGGAACTAAGCACTCTGTGCCTA -ACGGAACTAAGCACTCTGCCACTA -ACGGAACTAAGCACTCTGGGAGTA -ACGGAACTAAGCACTCTGTCGTCT -ACGGAACTAAGCACTCTGTGCACT -ACGGAACTAAGCACTCTGCTGACT -ACGGAACTAAGCACTCTGCAACCT -ACGGAACTAAGCACTCTGGCTACT -ACGGAACTAAGCACTCTGGGATCT -ACGGAACTAAGCACTCTGAAGGCT -ACGGAACTAAGCACTCTGTCAACC -ACGGAACTAAGCACTCTGTGTTCC -ACGGAACTAAGCACTCTGATTCCC -ACGGAACTAAGCACTCTGTTCTCG -ACGGAACTAAGCACTCTGTAGACG -ACGGAACTAAGCACTCTGGTAACG -ACGGAACTAAGCACTCTGACTTCG -ACGGAACTAAGCACTCTGTACGCA -ACGGAACTAAGCACTCTGCTTGCA -ACGGAACTAAGCACTCTGCGAACA -ACGGAACTAAGCACTCTGCAGTCA -ACGGAACTAAGCACTCTGGATCCA -ACGGAACTAAGCACTCTGACGACA -ACGGAACTAAGCACTCTGAGCTCA -ACGGAACTAAGCACTCTGTCACGT -ACGGAACTAAGCACTCTGCGTAGT -ACGGAACTAAGCACTCTGGTCAGT -ACGGAACTAAGCACTCTGGAAGGT -ACGGAACTAAGCACTCTGAACCGT -ACGGAACTAAGCACTCTGTTGTGC -ACGGAACTAAGCACTCTGCTAAGC -ACGGAACTAAGCACTCTGACTAGC -ACGGAACTAAGCACTCTGAGATGC -ACGGAACTAAGCACTCTGTGAAGG -ACGGAACTAAGCACTCTGCAATGG -ACGGAACTAAGCACTCTGATGAGG -ACGGAACTAAGCACTCTGAATGGG -ACGGAACTAAGCACTCTGTCCTGA -ACGGAACTAAGCACTCTGTAGCGA -ACGGAACTAAGCACTCTGCACAGA -ACGGAACTAAGCACTCTGGCAAGA -ACGGAACTAAGCACTCTGGGTTGA -ACGGAACTAAGCACTCTGTCCGAT -ACGGAACTAAGCACTCTGTGGCAT -ACGGAACTAAGCACTCTGCGAGAT -ACGGAACTAAGCACTCTGTACCAC -ACGGAACTAAGCACTCTGCAGAAC -ACGGAACTAAGCACTCTGGTCTAC -ACGGAACTAAGCACTCTGACGTAC -ACGGAACTAAGCACTCTGAGTGAC -ACGGAACTAAGCACTCTGCTGTAG -ACGGAACTAAGCACTCTGCCTAAG -ACGGAACTAAGCACTCTGGTTCAG -ACGGAACTAAGCACTCTGGCATAG -ACGGAACTAAGCACTCTGGACAAG -ACGGAACTAAGCACTCTGAAGCAG -ACGGAACTAAGCACTCTGCGTCAA -ACGGAACTAAGCACTCTGGCTGAA -ACGGAACTAAGCACTCTGAGTACG -ACGGAACTAAGCACTCTGATCCGA -ACGGAACTAAGCACTCTGATGGGA -ACGGAACTAAGCACTCTGGTGCAA -ACGGAACTAAGCACTCTGGAGGAA -ACGGAACTAAGCACTCTGCAGGTA -ACGGAACTAAGCACTCTGGACTCT -ACGGAACTAAGCACTCTGAGTCCT -ACGGAACTAAGCACTCTGTAAGCC -ACGGAACTAAGCACTCTGATAGCC -ACGGAACTAAGCACTCTGTAACCG -ACGGAACTAAGCACTCTGATGCCA -ACGGAACTAAGCCCTCAAGGAAAC -ACGGAACTAAGCCCTCAAAACACC -ACGGAACTAAGCCCTCAAATCGAG -ACGGAACTAAGCCCTCAACTCCTT -ACGGAACTAAGCCCTCAACCTGTT -ACGGAACTAAGCCCTCAACGGTTT -ACGGAACTAAGCCCTCAAGTGGTT -ACGGAACTAAGCCCTCAAGCCTTT -ACGGAACTAAGCCCTCAAGGTCTT -ACGGAACTAAGCCCTCAAACGCTT -ACGGAACTAAGCCCTCAAAGCGTT -ACGGAACTAAGCCCTCAATTCGTC -ACGGAACTAAGCCCTCAATCTCTC -ACGGAACTAAGCCCTCAATGGATC -ACGGAACTAAGCCCTCAACACTTC -ACGGAACTAAGCCCTCAAGTACTC -ACGGAACTAAGCCCTCAAGATGTC -ACGGAACTAAGCCCTCAAACAGTC -ACGGAACTAAGCCCTCAATTGCTG -ACGGAACTAAGCCCTCAATCCATG -ACGGAACTAAGCCCTCAATGTGTG -ACGGAACTAAGCCCTCAACTAGTG -ACGGAACTAAGCCCTCAACATCTG -ACGGAACTAAGCCCTCAAGAGTTG -ACGGAACTAAGCCCTCAAAGACTG -ACGGAACTAAGCCCTCAATCGGTA -ACGGAACTAAGCCCTCAATGCCTA -ACGGAACTAAGCCCTCAACCACTA -ACGGAACTAAGCCCTCAAGGAGTA -ACGGAACTAAGCCCTCAATCGTCT -ACGGAACTAAGCCCTCAATGCACT -ACGGAACTAAGCCCTCAACTGACT -ACGGAACTAAGCCCTCAACAACCT -ACGGAACTAAGCCCTCAAGCTACT -ACGGAACTAAGCCCTCAAGGATCT -ACGGAACTAAGCCCTCAAAAGGCT -ACGGAACTAAGCCCTCAATCAACC -ACGGAACTAAGCCCTCAATGTTCC -ACGGAACTAAGCCCTCAAATTCCC -ACGGAACTAAGCCCTCAATTCTCG -ACGGAACTAAGCCCTCAATAGACG -ACGGAACTAAGCCCTCAAGTAACG -ACGGAACTAAGCCCTCAAACTTCG -ACGGAACTAAGCCCTCAATACGCA -ACGGAACTAAGCCCTCAACTTGCA -ACGGAACTAAGCCCTCAACGAACA -ACGGAACTAAGCCCTCAACAGTCA -ACGGAACTAAGCCCTCAAGATCCA -ACGGAACTAAGCCCTCAAACGACA -ACGGAACTAAGCCCTCAAAGCTCA -ACGGAACTAAGCCCTCAATCACGT -ACGGAACTAAGCCCTCAACGTAGT -ACGGAACTAAGCCCTCAAGTCAGT -ACGGAACTAAGCCCTCAAGAAGGT -ACGGAACTAAGCCCTCAAAACCGT -ACGGAACTAAGCCCTCAATTGTGC -ACGGAACTAAGCCCTCAACTAAGC -ACGGAACTAAGCCCTCAAACTAGC -ACGGAACTAAGCCCTCAAAGATGC -ACGGAACTAAGCCCTCAATGAAGG -ACGGAACTAAGCCCTCAACAATGG -ACGGAACTAAGCCCTCAAATGAGG -ACGGAACTAAGCCCTCAAAATGGG -ACGGAACTAAGCCCTCAATCCTGA -ACGGAACTAAGCCCTCAATAGCGA -ACGGAACTAAGCCCTCAACACAGA -ACGGAACTAAGCCCTCAAGCAAGA -ACGGAACTAAGCCCTCAAGGTTGA -ACGGAACTAAGCCCTCAATCCGAT -ACGGAACTAAGCCCTCAATGGCAT -ACGGAACTAAGCCCTCAACGAGAT -ACGGAACTAAGCCCTCAATACCAC -ACGGAACTAAGCCCTCAACAGAAC -ACGGAACTAAGCCCTCAAGTCTAC -ACGGAACTAAGCCCTCAAACGTAC -ACGGAACTAAGCCCTCAAAGTGAC -ACGGAACTAAGCCCTCAACTGTAG -ACGGAACTAAGCCCTCAACCTAAG -ACGGAACTAAGCCCTCAAGTTCAG -ACGGAACTAAGCCCTCAAGCATAG -ACGGAACTAAGCCCTCAAGACAAG -ACGGAACTAAGCCCTCAAAAGCAG -ACGGAACTAAGCCCTCAACGTCAA -ACGGAACTAAGCCCTCAAGCTGAA -ACGGAACTAAGCCCTCAAAGTACG -ACGGAACTAAGCCCTCAAATCCGA -ACGGAACTAAGCCCTCAAATGGGA -ACGGAACTAAGCCCTCAAGTGCAA -ACGGAACTAAGCCCTCAAGAGGAA -ACGGAACTAAGCCCTCAACAGGTA -ACGGAACTAAGCCCTCAAGACTCT -ACGGAACTAAGCCCTCAAAGTCCT -ACGGAACTAAGCCCTCAATAAGCC -ACGGAACTAAGCCCTCAAATAGCC -ACGGAACTAAGCCCTCAATAACCG -ACGGAACTAAGCCCTCAAATGCCA -ACGGAACTAAGCACTGCTGGAAAC -ACGGAACTAAGCACTGCTAACACC -ACGGAACTAAGCACTGCTATCGAG -ACGGAACTAAGCACTGCTCTCCTT -ACGGAACTAAGCACTGCTCCTGTT -ACGGAACTAAGCACTGCTCGGTTT -ACGGAACTAAGCACTGCTGTGGTT -ACGGAACTAAGCACTGCTGCCTTT -ACGGAACTAAGCACTGCTGGTCTT -ACGGAACTAAGCACTGCTACGCTT -ACGGAACTAAGCACTGCTAGCGTT -ACGGAACTAAGCACTGCTTTCGTC -ACGGAACTAAGCACTGCTTCTCTC -ACGGAACTAAGCACTGCTTGGATC -ACGGAACTAAGCACTGCTCACTTC -ACGGAACTAAGCACTGCTGTACTC -ACGGAACTAAGCACTGCTGATGTC -ACGGAACTAAGCACTGCTACAGTC -ACGGAACTAAGCACTGCTTTGCTG -ACGGAACTAAGCACTGCTTCCATG -ACGGAACTAAGCACTGCTTGTGTG -ACGGAACTAAGCACTGCTCTAGTG -ACGGAACTAAGCACTGCTCATCTG -ACGGAACTAAGCACTGCTGAGTTG -ACGGAACTAAGCACTGCTAGACTG -ACGGAACTAAGCACTGCTTCGGTA -ACGGAACTAAGCACTGCTTGCCTA -ACGGAACTAAGCACTGCTCCACTA -ACGGAACTAAGCACTGCTGGAGTA -ACGGAACTAAGCACTGCTTCGTCT -ACGGAACTAAGCACTGCTTGCACT -ACGGAACTAAGCACTGCTCTGACT -ACGGAACTAAGCACTGCTCAACCT -ACGGAACTAAGCACTGCTGCTACT -ACGGAACTAAGCACTGCTGGATCT -ACGGAACTAAGCACTGCTAAGGCT -ACGGAACTAAGCACTGCTTCAACC -ACGGAACTAAGCACTGCTTGTTCC -ACGGAACTAAGCACTGCTATTCCC -ACGGAACTAAGCACTGCTTTCTCG -ACGGAACTAAGCACTGCTTAGACG -ACGGAACTAAGCACTGCTGTAACG -ACGGAACTAAGCACTGCTACTTCG -ACGGAACTAAGCACTGCTTACGCA -ACGGAACTAAGCACTGCTCTTGCA -ACGGAACTAAGCACTGCTCGAACA -ACGGAACTAAGCACTGCTCAGTCA -ACGGAACTAAGCACTGCTGATCCA -ACGGAACTAAGCACTGCTACGACA -ACGGAACTAAGCACTGCTAGCTCA -ACGGAACTAAGCACTGCTTCACGT -ACGGAACTAAGCACTGCTCGTAGT -ACGGAACTAAGCACTGCTGTCAGT -ACGGAACTAAGCACTGCTGAAGGT -ACGGAACTAAGCACTGCTAACCGT -ACGGAACTAAGCACTGCTTTGTGC -ACGGAACTAAGCACTGCTCTAAGC -ACGGAACTAAGCACTGCTACTAGC -ACGGAACTAAGCACTGCTAGATGC -ACGGAACTAAGCACTGCTTGAAGG -ACGGAACTAAGCACTGCTCAATGG -ACGGAACTAAGCACTGCTATGAGG -ACGGAACTAAGCACTGCTAATGGG -ACGGAACTAAGCACTGCTTCCTGA -ACGGAACTAAGCACTGCTTAGCGA -ACGGAACTAAGCACTGCTCACAGA -ACGGAACTAAGCACTGCTGCAAGA -ACGGAACTAAGCACTGCTGGTTGA -ACGGAACTAAGCACTGCTTCCGAT -ACGGAACTAAGCACTGCTTGGCAT -ACGGAACTAAGCACTGCTCGAGAT -ACGGAACTAAGCACTGCTTACCAC -ACGGAACTAAGCACTGCTCAGAAC -ACGGAACTAAGCACTGCTGTCTAC -ACGGAACTAAGCACTGCTACGTAC -ACGGAACTAAGCACTGCTAGTGAC -ACGGAACTAAGCACTGCTCTGTAG -ACGGAACTAAGCACTGCTCCTAAG -ACGGAACTAAGCACTGCTGTTCAG -ACGGAACTAAGCACTGCTGCATAG -ACGGAACTAAGCACTGCTGACAAG -ACGGAACTAAGCACTGCTAAGCAG -ACGGAACTAAGCACTGCTCGTCAA -ACGGAACTAAGCACTGCTGCTGAA -ACGGAACTAAGCACTGCTAGTACG -ACGGAACTAAGCACTGCTATCCGA -ACGGAACTAAGCACTGCTATGGGA -ACGGAACTAAGCACTGCTGTGCAA -ACGGAACTAAGCACTGCTGAGGAA -ACGGAACTAAGCACTGCTCAGGTA -ACGGAACTAAGCACTGCTGACTCT -ACGGAACTAAGCACTGCTAGTCCT -ACGGAACTAAGCACTGCTTAAGCC -ACGGAACTAAGCACTGCTATAGCC -ACGGAACTAAGCACTGCTTAACCG -ACGGAACTAAGCACTGCTATGCCA -ACGGAACTAAGCTCTGGAGGAAAC -ACGGAACTAAGCTCTGGAAACACC -ACGGAACTAAGCTCTGGAATCGAG -ACGGAACTAAGCTCTGGACTCCTT -ACGGAACTAAGCTCTGGACCTGTT -ACGGAACTAAGCTCTGGACGGTTT -ACGGAACTAAGCTCTGGAGTGGTT -ACGGAACTAAGCTCTGGAGCCTTT -ACGGAACTAAGCTCTGGAGGTCTT -ACGGAACTAAGCTCTGGAACGCTT -ACGGAACTAAGCTCTGGAAGCGTT -ACGGAACTAAGCTCTGGATTCGTC -ACGGAACTAAGCTCTGGATCTCTC -ACGGAACTAAGCTCTGGATGGATC -ACGGAACTAAGCTCTGGACACTTC -ACGGAACTAAGCTCTGGAGTACTC -ACGGAACTAAGCTCTGGAGATGTC -ACGGAACTAAGCTCTGGAACAGTC -ACGGAACTAAGCTCTGGATTGCTG -ACGGAACTAAGCTCTGGATCCATG -ACGGAACTAAGCTCTGGATGTGTG -ACGGAACTAAGCTCTGGACTAGTG -ACGGAACTAAGCTCTGGACATCTG -ACGGAACTAAGCTCTGGAGAGTTG -ACGGAACTAAGCTCTGGAAGACTG -ACGGAACTAAGCTCTGGATCGGTA -ACGGAACTAAGCTCTGGATGCCTA -ACGGAACTAAGCTCTGGACCACTA -ACGGAACTAAGCTCTGGAGGAGTA -ACGGAACTAAGCTCTGGATCGTCT -ACGGAACTAAGCTCTGGATGCACT -ACGGAACTAAGCTCTGGACTGACT -ACGGAACTAAGCTCTGGACAACCT -ACGGAACTAAGCTCTGGAGCTACT -ACGGAACTAAGCTCTGGAGGATCT -ACGGAACTAAGCTCTGGAAAGGCT -ACGGAACTAAGCTCTGGATCAACC -ACGGAACTAAGCTCTGGATGTTCC -ACGGAACTAAGCTCTGGAATTCCC -ACGGAACTAAGCTCTGGATTCTCG -ACGGAACTAAGCTCTGGATAGACG -ACGGAACTAAGCTCTGGAGTAACG -ACGGAACTAAGCTCTGGAACTTCG -ACGGAACTAAGCTCTGGATACGCA -ACGGAACTAAGCTCTGGACTTGCA -ACGGAACTAAGCTCTGGACGAACA -ACGGAACTAAGCTCTGGACAGTCA -ACGGAACTAAGCTCTGGAGATCCA -ACGGAACTAAGCTCTGGAACGACA -ACGGAACTAAGCTCTGGAAGCTCA -ACGGAACTAAGCTCTGGATCACGT -ACGGAACTAAGCTCTGGACGTAGT -ACGGAACTAAGCTCTGGAGTCAGT -ACGGAACTAAGCTCTGGAGAAGGT -ACGGAACTAAGCTCTGGAAACCGT -ACGGAACTAAGCTCTGGATTGTGC -ACGGAACTAAGCTCTGGACTAAGC -ACGGAACTAAGCTCTGGAACTAGC -ACGGAACTAAGCTCTGGAAGATGC -ACGGAACTAAGCTCTGGATGAAGG -ACGGAACTAAGCTCTGGACAATGG -ACGGAACTAAGCTCTGGAATGAGG -ACGGAACTAAGCTCTGGAAATGGG -ACGGAACTAAGCTCTGGATCCTGA -ACGGAACTAAGCTCTGGATAGCGA -ACGGAACTAAGCTCTGGACACAGA -ACGGAACTAAGCTCTGGAGCAAGA -ACGGAACTAAGCTCTGGAGGTTGA -ACGGAACTAAGCTCTGGATCCGAT -ACGGAACTAAGCTCTGGATGGCAT -ACGGAACTAAGCTCTGGACGAGAT -ACGGAACTAAGCTCTGGATACCAC -ACGGAACTAAGCTCTGGACAGAAC -ACGGAACTAAGCTCTGGAGTCTAC -ACGGAACTAAGCTCTGGAACGTAC -ACGGAACTAAGCTCTGGAAGTGAC -ACGGAACTAAGCTCTGGACTGTAG -ACGGAACTAAGCTCTGGACCTAAG -ACGGAACTAAGCTCTGGAGTTCAG -ACGGAACTAAGCTCTGGAGCATAG -ACGGAACTAAGCTCTGGAGACAAG -ACGGAACTAAGCTCTGGAAAGCAG -ACGGAACTAAGCTCTGGACGTCAA -ACGGAACTAAGCTCTGGAGCTGAA -ACGGAACTAAGCTCTGGAAGTACG -ACGGAACTAAGCTCTGGAATCCGA -ACGGAACTAAGCTCTGGAATGGGA -ACGGAACTAAGCTCTGGAGTGCAA -ACGGAACTAAGCTCTGGAGAGGAA -ACGGAACTAAGCTCTGGACAGGTA -ACGGAACTAAGCTCTGGAGACTCT -ACGGAACTAAGCTCTGGAAGTCCT -ACGGAACTAAGCTCTGGATAAGCC -ACGGAACTAAGCTCTGGAATAGCC -ACGGAACTAAGCTCTGGATAACCG -ACGGAACTAAGCTCTGGAATGCCA -ACGGAACTAAGCGCTAAGGGAAAC -ACGGAACTAAGCGCTAAGAACACC -ACGGAACTAAGCGCTAAGATCGAG -ACGGAACTAAGCGCTAAGCTCCTT -ACGGAACTAAGCGCTAAGCCTGTT -ACGGAACTAAGCGCTAAGCGGTTT -ACGGAACTAAGCGCTAAGGTGGTT -ACGGAACTAAGCGCTAAGGCCTTT -ACGGAACTAAGCGCTAAGGGTCTT -ACGGAACTAAGCGCTAAGACGCTT -ACGGAACTAAGCGCTAAGAGCGTT -ACGGAACTAAGCGCTAAGTTCGTC -ACGGAACTAAGCGCTAAGTCTCTC -ACGGAACTAAGCGCTAAGTGGATC -ACGGAACTAAGCGCTAAGCACTTC -ACGGAACTAAGCGCTAAGGTACTC -ACGGAACTAAGCGCTAAGGATGTC -ACGGAACTAAGCGCTAAGACAGTC -ACGGAACTAAGCGCTAAGTTGCTG -ACGGAACTAAGCGCTAAGTCCATG -ACGGAACTAAGCGCTAAGTGTGTG -ACGGAACTAAGCGCTAAGCTAGTG -ACGGAACTAAGCGCTAAGCATCTG -ACGGAACTAAGCGCTAAGGAGTTG -ACGGAACTAAGCGCTAAGAGACTG -ACGGAACTAAGCGCTAAGTCGGTA -ACGGAACTAAGCGCTAAGTGCCTA -ACGGAACTAAGCGCTAAGCCACTA -ACGGAACTAAGCGCTAAGGGAGTA -ACGGAACTAAGCGCTAAGTCGTCT -ACGGAACTAAGCGCTAAGTGCACT -ACGGAACTAAGCGCTAAGCTGACT -ACGGAACTAAGCGCTAAGCAACCT -ACGGAACTAAGCGCTAAGGCTACT -ACGGAACTAAGCGCTAAGGGATCT -ACGGAACTAAGCGCTAAGAAGGCT -ACGGAACTAAGCGCTAAGTCAACC -ACGGAACTAAGCGCTAAGTGTTCC -ACGGAACTAAGCGCTAAGATTCCC -ACGGAACTAAGCGCTAAGTTCTCG -ACGGAACTAAGCGCTAAGTAGACG -ACGGAACTAAGCGCTAAGGTAACG -ACGGAACTAAGCGCTAAGACTTCG -ACGGAACTAAGCGCTAAGTACGCA -ACGGAACTAAGCGCTAAGCTTGCA -ACGGAACTAAGCGCTAAGCGAACA -ACGGAACTAAGCGCTAAGCAGTCA -ACGGAACTAAGCGCTAAGGATCCA -ACGGAACTAAGCGCTAAGACGACA -ACGGAACTAAGCGCTAAGAGCTCA -ACGGAACTAAGCGCTAAGTCACGT -ACGGAACTAAGCGCTAAGCGTAGT -ACGGAACTAAGCGCTAAGGTCAGT -ACGGAACTAAGCGCTAAGGAAGGT -ACGGAACTAAGCGCTAAGAACCGT -ACGGAACTAAGCGCTAAGTTGTGC -ACGGAACTAAGCGCTAAGCTAAGC -ACGGAACTAAGCGCTAAGACTAGC -ACGGAACTAAGCGCTAAGAGATGC -ACGGAACTAAGCGCTAAGTGAAGG -ACGGAACTAAGCGCTAAGCAATGG -ACGGAACTAAGCGCTAAGATGAGG -ACGGAACTAAGCGCTAAGAATGGG -ACGGAACTAAGCGCTAAGTCCTGA -ACGGAACTAAGCGCTAAGTAGCGA -ACGGAACTAAGCGCTAAGCACAGA -ACGGAACTAAGCGCTAAGGCAAGA -ACGGAACTAAGCGCTAAGGGTTGA -ACGGAACTAAGCGCTAAGTCCGAT -ACGGAACTAAGCGCTAAGTGGCAT -ACGGAACTAAGCGCTAAGCGAGAT -ACGGAACTAAGCGCTAAGTACCAC -ACGGAACTAAGCGCTAAGCAGAAC -ACGGAACTAAGCGCTAAGGTCTAC -ACGGAACTAAGCGCTAAGACGTAC -ACGGAACTAAGCGCTAAGAGTGAC -ACGGAACTAAGCGCTAAGCTGTAG -ACGGAACTAAGCGCTAAGCCTAAG -ACGGAACTAAGCGCTAAGGTTCAG -ACGGAACTAAGCGCTAAGGCATAG -ACGGAACTAAGCGCTAAGGACAAG -ACGGAACTAAGCGCTAAGAAGCAG -ACGGAACTAAGCGCTAAGCGTCAA -ACGGAACTAAGCGCTAAGGCTGAA -ACGGAACTAAGCGCTAAGAGTACG -ACGGAACTAAGCGCTAAGATCCGA -ACGGAACTAAGCGCTAAGATGGGA -ACGGAACTAAGCGCTAAGGTGCAA -ACGGAACTAAGCGCTAAGGAGGAA -ACGGAACTAAGCGCTAAGCAGGTA -ACGGAACTAAGCGCTAAGGACTCT -ACGGAACTAAGCGCTAAGAGTCCT -ACGGAACTAAGCGCTAAGTAAGCC -ACGGAACTAAGCGCTAAGATAGCC -ACGGAACTAAGCGCTAAGTAACCG -ACGGAACTAAGCGCTAAGATGCCA -ACGGAACTAAGCACCTCAGGAAAC -ACGGAACTAAGCACCTCAAACACC -ACGGAACTAAGCACCTCAATCGAG -ACGGAACTAAGCACCTCACTCCTT -ACGGAACTAAGCACCTCACCTGTT -ACGGAACTAAGCACCTCACGGTTT -ACGGAACTAAGCACCTCAGTGGTT -ACGGAACTAAGCACCTCAGCCTTT -ACGGAACTAAGCACCTCAGGTCTT -ACGGAACTAAGCACCTCAACGCTT -ACGGAACTAAGCACCTCAAGCGTT -ACGGAACTAAGCACCTCATTCGTC -ACGGAACTAAGCACCTCATCTCTC -ACGGAACTAAGCACCTCATGGATC -ACGGAACTAAGCACCTCACACTTC -ACGGAACTAAGCACCTCAGTACTC -ACGGAACTAAGCACCTCAGATGTC -ACGGAACTAAGCACCTCAACAGTC -ACGGAACTAAGCACCTCATTGCTG -ACGGAACTAAGCACCTCATCCATG -ACGGAACTAAGCACCTCATGTGTG -ACGGAACTAAGCACCTCACTAGTG -ACGGAACTAAGCACCTCACATCTG -ACGGAACTAAGCACCTCAGAGTTG -ACGGAACTAAGCACCTCAAGACTG -ACGGAACTAAGCACCTCATCGGTA -ACGGAACTAAGCACCTCATGCCTA -ACGGAACTAAGCACCTCACCACTA -ACGGAACTAAGCACCTCAGGAGTA -ACGGAACTAAGCACCTCATCGTCT -ACGGAACTAAGCACCTCATGCACT -ACGGAACTAAGCACCTCACTGACT -ACGGAACTAAGCACCTCACAACCT -ACGGAACTAAGCACCTCAGCTACT -ACGGAACTAAGCACCTCAGGATCT -ACGGAACTAAGCACCTCAAAGGCT -ACGGAACTAAGCACCTCATCAACC -ACGGAACTAAGCACCTCATGTTCC -ACGGAACTAAGCACCTCAATTCCC -ACGGAACTAAGCACCTCATTCTCG -ACGGAACTAAGCACCTCATAGACG -ACGGAACTAAGCACCTCAGTAACG -ACGGAACTAAGCACCTCAACTTCG -ACGGAACTAAGCACCTCATACGCA -ACGGAACTAAGCACCTCACTTGCA -ACGGAACTAAGCACCTCACGAACA -ACGGAACTAAGCACCTCACAGTCA -ACGGAACTAAGCACCTCAGATCCA -ACGGAACTAAGCACCTCAACGACA -ACGGAACTAAGCACCTCAAGCTCA -ACGGAACTAAGCACCTCATCACGT -ACGGAACTAAGCACCTCACGTAGT -ACGGAACTAAGCACCTCAGTCAGT -ACGGAACTAAGCACCTCAGAAGGT -ACGGAACTAAGCACCTCAAACCGT -ACGGAACTAAGCACCTCATTGTGC -ACGGAACTAAGCACCTCACTAAGC -ACGGAACTAAGCACCTCAACTAGC -ACGGAACTAAGCACCTCAAGATGC -ACGGAACTAAGCACCTCATGAAGG -ACGGAACTAAGCACCTCACAATGG -ACGGAACTAAGCACCTCAATGAGG -ACGGAACTAAGCACCTCAAATGGG -ACGGAACTAAGCACCTCATCCTGA -ACGGAACTAAGCACCTCATAGCGA -ACGGAACTAAGCACCTCACACAGA -ACGGAACTAAGCACCTCAGCAAGA -ACGGAACTAAGCACCTCAGGTTGA -ACGGAACTAAGCACCTCATCCGAT -ACGGAACTAAGCACCTCATGGCAT -ACGGAACTAAGCACCTCACGAGAT -ACGGAACTAAGCACCTCATACCAC -ACGGAACTAAGCACCTCACAGAAC -ACGGAACTAAGCACCTCAGTCTAC -ACGGAACTAAGCACCTCAACGTAC -ACGGAACTAAGCACCTCAAGTGAC -ACGGAACTAAGCACCTCACTGTAG -ACGGAACTAAGCACCTCACCTAAG -ACGGAACTAAGCACCTCAGTTCAG -ACGGAACTAAGCACCTCAGCATAG -ACGGAACTAAGCACCTCAGACAAG -ACGGAACTAAGCACCTCAAAGCAG -ACGGAACTAAGCACCTCACGTCAA -ACGGAACTAAGCACCTCAGCTGAA -ACGGAACTAAGCACCTCAAGTACG -ACGGAACTAAGCACCTCAATCCGA -ACGGAACTAAGCACCTCAATGGGA -ACGGAACTAAGCACCTCAGTGCAA -ACGGAACTAAGCACCTCAGAGGAA -ACGGAACTAAGCACCTCACAGGTA -ACGGAACTAAGCACCTCAGACTCT -ACGGAACTAAGCACCTCAAGTCCT -ACGGAACTAAGCACCTCATAAGCC -ACGGAACTAAGCACCTCAATAGCC -ACGGAACTAAGCACCTCATAACCG -ACGGAACTAAGCACCTCAATGCCA -ACGGAACTAAGCTCCTGTGGAAAC -ACGGAACTAAGCTCCTGTAACACC -ACGGAACTAAGCTCCTGTATCGAG -ACGGAACTAAGCTCCTGTCTCCTT -ACGGAACTAAGCTCCTGTCCTGTT -ACGGAACTAAGCTCCTGTCGGTTT -ACGGAACTAAGCTCCTGTGTGGTT -ACGGAACTAAGCTCCTGTGCCTTT -ACGGAACTAAGCTCCTGTGGTCTT -ACGGAACTAAGCTCCTGTACGCTT -ACGGAACTAAGCTCCTGTAGCGTT -ACGGAACTAAGCTCCTGTTTCGTC -ACGGAACTAAGCTCCTGTTCTCTC -ACGGAACTAAGCTCCTGTTGGATC -ACGGAACTAAGCTCCTGTCACTTC -ACGGAACTAAGCTCCTGTGTACTC -ACGGAACTAAGCTCCTGTGATGTC -ACGGAACTAAGCTCCTGTACAGTC -ACGGAACTAAGCTCCTGTTTGCTG -ACGGAACTAAGCTCCTGTTCCATG -ACGGAACTAAGCTCCTGTTGTGTG -ACGGAACTAAGCTCCTGTCTAGTG -ACGGAACTAAGCTCCTGTCATCTG -ACGGAACTAAGCTCCTGTGAGTTG -ACGGAACTAAGCTCCTGTAGACTG -ACGGAACTAAGCTCCTGTTCGGTA -ACGGAACTAAGCTCCTGTTGCCTA -ACGGAACTAAGCTCCTGTCCACTA -ACGGAACTAAGCTCCTGTGGAGTA -ACGGAACTAAGCTCCTGTTCGTCT -ACGGAACTAAGCTCCTGTTGCACT -ACGGAACTAAGCTCCTGTCTGACT -ACGGAACTAAGCTCCTGTCAACCT -ACGGAACTAAGCTCCTGTGCTACT -ACGGAACTAAGCTCCTGTGGATCT -ACGGAACTAAGCTCCTGTAAGGCT -ACGGAACTAAGCTCCTGTTCAACC -ACGGAACTAAGCTCCTGTTGTTCC -ACGGAACTAAGCTCCTGTATTCCC -ACGGAACTAAGCTCCTGTTTCTCG -ACGGAACTAAGCTCCTGTTAGACG -ACGGAACTAAGCTCCTGTGTAACG -ACGGAACTAAGCTCCTGTACTTCG -ACGGAACTAAGCTCCTGTTACGCA -ACGGAACTAAGCTCCTGTCTTGCA -ACGGAACTAAGCTCCTGTCGAACA -ACGGAACTAAGCTCCTGTCAGTCA -ACGGAACTAAGCTCCTGTGATCCA -ACGGAACTAAGCTCCTGTACGACA -ACGGAACTAAGCTCCTGTAGCTCA -ACGGAACTAAGCTCCTGTTCACGT -ACGGAACTAAGCTCCTGTCGTAGT -ACGGAACTAAGCTCCTGTGTCAGT -ACGGAACTAAGCTCCTGTGAAGGT -ACGGAACTAAGCTCCTGTAACCGT -ACGGAACTAAGCTCCTGTTTGTGC -ACGGAACTAAGCTCCTGTCTAAGC -ACGGAACTAAGCTCCTGTACTAGC -ACGGAACTAAGCTCCTGTAGATGC -ACGGAACTAAGCTCCTGTTGAAGG -ACGGAACTAAGCTCCTGTCAATGG -ACGGAACTAAGCTCCTGTATGAGG -ACGGAACTAAGCTCCTGTAATGGG -ACGGAACTAAGCTCCTGTTCCTGA -ACGGAACTAAGCTCCTGTTAGCGA -ACGGAACTAAGCTCCTGTCACAGA -ACGGAACTAAGCTCCTGTGCAAGA -ACGGAACTAAGCTCCTGTGGTTGA -ACGGAACTAAGCTCCTGTTCCGAT -ACGGAACTAAGCTCCTGTTGGCAT -ACGGAACTAAGCTCCTGTCGAGAT -ACGGAACTAAGCTCCTGTTACCAC -ACGGAACTAAGCTCCTGTCAGAAC -ACGGAACTAAGCTCCTGTGTCTAC -ACGGAACTAAGCTCCTGTACGTAC -ACGGAACTAAGCTCCTGTAGTGAC -ACGGAACTAAGCTCCTGTCTGTAG -ACGGAACTAAGCTCCTGTCCTAAG -ACGGAACTAAGCTCCTGTGTTCAG -ACGGAACTAAGCTCCTGTGCATAG -ACGGAACTAAGCTCCTGTGACAAG -ACGGAACTAAGCTCCTGTAAGCAG -ACGGAACTAAGCTCCTGTCGTCAA -ACGGAACTAAGCTCCTGTGCTGAA -ACGGAACTAAGCTCCTGTAGTACG -ACGGAACTAAGCTCCTGTATCCGA -ACGGAACTAAGCTCCTGTATGGGA -ACGGAACTAAGCTCCTGTGTGCAA -ACGGAACTAAGCTCCTGTGAGGAA -ACGGAACTAAGCTCCTGTCAGGTA -ACGGAACTAAGCTCCTGTGACTCT -ACGGAACTAAGCTCCTGTAGTCCT -ACGGAACTAAGCTCCTGTTAAGCC -ACGGAACTAAGCTCCTGTATAGCC -ACGGAACTAAGCTCCTGTTAACCG -ACGGAACTAAGCTCCTGTATGCCA -ACGGAACTAAGCCCCATTGGAAAC -ACGGAACTAAGCCCCATTAACACC -ACGGAACTAAGCCCCATTATCGAG -ACGGAACTAAGCCCCATTCTCCTT -ACGGAACTAAGCCCCATTCCTGTT -ACGGAACTAAGCCCCATTCGGTTT -ACGGAACTAAGCCCCATTGTGGTT -ACGGAACTAAGCCCCATTGCCTTT -ACGGAACTAAGCCCCATTGGTCTT -ACGGAACTAAGCCCCATTACGCTT -ACGGAACTAAGCCCCATTAGCGTT -ACGGAACTAAGCCCCATTTTCGTC -ACGGAACTAAGCCCCATTTCTCTC -ACGGAACTAAGCCCCATTTGGATC -ACGGAACTAAGCCCCATTCACTTC -ACGGAACTAAGCCCCATTGTACTC -ACGGAACTAAGCCCCATTGATGTC -ACGGAACTAAGCCCCATTACAGTC -ACGGAACTAAGCCCCATTTTGCTG -ACGGAACTAAGCCCCATTTCCATG -ACGGAACTAAGCCCCATTTGTGTG -ACGGAACTAAGCCCCATTCTAGTG -ACGGAACTAAGCCCCATTCATCTG -ACGGAACTAAGCCCCATTGAGTTG -ACGGAACTAAGCCCCATTAGACTG -ACGGAACTAAGCCCCATTTCGGTA -ACGGAACTAAGCCCCATTTGCCTA -ACGGAACTAAGCCCCATTCCACTA -ACGGAACTAAGCCCCATTGGAGTA -ACGGAACTAAGCCCCATTTCGTCT -ACGGAACTAAGCCCCATTTGCACT -ACGGAACTAAGCCCCATTCTGACT -ACGGAACTAAGCCCCATTCAACCT -ACGGAACTAAGCCCCATTGCTACT -ACGGAACTAAGCCCCATTGGATCT -ACGGAACTAAGCCCCATTAAGGCT -ACGGAACTAAGCCCCATTTCAACC -ACGGAACTAAGCCCCATTTGTTCC -ACGGAACTAAGCCCCATTATTCCC -ACGGAACTAAGCCCCATTTTCTCG -ACGGAACTAAGCCCCATTTAGACG -ACGGAACTAAGCCCCATTGTAACG -ACGGAACTAAGCCCCATTACTTCG -ACGGAACTAAGCCCCATTTACGCA -ACGGAACTAAGCCCCATTCTTGCA -ACGGAACTAAGCCCCATTCGAACA -ACGGAACTAAGCCCCATTCAGTCA -ACGGAACTAAGCCCCATTGATCCA -ACGGAACTAAGCCCCATTACGACA -ACGGAACTAAGCCCCATTAGCTCA -ACGGAACTAAGCCCCATTTCACGT -ACGGAACTAAGCCCCATTCGTAGT -ACGGAACTAAGCCCCATTGTCAGT -ACGGAACTAAGCCCCATTGAAGGT -ACGGAACTAAGCCCCATTAACCGT -ACGGAACTAAGCCCCATTTTGTGC -ACGGAACTAAGCCCCATTCTAAGC -ACGGAACTAAGCCCCATTACTAGC -ACGGAACTAAGCCCCATTAGATGC -ACGGAACTAAGCCCCATTTGAAGG -ACGGAACTAAGCCCCATTCAATGG -ACGGAACTAAGCCCCATTATGAGG -ACGGAACTAAGCCCCATTAATGGG -ACGGAACTAAGCCCCATTTCCTGA -ACGGAACTAAGCCCCATTTAGCGA -ACGGAACTAAGCCCCATTCACAGA -ACGGAACTAAGCCCCATTGCAAGA -ACGGAACTAAGCCCCATTGGTTGA -ACGGAACTAAGCCCCATTTCCGAT -ACGGAACTAAGCCCCATTTGGCAT -ACGGAACTAAGCCCCATTCGAGAT -ACGGAACTAAGCCCCATTTACCAC -ACGGAACTAAGCCCCATTCAGAAC -ACGGAACTAAGCCCCATTGTCTAC -ACGGAACTAAGCCCCATTACGTAC -ACGGAACTAAGCCCCATTAGTGAC -ACGGAACTAAGCCCCATTCTGTAG -ACGGAACTAAGCCCCATTCCTAAG -ACGGAACTAAGCCCCATTGTTCAG -ACGGAACTAAGCCCCATTGCATAG -ACGGAACTAAGCCCCATTGACAAG -ACGGAACTAAGCCCCATTAAGCAG -ACGGAACTAAGCCCCATTCGTCAA -ACGGAACTAAGCCCCATTGCTGAA -ACGGAACTAAGCCCCATTAGTACG -ACGGAACTAAGCCCCATTATCCGA -ACGGAACTAAGCCCCATTATGGGA -ACGGAACTAAGCCCCATTGTGCAA -ACGGAACTAAGCCCCATTGAGGAA -ACGGAACTAAGCCCCATTCAGGTA -ACGGAACTAAGCCCCATTGACTCT -ACGGAACTAAGCCCCATTAGTCCT -ACGGAACTAAGCCCCATTTAAGCC -ACGGAACTAAGCCCCATTATAGCC -ACGGAACTAAGCCCCATTTAACCG -ACGGAACTAAGCCCCATTATGCCA -ACGGAACTAAGCTCGTTCGGAAAC -ACGGAACTAAGCTCGTTCAACACC -ACGGAACTAAGCTCGTTCATCGAG -ACGGAACTAAGCTCGTTCCTCCTT -ACGGAACTAAGCTCGTTCCCTGTT -ACGGAACTAAGCTCGTTCCGGTTT -ACGGAACTAAGCTCGTTCGTGGTT -ACGGAACTAAGCTCGTTCGCCTTT -ACGGAACTAAGCTCGTTCGGTCTT -ACGGAACTAAGCTCGTTCACGCTT -ACGGAACTAAGCTCGTTCAGCGTT -ACGGAACTAAGCTCGTTCTTCGTC -ACGGAACTAAGCTCGTTCTCTCTC -ACGGAACTAAGCTCGTTCTGGATC -ACGGAACTAAGCTCGTTCCACTTC -ACGGAACTAAGCTCGTTCGTACTC -ACGGAACTAAGCTCGTTCGATGTC -ACGGAACTAAGCTCGTTCACAGTC -ACGGAACTAAGCTCGTTCTTGCTG -ACGGAACTAAGCTCGTTCTCCATG -ACGGAACTAAGCTCGTTCTGTGTG -ACGGAACTAAGCTCGTTCCTAGTG -ACGGAACTAAGCTCGTTCCATCTG -ACGGAACTAAGCTCGTTCGAGTTG -ACGGAACTAAGCTCGTTCAGACTG -ACGGAACTAAGCTCGTTCTCGGTA -ACGGAACTAAGCTCGTTCTGCCTA -ACGGAACTAAGCTCGTTCCCACTA -ACGGAACTAAGCTCGTTCGGAGTA -ACGGAACTAAGCTCGTTCTCGTCT -ACGGAACTAAGCTCGTTCTGCACT -ACGGAACTAAGCTCGTTCCTGACT -ACGGAACTAAGCTCGTTCCAACCT -ACGGAACTAAGCTCGTTCGCTACT -ACGGAACTAAGCTCGTTCGGATCT -ACGGAACTAAGCTCGTTCAAGGCT -ACGGAACTAAGCTCGTTCTCAACC -ACGGAACTAAGCTCGTTCTGTTCC -ACGGAACTAAGCTCGTTCATTCCC -ACGGAACTAAGCTCGTTCTTCTCG -ACGGAACTAAGCTCGTTCTAGACG -ACGGAACTAAGCTCGTTCGTAACG -ACGGAACTAAGCTCGTTCACTTCG -ACGGAACTAAGCTCGTTCTACGCA -ACGGAACTAAGCTCGTTCCTTGCA -ACGGAACTAAGCTCGTTCCGAACA -ACGGAACTAAGCTCGTTCCAGTCA -ACGGAACTAAGCTCGTTCGATCCA -ACGGAACTAAGCTCGTTCACGACA -ACGGAACTAAGCTCGTTCAGCTCA -ACGGAACTAAGCTCGTTCTCACGT -ACGGAACTAAGCTCGTTCCGTAGT -ACGGAACTAAGCTCGTTCGTCAGT -ACGGAACTAAGCTCGTTCGAAGGT -ACGGAACTAAGCTCGTTCAACCGT -ACGGAACTAAGCTCGTTCTTGTGC -ACGGAACTAAGCTCGTTCCTAAGC -ACGGAACTAAGCTCGTTCACTAGC -ACGGAACTAAGCTCGTTCAGATGC -ACGGAACTAAGCTCGTTCTGAAGG -ACGGAACTAAGCTCGTTCCAATGG -ACGGAACTAAGCTCGTTCATGAGG -ACGGAACTAAGCTCGTTCAATGGG -ACGGAACTAAGCTCGTTCTCCTGA -ACGGAACTAAGCTCGTTCTAGCGA -ACGGAACTAAGCTCGTTCCACAGA -ACGGAACTAAGCTCGTTCGCAAGA -ACGGAACTAAGCTCGTTCGGTTGA -ACGGAACTAAGCTCGTTCTCCGAT -ACGGAACTAAGCTCGTTCTGGCAT -ACGGAACTAAGCTCGTTCCGAGAT -ACGGAACTAAGCTCGTTCTACCAC -ACGGAACTAAGCTCGTTCCAGAAC -ACGGAACTAAGCTCGTTCGTCTAC -ACGGAACTAAGCTCGTTCACGTAC -ACGGAACTAAGCTCGTTCAGTGAC -ACGGAACTAAGCTCGTTCCTGTAG -ACGGAACTAAGCTCGTTCCCTAAG -ACGGAACTAAGCTCGTTCGTTCAG -ACGGAACTAAGCTCGTTCGCATAG -ACGGAACTAAGCTCGTTCGACAAG -ACGGAACTAAGCTCGTTCAAGCAG -ACGGAACTAAGCTCGTTCCGTCAA -ACGGAACTAAGCTCGTTCGCTGAA -ACGGAACTAAGCTCGTTCAGTACG -ACGGAACTAAGCTCGTTCATCCGA -ACGGAACTAAGCTCGTTCATGGGA -ACGGAACTAAGCTCGTTCGTGCAA -ACGGAACTAAGCTCGTTCGAGGAA -ACGGAACTAAGCTCGTTCCAGGTA -ACGGAACTAAGCTCGTTCGACTCT -ACGGAACTAAGCTCGTTCAGTCCT -ACGGAACTAAGCTCGTTCTAAGCC -ACGGAACTAAGCTCGTTCATAGCC -ACGGAACTAAGCTCGTTCTAACCG -ACGGAACTAAGCTCGTTCATGCCA -ACGGAACTAAGCACGTAGGGAAAC -ACGGAACTAAGCACGTAGAACACC -ACGGAACTAAGCACGTAGATCGAG -ACGGAACTAAGCACGTAGCTCCTT -ACGGAACTAAGCACGTAGCCTGTT -ACGGAACTAAGCACGTAGCGGTTT -ACGGAACTAAGCACGTAGGTGGTT -ACGGAACTAAGCACGTAGGCCTTT -ACGGAACTAAGCACGTAGGGTCTT -ACGGAACTAAGCACGTAGACGCTT -ACGGAACTAAGCACGTAGAGCGTT -ACGGAACTAAGCACGTAGTTCGTC -ACGGAACTAAGCACGTAGTCTCTC -ACGGAACTAAGCACGTAGTGGATC -ACGGAACTAAGCACGTAGCACTTC -ACGGAACTAAGCACGTAGGTACTC -ACGGAACTAAGCACGTAGGATGTC -ACGGAACTAAGCACGTAGACAGTC -ACGGAACTAAGCACGTAGTTGCTG -ACGGAACTAAGCACGTAGTCCATG -ACGGAACTAAGCACGTAGTGTGTG -ACGGAACTAAGCACGTAGCTAGTG -ACGGAACTAAGCACGTAGCATCTG -ACGGAACTAAGCACGTAGGAGTTG -ACGGAACTAAGCACGTAGAGACTG -ACGGAACTAAGCACGTAGTCGGTA -ACGGAACTAAGCACGTAGTGCCTA -ACGGAACTAAGCACGTAGCCACTA -ACGGAACTAAGCACGTAGGGAGTA -ACGGAACTAAGCACGTAGTCGTCT -ACGGAACTAAGCACGTAGTGCACT -ACGGAACTAAGCACGTAGCTGACT -ACGGAACTAAGCACGTAGCAACCT -ACGGAACTAAGCACGTAGGCTACT -ACGGAACTAAGCACGTAGGGATCT -ACGGAACTAAGCACGTAGAAGGCT -ACGGAACTAAGCACGTAGTCAACC -ACGGAACTAAGCACGTAGTGTTCC -ACGGAACTAAGCACGTAGATTCCC -ACGGAACTAAGCACGTAGTTCTCG -ACGGAACTAAGCACGTAGTAGACG -ACGGAACTAAGCACGTAGGTAACG -ACGGAACTAAGCACGTAGACTTCG -ACGGAACTAAGCACGTAGTACGCA -ACGGAACTAAGCACGTAGCTTGCA -ACGGAACTAAGCACGTAGCGAACA -ACGGAACTAAGCACGTAGCAGTCA -ACGGAACTAAGCACGTAGGATCCA -ACGGAACTAAGCACGTAGACGACA -ACGGAACTAAGCACGTAGAGCTCA -ACGGAACTAAGCACGTAGTCACGT -ACGGAACTAAGCACGTAGCGTAGT -ACGGAACTAAGCACGTAGGTCAGT -ACGGAACTAAGCACGTAGGAAGGT -ACGGAACTAAGCACGTAGAACCGT -ACGGAACTAAGCACGTAGTTGTGC -ACGGAACTAAGCACGTAGCTAAGC -ACGGAACTAAGCACGTAGACTAGC -ACGGAACTAAGCACGTAGAGATGC -ACGGAACTAAGCACGTAGTGAAGG -ACGGAACTAAGCACGTAGCAATGG -ACGGAACTAAGCACGTAGATGAGG -ACGGAACTAAGCACGTAGAATGGG -ACGGAACTAAGCACGTAGTCCTGA -ACGGAACTAAGCACGTAGTAGCGA -ACGGAACTAAGCACGTAGCACAGA -ACGGAACTAAGCACGTAGGCAAGA -ACGGAACTAAGCACGTAGGGTTGA -ACGGAACTAAGCACGTAGTCCGAT -ACGGAACTAAGCACGTAGTGGCAT -ACGGAACTAAGCACGTAGCGAGAT -ACGGAACTAAGCACGTAGTACCAC -ACGGAACTAAGCACGTAGCAGAAC -ACGGAACTAAGCACGTAGGTCTAC -ACGGAACTAAGCACGTAGACGTAC -ACGGAACTAAGCACGTAGAGTGAC -ACGGAACTAAGCACGTAGCTGTAG -ACGGAACTAAGCACGTAGCCTAAG -ACGGAACTAAGCACGTAGGTTCAG -ACGGAACTAAGCACGTAGGCATAG -ACGGAACTAAGCACGTAGGACAAG -ACGGAACTAAGCACGTAGAAGCAG -ACGGAACTAAGCACGTAGCGTCAA -ACGGAACTAAGCACGTAGGCTGAA -ACGGAACTAAGCACGTAGAGTACG -ACGGAACTAAGCACGTAGATCCGA -ACGGAACTAAGCACGTAGATGGGA -ACGGAACTAAGCACGTAGGTGCAA -ACGGAACTAAGCACGTAGGAGGAA -ACGGAACTAAGCACGTAGCAGGTA -ACGGAACTAAGCACGTAGGACTCT -ACGGAACTAAGCACGTAGAGTCCT -ACGGAACTAAGCACGTAGTAAGCC -ACGGAACTAAGCACGTAGATAGCC -ACGGAACTAAGCACGTAGTAACCG -ACGGAACTAAGCACGTAGATGCCA -ACGGAACTAAGCACGGTAGGAAAC -ACGGAACTAAGCACGGTAAACACC -ACGGAACTAAGCACGGTAATCGAG -ACGGAACTAAGCACGGTACTCCTT -ACGGAACTAAGCACGGTACCTGTT -ACGGAACTAAGCACGGTACGGTTT -ACGGAACTAAGCACGGTAGTGGTT -ACGGAACTAAGCACGGTAGCCTTT -ACGGAACTAAGCACGGTAGGTCTT -ACGGAACTAAGCACGGTAACGCTT -ACGGAACTAAGCACGGTAAGCGTT -ACGGAACTAAGCACGGTATTCGTC -ACGGAACTAAGCACGGTATCTCTC -ACGGAACTAAGCACGGTATGGATC -ACGGAACTAAGCACGGTACACTTC -ACGGAACTAAGCACGGTAGTACTC -ACGGAACTAAGCACGGTAGATGTC -ACGGAACTAAGCACGGTAACAGTC -ACGGAACTAAGCACGGTATTGCTG -ACGGAACTAAGCACGGTATCCATG -ACGGAACTAAGCACGGTATGTGTG -ACGGAACTAAGCACGGTACTAGTG -ACGGAACTAAGCACGGTACATCTG -ACGGAACTAAGCACGGTAGAGTTG -ACGGAACTAAGCACGGTAAGACTG -ACGGAACTAAGCACGGTATCGGTA -ACGGAACTAAGCACGGTATGCCTA -ACGGAACTAAGCACGGTACCACTA -ACGGAACTAAGCACGGTAGGAGTA -ACGGAACTAAGCACGGTATCGTCT -ACGGAACTAAGCACGGTATGCACT -ACGGAACTAAGCACGGTACTGACT -ACGGAACTAAGCACGGTACAACCT -ACGGAACTAAGCACGGTAGCTACT -ACGGAACTAAGCACGGTAGGATCT -ACGGAACTAAGCACGGTAAAGGCT -ACGGAACTAAGCACGGTATCAACC -ACGGAACTAAGCACGGTATGTTCC -ACGGAACTAAGCACGGTAATTCCC -ACGGAACTAAGCACGGTATTCTCG -ACGGAACTAAGCACGGTATAGACG -ACGGAACTAAGCACGGTAGTAACG -ACGGAACTAAGCACGGTAACTTCG -ACGGAACTAAGCACGGTATACGCA -ACGGAACTAAGCACGGTACTTGCA -ACGGAACTAAGCACGGTACGAACA -ACGGAACTAAGCACGGTACAGTCA -ACGGAACTAAGCACGGTAGATCCA -ACGGAACTAAGCACGGTAACGACA -ACGGAACTAAGCACGGTAAGCTCA -ACGGAACTAAGCACGGTATCACGT -ACGGAACTAAGCACGGTACGTAGT -ACGGAACTAAGCACGGTAGTCAGT -ACGGAACTAAGCACGGTAGAAGGT -ACGGAACTAAGCACGGTAAACCGT -ACGGAACTAAGCACGGTATTGTGC -ACGGAACTAAGCACGGTACTAAGC -ACGGAACTAAGCACGGTAACTAGC -ACGGAACTAAGCACGGTAAGATGC -ACGGAACTAAGCACGGTATGAAGG -ACGGAACTAAGCACGGTACAATGG -ACGGAACTAAGCACGGTAATGAGG -ACGGAACTAAGCACGGTAAATGGG -ACGGAACTAAGCACGGTATCCTGA -ACGGAACTAAGCACGGTATAGCGA -ACGGAACTAAGCACGGTACACAGA -ACGGAACTAAGCACGGTAGCAAGA -ACGGAACTAAGCACGGTAGGTTGA -ACGGAACTAAGCACGGTATCCGAT -ACGGAACTAAGCACGGTATGGCAT -ACGGAACTAAGCACGGTACGAGAT -ACGGAACTAAGCACGGTATACCAC -ACGGAACTAAGCACGGTACAGAAC -ACGGAACTAAGCACGGTAGTCTAC -ACGGAACTAAGCACGGTAACGTAC -ACGGAACTAAGCACGGTAAGTGAC -ACGGAACTAAGCACGGTACTGTAG -ACGGAACTAAGCACGGTACCTAAG -ACGGAACTAAGCACGGTAGTTCAG -ACGGAACTAAGCACGGTAGCATAG -ACGGAACTAAGCACGGTAGACAAG -ACGGAACTAAGCACGGTAAAGCAG -ACGGAACTAAGCACGGTACGTCAA -ACGGAACTAAGCACGGTAGCTGAA -ACGGAACTAAGCACGGTAAGTACG -ACGGAACTAAGCACGGTAATCCGA -ACGGAACTAAGCACGGTAATGGGA -ACGGAACTAAGCACGGTAGTGCAA -ACGGAACTAAGCACGGTAGAGGAA -ACGGAACTAAGCACGGTACAGGTA -ACGGAACTAAGCACGGTAGACTCT -ACGGAACTAAGCACGGTAAGTCCT -ACGGAACTAAGCACGGTATAAGCC -ACGGAACTAAGCACGGTAATAGCC -ACGGAACTAAGCACGGTATAACCG -ACGGAACTAAGCACGGTAATGCCA -ACGGAACTAAGCTCGACTGGAAAC -ACGGAACTAAGCTCGACTAACACC -ACGGAACTAAGCTCGACTATCGAG -ACGGAACTAAGCTCGACTCTCCTT -ACGGAACTAAGCTCGACTCCTGTT -ACGGAACTAAGCTCGACTCGGTTT -ACGGAACTAAGCTCGACTGTGGTT -ACGGAACTAAGCTCGACTGCCTTT -ACGGAACTAAGCTCGACTGGTCTT -ACGGAACTAAGCTCGACTACGCTT -ACGGAACTAAGCTCGACTAGCGTT -ACGGAACTAAGCTCGACTTTCGTC -ACGGAACTAAGCTCGACTTCTCTC -ACGGAACTAAGCTCGACTTGGATC -ACGGAACTAAGCTCGACTCACTTC -ACGGAACTAAGCTCGACTGTACTC -ACGGAACTAAGCTCGACTGATGTC -ACGGAACTAAGCTCGACTACAGTC -ACGGAACTAAGCTCGACTTTGCTG -ACGGAACTAAGCTCGACTTCCATG -ACGGAACTAAGCTCGACTTGTGTG -ACGGAACTAAGCTCGACTCTAGTG -ACGGAACTAAGCTCGACTCATCTG -ACGGAACTAAGCTCGACTGAGTTG -ACGGAACTAAGCTCGACTAGACTG -ACGGAACTAAGCTCGACTTCGGTA -ACGGAACTAAGCTCGACTTGCCTA -ACGGAACTAAGCTCGACTCCACTA -ACGGAACTAAGCTCGACTGGAGTA -ACGGAACTAAGCTCGACTTCGTCT -ACGGAACTAAGCTCGACTTGCACT -ACGGAACTAAGCTCGACTCTGACT -ACGGAACTAAGCTCGACTCAACCT -ACGGAACTAAGCTCGACTGCTACT -ACGGAACTAAGCTCGACTGGATCT -ACGGAACTAAGCTCGACTAAGGCT -ACGGAACTAAGCTCGACTTCAACC -ACGGAACTAAGCTCGACTTGTTCC -ACGGAACTAAGCTCGACTATTCCC -ACGGAACTAAGCTCGACTTTCTCG -ACGGAACTAAGCTCGACTTAGACG -ACGGAACTAAGCTCGACTGTAACG -ACGGAACTAAGCTCGACTACTTCG -ACGGAACTAAGCTCGACTTACGCA -ACGGAACTAAGCTCGACTCTTGCA -ACGGAACTAAGCTCGACTCGAACA -ACGGAACTAAGCTCGACTCAGTCA -ACGGAACTAAGCTCGACTGATCCA -ACGGAACTAAGCTCGACTACGACA -ACGGAACTAAGCTCGACTAGCTCA -ACGGAACTAAGCTCGACTTCACGT -ACGGAACTAAGCTCGACTCGTAGT -ACGGAACTAAGCTCGACTGTCAGT -ACGGAACTAAGCTCGACTGAAGGT -ACGGAACTAAGCTCGACTAACCGT -ACGGAACTAAGCTCGACTTTGTGC -ACGGAACTAAGCTCGACTCTAAGC -ACGGAACTAAGCTCGACTACTAGC -ACGGAACTAAGCTCGACTAGATGC -ACGGAACTAAGCTCGACTTGAAGG -ACGGAACTAAGCTCGACTCAATGG -ACGGAACTAAGCTCGACTATGAGG -ACGGAACTAAGCTCGACTAATGGG -ACGGAACTAAGCTCGACTTCCTGA -ACGGAACTAAGCTCGACTTAGCGA -ACGGAACTAAGCTCGACTCACAGA -ACGGAACTAAGCTCGACTGCAAGA -ACGGAACTAAGCTCGACTGGTTGA -ACGGAACTAAGCTCGACTTCCGAT -ACGGAACTAAGCTCGACTTGGCAT -ACGGAACTAAGCTCGACTCGAGAT -ACGGAACTAAGCTCGACTTACCAC -ACGGAACTAAGCTCGACTCAGAAC -ACGGAACTAAGCTCGACTGTCTAC -ACGGAACTAAGCTCGACTACGTAC -ACGGAACTAAGCTCGACTAGTGAC -ACGGAACTAAGCTCGACTCTGTAG -ACGGAACTAAGCTCGACTCCTAAG -ACGGAACTAAGCTCGACTGTTCAG -ACGGAACTAAGCTCGACTGCATAG -ACGGAACTAAGCTCGACTGACAAG -ACGGAACTAAGCTCGACTAAGCAG -ACGGAACTAAGCTCGACTCGTCAA -ACGGAACTAAGCTCGACTGCTGAA -ACGGAACTAAGCTCGACTAGTACG -ACGGAACTAAGCTCGACTATCCGA -ACGGAACTAAGCTCGACTATGGGA -ACGGAACTAAGCTCGACTGTGCAA -ACGGAACTAAGCTCGACTGAGGAA -ACGGAACTAAGCTCGACTCAGGTA -ACGGAACTAAGCTCGACTGACTCT -ACGGAACTAAGCTCGACTAGTCCT -ACGGAACTAAGCTCGACTTAAGCC -ACGGAACTAAGCTCGACTATAGCC -ACGGAACTAAGCTCGACTTAACCG -ACGGAACTAAGCTCGACTATGCCA -ACGGAACTAAGCGCATACGGAAAC -ACGGAACTAAGCGCATACAACACC -ACGGAACTAAGCGCATACATCGAG -ACGGAACTAAGCGCATACCTCCTT -ACGGAACTAAGCGCATACCCTGTT -ACGGAACTAAGCGCATACCGGTTT -ACGGAACTAAGCGCATACGTGGTT -ACGGAACTAAGCGCATACGCCTTT -ACGGAACTAAGCGCATACGGTCTT -ACGGAACTAAGCGCATACACGCTT -ACGGAACTAAGCGCATACAGCGTT -ACGGAACTAAGCGCATACTTCGTC -ACGGAACTAAGCGCATACTCTCTC -ACGGAACTAAGCGCATACTGGATC -ACGGAACTAAGCGCATACCACTTC -ACGGAACTAAGCGCATACGTACTC -ACGGAACTAAGCGCATACGATGTC -ACGGAACTAAGCGCATACACAGTC -ACGGAACTAAGCGCATACTTGCTG -ACGGAACTAAGCGCATACTCCATG -ACGGAACTAAGCGCATACTGTGTG -ACGGAACTAAGCGCATACCTAGTG -ACGGAACTAAGCGCATACCATCTG -ACGGAACTAAGCGCATACGAGTTG -ACGGAACTAAGCGCATACAGACTG -ACGGAACTAAGCGCATACTCGGTA -ACGGAACTAAGCGCATACTGCCTA -ACGGAACTAAGCGCATACCCACTA -ACGGAACTAAGCGCATACGGAGTA -ACGGAACTAAGCGCATACTCGTCT -ACGGAACTAAGCGCATACTGCACT -ACGGAACTAAGCGCATACCTGACT -ACGGAACTAAGCGCATACCAACCT -ACGGAACTAAGCGCATACGCTACT -ACGGAACTAAGCGCATACGGATCT -ACGGAACTAAGCGCATACAAGGCT -ACGGAACTAAGCGCATACTCAACC -ACGGAACTAAGCGCATACTGTTCC -ACGGAACTAAGCGCATACATTCCC -ACGGAACTAAGCGCATACTTCTCG -ACGGAACTAAGCGCATACTAGACG -ACGGAACTAAGCGCATACGTAACG -ACGGAACTAAGCGCATACACTTCG -ACGGAACTAAGCGCATACTACGCA -ACGGAACTAAGCGCATACCTTGCA -ACGGAACTAAGCGCATACCGAACA -ACGGAACTAAGCGCATACCAGTCA -ACGGAACTAAGCGCATACGATCCA -ACGGAACTAAGCGCATACACGACA -ACGGAACTAAGCGCATACAGCTCA -ACGGAACTAAGCGCATACTCACGT -ACGGAACTAAGCGCATACCGTAGT -ACGGAACTAAGCGCATACGTCAGT -ACGGAACTAAGCGCATACGAAGGT -ACGGAACTAAGCGCATACAACCGT -ACGGAACTAAGCGCATACTTGTGC -ACGGAACTAAGCGCATACCTAAGC -ACGGAACTAAGCGCATACACTAGC -ACGGAACTAAGCGCATACAGATGC -ACGGAACTAAGCGCATACTGAAGG -ACGGAACTAAGCGCATACCAATGG -ACGGAACTAAGCGCATACATGAGG -ACGGAACTAAGCGCATACAATGGG -ACGGAACTAAGCGCATACTCCTGA -ACGGAACTAAGCGCATACTAGCGA -ACGGAACTAAGCGCATACCACAGA -ACGGAACTAAGCGCATACGCAAGA -ACGGAACTAAGCGCATACGGTTGA -ACGGAACTAAGCGCATACTCCGAT -ACGGAACTAAGCGCATACTGGCAT -ACGGAACTAAGCGCATACCGAGAT -ACGGAACTAAGCGCATACTACCAC -ACGGAACTAAGCGCATACCAGAAC -ACGGAACTAAGCGCATACGTCTAC -ACGGAACTAAGCGCATACACGTAC -ACGGAACTAAGCGCATACAGTGAC -ACGGAACTAAGCGCATACCTGTAG -ACGGAACTAAGCGCATACCCTAAG -ACGGAACTAAGCGCATACGTTCAG -ACGGAACTAAGCGCATACGCATAG -ACGGAACTAAGCGCATACGACAAG -ACGGAACTAAGCGCATACAAGCAG -ACGGAACTAAGCGCATACCGTCAA -ACGGAACTAAGCGCATACGCTGAA -ACGGAACTAAGCGCATACAGTACG -ACGGAACTAAGCGCATACATCCGA -ACGGAACTAAGCGCATACATGGGA -ACGGAACTAAGCGCATACGTGCAA -ACGGAACTAAGCGCATACGAGGAA -ACGGAACTAAGCGCATACCAGGTA -ACGGAACTAAGCGCATACGACTCT -ACGGAACTAAGCGCATACAGTCCT -ACGGAACTAAGCGCATACTAAGCC -ACGGAACTAAGCGCATACATAGCC -ACGGAACTAAGCGCATACTAACCG -ACGGAACTAAGCGCATACATGCCA -ACGGAACTAAGCGCACTTGGAAAC -ACGGAACTAAGCGCACTTAACACC -ACGGAACTAAGCGCACTTATCGAG -ACGGAACTAAGCGCACTTCTCCTT -ACGGAACTAAGCGCACTTCCTGTT -ACGGAACTAAGCGCACTTCGGTTT -ACGGAACTAAGCGCACTTGTGGTT -ACGGAACTAAGCGCACTTGCCTTT -ACGGAACTAAGCGCACTTGGTCTT -ACGGAACTAAGCGCACTTACGCTT -ACGGAACTAAGCGCACTTAGCGTT -ACGGAACTAAGCGCACTTTTCGTC -ACGGAACTAAGCGCACTTTCTCTC -ACGGAACTAAGCGCACTTTGGATC -ACGGAACTAAGCGCACTTCACTTC -ACGGAACTAAGCGCACTTGTACTC -ACGGAACTAAGCGCACTTGATGTC -ACGGAACTAAGCGCACTTACAGTC -ACGGAACTAAGCGCACTTTTGCTG -ACGGAACTAAGCGCACTTTCCATG -ACGGAACTAAGCGCACTTTGTGTG -ACGGAACTAAGCGCACTTCTAGTG -ACGGAACTAAGCGCACTTCATCTG -ACGGAACTAAGCGCACTTGAGTTG -ACGGAACTAAGCGCACTTAGACTG -ACGGAACTAAGCGCACTTTCGGTA -ACGGAACTAAGCGCACTTTGCCTA -ACGGAACTAAGCGCACTTCCACTA -ACGGAACTAAGCGCACTTGGAGTA -ACGGAACTAAGCGCACTTTCGTCT -ACGGAACTAAGCGCACTTTGCACT -ACGGAACTAAGCGCACTTCTGACT -ACGGAACTAAGCGCACTTCAACCT -ACGGAACTAAGCGCACTTGCTACT -ACGGAACTAAGCGCACTTGGATCT -ACGGAACTAAGCGCACTTAAGGCT -ACGGAACTAAGCGCACTTTCAACC -ACGGAACTAAGCGCACTTTGTTCC -ACGGAACTAAGCGCACTTATTCCC -ACGGAACTAAGCGCACTTTTCTCG -ACGGAACTAAGCGCACTTTAGACG -ACGGAACTAAGCGCACTTGTAACG -ACGGAACTAAGCGCACTTACTTCG -ACGGAACTAAGCGCACTTTACGCA -ACGGAACTAAGCGCACTTCTTGCA -ACGGAACTAAGCGCACTTCGAACA -ACGGAACTAAGCGCACTTCAGTCA -ACGGAACTAAGCGCACTTGATCCA -ACGGAACTAAGCGCACTTACGACA -ACGGAACTAAGCGCACTTAGCTCA -ACGGAACTAAGCGCACTTTCACGT -ACGGAACTAAGCGCACTTCGTAGT -ACGGAACTAAGCGCACTTGTCAGT -ACGGAACTAAGCGCACTTGAAGGT -ACGGAACTAAGCGCACTTAACCGT -ACGGAACTAAGCGCACTTTTGTGC -ACGGAACTAAGCGCACTTCTAAGC -ACGGAACTAAGCGCACTTACTAGC -ACGGAACTAAGCGCACTTAGATGC -ACGGAACTAAGCGCACTTTGAAGG -ACGGAACTAAGCGCACTTCAATGG -ACGGAACTAAGCGCACTTATGAGG -ACGGAACTAAGCGCACTTAATGGG -ACGGAACTAAGCGCACTTTCCTGA -ACGGAACTAAGCGCACTTTAGCGA -ACGGAACTAAGCGCACTTCACAGA -ACGGAACTAAGCGCACTTGCAAGA -ACGGAACTAAGCGCACTTGGTTGA -ACGGAACTAAGCGCACTTTCCGAT -ACGGAACTAAGCGCACTTTGGCAT -ACGGAACTAAGCGCACTTCGAGAT -ACGGAACTAAGCGCACTTTACCAC -ACGGAACTAAGCGCACTTCAGAAC -ACGGAACTAAGCGCACTTGTCTAC -ACGGAACTAAGCGCACTTACGTAC -ACGGAACTAAGCGCACTTAGTGAC -ACGGAACTAAGCGCACTTCTGTAG -ACGGAACTAAGCGCACTTCCTAAG -ACGGAACTAAGCGCACTTGTTCAG -ACGGAACTAAGCGCACTTGCATAG -ACGGAACTAAGCGCACTTGACAAG -ACGGAACTAAGCGCACTTAAGCAG -ACGGAACTAAGCGCACTTCGTCAA -ACGGAACTAAGCGCACTTGCTGAA -ACGGAACTAAGCGCACTTAGTACG -ACGGAACTAAGCGCACTTATCCGA -ACGGAACTAAGCGCACTTATGGGA -ACGGAACTAAGCGCACTTGTGCAA -ACGGAACTAAGCGCACTTGAGGAA -ACGGAACTAAGCGCACTTCAGGTA -ACGGAACTAAGCGCACTTGACTCT -ACGGAACTAAGCGCACTTAGTCCT -ACGGAACTAAGCGCACTTTAAGCC -ACGGAACTAAGCGCACTTATAGCC -ACGGAACTAAGCGCACTTTAACCG -ACGGAACTAAGCGCACTTATGCCA -ACGGAACTAAGCACACGAGGAAAC -ACGGAACTAAGCACACGAAACACC -ACGGAACTAAGCACACGAATCGAG -ACGGAACTAAGCACACGACTCCTT -ACGGAACTAAGCACACGACCTGTT -ACGGAACTAAGCACACGACGGTTT -ACGGAACTAAGCACACGAGTGGTT -ACGGAACTAAGCACACGAGCCTTT -ACGGAACTAAGCACACGAGGTCTT -ACGGAACTAAGCACACGAACGCTT -ACGGAACTAAGCACACGAAGCGTT -ACGGAACTAAGCACACGATTCGTC -ACGGAACTAAGCACACGATCTCTC -ACGGAACTAAGCACACGATGGATC -ACGGAACTAAGCACACGACACTTC -ACGGAACTAAGCACACGAGTACTC -ACGGAACTAAGCACACGAGATGTC -ACGGAACTAAGCACACGAACAGTC -ACGGAACTAAGCACACGATTGCTG -ACGGAACTAAGCACACGATCCATG -ACGGAACTAAGCACACGATGTGTG -ACGGAACTAAGCACACGACTAGTG -ACGGAACTAAGCACACGACATCTG -ACGGAACTAAGCACACGAGAGTTG -ACGGAACTAAGCACACGAAGACTG -ACGGAACTAAGCACACGATCGGTA -ACGGAACTAAGCACACGATGCCTA -ACGGAACTAAGCACACGACCACTA -ACGGAACTAAGCACACGAGGAGTA -ACGGAACTAAGCACACGATCGTCT -ACGGAACTAAGCACACGATGCACT -ACGGAACTAAGCACACGACTGACT -ACGGAACTAAGCACACGACAACCT -ACGGAACTAAGCACACGAGCTACT -ACGGAACTAAGCACACGAGGATCT -ACGGAACTAAGCACACGAAAGGCT -ACGGAACTAAGCACACGATCAACC -ACGGAACTAAGCACACGATGTTCC -ACGGAACTAAGCACACGAATTCCC -ACGGAACTAAGCACACGATTCTCG -ACGGAACTAAGCACACGATAGACG -ACGGAACTAAGCACACGAGTAACG -ACGGAACTAAGCACACGAACTTCG -ACGGAACTAAGCACACGATACGCA -ACGGAACTAAGCACACGACTTGCA -ACGGAACTAAGCACACGACGAACA -ACGGAACTAAGCACACGACAGTCA -ACGGAACTAAGCACACGAGATCCA -ACGGAACTAAGCACACGAACGACA -ACGGAACTAAGCACACGAAGCTCA -ACGGAACTAAGCACACGATCACGT -ACGGAACTAAGCACACGACGTAGT -ACGGAACTAAGCACACGAGTCAGT -ACGGAACTAAGCACACGAGAAGGT -ACGGAACTAAGCACACGAAACCGT -ACGGAACTAAGCACACGATTGTGC -ACGGAACTAAGCACACGACTAAGC -ACGGAACTAAGCACACGAACTAGC -ACGGAACTAAGCACACGAAGATGC -ACGGAACTAAGCACACGATGAAGG -ACGGAACTAAGCACACGACAATGG -ACGGAACTAAGCACACGAATGAGG -ACGGAACTAAGCACACGAAATGGG -ACGGAACTAAGCACACGATCCTGA -ACGGAACTAAGCACACGATAGCGA -ACGGAACTAAGCACACGACACAGA -ACGGAACTAAGCACACGAGCAAGA -ACGGAACTAAGCACACGAGGTTGA -ACGGAACTAAGCACACGATCCGAT -ACGGAACTAAGCACACGATGGCAT -ACGGAACTAAGCACACGACGAGAT -ACGGAACTAAGCACACGATACCAC -ACGGAACTAAGCACACGACAGAAC -ACGGAACTAAGCACACGAGTCTAC -ACGGAACTAAGCACACGAACGTAC -ACGGAACTAAGCACACGAAGTGAC -ACGGAACTAAGCACACGACTGTAG -ACGGAACTAAGCACACGACCTAAG -ACGGAACTAAGCACACGAGTTCAG -ACGGAACTAAGCACACGAGCATAG -ACGGAACTAAGCACACGAGACAAG -ACGGAACTAAGCACACGAAAGCAG -ACGGAACTAAGCACACGACGTCAA -ACGGAACTAAGCACACGAGCTGAA -ACGGAACTAAGCACACGAAGTACG -ACGGAACTAAGCACACGAATCCGA -ACGGAACTAAGCACACGAATGGGA -ACGGAACTAAGCACACGAGTGCAA -ACGGAACTAAGCACACGAGAGGAA -ACGGAACTAAGCACACGACAGGTA -ACGGAACTAAGCACACGAGACTCT -ACGGAACTAAGCACACGAAGTCCT -ACGGAACTAAGCACACGATAAGCC -ACGGAACTAAGCACACGAATAGCC -ACGGAACTAAGCACACGATAACCG -ACGGAACTAAGCACACGAATGCCA -ACGGAACTAAGCTCACAGGGAAAC -ACGGAACTAAGCTCACAGAACACC -ACGGAACTAAGCTCACAGATCGAG -ACGGAACTAAGCTCACAGCTCCTT -ACGGAACTAAGCTCACAGCCTGTT -ACGGAACTAAGCTCACAGCGGTTT -ACGGAACTAAGCTCACAGGTGGTT -ACGGAACTAAGCTCACAGGCCTTT -ACGGAACTAAGCTCACAGGGTCTT -ACGGAACTAAGCTCACAGACGCTT -ACGGAACTAAGCTCACAGAGCGTT -ACGGAACTAAGCTCACAGTTCGTC -ACGGAACTAAGCTCACAGTCTCTC -ACGGAACTAAGCTCACAGTGGATC -ACGGAACTAAGCTCACAGCACTTC -ACGGAACTAAGCTCACAGGTACTC -ACGGAACTAAGCTCACAGGATGTC -ACGGAACTAAGCTCACAGACAGTC -ACGGAACTAAGCTCACAGTTGCTG -ACGGAACTAAGCTCACAGTCCATG -ACGGAACTAAGCTCACAGTGTGTG -ACGGAACTAAGCTCACAGCTAGTG -ACGGAACTAAGCTCACAGCATCTG -ACGGAACTAAGCTCACAGGAGTTG -ACGGAACTAAGCTCACAGAGACTG -ACGGAACTAAGCTCACAGTCGGTA -ACGGAACTAAGCTCACAGTGCCTA -ACGGAACTAAGCTCACAGCCACTA -ACGGAACTAAGCTCACAGGGAGTA -ACGGAACTAAGCTCACAGTCGTCT -ACGGAACTAAGCTCACAGTGCACT -ACGGAACTAAGCTCACAGCTGACT -ACGGAACTAAGCTCACAGCAACCT -ACGGAACTAAGCTCACAGGCTACT -ACGGAACTAAGCTCACAGGGATCT -ACGGAACTAAGCTCACAGAAGGCT -ACGGAACTAAGCTCACAGTCAACC -ACGGAACTAAGCTCACAGTGTTCC -ACGGAACTAAGCTCACAGATTCCC -ACGGAACTAAGCTCACAGTTCTCG -ACGGAACTAAGCTCACAGTAGACG -ACGGAACTAAGCTCACAGGTAACG -ACGGAACTAAGCTCACAGACTTCG -ACGGAACTAAGCTCACAGTACGCA -ACGGAACTAAGCTCACAGCTTGCA -ACGGAACTAAGCTCACAGCGAACA -ACGGAACTAAGCTCACAGCAGTCA -ACGGAACTAAGCTCACAGGATCCA -ACGGAACTAAGCTCACAGACGACA -ACGGAACTAAGCTCACAGAGCTCA -ACGGAACTAAGCTCACAGTCACGT -ACGGAACTAAGCTCACAGCGTAGT -ACGGAACTAAGCTCACAGGTCAGT -ACGGAACTAAGCTCACAGGAAGGT -ACGGAACTAAGCTCACAGAACCGT -ACGGAACTAAGCTCACAGTTGTGC -ACGGAACTAAGCTCACAGCTAAGC -ACGGAACTAAGCTCACAGACTAGC -ACGGAACTAAGCTCACAGAGATGC -ACGGAACTAAGCTCACAGTGAAGG -ACGGAACTAAGCTCACAGCAATGG -ACGGAACTAAGCTCACAGATGAGG -ACGGAACTAAGCTCACAGAATGGG -ACGGAACTAAGCTCACAGTCCTGA -ACGGAACTAAGCTCACAGTAGCGA -ACGGAACTAAGCTCACAGCACAGA -ACGGAACTAAGCTCACAGGCAAGA -ACGGAACTAAGCTCACAGGGTTGA -ACGGAACTAAGCTCACAGTCCGAT -ACGGAACTAAGCTCACAGTGGCAT -ACGGAACTAAGCTCACAGCGAGAT -ACGGAACTAAGCTCACAGTACCAC -ACGGAACTAAGCTCACAGCAGAAC -ACGGAACTAAGCTCACAGGTCTAC -ACGGAACTAAGCTCACAGACGTAC -ACGGAACTAAGCTCACAGAGTGAC -ACGGAACTAAGCTCACAGCTGTAG -ACGGAACTAAGCTCACAGCCTAAG -ACGGAACTAAGCTCACAGGTTCAG -ACGGAACTAAGCTCACAGGCATAG -ACGGAACTAAGCTCACAGGACAAG -ACGGAACTAAGCTCACAGAAGCAG -ACGGAACTAAGCTCACAGCGTCAA -ACGGAACTAAGCTCACAGGCTGAA -ACGGAACTAAGCTCACAGAGTACG -ACGGAACTAAGCTCACAGATCCGA -ACGGAACTAAGCTCACAGATGGGA -ACGGAACTAAGCTCACAGGTGCAA -ACGGAACTAAGCTCACAGGAGGAA -ACGGAACTAAGCTCACAGCAGGTA -ACGGAACTAAGCTCACAGGACTCT -ACGGAACTAAGCTCACAGAGTCCT -ACGGAACTAAGCTCACAGTAAGCC -ACGGAACTAAGCTCACAGATAGCC -ACGGAACTAAGCTCACAGTAACCG -ACGGAACTAAGCTCACAGATGCCA -ACGGAACTAAGCCCAGATGGAAAC -ACGGAACTAAGCCCAGATAACACC -ACGGAACTAAGCCCAGATATCGAG -ACGGAACTAAGCCCAGATCTCCTT -ACGGAACTAAGCCCAGATCCTGTT -ACGGAACTAAGCCCAGATCGGTTT -ACGGAACTAAGCCCAGATGTGGTT -ACGGAACTAAGCCCAGATGCCTTT -ACGGAACTAAGCCCAGATGGTCTT -ACGGAACTAAGCCCAGATACGCTT -ACGGAACTAAGCCCAGATAGCGTT -ACGGAACTAAGCCCAGATTTCGTC -ACGGAACTAAGCCCAGATTCTCTC -ACGGAACTAAGCCCAGATTGGATC -ACGGAACTAAGCCCAGATCACTTC -ACGGAACTAAGCCCAGATGTACTC -ACGGAACTAAGCCCAGATGATGTC -ACGGAACTAAGCCCAGATACAGTC -ACGGAACTAAGCCCAGATTTGCTG -ACGGAACTAAGCCCAGATTCCATG -ACGGAACTAAGCCCAGATTGTGTG -ACGGAACTAAGCCCAGATCTAGTG -ACGGAACTAAGCCCAGATCATCTG -ACGGAACTAAGCCCAGATGAGTTG -ACGGAACTAAGCCCAGATAGACTG -ACGGAACTAAGCCCAGATTCGGTA -ACGGAACTAAGCCCAGATTGCCTA -ACGGAACTAAGCCCAGATCCACTA -ACGGAACTAAGCCCAGATGGAGTA -ACGGAACTAAGCCCAGATTCGTCT -ACGGAACTAAGCCCAGATTGCACT -ACGGAACTAAGCCCAGATCTGACT -ACGGAACTAAGCCCAGATCAACCT -ACGGAACTAAGCCCAGATGCTACT -ACGGAACTAAGCCCAGATGGATCT -ACGGAACTAAGCCCAGATAAGGCT -ACGGAACTAAGCCCAGATTCAACC -ACGGAACTAAGCCCAGATTGTTCC -ACGGAACTAAGCCCAGATATTCCC -ACGGAACTAAGCCCAGATTTCTCG -ACGGAACTAAGCCCAGATTAGACG -ACGGAACTAAGCCCAGATGTAACG -ACGGAACTAAGCCCAGATACTTCG -ACGGAACTAAGCCCAGATTACGCA -ACGGAACTAAGCCCAGATCTTGCA -ACGGAACTAAGCCCAGATCGAACA -ACGGAACTAAGCCCAGATCAGTCA -ACGGAACTAAGCCCAGATGATCCA -ACGGAACTAAGCCCAGATACGACA -ACGGAACTAAGCCCAGATAGCTCA -ACGGAACTAAGCCCAGATTCACGT -ACGGAACTAAGCCCAGATCGTAGT -ACGGAACTAAGCCCAGATGTCAGT -ACGGAACTAAGCCCAGATGAAGGT -ACGGAACTAAGCCCAGATAACCGT -ACGGAACTAAGCCCAGATTTGTGC -ACGGAACTAAGCCCAGATCTAAGC -ACGGAACTAAGCCCAGATACTAGC -ACGGAACTAAGCCCAGATAGATGC -ACGGAACTAAGCCCAGATTGAAGG -ACGGAACTAAGCCCAGATCAATGG -ACGGAACTAAGCCCAGATATGAGG -ACGGAACTAAGCCCAGATAATGGG -ACGGAACTAAGCCCAGATTCCTGA -ACGGAACTAAGCCCAGATTAGCGA -ACGGAACTAAGCCCAGATCACAGA -ACGGAACTAAGCCCAGATGCAAGA -ACGGAACTAAGCCCAGATGGTTGA -ACGGAACTAAGCCCAGATTCCGAT -ACGGAACTAAGCCCAGATTGGCAT -ACGGAACTAAGCCCAGATCGAGAT -ACGGAACTAAGCCCAGATTACCAC -ACGGAACTAAGCCCAGATCAGAAC -ACGGAACTAAGCCCAGATGTCTAC -ACGGAACTAAGCCCAGATACGTAC -ACGGAACTAAGCCCAGATAGTGAC -ACGGAACTAAGCCCAGATCTGTAG -ACGGAACTAAGCCCAGATCCTAAG -ACGGAACTAAGCCCAGATGTTCAG -ACGGAACTAAGCCCAGATGCATAG -ACGGAACTAAGCCCAGATGACAAG -ACGGAACTAAGCCCAGATAAGCAG -ACGGAACTAAGCCCAGATCGTCAA -ACGGAACTAAGCCCAGATGCTGAA -ACGGAACTAAGCCCAGATAGTACG -ACGGAACTAAGCCCAGATATCCGA -ACGGAACTAAGCCCAGATATGGGA -ACGGAACTAAGCCCAGATGTGCAA -ACGGAACTAAGCCCAGATGAGGAA -ACGGAACTAAGCCCAGATCAGGTA -ACGGAACTAAGCCCAGATGACTCT -ACGGAACTAAGCCCAGATAGTCCT -ACGGAACTAAGCCCAGATTAAGCC -ACGGAACTAAGCCCAGATATAGCC -ACGGAACTAAGCCCAGATTAACCG -ACGGAACTAAGCCCAGATATGCCA -ACGGAACTAAGCACAACGGGAAAC -ACGGAACTAAGCACAACGAACACC -ACGGAACTAAGCACAACGATCGAG -ACGGAACTAAGCACAACGCTCCTT -ACGGAACTAAGCACAACGCCTGTT -ACGGAACTAAGCACAACGCGGTTT -ACGGAACTAAGCACAACGGTGGTT -ACGGAACTAAGCACAACGGCCTTT -ACGGAACTAAGCACAACGGGTCTT -ACGGAACTAAGCACAACGACGCTT -ACGGAACTAAGCACAACGAGCGTT -ACGGAACTAAGCACAACGTTCGTC -ACGGAACTAAGCACAACGTCTCTC -ACGGAACTAAGCACAACGTGGATC -ACGGAACTAAGCACAACGCACTTC -ACGGAACTAAGCACAACGGTACTC -ACGGAACTAAGCACAACGGATGTC -ACGGAACTAAGCACAACGACAGTC -ACGGAACTAAGCACAACGTTGCTG -ACGGAACTAAGCACAACGTCCATG -ACGGAACTAAGCACAACGTGTGTG -ACGGAACTAAGCACAACGCTAGTG -ACGGAACTAAGCACAACGCATCTG -ACGGAACTAAGCACAACGGAGTTG -ACGGAACTAAGCACAACGAGACTG -ACGGAACTAAGCACAACGTCGGTA -ACGGAACTAAGCACAACGTGCCTA -ACGGAACTAAGCACAACGCCACTA -ACGGAACTAAGCACAACGGGAGTA -ACGGAACTAAGCACAACGTCGTCT -ACGGAACTAAGCACAACGTGCACT -ACGGAACTAAGCACAACGCTGACT -ACGGAACTAAGCACAACGCAACCT -ACGGAACTAAGCACAACGGCTACT -ACGGAACTAAGCACAACGGGATCT -ACGGAACTAAGCACAACGAAGGCT -ACGGAACTAAGCACAACGTCAACC -ACGGAACTAAGCACAACGTGTTCC -ACGGAACTAAGCACAACGATTCCC -ACGGAACTAAGCACAACGTTCTCG -ACGGAACTAAGCACAACGTAGACG -ACGGAACTAAGCACAACGGTAACG -ACGGAACTAAGCACAACGACTTCG -ACGGAACTAAGCACAACGTACGCA -ACGGAACTAAGCACAACGCTTGCA -ACGGAACTAAGCACAACGCGAACA -ACGGAACTAAGCACAACGCAGTCA -ACGGAACTAAGCACAACGGATCCA -ACGGAACTAAGCACAACGACGACA -ACGGAACTAAGCACAACGAGCTCA -ACGGAACTAAGCACAACGTCACGT -ACGGAACTAAGCACAACGCGTAGT -ACGGAACTAAGCACAACGGTCAGT -ACGGAACTAAGCACAACGGAAGGT -ACGGAACTAAGCACAACGAACCGT -ACGGAACTAAGCACAACGTTGTGC -ACGGAACTAAGCACAACGCTAAGC -ACGGAACTAAGCACAACGACTAGC -ACGGAACTAAGCACAACGAGATGC -ACGGAACTAAGCACAACGTGAAGG -ACGGAACTAAGCACAACGCAATGG -ACGGAACTAAGCACAACGATGAGG -ACGGAACTAAGCACAACGAATGGG -ACGGAACTAAGCACAACGTCCTGA -ACGGAACTAAGCACAACGTAGCGA -ACGGAACTAAGCACAACGCACAGA -ACGGAACTAAGCACAACGGCAAGA -ACGGAACTAAGCACAACGGGTTGA -ACGGAACTAAGCACAACGTCCGAT -ACGGAACTAAGCACAACGTGGCAT -ACGGAACTAAGCACAACGCGAGAT -ACGGAACTAAGCACAACGTACCAC -ACGGAACTAAGCACAACGCAGAAC -ACGGAACTAAGCACAACGGTCTAC -ACGGAACTAAGCACAACGACGTAC -ACGGAACTAAGCACAACGAGTGAC -ACGGAACTAAGCACAACGCTGTAG -ACGGAACTAAGCACAACGCCTAAG -ACGGAACTAAGCACAACGGTTCAG -ACGGAACTAAGCACAACGGCATAG -ACGGAACTAAGCACAACGGACAAG -ACGGAACTAAGCACAACGAAGCAG -ACGGAACTAAGCACAACGCGTCAA -ACGGAACTAAGCACAACGGCTGAA -ACGGAACTAAGCACAACGAGTACG -ACGGAACTAAGCACAACGATCCGA -ACGGAACTAAGCACAACGATGGGA -ACGGAACTAAGCACAACGGTGCAA -ACGGAACTAAGCACAACGGAGGAA -ACGGAACTAAGCACAACGCAGGTA -ACGGAACTAAGCACAACGGACTCT -ACGGAACTAAGCACAACGAGTCCT -ACGGAACTAAGCACAACGTAAGCC -ACGGAACTAAGCACAACGATAGCC -ACGGAACTAAGCACAACGTAACCG -ACGGAACTAAGCACAACGATGCCA -ACGGAACTAAGCTCAAGCGGAAAC -ACGGAACTAAGCTCAAGCAACACC -ACGGAACTAAGCTCAAGCATCGAG -ACGGAACTAAGCTCAAGCCTCCTT -ACGGAACTAAGCTCAAGCCCTGTT -ACGGAACTAAGCTCAAGCCGGTTT -ACGGAACTAAGCTCAAGCGTGGTT -ACGGAACTAAGCTCAAGCGCCTTT -ACGGAACTAAGCTCAAGCGGTCTT -ACGGAACTAAGCTCAAGCACGCTT -ACGGAACTAAGCTCAAGCAGCGTT -ACGGAACTAAGCTCAAGCTTCGTC -ACGGAACTAAGCTCAAGCTCTCTC -ACGGAACTAAGCTCAAGCTGGATC -ACGGAACTAAGCTCAAGCCACTTC -ACGGAACTAAGCTCAAGCGTACTC -ACGGAACTAAGCTCAAGCGATGTC -ACGGAACTAAGCTCAAGCACAGTC -ACGGAACTAAGCTCAAGCTTGCTG -ACGGAACTAAGCTCAAGCTCCATG -ACGGAACTAAGCTCAAGCTGTGTG -ACGGAACTAAGCTCAAGCCTAGTG -ACGGAACTAAGCTCAAGCCATCTG -ACGGAACTAAGCTCAAGCGAGTTG -ACGGAACTAAGCTCAAGCAGACTG -ACGGAACTAAGCTCAAGCTCGGTA -ACGGAACTAAGCTCAAGCTGCCTA -ACGGAACTAAGCTCAAGCCCACTA -ACGGAACTAAGCTCAAGCGGAGTA -ACGGAACTAAGCTCAAGCTCGTCT -ACGGAACTAAGCTCAAGCTGCACT -ACGGAACTAAGCTCAAGCCTGACT -ACGGAACTAAGCTCAAGCCAACCT -ACGGAACTAAGCTCAAGCGCTACT -ACGGAACTAAGCTCAAGCGGATCT -ACGGAACTAAGCTCAAGCAAGGCT -ACGGAACTAAGCTCAAGCTCAACC -ACGGAACTAAGCTCAAGCTGTTCC -ACGGAACTAAGCTCAAGCATTCCC -ACGGAACTAAGCTCAAGCTTCTCG -ACGGAACTAAGCTCAAGCTAGACG -ACGGAACTAAGCTCAAGCGTAACG -ACGGAACTAAGCTCAAGCACTTCG -ACGGAACTAAGCTCAAGCTACGCA -ACGGAACTAAGCTCAAGCCTTGCA -ACGGAACTAAGCTCAAGCCGAACA -ACGGAACTAAGCTCAAGCCAGTCA -ACGGAACTAAGCTCAAGCGATCCA -ACGGAACTAAGCTCAAGCACGACA -ACGGAACTAAGCTCAAGCAGCTCA -ACGGAACTAAGCTCAAGCTCACGT -ACGGAACTAAGCTCAAGCCGTAGT -ACGGAACTAAGCTCAAGCGTCAGT -ACGGAACTAAGCTCAAGCGAAGGT -ACGGAACTAAGCTCAAGCAACCGT -ACGGAACTAAGCTCAAGCTTGTGC -ACGGAACTAAGCTCAAGCCTAAGC -ACGGAACTAAGCTCAAGCACTAGC -ACGGAACTAAGCTCAAGCAGATGC -ACGGAACTAAGCTCAAGCTGAAGG -ACGGAACTAAGCTCAAGCCAATGG -ACGGAACTAAGCTCAAGCATGAGG -ACGGAACTAAGCTCAAGCAATGGG -ACGGAACTAAGCTCAAGCTCCTGA -ACGGAACTAAGCTCAAGCTAGCGA -ACGGAACTAAGCTCAAGCCACAGA -ACGGAACTAAGCTCAAGCGCAAGA -ACGGAACTAAGCTCAAGCGGTTGA -ACGGAACTAAGCTCAAGCTCCGAT -ACGGAACTAAGCTCAAGCTGGCAT -ACGGAACTAAGCTCAAGCCGAGAT -ACGGAACTAAGCTCAAGCTACCAC -ACGGAACTAAGCTCAAGCCAGAAC -ACGGAACTAAGCTCAAGCGTCTAC -ACGGAACTAAGCTCAAGCACGTAC -ACGGAACTAAGCTCAAGCAGTGAC -ACGGAACTAAGCTCAAGCCTGTAG -ACGGAACTAAGCTCAAGCCCTAAG -ACGGAACTAAGCTCAAGCGTTCAG -ACGGAACTAAGCTCAAGCGCATAG -ACGGAACTAAGCTCAAGCGACAAG -ACGGAACTAAGCTCAAGCAAGCAG -ACGGAACTAAGCTCAAGCCGTCAA -ACGGAACTAAGCTCAAGCGCTGAA -ACGGAACTAAGCTCAAGCAGTACG -ACGGAACTAAGCTCAAGCATCCGA -ACGGAACTAAGCTCAAGCATGGGA -ACGGAACTAAGCTCAAGCGTGCAA -ACGGAACTAAGCTCAAGCGAGGAA -ACGGAACTAAGCTCAAGCCAGGTA -ACGGAACTAAGCTCAAGCGACTCT -ACGGAACTAAGCTCAAGCAGTCCT -ACGGAACTAAGCTCAAGCTAAGCC -ACGGAACTAAGCTCAAGCATAGCC -ACGGAACTAAGCTCAAGCTAACCG -ACGGAACTAAGCTCAAGCATGCCA -ACGGAACTAAGCCGTTCAGGAAAC -ACGGAACTAAGCCGTTCAAACACC -ACGGAACTAAGCCGTTCAATCGAG -ACGGAACTAAGCCGTTCACTCCTT -ACGGAACTAAGCCGTTCACCTGTT -ACGGAACTAAGCCGTTCACGGTTT -ACGGAACTAAGCCGTTCAGTGGTT -ACGGAACTAAGCCGTTCAGCCTTT -ACGGAACTAAGCCGTTCAGGTCTT -ACGGAACTAAGCCGTTCAACGCTT -ACGGAACTAAGCCGTTCAAGCGTT -ACGGAACTAAGCCGTTCATTCGTC -ACGGAACTAAGCCGTTCATCTCTC -ACGGAACTAAGCCGTTCATGGATC -ACGGAACTAAGCCGTTCACACTTC -ACGGAACTAAGCCGTTCAGTACTC -ACGGAACTAAGCCGTTCAGATGTC -ACGGAACTAAGCCGTTCAACAGTC -ACGGAACTAAGCCGTTCATTGCTG -ACGGAACTAAGCCGTTCATCCATG -ACGGAACTAAGCCGTTCATGTGTG -ACGGAACTAAGCCGTTCACTAGTG -ACGGAACTAAGCCGTTCACATCTG -ACGGAACTAAGCCGTTCAGAGTTG -ACGGAACTAAGCCGTTCAAGACTG -ACGGAACTAAGCCGTTCATCGGTA -ACGGAACTAAGCCGTTCATGCCTA -ACGGAACTAAGCCGTTCACCACTA -ACGGAACTAAGCCGTTCAGGAGTA -ACGGAACTAAGCCGTTCATCGTCT -ACGGAACTAAGCCGTTCATGCACT -ACGGAACTAAGCCGTTCACTGACT -ACGGAACTAAGCCGTTCACAACCT -ACGGAACTAAGCCGTTCAGCTACT -ACGGAACTAAGCCGTTCAGGATCT -ACGGAACTAAGCCGTTCAAAGGCT -ACGGAACTAAGCCGTTCATCAACC -ACGGAACTAAGCCGTTCATGTTCC -ACGGAACTAAGCCGTTCAATTCCC -ACGGAACTAAGCCGTTCATTCTCG -ACGGAACTAAGCCGTTCATAGACG -ACGGAACTAAGCCGTTCAGTAACG -ACGGAACTAAGCCGTTCAACTTCG -ACGGAACTAAGCCGTTCATACGCA -ACGGAACTAAGCCGTTCACTTGCA -ACGGAACTAAGCCGTTCACGAACA -ACGGAACTAAGCCGTTCACAGTCA -ACGGAACTAAGCCGTTCAGATCCA -ACGGAACTAAGCCGTTCAACGACA -ACGGAACTAAGCCGTTCAAGCTCA -ACGGAACTAAGCCGTTCATCACGT -ACGGAACTAAGCCGTTCACGTAGT -ACGGAACTAAGCCGTTCAGTCAGT -ACGGAACTAAGCCGTTCAGAAGGT -ACGGAACTAAGCCGTTCAAACCGT -ACGGAACTAAGCCGTTCATTGTGC -ACGGAACTAAGCCGTTCACTAAGC -ACGGAACTAAGCCGTTCAACTAGC -ACGGAACTAAGCCGTTCAAGATGC -ACGGAACTAAGCCGTTCATGAAGG -ACGGAACTAAGCCGTTCACAATGG -ACGGAACTAAGCCGTTCAATGAGG -ACGGAACTAAGCCGTTCAAATGGG -ACGGAACTAAGCCGTTCATCCTGA -ACGGAACTAAGCCGTTCATAGCGA -ACGGAACTAAGCCGTTCACACAGA -ACGGAACTAAGCCGTTCAGCAAGA -ACGGAACTAAGCCGTTCAGGTTGA -ACGGAACTAAGCCGTTCATCCGAT -ACGGAACTAAGCCGTTCATGGCAT -ACGGAACTAAGCCGTTCACGAGAT -ACGGAACTAAGCCGTTCATACCAC -ACGGAACTAAGCCGTTCACAGAAC -ACGGAACTAAGCCGTTCAGTCTAC -ACGGAACTAAGCCGTTCAACGTAC -ACGGAACTAAGCCGTTCAAGTGAC -ACGGAACTAAGCCGTTCACTGTAG -ACGGAACTAAGCCGTTCACCTAAG -ACGGAACTAAGCCGTTCAGTTCAG -ACGGAACTAAGCCGTTCAGCATAG -ACGGAACTAAGCCGTTCAGACAAG -ACGGAACTAAGCCGTTCAAAGCAG -ACGGAACTAAGCCGTTCACGTCAA -ACGGAACTAAGCCGTTCAGCTGAA -ACGGAACTAAGCCGTTCAAGTACG -ACGGAACTAAGCCGTTCAATCCGA -ACGGAACTAAGCCGTTCAATGGGA -ACGGAACTAAGCCGTTCAGTGCAA -ACGGAACTAAGCCGTTCAGAGGAA -ACGGAACTAAGCCGTTCACAGGTA -ACGGAACTAAGCCGTTCAGACTCT -ACGGAACTAAGCCGTTCAAGTCCT -ACGGAACTAAGCCGTTCATAAGCC -ACGGAACTAAGCCGTTCAATAGCC -ACGGAACTAAGCCGTTCATAACCG -ACGGAACTAAGCCGTTCAATGCCA -ACGGAACTAAGCAGTCGTGGAAAC -ACGGAACTAAGCAGTCGTAACACC -ACGGAACTAAGCAGTCGTATCGAG -ACGGAACTAAGCAGTCGTCTCCTT -ACGGAACTAAGCAGTCGTCCTGTT -ACGGAACTAAGCAGTCGTCGGTTT -ACGGAACTAAGCAGTCGTGTGGTT -ACGGAACTAAGCAGTCGTGCCTTT -ACGGAACTAAGCAGTCGTGGTCTT -ACGGAACTAAGCAGTCGTACGCTT -ACGGAACTAAGCAGTCGTAGCGTT -ACGGAACTAAGCAGTCGTTTCGTC -ACGGAACTAAGCAGTCGTTCTCTC -ACGGAACTAAGCAGTCGTTGGATC -ACGGAACTAAGCAGTCGTCACTTC -ACGGAACTAAGCAGTCGTGTACTC -ACGGAACTAAGCAGTCGTGATGTC -ACGGAACTAAGCAGTCGTACAGTC -ACGGAACTAAGCAGTCGTTTGCTG -ACGGAACTAAGCAGTCGTTCCATG -ACGGAACTAAGCAGTCGTTGTGTG -ACGGAACTAAGCAGTCGTCTAGTG -ACGGAACTAAGCAGTCGTCATCTG -ACGGAACTAAGCAGTCGTGAGTTG -ACGGAACTAAGCAGTCGTAGACTG -ACGGAACTAAGCAGTCGTTCGGTA -ACGGAACTAAGCAGTCGTTGCCTA -ACGGAACTAAGCAGTCGTCCACTA -ACGGAACTAAGCAGTCGTGGAGTA -ACGGAACTAAGCAGTCGTTCGTCT -ACGGAACTAAGCAGTCGTTGCACT -ACGGAACTAAGCAGTCGTCTGACT -ACGGAACTAAGCAGTCGTCAACCT -ACGGAACTAAGCAGTCGTGCTACT -ACGGAACTAAGCAGTCGTGGATCT -ACGGAACTAAGCAGTCGTAAGGCT -ACGGAACTAAGCAGTCGTTCAACC -ACGGAACTAAGCAGTCGTTGTTCC -ACGGAACTAAGCAGTCGTATTCCC -ACGGAACTAAGCAGTCGTTTCTCG -ACGGAACTAAGCAGTCGTTAGACG -ACGGAACTAAGCAGTCGTGTAACG -ACGGAACTAAGCAGTCGTACTTCG -ACGGAACTAAGCAGTCGTTACGCA -ACGGAACTAAGCAGTCGTCTTGCA -ACGGAACTAAGCAGTCGTCGAACA -ACGGAACTAAGCAGTCGTCAGTCA -ACGGAACTAAGCAGTCGTGATCCA -ACGGAACTAAGCAGTCGTACGACA -ACGGAACTAAGCAGTCGTAGCTCA -ACGGAACTAAGCAGTCGTTCACGT -ACGGAACTAAGCAGTCGTCGTAGT -ACGGAACTAAGCAGTCGTGTCAGT -ACGGAACTAAGCAGTCGTGAAGGT -ACGGAACTAAGCAGTCGTAACCGT -ACGGAACTAAGCAGTCGTTTGTGC -ACGGAACTAAGCAGTCGTCTAAGC -ACGGAACTAAGCAGTCGTACTAGC -ACGGAACTAAGCAGTCGTAGATGC -ACGGAACTAAGCAGTCGTTGAAGG -ACGGAACTAAGCAGTCGTCAATGG -ACGGAACTAAGCAGTCGTATGAGG -ACGGAACTAAGCAGTCGTAATGGG -ACGGAACTAAGCAGTCGTTCCTGA -ACGGAACTAAGCAGTCGTTAGCGA -ACGGAACTAAGCAGTCGTCACAGA -ACGGAACTAAGCAGTCGTGCAAGA -ACGGAACTAAGCAGTCGTGGTTGA -ACGGAACTAAGCAGTCGTTCCGAT -ACGGAACTAAGCAGTCGTTGGCAT -ACGGAACTAAGCAGTCGTCGAGAT -ACGGAACTAAGCAGTCGTTACCAC -ACGGAACTAAGCAGTCGTCAGAAC -ACGGAACTAAGCAGTCGTGTCTAC -ACGGAACTAAGCAGTCGTACGTAC -ACGGAACTAAGCAGTCGTAGTGAC -ACGGAACTAAGCAGTCGTCTGTAG -ACGGAACTAAGCAGTCGTCCTAAG -ACGGAACTAAGCAGTCGTGTTCAG -ACGGAACTAAGCAGTCGTGCATAG -ACGGAACTAAGCAGTCGTGACAAG -ACGGAACTAAGCAGTCGTAAGCAG -ACGGAACTAAGCAGTCGTCGTCAA -ACGGAACTAAGCAGTCGTGCTGAA -ACGGAACTAAGCAGTCGTAGTACG -ACGGAACTAAGCAGTCGTATCCGA -ACGGAACTAAGCAGTCGTATGGGA -ACGGAACTAAGCAGTCGTGTGCAA -ACGGAACTAAGCAGTCGTGAGGAA -ACGGAACTAAGCAGTCGTCAGGTA -ACGGAACTAAGCAGTCGTGACTCT -ACGGAACTAAGCAGTCGTAGTCCT -ACGGAACTAAGCAGTCGTTAAGCC -ACGGAACTAAGCAGTCGTATAGCC -ACGGAACTAAGCAGTCGTTAACCG -ACGGAACTAAGCAGTCGTATGCCA -ACGGAACTAAGCAGTGTCGGAAAC -ACGGAACTAAGCAGTGTCAACACC -ACGGAACTAAGCAGTGTCATCGAG -ACGGAACTAAGCAGTGTCCTCCTT -ACGGAACTAAGCAGTGTCCCTGTT -ACGGAACTAAGCAGTGTCCGGTTT -ACGGAACTAAGCAGTGTCGTGGTT -ACGGAACTAAGCAGTGTCGCCTTT -ACGGAACTAAGCAGTGTCGGTCTT -ACGGAACTAAGCAGTGTCACGCTT -ACGGAACTAAGCAGTGTCAGCGTT -ACGGAACTAAGCAGTGTCTTCGTC -ACGGAACTAAGCAGTGTCTCTCTC -ACGGAACTAAGCAGTGTCTGGATC -ACGGAACTAAGCAGTGTCCACTTC -ACGGAACTAAGCAGTGTCGTACTC -ACGGAACTAAGCAGTGTCGATGTC -ACGGAACTAAGCAGTGTCACAGTC -ACGGAACTAAGCAGTGTCTTGCTG -ACGGAACTAAGCAGTGTCTCCATG -ACGGAACTAAGCAGTGTCTGTGTG -ACGGAACTAAGCAGTGTCCTAGTG -ACGGAACTAAGCAGTGTCCATCTG -ACGGAACTAAGCAGTGTCGAGTTG -ACGGAACTAAGCAGTGTCAGACTG -ACGGAACTAAGCAGTGTCTCGGTA -ACGGAACTAAGCAGTGTCTGCCTA -ACGGAACTAAGCAGTGTCCCACTA -ACGGAACTAAGCAGTGTCGGAGTA -ACGGAACTAAGCAGTGTCTCGTCT -ACGGAACTAAGCAGTGTCTGCACT -ACGGAACTAAGCAGTGTCCTGACT -ACGGAACTAAGCAGTGTCCAACCT -ACGGAACTAAGCAGTGTCGCTACT -ACGGAACTAAGCAGTGTCGGATCT -ACGGAACTAAGCAGTGTCAAGGCT -ACGGAACTAAGCAGTGTCTCAACC -ACGGAACTAAGCAGTGTCTGTTCC -ACGGAACTAAGCAGTGTCATTCCC -ACGGAACTAAGCAGTGTCTTCTCG -ACGGAACTAAGCAGTGTCTAGACG -ACGGAACTAAGCAGTGTCGTAACG -ACGGAACTAAGCAGTGTCACTTCG -ACGGAACTAAGCAGTGTCTACGCA -ACGGAACTAAGCAGTGTCCTTGCA -ACGGAACTAAGCAGTGTCCGAACA -ACGGAACTAAGCAGTGTCCAGTCA -ACGGAACTAAGCAGTGTCGATCCA -ACGGAACTAAGCAGTGTCACGACA -ACGGAACTAAGCAGTGTCAGCTCA -ACGGAACTAAGCAGTGTCTCACGT -ACGGAACTAAGCAGTGTCCGTAGT -ACGGAACTAAGCAGTGTCGTCAGT -ACGGAACTAAGCAGTGTCGAAGGT -ACGGAACTAAGCAGTGTCAACCGT -ACGGAACTAAGCAGTGTCTTGTGC -ACGGAACTAAGCAGTGTCCTAAGC -ACGGAACTAAGCAGTGTCACTAGC -ACGGAACTAAGCAGTGTCAGATGC -ACGGAACTAAGCAGTGTCTGAAGG -ACGGAACTAAGCAGTGTCCAATGG -ACGGAACTAAGCAGTGTCATGAGG -ACGGAACTAAGCAGTGTCAATGGG -ACGGAACTAAGCAGTGTCTCCTGA -ACGGAACTAAGCAGTGTCTAGCGA -ACGGAACTAAGCAGTGTCCACAGA -ACGGAACTAAGCAGTGTCGCAAGA -ACGGAACTAAGCAGTGTCGGTTGA -ACGGAACTAAGCAGTGTCTCCGAT -ACGGAACTAAGCAGTGTCTGGCAT -ACGGAACTAAGCAGTGTCCGAGAT -ACGGAACTAAGCAGTGTCTACCAC -ACGGAACTAAGCAGTGTCCAGAAC -ACGGAACTAAGCAGTGTCGTCTAC -ACGGAACTAAGCAGTGTCACGTAC -ACGGAACTAAGCAGTGTCAGTGAC -ACGGAACTAAGCAGTGTCCTGTAG -ACGGAACTAAGCAGTGTCCCTAAG -ACGGAACTAAGCAGTGTCGTTCAG -ACGGAACTAAGCAGTGTCGCATAG -ACGGAACTAAGCAGTGTCGACAAG -ACGGAACTAAGCAGTGTCAAGCAG -ACGGAACTAAGCAGTGTCCGTCAA -ACGGAACTAAGCAGTGTCGCTGAA -ACGGAACTAAGCAGTGTCAGTACG -ACGGAACTAAGCAGTGTCATCCGA -ACGGAACTAAGCAGTGTCATGGGA -ACGGAACTAAGCAGTGTCGTGCAA -ACGGAACTAAGCAGTGTCGAGGAA -ACGGAACTAAGCAGTGTCCAGGTA -ACGGAACTAAGCAGTGTCGACTCT -ACGGAACTAAGCAGTGTCAGTCCT -ACGGAACTAAGCAGTGTCTAAGCC -ACGGAACTAAGCAGTGTCATAGCC -ACGGAACTAAGCAGTGTCTAACCG -ACGGAACTAAGCAGTGTCATGCCA -ACGGAACTAAGCGGTGAAGGAAAC -ACGGAACTAAGCGGTGAAAACACC -ACGGAACTAAGCGGTGAAATCGAG -ACGGAACTAAGCGGTGAACTCCTT -ACGGAACTAAGCGGTGAACCTGTT -ACGGAACTAAGCGGTGAACGGTTT -ACGGAACTAAGCGGTGAAGTGGTT -ACGGAACTAAGCGGTGAAGCCTTT -ACGGAACTAAGCGGTGAAGGTCTT -ACGGAACTAAGCGGTGAAACGCTT -ACGGAACTAAGCGGTGAAAGCGTT -ACGGAACTAAGCGGTGAATTCGTC -ACGGAACTAAGCGGTGAATCTCTC -ACGGAACTAAGCGGTGAATGGATC -ACGGAACTAAGCGGTGAACACTTC -ACGGAACTAAGCGGTGAAGTACTC -ACGGAACTAAGCGGTGAAGATGTC -ACGGAACTAAGCGGTGAAACAGTC -ACGGAACTAAGCGGTGAATTGCTG -ACGGAACTAAGCGGTGAATCCATG -ACGGAACTAAGCGGTGAATGTGTG -ACGGAACTAAGCGGTGAACTAGTG -ACGGAACTAAGCGGTGAACATCTG -ACGGAACTAAGCGGTGAAGAGTTG -ACGGAACTAAGCGGTGAAAGACTG -ACGGAACTAAGCGGTGAATCGGTA -ACGGAACTAAGCGGTGAATGCCTA -ACGGAACTAAGCGGTGAACCACTA -ACGGAACTAAGCGGTGAAGGAGTA -ACGGAACTAAGCGGTGAATCGTCT -ACGGAACTAAGCGGTGAATGCACT -ACGGAACTAAGCGGTGAACTGACT -ACGGAACTAAGCGGTGAACAACCT -ACGGAACTAAGCGGTGAAGCTACT -ACGGAACTAAGCGGTGAAGGATCT -ACGGAACTAAGCGGTGAAAAGGCT -ACGGAACTAAGCGGTGAATCAACC -ACGGAACTAAGCGGTGAATGTTCC -ACGGAACTAAGCGGTGAAATTCCC -ACGGAACTAAGCGGTGAATTCTCG -ACGGAACTAAGCGGTGAATAGACG -ACGGAACTAAGCGGTGAAGTAACG -ACGGAACTAAGCGGTGAAACTTCG -ACGGAACTAAGCGGTGAATACGCA -ACGGAACTAAGCGGTGAACTTGCA -ACGGAACTAAGCGGTGAACGAACA -ACGGAACTAAGCGGTGAACAGTCA -ACGGAACTAAGCGGTGAAGATCCA -ACGGAACTAAGCGGTGAAACGACA -ACGGAACTAAGCGGTGAAAGCTCA -ACGGAACTAAGCGGTGAATCACGT -ACGGAACTAAGCGGTGAACGTAGT -ACGGAACTAAGCGGTGAAGTCAGT -ACGGAACTAAGCGGTGAAGAAGGT -ACGGAACTAAGCGGTGAAAACCGT -ACGGAACTAAGCGGTGAATTGTGC -ACGGAACTAAGCGGTGAACTAAGC -ACGGAACTAAGCGGTGAAACTAGC -ACGGAACTAAGCGGTGAAAGATGC -ACGGAACTAAGCGGTGAATGAAGG -ACGGAACTAAGCGGTGAACAATGG -ACGGAACTAAGCGGTGAAATGAGG -ACGGAACTAAGCGGTGAAAATGGG -ACGGAACTAAGCGGTGAATCCTGA -ACGGAACTAAGCGGTGAATAGCGA -ACGGAACTAAGCGGTGAACACAGA -ACGGAACTAAGCGGTGAAGCAAGA -ACGGAACTAAGCGGTGAAGGTTGA -ACGGAACTAAGCGGTGAATCCGAT -ACGGAACTAAGCGGTGAATGGCAT -ACGGAACTAAGCGGTGAACGAGAT -ACGGAACTAAGCGGTGAATACCAC -ACGGAACTAAGCGGTGAACAGAAC -ACGGAACTAAGCGGTGAAGTCTAC -ACGGAACTAAGCGGTGAAACGTAC -ACGGAACTAAGCGGTGAAAGTGAC -ACGGAACTAAGCGGTGAACTGTAG -ACGGAACTAAGCGGTGAACCTAAG -ACGGAACTAAGCGGTGAAGTTCAG -ACGGAACTAAGCGGTGAAGCATAG -ACGGAACTAAGCGGTGAAGACAAG -ACGGAACTAAGCGGTGAAAAGCAG -ACGGAACTAAGCGGTGAACGTCAA -ACGGAACTAAGCGGTGAAGCTGAA -ACGGAACTAAGCGGTGAAAGTACG -ACGGAACTAAGCGGTGAAATCCGA -ACGGAACTAAGCGGTGAAATGGGA -ACGGAACTAAGCGGTGAAGTGCAA -ACGGAACTAAGCGGTGAAGAGGAA -ACGGAACTAAGCGGTGAACAGGTA -ACGGAACTAAGCGGTGAAGACTCT -ACGGAACTAAGCGGTGAAAGTCCT -ACGGAACTAAGCGGTGAATAAGCC -ACGGAACTAAGCGGTGAAATAGCC -ACGGAACTAAGCGGTGAATAACCG -ACGGAACTAAGCGGTGAAATGCCA -ACGGAACTAAGCCGTAACGGAAAC -ACGGAACTAAGCCGTAACAACACC -ACGGAACTAAGCCGTAACATCGAG -ACGGAACTAAGCCGTAACCTCCTT -ACGGAACTAAGCCGTAACCCTGTT -ACGGAACTAAGCCGTAACCGGTTT -ACGGAACTAAGCCGTAACGTGGTT -ACGGAACTAAGCCGTAACGCCTTT -ACGGAACTAAGCCGTAACGGTCTT -ACGGAACTAAGCCGTAACACGCTT -ACGGAACTAAGCCGTAACAGCGTT -ACGGAACTAAGCCGTAACTTCGTC -ACGGAACTAAGCCGTAACTCTCTC -ACGGAACTAAGCCGTAACTGGATC -ACGGAACTAAGCCGTAACCACTTC -ACGGAACTAAGCCGTAACGTACTC -ACGGAACTAAGCCGTAACGATGTC -ACGGAACTAAGCCGTAACACAGTC -ACGGAACTAAGCCGTAACTTGCTG -ACGGAACTAAGCCGTAACTCCATG -ACGGAACTAAGCCGTAACTGTGTG -ACGGAACTAAGCCGTAACCTAGTG -ACGGAACTAAGCCGTAACCATCTG -ACGGAACTAAGCCGTAACGAGTTG -ACGGAACTAAGCCGTAACAGACTG -ACGGAACTAAGCCGTAACTCGGTA -ACGGAACTAAGCCGTAACTGCCTA -ACGGAACTAAGCCGTAACCCACTA -ACGGAACTAAGCCGTAACGGAGTA -ACGGAACTAAGCCGTAACTCGTCT -ACGGAACTAAGCCGTAACTGCACT -ACGGAACTAAGCCGTAACCTGACT -ACGGAACTAAGCCGTAACCAACCT -ACGGAACTAAGCCGTAACGCTACT -ACGGAACTAAGCCGTAACGGATCT -ACGGAACTAAGCCGTAACAAGGCT -ACGGAACTAAGCCGTAACTCAACC -ACGGAACTAAGCCGTAACTGTTCC -ACGGAACTAAGCCGTAACATTCCC -ACGGAACTAAGCCGTAACTTCTCG -ACGGAACTAAGCCGTAACTAGACG -ACGGAACTAAGCCGTAACGTAACG -ACGGAACTAAGCCGTAACACTTCG -ACGGAACTAAGCCGTAACTACGCA -ACGGAACTAAGCCGTAACCTTGCA -ACGGAACTAAGCCGTAACCGAACA -ACGGAACTAAGCCGTAACCAGTCA -ACGGAACTAAGCCGTAACGATCCA -ACGGAACTAAGCCGTAACACGACA -ACGGAACTAAGCCGTAACAGCTCA -ACGGAACTAAGCCGTAACTCACGT -ACGGAACTAAGCCGTAACCGTAGT -ACGGAACTAAGCCGTAACGTCAGT -ACGGAACTAAGCCGTAACGAAGGT -ACGGAACTAAGCCGTAACAACCGT -ACGGAACTAAGCCGTAACTTGTGC -ACGGAACTAAGCCGTAACCTAAGC -ACGGAACTAAGCCGTAACACTAGC -ACGGAACTAAGCCGTAACAGATGC -ACGGAACTAAGCCGTAACTGAAGG -ACGGAACTAAGCCGTAACCAATGG -ACGGAACTAAGCCGTAACATGAGG -ACGGAACTAAGCCGTAACAATGGG -ACGGAACTAAGCCGTAACTCCTGA -ACGGAACTAAGCCGTAACTAGCGA -ACGGAACTAAGCCGTAACCACAGA -ACGGAACTAAGCCGTAACGCAAGA -ACGGAACTAAGCCGTAACGGTTGA -ACGGAACTAAGCCGTAACTCCGAT -ACGGAACTAAGCCGTAACTGGCAT -ACGGAACTAAGCCGTAACCGAGAT -ACGGAACTAAGCCGTAACTACCAC -ACGGAACTAAGCCGTAACCAGAAC -ACGGAACTAAGCCGTAACGTCTAC -ACGGAACTAAGCCGTAACACGTAC -ACGGAACTAAGCCGTAACAGTGAC -ACGGAACTAAGCCGTAACCTGTAG -ACGGAACTAAGCCGTAACCCTAAG -ACGGAACTAAGCCGTAACGTTCAG -ACGGAACTAAGCCGTAACGCATAG -ACGGAACTAAGCCGTAACGACAAG -ACGGAACTAAGCCGTAACAAGCAG -ACGGAACTAAGCCGTAACCGTCAA -ACGGAACTAAGCCGTAACGCTGAA -ACGGAACTAAGCCGTAACAGTACG -ACGGAACTAAGCCGTAACATCCGA -ACGGAACTAAGCCGTAACATGGGA -ACGGAACTAAGCCGTAACGTGCAA -ACGGAACTAAGCCGTAACGAGGAA -ACGGAACTAAGCCGTAACCAGGTA -ACGGAACTAAGCCGTAACGACTCT -ACGGAACTAAGCCGTAACAGTCCT -ACGGAACTAAGCCGTAACTAAGCC -ACGGAACTAAGCCGTAACATAGCC -ACGGAACTAAGCCGTAACTAACCG -ACGGAACTAAGCCGTAACATGCCA -ACGGAACTAAGCTGCTTGGGAAAC -ACGGAACTAAGCTGCTTGAACACC -ACGGAACTAAGCTGCTTGATCGAG -ACGGAACTAAGCTGCTTGCTCCTT -ACGGAACTAAGCTGCTTGCCTGTT -ACGGAACTAAGCTGCTTGCGGTTT -ACGGAACTAAGCTGCTTGGTGGTT -ACGGAACTAAGCTGCTTGGCCTTT -ACGGAACTAAGCTGCTTGGGTCTT -ACGGAACTAAGCTGCTTGACGCTT -ACGGAACTAAGCTGCTTGAGCGTT -ACGGAACTAAGCTGCTTGTTCGTC -ACGGAACTAAGCTGCTTGTCTCTC -ACGGAACTAAGCTGCTTGTGGATC -ACGGAACTAAGCTGCTTGCACTTC -ACGGAACTAAGCTGCTTGGTACTC -ACGGAACTAAGCTGCTTGGATGTC -ACGGAACTAAGCTGCTTGACAGTC -ACGGAACTAAGCTGCTTGTTGCTG -ACGGAACTAAGCTGCTTGTCCATG -ACGGAACTAAGCTGCTTGTGTGTG -ACGGAACTAAGCTGCTTGCTAGTG -ACGGAACTAAGCTGCTTGCATCTG -ACGGAACTAAGCTGCTTGGAGTTG -ACGGAACTAAGCTGCTTGAGACTG -ACGGAACTAAGCTGCTTGTCGGTA -ACGGAACTAAGCTGCTTGTGCCTA -ACGGAACTAAGCTGCTTGCCACTA -ACGGAACTAAGCTGCTTGGGAGTA -ACGGAACTAAGCTGCTTGTCGTCT -ACGGAACTAAGCTGCTTGTGCACT -ACGGAACTAAGCTGCTTGCTGACT -ACGGAACTAAGCTGCTTGCAACCT -ACGGAACTAAGCTGCTTGGCTACT -ACGGAACTAAGCTGCTTGGGATCT -ACGGAACTAAGCTGCTTGAAGGCT -ACGGAACTAAGCTGCTTGTCAACC -ACGGAACTAAGCTGCTTGTGTTCC -ACGGAACTAAGCTGCTTGATTCCC -ACGGAACTAAGCTGCTTGTTCTCG -ACGGAACTAAGCTGCTTGTAGACG -ACGGAACTAAGCTGCTTGGTAACG -ACGGAACTAAGCTGCTTGACTTCG -ACGGAACTAAGCTGCTTGTACGCA -ACGGAACTAAGCTGCTTGCTTGCA -ACGGAACTAAGCTGCTTGCGAACA -ACGGAACTAAGCTGCTTGCAGTCA -ACGGAACTAAGCTGCTTGGATCCA -ACGGAACTAAGCTGCTTGACGACA -ACGGAACTAAGCTGCTTGAGCTCA -ACGGAACTAAGCTGCTTGTCACGT -ACGGAACTAAGCTGCTTGCGTAGT -ACGGAACTAAGCTGCTTGGTCAGT -ACGGAACTAAGCTGCTTGGAAGGT -ACGGAACTAAGCTGCTTGAACCGT -ACGGAACTAAGCTGCTTGTTGTGC -ACGGAACTAAGCTGCTTGCTAAGC -ACGGAACTAAGCTGCTTGACTAGC -ACGGAACTAAGCTGCTTGAGATGC -ACGGAACTAAGCTGCTTGTGAAGG -ACGGAACTAAGCTGCTTGCAATGG -ACGGAACTAAGCTGCTTGATGAGG -ACGGAACTAAGCTGCTTGAATGGG -ACGGAACTAAGCTGCTTGTCCTGA -ACGGAACTAAGCTGCTTGTAGCGA -ACGGAACTAAGCTGCTTGCACAGA -ACGGAACTAAGCTGCTTGGCAAGA -ACGGAACTAAGCTGCTTGGGTTGA -ACGGAACTAAGCTGCTTGTCCGAT -ACGGAACTAAGCTGCTTGTGGCAT -ACGGAACTAAGCTGCTTGCGAGAT -ACGGAACTAAGCTGCTTGTACCAC -ACGGAACTAAGCTGCTTGCAGAAC -ACGGAACTAAGCTGCTTGGTCTAC -ACGGAACTAAGCTGCTTGACGTAC -ACGGAACTAAGCTGCTTGAGTGAC -ACGGAACTAAGCTGCTTGCTGTAG -ACGGAACTAAGCTGCTTGCCTAAG -ACGGAACTAAGCTGCTTGGTTCAG -ACGGAACTAAGCTGCTTGGCATAG -ACGGAACTAAGCTGCTTGGACAAG -ACGGAACTAAGCTGCTTGAAGCAG -ACGGAACTAAGCTGCTTGCGTCAA -ACGGAACTAAGCTGCTTGGCTGAA -ACGGAACTAAGCTGCTTGAGTACG -ACGGAACTAAGCTGCTTGATCCGA -ACGGAACTAAGCTGCTTGATGGGA -ACGGAACTAAGCTGCTTGGTGCAA -ACGGAACTAAGCTGCTTGGAGGAA -ACGGAACTAAGCTGCTTGCAGGTA -ACGGAACTAAGCTGCTTGGACTCT -ACGGAACTAAGCTGCTTGAGTCCT -ACGGAACTAAGCTGCTTGTAAGCC -ACGGAACTAAGCTGCTTGATAGCC -ACGGAACTAAGCTGCTTGTAACCG -ACGGAACTAAGCTGCTTGATGCCA -ACGGAACTAAGCAGCCTAGGAAAC -ACGGAACTAAGCAGCCTAAACACC -ACGGAACTAAGCAGCCTAATCGAG -ACGGAACTAAGCAGCCTACTCCTT -ACGGAACTAAGCAGCCTACCTGTT -ACGGAACTAAGCAGCCTACGGTTT -ACGGAACTAAGCAGCCTAGTGGTT -ACGGAACTAAGCAGCCTAGCCTTT -ACGGAACTAAGCAGCCTAGGTCTT -ACGGAACTAAGCAGCCTAACGCTT -ACGGAACTAAGCAGCCTAAGCGTT -ACGGAACTAAGCAGCCTATTCGTC -ACGGAACTAAGCAGCCTATCTCTC -ACGGAACTAAGCAGCCTATGGATC -ACGGAACTAAGCAGCCTACACTTC -ACGGAACTAAGCAGCCTAGTACTC -ACGGAACTAAGCAGCCTAGATGTC -ACGGAACTAAGCAGCCTAACAGTC -ACGGAACTAAGCAGCCTATTGCTG -ACGGAACTAAGCAGCCTATCCATG -ACGGAACTAAGCAGCCTATGTGTG -ACGGAACTAAGCAGCCTACTAGTG -ACGGAACTAAGCAGCCTACATCTG -ACGGAACTAAGCAGCCTAGAGTTG -ACGGAACTAAGCAGCCTAAGACTG -ACGGAACTAAGCAGCCTATCGGTA -ACGGAACTAAGCAGCCTATGCCTA -ACGGAACTAAGCAGCCTACCACTA -ACGGAACTAAGCAGCCTAGGAGTA -ACGGAACTAAGCAGCCTATCGTCT -ACGGAACTAAGCAGCCTATGCACT -ACGGAACTAAGCAGCCTACTGACT -ACGGAACTAAGCAGCCTACAACCT -ACGGAACTAAGCAGCCTAGCTACT -ACGGAACTAAGCAGCCTAGGATCT -ACGGAACTAAGCAGCCTAAAGGCT -ACGGAACTAAGCAGCCTATCAACC -ACGGAACTAAGCAGCCTATGTTCC -ACGGAACTAAGCAGCCTAATTCCC -ACGGAACTAAGCAGCCTATTCTCG -ACGGAACTAAGCAGCCTATAGACG -ACGGAACTAAGCAGCCTAGTAACG -ACGGAACTAAGCAGCCTAACTTCG -ACGGAACTAAGCAGCCTATACGCA -ACGGAACTAAGCAGCCTACTTGCA -ACGGAACTAAGCAGCCTACGAACA -ACGGAACTAAGCAGCCTACAGTCA -ACGGAACTAAGCAGCCTAGATCCA -ACGGAACTAAGCAGCCTAACGACA -ACGGAACTAAGCAGCCTAAGCTCA -ACGGAACTAAGCAGCCTATCACGT -ACGGAACTAAGCAGCCTACGTAGT -ACGGAACTAAGCAGCCTAGTCAGT -ACGGAACTAAGCAGCCTAGAAGGT -ACGGAACTAAGCAGCCTAAACCGT -ACGGAACTAAGCAGCCTATTGTGC -ACGGAACTAAGCAGCCTACTAAGC -ACGGAACTAAGCAGCCTAACTAGC -ACGGAACTAAGCAGCCTAAGATGC -ACGGAACTAAGCAGCCTATGAAGG -ACGGAACTAAGCAGCCTACAATGG -ACGGAACTAAGCAGCCTAATGAGG -ACGGAACTAAGCAGCCTAAATGGG -ACGGAACTAAGCAGCCTATCCTGA -ACGGAACTAAGCAGCCTATAGCGA -ACGGAACTAAGCAGCCTACACAGA -ACGGAACTAAGCAGCCTAGCAAGA -ACGGAACTAAGCAGCCTAGGTTGA -ACGGAACTAAGCAGCCTATCCGAT -ACGGAACTAAGCAGCCTATGGCAT -ACGGAACTAAGCAGCCTACGAGAT -ACGGAACTAAGCAGCCTATACCAC -ACGGAACTAAGCAGCCTACAGAAC -ACGGAACTAAGCAGCCTAGTCTAC -ACGGAACTAAGCAGCCTAACGTAC -ACGGAACTAAGCAGCCTAAGTGAC -ACGGAACTAAGCAGCCTACTGTAG -ACGGAACTAAGCAGCCTACCTAAG -ACGGAACTAAGCAGCCTAGTTCAG -ACGGAACTAAGCAGCCTAGCATAG -ACGGAACTAAGCAGCCTAGACAAG -ACGGAACTAAGCAGCCTAAAGCAG -ACGGAACTAAGCAGCCTACGTCAA -ACGGAACTAAGCAGCCTAGCTGAA -ACGGAACTAAGCAGCCTAAGTACG -ACGGAACTAAGCAGCCTAATCCGA -ACGGAACTAAGCAGCCTAATGGGA -ACGGAACTAAGCAGCCTAGTGCAA -ACGGAACTAAGCAGCCTAGAGGAA -ACGGAACTAAGCAGCCTACAGGTA -ACGGAACTAAGCAGCCTAGACTCT -ACGGAACTAAGCAGCCTAAGTCCT -ACGGAACTAAGCAGCCTATAAGCC -ACGGAACTAAGCAGCCTAATAGCC -ACGGAACTAAGCAGCCTATAACCG -ACGGAACTAAGCAGCCTAATGCCA -ACGGAACTAAGCAGCACTGGAAAC -ACGGAACTAAGCAGCACTAACACC -ACGGAACTAAGCAGCACTATCGAG -ACGGAACTAAGCAGCACTCTCCTT -ACGGAACTAAGCAGCACTCCTGTT -ACGGAACTAAGCAGCACTCGGTTT -ACGGAACTAAGCAGCACTGTGGTT -ACGGAACTAAGCAGCACTGCCTTT -ACGGAACTAAGCAGCACTGGTCTT -ACGGAACTAAGCAGCACTACGCTT -ACGGAACTAAGCAGCACTAGCGTT -ACGGAACTAAGCAGCACTTTCGTC -ACGGAACTAAGCAGCACTTCTCTC -ACGGAACTAAGCAGCACTTGGATC -ACGGAACTAAGCAGCACTCACTTC -ACGGAACTAAGCAGCACTGTACTC -ACGGAACTAAGCAGCACTGATGTC -ACGGAACTAAGCAGCACTACAGTC -ACGGAACTAAGCAGCACTTTGCTG -ACGGAACTAAGCAGCACTTCCATG -ACGGAACTAAGCAGCACTTGTGTG -ACGGAACTAAGCAGCACTCTAGTG -ACGGAACTAAGCAGCACTCATCTG -ACGGAACTAAGCAGCACTGAGTTG -ACGGAACTAAGCAGCACTAGACTG -ACGGAACTAAGCAGCACTTCGGTA -ACGGAACTAAGCAGCACTTGCCTA -ACGGAACTAAGCAGCACTCCACTA -ACGGAACTAAGCAGCACTGGAGTA -ACGGAACTAAGCAGCACTTCGTCT -ACGGAACTAAGCAGCACTTGCACT -ACGGAACTAAGCAGCACTCTGACT -ACGGAACTAAGCAGCACTCAACCT -ACGGAACTAAGCAGCACTGCTACT -ACGGAACTAAGCAGCACTGGATCT -ACGGAACTAAGCAGCACTAAGGCT -ACGGAACTAAGCAGCACTTCAACC -ACGGAACTAAGCAGCACTTGTTCC -ACGGAACTAAGCAGCACTATTCCC -ACGGAACTAAGCAGCACTTTCTCG -ACGGAACTAAGCAGCACTTAGACG -ACGGAACTAAGCAGCACTGTAACG -ACGGAACTAAGCAGCACTACTTCG -ACGGAACTAAGCAGCACTTACGCA -ACGGAACTAAGCAGCACTCTTGCA -ACGGAACTAAGCAGCACTCGAACA -ACGGAACTAAGCAGCACTCAGTCA -ACGGAACTAAGCAGCACTGATCCA -ACGGAACTAAGCAGCACTACGACA -ACGGAACTAAGCAGCACTAGCTCA -ACGGAACTAAGCAGCACTTCACGT -ACGGAACTAAGCAGCACTCGTAGT -ACGGAACTAAGCAGCACTGTCAGT -ACGGAACTAAGCAGCACTGAAGGT -ACGGAACTAAGCAGCACTAACCGT -ACGGAACTAAGCAGCACTTTGTGC -ACGGAACTAAGCAGCACTCTAAGC -ACGGAACTAAGCAGCACTACTAGC -ACGGAACTAAGCAGCACTAGATGC -ACGGAACTAAGCAGCACTTGAAGG -ACGGAACTAAGCAGCACTCAATGG -ACGGAACTAAGCAGCACTATGAGG -ACGGAACTAAGCAGCACTAATGGG -ACGGAACTAAGCAGCACTTCCTGA -ACGGAACTAAGCAGCACTTAGCGA -ACGGAACTAAGCAGCACTCACAGA -ACGGAACTAAGCAGCACTGCAAGA -ACGGAACTAAGCAGCACTGGTTGA -ACGGAACTAAGCAGCACTTCCGAT -ACGGAACTAAGCAGCACTTGGCAT -ACGGAACTAAGCAGCACTCGAGAT -ACGGAACTAAGCAGCACTTACCAC -ACGGAACTAAGCAGCACTCAGAAC -ACGGAACTAAGCAGCACTGTCTAC -ACGGAACTAAGCAGCACTACGTAC -ACGGAACTAAGCAGCACTAGTGAC -ACGGAACTAAGCAGCACTCTGTAG -ACGGAACTAAGCAGCACTCCTAAG -ACGGAACTAAGCAGCACTGTTCAG -ACGGAACTAAGCAGCACTGCATAG -ACGGAACTAAGCAGCACTGACAAG -ACGGAACTAAGCAGCACTAAGCAG -ACGGAACTAAGCAGCACTCGTCAA -ACGGAACTAAGCAGCACTGCTGAA -ACGGAACTAAGCAGCACTAGTACG -ACGGAACTAAGCAGCACTATCCGA -ACGGAACTAAGCAGCACTATGGGA -ACGGAACTAAGCAGCACTGTGCAA -ACGGAACTAAGCAGCACTGAGGAA -ACGGAACTAAGCAGCACTCAGGTA -ACGGAACTAAGCAGCACTGACTCT -ACGGAACTAAGCAGCACTAGTCCT -ACGGAACTAAGCAGCACTTAAGCC -ACGGAACTAAGCAGCACTATAGCC -ACGGAACTAAGCAGCACTTAACCG -ACGGAACTAAGCAGCACTATGCCA -ACGGAACTAAGCTGCAGAGGAAAC -ACGGAACTAAGCTGCAGAAACACC -ACGGAACTAAGCTGCAGAATCGAG -ACGGAACTAAGCTGCAGACTCCTT -ACGGAACTAAGCTGCAGACCTGTT -ACGGAACTAAGCTGCAGACGGTTT -ACGGAACTAAGCTGCAGAGTGGTT -ACGGAACTAAGCTGCAGAGCCTTT -ACGGAACTAAGCTGCAGAGGTCTT -ACGGAACTAAGCTGCAGAACGCTT -ACGGAACTAAGCTGCAGAAGCGTT -ACGGAACTAAGCTGCAGATTCGTC -ACGGAACTAAGCTGCAGATCTCTC -ACGGAACTAAGCTGCAGATGGATC -ACGGAACTAAGCTGCAGACACTTC -ACGGAACTAAGCTGCAGAGTACTC -ACGGAACTAAGCTGCAGAGATGTC -ACGGAACTAAGCTGCAGAACAGTC -ACGGAACTAAGCTGCAGATTGCTG -ACGGAACTAAGCTGCAGATCCATG -ACGGAACTAAGCTGCAGATGTGTG -ACGGAACTAAGCTGCAGACTAGTG -ACGGAACTAAGCTGCAGACATCTG -ACGGAACTAAGCTGCAGAGAGTTG -ACGGAACTAAGCTGCAGAAGACTG -ACGGAACTAAGCTGCAGATCGGTA -ACGGAACTAAGCTGCAGATGCCTA -ACGGAACTAAGCTGCAGACCACTA -ACGGAACTAAGCTGCAGAGGAGTA -ACGGAACTAAGCTGCAGATCGTCT -ACGGAACTAAGCTGCAGATGCACT -ACGGAACTAAGCTGCAGACTGACT -ACGGAACTAAGCTGCAGACAACCT -ACGGAACTAAGCTGCAGAGCTACT -ACGGAACTAAGCTGCAGAGGATCT -ACGGAACTAAGCTGCAGAAAGGCT -ACGGAACTAAGCTGCAGATCAACC -ACGGAACTAAGCTGCAGATGTTCC -ACGGAACTAAGCTGCAGAATTCCC -ACGGAACTAAGCTGCAGATTCTCG -ACGGAACTAAGCTGCAGATAGACG -ACGGAACTAAGCTGCAGAGTAACG -ACGGAACTAAGCTGCAGAACTTCG -ACGGAACTAAGCTGCAGATACGCA -ACGGAACTAAGCTGCAGACTTGCA -ACGGAACTAAGCTGCAGACGAACA -ACGGAACTAAGCTGCAGACAGTCA -ACGGAACTAAGCTGCAGAGATCCA -ACGGAACTAAGCTGCAGAACGACA -ACGGAACTAAGCTGCAGAAGCTCA -ACGGAACTAAGCTGCAGATCACGT -ACGGAACTAAGCTGCAGACGTAGT -ACGGAACTAAGCTGCAGAGTCAGT -ACGGAACTAAGCTGCAGAGAAGGT -ACGGAACTAAGCTGCAGAAACCGT -ACGGAACTAAGCTGCAGATTGTGC -ACGGAACTAAGCTGCAGACTAAGC -ACGGAACTAAGCTGCAGAACTAGC -ACGGAACTAAGCTGCAGAAGATGC -ACGGAACTAAGCTGCAGATGAAGG -ACGGAACTAAGCTGCAGACAATGG -ACGGAACTAAGCTGCAGAATGAGG -ACGGAACTAAGCTGCAGAAATGGG -ACGGAACTAAGCTGCAGATCCTGA -ACGGAACTAAGCTGCAGATAGCGA -ACGGAACTAAGCTGCAGACACAGA -ACGGAACTAAGCTGCAGAGCAAGA -ACGGAACTAAGCTGCAGAGGTTGA -ACGGAACTAAGCTGCAGATCCGAT -ACGGAACTAAGCTGCAGATGGCAT -ACGGAACTAAGCTGCAGACGAGAT -ACGGAACTAAGCTGCAGATACCAC -ACGGAACTAAGCTGCAGACAGAAC -ACGGAACTAAGCTGCAGAGTCTAC -ACGGAACTAAGCTGCAGAACGTAC -ACGGAACTAAGCTGCAGAAGTGAC -ACGGAACTAAGCTGCAGACTGTAG -ACGGAACTAAGCTGCAGACCTAAG -ACGGAACTAAGCTGCAGAGTTCAG -ACGGAACTAAGCTGCAGAGCATAG -ACGGAACTAAGCTGCAGAGACAAG -ACGGAACTAAGCTGCAGAAAGCAG -ACGGAACTAAGCTGCAGACGTCAA -ACGGAACTAAGCTGCAGAGCTGAA -ACGGAACTAAGCTGCAGAAGTACG -ACGGAACTAAGCTGCAGAATCCGA -ACGGAACTAAGCTGCAGAATGGGA -ACGGAACTAAGCTGCAGAGTGCAA -ACGGAACTAAGCTGCAGAGAGGAA -ACGGAACTAAGCTGCAGACAGGTA -ACGGAACTAAGCTGCAGAGACTCT -ACGGAACTAAGCTGCAGAAGTCCT -ACGGAACTAAGCTGCAGATAAGCC -ACGGAACTAAGCTGCAGAATAGCC -ACGGAACTAAGCTGCAGATAACCG -ACGGAACTAAGCTGCAGAATGCCA -ACGGAACTAAGCAGGTGAGGAAAC -ACGGAACTAAGCAGGTGAAACACC -ACGGAACTAAGCAGGTGAATCGAG -ACGGAACTAAGCAGGTGACTCCTT -ACGGAACTAAGCAGGTGACCTGTT -ACGGAACTAAGCAGGTGACGGTTT -ACGGAACTAAGCAGGTGAGTGGTT -ACGGAACTAAGCAGGTGAGCCTTT -ACGGAACTAAGCAGGTGAGGTCTT -ACGGAACTAAGCAGGTGAACGCTT -ACGGAACTAAGCAGGTGAAGCGTT -ACGGAACTAAGCAGGTGATTCGTC -ACGGAACTAAGCAGGTGATCTCTC -ACGGAACTAAGCAGGTGATGGATC -ACGGAACTAAGCAGGTGACACTTC -ACGGAACTAAGCAGGTGAGTACTC -ACGGAACTAAGCAGGTGAGATGTC -ACGGAACTAAGCAGGTGAACAGTC -ACGGAACTAAGCAGGTGATTGCTG -ACGGAACTAAGCAGGTGATCCATG -ACGGAACTAAGCAGGTGATGTGTG -ACGGAACTAAGCAGGTGACTAGTG -ACGGAACTAAGCAGGTGACATCTG -ACGGAACTAAGCAGGTGAGAGTTG -ACGGAACTAAGCAGGTGAAGACTG -ACGGAACTAAGCAGGTGATCGGTA -ACGGAACTAAGCAGGTGATGCCTA -ACGGAACTAAGCAGGTGACCACTA -ACGGAACTAAGCAGGTGAGGAGTA -ACGGAACTAAGCAGGTGATCGTCT -ACGGAACTAAGCAGGTGATGCACT -ACGGAACTAAGCAGGTGACTGACT -ACGGAACTAAGCAGGTGACAACCT -ACGGAACTAAGCAGGTGAGCTACT -ACGGAACTAAGCAGGTGAGGATCT -ACGGAACTAAGCAGGTGAAAGGCT -ACGGAACTAAGCAGGTGATCAACC -ACGGAACTAAGCAGGTGATGTTCC -ACGGAACTAAGCAGGTGAATTCCC -ACGGAACTAAGCAGGTGATTCTCG -ACGGAACTAAGCAGGTGATAGACG -ACGGAACTAAGCAGGTGAGTAACG -ACGGAACTAAGCAGGTGAACTTCG -ACGGAACTAAGCAGGTGATACGCA -ACGGAACTAAGCAGGTGACTTGCA -ACGGAACTAAGCAGGTGACGAACA -ACGGAACTAAGCAGGTGACAGTCA -ACGGAACTAAGCAGGTGAGATCCA -ACGGAACTAAGCAGGTGAACGACA -ACGGAACTAAGCAGGTGAAGCTCA -ACGGAACTAAGCAGGTGATCACGT -ACGGAACTAAGCAGGTGACGTAGT -ACGGAACTAAGCAGGTGAGTCAGT -ACGGAACTAAGCAGGTGAGAAGGT -ACGGAACTAAGCAGGTGAAACCGT -ACGGAACTAAGCAGGTGATTGTGC -ACGGAACTAAGCAGGTGACTAAGC -ACGGAACTAAGCAGGTGAACTAGC -ACGGAACTAAGCAGGTGAAGATGC -ACGGAACTAAGCAGGTGATGAAGG -ACGGAACTAAGCAGGTGACAATGG -ACGGAACTAAGCAGGTGAATGAGG -ACGGAACTAAGCAGGTGAAATGGG -ACGGAACTAAGCAGGTGATCCTGA -ACGGAACTAAGCAGGTGATAGCGA -ACGGAACTAAGCAGGTGACACAGA -ACGGAACTAAGCAGGTGAGCAAGA -ACGGAACTAAGCAGGTGAGGTTGA -ACGGAACTAAGCAGGTGATCCGAT -ACGGAACTAAGCAGGTGATGGCAT -ACGGAACTAAGCAGGTGACGAGAT -ACGGAACTAAGCAGGTGATACCAC -ACGGAACTAAGCAGGTGACAGAAC -ACGGAACTAAGCAGGTGAGTCTAC -ACGGAACTAAGCAGGTGAACGTAC -ACGGAACTAAGCAGGTGAAGTGAC -ACGGAACTAAGCAGGTGACTGTAG -ACGGAACTAAGCAGGTGACCTAAG -ACGGAACTAAGCAGGTGAGTTCAG -ACGGAACTAAGCAGGTGAGCATAG -ACGGAACTAAGCAGGTGAGACAAG -ACGGAACTAAGCAGGTGAAAGCAG -ACGGAACTAAGCAGGTGACGTCAA -ACGGAACTAAGCAGGTGAGCTGAA -ACGGAACTAAGCAGGTGAAGTACG -ACGGAACTAAGCAGGTGAATCCGA -ACGGAACTAAGCAGGTGAATGGGA -ACGGAACTAAGCAGGTGAGTGCAA -ACGGAACTAAGCAGGTGAGAGGAA -ACGGAACTAAGCAGGTGACAGGTA -ACGGAACTAAGCAGGTGAGACTCT -ACGGAACTAAGCAGGTGAAGTCCT -ACGGAACTAAGCAGGTGATAAGCC -ACGGAACTAAGCAGGTGAATAGCC -ACGGAACTAAGCAGGTGATAACCG -ACGGAACTAAGCAGGTGAATGCCA -ACGGAACTAAGCTGGCAAGGAAAC -ACGGAACTAAGCTGGCAAAACACC -ACGGAACTAAGCTGGCAAATCGAG -ACGGAACTAAGCTGGCAACTCCTT -ACGGAACTAAGCTGGCAACCTGTT -ACGGAACTAAGCTGGCAACGGTTT -ACGGAACTAAGCTGGCAAGTGGTT -ACGGAACTAAGCTGGCAAGCCTTT -ACGGAACTAAGCTGGCAAGGTCTT -ACGGAACTAAGCTGGCAAACGCTT -ACGGAACTAAGCTGGCAAAGCGTT -ACGGAACTAAGCTGGCAATTCGTC -ACGGAACTAAGCTGGCAATCTCTC -ACGGAACTAAGCTGGCAATGGATC -ACGGAACTAAGCTGGCAACACTTC -ACGGAACTAAGCTGGCAAGTACTC -ACGGAACTAAGCTGGCAAGATGTC -ACGGAACTAAGCTGGCAAACAGTC -ACGGAACTAAGCTGGCAATTGCTG -ACGGAACTAAGCTGGCAATCCATG -ACGGAACTAAGCTGGCAATGTGTG -ACGGAACTAAGCTGGCAACTAGTG -ACGGAACTAAGCTGGCAACATCTG -ACGGAACTAAGCTGGCAAGAGTTG -ACGGAACTAAGCTGGCAAAGACTG -ACGGAACTAAGCTGGCAATCGGTA -ACGGAACTAAGCTGGCAATGCCTA -ACGGAACTAAGCTGGCAACCACTA -ACGGAACTAAGCTGGCAAGGAGTA -ACGGAACTAAGCTGGCAATCGTCT -ACGGAACTAAGCTGGCAATGCACT -ACGGAACTAAGCTGGCAACTGACT -ACGGAACTAAGCTGGCAACAACCT -ACGGAACTAAGCTGGCAAGCTACT -ACGGAACTAAGCTGGCAAGGATCT -ACGGAACTAAGCTGGCAAAAGGCT -ACGGAACTAAGCTGGCAATCAACC -ACGGAACTAAGCTGGCAATGTTCC -ACGGAACTAAGCTGGCAAATTCCC -ACGGAACTAAGCTGGCAATTCTCG -ACGGAACTAAGCTGGCAATAGACG -ACGGAACTAAGCTGGCAAGTAACG -ACGGAACTAAGCTGGCAAACTTCG -ACGGAACTAAGCTGGCAATACGCA -ACGGAACTAAGCTGGCAACTTGCA -ACGGAACTAAGCTGGCAACGAACA -ACGGAACTAAGCTGGCAACAGTCA -ACGGAACTAAGCTGGCAAGATCCA -ACGGAACTAAGCTGGCAAACGACA -ACGGAACTAAGCTGGCAAAGCTCA -ACGGAACTAAGCTGGCAATCACGT -ACGGAACTAAGCTGGCAACGTAGT -ACGGAACTAAGCTGGCAAGTCAGT -ACGGAACTAAGCTGGCAAGAAGGT -ACGGAACTAAGCTGGCAAAACCGT -ACGGAACTAAGCTGGCAATTGTGC -ACGGAACTAAGCTGGCAACTAAGC -ACGGAACTAAGCTGGCAAACTAGC -ACGGAACTAAGCTGGCAAAGATGC -ACGGAACTAAGCTGGCAATGAAGG -ACGGAACTAAGCTGGCAACAATGG -ACGGAACTAAGCTGGCAAATGAGG -ACGGAACTAAGCTGGCAAAATGGG -ACGGAACTAAGCTGGCAATCCTGA -ACGGAACTAAGCTGGCAATAGCGA -ACGGAACTAAGCTGGCAACACAGA -ACGGAACTAAGCTGGCAAGCAAGA -ACGGAACTAAGCTGGCAAGGTTGA -ACGGAACTAAGCTGGCAATCCGAT -ACGGAACTAAGCTGGCAATGGCAT -ACGGAACTAAGCTGGCAACGAGAT -ACGGAACTAAGCTGGCAATACCAC -ACGGAACTAAGCTGGCAACAGAAC -ACGGAACTAAGCTGGCAAGTCTAC -ACGGAACTAAGCTGGCAAACGTAC -ACGGAACTAAGCTGGCAAAGTGAC -ACGGAACTAAGCTGGCAACTGTAG -ACGGAACTAAGCTGGCAACCTAAG -ACGGAACTAAGCTGGCAAGTTCAG -ACGGAACTAAGCTGGCAAGCATAG -ACGGAACTAAGCTGGCAAGACAAG -ACGGAACTAAGCTGGCAAAAGCAG -ACGGAACTAAGCTGGCAACGTCAA -ACGGAACTAAGCTGGCAAGCTGAA -ACGGAACTAAGCTGGCAAAGTACG -ACGGAACTAAGCTGGCAAATCCGA -ACGGAACTAAGCTGGCAAATGGGA -ACGGAACTAAGCTGGCAAGTGCAA -ACGGAACTAAGCTGGCAAGAGGAA -ACGGAACTAAGCTGGCAACAGGTA -ACGGAACTAAGCTGGCAAGACTCT -ACGGAACTAAGCTGGCAAAGTCCT -ACGGAACTAAGCTGGCAATAAGCC -ACGGAACTAAGCTGGCAAATAGCC -ACGGAACTAAGCTGGCAATAACCG -ACGGAACTAAGCTGGCAAATGCCA -ACGGAACTAAGCAGGATGGGAAAC -ACGGAACTAAGCAGGATGAACACC -ACGGAACTAAGCAGGATGATCGAG -ACGGAACTAAGCAGGATGCTCCTT -ACGGAACTAAGCAGGATGCCTGTT -ACGGAACTAAGCAGGATGCGGTTT -ACGGAACTAAGCAGGATGGTGGTT -ACGGAACTAAGCAGGATGGCCTTT -ACGGAACTAAGCAGGATGGGTCTT -ACGGAACTAAGCAGGATGACGCTT -ACGGAACTAAGCAGGATGAGCGTT -ACGGAACTAAGCAGGATGTTCGTC -ACGGAACTAAGCAGGATGTCTCTC -ACGGAACTAAGCAGGATGTGGATC -ACGGAACTAAGCAGGATGCACTTC -ACGGAACTAAGCAGGATGGTACTC -ACGGAACTAAGCAGGATGGATGTC -ACGGAACTAAGCAGGATGACAGTC -ACGGAACTAAGCAGGATGTTGCTG -ACGGAACTAAGCAGGATGTCCATG -ACGGAACTAAGCAGGATGTGTGTG -ACGGAACTAAGCAGGATGCTAGTG -ACGGAACTAAGCAGGATGCATCTG -ACGGAACTAAGCAGGATGGAGTTG -ACGGAACTAAGCAGGATGAGACTG -ACGGAACTAAGCAGGATGTCGGTA -ACGGAACTAAGCAGGATGTGCCTA -ACGGAACTAAGCAGGATGCCACTA -ACGGAACTAAGCAGGATGGGAGTA -ACGGAACTAAGCAGGATGTCGTCT -ACGGAACTAAGCAGGATGTGCACT -ACGGAACTAAGCAGGATGCTGACT -ACGGAACTAAGCAGGATGCAACCT -ACGGAACTAAGCAGGATGGCTACT -ACGGAACTAAGCAGGATGGGATCT -ACGGAACTAAGCAGGATGAAGGCT -ACGGAACTAAGCAGGATGTCAACC -ACGGAACTAAGCAGGATGTGTTCC -ACGGAACTAAGCAGGATGATTCCC -ACGGAACTAAGCAGGATGTTCTCG -ACGGAACTAAGCAGGATGTAGACG -ACGGAACTAAGCAGGATGGTAACG -ACGGAACTAAGCAGGATGACTTCG -ACGGAACTAAGCAGGATGTACGCA -ACGGAACTAAGCAGGATGCTTGCA -ACGGAACTAAGCAGGATGCGAACA -ACGGAACTAAGCAGGATGCAGTCA -ACGGAACTAAGCAGGATGGATCCA -ACGGAACTAAGCAGGATGACGACA -ACGGAACTAAGCAGGATGAGCTCA -ACGGAACTAAGCAGGATGTCACGT -ACGGAACTAAGCAGGATGCGTAGT -ACGGAACTAAGCAGGATGGTCAGT -ACGGAACTAAGCAGGATGGAAGGT -ACGGAACTAAGCAGGATGAACCGT -ACGGAACTAAGCAGGATGTTGTGC -ACGGAACTAAGCAGGATGCTAAGC -ACGGAACTAAGCAGGATGACTAGC -ACGGAACTAAGCAGGATGAGATGC -ACGGAACTAAGCAGGATGTGAAGG -ACGGAACTAAGCAGGATGCAATGG -ACGGAACTAAGCAGGATGATGAGG -ACGGAACTAAGCAGGATGAATGGG -ACGGAACTAAGCAGGATGTCCTGA -ACGGAACTAAGCAGGATGTAGCGA -ACGGAACTAAGCAGGATGCACAGA -ACGGAACTAAGCAGGATGGCAAGA -ACGGAACTAAGCAGGATGGGTTGA -ACGGAACTAAGCAGGATGTCCGAT -ACGGAACTAAGCAGGATGTGGCAT -ACGGAACTAAGCAGGATGCGAGAT -ACGGAACTAAGCAGGATGTACCAC -ACGGAACTAAGCAGGATGCAGAAC -ACGGAACTAAGCAGGATGGTCTAC -ACGGAACTAAGCAGGATGACGTAC -ACGGAACTAAGCAGGATGAGTGAC -ACGGAACTAAGCAGGATGCTGTAG -ACGGAACTAAGCAGGATGCCTAAG -ACGGAACTAAGCAGGATGGTTCAG -ACGGAACTAAGCAGGATGGCATAG -ACGGAACTAAGCAGGATGGACAAG -ACGGAACTAAGCAGGATGAAGCAG -ACGGAACTAAGCAGGATGCGTCAA -ACGGAACTAAGCAGGATGGCTGAA -ACGGAACTAAGCAGGATGAGTACG -ACGGAACTAAGCAGGATGATCCGA -ACGGAACTAAGCAGGATGATGGGA -ACGGAACTAAGCAGGATGGTGCAA -ACGGAACTAAGCAGGATGGAGGAA -ACGGAACTAAGCAGGATGCAGGTA -ACGGAACTAAGCAGGATGGACTCT -ACGGAACTAAGCAGGATGAGTCCT -ACGGAACTAAGCAGGATGTAAGCC -ACGGAACTAAGCAGGATGATAGCC -ACGGAACTAAGCAGGATGTAACCG -ACGGAACTAAGCAGGATGATGCCA -ACGGAACTAAGCGGGAATGGAAAC -ACGGAACTAAGCGGGAATAACACC -ACGGAACTAAGCGGGAATATCGAG -ACGGAACTAAGCGGGAATCTCCTT -ACGGAACTAAGCGGGAATCCTGTT -ACGGAACTAAGCGGGAATCGGTTT -ACGGAACTAAGCGGGAATGTGGTT -ACGGAACTAAGCGGGAATGCCTTT -ACGGAACTAAGCGGGAATGGTCTT -ACGGAACTAAGCGGGAATACGCTT -ACGGAACTAAGCGGGAATAGCGTT -ACGGAACTAAGCGGGAATTTCGTC -ACGGAACTAAGCGGGAATTCTCTC -ACGGAACTAAGCGGGAATTGGATC -ACGGAACTAAGCGGGAATCACTTC -ACGGAACTAAGCGGGAATGTACTC -ACGGAACTAAGCGGGAATGATGTC -ACGGAACTAAGCGGGAATACAGTC -ACGGAACTAAGCGGGAATTTGCTG -ACGGAACTAAGCGGGAATTCCATG -ACGGAACTAAGCGGGAATTGTGTG -ACGGAACTAAGCGGGAATCTAGTG -ACGGAACTAAGCGGGAATCATCTG -ACGGAACTAAGCGGGAATGAGTTG -ACGGAACTAAGCGGGAATAGACTG -ACGGAACTAAGCGGGAATTCGGTA -ACGGAACTAAGCGGGAATTGCCTA -ACGGAACTAAGCGGGAATCCACTA -ACGGAACTAAGCGGGAATGGAGTA -ACGGAACTAAGCGGGAATTCGTCT -ACGGAACTAAGCGGGAATTGCACT -ACGGAACTAAGCGGGAATCTGACT -ACGGAACTAAGCGGGAATCAACCT -ACGGAACTAAGCGGGAATGCTACT -ACGGAACTAAGCGGGAATGGATCT -ACGGAACTAAGCGGGAATAAGGCT -ACGGAACTAAGCGGGAATTCAACC -ACGGAACTAAGCGGGAATTGTTCC -ACGGAACTAAGCGGGAATATTCCC -ACGGAACTAAGCGGGAATTTCTCG -ACGGAACTAAGCGGGAATTAGACG -ACGGAACTAAGCGGGAATGTAACG -ACGGAACTAAGCGGGAATACTTCG -ACGGAACTAAGCGGGAATTACGCA -ACGGAACTAAGCGGGAATCTTGCA -ACGGAACTAAGCGGGAATCGAACA -ACGGAACTAAGCGGGAATCAGTCA -ACGGAACTAAGCGGGAATGATCCA -ACGGAACTAAGCGGGAATACGACA -ACGGAACTAAGCGGGAATAGCTCA -ACGGAACTAAGCGGGAATTCACGT -ACGGAACTAAGCGGGAATCGTAGT -ACGGAACTAAGCGGGAATGTCAGT -ACGGAACTAAGCGGGAATGAAGGT -ACGGAACTAAGCGGGAATAACCGT -ACGGAACTAAGCGGGAATTTGTGC -ACGGAACTAAGCGGGAATCTAAGC -ACGGAACTAAGCGGGAATACTAGC -ACGGAACTAAGCGGGAATAGATGC -ACGGAACTAAGCGGGAATTGAAGG -ACGGAACTAAGCGGGAATCAATGG -ACGGAACTAAGCGGGAATATGAGG -ACGGAACTAAGCGGGAATAATGGG -ACGGAACTAAGCGGGAATTCCTGA -ACGGAACTAAGCGGGAATTAGCGA -ACGGAACTAAGCGGGAATCACAGA -ACGGAACTAAGCGGGAATGCAAGA -ACGGAACTAAGCGGGAATGGTTGA -ACGGAACTAAGCGGGAATTCCGAT -ACGGAACTAAGCGGGAATTGGCAT -ACGGAACTAAGCGGGAATCGAGAT -ACGGAACTAAGCGGGAATTACCAC -ACGGAACTAAGCGGGAATCAGAAC -ACGGAACTAAGCGGGAATGTCTAC -ACGGAACTAAGCGGGAATACGTAC -ACGGAACTAAGCGGGAATAGTGAC -ACGGAACTAAGCGGGAATCTGTAG -ACGGAACTAAGCGGGAATCCTAAG -ACGGAACTAAGCGGGAATGTTCAG -ACGGAACTAAGCGGGAATGCATAG -ACGGAACTAAGCGGGAATGACAAG -ACGGAACTAAGCGGGAATAAGCAG -ACGGAACTAAGCGGGAATCGTCAA -ACGGAACTAAGCGGGAATGCTGAA -ACGGAACTAAGCGGGAATAGTACG -ACGGAACTAAGCGGGAATATCCGA -ACGGAACTAAGCGGGAATATGGGA -ACGGAACTAAGCGGGAATGTGCAA -ACGGAACTAAGCGGGAATGAGGAA -ACGGAACTAAGCGGGAATCAGGTA -ACGGAACTAAGCGGGAATGACTCT -ACGGAACTAAGCGGGAATAGTCCT -ACGGAACTAAGCGGGAATTAAGCC -ACGGAACTAAGCGGGAATATAGCC -ACGGAACTAAGCGGGAATTAACCG -ACGGAACTAAGCGGGAATATGCCA -ACGGAACTAAGCTGATCCGGAAAC -ACGGAACTAAGCTGATCCAACACC -ACGGAACTAAGCTGATCCATCGAG -ACGGAACTAAGCTGATCCCTCCTT -ACGGAACTAAGCTGATCCCCTGTT -ACGGAACTAAGCTGATCCCGGTTT -ACGGAACTAAGCTGATCCGTGGTT -ACGGAACTAAGCTGATCCGCCTTT -ACGGAACTAAGCTGATCCGGTCTT -ACGGAACTAAGCTGATCCACGCTT -ACGGAACTAAGCTGATCCAGCGTT -ACGGAACTAAGCTGATCCTTCGTC -ACGGAACTAAGCTGATCCTCTCTC -ACGGAACTAAGCTGATCCTGGATC -ACGGAACTAAGCTGATCCCACTTC -ACGGAACTAAGCTGATCCGTACTC -ACGGAACTAAGCTGATCCGATGTC -ACGGAACTAAGCTGATCCACAGTC -ACGGAACTAAGCTGATCCTTGCTG -ACGGAACTAAGCTGATCCTCCATG -ACGGAACTAAGCTGATCCTGTGTG -ACGGAACTAAGCTGATCCCTAGTG -ACGGAACTAAGCTGATCCCATCTG -ACGGAACTAAGCTGATCCGAGTTG -ACGGAACTAAGCTGATCCAGACTG -ACGGAACTAAGCTGATCCTCGGTA -ACGGAACTAAGCTGATCCTGCCTA -ACGGAACTAAGCTGATCCCCACTA -ACGGAACTAAGCTGATCCGGAGTA -ACGGAACTAAGCTGATCCTCGTCT -ACGGAACTAAGCTGATCCTGCACT -ACGGAACTAAGCTGATCCCTGACT -ACGGAACTAAGCTGATCCCAACCT -ACGGAACTAAGCTGATCCGCTACT -ACGGAACTAAGCTGATCCGGATCT -ACGGAACTAAGCTGATCCAAGGCT -ACGGAACTAAGCTGATCCTCAACC -ACGGAACTAAGCTGATCCTGTTCC -ACGGAACTAAGCTGATCCATTCCC -ACGGAACTAAGCTGATCCTTCTCG -ACGGAACTAAGCTGATCCTAGACG -ACGGAACTAAGCTGATCCGTAACG -ACGGAACTAAGCTGATCCACTTCG -ACGGAACTAAGCTGATCCTACGCA -ACGGAACTAAGCTGATCCCTTGCA -ACGGAACTAAGCTGATCCCGAACA -ACGGAACTAAGCTGATCCCAGTCA -ACGGAACTAAGCTGATCCGATCCA -ACGGAACTAAGCTGATCCACGACA -ACGGAACTAAGCTGATCCAGCTCA -ACGGAACTAAGCTGATCCTCACGT -ACGGAACTAAGCTGATCCCGTAGT -ACGGAACTAAGCTGATCCGTCAGT -ACGGAACTAAGCTGATCCGAAGGT -ACGGAACTAAGCTGATCCAACCGT -ACGGAACTAAGCTGATCCTTGTGC -ACGGAACTAAGCTGATCCCTAAGC -ACGGAACTAAGCTGATCCACTAGC -ACGGAACTAAGCTGATCCAGATGC -ACGGAACTAAGCTGATCCTGAAGG -ACGGAACTAAGCTGATCCCAATGG -ACGGAACTAAGCTGATCCATGAGG -ACGGAACTAAGCTGATCCAATGGG -ACGGAACTAAGCTGATCCTCCTGA -ACGGAACTAAGCTGATCCTAGCGA -ACGGAACTAAGCTGATCCCACAGA -ACGGAACTAAGCTGATCCGCAAGA -ACGGAACTAAGCTGATCCGGTTGA -ACGGAACTAAGCTGATCCTCCGAT -ACGGAACTAAGCTGATCCTGGCAT -ACGGAACTAAGCTGATCCCGAGAT -ACGGAACTAAGCTGATCCTACCAC -ACGGAACTAAGCTGATCCCAGAAC -ACGGAACTAAGCTGATCCGTCTAC -ACGGAACTAAGCTGATCCACGTAC -ACGGAACTAAGCTGATCCAGTGAC -ACGGAACTAAGCTGATCCCTGTAG -ACGGAACTAAGCTGATCCCCTAAG -ACGGAACTAAGCTGATCCGTTCAG -ACGGAACTAAGCTGATCCGCATAG -ACGGAACTAAGCTGATCCGACAAG -ACGGAACTAAGCTGATCCAAGCAG -ACGGAACTAAGCTGATCCCGTCAA -ACGGAACTAAGCTGATCCGCTGAA -ACGGAACTAAGCTGATCCAGTACG -ACGGAACTAAGCTGATCCATCCGA -ACGGAACTAAGCTGATCCATGGGA -ACGGAACTAAGCTGATCCGTGCAA -ACGGAACTAAGCTGATCCGAGGAA -ACGGAACTAAGCTGATCCCAGGTA -ACGGAACTAAGCTGATCCGACTCT -ACGGAACTAAGCTGATCCAGTCCT -ACGGAACTAAGCTGATCCTAAGCC -ACGGAACTAAGCTGATCCATAGCC -ACGGAACTAAGCTGATCCTAACCG -ACGGAACTAAGCTGATCCATGCCA -ACGGAACTAAGCCGATAGGGAAAC -ACGGAACTAAGCCGATAGAACACC -ACGGAACTAAGCCGATAGATCGAG -ACGGAACTAAGCCGATAGCTCCTT -ACGGAACTAAGCCGATAGCCTGTT -ACGGAACTAAGCCGATAGCGGTTT -ACGGAACTAAGCCGATAGGTGGTT -ACGGAACTAAGCCGATAGGCCTTT -ACGGAACTAAGCCGATAGGGTCTT -ACGGAACTAAGCCGATAGACGCTT -ACGGAACTAAGCCGATAGAGCGTT -ACGGAACTAAGCCGATAGTTCGTC -ACGGAACTAAGCCGATAGTCTCTC -ACGGAACTAAGCCGATAGTGGATC -ACGGAACTAAGCCGATAGCACTTC -ACGGAACTAAGCCGATAGGTACTC -ACGGAACTAAGCCGATAGGATGTC -ACGGAACTAAGCCGATAGACAGTC -ACGGAACTAAGCCGATAGTTGCTG -ACGGAACTAAGCCGATAGTCCATG -ACGGAACTAAGCCGATAGTGTGTG -ACGGAACTAAGCCGATAGCTAGTG -ACGGAACTAAGCCGATAGCATCTG -ACGGAACTAAGCCGATAGGAGTTG -ACGGAACTAAGCCGATAGAGACTG -ACGGAACTAAGCCGATAGTCGGTA -ACGGAACTAAGCCGATAGTGCCTA -ACGGAACTAAGCCGATAGCCACTA -ACGGAACTAAGCCGATAGGGAGTA -ACGGAACTAAGCCGATAGTCGTCT -ACGGAACTAAGCCGATAGTGCACT -ACGGAACTAAGCCGATAGCTGACT -ACGGAACTAAGCCGATAGCAACCT -ACGGAACTAAGCCGATAGGCTACT -ACGGAACTAAGCCGATAGGGATCT -ACGGAACTAAGCCGATAGAAGGCT -ACGGAACTAAGCCGATAGTCAACC -ACGGAACTAAGCCGATAGTGTTCC -ACGGAACTAAGCCGATAGATTCCC -ACGGAACTAAGCCGATAGTTCTCG -ACGGAACTAAGCCGATAGTAGACG -ACGGAACTAAGCCGATAGGTAACG -ACGGAACTAAGCCGATAGACTTCG -ACGGAACTAAGCCGATAGTACGCA -ACGGAACTAAGCCGATAGCTTGCA -ACGGAACTAAGCCGATAGCGAACA -ACGGAACTAAGCCGATAGCAGTCA -ACGGAACTAAGCCGATAGGATCCA -ACGGAACTAAGCCGATAGACGACA -ACGGAACTAAGCCGATAGAGCTCA -ACGGAACTAAGCCGATAGTCACGT -ACGGAACTAAGCCGATAGCGTAGT -ACGGAACTAAGCCGATAGGTCAGT -ACGGAACTAAGCCGATAGGAAGGT -ACGGAACTAAGCCGATAGAACCGT -ACGGAACTAAGCCGATAGTTGTGC -ACGGAACTAAGCCGATAGCTAAGC -ACGGAACTAAGCCGATAGACTAGC -ACGGAACTAAGCCGATAGAGATGC -ACGGAACTAAGCCGATAGTGAAGG -ACGGAACTAAGCCGATAGCAATGG -ACGGAACTAAGCCGATAGATGAGG -ACGGAACTAAGCCGATAGAATGGG -ACGGAACTAAGCCGATAGTCCTGA -ACGGAACTAAGCCGATAGTAGCGA -ACGGAACTAAGCCGATAGCACAGA -ACGGAACTAAGCCGATAGGCAAGA -ACGGAACTAAGCCGATAGGGTTGA -ACGGAACTAAGCCGATAGTCCGAT -ACGGAACTAAGCCGATAGTGGCAT -ACGGAACTAAGCCGATAGCGAGAT -ACGGAACTAAGCCGATAGTACCAC -ACGGAACTAAGCCGATAGCAGAAC -ACGGAACTAAGCCGATAGGTCTAC -ACGGAACTAAGCCGATAGACGTAC -ACGGAACTAAGCCGATAGAGTGAC -ACGGAACTAAGCCGATAGCTGTAG -ACGGAACTAAGCCGATAGCCTAAG -ACGGAACTAAGCCGATAGGTTCAG -ACGGAACTAAGCCGATAGGCATAG -ACGGAACTAAGCCGATAGGACAAG -ACGGAACTAAGCCGATAGAAGCAG -ACGGAACTAAGCCGATAGCGTCAA -ACGGAACTAAGCCGATAGGCTGAA -ACGGAACTAAGCCGATAGAGTACG -ACGGAACTAAGCCGATAGATCCGA -ACGGAACTAAGCCGATAGATGGGA -ACGGAACTAAGCCGATAGGTGCAA -ACGGAACTAAGCCGATAGGAGGAA -ACGGAACTAAGCCGATAGCAGGTA -ACGGAACTAAGCCGATAGGACTCT -ACGGAACTAAGCCGATAGAGTCCT -ACGGAACTAAGCCGATAGTAAGCC -ACGGAACTAAGCCGATAGATAGCC -ACGGAACTAAGCCGATAGTAACCG -ACGGAACTAAGCCGATAGATGCCA -ACGGAACTAAGCAGACACGGAAAC -ACGGAACTAAGCAGACACAACACC -ACGGAACTAAGCAGACACATCGAG -ACGGAACTAAGCAGACACCTCCTT -ACGGAACTAAGCAGACACCCTGTT -ACGGAACTAAGCAGACACCGGTTT -ACGGAACTAAGCAGACACGTGGTT -ACGGAACTAAGCAGACACGCCTTT -ACGGAACTAAGCAGACACGGTCTT -ACGGAACTAAGCAGACACACGCTT -ACGGAACTAAGCAGACACAGCGTT -ACGGAACTAAGCAGACACTTCGTC -ACGGAACTAAGCAGACACTCTCTC -ACGGAACTAAGCAGACACTGGATC -ACGGAACTAAGCAGACACCACTTC -ACGGAACTAAGCAGACACGTACTC -ACGGAACTAAGCAGACACGATGTC -ACGGAACTAAGCAGACACACAGTC -ACGGAACTAAGCAGACACTTGCTG -ACGGAACTAAGCAGACACTCCATG -ACGGAACTAAGCAGACACTGTGTG -ACGGAACTAAGCAGACACCTAGTG -ACGGAACTAAGCAGACACCATCTG -ACGGAACTAAGCAGACACGAGTTG -ACGGAACTAAGCAGACACAGACTG -ACGGAACTAAGCAGACACTCGGTA -ACGGAACTAAGCAGACACTGCCTA -ACGGAACTAAGCAGACACCCACTA -ACGGAACTAAGCAGACACGGAGTA -ACGGAACTAAGCAGACACTCGTCT -ACGGAACTAAGCAGACACTGCACT -ACGGAACTAAGCAGACACCTGACT -ACGGAACTAAGCAGACACCAACCT -ACGGAACTAAGCAGACACGCTACT -ACGGAACTAAGCAGACACGGATCT -ACGGAACTAAGCAGACACAAGGCT -ACGGAACTAAGCAGACACTCAACC -ACGGAACTAAGCAGACACTGTTCC -ACGGAACTAAGCAGACACATTCCC -ACGGAACTAAGCAGACACTTCTCG -ACGGAACTAAGCAGACACTAGACG -ACGGAACTAAGCAGACACGTAACG -ACGGAACTAAGCAGACACACTTCG -ACGGAACTAAGCAGACACTACGCA -ACGGAACTAAGCAGACACCTTGCA -ACGGAACTAAGCAGACACCGAACA -ACGGAACTAAGCAGACACCAGTCA -ACGGAACTAAGCAGACACGATCCA -ACGGAACTAAGCAGACACACGACA -ACGGAACTAAGCAGACACAGCTCA -ACGGAACTAAGCAGACACTCACGT -ACGGAACTAAGCAGACACCGTAGT -ACGGAACTAAGCAGACACGTCAGT -ACGGAACTAAGCAGACACGAAGGT -ACGGAACTAAGCAGACACAACCGT -ACGGAACTAAGCAGACACTTGTGC -ACGGAACTAAGCAGACACCTAAGC -ACGGAACTAAGCAGACACACTAGC -ACGGAACTAAGCAGACACAGATGC -ACGGAACTAAGCAGACACTGAAGG -ACGGAACTAAGCAGACACCAATGG -ACGGAACTAAGCAGACACATGAGG -ACGGAACTAAGCAGACACAATGGG -ACGGAACTAAGCAGACACTCCTGA -ACGGAACTAAGCAGACACTAGCGA -ACGGAACTAAGCAGACACCACAGA -ACGGAACTAAGCAGACACGCAAGA -ACGGAACTAAGCAGACACGGTTGA -ACGGAACTAAGCAGACACTCCGAT -ACGGAACTAAGCAGACACTGGCAT -ACGGAACTAAGCAGACACCGAGAT -ACGGAACTAAGCAGACACTACCAC -ACGGAACTAAGCAGACACCAGAAC -ACGGAACTAAGCAGACACGTCTAC -ACGGAACTAAGCAGACACACGTAC -ACGGAACTAAGCAGACACAGTGAC -ACGGAACTAAGCAGACACCTGTAG -ACGGAACTAAGCAGACACCCTAAG -ACGGAACTAAGCAGACACGTTCAG -ACGGAACTAAGCAGACACGCATAG -ACGGAACTAAGCAGACACGACAAG -ACGGAACTAAGCAGACACAAGCAG -ACGGAACTAAGCAGACACCGTCAA -ACGGAACTAAGCAGACACGCTGAA -ACGGAACTAAGCAGACACAGTACG -ACGGAACTAAGCAGACACATCCGA -ACGGAACTAAGCAGACACATGGGA -ACGGAACTAAGCAGACACGTGCAA -ACGGAACTAAGCAGACACGAGGAA -ACGGAACTAAGCAGACACCAGGTA -ACGGAACTAAGCAGACACGACTCT -ACGGAACTAAGCAGACACAGTCCT -ACGGAACTAAGCAGACACTAAGCC -ACGGAACTAAGCAGACACATAGCC -ACGGAACTAAGCAGACACTAACCG -ACGGAACTAAGCAGACACATGCCA -ACGGAACTAAGCAGAGCAGGAAAC -ACGGAACTAAGCAGAGCAAACACC -ACGGAACTAAGCAGAGCAATCGAG -ACGGAACTAAGCAGAGCACTCCTT -ACGGAACTAAGCAGAGCACCTGTT -ACGGAACTAAGCAGAGCACGGTTT -ACGGAACTAAGCAGAGCAGTGGTT -ACGGAACTAAGCAGAGCAGCCTTT -ACGGAACTAAGCAGAGCAGGTCTT -ACGGAACTAAGCAGAGCAACGCTT -ACGGAACTAAGCAGAGCAAGCGTT -ACGGAACTAAGCAGAGCATTCGTC -ACGGAACTAAGCAGAGCATCTCTC -ACGGAACTAAGCAGAGCATGGATC -ACGGAACTAAGCAGAGCACACTTC -ACGGAACTAAGCAGAGCAGTACTC -ACGGAACTAAGCAGAGCAGATGTC -ACGGAACTAAGCAGAGCAACAGTC -ACGGAACTAAGCAGAGCATTGCTG -ACGGAACTAAGCAGAGCATCCATG -ACGGAACTAAGCAGAGCATGTGTG -ACGGAACTAAGCAGAGCACTAGTG -ACGGAACTAAGCAGAGCACATCTG -ACGGAACTAAGCAGAGCAGAGTTG -ACGGAACTAAGCAGAGCAAGACTG -ACGGAACTAAGCAGAGCATCGGTA -ACGGAACTAAGCAGAGCATGCCTA -ACGGAACTAAGCAGAGCACCACTA -ACGGAACTAAGCAGAGCAGGAGTA -ACGGAACTAAGCAGAGCATCGTCT -ACGGAACTAAGCAGAGCATGCACT -ACGGAACTAAGCAGAGCACTGACT -ACGGAACTAAGCAGAGCACAACCT -ACGGAACTAAGCAGAGCAGCTACT -ACGGAACTAAGCAGAGCAGGATCT -ACGGAACTAAGCAGAGCAAAGGCT -ACGGAACTAAGCAGAGCATCAACC -ACGGAACTAAGCAGAGCATGTTCC -ACGGAACTAAGCAGAGCAATTCCC -ACGGAACTAAGCAGAGCATTCTCG -ACGGAACTAAGCAGAGCATAGACG -ACGGAACTAAGCAGAGCAGTAACG -ACGGAACTAAGCAGAGCAACTTCG -ACGGAACTAAGCAGAGCATACGCA -ACGGAACTAAGCAGAGCACTTGCA -ACGGAACTAAGCAGAGCACGAACA -ACGGAACTAAGCAGAGCACAGTCA -ACGGAACTAAGCAGAGCAGATCCA -ACGGAACTAAGCAGAGCAACGACA -ACGGAACTAAGCAGAGCAAGCTCA -ACGGAACTAAGCAGAGCATCACGT -ACGGAACTAAGCAGAGCACGTAGT -ACGGAACTAAGCAGAGCAGTCAGT -ACGGAACTAAGCAGAGCAGAAGGT -ACGGAACTAAGCAGAGCAAACCGT -ACGGAACTAAGCAGAGCATTGTGC -ACGGAACTAAGCAGAGCACTAAGC -ACGGAACTAAGCAGAGCAACTAGC -ACGGAACTAAGCAGAGCAAGATGC -ACGGAACTAAGCAGAGCATGAAGG -ACGGAACTAAGCAGAGCACAATGG -ACGGAACTAAGCAGAGCAATGAGG -ACGGAACTAAGCAGAGCAAATGGG -ACGGAACTAAGCAGAGCATCCTGA -ACGGAACTAAGCAGAGCATAGCGA -ACGGAACTAAGCAGAGCACACAGA -ACGGAACTAAGCAGAGCAGCAAGA -ACGGAACTAAGCAGAGCAGGTTGA -ACGGAACTAAGCAGAGCATCCGAT -ACGGAACTAAGCAGAGCATGGCAT -ACGGAACTAAGCAGAGCACGAGAT -ACGGAACTAAGCAGAGCATACCAC -ACGGAACTAAGCAGAGCACAGAAC -ACGGAACTAAGCAGAGCAGTCTAC -ACGGAACTAAGCAGAGCAACGTAC -ACGGAACTAAGCAGAGCAAGTGAC -ACGGAACTAAGCAGAGCACTGTAG -ACGGAACTAAGCAGAGCACCTAAG -ACGGAACTAAGCAGAGCAGTTCAG -ACGGAACTAAGCAGAGCAGCATAG -ACGGAACTAAGCAGAGCAGACAAG -ACGGAACTAAGCAGAGCAAAGCAG -ACGGAACTAAGCAGAGCACGTCAA -ACGGAACTAAGCAGAGCAGCTGAA -ACGGAACTAAGCAGAGCAAGTACG -ACGGAACTAAGCAGAGCAATCCGA -ACGGAACTAAGCAGAGCAATGGGA -ACGGAACTAAGCAGAGCAGTGCAA -ACGGAACTAAGCAGAGCAGAGGAA -ACGGAACTAAGCAGAGCACAGGTA -ACGGAACTAAGCAGAGCAGACTCT -ACGGAACTAAGCAGAGCAAGTCCT -ACGGAACTAAGCAGAGCATAAGCC -ACGGAACTAAGCAGAGCAATAGCC -ACGGAACTAAGCAGAGCATAACCG -ACGGAACTAAGCAGAGCAATGCCA -ACGGAACTAAGCTGAGGTGGAAAC -ACGGAACTAAGCTGAGGTAACACC -ACGGAACTAAGCTGAGGTATCGAG -ACGGAACTAAGCTGAGGTCTCCTT -ACGGAACTAAGCTGAGGTCCTGTT -ACGGAACTAAGCTGAGGTCGGTTT -ACGGAACTAAGCTGAGGTGTGGTT -ACGGAACTAAGCTGAGGTGCCTTT -ACGGAACTAAGCTGAGGTGGTCTT -ACGGAACTAAGCTGAGGTACGCTT -ACGGAACTAAGCTGAGGTAGCGTT -ACGGAACTAAGCTGAGGTTTCGTC -ACGGAACTAAGCTGAGGTTCTCTC -ACGGAACTAAGCTGAGGTTGGATC -ACGGAACTAAGCTGAGGTCACTTC -ACGGAACTAAGCTGAGGTGTACTC -ACGGAACTAAGCTGAGGTGATGTC -ACGGAACTAAGCTGAGGTACAGTC -ACGGAACTAAGCTGAGGTTTGCTG -ACGGAACTAAGCTGAGGTTCCATG -ACGGAACTAAGCTGAGGTTGTGTG -ACGGAACTAAGCTGAGGTCTAGTG -ACGGAACTAAGCTGAGGTCATCTG -ACGGAACTAAGCTGAGGTGAGTTG -ACGGAACTAAGCTGAGGTAGACTG -ACGGAACTAAGCTGAGGTTCGGTA -ACGGAACTAAGCTGAGGTTGCCTA -ACGGAACTAAGCTGAGGTCCACTA -ACGGAACTAAGCTGAGGTGGAGTA -ACGGAACTAAGCTGAGGTTCGTCT -ACGGAACTAAGCTGAGGTTGCACT -ACGGAACTAAGCTGAGGTCTGACT -ACGGAACTAAGCTGAGGTCAACCT -ACGGAACTAAGCTGAGGTGCTACT -ACGGAACTAAGCTGAGGTGGATCT -ACGGAACTAAGCTGAGGTAAGGCT -ACGGAACTAAGCTGAGGTTCAACC -ACGGAACTAAGCTGAGGTTGTTCC -ACGGAACTAAGCTGAGGTATTCCC -ACGGAACTAAGCTGAGGTTTCTCG -ACGGAACTAAGCTGAGGTTAGACG -ACGGAACTAAGCTGAGGTGTAACG -ACGGAACTAAGCTGAGGTACTTCG -ACGGAACTAAGCTGAGGTTACGCA -ACGGAACTAAGCTGAGGTCTTGCA -ACGGAACTAAGCTGAGGTCGAACA -ACGGAACTAAGCTGAGGTCAGTCA -ACGGAACTAAGCTGAGGTGATCCA -ACGGAACTAAGCTGAGGTACGACA -ACGGAACTAAGCTGAGGTAGCTCA -ACGGAACTAAGCTGAGGTTCACGT -ACGGAACTAAGCTGAGGTCGTAGT -ACGGAACTAAGCTGAGGTGTCAGT -ACGGAACTAAGCTGAGGTGAAGGT -ACGGAACTAAGCTGAGGTAACCGT -ACGGAACTAAGCTGAGGTTTGTGC -ACGGAACTAAGCTGAGGTCTAAGC -ACGGAACTAAGCTGAGGTACTAGC -ACGGAACTAAGCTGAGGTAGATGC -ACGGAACTAAGCTGAGGTTGAAGG -ACGGAACTAAGCTGAGGTCAATGG -ACGGAACTAAGCTGAGGTATGAGG -ACGGAACTAAGCTGAGGTAATGGG -ACGGAACTAAGCTGAGGTTCCTGA -ACGGAACTAAGCTGAGGTTAGCGA -ACGGAACTAAGCTGAGGTCACAGA -ACGGAACTAAGCTGAGGTGCAAGA -ACGGAACTAAGCTGAGGTGGTTGA -ACGGAACTAAGCTGAGGTTCCGAT -ACGGAACTAAGCTGAGGTTGGCAT -ACGGAACTAAGCTGAGGTCGAGAT -ACGGAACTAAGCTGAGGTTACCAC -ACGGAACTAAGCTGAGGTCAGAAC -ACGGAACTAAGCTGAGGTGTCTAC -ACGGAACTAAGCTGAGGTACGTAC -ACGGAACTAAGCTGAGGTAGTGAC -ACGGAACTAAGCTGAGGTCTGTAG -ACGGAACTAAGCTGAGGTCCTAAG -ACGGAACTAAGCTGAGGTGTTCAG -ACGGAACTAAGCTGAGGTGCATAG -ACGGAACTAAGCTGAGGTGACAAG -ACGGAACTAAGCTGAGGTAAGCAG -ACGGAACTAAGCTGAGGTCGTCAA -ACGGAACTAAGCTGAGGTGCTGAA -ACGGAACTAAGCTGAGGTAGTACG -ACGGAACTAAGCTGAGGTATCCGA -ACGGAACTAAGCTGAGGTATGGGA -ACGGAACTAAGCTGAGGTGTGCAA -ACGGAACTAAGCTGAGGTGAGGAA -ACGGAACTAAGCTGAGGTCAGGTA -ACGGAACTAAGCTGAGGTGACTCT -ACGGAACTAAGCTGAGGTAGTCCT -ACGGAACTAAGCTGAGGTTAAGCC -ACGGAACTAAGCTGAGGTATAGCC -ACGGAACTAAGCTGAGGTTAACCG -ACGGAACTAAGCTGAGGTATGCCA -ACGGAACTAAGCGATTCCGGAAAC -ACGGAACTAAGCGATTCCAACACC -ACGGAACTAAGCGATTCCATCGAG -ACGGAACTAAGCGATTCCCTCCTT -ACGGAACTAAGCGATTCCCCTGTT -ACGGAACTAAGCGATTCCCGGTTT -ACGGAACTAAGCGATTCCGTGGTT -ACGGAACTAAGCGATTCCGCCTTT -ACGGAACTAAGCGATTCCGGTCTT -ACGGAACTAAGCGATTCCACGCTT -ACGGAACTAAGCGATTCCAGCGTT -ACGGAACTAAGCGATTCCTTCGTC -ACGGAACTAAGCGATTCCTCTCTC -ACGGAACTAAGCGATTCCTGGATC -ACGGAACTAAGCGATTCCCACTTC -ACGGAACTAAGCGATTCCGTACTC -ACGGAACTAAGCGATTCCGATGTC -ACGGAACTAAGCGATTCCACAGTC -ACGGAACTAAGCGATTCCTTGCTG -ACGGAACTAAGCGATTCCTCCATG -ACGGAACTAAGCGATTCCTGTGTG -ACGGAACTAAGCGATTCCCTAGTG -ACGGAACTAAGCGATTCCCATCTG -ACGGAACTAAGCGATTCCGAGTTG -ACGGAACTAAGCGATTCCAGACTG -ACGGAACTAAGCGATTCCTCGGTA -ACGGAACTAAGCGATTCCTGCCTA -ACGGAACTAAGCGATTCCCCACTA -ACGGAACTAAGCGATTCCGGAGTA -ACGGAACTAAGCGATTCCTCGTCT -ACGGAACTAAGCGATTCCTGCACT -ACGGAACTAAGCGATTCCCTGACT -ACGGAACTAAGCGATTCCCAACCT -ACGGAACTAAGCGATTCCGCTACT -ACGGAACTAAGCGATTCCGGATCT -ACGGAACTAAGCGATTCCAAGGCT -ACGGAACTAAGCGATTCCTCAACC -ACGGAACTAAGCGATTCCTGTTCC -ACGGAACTAAGCGATTCCATTCCC -ACGGAACTAAGCGATTCCTTCTCG -ACGGAACTAAGCGATTCCTAGACG -ACGGAACTAAGCGATTCCGTAACG -ACGGAACTAAGCGATTCCACTTCG -ACGGAACTAAGCGATTCCTACGCA -ACGGAACTAAGCGATTCCCTTGCA -ACGGAACTAAGCGATTCCCGAACA -ACGGAACTAAGCGATTCCCAGTCA -ACGGAACTAAGCGATTCCGATCCA -ACGGAACTAAGCGATTCCACGACA -ACGGAACTAAGCGATTCCAGCTCA -ACGGAACTAAGCGATTCCTCACGT -ACGGAACTAAGCGATTCCCGTAGT -ACGGAACTAAGCGATTCCGTCAGT -ACGGAACTAAGCGATTCCGAAGGT -ACGGAACTAAGCGATTCCAACCGT -ACGGAACTAAGCGATTCCTTGTGC -ACGGAACTAAGCGATTCCCTAAGC -ACGGAACTAAGCGATTCCACTAGC -ACGGAACTAAGCGATTCCAGATGC -ACGGAACTAAGCGATTCCTGAAGG -ACGGAACTAAGCGATTCCCAATGG -ACGGAACTAAGCGATTCCATGAGG -ACGGAACTAAGCGATTCCAATGGG -ACGGAACTAAGCGATTCCTCCTGA -ACGGAACTAAGCGATTCCTAGCGA -ACGGAACTAAGCGATTCCCACAGA -ACGGAACTAAGCGATTCCGCAAGA -ACGGAACTAAGCGATTCCGGTTGA -ACGGAACTAAGCGATTCCTCCGAT -ACGGAACTAAGCGATTCCTGGCAT -ACGGAACTAAGCGATTCCCGAGAT -ACGGAACTAAGCGATTCCTACCAC -ACGGAACTAAGCGATTCCCAGAAC -ACGGAACTAAGCGATTCCGTCTAC -ACGGAACTAAGCGATTCCACGTAC -ACGGAACTAAGCGATTCCAGTGAC -ACGGAACTAAGCGATTCCCTGTAG -ACGGAACTAAGCGATTCCCCTAAG -ACGGAACTAAGCGATTCCGTTCAG -ACGGAACTAAGCGATTCCGCATAG -ACGGAACTAAGCGATTCCGACAAG -ACGGAACTAAGCGATTCCAAGCAG -ACGGAACTAAGCGATTCCCGTCAA -ACGGAACTAAGCGATTCCGCTGAA -ACGGAACTAAGCGATTCCAGTACG -ACGGAACTAAGCGATTCCATCCGA -ACGGAACTAAGCGATTCCATGGGA -ACGGAACTAAGCGATTCCGTGCAA -ACGGAACTAAGCGATTCCGAGGAA -ACGGAACTAAGCGATTCCCAGGTA -ACGGAACTAAGCGATTCCGACTCT -ACGGAACTAAGCGATTCCAGTCCT -ACGGAACTAAGCGATTCCTAAGCC -ACGGAACTAAGCGATTCCATAGCC -ACGGAACTAAGCGATTCCTAACCG -ACGGAACTAAGCGATTCCATGCCA -ACGGAACTAAGCCATTGGGGAAAC -ACGGAACTAAGCCATTGGAACACC -ACGGAACTAAGCCATTGGATCGAG -ACGGAACTAAGCCATTGGCTCCTT -ACGGAACTAAGCCATTGGCCTGTT -ACGGAACTAAGCCATTGGCGGTTT -ACGGAACTAAGCCATTGGGTGGTT -ACGGAACTAAGCCATTGGGCCTTT -ACGGAACTAAGCCATTGGGGTCTT -ACGGAACTAAGCCATTGGACGCTT -ACGGAACTAAGCCATTGGAGCGTT -ACGGAACTAAGCCATTGGTTCGTC -ACGGAACTAAGCCATTGGTCTCTC -ACGGAACTAAGCCATTGGTGGATC -ACGGAACTAAGCCATTGGCACTTC -ACGGAACTAAGCCATTGGGTACTC -ACGGAACTAAGCCATTGGGATGTC -ACGGAACTAAGCCATTGGACAGTC -ACGGAACTAAGCCATTGGTTGCTG -ACGGAACTAAGCCATTGGTCCATG -ACGGAACTAAGCCATTGGTGTGTG -ACGGAACTAAGCCATTGGCTAGTG -ACGGAACTAAGCCATTGGCATCTG -ACGGAACTAAGCCATTGGGAGTTG -ACGGAACTAAGCCATTGGAGACTG -ACGGAACTAAGCCATTGGTCGGTA -ACGGAACTAAGCCATTGGTGCCTA -ACGGAACTAAGCCATTGGCCACTA -ACGGAACTAAGCCATTGGGGAGTA -ACGGAACTAAGCCATTGGTCGTCT -ACGGAACTAAGCCATTGGTGCACT -ACGGAACTAAGCCATTGGCTGACT -ACGGAACTAAGCCATTGGCAACCT -ACGGAACTAAGCCATTGGGCTACT -ACGGAACTAAGCCATTGGGGATCT -ACGGAACTAAGCCATTGGAAGGCT -ACGGAACTAAGCCATTGGTCAACC -ACGGAACTAAGCCATTGGTGTTCC -ACGGAACTAAGCCATTGGATTCCC -ACGGAACTAAGCCATTGGTTCTCG -ACGGAACTAAGCCATTGGTAGACG -ACGGAACTAAGCCATTGGGTAACG -ACGGAACTAAGCCATTGGACTTCG -ACGGAACTAAGCCATTGGTACGCA -ACGGAACTAAGCCATTGGCTTGCA -ACGGAACTAAGCCATTGGCGAACA -ACGGAACTAAGCCATTGGCAGTCA -ACGGAACTAAGCCATTGGGATCCA -ACGGAACTAAGCCATTGGACGACA -ACGGAACTAAGCCATTGGAGCTCA -ACGGAACTAAGCCATTGGTCACGT -ACGGAACTAAGCCATTGGCGTAGT -ACGGAACTAAGCCATTGGGTCAGT -ACGGAACTAAGCCATTGGGAAGGT -ACGGAACTAAGCCATTGGAACCGT -ACGGAACTAAGCCATTGGTTGTGC -ACGGAACTAAGCCATTGGCTAAGC -ACGGAACTAAGCCATTGGACTAGC -ACGGAACTAAGCCATTGGAGATGC -ACGGAACTAAGCCATTGGTGAAGG -ACGGAACTAAGCCATTGGCAATGG -ACGGAACTAAGCCATTGGATGAGG -ACGGAACTAAGCCATTGGAATGGG -ACGGAACTAAGCCATTGGTCCTGA -ACGGAACTAAGCCATTGGTAGCGA -ACGGAACTAAGCCATTGGCACAGA -ACGGAACTAAGCCATTGGGCAAGA -ACGGAACTAAGCCATTGGGGTTGA -ACGGAACTAAGCCATTGGTCCGAT -ACGGAACTAAGCCATTGGTGGCAT -ACGGAACTAAGCCATTGGCGAGAT -ACGGAACTAAGCCATTGGTACCAC -ACGGAACTAAGCCATTGGCAGAAC -ACGGAACTAAGCCATTGGGTCTAC -ACGGAACTAAGCCATTGGACGTAC -ACGGAACTAAGCCATTGGAGTGAC -ACGGAACTAAGCCATTGGCTGTAG -ACGGAACTAAGCCATTGGCCTAAG -ACGGAACTAAGCCATTGGGTTCAG -ACGGAACTAAGCCATTGGGCATAG -ACGGAACTAAGCCATTGGGACAAG -ACGGAACTAAGCCATTGGAAGCAG -ACGGAACTAAGCCATTGGCGTCAA -ACGGAACTAAGCCATTGGGCTGAA -ACGGAACTAAGCCATTGGAGTACG -ACGGAACTAAGCCATTGGATCCGA -ACGGAACTAAGCCATTGGATGGGA -ACGGAACTAAGCCATTGGGTGCAA -ACGGAACTAAGCCATTGGGAGGAA -ACGGAACTAAGCCATTGGCAGGTA -ACGGAACTAAGCCATTGGGACTCT -ACGGAACTAAGCCATTGGAGTCCT -ACGGAACTAAGCCATTGGTAAGCC -ACGGAACTAAGCCATTGGATAGCC -ACGGAACTAAGCCATTGGTAACCG -ACGGAACTAAGCCATTGGATGCCA -ACGGAACTAAGCGATCGAGGAAAC -ACGGAACTAAGCGATCGAAACACC -ACGGAACTAAGCGATCGAATCGAG -ACGGAACTAAGCGATCGACTCCTT -ACGGAACTAAGCGATCGACCTGTT -ACGGAACTAAGCGATCGACGGTTT -ACGGAACTAAGCGATCGAGTGGTT -ACGGAACTAAGCGATCGAGCCTTT -ACGGAACTAAGCGATCGAGGTCTT -ACGGAACTAAGCGATCGAACGCTT -ACGGAACTAAGCGATCGAAGCGTT -ACGGAACTAAGCGATCGATTCGTC -ACGGAACTAAGCGATCGATCTCTC -ACGGAACTAAGCGATCGATGGATC -ACGGAACTAAGCGATCGACACTTC -ACGGAACTAAGCGATCGAGTACTC -ACGGAACTAAGCGATCGAGATGTC -ACGGAACTAAGCGATCGAACAGTC -ACGGAACTAAGCGATCGATTGCTG -ACGGAACTAAGCGATCGATCCATG -ACGGAACTAAGCGATCGATGTGTG -ACGGAACTAAGCGATCGACTAGTG -ACGGAACTAAGCGATCGACATCTG -ACGGAACTAAGCGATCGAGAGTTG -ACGGAACTAAGCGATCGAAGACTG -ACGGAACTAAGCGATCGATCGGTA -ACGGAACTAAGCGATCGATGCCTA -ACGGAACTAAGCGATCGACCACTA -ACGGAACTAAGCGATCGAGGAGTA -ACGGAACTAAGCGATCGATCGTCT -ACGGAACTAAGCGATCGATGCACT -ACGGAACTAAGCGATCGACTGACT -ACGGAACTAAGCGATCGACAACCT -ACGGAACTAAGCGATCGAGCTACT -ACGGAACTAAGCGATCGAGGATCT -ACGGAACTAAGCGATCGAAAGGCT -ACGGAACTAAGCGATCGATCAACC -ACGGAACTAAGCGATCGATGTTCC -ACGGAACTAAGCGATCGAATTCCC -ACGGAACTAAGCGATCGATTCTCG -ACGGAACTAAGCGATCGATAGACG -ACGGAACTAAGCGATCGAGTAACG -ACGGAACTAAGCGATCGAACTTCG -ACGGAACTAAGCGATCGATACGCA -ACGGAACTAAGCGATCGACTTGCA -ACGGAACTAAGCGATCGACGAACA -ACGGAACTAAGCGATCGACAGTCA -ACGGAACTAAGCGATCGAGATCCA -ACGGAACTAAGCGATCGAACGACA -ACGGAACTAAGCGATCGAAGCTCA -ACGGAACTAAGCGATCGATCACGT -ACGGAACTAAGCGATCGACGTAGT -ACGGAACTAAGCGATCGAGTCAGT -ACGGAACTAAGCGATCGAGAAGGT -ACGGAACTAAGCGATCGAAACCGT -ACGGAACTAAGCGATCGATTGTGC -ACGGAACTAAGCGATCGACTAAGC -ACGGAACTAAGCGATCGAACTAGC -ACGGAACTAAGCGATCGAAGATGC -ACGGAACTAAGCGATCGATGAAGG -ACGGAACTAAGCGATCGACAATGG -ACGGAACTAAGCGATCGAATGAGG -ACGGAACTAAGCGATCGAAATGGG -ACGGAACTAAGCGATCGATCCTGA -ACGGAACTAAGCGATCGATAGCGA -ACGGAACTAAGCGATCGACACAGA -ACGGAACTAAGCGATCGAGCAAGA -ACGGAACTAAGCGATCGAGGTTGA -ACGGAACTAAGCGATCGATCCGAT -ACGGAACTAAGCGATCGATGGCAT -ACGGAACTAAGCGATCGACGAGAT -ACGGAACTAAGCGATCGATACCAC -ACGGAACTAAGCGATCGACAGAAC -ACGGAACTAAGCGATCGAGTCTAC -ACGGAACTAAGCGATCGAACGTAC -ACGGAACTAAGCGATCGAAGTGAC -ACGGAACTAAGCGATCGACTGTAG -ACGGAACTAAGCGATCGACCTAAG -ACGGAACTAAGCGATCGAGTTCAG -ACGGAACTAAGCGATCGAGCATAG -ACGGAACTAAGCGATCGAGACAAG -ACGGAACTAAGCGATCGAAAGCAG -ACGGAACTAAGCGATCGACGTCAA -ACGGAACTAAGCGATCGAGCTGAA -ACGGAACTAAGCGATCGAAGTACG -ACGGAACTAAGCGATCGAATCCGA -ACGGAACTAAGCGATCGAATGGGA -ACGGAACTAAGCGATCGAGTGCAA -ACGGAACTAAGCGATCGAGAGGAA -ACGGAACTAAGCGATCGACAGGTA -ACGGAACTAAGCGATCGAGACTCT -ACGGAACTAAGCGATCGAAGTCCT -ACGGAACTAAGCGATCGATAAGCC -ACGGAACTAAGCGATCGAATAGCC -ACGGAACTAAGCGATCGATAACCG -ACGGAACTAAGCGATCGAATGCCA -ACGGAACTAAGCCACTACGGAAAC -ACGGAACTAAGCCACTACAACACC -ACGGAACTAAGCCACTACATCGAG -ACGGAACTAAGCCACTACCTCCTT -ACGGAACTAAGCCACTACCCTGTT -ACGGAACTAAGCCACTACCGGTTT -ACGGAACTAAGCCACTACGTGGTT -ACGGAACTAAGCCACTACGCCTTT -ACGGAACTAAGCCACTACGGTCTT -ACGGAACTAAGCCACTACACGCTT -ACGGAACTAAGCCACTACAGCGTT -ACGGAACTAAGCCACTACTTCGTC -ACGGAACTAAGCCACTACTCTCTC -ACGGAACTAAGCCACTACTGGATC -ACGGAACTAAGCCACTACCACTTC -ACGGAACTAAGCCACTACGTACTC -ACGGAACTAAGCCACTACGATGTC -ACGGAACTAAGCCACTACACAGTC -ACGGAACTAAGCCACTACTTGCTG -ACGGAACTAAGCCACTACTCCATG -ACGGAACTAAGCCACTACTGTGTG -ACGGAACTAAGCCACTACCTAGTG -ACGGAACTAAGCCACTACCATCTG -ACGGAACTAAGCCACTACGAGTTG -ACGGAACTAAGCCACTACAGACTG -ACGGAACTAAGCCACTACTCGGTA -ACGGAACTAAGCCACTACTGCCTA -ACGGAACTAAGCCACTACCCACTA -ACGGAACTAAGCCACTACGGAGTA -ACGGAACTAAGCCACTACTCGTCT -ACGGAACTAAGCCACTACTGCACT -ACGGAACTAAGCCACTACCTGACT -ACGGAACTAAGCCACTACCAACCT -ACGGAACTAAGCCACTACGCTACT -ACGGAACTAAGCCACTACGGATCT -ACGGAACTAAGCCACTACAAGGCT -ACGGAACTAAGCCACTACTCAACC -ACGGAACTAAGCCACTACTGTTCC -ACGGAACTAAGCCACTACATTCCC -ACGGAACTAAGCCACTACTTCTCG -ACGGAACTAAGCCACTACTAGACG -ACGGAACTAAGCCACTACGTAACG -ACGGAACTAAGCCACTACACTTCG -ACGGAACTAAGCCACTACTACGCA -ACGGAACTAAGCCACTACCTTGCA -ACGGAACTAAGCCACTACCGAACA -ACGGAACTAAGCCACTACCAGTCA -ACGGAACTAAGCCACTACGATCCA -ACGGAACTAAGCCACTACACGACA -ACGGAACTAAGCCACTACAGCTCA -ACGGAACTAAGCCACTACTCACGT -ACGGAACTAAGCCACTACCGTAGT -ACGGAACTAAGCCACTACGTCAGT -ACGGAACTAAGCCACTACGAAGGT -ACGGAACTAAGCCACTACAACCGT -ACGGAACTAAGCCACTACTTGTGC -ACGGAACTAAGCCACTACCTAAGC -ACGGAACTAAGCCACTACACTAGC -ACGGAACTAAGCCACTACAGATGC -ACGGAACTAAGCCACTACTGAAGG -ACGGAACTAAGCCACTACCAATGG -ACGGAACTAAGCCACTACATGAGG -ACGGAACTAAGCCACTACAATGGG -ACGGAACTAAGCCACTACTCCTGA -ACGGAACTAAGCCACTACTAGCGA -ACGGAACTAAGCCACTACCACAGA -ACGGAACTAAGCCACTACGCAAGA -ACGGAACTAAGCCACTACGGTTGA -ACGGAACTAAGCCACTACTCCGAT -ACGGAACTAAGCCACTACTGGCAT -ACGGAACTAAGCCACTACCGAGAT -ACGGAACTAAGCCACTACTACCAC -ACGGAACTAAGCCACTACCAGAAC -ACGGAACTAAGCCACTACGTCTAC -ACGGAACTAAGCCACTACACGTAC -ACGGAACTAAGCCACTACAGTGAC -ACGGAACTAAGCCACTACCTGTAG -ACGGAACTAAGCCACTACCCTAAG -ACGGAACTAAGCCACTACGTTCAG -ACGGAACTAAGCCACTACGCATAG -ACGGAACTAAGCCACTACGACAAG -ACGGAACTAAGCCACTACAAGCAG -ACGGAACTAAGCCACTACCGTCAA -ACGGAACTAAGCCACTACGCTGAA -ACGGAACTAAGCCACTACAGTACG -ACGGAACTAAGCCACTACATCCGA -ACGGAACTAAGCCACTACATGGGA -ACGGAACTAAGCCACTACGTGCAA -ACGGAACTAAGCCACTACGAGGAA -ACGGAACTAAGCCACTACCAGGTA -ACGGAACTAAGCCACTACGACTCT -ACGGAACTAAGCCACTACAGTCCT -ACGGAACTAAGCCACTACTAAGCC -ACGGAACTAAGCCACTACATAGCC -ACGGAACTAAGCCACTACTAACCG -ACGGAACTAAGCCACTACATGCCA -ACGGAACTAAGCAACCAGGGAAAC -ACGGAACTAAGCAACCAGAACACC -ACGGAACTAAGCAACCAGATCGAG -ACGGAACTAAGCAACCAGCTCCTT -ACGGAACTAAGCAACCAGCCTGTT -ACGGAACTAAGCAACCAGCGGTTT -ACGGAACTAAGCAACCAGGTGGTT -ACGGAACTAAGCAACCAGGCCTTT -ACGGAACTAAGCAACCAGGGTCTT -ACGGAACTAAGCAACCAGACGCTT -ACGGAACTAAGCAACCAGAGCGTT -ACGGAACTAAGCAACCAGTTCGTC -ACGGAACTAAGCAACCAGTCTCTC -ACGGAACTAAGCAACCAGTGGATC -ACGGAACTAAGCAACCAGCACTTC -ACGGAACTAAGCAACCAGGTACTC -ACGGAACTAAGCAACCAGGATGTC -ACGGAACTAAGCAACCAGACAGTC -ACGGAACTAAGCAACCAGTTGCTG -ACGGAACTAAGCAACCAGTCCATG -ACGGAACTAAGCAACCAGTGTGTG -ACGGAACTAAGCAACCAGCTAGTG -ACGGAACTAAGCAACCAGCATCTG -ACGGAACTAAGCAACCAGGAGTTG -ACGGAACTAAGCAACCAGAGACTG -ACGGAACTAAGCAACCAGTCGGTA -ACGGAACTAAGCAACCAGTGCCTA -ACGGAACTAAGCAACCAGCCACTA -ACGGAACTAAGCAACCAGGGAGTA -ACGGAACTAAGCAACCAGTCGTCT -ACGGAACTAAGCAACCAGTGCACT -ACGGAACTAAGCAACCAGCTGACT -ACGGAACTAAGCAACCAGCAACCT -ACGGAACTAAGCAACCAGGCTACT -ACGGAACTAAGCAACCAGGGATCT -ACGGAACTAAGCAACCAGAAGGCT -ACGGAACTAAGCAACCAGTCAACC -ACGGAACTAAGCAACCAGTGTTCC -ACGGAACTAAGCAACCAGATTCCC -ACGGAACTAAGCAACCAGTTCTCG -ACGGAACTAAGCAACCAGTAGACG -ACGGAACTAAGCAACCAGGTAACG -ACGGAACTAAGCAACCAGACTTCG -ACGGAACTAAGCAACCAGTACGCA -ACGGAACTAAGCAACCAGCTTGCA -ACGGAACTAAGCAACCAGCGAACA -ACGGAACTAAGCAACCAGCAGTCA -ACGGAACTAAGCAACCAGGATCCA -ACGGAACTAAGCAACCAGACGACA -ACGGAACTAAGCAACCAGAGCTCA -ACGGAACTAAGCAACCAGTCACGT -ACGGAACTAAGCAACCAGCGTAGT -ACGGAACTAAGCAACCAGGTCAGT -ACGGAACTAAGCAACCAGGAAGGT -ACGGAACTAAGCAACCAGAACCGT -ACGGAACTAAGCAACCAGTTGTGC -ACGGAACTAAGCAACCAGCTAAGC -ACGGAACTAAGCAACCAGACTAGC -ACGGAACTAAGCAACCAGAGATGC -ACGGAACTAAGCAACCAGTGAAGG -ACGGAACTAAGCAACCAGCAATGG -ACGGAACTAAGCAACCAGATGAGG -ACGGAACTAAGCAACCAGAATGGG -ACGGAACTAAGCAACCAGTCCTGA -ACGGAACTAAGCAACCAGTAGCGA -ACGGAACTAAGCAACCAGCACAGA -ACGGAACTAAGCAACCAGGCAAGA -ACGGAACTAAGCAACCAGGGTTGA -ACGGAACTAAGCAACCAGTCCGAT -ACGGAACTAAGCAACCAGTGGCAT -ACGGAACTAAGCAACCAGCGAGAT -ACGGAACTAAGCAACCAGTACCAC -ACGGAACTAAGCAACCAGCAGAAC -ACGGAACTAAGCAACCAGGTCTAC -ACGGAACTAAGCAACCAGACGTAC -ACGGAACTAAGCAACCAGAGTGAC -ACGGAACTAAGCAACCAGCTGTAG -ACGGAACTAAGCAACCAGCCTAAG -ACGGAACTAAGCAACCAGGTTCAG -ACGGAACTAAGCAACCAGGCATAG -ACGGAACTAAGCAACCAGGACAAG -ACGGAACTAAGCAACCAGAAGCAG -ACGGAACTAAGCAACCAGCGTCAA -ACGGAACTAAGCAACCAGGCTGAA -ACGGAACTAAGCAACCAGAGTACG -ACGGAACTAAGCAACCAGATCCGA -ACGGAACTAAGCAACCAGATGGGA -ACGGAACTAAGCAACCAGGTGCAA -ACGGAACTAAGCAACCAGGAGGAA -ACGGAACTAAGCAACCAGCAGGTA -ACGGAACTAAGCAACCAGGACTCT -ACGGAACTAAGCAACCAGAGTCCT -ACGGAACTAAGCAACCAGTAAGCC -ACGGAACTAAGCAACCAGATAGCC -ACGGAACTAAGCAACCAGTAACCG -ACGGAACTAAGCAACCAGATGCCA -ACGGAACTAAGCTACGTCGGAAAC -ACGGAACTAAGCTACGTCAACACC -ACGGAACTAAGCTACGTCATCGAG -ACGGAACTAAGCTACGTCCTCCTT -ACGGAACTAAGCTACGTCCCTGTT -ACGGAACTAAGCTACGTCCGGTTT -ACGGAACTAAGCTACGTCGTGGTT -ACGGAACTAAGCTACGTCGCCTTT -ACGGAACTAAGCTACGTCGGTCTT -ACGGAACTAAGCTACGTCACGCTT -ACGGAACTAAGCTACGTCAGCGTT -ACGGAACTAAGCTACGTCTTCGTC -ACGGAACTAAGCTACGTCTCTCTC -ACGGAACTAAGCTACGTCTGGATC -ACGGAACTAAGCTACGTCCACTTC -ACGGAACTAAGCTACGTCGTACTC -ACGGAACTAAGCTACGTCGATGTC -ACGGAACTAAGCTACGTCACAGTC -ACGGAACTAAGCTACGTCTTGCTG -ACGGAACTAAGCTACGTCTCCATG -ACGGAACTAAGCTACGTCTGTGTG -ACGGAACTAAGCTACGTCCTAGTG -ACGGAACTAAGCTACGTCCATCTG -ACGGAACTAAGCTACGTCGAGTTG -ACGGAACTAAGCTACGTCAGACTG -ACGGAACTAAGCTACGTCTCGGTA -ACGGAACTAAGCTACGTCTGCCTA -ACGGAACTAAGCTACGTCCCACTA -ACGGAACTAAGCTACGTCGGAGTA -ACGGAACTAAGCTACGTCTCGTCT -ACGGAACTAAGCTACGTCTGCACT -ACGGAACTAAGCTACGTCCTGACT -ACGGAACTAAGCTACGTCCAACCT -ACGGAACTAAGCTACGTCGCTACT -ACGGAACTAAGCTACGTCGGATCT -ACGGAACTAAGCTACGTCAAGGCT -ACGGAACTAAGCTACGTCTCAACC -ACGGAACTAAGCTACGTCTGTTCC -ACGGAACTAAGCTACGTCATTCCC -ACGGAACTAAGCTACGTCTTCTCG -ACGGAACTAAGCTACGTCTAGACG -ACGGAACTAAGCTACGTCGTAACG -ACGGAACTAAGCTACGTCACTTCG -ACGGAACTAAGCTACGTCTACGCA -ACGGAACTAAGCTACGTCCTTGCA -ACGGAACTAAGCTACGTCCGAACA -ACGGAACTAAGCTACGTCCAGTCA -ACGGAACTAAGCTACGTCGATCCA -ACGGAACTAAGCTACGTCACGACA -ACGGAACTAAGCTACGTCAGCTCA -ACGGAACTAAGCTACGTCTCACGT -ACGGAACTAAGCTACGTCCGTAGT -ACGGAACTAAGCTACGTCGTCAGT -ACGGAACTAAGCTACGTCGAAGGT -ACGGAACTAAGCTACGTCAACCGT -ACGGAACTAAGCTACGTCTTGTGC -ACGGAACTAAGCTACGTCCTAAGC -ACGGAACTAAGCTACGTCACTAGC -ACGGAACTAAGCTACGTCAGATGC -ACGGAACTAAGCTACGTCTGAAGG -ACGGAACTAAGCTACGTCCAATGG -ACGGAACTAAGCTACGTCATGAGG -ACGGAACTAAGCTACGTCAATGGG -ACGGAACTAAGCTACGTCTCCTGA -ACGGAACTAAGCTACGTCTAGCGA -ACGGAACTAAGCTACGTCCACAGA -ACGGAACTAAGCTACGTCGCAAGA -ACGGAACTAAGCTACGTCGGTTGA -ACGGAACTAAGCTACGTCTCCGAT -ACGGAACTAAGCTACGTCTGGCAT -ACGGAACTAAGCTACGTCCGAGAT -ACGGAACTAAGCTACGTCTACCAC -ACGGAACTAAGCTACGTCCAGAAC -ACGGAACTAAGCTACGTCGTCTAC -ACGGAACTAAGCTACGTCACGTAC -ACGGAACTAAGCTACGTCAGTGAC -ACGGAACTAAGCTACGTCCTGTAG -ACGGAACTAAGCTACGTCCCTAAG -ACGGAACTAAGCTACGTCGTTCAG -ACGGAACTAAGCTACGTCGCATAG -ACGGAACTAAGCTACGTCGACAAG -ACGGAACTAAGCTACGTCAAGCAG -ACGGAACTAAGCTACGTCCGTCAA -ACGGAACTAAGCTACGTCGCTGAA -ACGGAACTAAGCTACGTCAGTACG -ACGGAACTAAGCTACGTCATCCGA -ACGGAACTAAGCTACGTCATGGGA -ACGGAACTAAGCTACGTCGTGCAA -ACGGAACTAAGCTACGTCGAGGAA -ACGGAACTAAGCTACGTCCAGGTA -ACGGAACTAAGCTACGTCGACTCT -ACGGAACTAAGCTACGTCAGTCCT -ACGGAACTAAGCTACGTCTAAGCC -ACGGAACTAAGCTACGTCATAGCC -ACGGAACTAAGCTACGTCTAACCG -ACGGAACTAAGCTACGTCATGCCA -ACGGAACTAAGCTACACGGGAAAC -ACGGAACTAAGCTACACGAACACC -ACGGAACTAAGCTACACGATCGAG -ACGGAACTAAGCTACACGCTCCTT -ACGGAACTAAGCTACACGCCTGTT -ACGGAACTAAGCTACACGCGGTTT -ACGGAACTAAGCTACACGGTGGTT -ACGGAACTAAGCTACACGGCCTTT -ACGGAACTAAGCTACACGGGTCTT -ACGGAACTAAGCTACACGACGCTT -ACGGAACTAAGCTACACGAGCGTT -ACGGAACTAAGCTACACGTTCGTC -ACGGAACTAAGCTACACGTCTCTC -ACGGAACTAAGCTACACGTGGATC -ACGGAACTAAGCTACACGCACTTC -ACGGAACTAAGCTACACGGTACTC -ACGGAACTAAGCTACACGGATGTC -ACGGAACTAAGCTACACGACAGTC -ACGGAACTAAGCTACACGTTGCTG -ACGGAACTAAGCTACACGTCCATG -ACGGAACTAAGCTACACGTGTGTG -ACGGAACTAAGCTACACGCTAGTG -ACGGAACTAAGCTACACGCATCTG -ACGGAACTAAGCTACACGGAGTTG -ACGGAACTAAGCTACACGAGACTG -ACGGAACTAAGCTACACGTCGGTA -ACGGAACTAAGCTACACGTGCCTA -ACGGAACTAAGCTACACGCCACTA -ACGGAACTAAGCTACACGGGAGTA -ACGGAACTAAGCTACACGTCGTCT -ACGGAACTAAGCTACACGTGCACT -ACGGAACTAAGCTACACGCTGACT -ACGGAACTAAGCTACACGCAACCT -ACGGAACTAAGCTACACGGCTACT -ACGGAACTAAGCTACACGGGATCT -ACGGAACTAAGCTACACGAAGGCT -ACGGAACTAAGCTACACGTCAACC -ACGGAACTAAGCTACACGTGTTCC -ACGGAACTAAGCTACACGATTCCC -ACGGAACTAAGCTACACGTTCTCG -ACGGAACTAAGCTACACGTAGACG -ACGGAACTAAGCTACACGGTAACG -ACGGAACTAAGCTACACGACTTCG -ACGGAACTAAGCTACACGTACGCA -ACGGAACTAAGCTACACGCTTGCA -ACGGAACTAAGCTACACGCGAACA -ACGGAACTAAGCTACACGCAGTCA -ACGGAACTAAGCTACACGGATCCA -ACGGAACTAAGCTACACGACGACA -ACGGAACTAAGCTACACGAGCTCA -ACGGAACTAAGCTACACGTCACGT -ACGGAACTAAGCTACACGCGTAGT -ACGGAACTAAGCTACACGGTCAGT -ACGGAACTAAGCTACACGGAAGGT -ACGGAACTAAGCTACACGAACCGT -ACGGAACTAAGCTACACGTTGTGC -ACGGAACTAAGCTACACGCTAAGC -ACGGAACTAAGCTACACGACTAGC -ACGGAACTAAGCTACACGAGATGC -ACGGAACTAAGCTACACGTGAAGG -ACGGAACTAAGCTACACGCAATGG -ACGGAACTAAGCTACACGATGAGG -ACGGAACTAAGCTACACGAATGGG -ACGGAACTAAGCTACACGTCCTGA -ACGGAACTAAGCTACACGTAGCGA -ACGGAACTAAGCTACACGCACAGA -ACGGAACTAAGCTACACGGCAAGA -ACGGAACTAAGCTACACGGGTTGA -ACGGAACTAAGCTACACGTCCGAT -ACGGAACTAAGCTACACGTGGCAT -ACGGAACTAAGCTACACGCGAGAT -ACGGAACTAAGCTACACGTACCAC -ACGGAACTAAGCTACACGCAGAAC -ACGGAACTAAGCTACACGGTCTAC -ACGGAACTAAGCTACACGACGTAC -ACGGAACTAAGCTACACGAGTGAC -ACGGAACTAAGCTACACGCTGTAG -ACGGAACTAAGCTACACGCCTAAG -ACGGAACTAAGCTACACGGTTCAG -ACGGAACTAAGCTACACGGCATAG -ACGGAACTAAGCTACACGGACAAG -ACGGAACTAAGCTACACGAAGCAG -ACGGAACTAAGCTACACGCGTCAA -ACGGAACTAAGCTACACGGCTGAA -ACGGAACTAAGCTACACGAGTACG -ACGGAACTAAGCTACACGATCCGA -ACGGAACTAAGCTACACGATGGGA -ACGGAACTAAGCTACACGGTGCAA -ACGGAACTAAGCTACACGGAGGAA -ACGGAACTAAGCTACACGCAGGTA -ACGGAACTAAGCTACACGGACTCT -ACGGAACTAAGCTACACGAGTCCT -ACGGAACTAAGCTACACGTAAGCC -ACGGAACTAAGCTACACGATAGCC -ACGGAACTAAGCTACACGTAACCG -ACGGAACTAAGCTACACGATGCCA -ACGGAACTAAGCGACAGTGGAAAC -ACGGAACTAAGCGACAGTAACACC -ACGGAACTAAGCGACAGTATCGAG -ACGGAACTAAGCGACAGTCTCCTT -ACGGAACTAAGCGACAGTCCTGTT -ACGGAACTAAGCGACAGTCGGTTT -ACGGAACTAAGCGACAGTGTGGTT -ACGGAACTAAGCGACAGTGCCTTT -ACGGAACTAAGCGACAGTGGTCTT -ACGGAACTAAGCGACAGTACGCTT -ACGGAACTAAGCGACAGTAGCGTT -ACGGAACTAAGCGACAGTTTCGTC -ACGGAACTAAGCGACAGTTCTCTC -ACGGAACTAAGCGACAGTTGGATC -ACGGAACTAAGCGACAGTCACTTC -ACGGAACTAAGCGACAGTGTACTC -ACGGAACTAAGCGACAGTGATGTC -ACGGAACTAAGCGACAGTACAGTC -ACGGAACTAAGCGACAGTTTGCTG -ACGGAACTAAGCGACAGTTCCATG -ACGGAACTAAGCGACAGTTGTGTG -ACGGAACTAAGCGACAGTCTAGTG -ACGGAACTAAGCGACAGTCATCTG -ACGGAACTAAGCGACAGTGAGTTG -ACGGAACTAAGCGACAGTAGACTG -ACGGAACTAAGCGACAGTTCGGTA -ACGGAACTAAGCGACAGTTGCCTA -ACGGAACTAAGCGACAGTCCACTA -ACGGAACTAAGCGACAGTGGAGTA -ACGGAACTAAGCGACAGTTCGTCT -ACGGAACTAAGCGACAGTTGCACT -ACGGAACTAAGCGACAGTCTGACT -ACGGAACTAAGCGACAGTCAACCT -ACGGAACTAAGCGACAGTGCTACT -ACGGAACTAAGCGACAGTGGATCT -ACGGAACTAAGCGACAGTAAGGCT -ACGGAACTAAGCGACAGTTCAACC -ACGGAACTAAGCGACAGTTGTTCC -ACGGAACTAAGCGACAGTATTCCC -ACGGAACTAAGCGACAGTTTCTCG -ACGGAACTAAGCGACAGTTAGACG -ACGGAACTAAGCGACAGTGTAACG -ACGGAACTAAGCGACAGTACTTCG -ACGGAACTAAGCGACAGTTACGCA -ACGGAACTAAGCGACAGTCTTGCA -ACGGAACTAAGCGACAGTCGAACA -ACGGAACTAAGCGACAGTCAGTCA -ACGGAACTAAGCGACAGTGATCCA -ACGGAACTAAGCGACAGTACGACA -ACGGAACTAAGCGACAGTAGCTCA -ACGGAACTAAGCGACAGTTCACGT -ACGGAACTAAGCGACAGTCGTAGT -ACGGAACTAAGCGACAGTGTCAGT -ACGGAACTAAGCGACAGTGAAGGT -ACGGAACTAAGCGACAGTAACCGT -ACGGAACTAAGCGACAGTTTGTGC -ACGGAACTAAGCGACAGTCTAAGC -ACGGAACTAAGCGACAGTACTAGC -ACGGAACTAAGCGACAGTAGATGC -ACGGAACTAAGCGACAGTTGAAGG -ACGGAACTAAGCGACAGTCAATGG -ACGGAACTAAGCGACAGTATGAGG -ACGGAACTAAGCGACAGTAATGGG -ACGGAACTAAGCGACAGTTCCTGA -ACGGAACTAAGCGACAGTTAGCGA -ACGGAACTAAGCGACAGTCACAGA -ACGGAACTAAGCGACAGTGCAAGA -ACGGAACTAAGCGACAGTGGTTGA -ACGGAACTAAGCGACAGTTCCGAT -ACGGAACTAAGCGACAGTTGGCAT -ACGGAACTAAGCGACAGTCGAGAT -ACGGAACTAAGCGACAGTTACCAC -ACGGAACTAAGCGACAGTCAGAAC -ACGGAACTAAGCGACAGTGTCTAC -ACGGAACTAAGCGACAGTACGTAC -ACGGAACTAAGCGACAGTAGTGAC -ACGGAACTAAGCGACAGTCTGTAG -ACGGAACTAAGCGACAGTCCTAAG -ACGGAACTAAGCGACAGTGTTCAG -ACGGAACTAAGCGACAGTGCATAG -ACGGAACTAAGCGACAGTGACAAG -ACGGAACTAAGCGACAGTAAGCAG -ACGGAACTAAGCGACAGTCGTCAA -ACGGAACTAAGCGACAGTGCTGAA -ACGGAACTAAGCGACAGTAGTACG -ACGGAACTAAGCGACAGTATCCGA -ACGGAACTAAGCGACAGTATGGGA -ACGGAACTAAGCGACAGTGTGCAA -ACGGAACTAAGCGACAGTGAGGAA -ACGGAACTAAGCGACAGTCAGGTA -ACGGAACTAAGCGACAGTGACTCT -ACGGAACTAAGCGACAGTAGTCCT -ACGGAACTAAGCGACAGTTAAGCC -ACGGAACTAAGCGACAGTATAGCC -ACGGAACTAAGCGACAGTTAACCG -ACGGAACTAAGCGACAGTATGCCA -ACGGAACTAAGCTAGCTGGGAAAC -ACGGAACTAAGCTAGCTGAACACC -ACGGAACTAAGCTAGCTGATCGAG -ACGGAACTAAGCTAGCTGCTCCTT -ACGGAACTAAGCTAGCTGCCTGTT -ACGGAACTAAGCTAGCTGCGGTTT -ACGGAACTAAGCTAGCTGGTGGTT -ACGGAACTAAGCTAGCTGGCCTTT -ACGGAACTAAGCTAGCTGGGTCTT -ACGGAACTAAGCTAGCTGACGCTT -ACGGAACTAAGCTAGCTGAGCGTT -ACGGAACTAAGCTAGCTGTTCGTC -ACGGAACTAAGCTAGCTGTCTCTC -ACGGAACTAAGCTAGCTGTGGATC -ACGGAACTAAGCTAGCTGCACTTC -ACGGAACTAAGCTAGCTGGTACTC -ACGGAACTAAGCTAGCTGGATGTC -ACGGAACTAAGCTAGCTGACAGTC -ACGGAACTAAGCTAGCTGTTGCTG -ACGGAACTAAGCTAGCTGTCCATG -ACGGAACTAAGCTAGCTGTGTGTG -ACGGAACTAAGCTAGCTGCTAGTG -ACGGAACTAAGCTAGCTGCATCTG -ACGGAACTAAGCTAGCTGGAGTTG -ACGGAACTAAGCTAGCTGAGACTG -ACGGAACTAAGCTAGCTGTCGGTA -ACGGAACTAAGCTAGCTGTGCCTA -ACGGAACTAAGCTAGCTGCCACTA -ACGGAACTAAGCTAGCTGGGAGTA -ACGGAACTAAGCTAGCTGTCGTCT -ACGGAACTAAGCTAGCTGTGCACT -ACGGAACTAAGCTAGCTGCTGACT -ACGGAACTAAGCTAGCTGCAACCT -ACGGAACTAAGCTAGCTGGCTACT -ACGGAACTAAGCTAGCTGGGATCT -ACGGAACTAAGCTAGCTGAAGGCT -ACGGAACTAAGCTAGCTGTCAACC -ACGGAACTAAGCTAGCTGTGTTCC -ACGGAACTAAGCTAGCTGATTCCC -ACGGAACTAAGCTAGCTGTTCTCG -ACGGAACTAAGCTAGCTGTAGACG -ACGGAACTAAGCTAGCTGGTAACG -ACGGAACTAAGCTAGCTGACTTCG -ACGGAACTAAGCTAGCTGTACGCA -ACGGAACTAAGCTAGCTGCTTGCA -ACGGAACTAAGCTAGCTGCGAACA -ACGGAACTAAGCTAGCTGCAGTCA -ACGGAACTAAGCTAGCTGGATCCA -ACGGAACTAAGCTAGCTGACGACA -ACGGAACTAAGCTAGCTGAGCTCA -ACGGAACTAAGCTAGCTGTCACGT -ACGGAACTAAGCTAGCTGCGTAGT -ACGGAACTAAGCTAGCTGGTCAGT -ACGGAACTAAGCTAGCTGGAAGGT -ACGGAACTAAGCTAGCTGAACCGT -ACGGAACTAAGCTAGCTGTTGTGC -ACGGAACTAAGCTAGCTGCTAAGC -ACGGAACTAAGCTAGCTGACTAGC -ACGGAACTAAGCTAGCTGAGATGC -ACGGAACTAAGCTAGCTGTGAAGG -ACGGAACTAAGCTAGCTGCAATGG -ACGGAACTAAGCTAGCTGATGAGG -ACGGAACTAAGCTAGCTGAATGGG -ACGGAACTAAGCTAGCTGTCCTGA -ACGGAACTAAGCTAGCTGTAGCGA -ACGGAACTAAGCTAGCTGCACAGA -ACGGAACTAAGCTAGCTGGCAAGA -ACGGAACTAAGCTAGCTGGGTTGA -ACGGAACTAAGCTAGCTGTCCGAT -ACGGAACTAAGCTAGCTGTGGCAT -ACGGAACTAAGCTAGCTGCGAGAT -ACGGAACTAAGCTAGCTGTACCAC -ACGGAACTAAGCTAGCTGCAGAAC -ACGGAACTAAGCTAGCTGGTCTAC -ACGGAACTAAGCTAGCTGACGTAC -ACGGAACTAAGCTAGCTGAGTGAC -ACGGAACTAAGCTAGCTGCTGTAG -ACGGAACTAAGCTAGCTGCCTAAG -ACGGAACTAAGCTAGCTGGTTCAG -ACGGAACTAAGCTAGCTGGCATAG -ACGGAACTAAGCTAGCTGGACAAG -ACGGAACTAAGCTAGCTGAAGCAG -ACGGAACTAAGCTAGCTGCGTCAA -ACGGAACTAAGCTAGCTGGCTGAA -ACGGAACTAAGCTAGCTGAGTACG -ACGGAACTAAGCTAGCTGATCCGA -ACGGAACTAAGCTAGCTGATGGGA -ACGGAACTAAGCTAGCTGGTGCAA -ACGGAACTAAGCTAGCTGGAGGAA -ACGGAACTAAGCTAGCTGCAGGTA -ACGGAACTAAGCTAGCTGGACTCT -ACGGAACTAAGCTAGCTGAGTCCT -ACGGAACTAAGCTAGCTGTAAGCC -ACGGAACTAAGCTAGCTGATAGCC -ACGGAACTAAGCTAGCTGTAACCG -ACGGAACTAAGCTAGCTGATGCCA -ACGGAACTAAGCAAGCCTGGAAAC -ACGGAACTAAGCAAGCCTAACACC -ACGGAACTAAGCAAGCCTATCGAG -ACGGAACTAAGCAAGCCTCTCCTT -ACGGAACTAAGCAAGCCTCCTGTT -ACGGAACTAAGCAAGCCTCGGTTT -ACGGAACTAAGCAAGCCTGTGGTT -ACGGAACTAAGCAAGCCTGCCTTT -ACGGAACTAAGCAAGCCTGGTCTT -ACGGAACTAAGCAAGCCTACGCTT -ACGGAACTAAGCAAGCCTAGCGTT -ACGGAACTAAGCAAGCCTTTCGTC -ACGGAACTAAGCAAGCCTTCTCTC -ACGGAACTAAGCAAGCCTTGGATC -ACGGAACTAAGCAAGCCTCACTTC -ACGGAACTAAGCAAGCCTGTACTC -ACGGAACTAAGCAAGCCTGATGTC -ACGGAACTAAGCAAGCCTACAGTC -ACGGAACTAAGCAAGCCTTTGCTG -ACGGAACTAAGCAAGCCTTCCATG -ACGGAACTAAGCAAGCCTTGTGTG -ACGGAACTAAGCAAGCCTCTAGTG -ACGGAACTAAGCAAGCCTCATCTG -ACGGAACTAAGCAAGCCTGAGTTG -ACGGAACTAAGCAAGCCTAGACTG -ACGGAACTAAGCAAGCCTTCGGTA -ACGGAACTAAGCAAGCCTTGCCTA -ACGGAACTAAGCAAGCCTCCACTA -ACGGAACTAAGCAAGCCTGGAGTA -ACGGAACTAAGCAAGCCTTCGTCT -ACGGAACTAAGCAAGCCTTGCACT -ACGGAACTAAGCAAGCCTCTGACT -ACGGAACTAAGCAAGCCTCAACCT -ACGGAACTAAGCAAGCCTGCTACT -ACGGAACTAAGCAAGCCTGGATCT -ACGGAACTAAGCAAGCCTAAGGCT -ACGGAACTAAGCAAGCCTTCAACC -ACGGAACTAAGCAAGCCTTGTTCC -ACGGAACTAAGCAAGCCTATTCCC -ACGGAACTAAGCAAGCCTTTCTCG -ACGGAACTAAGCAAGCCTTAGACG -ACGGAACTAAGCAAGCCTGTAACG -ACGGAACTAAGCAAGCCTACTTCG -ACGGAACTAAGCAAGCCTTACGCA -ACGGAACTAAGCAAGCCTCTTGCA -ACGGAACTAAGCAAGCCTCGAACA -ACGGAACTAAGCAAGCCTCAGTCA -ACGGAACTAAGCAAGCCTGATCCA -ACGGAACTAAGCAAGCCTACGACA -ACGGAACTAAGCAAGCCTAGCTCA -ACGGAACTAAGCAAGCCTTCACGT -ACGGAACTAAGCAAGCCTCGTAGT -ACGGAACTAAGCAAGCCTGTCAGT -ACGGAACTAAGCAAGCCTGAAGGT -ACGGAACTAAGCAAGCCTAACCGT -ACGGAACTAAGCAAGCCTTTGTGC -ACGGAACTAAGCAAGCCTCTAAGC -ACGGAACTAAGCAAGCCTACTAGC -ACGGAACTAAGCAAGCCTAGATGC -ACGGAACTAAGCAAGCCTTGAAGG -ACGGAACTAAGCAAGCCTCAATGG -ACGGAACTAAGCAAGCCTATGAGG -ACGGAACTAAGCAAGCCTAATGGG -ACGGAACTAAGCAAGCCTTCCTGA -ACGGAACTAAGCAAGCCTTAGCGA -ACGGAACTAAGCAAGCCTCACAGA -ACGGAACTAAGCAAGCCTGCAAGA -ACGGAACTAAGCAAGCCTGGTTGA -ACGGAACTAAGCAAGCCTTCCGAT -ACGGAACTAAGCAAGCCTTGGCAT -ACGGAACTAAGCAAGCCTCGAGAT -ACGGAACTAAGCAAGCCTTACCAC -ACGGAACTAAGCAAGCCTCAGAAC -ACGGAACTAAGCAAGCCTGTCTAC -ACGGAACTAAGCAAGCCTACGTAC -ACGGAACTAAGCAAGCCTAGTGAC -ACGGAACTAAGCAAGCCTCTGTAG -ACGGAACTAAGCAAGCCTCCTAAG -ACGGAACTAAGCAAGCCTGTTCAG -ACGGAACTAAGCAAGCCTGCATAG -ACGGAACTAAGCAAGCCTGACAAG -ACGGAACTAAGCAAGCCTAAGCAG -ACGGAACTAAGCAAGCCTCGTCAA -ACGGAACTAAGCAAGCCTGCTGAA -ACGGAACTAAGCAAGCCTAGTACG -ACGGAACTAAGCAAGCCTATCCGA -ACGGAACTAAGCAAGCCTATGGGA -ACGGAACTAAGCAAGCCTGTGCAA -ACGGAACTAAGCAAGCCTGAGGAA -ACGGAACTAAGCAAGCCTCAGGTA -ACGGAACTAAGCAAGCCTGACTCT -ACGGAACTAAGCAAGCCTAGTCCT -ACGGAACTAAGCAAGCCTTAAGCC -ACGGAACTAAGCAAGCCTATAGCC -ACGGAACTAAGCAAGCCTTAACCG -ACGGAACTAAGCAAGCCTATGCCA -ACGGAACTAAGCCAGGTTGGAAAC -ACGGAACTAAGCCAGGTTAACACC -ACGGAACTAAGCCAGGTTATCGAG -ACGGAACTAAGCCAGGTTCTCCTT -ACGGAACTAAGCCAGGTTCCTGTT -ACGGAACTAAGCCAGGTTCGGTTT -ACGGAACTAAGCCAGGTTGTGGTT -ACGGAACTAAGCCAGGTTGCCTTT -ACGGAACTAAGCCAGGTTGGTCTT -ACGGAACTAAGCCAGGTTACGCTT -ACGGAACTAAGCCAGGTTAGCGTT -ACGGAACTAAGCCAGGTTTTCGTC -ACGGAACTAAGCCAGGTTTCTCTC -ACGGAACTAAGCCAGGTTTGGATC -ACGGAACTAAGCCAGGTTCACTTC -ACGGAACTAAGCCAGGTTGTACTC -ACGGAACTAAGCCAGGTTGATGTC -ACGGAACTAAGCCAGGTTACAGTC -ACGGAACTAAGCCAGGTTTTGCTG -ACGGAACTAAGCCAGGTTTCCATG -ACGGAACTAAGCCAGGTTTGTGTG -ACGGAACTAAGCCAGGTTCTAGTG -ACGGAACTAAGCCAGGTTCATCTG -ACGGAACTAAGCCAGGTTGAGTTG -ACGGAACTAAGCCAGGTTAGACTG -ACGGAACTAAGCCAGGTTTCGGTA -ACGGAACTAAGCCAGGTTTGCCTA -ACGGAACTAAGCCAGGTTCCACTA -ACGGAACTAAGCCAGGTTGGAGTA -ACGGAACTAAGCCAGGTTTCGTCT -ACGGAACTAAGCCAGGTTTGCACT -ACGGAACTAAGCCAGGTTCTGACT -ACGGAACTAAGCCAGGTTCAACCT -ACGGAACTAAGCCAGGTTGCTACT -ACGGAACTAAGCCAGGTTGGATCT -ACGGAACTAAGCCAGGTTAAGGCT -ACGGAACTAAGCCAGGTTTCAACC -ACGGAACTAAGCCAGGTTTGTTCC -ACGGAACTAAGCCAGGTTATTCCC -ACGGAACTAAGCCAGGTTTTCTCG -ACGGAACTAAGCCAGGTTTAGACG -ACGGAACTAAGCCAGGTTGTAACG -ACGGAACTAAGCCAGGTTACTTCG -ACGGAACTAAGCCAGGTTTACGCA -ACGGAACTAAGCCAGGTTCTTGCA -ACGGAACTAAGCCAGGTTCGAACA -ACGGAACTAAGCCAGGTTCAGTCA -ACGGAACTAAGCCAGGTTGATCCA -ACGGAACTAAGCCAGGTTACGACA -ACGGAACTAAGCCAGGTTAGCTCA -ACGGAACTAAGCCAGGTTTCACGT -ACGGAACTAAGCCAGGTTCGTAGT -ACGGAACTAAGCCAGGTTGTCAGT -ACGGAACTAAGCCAGGTTGAAGGT -ACGGAACTAAGCCAGGTTAACCGT -ACGGAACTAAGCCAGGTTTTGTGC -ACGGAACTAAGCCAGGTTCTAAGC -ACGGAACTAAGCCAGGTTACTAGC -ACGGAACTAAGCCAGGTTAGATGC -ACGGAACTAAGCCAGGTTTGAAGG -ACGGAACTAAGCCAGGTTCAATGG -ACGGAACTAAGCCAGGTTATGAGG -ACGGAACTAAGCCAGGTTAATGGG -ACGGAACTAAGCCAGGTTTCCTGA -ACGGAACTAAGCCAGGTTTAGCGA -ACGGAACTAAGCCAGGTTCACAGA -ACGGAACTAAGCCAGGTTGCAAGA -ACGGAACTAAGCCAGGTTGGTTGA -ACGGAACTAAGCCAGGTTTCCGAT -ACGGAACTAAGCCAGGTTTGGCAT -ACGGAACTAAGCCAGGTTCGAGAT -ACGGAACTAAGCCAGGTTTACCAC -ACGGAACTAAGCCAGGTTCAGAAC -ACGGAACTAAGCCAGGTTGTCTAC -ACGGAACTAAGCCAGGTTACGTAC -ACGGAACTAAGCCAGGTTAGTGAC -ACGGAACTAAGCCAGGTTCTGTAG -ACGGAACTAAGCCAGGTTCCTAAG -ACGGAACTAAGCCAGGTTGTTCAG -ACGGAACTAAGCCAGGTTGCATAG -ACGGAACTAAGCCAGGTTGACAAG -ACGGAACTAAGCCAGGTTAAGCAG -ACGGAACTAAGCCAGGTTCGTCAA -ACGGAACTAAGCCAGGTTGCTGAA -ACGGAACTAAGCCAGGTTAGTACG -ACGGAACTAAGCCAGGTTATCCGA -ACGGAACTAAGCCAGGTTATGGGA -ACGGAACTAAGCCAGGTTGTGCAA -ACGGAACTAAGCCAGGTTGAGGAA -ACGGAACTAAGCCAGGTTCAGGTA -ACGGAACTAAGCCAGGTTGACTCT -ACGGAACTAAGCCAGGTTAGTCCT -ACGGAACTAAGCCAGGTTTAAGCC -ACGGAACTAAGCCAGGTTATAGCC -ACGGAACTAAGCCAGGTTTAACCG -ACGGAACTAAGCCAGGTTATGCCA -ACGGAACTAAGCTAGGCAGGAAAC -ACGGAACTAAGCTAGGCAAACACC -ACGGAACTAAGCTAGGCAATCGAG -ACGGAACTAAGCTAGGCACTCCTT -ACGGAACTAAGCTAGGCACCTGTT -ACGGAACTAAGCTAGGCACGGTTT -ACGGAACTAAGCTAGGCAGTGGTT -ACGGAACTAAGCTAGGCAGCCTTT -ACGGAACTAAGCTAGGCAGGTCTT -ACGGAACTAAGCTAGGCAACGCTT -ACGGAACTAAGCTAGGCAAGCGTT -ACGGAACTAAGCTAGGCATTCGTC -ACGGAACTAAGCTAGGCATCTCTC -ACGGAACTAAGCTAGGCATGGATC -ACGGAACTAAGCTAGGCACACTTC -ACGGAACTAAGCTAGGCAGTACTC -ACGGAACTAAGCTAGGCAGATGTC -ACGGAACTAAGCTAGGCAACAGTC -ACGGAACTAAGCTAGGCATTGCTG -ACGGAACTAAGCTAGGCATCCATG -ACGGAACTAAGCTAGGCATGTGTG -ACGGAACTAAGCTAGGCACTAGTG -ACGGAACTAAGCTAGGCACATCTG -ACGGAACTAAGCTAGGCAGAGTTG -ACGGAACTAAGCTAGGCAAGACTG -ACGGAACTAAGCTAGGCATCGGTA -ACGGAACTAAGCTAGGCATGCCTA -ACGGAACTAAGCTAGGCACCACTA -ACGGAACTAAGCTAGGCAGGAGTA -ACGGAACTAAGCTAGGCATCGTCT -ACGGAACTAAGCTAGGCATGCACT -ACGGAACTAAGCTAGGCACTGACT -ACGGAACTAAGCTAGGCACAACCT -ACGGAACTAAGCTAGGCAGCTACT -ACGGAACTAAGCTAGGCAGGATCT -ACGGAACTAAGCTAGGCAAAGGCT -ACGGAACTAAGCTAGGCATCAACC -ACGGAACTAAGCTAGGCATGTTCC -ACGGAACTAAGCTAGGCAATTCCC -ACGGAACTAAGCTAGGCATTCTCG -ACGGAACTAAGCTAGGCATAGACG -ACGGAACTAAGCTAGGCAGTAACG -ACGGAACTAAGCTAGGCAACTTCG -ACGGAACTAAGCTAGGCATACGCA -ACGGAACTAAGCTAGGCACTTGCA -ACGGAACTAAGCTAGGCACGAACA -ACGGAACTAAGCTAGGCACAGTCA -ACGGAACTAAGCTAGGCAGATCCA -ACGGAACTAAGCTAGGCAACGACA -ACGGAACTAAGCTAGGCAAGCTCA -ACGGAACTAAGCTAGGCATCACGT -ACGGAACTAAGCTAGGCACGTAGT -ACGGAACTAAGCTAGGCAGTCAGT -ACGGAACTAAGCTAGGCAGAAGGT -ACGGAACTAAGCTAGGCAAACCGT -ACGGAACTAAGCTAGGCATTGTGC -ACGGAACTAAGCTAGGCACTAAGC -ACGGAACTAAGCTAGGCAACTAGC -ACGGAACTAAGCTAGGCAAGATGC -ACGGAACTAAGCTAGGCATGAAGG -ACGGAACTAAGCTAGGCACAATGG -ACGGAACTAAGCTAGGCAATGAGG -ACGGAACTAAGCTAGGCAAATGGG -ACGGAACTAAGCTAGGCATCCTGA -ACGGAACTAAGCTAGGCATAGCGA -ACGGAACTAAGCTAGGCACACAGA -ACGGAACTAAGCTAGGCAGCAAGA -ACGGAACTAAGCTAGGCAGGTTGA -ACGGAACTAAGCTAGGCATCCGAT -ACGGAACTAAGCTAGGCATGGCAT -ACGGAACTAAGCTAGGCACGAGAT -ACGGAACTAAGCTAGGCATACCAC -ACGGAACTAAGCTAGGCACAGAAC -ACGGAACTAAGCTAGGCAGTCTAC -ACGGAACTAAGCTAGGCAACGTAC -ACGGAACTAAGCTAGGCAAGTGAC -ACGGAACTAAGCTAGGCACTGTAG -ACGGAACTAAGCTAGGCACCTAAG -ACGGAACTAAGCTAGGCAGTTCAG -ACGGAACTAAGCTAGGCAGCATAG -ACGGAACTAAGCTAGGCAGACAAG -ACGGAACTAAGCTAGGCAAAGCAG -ACGGAACTAAGCTAGGCACGTCAA -ACGGAACTAAGCTAGGCAGCTGAA -ACGGAACTAAGCTAGGCAAGTACG -ACGGAACTAAGCTAGGCAATCCGA -ACGGAACTAAGCTAGGCAATGGGA -ACGGAACTAAGCTAGGCAGTGCAA -ACGGAACTAAGCTAGGCAGAGGAA -ACGGAACTAAGCTAGGCACAGGTA -ACGGAACTAAGCTAGGCAGACTCT -ACGGAACTAAGCTAGGCAAGTCCT -ACGGAACTAAGCTAGGCATAAGCC -ACGGAACTAAGCTAGGCAATAGCC -ACGGAACTAAGCTAGGCATAACCG -ACGGAACTAAGCTAGGCAATGCCA -ACGGAACTAAGCAAGGACGGAAAC -ACGGAACTAAGCAAGGACAACACC -ACGGAACTAAGCAAGGACATCGAG -ACGGAACTAAGCAAGGACCTCCTT -ACGGAACTAAGCAAGGACCCTGTT -ACGGAACTAAGCAAGGACCGGTTT -ACGGAACTAAGCAAGGACGTGGTT -ACGGAACTAAGCAAGGACGCCTTT -ACGGAACTAAGCAAGGACGGTCTT -ACGGAACTAAGCAAGGACACGCTT -ACGGAACTAAGCAAGGACAGCGTT -ACGGAACTAAGCAAGGACTTCGTC -ACGGAACTAAGCAAGGACTCTCTC -ACGGAACTAAGCAAGGACTGGATC -ACGGAACTAAGCAAGGACCACTTC -ACGGAACTAAGCAAGGACGTACTC -ACGGAACTAAGCAAGGACGATGTC -ACGGAACTAAGCAAGGACACAGTC -ACGGAACTAAGCAAGGACTTGCTG -ACGGAACTAAGCAAGGACTCCATG -ACGGAACTAAGCAAGGACTGTGTG -ACGGAACTAAGCAAGGACCTAGTG -ACGGAACTAAGCAAGGACCATCTG -ACGGAACTAAGCAAGGACGAGTTG -ACGGAACTAAGCAAGGACAGACTG -ACGGAACTAAGCAAGGACTCGGTA -ACGGAACTAAGCAAGGACTGCCTA -ACGGAACTAAGCAAGGACCCACTA -ACGGAACTAAGCAAGGACGGAGTA -ACGGAACTAAGCAAGGACTCGTCT -ACGGAACTAAGCAAGGACTGCACT -ACGGAACTAAGCAAGGACCTGACT -ACGGAACTAAGCAAGGACCAACCT -ACGGAACTAAGCAAGGACGCTACT -ACGGAACTAAGCAAGGACGGATCT -ACGGAACTAAGCAAGGACAAGGCT -ACGGAACTAAGCAAGGACTCAACC -ACGGAACTAAGCAAGGACTGTTCC -ACGGAACTAAGCAAGGACATTCCC -ACGGAACTAAGCAAGGACTTCTCG -ACGGAACTAAGCAAGGACTAGACG -ACGGAACTAAGCAAGGACGTAACG -ACGGAACTAAGCAAGGACACTTCG -ACGGAACTAAGCAAGGACTACGCA -ACGGAACTAAGCAAGGACCTTGCA -ACGGAACTAAGCAAGGACCGAACA -ACGGAACTAAGCAAGGACCAGTCA -ACGGAACTAAGCAAGGACGATCCA -ACGGAACTAAGCAAGGACACGACA -ACGGAACTAAGCAAGGACAGCTCA -ACGGAACTAAGCAAGGACTCACGT -ACGGAACTAAGCAAGGACCGTAGT -ACGGAACTAAGCAAGGACGTCAGT -ACGGAACTAAGCAAGGACGAAGGT -ACGGAACTAAGCAAGGACAACCGT -ACGGAACTAAGCAAGGACTTGTGC -ACGGAACTAAGCAAGGACCTAAGC -ACGGAACTAAGCAAGGACACTAGC -ACGGAACTAAGCAAGGACAGATGC -ACGGAACTAAGCAAGGACTGAAGG -ACGGAACTAAGCAAGGACCAATGG -ACGGAACTAAGCAAGGACATGAGG -ACGGAACTAAGCAAGGACAATGGG -ACGGAACTAAGCAAGGACTCCTGA -ACGGAACTAAGCAAGGACTAGCGA -ACGGAACTAAGCAAGGACCACAGA -ACGGAACTAAGCAAGGACGCAAGA -ACGGAACTAAGCAAGGACGGTTGA -ACGGAACTAAGCAAGGACTCCGAT -ACGGAACTAAGCAAGGACTGGCAT -ACGGAACTAAGCAAGGACCGAGAT -ACGGAACTAAGCAAGGACTACCAC -ACGGAACTAAGCAAGGACCAGAAC -ACGGAACTAAGCAAGGACGTCTAC -ACGGAACTAAGCAAGGACACGTAC -ACGGAACTAAGCAAGGACAGTGAC -ACGGAACTAAGCAAGGACCTGTAG -ACGGAACTAAGCAAGGACCCTAAG -ACGGAACTAAGCAAGGACGTTCAG -ACGGAACTAAGCAAGGACGCATAG -ACGGAACTAAGCAAGGACGACAAG -ACGGAACTAAGCAAGGACAAGCAG -ACGGAACTAAGCAAGGACCGTCAA -ACGGAACTAAGCAAGGACGCTGAA -ACGGAACTAAGCAAGGACAGTACG -ACGGAACTAAGCAAGGACATCCGA -ACGGAACTAAGCAAGGACATGGGA -ACGGAACTAAGCAAGGACGTGCAA -ACGGAACTAAGCAAGGACGAGGAA -ACGGAACTAAGCAAGGACCAGGTA -ACGGAACTAAGCAAGGACGACTCT -ACGGAACTAAGCAAGGACAGTCCT -ACGGAACTAAGCAAGGACTAAGCC -ACGGAACTAAGCAAGGACATAGCC -ACGGAACTAAGCAAGGACTAACCG -ACGGAACTAAGCAAGGACATGCCA -ACGGAACTAAGCCAGAAGGGAAAC -ACGGAACTAAGCCAGAAGAACACC -ACGGAACTAAGCCAGAAGATCGAG -ACGGAACTAAGCCAGAAGCTCCTT -ACGGAACTAAGCCAGAAGCCTGTT -ACGGAACTAAGCCAGAAGCGGTTT -ACGGAACTAAGCCAGAAGGTGGTT -ACGGAACTAAGCCAGAAGGCCTTT -ACGGAACTAAGCCAGAAGGGTCTT -ACGGAACTAAGCCAGAAGACGCTT -ACGGAACTAAGCCAGAAGAGCGTT -ACGGAACTAAGCCAGAAGTTCGTC -ACGGAACTAAGCCAGAAGTCTCTC -ACGGAACTAAGCCAGAAGTGGATC -ACGGAACTAAGCCAGAAGCACTTC -ACGGAACTAAGCCAGAAGGTACTC -ACGGAACTAAGCCAGAAGGATGTC -ACGGAACTAAGCCAGAAGACAGTC -ACGGAACTAAGCCAGAAGTTGCTG -ACGGAACTAAGCCAGAAGTCCATG -ACGGAACTAAGCCAGAAGTGTGTG -ACGGAACTAAGCCAGAAGCTAGTG -ACGGAACTAAGCCAGAAGCATCTG -ACGGAACTAAGCCAGAAGGAGTTG -ACGGAACTAAGCCAGAAGAGACTG -ACGGAACTAAGCCAGAAGTCGGTA -ACGGAACTAAGCCAGAAGTGCCTA -ACGGAACTAAGCCAGAAGCCACTA -ACGGAACTAAGCCAGAAGGGAGTA -ACGGAACTAAGCCAGAAGTCGTCT -ACGGAACTAAGCCAGAAGTGCACT -ACGGAACTAAGCCAGAAGCTGACT -ACGGAACTAAGCCAGAAGCAACCT -ACGGAACTAAGCCAGAAGGCTACT -ACGGAACTAAGCCAGAAGGGATCT -ACGGAACTAAGCCAGAAGAAGGCT -ACGGAACTAAGCCAGAAGTCAACC -ACGGAACTAAGCCAGAAGTGTTCC -ACGGAACTAAGCCAGAAGATTCCC -ACGGAACTAAGCCAGAAGTTCTCG -ACGGAACTAAGCCAGAAGTAGACG -ACGGAACTAAGCCAGAAGGTAACG -ACGGAACTAAGCCAGAAGACTTCG -ACGGAACTAAGCCAGAAGTACGCA -ACGGAACTAAGCCAGAAGCTTGCA -ACGGAACTAAGCCAGAAGCGAACA -ACGGAACTAAGCCAGAAGCAGTCA -ACGGAACTAAGCCAGAAGGATCCA -ACGGAACTAAGCCAGAAGACGACA -ACGGAACTAAGCCAGAAGAGCTCA -ACGGAACTAAGCCAGAAGTCACGT -ACGGAACTAAGCCAGAAGCGTAGT -ACGGAACTAAGCCAGAAGGTCAGT -ACGGAACTAAGCCAGAAGGAAGGT -ACGGAACTAAGCCAGAAGAACCGT -ACGGAACTAAGCCAGAAGTTGTGC -ACGGAACTAAGCCAGAAGCTAAGC -ACGGAACTAAGCCAGAAGACTAGC -ACGGAACTAAGCCAGAAGAGATGC -ACGGAACTAAGCCAGAAGTGAAGG -ACGGAACTAAGCCAGAAGCAATGG -ACGGAACTAAGCCAGAAGATGAGG -ACGGAACTAAGCCAGAAGAATGGG -ACGGAACTAAGCCAGAAGTCCTGA -ACGGAACTAAGCCAGAAGTAGCGA -ACGGAACTAAGCCAGAAGCACAGA -ACGGAACTAAGCCAGAAGGCAAGA -ACGGAACTAAGCCAGAAGGGTTGA -ACGGAACTAAGCCAGAAGTCCGAT -ACGGAACTAAGCCAGAAGTGGCAT -ACGGAACTAAGCCAGAAGCGAGAT -ACGGAACTAAGCCAGAAGTACCAC -ACGGAACTAAGCCAGAAGCAGAAC -ACGGAACTAAGCCAGAAGGTCTAC -ACGGAACTAAGCCAGAAGACGTAC -ACGGAACTAAGCCAGAAGAGTGAC -ACGGAACTAAGCCAGAAGCTGTAG -ACGGAACTAAGCCAGAAGCCTAAG -ACGGAACTAAGCCAGAAGGTTCAG -ACGGAACTAAGCCAGAAGGCATAG -ACGGAACTAAGCCAGAAGGACAAG -ACGGAACTAAGCCAGAAGAAGCAG -ACGGAACTAAGCCAGAAGCGTCAA -ACGGAACTAAGCCAGAAGGCTGAA -ACGGAACTAAGCCAGAAGAGTACG -ACGGAACTAAGCCAGAAGATCCGA -ACGGAACTAAGCCAGAAGATGGGA -ACGGAACTAAGCCAGAAGGTGCAA -ACGGAACTAAGCCAGAAGGAGGAA -ACGGAACTAAGCCAGAAGCAGGTA -ACGGAACTAAGCCAGAAGGACTCT -ACGGAACTAAGCCAGAAGAGTCCT -ACGGAACTAAGCCAGAAGTAAGCC -ACGGAACTAAGCCAGAAGATAGCC -ACGGAACTAAGCCAGAAGTAACCG -ACGGAACTAAGCCAGAAGATGCCA -ACGGAACTAAGCCAACGTGGAAAC -ACGGAACTAAGCCAACGTAACACC -ACGGAACTAAGCCAACGTATCGAG -ACGGAACTAAGCCAACGTCTCCTT -ACGGAACTAAGCCAACGTCCTGTT -ACGGAACTAAGCCAACGTCGGTTT -ACGGAACTAAGCCAACGTGTGGTT -ACGGAACTAAGCCAACGTGCCTTT -ACGGAACTAAGCCAACGTGGTCTT -ACGGAACTAAGCCAACGTACGCTT -ACGGAACTAAGCCAACGTAGCGTT -ACGGAACTAAGCCAACGTTTCGTC -ACGGAACTAAGCCAACGTTCTCTC -ACGGAACTAAGCCAACGTTGGATC -ACGGAACTAAGCCAACGTCACTTC -ACGGAACTAAGCCAACGTGTACTC -ACGGAACTAAGCCAACGTGATGTC -ACGGAACTAAGCCAACGTACAGTC -ACGGAACTAAGCCAACGTTTGCTG -ACGGAACTAAGCCAACGTTCCATG -ACGGAACTAAGCCAACGTTGTGTG -ACGGAACTAAGCCAACGTCTAGTG -ACGGAACTAAGCCAACGTCATCTG -ACGGAACTAAGCCAACGTGAGTTG -ACGGAACTAAGCCAACGTAGACTG -ACGGAACTAAGCCAACGTTCGGTA -ACGGAACTAAGCCAACGTTGCCTA -ACGGAACTAAGCCAACGTCCACTA -ACGGAACTAAGCCAACGTGGAGTA -ACGGAACTAAGCCAACGTTCGTCT -ACGGAACTAAGCCAACGTTGCACT -ACGGAACTAAGCCAACGTCTGACT -ACGGAACTAAGCCAACGTCAACCT -ACGGAACTAAGCCAACGTGCTACT -ACGGAACTAAGCCAACGTGGATCT -ACGGAACTAAGCCAACGTAAGGCT -ACGGAACTAAGCCAACGTTCAACC -ACGGAACTAAGCCAACGTTGTTCC -ACGGAACTAAGCCAACGTATTCCC -ACGGAACTAAGCCAACGTTTCTCG -ACGGAACTAAGCCAACGTTAGACG -ACGGAACTAAGCCAACGTGTAACG -ACGGAACTAAGCCAACGTACTTCG -ACGGAACTAAGCCAACGTTACGCA -ACGGAACTAAGCCAACGTCTTGCA -ACGGAACTAAGCCAACGTCGAACA -ACGGAACTAAGCCAACGTCAGTCA -ACGGAACTAAGCCAACGTGATCCA -ACGGAACTAAGCCAACGTACGACA -ACGGAACTAAGCCAACGTAGCTCA -ACGGAACTAAGCCAACGTTCACGT -ACGGAACTAAGCCAACGTCGTAGT -ACGGAACTAAGCCAACGTGTCAGT -ACGGAACTAAGCCAACGTGAAGGT -ACGGAACTAAGCCAACGTAACCGT -ACGGAACTAAGCCAACGTTTGTGC -ACGGAACTAAGCCAACGTCTAAGC -ACGGAACTAAGCCAACGTACTAGC -ACGGAACTAAGCCAACGTAGATGC -ACGGAACTAAGCCAACGTTGAAGG -ACGGAACTAAGCCAACGTCAATGG -ACGGAACTAAGCCAACGTATGAGG -ACGGAACTAAGCCAACGTAATGGG -ACGGAACTAAGCCAACGTTCCTGA -ACGGAACTAAGCCAACGTTAGCGA -ACGGAACTAAGCCAACGTCACAGA -ACGGAACTAAGCCAACGTGCAAGA -ACGGAACTAAGCCAACGTGGTTGA -ACGGAACTAAGCCAACGTTCCGAT -ACGGAACTAAGCCAACGTTGGCAT -ACGGAACTAAGCCAACGTCGAGAT -ACGGAACTAAGCCAACGTTACCAC -ACGGAACTAAGCCAACGTCAGAAC -ACGGAACTAAGCCAACGTGTCTAC -ACGGAACTAAGCCAACGTACGTAC -ACGGAACTAAGCCAACGTAGTGAC -ACGGAACTAAGCCAACGTCTGTAG -ACGGAACTAAGCCAACGTCCTAAG -ACGGAACTAAGCCAACGTGTTCAG -ACGGAACTAAGCCAACGTGCATAG -ACGGAACTAAGCCAACGTGACAAG -ACGGAACTAAGCCAACGTAAGCAG -ACGGAACTAAGCCAACGTCGTCAA -ACGGAACTAAGCCAACGTGCTGAA -ACGGAACTAAGCCAACGTAGTACG -ACGGAACTAAGCCAACGTATCCGA -ACGGAACTAAGCCAACGTATGGGA -ACGGAACTAAGCCAACGTGTGCAA -ACGGAACTAAGCCAACGTGAGGAA -ACGGAACTAAGCCAACGTCAGGTA -ACGGAACTAAGCCAACGTGACTCT -ACGGAACTAAGCCAACGTAGTCCT -ACGGAACTAAGCCAACGTTAAGCC -ACGGAACTAAGCCAACGTATAGCC -ACGGAACTAAGCCAACGTTAACCG -ACGGAACTAAGCCAACGTATGCCA -ACGGAACTAAGCGAAGCTGGAAAC -ACGGAACTAAGCGAAGCTAACACC -ACGGAACTAAGCGAAGCTATCGAG -ACGGAACTAAGCGAAGCTCTCCTT -ACGGAACTAAGCGAAGCTCCTGTT -ACGGAACTAAGCGAAGCTCGGTTT -ACGGAACTAAGCGAAGCTGTGGTT -ACGGAACTAAGCGAAGCTGCCTTT -ACGGAACTAAGCGAAGCTGGTCTT -ACGGAACTAAGCGAAGCTACGCTT -ACGGAACTAAGCGAAGCTAGCGTT -ACGGAACTAAGCGAAGCTTTCGTC -ACGGAACTAAGCGAAGCTTCTCTC -ACGGAACTAAGCGAAGCTTGGATC -ACGGAACTAAGCGAAGCTCACTTC -ACGGAACTAAGCGAAGCTGTACTC -ACGGAACTAAGCGAAGCTGATGTC -ACGGAACTAAGCGAAGCTACAGTC -ACGGAACTAAGCGAAGCTTTGCTG -ACGGAACTAAGCGAAGCTTCCATG -ACGGAACTAAGCGAAGCTTGTGTG -ACGGAACTAAGCGAAGCTCTAGTG -ACGGAACTAAGCGAAGCTCATCTG -ACGGAACTAAGCGAAGCTGAGTTG -ACGGAACTAAGCGAAGCTAGACTG -ACGGAACTAAGCGAAGCTTCGGTA -ACGGAACTAAGCGAAGCTTGCCTA -ACGGAACTAAGCGAAGCTCCACTA -ACGGAACTAAGCGAAGCTGGAGTA -ACGGAACTAAGCGAAGCTTCGTCT -ACGGAACTAAGCGAAGCTTGCACT -ACGGAACTAAGCGAAGCTCTGACT -ACGGAACTAAGCGAAGCTCAACCT -ACGGAACTAAGCGAAGCTGCTACT -ACGGAACTAAGCGAAGCTGGATCT -ACGGAACTAAGCGAAGCTAAGGCT -ACGGAACTAAGCGAAGCTTCAACC -ACGGAACTAAGCGAAGCTTGTTCC -ACGGAACTAAGCGAAGCTATTCCC -ACGGAACTAAGCGAAGCTTTCTCG -ACGGAACTAAGCGAAGCTTAGACG -ACGGAACTAAGCGAAGCTGTAACG -ACGGAACTAAGCGAAGCTACTTCG -ACGGAACTAAGCGAAGCTTACGCA -ACGGAACTAAGCGAAGCTCTTGCA -ACGGAACTAAGCGAAGCTCGAACA -ACGGAACTAAGCGAAGCTCAGTCA -ACGGAACTAAGCGAAGCTGATCCA -ACGGAACTAAGCGAAGCTACGACA -ACGGAACTAAGCGAAGCTAGCTCA -ACGGAACTAAGCGAAGCTTCACGT -ACGGAACTAAGCGAAGCTCGTAGT -ACGGAACTAAGCGAAGCTGTCAGT -ACGGAACTAAGCGAAGCTGAAGGT -ACGGAACTAAGCGAAGCTAACCGT -ACGGAACTAAGCGAAGCTTTGTGC -ACGGAACTAAGCGAAGCTCTAAGC -ACGGAACTAAGCGAAGCTACTAGC -ACGGAACTAAGCGAAGCTAGATGC -ACGGAACTAAGCGAAGCTTGAAGG -ACGGAACTAAGCGAAGCTCAATGG -ACGGAACTAAGCGAAGCTATGAGG -ACGGAACTAAGCGAAGCTAATGGG -ACGGAACTAAGCGAAGCTTCCTGA -ACGGAACTAAGCGAAGCTTAGCGA -ACGGAACTAAGCGAAGCTCACAGA -ACGGAACTAAGCGAAGCTGCAAGA -ACGGAACTAAGCGAAGCTGGTTGA -ACGGAACTAAGCGAAGCTTCCGAT -ACGGAACTAAGCGAAGCTTGGCAT -ACGGAACTAAGCGAAGCTCGAGAT -ACGGAACTAAGCGAAGCTTACCAC -ACGGAACTAAGCGAAGCTCAGAAC -ACGGAACTAAGCGAAGCTGTCTAC -ACGGAACTAAGCGAAGCTACGTAC -ACGGAACTAAGCGAAGCTAGTGAC -ACGGAACTAAGCGAAGCTCTGTAG -ACGGAACTAAGCGAAGCTCCTAAG -ACGGAACTAAGCGAAGCTGTTCAG -ACGGAACTAAGCGAAGCTGCATAG -ACGGAACTAAGCGAAGCTGACAAG -ACGGAACTAAGCGAAGCTAAGCAG -ACGGAACTAAGCGAAGCTCGTCAA -ACGGAACTAAGCGAAGCTGCTGAA -ACGGAACTAAGCGAAGCTAGTACG -ACGGAACTAAGCGAAGCTATCCGA -ACGGAACTAAGCGAAGCTATGGGA -ACGGAACTAAGCGAAGCTGTGCAA -ACGGAACTAAGCGAAGCTGAGGAA -ACGGAACTAAGCGAAGCTCAGGTA -ACGGAACTAAGCGAAGCTGACTCT -ACGGAACTAAGCGAAGCTAGTCCT -ACGGAACTAAGCGAAGCTTAAGCC -ACGGAACTAAGCGAAGCTATAGCC -ACGGAACTAAGCGAAGCTTAACCG -ACGGAACTAAGCGAAGCTATGCCA -ACGGAACTAAGCACGAGTGGAAAC -ACGGAACTAAGCACGAGTAACACC -ACGGAACTAAGCACGAGTATCGAG -ACGGAACTAAGCACGAGTCTCCTT -ACGGAACTAAGCACGAGTCCTGTT -ACGGAACTAAGCACGAGTCGGTTT -ACGGAACTAAGCACGAGTGTGGTT -ACGGAACTAAGCACGAGTGCCTTT -ACGGAACTAAGCACGAGTGGTCTT -ACGGAACTAAGCACGAGTACGCTT -ACGGAACTAAGCACGAGTAGCGTT -ACGGAACTAAGCACGAGTTTCGTC -ACGGAACTAAGCACGAGTTCTCTC -ACGGAACTAAGCACGAGTTGGATC -ACGGAACTAAGCACGAGTCACTTC -ACGGAACTAAGCACGAGTGTACTC -ACGGAACTAAGCACGAGTGATGTC -ACGGAACTAAGCACGAGTACAGTC -ACGGAACTAAGCACGAGTTTGCTG -ACGGAACTAAGCACGAGTTCCATG -ACGGAACTAAGCACGAGTTGTGTG -ACGGAACTAAGCACGAGTCTAGTG -ACGGAACTAAGCACGAGTCATCTG -ACGGAACTAAGCACGAGTGAGTTG -ACGGAACTAAGCACGAGTAGACTG -ACGGAACTAAGCACGAGTTCGGTA -ACGGAACTAAGCACGAGTTGCCTA -ACGGAACTAAGCACGAGTCCACTA -ACGGAACTAAGCACGAGTGGAGTA -ACGGAACTAAGCACGAGTTCGTCT -ACGGAACTAAGCACGAGTTGCACT -ACGGAACTAAGCACGAGTCTGACT -ACGGAACTAAGCACGAGTCAACCT -ACGGAACTAAGCACGAGTGCTACT -ACGGAACTAAGCACGAGTGGATCT -ACGGAACTAAGCACGAGTAAGGCT -ACGGAACTAAGCACGAGTTCAACC -ACGGAACTAAGCACGAGTTGTTCC -ACGGAACTAAGCACGAGTATTCCC -ACGGAACTAAGCACGAGTTTCTCG -ACGGAACTAAGCACGAGTTAGACG -ACGGAACTAAGCACGAGTGTAACG -ACGGAACTAAGCACGAGTACTTCG -ACGGAACTAAGCACGAGTTACGCA -ACGGAACTAAGCACGAGTCTTGCA -ACGGAACTAAGCACGAGTCGAACA -ACGGAACTAAGCACGAGTCAGTCA -ACGGAACTAAGCACGAGTGATCCA -ACGGAACTAAGCACGAGTACGACA -ACGGAACTAAGCACGAGTAGCTCA -ACGGAACTAAGCACGAGTTCACGT -ACGGAACTAAGCACGAGTCGTAGT -ACGGAACTAAGCACGAGTGTCAGT -ACGGAACTAAGCACGAGTGAAGGT -ACGGAACTAAGCACGAGTAACCGT -ACGGAACTAAGCACGAGTTTGTGC -ACGGAACTAAGCACGAGTCTAAGC -ACGGAACTAAGCACGAGTACTAGC -ACGGAACTAAGCACGAGTAGATGC -ACGGAACTAAGCACGAGTTGAAGG -ACGGAACTAAGCACGAGTCAATGG -ACGGAACTAAGCACGAGTATGAGG -ACGGAACTAAGCACGAGTAATGGG -ACGGAACTAAGCACGAGTTCCTGA -ACGGAACTAAGCACGAGTTAGCGA -ACGGAACTAAGCACGAGTCACAGA -ACGGAACTAAGCACGAGTGCAAGA -ACGGAACTAAGCACGAGTGGTTGA -ACGGAACTAAGCACGAGTTCCGAT -ACGGAACTAAGCACGAGTTGGCAT -ACGGAACTAAGCACGAGTCGAGAT -ACGGAACTAAGCACGAGTTACCAC -ACGGAACTAAGCACGAGTCAGAAC -ACGGAACTAAGCACGAGTGTCTAC -ACGGAACTAAGCACGAGTACGTAC -ACGGAACTAAGCACGAGTAGTGAC -ACGGAACTAAGCACGAGTCTGTAG -ACGGAACTAAGCACGAGTCCTAAG -ACGGAACTAAGCACGAGTGTTCAG -ACGGAACTAAGCACGAGTGCATAG -ACGGAACTAAGCACGAGTGACAAG -ACGGAACTAAGCACGAGTAAGCAG -ACGGAACTAAGCACGAGTCGTCAA -ACGGAACTAAGCACGAGTGCTGAA -ACGGAACTAAGCACGAGTAGTACG -ACGGAACTAAGCACGAGTATCCGA -ACGGAACTAAGCACGAGTATGGGA -ACGGAACTAAGCACGAGTGTGCAA -ACGGAACTAAGCACGAGTGAGGAA -ACGGAACTAAGCACGAGTCAGGTA -ACGGAACTAAGCACGAGTGACTCT -ACGGAACTAAGCACGAGTAGTCCT -ACGGAACTAAGCACGAGTTAAGCC -ACGGAACTAAGCACGAGTATAGCC -ACGGAACTAAGCACGAGTTAACCG -ACGGAACTAAGCACGAGTATGCCA -ACGGAACTAAGCCGAATCGGAAAC -ACGGAACTAAGCCGAATCAACACC -ACGGAACTAAGCCGAATCATCGAG -ACGGAACTAAGCCGAATCCTCCTT -ACGGAACTAAGCCGAATCCCTGTT -ACGGAACTAAGCCGAATCCGGTTT -ACGGAACTAAGCCGAATCGTGGTT -ACGGAACTAAGCCGAATCGCCTTT -ACGGAACTAAGCCGAATCGGTCTT -ACGGAACTAAGCCGAATCACGCTT -ACGGAACTAAGCCGAATCAGCGTT -ACGGAACTAAGCCGAATCTTCGTC -ACGGAACTAAGCCGAATCTCTCTC -ACGGAACTAAGCCGAATCTGGATC -ACGGAACTAAGCCGAATCCACTTC -ACGGAACTAAGCCGAATCGTACTC -ACGGAACTAAGCCGAATCGATGTC -ACGGAACTAAGCCGAATCACAGTC -ACGGAACTAAGCCGAATCTTGCTG -ACGGAACTAAGCCGAATCTCCATG -ACGGAACTAAGCCGAATCTGTGTG -ACGGAACTAAGCCGAATCCTAGTG -ACGGAACTAAGCCGAATCCATCTG -ACGGAACTAAGCCGAATCGAGTTG -ACGGAACTAAGCCGAATCAGACTG -ACGGAACTAAGCCGAATCTCGGTA -ACGGAACTAAGCCGAATCTGCCTA -ACGGAACTAAGCCGAATCCCACTA -ACGGAACTAAGCCGAATCGGAGTA -ACGGAACTAAGCCGAATCTCGTCT -ACGGAACTAAGCCGAATCTGCACT -ACGGAACTAAGCCGAATCCTGACT -ACGGAACTAAGCCGAATCCAACCT -ACGGAACTAAGCCGAATCGCTACT -ACGGAACTAAGCCGAATCGGATCT -ACGGAACTAAGCCGAATCAAGGCT -ACGGAACTAAGCCGAATCTCAACC -ACGGAACTAAGCCGAATCTGTTCC -ACGGAACTAAGCCGAATCATTCCC -ACGGAACTAAGCCGAATCTTCTCG -ACGGAACTAAGCCGAATCTAGACG -ACGGAACTAAGCCGAATCGTAACG -ACGGAACTAAGCCGAATCACTTCG -ACGGAACTAAGCCGAATCTACGCA -ACGGAACTAAGCCGAATCCTTGCA -ACGGAACTAAGCCGAATCCGAACA -ACGGAACTAAGCCGAATCCAGTCA -ACGGAACTAAGCCGAATCGATCCA -ACGGAACTAAGCCGAATCACGACA -ACGGAACTAAGCCGAATCAGCTCA -ACGGAACTAAGCCGAATCTCACGT -ACGGAACTAAGCCGAATCCGTAGT -ACGGAACTAAGCCGAATCGTCAGT -ACGGAACTAAGCCGAATCGAAGGT -ACGGAACTAAGCCGAATCAACCGT -ACGGAACTAAGCCGAATCTTGTGC -ACGGAACTAAGCCGAATCCTAAGC -ACGGAACTAAGCCGAATCACTAGC -ACGGAACTAAGCCGAATCAGATGC -ACGGAACTAAGCCGAATCTGAAGG -ACGGAACTAAGCCGAATCCAATGG -ACGGAACTAAGCCGAATCATGAGG -ACGGAACTAAGCCGAATCAATGGG -ACGGAACTAAGCCGAATCTCCTGA -ACGGAACTAAGCCGAATCTAGCGA -ACGGAACTAAGCCGAATCCACAGA -ACGGAACTAAGCCGAATCGCAAGA -ACGGAACTAAGCCGAATCGGTTGA -ACGGAACTAAGCCGAATCTCCGAT -ACGGAACTAAGCCGAATCTGGCAT -ACGGAACTAAGCCGAATCCGAGAT -ACGGAACTAAGCCGAATCTACCAC -ACGGAACTAAGCCGAATCCAGAAC -ACGGAACTAAGCCGAATCGTCTAC -ACGGAACTAAGCCGAATCACGTAC -ACGGAACTAAGCCGAATCAGTGAC -ACGGAACTAAGCCGAATCCTGTAG -ACGGAACTAAGCCGAATCCCTAAG -ACGGAACTAAGCCGAATCGTTCAG -ACGGAACTAAGCCGAATCGCATAG -ACGGAACTAAGCCGAATCGACAAG -ACGGAACTAAGCCGAATCAAGCAG -ACGGAACTAAGCCGAATCCGTCAA -ACGGAACTAAGCCGAATCGCTGAA -ACGGAACTAAGCCGAATCAGTACG -ACGGAACTAAGCCGAATCATCCGA -ACGGAACTAAGCCGAATCATGGGA -ACGGAACTAAGCCGAATCGTGCAA -ACGGAACTAAGCCGAATCGAGGAA -ACGGAACTAAGCCGAATCCAGGTA -ACGGAACTAAGCCGAATCGACTCT -ACGGAACTAAGCCGAATCAGTCCT -ACGGAACTAAGCCGAATCTAAGCC -ACGGAACTAAGCCGAATCATAGCC -ACGGAACTAAGCCGAATCTAACCG -ACGGAACTAAGCCGAATCATGCCA -ACGGAACTAAGCGGAATGGGAAAC -ACGGAACTAAGCGGAATGAACACC -ACGGAACTAAGCGGAATGATCGAG -ACGGAACTAAGCGGAATGCTCCTT -ACGGAACTAAGCGGAATGCCTGTT -ACGGAACTAAGCGGAATGCGGTTT -ACGGAACTAAGCGGAATGGTGGTT -ACGGAACTAAGCGGAATGGCCTTT -ACGGAACTAAGCGGAATGGGTCTT -ACGGAACTAAGCGGAATGACGCTT -ACGGAACTAAGCGGAATGAGCGTT -ACGGAACTAAGCGGAATGTTCGTC -ACGGAACTAAGCGGAATGTCTCTC -ACGGAACTAAGCGGAATGTGGATC -ACGGAACTAAGCGGAATGCACTTC -ACGGAACTAAGCGGAATGGTACTC -ACGGAACTAAGCGGAATGGATGTC -ACGGAACTAAGCGGAATGACAGTC -ACGGAACTAAGCGGAATGTTGCTG -ACGGAACTAAGCGGAATGTCCATG -ACGGAACTAAGCGGAATGTGTGTG -ACGGAACTAAGCGGAATGCTAGTG -ACGGAACTAAGCGGAATGCATCTG -ACGGAACTAAGCGGAATGGAGTTG -ACGGAACTAAGCGGAATGAGACTG -ACGGAACTAAGCGGAATGTCGGTA -ACGGAACTAAGCGGAATGTGCCTA -ACGGAACTAAGCGGAATGCCACTA -ACGGAACTAAGCGGAATGGGAGTA -ACGGAACTAAGCGGAATGTCGTCT -ACGGAACTAAGCGGAATGTGCACT -ACGGAACTAAGCGGAATGCTGACT -ACGGAACTAAGCGGAATGCAACCT -ACGGAACTAAGCGGAATGGCTACT -ACGGAACTAAGCGGAATGGGATCT -ACGGAACTAAGCGGAATGAAGGCT -ACGGAACTAAGCGGAATGTCAACC -ACGGAACTAAGCGGAATGTGTTCC -ACGGAACTAAGCGGAATGATTCCC -ACGGAACTAAGCGGAATGTTCTCG -ACGGAACTAAGCGGAATGTAGACG -ACGGAACTAAGCGGAATGGTAACG -ACGGAACTAAGCGGAATGACTTCG -ACGGAACTAAGCGGAATGTACGCA -ACGGAACTAAGCGGAATGCTTGCA -ACGGAACTAAGCGGAATGCGAACA -ACGGAACTAAGCGGAATGCAGTCA -ACGGAACTAAGCGGAATGGATCCA -ACGGAACTAAGCGGAATGACGACA -ACGGAACTAAGCGGAATGAGCTCA -ACGGAACTAAGCGGAATGTCACGT -ACGGAACTAAGCGGAATGCGTAGT -ACGGAACTAAGCGGAATGGTCAGT -ACGGAACTAAGCGGAATGGAAGGT -ACGGAACTAAGCGGAATGAACCGT -ACGGAACTAAGCGGAATGTTGTGC -ACGGAACTAAGCGGAATGCTAAGC -ACGGAACTAAGCGGAATGACTAGC -ACGGAACTAAGCGGAATGAGATGC -ACGGAACTAAGCGGAATGTGAAGG -ACGGAACTAAGCGGAATGCAATGG -ACGGAACTAAGCGGAATGATGAGG -ACGGAACTAAGCGGAATGAATGGG -ACGGAACTAAGCGGAATGTCCTGA -ACGGAACTAAGCGGAATGTAGCGA -ACGGAACTAAGCGGAATGCACAGA -ACGGAACTAAGCGGAATGGCAAGA -ACGGAACTAAGCGGAATGGGTTGA -ACGGAACTAAGCGGAATGTCCGAT -ACGGAACTAAGCGGAATGTGGCAT -ACGGAACTAAGCGGAATGCGAGAT -ACGGAACTAAGCGGAATGTACCAC -ACGGAACTAAGCGGAATGCAGAAC -ACGGAACTAAGCGGAATGGTCTAC -ACGGAACTAAGCGGAATGACGTAC -ACGGAACTAAGCGGAATGAGTGAC -ACGGAACTAAGCGGAATGCTGTAG -ACGGAACTAAGCGGAATGCCTAAG -ACGGAACTAAGCGGAATGGTTCAG -ACGGAACTAAGCGGAATGGCATAG -ACGGAACTAAGCGGAATGGACAAG -ACGGAACTAAGCGGAATGAAGCAG -ACGGAACTAAGCGGAATGCGTCAA -ACGGAACTAAGCGGAATGGCTGAA -ACGGAACTAAGCGGAATGAGTACG -ACGGAACTAAGCGGAATGATCCGA -ACGGAACTAAGCGGAATGATGGGA -ACGGAACTAAGCGGAATGGTGCAA -ACGGAACTAAGCGGAATGGAGGAA -ACGGAACTAAGCGGAATGCAGGTA -ACGGAACTAAGCGGAATGGACTCT -ACGGAACTAAGCGGAATGAGTCCT -ACGGAACTAAGCGGAATGTAAGCC -ACGGAACTAAGCGGAATGATAGCC -ACGGAACTAAGCGGAATGTAACCG -ACGGAACTAAGCGGAATGATGCCA -ACGGAACTAAGCCAAGTGGGAAAC -ACGGAACTAAGCCAAGTGAACACC -ACGGAACTAAGCCAAGTGATCGAG -ACGGAACTAAGCCAAGTGCTCCTT -ACGGAACTAAGCCAAGTGCCTGTT -ACGGAACTAAGCCAAGTGCGGTTT -ACGGAACTAAGCCAAGTGGTGGTT -ACGGAACTAAGCCAAGTGGCCTTT -ACGGAACTAAGCCAAGTGGGTCTT -ACGGAACTAAGCCAAGTGACGCTT -ACGGAACTAAGCCAAGTGAGCGTT -ACGGAACTAAGCCAAGTGTTCGTC -ACGGAACTAAGCCAAGTGTCTCTC -ACGGAACTAAGCCAAGTGTGGATC -ACGGAACTAAGCCAAGTGCACTTC -ACGGAACTAAGCCAAGTGGTACTC -ACGGAACTAAGCCAAGTGGATGTC -ACGGAACTAAGCCAAGTGACAGTC -ACGGAACTAAGCCAAGTGTTGCTG -ACGGAACTAAGCCAAGTGTCCATG -ACGGAACTAAGCCAAGTGTGTGTG -ACGGAACTAAGCCAAGTGCTAGTG -ACGGAACTAAGCCAAGTGCATCTG -ACGGAACTAAGCCAAGTGGAGTTG -ACGGAACTAAGCCAAGTGAGACTG -ACGGAACTAAGCCAAGTGTCGGTA -ACGGAACTAAGCCAAGTGTGCCTA -ACGGAACTAAGCCAAGTGCCACTA -ACGGAACTAAGCCAAGTGGGAGTA -ACGGAACTAAGCCAAGTGTCGTCT -ACGGAACTAAGCCAAGTGTGCACT -ACGGAACTAAGCCAAGTGCTGACT -ACGGAACTAAGCCAAGTGCAACCT -ACGGAACTAAGCCAAGTGGCTACT -ACGGAACTAAGCCAAGTGGGATCT -ACGGAACTAAGCCAAGTGAAGGCT -ACGGAACTAAGCCAAGTGTCAACC -ACGGAACTAAGCCAAGTGTGTTCC -ACGGAACTAAGCCAAGTGATTCCC -ACGGAACTAAGCCAAGTGTTCTCG -ACGGAACTAAGCCAAGTGTAGACG -ACGGAACTAAGCCAAGTGGTAACG -ACGGAACTAAGCCAAGTGACTTCG -ACGGAACTAAGCCAAGTGTACGCA -ACGGAACTAAGCCAAGTGCTTGCA -ACGGAACTAAGCCAAGTGCGAACA -ACGGAACTAAGCCAAGTGCAGTCA -ACGGAACTAAGCCAAGTGGATCCA -ACGGAACTAAGCCAAGTGACGACA -ACGGAACTAAGCCAAGTGAGCTCA -ACGGAACTAAGCCAAGTGTCACGT -ACGGAACTAAGCCAAGTGCGTAGT -ACGGAACTAAGCCAAGTGGTCAGT -ACGGAACTAAGCCAAGTGGAAGGT -ACGGAACTAAGCCAAGTGAACCGT -ACGGAACTAAGCCAAGTGTTGTGC -ACGGAACTAAGCCAAGTGCTAAGC -ACGGAACTAAGCCAAGTGACTAGC -ACGGAACTAAGCCAAGTGAGATGC -ACGGAACTAAGCCAAGTGTGAAGG -ACGGAACTAAGCCAAGTGCAATGG -ACGGAACTAAGCCAAGTGATGAGG -ACGGAACTAAGCCAAGTGAATGGG -ACGGAACTAAGCCAAGTGTCCTGA -ACGGAACTAAGCCAAGTGTAGCGA -ACGGAACTAAGCCAAGTGCACAGA -ACGGAACTAAGCCAAGTGGCAAGA -ACGGAACTAAGCCAAGTGGGTTGA -ACGGAACTAAGCCAAGTGTCCGAT -ACGGAACTAAGCCAAGTGTGGCAT -ACGGAACTAAGCCAAGTGCGAGAT -ACGGAACTAAGCCAAGTGTACCAC -ACGGAACTAAGCCAAGTGCAGAAC -ACGGAACTAAGCCAAGTGGTCTAC -ACGGAACTAAGCCAAGTGACGTAC -ACGGAACTAAGCCAAGTGAGTGAC -ACGGAACTAAGCCAAGTGCTGTAG -ACGGAACTAAGCCAAGTGCCTAAG -ACGGAACTAAGCCAAGTGGTTCAG -ACGGAACTAAGCCAAGTGGCATAG -ACGGAACTAAGCCAAGTGGACAAG -ACGGAACTAAGCCAAGTGAAGCAG -ACGGAACTAAGCCAAGTGCGTCAA -ACGGAACTAAGCCAAGTGGCTGAA -ACGGAACTAAGCCAAGTGAGTACG -ACGGAACTAAGCCAAGTGATCCGA -ACGGAACTAAGCCAAGTGATGGGA -ACGGAACTAAGCCAAGTGGTGCAA -ACGGAACTAAGCCAAGTGGAGGAA -ACGGAACTAAGCCAAGTGCAGGTA -ACGGAACTAAGCCAAGTGGACTCT -ACGGAACTAAGCCAAGTGAGTCCT -ACGGAACTAAGCCAAGTGTAAGCC -ACGGAACTAAGCCAAGTGATAGCC -ACGGAACTAAGCCAAGTGTAACCG -ACGGAACTAAGCCAAGTGATGCCA -ACGGAACTAAGCGAAGAGGGAAAC -ACGGAACTAAGCGAAGAGAACACC -ACGGAACTAAGCGAAGAGATCGAG -ACGGAACTAAGCGAAGAGCTCCTT -ACGGAACTAAGCGAAGAGCCTGTT -ACGGAACTAAGCGAAGAGCGGTTT -ACGGAACTAAGCGAAGAGGTGGTT -ACGGAACTAAGCGAAGAGGCCTTT -ACGGAACTAAGCGAAGAGGGTCTT -ACGGAACTAAGCGAAGAGACGCTT -ACGGAACTAAGCGAAGAGAGCGTT -ACGGAACTAAGCGAAGAGTTCGTC -ACGGAACTAAGCGAAGAGTCTCTC -ACGGAACTAAGCGAAGAGTGGATC -ACGGAACTAAGCGAAGAGCACTTC -ACGGAACTAAGCGAAGAGGTACTC -ACGGAACTAAGCGAAGAGGATGTC -ACGGAACTAAGCGAAGAGACAGTC -ACGGAACTAAGCGAAGAGTTGCTG -ACGGAACTAAGCGAAGAGTCCATG -ACGGAACTAAGCGAAGAGTGTGTG -ACGGAACTAAGCGAAGAGCTAGTG -ACGGAACTAAGCGAAGAGCATCTG -ACGGAACTAAGCGAAGAGGAGTTG -ACGGAACTAAGCGAAGAGAGACTG -ACGGAACTAAGCGAAGAGTCGGTA -ACGGAACTAAGCGAAGAGTGCCTA -ACGGAACTAAGCGAAGAGCCACTA -ACGGAACTAAGCGAAGAGGGAGTA -ACGGAACTAAGCGAAGAGTCGTCT -ACGGAACTAAGCGAAGAGTGCACT -ACGGAACTAAGCGAAGAGCTGACT -ACGGAACTAAGCGAAGAGCAACCT -ACGGAACTAAGCGAAGAGGCTACT -ACGGAACTAAGCGAAGAGGGATCT -ACGGAACTAAGCGAAGAGAAGGCT -ACGGAACTAAGCGAAGAGTCAACC -ACGGAACTAAGCGAAGAGTGTTCC -ACGGAACTAAGCGAAGAGATTCCC -ACGGAACTAAGCGAAGAGTTCTCG -ACGGAACTAAGCGAAGAGTAGACG -ACGGAACTAAGCGAAGAGGTAACG -ACGGAACTAAGCGAAGAGACTTCG -ACGGAACTAAGCGAAGAGTACGCA -ACGGAACTAAGCGAAGAGCTTGCA -ACGGAACTAAGCGAAGAGCGAACA -ACGGAACTAAGCGAAGAGCAGTCA -ACGGAACTAAGCGAAGAGGATCCA -ACGGAACTAAGCGAAGAGACGACA -ACGGAACTAAGCGAAGAGAGCTCA -ACGGAACTAAGCGAAGAGTCACGT -ACGGAACTAAGCGAAGAGCGTAGT -ACGGAACTAAGCGAAGAGGTCAGT -ACGGAACTAAGCGAAGAGGAAGGT -ACGGAACTAAGCGAAGAGAACCGT -ACGGAACTAAGCGAAGAGTTGTGC -ACGGAACTAAGCGAAGAGCTAAGC -ACGGAACTAAGCGAAGAGACTAGC -ACGGAACTAAGCGAAGAGAGATGC -ACGGAACTAAGCGAAGAGTGAAGG -ACGGAACTAAGCGAAGAGCAATGG -ACGGAACTAAGCGAAGAGATGAGG -ACGGAACTAAGCGAAGAGAATGGG -ACGGAACTAAGCGAAGAGTCCTGA -ACGGAACTAAGCGAAGAGTAGCGA -ACGGAACTAAGCGAAGAGCACAGA -ACGGAACTAAGCGAAGAGGCAAGA -ACGGAACTAAGCGAAGAGGGTTGA -ACGGAACTAAGCGAAGAGTCCGAT -ACGGAACTAAGCGAAGAGTGGCAT -ACGGAACTAAGCGAAGAGCGAGAT -ACGGAACTAAGCGAAGAGTACCAC -ACGGAACTAAGCGAAGAGCAGAAC -ACGGAACTAAGCGAAGAGGTCTAC -ACGGAACTAAGCGAAGAGACGTAC -ACGGAACTAAGCGAAGAGAGTGAC -ACGGAACTAAGCGAAGAGCTGTAG -ACGGAACTAAGCGAAGAGCCTAAG -ACGGAACTAAGCGAAGAGGTTCAG -ACGGAACTAAGCGAAGAGGCATAG -ACGGAACTAAGCGAAGAGGACAAG -ACGGAACTAAGCGAAGAGAAGCAG -ACGGAACTAAGCGAAGAGCGTCAA -ACGGAACTAAGCGAAGAGGCTGAA -ACGGAACTAAGCGAAGAGAGTACG -ACGGAACTAAGCGAAGAGATCCGA -ACGGAACTAAGCGAAGAGATGGGA -ACGGAACTAAGCGAAGAGGTGCAA -ACGGAACTAAGCGAAGAGGAGGAA -ACGGAACTAAGCGAAGAGCAGGTA -ACGGAACTAAGCGAAGAGGACTCT -ACGGAACTAAGCGAAGAGAGTCCT -ACGGAACTAAGCGAAGAGTAAGCC -ACGGAACTAAGCGAAGAGATAGCC -ACGGAACTAAGCGAAGAGTAACCG -ACGGAACTAAGCGAAGAGATGCCA -ACGGAACTAAGCGTACAGGGAAAC -ACGGAACTAAGCGTACAGAACACC -ACGGAACTAAGCGTACAGATCGAG -ACGGAACTAAGCGTACAGCTCCTT -ACGGAACTAAGCGTACAGCCTGTT -ACGGAACTAAGCGTACAGCGGTTT -ACGGAACTAAGCGTACAGGTGGTT -ACGGAACTAAGCGTACAGGCCTTT -ACGGAACTAAGCGTACAGGGTCTT -ACGGAACTAAGCGTACAGACGCTT -ACGGAACTAAGCGTACAGAGCGTT -ACGGAACTAAGCGTACAGTTCGTC -ACGGAACTAAGCGTACAGTCTCTC -ACGGAACTAAGCGTACAGTGGATC -ACGGAACTAAGCGTACAGCACTTC -ACGGAACTAAGCGTACAGGTACTC -ACGGAACTAAGCGTACAGGATGTC -ACGGAACTAAGCGTACAGACAGTC -ACGGAACTAAGCGTACAGTTGCTG -ACGGAACTAAGCGTACAGTCCATG -ACGGAACTAAGCGTACAGTGTGTG -ACGGAACTAAGCGTACAGCTAGTG -ACGGAACTAAGCGTACAGCATCTG -ACGGAACTAAGCGTACAGGAGTTG -ACGGAACTAAGCGTACAGAGACTG -ACGGAACTAAGCGTACAGTCGGTA -ACGGAACTAAGCGTACAGTGCCTA -ACGGAACTAAGCGTACAGCCACTA -ACGGAACTAAGCGTACAGGGAGTA -ACGGAACTAAGCGTACAGTCGTCT -ACGGAACTAAGCGTACAGTGCACT -ACGGAACTAAGCGTACAGCTGACT -ACGGAACTAAGCGTACAGCAACCT -ACGGAACTAAGCGTACAGGCTACT -ACGGAACTAAGCGTACAGGGATCT -ACGGAACTAAGCGTACAGAAGGCT -ACGGAACTAAGCGTACAGTCAACC -ACGGAACTAAGCGTACAGTGTTCC -ACGGAACTAAGCGTACAGATTCCC -ACGGAACTAAGCGTACAGTTCTCG -ACGGAACTAAGCGTACAGTAGACG -ACGGAACTAAGCGTACAGGTAACG -ACGGAACTAAGCGTACAGACTTCG -ACGGAACTAAGCGTACAGTACGCA -ACGGAACTAAGCGTACAGCTTGCA -ACGGAACTAAGCGTACAGCGAACA -ACGGAACTAAGCGTACAGCAGTCA -ACGGAACTAAGCGTACAGGATCCA -ACGGAACTAAGCGTACAGACGACA -ACGGAACTAAGCGTACAGAGCTCA -ACGGAACTAAGCGTACAGTCACGT -ACGGAACTAAGCGTACAGCGTAGT -ACGGAACTAAGCGTACAGGTCAGT -ACGGAACTAAGCGTACAGGAAGGT -ACGGAACTAAGCGTACAGAACCGT -ACGGAACTAAGCGTACAGTTGTGC -ACGGAACTAAGCGTACAGCTAAGC -ACGGAACTAAGCGTACAGACTAGC -ACGGAACTAAGCGTACAGAGATGC -ACGGAACTAAGCGTACAGTGAAGG -ACGGAACTAAGCGTACAGCAATGG -ACGGAACTAAGCGTACAGATGAGG -ACGGAACTAAGCGTACAGAATGGG -ACGGAACTAAGCGTACAGTCCTGA -ACGGAACTAAGCGTACAGTAGCGA -ACGGAACTAAGCGTACAGCACAGA -ACGGAACTAAGCGTACAGGCAAGA -ACGGAACTAAGCGTACAGGGTTGA -ACGGAACTAAGCGTACAGTCCGAT -ACGGAACTAAGCGTACAGTGGCAT -ACGGAACTAAGCGTACAGCGAGAT -ACGGAACTAAGCGTACAGTACCAC -ACGGAACTAAGCGTACAGCAGAAC -ACGGAACTAAGCGTACAGGTCTAC -ACGGAACTAAGCGTACAGACGTAC -ACGGAACTAAGCGTACAGAGTGAC -ACGGAACTAAGCGTACAGCTGTAG -ACGGAACTAAGCGTACAGCCTAAG -ACGGAACTAAGCGTACAGGTTCAG -ACGGAACTAAGCGTACAGGCATAG -ACGGAACTAAGCGTACAGGACAAG -ACGGAACTAAGCGTACAGAAGCAG -ACGGAACTAAGCGTACAGCGTCAA -ACGGAACTAAGCGTACAGGCTGAA -ACGGAACTAAGCGTACAGAGTACG -ACGGAACTAAGCGTACAGATCCGA -ACGGAACTAAGCGTACAGATGGGA -ACGGAACTAAGCGTACAGGTGCAA -ACGGAACTAAGCGTACAGGAGGAA -ACGGAACTAAGCGTACAGCAGGTA -ACGGAACTAAGCGTACAGGACTCT -ACGGAACTAAGCGTACAGAGTCCT -ACGGAACTAAGCGTACAGTAAGCC -ACGGAACTAAGCGTACAGATAGCC -ACGGAACTAAGCGTACAGTAACCG -ACGGAACTAAGCGTACAGATGCCA -ACGGAACTAAGCTCTGACGGAAAC -ACGGAACTAAGCTCTGACAACACC -ACGGAACTAAGCTCTGACATCGAG -ACGGAACTAAGCTCTGACCTCCTT -ACGGAACTAAGCTCTGACCCTGTT -ACGGAACTAAGCTCTGACCGGTTT -ACGGAACTAAGCTCTGACGTGGTT -ACGGAACTAAGCTCTGACGCCTTT -ACGGAACTAAGCTCTGACGGTCTT -ACGGAACTAAGCTCTGACACGCTT -ACGGAACTAAGCTCTGACAGCGTT -ACGGAACTAAGCTCTGACTTCGTC -ACGGAACTAAGCTCTGACTCTCTC -ACGGAACTAAGCTCTGACTGGATC -ACGGAACTAAGCTCTGACCACTTC -ACGGAACTAAGCTCTGACGTACTC -ACGGAACTAAGCTCTGACGATGTC -ACGGAACTAAGCTCTGACACAGTC -ACGGAACTAAGCTCTGACTTGCTG -ACGGAACTAAGCTCTGACTCCATG -ACGGAACTAAGCTCTGACTGTGTG -ACGGAACTAAGCTCTGACCTAGTG -ACGGAACTAAGCTCTGACCATCTG -ACGGAACTAAGCTCTGACGAGTTG -ACGGAACTAAGCTCTGACAGACTG -ACGGAACTAAGCTCTGACTCGGTA -ACGGAACTAAGCTCTGACTGCCTA -ACGGAACTAAGCTCTGACCCACTA -ACGGAACTAAGCTCTGACGGAGTA -ACGGAACTAAGCTCTGACTCGTCT -ACGGAACTAAGCTCTGACTGCACT -ACGGAACTAAGCTCTGACCTGACT -ACGGAACTAAGCTCTGACCAACCT -ACGGAACTAAGCTCTGACGCTACT -ACGGAACTAAGCTCTGACGGATCT -ACGGAACTAAGCTCTGACAAGGCT -ACGGAACTAAGCTCTGACTCAACC -ACGGAACTAAGCTCTGACTGTTCC -ACGGAACTAAGCTCTGACATTCCC -ACGGAACTAAGCTCTGACTTCTCG -ACGGAACTAAGCTCTGACTAGACG -ACGGAACTAAGCTCTGACGTAACG -ACGGAACTAAGCTCTGACACTTCG -ACGGAACTAAGCTCTGACTACGCA -ACGGAACTAAGCTCTGACCTTGCA -ACGGAACTAAGCTCTGACCGAACA -ACGGAACTAAGCTCTGACCAGTCA -ACGGAACTAAGCTCTGACGATCCA -ACGGAACTAAGCTCTGACACGACA -ACGGAACTAAGCTCTGACAGCTCA -ACGGAACTAAGCTCTGACTCACGT -ACGGAACTAAGCTCTGACCGTAGT -ACGGAACTAAGCTCTGACGTCAGT -ACGGAACTAAGCTCTGACGAAGGT -ACGGAACTAAGCTCTGACAACCGT -ACGGAACTAAGCTCTGACTTGTGC -ACGGAACTAAGCTCTGACCTAAGC -ACGGAACTAAGCTCTGACACTAGC -ACGGAACTAAGCTCTGACAGATGC -ACGGAACTAAGCTCTGACTGAAGG -ACGGAACTAAGCTCTGACCAATGG -ACGGAACTAAGCTCTGACATGAGG -ACGGAACTAAGCTCTGACAATGGG -ACGGAACTAAGCTCTGACTCCTGA -ACGGAACTAAGCTCTGACTAGCGA -ACGGAACTAAGCTCTGACCACAGA -ACGGAACTAAGCTCTGACGCAAGA -ACGGAACTAAGCTCTGACGGTTGA -ACGGAACTAAGCTCTGACTCCGAT -ACGGAACTAAGCTCTGACTGGCAT -ACGGAACTAAGCTCTGACCGAGAT -ACGGAACTAAGCTCTGACTACCAC -ACGGAACTAAGCTCTGACCAGAAC -ACGGAACTAAGCTCTGACGTCTAC -ACGGAACTAAGCTCTGACACGTAC -ACGGAACTAAGCTCTGACAGTGAC -ACGGAACTAAGCTCTGACCTGTAG -ACGGAACTAAGCTCTGACCCTAAG -ACGGAACTAAGCTCTGACGTTCAG -ACGGAACTAAGCTCTGACGCATAG -ACGGAACTAAGCTCTGACGACAAG -ACGGAACTAAGCTCTGACAAGCAG -ACGGAACTAAGCTCTGACCGTCAA -ACGGAACTAAGCTCTGACGCTGAA -ACGGAACTAAGCTCTGACAGTACG -ACGGAACTAAGCTCTGACATCCGA -ACGGAACTAAGCTCTGACATGGGA -ACGGAACTAAGCTCTGACGTGCAA -ACGGAACTAAGCTCTGACGAGGAA -ACGGAACTAAGCTCTGACCAGGTA -ACGGAACTAAGCTCTGACGACTCT -ACGGAACTAAGCTCTGACAGTCCT -ACGGAACTAAGCTCTGACTAAGCC -ACGGAACTAAGCTCTGACATAGCC -ACGGAACTAAGCTCTGACTAACCG -ACGGAACTAAGCTCTGACATGCCA -ACGGAACTAAGCCCTAGTGGAAAC -ACGGAACTAAGCCCTAGTAACACC -ACGGAACTAAGCCCTAGTATCGAG -ACGGAACTAAGCCCTAGTCTCCTT -ACGGAACTAAGCCCTAGTCCTGTT -ACGGAACTAAGCCCTAGTCGGTTT -ACGGAACTAAGCCCTAGTGTGGTT -ACGGAACTAAGCCCTAGTGCCTTT -ACGGAACTAAGCCCTAGTGGTCTT -ACGGAACTAAGCCCTAGTACGCTT -ACGGAACTAAGCCCTAGTAGCGTT -ACGGAACTAAGCCCTAGTTTCGTC -ACGGAACTAAGCCCTAGTTCTCTC -ACGGAACTAAGCCCTAGTTGGATC -ACGGAACTAAGCCCTAGTCACTTC -ACGGAACTAAGCCCTAGTGTACTC -ACGGAACTAAGCCCTAGTGATGTC -ACGGAACTAAGCCCTAGTACAGTC -ACGGAACTAAGCCCTAGTTTGCTG -ACGGAACTAAGCCCTAGTTCCATG -ACGGAACTAAGCCCTAGTTGTGTG -ACGGAACTAAGCCCTAGTCTAGTG -ACGGAACTAAGCCCTAGTCATCTG -ACGGAACTAAGCCCTAGTGAGTTG -ACGGAACTAAGCCCTAGTAGACTG -ACGGAACTAAGCCCTAGTTCGGTA -ACGGAACTAAGCCCTAGTTGCCTA -ACGGAACTAAGCCCTAGTCCACTA -ACGGAACTAAGCCCTAGTGGAGTA -ACGGAACTAAGCCCTAGTTCGTCT -ACGGAACTAAGCCCTAGTTGCACT -ACGGAACTAAGCCCTAGTCTGACT -ACGGAACTAAGCCCTAGTCAACCT -ACGGAACTAAGCCCTAGTGCTACT -ACGGAACTAAGCCCTAGTGGATCT -ACGGAACTAAGCCCTAGTAAGGCT -ACGGAACTAAGCCCTAGTTCAACC -ACGGAACTAAGCCCTAGTTGTTCC -ACGGAACTAAGCCCTAGTATTCCC -ACGGAACTAAGCCCTAGTTTCTCG -ACGGAACTAAGCCCTAGTTAGACG -ACGGAACTAAGCCCTAGTGTAACG -ACGGAACTAAGCCCTAGTACTTCG -ACGGAACTAAGCCCTAGTTACGCA -ACGGAACTAAGCCCTAGTCTTGCA -ACGGAACTAAGCCCTAGTCGAACA -ACGGAACTAAGCCCTAGTCAGTCA -ACGGAACTAAGCCCTAGTGATCCA -ACGGAACTAAGCCCTAGTACGACA -ACGGAACTAAGCCCTAGTAGCTCA -ACGGAACTAAGCCCTAGTTCACGT -ACGGAACTAAGCCCTAGTCGTAGT -ACGGAACTAAGCCCTAGTGTCAGT -ACGGAACTAAGCCCTAGTGAAGGT -ACGGAACTAAGCCCTAGTAACCGT -ACGGAACTAAGCCCTAGTTTGTGC -ACGGAACTAAGCCCTAGTCTAAGC -ACGGAACTAAGCCCTAGTACTAGC -ACGGAACTAAGCCCTAGTAGATGC -ACGGAACTAAGCCCTAGTTGAAGG -ACGGAACTAAGCCCTAGTCAATGG -ACGGAACTAAGCCCTAGTATGAGG -ACGGAACTAAGCCCTAGTAATGGG -ACGGAACTAAGCCCTAGTTCCTGA -ACGGAACTAAGCCCTAGTTAGCGA -ACGGAACTAAGCCCTAGTCACAGA -ACGGAACTAAGCCCTAGTGCAAGA -ACGGAACTAAGCCCTAGTGGTTGA -ACGGAACTAAGCCCTAGTTCCGAT -ACGGAACTAAGCCCTAGTTGGCAT -ACGGAACTAAGCCCTAGTCGAGAT -ACGGAACTAAGCCCTAGTTACCAC -ACGGAACTAAGCCCTAGTCAGAAC -ACGGAACTAAGCCCTAGTGTCTAC -ACGGAACTAAGCCCTAGTACGTAC -ACGGAACTAAGCCCTAGTAGTGAC -ACGGAACTAAGCCCTAGTCTGTAG -ACGGAACTAAGCCCTAGTCCTAAG -ACGGAACTAAGCCCTAGTGTTCAG -ACGGAACTAAGCCCTAGTGCATAG -ACGGAACTAAGCCCTAGTGACAAG -ACGGAACTAAGCCCTAGTAAGCAG -ACGGAACTAAGCCCTAGTCGTCAA -ACGGAACTAAGCCCTAGTGCTGAA -ACGGAACTAAGCCCTAGTAGTACG -ACGGAACTAAGCCCTAGTATCCGA -ACGGAACTAAGCCCTAGTATGGGA -ACGGAACTAAGCCCTAGTGTGCAA -ACGGAACTAAGCCCTAGTGAGGAA -ACGGAACTAAGCCCTAGTCAGGTA -ACGGAACTAAGCCCTAGTGACTCT -ACGGAACTAAGCCCTAGTAGTCCT -ACGGAACTAAGCCCTAGTTAAGCC -ACGGAACTAAGCCCTAGTATAGCC -ACGGAACTAAGCCCTAGTTAACCG -ACGGAACTAAGCCCTAGTATGCCA -ACGGAACTAAGCGCCTAAGGAAAC -ACGGAACTAAGCGCCTAAAACACC -ACGGAACTAAGCGCCTAAATCGAG -ACGGAACTAAGCGCCTAACTCCTT -ACGGAACTAAGCGCCTAACCTGTT -ACGGAACTAAGCGCCTAACGGTTT -ACGGAACTAAGCGCCTAAGTGGTT -ACGGAACTAAGCGCCTAAGCCTTT -ACGGAACTAAGCGCCTAAGGTCTT -ACGGAACTAAGCGCCTAAACGCTT -ACGGAACTAAGCGCCTAAAGCGTT -ACGGAACTAAGCGCCTAATTCGTC -ACGGAACTAAGCGCCTAATCTCTC -ACGGAACTAAGCGCCTAATGGATC -ACGGAACTAAGCGCCTAACACTTC -ACGGAACTAAGCGCCTAAGTACTC -ACGGAACTAAGCGCCTAAGATGTC -ACGGAACTAAGCGCCTAAACAGTC -ACGGAACTAAGCGCCTAATTGCTG -ACGGAACTAAGCGCCTAATCCATG -ACGGAACTAAGCGCCTAATGTGTG -ACGGAACTAAGCGCCTAACTAGTG -ACGGAACTAAGCGCCTAACATCTG -ACGGAACTAAGCGCCTAAGAGTTG -ACGGAACTAAGCGCCTAAAGACTG -ACGGAACTAAGCGCCTAATCGGTA -ACGGAACTAAGCGCCTAATGCCTA -ACGGAACTAAGCGCCTAACCACTA -ACGGAACTAAGCGCCTAAGGAGTA -ACGGAACTAAGCGCCTAATCGTCT -ACGGAACTAAGCGCCTAATGCACT -ACGGAACTAAGCGCCTAACTGACT -ACGGAACTAAGCGCCTAACAACCT -ACGGAACTAAGCGCCTAAGCTACT -ACGGAACTAAGCGCCTAAGGATCT -ACGGAACTAAGCGCCTAAAAGGCT -ACGGAACTAAGCGCCTAATCAACC -ACGGAACTAAGCGCCTAATGTTCC -ACGGAACTAAGCGCCTAAATTCCC -ACGGAACTAAGCGCCTAATTCTCG -ACGGAACTAAGCGCCTAATAGACG -ACGGAACTAAGCGCCTAAGTAACG -ACGGAACTAAGCGCCTAAACTTCG -ACGGAACTAAGCGCCTAATACGCA -ACGGAACTAAGCGCCTAACTTGCA -ACGGAACTAAGCGCCTAACGAACA -ACGGAACTAAGCGCCTAACAGTCA -ACGGAACTAAGCGCCTAAGATCCA -ACGGAACTAAGCGCCTAAACGACA -ACGGAACTAAGCGCCTAAAGCTCA -ACGGAACTAAGCGCCTAATCACGT -ACGGAACTAAGCGCCTAACGTAGT -ACGGAACTAAGCGCCTAAGTCAGT -ACGGAACTAAGCGCCTAAGAAGGT -ACGGAACTAAGCGCCTAAAACCGT -ACGGAACTAAGCGCCTAATTGTGC -ACGGAACTAAGCGCCTAACTAAGC -ACGGAACTAAGCGCCTAAACTAGC -ACGGAACTAAGCGCCTAAAGATGC -ACGGAACTAAGCGCCTAATGAAGG -ACGGAACTAAGCGCCTAACAATGG -ACGGAACTAAGCGCCTAAATGAGG -ACGGAACTAAGCGCCTAAAATGGG -ACGGAACTAAGCGCCTAATCCTGA -ACGGAACTAAGCGCCTAATAGCGA -ACGGAACTAAGCGCCTAACACAGA -ACGGAACTAAGCGCCTAAGCAAGA -ACGGAACTAAGCGCCTAAGGTTGA -ACGGAACTAAGCGCCTAATCCGAT -ACGGAACTAAGCGCCTAATGGCAT -ACGGAACTAAGCGCCTAACGAGAT -ACGGAACTAAGCGCCTAATACCAC -ACGGAACTAAGCGCCTAACAGAAC -ACGGAACTAAGCGCCTAAGTCTAC -ACGGAACTAAGCGCCTAAACGTAC -ACGGAACTAAGCGCCTAAAGTGAC -ACGGAACTAAGCGCCTAACTGTAG -ACGGAACTAAGCGCCTAACCTAAG -ACGGAACTAAGCGCCTAAGTTCAG -ACGGAACTAAGCGCCTAAGCATAG -ACGGAACTAAGCGCCTAAGACAAG -ACGGAACTAAGCGCCTAAAAGCAG -ACGGAACTAAGCGCCTAACGTCAA -ACGGAACTAAGCGCCTAAGCTGAA -ACGGAACTAAGCGCCTAAAGTACG -ACGGAACTAAGCGCCTAAATCCGA -ACGGAACTAAGCGCCTAAATGGGA -ACGGAACTAAGCGCCTAAGTGCAA -ACGGAACTAAGCGCCTAAGAGGAA -ACGGAACTAAGCGCCTAACAGGTA -ACGGAACTAAGCGCCTAAGACTCT -ACGGAACTAAGCGCCTAAAGTCCT -ACGGAACTAAGCGCCTAATAAGCC -ACGGAACTAAGCGCCTAAATAGCC -ACGGAACTAAGCGCCTAATAACCG -ACGGAACTAAGCGCCTAAATGCCA -ACGGAACTAAGCGCCATAGGAAAC -ACGGAACTAAGCGCCATAAACACC -ACGGAACTAAGCGCCATAATCGAG -ACGGAACTAAGCGCCATACTCCTT -ACGGAACTAAGCGCCATACCTGTT -ACGGAACTAAGCGCCATACGGTTT -ACGGAACTAAGCGCCATAGTGGTT -ACGGAACTAAGCGCCATAGCCTTT -ACGGAACTAAGCGCCATAGGTCTT -ACGGAACTAAGCGCCATAACGCTT -ACGGAACTAAGCGCCATAAGCGTT -ACGGAACTAAGCGCCATATTCGTC -ACGGAACTAAGCGCCATATCTCTC -ACGGAACTAAGCGCCATATGGATC -ACGGAACTAAGCGCCATACACTTC -ACGGAACTAAGCGCCATAGTACTC -ACGGAACTAAGCGCCATAGATGTC -ACGGAACTAAGCGCCATAACAGTC -ACGGAACTAAGCGCCATATTGCTG -ACGGAACTAAGCGCCATATCCATG -ACGGAACTAAGCGCCATATGTGTG -ACGGAACTAAGCGCCATACTAGTG -ACGGAACTAAGCGCCATACATCTG -ACGGAACTAAGCGCCATAGAGTTG -ACGGAACTAAGCGCCATAAGACTG -ACGGAACTAAGCGCCATATCGGTA -ACGGAACTAAGCGCCATATGCCTA -ACGGAACTAAGCGCCATACCACTA -ACGGAACTAAGCGCCATAGGAGTA -ACGGAACTAAGCGCCATATCGTCT -ACGGAACTAAGCGCCATATGCACT -ACGGAACTAAGCGCCATACTGACT -ACGGAACTAAGCGCCATACAACCT -ACGGAACTAAGCGCCATAGCTACT -ACGGAACTAAGCGCCATAGGATCT -ACGGAACTAAGCGCCATAAAGGCT -ACGGAACTAAGCGCCATATCAACC -ACGGAACTAAGCGCCATATGTTCC -ACGGAACTAAGCGCCATAATTCCC -ACGGAACTAAGCGCCATATTCTCG -ACGGAACTAAGCGCCATATAGACG -ACGGAACTAAGCGCCATAGTAACG -ACGGAACTAAGCGCCATAACTTCG -ACGGAACTAAGCGCCATATACGCA -ACGGAACTAAGCGCCATACTTGCA -ACGGAACTAAGCGCCATACGAACA -ACGGAACTAAGCGCCATACAGTCA -ACGGAACTAAGCGCCATAGATCCA -ACGGAACTAAGCGCCATAACGACA -ACGGAACTAAGCGCCATAAGCTCA -ACGGAACTAAGCGCCATATCACGT -ACGGAACTAAGCGCCATACGTAGT -ACGGAACTAAGCGCCATAGTCAGT -ACGGAACTAAGCGCCATAGAAGGT -ACGGAACTAAGCGCCATAAACCGT -ACGGAACTAAGCGCCATATTGTGC -ACGGAACTAAGCGCCATACTAAGC -ACGGAACTAAGCGCCATAACTAGC -ACGGAACTAAGCGCCATAAGATGC -ACGGAACTAAGCGCCATATGAAGG -ACGGAACTAAGCGCCATACAATGG -ACGGAACTAAGCGCCATAATGAGG -ACGGAACTAAGCGCCATAAATGGG -ACGGAACTAAGCGCCATATCCTGA -ACGGAACTAAGCGCCATATAGCGA -ACGGAACTAAGCGCCATACACAGA -ACGGAACTAAGCGCCATAGCAAGA -ACGGAACTAAGCGCCATAGGTTGA -ACGGAACTAAGCGCCATATCCGAT -ACGGAACTAAGCGCCATATGGCAT -ACGGAACTAAGCGCCATACGAGAT -ACGGAACTAAGCGCCATATACCAC -ACGGAACTAAGCGCCATACAGAAC -ACGGAACTAAGCGCCATAGTCTAC -ACGGAACTAAGCGCCATAACGTAC -ACGGAACTAAGCGCCATAAGTGAC -ACGGAACTAAGCGCCATACTGTAG -ACGGAACTAAGCGCCATACCTAAG -ACGGAACTAAGCGCCATAGTTCAG -ACGGAACTAAGCGCCATAGCATAG -ACGGAACTAAGCGCCATAGACAAG -ACGGAACTAAGCGCCATAAAGCAG -ACGGAACTAAGCGCCATACGTCAA -ACGGAACTAAGCGCCATAGCTGAA -ACGGAACTAAGCGCCATAAGTACG -ACGGAACTAAGCGCCATAATCCGA -ACGGAACTAAGCGCCATAATGGGA -ACGGAACTAAGCGCCATAGTGCAA -ACGGAACTAAGCGCCATAGAGGAA -ACGGAACTAAGCGCCATACAGGTA -ACGGAACTAAGCGCCATAGACTCT -ACGGAACTAAGCGCCATAAGTCCT -ACGGAACTAAGCGCCATATAAGCC -ACGGAACTAAGCGCCATAATAGCC -ACGGAACTAAGCGCCATATAACCG -ACGGAACTAAGCGCCATAATGCCA -ACGGAACTAAGCCCGTAAGGAAAC -ACGGAACTAAGCCCGTAAAACACC -ACGGAACTAAGCCCGTAAATCGAG -ACGGAACTAAGCCCGTAACTCCTT -ACGGAACTAAGCCCGTAACCTGTT -ACGGAACTAAGCCCGTAACGGTTT -ACGGAACTAAGCCCGTAAGTGGTT -ACGGAACTAAGCCCGTAAGCCTTT -ACGGAACTAAGCCCGTAAGGTCTT -ACGGAACTAAGCCCGTAAACGCTT -ACGGAACTAAGCCCGTAAAGCGTT -ACGGAACTAAGCCCGTAATTCGTC -ACGGAACTAAGCCCGTAATCTCTC -ACGGAACTAAGCCCGTAATGGATC -ACGGAACTAAGCCCGTAACACTTC -ACGGAACTAAGCCCGTAAGTACTC -ACGGAACTAAGCCCGTAAGATGTC -ACGGAACTAAGCCCGTAAACAGTC -ACGGAACTAAGCCCGTAATTGCTG -ACGGAACTAAGCCCGTAATCCATG -ACGGAACTAAGCCCGTAATGTGTG -ACGGAACTAAGCCCGTAACTAGTG -ACGGAACTAAGCCCGTAACATCTG -ACGGAACTAAGCCCGTAAGAGTTG -ACGGAACTAAGCCCGTAAAGACTG -ACGGAACTAAGCCCGTAATCGGTA -ACGGAACTAAGCCCGTAATGCCTA -ACGGAACTAAGCCCGTAACCACTA -ACGGAACTAAGCCCGTAAGGAGTA -ACGGAACTAAGCCCGTAATCGTCT -ACGGAACTAAGCCCGTAATGCACT -ACGGAACTAAGCCCGTAACTGACT -ACGGAACTAAGCCCGTAACAACCT -ACGGAACTAAGCCCGTAAGCTACT -ACGGAACTAAGCCCGTAAGGATCT -ACGGAACTAAGCCCGTAAAAGGCT -ACGGAACTAAGCCCGTAATCAACC -ACGGAACTAAGCCCGTAATGTTCC -ACGGAACTAAGCCCGTAAATTCCC -ACGGAACTAAGCCCGTAATTCTCG -ACGGAACTAAGCCCGTAATAGACG -ACGGAACTAAGCCCGTAAGTAACG -ACGGAACTAAGCCCGTAAACTTCG -ACGGAACTAAGCCCGTAATACGCA -ACGGAACTAAGCCCGTAACTTGCA -ACGGAACTAAGCCCGTAACGAACA -ACGGAACTAAGCCCGTAACAGTCA -ACGGAACTAAGCCCGTAAGATCCA -ACGGAACTAAGCCCGTAAACGACA -ACGGAACTAAGCCCGTAAAGCTCA -ACGGAACTAAGCCCGTAATCACGT -ACGGAACTAAGCCCGTAACGTAGT -ACGGAACTAAGCCCGTAAGTCAGT -ACGGAACTAAGCCCGTAAGAAGGT -ACGGAACTAAGCCCGTAAAACCGT -ACGGAACTAAGCCCGTAATTGTGC -ACGGAACTAAGCCCGTAACTAAGC -ACGGAACTAAGCCCGTAAACTAGC -ACGGAACTAAGCCCGTAAAGATGC -ACGGAACTAAGCCCGTAATGAAGG -ACGGAACTAAGCCCGTAACAATGG -ACGGAACTAAGCCCGTAAATGAGG -ACGGAACTAAGCCCGTAAAATGGG -ACGGAACTAAGCCCGTAATCCTGA -ACGGAACTAAGCCCGTAATAGCGA -ACGGAACTAAGCCCGTAACACAGA -ACGGAACTAAGCCCGTAAGCAAGA -ACGGAACTAAGCCCGTAAGGTTGA -ACGGAACTAAGCCCGTAATCCGAT -ACGGAACTAAGCCCGTAATGGCAT -ACGGAACTAAGCCCGTAACGAGAT -ACGGAACTAAGCCCGTAATACCAC -ACGGAACTAAGCCCGTAACAGAAC -ACGGAACTAAGCCCGTAAGTCTAC -ACGGAACTAAGCCCGTAAACGTAC -ACGGAACTAAGCCCGTAAAGTGAC -ACGGAACTAAGCCCGTAACTGTAG -ACGGAACTAAGCCCGTAACCTAAG -ACGGAACTAAGCCCGTAAGTTCAG -ACGGAACTAAGCCCGTAAGCATAG -ACGGAACTAAGCCCGTAAGACAAG -ACGGAACTAAGCCCGTAAAAGCAG -ACGGAACTAAGCCCGTAACGTCAA -ACGGAACTAAGCCCGTAAGCTGAA -ACGGAACTAAGCCCGTAAAGTACG -ACGGAACTAAGCCCGTAAATCCGA -ACGGAACTAAGCCCGTAAATGGGA -ACGGAACTAAGCCCGTAAGTGCAA -ACGGAACTAAGCCCGTAAGAGGAA -ACGGAACTAAGCCCGTAACAGGTA -ACGGAACTAAGCCCGTAAGACTCT -ACGGAACTAAGCCCGTAAAGTCCT -ACGGAACTAAGCCCGTAATAAGCC -ACGGAACTAAGCCCGTAAATAGCC -ACGGAACTAAGCCCGTAATAACCG -ACGGAACTAAGCCCGTAAATGCCA -ACGGAACTAAGCCCAATGGGAAAC -ACGGAACTAAGCCCAATGAACACC -ACGGAACTAAGCCCAATGATCGAG -ACGGAACTAAGCCCAATGCTCCTT -ACGGAACTAAGCCCAATGCCTGTT -ACGGAACTAAGCCCAATGCGGTTT -ACGGAACTAAGCCCAATGGTGGTT -ACGGAACTAAGCCCAATGGCCTTT -ACGGAACTAAGCCCAATGGGTCTT -ACGGAACTAAGCCCAATGACGCTT -ACGGAACTAAGCCCAATGAGCGTT -ACGGAACTAAGCCCAATGTTCGTC -ACGGAACTAAGCCCAATGTCTCTC -ACGGAACTAAGCCCAATGTGGATC -ACGGAACTAAGCCCAATGCACTTC -ACGGAACTAAGCCCAATGGTACTC -ACGGAACTAAGCCCAATGGATGTC -ACGGAACTAAGCCCAATGACAGTC -ACGGAACTAAGCCCAATGTTGCTG -ACGGAACTAAGCCCAATGTCCATG -ACGGAACTAAGCCCAATGTGTGTG -ACGGAACTAAGCCCAATGCTAGTG -ACGGAACTAAGCCCAATGCATCTG -ACGGAACTAAGCCCAATGGAGTTG -ACGGAACTAAGCCCAATGAGACTG -ACGGAACTAAGCCCAATGTCGGTA -ACGGAACTAAGCCCAATGTGCCTA -ACGGAACTAAGCCCAATGCCACTA -ACGGAACTAAGCCCAATGGGAGTA -ACGGAACTAAGCCCAATGTCGTCT -ACGGAACTAAGCCCAATGTGCACT -ACGGAACTAAGCCCAATGCTGACT -ACGGAACTAAGCCCAATGCAACCT -ACGGAACTAAGCCCAATGGCTACT -ACGGAACTAAGCCCAATGGGATCT -ACGGAACTAAGCCCAATGAAGGCT -ACGGAACTAAGCCCAATGTCAACC -ACGGAACTAAGCCCAATGTGTTCC -ACGGAACTAAGCCCAATGATTCCC -ACGGAACTAAGCCCAATGTTCTCG -ACGGAACTAAGCCCAATGTAGACG -ACGGAACTAAGCCCAATGGTAACG -ACGGAACTAAGCCCAATGACTTCG -ACGGAACTAAGCCCAATGTACGCA -ACGGAACTAAGCCCAATGCTTGCA -ACGGAACTAAGCCCAATGCGAACA -ACGGAACTAAGCCCAATGCAGTCA -ACGGAACTAAGCCCAATGGATCCA -ACGGAACTAAGCCCAATGACGACA -ACGGAACTAAGCCCAATGAGCTCA -ACGGAACTAAGCCCAATGTCACGT -ACGGAACTAAGCCCAATGCGTAGT -ACGGAACTAAGCCCAATGGTCAGT -ACGGAACTAAGCCCAATGGAAGGT -ACGGAACTAAGCCCAATGAACCGT -ACGGAACTAAGCCCAATGTTGTGC -ACGGAACTAAGCCCAATGCTAAGC -ACGGAACTAAGCCCAATGACTAGC -ACGGAACTAAGCCCAATGAGATGC -ACGGAACTAAGCCCAATGTGAAGG -ACGGAACTAAGCCCAATGCAATGG -ACGGAACTAAGCCCAATGATGAGG -ACGGAACTAAGCCCAATGAATGGG -ACGGAACTAAGCCCAATGTCCTGA -ACGGAACTAAGCCCAATGTAGCGA -ACGGAACTAAGCCCAATGCACAGA -ACGGAACTAAGCCCAATGGCAAGA -ACGGAACTAAGCCCAATGGGTTGA -ACGGAACTAAGCCCAATGTCCGAT -ACGGAACTAAGCCCAATGTGGCAT -ACGGAACTAAGCCCAATGCGAGAT -ACGGAACTAAGCCCAATGTACCAC -ACGGAACTAAGCCCAATGCAGAAC -ACGGAACTAAGCCCAATGGTCTAC -ACGGAACTAAGCCCAATGACGTAC -ACGGAACTAAGCCCAATGAGTGAC -ACGGAACTAAGCCCAATGCTGTAG -ACGGAACTAAGCCCAATGCCTAAG -ACGGAACTAAGCCCAATGGTTCAG -ACGGAACTAAGCCCAATGGCATAG -ACGGAACTAAGCCCAATGGACAAG -ACGGAACTAAGCCCAATGAAGCAG -ACGGAACTAAGCCCAATGCGTCAA -ACGGAACTAAGCCCAATGGCTGAA -ACGGAACTAAGCCCAATGAGTACG -ACGGAACTAAGCCCAATGATCCGA -ACGGAACTAAGCCCAATGATGGGA -ACGGAACTAAGCCCAATGGTGCAA -ACGGAACTAAGCCCAATGGAGGAA -ACGGAACTAAGCCCAATGCAGGTA -ACGGAACTAAGCCCAATGGACTCT -ACGGAACTAAGCCCAATGAGTCCT -ACGGAACTAAGCCCAATGTAAGCC -ACGGAACTAAGCCCAATGATAGCC -ACGGAACTAAGCCCAATGTAACCG -ACGGAACTAAGCCCAATGATGCCA -ACGGAATTCAGGAACGGAGGAAAC -ACGGAATTCAGGAACGGAAACACC -ACGGAATTCAGGAACGGAATCGAG -ACGGAATTCAGGAACGGACTCCTT -ACGGAATTCAGGAACGGACCTGTT -ACGGAATTCAGGAACGGACGGTTT -ACGGAATTCAGGAACGGAGTGGTT -ACGGAATTCAGGAACGGAGCCTTT -ACGGAATTCAGGAACGGAGGTCTT -ACGGAATTCAGGAACGGAACGCTT -ACGGAATTCAGGAACGGAAGCGTT -ACGGAATTCAGGAACGGATTCGTC -ACGGAATTCAGGAACGGATCTCTC -ACGGAATTCAGGAACGGATGGATC -ACGGAATTCAGGAACGGACACTTC -ACGGAATTCAGGAACGGAGTACTC -ACGGAATTCAGGAACGGAGATGTC -ACGGAATTCAGGAACGGAACAGTC -ACGGAATTCAGGAACGGATTGCTG -ACGGAATTCAGGAACGGATCCATG -ACGGAATTCAGGAACGGATGTGTG -ACGGAATTCAGGAACGGACTAGTG -ACGGAATTCAGGAACGGACATCTG -ACGGAATTCAGGAACGGAGAGTTG -ACGGAATTCAGGAACGGAAGACTG -ACGGAATTCAGGAACGGATCGGTA -ACGGAATTCAGGAACGGATGCCTA -ACGGAATTCAGGAACGGACCACTA -ACGGAATTCAGGAACGGAGGAGTA -ACGGAATTCAGGAACGGATCGTCT -ACGGAATTCAGGAACGGATGCACT -ACGGAATTCAGGAACGGACTGACT -ACGGAATTCAGGAACGGACAACCT -ACGGAATTCAGGAACGGAGCTACT -ACGGAATTCAGGAACGGAGGATCT -ACGGAATTCAGGAACGGAAAGGCT -ACGGAATTCAGGAACGGATCAACC -ACGGAATTCAGGAACGGATGTTCC -ACGGAATTCAGGAACGGAATTCCC -ACGGAATTCAGGAACGGATTCTCG -ACGGAATTCAGGAACGGATAGACG -ACGGAATTCAGGAACGGAGTAACG -ACGGAATTCAGGAACGGAACTTCG -ACGGAATTCAGGAACGGATACGCA -ACGGAATTCAGGAACGGACTTGCA -ACGGAATTCAGGAACGGACGAACA -ACGGAATTCAGGAACGGACAGTCA -ACGGAATTCAGGAACGGAGATCCA -ACGGAATTCAGGAACGGAACGACA -ACGGAATTCAGGAACGGAAGCTCA -ACGGAATTCAGGAACGGATCACGT -ACGGAATTCAGGAACGGACGTAGT -ACGGAATTCAGGAACGGAGTCAGT -ACGGAATTCAGGAACGGAGAAGGT -ACGGAATTCAGGAACGGAAACCGT -ACGGAATTCAGGAACGGATTGTGC -ACGGAATTCAGGAACGGACTAAGC -ACGGAATTCAGGAACGGAACTAGC -ACGGAATTCAGGAACGGAAGATGC -ACGGAATTCAGGAACGGATGAAGG -ACGGAATTCAGGAACGGACAATGG -ACGGAATTCAGGAACGGAATGAGG -ACGGAATTCAGGAACGGAAATGGG -ACGGAATTCAGGAACGGATCCTGA -ACGGAATTCAGGAACGGATAGCGA -ACGGAATTCAGGAACGGACACAGA -ACGGAATTCAGGAACGGAGCAAGA -ACGGAATTCAGGAACGGAGGTTGA -ACGGAATTCAGGAACGGATCCGAT -ACGGAATTCAGGAACGGATGGCAT -ACGGAATTCAGGAACGGACGAGAT -ACGGAATTCAGGAACGGATACCAC -ACGGAATTCAGGAACGGACAGAAC -ACGGAATTCAGGAACGGAGTCTAC -ACGGAATTCAGGAACGGAACGTAC -ACGGAATTCAGGAACGGAAGTGAC -ACGGAATTCAGGAACGGACTGTAG -ACGGAATTCAGGAACGGACCTAAG -ACGGAATTCAGGAACGGAGTTCAG -ACGGAATTCAGGAACGGAGCATAG -ACGGAATTCAGGAACGGAGACAAG -ACGGAATTCAGGAACGGAAAGCAG -ACGGAATTCAGGAACGGACGTCAA -ACGGAATTCAGGAACGGAGCTGAA -ACGGAATTCAGGAACGGAAGTACG -ACGGAATTCAGGAACGGAATCCGA -ACGGAATTCAGGAACGGAATGGGA -ACGGAATTCAGGAACGGAGTGCAA -ACGGAATTCAGGAACGGAGAGGAA -ACGGAATTCAGGAACGGACAGGTA -ACGGAATTCAGGAACGGAGACTCT -ACGGAATTCAGGAACGGAAGTCCT -ACGGAATTCAGGAACGGATAAGCC -ACGGAATTCAGGAACGGAATAGCC -ACGGAATTCAGGAACGGATAACCG -ACGGAATTCAGGAACGGAATGCCA -ACGGAATTCAGGACCAACGGAAAC -ACGGAATTCAGGACCAACAACACC -ACGGAATTCAGGACCAACATCGAG -ACGGAATTCAGGACCAACCTCCTT -ACGGAATTCAGGACCAACCCTGTT -ACGGAATTCAGGACCAACCGGTTT -ACGGAATTCAGGACCAACGTGGTT -ACGGAATTCAGGACCAACGCCTTT -ACGGAATTCAGGACCAACGGTCTT -ACGGAATTCAGGACCAACACGCTT -ACGGAATTCAGGACCAACAGCGTT -ACGGAATTCAGGACCAACTTCGTC -ACGGAATTCAGGACCAACTCTCTC -ACGGAATTCAGGACCAACTGGATC -ACGGAATTCAGGACCAACCACTTC -ACGGAATTCAGGACCAACGTACTC -ACGGAATTCAGGACCAACGATGTC -ACGGAATTCAGGACCAACACAGTC -ACGGAATTCAGGACCAACTTGCTG -ACGGAATTCAGGACCAACTCCATG -ACGGAATTCAGGACCAACTGTGTG -ACGGAATTCAGGACCAACCTAGTG -ACGGAATTCAGGACCAACCATCTG -ACGGAATTCAGGACCAACGAGTTG -ACGGAATTCAGGACCAACAGACTG -ACGGAATTCAGGACCAACTCGGTA -ACGGAATTCAGGACCAACTGCCTA -ACGGAATTCAGGACCAACCCACTA -ACGGAATTCAGGACCAACGGAGTA -ACGGAATTCAGGACCAACTCGTCT -ACGGAATTCAGGACCAACTGCACT -ACGGAATTCAGGACCAACCTGACT -ACGGAATTCAGGACCAACCAACCT -ACGGAATTCAGGACCAACGCTACT -ACGGAATTCAGGACCAACGGATCT -ACGGAATTCAGGACCAACAAGGCT -ACGGAATTCAGGACCAACTCAACC -ACGGAATTCAGGACCAACTGTTCC -ACGGAATTCAGGACCAACATTCCC -ACGGAATTCAGGACCAACTTCTCG -ACGGAATTCAGGACCAACTAGACG -ACGGAATTCAGGACCAACGTAACG -ACGGAATTCAGGACCAACACTTCG -ACGGAATTCAGGACCAACTACGCA -ACGGAATTCAGGACCAACCTTGCA -ACGGAATTCAGGACCAACCGAACA -ACGGAATTCAGGACCAACCAGTCA -ACGGAATTCAGGACCAACGATCCA -ACGGAATTCAGGACCAACACGACA -ACGGAATTCAGGACCAACAGCTCA -ACGGAATTCAGGACCAACTCACGT -ACGGAATTCAGGACCAACCGTAGT -ACGGAATTCAGGACCAACGTCAGT -ACGGAATTCAGGACCAACGAAGGT -ACGGAATTCAGGACCAACAACCGT -ACGGAATTCAGGACCAACTTGTGC -ACGGAATTCAGGACCAACCTAAGC -ACGGAATTCAGGACCAACACTAGC -ACGGAATTCAGGACCAACAGATGC -ACGGAATTCAGGACCAACTGAAGG -ACGGAATTCAGGACCAACCAATGG -ACGGAATTCAGGACCAACATGAGG -ACGGAATTCAGGACCAACAATGGG -ACGGAATTCAGGACCAACTCCTGA -ACGGAATTCAGGACCAACTAGCGA -ACGGAATTCAGGACCAACCACAGA -ACGGAATTCAGGACCAACGCAAGA -ACGGAATTCAGGACCAACGGTTGA -ACGGAATTCAGGACCAACTCCGAT -ACGGAATTCAGGACCAACTGGCAT -ACGGAATTCAGGACCAACCGAGAT -ACGGAATTCAGGACCAACTACCAC -ACGGAATTCAGGACCAACCAGAAC -ACGGAATTCAGGACCAACGTCTAC -ACGGAATTCAGGACCAACACGTAC -ACGGAATTCAGGACCAACAGTGAC -ACGGAATTCAGGACCAACCTGTAG -ACGGAATTCAGGACCAACCCTAAG -ACGGAATTCAGGACCAACGTTCAG -ACGGAATTCAGGACCAACGCATAG -ACGGAATTCAGGACCAACGACAAG -ACGGAATTCAGGACCAACAAGCAG -ACGGAATTCAGGACCAACCGTCAA -ACGGAATTCAGGACCAACGCTGAA -ACGGAATTCAGGACCAACAGTACG -ACGGAATTCAGGACCAACATCCGA -ACGGAATTCAGGACCAACATGGGA -ACGGAATTCAGGACCAACGTGCAA -ACGGAATTCAGGACCAACGAGGAA -ACGGAATTCAGGACCAACCAGGTA -ACGGAATTCAGGACCAACGACTCT -ACGGAATTCAGGACCAACAGTCCT -ACGGAATTCAGGACCAACTAAGCC -ACGGAATTCAGGACCAACATAGCC -ACGGAATTCAGGACCAACTAACCG -ACGGAATTCAGGACCAACATGCCA -ACGGAATTCAGGGAGATCGGAAAC -ACGGAATTCAGGGAGATCAACACC -ACGGAATTCAGGGAGATCATCGAG -ACGGAATTCAGGGAGATCCTCCTT -ACGGAATTCAGGGAGATCCCTGTT -ACGGAATTCAGGGAGATCCGGTTT -ACGGAATTCAGGGAGATCGTGGTT -ACGGAATTCAGGGAGATCGCCTTT -ACGGAATTCAGGGAGATCGGTCTT -ACGGAATTCAGGGAGATCACGCTT -ACGGAATTCAGGGAGATCAGCGTT -ACGGAATTCAGGGAGATCTTCGTC -ACGGAATTCAGGGAGATCTCTCTC -ACGGAATTCAGGGAGATCTGGATC -ACGGAATTCAGGGAGATCCACTTC -ACGGAATTCAGGGAGATCGTACTC -ACGGAATTCAGGGAGATCGATGTC -ACGGAATTCAGGGAGATCACAGTC -ACGGAATTCAGGGAGATCTTGCTG -ACGGAATTCAGGGAGATCTCCATG -ACGGAATTCAGGGAGATCTGTGTG -ACGGAATTCAGGGAGATCCTAGTG -ACGGAATTCAGGGAGATCCATCTG -ACGGAATTCAGGGAGATCGAGTTG -ACGGAATTCAGGGAGATCAGACTG -ACGGAATTCAGGGAGATCTCGGTA -ACGGAATTCAGGGAGATCTGCCTA -ACGGAATTCAGGGAGATCCCACTA -ACGGAATTCAGGGAGATCGGAGTA -ACGGAATTCAGGGAGATCTCGTCT -ACGGAATTCAGGGAGATCTGCACT -ACGGAATTCAGGGAGATCCTGACT -ACGGAATTCAGGGAGATCCAACCT -ACGGAATTCAGGGAGATCGCTACT -ACGGAATTCAGGGAGATCGGATCT -ACGGAATTCAGGGAGATCAAGGCT -ACGGAATTCAGGGAGATCTCAACC -ACGGAATTCAGGGAGATCTGTTCC -ACGGAATTCAGGGAGATCATTCCC -ACGGAATTCAGGGAGATCTTCTCG -ACGGAATTCAGGGAGATCTAGACG -ACGGAATTCAGGGAGATCGTAACG -ACGGAATTCAGGGAGATCACTTCG -ACGGAATTCAGGGAGATCTACGCA -ACGGAATTCAGGGAGATCCTTGCA -ACGGAATTCAGGGAGATCCGAACA -ACGGAATTCAGGGAGATCCAGTCA -ACGGAATTCAGGGAGATCGATCCA -ACGGAATTCAGGGAGATCACGACA -ACGGAATTCAGGGAGATCAGCTCA -ACGGAATTCAGGGAGATCTCACGT -ACGGAATTCAGGGAGATCCGTAGT -ACGGAATTCAGGGAGATCGTCAGT -ACGGAATTCAGGGAGATCGAAGGT -ACGGAATTCAGGGAGATCAACCGT -ACGGAATTCAGGGAGATCTTGTGC -ACGGAATTCAGGGAGATCCTAAGC -ACGGAATTCAGGGAGATCACTAGC -ACGGAATTCAGGGAGATCAGATGC -ACGGAATTCAGGGAGATCTGAAGG -ACGGAATTCAGGGAGATCCAATGG -ACGGAATTCAGGGAGATCATGAGG -ACGGAATTCAGGGAGATCAATGGG -ACGGAATTCAGGGAGATCTCCTGA -ACGGAATTCAGGGAGATCTAGCGA -ACGGAATTCAGGGAGATCCACAGA -ACGGAATTCAGGGAGATCGCAAGA -ACGGAATTCAGGGAGATCGGTTGA -ACGGAATTCAGGGAGATCTCCGAT -ACGGAATTCAGGGAGATCTGGCAT -ACGGAATTCAGGGAGATCCGAGAT -ACGGAATTCAGGGAGATCTACCAC -ACGGAATTCAGGGAGATCCAGAAC -ACGGAATTCAGGGAGATCGTCTAC -ACGGAATTCAGGGAGATCACGTAC -ACGGAATTCAGGGAGATCAGTGAC -ACGGAATTCAGGGAGATCCTGTAG -ACGGAATTCAGGGAGATCCCTAAG -ACGGAATTCAGGGAGATCGTTCAG -ACGGAATTCAGGGAGATCGCATAG -ACGGAATTCAGGGAGATCGACAAG -ACGGAATTCAGGGAGATCAAGCAG -ACGGAATTCAGGGAGATCCGTCAA -ACGGAATTCAGGGAGATCGCTGAA -ACGGAATTCAGGGAGATCAGTACG -ACGGAATTCAGGGAGATCATCCGA -ACGGAATTCAGGGAGATCATGGGA -ACGGAATTCAGGGAGATCGTGCAA -ACGGAATTCAGGGAGATCGAGGAA -ACGGAATTCAGGGAGATCCAGGTA -ACGGAATTCAGGGAGATCGACTCT -ACGGAATTCAGGGAGATCAGTCCT -ACGGAATTCAGGGAGATCTAAGCC -ACGGAATTCAGGGAGATCATAGCC -ACGGAATTCAGGGAGATCTAACCG -ACGGAATTCAGGGAGATCATGCCA -ACGGAATTCAGGCTTCTCGGAAAC -ACGGAATTCAGGCTTCTCAACACC -ACGGAATTCAGGCTTCTCATCGAG -ACGGAATTCAGGCTTCTCCTCCTT -ACGGAATTCAGGCTTCTCCCTGTT -ACGGAATTCAGGCTTCTCCGGTTT -ACGGAATTCAGGCTTCTCGTGGTT -ACGGAATTCAGGCTTCTCGCCTTT -ACGGAATTCAGGCTTCTCGGTCTT -ACGGAATTCAGGCTTCTCACGCTT -ACGGAATTCAGGCTTCTCAGCGTT -ACGGAATTCAGGCTTCTCTTCGTC -ACGGAATTCAGGCTTCTCTCTCTC -ACGGAATTCAGGCTTCTCTGGATC -ACGGAATTCAGGCTTCTCCACTTC -ACGGAATTCAGGCTTCTCGTACTC -ACGGAATTCAGGCTTCTCGATGTC -ACGGAATTCAGGCTTCTCACAGTC -ACGGAATTCAGGCTTCTCTTGCTG -ACGGAATTCAGGCTTCTCTCCATG -ACGGAATTCAGGCTTCTCTGTGTG -ACGGAATTCAGGCTTCTCCTAGTG -ACGGAATTCAGGCTTCTCCATCTG -ACGGAATTCAGGCTTCTCGAGTTG -ACGGAATTCAGGCTTCTCAGACTG -ACGGAATTCAGGCTTCTCTCGGTA -ACGGAATTCAGGCTTCTCTGCCTA -ACGGAATTCAGGCTTCTCCCACTA -ACGGAATTCAGGCTTCTCGGAGTA -ACGGAATTCAGGCTTCTCTCGTCT -ACGGAATTCAGGCTTCTCTGCACT -ACGGAATTCAGGCTTCTCCTGACT -ACGGAATTCAGGCTTCTCCAACCT -ACGGAATTCAGGCTTCTCGCTACT -ACGGAATTCAGGCTTCTCGGATCT -ACGGAATTCAGGCTTCTCAAGGCT -ACGGAATTCAGGCTTCTCTCAACC -ACGGAATTCAGGCTTCTCTGTTCC -ACGGAATTCAGGCTTCTCATTCCC -ACGGAATTCAGGCTTCTCTTCTCG -ACGGAATTCAGGCTTCTCTAGACG -ACGGAATTCAGGCTTCTCGTAACG -ACGGAATTCAGGCTTCTCACTTCG -ACGGAATTCAGGCTTCTCTACGCA -ACGGAATTCAGGCTTCTCCTTGCA -ACGGAATTCAGGCTTCTCCGAACA -ACGGAATTCAGGCTTCTCCAGTCA -ACGGAATTCAGGCTTCTCGATCCA -ACGGAATTCAGGCTTCTCACGACA -ACGGAATTCAGGCTTCTCAGCTCA -ACGGAATTCAGGCTTCTCTCACGT -ACGGAATTCAGGCTTCTCCGTAGT -ACGGAATTCAGGCTTCTCGTCAGT -ACGGAATTCAGGCTTCTCGAAGGT -ACGGAATTCAGGCTTCTCAACCGT -ACGGAATTCAGGCTTCTCTTGTGC -ACGGAATTCAGGCTTCTCCTAAGC -ACGGAATTCAGGCTTCTCACTAGC -ACGGAATTCAGGCTTCTCAGATGC -ACGGAATTCAGGCTTCTCTGAAGG -ACGGAATTCAGGCTTCTCCAATGG -ACGGAATTCAGGCTTCTCATGAGG -ACGGAATTCAGGCTTCTCAATGGG -ACGGAATTCAGGCTTCTCTCCTGA -ACGGAATTCAGGCTTCTCTAGCGA -ACGGAATTCAGGCTTCTCCACAGA -ACGGAATTCAGGCTTCTCGCAAGA -ACGGAATTCAGGCTTCTCGGTTGA -ACGGAATTCAGGCTTCTCTCCGAT -ACGGAATTCAGGCTTCTCTGGCAT -ACGGAATTCAGGCTTCTCCGAGAT -ACGGAATTCAGGCTTCTCTACCAC -ACGGAATTCAGGCTTCTCCAGAAC -ACGGAATTCAGGCTTCTCGTCTAC -ACGGAATTCAGGCTTCTCACGTAC -ACGGAATTCAGGCTTCTCAGTGAC -ACGGAATTCAGGCTTCTCCTGTAG -ACGGAATTCAGGCTTCTCCCTAAG -ACGGAATTCAGGCTTCTCGTTCAG -ACGGAATTCAGGCTTCTCGCATAG -ACGGAATTCAGGCTTCTCGACAAG -ACGGAATTCAGGCTTCTCAAGCAG -ACGGAATTCAGGCTTCTCCGTCAA -ACGGAATTCAGGCTTCTCGCTGAA -ACGGAATTCAGGCTTCTCAGTACG -ACGGAATTCAGGCTTCTCATCCGA -ACGGAATTCAGGCTTCTCATGGGA -ACGGAATTCAGGCTTCTCGTGCAA -ACGGAATTCAGGCTTCTCGAGGAA -ACGGAATTCAGGCTTCTCCAGGTA -ACGGAATTCAGGCTTCTCGACTCT -ACGGAATTCAGGCTTCTCAGTCCT -ACGGAATTCAGGCTTCTCTAAGCC -ACGGAATTCAGGCTTCTCATAGCC -ACGGAATTCAGGCTTCTCTAACCG -ACGGAATTCAGGCTTCTCATGCCA -ACGGAATTCAGGGTTCCTGGAAAC -ACGGAATTCAGGGTTCCTAACACC -ACGGAATTCAGGGTTCCTATCGAG -ACGGAATTCAGGGTTCCTCTCCTT -ACGGAATTCAGGGTTCCTCCTGTT -ACGGAATTCAGGGTTCCTCGGTTT -ACGGAATTCAGGGTTCCTGTGGTT -ACGGAATTCAGGGTTCCTGCCTTT -ACGGAATTCAGGGTTCCTGGTCTT -ACGGAATTCAGGGTTCCTACGCTT -ACGGAATTCAGGGTTCCTAGCGTT -ACGGAATTCAGGGTTCCTTTCGTC -ACGGAATTCAGGGTTCCTTCTCTC -ACGGAATTCAGGGTTCCTTGGATC -ACGGAATTCAGGGTTCCTCACTTC -ACGGAATTCAGGGTTCCTGTACTC -ACGGAATTCAGGGTTCCTGATGTC -ACGGAATTCAGGGTTCCTACAGTC -ACGGAATTCAGGGTTCCTTTGCTG -ACGGAATTCAGGGTTCCTTCCATG -ACGGAATTCAGGGTTCCTTGTGTG -ACGGAATTCAGGGTTCCTCTAGTG -ACGGAATTCAGGGTTCCTCATCTG -ACGGAATTCAGGGTTCCTGAGTTG -ACGGAATTCAGGGTTCCTAGACTG -ACGGAATTCAGGGTTCCTTCGGTA -ACGGAATTCAGGGTTCCTTGCCTA -ACGGAATTCAGGGTTCCTCCACTA -ACGGAATTCAGGGTTCCTGGAGTA -ACGGAATTCAGGGTTCCTTCGTCT -ACGGAATTCAGGGTTCCTTGCACT -ACGGAATTCAGGGTTCCTCTGACT -ACGGAATTCAGGGTTCCTCAACCT -ACGGAATTCAGGGTTCCTGCTACT -ACGGAATTCAGGGTTCCTGGATCT -ACGGAATTCAGGGTTCCTAAGGCT -ACGGAATTCAGGGTTCCTTCAACC -ACGGAATTCAGGGTTCCTTGTTCC -ACGGAATTCAGGGTTCCTATTCCC -ACGGAATTCAGGGTTCCTTTCTCG -ACGGAATTCAGGGTTCCTTAGACG -ACGGAATTCAGGGTTCCTGTAACG -ACGGAATTCAGGGTTCCTACTTCG -ACGGAATTCAGGGTTCCTTACGCA -ACGGAATTCAGGGTTCCTCTTGCA -ACGGAATTCAGGGTTCCTCGAACA -ACGGAATTCAGGGTTCCTCAGTCA -ACGGAATTCAGGGTTCCTGATCCA -ACGGAATTCAGGGTTCCTACGACA -ACGGAATTCAGGGTTCCTAGCTCA -ACGGAATTCAGGGTTCCTTCACGT -ACGGAATTCAGGGTTCCTCGTAGT -ACGGAATTCAGGGTTCCTGTCAGT -ACGGAATTCAGGGTTCCTGAAGGT -ACGGAATTCAGGGTTCCTAACCGT -ACGGAATTCAGGGTTCCTTTGTGC -ACGGAATTCAGGGTTCCTCTAAGC -ACGGAATTCAGGGTTCCTACTAGC -ACGGAATTCAGGGTTCCTAGATGC -ACGGAATTCAGGGTTCCTTGAAGG -ACGGAATTCAGGGTTCCTCAATGG -ACGGAATTCAGGGTTCCTATGAGG -ACGGAATTCAGGGTTCCTAATGGG -ACGGAATTCAGGGTTCCTTCCTGA -ACGGAATTCAGGGTTCCTTAGCGA -ACGGAATTCAGGGTTCCTCACAGA -ACGGAATTCAGGGTTCCTGCAAGA -ACGGAATTCAGGGTTCCTGGTTGA -ACGGAATTCAGGGTTCCTTCCGAT -ACGGAATTCAGGGTTCCTTGGCAT -ACGGAATTCAGGGTTCCTCGAGAT -ACGGAATTCAGGGTTCCTTACCAC -ACGGAATTCAGGGTTCCTCAGAAC -ACGGAATTCAGGGTTCCTGTCTAC -ACGGAATTCAGGGTTCCTACGTAC -ACGGAATTCAGGGTTCCTAGTGAC -ACGGAATTCAGGGTTCCTCTGTAG -ACGGAATTCAGGGTTCCTCCTAAG -ACGGAATTCAGGGTTCCTGTTCAG -ACGGAATTCAGGGTTCCTGCATAG -ACGGAATTCAGGGTTCCTGACAAG -ACGGAATTCAGGGTTCCTAAGCAG -ACGGAATTCAGGGTTCCTCGTCAA -ACGGAATTCAGGGTTCCTGCTGAA -ACGGAATTCAGGGTTCCTAGTACG -ACGGAATTCAGGGTTCCTATCCGA -ACGGAATTCAGGGTTCCTATGGGA -ACGGAATTCAGGGTTCCTGTGCAA -ACGGAATTCAGGGTTCCTGAGGAA -ACGGAATTCAGGGTTCCTCAGGTA -ACGGAATTCAGGGTTCCTGACTCT -ACGGAATTCAGGGTTCCTAGTCCT -ACGGAATTCAGGGTTCCTTAAGCC -ACGGAATTCAGGGTTCCTATAGCC -ACGGAATTCAGGGTTCCTTAACCG -ACGGAATTCAGGGTTCCTATGCCA -ACGGAATTCAGGTTTCGGGGAAAC -ACGGAATTCAGGTTTCGGAACACC -ACGGAATTCAGGTTTCGGATCGAG -ACGGAATTCAGGTTTCGGCTCCTT -ACGGAATTCAGGTTTCGGCCTGTT -ACGGAATTCAGGTTTCGGCGGTTT -ACGGAATTCAGGTTTCGGGTGGTT -ACGGAATTCAGGTTTCGGGCCTTT -ACGGAATTCAGGTTTCGGGGTCTT -ACGGAATTCAGGTTTCGGACGCTT -ACGGAATTCAGGTTTCGGAGCGTT -ACGGAATTCAGGTTTCGGTTCGTC -ACGGAATTCAGGTTTCGGTCTCTC -ACGGAATTCAGGTTTCGGTGGATC -ACGGAATTCAGGTTTCGGCACTTC -ACGGAATTCAGGTTTCGGGTACTC -ACGGAATTCAGGTTTCGGGATGTC -ACGGAATTCAGGTTTCGGACAGTC -ACGGAATTCAGGTTTCGGTTGCTG -ACGGAATTCAGGTTTCGGTCCATG -ACGGAATTCAGGTTTCGGTGTGTG -ACGGAATTCAGGTTTCGGCTAGTG -ACGGAATTCAGGTTTCGGCATCTG -ACGGAATTCAGGTTTCGGGAGTTG -ACGGAATTCAGGTTTCGGAGACTG -ACGGAATTCAGGTTTCGGTCGGTA -ACGGAATTCAGGTTTCGGTGCCTA -ACGGAATTCAGGTTTCGGCCACTA -ACGGAATTCAGGTTTCGGGGAGTA -ACGGAATTCAGGTTTCGGTCGTCT -ACGGAATTCAGGTTTCGGTGCACT -ACGGAATTCAGGTTTCGGCTGACT -ACGGAATTCAGGTTTCGGCAACCT -ACGGAATTCAGGTTTCGGGCTACT -ACGGAATTCAGGTTTCGGGGATCT -ACGGAATTCAGGTTTCGGAAGGCT -ACGGAATTCAGGTTTCGGTCAACC -ACGGAATTCAGGTTTCGGTGTTCC -ACGGAATTCAGGTTTCGGATTCCC -ACGGAATTCAGGTTTCGGTTCTCG -ACGGAATTCAGGTTTCGGTAGACG -ACGGAATTCAGGTTTCGGGTAACG -ACGGAATTCAGGTTTCGGACTTCG -ACGGAATTCAGGTTTCGGTACGCA -ACGGAATTCAGGTTTCGGCTTGCA -ACGGAATTCAGGTTTCGGCGAACA -ACGGAATTCAGGTTTCGGCAGTCA -ACGGAATTCAGGTTTCGGGATCCA -ACGGAATTCAGGTTTCGGACGACA -ACGGAATTCAGGTTTCGGAGCTCA -ACGGAATTCAGGTTTCGGTCACGT -ACGGAATTCAGGTTTCGGCGTAGT -ACGGAATTCAGGTTTCGGGTCAGT -ACGGAATTCAGGTTTCGGGAAGGT -ACGGAATTCAGGTTTCGGAACCGT -ACGGAATTCAGGTTTCGGTTGTGC -ACGGAATTCAGGTTTCGGCTAAGC -ACGGAATTCAGGTTTCGGACTAGC -ACGGAATTCAGGTTTCGGAGATGC -ACGGAATTCAGGTTTCGGTGAAGG -ACGGAATTCAGGTTTCGGCAATGG -ACGGAATTCAGGTTTCGGATGAGG -ACGGAATTCAGGTTTCGGAATGGG -ACGGAATTCAGGTTTCGGTCCTGA -ACGGAATTCAGGTTTCGGTAGCGA -ACGGAATTCAGGTTTCGGCACAGA -ACGGAATTCAGGTTTCGGGCAAGA -ACGGAATTCAGGTTTCGGGGTTGA -ACGGAATTCAGGTTTCGGTCCGAT -ACGGAATTCAGGTTTCGGTGGCAT -ACGGAATTCAGGTTTCGGCGAGAT -ACGGAATTCAGGTTTCGGTACCAC -ACGGAATTCAGGTTTCGGCAGAAC -ACGGAATTCAGGTTTCGGGTCTAC -ACGGAATTCAGGTTTCGGACGTAC -ACGGAATTCAGGTTTCGGAGTGAC -ACGGAATTCAGGTTTCGGCTGTAG -ACGGAATTCAGGTTTCGGCCTAAG -ACGGAATTCAGGTTTCGGGTTCAG -ACGGAATTCAGGTTTCGGGCATAG -ACGGAATTCAGGTTTCGGGACAAG -ACGGAATTCAGGTTTCGGAAGCAG -ACGGAATTCAGGTTTCGGCGTCAA -ACGGAATTCAGGTTTCGGGCTGAA -ACGGAATTCAGGTTTCGGAGTACG -ACGGAATTCAGGTTTCGGATCCGA -ACGGAATTCAGGTTTCGGATGGGA -ACGGAATTCAGGTTTCGGGTGCAA -ACGGAATTCAGGTTTCGGGAGGAA -ACGGAATTCAGGTTTCGGCAGGTA -ACGGAATTCAGGTTTCGGGACTCT -ACGGAATTCAGGTTTCGGAGTCCT -ACGGAATTCAGGTTTCGGTAAGCC -ACGGAATTCAGGTTTCGGATAGCC -ACGGAATTCAGGTTTCGGTAACCG -ACGGAATTCAGGTTTCGGATGCCA -ACGGAATTCAGGGTTGTGGGAAAC -ACGGAATTCAGGGTTGTGAACACC -ACGGAATTCAGGGTTGTGATCGAG -ACGGAATTCAGGGTTGTGCTCCTT -ACGGAATTCAGGGTTGTGCCTGTT -ACGGAATTCAGGGTTGTGCGGTTT -ACGGAATTCAGGGTTGTGGTGGTT -ACGGAATTCAGGGTTGTGGCCTTT -ACGGAATTCAGGGTTGTGGGTCTT -ACGGAATTCAGGGTTGTGACGCTT -ACGGAATTCAGGGTTGTGAGCGTT -ACGGAATTCAGGGTTGTGTTCGTC -ACGGAATTCAGGGTTGTGTCTCTC -ACGGAATTCAGGGTTGTGTGGATC -ACGGAATTCAGGGTTGTGCACTTC -ACGGAATTCAGGGTTGTGGTACTC -ACGGAATTCAGGGTTGTGGATGTC -ACGGAATTCAGGGTTGTGACAGTC -ACGGAATTCAGGGTTGTGTTGCTG -ACGGAATTCAGGGTTGTGTCCATG -ACGGAATTCAGGGTTGTGTGTGTG -ACGGAATTCAGGGTTGTGCTAGTG -ACGGAATTCAGGGTTGTGCATCTG -ACGGAATTCAGGGTTGTGGAGTTG -ACGGAATTCAGGGTTGTGAGACTG -ACGGAATTCAGGGTTGTGTCGGTA -ACGGAATTCAGGGTTGTGTGCCTA -ACGGAATTCAGGGTTGTGCCACTA -ACGGAATTCAGGGTTGTGGGAGTA -ACGGAATTCAGGGTTGTGTCGTCT -ACGGAATTCAGGGTTGTGTGCACT -ACGGAATTCAGGGTTGTGCTGACT -ACGGAATTCAGGGTTGTGCAACCT -ACGGAATTCAGGGTTGTGGCTACT -ACGGAATTCAGGGTTGTGGGATCT -ACGGAATTCAGGGTTGTGAAGGCT -ACGGAATTCAGGGTTGTGTCAACC -ACGGAATTCAGGGTTGTGTGTTCC -ACGGAATTCAGGGTTGTGATTCCC -ACGGAATTCAGGGTTGTGTTCTCG -ACGGAATTCAGGGTTGTGTAGACG -ACGGAATTCAGGGTTGTGGTAACG -ACGGAATTCAGGGTTGTGACTTCG -ACGGAATTCAGGGTTGTGTACGCA -ACGGAATTCAGGGTTGTGCTTGCA -ACGGAATTCAGGGTTGTGCGAACA -ACGGAATTCAGGGTTGTGCAGTCA -ACGGAATTCAGGGTTGTGGATCCA -ACGGAATTCAGGGTTGTGACGACA -ACGGAATTCAGGGTTGTGAGCTCA -ACGGAATTCAGGGTTGTGTCACGT -ACGGAATTCAGGGTTGTGCGTAGT -ACGGAATTCAGGGTTGTGGTCAGT -ACGGAATTCAGGGTTGTGGAAGGT -ACGGAATTCAGGGTTGTGAACCGT -ACGGAATTCAGGGTTGTGTTGTGC -ACGGAATTCAGGGTTGTGCTAAGC -ACGGAATTCAGGGTTGTGACTAGC -ACGGAATTCAGGGTTGTGAGATGC -ACGGAATTCAGGGTTGTGTGAAGG -ACGGAATTCAGGGTTGTGCAATGG -ACGGAATTCAGGGTTGTGATGAGG -ACGGAATTCAGGGTTGTGAATGGG -ACGGAATTCAGGGTTGTGTCCTGA -ACGGAATTCAGGGTTGTGTAGCGA -ACGGAATTCAGGGTTGTGCACAGA -ACGGAATTCAGGGTTGTGGCAAGA -ACGGAATTCAGGGTTGTGGGTTGA -ACGGAATTCAGGGTTGTGTCCGAT -ACGGAATTCAGGGTTGTGTGGCAT -ACGGAATTCAGGGTTGTGCGAGAT -ACGGAATTCAGGGTTGTGTACCAC -ACGGAATTCAGGGTTGTGCAGAAC -ACGGAATTCAGGGTTGTGGTCTAC -ACGGAATTCAGGGTTGTGACGTAC -ACGGAATTCAGGGTTGTGAGTGAC -ACGGAATTCAGGGTTGTGCTGTAG -ACGGAATTCAGGGTTGTGCCTAAG -ACGGAATTCAGGGTTGTGGTTCAG -ACGGAATTCAGGGTTGTGGCATAG -ACGGAATTCAGGGTTGTGGACAAG -ACGGAATTCAGGGTTGTGAAGCAG -ACGGAATTCAGGGTTGTGCGTCAA -ACGGAATTCAGGGTTGTGGCTGAA -ACGGAATTCAGGGTTGTGAGTACG -ACGGAATTCAGGGTTGTGATCCGA -ACGGAATTCAGGGTTGTGATGGGA -ACGGAATTCAGGGTTGTGGTGCAA -ACGGAATTCAGGGTTGTGGAGGAA -ACGGAATTCAGGGTTGTGCAGGTA -ACGGAATTCAGGGTTGTGGACTCT -ACGGAATTCAGGGTTGTGAGTCCT -ACGGAATTCAGGGTTGTGTAAGCC -ACGGAATTCAGGGTTGTGATAGCC -ACGGAATTCAGGGTTGTGTAACCG -ACGGAATTCAGGGTTGTGATGCCA -ACGGAATTCAGGTTTGCCGGAAAC -ACGGAATTCAGGTTTGCCAACACC -ACGGAATTCAGGTTTGCCATCGAG -ACGGAATTCAGGTTTGCCCTCCTT -ACGGAATTCAGGTTTGCCCCTGTT -ACGGAATTCAGGTTTGCCCGGTTT -ACGGAATTCAGGTTTGCCGTGGTT -ACGGAATTCAGGTTTGCCGCCTTT -ACGGAATTCAGGTTTGCCGGTCTT -ACGGAATTCAGGTTTGCCACGCTT -ACGGAATTCAGGTTTGCCAGCGTT -ACGGAATTCAGGTTTGCCTTCGTC -ACGGAATTCAGGTTTGCCTCTCTC -ACGGAATTCAGGTTTGCCTGGATC -ACGGAATTCAGGTTTGCCCACTTC -ACGGAATTCAGGTTTGCCGTACTC -ACGGAATTCAGGTTTGCCGATGTC -ACGGAATTCAGGTTTGCCACAGTC -ACGGAATTCAGGTTTGCCTTGCTG -ACGGAATTCAGGTTTGCCTCCATG -ACGGAATTCAGGTTTGCCTGTGTG -ACGGAATTCAGGTTTGCCCTAGTG -ACGGAATTCAGGTTTGCCCATCTG -ACGGAATTCAGGTTTGCCGAGTTG -ACGGAATTCAGGTTTGCCAGACTG -ACGGAATTCAGGTTTGCCTCGGTA -ACGGAATTCAGGTTTGCCTGCCTA -ACGGAATTCAGGTTTGCCCCACTA -ACGGAATTCAGGTTTGCCGGAGTA -ACGGAATTCAGGTTTGCCTCGTCT -ACGGAATTCAGGTTTGCCTGCACT -ACGGAATTCAGGTTTGCCCTGACT -ACGGAATTCAGGTTTGCCCAACCT -ACGGAATTCAGGTTTGCCGCTACT -ACGGAATTCAGGTTTGCCGGATCT -ACGGAATTCAGGTTTGCCAAGGCT -ACGGAATTCAGGTTTGCCTCAACC -ACGGAATTCAGGTTTGCCTGTTCC -ACGGAATTCAGGTTTGCCATTCCC -ACGGAATTCAGGTTTGCCTTCTCG -ACGGAATTCAGGTTTGCCTAGACG -ACGGAATTCAGGTTTGCCGTAACG -ACGGAATTCAGGTTTGCCACTTCG -ACGGAATTCAGGTTTGCCTACGCA -ACGGAATTCAGGTTTGCCCTTGCA -ACGGAATTCAGGTTTGCCCGAACA -ACGGAATTCAGGTTTGCCCAGTCA -ACGGAATTCAGGTTTGCCGATCCA -ACGGAATTCAGGTTTGCCACGACA -ACGGAATTCAGGTTTGCCAGCTCA -ACGGAATTCAGGTTTGCCTCACGT -ACGGAATTCAGGTTTGCCCGTAGT -ACGGAATTCAGGTTTGCCGTCAGT -ACGGAATTCAGGTTTGCCGAAGGT -ACGGAATTCAGGTTTGCCAACCGT -ACGGAATTCAGGTTTGCCTTGTGC -ACGGAATTCAGGTTTGCCCTAAGC -ACGGAATTCAGGTTTGCCACTAGC -ACGGAATTCAGGTTTGCCAGATGC -ACGGAATTCAGGTTTGCCTGAAGG -ACGGAATTCAGGTTTGCCCAATGG -ACGGAATTCAGGTTTGCCATGAGG -ACGGAATTCAGGTTTGCCAATGGG -ACGGAATTCAGGTTTGCCTCCTGA -ACGGAATTCAGGTTTGCCTAGCGA -ACGGAATTCAGGTTTGCCCACAGA -ACGGAATTCAGGTTTGCCGCAAGA -ACGGAATTCAGGTTTGCCGGTTGA -ACGGAATTCAGGTTTGCCTCCGAT -ACGGAATTCAGGTTTGCCTGGCAT -ACGGAATTCAGGTTTGCCCGAGAT -ACGGAATTCAGGTTTGCCTACCAC -ACGGAATTCAGGTTTGCCCAGAAC -ACGGAATTCAGGTTTGCCGTCTAC -ACGGAATTCAGGTTTGCCACGTAC -ACGGAATTCAGGTTTGCCAGTGAC -ACGGAATTCAGGTTTGCCCTGTAG -ACGGAATTCAGGTTTGCCCCTAAG -ACGGAATTCAGGTTTGCCGTTCAG -ACGGAATTCAGGTTTGCCGCATAG -ACGGAATTCAGGTTTGCCGACAAG -ACGGAATTCAGGTTTGCCAAGCAG -ACGGAATTCAGGTTTGCCCGTCAA -ACGGAATTCAGGTTTGCCGCTGAA -ACGGAATTCAGGTTTGCCAGTACG -ACGGAATTCAGGTTTGCCATCCGA -ACGGAATTCAGGTTTGCCATGGGA -ACGGAATTCAGGTTTGCCGTGCAA -ACGGAATTCAGGTTTGCCGAGGAA -ACGGAATTCAGGTTTGCCCAGGTA -ACGGAATTCAGGTTTGCCGACTCT -ACGGAATTCAGGTTTGCCAGTCCT -ACGGAATTCAGGTTTGCCTAAGCC -ACGGAATTCAGGTTTGCCATAGCC -ACGGAATTCAGGTTTGCCTAACCG -ACGGAATTCAGGTTTGCCATGCCA -ACGGAATTCAGGCTTGGTGGAAAC -ACGGAATTCAGGCTTGGTAACACC -ACGGAATTCAGGCTTGGTATCGAG -ACGGAATTCAGGCTTGGTCTCCTT -ACGGAATTCAGGCTTGGTCCTGTT -ACGGAATTCAGGCTTGGTCGGTTT -ACGGAATTCAGGCTTGGTGTGGTT -ACGGAATTCAGGCTTGGTGCCTTT -ACGGAATTCAGGCTTGGTGGTCTT -ACGGAATTCAGGCTTGGTACGCTT -ACGGAATTCAGGCTTGGTAGCGTT -ACGGAATTCAGGCTTGGTTTCGTC -ACGGAATTCAGGCTTGGTTCTCTC -ACGGAATTCAGGCTTGGTTGGATC -ACGGAATTCAGGCTTGGTCACTTC -ACGGAATTCAGGCTTGGTGTACTC -ACGGAATTCAGGCTTGGTGATGTC -ACGGAATTCAGGCTTGGTACAGTC -ACGGAATTCAGGCTTGGTTTGCTG -ACGGAATTCAGGCTTGGTTCCATG -ACGGAATTCAGGCTTGGTTGTGTG -ACGGAATTCAGGCTTGGTCTAGTG -ACGGAATTCAGGCTTGGTCATCTG -ACGGAATTCAGGCTTGGTGAGTTG -ACGGAATTCAGGCTTGGTAGACTG -ACGGAATTCAGGCTTGGTTCGGTA -ACGGAATTCAGGCTTGGTTGCCTA -ACGGAATTCAGGCTTGGTCCACTA -ACGGAATTCAGGCTTGGTGGAGTA -ACGGAATTCAGGCTTGGTTCGTCT -ACGGAATTCAGGCTTGGTTGCACT -ACGGAATTCAGGCTTGGTCTGACT -ACGGAATTCAGGCTTGGTCAACCT -ACGGAATTCAGGCTTGGTGCTACT -ACGGAATTCAGGCTTGGTGGATCT -ACGGAATTCAGGCTTGGTAAGGCT -ACGGAATTCAGGCTTGGTTCAACC -ACGGAATTCAGGCTTGGTTGTTCC -ACGGAATTCAGGCTTGGTATTCCC -ACGGAATTCAGGCTTGGTTTCTCG -ACGGAATTCAGGCTTGGTTAGACG -ACGGAATTCAGGCTTGGTGTAACG -ACGGAATTCAGGCTTGGTACTTCG -ACGGAATTCAGGCTTGGTTACGCA -ACGGAATTCAGGCTTGGTCTTGCA -ACGGAATTCAGGCTTGGTCGAACA -ACGGAATTCAGGCTTGGTCAGTCA -ACGGAATTCAGGCTTGGTGATCCA -ACGGAATTCAGGCTTGGTACGACA -ACGGAATTCAGGCTTGGTAGCTCA -ACGGAATTCAGGCTTGGTTCACGT -ACGGAATTCAGGCTTGGTCGTAGT -ACGGAATTCAGGCTTGGTGTCAGT -ACGGAATTCAGGCTTGGTGAAGGT -ACGGAATTCAGGCTTGGTAACCGT -ACGGAATTCAGGCTTGGTTTGTGC -ACGGAATTCAGGCTTGGTCTAAGC -ACGGAATTCAGGCTTGGTACTAGC -ACGGAATTCAGGCTTGGTAGATGC -ACGGAATTCAGGCTTGGTTGAAGG -ACGGAATTCAGGCTTGGTCAATGG -ACGGAATTCAGGCTTGGTATGAGG -ACGGAATTCAGGCTTGGTAATGGG -ACGGAATTCAGGCTTGGTTCCTGA -ACGGAATTCAGGCTTGGTTAGCGA -ACGGAATTCAGGCTTGGTCACAGA -ACGGAATTCAGGCTTGGTGCAAGA -ACGGAATTCAGGCTTGGTGGTTGA -ACGGAATTCAGGCTTGGTTCCGAT -ACGGAATTCAGGCTTGGTTGGCAT -ACGGAATTCAGGCTTGGTCGAGAT -ACGGAATTCAGGCTTGGTTACCAC -ACGGAATTCAGGCTTGGTCAGAAC -ACGGAATTCAGGCTTGGTGTCTAC -ACGGAATTCAGGCTTGGTACGTAC -ACGGAATTCAGGCTTGGTAGTGAC -ACGGAATTCAGGCTTGGTCTGTAG -ACGGAATTCAGGCTTGGTCCTAAG -ACGGAATTCAGGCTTGGTGTTCAG -ACGGAATTCAGGCTTGGTGCATAG -ACGGAATTCAGGCTTGGTGACAAG -ACGGAATTCAGGCTTGGTAAGCAG -ACGGAATTCAGGCTTGGTCGTCAA -ACGGAATTCAGGCTTGGTGCTGAA -ACGGAATTCAGGCTTGGTAGTACG -ACGGAATTCAGGCTTGGTATCCGA -ACGGAATTCAGGCTTGGTATGGGA -ACGGAATTCAGGCTTGGTGTGCAA -ACGGAATTCAGGCTTGGTGAGGAA -ACGGAATTCAGGCTTGGTCAGGTA -ACGGAATTCAGGCTTGGTGACTCT -ACGGAATTCAGGCTTGGTAGTCCT -ACGGAATTCAGGCTTGGTTAAGCC -ACGGAATTCAGGCTTGGTATAGCC -ACGGAATTCAGGCTTGGTTAACCG -ACGGAATTCAGGCTTGGTATGCCA -ACGGAATTCAGGCTTACGGGAAAC -ACGGAATTCAGGCTTACGAACACC -ACGGAATTCAGGCTTACGATCGAG -ACGGAATTCAGGCTTACGCTCCTT -ACGGAATTCAGGCTTACGCCTGTT -ACGGAATTCAGGCTTACGCGGTTT -ACGGAATTCAGGCTTACGGTGGTT -ACGGAATTCAGGCTTACGGCCTTT -ACGGAATTCAGGCTTACGGGTCTT -ACGGAATTCAGGCTTACGACGCTT -ACGGAATTCAGGCTTACGAGCGTT -ACGGAATTCAGGCTTACGTTCGTC -ACGGAATTCAGGCTTACGTCTCTC -ACGGAATTCAGGCTTACGTGGATC -ACGGAATTCAGGCTTACGCACTTC -ACGGAATTCAGGCTTACGGTACTC -ACGGAATTCAGGCTTACGGATGTC -ACGGAATTCAGGCTTACGACAGTC -ACGGAATTCAGGCTTACGTTGCTG -ACGGAATTCAGGCTTACGTCCATG -ACGGAATTCAGGCTTACGTGTGTG -ACGGAATTCAGGCTTACGCTAGTG -ACGGAATTCAGGCTTACGCATCTG -ACGGAATTCAGGCTTACGGAGTTG -ACGGAATTCAGGCTTACGAGACTG -ACGGAATTCAGGCTTACGTCGGTA -ACGGAATTCAGGCTTACGTGCCTA -ACGGAATTCAGGCTTACGCCACTA -ACGGAATTCAGGCTTACGGGAGTA -ACGGAATTCAGGCTTACGTCGTCT -ACGGAATTCAGGCTTACGTGCACT -ACGGAATTCAGGCTTACGCTGACT -ACGGAATTCAGGCTTACGCAACCT -ACGGAATTCAGGCTTACGGCTACT -ACGGAATTCAGGCTTACGGGATCT -ACGGAATTCAGGCTTACGAAGGCT -ACGGAATTCAGGCTTACGTCAACC -ACGGAATTCAGGCTTACGTGTTCC -ACGGAATTCAGGCTTACGATTCCC -ACGGAATTCAGGCTTACGTTCTCG -ACGGAATTCAGGCTTACGTAGACG -ACGGAATTCAGGCTTACGGTAACG -ACGGAATTCAGGCTTACGACTTCG -ACGGAATTCAGGCTTACGTACGCA -ACGGAATTCAGGCTTACGCTTGCA -ACGGAATTCAGGCTTACGCGAACA -ACGGAATTCAGGCTTACGCAGTCA -ACGGAATTCAGGCTTACGGATCCA -ACGGAATTCAGGCTTACGACGACA -ACGGAATTCAGGCTTACGAGCTCA -ACGGAATTCAGGCTTACGTCACGT -ACGGAATTCAGGCTTACGCGTAGT -ACGGAATTCAGGCTTACGGTCAGT -ACGGAATTCAGGCTTACGGAAGGT -ACGGAATTCAGGCTTACGAACCGT -ACGGAATTCAGGCTTACGTTGTGC -ACGGAATTCAGGCTTACGCTAAGC -ACGGAATTCAGGCTTACGACTAGC -ACGGAATTCAGGCTTACGAGATGC -ACGGAATTCAGGCTTACGTGAAGG -ACGGAATTCAGGCTTACGCAATGG -ACGGAATTCAGGCTTACGATGAGG -ACGGAATTCAGGCTTACGAATGGG -ACGGAATTCAGGCTTACGTCCTGA -ACGGAATTCAGGCTTACGTAGCGA -ACGGAATTCAGGCTTACGCACAGA -ACGGAATTCAGGCTTACGGCAAGA -ACGGAATTCAGGCTTACGGGTTGA -ACGGAATTCAGGCTTACGTCCGAT -ACGGAATTCAGGCTTACGTGGCAT -ACGGAATTCAGGCTTACGCGAGAT -ACGGAATTCAGGCTTACGTACCAC -ACGGAATTCAGGCTTACGCAGAAC -ACGGAATTCAGGCTTACGGTCTAC -ACGGAATTCAGGCTTACGACGTAC -ACGGAATTCAGGCTTACGAGTGAC -ACGGAATTCAGGCTTACGCTGTAG -ACGGAATTCAGGCTTACGCCTAAG -ACGGAATTCAGGCTTACGGTTCAG -ACGGAATTCAGGCTTACGGCATAG -ACGGAATTCAGGCTTACGGACAAG -ACGGAATTCAGGCTTACGAAGCAG -ACGGAATTCAGGCTTACGCGTCAA -ACGGAATTCAGGCTTACGGCTGAA -ACGGAATTCAGGCTTACGAGTACG -ACGGAATTCAGGCTTACGATCCGA -ACGGAATTCAGGCTTACGATGGGA -ACGGAATTCAGGCTTACGGTGCAA -ACGGAATTCAGGCTTACGGAGGAA -ACGGAATTCAGGCTTACGCAGGTA -ACGGAATTCAGGCTTACGGACTCT -ACGGAATTCAGGCTTACGAGTCCT -ACGGAATTCAGGCTTACGTAAGCC -ACGGAATTCAGGCTTACGATAGCC -ACGGAATTCAGGCTTACGTAACCG -ACGGAATTCAGGCTTACGATGCCA -ACGGAATTCAGGGTTAGCGGAAAC -ACGGAATTCAGGGTTAGCAACACC -ACGGAATTCAGGGTTAGCATCGAG -ACGGAATTCAGGGTTAGCCTCCTT -ACGGAATTCAGGGTTAGCCCTGTT -ACGGAATTCAGGGTTAGCCGGTTT -ACGGAATTCAGGGTTAGCGTGGTT -ACGGAATTCAGGGTTAGCGCCTTT -ACGGAATTCAGGGTTAGCGGTCTT -ACGGAATTCAGGGTTAGCACGCTT -ACGGAATTCAGGGTTAGCAGCGTT -ACGGAATTCAGGGTTAGCTTCGTC -ACGGAATTCAGGGTTAGCTCTCTC -ACGGAATTCAGGGTTAGCTGGATC -ACGGAATTCAGGGTTAGCCACTTC -ACGGAATTCAGGGTTAGCGTACTC -ACGGAATTCAGGGTTAGCGATGTC -ACGGAATTCAGGGTTAGCACAGTC -ACGGAATTCAGGGTTAGCTTGCTG -ACGGAATTCAGGGTTAGCTCCATG -ACGGAATTCAGGGTTAGCTGTGTG -ACGGAATTCAGGGTTAGCCTAGTG -ACGGAATTCAGGGTTAGCCATCTG -ACGGAATTCAGGGTTAGCGAGTTG -ACGGAATTCAGGGTTAGCAGACTG -ACGGAATTCAGGGTTAGCTCGGTA -ACGGAATTCAGGGTTAGCTGCCTA -ACGGAATTCAGGGTTAGCCCACTA -ACGGAATTCAGGGTTAGCGGAGTA -ACGGAATTCAGGGTTAGCTCGTCT -ACGGAATTCAGGGTTAGCTGCACT -ACGGAATTCAGGGTTAGCCTGACT -ACGGAATTCAGGGTTAGCCAACCT -ACGGAATTCAGGGTTAGCGCTACT -ACGGAATTCAGGGTTAGCGGATCT -ACGGAATTCAGGGTTAGCAAGGCT -ACGGAATTCAGGGTTAGCTCAACC -ACGGAATTCAGGGTTAGCTGTTCC -ACGGAATTCAGGGTTAGCATTCCC -ACGGAATTCAGGGTTAGCTTCTCG -ACGGAATTCAGGGTTAGCTAGACG -ACGGAATTCAGGGTTAGCGTAACG -ACGGAATTCAGGGTTAGCACTTCG -ACGGAATTCAGGGTTAGCTACGCA -ACGGAATTCAGGGTTAGCCTTGCA -ACGGAATTCAGGGTTAGCCGAACA -ACGGAATTCAGGGTTAGCCAGTCA -ACGGAATTCAGGGTTAGCGATCCA -ACGGAATTCAGGGTTAGCACGACA -ACGGAATTCAGGGTTAGCAGCTCA -ACGGAATTCAGGGTTAGCTCACGT -ACGGAATTCAGGGTTAGCCGTAGT -ACGGAATTCAGGGTTAGCGTCAGT -ACGGAATTCAGGGTTAGCGAAGGT -ACGGAATTCAGGGTTAGCAACCGT -ACGGAATTCAGGGTTAGCTTGTGC -ACGGAATTCAGGGTTAGCCTAAGC -ACGGAATTCAGGGTTAGCACTAGC -ACGGAATTCAGGGTTAGCAGATGC -ACGGAATTCAGGGTTAGCTGAAGG -ACGGAATTCAGGGTTAGCCAATGG -ACGGAATTCAGGGTTAGCATGAGG -ACGGAATTCAGGGTTAGCAATGGG -ACGGAATTCAGGGTTAGCTCCTGA -ACGGAATTCAGGGTTAGCTAGCGA -ACGGAATTCAGGGTTAGCCACAGA -ACGGAATTCAGGGTTAGCGCAAGA -ACGGAATTCAGGGTTAGCGGTTGA -ACGGAATTCAGGGTTAGCTCCGAT -ACGGAATTCAGGGTTAGCTGGCAT -ACGGAATTCAGGGTTAGCCGAGAT -ACGGAATTCAGGGTTAGCTACCAC -ACGGAATTCAGGGTTAGCCAGAAC -ACGGAATTCAGGGTTAGCGTCTAC -ACGGAATTCAGGGTTAGCACGTAC -ACGGAATTCAGGGTTAGCAGTGAC -ACGGAATTCAGGGTTAGCCTGTAG -ACGGAATTCAGGGTTAGCCCTAAG -ACGGAATTCAGGGTTAGCGTTCAG -ACGGAATTCAGGGTTAGCGCATAG -ACGGAATTCAGGGTTAGCGACAAG -ACGGAATTCAGGGTTAGCAAGCAG -ACGGAATTCAGGGTTAGCCGTCAA -ACGGAATTCAGGGTTAGCGCTGAA -ACGGAATTCAGGGTTAGCAGTACG -ACGGAATTCAGGGTTAGCATCCGA -ACGGAATTCAGGGTTAGCATGGGA -ACGGAATTCAGGGTTAGCGTGCAA -ACGGAATTCAGGGTTAGCGAGGAA -ACGGAATTCAGGGTTAGCCAGGTA -ACGGAATTCAGGGTTAGCGACTCT -ACGGAATTCAGGGTTAGCAGTCCT -ACGGAATTCAGGGTTAGCTAAGCC -ACGGAATTCAGGGTTAGCATAGCC -ACGGAATTCAGGGTTAGCTAACCG -ACGGAATTCAGGGTTAGCATGCCA -ACGGAATTCAGGGTCTTCGGAAAC -ACGGAATTCAGGGTCTTCAACACC -ACGGAATTCAGGGTCTTCATCGAG -ACGGAATTCAGGGTCTTCCTCCTT -ACGGAATTCAGGGTCTTCCCTGTT -ACGGAATTCAGGGTCTTCCGGTTT -ACGGAATTCAGGGTCTTCGTGGTT -ACGGAATTCAGGGTCTTCGCCTTT -ACGGAATTCAGGGTCTTCGGTCTT -ACGGAATTCAGGGTCTTCACGCTT -ACGGAATTCAGGGTCTTCAGCGTT -ACGGAATTCAGGGTCTTCTTCGTC -ACGGAATTCAGGGTCTTCTCTCTC -ACGGAATTCAGGGTCTTCTGGATC -ACGGAATTCAGGGTCTTCCACTTC -ACGGAATTCAGGGTCTTCGTACTC -ACGGAATTCAGGGTCTTCGATGTC -ACGGAATTCAGGGTCTTCACAGTC -ACGGAATTCAGGGTCTTCTTGCTG -ACGGAATTCAGGGTCTTCTCCATG -ACGGAATTCAGGGTCTTCTGTGTG -ACGGAATTCAGGGTCTTCCTAGTG -ACGGAATTCAGGGTCTTCCATCTG -ACGGAATTCAGGGTCTTCGAGTTG -ACGGAATTCAGGGTCTTCAGACTG -ACGGAATTCAGGGTCTTCTCGGTA -ACGGAATTCAGGGTCTTCTGCCTA -ACGGAATTCAGGGTCTTCCCACTA -ACGGAATTCAGGGTCTTCGGAGTA -ACGGAATTCAGGGTCTTCTCGTCT -ACGGAATTCAGGGTCTTCTGCACT -ACGGAATTCAGGGTCTTCCTGACT -ACGGAATTCAGGGTCTTCCAACCT -ACGGAATTCAGGGTCTTCGCTACT -ACGGAATTCAGGGTCTTCGGATCT -ACGGAATTCAGGGTCTTCAAGGCT -ACGGAATTCAGGGTCTTCTCAACC -ACGGAATTCAGGGTCTTCTGTTCC -ACGGAATTCAGGGTCTTCATTCCC -ACGGAATTCAGGGTCTTCTTCTCG -ACGGAATTCAGGGTCTTCTAGACG -ACGGAATTCAGGGTCTTCGTAACG -ACGGAATTCAGGGTCTTCACTTCG -ACGGAATTCAGGGTCTTCTACGCA -ACGGAATTCAGGGTCTTCCTTGCA -ACGGAATTCAGGGTCTTCCGAACA -ACGGAATTCAGGGTCTTCCAGTCA -ACGGAATTCAGGGTCTTCGATCCA -ACGGAATTCAGGGTCTTCACGACA -ACGGAATTCAGGGTCTTCAGCTCA -ACGGAATTCAGGGTCTTCTCACGT -ACGGAATTCAGGGTCTTCCGTAGT -ACGGAATTCAGGGTCTTCGTCAGT -ACGGAATTCAGGGTCTTCGAAGGT -ACGGAATTCAGGGTCTTCAACCGT -ACGGAATTCAGGGTCTTCTTGTGC -ACGGAATTCAGGGTCTTCCTAAGC -ACGGAATTCAGGGTCTTCACTAGC -ACGGAATTCAGGGTCTTCAGATGC -ACGGAATTCAGGGTCTTCTGAAGG -ACGGAATTCAGGGTCTTCCAATGG -ACGGAATTCAGGGTCTTCATGAGG -ACGGAATTCAGGGTCTTCAATGGG -ACGGAATTCAGGGTCTTCTCCTGA -ACGGAATTCAGGGTCTTCTAGCGA -ACGGAATTCAGGGTCTTCCACAGA -ACGGAATTCAGGGTCTTCGCAAGA -ACGGAATTCAGGGTCTTCGGTTGA -ACGGAATTCAGGGTCTTCTCCGAT -ACGGAATTCAGGGTCTTCTGGCAT -ACGGAATTCAGGGTCTTCCGAGAT -ACGGAATTCAGGGTCTTCTACCAC -ACGGAATTCAGGGTCTTCCAGAAC -ACGGAATTCAGGGTCTTCGTCTAC -ACGGAATTCAGGGTCTTCACGTAC -ACGGAATTCAGGGTCTTCAGTGAC -ACGGAATTCAGGGTCTTCCTGTAG -ACGGAATTCAGGGTCTTCCCTAAG -ACGGAATTCAGGGTCTTCGTTCAG -ACGGAATTCAGGGTCTTCGCATAG -ACGGAATTCAGGGTCTTCGACAAG -ACGGAATTCAGGGTCTTCAAGCAG -ACGGAATTCAGGGTCTTCCGTCAA -ACGGAATTCAGGGTCTTCGCTGAA -ACGGAATTCAGGGTCTTCAGTACG -ACGGAATTCAGGGTCTTCATCCGA -ACGGAATTCAGGGTCTTCATGGGA -ACGGAATTCAGGGTCTTCGTGCAA -ACGGAATTCAGGGTCTTCGAGGAA -ACGGAATTCAGGGTCTTCCAGGTA -ACGGAATTCAGGGTCTTCGACTCT -ACGGAATTCAGGGTCTTCAGTCCT -ACGGAATTCAGGGTCTTCTAAGCC -ACGGAATTCAGGGTCTTCATAGCC -ACGGAATTCAGGGTCTTCTAACCG -ACGGAATTCAGGGTCTTCATGCCA -ACGGAATTCAGGCTCTCTGGAAAC -ACGGAATTCAGGCTCTCTAACACC -ACGGAATTCAGGCTCTCTATCGAG -ACGGAATTCAGGCTCTCTCTCCTT -ACGGAATTCAGGCTCTCTCCTGTT -ACGGAATTCAGGCTCTCTCGGTTT -ACGGAATTCAGGCTCTCTGTGGTT -ACGGAATTCAGGCTCTCTGCCTTT -ACGGAATTCAGGCTCTCTGGTCTT -ACGGAATTCAGGCTCTCTACGCTT -ACGGAATTCAGGCTCTCTAGCGTT -ACGGAATTCAGGCTCTCTTTCGTC -ACGGAATTCAGGCTCTCTTCTCTC -ACGGAATTCAGGCTCTCTTGGATC -ACGGAATTCAGGCTCTCTCACTTC -ACGGAATTCAGGCTCTCTGTACTC -ACGGAATTCAGGCTCTCTGATGTC -ACGGAATTCAGGCTCTCTACAGTC -ACGGAATTCAGGCTCTCTTTGCTG -ACGGAATTCAGGCTCTCTTCCATG -ACGGAATTCAGGCTCTCTTGTGTG -ACGGAATTCAGGCTCTCTCTAGTG -ACGGAATTCAGGCTCTCTCATCTG -ACGGAATTCAGGCTCTCTGAGTTG -ACGGAATTCAGGCTCTCTAGACTG -ACGGAATTCAGGCTCTCTTCGGTA -ACGGAATTCAGGCTCTCTTGCCTA -ACGGAATTCAGGCTCTCTCCACTA -ACGGAATTCAGGCTCTCTGGAGTA -ACGGAATTCAGGCTCTCTTCGTCT -ACGGAATTCAGGCTCTCTTGCACT -ACGGAATTCAGGCTCTCTCTGACT -ACGGAATTCAGGCTCTCTCAACCT -ACGGAATTCAGGCTCTCTGCTACT -ACGGAATTCAGGCTCTCTGGATCT -ACGGAATTCAGGCTCTCTAAGGCT -ACGGAATTCAGGCTCTCTTCAACC -ACGGAATTCAGGCTCTCTTGTTCC -ACGGAATTCAGGCTCTCTATTCCC -ACGGAATTCAGGCTCTCTTTCTCG -ACGGAATTCAGGCTCTCTTAGACG -ACGGAATTCAGGCTCTCTGTAACG -ACGGAATTCAGGCTCTCTACTTCG -ACGGAATTCAGGCTCTCTTACGCA -ACGGAATTCAGGCTCTCTCTTGCA -ACGGAATTCAGGCTCTCTCGAACA -ACGGAATTCAGGCTCTCTCAGTCA -ACGGAATTCAGGCTCTCTGATCCA -ACGGAATTCAGGCTCTCTACGACA -ACGGAATTCAGGCTCTCTAGCTCA -ACGGAATTCAGGCTCTCTTCACGT -ACGGAATTCAGGCTCTCTCGTAGT -ACGGAATTCAGGCTCTCTGTCAGT -ACGGAATTCAGGCTCTCTGAAGGT -ACGGAATTCAGGCTCTCTAACCGT -ACGGAATTCAGGCTCTCTTTGTGC -ACGGAATTCAGGCTCTCTCTAAGC -ACGGAATTCAGGCTCTCTACTAGC -ACGGAATTCAGGCTCTCTAGATGC -ACGGAATTCAGGCTCTCTTGAAGG -ACGGAATTCAGGCTCTCTCAATGG -ACGGAATTCAGGCTCTCTATGAGG -ACGGAATTCAGGCTCTCTAATGGG -ACGGAATTCAGGCTCTCTTCCTGA -ACGGAATTCAGGCTCTCTTAGCGA -ACGGAATTCAGGCTCTCTCACAGA -ACGGAATTCAGGCTCTCTGCAAGA -ACGGAATTCAGGCTCTCTGGTTGA -ACGGAATTCAGGCTCTCTTCCGAT -ACGGAATTCAGGCTCTCTTGGCAT -ACGGAATTCAGGCTCTCTCGAGAT -ACGGAATTCAGGCTCTCTTACCAC -ACGGAATTCAGGCTCTCTCAGAAC -ACGGAATTCAGGCTCTCTGTCTAC -ACGGAATTCAGGCTCTCTACGTAC -ACGGAATTCAGGCTCTCTAGTGAC -ACGGAATTCAGGCTCTCTCTGTAG -ACGGAATTCAGGCTCTCTCCTAAG -ACGGAATTCAGGCTCTCTGTTCAG -ACGGAATTCAGGCTCTCTGCATAG -ACGGAATTCAGGCTCTCTGACAAG -ACGGAATTCAGGCTCTCTAAGCAG -ACGGAATTCAGGCTCTCTCGTCAA -ACGGAATTCAGGCTCTCTGCTGAA -ACGGAATTCAGGCTCTCTAGTACG -ACGGAATTCAGGCTCTCTATCCGA -ACGGAATTCAGGCTCTCTATGGGA -ACGGAATTCAGGCTCTCTGTGCAA -ACGGAATTCAGGCTCTCTGAGGAA -ACGGAATTCAGGCTCTCTCAGGTA -ACGGAATTCAGGCTCTCTGACTCT -ACGGAATTCAGGCTCTCTAGTCCT -ACGGAATTCAGGCTCTCTTAAGCC -ACGGAATTCAGGCTCTCTATAGCC -ACGGAATTCAGGCTCTCTTAACCG -ACGGAATTCAGGCTCTCTATGCCA -ACGGAATTCAGGATCTGGGGAAAC -ACGGAATTCAGGATCTGGAACACC -ACGGAATTCAGGATCTGGATCGAG -ACGGAATTCAGGATCTGGCTCCTT -ACGGAATTCAGGATCTGGCCTGTT -ACGGAATTCAGGATCTGGCGGTTT -ACGGAATTCAGGATCTGGGTGGTT -ACGGAATTCAGGATCTGGGCCTTT -ACGGAATTCAGGATCTGGGGTCTT -ACGGAATTCAGGATCTGGACGCTT -ACGGAATTCAGGATCTGGAGCGTT -ACGGAATTCAGGATCTGGTTCGTC -ACGGAATTCAGGATCTGGTCTCTC -ACGGAATTCAGGATCTGGTGGATC -ACGGAATTCAGGATCTGGCACTTC -ACGGAATTCAGGATCTGGGTACTC -ACGGAATTCAGGATCTGGGATGTC -ACGGAATTCAGGATCTGGACAGTC -ACGGAATTCAGGATCTGGTTGCTG -ACGGAATTCAGGATCTGGTCCATG -ACGGAATTCAGGATCTGGTGTGTG -ACGGAATTCAGGATCTGGCTAGTG -ACGGAATTCAGGATCTGGCATCTG -ACGGAATTCAGGATCTGGGAGTTG -ACGGAATTCAGGATCTGGAGACTG -ACGGAATTCAGGATCTGGTCGGTA -ACGGAATTCAGGATCTGGTGCCTA -ACGGAATTCAGGATCTGGCCACTA -ACGGAATTCAGGATCTGGGGAGTA -ACGGAATTCAGGATCTGGTCGTCT -ACGGAATTCAGGATCTGGTGCACT -ACGGAATTCAGGATCTGGCTGACT -ACGGAATTCAGGATCTGGCAACCT -ACGGAATTCAGGATCTGGGCTACT -ACGGAATTCAGGATCTGGGGATCT -ACGGAATTCAGGATCTGGAAGGCT -ACGGAATTCAGGATCTGGTCAACC -ACGGAATTCAGGATCTGGTGTTCC -ACGGAATTCAGGATCTGGATTCCC -ACGGAATTCAGGATCTGGTTCTCG -ACGGAATTCAGGATCTGGTAGACG -ACGGAATTCAGGATCTGGGTAACG -ACGGAATTCAGGATCTGGACTTCG -ACGGAATTCAGGATCTGGTACGCA -ACGGAATTCAGGATCTGGCTTGCA -ACGGAATTCAGGATCTGGCGAACA -ACGGAATTCAGGATCTGGCAGTCA -ACGGAATTCAGGATCTGGGATCCA -ACGGAATTCAGGATCTGGACGACA -ACGGAATTCAGGATCTGGAGCTCA -ACGGAATTCAGGATCTGGTCACGT -ACGGAATTCAGGATCTGGCGTAGT -ACGGAATTCAGGATCTGGGTCAGT -ACGGAATTCAGGATCTGGGAAGGT -ACGGAATTCAGGATCTGGAACCGT -ACGGAATTCAGGATCTGGTTGTGC -ACGGAATTCAGGATCTGGCTAAGC -ACGGAATTCAGGATCTGGACTAGC -ACGGAATTCAGGATCTGGAGATGC -ACGGAATTCAGGATCTGGTGAAGG -ACGGAATTCAGGATCTGGCAATGG -ACGGAATTCAGGATCTGGATGAGG -ACGGAATTCAGGATCTGGAATGGG -ACGGAATTCAGGATCTGGTCCTGA -ACGGAATTCAGGATCTGGTAGCGA -ACGGAATTCAGGATCTGGCACAGA -ACGGAATTCAGGATCTGGGCAAGA -ACGGAATTCAGGATCTGGGGTTGA -ACGGAATTCAGGATCTGGTCCGAT -ACGGAATTCAGGATCTGGTGGCAT -ACGGAATTCAGGATCTGGCGAGAT -ACGGAATTCAGGATCTGGTACCAC -ACGGAATTCAGGATCTGGCAGAAC -ACGGAATTCAGGATCTGGGTCTAC -ACGGAATTCAGGATCTGGACGTAC -ACGGAATTCAGGATCTGGAGTGAC -ACGGAATTCAGGATCTGGCTGTAG -ACGGAATTCAGGATCTGGCCTAAG -ACGGAATTCAGGATCTGGGTTCAG -ACGGAATTCAGGATCTGGGCATAG -ACGGAATTCAGGATCTGGGACAAG -ACGGAATTCAGGATCTGGAAGCAG -ACGGAATTCAGGATCTGGCGTCAA -ACGGAATTCAGGATCTGGGCTGAA -ACGGAATTCAGGATCTGGAGTACG -ACGGAATTCAGGATCTGGATCCGA -ACGGAATTCAGGATCTGGATGGGA -ACGGAATTCAGGATCTGGGTGCAA -ACGGAATTCAGGATCTGGGAGGAA -ACGGAATTCAGGATCTGGCAGGTA -ACGGAATTCAGGATCTGGGACTCT -ACGGAATTCAGGATCTGGAGTCCT -ACGGAATTCAGGATCTGGTAAGCC -ACGGAATTCAGGATCTGGATAGCC -ACGGAATTCAGGATCTGGTAACCG -ACGGAATTCAGGATCTGGATGCCA -ACGGAATTCAGGTTCCACGGAAAC -ACGGAATTCAGGTTCCACAACACC -ACGGAATTCAGGTTCCACATCGAG -ACGGAATTCAGGTTCCACCTCCTT -ACGGAATTCAGGTTCCACCCTGTT -ACGGAATTCAGGTTCCACCGGTTT -ACGGAATTCAGGTTCCACGTGGTT -ACGGAATTCAGGTTCCACGCCTTT -ACGGAATTCAGGTTCCACGGTCTT -ACGGAATTCAGGTTCCACACGCTT -ACGGAATTCAGGTTCCACAGCGTT -ACGGAATTCAGGTTCCACTTCGTC -ACGGAATTCAGGTTCCACTCTCTC -ACGGAATTCAGGTTCCACTGGATC -ACGGAATTCAGGTTCCACCACTTC -ACGGAATTCAGGTTCCACGTACTC -ACGGAATTCAGGTTCCACGATGTC -ACGGAATTCAGGTTCCACACAGTC -ACGGAATTCAGGTTCCACTTGCTG -ACGGAATTCAGGTTCCACTCCATG -ACGGAATTCAGGTTCCACTGTGTG -ACGGAATTCAGGTTCCACCTAGTG -ACGGAATTCAGGTTCCACCATCTG -ACGGAATTCAGGTTCCACGAGTTG -ACGGAATTCAGGTTCCACAGACTG -ACGGAATTCAGGTTCCACTCGGTA -ACGGAATTCAGGTTCCACTGCCTA -ACGGAATTCAGGTTCCACCCACTA -ACGGAATTCAGGTTCCACGGAGTA -ACGGAATTCAGGTTCCACTCGTCT -ACGGAATTCAGGTTCCACTGCACT -ACGGAATTCAGGTTCCACCTGACT -ACGGAATTCAGGTTCCACCAACCT -ACGGAATTCAGGTTCCACGCTACT -ACGGAATTCAGGTTCCACGGATCT -ACGGAATTCAGGTTCCACAAGGCT -ACGGAATTCAGGTTCCACTCAACC -ACGGAATTCAGGTTCCACTGTTCC -ACGGAATTCAGGTTCCACATTCCC -ACGGAATTCAGGTTCCACTTCTCG -ACGGAATTCAGGTTCCACTAGACG -ACGGAATTCAGGTTCCACGTAACG -ACGGAATTCAGGTTCCACACTTCG -ACGGAATTCAGGTTCCACTACGCA -ACGGAATTCAGGTTCCACCTTGCA -ACGGAATTCAGGTTCCACCGAACA -ACGGAATTCAGGTTCCACCAGTCA -ACGGAATTCAGGTTCCACGATCCA -ACGGAATTCAGGTTCCACACGACA -ACGGAATTCAGGTTCCACAGCTCA -ACGGAATTCAGGTTCCACTCACGT -ACGGAATTCAGGTTCCACCGTAGT -ACGGAATTCAGGTTCCACGTCAGT -ACGGAATTCAGGTTCCACGAAGGT -ACGGAATTCAGGTTCCACAACCGT -ACGGAATTCAGGTTCCACTTGTGC -ACGGAATTCAGGTTCCACCTAAGC -ACGGAATTCAGGTTCCACACTAGC -ACGGAATTCAGGTTCCACAGATGC -ACGGAATTCAGGTTCCACTGAAGG -ACGGAATTCAGGTTCCACCAATGG -ACGGAATTCAGGTTCCACATGAGG -ACGGAATTCAGGTTCCACAATGGG -ACGGAATTCAGGTTCCACTCCTGA -ACGGAATTCAGGTTCCACTAGCGA -ACGGAATTCAGGTTCCACCACAGA -ACGGAATTCAGGTTCCACGCAAGA -ACGGAATTCAGGTTCCACGGTTGA -ACGGAATTCAGGTTCCACTCCGAT -ACGGAATTCAGGTTCCACTGGCAT -ACGGAATTCAGGTTCCACCGAGAT -ACGGAATTCAGGTTCCACTACCAC -ACGGAATTCAGGTTCCACCAGAAC -ACGGAATTCAGGTTCCACGTCTAC -ACGGAATTCAGGTTCCACACGTAC -ACGGAATTCAGGTTCCACAGTGAC -ACGGAATTCAGGTTCCACCTGTAG -ACGGAATTCAGGTTCCACCCTAAG -ACGGAATTCAGGTTCCACGTTCAG -ACGGAATTCAGGTTCCACGCATAG -ACGGAATTCAGGTTCCACGACAAG -ACGGAATTCAGGTTCCACAAGCAG -ACGGAATTCAGGTTCCACCGTCAA -ACGGAATTCAGGTTCCACGCTGAA -ACGGAATTCAGGTTCCACAGTACG -ACGGAATTCAGGTTCCACATCCGA -ACGGAATTCAGGTTCCACATGGGA -ACGGAATTCAGGTTCCACGTGCAA -ACGGAATTCAGGTTCCACGAGGAA -ACGGAATTCAGGTTCCACCAGGTA -ACGGAATTCAGGTTCCACGACTCT -ACGGAATTCAGGTTCCACAGTCCT -ACGGAATTCAGGTTCCACTAAGCC -ACGGAATTCAGGTTCCACATAGCC -ACGGAATTCAGGTTCCACTAACCG -ACGGAATTCAGGTTCCACATGCCA -ACGGAATTCAGGCTCGTAGGAAAC -ACGGAATTCAGGCTCGTAAACACC -ACGGAATTCAGGCTCGTAATCGAG -ACGGAATTCAGGCTCGTACTCCTT -ACGGAATTCAGGCTCGTACCTGTT -ACGGAATTCAGGCTCGTACGGTTT -ACGGAATTCAGGCTCGTAGTGGTT -ACGGAATTCAGGCTCGTAGCCTTT -ACGGAATTCAGGCTCGTAGGTCTT -ACGGAATTCAGGCTCGTAACGCTT -ACGGAATTCAGGCTCGTAAGCGTT -ACGGAATTCAGGCTCGTATTCGTC -ACGGAATTCAGGCTCGTATCTCTC -ACGGAATTCAGGCTCGTATGGATC -ACGGAATTCAGGCTCGTACACTTC -ACGGAATTCAGGCTCGTAGTACTC -ACGGAATTCAGGCTCGTAGATGTC -ACGGAATTCAGGCTCGTAACAGTC -ACGGAATTCAGGCTCGTATTGCTG -ACGGAATTCAGGCTCGTATCCATG -ACGGAATTCAGGCTCGTATGTGTG -ACGGAATTCAGGCTCGTACTAGTG -ACGGAATTCAGGCTCGTACATCTG -ACGGAATTCAGGCTCGTAGAGTTG -ACGGAATTCAGGCTCGTAAGACTG -ACGGAATTCAGGCTCGTATCGGTA -ACGGAATTCAGGCTCGTATGCCTA -ACGGAATTCAGGCTCGTACCACTA -ACGGAATTCAGGCTCGTAGGAGTA -ACGGAATTCAGGCTCGTATCGTCT -ACGGAATTCAGGCTCGTATGCACT -ACGGAATTCAGGCTCGTACTGACT -ACGGAATTCAGGCTCGTACAACCT -ACGGAATTCAGGCTCGTAGCTACT -ACGGAATTCAGGCTCGTAGGATCT -ACGGAATTCAGGCTCGTAAAGGCT -ACGGAATTCAGGCTCGTATCAACC -ACGGAATTCAGGCTCGTATGTTCC -ACGGAATTCAGGCTCGTAATTCCC -ACGGAATTCAGGCTCGTATTCTCG -ACGGAATTCAGGCTCGTATAGACG -ACGGAATTCAGGCTCGTAGTAACG -ACGGAATTCAGGCTCGTAACTTCG -ACGGAATTCAGGCTCGTATACGCA -ACGGAATTCAGGCTCGTACTTGCA -ACGGAATTCAGGCTCGTACGAACA -ACGGAATTCAGGCTCGTACAGTCA -ACGGAATTCAGGCTCGTAGATCCA -ACGGAATTCAGGCTCGTAACGACA -ACGGAATTCAGGCTCGTAAGCTCA -ACGGAATTCAGGCTCGTATCACGT -ACGGAATTCAGGCTCGTACGTAGT -ACGGAATTCAGGCTCGTAGTCAGT -ACGGAATTCAGGCTCGTAGAAGGT -ACGGAATTCAGGCTCGTAAACCGT -ACGGAATTCAGGCTCGTATTGTGC -ACGGAATTCAGGCTCGTACTAAGC -ACGGAATTCAGGCTCGTAACTAGC -ACGGAATTCAGGCTCGTAAGATGC -ACGGAATTCAGGCTCGTATGAAGG -ACGGAATTCAGGCTCGTACAATGG -ACGGAATTCAGGCTCGTAATGAGG -ACGGAATTCAGGCTCGTAAATGGG -ACGGAATTCAGGCTCGTATCCTGA -ACGGAATTCAGGCTCGTATAGCGA -ACGGAATTCAGGCTCGTACACAGA -ACGGAATTCAGGCTCGTAGCAAGA -ACGGAATTCAGGCTCGTAGGTTGA -ACGGAATTCAGGCTCGTATCCGAT -ACGGAATTCAGGCTCGTATGGCAT -ACGGAATTCAGGCTCGTACGAGAT -ACGGAATTCAGGCTCGTATACCAC -ACGGAATTCAGGCTCGTACAGAAC -ACGGAATTCAGGCTCGTAGTCTAC -ACGGAATTCAGGCTCGTAACGTAC -ACGGAATTCAGGCTCGTAAGTGAC -ACGGAATTCAGGCTCGTACTGTAG -ACGGAATTCAGGCTCGTACCTAAG -ACGGAATTCAGGCTCGTAGTTCAG -ACGGAATTCAGGCTCGTAGCATAG -ACGGAATTCAGGCTCGTAGACAAG -ACGGAATTCAGGCTCGTAAAGCAG -ACGGAATTCAGGCTCGTACGTCAA -ACGGAATTCAGGCTCGTAGCTGAA -ACGGAATTCAGGCTCGTAAGTACG -ACGGAATTCAGGCTCGTAATCCGA -ACGGAATTCAGGCTCGTAATGGGA -ACGGAATTCAGGCTCGTAGTGCAA -ACGGAATTCAGGCTCGTAGAGGAA -ACGGAATTCAGGCTCGTACAGGTA -ACGGAATTCAGGCTCGTAGACTCT -ACGGAATTCAGGCTCGTAAGTCCT -ACGGAATTCAGGCTCGTATAAGCC -ACGGAATTCAGGCTCGTAATAGCC -ACGGAATTCAGGCTCGTATAACCG -ACGGAATTCAGGCTCGTAATGCCA -ACGGAATTCAGGGTCGATGGAAAC -ACGGAATTCAGGGTCGATAACACC -ACGGAATTCAGGGTCGATATCGAG -ACGGAATTCAGGGTCGATCTCCTT -ACGGAATTCAGGGTCGATCCTGTT -ACGGAATTCAGGGTCGATCGGTTT -ACGGAATTCAGGGTCGATGTGGTT -ACGGAATTCAGGGTCGATGCCTTT -ACGGAATTCAGGGTCGATGGTCTT -ACGGAATTCAGGGTCGATACGCTT -ACGGAATTCAGGGTCGATAGCGTT -ACGGAATTCAGGGTCGATTTCGTC -ACGGAATTCAGGGTCGATTCTCTC -ACGGAATTCAGGGTCGATTGGATC -ACGGAATTCAGGGTCGATCACTTC -ACGGAATTCAGGGTCGATGTACTC -ACGGAATTCAGGGTCGATGATGTC -ACGGAATTCAGGGTCGATACAGTC -ACGGAATTCAGGGTCGATTTGCTG -ACGGAATTCAGGGTCGATTCCATG -ACGGAATTCAGGGTCGATTGTGTG -ACGGAATTCAGGGTCGATCTAGTG -ACGGAATTCAGGGTCGATCATCTG -ACGGAATTCAGGGTCGATGAGTTG -ACGGAATTCAGGGTCGATAGACTG -ACGGAATTCAGGGTCGATTCGGTA -ACGGAATTCAGGGTCGATTGCCTA -ACGGAATTCAGGGTCGATCCACTA -ACGGAATTCAGGGTCGATGGAGTA -ACGGAATTCAGGGTCGATTCGTCT -ACGGAATTCAGGGTCGATTGCACT -ACGGAATTCAGGGTCGATCTGACT -ACGGAATTCAGGGTCGATCAACCT -ACGGAATTCAGGGTCGATGCTACT -ACGGAATTCAGGGTCGATGGATCT -ACGGAATTCAGGGTCGATAAGGCT -ACGGAATTCAGGGTCGATTCAACC -ACGGAATTCAGGGTCGATTGTTCC -ACGGAATTCAGGGTCGATATTCCC -ACGGAATTCAGGGTCGATTTCTCG -ACGGAATTCAGGGTCGATTAGACG -ACGGAATTCAGGGTCGATGTAACG -ACGGAATTCAGGGTCGATACTTCG -ACGGAATTCAGGGTCGATTACGCA -ACGGAATTCAGGGTCGATCTTGCA -ACGGAATTCAGGGTCGATCGAACA -ACGGAATTCAGGGTCGATCAGTCA -ACGGAATTCAGGGTCGATGATCCA -ACGGAATTCAGGGTCGATACGACA -ACGGAATTCAGGGTCGATAGCTCA -ACGGAATTCAGGGTCGATTCACGT -ACGGAATTCAGGGTCGATCGTAGT -ACGGAATTCAGGGTCGATGTCAGT -ACGGAATTCAGGGTCGATGAAGGT -ACGGAATTCAGGGTCGATAACCGT -ACGGAATTCAGGGTCGATTTGTGC -ACGGAATTCAGGGTCGATCTAAGC -ACGGAATTCAGGGTCGATACTAGC -ACGGAATTCAGGGTCGATAGATGC -ACGGAATTCAGGGTCGATTGAAGG -ACGGAATTCAGGGTCGATCAATGG -ACGGAATTCAGGGTCGATATGAGG -ACGGAATTCAGGGTCGATAATGGG -ACGGAATTCAGGGTCGATTCCTGA -ACGGAATTCAGGGTCGATTAGCGA -ACGGAATTCAGGGTCGATCACAGA -ACGGAATTCAGGGTCGATGCAAGA -ACGGAATTCAGGGTCGATGGTTGA -ACGGAATTCAGGGTCGATTCCGAT -ACGGAATTCAGGGTCGATTGGCAT -ACGGAATTCAGGGTCGATCGAGAT -ACGGAATTCAGGGTCGATTACCAC -ACGGAATTCAGGGTCGATCAGAAC -ACGGAATTCAGGGTCGATGTCTAC -ACGGAATTCAGGGTCGATACGTAC -ACGGAATTCAGGGTCGATAGTGAC -ACGGAATTCAGGGTCGATCTGTAG -ACGGAATTCAGGGTCGATCCTAAG -ACGGAATTCAGGGTCGATGTTCAG -ACGGAATTCAGGGTCGATGCATAG -ACGGAATTCAGGGTCGATGACAAG -ACGGAATTCAGGGTCGATAAGCAG -ACGGAATTCAGGGTCGATCGTCAA -ACGGAATTCAGGGTCGATGCTGAA -ACGGAATTCAGGGTCGATAGTACG -ACGGAATTCAGGGTCGATATCCGA -ACGGAATTCAGGGTCGATATGGGA -ACGGAATTCAGGGTCGATGTGCAA -ACGGAATTCAGGGTCGATGAGGAA -ACGGAATTCAGGGTCGATCAGGTA -ACGGAATTCAGGGTCGATGACTCT -ACGGAATTCAGGGTCGATAGTCCT -ACGGAATTCAGGGTCGATTAAGCC -ACGGAATTCAGGGTCGATATAGCC -ACGGAATTCAGGGTCGATTAACCG -ACGGAATTCAGGGTCGATATGCCA -ACGGAATTCAGGGTCACAGGAAAC -ACGGAATTCAGGGTCACAAACACC -ACGGAATTCAGGGTCACAATCGAG -ACGGAATTCAGGGTCACACTCCTT -ACGGAATTCAGGGTCACACCTGTT -ACGGAATTCAGGGTCACACGGTTT -ACGGAATTCAGGGTCACAGTGGTT -ACGGAATTCAGGGTCACAGCCTTT -ACGGAATTCAGGGTCACAGGTCTT -ACGGAATTCAGGGTCACAACGCTT -ACGGAATTCAGGGTCACAAGCGTT -ACGGAATTCAGGGTCACATTCGTC -ACGGAATTCAGGGTCACATCTCTC -ACGGAATTCAGGGTCACATGGATC -ACGGAATTCAGGGTCACACACTTC -ACGGAATTCAGGGTCACAGTACTC -ACGGAATTCAGGGTCACAGATGTC -ACGGAATTCAGGGTCACAACAGTC -ACGGAATTCAGGGTCACATTGCTG -ACGGAATTCAGGGTCACATCCATG -ACGGAATTCAGGGTCACATGTGTG -ACGGAATTCAGGGTCACACTAGTG -ACGGAATTCAGGGTCACACATCTG -ACGGAATTCAGGGTCACAGAGTTG -ACGGAATTCAGGGTCACAAGACTG -ACGGAATTCAGGGTCACATCGGTA -ACGGAATTCAGGGTCACATGCCTA -ACGGAATTCAGGGTCACACCACTA -ACGGAATTCAGGGTCACAGGAGTA -ACGGAATTCAGGGTCACATCGTCT -ACGGAATTCAGGGTCACATGCACT -ACGGAATTCAGGGTCACACTGACT -ACGGAATTCAGGGTCACACAACCT -ACGGAATTCAGGGTCACAGCTACT -ACGGAATTCAGGGTCACAGGATCT -ACGGAATTCAGGGTCACAAAGGCT -ACGGAATTCAGGGTCACATCAACC -ACGGAATTCAGGGTCACATGTTCC -ACGGAATTCAGGGTCACAATTCCC -ACGGAATTCAGGGTCACATTCTCG -ACGGAATTCAGGGTCACATAGACG -ACGGAATTCAGGGTCACAGTAACG -ACGGAATTCAGGGTCACAACTTCG -ACGGAATTCAGGGTCACATACGCA -ACGGAATTCAGGGTCACACTTGCA -ACGGAATTCAGGGTCACACGAACA -ACGGAATTCAGGGTCACACAGTCA -ACGGAATTCAGGGTCACAGATCCA -ACGGAATTCAGGGTCACAACGACA -ACGGAATTCAGGGTCACAAGCTCA -ACGGAATTCAGGGTCACATCACGT -ACGGAATTCAGGGTCACACGTAGT -ACGGAATTCAGGGTCACAGTCAGT -ACGGAATTCAGGGTCACAGAAGGT -ACGGAATTCAGGGTCACAAACCGT -ACGGAATTCAGGGTCACATTGTGC -ACGGAATTCAGGGTCACACTAAGC -ACGGAATTCAGGGTCACAACTAGC -ACGGAATTCAGGGTCACAAGATGC -ACGGAATTCAGGGTCACATGAAGG -ACGGAATTCAGGGTCACACAATGG -ACGGAATTCAGGGTCACAATGAGG -ACGGAATTCAGGGTCACAAATGGG -ACGGAATTCAGGGTCACATCCTGA -ACGGAATTCAGGGTCACATAGCGA -ACGGAATTCAGGGTCACACACAGA -ACGGAATTCAGGGTCACAGCAAGA -ACGGAATTCAGGGTCACAGGTTGA -ACGGAATTCAGGGTCACATCCGAT -ACGGAATTCAGGGTCACATGGCAT -ACGGAATTCAGGGTCACACGAGAT -ACGGAATTCAGGGTCACATACCAC -ACGGAATTCAGGGTCACACAGAAC -ACGGAATTCAGGGTCACAGTCTAC -ACGGAATTCAGGGTCACAACGTAC -ACGGAATTCAGGGTCACAAGTGAC -ACGGAATTCAGGGTCACACTGTAG -ACGGAATTCAGGGTCACACCTAAG -ACGGAATTCAGGGTCACAGTTCAG -ACGGAATTCAGGGTCACAGCATAG -ACGGAATTCAGGGTCACAGACAAG -ACGGAATTCAGGGTCACAAAGCAG -ACGGAATTCAGGGTCACACGTCAA -ACGGAATTCAGGGTCACAGCTGAA -ACGGAATTCAGGGTCACAAGTACG -ACGGAATTCAGGGTCACAATCCGA -ACGGAATTCAGGGTCACAATGGGA -ACGGAATTCAGGGTCACAGTGCAA -ACGGAATTCAGGGTCACAGAGGAA -ACGGAATTCAGGGTCACACAGGTA -ACGGAATTCAGGGTCACAGACTCT -ACGGAATTCAGGGTCACAAGTCCT -ACGGAATTCAGGGTCACATAAGCC -ACGGAATTCAGGGTCACAATAGCC -ACGGAATTCAGGGTCACATAACCG -ACGGAATTCAGGGTCACAATGCCA -ACGGAATTCAGGCTGTTGGGAAAC -ACGGAATTCAGGCTGTTGAACACC -ACGGAATTCAGGCTGTTGATCGAG -ACGGAATTCAGGCTGTTGCTCCTT -ACGGAATTCAGGCTGTTGCCTGTT -ACGGAATTCAGGCTGTTGCGGTTT -ACGGAATTCAGGCTGTTGGTGGTT -ACGGAATTCAGGCTGTTGGCCTTT -ACGGAATTCAGGCTGTTGGGTCTT -ACGGAATTCAGGCTGTTGACGCTT -ACGGAATTCAGGCTGTTGAGCGTT -ACGGAATTCAGGCTGTTGTTCGTC -ACGGAATTCAGGCTGTTGTCTCTC -ACGGAATTCAGGCTGTTGTGGATC -ACGGAATTCAGGCTGTTGCACTTC -ACGGAATTCAGGCTGTTGGTACTC -ACGGAATTCAGGCTGTTGGATGTC -ACGGAATTCAGGCTGTTGACAGTC -ACGGAATTCAGGCTGTTGTTGCTG -ACGGAATTCAGGCTGTTGTCCATG -ACGGAATTCAGGCTGTTGTGTGTG -ACGGAATTCAGGCTGTTGCTAGTG -ACGGAATTCAGGCTGTTGCATCTG -ACGGAATTCAGGCTGTTGGAGTTG -ACGGAATTCAGGCTGTTGAGACTG -ACGGAATTCAGGCTGTTGTCGGTA -ACGGAATTCAGGCTGTTGTGCCTA -ACGGAATTCAGGCTGTTGCCACTA -ACGGAATTCAGGCTGTTGGGAGTA -ACGGAATTCAGGCTGTTGTCGTCT -ACGGAATTCAGGCTGTTGTGCACT -ACGGAATTCAGGCTGTTGCTGACT -ACGGAATTCAGGCTGTTGCAACCT -ACGGAATTCAGGCTGTTGGCTACT -ACGGAATTCAGGCTGTTGGGATCT -ACGGAATTCAGGCTGTTGAAGGCT -ACGGAATTCAGGCTGTTGTCAACC -ACGGAATTCAGGCTGTTGTGTTCC -ACGGAATTCAGGCTGTTGATTCCC -ACGGAATTCAGGCTGTTGTTCTCG -ACGGAATTCAGGCTGTTGTAGACG -ACGGAATTCAGGCTGTTGGTAACG -ACGGAATTCAGGCTGTTGACTTCG -ACGGAATTCAGGCTGTTGTACGCA -ACGGAATTCAGGCTGTTGCTTGCA -ACGGAATTCAGGCTGTTGCGAACA -ACGGAATTCAGGCTGTTGCAGTCA -ACGGAATTCAGGCTGTTGGATCCA -ACGGAATTCAGGCTGTTGACGACA -ACGGAATTCAGGCTGTTGAGCTCA -ACGGAATTCAGGCTGTTGTCACGT -ACGGAATTCAGGCTGTTGCGTAGT -ACGGAATTCAGGCTGTTGGTCAGT -ACGGAATTCAGGCTGTTGGAAGGT -ACGGAATTCAGGCTGTTGAACCGT -ACGGAATTCAGGCTGTTGTTGTGC -ACGGAATTCAGGCTGTTGCTAAGC -ACGGAATTCAGGCTGTTGACTAGC -ACGGAATTCAGGCTGTTGAGATGC -ACGGAATTCAGGCTGTTGTGAAGG -ACGGAATTCAGGCTGTTGCAATGG -ACGGAATTCAGGCTGTTGATGAGG -ACGGAATTCAGGCTGTTGAATGGG -ACGGAATTCAGGCTGTTGTCCTGA -ACGGAATTCAGGCTGTTGTAGCGA -ACGGAATTCAGGCTGTTGCACAGA -ACGGAATTCAGGCTGTTGGCAAGA -ACGGAATTCAGGCTGTTGGGTTGA -ACGGAATTCAGGCTGTTGTCCGAT -ACGGAATTCAGGCTGTTGTGGCAT -ACGGAATTCAGGCTGTTGCGAGAT -ACGGAATTCAGGCTGTTGTACCAC -ACGGAATTCAGGCTGTTGCAGAAC -ACGGAATTCAGGCTGTTGGTCTAC -ACGGAATTCAGGCTGTTGACGTAC -ACGGAATTCAGGCTGTTGAGTGAC -ACGGAATTCAGGCTGTTGCTGTAG -ACGGAATTCAGGCTGTTGCCTAAG -ACGGAATTCAGGCTGTTGGTTCAG -ACGGAATTCAGGCTGTTGGCATAG -ACGGAATTCAGGCTGTTGGACAAG -ACGGAATTCAGGCTGTTGAAGCAG -ACGGAATTCAGGCTGTTGCGTCAA -ACGGAATTCAGGCTGTTGGCTGAA -ACGGAATTCAGGCTGTTGAGTACG -ACGGAATTCAGGCTGTTGATCCGA -ACGGAATTCAGGCTGTTGATGGGA -ACGGAATTCAGGCTGTTGGTGCAA -ACGGAATTCAGGCTGTTGGAGGAA -ACGGAATTCAGGCTGTTGCAGGTA -ACGGAATTCAGGCTGTTGGACTCT -ACGGAATTCAGGCTGTTGAGTCCT -ACGGAATTCAGGCTGTTGTAAGCC -ACGGAATTCAGGCTGTTGATAGCC -ACGGAATTCAGGCTGTTGTAACCG -ACGGAATTCAGGCTGTTGATGCCA -ACGGAATTCAGGATGTCCGGAAAC -ACGGAATTCAGGATGTCCAACACC -ACGGAATTCAGGATGTCCATCGAG -ACGGAATTCAGGATGTCCCTCCTT -ACGGAATTCAGGATGTCCCCTGTT -ACGGAATTCAGGATGTCCCGGTTT -ACGGAATTCAGGATGTCCGTGGTT -ACGGAATTCAGGATGTCCGCCTTT -ACGGAATTCAGGATGTCCGGTCTT -ACGGAATTCAGGATGTCCACGCTT -ACGGAATTCAGGATGTCCAGCGTT -ACGGAATTCAGGATGTCCTTCGTC -ACGGAATTCAGGATGTCCTCTCTC -ACGGAATTCAGGATGTCCTGGATC -ACGGAATTCAGGATGTCCCACTTC -ACGGAATTCAGGATGTCCGTACTC -ACGGAATTCAGGATGTCCGATGTC -ACGGAATTCAGGATGTCCACAGTC -ACGGAATTCAGGATGTCCTTGCTG -ACGGAATTCAGGATGTCCTCCATG -ACGGAATTCAGGATGTCCTGTGTG -ACGGAATTCAGGATGTCCCTAGTG -ACGGAATTCAGGATGTCCCATCTG -ACGGAATTCAGGATGTCCGAGTTG -ACGGAATTCAGGATGTCCAGACTG -ACGGAATTCAGGATGTCCTCGGTA -ACGGAATTCAGGATGTCCTGCCTA -ACGGAATTCAGGATGTCCCCACTA -ACGGAATTCAGGATGTCCGGAGTA -ACGGAATTCAGGATGTCCTCGTCT -ACGGAATTCAGGATGTCCTGCACT -ACGGAATTCAGGATGTCCCTGACT -ACGGAATTCAGGATGTCCCAACCT -ACGGAATTCAGGATGTCCGCTACT -ACGGAATTCAGGATGTCCGGATCT -ACGGAATTCAGGATGTCCAAGGCT -ACGGAATTCAGGATGTCCTCAACC -ACGGAATTCAGGATGTCCTGTTCC -ACGGAATTCAGGATGTCCATTCCC -ACGGAATTCAGGATGTCCTTCTCG -ACGGAATTCAGGATGTCCTAGACG -ACGGAATTCAGGATGTCCGTAACG -ACGGAATTCAGGATGTCCACTTCG -ACGGAATTCAGGATGTCCTACGCA -ACGGAATTCAGGATGTCCCTTGCA -ACGGAATTCAGGATGTCCCGAACA -ACGGAATTCAGGATGTCCCAGTCA -ACGGAATTCAGGATGTCCGATCCA -ACGGAATTCAGGATGTCCACGACA -ACGGAATTCAGGATGTCCAGCTCA -ACGGAATTCAGGATGTCCTCACGT -ACGGAATTCAGGATGTCCCGTAGT -ACGGAATTCAGGATGTCCGTCAGT -ACGGAATTCAGGATGTCCGAAGGT -ACGGAATTCAGGATGTCCAACCGT -ACGGAATTCAGGATGTCCTTGTGC -ACGGAATTCAGGATGTCCCTAAGC -ACGGAATTCAGGATGTCCACTAGC -ACGGAATTCAGGATGTCCAGATGC -ACGGAATTCAGGATGTCCTGAAGG -ACGGAATTCAGGATGTCCCAATGG -ACGGAATTCAGGATGTCCATGAGG -ACGGAATTCAGGATGTCCAATGGG -ACGGAATTCAGGATGTCCTCCTGA -ACGGAATTCAGGATGTCCTAGCGA -ACGGAATTCAGGATGTCCCACAGA -ACGGAATTCAGGATGTCCGCAAGA -ACGGAATTCAGGATGTCCGGTTGA -ACGGAATTCAGGATGTCCTCCGAT -ACGGAATTCAGGATGTCCTGGCAT -ACGGAATTCAGGATGTCCCGAGAT -ACGGAATTCAGGATGTCCTACCAC -ACGGAATTCAGGATGTCCCAGAAC -ACGGAATTCAGGATGTCCGTCTAC -ACGGAATTCAGGATGTCCACGTAC -ACGGAATTCAGGATGTCCAGTGAC -ACGGAATTCAGGATGTCCCTGTAG -ACGGAATTCAGGATGTCCCCTAAG -ACGGAATTCAGGATGTCCGTTCAG -ACGGAATTCAGGATGTCCGCATAG -ACGGAATTCAGGATGTCCGACAAG -ACGGAATTCAGGATGTCCAAGCAG -ACGGAATTCAGGATGTCCCGTCAA -ACGGAATTCAGGATGTCCGCTGAA -ACGGAATTCAGGATGTCCAGTACG -ACGGAATTCAGGATGTCCATCCGA -ACGGAATTCAGGATGTCCATGGGA -ACGGAATTCAGGATGTCCGTGCAA -ACGGAATTCAGGATGTCCGAGGAA -ACGGAATTCAGGATGTCCCAGGTA -ACGGAATTCAGGATGTCCGACTCT -ACGGAATTCAGGATGTCCAGTCCT -ACGGAATTCAGGATGTCCTAAGCC -ACGGAATTCAGGATGTCCATAGCC -ACGGAATTCAGGATGTCCTAACCG -ACGGAATTCAGGATGTCCATGCCA -ACGGAATTCAGGGTGTGTGGAAAC -ACGGAATTCAGGGTGTGTAACACC -ACGGAATTCAGGGTGTGTATCGAG -ACGGAATTCAGGGTGTGTCTCCTT -ACGGAATTCAGGGTGTGTCCTGTT -ACGGAATTCAGGGTGTGTCGGTTT -ACGGAATTCAGGGTGTGTGTGGTT -ACGGAATTCAGGGTGTGTGCCTTT -ACGGAATTCAGGGTGTGTGGTCTT -ACGGAATTCAGGGTGTGTACGCTT -ACGGAATTCAGGGTGTGTAGCGTT -ACGGAATTCAGGGTGTGTTTCGTC -ACGGAATTCAGGGTGTGTTCTCTC -ACGGAATTCAGGGTGTGTTGGATC -ACGGAATTCAGGGTGTGTCACTTC -ACGGAATTCAGGGTGTGTGTACTC -ACGGAATTCAGGGTGTGTGATGTC -ACGGAATTCAGGGTGTGTACAGTC -ACGGAATTCAGGGTGTGTTTGCTG -ACGGAATTCAGGGTGTGTTCCATG -ACGGAATTCAGGGTGTGTTGTGTG -ACGGAATTCAGGGTGTGTCTAGTG -ACGGAATTCAGGGTGTGTCATCTG -ACGGAATTCAGGGTGTGTGAGTTG -ACGGAATTCAGGGTGTGTAGACTG -ACGGAATTCAGGGTGTGTTCGGTA -ACGGAATTCAGGGTGTGTTGCCTA -ACGGAATTCAGGGTGTGTCCACTA -ACGGAATTCAGGGTGTGTGGAGTA -ACGGAATTCAGGGTGTGTTCGTCT -ACGGAATTCAGGGTGTGTTGCACT -ACGGAATTCAGGGTGTGTCTGACT -ACGGAATTCAGGGTGTGTCAACCT -ACGGAATTCAGGGTGTGTGCTACT -ACGGAATTCAGGGTGTGTGGATCT -ACGGAATTCAGGGTGTGTAAGGCT -ACGGAATTCAGGGTGTGTTCAACC -ACGGAATTCAGGGTGTGTTGTTCC -ACGGAATTCAGGGTGTGTATTCCC -ACGGAATTCAGGGTGTGTTTCTCG -ACGGAATTCAGGGTGTGTTAGACG -ACGGAATTCAGGGTGTGTGTAACG -ACGGAATTCAGGGTGTGTACTTCG -ACGGAATTCAGGGTGTGTTACGCA -ACGGAATTCAGGGTGTGTCTTGCA -ACGGAATTCAGGGTGTGTCGAACA -ACGGAATTCAGGGTGTGTCAGTCA -ACGGAATTCAGGGTGTGTGATCCA -ACGGAATTCAGGGTGTGTACGACA -ACGGAATTCAGGGTGTGTAGCTCA -ACGGAATTCAGGGTGTGTTCACGT -ACGGAATTCAGGGTGTGTCGTAGT -ACGGAATTCAGGGTGTGTGTCAGT -ACGGAATTCAGGGTGTGTGAAGGT -ACGGAATTCAGGGTGTGTAACCGT -ACGGAATTCAGGGTGTGTTTGTGC -ACGGAATTCAGGGTGTGTCTAAGC -ACGGAATTCAGGGTGTGTACTAGC -ACGGAATTCAGGGTGTGTAGATGC -ACGGAATTCAGGGTGTGTTGAAGG -ACGGAATTCAGGGTGTGTCAATGG -ACGGAATTCAGGGTGTGTATGAGG -ACGGAATTCAGGGTGTGTAATGGG -ACGGAATTCAGGGTGTGTTCCTGA -ACGGAATTCAGGGTGTGTTAGCGA -ACGGAATTCAGGGTGTGTCACAGA -ACGGAATTCAGGGTGTGTGCAAGA -ACGGAATTCAGGGTGTGTGGTTGA -ACGGAATTCAGGGTGTGTTCCGAT -ACGGAATTCAGGGTGTGTTGGCAT -ACGGAATTCAGGGTGTGTCGAGAT -ACGGAATTCAGGGTGTGTTACCAC -ACGGAATTCAGGGTGTGTCAGAAC -ACGGAATTCAGGGTGTGTGTCTAC -ACGGAATTCAGGGTGTGTACGTAC -ACGGAATTCAGGGTGTGTAGTGAC -ACGGAATTCAGGGTGTGTCTGTAG -ACGGAATTCAGGGTGTGTCCTAAG -ACGGAATTCAGGGTGTGTGTTCAG -ACGGAATTCAGGGTGTGTGCATAG -ACGGAATTCAGGGTGTGTGACAAG -ACGGAATTCAGGGTGTGTAAGCAG -ACGGAATTCAGGGTGTGTCGTCAA -ACGGAATTCAGGGTGTGTGCTGAA -ACGGAATTCAGGGTGTGTAGTACG -ACGGAATTCAGGGTGTGTATCCGA -ACGGAATTCAGGGTGTGTATGGGA -ACGGAATTCAGGGTGTGTGTGCAA -ACGGAATTCAGGGTGTGTGAGGAA -ACGGAATTCAGGGTGTGTCAGGTA -ACGGAATTCAGGGTGTGTGACTCT -ACGGAATTCAGGGTGTGTAGTCCT -ACGGAATTCAGGGTGTGTTAAGCC -ACGGAATTCAGGGTGTGTATAGCC -ACGGAATTCAGGGTGTGTTAACCG -ACGGAATTCAGGGTGTGTATGCCA -ACGGAATTCAGGGTGCTAGGAAAC -ACGGAATTCAGGGTGCTAAACACC -ACGGAATTCAGGGTGCTAATCGAG -ACGGAATTCAGGGTGCTACTCCTT -ACGGAATTCAGGGTGCTACCTGTT -ACGGAATTCAGGGTGCTACGGTTT -ACGGAATTCAGGGTGCTAGTGGTT -ACGGAATTCAGGGTGCTAGCCTTT -ACGGAATTCAGGGTGCTAGGTCTT -ACGGAATTCAGGGTGCTAACGCTT -ACGGAATTCAGGGTGCTAAGCGTT -ACGGAATTCAGGGTGCTATTCGTC -ACGGAATTCAGGGTGCTATCTCTC -ACGGAATTCAGGGTGCTATGGATC -ACGGAATTCAGGGTGCTACACTTC -ACGGAATTCAGGGTGCTAGTACTC -ACGGAATTCAGGGTGCTAGATGTC -ACGGAATTCAGGGTGCTAACAGTC -ACGGAATTCAGGGTGCTATTGCTG -ACGGAATTCAGGGTGCTATCCATG -ACGGAATTCAGGGTGCTATGTGTG -ACGGAATTCAGGGTGCTACTAGTG -ACGGAATTCAGGGTGCTACATCTG -ACGGAATTCAGGGTGCTAGAGTTG -ACGGAATTCAGGGTGCTAAGACTG -ACGGAATTCAGGGTGCTATCGGTA -ACGGAATTCAGGGTGCTATGCCTA -ACGGAATTCAGGGTGCTACCACTA -ACGGAATTCAGGGTGCTAGGAGTA -ACGGAATTCAGGGTGCTATCGTCT -ACGGAATTCAGGGTGCTATGCACT -ACGGAATTCAGGGTGCTACTGACT -ACGGAATTCAGGGTGCTACAACCT -ACGGAATTCAGGGTGCTAGCTACT -ACGGAATTCAGGGTGCTAGGATCT -ACGGAATTCAGGGTGCTAAAGGCT -ACGGAATTCAGGGTGCTATCAACC -ACGGAATTCAGGGTGCTATGTTCC -ACGGAATTCAGGGTGCTAATTCCC -ACGGAATTCAGGGTGCTATTCTCG -ACGGAATTCAGGGTGCTATAGACG -ACGGAATTCAGGGTGCTAGTAACG -ACGGAATTCAGGGTGCTAACTTCG -ACGGAATTCAGGGTGCTATACGCA -ACGGAATTCAGGGTGCTACTTGCA -ACGGAATTCAGGGTGCTACGAACA -ACGGAATTCAGGGTGCTACAGTCA -ACGGAATTCAGGGTGCTAGATCCA -ACGGAATTCAGGGTGCTAACGACA -ACGGAATTCAGGGTGCTAAGCTCA -ACGGAATTCAGGGTGCTATCACGT -ACGGAATTCAGGGTGCTACGTAGT -ACGGAATTCAGGGTGCTAGTCAGT -ACGGAATTCAGGGTGCTAGAAGGT -ACGGAATTCAGGGTGCTAAACCGT -ACGGAATTCAGGGTGCTATTGTGC -ACGGAATTCAGGGTGCTACTAAGC -ACGGAATTCAGGGTGCTAACTAGC -ACGGAATTCAGGGTGCTAAGATGC -ACGGAATTCAGGGTGCTATGAAGG -ACGGAATTCAGGGTGCTACAATGG -ACGGAATTCAGGGTGCTAATGAGG -ACGGAATTCAGGGTGCTAAATGGG -ACGGAATTCAGGGTGCTATCCTGA -ACGGAATTCAGGGTGCTATAGCGA -ACGGAATTCAGGGTGCTACACAGA -ACGGAATTCAGGGTGCTAGCAAGA -ACGGAATTCAGGGTGCTAGGTTGA -ACGGAATTCAGGGTGCTATCCGAT -ACGGAATTCAGGGTGCTATGGCAT -ACGGAATTCAGGGTGCTACGAGAT -ACGGAATTCAGGGTGCTATACCAC -ACGGAATTCAGGGTGCTACAGAAC -ACGGAATTCAGGGTGCTAGTCTAC -ACGGAATTCAGGGTGCTAACGTAC -ACGGAATTCAGGGTGCTAAGTGAC -ACGGAATTCAGGGTGCTACTGTAG -ACGGAATTCAGGGTGCTACCTAAG -ACGGAATTCAGGGTGCTAGTTCAG -ACGGAATTCAGGGTGCTAGCATAG -ACGGAATTCAGGGTGCTAGACAAG -ACGGAATTCAGGGTGCTAAAGCAG -ACGGAATTCAGGGTGCTACGTCAA -ACGGAATTCAGGGTGCTAGCTGAA -ACGGAATTCAGGGTGCTAAGTACG -ACGGAATTCAGGGTGCTAATCCGA -ACGGAATTCAGGGTGCTAATGGGA -ACGGAATTCAGGGTGCTAGTGCAA -ACGGAATTCAGGGTGCTAGAGGAA -ACGGAATTCAGGGTGCTACAGGTA -ACGGAATTCAGGGTGCTAGACTCT -ACGGAATTCAGGGTGCTAAGTCCT -ACGGAATTCAGGGTGCTATAAGCC -ACGGAATTCAGGGTGCTAATAGCC -ACGGAATTCAGGGTGCTATAACCG -ACGGAATTCAGGGTGCTAATGCCA -ACGGAATTCAGGCTGCATGGAAAC -ACGGAATTCAGGCTGCATAACACC -ACGGAATTCAGGCTGCATATCGAG -ACGGAATTCAGGCTGCATCTCCTT -ACGGAATTCAGGCTGCATCCTGTT -ACGGAATTCAGGCTGCATCGGTTT -ACGGAATTCAGGCTGCATGTGGTT -ACGGAATTCAGGCTGCATGCCTTT -ACGGAATTCAGGCTGCATGGTCTT -ACGGAATTCAGGCTGCATACGCTT -ACGGAATTCAGGCTGCATAGCGTT -ACGGAATTCAGGCTGCATTTCGTC -ACGGAATTCAGGCTGCATTCTCTC -ACGGAATTCAGGCTGCATTGGATC -ACGGAATTCAGGCTGCATCACTTC -ACGGAATTCAGGCTGCATGTACTC -ACGGAATTCAGGCTGCATGATGTC -ACGGAATTCAGGCTGCATACAGTC -ACGGAATTCAGGCTGCATTTGCTG -ACGGAATTCAGGCTGCATTCCATG -ACGGAATTCAGGCTGCATTGTGTG -ACGGAATTCAGGCTGCATCTAGTG -ACGGAATTCAGGCTGCATCATCTG -ACGGAATTCAGGCTGCATGAGTTG -ACGGAATTCAGGCTGCATAGACTG -ACGGAATTCAGGCTGCATTCGGTA -ACGGAATTCAGGCTGCATTGCCTA -ACGGAATTCAGGCTGCATCCACTA -ACGGAATTCAGGCTGCATGGAGTA -ACGGAATTCAGGCTGCATTCGTCT -ACGGAATTCAGGCTGCATTGCACT -ACGGAATTCAGGCTGCATCTGACT -ACGGAATTCAGGCTGCATCAACCT -ACGGAATTCAGGCTGCATGCTACT -ACGGAATTCAGGCTGCATGGATCT -ACGGAATTCAGGCTGCATAAGGCT -ACGGAATTCAGGCTGCATTCAACC -ACGGAATTCAGGCTGCATTGTTCC -ACGGAATTCAGGCTGCATATTCCC -ACGGAATTCAGGCTGCATTTCTCG -ACGGAATTCAGGCTGCATTAGACG -ACGGAATTCAGGCTGCATGTAACG -ACGGAATTCAGGCTGCATACTTCG -ACGGAATTCAGGCTGCATTACGCA -ACGGAATTCAGGCTGCATCTTGCA -ACGGAATTCAGGCTGCATCGAACA -ACGGAATTCAGGCTGCATCAGTCA -ACGGAATTCAGGCTGCATGATCCA -ACGGAATTCAGGCTGCATACGACA -ACGGAATTCAGGCTGCATAGCTCA -ACGGAATTCAGGCTGCATTCACGT -ACGGAATTCAGGCTGCATCGTAGT -ACGGAATTCAGGCTGCATGTCAGT -ACGGAATTCAGGCTGCATGAAGGT -ACGGAATTCAGGCTGCATAACCGT -ACGGAATTCAGGCTGCATTTGTGC -ACGGAATTCAGGCTGCATCTAAGC -ACGGAATTCAGGCTGCATACTAGC -ACGGAATTCAGGCTGCATAGATGC -ACGGAATTCAGGCTGCATTGAAGG -ACGGAATTCAGGCTGCATCAATGG -ACGGAATTCAGGCTGCATATGAGG -ACGGAATTCAGGCTGCATAATGGG -ACGGAATTCAGGCTGCATTCCTGA -ACGGAATTCAGGCTGCATTAGCGA -ACGGAATTCAGGCTGCATCACAGA -ACGGAATTCAGGCTGCATGCAAGA -ACGGAATTCAGGCTGCATGGTTGA -ACGGAATTCAGGCTGCATTCCGAT -ACGGAATTCAGGCTGCATTGGCAT -ACGGAATTCAGGCTGCATCGAGAT -ACGGAATTCAGGCTGCATTACCAC -ACGGAATTCAGGCTGCATCAGAAC -ACGGAATTCAGGCTGCATGTCTAC -ACGGAATTCAGGCTGCATACGTAC -ACGGAATTCAGGCTGCATAGTGAC -ACGGAATTCAGGCTGCATCTGTAG -ACGGAATTCAGGCTGCATCCTAAG -ACGGAATTCAGGCTGCATGTTCAG -ACGGAATTCAGGCTGCATGCATAG -ACGGAATTCAGGCTGCATGACAAG -ACGGAATTCAGGCTGCATAAGCAG -ACGGAATTCAGGCTGCATCGTCAA -ACGGAATTCAGGCTGCATGCTGAA -ACGGAATTCAGGCTGCATAGTACG -ACGGAATTCAGGCTGCATATCCGA -ACGGAATTCAGGCTGCATATGGGA -ACGGAATTCAGGCTGCATGTGCAA -ACGGAATTCAGGCTGCATGAGGAA -ACGGAATTCAGGCTGCATCAGGTA -ACGGAATTCAGGCTGCATGACTCT -ACGGAATTCAGGCTGCATAGTCCT -ACGGAATTCAGGCTGCATTAAGCC -ACGGAATTCAGGCTGCATATAGCC -ACGGAATTCAGGCTGCATTAACCG -ACGGAATTCAGGCTGCATATGCCA -ACGGAATTCAGGTTGGAGGGAAAC -ACGGAATTCAGGTTGGAGAACACC -ACGGAATTCAGGTTGGAGATCGAG -ACGGAATTCAGGTTGGAGCTCCTT -ACGGAATTCAGGTTGGAGCCTGTT -ACGGAATTCAGGTTGGAGCGGTTT -ACGGAATTCAGGTTGGAGGTGGTT -ACGGAATTCAGGTTGGAGGCCTTT -ACGGAATTCAGGTTGGAGGGTCTT -ACGGAATTCAGGTTGGAGACGCTT -ACGGAATTCAGGTTGGAGAGCGTT -ACGGAATTCAGGTTGGAGTTCGTC -ACGGAATTCAGGTTGGAGTCTCTC -ACGGAATTCAGGTTGGAGTGGATC -ACGGAATTCAGGTTGGAGCACTTC -ACGGAATTCAGGTTGGAGGTACTC -ACGGAATTCAGGTTGGAGGATGTC -ACGGAATTCAGGTTGGAGACAGTC -ACGGAATTCAGGTTGGAGTTGCTG -ACGGAATTCAGGTTGGAGTCCATG -ACGGAATTCAGGTTGGAGTGTGTG -ACGGAATTCAGGTTGGAGCTAGTG -ACGGAATTCAGGTTGGAGCATCTG -ACGGAATTCAGGTTGGAGGAGTTG -ACGGAATTCAGGTTGGAGAGACTG -ACGGAATTCAGGTTGGAGTCGGTA -ACGGAATTCAGGTTGGAGTGCCTA -ACGGAATTCAGGTTGGAGCCACTA -ACGGAATTCAGGTTGGAGGGAGTA -ACGGAATTCAGGTTGGAGTCGTCT -ACGGAATTCAGGTTGGAGTGCACT -ACGGAATTCAGGTTGGAGCTGACT -ACGGAATTCAGGTTGGAGCAACCT -ACGGAATTCAGGTTGGAGGCTACT -ACGGAATTCAGGTTGGAGGGATCT -ACGGAATTCAGGTTGGAGAAGGCT -ACGGAATTCAGGTTGGAGTCAACC -ACGGAATTCAGGTTGGAGTGTTCC -ACGGAATTCAGGTTGGAGATTCCC -ACGGAATTCAGGTTGGAGTTCTCG -ACGGAATTCAGGTTGGAGTAGACG -ACGGAATTCAGGTTGGAGGTAACG -ACGGAATTCAGGTTGGAGACTTCG -ACGGAATTCAGGTTGGAGTACGCA -ACGGAATTCAGGTTGGAGCTTGCA -ACGGAATTCAGGTTGGAGCGAACA -ACGGAATTCAGGTTGGAGCAGTCA -ACGGAATTCAGGTTGGAGGATCCA -ACGGAATTCAGGTTGGAGACGACA -ACGGAATTCAGGTTGGAGAGCTCA -ACGGAATTCAGGTTGGAGTCACGT -ACGGAATTCAGGTTGGAGCGTAGT -ACGGAATTCAGGTTGGAGGTCAGT -ACGGAATTCAGGTTGGAGGAAGGT -ACGGAATTCAGGTTGGAGAACCGT -ACGGAATTCAGGTTGGAGTTGTGC -ACGGAATTCAGGTTGGAGCTAAGC -ACGGAATTCAGGTTGGAGACTAGC -ACGGAATTCAGGTTGGAGAGATGC -ACGGAATTCAGGTTGGAGTGAAGG -ACGGAATTCAGGTTGGAGCAATGG -ACGGAATTCAGGTTGGAGATGAGG -ACGGAATTCAGGTTGGAGAATGGG -ACGGAATTCAGGTTGGAGTCCTGA -ACGGAATTCAGGTTGGAGTAGCGA -ACGGAATTCAGGTTGGAGCACAGA -ACGGAATTCAGGTTGGAGGCAAGA -ACGGAATTCAGGTTGGAGGGTTGA -ACGGAATTCAGGTTGGAGTCCGAT -ACGGAATTCAGGTTGGAGTGGCAT -ACGGAATTCAGGTTGGAGCGAGAT -ACGGAATTCAGGTTGGAGTACCAC -ACGGAATTCAGGTTGGAGCAGAAC -ACGGAATTCAGGTTGGAGGTCTAC -ACGGAATTCAGGTTGGAGACGTAC -ACGGAATTCAGGTTGGAGAGTGAC -ACGGAATTCAGGTTGGAGCTGTAG -ACGGAATTCAGGTTGGAGCCTAAG -ACGGAATTCAGGTTGGAGGTTCAG -ACGGAATTCAGGTTGGAGGCATAG -ACGGAATTCAGGTTGGAGGACAAG -ACGGAATTCAGGTTGGAGAAGCAG -ACGGAATTCAGGTTGGAGCGTCAA -ACGGAATTCAGGTTGGAGGCTGAA -ACGGAATTCAGGTTGGAGAGTACG -ACGGAATTCAGGTTGGAGATCCGA -ACGGAATTCAGGTTGGAGATGGGA -ACGGAATTCAGGTTGGAGGTGCAA -ACGGAATTCAGGTTGGAGGAGGAA -ACGGAATTCAGGTTGGAGCAGGTA -ACGGAATTCAGGTTGGAGGACTCT -ACGGAATTCAGGTTGGAGAGTCCT -ACGGAATTCAGGTTGGAGTAAGCC -ACGGAATTCAGGTTGGAGATAGCC -ACGGAATTCAGGTTGGAGTAACCG -ACGGAATTCAGGTTGGAGATGCCA -ACGGAATTCAGGCTGAGAGGAAAC -ACGGAATTCAGGCTGAGAAACACC -ACGGAATTCAGGCTGAGAATCGAG -ACGGAATTCAGGCTGAGACTCCTT -ACGGAATTCAGGCTGAGACCTGTT -ACGGAATTCAGGCTGAGACGGTTT -ACGGAATTCAGGCTGAGAGTGGTT -ACGGAATTCAGGCTGAGAGCCTTT -ACGGAATTCAGGCTGAGAGGTCTT -ACGGAATTCAGGCTGAGAACGCTT -ACGGAATTCAGGCTGAGAAGCGTT -ACGGAATTCAGGCTGAGATTCGTC -ACGGAATTCAGGCTGAGATCTCTC -ACGGAATTCAGGCTGAGATGGATC -ACGGAATTCAGGCTGAGACACTTC -ACGGAATTCAGGCTGAGAGTACTC -ACGGAATTCAGGCTGAGAGATGTC -ACGGAATTCAGGCTGAGAACAGTC -ACGGAATTCAGGCTGAGATTGCTG -ACGGAATTCAGGCTGAGATCCATG -ACGGAATTCAGGCTGAGATGTGTG -ACGGAATTCAGGCTGAGACTAGTG -ACGGAATTCAGGCTGAGACATCTG -ACGGAATTCAGGCTGAGAGAGTTG -ACGGAATTCAGGCTGAGAAGACTG -ACGGAATTCAGGCTGAGATCGGTA -ACGGAATTCAGGCTGAGATGCCTA -ACGGAATTCAGGCTGAGACCACTA -ACGGAATTCAGGCTGAGAGGAGTA -ACGGAATTCAGGCTGAGATCGTCT -ACGGAATTCAGGCTGAGATGCACT -ACGGAATTCAGGCTGAGACTGACT -ACGGAATTCAGGCTGAGACAACCT -ACGGAATTCAGGCTGAGAGCTACT -ACGGAATTCAGGCTGAGAGGATCT -ACGGAATTCAGGCTGAGAAAGGCT -ACGGAATTCAGGCTGAGATCAACC -ACGGAATTCAGGCTGAGATGTTCC -ACGGAATTCAGGCTGAGAATTCCC -ACGGAATTCAGGCTGAGATTCTCG -ACGGAATTCAGGCTGAGATAGACG -ACGGAATTCAGGCTGAGAGTAACG -ACGGAATTCAGGCTGAGAACTTCG -ACGGAATTCAGGCTGAGATACGCA -ACGGAATTCAGGCTGAGACTTGCA -ACGGAATTCAGGCTGAGACGAACA -ACGGAATTCAGGCTGAGACAGTCA -ACGGAATTCAGGCTGAGAGATCCA -ACGGAATTCAGGCTGAGAACGACA -ACGGAATTCAGGCTGAGAAGCTCA -ACGGAATTCAGGCTGAGATCACGT -ACGGAATTCAGGCTGAGACGTAGT -ACGGAATTCAGGCTGAGAGTCAGT -ACGGAATTCAGGCTGAGAGAAGGT -ACGGAATTCAGGCTGAGAAACCGT -ACGGAATTCAGGCTGAGATTGTGC -ACGGAATTCAGGCTGAGACTAAGC -ACGGAATTCAGGCTGAGAACTAGC -ACGGAATTCAGGCTGAGAAGATGC -ACGGAATTCAGGCTGAGATGAAGG -ACGGAATTCAGGCTGAGACAATGG -ACGGAATTCAGGCTGAGAATGAGG -ACGGAATTCAGGCTGAGAAATGGG -ACGGAATTCAGGCTGAGATCCTGA -ACGGAATTCAGGCTGAGATAGCGA -ACGGAATTCAGGCTGAGACACAGA -ACGGAATTCAGGCTGAGAGCAAGA -ACGGAATTCAGGCTGAGAGGTTGA -ACGGAATTCAGGCTGAGATCCGAT -ACGGAATTCAGGCTGAGATGGCAT -ACGGAATTCAGGCTGAGACGAGAT -ACGGAATTCAGGCTGAGATACCAC -ACGGAATTCAGGCTGAGACAGAAC -ACGGAATTCAGGCTGAGAGTCTAC -ACGGAATTCAGGCTGAGAACGTAC -ACGGAATTCAGGCTGAGAAGTGAC -ACGGAATTCAGGCTGAGACTGTAG -ACGGAATTCAGGCTGAGACCTAAG -ACGGAATTCAGGCTGAGAGTTCAG -ACGGAATTCAGGCTGAGAGCATAG -ACGGAATTCAGGCTGAGAGACAAG -ACGGAATTCAGGCTGAGAAAGCAG -ACGGAATTCAGGCTGAGACGTCAA -ACGGAATTCAGGCTGAGAGCTGAA -ACGGAATTCAGGCTGAGAAGTACG -ACGGAATTCAGGCTGAGAATCCGA -ACGGAATTCAGGCTGAGAATGGGA -ACGGAATTCAGGCTGAGAGTGCAA -ACGGAATTCAGGCTGAGAGAGGAA -ACGGAATTCAGGCTGAGACAGGTA -ACGGAATTCAGGCTGAGAGACTCT -ACGGAATTCAGGCTGAGAAGTCCT -ACGGAATTCAGGCTGAGATAAGCC -ACGGAATTCAGGCTGAGAATAGCC -ACGGAATTCAGGCTGAGATAACCG -ACGGAATTCAGGCTGAGAATGCCA -ACGGAATTCAGGGTATCGGGAAAC -ACGGAATTCAGGGTATCGAACACC -ACGGAATTCAGGGTATCGATCGAG -ACGGAATTCAGGGTATCGCTCCTT -ACGGAATTCAGGGTATCGCCTGTT -ACGGAATTCAGGGTATCGCGGTTT -ACGGAATTCAGGGTATCGGTGGTT -ACGGAATTCAGGGTATCGGCCTTT -ACGGAATTCAGGGTATCGGGTCTT -ACGGAATTCAGGGTATCGACGCTT -ACGGAATTCAGGGTATCGAGCGTT -ACGGAATTCAGGGTATCGTTCGTC -ACGGAATTCAGGGTATCGTCTCTC -ACGGAATTCAGGGTATCGTGGATC -ACGGAATTCAGGGTATCGCACTTC -ACGGAATTCAGGGTATCGGTACTC -ACGGAATTCAGGGTATCGGATGTC -ACGGAATTCAGGGTATCGACAGTC -ACGGAATTCAGGGTATCGTTGCTG -ACGGAATTCAGGGTATCGTCCATG -ACGGAATTCAGGGTATCGTGTGTG -ACGGAATTCAGGGTATCGCTAGTG -ACGGAATTCAGGGTATCGCATCTG -ACGGAATTCAGGGTATCGGAGTTG -ACGGAATTCAGGGTATCGAGACTG -ACGGAATTCAGGGTATCGTCGGTA -ACGGAATTCAGGGTATCGTGCCTA -ACGGAATTCAGGGTATCGCCACTA -ACGGAATTCAGGGTATCGGGAGTA -ACGGAATTCAGGGTATCGTCGTCT -ACGGAATTCAGGGTATCGTGCACT -ACGGAATTCAGGGTATCGCTGACT -ACGGAATTCAGGGTATCGCAACCT -ACGGAATTCAGGGTATCGGCTACT -ACGGAATTCAGGGTATCGGGATCT -ACGGAATTCAGGGTATCGAAGGCT -ACGGAATTCAGGGTATCGTCAACC -ACGGAATTCAGGGTATCGTGTTCC -ACGGAATTCAGGGTATCGATTCCC -ACGGAATTCAGGGTATCGTTCTCG -ACGGAATTCAGGGTATCGTAGACG -ACGGAATTCAGGGTATCGGTAACG -ACGGAATTCAGGGTATCGACTTCG -ACGGAATTCAGGGTATCGTACGCA -ACGGAATTCAGGGTATCGCTTGCA -ACGGAATTCAGGGTATCGCGAACA -ACGGAATTCAGGGTATCGCAGTCA -ACGGAATTCAGGGTATCGGATCCA -ACGGAATTCAGGGTATCGACGACA -ACGGAATTCAGGGTATCGAGCTCA -ACGGAATTCAGGGTATCGTCACGT -ACGGAATTCAGGGTATCGCGTAGT -ACGGAATTCAGGGTATCGGTCAGT -ACGGAATTCAGGGTATCGGAAGGT -ACGGAATTCAGGGTATCGAACCGT -ACGGAATTCAGGGTATCGTTGTGC -ACGGAATTCAGGGTATCGCTAAGC -ACGGAATTCAGGGTATCGACTAGC -ACGGAATTCAGGGTATCGAGATGC -ACGGAATTCAGGGTATCGTGAAGG -ACGGAATTCAGGGTATCGCAATGG -ACGGAATTCAGGGTATCGATGAGG -ACGGAATTCAGGGTATCGAATGGG -ACGGAATTCAGGGTATCGTCCTGA -ACGGAATTCAGGGTATCGTAGCGA -ACGGAATTCAGGGTATCGCACAGA -ACGGAATTCAGGGTATCGGCAAGA -ACGGAATTCAGGGTATCGGGTTGA -ACGGAATTCAGGGTATCGTCCGAT -ACGGAATTCAGGGTATCGTGGCAT -ACGGAATTCAGGGTATCGCGAGAT -ACGGAATTCAGGGTATCGTACCAC -ACGGAATTCAGGGTATCGCAGAAC -ACGGAATTCAGGGTATCGGTCTAC -ACGGAATTCAGGGTATCGACGTAC -ACGGAATTCAGGGTATCGAGTGAC -ACGGAATTCAGGGTATCGCTGTAG -ACGGAATTCAGGGTATCGCCTAAG -ACGGAATTCAGGGTATCGGTTCAG -ACGGAATTCAGGGTATCGGCATAG -ACGGAATTCAGGGTATCGGACAAG -ACGGAATTCAGGGTATCGAAGCAG -ACGGAATTCAGGGTATCGCGTCAA -ACGGAATTCAGGGTATCGGCTGAA -ACGGAATTCAGGGTATCGAGTACG -ACGGAATTCAGGGTATCGATCCGA -ACGGAATTCAGGGTATCGATGGGA -ACGGAATTCAGGGTATCGGTGCAA -ACGGAATTCAGGGTATCGGAGGAA -ACGGAATTCAGGGTATCGCAGGTA -ACGGAATTCAGGGTATCGGACTCT -ACGGAATTCAGGGTATCGAGTCCT -ACGGAATTCAGGGTATCGTAAGCC -ACGGAATTCAGGGTATCGATAGCC -ACGGAATTCAGGGTATCGTAACCG -ACGGAATTCAGGGTATCGATGCCA -ACGGAATTCAGGCTATGCGGAAAC -ACGGAATTCAGGCTATGCAACACC -ACGGAATTCAGGCTATGCATCGAG -ACGGAATTCAGGCTATGCCTCCTT -ACGGAATTCAGGCTATGCCCTGTT -ACGGAATTCAGGCTATGCCGGTTT -ACGGAATTCAGGCTATGCGTGGTT -ACGGAATTCAGGCTATGCGCCTTT -ACGGAATTCAGGCTATGCGGTCTT -ACGGAATTCAGGCTATGCACGCTT -ACGGAATTCAGGCTATGCAGCGTT -ACGGAATTCAGGCTATGCTTCGTC -ACGGAATTCAGGCTATGCTCTCTC -ACGGAATTCAGGCTATGCTGGATC -ACGGAATTCAGGCTATGCCACTTC -ACGGAATTCAGGCTATGCGTACTC -ACGGAATTCAGGCTATGCGATGTC -ACGGAATTCAGGCTATGCACAGTC -ACGGAATTCAGGCTATGCTTGCTG -ACGGAATTCAGGCTATGCTCCATG -ACGGAATTCAGGCTATGCTGTGTG -ACGGAATTCAGGCTATGCCTAGTG -ACGGAATTCAGGCTATGCCATCTG -ACGGAATTCAGGCTATGCGAGTTG -ACGGAATTCAGGCTATGCAGACTG -ACGGAATTCAGGCTATGCTCGGTA -ACGGAATTCAGGCTATGCTGCCTA -ACGGAATTCAGGCTATGCCCACTA -ACGGAATTCAGGCTATGCGGAGTA -ACGGAATTCAGGCTATGCTCGTCT -ACGGAATTCAGGCTATGCTGCACT -ACGGAATTCAGGCTATGCCTGACT -ACGGAATTCAGGCTATGCCAACCT -ACGGAATTCAGGCTATGCGCTACT -ACGGAATTCAGGCTATGCGGATCT -ACGGAATTCAGGCTATGCAAGGCT -ACGGAATTCAGGCTATGCTCAACC -ACGGAATTCAGGCTATGCTGTTCC -ACGGAATTCAGGCTATGCATTCCC -ACGGAATTCAGGCTATGCTTCTCG -ACGGAATTCAGGCTATGCTAGACG -ACGGAATTCAGGCTATGCGTAACG -ACGGAATTCAGGCTATGCACTTCG -ACGGAATTCAGGCTATGCTACGCA -ACGGAATTCAGGCTATGCCTTGCA -ACGGAATTCAGGCTATGCCGAACA -ACGGAATTCAGGCTATGCCAGTCA -ACGGAATTCAGGCTATGCGATCCA -ACGGAATTCAGGCTATGCACGACA -ACGGAATTCAGGCTATGCAGCTCA -ACGGAATTCAGGCTATGCTCACGT -ACGGAATTCAGGCTATGCCGTAGT -ACGGAATTCAGGCTATGCGTCAGT -ACGGAATTCAGGCTATGCGAAGGT -ACGGAATTCAGGCTATGCAACCGT -ACGGAATTCAGGCTATGCTTGTGC -ACGGAATTCAGGCTATGCCTAAGC -ACGGAATTCAGGCTATGCACTAGC -ACGGAATTCAGGCTATGCAGATGC -ACGGAATTCAGGCTATGCTGAAGG -ACGGAATTCAGGCTATGCCAATGG -ACGGAATTCAGGCTATGCATGAGG -ACGGAATTCAGGCTATGCAATGGG -ACGGAATTCAGGCTATGCTCCTGA -ACGGAATTCAGGCTATGCTAGCGA -ACGGAATTCAGGCTATGCCACAGA -ACGGAATTCAGGCTATGCGCAAGA -ACGGAATTCAGGCTATGCGGTTGA -ACGGAATTCAGGCTATGCTCCGAT -ACGGAATTCAGGCTATGCTGGCAT -ACGGAATTCAGGCTATGCCGAGAT -ACGGAATTCAGGCTATGCTACCAC -ACGGAATTCAGGCTATGCCAGAAC -ACGGAATTCAGGCTATGCGTCTAC -ACGGAATTCAGGCTATGCACGTAC -ACGGAATTCAGGCTATGCAGTGAC -ACGGAATTCAGGCTATGCCTGTAG -ACGGAATTCAGGCTATGCCCTAAG -ACGGAATTCAGGCTATGCGTTCAG -ACGGAATTCAGGCTATGCGCATAG -ACGGAATTCAGGCTATGCGACAAG -ACGGAATTCAGGCTATGCAAGCAG -ACGGAATTCAGGCTATGCCGTCAA -ACGGAATTCAGGCTATGCGCTGAA -ACGGAATTCAGGCTATGCAGTACG -ACGGAATTCAGGCTATGCATCCGA -ACGGAATTCAGGCTATGCATGGGA -ACGGAATTCAGGCTATGCGTGCAA -ACGGAATTCAGGCTATGCGAGGAA -ACGGAATTCAGGCTATGCCAGGTA -ACGGAATTCAGGCTATGCGACTCT -ACGGAATTCAGGCTATGCAGTCCT -ACGGAATTCAGGCTATGCTAAGCC -ACGGAATTCAGGCTATGCATAGCC -ACGGAATTCAGGCTATGCTAACCG -ACGGAATTCAGGCTATGCATGCCA -ACGGAATTCAGGCTACCAGGAAAC -ACGGAATTCAGGCTACCAAACACC -ACGGAATTCAGGCTACCAATCGAG -ACGGAATTCAGGCTACCACTCCTT -ACGGAATTCAGGCTACCACCTGTT -ACGGAATTCAGGCTACCACGGTTT -ACGGAATTCAGGCTACCAGTGGTT -ACGGAATTCAGGCTACCAGCCTTT -ACGGAATTCAGGCTACCAGGTCTT -ACGGAATTCAGGCTACCAACGCTT -ACGGAATTCAGGCTACCAAGCGTT -ACGGAATTCAGGCTACCATTCGTC -ACGGAATTCAGGCTACCATCTCTC -ACGGAATTCAGGCTACCATGGATC -ACGGAATTCAGGCTACCACACTTC -ACGGAATTCAGGCTACCAGTACTC -ACGGAATTCAGGCTACCAGATGTC -ACGGAATTCAGGCTACCAACAGTC -ACGGAATTCAGGCTACCATTGCTG -ACGGAATTCAGGCTACCATCCATG -ACGGAATTCAGGCTACCATGTGTG -ACGGAATTCAGGCTACCACTAGTG -ACGGAATTCAGGCTACCACATCTG -ACGGAATTCAGGCTACCAGAGTTG -ACGGAATTCAGGCTACCAAGACTG -ACGGAATTCAGGCTACCATCGGTA -ACGGAATTCAGGCTACCATGCCTA -ACGGAATTCAGGCTACCACCACTA -ACGGAATTCAGGCTACCAGGAGTA -ACGGAATTCAGGCTACCATCGTCT -ACGGAATTCAGGCTACCATGCACT -ACGGAATTCAGGCTACCACTGACT -ACGGAATTCAGGCTACCACAACCT -ACGGAATTCAGGCTACCAGCTACT -ACGGAATTCAGGCTACCAGGATCT -ACGGAATTCAGGCTACCAAAGGCT -ACGGAATTCAGGCTACCATCAACC -ACGGAATTCAGGCTACCATGTTCC -ACGGAATTCAGGCTACCAATTCCC -ACGGAATTCAGGCTACCATTCTCG -ACGGAATTCAGGCTACCATAGACG -ACGGAATTCAGGCTACCAGTAACG -ACGGAATTCAGGCTACCAACTTCG -ACGGAATTCAGGCTACCATACGCA -ACGGAATTCAGGCTACCACTTGCA -ACGGAATTCAGGCTACCACGAACA -ACGGAATTCAGGCTACCACAGTCA -ACGGAATTCAGGCTACCAGATCCA -ACGGAATTCAGGCTACCAACGACA -ACGGAATTCAGGCTACCAAGCTCA -ACGGAATTCAGGCTACCATCACGT -ACGGAATTCAGGCTACCACGTAGT -ACGGAATTCAGGCTACCAGTCAGT -ACGGAATTCAGGCTACCAGAAGGT -ACGGAATTCAGGCTACCAAACCGT -ACGGAATTCAGGCTACCATTGTGC -ACGGAATTCAGGCTACCACTAAGC -ACGGAATTCAGGCTACCAACTAGC -ACGGAATTCAGGCTACCAAGATGC -ACGGAATTCAGGCTACCATGAAGG -ACGGAATTCAGGCTACCACAATGG -ACGGAATTCAGGCTACCAATGAGG -ACGGAATTCAGGCTACCAAATGGG -ACGGAATTCAGGCTACCATCCTGA -ACGGAATTCAGGCTACCATAGCGA -ACGGAATTCAGGCTACCACACAGA -ACGGAATTCAGGCTACCAGCAAGA -ACGGAATTCAGGCTACCAGGTTGA -ACGGAATTCAGGCTACCATCCGAT -ACGGAATTCAGGCTACCATGGCAT -ACGGAATTCAGGCTACCACGAGAT -ACGGAATTCAGGCTACCATACCAC -ACGGAATTCAGGCTACCACAGAAC -ACGGAATTCAGGCTACCAGTCTAC -ACGGAATTCAGGCTACCAACGTAC -ACGGAATTCAGGCTACCAAGTGAC -ACGGAATTCAGGCTACCACTGTAG -ACGGAATTCAGGCTACCACCTAAG -ACGGAATTCAGGCTACCAGTTCAG -ACGGAATTCAGGCTACCAGCATAG -ACGGAATTCAGGCTACCAGACAAG -ACGGAATTCAGGCTACCAAAGCAG -ACGGAATTCAGGCTACCACGTCAA -ACGGAATTCAGGCTACCAGCTGAA -ACGGAATTCAGGCTACCAAGTACG -ACGGAATTCAGGCTACCAATCCGA -ACGGAATTCAGGCTACCAATGGGA -ACGGAATTCAGGCTACCAGTGCAA -ACGGAATTCAGGCTACCAGAGGAA -ACGGAATTCAGGCTACCACAGGTA -ACGGAATTCAGGCTACCAGACTCT -ACGGAATTCAGGCTACCAAGTCCT -ACGGAATTCAGGCTACCATAAGCC -ACGGAATTCAGGCTACCAATAGCC -ACGGAATTCAGGCTACCATAACCG -ACGGAATTCAGGCTACCAATGCCA -ACGGAATTCAGGGTAGGAGGAAAC -ACGGAATTCAGGGTAGGAAACACC -ACGGAATTCAGGGTAGGAATCGAG -ACGGAATTCAGGGTAGGACTCCTT -ACGGAATTCAGGGTAGGACCTGTT -ACGGAATTCAGGGTAGGACGGTTT -ACGGAATTCAGGGTAGGAGTGGTT -ACGGAATTCAGGGTAGGAGCCTTT -ACGGAATTCAGGGTAGGAGGTCTT -ACGGAATTCAGGGTAGGAACGCTT -ACGGAATTCAGGGTAGGAAGCGTT -ACGGAATTCAGGGTAGGATTCGTC -ACGGAATTCAGGGTAGGATCTCTC -ACGGAATTCAGGGTAGGATGGATC -ACGGAATTCAGGGTAGGACACTTC -ACGGAATTCAGGGTAGGAGTACTC -ACGGAATTCAGGGTAGGAGATGTC -ACGGAATTCAGGGTAGGAACAGTC -ACGGAATTCAGGGTAGGATTGCTG -ACGGAATTCAGGGTAGGATCCATG -ACGGAATTCAGGGTAGGATGTGTG -ACGGAATTCAGGGTAGGACTAGTG -ACGGAATTCAGGGTAGGACATCTG -ACGGAATTCAGGGTAGGAGAGTTG -ACGGAATTCAGGGTAGGAAGACTG -ACGGAATTCAGGGTAGGATCGGTA -ACGGAATTCAGGGTAGGATGCCTA -ACGGAATTCAGGGTAGGACCACTA -ACGGAATTCAGGGTAGGAGGAGTA -ACGGAATTCAGGGTAGGATCGTCT -ACGGAATTCAGGGTAGGATGCACT -ACGGAATTCAGGGTAGGACTGACT -ACGGAATTCAGGGTAGGACAACCT -ACGGAATTCAGGGTAGGAGCTACT -ACGGAATTCAGGGTAGGAGGATCT -ACGGAATTCAGGGTAGGAAAGGCT -ACGGAATTCAGGGTAGGATCAACC -ACGGAATTCAGGGTAGGATGTTCC -ACGGAATTCAGGGTAGGAATTCCC -ACGGAATTCAGGGTAGGATTCTCG -ACGGAATTCAGGGTAGGATAGACG -ACGGAATTCAGGGTAGGAGTAACG -ACGGAATTCAGGGTAGGAACTTCG -ACGGAATTCAGGGTAGGATACGCA -ACGGAATTCAGGGTAGGACTTGCA -ACGGAATTCAGGGTAGGACGAACA -ACGGAATTCAGGGTAGGACAGTCA -ACGGAATTCAGGGTAGGAGATCCA -ACGGAATTCAGGGTAGGAACGACA -ACGGAATTCAGGGTAGGAAGCTCA -ACGGAATTCAGGGTAGGATCACGT -ACGGAATTCAGGGTAGGACGTAGT -ACGGAATTCAGGGTAGGAGTCAGT -ACGGAATTCAGGGTAGGAGAAGGT -ACGGAATTCAGGGTAGGAAACCGT -ACGGAATTCAGGGTAGGATTGTGC -ACGGAATTCAGGGTAGGACTAAGC -ACGGAATTCAGGGTAGGAACTAGC -ACGGAATTCAGGGTAGGAAGATGC -ACGGAATTCAGGGTAGGATGAAGG -ACGGAATTCAGGGTAGGACAATGG -ACGGAATTCAGGGTAGGAATGAGG -ACGGAATTCAGGGTAGGAAATGGG -ACGGAATTCAGGGTAGGATCCTGA -ACGGAATTCAGGGTAGGATAGCGA -ACGGAATTCAGGGTAGGACACAGA -ACGGAATTCAGGGTAGGAGCAAGA -ACGGAATTCAGGGTAGGAGGTTGA -ACGGAATTCAGGGTAGGATCCGAT -ACGGAATTCAGGGTAGGATGGCAT -ACGGAATTCAGGGTAGGACGAGAT -ACGGAATTCAGGGTAGGATACCAC -ACGGAATTCAGGGTAGGACAGAAC -ACGGAATTCAGGGTAGGAGTCTAC -ACGGAATTCAGGGTAGGAACGTAC -ACGGAATTCAGGGTAGGAAGTGAC -ACGGAATTCAGGGTAGGACTGTAG -ACGGAATTCAGGGTAGGACCTAAG -ACGGAATTCAGGGTAGGAGTTCAG -ACGGAATTCAGGGTAGGAGCATAG -ACGGAATTCAGGGTAGGAGACAAG -ACGGAATTCAGGGTAGGAAAGCAG -ACGGAATTCAGGGTAGGACGTCAA -ACGGAATTCAGGGTAGGAGCTGAA -ACGGAATTCAGGGTAGGAAGTACG -ACGGAATTCAGGGTAGGAATCCGA -ACGGAATTCAGGGTAGGAATGGGA -ACGGAATTCAGGGTAGGAGTGCAA -ACGGAATTCAGGGTAGGAGAGGAA -ACGGAATTCAGGGTAGGACAGGTA -ACGGAATTCAGGGTAGGAGACTCT -ACGGAATTCAGGGTAGGAAGTCCT -ACGGAATTCAGGGTAGGATAAGCC -ACGGAATTCAGGGTAGGAATAGCC -ACGGAATTCAGGGTAGGATAACCG -ACGGAATTCAGGGTAGGAATGCCA -ACGGAATTCAGGTCTTCGGGAAAC -ACGGAATTCAGGTCTTCGAACACC -ACGGAATTCAGGTCTTCGATCGAG -ACGGAATTCAGGTCTTCGCTCCTT -ACGGAATTCAGGTCTTCGCCTGTT -ACGGAATTCAGGTCTTCGCGGTTT -ACGGAATTCAGGTCTTCGGTGGTT -ACGGAATTCAGGTCTTCGGCCTTT -ACGGAATTCAGGTCTTCGGGTCTT -ACGGAATTCAGGTCTTCGACGCTT -ACGGAATTCAGGTCTTCGAGCGTT -ACGGAATTCAGGTCTTCGTTCGTC -ACGGAATTCAGGTCTTCGTCTCTC -ACGGAATTCAGGTCTTCGTGGATC -ACGGAATTCAGGTCTTCGCACTTC -ACGGAATTCAGGTCTTCGGTACTC -ACGGAATTCAGGTCTTCGGATGTC -ACGGAATTCAGGTCTTCGACAGTC -ACGGAATTCAGGTCTTCGTTGCTG -ACGGAATTCAGGTCTTCGTCCATG -ACGGAATTCAGGTCTTCGTGTGTG -ACGGAATTCAGGTCTTCGCTAGTG -ACGGAATTCAGGTCTTCGCATCTG -ACGGAATTCAGGTCTTCGGAGTTG -ACGGAATTCAGGTCTTCGAGACTG -ACGGAATTCAGGTCTTCGTCGGTA -ACGGAATTCAGGTCTTCGTGCCTA -ACGGAATTCAGGTCTTCGCCACTA -ACGGAATTCAGGTCTTCGGGAGTA -ACGGAATTCAGGTCTTCGTCGTCT -ACGGAATTCAGGTCTTCGTGCACT -ACGGAATTCAGGTCTTCGCTGACT -ACGGAATTCAGGTCTTCGCAACCT -ACGGAATTCAGGTCTTCGGCTACT -ACGGAATTCAGGTCTTCGGGATCT -ACGGAATTCAGGTCTTCGAAGGCT -ACGGAATTCAGGTCTTCGTCAACC -ACGGAATTCAGGTCTTCGTGTTCC -ACGGAATTCAGGTCTTCGATTCCC -ACGGAATTCAGGTCTTCGTTCTCG -ACGGAATTCAGGTCTTCGTAGACG -ACGGAATTCAGGTCTTCGGTAACG -ACGGAATTCAGGTCTTCGACTTCG -ACGGAATTCAGGTCTTCGTACGCA -ACGGAATTCAGGTCTTCGCTTGCA -ACGGAATTCAGGTCTTCGCGAACA -ACGGAATTCAGGTCTTCGCAGTCA -ACGGAATTCAGGTCTTCGGATCCA -ACGGAATTCAGGTCTTCGACGACA -ACGGAATTCAGGTCTTCGAGCTCA -ACGGAATTCAGGTCTTCGTCACGT -ACGGAATTCAGGTCTTCGCGTAGT -ACGGAATTCAGGTCTTCGGTCAGT -ACGGAATTCAGGTCTTCGGAAGGT -ACGGAATTCAGGTCTTCGAACCGT -ACGGAATTCAGGTCTTCGTTGTGC -ACGGAATTCAGGTCTTCGCTAAGC -ACGGAATTCAGGTCTTCGACTAGC -ACGGAATTCAGGTCTTCGAGATGC -ACGGAATTCAGGTCTTCGTGAAGG -ACGGAATTCAGGTCTTCGCAATGG -ACGGAATTCAGGTCTTCGATGAGG -ACGGAATTCAGGTCTTCGAATGGG -ACGGAATTCAGGTCTTCGTCCTGA -ACGGAATTCAGGTCTTCGTAGCGA -ACGGAATTCAGGTCTTCGCACAGA -ACGGAATTCAGGTCTTCGGCAAGA -ACGGAATTCAGGTCTTCGGGTTGA -ACGGAATTCAGGTCTTCGTCCGAT -ACGGAATTCAGGTCTTCGTGGCAT -ACGGAATTCAGGTCTTCGCGAGAT -ACGGAATTCAGGTCTTCGTACCAC -ACGGAATTCAGGTCTTCGCAGAAC -ACGGAATTCAGGTCTTCGGTCTAC -ACGGAATTCAGGTCTTCGACGTAC -ACGGAATTCAGGTCTTCGAGTGAC -ACGGAATTCAGGTCTTCGCTGTAG -ACGGAATTCAGGTCTTCGCCTAAG -ACGGAATTCAGGTCTTCGGTTCAG -ACGGAATTCAGGTCTTCGGCATAG -ACGGAATTCAGGTCTTCGGACAAG -ACGGAATTCAGGTCTTCGAAGCAG -ACGGAATTCAGGTCTTCGCGTCAA -ACGGAATTCAGGTCTTCGGCTGAA -ACGGAATTCAGGTCTTCGAGTACG -ACGGAATTCAGGTCTTCGATCCGA -ACGGAATTCAGGTCTTCGATGGGA -ACGGAATTCAGGTCTTCGGTGCAA -ACGGAATTCAGGTCTTCGGAGGAA -ACGGAATTCAGGTCTTCGCAGGTA -ACGGAATTCAGGTCTTCGGACTCT -ACGGAATTCAGGTCTTCGAGTCCT -ACGGAATTCAGGTCTTCGTAAGCC -ACGGAATTCAGGTCTTCGATAGCC -ACGGAATTCAGGTCTTCGTAACCG -ACGGAATTCAGGTCTTCGATGCCA -ACGGAATTCAGGACTTGCGGAAAC -ACGGAATTCAGGACTTGCAACACC -ACGGAATTCAGGACTTGCATCGAG -ACGGAATTCAGGACTTGCCTCCTT -ACGGAATTCAGGACTTGCCCTGTT -ACGGAATTCAGGACTTGCCGGTTT -ACGGAATTCAGGACTTGCGTGGTT -ACGGAATTCAGGACTTGCGCCTTT -ACGGAATTCAGGACTTGCGGTCTT -ACGGAATTCAGGACTTGCACGCTT -ACGGAATTCAGGACTTGCAGCGTT -ACGGAATTCAGGACTTGCTTCGTC -ACGGAATTCAGGACTTGCTCTCTC -ACGGAATTCAGGACTTGCTGGATC -ACGGAATTCAGGACTTGCCACTTC -ACGGAATTCAGGACTTGCGTACTC -ACGGAATTCAGGACTTGCGATGTC -ACGGAATTCAGGACTTGCACAGTC -ACGGAATTCAGGACTTGCTTGCTG -ACGGAATTCAGGACTTGCTCCATG -ACGGAATTCAGGACTTGCTGTGTG -ACGGAATTCAGGACTTGCCTAGTG -ACGGAATTCAGGACTTGCCATCTG -ACGGAATTCAGGACTTGCGAGTTG -ACGGAATTCAGGACTTGCAGACTG -ACGGAATTCAGGACTTGCTCGGTA -ACGGAATTCAGGACTTGCTGCCTA -ACGGAATTCAGGACTTGCCCACTA -ACGGAATTCAGGACTTGCGGAGTA -ACGGAATTCAGGACTTGCTCGTCT -ACGGAATTCAGGACTTGCTGCACT -ACGGAATTCAGGACTTGCCTGACT -ACGGAATTCAGGACTTGCCAACCT -ACGGAATTCAGGACTTGCGCTACT -ACGGAATTCAGGACTTGCGGATCT -ACGGAATTCAGGACTTGCAAGGCT -ACGGAATTCAGGACTTGCTCAACC -ACGGAATTCAGGACTTGCTGTTCC -ACGGAATTCAGGACTTGCATTCCC -ACGGAATTCAGGACTTGCTTCTCG -ACGGAATTCAGGACTTGCTAGACG -ACGGAATTCAGGACTTGCGTAACG -ACGGAATTCAGGACTTGCACTTCG -ACGGAATTCAGGACTTGCTACGCA -ACGGAATTCAGGACTTGCCTTGCA -ACGGAATTCAGGACTTGCCGAACA -ACGGAATTCAGGACTTGCCAGTCA -ACGGAATTCAGGACTTGCGATCCA -ACGGAATTCAGGACTTGCACGACA -ACGGAATTCAGGACTTGCAGCTCA -ACGGAATTCAGGACTTGCTCACGT -ACGGAATTCAGGACTTGCCGTAGT -ACGGAATTCAGGACTTGCGTCAGT -ACGGAATTCAGGACTTGCGAAGGT -ACGGAATTCAGGACTTGCAACCGT -ACGGAATTCAGGACTTGCTTGTGC -ACGGAATTCAGGACTTGCCTAAGC -ACGGAATTCAGGACTTGCACTAGC -ACGGAATTCAGGACTTGCAGATGC -ACGGAATTCAGGACTTGCTGAAGG -ACGGAATTCAGGACTTGCCAATGG -ACGGAATTCAGGACTTGCATGAGG -ACGGAATTCAGGACTTGCAATGGG -ACGGAATTCAGGACTTGCTCCTGA -ACGGAATTCAGGACTTGCTAGCGA -ACGGAATTCAGGACTTGCCACAGA -ACGGAATTCAGGACTTGCGCAAGA -ACGGAATTCAGGACTTGCGGTTGA -ACGGAATTCAGGACTTGCTCCGAT -ACGGAATTCAGGACTTGCTGGCAT -ACGGAATTCAGGACTTGCCGAGAT -ACGGAATTCAGGACTTGCTACCAC -ACGGAATTCAGGACTTGCCAGAAC -ACGGAATTCAGGACTTGCGTCTAC -ACGGAATTCAGGACTTGCACGTAC -ACGGAATTCAGGACTTGCAGTGAC -ACGGAATTCAGGACTTGCCTGTAG -ACGGAATTCAGGACTTGCCCTAAG -ACGGAATTCAGGACTTGCGTTCAG -ACGGAATTCAGGACTTGCGCATAG -ACGGAATTCAGGACTTGCGACAAG -ACGGAATTCAGGACTTGCAAGCAG -ACGGAATTCAGGACTTGCCGTCAA -ACGGAATTCAGGACTTGCGCTGAA -ACGGAATTCAGGACTTGCAGTACG -ACGGAATTCAGGACTTGCATCCGA -ACGGAATTCAGGACTTGCATGGGA -ACGGAATTCAGGACTTGCGTGCAA -ACGGAATTCAGGACTTGCGAGGAA -ACGGAATTCAGGACTTGCCAGGTA -ACGGAATTCAGGACTTGCGACTCT -ACGGAATTCAGGACTTGCAGTCCT -ACGGAATTCAGGACTTGCTAAGCC -ACGGAATTCAGGACTTGCATAGCC -ACGGAATTCAGGACTTGCTAACCG -ACGGAATTCAGGACTTGCATGCCA -ACGGAATTCAGGACTCTGGGAAAC -ACGGAATTCAGGACTCTGAACACC -ACGGAATTCAGGACTCTGATCGAG -ACGGAATTCAGGACTCTGCTCCTT -ACGGAATTCAGGACTCTGCCTGTT -ACGGAATTCAGGACTCTGCGGTTT -ACGGAATTCAGGACTCTGGTGGTT -ACGGAATTCAGGACTCTGGCCTTT -ACGGAATTCAGGACTCTGGGTCTT -ACGGAATTCAGGACTCTGACGCTT -ACGGAATTCAGGACTCTGAGCGTT -ACGGAATTCAGGACTCTGTTCGTC -ACGGAATTCAGGACTCTGTCTCTC -ACGGAATTCAGGACTCTGTGGATC -ACGGAATTCAGGACTCTGCACTTC -ACGGAATTCAGGACTCTGGTACTC -ACGGAATTCAGGACTCTGGATGTC -ACGGAATTCAGGACTCTGACAGTC -ACGGAATTCAGGACTCTGTTGCTG -ACGGAATTCAGGACTCTGTCCATG -ACGGAATTCAGGACTCTGTGTGTG -ACGGAATTCAGGACTCTGCTAGTG -ACGGAATTCAGGACTCTGCATCTG -ACGGAATTCAGGACTCTGGAGTTG -ACGGAATTCAGGACTCTGAGACTG -ACGGAATTCAGGACTCTGTCGGTA -ACGGAATTCAGGACTCTGTGCCTA -ACGGAATTCAGGACTCTGCCACTA -ACGGAATTCAGGACTCTGGGAGTA -ACGGAATTCAGGACTCTGTCGTCT -ACGGAATTCAGGACTCTGTGCACT -ACGGAATTCAGGACTCTGCTGACT -ACGGAATTCAGGACTCTGCAACCT -ACGGAATTCAGGACTCTGGCTACT -ACGGAATTCAGGACTCTGGGATCT -ACGGAATTCAGGACTCTGAAGGCT -ACGGAATTCAGGACTCTGTCAACC -ACGGAATTCAGGACTCTGTGTTCC -ACGGAATTCAGGACTCTGATTCCC -ACGGAATTCAGGACTCTGTTCTCG -ACGGAATTCAGGACTCTGTAGACG -ACGGAATTCAGGACTCTGGTAACG -ACGGAATTCAGGACTCTGACTTCG -ACGGAATTCAGGACTCTGTACGCA -ACGGAATTCAGGACTCTGCTTGCA -ACGGAATTCAGGACTCTGCGAACA -ACGGAATTCAGGACTCTGCAGTCA -ACGGAATTCAGGACTCTGGATCCA -ACGGAATTCAGGACTCTGACGACA -ACGGAATTCAGGACTCTGAGCTCA -ACGGAATTCAGGACTCTGTCACGT -ACGGAATTCAGGACTCTGCGTAGT -ACGGAATTCAGGACTCTGGTCAGT -ACGGAATTCAGGACTCTGGAAGGT -ACGGAATTCAGGACTCTGAACCGT -ACGGAATTCAGGACTCTGTTGTGC -ACGGAATTCAGGACTCTGCTAAGC -ACGGAATTCAGGACTCTGACTAGC -ACGGAATTCAGGACTCTGAGATGC -ACGGAATTCAGGACTCTGTGAAGG -ACGGAATTCAGGACTCTGCAATGG -ACGGAATTCAGGACTCTGATGAGG -ACGGAATTCAGGACTCTGAATGGG -ACGGAATTCAGGACTCTGTCCTGA -ACGGAATTCAGGACTCTGTAGCGA -ACGGAATTCAGGACTCTGCACAGA -ACGGAATTCAGGACTCTGGCAAGA -ACGGAATTCAGGACTCTGGGTTGA -ACGGAATTCAGGACTCTGTCCGAT -ACGGAATTCAGGACTCTGTGGCAT -ACGGAATTCAGGACTCTGCGAGAT -ACGGAATTCAGGACTCTGTACCAC -ACGGAATTCAGGACTCTGCAGAAC -ACGGAATTCAGGACTCTGGTCTAC -ACGGAATTCAGGACTCTGACGTAC -ACGGAATTCAGGACTCTGAGTGAC -ACGGAATTCAGGACTCTGCTGTAG -ACGGAATTCAGGACTCTGCCTAAG -ACGGAATTCAGGACTCTGGTTCAG -ACGGAATTCAGGACTCTGGCATAG -ACGGAATTCAGGACTCTGGACAAG -ACGGAATTCAGGACTCTGAAGCAG -ACGGAATTCAGGACTCTGCGTCAA -ACGGAATTCAGGACTCTGGCTGAA -ACGGAATTCAGGACTCTGAGTACG -ACGGAATTCAGGACTCTGATCCGA -ACGGAATTCAGGACTCTGATGGGA -ACGGAATTCAGGACTCTGGTGCAA -ACGGAATTCAGGACTCTGGAGGAA -ACGGAATTCAGGACTCTGCAGGTA -ACGGAATTCAGGACTCTGGACTCT -ACGGAATTCAGGACTCTGAGTCCT -ACGGAATTCAGGACTCTGTAAGCC -ACGGAATTCAGGACTCTGATAGCC -ACGGAATTCAGGACTCTGTAACCG -ACGGAATTCAGGACTCTGATGCCA -ACGGAATTCAGGCCTCAAGGAAAC -ACGGAATTCAGGCCTCAAAACACC -ACGGAATTCAGGCCTCAAATCGAG -ACGGAATTCAGGCCTCAACTCCTT -ACGGAATTCAGGCCTCAACCTGTT -ACGGAATTCAGGCCTCAACGGTTT -ACGGAATTCAGGCCTCAAGTGGTT -ACGGAATTCAGGCCTCAAGCCTTT -ACGGAATTCAGGCCTCAAGGTCTT -ACGGAATTCAGGCCTCAAACGCTT -ACGGAATTCAGGCCTCAAAGCGTT -ACGGAATTCAGGCCTCAATTCGTC -ACGGAATTCAGGCCTCAATCTCTC -ACGGAATTCAGGCCTCAATGGATC -ACGGAATTCAGGCCTCAACACTTC -ACGGAATTCAGGCCTCAAGTACTC -ACGGAATTCAGGCCTCAAGATGTC -ACGGAATTCAGGCCTCAAACAGTC -ACGGAATTCAGGCCTCAATTGCTG -ACGGAATTCAGGCCTCAATCCATG -ACGGAATTCAGGCCTCAATGTGTG -ACGGAATTCAGGCCTCAACTAGTG -ACGGAATTCAGGCCTCAACATCTG -ACGGAATTCAGGCCTCAAGAGTTG -ACGGAATTCAGGCCTCAAAGACTG -ACGGAATTCAGGCCTCAATCGGTA -ACGGAATTCAGGCCTCAATGCCTA -ACGGAATTCAGGCCTCAACCACTA -ACGGAATTCAGGCCTCAAGGAGTA -ACGGAATTCAGGCCTCAATCGTCT -ACGGAATTCAGGCCTCAATGCACT -ACGGAATTCAGGCCTCAACTGACT -ACGGAATTCAGGCCTCAACAACCT -ACGGAATTCAGGCCTCAAGCTACT -ACGGAATTCAGGCCTCAAGGATCT -ACGGAATTCAGGCCTCAAAAGGCT -ACGGAATTCAGGCCTCAATCAACC -ACGGAATTCAGGCCTCAATGTTCC -ACGGAATTCAGGCCTCAAATTCCC -ACGGAATTCAGGCCTCAATTCTCG -ACGGAATTCAGGCCTCAATAGACG -ACGGAATTCAGGCCTCAAGTAACG -ACGGAATTCAGGCCTCAAACTTCG -ACGGAATTCAGGCCTCAATACGCA -ACGGAATTCAGGCCTCAACTTGCA -ACGGAATTCAGGCCTCAACGAACA -ACGGAATTCAGGCCTCAACAGTCA -ACGGAATTCAGGCCTCAAGATCCA -ACGGAATTCAGGCCTCAAACGACA -ACGGAATTCAGGCCTCAAAGCTCA -ACGGAATTCAGGCCTCAATCACGT -ACGGAATTCAGGCCTCAACGTAGT -ACGGAATTCAGGCCTCAAGTCAGT -ACGGAATTCAGGCCTCAAGAAGGT -ACGGAATTCAGGCCTCAAAACCGT -ACGGAATTCAGGCCTCAATTGTGC -ACGGAATTCAGGCCTCAACTAAGC -ACGGAATTCAGGCCTCAAACTAGC -ACGGAATTCAGGCCTCAAAGATGC -ACGGAATTCAGGCCTCAATGAAGG -ACGGAATTCAGGCCTCAACAATGG -ACGGAATTCAGGCCTCAAATGAGG -ACGGAATTCAGGCCTCAAAATGGG -ACGGAATTCAGGCCTCAATCCTGA -ACGGAATTCAGGCCTCAATAGCGA -ACGGAATTCAGGCCTCAACACAGA -ACGGAATTCAGGCCTCAAGCAAGA -ACGGAATTCAGGCCTCAAGGTTGA -ACGGAATTCAGGCCTCAATCCGAT -ACGGAATTCAGGCCTCAATGGCAT -ACGGAATTCAGGCCTCAACGAGAT -ACGGAATTCAGGCCTCAATACCAC -ACGGAATTCAGGCCTCAACAGAAC -ACGGAATTCAGGCCTCAAGTCTAC -ACGGAATTCAGGCCTCAAACGTAC -ACGGAATTCAGGCCTCAAAGTGAC -ACGGAATTCAGGCCTCAACTGTAG -ACGGAATTCAGGCCTCAACCTAAG -ACGGAATTCAGGCCTCAAGTTCAG -ACGGAATTCAGGCCTCAAGCATAG -ACGGAATTCAGGCCTCAAGACAAG -ACGGAATTCAGGCCTCAAAAGCAG -ACGGAATTCAGGCCTCAACGTCAA -ACGGAATTCAGGCCTCAAGCTGAA -ACGGAATTCAGGCCTCAAAGTACG -ACGGAATTCAGGCCTCAAATCCGA -ACGGAATTCAGGCCTCAAATGGGA -ACGGAATTCAGGCCTCAAGTGCAA -ACGGAATTCAGGCCTCAAGAGGAA -ACGGAATTCAGGCCTCAACAGGTA -ACGGAATTCAGGCCTCAAGACTCT -ACGGAATTCAGGCCTCAAAGTCCT -ACGGAATTCAGGCCTCAATAAGCC -ACGGAATTCAGGCCTCAAATAGCC -ACGGAATTCAGGCCTCAATAACCG -ACGGAATTCAGGCCTCAAATGCCA -ACGGAATTCAGGACTGCTGGAAAC -ACGGAATTCAGGACTGCTAACACC -ACGGAATTCAGGACTGCTATCGAG -ACGGAATTCAGGACTGCTCTCCTT -ACGGAATTCAGGACTGCTCCTGTT -ACGGAATTCAGGACTGCTCGGTTT -ACGGAATTCAGGACTGCTGTGGTT -ACGGAATTCAGGACTGCTGCCTTT -ACGGAATTCAGGACTGCTGGTCTT -ACGGAATTCAGGACTGCTACGCTT -ACGGAATTCAGGACTGCTAGCGTT -ACGGAATTCAGGACTGCTTTCGTC -ACGGAATTCAGGACTGCTTCTCTC -ACGGAATTCAGGACTGCTTGGATC -ACGGAATTCAGGACTGCTCACTTC -ACGGAATTCAGGACTGCTGTACTC -ACGGAATTCAGGACTGCTGATGTC -ACGGAATTCAGGACTGCTACAGTC -ACGGAATTCAGGACTGCTTTGCTG -ACGGAATTCAGGACTGCTTCCATG -ACGGAATTCAGGACTGCTTGTGTG -ACGGAATTCAGGACTGCTCTAGTG -ACGGAATTCAGGACTGCTCATCTG -ACGGAATTCAGGACTGCTGAGTTG -ACGGAATTCAGGACTGCTAGACTG -ACGGAATTCAGGACTGCTTCGGTA -ACGGAATTCAGGACTGCTTGCCTA -ACGGAATTCAGGACTGCTCCACTA -ACGGAATTCAGGACTGCTGGAGTA -ACGGAATTCAGGACTGCTTCGTCT -ACGGAATTCAGGACTGCTTGCACT -ACGGAATTCAGGACTGCTCTGACT -ACGGAATTCAGGACTGCTCAACCT -ACGGAATTCAGGACTGCTGCTACT -ACGGAATTCAGGACTGCTGGATCT -ACGGAATTCAGGACTGCTAAGGCT -ACGGAATTCAGGACTGCTTCAACC -ACGGAATTCAGGACTGCTTGTTCC -ACGGAATTCAGGACTGCTATTCCC -ACGGAATTCAGGACTGCTTTCTCG -ACGGAATTCAGGACTGCTTAGACG -ACGGAATTCAGGACTGCTGTAACG -ACGGAATTCAGGACTGCTACTTCG -ACGGAATTCAGGACTGCTTACGCA -ACGGAATTCAGGACTGCTCTTGCA -ACGGAATTCAGGACTGCTCGAACA -ACGGAATTCAGGACTGCTCAGTCA -ACGGAATTCAGGACTGCTGATCCA -ACGGAATTCAGGACTGCTACGACA -ACGGAATTCAGGACTGCTAGCTCA -ACGGAATTCAGGACTGCTTCACGT -ACGGAATTCAGGACTGCTCGTAGT -ACGGAATTCAGGACTGCTGTCAGT -ACGGAATTCAGGACTGCTGAAGGT -ACGGAATTCAGGACTGCTAACCGT -ACGGAATTCAGGACTGCTTTGTGC -ACGGAATTCAGGACTGCTCTAAGC -ACGGAATTCAGGACTGCTACTAGC -ACGGAATTCAGGACTGCTAGATGC -ACGGAATTCAGGACTGCTTGAAGG -ACGGAATTCAGGACTGCTCAATGG -ACGGAATTCAGGACTGCTATGAGG -ACGGAATTCAGGACTGCTAATGGG -ACGGAATTCAGGACTGCTTCCTGA -ACGGAATTCAGGACTGCTTAGCGA -ACGGAATTCAGGACTGCTCACAGA -ACGGAATTCAGGACTGCTGCAAGA -ACGGAATTCAGGACTGCTGGTTGA -ACGGAATTCAGGACTGCTTCCGAT -ACGGAATTCAGGACTGCTTGGCAT -ACGGAATTCAGGACTGCTCGAGAT -ACGGAATTCAGGACTGCTTACCAC -ACGGAATTCAGGACTGCTCAGAAC -ACGGAATTCAGGACTGCTGTCTAC -ACGGAATTCAGGACTGCTACGTAC -ACGGAATTCAGGACTGCTAGTGAC -ACGGAATTCAGGACTGCTCTGTAG -ACGGAATTCAGGACTGCTCCTAAG -ACGGAATTCAGGACTGCTGTTCAG -ACGGAATTCAGGACTGCTGCATAG -ACGGAATTCAGGACTGCTGACAAG -ACGGAATTCAGGACTGCTAAGCAG -ACGGAATTCAGGACTGCTCGTCAA -ACGGAATTCAGGACTGCTGCTGAA -ACGGAATTCAGGACTGCTAGTACG -ACGGAATTCAGGACTGCTATCCGA -ACGGAATTCAGGACTGCTATGGGA -ACGGAATTCAGGACTGCTGTGCAA -ACGGAATTCAGGACTGCTGAGGAA -ACGGAATTCAGGACTGCTCAGGTA -ACGGAATTCAGGACTGCTGACTCT -ACGGAATTCAGGACTGCTAGTCCT -ACGGAATTCAGGACTGCTTAAGCC -ACGGAATTCAGGACTGCTATAGCC -ACGGAATTCAGGACTGCTTAACCG -ACGGAATTCAGGACTGCTATGCCA -ACGGAATTCAGGTCTGGAGGAAAC -ACGGAATTCAGGTCTGGAAACACC -ACGGAATTCAGGTCTGGAATCGAG -ACGGAATTCAGGTCTGGACTCCTT -ACGGAATTCAGGTCTGGACCTGTT -ACGGAATTCAGGTCTGGACGGTTT -ACGGAATTCAGGTCTGGAGTGGTT -ACGGAATTCAGGTCTGGAGCCTTT -ACGGAATTCAGGTCTGGAGGTCTT -ACGGAATTCAGGTCTGGAACGCTT -ACGGAATTCAGGTCTGGAAGCGTT -ACGGAATTCAGGTCTGGATTCGTC -ACGGAATTCAGGTCTGGATCTCTC -ACGGAATTCAGGTCTGGATGGATC -ACGGAATTCAGGTCTGGACACTTC -ACGGAATTCAGGTCTGGAGTACTC -ACGGAATTCAGGTCTGGAGATGTC -ACGGAATTCAGGTCTGGAACAGTC -ACGGAATTCAGGTCTGGATTGCTG -ACGGAATTCAGGTCTGGATCCATG -ACGGAATTCAGGTCTGGATGTGTG -ACGGAATTCAGGTCTGGACTAGTG -ACGGAATTCAGGTCTGGACATCTG -ACGGAATTCAGGTCTGGAGAGTTG -ACGGAATTCAGGTCTGGAAGACTG -ACGGAATTCAGGTCTGGATCGGTA -ACGGAATTCAGGTCTGGATGCCTA -ACGGAATTCAGGTCTGGACCACTA -ACGGAATTCAGGTCTGGAGGAGTA -ACGGAATTCAGGTCTGGATCGTCT -ACGGAATTCAGGTCTGGATGCACT -ACGGAATTCAGGTCTGGACTGACT -ACGGAATTCAGGTCTGGACAACCT -ACGGAATTCAGGTCTGGAGCTACT -ACGGAATTCAGGTCTGGAGGATCT -ACGGAATTCAGGTCTGGAAAGGCT -ACGGAATTCAGGTCTGGATCAACC -ACGGAATTCAGGTCTGGATGTTCC -ACGGAATTCAGGTCTGGAATTCCC -ACGGAATTCAGGTCTGGATTCTCG -ACGGAATTCAGGTCTGGATAGACG -ACGGAATTCAGGTCTGGAGTAACG -ACGGAATTCAGGTCTGGAACTTCG -ACGGAATTCAGGTCTGGATACGCA -ACGGAATTCAGGTCTGGACTTGCA -ACGGAATTCAGGTCTGGACGAACA -ACGGAATTCAGGTCTGGACAGTCA -ACGGAATTCAGGTCTGGAGATCCA -ACGGAATTCAGGTCTGGAACGACA -ACGGAATTCAGGTCTGGAAGCTCA -ACGGAATTCAGGTCTGGATCACGT -ACGGAATTCAGGTCTGGACGTAGT -ACGGAATTCAGGTCTGGAGTCAGT -ACGGAATTCAGGTCTGGAGAAGGT -ACGGAATTCAGGTCTGGAAACCGT -ACGGAATTCAGGTCTGGATTGTGC -ACGGAATTCAGGTCTGGACTAAGC -ACGGAATTCAGGTCTGGAACTAGC -ACGGAATTCAGGTCTGGAAGATGC -ACGGAATTCAGGTCTGGATGAAGG -ACGGAATTCAGGTCTGGACAATGG -ACGGAATTCAGGTCTGGAATGAGG -ACGGAATTCAGGTCTGGAAATGGG -ACGGAATTCAGGTCTGGATCCTGA -ACGGAATTCAGGTCTGGATAGCGA -ACGGAATTCAGGTCTGGACACAGA -ACGGAATTCAGGTCTGGAGCAAGA -ACGGAATTCAGGTCTGGAGGTTGA -ACGGAATTCAGGTCTGGATCCGAT -ACGGAATTCAGGTCTGGATGGCAT -ACGGAATTCAGGTCTGGACGAGAT -ACGGAATTCAGGTCTGGATACCAC -ACGGAATTCAGGTCTGGACAGAAC -ACGGAATTCAGGTCTGGAGTCTAC -ACGGAATTCAGGTCTGGAACGTAC -ACGGAATTCAGGTCTGGAAGTGAC -ACGGAATTCAGGTCTGGACTGTAG -ACGGAATTCAGGTCTGGACCTAAG -ACGGAATTCAGGTCTGGAGTTCAG -ACGGAATTCAGGTCTGGAGCATAG -ACGGAATTCAGGTCTGGAGACAAG -ACGGAATTCAGGTCTGGAAAGCAG -ACGGAATTCAGGTCTGGACGTCAA -ACGGAATTCAGGTCTGGAGCTGAA -ACGGAATTCAGGTCTGGAAGTACG -ACGGAATTCAGGTCTGGAATCCGA -ACGGAATTCAGGTCTGGAATGGGA -ACGGAATTCAGGTCTGGAGTGCAA -ACGGAATTCAGGTCTGGAGAGGAA -ACGGAATTCAGGTCTGGACAGGTA -ACGGAATTCAGGTCTGGAGACTCT -ACGGAATTCAGGTCTGGAAGTCCT -ACGGAATTCAGGTCTGGATAAGCC -ACGGAATTCAGGTCTGGAATAGCC -ACGGAATTCAGGTCTGGATAACCG -ACGGAATTCAGGTCTGGAATGCCA -ACGGAATTCAGGGCTAAGGGAAAC -ACGGAATTCAGGGCTAAGAACACC -ACGGAATTCAGGGCTAAGATCGAG -ACGGAATTCAGGGCTAAGCTCCTT -ACGGAATTCAGGGCTAAGCCTGTT -ACGGAATTCAGGGCTAAGCGGTTT -ACGGAATTCAGGGCTAAGGTGGTT -ACGGAATTCAGGGCTAAGGCCTTT -ACGGAATTCAGGGCTAAGGGTCTT -ACGGAATTCAGGGCTAAGACGCTT -ACGGAATTCAGGGCTAAGAGCGTT -ACGGAATTCAGGGCTAAGTTCGTC -ACGGAATTCAGGGCTAAGTCTCTC -ACGGAATTCAGGGCTAAGTGGATC -ACGGAATTCAGGGCTAAGCACTTC -ACGGAATTCAGGGCTAAGGTACTC -ACGGAATTCAGGGCTAAGGATGTC -ACGGAATTCAGGGCTAAGACAGTC -ACGGAATTCAGGGCTAAGTTGCTG -ACGGAATTCAGGGCTAAGTCCATG -ACGGAATTCAGGGCTAAGTGTGTG -ACGGAATTCAGGGCTAAGCTAGTG -ACGGAATTCAGGGCTAAGCATCTG -ACGGAATTCAGGGCTAAGGAGTTG -ACGGAATTCAGGGCTAAGAGACTG -ACGGAATTCAGGGCTAAGTCGGTA -ACGGAATTCAGGGCTAAGTGCCTA -ACGGAATTCAGGGCTAAGCCACTA -ACGGAATTCAGGGCTAAGGGAGTA -ACGGAATTCAGGGCTAAGTCGTCT -ACGGAATTCAGGGCTAAGTGCACT -ACGGAATTCAGGGCTAAGCTGACT -ACGGAATTCAGGGCTAAGCAACCT -ACGGAATTCAGGGCTAAGGCTACT -ACGGAATTCAGGGCTAAGGGATCT -ACGGAATTCAGGGCTAAGAAGGCT -ACGGAATTCAGGGCTAAGTCAACC -ACGGAATTCAGGGCTAAGTGTTCC -ACGGAATTCAGGGCTAAGATTCCC -ACGGAATTCAGGGCTAAGTTCTCG -ACGGAATTCAGGGCTAAGTAGACG -ACGGAATTCAGGGCTAAGGTAACG -ACGGAATTCAGGGCTAAGACTTCG -ACGGAATTCAGGGCTAAGTACGCA -ACGGAATTCAGGGCTAAGCTTGCA -ACGGAATTCAGGGCTAAGCGAACA -ACGGAATTCAGGGCTAAGCAGTCA -ACGGAATTCAGGGCTAAGGATCCA -ACGGAATTCAGGGCTAAGACGACA -ACGGAATTCAGGGCTAAGAGCTCA -ACGGAATTCAGGGCTAAGTCACGT -ACGGAATTCAGGGCTAAGCGTAGT -ACGGAATTCAGGGCTAAGGTCAGT -ACGGAATTCAGGGCTAAGGAAGGT -ACGGAATTCAGGGCTAAGAACCGT -ACGGAATTCAGGGCTAAGTTGTGC -ACGGAATTCAGGGCTAAGCTAAGC -ACGGAATTCAGGGCTAAGACTAGC -ACGGAATTCAGGGCTAAGAGATGC -ACGGAATTCAGGGCTAAGTGAAGG -ACGGAATTCAGGGCTAAGCAATGG -ACGGAATTCAGGGCTAAGATGAGG -ACGGAATTCAGGGCTAAGAATGGG -ACGGAATTCAGGGCTAAGTCCTGA -ACGGAATTCAGGGCTAAGTAGCGA -ACGGAATTCAGGGCTAAGCACAGA -ACGGAATTCAGGGCTAAGGCAAGA -ACGGAATTCAGGGCTAAGGGTTGA -ACGGAATTCAGGGCTAAGTCCGAT -ACGGAATTCAGGGCTAAGTGGCAT -ACGGAATTCAGGGCTAAGCGAGAT -ACGGAATTCAGGGCTAAGTACCAC -ACGGAATTCAGGGCTAAGCAGAAC -ACGGAATTCAGGGCTAAGGTCTAC -ACGGAATTCAGGGCTAAGACGTAC -ACGGAATTCAGGGCTAAGAGTGAC -ACGGAATTCAGGGCTAAGCTGTAG -ACGGAATTCAGGGCTAAGCCTAAG -ACGGAATTCAGGGCTAAGGTTCAG -ACGGAATTCAGGGCTAAGGCATAG -ACGGAATTCAGGGCTAAGGACAAG -ACGGAATTCAGGGCTAAGAAGCAG -ACGGAATTCAGGGCTAAGCGTCAA -ACGGAATTCAGGGCTAAGGCTGAA -ACGGAATTCAGGGCTAAGAGTACG -ACGGAATTCAGGGCTAAGATCCGA -ACGGAATTCAGGGCTAAGATGGGA -ACGGAATTCAGGGCTAAGGTGCAA -ACGGAATTCAGGGCTAAGGAGGAA -ACGGAATTCAGGGCTAAGCAGGTA -ACGGAATTCAGGGCTAAGGACTCT -ACGGAATTCAGGGCTAAGAGTCCT -ACGGAATTCAGGGCTAAGTAAGCC -ACGGAATTCAGGGCTAAGATAGCC -ACGGAATTCAGGGCTAAGTAACCG -ACGGAATTCAGGGCTAAGATGCCA -ACGGAATTCAGGACCTCAGGAAAC -ACGGAATTCAGGACCTCAAACACC -ACGGAATTCAGGACCTCAATCGAG -ACGGAATTCAGGACCTCACTCCTT -ACGGAATTCAGGACCTCACCTGTT -ACGGAATTCAGGACCTCACGGTTT -ACGGAATTCAGGACCTCAGTGGTT -ACGGAATTCAGGACCTCAGCCTTT -ACGGAATTCAGGACCTCAGGTCTT -ACGGAATTCAGGACCTCAACGCTT -ACGGAATTCAGGACCTCAAGCGTT -ACGGAATTCAGGACCTCATTCGTC -ACGGAATTCAGGACCTCATCTCTC -ACGGAATTCAGGACCTCATGGATC -ACGGAATTCAGGACCTCACACTTC -ACGGAATTCAGGACCTCAGTACTC -ACGGAATTCAGGACCTCAGATGTC -ACGGAATTCAGGACCTCAACAGTC -ACGGAATTCAGGACCTCATTGCTG -ACGGAATTCAGGACCTCATCCATG -ACGGAATTCAGGACCTCATGTGTG -ACGGAATTCAGGACCTCACTAGTG -ACGGAATTCAGGACCTCACATCTG -ACGGAATTCAGGACCTCAGAGTTG -ACGGAATTCAGGACCTCAAGACTG -ACGGAATTCAGGACCTCATCGGTA -ACGGAATTCAGGACCTCATGCCTA -ACGGAATTCAGGACCTCACCACTA -ACGGAATTCAGGACCTCAGGAGTA -ACGGAATTCAGGACCTCATCGTCT -ACGGAATTCAGGACCTCATGCACT -ACGGAATTCAGGACCTCACTGACT -ACGGAATTCAGGACCTCACAACCT -ACGGAATTCAGGACCTCAGCTACT -ACGGAATTCAGGACCTCAGGATCT -ACGGAATTCAGGACCTCAAAGGCT -ACGGAATTCAGGACCTCATCAACC -ACGGAATTCAGGACCTCATGTTCC -ACGGAATTCAGGACCTCAATTCCC -ACGGAATTCAGGACCTCATTCTCG -ACGGAATTCAGGACCTCATAGACG -ACGGAATTCAGGACCTCAGTAACG -ACGGAATTCAGGACCTCAACTTCG -ACGGAATTCAGGACCTCATACGCA -ACGGAATTCAGGACCTCACTTGCA -ACGGAATTCAGGACCTCACGAACA -ACGGAATTCAGGACCTCACAGTCA -ACGGAATTCAGGACCTCAGATCCA -ACGGAATTCAGGACCTCAACGACA -ACGGAATTCAGGACCTCAAGCTCA -ACGGAATTCAGGACCTCATCACGT -ACGGAATTCAGGACCTCACGTAGT -ACGGAATTCAGGACCTCAGTCAGT -ACGGAATTCAGGACCTCAGAAGGT -ACGGAATTCAGGACCTCAAACCGT -ACGGAATTCAGGACCTCATTGTGC -ACGGAATTCAGGACCTCACTAAGC -ACGGAATTCAGGACCTCAACTAGC -ACGGAATTCAGGACCTCAAGATGC -ACGGAATTCAGGACCTCATGAAGG -ACGGAATTCAGGACCTCACAATGG -ACGGAATTCAGGACCTCAATGAGG -ACGGAATTCAGGACCTCAAATGGG -ACGGAATTCAGGACCTCATCCTGA -ACGGAATTCAGGACCTCATAGCGA -ACGGAATTCAGGACCTCACACAGA -ACGGAATTCAGGACCTCAGCAAGA -ACGGAATTCAGGACCTCAGGTTGA -ACGGAATTCAGGACCTCATCCGAT -ACGGAATTCAGGACCTCATGGCAT -ACGGAATTCAGGACCTCACGAGAT -ACGGAATTCAGGACCTCATACCAC -ACGGAATTCAGGACCTCACAGAAC -ACGGAATTCAGGACCTCAGTCTAC -ACGGAATTCAGGACCTCAACGTAC -ACGGAATTCAGGACCTCAAGTGAC -ACGGAATTCAGGACCTCACTGTAG -ACGGAATTCAGGACCTCACCTAAG -ACGGAATTCAGGACCTCAGTTCAG -ACGGAATTCAGGACCTCAGCATAG -ACGGAATTCAGGACCTCAGACAAG -ACGGAATTCAGGACCTCAAAGCAG -ACGGAATTCAGGACCTCACGTCAA -ACGGAATTCAGGACCTCAGCTGAA -ACGGAATTCAGGACCTCAAGTACG -ACGGAATTCAGGACCTCAATCCGA -ACGGAATTCAGGACCTCAATGGGA -ACGGAATTCAGGACCTCAGTGCAA -ACGGAATTCAGGACCTCAGAGGAA -ACGGAATTCAGGACCTCACAGGTA -ACGGAATTCAGGACCTCAGACTCT -ACGGAATTCAGGACCTCAAGTCCT -ACGGAATTCAGGACCTCATAAGCC -ACGGAATTCAGGACCTCAATAGCC -ACGGAATTCAGGACCTCATAACCG -ACGGAATTCAGGACCTCAATGCCA -ACGGAATTCAGGTCCTGTGGAAAC -ACGGAATTCAGGTCCTGTAACACC -ACGGAATTCAGGTCCTGTATCGAG -ACGGAATTCAGGTCCTGTCTCCTT -ACGGAATTCAGGTCCTGTCCTGTT -ACGGAATTCAGGTCCTGTCGGTTT -ACGGAATTCAGGTCCTGTGTGGTT -ACGGAATTCAGGTCCTGTGCCTTT -ACGGAATTCAGGTCCTGTGGTCTT -ACGGAATTCAGGTCCTGTACGCTT -ACGGAATTCAGGTCCTGTAGCGTT -ACGGAATTCAGGTCCTGTTTCGTC -ACGGAATTCAGGTCCTGTTCTCTC -ACGGAATTCAGGTCCTGTTGGATC -ACGGAATTCAGGTCCTGTCACTTC -ACGGAATTCAGGTCCTGTGTACTC -ACGGAATTCAGGTCCTGTGATGTC -ACGGAATTCAGGTCCTGTACAGTC -ACGGAATTCAGGTCCTGTTTGCTG -ACGGAATTCAGGTCCTGTTCCATG -ACGGAATTCAGGTCCTGTTGTGTG -ACGGAATTCAGGTCCTGTCTAGTG -ACGGAATTCAGGTCCTGTCATCTG -ACGGAATTCAGGTCCTGTGAGTTG -ACGGAATTCAGGTCCTGTAGACTG -ACGGAATTCAGGTCCTGTTCGGTA -ACGGAATTCAGGTCCTGTTGCCTA -ACGGAATTCAGGTCCTGTCCACTA -ACGGAATTCAGGTCCTGTGGAGTA -ACGGAATTCAGGTCCTGTTCGTCT -ACGGAATTCAGGTCCTGTTGCACT -ACGGAATTCAGGTCCTGTCTGACT -ACGGAATTCAGGTCCTGTCAACCT -ACGGAATTCAGGTCCTGTGCTACT -ACGGAATTCAGGTCCTGTGGATCT -ACGGAATTCAGGTCCTGTAAGGCT -ACGGAATTCAGGTCCTGTTCAACC -ACGGAATTCAGGTCCTGTTGTTCC -ACGGAATTCAGGTCCTGTATTCCC -ACGGAATTCAGGTCCTGTTTCTCG -ACGGAATTCAGGTCCTGTTAGACG -ACGGAATTCAGGTCCTGTGTAACG -ACGGAATTCAGGTCCTGTACTTCG -ACGGAATTCAGGTCCTGTTACGCA -ACGGAATTCAGGTCCTGTCTTGCA -ACGGAATTCAGGTCCTGTCGAACA -ACGGAATTCAGGTCCTGTCAGTCA -ACGGAATTCAGGTCCTGTGATCCA -ACGGAATTCAGGTCCTGTACGACA -ACGGAATTCAGGTCCTGTAGCTCA -ACGGAATTCAGGTCCTGTTCACGT -ACGGAATTCAGGTCCTGTCGTAGT -ACGGAATTCAGGTCCTGTGTCAGT -ACGGAATTCAGGTCCTGTGAAGGT -ACGGAATTCAGGTCCTGTAACCGT -ACGGAATTCAGGTCCTGTTTGTGC -ACGGAATTCAGGTCCTGTCTAAGC -ACGGAATTCAGGTCCTGTACTAGC -ACGGAATTCAGGTCCTGTAGATGC -ACGGAATTCAGGTCCTGTTGAAGG -ACGGAATTCAGGTCCTGTCAATGG -ACGGAATTCAGGTCCTGTATGAGG -ACGGAATTCAGGTCCTGTAATGGG -ACGGAATTCAGGTCCTGTTCCTGA -ACGGAATTCAGGTCCTGTTAGCGA -ACGGAATTCAGGTCCTGTCACAGA -ACGGAATTCAGGTCCTGTGCAAGA -ACGGAATTCAGGTCCTGTGGTTGA -ACGGAATTCAGGTCCTGTTCCGAT -ACGGAATTCAGGTCCTGTTGGCAT -ACGGAATTCAGGTCCTGTCGAGAT -ACGGAATTCAGGTCCTGTTACCAC -ACGGAATTCAGGTCCTGTCAGAAC -ACGGAATTCAGGTCCTGTGTCTAC -ACGGAATTCAGGTCCTGTACGTAC -ACGGAATTCAGGTCCTGTAGTGAC -ACGGAATTCAGGTCCTGTCTGTAG -ACGGAATTCAGGTCCTGTCCTAAG -ACGGAATTCAGGTCCTGTGTTCAG -ACGGAATTCAGGTCCTGTGCATAG -ACGGAATTCAGGTCCTGTGACAAG -ACGGAATTCAGGTCCTGTAAGCAG -ACGGAATTCAGGTCCTGTCGTCAA -ACGGAATTCAGGTCCTGTGCTGAA -ACGGAATTCAGGTCCTGTAGTACG -ACGGAATTCAGGTCCTGTATCCGA -ACGGAATTCAGGTCCTGTATGGGA -ACGGAATTCAGGTCCTGTGTGCAA -ACGGAATTCAGGTCCTGTGAGGAA -ACGGAATTCAGGTCCTGTCAGGTA -ACGGAATTCAGGTCCTGTGACTCT -ACGGAATTCAGGTCCTGTAGTCCT -ACGGAATTCAGGTCCTGTTAAGCC -ACGGAATTCAGGTCCTGTATAGCC -ACGGAATTCAGGTCCTGTTAACCG -ACGGAATTCAGGTCCTGTATGCCA -ACGGAATTCAGGCCCATTGGAAAC -ACGGAATTCAGGCCCATTAACACC -ACGGAATTCAGGCCCATTATCGAG -ACGGAATTCAGGCCCATTCTCCTT -ACGGAATTCAGGCCCATTCCTGTT -ACGGAATTCAGGCCCATTCGGTTT -ACGGAATTCAGGCCCATTGTGGTT -ACGGAATTCAGGCCCATTGCCTTT -ACGGAATTCAGGCCCATTGGTCTT -ACGGAATTCAGGCCCATTACGCTT -ACGGAATTCAGGCCCATTAGCGTT -ACGGAATTCAGGCCCATTTTCGTC -ACGGAATTCAGGCCCATTTCTCTC -ACGGAATTCAGGCCCATTTGGATC -ACGGAATTCAGGCCCATTCACTTC -ACGGAATTCAGGCCCATTGTACTC -ACGGAATTCAGGCCCATTGATGTC -ACGGAATTCAGGCCCATTACAGTC -ACGGAATTCAGGCCCATTTTGCTG -ACGGAATTCAGGCCCATTTCCATG -ACGGAATTCAGGCCCATTTGTGTG -ACGGAATTCAGGCCCATTCTAGTG -ACGGAATTCAGGCCCATTCATCTG -ACGGAATTCAGGCCCATTGAGTTG -ACGGAATTCAGGCCCATTAGACTG -ACGGAATTCAGGCCCATTTCGGTA -ACGGAATTCAGGCCCATTTGCCTA -ACGGAATTCAGGCCCATTCCACTA -ACGGAATTCAGGCCCATTGGAGTA -ACGGAATTCAGGCCCATTTCGTCT -ACGGAATTCAGGCCCATTTGCACT -ACGGAATTCAGGCCCATTCTGACT -ACGGAATTCAGGCCCATTCAACCT -ACGGAATTCAGGCCCATTGCTACT -ACGGAATTCAGGCCCATTGGATCT -ACGGAATTCAGGCCCATTAAGGCT -ACGGAATTCAGGCCCATTTCAACC -ACGGAATTCAGGCCCATTTGTTCC -ACGGAATTCAGGCCCATTATTCCC -ACGGAATTCAGGCCCATTTTCTCG -ACGGAATTCAGGCCCATTTAGACG -ACGGAATTCAGGCCCATTGTAACG -ACGGAATTCAGGCCCATTACTTCG -ACGGAATTCAGGCCCATTTACGCA -ACGGAATTCAGGCCCATTCTTGCA -ACGGAATTCAGGCCCATTCGAACA -ACGGAATTCAGGCCCATTCAGTCA -ACGGAATTCAGGCCCATTGATCCA -ACGGAATTCAGGCCCATTACGACA -ACGGAATTCAGGCCCATTAGCTCA -ACGGAATTCAGGCCCATTTCACGT -ACGGAATTCAGGCCCATTCGTAGT -ACGGAATTCAGGCCCATTGTCAGT -ACGGAATTCAGGCCCATTGAAGGT -ACGGAATTCAGGCCCATTAACCGT -ACGGAATTCAGGCCCATTTTGTGC -ACGGAATTCAGGCCCATTCTAAGC -ACGGAATTCAGGCCCATTACTAGC -ACGGAATTCAGGCCCATTAGATGC -ACGGAATTCAGGCCCATTTGAAGG -ACGGAATTCAGGCCCATTCAATGG -ACGGAATTCAGGCCCATTATGAGG -ACGGAATTCAGGCCCATTAATGGG -ACGGAATTCAGGCCCATTTCCTGA -ACGGAATTCAGGCCCATTTAGCGA -ACGGAATTCAGGCCCATTCACAGA -ACGGAATTCAGGCCCATTGCAAGA -ACGGAATTCAGGCCCATTGGTTGA -ACGGAATTCAGGCCCATTTCCGAT -ACGGAATTCAGGCCCATTTGGCAT -ACGGAATTCAGGCCCATTCGAGAT -ACGGAATTCAGGCCCATTTACCAC -ACGGAATTCAGGCCCATTCAGAAC -ACGGAATTCAGGCCCATTGTCTAC -ACGGAATTCAGGCCCATTACGTAC -ACGGAATTCAGGCCCATTAGTGAC -ACGGAATTCAGGCCCATTCTGTAG -ACGGAATTCAGGCCCATTCCTAAG -ACGGAATTCAGGCCCATTGTTCAG -ACGGAATTCAGGCCCATTGCATAG -ACGGAATTCAGGCCCATTGACAAG -ACGGAATTCAGGCCCATTAAGCAG -ACGGAATTCAGGCCCATTCGTCAA -ACGGAATTCAGGCCCATTGCTGAA -ACGGAATTCAGGCCCATTAGTACG -ACGGAATTCAGGCCCATTATCCGA -ACGGAATTCAGGCCCATTATGGGA -ACGGAATTCAGGCCCATTGTGCAA -ACGGAATTCAGGCCCATTGAGGAA -ACGGAATTCAGGCCCATTCAGGTA -ACGGAATTCAGGCCCATTGACTCT -ACGGAATTCAGGCCCATTAGTCCT -ACGGAATTCAGGCCCATTTAAGCC -ACGGAATTCAGGCCCATTATAGCC -ACGGAATTCAGGCCCATTTAACCG -ACGGAATTCAGGCCCATTATGCCA -ACGGAATTCAGGTCGTTCGGAAAC -ACGGAATTCAGGTCGTTCAACACC -ACGGAATTCAGGTCGTTCATCGAG -ACGGAATTCAGGTCGTTCCTCCTT -ACGGAATTCAGGTCGTTCCCTGTT -ACGGAATTCAGGTCGTTCCGGTTT -ACGGAATTCAGGTCGTTCGTGGTT -ACGGAATTCAGGTCGTTCGCCTTT -ACGGAATTCAGGTCGTTCGGTCTT -ACGGAATTCAGGTCGTTCACGCTT -ACGGAATTCAGGTCGTTCAGCGTT -ACGGAATTCAGGTCGTTCTTCGTC -ACGGAATTCAGGTCGTTCTCTCTC -ACGGAATTCAGGTCGTTCTGGATC -ACGGAATTCAGGTCGTTCCACTTC -ACGGAATTCAGGTCGTTCGTACTC -ACGGAATTCAGGTCGTTCGATGTC -ACGGAATTCAGGTCGTTCACAGTC -ACGGAATTCAGGTCGTTCTTGCTG -ACGGAATTCAGGTCGTTCTCCATG -ACGGAATTCAGGTCGTTCTGTGTG -ACGGAATTCAGGTCGTTCCTAGTG -ACGGAATTCAGGTCGTTCCATCTG -ACGGAATTCAGGTCGTTCGAGTTG -ACGGAATTCAGGTCGTTCAGACTG -ACGGAATTCAGGTCGTTCTCGGTA -ACGGAATTCAGGTCGTTCTGCCTA -ACGGAATTCAGGTCGTTCCCACTA -ACGGAATTCAGGTCGTTCGGAGTA -ACGGAATTCAGGTCGTTCTCGTCT -ACGGAATTCAGGTCGTTCTGCACT -ACGGAATTCAGGTCGTTCCTGACT -ACGGAATTCAGGTCGTTCCAACCT -ACGGAATTCAGGTCGTTCGCTACT -ACGGAATTCAGGTCGTTCGGATCT -ACGGAATTCAGGTCGTTCAAGGCT -ACGGAATTCAGGTCGTTCTCAACC -ACGGAATTCAGGTCGTTCTGTTCC -ACGGAATTCAGGTCGTTCATTCCC -ACGGAATTCAGGTCGTTCTTCTCG -ACGGAATTCAGGTCGTTCTAGACG -ACGGAATTCAGGTCGTTCGTAACG -ACGGAATTCAGGTCGTTCACTTCG -ACGGAATTCAGGTCGTTCTACGCA -ACGGAATTCAGGTCGTTCCTTGCA -ACGGAATTCAGGTCGTTCCGAACA -ACGGAATTCAGGTCGTTCCAGTCA -ACGGAATTCAGGTCGTTCGATCCA -ACGGAATTCAGGTCGTTCACGACA -ACGGAATTCAGGTCGTTCAGCTCA -ACGGAATTCAGGTCGTTCTCACGT -ACGGAATTCAGGTCGTTCCGTAGT -ACGGAATTCAGGTCGTTCGTCAGT -ACGGAATTCAGGTCGTTCGAAGGT -ACGGAATTCAGGTCGTTCAACCGT -ACGGAATTCAGGTCGTTCTTGTGC -ACGGAATTCAGGTCGTTCCTAAGC -ACGGAATTCAGGTCGTTCACTAGC -ACGGAATTCAGGTCGTTCAGATGC -ACGGAATTCAGGTCGTTCTGAAGG -ACGGAATTCAGGTCGTTCCAATGG -ACGGAATTCAGGTCGTTCATGAGG -ACGGAATTCAGGTCGTTCAATGGG -ACGGAATTCAGGTCGTTCTCCTGA -ACGGAATTCAGGTCGTTCTAGCGA -ACGGAATTCAGGTCGTTCCACAGA -ACGGAATTCAGGTCGTTCGCAAGA -ACGGAATTCAGGTCGTTCGGTTGA -ACGGAATTCAGGTCGTTCTCCGAT -ACGGAATTCAGGTCGTTCTGGCAT -ACGGAATTCAGGTCGTTCCGAGAT -ACGGAATTCAGGTCGTTCTACCAC -ACGGAATTCAGGTCGTTCCAGAAC -ACGGAATTCAGGTCGTTCGTCTAC -ACGGAATTCAGGTCGTTCACGTAC -ACGGAATTCAGGTCGTTCAGTGAC -ACGGAATTCAGGTCGTTCCTGTAG -ACGGAATTCAGGTCGTTCCCTAAG -ACGGAATTCAGGTCGTTCGTTCAG -ACGGAATTCAGGTCGTTCGCATAG -ACGGAATTCAGGTCGTTCGACAAG -ACGGAATTCAGGTCGTTCAAGCAG -ACGGAATTCAGGTCGTTCCGTCAA -ACGGAATTCAGGTCGTTCGCTGAA -ACGGAATTCAGGTCGTTCAGTACG -ACGGAATTCAGGTCGTTCATCCGA -ACGGAATTCAGGTCGTTCATGGGA -ACGGAATTCAGGTCGTTCGTGCAA -ACGGAATTCAGGTCGTTCGAGGAA -ACGGAATTCAGGTCGTTCCAGGTA -ACGGAATTCAGGTCGTTCGACTCT -ACGGAATTCAGGTCGTTCAGTCCT -ACGGAATTCAGGTCGTTCTAAGCC -ACGGAATTCAGGTCGTTCATAGCC -ACGGAATTCAGGTCGTTCTAACCG -ACGGAATTCAGGTCGTTCATGCCA -ACGGAATTCAGGACGTAGGGAAAC -ACGGAATTCAGGACGTAGAACACC -ACGGAATTCAGGACGTAGATCGAG -ACGGAATTCAGGACGTAGCTCCTT -ACGGAATTCAGGACGTAGCCTGTT -ACGGAATTCAGGACGTAGCGGTTT -ACGGAATTCAGGACGTAGGTGGTT -ACGGAATTCAGGACGTAGGCCTTT -ACGGAATTCAGGACGTAGGGTCTT -ACGGAATTCAGGACGTAGACGCTT -ACGGAATTCAGGACGTAGAGCGTT -ACGGAATTCAGGACGTAGTTCGTC -ACGGAATTCAGGACGTAGTCTCTC -ACGGAATTCAGGACGTAGTGGATC -ACGGAATTCAGGACGTAGCACTTC -ACGGAATTCAGGACGTAGGTACTC -ACGGAATTCAGGACGTAGGATGTC -ACGGAATTCAGGACGTAGACAGTC -ACGGAATTCAGGACGTAGTTGCTG -ACGGAATTCAGGACGTAGTCCATG -ACGGAATTCAGGACGTAGTGTGTG -ACGGAATTCAGGACGTAGCTAGTG -ACGGAATTCAGGACGTAGCATCTG -ACGGAATTCAGGACGTAGGAGTTG -ACGGAATTCAGGACGTAGAGACTG -ACGGAATTCAGGACGTAGTCGGTA -ACGGAATTCAGGACGTAGTGCCTA -ACGGAATTCAGGACGTAGCCACTA -ACGGAATTCAGGACGTAGGGAGTA -ACGGAATTCAGGACGTAGTCGTCT -ACGGAATTCAGGACGTAGTGCACT -ACGGAATTCAGGACGTAGCTGACT -ACGGAATTCAGGACGTAGCAACCT -ACGGAATTCAGGACGTAGGCTACT -ACGGAATTCAGGACGTAGGGATCT -ACGGAATTCAGGACGTAGAAGGCT -ACGGAATTCAGGACGTAGTCAACC -ACGGAATTCAGGACGTAGTGTTCC -ACGGAATTCAGGACGTAGATTCCC -ACGGAATTCAGGACGTAGTTCTCG -ACGGAATTCAGGACGTAGTAGACG -ACGGAATTCAGGACGTAGGTAACG -ACGGAATTCAGGACGTAGACTTCG -ACGGAATTCAGGACGTAGTACGCA -ACGGAATTCAGGACGTAGCTTGCA -ACGGAATTCAGGACGTAGCGAACA -ACGGAATTCAGGACGTAGCAGTCA -ACGGAATTCAGGACGTAGGATCCA -ACGGAATTCAGGACGTAGACGACA -ACGGAATTCAGGACGTAGAGCTCA -ACGGAATTCAGGACGTAGTCACGT -ACGGAATTCAGGACGTAGCGTAGT -ACGGAATTCAGGACGTAGGTCAGT -ACGGAATTCAGGACGTAGGAAGGT -ACGGAATTCAGGACGTAGAACCGT -ACGGAATTCAGGACGTAGTTGTGC -ACGGAATTCAGGACGTAGCTAAGC -ACGGAATTCAGGACGTAGACTAGC -ACGGAATTCAGGACGTAGAGATGC -ACGGAATTCAGGACGTAGTGAAGG -ACGGAATTCAGGACGTAGCAATGG -ACGGAATTCAGGACGTAGATGAGG -ACGGAATTCAGGACGTAGAATGGG -ACGGAATTCAGGACGTAGTCCTGA -ACGGAATTCAGGACGTAGTAGCGA -ACGGAATTCAGGACGTAGCACAGA -ACGGAATTCAGGACGTAGGCAAGA -ACGGAATTCAGGACGTAGGGTTGA -ACGGAATTCAGGACGTAGTCCGAT -ACGGAATTCAGGACGTAGTGGCAT -ACGGAATTCAGGACGTAGCGAGAT -ACGGAATTCAGGACGTAGTACCAC -ACGGAATTCAGGACGTAGCAGAAC -ACGGAATTCAGGACGTAGGTCTAC -ACGGAATTCAGGACGTAGACGTAC -ACGGAATTCAGGACGTAGAGTGAC -ACGGAATTCAGGACGTAGCTGTAG -ACGGAATTCAGGACGTAGCCTAAG -ACGGAATTCAGGACGTAGGTTCAG -ACGGAATTCAGGACGTAGGCATAG -ACGGAATTCAGGACGTAGGACAAG -ACGGAATTCAGGACGTAGAAGCAG -ACGGAATTCAGGACGTAGCGTCAA -ACGGAATTCAGGACGTAGGCTGAA -ACGGAATTCAGGACGTAGAGTACG -ACGGAATTCAGGACGTAGATCCGA -ACGGAATTCAGGACGTAGATGGGA -ACGGAATTCAGGACGTAGGTGCAA -ACGGAATTCAGGACGTAGGAGGAA -ACGGAATTCAGGACGTAGCAGGTA -ACGGAATTCAGGACGTAGGACTCT -ACGGAATTCAGGACGTAGAGTCCT -ACGGAATTCAGGACGTAGTAAGCC -ACGGAATTCAGGACGTAGATAGCC -ACGGAATTCAGGACGTAGTAACCG -ACGGAATTCAGGACGTAGATGCCA -ACGGAATTCAGGACGGTAGGAAAC -ACGGAATTCAGGACGGTAAACACC -ACGGAATTCAGGACGGTAATCGAG -ACGGAATTCAGGACGGTACTCCTT -ACGGAATTCAGGACGGTACCTGTT -ACGGAATTCAGGACGGTACGGTTT -ACGGAATTCAGGACGGTAGTGGTT -ACGGAATTCAGGACGGTAGCCTTT -ACGGAATTCAGGACGGTAGGTCTT -ACGGAATTCAGGACGGTAACGCTT -ACGGAATTCAGGACGGTAAGCGTT -ACGGAATTCAGGACGGTATTCGTC -ACGGAATTCAGGACGGTATCTCTC -ACGGAATTCAGGACGGTATGGATC -ACGGAATTCAGGACGGTACACTTC -ACGGAATTCAGGACGGTAGTACTC -ACGGAATTCAGGACGGTAGATGTC -ACGGAATTCAGGACGGTAACAGTC -ACGGAATTCAGGACGGTATTGCTG -ACGGAATTCAGGACGGTATCCATG -ACGGAATTCAGGACGGTATGTGTG -ACGGAATTCAGGACGGTACTAGTG -ACGGAATTCAGGACGGTACATCTG -ACGGAATTCAGGACGGTAGAGTTG -ACGGAATTCAGGACGGTAAGACTG -ACGGAATTCAGGACGGTATCGGTA -ACGGAATTCAGGACGGTATGCCTA -ACGGAATTCAGGACGGTACCACTA -ACGGAATTCAGGACGGTAGGAGTA -ACGGAATTCAGGACGGTATCGTCT -ACGGAATTCAGGACGGTATGCACT -ACGGAATTCAGGACGGTACTGACT -ACGGAATTCAGGACGGTACAACCT -ACGGAATTCAGGACGGTAGCTACT -ACGGAATTCAGGACGGTAGGATCT -ACGGAATTCAGGACGGTAAAGGCT -ACGGAATTCAGGACGGTATCAACC -ACGGAATTCAGGACGGTATGTTCC -ACGGAATTCAGGACGGTAATTCCC -ACGGAATTCAGGACGGTATTCTCG -ACGGAATTCAGGACGGTATAGACG -ACGGAATTCAGGACGGTAGTAACG -ACGGAATTCAGGACGGTAACTTCG -ACGGAATTCAGGACGGTATACGCA -ACGGAATTCAGGACGGTACTTGCA -ACGGAATTCAGGACGGTACGAACA -ACGGAATTCAGGACGGTACAGTCA -ACGGAATTCAGGACGGTAGATCCA -ACGGAATTCAGGACGGTAACGACA -ACGGAATTCAGGACGGTAAGCTCA -ACGGAATTCAGGACGGTATCACGT -ACGGAATTCAGGACGGTACGTAGT -ACGGAATTCAGGACGGTAGTCAGT -ACGGAATTCAGGACGGTAGAAGGT -ACGGAATTCAGGACGGTAAACCGT -ACGGAATTCAGGACGGTATTGTGC -ACGGAATTCAGGACGGTACTAAGC -ACGGAATTCAGGACGGTAACTAGC -ACGGAATTCAGGACGGTAAGATGC -ACGGAATTCAGGACGGTATGAAGG -ACGGAATTCAGGACGGTACAATGG -ACGGAATTCAGGACGGTAATGAGG -ACGGAATTCAGGACGGTAAATGGG -ACGGAATTCAGGACGGTATCCTGA -ACGGAATTCAGGACGGTATAGCGA -ACGGAATTCAGGACGGTACACAGA -ACGGAATTCAGGACGGTAGCAAGA -ACGGAATTCAGGACGGTAGGTTGA -ACGGAATTCAGGACGGTATCCGAT -ACGGAATTCAGGACGGTATGGCAT -ACGGAATTCAGGACGGTACGAGAT -ACGGAATTCAGGACGGTATACCAC -ACGGAATTCAGGACGGTACAGAAC -ACGGAATTCAGGACGGTAGTCTAC -ACGGAATTCAGGACGGTAACGTAC -ACGGAATTCAGGACGGTAAGTGAC -ACGGAATTCAGGACGGTACTGTAG -ACGGAATTCAGGACGGTACCTAAG -ACGGAATTCAGGACGGTAGTTCAG -ACGGAATTCAGGACGGTAGCATAG -ACGGAATTCAGGACGGTAGACAAG -ACGGAATTCAGGACGGTAAAGCAG -ACGGAATTCAGGACGGTACGTCAA -ACGGAATTCAGGACGGTAGCTGAA -ACGGAATTCAGGACGGTAAGTACG -ACGGAATTCAGGACGGTAATCCGA -ACGGAATTCAGGACGGTAATGGGA -ACGGAATTCAGGACGGTAGTGCAA -ACGGAATTCAGGACGGTAGAGGAA -ACGGAATTCAGGACGGTACAGGTA -ACGGAATTCAGGACGGTAGACTCT -ACGGAATTCAGGACGGTAAGTCCT -ACGGAATTCAGGACGGTATAAGCC -ACGGAATTCAGGACGGTAATAGCC -ACGGAATTCAGGACGGTATAACCG -ACGGAATTCAGGACGGTAATGCCA -ACGGAATTCAGGTCGACTGGAAAC -ACGGAATTCAGGTCGACTAACACC -ACGGAATTCAGGTCGACTATCGAG -ACGGAATTCAGGTCGACTCTCCTT -ACGGAATTCAGGTCGACTCCTGTT -ACGGAATTCAGGTCGACTCGGTTT -ACGGAATTCAGGTCGACTGTGGTT -ACGGAATTCAGGTCGACTGCCTTT -ACGGAATTCAGGTCGACTGGTCTT -ACGGAATTCAGGTCGACTACGCTT -ACGGAATTCAGGTCGACTAGCGTT -ACGGAATTCAGGTCGACTTTCGTC -ACGGAATTCAGGTCGACTTCTCTC -ACGGAATTCAGGTCGACTTGGATC -ACGGAATTCAGGTCGACTCACTTC -ACGGAATTCAGGTCGACTGTACTC -ACGGAATTCAGGTCGACTGATGTC -ACGGAATTCAGGTCGACTACAGTC -ACGGAATTCAGGTCGACTTTGCTG -ACGGAATTCAGGTCGACTTCCATG -ACGGAATTCAGGTCGACTTGTGTG -ACGGAATTCAGGTCGACTCTAGTG -ACGGAATTCAGGTCGACTCATCTG -ACGGAATTCAGGTCGACTGAGTTG -ACGGAATTCAGGTCGACTAGACTG -ACGGAATTCAGGTCGACTTCGGTA -ACGGAATTCAGGTCGACTTGCCTA -ACGGAATTCAGGTCGACTCCACTA -ACGGAATTCAGGTCGACTGGAGTA -ACGGAATTCAGGTCGACTTCGTCT -ACGGAATTCAGGTCGACTTGCACT -ACGGAATTCAGGTCGACTCTGACT -ACGGAATTCAGGTCGACTCAACCT -ACGGAATTCAGGTCGACTGCTACT -ACGGAATTCAGGTCGACTGGATCT -ACGGAATTCAGGTCGACTAAGGCT -ACGGAATTCAGGTCGACTTCAACC -ACGGAATTCAGGTCGACTTGTTCC -ACGGAATTCAGGTCGACTATTCCC -ACGGAATTCAGGTCGACTTTCTCG -ACGGAATTCAGGTCGACTTAGACG -ACGGAATTCAGGTCGACTGTAACG -ACGGAATTCAGGTCGACTACTTCG -ACGGAATTCAGGTCGACTTACGCA -ACGGAATTCAGGTCGACTCTTGCA -ACGGAATTCAGGTCGACTCGAACA -ACGGAATTCAGGTCGACTCAGTCA -ACGGAATTCAGGTCGACTGATCCA -ACGGAATTCAGGTCGACTACGACA -ACGGAATTCAGGTCGACTAGCTCA -ACGGAATTCAGGTCGACTTCACGT -ACGGAATTCAGGTCGACTCGTAGT -ACGGAATTCAGGTCGACTGTCAGT -ACGGAATTCAGGTCGACTGAAGGT -ACGGAATTCAGGTCGACTAACCGT -ACGGAATTCAGGTCGACTTTGTGC -ACGGAATTCAGGTCGACTCTAAGC -ACGGAATTCAGGTCGACTACTAGC -ACGGAATTCAGGTCGACTAGATGC -ACGGAATTCAGGTCGACTTGAAGG -ACGGAATTCAGGTCGACTCAATGG -ACGGAATTCAGGTCGACTATGAGG -ACGGAATTCAGGTCGACTAATGGG -ACGGAATTCAGGTCGACTTCCTGA -ACGGAATTCAGGTCGACTTAGCGA -ACGGAATTCAGGTCGACTCACAGA -ACGGAATTCAGGTCGACTGCAAGA -ACGGAATTCAGGTCGACTGGTTGA -ACGGAATTCAGGTCGACTTCCGAT -ACGGAATTCAGGTCGACTTGGCAT -ACGGAATTCAGGTCGACTCGAGAT -ACGGAATTCAGGTCGACTTACCAC -ACGGAATTCAGGTCGACTCAGAAC -ACGGAATTCAGGTCGACTGTCTAC -ACGGAATTCAGGTCGACTACGTAC -ACGGAATTCAGGTCGACTAGTGAC -ACGGAATTCAGGTCGACTCTGTAG -ACGGAATTCAGGTCGACTCCTAAG -ACGGAATTCAGGTCGACTGTTCAG -ACGGAATTCAGGTCGACTGCATAG -ACGGAATTCAGGTCGACTGACAAG -ACGGAATTCAGGTCGACTAAGCAG -ACGGAATTCAGGTCGACTCGTCAA -ACGGAATTCAGGTCGACTGCTGAA -ACGGAATTCAGGTCGACTAGTACG -ACGGAATTCAGGTCGACTATCCGA -ACGGAATTCAGGTCGACTATGGGA -ACGGAATTCAGGTCGACTGTGCAA -ACGGAATTCAGGTCGACTGAGGAA -ACGGAATTCAGGTCGACTCAGGTA -ACGGAATTCAGGTCGACTGACTCT -ACGGAATTCAGGTCGACTAGTCCT -ACGGAATTCAGGTCGACTTAAGCC -ACGGAATTCAGGTCGACTATAGCC -ACGGAATTCAGGTCGACTTAACCG -ACGGAATTCAGGTCGACTATGCCA -ACGGAATTCAGGGCATACGGAAAC -ACGGAATTCAGGGCATACAACACC -ACGGAATTCAGGGCATACATCGAG -ACGGAATTCAGGGCATACCTCCTT -ACGGAATTCAGGGCATACCCTGTT -ACGGAATTCAGGGCATACCGGTTT -ACGGAATTCAGGGCATACGTGGTT -ACGGAATTCAGGGCATACGCCTTT -ACGGAATTCAGGGCATACGGTCTT -ACGGAATTCAGGGCATACACGCTT -ACGGAATTCAGGGCATACAGCGTT -ACGGAATTCAGGGCATACTTCGTC -ACGGAATTCAGGGCATACTCTCTC -ACGGAATTCAGGGCATACTGGATC -ACGGAATTCAGGGCATACCACTTC -ACGGAATTCAGGGCATACGTACTC -ACGGAATTCAGGGCATACGATGTC -ACGGAATTCAGGGCATACACAGTC -ACGGAATTCAGGGCATACTTGCTG -ACGGAATTCAGGGCATACTCCATG -ACGGAATTCAGGGCATACTGTGTG -ACGGAATTCAGGGCATACCTAGTG -ACGGAATTCAGGGCATACCATCTG -ACGGAATTCAGGGCATACGAGTTG -ACGGAATTCAGGGCATACAGACTG -ACGGAATTCAGGGCATACTCGGTA -ACGGAATTCAGGGCATACTGCCTA -ACGGAATTCAGGGCATACCCACTA -ACGGAATTCAGGGCATACGGAGTA -ACGGAATTCAGGGCATACTCGTCT -ACGGAATTCAGGGCATACTGCACT -ACGGAATTCAGGGCATACCTGACT -ACGGAATTCAGGGCATACCAACCT -ACGGAATTCAGGGCATACGCTACT -ACGGAATTCAGGGCATACGGATCT -ACGGAATTCAGGGCATACAAGGCT -ACGGAATTCAGGGCATACTCAACC -ACGGAATTCAGGGCATACTGTTCC -ACGGAATTCAGGGCATACATTCCC -ACGGAATTCAGGGCATACTTCTCG -ACGGAATTCAGGGCATACTAGACG -ACGGAATTCAGGGCATACGTAACG -ACGGAATTCAGGGCATACACTTCG -ACGGAATTCAGGGCATACTACGCA -ACGGAATTCAGGGCATACCTTGCA -ACGGAATTCAGGGCATACCGAACA -ACGGAATTCAGGGCATACCAGTCA -ACGGAATTCAGGGCATACGATCCA -ACGGAATTCAGGGCATACACGACA -ACGGAATTCAGGGCATACAGCTCA -ACGGAATTCAGGGCATACTCACGT -ACGGAATTCAGGGCATACCGTAGT -ACGGAATTCAGGGCATACGTCAGT -ACGGAATTCAGGGCATACGAAGGT -ACGGAATTCAGGGCATACAACCGT -ACGGAATTCAGGGCATACTTGTGC -ACGGAATTCAGGGCATACCTAAGC -ACGGAATTCAGGGCATACACTAGC -ACGGAATTCAGGGCATACAGATGC -ACGGAATTCAGGGCATACTGAAGG -ACGGAATTCAGGGCATACCAATGG -ACGGAATTCAGGGCATACATGAGG -ACGGAATTCAGGGCATACAATGGG -ACGGAATTCAGGGCATACTCCTGA -ACGGAATTCAGGGCATACTAGCGA -ACGGAATTCAGGGCATACCACAGA -ACGGAATTCAGGGCATACGCAAGA -ACGGAATTCAGGGCATACGGTTGA -ACGGAATTCAGGGCATACTCCGAT -ACGGAATTCAGGGCATACTGGCAT -ACGGAATTCAGGGCATACCGAGAT -ACGGAATTCAGGGCATACTACCAC -ACGGAATTCAGGGCATACCAGAAC -ACGGAATTCAGGGCATACGTCTAC -ACGGAATTCAGGGCATACACGTAC -ACGGAATTCAGGGCATACAGTGAC -ACGGAATTCAGGGCATACCTGTAG -ACGGAATTCAGGGCATACCCTAAG -ACGGAATTCAGGGCATACGTTCAG -ACGGAATTCAGGGCATACGCATAG -ACGGAATTCAGGGCATACGACAAG -ACGGAATTCAGGGCATACAAGCAG -ACGGAATTCAGGGCATACCGTCAA -ACGGAATTCAGGGCATACGCTGAA -ACGGAATTCAGGGCATACAGTACG -ACGGAATTCAGGGCATACATCCGA -ACGGAATTCAGGGCATACATGGGA -ACGGAATTCAGGGCATACGTGCAA -ACGGAATTCAGGGCATACGAGGAA -ACGGAATTCAGGGCATACCAGGTA -ACGGAATTCAGGGCATACGACTCT -ACGGAATTCAGGGCATACAGTCCT -ACGGAATTCAGGGCATACTAAGCC -ACGGAATTCAGGGCATACATAGCC -ACGGAATTCAGGGCATACTAACCG -ACGGAATTCAGGGCATACATGCCA -ACGGAATTCAGGGCACTTGGAAAC -ACGGAATTCAGGGCACTTAACACC -ACGGAATTCAGGGCACTTATCGAG -ACGGAATTCAGGGCACTTCTCCTT -ACGGAATTCAGGGCACTTCCTGTT -ACGGAATTCAGGGCACTTCGGTTT -ACGGAATTCAGGGCACTTGTGGTT -ACGGAATTCAGGGCACTTGCCTTT -ACGGAATTCAGGGCACTTGGTCTT -ACGGAATTCAGGGCACTTACGCTT -ACGGAATTCAGGGCACTTAGCGTT -ACGGAATTCAGGGCACTTTTCGTC -ACGGAATTCAGGGCACTTTCTCTC -ACGGAATTCAGGGCACTTTGGATC -ACGGAATTCAGGGCACTTCACTTC -ACGGAATTCAGGGCACTTGTACTC -ACGGAATTCAGGGCACTTGATGTC -ACGGAATTCAGGGCACTTACAGTC -ACGGAATTCAGGGCACTTTTGCTG -ACGGAATTCAGGGCACTTTCCATG -ACGGAATTCAGGGCACTTTGTGTG -ACGGAATTCAGGGCACTTCTAGTG -ACGGAATTCAGGGCACTTCATCTG -ACGGAATTCAGGGCACTTGAGTTG -ACGGAATTCAGGGCACTTAGACTG -ACGGAATTCAGGGCACTTTCGGTA -ACGGAATTCAGGGCACTTTGCCTA -ACGGAATTCAGGGCACTTCCACTA -ACGGAATTCAGGGCACTTGGAGTA -ACGGAATTCAGGGCACTTTCGTCT -ACGGAATTCAGGGCACTTTGCACT -ACGGAATTCAGGGCACTTCTGACT -ACGGAATTCAGGGCACTTCAACCT -ACGGAATTCAGGGCACTTGCTACT -ACGGAATTCAGGGCACTTGGATCT -ACGGAATTCAGGGCACTTAAGGCT -ACGGAATTCAGGGCACTTTCAACC -ACGGAATTCAGGGCACTTTGTTCC -ACGGAATTCAGGGCACTTATTCCC -ACGGAATTCAGGGCACTTTTCTCG -ACGGAATTCAGGGCACTTTAGACG -ACGGAATTCAGGGCACTTGTAACG -ACGGAATTCAGGGCACTTACTTCG -ACGGAATTCAGGGCACTTTACGCA -ACGGAATTCAGGGCACTTCTTGCA -ACGGAATTCAGGGCACTTCGAACA -ACGGAATTCAGGGCACTTCAGTCA -ACGGAATTCAGGGCACTTGATCCA -ACGGAATTCAGGGCACTTACGACA -ACGGAATTCAGGGCACTTAGCTCA -ACGGAATTCAGGGCACTTTCACGT -ACGGAATTCAGGGCACTTCGTAGT -ACGGAATTCAGGGCACTTGTCAGT -ACGGAATTCAGGGCACTTGAAGGT -ACGGAATTCAGGGCACTTAACCGT -ACGGAATTCAGGGCACTTTTGTGC -ACGGAATTCAGGGCACTTCTAAGC -ACGGAATTCAGGGCACTTACTAGC -ACGGAATTCAGGGCACTTAGATGC -ACGGAATTCAGGGCACTTTGAAGG -ACGGAATTCAGGGCACTTCAATGG -ACGGAATTCAGGGCACTTATGAGG -ACGGAATTCAGGGCACTTAATGGG -ACGGAATTCAGGGCACTTTCCTGA -ACGGAATTCAGGGCACTTTAGCGA -ACGGAATTCAGGGCACTTCACAGA -ACGGAATTCAGGGCACTTGCAAGA -ACGGAATTCAGGGCACTTGGTTGA -ACGGAATTCAGGGCACTTTCCGAT -ACGGAATTCAGGGCACTTTGGCAT -ACGGAATTCAGGGCACTTCGAGAT -ACGGAATTCAGGGCACTTTACCAC -ACGGAATTCAGGGCACTTCAGAAC -ACGGAATTCAGGGCACTTGTCTAC -ACGGAATTCAGGGCACTTACGTAC -ACGGAATTCAGGGCACTTAGTGAC -ACGGAATTCAGGGCACTTCTGTAG -ACGGAATTCAGGGCACTTCCTAAG -ACGGAATTCAGGGCACTTGTTCAG -ACGGAATTCAGGGCACTTGCATAG -ACGGAATTCAGGGCACTTGACAAG -ACGGAATTCAGGGCACTTAAGCAG -ACGGAATTCAGGGCACTTCGTCAA -ACGGAATTCAGGGCACTTGCTGAA -ACGGAATTCAGGGCACTTAGTACG -ACGGAATTCAGGGCACTTATCCGA -ACGGAATTCAGGGCACTTATGGGA -ACGGAATTCAGGGCACTTGTGCAA -ACGGAATTCAGGGCACTTGAGGAA -ACGGAATTCAGGGCACTTCAGGTA -ACGGAATTCAGGGCACTTGACTCT -ACGGAATTCAGGGCACTTAGTCCT -ACGGAATTCAGGGCACTTTAAGCC -ACGGAATTCAGGGCACTTATAGCC -ACGGAATTCAGGGCACTTTAACCG -ACGGAATTCAGGGCACTTATGCCA -ACGGAATTCAGGACACGAGGAAAC -ACGGAATTCAGGACACGAAACACC -ACGGAATTCAGGACACGAATCGAG -ACGGAATTCAGGACACGACTCCTT -ACGGAATTCAGGACACGACCTGTT -ACGGAATTCAGGACACGACGGTTT -ACGGAATTCAGGACACGAGTGGTT -ACGGAATTCAGGACACGAGCCTTT -ACGGAATTCAGGACACGAGGTCTT -ACGGAATTCAGGACACGAACGCTT -ACGGAATTCAGGACACGAAGCGTT -ACGGAATTCAGGACACGATTCGTC -ACGGAATTCAGGACACGATCTCTC -ACGGAATTCAGGACACGATGGATC -ACGGAATTCAGGACACGACACTTC -ACGGAATTCAGGACACGAGTACTC -ACGGAATTCAGGACACGAGATGTC -ACGGAATTCAGGACACGAACAGTC -ACGGAATTCAGGACACGATTGCTG -ACGGAATTCAGGACACGATCCATG -ACGGAATTCAGGACACGATGTGTG -ACGGAATTCAGGACACGACTAGTG -ACGGAATTCAGGACACGACATCTG -ACGGAATTCAGGACACGAGAGTTG -ACGGAATTCAGGACACGAAGACTG -ACGGAATTCAGGACACGATCGGTA -ACGGAATTCAGGACACGATGCCTA -ACGGAATTCAGGACACGACCACTA -ACGGAATTCAGGACACGAGGAGTA -ACGGAATTCAGGACACGATCGTCT -ACGGAATTCAGGACACGATGCACT -ACGGAATTCAGGACACGACTGACT -ACGGAATTCAGGACACGACAACCT -ACGGAATTCAGGACACGAGCTACT -ACGGAATTCAGGACACGAGGATCT -ACGGAATTCAGGACACGAAAGGCT -ACGGAATTCAGGACACGATCAACC -ACGGAATTCAGGACACGATGTTCC -ACGGAATTCAGGACACGAATTCCC -ACGGAATTCAGGACACGATTCTCG -ACGGAATTCAGGACACGATAGACG -ACGGAATTCAGGACACGAGTAACG -ACGGAATTCAGGACACGAACTTCG -ACGGAATTCAGGACACGATACGCA -ACGGAATTCAGGACACGACTTGCA -ACGGAATTCAGGACACGACGAACA -ACGGAATTCAGGACACGACAGTCA -ACGGAATTCAGGACACGAGATCCA -ACGGAATTCAGGACACGAACGACA -ACGGAATTCAGGACACGAAGCTCA -ACGGAATTCAGGACACGATCACGT -ACGGAATTCAGGACACGACGTAGT -ACGGAATTCAGGACACGAGTCAGT -ACGGAATTCAGGACACGAGAAGGT -ACGGAATTCAGGACACGAAACCGT -ACGGAATTCAGGACACGATTGTGC -ACGGAATTCAGGACACGACTAAGC -ACGGAATTCAGGACACGAACTAGC -ACGGAATTCAGGACACGAAGATGC -ACGGAATTCAGGACACGATGAAGG -ACGGAATTCAGGACACGACAATGG -ACGGAATTCAGGACACGAATGAGG -ACGGAATTCAGGACACGAAATGGG -ACGGAATTCAGGACACGATCCTGA -ACGGAATTCAGGACACGATAGCGA -ACGGAATTCAGGACACGACACAGA -ACGGAATTCAGGACACGAGCAAGA -ACGGAATTCAGGACACGAGGTTGA -ACGGAATTCAGGACACGATCCGAT -ACGGAATTCAGGACACGATGGCAT -ACGGAATTCAGGACACGACGAGAT -ACGGAATTCAGGACACGATACCAC -ACGGAATTCAGGACACGACAGAAC -ACGGAATTCAGGACACGAGTCTAC -ACGGAATTCAGGACACGAACGTAC -ACGGAATTCAGGACACGAAGTGAC -ACGGAATTCAGGACACGACTGTAG -ACGGAATTCAGGACACGACCTAAG -ACGGAATTCAGGACACGAGTTCAG -ACGGAATTCAGGACACGAGCATAG -ACGGAATTCAGGACACGAGACAAG -ACGGAATTCAGGACACGAAAGCAG -ACGGAATTCAGGACACGACGTCAA -ACGGAATTCAGGACACGAGCTGAA -ACGGAATTCAGGACACGAAGTACG -ACGGAATTCAGGACACGAATCCGA -ACGGAATTCAGGACACGAATGGGA -ACGGAATTCAGGACACGAGTGCAA -ACGGAATTCAGGACACGAGAGGAA -ACGGAATTCAGGACACGACAGGTA -ACGGAATTCAGGACACGAGACTCT -ACGGAATTCAGGACACGAAGTCCT -ACGGAATTCAGGACACGATAAGCC -ACGGAATTCAGGACACGAATAGCC -ACGGAATTCAGGACACGATAACCG -ACGGAATTCAGGACACGAATGCCA -ACGGAATTCAGGTCACAGGGAAAC -ACGGAATTCAGGTCACAGAACACC -ACGGAATTCAGGTCACAGATCGAG -ACGGAATTCAGGTCACAGCTCCTT -ACGGAATTCAGGTCACAGCCTGTT -ACGGAATTCAGGTCACAGCGGTTT -ACGGAATTCAGGTCACAGGTGGTT -ACGGAATTCAGGTCACAGGCCTTT -ACGGAATTCAGGTCACAGGGTCTT -ACGGAATTCAGGTCACAGACGCTT -ACGGAATTCAGGTCACAGAGCGTT -ACGGAATTCAGGTCACAGTTCGTC -ACGGAATTCAGGTCACAGTCTCTC -ACGGAATTCAGGTCACAGTGGATC -ACGGAATTCAGGTCACAGCACTTC -ACGGAATTCAGGTCACAGGTACTC -ACGGAATTCAGGTCACAGGATGTC -ACGGAATTCAGGTCACAGACAGTC -ACGGAATTCAGGTCACAGTTGCTG -ACGGAATTCAGGTCACAGTCCATG -ACGGAATTCAGGTCACAGTGTGTG -ACGGAATTCAGGTCACAGCTAGTG -ACGGAATTCAGGTCACAGCATCTG -ACGGAATTCAGGTCACAGGAGTTG -ACGGAATTCAGGTCACAGAGACTG -ACGGAATTCAGGTCACAGTCGGTA -ACGGAATTCAGGTCACAGTGCCTA -ACGGAATTCAGGTCACAGCCACTA -ACGGAATTCAGGTCACAGGGAGTA -ACGGAATTCAGGTCACAGTCGTCT -ACGGAATTCAGGTCACAGTGCACT -ACGGAATTCAGGTCACAGCTGACT -ACGGAATTCAGGTCACAGCAACCT -ACGGAATTCAGGTCACAGGCTACT -ACGGAATTCAGGTCACAGGGATCT -ACGGAATTCAGGTCACAGAAGGCT -ACGGAATTCAGGTCACAGTCAACC -ACGGAATTCAGGTCACAGTGTTCC -ACGGAATTCAGGTCACAGATTCCC -ACGGAATTCAGGTCACAGTTCTCG -ACGGAATTCAGGTCACAGTAGACG -ACGGAATTCAGGTCACAGGTAACG -ACGGAATTCAGGTCACAGACTTCG -ACGGAATTCAGGTCACAGTACGCA -ACGGAATTCAGGTCACAGCTTGCA -ACGGAATTCAGGTCACAGCGAACA -ACGGAATTCAGGTCACAGCAGTCA -ACGGAATTCAGGTCACAGGATCCA -ACGGAATTCAGGTCACAGACGACA -ACGGAATTCAGGTCACAGAGCTCA -ACGGAATTCAGGTCACAGTCACGT -ACGGAATTCAGGTCACAGCGTAGT -ACGGAATTCAGGTCACAGGTCAGT -ACGGAATTCAGGTCACAGGAAGGT -ACGGAATTCAGGTCACAGAACCGT -ACGGAATTCAGGTCACAGTTGTGC -ACGGAATTCAGGTCACAGCTAAGC -ACGGAATTCAGGTCACAGACTAGC -ACGGAATTCAGGTCACAGAGATGC -ACGGAATTCAGGTCACAGTGAAGG -ACGGAATTCAGGTCACAGCAATGG -ACGGAATTCAGGTCACAGATGAGG -ACGGAATTCAGGTCACAGAATGGG -ACGGAATTCAGGTCACAGTCCTGA -ACGGAATTCAGGTCACAGTAGCGA -ACGGAATTCAGGTCACAGCACAGA -ACGGAATTCAGGTCACAGGCAAGA -ACGGAATTCAGGTCACAGGGTTGA -ACGGAATTCAGGTCACAGTCCGAT -ACGGAATTCAGGTCACAGTGGCAT -ACGGAATTCAGGTCACAGCGAGAT -ACGGAATTCAGGTCACAGTACCAC -ACGGAATTCAGGTCACAGCAGAAC -ACGGAATTCAGGTCACAGGTCTAC -ACGGAATTCAGGTCACAGACGTAC -ACGGAATTCAGGTCACAGAGTGAC -ACGGAATTCAGGTCACAGCTGTAG -ACGGAATTCAGGTCACAGCCTAAG -ACGGAATTCAGGTCACAGGTTCAG -ACGGAATTCAGGTCACAGGCATAG -ACGGAATTCAGGTCACAGGACAAG -ACGGAATTCAGGTCACAGAAGCAG -ACGGAATTCAGGTCACAGCGTCAA -ACGGAATTCAGGTCACAGGCTGAA -ACGGAATTCAGGTCACAGAGTACG -ACGGAATTCAGGTCACAGATCCGA -ACGGAATTCAGGTCACAGATGGGA -ACGGAATTCAGGTCACAGGTGCAA -ACGGAATTCAGGTCACAGGAGGAA -ACGGAATTCAGGTCACAGCAGGTA -ACGGAATTCAGGTCACAGGACTCT -ACGGAATTCAGGTCACAGAGTCCT -ACGGAATTCAGGTCACAGTAAGCC -ACGGAATTCAGGTCACAGATAGCC -ACGGAATTCAGGTCACAGTAACCG -ACGGAATTCAGGTCACAGATGCCA -ACGGAATTCAGGCCAGATGGAAAC -ACGGAATTCAGGCCAGATAACACC -ACGGAATTCAGGCCAGATATCGAG -ACGGAATTCAGGCCAGATCTCCTT -ACGGAATTCAGGCCAGATCCTGTT -ACGGAATTCAGGCCAGATCGGTTT -ACGGAATTCAGGCCAGATGTGGTT -ACGGAATTCAGGCCAGATGCCTTT -ACGGAATTCAGGCCAGATGGTCTT -ACGGAATTCAGGCCAGATACGCTT -ACGGAATTCAGGCCAGATAGCGTT -ACGGAATTCAGGCCAGATTTCGTC -ACGGAATTCAGGCCAGATTCTCTC -ACGGAATTCAGGCCAGATTGGATC -ACGGAATTCAGGCCAGATCACTTC -ACGGAATTCAGGCCAGATGTACTC -ACGGAATTCAGGCCAGATGATGTC -ACGGAATTCAGGCCAGATACAGTC -ACGGAATTCAGGCCAGATTTGCTG -ACGGAATTCAGGCCAGATTCCATG -ACGGAATTCAGGCCAGATTGTGTG -ACGGAATTCAGGCCAGATCTAGTG -ACGGAATTCAGGCCAGATCATCTG -ACGGAATTCAGGCCAGATGAGTTG -ACGGAATTCAGGCCAGATAGACTG -ACGGAATTCAGGCCAGATTCGGTA -ACGGAATTCAGGCCAGATTGCCTA -ACGGAATTCAGGCCAGATCCACTA -ACGGAATTCAGGCCAGATGGAGTA -ACGGAATTCAGGCCAGATTCGTCT -ACGGAATTCAGGCCAGATTGCACT -ACGGAATTCAGGCCAGATCTGACT -ACGGAATTCAGGCCAGATCAACCT -ACGGAATTCAGGCCAGATGCTACT -ACGGAATTCAGGCCAGATGGATCT -ACGGAATTCAGGCCAGATAAGGCT -ACGGAATTCAGGCCAGATTCAACC -ACGGAATTCAGGCCAGATTGTTCC -ACGGAATTCAGGCCAGATATTCCC -ACGGAATTCAGGCCAGATTTCTCG -ACGGAATTCAGGCCAGATTAGACG -ACGGAATTCAGGCCAGATGTAACG -ACGGAATTCAGGCCAGATACTTCG -ACGGAATTCAGGCCAGATTACGCA -ACGGAATTCAGGCCAGATCTTGCA -ACGGAATTCAGGCCAGATCGAACA -ACGGAATTCAGGCCAGATCAGTCA -ACGGAATTCAGGCCAGATGATCCA -ACGGAATTCAGGCCAGATACGACA -ACGGAATTCAGGCCAGATAGCTCA -ACGGAATTCAGGCCAGATTCACGT -ACGGAATTCAGGCCAGATCGTAGT -ACGGAATTCAGGCCAGATGTCAGT -ACGGAATTCAGGCCAGATGAAGGT -ACGGAATTCAGGCCAGATAACCGT -ACGGAATTCAGGCCAGATTTGTGC -ACGGAATTCAGGCCAGATCTAAGC -ACGGAATTCAGGCCAGATACTAGC -ACGGAATTCAGGCCAGATAGATGC -ACGGAATTCAGGCCAGATTGAAGG -ACGGAATTCAGGCCAGATCAATGG -ACGGAATTCAGGCCAGATATGAGG -ACGGAATTCAGGCCAGATAATGGG -ACGGAATTCAGGCCAGATTCCTGA -ACGGAATTCAGGCCAGATTAGCGA -ACGGAATTCAGGCCAGATCACAGA -ACGGAATTCAGGCCAGATGCAAGA -ACGGAATTCAGGCCAGATGGTTGA -ACGGAATTCAGGCCAGATTCCGAT -ACGGAATTCAGGCCAGATTGGCAT -ACGGAATTCAGGCCAGATCGAGAT -ACGGAATTCAGGCCAGATTACCAC -ACGGAATTCAGGCCAGATCAGAAC -ACGGAATTCAGGCCAGATGTCTAC -ACGGAATTCAGGCCAGATACGTAC -ACGGAATTCAGGCCAGATAGTGAC -ACGGAATTCAGGCCAGATCTGTAG -ACGGAATTCAGGCCAGATCCTAAG -ACGGAATTCAGGCCAGATGTTCAG -ACGGAATTCAGGCCAGATGCATAG -ACGGAATTCAGGCCAGATGACAAG -ACGGAATTCAGGCCAGATAAGCAG -ACGGAATTCAGGCCAGATCGTCAA -ACGGAATTCAGGCCAGATGCTGAA -ACGGAATTCAGGCCAGATAGTACG -ACGGAATTCAGGCCAGATATCCGA -ACGGAATTCAGGCCAGATATGGGA -ACGGAATTCAGGCCAGATGTGCAA -ACGGAATTCAGGCCAGATGAGGAA -ACGGAATTCAGGCCAGATCAGGTA -ACGGAATTCAGGCCAGATGACTCT -ACGGAATTCAGGCCAGATAGTCCT -ACGGAATTCAGGCCAGATTAAGCC -ACGGAATTCAGGCCAGATATAGCC -ACGGAATTCAGGCCAGATTAACCG -ACGGAATTCAGGCCAGATATGCCA -ACGGAATTCAGGACAACGGGAAAC -ACGGAATTCAGGACAACGAACACC -ACGGAATTCAGGACAACGATCGAG -ACGGAATTCAGGACAACGCTCCTT -ACGGAATTCAGGACAACGCCTGTT -ACGGAATTCAGGACAACGCGGTTT -ACGGAATTCAGGACAACGGTGGTT -ACGGAATTCAGGACAACGGCCTTT -ACGGAATTCAGGACAACGGGTCTT -ACGGAATTCAGGACAACGACGCTT -ACGGAATTCAGGACAACGAGCGTT -ACGGAATTCAGGACAACGTTCGTC -ACGGAATTCAGGACAACGTCTCTC -ACGGAATTCAGGACAACGTGGATC -ACGGAATTCAGGACAACGCACTTC -ACGGAATTCAGGACAACGGTACTC -ACGGAATTCAGGACAACGGATGTC -ACGGAATTCAGGACAACGACAGTC -ACGGAATTCAGGACAACGTTGCTG -ACGGAATTCAGGACAACGTCCATG -ACGGAATTCAGGACAACGTGTGTG -ACGGAATTCAGGACAACGCTAGTG -ACGGAATTCAGGACAACGCATCTG -ACGGAATTCAGGACAACGGAGTTG -ACGGAATTCAGGACAACGAGACTG -ACGGAATTCAGGACAACGTCGGTA -ACGGAATTCAGGACAACGTGCCTA -ACGGAATTCAGGACAACGCCACTA -ACGGAATTCAGGACAACGGGAGTA -ACGGAATTCAGGACAACGTCGTCT -ACGGAATTCAGGACAACGTGCACT -ACGGAATTCAGGACAACGCTGACT -ACGGAATTCAGGACAACGCAACCT -ACGGAATTCAGGACAACGGCTACT -ACGGAATTCAGGACAACGGGATCT -ACGGAATTCAGGACAACGAAGGCT -ACGGAATTCAGGACAACGTCAACC -ACGGAATTCAGGACAACGTGTTCC -ACGGAATTCAGGACAACGATTCCC -ACGGAATTCAGGACAACGTTCTCG -ACGGAATTCAGGACAACGTAGACG -ACGGAATTCAGGACAACGGTAACG -ACGGAATTCAGGACAACGACTTCG -ACGGAATTCAGGACAACGTACGCA -ACGGAATTCAGGACAACGCTTGCA -ACGGAATTCAGGACAACGCGAACA -ACGGAATTCAGGACAACGCAGTCA -ACGGAATTCAGGACAACGGATCCA -ACGGAATTCAGGACAACGACGACA -ACGGAATTCAGGACAACGAGCTCA -ACGGAATTCAGGACAACGTCACGT -ACGGAATTCAGGACAACGCGTAGT -ACGGAATTCAGGACAACGGTCAGT -ACGGAATTCAGGACAACGGAAGGT -ACGGAATTCAGGACAACGAACCGT -ACGGAATTCAGGACAACGTTGTGC -ACGGAATTCAGGACAACGCTAAGC -ACGGAATTCAGGACAACGACTAGC -ACGGAATTCAGGACAACGAGATGC -ACGGAATTCAGGACAACGTGAAGG -ACGGAATTCAGGACAACGCAATGG -ACGGAATTCAGGACAACGATGAGG -ACGGAATTCAGGACAACGAATGGG -ACGGAATTCAGGACAACGTCCTGA -ACGGAATTCAGGACAACGTAGCGA -ACGGAATTCAGGACAACGCACAGA -ACGGAATTCAGGACAACGGCAAGA -ACGGAATTCAGGACAACGGGTTGA -ACGGAATTCAGGACAACGTCCGAT -ACGGAATTCAGGACAACGTGGCAT -ACGGAATTCAGGACAACGCGAGAT -ACGGAATTCAGGACAACGTACCAC -ACGGAATTCAGGACAACGCAGAAC -ACGGAATTCAGGACAACGGTCTAC -ACGGAATTCAGGACAACGACGTAC -ACGGAATTCAGGACAACGAGTGAC -ACGGAATTCAGGACAACGCTGTAG -ACGGAATTCAGGACAACGCCTAAG -ACGGAATTCAGGACAACGGTTCAG -ACGGAATTCAGGACAACGGCATAG -ACGGAATTCAGGACAACGGACAAG -ACGGAATTCAGGACAACGAAGCAG -ACGGAATTCAGGACAACGCGTCAA -ACGGAATTCAGGACAACGGCTGAA -ACGGAATTCAGGACAACGAGTACG -ACGGAATTCAGGACAACGATCCGA -ACGGAATTCAGGACAACGATGGGA -ACGGAATTCAGGACAACGGTGCAA -ACGGAATTCAGGACAACGGAGGAA -ACGGAATTCAGGACAACGCAGGTA -ACGGAATTCAGGACAACGGACTCT -ACGGAATTCAGGACAACGAGTCCT -ACGGAATTCAGGACAACGTAAGCC -ACGGAATTCAGGACAACGATAGCC -ACGGAATTCAGGACAACGTAACCG -ACGGAATTCAGGACAACGATGCCA -ACGGAATTCAGGTCAAGCGGAAAC -ACGGAATTCAGGTCAAGCAACACC -ACGGAATTCAGGTCAAGCATCGAG -ACGGAATTCAGGTCAAGCCTCCTT -ACGGAATTCAGGTCAAGCCCTGTT -ACGGAATTCAGGTCAAGCCGGTTT -ACGGAATTCAGGTCAAGCGTGGTT -ACGGAATTCAGGTCAAGCGCCTTT -ACGGAATTCAGGTCAAGCGGTCTT -ACGGAATTCAGGTCAAGCACGCTT -ACGGAATTCAGGTCAAGCAGCGTT -ACGGAATTCAGGTCAAGCTTCGTC -ACGGAATTCAGGTCAAGCTCTCTC -ACGGAATTCAGGTCAAGCTGGATC -ACGGAATTCAGGTCAAGCCACTTC -ACGGAATTCAGGTCAAGCGTACTC -ACGGAATTCAGGTCAAGCGATGTC -ACGGAATTCAGGTCAAGCACAGTC -ACGGAATTCAGGTCAAGCTTGCTG -ACGGAATTCAGGTCAAGCTCCATG -ACGGAATTCAGGTCAAGCTGTGTG -ACGGAATTCAGGTCAAGCCTAGTG -ACGGAATTCAGGTCAAGCCATCTG -ACGGAATTCAGGTCAAGCGAGTTG -ACGGAATTCAGGTCAAGCAGACTG -ACGGAATTCAGGTCAAGCTCGGTA -ACGGAATTCAGGTCAAGCTGCCTA -ACGGAATTCAGGTCAAGCCCACTA -ACGGAATTCAGGTCAAGCGGAGTA -ACGGAATTCAGGTCAAGCTCGTCT -ACGGAATTCAGGTCAAGCTGCACT -ACGGAATTCAGGTCAAGCCTGACT -ACGGAATTCAGGTCAAGCCAACCT -ACGGAATTCAGGTCAAGCGCTACT -ACGGAATTCAGGTCAAGCGGATCT -ACGGAATTCAGGTCAAGCAAGGCT -ACGGAATTCAGGTCAAGCTCAACC -ACGGAATTCAGGTCAAGCTGTTCC -ACGGAATTCAGGTCAAGCATTCCC -ACGGAATTCAGGTCAAGCTTCTCG -ACGGAATTCAGGTCAAGCTAGACG -ACGGAATTCAGGTCAAGCGTAACG -ACGGAATTCAGGTCAAGCACTTCG -ACGGAATTCAGGTCAAGCTACGCA -ACGGAATTCAGGTCAAGCCTTGCA -ACGGAATTCAGGTCAAGCCGAACA -ACGGAATTCAGGTCAAGCCAGTCA -ACGGAATTCAGGTCAAGCGATCCA -ACGGAATTCAGGTCAAGCACGACA -ACGGAATTCAGGTCAAGCAGCTCA -ACGGAATTCAGGTCAAGCTCACGT -ACGGAATTCAGGTCAAGCCGTAGT -ACGGAATTCAGGTCAAGCGTCAGT -ACGGAATTCAGGTCAAGCGAAGGT -ACGGAATTCAGGTCAAGCAACCGT -ACGGAATTCAGGTCAAGCTTGTGC -ACGGAATTCAGGTCAAGCCTAAGC -ACGGAATTCAGGTCAAGCACTAGC -ACGGAATTCAGGTCAAGCAGATGC -ACGGAATTCAGGTCAAGCTGAAGG -ACGGAATTCAGGTCAAGCCAATGG -ACGGAATTCAGGTCAAGCATGAGG -ACGGAATTCAGGTCAAGCAATGGG -ACGGAATTCAGGTCAAGCTCCTGA -ACGGAATTCAGGTCAAGCTAGCGA -ACGGAATTCAGGTCAAGCCACAGA -ACGGAATTCAGGTCAAGCGCAAGA -ACGGAATTCAGGTCAAGCGGTTGA -ACGGAATTCAGGTCAAGCTCCGAT -ACGGAATTCAGGTCAAGCTGGCAT -ACGGAATTCAGGTCAAGCCGAGAT -ACGGAATTCAGGTCAAGCTACCAC -ACGGAATTCAGGTCAAGCCAGAAC -ACGGAATTCAGGTCAAGCGTCTAC -ACGGAATTCAGGTCAAGCACGTAC -ACGGAATTCAGGTCAAGCAGTGAC -ACGGAATTCAGGTCAAGCCTGTAG -ACGGAATTCAGGTCAAGCCCTAAG -ACGGAATTCAGGTCAAGCGTTCAG -ACGGAATTCAGGTCAAGCGCATAG -ACGGAATTCAGGTCAAGCGACAAG -ACGGAATTCAGGTCAAGCAAGCAG -ACGGAATTCAGGTCAAGCCGTCAA -ACGGAATTCAGGTCAAGCGCTGAA -ACGGAATTCAGGTCAAGCAGTACG -ACGGAATTCAGGTCAAGCATCCGA -ACGGAATTCAGGTCAAGCATGGGA -ACGGAATTCAGGTCAAGCGTGCAA -ACGGAATTCAGGTCAAGCGAGGAA -ACGGAATTCAGGTCAAGCCAGGTA -ACGGAATTCAGGTCAAGCGACTCT -ACGGAATTCAGGTCAAGCAGTCCT -ACGGAATTCAGGTCAAGCTAAGCC -ACGGAATTCAGGTCAAGCATAGCC -ACGGAATTCAGGTCAAGCTAACCG -ACGGAATTCAGGTCAAGCATGCCA -ACGGAATTCAGGCGTTCAGGAAAC -ACGGAATTCAGGCGTTCAAACACC -ACGGAATTCAGGCGTTCAATCGAG -ACGGAATTCAGGCGTTCACTCCTT -ACGGAATTCAGGCGTTCACCTGTT -ACGGAATTCAGGCGTTCACGGTTT -ACGGAATTCAGGCGTTCAGTGGTT -ACGGAATTCAGGCGTTCAGCCTTT -ACGGAATTCAGGCGTTCAGGTCTT -ACGGAATTCAGGCGTTCAACGCTT -ACGGAATTCAGGCGTTCAAGCGTT -ACGGAATTCAGGCGTTCATTCGTC -ACGGAATTCAGGCGTTCATCTCTC -ACGGAATTCAGGCGTTCATGGATC -ACGGAATTCAGGCGTTCACACTTC -ACGGAATTCAGGCGTTCAGTACTC -ACGGAATTCAGGCGTTCAGATGTC -ACGGAATTCAGGCGTTCAACAGTC -ACGGAATTCAGGCGTTCATTGCTG -ACGGAATTCAGGCGTTCATCCATG -ACGGAATTCAGGCGTTCATGTGTG -ACGGAATTCAGGCGTTCACTAGTG -ACGGAATTCAGGCGTTCACATCTG -ACGGAATTCAGGCGTTCAGAGTTG -ACGGAATTCAGGCGTTCAAGACTG -ACGGAATTCAGGCGTTCATCGGTA -ACGGAATTCAGGCGTTCATGCCTA -ACGGAATTCAGGCGTTCACCACTA -ACGGAATTCAGGCGTTCAGGAGTA -ACGGAATTCAGGCGTTCATCGTCT -ACGGAATTCAGGCGTTCATGCACT -ACGGAATTCAGGCGTTCACTGACT -ACGGAATTCAGGCGTTCACAACCT -ACGGAATTCAGGCGTTCAGCTACT -ACGGAATTCAGGCGTTCAGGATCT -ACGGAATTCAGGCGTTCAAAGGCT -ACGGAATTCAGGCGTTCATCAACC -ACGGAATTCAGGCGTTCATGTTCC -ACGGAATTCAGGCGTTCAATTCCC -ACGGAATTCAGGCGTTCATTCTCG -ACGGAATTCAGGCGTTCATAGACG -ACGGAATTCAGGCGTTCAGTAACG -ACGGAATTCAGGCGTTCAACTTCG -ACGGAATTCAGGCGTTCATACGCA -ACGGAATTCAGGCGTTCACTTGCA -ACGGAATTCAGGCGTTCACGAACA -ACGGAATTCAGGCGTTCACAGTCA -ACGGAATTCAGGCGTTCAGATCCA -ACGGAATTCAGGCGTTCAACGACA -ACGGAATTCAGGCGTTCAAGCTCA -ACGGAATTCAGGCGTTCATCACGT -ACGGAATTCAGGCGTTCACGTAGT -ACGGAATTCAGGCGTTCAGTCAGT -ACGGAATTCAGGCGTTCAGAAGGT -ACGGAATTCAGGCGTTCAAACCGT -ACGGAATTCAGGCGTTCATTGTGC -ACGGAATTCAGGCGTTCACTAAGC -ACGGAATTCAGGCGTTCAACTAGC -ACGGAATTCAGGCGTTCAAGATGC -ACGGAATTCAGGCGTTCATGAAGG -ACGGAATTCAGGCGTTCACAATGG -ACGGAATTCAGGCGTTCAATGAGG -ACGGAATTCAGGCGTTCAAATGGG -ACGGAATTCAGGCGTTCATCCTGA -ACGGAATTCAGGCGTTCATAGCGA -ACGGAATTCAGGCGTTCACACAGA -ACGGAATTCAGGCGTTCAGCAAGA -ACGGAATTCAGGCGTTCAGGTTGA -ACGGAATTCAGGCGTTCATCCGAT -ACGGAATTCAGGCGTTCATGGCAT -ACGGAATTCAGGCGTTCACGAGAT -ACGGAATTCAGGCGTTCATACCAC -ACGGAATTCAGGCGTTCACAGAAC -ACGGAATTCAGGCGTTCAGTCTAC -ACGGAATTCAGGCGTTCAACGTAC -ACGGAATTCAGGCGTTCAAGTGAC -ACGGAATTCAGGCGTTCACTGTAG -ACGGAATTCAGGCGTTCACCTAAG -ACGGAATTCAGGCGTTCAGTTCAG -ACGGAATTCAGGCGTTCAGCATAG -ACGGAATTCAGGCGTTCAGACAAG -ACGGAATTCAGGCGTTCAAAGCAG -ACGGAATTCAGGCGTTCACGTCAA -ACGGAATTCAGGCGTTCAGCTGAA -ACGGAATTCAGGCGTTCAAGTACG -ACGGAATTCAGGCGTTCAATCCGA -ACGGAATTCAGGCGTTCAATGGGA -ACGGAATTCAGGCGTTCAGTGCAA -ACGGAATTCAGGCGTTCAGAGGAA -ACGGAATTCAGGCGTTCACAGGTA -ACGGAATTCAGGCGTTCAGACTCT -ACGGAATTCAGGCGTTCAAGTCCT -ACGGAATTCAGGCGTTCATAAGCC -ACGGAATTCAGGCGTTCAATAGCC -ACGGAATTCAGGCGTTCATAACCG -ACGGAATTCAGGCGTTCAATGCCA -ACGGAATTCAGGAGTCGTGGAAAC -ACGGAATTCAGGAGTCGTAACACC -ACGGAATTCAGGAGTCGTATCGAG -ACGGAATTCAGGAGTCGTCTCCTT -ACGGAATTCAGGAGTCGTCCTGTT -ACGGAATTCAGGAGTCGTCGGTTT -ACGGAATTCAGGAGTCGTGTGGTT -ACGGAATTCAGGAGTCGTGCCTTT -ACGGAATTCAGGAGTCGTGGTCTT -ACGGAATTCAGGAGTCGTACGCTT -ACGGAATTCAGGAGTCGTAGCGTT -ACGGAATTCAGGAGTCGTTTCGTC -ACGGAATTCAGGAGTCGTTCTCTC -ACGGAATTCAGGAGTCGTTGGATC -ACGGAATTCAGGAGTCGTCACTTC -ACGGAATTCAGGAGTCGTGTACTC -ACGGAATTCAGGAGTCGTGATGTC -ACGGAATTCAGGAGTCGTACAGTC -ACGGAATTCAGGAGTCGTTTGCTG -ACGGAATTCAGGAGTCGTTCCATG -ACGGAATTCAGGAGTCGTTGTGTG -ACGGAATTCAGGAGTCGTCTAGTG -ACGGAATTCAGGAGTCGTCATCTG -ACGGAATTCAGGAGTCGTGAGTTG -ACGGAATTCAGGAGTCGTAGACTG -ACGGAATTCAGGAGTCGTTCGGTA -ACGGAATTCAGGAGTCGTTGCCTA -ACGGAATTCAGGAGTCGTCCACTA -ACGGAATTCAGGAGTCGTGGAGTA -ACGGAATTCAGGAGTCGTTCGTCT -ACGGAATTCAGGAGTCGTTGCACT -ACGGAATTCAGGAGTCGTCTGACT -ACGGAATTCAGGAGTCGTCAACCT -ACGGAATTCAGGAGTCGTGCTACT -ACGGAATTCAGGAGTCGTGGATCT -ACGGAATTCAGGAGTCGTAAGGCT -ACGGAATTCAGGAGTCGTTCAACC -ACGGAATTCAGGAGTCGTTGTTCC -ACGGAATTCAGGAGTCGTATTCCC -ACGGAATTCAGGAGTCGTTTCTCG -ACGGAATTCAGGAGTCGTTAGACG -ACGGAATTCAGGAGTCGTGTAACG -ACGGAATTCAGGAGTCGTACTTCG -ACGGAATTCAGGAGTCGTTACGCA -ACGGAATTCAGGAGTCGTCTTGCA -ACGGAATTCAGGAGTCGTCGAACA -ACGGAATTCAGGAGTCGTCAGTCA -ACGGAATTCAGGAGTCGTGATCCA -ACGGAATTCAGGAGTCGTACGACA -ACGGAATTCAGGAGTCGTAGCTCA -ACGGAATTCAGGAGTCGTTCACGT -ACGGAATTCAGGAGTCGTCGTAGT -ACGGAATTCAGGAGTCGTGTCAGT -ACGGAATTCAGGAGTCGTGAAGGT -ACGGAATTCAGGAGTCGTAACCGT -ACGGAATTCAGGAGTCGTTTGTGC -ACGGAATTCAGGAGTCGTCTAAGC -ACGGAATTCAGGAGTCGTACTAGC -ACGGAATTCAGGAGTCGTAGATGC -ACGGAATTCAGGAGTCGTTGAAGG -ACGGAATTCAGGAGTCGTCAATGG -ACGGAATTCAGGAGTCGTATGAGG -ACGGAATTCAGGAGTCGTAATGGG -ACGGAATTCAGGAGTCGTTCCTGA -ACGGAATTCAGGAGTCGTTAGCGA -ACGGAATTCAGGAGTCGTCACAGA -ACGGAATTCAGGAGTCGTGCAAGA -ACGGAATTCAGGAGTCGTGGTTGA -ACGGAATTCAGGAGTCGTTCCGAT -ACGGAATTCAGGAGTCGTTGGCAT -ACGGAATTCAGGAGTCGTCGAGAT -ACGGAATTCAGGAGTCGTTACCAC -ACGGAATTCAGGAGTCGTCAGAAC -ACGGAATTCAGGAGTCGTGTCTAC -ACGGAATTCAGGAGTCGTACGTAC -ACGGAATTCAGGAGTCGTAGTGAC -ACGGAATTCAGGAGTCGTCTGTAG -ACGGAATTCAGGAGTCGTCCTAAG -ACGGAATTCAGGAGTCGTGTTCAG -ACGGAATTCAGGAGTCGTGCATAG -ACGGAATTCAGGAGTCGTGACAAG -ACGGAATTCAGGAGTCGTAAGCAG -ACGGAATTCAGGAGTCGTCGTCAA -ACGGAATTCAGGAGTCGTGCTGAA -ACGGAATTCAGGAGTCGTAGTACG -ACGGAATTCAGGAGTCGTATCCGA -ACGGAATTCAGGAGTCGTATGGGA -ACGGAATTCAGGAGTCGTGTGCAA -ACGGAATTCAGGAGTCGTGAGGAA -ACGGAATTCAGGAGTCGTCAGGTA -ACGGAATTCAGGAGTCGTGACTCT -ACGGAATTCAGGAGTCGTAGTCCT -ACGGAATTCAGGAGTCGTTAAGCC -ACGGAATTCAGGAGTCGTATAGCC -ACGGAATTCAGGAGTCGTTAACCG -ACGGAATTCAGGAGTCGTATGCCA -ACGGAATTCAGGAGTGTCGGAAAC -ACGGAATTCAGGAGTGTCAACACC -ACGGAATTCAGGAGTGTCATCGAG -ACGGAATTCAGGAGTGTCCTCCTT -ACGGAATTCAGGAGTGTCCCTGTT -ACGGAATTCAGGAGTGTCCGGTTT -ACGGAATTCAGGAGTGTCGTGGTT -ACGGAATTCAGGAGTGTCGCCTTT -ACGGAATTCAGGAGTGTCGGTCTT -ACGGAATTCAGGAGTGTCACGCTT -ACGGAATTCAGGAGTGTCAGCGTT -ACGGAATTCAGGAGTGTCTTCGTC -ACGGAATTCAGGAGTGTCTCTCTC -ACGGAATTCAGGAGTGTCTGGATC -ACGGAATTCAGGAGTGTCCACTTC -ACGGAATTCAGGAGTGTCGTACTC -ACGGAATTCAGGAGTGTCGATGTC -ACGGAATTCAGGAGTGTCACAGTC -ACGGAATTCAGGAGTGTCTTGCTG -ACGGAATTCAGGAGTGTCTCCATG -ACGGAATTCAGGAGTGTCTGTGTG -ACGGAATTCAGGAGTGTCCTAGTG -ACGGAATTCAGGAGTGTCCATCTG -ACGGAATTCAGGAGTGTCGAGTTG -ACGGAATTCAGGAGTGTCAGACTG -ACGGAATTCAGGAGTGTCTCGGTA -ACGGAATTCAGGAGTGTCTGCCTA -ACGGAATTCAGGAGTGTCCCACTA -ACGGAATTCAGGAGTGTCGGAGTA -ACGGAATTCAGGAGTGTCTCGTCT -ACGGAATTCAGGAGTGTCTGCACT -ACGGAATTCAGGAGTGTCCTGACT -ACGGAATTCAGGAGTGTCCAACCT -ACGGAATTCAGGAGTGTCGCTACT -ACGGAATTCAGGAGTGTCGGATCT -ACGGAATTCAGGAGTGTCAAGGCT -ACGGAATTCAGGAGTGTCTCAACC -ACGGAATTCAGGAGTGTCTGTTCC -ACGGAATTCAGGAGTGTCATTCCC -ACGGAATTCAGGAGTGTCTTCTCG -ACGGAATTCAGGAGTGTCTAGACG -ACGGAATTCAGGAGTGTCGTAACG -ACGGAATTCAGGAGTGTCACTTCG -ACGGAATTCAGGAGTGTCTACGCA -ACGGAATTCAGGAGTGTCCTTGCA -ACGGAATTCAGGAGTGTCCGAACA -ACGGAATTCAGGAGTGTCCAGTCA -ACGGAATTCAGGAGTGTCGATCCA -ACGGAATTCAGGAGTGTCACGACA -ACGGAATTCAGGAGTGTCAGCTCA -ACGGAATTCAGGAGTGTCTCACGT -ACGGAATTCAGGAGTGTCCGTAGT -ACGGAATTCAGGAGTGTCGTCAGT -ACGGAATTCAGGAGTGTCGAAGGT -ACGGAATTCAGGAGTGTCAACCGT -ACGGAATTCAGGAGTGTCTTGTGC -ACGGAATTCAGGAGTGTCCTAAGC -ACGGAATTCAGGAGTGTCACTAGC -ACGGAATTCAGGAGTGTCAGATGC -ACGGAATTCAGGAGTGTCTGAAGG -ACGGAATTCAGGAGTGTCCAATGG -ACGGAATTCAGGAGTGTCATGAGG -ACGGAATTCAGGAGTGTCAATGGG -ACGGAATTCAGGAGTGTCTCCTGA -ACGGAATTCAGGAGTGTCTAGCGA -ACGGAATTCAGGAGTGTCCACAGA -ACGGAATTCAGGAGTGTCGCAAGA -ACGGAATTCAGGAGTGTCGGTTGA -ACGGAATTCAGGAGTGTCTCCGAT -ACGGAATTCAGGAGTGTCTGGCAT -ACGGAATTCAGGAGTGTCCGAGAT -ACGGAATTCAGGAGTGTCTACCAC -ACGGAATTCAGGAGTGTCCAGAAC -ACGGAATTCAGGAGTGTCGTCTAC -ACGGAATTCAGGAGTGTCACGTAC -ACGGAATTCAGGAGTGTCAGTGAC -ACGGAATTCAGGAGTGTCCTGTAG -ACGGAATTCAGGAGTGTCCCTAAG -ACGGAATTCAGGAGTGTCGTTCAG -ACGGAATTCAGGAGTGTCGCATAG -ACGGAATTCAGGAGTGTCGACAAG -ACGGAATTCAGGAGTGTCAAGCAG -ACGGAATTCAGGAGTGTCCGTCAA -ACGGAATTCAGGAGTGTCGCTGAA -ACGGAATTCAGGAGTGTCAGTACG -ACGGAATTCAGGAGTGTCATCCGA -ACGGAATTCAGGAGTGTCATGGGA -ACGGAATTCAGGAGTGTCGTGCAA -ACGGAATTCAGGAGTGTCGAGGAA -ACGGAATTCAGGAGTGTCCAGGTA -ACGGAATTCAGGAGTGTCGACTCT -ACGGAATTCAGGAGTGTCAGTCCT -ACGGAATTCAGGAGTGTCTAAGCC -ACGGAATTCAGGAGTGTCATAGCC -ACGGAATTCAGGAGTGTCTAACCG -ACGGAATTCAGGAGTGTCATGCCA -ACGGAATTCAGGGGTGAAGGAAAC -ACGGAATTCAGGGGTGAAAACACC -ACGGAATTCAGGGGTGAAATCGAG -ACGGAATTCAGGGGTGAACTCCTT -ACGGAATTCAGGGGTGAACCTGTT -ACGGAATTCAGGGGTGAACGGTTT -ACGGAATTCAGGGGTGAAGTGGTT -ACGGAATTCAGGGGTGAAGCCTTT -ACGGAATTCAGGGGTGAAGGTCTT -ACGGAATTCAGGGGTGAAACGCTT -ACGGAATTCAGGGGTGAAAGCGTT -ACGGAATTCAGGGGTGAATTCGTC -ACGGAATTCAGGGGTGAATCTCTC -ACGGAATTCAGGGGTGAATGGATC -ACGGAATTCAGGGGTGAACACTTC -ACGGAATTCAGGGGTGAAGTACTC -ACGGAATTCAGGGGTGAAGATGTC -ACGGAATTCAGGGGTGAAACAGTC -ACGGAATTCAGGGGTGAATTGCTG -ACGGAATTCAGGGGTGAATCCATG -ACGGAATTCAGGGGTGAATGTGTG -ACGGAATTCAGGGGTGAACTAGTG -ACGGAATTCAGGGGTGAACATCTG -ACGGAATTCAGGGGTGAAGAGTTG -ACGGAATTCAGGGGTGAAAGACTG -ACGGAATTCAGGGGTGAATCGGTA -ACGGAATTCAGGGGTGAATGCCTA -ACGGAATTCAGGGGTGAACCACTA -ACGGAATTCAGGGGTGAAGGAGTA -ACGGAATTCAGGGGTGAATCGTCT -ACGGAATTCAGGGGTGAATGCACT -ACGGAATTCAGGGGTGAACTGACT -ACGGAATTCAGGGGTGAACAACCT -ACGGAATTCAGGGGTGAAGCTACT -ACGGAATTCAGGGGTGAAGGATCT -ACGGAATTCAGGGGTGAAAAGGCT -ACGGAATTCAGGGGTGAATCAACC -ACGGAATTCAGGGGTGAATGTTCC -ACGGAATTCAGGGGTGAAATTCCC -ACGGAATTCAGGGGTGAATTCTCG -ACGGAATTCAGGGGTGAATAGACG -ACGGAATTCAGGGGTGAAGTAACG -ACGGAATTCAGGGGTGAAACTTCG -ACGGAATTCAGGGGTGAATACGCA -ACGGAATTCAGGGGTGAACTTGCA -ACGGAATTCAGGGGTGAACGAACA -ACGGAATTCAGGGGTGAACAGTCA -ACGGAATTCAGGGGTGAAGATCCA -ACGGAATTCAGGGGTGAAACGACA -ACGGAATTCAGGGGTGAAAGCTCA -ACGGAATTCAGGGGTGAATCACGT -ACGGAATTCAGGGGTGAACGTAGT -ACGGAATTCAGGGGTGAAGTCAGT -ACGGAATTCAGGGGTGAAGAAGGT -ACGGAATTCAGGGGTGAAAACCGT -ACGGAATTCAGGGGTGAATTGTGC -ACGGAATTCAGGGGTGAACTAAGC -ACGGAATTCAGGGGTGAAACTAGC -ACGGAATTCAGGGGTGAAAGATGC -ACGGAATTCAGGGGTGAATGAAGG -ACGGAATTCAGGGGTGAACAATGG -ACGGAATTCAGGGGTGAAATGAGG -ACGGAATTCAGGGGTGAAAATGGG -ACGGAATTCAGGGGTGAATCCTGA -ACGGAATTCAGGGGTGAATAGCGA -ACGGAATTCAGGGGTGAACACAGA -ACGGAATTCAGGGGTGAAGCAAGA -ACGGAATTCAGGGGTGAAGGTTGA -ACGGAATTCAGGGGTGAATCCGAT -ACGGAATTCAGGGGTGAATGGCAT -ACGGAATTCAGGGGTGAACGAGAT -ACGGAATTCAGGGGTGAATACCAC -ACGGAATTCAGGGGTGAACAGAAC -ACGGAATTCAGGGGTGAAGTCTAC -ACGGAATTCAGGGGTGAAACGTAC -ACGGAATTCAGGGGTGAAAGTGAC -ACGGAATTCAGGGGTGAACTGTAG -ACGGAATTCAGGGGTGAACCTAAG -ACGGAATTCAGGGGTGAAGTTCAG -ACGGAATTCAGGGGTGAAGCATAG -ACGGAATTCAGGGGTGAAGACAAG -ACGGAATTCAGGGGTGAAAAGCAG -ACGGAATTCAGGGGTGAACGTCAA -ACGGAATTCAGGGGTGAAGCTGAA -ACGGAATTCAGGGGTGAAAGTACG -ACGGAATTCAGGGGTGAAATCCGA -ACGGAATTCAGGGGTGAAATGGGA -ACGGAATTCAGGGGTGAAGTGCAA -ACGGAATTCAGGGGTGAAGAGGAA -ACGGAATTCAGGGGTGAACAGGTA -ACGGAATTCAGGGGTGAAGACTCT -ACGGAATTCAGGGGTGAAAGTCCT -ACGGAATTCAGGGGTGAATAAGCC -ACGGAATTCAGGGGTGAAATAGCC -ACGGAATTCAGGGGTGAATAACCG -ACGGAATTCAGGGGTGAAATGCCA -ACGGAATTCAGGCGTAACGGAAAC -ACGGAATTCAGGCGTAACAACACC -ACGGAATTCAGGCGTAACATCGAG -ACGGAATTCAGGCGTAACCTCCTT -ACGGAATTCAGGCGTAACCCTGTT -ACGGAATTCAGGCGTAACCGGTTT -ACGGAATTCAGGCGTAACGTGGTT -ACGGAATTCAGGCGTAACGCCTTT -ACGGAATTCAGGCGTAACGGTCTT -ACGGAATTCAGGCGTAACACGCTT -ACGGAATTCAGGCGTAACAGCGTT -ACGGAATTCAGGCGTAACTTCGTC -ACGGAATTCAGGCGTAACTCTCTC -ACGGAATTCAGGCGTAACTGGATC -ACGGAATTCAGGCGTAACCACTTC -ACGGAATTCAGGCGTAACGTACTC -ACGGAATTCAGGCGTAACGATGTC -ACGGAATTCAGGCGTAACACAGTC -ACGGAATTCAGGCGTAACTTGCTG -ACGGAATTCAGGCGTAACTCCATG -ACGGAATTCAGGCGTAACTGTGTG -ACGGAATTCAGGCGTAACCTAGTG -ACGGAATTCAGGCGTAACCATCTG -ACGGAATTCAGGCGTAACGAGTTG -ACGGAATTCAGGCGTAACAGACTG -ACGGAATTCAGGCGTAACTCGGTA -ACGGAATTCAGGCGTAACTGCCTA -ACGGAATTCAGGCGTAACCCACTA -ACGGAATTCAGGCGTAACGGAGTA -ACGGAATTCAGGCGTAACTCGTCT -ACGGAATTCAGGCGTAACTGCACT -ACGGAATTCAGGCGTAACCTGACT -ACGGAATTCAGGCGTAACCAACCT -ACGGAATTCAGGCGTAACGCTACT -ACGGAATTCAGGCGTAACGGATCT -ACGGAATTCAGGCGTAACAAGGCT -ACGGAATTCAGGCGTAACTCAACC -ACGGAATTCAGGCGTAACTGTTCC -ACGGAATTCAGGCGTAACATTCCC -ACGGAATTCAGGCGTAACTTCTCG -ACGGAATTCAGGCGTAACTAGACG -ACGGAATTCAGGCGTAACGTAACG -ACGGAATTCAGGCGTAACACTTCG -ACGGAATTCAGGCGTAACTACGCA -ACGGAATTCAGGCGTAACCTTGCA -ACGGAATTCAGGCGTAACCGAACA -ACGGAATTCAGGCGTAACCAGTCA -ACGGAATTCAGGCGTAACGATCCA -ACGGAATTCAGGCGTAACACGACA -ACGGAATTCAGGCGTAACAGCTCA -ACGGAATTCAGGCGTAACTCACGT -ACGGAATTCAGGCGTAACCGTAGT -ACGGAATTCAGGCGTAACGTCAGT -ACGGAATTCAGGCGTAACGAAGGT -ACGGAATTCAGGCGTAACAACCGT -ACGGAATTCAGGCGTAACTTGTGC -ACGGAATTCAGGCGTAACCTAAGC -ACGGAATTCAGGCGTAACACTAGC -ACGGAATTCAGGCGTAACAGATGC -ACGGAATTCAGGCGTAACTGAAGG -ACGGAATTCAGGCGTAACCAATGG -ACGGAATTCAGGCGTAACATGAGG -ACGGAATTCAGGCGTAACAATGGG -ACGGAATTCAGGCGTAACTCCTGA -ACGGAATTCAGGCGTAACTAGCGA -ACGGAATTCAGGCGTAACCACAGA -ACGGAATTCAGGCGTAACGCAAGA -ACGGAATTCAGGCGTAACGGTTGA -ACGGAATTCAGGCGTAACTCCGAT -ACGGAATTCAGGCGTAACTGGCAT -ACGGAATTCAGGCGTAACCGAGAT -ACGGAATTCAGGCGTAACTACCAC -ACGGAATTCAGGCGTAACCAGAAC -ACGGAATTCAGGCGTAACGTCTAC -ACGGAATTCAGGCGTAACACGTAC -ACGGAATTCAGGCGTAACAGTGAC -ACGGAATTCAGGCGTAACCTGTAG -ACGGAATTCAGGCGTAACCCTAAG -ACGGAATTCAGGCGTAACGTTCAG -ACGGAATTCAGGCGTAACGCATAG -ACGGAATTCAGGCGTAACGACAAG -ACGGAATTCAGGCGTAACAAGCAG -ACGGAATTCAGGCGTAACCGTCAA -ACGGAATTCAGGCGTAACGCTGAA -ACGGAATTCAGGCGTAACAGTACG -ACGGAATTCAGGCGTAACATCCGA -ACGGAATTCAGGCGTAACATGGGA -ACGGAATTCAGGCGTAACGTGCAA -ACGGAATTCAGGCGTAACGAGGAA -ACGGAATTCAGGCGTAACCAGGTA -ACGGAATTCAGGCGTAACGACTCT -ACGGAATTCAGGCGTAACAGTCCT -ACGGAATTCAGGCGTAACTAAGCC -ACGGAATTCAGGCGTAACATAGCC -ACGGAATTCAGGCGTAACTAACCG -ACGGAATTCAGGCGTAACATGCCA -ACGGAATTCAGGTGCTTGGGAAAC -ACGGAATTCAGGTGCTTGAACACC -ACGGAATTCAGGTGCTTGATCGAG -ACGGAATTCAGGTGCTTGCTCCTT -ACGGAATTCAGGTGCTTGCCTGTT -ACGGAATTCAGGTGCTTGCGGTTT -ACGGAATTCAGGTGCTTGGTGGTT -ACGGAATTCAGGTGCTTGGCCTTT -ACGGAATTCAGGTGCTTGGGTCTT -ACGGAATTCAGGTGCTTGACGCTT -ACGGAATTCAGGTGCTTGAGCGTT -ACGGAATTCAGGTGCTTGTTCGTC -ACGGAATTCAGGTGCTTGTCTCTC -ACGGAATTCAGGTGCTTGTGGATC -ACGGAATTCAGGTGCTTGCACTTC -ACGGAATTCAGGTGCTTGGTACTC -ACGGAATTCAGGTGCTTGGATGTC -ACGGAATTCAGGTGCTTGACAGTC -ACGGAATTCAGGTGCTTGTTGCTG -ACGGAATTCAGGTGCTTGTCCATG -ACGGAATTCAGGTGCTTGTGTGTG -ACGGAATTCAGGTGCTTGCTAGTG -ACGGAATTCAGGTGCTTGCATCTG -ACGGAATTCAGGTGCTTGGAGTTG -ACGGAATTCAGGTGCTTGAGACTG -ACGGAATTCAGGTGCTTGTCGGTA -ACGGAATTCAGGTGCTTGTGCCTA -ACGGAATTCAGGTGCTTGCCACTA -ACGGAATTCAGGTGCTTGGGAGTA -ACGGAATTCAGGTGCTTGTCGTCT -ACGGAATTCAGGTGCTTGTGCACT -ACGGAATTCAGGTGCTTGCTGACT -ACGGAATTCAGGTGCTTGCAACCT -ACGGAATTCAGGTGCTTGGCTACT -ACGGAATTCAGGTGCTTGGGATCT -ACGGAATTCAGGTGCTTGAAGGCT -ACGGAATTCAGGTGCTTGTCAACC -ACGGAATTCAGGTGCTTGTGTTCC -ACGGAATTCAGGTGCTTGATTCCC -ACGGAATTCAGGTGCTTGTTCTCG -ACGGAATTCAGGTGCTTGTAGACG -ACGGAATTCAGGTGCTTGGTAACG -ACGGAATTCAGGTGCTTGACTTCG -ACGGAATTCAGGTGCTTGTACGCA -ACGGAATTCAGGTGCTTGCTTGCA -ACGGAATTCAGGTGCTTGCGAACA -ACGGAATTCAGGTGCTTGCAGTCA -ACGGAATTCAGGTGCTTGGATCCA -ACGGAATTCAGGTGCTTGACGACA -ACGGAATTCAGGTGCTTGAGCTCA -ACGGAATTCAGGTGCTTGTCACGT -ACGGAATTCAGGTGCTTGCGTAGT -ACGGAATTCAGGTGCTTGGTCAGT -ACGGAATTCAGGTGCTTGGAAGGT -ACGGAATTCAGGTGCTTGAACCGT -ACGGAATTCAGGTGCTTGTTGTGC -ACGGAATTCAGGTGCTTGCTAAGC -ACGGAATTCAGGTGCTTGACTAGC -ACGGAATTCAGGTGCTTGAGATGC -ACGGAATTCAGGTGCTTGTGAAGG -ACGGAATTCAGGTGCTTGCAATGG -ACGGAATTCAGGTGCTTGATGAGG -ACGGAATTCAGGTGCTTGAATGGG -ACGGAATTCAGGTGCTTGTCCTGA -ACGGAATTCAGGTGCTTGTAGCGA -ACGGAATTCAGGTGCTTGCACAGA -ACGGAATTCAGGTGCTTGGCAAGA -ACGGAATTCAGGTGCTTGGGTTGA -ACGGAATTCAGGTGCTTGTCCGAT -ACGGAATTCAGGTGCTTGTGGCAT -ACGGAATTCAGGTGCTTGCGAGAT -ACGGAATTCAGGTGCTTGTACCAC -ACGGAATTCAGGTGCTTGCAGAAC -ACGGAATTCAGGTGCTTGGTCTAC -ACGGAATTCAGGTGCTTGACGTAC -ACGGAATTCAGGTGCTTGAGTGAC -ACGGAATTCAGGTGCTTGCTGTAG -ACGGAATTCAGGTGCTTGCCTAAG -ACGGAATTCAGGTGCTTGGTTCAG -ACGGAATTCAGGTGCTTGGCATAG -ACGGAATTCAGGTGCTTGGACAAG -ACGGAATTCAGGTGCTTGAAGCAG -ACGGAATTCAGGTGCTTGCGTCAA -ACGGAATTCAGGTGCTTGGCTGAA -ACGGAATTCAGGTGCTTGAGTACG -ACGGAATTCAGGTGCTTGATCCGA -ACGGAATTCAGGTGCTTGATGGGA -ACGGAATTCAGGTGCTTGGTGCAA -ACGGAATTCAGGTGCTTGGAGGAA -ACGGAATTCAGGTGCTTGCAGGTA -ACGGAATTCAGGTGCTTGGACTCT -ACGGAATTCAGGTGCTTGAGTCCT -ACGGAATTCAGGTGCTTGTAAGCC -ACGGAATTCAGGTGCTTGATAGCC -ACGGAATTCAGGTGCTTGTAACCG -ACGGAATTCAGGTGCTTGATGCCA -ACGGAATTCAGGAGCCTAGGAAAC -ACGGAATTCAGGAGCCTAAACACC -ACGGAATTCAGGAGCCTAATCGAG -ACGGAATTCAGGAGCCTACTCCTT -ACGGAATTCAGGAGCCTACCTGTT -ACGGAATTCAGGAGCCTACGGTTT -ACGGAATTCAGGAGCCTAGTGGTT -ACGGAATTCAGGAGCCTAGCCTTT -ACGGAATTCAGGAGCCTAGGTCTT -ACGGAATTCAGGAGCCTAACGCTT -ACGGAATTCAGGAGCCTAAGCGTT -ACGGAATTCAGGAGCCTATTCGTC -ACGGAATTCAGGAGCCTATCTCTC -ACGGAATTCAGGAGCCTATGGATC -ACGGAATTCAGGAGCCTACACTTC -ACGGAATTCAGGAGCCTAGTACTC -ACGGAATTCAGGAGCCTAGATGTC -ACGGAATTCAGGAGCCTAACAGTC -ACGGAATTCAGGAGCCTATTGCTG -ACGGAATTCAGGAGCCTATCCATG -ACGGAATTCAGGAGCCTATGTGTG -ACGGAATTCAGGAGCCTACTAGTG -ACGGAATTCAGGAGCCTACATCTG -ACGGAATTCAGGAGCCTAGAGTTG -ACGGAATTCAGGAGCCTAAGACTG -ACGGAATTCAGGAGCCTATCGGTA -ACGGAATTCAGGAGCCTATGCCTA -ACGGAATTCAGGAGCCTACCACTA -ACGGAATTCAGGAGCCTAGGAGTA -ACGGAATTCAGGAGCCTATCGTCT -ACGGAATTCAGGAGCCTATGCACT -ACGGAATTCAGGAGCCTACTGACT -ACGGAATTCAGGAGCCTACAACCT -ACGGAATTCAGGAGCCTAGCTACT -ACGGAATTCAGGAGCCTAGGATCT -ACGGAATTCAGGAGCCTAAAGGCT -ACGGAATTCAGGAGCCTATCAACC -ACGGAATTCAGGAGCCTATGTTCC -ACGGAATTCAGGAGCCTAATTCCC -ACGGAATTCAGGAGCCTATTCTCG -ACGGAATTCAGGAGCCTATAGACG -ACGGAATTCAGGAGCCTAGTAACG -ACGGAATTCAGGAGCCTAACTTCG -ACGGAATTCAGGAGCCTATACGCA -ACGGAATTCAGGAGCCTACTTGCA -ACGGAATTCAGGAGCCTACGAACA -ACGGAATTCAGGAGCCTACAGTCA -ACGGAATTCAGGAGCCTAGATCCA -ACGGAATTCAGGAGCCTAACGACA -ACGGAATTCAGGAGCCTAAGCTCA -ACGGAATTCAGGAGCCTATCACGT -ACGGAATTCAGGAGCCTACGTAGT -ACGGAATTCAGGAGCCTAGTCAGT -ACGGAATTCAGGAGCCTAGAAGGT -ACGGAATTCAGGAGCCTAAACCGT -ACGGAATTCAGGAGCCTATTGTGC -ACGGAATTCAGGAGCCTACTAAGC -ACGGAATTCAGGAGCCTAACTAGC -ACGGAATTCAGGAGCCTAAGATGC -ACGGAATTCAGGAGCCTATGAAGG -ACGGAATTCAGGAGCCTACAATGG -ACGGAATTCAGGAGCCTAATGAGG -ACGGAATTCAGGAGCCTAAATGGG -ACGGAATTCAGGAGCCTATCCTGA -ACGGAATTCAGGAGCCTATAGCGA -ACGGAATTCAGGAGCCTACACAGA -ACGGAATTCAGGAGCCTAGCAAGA -ACGGAATTCAGGAGCCTAGGTTGA -ACGGAATTCAGGAGCCTATCCGAT -ACGGAATTCAGGAGCCTATGGCAT -ACGGAATTCAGGAGCCTACGAGAT -ACGGAATTCAGGAGCCTATACCAC -ACGGAATTCAGGAGCCTACAGAAC -ACGGAATTCAGGAGCCTAGTCTAC -ACGGAATTCAGGAGCCTAACGTAC -ACGGAATTCAGGAGCCTAAGTGAC -ACGGAATTCAGGAGCCTACTGTAG -ACGGAATTCAGGAGCCTACCTAAG -ACGGAATTCAGGAGCCTAGTTCAG -ACGGAATTCAGGAGCCTAGCATAG -ACGGAATTCAGGAGCCTAGACAAG -ACGGAATTCAGGAGCCTAAAGCAG -ACGGAATTCAGGAGCCTACGTCAA -ACGGAATTCAGGAGCCTAGCTGAA -ACGGAATTCAGGAGCCTAAGTACG -ACGGAATTCAGGAGCCTAATCCGA -ACGGAATTCAGGAGCCTAATGGGA -ACGGAATTCAGGAGCCTAGTGCAA -ACGGAATTCAGGAGCCTAGAGGAA -ACGGAATTCAGGAGCCTACAGGTA -ACGGAATTCAGGAGCCTAGACTCT -ACGGAATTCAGGAGCCTAAGTCCT -ACGGAATTCAGGAGCCTATAAGCC -ACGGAATTCAGGAGCCTAATAGCC -ACGGAATTCAGGAGCCTATAACCG -ACGGAATTCAGGAGCCTAATGCCA -ACGGAATTCAGGAGCACTGGAAAC -ACGGAATTCAGGAGCACTAACACC -ACGGAATTCAGGAGCACTATCGAG -ACGGAATTCAGGAGCACTCTCCTT -ACGGAATTCAGGAGCACTCCTGTT -ACGGAATTCAGGAGCACTCGGTTT -ACGGAATTCAGGAGCACTGTGGTT -ACGGAATTCAGGAGCACTGCCTTT -ACGGAATTCAGGAGCACTGGTCTT -ACGGAATTCAGGAGCACTACGCTT -ACGGAATTCAGGAGCACTAGCGTT -ACGGAATTCAGGAGCACTTTCGTC -ACGGAATTCAGGAGCACTTCTCTC -ACGGAATTCAGGAGCACTTGGATC -ACGGAATTCAGGAGCACTCACTTC -ACGGAATTCAGGAGCACTGTACTC -ACGGAATTCAGGAGCACTGATGTC -ACGGAATTCAGGAGCACTACAGTC -ACGGAATTCAGGAGCACTTTGCTG -ACGGAATTCAGGAGCACTTCCATG -ACGGAATTCAGGAGCACTTGTGTG -ACGGAATTCAGGAGCACTCTAGTG -ACGGAATTCAGGAGCACTCATCTG -ACGGAATTCAGGAGCACTGAGTTG -ACGGAATTCAGGAGCACTAGACTG -ACGGAATTCAGGAGCACTTCGGTA -ACGGAATTCAGGAGCACTTGCCTA -ACGGAATTCAGGAGCACTCCACTA -ACGGAATTCAGGAGCACTGGAGTA -ACGGAATTCAGGAGCACTTCGTCT -ACGGAATTCAGGAGCACTTGCACT -ACGGAATTCAGGAGCACTCTGACT -ACGGAATTCAGGAGCACTCAACCT -ACGGAATTCAGGAGCACTGCTACT -ACGGAATTCAGGAGCACTGGATCT -ACGGAATTCAGGAGCACTAAGGCT -ACGGAATTCAGGAGCACTTCAACC -ACGGAATTCAGGAGCACTTGTTCC -ACGGAATTCAGGAGCACTATTCCC -ACGGAATTCAGGAGCACTTTCTCG -ACGGAATTCAGGAGCACTTAGACG -ACGGAATTCAGGAGCACTGTAACG -ACGGAATTCAGGAGCACTACTTCG -ACGGAATTCAGGAGCACTTACGCA -ACGGAATTCAGGAGCACTCTTGCA -ACGGAATTCAGGAGCACTCGAACA -ACGGAATTCAGGAGCACTCAGTCA -ACGGAATTCAGGAGCACTGATCCA -ACGGAATTCAGGAGCACTACGACA -ACGGAATTCAGGAGCACTAGCTCA -ACGGAATTCAGGAGCACTTCACGT -ACGGAATTCAGGAGCACTCGTAGT -ACGGAATTCAGGAGCACTGTCAGT -ACGGAATTCAGGAGCACTGAAGGT -ACGGAATTCAGGAGCACTAACCGT -ACGGAATTCAGGAGCACTTTGTGC -ACGGAATTCAGGAGCACTCTAAGC -ACGGAATTCAGGAGCACTACTAGC -ACGGAATTCAGGAGCACTAGATGC -ACGGAATTCAGGAGCACTTGAAGG -ACGGAATTCAGGAGCACTCAATGG -ACGGAATTCAGGAGCACTATGAGG -ACGGAATTCAGGAGCACTAATGGG -ACGGAATTCAGGAGCACTTCCTGA -ACGGAATTCAGGAGCACTTAGCGA -ACGGAATTCAGGAGCACTCACAGA -ACGGAATTCAGGAGCACTGCAAGA -ACGGAATTCAGGAGCACTGGTTGA -ACGGAATTCAGGAGCACTTCCGAT -ACGGAATTCAGGAGCACTTGGCAT -ACGGAATTCAGGAGCACTCGAGAT -ACGGAATTCAGGAGCACTTACCAC -ACGGAATTCAGGAGCACTCAGAAC -ACGGAATTCAGGAGCACTGTCTAC -ACGGAATTCAGGAGCACTACGTAC -ACGGAATTCAGGAGCACTAGTGAC -ACGGAATTCAGGAGCACTCTGTAG -ACGGAATTCAGGAGCACTCCTAAG -ACGGAATTCAGGAGCACTGTTCAG -ACGGAATTCAGGAGCACTGCATAG -ACGGAATTCAGGAGCACTGACAAG -ACGGAATTCAGGAGCACTAAGCAG -ACGGAATTCAGGAGCACTCGTCAA -ACGGAATTCAGGAGCACTGCTGAA -ACGGAATTCAGGAGCACTAGTACG -ACGGAATTCAGGAGCACTATCCGA -ACGGAATTCAGGAGCACTATGGGA -ACGGAATTCAGGAGCACTGTGCAA -ACGGAATTCAGGAGCACTGAGGAA -ACGGAATTCAGGAGCACTCAGGTA -ACGGAATTCAGGAGCACTGACTCT -ACGGAATTCAGGAGCACTAGTCCT -ACGGAATTCAGGAGCACTTAAGCC -ACGGAATTCAGGAGCACTATAGCC -ACGGAATTCAGGAGCACTTAACCG -ACGGAATTCAGGAGCACTATGCCA -ACGGAATTCAGGTGCAGAGGAAAC -ACGGAATTCAGGTGCAGAAACACC -ACGGAATTCAGGTGCAGAATCGAG -ACGGAATTCAGGTGCAGACTCCTT -ACGGAATTCAGGTGCAGACCTGTT -ACGGAATTCAGGTGCAGACGGTTT -ACGGAATTCAGGTGCAGAGTGGTT -ACGGAATTCAGGTGCAGAGCCTTT -ACGGAATTCAGGTGCAGAGGTCTT -ACGGAATTCAGGTGCAGAACGCTT -ACGGAATTCAGGTGCAGAAGCGTT -ACGGAATTCAGGTGCAGATTCGTC -ACGGAATTCAGGTGCAGATCTCTC -ACGGAATTCAGGTGCAGATGGATC -ACGGAATTCAGGTGCAGACACTTC -ACGGAATTCAGGTGCAGAGTACTC -ACGGAATTCAGGTGCAGAGATGTC -ACGGAATTCAGGTGCAGAACAGTC -ACGGAATTCAGGTGCAGATTGCTG -ACGGAATTCAGGTGCAGATCCATG -ACGGAATTCAGGTGCAGATGTGTG -ACGGAATTCAGGTGCAGACTAGTG -ACGGAATTCAGGTGCAGACATCTG -ACGGAATTCAGGTGCAGAGAGTTG -ACGGAATTCAGGTGCAGAAGACTG -ACGGAATTCAGGTGCAGATCGGTA -ACGGAATTCAGGTGCAGATGCCTA -ACGGAATTCAGGTGCAGACCACTA -ACGGAATTCAGGTGCAGAGGAGTA -ACGGAATTCAGGTGCAGATCGTCT -ACGGAATTCAGGTGCAGATGCACT -ACGGAATTCAGGTGCAGACTGACT -ACGGAATTCAGGTGCAGACAACCT -ACGGAATTCAGGTGCAGAGCTACT -ACGGAATTCAGGTGCAGAGGATCT -ACGGAATTCAGGTGCAGAAAGGCT -ACGGAATTCAGGTGCAGATCAACC -ACGGAATTCAGGTGCAGATGTTCC -ACGGAATTCAGGTGCAGAATTCCC -ACGGAATTCAGGTGCAGATTCTCG -ACGGAATTCAGGTGCAGATAGACG -ACGGAATTCAGGTGCAGAGTAACG -ACGGAATTCAGGTGCAGAACTTCG -ACGGAATTCAGGTGCAGATACGCA -ACGGAATTCAGGTGCAGACTTGCA -ACGGAATTCAGGTGCAGACGAACA -ACGGAATTCAGGTGCAGACAGTCA -ACGGAATTCAGGTGCAGAGATCCA -ACGGAATTCAGGTGCAGAACGACA -ACGGAATTCAGGTGCAGAAGCTCA -ACGGAATTCAGGTGCAGATCACGT -ACGGAATTCAGGTGCAGACGTAGT -ACGGAATTCAGGTGCAGAGTCAGT -ACGGAATTCAGGTGCAGAGAAGGT -ACGGAATTCAGGTGCAGAAACCGT -ACGGAATTCAGGTGCAGATTGTGC -ACGGAATTCAGGTGCAGACTAAGC -ACGGAATTCAGGTGCAGAACTAGC -ACGGAATTCAGGTGCAGAAGATGC -ACGGAATTCAGGTGCAGATGAAGG -ACGGAATTCAGGTGCAGACAATGG -ACGGAATTCAGGTGCAGAATGAGG -ACGGAATTCAGGTGCAGAAATGGG -ACGGAATTCAGGTGCAGATCCTGA -ACGGAATTCAGGTGCAGATAGCGA -ACGGAATTCAGGTGCAGACACAGA -ACGGAATTCAGGTGCAGAGCAAGA -ACGGAATTCAGGTGCAGAGGTTGA -ACGGAATTCAGGTGCAGATCCGAT -ACGGAATTCAGGTGCAGATGGCAT -ACGGAATTCAGGTGCAGACGAGAT -ACGGAATTCAGGTGCAGATACCAC -ACGGAATTCAGGTGCAGACAGAAC -ACGGAATTCAGGTGCAGAGTCTAC -ACGGAATTCAGGTGCAGAACGTAC -ACGGAATTCAGGTGCAGAAGTGAC -ACGGAATTCAGGTGCAGACTGTAG -ACGGAATTCAGGTGCAGACCTAAG -ACGGAATTCAGGTGCAGAGTTCAG -ACGGAATTCAGGTGCAGAGCATAG -ACGGAATTCAGGTGCAGAGACAAG -ACGGAATTCAGGTGCAGAAAGCAG -ACGGAATTCAGGTGCAGACGTCAA -ACGGAATTCAGGTGCAGAGCTGAA -ACGGAATTCAGGTGCAGAAGTACG -ACGGAATTCAGGTGCAGAATCCGA -ACGGAATTCAGGTGCAGAATGGGA -ACGGAATTCAGGTGCAGAGTGCAA -ACGGAATTCAGGTGCAGAGAGGAA -ACGGAATTCAGGTGCAGACAGGTA -ACGGAATTCAGGTGCAGAGACTCT -ACGGAATTCAGGTGCAGAAGTCCT -ACGGAATTCAGGTGCAGATAAGCC -ACGGAATTCAGGTGCAGAATAGCC -ACGGAATTCAGGTGCAGATAACCG -ACGGAATTCAGGTGCAGAATGCCA -ACGGAATTCAGGAGGTGAGGAAAC -ACGGAATTCAGGAGGTGAAACACC -ACGGAATTCAGGAGGTGAATCGAG -ACGGAATTCAGGAGGTGACTCCTT -ACGGAATTCAGGAGGTGACCTGTT -ACGGAATTCAGGAGGTGACGGTTT -ACGGAATTCAGGAGGTGAGTGGTT -ACGGAATTCAGGAGGTGAGCCTTT -ACGGAATTCAGGAGGTGAGGTCTT -ACGGAATTCAGGAGGTGAACGCTT -ACGGAATTCAGGAGGTGAAGCGTT -ACGGAATTCAGGAGGTGATTCGTC -ACGGAATTCAGGAGGTGATCTCTC -ACGGAATTCAGGAGGTGATGGATC -ACGGAATTCAGGAGGTGACACTTC -ACGGAATTCAGGAGGTGAGTACTC -ACGGAATTCAGGAGGTGAGATGTC -ACGGAATTCAGGAGGTGAACAGTC -ACGGAATTCAGGAGGTGATTGCTG -ACGGAATTCAGGAGGTGATCCATG -ACGGAATTCAGGAGGTGATGTGTG -ACGGAATTCAGGAGGTGACTAGTG -ACGGAATTCAGGAGGTGACATCTG -ACGGAATTCAGGAGGTGAGAGTTG -ACGGAATTCAGGAGGTGAAGACTG -ACGGAATTCAGGAGGTGATCGGTA -ACGGAATTCAGGAGGTGATGCCTA -ACGGAATTCAGGAGGTGACCACTA -ACGGAATTCAGGAGGTGAGGAGTA -ACGGAATTCAGGAGGTGATCGTCT -ACGGAATTCAGGAGGTGATGCACT -ACGGAATTCAGGAGGTGACTGACT -ACGGAATTCAGGAGGTGACAACCT -ACGGAATTCAGGAGGTGAGCTACT -ACGGAATTCAGGAGGTGAGGATCT -ACGGAATTCAGGAGGTGAAAGGCT -ACGGAATTCAGGAGGTGATCAACC -ACGGAATTCAGGAGGTGATGTTCC -ACGGAATTCAGGAGGTGAATTCCC -ACGGAATTCAGGAGGTGATTCTCG -ACGGAATTCAGGAGGTGATAGACG -ACGGAATTCAGGAGGTGAGTAACG -ACGGAATTCAGGAGGTGAACTTCG -ACGGAATTCAGGAGGTGATACGCA -ACGGAATTCAGGAGGTGACTTGCA -ACGGAATTCAGGAGGTGACGAACA -ACGGAATTCAGGAGGTGACAGTCA -ACGGAATTCAGGAGGTGAGATCCA -ACGGAATTCAGGAGGTGAACGACA -ACGGAATTCAGGAGGTGAAGCTCA -ACGGAATTCAGGAGGTGATCACGT -ACGGAATTCAGGAGGTGACGTAGT -ACGGAATTCAGGAGGTGAGTCAGT -ACGGAATTCAGGAGGTGAGAAGGT -ACGGAATTCAGGAGGTGAAACCGT -ACGGAATTCAGGAGGTGATTGTGC -ACGGAATTCAGGAGGTGACTAAGC -ACGGAATTCAGGAGGTGAACTAGC -ACGGAATTCAGGAGGTGAAGATGC -ACGGAATTCAGGAGGTGATGAAGG -ACGGAATTCAGGAGGTGACAATGG -ACGGAATTCAGGAGGTGAATGAGG -ACGGAATTCAGGAGGTGAAATGGG -ACGGAATTCAGGAGGTGATCCTGA -ACGGAATTCAGGAGGTGATAGCGA -ACGGAATTCAGGAGGTGACACAGA -ACGGAATTCAGGAGGTGAGCAAGA -ACGGAATTCAGGAGGTGAGGTTGA -ACGGAATTCAGGAGGTGATCCGAT -ACGGAATTCAGGAGGTGATGGCAT -ACGGAATTCAGGAGGTGACGAGAT -ACGGAATTCAGGAGGTGATACCAC -ACGGAATTCAGGAGGTGACAGAAC -ACGGAATTCAGGAGGTGAGTCTAC -ACGGAATTCAGGAGGTGAACGTAC -ACGGAATTCAGGAGGTGAAGTGAC -ACGGAATTCAGGAGGTGACTGTAG -ACGGAATTCAGGAGGTGACCTAAG -ACGGAATTCAGGAGGTGAGTTCAG -ACGGAATTCAGGAGGTGAGCATAG -ACGGAATTCAGGAGGTGAGACAAG -ACGGAATTCAGGAGGTGAAAGCAG -ACGGAATTCAGGAGGTGACGTCAA -ACGGAATTCAGGAGGTGAGCTGAA -ACGGAATTCAGGAGGTGAAGTACG -ACGGAATTCAGGAGGTGAATCCGA -ACGGAATTCAGGAGGTGAATGGGA -ACGGAATTCAGGAGGTGAGTGCAA -ACGGAATTCAGGAGGTGAGAGGAA -ACGGAATTCAGGAGGTGACAGGTA -ACGGAATTCAGGAGGTGAGACTCT -ACGGAATTCAGGAGGTGAAGTCCT -ACGGAATTCAGGAGGTGATAAGCC -ACGGAATTCAGGAGGTGAATAGCC -ACGGAATTCAGGAGGTGATAACCG -ACGGAATTCAGGAGGTGAATGCCA -ACGGAATTCAGGTGGCAAGGAAAC -ACGGAATTCAGGTGGCAAAACACC -ACGGAATTCAGGTGGCAAATCGAG -ACGGAATTCAGGTGGCAACTCCTT -ACGGAATTCAGGTGGCAACCTGTT -ACGGAATTCAGGTGGCAACGGTTT -ACGGAATTCAGGTGGCAAGTGGTT -ACGGAATTCAGGTGGCAAGCCTTT -ACGGAATTCAGGTGGCAAGGTCTT -ACGGAATTCAGGTGGCAAACGCTT -ACGGAATTCAGGTGGCAAAGCGTT -ACGGAATTCAGGTGGCAATTCGTC -ACGGAATTCAGGTGGCAATCTCTC -ACGGAATTCAGGTGGCAATGGATC -ACGGAATTCAGGTGGCAACACTTC -ACGGAATTCAGGTGGCAAGTACTC -ACGGAATTCAGGTGGCAAGATGTC -ACGGAATTCAGGTGGCAAACAGTC -ACGGAATTCAGGTGGCAATTGCTG -ACGGAATTCAGGTGGCAATCCATG -ACGGAATTCAGGTGGCAATGTGTG -ACGGAATTCAGGTGGCAACTAGTG -ACGGAATTCAGGTGGCAACATCTG -ACGGAATTCAGGTGGCAAGAGTTG -ACGGAATTCAGGTGGCAAAGACTG -ACGGAATTCAGGTGGCAATCGGTA -ACGGAATTCAGGTGGCAATGCCTA -ACGGAATTCAGGTGGCAACCACTA -ACGGAATTCAGGTGGCAAGGAGTA -ACGGAATTCAGGTGGCAATCGTCT -ACGGAATTCAGGTGGCAATGCACT -ACGGAATTCAGGTGGCAACTGACT -ACGGAATTCAGGTGGCAACAACCT -ACGGAATTCAGGTGGCAAGCTACT -ACGGAATTCAGGTGGCAAGGATCT -ACGGAATTCAGGTGGCAAAAGGCT -ACGGAATTCAGGTGGCAATCAACC -ACGGAATTCAGGTGGCAATGTTCC -ACGGAATTCAGGTGGCAAATTCCC -ACGGAATTCAGGTGGCAATTCTCG -ACGGAATTCAGGTGGCAATAGACG -ACGGAATTCAGGTGGCAAGTAACG -ACGGAATTCAGGTGGCAAACTTCG -ACGGAATTCAGGTGGCAATACGCA -ACGGAATTCAGGTGGCAACTTGCA -ACGGAATTCAGGTGGCAACGAACA -ACGGAATTCAGGTGGCAACAGTCA -ACGGAATTCAGGTGGCAAGATCCA -ACGGAATTCAGGTGGCAAACGACA -ACGGAATTCAGGTGGCAAAGCTCA -ACGGAATTCAGGTGGCAATCACGT -ACGGAATTCAGGTGGCAACGTAGT -ACGGAATTCAGGTGGCAAGTCAGT -ACGGAATTCAGGTGGCAAGAAGGT -ACGGAATTCAGGTGGCAAAACCGT -ACGGAATTCAGGTGGCAATTGTGC -ACGGAATTCAGGTGGCAACTAAGC -ACGGAATTCAGGTGGCAAACTAGC -ACGGAATTCAGGTGGCAAAGATGC -ACGGAATTCAGGTGGCAATGAAGG -ACGGAATTCAGGTGGCAACAATGG -ACGGAATTCAGGTGGCAAATGAGG -ACGGAATTCAGGTGGCAAAATGGG -ACGGAATTCAGGTGGCAATCCTGA -ACGGAATTCAGGTGGCAATAGCGA -ACGGAATTCAGGTGGCAACACAGA -ACGGAATTCAGGTGGCAAGCAAGA -ACGGAATTCAGGTGGCAAGGTTGA -ACGGAATTCAGGTGGCAATCCGAT -ACGGAATTCAGGTGGCAATGGCAT -ACGGAATTCAGGTGGCAACGAGAT -ACGGAATTCAGGTGGCAATACCAC -ACGGAATTCAGGTGGCAACAGAAC -ACGGAATTCAGGTGGCAAGTCTAC -ACGGAATTCAGGTGGCAAACGTAC -ACGGAATTCAGGTGGCAAAGTGAC -ACGGAATTCAGGTGGCAACTGTAG -ACGGAATTCAGGTGGCAACCTAAG -ACGGAATTCAGGTGGCAAGTTCAG -ACGGAATTCAGGTGGCAAGCATAG -ACGGAATTCAGGTGGCAAGACAAG -ACGGAATTCAGGTGGCAAAAGCAG -ACGGAATTCAGGTGGCAACGTCAA -ACGGAATTCAGGTGGCAAGCTGAA -ACGGAATTCAGGTGGCAAAGTACG -ACGGAATTCAGGTGGCAAATCCGA -ACGGAATTCAGGTGGCAAATGGGA -ACGGAATTCAGGTGGCAAGTGCAA -ACGGAATTCAGGTGGCAAGAGGAA -ACGGAATTCAGGTGGCAACAGGTA -ACGGAATTCAGGTGGCAAGACTCT -ACGGAATTCAGGTGGCAAAGTCCT -ACGGAATTCAGGTGGCAATAAGCC -ACGGAATTCAGGTGGCAAATAGCC -ACGGAATTCAGGTGGCAATAACCG -ACGGAATTCAGGTGGCAAATGCCA -ACGGAATTCAGGAGGATGGGAAAC -ACGGAATTCAGGAGGATGAACACC -ACGGAATTCAGGAGGATGATCGAG -ACGGAATTCAGGAGGATGCTCCTT -ACGGAATTCAGGAGGATGCCTGTT -ACGGAATTCAGGAGGATGCGGTTT -ACGGAATTCAGGAGGATGGTGGTT -ACGGAATTCAGGAGGATGGCCTTT -ACGGAATTCAGGAGGATGGGTCTT -ACGGAATTCAGGAGGATGACGCTT -ACGGAATTCAGGAGGATGAGCGTT -ACGGAATTCAGGAGGATGTTCGTC -ACGGAATTCAGGAGGATGTCTCTC -ACGGAATTCAGGAGGATGTGGATC -ACGGAATTCAGGAGGATGCACTTC -ACGGAATTCAGGAGGATGGTACTC -ACGGAATTCAGGAGGATGGATGTC -ACGGAATTCAGGAGGATGACAGTC -ACGGAATTCAGGAGGATGTTGCTG -ACGGAATTCAGGAGGATGTCCATG -ACGGAATTCAGGAGGATGTGTGTG -ACGGAATTCAGGAGGATGCTAGTG -ACGGAATTCAGGAGGATGCATCTG -ACGGAATTCAGGAGGATGGAGTTG -ACGGAATTCAGGAGGATGAGACTG -ACGGAATTCAGGAGGATGTCGGTA -ACGGAATTCAGGAGGATGTGCCTA -ACGGAATTCAGGAGGATGCCACTA -ACGGAATTCAGGAGGATGGGAGTA -ACGGAATTCAGGAGGATGTCGTCT -ACGGAATTCAGGAGGATGTGCACT -ACGGAATTCAGGAGGATGCTGACT -ACGGAATTCAGGAGGATGCAACCT -ACGGAATTCAGGAGGATGGCTACT -ACGGAATTCAGGAGGATGGGATCT -ACGGAATTCAGGAGGATGAAGGCT -ACGGAATTCAGGAGGATGTCAACC -ACGGAATTCAGGAGGATGTGTTCC -ACGGAATTCAGGAGGATGATTCCC -ACGGAATTCAGGAGGATGTTCTCG -ACGGAATTCAGGAGGATGTAGACG -ACGGAATTCAGGAGGATGGTAACG -ACGGAATTCAGGAGGATGACTTCG -ACGGAATTCAGGAGGATGTACGCA -ACGGAATTCAGGAGGATGCTTGCA -ACGGAATTCAGGAGGATGCGAACA -ACGGAATTCAGGAGGATGCAGTCA -ACGGAATTCAGGAGGATGGATCCA -ACGGAATTCAGGAGGATGACGACA -ACGGAATTCAGGAGGATGAGCTCA -ACGGAATTCAGGAGGATGTCACGT -ACGGAATTCAGGAGGATGCGTAGT -ACGGAATTCAGGAGGATGGTCAGT -ACGGAATTCAGGAGGATGGAAGGT -ACGGAATTCAGGAGGATGAACCGT -ACGGAATTCAGGAGGATGTTGTGC -ACGGAATTCAGGAGGATGCTAAGC -ACGGAATTCAGGAGGATGACTAGC -ACGGAATTCAGGAGGATGAGATGC -ACGGAATTCAGGAGGATGTGAAGG -ACGGAATTCAGGAGGATGCAATGG -ACGGAATTCAGGAGGATGATGAGG -ACGGAATTCAGGAGGATGAATGGG -ACGGAATTCAGGAGGATGTCCTGA -ACGGAATTCAGGAGGATGTAGCGA -ACGGAATTCAGGAGGATGCACAGA -ACGGAATTCAGGAGGATGGCAAGA -ACGGAATTCAGGAGGATGGGTTGA -ACGGAATTCAGGAGGATGTCCGAT -ACGGAATTCAGGAGGATGTGGCAT -ACGGAATTCAGGAGGATGCGAGAT -ACGGAATTCAGGAGGATGTACCAC -ACGGAATTCAGGAGGATGCAGAAC -ACGGAATTCAGGAGGATGGTCTAC -ACGGAATTCAGGAGGATGACGTAC -ACGGAATTCAGGAGGATGAGTGAC -ACGGAATTCAGGAGGATGCTGTAG -ACGGAATTCAGGAGGATGCCTAAG -ACGGAATTCAGGAGGATGGTTCAG -ACGGAATTCAGGAGGATGGCATAG -ACGGAATTCAGGAGGATGGACAAG -ACGGAATTCAGGAGGATGAAGCAG -ACGGAATTCAGGAGGATGCGTCAA -ACGGAATTCAGGAGGATGGCTGAA -ACGGAATTCAGGAGGATGAGTACG -ACGGAATTCAGGAGGATGATCCGA -ACGGAATTCAGGAGGATGATGGGA -ACGGAATTCAGGAGGATGGTGCAA -ACGGAATTCAGGAGGATGGAGGAA -ACGGAATTCAGGAGGATGCAGGTA -ACGGAATTCAGGAGGATGGACTCT -ACGGAATTCAGGAGGATGAGTCCT -ACGGAATTCAGGAGGATGTAAGCC -ACGGAATTCAGGAGGATGATAGCC -ACGGAATTCAGGAGGATGTAACCG -ACGGAATTCAGGAGGATGATGCCA -ACGGAATTCAGGGGGAATGGAAAC -ACGGAATTCAGGGGGAATAACACC -ACGGAATTCAGGGGGAATATCGAG -ACGGAATTCAGGGGGAATCTCCTT -ACGGAATTCAGGGGGAATCCTGTT -ACGGAATTCAGGGGGAATCGGTTT -ACGGAATTCAGGGGGAATGTGGTT -ACGGAATTCAGGGGGAATGCCTTT -ACGGAATTCAGGGGGAATGGTCTT -ACGGAATTCAGGGGGAATACGCTT -ACGGAATTCAGGGGGAATAGCGTT -ACGGAATTCAGGGGGAATTTCGTC -ACGGAATTCAGGGGGAATTCTCTC -ACGGAATTCAGGGGGAATTGGATC -ACGGAATTCAGGGGGAATCACTTC -ACGGAATTCAGGGGGAATGTACTC -ACGGAATTCAGGGGGAATGATGTC -ACGGAATTCAGGGGGAATACAGTC -ACGGAATTCAGGGGGAATTTGCTG -ACGGAATTCAGGGGGAATTCCATG -ACGGAATTCAGGGGGAATTGTGTG -ACGGAATTCAGGGGGAATCTAGTG -ACGGAATTCAGGGGGAATCATCTG -ACGGAATTCAGGGGGAATGAGTTG -ACGGAATTCAGGGGGAATAGACTG -ACGGAATTCAGGGGGAATTCGGTA -ACGGAATTCAGGGGGAATTGCCTA -ACGGAATTCAGGGGGAATCCACTA -ACGGAATTCAGGGGGAATGGAGTA -ACGGAATTCAGGGGGAATTCGTCT -ACGGAATTCAGGGGGAATTGCACT -ACGGAATTCAGGGGGAATCTGACT -ACGGAATTCAGGGGGAATCAACCT -ACGGAATTCAGGGGGAATGCTACT -ACGGAATTCAGGGGGAATGGATCT -ACGGAATTCAGGGGGAATAAGGCT -ACGGAATTCAGGGGGAATTCAACC -ACGGAATTCAGGGGGAATTGTTCC -ACGGAATTCAGGGGGAATATTCCC -ACGGAATTCAGGGGGAATTTCTCG -ACGGAATTCAGGGGGAATTAGACG -ACGGAATTCAGGGGGAATGTAACG -ACGGAATTCAGGGGGAATACTTCG -ACGGAATTCAGGGGGAATTACGCA -ACGGAATTCAGGGGGAATCTTGCA -ACGGAATTCAGGGGGAATCGAACA -ACGGAATTCAGGGGGAATCAGTCA -ACGGAATTCAGGGGGAATGATCCA -ACGGAATTCAGGGGGAATACGACA -ACGGAATTCAGGGGGAATAGCTCA -ACGGAATTCAGGGGGAATTCACGT -ACGGAATTCAGGGGGAATCGTAGT -ACGGAATTCAGGGGGAATGTCAGT -ACGGAATTCAGGGGGAATGAAGGT -ACGGAATTCAGGGGGAATAACCGT -ACGGAATTCAGGGGGAATTTGTGC -ACGGAATTCAGGGGGAATCTAAGC -ACGGAATTCAGGGGGAATACTAGC -ACGGAATTCAGGGGGAATAGATGC -ACGGAATTCAGGGGGAATTGAAGG -ACGGAATTCAGGGGGAATCAATGG -ACGGAATTCAGGGGGAATATGAGG -ACGGAATTCAGGGGGAATAATGGG -ACGGAATTCAGGGGGAATTCCTGA -ACGGAATTCAGGGGGAATTAGCGA -ACGGAATTCAGGGGGAATCACAGA -ACGGAATTCAGGGGGAATGCAAGA -ACGGAATTCAGGGGGAATGGTTGA -ACGGAATTCAGGGGGAATTCCGAT -ACGGAATTCAGGGGGAATTGGCAT -ACGGAATTCAGGGGGAATCGAGAT -ACGGAATTCAGGGGGAATTACCAC -ACGGAATTCAGGGGGAATCAGAAC -ACGGAATTCAGGGGGAATGTCTAC -ACGGAATTCAGGGGGAATACGTAC -ACGGAATTCAGGGGGAATAGTGAC -ACGGAATTCAGGGGGAATCTGTAG -ACGGAATTCAGGGGGAATCCTAAG -ACGGAATTCAGGGGGAATGTTCAG -ACGGAATTCAGGGGGAATGCATAG -ACGGAATTCAGGGGGAATGACAAG -ACGGAATTCAGGGGGAATAAGCAG -ACGGAATTCAGGGGGAATCGTCAA -ACGGAATTCAGGGGGAATGCTGAA -ACGGAATTCAGGGGGAATAGTACG -ACGGAATTCAGGGGGAATATCCGA -ACGGAATTCAGGGGGAATATGGGA -ACGGAATTCAGGGGGAATGTGCAA -ACGGAATTCAGGGGGAATGAGGAA -ACGGAATTCAGGGGGAATCAGGTA -ACGGAATTCAGGGGGAATGACTCT -ACGGAATTCAGGGGGAATAGTCCT -ACGGAATTCAGGGGGAATTAAGCC -ACGGAATTCAGGGGGAATATAGCC -ACGGAATTCAGGGGGAATTAACCG -ACGGAATTCAGGGGGAATATGCCA -ACGGAATTCAGGTGATCCGGAAAC -ACGGAATTCAGGTGATCCAACACC -ACGGAATTCAGGTGATCCATCGAG -ACGGAATTCAGGTGATCCCTCCTT -ACGGAATTCAGGTGATCCCCTGTT -ACGGAATTCAGGTGATCCCGGTTT -ACGGAATTCAGGTGATCCGTGGTT -ACGGAATTCAGGTGATCCGCCTTT -ACGGAATTCAGGTGATCCGGTCTT -ACGGAATTCAGGTGATCCACGCTT -ACGGAATTCAGGTGATCCAGCGTT -ACGGAATTCAGGTGATCCTTCGTC -ACGGAATTCAGGTGATCCTCTCTC -ACGGAATTCAGGTGATCCTGGATC -ACGGAATTCAGGTGATCCCACTTC -ACGGAATTCAGGTGATCCGTACTC -ACGGAATTCAGGTGATCCGATGTC -ACGGAATTCAGGTGATCCACAGTC -ACGGAATTCAGGTGATCCTTGCTG -ACGGAATTCAGGTGATCCTCCATG -ACGGAATTCAGGTGATCCTGTGTG -ACGGAATTCAGGTGATCCCTAGTG -ACGGAATTCAGGTGATCCCATCTG -ACGGAATTCAGGTGATCCGAGTTG -ACGGAATTCAGGTGATCCAGACTG -ACGGAATTCAGGTGATCCTCGGTA -ACGGAATTCAGGTGATCCTGCCTA -ACGGAATTCAGGTGATCCCCACTA -ACGGAATTCAGGTGATCCGGAGTA -ACGGAATTCAGGTGATCCTCGTCT -ACGGAATTCAGGTGATCCTGCACT -ACGGAATTCAGGTGATCCCTGACT -ACGGAATTCAGGTGATCCCAACCT -ACGGAATTCAGGTGATCCGCTACT -ACGGAATTCAGGTGATCCGGATCT -ACGGAATTCAGGTGATCCAAGGCT -ACGGAATTCAGGTGATCCTCAACC -ACGGAATTCAGGTGATCCTGTTCC -ACGGAATTCAGGTGATCCATTCCC -ACGGAATTCAGGTGATCCTTCTCG -ACGGAATTCAGGTGATCCTAGACG -ACGGAATTCAGGTGATCCGTAACG -ACGGAATTCAGGTGATCCACTTCG -ACGGAATTCAGGTGATCCTACGCA -ACGGAATTCAGGTGATCCCTTGCA -ACGGAATTCAGGTGATCCCGAACA -ACGGAATTCAGGTGATCCCAGTCA -ACGGAATTCAGGTGATCCGATCCA -ACGGAATTCAGGTGATCCACGACA -ACGGAATTCAGGTGATCCAGCTCA -ACGGAATTCAGGTGATCCTCACGT -ACGGAATTCAGGTGATCCCGTAGT -ACGGAATTCAGGTGATCCGTCAGT -ACGGAATTCAGGTGATCCGAAGGT -ACGGAATTCAGGTGATCCAACCGT -ACGGAATTCAGGTGATCCTTGTGC -ACGGAATTCAGGTGATCCCTAAGC -ACGGAATTCAGGTGATCCACTAGC -ACGGAATTCAGGTGATCCAGATGC -ACGGAATTCAGGTGATCCTGAAGG -ACGGAATTCAGGTGATCCCAATGG -ACGGAATTCAGGTGATCCATGAGG -ACGGAATTCAGGTGATCCAATGGG -ACGGAATTCAGGTGATCCTCCTGA -ACGGAATTCAGGTGATCCTAGCGA -ACGGAATTCAGGTGATCCCACAGA -ACGGAATTCAGGTGATCCGCAAGA -ACGGAATTCAGGTGATCCGGTTGA -ACGGAATTCAGGTGATCCTCCGAT -ACGGAATTCAGGTGATCCTGGCAT -ACGGAATTCAGGTGATCCCGAGAT -ACGGAATTCAGGTGATCCTACCAC -ACGGAATTCAGGTGATCCCAGAAC -ACGGAATTCAGGTGATCCGTCTAC -ACGGAATTCAGGTGATCCACGTAC -ACGGAATTCAGGTGATCCAGTGAC -ACGGAATTCAGGTGATCCCTGTAG -ACGGAATTCAGGTGATCCCCTAAG -ACGGAATTCAGGTGATCCGTTCAG -ACGGAATTCAGGTGATCCGCATAG -ACGGAATTCAGGTGATCCGACAAG -ACGGAATTCAGGTGATCCAAGCAG -ACGGAATTCAGGTGATCCCGTCAA -ACGGAATTCAGGTGATCCGCTGAA -ACGGAATTCAGGTGATCCAGTACG -ACGGAATTCAGGTGATCCATCCGA -ACGGAATTCAGGTGATCCATGGGA -ACGGAATTCAGGTGATCCGTGCAA -ACGGAATTCAGGTGATCCGAGGAA -ACGGAATTCAGGTGATCCCAGGTA -ACGGAATTCAGGTGATCCGACTCT -ACGGAATTCAGGTGATCCAGTCCT -ACGGAATTCAGGTGATCCTAAGCC -ACGGAATTCAGGTGATCCATAGCC -ACGGAATTCAGGTGATCCTAACCG -ACGGAATTCAGGTGATCCATGCCA -ACGGAATTCAGGCGATAGGGAAAC -ACGGAATTCAGGCGATAGAACACC -ACGGAATTCAGGCGATAGATCGAG -ACGGAATTCAGGCGATAGCTCCTT -ACGGAATTCAGGCGATAGCCTGTT -ACGGAATTCAGGCGATAGCGGTTT -ACGGAATTCAGGCGATAGGTGGTT -ACGGAATTCAGGCGATAGGCCTTT -ACGGAATTCAGGCGATAGGGTCTT -ACGGAATTCAGGCGATAGACGCTT -ACGGAATTCAGGCGATAGAGCGTT -ACGGAATTCAGGCGATAGTTCGTC -ACGGAATTCAGGCGATAGTCTCTC -ACGGAATTCAGGCGATAGTGGATC -ACGGAATTCAGGCGATAGCACTTC -ACGGAATTCAGGCGATAGGTACTC -ACGGAATTCAGGCGATAGGATGTC -ACGGAATTCAGGCGATAGACAGTC -ACGGAATTCAGGCGATAGTTGCTG -ACGGAATTCAGGCGATAGTCCATG -ACGGAATTCAGGCGATAGTGTGTG -ACGGAATTCAGGCGATAGCTAGTG -ACGGAATTCAGGCGATAGCATCTG -ACGGAATTCAGGCGATAGGAGTTG -ACGGAATTCAGGCGATAGAGACTG -ACGGAATTCAGGCGATAGTCGGTA -ACGGAATTCAGGCGATAGTGCCTA -ACGGAATTCAGGCGATAGCCACTA -ACGGAATTCAGGCGATAGGGAGTA -ACGGAATTCAGGCGATAGTCGTCT -ACGGAATTCAGGCGATAGTGCACT -ACGGAATTCAGGCGATAGCTGACT -ACGGAATTCAGGCGATAGCAACCT -ACGGAATTCAGGCGATAGGCTACT -ACGGAATTCAGGCGATAGGGATCT -ACGGAATTCAGGCGATAGAAGGCT -ACGGAATTCAGGCGATAGTCAACC -ACGGAATTCAGGCGATAGTGTTCC -ACGGAATTCAGGCGATAGATTCCC -ACGGAATTCAGGCGATAGTTCTCG -ACGGAATTCAGGCGATAGTAGACG -ACGGAATTCAGGCGATAGGTAACG -ACGGAATTCAGGCGATAGACTTCG -ACGGAATTCAGGCGATAGTACGCA -ACGGAATTCAGGCGATAGCTTGCA -ACGGAATTCAGGCGATAGCGAACA -ACGGAATTCAGGCGATAGCAGTCA -ACGGAATTCAGGCGATAGGATCCA -ACGGAATTCAGGCGATAGACGACA -ACGGAATTCAGGCGATAGAGCTCA -ACGGAATTCAGGCGATAGTCACGT -ACGGAATTCAGGCGATAGCGTAGT -ACGGAATTCAGGCGATAGGTCAGT -ACGGAATTCAGGCGATAGGAAGGT -ACGGAATTCAGGCGATAGAACCGT -ACGGAATTCAGGCGATAGTTGTGC -ACGGAATTCAGGCGATAGCTAAGC -ACGGAATTCAGGCGATAGACTAGC -ACGGAATTCAGGCGATAGAGATGC -ACGGAATTCAGGCGATAGTGAAGG -ACGGAATTCAGGCGATAGCAATGG -ACGGAATTCAGGCGATAGATGAGG -ACGGAATTCAGGCGATAGAATGGG -ACGGAATTCAGGCGATAGTCCTGA -ACGGAATTCAGGCGATAGTAGCGA -ACGGAATTCAGGCGATAGCACAGA -ACGGAATTCAGGCGATAGGCAAGA -ACGGAATTCAGGCGATAGGGTTGA -ACGGAATTCAGGCGATAGTCCGAT -ACGGAATTCAGGCGATAGTGGCAT -ACGGAATTCAGGCGATAGCGAGAT -ACGGAATTCAGGCGATAGTACCAC -ACGGAATTCAGGCGATAGCAGAAC -ACGGAATTCAGGCGATAGGTCTAC -ACGGAATTCAGGCGATAGACGTAC -ACGGAATTCAGGCGATAGAGTGAC -ACGGAATTCAGGCGATAGCTGTAG -ACGGAATTCAGGCGATAGCCTAAG -ACGGAATTCAGGCGATAGGTTCAG -ACGGAATTCAGGCGATAGGCATAG -ACGGAATTCAGGCGATAGGACAAG -ACGGAATTCAGGCGATAGAAGCAG -ACGGAATTCAGGCGATAGCGTCAA -ACGGAATTCAGGCGATAGGCTGAA -ACGGAATTCAGGCGATAGAGTACG -ACGGAATTCAGGCGATAGATCCGA -ACGGAATTCAGGCGATAGATGGGA -ACGGAATTCAGGCGATAGGTGCAA -ACGGAATTCAGGCGATAGGAGGAA -ACGGAATTCAGGCGATAGCAGGTA -ACGGAATTCAGGCGATAGGACTCT -ACGGAATTCAGGCGATAGAGTCCT -ACGGAATTCAGGCGATAGTAAGCC -ACGGAATTCAGGCGATAGATAGCC -ACGGAATTCAGGCGATAGTAACCG -ACGGAATTCAGGCGATAGATGCCA -ACGGAATTCAGGAGACACGGAAAC -ACGGAATTCAGGAGACACAACACC -ACGGAATTCAGGAGACACATCGAG -ACGGAATTCAGGAGACACCTCCTT -ACGGAATTCAGGAGACACCCTGTT -ACGGAATTCAGGAGACACCGGTTT -ACGGAATTCAGGAGACACGTGGTT -ACGGAATTCAGGAGACACGCCTTT -ACGGAATTCAGGAGACACGGTCTT -ACGGAATTCAGGAGACACACGCTT -ACGGAATTCAGGAGACACAGCGTT -ACGGAATTCAGGAGACACTTCGTC -ACGGAATTCAGGAGACACTCTCTC -ACGGAATTCAGGAGACACTGGATC -ACGGAATTCAGGAGACACCACTTC -ACGGAATTCAGGAGACACGTACTC -ACGGAATTCAGGAGACACGATGTC -ACGGAATTCAGGAGACACACAGTC -ACGGAATTCAGGAGACACTTGCTG -ACGGAATTCAGGAGACACTCCATG -ACGGAATTCAGGAGACACTGTGTG -ACGGAATTCAGGAGACACCTAGTG -ACGGAATTCAGGAGACACCATCTG -ACGGAATTCAGGAGACACGAGTTG -ACGGAATTCAGGAGACACAGACTG -ACGGAATTCAGGAGACACTCGGTA -ACGGAATTCAGGAGACACTGCCTA -ACGGAATTCAGGAGACACCCACTA -ACGGAATTCAGGAGACACGGAGTA -ACGGAATTCAGGAGACACTCGTCT -ACGGAATTCAGGAGACACTGCACT -ACGGAATTCAGGAGACACCTGACT -ACGGAATTCAGGAGACACCAACCT -ACGGAATTCAGGAGACACGCTACT -ACGGAATTCAGGAGACACGGATCT -ACGGAATTCAGGAGACACAAGGCT -ACGGAATTCAGGAGACACTCAACC -ACGGAATTCAGGAGACACTGTTCC -ACGGAATTCAGGAGACACATTCCC -ACGGAATTCAGGAGACACTTCTCG -ACGGAATTCAGGAGACACTAGACG -ACGGAATTCAGGAGACACGTAACG -ACGGAATTCAGGAGACACACTTCG -ACGGAATTCAGGAGACACTACGCA -ACGGAATTCAGGAGACACCTTGCA -ACGGAATTCAGGAGACACCGAACA -ACGGAATTCAGGAGACACCAGTCA -ACGGAATTCAGGAGACACGATCCA -ACGGAATTCAGGAGACACACGACA -ACGGAATTCAGGAGACACAGCTCA -ACGGAATTCAGGAGACACTCACGT -ACGGAATTCAGGAGACACCGTAGT -ACGGAATTCAGGAGACACGTCAGT -ACGGAATTCAGGAGACACGAAGGT -ACGGAATTCAGGAGACACAACCGT -ACGGAATTCAGGAGACACTTGTGC -ACGGAATTCAGGAGACACCTAAGC -ACGGAATTCAGGAGACACACTAGC -ACGGAATTCAGGAGACACAGATGC -ACGGAATTCAGGAGACACTGAAGG -ACGGAATTCAGGAGACACCAATGG -ACGGAATTCAGGAGACACATGAGG -ACGGAATTCAGGAGACACAATGGG -ACGGAATTCAGGAGACACTCCTGA -ACGGAATTCAGGAGACACTAGCGA -ACGGAATTCAGGAGACACCACAGA -ACGGAATTCAGGAGACACGCAAGA -ACGGAATTCAGGAGACACGGTTGA -ACGGAATTCAGGAGACACTCCGAT -ACGGAATTCAGGAGACACTGGCAT -ACGGAATTCAGGAGACACCGAGAT -ACGGAATTCAGGAGACACTACCAC -ACGGAATTCAGGAGACACCAGAAC -ACGGAATTCAGGAGACACGTCTAC -ACGGAATTCAGGAGACACACGTAC -ACGGAATTCAGGAGACACAGTGAC -ACGGAATTCAGGAGACACCTGTAG -ACGGAATTCAGGAGACACCCTAAG -ACGGAATTCAGGAGACACGTTCAG -ACGGAATTCAGGAGACACGCATAG -ACGGAATTCAGGAGACACGACAAG -ACGGAATTCAGGAGACACAAGCAG -ACGGAATTCAGGAGACACCGTCAA -ACGGAATTCAGGAGACACGCTGAA -ACGGAATTCAGGAGACACAGTACG -ACGGAATTCAGGAGACACATCCGA -ACGGAATTCAGGAGACACATGGGA -ACGGAATTCAGGAGACACGTGCAA -ACGGAATTCAGGAGACACGAGGAA -ACGGAATTCAGGAGACACCAGGTA -ACGGAATTCAGGAGACACGACTCT -ACGGAATTCAGGAGACACAGTCCT -ACGGAATTCAGGAGACACTAAGCC -ACGGAATTCAGGAGACACATAGCC -ACGGAATTCAGGAGACACTAACCG -ACGGAATTCAGGAGACACATGCCA -ACGGAATTCAGGAGAGCAGGAAAC -ACGGAATTCAGGAGAGCAAACACC -ACGGAATTCAGGAGAGCAATCGAG -ACGGAATTCAGGAGAGCACTCCTT -ACGGAATTCAGGAGAGCACCTGTT -ACGGAATTCAGGAGAGCACGGTTT -ACGGAATTCAGGAGAGCAGTGGTT -ACGGAATTCAGGAGAGCAGCCTTT -ACGGAATTCAGGAGAGCAGGTCTT -ACGGAATTCAGGAGAGCAACGCTT -ACGGAATTCAGGAGAGCAAGCGTT -ACGGAATTCAGGAGAGCATTCGTC -ACGGAATTCAGGAGAGCATCTCTC -ACGGAATTCAGGAGAGCATGGATC -ACGGAATTCAGGAGAGCACACTTC -ACGGAATTCAGGAGAGCAGTACTC -ACGGAATTCAGGAGAGCAGATGTC -ACGGAATTCAGGAGAGCAACAGTC -ACGGAATTCAGGAGAGCATTGCTG -ACGGAATTCAGGAGAGCATCCATG -ACGGAATTCAGGAGAGCATGTGTG -ACGGAATTCAGGAGAGCACTAGTG -ACGGAATTCAGGAGAGCACATCTG -ACGGAATTCAGGAGAGCAGAGTTG -ACGGAATTCAGGAGAGCAAGACTG -ACGGAATTCAGGAGAGCATCGGTA -ACGGAATTCAGGAGAGCATGCCTA -ACGGAATTCAGGAGAGCACCACTA -ACGGAATTCAGGAGAGCAGGAGTA -ACGGAATTCAGGAGAGCATCGTCT -ACGGAATTCAGGAGAGCATGCACT -ACGGAATTCAGGAGAGCACTGACT -ACGGAATTCAGGAGAGCACAACCT -ACGGAATTCAGGAGAGCAGCTACT -ACGGAATTCAGGAGAGCAGGATCT -ACGGAATTCAGGAGAGCAAAGGCT -ACGGAATTCAGGAGAGCATCAACC -ACGGAATTCAGGAGAGCATGTTCC -ACGGAATTCAGGAGAGCAATTCCC -ACGGAATTCAGGAGAGCATTCTCG -ACGGAATTCAGGAGAGCATAGACG -ACGGAATTCAGGAGAGCAGTAACG -ACGGAATTCAGGAGAGCAACTTCG -ACGGAATTCAGGAGAGCATACGCA -ACGGAATTCAGGAGAGCACTTGCA -ACGGAATTCAGGAGAGCACGAACA -ACGGAATTCAGGAGAGCACAGTCA -ACGGAATTCAGGAGAGCAGATCCA -ACGGAATTCAGGAGAGCAACGACA -ACGGAATTCAGGAGAGCAAGCTCA -ACGGAATTCAGGAGAGCATCACGT -ACGGAATTCAGGAGAGCACGTAGT -ACGGAATTCAGGAGAGCAGTCAGT -ACGGAATTCAGGAGAGCAGAAGGT -ACGGAATTCAGGAGAGCAAACCGT -ACGGAATTCAGGAGAGCATTGTGC -ACGGAATTCAGGAGAGCACTAAGC -ACGGAATTCAGGAGAGCAACTAGC -ACGGAATTCAGGAGAGCAAGATGC -ACGGAATTCAGGAGAGCATGAAGG -ACGGAATTCAGGAGAGCACAATGG -ACGGAATTCAGGAGAGCAATGAGG -ACGGAATTCAGGAGAGCAAATGGG -ACGGAATTCAGGAGAGCATCCTGA -ACGGAATTCAGGAGAGCATAGCGA -ACGGAATTCAGGAGAGCACACAGA -ACGGAATTCAGGAGAGCAGCAAGA -ACGGAATTCAGGAGAGCAGGTTGA -ACGGAATTCAGGAGAGCATCCGAT -ACGGAATTCAGGAGAGCATGGCAT -ACGGAATTCAGGAGAGCACGAGAT -ACGGAATTCAGGAGAGCATACCAC -ACGGAATTCAGGAGAGCACAGAAC -ACGGAATTCAGGAGAGCAGTCTAC -ACGGAATTCAGGAGAGCAACGTAC -ACGGAATTCAGGAGAGCAAGTGAC -ACGGAATTCAGGAGAGCACTGTAG -ACGGAATTCAGGAGAGCACCTAAG -ACGGAATTCAGGAGAGCAGTTCAG -ACGGAATTCAGGAGAGCAGCATAG -ACGGAATTCAGGAGAGCAGACAAG -ACGGAATTCAGGAGAGCAAAGCAG -ACGGAATTCAGGAGAGCACGTCAA -ACGGAATTCAGGAGAGCAGCTGAA -ACGGAATTCAGGAGAGCAAGTACG -ACGGAATTCAGGAGAGCAATCCGA -ACGGAATTCAGGAGAGCAATGGGA -ACGGAATTCAGGAGAGCAGTGCAA -ACGGAATTCAGGAGAGCAGAGGAA -ACGGAATTCAGGAGAGCACAGGTA -ACGGAATTCAGGAGAGCAGACTCT -ACGGAATTCAGGAGAGCAAGTCCT -ACGGAATTCAGGAGAGCATAAGCC -ACGGAATTCAGGAGAGCAATAGCC -ACGGAATTCAGGAGAGCATAACCG -ACGGAATTCAGGAGAGCAATGCCA -ACGGAATTCAGGTGAGGTGGAAAC -ACGGAATTCAGGTGAGGTAACACC -ACGGAATTCAGGTGAGGTATCGAG -ACGGAATTCAGGTGAGGTCTCCTT -ACGGAATTCAGGTGAGGTCCTGTT -ACGGAATTCAGGTGAGGTCGGTTT -ACGGAATTCAGGTGAGGTGTGGTT -ACGGAATTCAGGTGAGGTGCCTTT -ACGGAATTCAGGTGAGGTGGTCTT -ACGGAATTCAGGTGAGGTACGCTT -ACGGAATTCAGGTGAGGTAGCGTT -ACGGAATTCAGGTGAGGTTTCGTC -ACGGAATTCAGGTGAGGTTCTCTC -ACGGAATTCAGGTGAGGTTGGATC -ACGGAATTCAGGTGAGGTCACTTC -ACGGAATTCAGGTGAGGTGTACTC -ACGGAATTCAGGTGAGGTGATGTC -ACGGAATTCAGGTGAGGTACAGTC -ACGGAATTCAGGTGAGGTTTGCTG -ACGGAATTCAGGTGAGGTTCCATG -ACGGAATTCAGGTGAGGTTGTGTG -ACGGAATTCAGGTGAGGTCTAGTG -ACGGAATTCAGGTGAGGTCATCTG -ACGGAATTCAGGTGAGGTGAGTTG -ACGGAATTCAGGTGAGGTAGACTG -ACGGAATTCAGGTGAGGTTCGGTA -ACGGAATTCAGGTGAGGTTGCCTA -ACGGAATTCAGGTGAGGTCCACTA -ACGGAATTCAGGTGAGGTGGAGTA -ACGGAATTCAGGTGAGGTTCGTCT -ACGGAATTCAGGTGAGGTTGCACT -ACGGAATTCAGGTGAGGTCTGACT -ACGGAATTCAGGTGAGGTCAACCT -ACGGAATTCAGGTGAGGTGCTACT -ACGGAATTCAGGTGAGGTGGATCT -ACGGAATTCAGGTGAGGTAAGGCT -ACGGAATTCAGGTGAGGTTCAACC -ACGGAATTCAGGTGAGGTTGTTCC -ACGGAATTCAGGTGAGGTATTCCC -ACGGAATTCAGGTGAGGTTTCTCG -ACGGAATTCAGGTGAGGTTAGACG -ACGGAATTCAGGTGAGGTGTAACG -ACGGAATTCAGGTGAGGTACTTCG -ACGGAATTCAGGTGAGGTTACGCA -ACGGAATTCAGGTGAGGTCTTGCA -ACGGAATTCAGGTGAGGTCGAACA -ACGGAATTCAGGTGAGGTCAGTCA -ACGGAATTCAGGTGAGGTGATCCA -ACGGAATTCAGGTGAGGTACGACA -ACGGAATTCAGGTGAGGTAGCTCA -ACGGAATTCAGGTGAGGTTCACGT -ACGGAATTCAGGTGAGGTCGTAGT -ACGGAATTCAGGTGAGGTGTCAGT -ACGGAATTCAGGTGAGGTGAAGGT -ACGGAATTCAGGTGAGGTAACCGT -ACGGAATTCAGGTGAGGTTTGTGC -ACGGAATTCAGGTGAGGTCTAAGC -ACGGAATTCAGGTGAGGTACTAGC -ACGGAATTCAGGTGAGGTAGATGC -ACGGAATTCAGGTGAGGTTGAAGG -ACGGAATTCAGGTGAGGTCAATGG -ACGGAATTCAGGTGAGGTATGAGG -ACGGAATTCAGGTGAGGTAATGGG -ACGGAATTCAGGTGAGGTTCCTGA -ACGGAATTCAGGTGAGGTTAGCGA -ACGGAATTCAGGTGAGGTCACAGA -ACGGAATTCAGGTGAGGTGCAAGA -ACGGAATTCAGGTGAGGTGGTTGA -ACGGAATTCAGGTGAGGTTCCGAT -ACGGAATTCAGGTGAGGTTGGCAT -ACGGAATTCAGGTGAGGTCGAGAT -ACGGAATTCAGGTGAGGTTACCAC -ACGGAATTCAGGTGAGGTCAGAAC -ACGGAATTCAGGTGAGGTGTCTAC -ACGGAATTCAGGTGAGGTACGTAC -ACGGAATTCAGGTGAGGTAGTGAC -ACGGAATTCAGGTGAGGTCTGTAG -ACGGAATTCAGGTGAGGTCCTAAG -ACGGAATTCAGGTGAGGTGTTCAG -ACGGAATTCAGGTGAGGTGCATAG -ACGGAATTCAGGTGAGGTGACAAG -ACGGAATTCAGGTGAGGTAAGCAG -ACGGAATTCAGGTGAGGTCGTCAA -ACGGAATTCAGGTGAGGTGCTGAA -ACGGAATTCAGGTGAGGTAGTACG -ACGGAATTCAGGTGAGGTATCCGA -ACGGAATTCAGGTGAGGTATGGGA -ACGGAATTCAGGTGAGGTGTGCAA -ACGGAATTCAGGTGAGGTGAGGAA -ACGGAATTCAGGTGAGGTCAGGTA -ACGGAATTCAGGTGAGGTGACTCT -ACGGAATTCAGGTGAGGTAGTCCT -ACGGAATTCAGGTGAGGTTAAGCC -ACGGAATTCAGGTGAGGTATAGCC -ACGGAATTCAGGTGAGGTTAACCG -ACGGAATTCAGGTGAGGTATGCCA -ACGGAATTCAGGGATTCCGGAAAC -ACGGAATTCAGGGATTCCAACACC -ACGGAATTCAGGGATTCCATCGAG -ACGGAATTCAGGGATTCCCTCCTT -ACGGAATTCAGGGATTCCCCTGTT -ACGGAATTCAGGGATTCCCGGTTT -ACGGAATTCAGGGATTCCGTGGTT -ACGGAATTCAGGGATTCCGCCTTT -ACGGAATTCAGGGATTCCGGTCTT -ACGGAATTCAGGGATTCCACGCTT -ACGGAATTCAGGGATTCCAGCGTT -ACGGAATTCAGGGATTCCTTCGTC -ACGGAATTCAGGGATTCCTCTCTC -ACGGAATTCAGGGATTCCTGGATC -ACGGAATTCAGGGATTCCCACTTC -ACGGAATTCAGGGATTCCGTACTC -ACGGAATTCAGGGATTCCGATGTC -ACGGAATTCAGGGATTCCACAGTC -ACGGAATTCAGGGATTCCTTGCTG -ACGGAATTCAGGGATTCCTCCATG -ACGGAATTCAGGGATTCCTGTGTG -ACGGAATTCAGGGATTCCCTAGTG -ACGGAATTCAGGGATTCCCATCTG -ACGGAATTCAGGGATTCCGAGTTG -ACGGAATTCAGGGATTCCAGACTG -ACGGAATTCAGGGATTCCTCGGTA -ACGGAATTCAGGGATTCCTGCCTA -ACGGAATTCAGGGATTCCCCACTA -ACGGAATTCAGGGATTCCGGAGTA -ACGGAATTCAGGGATTCCTCGTCT -ACGGAATTCAGGGATTCCTGCACT -ACGGAATTCAGGGATTCCCTGACT -ACGGAATTCAGGGATTCCCAACCT -ACGGAATTCAGGGATTCCGCTACT -ACGGAATTCAGGGATTCCGGATCT -ACGGAATTCAGGGATTCCAAGGCT -ACGGAATTCAGGGATTCCTCAACC -ACGGAATTCAGGGATTCCTGTTCC -ACGGAATTCAGGGATTCCATTCCC -ACGGAATTCAGGGATTCCTTCTCG -ACGGAATTCAGGGATTCCTAGACG -ACGGAATTCAGGGATTCCGTAACG -ACGGAATTCAGGGATTCCACTTCG -ACGGAATTCAGGGATTCCTACGCA -ACGGAATTCAGGGATTCCCTTGCA -ACGGAATTCAGGGATTCCCGAACA -ACGGAATTCAGGGATTCCCAGTCA -ACGGAATTCAGGGATTCCGATCCA -ACGGAATTCAGGGATTCCACGACA -ACGGAATTCAGGGATTCCAGCTCA -ACGGAATTCAGGGATTCCTCACGT -ACGGAATTCAGGGATTCCCGTAGT -ACGGAATTCAGGGATTCCGTCAGT -ACGGAATTCAGGGATTCCGAAGGT -ACGGAATTCAGGGATTCCAACCGT -ACGGAATTCAGGGATTCCTTGTGC -ACGGAATTCAGGGATTCCCTAAGC -ACGGAATTCAGGGATTCCACTAGC -ACGGAATTCAGGGATTCCAGATGC -ACGGAATTCAGGGATTCCTGAAGG -ACGGAATTCAGGGATTCCCAATGG -ACGGAATTCAGGGATTCCATGAGG -ACGGAATTCAGGGATTCCAATGGG -ACGGAATTCAGGGATTCCTCCTGA -ACGGAATTCAGGGATTCCTAGCGA -ACGGAATTCAGGGATTCCCACAGA -ACGGAATTCAGGGATTCCGCAAGA -ACGGAATTCAGGGATTCCGGTTGA -ACGGAATTCAGGGATTCCTCCGAT -ACGGAATTCAGGGATTCCTGGCAT -ACGGAATTCAGGGATTCCCGAGAT -ACGGAATTCAGGGATTCCTACCAC -ACGGAATTCAGGGATTCCCAGAAC -ACGGAATTCAGGGATTCCGTCTAC -ACGGAATTCAGGGATTCCACGTAC -ACGGAATTCAGGGATTCCAGTGAC -ACGGAATTCAGGGATTCCCTGTAG -ACGGAATTCAGGGATTCCCCTAAG -ACGGAATTCAGGGATTCCGTTCAG -ACGGAATTCAGGGATTCCGCATAG -ACGGAATTCAGGGATTCCGACAAG -ACGGAATTCAGGGATTCCAAGCAG -ACGGAATTCAGGGATTCCCGTCAA -ACGGAATTCAGGGATTCCGCTGAA -ACGGAATTCAGGGATTCCAGTACG -ACGGAATTCAGGGATTCCATCCGA -ACGGAATTCAGGGATTCCATGGGA -ACGGAATTCAGGGATTCCGTGCAA -ACGGAATTCAGGGATTCCGAGGAA -ACGGAATTCAGGGATTCCCAGGTA -ACGGAATTCAGGGATTCCGACTCT -ACGGAATTCAGGGATTCCAGTCCT -ACGGAATTCAGGGATTCCTAAGCC -ACGGAATTCAGGGATTCCATAGCC -ACGGAATTCAGGGATTCCTAACCG -ACGGAATTCAGGGATTCCATGCCA -ACGGAATTCAGGCATTGGGGAAAC -ACGGAATTCAGGCATTGGAACACC -ACGGAATTCAGGCATTGGATCGAG -ACGGAATTCAGGCATTGGCTCCTT -ACGGAATTCAGGCATTGGCCTGTT -ACGGAATTCAGGCATTGGCGGTTT -ACGGAATTCAGGCATTGGGTGGTT -ACGGAATTCAGGCATTGGGCCTTT -ACGGAATTCAGGCATTGGGGTCTT -ACGGAATTCAGGCATTGGACGCTT -ACGGAATTCAGGCATTGGAGCGTT -ACGGAATTCAGGCATTGGTTCGTC -ACGGAATTCAGGCATTGGTCTCTC -ACGGAATTCAGGCATTGGTGGATC -ACGGAATTCAGGCATTGGCACTTC -ACGGAATTCAGGCATTGGGTACTC -ACGGAATTCAGGCATTGGGATGTC -ACGGAATTCAGGCATTGGACAGTC -ACGGAATTCAGGCATTGGTTGCTG -ACGGAATTCAGGCATTGGTCCATG -ACGGAATTCAGGCATTGGTGTGTG -ACGGAATTCAGGCATTGGCTAGTG -ACGGAATTCAGGCATTGGCATCTG -ACGGAATTCAGGCATTGGGAGTTG -ACGGAATTCAGGCATTGGAGACTG -ACGGAATTCAGGCATTGGTCGGTA -ACGGAATTCAGGCATTGGTGCCTA -ACGGAATTCAGGCATTGGCCACTA -ACGGAATTCAGGCATTGGGGAGTA -ACGGAATTCAGGCATTGGTCGTCT -ACGGAATTCAGGCATTGGTGCACT -ACGGAATTCAGGCATTGGCTGACT -ACGGAATTCAGGCATTGGCAACCT -ACGGAATTCAGGCATTGGGCTACT -ACGGAATTCAGGCATTGGGGATCT -ACGGAATTCAGGCATTGGAAGGCT -ACGGAATTCAGGCATTGGTCAACC -ACGGAATTCAGGCATTGGTGTTCC -ACGGAATTCAGGCATTGGATTCCC -ACGGAATTCAGGCATTGGTTCTCG -ACGGAATTCAGGCATTGGTAGACG -ACGGAATTCAGGCATTGGGTAACG -ACGGAATTCAGGCATTGGACTTCG -ACGGAATTCAGGCATTGGTACGCA -ACGGAATTCAGGCATTGGCTTGCA -ACGGAATTCAGGCATTGGCGAACA -ACGGAATTCAGGCATTGGCAGTCA -ACGGAATTCAGGCATTGGGATCCA -ACGGAATTCAGGCATTGGACGACA -ACGGAATTCAGGCATTGGAGCTCA -ACGGAATTCAGGCATTGGTCACGT -ACGGAATTCAGGCATTGGCGTAGT -ACGGAATTCAGGCATTGGGTCAGT -ACGGAATTCAGGCATTGGGAAGGT -ACGGAATTCAGGCATTGGAACCGT -ACGGAATTCAGGCATTGGTTGTGC -ACGGAATTCAGGCATTGGCTAAGC -ACGGAATTCAGGCATTGGACTAGC -ACGGAATTCAGGCATTGGAGATGC -ACGGAATTCAGGCATTGGTGAAGG -ACGGAATTCAGGCATTGGCAATGG -ACGGAATTCAGGCATTGGATGAGG -ACGGAATTCAGGCATTGGAATGGG -ACGGAATTCAGGCATTGGTCCTGA -ACGGAATTCAGGCATTGGTAGCGA -ACGGAATTCAGGCATTGGCACAGA -ACGGAATTCAGGCATTGGGCAAGA -ACGGAATTCAGGCATTGGGGTTGA -ACGGAATTCAGGCATTGGTCCGAT -ACGGAATTCAGGCATTGGTGGCAT -ACGGAATTCAGGCATTGGCGAGAT -ACGGAATTCAGGCATTGGTACCAC -ACGGAATTCAGGCATTGGCAGAAC -ACGGAATTCAGGCATTGGGTCTAC -ACGGAATTCAGGCATTGGACGTAC -ACGGAATTCAGGCATTGGAGTGAC -ACGGAATTCAGGCATTGGCTGTAG -ACGGAATTCAGGCATTGGCCTAAG -ACGGAATTCAGGCATTGGGTTCAG -ACGGAATTCAGGCATTGGGCATAG -ACGGAATTCAGGCATTGGGACAAG -ACGGAATTCAGGCATTGGAAGCAG -ACGGAATTCAGGCATTGGCGTCAA -ACGGAATTCAGGCATTGGGCTGAA -ACGGAATTCAGGCATTGGAGTACG -ACGGAATTCAGGCATTGGATCCGA -ACGGAATTCAGGCATTGGATGGGA -ACGGAATTCAGGCATTGGGTGCAA -ACGGAATTCAGGCATTGGGAGGAA -ACGGAATTCAGGCATTGGCAGGTA -ACGGAATTCAGGCATTGGGACTCT -ACGGAATTCAGGCATTGGAGTCCT -ACGGAATTCAGGCATTGGTAAGCC -ACGGAATTCAGGCATTGGATAGCC -ACGGAATTCAGGCATTGGTAACCG -ACGGAATTCAGGCATTGGATGCCA -ACGGAATTCAGGGATCGAGGAAAC -ACGGAATTCAGGGATCGAAACACC -ACGGAATTCAGGGATCGAATCGAG -ACGGAATTCAGGGATCGACTCCTT -ACGGAATTCAGGGATCGACCTGTT -ACGGAATTCAGGGATCGACGGTTT -ACGGAATTCAGGGATCGAGTGGTT -ACGGAATTCAGGGATCGAGCCTTT -ACGGAATTCAGGGATCGAGGTCTT -ACGGAATTCAGGGATCGAACGCTT -ACGGAATTCAGGGATCGAAGCGTT -ACGGAATTCAGGGATCGATTCGTC -ACGGAATTCAGGGATCGATCTCTC -ACGGAATTCAGGGATCGATGGATC -ACGGAATTCAGGGATCGACACTTC -ACGGAATTCAGGGATCGAGTACTC -ACGGAATTCAGGGATCGAGATGTC -ACGGAATTCAGGGATCGAACAGTC -ACGGAATTCAGGGATCGATTGCTG -ACGGAATTCAGGGATCGATCCATG -ACGGAATTCAGGGATCGATGTGTG -ACGGAATTCAGGGATCGACTAGTG -ACGGAATTCAGGGATCGACATCTG -ACGGAATTCAGGGATCGAGAGTTG -ACGGAATTCAGGGATCGAAGACTG -ACGGAATTCAGGGATCGATCGGTA -ACGGAATTCAGGGATCGATGCCTA -ACGGAATTCAGGGATCGACCACTA -ACGGAATTCAGGGATCGAGGAGTA -ACGGAATTCAGGGATCGATCGTCT -ACGGAATTCAGGGATCGATGCACT -ACGGAATTCAGGGATCGACTGACT -ACGGAATTCAGGGATCGACAACCT -ACGGAATTCAGGGATCGAGCTACT -ACGGAATTCAGGGATCGAGGATCT -ACGGAATTCAGGGATCGAAAGGCT -ACGGAATTCAGGGATCGATCAACC -ACGGAATTCAGGGATCGATGTTCC -ACGGAATTCAGGGATCGAATTCCC -ACGGAATTCAGGGATCGATTCTCG -ACGGAATTCAGGGATCGATAGACG -ACGGAATTCAGGGATCGAGTAACG -ACGGAATTCAGGGATCGAACTTCG -ACGGAATTCAGGGATCGATACGCA -ACGGAATTCAGGGATCGACTTGCA -ACGGAATTCAGGGATCGACGAACA -ACGGAATTCAGGGATCGACAGTCA -ACGGAATTCAGGGATCGAGATCCA -ACGGAATTCAGGGATCGAACGACA -ACGGAATTCAGGGATCGAAGCTCA -ACGGAATTCAGGGATCGATCACGT -ACGGAATTCAGGGATCGACGTAGT -ACGGAATTCAGGGATCGAGTCAGT -ACGGAATTCAGGGATCGAGAAGGT -ACGGAATTCAGGGATCGAAACCGT -ACGGAATTCAGGGATCGATTGTGC -ACGGAATTCAGGGATCGACTAAGC -ACGGAATTCAGGGATCGAACTAGC -ACGGAATTCAGGGATCGAAGATGC -ACGGAATTCAGGGATCGATGAAGG -ACGGAATTCAGGGATCGACAATGG -ACGGAATTCAGGGATCGAATGAGG -ACGGAATTCAGGGATCGAAATGGG -ACGGAATTCAGGGATCGATCCTGA -ACGGAATTCAGGGATCGATAGCGA -ACGGAATTCAGGGATCGACACAGA -ACGGAATTCAGGGATCGAGCAAGA -ACGGAATTCAGGGATCGAGGTTGA -ACGGAATTCAGGGATCGATCCGAT -ACGGAATTCAGGGATCGATGGCAT -ACGGAATTCAGGGATCGACGAGAT -ACGGAATTCAGGGATCGATACCAC -ACGGAATTCAGGGATCGACAGAAC -ACGGAATTCAGGGATCGAGTCTAC -ACGGAATTCAGGGATCGAACGTAC -ACGGAATTCAGGGATCGAAGTGAC -ACGGAATTCAGGGATCGACTGTAG -ACGGAATTCAGGGATCGACCTAAG -ACGGAATTCAGGGATCGAGTTCAG -ACGGAATTCAGGGATCGAGCATAG -ACGGAATTCAGGGATCGAGACAAG -ACGGAATTCAGGGATCGAAAGCAG -ACGGAATTCAGGGATCGACGTCAA -ACGGAATTCAGGGATCGAGCTGAA -ACGGAATTCAGGGATCGAAGTACG -ACGGAATTCAGGGATCGAATCCGA -ACGGAATTCAGGGATCGAATGGGA -ACGGAATTCAGGGATCGAGTGCAA -ACGGAATTCAGGGATCGAGAGGAA -ACGGAATTCAGGGATCGACAGGTA -ACGGAATTCAGGGATCGAGACTCT -ACGGAATTCAGGGATCGAAGTCCT -ACGGAATTCAGGGATCGATAAGCC -ACGGAATTCAGGGATCGAATAGCC -ACGGAATTCAGGGATCGATAACCG -ACGGAATTCAGGGATCGAATGCCA -ACGGAATTCAGGCACTACGGAAAC -ACGGAATTCAGGCACTACAACACC -ACGGAATTCAGGCACTACATCGAG -ACGGAATTCAGGCACTACCTCCTT -ACGGAATTCAGGCACTACCCTGTT -ACGGAATTCAGGCACTACCGGTTT -ACGGAATTCAGGCACTACGTGGTT -ACGGAATTCAGGCACTACGCCTTT -ACGGAATTCAGGCACTACGGTCTT -ACGGAATTCAGGCACTACACGCTT -ACGGAATTCAGGCACTACAGCGTT -ACGGAATTCAGGCACTACTTCGTC -ACGGAATTCAGGCACTACTCTCTC -ACGGAATTCAGGCACTACTGGATC -ACGGAATTCAGGCACTACCACTTC -ACGGAATTCAGGCACTACGTACTC -ACGGAATTCAGGCACTACGATGTC -ACGGAATTCAGGCACTACACAGTC -ACGGAATTCAGGCACTACTTGCTG -ACGGAATTCAGGCACTACTCCATG -ACGGAATTCAGGCACTACTGTGTG -ACGGAATTCAGGCACTACCTAGTG -ACGGAATTCAGGCACTACCATCTG -ACGGAATTCAGGCACTACGAGTTG -ACGGAATTCAGGCACTACAGACTG -ACGGAATTCAGGCACTACTCGGTA -ACGGAATTCAGGCACTACTGCCTA -ACGGAATTCAGGCACTACCCACTA -ACGGAATTCAGGCACTACGGAGTA -ACGGAATTCAGGCACTACTCGTCT -ACGGAATTCAGGCACTACTGCACT -ACGGAATTCAGGCACTACCTGACT -ACGGAATTCAGGCACTACCAACCT -ACGGAATTCAGGCACTACGCTACT -ACGGAATTCAGGCACTACGGATCT -ACGGAATTCAGGCACTACAAGGCT -ACGGAATTCAGGCACTACTCAACC -ACGGAATTCAGGCACTACTGTTCC -ACGGAATTCAGGCACTACATTCCC -ACGGAATTCAGGCACTACTTCTCG -ACGGAATTCAGGCACTACTAGACG -ACGGAATTCAGGCACTACGTAACG -ACGGAATTCAGGCACTACACTTCG -ACGGAATTCAGGCACTACTACGCA -ACGGAATTCAGGCACTACCTTGCA -ACGGAATTCAGGCACTACCGAACA -ACGGAATTCAGGCACTACCAGTCA -ACGGAATTCAGGCACTACGATCCA -ACGGAATTCAGGCACTACACGACA -ACGGAATTCAGGCACTACAGCTCA -ACGGAATTCAGGCACTACTCACGT -ACGGAATTCAGGCACTACCGTAGT -ACGGAATTCAGGCACTACGTCAGT -ACGGAATTCAGGCACTACGAAGGT -ACGGAATTCAGGCACTACAACCGT -ACGGAATTCAGGCACTACTTGTGC -ACGGAATTCAGGCACTACCTAAGC -ACGGAATTCAGGCACTACACTAGC -ACGGAATTCAGGCACTACAGATGC -ACGGAATTCAGGCACTACTGAAGG -ACGGAATTCAGGCACTACCAATGG -ACGGAATTCAGGCACTACATGAGG -ACGGAATTCAGGCACTACAATGGG -ACGGAATTCAGGCACTACTCCTGA -ACGGAATTCAGGCACTACTAGCGA -ACGGAATTCAGGCACTACCACAGA -ACGGAATTCAGGCACTACGCAAGA -ACGGAATTCAGGCACTACGGTTGA -ACGGAATTCAGGCACTACTCCGAT -ACGGAATTCAGGCACTACTGGCAT -ACGGAATTCAGGCACTACCGAGAT -ACGGAATTCAGGCACTACTACCAC -ACGGAATTCAGGCACTACCAGAAC -ACGGAATTCAGGCACTACGTCTAC -ACGGAATTCAGGCACTACACGTAC -ACGGAATTCAGGCACTACAGTGAC -ACGGAATTCAGGCACTACCTGTAG -ACGGAATTCAGGCACTACCCTAAG -ACGGAATTCAGGCACTACGTTCAG -ACGGAATTCAGGCACTACGCATAG -ACGGAATTCAGGCACTACGACAAG -ACGGAATTCAGGCACTACAAGCAG -ACGGAATTCAGGCACTACCGTCAA -ACGGAATTCAGGCACTACGCTGAA -ACGGAATTCAGGCACTACAGTACG -ACGGAATTCAGGCACTACATCCGA -ACGGAATTCAGGCACTACATGGGA -ACGGAATTCAGGCACTACGTGCAA -ACGGAATTCAGGCACTACGAGGAA -ACGGAATTCAGGCACTACCAGGTA -ACGGAATTCAGGCACTACGACTCT -ACGGAATTCAGGCACTACAGTCCT -ACGGAATTCAGGCACTACTAAGCC -ACGGAATTCAGGCACTACATAGCC -ACGGAATTCAGGCACTACTAACCG -ACGGAATTCAGGCACTACATGCCA -ACGGAATTCAGGAACCAGGGAAAC -ACGGAATTCAGGAACCAGAACACC -ACGGAATTCAGGAACCAGATCGAG -ACGGAATTCAGGAACCAGCTCCTT -ACGGAATTCAGGAACCAGCCTGTT -ACGGAATTCAGGAACCAGCGGTTT -ACGGAATTCAGGAACCAGGTGGTT -ACGGAATTCAGGAACCAGGCCTTT -ACGGAATTCAGGAACCAGGGTCTT -ACGGAATTCAGGAACCAGACGCTT -ACGGAATTCAGGAACCAGAGCGTT -ACGGAATTCAGGAACCAGTTCGTC -ACGGAATTCAGGAACCAGTCTCTC -ACGGAATTCAGGAACCAGTGGATC -ACGGAATTCAGGAACCAGCACTTC -ACGGAATTCAGGAACCAGGTACTC -ACGGAATTCAGGAACCAGGATGTC -ACGGAATTCAGGAACCAGACAGTC -ACGGAATTCAGGAACCAGTTGCTG -ACGGAATTCAGGAACCAGTCCATG -ACGGAATTCAGGAACCAGTGTGTG -ACGGAATTCAGGAACCAGCTAGTG -ACGGAATTCAGGAACCAGCATCTG -ACGGAATTCAGGAACCAGGAGTTG -ACGGAATTCAGGAACCAGAGACTG -ACGGAATTCAGGAACCAGTCGGTA -ACGGAATTCAGGAACCAGTGCCTA -ACGGAATTCAGGAACCAGCCACTA -ACGGAATTCAGGAACCAGGGAGTA -ACGGAATTCAGGAACCAGTCGTCT -ACGGAATTCAGGAACCAGTGCACT -ACGGAATTCAGGAACCAGCTGACT -ACGGAATTCAGGAACCAGCAACCT -ACGGAATTCAGGAACCAGGCTACT -ACGGAATTCAGGAACCAGGGATCT -ACGGAATTCAGGAACCAGAAGGCT -ACGGAATTCAGGAACCAGTCAACC -ACGGAATTCAGGAACCAGTGTTCC -ACGGAATTCAGGAACCAGATTCCC -ACGGAATTCAGGAACCAGTTCTCG -ACGGAATTCAGGAACCAGTAGACG -ACGGAATTCAGGAACCAGGTAACG -ACGGAATTCAGGAACCAGACTTCG -ACGGAATTCAGGAACCAGTACGCA -ACGGAATTCAGGAACCAGCTTGCA -ACGGAATTCAGGAACCAGCGAACA -ACGGAATTCAGGAACCAGCAGTCA -ACGGAATTCAGGAACCAGGATCCA -ACGGAATTCAGGAACCAGACGACA -ACGGAATTCAGGAACCAGAGCTCA -ACGGAATTCAGGAACCAGTCACGT -ACGGAATTCAGGAACCAGCGTAGT -ACGGAATTCAGGAACCAGGTCAGT -ACGGAATTCAGGAACCAGGAAGGT -ACGGAATTCAGGAACCAGAACCGT -ACGGAATTCAGGAACCAGTTGTGC -ACGGAATTCAGGAACCAGCTAAGC -ACGGAATTCAGGAACCAGACTAGC -ACGGAATTCAGGAACCAGAGATGC -ACGGAATTCAGGAACCAGTGAAGG -ACGGAATTCAGGAACCAGCAATGG -ACGGAATTCAGGAACCAGATGAGG -ACGGAATTCAGGAACCAGAATGGG -ACGGAATTCAGGAACCAGTCCTGA -ACGGAATTCAGGAACCAGTAGCGA -ACGGAATTCAGGAACCAGCACAGA -ACGGAATTCAGGAACCAGGCAAGA -ACGGAATTCAGGAACCAGGGTTGA -ACGGAATTCAGGAACCAGTCCGAT -ACGGAATTCAGGAACCAGTGGCAT -ACGGAATTCAGGAACCAGCGAGAT -ACGGAATTCAGGAACCAGTACCAC -ACGGAATTCAGGAACCAGCAGAAC -ACGGAATTCAGGAACCAGGTCTAC -ACGGAATTCAGGAACCAGACGTAC -ACGGAATTCAGGAACCAGAGTGAC -ACGGAATTCAGGAACCAGCTGTAG -ACGGAATTCAGGAACCAGCCTAAG -ACGGAATTCAGGAACCAGGTTCAG -ACGGAATTCAGGAACCAGGCATAG -ACGGAATTCAGGAACCAGGACAAG -ACGGAATTCAGGAACCAGAAGCAG -ACGGAATTCAGGAACCAGCGTCAA -ACGGAATTCAGGAACCAGGCTGAA -ACGGAATTCAGGAACCAGAGTACG -ACGGAATTCAGGAACCAGATCCGA -ACGGAATTCAGGAACCAGATGGGA -ACGGAATTCAGGAACCAGGTGCAA -ACGGAATTCAGGAACCAGGAGGAA -ACGGAATTCAGGAACCAGCAGGTA -ACGGAATTCAGGAACCAGGACTCT -ACGGAATTCAGGAACCAGAGTCCT -ACGGAATTCAGGAACCAGTAAGCC -ACGGAATTCAGGAACCAGATAGCC -ACGGAATTCAGGAACCAGTAACCG -ACGGAATTCAGGAACCAGATGCCA -ACGGAATTCAGGTACGTCGGAAAC -ACGGAATTCAGGTACGTCAACACC -ACGGAATTCAGGTACGTCATCGAG -ACGGAATTCAGGTACGTCCTCCTT -ACGGAATTCAGGTACGTCCCTGTT -ACGGAATTCAGGTACGTCCGGTTT -ACGGAATTCAGGTACGTCGTGGTT -ACGGAATTCAGGTACGTCGCCTTT -ACGGAATTCAGGTACGTCGGTCTT -ACGGAATTCAGGTACGTCACGCTT -ACGGAATTCAGGTACGTCAGCGTT -ACGGAATTCAGGTACGTCTTCGTC -ACGGAATTCAGGTACGTCTCTCTC -ACGGAATTCAGGTACGTCTGGATC -ACGGAATTCAGGTACGTCCACTTC -ACGGAATTCAGGTACGTCGTACTC -ACGGAATTCAGGTACGTCGATGTC -ACGGAATTCAGGTACGTCACAGTC -ACGGAATTCAGGTACGTCTTGCTG -ACGGAATTCAGGTACGTCTCCATG -ACGGAATTCAGGTACGTCTGTGTG -ACGGAATTCAGGTACGTCCTAGTG -ACGGAATTCAGGTACGTCCATCTG -ACGGAATTCAGGTACGTCGAGTTG -ACGGAATTCAGGTACGTCAGACTG -ACGGAATTCAGGTACGTCTCGGTA -ACGGAATTCAGGTACGTCTGCCTA -ACGGAATTCAGGTACGTCCCACTA -ACGGAATTCAGGTACGTCGGAGTA -ACGGAATTCAGGTACGTCTCGTCT -ACGGAATTCAGGTACGTCTGCACT -ACGGAATTCAGGTACGTCCTGACT -ACGGAATTCAGGTACGTCCAACCT -ACGGAATTCAGGTACGTCGCTACT -ACGGAATTCAGGTACGTCGGATCT -ACGGAATTCAGGTACGTCAAGGCT -ACGGAATTCAGGTACGTCTCAACC -ACGGAATTCAGGTACGTCTGTTCC -ACGGAATTCAGGTACGTCATTCCC -ACGGAATTCAGGTACGTCTTCTCG -ACGGAATTCAGGTACGTCTAGACG -ACGGAATTCAGGTACGTCGTAACG -ACGGAATTCAGGTACGTCACTTCG -ACGGAATTCAGGTACGTCTACGCA -ACGGAATTCAGGTACGTCCTTGCA -ACGGAATTCAGGTACGTCCGAACA -ACGGAATTCAGGTACGTCCAGTCA -ACGGAATTCAGGTACGTCGATCCA -ACGGAATTCAGGTACGTCACGACA -ACGGAATTCAGGTACGTCAGCTCA -ACGGAATTCAGGTACGTCTCACGT -ACGGAATTCAGGTACGTCCGTAGT -ACGGAATTCAGGTACGTCGTCAGT -ACGGAATTCAGGTACGTCGAAGGT -ACGGAATTCAGGTACGTCAACCGT -ACGGAATTCAGGTACGTCTTGTGC -ACGGAATTCAGGTACGTCCTAAGC -ACGGAATTCAGGTACGTCACTAGC -ACGGAATTCAGGTACGTCAGATGC -ACGGAATTCAGGTACGTCTGAAGG -ACGGAATTCAGGTACGTCCAATGG -ACGGAATTCAGGTACGTCATGAGG -ACGGAATTCAGGTACGTCAATGGG -ACGGAATTCAGGTACGTCTCCTGA -ACGGAATTCAGGTACGTCTAGCGA -ACGGAATTCAGGTACGTCCACAGA -ACGGAATTCAGGTACGTCGCAAGA -ACGGAATTCAGGTACGTCGGTTGA -ACGGAATTCAGGTACGTCTCCGAT -ACGGAATTCAGGTACGTCTGGCAT -ACGGAATTCAGGTACGTCCGAGAT -ACGGAATTCAGGTACGTCTACCAC -ACGGAATTCAGGTACGTCCAGAAC -ACGGAATTCAGGTACGTCGTCTAC -ACGGAATTCAGGTACGTCACGTAC -ACGGAATTCAGGTACGTCAGTGAC -ACGGAATTCAGGTACGTCCTGTAG -ACGGAATTCAGGTACGTCCCTAAG -ACGGAATTCAGGTACGTCGTTCAG -ACGGAATTCAGGTACGTCGCATAG -ACGGAATTCAGGTACGTCGACAAG -ACGGAATTCAGGTACGTCAAGCAG -ACGGAATTCAGGTACGTCCGTCAA -ACGGAATTCAGGTACGTCGCTGAA -ACGGAATTCAGGTACGTCAGTACG -ACGGAATTCAGGTACGTCATCCGA -ACGGAATTCAGGTACGTCATGGGA -ACGGAATTCAGGTACGTCGTGCAA -ACGGAATTCAGGTACGTCGAGGAA -ACGGAATTCAGGTACGTCCAGGTA -ACGGAATTCAGGTACGTCGACTCT -ACGGAATTCAGGTACGTCAGTCCT -ACGGAATTCAGGTACGTCTAAGCC -ACGGAATTCAGGTACGTCATAGCC -ACGGAATTCAGGTACGTCTAACCG -ACGGAATTCAGGTACGTCATGCCA -ACGGAATTCAGGTACACGGGAAAC -ACGGAATTCAGGTACACGAACACC -ACGGAATTCAGGTACACGATCGAG -ACGGAATTCAGGTACACGCTCCTT -ACGGAATTCAGGTACACGCCTGTT -ACGGAATTCAGGTACACGCGGTTT -ACGGAATTCAGGTACACGGTGGTT -ACGGAATTCAGGTACACGGCCTTT -ACGGAATTCAGGTACACGGGTCTT -ACGGAATTCAGGTACACGACGCTT -ACGGAATTCAGGTACACGAGCGTT -ACGGAATTCAGGTACACGTTCGTC -ACGGAATTCAGGTACACGTCTCTC -ACGGAATTCAGGTACACGTGGATC -ACGGAATTCAGGTACACGCACTTC -ACGGAATTCAGGTACACGGTACTC -ACGGAATTCAGGTACACGGATGTC -ACGGAATTCAGGTACACGACAGTC -ACGGAATTCAGGTACACGTTGCTG -ACGGAATTCAGGTACACGTCCATG -ACGGAATTCAGGTACACGTGTGTG -ACGGAATTCAGGTACACGCTAGTG -ACGGAATTCAGGTACACGCATCTG -ACGGAATTCAGGTACACGGAGTTG -ACGGAATTCAGGTACACGAGACTG -ACGGAATTCAGGTACACGTCGGTA -ACGGAATTCAGGTACACGTGCCTA -ACGGAATTCAGGTACACGCCACTA -ACGGAATTCAGGTACACGGGAGTA -ACGGAATTCAGGTACACGTCGTCT -ACGGAATTCAGGTACACGTGCACT -ACGGAATTCAGGTACACGCTGACT -ACGGAATTCAGGTACACGCAACCT -ACGGAATTCAGGTACACGGCTACT -ACGGAATTCAGGTACACGGGATCT -ACGGAATTCAGGTACACGAAGGCT -ACGGAATTCAGGTACACGTCAACC -ACGGAATTCAGGTACACGTGTTCC -ACGGAATTCAGGTACACGATTCCC -ACGGAATTCAGGTACACGTTCTCG -ACGGAATTCAGGTACACGTAGACG -ACGGAATTCAGGTACACGGTAACG -ACGGAATTCAGGTACACGACTTCG -ACGGAATTCAGGTACACGTACGCA -ACGGAATTCAGGTACACGCTTGCA -ACGGAATTCAGGTACACGCGAACA -ACGGAATTCAGGTACACGCAGTCA -ACGGAATTCAGGTACACGGATCCA -ACGGAATTCAGGTACACGACGACA -ACGGAATTCAGGTACACGAGCTCA -ACGGAATTCAGGTACACGTCACGT -ACGGAATTCAGGTACACGCGTAGT -ACGGAATTCAGGTACACGGTCAGT -ACGGAATTCAGGTACACGGAAGGT -ACGGAATTCAGGTACACGAACCGT -ACGGAATTCAGGTACACGTTGTGC -ACGGAATTCAGGTACACGCTAAGC -ACGGAATTCAGGTACACGACTAGC -ACGGAATTCAGGTACACGAGATGC -ACGGAATTCAGGTACACGTGAAGG -ACGGAATTCAGGTACACGCAATGG -ACGGAATTCAGGTACACGATGAGG -ACGGAATTCAGGTACACGAATGGG -ACGGAATTCAGGTACACGTCCTGA -ACGGAATTCAGGTACACGTAGCGA -ACGGAATTCAGGTACACGCACAGA -ACGGAATTCAGGTACACGGCAAGA -ACGGAATTCAGGTACACGGGTTGA -ACGGAATTCAGGTACACGTCCGAT -ACGGAATTCAGGTACACGTGGCAT -ACGGAATTCAGGTACACGCGAGAT -ACGGAATTCAGGTACACGTACCAC -ACGGAATTCAGGTACACGCAGAAC -ACGGAATTCAGGTACACGGTCTAC -ACGGAATTCAGGTACACGACGTAC -ACGGAATTCAGGTACACGAGTGAC -ACGGAATTCAGGTACACGCTGTAG -ACGGAATTCAGGTACACGCCTAAG -ACGGAATTCAGGTACACGGTTCAG -ACGGAATTCAGGTACACGGCATAG -ACGGAATTCAGGTACACGGACAAG -ACGGAATTCAGGTACACGAAGCAG -ACGGAATTCAGGTACACGCGTCAA -ACGGAATTCAGGTACACGGCTGAA -ACGGAATTCAGGTACACGAGTACG -ACGGAATTCAGGTACACGATCCGA -ACGGAATTCAGGTACACGATGGGA -ACGGAATTCAGGTACACGGTGCAA -ACGGAATTCAGGTACACGGAGGAA -ACGGAATTCAGGTACACGCAGGTA -ACGGAATTCAGGTACACGGACTCT -ACGGAATTCAGGTACACGAGTCCT -ACGGAATTCAGGTACACGTAAGCC -ACGGAATTCAGGTACACGATAGCC -ACGGAATTCAGGTACACGTAACCG -ACGGAATTCAGGTACACGATGCCA -ACGGAATTCAGGGACAGTGGAAAC -ACGGAATTCAGGGACAGTAACACC -ACGGAATTCAGGGACAGTATCGAG -ACGGAATTCAGGGACAGTCTCCTT -ACGGAATTCAGGGACAGTCCTGTT -ACGGAATTCAGGGACAGTCGGTTT -ACGGAATTCAGGGACAGTGTGGTT -ACGGAATTCAGGGACAGTGCCTTT -ACGGAATTCAGGGACAGTGGTCTT -ACGGAATTCAGGGACAGTACGCTT -ACGGAATTCAGGGACAGTAGCGTT -ACGGAATTCAGGGACAGTTTCGTC -ACGGAATTCAGGGACAGTTCTCTC -ACGGAATTCAGGGACAGTTGGATC -ACGGAATTCAGGGACAGTCACTTC -ACGGAATTCAGGGACAGTGTACTC -ACGGAATTCAGGGACAGTGATGTC -ACGGAATTCAGGGACAGTACAGTC -ACGGAATTCAGGGACAGTTTGCTG -ACGGAATTCAGGGACAGTTCCATG -ACGGAATTCAGGGACAGTTGTGTG -ACGGAATTCAGGGACAGTCTAGTG -ACGGAATTCAGGGACAGTCATCTG -ACGGAATTCAGGGACAGTGAGTTG -ACGGAATTCAGGGACAGTAGACTG -ACGGAATTCAGGGACAGTTCGGTA -ACGGAATTCAGGGACAGTTGCCTA -ACGGAATTCAGGGACAGTCCACTA -ACGGAATTCAGGGACAGTGGAGTA -ACGGAATTCAGGGACAGTTCGTCT -ACGGAATTCAGGGACAGTTGCACT -ACGGAATTCAGGGACAGTCTGACT -ACGGAATTCAGGGACAGTCAACCT -ACGGAATTCAGGGACAGTGCTACT -ACGGAATTCAGGGACAGTGGATCT -ACGGAATTCAGGGACAGTAAGGCT -ACGGAATTCAGGGACAGTTCAACC -ACGGAATTCAGGGACAGTTGTTCC -ACGGAATTCAGGGACAGTATTCCC -ACGGAATTCAGGGACAGTTTCTCG -ACGGAATTCAGGGACAGTTAGACG -ACGGAATTCAGGGACAGTGTAACG -ACGGAATTCAGGGACAGTACTTCG -ACGGAATTCAGGGACAGTTACGCA -ACGGAATTCAGGGACAGTCTTGCA -ACGGAATTCAGGGACAGTCGAACA -ACGGAATTCAGGGACAGTCAGTCA -ACGGAATTCAGGGACAGTGATCCA -ACGGAATTCAGGGACAGTACGACA -ACGGAATTCAGGGACAGTAGCTCA -ACGGAATTCAGGGACAGTTCACGT -ACGGAATTCAGGGACAGTCGTAGT -ACGGAATTCAGGGACAGTGTCAGT -ACGGAATTCAGGGACAGTGAAGGT -ACGGAATTCAGGGACAGTAACCGT -ACGGAATTCAGGGACAGTTTGTGC -ACGGAATTCAGGGACAGTCTAAGC -ACGGAATTCAGGGACAGTACTAGC -ACGGAATTCAGGGACAGTAGATGC -ACGGAATTCAGGGACAGTTGAAGG -ACGGAATTCAGGGACAGTCAATGG -ACGGAATTCAGGGACAGTATGAGG -ACGGAATTCAGGGACAGTAATGGG -ACGGAATTCAGGGACAGTTCCTGA -ACGGAATTCAGGGACAGTTAGCGA -ACGGAATTCAGGGACAGTCACAGA -ACGGAATTCAGGGACAGTGCAAGA -ACGGAATTCAGGGACAGTGGTTGA -ACGGAATTCAGGGACAGTTCCGAT -ACGGAATTCAGGGACAGTTGGCAT -ACGGAATTCAGGGACAGTCGAGAT -ACGGAATTCAGGGACAGTTACCAC -ACGGAATTCAGGGACAGTCAGAAC -ACGGAATTCAGGGACAGTGTCTAC -ACGGAATTCAGGGACAGTACGTAC -ACGGAATTCAGGGACAGTAGTGAC -ACGGAATTCAGGGACAGTCTGTAG -ACGGAATTCAGGGACAGTCCTAAG -ACGGAATTCAGGGACAGTGTTCAG -ACGGAATTCAGGGACAGTGCATAG -ACGGAATTCAGGGACAGTGACAAG -ACGGAATTCAGGGACAGTAAGCAG -ACGGAATTCAGGGACAGTCGTCAA -ACGGAATTCAGGGACAGTGCTGAA -ACGGAATTCAGGGACAGTAGTACG -ACGGAATTCAGGGACAGTATCCGA -ACGGAATTCAGGGACAGTATGGGA -ACGGAATTCAGGGACAGTGTGCAA -ACGGAATTCAGGGACAGTGAGGAA -ACGGAATTCAGGGACAGTCAGGTA -ACGGAATTCAGGGACAGTGACTCT -ACGGAATTCAGGGACAGTAGTCCT -ACGGAATTCAGGGACAGTTAAGCC -ACGGAATTCAGGGACAGTATAGCC -ACGGAATTCAGGGACAGTTAACCG -ACGGAATTCAGGGACAGTATGCCA -ACGGAATTCAGGTAGCTGGGAAAC -ACGGAATTCAGGTAGCTGAACACC -ACGGAATTCAGGTAGCTGATCGAG -ACGGAATTCAGGTAGCTGCTCCTT -ACGGAATTCAGGTAGCTGCCTGTT -ACGGAATTCAGGTAGCTGCGGTTT -ACGGAATTCAGGTAGCTGGTGGTT -ACGGAATTCAGGTAGCTGGCCTTT -ACGGAATTCAGGTAGCTGGGTCTT -ACGGAATTCAGGTAGCTGACGCTT -ACGGAATTCAGGTAGCTGAGCGTT -ACGGAATTCAGGTAGCTGTTCGTC -ACGGAATTCAGGTAGCTGTCTCTC -ACGGAATTCAGGTAGCTGTGGATC -ACGGAATTCAGGTAGCTGCACTTC -ACGGAATTCAGGTAGCTGGTACTC -ACGGAATTCAGGTAGCTGGATGTC -ACGGAATTCAGGTAGCTGACAGTC -ACGGAATTCAGGTAGCTGTTGCTG -ACGGAATTCAGGTAGCTGTCCATG -ACGGAATTCAGGTAGCTGTGTGTG -ACGGAATTCAGGTAGCTGCTAGTG -ACGGAATTCAGGTAGCTGCATCTG -ACGGAATTCAGGTAGCTGGAGTTG -ACGGAATTCAGGTAGCTGAGACTG -ACGGAATTCAGGTAGCTGTCGGTA -ACGGAATTCAGGTAGCTGTGCCTA -ACGGAATTCAGGTAGCTGCCACTA -ACGGAATTCAGGTAGCTGGGAGTA -ACGGAATTCAGGTAGCTGTCGTCT -ACGGAATTCAGGTAGCTGTGCACT -ACGGAATTCAGGTAGCTGCTGACT -ACGGAATTCAGGTAGCTGCAACCT -ACGGAATTCAGGTAGCTGGCTACT -ACGGAATTCAGGTAGCTGGGATCT -ACGGAATTCAGGTAGCTGAAGGCT -ACGGAATTCAGGTAGCTGTCAACC -ACGGAATTCAGGTAGCTGTGTTCC -ACGGAATTCAGGTAGCTGATTCCC -ACGGAATTCAGGTAGCTGTTCTCG -ACGGAATTCAGGTAGCTGTAGACG -ACGGAATTCAGGTAGCTGGTAACG -ACGGAATTCAGGTAGCTGACTTCG -ACGGAATTCAGGTAGCTGTACGCA -ACGGAATTCAGGTAGCTGCTTGCA -ACGGAATTCAGGTAGCTGCGAACA -ACGGAATTCAGGTAGCTGCAGTCA -ACGGAATTCAGGTAGCTGGATCCA -ACGGAATTCAGGTAGCTGACGACA -ACGGAATTCAGGTAGCTGAGCTCA -ACGGAATTCAGGTAGCTGTCACGT -ACGGAATTCAGGTAGCTGCGTAGT -ACGGAATTCAGGTAGCTGGTCAGT -ACGGAATTCAGGTAGCTGGAAGGT -ACGGAATTCAGGTAGCTGAACCGT -ACGGAATTCAGGTAGCTGTTGTGC -ACGGAATTCAGGTAGCTGCTAAGC -ACGGAATTCAGGTAGCTGACTAGC -ACGGAATTCAGGTAGCTGAGATGC -ACGGAATTCAGGTAGCTGTGAAGG -ACGGAATTCAGGTAGCTGCAATGG -ACGGAATTCAGGTAGCTGATGAGG -ACGGAATTCAGGTAGCTGAATGGG -ACGGAATTCAGGTAGCTGTCCTGA -ACGGAATTCAGGTAGCTGTAGCGA -ACGGAATTCAGGTAGCTGCACAGA -ACGGAATTCAGGTAGCTGGCAAGA -ACGGAATTCAGGTAGCTGGGTTGA -ACGGAATTCAGGTAGCTGTCCGAT -ACGGAATTCAGGTAGCTGTGGCAT -ACGGAATTCAGGTAGCTGCGAGAT -ACGGAATTCAGGTAGCTGTACCAC -ACGGAATTCAGGTAGCTGCAGAAC -ACGGAATTCAGGTAGCTGGTCTAC -ACGGAATTCAGGTAGCTGACGTAC -ACGGAATTCAGGTAGCTGAGTGAC -ACGGAATTCAGGTAGCTGCTGTAG -ACGGAATTCAGGTAGCTGCCTAAG -ACGGAATTCAGGTAGCTGGTTCAG -ACGGAATTCAGGTAGCTGGCATAG -ACGGAATTCAGGTAGCTGGACAAG -ACGGAATTCAGGTAGCTGAAGCAG -ACGGAATTCAGGTAGCTGCGTCAA -ACGGAATTCAGGTAGCTGGCTGAA -ACGGAATTCAGGTAGCTGAGTACG -ACGGAATTCAGGTAGCTGATCCGA -ACGGAATTCAGGTAGCTGATGGGA -ACGGAATTCAGGTAGCTGGTGCAA -ACGGAATTCAGGTAGCTGGAGGAA -ACGGAATTCAGGTAGCTGCAGGTA -ACGGAATTCAGGTAGCTGGACTCT -ACGGAATTCAGGTAGCTGAGTCCT -ACGGAATTCAGGTAGCTGTAAGCC -ACGGAATTCAGGTAGCTGATAGCC -ACGGAATTCAGGTAGCTGTAACCG -ACGGAATTCAGGTAGCTGATGCCA -ACGGAATTCAGGAAGCCTGGAAAC -ACGGAATTCAGGAAGCCTAACACC -ACGGAATTCAGGAAGCCTATCGAG -ACGGAATTCAGGAAGCCTCTCCTT -ACGGAATTCAGGAAGCCTCCTGTT -ACGGAATTCAGGAAGCCTCGGTTT -ACGGAATTCAGGAAGCCTGTGGTT -ACGGAATTCAGGAAGCCTGCCTTT -ACGGAATTCAGGAAGCCTGGTCTT -ACGGAATTCAGGAAGCCTACGCTT -ACGGAATTCAGGAAGCCTAGCGTT -ACGGAATTCAGGAAGCCTTTCGTC -ACGGAATTCAGGAAGCCTTCTCTC -ACGGAATTCAGGAAGCCTTGGATC -ACGGAATTCAGGAAGCCTCACTTC -ACGGAATTCAGGAAGCCTGTACTC -ACGGAATTCAGGAAGCCTGATGTC -ACGGAATTCAGGAAGCCTACAGTC -ACGGAATTCAGGAAGCCTTTGCTG -ACGGAATTCAGGAAGCCTTCCATG -ACGGAATTCAGGAAGCCTTGTGTG -ACGGAATTCAGGAAGCCTCTAGTG -ACGGAATTCAGGAAGCCTCATCTG -ACGGAATTCAGGAAGCCTGAGTTG -ACGGAATTCAGGAAGCCTAGACTG -ACGGAATTCAGGAAGCCTTCGGTA -ACGGAATTCAGGAAGCCTTGCCTA -ACGGAATTCAGGAAGCCTCCACTA -ACGGAATTCAGGAAGCCTGGAGTA -ACGGAATTCAGGAAGCCTTCGTCT -ACGGAATTCAGGAAGCCTTGCACT -ACGGAATTCAGGAAGCCTCTGACT -ACGGAATTCAGGAAGCCTCAACCT -ACGGAATTCAGGAAGCCTGCTACT -ACGGAATTCAGGAAGCCTGGATCT -ACGGAATTCAGGAAGCCTAAGGCT -ACGGAATTCAGGAAGCCTTCAACC -ACGGAATTCAGGAAGCCTTGTTCC -ACGGAATTCAGGAAGCCTATTCCC -ACGGAATTCAGGAAGCCTTTCTCG -ACGGAATTCAGGAAGCCTTAGACG -ACGGAATTCAGGAAGCCTGTAACG -ACGGAATTCAGGAAGCCTACTTCG -ACGGAATTCAGGAAGCCTTACGCA -ACGGAATTCAGGAAGCCTCTTGCA -ACGGAATTCAGGAAGCCTCGAACA -ACGGAATTCAGGAAGCCTCAGTCA -ACGGAATTCAGGAAGCCTGATCCA -ACGGAATTCAGGAAGCCTACGACA -ACGGAATTCAGGAAGCCTAGCTCA -ACGGAATTCAGGAAGCCTTCACGT -ACGGAATTCAGGAAGCCTCGTAGT -ACGGAATTCAGGAAGCCTGTCAGT -ACGGAATTCAGGAAGCCTGAAGGT -ACGGAATTCAGGAAGCCTAACCGT -ACGGAATTCAGGAAGCCTTTGTGC -ACGGAATTCAGGAAGCCTCTAAGC -ACGGAATTCAGGAAGCCTACTAGC -ACGGAATTCAGGAAGCCTAGATGC -ACGGAATTCAGGAAGCCTTGAAGG -ACGGAATTCAGGAAGCCTCAATGG -ACGGAATTCAGGAAGCCTATGAGG -ACGGAATTCAGGAAGCCTAATGGG -ACGGAATTCAGGAAGCCTTCCTGA -ACGGAATTCAGGAAGCCTTAGCGA -ACGGAATTCAGGAAGCCTCACAGA -ACGGAATTCAGGAAGCCTGCAAGA -ACGGAATTCAGGAAGCCTGGTTGA -ACGGAATTCAGGAAGCCTTCCGAT -ACGGAATTCAGGAAGCCTTGGCAT -ACGGAATTCAGGAAGCCTCGAGAT -ACGGAATTCAGGAAGCCTTACCAC -ACGGAATTCAGGAAGCCTCAGAAC -ACGGAATTCAGGAAGCCTGTCTAC -ACGGAATTCAGGAAGCCTACGTAC -ACGGAATTCAGGAAGCCTAGTGAC -ACGGAATTCAGGAAGCCTCTGTAG -ACGGAATTCAGGAAGCCTCCTAAG -ACGGAATTCAGGAAGCCTGTTCAG -ACGGAATTCAGGAAGCCTGCATAG -ACGGAATTCAGGAAGCCTGACAAG -ACGGAATTCAGGAAGCCTAAGCAG -ACGGAATTCAGGAAGCCTCGTCAA -ACGGAATTCAGGAAGCCTGCTGAA -ACGGAATTCAGGAAGCCTAGTACG -ACGGAATTCAGGAAGCCTATCCGA -ACGGAATTCAGGAAGCCTATGGGA -ACGGAATTCAGGAAGCCTGTGCAA -ACGGAATTCAGGAAGCCTGAGGAA -ACGGAATTCAGGAAGCCTCAGGTA -ACGGAATTCAGGAAGCCTGACTCT -ACGGAATTCAGGAAGCCTAGTCCT -ACGGAATTCAGGAAGCCTTAAGCC -ACGGAATTCAGGAAGCCTATAGCC -ACGGAATTCAGGAAGCCTTAACCG -ACGGAATTCAGGAAGCCTATGCCA -ACGGAATTCAGGCAGGTTGGAAAC -ACGGAATTCAGGCAGGTTAACACC -ACGGAATTCAGGCAGGTTATCGAG -ACGGAATTCAGGCAGGTTCTCCTT -ACGGAATTCAGGCAGGTTCCTGTT -ACGGAATTCAGGCAGGTTCGGTTT -ACGGAATTCAGGCAGGTTGTGGTT -ACGGAATTCAGGCAGGTTGCCTTT -ACGGAATTCAGGCAGGTTGGTCTT -ACGGAATTCAGGCAGGTTACGCTT -ACGGAATTCAGGCAGGTTAGCGTT -ACGGAATTCAGGCAGGTTTTCGTC -ACGGAATTCAGGCAGGTTTCTCTC -ACGGAATTCAGGCAGGTTTGGATC -ACGGAATTCAGGCAGGTTCACTTC -ACGGAATTCAGGCAGGTTGTACTC -ACGGAATTCAGGCAGGTTGATGTC -ACGGAATTCAGGCAGGTTACAGTC -ACGGAATTCAGGCAGGTTTTGCTG -ACGGAATTCAGGCAGGTTTCCATG -ACGGAATTCAGGCAGGTTTGTGTG -ACGGAATTCAGGCAGGTTCTAGTG -ACGGAATTCAGGCAGGTTCATCTG -ACGGAATTCAGGCAGGTTGAGTTG -ACGGAATTCAGGCAGGTTAGACTG -ACGGAATTCAGGCAGGTTTCGGTA -ACGGAATTCAGGCAGGTTTGCCTA -ACGGAATTCAGGCAGGTTCCACTA -ACGGAATTCAGGCAGGTTGGAGTA -ACGGAATTCAGGCAGGTTTCGTCT -ACGGAATTCAGGCAGGTTTGCACT -ACGGAATTCAGGCAGGTTCTGACT -ACGGAATTCAGGCAGGTTCAACCT -ACGGAATTCAGGCAGGTTGCTACT -ACGGAATTCAGGCAGGTTGGATCT -ACGGAATTCAGGCAGGTTAAGGCT -ACGGAATTCAGGCAGGTTTCAACC -ACGGAATTCAGGCAGGTTTGTTCC -ACGGAATTCAGGCAGGTTATTCCC -ACGGAATTCAGGCAGGTTTTCTCG -ACGGAATTCAGGCAGGTTTAGACG -ACGGAATTCAGGCAGGTTGTAACG -ACGGAATTCAGGCAGGTTACTTCG -ACGGAATTCAGGCAGGTTTACGCA -ACGGAATTCAGGCAGGTTCTTGCA -ACGGAATTCAGGCAGGTTCGAACA -ACGGAATTCAGGCAGGTTCAGTCA -ACGGAATTCAGGCAGGTTGATCCA -ACGGAATTCAGGCAGGTTACGACA -ACGGAATTCAGGCAGGTTAGCTCA -ACGGAATTCAGGCAGGTTTCACGT -ACGGAATTCAGGCAGGTTCGTAGT -ACGGAATTCAGGCAGGTTGTCAGT -ACGGAATTCAGGCAGGTTGAAGGT -ACGGAATTCAGGCAGGTTAACCGT -ACGGAATTCAGGCAGGTTTTGTGC -ACGGAATTCAGGCAGGTTCTAAGC -ACGGAATTCAGGCAGGTTACTAGC -ACGGAATTCAGGCAGGTTAGATGC -ACGGAATTCAGGCAGGTTTGAAGG -ACGGAATTCAGGCAGGTTCAATGG -ACGGAATTCAGGCAGGTTATGAGG -ACGGAATTCAGGCAGGTTAATGGG -ACGGAATTCAGGCAGGTTTCCTGA -ACGGAATTCAGGCAGGTTTAGCGA -ACGGAATTCAGGCAGGTTCACAGA -ACGGAATTCAGGCAGGTTGCAAGA -ACGGAATTCAGGCAGGTTGGTTGA -ACGGAATTCAGGCAGGTTTCCGAT -ACGGAATTCAGGCAGGTTTGGCAT -ACGGAATTCAGGCAGGTTCGAGAT -ACGGAATTCAGGCAGGTTTACCAC -ACGGAATTCAGGCAGGTTCAGAAC -ACGGAATTCAGGCAGGTTGTCTAC -ACGGAATTCAGGCAGGTTACGTAC -ACGGAATTCAGGCAGGTTAGTGAC -ACGGAATTCAGGCAGGTTCTGTAG -ACGGAATTCAGGCAGGTTCCTAAG -ACGGAATTCAGGCAGGTTGTTCAG -ACGGAATTCAGGCAGGTTGCATAG -ACGGAATTCAGGCAGGTTGACAAG -ACGGAATTCAGGCAGGTTAAGCAG -ACGGAATTCAGGCAGGTTCGTCAA -ACGGAATTCAGGCAGGTTGCTGAA -ACGGAATTCAGGCAGGTTAGTACG -ACGGAATTCAGGCAGGTTATCCGA -ACGGAATTCAGGCAGGTTATGGGA -ACGGAATTCAGGCAGGTTGTGCAA -ACGGAATTCAGGCAGGTTGAGGAA -ACGGAATTCAGGCAGGTTCAGGTA -ACGGAATTCAGGCAGGTTGACTCT -ACGGAATTCAGGCAGGTTAGTCCT -ACGGAATTCAGGCAGGTTTAAGCC -ACGGAATTCAGGCAGGTTATAGCC -ACGGAATTCAGGCAGGTTTAACCG -ACGGAATTCAGGCAGGTTATGCCA -ACGGAATTCAGGTAGGCAGGAAAC -ACGGAATTCAGGTAGGCAAACACC -ACGGAATTCAGGTAGGCAATCGAG -ACGGAATTCAGGTAGGCACTCCTT -ACGGAATTCAGGTAGGCACCTGTT -ACGGAATTCAGGTAGGCACGGTTT -ACGGAATTCAGGTAGGCAGTGGTT -ACGGAATTCAGGTAGGCAGCCTTT -ACGGAATTCAGGTAGGCAGGTCTT -ACGGAATTCAGGTAGGCAACGCTT -ACGGAATTCAGGTAGGCAAGCGTT -ACGGAATTCAGGTAGGCATTCGTC -ACGGAATTCAGGTAGGCATCTCTC -ACGGAATTCAGGTAGGCATGGATC -ACGGAATTCAGGTAGGCACACTTC -ACGGAATTCAGGTAGGCAGTACTC -ACGGAATTCAGGTAGGCAGATGTC -ACGGAATTCAGGTAGGCAACAGTC -ACGGAATTCAGGTAGGCATTGCTG -ACGGAATTCAGGTAGGCATCCATG -ACGGAATTCAGGTAGGCATGTGTG -ACGGAATTCAGGTAGGCACTAGTG -ACGGAATTCAGGTAGGCACATCTG -ACGGAATTCAGGTAGGCAGAGTTG -ACGGAATTCAGGTAGGCAAGACTG -ACGGAATTCAGGTAGGCATCGGTA -ACGGAATTCAGGTAGGCATGCCTA -ACGGAATTCAGGTAGGCACCACTA -ACGGAATTCAGGTAGGCAGGAGTA -ACGGAATTCAGGTAGGCATCGTCT -ACGGAATTCAGGTAGGCATGCACT -ACGGAATTCAGGTAGGCACTGACT -ACGGAATTCAGGTAGGCACAACCT -ACGGAATTCAGGTAGGCAGCTACT -ACGGAATTCAGGTAGGCAGGATCT -ACGGAATTCAGGTAGGCAAAGGCT -ACGGAATTCAGGTAGGCATCAACC -ACGGAATTCAGGTAGGCATGTTCC -ACGGAATTCAGGTAGGCAATTCCC -ACGGAATTCAGGTAGGCATTCTCG -ACGGAATTCAGGTAGGCATAGACG -ACGGAATTCAGGTAGGCAGTAACG -ACGGAATTCAGGTAGGCAACTTCG -ACGGAATTCAGGTAGGCATACGCA -ACGGAATTCAGGTAGGCACTTGCA -ACGGAATTCAGGTAGGCACGAACA -ACGGAATTCAGGTAGGCACAGTCA -ACGGAATTCAGGTAGGCAGATCCA -ACGGAATTCAGGTAGGCAACGACA -ACGGAATTCAGGTAGGCAAGCTCA -ACGGAATTCAGGTAGGCATCACGT -ACGGAATTCAGGTAGGCACGTAGT -ACGGAATTCAGGTAGGCAGTCAGT -ACGGAATTCAGGTAGGCAGAAGGT -ACGGAATTCAGGTAGGCAAACCGT -ACGGAATTCAGGTAGGCATTGTGC -ACGGAATTCAGGTAGGCACTAAGC -ACGGAATTCAGGTAGGCAACTAGC -ACGGAATTCAGGTAGGCAAGATGC -ACGGAATTCAGGTAGGCATGAAGG -ACGGAATTCAGGTAGGCACAATGG -ACGGAATTCAGGTAGGCAATGAGG -ACGGAATTCAGGTAGGCAAATGGG -ACGGAATTCAGGTAGGCATCCTGA -ACGGAATTCAGGTAGGCATAGCGA -ACGGAATTCAGGTAGGCACACAGA -ACGGAATTCAGGTAGGCAGCAAGA -ACGGAATTCAGGTAGGCAGGTTGA -ACGGAATTCAGGTAGGCATCCGAT -ACGGAATTCAGGTAGGCATGGCAT -ACGGAATTCAGGTAGGCACGAGAT -ACGGAATTCAGGTAGGCATACCAC -ACGGAATTCAGGTAGGCACAGAAC -ACGGAATTCAGGTAGGCAGTCTAC -ACGGAATTCAGGTAGGCAACGTAC -ACGGAATTCAGGTAGGCAAGTGAC -ACGGAATTCAGGTAGGCACTGTAG -ACGGAATTCAGGTAGGCACCTAAG -ACGGAATTCAGGTAGGCAGTTCAG -ACGGAATTCAGGTAGGCAGCATAG -ACGGAATTCAGGTAGGCAGACAAG -ACGGAATTCAGGTAGGCAAAGCAG -ACGGAATTCAGGTAGGCACGTCAA -ACGGAATTCAGGTAGGCAGCTGAA -ACGGAATTCAGGTAGGCAAGTACG -ACGGAATTCAGGTAGGCAATCCGA -ACGGAATTCAGGTAGGCAATGGGA -ACGGAATTCAGGTAGGCAGTGCAA -ACGGAATTCAGGTAGGCAGAGGAA -ACGGAATTCAGGTAGGCACAGGTA -ACGGAATTCAGGTAGGCAGACTCT -ACGGAATTCAGGTAGGCAAGTCCT -ACGGAATTCAGGTAGGCATAAGCC -ACGGAATTCAGGTAGGCAATAGCC -ACGGAATTCAGGTAGGCATAACCG -ACGGAATTCAGGTAGGCAATGCCA -ACGGAATTCAGGAAGGACGGAAAC -ACGGAATTCAGGAAGGACAACACC -ACGGAATTCAGGAAGGACATCGAG -ACGGAATTCAGGAAGGACCTCCTT -ACGGAATTCAGGAAGGACCCTGTT -ACGGAATTCAGGAAGGACCGGTTT -ACGGAATTCAGGAAGGACGTGGTT -ACGGAATTCAGGAAGGACGCCTTT -ACGGAATTCAGGAAGGACGGTCTT -ACGGAATTCAGGAAGGACACGCTT -ACGGAATTCAGGAAGGACAGCGTT -ACGGAATTCAGGAAGGACTTCGTC -ACGGAATTCAGGAAGGACTCTCTC -ACGGAATTCAGGAAGGACTGGATC -ACGGAATTCAGGAAGGACCACTTC -ACGGAATTCAGGAAGGACGTACTC -ACGGAATTCAGGAAGGACGATGTC -ACGGAATTCAGGAAGGACACAGTC -ACGGAATTCAGGAAGGACTTGCTG -ACGGAATTCAGGAAGGACTCCATG -ACGGAATTCAGGAAGGACTGTGTG -ACGGAATTCAGGAAGGACCTAGTG -ACGGAATTCAGGAAGGACCATCTG -ACGGAATTCAGGAAGGACGAGTTG -ACGGAATTCAGGAAGGACAGACTG -ACGGAATTCAGGAAGGACTCGGTA -ACGGAATTCAGGAAGGACTGCCTA -ACGGAATTCAGGAAGGACCCACTA -ACGGAATTCAGGAAGGACGGAGTA -ACGGAATTCAGGAAGGACTCGTCT -ACGGAATTCAGGAAGGACTGCACT -ACGGAATTCAGGAAGGACCTGACT -ACGGAATTCAGGAAGGACCAACCT -ACGGAATTCAGGAAGGACGCTACT -ACGGAATTCAGGAAGGACGGATCT -ACGGAATTCAGGAAGGACAAGGCT -ACGGAATTCAGGAAGGACTCAACC -ACGGAATTCAGGAAGGACTGTTCC -ACGGAATTCAGGAAGGACATTCCC -ACGGAATTCAGGAAGGACTTCTCG -ACGGAATTCAGGAAGGACTAGACG -ACGGAATTCAGGAAGGACGTAACG -ACGGAATTCAGGAAGGACACTTCG -ACGGAATTCAGGAAGGACTACGCA -ACGGAATTCAGGAAGGACCTTGCA -ACGGAATTCAGGAAGGACCGAACA -ACGGAATTCAGGAAGGACCAGTCA -ACGGAATTCAGGAAGGACGATCCA -ACGGAATTCAGGAAGGACACGACA -ACGGAATTCAGGAAGGACAGCTCA -ACGGAATTCAGGAAGGACTCACGT -ACGGAATTCAGGAAGGACCGTAGT -ACGGAATTCAGGAAGGACGTCAGT -ACGGAATTCAGGAAGGACGAAGGT -ACGGAATTCAGGAAGGACAACCGT -ACGGAATTCAGGAAGGACTTGTGC -ACGGAATTCAGGAAGGACCTAAGC -ACGGAATTCAGGAAGGACACTAGC -ACGGAATTCAGGAAGGACAGATGC -ACGGAATTCAGGAAGGACTGAAGG -ACGGAATTCAGGAAGGACCAATGG -ACGGAATTCAGGAAGGACATGAGG -ACGGAATTCAGGAAGGACAATGGG -ACGGAATTCAGGAAGGACTCCTGA -ACGGAATTCAGGAAGGACTAGCGA -ACGGAATTCAGGAAGGACCACAGA -ACGGAATTCAGGAAGGACGCAAGA -ACGGAATTCAGGAAGGACGGTTGA -ACGGAATTCAGGAAGGACTCCGAT -ACGGAATTCAGGAAGGACTGGCAT -ACGGAATTCAGGAAGGACCGAGAT -ACGGAATTCAGGAAGGACTACCAC -ACGGAATTCAGGAAGGACCAGAAC -ACGGAATTCAGGAAGGACGTCTAC -ACGGAATTCAGGAAGGACACGTAC -ACGGAATTCAGGAAGGACAGTGAC -ACGGAATTCAGGAAGGACCTGTAG -ACGGAATTCAGGAAGGACCCTAAG -ACGGAATTCAGGAAGGACGTTCAG -ACGGAATTCAGGAAGGACGCATAG -ACGGAATTCAGGAAGGACGACAAG -ACGGAATTCAGGAAGGACAAGCAG -ACGGAATTCAGGAAGGACCGTCAA -ACGGAATTCAGGAAGGACGCTGAA -ACGGAATTCAGGAAGGACAGTACG -ACGGAATTCAGGAAGGACATCCGA -ACGGAATTCAGGAAGGACATGGGA -ACGGAATTCAGGAAGGACGTGCAA -ACGGAATTCAGGAAGGACGAGGAA -ACGGAATTCAGGAAGGACCAGGTA -ACGGAATTCAGGAAGGACGACTCT -ACGGAATTCAGGAAGGACAGTCCT -ACGGAATTCAGGAAGGACTAAGCC -ACGGAATTCAGGAAGGACATAGCC -ACGGAATTCAGGAAGGACTAACCG -ACGGAATTCAGGAAGGACATGCCA -ACGGAATTCAGGCAGAAGGGAAAC -ACGGAATTCAGGCAGAAGAACACC -ACGGAATTCAGGCAGAAGATCGAG -ACGGAATTCAGGCAGAAGCTCCTT -ACGGAATTCAGGCAGAAGCCTGTT -ACGGAATTCAGGCAGAAGCGGTTT -ACGGAATTCAGGCAGAAGGTGGTT -ACGGAATTCAGGCAGAAGGCCTTT -ACGGAATTCAGGCAGAAGGGTCTT -ACGGAATTCAGGCAGAAGACGCTT -ACGGAATTCAGGCAGAAGAGCGTT -ACGGAATTCAGGCAGAAGTTCGTC -ACGGAATTCAGGCAGAAGTCTCTC -ACGGAATTCAGGCAGAAGTGGATC -ACGGAATTCAGGCAGAAGCACTTC -ACGGAATTCAGGCAGAAGGTACTC -ACGGAATTCAGGCAGAAGGATGTC -ACGGAATTCAGGCAGAAGACAGTC -ACGGAATTCAGGCAGAAGTTGCTG -ACGGAATTCAGGCAGAAGTCCATG -ACGGAATTCAGGCAGAAGTGTGTG -ACGGAATTCAGGCAGAAGCTAGTG -ACGGAATTCAGGCAGAAGCATCTG -ACGGAATTCAGGCAGAAGGAGTTG -ACGGAATTCAGGCAGAAGAGACTG -ACGGAATTCAGGCAGAAGTCGGTA -ACGGAATTCAGGCAGAAGTGCCTA -ACGGAATTCAGGCAGAAGCCACTA -ACGGAATTCAGGCAGAAGGGAGTA -ACGGAATTCAGGCAGAAGTCGTCT -ACGGAATTCAGGCAGAAGTGCACT -ACGGAATTCAGGCAGAAGCTGACT -ACGGAATTCAGGCAGAAGCAACCT -ACGGAATTCAGGCAGAAGGCTACT -ACGGAATTCAGGCAGAAGGGATCT -ACGGAATTCAGGCAGAAGAAGGCT -ACGGAATTCAGGCAGAAGTCAACC -ACGGAATTCAGGCAGAAGTGTTCC -ACGGAATTCAGGCAGAAGATTCCC -ACGGAATTCAGGCAGAAGTTCTCG -ACGGAATTCAGGCAGAAGTAGACG -ACGGAATTCAGGCAGAAGGTAACG -ACGGAATTCAGGCAGAAGACTTCG -ACGGAATTCAGGCAGAAGTACGCA -ACGGAATTCAGGCAGAAGCTTGCA -ACGGAATTCAGGCAGAAGCGAACA -ACGGAATTCAGGCAGAAGCAGTCA -ACGGAATTCAGGCAGAAGGATCCA -ACGGAATTCAGGCAGAAGACGACA -ACGGAATTCAGGCAGAAGAGCTCA -ACGGAATTCAGGCAGAAGTCACGT -ACGGAATTCAGGCAGAAGCGTAGT -ACGGAATTCAGGCAGAAGGTCAGT -ACGGAATTCAGGCAGAAGGAAGGT -ACGGAATTCAGGCAGAAGAACCGT -ACGGAATTCAGGCAGAAGTTGTGC -ACGGAATTCAGGCAGAAGCTAAGC -ACGGAATTCAGGCAGAAGACTAGC -ACGGAATTCAGGCAGAAGAGATGC -ACGGAATTCAGGCAGAAGTGAAGG -ACGGAATTCAGGCAGAAGCAATGG -ACGGAATTCAGGCAGAAGATGAGG -ACGGAATTCAGGCAGAAGAATGGG -ACGGAATTCAGGCAGAAGTCCTGA -ACGGAATTCAGGCAGAAGTAGCGA -ACGGAATTCAGGCAGAAGCACAGA -ACGGAATTCAGGCAGAAGGCAAGA -ACGGAATTCAGGCAGAAGGGTTGA -ACGGAATTCAGGCAGAAGTCCGAT -ACGGAATTCAGGCAGAAGTGGCAT -ACGGAATTCAGGCAGAAGCGAGAT -ACGGAATTCAGGCAGAAGTACCAC -ACGGAATTCAGGCAGAAGCAGAAC -ACGGAATTCAGGCAGAAGGTCTAC -ACGGAATTCAGGCAGAAGACGTAC -ACGGAATTCAGGCAGAAGAGTGAC -ACGGAATTCAGGCAGAAGCTGTAG -ACGGAATTCAGGCAGAAGCCTAAG -ACGGAATTCAGGCAGAAGGTTCAG -ACGGAATTCAGGCAGAAGGCATAG -ACGGAATTCAGGCAGAAGGACAAG -ACGGAATTCAGGCAGAAGAAGCAG -ACGGAATTCAGGCAGAAGCGTCAA -ACGGAATTCAGGCAGAAGGCTGAA -ACGGAATTCAGGCAGAAGAGTACG -ACGGAATTCAGGCAGAAGATCCGA -ACGGAATTCAGGCAGAAGATGGGA -ACGGAATTCAGGCAGAAGGTGCAA -ACGGAATTCAGGCAGAAGGAGGAA -ACGGAATTCAGGCAGAAGCAGGTA -ACGGAATTCAGGCAGAAGGACTCT -ACGGAATTCAGGCAGAAGAGTCCT -ACGGAATTCAGGCAGAAGTAAGCC -ACGGAATTCAGGCAGAAGATAGCC -ACGGAATTCAGGCAGAAGTAACCG -ACGGAATTCAGGCAGAAGATGCCA -ACGGAATTCAGGCAACGTGGAAAC -ACGGAATTCAGGCAACGTAACACC -ACGGAATTCAGGCAACGTATCGAG -ACGGAATTCAGGCAACGTCTCCTT -ACGGAATTCAGGCAACGTCCTGTT -ACGGAATTCAGGCAACGTCGGTTT -ACGGAATTCAGGCAACGTGTGGTT -ACGGAATTCAGGCAACGTGCCTTT -ACGGAATTCAGGCAACGTGGTCTT -ACGGAATTCAGGCAACGTACGCTT -ACGGAATTCAGGCAACGTAGCGTT -ACGGAATTCAGGCAACGTTTCGTC -ACGGAATTCAGGCAACGTTCTCTC -ACGGAATTCAGGCAACGTTGGATC -ACGGAATTCAGGCAACGTCACTTC -ACGGAATTCAGGCAACGTGTACTC -ACGGAATTCAGGCAACGTGATGTC -ACGGAATTCAGGCAACGTACAGTC -ACGGAATTCAGGCAACGTTTGCTG -ACGGAATTCAGGCAACGTTCCATG -ACGGAATTCAGGCAACGTTGTGTG -ACGGAATTCAGGCAACGTCTAGTG -ACGGAATTCAGGCAACGTCATCTG -ACGGAATTCAGGCAACGTGAGTTG -ACGGAATTCAGGCAACGTAGACTG -ACGGAATTCAGGCAACGTTCGGTA -ACGGAATTCAGGCAACGTTGCCTA -ACGGAATTCAGGCAACGTCCACTA -ACGGAATTCAGGCAACGTGGAGTA -ACGGAATTCAGGCAACGTTCGTCT -ACGGAATTCAGGCAACGTTGCACT -ACGGAATTCAGGCAACGTCTGACT -ACGGAATTCAGGCAACGTCAACCT -ACGGAATTCAGGCAACGTGCTACT -ACGGAATTCAGGCAACGTGGATCT -ACGGAATTCAGGCAACGTAAGGCT -ACGGAATTCAGGCAACGTTCAACC -ACGGAATTCAGGCAACGTTGTTCC -ACGGAATTCAGGCAACGTATTCCC -ACGGAATTCAGGCAACGTTTCTCG -ACGGAATTCAGGCAACGTTAGACG -ACGGAATTCAGGCAACGTGTAACG -ACGGAATTCAGGCAACGTACTTCG -ACGGAATTCAGGCAACGTTACGCA -ACGGAATTCAGGCAACGTCTTGCA -ACGGAATTCAGGCAACGTCGAACA -ACGGAATTCAGGCAACGTCAGTCA -ACGGAATTCAGGCAACGTGATCCA -ACGGAATTCAGGCAACGTACGACA -ACGGAATTCAGGCAACGTAGCTCA -ACGGAATTCAGGCAACGTTCACGT -ACGGAATTCAGGCAACGTCGTAGT -ACGGAATTCAGGCAACGTGTCAGT -ACGGAATTCAGGCAACGTGAAGGT -ACGGAATTCAGGCAACGTAACCGT -ACGGAATTCAGGCAACGTTTGTGC -ACGGAATTCAGGCAACGTCTAAGC -ACGGAATTCAGGCAACGTACTAGC -ACGGAATTCAGGCAACGTAGATGC -ACGGAATTCAGGCAACGTTGAAGG -ACGGAATTCAGGCAACGTCAATGG -ACGGAATTCAGGCAACGTATGAGG -ACGGAATTCAGGCAACGTAATGGG -ACGGAATTCAGGCAACGTTCCTGA -ACGGAATTCAGGCAACGTTAGCGA -ACGGAATTCAGGCAACGTCACAGA -ACGGAATTCAGGCAACGTGCAAGA -ACGGAATTCAGGCAACGTGGTTGA -ACGGAATTCAGGCAACGTTCCGAT -ACGGAATTCAGGCAACGTTGGCAT -ACGGAATTCAGGCAACGTCGAGAT -ACGGAATTCAGGCAACGTTACCAC -ACGGAATTCAGGCAACGTCAGAAC -ACGGAATTCAGGCAACGTGTCTAC -ACGGAATTCAGGCAACGTACGTAC -ACGGAATTCAGGCAACGTAGTGAC -ACGGAATTCAGGCAACGTCTGTAG -ACGGAATTCAGGCAACGTCCTAAG -ACGGAATTCAGGCAACGTGTTCAG -ACGGAATTCAGGCAACGTGCATAG -ACGGAATTCAGGCAACGTGACAAG -ACGGAATTCAGGCAACGTAAGCAG -ACGGAATTCAGGCAACGTCGTCAA -ACGGAATTCAGGCAACGTGCTGAA -ACGGAATTCAGGCAACGTAGTACG -ACGGAATTCAGGCAACGTATCCGA -ACGGAATTCAGGCAACGTATGGGA -ACGGAATTCAGGCAACGTGTGCAA -ACGGAATTCAGGCAACGTGAGGAA -ACGGAATTCAGGCAACGTCAGGTA -ACGGAATTCAGGCAACGTGACTCT -ACGGAATTCAGGCAACGTAGTCCT -ACGGAATTCAGGCAACGTTAAGCC -ACGGAATTCAGGCAACGTATAGCC -ACGGAATTCAGGCAACGTTAACCG -ACGGAATTCAGGCAACGTATGCCA -ACGGAATTCAGGGAAGCTGGAAAC -ACGGAATTCAGGGAAGCTAACACC -ACGGAATTCAGGGAAGCTATCGAG -ACGGAATTCAGGGAAGCTCTCCTT -ACGGAATTCAGGGAAGCTCCTGTT -ACGGAATTCAGGGAAGCTCGGTTT -ACGGAATTCAGGGAAGCTGTGGTT -ACGGAATTCAGGGAAGCTGCCTTT -ACGGAATTCAGGGAAGCTGGTCTT -ACGGAATTCAGGGAAGCTACGCTT -ACGGAATTCAGGGAAGCTAGCGTT -ACGGAATTCAGGGAAGCTTTCGTC -ACGGAATTCAGGGAAGCTTCTCTC -ACGGAATTCAGGGAAGCTTGGATC -ACGGAATTCAGGGAAGCTCACTTC -ACGGAATTCAGGGAAGCTGTACTC -ACGGAATTCAGGGAAGCTGATGTC -ACGGAATTCAGGGAAGCTACAGTC -ACGGAATTCAGGGAAGCTTTGCTG -ACGGAATTCAGGGAAGCTTCCATG -ACGGAATTCAGGGAAGCTTGTGTG -ACGGAATTCAGGGAAGCTCTAGTG -ACGGAATTCAGGGAAGCTCATCTG -ACGGAATTCAGGGAAGCTGAGTTG -ACGGAATTCAGGGAAGCTAGACTG -ACGGAATTCAGGGAAGCTTCGGTA -ACGGAATTCAGGGAAGCTTGCCTA -ACGGAATTCAGGGAAGCTCCACTA -ACGGAATTCAGGGAAGCTGGAGTA -ACGGAATTCAGGGAAGCTTCGTCT -ACGGAATTCAGGGAAGCTTGCACT -ACGGAATTCAGGGAAGCTCTGACT -ACGGAATTCAGGGAAGCTCAACCT -ACGGAATTCAGGGAAGCTGCTACT -ACGGAATTCAGGGAAGCTGGATCT -ACGGAATTCAGGGAAGCTAAGGCT -ACGGAATTCAGGGAAGCTTCAACC -ACGGAATTCAGGGAAGCTTGTTCC -ACGGAATTCAGGGAAGCTATTCCC -ACGGAATTCAGGGAAGCTTTCTCG -ACGGAATTCAGGGAAGCTTAGACG -ACGGAATTCAGGGAAGCTGTAACG -ACGGAATTCAGGGAAGCTACTTCG -ACGGAATTCAGGGAAGCTTACGCA -ACGGAATTCAGGGAAGCTCTTGCA -ACGGAATTCAGGGAAGCTCGAACA -ACGGAATTCAGGGAAGCTCAGTCA -ACGGAATTCAGGGAAGCTGATCCA -ACGGAATTCAGGGAAGCTACGACA -ACGGAATTCAGGGAAGCTAGCTCA -ACGGAATTCAGGGAAGCTTCACGT -ACGGAATTCAGGGAAGCTCGTAGT -ACGGAATTCAGGGAAGCTGTCAGT -ACGGAATTCAGGGAAGCTGAAGGT -ACGGAATTCAGGGAAGCTAACCGT -ACGGAATTCAGGGAAGCTTTGTGC -ACGGAATTCAGGGAAGCTCTAAGC -ACGGAATTCAGGGAAGCTACTAGC -ACGGAATTCAGGGAAGCTAGATGC -ACGGAATTCAGGGAAGCTTGAAGG -ACGGAATTCAGGGAAGCTCAATGG -ACGGAATTCAGGGAAGCTATGAGG -ACGGAATTCAGGGAAGCTAATGGG -ACGGAATTCAGGGAAGCTTCCTGA -ACGGAATTCAGGGAAGCTTAGCGA -ACGGAATTCAGGGAAGCTCACAGA -ACGGAATTCAGGGAAGCTGCAAGA -ACGGAATTCAGGGAAGCTGGTTGA -ACGGAATTCAGGGAAGCTTCCGAT -ACGGAATTCAGGGAAGCTTGGCAT -ACGGAATTCAGGGAAGCTCGAGAT -ACGGAATTCAGGGAAGCTTACCAC -ACGGAATTCAGGGAAGCTCAGAAC -ACGGAATTCAGGGAAGCTGTCTAC -ACGGAATTCAGGGAAGCTACGTAC -ACGGAATTCAGGGAAGCTAGTGAC -ACGGAATTCAGGGAAGCTCTGTAG -ACGGAATTCAGGGAAGCTCCTAAG -ACGGAATTCAGGGAAGCTGTTCAG -ACGGAATTCAGGGAAGCTGCATAG -ACGGAATTCAGGGAAGCTGACAAG -ACGGAATTCAGGGAAGCTAAGCAG -ACGGAATTCAGGGAAGCTCGTCAA -ACGGAATTCAGGGAAGCTGCTGAA -ACGGAATTCAGGGAAGCTAGTACG -ACGGAATTCAGGGAAGCTATCCGA -ACGGAATTCAGGGAAGCTATGGGA -ACGGAATTCAGGGAAGCTGTGCAA -ACGGAATTCAGGGAAGCTGAGGAA -ACGGAATTCAGGGAAGCTCAGGTA -ACGGAATTCAGGGAAGCTGACTCT -ACGGAATTCAGGGAAGCTAGTCCT -ACGGAATTCAGGGAAGCTTAAGCC -ACGGAATTCAGGGAAGCTATAGCC -ACGGAATTCAGGGAAGCTTAACCG -ACGGAATTCAGGGAAGCTATGCCA -ACGGAATTCAGGACGAGTGGAAAC -ACGGAATTCAGGACGAGTAACACC -ACGGAATTCAGGACGAGTATCGAG -ACGGAATTCAGGACGAGTCTCCTT -ACGGAATTCAGGACGAGTCCTGTT -ACGGAATTCAGGACGAGTCGGTTT -ACGGAATTCAGGACGAGTGTGGTT -ACGGAATTCAGGACGAGTGCCTTT -ACGGAATTCAGGACGAGTGGTCTT -ACGGAATTCAGGACGAGTACGCTT -ACGGAATTCAGGACGAGTAGCGTT -ACGGAATTCAGGACGAGTTTCGTC -ACGGAATTCAGGACGAGTTCTCTC -ACGGAATTCAGGACGAGTTGGATC -ACGGAATTCAGGACGAGTCACTTC -ACGGAATTCAGGACGAGTGTACTC -ACGGAATTCAGGACGAGTGATGTC -ACGGAATTCAGGACGAGTACAGTC -ACGGAATTCAGGACGAGTTTGCTG -ACGGAATTCAGGACGAGTTCCATG -ACGGAATTCAGGACGAGTTGTGTG -ACGGAATTCAGGACGAGTCTAGTG -ACGGAATTCAGGACGAGTCATCTG -ACGGAATTCAGGACGAGTGAGTTG -ACGGAATTCAGGACGAGTAGACTG -ACGGAATTCAGGACGAGTTCGGTA -ACGGAATTCAGGACGAGTTGCCTA -ACGGAATTCAGGACGAGTCCACTA -ACGGAATTCAGGACGAGTGGAGTA -ACGGAATTCAGGACGAGTTCGTCT -ACGGAATTCAGGACGAGTTGCACT -ACGGAATTCAGGACGAGTCTGACT -ACGGAATTCAGGACGAGTCAACCT -ACGGAATTCAGGACGAGTGCTACT -ACGGAATTCAGGACGAGTGGATCT -ACGGAATTCAGGACGAGTAAGGCT -ACGGAATTCAGGACGAGTTCAACC -ACGGAATTCAGGACGAGTTGTTCC -ACGGAATTCAGGACGAGTATTCCC -ACGGAATTCAGGACGAGTTTCTCG -ACGGAATTCAGGACGAGTTAGACG -ACGGAATTCAGGACGAGTGTAACG -ACGGAATTCAGGACGAGTACTTCG -ACGGAATTCAGGACGAGTTACGCA -ACGGAATTCAGGACGAGTCTTGCA -ACGGAATTCAGGACGAGTCGAACA -ACGGAATTCAGGACGAGTCAGTCA -ACGGAATTCAGGACGAGTGATCCA -ACGGAATTCAGGACGAGTACGACA -ACGGAATTCAGGACGAGTAGCTCA -ACGGAATTCAGGACGAGTTCACGT -ACGGAATTCAGGACGAGTCGTAGT -ACGGAATTCAGGACGAGTGTCAGT -ACGGAATTCAGGACGAGTGAAGGT -ACGGAATTCAGGACGAGTAACCGT -ACGGAATTCAGGACGAGTTTGTGC -ACGGAATTCAGGACGAGTCTAAGC -ACGGAATTCAGGACGAGTACTAGC -ACGGAATTCAGGACGAGTAGATGC -ACGGAATTCAGGACGAGTTGAAGG -ACGGAATTCAGGACGAGTCAATGG -ACGGAATTCAGGACGAGTATGAGG -ACGGAATTCAGGACGAGTAATGGG -ACGGAATTCAGGACGAGTTCCTGA -ACGGAATTCAGGACGAGTTAGCGA -ACGGAATTCAGGACGAGTCACAGA -ACGGAATTCAGGACGAGTGCAAGA -ACGGAATTCAGGACGAGTGGTTGA -ACGGAATTCAGGACGAGTTCCGAT -ACGGAATTCAGGACGAGTTGGCAT -ACGGAATTCAGGACGAGTCGAGAT -ACGGAATTCAGGACGAGTTACCAC -ACGGAATTCAGGACGAGTCAGAAC -ACGGAATTCAGGACGAGTGTCTAC -ACGGAATTCAGGACGAGTACGTAC -ACGGAATTCAGGACGAGTAGTGAC -ACGGAATTCAGGACGAGTCTGTAG -ACGGAATTCAGGACGAGTCCTAAG -ACGGAATTCAGGACGAGTGTTCAG -ACGGAATTCAGGACGAGTGCATAG -ACGGAATTCAGGACGAGTGACAAG -ACGGAATTCAGGACGAGTAAGCAG -ACGGAATTCAGGACGAGTCGTCAA -ACGGAATTCAGGACGAGTGCTGAA -ACGGAATTCAGGACGAGTAGTACG -ACGGAATTCAGGACGAGTATCCGA -ACGGAATTCAGGACGAGTATGGGA -ACGGAATTCAGGACGAGTGTGCAA -ACGGAATTCAGGACGAGTGAGGAA -ACGGAATTCAGGACGAGTCAGGTA -ACGGAATTCAGGACGAGTGACTCT -ACGGAATTCAGGACGAGTAGTCCT -ACGGAATTCAGGACGAGTTAAGCC -ACGGAATTCAGGACGAGTATAGCC -ACGGAATTCAGGACGAGTTAACCG -ACGGAATTCAGGACGAGTATGCCA -ACGGAATTCAGGCGAATCGGAAAC -ACGGAATTCAGGCGAATCAACACC -ACGGAATTCAGGCGAATCATCGAG -ACGGAATTCAGGCGAATCCTCCTT -ACGGAATTCAGGCGAATCCCTGTT -ACGGAATTCAGGCGAATCCGGTTT -ACGGAATTCAGGCGAATCGTGGTT -ACGGAATTCAGGCGAATCGCCTTT -ACGGAATTCAGGCGAATCGGTCTT -ACGGAATTCAGGCGAATCACGCTT -ACGGAATTCAGGCGAATCAGCGTT -ACGGAATTCAGGCGAATCTTCGTC -ACGGAATTCAGGCGAATCTCTCTC -ACGGAATTCAGGCGAATCTGGATC -ACGGAATTCAGGCGAATCCACTTC -ACGGAATTCAGGCGAATCGTACTC -ACGGAATTCAGGCGAATCGATGTC -ACGGAATTCAGGCGAATCACAGTC -ACGGAATTCAGGCGAATCTTGCTG -ACGGAATTCAGGCGAATCTCCATG -ACGGAATTCAGGCGAATCTGTGTG -ACGGAATTCAGGCGAATCCTAGTG -ACGGAATTCAGGCGAATCCATCTG -ACGGAATTCAGGCGAATCGAGTTG -ACGGAATTCAGGCGAATCAGACTG -ACGGAATTCAGGCGAATCTCGGTA -ACGGAATTCAGGCGAATCTGCCTA -ACGGAATTCAGGCGAATCCCACTA -ACGGAATTCAGGCGAATCGGAGTA -ACGGAATTCAGGCGAATCTCGTCT -ACGGAATTCAGGCGAATCTGCACT -ACGGAATTCAGGCGAATCCTGACT -ACGGAATTCAGGCGAATCCAACCT -ACGGAATTCAGGCGAATCGCTACT -ACGGAATTCAGGCGAATCGGATCT -ACGGAATTCAGGCGAATCAAGGCT -ACGGAATTCAGGCGAATCTCAACC -ACGGAATTCAGGCGAATCTGTTCC -ACGGAATTCAGGCGAATCATTCCC -ACGGAATTCAGGCGAATCTTCTCG -ACGGAATTCAGGCGAATCTAGACG -ACGGAATTCAGGCGAATCGTAACG -ACGGAATTCAGGCGAATCACTTCG -ACGGAATTCAGGCGAATCTACGCA -ACGGAATTCAGGCGAATCCTTGCA -ACGGAATTCAGGCGAATCCGAACA -ACGGAATTCAGGCGAATCCAGTCA -ACGGAATTCAGGCGAATCGATCCA -ACGGAATTCAGGCGAATCACGACA -ACGGAATTCAGGCGAATCAGCTCA -ACGGAATTCAGGCGAATCTCACGT -ACGGAATTCAGGCGAATCCGTAGT -ACGGAATTCAGGCGAATCGTCAGT -ACGGAATTCAGGCGAATCGAAGGT -ACGGAATTCAGGCGAATCAACCGT -ACGGAATTCAGGCGAATCTTGTGC -ACGGAATTCAGGCGAATCCTAAGC -ACGGAATTCAGGCGAATCACTAGC -ACGGAATTCAGGCGAATCAGATGC -ACGGAATTCAGGCGAATCTGAAGG -ACGGAATTCAGGCGAATCCAATGG -ACGGAATTCAGGCGAATCATGAGG -ACGGAATTCAGGCGAATCAATGGG -ACGGAATTCAGGCGAATCTCCTGA -ACGGAATTCAGGCGAATCTAGCGA -ACGGAATTCAGGCGAATCCACAGA -ACGGAATTCAGGCGAATCGCAAGA -ACGGAATTCAGGCGAATCGGTTGA -ACGGAATTCAGGCGAATCTCCGAT -ACGGAATTCAGGCGAATCTGGCAT -ACGGAATTCAGGCGAATCCGAGAT -ACGGAATTCAGGCGAATCTACCAC -ACGGAATTCAGGCGAATCCAGAAC -ACGGAATTCAGGCGAATCGTCTAC -ACGGAATTCAGGCGAATCACGTAC -ACGGAATTCAGGCGAATCAGTGAC -ACGGAATTCAGGCGAATCCTGTAG -ACGGAATTCAGGCGAATCCCTAAG -ACGGAATTCAGGCGAATCGTTCAG -ACGGAATTCAGGCGAATCGCATAG -ACGGAATTCAGGCGAATCGACAAG -ACGGAATTCAGGCGAATCAAGCAG -ACGGAATTCAGGCGAATCCGTCAA -ACGGAATTCAGGCGAATCGCTGAA -ACGGAATTCAGGCGAATCAGTACG -ACGGAATTCAGGCGAATCATCCGA -ACGGAATTCAGGCGAATCATGGGA -ACGGAATTCAGGCGAATCGTGCAA -ACGGAATTCAGGCGAATCGAGGAA -ACGGAATTCAGGCGAATCCAGGTA -ACGGAATTCAGGCGAATCGACTCT -ACGGAATTCAGGCGAATCAGTCCT -ACGGAATTCAGGCGAATCTAAGCC -ACGGAATTCAGGCGAATCATAGCC -ACGGAATTCAGGCGAATCTAACCG -ACGGAATTCAGGCGAATCATGCCA -ACGGAATTCAGGGGAATGGGAAAC -ACGGAATTCAGGGGAATGAACACC -ACGGAATTCAGGGGAATGATCGAG -ACGGAATTCAGGGGAATGCTCCTT -ACGGAATTCAGGGGAATGCCTGTT -ACGGAATTCAGGGGAATGCGGTTT -ACGGAATTCAGGGGAATGGTGGTT -ACGGAATTCAGGGGAATGGCCTTT -ACGGAATTCAGGGGAATGGGTCTT -ACGGAATTCAGGGGAATGACGCTT -ACGGAATTCAGGGGAATGAGCGTT -ACGGAATTCAGGGGAATGTTCGTC -ACGGAATTCAGGGGAATGTCTCTC -ACGGAATTCAGGGGAATGTGGATC -ACGGAATTCAGGGGAATGCACTTC -ACGGAATTCAGGGGAATGGTACTC -ACGGAATTCAGGGGAATGGATGTC -ACGGAATTCAGGGGAATGACAGTC -ACGGAATTCAGGGGAATGTTGCTG -ACGGAATTCAGGGGAATGTCCATG -ACGGAATTCAGGGGAATGTGTGTG -ACGGAATTCAGGGGAATGCTAGTG -ACGGAATTCAGGGGAATGCATCTG -ACGGAATTCAGGGGAATGGAGTTG -ACGGAATTCAGGGGAATGAGACTG -ACGGAATTCAGGGGAATGTCGGTA -ACGGAATTCAGGGGAATGTGCCTA -ACGGAATTCAGGGGAATGCCACTA -ACGGAATTCAGGGGAATGGGAGTA -ACGGAATTCAGGGGAATGTCGTCT -ACGGAATTCAGGGGAATGTGCACT -ACGGAATTCAGGGGAATGCTGACT -ACGGAATTCAGGGGAATGCAACCT -ACGGAATTCAGGGGAATGGCTACT -ACGGAATTCAGGGGAATGGGATCT -ACGGAATTCAGGGGAATGAAGGCT -ACGGAATTCAGGGGAATGTCAACC -ACGGAATTCAGGGGAATGTGTTCC -ACGGAATTCAGGGGAATGATTCCC -ACGGAATTCAGGGGAATGTTCTCG -ACGGAATTCAGGGGAATGTAGACG -ACGGAATTCAGGGGAATGGTAACG -ACGGAATTCAGGGGAATGACTTCG -ACGGAATTCAGGGGAATGTACGCA -ACGGAATTCAGGGGAATGCTTGCA -ACGGAATTCAGGGGAATGCGAACA -ACGGAATTCAGGGGAATGCAGTCA -ACGGAATTCAGGGGAATGGATCCA -ACGGAATTCAGGGGAATGACGACA -ACGGAATTCAGGGGAATGAGCTCA -ACGGAATTCAGGGGAATGTCACGT -ACGGAATTCAGGGGAATGCGTAGT -ACGGAATTCAGGGGAATGGTCAGT -ACGGAATTCAGGGGAATGGAAGGT -ACGGAATTCAGGGGAATGAACCGT -ACGGAATTCAGGGGAATGTTGTGC -ACGGAATTCAGGGGAATGCTAAGC -ACGGAATTCAGGGGAATGACTAGC -ACGGAATTCAGGGGAATGAGATGC -ACGGAATTCAGGGGAATGTGAAGG -ACGGAATTCAGGGGAATGCAATGG -ACGGAATTCAGGGGAATGATGAGG -ACGGAATTCAGGGGAATGAATGGG -ACGGAATTCAGGGGAATGTCCTGA -ACGGAATTCAGGGGAATGTAGCGA -ACGGAATTCAGGGGAATGCACAGA -ACGGAATTCAGGGGAATGGCAAGA -ACGGAATTCAGGGGAATGGGTTGA -ACGGAATTCAGGGGAATGTCCGAT -ACGGAATTCAGGGGAATGTGGCAT -ACGGAATTCAGGGGAATGCGAGAT -ACGGAATTCAGGGGAATGTACCAC -ACGGAATTCAGGGGAATGCAGAAC -ACGGAATTCAGGGGAATGGTCTAC -ACGGAATTCAGGGGAATGACGTAC -ACGGAATTCAGGGGAATGAGTGAC -ACGGAATTCAGGGGAATGCTGTAG -ACGGAATTCAGGGGAATGCCTAAG -ACGGAATTCAGGGGAATGGTTCAG -ACGGAATTCAGGGGAATGGCATAG -ACGGAATTCAGGGGAATGGACAAG -ACGGAATTCAGGGGAATGAAGCAG -ACGGAATTCAGGGGAATGCGTCAA -ACGGAATTCAGGGGAATGGCTGAA -ACGGAATTCAGGGGAATGAGTACG -ACGGAATTCAGGGGAATGATCCGA -ACGGAATTCAGGGGAATGATGGGA -ACGGAATTCAGGGGAATGGTGCAA -ACGGAATTCAGGGGAATGGAGGAA -ACGGAATTCAGGGGAATGCAGGTA -ACGGAATTCAGGGGAATGGACTCT -ACGGAATTCAGGGGAATGAGTCCT -ACGGAATTCAGGGGAATGTAAGCC -ACGGAATTCAGGGGAATGATAGCC -ACGGAATTCAGGGGAATGTAACCG -ACGGAATTCAGGGGAATGATGCCA -ACGGAATTCAGGCAAGTGGGAAAC -ACGGAATTCAGGCAAGTGAACACC -ACGGAATTCAGGCAAGTGATCGAG -ACGGAATTCAGGCAAGTGCTCCTT -ACGGAATTCAGGCAAGTGCCTGTT -ACGGAATTCAGGCAAGTGCGGTTT -ACGGAATTCAGGCAAGTGGTGGTT -ACGGAATTCAGGCAAGTGGCCTTT -ACGGAATTCAGGCAAGTGGGTCTT -ACGGAATTCAGGCAAGTGACGCTT -ACGGAATTCAGGCAAGTGAGCGTT -ACGGAATTCAGGCAAGTGTTCGTC -ACGGAATTCAGGCAAGTGTCTCTC -ACGGAATTCAGGCAAGTGTGGATC -ACGGAATTCAGGCAAGTGCACTTC -ACGGAATTCAGGCAAGTGGTACTC -ACGGAATTCAGGCAAGTGGATGTC -ACGGAATTCAGGCAAGTGACAGTC -ACGGAATTCAGGCAAGTGTTGCTG -ACGGAATTCAGGCAAGTGTCCATG -ACGGAATTCAGGCAAGTGTGTGTG -ACGGAATTCAGGCAAGTGCTAGTG -ACGGAATTCAGGCAAGTGCATCTG -ACGGAATTCAGGCAAGTGGAGTTG -ACGGAATTCAGGCAAGTGAGACTG -ACGGAATTCAGGCAAGTGTCGGTA -ACGGAATTCAGGCAAGTGTGCCTA -ACGGAATTCAGGCAAGTGCCACTA -ACGGAATTCAGGCAAGTGGGAGTA -ACGGAATTCAGGCAAGTGTCGTCT -ACGGAATTCAGGCAAGTGTGCACT -ACGGAATTCAGGCAAGTGCTGACT -ACGGAATTCAGGCAAGTGCAACCT -ACGGAATTCAGGCAAGTGGCTACT -ACGGAATTCAGGCAAGTGGGATCT -ACGGAATTCAGGCAAGTGAAGGCT -ACGGAATTCAGGCAAGTGTCAACC -ACGGAATTCAGGCAAGTGTGTTCC -ACGGAATTCAGGCAAGTGATTCCC -ACGGAATTCAGGCAAGTGTTCTCG -ACGGAATTCAGGCAAGTGTAGACG -ACGGAATTCAGGCAAGTGGTAACG -ACGGAATTCAGGCAAGTGACTTCG -ACGGAATTCAGGCAAGTGTACGCA -ACGGAATTCAGGCAAGTGCTTGCA -ACGGAATTCAGGCAAGTGCGAACA -ACGGAATTCAGGCAAGTGCAGTCA -ACGGAATTCAGGCAAGTGGATCCA -ACGGAATTCAGGCAAGTGACGACA -ACGGAATTCAGGCAAGTGAGCTCA -ACGGAATTCAGGCAAGTGTCACGT -ACGGAATTCAGGCAAGTGCGTAGT -ACGGAATTCAGGCAAGTGGTCAGT -ACGGAATTCAGGCAAGTGGAAGGT -ACGGAATTCAGGCAAGTGAACCGT -ACGGAATTCAGGCAAGTGTTGTGC -ACGGAATTCAGGCAAGTGCTAAGC -ACGGAATTCAGGCAAGTGACTAGC -ACGGAATTCAGGCAAGTGAGATGC -ACGGAATTCAGGCAAGTGTGAAGG -ACGGAATTCAGGCAAGTGCAATGG -ACGGAATTCAGGCAAGTGATGAGG -ACGGAATTCAGGCAAGTGAATGGG -ACGGAATTCAGGCAAGTGTCCTGA -ACGGAATTCAGGCAAGTGTAGCGA -ACGGAATTCAGGCAAGTGCACAGA -ACGGAATTCAGGCAAGTGGCAAGA -ACGGAATTCAGGCAAGTGGGTTGA -ACGGAATTCAGGCAAGTGTCCGAT -ACGGAATTCAGGCAAGTGTGGCAT -ACGGAATTCAGGCAAGTGCGAGAT -ACGGAATTCAGGCAAGTGTACCAC -ACGGAATTCAGGCAAGTGCAGAAC -ACGGAATTCAGGCAAGTGGTCTAC -ACGGAATTCAGGCAAGTGACGTAC -ACGGAATTCAGGCAAGTGAGTGAC -ACGGAATTCAGGCAAGTGCTGTAG -ACGGAATTCAGGCAAGTGCCTAAG -ACGGAATTCAGGCAAGTGGTTCAG -ACGGAATTCAGGCAAGTGGCATAG -ACGGAATTCAGGCAAGTGGACAAG -ACGGAATTCAGGCAAGTGAAGCAG -ACGGAATTCAGGCAAGTGCGTCAA -ACGGAATTCAGGCAAGTGGCTGAA -ACGGAATTCAGGCAAGTGAGTACG -ACGGAATTCAGGCAAGTGATCCGA -ACGGAATTCAGGCAAGTGATGGGA -ACGGAATTCAGGCAAGTGGTGCAA -ACGGAATTCAGGCAAGTGGAGGAA -ACGGAATTCAGGCAAGTGCAGGTA -ACGGAATTCAGGCAAGTGGACTCT -ACGGAATTCAGGCAAGTGAGTCCT -ACGGAATTCAGGCAAGTGTAAGCC -ACGGAATTCAGGCAAGTGATAGCC -ACGGAATTCAGGCAAGTGTAACCG -ACGGAATTCAGGCAAGTGATGCCA -ACGGAATTCAGGGAAGAGGGAAAC -ACGGAATTCAGGGAAGAGAACACC -ACGGAATTCAGGGAAGAGATCGAG -ACGGAATTCAGGGAAGAGCTCCTT -ACGGAATTCAGGGAAGAGCCTGTT -ACGGAATTCAGGGAAGAGCGGTTT -ACGGAATTCAGGGAAGAGGTGGTT -ACGGAATTCAGGGAAGAGGCCTTT -ACGGAATTCAGGGAAGAGGGTCTT -ACGGAATTCAGGGAAGAGACGCTT -ACGGAATTCAGGGAAGAGAGCGTT -ACGGAATTCAGGGAAGAGTTCGTC -ACGGAATTCAGGGAAGAGTCTCTC -ACGGAATTCAGGGAAGAGTGGATC -ACGGAATTCAGGGAAGAGCACTTC -ACGGAATTCAGGGAAGAGGTACTC -ACGGAATTCAGGGAAGAGGATGTC -ACGGAATTCAGGGAAGAGACAGTC -ACGGAATTCAGGGAAGAGTTGCTG -ACGGAATTCAGGGAAGAGTCCATG -ACGGAATTCAGGGAAGAGTGTGTG -ACGGAATTCAGGGAAGAGCTAGTG -ACGGAATTCAGGGAAGAGCATCTG -ACGGAATTCAGGGAAGAGGAGTTG -ACGGAATTCAGGGAAGAGAGACTG -ACGGAATTCAGGGAAGAGTCGGTA -ACGGAATTCAGGGAAGAGTGCCTA -ACGGAATTCAGGGAAGAGCCACTA -ACGGAATTCAGGGAAGAGGGAGTA -ACGGAATTCAGGGAAGAGTCGTCT -ACGGAATTCAGGGAAGAGTGCACT -ACGGAATTCAGGGAAGAGCTGACT -ACGGAATTCAGGGAAGAGCAACCT -ACGGAATTCAGGGAAGAGGCTACT -ACGGAATTCAGGGAAGAGGGATCT -ACGGAATTCAGGGAAGAGAAGGCT -ACGGAATTCAGGGAAGAGTCAACC -ACGGAATTCAGGGAAGAGTGTTCC -ACGGAATTCAGGGAAGAGATTCCC -ACGGAATTCAGGGAAGAGTTCTCG -ACGGAATTCAGGGAAGAGTAGACG -ACGGAATTCAGGGAAGAGGTAACG -ACGGAATTCAGGGAAGAGACTTCG -ACGGAATTCAGGGAAGAGTACGCA -ACGGAATTCAGGGAAGAGCTTGCA -ACGGAATTCAGGGAAGAGCGAACA -ACGGAATTCAGGGAAGAGCAGTCA -ACGGAATTCAGGGAAGAGGATCCA -ACGGAATTCAGGGAAGAGACGACA -ACGGAATTCAGGGAAGAGAGCTCA -ACGGAATTCAGGGAAGAGTCACGT -ACGGAATTCAGGGAAGAGCGTAGT -ACGGAATTCAGGGAAGAGGTCAGT -ACGGAATTCAGGGAAGAGGAAGGT -ACGGAATTCAGGGAAGAGAACCGT -ACGGAATTCAGGGAAGAGTTGTGC -ACGGAATTCAGGGAAGAGCTAAGC -ACGGAATTCAGGGAAGAGACTAGC -ACGGAATTCAGGGAAGAGAGATGC -ACGGAATTCAGGGAAGAGTGAAGG -ACGGAATTCAGGGAAGAGCAATGG -ACGGAATTCAGGGAAGAGATGAGG -ACGGAATTCAGGGAAGAGAATGGG -ACGGAATTCAGGGAAGAGTCCTGA -ACGGAATTCAGGGAAGAGTAGCGA -ACGGAATTCAGGGAAGAGCACAGA -ACGGAATTCAGGGAAGAGGCAAGA -ACGGAATTCAGGGAAGAGGGTTGA -ACGGAATTCAGGGAAGAGTCCGAT -ACGGAATTCAGGGAAGAGTGGCAT -ACGGAATTCAGGGAAGAGCGAGAT -ACGGAATTCAGGGAAGAGTACCAC -ACGGAATTCAGGGAAGAGCAGAAC -ACGGAATTCAGGGAAGAGGTCTAC -ACGGAATTCAGGGAAGAGACGTAC -ACGGAATTCAGGGAAGAGAGTGAC -ACGGAATTCAGGGAAGAGCTGTAG -ACGGAATTCAGGGAAGAGCCTAAG -ACGGAATTCAGGGAAGAGGTTCAG -ACGGAATTCAGGGAAGAGGCATAG -ACGGAATTCAGGGAAGAGGACAAG -ACGGAATTCAGGGAAGAGAAGCAG -ACGGAATTCAGGGAAGAGCGTCAA -ACGGAATTCAGGGAAGAGGCTGAA -ACGGAATTCAGGGAAGAGAGTACG -ACGGAATTCAGGGAAGAGATCCGA -ACGGAATTCAGGGAAGAGATGGGA -ACGGAATTCAGGGAAGAGGTGCAA -ACGGAATTCAGGGAAGAGGAGGAA -ACGGAATTCAGGGAAGAGCAGGTA -ACGGAATTCAGGGAAGAGGACTCT -ACGGAATTCAGGGAAGAGAGTCCT -ACGGAATTCAGGGAAGAGTAAGCC -ACGGAATTCAGGGAAGAGATAGCC -ACGGAATTCAGGGAAGAGTAACCG -ACGGAATTCAGGGAAGAGATGCCA -ACGGAATTCAGGGTACAGGGAAAC -ACGGAATTCAGGGTACAGAACACC -ACGGAATTCAGGGTACAGATCGAG -ACGGAATTCAGGGTACAGCTCCTT -ACGGAATTCAGGGTACAGCCTGTT -ACGGAATTCAGGGTACAGCGGTTT -ACGGAATTCAGGGTACAGGTGGTT -ACGGAATTCAGGGTACAGGCCTTT -ACGGAATTCAGGGTACAGGGTCTT -ACGGAATTCAGGGTACAGACGCTT -ACGGAATTCAGGGTACAGAGCGTT -ACGGAATTCAGGGTACAGTTCGTC -ACGGAATTCAGGGTACAGTCTCTC -ACGGAATTCAGGGTACAGTGGATC -ACGGAATTCAGGGTACAGCACTTC -ACGGAATTCAGGGTACAGGTACTC -ACGGAATTCAGGGTACAGGATGTC -ACGGAATTCAGGGTACAGACAGTC -ACGGAATTCAGGGTACAGTTGCTG -ACGGAATTCAGGGTACAGTCCATG -ACGGAATTCAGGGTACAGTGTGTG -ACGGAATTCAGGGTACAGCTAGTG -ACGGAATTCAGGGTACAGCATCTG -ACGGAATTCAGGGTACAGGAGTTG -ACGGAATTCAGGGTACAGAGACTG -ACGGAATTCAGGGTACAGTCGGTA -ACGGAATTCAGGGTACAGTGCCTA -ACGGAATTCAGGGTACAGCCACTA -ACGGAATTCAGGGTACAGGGAGTA -ACGGAATTCAGGGTACAGTCGTCT -ACGGAATTCAGGGTACAGTGCACT -ACGGAATTCAGGGTACAGCTGACT -ACGGAATTCAGGGTACAGCAACCT -ACGGAATTCAGGGTACAGGCTACT -ACGGAATTCAGGGTACAGGGATCT -ACGGAATTCAGGGTACAGAAGGCT -ACGGAATTCAGGGTACAGTCAACC -ACGGAATTCAGGGTACAGTGTTCC -ACGGAATTCAGGGTACAGATTCCC -ACGGAATTCAGGGTACAGTTCTCG -ACGGAATTCAGGGTACAGTAGACG -ACGGAATTCAGGGTACAGGTAACG -ACGGAATTCAGGGTACAGACTTCG -ACGGAATTCAGGGTACAGTACGCA -ACGGAATTCAGGGTACAGCTTGCA -ACGGAATTCAGGGTACAGCGAACA -ACGGAATTCAGGGTACAGCAGTCA -ACGGAATTCAGGGTACAGGATCCA -ACGGAATTCAGGGTACAGACGACA -ACGGAATTCAGGGTACAGAGCTCA -ACGGAATTCAGGGTACAGTCACGT -ACGGAATTCAGGGTACAGCGTAGT -ACGGAATTCAGGGTACAGGTCAGT -ACGGAATTCAGGGTACAGGAAGGT -ACGGAATTCAGGGTACAGAACCGT -ACGGAATTCAGGGTACAGTTGTGC -ACGGAATTCAGGGTACAGCTAAGC -ACGGAATTCAGGGTACAGACTAGC -ACGGAATTCAGGGTACAGAGATGC -ACGGAATTCAGGGTACAGTGAAGG -ACGGAATTCAGGGTACAGCAATGG -ACGGAATTCAGGGTACAGATGAGG -ACGGAATTCAGGGTACAGAATGGG -ACGGAATTCAGGGTACAGTCCTGA -ACGGAATTCAGGGTACAGTAGCGA -ACGGAATTCAGGGTACAGCACAGA -ACGGAATTCAGGGTACAGGCAAGA -ACGGAATTCAGGGTACAGGGTTGA -ACGGAATTCAGGGTACAGTCCGAT -ACGGAATTCAGGGTACAGTGGCAT -ACGGAATTCAGGGTACAGCGAGAT -ACGGAATTCAGGGTACAGTACCAC -ACGGAATTCAGGGTACAGCAGAAC -ACGGAATTCAGGGTACAGGTCTAC -ACGGAATTCAGGGTACAGACGTAC -ACGGAATTCAGGGTACAGAGTGAC -ACGGAATTCAGGGTACAGCTGTAG -ACGGAATTCAGGGTACAGCCTAAG -ACGGAATTCAGGGTACAGGTTCAG -ACGGAATTCAGGGTACAGGCATAG -ACGGAATTCAGGGTACAGGACAAG -ACGGAATTCAGGGTACAGAAGCAG -ACGGAATTCAGGGTACAGCGTCAA -ACGGAATTCAGGGTACAGGCTGAA -ACGGAATTCAGGGTACAGAGTACG -ACGGAATTCAGGGTACAGATCCGA -ACGGAATTCAGGGTACAGATGGGA -ACGGAATTCAGGGTACAGGTGCAA -ACGGAATTCAGGGTACAGGAGGAA -ACGGAATTCAGGGTACAGCAGGTA -ACGGAATTCAGGGTACAGGACTCT -ACGGAATTCAGGGTACAGAGTCCT -ACGGAATTCAGGGTACAGTAAGCC -ACGGAATTCAGGGTACAGATAGCC -ACGGAATTCAGGGTACAGTAACCG -ACGGAATTCAGGGTACAGATGCCA -ACGGAATTCAGGTCTGACGGAAAC -ACGGAATTCAGGTCTGACAACACC -ACGGAATTCAGGTCTGACATCGAG -ACGGAATTCAGGTCTGACCTCCTT -ACGGAATTCAGGTCTGACCCTGTT -ACGGAATTCAGGTCTGACCGGTTT -ACGGAATTCAGGTCTGACGTGGTT -ACGGAATTCAGGTCTGACGCCTTT -ACGGAATTCAGGTCTGACGGTCTT -ACGGAATTCAGGTCTGACACGCTT -ACGGAATTCAGGTCTGACAGCGTT -ACGGAATTCAGGTCTGACTTCGTC -ACGGAATTCAGGTCTGACTCTCTC -ACGGAATTCAGGTCTGACTGGATC -ACGGAATTCAGGTCTGACCACTTC -ACGGAATTCAGGTCTGACGTACTC -ACGGAATTCAGGTCTGACGATGTC -ACGGAATTCAGGTCTGACACAGTC -ACGGAATTCAGGTCTGACTTGCTG -ACGGAATTCAGGTCTGACTCCATG -ACGGAATTCAGGTCTGACTGTGTG -ACGGAATTCAGGTCTGACCTAGTG -ACGGAATTCAGGTCTGACCATCTG -ACGGAATTCAGGTCTGACGAGTTG -ACGGAATTCAGGTCTGACAGACTG -ACGGAATTCAGGTCTGACTCGGTA -ACGGAATTCAGGTCTGACTGCCTA -ACGGAATTCAGGTCTGACCCACTA -ACGGAATTCAGGTCTGACGGAGTA -ACGGAATTCAGGTCTGACTCGTCT -ACGGAATTCAGGTCTGACTGCACT -ACGGAATTCAGGTCTGACCTGACT -ACGGAATTCAGGTCTGACCAACCT -ACGGAATTCAGGTCTGACGCTACT -ACGGAATTCAGGTCTGACGGATCT -ACGGAATTCAGGTCTGACAAGGCT -ACGGAATTCAGGTCTGACTCAACC -ACGGAATTCAGGTCTGACTGTTCC -ACGGAATTCAGGTCTGACATTCCC -ACGGAATTCAGGTCTGACTTCTCG -ACGGAATTCAGGTCTGACTAGACG -ACGGAATTCAGGTCTGACGTAACG -ACGGAATTCAGGTCTGACACTTCG -ACGGAATTCAGGTCTGACTACGCA -ACGGAATTCAGGTCTGACCTTGCA -ACGGAATTCAGGTCTGACCGAACA -ACGGAATTCAGGTCTGACCAGTCA -ACGGAATTCAGGTCTGACGATCCA -ACGGAATTCAGGTCTGACACGACA -ACGGAATTCAGGTCTGACAGCTCA -ACGGAATTCAGGTCTGACTCACGT -ACGGAATTCAGGTCTGACCGTAGT -ACGGAATTCAGGTCTGACGTCAGT -ACGGAATTCAGGTCTGACGAAGGT -ACGGAATTCAGGTCTGACAACCGT -ACGGAATTCAGGTCTGACTTGTGC -ACGGAATTCAGGTCTGACCTAAGC -ACGGAATTCAGGTCTGACACTAGC -ACGGAATTCAGGTCTGACAGATGC -ACGGAATTCAGGTCTGACTGAAGG -ACGGAATTCAGGTCTGACCAATGG -ACGGAATTCAGGTCTGACATGAGG -ACGGAATTCAGGTCTGACAATGGG -ACGGAATTCAGGTCTGACTCCTGA -ACGGAATTCAGGTCTGACTAGCGA -ACGGAATTCAGGTCTGACCACAGA -ACGGAATTCAGGTCTGACGCAAGA -ACGGAATTCAGGTCTGACGGTTGA -ACGGAATTCAGGTCTGACTCCGAT -ACGGAATTCAGGTCTGACTGGCAT -ACGGAATTCAGGTCTGACCGAGAT -ACGGAATTCAGGTCTGACTACCAC -ACGGAATTCAGGTCTGACCAGAAC -ACGGAATTCAGGTCTGACGTCTAC -ACGGAATTCAGGTCTGACACGTAC -ACGGAATTCAGGTCTGACAGTGAC -ACGGAATTCAGGTCTGACCTGTAG -ACGGAATTCAGGTCTGACCCTAAG -ACGGAATTCAGGTCTGACGTTCAG -ACGGAATTCAGGTCTGACGCATAG -ACGGAATTCAGGTCTGACGACAAG -ACGGAATTCAGGTCTGACAAGCAG -ACGGAATTCAGGTCTGACCGTCAA -ACGGAATTCAGGTCTGACGCTGAA -ACGGAATTCAGGTCTGACAGTACG -ACGGAATTCAGGTCTGACATCCGA -ACGGAATTCAGGTCTGACATGGGA -ACGGAATTCAGGTCTGACGTGCAA -ACGGAATTCAGGTCTGACGAGGAA -ACGGAATTCAGGTCTGACCAGGTA -ACGGAATTCAGGTCTGACGACTCT -ACGGAATTCAGGTCTGACAGTCCT -ACGGAATTCAGGTCTGACTAAGCC -ACGGAATTCAGGTCTGACATAGCC -ACGGAATTCAGGTCTGACTAACCG -ACGGAATTCAGGTCTGACATGCCA -ACGGAATTCAGGCCTAGTGGAAAC -ACGGAATTCAGGCCTAGTAACACC -ACGGAATTCAGGCCTAGTATCGAG -ACGGAATTCAGGCCTAGTCTCCTT -ACGGAATTCAGGCCTAGTCCTGTT -ACGGAATTCAGGCCTAGTCGGTTT -ACGGAATTCAGGCCTAGTGTGGTT -ACGGAATTCAGGCCTAGTGCCTTT -ACGGAATTCAGGCCTAGTGGTCTT -ACGGAATTCAGGCCTAGTACGCTT -ACGGAATTCAGGCCTAGTAGCGTT -ACGGAATTCAGGCCTAGTTTCGTC -ACGGAATTCAGGCCTAGTTCTCTC -ACGGAATTCAGGCCTAGTTGGATC -ACGGAATTCAGGCCTAGTCACTTC -ACGGAATTCAGGCCTAGTGTACTC -ACGGAATTCAGGCCTAGTGATGTC -ACGGAATTCAGGCCTAGTACAGTC -ACGGAATTCAGGCCTAGTTTGCTG -ACGGAATTCAGGCCTAGTTCCATG -ACGGAATTCAGGCCTAGTTGTGTG -ACGGAATTCAGGCCTAGTCTAGTG -ACGGAATTCAGGCCTAGTCATCTG -ACGGAATTCAGGCCTAGTGAGTTG -ACGGAATTCAGGCCTAGTAGACTG -ACGGAATTCAGGCCTAGTTCGGTA -ACGGAATTCAGGCCTAGTTGCCTA -ACGGAATTCAGGCCTAGTCCACTA -ACGGAATTCAGGCCTAGTGGAGTA -ACGGAATTCAGGCCTAGTTCGTCT -ACGGAATTCAGGCCTAGTTGCACT -ACGGAATTCAGGCCTAGTCTGACT -ACGGAATTCAGGCCTAGTCAACCT -ACGGAATTCAGGCCTAGTGCTACT -ACGGAATTCAGGCCTAGTGGATCT -ACGGAATTCAGGCCTAGTAAGGCT -ACGGAATTCAGGCCTAGTTCAACC -ACGGAATTCAGGCCTAGTTGTTCC -ACGGAATTCAGGCCTAGTATTCCC -ACGGAATTCAGGCCTAGTTTCTCG -ACGGAATTCAGGCCTAGTTAGACG -ACGGAATTCAGGCCTAGTGTAACG -ACGGAATTCAGGCCTAGTACTTCG -ACGGAATTCAGGCCTAGTTACGCA -ACGGAATTCAGGCCTAGTCTTGCA -ACGGAATTCAGGCCTAGTCGAACA -ACGGAATTCAGGCCTAGTCAGTCA -ACGGAATTCAGGCCTAGTGATCCA -ACGGAATTCAGGCCTAGTACGACA -ACGGAATTCAGGCCTAGTAGCTCA -ACGGAATTCAGGCCTAGTTCACGT -ACGGAATTCAGGCCTAGTCGTAGT -ACGGAATTCAGGCCTAGTGTCAGT -ACGGAATTCAGGCCTAGTGAAGGT -ACGGAATTCAGGCCTAGTAACCGT -ACGGAATTCAGGCCTAGTTTGTGC -ACGGAATTCAGGCCTAGTCTAAGC -ACGGAATTCAGGCCTAGTACTAGC -ACGGAATTCAGGCCTAGTAGATGC -ACGGAATTCAGGCCTAGTTGAAGG -ACGGAATTCAGGCCTAGTCAATGG -ACGGAATTCAGGCCTAGTATGAGG -ACGGAATTCAGGCCTAGTAATGGG -ACGGAATTCAGGCCTAGTTCCTGA -ACGGAATTCAGGCCTAGTTAGCGA -ACGGAATTCAGGCCTAGTCACAGA -ACGGAATTCAGGCCTAGTGCAAGA -ACGGAATTCAGGCCTAGTGGTTGA -ACGGAATTCAGGCCTAGTTCCGAT -ACGGAATTCAGGCCTAGTTGGCAT -ACGGAATTCAGGCCTAGTCGAGAT -ACGGAATTCAGGCCTAGTTACCAC -ACGGAATTCAGGCCTAGTCAGAAC -ACGGAATTCAGGCCTAGTGTCTAC -ACGGAATTCAGGCCTAGTACGTAC -ACGGAATTCAGGCCTAGTAGTGAC -ACGGAATTCAGGCCTAGTCTGTAG -ACGGAATTCAGGCCTAGTCCTAAG -ACGGAATTCAGGCCTAGTGTTCAG -ACGGAATTCAGGCCTAGTGCATAG -ACGGAATTCAGGCCTAGTGACAAG -ACGGAATTCAGGCCTAGTAAGCAG -ACGGAATTCAGGCCTAGTCGTCAA -ACGGAATTCAGGCCTAGTGCTGAA -ACGGAATTCAGGCCTAGTAGTACG -ACGGAATTCAGGCCTAGTATCCGA -ACGGAATTCAGGCCTAGTATGGGA -ACGGAATTCAGGCCTAGTGTGCAA -ACGGAATTCAGGCCTAGTGAGGAA -ACGGAATTCAGGCCTAGTCAGGTA -ACGGAATTCAGGCCTAGTGACTCT -ACGGAATTCAGGCCTAGTAGTCCT -ACGGAATTCAGGCCTAGTTAAGCC -ACGGAATTCAGGCCTAGTATAGCC -ACGGAATTCAGGCCTAGTTAACCG -ACGGAATTCAGGCCTAGTATGCCA -ACGGAATTCAGGGCCTAAGGAAAC -ACGGAATTCAGGGCCTAAAACACC -ACGGAATTCAGGGCCTAAATCGAG -ACGGAATTCAGGGCCTAACTCCTT -ACGGAATTCAGGGCCTAACCTGTT -ACGGAATTCAGGGCCTAACGGTTT -ACGGAATTCAGGGCCTAAGTGGTT -ACGGAATTCAGGGCCTAAGCCTTT -ACGGAATTCAGGGCCTAAGGTCTT -ACGGAATTCAGGGCCTAAACGCTT -ACGGAATTCAGGGCCTAAAGCGTT -ACGGAATTCAGGGCCTAATTCGTC -ACGGAATTCAGGGCCTAATCTCTC -ACGGAATTCAGGGCCTAATGGATC -ACGGAATTCAGGGCCTAACACTTC -ACGGAATTCAGGGCCTAAGTACTC -ACGGAATTCAGGGCCTAAGATGTC -ACGGAATTCAGGGCCTAAACAGTC -ACGGAATTCAGGGCCTAATTGCTG -ACGGAATTCAGGGCCTAATCCATG -ACGGAATTCAGGGCCTAATGTGTG -ACGGAATTCAGGGCCTAACTAGTG -ACGGAATTCAGGGCCTAACATCTG -ACGGAATTCAGGGCCTAAGAGTTG -ACGGAATTCAGGGCCTAAAGACTG -ACGGAATTCAGGGCCTAATCGGTA -ACGGAATTCAGGGCCTAATGCCTA -ACGGAATTCAGGGCCTAACCACTA -ACGGAATTCAGGGCCTAAGGAGTA -ACGGAATTCAGGGCCTAATCGTCT -ACGGAATTCAGGGCCTAATGCACT -ACGGAATTCAGGGCCTAACTGACT -ACGGAATTCAGGGCCTAACAACCT -ACGGAATTCAGGGCCTAAGCTACT -ACGGAATTCAGGGCCTAAGGATCT -ACGGAATTCAGGGCCTAAAAGGCT -ACGGAATTCAGGGCCTAATCAACC -ACGGAATTCAGGGCCTAATGTTCC -ACGGAATTCAGGGCCTAAATTCCC -ACGGAATTCAGGGCCTAATTCTCG -ACGGAATTCAGGGCCTAATAGACG -ACGGAATTCAGGGCCTAAGTAACG -ACGGAATTCAGGGCCTAAACTTCG -ACGGAATTCAGGGCCTAATACGCA -ACGGAATTCAGGGCCTAACTTGCA -ACGGAATTCAGGGCCTAACGAACA -ACGGAATTCAGGGCCTAACAGTCA -ACGGAATTCAGGGCCTAAGATCCA -ACGGAATTCAGGGCCTAAACGACA -ACGGAATTCAGGGCCTAAAGCTCA -ACGGAATTCAGGGCCTAATCACGT -ACGGAATTCAGGGCCTAACGTAGT -ACGGAATTCAGGGCCTAAGTCAGT -ACGGAATTCAGGGCCTAAGAAGGT -ACGGAATTCAGGGCCTAAAACCGT -ACGGAATTCAGGGCCTAATTGTGC -ACGGAATTCAGGGCCTAACTAAGC -ACGGAATTCAGGGCCTAAACTAGC -ACGGAATTCAGGGCCTAAAGATGC -ACGGAATTCAGGGCCTAATGAAGG -ACGGAATTCAGGGCCTAACAATGG -ACGGAATTCAGGGCCTAAATGAGG -ACGGAATTCAGGGCCTAAAATGGG -ACGGAATTCAGGGCCTAATCCTGA -ACGGAATTCAGGGCCTAATAGCGA -ACGGAATTCAGGGCCTAACACAGA -ACGGAATTCAGGGCCTAAGCAAGA -ACGGAATTCAGGGCCTAAGGTTGA -ACGGAATTCAGGGCCTAATCCGAT -ACGGAATTCAGGGCCTAATGGCAT -ACGGAATTCAGGGCCTAACGAGAT -ACGGAATTCAGGGCCTAATACCAC -ACGGAATTCAGGGCCTAACAGAAC -ACGGAATTCAGGGCCTAAGTCTAC -ACGGAATTCAGGGCCTAAACGTAC -ACGGAATTCAGGGCCTAAAGTGAC -ACGGAATTCAGGGCCTAACTGTAG -ACGGAATTCAGGGCCTAACCTAAG -ACGGAATTCAGGGCCTAAGTTCAG -ACGGAATTCAGGGCCTAAGCATAG -ACGGAATTCAGGGCCTAAGACAAG -ACGGAATTCAGGGCCTAAAAGCAG -ACGGAATTCAGGGCCTAACGTCAA -ACGGAATTCAGGGCCTAAGCTGAA -ACGGAATTCAGGGCCTAAAGTACG -ACGGAATTCAGGGCCTAAATCCGA -ACGGAATTCAGGGCCTAAATGGGA -ACGGAATTCAGGGCCTAAGTGCAA -ACGGAATTCAGGGCCTAAGAGGAA -ACGGAATTCAGGGCCTAACAGGTA -ACGGAATTCAGGGCCTAAGACTCT -ACGGAATTCAGGGCCTAAAGTCCT -ACGGAATTCAGGGCCTAATAAGCC -ACGGAATTCAGGGCCTAAATAGCC -ACGGAATTCAGGGCCTAATAACCG -ACGGAATTCAGGGCCTAAATGCCA -ACGGAATTCAGGGCCATAGGAAAC -ACGGAATTCAGGGCCATAAACACC -ACGGAATTCAGGGCCATAATCGAG -ACGGAATTCAGGGCCATACTCCTT -ACGGAATTCAGGGCCATACCTGTT -ACGGAATTCAGGGCCATACGGTTT -ACGGAATTCAGGGCCATAGTGGTT -ACGGAATTCAGGGCCATAGCCTTT -ACGGAATTCAGGGCCATAGGTCTT -ACGGAATTCAGGGCCATAACGCTT -ACGGAATTCAGGGCCATAAGCGTT -ACGGAATTCAGGGCCATATTCGTC -ACGGAATTCAGGGCCATATCTCTC -ACGGAATTCAGGGCCATATGGATC -ACGGAATTCAGGGCCATACACTTC -ACGGAATTCAGGGCCATAGTACTC -ACGGAATTCAGGGCCATAGATGTC -ACGGAATTCAGGGCCATAACAGTC -ACGGAATTCAGGGCCATATTGCTG -ACGGAATTCAGGGCCATATCCATG -ACGGAATTCAGGGCCATATGTGTG -ACGGAATTCAGGGCCATACTAGTG -ACGGAATTCAGGGCCATACATCTG -ACGGAATTCAGGGCCATAGAGTTG -ACGGAATTCAGGGCCATAAGACTG -ACGGAATTCAGGGCCATATCGGTA -ACGGAATTCAGGGCCATATGCCTA -ACGGAATTCAGGGCCATACCACTA -ACGGAATTCAGGGCCATAGGAGTA -ACGGAATTCAGGGCCATATCGTCT -ACGGAATTCAGGGCCATATGCACT -ACGGAATTCAGGGCCATACTGACT -ACGGAATTCAGGGCCATACAACCT -ACGGAATTCAGGGCCATAGCTACT -ACGGAATTCAGGGCCATAGGATCT -ACGGAATTCAGGGCCATAAAGGCT -ACGGAATTCAGGGCCATATCAACC -ACGGAATTCAGGGCCATATGTTCC -ACGGAATTCAGGGCCATAATTCCC -ACGGAATTCAGGGCCATATTCTCG -ACGGAATTCAGGGCCATATAGACG -ACGGAATTCAGGGCCATAGTAACG -ACGGAATTCAGGGCCATAACTTCG -ACGGAATTCAGGGCCATATACGCA -ACGGAATTCAGGGCCATACTTGCA -ACGGAATTCAGGGCCATACGAACA -ACGGAATTCAGGGCCATACAGTCA -ACGGAATTCAGGGCCATAGATCCA -ACGGAATTCAGGGCCATAACGACA -ACGGAATTCAGGGCCATAAGCTCA -ACGGAATTCAGGGCCATATCACGT -ACGGAATTCAGGGCCATACGTAGT -ACGGAATTCAGGGCCATAGTCAGT -ACGGAATTCAGGGCCATAGAAGGT -ACGGAATTCAGGGCCATAAACCGT -ACGGAATTCAGGGCCATATTGTGC -ACGGAATTCAGGGCCATACTAAGC -ACGGAATTCAGGGCCATAACTAGC -ACGGAATTCAGGGCCATAAGATGC -ACGGAATTCAGGGCCATATGAAGG -ACGGAATTCAGGGCCATACAATGG -ACGGAATTCAGGGCCATAATGAGG -ACGGAATTCAGGGCCATAAATGGG -ACGGAATTCAGGGCCATATCCTGA -ACGGAATTCAGGGCCATATAGCGA -ACGGAATTCAGGGCCATACACAGA -ACGGAATTCAGGGCCATAGCAAGA -ACGGAATTCAGGGCCATAGGTTGA -ACGGAATTCAGGGCCATATCCGAT -ACGGAATTCAGGGCCATATGGCAT -ACGGAATTCAGGGCCATACGAGAT -ACGGAATTCAGGGCCATATACCAC -ACGGAATTCAGGGCCATACAGAAC -ACGGAATTCAGGGCCATAGTCTAC -ACGGAATTCAGGGCCATAACGTAC -ACGGAATTCAGGGCCATAAGTGAC -ACGGAATTCAGGGCCATACTGTAG -ACGGAATTCAGGGCCATACCTAAG -ACGGAATTCAGGGCCATAGTTCAG -ACGGAATTCAGGGCCATAGCATAG -ACGGAATTCAGGGCCATAGACAAG -ACGGAATTCAGGGCCATAAAGCAG -ACGGAATTCAGGGCCATACGTCAA -ACGGAATTCAGGGCCATAGCTGAA -ACGGAATTCAGGGCCATAAGTACG -ACGGAATTCAGGGCCATAATCCGA -ACGGAATTCAGGGCCATAATGGGA -ACGGAATTCAGGGCCATAGTGCAA -ACGGAATTCAGGGCCATAGAGGAA -ACGGAATTCAGGGCCATACAGGTA -ACGGAATTCAGGGCCATAGACTCT -ACGGAATTCAGGGCCATAAGTCCT -ACGGAATTCAGGGCCATATAAGCC -ACGGAATTCAGGGCCATAATAGCC -ACGGAATTCAGGGCCATATAACCG -ACGGAATTCAGGGCCATAATGCCA -ACGGAATTCAGGCCGTAAGGAAAC -ACGGAATTCAGGCCGTAAAACACC -ACGGAATTCAGGCCGTAAATCGAG -ACGGAATTCAGGCCGTAACTCCTT -ACGGAATTCAGGCCGTAACCTGTT -ACGGAATTCAGGCCGTAACGGTTT -ACGGAATTCAGGCCGTAAGTGGTT -ACGGAATTCAGGCCGTAAGCCTTT -ACGGAATTCAGGCCGTAAGGTCTT -ACGGAATTCAGGCCGTAAACGCTT -ACGGAATTCAGGCCGTAAAGCGTT -ACGGAATTCAGGCCGTAATTCGTC -ACGGAATTCAGGCCGTAATCTCTC -ACGGAATTCAGGCCGTAATGGATC -ACGGAATTCAGGCCGTAACACTTC -ACGGAATTCAGGCCGTAAGTACTC -ACGGAATTCAGGCCGTAAGATGTC -ACGGAATTCAGGCCGTAAACAGTC -ACGGAATTCAGGCCGTAATTGCTG -ACGGAATTCAGGCCGTAATCCATG -ACGGAATTCAGGCCGTAATGTGTG -ACGGAATTCAGGCCGTAACTAGTG -ACGGAATTCAGGCCGTAACATCTG -ACGGAATTCAGGCCGTAAGAGTTG -ACGGAATTCAGGCCGTAAAGACTG -ACGGAATTCAGGCCGTAATCGGTA -ACGGAATTCAGGCCGTAATGCCTA -ACGGAATTCAGGCCGTAACCACTA -ACGGAATTCAGGCCGTAAGGAGTA -ACGGAATTCAGGCCGTAATCGTCT -ACGGAATTCAGGCCGTAATGCACT -ACGGAATTCAGGCCGTAACTGACT -ACGGAATTCAGGCCGTAACAACCT -ACGGAATTCAGGCCGTAAGCTACT -ACGGAATTCAGGCCGTAAGGATCT -ACGGAATTCAGGCCGTAAAAGGCT -ACGGAATTCAGGCCGTAATCAACC -ACGGAATTCAGGCCGTAATGTTCC -ACGGAATTCAGGCCGTAAATTCCC -ACGGAATTCAGGCCGTAATTCTCG -ACGGAATTCAGGCCGTAATAGACG -ACGGAATTCAGGCCGTAAGTAACG -ACGGAATTCAGGCCGTAAACTTCG -ACGGAATTCAGGCCGTAATACGCA -ACGGAATTCAGGCCGTAACTTGCA -ACGGAATTCAGGCCGTAACGAACA -ACGGAATTCAGGCCGTAACAGTCA -ACGGAATTCAGGCCGTAAGATCCA -ACGGAATTCAGGCCGTAAACGACA -ACGGAATTCAGGCCGTAAAGCTCA -ACGGAATTCAGGCCGTAATCACGT -ACGGAATTCAGGCCGTAACGTAGT -ACGGAATTCAGGCCGTAAGTCAGT -ACGGAATTCAGGCCGTAAGAAGGT -ACGGAATTCAGGCCGTAAAACCGT -ACGGAATTCAGGCCGTAATTGTGC -ACGGAATTCAGGCCGTAACTAAGC -ACGGAATTCAGGCCGTAAACTAGC -ACGGAATTCAGGCCGTAAAGATGC -ACGGAATTCAGGCCGTAATGAAGG -ACGGAATTCAGGCCGTAACAATGG -ACGGAATTCAGGCCGTAAATGAGG -ACGGAATTCAGGCCGTAAAATGGG -ACGGAATTCAGGCCGTAATCCTGA -ACGGAATTCAGGCCGTAATAGCGA -ACGGAATTCAGGCCGTAACACAGA -ACGGAATTCAGGCCGTAAGCAAGA -ACGGAATTCAGGCCGTAAGGTTGA -ACGGAATTCAGGCCGTAATCCGAT -ACGGAATTCAGGCCGTAATGGCAT -ACGGAATTCAGGCCGTAACGAGAT -ACGGAATTCAGGCCGTAATACCAC -ACGGAATTCAGGCCGTAACAGAAC -ACGGAATTCAGGCCGTAAGTCTAC -ACGGAATTCAGGCCGTAAACGTAC -ACGGAATTCAGGCCGTAAAGTGAC -ACGGAATTCAGGCCGTAACTGTAG -ACGGAATTCAGGCCGTAACCTAAG -ACGGAATTCAGGCCGTAAGTTCAG -ACGGAATTCAGGCCGTAAGCATAG -ACGGAATTCAGGCCGTAAGACAAG -ACGGAATTCAGGCCGTAAAAGCAG -ACGGAATTCAGGCCGTAACGTCAA -ACGGAATTCAGGCCGTAAGCTGAA -ACGGAATTCAGGCCGTAAAGTACG -ACGGAATTCAGGCCGTAAATCCGA -ACGGAATTCAGGCCGTAAATGGGA -ACGGAATTCAGGCCGTAAGTGCAA -ACGGAATTCAGGCCGTAAGAGGAA -ACGGAATTCAGGCCGTAACAGGTA -ACGGAATTCAGGCCGTAAGACTCT -ACGGAATTCAGGCCGTAAAGTCCT -ACGGAATTCAGGCCGTAATAAGCC -ACGGAATTCAGGCCGTAAATAGCC -ACGGAATTCAGGCCGTAATAACCG -ACGGAATTCAGGCCGTAAATGCCA -ACGGAATTCAGGCCAATGGGAAAC -ACGGAATTCAGGCCAATGAACACC -ACGGAATTCAGGCCAATGATCGAG -ACGGAATTCAGGCCAATGCTCCTT -ACGGAATTCAGGCCAATGCCTGTT -ACGGAATTCAGGCCAATGCGGTTT -ACGGAATTCAGGCCAATGGTGGTT -ACGGAATTCAGGCCAATGGCCTTT -ACGGAATTCAGGCCAATGGGTCTT -ACGGAATTCAGGCCAATGACGCTT -ACGGAATTCAGGCCAATGAGCGTT -ACGGAATTCAGGCCAATGTTCGTC -ACGGAATTCAGGCCAATGTCTCTC -ACGGAATTCAGGCCAATGTGGATC -ACGGAATTCAGGCCAATGCACTTC -ACGGAATTCAGGCCAATGGTACTC -ACGGAATTCAGGCCAATGGATGTC -ACGGAATTCAGGCCAATGACAGTC -ACGGAATTCAGGCCAATGTTGCTG -ACGGAATTCAGGCCAATGTCCATG -ACGGAATTCAGGCCAATGTGTGTG -ACGGAATTCAGGCCAATGCTAGTG -ACGGAATTCAGGCCAATGCATCTG -ACGGAATTCAGGCCAATGGAGTTG -ACGGAATTCAGGCCAATGAGACTG -ACGGAATTCAGGCCAATGTCGGTA -ACGGAATTCAGGCCAATGTGCCTA -ACGGAATTCAGGCCAATGCCACTA -ACGGAATTCAGGCCAATGGGAGTA -ACGGAATTCAGGCCAATGTCGTCT -ACGGAATTCAGGCCAATGTGCACT -ACGGAATTCAGGCCAATGCTGACT -ACGGAATTCAGGCCAATGCAACCT -ACGGAATTCAGGCCAATGGCTACT -ACGGAATTCAGGCCAATGGGATCT -ACGGAATTCAGGCCAATGAAGGCT -ACGGAATTCAGGCCAATGTCAACC -ACGGAATTCAGGCCAATGTGTTCC -ACGGAATTCAGGCCAATGATTCCC -ACGGAATTCAGGCCAATGTTCTCG -ACGGAATTCAGGCCAATGTAGACG -ACGGAATTCAGGCCAATGGTAACG -ACGGAATTCAGGCCAATGACTTCG -ACGGAATTCAGGCCAATGTACGCA -ACGGAATTCAGGCCAATGCTTGCA -ACGGAATTCAGGCCAATGCGAACA -ACGGAATTCAGGCCAATGCAGTCA -ACGGAATTCAGGCCAATGGATCCA -ACGGAATTCAGGCCAATGACGACA -ACGGAATTCAGGCCAATGAGCTCA -ACGGAATTCAGGCCAATGTCACGT -ACGGAATTCAGGCCAATGCGTAGT -ACGGAATTCAGGCCAATGGTCAGT -ACGGAATTCAGGCCAATGGAAGGT -ACGGAATTCAGGCCAATGAACCGT -ACGGAATTCAGGCCAATGTTGTGC -ACGGAATTCAGGCCAATGCTAAGC -ACGGAATTCAGGCCAATGACTAGC -ACGGAATTCAGGCCAATGAGATGC -ACGGAATTCAGGCCAATGTGAAGG -ACGGAATTCAGGCCAATGCAATGG -ACGGAATTCAGGCCAATGATGAGG -ACGGAATTCAGGCCAATGAATGGG -ACGGAATTCAGGCCAATGTCCTGA -ACGGAATTCAGGCCAATGTAGCGA -ACGGAATTCAGGCCAATGCACAGA -ACGGAATTCAGGCCAATGGCAAGA -ACGGAATTCAGGCCAATGGGTTGA -ACGGAATTCAGGCCAATGTCCGAT -ACGGAATTCAGGCCAATGTGGCAT -ACGGAATTCAGGCCAATGCGAGAT -ACGGAATTCAGGCCAATGTACCAC -ACGGAATTCAGGCCAATGCAGAAC -ACGGAATTCAGGCCAATGGTCTAC -ACGGAATTCAGGCCAATGACGTAC -ACGGAATTCAGGCCAATGAGTGAC -ACGGAATTCAGGCCAATGCTGTAG -ACGGAATTCAGGCCAATGCCTAAG -ACGGAATTCAGGCCAATGGTTCAG -ACGGAATTCAGGCCAATGGCATAG -ACGGAATTCAGGCCAATGGACAAG -ACGGAATTCAGGCCAATGAAGCAG -ACGGAATTCAGGCCAATGCGTCAA -ACGGAATTCAGGCCAATGGCTGAA -ACGGAATTCAGGCCAATGAGTACG -ACGGAATTCAGGCCAATGATCCGA -ACGGAATTCAGGCCAATGATGGGA -ACGGAATTCAGGCCAATGGTGCAA -ACGGAATTCAGGCCAATGGAGGAA -ACGGAATTCAGGCCAATGCAGGTA -ACGGAATTCAGGCCAATGGACTCT -ACGGAATTCAGGCCAATGAGTCCT -ACGGAATTCAGGCCAATGTAAGCC -ACGGAATTCAGGCCAATGATAGCC -ACGGAATTCAGGCCAATGTAACCG -ACGGAATTCAGGCCAATGATGCCA -ACGGAACATAGGAACGGAGGAAAC -ACGGAACATAGGAACGGAAACACC -ACGGAACATAGGAACGGAATCGAG -ACGGAACATAGGAACGGACTCCTT -ACGGAACATAGGAACGGACCTGTT -ACGGAACATAGGAACGGACGGTTT -ACGGAACATAGGAACGGAGTGGTT -ACGGAACATAGGAACGGAGCCTTT -ACGGAACATAGGAACGGAGGTCTT -ACGGAACATAGGAACGGAACGCTT -ACGGAACATAGGAACGGAAGCGTT -ACGGAACATAGGAACGGATTCGTC -ACGGAACATAGGAACGGATCTCTC -ACGGAACATAGGAACGGATGGATC -ACGGAACATAGGAACGGACACTTC -ACGGAACATAGGAACGGAGTACTC -ACGGAACATAGGAACGGAGATGTC -ACGGAACATAGGAACGGAACAGTC -ACGGAACATAGGAACGGATTGCTG -ACGGAACATAGGAACGGATCCATG -ACGGAACATAGGAACGGATGTGTG -ACGGAACATAGGAACGGACTAGTG -ACGGAACATAGGAACGGACATCTG -ACGGAACATAGGAACGGAGAGTTG -ACGGAACATAGGAACGGAAGACTG -ACGGAACATAGGAACGGATCGGTA -ACGGAACATAGGAACGGATGCCTA -ACGGAACATAGGAACGGACCACTA -ACGGAACATAGGAACGGAGGAGTA -ACGGAACATAGGAACGGATCGTCT -ACGGAACATAGGAACGGATGCACT -ACGGAACATAGGAACGGACTGACT -ACGGAACATAGGAACGGACAACCT -ACGGAACATAGGAACGGAGCTACT -ACGGAACATAGGAACGGAGGATCT -ACGGAACATAGGAACGGAAAGGCT -ACGGAACATAGGAACGGATCAACC -ACGGAACATAGGAACGGATGTTCC -ACGGAACATAGGAACGGAATTCCC -ACGGAACATAGGAACGGATTCTCG -ACGGAACATAGGAACGGATAGACG -ACGGAACATAGGAACGGAGTAACG -ACGGAACATAGGAACGGAACTTCG -ACGGAACATAGGAACGGATACGCA -ACGGAACATAGGAACGGACTTGCA -ACGGAACATAGGAACGGACGAACA -ACGGAACATAGGAACGGACAGTCA -ACGGAACATAGGAACGGAGATCCA -ACGGAACATAGGAACGGAACGACA -ACGGAACATAGGAACGGAAGCTCA -ACGGAACATAGGAACGGATCACGT -ACGGAACATAGGAACGGACGTAGT -ACGGAACATAGGAACGGAGTCAGT -ACGGAACATAGGAACGGAGAAGGT -ACGGAACATAGGAACGGAAACCGT -ACGGAACATAGGAACGGATTGTGC -ACGGAACATAGGAACGGACTAAGC -ACGGAACATAGGAACGGAACTAGC -ACGGAACATAGGAACGGAAGATGC -ACGGAACATAGGAACGGATGAAGG -ACGGAACATAGGAACGGACAATGG -ACGGAACATAGGAACGGAATGAGG -ACGGAACATAGGAACGGAAATGGG -ACGGAACATAGGAACGGATCCTGA -ACGGAACATAGGAACGGATAGCGA -ACGGAACATAGGAACGGACACAGA -ACGGAACATAGGAACGGAGCAAGA -ACGGAACATAGGAACGGAGGTTGA -ACGGAACATAGGAACGGATCCGAT -ACGGAACATAGGAACGGATGGCAT -ACGGAACATAGGAACGGACGAGAT -ACGGAACATAGGAACGGATACCAC -ACGGAACATAGGAACGGACAGAAC -ACGGAACATAGGAACGGAGTCTAC -ACGGAACATAGGAACGGAACGTAC -ACGGAACATAGGAACGGAAGTGAC -ACGGAACATAGGAACGGACTGTAG -ACGGAACATAGGAACGGACCTAAG -ACGGAACATAGGAACGGAGTTCAG -ACGGAACATAGGAACGGAGCATAG -ACGGAACATAGGAACGGAGACAAG -ACGGAACATAGGAACGGAAAGCAG -ACGGAACATAGGAACGGACGTCAA -ACGGAACATAGGAACGGAGCTGAA -ACGGAACATAGGAACGGAAGTACG -ACGGAACATAGGAACGGAATCCGA -ACGGAACATAGGAACGGAATGGGA -ACGGAACATAGGAACGGAGTGCAA -ACGGAACATAGGAACGGAGAGGAA -ACGGAACATAGGAACGGACAGGTA -ACGGAACATAGGAACGGAGACTCT -ACGGAACATAGGAACGGAAGTCCT -ACGGAACATAGGAACGGATAAGCC -ACGGAACATAGGAACGGAATAGCC -ACGGAACATAGGAACGGATAACCG -ACGGAACATAGGAACGGAATGCCA -ACGGAACATAGGACCAACGGAAAC -ACGGAACATAGGACCAACAACACC -ACGGAACATAGGACCAACATCGAG -ACGGAACATAGGACCAACCTCCTT -ACGGAACATAGGACCAACCCTGTT -ACGGAACATAGGACCAACCGGTTT -ACGGAACATAGGACCAACGTGGTT -ACGGAACATAGGACCAACGCCTTT -ACGGAACATAGGACCAACGGTCTT -ACGGAACATAGGACCAACACGCTT -ACGGAACATAGGACCAACAGCGTT -ACGGAACATAGGACCAACTTCGTC -ACGGAACATAGGACCAACTCTCTC -ACGGAACATAGGACCAACTGGATC -ACGGAACATAGGACCAACCACTTC -ACGGAACATAGGACCAACGTACTC -ACGGAACATAGGACCAACGATGTC -ACGGAACATAGGACCAACACAGTC -ACGGAACATAGGACCAACTTGCTG -ACGGAACATAGGACCAACTCCATG -ACGGAACATAGGACCAACTGTGTG -ACGGAACATAGGACCAACCTAGTG -ACGGAACATAGGACCAACCATCTG -ACGGAACATAGGACCAACGAGTTG -ACGGAACATAGGACCAACAGACTG -ACGGAACATAGGACCAACTCGGTA -ACGGAACATAGGACCAACTGCCTA -ACGGAACATAGGACCAACCCACTA -ACGGAACATAGGACCAACGGAGTA -ACGGAACATAGGACCAACTCGTCT -ACGGAACATAGGACCAACTGCACT -ACGGAACATAGGACCAACCTGACT -ACGGAACATAGGACCAACCAACCT -ACGGAACATAGGACCAACGCTACT -ACGGAACATAGGACCAACGGATCT -ACGGAACATAGGACCAACAAGGCT -ACGGAACATAGGACCAACTCAACC -ACGGAACATAGGACCAACTGTTCC -ACGGAACATAGGACCAACATTCCC -ACGGAACATAGGACCAACTTCTCG -ACGGAACATAGGACCAACTAGACG -ACGGAACATAGGACCAACGTAACG -ACGGAACATAGGACCAACACTTCG -ACGGAACATAGGACCAACTACGCA -ACGGAACATAGGACCAACCTTGCA -ACGGAACATAGGACCAACCGAACA -ACGGAACATAGGACCAACCAGTCA -ACGGAACATAGGACCAACGATCCA -ACGGAACATAGGACCAACACGACA -ACGGAACATAGGACCAACAGCTCA -ACGGAACATAGGACCAACTCACGT -ACGGAACATAGGACCAACCGTAGT -ACGGAACATAGGACCAACGTCAGT -ACGGAACATAGGACCAACGAAGGT -ACGGAACATAGGACCAACAACCGT -ACGGAACATAGGACCAACTTGTGC -ACGGAACATAGGACCAACCTAAGC -ACGGAACATAGGACCAACACTAGC -ACGGAACATAGGACCAACAGATGC -ACGGAACATAGGACCAACTGAAGG -ACGGAACATAGGACCAACCAATGG -ACGGAACATAGGACCAACATGAGG -ACGGAACATAGGACCAACAATGGG -ACGGAACATAGGACCAACTCCTGA -ACGGAACATAGGACCAACTAGCGA -ACGGAACATAGGACCAACCACAGA -ACGGAACATAGGACCAACGCAAGA -ACGGAACATAGGACCAACGGTTGA -ACGGAACATAGGACCAACTCCGAT -ACGGAACATAGGACCAACTGGCAT -ACGGAACATAGGACCAACCGAGAT -ACGGAACATAGGACCAACTACCAC -ACGGAACATAGGACCAACCAGAAC -ACGGAACATAGGACCAACGTCTAC -ACGGAACATAGGACCAACACGTAC -ACGGAACATAGGACCAACAGTGAC -ACGGAACATAGGACCAACCTGTAG -ACGGAACATAGGACCAACCCTAAG -ACGGAACATAGGACCAACGTTCAG -ACGGAACATAGGACCAACGCATAG -ACGGAACATAGGACCAACGACAAG -ACGGAACATAGGACCAACAAGCAG -ACGGAACATAGGACCAACCGTCAA -ACGGAACATAGGACCAACGCTGAA -ACGGAACATAGGACCAACAGTACG -ACGGAACATAGGACCAACATCCGA -ACGGAACATAGGACCAACATGGGA -ACGGAACATAGGACCAACGTGCAA -ACGGAACATAGGACCAACGAGGAA -ACGGAACATAGGACCAACCAGGTA -ACGGAACATAGGACCAACGACTCT -ACGGAACATAGGACCAACAGTCCT -ACGGAACATAGGACCAACTAAGCC -ACGGAACATAGGACCAACATAGCC -ACGGAACATAGGACCAACTAACCG -ACGGAACATAGGACCAACATGCCA -ACGGAACATAGGGAGATCGGAAAC -ACGGAACATAGGGAGATCAACACC -ACGGAACATAGGGAGATCATCGAG -ACGGAACATAGGGAGATCCTCCTT -ACGGAACATAGGGAGATCCCTGTT -ACGGAACATAGGGAGATCCGGTTT -ACGGAACATAGGGAGATCGTGGTT -ACGGAACATAGGGAGATCGCCTTT -ACGGAACATAGGGAGATCGGTCTT -ACGGAACATAGGGAGATCACGCTT -ACGGAACATAGGGAGATCAGCGTT -ACGGAACATAGGGAGATCTTCGTC -ACGGAACATAGGGAGATCTCTCTC -ACGGAACATAGGGAGATCTGGATC -ACGGAACATAGGGAGATCCACTTC -ACGGAACATAGGGAGATCGTACTC -ACGGAACATAGGGAGATCGATGTC -ACGGAACATAGGGAGATCACAGTC -ACGGAACATAGGGAGATCTTGCTG -ACGGAACATAGGGAGATCTCCATG -ACGGAACATAGGGAGATCTGTGTG -ACGGAACATAGGGAGATCCTAGTG -ACGGAACATAGGGAGATCCATCTG -ACGGAACATAGGGAGATCGAGTTG -ACGGAACATAGGGAGATCAGACTG -ACGGAACATAGGGAGATCTCGGTA -ACGGAACATAGGGAGATCTGCCTA -ACGGAACATAGGGAGATCCCACTA -ACGGAACATAGGGAGATCGGAGTA -ACGGAACATAGGGAGATCTCGTCT -ACGGAACATAGGGAGATCTGCACT -ACGGAACATAGGGAGATCCTGACT -ACGGAACATAGGGAGATCCAACCT -ACGGAACATAGGGAGATCGCTACT -ACGGAACATAGGGAGATCGGATCT -ACGGAACATAGGGAGATCAAGGCT -ACGGAACATAGGGAGATCTCAACC -ACGGAACATAGGGAGATCTGTTCC -ACGGAACATAGGGAGATCATTCCC -ACGGAACATAGGGAGATCTTCTCG -ACGGAACATAGGGAGATCTAGACG -ACGGAACATAGGGAGATCGTAACG -ACGGAACATAGGGAGATCACTTCG -ACGGAACATAGGGAGATCTACGCA -ACGGAACATAGGGAGATCCTTGCA -ACGGAACATAGGGAGATCCGAACA -ACGGAACATAGGGAGATCCAGTCA -ACGGAACATAGGGAGATCGATCCA -ACGGAACATAGGGAGATCACGACA -ACGGAACATAGGGAGATCAGCTCA -ACGGAACATAGGGAGATCTCACGT -ACGGAACATAGGGAGATCCGTAGT -ACGGAACATAGGGAGATCGTCAGT -ACGGAACATAGGGAGATCGAAGGT -ACGGAACATAGGGAGATCAACCGT -ACGGAACATAGGGAGATCTTGTGC -ACGGAACATAGGGAGATCCTAAGC -ACGGAACATAGGGAGATCACTAGC -ACGGAACATAGGGAGATCAGATGC -ACGGAACATAGGGAGATCTGAAGG -ACGGAACATAGGGAGATCCAATGG -ACGGAACATAGGGAGATCATGAGG -ACGGAACATAGGGAGATCAATGGG -ACGGAACATAGGGAGATCTCCTGA -ACGGAACATAGGGAGATCTAGCGA -ACGGAACATAGGGAGATCCACAGA -ACGGAACATAGGGAGATCGCAAGA -ACGGAACATAGGGAGATCGGTTGA -ACGGAACATAGGGAGATCTCCGAT -ACGGAACATAGGGAGATCTGGCAT -ACGGAACATAGGGAGATCCGAGAT -ACGGAACATAGGGAGATCTACCAC -ACGGAACATAGGGAGATCCAGAAC -ACGGAACATAGGGAGATCGTCTAC -ACGGAACATAGGGAGATCACGTAC -ACGGAACATAGGGAGATCAGTGAC -ACGGAACATAGGGAGATCCTGTAG -ACGGAACATAGGGAGATCCCTAAG -ACGGAACATAGGGAGATCGTTCAG -ACGGAACATAGGGAGATCGCATAG -ACGGAACATAGGGAGATCGACAAG -ACGGAACATAGGGAGATCAAGCAG -ACGGAACATAGGGAGATCCGTCAA -ACGGAACATAGGGAGATCGCTGAA -ACGGAACATAGGGAGATCAGTACG -ACGGAACATAGGGAGATCATCCGA -ACGGAACATAGGGAGATCATGGGA -ACGGAACATAGGGAGATCGTGCAA -ACGGAACATAGGGAGATCGAGGAA -ACGGAACATAGGGAGATCCAGGTA -ACGGAACATAGGGAGATCGACTCT -ACGGAACATAGGGAGATCAGTCCT -ACGGAACATAGGGAGATCTAAGCC -ACGGAACATAGGGAGATCATAGCC -ACGGAACATAGGGAGATCTAACCG -ACGGAACATAGGGAGATCATGCCA -ACGGAACATAGGCTTCTCGGAAAC -ACGGAACATAGGCTTCTCAACACC -ACGGAACATAGGCTTCTCATCGAG -ACGGAACATAGGCTTCTCCTCCTT -ACGGAACATAGGCTTCTCCCTGTT -ACGGAACATAGGCTTCTCCGGTTT -ACGGAACATAGGCTTCTCGTGGTT -ACGGAACATAGGCTTCTCGCCTTT -ACGGAACATAGGCTTCTCGGTCTT -ACGGAACATAGGCTTCTCACGCTT -ACGGAACATAGGCTTCTCAGCGTT -ACGGAACATAGGCTTCTCTTCGTC -ACGGAACATAGGCTTCTCTCTCTC -ACGGAACATAGGCTTCTCTGGATC -ACGGAACATAGGCTTCTCCACTTC -ACGGAACATAGGCTTCTCGTACTC -ACGGAACATAGGCTTCTCGATGTC -ACGGAACATAGGCTTCTCACAGTC -ACGGAACATAGGCTTCTCTTGCTG -ACGGAACATAGGCTTCTCTCCATG -ACGGAACATAGGCTTCTCTGTGTG -ACGGAACATAGGCTTCTCCTAGTG -ACGGAACATAGGCTTCTCCATCTG -ACGGAACATAGGCTTCTCGAGTTG -ACGGAACATAGGCTTCTCAGACTG -ACGGAACATAGGCTTCTCTCGGTA -ACGGAACATAGGCTTCTCTGCCTA -ACGGAACATAGGCTTCTCCCACTA -ACGGAACATAGGCTTCTCGGAGTA -ACGGAACATAGGCTTCTCTCGTCT -ACGGAACATAGGCTTCTCTGCACT -ACGGAACATAGGCTTCTCCTGACT -ACGGAACATAGGCTTCTCCAACCT -ACGGAACATAGGCTTCTCGCTACT -ACGGAACATAGGCTTCTCGGATCT -ACGGAACATAGGCTTCTCAAGGCT -ACGGAACATAGGCTTCTCTCAACC -ACGGAACATAGGCTTCTCTGTTCC -ACGGAACATAGGCTTCTCATTCCC -ACGGAACATAGGCTTCTCTTCTCG -ACGGAACATAGGCTTCTCTAGACG -ACGGAACATAGGCTTCTCGTAACG -ACGGAACATAGGCTTCTCACTTCG -ACGGAACATAGGCTTCTCTACGCA -ACGGAACATAGGCTTCTCCTTGCA -ACGGAACATAGGCTTCTCCGAACA -ACGGAACATAGGCTTCTCCAGTCA -ACGGAACATAGGCTTCTCGATCCA -ACGGAACATAGGCTTCTCACGACA -ACGGAACATAGGCTTCTCAGCTCA -ACGGAACATAGGCTTCTCTCACGT -ACGGAACATAGGCTTCTCCGTAGT -ACGGAACATAGGCTTCTCGTCAGT -ACGGAACATAGGCTTCTCGAAGGT -ACGGAACATAGGCTTCTCAACCGT -ACGGAACATAGGCTTCTCTTGTGC -ACGGAACATAGGCTTCTCCTAAGC -ACGGAACATAGGCTTCTCACTAGC -ACGGAACATAGGCTTCTCAGATGC -ACGGAACATAGGCTTCTCTGAAGG -ACGGAACATAGGCTTCTCCAATGG -ACGGAACATAGGCTTCTCATGAGG -ACGGAACATAGGCTTCTCAATGGG -ACGGAACATAGGCTTCTCTCCTGA -ACGGAACATAGGCTTCTCTAGCGA -ACGGAACATAGGCTTCTCCACAGA -ACGGAACATAGGCTTCTCGCAAGA -ACGGAACATAGGCTTCTCGGTTGA -ACGGAACATAGGCTTCTCTCCGAT -ACGGAACATAGGCTTCTCTGGCAT -ACGGAACATAGGCTTCTCCGAGAT -ACGGAACATAGGCTTCTCTACCAC -ACGGAACATAGGCTTCTCCAGAAC -ACGGAACATAGGCTTCTCGTCTAC -ACGGAACATAGGCTTCTCACGTAC -ACGGAACATAGGCTTCTCAGTGAC -ACGGAACATAGGCTTCTCCTGTAG -ACGGAACATAGGCTTCTCCCTAAG -ACGGAACATAGGCTTCTCGTTCAG -ACGGAACATAGGCTTCTCGCATAG -ACGGAACATAGGCTTCTCGACAAG -ACGGAACATAGGCTTCTCAAGCAG -ACGGAACATAGGCTTCTCCGTCAA -ACGGAACATAGGCTTCTCGCTGAA -ACGGAACATAGGCTTCTCAGTACG -ACGGAACATAGGCTTCTCATCCGA -ACGGAACATAGGCTTCTCATGGGA -ACGGAACATAGGCTTCTCGTGCAA -ACGGAACATAGGCTTCTCGAGGAA -ACGGAACATAGGCTTCTCCAGGTA -ACGGAACATAGGCTTCTCGACTCT -ACGGAACATAGGCTTCTCAGTCCT -ACGGAACATAGGCTTCTCTAAGCC -ACGGAACATAGGCTTCTCATAGCC -ACGGAACATAGGCTTCTCTAACCG -ACGGAACATAGGCTTCTCATGCCA -ACGGAACATAGGGTTCCTGGAAAC -ACGGAACATAGGGTTCCTAACACC -ACGGAACATAGGGTTCCTATCGAG -ACGGAACATAGGGTTCCTCTCCTT -ACGGAACATAGGGTTCCTCCTGTT -ACGGAACATAGGGTTCCTCGGTTT -ACGGAACATAGGGTTCCTGTGGTT -ACGGAACATAGGGTTCCTGCCTTT -ACGGAACATAGGGTTCCTGGTCTT -ACGGAACATAGGGTTCCTACGCTT -ACGGAACATAGGGTTCCTAGCGTT -ACGGAACATAGGGTTCCTTTCGTC -ACGGAACATAGGGTTCCTTCTCTC -ACGGAACATAGGGTTCCTTGGATC -ACGGAACATAGGGTTCCTCACTTC -ACGGAACATAGGGTTCCTGTACTC -ACGGAACATAGGGTTCCTGATGTC -ACGGAACATAGGGTTCCTACAGTC -ACGGAACATAGGGTTCCTTTGCTG -ACGGAACATAGGGTTCCTTCCATG -ACGGAACATAGGGTTCCTTGTGTG -ACGGAACATAGGGTTCCTCTAGTG -ACGGAACATAGGGTTCCTCATCTG -ACGGAACATAGGGTTCCTGAGTTG -ACGGAACATAGGGTTCCTAGACTG -ACGGAACATAGGGTTCCTTCGGTA -ACGGAACATAGGGTTCCTTGCCTA -ACGGAACATAGGGTTCCTCCACTA -ACGGAACATAGGGTTCCTGGAGTA -ACGGAACATAGGGTTCCTTCGTCT -ACGGAACATAGGGTTCCTTGCACT -ACGGAACATAGGGTTCCTCTGACT -ACGGAACATAGGGTTCCTCAACCT -ACGGAACATAGGGTTCCTGCTACT -ACGGAACATAGGGTTCCTGGATCT -ACGGAACATAGGGTTCCTAAGGCT -ACGGAACATAGGGTTCCTTCAACC -ACGGAACATAGGGTTCCTTGTTCC -ACGGAACATAGGGTTCCTATTCCC -ACGGAACATAGGGTTCCTTTCTCG -ACGGAACATAGGGTTCCTTAGACG -ACGGAACATAGGGTTCCTGTAACG -ACGGAACATAGGGTTCCTACTTCG -ACGGAACATAGGGTTCCTTACGCA -ACGGAACATAGGGTTCCTCTTGCA -ACGGAACATAGGGTTCCTCGAACA -ACGGAACATAGGGTTCCTCAGTCA -ACGGAACATAGGGTTCCTGATCCA -ACGGAACATAGGGTTCCTACGACA -ACGGAACATAGGGTTCCTAGCTCA -ACGGAACATAGGGTTCCTTCACGT -ACGGAACATAGGGTTCCTCGTAGT -ACGGAACATAGGGTTCCTGTCAGT -ACGGAACATAGGGTTCCTGAAGGT -ACGGAACATAGGGTTCCTAACCGT -ACGGAACATAGGGTTCCTTTGTGC -ACGGAACATAGGGTTCCTCTAAGC -ACGGAACATAGGGTTCCTACTAGC -ACGGAACATAGGGTTCCTAGATGC -ACGGAACATAGGGTTCCTTGAAGG -ACGGAACATAGGGTTCCTCAATGG -ACGGAACATAGGGTTCCTATGAGG -ACGGAACATAGGGTTCCTAATGGG -ACGGAACATAGGGTTCCTTCCTGA -ACGGAACATAGGGTTCCTTAGCGA -ACGGAACATAGGGTTCCTCACAGA -ACGGAACATAGGGTTCCTGCAAGA -ACGGAACATAGGGTTCCTGGTTGA -ACGGAACATAGGGTTCCTTCCGAT -ACGGAACATAGGGTTCCTTGGCAT -ACGGAACATAGGGTTCCTCGAGAT -ACGGAACATAGGGTTCCTTACCAC -ACGGAACATAGGGTTCCTCAGAAC -ACGGAACATAGGGTTCCTGTCTAC -ACGGAACATAGGGTTCCTACGTAC -ACGGAACATAGGGTTCCTAGTGAC -ACGGAACATAGGGTTCCTCTGTAG -ACGGAACATAGGGTTCCTCCTAAG -ACGGAACATAGGGTTCCTGTTCAG -ACGGAACATAGGGTTCCTGCATAG -ACGGAACATAGGGTTCCTGACAAG -ACGGAACATAGGGTTCCTAAGCAG -ACGGAACATAGGGTTCCTCGTCAA -ACGGAACATAGGGTTCCTGCTGAA -ACGGAACATAGGGTTCCTAGTACG -ACGGAACATAGGGTTCCTATCCGA -ACGGAACATAGGGTTCCTATGGGA -ACGGAACATAGGGTTCCTGTGCAA -ACGGAACATAGGGTTCCTGAGGAA -ACGGAACATAGGGTTCCTCAGGTA -ACGGAACATAGGGTTCCTGACTCT -ACGGAACATAGGGTTCCTAGTCCT -ACGGAACATAGGGTTCCTTAAGCC -ACGGAACATAGGGTTCCTATAGCC -ACGGAACATAGGGTTCCTTAACCG -ACGGAACATAGGGTTCCTATGCCA -ACGGAACATAGGTTTCGGGGAAAC -ACGGAACATAGGTTTCGGAACACC -ACGGAACATAGGTTTCGGATCGAG -ACGGAACATAGGTTTCGGCTCCTT -ACGGAACATAGGTTTCGGCCTGTT -ACGGAACATAGGTTTCGGCGGTTT -ACGGAACATAGGTTTCGGGTGGTT -ACGGAACATAGGTTTCGGGCCTTT -ACGGAACATAGGTTTCGGGGTCTT -ACGGAACATAGGTTTCGGACGCTT -ACGGAACATAGGTTTCGGAGCGTT -ACGGAACATAGGTTTCGGTTCGTC -ACGGAACATAGGTTTCGGTCTCTC -ACGGAACATAGGTTTCGGTGGATC -ACGGAACATAGGTTTCGGCACTTC -ACGGAACATAGGTTTCGGGTACTC -ACGGAACATAGGTTTCGGGATGTC -ACGGAACATAGGTTTCGGACAGTC -ACGGAACATAGGTTTCGGTTGCTG -ACGGAACATAGGTTTCGGTCCATG -ACGGAACATAGGTTTCGGTGTGTG -ACGGAACATAGGTTTCGGCTAGTG -ACGGAACATAGGTTTCGGCATCTG -ACGGAACATAGGTTTCGGGAGTTG -ACGGAACATAGGTTTCGGAGACTG -ACGGAACATAGGTTTCGGTCGGTA -ACGGAACATAGGTTTCGGTGCCTA -ACGGAACATAGGTTTCGGCCACTA -ACGGAACATAGGTTTCGGGGAGTA -ACGGAACATAGGTTTCGGTCGTCT -ACGGAACATAGGTTTCGGTGCACT -ACGGAACATAGGTTTCGGCTGACT -ACGGAACATAGGTTTCGGCAACCT -ACGGAACATAGGTTTCGGGCTACT -ACGGAACATAGGTTTCGGGGATCT -ACGGAACATAGGTTTCGGAAGGCT -ACGGAACATAGGTTTCGGTCAACC -ACGGAACATAGGTTTCGGTGTTCC -ACGGAACATAGGTTTCGGATTCCC -ACGGAACATAGGTTTCGGTTCTCG -ACGGAACATAGGTTTCGGTAGACG -ACGGAACATAGGTTTCGGGTAACG -ACGGAACATAGGTTTCGGACTTCG -ACGGAACATAGGTTTCGGTACGCA -ACGGAACATAGGTTTCGGCTTGCA -ACGGAACATAGGTTTCGGCGAACA -ACGGAACATAGGTTTCGGCAGTCA -ACGGAACATAGGTTTCGGGATCCA -ACGGAACATAGGTTTCGGACGACA -ACGGAACATAGGTTTCGGAGCTCA -ACGGAACATAGGTTTCGGTCACGT -ACGGAACATAGGTTTCGGCGTAGT -ACGGAACATAGGTTTCGGGTCAGT -ACGGAACATAGGTTTCGGGAAGGT -ACGGAACATAGGTTTCGGAACCGT -ACGGAACATAGGTTTCGGTTGTGC -ACGGAACATAGGTTTCGGCTAAGC -ACGGAACATAGGTTTCGGACTAGC -ACGGAACATAGGTTTCGGAGATGC -ACGGAACATAGGTTTCGGTGAAGG -ACGGAACATAGGTTTCGGCAATGG -ACGGAACATAGGTTTCGGATGAGG -ACGGAACATAGGTTTCGGAATGGG -ACGGAACATAGGTTTCGGTCCTGA -ACGGAACATAGGTTTCGGTAGCGA -ACGGAACATAGGTTTCGGCACAGA -ACGGAACATAGGTTTCGGGCAAGA -ACGGAACATAGGTTTCGGGGTTGA -ACGGAACATAGGTTTCGGTCCGAT -ACGGAACATAGGTTTCGGTGGCAT -ACGGAACATAGGTTTCGGCGAGAT -ACGGAACATAGGTTTCGGTACCAC -ACGGAACATAGGTTTCGGCAGAAC -ACGGAACATAGGTTTCGGGTCTAC -ACGGAACATAGGTTTCGGACGTAC -ACGGAACATAGGTTTCGGAGTGAC -ACGGAACATAGGTTTCGGCTGTAG -ACGGAACATAGGTTTCGGCCTAAG -ACGGAACATAGGTTTCGGGTTCAG -ACGGAACATAGGTTTCGGGCATAG -ACGGAACATAGGTTTCGGGACAAG -ACGGAACATAGGTTTCGGAAGCAG -ACGGAACATAGGTTTCGGCGTCAA -ACGGAACATAGGTTTCGGGCTGAA -ACGGAACATAGGTTTCGGAGTACG -ACGGAACATAGGTTTCGGATCCGA -ACGGAACATAGGTTTCGGATGGGA -ACGGAACATAGGTTTCGGGTGCAA -ACGGAACATAGGTTTCGGGAGGAA -ACGGAACATAGGTTTCGGCAGGTA -ACGGAACATAGGTTTCGGGACTCT -ACGGAACATAGGTTTCGGAGTCCT -ACGGAACATAGGTTTCGGTAAGCC -ACGGAACATAGGTTTCGGATAGCC -ACGGAACATAGGTTTCGGTAACCG -ACGGAACATAGGTTTCGGATGCCA -ACGGAACATAGGGTTGTGGGAAAC -ACGGAACATAGGGTTGTGAACACC -ACGGAACATAGGGTTGTGATCGAG -ACGGAACATAGGGTTGTGCTCCTT -ACGGAACATAGGGTTGTGCCTGTT -ACGGAACATAGGGTTGTGCGGTTT -ACGGAACATAGGGTTGTGGTGGTT -ACGGAACATAGGGTTGTGGCCTTT -ACGGAACATAGGGTTGTGGGTCTT -ACGGAACATAGGGTTGTGACGCTT -ACGGAACATAGGGTTGTGAGCGTT -ACGGAACATAGGGTTGTGTTCGTC -ACGGAACATAGGGTTGTGTCTCTC -ACGGAACATAGGGTTGTGTGGATC -ACGGAACATAGGGTTGTGCACTTC -ACGGAACATAGGGTTGTGGTACTC -ACGGAACATAGGGTTGTGGATGTC -ACGGAACATAGGGTTGTGACAGTC -ACGGAACATAGGGTTGTGTTGCTG -ACGGAACATAGGGTTGTGTCCATG -ACGGAACATAGGGTTGTGTGTGTG -ACGGAACATAGGGTTGTGCTAGTG -ACGGAACATAGGGTTGTGCATCTG -ACGGAACATAGGGTTGTGGAGTTG -ACGGAACATAGGGTTGTGAGACTG -ACGGAACATAGGGTTGTGTCGGTA -ACGGAACATAGGGTTGTGTGCCTA -ACGGAACATAGGGTTGTGCCACTA -ACGGAACATAGGGTTGTGGGAGTA -ACGGAACATAGGGTTGTGTCGTCT -ACGGAACATAGGGTTGTGTGCACT -ACGGAACATAGGGTTGTGCTGACT -ACGGAACATAGGGTTGTGCAACCT -ACGGAACATAGGGTTGTGGCTACT -ACGGAACATAGGGTTGTGGGATCT -ACGGAACATAGGGTTGTGAAGGCT -ACGGAACATAGGGTTGTGTCAACC -ACGGAACATAGGGTTGTGTGTTCC -ACGGAACATAGGGTTGTGATTCCC -ACGGAACATAGGGTTGTGTTCTCG -ACGGAACATAGGGTTGTGTAGACG -ACGGAACATAGGGTTGTGGTAACG -ACGGAACATAGGGTTGTGACTTCG -ACGGAACATAGGGTTGTGTACGCA -ACGGAACATAGGGTTGTGCTTGCA -ACGGAACATAGGGTTGTGCGAACA -ACGGAACATAGGGTTGTGCAGTCA -ACGGAACATAGGGTTGTGGATCCA -ACGGAACATAGGGTTGTGACGACA -ACGGAACATAGGGTTGTGAGCTCA -ACGGAACATAGGGTTGTGTCACGT -ACGGAACATAGGGTTGTGCGTAGT -ACGGAACATAGGGTTGTGGTCAGT -ACGGAACATAGGGTTGTGGAAGGT -ACGGAACATAGGGTTGTGAACCGT -ACGGAACATAGGGTTGTGTTGTGC -ACGGAACATAGGGTTGTGCTAAGC -ACGGAACATAGGGTTGTGACTAGC -ACGGAACATAGGGTTGTGAGATGC -ACGGAACATAGGGTTGTGTGAAGG -ACGGAACATAGGGTTGTGCAATGG -ACGGAACATAGGGTTGTGATGAGG -ACGGAACATAGGGTTGTGAATGGG -ACGGAACATAGGGTTGTGTCCTGA -ACGGAACATAGGGTTGTGTAGCGA -ACGGAACATAGGGTTGTGCACAGA -ACGGAACATAGGGTTGTGGCAAGA -ACGGAACATAGGGTTGTGGGTTGA -ACGGAACATAGGGTTGTGTCCGAT -ACGGAACATAGGGTTGTGTGGCAT -ACGGAACATAGGGTTGTGCGAGAT -ACGGAACATAGGGTTGTGTACCAC -ACGGAACATAGGGTTGTGCAGAAC -ACGGAACATAGGGTTGTGGTCTAC -ACGGAACATAGGGTTGTGACGTAC -ACGGAACATAGGGTTGTGAGTGAC -ACGGAACATAGGGTTGTGCTGTAG -ACGGAACATAGGGTTGTGCCTAAG -ACGGAACATAGGGTTGTGGTTCAG -ACGGAACATAGGGTTGTGGCATAG -ACGGAACATAGGGTTGTGGACAAG -ACGGAACATAGGGTTGTGAAGCAG -ACGGAACATAGGGTTGTGCGTCAA -ACGGAACATAGGGTTGTGGCTGAA -ACGGAACATAGGGTTGTGAGTACG -ACGGAACATAGGGTTGTGATCCGA -ACGGAACATAGGGTTGTGATGGGA -ACGGAACATAGGGTTGTGGTGCAA -ACGGAACATAGGGTTGTGGAGGAA -ACGGAACATAGGGTTGTGCAGGTA -ACGGAACATAGGGTTGTGGACTCT -ACGGAACATAGGGTTGTGAGTCCT -ACGGAACATAGGGTTGTGTAAGCC -ACGGAACATAGGGTTGTGATAGCC -ACGGAACATAGGGTTGTGTAACCG -ACGGAACATAGGGTTGTGATGCCA -ACGGAACATAGGTTTGCCGGAAAC -ACGGAACATAGGTTTGCCAACACC -ACGGAACATAGGTTTGCCATCGAG -ACGGAACATAGGTTTGCCCTCCTT -ACGGAACATAGGTTTGCCCCTGTT -ACGGAACATAGGTTTGCCCGGTTT -ACGGAACATAGGTTTGCCGTGGTT -ACGGAACATAGGTTTGCCGCCTTT -ACGGAACATAGGTTTGCCGGTCTT -ACGGAACATAGGTTTGCCACGCTT -ACGGAACATAGGTTTGCCAGCGTT -ACGGAACATAGGTTTGCCTTCGTC -ACGGAACATAGGTTTGCCTCTCTC -ACGGAACATAGGTTTGCCTGGATC -ACGGAACATAGGTTTGCCCACTTC -ACGGAACATAGGTTTGCCGTACTC -ACGGAACATAGGTTTGCCGATGTC -ACGGAACATAGGTTTGCCACAGTC -ACGGAACATAGGTTTGCCTTGCTG -ACGGAACATAGGTTTGCCTCCATG -ACGGAACATAGGTTTGCCTGTGTG -ACGGAACATAGGTTTGCCCTAGTG -ACGGAACATAGGTTTGCCCATCTG -ACGGAACATAGGTTTGCCGAGTTG -ACGGAACATAGGTTTGCCAGACTG -ACGGAACATAGGTTTGCCTCGGTA -ACGGAACATAGGTTTGCCTGCCTA -ACGGAACATAGGTTTGCCCCACTA -ACGGAACATAGGTTTGCCGGAGTA -ACGGAACATAGGTTTGCCTCGTCT -ACGGAACATAGGTTTGCCTGCACT -ACGGAACATAGGTTTGCCCTGACT -ACGGAACATAGGTTTGCCCAACCT -ACGGAACATAGGTTTGCCGCTACT -ACGGAACATAGGTTTGCCGGATCT -ACGGAACATAGGTTTGCCAAGGCT -ACGGAACATAGGTTTGCCTCAACC -ACGGAACATAGGTTTGCCTGTTCC -ACGGAACATAGGTTTGCCATTCCC -ACGGAACATAGGTTTGCCTTCTCG -ACGGAACATAGGTTTGCCTAGACG -ACGGAACATAGGTTTGCCGTAACG -ACGGAACATAGGTTTGCCACTTCG -ACGGAACATAGGTTTGCCTACGCA -ACGGAACATAGGTTTGCCCTTGCA -ACGGAACATAGGTTTGCCCGAACA -ACGGAACATAGGTTTGCCCAGTCA -ACGGAACATAGGTTTGCCGATCCA -ACGGAACATAGGTTTGCCACGACA -ACGGAACATAGGTTTGCCAGCTCA -ACGGAACATAGGTTTGCCTCACGT -ACGGAACATAGGTTTGCCCGTAGT -ACGGAACATAGGTTTGCCGTCAGT -ACGGAACATAGGTTTGCCGAAGGT -ACGGAACATAGGTTTGCCAACCGT -ACGGAACATAGGTTTGCCTTGTGC -ACGGAACATAGGTTTGCCCTAAGC -ACGGAACATAGGTTTGCCACTAGC -ACGGAACATAGGTTTGCCAGATGC -ACGGAACATAGGTTTGCCTGAAGG -ACGGAACATAGGTTTGCCCAATGG -ACGGAACATAGGTTTGCCATGAGG -ACGGAACATAGGTTTGCCAATGGG -ACGGAACATAGGTTTGCCTCCTGA -ACGGAACATAGGTTTGCCTAGCGA -ACGGAACATAGGTTTGCCCACAGA -ACGGAACATAGGTTTGCCGCAAGA -ACGGAACATAGGTTTGCCGGTTGA -ACGGAACATAGGTTTGCCTCCGAT -ACGGAACATAGGTTTGCCTGGCAT -ACGGAACATAGGTTTGCCCGAGAT -ACGGAACATAGGTTTGCCTACCAC -ACGGAACATAGGTTTGCCCAGAAC -ACGGAACATAGGTTTGCCGTCTAC -ACGGAACATAGGTTTGCCACGTAC -ACGGAACATAGGTTTGCCAGTGAC -ACGGAACATAGGTTTGCCCTGTAG -ACGGAACATAGGTTTGCCCCTAAG -ACGGAACATAGGTTTGCCGTTCAG -ACGGAACATAGGTTTGCCGCATAG -ACGGAACATAGGTTTGCCGACAAG -ACGGAACATAGGTTTGCCAAGCAG -ACGGAACATAGGTTTGCCCGTCAA -ACGGAACATAGGTTTGCCGCTGAA -ACGGAACATAGGTTTGCCAGTACG -ACGGAACATAGGTTTGCCATCCGA -ACGGAACATAGGTTTGCCATGGGA -ACGGAACATAGGTTTGCCGTGCAA -ACGGAACATAGGTTTGCCGAGGAA -ACGGAACATAGGTTTGCCCAGGTA -ACGGAACATAGGTTTGCCGACTCT -ACGGAACATAGGTTTGCCAGTCCT -ACGGAACATAGGTTTGCCTAAGCC -ACGGAACATAGGTTTGCCATAGCC -ACGGAACATAGGTTTGCCTAACCG -ACGGAACATAGGTTTGCCATGCCA -ACGGAACATAGGCTTGGTGGAAAC -ACGGAACATAGGCTTGGTAACACC -ACGGAACATAGGCTTGGTATCGAG -ACGGAACATAGGCTTGGTCTCCTT -ACGGAACATAGGCTTGGTCCTGTT -ACGGAACATAGGCTTGGTCGGTTT -ACGGAACATAGGCTTGGTGTGGTT -ACGGAACATAGGCTTGGTGCCTTT -ACGGAACATAGGCTTGGTGGTCTT -ACGGAACATAGGCTTGGTACGCTT -ACGGAACATAGGCTTGGTAGCGTT -ACGGAACATAGGCTTGGTTTCGTC -ACGGAACATAGGCTTGGTTCTCTC -ACGGAACATAGGCTTGGTTGGATC -ACGGAACATAGGCTTGGTCACTTC -ACGGAACATAGGCTTGGTGTACTC -ACGGAACATAGGCTTGGTGATGTC -ACGGAACATAGGCTTGGTACAGTC -ACGGAACATAGGCTTGGTTTGCTG -ACGGAACATAGGCTTGGTTCCATG -ACGGAACATAGGCTTGGTTGTGTG -ACGGAACATAGGCTTGGTCTAGTG -ACGGAACATAGGCTTGGTCATCTG -ACGGAACATAGGCTTGGTGAGTTG -ACGGAACATAGGCTTGGTAGACTG -ACGGAACATAGGCTTGGTTCGGTA -ACGGAACATAGGCTTGGTTGCCTA -ACGGAACATAGGCTTGGTCCACTA -ACGGAACATAGGCTTGGTGGAGTA -ACGGAACATAGGCTTGGTTCGTCT -ACGGAACATAGGCTTGGTTGCACT -ACGGAACATAGGCTTGGTCTGACT -ACGGAACATAGGCTTGGTCAACCT -ACGGAACATAGGCTTGGTGCTACT -ACGGAACATAGGCTTGGTGGATCT -ACGGAACATAGGCTTGGTAAGGCT -ACGGAACATAGGCTTGGTTCAACC -ACGGAACATAGGCTTGGTTGTTCC -ACGGAACATAGGCTTGGTATTCCC -ACGGAACATAGGCTTGGTTTCTCG -ACGGAACATAGGCTTGGTTAGACG -ACGGAACATAGGCTTGGTGTAACG -ACGGAACATAGGCTTGGTACTTCG -ACGGAACATAGGCTTGGTTACGCA -ACGGAACATAGGCTTGGTCTTGCA -ACGGAACATAGGCTTGGTCGAACA -ACGGAACATAGGCTTGGTCAGTCA -ACGGAACATAGGCTTGGTGATCCA -ACGGAACATAGGCTTGGTACGACA -ACGGAACATAGGCTTGGTAGCTCA -ACGGAACATAGGCTTGGTTCACGT -ACGGAACATAGGCTTGGTCGTAGT -ACGGAACATAGGCTTGGTGTCAGT -ACGGAACATAGGCTTGGTGAAGGT -ACGGAACATAGGCTTGGTAACCGT -ACGGAACATAGGCTTGGTTTGTGC -ACGGAACATAGGCTTGGTCTAAGC -ACGGAACATAGGCTTGGTACTAGC -ACGGAACATAGGCTTGGTAGATGC -ACGGAACATAGGCTTGGTTGAAGG -ACGGAACATAGGCTTGGTCAATGG -ACGGAACATAGGCTTGGTATGAGG -ACGGAACATAGGCTTGGTAATGGG -ACGGAACATAGGCTTGGTTCCTGA -ACGGAACATAGGCTTGGTTAGCGA -ACGGAACATAGGCTTGGTCACAGA -ACGGAACATAGGCTTGGTGCAAGA -ACGGAACATAGGCTTGGTGGTTGA -ACGGAACATAGGCTTGGTTCCGAT -ACGGAACATAGGCTTGGTTGGCAT -ACGGAACATAGGCTTGGTCGAGAT -ACGGAACATAGGCTTGGTTACCAC -ACGGAACATAGGCTTGGTCAGAAC -ACGGAACATAGGCTTGGTGTCTAC -ACGGAACATAGGCTTGGTACGTAC -ACGGAACATAGGCTTGGTAGTGAC -ACGGAACATAGGCTTGGTCTGTAG -ACGGAACATAGGCTTGGTCCTAAG -ACGGAACATAGGCTTGGTGTTCAG -ACGGAACATAGGCTTGGTGCATAG -ACGGAACATAGGCTTGGTGACAAG -ACGGAACATAGGCTTGGTAAGCAG -ACGGAACATAGGCTTGGTCGTCAA -ACGGAACATAGGCTTGGTGCTGAA -ACGGAACATAGGCTTGGTAGTACG -ACGGAACATAGGCTTGGTATCCGA -ACGGAACATAGGCTTGGTATGGGA -ACGGAACATAGGCTTGGTGTGCAA -ACGGAACATAGGCTTGGTGAGGAA -ACGGAACATAGGCTTGGTCAGGTA -ACGGAACATAGGCTTGGTGACTCT -ACGGAACATAGGCTTGGTAGTCCT -ACGGAACATAGGCTTGGTTAAGCC -ACGGAACATAGGCTTGGTATAGCC -ACGGAACATAGGCTTGGTTAACCG -ACGGAACATAGGCTTGGTATGCCA -ACGGAACATAGGCTTACGGGAAAC -ACGGAACATAGGCTTACGAACACC -ACGGAACATAGGCTTACGATCGAG -ACGGAACATAGGCTTACGCTCCTT -ACGGAACATAGGCTTACGCCTGTT -ACGGAACATAGGCTTACGCGGTTT -ACGGAACATAGGCTTACGGTGGTT -ACGGAACATAGGCTTACGGCCTTT -ACGGAACATAGGCTTACGGGTCTT -ACGGAACATAGGCTTACGACGCTT -ACGGAACATAGGCTTACGAGCGTT -ACGGAACATAGGCTTACGTTCGTC -ACGGAACATAGGCTTACGTCTCTC -ACGGAACATAGGCTTACGTGGATC -ACGGAACATAGGCTTACGCACTTC -ACGGAACATAGGCTTACGGTACTC -ACGGAACATAGGCTTACGGATGTC -ACGGAACATAGGCTTACGACAGTC -ACGGAACATAGGCTTACGTTGCTG -ACGGAACATAGGCTTACGTCCATG -ACGGAACATAGGCTTACGTGTGTG -ACGGAACATAGGCTTACGCTAGTG -ACGGAACATAGGCTTACGCATCTG -ACGGAACATAGGCTTACGGAGTTG -ACGGAACATAGGCTTACGAGACTG -ACGGAACATAGGCTTACGTCGGTA -ACGGAACATAGGCTTACGTGCCTA -ACGGAACATAGGCTTACGCCACTA -ACGGAACATAGGCTTACGGGAGTA -ACGGAACATAGGCTTACGTCGTCT -ACGGAACATAGGCTTACGTGCACT -ACGGAACATAGGCTTACGCTGACT -ACGGAACATAGGCTTACGCAACCT -ACGGAACATAGGCTTACGGCTACT -ACGGAACATAGGCTTACGGGATCT -ACGGAACATAGGCTTACGAAGGCT -ACGGAACATAGGCTTACGTCAACC -ACGGAACATAGGCTTACGTGTTCC -ACGGAACATAGGCTTACGATTCCC -ACGGAACATAGGCTTACGTTCTCG -ACGGAACATAGGCTTACGTAGACG -ACGGAACATAGGCTTACGGTAACG -ACGGAACATAGGCTTACGACTTCG -ACGGAACATAGGCTTACGTACGCA -ACGGAACATAGGCTTACGCTTGCA -ACGGAACATAGGCTTACGCGAACA -ACGGAACATAGGCTTACGCAGTCA -ACGGAACATAGGCTTACGGATCCA -ACGGAACATAGGCTTACGACGACA -ACGGAACATAGGCTTACGAGCTCA -ACGGAACATAGGCTTACGTCACGT -ACGGAACATAGGCTTACGCGTAGT -ACGGAACATAGGCTTACGGTCAGT -ACGGAACATAGGCTTACGGAAGGT -ACGGAACATAGGCTTACGAACCGT -ACGGAACATAGGCTTACGTTGTGC -ACGGAACATAGGCTTACGCTAAGC -ACGGAACATAGGCTTACGACTAGC -ACGGAACATAGGCTTACGAGATGC -ACGGAACATAGGCTTACGTGAAGG -ACGGAACATAGGCTTACGCAATGG -ACGGAACATAGGCTTACGATGAGG -ACGGAACATAGGCTTACGAATGGG -ACGGAACATAGGCTTACGTCCTGA -ACGGAACATAGGCTTACGTAGCGA -ACGGAACATAGGCTTACGCACAGA -ACGGAACATAGGCTTACGGCAAGA -ACGGAACATAGGCTTACGGGTTGA -ACGGAACATAGGCTTACGTCCGAT -ACGGAACATAGGCTTACGTGGCAT -ACGGAACATAGGCTTACGCGAGAT -ACGGAACATAGGCTTACGTACCAC -ACGGAACATAGGCTTACGCAGAAC -ACGGAACATAGGCTTACGGTCTAC -ACGGAACATAGGCTTACGACGTAC -ACGGAACATAGGCTTACGAGTGAC -ACGGAACATAGGCTTACGCTGTAG -ACGGAACATAGGCTTACGCCTAAG -ACGGAACATAGGCTTACGGTTCAG -ACGGAACATAGGCTTACGGCATAG -ACGGAACATAGGCTTACGGACAAG -ACGGAACATAGGCTTACGAAGCAG -ACGGAACATAGGCTTACGCGTCAA -ACGGAACATAGGCTTACGGCTGAA -ACGGAACATAGGCTTACGAGTACG -ACGGAACATAGGCTTACGATCCGA -ACGGAACATAGGCTTACGATGGGA -ACGGAACATAGGCTTACGGTGCAA -ACGGAACATAGGCTTACGGAGGAA -ACGGAACATAGGCTTACGCAGGTA -ACGGAACATAGGCTTACGGACTCT -ACGGAACATAGGCTTACGAGTCCT -ACGGAACATAGGCTTACGTAAGCC -ACGGAACATAGGCTTACGATAGCC -ACGGAACATAGGCTTACGTAACCG -ACGGAACATAGGCTTACGATGCCA -ACGGAACATAGGGTTAGCGGAAAC -ACGGAACATAGGGTTAGCAACACC -ACGGAACATAGGGTTAGCATCGAG -ACGGAACATAGGGTTAGCCTCCTT -ACGGAACATAGGGTTAGCCCTGTT -ACGGAACATAGGGTTAGCCGGTTT -ACGGAACATAGGGTTAGCGTGGTT -ACGGAACATAGGGTTAGCGCCTTT -ACGGAACATAGGGTTAGCGGTCTT -ACGGAACATAGGGTTAGCACGCTT -ACGGAACATAGGGTTAGCAGCGTT -ACGGAACATAGGGTTAGCTTCGTC -ACGGAACATAGGGTTAGCTCTCTC -ACGGAACATAGGGTTAGCTGGATC -ACGGAACATAGGGTTAGCCACTTC -ACGGAACATAGGGTTAGCGTACTC -ACGGAACATAGGGTTAGCGATGTC -ACGGAACATAGGGTTAGCACAGTC -ACGGAACATAGGGTTAGCTTGCTG -ACGGAACATAGGGTTAGCTCCATG -ACGGAACATAGGGTTAGCTGTGTG -ACGGAACATAGGGTTAGCCTAGTG -ACGGAACATAGGGTTAGCCATCTG -ACGGAACATAGGGTTAGCGAGTTG -ACGGAACATAGGGTTAGCAGACTG -ACGGAACATAGGGTTAGCTCGGTA -ACGGAACATAGGGTTAGCTGCCTA -ACGGAACATAGGGTTAGCCCACTA -ACGGAACATAGGGTTAGCGGAGTA -ACGGAACATAGGGTTAGCTCGTCT -ACGGAACATAGGGTTAGCTGCACT -ACGGAACATAGGGTTAGCCTGACT -ACGGAACATAGGGTTAGCCAACCT -ACGGAACATAGGGTTAGCGCTACT -ACGGAACATAGGGTTAGCGGATCT -ACGGAACATAGGGTTAGCAAGGCT -ACGGAACATAGGGTTAGCTCAACC -ACGGAACATAGGGTTAGCTGTTCC -ACGGAACATAGGGTTAGCATTCCC -ACGGAACATAGGGTTAGCTTCTCG -ACGGAACATAGGGTTAGCTAGACG -ACGGAACATAGGGTTAGCGTAACG -ACGGAACATAGGGTTAGCACTTCG -ACGGAACATAGGGTTAGCTACGCA -ACGGAACATAGGGTTAGCCTTGCA -ACGGAACATAGGGTTAGCCGAACA -ACGGAACATAGGGTTAGCCAGTCA -ACGGAACATAGGGTTAGCGATCCA -ACGGAACATAGGGTTAGCACGACA -ACGGAACATAGGGTTAGCAGCTCA -ACGGAACATAGGGTTAGCTCACGT -ACGGAACATAGGGTTAGCCGTAGT -ACGGAACATAGGGTTAGCGTCAGT -ACGGAACATAGGGTTAGCGAAGGT -ACGGAACATAGGGTTAGCAACCGT -ACGGAACATAGGGTTAGCTTGTGC -ACGGAACATAGGGTTAGCCTAAGC -ACGGAACATAGGGTTAGCACTAGC -ACGGAACATAGGGTTAGCAGATGC -ACGGAACATAGGGTTAGCTGAAGG -ACGGAACATAGGGTTAGCCAATGG -ACGGAACATAGGGTTAGCATGAGG -ACGGAACATAGGGTTAGCAATGGG -ACGGAACATAGGGTTAGCTCCTGA -ACGGAACATAGGGTTAGCTAGCGA -ACGGAACATAGGGTTAGCCACAGA -ACGGAACATAGGGTTAGCGCAAGA -ACGGAACATAGGGTTAGCGGTTGA -ACGGAACATAGGGTTAGCTCCGAT -ACGGAACATAGGGTTAGCTGGCAT -ACGGAACATAGGGTTAGCCGAGAT -ACGGAACATAGGGTTAGCTACCAC -ACGGAACATAGGGTTAGCCAGAAC -ACGGAACATAGGGTTAGCGTCTAC -ACGGAACATAGGGTTAGCACGTAC -ACGGAACATAGGGTTAGCAGTGAC -ACGGAACATAGGGTTAGCCTGTAG -ACGGAACATAGGGTTAGCCCTAAG -ACGGAACATAGGGTTAGCGTTCAG -ACGGAACATAGGGTTAGCGCATAG -ACGGAACATAGGGTTAGCGACAAG -ACGGAACATAGGGTTAGCAAGCAG -ACGGAACATAGGGTTAGCCGTCAA -ACGGAACATAGGGTTAGCGCTGAA -ACGGAACATAGGGTTAGCAGTACG -ACGGAACATAGGGTTAGCATCCGA -ACGGAACATAGGGTTAGCATGGGA -ACGGAACATAGGGTTAGCGTGCAA -ACGGAACATAGGGTTAGCGAGGAA -ACGGAACATAGGGTTAGCCAGGTA -ACGGAACATAGGGTTAGCGACTCT -ACGGAACATAGGGTTAGCAGTCCT -ACGGAACATAGGGTTAGCTAAGCC -ACGGAACATAGGGTTAGCATAGCC -ACGGAACATAGGGTTAGCTAACCG -ACGGAACATAGGGTTAGCATGCCA -ACGGAACATAGGGTCTTCGGAAAC -ACGGAACATAGGGTCTTCAACACC -ACGGAACATAGGGTCTTCATCGAG -ACGGAACATAGGGTCTTCCTCCTT -ACGGAACATAGGGTCTTCCCTGTT -ACGGAACATAGGGTCTTCCGGTTT -ACGGAACATAGGGTCTTCGTGGTT -ACGGAACATAGGGTCTTCGCCTTT -ACGGAACATAGGGTCTTCGGTCTT -ACGGAACATAGGGTCTTCACGCTT -ACGGAACATAGGGTCTTCAGCGTT -ACGGAACATAGGGTCTTCTTCGTC -ACGGAACATAGGGTCTTCTCTCTC -ACGGAACATAGGGTCTTCTGGATC -ACGGAACATAGGGTCTTCCACTTC -ACGGAACATAGGGTCTTCGTACTC -ACGGAACATAGGGTCTTCGATGTC -ACGGAACATAGGGTCTTCACAGTC -ACGGAACATAGGGTCTTCTTGCTG -ACGGAACATAGGGTCTTCTCCATG -ACGGAACATAGGGTCTTCTGTGTG -ACGGAACATAGGGTCTTCCTAGTG -ACGGAACATAGGGTCTTCCATCTG -ACGGAACATAGGGTCTTCGAGTTG -ACGGAACATAGGGTCTTCAGACTG -ACGGAACATAGGGTCTTCTCGGTA -ACGGAACATAGGGTCTTCTGCCTA -ACGGAACATAGGGTCTTCCCACTA -ACGGAACATAGGGTCTTCGGAGTA -ACGGAACATAGGGTCTTCTCGTCT -ACGGAACATAGGGTCTTCTGCACT -ACGGAACATAGGGTCTTCCTGACT -ACGGAACATAGGGTCTTCCAACCT -ACGGAACATAGGGTCTTCGCTACT -ACGGAACATAGGGTCTTCGGATCT -ACGGAACATAGGGTCTTCAAGGCT -ACGGAACATAGGGTCTTCTCAACC -ACGGAACATAGGGTCTTCTGTTCC -ACGGAACATAGGGTCTTCATTCCC -ACGGAACATAGGGTCTTCTTCTCG -ACGGAACATAGGGTCTTCTAGACG -ACGGAACATAGGGTCTTCGTAACG -ACGGAACATAGGGTCTTCACTTCG -ACGGAACATAGGGTCTTCTACGCA -ACGGAACATAGGGTCTTCCTTGCA -ACGGAACATAGGGTCTTCCGAACA -ACGGAACATAGGGTCTTCCAGTCA -ACGGAACATAGGGTCTTCGATCCA -ACGGAACATAGGGTCTTCACGACA -ACGGAACATAGGGTCTTCAGCTCA -ACGGAACATAGGGTCTTCTCACGT -ACGGAACATAGGGTCTTCCGTAGT -ACGGAACATAGGGTCTTCGTCAGT -ACGGAACATAGGGTCTTCGAAGGT -ACGGAACATAGGGTCTTCAACCGT -ACGGAACATAGGGTCTTCTTGTGC -ACGGAACATAGGGTCTTCCTAAGC -ACGGAACATAGGGTCTTCACTAGC -ACGGAACATAGGGTCTTCAGATGC -ACGGAACATAGGGTCTTCTGAAGG -ACGGAACATAGGGTCTTCCAATGG -ACGGAACATAGGGTCTTCATGAGG -ACGGAACATAGGGTCTTCAATGGG -ACGGAACATAGGGTCTTCTCCTGA -ACGGAACATAGGGTCTTCTAGCGA -ACGGAACATAGGGTCTTCCACAGA -ACGGAACATAGGGTCTTCGCAAGA -ACGGAACATAGGGTCTTCGGTTGA -ACGGAACATAGGGTCTTCTCCGAT -ACGGAACATAGGGTCTTCTGGCAT -ACGGAACATAGGGTCTTCCGAGAT -ACGGAACATAGGGTCTTCTACCAC -ACGGAACATAGGGTCTTCCAGAAC -ACGGAACATAGGGTCTTCGTCTAC -ACGGAACATAGGGTCTTCACGTAC -ACGGAACATAGGGTCTTCAGTGAC -ACGGAACATAGGGTCTTCCTGTAG -ACGGAACATAGGGTCTTCCCTAAG -ACGGAACATAGGGTCTTCGTTCAG -ACGGAACATAGGGTCTTCGCATAG -ACGGAACATAGGGTCTTCGACAAG -ACGGAACATAGGGTCTTCAAGCAG -ACGGAACATAGGGTCTTCCGTCAA -ACGGAACATAGGGTCTTCGCTGAA -ACGGAACATAGGGTCTTCAGTACG -ACGGAACATAGGGTCTTCATCCGA -ACGGAACATAGGGTCTTCATGGGA -ACGGAACATAGGGTCTTCGTGCAA -ACGGAACATAGGGTCTTCGAGGAA -ACGGAACATAGGGTCTTCCAGGTA -ACGGAACATAGGGTCTTCGACTCT -ACGGAACATAGGGTCTTCAGTCCT -ACGGAACATAGGGTCTTCTAAGCC -ACGGAACATAGGGTCTTCATAGCC -ACGGAACATAGGGTCTTCTAACCG -ACGGAACATAGGGTCTTCATGCCA -ACGGAACATAGGCTCTCTGGAAAC -ACGGAACATAGGCTCTCTAACACC -ACGGAACATAGGCTCTCTATCGAG -ACGGAACATAGGCTCTCTCTCCTT -ACGGAACATAGGCTCTCTCCTGTT -ACGGAACATAGGCTCTCTCGGTTT -ACGGAACATAGGCTCTCTGTGGTT -ACGGAACATAGGCTCTCTGCCTTT -ACGGAACATAGGCTCTCTGGTCTT -ACGGAACATAGGCTCTCTACGCTT -ACGGAACATAGGCTCTCTAGCGTT -ACGGAACATAGGCTCTCTTTCGTC -ACGGAACATAGGCTCTCTTCTCTC -ACGGAACATAGGCTCTCTTGGATC -ACGGAACATAGGCTCTCTCACTTC -ACGGAACATAGGCTCTCTGTACTC -ACGGAACATAGGCTCTCTGATGTC -ACGGAACATAGGCTCTCTACAGTC -ACGGAACATAGGCTCTCTTTGCTG -ACGGAACATAGGCTCTCTTCCATG -ACGGAACATAGGCTCTCTTGTGTG -ACGGAACATAGGCTCTCTCTAGTG -ACGGAACATAGGCTCTCTCATCTG -ACGGAACATAGGCTCTCTGAGTTG -ACGGAACATAGGCTCTCTAGACTG -ACGGAACATAGGCTCTCTTCGGTA -ACGGAACATAGGCTCTCTTGCCTA -ACGGAACATAGGCTCTCTCCACTA -ACGGAACATAGGCTCTCTGGAGTA -ACGGAACATAGGCTCTCTTCGTCT -ACGGAACATAGGCTCTCTTGCACT -ACGGAACATAGGCTCTCTCTGACT -ACGGAACATAGGCTCTCTCAACCT -ACGGAACATAGGCTCTCTGCTACT -ACGGAACATAGGCTCTCTGGATCT -ACGGAACATAGGCTCTCTAAGGCT -ACGGAACATAGGCTCTCTTCAACC -ACGGAACATAGGCTCTCTTGTTCC -ACGGAACATAGGCTCTCTATTCCC -ACGGAACATAGGCTCTCTTTCTCG -ACGGAACATAGGCTCTCTTAGACG -ACGGAACATAGGCTCTCTGTAACG -ACGGAACATAGGCTCTCTACTTCG -ACGGAACATAGGCTCTCTTACGCA -ACGGAACATAGGCTCTCTCTTGCA -ACGGAACATAGGCTCTCTCGAACA -ACGGAACATAGGCTCTCTCAGTCA -ACGGAACATAGGCTCTCTGATCCA -ACGGAACATAGGCTCTCTACGACA -ACGGAACATAGGCTCTCTAGCTCA -ACGGAACATAGGCTCTCTTCACGT -ACGGAACATAGGCTCTCTCGTAGT -ACGGAACATAGGCTCTCTGTCAGT -ACGGAACATAGGCTCTCTGAAGGT -ACGGAACATAGGCTCTCTAACCGT -ACGGAACATAGGCTCTCTTTGTGC -ACGGAACATAGGCTCTCTCTAAGC -ACGGAACATAGGCTCTCTACTAGC -ACGGAACATAGGCTCTCTAGATGC -ACGGAACATAGGCTCTCTTGAAGG -ACGGAACATAGGCTCTCTCAATGG -ACGGAACATAGGCTCTCTATGAGG -ACGGAACATAGGCTCTCTAATGGG -ACGGAACATAGGCTCTCTTCCTGA -ACGGAACATAGGCTCTCTTAGCGA -ACGGAACATAGGCTCTCTCACAGA -ACGGAACATAGGCTCTCTGCAAGA -ACGGAACATAGGCTCTCTGGTTGA -ACGGAACATAGGCTCTCTTCCGAT -ACGGAACATAGGCTCTCTTGGCAT -ACGGAACATAGGCTCTCTCGAGAT -ACGGAACATAGGCTCTCTTACCAC -ACGGAACATAGGCTCTCTCAGAAC -ACGGAACATAGGCTCTCTGTCTAC -ACGGAACATAGGCTCTCTACGTAC -ACGGAACATAGGCTCTCTAGTGAC -ACGGAACATAGGCTCTCTCTGTAG -ACGGAACATAGGCTCTCTCCTAAG -ACGGAACATAGGCTCTCTGTTCAG -ACGGAACATAGGCTCTCTGCATAG -ACGGAACATAGGCTCTCTGACAAG -ACGGAACATAGGCTCTCTAAGCAG -ACGGAACATAGGCTCTCTCGTCAA -ACGGAACATAGGCTCTCTGCTGAA -ACGGAACATAGGCTCTCTAGTACG -ACGGAACATAGGCTCTCTATCCGA -ACGGAACATAGGCTCTCTATGGGA -ACGGAACATAGGCTCTCTGTGCAA -ACGGAACATAGGCTCTCTGAGGAA -ACGGAACATAGGCTCTCTCAGGTA -ACGGAACATAGGCTCTCTGACTCT -ACGGAACATAGGCTCTCTAGTCCT -ACGGAACATAGGCTCTCTTAAGCC -ACGGAACATAGGCTCTCTATAGCC -ACGGAACATAGGCTCTCTTAACCG -ACGGAACATAGGCTCTCTATGCCA -ACGGAACATAGGATCTGGGGAAAC -ACGGAACATAGGATCTGGAACACC -ACGGAACATAGGATCTGGATCGAG -ACGGAACATAGGATCTGGCTCCTT -ACGGAACATAGGATCTGGCCTGTT -ACGGAACATAGGATCTGGCGGTTT -ACGGAACATAGGATCTGGGTGGTT -ACGGAACATAGGATCTGGGCCTTT -ACGGAACATAGGATCTGGGGTCTT -ACGGAACATAGGATCTGGACGCTT -ACGGAACATAGGATCTGGAGCGTT -ACGGAACATAGGATCTGGTTCGTC -ACGGAACATAGGATCTGGTCTCTC -ACGGAACATAGGATCTGGTGGATC -ACGGAACATAGGATCTGGCACTTC -ACGGAACATAGGATCTGGGTACTC -ACGGAACATAGGATCTGGGATGTC -ACGGAACATAGGATCTGGACAGTC -ACGGAACATAGGATCTGGTTGCTG -ACGGAACATAGGATCTGGTCCATG -ACGGAACATAGGATCTGGTGTGTG -ACGGAACATAGGATCTGGCTAGTG -ACGGAACATAGGATCTGGCATCTG -ACGGAACATAGGATCTGGGAGTTG -ACGGAACATAGGATCTGGAGACTG -ACGGAACATAGGATCTGGTCGGTA -ACGGAACATAGGATCTGGTGCCTA -ACGGAACATAGGATCTGGCCACTA -ACGGAACATAGGATCTGGGGAGTA -ACGGAACATAGGATCTGGTCGTCT -ACGGAACATAGGATCTGGTGCACT -ACGGAACATAGGATCTGGCTGACT -ACGGAACATAGGATCTGGCAACCT -ACGGAACATAGGATCTGGGCTACT -ACGGAACATAGGATCTGGGGATCT -ACGGAACATAGGATCTGGAAGGCT -ACGGAACATAGGATCTGGTCAACC -ACGGAACATAGGATCTGGTGTTCC -ACGGAACATAGGATCTGGATTCCC -ACGGAACATAGGATCTGGTTCTCG -ACGGAACATAGGATCTGGTAGACG -ACGGAACATAGGATCTGGGTAACG -ACGGAACATAGGATCTGGACTTCG -ACGGAACATAGGATCTGGTACGCA -ACGGAACATAGGATCTGGCTTGCA -ACGGAACATAGGATCTGGCGAACA -ACGGAACATAGGATCTGGCAGTCA -ACGGAACATAGGATCTGGGATCCA -ACGGAACATAGGATCTGGACGACA -ACGGAACATAGGATCTGGAGCTCA -ACGGAACATAGGATCTGGTCACGT -ACGGAACATAGGATCTGGCGTAGT -ACGGAACATAGGATCTGGGTCAGT -ACGGAACATAGGATCTGGGAAGGT -ACGGAACATAGGATCTGGAACCGT -ACGGAACATAGGATCTGGTTGTGC -ACGGAACATAGGATCTGGCTAAGC -ACGGAACATAGGATCTGGACTAGC -ACGGAACATAGGATCTGGAGATGC -ACGGAACATAGGATCTGGTGAAGG -ACGGAACATAGGATCTGGCAATGG -ACGGAACATAGGATCTGGATGAGG -ACGGAACATAGGATCTGGAATGGG -ACGGAACATAGGATCTGGTCCTGA -ACGGAACATAGGATCTGGTAGCGA -ACGGAACATAGGATCTGGCACAGA -ACGGAACATAGGATCTGGGCAAGA -ACGGAACATAGGATCTGGGGTTGA -ACGGAACATAGGATCTGGTCCGAT -ACGGAACATAGGATCTGGTGGCAT -ACGGAACATAGGATCTGGCGAGAT -ACGGAACATAGGATCTGGTACCAC -ACGGAACATAGGATCTGGCAGAAC -ACGGAACATAGGATCTGGGTCTAC -ACGGAACATAGGATCTGGACGTAC -ACGGAACATAGGATCTGGAGTGAC -ACGGAACATAGGATCTGGCTGTAG -ACGGAACATAGGATCTGGCCTAAG -ACGGAACATAGGATCTGGGTTCAG -ACGGAACATAGGATCTGGGCATAG -ACGGAACATAGGATCTGGGACAAG -ACGGAACATAGGATCTGGAAGCAG -ACGGAACATAGGATCTGGCGTCAA -ACGGAACATAGGATCTGGGCTGAA -ACGGAACATAGGATCTGGAGTACG -ACGGAACATAGGATCTGGATCCGA -ACGGAACATAGGATCTGGATGGGA -ACGGAACATAGGATCTGGGTGCAA -ACGGAACATAGGATCTGGGAGGAA -ACGGAACATAGGATCTGGCAGGTA -ACGGAACATAGGATCTGGGACTCT -ACGGAACATAGGATCTGGAGTCCT -ACGGAACATAGGATCTGGTAAGCC -ACGGAACATAGGATCTGGATAGCC -ACGGAACATAGGATCTGGTAACCG -ACGGAACATAGGATCTGGATGCCA -ACGGAACATAGGTTCCACGGAAAC -ACGGAACATAGGTTCCACAACACC -ACGGAACATAGGTTCCACATCGAG -ACGGAACATAGGTTCCACCTCCTT -ACGGAACATAGGTTCCACCCTGTT -ACGGAACATAGGTTCCACCGGTTT -ACGGAACATAGGTTCCACGTGGTT -ACGGAACATAGGTTCCACGCCTTT -ACGGAACATAGGTTCCACGGTCTT -ACGGAACATAGGTTCCACACGCTT -ACGGAACATAGGTTCCACAGCGTT -ACGGAACATAGGTTCCACTTCGTC -ACGGAACATAGGTTCCACTCTCTC -ACGGAACATAGGTTCCACTGGATC -ACGGAACATAGGTTCCACCACTTC -ACGGAACATAGGTTCCACGTACTC -ACGGAACATAGGTTCCACGATGTC -ACGGAACATAGGTTCCACACAGTC -ACGGAACATAGGTTCCACTTGCTG -ACGGAACATAGGTTCCACTCCATG -ACGGAACATAGGTTCCACTGTGTG -ACGGAACATAGGTTCCACCTAGTG -ACGGAACATAGGTTCCACCATCTG -ACGGAACATAGGTTCCACGAGTTG -ACGGAACATAGGTTCCACAGACTG -ACGGAACATAGGTTCCACTCGGTA -ACGGAACATAGGTTCCACTGCCTA -ACGGAACATAGGTTCCACCCACTA -ACGGAACATAGGTTCCACGGAGTA -ACGGAACATAGGTTCCACTCGTCT -ACGGAACATAGGTTCCACTGCACT -ACGGAACATAGGTTCCACCTGACT -ACGGAACATAGGTTCCACCAACCT -ACGGAACATAGGTTCCACGCTACT -ACGGAACATAGGTTCCACGGATCT -ACGGAACATAGGTTCCACAAGGCT -ACGGAACATAGGTTCCACTCAACC -ACGGAACATAGGTTCCACTGTTCC -ACGGAACATAGGTTCCACATTCCC -ACGGAACATAGGTTCCACTTCTCG -ACGGAACATAGGTTCCACTAGACG -ACGGAACATAGGTTCCACGTAACG -ACGGAACATAGGTTCCACACTTCG -ACGGAACATAGGTTCCACTACGCA -ACGGAACATAGGTTCCACCTTGCA -ACGGAACATAGGTTCCACCGAACA -ACGGAACATAGGTTCCACCAGTCA -ACGGAACATAGGTTCCACGATCCA -ACGGAACATAGGTTCCACACGACA -ACGGAACATAGGTTCCACAGCTCA -ACGGAACATAGGTTCCACTCACGT -ACGGAACATAGGTTCCACCGTAGT -ACGGAACATAGGTTCCACGTCAGT -ACGGAACATAGGTTCCACGAAGGT -ACGGAACATAGGTTCCACAACCGT -ACGGAACATAGGTTCCACTTGTGC -ACGGAACATAGGTTCCACCTAAGC -ACGGAACATAGGTTCCACACTAGC -ACGGAACATAGGTTCCACAGATGC -ACGGAACATAGGTTCCACTGAAGG -ACGGAACATAGGTTCCACCAATGG -ACGGAACATAGGTTCCACATGAGG -ACGGAACATAGGTTCCACAATGGG -ACGGAACATAGGTTCCACTCCTGA -ACGGAACATAGGTTCCACTAGCGA -ACGGAACATAGGTTCCACCACAGA -ACGGAACATAGGTTCCACGCAAGA -ACGGAACATAGGTTCCACGGTTGA -ACGGAACATAGGTTCCACTCCGAT -ACGGAACATAGGTTCCACTGGCAT -ACGGAACATAGGTTCCACCGAGAT -ACGGAACATAGGTTCCACTACCAC -ACGGAACATAGGTTCCACCAGAAC -ACGGAACATAGGTTCCACGTCTAC -ACGGAACATAGGTTCCACACGTAC -ACGGAACATAGGTTCCACAGTGAC -ACGGAACATAGGTTCCACCTGTAG -ACGGAACATAGGTTCCACCCTAAG -ACGGAACATAGGTTCCACGTTCAG -ACGGAACATAGGTTCCACGCATAG -ACGGAACATAGGTTCCACGACAAG -ACGGAACATAGGTTCCACAAGCAG -ACGGAACATAGGTTCCACCGTCAA -ACGGAACATAGGTTCCACGCTGAA -ACGGAACATAGGTTCCACAGTACG -ACGGAACATAGGTTCCACATCCGA -ACGGAACATAGGTTCCACATGGGA -ACGGAACATAGGTTCCACGTGCAA -ACGGAACATAGGTTCCACGAGGAA -ACGGAACATAGGTTCCACCAGGTA -ACGGAACATAGGTTCCACGACTCT -ACGGAACATAGGTTCCACAGTCCT -ACGGAACATAGGTTCCACTAAGCC -ACGGAACATAGGTTCCACATAGCC -ACGGAACATAGGTTCCACTAACCG -ACGGAACATAGGTTCCACATGCCA -ACGGAACATAGGCTCGTAGGAAAC -ACGGAACATAGGCTCGTAAACACC -ACGGAACATAGGCTCGTAATCGAG -ACGGAACATAGGCTCGTACTCCTT -ACGGAACATAGGCTCGTACCTGTT -ACGGAACATAGGCTCGTACGGTTT -ACGGAACATAGGCTCGTAGTGGTT -ACGGAACATAGGCTCGTAGCCTTT -ACGGAACATAGGCTCGTAGGTCTT -ACGGAACATAGGCTCGTAACGCTT -ACGGAACATAGGCTCGTAAGCGTT -ACGGAACATAGGCTCGTATTCGTC -ACGGAACATAGGCTCGTATCTCTC -ACGGAACATAGGCTCGTATGGATC -ACGGAACATAGGCTCGTACACTTC -ACGGAACATAGGCTCGTAGTACTC -ACGGAACATAGGCTCGTAGATGTC -ACGGAACATAGGCTCGTAACAGTC -ACGGAACATAGGCTCGTATTGCTG -ACGGAACATAGGCTCGTATCCATG -ACGGAACATAGGCTCGTATGTGTG -ACGGAACATAGGCTCGTACTAGTG -ACGGAACATAGGCTCGTACATCTG -ACGGAACATAGGCTCGTAGAGTTG -ACGGAACATAGGCTCGTAAGACTG -ACGGAACATAGGCTCGTATCGGTA -ACGGAACATAGGCTCGTATGCCTA -ACGGAACATAGGCTCGTACCACTA -ACGGAACATAGGCTCGTAGGAGTA -ACGGAACATAGGCTCGTATCGTCT -ACGGAACATAGGCTCGTATGCACT -ACGGAACATAGGCTCGTACTGACT -ACGGAACATAGGCTCGTACAACCT -ACGGAACATAGGCTCGTAGCTACT -ACGGAACATAGGCTCGTAGGATCT -ACGGAACATAGGCTCGTAAAGGCT -ACGGAACATAGGCTCGTATCAACC -ACGGAACATAGGCTCGTATGTTCC -ACGGAACATAGGCTCGTAATTCCC -ACGGAACATAGGCTCGTATTCTCG -ACGGAACATAGGCTCGTATAGACG -ACGGAACATAGGCTCGTAGTAACG -ACGGAACATAGGCTCGTAACTTCG -ACGGAACATAGGCTCGTATACGCA -ACGGAACATAGGCTCGTACTTGCA -ACGGAACATAGGCTCGTACGAACA -ACGGAACATAGGCTCGTACAGTCA -ACGGAACATAGGCTCGTAGATCCA -ACGGAACATAGGCTCGTAACGACA -ACGGAACATAGGCTCGTAAGCTCA -ACGGAACATAGGCTCGTATCACGT -ACGGAACATAGGCTCGTACGTAGT -ACGGAACATAGGCTCGTAGTCAGT -ACGGAACATAGGCTCGTAGAAGGT -ACGGAACATAGGCTCGTAAACCGT -ACGGAACATAGGCTCGTATTGTGC -ACGGAACATAGGCTCGTACTAAGC -ACGGAACATAGGCTCGTAACTAGC -ACGGAACATAGGCTCGTAAGATGC -ACGGAACATAGGCTCGTATGAAGG -ACGGAACATAGGCTCGTACAATGG -ACGGAACATAGGCTCGTAATGAGG -ACGGAACATAGGCTCGTAAATGGG -ACGGAACATAGGCTCGTATCCTGA -ACGGAACATAGGCTCGTATAGCGA -ACGGAACATAGGCTCGTACACAGA -ACGGAACATAGGCTCGTAGCAAGA -ACGGAACATAGGCTCGTAGGTTGA -ACGGAACATAGGCTCGTATCCGAT -ACGGAACATAGGCTCGTATGGCAT -ACGGAACATAGGCTCGTACGAGAT -ACGGAACATAGGCTCGTATACCAC -ACGGAACATAGGCTCGTACAGAAC -ACGGAACATAGGCTCGTAGTCTAC -ACGGAACATAGGCTCGTAACGTAC -ACGGAACATAGGCTCGTAAGTGAC -ACGGAACATAGGCTCGTACTGTAG -ACGGAACATAGGCTCGTACCTAAG -ACGGAACATAGGCTCGTAGTTCAG -ACGGAACATAGGCTCGTAGCATAG -ACGGAACATAGGCTCGTAGACAAG -ACGGAACATAGGCTCGTAAAGCAG -ACGGAACATAGGCTCGTACGTCAA -ACGGAACATAGGCTCGTAGCTGAA -ACGGAACATAGGCTCGTAAGTACG -ACGGAACATAGGCTCGTAATCCGA -ACGGAACATAGGCTCGTAATGGGA -ACGGAACATAGGCTCGTAGTGCAA -ACGGAACATAGGCTCGTAGAGGAA -ACGGAACATAGGCTCGTACAGGTA -ACGGAACATAGGCTCGTAGACTCT -ACGGAACATAGGCTCGTAAGTCCT -ACGGAACATAGGCTCGTATAAGCC -ACGGAACATAGGCTCGTAATAGCC -ACGGAACATAGGCTCGTATAACCG -ACGGAACATAGGCTCGTAATGCCA -ACGGAACATAGGGTCGATGGAAAC -ACGGAACATAGGGTCGATAACACC -ACGGAACATAGGGTCGATATCGAG -ACGGAACATAGGGTCGATCTCCTT -ACGGAACATAGGGTCGATCCTGTT -ACGGAACATAGGGTCGATCGGTTT -ACGGAACATAGGGTCGATGTGGTT -ACGGAACATAGGGTCGATGCCTTT -ACGGAACATAGGGTCGATGGTCTT -ACGGAACATAGGGTCGATACGCTT -ACGGAACATAGGGTCGATAGCGTT -ACGGAACATAGGGTCGATTTCGTC -ACGGAACATAGGGTCGATTCTCTC -ACGGAACATAGGGTCGATTGGATC -ACGGAACATAGGGTCGATCACTTC -ACGGAACATAGGGTCGATGTACTC -ACGGAACATAGGGTCGATGATGTC -ACGGAACATAGGGTCGATACAGTC -ACGGAACATAGGGTCGATTTGCTG -ACGGAACATAGGGTCGATTCCATG -ACGGAACATAGGGTCGATTGTGTG -ACGGAACATAGGGTCGATCTAGTG -ACGGAACATAGGGTCGATCATCTG -ACGGAACATAGGGTCGATGAGTTG -ACGGAACATAGGGTCGATAGACTG -ACGGAACATAGGGTCGATTCGGTA -ACGGAACATAGGGTCGATTGCCTA -ACGGAACATAGGGTCGATCCACTA -ACGGAACATAGGGTCGATGGAGTA -ACGGAACATAGGGTCGATTCGTCT -ACGGAACATAGGGTCGATTGCACT -ACGGAACATAGGGTCGATCTGACT -ACGGAACATAGGGTCGATCAACCT -ACGGAACATAGGGTCGATGCTACT -ACGGAACATAGGGTCGATGGATCT -ACGGAACATAGGGTCGATAAGGCT -ACGGAACATAGGGTCGATTCAACC -ACGGAACATAGGGTCGATTGTTCC -ACGGAACATAGGGTCGATATTCCC -ACGGAACATAGGGTCGATTTCTCG -ACGGAACATAGGGTCGATTAGACG -ACGGAACATAGGGTCGATGTAACG -ACGGAACATAGGGTCGATACTTCG -ACGGAACATAGGGTCGATTACGCA -ACGGAACATAGGGTCGATCTTGCA -ACGGAACATAGGGTCGATCGAACA -ACGGAACATAGGGTCGATCAGTCA -ACGGAACATAGGGTCGATGATCCA -ACGGAACATAGGGTCGATACGACA -ACGGAACATAGGGTCGATAGCTCA -ACGGAACATAGGGTCGATTCACGT -ACGGAACATAGGGTCGATCGTAGT -ACGGAACATAGGGTCGATGTCAGT -ACGGAACATAGGGTCGATGAAGGT -ACGGAACATAGGGTCGATAACCGT -ACGGAACATAGGGTCGATTTGTGC -ACGGAACATAGGGTCGATCTAAGC -ACGGAACATAGGGTCGATACTAGC -ACGGAACATAGGGTCGATAGATGC -ACGGAACATAGGGTCGATTGAAGG -ACGGAACATAGGGTCGATCAATGG -ACGGAACATAGGGTCGATATGAGG -ACGGAACATAGGGTCGATAATGGG -ACGGAACATAGGGTCGATTCCTGA -ACGGAACATAGGGTCGATTAGCGA -ACGGAACATAGGGTCGATCACAGA -ACGGAACATAGGGTCGATGCAAGA -ACGGAACATAGGGTCGATGGTTGA -ACGGAACATAGGGTCGATTCCGAT -ACGGAACATAGGGTCGATTGGCAT -ACGGAACATAGGGTCGATCGAGAT -ACGGAACATAGGGTCGATTACCAC -ACGGAACATAGGGTCGATCAGAAC -ACGGAACATAGGGTCGATGTCTAC -ACGGAACATAGGGTCGATACGTAC -ACGGAACATAGGGTCGATAGTGAC -ACGGAACATAGGGTCGATCTGTAG -ACGGAACATAGGGTCGATCCTAAG -ACGGAACATAGGGTCGATGTTCAG -ACGGAACATAGGGTCGATGCATAG -ACGGAACATAGGGTCGATGACAAG -ACGGAACATAGGGTCGATAAGCAG -ACGGAACATAGGGTCGATCGTCAA -ACGGAACATAGGGTCGATGCTGAA -ACGGAACATAGGGTCGATAGTACG -ACGGAACATAGGGTCGATATCCGA -ACGGAACATAGGGTCGATATGGGA -ACGGAACATAGGGTCGATGTGCAA -ACGGAACATAGGGTCGATGAGGAA -ACGGAACATAGGGTCGATCAGGTA -ACGGAACATAGGGTCGATGACTCT -ACGGAACATAGGGTCGATAGTCCT -ACGGAACATAGGGTCGATTAAGCC -ACGGAACATAGGGTCGATATAGCC -ACGGAACATAGGGTCGATTAACCG -ACGGAACATAGGGTCGATATGCCA -ACGGAACATAGGGTCACAGGAAAC -ACGGAACATAGGGTCACAAACACC -ACGGAACATAGGGTCACAATCGAG -ACGGAACATAGGGTCACACTCCTT -ACGGAACATAGGGTCACACCTGTT -ACGGAACATAGGGTCACACGGTTT -ACGGAACATAGGGTCACAGTGGTT -ACGGAACATAGGGTCACAGCCTTT -ACGGAACATAGGGTCACAGGTCTT -ACGGAACATAGGGTCACAACGCTT -ACGGAACATAGGGTCACAAGCGTT -ACGGAACATAGGGTCACATTCGTC -ACGGAACATAGGGTCACATCTCTC -ACGGAACATAGGGTCACATGGATC -ACGGAACATAGGGTCACACACTTC -ACGGAACATAGGGTCACAGTACTC -ACGGAACATAGGGTCACAGATGTC -ACGGAACATAGGGTCACAACAGTC -ACGGAACATAGGGTCACATTGCTG -ACGGAACATAGGGTCACATCCATG -ACGGAACATAGGGTCACATGTGTG -ACGGAACATAGGGTCACACTAGTG -ACGGAACATAGGGTCACACATCTG -ACGGAACATAGGGTCACAGAGTTG -ACGGAACATAGGGTCACAAGACTG -ACGGAACATAGGGTCACATCGGTA -ACGGAACATAGGGTCACATGCCTA -ACGGAACATAGGGTCACACCACTA -ACGGAACATAGGGTCACAGGAGTA -ACGGAACATAGGGTCACATCGTCT -ACGGAACATAGGGTCACATGCACT -ACGGAACATAGGGTCACACTGACT -ACGGAACATAGGGTCACACAACCT -ACGGAACATAGGGTCACAGCTACT -ACGGAACATAGGGTCACAGGATCT -ACGGAACATAGGGTCACAAAGGCT -ACGGAACATAGGGTCACATCAACC -ACGGAACATAGGGTCACATGTTCC -ACGGAACATAGGGTCACAATTCCC -ACGGAACATAGGGTCACATTCTCG -ACGGAACATAGGGTCACATAGACG -ACGGAACATAGGGTCACAGTAACG -ACGGAACATAGGGTCACAACTTCG -ACGGAACATAGGGTCACATACGCA -ACGGAACATAGGGTCACACTTGCA -ACGGAACATAGGGTCACACGAACA -ACGGAACATAGGGTCACACAGTCA -ACGGAACATAGGGTCACAGATCCA -ACGGAACATAGGGTCACAACGACA -ACGGAACATAGGGTCACAAGCTCA -ACGGAACATAGGGTCACATCACGT -ACGGAACATAGGGTCACACGTAGT -ACGGAACATAGGGTCACAGTCAGT -ACGGAACATAGGGTCACAGAAGGT -ACGGAACATAGGGTCACAAACCGT -ACGGAACATAGGGTCACATTGTGC -ACGGAACATAGGGTCACACTAAGC -ACGGAACATAGGGTCACAACTAGC -ACGGAACATAGGGTCACAAGATGC -ACGGAACATAGGGTCACATGAAGG -ACGGAACATAGGGTCACACAATGG -ACGGAACATAGGGTCACAATGAGG -ACGGAACATAGGGTCACAAATGGG -ACGGAACATAGGGTCACATCCTGA -ACGGAACATAGGGTCACATAGCGA -ACGGAACATAGGGTCACACACAGA -ACGGAACATAGGGTCACAGCAAGA -ACGGAACATAGGGTCACAGGTTGA -ACGGAACATAGGGTCACATCCGAT -ACGGAACATAGGGTCACATGGCAT -ACGGAACATAGGGTCACACGAGAT -ACGGAACATAGGGTCACATACCAC -ACGGAACATAGGGTCACACAGAAC -ACGGAACATAGGGTCACAGTCTAC -ACGGAACATAGGGTCACAACGTAC -ACGGAACATAGGGTCACAAGTGAC -ACGGAACATAGGGTCACACTGTAG -ACGGAACATAGGGTCACACCTAAG -ACGGAACATAGGGTCACAGTTCAG -ACGGAACATAGGGTCACAGCATAG -ACGGAACATAGGGTCACAGACAAG -ACGGAACATAGGGTCACAAAGCAG -ACGGAACATAGGGTCACACGTCAA -ACGGAACATAGGGTCACAGCTGAA -ACGGAACATAGGGTCACAAGTACG -ACGGAACATAGGGTCACAATCCGA -ACGGAACATAGGGTCACAATGGGA -ACGGAACATAGGGTCACAGTGCAA -ACGGAACATAGGGTCACAGAGGAA -ACGGAACATAGGGTCACACAGGTA -ACGGAACATAGGGTCACAGACTCT -ACGGAACATAGGGTCACAAGTCCT -ACGGAACATAGGGTCACATAAGCC -ACGGAACATAGGGTCACAATAGCC -ACGGAACATAGGGTCACATAACCG -ACGGAACATAGGGTCACAATGCCA -ACGGAACATAGGCTGTTGGGAAAC -ACGGAACATAGGCTGTTGAACACC -ACGGAACATAGGCTGTTGATCGAG -ACGGAACATAGGCTGTTGCTCCTT -ACGGAACATAGGCTGTTGCCTGTT -ACGGAACATAGGCTGTTGCGGTTT -ACGGAACATAGGCTGTTGGTGGTT -ACGGAACATAGGCTGTTGGCCTTT -ACGGAACATAGGCTGTTGGGTCTT -ACGGAACATAGGCTGTTGACGCTT -ACGGAACATAGGCTGTTGAGCGTT -ACGGAACATAGGCTGTTGTTCGTC -ACGGAACATAGGCTGTTGTCTCTC -ACGGAACATAGGCTGTTGTGGATC -ACGGAACATAGGCTGTTGCACTTC -ACGGAACATAGGCTGTTGGTACTC -ACGGAACATAGGCTGTTGGATGTC -ACGGAACATAGGCTGTTGACAGTC -ACGGAACATAGGCTGTTGTTGCTG -ACGGAACATAGGCTGTTGTCCATG -ACGGAACATAGGCTGTTGTGTGTG -ACGGAACATAGGCTGTTGCTAGTG -ACGGAACATAGGCTGTTGCATCTG -ACGGAACATAGGCTGTTGGAGTTG -ACGGAACATAGGCTGTTGAGACTG -ACGGAACATAGGCTGTTGTCGGTA -ACGGAACATAGGCTGTTGTGCCTA -ACGGAACATAGGCTGTTGCCACTA -ACGGAACATAGGCTGTTGGGAGTA -ACGGAACATAGGCTGTTGTCGTCT -ACGGAACATAGGCTGTTGTGCACT -ACGGAACATAGGCTGTTGCTGACT -ACGGAACATAGGCTGTTGCAACCT -ACGGAACATAGGCTGTTGGCTACT -ACGGAACATAGGCTGTTGGGATCT -ACGGAACATAGGCTGTTGAAGGCT -ACGGAACATAGGCTGTTGTCAACC -ACGGAACATAGGCTGTTGTGTTCC -ACGGAACATAGGCTGTTGATTCCC -ACGGAACATAGGCTGTTGTTCTCG -ACGGAACATAGGCTGTTGTAGACG -ACGGAACATAGGCTGTTGGTAACG -ACGGAACATAGGCTGTTGACTTCG -ACGGAACATAGGCTGTTGTACGCA -ACGGAACATAGGCTGTTGCTTGCA -ACGGAACATAGGCTGTTGCGAACA -ACGGAACATAGGCTGTTGCAGTCA -ACGGAACATAGGCTGTTGGATCCA -ACGGAACATAGGCTGTTGACGACA -ACGGAACATAGGCTGTTGAGCTCA -ACGGAACATAGGCTGTTGTCACGT -ACGGAACATAGGCTGTTGCGTAGT -ACGGAACATAGGCTGTTGGTCAGT -ACGGAACATAGGCTGTTGGAAGGT -ACGGAACATAGGCTGTTGAACCGT -ACGGAACATAGGCTGTTGTTGTGC -ACGGAACATAGGCTGTTGCTAAGC -ACGGAACATAGGCTGTTGACTAGC -ACGGAACATAGGCTGTTGAGATGC -ACGGAACATAGGCTGTTGTGAAGG -ACGGAACATAGGCTGTTGCAATGG -ACGGAACATAGGCTGTTGATGAGG -ACGGAACATAGGCTGTTGAATGGG -ACGGAACATAGGCTGTTGTCCTGA -ACGGAACATAGGCTGTTGTAGCGA -ACGGAACATAGGCTGTTGCACAGA -ACGGAACATAGGCTGTTGGCAAGA -ACGGAACATAGGCTGTTGGGTTGA -ACGGAACATAGGCTGTTGTCCGAT -ACGGAACATAGGCTGTTGTGGCAT -ACGGAACATAGGCTGTTGCGAGAT -ACGGAACATAGGCTGTTGTACCAC -ACGGAACATAGGCTGTTGCAGAAC -ACGGAACATAGGCTGTTGGTCTAC -ACGGAACATAGGCTGTTGACGTAC -ACGGAACATAGGCTGTTGAGTGAC -ACGGAACATAGGCTGTTGCTGTAG -ACGGAACATAGGCTGTTGCCTAAG -ACGGAACATAGGCTGTTGGTTCAG -ACGGAACATAGGCTGTTGGCATAG -ACGGAACATAGGCTGTTGGACAAG -ACGGAACATAGGCTGTTGAAGCAG -ACGGAACATAGGCTGTTGCGTCAA -ACGGAACATAGGCTGTTGGCTGAA -ACGGAACATAGGCTGTTGAGTACG -ACGGAACATAGGCTGTTGATCCGA -ACGGAACATAGGCTGTTGATGGGA -ACGGAACATAGGCTGTTGGTGCAA -ACGGAACATAGGCTGTTGGAGGAA -ACGGAACATAGGCTGTTGCAGGTA -ACGGAACATAGGCTGTTGGACTCT -ACGGAACATAGGCTGTTGAGTCCT -ACGGAACATAGGCTGTTGTAAGCC -ACGGAACATAGGCTGTTGATAGCC -ACGGAACATAGGCTGTTGTAACCG -ACGGAACATAGGCTGTTGATGCCA -ACGGAACATAGGATGTCCGGAAAC -ACGGAACATAGGATGTCCAACACC -ACGGAACATAGGATGTCCATCGAG -ACGGAACATAGGATGTCCCTCCTT -ACGGAACATAGGATGTCCCCTGTT -ACGGAACATAGGATGTCCCGGTTT -ACGGAACATAGGATGTCCGTGGTT -ACGGAACATAGGATGTCCGCCTTT -ACGGAACATAGGATGTCCGGTCTT -ACGGAACATAGGATGTCCACGCTT -ACGGAACATAGGATGTCCAGCGTT -ACGGAACATAGGATGTCCTTCGTC -ACGGAACATAGGATGTCCTCTCTC -ACGGAACATAGGATGTCCTGGATC -ACGGAACATAGGATGTCCCACTTC -ACGGAACATAGGATGTCCGTACTC -ACGGAACATAGGATGTCCGATGTC -ACGGAACATAGGATGTCCACAGTC -ACGGAACATAGGATGTCCTTGCTG -ACGGAACATAGGATGTCCTCCATG -ACGGAACATAGGATGTCCTGTGTG -ACGGAACATAGGATGTCCCTAGTG -ACGGAACATAGGATGTCCCATCTG -ACGGAACATAGGATGTCCGAGTTG -ACGGAACATAGGATGTCCAGACTG -ACGGAACATAGGATGTCCTCGGTA -ACGGAACATAGGATGTCCTGCCTA -ACGGAACATAGGATGTCCCCACTA -ACGGAACATAGGATGTCCGGAGTA -ACGGAACATAGGATGTCCTCGTCT -ACGGAACATAGGATGTCCTGCACT -ACGGAACATAGGATGTCCCTGACT -ACGGAACATAGGATGTCCCAACCT -ACGGAACATAGGATGTCCGCTACT -ACGGAACATAGGATGTCCGGATCT -ACGGAACATAGGATGTCCAAGGCT -ACGGAACATAGGATGTCCTCAACC -ACGGAACATAGGATGTCCTGTTCC -ACGGAACATAGGATGTCCATTCCC -ACGGAACATAGGATGTCCTTCTCG -ACGGAACATAGGATGTCCTAGACG -ACGGAACATAGGATGTCCGTAACG -ACGGAACATAGGATGTCCACTTCG -ACGGAACATAGGATGTCCTACGCA -ACGGAACATAGGATGTCCCTTGCA -ACGGAACATAGGATGTCCCGAACA -ACGGAACATAGGATGTCCCAGTCA -ACGGAACATAGGATGTCCGATCCA -ACGGAACATAGGATGTCCACGACA -ACGGAACATAGGATGTCCAGCTCA -ACGGAACATAGGATGTCCTCACGT -ACGGAACATAGGATGTCCCGTAGT -ACGGAACATAGGATGTCCGTCAGT -ACGGAACATAGGATGTCCGAAGGT -ACGGAACATAGGATGTCCAACCGT -ACGGAACATAGGATGTCCTTGTGC -ACGGAACATAGGATGTCCCTAAGC -ACGGAACATAGGATGTCCACTAGC -ACGGAACATAGGATGTCCAGATGC -ACGGAACATAGGATGTCCTGAAGG -ACGGAACATAGGATGTCCCAATGG -ACGGAACATAGGATGTCCATGAGG -ACGGAACATAGGATGTCCAATGGG -ACGGAACATAGGATGTCCTCCTGA -ACGGAACATAGGATGTCCTAGCGA -ACGGAACATAGGATGTCCCACAGA -ACGGAACATAGGATGTCCGCAAGA -ACGGAACATAGGATGTCCGGTTGA -ACGGAACATAGGATGTCCTCCGAT -ACGGAACATAGGATGTCCTGGCAT -ACGGAACATAGGATGTCCCGAGAT -ACGGAACATAGGATGTCCTACCAC -ACGGAACATAGGATGTCCCAGAAC -ACGGAACATAGGATGTCCGTCTAC -ACGGAACATAGGATGTCCACGTAC -ACGGAACATAGGATGTCCAGTGAC -ACGGAACATAGGATGTCCCTGTAG -ACGGAACATAGGATGTCCCCTAAG -ACGGAACATAGGATGTCCGTTCAG -ACGGAACATAGGATGTCCGCATAG -ACGGAACATAGGATGTCCGACAAG -ACGGAACATAGGATGTCCAAGCAG -ACGGAACATAGGATGTCCCGTCAA -ACGGAACATAGGATGTCCGCTGAA -ACGGAACATAGGATGTCCAGTACG -ACGGAACATAGGATGTCCATCCGA -ACGGAACATAGGATGTCCATGGGA -ACGGAACATAGGATGTCCGTGCAA -ACGGAACATAGGATGTCCGAGGAA -ACGGAACATAGGATGTCCCAGGTA -ACGGAACATAGGATGTCCGACTCT -ACGGAACATAGGATGTCCAGTCCT -ACGGAACATAGGATGTCCTAAGCC -ACGGAACATAGGATGTCCATAGCC -ACGGAACATAGGATGTCCTAACCG -ACGGAACATAGGATGTCCATGCCA -ACGGAACATAGGGTGTGTGGAAAC -ACGGAACATAGGGTGTGTAACACC -ACGGAACATAGGGTGTGTATCGAG -ACGGAACATAGGGTGTGTCTCCTT -ACGGAACATAGGGTGTGTCCTGTT -ACGGAACATAGGGTGTGTCGGTTT -ACGGAACATAGGGTGTGTGTGGTT -ACGGAACATAGGGTGTGTGCCTTT -ACGGAACATAGGGTGTGTGGTCTT -ACGGAACATAGGGTGTGTACGCTT -ACGGAACATAGGGTGTGTAGCGTT -ACGGAACATAGGGTGTGTTTCGTC -ACGGAACATAGGGTGTGTTCTCTC -ACGGAACATAGGGTGTGTTGGATC -ACGGAACATAGGGTGTGTCACTTC -ACGGAACATAGGGTGTGTGTACTC -ACGGAACATAGGGTGTGTGATGTC -ACGGAACATAGGGTGTGTACAGTC -ACGGAACATAGGGTGTGTTTGCTG -ACGGAACATAGGGTGTGTTCCATG -ACGGAACATAGGGTGTGTTGTGTG -ACGGAACATAGGGTGTGTCTAGTG -ACGGAACATAGGGTGTGTCATCTG -ACGGAACATAGGGTGTGTGAGTTG -ACGGAACATAGGGTGTGTAGACTG -ACGGAACATAGGGTGTGTTCGGTA -ACGGAACATAGGGTGTGTTGCCTA -ACGGAACATAGGGTGTGTCCACTA -ACGGAACATAGGGTGTGTGGAGTA -ACGGAACATAGGGTGTGTTCGTCT -ACGGAACATAGGGTGTGTTGCACT -ACGGAACATAGGGTGTGTCTGACT -ACGGAACATAGGGTGTGTCAACCT -ACGGAACATAGGGTGTGTGCTACT -ACGGAACATAGGGTGTGTGGATCT -ACGGAACATAGGGTGTGTAAGGCT -ACGGAACATAGGGTGTGTTCAACC -ACGGAACATAGGGTGTGTTGTTCC -ACGGAACATAGGGTGTGTATTCCC -ACGGAACATAGGGTGTGTTTCTCG -ACGGAACATAGGGTGTGTTAGACG -ACGGAACATAGGGTGTGTGTAACG -ACGGAACATAGGGTGTGTACTTCG -ACGGAACATAGGGTGTGTTACGCA -ACGGAACATAGGGTGTGTCTTGCA -ACGGAACATAGGGTGTGTCGAACA -ACGGAACATAGGGTGTGTCAGTCA -ACGGAACATAGGGTGTGTGATCCA -ACGGAACATAGGGTGTGTACGACA -ACGGAACATAGGGTGTGTAGCTCA -ACGGAACATAGGGTGTGTTCACGT -ACGGAACATAGGGTGTGTCGTAGT -ACGGAACATAGGGTGTGTGTCAGT -ACGGAACATAGGGTGTGTGAAGGT -ACGGAACATAGGGTGTGTAACCGT -ACGGAACATAGGGTGTGTTTGTGC -ACGGAACATAGGGTGTGTCTAAGC -ACGGAACATAGGGTGTGTACTAGC -ACGGAACATAGGGTGTGTAGATGC -ACGGAACATAGGGTGTGTTGAAGG -ACGGAACATAGGGTGTGTCAATGG -ACGGAACATAGGGTGTGTATGAGG -ACGGAACATAGGGTGTGTAATGGG -ACGGAACATAGGGTGTGTTCCTGA -ACGGAACATAGGGTGTGTTAGCGA -ACGGAACATAGGGTGTGTCACAGA -ACGGAACATAGGGTGTGTGCAAGA -ACGGAACATAGGGTGTGTGGTTGA -ACGGAACATAGGGTGTGTTCCGAT -ACGGAACATAGGGTGTGTTGGCAT -ACGGAACATAGGGTGTGTCGAGAT -ACGGAACATAGGGTGTGTTACCAC -ACGGAACATAGGGTGTGTCAGAAC -ACGGAACATAGGGTGTGTGTCTAC -ACGGAACATAGGGTGTGTACGTAC -ACGGAACATAGGGTGTGTAGTGAC -ACGGAACATAGGGTGTGTCTGTAG -ACGGAACATAGGGTGTGTCCTAAG -ACGGAACATAGGGTGTGTGTTCAG -ACGGAACATAGGGTGTGTGCATAG -ACGGAACATAGGGTGTGTGACAAG -ACGGAACATAGGGTGTGTAAGCAG -ACGGAACATAGGGTGTGTCGTCAA -ACGGAACATAGGGTGTGTGCTGAA -ACGGAACATAGGGTGTGTAGTACG -ACGGAACATAGGGTGTGTATCCGA -ACGGAACATAGGGTGTGTATGGGA -ACGGAACATAGGGTGTGTGTGCAA -ACGGAACATAGGGTGTGTGAGGAA -ACGGAACATAGGGTGTGTCAGGTA -ACGGAACATAGGGTGTGTGACTCT -ACGGAACATAGGGTGTGTAGTCCT -ACGGAACATAGGGTGTGTTAAGCC -ACGGAACATAGGGTGTGTATAGCC -ACGGAACATAGGGTGTGTTAACCG -ACGGAACATAGGGTGTGTATGCCA -ACGGAACATAGGGTGCTAGGAAAC -ACGGAACATAGGGTGCTAAACACC -ACGGAACATAGGGTGCTAATCGAG -ACGGAACATAGGGTGCTACTCCTT -ACGGAACATAGGGTGCTACCTGTT -ACGGAACATAGGGTGCTACGGTTT -ACGGAACATAGGGTGCTAGTGGTT -ACGGAACATAGGGTGCTAGCCTTT -ACGGAACATAGGGTGCTAGGTCTT -ACGGAACATAGGGTGCTAACGCTT -ACGGAACATAGGGTGCTAAGCGTT -ACGGAACATAGGGTGCTATTCGTC -ACGGAACATAGGGTGCTATCTCTC -ACGGAACATAGGGTGCTATGGATC -ACGGAACATAGGGTGCTACACTTC -ACGGAACATAGGGTGCTAGTACTC -ACGGAACATAGGGTGCTAGATGTC -ACGGAACATAGGGTGCTAACAGTC -ACGGAACATAGGGTGCTATTGCTG -ACGGAACATAGGGTGCTATCCATG -ACGGAACATAGGGTGCTATGTGTG -ACGGAACATAGGGTGCTACTAGTG -ACGGAACATAGGGTGCTACATCTG -ACGGAACATAGGGTGCTAGAGTTG -ACGGAACATAGGGTGCTAAGACTG -ACGGAACATAGGGTGCTATCGGTA -ACGGAACATAGGGTGCTATGCCTA -ACGGAACATAGGGTGCTACCACTA -ACGGAACATAGGGTGCTAGGAGTA -ACGGAACATAGGGTGCTATCGTCT -ACGGAACATAGGGTGCTATGCACT -ACGGAACATAGGGTGCTACTGACT -ACGGAACATAGGGTGCTACAACCT -ACGGAACATAGGGTGCTAGCTACT -ACGGAACATAGGGTGCTAGGATCT -ACGGAACATAGGGTGCTAAAGGCT -ACGGAACATAGGGTGCTATCAACC -ACGGAACATAGGGTGCTATGTTCC -ACGGAACATAGGGTGCTAATTCCC -ACGGAACATAGGGTGCTATTCTCG -ACGGAACATAGGGTGCTATAGACG -ACGGAACATAGGGTGCTAGTAACG -ACGGAACATAGGGTGCTAACTTCG -ACGGAACATAGGGTGCTATACGCA -ACGGAACATAGGGTGCTACTTGCA -ACGGAACATAGGGTGCTACGAACA -ACGGAACATAGGGTGCTACAGTCA -ACGGAACATAGGGTGCTAGATCCA -ACGGAACATAGGGTGCTAACGACA -ACGGAACATAGGGTGCTAAGCTCA -ACGGAACATAGGGTGCTATCACGT -ACGGAACATAGGGTGCTACGTAGT -ACGGAACATAGGGTGCTAGTCAGT -ACGGAACATAGGGTGCTAGAAGGT -ACGGAACATAGGGTGCTAAACCGT -ACGGAACATAGGGTGCTATTGTGC -ACGGAACATAGGGTGCTACTAAGC -ACGGAACATAGGGTGCTAACTAGC -ACGGAACATAGGGTGCTAAGATGC -ACGGAACATAGGGTGCTATGAAGG -ACGGAACATAGGGTGCTACAATGG -ACGGAACATAGGGTGCTAATGAGG -ACGGAACATAGGGTGCTAAATGGG -ACGGAACATAGGGTGCTATCCTGA -ACGGAACATAGGGTGCTATAGCGA -ACGGAACATAGGGTGCTACACAGA -ACGGAACATAGGGTGCTAGCAAGA -ACGGAACATAGGGTGCTAGGTTGA -ACGGAACATAGGGTGCTATCCGAT -ACGGAACATAGGGTGCTATGGCAT -ACGGAACATAGGGTGCTACGAGAT -ACGGAACATAGGGTGCTATACCAC -ACGGAACATAGGGTGCTACAGAAC -ACGGAACATAGGGTGCTAGTCTAC -ACGGAACATAGGGTGCTAACGTAC -ACGGAACATAGGGTGCTAAGTGAC -ACGGAACATAGGGTGCTACTGTAG -ACGGAACATAGGGTGCTACCTAAG -ACGGAACATAGGGTGCTAGTTCAG -ACGGAACATAGGGTGCTAGCATAG -ACGGAACATAGGGTGCTAGACAAG -ACGGAACATAGGGTGCTAAAGCAG -ACGGAACATAGGGTGCTACGTCAA -ACGGAACATAGGGTGCTAGCTGAA -ACGGAACATAGGGTGCTAAGTACG -ACGGAACATAGGGTGCTAATCCGA -ACGGAACATAGGGTGCTAATGGGA -ACGGAACATAGGGTGCTAGTGCAA -ACGGAACATAGGGTGCTAGAGGAA -ACGGAACATAGGGTGCTACAGGTA -ACGGAACATAGGGTGCTAGACTCT -ACGGAACATAGGGTGCTAAGTCCT -ACGGAACATAGGGTGCTATAAGCC -ACGGAACATAGGGTGCTAATAGCC -ACGGAACATAGGGTGCTATAACCG -ACGGAACATAGGGTGCTAATGCCA -ACGGAACATAGGCTGCATGGAAAC -ACGGAACATAGGCTGCATAACACC -ACGGAACATAGGCTGCATATCGAG -ACGGAACATAGGCTGCATCTCCTT -ACGGAACATAGGCTGCATCCTGTT -ACGGAACATAGGCTGCATCGGTTT -ACGGAACATAGGCTGCATGTGGTT -ACGGAACATAGGCTGCATGCCTTT -ACGGAACATAGGCTGCATGGTCTT -ACGGAACATAGGCTGCATACGCTT -ACGGAACATAGGCTGCATAGCGTT -ACGGAACATAGGCTGCATTTCGTC -ACGGAACATAGGCTGCATTCTCTC -ACGGAACATAGGCTGCATTGGATC -ACGGAACATAGGCTGCATCACTTC -ACGGAACATAGGCTGCATGTACTC -ACGGAACATAGGCTGCATGATGTC -ACGGAACATAGGCTGCATACAGTC -ACGGAACATAGGCTGCATTTGCTG -ACGGAACATAGGCTGCATTCCATG -ACGGAACATAGGCTGCATTGTGTG -ACGGAACATAGGCTGCATCTAGTG -ACGGAACATAGGCTGCATCATCTG -ACGGAACATAGGCTGCATGAGTTG -ACGGAACATAGGCTGCATAGACTG -ACGGAACATAGGCTGCATTCGGTA -ACGGAACATAGGCTGCATTGCCTA -ACGGAACATAGGCTGCATCCACTA -ACGGAACATAGGCTGCATGGAGTA -ACGGAACATAGGCTGCATTCGTCT -ACGGAACATAGGCTGCATTGCACT -ACGGAACATAGGCTGCATCTGACT -ACGGAACATAGGCTGCATCAACCT -ACGGAACATAGGCTGCATGCTACT -ACGGAACATAGGCTGCATGGATCT -ACGGAACATAGGCTGCATAAGGCT -ACGGAACATAGGCTGCATTCAACC -ACGGAACATAGGCTGCATTGTTCC -ACGGAACATAGGCTGCATATTCCC -ACGGAACATAGGCTGCATTTCTCG -ACGGAACATAGGCTGCATTAGACG -ACGGAACATAGGCTGCATGTAACG -ACGGAACATAGGCTGCATACTTCG -ACGGAACATAGGCTGCATTACGCA -ACGGAACATAGGCTGCATCTTGCA -ACGGAACATAGGCTGCATCGAACA -ACGGAACATAGGCTGCATCAGTCA -ACGGAACATAGGCTGCATGATCCA -ACGGAACATAGGCTGCATACGACA -ACGGAACATAGGCTGCATAGCTCA -ACGGAACATAGGCTGCATTCACGT -ACGGAACATAGGCTGCATCGTAGT -ACGGAACATAGGCTGCATGTCAGT -ACGGAACATAGGCTGCATGAAGGT -ACGGAACATAGGCTGCATAACCGT -ACGGAACATAGGCTGCATTTGTGC -ACGGAACATAGGCTGCATCTAAGC -ACGGAACATAGGCTGCATACTAGC -ACGGAACATAGGCTGCATAGATGC -ACGGAACATAGGCTGCATTGAAGG -ACGGAACATAGGCTGCATCAATGG -ACGGAACATAGGCTGCATATGAGG -ACGGAACATAGGCTGCATAATGGG -ACGGAACATAGGCTGCATTCCTGA -ACGGAACATAGGCTGCATTAGCGA -ACGGAACATAGGCTGCATCACAGA -ACGGAACATAGGCTGCATGCAAGA -ACGGAACATAGGCTGCATGGTTGA -ACGGAACATAGGCTGCATTCCGAT -ACGGAACATAGGCTGCATTGGCAT -ACGGAACATAGGCTGCATCGAGAT -ACGGAACATAGGCTGCATTACCAC -ACGGAACATAGGCTGCATCAGAAC -ACGGAACATAGGCTGCATGTCTAC -ACGGAACATAGGCTGCATACGTAC -ACGGAACATAGGCTGCATAGTGAC -ACGGAACATAGGCTGCATCTGTAG -ACGGAACATAGGCTGCATCCTAAG -ACGGAACATAGGCTGCATGTTCAG -ACGGAACATAGGCTGCATGCATAG -ACGGAACATAGGCTGCATGACAAG -ACGGAACATAGGCTGCATAAGCAG -ACGGAACATAGGCTGCATCGTCAA -ACGGAACATAGGCTGCATGCTGAA -ACGGAACATAGGCTGCATAGTACG -ACGGAACATAGGCTGCATATCCGA -ACGGAACATAGGCTGCATATGGGA -ACGGAACATAGGCTGCATGTGCAA -ACGGAACATAGGCTGCATGAGGAA -ACGGAACATAGGCTGCATCAGGTA -ACGGAACATAGGCTGCATGACTCT -ACGGAACATAGGCTGCATAGTCCT -ACGGAACATAGGCTGCATTAAGCC -ACGGAACATAGGCTGCATATAGCC -ACGGAACATAGGCTGCATTAACCG -ACGGAACATAGGCTGCATATGCCA -ACGGAACATAGGTTGGAGGGAAAC -ACGGAACATAGGTTGGAGAACACC -ACGGAACATAGGTTGGAGATCGAG -ACGGAACATAGGTTGGAGCTCCTT -ACGGAACATAGGTTGGAGCCTGTT -ACGGAACATAGGTTGGAGCGGTTT -ACGGAACATAGGTTGGAGGTGGTT -ACGGAACATAGGTTGGAGGCCTTT -ACGGAACATAGGTTGGAGGGTCTT -ACGGAACATAGGTTGGAGACGCTT -ACGGAACATAGGTTGGAGAGCGTT -ACGGAACATAGGTTGGAGTTCGTC -ACGGAACATAGGTTGGAGTCTCTC -ACGGAACATAGGTTGGAGTGGATC -ACGGAACATAGGTTGGAGCACTTC -ACGGAACATAGGTTGGAGGTACTC -ACGGAACATAGGTTGGAGGATGTC -ACGGAACATAGGTTGGAGACAGTC -ACGGAACATAGGTTGGAGTTGCTG -ACGGAACATAGGTTGGAGTCCATG -ACGGAACATAGGTTGGAGTGTGTG -ACGGAACATAGGTTGGAGCTAGTG -ACGGAACATAGGTTGGAGCATCTG -ACGGAACATAGGTTGGAGGAGTTG -ACGGAACATAGGTTGGAGAGACTG -ACGGAACATAGGTTGGAGTCGGTA -ACGGAACATAGGTTGGAGTGCCTA -ACGGAACATAGGTTGGAGCCACTA -ACGGAACATAGGTTGGAGGGAGTA -ACGGAACATAGGTTGGAGTCGTCT -ACGGAACATAGGTTGGAGTGCACT -ACGGAACATAGGTTGGAGCTGACT -ACGGAACATAGGTTGGAGCAACCT -ACGGAACATAGGTTGGAGGCTACT -ACGGAACATAGGTTGGAGGGATCT -ACGGAACATAGGTTGGAGAAGGCT -ACGGAACATAGGTTGGAGTCAACC -ACGGAACATAGGTTGGAGTGTTCC -ACGGAACATAGGTTGGAGATTCCC -ACGGAACATAGGTTGGAGTTCTCG -ACGGAACATAGGTTGGAGTAGACG -ACGGAACATAGGTTGGAGGTAACG -ACGGAACATAGGTTGGAGACTTCG -ACGGAACATAGGTTGGAGTACGCA -ACGGAACATAGGTTGGAGCTTGCA -ACGGAACATAGGTTGGAGCGAACA -ACGGAACATAGGTTGGAGCAGTCA -ACGGAACATAGGTTGGAGGATCCA -ACGGAACATAGGTTGGAGACGACA -ACGGAACATAGGTTGGAGAGCTCA -ACGGAACATAGGTTGGAGTCACGT -ACGGAACATAGGTTGGAGCGTAGT -ACGGAACATAGGTTGGAGGTCAGT -ACGGAACATAGGTTGGAGGAAGGT -ACGGAACATAGGTTGGAGAACCGT -ACGGAACATAGGTTGGAGTTGTGC -ACGGAACATAGGTTGGAGCTAAGC -ACGGAACATAGGTTGGAGACTAGC -ACGGAACATAGGTTGGAGAGATGC -ACGGAACATAGGTTGGAGTGAAGG -ACGGAACATAGGTTGGAGCAATGG -ACGGAACATAGGTTGGAGATGAGG -ACGGAACATAGGTTGGAGAATGGG -ACGGAACATAGGTTGGAGTCCTGA -ACGGAACATAGGTTGGAGTAGCGA -ACGGAACATAGGTTGGAGCACAGA -ACGGAACATAGGTTGGAGGCAAGA -ACGGAACATAGGTTGGAGGGTTGA -ACGGAACATAGGTTGGAGTCCGAT -ACGGAACATAGGTTGGAGTGGCAT -ACGGAACATAGGTTGGAGCGAGAT -ACGGAACATAGGTTGGAGTACCAC -ACGGAACATAGGTTGGAGCAGAAC -ACGGAACATAGGTTGGAGGTCTAC -ACGGAACATAGGTTGGAGACGTAC -ACGGAACATAGGTTGGAGAGTGAC -ACGGAACATAGGTTGGAGCTGTAG -ACGGAACATAGGTTGGAGCCTAAG -ACGGAACATAGGTTGGAGGTTCAG -ACGGAACATAGGTTGGAGGCATAG -ACGGAACATAGGTTGGAGGACAAG -ACGGAACATAGGTTGGAGAAGCAG -ACGGAACATAGGTTGGAGCGTCAA -ACGGAACATAGGTTGGAGGCTGAA -ACGGAACATAGGTTGGAGAGTACG -ACGGAACATAGGTTGGAGATCCGA -ACGGAACATAGGTTGGAGATGGGA -ACGGAACATAGGTTGGAGGTGCAA -ACGGAACATAGGTTGGAGGAGGAA -ACGGAACATAGGTTGGAGCAGGTA -ACGGAACATAGGTTGGAGGACTCT -ACGGAACATAGGTTGGAGAGTCCT -ACGGAACATAGGTTGGAGTAAGCC -ACGGAACATAGGTTGGAGATAGCC -ACGGAACATAGGTTGGAGTAACCG -ACGGAACATAGGTTGGAGATGCCA -ACGGAACATAGGCTGAGAGGAAAC -ACGGAACATAGGCTGAGAAACACC -ACGGAACATAGGCTGAGAATCGAG -ACGGAACATAGGCTGAGACTCCTT -ACGGAACATAGGCTGAGACCTGTT -ACGGAACATAGGCTGAGACGGTTT -ACGGAACATAGGCTGAGAGTGGTT -ACGGAACATAGGCTGAGAGCCTTT -ACGGAACATAGGCTGAGAGGTCTT -ACGGAACATAGGCTGAGAACGCTT -ACGGAACATAGGCTGAGAAGCGTT -ACGGAACATAGGCTGAGATTCGTC -ACGGAACATAGGCTGAGATCTCTC -ACGGAACATAGGCTGAGATGGATC -ACGGAACATAGGCTGAGACACTTC -ACGGAACATAGGCTGAGAGTACTC -ACGGAACATAGGCTGAGAGATGTC -ACGGAACATAGGCTGAGAACAGTC -ACGGAACATAGGCTGAGATTGCTG -ACGGAACATAGGCTGAGATCCATG -ACGGAACATAGGCTGAGATGTGTG -ACGGAACATAGGCTGAGACTAGTG -ACGGAACATAGGCTGAGACATCTG -ACGGAACATAGGCTGAGAGAGTTG -ACGGAACATAGGCTGAGAAGACTG -ACGGAACATAGGCTGAGATCGGTA -ACGGAACATAGGCTGAGATGCCTA -ACGGAACATAGGCTGAGACCACTA -ACGGAACATAGGCTGAGAGGAGTA -ACGGAACATAGGCTGAGATCGTCT -ACGGAACATAGGCTGAGATGCACT -ACGGAACATAGGCTGAGACTGACT -ACGGAACATAGGCTGAGACAACCT -ACGGAACATAGGCTGAGAGCTACT -ACGGAACATAGGCTGAGAGGATCT -ACGGAACATAGGCTGAGAAAGGCT -ACGGAACATAGGCTGAGATCAACC -ACGGAACATAGGCTGAGATGTTCC -ACGGAACATAGGCTGAGAATTCCC -ACGGAACATAGGCTGAGATTCTCG -ACGGAACATAGGCTGAGATAGACG -ACGGAACATAGGCTGAGAGTAACG -ACGGAACATAGGCTGAGAACTTCG -ACGGAACATAGGCTGAGATACGCA -ACGGAACATAGGCTGAGACTTGCA -ACGGAACATAGGCTGAGACGAACA -ACGGAACATAGGCTGAGACAGTCA -ACGGAACATAGGCTGAGAGATCCA -ACGGAACATAGGCTGAGAACGACA -ACGGAACATAGGCTGAGAAGCTCA -ACGGAACATAGGCTGAGATCACGT -ACGGAACATAGGCTGAGACGTAGT -ACGGAACATAGGCTGAGAGTCAGT -ACGGAACATAGGCTGAGAGAAGGT -ACGGAACATAGGCTGAGAAACCGT -ACGGAACATAGGCTGAGATTGTGC -ACGGAACATAGGCTGAGACTAAGC -ACGGAACATAGGCTGAGAACTAGC -ACGGAACATAGGCTGAGAAGATGC -ACGGAACATAGGCTGAGATGAAGG -ACGGAACATAGGCTGAGACAATGG -ACGGAACATAGGCTGAGAATGAGG -ACGGAACATAGGCTGAGAAATGGG -ACGGAACATAGGCTGAGATCCTGA -ACGGAACATAGGCTGAGATAGCGA -ACGGAACATAGGCTGAGACACAGA -ACGGAACATAGGCTGAGAGCAAGA -ACGGAACATAGGCTGAGAGGTTGA -ACGGAACATAGGCTGAGATCCGAT -ACGGAACATAGGCTGAGATGGCAT -ACGGAACATAGGCTGAGACGAGAT -ACGGAACATAGGCTGAGATACCAC -ACGGAACATAGGCTGAGACAGAAC -ACGGAACATAGGCTGAGAGTCTAC -ACGGAACATAGGCTGAGAACGTAC -ACGGAACATAGGCTGAGAAGTGAC -ACGGAACATAGGCTGAGACTGTAG -ACGGAACATAGGCTGAGACCTAAG -ACGGAACATAGGCTGAGAGTTCAG -ACGGAACATAGGCTGAGAGCATAG -ACGGAACATAGGCTGAGAGACAAG -ACGGAACATAGGCTGAGAAAGCAG -ACGGAACATAGGCTGAGACGTCAA -ACGGAACATAGGCTGAGAGCTGAA -ACGGAACATAGGCTGAGAAGTACG -ACGGAACATAGGCTGAGAATCCGA -ACGGAACATAGGCTGAGAATGGGA -ACGGAACATAGGCTGAGAGTGCAA -ACGGAACATAGGCTGAGAGAGGAA -ACGGAACATAGGCTGAGACAGGTA -ACGGAACATAGGCTGAGAGACTCT -ACGGAACATAGGCTGAGAAGTCCT -ACGGAACATAGGCTGAGATAAGCC -ACGGAACATAGGCTGAGAATAGCC -ACGGAACATAGGCTGAGATAACCG -ACGGAACATAGGCTGAGAATGCCA -ACGGAACATAGGGTATCGGGAAAC -ACGGAACATAGGGTATCGAACACC -ACGGAACATAGGGTATCGATCGAG -ACGGAACATAGGGTATCGCTCCTT -ACGGAACATAGGGTATCGCCTGTT -ACGGAACATAGGGTATCGCGGTTT -ACGGAACATAGGGTATCGGTGGTT -ACGGAACATAGGGTATCGGCCTTT -ACGGAACATAGGGTATCGGGTCTT -ACGGAACATAGGGTATCGACGCTT -ACGGAACATAGGGTATCGAGCGTT -ACGGAACATAGGGTATCGTTCGTC -ACGGAACATAGGGTATCGTCTCTC -ACGGAACATAGGGTATCGTGGATC -ACGGAACATAGGGTATCGCACTTC -ACGGAACATAGGGTATCGGTACTC -ACGGAACATAGGGTATCGGATGTC -ACGGAACATAGGGTATCGACAGTC -ACGGAACATAGGGTATCGTTGCTG -ACGGAACATAGGGTATCGTCCATG -ACGGAACATAGGGTATCGTGTGTG -ACGGAACATAGGGTATCGCTAGTG -ACGGAACATAGGGTATCGCATCTG -ACGGAACATAGGGTATCGGAGTTG -ACGGAACATAGGGTATCGAGACTG -ACGGAACATAGGGTATCGTCGGTA -ACGGAACATAGGGTATCGTGCCTA -ACGGAACATAGGGTATCGCCACTA -ACGGAACATAGGGTATCGGGAGTA -ACGGAACATAGGGTATCGTCGTCT -ACGGAACATAGGGTATCGTGCACT -ACGGAACATAGGGTATCGCTGACT -ACGGAACATAGGGTATCGCAACCT -ACGGAACATAGGGTATCGGCTACT -ACGGAACATAGGGTATCGGGATCT -ACGGAACATAGGGTATCGAAGGCT -ACGGAACATAGGGTATCGTCAACC -ACGGAACATAGGGTATCGTGTTCC -ACGGAACATAGGGTATCGATTCCC -ACGGAACATAGGGTATCGTTCTCG -ACGGAACATAGGGTATCGTAGACG -ACGGAACATAGGGTATCGGTAACG -ACGGAACATAGGGTATCGACTTCG -ACGGAACATAGGGTATCGTACGCA -ACGGAACATAGGGTATCGCTTGCA -ACGGAACATAGGGTATCGCGAACA -ACGGAACATAGGGTATCGCAGTCA -ACGGAACATAGGGTATCGGATCCA -ACGGAACATAGGGTATCGACGACA -ACGGAACATAGGGTATCGAGCTCA -ACGGAACATAGGGTATCGTCACGT -ACGGAACATAGGGTATCGCGTAGT -ACGGAACATAGGGTATCGGTCAGT -ACGGAACATAGGGTATCGGAAGGT -ACGGAACATAGGGTATCGAACCGT -ACGGAACATAGGGTATCGTTGTGC -ACGGAACATAGGGTATCGCTAAGC -ACGGAACATAGGGTATCGACTAGC -ACGGAACATAGGGTATCGAGATGC -ACGGAACATAGGGTATCGTGAAGG -ACGGAACATAGGGTATCGCAATGG -ACGGAACATAGGGTATCGATGAGG -ACGGAACATAGGGTATCGAATGGG -ACGGAACATAGGGTATCGTCCTGA -ACGGAACATAGGGTATCGTAGCGA -ACGGAACATAGGGTATCGCACAGA -ACGGAACATAGGGTATCGGCAAGA -ACGGAACATAGGGTATCGGGTTGA -ACGGAACATAGGGTATCGTCCGAT -ACGGAACATAGGGTATCGTGGCAT -ACGGAACATAGGGTATCGCGAGAT -ACGGAACATAGGGTATCGTACCAC -ACGGAACATAGGGTATCGCAGAAC -ACGGAACATAGGGTATCGGTCTAC -ACGGAACATAGGGTATCGACGTAC -ACGGAACATAGGGTATCGAGTGAC -ACGGAACATAGGGTATCGCTGTAG -ACGGAACATAGGGTATCGCCTAAG -ACGGAACATAGGGTATCGGTTCAG -ACGGAACATAGGGTATCGGCATAG -ACGGAACATAGGGTATCGGACAAG -ACGGAACATAGGGTATCGAAGCAG -ACGGAACATAGGGTATCGCGTCAA -ACGGAACATAGGGTATCGGCTGAA -ACGGAACATAGGGTATCGAGTACG -ACGGAACATAGGGTATCGATCCGA -ACGGAACATAGGGTATCGATGGGA -ACGGAACATAGGGTATCGGTGCAA -ACGGAACATAGGGTATCGGAGGAA -ACGGAACATAGGGTATCGCAGGTA -ACGGAACATAGGGTATCGGACTCT -ACGGAACATAGGGTATCGAGTCCT -ACGGAACATAGGGTATCGTAAGCC -ACGGAACATAGGGTATCGATAGCC -ACGGAACATAGGGTATCGTAACCG -ACGGAACATAGGGTATCGATGCCA -ACGGAACATAGGCTATGCGGAAAC -ACGGAACATAGGCTATGCAACACC -ACGGAACATAGGCTATGCATCGAG -ACGGAACATAGGCTATGCCTCCTT -ACGGAACATAGGCTATGCCCTGTT -ACGGAACATAGGCTATGCCGGTTT -ACGGAACATAGGCTATGCGTGGTT -ACGGAACATAGGCTATGCGCCTTT -ACGGAACATAGGCTATGCGGTCTT -ACGGAACATAGGCTATGCACGCTT -ACGGAACATAGGCTATGCAGCGTT -ACGGAACATAGGCTATGCTTCGTC -ACGGAACATAGGCTATGCTCTCTC -ACGGAACATAGGCTATGCTGGATC -ACGGAACATAGGCTATGCCACTTC -ACGGAACATAGGCTATGCGTACTC -ACGGAACATAGGCTATGCGATGTC -ACGGAACATAGGCTATGCACAGTC -ACGGAACATAGGCTATGCTTGCTG -ACGGAACATAGGCTATGCTCCATG -ACGGAACATAGGCTATGCTGTGTG -ACGGAACATAGGCTATGCCTAGTG -ACGGAACATAGGCTATGCCATCTG -ACGGAACATAGGCTATGCGAGTTG -ACGGAACATAGGCTATGCAGACTG -ACGGAACATAGGCTATGCTCGGTA -ACGGAACATAGGCTATGCTGCCTA -ACGGAACATAGGCTATGCCCACTA -ACGGAACATAGGCTATGCGGAGTA -ACGGAACATAGGCTATGCTCGTCT -ACGGAACATAGGCTATGCTGCACT -ACGGAACATAGGCTATGCCTGACT -ACGGAACATAGGCTATGCCAACCT -ACGGAACATAGGCTATGCGCTACT -ACGGAACATAGGCTATGCGGATCT -ACGGAACATAGGCTATGCAAGGCT -ACGGAACATAGGCTATGCTCAACC -ACGGAACATAGGCTATGCTGTTCC -ACGGAACATAGGCTATGCATTCCC -ACGGAACATAGGCTATGCTTCTCG -ACGGAACATAGGCTATGCTAGACG -ACGGAACATAGGCTATGCGTAACG -ACGGAACATAGGCTATGCACTTCG -ACGGAACATAGGCTATGCTACGCA -ACGGAACATAGGCTATGCCTTGCA -ACGGAACATAGGCTATGCCGAACA -ACGGAACATAGGCTATGCCAGTCA -ACGGAACATAGGCTATGCGATCCA -ACGGAACATAGGCTATGCACGACA -ACGGAACATAGGCTATGCAGCTCA -ACGGAACATAGGCTATGCTCACGT -ACGGAACATAGGCTATGCCGTAGT -ACGGAACATAGGCTATGCGTCAGT -ACGGAACATAGGCTATGCGAAGGT -ACGGAACATAGGCTATGCAACCGT -ACGGAACATAGGCTATGCTTGTGC -ACGGAACATAGGCTATGCCTAAGC -ACGGAACATAGGCTATGCACTAGC -ACGGAACATAGGCTATGCAGATGC -ACGGAACATAGGCTATGCTGAAGG -ACGGAACATAGGCTATGCCAATGG -ACGGAACATAGGCTATGCATGAGG -ACGGAACATAGGCTATGCAATGGG -ACGGAACATAGGCTATGCTCCTGA -ACGGAACATAGGCTATGCTAGCGA -ACGGAACATAGGCTATGCCACAGA -ACGGAACATAGGCTATGCGCAAGA -ACGGAACATAGGCTATGCGGTTGA -ACGGAACATAGGCTATGCTCCGAT -ACGGAACATAGGCTATGCTGGCAT -ACGGAACATAGGCTATGCCGAGAT -ACGGAACATAGGCTATGCTACCAC -ACGGAACATAGGCTATGCCAGAAC -ACGGAACATAGGCTATGCGTCTAC -ACGGAACATAGGCTATGCACGTAC -ACGGAACATAGGCTATGCAGTGAC -ACGGAACATAGGCTATGCCTGTAG -ACGGAACATAGGCTATGCCCTAAG -ACGGAACATAGGCTATGCGTTCAG -ACGGAACATAGGCTATGCGCATAG -ACGGAACATAGGCTATGCGACAAG -ACGGAACATAGGCTATGCAAGCAG -ACGGAACATAGGCTATGCCGTCAA -ACGGAACATAGGCTATGCGCTGAA -ACGGAACATAGGCTATGCAGTACG -ACGGAACATAGGCTATGCATCCGA -ACGGAACATAGGCTATGCATGGGA -ACGGAACATAGGCTATGCGTGCAA -ACGGAACATAGGCTATGCGAGGAA -ACGGAACATAGGCTATGCCAGGTA -ACGGAACATAGGCTATGCGACTCT -ACGGAACATAGGCTATGCAGTCCT -ACGGAACATAGGCTATGCTAAGCC -ACGGAACATAGGCTATGCATAGCC -ACGGAACATAGGCTATGCTAACCG -ACGGAACATAGGCTATGCATGCCA -ACGGAACATAGGCTACCAGGAAAC -ACGGAACATAGGCTACCAAACACC -ACGGAACATAGGCTACCAATCGAG -ACGGAACATAGGCTACCACTCCTT -ACGGAACATAGGCTACCACCTGTT -ACGGAACATAGGCTACCACGGTTT -ACGGAACATAGGCTACCAGTGGTT -ACGGAACATAGGCTACCAGCCTTT -ACGGAACATAGGCTACCAGGTCTT -ACGGAACATAGGCTACCAACGCTT -ACGGAACATAGGCTACCAAGCGTT -ACGGAACATAGGCTACCATTCGTC -ACGGAACATAGGCTACCATCTCTC -ACGGAACATAGGCTACCATGGATC -ACGGAACATAGGCTACCACACTTC -ACGGAACATAGGCTACCAGTACTC -ACGGAACATAGGCTACCAGATGTC -ACGGAACATAGGCTACCAACAGTC -ACGGAACATAGGCTACCATTGCTG -ACGGAACATAGGCTACCATCCATG -ACGGAACATAGGCTACCATGTGTG -ACGGAACATAGGCTACCACTAGTG -ACGGAACATAGGCTACCACATCTG -ACGGAACATAGGCTACCAGAGTTG -ACGGAACATAGGCTACCAAGACTG -ACGGAACATAGGCTACCATCGGTA -ACGGAACATAGGCTACCATGCCTA -ACGGAACATAGGCTACCACCACTA -ACGGAACATAGGCTACCAGGAGTA -ACGGAACATAGGCTACCATCGTCT -ACGGAACATAGGCTACCATGCACT -ACGGAACATAGGCTACCACTGACT -ACGGAACATAGGCTACCACAACCT -ACGGAACATAGGCTACCAGCTACT -ACGGAACATAGGCTACCAGGATCT -ACGGAACATAGGCTACCAAAGGCT -ACGGAACATAGGCTACCATCAACC -ACGGAACATAGGCTACCATGTTCC -ACGGAACATAGGCTACCAATTCCC -ACGGAACATAGGCTACCATTCTCG -ACGGAACATAGGCTACCATAGACG -ACGGAACATAGGCTACCAGTAACG -ACGGAACATAGGCTACCAACTTCG -ACGGAACATAGGCTACCATACGCA -ACGGAACATAGGCTACCACTTGCA -ACGGAACATAGGCTACCACGAACA -ACGGAACATAGGCTACCACAGTCA -ACGGAACATAGGCTACCAGATCCA -ACGGAACATAGGCTACCAACGACA -ACGGAACATAGGCTACCAAGCTCA -ACGGAACATAGGCTACCATCACGT -ACGGAACATAGGCTACCACGTAGT -ACGGAACATAGGCTACCAGTCAGT -ACGGAACATAGGCTACCAGAAGGT -ACGGAACATAGGCTACCAAACCGT -ACGGAACATAGGCTACCATTGTGC -ACGGAACATAGGCTACCACTAAGC -ACGGAACATAGGCTACCAACTAGC -ACGGAACATAGGCTACCAAGATGC -ACGGAACATAGGCTACCATGAAGG -ACGGAACATAGGCTACCACAATGG -ACGGAACATAGGCTACCAATGAGG -ACGGAACATAGGCTACCAAATGGG -ACGGAACATAGGCTACCATCCTGA -ACGGAACATAGGCTACCATAGCGA -ACGGAACATAGGCTACCACACAGA -ACGGAACATAGGCTACCAGCAAGA -ACGGAACATAGGCTACCAGGTTGA -ACGGAACATAGGCTACCATCCGAT -ACGGAACATAGGCTACCATGGCAT -ACGGAACATAGGCTACCACGAGAT -ACGGAACATAGGCTACCATACCAC -ACGGAACATAGGCTACCACAGAAC -ACGGAACATAGGCTACCAGTCTAC -ACGGAACATAGGCTACCAACGTAC -ACGGAACATAGGCTACCAAGTGAC -ACGGAACATAGGCTACCACTGTAG -ACGGAACATAGGCTACCACCTAAG -ACGGAACATAGGCTACCAGTTCAG -ACGGAACATAGGCTACCAGCATAG -ACGGAACATAGGCTACCAGACAAG -ACGGAACATAGGCTACCAAAGCAG -ACGGAACATAGGCTACCACGTCAA -ACGGAACATAGGCTACCAGCTGAA -ACGGAACATAGGCTACCAAGTACG -ACGGAACATAGGCTACCAATCCGA -ACGGAACATAGGCTACCAATGGGA -ACGGAACATAGGCTACCAGTGCAA -ACGGAACATAGGCTACCAGAGGAA -ACGGAACATAGGCTACCACAGGTA -ACGGAACATAGGCTACCAGACTCT -ACGGAACATAGGCTACCAAGTCCT -ACGGAACATAGGCTACCATAAGCC -ACGGAACATAGGCTACCAATAGCC -ACGGAACATAGGCTACCATAACCG -ACGGAACATAGGCTACCAATGCCA -ACGGAACATAGGGTAGGAGGAAAC -ACGGAACATAGGGTAGGAAACACC -ACGGAACATAGGGTAGGAATCGAG -ACGGAACATAGGGTAGGACTCCTT -ACGGAACATAGGGTAGGACCTGTT -ACGGAACATAGGGTAGGACGGTTT -ACGGAACATAGGGTAGGAGTGGTT -ACGGAACATAGGGTAGGAGCCTTT -ACGGAACATAGGGTAGGAGGTCTT -ACGGAACATAGGGTAGGAACGCTT -ACGGAACATAGGGTAGGAAGCGTT -ACGGAACATAGGGTAGGATTCGTC -ACGGAACATAGGGTAGGATCTCTC -ACGGAACATAGGGTAGGATGGATC -ACGGAACATAGGGTAGGACACTTC -ACGGAACATAGGGTAGGAGTACTC -ACGGAACATAGGGTAGGAGATGTC -ACGGAACATAGGGTAGGAACAGTC -ACGGAACATAGGGTAGGATTGCTG -ACGGAACATAGGGTAGGATCCATG -ACGGAACATAGGGTAGGATGTGTG -ACGGAACATAGGGTAGGACTAGTG -ACGGAACATAGGGTAGGACATCTG -ACGGAACATAGGGTAGGAGAGTTG -ACGGAACATAGGGTAGGAAGACTG -ACGGAACATAGGGTAGGATCGGTA -ACGGAACATAGGGTAGGATGCCTA -ACGGAACATAGGGTAGGACCACTA -ACGGAACATAGGGTAGGAGGAGTA -ACGGAACATAGGGTAGGATCGTCT -ACGGAACATAGGGTAGGATGCACT -ACGGAACATAGGGTAGGACTGACT -ACGGAACATAGGGTAGGACAACCT -ACGGAACATAGGGTAGGAGCTACT -ACGGAACATAGGGTAGGAGGATCT -ACGGAACATAGGGTAGGAAAGGCT -ACGGAACATAGGGTAGGATCAACC -ACGGAACATAGGGTAGGATGTTCC -ACGGAACATAGGGTAGGAATTCCC -ACGGAACATAGGGTAGGATTCTCG -ACGGAACATAGGGTAGGATAGACG -ACGGAACATAGGGTAGGAGTAACG -ACGGAACATAGGGTAGGAACTTCG -ACGGAACATAGGGTAGGATACGCA -ACGGAACATAGGGTAGGACTTGCA -ACGGAACATAGGGTAGGACGAACA -ACGGAACATAGGGTAGGACAGTCA -ACGGAACATAGGGTAGGAGATCCA -ACGGAACATAGGGTAGGAACGACA -ACGGAACATAGGGTAGGAAGCTCA -ACGGAACATAGGGTAGGATCACGT -ACGGAACATAGGGTAGGACGTAGT -ACGGAACATAGGGTAGGAGTCAGT -ACGGAACATAGGGTAGGAGAAGGT -ACGGAACATAGGGTAGGAAACCGT -ACGGAACATAGGGTAGGATTGTGC -ACGGAACATAGGGTAGGACTAAGC -ACGGAACATAGGGTAGGAACTAGC -ACGGAACATAGGGTAGGAAGATGC -ACGGAACATAGGGTAGGATGAAGG -ACGGAACATAGGGTAGGACAATGG -ACGGAACATAGGGTAGGAATGAGG -ACGGAACATAGGGTAGGAAATGGG -ACGGAACATAGGGTAGGATCCTGA -ACGGAACATAGGGTAGGATAGCGA -ACGGAACATAGGGTAGGACACAGA -ACGGAACATAGGGTAGGAGCAAGA -ACGGAACATAGGGTAGGAGGTTGA -ACGGAACATAGGGTAGGATCCGAT -ACGGAACATAGGGTAGGATGGCAT -ACGGAACATAGGGTAGGACGAGAT -ACGGAACATAGGGTAGGATACCAC -ACGGAACATAGGGTAGGACAGAAC -ACGGAACATAGGGTAGGAGTCTAC -ACGGAACATAGGGTAGGAACGTAC -ACGGAACATAGGGTAGGAAGTGAC -ACGGAACATAGGGTAGGACTGTAG -ACGGAACATAGGGTAGGACCTAAG -ACGGAACATAGGGTAGGAGTTCAG -ACGGAACATAGGGTAGGAGCATAG -ACGGAACATAGGGTAGGAGACAAG -ACGGAACATAGGGTAGGAAAGCAG -ACGGAACATAGGGTAGGACGTCAA -ACGGAACATAGGGTAGGAGCTGAA -ACGGAACATAGGGTAGGAAGTACG -ACGGAACATAGGGTAGGAATCCGA -ACGGAACATAGGGTAGGAATGGGA -ACGGAACATAGGGTAGGAGTGCAA -ACGGAACATAGGGTAGGAGAGGAA -ACGGAACATAGGGTAGGACAGGTA -ACGGAACATAGGGTAGGAGACTCT -ACGGAACATAGGGTAGGAAGTCCT -ACGGAACATAGGGTAGGATAAGCC -ACGGAACATAGGGTAGGAATAGCC -ACGGAACATAGGGTAGGATAACCG -ACGGAACATAGGGTAGGAATGCCA -ACGGAACATAGGTCTTCGGGAAAC -ACGGAACATAGGTCTTCGAACACC -ACGGAACATAGGTCTTCGATCGAG -ACGGAACATAGGTCTTCGCTCCTT -ACGGAACATAGGTCTTCGCCTGTT -ACGGAACATAGGTCTTCGCGGTTT -ACGGAACATAGGTCTTCGGTGGTT -ACGGAACATAGGTCTTCGGCCTTT -ACGGAACATAGGTCTTCGGGTCTT -ACGGAACATAGGTCTTCGACGCTT -ACGGAACATAGGTCTTCGAGCGTT -ACGGAACATAGGTCTTCGTTCGTC -ACGGAACATAGGTCTTCGTCTCTC -ACGGAACATAGGTCTTCGTGGATC -ACGGAACATAGGTCTTCGCACTTC -ACGGAACATAGGTCTTCGGTACTC -ACGGAACATAGGTCTTCGGATGTC -ACGGAACATAGGTCTTCGACAGTC -ACGGAACATAGGTCTTCGTTGCTG -ACGGAACATAGGTCTTCGTCCATG -ACGGAACATAGGTCTTCGTGTGTG -ACGGAACATAGGTCTTCGCTAGTG -ACGGAACATAGGTCTTCGCATCTG -ACGGAACATAGGTCTTCGGAGTTG -ACGGAACATAGGTCTTCGAGACTG -ACGGAACATAGGTCTTCGTCGGTA -ACGGAACATAGGTCTTCGTGCCTA -ACGGAACATAGGTCTTCGCCACTA -ACGGAACATAGGTCTTCGGGAGTA -ACGGAACATAGGTCTTCGTCGTCT -ACGGAACATAGGTCTTCGTGCACT -ACGGAACATAGGTCTTCGCTGACT -ACGGAACATAGGTCTTCGCAACCT -ACGGAACATAGGTCTTCGGCTACT -ACGGAACATAGGTCTTCGGGATCT -ACGGAACATAGGTCTTCGAAGGCT -ACGGAACATAGGTCTTCGTCAACC -ACGGAACATAGGTCTTCGTGTTCC -ACGGAACATAGGTCTTCGATTCCC -ACGGAACATAGGTCTTCGTTCTCG -ACGGAACATAGGTCTTCGTAGACG -ACGGAACATAGGTCTTCGGTAACG -ACGGAACATAGGTCTTCGACTTCG -ACGGAACATAGGTCTTCGTACGCA -ACGGAACATAGGTCTTCGCTTGCA -ACGGAACATAGGTCTTCGCGAACA -ACGGAACATAGGTCTTCGCAGTCA -ACGGAACATAGGTCTTCGGATCCA -ACGGAACATAGGTCTTCGACGACA -ACGGAACATAGGTCTTCGAGCTCA -ACGGAACATAGGTCTTCGTCACGT -ACGGAACATAGGTCTTCGCGTAGT -ACGGAACATAGGTCTTCGGTCAGT -ACGGAACATAGGTCTTCGGAAGGT -ACGGAACATAGGTCTTCGAACCGT -ACGGAACATAGGTCTTCGTTGTGC -ACGGAACATAGGTCTTCGCTAAGC -ACGGAACATAGGTCTTCGACTAGC -ACGGAACATAGGTCTTCGAGATGC -ACGGAACATAGGTCTTCGTGAAGG -ACGGAACATAGGTCTTCGCAATGG -ACGGAACATAGGTCTTCGATGAGG -ACGGAACATAGGTCTTCGAATGGG -ACGGAACATAGGTCTTCGTCCTGA -ACGGAACATAGGTCTTCGTAGCGA -ACGGAACATAGGTCTTCGCACAGA -ACGGAACATAGGTCTTCGGCAAGA -ACGGAACATAGGTCTTCGGGTTGA -ACGGAACATAGGTCTTCGTCCGAT -ACGGAACATAGGTCTTCGTGGCAT -ACGGAACATAGGTCTTCGCGAGAT -ACGGAACATAGGTCTTCGTACCAC -ACGGAACATAGGTCTTCGCAGAAC -ACGGAACATAGGTCTTCGGTCTAC -ACGGAACATAGGTCTTCGACGTAC -ACGGAACATAGGTCTTCGAGTGAC -ACGGAACATAGGTCTTCGCTGTAG -ACGGAACATAGGTCTTCGCCTAAG -ACGGAACATAGGTCTTCGGTTCAG -ACGGAACATAGGTCTTCGGCATAG -ACGGAACATAGGTCTTCGGACAAG -ACGGAACATAGGTCTTCGAAGCAG -ACGGAACATAGGTCTTCGCGTCAA -ACGGAACATAGGTCTTCGGCTGAA -ACGGAACATAGGTCTTCGAGTACG -ACGGAACATAGGTCTTCGATCCGA -ACGGAACATAGGTCTTCGATGGGA -ACGGAACATAGGTCTTCGGTGCAA -ACGGAACATAGGTCTTCGGAGGAA -ACGGAACATAGGTCTTCGCAGGTA -ACGGAACATAGGTCTTCGGACTCT -ACGGAACATAGGTCTTCGAGTCCT -ACGGAACATAGGTCTTCGTAAGCC -ACGGAACATAGGTCTTCGATAGCC -ACGGAACATAGGTCTTCGTAACCG -ACGGAACATAGGTCTTCGATGCCA -ACGGAACATAGGACTTGCGGAAAC -ACGGAACATAGGACTTGCAACACC -ACGGAACATAGGACTTGCATCGAG -ACGGAACATAGGACTTGCCTCCTT -ACGGAACATAGGACTTGCCCTGTT -ACGGAACATAGGACTTGCCGGTTT -ACGGAACATAGGACTTGCGTGGTT -ACGGAACATAGGACTTGCGCCTTT -ACGGAACATAGGACTTGCGGTCTT -ACGGAACATAGGACTTGCACGCTT -ACGGAACATAGGACTTGCAGCGTT -ACGGAACATAGGACTTGCTTCGTC -ACGGAACATAGGACTTGCTCTCTC -ACGGAACATAGGACTTGCTGGATC -ACGGAACATAGGACTTGCCACTTC -ACGGAACATAGGACTTGCGTACTC -ACGGAACATAGGACTTGCGATGTC -ACGGAACATAGGACTTGCACAGTC -ACGGAACATAGGACTTGCTTGCTG -ACGGAACATAGGACTTGCTCCATG -ACGGAACATAGGACTTGCTGTGTG -ACGGAACATAGGACTTGCCTAGTG -ACGGAACATAGGACTTGCCATCTG -ACGGAACATAGGACTTGCGAGTTG -ACGGAACATAGGACTTGCAGACTG -ACGGAACATAGGACTTGCTCGGTA -ACGGAACATAGGACTTGCTGCCTA -ACGGAACATAGGACTTGCCCACTA -ACGGAACATAGGACTTGCGGAGTA -ACGGAACATAGGACTTGCTCGTCT -ACGGAACATAGGACTTGCTGCACT -ACGGAACATAGGACTTGCCTGACT -ACGGAACATAGGACTTGCCAACCT -ACGGAACATAGGACTTGCGCTACT -ACGGAACATAGGACTTGCGGATCT -ACGGAACATAGGACTTGCAAGGCT -ACGGAACATAGGACTTGCTCAACC -ACGGAACATAGGACTTGCTGTTCC -ACGGAACATAGGACTTGCATTCCC -ACGGAACATAGGACTTGCTTCTCG -ACGGAACATAGGACTTGCTAGACG -ACGGAACATAGGACTTGCGTAACG -ACGGAACATAGGACTTGCACTTCG -ACGGAACATAGGACTTGCTACGCA -ACGGAACATAGGACTTGCCTTGCA -ACGGAACATAGGACTTGCCGAACA -ACGGAACATAGGACTTGCCAGTCA -ACGGAACATAGGACTTGCGATCCA -ACGGAACATAGGACTTGCACGACA -ACGGAACATAGGACTTGCAGCTCA -ACGGAACATAGGACTTGCTCACGT -ACGGAACATAGGACTTGCCGTAGT -ACGGAACATAGGACTTGCGTCAGT -ACGGAACATAGGACTTGCGAAGGT -ACGGAACATAGGACTTGCAACCGT -ACGGAACATAGGACTTGCTTGTGC -ACGGAACATAGGACTTGCCTAAGC -ACGGAACATAGGACTTGCACTAGC -ACGGAACATAGGACTTGCAGATGC -ACGGAACATAGGACTTGCTGAAGG -ACGGAACATAGGACTTGCCAATGG -ACGGAACATAGGACTTGCATGAGG -ACGGAACATAGGACTTGCAATGGG -ACGGAACATAGGACTTGCTCCTGA -ACGGAACATAGGACTTGCTAGCGA -ACGGAACATAGGACTTGCCACAGA -ACGGAACATAGGACTTGCGCAAGA -ACGGAACATAGGACTTGCGGTTGA -ACGGAACATAGGACTTGCTCCGAT -ACGGAACATAGGACTTGCTGGCAT -ACGGAACATAGGACTTGCCGAGAT -ACGGAACATAGGACTTGCTACCAC -ACGGAACATAGGACTTGCCAGAAC -ACGGAACATAGGACTTGCGTCTAC -ACGGAACATAGGACTTGCACGTAC -ACGGAACATAGGACTTGCAGTGAC -ACGGAACATAGGACTTGCCTGTAG -ACGGAACATAGGACTTGCCCTAAG -ACGGAACATAGGACTTGCGTTCAG -ACGGAACATAGGACTTGCGCATAG -ACGGAACATAGGACTTGCGACAAG -ACGGAACATAGGACTTGCAAGCAG -ACGGAACATAGGACTTGCCGTCAA -ACGGAACATAGGACTTGCGCTGAA -ACGGAACATAGGACTTGCAGTACG -ACGGAACATAGGACTTGCATCCGA -ACGGAACATAGGACTTGCATGGGA -ACGGAACATAGGACTTGCGTGCAA -ACGGAACATAGGACTTGCGAGGAA -ACGGAACATAGGACTTGCCAGGTA -ACGGAACATAGGACTTGCGACTCT -ACGGAACATAGGACTTGCAGTCCT -ACGGAACATAGGACTTGCTAAGCC -ACGGAACATAGGACTTGCATAGCC -ACGGAACATAGGACTTGCTAACCG -ACGGAACATAGGACTTGCATGCCA -ACGGAACATAGGACTCTGGGAAAC -ACGGAACATAGGACTCTGAACACC -ACGGAACATAGGACTCTGATCGAG -ACGGAACATAGGACTCTGCTCCTT -ACGGAACATAGGACTCTGCCTGTT -ACGGAACATAGGACTCTGCGGTTT -ACGGAACATAGGACTCTGGTGGTT -ACGGAACATAGGACTCTGGCCTTT -ACGGAACATAGGACTCTGGGTCTT -ACGGAACATAGGACTCTGACGCTT -ACGGAACATAGGACTCTGAGCGTT -ACGGAACATAGGACTCTGTTCGTC -ACGGAACATAGGACTCTGTCTCTC -ACGGAACATAGGACTCTGTGGATC -ACGGAACATAGGACTCTGCACTTC -ACGGAACATAGGACTCTGGTACTC -ACGGAACATAGGACTCTGGATGTC -ACGGAACATAGGACTCTGACAGTC -ACGGAACATAGGACTCTGTTGCTG -ACGGAACATAGGACTCTGTCCATG -ACGGAACATAGGACTCTGTGTGTG -ACGGAACATAGGACTCTGCTAGTG -ACGGAACATAGGACTCTGCATCTG -ACGGAACATAGGACTCTGGAGTTG -ACGGAACATAGGACTCTGAGACTG -ACGGAACATAGGACTCTGTCGGTA -ACGGAACATAGGACTCTGTGCCTA -ACGGAACATAGGACTCTGCCACTA -ACGGAACATAGGACTCTGGGAGTA -ACGGAACATAGGACTCTGTCGTCT -ACGGAACATAGGACTCTGTGCACT -ACGGAACATAGGACTCTGCTGACT -ACGGAACATAGGACTCTGCAACCT -ACGGAACATAGGACTCTGGCTACT -ACGGAACATAGGACTCTGGGATCT -ACGGAACATAGGACTCTGAAGGCT -ACGGAACATAGGACTCTGTCAACC -ACGGAACATAGGACTCTGTGTTCC -ACGGAACATAGGACTCTGATTCCC -ACGGAACATAGGACTCTGTTCTCG -ACGGAACATAGGACTCTGTAGACG -ACGGAACATAGGACTCTGGTAACG -ACGGAACATAGGACTCTGACTTCG -ACGGAACATAGGACTCTGTACGCA -ACGGAACATAGGACTCTGCTTGCA -ACGGAACATAGGACTCTGCGAACA -ACGGAACATAGGACTCTGCAGTCA -ACGGAACATAGGACTCTGGATCCA -ACGGAACATAGGACTCTGACGACA -ACGGAACATAGGACTCTGAGCTCA -ACGGAACATAGGACTCTGTCACGT -ACGGAACATAGGACTCTGCGTAGT -ACGGAACATAGGACTCTGGTCAGT -ACGGAACATAGGACTCTGGAAGGT -ACGGAACATAGGACTCTGAACCGT -ACGGAACATAGGACTCTGTTGTGC -ACGGAACATAGGACTCTGCTAAGC -ACGGAACATAGGACTCTGACTAGC -ACGGAACATAGGACTCTGAGATGC -ACGGAACATAGGACTCTGTGAAGG -ACGGAACATAGGACTCTGCAATGG -ACGGAACATAGGACTCTGATGAGG -ACGGAACATAGGACTCTGAATGGG -ACGGAACATAGGACTCTGTCCTGA -ACGGAACATAGGACTCTGTAGCGA -ACGGAACATAGGACTCTGCACAGA -ACGGAACATAGGACTCTGGCAAGA -ACGGAACATAGGACTCTGGGTTGA -ACGGAACATAGGACTCTGTCCGAT -ACGGAACATAGGACTCTGTGGCAT -ACGGAACATAGGACTCTGCGAGAT -ACGGAACATAGGACTCTGTACCAC -ACGGAACATAGGACTCTGCAGAAC -ACGGAACATAGGACTCTGGTCTAC -ACGGAACATAGGACTCTGACGTAC -ACGGAACATAGGACTCTGAGTGAC -ACGGAACATAGGACTCTGCTGTAG -ACGGAACATAGGACTCTGCCTAAG -ACGGAACATAGGACTCTGGTTCAG -ACGGAACATAGGACTCTGGCATAG -ACGGAACATAGGACTCTGGACAAG -ACGGAACATAGGACTCTGAAGCAG -ACGGAACATAGGACTCTGCGTCAA -ACGGAACATAGGACTCTGGCTGAA -ACGGAACATAGGACTCTGAGTACG -ACGGAACATAGGACTCTGATCCGA -ACGGAACATAGGACTCTGATGGGA -ACGGAACATAGGACTCTGGTGCAA -ACGGAACATAGGACTCTGGAGGAA -ACGGAACATAGGACTCTGCAGGTA -ACGGAACATAGGACTCTGGACTCT -ACGGAACATAGGACTCTGAGTCCT -ACGGAACATAGGACTCTGTAAGCC -ACGGAACATAGGACTCTGATAGCC -ACGGAACATAGGACTCTGTAACCG -ACGGAACATAGGACTCTGATGCCA -ACGGAACATAGGCCTCAAGGAAAC -ACGGAACATAGGCCTCAAAACACC -ACGGAACATAGGCCTCAAATCGAG -ACGGAACATAGGCCTCAACTCCTT -ACGGAACATAGGCCTCAACCTGTT -ACGGAACATAGGCCTCAACGGTTT -ACGGAACATAGGCCTCAAGTGGTT -ACGGAACATAGGCCTCAAGCCTTT -ACGGAACATAGGCCTCAAGGTCTT -ACGGAACATAGGCCTCAAACGCTT -ACGGAACATAGGCCTCAAAGCGTT -ACGGAACATAGGCCTCAATTCGTC -ACGGAACATAGGCCTCAATCTCTC -ACGGAACATAGGCCTCAATGGATC -ACGGAACATAGGCCTCAACACTTC -ACGGAACATAGGCCTCAAGTACTC -ACGGAACATAGGCCTCAAGATGTC -ACGGAACATAGGCCTCAAACAGTC -ACGGAACATAGGCCTCAATTGCTG -ACGGAACATAGGCCTCAATCCATG -ACGGAACATAGGCCTCAATGTGTG -ACGGAACATAGGCCTCAACTAGTG -ACGGAACATAGGCCTCAACATCTG -ACGGAACATAGGCCTCAAGAGTTG -ACGGAACATAGGCCTCAAAGACTG -ACGGAACATAGGCCTCAATCGGTA -ACGGAACATAGGCCTCAATGCCTA -ACGGAACATAGGCCTCAACCACTA -ACGGAACATAGGCCTCAAGGAGTA -ACGGAACATAGGCCTCAATCGTCT -ACGGAACATAGGCCTCAATGCACT -ACGGAACATAGGCCTCAACTGACT -ACGGAACATAGGCCTCAACAACCT -ACGGAACATAGGCCTCAAGCTACT -ACGGAACATAGGCCTCAAGGATCT -ACGGAACATAGGCCTCAAAAGGCT -ACGGAACATAGGCCTCAATCAACC -ACGGAACATAGGCCTCAATGTTCC -ACGGAACATAGGCCTCAAATTCCC -ACGGAACATAGGCCTCAATTCTCG -ACGGAACATAGGCCTCAATAGACG -ACGGAACATAGGCCTCAAGTAACG -ACGGAACATAGGCCTCAAACTTCG -ACGGAACATAGGCCTCAATACGCA -ACGGAACATAGGCCTCAACTTGCA -ACGGAACATAGGCCTCAACGAACA -ACGGAACATAGGCCTCAACAGTCA -ACGGAACATAGGCCTCAAGATCCA -ACGGAACATAGGCCTCAAACGACA -ACGGAACATAGGCCTCAAAGCTCA -ACGGAACATAGGCCTCAATCACGT -ACGGAACATAGGCCTCAACGTAGT -ACGGAACATAGGCCTCAAGTCAGT -ACGGAACATAGGCCTCAAGAAGGT -ACGGAACATAGGCCTCAAAACCGT -ACGGAACATAGGCCTCAATTGTGC -ACGGAACATAGGCCTCAACTAAGC -ACGGAACATAGGCCTCAAACTAGC -ACGGAACATAGGCCTCAAAGATGC -ACGGAACATAGGCCTCAATGAAGG -ACGGAACATAGGCCTCAACAATGG -ACGGAACATAGGCCTCAAATGAGG -ACGGAACATAGGCCTCAAAATGGG -ACGGAACATAGGCCTCAATCCTGA -ACGGAACATAGGCCTCAATAGCGA -ACGGAACATAGGCCTCAACACAGA -ACGGAACATAGGCCTCAAGCAAGA -ACGGAACATAGGCCTCAAGGTTGA -ACGGAACATAGGCCTCAATCCGAT -ACGGAACATAGGCCTCAATGGCAT -ACGGAACATAGGCCTCAACGAGAT -ACGGAACATAGGCCTCAATACCAC -ACGGAACATAGGCCTCAACAGAAC -ACGGAACATAGGCCTCAAGTCTAC -ACGGAACATAGGCCTCAAACGTAC -ACGGAACATAGGCCTCAAAGTGAC -ACGGAACATAGGCCTCAACTGTAG -ACGGAACATAGGCCTCAACCTAAG -ACGGAACATAGGCCTCAAGTTCAG -ACGGAACATAGGCCTCAAGCATAG -ACGGAACATAGGCCTCAAGACAAG -ACGGAACATAGGCCTCAAAAGCAG -ACGGAACATAGGCCTCAACGTCAA -ACGGAACATAGGCCTCAAGCTGAA -ACGGAACATAGGCCTCAAAGTACG -ACGGAACATAGGCCTCAAATCCGA -ACGGAACATAGGCCTCAAATGGGA -ACGGAACATAGGCCTCAAGTGCAA -ACGGAACATAGGCCTCAAGAGGAA -ACGGAACATAGGCCTCAACAGGTA -ACGGAACATAGGCCTCAAGACTCT -ACGGAACATAGGCCTCAAAGTCCT -ACGGAACATAGGCCTCAATAAGCC -ACGGAACATAGGCCTCAAATAGCC -ACGGAACATAGGCCTCAATAACCG -ACGGAACATAGGCCTCAAATGCCA -ACGGAACATAGGACTGCTGGAAAC -ACGGAACATAGGACTGCTAACACC -ACGGAACATAGGACTGCTATCGAG -ACGGAACATAGGACTGCTCTCCTT -ACGGAACATAGGACTGCTCCTGTT -ACGGAACATAGGACTGCTCGGTTT -ACGGAACATAGGACTGCTGTGGTT -ACGGAACATAGGACTGCTGCCTTT -ACGGAACATAGGACTGCTGGTCTT -ACGGAACATAGGACTGCTACGCTT -ACGGAACATAGGACTGCTAGCGTT -ACGGAACATAGGACTGCTTTCGTC -ACGGAACATAGGACTGCTTCTCTC -ACGGAACATAGGACTGCTTGGATC -ACGGAACATAGGACTGCTCACTTC -ACGGAACATAGGACTGCTGTACTC -ACGGAACATAGGACTGCTGATGTC -ACGGAACATAGGACTGCTACAGTC -ACGGAACATAGGACTGCTTTGCTG -ACGGAACATAGGACTGCTTCCATG -ACGGAACATAGGACTGCTTGTGTG -ACGGAACATAGGACTGCTCTAGTG -ACGGAACATAGGACTGCTCATCTG -ACGGAACATAGGACTGCTGAGTTG -ACGGAACATAGGACTGCTAGACTG -ACGGAACATAGGACTGCTTCGGTA -ACGGAACATAGGACTGCTTGCCTA -ACGGAACATAGGACTGCTCCACTA -ACGGAACATAGGACTGCTGGAGTA -ACGGAACATAGGACTGCTTCGTCT -ACGGAACATAGGACTGCTTGCACT -ACGGAACATAGGACTGCTCTGACT -ACGGAACATAGGACTGCTCAACCT -ACGGAACATAGGACTGCTGCTACT -ACGGAACATAGGACTGCTGGATCT -ACGGAACATAGGACTGCTAAGGCT -ACGGAACATAGGACTGCTTCAACC -ACGGAACATAGGACTGCTTGTTCC -ACGGAACATAGGACTGCTATTCCC -ACGGAACATAGGACTGCTTTCTCG -ACGGAACATAGGACTGCTTAGACG -ACGGAACATAGGACTGCTGTAACG -ACGGAACATAGGACTGCTACTTCG -ACGGAACATAGGACTGCTTACGCA -ACGGAACATAGGACTGCTCTTGCA -ACGGAACATAGGACTGCTCGAACA -ACGGAACATAGGACTGCTCAGTCA -ACGGAACATAGGACTGCTGATCCA -ACGGAACATAGGACTGCTACGACA -ACGGAACATAGGACTGCTAGCTCA -ACGGAACATAGGACTGCTTCACGT -ACGGAACATAGGACTGCTCGTAGT -ACGGAACATAGGACTGCTGTCAGT -ACGGAACATAGGACTGCTGAAGGT -ACGGAACATAGGACTGCTAACCGT -ACGGAACATAGGACTGCTTTGTGC -ACGGAACATAGGACTGCTCTAAGC -ACGGAACATAGGACTGCTACTAGC -ACGGAACATAGGACTGCTAGATGC -ACGGAACATAGGACTGCTTGAAGG -ACGGAACATAGGACTGCTCAATGG -ACGGAACATAGGACTGCTATGAGG -ACGGAACATAGGACTGCTAATGGG -ACGGAACATAGGACTGCTTCCTGA -ACGGAACATAGGACTGCTTAGCGA -ACGGAACATAGGACTGCTCACAGA -ACGGAACATAGGACTGCTGCAAGA -ACGGAACATAGGACTGCTGGTTGA -ACGGAACATAGGACTGCTTCCGAT -ACGGAACATAGGACTGCTTGGCAT -ACGGAACATAGGACTGCTCGAGAT -ACGGAACATAGGACTGCTTACCAC -ACGGAACATAGGACTGCTCAGAAC -ACGGAACATAGGACTGCTGTCTAC -ACGGAACATAGGACTGCTACGTAC -ACGGAACATAGGACTGCTAGTGAC -ACGGAACATAGGACTGCTCTGTAG -ACGGAACATAGGACTGCTCCTAAG -ACGGAACATAGGACTGCTGTTCAG -ACGGAACATAGGACTGCTGCATAG -ACGGAACATAGGACTGCTGACAAG -ACGGAACATAGGACTGCTAAGCAG -ACGGAACATAGGACTGCTCGTCAA -ACGGAACATAGGACTGCTGCTGAA -ACGGAACATAGGACTGCTAGTACG -ACGGAACATAGGACTGCTATCCGA -ACGGAACATAGGACTGCTATGGGA -ACGGAACATAGGACTGCTGTGCAA -ACGGAACATAGGACTGCTGAGGAA -ACGGAACATAGGACTGCTCAGGTA -ACGGAACATAGGACTGCTGACTCT -ACGGAACATAGGACTGCTAGTCCT -ACGGAACATAGGACTGCTTAAGCC -ACGGAACATAGGACTGCTATAGCC -ACGGAACATAGGACTGCTTAACCG -ACGGAACATAGGACTGCTATGCCA -ACGGAACATAGGTCTGGAGGAAAC -ACGGAACATAGGTCTGGAAACACC -ACGGAACATAGGTCTGGAATCGAG -ACGGAACATAGGTCTGGACTCCTT -ACGGAACATAGGTCTGGACCTGTT -ACGGAACATAGGTCTGGACGGTTT -ACGGAACATAGGTCTGGAGTGGTT -ACGGAACATAGGTCTGGAGCCTTT -ACGGAACATAGGTCTGGAGGTCTT -ACGGAACATAGGTCTGGAACGCTT -ACGGAACATAGGTCTGGAAGCGTT -ACGGAACATAGGTCTGGATTCGTC -ACGGAACATAGGTCTGGATCTCTC -ACGGAACATAGGTCTGGATGGATC -ACGGAACATAGGTCTGGACACTTC -ACGGAACATAGGTCTGGAGTACTC -ACGGAACATAGGTCTGGAGATGTC -ACGGAACATAGGTCTGGAACAGTC -ACGGAACATAGGTCTGGATTGCTG -ACGGAACATAGGTCTGGATCCATG -ACGGAACATAGGTCTGGATGTGTG -ACGGAACATAGGTCTGGACTAGTG -ACGGAACATAGGTCTGGACATCTG -ACGGAACATAGGTCTGGAGAGTTG -ACGGAACATAGGTCTGGAAGACTG -ACGGAACATAGGTCTGGATCGGTA -ACGGAACATAGGTCTGGATGCCTA -ACGGAACATAGGTCTGGACCACTA -ACGGAACATAGGTCTGGAGGAGTA -ACGGAACATAGGTCTGGATCGTCT -ACGGAACATAGGTCTGGATGCACT -ACGGAACATAGGTCTGGACTGACT -ACGGAACATAGGTCTGGACAACCT -ACGGAACATAGGTCTGGAGCTACT -ACGGAACATAGGTCTGGAGGATCT -ACGGAACATAGGTCTGGAAAGGCT -ACGGAACATAGGTCTGGATCAACC -ACGGAACATAGGTCTGGATGTTCC -ACGGAACATAGGTCTGGAATTCCC -ACGGAACATAGGTCTGGATTCTCG -ACGGAACATAGGTCTGGATAGACG -ACGGAACATAGGTCTGGAGTAACG -ACGGAACATAGGTCTGGAACTTCG -ACGGAACATAGGTCTGGATACGCA -ACGGAACATAGGTCTGGACTTGCA -ACGGAACATAGGTCTGGACGAACA -ACGGAACATAGGTCTGGACAGTCA -ACGGAACATAGGTCTGGAGATCCA -ACGGAACATAGGTCTGGAACGACA -ACGGAACATAGGTCTGGAAGCTCA -ACGGAACATAGGTCTGGATCACGT -ACGGAACATAGGTCTGGACGTAGT -ACGGAACATAGGTCTGGAGTCAGT -ACGGAACATAGGTCTGGAGAAGGT -ACGGAACATAGGTCTGGAAACCGT -ACGGAACATAGGTCTGGATTGTGC -ACGGAACATAGGTCTGGACTAAGC -ACGGAACATAGGTCTGGAACTAGC -ACGGAACATAGGTCTGGAAGATGC -ACGGAACATAGGTCTGGATGAAGG -ACGGAACATAGGTCTGGACAATGG -ACGGAACATAGGTCTGGAATGAGG -ACGGAACATAGGTCTGGAAATGGG -ACGGAACATAGGTCTGGATCCTGA -ACGGAACATAGGTCTGGATAGCGA -ACGGAACATAGGTCTGGACACAGA -ACGGAACATAGGTCTGGAGCAAGA -ACGGAACATAGGTCTGGAGGTTGA -ACGGAACATAGGTCTGGATCCGAT -ACGGAACATAGGTCTGGATGGCAT -ACGGAACATAGGTCTGGACGAGAT -ACGGAACATAGGTCTGGATACCAC -ACGGAACATAGGTCTGGACAGAAC -ACGGAACATAGGTCTGGAGTCTAC -ACGGAACATAGGTCTGGAACGTAC -ACGGAACATAGGTCTGGAAGTGAC -ACGGAACATAGGTCTGGACTGTAG -ACGGAACATAGGTCTGGACCTAAG -ACGGAACATAGGTCTGGAGTTCAG -ACGGAACATAGGTCTGGAGCATAG -ACGGAACATAGGTCTGGAGACAAG -ACGGAACATAGGTCTGGAAAGCAG -ACGGAACATAGGTCTGGACGTCAA -ACGGAACATAGGTCTGGAGCTGAA -ACGGAACATAGGTCTGGAAGTACG -ACGGAACATAGGTCTGGAATCCGA -ACGGAACATAGGTCTGGAATGGGA -ACGGAACATAGGTCTGGAGTGCAA -ACGGAACATAGGTCTGGAGAGGAA -ACGGAACATAGGTCTGGACAGGTA -ACGGAACATAGGTCTGGAGACTCT -ACGGAACATAGGTCTGGAAGTCCT -ACGGAACATAGGTCTGGATAAGCC -ACGGAACATAGGTCTGGAATAGCC -ACGGAACATAGGTCTGGATAACCG -ACGGAACATAGGTCTGGAATGCCA -ACGGAACATAGGGCTAAGGGAAAC -ACGGAACATAGGGCTAAGAACACC -ACGGAACATAGGGCTAAGATCGAG -ACGGAACATAGGGCTAAGCTCCTT -ACGGAACATAGGGCTAAGCCTGTT -ACGGAACATAGGGCTAAGCGGTTT -ACGGAACATAGGGCTAAGGTGGTT -ACGGAACATAGGGCTAAGGCCTTT -ACGGAACATAGGGCTAAGGGTCTT -ACGGAACATAGGGCTAAGACGCTT -ACGGAACATAGGGCTAAGAGCGTT -ACGGAACATAGGGCTAAGTTCGTC -ACGGAACATAGGGCTAAGTCTCTC -ACGGAACATAGGGCTAAGTGGATC -ACGGAACATAGGGCTAAGCACTTC -ACGGAACATAGGGCTAAGGTACTC -ACGGAACATAGGGCTAAGGATGTC -ACGGAACATAGGGCTAAGACAGTC -ACGGAACATAGGGCTAAGTTGCTG -ACGGAACATAGGGCTAAGTCCATG -ACGGAACATAGGGCTAAGTGTGTG -ACGGAACATAGGGCTAAGCTAGTG -ACGGAACATAGGGCTAAGCATCTG -ACGGAACATAGGGCTAAGGAGTTG -ACGGAACATAGGGCTAAGAGACTG -ACGGAACATAGGGCTAAGTCGGTA -ACGGAACATAGGGCTAAGTGCCTA -ACGGAACATAGGGCTAAGCCACTA -ACGGAACATAGGGCTAAGGGAGTA -ACGGAACATAGGGCTAAGTCGTCT -ACGGAACATAGGGCTAAGTGCACT -ACGGAACATAGGGCTAAGCTGACT -ACGGAACATAGGGCTAAGCAACCT -ACGGAACATAGGGCTAAGGCTACT -ACGGAACATAGGGCTAAGGGATCT -ACGGAACATAGGGCTAAGAAGGCT -ACGGAACATAGGGCTAAGTCAACC -ACGGAACATAGGGCTAAGTGTTCC -ACGGAACATAGGGCTAAGATTCCC -ACGGAACATAGGGCTAAGTTCTCG -ACGGAACATAGGGCTAAGTAGACG -ACGGAACATAGGGCTAAGGTAACG -ACGGAACATAGGGCTAAGACTTCG -ACGGAACATAGGGCTAAGTACGCA -ACGGAACATAGGGCTAAGCTTGCA -ACGGAACATAGGGCTAAGCGAACA -ACGGAACATAGGGCTAAGCAGTCA -ACGGAACATAGGGCTAAGGATCCA -ACGGAACATAGGGCTAAGACGACA -ACGGAACATAGGGCTAAGAGCTCA -ACGGAACATAGGGCTAAGTCACGT -ACGGAACATAGGGCTAAGCGTAGT -ACGGAACATAGGGCTAAGGTCAGT -ACGGAACATAGGGCTAAGGAAGGT -ACGGAACATAGGGCTAAGAACCGT -ACGGAACATAGGGCTAAGTTGTGC -ACGGAACATAGGGCTAAGCTAAGC -ACGGAACATAGGGCTAAGACTAGC -ACGGAACATAGGGCTAAGAGATGC -ACGGAACATAGGGCTAAGTGAAGG -ACGGAACATAGGGCTAAGCAATGG -ACGGAACATAGGGCTAAGATGAGG -ACGGAACATAGGGCTAAGAATGGG -ACGGAACATAGGGCTAAGTCCTGA -ACGGAACATAGGGCTAAGTAGCGA -ACGGAACATAGGGCTAAGCACAGA -ACGGAACATAGGGCTAAGGCAAGA -ACGGAACATAGGGCTAAGGGTTGA -ACGGAACATAGGGCTAAGTCCGAT -ACGGAACATAGGGCTAAGTGGCAT -ACGGAACATAGGGCTAAGCGAGAT -ACGGAACATAGGGCTAAGTACCAC -ACGGAACATAGGGCTAAGCAGAAC -ACGGAACATAGGGCTAAGGTCTAC -ACGGAACATAGGGCTAAGACGTAC -ACGGAACATAGGGCTAAGAGTGAC -ACGGAACATAGGGCTAAGCTGTAG -ACGGAACATAGGGCTAAGCCTAAG -ACGGAACATAGGGCTAAGGTTCAG -ACGGAACATAGGGCTAAGGCATAG -ACGGAACATAGGGCTAAGGACAAG -ACGGAACATAGGGCTAAGAAGCAG -ACGGAACATAGGGCTAAGCGTCAA -ACGGAACATAGGGCTAAGGCTGAA -ACGGAACATAGGGCTAAGAGTACG -ACGGAACATAGGGCTAAGATCCGA -ACGGAACATAGGGCTAAGATGGGA -ACGGAACATAGGGCTAAGGTGCAA -ACGGAACATAGGGCTAAGGAGGAA -ACGGAACATAGGGCTAAGCAGGTA -ACGGAACATAGGGCTAAGGACTCT -ACGGAACATAGGGCTAAGAGTCCT -ACGGAACATAGGGCTAAGTAAGCC -ACGGAACATAGGGCTAAGATAGCC -ACGGAACATAGGGCTAAGTAACCG -ACGGAACATAGGGCTAAGATGCCA -ACGGAACATAGGACCTCAGGAAAC -ACGGAACATAGGACCTCAAACACC -ACGGAACATAGGACCTCAATCGAG -ACGGAACATAGGACCTCACTCCTT -ACGGAACATAGGACCTCACCTGTT -ACGGAACATAGGACCTCACGGTTT -ACGGAACATAGGACCTCAGTGGTT -ACGGAACATAGGACCTCAGCCTTT -ACGGAACATAGGACCTCAGGTCTT -ACGGAACATAGGACCTCAACGCTT -ACGGAACATAGGACCTCAAGCGTT -ACGGAACATAGGACCTCATTCGTC -ACGGAACATAGGACCTCATCTCTC -ACGGAACATAGGACCTCATGGATC -ACGGAACATAGGACCTCACACTTC -ACGGAACATAGGACCTCAGTACTC -ACGGAACATAGGACCTCAGATGTC -ACGGAACATAGGACCTCAACAGTC -ACGGAACATAGGACCTCATTGCTG -ACGGAACATAGGACCTCATCCATG -ACGGAACATAGGACCTCATGTGTG -ACGGAACATAGGACCTCACTAGTG -ACGGAACATAGGACCTCACATCTG -ACGGAACATAGGACCTCAGAGTTG -ACGGAACATAGGACCTCAAGACTG -ACGGAACATAGGACCTCATCGGTA -ACGGAACATAGGACCTCATGCCTA -ACGGAACATAGGACCTCACCACTA -ACGGAACATAGGACCTCAGGAGTA -ACGGAACATAGGACCTCATCGTCT -ACGGAACATAGGACCTCATGCACT -ACGGAACATAGGACCTCACTGACT -ACGGAACATAGGACCTCACAACCT -ACGGAACATAGGACCTCAGCTACT -ACGGAACATAGGACCTCAGGATCT -ACGGAACATAGGACCTCAAAGGCT -ACGGAACATAGGACCTCATCAACC -ACGGAACATAGGACCTCATGTTCC -ACGGAACATAGGACCTCAATTCCC -ACGGAACATAGGACCTCATTCTCG -ACGGAACATAGGACCTCATAGACG -ACGGAACATAGGACCTCAGTAACG -ACGGAACATAGGACCTCAACTTCG -ACGGAACATAGGACCTCATACGCA -ACGGAACATAGGACCTCACTTGCA -ACGGAACATAGGACCTCACGAACA -ACGGAACATAGGACCTCACAGTCA -ACGGAACATAGGACCTCAGATCCA -ACGGAACATAGGACCTCAACGACA -ACGGAACATAGGACCTCAAGCTCA -ACGGAACATAGGACCTCATCACGT -ACGGAACATAGGACCTCACGTAGT -ACGGAACATAGGACCTCAGTCAGT -ACGGAACATAGGACCTCAGAAGGT -ACGGAACATAGGACCTCAAACCGT -ACGGAACATAGGACCTCATTGTGC -ACGGAACATAGGACCTCACTAAGC -ACGGAACATAGGACCTCAACTAGC -ACGGAACATAGGACCTCAAGATGC -ACGGAACATAGGACCTCATGAAGG -ACGGAACATAGGACCTCACAATGG -ACGGAACATAGGACCTCAATGAGG -ACGGAACATAGGACCTCAAATGGG -ACGGAACATAGGACCTCATCCTGA -ACGGAACATAGGACCTCATAGCGA -ACGGAACATAGGACCTCACACAGA -ACGGAACATAGGACCTCAGCAAGA -ACGGAACATAGGACCTCAGGTTGA -ACGGAACATAGGACCTCATCCGAT -ACGGAACATAGGACCTCATGGCAT -ACGGAACATAGGACCTCACGAGAT -ACGGAACATAGGACCTCATACCAC -ACGGAACATAGGACCTCACAGAAC -ACGGAACATAGGACCTCAGTCTAC -ACGGAACATAGGACCTCAACGTAC -ACGGAACATAGGACCTCAAGTGAC -ACGGAACATAGGACCTCACTGTAG -ACGGAACATAGGACCTCACCTAAG -ACGGAACATAGGACCTCAGTTCAG -ACGGAACATAGGACCTCAGCATAG -ACGGAACATAGGACCTCAGACAAG -ACGGAACATAGGACCTCAAAGCAG -ACGGAACATAGGACCTCACGTCAA -ACGGAACATAGGACCTCAGCTGAA -ACGGAACATAGGACCTCAAGTACG -ACGGAACATAGGACCTCAATCCGA -ACGGAACATAGGACCTCAATGGGA -ACGGAACATAGGACCTCAGTGCAA -ACGGAACATAGGACCTCAGAGGAA -ACGGAACATAGGACCTCACAGGTA -ACGGAACATAGGACCTCAGACTCT -ACGGAACATAGGACCTCAAGTCCT -ACGGAACATAGGACCTCATAAGCC -ACGGAACATAGGACCTCAATAGCC -ACGGAACATAGGACCTCATAACCG -ACGGAACATAGGACCTCAATGCCA -ACGGAACATAGGTCCTGTGGAAAC -ACGGAACATAGGTCCTGTAACACC -ACGGAACATAGGTCCTGTATCGAG -ACGGAACATAGGTCCTGTCTCCTT -ACGGAACATAGGTCCTGTCCTGTT -ACGGAACATAGGTCCTGTCGGTTT -ACGGAACATAGGTCCTGTGTGGTT -ACGGAACATAGGTCCTGTGCCTTT -ACGGAACATAGGTCCTGTGGTCTT -ACGGAACATAGGTCCTGTACGCTT -ACGGAACATAGGTCCTGTAGCGTT -ACGGAACATAGGTCCTGTTTCGTC -ACGGAACATAGGTCCTGTTCTCTC -ACGGAACATAGGTCCTGTTGGATC -ACGGAACATAGGTCCTGTCACTTC -ACGGAACATAGGTCCTGTGTACTC -ACGGAACATAGGTCCTGTGATGTC -ACGGAACATAGGTCCTGTACAGTC -ACGGAACATAGGTCCTGTTTGCTG -ACGGAACATAGGTCCTGTTCCATG -ACGGAACATAGGTCCTGTTGTGTG -ACGGAACATAGGTCCTGTCTAGTG -ACGGAACATAGGTCCTGTCATCTG -ACGGAACATAGGTCCTGTGAGTTG -ACGGAACATAGGTCCTGTAGACTG -ACGGAACATAGGTCCTGTTCGGTA -ACGGAACATAGGTCCTGTTGCCTA -ACGGAACATAGGTCCTGTCCACTA -ACGGAACATAGGTCCTGTGGAGTA -ACGGAACATAGGTCCTGTTCGTCT -ACGGAACATAGGTCCTGTTGCACT -ACGGAACATAGGTCCTGTCTGACT -ACGGAACATAGGTCCTGTCAACCT -ACGGAACATAGGTCCTGTGCTACT -ACGGAACATAGGTCCTGTGGATCT -ACGGAACATAGGTCCTGTAAGGCT -ACGGAACATAGGTCCTGTTCAACC -ACGGAACATAGGTCCTGTTGTTCC -ACGGAACATAGGTCCTGTATTCCC -ACGGAACATAGGTCCTGTTTCTCG -ACGGAACATAGGTCCTGTTAGACG -ACGGAACATAGGTCCTGTGTAACG -ACGGAACATAGGTCCTGTACTTCG -ACGGAACATAGGTCCTGTTACGCA -ACGGAACATAGGTCCTGTCTTGCA -ACGGAACATAGGTCCTGTCGAACA -ACGGAACATAGGTCCTGTCAGTCA -ACGGAACATAGGTCCTGTGATCCA -ACGGAACATAGGTCCTGTACGACA -ACGGAACATAGGTCCTGTAGCTCA -ACGGAACATAGGTCCTGTTCACGT -ACGGAACATAGGTCCTGTCGTAGT -ACGGAACATAGGTCCTGTGTCAGT -ACGGAACATAGGTCCTGTGAAGGT -ACGGAACATAGGTCCTGTAACCGT -ACGGAACATAGGTCCTGTTTGTGC -ACGGAACATAGGTCCTGTCTAAGC -ACGGAACATAGGTCCTGTACTAGC -ACGGAACATAGGTCCTGTAGATGC -ACGGAACATAGGTCCTGTTGAAGG -ACGGAACATAGGTCCTGTCAATGG -ACGGAACATAGGTCCTGTATGAGG -ACGGAACATAGGTCCTGTAATGGG -ACGGAACATAGGTCCTGTTCCTGA -ACGGAACATAGGTCCTGTTAGCGA -ACGGAACATAGGTCCTGTCACAGA -ACGGAACATAGGTCCTGTGCAAGA -ACGGAACATAGGTCCTGTGGTTGA -ACGGAACATAGGTCCTGTTCCGAT -ACGGAACATAGGTCCTGTTGGCAT -ACGGAACATAGGTCCTGTCGAGAT -ACGGAACATAGGTCCTGTTACCAC -ACGGAACATAGGTCCTGTCAGAAC -ACGGAACATAGGTCCTGTGTCTAC -ACGGAACATAGGTCCTGTACGTAC -ACGGAACATAGGTCCTGTAGTGAC -ACGGAACATAGGTCCTGTCTGTAG -ACGGAACATAGGTCCTGTCCTAAG -ACGGAACATAGGTCCTGTGTTCAG -ACGGAACATAGGTCCTGTGCATAG -ACGGAACATAGGTCCTGTGACAAG -ACGGAACATAGGTCCTGTAAGCAG -ACGGAACATAGGTCCTGTCGTCAA -ACGGAACATAGGTCCTGTGCTGAA -ACGGAACATAGGTCCTGTAGTACG -ACGGAACATAGGTCCTGTATCCGA -ACGGAACATAGGTCCTGTATGGGA -ACGGAACATAGGTCCTGTGTGCAA -ACGGAACATAGGTCCTGTGAGGAA -ACGGAACATAGGTCCTGTCAGGTA -ACGGAACATAGGTCCTGTGACTCT -ACGGAACATAGGTCCTGTAGTCCT -ACGGAACATAGGTCCTGTTAAGCC -ACGGAACATAGGTCCTGTATAGCC -ACGGAACATAGGTCCTGTTAACCG -ACGGAACATAGGTCCTGTATGCCA -ACGGAACATAGGCCCATTGGAAAC -ACGGAACATAGGCCCATTAACACC -ACGGAACATAGGCCCATTATCGAG -ACGGAACATAGGCCCATTCTCCTT -ACGGAACATAGGCCCATTCCTGTT -ACGGAACATAGGCCCATTCGGTTT -ACGGAACATAGGCCCATTGTGGTT -ACGGAACATAGGCCCATTGCCTTT -ACGGAACATAGGCCCATTGGTCTT -ACGGAACATAGGCCCATTACGCTT -ACGGAACATAGGCCCATTAGCGTT -ACGGAACATAGGCCCATTTTCGTC -ACGGAACATAGGCCCATTTCTCTC -ACGGAACATAGGCCCATTTGGATC -ACGGAACATAGGCCCATTCACTTC -ACGGAACATAGGCCCATTGTACTC -ACGGAACATAGGCCCATTGATGTC -ACGGAACATAGGCCCATTACAGTC -ACGGAACATAGGCCCATTTTGCTG -ACGGAACATAGGCCCATTTCCATG -ACGGAACATAGGCCCATTTGTGTG -ACGGAACATAGGCCCATTCTAGTG -ACGGAACATAGGCCCATTCATCTG -ACGGAACATAGGCCCATTGAGTTG -ACGGAACATAGGCCCATTAGACTG -ACGGAACATAGGCCCATTTCGGTA -ACGGAACATAGGCCCATTTGCCTA -ACGGAACATAGGCCCATTCCACTA -ACGGAACATAGGCCCATTGGAGTA -ACGGAACATAGGCCCATTTCGTCT -ACGGAACATAGGCCCATTTGCACT -ACGGAACATAGGCCCATTCTGACT -ACGGAACATAGGCCCATTCAACCT -ACGGAACATAGGCCCATTGCTACT -ACGGAACATAGGCCCATTGGATCT -ACGGAACATAGGCCCATTAAGGCT -ACGGAACATAGGCCCATTTCAACC -ACGGAACATAGGCCCATTTGTTCC -ACGGAACATAGGCCCATTATTCCC -ACGGAACATAGGCCCATTTTCTCG -ACGGAACATAGGCCCATTTAGACG -ACGGAACATAGGCCCATTGTAACG -ACGGAACATAGGCCCATTACTTCG -ACGGAACATAGGCCCATTTACGCA -ACGGAACATAGGCCCATTCTTGCA -ACGGAACATAGGCCCATTCGAACA -ACGGAACATAGGCCCATTCAGTCA -ACGGAACATAGGCCCATTGATCCA -ACGGAACATAGGCCCATTACGACA -ACGGAACATAGGCCCATTAGCTCA -ACGGAACATAGGCCCATTTCACGT -ACGGAACATAGGCCCATTCGTAGT -ACGGAACATAGGCCCATTGTCAGT -ACGGAACATAGGCCCATTGAAGGT -ACGGAACATAGGCCCATTAACCGT -ACGGAACATAGGCCCATTTTGTGC -ACGGAACATAGGCCCATTCTAAGC -ACGGAACATAGGCCCATTACTAGC -ACGGAACATAGGCCCATTAGATGC -ACGGAACATAGGCCCATTTGAAGG -ACGGAACATAGGCCCATTCAATGG -ACGGAACATAGGCCCATTATGAGG -ACGGAACATAGGCCCATTAATGGG -ACGGAACATAGGCCCATTTCCTGA -ACGGAACATAGGCCCATTTAGCGA -ACGGAACATAGGCCCATTCACAGA -ACGGAACATAGGCCCATTGCAAGA -ACGGAACATAGGCCCATTGGTTGA -ACGGAACATAGGCCCATTTCCGAT -ACGGAACATAGGCCCATTTGGCAT -ACGGAACATAGGCCCATTCGAGAT -ACGGAACATAGGCCCATTTACCAC -ACGGAACATAGGCCCATTCAGAAC -ACGGAACATAGGCCCATTGTCTAC -ACGGAACATAGGCCCATTACGTAC -ACGGAACATAGGCCCATTAGTGAC -ACGGAACATAGGCCCATTCTGTAG -ACGGAACATAGGCCCATTCCTAAG -ACGGAACATAGGCCCATTGTTCAG -ACGGAACATAGGCCCATTGCATAG -ACGGAACATAGGCCCATTGACAAG -ACGGAACATAGGCCCATTAAGCAG -ACGGAACATAGGCCCATTCGTCAA -ACGGAACATAGGCCCATTGCTGAA -ACGGAACATAGGCCCATTAGTACG -ACGGAACATAGGCCCATTATCCGA -ACGGAACATAGGCCCATTATGGGA -ACGGAACATAGGCCCATTGTGCAA -ACGGAACATAGGCCCATTGAGGAA -ACGGAACATAGGCCCATTCAGGTA -ACGGAACATAGGCCCATTGACTCT -ACGGAACATAGGCCCATTAGTCCT -ACGGAACATAGGCCCATTTAAGCC -ACGGAACATAGGCCCATTATAGCC -ACGGAACATAGGCCCATTTAACCG -ACGGAACATAGGCCCATTATGCCA -ACGGAACATAGGTCGTTCGGAAAC -ACGGAACATAGGTCGTTCAACACC -ACGGAACATAGGTCGTTCATCGAG -ACGGAACATAGGTCGTTCCTCCTT -ACGGAACATAGGTCGTTCCCTGTT -ACGGAACATAGGTCGTTCCGGTTT -ACGGAACATAGGTCGTTCGTGGTT -ACGGAACATAGGTCGTTCGCCTTT -ACGGAACATAGGTCGTTCGGTCTT -ACGGAACATAGGTCGTTCACGCTT -ACGGAACATAGGTCGTTCAGCGTT -ACGGAACATAGGTCGTTCTTCGTC -ACGGAACATAGGTCGTTCTCTCTC -ACGGAACATAGGTCGTTCTGGATC -ACGGAACATAGGTCGTTCCACTTC -ACGGAACATAGGTCGTTCGTACTC -ACGGAACATAGGTCGTTCGATGTC -ACGGAACATAGGTCGTTCACAGTC -ACGGAACATAGGTCGTTCTTGCTG -ACGGAACATAGGTCGTTCTCCATG -ACGGAACATAGGTCGTTCTGTGTG -ACGGAACATAGGTCGTTCCTAGTG -ACGGAACATAGGTCGTTCCATCTG -ACGGAACATAGGTCGTTCGAGTTG -ACGGAACATAGGTCGTTCAGACTG -ACGGAACATAGGTCGTTCTCGGTA -ACGGAACATAGGTCGTTCTGCCTA -ACGGAACATAGGTCGTTCCCACTA -ACGGAACATAGGTCGTTCGGAGTA -ACGGAACATAGGTCGTTCTCGTCT -ACGGAACATAGGTCGTTCTGCACT -ACGGAACATAGGTCGTTCCTGACT -ACGGAACATAGGTCGTTCCAACCT -ACGGAACATAGGTCGTTCGCTACT -ACGGAACATAGGTCGTTCGGATCT -ACGGAACATAGGTCGTTCAAGGCT -ACGGAACATAGGTCGTTCTCAACC -ACGGAACATAGGTCGTTCTGTTCC -ACGGAACATAGGTCGTTCATTCCC -ACGGAACATAGGTCGTTCTTCTCG -ACGGAACATAGGTCGTTCTAGACG -ACGGAACATAGGTCGTTCGTAACG -ACGGAACATAGGTCGTTCACTTCG -ACGGAACATAGGTCGTTCTACGCA -ACGGAACATAGGTCGTTCCTTGCA -ACGGAACATAGGTCGTTCCGAACA -ACGGAACATAGGTCGTTCCAGTCA -ACGGAACATAGGTCGTTCGATCCA -ACGGAACATAGGTCGTTCACGACA -ACGGAACATAGGTCGTTCAGCTCA -ACGGAACATAGGTCGTTCTCACGT -ACGGAACATAGGTCGTTCCGTAGT -ACGGAACATAGGTCGTTCGTCAGT -ACGGAACATAGGTCGTTCGAAGGT -ACGGAACATAGGTCGTTCAACCGT -ACGGAACATAGGTCGTTCTTGTGC -ACGGAACATAGGTCGTTCCTAAGC -ACGGAACATAGGTCGTTCACTAGC -ACGGAACATAGGTCGTTCAGATGC -ACGGAACATAGGTCGTTCTGAAGG -ACGGAACATAGGTCGTTCCAATGG -ACGGAACATAGGTCGTTCATGAGG -ACGGAACATAGGTCGTTCAATGGG -ACGGAACATAGGTCGTTCTCCTGA -ACGGAACATAGGTCGTTCTAGCGA -ACGGAACATAGGTCGTTCCACAGA -ACGGAACATAGGTCGTTCGCAAGA -ACGGAACATAGGTCGTTCGGTTGA -ACGGAACATAGGTCGTTCTCCGAT -ACGGAACATAGGTCGTTCTGGCAT -ACGGAACATAGGTCGTTCCGAGAT -ACGGAACATAGGTCGTTCTACCAC -ACGGAACATAGGTCGTTCCAGAAC -ACGGAACATAGGTCGTTCGTCTAC -ACGGAACATAGGTCGTTCACGTAC -ACGGAACATAGGTCGTTCAGTGAC -ACGGAACATAGGTCGTTCCTGTAG -ACGGAACATAGGTCGTTCCCTAAG -ACGGAACATAGGTCGTTCGTTCAG -ACGGAACATAGGTCGTTCGCATAG -ACGGAACATAGGTCGTTCGACAAG -ACGGAACATAGGTCGTTCAAGCAG -ACGGAACATAGGTCGTTCCGTCAA -ACGGAACATAGGTCGTTCGCTGAA -ACGGAACATAGGTCGTTCAGTACG -ACGGAACATAGGTCGTTCATCCGA -ACGGAACATAGGTCGTTCATGGGA -ACGGAACATAGGTCGTTCGTGCAA -ACGGAACATAGGTCGTTCGAGGAA -ACGGAACATAGGTCGTTCCAGGTA -ACGGAACATAGGTCGTTCGACTCT -ACGGAACATAGGTCGTTCAGTCCT -ACGGAACATAGGTCGTTCTAAGCC -ACGGAACATAGGTCGTTCATAGCC -ACGGAACATAGGTCGTTCTAACCG -ACGGAACATAGGTCGTTCATGCCA -ACGGAACATAGGACGTAGGGAAAC -ACGGAACATAGGACGTAGAACACC -ACGGAACATAGGACGTAGATCGAG -ACGGAACATAGGACGTAGCTCCTT -ACGGAACATAGGACGTAGCCTGTT -ACGGAACATAGGACGTAGCGGTTT -ACGGAACATAGGACGTAGGTGGTT -ACGGAACATAGGACGTAGGCCTTT -ACGGAACATAGGACGTAGGGTCTT -ACGGAACATAGGACGTAGACGCTT -ACGGAACATAGGACGTAGAGCGTT -ACGGAACATAGGACGTAGTTCGTC -ACGGAACATAGGACGTAGTCTCTC -ACGGAACATAGGACGTAGTGGATC -ACGGAACATAGGACGTAGCACTTC -ACGGAACATAGGACGTAGGTACTC -ACGGAACATAGGACGTAGGATGTC -ACGGAACATAGGACGTAGACAGTC -ACGGAACATAGGACGTAGTTGCTG -ACGGAACATAGGACGTAGTCCATG -ACGGAACATAGGACGTAGTGTGTG -ACGGAACATAGGACGTAGCTAGTG -ACGGAACATAGGACGTAGCATCTG -ACGGAACATAGGACGTAGGAGTTG -ACGGAACATAGGACGTAGAGACTG -ACGGAACATAGGACGTAGTCGGTA -ACGGAACATAGGACGTAGTGCCTA -ACGGAACATAGGACGTAGCCACTA -ACGGAACATAGGACGTAGGGAGTA -ACGGAACATAGGACGTAGTCGTCT -ACGGAACATAGGACGTAGTGCACT -ACGGAACATAGGACGTAGCTGACT -ACGGAACATAGGACGTAGCAACCT -ACGGAACATAGGACGTAGGCTACT -ACGGAACATAGGACGTAGGGATCT -ACGGAACATAGGACGTAGAAGGCT -ACGGAACATAGGACGTAGTCAACC -ACGGAACATAGGACGTAGTGTTCC -ACGGAACATAGGACGTAGATTCCC -ACGGAACATAGGACGTAGTTCTCG -ACGGAACATAGGACGTAGTAGACG -ACGGAACATAGGACGTAGGTAACG -ACGGAACATAGGACGTAGACTTCG -ACGGAACATAGGACGTAGTACGCA -ACGGAACATAGGACGTAGCTTGCA -ACGGAACATAGGACGTAGCGAACA -ACGGAACATAGGACGTAGCAGTCA -ACGGAACATAGGACGTAGGATCCA -ACGGAACATAGGACGTAGACGACA -ACGGAACATAGGACGTAGAGCTCA -ACGGAACATAGGACGTAGTCACGT -ACGGAACATAGGACGTAGCGTAGT -ACGGAACATAGGACGTAGGTCAGT -ACGGAACATAGGACGTAGGAAGGT -ACGGAACATAGGACGTAGAACCGT -ACGGAACATAGGACGTAGTTGTGC -ACGGAACATAGGACGTAGCTAAGC -ACGGAACATAGGACGTAGACTAGC -ACGGAACATAGGACGTAGAGATGC -ACGGAACATAGGACGTAGTGAAGG -ACGGAACATAGGACGTAGCAATGG -ACGGAACATAGGACGTAGATGAGG -ACGGAACATAGGACGTAGAATGGG -ACGGAACATAGGACGTAGTCCTGA -ACGGAACATAGGACGTAGTAGCGA -ACGGAACATAGGACGTAGCACAGA -ACGGAACATAGGACGTAGGCAAGA -ACGGAACATAGGACGTAGGGTTGA -ACGGAACATAGGACGTAGTCCGAT -ACGGAACATAGGACGTAGTGGCAT -ACGGAACATAGGACGTAGCGAGAT -ACGGAACATAGGACGTAGTACCAC -ACGGAACATAGGACGTAGCAGAAC -ACGGAACATAGGACGTAGGTCTAC -ACGGAACATAGGACGTAGACGTAC -ACGGAACATAGGACGTAGAGTGAC -ACGGAACATAGGACGTAGCTGTAG -ACGGAACATAGGACGTAGCCTAAG -ACGGAACATAGGACGTAGGTTCAG -ACGGAACATAGGACGTAGGCATAG -ACGGAACATAGGACGTAGGACAAG -ACGGAACATAGGACGTAGAAGCAG -ACGGAACATAGGACGTAGCGTCAA -ACGGAACATAGGACGTAGGCTGAA -ACGGAACATAGGACGTAGAGTACG -ACGGAACATAGGACGTAGATCCGA -ACGGAACATAGGACGTAGATGGGA -ACGGAACATAGGACGTAGGTGCAA -ACGGAACATAGGACGTAGGAGGAA -ACGGAACATAGGACGTAGCAGGTA -ACGGAACATAGGACGTAGGACTCT -ACGGAACATAGGACGTAGAGTCCT -ACGGAACATAGGACGTAGTAAGCC -ACGGAACATAGGACGTAGATAGCC -ACGGAACATAGGACGTAGTAACCG -ACGGAACATAGGACGTAGATGCCA -ACGGAACATAGGACGGTAGGAAAC -ACGGAACATAGGACGGTAAACACC -ACGGAACATAGGACGGTAATCGAG -ACGGAACATAGGACGGTACTCCTT -ACGGAACATAGGACGGTACCTGTT -ACGGAACATAGGACGGTACGGTTT -ACGGAACATAGGACGGTAGTGGTT -ACGGAACATAGGACGGTAGCCTTT -ACGGAACATAGGACGGTAGGTCTT -ACGGAACATAGGACGGTAACGCTT -ACGGAACATAGGACGGTAAGCGTT -ACGGAACATAGGACGGTATTCGTC -ACGGAACATAGGACGGTATCTCTC -ACGGAACATAGGACGGTATGGATC -ACGGAACATAGGACGGTACACTTC -ACGGAACATAGGACGGTAGTACTC -ACGGAACATAGGACGGTAGATGTC -ACGGAACATAGGACGGTAACAGTC -ACGGAACATAGGACGGTATTGCTG -ACGGAACATAGGACGGTATCCATG -ACGGAACATAGGACGGTATGTGTG -ACGGAACATAGGACGGTACTAGTG -ACGGAACATAGGACGGTACATCTG -ACGGAACATAGGACGGTAGAGTTG -ACGGAACATAGGACGGTAAGACTG -ACGGAACATAGGACGGTATCGGTA -ACGGAACATAGGACGGTATGCCTA -ACGGAACATAGGACGGTACCACTA -ACGGAACATAGGACGGTAGGAGTA -ACGGAACATAGGACGGTATCGTCT -ACGGAACATAGGACGGTATGCACT -ACGGAACATAGGACGGTACTGACT -ACGGAACATAGGACGGTACAACCT -ACGGAACATAGGACGGTAGCTACT -ACGGAACATAGGACGGTAGGATCT -ACGGAACATAGGACGGTAAAGGCT -ACGGAACATAGGACGGTATCAACC -ACGGAACATAGGACGGTATGTTCC -ACGGAACATAGGACGGTAATTCCC -ACGGAACATAGGACGGTATTCTCG -ACGGAACATAGGACGGTATAGACG -ACGGAACATAGGACGGTAGTAACG -ACGGAACATAGGACGGTAACTTCG -ACGGAACATAGGACGGTATACGCA -ACGGAACATAGGACGGTACTTGCA -ACGGAACATAGGACGGTACGAACA -ACGGAACATAGGACGGTACAGTCA -ACGGAACATAGGACGGTAGATCCA -ACGGAACATAGGACGGTAACGACA -ACGGAACATAGGACGGTAAGCTCA -ACGGAACATAGGACGGTATCACGT -ACGGAACATAGGACGGTACGTAGT -ACGGAACATAGGACGGTAGTCAGT -ACGGAACATAGGACGGTAGAAGGT -ACGGAACATAGGACGGTAAACCGT -ACGGAACATAGGACGGTATTGTGC -ACGGAACATAGGACGGTACTAAGC -ACGGAACATAGGACGGTAACTAGC -ACGGAACATAGGACGGTAAGATGC -ACGGAACATAGGACGGTATGAAGG -ACGGAACATAGGACGGTACAATGG -ACGGAACATAGGACGGTAATGAGG -ACGGAACATAGGACGGTAAATGGG -ACGGAACATAGGACGGTATCCTGA -ACGGAACATAGGACGGTATAGCGA -ACGGAACATAGGACGGTACACAGA -ACGGAACATAGGACGGTAGCAAGA -ACGGAACATAGGACGGTAGGTTGA -ACGGAACATAGGACGGTATCCGAT -ACGGAACATAGGACGGTATGGCAT -ACGGAACATAGGACGGTACGAGAT -ACGGAACATAGGACGGTATACCAC -ACGGAACATAGGACGGTACAGAAC -ACGGAACATAGGACGGTAGTCTAC -ACGGAACATAGGACGGTAACGTAC -ACGGAACATAGGACGGTAAGTGAC -ACGGAACATAGGACGGTACTGTAG -ACGGAACATAGGACGGTACCTAAG -ACGGAACATAGGACGGTAGTTCAG -ACGGAACATAGGACGGTAGCATAG -ACGGAACATAGGACGGTAGACAAG -ACGGAACATAGGACGGTAAAGCAG -ACGGAACATAGGACGGTACGTCAA -ACGGAACATAGGACGGTAGCTGAA -ACGGAACATAGGACGGTAAGTACG -ACGGAACATAGGACGGTAATCCGA -ACGGAACATAGGACGGTAATGGGA -ACGGAACATAGGACGGTAGTGCAA -ACGGAACATAGGACGGTAGAGGAA -ACGGAACATAGGACGGTACAGGTA -ACGGAACATAGGACGGTAGACTCT -ACGGAACATAGGACGGTAAGTCCT -ACGGAACATAGGACGGTATAAGCC -ACGGAACATAGGACGGTAATAGCC -ACGGAACATAGGACGGTATAACCG -ACGGAACATAGGACGGTAATGCCA -ACGGAACATAGGTCGACTGGAAAC -ACGGAACATAGGTCGACTAACACC -ACGGAACATAGGTCGACTATCGAG -ACGGAACATAGGTCGACTCTCCTT -ACGGAACATAGGTCGACTCCTGTT -ACGGAACATAGGTCGACTCGGTTT -ACGGAACATAGGTCGACTGTGGTT -ACGGAACATAGGTCGACTGCCTTT -ACGGAACATAGGTCGACTGGTCTT -ACGGAACATAGGTCGACTACGCTT -ACGGAACATAGGTCGACTAGCGTT -ACGGAACATAGGTCGACTTTCGTC -ACGGAACATAGGTCGACTTCTCTC -ACGGAACATAGGTCGACTTGGATC -ACGGAACATAGGTCGACTCACTTC -ACGGAACATAGGTCGACTGTACTC -ACGGAACATAGGTCGACTGATGTC -ACGGAACATAGGTCGACTACAGTC -ACGGAACATAGGTCGACTTTGCTG -ACGGAACATAGGTCGACTTCCATG -ACGGAACATAGGTCGACTTGTGTG -ACGGAACATAGGTCGACTCTAGTG -ACGGAACATAGGTCGACTCATCTG -ACGGAACATAGGTCGACTGAGTTG -ACGGAACATAGGTCGACTAGACTG -ACGGAACATAGGTCGACTTCGGTA -ACGGAACATAGGTCGACTTGCCTA -ACGGAACATAGGTCGACTCCACTA -ACGGAACATAGGTCGACTGGAGTA -ACGGAACATAGGTCGACTTCGTCT -ACGGAACATAGGTCGACTTGCACT -ACGGAACATAGGTCGACTCTGACT -ACGGAACATAGGTCGACTCAACCT -ACGGAACATAGGTCGACTGCTACT -ACGGAACATAGGTCGACTGGATCT -ACGGAACATAGGTCGACTAAGGCT -ACGGAACATAGGTCGACTTCAACC -ACGGAACATAGGTCGACTTGTTCC -ACGGAACATAGGTCGACTATTCCC -ACGGAACATAGGTCGACTTTCTCG -ACGGAACATAGGTCGACTTAGACG -ACGGAACATAGGTCGACTGTAACG -ACGGAACATAGGTCGACTACTTCG -ACGGAACATAGGTCGACTTACGCA -ACGGAACATAGGTCGACTCTTGCA -ACGGAACATAGGTCGACTCGAACA -ACGGAACATAGGTCGACTCAGTCA -ACGGAACATAGGTCGACTGATCCA -ACGGAACATAGGTCGACTACGACA -ACGGAACATAGGTCGACTAGCTCA -ACGGAACATAGGTCGACTTCACGT -ACGGAACATAGGTCGACTCGTAGT -ACGGAACATAGGTCGACTGTCAGT -ACGGAACATAGGTCGACTGAAGGT -ACGGAACATAGGTCGACTAACCGT -ACGGAACATAGGTCGACTTTGTGC -ACGGAACATAGGTCGACTCTAAGC -ACGGAACATAGGTCGACTACTAGC -ACGGAACATAGGTCGACTAGATGC -ACGGAACATAGGTCGACTTGAAGG -ACGGAACATAGGTCGACTCAATGG -ACGGAACATAGGTCGACTATGAGG -ACGGAACATAGGTCGACTAATGGG -ACGGAACATAGGTCGACTTCCTGA -ACGGAACATAGGTCGACTTAGCGA -ACGGAACATAGGTCGACTCACAGA -ACGGAACATAGGTCGACTGCAAGA -ACGGAACATAGGTCGACTGGTTGA -ACGGAACATAGGTCGACTTCCGAT -ACGGAACATAGGTCGACTTGGCAT -ACGGAACATAGGTCGACTCGAGAT -ACGGAACATAGGTCGACTTACCAC -ACGGAACATAGGTCGACTCAGAAC -ACGGAACATAGGTCGACTGTCTAC -ACGGAACATAGGTCGACTACGTAC -ACGGAACATAGGTCGACTAGTGAC -ACGGAACATAGGTCGACTCTGTAG -ACGGAACATAGGTCGACTCCTAAG -ACGGAACATAGGTCGACTGTTCAG -ACGGAACATAGGTCGACTGCATAG -ACGGAACATAGGTCGACTGACAAG -ACGGAACATAGGTCGACTAAGCAG -ACGGAACATAGGTCGACTCGTCAA -ACGGAACATAGGTCGACTGCTGAA -ACGGAACATAGGTCGACTAGTACG -ACGGAACATAGGTCGACTATCCGA -ACGGAACATAGGTCGACTATGGGA -ACGGAACATAGGTCGACTGTGCAA -ACGGAACATAGGTCGACTGAGGAA -ACGGAACATAGGTCGACTCAGGTA -ACGGAACATAGGTCGACTGACTCT -ACGGAACATAGGTCGACTAGTCCT -ACGGAACATAGGTCGACTTAAGCC -ACGGAACATAGGTCGACTATAGCC -ACGGAACATAGGTCGACTTAACCG -ACGGAACATAGGTCGACTATGCCA -ACGGAACATAGGGCATACGGAAAC -ACGGAACATAGGGCATACAACACC -ACGGAACATAGGGCATACATCGAG -ACGGAACATAGGGCATACCTCCTT -ACGGAACATAGGGCATACCCTGTT -ACGGAACATAGGGCATACCGGTTT -ACGGAACATAGGGCATACGTGGTT -ACGGAACATAGGGCATACGCCTTT -ACGGAACATAGGGCATACGGTCTT -ACGGAACATAGGGCATACACGCTT -ACGGAACATAGGGCATACAGCGTT -ACGGAACATAGGGCATACTTCGTC -ACGGAACATAGGGCATACTCTCTC -ACGGAACATAGGGCATACTGGATC -ACGGAACATAGGGCATACCACTTC -ACGGAACATAGGGCATACGTACTC -ACGGAACATAGGGCATACGATGTC -ACGGAACATAGGGCATACACAGTC -ACGGAACATAGGGCATACTTGCTG -ACGGAACATAGGGCATACTCCATG -ACGGAACATAGGGCATACTGTGTG -ACGGAACATAGGGCATACCTAGTG -ACGGAACATAGGGCATACCATCTG -ACGGAACATAGGGCATACGAGTTG -ACGGAACATAGGGCATACAGACTG -ACGGAACATAGGGCATACTCGGTA -ACGGAACATAGGGCATACTGCCTA -ACGGAACATAGGGCATACCCACTA -ACGGAACATAGGGCATACGGAGTA -ACGGAACATAGGGCATACTCGTCT -ACGGAACATAGGGCATACTGCACT -ACGGAACATAGGGCATACCTGACT -ACGGAACATAGGGCATACCAACCT -ACGGAACATAGGGCATACGCTACT -ACGGAACATAGGGCATACGGATCT -ACGGAACATAGGGCATACAAGGCT -ACGGAACATAGGGCATACTCAACC -ACGGAACATAGGGCATACTGTTCC -ACGGAACATAGGGCATACATTCCC -ACGGAACATAGGGCATACTTCTCG -ACGGAACATAGGGCATACTAGACG -ACGGAACATAGGGCATACGTAACG -ACGGAACATAGGGCATACACTTCG -ACGGAACATAGGGCATACTACGCA -ACGGAACATAGGGCATACCTTGCA -ACGGAACATAGGGCATACCGAACA -ACGGAACATAGGGCATACCAGTCA -ACGGAACATAGGGCATACGATCCA -ACGGAACATAGGGCATACACGACA -ACGGAACATAGGGCATACAGCTCA -ACGGAACATAGGGCATACTCACGT -ACGGAACATAGGGCATACCGTAGT -ACGGAACATAGGGCATACGTCAGT -ACGGAACATAGGGCATACGAAGGT -ACGGAACATAGGGCATACAACCGT -ACGGAACATAGGGCATACTTGTGC -ACGGAACATAGGGCATACCTAAGC -ACGGAACATAGGGCATACACTAGC -ACGGAACATAGGGCATACAGATGC -ACGGAACATAGGGCATACTGAAGG -ACGGAACATAGGGCATACCAATGG -ACGGAACATAGGGCATACATGAGG -ACGGAACATAGGGCATACAATGGG -ACGGAACATAGGGCATACTCCTGA -ACGGAACATAGGGCATACTAGCGA -ACGGAACATAGGGCATACCACAGA -ACGGAACATAGGGCATACGCAAGA -ACGGAACATAGGGCATACGGTTGA -ACGGAACATAGGGCATACTCCGAT -ACGGAACATAGGGCATACTGGCAT -ACGGAACATAGGGCATACCGAGAT -ACGGAACATAGGGCATACTACCAC -ACGGAACATAGGGCATACCAGAAC -ACGGAACATAGGGCATACGTCTAC -ACGGAACATAGGGCATACACGTAC -ACGGAACATAGGGCATACAGTGAC -ACGGAACATAGGGCATACCTGTAG -ACGGAACATAGGGCATACCCTAAG -ACGGAACATAGGGCATACGTTCAG -ACGGAACATAGGGCATACGCATAG -ACGGAACATAGGGCATACGACAAG -ACGGAACATAGGGCATACAAGCAG -ACGGAACATAGGGCATACCGTCAA -ACGGAACATAGGGCATACGCTGAA -ACGGAACATAGGGCATACAGTACG -ACGGAACATAGGGCATACATCCGA -ACGGAACATAGGGCATACATGGGA -ACGGAACATAGGGCATACGTGCAA -ACGGAACATAGGGCATACGAGGAA -ACGGAACATAGGGCATACCAGGTA -ACGGAACATAGGGCATACGACTCT -ACGGAACATAGGGCATACAGTCCT -ACGGAACATAGGGCATACTAAGCC -ACGGAACATAGGGCATACATAGCC -ACGGAACATAGGGCATACTAACCG -ACGGAACATAGGGCATACATGCCA -ACGGAACATAGGGCACTTGGAAAC -ACGGAACATAGGGCACTTAACACC -ACGGAACATAGGGCACTTATCGAG -ACGGAACATAGGGCACTTCTCCTT -ACGGAACATAGGGCACTTCCTGTT -ACGGAACATAGGGCACTTCGGTTT -ACGGAACATAGGGCACTTGTGGTT -ACGGAACATAGGGCACTTGCCTTT -ACGGAACATAGGGCACTTGGTCTT -ACGGAACATAGGGCACTTACGCTT -ACGGAACATAGGGCACTTAGCGTT -ACGGAACATAGGGCACTTTTCGTC -ACGGAACATAGGGCACTTTCTCTC -ACGGAACATAGGGCACTTTGGATC -ACGGAACATAGGGCACTTCACTTC -ACGGAACATAGGGCACTTGTACTC -ACGGAACATAGGGCACTTGATGTC -ACGGAACATAGGGCACTTACAGTC -ACGGAACATAGGGCACTTTTGCTG -ACGGAACATAGGGCACTTTCCATG -ACGGAACATAGGGCACTTTGTGTG -ACGGAACATAGGGCACTTCTAGTG -ACGGAACATAGGGCACTTCATCTG -ACGGAACATAGGGCACTTGAGTTG -ACGGAACATAGGGCACTTAGACTG -ACGGAACATAGGGCACTTTCGGTA -ACGGAACATAGGGCACTTTGCCTA -ACGGAACATAGGGCACTTCCACTA -ACGGAACATAGGGCACTTGGAGTA -ACGGAACATAGGGCACTTTCGTCT -ACGGAACATAGGGCACTTTGCACT -ACGGAACATAGGGCACTTCTGACT -ACGGAACATAGGGCACTTCAACCT -ACGGAACATAGGGCACTTGCTACT -ACGGAACATAGGGCACTTGGATCT -ACGGAACATAGGGCACTTAAGGCT -ACGGAACATAGGGCACTTTCAACC -ACGGAACATAGGGCACTTTGTTCC -ACGGAACATAGGGCACTTATTCCC -ACGGAACATAGGGCACTTTTCTCG -ACGGAACATAGGGCACTTTAGACG -ACGGAACATAGGGCACTTGTAACG -ACGGAACATAGGGCACTTACTTCG -ACGGAACATAGGGCACTTTACGCA -ACGGAACATAGGGCACTTCTTGCA -ACGGAACATAGGGCACTTCGAACA -ACGGAACATAGGGCACTTCAGTCA -ACGGAACATAGGGCACTTGATCCA -ACGGAACATAGGGCACTTACGACA -ACGGAACATAGGGCACTTAGCTCA -ACGGAACATAGGGCACTTTCACGT -ACGGAACATAGGGCACTTCGTAGT -ACGGAACATAGGGCACTTGTCAGT -ACGGAACATAGGGCACTTGAAGGT -ACGGAACATAGGGCACTTAACCGT -ACGGAACATAGGGCACTTTTGTGC -ACGGAACATAGGGCACTTCTAAGC -ACGGAACATAGGGCACTTACTAGC -ACGGAACATAGGGCACTTAGATGC -ACGGAACATAGGGCACTTTGAAGG -ACGGAACATAGGGCACTTCAATGG -ACGGAACATAGGGCACTTATGAGG -ACGGAACATAGGGCACTTAATGGG -ACGGAACATAGGGCACTTTCCTGA -ACGGAACATAGGGCACTTTAGCGA -ACGGAACATAGGGCACTTCACAGA -ACGGAACATAGGGCACTTGCAAGA -ACGGAACATAGGGCACTTGGTTGA -ACGGAACATAGGGCACTTTCCGAT -ACGGAACATAGGGCACTTTGGCAT -ACGGAACATAGGGCACTTCGAGAT -ACGGAACATAGGGCACTTTACCAC -ACGGAACATAGGGCACTTCAGAAC -ACGGAACATAGGGCACTTGTCTAC -ACGGAACATAGGGCACTTACGTAC -ACGGAACATAGGGCACTTAGTGAC -ACGGAACATAGGGCACTTCTGTAG -ACGGAACATAGGGCACTTCCTAAG -ACGGAACATAGGGCACTTGTTCAG -ACGGAACATAGGGCACTTGCATAG -ACGGAACATAGGGCACTTGACAAG -ACGGAACATAGGGCACTTAAGCAG -ACGGAACATAGGGCACTTCGTCAA -ACGGAACATAGGGCACTTGCTGAA -ACGGAACATAGGGCACTTAGTACG -ACGGAACATAGGGCACTTATCCGA -ACGGAACATAGGGCACTTATGGGA -ACGGAACATAGGGCACTTGTGCAA -ACGGAACATAGGGCACTTGAGGAA -ACGGAACATAGGGCACTTCAGGTA -ACGGAACATAGGGCACTTGACTCT -ACGGAACATAGGGCACTTAGTCCT -ACGGAACATAGGGCACTTTAAGCC -ACGGAACATAGGGCACTTATAGCC -ACGGAACATAGGGCACTTTAACCG -ACGGAACATAGGGCACTTATGCCA -ACGGAACATAGGACACGAGGAAAC -ACGGAACATAGGACACGAAACACC -ACGGAACATAGGACACGAATCGAG -ACGGAACATAGGACACGACTCCTT -ACGGAACATAGGACACGACCTGTT -ACGGAACATAGGACACGACGGTTT -ACGGAACATAGGACACGAGTGGTT -ACGGAACATAGGACACGAGCCTTT -ACGGAACATAGGACACGAGGTCTT -ACGGAACATAGGACACGAACGCTT -ACGGAACATAGGACACGAAGCGTT -ACGGAACATAGGACACGATTCGTC -ACGGAACATAGGACACGATCTCTC -ACGGAACATAGGACACGATGGATC -ACGGAACATAGGACACGACACTTC -ACGGAACATAGGACACGAGTACTC -ACGGAACATAGGACACGAGATGTC -ACGGAACATAGGACACGAACAGTC -ACGGAACATAGGACACGATTGCTG -ACGGAACATAGGACACGATCCATG -ACGGAACATAGGACACGATGTGTG -ACGGAACATAGGACACGACTAGTG -ACGGAACATAGGACACGACATCTG -ACGGAACATAGGACACGAGAGTTG -ACGGAACATAGGACACGAAGACTG -ACGGAACATAGGACACGATCGGTA -ACGGAACATAGGACACGATGCCTA -ACGGAACATAGGACACGACCACTA -ACGGAACATAGGACACGAGGAGTA -ACGGAACATAGGACACGATCGTCT -ACGGAACATAGGACACGATGCACT -ACGGAACATAGGACACGACTGACT -ACGGAACATAGGACACGACAACCT -ACGGAACATAGGACACGAGCTACT -ACGGAACATAGGACACGAGGATCT -ACGGAACATAGGACACGAAAGGCT -ACGGAACATAGGACACGATCAACC -ACGGAACATAGGACACGATGTTCC -ACGGAACATAGGACACGAATTCCC -ACGGAACATAGGACACGATTCTCG -ACGGAACATAGGACACGATAGACG -ACGGAACATAGGACACGAGTAACG -ACGGAACATAGGACACGAACTTCG -ACGGAACATAGGACACGATACGCA -ACGGAACATAGGACACGACTTGCA -ACGGAACATAGGACACGACGAACA -ACGGAACATAGGACACGACAGTCA -ACGGAACATAGGACACGAGATCCA -ACGGAACATAGGACACGAACGACA -ACGGAACATAGGACACGAAGCTCA -ACGGAACATAGGACACGATCACGT -ACGGAACATAGGACACGACGTAGT -ACGGAACATAGGACACGAGTCAGT -ACGGAACATAGGACACGAGAAGGT -ACGGAACATAGGACACGAAACCGT -ACGGAACATAGGACACGATTGTGC -ACGGAACATAGGACACGACTAAGC -ACGGAACATAGGACACGAACTAGC -ACGGAACATAGGACACGAAGATGC -ACGGAACATAGGACACGATGAAGG -ACGGAACATAGGACACGACAATGG -ACGGAACATAGGACACGAATGAGG -ACGGAACATAGGACACGAAATGGG -ACGGAACATAGGACACGATCCTGA -ACGGAACATAGGACACGATAGCGA -ACGGAACATAGGACACGACACAGA -ACGGAACATAGGACACGAGCAAGA -ACGGAACATAGGACACGAGGTTGA -ACGGAACATAGGACACGATCCGAT -ACGGAACATAGGACACGATGGCAT -ACGGAACATAGGACACGACGAGAT -ACGGAACATAGGACACGATACCAC -ACGGAACATAGGACACGACAGAAC -ACGGAACATAGGACACGAGTCTAC -ACGGAACATAGGACACGAACGTAC -ACGGAACATAGGACACGAAGTGAC -ACGGAACATAGGACACGACTGTAG -ACGGAACATAGGACACGACCTAAG -ACGGAACATAGGACACGAGTTCAG -ACGGAACATAGGACACGAGCATAG -ACGGAACATAGGACACGAGACAAG -ACGGAACATAGGACACGAAAGCAG -ACGGAACATAGGACACGACGTCAA -ACGGAACATAGGACACGAGCTGAA -ACGGAACATAGGACACGAAGTACG -ACGGAACATAGGACACGAATCCGA -ACGGAACATAGGACACGAATGGGA -ACGGAACATAGGACACGAGTGCAA -ACGGAACATAGGACACGAGAGGAA -ACGGAACATAGGACACGACAGGTA -ACGGAACATAGGACACGAGACTCT -ACGGAACATAGGACACGAAGTCCT -ACGGAACATAGGACACGATAAGCC -ACGGAACATAGGACACGAATAGCC -ACGGAACATAGGACACGATAACCG -ACGGAACATAGGACACGAATGCCA -ACGGAACATAGGTCACAGGGAAAC -ACGGAACATAGGTCACAGAACACC -ACGGAACATAGGTCACAGATCGAG -ACGGAACATAGGTCACAGCTCCTT -ACGGAACATAGGTCACAGCCTGTT -ACGGAACATAGGTCACAGCGGTTT -ACGGAACATAGGTCACAGGTGGTT -ACGGAACATAGGTCACAGGCCTTT -ACGGAACATAGGTCACAGGGTCTT -ACGGAACATAGGTCACAGACGCTT -ACGGAACATAGGTCACAGAGCGTT -ACGGAACATAGGTCACAGTTCGTC -ACGGAACATAGGTCACAGTCTCTC -ACGGAACATAGGTCACAGTGGATC -ACGGAACATAGGTCACAGCACTTC -ACGGAACATAGGTCACAGGTACTC -ACGGAACATAGGTCACAGGATGTC -ACGGAACATAGGTCACAGACAGTC -ACGGAACATAGGTCACAGTTGCTG -ACGGAACATAGGTCACAGTCCATG -ACGGAACATAGGTCACAGTGTGTG -ACGGAACATAGGTCACAGCTAGTG -ACGGAACATAGGTCACAGCATCTG -ACGGAACATAGGTCACAGGAGTTG -ACGGAACATAGGTCACAGAGACTG -ACGGAACATAGGTCACAGTCGGTA -ACGGAACATAGGTCACAGTGCCTA -ACGGAACATAGGTCACAGCCACTA -ACGGAACATAGGTCACAGGGAGTA -ACGGAACATAGGTCACAGTCGTCT -ACGGAACATAGGTCACAGTGCACT -ACGGAACATAGGTCACAGCTGACT -ACGGAACATAGGTCACAGCAACCT -ACGGAACATAGGTCACAGGCTACT -ACGGAACATAGGTCACAGGGATCT -ACGGAACATAGGTCACAGAAGGCT -ACGGAACATAGGTCACAGTCAACC -ACGGAACATAGGTCACAGTGTTCC -ACGGAACATAGGTCACAGATTCCC -ACGGAACATAGGTCACAGTTCTCG -ACGGAACATAGGTCACAGTAGACG -ACGGAACATAGGTCACAGGTAACG -ACGGAACATAGGTCACAGACTTCG -ACGGAACATAGGTCACAGTACGCA -ACGGAACATAGGTCACAGCTTGCA -ACGGAACATAGGTCACAGCGAACA -ACGGAACATAGGTCACAGCAGTCA -ACGGAACATAGGTCACAGGATCCA -ACGGAACATAGGTCACAGACGACA -ACGGAACATAGGTCACAGAGCTCA -ACGGAACATAGGTCACAGTCACGT -ACGGAACATAGGTCACAGCGTAGT -ACGGAACATAGGTCACAGGTCAGT -ACGGAACATAGGTCACAGGAAGGT -ACGGAACATAGGTCACAGAACCGT -ACGGAACATAGGTCACAGTTGTGC -ACGGAACATAGGTCACAGCTAAGC -ACGGAACATAGGTCACAGACTAGC -ACGGAACATAGGTCACAGAGATGC -ACGGAACATAGGTCACAGTGAAGG -ACGGAACATAGGTCACAGCAATGG -ACGGAACATAGGTCACAGATGAGG -ACGGAACATAGGTCACAGAATGGG -ACGGAACATAGGTCACAGTCCTGA -ACGGAACATAGGTCACAGTAGCGA -ACGGAACATAGGTCACAGCACAGA -ACGGAACATAGGTCACAGGCAAGA -ACGGAACATAGGTCACAGGGTTGA -ACGGAACATAGGTCACAGTCCGAT -ACGGAACATAGGTCACAGTGGCAT -ACGGAACATAGGTCACAGCGAGAT -ACGGAACATAGGTCACAGTACCAC -ACGGAACATAGGTCACAGCAGAAC -ACGGAACATAGGTCACAGGTCTAC -ACGGAACATAGGTCACAGACGTAC -ACGGAACATAGGTCACAGAGTGAC -ACGGAACATAGGTCACAGCTGTAG -ACGGAACATAGGTCACAGCCTAAG -ACGGAACATAGGTCACAGGTTCAG -ACGGAACATAGGTCACAGGCATAG -ACGGAACATAGGTCACAGGACAAG -ACGGAACATAGGTCACAGAAGCAG -ACGGAACATAGGTCACAGCGTCAA -ACGGAACATAGGTCACAGGCTGAA -ACGGAACATAGGTCACAGAGTACG -ACGGAACATAGGTCACAGATCCGA -ACGGAACATAGGTCACAGATGGGA -ACGGAACATAGGTCACAGGTGCAA -ACGGAACATAGGTCACAGGAGGAA -ACGGAACATAGGTCACAGCAGGTA -ACGGAACATAGGTCACAGGACTCT -ACGGAACATAGGTCACAGAGTCCT -ACGGAACATAGGTCACAGTAAGCC -ACGGAACATAGGTCACAGATAGCC -ACGGAACATAGGTCACAGTAACCG -ACGGAACATAGGTCACAGATGCCA -ACGGAACATAGGCCAGATGGAAAC -ACGGAACATAGGCCAGATAACACC -ACGGAACATAGGCCAGATATCGAG -ACGGAACATAGGCCAGATCTCCTT -ACGGAACATAGGCCAGATCCTGTT -ACGGAACATAGGCCAGATCGGTTT -ACGGAACATAGGCCAGATGTGGTT -ACGGAACATAGGCCAGATGCCTTT -ACGGAACATAGGCCAGATGGTCTT -ACGGAACATAGGCCAGATACGCTT -ACGGAACATAGGCCAGATAGCGTT -ACGGAACATAGGCCAGATTTCGTC -ACGGAACATAGGCCAGATTCTCTC -ACGGAACATAGGCCAGATTGGATC -ACGGAACATAGGCCAGATCACTTC -ACGGAACATAGGCCAGATGTACTC -ACGGAACATAGGCCAGATGATGTC -ACGGAACATAGGCCAGATACAGTC -ACGGAACATAGGCCAGATTTGCTG -ACGGAACATAGGCCAGATTCCATG -ACGGAACATAGGCCAGATTGTGTG -ACGGAACATAGGCCAGATCTAGTG -ACGGAACATAGGCCAGATCATCTG -ACGGAACATAGGCCAGATGAGTTG -ACGGAACATAGGCCAGATAGACTG -ACGGAACATAGGCCAGATTCGGTA -ACGGAACATAGGCCAGATTGCCTA -ACGGAACATAGGCCAGATCCACTA -ACGGAACATAGGCCAGATGGAGTA -ACGGAACATAGGCCAGATTCGTCT -ACGGAACATAGGCCAGATTGCACT -ACGGAACATAGGCCAGATCTGACT -ACGGAACATAGGCCAGATCAACCT -ACGGAACATAGGCCAGATGCTACT -ACGGAACATAGGCCAGATGGATCT -ACGGAACATAGGCCAGATAAGGCT -ACGGAACATAGGCCAGATTCAACC -ACGGAACATAGGCCAGATTGTTCC -ACGGAACATAGGCCAGATATTCCC -ACGGAACATAGGCCAGATTTCTCG -ACGGAACATAGGCCAGATTAGACG -ACGGAACATAGGCCAGATGTAACG -ACGGAACATAGGCCAGATACTTCG -ACGGAACATAGGCCAGATTACGCA -ACGGAACATAGGCCAGATCTTGCA -ACGGAACATAGGCCAGATCGAACA -ACGGAACATAGGCCAGATCAGTCA -ACGGAACATAGGCCAGATGATCCA -ACGGAACATAGGCCAGATACGACA -ACGGAACATAGGCCAGATAGCTCA -ACGGAACATAGGCCAGATTCACGT -ACGGAACATAGGCCAGATCGTAGT -ACGGAACATAGGCCAGATGTCAGT -ACGGAACATAGGCCAGATGAAGGT -ACGGAACATAGGCCAGATAACCGT -ACGGAACATAGGCCAGATTTGTGC -ACGGAACATAGGCCAGATCTAAGC -ACGGAACATAGGCCAGATACTAGC -ACGGAACATAGGCCAGATAGATGC -ACGGAACATAGGCCAGATTGAAGG -ACGGAACATAGGCCAGATCAATGG -ACGGAACATAGGCCAGATATGAGG -ACGGAACATAGGCCAGATAATGGG -ACGGAACATAGGCCAGATTCCTGA -ACGGAACATAGGCCAGATTAGCGA -ACGGAACATAGGCCAGATCACAGA -ACGGAACATAGGCCAGATGCAAGA -ACGGAACATAGGCCAGATGGTTGA -ACGGAACATAGGCCAGATTCCGAT -ACGGAACATAGGCCAGATTGGCAT -ACGGAACATAGGCCAGATCGAGAT -ACGGAACATAGGCCAGATTACCAC -ACGGAACATAGGCCAGATCAGAAC -ACGGAACATAGGCCAGATGTCTAC -ACGGAACATAGGCCAGATACGTAC -ACGGAACATAGGCCAGATAGTGAC -ACGGAACATAGGCCAGATCTGTAG -ACGGAACATAGGCCAGATCCTAAG -ACGGAACATAGGCCAGATGTTCAG -ACGGAACATAGGCCAGATGCATAG -ACGGAACATAGGCCAGATGACAAG -ACGGAACATAGGCCAGATAAGCAG -ACGGAACATAGGCCAGATCGTCAA -ACGGAACATAGGCCAGATGCTGAA -ACGGAACATAGGCCAGATAGTACG -ACGGAACATAGGCCAGATATCCGA -ACGGAACATAGGCCAGATATGGGA -ACGGAACATAGGCCAGATGTGCAA -ACGGAACATAGGCCAGATGAGGAA -ACGGAACATAGGCCAGATCAGGTA -ACGGAACATAGGCCAGATGACTCT -ACGGAACATAGGCCAGATAGTCCT -ACGGAACATAGGCCAGATTAAGCC -ACGGAACATAGGCCAGATATAGCC -ACGGAACATAGGCCAGATTAACCG -ACGGAACATAGGCCAGATATGCCA -ACGGAACATAGGACAACGGGAAAC -ACGGAACATAGGACAACGAACACC -ACGGAACATAGGACAACGATCGAG -ACGGAACATAGGACAACGCTCCTT -ACGGAACATAGGACAACGCCTGTT -ACGGAACATAGGACAACGCGGTTT -ACGGAACATAGGACAACGGTGGTT -ACGGAACATAGGACAACGGCCTTT -ACGGAACATAGGACAACGGGTCTT -ACGGAACATAGGACAACGACGCTT -ACGGAACATAGGACAACGAGCGTT -ACGGAACATAGGACAACGTTCGTC -ACGGAACATAGGACAACGTCTCTC -ACGGAACATAGGACAACGTGGATC -ACGGAACATAGGACAACGCACTTC -ACGGAACATAGGACAACGGTACTC -ACGGAACATAGGACAACGGATGTC -ACGGAACATAGGACAACGACAGTC -ACGGAACATAGGACAACGTTGCTG -ACGGAACATAGGACAACGTCCATG -ACGGAACATAGGACAACGTGTGTG -ACGGAACATAGGACAACGCTAGTG -ACGGAACATAGGACAACGCATCTG -ACGGAACATAGGACAACGGAGTTG -ACGGAACATAGGACAACGAGACTG -ACGGAACATAGGACAACGTCGGTA -ACGGAACATAGGACAACGTGCCTA -ACGGAACATAGGACAACGCCACTA -ACGGAACATAGGACAACGGGAGTA -ACGGAACATAGGACAACGTCGTCT -ACGGAACATAGGACAACGTGCACT -ACGGAACATAGGACAACGCTGACT -ACGGAACATAGGACAACGCAACCT -ACGGAACATAGGACAACGGCTACT -ACGGAACATAGGACAACGGGATCT -ACGGAACATAGGACAACGAAGGCT -ACGGAACATAGGACAACGTCAACC -ACGGAACATAGGACAACGTGTTCC -ACGGAACATAGGACAACGATTCCC -ACGGAACATAGGACAACGTTCTCG -ACGGAACATAGGACAACGTAGACG -ACGGAACATAGGACAACGGTAACG -ACGGAACATAGGACAACGACTTCG -ACGGAACATAGGACAACGTACGCA -ACGGAACATAGGACAACGCTTGCA -ACGGAACATAGGACAACGCGAACA -ACGGAACATAGGACAACGCAGTCA -ACGGAACATAGGACAACGGATCCA -ACGGAACATAGGACAACGACGACA -ACGGAACATAGGACAACGAGCTCA -ACGGAACATAGGACAACGTCACGT -ACGGAACATAGGACAACGCGTAGT -ACGGAACATAGGACAACGGTCAGT -ACGGAACATAGGACAACGGAAGGT -ACGGAACATAGGACAACGAACCGT -ACGGAACATAGGACAACGTTGTGC -ACGGAACATAGGACAACGCTAAGC -ACGGAACATAGGACAACGACTAGC -ACGGAACATAGGACAACGAGATGC -ACGGAACATAGGACAACGTGAAGG -ACGGAACATAGGACAACGCAATGG -ACGGAACATAGGACAACGATGAGG -ACGGAACATAGGACAACGAATGGG -ACGGAACATAGGACAACGTCCTGA -ACGGAACATAGGACAACGTAGCGA -ACGGAACATAGGACAACGCACAGA -ACGGAACATAGGACAACGGCAAGA -ACGGAACATAGGACAACGGGTTGA -ACGGAACATAGGACAACGTCCGAT -ACGGAACATAGGACAACGTGGCAT -ACGGAACATAGGACAACGCGAGAT -ACGGAACATAGGACAACGTACCAC -ACGGAACATAGGACAACGCAGAAC -ACGGAACATAGGACAACGGTCTAC -ACGGAACATAGGACAACGACGTAC -ACGGAACATAGGACAACGAGTGAC -ACGGAACATAGGACAACGCTGTAG -ACGGAACATAGGACAACGCCTAAG -ACGGAACATAGGACAACGGTTCAG -ACGGAACATAGGACAACGGCATAG -ACGGAACATAGGACAACGGACAAG -ACGGAACATAGGACAACGAAGCAG -ACGGAACATAGGACAACGCGTCAA -ACGGAACATAGGACAACGGCTGAA -ACGGAACATAGGACAACGAGTACG -ACGGAACATAGGACAACGATCCGA -ACGGAACATAGGACAACGATGGGA -ACGGAACATAGGACAACGGTGCAA -ACGGAACATAGGACAACGGAGGAA -ACGGAACATAGGACAACGCAGGTA -ACGGAACATAGGACAACGGACTCT -ACGGAACATAGGACAACGAGTCCT -ACGGAACATAGGACAACGTAAGCC -ACGGAACATAGGACAACGATAGCC -ACGGAACATAGGACAACGTAACCG -ACGGAACATAGGACAACGATGCCA -ACGGAACATAGGTCAAGCGGAAAC -ACGGAACATAGGTCAAGCAACACC -ACGGAACATAGGTCAAGCATCGAG -ACGGAACATAGGTCAAGCCTCCTT -ACGGAACATAGGTCAAGCCCTGTT -ACGGAACATAGGTCAAGCCGGTTT -ACGGAACATAGGTCAAGCGTGGTT -ACGGAACATAGGTCAAGCGCCTTT -ACGGAACATAGGTCAAGCGGTCTT -ACGGAACATAGGTCAAGCACGCTT -ACGGAACATAGGTCAAGCAGCGTT -ACGGAACATAGGTCAAGCTTCGTC -ACGGAACATAGGTCAAGCTCTCTC -ACGGAACATAGGTCAAGCTGGATC -ACGGAACATAGGTCAAGCCACTTC -ACGGAACATAGGTCAAGCGTACTC -ACGGAACATAGGTCAAGCGATGTC -ACGGAACATAGGTCAAGCACAGTC -ACGGAACATAGGTCAAGCTTGCTG -ACGGAACATAGGTCAAGCTCCATG -ACGGAACATAGGTCAAGCTGTGTG -ACGGAACATAGGTCAAGCCTAGTG -ACGGAACATAGGTCAAGCCATCTG -ACGGAACATAGGTCAAGCGAGTTG -ACGGAACATAGGTCAAGCAGACTG -ACGGAACATAGGTCAAGCTCGGTA -ACGGAACATAGGTCAAGCTGCCTA -ACGGAACATAGGTCAAGCCCACTA -ACGGAACATAGGTCAAGCGGAGTA -ACGGAACATAGGTCAAGCTCGTCT -ACGGAACATAGGTCAAGCTGCACT -ACGGAACATAGGTCAAGCCTGACT -ACGGAACATAGGTCAAGCCAACCT -ACGGAACATAGGTCAAGCGCTACT -ACGGAACATAGGTCAAGCGGATCT -ACGGAACATAGGTCAAGCAAGGCT -ACGGAACATAGGTCAAGCTCAACC -ACGGAACATAGGTCAAGCTGTTCC -ACGGAACATAGGTCAAGCATTCCC -ACGGAACATAGGTCAAGCTTCTCG -ACGGAACATAGGTCAAGCTAGACG -ACGGAACATAGGTCAAGCGTAACG -ACGGAACATAGGTCAAGCACTTCG -ACGGAACATAGGTCAAGCTACGCA -ACGGAACATAGGTCAAGCCTTGCA -ACGGAACATAGGTCAAGCCGAACA -ACGGAACATAGGTCAAGCCAGTCA -ACGGAACATAGGTCAAGCGATCCA -ACGGAACATAGGTCAAGCACGACA -ACGGAACATAGGTCAAGCAGCTCA -ACGGAACATAGGTCAAGCTCACGT -ACGGAACATAGGTCAAGCCGTAGT -ACGGAACATAGGTCAAGCGTCAGT -ACGGAACATAGGTCAAGCGAAGGT -ACGGAACATAGGTCAAGCAACCGT -ACGGAACATAGGTCAAGCTTGTGC -ACGGAACATAGGTCAAGCCTAAGC -ACGGAACATAGGTCAAGCACTAGC -ACGGAACATAGGTCAAGCAGATGC -ACGGAACATAGGTCAAGCTGAAGG -ACGGAACATAGGTCAAGCCAATGG -ACGGAACATAGGTCAAGCATGAGG -ACGGAACATAGGTCAAGCAATGGG -ACGGAACATAGGTCAAGCTCCTGA -ACGGAACATAGGTCAAGCTAGCGA -ACGGAACATAGGTCAAGCCACAGA -ACGGAACATAGGTCAAGCGCAAGA -ACGGAACATAGGTCAAGCGGTTGA -ACGGAACATAGGTCAAGCTCCGAT -ACGGAACATAGGTCAAGCTGGCAT -ACGGAACATAGGTCAAGCCGAGAT -ACGGAACATAGGTCAAGCTACCAC -ACGGAACATAGGTCAAGCCAGAAC -ACGGAACATAGGTCAAGCGTCTAC -ACGGAACATAGGTCAAGCACGTAC -ACGGAACATAGGTCAAGCAGTGAC -ACGGAACATAGGTCAAGCCTGTAG -ACGGAACATAGGTCAAGCCCTAAG -ACGGAACATAGGTCAAGCGTTCAG -ACGGAACATAGGTCAAGCGCATAG -ACGGAACATAGGTCAAGCGACAAG -ACGGAACATAGGTCAAGCAAGCAG -ACGGAACATAGGTCAAGCCGTCAA -ACGGAACATAGGTCAAGCGCTGAA -ACGGAACATAGGTCAAGCAGTACG -ACGGAACATAGGTCAAGCATCCGA -ACGGAACATAGGTCAAGCATGGGA -ACGGAACATAGGTCAAGCGTGCAA -ACGGAACATAGGTCAAGCGAGGAA -ACGGAACATAGGTCAAGCCAGGTA -ACGGAACATAGGTCAAGCGACTCT -ACGGAACATAGGTCAAGCAGTCCT -ACGGAACATAGGTCAAGCTAAGCC -ACGGAACATAGGTCAAGCATAGCC -ACGGAACATAGGTCAAGCTAACCG -ACGGAACATAGGTCAAGCATGCCA -ACGGAACATAGGCGTTCAGGAAAC -ACGGAACATAGGCGTTCAAACACC -ACGGAACATAGGCGTTCAATCGAG -ACGGAACATAGGCGTTCACTCCTT -ACGGAACATAGGCGTTCACCTGTT -ACGGAACATAGGCGTTCACGGTTT -ACGGAACATAGGCGTTCAGTGGTT -ACGGAACATAGGCGTTCAGCCTTT -ACGGAACATAGGCGTTCAGGTCTT -ACGGAACATAGGCGTTCAACGCTT -ACGGAACATAGGCGTTCAAGCGTT -ACGGAACATAGGCGTTCATTCGTC -ACGGAACATAGGCGTTCATCTCTC -ACGGAACATAGGCGTTCATGGATC -ACGGAACATAGGCGTTCACACTTC -ACGGAACATAGGCGTTCAGTACTC -ACGGAACATAGGCGTTCAGATGTC -ACGGAACATAGGCGTTCAACAGTC -ACGGAACATAGGCGTTCATTGCTG -ACGGAACATAGGCGTTCATCCATG -ACGGAACATAGGCGTTCATGTGTG -ACGGAACATAGGCGTTCACTAGTG -ACGGAACATAGGCGTTCACATCTG -ACGGAACATAGGCGTTCAGAGTTG -ACGGAACATAGGCGTTCAAGACTG -ACGGAACATAGGCGTTCATCGGTA -ACGGAACATAGGCGTTCATGCCTA -ACGGAACATAGGCGTTCACCACTA -ACGGAACATAGGCGTTCAGGAGTA -ACGGAACATAGGCGTTCATCGTCT -ACGGAACATAGGCGTTCATGCACT -ACGGAACATAGGCGTTCACTGACT -ACGGAACATAGGCGTTCACAACCT -ACGGAACATAGGCGTTCAGCTACT -ACGGAACATAGGCGTTCAGGATCT -ACGGAACATAGGCGTTCAAAGGCT -ACGGAACATAGGCGTTCATCAACC -ACGGAACATAGGCGTTCATGTTCC -ACGGAACATAGGCGTTCAATTCCC -ACGGAACATAGGCGTTCATTCTCG -ACGGAACATAGGCGTTCATAGACG -ACGGAACATAGGCGTTCAGTAACG -ACGGAACATAGGCGTTCAACTTCG -ACGGAACATAGGCGTTCATACGCA -ACGGAACATAGGCGTTCACTTGCA -ACGGAACATAGGCGTTCACGAACA -ACGGAACATAGGCGTTCACAGTCA -ACGGAACATAGGCGTTCAGATCCA -ACGGAACATAGGCGTTCAACGACA -ACGGAACATAGGCGTTCAAGCTCA -ACGGAACATAGGCGTTCATCACGT -ACGGAACATAGGCGTTCACGTAGT -ACGGAACATAGGCGTTCAGTCAGT -ACGGAACATAGGCGTTCAGAAGGT -ACGGAACATAGGCGTTCAAACCGT -ACGGAACATAGGCGTTCATTGTGC -ACGGAACATAGGCGTTCACTAAGC -ACGGAACATAGGCGTTCAACTAGC -ACGGAACATAGGCGTTCAAGATGC -ACGGAACATAGGCGTTCATGAAGG -ACGGAACATAGGCGTTCACAATGG -ACGGAACATAGGCGTTCAATGAGG -ACGGAACATAGGCGTTCAAATGGG -ACGGAACATAGGCGTTCATCCTGA -ACGGAACATAGGCGTTCATAGCGA -ACGGAACATAGGCGTTCACACAGA -ACGGAACATAGGCGTTCAGCAAGA -ACGGAACATAGGCGTTCAGGTTGA -ACGGAACATAGGCGTTCATCCGAT -ACGGAACATAGGCGTTCATGGCAT -ACGGAACATAGGCGTTCACGAGAT -ACGGAACATAGGCGTTCATACCAC -ACGGAACATAGGCGTTCACAGAAC -ACGGAACATAGGCGTTCAGTCTAC -ACGGAACATAGGCGTTCAACGTAC -ACGGAACATAGGCGTTCAAGTGAC -ACGGAACATAGGCGTTCACTGTAG -ACGGAACATAGGCGTTCACCTAAG -ACGGAACATAGGCGTTCAGTTCAG -ACGGAACATAGGCGTTCAGCATAG -ACGGAACATAGGCGTTCAGACAAG -ACGGAACATAGGCGTTCAAAGCAG -ACGGAACATAGGCGTTCACGTCAA -ACGGAACATAGGCGTTCAGCTGAA -ACGGAACATAGGCGTTCAAGTACG -ACGGAACATAGGCGTTCAATCCGA -ACGGAACATAGGCGTTCAATGGGA -ACGGAACATAGGCGTTCAGTGCAA -ACGGAACATAGGCGTTCAGAGGAA -ACGGAACATAGGCGTTCACAGGTA -ACGGAACATAGGCGTTCAGACTCT -ACGGAACATAGGCGTTCAAGTCCT -ACGGAACATAGGCGTTCATAAGCC -ACGGAACATAGGCGTTCAATAGCC -ACGGAACATAGGCGTTCATAACCG -ACGGAACATAGGCGTTCAATGCCA -ACGGAACATAGGAGTCGTGGAAAC -ACGGAACATAGGAGTCGTAACACC -ACGGAACATAGGAGTCGTATCGAG -ACGGAACATAGGAGTCGTCTCCTT -ACGGAACATAGGAGTCGTCCTGTT -ACGGAACATAGGAGTCGTCGGTTT -ACGGAACATAGGAGTCGTGTGGTT -ACGGAACATAGGAGTCGTGCCTTT -ACGGAACATAGGAGTCGTGGTCTT -ACGGAACATAGGAGTCGTACGCTT -ACGGAACATAGGAGTCGTAGCGTT -ACGGAACATAGGAGTCGTTTCGTC -ACGGAACATAGGAGTCGTTCTCTC -ACGGAACATAGGAGTCGTTGGATC -ACGGAACATAGGAGTCGTCACTTC -ACGGAACATAGGAGTCGTGTACTC -ACGGAACATAGGAGTCGTGATGTC -ACGGAACATAGGAGTCGTACAGTC -ACGGAACATAGGAGTCGTTTGCTG -ACGGAACATAGGAGTCGTTCCATG -ACGGAACATAGGAGTCGTTGTGTG -ACGGAACATAGGAGTCGTCTAGTG -ACGGAACATAGGAGTCGTCATCTG -ACGGAACATAGGAGTCGTGAGTTG -ACGGAACATAGGAGTCGTAGACTG -ACGGAACATAGGAGTCGTTCGGTA -ACGGAACATAGGAGTCGTTGCCTA -ACGGAACATAGGAGTCGTCCACTA -ACGGAACATAGGAGTCGTGGAGTA -ACGGAACATAGGAGTCGTTCGTCT -ACGGAACATAGGAGTCGTTGCACT -ACGGAACATAGGAGTCGTCTGACT -ACGGAACATAGGAGTCGTCAACCT -ACGGAACATAGGAGTCGTGCTACT -ACGGAACATAGGAGTCGTGGATCT -ACGGAACATAGGAGTCGTAAGGCT -ACGGAACATAGGAGTCGTTCAACC -ACGGAACATAGGAGTCGTTGTTCC -ACGGAACATAGGAGTCGTATTCCC -ACGGAACATAGGAGTCGTTTCTCG -ACGGAACATAGGAGTCGTTAGACG -ACGGAACATAGGAGTCGTGTAACG -ACGGAACATAGGAGTCGTACTTCG -ACGGAACATAGGAGTCGTTACGCA -ACGGAACATAGGAGTCGTCTTGCA -ACGGAACATAGGAGTCGTCGAACA -ACGGAACATAGGAGTCGTCAGTCA -ACGGAACATAGGAGTCGTGATCCA -ACGGAACATAGGAGTCGTACGACA -ACGGAACATAGGAGTCGTAGCTCA -ACGGAACATAGGAGTCGTTCACGT -ACGGAACATAGGAGTCGTCGTAGT -ACGGAACATAGGAGTCGTGTCAGT -ACGGAACATAGGAGTCGTGAAGGT -ACGGAACATAGGAGTCGTAACCGT -ACGGAACATAGGAGTCGTTTGTGC -ACGGAACATAGGAGTCGTCTAAGC -ACGGAACATAGGAGTCGTACTAGC -ACGGAACATAGGAGTCGTAGATGC -ACGGAACATAGGAGTCGTTGAAGG -ACGGAACATAGGAGTCGTCAATGG -ACGGAACATAGGAGTCGTATGAGG -ACGGAACATAGGAGTCGTAATGGG -ACGGAACATAGGAGTCGTTCCTGA -ACGGAACATAGGAGTCGTTAGCGA -ACGGAACATAGGAGTCGTCACAGA -ACGGAACATAGGAGTCGTGCAAGA -ACGGAACATAGGAGTCGTGGTTGA -ACGGAACATAGGAGTCGTTCCGAT -ACGGAACATAGGAGTCGTTGGCAT -ACGGAACATAGGAGTCGTCGAGAT -ACGGAACATAGGAGTCGTTACCAC -ACGGAACATAGGAGTCGTCAGAAC -ACGGAACATAGGAGTCGTGTCTAC -ACGGAACATAGGAGTCGTACGTAC -ACGGAACATAGGAGTCGTAGTGAC -ACGGAACATAGGAGTCGTCTGTAG -ACGGAACATAGGAGTCGTCCTAAG -ACGGAACATAGGAGTCGTGTTCAG -ACGGAACATAGGAGTCGTGCATAG -ACGGAACATAGGAGTCGTGACAAG -ACGGAACATAGGAGTCGTAAGCAG -ACGGAACATAGGAGTCGTCGTCAA -ACGGAACATAGGAGTCGTGCTGAA -ACGGAACATAGGAGTCGTAGTACG -ACGGAACATAGGAGTCGTATCCGA -ACGGAACATAGGAGTCGTATGGGA -ACGGAACATAGGAGTCGTGTGCAA -ACGGAACATAGGAGTCGTGAGGAA -ACGGAACATAGGAGTCGTCAGGTA -ACGGAACATAGGAGTCGTGACTCT -ACGGAACATAGGAGTCGTAGTCCT -ACGGAACATAGGAGTCGTTAAGCC -ACGGAACATAGGAGTCGTATAGCC -ACGGAACATAGGAGTCGTTAACCG -ACGGAACATAGGAGTCGTATGCCA -ACGGAACATAGGAGTGTCGGAAAC -ACGGAACATAGGAGTGTCAACACC -ACGGAACATAGGAGTGTCATCGAG -ACGGAACATAGGAGTGTCCTCCTT -ACGGAACATAGGAGTGTCCCTGTT -ACGGAACATAGGAGTGTCCGGTTT -ACGGAACATAGGAGTGTCGTGGTT -ACGGAACATAGGAGTGTCGCCTTT -ACGGAACATAGGAGTGTCGGTCTT -ACGGAACATAGGAGTGTCACGCTT -ACGGAACATAGGAGTGTCAGCGTT -ACGGAACATAGGAGTGTCTTCGTC -ACGGAACATAGGAGTGTCTCTCTC -ACGGAACATAGGAGTGTCTGGATC -ACGGAACATAGGAGTGTCCACTTC -ACGGAACATAGGAGTGTCGTACTC -ACGGAACATAGGAGTGTCGATGTC -ACGGAACATAGGAGTGTCACAGTC -ACGGAACATAGGAGTGTCTTGCTG -ACGGAACATAGGAGTGTCTCCATG -ACGGAACATAGGAGTGTCTGTGTG -ACGGAACATAGGAGTGTCCTAGTG -ACGGAACATAGGAGTGTCCATCTG -ACGGAACATAGGAGTGTCGAGTTG -ACGGAACATAGGAGTGTCAGACTG -ACGGAACATAGGAGTGTCTCGGTA -ACGGAACATAGGAGTGTCTGCCTA -ACGGAACATAGGAGTGTCCCACTA -ACGGAACATAGGAGTGTCGGAGTA -ACGGAACATAGGAGTGTCTCGTCT -ACGGAACATAGGAGTGTCTGCACT -ACGGAACATAGGAGTGTCCTGACT -ACGGAACATAGGAGTGTCCAACCT -ACGGAACATAGGAGTGTCGCTACT -ACGGAACATAGGAGTGTCGGATCT -ACGGAACATAGGAGTGTCAAGGCT -ACGGAACATAGGAGTGTCTCAACC -ACGGAACATAGGAGTGTCTGTTCC -ACGGAACATAGGAGTGTCATTCCC -ACGGAACATAGGAGTGTCTTCTCG -ACGGAACATAGGAGTGTCTAGACG -ACGGAACATAGGAGTGTCGTAACG -ACGGAACATAGGAGTGTCACTTCG -ACGGAACATAGGAGTGTCTACGCA -ACGGAACATAGGAGTGTCCTTGCA -ACGGAACATAGGAGTGTCCGAACA -ACGGAACATAGGAGTGTCCAGTCA -ACGGAACATAGGAGTGTCGATCCA -ACGGAACATAGGAGTGTCACGACA -ACGGAACATAGGAGTGTCAGCTCA -ACGGAACATAGGAGTGTCTCACGT -ACGGAACATAGGAGTGTCCGTAGT -ACGGAACATAGGAGTGTCGTCAGT -ACGGAACATAGGAGTGTCGAAGGT -ACGGAACATAGGAGTGTCAACCGT -ACGGAACATAGGAGTGTCTTGTGC -ACGGAACATAGGAGTGTCCTAAGC -ACGGAACATAGGAGTGTCACTAGC -ACGGAACATAGGAGTGTCAGATGC -ACGGAACATAGGAGTGTCTGAAGG -ACGGAACATAGGAGTGTCCAATGG -ACGGAACATAGGAGTGTCATGAGG -ACGGAACATAGGAGTGTCAATGGG -ACGGAACATAGGAGTGTCTCCTGA -ACGGAACATAGGAGTGTCTAGCGA -ACGGAACATAGGAGTGTCCACAGA -ACGGAACATAGGAGTGTCGCAAGA -ACGGAACATAGGAGTGTCGGTTGA -ACGGAACATAGGAGTGTCTCCGAT -ACGGAACATAGGAGTGTCTGGCAT -ACGGAACATAGGAGTGTCCGAGAT -ACGGAACATAGGAGTGTCTACCAC -ACGGAACATAGGAGTGTCCAGAAC -ACGGAACATAGGAGTGTCGTCTAC -ACGGAACATAGGAGTGTCACGTAC -ACGGAACATAGGAGTGTCAGTGAC -ACGGAACATAGGAGTGTCCTGTAG -ACGGAACATAGGAGTGTCCCTAAG -ACGGAACATAGGAGTGTCGTTCAG -ACGGAACATAGGAGTGTCGCATAG -ACGGAACATAGGAGTGTCGACAAG -ACGGAACATAGGAGTGTCAAGCAG -ACGGAACATAGGAGTGTCCGTCAA -ACGGAACATAGGAGTGTCGCTGAA -ACGGAACATAGGAGTGTCAGTACG -ACGGAACATAGGAGTGTCATCCGA -ACGGAACATAGGAGTGTCATGGGA -ACGGAACATAGGAGTGTCGTGCAA -ACGGAACATAGGAGTGTCGAGGAA -ACGGAACATAGGAGTGTCCAGGTA -ACGGAACATAGGAGTGTCGACTCT -ACGGAACATAGGAGTGTCAGTCCT -ACGGAACATAGGAGTGTCTAAGCC -ACGGAACATAGGAGTGTCATAGCC -ACGGAACATAGGAGTGTCTAACCG -ACGGAACATAGGAGTGTCATGCCA -ACGGAACATAGGGGTGAAGGAAAC -ACGGAACATAGGGGTGAAAACACC -ACGGAACATAGGGGTGAAATCGAG -ACGGAACATAGGGGTGAACTCCTT -ACGGAACATAGGGGTGAACCTGTT -ACGGAACATAGGGGTGAACGGTTT -ACGGAACATAGGGGTGAAGTGGTT -ACGGAACATAGGGGTGAAGCCTTT -ACGGAACATAGGGGTGAAGGTCTT -ACGGAACATAGGGGTGAAACGCTT -ACGGAACATAGGGGTGAAAGCGTT -ACGGAACATAGGGGTGAATTCGTC -ACGGAACATAGGGGTGAATCTCTC -ACGGAACATAGGGGTGAATGGATC -ACGGAACATAGGGGTGAACACTTC -ACGGAACATAGGGGTGAAGTACTC -ACGGAACATAGGGGTGAAGATGTC -ACGGAACATAGGGGTGAAACAGTC -ACGGAACATAGGGGTGAATTGCTG -ACGGAACATAGGGGTGAATCCATG -ACGGAACATAGGGGTGAATGTGTG -ACGGAACATAGGGGTGAACTAGTG -ACGGAACATAGGGGTGAACATCTG -ACGGAACATAGGGGTGAAGAGTTG -ACGGAACATAGGGGTGAAAGACTG -ACGGAACATAGGGGTGAATCGGTA -ACGGAACATAGGGGTGAATGCCTA -ACGGAACATAGGGGTGAACCACTA -ACGGAACATAGGGGTGAAGGAGTA -ACGGAACATAGGGGTGAATCGTCT -ACGGAACATAGGGGTGAATGCACT -ACGGAACATAGGGGTGAACTGACT -ACGGAACATAGGGGTGAACAACCT -ACGGAACATAGGGGTGAAGCTACT -ACGGAACATAGGGGTGAAGGATCT -ACGGAACATAGGGGTGAAAAGGCT -ACGGAACATAGGGGTGAATCAACC -ACGGAACATAGGGGTGAATGTTCC -ACGGAACATAGGGGTGAAATTCCC -ACGGAACATAGGGGTGAATTCTCG -ACGGAACATAGGGGTGAATAGACG -ACGGAACATAGGGGTGAAGTAACG -ACGGAACATAGGGGTGAAACTTCG -ACGGAACATAGGGGTGAATACGCA -ACGGAACATAGGGGTGAACTTGCA -ACGGAACATAGGGGTGAACGAACA -ACGGAACATAGGGGTGAACAGTCA -ACGGAACATAGGGGTGAAGATCCA -ACGGAACATAGGGGTGAAACGACA -ACGGAACATAGGGGTGAAAGCTCA -ACGGAACATAGGGGTGAATCACGT -ACGGAACATAGGGGTGAACGTAGT -ACGGAACATAGGGGTGAAGTCAGT -ACGGAACATAGGGGTGAAGAAGGT -ACGGAACATAGGGGTGAAAACCGT -ACGGAACATAGGGGTGAATTGTGC -ACGGAACATAGGGGTGAACTAAGC -ACGGAACATAGGGGTGAAACTAGC -ACGGAACATAGGGGTGAAAGATGC -ACGGAACATAGGGGTGAATGAAGG -ACGGAACATAGGGGTGAACAATGG -ACGGAACATAGGGGTGAAATGAGG -ACGGAACATAGGGGTGAAAATGGG -ACGGAACATAGGGGTGAATCCTGA -ACGGAACATAGGGGTGAATAGCGA -ACGGAACATAGGGGTGAACACAGA -ACGGAACATAGGGGTGAAGCAAGA -ACGGAACATAGGGGTGAAGGTTGA -ACGGAACATAGGGGTGAATCCGAT -ACGGAACATAGGGGTGAATGGCAT -ACGGAACATAGGGGTGAACGAGAT -ACGGAACATAGGGGTGAATACCAC -ACGGAACATAGGGGTGAACAGAAC -ACGGAACATAGGGGTGAAGTCTAC -ACGGAACATAGGGGTGAAACGTAC -ACGGAACATAGGGGTGAAAGTGAC -ACGGAACATAGGGGTGAACTGTAG -ACGGAACATAGGGGTGAACCTAAG -ACGGAACATAGGGGTGAAGTTCAG -ACGGAACATAGGGGTGAAGCATAG -ACGGAACATAGGGGTGAAGACAAG -ACGGAACATAGGGGTGAAAAGCAG -ACGGAACATAGGGGTGAACGTCAA -ACGGAACATAGGGGTGAAGCTGAA -ACGGAACATAGGGGTGAAAGTACG -ACGGAACATAGGGGTGAAATCCGA -ACGGAACATAGGGGTGAAATGGGA -ACGGAACATAGGGGTGAAGTGCAA -ACGGAACATAGGGGTGAAGAGGAA -ACGGAACATAGGGGTGAACAGGTA -ACGGAACATAGGGGTGAAGACTCT -ACGGAACATAGGGGTGAAAGTCCT -ACGGAACATAGGGGTGAATAAGCC -ACGGAACATAGGGGTGAAATAGCC -ACGGAACATAGGGGTGAATAACCG -ACGGAACATAGGGGTGAAATGCCA -ACGGAACATAGGCGTAACGGAAAC -ACGGAACATAGGCGTAACAACACC -ACGGAACATAGGCGTAACATCGAG -ACGGAACATAGGCGTAACCTCCTT -ACGGAACATAGGCGTAACCCTGTT -ACGGAACATAGGCGTAACCGGTTT -ACGGAACATAGGCGTAACGTGGTT -ACGGAACATAGGCGTAACGCCTTT -ACGGAACATAGGCGTAACGGTCTT -ACGGAACATAGGCGTAACACGCTT -ACGGAACATAGGCGTAACAGCGTT -ACGGAACATAGGCGTAACTTCGTC -ACGGAACATAGGCGTAACTCTCTC -ACGGAACATAGGCGTAACTGGATC -ACGGAACATAGGCGTAACCACTTC -ACGGAACATAGGCGTAACGTACTC -ACGGAACATAGGCGTAACGATGTC -ACGGAACATAGGCGTAACACAGTC -ACGGAACATAGGCGTAACTTGCTG -ACGGAACATAGGCGTAACTCCATG -ACGGAACATAGGCGTAACTGTGTG -ACGGAACATAGGCGTAACCTAGTG -ACGGAACATAGGCGTAACCATCTG -ACGGAACATAGGCGTAACGAGTTG -ACGGAACATAGGCGTAACAGACTG -ACGGAACATAGGCGTAACTCGGTA -ACGGAACATAGGCGTAACTGCCTA -ACGGAACATAGGCGTAACCCACTA -ACGGAACATAGGCGTAACGGAGTA -ACGGAACATAGGCGTAACTCGTCT -ACGGAACATAGGCGTAACTGCACT -ACGGAACATAGGCGTAACCTGACT -ACGGAACATAGGCGTAACCAACCT -ACGGAACATAGGCGTAACGCTACT -ACGGAACATAGGCGTAACGGATCT -ACGGAACATAGGCGTAACAAGGCT -ACGGAACATAGGCGTAACTCAACC -ACGGAACATAGGCGTAACTGTTCC -ACGGAACATAGGCGTAACATTCCC -ACGGAACATAGGCGTAACTTCTCG -ACGGAACATAGGCGTAACTAGACG -ACGGAACATAGGCGTAACGTAACG -ACGGAACATAGGCGTAACACTTCG -ACGGAACATAGGCGTAACTACGCA -ACGGAACATAGGCGTAACCTTGCA -ACGGAACATAGGCGTAACCGAACA -ACGGAACATAGGCGTAACCAGTCA -ACGGAACATAGGCGTAACGATCCA -ACGGAACATAGGCGTAACACGACA -ACGGAACATAGGCGTAACAGCTCA -ACGGAACATAGGCGTAACTCACGT -ACGGAACATAGGCGTAACCGTAGT -ACGGAACATAGGCGTAACGTCAGT -ACGGAACATAGGCGTAACGAAGGT -ACGGAACATAGGCGTAACAACCGT -ACGGAACATAGGCGTAACTTGTGC -ACGGAACATAGGCGTAACCTAAGC -ACGGAACATAGGCGTAACACTAGC -ACGGAACATAGGCGTAACAGATGC -ACGGAACATAGGCGTAACTGAAGG -ACGGAACATAGGCGTAACCAATGG -ACGGAACATAGGCGTAACATGAGG -ACGGAACATAGGCGTAACAATGGG -ACGGAACATAGGCGTAACTCCTGA -ACGGAACATAGGCGTAACTAGCGA -ACGGAACATAGGCGTAACCACAGA -ACGGAACATAGGCGTAACGCAAGA -ACGGAACATAGGCGTAACGGTTGA -ACGGAACATAGGCGTAACTCCGAT -ACGGAACATAGGCGTAACTGGCAT -ACGGAACATAGGCGTAACCGAGAT -ACGGAACATAGGCGTAACTACCAC -ACGGAACATAGGCGTAACCAGAAC -ACGGAACATAGGCGTAACGTCTAC -ACGGAACATAGGCGTAACACGTAC -ACGGAACATAGGCGTAACAGTGAC -ACGGAACATAGGCGTAACCTGTAG -ACGGAACATAGGCGTAACCCTAAG -ACGGAACATAGGCGTAACGTTCAG -ACGGAACATAGGCGTAACGCATAG -ACGGAACATAGGCGTAACGACAAG -ACGGAACATAGGCGTAACAAGCAG -ACGGAACATAGGCGTAACCGTCAA -ACGGAACATAGGCGTAACGCTGAA -ACGGAACATAGGCGTAACAGTACG -ACGGAACATAGGCGTAACATCCGA -ACGGAACATAGGCGTAACATGGGA -ACGGAACATAGGCGTAACGTGCAA -ACGGAACATAGGCGTAACGAGGAA -ACGGAACATAGGCGTAACCAGGTA -ACGGAACATAGGCGTAACGACTCT -ACGGAACATAGGCGTAACAGTCCT -ACGGAACATAGGCGTAACTAAGCC -ACGGAACATAGGCGTAACATAGCC -ACGGAACATAGGCGTAACTAACCG -ACGGAACATAGGCGTAACATGCCA -ACGGAACATAGGTGCTTGGGAAAC -ACGGAACATAGGTGCTTGAACACC -ACGGAACATAGGTGCTTGATCGAG -ACGGAACATAGGTGCTTGCTCCTT -ACGGAACATAGGTGCTTGCCTGTT -ACGGAACATAGGTGCTTGCGGTTT -ACGGAACATAGGTGCTTGGTGGTT -ACGGAACATAGGTGCTTGGCCTTT -ACGGAACATAGGTGCTTGGGTCTT -ACGGAACATAGGTGCTTGACGCTT -ACGGAACATAGGTGCTTGAGCGTT -ACGGAACATAGGTGCTTGTTCGTC -ACGGAACATAGGTGCTTGTCTCTC -ACGGAACATAGGTGCTTGTGGATC -ACGGAACATAGGTGCTTGCACTTC -ACGGAACATAGGTGCTTGGTACTC -ACGGAACATAGGTGCTTGGATGTC -ACGGAACATAGGTGCTTGACAGTC -ACGGAACATAGGTGCTTGTTGCTG -ACGGAACATAGGTGCTTGTCCATG -ACGGAACATAGGTGCTTGTGTGTG -ACGGAACATAGGTGCTTGCTAGTG -ACGGAACATAGGTGCTTGCATCTG -ACGGAACATAGGTGCTTGGAGTTG -ACGGAACATAGGTGCTTGAGACTG -ACGGAACATAGGTGCTTGTCGGTA -ACGGAACATAGGTGCTTGTGCCTA -ACGGAACATAGGTGCTTGCCACTA -ACGGAACATAGGTGCTTGGGAGTA -ACGGAACATAGGTGCTTGTCGTCT -ACGGAACATAGGTGCTTGTGCACT -ACGGAACATAGGTGCTTGCTGACT -ACGGAACATAGGTGCTTGCAACCT -ACGGAACATAGGTGCTTGGCTACT -ACGGAACATAGGTGCTTGGGATCT -ACGGAACATAGGTGCTTGAAGGCT -ACGGAACATAGGTGCTTGTCAACC -ACGGAACATAGGTGCTTGTGTTCC -ACGGAACATAGGTGCTTGATTCCC -ACGGAACATAGGTGCTTGTTCTCG -ACGGAACATAGGTGCTTGTAGACG -ACGGAACATAGGTGCTTGGTAACG -ACGGAACATAGGTGCTTGACTTCG -ACGGAACATAGGTGCTTGTACGCA -ACGGAACATAGGTGCTTGCTTGCA -ACGGAACATAGGTGCTTGCGAACA -ACGGAACATAGGTGCTTGCAGTCA -ACGGAACATAGGTGCTTGGATCCA -ACGGAACATAGGTGCTTGACGACA -ACGGAACATAGGTGCTTGAGCTCA -ACGGAACATAGGTGCTTGTCACGT -ACGGAACATAGGTGCTTGCGTAGT -ACGGAACATAGGTGCTTGGTCAGT -ACGGAACATAGGTGCTTGGAAGGT -ACGGAACATAGGTGCTTGAACCGT -ACGGAACATAGGTGCTTGTTGTGC -ACGGAACATAGGTGCTTGCTAAGC -ACGGAACATAGGTGCTTGACTAGC -ACGGAACATAGGTGCTTGAGATGC -ACGGAACATAGGTGCTTGTGAAGG -ACGGAACATAGGTGCTTGCAATGG -ACGGAACATAGGTGCTTGATGAGG -ACGGAACATAGGTGCTTGAATGGG -ACGGAACATAGGTGCTTGTCCTGA -ACGGAACATAGGTGCTTGTAGCGA -ACGGAACATAGGTGCTTGCACAGA -ACGGAACATAGGTGCTTGGCAAGA -ACGGAACATAGGTGCTTGGGTTGA -ACGGAACATAGGTGCTTGTCCGAT -ACGGAACATAGGTGCTTGTGGCAT -ACGGAACATAGGTGCTTGCGAGAT -ACGGAACATAGGTGCTTGTACCAC -ACGGAACATAGGTGCTTGCAGAAC -ACGGAACATAGGTGCTTGGTCTAC -ACGGAACATAGGTGCTTGACGTAC -ACGGAACATAGGTGCTTGAGTGAC -ACGGAACATAGGTGCTTGCTGTAG -ACGGAACATAGGTGCTTGCCTAAG -ACGGAACATAGGTGCTTGGTTCAG -ACGGAACATAGGTGCTTGGCATAG -ACGGAACATAGGTGCTTGGACAAG -ACGGAACATAGGTGCTTGAAGCAG -ACGGAACATAGGTGCTTGCGTCAA -ACGGAACATAGGTGCTTGGCTGAA -ACGGAACATAGGTGCTTGAGTACG -ACGGAACATAGGTGCTTGATCCGA -ACGGAACATAGGTGCTTGATGGGA -ACGGAACATAGGTGCTTGGTGCAA -ACGGAACATAGGTGCTTGGAGGAA -ACGGAACATAGGTGCTTGCAGGTA -ACGGAACATAGGTGCTTGGACTCT -ACGGAACATAGGTGCTTGAGTCCT -ACGGAACATAGGTGCTTGTAAGCC -ACGGAACATAGGTGCTTGATAGCC -ACGGAACATAGGTGCTTGTAACCG -ACGGAACATAGGTGCTTGATGCCA -ACGGAACATAGGAGCCTAGGAAAC -ACGGAACATAGGAGCCTAAACACC -ACGGAACATAGGAGCCTAATCGAG -ACGGAACATAGGAGCCTACTCCTT -ACGGAACATAGGAGCCTACCTGTT -ACGGAACATAGGAGCCTACGGTTT -ACGGAACATAGGAGCCTAGTGGTT -ACGGAACATAGGAGCCTAGCCTTT -ACGGAACATAGGAGCCTAGGTCTT -ACGGAACATAGGAGCCTAACGCTT -ACGGAACATAGGAGCCTAAGCGTT -ACGGAACATAGGAGCCTATTCGTC -ACGGAACATAGGAGCCTATCTCTC -ACGGAACATAGGAGCCTATGGATC -ACGGAACATAGGAGCCTACACTTC -ACGGAACATAGGAGCCTAGTACTC -ACGGAACATAGGAGCCTAGATGTC -ACGGAACATAGGAGCCTAACAGTC -ACGGAACATAGGAGCCTATTGCTG -ACGGAACATAGGAGCCTATCCATG -ACGGAACATAGGAGCCTATGTGTG -ACGGAACATAGGAGCCTACTAGTG -ACGGAACATAGGAGCCTACATCTG -ACGGAACATAGGAGCCTAGAGTTG -ACGGAACATAGGAGCCTAAGACTG -ACGGAACATAGGAGCCTATCGGTA -ACGGAACATAGGAGCCTATGCCTA -ACGGAACATAGGAGCCTACCACTA -ACGGAACATAGGAGCCTAGGAGTA -ACGGAACATAGGAGCCTATCGTCT -ACGGAACATAGGAGCCTATGCACT -ACGGAACATAGGAGCCTACTGACT -ACGGAACATAGGAGCCTACAACCT -ACGGAACATAGGAGCCTAGCTACT -ACGGAACATAGGAGCCTAGGATCT -ACGGAACATAGGAGCCTAAAGGCT -ACGGAACATAGGAGCCTATCAACC -ACGGAACATAGGAGCCTATGTTCC -ACGGAACATAGGAGCCTAATTCCC -ACGGAACATAGGAGCCTATTCTCG -ACGGAACATAGGAGCCTATAGACG -ACGGAACATAGGAGCCTAGTAACG -ACGGAACATAGGAGCCTAACTTCG -ACGGAACATAGGAGCCTATACGCA -ACGGAACATAGGAGCCTACTTGCA -ACGGAACATAGGAGCCTACGAACA -ACGGAACATAGGAGCCTACAGTCA -ACGGAACATAGGAGCCTAGATCCA -ACGGAACATAGGAGCCTAACGACA -ACGGAACATAGGAGCCTAAGCTCA -ACGGAACATAGGAGCCTATCACGT -ACGGAACATAGGAGCCTACGTAGT -ACGGAACATAGGAGCCTAGTCAGT -ACGGAACATAGGAGCCTAGAAGGT -ACGGAACATAGGAGCCTAAACCGT -ACGGAACATAGGAGCCTATTGTGC -ACGGAACATAGGAGCCTACTAAGC -ACGGAACATAGGAGCCTAACTAGC -ACGGAACATAGGAGCCTAAGATGC -ACGGAACATAGGAGCCTATGAAGG -ACGGAACATAGGAGCCTACAATGG -ACGGAACATAGGAGCCTAATGAGG -ACGGAACATAGGAGCCTAAATGGG -ACGGAACATAGGAGCCTATCCTGA -ACGGAACATAGGAGCCTATAGCGA -ACGGAACATAGGAGCCTACACAGA -ACGGAACATAGGAGCCTAGCAAGA -ACGGAACATAGGAGCCTAGGTTGA -ACGGAACATAGGAGCCTATCCGAT -ACGGAACATAGGAGCCTATGGCAT -ACGGAACATAGGAGCCTACGAGAT -ACGGAACATAGGAGCCTATACCAC -ACGGAACATAGGAGCCTACAGAAC -ACGGAACATAGGAGCCTAGTCTAC -ACGGAACATAGGAGCCTAACGTAC -ACGGAACATAGGAGCCTAAGTGAC -ACGGAACATAGGAGCCTACTGTAG -ACGGAACATAGGAGCCTACCTAAG -ACGGAACATAGGAGCCTAGTTCAG -ACGGAACATAGGAGCCTAGCATAG -ACGGAACATAGGAGCCTAGACAAG -ACGGAACATAGGAGCCTAAAGCAG -ACGGAACATAGGAGCCTACGTCAA -ACGGAACATAGGAGCCTAGCTGAA -ACGGAACATAGGAGCCTAAGTACG -ACGGAACATAGGAGCCTAATCCGA -ACGGAACATAGGAGCCTAATGGGA -ACGGAACATAGGAGCCTAGTGCAA -ACGGAACATAGGAGCCTAGAGGAA -ACGGAACATAGGAGCCTACAGGTA -ACGGAACATAGGAGCCTAGACTCT -ACGGAACATAGGAGCCTAAGTCCT -ACGGAACATAGGAGCCTATAAGCC -ACGGAACATAGGAGCCTAATAGCC -ACGGAACATAGGAGCCTATAACCG -ACGGAACATAGGAGCCTAATGCCA -ACGGAACATAGGAGCACTGGAAAC -ACGGAACATAGGAGCACTAACACC -ACGGAACATAGGAGCACTATCGAG -ACGGAACATAGGAGCACTCTCCTT -ACGGAACATAGGAGCACTCCTGTT -ACGGAACATAGGAGCACTCGGTTT -ACGGAACATAGGAGCACTGTGGTT -ACGGAACATAGGAGCACTGCCTTT -ACGGAACATAGGAGCACTGGTCTT -ACGGAACATAGGAGCACTACGCTT -ACGGAACATAGGAGCACTAGCGTT -ACGGAACATAGGAGCACTTTCGTC -ACGGAACATAGGAGCACTTCTCTC -ACGGAACATAGGAGCACTTGGATC -ACGGAACATAGGAGCACTCACTTC -ACGGAACATAGGAGCACTGTACTC -ACGGAACATAGGAGCACTGATGTC -ACGGAACATAGGAGCACTACAGTC -ACGGAACATAGGAGCACTTTGCTG -ACGGAACATAGGAGCACTTCCATG -ACGGAACATAGGAGCACTTGTGTG -ACGGAACATAGGAGCACTCTAGTG -ACGGAACATAGGAGCACTCATCTG -ACGGAACATAGGAGCACTGAGTTG -ACGGAACATAGGAGCACTAGACTG -ACGGAACATAGGAGCACTTCGGTA -ACGGAACATAGGAGCACTTGCCTA -ACGGAACATAGGAGCACTCCACTA -ACGGAACATAGGAGCACTGGAGTA -ACGGAACATAGGAGCACTTCGTCT -ACGGAACATAGGAGCACTTGCACT -ACGGAACATAGGAGCACTCTGACT -ACGGAACATAGGAGCACTCAACCT -ACGGAACATAGGAGCACTGCTACT -ACGGAACATAGGAGCACTGGATCT -ACGGAACATAGGAGCACTAAGGCT -ACGGAACATAGGAGCACTTCAACC -ACGGAACATAGGAGCACTTGTTCC -ACGGAACATAGGAGCACTATTCCC -ACGGAACATAGGAGCACTTTCTCG -ACGGAACATAGGAGCACTTAGACG -ACGGAACATAGGAGCACTGTAACG -ACGGAACATAGGAGCACTACTTCG -ACGGAACATAGGAGCACTTACGCA -ACGGAACATAGGAGCACTCTTGCA -ACGGAACATAGGAGCACTCGAACA -ACGGAACATAGGAGCACTCAGTCA -ACGGAACATAGGAGCACTGATCCA -ACGGAACATAGGAGCACTACGACA -ACGGAACATAGGAGCACTAGCTCA -ACGGAACATAGGAGCACTTCACGT -ACGGAACATAGGAGCACTCGTAGT -ACGGAACATAGGAGCACTGTCAGT -ACGGAACATAGGAGCACTGAAGGT -ACGGAACATAGGAGCACTAACCGT -ACGGAACATAGGAGCACTTTGTGC -ACGGAACATAGGAGCACTCTAAGC -ACGGAACATAGGAGCACTACTAGC -ACGGAACATAGGAGCACTAGATGC -ACGGAACATAGGAGCACTTGAAGG -ACGGAACATAGGAGCACTCAATGG -ACGGAACATAGGAGCACTATGAGG -ACGGAACATAGGAGCACTAATGGG -ACGGAACATAGGAGCACTTCCTGA -ACGGAACATAGGAGCACTTAGCGA -ACGGAACATAGGAGCACTCACAGA -ACGGAACATAGGAGCACTGCAAGA -ACGGAACATAGGAGCACTGGTTGA -ACGGAACATAGGAGCACTTCCGAT -ACGGAACATAGGAGCACTTGGCAT -ACGGAACATAGGAGCACTCGAGAT -ACGGAACATAGGAGCACTTACCAC -ACGGAACATAGGAGCACTCAGAAC -ACGGAACATAGGAGCACTGTCTAC -ACGGAACATAGGAGCACTACGTAC -ACGGAACATAGGAGCACTAGTGAC -ACGGAACATAGGAGCACTCTGTAG -ACGGAACATAGGAGCACTCCTAAG -ACGGAACATAGGAGCACTGTTCAG -ACGGAACATAGGAGCACTGCATAG -ACGGAACATAGGAGCACTGACAAG -ACGGAACATAGGAGCACTAAGCAG -ACGGAACATAGGAGCACTCGTCAA -ACGGAACATAGGAGCACTGCTGAA -ACGGAACATAGGAGCACTAGTACG -ACGGAACATAGGAGCACTATCCGA -ACGGAACATAGGAGCACTATGGGA -ACGGAACATAGGAGCACTGTGCAA -ACGGAACATAGGAGCACTGAGGAA -ACGGAACATAGGAGCACTCAGGTA -ACGGAACATAGGAGCACTGACTCT -ACGGAACATAGGAGCACTAGTCCT -ACGGAACATAGGAGCACTTAAGCC -ACGGAACATAGGAGCACTATAGCC -ACGGAACATAGGAGCACTTAACCG -ACGGAACATAGGAGCACTATGCCA -ACGGAACATAGGTGCAGAGGAAAC -ACGGAACATAGGTGCAGAAACACC -ACGGAACATAGGTGCAGAATCGAG -ACGGAACATAGGTGCAGACTCCTT -ACGGAACATAGGTGCAGACCTGTT -ACGGAACATAGGTGCAGACGGTTT -ACGGAACATAGGTGCAGAGTGGTT -ACGGAACATAGGTGCAGAGCCTTT -ACGGAACATAGGTGCAGAGGTCTT -ACGGAACATAGGTGCAGAACGCTT -ACGGAACATAGGTGCAGAAGCGTT -ACGGAACATAGGTGCAGATTCGTC -ACGGAACATAGGTGCAGATCTCTC -ACGGAACATAGGTGCAGATGGATC -ACGGAACATAGGTGCAGACACTTC -ACGGAACATAGGTGCAGAGTACTC -ACGGAACATAGGTGCAGAGATGTC -ACGGAACATAGGTGCAGAACAGTC -ACGGAACATAGGTGCAGATTGCTG -ACGGAACATAGGTGCAGATCCATG -ACGGAACATAGGTGCAGATGTGTG -ACGGAACATAGGTGCAGACTAGTG -ACGGAACATAGGTGCAGACATCTG -ACGGAACATAGGTGCAGAGAGTTG -ACGGAACATAGGTGCAGAAGACTG -ACGGAACATAGGTGCAGATCGGTA -ACGGAACATAGGTGCAGATGCCTA -ACGGAACATAGGTGCAGACCACTA -ACGGAACATAGGTGCAGAGGAGTA -ACGGAACATAGGTGCAGATCGTCT -ACGGAACATAGGTGCAGATGCACT -ACGGAACATAGGTGCAGACTGACT -ACGGAACATAGGTGCAGACAACCT -ACGGAACATAGGTGCAGAGCTACT -ACGGAACATAGGTGCAGAGGATCT -ACGGAACATAGGTGCAGAAAGGCT -ACGGAACATAGGTGCAGATCAACC -ACGGAACATAGGTGCAGATGTTCC -ACGGAACATAGGTGCAGAATTCCC -ACGGAACATAGGTGCAGATTCTCG -ACGGAACATAGGTGCAGATAGACG -ACGGAACATAGGTGCAGAGTAACG -ACGGAACATAGGTGCAGAACTTCG -ACGGAACATAGGTGCAGATACGCA -ACGGAACATAGGTGCAGACTTGCA -ACGGAACATAGGTGCAGACGAACA -ACGGAACATAGGTGCAGACAGTCA -ACGGAACATAGGTGCAGAGATCCA -ACGGAACATAGGTGCAGAACGACA -ACGGAACATAGGTGCAGAAGCTCA -ACGGAACATAGGTGCAGATCACGT -ACGGAACATAGGTGCAGACGTAGT -ACGGAACATAGGTGCAGAGTCAGT -ACGGAACATAGGTGCAGAGAAGGT -ACGGAACATAGGTGCAGAAACCGT -ACGGAACATAGGTGCAGATTGTGC -ACGGAACATAGGTGCAGACTAAGC -ACGGAACATAGGTGCAGAACTAGC -ACGGAACATAGGTGCAGAAGATGC -ACGGAACATAGGTGCAGATGAAGG -ACGGAACATAGGTGCAGACAATGG -ACGGAACATAGGTGCAGAATGAGG -ACGGAACATAGGTGCAGAAATGGG -ACGGAACATAGGTGCAGATCCTGA -ACGGAACATAGGTGCAGATAGCGA -ACGGAACATAGGTGCAGACACAGA -ACGGAACATAGGTGCAGAGCAAGA -ACGGAACATAGGTGCAGAGGTTGA -ACGGAACATAGGTGCAGATCCGAT -ACGGAACATAGGTGCAGATGGCAT -ACGGAACATAGGTGCAGACGAGAT -ACGGAACATAGGTGCAGATACCAC -ACGGAACATAGGTGCAGACAGAAC -ACGGAACATAGGTGCAGAGTCTAC -ACGGAACATAGGTGCAGAACGTAC -ACGGAACATAGGTGCAGAAGTGAC -ACGGAACATAGGTGCAGACTGTAG -ACGGAACATAGGTGCAGACCTAAG -ACGGAACATAGGTGCAGAGTTCAG -ACGGAACATAGGTGCAGAGCATAG -ACGGAACATAGGTGCAGAGACAAG -ACGGAACATAGGTGCAGAAAGCAG -ACGGAACATAGGTGCAGACGTCAA -ACGGAACATAGGTGCAGAGCTGAA -ACGGAACATAGGTGCAGAAGTACG -ACGGAACATAGGTGCAGAATCCGA -ACGGAACATAGGTGCAGAATGGGA -ACGGAACATAGGTGCAGAGTGCAA -ACGGAACATAGGTGCAGAGAGGAA -ACGGAACATAGGTGCAGACAGGTA -ACGGAACATAGGTGCAGAGACTCT -ACGGAACATAGGTGCAGAAGTCCT -ACGGAACATAGGTGCAGATAAGCC -ACGGAACATAGGTGCAGAATAGCC -ACGGAACATAGGTGCAGATAACCG -ACGGAACATAGGTGCAGAATGCCA -ACGGAACATAGGAGGTGAGGAAAC -ACGGAACATAGGAGGTGAAACACC -ACGGAACATAGGAGGTGAATCGAG -ACGGAACATAGGAGGTGACTCCTT -ACGGAACATAGGAGGTGACCTGTT -ACGGAACATAGGAGGTGACGGTTT -ACGGAACATAGGAGGTGAGTGGTT -ACGGAACATAGGAGGTGAGCCTTT -ACGGAACATAGGAGGTGAGGTCTT -ACGGAACATAGGAGGTGAACGCTT -ACGGAACATAGGAGGTGAAGCGTT -ACGGAACATAGGAGGTGATTCGTC -ACGGAACATAGGAGGTGATCTCTC -ACGGAACATAGGAGGTGATGGATC -ACGGAACATAGGAGGTGACACTTC -ACGGAACATAGGAGGTGAGTACTC -ACGGAACATAGGAGGTGAGATGTC -ACGGAACATAGGAGGTGAACAGTC -ACGGAACATAGGAGGTGATTGCTG -ACGGAACATAGGAGGTGATCCATG -ACGGAACATAGGAGGTGATGTGTG -ACGGAACATAGGAGGTGACTAGTG -ACGGAACATAGGAGGTGACATCTG -ACGGAACATAGGAGGTGAGAGTTG -ACGGAACATAGGAGGTGAAGACTG -ACGGAACATAGGAGGTGATCGGTA -ACGGAACATAGGAGGTGATGCCTA -ACGGAACATAGGAGGTGACCACTA -ACGGAACATAGGAGGTGAGGAGTA -ACGGAACATAGGAGGTGATCGTCT -ACGGAACATAGGAGGTGATGCACT -ACGGAACATAGGAGGTGACTGACT -ACGGAACATAGGAGGTGACAACCT -ACGGAACATAGGAGGTGAGCTACT -ACGGAACATAGGAGGTGAGGATCT -ACGGAACATAGGAGGTGAAAGGCT -ACGGAACATAGGAGGTGATCAACC -ACGGAACATAGGAGGTGATGTTCC -ACGGAACATAGGAGGTGAATTCCC -ACGGAACATAGGAGGTGATTCTCG -ACGGAACATAGGAGGTGATAGACG -ACGGAACATAGGAGGTGAGTAACG -ACGGAACATAGGAGGTGAACTTCG -ACGGAACATAGGAGGTGATACGCA -ACGGAACATAGGAGGTGACTTGCA -ACGGAACATAGGAGGTGACGAACA -ACGGAACATAGGAGGTGACAGTCA -ACGGAACATAGGAGGTGAGATCCA -ACGGAACATAGGAGGTGAACGACA -ACGGAACATAGGAGGTGAAGCTCA -ACGGAACATAGGAGGTGATCACGT -ACGGAACATAGGAGGTGACGTAGT -ACGGAACATAGGAGGTGAGTCAGT -ACGGAACATAGGAGGTGAGAAGGT -ACGGAACATAGGAGGTGAAACCGT -ACGGAACATAGGAGGTGATTGTGC -ACGGAACATAGGAGGTGACTAAGC -ACGGAACATAGGAGGTGAACTAGC -ACGGAACATAGGAGGTGAAGATGC -ACGGAACATAGGAGGTGATGAAGG -ACGGAACATAGGAGGTGACAATGG -ACGGAACATAGGAGGTGAATGAGG -ACGGAACATAGGAGGTGAAATGGG -ACGGAACATAGGAGGTGATCCTGA -ACGGAACATAGGAGGTGATAGCGA -ACGGAACATAGGAGGTGACACAGA -ACGGAACATAGGAGGTGAGCAAGA -ACGGAACATAGGAGGTGAGGTTGA -ACGGAACATAGGAGGTGATCCGAT -ACGGAACATAGGAGGTGATGGCAT -ACGGAACATAGGAGGTGACGAGAT -ACGGAACATAGGAGGTGATACCAC -ACGGAACATAGGAGGTGACAGAAC -ACGGAACATAGGAGGTGAGTCTAC -ACGGAACATAGGAGGTGAACGTAC -ACGGAACATAGGAGGTGAAGTGAC -ACGGAACATAGGAGGTGACTGTAG -ACGGAACATAGGAGGTGACCTAAG -ACGGAACATAGGAGGTGAGTTCAG -ACGGAACATAGGAGGTGAGCATAG -ACGGAACATAGGAGGTGAGACAAG -ACGGAACATAGGAGGTGAAAGCAG -ACGGAACATAGGAGGTGACGTCAA -ACGGAACATAGGAGGTGAGCTGAA -ACGGAACATAGGAGGTGAAGTACG -ACGGAACATAGGAGGTGAATCCGA -ACGGAACATAGGAGGTGAATGGGA -ACGGAACATAGGAGGTGAGTGCAA -ACGGAACATAGGAGGTGAGAGGAA -ACGGAACATAGGAGGTGACAGGTA -ACGGAACATAGGAGGTGAGACTCT -ACGGAACATAGGAGGTGAAGTCCT -ACGGAACATAGGAGGTGATAAGCC -ACGGAACATAGGAGGTGAATAGCC -ACGGAACATAGGAGGTGATAACCG -ACGGAACATAGGAGGTGAATGCCA -ACGGAACATAGGTGGCAAGGAAAC -ACGGAACATAGGTGGCAAAACACC -ACGGAACATAGGTGGCAAATCGAG -ACGGAACATAGGTGGCAACTCCTT -ACGGAACATAGGTGGCAACCTGTT -ACGGAACATAGGTGGCAACGGTTT -ACGGAACATAGGTGGCAAGTGGTT -ACGGAACATAGGTGGCAAGCCTTT -ACGGAACATAGGTGGCAAGGTCTT -ACGGAACATAGGTGGCAAACGCTT -ACGGAACATAGGTGGCAAAGCGTT -ACGGAACATAGGTGGCAATTCGTC -ACGGAACATAGGTGGCAATCTCTC -ACGGAACATAGGTGGCAATGGATC -ACGGAACATAGGTGGCAACACTTC -ACGGAACATAGGTGGCAAGTACTC -ACGGAACATAGGTGGCAAGATGTC -ACGGAACATAGGTGGCAAACAGTC -ACGGAACATAGGTGGCAATTGCTG -ACGGAACATAGGTGGCAATCCATG -ACGGAACATAGGTGGCAATGTGTG -ACGGAACATAGGTGGCAACTAGTG -ACGGAACATAGGTGGCAACATCTG -ACGGAACATAGGTGGCAAGAGTTG -ACGGAACATAGGTGGCAAAGACTG -ACGGAACATAGGTGGCAATCGGTA -ACGGAACATAGGTGGCAATGCCTA -ACGGAACATAGGTGGCAACCACTA -ACGGAACATAGGTGGCAAGGAGTA -ACGGAACATAGGTGGCAATCGTCT -ACGGAACATAGGTGGCAATGCACT -ACGGAACATAGGTGGCAACTGACT -ACGGAACATAGGTGGCAACAACCT -ACGGAACATAGGTGGCAAGCTACT -ACGGAACATAGGTGGCAAGGATCT -ACGGAACATAGGTGGCAAAAGGCT -ACGGAACATAGGTGGCAATCAACC -ACGGAACATAGGTGGCAATGTTCC -ACGGAACATAGGTGGCAAATTCCC -ACGGAACATAGGTGGCAATTCTCG -ACGGAACATAGGTGGCAATAGACG -ACGGAACATAGGTGGCAAGTAACG -ACGGAACATAGGTGGCAAACTTCG -ACGGAACATAGGTGGCAATACGCA -ACGGAACATAGGTGGCAACTTGCA -ACGGAACATAGGTGGCAACGAACA -ACGGAACATAGGTGGCAACAGTCA -ACGGAACATAGGTGGCAAGATCCA -ACGGAACATAGGTGGCAAACGACA -ACGGAACATAGGTGGCAAAGCTCA -ACGGAACATAGGTGGCAATCACGT -ACGGAACATAGGTGGCAACGTAGT -ACGGAACATAGGTGGCAAGTCAGT -ACGGAACATAGGTGGCAAGAAGGT -ACGGAACATAGGTGGCAAAACCGT -ACGGAACATAGGTGGCAATTGTGC -ACGGAACATAGGTGGCAACTAAGC -ACGGAACATAGGTGGCAAACTAGC -ACGGAACATAGGTGGCAAAGATGC -ACGGAACATAGGTGGCAATGAAGG -ACGGAACATAGGTGGCAACAATGG -ACGGAACATAGGTGGCAAATGAGG -ACGGAACATAGGTGGCAAAATGGG -ACGGAACATAGGTGGCAATCCTGA -ACGGAACATAGGTGGCAATAGCGA -ACGGAACATAGGTGGCAACACAGA -ACGGAACATAGGTGGCAAGCAAGA -ACGGAACATAGGTGGCAAGGTTGA -ACGGAACATAGGTGGCAATCCGAT -ACGGAACATAGGTGGCAATGGCAT -ACGGAACATAGGTGGCAACGAGAT -ACGGAACATAGGTGGCAATACCAC -ACGGAACATAGGTGGCAACAGAAC -ACGGAACATAGGTGGCAAGTCTAC -ACGGAACATAGGTGGCAAACGTAC -ACGGAACATAGGTGGCAAAGTGAC -ACGGAACATAGGTGGCAACTGTAG -ACGGAACATAGGTGGCAACCTAAG -ACGGAACATAGGTGGCAAGTTCAG -ACGGAACATAGGTGGCAAGCATAG -ACGGAACATAGGTGGCAAGACAAG -ACGGAACATAGGTGGCAAAAGCAG -ACGGAACATAGGTGGCAACGTCAA -ACGGAACATAGGTGGCAAGCTGAA -ACGGAACATAGGTGGCAAAGTACG -ACGGAACATAGGTGGCAAATCCGA -ACGGAACATAGGTGGCAAATGGGA -ACGGAACATAGGTGGCAAGTGCAA -ACGGAACATAGGTGGCAAGAGGAA -ACGGAACATAGGTGGCAACAGGTA -ACGGAACATAGGTGGCAAGACTCT -ACGGAACATAGGTGGCAAAGTCCT -ACGGAACATAGGTGGCAATAAGCC -ACGGAACATAGGTGGCAAATAGCC -ACGGAACATAGGTGGCAATAACCG -ACGGAACATAGGTGGCAAATGCCA -ACGGAACATAGGAGGATGGGAAAC -ACGGAACATAGGAGGATGAACACC -ACGGAACATAGGAGGATGATCGAG -ACGGAACATAGGAGGATGCTCCTT -ACGGAACATAGGAGGATGCCTGTT -ACGGAACATAGGAGGATGCGGTTT -ACGGAACATAGGAGGATGGTGGTT -ACGGAACATAGGAGGATGGCCTTT -ACGGAACATAGGAGGATGGGTCTT -ACGGAACATAGGAGGATGACGCTT -ACGGAACATAGGAGGATGAGCGTT -ACGGAACATAGGAGGATGTTCGTC -ACGGAACATAGGAGGATGTCTCTC -ACGGAACATAGGAGGATGTGGATC -ACGGAACATAGGAGGATGCACTTC -ACGGAACATAGGAGGATGGTACTC -ACGGAACATAGGAGGATGGATGTC -ACGGAACATAGGAGGATGACAGTC -ACGGAACATAGGAGGATGTTGCTG -ACGGAACATAGGAGGATGTCCATG -ACGGAACATAGGAGGATGTGTGTG -ACGGAACATAGGAGGATGCTAGTG -ACGGAACATAGGAGGATGCATCTG -ACGGAACATAGGAGGATGGAGTTG -ACGGAACATAGGAGGATGAGACTG -ACGGAACATAGGAGGATGTCGGTA -ACGGAACATAGGAGGATGTGCCTA -ACGGAACATAGGAGGATGCCACTA -ACGGAACATAGGAGGATGGGAGTA -ACGGAACATAGGAGGATGTCGTCT -ACGGAACATAGGAGGATGTGCACT -ACGGAACATAGGAGGATGCTGACT -ACGGAACATAGGAGGATGCAACCT -ACGGAACATAGGAGGATGGCTACT -ACGGAACATAGGAGGATGGGATCT -ACGGAACATAGGAGGATGAAGGCT -ACGGAACATAGGAGGATGTCAACC -ACGGAACATAGGAGGATGTGTTCC -ACGGAACATAGGAGGATGATTCCC -ACGGAACATAGGAGGATGTTCTCG -ACGGAACATAGGAGGATGTAGACG -ACGGAACATAGGAGGATGGTAACG -ACGGAACATAGGAGGATGACTTCG -ACGGAACATAGGAGGATGTACGCA -ACGGAACATAGGAGGATGCTTGCA -ACGGAACATAGGAGGATGCGAACA -ACGGAACATAGGAGGATGCAGTCA -ACGGAACATAGGAGGATGGATCCA -ACGGAACATAGGAGGATGACGACA -ACGGAACATAGGAGGATGAGCTCA -ACGGAACATAGGAGGATGTCACGT -ACGGAACATAGGAGGATGCGTAGT -ACGGAACATAGGAGGATGGTCAGT -ACGGAACATAGGAGGATGGAAGGT -ACGGAACATAGGAGGATGAACCGT -ACGGAACATAGGAGGATGTTGTGC -ACGGAACATAGGAGGATGCTAAGC -ACGGAACATAGGAGGATGACTAGC -ACGGAACATAGGAGGATGAGATGC -ACGGAACATAGGAGGATGTGAAGG -ACGGAACATAGGAGGATGCAATGG -ACGGAACATAGGAGGATGATGAGG -ACGGAACATAGGAGGATGAATGGG -ACGGAACATAGGAGGATGTCCTGA -ACGGAACATAGGAGGATGTAGCGA -ACGGAACATAGGAGGATGCACAGA -ACGGAACATAGGAGGATGGCAAGA -ACGGAACATAGGAGGATGGGTTGA -ACGGAACATAGGAGGATGTCCGAT -ACGGAACATAGGAGGATGTGGCAT -ACGGAACATAGGAGGATGCGAGAT -ACGGAACATAGGAGGATGTACCAC -ACGGAACATAGGAGGATGCAGAAC -ACGGAACATAGGAGGATGGTCTAC -ACGGAACATAGGAGGATGACGTAC -ACGGAACATAGGAGGATGAGTGAC -ACGGAACATAGGAGGATGCTGTAG -ACGGAACATAGGAGGATGCCTAAG -ACGGAACATAGGAGGATGGTTCAG -ACGGAACATAGGAGGATGGCATAG -ACGGAACATAGGAGGATGGACAAG -ACGGAACATAGGAGGATGAAGCAG -ACGGAACATAGGAGGATGCGTCAA -ACGGAACATAGGAGGATGGCTGAA -ACGGAACATAGGAGGATGAGTACG -ACGGAACATAGGAGGATGATCCGA -ACGGAACATAGGAGGATGATGGGA -ACGGAACATAGGAGGATGGTGCAA -ACGGAACATAGGAGGATGGAGGAA -ACGGAACATAGGAGGATGCAGGTA -ACGGAACATAGGAGGATGGACTCT -ACGGAACATAGGAGGATGAGTCCT -ACGGAACATAGGAGGATGTAAGCC -ACGGAACATAGGAGGATGATAGCC -ACGGAACATAGGAGGATGTAACCG -ACGGAACATAGGAGGATGATGCCA -ACGGAACATAGGGGGAATGGAAAC -ACGGAACATAGGGGGAATAACACC -ACGGAACATAGGGGGAATATCGAG -ACGGAACATAGGGGGAATCTCCTT -ACGGAACATAGGGGGAATCCTGTT -ACGGAACATAGGGGGAATCGGTTT -ACGGAACATAGGGGGAATGTGGTT -ACGGAACATAGGGGGAATGCCTTT -ACGGAACATAGGGGGAATGGTCTT -ACGGAACATAGGGGGAATACGCTT -ACGGAACATAGGGGGAATAGCGTT -ACGGAACATAGGGGGAATTTCGTC -ACGGAACATAGGGGGAATTCTCTC -ACGGAACATAGGGGGAATTGGATC -ACGGAACATAGGGGGAATCACTTC -ACGGAACATAGGGGGAATGTACTC -ACGGAACATAGGGGGAATGATGTC -ACGGAACATAGGGGGAATACAGTC -ACGGAACATAGGGGGAATTTGCTG -ACGGAACATAGGGGGAATTCCATG -ACGGAACATAGGGGGAATTGTGTG -ACGGAACATAGGGGGAATCTAGTG -ACGGAACATAGGGGGAATCATCTG -ACGGAACATAGGGGGAATGAGTTG -ACGGAACATAGGGGGAATAGACTG -ACGGAACATAGGGGGAATTCGGTA -ACGGAACATAGGGGGAATTGCCTA -ACGGAACATAGGGGGAATCCACTA -ACGGAACATAGGGGGAATGGAGTA -ACGGAACATAGGGGGAATTCGTCT -ACGGAACATAGGGGGAATTGCACT -ACGGAACATAGGGGGAATCTGACT -ACGGAACATAGGGGGAATCAACCT -ACGGAACATAGGGGGAATGCTACT -ACGGAACATAGGGGGAATGGATCT -ACGGAACATAGGGGGAATAAGGCT -ACGGAACATAGGGGGAATTCAACC -ACGGAACATAGGGGGAATTGTTCC -ACGGAACATAGGGGGAATATTCCC -ACGGAACATAGGGGGAATTTCTCG -ACGGAACATAGGGGGAATTAGACG -ACGGAACATAGGGGGAATGTAACG -ACGGAACATAGGGGGAATACTTCG -ACGGAACATAGGGGGAATTACGCA -ACGGAACATAGGGGGAATCTTGCA -ACGGAACATAGGGGGAATCGAACA -ACGGAACATAGGGGGAATCAGTCA -ACGGAACATAGGGGGAATGATCCA -ACGGAACATAGGGGGAATACGACA -ACGGAACATAGGGGGAATAGCTCA -ACGGAACATAGGGGGAATTCACGT -ACGGAACATAGGGGGAATCGTAGT -ACGGAACATAGGGGGAATGTCAGT -ACGGAACATAGGGGGAATGAAGGT -ACGGAACATAGGGGGAATAACCGT -ACGGAACATAGGGGGAATTTGTGC -ACGGAACATAGGGGGAATCTAAGC -ACGGAACATAGGGGGAATACTAGC -ACGGAACATAGGGGGAATAGATGC -ACGGAACATAGGGGGAATTGAAGG -ACGGAACATAGGGGGAATCAATGG -ACGGAACATAGGGGGAATATGAGG -ACGGAACATAGGGGGAATAATGGG -ACGGAACATAGGGGGAATTCCTGA -ACGGAACATAGGGGGAATTAGCGA -ACGGAACATAGGGGGAATCACAGA -ACGGAACATAGGGGGAATGCAAGA -ACGGAACATAGGGGGAATGGTTGA -ACGGAACATAGGGGGAATTCCGAT -ACGGAACATAGGGGGAATTGGCAT -ACGGAACATAGGGGGAATCGAGAT -ACGGAACATAGGGGGAATTACCAC -ACGGAACATAGGGGGAATCAGAAC -ACGGAACATAGGGGGAATGTCTAC -ACGGAACATAGGGGGAATACGTAC -ACGGAACATAGGGGGAATAGTGAC -ACGGAACATAGGGGGAATCTGTAG -ACGGAACATAGGGGGAATCCTAAG -ACGGAACATAGGGGGAATGTTCAG -ACGGAACATAGGGGGAATGCATAG -ACGGAACATAGGGGGAATGACAAG -ACGGAACATAGGGGGAATAAGCAG -ACGGAACATAGGGGGAATCGTCAA -ACGGAACATAGGGGGAATGCTGAA -ACGGAACATAGGGGGAATAGTACG -ACGGAACATAGGGGGAATATCCGA -ACGGAACATAGGGGGAATATGGGA -ACGGAACATAGGGGGAATGTGCAA -ACGGAACATAGGGGGAATGAGGAA -ACGGAACATAGGGGGAATCAGGTA -ACGGAACATAGGGGGAATGACTCT -ACGGAACATAGGGGGAATAGTCCT -ACGGAACATAGGGGGAATTAAGCC -ACGGAACATAGGGGGAATATAGCC -ACGGAACATAGGGGGAATTAACCG -ACGGAACATAGGGGGAATATGCCA -ACGGAACATAGGTGATCCGGAAAC -ACGGAACATAGGTGATCCAACACC -ACGGAACATAGGTGATCCATCGAG -ACGGAACATAGGTGATCCCTCCTT -ACGGAACATAGGTGATCCCCTGTT -ACGGAACATAGGTGATCCCGGTTT -ACGGAACATAGGTGATCCGTGGTT -ACGGAACATAGGTGATCCGCCTTT -ACGGAACATAGGTGATCCGGTCTT -ACGGAACATAGGTGATCCACGCTT -ACGGAACATAGGTGATCCAGCGTT -ACGGAACATAGGTGATCCTTCGTC -ACGGAACATAGGTGATCCTCTCTC -ACGGAACATAGGTGATCCTGGATC -ACGGAACATAGGTGATCCCACTTC -ACGGAACATAGGTGATCCGTACTC -ACGGAACATAGGTGATCCGATGTC -ACGGAACATAGGTGATCCACAGTC -ACGGAACATAGGTGATCCTTGCTG -ACGGAACATAGGTGATCCTCCATG -ACGGAACATAGGTGATCCTGTGTG -ACGGAACATAGGTGATCCCTAGTG -ACGGAACATAGGTGATCCCATCTG -ACGGAACATAGGTGATCCGAGTTG -ACGGAACATAGGTGATCCAGACTG -ACGGAACATAGGTGATCCTCGGTA -ACGGAACATAGGTGATCCTGCCTA -ACGGAACATAGGTGATCCCCACTA -ACGGAACATAGGTGATCCGGAGTA -ACGGAACATAGGTGATCCTCGTCT -ACGGAACATAGGTGATCCTGCACT -ACGGAACATAGGTGATCCCTGACT -ACGGAACATAGGTGATCCCAACCT -ACGGAACATAGGTGATCCGCTACT -ACGGAACATAGGTGATCCGGATCT -ACGGAACATAGGTGATCCAAGGCT -ACGGAACATAGGTGATCCTCAACC -ACGGAACATAGGTGATCCTGTTCC -ACGGAACATAGGTGATCCATTCCC -ACGGAACATAGGTGATCCTTCTCG -ACGGAACATAGGTGATCCTAGACG -ACGGAACATAGGTGATCCGTAACG -ACGGAACATAGGTGATCCACTTCG -ACGGAACATAGGTGATCCTACGCA -ACGGAACATAGGTGATCCCTTGCA -ACGGAACATAGGTGATCCCGAACA -ACGGAACATAGGTGATCCCAGTCA -ACGGAACATAGGTGATCCGATCCA -ACGGAACATAGGTGATCCACGACA -ACGGAACATAGGTGATCCAGCTCA -ACGGAACATAGGTGATCCTCACGT -ACGGAACATAGGTGATCCCGTAGT -ACGGAACATAGGTGATCCGTCAGT -ACGGAACATAGGTGATCCGAAGGT -ACGGAACATAGGTGATCCAACCGT -ACGGAACATAGGTGATCCTTGTGC -ACGGAACATAGGTGATCCCTAAGC -ACGGAACATAGGTGATCCACTAGC -ACGGAACATAGGTGATCCAGATGC -ACGGAACATAGGTGATCCTGAAGG -ACGGAACATAGGTGATCCCAATGG -ACGGAACATAGGTGATCCATGAGG -ACGGAACATAGGTGATCCAATGGG -ACGGAACATAGGTGATCCTCCTGA -ACGGAACATAGGTGATCCTAGCGA -ACGGAACATAGGTGATCCCACAGA -ACGGAACATAGGTGATCCGCAAGA -ACGGAACATAGGTGATCCGGTTGA -ACGGAACATAGGTGATCCTCCGAT -ACGGAACATAGGTGATCCTGGCAT -ACGGAACATAGGTGATCCCGAGAT -ACGGAACATAGGTGATCCTACCAC -ACGGAACATAGGTGATCCCAGAAC -ACGGAACATAGGTGATCCGTCTAC -ACGGAACATAGGTGATCCACGTAC -ACGGAACATAGGTGATCCAGTGAC -ACGGAACATAGGTGATCCCTGTAG -ACGGAACATAGGTGATCCCCTAAG -ACGGAACATAGGTGATCCGTTCAG -ACGGAACATAGGTGATCCGCATAG -ACGGAACATAGGTGATCCGACAAG -ACGGAACATAGGTGATCCAAGCAG -ACGGAACATAGGTGATCCCGTCAA -ACGGAACATAGGTGATCCGCTGAA -ACGGAACATAGGTGATCCAGTACG -ACGGAACATAGGTGATCCATCCGA -ACGGAACATAGGTGATCCATGGGA -ACGGAACATAGGTGATCCGTGCAA -ACGGAACATAGGTGATCCGAGGAA -ACGGAACATAGGTGATCCCAGGTA -ACGGAACATAGGTGATCCGACTCT -ACGGAACATAGGTGATCCAGTCCT -ACGGAACATAGGTGATCCTAAGCC -ACGGAACATAGGTGATCCATAGCC -ACGGAACATAGGTGATCCTAACCG -ACGGAACATAGGTGATCCATGCCA -ACGGAACATAGGCGATAGGGAAAC -ACGGAACATAGGCGATAGAACACC -ACGGAACATAGGCGATAGATCGAG -ACGGAACATAGGCGATAGCTCCTT -ACGGAACATAGGCGATAGCCTGTT -ACGGAACATAGGCGATAGCGGTTT -ACGGAACATAGGCGATAGGTGGTT -ACGGAACATAGGCGATAGGCCTTT -ACGGAACATAGGCGATAGGGTCTT -ACGGAACATAGGCGATAGACGCTT -ACGGAACATAGGCGATAGAGCGTT -ACGGAACATAGGCGATAGTTCGTC -ACGGAACATAGGCGATAGTCTCTC -ACGGAACATAGGCGATAGTGGATC -ACGGAACATAGGCGATAGCACTTC -ACGGAACATAGGCGATAGGTACTC -ACGGAACATAGGCGATAGGATGTC -ACGGAACATAGGCGATAGACAGTC -ACGGAACATAGGCGATAGTTGCTG -ACGGAACATAGGCGATAGTCCATG -ACGGAACATAGGCGATAGTGTGTG -ACGGAACATAGGCGATAGCTAGTG -ACGGAACATAGGCGATAGCATCTG -ACGGAACATAGGCGATAGGAGTTG -ACGGAACATAGGCGATAGAGACTG -ACGGAACATAGGCGATAGTCGGTA -ACGGAACATAGGCGATAGTGCCTA -ACGGAACATAGGCGATAGCCACTA -ACGGAACATAGGCGATAGGGAGTA -ACGGAACATAGGCGATAGTCGTCT -ACGGAACATAGGCGATAGTGCACT -ACGGAACATAGGCGATAGCTGACT -ACGGAACATAGGCGATAGCAACCT -ACGGAACATAGGCGATAGGCTACT -ACGGAACATAGGCGATAGGGATCT -ACGGAACATAGGCGATAGAAGGCT -ACGGAACATAGGCGATAGTCAACC -ACGGAACATAGGCGATAGTGTTCC -ACGGAACATAGGCGATAGATTCCC -ACGGAACATAGGCGATAGTTCTCG -ACGGAACATAGGCGATAGTAGACG -ACGGAACATAGGCGATAGGTAACG -ACGGAACATAGGCGATAGACTTCG -ACGGAACATAGGCGATAGTACGCA -ACGGAACATAGGCGATAGCTTGCA -ACGGAACATAGGCGATAGCGAACA -ACGGAACATAGGCGATAGCAGTCA -ACGGAACATAGGCGATAGGATCCA -ACGGAACATAGGCGATAGACGACA -ACGGAACATAGGCGATAGAGCTCA -ACGGAACATAGGCGATAGTCACGT -ACGGAACATAGGCGATAGCGTAGT -ACGGAACATAGGCGATAGGTCAGT -ACGGAACATAGGCGATAGGAAGGT -ACGGAACATAGGCGATAGAACCGT -ACGGAACATAGGCGATAGTTGTGC -ACGGAACATAGGCGATAGCTAAGC -ACGGAACATAGGCGATAGACTAGC -ACGGAACATAGGCGATAGAGATGC -ACGGAACATAGGCGATAGTGAAGG -ACGGAACATAGGCGATAGCAATGG -ACGGAACATAGGCGATAGATGAGG -ACGGAACATAGGCGATAGAATGGG -ACGGAACATAGGCGATAGTCCTGA -ACGGAACATAGGCGATAGTAGCGA -ACGGAACATAGGCGATAGCACAGA -ACGGAACATAGGCGATAGGCAAGA -ACGGAACATAGGCGATAGGGTTGA -ACGGAACATAGGCGATAGTCCGAT -ACGGAACATAGGCGATAGTGGCAT -ACGGAACATAGGCGATAGCGAGAT -ACGGAACATAGGCGATAGTACCAC -ACGGAACATAGGCGATAGCAGAAC -ACGGAACATAGGCGATAGGTCTAC -ACGGAACATAGGCGATAGACGTAC -ACGGAACATAGGCGATAGAGTGAC -ACGGAACATAGGCGATAGCTGTAG -ACGGAACATAGGCGATAGCCTAAG -ACGGAACATAGGCGATAGGTTCAG -ACGGAACATAGGCGATAGGCATAG -ACGGAACATAGGCGATAGGACAAG -ACGGAACATAGGCGATAGAAGCAG -ACGGAACATAGGCGATAGCGTCAA -ACGGAACATAGGCGATAGGCTGAA -ACGGAACATAGGCGATAGAGTACG -ACGGAACATAGGCGATAGATCCGA -ACGGAACATAGGCGATAGATGGGA -ACGGAACATAGGCGATAGGTGCAA -ACGGAACATAGGCGATAGGAGGAA -ACGGAACATAGGCGATAGCAGGTA -ACGGAACATAGGCGATAGGACTCT -ACGGAACATAGGCGATAGAGTCCT -ACGGAACATAGGCGATAGTAAGCC -ACGGAACATAGGCGATAGATAGCC -ACGGAACATAGGCGATAGTAACCG -ACGGAACATAGGCGATAGATGCCA -ACGGAACATAGGAGACACGGAAAC -ACGGAACATAGGAGACACAACACC -ACGGAACATAGGAGACACATCGAG -ACGGAACATAGGAGACACCTCCTT -ACGGAACATAGGAGACACCCTGTT -ACGGAACATAGGAGACACCGGTTT -ACGGAACATAGGAGACACGTGGTT -ACGGAACATAGGAGACACGCCTTT -ACGGAACATAGGAGACACGGTCTT -ACGGAACATAGGAGACACACGCTT -ACGGAACATAGGAGACACAGCGTT -ACGGAACATAGGAGACACTTCGTC -ACGGAACATAGGAGACACTCTCTC -ACGGAACATAGGAGACACTGGATC -ACGGAACATAGGAGACACCACTTC -ACGGAACATAGGAGACACGTACTC -ACGGAACATAGGAGACACGATGTC -ACGGAACATAGGAGACACACAGTC -ACGGAACATAGGAGACACTTGCTG -ACGGAACATAGGAGACACTCCATG -ACGGAACATAGGAGACACTGTGTG -ACGGAACATAGGAGACACCTAGTG -ACGGAACATAGGAGACACCATCTG -ACGGAACATAGGAGACACGAGTTG -ACGGAACATAGGAGACACAGACTG -ACGGAACATAGGAGACACTCGGTA -ACGGAACATAGGAGACACTGCCTA -ACGGAACATAGGAGACACCCACTA -ACGGAACATAGGAGACACGGAGTA -ACGGAACATAGGAGACACTCGTCT -ACGGAACATAGGAGACACTGCACT -ACGGAACATAGGAGACACCTGACT -ACGGAACATAGGAGACACCAACCT -ACGGAACATAGGAGACACGCTACT -ACGGAACATAGGAGACACGGATCT -ACGGAACATAGGAGACACAAGGCT -ACGGAACATAGGAGACACTCAACC -ACGGAACATAGGAGACACTGTTCC -ACGGAACATAGGAGACACATTCCC -ACGGAACATAGGAGACACTTCTCG -ACGGAACATAGGAGACACTAGACG -ACGGAACATAGGAGACACGTAACG -ACGGAACATAGGAGACACACTTCG -ACGGAACATAGGAGACACTACGCA -ACGGAACATAGGAGACACCTTGCA -ACGGAACATAGGAGACACCGAACA -ACGGAACATAGGAGACACCAGTCA -ACGGAACATAGGAGACACGATCCA -ACGGAACATAGGAGACACACGACA -ACGGAACATAGGAGACACAGCTCA -ACGGAACATAGGAGACACTCACGT -ACGGAACATAGGAGACACCGTAGT -ACGGAACATAGGAGACACGTCAGT -ACGGAACATAGGAGACACGAAGGT -ACGGAACATAGGAGACACAACCGT -ACGGAACATAGGAGACACTTGTGC -ACGGAACATAGGAGACACCTAAGC -ACGGAACATAGGAGACACACTAGC -ACGGAACATAGGAGACACAGATGC -ACGGAACATAGGAGACACTGAAGG -ACGGAACATAGGAGACACCAATGG -ACGGAACATAGGAGACACATGAGG -ACGGAACATAGGAGACACAATGGG -ACGGAACATAGGAGACACTCCTGA -ACGGAACATAGGAGACACTAGCGA -ACGGAACATAGGAGACACCACAGA -ACGGAACATAGGAGACACGCAAGA -ACGGAACATAGGAGACACGGTTGA -ACGGAACATAGGAGACACTCCGAT -ACGGAACATAGGAGACACTGGCAT -ACGGAACATAGGAGACACCGAGAT -ACGGAACATAGGAGACACTACCAC -ACGGAACATAGGAGACACCAGAAC -ACGGAACATAGGAGACACGTCTAC -ACGGAACATAGGAGACACACGTAC -ACGGAACATAGGAGACACAGTGAC -ACGGAACATAGGAGACACCTGTAG -ACGGAACATAGGAGACACCCTAAG -ACGGAACATAGGAGACACGTTCAG -ACGGAACATAGGAGACACGCATAG -ACGGAACATAGGAGACACGACAAG -ACGGAACATAGGAGACACAAGCAG -ACGGAACATAGGAGACACCGTCAA -ACGGAACATAGGAGACACGCTGAA -ACGGAACATAGGAGACACAGTACG -ACGGAACATAGGAGACACATCCGA -ACGGAACATAGGAGACACATGGGA -ACGGAACATAGGAGACACGTGCAA -ACGGAACATAGGAGACACGAGGAA -ACGGAACATAGGAGACACCAGGTA -ACGGAACATAGGAGACACGACTCT -ACGGAACATAGGAGACACAGTCCT -ACGGAACATAGGAGACACTAAGCC -ACGGAACATAGGAGACACATAGCC -ACGGAACATAGGAGACACTAACCG -ACGGAACATAGGAGACACATGCCA -ACGGAACATAGGAGAGCAGGAAAC -ACGGAACATAGGAGAGCAAACACC -ACGGAACATAGGAGAGCAATCGAG -ACGGAACATAGGAGAGCACTCCTT -ACGGAACATAGGAGAGCACCTGTT -ACGGAACATAGGAGAGCACGGTTT -ACGGAACATAGGAGAGCAGTGGTT -ACGGAACATAGGAGAGCAGCCTTT -ACGGAACATAGGAGAGCAGGTCTT -ACGGAACATAGGAGAGCAACGCTT -ACGGAACATAGGAGAGCAAGCGTT -ACGGAACATAGGAGAGCATTCGTC -ACGGAACATAGGAGAGCATCTCTC -ACGGAACATAGGAGAGCATGGATC -ACGGAACATAGGAGAGCACACTTC -ACGGAACATAGGAGAGCAGTACTC -ACGGAACATAGGAGAGCAGATGTC -ACGGAACATAGGAGAGCAACAGTC -ACGGAACATAGGAGAGCATTGCTG -ACGGAACATAGGAGAGCATCCATG -ACGGAACATAGGAGAGCATGTGTG -ACGGAACATAGGAGAGCACTAGTG -ACGGAACATAGGAGAGCACATCTG -ACGGAACATAGGAGAGCAGAGTTG -ACGGAACATAGGAGAGCAAGACTG -ACGGAACATAGGAGAGCATCGGTA -ACGGAACATAGGAGAGCATGCCTA -ACGGAACATAGGAGAGCACCACTA -ACGGAACATAGGAGAGCAGGAGTA -ACGGAACATAGGAGAGCATCGTCT -ACGGAACATAGGAGAGCATGCACT -ACGGAACATAGGAGAGCACTGACT -ACGGAACATAGGAGAGCACAACCT -ACGGAACATAGGAGAGCAGCTACT -ACGGAACATAGGAGAGCAGGATCT -ACGGAACATAGGAGAGCAAAGGCT -ACGGAACATAGGAGAGCATCAACC -ACGGAACATAGGAGAGCATGTTCC -ACGGAACATAGGAGAGCAATTCCC -ACGGAACATAGGAGAGCATTCTCG -ACGGAACATAGGAGAGCATAGACG -ACGGAACATAGGAGAGCAGTAACG -ACGGAACATAGGAGAGCAACTTCG -ACGGAACATAGGAGAGCATACGCA -ACGGAACATAGGAGAGCACTTGCA -ACGGAACATAGGAGAGCACGAACA -ACGGAACATAGGAGAGCACAGTCA -ACGGAACATAGGAGAGCAGATCCA -ACGGAACATAGGAGAGCAACGACA -ACGGAACATAGGAGAGCAAGCTCA -ACGGAACATAGGAGAGCATCACGT -ACGGAACATAGGAGAGCACGTAGT -ACGGAACATAGGAGAGCAGTCAGT -ACGGAACATAGGAGAGCAGAAGGT -ACGGAACATAGGAGAGCAAACCGT -ACGGAACATAGGAGAGCATTGTGC -ACGGAACATAGGAGAGCACTAAGC -ACGGAACATAGGAGAGCAACTAGC -ACGGAACATAGGAGAGCAAGATGC -ACGGAACATAGGAGAGCATGAAGG -ACGGAACATAGGAGAGCACAATGG -ACGGAACATAGGAGAGCAATGAGG -ACGGAACATAGGAGAGCAAATGGG -ACGGAACATAGGAGAGCATCCTGA -ACGGAACATAGGAGAGCATAGCGA -ACGGAACATAGGAGAGCACACAGA -ACGGAACATAGGAGAGCAGCAAGA -ACGGAACATAGGAGAGCAGGTTGA -ACGGAACATAGGAGAGCATCCGAT -ACGGAACATAGGAGAGCATGGCAT -ACGGAACATAGGAGAGCACGAGAT -ACGGAACATAGGAGAGCATACCAC -ACGGAACATAGGAGAGCACAGAAC -ACGGAACATAGGAGAGCAGTCTAC -ACGGAACATAGGAGAGCAACGTAC -ACGGAACATAGGAGAGCAAGTGAC -ACGGAACATAGGAGAGCACTGTAG -ACGGAACATAGGAGAGCACCTAAG -ACGGAACATAGGAGAGCAGTTCAG -ACGGAACATAGGAGAGCAGCATAG -ACGGAACATAGGAGAGCAGACAAG -ACGGAACATAGGAGAGCAAAGCAG -ACGGAACATAGGAGAGCACGTCAA -ACGGAACATAGGAGAGCAGCTGAA -ACGGAACATAGGAGAGCAAGTACG -ACGGAACATAGGAGAGCAATCCGA -ACGGAACATAGGAGAGCAATGGGA -ACGGAACATAGGAGAGCAGTGCAA -ACGGAACATAGGAGAGCAGAGGAA -ACGGAACATAGGAGAGCACAGGTA -ACGGAACATAGGAGAGCAGACTCT -ACGGAACATAGGAGAGCAAGTCCT -ACGGAACATAGGAGAGCATAAGCC -ACGGAACATAGGAGAGCAATAGCC -ACGGAACATAGGAGAGCATAACCG -ACGGAACATAGGAGAGCAATGCCA -ACGGAACATAGGTGAGGTGGAAAC -ACGGAACATAGGTGAGGTAACACC -ACGGAACATAGGTGAGGTATCGAG -ACGGAACATAGGTGAGGTCTCCTT -ACGGAACATAGGTGAGGTCCTGTT -ACGGAACATAGGTGAGGTCGGTTT -ACGGAACATAGGTGAGGTGTGGTT -ACGGAACATAGGTGAGGTGCCTTT -ACGGAACATAGGTGAGGTGGTCTT -ACGGAACATAGGTGAGGTACGCTT -ACGGAACATAGGTGAGGTAGCGTT -ACGGAACATAGGTGAGGTTTCGTC -ACGGAACATAGGTGAGGTTCTCTC -ACGGAACATAGGTGAGGTTGGATC -ACGGAACATAGGTGAGGTCACTTC -ACGGAACATAGGTGAGGTGTACTC -ACGGAACATAGGTGAGGTGATGTC -ACGGAACATAGGTGAGGTACAGTC -ACGGAACATAGGTGAGGTTTGCTG -ACGGAACATAGGTGAGGTTCCATG -ACGGAACATAGGTGAGGTTGTGTG -ACGGAACATAGGTGAGGTCTAGTG -ACGGAACATAGGTGAGGTCATCTG -ACGGAACATAGGTGAGGTGAGTTG -ACGGAACATAGGTGAGGTAGACTG -ACGGAACATAGGTGAGGTTCGGTA -ACGGAACATAGGTGAGGTTGCCTA -ACGGAACATAGGTGAGGTCCACTA -ACGGAACATAGGTGAGGTGGAGTA -ACGGAACATAGGTGAGGTTCGTCT -ACGGAACATAGGTGAGGTTGCACT -ACGGAACATAGGTGAGGTCTGACT -ACGGAACATAGGTGAGGTCAACCT -ACGGAACATAGGTGAGGTGCTACT -ACGGAACATAGGTGAGGTGGATCT -ACGGAACATAGGTGAGGTAAGGCT -ACGGAACATAGGTGAGGTTCAACC -ACGGAACATAGGTGAGGTTGTTCC -ACGGAACATAGGTGAGGTATTCCC -ACGGAACATAGGTGAGGTTTCTCG -ACGGAACATAGGTGAGGTTAGACG -ACGGAACATAGGTGAGGTGTAACG -ACGGAACATAGGTGAGGTACTTCG -ACGGAACATAGGTGAGGTTACGCA -ACGGAACATAGGTGAGGTCTTGCA -ACGGAACATAGGTGAGGTCGAACA -ACGGAACATAGGTGAGGTCAGTCA -ACGGAACATAGGTGAGGTGATCCA -ACGGAACATAGGTGAGGTACGACA -ACGGAACATAGGTGAGGTAGCTCA -ACGGAACATAGGTGAGGTTCACGT -ACGGAACATAGGTGAGGTCGTAGT -ACGGAACATAGGTGAGGTGTCAGT -ACGGAACATAGGTGAGGTGAAGGT -ACGGAACATAGGTGAGGTAACCGT -ACGGAACATAGGTGAGGTTTGTGC -ACGGAACATAGGTGAGGTCTAAGC -ACGGAACATAGGTGAGGTACTAGC -ACGGAACATAGGTGAGGTAGATGC -ACGGAACATAGGTGAGGTTGAAGG -ACGGAACATAGGTGAGGTCAATGG -ACGGAACATAGGTGAGGTATGAGG -ACGGAACATAGGTGAGGTAATGGG -ACGGAACATAGGTGAGGTTCCTGA -ACGGAACATAGGTGAGGTTAGCGA -ACGGAACATAGGTGAGGTCACAGA -ACGGAACATAGGTGAGGTGCAAGA -ACGGAACATAGGTGAGGTGGTTGA -ACGGAACATAGGTGAGGTTCCGAT -ACGGAACATAGGTGAGGTTGGCAT -ACGGAACATAGGTGAGGTCGAGAT -ACGGAACATAGGTGAGGTTACCAC -ACGGAACATAGGTGAGGTCAGAAC -ACGGAACATAGGTGAGGTGTCTAC -ACGGAACATAGGTGAGGTACGTAC -ACGGAACATAGGTGAGGTAGTGAC -ACGGAACATAGGTGAGGTCTGTAG -ACGGAACATAGGTGAGGTCCTAAG -ACGGAACATAGGTGAGGTGTTCAG -ACGGAACATAGGTGAGGTGCATAG -ACGGAACATAGGTGAGGTGACAAG -ACGGAACATAGGTGAGGTAAGCAG -ACGGAACATAGGTGAGGTCGTCAA -ACGGAACATAGGTGAGGTGCTGAA -ACGGAACATAGGTGAGGTAGTACG -ACGGAACATAGGTGAGGTATCCGA -ACGGAACATAGGTGAGGTATGGGA -ACGGAACATAGGTGAGGTGTGCAA -ACGGAACATAGGTGAGGTGAGGAA -ACGGAACATAGGTGAGGTCAGGTA -ACGGAACATAGGTGAGGTGACTCT -ACGGAACATAGGTGAGGTAGTCCT -ACGGAACATAGGTGAGGTTAAGCC -ACGGAACATAGGTGAGGTATAGCC -ACGGAACATAGGTGAGGTTAACCG -ACGGAACATAGGTGAGGTATGCCA -ACGGAACATAGGGATTCCGGAAAC -ACGGAACATAGGGATTCCAACACC -ACGGAACATAGGGATTCCATCGAG -ACGGAACATAGGGATTCCCTCCTT -ACGGAACATAGGGATTCCCCTGTT -ACGGAACATAGGGATTCCCGGTTT -ACGGAACATAGGGATTCCGTGGTT -ACGGAACATAGGGATTCCGCCTTT -ACGGAACATAGGGATTCCGGTCTT -ACGGAACATAGGGATTCCACGCTT -ACGGAACATAGGGATTCCAGCGTT -ACGGAACATAGGGATTCCTTCGTC -ACGGAACATAGGGATTCCTCTCTC -ACGGAACATAGGGATTCCTGGATC -ACGGAACATAGGGATTCCCACTTC -ACGGAACATAGGGATTCCGTACTC -ACGGAACATAGGGATTCCGATGTC -ACGGAACATAGGGATTCCACAGTC -ACGGAACATAGGGATTCCTTGCTG -ACGGAACATAGGGATTCCTCCATG -ACGGAACATAGGGATTCCTGTGTG -ACGGAACATAGGGATTCCCTAGTG -ACGGAACATAGGGATTCCCATCTG -ACGGAACATAGGGATTCCGAGTTG -ACGGAACATAGGGATTCCAGACTG -ACGGAACATAGGGATTCCTCGGTA -ACGGAACATAGGGATTCCTGCCTA -ACGGAACATAGGGATTCCCCACTA -ACGGAACATAGGGATTCCGGAGTA -ACGGAACATAGGGATTCCTCGTCT -ACGGAACATAGGGATTCCTGCACT -ACGGAACATAGGGATTCCCTGACT -ACGGAACATAGGGATTCCCAACCT -ACGGAACATAGGGATTCCGCTACT -ACGGAACATAGGGATTCCGGATCT -ACGGAACATAGGGATTCCAAGGCT -ACGGAACATAGGGATTCCTCAACC -ACGGAACATAGGGATTCCTGTTCC -ACGGAACATAGGGATTCCATTCCC -ACGGAACATAGGGATTCCTTCTCG -ACGGAACATAGGGATTCCTAGACG -ACGGAACATAGGGATTCCGTAACG -ACGGAACATAGGGATTCCACTTCG -ACGGAACATAGGGATTCCTACGCA -ACGGAACATAGGGATTCCCTTGCA -ACGGAACATAGGGATTCCCGAACA -ACGGAACATAGGGATTCCCAGTCA -ACGGAACATAGGGATTCCGATCCA -ACGGAACATAGGGATTCCACGACA -ACGGAACATAGGGATTCCAGCTCA -ACGGAACATAGGGATTCCTCACGT -ACGGAACATAGGGATTCCCGTAGT -ACGGAACATAGGGATTCCGTCAGT -ACGGAACATAGGGATTCCGAAGGT -ACGGAACATAGGGATTCCAACCGT -ACGGAACATAGGGATTCCTTGTGC -ACGGAACATAGGGATTCCCTAAGC -ACGGAACATAGGGATTCCACTAGC -ACGGAACATAGGGATTCCAGATGC -ACGGAACATAGGGATTCCTGAAGG -ACGGAACATAGGGATTCCCAATGG -ACGGAACATAGGGATTCCATGAGG -ACGGAACATAGGGATTCCAATGGG -ACGGAACATAGGGATTCCTCCTGA -ACGGAACATAGGGATTCCTAGCGA -ACGGAACATAGGGATTCCCACAGA -ACGGAACATAGGGATTCCGCAAGA -ACGGAACATAGGGATTCCGGTTGA -ACGGAACATAGGGATTCCTCCGAT -ACGGAACATAGGGATTCCTGGCAT -ACGGAACATAGGGATTCCCGAGAT -ACGGAACATAGGGATTCCTACCAC -ACGGAACATAGGGATTCCCAGAAC -ACGGAACATAGGGATTCCGTCTAC -ACGGAACATAGGGATTCCACGTAC -ACGGAACATAGGGATTCCAGTGAC -ACGGAACATAGGGATTCCCTGTAG -ACGGAACATAGGGATTCCCCTAAG -ACGGAACATAGGGATTCCGTTCAG -ACGGAACATAGGGATTCCGCATAG -ACGGAACATAGGGATTCCGACAAG -ACGGAACATAGGGATTCCAAGCAG -ACGGAACATAGGGATTCCCGTCAA -ACGGAACATAGGGATTCCGCTGAA -ACGGAACATAGGGATTCCAGTACG -ACGGAACATAGGGATTCCATCCGA -ACGGAACATAGGGATTCCATGGGA -ACGGAACATAGGGATTCCGTGCAA -ACGGAACATAGGGATTCCGAGGAA -ACGGAACATAGGGATTCCCAGGTA -ACGGAACATAGGGATTCCGACTCT -ACGGAACATAGGGATTCCAGTCCT -ACGGAACATAGGGATTCCTAAGCC -ACGGAACATAGGGATTCCATAGCC -ACGGAACATAGGGATTCCTAACCG -ACGGAACATAGGGATTCCATGCCA -ACGGAACATAGGCATTGGGGAAAC -ACGGAACATAGGCATTGGAACACC -ACGGAACATAGGCATTGGATCGAG -ACGGAACATAGGCATTGGCTCCTT -ACGGAACATAGGCATTGGCCTGTT -ACGGAACATAGGCATTGGCGGTTT -ACGGAACATAGGCATTGGGTGGTT -ACGGAACATAGGCATTGGGCCTTT -ACGGAACATAGGCATTGGGGTCTT -ACGGAACATAGGCATTGGACGCTT -ACGGAACATAGGCATTGGAGCGTT -ACGGAACATAGGCATTGGTTCGTC -ACGGAACATAGGCATTGGTCTCTC -ACGGAACATAGGCATTGGTGGATC -ACGGAACATAGGCATTGGCACTTC -ACGGAACATAGGCATTGGGTACTC -ACGGAACATAGGCATTGGGATGTC -ACGGAACATAGGCATTGGACAGTC -ACGGAACATAGGCATTGGTTGCTG -ACGGAACATAGGCATTGGTCCATG -ACGGAACATAGGCATTGGTGTGTG -ACGGAACATAGGCATTGGCTAGTG -ACGGAACATAGGCATTGGCATCTG -ACGGAACATAGGCATTGGGAGTTG -ACGGAACATAGGCATTGGAGACTG -ACGGAACATAGGCATTGGTCGGTA -ACGGAACATAGGCATTGGTGCCTA -ACGGAACATAGGCATTGGCCACTA -ACGGAACATAGGCATTGGGGAGTA -ACGGAACATAGGCATTGGTCGTCT -ACGGAACATAGGCATTGGTGCACT -ACGGAACATAGGCATTGGCTGACT -ACGGAACATAGGCATTGGCAACCT -ACGGAACATAGGCATTGGGCTACT -ACGGAACATAGGCATTGGGGATCT -ACGGAACATAGGCATTGGAAGGCT -ACGGAACATAGGCATTGGTCAACC -ACGGAACATAGGCATTGGTGTTCC -ACGGAACATAGGCATTGGATTCCC -ACGGAACATAGGCATTGGTTCTCG -ACGGAACATAGGCATTGGTAGACG -ACGGAACATAGGCATTGGGTAACG -ACGGAACATAGGCATTGGACTTCG -ACGGAACATAGGCATTGGTACGCA -ACGGAACATAGGCATTGGCTTGCA -ACGGAACATAGGCATTGGCGAACA -ACGGAACATAGGCATTGGCAGTCA -ACGGAACATAGGCATTGGGATCCA -ACGGAACATAGGCATTGGACGACA -ACGGAACATAGGCATTGGAGCTCA -ACGGAACATAGGCATTGGTCACGT -ACGGAACATAGGCATTGGCGTAGT -ACGGAACATAGGCATTGGGTCAGT -ACGGAACATAGGCATTGGGAAGGT -ACGGAACATAGGCATTGGAACCGT -ACGGAACATAGGCATTGGTTGTGC -ACGGAACATAGGCATTGGCTAAGC -ACGGAACATAGGCATTGGACTAGC -ACGGAACATAGGCATTGGAGATGC -ACGGAACATAGGCATTGGTGAAGG -ACGGAACATAGGCATTGGCAATGG -ACGGAACATAGGCATTGGATGAGG -ACGGAACATAGGCATTGGAATGGG -ACGGAACATAGGCATTGGTCCTGA -ACGGAACATAGGCATTGGTAGCGA -ACGGAACATAGGCATTGGCACAGA -ACGGAACATAGGCATTGGGCAAGA -ACGGAACATAGGCATTGGGGTTGA -ACGGAACATAGGCATTGGTCCGAT -ACGGAACATAGGCATTGGTGGCAT -ACGGAACATAGGCATTGGCGAGAT -ACGGAACATAGGCATTGGTACCAC -ACGGAACATAGGCATTGGCAGAAC -ACGGAACATAGGCATTGGGTCTAC -ACGGAACATAGGCATTGGACGTAC -ACGGAACATAGGCATTGGAGTGAC -ACGGAACATAGGCATTGGCTGTAG -ACGGAACATAGGCATTGGCCTAAG -ACGGAACATAGGCATTGGGTTCAG -ACGGAACATAGGCATTGGGCATAG -ACGGAACATAGGCATTGGGACAAG -ACGGAACATAGGCATTGGAAGCAG -ACGGAACATAGGCATTGGCGTCAA -ACGGAACATAGGCATTGGGCTGAA -ACGGAACATAGGCATTGGAGTACG -ACGGAACATAGGCATTGGATCCGA -ACGGAACATAGGCATTGGATGGGA -ACGGAACATAGGCATTGGGTGCAA -ACGGAACATAGGCATTGGGAGGAA -ACGGAACATAGGCATTGGCAGGTA -ACGGAACATAGGCATTGGGACTCT -ACGGAACATAGGCATTGGAGTCCT -ACGGAACATAGGCATTGGTAAGCC -ACGGAACATAGGCATTGGATAGCC -ACGGAACATAGGCATTGGTAACCG -ACGGAACATAGGCATTGGATGCCA -ACGGAACATAGGGATCGAGGAAAC -ACGGAACATAGGGATCGAAACACC -ACGGAACATAGGGATCGAATCGAG -ACGGAACATAGGGATCGACTCCTT -ACGGAACATAGGGATCGACCTGTT -ACGGAACATAGGGATCGACGGTTT -ACGGAACATAGGGATCGAGTGGTT -ACGGAACATAGGGATCGAGCCTTT -ACGGAACATAGGGATCGAGGTCTT -ACGGAACATAGGGATCGAACGCTT -ACGGAACATAGGGATCGAAGCGTT -ACGGAACATAGGGATCGATTCGTC -ACGGAACATAGGGATCGATCTCTC -ACGGAACATAGGGATCGATGGATC -ACGGAACATAGGGATCGACACTTC -ACGGAACATAGGGATCGAGTACTC -ACGGAACATAGGGATCGAGATGTC -ACGGAACATAGGGATCGAACAGTC -ACGGAACATAGGGATCGATTGCTG -ACGGAACATAGGGATCGATCCATG -ACGGAACATAGGGATCGATGTGTG -ACGGAACATAGGGATCGACTAGTG -ACGGAACATAGGGATCGACATCTG -ACGGAACATAGGGATCGAGAGTTG -ACGGAACATAGGGATCGAAGACTG -ACGGAACATAGGGATCGATCGGTA -ACGGAACATAGGGATCGATGCCTA -ACGGAACATAGGGATCGACCACTA -ACGGAACATAGGGATCGAGGAGTA -ACGGAACATAGGGATCGATCGTCT -ACGGAACATAGGGATCGATGCACT -ACGGAACATAGGGATCGACTGACT -ACGGAACATAGGGATCGACAACCT -ACGGAACATAGGGATCGAGCTACT -ACGGAACATAGGGATCGAGGATCT -ACGGAACATAGGGATCGAAAGGCT -ACGGAACATAGGGATCGATCAACC -ACGGAACATAGGGATCGATGTTCC -ACGGAACATAGGGATCGAATTCCC -ACGGAACATAGGGATCGATTCTCG -ACGGAACATAGGGATCGATAGACG -ACGGAACATAGGGATCGAGTAACG -ACGGAACATAGGGATCGAACTTCG -ACGGAACATAGGGATCGATACGCA -ACGGAACATAGGGATCGACTTGCA -ACGGAACATAGGGATCGACGAACA -ACGGAACATAGGGATCGACAGTCA -ACGGAACATAGGGATCGAGATCCA -ACGGAACATAGGGATCGAACGACA -ACGGAACATAGGGATCGAAGCTCA -ACGGAACATAGGGATCGATCACGT -ACGGAACATAGGGATCGACGTAGT -ACGGAACATAGGGATCGAGTCAGT -ACGGAACATAGGGATCGAGAAGGT -ACGGAACATAGGGATCGAAACCGT -ACGGAACATAGGGATCGATTGTGC -ACGGAACATAGGGATCGACTAAGC -ACGGAACATAGGGATCGAACTAGC -ACGGAACATAGGGATCGAAGATGC -ACGGAACATAGGGATCGATGAAGG -ACGGAACATAGGGATCGACAATGG -ACGGAACATAGGGATCGAATGAGG -ACGGAACATAGGGATCGAAATGGG -ACGGAACATAGGGATCGATCCTGA -ACGGAACATAGGGATCGATAGCGA -ACGGAACATAGGGATCGACACAGA -ACGGAACATAGGGATCGAGCAAGA -ACGGAACATAGGGATCGAGGTTGA -ACGGAACATAGGGATCGATCCGAT -ACGGAACATAGGGATCGATGGCAT -ACGGAACATAGGGATCGACGAGAT -ACGGAACATAGGGATCGATACCAC -ACGGAACATAGGGATCGACAGAAC -ACGGAACATAGGGATCGAGTCTAC -ACGGAACATAGGGATCGAACGTAC -ACGGAACATAGGGATCGAAGTGAC -ACGGAACATAGGGATCGACTGTAG -ACGGAACATAGGGATCGACCTAAG -ACGGAACATAGGGATCGAGTTCAG -ACGGAACATAGGGATCGAGCATAG -ACGGAACATAGGGATCGAGACAAG -ACGGAACATAGGGATCGAAAGCAG -ACGGAACATAGGGATCGACGTCAA -ACGGAACATAGGGATCGAGCTGAA -ACGGAACATAGGGATCGAAGTACG -ACGGAACATAGGGATCGAATCCGA -ACGGAACATAGGGATCGAATGGGA -ACGGAACATAGGGATCGAGTGCAA -ACGGAACATAGGGATCGAGAGGAA -ACGGAACATAGGGATCGACAGGTA -ACGGAACATAGGGATCGAGACTCT -ACGGAACATAGGGATCGAAGTCCT -ACGGAACATAGGGATCGATAAGCC -ACGGAACATAGGGATCGAATAGCC -ACGGAACATAGGGATCGATAACCG -ACGGAACATAGGGATCGAATGCCA -ACGGAACATAGGCACTACGGAAAC -ACGGAACATAGGCACTACAACACC -ACGGAACATAGGCACTACATCGAG -ACGGAACATAGGCACTACCTCCTT -ACGGAACATAGGCACTACCCTGTT -ACGGAACATAGGCACTACCGGTTT -ACGGAACATAGGCACTACGTGGTT -ACGGAACATAGGCACTACGCCTTT -ACGGAACATAGGCACTACGGTCTT -ACGGAACATAGGCACTACACGCTT -ACGGAACATAGGCACTACAGCGTT -ACGGAACATAGGCACTACTTCGTC -ACGGAACATAGGCACTACTCTCTC -ACGGAACATAGGCACTACTGGATC -ACGGAACATAGGCACTACCACTTC -ACGGAACATAGGCACTACGTACTC -ACGGAACATAGGCACTACGATGTC -ACGGAACATAGGCACTACACAGTC -ACGGAACATAGGCACTACTTGCTG -ACGGAACATAGGCACTACTCCATG -ACGGAACATAGGCACTACTGTGTG -ACGGAACATAGGCACTACCTAGTG -ACGGAACATAGGCACTACCATCTG -ACGGAACATAGGCACTACGAGTTG -ACGGAACATAGGCACTACAGACTG -ACGGAACATAGGCACTACTCGGTA -ACGGAACATAGGCACTACTGCCTA -ACGGAACATAGGCACTACCCACTA -ACGGAACATAGGCACTACGGAGTA -ACGGAACATAGGCACTACTCGTCT -ACGGAACATAGGCACTACTGCACT -ACGGAACATAGGCACTACCTGACT -ACGGAACATAGGCACTACCAACCT -ACGGAACATAGGCACTACGCTACT -ACGGAACATAGGCACTACGGATCT -ACGGAACATAGGCACTACAAGGCT -ACGGAACATAGGCACTACTCAACC -ACGGAACATAGGCACTACTGTTCC -ACGGAACATAGGCACTACATTCCC -ACGGAACATAGGCACTACTTCTCG -ACGGAACATAGGCACTACTAGACG -ACGGAACATAGGCACTACGTAACG -ACGGAACATAGGCACTACACTTCG -ACGGAACATAGGCACTACTACGCA -ACGGAACATAGGCACTACCTTGCA -ACGGAACATAGGCACTACCGAACA -ACGGAACATAGGCACTACCAGTCA -ACGGAACATAGGCACTACGATCCA -ACGGAACATAGGCACTACACGACA -ACGGAACATAGGCACTACAGCTCA -ACGGAACATAGGCACTACTCACGT -ACGGAACATAGGCACTACCGTAGT -ACGGAACATAGGCACTACGTCAGT -ACGGAACATAGGCACTACGAAGGT -ACGGAACATAGGCACTACAACCGT -ACGGAACATAGGCACTACTTGTGC -ACGGAACATAGGCACTACCTAAGC -ACGGAACATAGGCACTACACTAGC -ACGGAACATAGGCACTACAGATGC -ACGGAACATAGGCACTACTGAAGG -ACGGAACATAGGCACTACCAATGG -ACGGAACATAGGCACTACATGAGG -ACGGAACATAGGCACTACAATGGG -ACGGAACATAGGCACTACTCCTGA -ACGGAACATAGGCACTACTAGCGA -ACGGAACATAGGCACTACCACAGA -ACGGAACATAGGCACTACGCAAGA -ACGGAACATAGGCACTACGGTTGA -ACGGAACATAGGCACTACTCCGAT -ACGGAACATAGGCACTACTGGCAT -ACGGAACATAGGCACTACCGAGAT -ACGGAACATAGGCACTACTACCAC -ACGGAACATAGGCACTACCAGAAC -ACGGAACATAGGCACTACGTCTAC -ACGGAACATAGGCACTACACGTAC -ACGGAACATAGGCACTACAGTGAC -ACGGAACATAGGCACTACCTGTAG -ACGGAACATAGGCACTACCCTAAG -ACGGAACATAGGCACTACGTTCAG -ACGGAACATAGGCACTACGCATAG -ACGGAACATAGGCACTACGACAAG -ACGGAACATAGGCACTACAAGCAG -ACGGAACATAGGCACTACCGTCAA -ACGGAACATAGGCACTACGCTGAA -ACGGAACATAGGCACTACAGTACG -ACGGAACATAGGCACTACATCCGA -ACGGAACATAGGCACTACATGGGA -ACGGAACATAGGCACTACGTGCAA -ACGGAACATAGGCACTACGAGGAA -ACGGAACATAGGCACTACCAGGTA -ACGGAACATAGGCACTACGACTCT -ACGGAACATAGGCACTACAGTCCT -ACGGAACATAGGCACTACTAAGCC -ACGGAACATAGGCACTACATAGCC -ACGGAACATAGGCACTACTAACCG -ACGGAACATAGGCACTACATGCCA -ACGGAACATAGGAACCAGGGAAAC -ACGGAACATAGGAACCAGAACACC -ACGGAACATAGGAACCAGATCGAG -ACGGAACATAGGAACCAGCTCCTT -ACGGAACATAGGAACCAGCCTGTT -ACGGAACATAGGAACCAGCGGTTT -ACGGAACATAGGAACCAGGTGGTT -ACGGAACATAGGAACCAGGCCTTT -ACGGAACATAGGAACCAGGGTCTT -ACGGAACATAGGAACCAGACGCTT -ACGGAACATAGGAACCAGAGCGTT -ACGGAACATAGGAACCAGTTCGTC -ACGGAACATAGGAACCAGTCTCTC -ACGGAACATAGGAACCAGTGGATC -ACGGAACATAGGAACCAGCACTTC -ACGGAACATAGGAACCAGGTACTC -ACGGAACATAGGAACCAGGATGTC -ACGGAACATAGGAACCAGACAGTC -ACGGAACATAGGAACCAGTTGCTG -ACGGAACATAGGAACCAGTCCATG -ACGGAACATAGGAACCAGTGTGTG -ACGGAACATAGGAACCAGCTAGTG -ACGGAACATAGGAACCAGCATCTG -ACGGAACATAGGAACCAGGAGTTG -ACGGAACATAGGAACCAGAGACTG -ACGGAACATAGGAACCAGTCGGTA -ACGGAACATAGGAACCAGTGCCTA -ACGGAACATAGGAACCAGCCACTA -ACGGAACATAGGAACCAGGGAGTA -ACGGAACATAGGAACCAGTCGTCT -ACGGAACATAGGAACCAGTGCACT -ACGGAACATAGGAACCAGCTGACT -ACGGAACATAGGAACCAGCAACCT -ACGGAACATAGGAACCAGGCTACT -ACGGAACATAGGAACCAGGGATCT -ACGGAACATAGGAACCAGAAGGCT -ACGGAACATAGGAACCAGTCAACC -ACGGAACATAGGAACCAGTGTTCC -ACGGAACATAGGAACCAGATTCCC -ACGGAACATAGGAACCAGTTCTCG -ACGGAACATAGGAACCAGTAGACG -ACGGAACATAGGAACCAGGTAACG -ACGGAACATAGGAACCAGACTTCG -ACGGAACATAGGAACCAGTACGCA -ACGGAACATAGGAACCAGCTTGCA -ACGGAACATAGGAACCAGCGAACA -ACGGAACATAGGAACCAGCAGTCA -ACGGAACATAGGAACCAGGATCCA -ACGGAACATAGGAACCAGACGACA -ACGGAACATAGGAACCAGAGCTCA -ACGGAACATAGGAACCAGTCACGT -ACGGAACATAGGAACCAGCGTAGT -ACGGAACATAGGAACCAGGTCAGT -ACGGAACATAGGAACCAGGAAGGT -ACGGAACATAGGAACCAGAACCGT -ACGGAACATAGGAACCAGTTGTGC -ACGGAACATAGGAACCAGCTAAGC -ACGGAACATAGGAACCAGACTAGC -ACGGAACATAGGAACCAGAGATGC -ACGGAACATAGGAACCAGTGAAGG -ACGGAACATAGGAACCAGCAATGG -ACGGAACATAGGAACCAGATGAGG -ACGGAACATAGGAACCAGAATGGG -ACGGAACATAGGAACCAGTCCTGA -ACGGAACATAGGAACCAGTAGCGA -ACGGAACATAGGAACCAGCACAGA -ACGGAACATAGGAACCAGGCAAGA -ACGGAACATAGGAACCAGGGTTGA -ACGGAACATAGGAACCAGTCCGAT -ACGGAACATAGGAACCAGTGGCAT -ACGGAACATAGGAACCAGCGAGAT -ACGGAACATAGGAACCAGTACCAC -ACGGAACATAGGAACCAGCAGAAC -ACGGAACATAGGAACCAGGTCTAC -ACGGAACATAGGAACCAGACGTAC -ACGGAACATAGGAACCAGAGTGAC -ACGGAACATAGGAACCAGCTGTAG -ACGGAACATAGGAACCAGCCTAAG -ACGGAACATAGGAACCAGGTTCAG -ACGGAACATAGGAACCAGGCATAG -ACGGAACATAGGAACCAGGACAAG -ACGGAACATAGGAACCAGAAGCAG -ACGGAACATAGGAACCAGCGTCAA -ACGGAACATAGGAACCAGGCTGAA -ACGGAACATAGGAACCAGAGTACG -ACGGAACATAGGAACCAGATCCGA -ACGGAACATAGGAACCAGATGGGA -ACGGAACATAGGAACCAGGTGCAA -ACGGAACATAGGAACCAGGAGGAA -ACGGAACATAGGAACCAGCAGGTA -ACGGAACATAGGAACCAGGACTCT -ACGGAACATAGGAACCAGAGTCCT -ACGGAACATAGGAACCAGTAAGCC -ACGGAACATAGGAACCAGATAGCC -ACGGAACATAGGAACCAGTAACCG -ACGGAACATAGGAACCAGATGCCA -ACGGAACATAGGTACGTCGGAAAC -ACGGAACATAGGTACGTCAACACC -ACGGAACATAGGTACGTCATCGAG -ACGGAACATAGGTACGTCCTCCTT -ACGGAACATAGGTACGTCCCTGTT -ACGGAACATAGGTACGTCCGGTTT -ACGGAACATAGGTACGTCGTGGTT -ACGGAACATAGGTACGTCGCCTTT -ACGGAACATAGGTACGTCGGTCTT -ACGGAACATAGGTACGTCACGCTT -ACGGAACATAGGTACGTCAGCGTT -ACGGAACATAGGTACGTCTTCGTC -ACGGAACATAGGTACGTCTCTCTC -ACGGAACATAGGTACGTCTGGATC -ACGGAACATAGGTACGTCCACTTC -ACGGAACATAGGTACGTCGTACTC -ACGGAACATAGGTACGTCGATGTC -ACGGAACATAGGTACGTCACAGTC -ACGGAACATAGGTACGTCTTGCTG -ACGGAACATAGGTACGTCTCCATG -ACGGAACATAGGTACGTCTGTGTG -ACGGAACATAGGTACGTCCTAGTG -ACGGAACATAGGTACGTCCATCTG -ACGGAACATAGGTACGTCGAGTTG -ACGGAACATAGGTACGTCAGACTG -ACGGAACATAGGTACGTCTCGGTA -ACGGAACATAGGTACGTCTGCCTA -ACGGAACATAGGTACGTCCCACTA -ACGGAACATAGGTACGTCGGAGTA -ACGGAACATAGGTACGTCTCGTCT -ACGGAACATAGGTACGTCTGCACT -ACGGAACATAGGTACGTCCTGACT -ACGGAACATAGGTACGTCCAACCT -ACGGAACATAGGTACGTCGCTACT -ACGGAACATAGGTACGTCGGATCT -ACGGAACATAGGTACGTCAAGGCT -ACGGAACATAGGTACGTCTCAACC -ACGGAACATAGGTACGTCTGTTCC -ACGGAACATAGGTACGTCATTCCC -ACGGAACATAGGTACGTCTTCTCG -ACGGAACATAGGTACGTCTAGACG -ACGGAACATAGGTACGTCGTAACG -ACGGAACATAGGTACGTCACTTCG -ACGGAACATAGGTACGTCTACGCA -ACGGAACATAGGTACGTCCTTGCA -ACGGAACATAGGTACGTCCGAACA -ACGGAACATAGGTACGTCCAGTCA -ACGGAACATAGGTACGTCGATCCA -ACGGAACATAGGTACGTCACGACA -ACGGAACATAGGTACGTCAGCTCA -ACGGAACATAGGTACGTCTCACGT -ACGGAACATAGGTACGTCCGTAGT -ACGGAACATAGGTACGTCGTCAGT -ACGGAACATAGGTACGTCGAAGGT -ACGGAACATAGGTACGTCAACCGT -ACGGAACATAGGTACGTCTTGTGC -ACGGAACATAGGTACGTCCTAAGC -ACGGAACATAGGTACGTCACTAGC -ACGGAACATAGGTACGTCAGATGC -ACGGAACATAGGTACGTCTGAAGG -ACGGAACATAGGTACGTCCAATGG -ACGGAACATAGGTACGTCATGAGG -ACGGAACATAGGTACGTCAATGGG -ACGGAACATAGGTACGTCTCCTGA -ACGGAACATAGGTACGTCTAGCGA -ACGGAACATAGGTACGTCCACAGA -ACGGAACATAGGTACGTCGCAAGA -ACGGAACATAGGTACGTCGGTTGA -ACGGAACATAGGTACGTCTCCGAT -ACGGAACATAGGTACGTCTGGCAT -ACGGAACATAGGTACGTCCGAGAT -ACGGAACATAGGTACGTCTACCAC -ACGGAACATAGGTACGTCCAGAAC -ACGGAACATAGGTACGTCGTCTAC -ACGGAACATAGGTACGTCACGTAC -ACGGAACATAGGTACGTCAGTGAC -ACGGAACATAGGTACGTCCTGTAG -ACGGAACATAGGTACGTCCCTAAG -ACGGAACATAGGTACGTCGTTCAG -ACGGAACATAGGTACGTCGCATAG -ACGGAACATAGGTACGTCGACAAG -ACGGAACATAGGTACGTCAAGCAG -ACGGAACATAGGTACGTCCGTCAA -ACGGAACATAGGTACGTCGCTGAA -ACGGAACATAGGTACGTCAGTACG -ACGGAACATAGGTACGTCATCCGA -ACGGAACATAGGTACGTCATGGGA -ACGGAACATAGGTACGTCGTGCAA -ACGGAACATAGGTACGTCGAGGAA -ACGGAACATAGGTACGTCCAGGTA -ACGGAACATAGGTACGTCGACTCT -ACGGAACATAGGTACGTCAGTCCT -ACGGAACATAGGTACGTCTAAGCC -ACGGAACATAGGTACGTCATAGCC -ACGGAACATAGGTACGTCTAACCG -ACGGAACATAGGTACGTCATGCCA -ACGGAACATAGGTACACGGGAAAC -ACGGAACATAGGTACACGAACACC -ACGGAACATAGGTACACGATCGAG -ACGGAACATAGGTACACGCTCCTT -ACGGAACATAGGTACACGCCTGTT -ACGGAACATAGGTACACGCGGTTT -ACGGAACATAGGTACACGGTGGTT -ACGGAACATAGGTACACGGCCTTT -ACGGAACATAGGTACACGGGTCTT -ACGGAACATAGGTACACGACGCTT -ACGGAACATAGGTACACGAGCGTT -ACGGAACATAGGTACACGTTCGTC -ACGGAACATAGGTACACGTCTCTC -ACGGAACATAGGTACACGTGGATC -ACGGAACATAGGTACACGCACTTC -ACGGAACATAGGTACACGGTACTC -ACGGAACATAGGTACACGGATGTC -ACGGAACATAGGTACACGACAGTC -ACGGAACATAGGTACACGTTGCTG -ACGGAACATAGGTACACGTCCATG -ACGGAACATAGGTACACGTGTGTG -ACGGAACATAGGTACACGCTAGTG -ACGGAACATAGGTACACGCATCTG -ACGGAACATAGGTACACGGAGTTG -ACGGAACATAGGTACACGAGACTG -ACGGAACATAGGTACACGTCGGTA -ACGGAACATAGGTACACGTGCCTA -ACGGAACATAGGTACACGCCACTA -ACGGAACATAGGTACACGGGAGTA -ACGGAACATAGGTACACGTCGTCT -ACGGAACATAGGTACACGTGCACT -ACGGAACATAGGTACACGCTGACT -ACGGAACATAGGTACACGCAACCT -ACGGAACATAGGTACACGGCTACT -ACGGAACATAGGTACACGGGATCT -ACGGAACATAGGTACACGAAGGCT -ACGGAACATAGGTACACGTCAACC -ACGGAACATAGGTACACGTGTTCC -ACGGAACATAGGTACACGATTCCC -ACGGAACATAGGTACACGTTCTCG -ACGGAACATAGGTACACGTAGACG -ACGGAACATAGGTACACGGTAACG -ACGGAACATAGGTACACGACTTCG -ACGGAACATAGGTACACGTACGCA -ACGGAACATAGGTACACGCTTGCA -ACGGAACATAGGTACACGCGAACA -ACGGAACATAGGTACACGCAGTCA -ACGGAACATAGGTACACGGATCCA -ACGGAACATAGGTACACGACGACA -ACGGAACATAGGTACACGAGCTCA -ACGGAACATAGGTACACGTCACGT -ACGGAACATAGGTACACGCGTAGT -ACGGAACATAGGTACACGGTCAGT -ACGGAACATAGGTACACGGAAGGT -ACGGAACATAGGTACACGAACCGT -ACGGAACATAGGTACACGTTGTGC -ACGGAACATAGGTACACGCTAAGC -ACGGAACATAGGTACACGACTAGC -ACGGAACATAGGTACACGAGATGC -ACGGAACATAGGTACACGTGAAGG -ACGGAACATAGGTACACGCAATGG -ACGGAACATAGGTACACGATGAGG -ACGGAACATAGGTACACGAATGGG -ACGGAACATAGGTACACGTCCTGA -ACGGAACATAGGTACACGTAGCGA -ACGGAACATAGGTACACGCACAGA -ACGGAACATAGGTACACGGCAAGA -ACGGAACATAGGTACACGGGTTGA -ACGGAACATAGGTACACGTCCGAT -ACGGAACATAGGTACACGTGGCAT -ACGGAACATAGGTACACGCGAGAT -ACGGAACATAGGTACACGTACCAC -ACGGAACATAGGTACACGCAGAAC -ACGGAACATAGGTACACGGTCTAC -ACGGAACATAGGTACACGACGTAC -ACGGAACATAGGTACACGAGTGAC -ACGGAACATAGGTACACGCTGTAG -ACGGAACATAGGTACACGCCTAAG -ACGGAACATAGGTACACGGTTCAG -ACGGAACATAGGTACACGGCATAG -ACGGAACATAGGTACACGGACAAG -ACGGAACATAGGTACACGAAGCAG -ACGGAACATAGGTACACGCGTCAA -ACGGAACATAGGTACACGGCTGAA -ACGGAACATAGGTACACGAGTACG -ACGGAACATAGGTACACGATCCGA -ACGGAACATAGGTACACGATGGGA -ACGGAACATAGGTACACGGTGCAA -ACGGAACATAGGTACACGGAGGAA -ACGGAACATAGGTACACGCAGGTA -ACGGAACATAGGTACACGGACTCT -ACGGAACATAGGTACACGAGTCCT -ACGGAACATAGGTACACGTAAGCC -ACGGAACATAGGTACACGATAGCC -ACGGAACATAGGTACACGTAACCG -ACGGAACATAGGTACACGATGCCA -ACGGAACATAGGGACAGTGGAAAC -ACGGAACATAGGGACAGTAACACC -ACGGAACATAGGGACAGTATCGAG -ACGGAACATAGGGACAGTCTCCTT -ACGGAACATAGGGACAGTCCTGTT -ACGGAACATAGGGACAGTCGGTTT -ACGGAACATAGGGACAGTGTGGTT -ACGGAACATAGGGACAGTGCCTTT -ACGGAACATAGGGACAGTGGTCTT -ACGGAACATAGGGACAGTACGCTT -ACGGAACATAGGGACAGTAGCGTT -ACGGAACATAGGGACAGTTTCGTC -ACGGAACATAGGGACAGTTCTCTC -ACGGAACATAGGGACAGTTGGATC -ACGGAACATAGGGACAGTCACTTC -ACGGAACATAGGGACAGTGTACTC -ACGGAACATAGGGACAGTGATGTC -ACGGAACATAGGGACAGTACAGTC -ACGGAACATAGGGACAGTTTGCTG -ACGGAACATAGGGACAGTTCCATG -ACGGAACATAGGGACAGTTGTGTG -ACGGAACATAGGGACAGTCTAGTG -ACGGAACATAGGGACAGTCATCTG -ACGGAACATAGGGACAGTGAGTTG -ACGGAACATAGGGACAGTAGACTG -ACGGAACATAGGGACAGTTCGGTA -ACGGAACATAGGGACAGTTGCCTA -ACGGAACATAGGGACAGTCCACTA -ACGGAACATAGGGACAGTGGAGTA -ACGGAACATAGGGACAGTTCGTCT -ACGGAACATAGGGACAGTTGCACT -ACGGAACATAGGGACAGTCTGACT -ACGGAACATAGGGACAGTCAACCT -ACGGAACATAGGGACAGTGCTACT -ACGGAACATAGGGACAGTGGATCT -ACGGAACATAGGGACAGTAAGGCT -ACGGAACATAGGGACAGTTCAACC -ACGGAACATAGGGACAGTTGTTCC -ACGGAACATAGGGACAGTATTCCC -ACGGAACATAGGGACAGTTTCTCG -ACGGAACATAGGGACAGTTAGACG -ACGGAACATAGGGACAGTGTAACG -ACGGAACATAGGGACAGTACTTCG -ACGGAACATAGGGACAGTTACGCA -ACGGAACATAGGGACAGTCTTGCA -ACGGAACATAGGGACAGTCGAACA -ACGGAACATAGGGACAGTCAGTCA -ACGGAACATAGGGACAGTGATCCA -ACGGAACATAGGGACAGTACGACA -ACGGAACATAGGGACAGTAGCTCA -ACGGAACATAGGGACAGTTCACGT -ACGGAACATAGGGACAGTCGTAGT -ACGGAACATAGGGACAGTGTCAGT -ACGGAACATAGGGACAGTGAAGGT -ACGGAACATAGGGACAGTAACCGT -ACGGAACATAGGGACAGTTTGTGC -ACGGAACATAGGGACAGTCTAAGC -ACGGAACATAGGGACAGTACTAGC -ACGGAACATAGGGACAGTAGATGC -ACGGAACATAGGGACAGTTGAAGG -ACGGAACATAGGGACAGTCAATGG -ACGGAACATAGGGACAGTATGAGG -ACGGAACATAGGGACAGTAATGGG -ACGGAACATAGGGACAGTTCCTGA -ACGGAACATAGGGACAGTTAGCGA -ACGGAACATAGGGACAGTCACAGA -ACGGAACATAGGGACAGTGCAAGA -ACGGAACATAGGGACAGTGGTTGA -ACGGAACATAGGGACAGTTCCGAT -ACGGAACATAGGGACAGTTGGCAT -ACGGAACATAGGGACAGTCGAGAT -ACGGAACATAGGGACAGTTACCAC -ACGGAACATAGGGACAGTCAGAAC -ACGGAACATAGGGACAGTGTCTAC -ACGGAACATAGGGACAGTACGTAC -ACGGAACATAGGGACAGTAGTGAC -ACGGAACATAGGGACAGTCTGTAG -ACGGAACATAGGGACAGTCCTAAG -ACGGAACATAGGGACAGTGTTCAG -ACGGAACATAGGGACAGTGCATAG -ACGGAACATAGGGACAGTGACAAG -ACGGAACATAGGGACAGTAAGCAG -ACGGAACATAGGGACAGTCGTCAA -ACGGAACATAGGGACAGTGCTGAA -ACGGAACATAGGGACAGTAGTACG -ACGGAACATAGGGACAGTATCCGA -ACGGAACATAGGGACAGTATGGGA -ACGGAACATAGGGACAGTGTGCAA -ACGGAACATAGGGACAGTGAGGAA -ACGGAACATAGGGACAGTCAGGTA -ACGGAACATAGGGACAGTGACTCT -ACGGAACATAGGGACAGTAGTCCT -ACGGAACATAGGGACAGTTAAGCC -ACGGAACATAGGGACAGTATAGCC -ACGGAACATAGGGACAGTTAACCG -ACGGAACATAGGGACAGTATGCCA -ACGGAACATAGGTAGCTGGGAAAC -ACGGAACATAGGTAGCTGAACACC -ACGGAACATAGGTAGCTGATCGAG -ACGGAACATAGGTAGCTGCTCCTT -ACGGAACATAGGTAGCTGCCTGTT -ACGGAACATAGGTAGCTGCGGTTT -ACGGAACATAGGTAGCTGGTGGTT -ACGGAACATAGGTAGCTGGCCTTT -ACGGAACATAGGTAGCTGGGTCTT -ACGGAACATAGGTAGCTGACGCTT -ACGGAACATAGGTAGCTGAGCGTT -ACGGAACATAGGTAGCTGTTCGTC -ACGGAACATAGGTAGCTGTCTCTC -ACGGAACATAGGTAGCTGTGGATC -ACGGAACATAGGTAGCTGCACTTC -ACGGAACATAGGTAGCTGGTACTC -ACGGAACATAGGTAGCTGGATGTC -ACGGAACATAGGTAGCTGACAGTC -ACGGAACATAGGTAGCTGTTGCTG -ACGGAACATAGGTAGCTGTCCATG -ACGGAACATAGGTAGCTGTGTGTG -ACGGAACATAGGTAGCTGCTAGTG -ACGGAACATAGGTAGCTGCATCTG -ACGGAACATAGGTAGCTGGAGTTG -ACGGAACATAGGTAGCTGAGACTG -ACGGAACATAGGTAGCTGTCGGTA -ACGGAACATAGGTAGCTGTGCCTA -ACGGAACATAGGTAGCTGCCACTA -ACGGAACATAGGTAGCTGGGAGTA -ACGGAACATAGGTAGCTGTCGTCT -ACGGAACATAGGTAGCTGTGCACT -ACGGAACATAGGTAGCTGCTGACT -ACGGAACATAGGTAGCTGCAACCT -ACGGAACATAGGTAGCTGGCTACT -ACGGAACATAGGTAGCTGGGATCT -ACGGAACATAGGTAGCTGAAGGCT -ACGGAACATAGGTAGCTGTCAACC -ACGGAACATAGGTAGCTGTGTTCC -ACGGAACATAGGTAGCTGATTCCC -ACGGAACATAGGTAGCTGTTCTCG -ACGGAACATAGGTAGCTGTAGACG -ACGGAACATAGGTAGCTGGTAACG -ACGGAACATAGGTAGCTGACTTCG -ACGGAACATAGGTAGCTGTACGCA -ACGGAACATAGGTAGCTGCTTGCA -ACGGAACATAGGTAGCTGCGAACA -ACGGAACATAGGTAGCTGCAGTCA -ACGGAACATAGGTAGCTGGATCCA -ACGGAACATAGGTAGCTGACGACA -ACGGAACATAGGTAGCTGAGCTCA -ACGGAACATAGGTAGCTGTCACGT -ACGGAACATAGGTAGCTGCGTAGT -ACGGAACATAGGTAGCTGGTCAGT -ACGGAACATAGGTAGCTGGAAGGT -ACGGAACATAGGTAGCTGAACCGT -ACGGAACATAGGTAGCTGTTGTGC -ACGGAACATAGGTAGCTGCTAAGC -ACGGAACATAGGTAGCTGACTAGC -ACGGAACATAGGTAGCTGAGATGC -ACGGAACATAGGTAGCTGTGAAGG -ACGGAACATAGGTAGCTGCAATGG -ACGGAACATAGGTAGCTGATGAGG -ACGGAACATAGGTAGCTGAATGGG -ACGGAACATAGGTAGCTGTCCTGA -ACGGAACATAGGTAGCTGTAGCGA -ACGGAACATAGGTAGCTGCACAGA -ACGGAACATAGGTAGCTGGCAAGA -ACGGAACATAGGTAGCTGGGTTGA -ACGGAACATAGGTAGCTGTCCGAT -ACGGAACATAGGTAGCTGTGGCAT -ACGGAACATAGGTAGCTGCGAGAT -ACGGAACATAGGTAGCTGTACCAC -ACGGAACATAGGTAGCTGCAGAAC -ACGGAACATAGGTAGCTGGTCTAC -ACGGAACATAGGTAGCTGACGTAC -ACGGAACATAGGTAGCTGAGTGAC -ACGGAACATAGGTAGCTGCTGTAG -ACGGAACATAGGTAGCTGCCTAAG -ACGGAACATAGGTAGCTGGTTCAG -ACGGAACATAGGTAGCTGGCATAG -ACGGAACATAGGTAGCTGGACAAG -ACGGAACATAGGTAGCTGAAGCAG -ACGGAACATAGGTAGCTGCGTCAA -ACGGAACATAGGTAGCTGGCTGAA -ACGGAACATAGGTAGCTGAGTACG -ACGGAACATAGGTAGCTGATCCGA -ACGGAACATAGGTAGCTGATGGGA -ACGGAACATAGGTAGCTGGTGCAA -ACGGAACATAGGTAGCTGGAGGAA -ACGGAACATAGGTAGCTGCAGGTA -ACGGAACATAGGTAGCTGGACTCT -ACGGAACATAGGTAGCTGAGTCCT -ACGGAACATAGGTAGCTGTAAGCC -ACGGAACATAGGTAGCTGATAGCC -ACGGAACATAGGTAGCTGTAACCG -ACGGAACATAGGTAGCTGATGCCA -ACGGAACATAGGAAGCCTGGAAAC -ACGGAACATAGGAAGCCTAACACC -ACGGAACATAGGAAGCCTATCGAG -ACGGAACATAGGAAGCCTCTCCTT -ACGGAACATAGGAAGCCTCCTGTT -ACGGAACATAGGAAGCCTCGGTTT -ACGGAACATAGGAAGCCTGTGGTT -ACGGAACATAGGAAGCCTGCCTTT -ACGGAACATAGGAAGCCTGGTCTT -ACGGAACATAGGAAGCCTACGCTT -ACGGAACATAGGAAGCCTAGCGTT -ACGGAACATAGGAAGCCTTTCGTC -ACGGAACATAGGAAGCCTTCTCTC -ACGGAACATAGGAAGCCTTGGATC -ACGGAACATAGGAAGCCTCACTTC -ACGGAACATAGGAAGCCTGTACTC -ACGGAACATAGGAAGCCTGATGTC -ACGGAACATAGGAAGCCTACAGTC -ACGGAACATAGGAAGCCTTTGCTG -ACGGAACATAGGAAGCCTTCCATG -ACGGAACATAGGAAGCCTTGTGTG -ACGGAACATAGGAAGCCTCTAGTG -ACGGAACATAGGAAGCCTCATCTG -ACGGAACATAGGAAGCCTGAGTTG -ACGGAACATAGGAAGCCTAGACTG -ACGGAACATAGGAAGCCTTCGGTA -ACGGAACATAGGAAGCCTTGCCTA -ACGGAACATAGGAAGCCTCCACTA -ACGGAACATAGGAAGCCTGGAGTA -ACGGAACATAGGAAGCCTTCGTCT -ACGGAACATAGGAAGCCTTGCACT -ACGGAACATAGGAAGCCTCTGACT -ACGGAACATAGGAAGCCTCAACCT -ACGGAACATAGGAAGCCTGCTACT -ACGGAACATAGGAAGCCTGGATCT -ACGGAACATAGGAAGCCTAAGGCT -ACGGAACATAGGAAGCCTTCAACC -ACGGAACATAGGAAGCCTTGTTCC -ACGGAACATAGGAAGCCTATTCCC -ACGGAACATAGGAAGCCTTTCTCG -ACGGAACATAGGAAGCCTTAGACG -ACGGAACATAGGAAGCCTGTAACG -ACGGAACATAGGAAGCCTACTTCG -ACGGAACATAGGAAGCCTTACGCA -ACGGAACATAGGAAGCCTCTTGCA -ACGGAACATAGGAAGCCTCGAACA -ACGGAACATAGGAAGCCTCAGTCA -ACGGAACATAGGAAGCCTGATCCA -ACGGAACATAGGAAGCCTACGACA -ACGGAACATAGGAAGCCTAGCTCA -ACGGAACATAGGAAGCCTTCACGT -ACGGAACATAGGAAGCCTCGTAGT -ACGGAACATAGGAAGCCTGTCAGT -ACGGAACATAGGAAGCCTGAAGGT -ACGGAACATAGGAAGCCTAACCGT -ACGGAACATAGGAAGCCTTTGTGC -ACGGAACATAGGAAGCCTCTAAGC -ACGGAACATAGGAAGCCTACTAGC -ACGGAACATAGGAAGCCTAGATGC -ACGGAACATAGGAAGCCTTGAAGG -ACGGAACATAGGAAGCCTCAATGG -ACGGAACATAGGAAGCCTATGAGG -ACGGAACATAGGAAGCCTAATGGG -ACGGAACATAGGAAGCCTTCCTGA -ACGGAACATAGGAAGCCTTAGCGA -ACGGAACATAGGAAGCCTCACAGA -ACGGAACATAGGAAGCCTGCAAGA -ACGGAACATAGGAAGCCTGGTTGA -ACGGAACATAGGAAGCCTTCCGAT -ACGGAACATAGGAAGCCTTGGCAT -ACGGAACATAGGAAGCCTCGAGAT -ACGGAACATAGGAAGCCTTACCAC -ACGGAACATAGGAAGCCTCAGAAC -ACGGAACATAGGAAGCCTGTCTAC -ACGGAACATAGGAAGCCTACGTAC -ACGGAACATAGGAAGCCTAGTGAC -ACGGAACATAGGAAGCCTCTGTAG -ACGGAACATAGGAAGCCTCCTAAG -ACGGAACATAGGAAGCCTGTTCAG -ACGGAACATAGGAAGCCTGCATAG -ACGGAACATAGGAAGCCTGACAAG -ACGGAACATAGGAAGCCTAAGCAG -ACGGAACATAGGAAGCCTCGTCAA -ACGGAACATAGGAAGCCTGCTGAA -ACGGAACATAGGAAGCCTAGTACG -ACGGAACATAGGAAGCCTATCCGA -ACGGAACATAGGAAGCCTATGGGA -ACGGAACATAGGAAGCCTGTGCAA -ACGGAACATAGGAAGCCTGAGGAA -ACGGAACATAGGAAGCCTCAGGTA -ACGGAACATAGGAAGCCTGACTCT -ACGGAACATAGGAAGCCTAGTCCT -ACGGAACATAGGAAGCCTTAAGCC -ACGGAACATAGGAAGCCTATAGCC -ACGGAACATAGGAAGCCTTAACCG -ACGGAACATAGGAAGCCTATGCCA -ACGGAACATAGGCAGGTTGGAAAC -ACGGAACATAGGCAGGTTAACACC -ACGGAACATAGGCAGGTTATCGAG -ACGGAACATAGGCAGGTTCTCCTT -ACGGAACATAGGCAGGTTCCTGTT -ACGGAACATAGGCAGGTTCGGTTT -ACGGAACATAGGCAGGTTGTGGTT -ACGGAACATAGGCAGGTTGCCTTT -ACGGAACATAGGCAGGTTGGTCTT -ACGGAACATAGGCAGGTTACGCTT -ACGGAACATAGGCAGGTTAGCGTT -ACGGAACATAGGCAGGTTTTCGTC -ACGGAACATAGGCAGGTTTCTCTC -ACGGAACATAGGCAGGTTTGGATC -ACGGAACATAGGCAGGTTCACTTC -ACGGAACATAGGCAGGTTGTACTC -ACGGAACATAGGCAGGTTGATGTC -ACGGAACATAGGCAGGTTACAGTC -ACGGAACATAGGCAGGTTTTGCTG -ACGGAACATAGGCAGGTTTCCATG -ACGGAACATAGGCAGGTTTGTGTG -ACGGAACATAGGCAGGTTCTAGTG -ACGGAACATAGGCAGGTTCATCTG -ACGGAACATAGGCAGGTTGAGTTG -ACGGAACATAGGCAGGTTAGACTG -ACGGAACATAGGCAGGTTTCGGTA -ACGGAACATAGGCAGGTTTGCCTA -ACGGAACATAGGCAGGTTCCACTA -ACGGAACATAGGCAGGTTGGAGTA -ACGGAACATAGGCAGGTTTCGTCT -ACGGAACATAGGCAGGTTTGCACT -ACGGAACATAGGCAGGTTCTGACT -ACGGAACATAGGCAGGTTCAACCT -ACGGAACATAGGCAGGTTGCTACT -ACGGAACATAGGCAGGTTGGATCT -ACGGAACATAGGCAGGTTAAGGCT -ACGGAACATAGGCAGGTTTCAACC -ACGGAACATAGGCAGGTTTGTTCC -ACGGAACATAGGCAGGTTATTCCC -ACGGAACATAGGCAGGTTTTCTCG -ACGGAACATAGGCAGGTTTAGACG -ACGGAACATAGGCAGGTTGTAACG -ACGGAACATAGGCAGGTTACTTCG -ACGGAACATAGGCAGGTTTACGCA -ACGGAACATAGGCAGGTTCTTGCA -ACGGAACATAGGCAGGTTCGAACA -ACGGAACATAGGCAGGTTCAGTCA -ACGGAACATAGGCAGGTTGATCCA -ACGGAACATAGGCAGGTTACGACA -ACGGAACATAGGCAGGTTAGCTCA -ACGGAACATAGGCAGGTTTCACGT -ACGGAACATAGGCAGGTTCGTAGT -ACGGAACATAGGCAGGTTGTCAGT -ACGGAACATAGGCAGGTTGAAGGT -ACGGAACATAGGCAGGTTAACCGT -ACGGAACATAGGCAGGTTTTGTGC -ACGGAACATAGGCAGGTTCTAAGC -ACGGAACATAGGCAGGTTACTAGC -ACGGAACATAGGCAGGTTAGATGC -ACGGAACATAGGCAGGTTTGAAGG -ACGGAACATAGGCAGGTTCAATGG -ACGGAACATAGGCAGGTTATGAGG -ACGGAACATAGGCAGGTTAATGGG -ACGGAACATAGGCAGGTTTCCTGA -ACGGAACATAGGCAGGTTTAGCGA -ACGGAACATAGGCAGGTTCACAGA -ACGGAACATAGGCAGGTTGCAAGA -ACGGAACATAGGCAGGTTGGTTGA -ACGGAACATAGGCAGGTTTCCGAT -ACGGAACATAGGCAGGTTTGGCAT -ACGGAACATAGGCAGGTTCGAGAT -ACGGAACATAGGCAGGTTTACCAC -ACGGAACATAGGCAGGTTCAGAAC -ACGGAACATAGGCAGGTTGTCTAC -ACGGAACATAGGCAGGTTACGTAC -ACGGAACATAGGCAGGTTAGTGAC -ACGGAACATAGGCAGGTTCTGTAG -ACGGAACATAGGCAGGTTCCTAAG -ACGGAACATAGGCAGGTTGTTCAG -ACGGAACATAGGCAGGTTGCATAG -ACGGAACATAGGCAGGTTGACAAG -ACGGAACATAGGCAGGTTAAGCAG -ACGGAACATAGGCAGGTTCGTCAA -ACGGAACATAGGCAGGTTGCTGAA -ACGGAACATAGGCAGGTTAGTACG -ACGGAACATAGGCAGGTTATCCGA -ACGGAACATAGGCAGGTTATGGGA -ACGGAACATAGGCAGGTTGTGCAA -ACGGAACATAGGCAGGTTGAGGAA -ACGGAACATAGGCAGGTTCAGGTA -ACGGAACATAGGCAGGTTGACTCT -ACGGAACATAGGCAGGTTAGTCCT -ACGGAACATAGGCAGGTTTAAGCC -ACGGAACATAGGCAGGTTATAGCC -ACGGAACATAGGCAGGTTTAACCG -ACGGAACATAGGCAGGTTATGCCA -ACGGAACATAGGTAGGCAGGAAAC -ACGGAACATAGGTAGGCAAACACC -ACGGAACATAGGTAGGCAATCGAG -ACGGAACATAGGTAGGCACTCCTT -ACGGAACATAGGTAGGCACCTGTT -ACGGAACATAGGTAGGCACGGTTT -ACGGAACATAGGTAGGCAGTGGTT -ACGGAACATAGGTAGGCAGCCTTT -ACGGAACATAGGTAGGCAGGTCTT -ACGGAACATAGGTAGGCAACGCTT -ACGGAACATAGGTAGGCAAGCGTT -ACGGAACATAGGTAGGCATTCGTC -ACGGAACATAGGTAGGCATCTCTC -ACGGAACATAGGTAGGCATGGATC -ACGGAACATAGGTAGGCACACTTC -ACGGAACATAGGTAGGCAGTACTC -ACGGAACATAGGTAGGCAGATGTC -ACGGAACATAGGTAGGCAACAGTC -ACGGAACATAGGTAGGCATTGCTG -ACGGAACATAGGTAGGCATCCATG -ACGGAACATAGGTAGGCATGTGTG -ACGGAACATAGGTAGGCACTAGTG -ACGGAACATAGGTAGGCACATCTG -ACGGAACATAGGTAGGCAGAGTTG -ACGGAACATAGGTAGGCAAGACTG -ACGGAACATAGGTAGGCATCGGTA -ACGGAACATAGGTAGGCATGCCTA -ACGGAACATAGGTAGGCACCACTA -ACGGAACATAGGTAGGCAGGAGTA -ACGGAACATAGGTAGGCATCGTCT -ACGGAACATAGGTAGGCATGCACT -ACGGAACATAGGTAGGCACTGACT -ACGGAACATAGGTAGGCACAACCT -ACGGAACATAGGTAGGCAGCTACT -ACGGAACATAGGTAGGCAGGATCT -ACGGAACATAGGTAGGCAAAGGCT -ACGGAACATAGGTAGGCATCAACC -ACGGAACATAGGTAGGCATGTTCC -ACGGAACATAGGTAGGCAATTCCC -ACGGAACATAGGTAGGCATTCTCG -ACGGAACATAGGTAGGCATAGACG -ACGGAACATAGGTAGGCAGTAACG -ACGGAACATAGGTAGGCAACTTCG -ACGGAACATAGGTAGGCATACGCA -ACGGAACATAGGTAGGCACTTGCA -ACGGAACATAGGTAGGCACGAACA -ACGGAACATAGGTAGGCACAGTCA -ACGGAACATAGGTAGGCAGATCCA -ACGGAACATAGGTAGGCAACGACA -ACGGAACATAGGTAGGCAAGCTCA -ACGGAACATAGGTAGGCATCACGT -ACGGAACATAGGTAGGCACGTAGT -ACGGAACATAGGTAGGCAGTCAGT -ACGGAACATAGGTAGGCAGAAGGT -ACGGAACATAGGTAGGCAAACCGT -ACGGAACATAGGTAGGCATTGTGC -ACGGAACATAGGTAGGCACTAAGC -ACGGAACATAGGTAGGCAACTAGC -ACGGAACATAGGTAGGCAAGATGC -ACGGAACATAGGTAGGCATGAAGG -ACGGAACATAGGTAGGCACAATGG -ACGGAACATAGGTAGGCAATGAGG -ACGGAACATAGGTAGGCAAATGGG -ACGGAACATAGGTAGGCATCCTGA -ACGGAACATAGGTAGGCATAGCGA -ACGGAACATAGGTAGGCACACAGA -ACGGAACATAGGTAGGCAGCAAGA -ACGGAACATAGGTAGGCAGGTTGA -ACGGAACATAGGTAGGCATCCGAT -ACGGAACATAGGTAGGCATGGCAT -ACGGAACATAGGTAGGCACGAGAT -ACGGAACATAGGTAGGCATACCAC -ACGGAACATAGGTAGGCACAGAAC -ACGGAACATAGGTAGGCAGTCTAC -ACGGAACATAGGTAGGCAACGTAC -ACGGAACATAGGTAGGCAAGTGAC -ACGGAACATAGGTAGGCACTGTAG -ACGGAACATAGGTAGGCACCTAAG -ACGGAACATAGGTAGGCAGTTCAG -ACGGAACATAGGTAGGCAGCATAG -ACGGAACATAGGTAGGCAGACAAG -ACGGAACATAGGTAGGCAAAGCAG -ACGGAACATAGGTAGGCACGTCAA -ACGGAACATAGGTAGGCAGCTGAA -ACGGAACATAGGTAGGCAAGTACG -ACGGAACATAGGTAGGCAATCCGA -ACGGAACATAGGTAGGCAATGGGA -ACGGAACATAGGTAGGCAGTGCAA -ACGGAACATAGGTAGGCAGAGGAA -ACGGAACATAGGTAGGCACAGGTA -ACGGAACATAGGTAGGCAGACTCT -ACGGAACATAGGTAGGCAAGTCCT -ACGGAACATAGGTAGGCATAAGCC -ACGGAACATAGGTAGGCAATAGCC -ACGGAACATAGGTAGGCATAACCG -ACGGAACATAGGTAGGCAATGCCA -ACGGAACATAGGAAGGACGGAAAC -ACGGAACATAGGAAGGACAACACC -ACGGAACATAGGAAGGACATCGAG -ACGGAACATAGGAAGGACCTCCTT -ACGGAACATAGGAAGGACCCTGTT -ACGGAACATAGGAAGGACCGGTTT -ACGGAACATAGGAAGGACGTGGTT -ACGGAACATAGGAAGGACGCCTTT -ACGGAACATAGGAAGGACGGTCTT -ACGGAACATAGGAAGGACACGCTT -ACGGAACATAGGAAGGACAGCGTT -ACGGAACATAGGAAGGACTTCGTC -ACGGAACATAGGAAGGACTCTCTC -ACGGAACATAGGAAGGACTGGATC -ACGGAACATAGGAAGGACCACTTC -ACGGAACATAGGAAGGACGTACTC -ACGGAACATAGGAAGGACGATGTC -ACGGAACATAGGAAGGACACAGTC -ACGGAACATAGGAAGGACTTGCTG -ACGGAACATAGGAAGGACTCCATG -ACGGAACATAGGAAGGACTGTGTG -ACGGAACATAGGAAGGACCTAGTG -ACGGAACATAGGAAGGACCATCTG -ACGGAACATAGGAAGGACGAGTTG -ACGGAACATAGGAAGGACAGACTG -ACGGAACATAGGAAGGACTCGGTA -ACGGAACATAGGAAGGACTGCCTA -ACGGAACATAGGAAGGACCCACTA -ACGGAACATAGGAAGGACGGAGTA -ACGGAACATAGGAAGGACTCGTCT -ACGGAACATAGGAAGGACTGCACT -ACGGAACATAGGAAGGACCTGACT -ACGGAACATAGGAAGGACCAACCT -ACGGAACATAGGAAGGACGCTACT -ACGGAACATAGGAAGGACGGATCT -ACGGAACATAGGAAGGACAAGGCT -ACGGAACATAGGAAGGACTCAACC -ACGGAACATAGGAAGGACTGTTCC -ACGGAACATAGGAAGGACATTCCC -ACGGAACATAGGAAGGACTTCTCG -ACGGAACATAGGAAGGACTAGACG -ACGGAACATAGGAAGGACGTAACG -ACGGAACATAGGAAGGACACTTCG -ACGGAACATAGGAAGGACTACGCA -ACGGAACATAGGAAGGACCTTGCA -ACGGAACATAGGAAGGACCGAACA -ACGGAACATAGGAAGGACCAGTCA -ACGGAACATAGGAAGGACGATCCA -ACGGAACATAGGAAGGACACGACA -ACGGAACATAGGAAGGACAGCTCA -ACGGAACATAGGAAGGACTCACGT -ACGGAACATAGGAAGGACCGTAGT -ACGGAACATAGGAAGGACGTCAGT -ACGGAACATAGGAAGGACGAAGGT -ACGGAACATAGGAAGGACAACCGT -ACGGAACATAGGAAGGACTTGTGC -ACGGAACATAGGAAGGACCTAAGC -ACGGAACATAGGAAGGACACTAGC -ACGGAACATAGGAAGGACAGATGC -ACGGAACATAGGAAGGACTGAAGG -ACGGAACATAGGAAGGACCAATGG -ACGGAACATAGGAAGGACATGAGG -ACGGAACATAGGAAGGACAATGGG -ACGGAACATAGGAAGGACTCCTGA -ACGGAACATAGGAAGGACTAGCGA -ACGGAACATAGGAAGGACCACAGA -ACGGAACATAGGAAGGACGCAAGA -ACGGAACATAGGAAGGACGGTTGA -ACGGAACATAGGAAGGACTCCGAT -ACGGAACATAGGAAGGACTGGCAT -ACGGAACATAGGAAGGACCGAGAT -ACGGAACATAGGAAGGACTACCAC -ACGGAACATAGGAAGGACCAGAAC -ACGGAACATAGGAAGGACGTCTAC -ACGGAACATAGGAAGGACACGTAC -ACGGAACATAGGAAGGACAGTGAC -ACGGAACATAGGAAGGACCTGTAG -ACGGAACATAGGAAGGACCCTAAG -ACGGAACATAGGAAGGACGTTCAG -ACGGAACATAGGAAGGACGCATAG -ACGGAACATAGGAAGGACGACAAG -ACGGAACATAGGAAGGACAAGCAG -ACGGAACATAGGAAGGACCGTCAA -ACGGAACATAGGAAGGACGCTGAA -ACGGAACATAGGAAGGACAGTACG -ACGGAACATAGGAAGGACATCCGA -ACGGAACATAGGAAGGACATGGGA -ACGGAACATAGGAAGGACGTGCAA -ACGGAACATAGGAAGGACGAGGAA -ACGGAACATAGGAAGGACCAGGTA -ACGGAACATAGGAAGGACGACTCT -ACGGAACATAGGAAGGACAGTCCT -ACGGAACATAGGAAGGACTAAGCC -ACGGAACATAGGAAGGACATAGCC -ACGGAACATAGGAAGGACTAACCG -ACGGAACATAGGAAGGACATGCCA -ACGGAACATAGGCAGAAGGGAAAC -ACGGAACATAGGCAGAAGAACACC -ACGGAACATAGGCAGAAGATCGAG -ACGGAACATAGGCAGAAGCTCCTT -ACGGAACATAGGCAGAAGCCTGTT -ACGGAACATAGGCAGAAGCGGTTT -ACGGAACATAGGCAGAAGGTGGTT -ACGGAACATAGGCAGAAGGCCTTT -ACGGAACATAGGCAGAAGGGTCTT -ACGGAACATAGGCAGAAGACGCTT -ACGGAACATAGGCAGAAGAGCGTT -ACGGAACATAGGCAGAAGTTCGTC -ACGGAACATAGGCAGAAGTCTCTC -ACGGAACATAGGCAGAAGTGGATC -ACGGAACATAGGCAGAAGCACTTC -ACGGAACATAGGCAGAAGGTACTC -ACGGAACATAGGCAGAAGGATGTC -ACGGAACATAGGCAGAAGACAGTC -ACGGAACATAGGCAGAAGTTGCTG -ACGGAACATAGGCAGAAGTCCATG -ACGGAACATAGGCAGAAGTGTGTG -ACGGAACATAGGCAGAAGCTAGTG -ACGGAACATAGGCAGAAGCATCTG -ACGGAACATAGGCAGAAGGAGTTG -ACGGAACATAGGCAGAAGAGACTG -ACGGAACATAGGCAGAAGTCGGTA -ACGGAACATAGGCAGAAGTGCCTA -ACGGAACATAGGCAGAAGCCACTA -ACGGAACATAGGCAGAAGGGAGTA -ACGGAACATAGGCAGAAGTCGTCT -ACGGAACATAGGCAGAAGTGCACT -ACGGAACATAGGCAGAAGCTGACT -ACGGAACATAGGCAGAAGCAACCT -ACGGAACATAGGCAGAAGGCTACT -ACGGAACATAGGCAGAAGGGATCT -ACGGAACATAGGCAGAAGAAGGCT -ACGGAACATAGGCAGAAGTCAACC -ACGGAACATAGGCAGAAGTGTTCC -ACGGAACATAGGCAGAAGATTCCC -ACGGAACATAGGCAGAAGTTCTCG -ACGGAACATAGGCAGAAGTAGACG -ACGGAACATAGGCAGAAGGTAACG -ACGGAACATAGGCAGAAGACTTCG -ACGGAACATAGGCAGAAGTACGCA -ACGGAACATAGGCAGAAGCTTGCA -ACGGAACATAGGCAGAAGCGAACA -ACGGAACATAGGCAGAAGCAGTCA -ACGGAACATAGGCAGAAGGATCCA -ACGGAACATAGGCAGAAGACGACA -ACGGAACATAGGCAGAAGAGCTCA -ACGGAACATAGGCAGAAGTCACGT -ACGGAACATAGGCAGAAGCGTAGT -ACGGAACATAGGCAGAAGGTCAGT -ACGGAACATAGGCAGAAGGAAGGT -ACGGAACATAGGCAGAAGAACCGT -ACGGAACATAGGCAGAAGTTGTGC -ACGGAACATAGGCAGAAGCTAAGC -ACGGAACATAGGCAGAAGACTAGC -ACGGAACATAGGCAGAAGAGATGC -ACGGAACATAGGCAGAAGTGAAGG -ACGGAACATAGGCAGAAGCAATGG -ACGGAACATAGGCAGAAGATGAGG -ACGGAACATAGGCAGAAGAATGGG -ACGGAACATAGGCAGAAGTCCTGA -ACGGAACATAGGCAGAAGTAGCGA -ACGGAACATAGGCAGAAGCACAGA -ACGGAACATAGGCAGAAGGCAAGA -ACGGAACATAGGCAGAAGGGTTGA -ACGGAACATAGGCAGAAGTCCGAT -ACGGAACATAGGCAGAAGTGGCAT -ACGGAACATAGGCAGAAGCGAGAT -ACGGAACATAGGCAGAAGTACCAC -ACGGAACATAGGCAGAAGCAGAAC -ACGGAACATAGGCAGAAGGTCTAC -ACGGAACATAGGCAGAAGACGTAC -ACGGAACATAGGCAGAAGAGTGAC -ACGGAACATAGGCAGAAGCTGTAG -ACGGAACATAGGCAGAAGCCTAAG -ACGGAACATAGGCAGAAGGTTCAG -ACGGAACATAGGCAGAAGGCATAG -ACGGAACATAGGCAGAAGGACAAG -ACGGAACATAGGCAGAAGAAGCAG -ACGGAACATAGGCAGAAGCGTCAA -ACGGAACATAGGCAGAAGGCTGAA -ACGGAACATAGGCAGAAGAGTACG -ACGGAACATAGGCAGAAGATCCGA -ACGGAACATAGGCAGAAGATGGGA -ACGGAACATAGGCAGAAGGTGCAA -ACGGAACATAGGCAGAAGGAGGAA -ACGGAACATAGGCAGAAGCAGGTA -ACGGAACATAGGCAGAAGGACTCT -ACGGAACATAGGCAGAAGAGTCCT -ACGGAACATAGGCAGAAGTAAGCC -ACGGAACATAGGCAGAAGATAGCC -ACGGAACATAGGCAGAAGTAACCG -ACGGAACATAGGCAGAAGATGCCA -ACGGAACATAGGCAACGTGGAAAC -ACGGAACATAGGCAACGTAACACC -ACGGAACATAGGCAACGTATCGAG -ACGGAACATAGGCAACGTCTCCTT -ACGGAACATAGGCAACGTCCTGTT -ACGGAACATAGGCAACGTCGGTTT -ACGGAACATAGGCAACGTGTGGTT -ACGGAACATAGGCAACGTGCCTTT -ACGGAACATAGGCAACGTGGTCTT -ACGGAACATAGGCAACGTACGCTT -ACGGAACATAGGCAACGTAGCGTT -ACGGAACATAGGCAACGTTTCGTC -ACGGAACATAGGCAACGTTCTCTC -ACGGAACATAGGCAACGTTGGATC -ACGGAACATAGGCAACGTCACTTC -ACGGAACATAGGCAACGTGTACTC -ACGGAACATAGGCAACGTGATGTC -ACGGAACATAGGCAACGTACAGTC -ACGGAACATAGGCAACGTTTGCTG -ACGGAACATAGGCAACGTTCCATG -ACGGAACATAGGCAACGTTGTGTG -ACGGAACATAGGCAACGTCTAGTG -ACGGAACATAGGCAACGTCATCTG -ACGGAACATAGGCAACGTGAGTTG -ACGGAACATAGGCAACGTAGACTG -ACGGAACATAGGCAACGTTCGGTA -ACGGAACATAGGCAACGTTGCCTA -ACGGAACATAGGCAACGTCCACTA -ACGGAACATAGGCAACGTGGAGTA -ACGGAACATAGGCAACGTTCGTCT -ACGGAACATAGGCAACGTTGCACT -ACGGAACATAGGCAACGTCTGACT -ACGGAACATAGGCAACGTCAACCT -ACGGAACATAGGCAACGTGCTACT -ACGGAACATAGGCAACGTGGATCT -ACGGAACATAGGCAACGTAAGGCT -ACGGAACATAGGCAACGTTCAACC -ACGGAACATAGGCAACGTTGTTCC -ACGGAACATAGGCAACGTATTCCC -ACGGAACATAGGCAACGTTTCTCG -ACGGAACATAGGCAACGTTAGACG -ACGGAACATAGGCAACGTGTAACG -ACGGAACATAGGCAACGTACTTCG -ACGGAACATAGGCAACGTTACGCA -ACGGAACATAGGCAACGTCTTGCA -ACGGAACATAGGCAACGTCGAACA -ACGGAACATAGGCAACGTCAGTCA -ACGGAACATAGGCAACGTGATCCA -ACGGAACATAGGCAACGTACGACA -ACGGAACATAGGCAACGTAGCTCA -ACGGAACATAGGCAACGTTCACGT -ACGGAACATAGGCAACGTCGTAGT -ACGGAACATAGGCAACGTGTCAGT -ACGGAACATAGGCAACGTGAAGGT -ACGGAACATAGGCAACGTAACCGT -ACGGAACATAGGCAACGTTTGTGC -ACGGAACATAGGCAACGTCTAAGC -ACGGAACATAGGCAACGTACTAGC -ACGGAACATAGGCAACGTAGATGC -ACGGAACATAGGCAACGTTGAAGG -ACGGAACATAGGCAACGTCAATGG -ACGGAACATAGGCAACGTATGAGG -ACGGAACATAGGCAACGTAATGGG -ACGGAACATAGGCAACGTTCCTGA -ACGGAACATAGGCAACGTTAGCGA -ACGGAACATAGGCAACGTCACAGA -ACGGAACATAGGCAACGTGCAAGA -ACGGAACATAGGCAACGTGGTTGA -ACGGAACATAGGCAACGTTCCGAT -ACGGAACATAGGCAACGTTGGCAT -ACGGAACATAGGCAACGTCGAGAT -ACGGAACATAGGCAACGTTACCAC -ACGGAACATAGGCAACGTCAGAAC -ACGGAACATAGGCAACGTGTCTAC -ACGGAACATAGGCAACGTACGTAC -ACGGAACATAGGCAACGTAGTGAC -ACGGAACATAGGCAACGTCTGTAG -ACGGAACATAGGCAACGTCCTAAG -ACGGAACATAGGCAACGTGTTCAG -ACGGAACATAGGCAACGTGCATAG -ACGGAACATAGGCAACGTGACAAG -ACGGAACATAGGCAACGTAAGCAG -ACGGAACATAGGCAACGTCGTCAA -ACGGAACATAGGCAACGTGCTGAA -ACGGAACATAGGCAACGTAGTACG -ACGGAACATAGGCAACGTATCCGA -ACGGAACATAGGCAACGTATGGGA -ACGGAACATAGGCAACGTGTGCAA -ACGGAACATAGGCAACGTGAGGAA -ACGGAACATAGGCAACGTCAGGTA -ACGGAACATAGGCAACGTGACTCT -ACGGAACATAGGCAACGTAGTCCT -ACGGAACATAGGCAACGTTAAGCC -ACGGAACATAGGCAACGTATAGCC -ACGGAACATAGGCAACGTTAACCG -ACGGAACATAGGCAACGTATGCCA -ACGGAACATAGGGAAGCTGGAAAC -ACGGAACATAGGGAAGCTAACACC -ACGGAACATAGGGAAGCTATCGAG -ACGGAACATAGGGAAGCTCTCCTT -ACGGAACATAGGGAAGCTCCTGTT -ACGGAACATAGGGAAGCTCGGTTT -ACGGAACATAGGGAAGCTGTGGTT -ACGGAACATAGGGAAGCTGCCTTT -ACGGAACATAGGGAAGCTGGTCTT -ACGGAACATAGGGAAGCTACGCTT -ACGGAACATAGGGAAGCTAGCGTT -ACGGAACATAGGGAAGCTTTCGTC -ACGGAACATAGGGAAGCTTCTCTC -ACGGAACATAGGGAAGCTTGGATC -ACGGAACATAGGGAAGCTCACTTC -ACGGAACATAGGGAAGCTGTACTC -ACGGAACATAGGGAAGCTGATGTC -ACGGAACATAGGGAAGCTACAGTC -ACGGAACATAGGGAAGCTTTGCTG -ACGGAACATAGGGAAGCTTCCATG -ACGGAACATAGGGAAGCTTGTGTG -ACGGAACATAGGGAAGCTCTAGTG -ACGGAACATAGGGAAGCTCATCTG -ACGGAACATAGGGAAGCTGAGTTG -ACGGAACATAGGGAAGCTAGACTG -ACGGAACATAGGGAAGCTTCGGTA -ACGGAACATAGGGAAGCTTGCCTA -ACGGAACATAGGGAAGCTCCACTA -ACGGAACATAGGGAAGCTGGAGTA -ACGGAACATAGGGAAGCTTCGTCT -ACGGAACATAGGGAAGCTTGCACT -ACGGAACATAGGGAAGCTCTGACT -ACGGAACATAGGGAAGCTCAACCT -ACGGAACATAGGGAAGCTGCTACT -ACGGAACATAGGGAAGCTGGATCT -ACGGAACATAGGGAAGCTAAGGCT -ACGGAACATAGGGAAGCTTCAACC -ACGGAACATAGGGAAGCTTGTTCC -ACGGAACATAGGGAAGCTATTCCC -ACGGAACATAGGGAAGCTTTCTCG -ACGGAACATAGGGAAGCTTAGACG -ACGGAACATAGGGAAGCTGTAACG -ACGGAACATAGGGAAGCTACTTCG -ACGGAACATAGGGAAGCTTACGCA -ACGGAACATAGGGAAGCTCTTGCA -ACGGAACATAGGGAAGCTCGAACA -ACGGAACATAGGGAAGCTCAGTCA -ACGGAACATAGGGAAGCTGATCCA -ACGGAACATAGGGAAGCTACGACA -ACGGAACATAGGGAAGCTAGCTCA -ACGGAACATAGGGAAGCTTCACGT -ACGGAACATAGGGAAGCTCGTAGT -ACGGAACATAGGGAAGCTGTCAGT -ACGGAACATAGGGAAGCTGAAGGT -ACGGAACATAGGGAAGCTAACCGT -ACGGAACATAGGGAAGCTTTGTGC -ACGGAACATAGGGAAGCTCTAAGC -ACGGAACATAGGGAAGCTACTAGC -ACGGAACATAGGGAAGCTAGATGC -ACGGAACATAGGGAAGCTTGAAGG -ACGGAACATAGGGAAGCTCAATGG -ACGGAACATAGGGAAGCTATGAGG -ACGGAACATAGGGAAGCTAATGGG -ACGGAACATAGGGAAGCTTCCTGA -ACGGAACATAGGGAAGCTTAGCGA -ACGGAACATAGGGAAGCTCACAGA -ACGGAACATAGGGAAGCTGCAAGA -ACGGAACATAGGGAAGCTGGTTGA -ACGGAACATAGGGAAGCTTCCGAT -ACGGAACATAGGGAAGCTTGGCAT -ACGGAACATAGGGAAGCTCGAGAT -ACGGAACATAGGGAAGCTTACCAC -ACGGAACATAGGGAAGCTCAGAAC -ACGGAACATAGGGAAGCTGTCTAC -ACGGAACATAGGGAAGCTACGTAC -ACGGAACATAGGGAAGCTAGTGAC -ACGGAACATAGGGAAGCTCTGTAG -ACGGAACATAGGGAAGCTCCTAAG -ACGGAACATAGGGAAGCTGTTCAG -ACGGAACATAGGGAAGCTGCATAG -ACGGAACATAGGGAAGCTGACAAG -ACGGAACATAGGGAAGCTAAGCAG -ACGGAACATAGGGAAGCTCGTCAA -ACGGAACATAGGGAAGCTGCTGAA -ACGGAACATAGGGAAGCTAGTACG -ACGGAACATAGGGAAGCTATCCGA -ACGGAACATAGGGAAGCTATGGGA -ACGGAACATAGGGAAGCTGTGCAA -ACGGAACATAGGGAAGCTGAGGAA -ACGGAACATAGGGAAGCTCAGGTA -ACGGAACATAGGGAAGCTGACTCT -ACGGAACATAGGGAAGCTAGTCCT -ACGGAACATAGGGAAGCTTAAGCC -ACGGAACATAGGGAAGCTATAGCC -ACGGAACATAGGGAAGCTTAACCG -ACGGAACATAGGGAAGCTATGCCA -ACGGAACATAGGACGAGTGGAAAC -ACGGAACATAGGACGAGTAACACC -ACGGAACATAGGACGAGTATCGAG -ACGGAACATAGGACGAGTCTCCTT -ACGGAACATAGGACGAGTCCTGTT -ACGGAACATAGGACGAGTCGGTTT -ACGGAACATAGGACGAGTGTGGTT -ACGGAACATAGGACGAGTGCCTTT -ACGGAACATAGGACGAGTGGTCTT -ACGGAACATAGGACGAGTACGCTT -ACGGAACATAGGACGAGTAGCGTT -ACGGAACATAGGACGAGTTTCGTC -ACGGAACATAGGACGAGTTCTCTC -ACGGAACATAGGACGAGTTGGATC -ACGGAACATAGGACGAGTCACTTC -ACGGAACATAGGACGAGTGTACTC -ACGGAACATAGGACGAGTGATGTC -ACGGAACATAGGACGAGTACAGTC -ACGGAACATAGGACGAGTTTGCTG -ACGGAACATAGGACGAGTTCCATG -ACGGAACATAGGACGAGTTGTGTG -ACGGAACATAGGACGAGTCTAGTG -ACGGAACATAGGACGAGTCATCTG -ACGGAACATAGGACGAGTGAGTTG -ACGGAACATAGGACGAGTAGACTG -ACGGAACATAGGACGAGTTCGGTA -ACGGAACATAGGACGAGTTGCCTA -ACGGAACATAGGACGAGTCCACTA -ACGGAACATAGGACGAGTGGAGTA -ACGGAACATAGGACGAGTTCGTCT -ACGGAACATAGGACGAGTTGCACT -ACGGAACATAGGACGAGTCTGACT -ACGGAACATAGGACGAGTCAACCT -ACGGAACATAGGACGAGTGCTACT -ACGGAACATAGGACGAGTGGATCT -ACGGAACATAGGACGAGTAAGGCT -ACGGAACATAGGACGAGTTCAACC -ACGGAACATAGGACGAGTTGTTCC -ACGGAACATAGGACGAGTATTCCC -ACGGAACATAGGACGAGTTTCTCG -ACGGAACATAGGACGAGTTAGACG -ACGGAACATAGGACGAGTGTAACG -ACGGAACATAGGACGAGTACTTCG -ACGGAACATAGGACGAGTTACGCA -ACGGAACATAGGACGAGTCTTGCA -ACGGAACATAGGACGAGTCGAACA -ACGGAACATAGGACGAGTCAGTCA -ACGGAACATAGGACGAGTGATCCA -ACGGAACATAGGACGAGTACGACA -ACGGAACATAGGACGAGTAGCTCA -ACGGAACATAGGACGAGTTCACGT -ACGGAACATAGGACGAGTCGTAGT -ACGGAACATAGGACGAGTGTCAGT -ACGGAACATAGGACGAGTGAAGGT -ACGGAACATAGGACGAGTAACCGT -ACGGAACATAGGACGAGTTTGTGC -ACGGAACATAGGACGAGTCTAAGC -ACGGAACATAGGACGAGTACTAGC -ACGGAACATAGGACGAGTAGATGC -ACGGAACATAGGACGAGTTGAAGG -ACGGAACATAGGACGAGTCAATGG -ACGGAACATAGGACGAGTATGAGG -ACGGAACATAGGACGAGTAATGGG -ACGGAACATAGGACGAGTTCCTGA -ACGGAACATAGGACGAGTTAGCGA -ACGGAACATAGGACGAGTCACAGA -ACGGAACATAGGACGAGTGCAAGA -ACGGAACATAGGACGAGTGGTTGA -ACGGAACATAGGACGAGTTCCGAT -ACGGAACATAGGACGAGTTGGCAT -ACGGAACATAGGACGAGTCGAGAT -ACGGAACATAGGACGAGTTACCAC -ACGGAACATAGGACGAGTCAGAAC -ACGGAACATAGGACGAGTGTCTAC -ACGGAACATAGGACGAGTACGTAC -ACGGAACATAGGACGAGTAGTGAC -ACGGAACATAGGACGAGTCTGTAG -ACGGAACATAGGACGAGTCCTAAG -ACGGAACATAGGACGAGTGTTCAG -ACGGAACATAGGACGAGTGCATAG -ACGGAACATAGGACGAGTGACAAG -ACGGAACATAGGACGAGTAAGCAG -ACGGAACATAGGACGAGTCGTCAA -ACGGAACATAGGACGAGTGCTGAA -ACGGAACATAGGACGAGTAGTACG -ACGGAACATAGGACGAGTATCCGA -ACGGAACATAGGACGAGTATGGGA -ACGGAACATAGGACGAGTGTGCAA -ACGGAACATAGGACGAGTGAGGAA -ACGGAACATAGGACGAGTCAGGTA -ACGGAACATAGGACGAGTGACTCT -ACGGAACATAGGACGAGTAGTCCT -ACGGAACATAGGACGAGTTAAGCC -ACGGAACATAGGACGAGTATAGCC -ACGGAACATAGGACGAGTTAACCG -ACGGAACATAGGACGAGTATGCCA -ACGGAACATAGGCGAATCGGAAAC -ACGGAACATAGGCGAATCAACACC -ACGGAACATAGGCGAATCATCGAG -ACGGAACATAGGCGAATCCTCCTT -ACGGAACATAGGCGAATCCCTGTT -ACGGAACATAGGCGAATCCGGTTT -ACGGAACATAGGCGAATCGTGGTT -ACGGAACATAGGCGAATCGCCTTT -ACGGAACATAGGCGAATCGGTCTT -ACGGAACATAGGCGAATCACGCTT -ACGGAACATAGGCGAATCAGCGTT -ACGGAACATAGGCGAATCTTCGTC -ACGGAACATAGGCGAATCTCTCTC -ACGGAACATAGGCGAATCTGGATC -ACGGAACATAGGCGAATCCACTTC -ACGGAACATAGGCGAATCGTACTC -ACGGAACATAGGCGAATCGATGTC -ACGGAACATAGGCGAATCACAGTC -ACGGAACATAGGCGAATCTTGCTG -ACGGAACATAGGCGAATCTCCATG -ACGGAACATAGGCGAATCTGTGTG -ACGGAACATAGGCGAATCCTAGTG -ACGGAACATAGGCGAATCCATCTG -ACGGAACATAGGCGAATCGAGTTG -ACGGAACATAGGCGAATCAGACTG -ACGGAACATAGGCGAATCTCGGTA -ACGGAACATAGGCGAATCTGCCTA -ACGGAACATAGGCGAATCCCACTA -ACGGAACATAGGCGAATCGGAGTA -ACGGAACATAGGCGAATCTCGTCT -ACGGAACATAGGCGAATCTGCACT -ACGGAACATAGGCGAATCCTGACT -ACGGAACATAGGCGAATCCAACCT -ACGGAACATAGGCGAATCGCTACT -ACGGAACATAGGCGAATCGGATCT -ACGGAACATAGGCGAATCAAGGCT -ACGGAACATAGGCGAATCTCAACC -ACGGAACATAGGCGAATCTGTTCC -ACGGAACATAGGCGAATCATTCCC -ACGGAACATAGGCGAATCTTCTCG -ACGGAACATAGGCGAATCTAGACG -ACGGAACATAGGCGAATCGTAACG -ACGGAACATAGGCGAATCACTTCG -ACGGAACATAGGCGAATCTACGCA -ACGGAACATAGGCGAATCCTTGCA -ACGGAACATAGGCGAATCCGAACA -ACGGAACATAGGCGAATCCAGTCA -ACGGAACATAGGCGAATCGATCCA -ACGGAACATAGGCGAATCACGACA -ACGGAACATAGGCGAATCAGCTCA -ACGGAACATAGGCGAATCTCACGT -ACGGAACATAGGCGAATCCGTAGT -ACGGAACATAGGCGAATCGTCAGT -ACGGAACATAGGCGAATCGAAGGT -ACGGAACATAGGCGAATCAACCGT -ACGGAACATAGGCGAATCTTGTGC -ACGGAACATAGGCGAATCCTAAGC -ACGGAACATAGGCGAATCACTAGC -ACGGAACATAGGCGAATCAGATGC -ACGGAACATAGGCGAATCTGAAGG -ACGGAACATAGGCGAATCCAATGG -ACGGAACATAGGCGAATCATGAGG -ACGGAACATAGGCGAATCAATGGG -ACGGAACATAGGCGAATCTCCTGA -ACGGAACATAGGCGAATCTAGCGA -ACGGAACATAGGCGAATCCACAGA -ACGGAACATAGGCGAATCGCAAGA -ACGGAACATAGGCGAATCGGTTGA -ACGGAACATAGGCGAATCTCCGAT -ACGGAACATAGGCGAATCTGGCAT -ACGGAACATAGGCGAATCCGAGAT -ACGGAACATAGGCGAATCTACCAC -ACGGAACATAGGCGAATCCAGAAC -ACGGAACATAGGCGAATCGTCTAC -ACGGAACATAGGCGAATCACGTAC -ACGGAACATAGGCGAATCAGTGAC -ACGGAACATAGGCGAATCCTGTAG -ACGGAACATAGGCGAATCCCTAAG -ACGGAACATAGGCGAATCGTTCAG -ACGGAACATAGGCGAATCGCATAG -ACGGAACATAGGCGAATCGACAAG -ACGGAACATAGGCGAATCAAGCAG -ACGGAACATAGGCGAATCCGTCAA -ACGGAACATAGGCGAATCGCTGAA -ACGGAACATAGGCGAATCAGTACG -ACGGAACATAGGCGAATCATCCGA -ACGGAACATAGGCGAATCATGGGA -ACGGAACATAGGCGAATCGTGCAA -ACGGAACATAGGCGAATCGAGGAA -ACGGAACATAGGCGAATCCAGGTA -ACGGAACATAGGCGAATCGACTCT -ACGGAACATAGGCGAATCAGTCCT -ACGGAACATAGGCGAATCTAAGCC -ACGGAACATAGGCGAATCATAGCC -ACGGAACATAGGCGAATCTAACCG -ACGGAACATAGGCGAATCATGCCA -ACGGAACATAGGGGAATGGGAAAC -ACGGAACATAGGGGAATGAACACC -ACGGAACATAGGGGAATGATCGAG -ACGGAACATAGGGGAATGCTCCTT -ACGGAACATAGGGGAATGCCTGTT -ACGGAACATAGGGGAATGCGGTTT -ACGGAACATAGGGGAATGGTGGTT -ACGGAACATAGGGGAATGGCCTTT -ACGGAACATAGGGGAATGGGTCTT -ACGGAACATAGGGGAATGACGCTT -ACGGAACATAGGGGAATGAGCGTT -ACGGAACATAGGGGAATGTTCGTC -ACGGAACATAGGGGAATGTCTCTC -ACGGAACATAGGGGAATGTGGATC -ACGGAACATAGGGGAATGCACTTC -ACGGAACATAGGGGAATGGTACTC -ACGGAACATAGGGGAATGGATGTC -ACGGAACATAGGGGAATGACAGTC -ACGGAACATAGGGGAATGTTGCTG -ACGGAACATAGGGGAATGTCCATG -ACGGAACATAGGGGAATGTGTGTG -ACGGAACATAGGGGAATGCTAGTG -ACGGAACATAGGGGAATGCATCTG -ACGGAACATAGGGGAATGGAGTTG -ACGGAACATAGGGGAATGAGACTG -ACGGAACATAGGGGAATGTCGGTA -ACGGAACATAGGGGAATGTGCCTA -ACGGAACATAGGGGAATGCCACTA -ACGGAACATAGGGGAATGGGAGTA -ACGGAACATAGGGGAATGTCGTCT -ACGGAACATAGGGGAATGTGCACT -ACGGAACATAGGGGAATGCTGACT -ACGGAACATAGGGGAATGCAACCT -ACGGAACATAGGGGAATGGCTACT -ACGGAACATAGGGGAATGGGATCT -ACGGAACATAGGGGAATGAAGGCT -ACGGAACATAGGGGAATGTCAACC -ACGGAACATAGGGGAATGTGTTCC -ACGGAACATAGGGGAATGATTCCC -ACGGAACATAGGGGAATGTTCTCG -ACGGAACATAGGGGAATGTAGACG -ACGGAACATAGGGGAATGGTAACG -ACGGAACATAGGGGAATGACTTCG -ACGGAACATAGGGGAATGTACGCA -ACGGAACATAGGGGAATGCTTGCA -ACGGAACATAGGGGAATGCGAACA -ACGGAACATAGGGGAATGCAGTCA -ACGGAACATAGGGGAATGGATCCA -ACGGAACATAGGGGAATGACGACA -ACGGAACATAGGGGAATGAGCTCA -ACGGAACATAGGGGAATGTCACGT -ACGGAACATAGGGGAATGCGTAGT -ACGGAACATAGGGGAATGGTCAGT -ACGGAACATAGGGGAATGGAAGGT -ACGGAACATAGGGGAATGAACCGT -ACGGAACATAGGGGAATGTTGTGC -ACGGAACATAGGGGAATGCTAAGC -ACGGAACATAGGGGAATGACTAGC -ACGGAACATAGGGGAATGAGATGC -ACGGAACATAGGGGAATGTGAAGG -ACGGAACATAGGGGAATGCAATGG -ACGGAACATAGGGGAATGATGAGG -ACGGAACATAGGGGAATGAATGGG -ACGGAACATAGGGGAATGTCCTGA -ACGGAACATAGGGGAATGTAGCGA -ACGGAACATAGGGGAATGCACAGA -ACGGAACATAGGGGAATGGCAAGA -ACGGAACATAGGGGAATGGGTTGA -ACGGAACATAGGGGAATGTCCGAT -ACGGAACATAGGGGAATGTGGCAT -ACGGAACATAGGGGAATGCGAGAT -ACGGAACATAGGGGAATGTACCAC -ACGGAACATAGGGGAATGCAGAAC -ACGGAACATAGGGGAATGGTCTAC -ACGGAACATAGGGGAATGACGTAC -ACGGAACATAGGGGAATGAGTGAC -ACGGAACATAGGGGAATGCTGTAG -ACGGAACATAGGGGAATGCCTAAG -ACGGAACATAGGGGAATGGTTCAG -ACGGAACATAGGGGAATGGCATAG -ACGGAACATAGGGGAATGGACAAG -ACGGAACATAGGGGAATGAAGCAG -ACGGAACATAGGGGAATGCGTCAA -ACGGAACATAGGGGAATGGCTGAA -ACGGAACATAGGGGAATGAGTACG -ACGGAACATAGGGGAATGATCCGA -ACGGAACATAGGGGAATGATGGGA -ACGGAACATAGGGGAATGGTGCAA -ACGGAACATAGGGGAATGGAGGAA -ACGGAACATAGGGGAATGCAGGTA -ACGGAACATAGGGGAATGGACTCT -ACGGAACATAGGGGAATGAGTCCT -ACGGAACATAGGGGAATGTAAGCC -ACGGAACATAGGGGAATGATAGCC -ACGGAACATAGGGGAATGTAACCG -ACGGAACATAGGGGAATGATGCCA -ACGGAACATAGGCAAGTGGGAAAC -ACGGAACATAGGCAAGTGAACACC -ACGGAACATAGGCAAGTGATCGAG -ACGGAACATAGGCAAGTGCTCCTT -ACGGAACATAGGCAAGTGCCTGTT -ACGGAACATAGGCAAGTGCGGTTT -ACGGAACATAGGCAAGTGGTGGTT -ACGGAACATAGGCAAGTGGCCTTT -ACGGAACATAGGCAAGTGGGTCTT -ACGGAACATAGGCAAGTGACGCTT -ACGGAACATAGGCAAGTGAGCGTT -ACGGAACATAGGCAAGTGTTCGTC -ACGGAACATAGGCAAGTGTCTCTC -ACGGAACATAGGCAAGTGTGGATC -ACGGAACATAGGCAAGTGCACTTC -ACGGAACATAGGCAAGTGGTACTC -ACGGAACATAGGCAAGTGGATGTC -ACGGAACATAGGCAAGTGACAGTC -ACGGAACATAGGCAAGTGTTGCTG -ACGGAACATAGGCAAGTGTCCATG -ACGGAACATAGGCAAGTGTGTGTG -ACGGAACATAGGCAAGTGCTAGTG -ACGGAACATAGGCAAGTGCATCTG -ACGGAACATAGGCAAGTGGAGTTG -ACGGAACATAGGCAAGTGAGACTG -ACGGAACATAGGCAAGTGTCGGTA -ACGGAACATAGGCAAGTGTGCCTA -ACGGAACATAGGCAAGTGCCACTA -ACGGAACATAGGCAAGTGGGAGTA -ACGGAACATAGGCAAGTGTCGTCT -ACGGAACATAGGCAAGTGTGCACT -ACGGAACATAGGCAAGTGCTGACT -ACGGAACATAGGCAAGTGCAACCT -ACGGAACATAGGCAAGTGGCTACT -ACGGAACATAGGCAAGTGGGATCT -ACGGAACATAGGCAAGTGAAGGCT -ACGGAACATAGGCAAGTGTCAACC -ACGGAACATAGGCAAGTGTGTTCC -ACGGAACATAGGCAAGTGATTCCC -ACGGAACATAGGCAAGTGTTCTCG -ACGGAACATAGGCAAGTGTAGACG -ACGGAACATAGGCAAGTGGTAACG -ACGGAACATAGGCAAGTGACTTCG -ACGGAACATAGGCAAGTGTACGCA -ACGGAACATAGGCAAGTGCTTGCA -ACGGAACATAGGCAAGTGCGAACA -ACGGAACATAGGCAAGTGCAGTCA -ACGGAACATAGGCAAGTGGATCCA -ACGGAACATAGGCAAGTGACGACA -ACGGAACATAGGCAAGTGAGCTCA -ACGGAACATAGGCAAGTGTCACGT -ACGGAACATAGGCAAGTGCGTAGT -ACGGAACATAGGCAAGTGGTCAGT -ACGGAACATAGGCAAGTGGAAGGT -ACGGAACATAGGCAAGTGAACCGT -ACGGAACATAGGCAAGTGTTGTGC -ACGGAACATAGGCAAGTGCTAAGC -ACGGAACATAGGCAAGTGACTAGC -ACGGAACATAGGCAAGTGAGATGC -ACGGAACATAGGCAAGTGTGAAGG -ACGGAACATAGGCAAGTGCAATGG -ACGGAACATAGGCAAGTGATGAGG -ACGGAACATAGGCAAGTGAATGGG -ACGGAACATAGGCAAGTGTCCTGA -ACGGAACATAGGCAAGTGTAGCGA -ACGGAACATAGGCAAGTGCACAGA -ACGGAACATAGGCAAGTGGCAAGA -ACGGAACATAGGCAAGTGGGTTGA -ACGGAACATAGGCAAGTGTCCGAT -ACGGAACATAGGCAAGTGTGGCAT -ACGGAACATAGGCAAGTGCGAGAT -ACGGAACATAGGCAAGTGTACCAC -ACGGAACATAGGCAAGTGCAGAAC -ACGGAACATAGGCAAGTGGTCTAC -ACGGAACATAGGCAAGTGACGTAC -ACGGAACATAGGCAAGTGAGTGAC -ACGGAACATAGGCAAGTGCTGTAG -ACGGAACATAGGCAAGTGCCTAAG -ACGGAACATAGGCAAGTGGTTCAG -ACGGAACATAGGCAAGTGGCATAG -ACGGAACATAGGCAAGTGGACAAG -ACGGAACATAGGCAAGTGAAGCAG -ACGGAACATAGGCAAGTGCGTCAA -ACGGAACATAGGCAAGTGGCTGAA -ACGGAACATAGGCAAGTGAGTACG -ACGGAACATAGGCAAGTGATCCGA -ACGGAACATAGGCAAGTGATGGGA -ACGGAACATAGGCAAGTGGTGCAA -ACGGAACATAGGCAAGTGGAGGAA -ACGGAACATAGGCAAGTGCAGGTA -ACGGAACATAGGCAAGTGGACTCT -ACGGAACATAGGCAAGTGAGTCCT -ACGGAACATAGGCAAGTGTAAGCC -ACGGAACATAGGCAAGTGATAGCC -ACGGAACATAGGCAAGTGTAACCG -ACGGAACATAGGCAAGTGATGCCA -ACGGAACATAGGGAAGAGGGAAAC -ACGGAACATAGGGAAGAGAACACC -ACGGAACATAGGGAAGAGATCGAG -ACGGAACATAGGGAAGAGCTCCTT -ACGGAACATAGGGAAGAGCCTGTT -ACGGAACATAGGGAAGAGCGGTTT -ACGGAACATAGGGAAGAGGTGGTT -ACGGAACATAGGGAAGAGGCCTTT -ACGGAACATAGGGAAGAGGGTCTT -ACGGAACATAGGGAAGAGACGCTT -ACGGAACATAGGGAAGAGAGCGTT -ACGGAACATAGGGAAGAGTTCGTC -ACGGAACATAGGGAAGAGTCTCTC -ACGGAACATAGGGAAGAGTGGATC -ACGGAACATAGGGAAGAGCACTTC -ACGGAACATAGGGAAGAGGTACTC -ACGGAACATAGGGAAGAGGATGTC -ACGGAACATAGGGAAGAGACAGTC -ACGGAACATAGGGAAGAGTTGCTG -ACGGAACATAGGGAAGAGTCCATG -ACGGAACATAGGGAAGAGTGTGTG -ACGGAACATAGGGAAGAGCTAGTG -ACGGAACATAGGGAAGAGCATCTG -ACGGAACATAGGGAAGAGGAGTTG -ACGGAACATAGGGAAGAGAGACTG -ACGGAACATAGGGAAGAGTCGGTA -ACGGAACATAGGGAAGAGTGCCTA -ACGGAACATAGGGAAGAGCCACTA -ACGGAACATAGGGAAGAGGGAGTA -ACGGAACATAGGGAAGAGTCGTCT -ACGGAACATAGGGAAGAGTGCACT -ACGGAACATAGGGAAGAGCTGACT -ACGGAACATAGGGAAGAGCAACCT -ACGGAACATAGGGAAGAGGCTACT -ACGGAACATAGGGAAGAGGGATCT -ACGGAACATAGGGAAGAGAAGGCT -ACGGAACATAGGGAAGAGTCAACC -ACGGAACATAGGGAAGAGTGTTCC -ACGGAACATAGGGAAGAGATTCCC -ACGGAACATAGGGAAGAGTTCTCG -ACGGAACATAGGGAAGAGTAGACG -ACGGAACATAGGGAAGAGGTAACG -ACGGAACATAGGGAAGAGACTTCG -ACGGAACATAGGGAAGAGTACGCA -ACGGAACATAGGGAAGAGCTTGCA -ACGGAACATAGGGAAGAGCGAACA -ACGGAACATAGGGAAGAGCAGTCA -ACGGAACATAGGGAAGAGGATCCA -ACGGAACATAGGGAAGAGACGACA -ACGGAACATAGGGAAGAGAGCTCA -ACGGAACATAGGGAAGAGTCACGT -ACGGAACATAGGGAAGAGCGTAGT -ACGGAACATAGGGAAGAGGTCAGT -ACGGAACATAGGGAAGAGGAAGGT -ACGGAACATAGGGAAGAGAACCGT -ACGGAACATAGGGAAGAGTTGTGC -ACGGAACATAGGGAAGAGCTAAGC -ACGGAACATAGGGAAGAGACTAGC -ACGGAACATAGGGAAGAGAGATGC -ACGGAACATAGGGAAGAGTGAAGG -ACGGAACATAGGGAAGAGCAATGG -ACGGAACATAGGGAAGAGATGAGG -ACGGAACATAGGGAAGAGAATGGG -ACGGAACATAGGGAAGAGTCCTGA -ACGGAACATAGGGAAGAGTAGCGA -ACGGAACATAGGGAAGAGCACAGA -ACGGAACATAGGGAAGAGGCAAGA -ACGGAACATAGGGAAGAGGGTTGA -ACGGAACATAGGGAAGAGTCCGAT -ACGGAACATAGGGAAGAGTGGCAT -ACGGAACATAGGGAAGAGCGAGAT -ACGGAACATAGGGAAGAGTACCAC -ACGGAACATAGGGAAGAGCAGAAC -ACGGAACATAGGGAAGAGGTCTAC -ACGGAACATAGGGAAGAGACGTAC -ACGGAACATAGGGAAGAGAGTGAC -ACGGAACATAGGGAAGAGCTGTAG -ACGGAACATAGGGAAGAGCCTAAG -ACGGAACATAGGGAAGAGGTTCAG -ACGGAACATAGGGAAGAGGCATAG -ACGGAACATAGGGAAGAGGACAAG -ACGGAACATAGGGAAGAGAAGCAG -ACGGAACATAGGGAAGAGCGTCAA -ACGGAACATAGGGAAGAGGCTGAA -ACGGAACATAGGGAAGAGAGTACG -ACGGAACATAGGGAAGAGATCCGA -ACGGAACATAGGGAAGAGATGGGA -ACGGAACATAGGGAAGAGGTGCAA -ACGGAACATAGGGAAGAGGAGGAA -ACGGAACATAGGGAAGAGCAGGTA -ACGGAACATAGGGAAGAGGACTCT -ACGGAACATAGGGAAGAGAGTCCT -ACGGAACATAGGGAAGAGTAAGCC -ACGGAACATAGGGAAGAGATAGCC -ACGGAACATAGGGAAGAGTAACCG -ACGGAACATAGGGAAGAGATGCCA -ACGGAACATAGGGTACAGGGAAAC -ACGGAACATAGGGTACAGAACACC -ACGGAACATAGGGTACAGATCGAG -ACGGAACATAGGGTACAGCTCCTT -ACGGAACATAGGGTACAGCCTGTT -ACGGAACATAGGGTACAGCGGTTT -ACGGAACATAGGGTACAGGTGGTT -ACGGAACATAGGGTACAGGCCTTT -ACGGAACATAGGGTACAGGGTCTT -ACGGAACATAGGGTACAGACGCTT -ACGGAACATAGGGTACAGAGCGTT -ACGGAACATAGGGTACAGTTCGTC -ACGGAACATAGGGTACAGTCTCTC -ACGGAACATAGGGTACAGTGGATC -ACGGAACATAGGGTACAGCACTTC -ACGGAACATAGGGTACAGGTACTC -ACGGAACATAGGGTACAGGATGTC -ACGGAACATAGGGTACAGACAGTC -ACGGAACATAGGGTACAGTTGCTG -ACGGAACATAGGGTACAGTCCATG -ACGGAACATAGGGTACAGTGTGTG -ACGGAACATAGGGTACAGCTAGTG -ACGGAACATAGGGTACAGCATCTG -ACGGAACATAGGGTACAGGAGTTG -ACGGAACATAGGGTACAGAGACTG -ACGGAACATAGGGTACAGTCGGTA -ACGGAACATAGGGTACAGTGCCTA -ACGGAACATAGGGTACAGCCACTA -ACGGAACATAGGGTACAGGGAGTA -ACGGAACATAGGGTACAGTCGTCT -ACGGAACATAGGGTACAGTGCACT -ACGGAACATAGGGTACAGCTGACT -ACGGAACATAGGGTACAGCAACCT -ACGGAACATAGGGTACAGGCTACT -ACGGAACATAGGGTACAGGGATCT -ACGGAACATAGGGTACAGAAGGCT -ACGGAACATAGGGTACAGTCAACC -ACGGAACATAGGGTACAGTGTTCC -ACGGAACATAGGGTACAGATTCCC -ACGGAACATAGGGTACAGTTCTCG -ACGGAACATAGGGTACAGTAGACG -ACGGAACATAGGGTACAGGTAACG -ACGGAACATAGGGTACAGACTTCG -ACGGAACATAGGGTACAGTACGCA -ACGGAACATAGGGTACAGCTTGCA -ACGGAACATAGGGTACAGCGAACA -ACGGAACATAGGGTACAGCAGTCA -ACGGAACATAGGGTACAGGATCCA -ACGGAACATAGGGTACAGACGACA -ACGGAACATAGGGTACAGAGCTCA -ACGGAACATAGGGTACAGTCACGT -ACGGAACATAGGGTACAGCGTAGT -ACGGAACATAGGGTACAGGTCAGT -ACGGAACATAGGGTACAGGAAGGT -ACGGAACATAGGGTACAGAACCGT -ACGGAACATAGGGTACAGTTGTGC -ACGGAACATAGGGTACAGCTAAGC -ACGGAACATAGGGTACAGACTAGC -ACGGAACATAGGGTACAGAGATGC -ACGGAACATAGGGTACAGTGAAGG -ACGGAACATAGGGTACAGCAATGG -ACGGAACATAGGGTACAGATGAGG -ACGGAACATAGGGTACAGAATGGG -ACGGAACATAGGGTACAGTCCTGA -ACGGAACATAGGGTACAGTAGCGA -ACGGAACATAGGGTACAGCACAGA -ACGGAACATAGGGTACAGGCAAGA -ACGGAACATAGGGTACAGGGTTGA -ACGGAACATAGGGTACAGTCCGAT -ACGGAACATAGGGTACAGTGGCAT -ACGGAACATAGGGTACAGCGAGAT -ACGGAACATAGGGTACAGTACCAC -ACGGAACATAGGGTACAGCAGAAC -ACGGAACATAGGGTACAGGTCTAC -ACGGAACATAGGGTACAGACGTAC -ACGGAACATAGGGTACAGAGTGAC -ACGGAACATAGGGTACAGCTGTAG -ACGGAACATAGGGTACAGCCTAAG -ACGGAACATAGGGTACAGGTTCAG -ACGGAACATAGGGTACAGGCATAG -ACGGAACATAGGGTACAGGACAAG -ACGGAACATAGGGTACAGAAGCAG -ACGGAACATAGGGTACAGCGTCAA -ACGGAACATAGGGTACAGGCTGAA -ACGGAACATAGGGTACAGAGTACG -ACGGAACATAGGGTACAGATCCGA -ACGGAACATAGGGTACAGATGGGA -ACGGAACATAGGGTACAGGTGCAA -ACGGAACATAGGGTACAGGAGGAA -ACGGAACATAGGGTACAGCAGGTA -ACGGAACATAGGGTACAGGACTCT -ACGGAACATAGGGTACAGAGTCCT -ACGGAACATAGGGTACAGTAAGCC -ACGGAACATAGGGTACAGATAGCC -ACGGAACATAGGGTACAGTAACCG -ACGGAACATAGGGTACAGATGCCA -ACGGAACATAGGTCTGACGGAAAC -ACGGAACATAGGTCTGACAACACC -ACGGAACATAGGTCTGACATCGAG -ACGGAACATAGGTCTGACCTCCTT -ACGGAACATAGGTCTGACCCTGTT -ACGGAACATAGGTCTGACCGGTTT -ACGGAACATAGGTCTGACGTGGTT -ACGGAACATAGGTCTGACGCCTTT -ACGGAACATAGGTCTGACGGTCTT -ACGGAACATAGGTCTGACACGCTT -ACGGAACATAGGTCTGACAGCGTT -ACGGAACATAGGTCTGACTTCGTC -ACGGAACATAGGTCTGACTCTCTC -ACGGAACATAGGTCTGACTGGATC -ACGGAACATAGGTCTGACCACTTC -ACGGAACATAGGTCTGACGTACTC -ACGGAACATAGGTCTGACGATGTC -ACGGAACATAGGTCTGACACAGTC -ACGGAACATAGGTCTGACTTGCTG -ACGGAACATAGGTCTGACTCCATG -ACGGAACATAGGTCTGACTGTGTG -ACGGAACATAGGTCTGACCTAGTG -ACGGAACATAGGTCTGACCATCTG -ACGGAACATAGGTCTGACGAGTTG -ACGGAACATAGGTCTGACAGACTG -ACGGAACATAGGTCTGACTCGGTA -ACGGAACATAGGTCTGACTGCCTA -ACGGAACATAGGTCTGACCCACTA -ACGGAACATAGGTCTGACGGAGTA -ACGGAACATAGGTCTGACTCGTCT -ACGGAACATAGGTCTGACTGCACT -ACGGAACATAGGTCTGACCTGACT -ACGGAACATAGGTCTGACCAACCT -ACGGAACATAGGTCTGACGCTACT -ACGGAACATAGGTCTGACGGATCT -ACGGAACATAGGTCTGACAAGGCT -ACGGAACATAGGTCTGACTCAACC -ACGGAACATAGGTCTGACTGTTCC -ACGGAACATAGGTCTGACATTCCC -ACGGAACATAGGTCTGACTTCTCG -ACGGAACATAGGTCTGACTAGACG -ACGGAACATAGGTCTGACGTAACG -ACGGAACATAGGTCTGACACTTCG -ACGGAACATAGGTCTGACTACGCA -ACGGAACATAGGTCTGACCTTGCA -ACGGAACATAGGTCTGACCGAACA -ACGGAACATAGGTCTGACCAGTCA -ACGGAACATAGGTCTGACGATCCA -ACGGAACATAGGTCTGACACGACA -ACGGAACATAGGTCTGACAGCTCA -ACGGAACATAGGTCTGACTCACGT -ACGGAACATAGGTCTGACCGTAGT -ACGGAACATAGGTCTGACGTCAGT -ACGGAACATAGGTCTGACGAAGGT -ACGGAACATAGGTCTGACAACCGT -ACGGAACATAGGTCTGACTTGTGC -ACGGAACATAGGTCTGACCTAAGC -ACGGAACATAGGTCTGACACTAGC -ACGGAACATAGGTCTGACAGATGC -ACGGAACATAGGTCTGACTGAAGG -ACGGAACATAGGTCTGACCAATGG -ACGGAACATAGGTCTGACATGAGG -ACGGAACATAGGTCTGACAATGGG -ACGGAACATAGGTCTGACTCCTGA -ACGGAACATAGGTCTGACTAGCGA -ACGGAACATAGGTCTGACCACAGA -ACGGAACATAGGTCTGACGCAAGA -ACGGAACATAGGTCTGACGGTTGA -ACGGAACATAGGTCTGACTCCGAT -ACGGAACATAGGTCTGACTGGCAT -ACGGAACATAGGTCTGACCGAGAT -ACGGAACATAGGTCTGACTACCAC -ACGGAACATAGGTCTGACCAGAAC -ACGGAACATAGGTCTGACGTCTAC -ACGGAACATAGGTCTGACACGTAC -ACGGAACATAGGTCTGACAGTGAC -ACGGAACATAGGTCTGACCTGTAG -ACGGAACATAGGTCTGACCCTAAG -ACGGAACATAGGTCTGACGTTCAG -ACGGAACATAGGTCTGACGCATAG -ACGGAACATAGGTCTGACGACAAG -ACGGAACATAGGTCTGACAAGCAG -ACGGAACATAGGTCTGACCGTCAA -ACGGAACATAGGTCTGACGCTGAA -ACGGAACATAGGTCTGACAGTACG -ACGGAACATAGGTCTGACATCCGA -ACGGAACATAGGTCTGACATGGGA -ACGGAACATAGGTCTGACGTGCAA -ACGGAACATAGGTCTGACGAGGAA -ACGGAACATAGGTCTGACCAGGTA -ACGGAACATAGGTCTGACGACTCT -ACGGAACATAGGTCTGACAGTCCT -ACGGAACATAGGTCTGACTAAGCC -ACGGAACATAGGTCTGACATAGCC -ACGGAACATAGGTCTGACTAACCG -ACGGAACATAGGTCTGACATGCCA -ACGGAACATAGGCCTAGTGGAAAC -ACGGAACATAGGCCTAGTAACACC -ACGGAACATAGGCCTAGTATCGAG -ACGGAACATAGGCCTAGTCTCCTT -ACGGAACATAGGCCTAGTCCTGTT -ACGGAACATAGGCCTAGTCGGTTT -ACGGAACATAGGCCTAGTGTGGTT -ACGGAACATAGGCCTAGTGCCTTT -ACGGAACATAGGCCTAGTGGTCTT -ACGGAACATAGGCCTAGTACGCTT -ACGGAACATAGGCCTAGTAGCGTT -ACGGAACATAGGCCTAGTTTCGTC -ACGGAACATAGGCCTAGTTCTCTC -ACGGAACATAGGCCTAGTTGGATC -ACGGAACATAGGCCTAGTCACTTC -ACGGAACATAGGCCTAGTGTACTC -ACGGAACATAGGCCTAGTGATGTC -ACGGAACATAGGCCTAGTACAGTC -ACGGAACATAGGCCTAGTTTGCTG -ACGGAACATAGGCCTAGTTCCATG -ACGGAACATAGGCCTAGTTGTGTG -ACGGAACATAGGCCTAGTCTAGTG -ACGGAACATAGGCCTAGTCATCTG -ACGGAACATAGGCCTAGTGAGTTG -ACGGAACATAGGCCTAGTAGACTG -ACGGAACATAGGCCTAGTTCGGTA -ACGGAACATAGGCCTAGTTGCCTA -ACGGAACATAGGCCTAGTCCACTA -ACGGAACATAGGCCTAGTGGAGTA -ACGGAACATAGGCCTAGTTCGTCT -ACGGAACATAGGCCTAGTTGCACT -ACGGAACATAGGCCTAGTCTGACT -ACGGAACATAGGCCTAGTCAACCT -ACGGAACATAGGCCTAGTGCTACT -ACGGAACATAGGCCTAGTGGATCT -ACGGAACATAGGCCTAGTAAGGCT -ACGGAACATAGGCCTAGTTCAACC -ACGGAACATAGGCCTAGTTGTTCC -ACGGAACATAGGCCTAGTATTCCC -ACGGAACATAGGCCTAGTTTCTCG -ACGGAACATAGGCCTAGTTAGACG -ACGGAACATAGGCCTAGTGTAACG -ACGGAACATAGGCCTAGTACTTCG -ACGGAACATAGGCCTAGTTACGCA -ACGGAACATAGGCCTAGTCTTGCA -ACGGAACATAGGCCTAGTCGAACA -ACGGAACATAGGCCTAGTCAGTCA -ACGGAACATAGGCCTAGTGATCCA -ACGGAACATAGGCCTAGTACGACA -ACGGAACATAGGCCTAGTAGCTCA -ACGGAACATAGGCCTAGTTCACGT -ACGGAACATAGGCCTAGTCGTAGT -ACGGAACATAGGCCTAGTGTCAGT -ACGGAACATAGGCCTAGTGAAGGT -ACGGAACATAGGCCTAGTAACCGT -ACGGAACATAGGCCTAGTTTGTGC -ACGGAACATAGGCCTAGTCTAAGC -ACGGAACATAGGCCTAGTACTAGC -ACGGAACATAGGCCTAGTAGATGC -ACGGAACATAGGCCTAGTTGAAGG -ACGGAACATAGGCCTAGTCAATGG -ACGGAACATAGGCCTAGTATGAGG -ACGGAACATAGGCCTAGTAATGGG -ACGGAACATAGGCCTAGTTCCTGA -ACGGAACATAGGCCTAGTTAGCGA -ACGGAACATAGGCCTAGTCACAGA -ACGGAACATAGGCCTAGTGCAAGA -ACGGAACATAGGCCTAGTGGTTGA -ACGGAACATAGGCCTAGTTCCGAT -ACGGAACATAGGCCTAGTTGGCAT -ACGGAACATAGGCCTAGTCGAGAT -ACGGAACATAGGCCTAGTTACCAC -ACGGAACATAGGCCTAGTCAGAAC -ACGGAACATAGGCCTAGTGTCTAC -ACGGAACATAGGCCTAGTACGTAC -ACGGAACATAGGCCTAGTAGTGAC -ACGGAACATAGGCCTAGTCTGTAG -ACGGAACATAGGCCTAGTCCTAAG -ACGGAACATAGGCCTAGTGTTCAG -ACGGAACATAGGCCTAGTGCATAG -ACGGAACATAGGCCTAGTGACAAG -ACGGAACATAGGCCTAGTAAGCAG -ACGGAACATAGGCCTAGTCGTCAA -ACGGAACATAGGCCTAGTGCTGAA -ACGGAACATAGGCCTAGTAGTACG -ACGGAACATAGGCCTAGTATCCGA -ACGGAACATAGGCCTAGTATGGGA -ACGGAACATAGGCCTAGTGTGCAA -ACGGAACATAGGCCTAGTGAGGAA -ACGGAACATAGGCCTAGTCAGGTA -ACGGAACATAGGCCTAGTGACTCT -ACGGAACATAGGCCTAGTAGTCCT -ACGGAACATAGGCCTAGTTAAGCC -ACGGAACATAGGCCTAGTATAGCC -ACGGAACATAGGCCTAGTTAACCG -ACGGAACATAGGCCTAGTATGCCA -ACGGAACATAGGGCCTAAGGAAAC -ACGGAACATAGGGCCTAAAACACC -ACGGAACATAGGGCCTAAATCGAG -ACGGAACATAGGGCCTAACTCCTT -ACGGAACATAGGGCCTAACCTGTT -ACGGAACATAGGGCCTAACGGTTT -ACGGAACATAGGGCCTAAGTGGTT -ACGGAACATAGGGCCTAAGCCTTT -ACGGAACATAGGGCCTAAGGTCTT -ACGGAACATAGGGCCTAAACGCTT -ACGGAACATAGGGCCTAAAGCGTT -ACGGAACATAGGGCCTAATTCGTC -ACGGAACATAGGGCCTAATCTCTC -ACGGAACATAGGGCCTAATGGATC -ACGGAACATAGGGCCTAACACTTC -ACGGAACATAGGGCCTAAGTACTC -ACGGAACATAGGGCCTAAGATGTC -ACGGAACATAGGGCCTAAACAGTC -ACGGAACATAGGGCCTAATTGCTG -ACGGAACATAGGGCCTAATCCATG -ACGGAACATAGGGCCTAATGTGTG -ACGGAACATAGGGCCTAACTAGTG -ACGGAACATAGGGCCTAACATCTG -ACGGAACATAGGGCCTAAGAGTTG -ACGGAACATAGGGCCTAAAGACTG -ACGGAACATAGGGCCTAATCGGTA -ACGGAACATAGGGCCTAATGCCTA -ACGGAACATAGGGCCTAACCACTA -ACGGAACATAGGGCCTAAGGAGTA -ACGGAACATAGGGCCTAATCGTCT -ACGGAACATAGGGCCTAATGCACT -ACGGAACATAGGGCCTAACTGACT -ACGGAACATAGGGCCTAACAACCT -ACGGAACATAGGGCCTAAGCTACT -ACGGAACATAGGGCCTAAGGATCT -ACGGAACATAGGGCCTAAAAGGCT -ACGGAACATAGGGCCTAATCAACC -ACGGAACATAGGGCCTAATGTTCC -ACGGAACATAGGGCCTAAATTCCC -ACGGAACATAGGGCCTAATTCTCG -ACGGAACATAGGGCCTAATAGACG -ACGGAACATAGGGCCTAAGTAACG -ACGGAACATAGGGCCTAAACTTCG -ACGGAACATAGGGCCTAATACGCA -ACGGAACATAGGGCCTAACTTGCA -ACGGAACATAGGGCCTAACGAACA -ACGGAACATAGGGCCTAACAGTCA -ACGGAACATAGGGCCTAAGATCCA -ACGGAACATAGGGCCTAAACGACA -ACGGAACATAGGGCCTAAAGCTCA -ACGGAACATAGGGCCTAATCACGT -ACGGAACATAGGGCCTAACGTAGT -ACGGAACATAGGGCCTAAGTCAGT -ACGGAACATAGGGCCTAAGAAGGT -ACGGAACATAGGGCCTAAAACCGT -ACGGAACATAGGGCCTAATTGTGC -ACGGAACATAGGGCCTAACTAAGC -ACGGAACATAGGGCCTAAACTAGC -ACGGAACATAGGGCCTAAAGATGC -ACGGAACATAGGGCCTAATGAAGG -ACGGAACATAGGGCCTAACAATGG -ACGGAACATAGGGCCTAAATGAGG -ACGGAACATAGGGCCTAAAATGGG -ACGGAACATAGGGCCTAATCCTGA -ACGGAACATAGGGCCTAATAGCGA -ACGGAACATAGGGCCTAACACAGA -ACGGAACATAGGGCCTAAGCAAGA -ACGGAACATAGGGCCTAAGGTTGA -ACGGAACATAGGGCCTAATCCGAT -ACGGAACATAGGGCCTAATGGCAT -ACGGAACATAGGGCCTAACGAGAT -ACGGAACATAGGGCCTAATACCAC -ACGGAACATAGGGCCTAACAGAAC -ACGGAACATAGGGCCTAAGTCTAC -ACGGAACATAGGGCCTAAACGTAC -ACGGAACATAGGGCCTAAAGTGAC -ACGGAACATAGGGCCTAACTGTAG -ACGGAACATAGGGCCTAACCTAAG -ACGGAACATAGGGCCTAAGTTCAG -ACGGAACATAGGGCCTAAGCATAG -ACGGAACATAGGGCCTAAGACAAG -ACGGAACATAGGGCCTAAAAGCAG -ACGGAACATAGGGCCTAACGTCAA -ACGGAACATAGGGCCTAAGCTGAA -ACGGAACATAGGGCCTAAAGTACG -ACGGAACATAGGGCCTAAATCCGA -ACGGAACATAGGGCCTAAATGGGA -ACGGAACATAGGGCCTAAGTGCAA -ACGGAACATAGGGCCTAAGAGGAA -ACGGAACATAGGGCCTAACAGGTA -ACGGAACATAGGGCCTAAGACTCT -ACGGAACATAGGGCCTAAAGTCCT -ACGGAACATAGGGCCTAATAAGCC -ACGGAACATAGGGCCTAAATAGCC -ACGGAACATAGGGCCTAATAACCG -ACGGAACATAGGGCCTAAATGCCA -ACGGAACATAGGGCCATAGGAAAC -ACGGAACATAGGGCCATAAACACC -ACGGAACATAGGGCCATAATCGAG -ACGGAACATAGGGCCATACTCCTT -ACGGAACATAGGGCCATACCTGTT -ACGGAACATAGGGCCATACGGTTT -ACGGAACATAGGGCCATAGTGGTT -ACGGAACATAGGGCCATAGCCTTT -ACGGAACATAGGGCCATAGGTCTT -ACGGAACATAGGGCCATAACGCTT -ACGGAACATAGGGCCATAAGCGTT -ACGGAACATAGGGCCATATTCGTC -ACGGAACATAGGGCCATATCTCTC -ACGGAACATAGGGCCATATGGATC -ACGGAACATAGGGCCATACACTTC -ACGGAACATAGGGCCATAGTACTC -ACGGAACATAGGGCCATAGATGTC -ACGGAACATAGGGCCATAACAGTC -ACGGAACATAGGGCCATATTGCTG -ACGGAACATAGGGCCATATCCATG -ACGGAACATAGGGCCATATGTGTG -ACGGAACATAGGGCCATACTAGTG -ACGGAACATAGGGCCATACATCTG -ACGGAACATAGGGCCATAGAGTTG -ACGGAACATAGGGCCATAAGACTG -ACGGAACATAGGGCCATATCGGTA -ACGGAACATAGGGCCATATGCCTA -ACGGAACATAGGGCCATACCACTA -ACGGAACATAGGGCCATAGGAGTA -ACGGAACATAGGGCCATATCGTCT -ACGGAACATAGGGCCATATGCACT -ACGGAACATAGGGCCATACTGACT -ACGGAACATAGGGCCATACAACCT -ACGGAACATAGGGCCATAGCTACT -ACGGAACATAGGGCCATAGGATCT -ACGGAACATAGGGCCATAAAGGCT -ACGGAACATAGGGCCATATCAACC -ACGGAACATAGGGCCATATGTTCC -ACGGAACATAGGGCCATAATTCCC -ACGGAACATAGGGCCATATTCTCG -ACGGAACATAGGGCCATATAGACG -ACGGAACATAGGGCCATAGTAACG -ACGGAACATAGGGCCATAACTTCG -ACGGAACATAGGGCCATATACGCA -ACGGAACATAGGGCCATACTTGCA -ACGGAACATAGGGCCATACGAACA -ACGGAACATAGGGCCATACAGTCA -ACGGAACATAGGGCCATAGATCCA -ACGGAACATAGGGCCATAACGACA -ACGGAACATAGGGCCATAAGCTCA -ACGGAACATAGGGCCATATCACGT -ACGGAACATAGGGCCATACGTAGT -ACGGAACATAGGGCCATAGTCAGT -ACGGAACATAGGGCCATAGAAGGT -ACGGAACATAGGGCCATAAACCGT -ACGGAACATAGGGCCATATTGTGC -ACGGAACATAGGGCCATACTAAGC -ACGGAACATAGGGCCATAACTAGC -ACGGAACATAGGGCCATAAGATGC -ACGGAACATAGGGCCATATGAAGG -ACGGAACATAGGGCCATACAATGG -ACGGAACATAGGGCCATAATGAGG -ACGGAACATAGGGCCATAAATGGG -ACGGAACATAGGGCCATATCCTGA -ACGGAACATAGGGCCATATAGCGA -ACGGAACATAGGGCCATACACAGA -ACGGAACATAGGGCCATAGCAAGA -ACGGAACATAGGGCCATAGGTTGA -ACGGAACATAGGGCCATATCCGAT -ACGGAACATAGGGCCATATGGCAT -ACGGAACATAGGGCCATACGAGAT -ACGGAACATAGGGCCATATACCAC -ACGGAACATAGGGCCATACAGAAC -ACGGAACATAGGGCCATAGTCTAC -ACGGAACATAGGGCCATAACGTAC -ACGGAACATAGGGCCATAAGTGAC -ACGGAACATAGGGCCATACTGTAG -ACGGAACATAGGGCCATACCTAAG -ACGGAACATAGGGCCATAGTTCAG -ACGGAACATAGGGCCATAGCATAG -ACGGAACATAGGGCCATAGACAAG -ACGGAACATAGGGCCATAAAGCAG -ACGGAACATAGGGCCATACGTCAA -ACGGAACATAGGGCCATAGCTGAA -ACGGAACATAGGGCCATAAGTACG -ACGGAACATAGGGCCATAATCCGA -ACGGAACATAGGGCCATAATGGGA -ACGGAACATAGGGCCATAGTGCAA -ACGGAACATAGGGCCATAGAGGAA -ACGGAACATAGGGCCATACAGGTA -ACGGAACATAGGGCCATAGACTCT -ACGGAACATAGGGCCATAAGTCCT -ACGGAACATAGGGCCATATAAGCC -ACGGAACATAGGGCCATAATAGCC -ACGGAACATAGGGCCATATAACCG -ACGGAACATAGGGCCATAATGCCA -ACGGAACATAGGCCGTAAGGAAAC -ACGGAACATAGGCCGTAAAACACC -ACGGAACATAGGCCGTAAATCGAG -ACGGAACATAGGCCGTAACTCCTT -ACGGAACATAGGCCGTAACCTGTT -ACGGAACATAGGCCGTAACGGTTT -ACGGAACATAGGCCGTAAGTGGTT -ACGGAACATAGGCCGTAAGCCTTT -ACGGAACATAGGCCGTAAGGTCTT -ACGGAACATAGGCCGTAAACGCTT -ACGGAACATAGGCCGTAAAGCGTT -ACGGAACATAGGCCGTAATTCGTC -ACGGAACATAGGCCGTAATCTCTC -ACGGAACATAGGCCGTAATGGATC -ACGGAACATAGGCCGTAACACTTC -ACGGAACATAGGCCGTAAGTACTC -ACGGAACATAGGCCGTAAGATGTC -ACGGAACATAGGCCGTAAACAGTC -ACGGAACATAGGCCGTAATTGCTG -ACGGAACATAGGCCGTAATCCATG -ACGGAACATAGGCCGTAATGTGTG -ACGGAACATAGGCCGTAACTAGTG -ACGGAACATAGGCCGTAACATCTG -ACGGAACATAGGCCGTAAGAGTTG -ACGGAACATAGGCCGTAAAGACTG -ACGGAACATAGGCCGTAATCGGTA -ACGGAACATAGGCCGTAATGCCTA -ACGGAACATAGGCCGTAACCACTA -ACGGAACATAGGCCGTAAGGAGTA -ACGGAACATAGGCCGTAATCGTCT -ACGGAACATAGGCCGTAATGCACT -ACGGAACATAGGCCGTAACTGACT -ACGGAACATAGGCCGTAACAACCT -ACGGAACATAGGCCGTAAGCTACT -ACGGAACATAGGCCGTAAGGATCT -ACGGAACATAGGCCGTAAAAGGCT -ACGGAACATAGGCCGTAATCAACC -ACGGAACATAGGCCGTAATGTTCC -ACGGAACATAGGCCGTAAATTCCC -ACGGAACATAGGCCGTAATTCTCG -ACGGAACATAGGCCGTAATAGACG -ACGGAACATAGGCCGTAAGTAACG -ACGGAACATAGGCCGTAAACTTCG -ACGGAACATAGGCCGTAATACGCA -ACGGAACATAGGCCGTAACTTGCA -ACGGAACATAGGCCGTAACGAACA -ACGGAACATAGGCCGTAACAGTCA -ACGGAACATAGGCCGTAAGATCCA -ACGGAACATAGGCCGTAAACGACA -ACGGAACATAGGCCGTAAAGCTCA -ACGGAACATAGGCCGTAATCACGT -ACGGAACATAGGCCGTAACGTAGT -ACGGAACATAGGCCGTAAGTCAGT -ACGGAACATAGGCCGTAAGAAGGT -ACGGAACATAGGCCGTAAAACCGT -ACGGAACATAGGCCGTAATTGTGC -ACGGAACATAGGCCGTAACTAAGC -ACGGAACATAGGCCGTAAACTAGC -ACGGAACATAGGCCGTAAAGATGC -ACGGAACATAGGCCGTAATGAAGG -ACGGAACATAGGCCGTAACAATGG -ACGGAACATAGGCCGTAAATGAGG -ACGGAACATAGGCCGTAAAATGGG -ACGGAACATAGGCCGTAATCCTGA -ACGGAACATAGGCCGTAATAGCGA -ACGGAACATAGGCCGTAACACAGA -ACGGAACATAGGCCGTAAGCAAGA -ACGGAACATAGGCCGTAAGGTTGA -ACGGAACATAGGCCGTAATCCGAT -ACGGAACATAGGCCGTAATGGCAT -ACGGAACATAGGCCGTAACGAGAT -ACGGAACATAGGCCGTAATACCAC -ACGGAACATAGGCCGTAACAGAAC -ACGGAACATAGGCCGTAAGTCTAC -ACGGAACATAGGCCGTAAACGTAC -ACGGAACATAGGCCGTAAAGTGAC -ACGGAACATAGGCCGTAACTGTAG -ACGGAACATAGGCCGTAACCTAAG -ACGGAACATAGGCCGTAAGTTCAG -ACGGAACATAGGCCGTAAGCATAG -ACGGAACATAGGCCGTAAGACAAG -ACGGAACATAGGCCGTAAAAGCAG -ACGGAACATAGGCCGTAACGTCAA -ACGGAACATAGGCCGTAAGCTGAA -ACGGAACATAGGCCGTAAAGTACG -ACGGAACATAGGCCGTAAATCCGA -ACGGAACATAGGCCGTAAATGGGA -ACGGAACATAGGCCGTAAGTGCAA -ACGGAACATAGGCCGTAAGAGGAA -ACGGAACATAGGCCGTAACAGGTA -ACGGAACATAGGCCGTAAGACTCT -ACGGAACATAGGCCGTAAAGTCCT -ACGGAACATAGGCCGTAATAAGCC -ACGGAACATAGGCCGTAAATAGCC -ACGGAACATAGGCCGTAATAACCG -ACGGAACATAGGCCGTAAATGCCA -ACGGAACATAGGCCAATGGGAAAC -ACGGAACATAGGCCAATGAACACC -ACGGAACATAGGCCAATGATCGAG -ACGGAACATAGGCCAATGCTCCTT -ACGGAACATAGGCCAATGCCTGTT -ACGGAACATAGGCCAATGCGGTTT -ACGGAACATAGGCCAATGGTGGTT -ACGGAACATAGGCCAATGGCCTTT -ACGGAACATAGGCCAATGGGTCTT -ACGGAACATAGGCCAATGACGCTT -ACGGAACATAGGCCAATGAGCGTT -ACGGAACATAGGCCAATGTTCGTC -ACGGAACATAGGCCAATGTCTCTC -ACGGAACATAGGCCAATGTGGATC -ACGGAACATAGGCCAATGCACTTC -ACGGAACATAGGCCAATGGTACTC -ACGGAACATAGGCCAATGGATGTC -ACGGAACATAGGCCAATGACAGTC -ACGGAACATAGGCCAATGTTGCTG -ACGGAACATAGGCCAATGTCCATG -ACGGAACATAGGCCAATGTGTGTG -ACGGAACATAGGCCAATGCTAGTG -ACGGAACATAGGCCAATGCATCTG -ACGGAACATAGGCCAATGGAGTTG -ACGGAACATAGGCCAATGAGACTG -ACGGAACATAGGCCAATGTCGGTA -ACGGAACATAGGCCAATGTGCCTA -ACGGAACATAGGCCAATGCCACTA -ACGGAACATAGGCCAATGGGAGTA -ACGGAACATAGGCCAATGTCGTCT -ACGGAACATAGGCCAATGTGCACT -ACGGAACATAGGCCAATGCTGACT -ACGGAACATAGGCCAATGCAACCT -ACGGAACATAGGCCAATGGCTACT -ACGGAACATAGGCCAATGGGATCT -ACGGAACATAGGCCAATGAAGGCT -ACGGAACATAGGCCAATGTCAACC -ACGGAACATAGGCCAATGTGTTCC -ACGGAACATAGGCCAATGATTCCC -ACGGAACATAGGCCAATGTTCTCG -ACGGAACATAGGCCAATGTAGACG -ACGGAACATAGGCCAATGGTAACG -ACGGAACATAGGCCAATGACTTCG -ACGGAACATAGGCCAATGTACGCA -ACGGAACATAGGCCAATGCTTGCA -ACGGAACATAGGCCAATGCGAACA -ACGGAACATAGGCCAATGCAGTCA -ACGGAACATAGGCCAATGGATCCA -ACGGAACATAGGCCAATGACGACA -ACGGAACATAGGCCAATGAGCTCA -ACGGAACATAGGCCAATGTCACGT -ACGGAACATAGGCCAATGCGTAGT -ACGGAACATAGGCCAATGGTCAGT -ACGGAACATAGGCCAATGGAAGGT -ACGGAACATAGGCCAATGAACCGT -ACGGAACATAGGCCAATGTTGTGC -ACGGAACATAGGCCAATGCTAAGC -ACGGAACATAGGCCAATGACTAGC -ACGGAACATAGGCCAATGAGATGC -ACGGAACATAGGCCAATGTGAAGG -ACGGAACATAGGCCAATGCAATGG -ACGGAACATAGGCCAATGATGAGG -ACGGAACATAGGCCAATGAATGGG -ACGGAACATAGGCCAATGTCCTGA -ACGGAACATAGGCCAATGTAGCGA -ACGGAACATAGGCCAATGCACAGA -ACGGAACATAGGCCAATGGCAAGA -ACGGAACATAGGCCAATGGGTTGA -ACGGAACATAGGCCAATGTCCGAT -ACGGAACATAGGCCAATGTGGCAT -ACGGAACATAGGCCAATGCGAGAT -ACGGAACATAGGCCAATGTACCAC -ACGGAACATAGGCCAATGCAGAAC -ACGGAACATAGGCCAATGGTCTAC -ACGGAACATAGGCCAATGACGTAC -ACGGAACATAGGCCAATGAGTGAC -ACGGAACATAGGCCAATGCTGTAG -ACGGAACATAGGCCAATGCCTAAG -ACGGAACATAGGCCAATGGTTCAG -ACGGAACATAGGCCAATGGCATAG -ACGGAACATAGGCCAATGGACAAG -ACGGAACATAGGCCAATGAAGCAG -ACGGAACATAGGCCAATGCGTCAA -ACGGAACATAGGCCAATGGCTGAA -ACGGAACATAGGCCAATGAGTACG -ACGGAACATAGGCCAATGATCCGA -ACGGAACATAGGCCAATGATGGGA -ACGGAACATAGGCCAATGGTGCAA -ACGGAACATAGGCCAATGGAGGAA -ACGGAACATAGGCCAATGCAGGTA -ACGGAACATAGGCCAATGGACTCT -ACGGAACATAGGCCAATGAGTCCT -ACGGAACATAGGCCAATGTAAGCC -ACGGAACATAGGCCAATGATAGCC -ACGGAACATAGGCCAATGTAACCG -ACGGAACATAGGCCAATGATGCCA -ACGGAAACAAGGAACGGAGGAAAC -ACGGAAACAAGGAACGGAAACACC -ACGGAAACAAGGAACGGAATCGAG -ACGGAAACAAGGAACGGACTCCTT -ACGGAAACAAGGAACGGACCTGTT -ACGGAAACAAGGAACGGACGGTTT -ACGGAAACAAGGAACGGAGTGGTT -ACGGAAACAAGGAACGGAGCCTTT -ACGGAAACAAGGAACGGAGGTCTT -ACGGAAACAAGGAACGGAACGCTT -ACGGAAACAAGGAACGGAAGCGTT -ACGGAAACAAGGAACGGATTCGTC -ACGGAAACAAGGAACGGATCTCTC -ACGGAAACAAGGAACGGATGGATC -ACGGAAACAAGGAACGGACACTTC -ACGGAAACAAGGAACGGAGTACTC -ACGGAAACAAGGAACGGAGATGTC -ACGGAAACAAGGAACGGAACAGTC -ACGGAAACAAGGAACGGATTGCTG -ACGGAAACAAGGAACGGATCCATG -ACGGAAACAAGGAACGGATGTGTG -ACGGAAACAAGGAACGGACTAGTG -ACGGAAACAAGGAACGGACATCTG -ACGGAAACAAGGAACGGAGAGTTG -ACGGAAACAAGGAACGGAAGACTG -ACGGAAACAAGGAACGGATCGGTA -ACGGAAACAAGGAACGGATGCCTA -ACGGAAACAAGGAACGGACCACTA -ACGGAAACAAGGAACGGAGGAGTA -ACGGAAACAAGGAACGGATCGTCT -ACGGAAACAAGGAACGGATGCACT -ACGGAAACAAGGAACGGACTGACT -ACGGAAACAAGGAACGGACAACCT -ACGGAAACAAGGAACGGAGCTACT -ACGGAAACAAGGAACGGAGGATCT -ACGGAAACAAGGAACGGAAAGGCT -ACGGAAACAAGGAACGGATCAACC -ACGGAAACAAGGAACGGATGTTCC -ACGGAAACAAGGAACGGAATTCCC -ACGGAAACAAGGAACGGATTCTCG -ACGGAAACAAGGAACGGATAGACG -ACGGAAACAAGGAACGGAGTAACG -ACGGAAACAAGGAACGGAACTTCG -ACGGAAACAAGGAACGGATACGCA -ACGGAAACAAGGAACGGACTTGCA -ACGGAAACAAGGAACGGACGAACA -ACGGAAACAAGGAACGGACAGTCA -ACGGAAACAAGGAACGGAGATCCA -ACGGAAACAAGGAACGGAACGACA -ACGGAAACAAGGAACGGAAGCTCA -ACGGAAACAAGGAACGGATCACGT -ACGGAAACAAGGAACGGACGTAGT -ACGGAAACAAGGAACGGAGTCAGT -ACGGAAACAAGGAACGGAGAAGGT -ACGGAAACAAGGAACGGAAACCGT -ACGGAAACAAGGAACGGATTGTGC -ACGGAAACAAGGAACGGACTAAGC -ACGGAAACAAGGAACGGAACTAGC -ACGGAAACAAGGAACGGAAGATGC -ACGGAAACAAGGAACGGATGAAGG -ACGGAAACAAGGAACGGACAATGG -ACGGAAACAAGGAACGGAATGAGG -ACGGAAACAAGGAACGGAAATGGG -ACGGAAACAAGGAACGGATCCTGA -ACGGAAACAAGGAACGGATAGCGA -ACGGAAACAAGGAACGGACACAGA -ACGGAAACAAGGAACGGAGCAAGA -ACGGAAACAAGGAACGGAGGTTGA -ACGGAAACAAGGAACGGATCCGAT -ACGGAAACAAGGAACGGATGGCAT -ACGGAAACAAGGAACGGACGAGAT -ACGGAAACAAGGAACGGATACCAC -ACGGAAACAAGGAACGGACAGAAC -ACGGAAACAAGGAACGGAGTCTAC -ACGGAAACAAGGAACGGAACGTAC -ACGGAAACAAGGAACGGAAGTGAC -ACGGAAACAAGGAACGGACTGTAG -ACGGAAACAAGGAACGGACCTAAG -ACGGAAACAAGGAACGGAGTTCAG -ACGGAAACAAGGAACGGAGCATAG -ACGGAAACAAGGAACGGAGACAAG -ACGGAAACAAGGAACGGAAAGCAG -ACGGAAACAAGGAACGGACGTCAA -ACGGAAACAAGGAACGGAGCTGAA -ACGGAAACAAGGAACGGAAGTACG -ACGGAAACAAGGAACGGAATCCGA -ACGGAAACAAGGAACGGAATGGGA -ACGGAAACAAGGAACGGAGTGCAA -ACGGAAACAAGGAACGGAGAGGAA -ACGGAAACAAGGAACGGACAGGTA -ACGGAAACAAGGAACGGAGACTCT -ACGGAAACAAGGAACGGAAGTCCT -ACGGAAACAAGGAACGGATAAGCC -ACGGAAACAAGGAACGGAATAGCC -ACGGAAACAAGGAACGGATAACCG -ACGGAAACAAGGAACGGAATGCCA -ACGGAAACAAGGACCAACGGAAAC -ACGGAAACAAGGACCAACAACACC -ACGGAAACAAGGACCAACATCGAG -ACGGAAACAAGGACCAACCTCCTT -ACGGAAACAAGGACCAACCCTGTT -ACGGAAACAAGGACCAACCGGTTT -ACGGAAACAAGGACCAACGTGGTT -ACGGAAACAAGGACCAACGCCTTT -ACGGAAACAAGGACCAACGGTCTT -ACGGAAACAAGGACCAACACGCTT -ACGGAAACAAGGACCAACAGCGTT -ACGGAAACAAGGACCAACTTCGTC -ACGGAAACAAGGACCAACTCTCTC -ACGGAAACAAGGACCAACTGGATC -ACGGAAACAAGGACCAACCACTTC -ACGGAAACAAGGACCAACGTACTC -ACGGAAACAAGGACCAACGATGTC -ACGGAAACAAGGACCAACACAGTC -ACGGAAACAAGGACCAACTTGCTG -ACGGAAACAAGGACCAACTCCATG -ACGGAAACAAGGACCAACTGTGTG -ACGGAAACAAGGACCAACCTAGTG -ACGGAAACAAGGACCAACCATCTG -ACGGAAACAAGGACCAACGAGTTG -ACGGAAACAAGGACCAACAGACTG -ACGGAAACAAGGACCAACTCGGTA -ACGGAAACAAGGACCAACTGCCTA -ACGGAAACAAGGACCAACCCACTA -ACGGAAACAAGGACCAACGGAGTA -ACGGAAACAAGGACCAACTCGTCT -ACGGAAACAAGGACCAACTGCACT -ACGGAAACAAGGACCAACCTGACT -ACGGAAACAAGGACCAACCAACCT -ACGGAAACAAGGACCAACGCTACT -ACGGAAACAAGGACCAACGGATCT -ACGGAAACAAGGACCAACAAGGCT -ACGGAAACAAGGACCAACTCAACC -ACGGAAACAAGGACCAACTGTTCC -ACGGAAACAAGGACCAACATTCCC -ACGGAAACAAGGACCAACTTCTCG -ACGGAAACAAGGACCAACTAGACG -ACGGAAACAAGGACCAACGTAACG -ACGGAAACAAGGACCAACACTTCG -ACGGAAACAAGGACCAACTACGCA -ACGGAAACAAGGACCAACCTTGCA -ACGGAAACAAGGACCAACCGAACA -ACGGAAACAAGGACCAACCAGTCA -ACGGAAACAAGGACCAACGATCCA -ACGGAAACAAGGACCAACACGACA -ACGGAAACAAGGACCAACAGCTCA -ACGGAAACAAGGACCAACTCACGT -ACGGAAACAAGGACCAACCGTAGT -ACGGAAACAAGGACCAACGTCAGT -ACGGAAACAAGGACCAACGAAGGT -ACGGAAACAAGGACCAACAACCGT -ACGGAAACAAGGACCAACTTGTGC -ACGGAAACAAGGACCAACCTAAGC -ACGGAAACAAGGACCAACACTAGC -ACGGAAACAAGGACCAACAGATGC -ACGGAAACAAGGACCAACTGAAGG -ACGGAAACAAGGACCAACCAATGG -ACGGAAACAAGGACCAACATGAGG -ACGGAAACAAGGACCAACAATGGG -ACGGAAACAAGGACCAACTCCTGA -ACGGAAACAAGGACCAACTAGCGA -ACGGAAACAAGGACCAACCACAGA -ACGGAAACAAGGACCAACGCAAGA -ACGGAAACAAGGACCAACGGTTGA -ACGGAAACAAGGACCAACTCCGAT -ACGGAAACAAGGACCAACTGGCAT -ACGGAAACAAGGACCAACCGAGAT -ACGGAAACAAGGACCAACTACCAC -ACGGAAACAAGGACCAACCAGAAC -ACGGAAACAAGGACCAACGTCTAC -ACGGAAACAAGGACCAACACGTAC -ACGGAAACAAGGACCAACAGTGAC -ACGGAAACAAGGACCAACCTGTAG -ACGGAAACAAGGACCAACCCTAAG -ACGGAAACAAGGACCAACGTTCAG -ACGGAAACAAGGACCAACGCATAG -ACGGAAACAAGGACCAACGACAAG -ACGGAAACAAGGACCAACAAGCAG -ACGGAAACAAGGACCAACCGTCAA -ACGGAAACAAGGACCAACGCTGAA -ACGGAAACAAGGACCAACAGTACG -ACGGAAACAAGGACCAACATCCGA -ACGGAAACAAGGACCAACATGGGA -ACGGAAACAAGGACCAACGTGCAA -ACGGAAACAAGGACCAACGAGGAA -ACGGAAACAAGGACCAACCAGGTA -ACGGAAACAAGGACCAACGACTCT -ACGGAAACAAGGACCAACAGTCCT -ACGGAAACAAGGACCAACTAAGCC -ACGGAAACAAGGACCAACATAGCC -ACGGAAACAAGGACCAACTAACCG -ACGGAAACAAGGACCAACATGCCA -ACGGAAACAAGGGAGATCGGAAAC -ACGGAAACAAGGGAGATCAACACC -ACGGAAACAAGGGAGATCATCGAG -ACGGAAACAAGGGAGATCCTCCTT -ACGGAAACAAGGGAGATCCCTGTT -ACGGAAACAAGGGAGATCCGGTTT -ACGGAAACAAGGGAGATCGTGGTT -ACGGAAACAAGGGAGATCGCCTTT -ACGGAAACAAGGGAGATCGGTCTT -ACGGAAACAAGGGAGATCACGCTT -ACGGAAACAAGGGAGATCAGCGTT -ACGGAAACAAGGGAGATCTTCGTC -ACGGAAACAAGGGAGATCTCTCTC -ACGGAAACAAGGGAGATCTGGATC -ACGGAAACAAGGGAGATCCACTTC -ACGGAAACAAGGGAGATCGTACTC -ACGGAAACAAGGGAGATCGATGTC -ACGGAAACAAGGGAGATCACAGTC -ACGGAAACAAGGGAGATCTTGCTG -ACGGAAACAAGGGAGATCTCCATG -ACGGAAACAAGGGAGATCTGTGTG -ACGGAAACAAGGGAGATCCTAGTG -ACGGAAACAAGGGAGATCCATCTG -ACGGAAACAAGGGAGATCGAGTTG -ACGGAAACAAGGGAGATCAGACTG -ACGGAAACAAGGGAGATCTCGGTA -ACGGAAACAAGGGAGATCTGCCTA -ACGGAAACAAGGGAGATCCCACTA -ACGGAAACAAGGGAGATCGGAGTA -ACGGAAACAAGGGAGATCTCGTCT -ACGGAAACAAGGGAGATCTGCACT -ACGGAAACAAGGGAGATCCTGACT -ACGGAAACAAGGGAGATCCAACCT -ACGGAAACAAGGGAGATCGCTACT -ACGGAAACAAGGGAGATCGGATCT -ACGGAAACAAGGGAGATCAAGGCT -ACGGAAACAAGGGAGATCTCAACC -ACGGAAACAAGGGAGATCTGTTCC -ACGGAAACAAGGGAGATCATTCCC -ACGGAAACAAGGGAGATCTTCTCG -ACGGAAACAAGGGAGATCTAGACG -ACGGAAACAAGGGAGATCGTAACG -ACGGAAACAAGGGAGATCACTTCG -ACGGAAACAAGGGAGATCTACGCA -ACGGAAACAAGGGAGATCCTTGCA -ACGGAAACAAGGGAGATCCGAACA -ACGGAAACAAGGGAGATCCAGTCA -ACGGAAACAAGGGAGATCGATCCA -ACGGAAACAAGGGAGATCACGACA -ACGGAAACAAGGGAGATCAGCTCA -ACGGAAACAAGGGAGATCTCACGT -ACGGAAACAAGGGAGATCCGTAGT -ACGGAAACAAGGGAGATCGTCAGT -ACGGAAACAAGGGAGATCGAAGGT -ACGGAAACAAGGGAGATCAACCGT -ACGGAAACAAGGGAGATCTTGTGC -ACGGAAACAAGGGAGATCCTAAGC -ACGGAAACAAGGGAGATCACTAGC -ACGGAAACAAGGGAGATCAGATGC -ACGGAAACAAGGGAGATCTGAAGG -ACGGAAACAAGGGAGATCCAATGG -ACGGAAACAAGGGAGATCATGAGG -ACGGAAACAAGGGAGATCAATGGG -ACGGAAACAAGGGAGATCTCCTGA -ACGGAAACAAGGGAGATCTAGCGA -ACGGAAACAAGGGAGATCCACAGA -ACGGAAACAAGGGAGATCGCAAGA -ACGGAAACAAGGGAGATCGGTTGA -ACGGAAACAAGGGAGATCTCCGAT -ACGGAAACAAGGGAGATCTGGCAT -ACGGAAACAAGGGAGATCCGAGAT -ACGGAAACAAGGGAGATCTACCAC -ACGGAAACAAGGGAGATCCAGAAC -ACGGAAACAAGGGAGATCGTCTAC -ACGGAAACAAGGGAGATCACGTAC -ACGGAAACAAGGGAGATCAGTGAC -ACGGAAACAAGGGAGATCCTGTAG -ACGGAAACAAGGGAGATCCCTAAG -ACGGAAACAAGGGAGATCGTTCAG -ACGGAAACAAGGGAGATCGCATAG -ACGGAAACAAGGGAGATCGACAAG -ACGGAAACAAGGGAGATCAAGCAG -ACGGAAACAAGGGAGATCCGTCAA -ACGGAAACAAGGGAGATCGCTGAA -ACGGAAACAAGGGAGATCAGTACG -ACGGAAACAAGGGAGATCATCCGA -ACGGAAACAAGGGAGATCATGGGA -ACGGAAACAAGGGAGATCGTGCAA -ACGGAAACAAGGGAGATCGAGGAA -ACGGAAACAAGGGAGATCCAGGTA -ACGGAAACAAGGGAGATCGACTCT -ACGGAAACAAGGGAGATCAGTCCT -ACGGAAACAAGGGAGATCTAAGCC -ACGGAAACAAGGGAGATCATAGCC -ACGGAAACAAGGGAGATCTAACCG -ACGGAAACAAGGGAGATCATGCCA -ACGGAAACAAGGCTTCTCGGAAAC -ACGGAAACAAGGCTTCTCAACACC -ACGGAAACAAGGCTTCTCATCGAG -ACGGAAACAAGGCTTCTCCTCCTT -ACGGAAACAAGGCTTCTCCCTGTT -ACGGAAACAAGGCTTCTCCGGTTT -ACGGAAACAAGGCTTCTCGTGGTT -ACGGAAACAAGGCTTCTCGCCTTT -ACGGAAACAAGGCTTCTCGGTCTT -ACGGAAACAAGGCTTCTCACGCTT -ACGGAAACAAGGCTTCTCAGCGTT -ACGGAAACAAGGCTTCTCTTCGTC -ACGGAAACAAGGCTTCTCTCTCTC -ACGGAAACAAGGCTTCTCTGGATC -ACGGAAACAAGGCTTCTCCACTTC -ACGGAAACAAGGCTTCTCGTACTC -ACGGAAACAAGGCTTCTCGATGTC -ACGGAAACAAGGCTTCTCACAGTC -ACGGAAACAAGGCTTCTCTTGCTG -ACGGAAACAAGGCTTCTCTCCATG -ACGGAAACAAGGCTTCTCTGTGTG -ACGGAAACAAGGCTTCTCCTAGTG -ACGGAAACAAGGCTTCTCCATCTG -ACGGAAACAAGGCTTCTCGAGTTG -ACGGAAACAAGGCTTCTCAGACTG -ACGGAAACAAGGCTTCTCTCGGTA -ACGGAAACAAGGCTTCTCTGCCTA -ACGGAAACAAGGCTTCTCCCACTA -ACGGAAACAAGGCTTCTCGGAGTA -ACGGAAACAAGGCTTCTCTCGTCT -ACGGAAACAAGGCTTCTCTGCACT -ACGGAAACAAGGCTTCTCCTGACT -ACGGAAACAAGGCTTCTCCAACCT -ACGGAAACAAGGCTTCTCGCTACT -ACGGAAACAAGGCTTCTCGGATCT -ACGGAAACAAGGCTTCTCAAGGCT -ACGGAAACAAGGCTTCTCTCAACC -ACGGAAACAAGGCTTCTCTGTTCC -ACGGAAACAAGGCTTCTCATTCCC -ACGGAAACAAGGCTTCTCTTCTCG -ACGGAAACAAGGCTTCTCTAGACG -ACGGAAACAAGGCTTCTCGTAACG -ACGGAAACAAGGCTTCTCACTTCG -ACGGAAACAAGGCTTCTCTACGCA -ACGGAAACAAGGCTTCTCCTTGCA -ACGGAAACAAGGCTTCTCCGAACA -ACGGAAACAAGGCTTCTCCAGTCA -ACGGAAACAAGGCTTCTCGATCCA -ACGGAAACAAGGCTTCTCACGACA -ACGGAAACAAGGCTTCTCAGCTCA -ACGGAAACAAGGCTTCTCTCACGT -ACGGAAACAAGGCTTCTCCGTAGT -ACGGAAACAAGGCTTCTCGTCAGT -ACGGAAACAAGGCTTCTCGAAGGT -ACGGAAACAAGGCTTCTCAACCGT -ACGGAAACAAGGCTTCTCTTGTGC -ACGGAAACAAGGCTTCTCCTAAGC -ACGGAAACAAGGCTTCTCACTAGC -ACGGAAACAAGGCTTCTCAGATGC -ACGGAAACAAGGCTTCTCTGAAGG -ACGGAAACAAGGCTTCTCCAATGG -ACGGAAACAAGGCTTCTCATGAGG -ACGGAAACAAGGCTTCTCAATGGG -ACGGAAACAAGGCTTCTCTCCTGA -ACGGAAACAAGGCTTCTCTAGCGA -ACGGAAACAAGGCTTCTCCACAGA -ACGGAAACAAGGCTTCTCGCAAGA -ACGGAAACAAGGCTTCTCGGTTGA -ACGGAAACAAGGCTTCTCTCCGAT -ACGGAAACAAGGCTTCTCTGGCAT -ACGGAAACAAGGCTTCTCCGAGAT -ACGGAAACAAGGCTTCTCTACCAC -ACGGAAACAAGGCTTCTCCAGAAC -ACGGAAACAAGGCTTCTCGTCTAC -ACGGAAACAAGGCTTCTCACGTAC -ACGGAAACAAGGCTTCTCAGTGAC -ACGGAAACAAGGCTTCTCCTGTAG -ACGGAAACAAGGCTTCTCCCTAAG -ACGGAAACAAGGCTTCTCGTTCAG -ACGGAAACAAGGCTTCTCGCATAG -ACGGAAACAAGGCTTCTCGACAAG -ACGGAAACAAGGCTTCTCAAGCAG -ACGGAAACAAGGCTTCTCCGTCAA -ACGGAAACAAGGCTTCTCGCTGAA -ACGGAAACAAGGCTTCTCAGTACG -ACGGAAACAAGGCTTCTCATCCGA -ACGGAAACAAGGCTTCTCATGGGA -ACGGAAACAAGGCTTCTCGTGCAA -ACGGAAACAAGGCTTCTCGAGGAA -ACGGAAACAAGGCTTCTCCAGGTA -ACGGAAACAAGGCTTCTCGACTCT -ACGGAAACAAGGCTTCTCAGTCCT -ACGGAAACAAGGCTTCTCTAAGCC -ACGGAAACAAGGCTTCTCATAGCC -ACGGAAACAAGGCTTCTCTAACCG -ACGGAAACAAGGCTTCTCATGCCA -ACGGAAACAAGGGTTCCTGGAAAC -ACGGAAACAAGGGTTCCTAACACC -ACGGAAACAAGGGTTCCTATCGAG -ACGGAAACAAGGGTTCCTCTCCTT -ACGGAAACAAGGGTTCCTCCTGTT -ACGGAAACAAGGGTTCCTCGGTTT -ACGGAAACAAGGGTTCCTGTGGTT -ACGGAAACAAGGGTTCCTGCCTTT -ACGGAAACAAGGGTTCCTGGTCTT -ACGGAAACAAGGGTTCCTACGCTT -ACGGAAACAAGGGTTCCTAGCGTT -ACGGAAACAAGGGTTCCTTTCGTC -ACGGAAACAAGGGTTCCTTCTCTC -ACGGAAACAAGGGTTCCTTGGATC -ACGGAAACAAGGGTTCCTCACTTC -ACGGAAACAAGGGTTCCTGTACTC -ACGGAAACAAGGGTTCCTGATGTC -ACGGAAACAAGGGTTCCTACAGTC -ACGGAAACAAGGGTTCCTTTGCTG -ACGGAAACAAGGGTTCCTTCCATG -ACGGAAACAAGGGTTCCTTGTGTG -ACGGAAACAAGGGTTCCTCTAGTG -ACGGAAACAAGGGTTCCTCATCTG -ACGGAAACAAGGGTTCCTGAGTTG -ACGGAAACAAGGGTTCCTAGACTG -ACGGAAACAAGGGTTCCTTCGGTA -ACGGAAACAAGGGTTCCTTGCCTA -ACGGAAACAAGGGTTCCTCCACTA -ACGGAAACAAGGGTTCCTGGAGTA -ACGGAAACAAGGGTTCCTTCGTCT -ACGGAAACAAGGGTTCCTTGCACT -ACGGAAACAAGGGTTCCTCTGACT -ACGGAAACAAGGGTTCCTCAACCT -ACGGAAACAAGGGTTCCTGCTACT -ACGGAAACAAGGGTTCCTGGATCT -ACGGAAACAAGGGTTCCTAAGGCT -ACGGAAACAAGGGTTCCTTCAACC -ACGGAAACAAGGGTTCCTTGTTCC -ACGGAAACAAGGGTTCCTATTCCC -ACGGAAACAAGGGTTCCTTTCTCG -ACGGAAACAAGGGTTCCTTAGACG -ACGGAAACAAGGGTTCCTGTAACG -ACGGAAACAAGGGTTCCTACTTCG -ACGGAAACAAGGGTTCCTTACGCA -ACGGAAACAAGGGTTCCTCTTGCA -ACGGAAACAAGGGTTCCTCGAACA -ACGGAAACAAGGGTTCCTCAGTCA -ACGGAAACAAGGGTTCCTGATCCA -ACGGAAACAAGGGTTCCTACGACA -ACGGAAACAAGGGTTCCTAGCTCA -ACGGAAACAAGGGTTCCTTCACGT -ACGGAAACAAGGGTTCCTCGTAGT -ACGGAAACAAGGGTTCCTGTCAGT -ACGGAAACAAGGGTTCCTGAAGGT -ACGGAAACAAGGGTTCCTAACCGT -ACGGAAACAAGGGTTCCTTTGTGC -ACGGAAACAAGGGTTCCTCTAAGC -ACGGAAACAAGGGTTCCTACTAGC -ACGGAAACAAGGGTTCCTAGATGC -ACGGAAACAAGGGTTCCTTGAAGG -ACGGAAACAAGGGTTCCTCAATGG -ACGGAAACAAGGGTTCCTATGAGG -ACGGAAACAAGGGTTCCTAATGGG -ACGGAAACAAGGGTTCCTTCCTGA -ACGGAAACAAGGGTTCCTTAGCGA -ACGGAAACAAGGGTTCCTCACAGA -ACGGAAACAAGGGTTCCTGCAAGA -ACGGAAACAAGGGTTCCTGGTTGA -ACGGAAACAAGGGTTCCTTCCGAT -ACGGAAACAAGGGTTCCTTGGCAT -ACGGAAACAAGGGTTCCTCGAGAT -ACGGAAACAAGGGTTCCTTACCAC -ACGGAAACAAGGGTTCCTCAGAAC -ACGGAAACAAGGGTTCCTGTCTAC -ACGGAAACAAGGGTTCCTACGTAC -ACGGAAACAAGGGTTCCTAGTGAC -ACGGAAACAAGGGTTCCTCTGTAG -ACGGAAACAAGGGTTCCTCCTAAG -ACGGAAACAAGGGTTCCTGTTCAG -ACGGAAACAAGGGTTCCTGCATAG -ACGGAAACAAGGGTTCCTGACAAG -ACGGAAACAAGGGTTCCTAAGCAG -ACGGAAACAAGGGTTCCTCGTCAA -ACGGAAACAAGGGTTCCTGCTGAA -ACGGAAACAAGGGTTCCTAGTACG -ACGGAAACAAGGGTTCCTATCCGA -ACGGAAACAAGGGTTCCTATGGGA -ACGGAAACAAGGGTTCCTGTGCAA -ACGGAAACAAGGGTTCCTGAGGAA -ACGGAAACAAGGGTTCCTCAGGTA -ACGGAAACAAGGGTTCCTGACTCT -ACGGAAACAAGGGTTCCTAGTCCT -ACGGAAACAAGGGTTCCTTAAGCC -ACGGAAACAAGGGTTCCTATAGCC -ACGGAAACAAGGGTTCCTTAACCG -ACGGAAACAAGGGTTCCTATGCCA -ACGGAAACAAGGTTTCGGGGAAAC -ACGGAAACAAGGTTTCGGAACACC -ACGGAAACAAGGTTTCGGATCGAG -ACGGAAACAAGGTTTCGGCTCCTT -ACGGAAACAAGGTTTCGGCCTGTT -ACGGAAACAAGGTTTCGGCGGTTT -ACGGAAACAAGGTTTCGGGTGGTT -ACGGAAACAAGGTTTCGGGCCTTT -ACGGAAACAAGGTTTCGGGGTCTT -ACGGAAACAAGGTTTCGGACGCTT -ACGGAAACAAGGTTTCGGAGCGTT -ACGGAAACAAGGTTTCGGTTCGTC -ACGGAAACAAGGTTTCGGTCTCTC -ACGGAAACAAGGTTTCGGTGGATC -ACGGAAACAAGGTTTCGGCACTTC -ACGGAAACAAGGTTTCGGGTACTC -ACGGAAACAAGGTTTCGGGATGTC -ACGGAAACAAGGTTTCGGACAGTC -ACGGAAACAAGGTTTCGGTTGCTG -ACGGAAACAAGGTTTCGGTCCATG -ACGGAAACAAGGTTTCGGTGTGTG -ACGGAAACAAGGTTTCGGCTAGTG -ACGGAAACAAGGTTTCGGCATCTG -ACGGAAACAAGGTTTCGGGAGTTG -ACGGAAACAAGGTTTCGGAGACTG -ACGGAAACAAGGTTTCGGTCGGTA -ACGGAAACAAGGTTTCGGTGCCTA -ACGGAAACAAGGTTTCGGCCACTA -ACGGAAACAAGGTTTCGGGGAGTA -ACGGAAACAAGGTTTCGGTCGTCT -ACGGAAACAAGGTTTCGGTGCACT -ACGGAAACAAGGTTTCGGCTGACT -ACGGAAACAAGGTTTCGGCAACCT -ACGGAAACAAGGTTTCGGGCTACT -ACGGAAACAAGGTTTCGGGGATCT -ACGGAAACAAGGTTTCGGAAGGCT -ACGGAAACAAGGTTTCGGTCAACC -ACGGAAACAAGGTTTCGGTGTTCC -ACGGAAACAAGGTTTCGGATTCCC -ACGGAAACAAGGTTTCGGTTCTCG -ACGGAAACAAGGTTTCGGTAGACG -ACGGAAACAAGGTTTCGGGTAACG -ACGGAAACAAGGTTTCGGACTTCG -ACGGAAACAAGGTTTCGGTACGCA -ACGGAAACAAGGTTTCGGCTTGCA -ACGGAAACAAGGTTTCGGCGAACA -ACGGAAACAAGGTTTCGGCAGTCA -ACGGAAACAAGGTTTCGGGATCCA -ACGGAAACAAGGTTTCGGACGACA -ACGGAAACAAGGTTTCGGAGCTCA -ACGGAAACAAGGTTTCGGTCACGT -ACGGAAACAAGGTTTCGGCGTAGT -ACGGAAACAAGGTTTCGGGTCAGT -ACGGAAACAAGGTTTCGGGAAGGT -ACGGAAACAAGGTTTCGGAACCGT -ACGGAAACAAGGTTTCGGTTGTGC -ACGGAAACAAGGTTTCGGCTAAGC -ACGGAAACAAGGTTTCGGACTAGC -ACGGAAACAAGGTTTCGGAGATGC -ACGGAAACAAGGTTTCGGTGAAGG -ACGGAAACAAGGTTTCGGCAATGG -ACGGAAACAAGGTTTCGGATGAGG -ACGGAAACAAGGTTTCGGAATGGG -ACGGAAACAAGGTTTCGGTCCTGA -ACGGAAACAAGGTTTCGGTAGCGA -ACGGAAACAAGGTTTCGGCACAGA -ACGGAAACAAGGTTTCGGGCAAGA -ACGGAAACAAGGTTTCGGGGTTGA -ACGGAAACAAGGTTTCGGTCCGAT -ACGGAAACAAGGTTTCGGTGGCAT -ACGGAAACAAGGTTTCGGCGAGAT -ACGGAAACAAGGTTTCGGTACCAC -ACGGAAACAAGGTTTCGGCAGAAC -ACGGAAACAAGGTTTCGGGTCTAC -ACGGAAACAAGGTTTCGGACGTAC -ACGGAAACAAGGTTTCGGAGTGAC -ACGGAAACAAGGTTTCGGCTGTAG -ACGGAAACAAGGTTTCGGCCTAAG -ACGGAAACAAGGTTTCGGGTTCAG -ACGGAAACAAGGTTTCGGGCATAG -ACGGAAACAAGGTTTCGGGACAAG -ACGGAAACAAGGTTTCGGAAGCAG -ACGGAAACAAGGTTTCGGCGTCAA -ACGGAAACAAGGTTTCGGGCTGAA -ACGGAAACAAGGTTTCGGAGTACG -ACGGAAACAAGGTTTCGGATCCGA -ACGGAAACAAGGTTTCGGATGGGA -ACGGAAACAAGGTTTCGGGTGCAA -ACGGAAACAAGGTTTCGGGAGGAA -ACGGAAACAAGGTTTCGGCAGGTA -ACGGAAACAAGGTTTCGGGACTCT -ACGGAAACAAGGTTTCGGAGTCCT -ACGGAAACAAGGTTTCGGTAAGCC -ACGGAAACAAGGTTTCGGATAGCC -ACGGAAACAAGGTTTCGGTAACCG -ACGGAAACAAGGTTTCGGATGCCA -ACGGAAACAAGGGTTGTGGGAAAC -ACGGAAACAAGGGTTGTGAACACC -ACGGAAACAAGGGTTGTGATCGAG -ACGGAAACAAGGGTTGTGCTCCTT -ACGGAAACAAGGGTTGTGCCTGTT -ACGGAAACAAGGGTTGTGCGGTTT -ACGGAAACAAGGGTTGTGGTGGTT -ACGGAAACAAGGGTTGTGGCCTTT -ACGGAAACAAGGGTTGTGGGTCTT -ACGGAAACAAGGGTTGTGACGCTT -ACGGAAACAAGGGTTGTGAGCGTT -ACGGAAACAAGGGTTGTGTTCGTC -ACGGAAACAAGGGTTGTGTCTCTC -ACGGAAACAAGGGTTGTGTGGATC -ACGGAAACAAGGGTTGTGCACTTC -ACGGAAACAAGGGTTGTGGTACTC -ACGGAAACAAGGGTTGTGGATGTC -ACGGAAACAAGGGTTGTGACAGTC -ACGGAAACAAGGGTTGTGTTGCTG -ACGGAAACAAGGGTTGTGTCCATG -ACGGAAACAAGGGTTGTGTGTGTG -ACGGAAACAAGGGTTGTGCTAGTG -ACGGAAACAAGGGTTGTGCATCTG -ACGGAAACAAGGGTTGTGGAGTTG -ACGGAAACAAGGGTTGTGAGACTG -ACGGAAACAAGGGTTGTGTCGGTA -ACGGAAACAAGGGTTGTGTGCCTA -ACGGAAACAAGGGTTGTGCCACTA -ACGGAAACAAGGGTTGTGGGAGTA -ACGGAAACAAGGGTTGTGTCGTCT -ACGGAAACAAGGGTTGTGTGCACT -ACGGAAACAAGGGTTGTGCTGACT -ACGGAAACAAGGGTTGTGCAACCT -ACGGAAACAAGGGTTGTGGCTACT -ACGGAAACAAGGGTTGTGGGATCT -ACGGAAACAAGGGTTGTGAAGGCT -ACGGAAACAAGGGTTGTGTCAACC -ACGGAAACAAGGGTTGTGTGTTCC -ACGGAAACAAGGGTTGTGATTCCC -ACGGAAACAAGGGTTGTGTTCTCG -ACGGAAACAAGGGTTGTGTAGACG -ACGGAAACAAGGGTTGTGGTAACG -ACGGAAACAAGGGTTGTGACTTCG -ACGGAAACAAGGGTTGTGTACGCA -ACGGAAACAAGGGTTGTGCTTGCA -ACGGAAACAAGGGTTGTGCGAACA -ACGGAAACAAGGGTTGTGCAGTCA -ACGGAAACAAGGGTTGTGGATCCA -ACGGAAACAAGGGTTGTGACGACA -ACGGAAACAAGGGTTGTGAGCTCA -ACGGAAACAAGGGTTGTGTCACGT -ACGGAAACAAGGGTTGTGCGTAGT -ACGGAAACAAGGGTTGTGGTCAGT -ACGGAAACAAGGGTTGTGGAAGGT -ACGGAAACAAGGGTTGTGAACCGT -ACGGAAACAAGGGTTGTGTTGTGC -ACGGAAACAAGGGTTGTGCTAAGC -ACGGAAACAAGGGTTGTGACTAGC -ACGGAAACAAGGGTTGTGAGATGC -ACGGAAACAAGGGTTGTGTGAAGG -ACGGAAACAAGGGTTGTGCAATGG -ACGGAAACAAGGGTTGTGATGAGG -ACGGAAACAAGGGTTGTGAATGGG -ACGGAAACAAGGGTTGTGTCCTGA -ACGGAAACAAGGGTTGTGTAGCGA -ACGGAAACAAGGGTTGTGCACAGA -ACGGAAACAAGGGTTGTGGCAAGA -ACGGAAACAAGGGTTGTGGGTTGA -ACGGAAACAAGGGTTGTGTCCGAT -ACGGAAACAAGGGTTGTGTGGCAT -ACGGAAACAAGGGTTGTGCGAGAT -ACGGAAACAAGGGTTGTGTACCAC -ACGGAAACAAGGGTTGTGCAGAAC -ACGGAAACAAGGGTTGTGGTCTAC -ACGGAAACAAGGGTTGTGACGTAC -ACGGAAACAAGGGTTGTGAGTGAC -ACGGAAACAAGGGTTGTGCTGTAG -ACGGAAACAAGGGTTGTGCCTAAG -ACGGAAACAAGGGTTGTGGTTCAG -ACGGAAACAAGGGTTGTGGCATAG -ACGGAAACAAGGGTTGTGGACAAG -ACGGAAACAAGGGTTGTGAAGCAG -ACGGAAACAAGGGTTGTGCGTCAA -ACGGAAACAAGGGTTGTGGCTGAA -ACGGAAACAAGGGTTGTGAGTACG -ACGGAAACAAGGGTTGTGATCCGA -ACGGAAACAAGGGTTGTGATGGGA -ACGGAAACAAGGGTTGTGGTGCAA -ACGGAAACAAGGGTTGTGGAGGAA -ACGGAAACAAGGGTTGTGCAGGTA -ACGGAAACAAGGGTTGTGGACTCT -ACGGAAACAAGGGTTGTGAGTCCT -ACGGAAACAAGGGTTGTGTAAGCC -ACGGAAACAAGGGTTGTGATAGCC -ACGGAAACAAGGGTTGTGTAACCG -ACGGAAACAAGGGTTGTGATGCCA -ACGGAAACAAGGTTTGCCGGAAAC -ACGGAAACAAGGTTTGCCAACACC -ACGGAAACAAGGTTTGCCATCGAG -ACGGAAACAAGGTTTGCCCTCCTT -ACGGAAACAAGGTTTGCCCCTGTT -ACGGAAACAAGGTTTGCCCGGTTT -ACGGAAACAAGGTTTGCCGTGGTT -ACGGAAACAAGGTTTGCCGCCTTT -ACGGAAACAAGGTTTGCCGGTCTT -ACGGAAACAAGGTTTGCCACGCTT -ACGGAAACAAGGTTTGCCAGCGTT -ACGGAAACAAGGTTTGCCTTCGTC -ACGGAAACAAGGTTTGCCTCTCTC -ACGGAAACAAGGTTTGCCTGGATC -ACGGAAACAAGGTTTGCCCACTTC -ACGGAAACAAGGTTTGCCGTACTC -ACGGAAACAAGGTTTGCCGATGTC -ACGGAAACAAGGTTTGCCACAGTC -ACGGAAACAAGGTTTGCCTTGCTG -ACGGAAACAAGGTTTGCCTCCATG -ACGGAAACAAGGTTTGCCTGTGTG -ACGGAAACAAGGTTTGCCCTAGTG -ACGGAAACAAGGTTTGCCCATCTG -ACGGAAACAAGGTTTGCCGAGTTG -ACGGAAACAAGGTTTGCCAGACTG -ACGGAAACAAGGTTTGCCTCGGTA -ACGGAAACAAGGTTTGCCTGCCTA -ACGGAAACAAGGTTTGCCCCACTA -ACGGAAACAAGGTTTGCCGGAGTA -ACGGAAACAAGGTTTGCCTCGTCT -ACGGAAACAAGGTTTGCCTGCACT -ACGGAAACAAGGTTTGCCCTGACT -ACGGAAACAAGGTTTGCCCAACCT -ACGGAAACAAGGTTTGCCGCTACT -ACGGAAACAAGGTTTGCCGGATCT -ACGGAAACAAGGTTTGCCAAGGCT -ACGGAAACAAGGTTTGCCTCAACC -ACGGAAACAAGGTTTGCCTGTTCC -ACGGAAACAAGGTTTGCCATTCCC -ACGGAAACAAGGTTTGCCTTCTCG -ACGGAAACAAGGTTTGCCTAGACG -ACGGAAACAAGGTTTGCCGTAACG -ACGGAAACAAGGTTTGCCACTTCG -ACGGAAACAAGGTTTGCCTACGCA -ACGGAAACAAGGTTTGCCCTTGCA -ACGGAAACAAGGTTTGCCCGAACA -ACGGAAACAAGGTTTGCCCAGTCA -ACGGAAACAAGGTTTGCCGATCCA -ACGGAAACAAGGTTTGCCACGACA -ACGGAAACAAGGTTTGCCAGCTCA -ACGGAAACAAGGTTTGCCTCACGT -ACGGAAACAAGGTTTGCCCGTAGT -ACGGAAACAAGGTTTGCCGTCAGT -ACGGAAACAAGGTTTGCCGAAGGT -ACGGAAACAAGGTTTGCCAACCGT -ACGGAAACAAGGTTTGCCTTGTGC -ACGGAAACAAGGTTTGCCCTAAGC -ACGGAAACAAGGTTTGCCACTAGC -ACGGAAACAAGGTTTGCCAGATGC -ACGGAAACAAGGTTTGCCTGAAGG -ACGGAAACAAGGTTTGCCCAATGG -ACGGAAACAAGGTTTGCCATGAGG -ACGGAAACAAGGTTTGCCAATGGG -ACGGAAACAAGGTTTGCCTCCTGA -ACGGAAACAAGGTTTGCCTAGCGA -ACGGAAACAAGGTTTGCCCACAGA -ACGGAAACAAGGTTTGCCGCAAGA -ACGGAAACAAGGTTTGCCGGTTGA -ACGGAAACAAGGTTTGCCTCCGAT -ACGGAAACAAGGTTTGCCTGGCAT -ACGGAAACAAGGTTTGCCCGAGAT -ACGGAAACAAGGTTTGCCTACCAC -ACGGAAACAAGGTTTGCCCAGAAC -ACGGAAACAAGGTTTGCCGTCTAC -ACGGAAACAAGGTTTGCCACGTAC -ACGGAAACAAGGTTTGCCAGTGAC -ACGGAAACAAGGTTTGCCCTGTAG -ACGGAAACAAGGTTTGCCCCTAAG -ACGGAAACAAGGTTTGCCGTTCAG -ACGGAAACAAGGTTTGCCGCATAG -ACGGAAACAAGGTTTGCCGACAAG -ACGGAAACAAGGTTTGCCAAGCAG -ACGGAAACAAGGTTTGCCCGTCAA -ACGGAAACAAGGTTTGCCGCTGAA -ACGGAAACAAGGTTTGCCAGTACG -ACGGAAACAAGGTTTGCCATCCGA -ACGGAAACAAGGTTTGCCATGGGA -ACGGAAACAAGGTTTGCCGTGCAA -ACGGAAACAAGGTTTGCCGAGGAA -ACGGAAACAAGGTTTGCCCAGGTA -ACGGAAACAAGGTTTGCCGACTCT -ACGGAAACAAGGTTTGCCAGTCCT -ACGGAAACAAGGTTTGCCTAAGCC -ACGGAAACAAGGTTTGCCATAGCC -ACGGAAACAAGGTTTGCCTAACCG -ACGGAAACAAGGTTTGCCATGCCA -ACGGAAACAAGGCTTGGTGGAAAC -ACGGAAACAAGGCTTGGTAACACC -ACGGAAACAAGGCTTGGTATCGAG -ACGGAAACAAGGCTTGGTCTCCTT -ACGGAAACAAGGCTTGGTCCTGTT -ACGGAAACAAGGCTTGGTCGGTTT -ACGGAAACAAGGCTTGGTGTGGTT -ACGGAAACAAGGCTTGGTGCCTTT -ACGGAAACAAGGCTTGGTGGTCTT -ACGGAAACAAGGCTTGGTACGCTT -ACGGAAACAAGGCTTGGTAGCGTT -ACGGAAACAAGGCTTGGTTTCGTC -ACGGAAACAAGGCTTGGTTCTCTC -ACGGAAACAAGGCTTGGTTGGATC -ACGGAAACAAGGCTTGGTCACTTC -ACGGAAACAAGGCTTGGTGTACTC -ACGGAAACAAGGCTTGGTGATGTC -ACGGAAACAAGGCTTGGTACAGTC -ACGGAAACAAGGCTTGGTTTGCTG -ACGGAAACAAGGCTTGGTTCCATG -ACGGAAACAAGGCTTGGTTGTGTG -ACGGAAACAAGGCTTGGTCTAGTG -ACGGAAACAAGGCTTGGTCATCTG -ACGGAAACAAGGCTTGGTGAGTTG -ACGGAAACAAGGCTTGGTAGACTG -ACGGAAACAAGGCTTGGTTCGGTA -ACGGAAACAAGGCTTGGTTGCCTA -ACGGAAACAAGGCTTGGTCCACTA -ACGGAAACAAGGCTTGGTGGAGTA -ACGGAAACAAGGCTTGGTTCGTCT -ACGGAAACAAGGCTTGGTTGCACT -ACGGAAACAAGGCTTGGTCTGACT -ACGGAAACAAGGCTTGGTCAACCT -ACGGAAACAAGGCTTGGTGCTACT -ACGGAAACAAGGCTTGGTGGATCT -ACGGAAACAAGGCTTGGTAAGGCT -ACGGAAACAAGGCTTGGTTCAACC -ACGGAAACAAGGCTTGGTTGTTCC -ACGGAAACAAGGCTTGGTATTCCC -ACGGAAACAAGGCTTGGTTTCTCG -ACGGAAACAAGGCTTGGTTAGACG -ACGGAAACAAGGCTTGGTGTAACG -ACGGAAACAAGGCTTGGTACTTCG -ACGGAAACAAGGCTTGGTTACGCA -ACGGAAACAAGGCTTGGTCTTGCA -ACGGAAACAAGGCTTGGTCGAACA -ACGGAAACAAGGCTTGGTCAGTCA -ACGGAAACAAGGCTTGGTGATCCA -ACGGAAACAAGGCTTGGTACGACA -ACGGAAACAAGGCTTGGTAGCTCA -ACGGAAACAAGGCTTGGTTCACGT -ACGGAAACAAGGCTTGGTCGTAGT -ACGGAAACAAGGCTTGGTGTCAGT -ACGGAAACAAGGCTTGGTGAAGGT -ACGGAAACAAGGCTTGGTAACCGT -ACGGAAACAAGGCTTGGTTTGTGC -ACGGAAACAAGGCTTGGTCTAAGC -ACGGAAACAAGGCTTGGTACTAGC -ACGGAAACAAGGCTTGGTAGATGC -ACGGAAACAAGGCTTGGTTGAAGG -ACGGAAACAAGGCTTGGTCAATGG -ACGGAAACAAGGCTTGGTATGAGG -ACGGAAACAAGGCTTGGTAATGGG -ACGGAAACAAGGCTTGGTTCCTGA -ACGGAAACAAGGCTTGGTTAGCGA -ACGGAAACAAGGCTTGGTCACAGA -ACGGAAACAAGGCTTGGTGCAAGA -ACGGAAACAAGGCTTGGTGGTTGA -ACGGAAACAAGGCTTGGTTCCGAT -ACGGAAACAAGGCTTGGTTGGCAT -ACGGAAACAAGGCTTGGTCGAGAT -ACGGAAACAAGGCTTGGTTACCAC -ACGGAAACAAGGCTTGGTCAGAAC -ACGGAAACAAGGCTTGGTGTCTAC -ACGGAAACAAGGCTTGGTACGTAC -ACGGAAACAAGGCTTGGTAGTGAC -ACGGAAACAAGGCTTGGTCTGTAG -ACGGAAACAAGGCTTGGTCCTAAG -ACGGAAACAAGGCTTGGTGTTCAG -ACGGAAACAAGGCTTGGTGCATAG -ACGGAAACAAGGCTTGGTGACAAG -ACGGAAACAAGGCTTGGTAAGCAG -ACGGAAACAAGGCTTGGTCGTCAA -ACGGAAACAAGGCTTGGTGCTGAA -ACGGAAACAAGGCTTGGTAGTACG -ACGGAAACAAGGCTTGGTATCCGA -ACGGAAACAAGGCTTGGTATGGGA -ACGGAAACAAGGCTTGGTGTGCAA -ACGGAAACAAGGCTTGGTGAGGAA -ACGGAAACAAGGCTTGGTCAGGTA -ACGGAAACAAGGCTTGGTGACTCT -ACGGAAACAAGGCTTGGTAGTCCT -ACGGAAACAAGGCTTGGTTAAGCC -ACGGAAACAAGGCTTGGTATAGCC -ACGGAAACAAGGCTTGGTTAACCG -ACGGAAACAAGGCTTGGTATGCCA -ACGGAAACAAGGCTTACGGGAAAC -ACGGAAACAAGGCTTACGAACACC -ACGGAAACAAGGCTTACGATCGAG -ACGGAAACAAGGCTTACGCTCCTT -ACGGAAACAAGGCTTACGCCTGTT -ACGGAAACAAGGCTTACGCGGTTT -ACGGAAACAAGGCTTACGGTGGTT -ACGGAAACAAGGCTTACGGCCTTT -ACGGAAACAAGGCTTACGGGTCTT -ACGGAAACAAGGCTTACGACGCTT -ACGGAAACAAGGCTTACGAGCGTT -ACGGAAACAAGGCTTACGTTCGTC -ACGGAAACAAGGCTTACGTCTCTC -ACGGAAACAAGGCTTACGTGGATC -ACGGAAACAAGGCTTACGCACTTC -ACGGAAACAAGGCTTACGGTACTC -ACGGAAACAAGGCTTACGGATGTC -ACGGAAACAAGGCTTACGACAGTC -ACGGAAACAAGGCTTACGTTGCTG -ACGGAAACAAGGCTTACGTCCATG -ACGGAAACAAGGCTTACGTGTGTG -ACGGAAACAAGGCTTACGCTAGTG -ACGGAAACAAGGCTTACGCATCTG -ACGGAAACAAGGCTTACGGAGTTG -ACGGAAACAAGGCTTACGAGACTG -ACGGAAACAAGGCTTACGTCGGTA -ACGGAAACAAGGCTTACGTGCCTA -ACGGAAACAAGGCTTACGCCACTA -ACGGAAACAAGGCTTACGGGAGTA -ACGGAAACAAGGCTTACGTCGTCT -ACGGAAACAAGGCTTACGTGCACT -ACGGAAACAAGGCTTACGCTGACT -ACGGAAACAAGGCTTACGCAACCT -ACGGAAACAAGGCTTACGGCTACT -ACGGAAACAAGGCTTACGGGATCT -ACGGAAACAAGGCTTACGAAGGCT -ACGGAAACAAGGCTTACGTCAACC -ACGGAAACAAGGCTTACGTGTTCC -ACGGAAACAAGGCTTACGATTCCC -ACGGAAACAAGGCTTACGTTCTCG -ACGGAAACAAGGCTTACGTAGACG -ACGGAAACAAGGCTTACGGTAACG -ACGGAAACAAGGCTTACGACTTCG -ACGGAAACAAGGCTTACGTACGCA -ACGGAAACAAGGCTTACGCTTGCA -ACGGAAACAAGGCTTACGCGAACA -ACGGAAACAAGGCTTACGCAGTCA -ACGGAAACAAGGCTTACGGATCCA -ACGGAAACAAGGCTTACGACGACA -ACGGAAACAAGGCTTACGAGCTCA -ACGGAAACAAGGCTTACGTCACGT -ACGGAAACAAGGCTTACGCGTAGT -ACGGAAACAAGGCTTACGGTCAGT -ACGGAAACAAGGCTTACGGAAGGT -ACGGAAACAAGGCTTACGAACCGT -ACGGAAACAAGGCTTACGTTGTGC -ACGGAAACAAGGCTTACGCTAAGC -ACGGAAACAAGGCTTACGACTAGC -ACGGAAACAAGGCTTACGAGATGC -ACGGAAACAAGGCTTACGTGAAGG -ACGGAAACAAGGCTTACGCAATGG -ACGGAAACAAGGCTTACGATGAGG -ACGGAAACAAGGCTTACGAATGGG -ACGGAAACAAGGCTTACGTCCTGA -ACGGAAACAAGGCTTACGTAGCGA -ACGGAAACAAGGCTTACGCACAGA -ACGGAAACAAGGCTTACGGCAAGA -ACGGAAACAAGGCTTACGGGTTGA -ACGGAAACAAGGCTTACGTCCGAT -ACGGAAACAAGGCTTACGTGGCAT -ACGGAAACAAGGCTTACGCGAGAT -ACGGAAACAAGGCTTACGTACCAC -ACGGAAACAAGGCTTACGCAGAAC -ACGGAAACAAGGCTTACGGTCTAC -ACGGAAACAAGGCTTACGACGTAC -ACGGAAACAAGGCTTACGAGTGAC -ACGGAAACAAGGCTTACGCTGTAG -ACGGAAACAAGGCTTACGCCTAAG -ACGGAAACAAGGCTTACGGTTCAG -ACGGAAACAAGGCTTACGGCATAG -ACGGAAACAAGGCTTACGGACAAG -ACGGAAACAAGGCTTACGAAGCAG -ACGGAAACAAGGCTTACGCGTCAA -ACGGAAACAAGGCTTACGGCTGAA -ACGGAAACAAGGCTTACGAGTACG -ACGGAAACAAGGCTTACGATCCGA -ACGGAAACAAGGCTTACGATGGGA -ACGGAAACAAGGCTTACGGTGCAA -ACGGAAACAAGGCTTACGGAGGAA -ACGGAAACAAGGCTTACGCAGGTA -ACGGAAACAAGGCTTACGGACTCT -ACGGAAACAAGGCTTACGAGTCCT -ACGGAAACAAGGCTTACGTAAGCC -ACGGAAACAAGGCTTACGATAGCC -ACGGAAACAAGGCTTACGTAACCG -ACGGAAACAAGGCTTACGATGCCA -ACGGAAACAAGGGTTAGCGGAAAC -ACGGAAACAAGGGTTAGCAACACC -ACGGAAACAAGGGTTAGCATCGAG -ACGGAAACAAGGGTTAGCCTCCTT -ACGGAAACAAGGGTTAGCCCTGTT -ACGGAAACAAGGGTTAGCCGGTTT -ACGGAAACAAGGGTTAGCGTGGTT -ACGGAAACAAGGGTTAGCGCCTTT -ACGGAAACAAGGGTTAGCGGTCTT -ACGGAAACAAGGGTTAGCACGCTT -ACGGAAACAAGGGTTAGCAGCGTT -ACGGAAACAAGGGTTAGCTTCGTC -ACGGAAACAAGGGTTAGCTCTCTC -ACGGAAACAAGGGTTAGCTGGATC -ACGGAAACAAGGGTTAGCCACTTC -ACGGAAACAAGGGTTAGCGTACTC -ACGGAAACAAGGGTTAGCGATGTC -ACGGAAACAAGGGTTAGCACAGTC -ACGGAAACAAGGGTTAGCTTGCTG -ACGGAAACAAGGGTTAGCTCCATG -ACGGAAACAAGGGTTAGCTGTGTG -ACGGAAACAAGGGTTAGCCTAGTG -ACGGAAACAAGGGTTAGCCATCTG -ACGGAAACAAGGGTTAGCGAGTTG -ACGGAAACAAGGGTTAGCAGACTG -ACGGAAACAAGGGTTAGCTCGGTA -ACGGAAACAAGGGTTAGCTGCCTA -ACGGAAACAAGGGTTAGCCCACTA -ACGGAAACAAGGGTTAGCGGAGTA -ACGGAAACAAGGGTTAGCTCGTCT -ACGGAAACAAGGGTTAGCTGCACT -ACGGAAACAAGGGTTAGCCTGACT -ACGGAAACAAGGGTTAGCCAACCT -ACGGAAACAAGGGTTAGCGCTACT -ACGGAAACAAGGGTTAGCGGATCT -ACGGAAACAAGGGTTAGCAAGGCT -ACGGAAACAAGGGTTAGCTCAACC -ACGGAAACAAGGGTTAGCTGTTCC -ACGGAAACAAGGGTTAGCATTCCC -ACGGAAACAAGGGTTAGCTTCTCG -ACGGAAACAAGGGTTAGCTAGACG -ACGGAAACAAGGGTTAGCGTAACG -ACGGAAACAAGGGTTAGCACTTCG -ACGGAAACAAGGGTTAGCTACGCA -ACGGAAACAAGGGTTAGCCTTGCA -ACGGAAACAAGGGTTAGCCGAACA -ACGGAAACAAGGGTTAGCCAGTCA -ACGGAAACAAGGGTTAGCGATCCA -ACGGAAACAAGGGTTAGCACGACA -ACGGAAACAAGGGTTAGCAGCTCA -ACGGAAACAAGGGTTAGCTCACGT -ACGGAAACAAGGGTTAGCCGTAGT -ACGGAAACAAGGGTTAGCGTCAGT -ACGGAAACAAGGGTTAGCGAAGGT -ACGGAAACAAGGGTTAGCAACCGT -ACGGAAACAAGGGTTAGCTTGTGC -ACGGAAACAAGGGTTAGCCTAAGC -ACGGAAACAAGGGTTAGCACTAGC -ACGGAAACAAGGGTTAGCAGATGC -ACGGAAACAAGGGTTAGCTGAAGG -ACGGAAACAAGGGTTAGCCAATGG -ACGGAAACAAGGGTTAGCATGAGG -ACGGAAACAAGGGTTAGCAATGGG -ACGGAAACAAGGGTTAGCTCCTGA -ACGGAAACAAGGGTTAGCTAGCGA -ACGGAAACAAGGGTTAGCCACAGA -ACGGAAACAAGGGTTAGCGCAAGA -ACGGAAACAAGGGTTAGCGGTTGA -ACGGAAACAAGGGTTAGCTCCGAT -ACGGAAACAAGGGTTAGCTGGCAT -ACGGAAACAAGGGTTAGCCGAGAT -ACGGAAACAAGGGTTAGCTACCAC -ACGGAAACAAGGGTTAGCCAGAAC -ACGGAAACAAGGGTTAGCGTCTAC -ACGGAAACAAGGGTTAGCACGTAC -ACGGAAACAAGGGTTAGCAGTGAC -ACGGAAACAAGGGTTAGCCTGTAG -ACGGAAACAAGGGTTAGCCCTAAG -ACGGAAACAAGGGTTAGCGTTCAG -ACGGAAACAAGGGTTAGCGCATAG -ACGGAAACAAGGGTTAGCGACAAG -ACGGAAACAAGGGTTAGCAAGCAG -ACGGAAACAAGGGTTAGCCGTCAA -ACGGAAACAAGGGTTAGCGCTGAA -ACGGAAACAAGGGTTAGCAGTACG -ACGGAAACAAGGGTTAGCATCCGA -ACGGAAACAAGGGTTAGCATGGGA -ACGGAAACAAGGGTTAGCGTGCAA -ACGGAAACAAGGGTTAGCGAGGAA -ACGGAAACAAGGGTTAGCCAGGTA -ACGGAAACAAGGGTTAGCGACTCT -ACGGAAACAAGGGTTAGCAGTCCT -ACGGAAACAAGGGTTAGCTAAGCC -ACGGAAACAAGGGTTAGCATAGCC -ACGGAAACAAGGGTTAGCTAACCG -ACGGAAACAAGGGTTAGCATGCCA -ACGGAAACAAGGGTCTTCGGAAAC -ACGGAAACAAGGGTCTTCAACACC -ACGGAAACAAGGGTCTTCATCGAG -ACGGAAACAAGGGTCTTCCTCCTT -ACGGAAACAAGGGTCTTCCCTGTT -ACGGAAACAAGGGTCTTCCGGTTT -ACGGAAACAAGGGTCTTCGTGGTT -ACGGAAACAAGGGTCTTCGCCTTT -ACGGAAACAAGGGTCTTCGGTCTT -ACGGAAACAAGGGTCTTCACGCTT -ACGGAAACAAGGGTCTTCAGCGTT -ACGGAAACAAGGGTCTTCTTCGTC -ACGGAAACAAGGGTCTTCTCTCTC -ACGGAAACAAGGGTCTTCTGGATC -ACGGAAACAAGGGTCTTCCACTTC -ACGGAAACAAGGGTCTTCGTACTC -ACGGAAACAAGGGTCTTCGATGTC -ACGGAAACAAGGGTCTTCACAGTC -ACGGAAACAAGGGTCTTCTTGCTG -ACGGAAACAAGGGTCTTCTCCATG -ACGGAAACAAGGGTCTTCTGTGTG -ACGGAAACAAGGGTCTTCCTAGTG -ACGGAAACAAGGGTCTTCCATCTG -ACGGAAACAAGGGTCTTCGAGTTG -ACGGAAACAAGGGTCTTCAGACTG -ACGGAAACAAGGGTCTTCTCGGTA -ACGGAAACAAGGGTCTTCTGCCTA -ACGGAAACAAGGGTCTTCCCACTA -ACGGAAACAAGGGTCTTCGGAGTA -ACGGAAACAAGGGTCTTCTCGTCT -ACGGAAACAAGGGTCTTCTGCACT -ACGGAAACAAGGGTCTTCCTGACT -ACGGAAACAAGGGTCTTCCAACCT -ACGGAAACAAGGGTCTTCGCTACT -ACGGAAACAAGGGTCTTCGGATCT -ACGGAAACAAGGGTCTTCAAGGCT -ACGGAAACAAGGGTCTTCTCAACC -ACGGAAACAAGGGTCTTCTGTTCC -ACGGAAACAAGGGTCTTCATTCCC -ACGGAAACAAGGGTCTTCTTCTCG -ACGGAAACAAGGGTCTTCTAGACG -ACGGAAACAAGGGTCTTCGTAACG -ACGGAAACAAGGGTCTTCACTTCG -ACGGAAACAAGGGTCTTCTACGCA -ACGGAAACAAGGGTCTTCCTTGCA -ACGGAAACAAGGGTCTTCCGAACA -ACGGAAACAAGGGTCTTCCAGTCA -ACGGAAACAAGGGTCTTCGATCCA -ACGGAAACAAGGGTCTTCACGACA -ACGGAAACAAGGGTCTTCAGCTCA -ACGGAAACAAGGGTCTTCTCACGT -ACGGAAACAAGGGTCTTCCGTAGT -ACGGAAACAAGGGTCTTCGTCAGT -ACGGAAACAAGGGTCTTCGAAGGT -ACGGAAACAAGGGTCTTCAACCGT -ACGGAAACAAGGGTCTTCTTGTGC -ACGGAAACAAGGGTCTTCCTAAGC -ACGGAAACAAGGGTCTTCACTAGC -ACGGAAACAAGGGTCTTCAGATGC -ACGGAAACAAGGGTCTTCTGAAGG -ACGGAAACAAGGGTCTTCCAATGG -ACGGAAACAAGGGTCTTCATGAGG -ACGGAAACAAGGGTCTTCAATGGG -ACGGAAACAAGGGTCTTCTCCTGA -ACGGAAACAAGGGTCTTCTAGCGA -ACGGAAACAAGGGTCTTCCACAGA -ACGGAAACAAGGGTCTTCGCAAGA -ACGGAAACAAGGGTCTTCGGTTGA -ACGGAAACAAGGGTCTTCTCCGAT -ACGGAAACAAGGGTCTTCTGGCAT -ACGGAAACAAGGGTCTTCCGAGAT -ACGGAAACAAGGGTCTTCTACCAC -ACGGAAACAAGGGTCTTCCAGAAC -ACGGAAACAAGGGTCTTCGTCTAC -ACGGAAACAAGGGTCTTCACGTAC -ACGGAAACAAGGGTCTTCAGTGAC -ACGGAAACAAGGGTCTTCCTGTAG -ACGGAAACAAGGGTCTTCCCTAAG -ACGGAAACAAGGGTCTTCGTTCAG -ACGGAAACAAGGGTCTTCGCATAG -ACGGAAACAAGGGTCTTCGACAAG -ACGGAAACAAGGGTCTTCAAGCAG -ACGGAAACAAGGGTCTTCCGTCAA -ACGGAAACAAGGGTCTTCGCTGAA -ACGGAAACAAGGGTCTTCAGTACG -ACGGAAACAAGGGTCTTCATCCGA -ACGGAAACAAGGGTCTTCATGGGA -ACGGAAACAAGGGTCTTCGTGCAA -ACGGAAACAAGGGTCTTCGAGGAA -ACGGAAACAAGGGTCTTCCAGGTA -ACGGAAACAAGGGTCTTCGACTCT -ACGGAAACAAGGGTCTTCAGTCCT -ACGGAAACAAGGGTCTTCTAAGCC -ACGGAAACAAGGGTCTTCATAGCC -ACGGAAACAAGGGTCTTCTAACCG -ACGGAAACAAGGGTCTTCATGCCA -ACGGAAACAAGGCTCTCTGGAAAC -ACGGAAACAAGGCTCTCTAACACC -ACGGAAACAAGGCTCTCTATCGAG -ACGGAAACAAGGCTCTCTCTCCTT -ACGGAAACAAGGCTCTCTCCTGTT -ACGGAAACAAGGCTCTCTCGGTTT -ACGGAAACAAGGCTCTCTGTGGTT -ACGGAAACAAGGCTCTCTGCCTTT -ACGGAAACAAGGCTCTCTGGTCTT -ACGGAAACAAGGCTCTCTACGCTT -ACGGAAACAAGGCTCTCTAGCGTT -ACGGAAACAAGGCTCTCTTTCGTC -ACGGAAACAAGGCTCTCTTCTCTC -ACGGAAACAAGGCTCTCTTGGATC -ACGGAAACAAGGCTCTCTCACTTC -ACGGAAACAAGGCTCTCTGTACTC -ACGGAAACAAGGCTCTCTGATGTC -ACGGAAACAAGGCTCTCTACAGTC -ACGGAAACAAGGCTCTCTTTGCTG -ACGGAAACAAGGCTCTCTTCCATG -ACGGAAACAAGGCTCTCTTGTGTG -ACGGAAACAAGGCTCTCTCTAGTG -ACGGAAACAAGGCTCTCTCATCTG -ACGGAAACAAGGCTCTCTGAGTTG -ACGGAAACAAGGCTCTCTAGACTG -ACGGAAACAAGGCTCTCTTCGGTA -ACGGAAACAAGGCTCTCTTGCCTA -ACGGAAACAAGGCTCTCTCCACTA -ACGGAAACAAGGCTCTCTGGAGTA -ACGGAAACAAGGCTCTCTTCGTCT -ACGGAAACAAGGCTCTCTTGCACT -ACGGAAACAAGGCTCTCTCTGACT -ACGGAAACAAGGCTCTCTCAACCT -ACGGAAACAAGGCTCTCTGCTACT -ACGGAAACAAGGCTCTCTGGATCT -ACGGAAACAAGGCTCTCTAAGGCT -ACGGAAACAAGGCTCTCTTCAACC -ACGGAAACAAGGCTCTCTTGTTCC -ACGGAAACAAGGCTCTCTATTCCC -ACGGAAACAAGGCTCTCTTTCTCG -ACGGAAACAAGGCTCTCTTAGACG -ACGGAAACAAGGCTCTCTGTAACG -ACGGAAACAAGGCTCTCTACTTCG -ACGGAAACAAGGCTCTCTTACGCA -ACGGAAACAAGGCTCTCTCTTGCA -ACGGAAACAAGGCTCTCTCGAACA -ACGGAAACAAGGCTCTCTCAGTCA -ACGGAAACAAGGCTCTCTGATCCA -ACGGAAACAAGGCTCTCTACGACA -ACGGAAACAAGGCTCTCTAGCTCA -ACGGAAACAAGGCTCTCTTCACGT -ACGGAAACAAGGCTCTCTCGTAGT -ACGGAAACAAGGCTCTCTGTCAGT -ACGGAAACAAGGCTCTCTGAAGGT -ACGGAAACAAGGCTCTCTAACCGT -ACGGAAACAAGGCTCTCTTTGTGC -ACGGAAACAAGGCTCTCTCTAAGC -ACGGAAACAAGGCTCTCTACTAGC -ACGGAAACAAGGCTCTCTAGATGC -ACGGAAACAAGGCTCTCTTGAAGG -ACGGAAACAAGGCTCTCTCAATGG -ACGGAAACAAGGCTCTCTATGAGG -ACGGAAACAAGGCTCTCTAATGGG -ACGGAAACAAGGCTCTCTTCCTGA -ACGGAAACAAGGCTCTCTTAGCGA -ACGGAAACAAGGCTCTCTCACAGA -ACGGAAACAAGGCTCTCTGCAAGA -ACGGAAACAAGGCTCTCTGGTTGA -ACGGAAACAAGGCTCTCTTCCGAT -ACGGAAACAAGGCTCTCTTGGCAT -ACGGAAACAAGGCTCTCTCGAGAT -ACGGAAACAAGGCTCTCTTACCAC -ACGGAAACAAGGCTCTCTCAGAAC -ACGGAAACAAGGCTCTCTGTCTAC -ACGGAAACAAGGCTCTCTACGTAC -ACGGAAACAAGGCTCTCTAGTGAC -ACGGAAACAAGGCTCTCTCTGTAG -ACGGAAACAAGGCTCTCTCCTAAG -ACGGAAACAAGGCTCTCTGTTCAG -ACGGAAACAAGGCTCTCTGCATAG -ACGGAAACAAGGCTCTCTGACAAG -ACGGAAACAAGGCTCTCTAAGCAG -ACGGAAACAAGGCTCTCTCGTCAA -ACGGAAACAAGGCTCTCTGCTGAA -ACGGAAACAAGGCTCTCTAGTACG -ACGGAAACAAGGCTCTCTATCCGA -ACGGAAACAAGGCTCTCTATGGGA -ACGGAAACAAGGCTCTCTGTGCAA -ACGGAAACAAGGCTCTCTGAGGAA -ACGGAAACAAGGCTCTCTCAGGTA -ACGGAAACAAGGCTCTCTGACTCT -ACGGAAACAAGGCTCTCTAGTCCT -ACGGAAACAAGGCTCTCTTAAGCC -ACGGAAACAAGGCTCTCTATAGCC -ACGGAAACAAGGCTCTCTTAACCG -ACGGAAACAAGGCTCTCTATGCCA -ACGGAAACAAGGATCTGGGGAAAC -ACGGAAACAAGGATCTGGAACACC -ACGGAAACAAGGATCTGGATCGAG -ACGGAAACAAGGATCTGGCTCCTT -ACGGAAACAAGGATCTGGCCTGTT -ACGGAAACAAGGATCTGGCGGTTT -ACGGAAACAAGGATCTGGGTGGTT -ACGGAAACAAGGATCTGGGCCTTT -ACGGAAACAAGGATCTGGGGTCTT -ACGGAAACAAGGATCTGGACGCTT -ACGGAAACAAGGATCTGGAGCGTT -ACGGAAACAAGGATCTGGTTCGTC -ACGGAAACAAGGATCTGGTCTCTC -ACGGAAACAAGGATCTGGTGGATC -ACGGAAACAAGGATCTGGCACTTC -ACGGAAACAAGGATCTGGGTACTC -ACGGAAACAAGGATCTGGGATGTC -ACGGAAACAAGGATCTGGACAGTC -ACGGAAACAAGGATCTGGTTGCTG -ACGGAAACAAGGATCTGGTCCATG -ACGGAAACAAGGATCTGGTGTGTG -ACGGAAACAAGGATCTGGCTAGTG -ACGGAAACAAGGATCTGGCATCTG -ACGGAAACAAGGATCTGGGAGTTG -ACGGAAACAAGGATCTGGAGACTG -ACGGAAACAAGGATCTGGTCGGTA -ACGGAAACAAGGATCTGGTGCCTA -ACGGAAACAAGGATCTGGCCACTA -ACGGAAACAAGGATCTGGGGAGTA -ACGGAAACAAGGATCTGGTCGTCT -ACGGAAACAAGGATCTGGTGCACT -ACGGAAACAAGGATCTGGCTGACT -ACGGAAACAAGGATCTGGCAACCT -ACGGAAACAAGGATCTGGGCTACT -ACGGAAACAAGGATCTGGGGATCT -ACGGAAACAAGGATCTGGAAGGCT -ACGGAAACAAGGATCTGGTCAACC -ACGGAAACAAGGATCTGGTGTTCC -ACGGAAACAAGGATCTGGATTCCC -ACGGAAACAAGGATCTGGTTCTCG -ACGGAAACAAGGATCTGGTAGACG -ACGGAAACAAGGATCTGGGTAACG -ACGGAAACAAGGATCTGGACTTCG -ACGGAAACAAGGATCTGGTACGCA -ACGGAAACAAGGATCTGGCTTGCA -ACGGAAACAAGGATCTGGCGAACA -ACGGAAACAAGGATCTGGCAGTCA -ACGGAAACAAGGATCTGGGATCCA -ACGGAAACAAGGATCTGGACGACA -ACGGAAACAAGGATCTGGAGCTCA -ACGGAAACAAGGATCTGGTCACGT -ACGGAAACAAGGATCTGGCGTAGT -ACGGAAACAAGGATCTGGGTCAGT -ACGGAAACAAGGATCTGGGAAGGT -ACGGAAACAAGGATCTGGAACCGT -ACGGAAACAAGGATCTGGTTGTGC -ACGGAAACAAGGATCTGGCTAAGC -ACGGAAACAAGGATCTGGACTAGC -ACGGAAACAAGGATCTGGAGATGC -ACGGAAACAAGGATCTGGTGAAGG -ACGGAAACAAGGATCTGGCAATGG -ACGGAAACAAGGATCTGGATGAGG -ACGGAAACAAGGATCTGGAATGGG -ACGGAAACAAGGATCTGGTCCTGA -ACGGAAACAAGGATCTGGTAGCGA -ACGGAAACAAGGATCTGGCACAGA -ACGGAAACAAGGATCTGGGCAAGA -ACGGAAACAAGGATCTGGGGTTGA -ACGGAAACAAGGATCTGGTCCGAT -ACGGAAACAAGGATCTGGTGGCAT -ACGGAAACAAGGATCTGGCGAGAT -ACGGAAACAAGGATCTGGTACCAC -ACGGAAACAAGGATCTGGCAGAAC -ACGGAAACAAGGATCTGGGTCTAC -ACGGAAACAAGGATCTGGACGTAC -ACGGAAACAAGGATCTGGAGTGAC -ACGGAAACAAGGATCTGGCTGTAG -ACGGAAACAAGGATCTGGCCTAAG -ACGGAAACAAGGATCTGGGTTCAG -ACGGAAACAAGGATCTGGGCATAG -ACGGAAACAAGGATCTGGGACAAG -ACGGAAACAAGGATCTGGAAGCAG -ACGGAAACAAGGATCTGGCGTCAA -ACGGAAACAAGGATCTGGGCTGAA -ACGGAAACAAGGATCTGGAGTACG -ACGGAAACAAGGATCTGGATCCGA -ACGGAAACAAGGATCTGGATGGGA -ACGGAAACAAGGATCTGGGTGCAA -ACGGAAACAAGGATCTGGGAGGAA -ACGGAAACAAGGATCTGGCAGGTA -ACGGAAACAAGGATCTGGGACTCT -ACGGAAACAAGGATCTGGAGTCCT -ACGGAAACAAGGATCTGGTAAGCC -ACGGAAACAAGGATCTGGATAGCC -ACGGAAACAAGGATCTGGTAACCG -ACGGAAACAAGGATCTGGATGCCA -ACGGAAACAAGGTTCCACGGAAAC -ACGGAAACAAGGTTCCACAACACC -ACGGAAACAAGGTTCCACATCGAG -ACGGAAACAAGGTTCCACCTCCTT -ACGGAAACAAGGTTCCACCCTGTT -ACGGAAACAAGGTTCCACCGGTTT -ACGGAAACAAGGTTCCACGTGGTT -ACGGAAACAAGGTTCCACGCCTTT -ACGGAAACAAGGTTCCACGGTCTT -ACGGAAACAAGGTTCCACACGCTT -ACGGAAACAAGGTTCCACAGCGTT -ACGGAAACAAGGTTCCACTTCGTC -ACGGAAACAAGGTTCCACTCTCTC -ACGGAAACAAGGTTCCACTGGATC -ACGGAAACAAGGTTCCACCACTTC -ACGGAAACAAGGTTCCACGTACTC -ACGGAAACAAGGTTCCACGATGTC -ACGGAAACAAGGTTCCACACAGTC -ACGGAAACAAGGTTCCACTTGCTG -ACGGAAACAAGGTTCCACTCCATG -ACGGAAACAAGGTTCCACTGTGTG -ACGGAAACAAGGTTCCACCTAGTG -ACGGAAACAAGGTTCCACCATCTG -ACGGAAACAAGGTTCCACGAGTTG -ACGGAAACAAGGTTCCACAGACTG -ACGGAAACAAGGTTCCACTCGGTA -ACGGAAACAAGGTTCCACTGCCTA -ACGGAAACAAGGTTCCACCCACTA -ACGGAAACAAGGTTCCACGGAGTA -ACGGAAACAAGGTTCCACTCGTCT -ACGGAAACAAGGTTCCACTGCACT -ACGGAAACAAGGTTCCACCTGACT -ACGGAAACAAGGTTCCACCAACCT -ACGGAAACAAGGTTCCACGCTACT -ACGGAAACAAGGTTCCACGGATCT -ACGGAAACAAGGTTCCACAAGGCT -ACGGAAACAAGGTTCCACTCAACC -ACGGAAACAAGGTTCCACTGTTCC -ACGGAAACAAGGTTCCACATTCCC -ACGGAAACAAGGTTCCACTTCTCG -ACGGAAACAAGGTTCCACTAGACG -ACGGAAACAAGGTTCCACGTAACG -ACGGAAACAAGGTTCCACACTTCG -ACGGAAACAAGGTTCCACTACGCA -ACGGAAACAAGGTTCCACCTTGCA -ACGGAAACAAGGTTCCACCGAACA -ACGGAAACAAGGTTCCACCAGTCA -ACGGAAACAAGGTTCCACGATCCA -ACGGAAACAAGGTTCCACACGACA -ACGGAAACAAGGTTCCACAGCTCA -ACGGAAACAAGGTTCCACTCACGT -ACGGAAACAAGGTTCCACCGTAGT -ACGGAAACAAGGTTCCACGTCAGT -ACGGAAACAAGGTTCCACGAAGGT -ACGGAAACAAGGTTCCACAACCGT -ACGGAAACAAGGTTCCACTTGTGC -ACGGAAACAAGGTTCCACCTAAGC -ACGGAAACAAGGTTCCACACTAGC -ACGGAAACAAGGTTCCACAGATGC -ACGGAAACAAGGTTCCACTGAAGG -ACGGAAACAAGGTTCCACCAATGG -ACGGAAACAAGGTTCCACATGAGG -ACGGAAACAAGGTTCCACAATGGG -ACGGAAACAAGGTTCCACTCCTGA -ACGGAAACAAGGTTCCACTAGCGA -ACGGAAACAAGGTTCCACCACAGA -ACGGAAACAAGGTTCCACGCAAGA -ACGGAAACAAGGTTCCACGGTTGA -ACGGAAACAAGGTTCCACTCCGAT -ACGGAAACAAGGTTCCACTGGCAT -ACGGAAACAAGGTTCCACCGAGAT -ACGGAAACAAGGTTCCACTACCAC -ACGGAAACAAGGTTCCACCAGAAC -ACGGAAACAAGGTTCCACGTCTAC -ACGGAAACAAGGTTCCACACGTAC -ACGGAAACAAGGTTCCACAGTGAC -ACGGAAACAAGGTTCCACCTGTAG -ACGGAAACAAGGTTCCACCCTAAG -ACGGAAACAAGGTTCCACGTTCAG -ACGGAAACAAGGTTCCACGCATAG -ACGGAAACAAGGTTCCACGACAAG -ACGGAAACAAGGTTCCACAAGCAG -ACGGAAACAAGGTTCCACCGTCAA -ACGGAAACAAGGTTCCACGCTGAA -ACGGAAACAAGGTTCCACAGTACG -ACGGAAACAAGGTTCCACATCCGA -ACGGAAACAAGGTTCCACATGGGA -ACGGAAACAAGGTTCCACGTGCAA -ACGGAAACAAGGTTCCACGAGGAA -ACGGAAACAAGGTTCCACCAGGTA -ACGGAAACAAGGTTCCACGACTCT -ACGGAAACAAGGTTCCACAGTCCT -ACGGAAACAAGGTTCCACTAAGCC -ACGGAAACAAGGTTCCACATAGCC -ACGGAAACAAGGTTCCACTAACCG -ACGGAAACAAGGTTCCACATGCCA -ACGGAAACAAGGCTCGTAGGAAAC -ACGGAAACAAGGCTCGTAAACACC -ACGGAAACAAGGCTCGTAATCGAG -ACGGAAACAAGGCTCGTACTCCTT -ACGGAAACAAGGCTCGTACCTGTT -ACGGAAACAAGGCTCGTACGGTTT -ACGGAAACAAGGCTCGTAGTGGTT -ACGGAAACAAGGCTCGTAGCCTTT -ACGGAAACAAGGCTCGTAGGTCTT -ACGGAAACAAGGCTCGTAACGCTT -ACGGAAACAAGGCTCGTAAGCGTT -ACGGAAACAAGGCTCGTATTCGTC -ACGGAAACAAGGCTCGTATCTCTC -ACGGAAACAAGGCTCGTATGGATC -ACGGAAACAAGGCTCGTACACTTC -ACGGAAACAAGGCTCGTAGTACTC -ACGGAAACAAGGCTCGTAGATGTC -ACGGAAACAAGGCTCGTAACAGTC -ACGGAAACAAGGCTCGTATTGCTG -ACGGAAACAAGGCTCGTATCCATG -ACGGAAACAAGGCTCGTATGTGTG -ACGGAAACAAGGCTCGTACTAGTG -ACGGAAACAAGGCTCGTACATCTG -ACGGAAACAAGGCTCGTAGAGTTG -ACGGAAACAAGGCTCGTAAGACTG -ACGGAAACAAGGCTCGTATCGGTA -ACGGAAACAAGGCTCGTATGCCTA -ACGGAAACAAGGCTCGTACCACTA -ACGGAAACAAGGCTCGTAGGAGTA -ACGGAAACAAGGCTCGTATCGTCT -ACGGAAACAAGGCTCGTATGCACT -ACGGAAACAAGGCTCGTACTGACT -ACGGAAACAAGGCTCGTACAACCT -ACGGAAACAAGGCTCGTAGCTACT -ACGGAAACAAGGCTCGTAGGATCT -ACGGAAACAAGGCTCGTAAAGGCT -ACGGAAACAAGGCTCGTATCAACC -ACGGAAACAAGGCTCGTATGTTCC -ACGGAAACAAGGCTCGTAATTCCC -ACGGAAACAAGGCTCGTATTCTCG -ACGGAAACAAGGCTCGTATAGACG -ACGGAAACAAGGCTCGTAGTAACG -ACGGAAACAAGGCTCGTAACTTCG -ACGGAAACAAGGCTCGTATACGCA -ACGGAAACAAGGCTCGTACTTGCA -ACGGAAACAAGGCTCGTACGAACA -ACGGAAACAAGGCTCGTACAGTCA -ACGGAAACAAGGCTCGTAGATCCA -ACGGAAACAAGGCTCGTAACGACA -ACGGAAACAAGGCTCGTAAGCTCA -ACGGAAACAAGGCTCGTATCACGT -ACGGAAACAAGGCTCGTACGTAGT -ACGGAAACAAGGCTCGTAGTCAGT -ACGGAAACAAGGCTCGTAGAAGGT -ACGGAAACAAGGCTCGTAAACCGT -ACGGAAACAAGGCTCGTATTGTGC -ACGGAAACAAGGCTCGTACTAAGC -ACGGAAACAAGGCTCGTAACTAGC -ACGGAAACAAGGCTCGTAAGATGC -ACGGAAACAAGGCTCGTATGAAGG -ACGGAAACAAGGCTCGTACAATGG -ACGGAAACAAGGCTCGTAATGAGG -ACGGAAACAAGGCTCGTAAATGGG -ACGGAAACAAGGCTCGTATCCTGA -ACGGAAACAAGGCTCGTATAGCGA -ACGGAAACAAGGCTCGTACACAGA -ACGGAAACAAGGCTCGTAGCAAGA -ACGGAAACAAGGCTCGTAGGTTGA -ACGGAAACAAGGCTCGTATCCGAT -ACGGAAACAAGGCTCGTATGGCAT -ACGGAAACAAGGCTCGTACGAGAT -ACGGAAACAAGGCTCGTATACCAC -ACGGAAACAAGGCTCGTACAGAAC -ACGGAAACAAGGCTCGTAGTCTAC -ACGGAAACAAGGCTCGTAACGTAC -ACGGAAACAAGGCTCGTAAGTGAC -ACGGAAACAAGGCTCGTACTGTAG -ACGGAAACAAGGCTCGTACCTAAG -ACGGAAACAAGGCTCGTAGTTCAG -ACGGAAACAAGGCTCGTAGCATAG -ACGGAAACAAGGCTCGTAGACAAG -ACGGAAACAAGGCTCGTAAAGCAG -ACGGAAACAAGGCTCGTACGTCAA -ACGGAAACAAGGCTCGTAGCTGAA -ACGGAAACAAGGCTCGTAAGTACG -ACGGAAACAAGGCTCGTAATCCGA -ACGGAAACAAGGCTCGTAATGGGA -ACGGAAACAAGGCTCGTAGTGCAA -ACGGAAACAAGGCTCGTAGAGGAA -ACGGAAACAAGGCTCGTACAGGTA -ACGGAAACAAGGCTCGTAGACTCT -ACGGAAACAAGGCTCGTAAGTCCT -ACGGAAACAAGGCTCGTATAAGCC -ACGGAAACAAGGCTCGTAATAGCC -ACGGAAACAAGGCTCGTATAACCG -ACGGAAACAAGGCTCGTAATGCCA -ACGGAAACAAGGGTCGATGGAAAC -ACGGAAACAAGGGTCGATAACACC -ACGGAAACAAGGGTCGATATCGAG -ACGGAAACAAGGGTCGATCTCCTT -ACGGAAACAAGGGTCGATCCTGTT -ACGGAAACAAGGGTCGATCGGTTT -ACGGAAACAAGGGTCGATGTGGTT -ACGGAAACAAGGGTCGATGCCTTT -ACGGAAACAAGGGTCGATGGTCTT -ACGGAAACAAGGGTCGATACGCTT -ACGGAAACAAGGGTCGATAGCGTT -ACGGAAACAAGGGTCGATTTCGTC -ACGGAAACAAGGGTCGATTCTCTC -ACGGAAACAAGGGTCGATTGGATC -ACGGAAACAAGGGTCGATCACTTC -ACGGAAACAAGGGTCGATGTACTC -ACGGAAACAAGGGTCGATGATGTC -ACGGAAACAAGGGTCGATACAGTC -ACGGAAACAAGGGTCGATTTGCTG -ACGGAAACAAGGGTCGATTCCATG -ACGGAAACAAGGGTCGATTGTGTG -ACGGAAACAAGGGTCGATCTAGTG -ACGGAAACAAGGGTCGATCATCTG -ACGGAAACAAGGGTCGATGAGTTG -ACGGAAACAAGGGTCGATAGACTG -ACGGAAACAAGGGTCGATTCGGTA -ACGGAAACAAGGGTCGATTGCCTA -ACGGAAACAAGGGTCGATCCACTA -ACGGAAACAAGGGTCGATGGAGTA -ACGGAAACAAGGGTCGATTCGTCT -ACGGAAACAAGGGTCGATTGCACT -ACGGAAACAAGGGTCGATCTGACT -ACGGAAACAAGGGTCGATCAACCT -ACGGAAACAAGGGTCGATGCTACT -ACGGAAACAAGGGTCGATGGATCT -ACGGAAACAAGGGTCGATAAGGCT -ACGGAAACAAGGGTCGATTCAACC -ACGGAAACAAGGGTCGATTGTTCC -ACGGAAACAAGGGTCGATATTCCC -ACGGAAACAAGGGTCGATTTCTCG -ACGGAAACAAGGGTCGATTAGACG -ACGGAAACAAGGGTCGATGTAACG -ACGGAAACAAGGGTCGATACTTCG -ACGGAAACAAGGGTCGATTACGCA -ACGGAAACAAGGGTCGATCTTGCA -ACGGAAACAAGGGTCGATCGAACA -ACGGAAACAAGGGTCGATCAGTCA -ACGGAAACAAGGGTCGATGATCCA -ACGGAAACAAGGGTCGATACGACA -ACGGAAACAAGGGTCGATAGCTCA -ACGGAAACAAGGGTCGATTCACGT -ACGGAAACAAGGGTCGATCGTAGT -ACGGAAACAAGGGTCGATGTCAGT -ACGGAAACAAGGGTCGATGAAGGT -ACGGAAACAAGGGTCGATAACCGT -ACGGAAACAAGGGTCGATTTGTGC -ACGGAAACAAGGGTCGATCTAAGC -ACGGAAACAAGGGTCGATACTAGC -ACGGAAACAAGGGTCGATAGATGC -ACGGAAACAAGGGTCGATTGAAGG -ACGGAAACAAGGGTCGATCAATGG -ACGGAAACAAGGGTCGATATGAGG -ACGGAAACAAGGGTCGATAATGGG -ACGGAAACAAGGGTCGATTCCTGA -ACGGAAACAAGGGTCGATTAGCGA -ACGGAAACAAGGGTCGATCACAGA -ACGGAAACAAGGGTCGATGCAAGA -ACGGAAACAAGGGTCGATGGTTGA -ACGGAAACAAGGGTCGATTCCGAT -ACGGAAACAAGGGTCGATTGGCAT -ACGGAAACAAGGGTCGATCGAGAT -ACGGAAACAAGGGTCGATTACCAC -ACGGAAACAAGGGTCGATCAGAAC -ACGGAAACAAGGGTCGATGTCTAC -ACGGAAACAAGGGTCGATACGTAC -ACGGAAACAAGGGTCGATAGTGAC -ACGGAAACAAGGGTCGATCTGTAG -ACGGAAACAAGGGTCGATCCTAAG -ACGGAAACAAGGGTCGATGTTCAG -ACGGAAACAAGGGTCGATGCATAG -ACGGAAACAAGGGTCGATGACAAG -ACGGAAACAAGGGTCGATAAGCAG -ACGGAAACAAGGGTCGATCGTCAA -ACGGAAACAAGGGTCGATGCTGAA -ACGGAAACAAGGGTCGATAGTACG -ACGGAAACAAGGGTCGATATCCGA -ACGGAAACAAGGGTCGATATGGGA -ACGGAAACAAGGGTCGATGTGCAA -ACGGAAACAAGGGTCGATGAGGAA -ACGGAAACAAGGGTCGATCAGGTA -ACGGAAACAAGGGTCGATGACTCT -ACGGAAACAAGGGTCGATAGTCCT -ACGGAAACAAGGGTCGATTAAGCC -ACGGAAACAAGGGTCGATATAGCC -ACGGAAACAAGGGTCGATTAACCG -ACGGAAACAAGGGTCGATATGCCA -ACGGAAACAAGGGTCACAGGAAAC -ACGGAAACAAGGGTCACAAACACC -ACGGAAACAAGGGTCACAATCGAG -ACGGAAACAAGGGTCACACTCCTT -ACGGAAACAAGGGTCACACCTGTT -ACGGAAACAAGGGTCACACGGTTT -ACGGAAACAAGGGTCACAGTGGTT -ACGGAAACAAGGGTCACAGCCTTT -ACGGAAACAAGGGTCACAGGTCTT -ACGGAAACAAGGGTCACAACGCTT -ACGGAAACAAGGGTCACAAGCGTT -ACGGAAACAAGGGTCACATTCGTC -ACGGAAACAAGGGTCACATCTCTC -ACGGAAACAAGGGTCACATGGATC -ACGGAAACAAGGGTCACACACTTC -ACGGAAACAAGGGTCACAGTACTC -ACGGAAACAAGGGTCACAGATGTC -ACGGAAACAAGGGTCACAACAGTC -ACGGAAACAAGGGTCACATTGCTG -ACGGAAACAAGGGTCACATCCATG -ACGGAAACAAGGGTCACATGTGTG -ACGGAAACAAGGGTCACACTAGTG -ACGGAAACAAGGGTCACACATCTG -ACGGAAACAAGGGTCACAGAGTTG -ACGGAAACAAGGGTCACAAGACTG -ACGGAAACAAGGGTCACATCGGTA -ACGGAAACAAGGGTCACATGCCTA -ACGGAAACAAGGGTCACACCACTA -ACGGAAACAAGGGTCACAGGAGTA -ACGGAAACAAGGGTCACATCGTCT -ACGGAAACAAGGGTCACATGCACT -ACGGAAACAAGGGTCACACTGACT -ACGGAAACAAGGGTCACACAACCT -ACGGAAACAAGGGTCACAGCTACT -ACGGAAACAAGGGTCACAGGATCT -ACGGAAACAAGGGTCACAAAGGCT -ACGGAAACAAGGGTCACATCAACC -ACGGAAACAAGGGTCACATGTTCC -ACGGAAACAAGGGTCACAATTCCC -ACGGAAACAAGGGTCACATTCTCG -ACGGAAACAAGGGTCACATAGACG -ACGGAAACAAGGGTCACAGTAACG -ACGGAAACAAGGGTCACAACTTCG -ACGGAAACAAGGGTCACATACGCA -ACGGAAACAAGGGTCACACTTGCA -ACGGAAACAAGGGTCACACGAACA -ACGGAAACAAGGGTCACACAGTCA -ACGGAAACAAGGGTCACAGATCCA -ACGGAAACAAGGGTCACAACGACA -ACGGAAACAAGGGTCACAAGCTCA -ACGGAAACAAGGGTCACATCACGT -ACGGAAACAAGGGTCACACGTAGT -ACGGAAACAAGGGTCACAGTCAGT -ACGGAAACAAGGGTCACAGAAGGT -ACGGAAACAAGGGTCACAAACCGT -ACGGAAACAAGGGTCACATTGTGC -ACGGAAACAAGGGTCACACTAAGC -ACGGAAACAAGGGTCACAACTAGC -ACGGAAACAAGGGTCACAAGATGC -ACGGAAACAAGGGTCACATGAAGG -ACGGAAACAAGGGTCACACAATGG -ACGGAAACAAGGGTCACAATGAGG -ACGGAAACAAGGGTCACAAATGGG -ACGGAAACAAGGGTCACATCCTGA -ACGGAAACAAGGGTCACATAGCGA -ACGGAAACAAGGGTCACACACAGA -ACGGAAACAAGGGTCACAGCAAGA -ACGGAAACAAGGGTCACAGGTTGA -ACGGAAACAAGGGTCACATCCGAT -ACGGAAACAAGGGTCACATGGCAT -ACGGAAACAAGGGTCACACGAGAT -ACGGAAACAAGGGTCACATACCAC -ACGGAAACAAGGGTCACACAGAAC -ACGGAAACAAGGGTCACAGTCTAC -ACGGAAACAAGGGTCACAACGTAC -ACGGAAACAAGGGTCACAAGTGAC -ACGGAAACAAGGGTCACACTGTAG -ACGGAAACAAGGGTCACACCTAAG -ACGGAAACAAGGGTCACAGTTCAG -ACGGAAACAAGGGTCACAGCATAG -ACGGAAACAAGGGTCACAGACAAG -ACGGAAACAAGGGTCACAAAGCAG -ACGGAAACAAGGGTCACACGTCAA -ACGGAAACAAGGGTCACAGCTGAA -ACGGAAACAAGGGTCACAAGTACG -ACGGAAACAAGGGTCACAATCCGA -ACGGAAACAAGGGTCACAATGGGA -ACGGAAACAAGGGTCACAGTGCAA -ACGGAAACAAGGGTCACAGAGGAA -ACGGAAACAAGGGTCACACAGGTA -ACGGAAACAAGGGTCACAGACTCT -ACGGAAACAAGGGTCACAAGTCCT -ACGGAAACAAGGGTCACATAAGCC -ACGGAAACAAGGGTCACAATAGCC -ACGGAAACAAGGGTCACATAACCG -ACGGAAACAAGGGTCACAATGCCA -ACGGAAACAAGGCTGTTGGGAAAC -ACGGAAACAAGGCTGTTGAACACC -ACGGAAACAAGGCTGTTGATCGAG -ACGGAAACAAGGCTGTTGCTCCTT -ACGGAAACAAGGCTGTTGCCTGTT -ACGGAAACAAGGCTGTTGCGGTTT -ACGGAAACAAGGCTGTTGGTGGTT -ACGGAAACAAGGCTGTTGGCCTTT -ACGGAAACAAGGCTGTTGGGTCTT -ACGGAAACAAGGCTGTTGACGCTT -ACGGAAACAAGGCTGTTGAGCGTT -ACGGAAACAAGGCTGTTGTTCGTC -ACGGAAACAAGGCTGTTGTCTCTC -ACGGAAACAAGGCTGTTGTGGATC -ACGGAAACAAGGCTGTTGCACTTC -ACGGAAACAAGGCTGTTGGTACTC -ACGGAAACAAGGCTGTTGGATGTC -ACGGAAACAAGGCTGTTGACAGTC -ACGGAAACAAGGCTGTTGTTGCTG -ACGGAAACAAGGCTGTTGTCCATG -ACGGAAACAAGGCTGTTGTGTGTG -ACGGAAACAAGGCTGTTGCTAGTG -ACGGAAACAAGGCTGTTGCATCTG -ACGGAAACAAGGCTGTTGGAGTTG -ACGGAAACAAGGCTGTTGAGACTG -ACGGAAACAAGGCTGTTGTCGGTA -ACGGAAACAAGGCTGTTGTGCCTA -ACGGAAACAAGGCTGTTGCCACTA -ACGGAAACAAGGCTGTTGGGAGTA -ACGGAAACAAGGCTGTTGTCGTCT -ACGGAAACAAGGCTGTTGTGCACT -ACGGAAACAAGGCTGTTGCTGACT -ACGGAAACAAGGCTGTTGCAACCT -ACGGAAACAAGGCTGTTGGCTACT -ACGGAAACAAGGCTGTTGGGATCT -ACGGAAACAAGGCTGTTGAAGGCT -ACGGAAACAAGGCTGTTGTCAACC -ACGGAAACAAGGCTGTTGTGTTCC -ACGGAAACAAGGCTGTTGATTCCC -ACGGAAACAAGGCTGTTGTTCTCG -ACGGAAACAAGGCTGTTGTAGACG -ACGGAAACAAGGCTGTTGGTAACG -ACGGAAACAAGGCTGTTGACTTCG -ACGGAAACAAGGCTGTTGTACGCA -ACGGAAACAAGGCTGTTGCTTGCA -ACGGAAACAAGGCTGTTGCGAACA -ACGGAAACAAGGCTGTTGCAGTCA -ACGGAAACAAGGCTGTTGGATCCA -ACGGAAACAAGGCTGTTGACGACA -ACGGAAACAAGGCTGTTGAGCTCA -ACGGAAACAAGGCTGTTGTCACGT -ACGGAAACAAGGCTGTTGCGTAGT -ACGGAAACAAGGCTGTTGGTCAGT -ACGGAAACAAGGCTGTTGGAAGGT -ACGGAAACAAGGCTGTTGAACCGT -ACGGAAACAAGGCTGTTGTTGTGC -ACGGAAACAAGGCTGTTGCTAAGC -ACGGAAACAAGGCTGTTGACTAGC -ACGGAAACAAGGCTGTTGAGATGC -ACGGAAACAAGGCTGTTGTGAAGG -ACGGAAACAAGGCTGTTGCAATGG -ACGGAAACAAGGCTGTTGATGAGG -ACGGAAACAAGGCTGTTGAATGGG -ACGGAAACAAGGCTGTTGTCCTGA -ACGGAAACAAGGCTGTTGTAGCGA -ACGGAAACAAGGCTGTTGCACAGA -ACGGAAACAAGGCTGTTGGCAAGA -ACGGAAACAAGGCTGTTGGGTTGA -ACGGAAACAAGGCTGTTGTCCGAT -ACGGAAACAAGGCTGTTGTGGCAT -ACGGAAACAAGGCTGTTGCGAGAT -ACGGAAACAAGGCTGTTGTACCAC -ACGGAAACAAGGCTGTTGCAGAAC -ACGGAAACAAGGCTGTTGGTCTAC -ACGGAAACAAGGCTGTTGACGTAC -ACGGAAACAAGGCTGTTGAGTGAC -ACGGAAACAAGGCTGTTGCTGTAG -ACGGAAACAAGGCTGTTGCCTAAG -ACGGAAACAAGGCTGTTGGTTCAG -ACGGAAACAAGGCTGTTGGCATAG -ACGGAAACAAGGCTGTTGGACAAG -ACGGAAACAAGGCTGTTGAAGCAG -ACGGAAACAAGGCTGTTGCGTCAA -ACGGAAACAAGGCTGTTGGCTGAA -ACGGAAACAAGGCTGTTGAGTACG -ACGGAAACAAGGCTGTTGATCCGA -ACGGAAACAAGGCTGTTGATGGGA -ACGGAAACAAGGCTGTTGGTGCAA -ACGGAAACAAGGCTGTTGGAGGAA -ACGGAAACAAGGCTGTTGCAGGTA -ACGGAAACAAGGCTGTTGGACTCT -ACGGAAACAAGGCTGTTGAGTCCT -ACGGAAACAAGGCTGTTGTAAGCC -ACGGAAACAAGGCTGTTGATAGCC -ACGGAAACAAGGCTGTTGTAACCG -ACGGAAACAAGGCTGTTGATGCCA -ACGGAAACAAGGATGTCCGGAAAC -ACGGAAACAAGGATGTCCAACACC -ACGGAAACAAGGATGTCCATCGAG -ACGGAAACAAGGATGTCCCTCCTT -ACGGAAACAAGGATGTCCCCTGTT -ACGGAAACAAGGATGTCCCGGTTT -ACGGAAACAAGGATGTCCGTGGTT -ACGGAAACAAGGATGTCCGCCTTT -ACGGAAACAAGGATGTCCGGTCTT -ACGGAAACAAGGATGTCCACGCTT -ACGGAAACAAGGATGTCCAGCGTT -ACGGAAACAAGGATGTCCTTCGTC -ACGGAAACAAGGATGTCCTCTCTC -ACGGAAACAAGGATGTCCTGGATC -ACGGAAACAAGGATGTCCCACTTC -ACGGAAACAAGGATGTCCGTACTC -ACGGAAACAAGGATGTCCGATGTC -ACGGAAACAAGGATGTCCACAGTC -ACGGAAACAAGGATGTCCTTGCTG -ACGGAAACAAGGATGTCCTCCATG -ACGGAAACAAGGATGTCCTGTGTG -ACGGAAACAAGGATGTCCCTAGTG -ACGGAAACAAGGATGTCCCATCTG -ACGGAAACAAGGATGTCCGAGTTG -ACGGAAACAAGGATGTCCAGACTG -ACGGAAACAAGGATGTCCTCGGTA -ACGGAAACAAGGATGTCCTGCCTA -ACGGAAACAAGGATGTCCCCACTA -ACGGAAACAAGGATGTCCGGAGTA -ACGGAAACAAGGATGTCCTCGTCT -ACGGAAACAAGGATGTCCTGCACT -ACGGAAACAAGGATGTCCCTGACT -ACGGAAACAAGGATGTCCCAACCT -ACGGAAACAAGGATGTCCGCTACT -ACGGAAACAAGGATGTCCGGATCT -ACGGAAACAAGGATGTCCAAGGCT -ACGGAAACAAGGATGTCCTCAACC -ACGGAAACAAGGATGTCCTGTTCC -ACGGAAACAAGGATGTCCATTCCC -ACGGAAACAAGGATGTCCTTCTCG -ACGGAAACAAGGATGTCCTAGACG -ACGGAAACAAGGATGTCCGTAACG -ACGGAAACAAGGATGTCCACTTCG -ACGGAAACAAGGATGTCCTACGCA -ACGGAAACAAGGATGTCCCTTGCA -ACGGAAACAAGGATGTCCCGAACA -ACGGAAACAAGGATGTCCCAGTCA -ACGGAAACAAGGATGTCCGATCCA -ACGGAAACAAGGATGTCCACGACA -ACGGAAACAAGGATGTCCAGCTCA -ACGGAAACAAGGATGTCCTCACGT -ACGGAAACAAGGATGTCCCGTAGT -ACGGAAACAAGGATGTCCGTCAGT -ACGGAAACAAGGATGTCCGAAGGT -ACGGAAACAAGGATGTCCAACCGT -ACGGAAACAAGGATGTCCTTGTGC -ACGGAAACAAGGATGTCCCTAAGC -ACGGAAACAAGGATGTCCACTAGC -ACGGAAACAAGGATGTCCAGATGC -ACGGAAACAAGGATGTCCTGAAGG -ACGGAAACAAGGATGTCCCAATGG -ACGGAAACAAGGATGTCCATGAGG -ACGGAAACAAGGATGTCCAATGGG -ACGGAAACAAGGATGTCCTCCTGA -ACGGAAACAAGGATGTCCTAGCGA -ACGGAAACAAGGATGTCCCACAGA -ACGGAAACAAGGATGTCCGCAAGA -ACGGAAACAAGGATGTCCGGTTGA -ACGGAAACAAGGATGTCCTCCGAT -ACGGAAACAAGGATGTCCTGGCAT -ACGGAAACAAGGATGTCCCGAGAT -ACGGAAACAAGGATGTCCTACCAC -ACGGAAACAAGGATGTCCCAGAAC -ACGGAAACAAGGATGTCCGTCTAC -ACGGAAACAAGGATGTCCACGTAC -ACGGAAACAAGGATGTCCAGTGAC -ACGGAAACAAGGATGTCCCTGTAG -ACGGAAACAAGGATGTCCCCTAAG -ACGGAAACAAGGATGTCCGTTCAG -ACGGAAACAAGGATGTCCGCATAG -ACGGAAACAAGGATGTCCGACAAG -ACGGAAACAAGGATGTCCAAGCAG -ACGGAAACAAGGATGTCCCGTCAA -ACGGAAACAAGGATGTCCGCTGAA -ACGGAAACAAGGATGTCCAGTACG -ACGGAAACAAGGATGTCCATCCGA -ACGGAAACAAGGATGTCCATGGGA -ACGGAAACAAGGATGTCCGTGCAA -ACGGAAACAAGGATGTCCGAGGAA -ACGGAAACAAGGATGTCCCAGGTA -ACGGAAACAAGGATGTCCGACTCT -ACGGAAACAAGGATGTCCAGTCCT -ACGGAAACAAGGATGTCCTAAGCC -ACGGAAACAAGGATGTCCATAGCC -ACGGAAACAAGGATGTCCTAACCG -ACGGAAACAAGGATGTCCATGCCA -ACGGAAACAAGGGTGTGTGGAAAC -ACGGAAACAAGGGTGTGTAACACC -ACGGAAACAAGGGTGTGTATCGAG -ACGGAAACAAGGGTGTGTCTCCTT -ACGGAAACAAGGGTGTGTCCTGTT -ACGGAAACAAGGGTGTGTCGGTTT -ACGGAAACAAGGGTGTGTGTGGTT -ACGGAAACAAGGGTGTGTGCCTTT -ACGGAAACAAGGGTGTGTGGTCTT -ACGGAAACAAGGGTGTGTACGCTT -ACGGAAACAAGGGTGTGTAGCGTT -ACGGAAACAAGGGTGTGTTTCGTC -ACGGAAACAAGGGTGTGTTCTCTC -ACGGAAACAAGGGTGTGTTGGATC -ACGGAAACAAGGGTGTGTCACTTC -ACGGAAACAAGGGTGTGTGTACTC -ACGGAAACAAGGGTGTGTGATGTC -ACGGAAACAAGGGTGTGTACAGTC -ACGGAAACAAGGGTGTGTTTGCTG -ACGGAAACAAGGGTGTGTTCCATG -ACGGAAACAAGGGTGTGTTGTGTG -ACGGAAACAAGGGTGTGTCTAGTG -ACGGAAACAAGGGTGTGTCATCTG -ACGGAAACAAGGGTGTGTGAGTTG -ACGGAAACAAGGGTGTGTAGACTG -ACGGAAACAAGGGTGTGTTCGGTA -ACGGAAACAAGGGTGTGTTGCCTA -ACGGAAACAAGGGTGTGTCCACTA -ACGGAAACAAGGGTGTGTGGAGTA -ACGGAAACAAGGGTGTGTTCGTCT -ACGGAAACAAGGGTGTGTTGCACT -ACGGAAACAAGGGTGTGTCTGACT -ACGGAAACAAGGGTGTGTCAACCT -ACGGAAACAAGGGTGTGTGCTACT -ACGGAAACAAGGGTGTGTGGATCT -ACGGAAACAAGGGTGTGTAAGGCT -ACGGAAACAAGGGTGTGTTCAACC -ACGGAAACAAGGGTGTGTTGTTCC -ACGGAAACAAGGGTGTGTATTCCC -ACGGAAACAAGGGTGTGTTTCTCG -ACGGAAACAAGGGTGTGTTAGACG -ACGGAAACAAGGGTGTGTGTAACG -ACGGAAACAAGGGTGTGTACTTCG -ACGGAAACAAGGGTGTGTTACGCA -ACGGAAACAAGGGTGTGTCTTGCA -ACGGAAACAAGGGTGTGTCGAACA -ACGGAAACAAGGGTGTGTCAGTCA -ACGGAAACAAGGGTGTGTGATCCA -ACGGAAACAAGGGTGTGTACGACA -ACGGAAACAAGGGTGTGTAGCTCA -ACGGAAACAAGGGTGTGTTCACGT -ACGGAAACAAGGGTGTGTCGTAGT -ACGGAAACAAGGGTGTGTGTCAGT -ACGGAAACAAGGGTGTGTGAAGGT -ACGGAAACAAGGGTGTGTAACCGT -ACGGAAACAAGGGTGTGTTTGTGC -ACGGAAACAAGGGTGTGTCTAAGC -ACGGAAACAAGGGTGTGTACTAGC -ACGGAAACAAGGGTGTGTAGATGC -ACGGAAACAAGGGTGTGTTGAAGG -ACGGAAACAAGGGTGTGTCAATGG -ACGGAAACAAGGGTGTGTATGAGG -ACGGAAACAAGGGTGTGTAATGGG -ACGGAAACAAGGGTGTGTTCCTGA -ACGGAAACAAGGGTGTGTTAGCGA -ACGGAAACAAGGGTGTGTCACAGA -ACGGAAACAAGGGTGTGTGCAAGA -ACGGAAACAAGGGTGTGTGGTTGA -ACGGAAACAAGGGTGTGTTCCGAT -ACGGAAACAAGGGTGTGTTGGCAT -ACGGAAACAAGGGTGTGTCGAGAT -ACGGAAACAAGGGTGTGTTACCAC -ACGGAAACAAGGGTGTGTCAGAAC -ACGGAAACAAGGGTGTGTGTCTAC -ACGGAAACAAGGGTGTGTACGTAC -ACGGAAACAAGGGTGTGTAGTGAC -ACGGAAACAAGGGTGTGTCTGTAG -ACGGAAACAAGGGTGTGTCCTAAG -ACGGAAACAAGGGTGTGTGTTCAG -ACGGAAACAAGGGTGTGTGCATAG -ACGGAAACAAGGGTGTGTGACAAG -ACGGAAACAAGGGTGTGTAAGCAG -ACGGAAACAAGGGTGTGTCGTCAA -ACGGAAACAAGGGTGTGTGCTGAA -ACGGAAACAAGGGTGTGTAGTACG -ACGGAAACAAGGGTGTGTATCCGA -ACGGAAACAAGGGTGTGTATGGGA -ACGGAAACAAGGGTGTGTGTGCAA -ACGGAAACAAGGGTGTGTGAGGAA -ACGGAAACAAGGGTGTGTCAGGTA -ACGGAAACAAGGGTGTGTGACTCT -ACGGAAACAAGGGTGTGTAGTCCT -ACGGAAACAAGGGTGTGTTAAGCC -ACGGAAACAAGGGTGTGTATAGCC -ACGGAAACAAGGGTGTGTTAACCG -ACGGAAACAAGGGTGTGTATGCCA -ACGGAAACAAGGGTGCTAGGAAAC -ACGGAAACAAGGGTGCTAAACACC -ACGGAAACAAGGGTGCTAATCGAG -ACGGAAACAAGGGTGCTACTCCTT -ACGGAAACAAGGGTGCTACCTGTT -ACGGAAACAAGGGTGCTACGGTTT -ACGGAAACAAGGGTGCTAGTGGTT -ACGGAAACAAGGGTGCTAGCCTTT -ACGGAAACAAGGGTGCTAGGTCTT -ACGGAAACAAGGGTGCTAACGCTT -ACGGAAACAAGGGTGCTAAGCGTT -ACGGAAACAAGGGTGCTATTCGTC -ACGGAAACAAGGGTGCTATCTCTC -ACGGAAACAAGGGTGCTATGGATC -ACGGAAACAAGGGTGCTACACTTC -ACGGAAACAAGGGTGCTAGTACTC -ACGGAAACAAGGGTGCTAGATGTC -ACGGAAACAAGGGTGCTAACAGTC -ACGGAAACAAGGGTGCTATTGCTG -ACGGAAACAAGGGTGCTATCCATG -ACGGAAACAAGGGTGCTATGTGTG -ACGGAAACAAGGGTGCTACTAGTG -ACGGAAACAAGGGTGCTACATCTG -ACGGAAACAAGGGTGCTAGAGTTG -ACGGAAACAAGGGTGCTAAGACTG -ACGGAAACAAGGGTGCTATCGGTA -ACGGAAACAAGGGTGCTATGCCTA -ACGGAAACAAGGGTGCTACCACTA -ACGGAAACAAGGGTGCTAGGAGTA -ACGGAAACAAGGGTGCTATCGTCT -ACGGAAACAAGGGTGCTATGCACT -ACGGAAACAAGGGTGCTACTGACT -ACGGAAACAAGGGTGCTACAACCT -ACGGAAACAAGGGTGCTAGCTACT -ACGGAAACAAGGGTGCTAGGATCT -ACGGAAACAAGGGTGCTAAAGGCT -ACGGAAACAAGGGTGCTATCAACC -ACGGAAACAAGGGTGCTATGTTCC -ACGGAAACAAGGGTGCTAATTCCC -ACGGAAACAAGGGTGCTATTCTCG -ACGGAAACAAGGGTGCTATAGACG -ACGGAAACAAGGGTGCTAGTAACG -ACGGAAACAAGGGTGCTAACTTCG -ACGGAAACAAGGGTGCTATACGCA -ACGGAAACAAGGGTGCTACTTGCA -ACGGAAACAAGGGTGCTACGAACA -ACGGAAACAAGGGTGCTACAGTCA -ACGGAAACAAGGGTGCTAGATCCA -ACGGAAACAAGGGTGCTAACGACA -ACGGAAACAAGGGTGCTAAGCTCA -ACGGAAACAAGGGTGCTATCACGT -ACGGAAACAAGGGTGCTACGTAGT -ACGGAAACAAGGGTGCTAGTCAGT -ACGGAAACAAGGGTGCTAGAAGGT -ACGGAAACAAGGGTGCTAAACCGT -ACGGAAACAAGGGTGCTATTGTGC -ACGGAAACAAGGGTGCTACTAAGC -ACGGAAACAAGGGTGCTAACTAGC -ACGGAAACAAGGGTGCTAAGATGC -ACGGAAACAAGGGTGCTATGAAGG -ACGGAAACAAGGGTGCTACAATGG -ACGGAAACAAGGGTGCTAATGAGG -ACGGAAACAAGGGTGCTAAATGGG -ACGGAAACAAGGGTGCTATCCTGA -ACGGAAACAAGGGTGCTATAGCGA -ACGGAAACAAGGGTGCTACACAGA -ACGGAAACAAGGGTGCTAGCAAGA -ACGGAAACAAGGGTGCTAGGTTGA -ACGGAAACAAGGGTGCTATCCGAT -ACGGAAACAAGGGTGCTATGGCAT -ACGGAAACAAGGGTGCTACGAGAT -ACGGAAACAAGGGTGCTATACCAC -ACGGAAACAAGGGTGCTACAGAAC -ACGGAAACAAGGGTGCTAGTCTAC -ACGGAAACAAGGGTGCTAACGTAC -ACGGAAACAAGGGTGCTAAGTGAC -ACGGAAACAAGGGTGCTACTGTAG -ACGGAAACAAGGGTGCTACCTAAG -ACGGAAACAAGGGTGCTAGTTCAG -ACGGAAACAAGGGTGCTAGCATAG -ACGGAAACAAGGGTGCTAGACAAG -ACGGAAACAAGGGTGCTAAAGCAG -ACGGAAACAAGGGTGCTACGTCAA -ACGGAAACAAGGGTGCTAGCTGAA -ACGGAAACAAGGGTGCTAAGTACG -ACGGAAACAAGGGTGCTAATCCGA -ACGGAAACAAGGGTGCTAATGGGA -ACGGAAACAAGGGTGCTAGTGCAA -ACGGAAACAAGGGTGCTAGAGGAA -ACGGAAACAAGGGTGCTACAGGTA -ACGGAAACAAGGGTGCTAGACTCT -ACGGAAACAAGGGTGCTAAGTCCT -ACGGAAACAAGGGTGCTATAAGCC -ACGGAAACAAGGGTGCTAATAGCC -ACGGAAACAAGGGTGCTATAACCG -ACGGAAACAAGGGTGCTAATGCCA -ACGGAAACAAGGCTGCATGGAAAC -ACGGAAACAAGGCTGCATAACACC -ACGGAAACAAGGCTGCATATCGAG -ACGGAAACAAGGCTGCATCTCCTT -ACGGAAACAAGGCTGCATCCTGTT -ACGGAAACAAGGCTGCATCGGTTT -ACGGAAACAAGGCTGCATGTGGTT -ACGGAAACAAGGCTGCATGCCTTT -ACGGAAACAAGGCTGCATGGTCTT -ACGGAAACAAGGCTGCATACGCTT -ACGGAAACAAGGCTGCATAGCGTT -ACGGAAACAAGGCTGCATTTCGTC -ACGGAAACAAGGCTGCATTCTCTC -ACGGAAACAAGGCTGCATTGGATC -ACGGAAACAAGGCTGCATCACTTC -ACGGAAACAAGGCTGCATGTACTC -ACGGAAACAAGGCTGCATGATGTC -ACGGAAACAAGGCTGCATACAGTC -ACGGAAACAAGGCTGCATTTGCTG -ACGGAAACAAGGCTGCATTCCATG -ACGGAAACAAGGCTGCATTGTGTG -ACGGAAACAAGGCTGCATCTAGTG -ACGGAAACAAGGCTGCATCATCTG -ACGGAAACAAGGCTGCATGAGTTG -ACGGAAACAAGGCTGCATAGACTG -ACGGAAACAAGGCTGCATTCGGTA -ACGGAAACAAGGCTGCATTGCCTA -ACGGAAACAAGGCTGCATCCACTA -ACGGAAACAAGGCTGCATGGAGTA -ACGGAAACAAGGCTGCATTCGTCT -ACGGAAACAAGGCTGCATTGCACT -ACGGAAACAAGGCTGCATCTGACT -ACGGAAACAAGGCTGCATCAACCT -ACGGAAACAAGGCTGCATGCTACT -ACGGAAACAAGGCTGCATGGATCT -ACGGAAACAAGGCTGCATAAGGCT -ACGGAAACAAGGCTGCATTCAACC -ACGGAAACAAGGCTGCATTGTTCC -ACGGAAACAAGGCTGCATATTCCC -ACGGAAACAAGGCTGCATTTCTCG -ACGGAAACAAGGCTGCATTAGACG -ACGGAAACAAGGCTGCATGTAACG -ACGGAAACAAGGCTGCATACTTCG -ACGGAAACAAGGCTGCATTACGCA -ACGGAAACAAGGCTGCATCTTGCA -ACGGAAACAAGGCTGCATCGAACA -ACGGAAACAAGGCTGCATCAGTCA -ACGGAAACAAGGCTGCATGATCCA -ACGGAAACAAGGCTGCATACGACA -ACGGAAACAAGGCTGCATAGCTCA -ACGGAAACAAGGCTGCATTCACGT -ACGGAAACAAGGCTGCATCGTAGT -ACGGAAACAAGGCTGCATGTCAGT -ACGGAAACAAGGCTGCATGAAGGT -ACGGAAACAAGGCTGCATAACCGT -ACGGAAACAAGGCTGCATTTGTGC -ACGGAAACAAGGCTGCATCTAAGC -ACGGAAACAAGGCTGCATACTAGC -ACGGAAACAAGGCTGCATAGATGC -ACGGAAACAAGGCTGCATTGAAGG -ACGGAAACAAGGCTGCATCAATGG -ACGGAAACAAGGCTGCATATGAGG -ACGGAAACAAGGCTGCATAATGGG -ACGGAAACAAGGCTGCATTCCTGA -ACGGAAACAAGGCTGCATTAGCGA -ACGGAAACAAGGCTGCATCACAGA -ACGGAAACAAGGCTGCATGCAAGA -ACGGAAACAAGGCTGCATGGTTGA -ACGGAAACAAGGCTGCATTCCGAT -ACGGAAACAAGGCTGCATTGGCAT -ACGGAAACAAGGCTGCATCGAGAT -ACGGAAACAAGGCTGCATTACCAC -ACGGAAACAAGGCTGCATCAGAAC -ACGGAAACAAGGCTGCATGTCTAC -ACGGAAACAAGGCTGCATACGTAC -ACGGAAACAAGGCTGCATAGTGAC -ACGGAAACAAGGCTGCATCTGTAG -ACGGAAACAAGGCTGCATCCTAAG -ACGGAAACAAGGCTGCATGTTCAG -ACGGAAACAAGGCTGCATGCATAG -ACGGAAACAAGGCTGCATGACAAG -ACGGAAACAAGGCTGCATAAGCAG -ACGGAAACAAGGCTGCATCGTCAA -ACGGAAACAAGGCTGCATGCTGAA -ACGGAAACAAGGCTGCATAGTACG -ACGGAAACAAGGCTGCATATCCGA -ACGGAAACAAGGCTGCATATGGGA -ACGGAAACAAGGCTGCATGTGCAA -ACGGAAACAAGGCTGCATGAGGAA -ACGGAAACAAGGCTGCATCAGGTA -ACGGAAACAAGGCTGCATGACTCT -ACGGAAACAAGGCTGCATAGTCCT -ACGGAAACAAGGCTGCATTAAGCC -ACGGAAACAAGGCTGCATATAGCC -ACGGAAACAAGGCTGCATTAACCG -ACGGAAACAAGGCTGCATATGCCA -ACGGAAACAAGGTTGGAGGGAAAC -ACGGAAACAAGGTTGGAGAACACC -ACGGAAACAAGGTTGGAGATCGAG -ACGGAAACAAGGTTGGAGCTCCTT -ACGGAAACAAGGTTGGAGCCTGTT -ACGGAAACAAGGTTGGAGCGGTTT -ACGGAAACAAGGTTGGAGGTGGTT -ACGGAAACAAGGTTGGAGGCCTTT -ACGGAAACAAGGTTGGAGGGTCTT -ACGGAAACAAGGTTGGAGACGCTT -ACGGAAACAAGGTTGGAGAGCGTT -ACGGAAACAAGGTTGGAGTTCGTC -ACGGAAACAAGGTTGGAGTCTCTC -ACGGAAACAAGGTTGGAGTGGATC -ACGGAAACAAGGTTGGAGCACTTC -ACGGAAACAAGGTTGGAGGTACTC -ACGGAAACAAGGTTGGAGGATGTC -ACGGAAACAAGGTTGGAGACAGTC -ACGGAAACAAGGTTGGAGTTGCTG -ACGGAAACAAGGTTGGAGTCCATG -ACGGAAACAAGGTTGGAGTGTGTG -ACGGAAACAAGGTTGGAGCTAGTG -ACGGAAACAAGGTTGGAGCATCTG -ACGGAAACAAGGTTGGAGGAGTTG -ACGGAAACAAGGTTGGAGAGACTG -ACGGAAACAAGGTTGGAGTCGGTA -ACGGAAACAAGGTTGGAGTGCCTA -ACGGAAACAAGGTTGGAGCCACTA -ACGGAAACAAGGTTGGAGGGAGTA -ACGGAAACAAGGTTGGAGTCGTCT -ACGGAAACAAGGTTGGAGTGCACT -ACGGAAACAAGGTTGGAGCTGACT -ACGGAAACAAGGTTGGAGCAACCT -ACGGAAACAAGGTTGGAGGCTACT -ACGGAAACAAGGTTGGAGGGATCT -ACGGAAACAAGGTTGGAGAAGGCT -ACGGAAACAAGGTTGGAGTCAACC -ACGGAAACAAGGTTGGAGTGTTCC -ACGGAAACAAGGTTGGAGATTCCC -ACGGAAACAAGGTTGGAGTTCTCG -ACGGAAACAAGGTTGGAGTAGACG -ACGGAAACAAGGTTGGAGGTAACG -ACGGAAACAAGGTTGGAGACTTCG -ACGGAAACAAGGTTGGAGTACGCA -ACGGAAACAAGGTTGGAGCTTGCA -ACGGAAACAAGGTTGGAGCGAACA -ACGGAAACAAGGTTGGAGCAGTCA -ACGGAAACAAGGTTGGAGGATCCA -ACGGAAACAAGGTTGGAGACGACA -ACGGAAACAAGGTTGGAGAGCTCA -ACGGAAACAAGGTTGGAGTCACGT -ACGGAAACAAGGTTGGAGCGTAGT -ACGGAAACAAGGTTGGAGGTCAGT -ACGGAAACAAGGTTGGAGGAAGGT -ACGGAAACAAGGTTGGAGAACCGT -ACGGAAACAAGGTTGGAGTTGTGC -ACGGAAACAAGGTTGGAGCTAAGC -ACGGAAACAAGGTTGGAGACTAGC -ACGGAAACAAGGTTGGAGAGATGC -ACGGAAACAAGGTTGGAGTGAAGG -ACGGAAACAAGGTTGGAGCAATGG -ACGGAAACAAGGTTGGAGATGAGG -ACGGAAACAAGGTTGGAGAATGGG -ACGGAAACAAGGTTGGAGTCCTGA -ACGGAAACAAGGTTGGAGTAGCGA -ACGGAAACAAGGTTGGAGCACAGA -ACGGAAACAAGGTTGGAGGCAAGA -ACGGAAACAAGGTTGGAGGGTTGA -ACGGAAACAAGGTTGGAGTCCGAT -ACGGAAACAAGGTTGGAGTGGCAT -ACGGAAACAAGGTTGGAGCGAGAT -ACGGAAACAAGGTTGGAGTACCAC -ACGGAAACAAGGTTGGAGCAGAAC -ACGGAAACAAGGTTGGAGGTCTAC -ACGGAAACAAGGTTGGAGACGTAC -ACGGAAACAAGGTTGGAGAGTGAC -ACGGAAACAAGGTTGGAGCTGTAG -ACGGAAACAAGGTTGGAGCCTAAG -ACGGAAACAAGGTTGGAGGTTCAG -ACGGAAACAAGGTTGGAGGCATAG -ACGGAAACAAGGTTGGAGGACAAG -ACGGAAACAAGGTTGGAGAAGCAG -ACGGAAACAAGGTTGGAGCGTCAA -ACGGAAACAAGGTTGGAGGCTGAA -ACGGAAACAAGGTTGGAGAGTACG -ACGGAAACAAGGTTGGAGATCCGA -ACGGAAACAAGGTTGGAGATGGGA -ACGGAAACAAGGTTGGAGGTGCAA -ACGGAAACAAGGTTGGAGGAGGAA -ACGGAAACAAGGTTGGAGCAGGTA -ACGGAAACAAGGTTGGAGGACTCT -ACGGAAACAAGGTTGGAGAGTCCT -ACGGAAACAAGGTTGGAGTAAGCC -ACGGAAACAAGGTTGGAGATAGCC -ACGGAAACAAGGTTGGAGTAACCG -ACGGAAACAAGGTTGGAGATGCCA -ACGGAAACAAGGCTGAGAGGAAAC -ACGGAAACAAGGCTGAGAAACACC -ACGGAAACAAGGCTGAGAATCGAG -ACGGAAACAAGGCTGAGACTCCTT -ACGGAAACAAGGCTGAGACCTGTT -ACGGAAACAAGGCTGAGACGGTTT -ACGGAAACAAGGCTGAGAGTGGTT -ACGGAAACAAGGCTGAGAGCCTTT -ACGGAAACAAGGCTGAGAGGTCTT -ACGGAAACAAGGCTGAGAACGCTT -ACGGAAACAAGGCTGAGAAGCGTT -ACGGAAACAAGGCTGAGATTCGTC -ACGGAAACAAGGCTGAGATCTCTC -ACGGAAACAAGGCTGAGATGGATC -ACGGAAACAAGGCTGAGACACTTC -ACGGAAACAAGGCTGAGAGTACTC -ACGGAAACAAGGCTGAGAGATGTC -ACGGAAACAAGGCTGAGAACAGTC -ACGGAAACAAGGCTGAGATTGCTG -ACGGAAACAAGGCTGAGATCCATG -ACGGAAACAAGGCTGAGATGTGTG -ACGGAAACAAGGCTGAGACTAGTG -ACGGAAACAAGGCTGAGACATCTG -ACGGAAACAAGGCTGAGAGAGTTG -ACGGAAACAAGGCTGAGAAGACTG -ACGGAAACAAGGCTGAGATCGGTA -ACGGAAACAAGGCTGAGATGCCTA -ACGGAAACAAGGCTGAGACCACTA -ACGGAAACAAGGCTGAGAGGAGTA -ACGGAAACAAGGCTGAGATCGTCT -ACGGAAACAAGGCTGAGATGCACT -ACGGAAACAAGGCTGAGACTGACT -ACGGAAACAAGGCTGAGACAACCT -ACGGAAACAAGGCTGAGAGCTACT -ACGGAAACAAGGCTGAGAGGATCT -ACGGAAACAAGGCTGAGAAAGGCT -ACGGAAACAAGGCTGAGATCAACC -ACGGAAACAAGGCTGAGATGTTCC -ACGGAAACAAGGCTGAGAATTCCC -ACGGAAACAAGGCTGAGATTCTCG -ACGGAAACAAGGCTGAGATAGACG -ACGGAAACAAGGCTGAGAGTAACG -ACGGAAACAAGGCTGAGAACTTCG -ACGGAAACAAGGCTGAGATACGCA -ACGGAAACAAGGCTGAGACTTGCA -ACGGAAACAAGGCTGAGACGAACA -ACGGAAACAAGGCTGAGACAGTCA -ACGGAAACAAGGCTGAGAGATCCA -ACGGAAACAAGGCTGAGAACGACA -ACGGAAACAAGGCTGAGAAGCTCA -ACGGAAACAAGGCTGAGATCACGT -ACGGAAACAAGGCTGAGACGTAGT -ACGGAAACAAGGCTGAGAGTCAGT -ACGGAAACAAGGCTGAGAGAAGGT -ACGGAAACAAGGCTGAGAAACCGT -ACGGAAACAAGGCTGAGATTGTGC -ACGGAAACAAGGCTGAGACTAAGC -ACGGAAACAAGGCTGAGAACTAGC -ACGGAAACAAGGCTGAGAAGATGC -ACGGAAACAAGGCTGAGATGAAGG -ACGGAAACAAGGCTGAGACAATGG -ACGGAAACAAGGCTGAGAATGAGG -ACGGAAACAAGGCTGAGAAATGGG -ACGGAAACAAGGCTGAGATCCTGA -ACGGAAACAAGGCTGAGATAGCGA -ACGGAAACAAGGCTGAGACACAGA -ACGGAAACAAGGCTGAGAGCAAGA -ACGGAAACAAGGCTGAGAGGTTGA -ACGGAAACAAGGCTGAGATCCGAT -ACGGAAACAAGGCTGAGATGGCAT -ACGGAAACAAGGCTGAGACGAGAT -ACGGAAACAAGGCTGAGATACCAC -ACGGAAACAAGGCTGAGACAGAAC -ACGGAAACAAGGCTGAGAGTCTAC -ACGGAAACAAGGCTGAGAACGTAC -ACGGAAACAAGGCTGAGAAGTGAC -ACGGAAACAAGGCTGAGACTGTAG -ACGGAAACAAGGCTGAGACCTAAG -ACGGAAACAAGGCTGAGAGTTCAG -ACGGAAACAAGGCTGAGAGCATAG -ACGGAAACAAGGCTGAGAGACAAG -ACGGAAACAAGGCTGAGAAAGCAG -ACGGAAACAAGGCTGAGACGTCAA -ACGGAAACAAGGCTGAGAGCTGAA -ACGGAAACAAGGCTGAGAAGTACG -ACGGAAACAAGGCTGAGAATCCGA -ACGGAAACAAGGCTGAGAATGGGA -ACGGAAACAAGGCTGAGAGTGCAA -ACGGAAACAAGGCTGAGAGAGGAA -ACGGAAACAAGGCTGAGACAGGTA -ACGGAAACAAGGCTGAGAGACTCT -ACGGAAACAAGGCTGAGAAGTCCT -ACGGAAACAAGGCTGAGATAAGCC -ACGGAAACAAGGCTGAGAATAGCC -ACGGAAACAAGGCTGAGATAACCG -ACGGAAACAAGGCTGAGAATGCCA -ACGGAAACAAGGGTATCGGGAAAC -ACGGAAACAAGGGTATCGAACACC -ACGGAAACAAGGGTATCGATCGAG -ACGGAAACAAGGGTATCGCTCCTT -ACGGAAACAAGGGTATCGCCTGTT -ACGGAAACAAGGGTATCGCGGTTT -ACGGAAACAAGGGTATCGGTGGTT -ACGGAAACAAGGGTATCGGCCTTT -ACGGAAACAAGGGTATCGGGTCTT -ACGGAAACAAGGGTATCGACGCTT -ACGGAAACAAGGGTATCGAGCGTT -ACGGAAACAAGGGTATCGTTCGTC -ACGGAAACAAGGGTATCGTCTCTC -ACGGAAACAAGGGTATCGTGGATC -ACGGAAACAAGGGTATCGCACTTC -ACGGAAACAAGGGTATCGGTACTC -ACGGAAACAAGGGTATCGGATGTC -ACGGAAACAAGGGTATCGACAGTC -ACGGAAACAAGGGTATCGTTGCTG -ACGGAAACAAGGGTATCGTCCATG -ACGGAAACAAGGGTATCGTGTGTG -ACGGAAACAAGGGTATCGCTAGTG -ACGGAAACAAGGGTATCGCATCTG -ACGGAAACAAGGGTATCGGAGTTG -ACGGAAACAAGGGTATCGAGACTG -ACGGAAACAAGGGTATCGTCGGTA -ACGGAAACAAGGGTATCGTGCCTA -ACGGAAACAAGGGTATCGCCACTA -ACGGAAACAAGGGTATCGGGAGTA -ACGGAAACAAGGGTATCGTCGTCT -ACGGAAACAAGGGTATCGTGCACT -ACGGAAACAAGGGTATCGCTGACT -ACGGAAACAAGGGTATCGCAACCT -ACGGAAACAAGGGTATCGGCTACT -ACGGAAACAAGGGTATCGGGATCT -ACGGAAACAAGGGTATCGAAGGCT -ACGGAAACAAGGGTATCGTCAACC -ACGGAAACAAGGGTATCGTGTTCC -ACGGAAACAAGGGTATCGATTCCC -ACGGAAACAAGGGTATCGTTCTCG -ACGGAAACAAGGGTATCGTAGACG -ACGGAAACAAGGGTATCGGTAACG -ACGGAAACAAGGGTATCGACTTCG -ACGGAAACAAGGGTATCGTACGCA -ACGGAAACAAGGGTATCGCTTGCA -ACGGAAACAAGGGTATCGCGAACA -ACGGAAACAAGGGTATCGCAGTCA -ACGGAAACAAGGGTATCGGATCCA -ACGGAAACAAGGGTATCGACGACA -ACGGAAACAAGGGTATCGAGCTCA -ACGGAAACAAGGGTATCGTCACGT -ACGGAAACAAGGGTATCGCGTAGT -ACGGAAACAAGGGTATCGGTCAGT -ACGGAAACAAGGGTATCGGAAGGT -ACGGAAACAAGGGTATCGAACCGT -ACGGAAACAAGGGTATCGTTGTGC -ACGGAAACAAGGGTATCGCTAAGC -ACGGAAACAAGGGTATCGACTAGC -ACGGAAACAAGGGTATCGAGATGC -ACGGAAACAAGGGTATCGTGAAGG -ACGGAAACAAGGGTATCGCAATGG -ACGGAAACAAGGGTATCGATGAGG -ACGGAAACAAGGGTATCGAATGGG -ACGGAAACAAGGGTATCGTCCTGA -ACGGAAACAAGGGTATCGTAGCGA -ACGGAAACAAGGGTATCGCACAGA -ACGGAAACAAGGGTATCGGCAAGA -ACGGAAACAAGGGTATCGGGTTGA -ACGGAAACAAGGGTATCGTCCGAT -ACGGAAACAAGGGTATCGTGGCAT -ACGGAAACAAGGGTATCGCGAGAT -ACGGAAACAAGGGTATCGTACCAC -ACGGAAACAAGGGTATCGCAGAAC -ACGGAAACAAGGGTATCGGTCTAC -ACGGAAACAAGGGTATCGACGTAC -ACGGAAACAAGGGTATCGAGTGAC -ACGGAAACAAGGGTATCGCTGTAG -ACGGAAACAAGGGTATCGCCTAAG -ACGGAAACAAGGGTATCGGTTCAG -ACGGAAACAAGGGTATCGGCATAG -ACGGAAACAAGGGTATCGGACAAG -ACGGAAACAAGGGTATCGAAGCAG -ACGGAAACAAGGGTATCGCGTCAA -ACGGAAACAAGGGTATCGGCTGAA -ACGGAAACAAGGGTATCGAGTACG -ACGGAAACAAGGGTATCGATCCGA -ACGGAAACAAGGGTATCGATGGGA -ACGGAAACAAGGGTATCGGTGCAA -ACGGAAACAAGGGTATCGGAGGAA -ACGGAAACAAGGGTATCGCAGGTA -ACGGAAACAAGGGTATCGGACTCT -ACGGAAACAAGGGTATCGAGTCCT -ACGGAAACAAGGGTATCGTAAGCC -ACGGAAACAAGGGTATCGATAGCC -ACGGAAACAAGGGTATCGTAACCG -ACGGAAACAAGGGTATCGATGCCA -ACGGAAACAAGGCTATGCGGAAAC -ACGGAAACAAGGCTATGCAACACC -ACGGAAACAAGGCTATGCATCGAG -ACGGAAACAAGGCTATGCCTCCTT -ACGGAAACAAGGCTATGCCCTGTT -ACGGAAACAAGGCTATGCCGGTTT -ACGGAAACAAGGCTATGCGTGGTT -ACGGAAACAAGGCTATGCGCCTTT -ACGGAAACAAGGCTATGCGGTCTT -ACGGAAACAAGGCTATGCACGCTT -ACGGAAACAAGGCTATGCAGCGTT -ACGGAAACAAGGCTATGCTTCGTC -ACGGAAACAAGGCTATGCTCTCTC -ACGGAAACAAGGCTATGCTGGATC -ACGGAAACAAGGCTATGCCACTTC -ACGGAAACAAGGCTATGCGTACTC -ACGGAAACAAGGCTATGCGATGTC -ACGGAAACAAGGCTATGCACAGTC -ACGGAAACAAGGCTATGCTTGCTG -ACGGAAACAAGGCTATGCTCCATG -ACGGAAACAAGGCTATGCTGTGTG -ACGGAAACAAGGCTATGCCTAGTG -ACGGAAACAAGGCTATGCCATCTG -ACGGAAACAAGGCTATGCGAGTTG -ACGGAAACAAGGCTATGCAGACTG -ACGGAAACAAGGCTATGCTCGGTA -ACGGAAACAAGGCTATGCTGCCTA -ACGGAAACAAGGCTATGCCCACTA -ACGGAAACAAGGCTATGCGGAGTA -ACGGAAACAAGGCTATGCTCGTCT -ACGGAAACAAGGCTATGCTGCACT -ACGGAAACAAGGCTATGCCTGACT -ACGGAAACAAGGCTATGCCAACCT -ACGGAAACAAGGCTATGCGCTACT -ACGGAAACAAGGCTATGCGGATCT -ACGGAAACAAGGCTATGCAAGGCT -ACGGAAACAAGGCTATGCTCAACC -ACGGAAACAAGGCTATGCTGTTCC -ACGGAAACAAGGCTATGCATTCCC -ACGGAAACAAGGCTATGCTTCTCG -ACGGAAACAAGGCTATGCTAGACG -ACGGAAACAAGGCTATGCGTAACG -ACGGAAACAAGGCTATGCACTTCG -ACGGAAACAAGGCTATGCTACGCA -ACGGAAACAAGGCTATGCCTTGCA -ACGGAAACAAGGCTATGCCGAACA -ACGGAAACAAGGCTATGCCAGTCA -ACGGAAACAAGGCTATGCGATCCA -ACGGAAACAAGGCTATGCACGACA -ACGGAAACAAGGCTATGCAGCTCA -ACGGAAACAAGGCTATGCTCACGT -ACGGAAACAAGGCTATGCCGTAGT -ACGGAAACAAGGCTATGCGTCAGT -ACGGAAACAAGGCTATGCGAAGGT -ACGGAAACAAGGCTATGCAACCGT -ACGGAAACAAGGCTATGCTTGTGC -ACGGAAACAAGGCTATGCCTAAGC -ACGGAAACAAGGCTATGCACTAGC -ACGGAAACAAGGCTATGCAGATGC -ACGGAAACAAGGCTATGCTGAAGG -ACGGAAACAAGGCTATGCCAATGG -ACGGAAACAAGGCTATGCATGAGG -ACGGAAACAAGGCTATGCAATGGG -ACGGAAACAAGGCTATGCTCCTGA -ACGGAAACAAGGCTATGCTAGCGA -ACGGAAACAAGGCTATGCCACAGA -ACGGAAACAAGGCTATGCGCAAGA -ACGGAAACAAGGCTATGCGGTTGA -ACGGAAACAAGGCTATGCTCCGAT -ACGGAAACAAGGCTATGCTGGCAT -ACGGAAACAAGGCTATGCCGAGAT -ACGGAAACAAGGCTATGCTACCAC -ACGGAAACAAGGCTATGCCAGAAC -ACGGAAACAAGGCTATGCGTCTAC -ACGGAAACAAGGCTATGCACGTAC -ACGGAAACAAGGCTATGCAGTGAC -ACGGAAACAAGGCTATGCCTGTAG -ACGGAAACAAGGCTATGCCCTAAG -ACGGAAACAAGGCTATGCGTTCAG -ACGGAAACAAGGCTATGCGCATAG -ACGGAAACAAGGCTATGCGACAAG -ACGGAAACAAGGCTATGCAAGCAG -ACGGAAACAAGGCTATGCCGTCAA -ACGGAAACAAGGCTATGCGCTGAA -ACGGAAACAAGGCTATGCAGTACG -ACGGAAACAAGGCTATGCATCCGA -ACGGAAACAAGGCTATGCATGGGA -ACGGAAACAAGGCTATGCGTGCAA -ACGGAAACAAGGCTATGCGAGGAA -ACGGAAACAAGGCTATGCCAGGTA -ACGGAAACAAGGCTATGCGACTCT -ACGGAAACAAGGCTATGCAGTCCT -ACGGAAACAAGGCTATGCTAAGCC -ACGGAAACAAGGCTATGCATAGCC -ACGGAAACAAGGCTATGCTAACCG -ACGGAAACAAGGCTATGCATGCCA -ACGGAAACAAGGCTACCAGGAAAC -ACGGAAACAAGGCTACCAAACACC -ACGGAAACAAGGCTACCAATCGAG -ACGGAAACAAGGCTACCACTCCTT -ACGGAAACAAGGCTACCACCTGTT -ACGGAAACAAGGCTACCACGGTTT -ACGGAAACAAGGCTACCAGTGGTT -ACGGAAACAAGGCTACCAGCCTTT -ACGGAAACAAGGCTACCAGGTCTT -ACGGAAACAAGGCTACCAACGCTT -ACGGAAACAAGGCTACCAAGCGTT -ACGGAAACAAGGCTACCATTCGTC -ACGGAAACAAGGCTACCATCTCTC -ACGGAAACAAGGCTACCATGGATC -ACGGAAACAAGGCTACCACACTTC -ACGGAAACAAGGCTACCAGTACTC -ACGGAAACAAGGCTACCAGATGTC -ACGGAAACAAGGCTACCAACAGTC -ACGGAAACAAGGCTACCATTGCTG -ACGGAAACAAGGCTACCATCCATG -ACGGAAACAAGGCTACCATGTGTG -ACGGAAACAAGGCTACCACTAGTG -ACGGAAACAAGGCTACCACATCTG -ACGGAAACAAGGCTACCAGAGTTG -ACGGAAACAAGGCTACCAAGACTG -ACGGAAACAAGGCTACCATCGGTA -ACGGAAACAAGGCTACCATGCCTA -ACGGAAACAAGGCTACCACCACTA -ACGGAAACAAGGCTACCAGGAGTA -ACGGAAACAAGGCTACCATCGTCT -ACGGAAACAAGGCTACCATGCACT -ACGGAAACAAGGCTACCACTGACT -ACGGAAACAAGGCTACCACAACCT -ACGGAAACAAGGCTACCAGCTACT -ACGGAAACAAGGCTACCAGGATCT -ACGGAAACAAGGCTACCAAAGGCT -ACGGAAACAAGGCTACCATCAACC -ACGGAAACAAGGCTACCATGTTCC -ACGGAAACAAGGCTACCAATTCCC -ACGGAAACAAGGCTACCATTCTCG -ACGGAAACAAGGCTACCATAGACG -ACGGAAACAAGGCTACCAGTAACG -ACGGAAACAAGGCTACCAACTTCG -ACGGAAACAAGGCTACCATACGCA -ACGGAAACAAGGCTACCACTTGCA -ACGGAAACAAGGCTACCACGAACA -ACGGAAACAAGGCTACCACAGTCA -ACGGAAACAAGGCTACCAGATCCA -ACGGAAACAAGGCTACCAACGACA -ACGGAAACAAGGCTACCAAGCTCA -ACGGAAACAAGGCTACCATCACGT -ACGGAAACAAGGCTACCACGTAGT -ACGGAAACAAGGCTACCAGTCAGT -ACGGAAACAAGGCTACCAGAAGGT -ACGGAAACAAGGCTACCAAACCGT -ACGGAAACAAGGCTACCATTGTGC -ACGGAAACAAGGCTACCACTAAGC -ACGGAAACAAGGCTACCAACTAGC -ACGGAAACAAGGCTACCAAGATGC -ACGGAAACAAGGCTACCATGAAGG -ACGGAAACAAGGCTACCACAATGG -ACGGAAACAAGGCTACCAATGAGG -ACGGAAACAAGGCTACCAAATGGG -ACGGAAACAAGGCTACCATCCTGA -ACGGAAACAAGGCTACCATAGCGA -ACGGAAACAAGGCTACCACACAGA -ACGGAAACAAGGCTACCAGCAAGA -ACGGAAACAAGGCTACCAGGTTGA -ACGGAAACAAGGCTACCATCCGAT -ACGGAAACAAGGCTACCATGGCAT -ACGGAAACAAGGCTACCACGAGAT -ACGGAAACAAGGCTACCATACCAC -ACGGAAACAAGGCTACCACAGAAC -ACGGAAACAAGGCTACCAGTCTAC -ACGGAAACAAGGCTACCAACGTAC -ACGGAAACAAGGCTACCAAGTGAC -ACGGAAACAAGGCTACCACTGTAG -ACGGAAACAAGGCTACCACCTAAG -ACGGAAACAAGGCTACCAGTTCAG -ACGGAAACAAGGCTACCAGCATAG -ACGGAAACAAGGCTACCAGACAAG -ACGGAAACAAGGCTACCAAAGCAG -ACGGAAACAAGGCTACCACGTCAA -ACGGAAACAAGGCTACCAGCTGAA -ACGGAAACAAGGCTACCAAGTACG -ACGGAAACAAGGCTACCAATCCGA -ACGGAAACAAGGCTACCAATGGGA -ACGGAAACAAGGCTACCAGTGCAA -ACGGAAACAAGGCTACCAGAGGAA -ACGGAAACAAGGCTACCACAGGTA -ACGGAAACAAGGCTACCAGACTCT -ACGGAAACAAGGCTACCAAGTCCT -ACGGAAACAAGGCTACCATAAGCC -ACGGAAACAAGGCTACCAATAGCC -ACGGAAACAAGGCTACCATAACCG -ACGGAAACAAGGCTACCAATGCCA -ACGGAAACAAGGGTAGGAGGAAAC -ACGGAAACAAGGGTAGGAAACACC -ACGGAAACAAGGGTAGGAATCGAG -ACGGAAACAAGGGTAGGACTCCTT -ACGGAAACAAGGGTAGGACCTGTT -ACGGAAACAAGGGTAGGACGGTTT -ACGGAAACAAGGGTAGGAGTGGTT -ACGGAAACAAGGGTAGGAGCCTTT -ACGGAAACAAGGGTAGGAGGTCTT -ACGGAAACAAGGGTAGGAACGCTT -ACGGAAACAAGGGTAGGAAGCGTT -ACGGAAACAAGGGTAGGATTCGTC -ACGGAAACAAGGGTAGGATCTCTC -ACGGAAACAAGGGTAGGATGGATC -ACGGAAACAAGGGTAGGACACTTC -ACGGAAACAAGGGTAGGAGTACTC -ACGGAAACAAGGGTAGGAGATGTC -ACGGAAACAAGGGTAGGAACAGTC -ACGGAAACAAGGGTAGGATTGCTG -ACGGAAACAAGGGTAGGATCCATG -ACGGAAACAAGGGTAGGATGTGTG -ACGGAAACAAGGGTAGGACTAGTG -ACGGAAACAAGGGTAGGACATCTG -ACGGAAACAAGGGTAGGAGAGTTG -ACGGAAACAAGGGTAGGAAGACTG -ACGGAAACAAGGGTAGGATCGGTA -ACGGAAACAAGGGTAGGATGCCTA -ACGGAAACAAGGGTAGGACCACTA -ACGGAAACAAGGGTAGGAGGAGTA -ACGGAAACAAGGGTAGGATCGTCT -ACGGAAACAAGGGTAGGATGCACT -ACGGAAACAAGGGTAGGACTGACT -ACGGAAACAAGGGTAGGACAACCT -ACGGAAACAAGGGTAGGAGCTACT -ACGGAAACAAGGGTAGGAGGATCT -ACGGAAACAAGGGTAGGAAAGGCT -ACGGAAACAAGGGTAGGATCAACC -ACGGAAACAAGGGTAGGATGTTCC -ACGGAAACAAGGGTAGGAATTCCC -ACGGAAACAAGGGTAGGATTCTCG -ACGGAAACAAGGGTAGGATAGACG -ACGGAAACAAGGGTAGGAGTAACG -ACGGAAACAAGGGTAGGAACTTCG -ACGGAAACAAGGGTAGGATACGCA -ACGGAAACAAGGGTAGGACTTGCA -ACGGAAACAAGGGTAGGACGAACA -ACGGAAACAAGGGTAGGACAGTCA -ACGGAAACAAGGGTAGGAGATCCA -ACGGAAACAAGGGTAGGAACGACA -ACGGAAACAAGGGTAGGAAGCTCA -ACGGAAACAAGGGTAGGATCACGT -ACGGAAACAAGGGTAGGACGTAGT -ACGGAAACAAGGGTAGGAGTCAGT -ACGGAAACAAGGGTAGGAGAAGGT -ACGGAAACAAGGGTAGGAAACCGT -ACGGAAACAAGGGTAGGATTGTGC -ACGGAAACAAGGGTAGGACTAAGC -ACGGAAACAAGGGTAGGAACTAGC -ACGGAAACAAGGGTAGGAAGATGC -ACGGAAACAAGGGTAGGATGAAGG -ACGGAAACAAGGGTAGGACAATGG -ACGGAAACAAGGGTAGGAATGAGG -ACGGAAACAAGGGTAGGAAATGGG -ACGGAAACAAGGGTAGGATCCTGA -ACGGAAACAAGGGTAGGATAGCGA -ACGGAAACAAGGGTAGGACACAGA -ACGGAAACAAGGGTAGGAGCAAGA -ACGGAAACAAGGGTAGGAGGTTGA -ACGGAAACAAGGGTAGGATCCGAT -ACGGAAACAAGGGTAGGATGGCAT -ACGGAAACAAGGGTAGGACGAGAT -ACGGAAACAAGGGTAGGATACCAC -ACGGAAACAAGGGTAGGACAGAAC -ACGGAAACAAGGGTAGGAGTCTAC -ACGGAAACAAGGGTAGGAACGTAC -ACGGAAACAAGGGTAGGAAGTGAC -ACGGAAACAAGGGTAGGACTGTAG -ACGGAAACAAGGGTAGGACCTAAG -ACGGAAACAAGGGTAGGAGTTCAG -ACGGAAACAAGGGTAGGAGCATAG -ACGGAAACAAGGGTAGGAGACAAG -ACGGAAACAAGGGTAGGAAAGCAG -ACGGAAACAAGGGTAGGACGTCAA -ACGGAAACAAGGGTAGGAGCTGAA -ACGGAAACAAGGGTAGGAAGTACG -ACGGAAACAAGGGTAGGAATCCGA -ACGGAAACAAGGGTAGGAATGGGA -ACGGAAACAAGGGTAGGAGTGCAA -ACGGAAACAAGGGTAGGAGAGGAA -ACGGAAACAAGGGTAGGACAGGTA -ACGGAAACAAGGGTAGGAGACTCT -ACGGAAACAAGGGTAGGAAGTCCT -ACGGAAACAAGGGTAGGATAAGCC -ACGGAAACAAGGGTAGGAATAGCC -ACGGAAACAAGGGTAGGATAACCG -ACGGAAACAAGGGTAGGAATGCCA -ACGGAAACAAGGTCTTCGGGAAAC -ACGGAAACAAGGTCTTCGAACACC -ACGGAAACAAGGTCTTCGATCGAG -ACGGAAACAAGGTCTTCGCTCCTT -ACGGAAACAAGGTCTTCGCCTGTT -ACGGAAACAAGGTCTTCGCGGTTT -ACGGAAACAAGGTCTTCGGTGGTT -ACGGAAACAAGGTCTTCGGCCTTT -ACGGAAACAAGGTCTTCGGGTCTT -ACGGAAACAAGGTCTTCGACGCTT -ACGGAAACAAGGTCTTCGAGCGTT -ACGGAAACAAGGTCTTCGTTCGTC -ACGGAAACAAGGTCTTCGTCTCTC -ACGGAAACAAGGTCTTCGTGGATC -ACGGAAACAAGGTCTTCGCACTTC -ACGGAAACAAGGTCTTCGGTACTC -ACGGAAACAAGGTCTTCGGATGTC -ACGGAAACAAGGTCTTCGACAGTC -ACGGAAACAAGGTCTTCGTTGCTG -ACGGAAACAAGGTCTTCGTCCATG -ACGGAAACAAGGTCTTCGTGTGTG -ACGGAAACAAGGTCTTCGCTAGTG -ACGGAAACAAGGTCTTCGCATCTG -ACGGAAACAAGGTCTTCGGAGTTG -ACGGAAACAAGGTCTTCGAGACTG -ACGGAAACAAGGTCTTCGTCGGTA -ACGGAAACAAGGTCTTCGTGCCTA -ACGGAAACAAGGTCTTCGCCACTA -ACGGAAACAAGGTCTTCGGGAGTA -ACGGAAACAAGGTCTTCGTCGTCT -ACGGAAACAAGGTCTTCGTGCACT -ACGGAAACAAGGTCTTCGCTGACT -ACGGAAACAAGGTCTTCGCAACCT -ACGGAAACAAGGTCTTCGGCTACT -ACGGAAACAAGGTCTTCGGGATCT -ACGGAAACAAGGTCTTCGAAGGCT -ACGGAAACAAGGTCTTCGTCAACC -ACGGAAACAAGGTCTTCGTGTTCC -ACGGAAACAAGGTCTTCGATTCCC -ACGGAAACAAGGTCTTCGTTCTCG -ACGGAAACAAGGTCTTCGTAGACG -ACGGAAACAAGGTCTTCGGTAACG -ACGGAAACAAGGTCTTCGACTTCG -ACGGAAACAAGGTCTTCGTACGCA -ACGGAAACAAGGTCTTCGCTTGCA -ACGGAAACAAGGTCTTCGCGAACA -ACGGAAACAAGGTCTTCGCAGTCA -ACGGAAACAAGGTCTTCGGATCCA -ACGGAAACAAGGTCTTCGACGACA -ACGGAAACAAGGTCTTCGAGCTCA -ACGGAAACAAGGTCTTCGTCACGT -ACGGAAACAAGGTCTTCGCGTAGT -ACGGAAACAAGGTCTTCGGTCAGT -ACGGAAACAAGGTCTTCGGAAGGT -ACGGAAACAAGGTCTTCGAACCGT -ACGGAAACAAGGTCTTCGTTGTGC -ACGGAAACAAGGTCTTCGCTAAGC -ACGGAAACAAGGTCTTCGACTAGC -ACGGAAACAAGGTCTTCGAGATGC -ACGGAAACAAGGTCTTCGTGAAGG -ACGGAAACAAGGTCTTCGCAATGG -ACGGAAACAAGGTCTTCGATGAGG -ACGGAAACAAGGTCTTCGAATGGG -ACGGAAACAAGGTCTTCGTCCTGA -ACGGAAACAAGGTCTTCGTAGCGA -ACGGAAACAAGGTCTTCGCACAGA -ACGGAAACAAGGTCTTCGGCAAGA -ACGGAAACAAGGTCTTCGGGTTGA -ACGGAAACAAGGTCTTCGTCCGAT -ACGGAAACAAGGTCTTCGTGGCAT -ACGGAAACAAGGTCTTCGCGAGAT -ACGGAAACAAGGTCTTCGTACCAC -ACGGAAACAAGGTCTTCGCAGAAC -ACGGAAACAAGGTCTTCGGTCTAC -ACGGAAACAAGGTCTTCGACGTAC -ACGGAAACAAGGTCTTCGAGTGAC -ACGGAAACAAGGTCTTCGCTGTAG -ACGGAAACAAGGTCTTCGCCTAAG -ACGGAAACAAGGTCTTCGGTTCAG -ACGGAAACAAGGTCTTCGGCATAG -ACGGAAACAAGGTCTTCGGACAAG -ACGGAAACAAGGTCTTCGAAGCAG -ACGGAAACAAGGTCTTCGCGTCAA -ACGGAAACAAGGTCTTCGGCTGAA -ACGGAAACAAGGTCTTCGAGTACG -ACGGAAACAAGGTCTTCGATCCGA -ACGGAAACAAGGTCTTCGATGGGA -ACGGAAACAAGGTCTTCGGTGCAA -ACGGAAACAAGGTCTTCGGAGGAA -ACGGAAACAAGGTCTTCGCAGGTA -ACGGAAACAAGGTCTTCGGACTCT -ACGGAAACAAGGTCTTCGAGTCCT -ACGGAAACAAGGTCTTCGTAAGCC -ACGGAAACAAGGTCTTCGATAGCC -ACGGAAACAAGGTCTTCGTAACCG -ACGGAAACAAGGTCTTCGATGCCA -ACGGAAACAAGGACTTGCGGAAAC -ACGGAAACAAGGACTTGCAACACC -ACGGAAACAAGGACTTGCATCGAG -ACGGAAACAAGGACTTGCCTCCTT -ACGGAAACAAGGACTTGCCCTGTT -ACGGAAACAAGGACTTGCCGGTTT -ACGGAAACAAGGACTTGCGTGGTT -ACGGAAACAAGGACTTGCGCCTTT -ACGGAAACAAGGACTTGCGGTCTT -ACGGAAACAAGGACTTGCACGCTT -ACGGAAACAAGGACTTGCAGCGTT -ACGGAAACAAGGACTTGCTTCGTC -ACGGAAACAAGGACTTGCTCTCTC -ACGGAAACAAGGACTTGCTGGATC -ACGGAAACAAGGACTTGCCACTTC -ACGGAAACAAGGACTTGCGTACTC -ACGGAAACAAGGACTTGCGATGTC -ACGGAAACAAGGACTTGCACAGTC -ACGGAAACAAGGACTTGCTTGCTG -ACGGAAACAAGGACTTGCTCCATG -ACGGAAACAAGGACTTGCTGTGTG -ACGGAAACAAGGACTTGCCTAGTG -ACGGAAACAAGGACTTGCCATCTG -ACGGAAACAAGGACTTGCGAGTTG -ACGGAAACAAGGACTTGCAGACTG -ACGGAAACAAGGACTTGCTCGGTA -ACGGAAACAAGGACTTGCTGCCTA -ACGGAAACAAGGACTTGCCCACTA -ACGGAAACAAGGACTTGCGGAGTA -ACGGAAACAAGGACTTGCTCGTCT -ACGGAAACAAGGACTTGCTGCACT -ACGGAAACAAGGACTTGCCTGACT -ACGGAAACAAGGACTTGCCAACCT -ACGGAAACAAGGACTTGCGCTACT -ACGGAAACAAGGACTTGCGGATCT -ACGGAAACAAGGACTTGCAAGGCT -ACGGAAACAAGGACTTGCTCAACC -ACGGAAACAAGGACTTGCTGTTCC -ACGGAAACAAGGACTTGCATTCCC -ACGGAAACAAGGACTTGCTTCTCG -ACGGAAACAAGGACTTGCTAGACG -ACGGAAACAAGGACTTGCGTAACG -ACGGAAACAAGGACTTGCACTTCG -ACGGAAACAAGGACTTGCTACGCA -ACGGAAACAAGGACTTGCCTTGCA -ACGGAAACAAGGACTTGCCGAACA -ACGGAAACAAGGACTTGCCAGTCA -ACGGAAACAAGGACTTGCGATCCA -ACGGAAACAAGGACTTGCACGACA -ACGGAAACAAGGACTTGCAGCTCA -ACGGAAACAAGGACTTGCTCACGT -ACGGAAACAAGGACTTGCCGTAGT -ACGGAAACAAGGACTTGCGTCAGT -ACGGAAACAAGGACTTGCGAAGGT -ACGGAAACAAGGACTTGCAACCGT -ACGGAAACAAGGACTTGCTTGTGC -ACGGAAACAAGGACTTGCCTAAGC -ACGGAAACAAGGACTTGCACTAGC -ACGGAAACAAGGACTTGCAGATGC -ACGGAAACAAGGACTTGCTGAAGG -ACGGAAACAAGGACTTGCCAATGG -ACGGAAACAAGGACTTGCATGAGG -ACGGAAACAAGGACTTGCAATGGG -ACGGAAACAAGGACTTGCTCCTGA -ACGGAAACAAGGACTTGCTAGCGA -ACGGAAACAAGGACTTGCCACAGA -ACGGAAACAAGGACTTGCGCAAGA -ACGGAAACAAGGACTTGCGGTTGA -ACGGAAACAAGGACTTGCTCCGAT -ACGGAAACAAGGACTTGCTGGCAT -ACGGAAACAAGGACTTGCCGAGAT -ACGGAAACAAGGACTTGCTACCAC -ACGGAAACAAGGACTTGCCAGAAC -ACGGAAACAAGGACTTGCGTCTAC -ACGGAAACAAGGACTTGCACGTAC -ACGGAAACAAGGACTTGCAGTGAC -ACGGAAACAAGGACTTGCCTGTAG -ACGGAAACAAGGACTTGCCCTAAG -ACGGAAACAAGGACTTGCGTTCAG -ACGGAAACAAGGACTTGCGCATAG -ACGGAAACAAGGACTTGCGACAAG -ACGGAAACAAGGACTTGCAAGCAG -ACGGAAACAAGGACTTGCCGTCAA -ACGGAAACAAGGACTTGCGCTGAA -ACGGAAACAAGGACTTGCAGTACG -ACGGAAACAAGGACTTGCATCCGA -ACGGAAACAAGGACTTGCATGGGA -ACGGAAACAAGGACTTGCGTGCAA -ACGGAAACAAGGACTTGCGAGGAA -ACGGAAACAAGGACTTGCCAGGTA -ACGGAAACAAGGACTTGCGACTCT -ACGGAAACAAGGACTTGCAGTCCT -ACGGAAACAAGGACTTGCTAAGCC -ACGGAAACAAGGACTTGCATAGCC -ACGGAAACAAGGACTTGCTAACCG -ACGGAAACAAGGACTTGCATGCCA -ACGGAAACAAGGACTCTGGGAAAC -ACGGAAACAAGGACTCTGAACACC -ACGGAAACAAGGACTCTGATCGAG -ACGGAAACAAGGACTCTGCTCCTT -ACGGAAACAAGGACTCTGCCTGTT -ACGGAAACAAGGACTCTGCGGTTT -ACGGAAACAAGGACTCTGGTGGTT -ACGGAAACAAGGACTCTGGCCTTT -ACGGAAACAAGGACTCTGGGTCTT -ACGGAAACAAGGACTCTGACGCTT -ACGGAAACAAGGACTCTGAGCGTT -ACGGAAACAAGGACTCTGTTCGTC -ACGGAAACAAGGACTCTGTCTCTC -ACGGAAACAAGGACTCTGTGGATC -ACGGAAACAAGGACTCTGCACTTC -ACGGAAACAAGGACTCTGGTACTC -ACGGAAACAAGGACTCTGGATGTC -ACGGAAACAAGGACTCTGACAGTC -ACGGAAACAAGGACTCTGTTGCTG -ACGGAAACAAGGACTCTGTCCATG -ACGGAAACAAGGACTCTGTGTGTG -ACGGAAACAAGGACTCTGCTAGTG -ACGGAAACAAGGACTCTGCATCTG -ACGGAAACAAGGACTCTGGAGTTG -ACGGAAACAAGGACTCTGAGACTG -ACGGAAACAAGGACTCTGTCGGTA -ACGGAAACAAGGACTCTGTGCCTA -ACGGAAACAAGGACTCTGCCACTA -ACGGAAACAAGGACTCTGGGAGTA -ACGGAAACAAGGACTCTGTCGTCT -ACGGAAACAAGGACTCTGTGCACT -ACGGAAACAAGGACTCTGCTGACT -ACGGAAACAAGGACTCTGCAACCT -ACGGAAACAAGGACTCTGGCTACT -ACGGAAACAAGGACTCTGGGATCT -ACGGAAACAAGGACTCTGAAGGCT -ACGGAAACAAGGACTCTGTCAACC -ACGGAAACAAGGACTCTGTGTTCC -ACGGAAACAAGGACTCTGATTCCC -ACGGAAACAAGGACTCTGTTCTCG -ACGGAAACAAGGACTCTGTAGACG -ACGGAAACAAGGACTCTGGTAACG -ACGGAAACAAGGACTCTGACTTCG -ACGGAAACAAGGACTCTGTACGCA -ACGGAAACAAGGACTCTGCTTGCA -ACGGAAACAAGGACTCTGCGAACA -ACGGAAACAAGGACTCTGCAGTCA -ACGGAAACAAGGACTCTGGATCCA -ACGGAAACAAGGACTCTGACGACA -ACGGAAACAAGGACTCTGAGCTCA -ACGGAAACAAGGACTCTGTCACGT -ACGGAAACAAGGACTCTGCGTAGT -ACGGAAACAAGGACTCTGGTCAGT -ACGGAAACAAGGACTCTGGAAGGT -ACGGAAACAAGGACTCTGAACCGT -ACGGAAACAAGGACTCTGTTGTGC -ACGGAAACAAGGACTCTGCTAAGC -ACGGAAACAAGGACTCTGACTAGC -ACGGAAACAAGGACTCTGAGATGC -ACGGAAACAAGGACTCTGTGAAGG -ACGGAAACAAGGACTCTGCAATGG -ACGGAAACAAGGACTCTGATGAGG -ACGGAAACAAGGACTCTGAATGGG -ACGGAAACAAGGACTCTGTCCTGA -ACGGAAACAAGGACTCTGTAGCGA -ACGGAAACAAGGACTCTGCACAGA -ACGGAAACAAGGACTCTGGCAAGA -ACGGAAACAAGGACTCTGGGTTGA -ACGGAAACAAGGACTCTGTCCGAT -ACGGAAACAAGGACTCTGTGGCAT -ACGGAAACAAGGACTCTGCGAGAT -ACGGAAACAAGGACTCTGTACCAC -ACGGAAACAAGGACTCTGCAGAAC -ACGGAAACAAGGACTCTGGTCTAC -ACGGAAACAAGGACTCTGACGTAC -ACGGAAACAAGGACTCTGAGTGAC -ACGGAAACAAGGACTCTGCTGTAG -ACGGAAACAAGGACTCTGCCTAAG -ACGGAAACAAGGACTCTGGTTCAG -ACGGAAACAAGGACTCTGGCATAG -ACGGAAACAAGGACTCTGGACAAG -ACGGAAACAAGGACTCTGAAGCAG -ACGGAAACAAGGACTCTGCGTCAA -ACGGAAACAAGGACTCTGGCTGAA -ACGGAAACAAGGACTCTGAGTACG -ACGGAAACAAGGACTCTGATCCGA -ACGGAAACAAGGACTCTGATGGGA -ACGGAAACAAGGACTCTGGTGCAA -ACGGAAACAAGGACTCTGGAGGAA -ACGGAAACAAGGACTCTGCAGGTA -ACGGAAACAAGGACTCTGGACTCT -ACGGAAACAAGGACTCTGAGTCCT -ACGGAAACAAGGACTCTGTAAGCC -ACGGAAACAAGGACTCTGATAGCC -ACGGAAACAAGGACTCTGTAACCG -ACGGAAACAAGGACTCTGATGCCA -ACGGAAACAAGGCCTCAAGGAAAC -ACGGAAACAAGGCCTCAAAACACC -ACGGAAACAAGGCCTCAAATCGAG -ACGGAAACAAGGCCTCAACTCCTT -ACGGAAACAAGGCCTCAACCTGTT -ACGGAAACAAGGCCTCAACGGTTT -ACGGAAACAAGGCCTCAAGTGGTT -ACGGAAACAAGGCCTCAAGCCTTT -ACGGAAACAAGGCCTCAAGGTCTT -ACGGAAACAAGGCCTCAAACGCTT -ACGGAAACAAGGCCTCAAAGCGTT -ACGGAAACAAGGCCTCAATTCGTC -ACGGAAACAAGGCCTCAATCTCTC -ACGGAAACAAGGCCTCAATGGATC -ACGGAAACAAGGCCTCAACACTTC -ACGGAAACAAGGCCTCAAGTACTC -ACGGAAACAAGGCCTCAAGATGTC -ACGGAAACAAGGCCTCAAACAGTC -ACGGAAACAAGGCCTCAATTGCTG -ACGGAAACAAGGCCTCAATCCATG -ACGGAAACAAGGCCTCAATGTGTG -ACGGAAACAAGGCCTCAACTAGTG -ACGGAAACAAGGCCTCAACATCTG -ACGGAAACAAGGCCTCAAGAGTTG -ACGGAAACAAGGCCTCAAAGACTG -ACGGAAACAAGGCCTCAATCGGTA -ACGGAAACAAGGCCTCAATGCCTA -ACGGAAACAAGGCCTCAACCACTA -ACGGAAACAAGGCCTCAAGGAGTA -ACGGAAACAAGGCCTCAATCGTCT -ACGGAAACAAGGCCTCAATGCACT -ACGGAAACAAGGCCTCAACTGACT -ACGGAAACAAGGCCTCAACAACCT -ACGGAAACAAGGCCTCAAGCTACT -ACGGAAACAAGGCCTCAAGGATCT -ACGGAAACAAGGCCTCAAAAGGCT -ACGGAAACAAGGCCTCAATCAACC -ACGGAAACAAGGCCTCAATGTTCC -ACGGAAACAAGGCCTCAAATTCCC -ACGGAAACAAGGCCTCAATTCTCG -ACGGAAACAAGGCCTCAATAGACG -ACGGAAACAAGGCCTCAAGTAACG -ACGGAAACAAGGCCTCAAACTTCG -ACGGAAACAAGGCCTCAATACGCA -ACGGAAACAAGGCCTCAACTTGCA -ACGGAAACAAGGCCTCAACGAACA -ACGGAAACAAGGCCTCAACAGTCA -ACGGAAACAAGGCCTCAAGATCCA -ACGGAAACAAGGCCTCAAACGACA -ACGGAAACAAGGCCTCAAAGCTCA -ACGGAAACAAGGCCTCAATCACGT -ACGGAAACAAGGCCTCAACGTAGT -ACGGAAACAAGGCCTCAAGTCAGT -ACGGAAACAAGGCCTCAAGAAGGT -ACGGAAACAAGGCCTCAAAACCGT -ACGGAAACAAGGCCTCAATTGTGC -ACGGAAACAAGGCCTCAACTAAGC -ACGGAAACAAGGCCTCAAACTAGC -ACGGAAACAAGGCCTCAAAGATGC -ACGGAAACAAGGCCTCAATGAAGG -ACGGAAACAAGGCCTCAACAATGG -ACGGAAACAAGGCCTCAAATGAGG -ACGGAAACAAGGCCTCAAAATGGG -ACGGAAACAAGGCCTCAATCCTGA -ACGGAAACAAGGCCTCAATAGCGA -ACGGAAACAAGGCCTCAACACAGA -ACGGAAACAAGGCCTCAAGCAAGA -ACGGAAACAAGGCCTCAAGGTTGA -ACGGAAACAAGGCCTCAATCCGAT -ACGGAAACAAGGCCTCAATGGCAT -ACGGAAACAAGGCCTCAACGAGAT -ACGGAAACAAGGCCTCAATACCAC -ACGGAAACAAGGCCTCAACAGAAC -ACGGAAACAAGGCCTCAAGTCTAC -ACGGAAACAAGGCCTCAAACGTAC -ACGGAAACAAGGCCTCAAAGTGAC -ACGGAAACAAGGCCTCAACTGTAG -ACGGAAACAAGGCCTCAACCTAAG -ACGGAAACAAGGCCTCAAGTTCAG -ACGGAAACAAGGCCTCAAGCATAG -ACGGAAACAAGGCCTCAAGACAAG -ACGGAAACAAGGCCTCAAAAGCAG -ACGGAAACAAGGCCTCAACGTCAA -ACGGAAACAAGGCCTCAAGCTGAA -ACGGAAACAAGGCCTCAAAGTACG -ACGGAAACAAGGCCTCAAATCCGA -ACGGAAACAAGGCCTCAAATGGGA -ACGGAAACAAGGCCTCAAGTGCAA -ACGGAAACAAGGCCTCAAGAGGAA -ACGGAAACAAGGCCTCAACAGGTA -ACGGAAACAAGGCCTCAAGACTCT -ACGGAAACAAGGCCTCAAAGTCCT -ACGGAAACAAGGCCTCAATAAGCC -ACGGAAACAAGGCCTCAAATAGCC -ACGGAAACAAGGCCTCAATAACCG -ACGGAAACAAGGCCTCAAATGCCA -ACGGAAACAAGGACTGCTGGAAAC -ACGGAAACAAGGACTGCTAACACC -ACGGAAACAAGGACTGCTATCGAG -ACGGAAACAAGGACTGCTCTCCTT -ACGGAAACAAGGACTGCTCCTGTT -ACGGAAACAAGGACTGCTCGGTTT -ACGGAAACAAGGACTGCTGTGGTT -ACGGAAACAAGGACTGCTGCCTTT -ACGGAAACAAGGACTGCTGGTCTT -ACGGAAACAAGGACTGCTACGCTT -ACGGAAACAAGGACTGCTAGCGTT -ACGGAAACAAGGACTGCTTTCGTC -ACGGAAACAAGGACTGCTTCTCTC -ACGGAAACAAGGACTGCTTGGATC -ACGGAAACAAGGACTGCTCACTTC -ACGGAAACAAGGACTGCTGTACTC -ACGGAAACAAGGACTGCTGATGTC -ACGGAAACAAGGACTGCTACAGTC -ACGGAAACAAGGACTGCTTTGCTG -ACGGAAACAAGGACTGCTTCCATG -ACGGAAACAAGGACTGCTTGTGTG -ACGGAAACAAGGACTGCTCTAGTG -ACGGAAACAAGGACTGCTCATCTG -ACGGAAACAAGGACTGCTGAGTTG -ACGGAAACAAGGACTGCTAGACTG -ACGGAAACAAGGACTGCTTCGGTA -ACGGAAACAAGGACTGCTTGCCTA -ACGGAAACAAGGACTGCTCCACTA -ACGGAAACAAGGACTGCTGGAGTA -ACGGAAACAAGGACTGCTTCGTCT -ACGGAAACAAGGACTGCTTGCACT -ACGGAAACAAGGACTGCTCTGACT -ACGGAAACAAGGACTGCTCAACCT -ACGGAAACAAGGACTGCTGCTACT -ACGGAAACAAGGACTGCTGGATCT -ACGGAAACAAGGACTGCTAAGGCT -ACGGAAACAAGGACTGCTTCAACC -ACGGAAACAAGGACTGCTTGTTCC -ACGGAAACAAGGACTGCTATTCCC -ACGGAAACAAGGACTGCTTTCTCG -ACGGAAACAAGGACTGCTTAGACG -ACGGAAACAAGGACTGCTGTAACG -ACGGAAACAAGGACTGCTACTTCG -ACGGAAACAAGGACTGCTTACGCA -ACGGAAACAAGGACTGCTCTTGCA -ACGGAAACAAGGACTGCTCGAACA -ACGGAAACAAGGACTGCTCAGTCA -ACGGAAACAAGGACTGCTGATCCA -ACGGAAACAAGGACTGCTACGACA -ACGGAAACAAGGACTGCTAGCTCA -ACGGAAACAAGGACTGCTTCACGT -ACGGAAACAAGGACTGCTCGTAGT -ACGGAAACAAGGACTGCTGTCAGT -ACGGAAACAAGGACTGCTGAAGGT -ACGGAAACAAGGACTGCTAACCGT -ACGGAAACAAGGACTGCTTTGTGC -ACGGAAACAAGGACTGCTCTAAGC -ACGGAAACAAGGACTGCTACTAGC -ACGGAAACAAGGACTGCTAGATGC -ACGGAAACAAGGACTGCTTGAAGG -ACGGAAACAAGGACTGCTCAATGG -ACGGAAACAAGGACTGCTATGAGG -ACGGAAACAAGGACTGCTAATGGG -ACGGAAACAAGGACTGCTTCCTGA -ACGGAAACAAGGACTGCTTAGCGA -ACGGAAACAAGGACTGCTCACAGA -ACGGAAACAAGGACTGCTGCAAGA -ACGGAAACAAGGACTGCTGGTTGA -ACGGAAACAAGGACTGCTTCCGAT -ACGGAAACAAGGACTGCTTGGCAT -ACGGAAACAAGGACTGCTCGAGAT -ACGGAAACAAGGACTGCTTACCAC -ACGGAAACAAGGACTGCTCAGAAC -ACGGAAACAAGGACTGCTGTCTAC -ACGGAAACAAGGACTGCTACGTAC -ACGGAAACAAGGACTGCTAGTGAC -ACGGAAACAAGGACTGCTCTGTAG -ACGGAAACAAGGACTGCTCCTAAG -ACGGAAACAAGGACTGCTGTTCAG -ACGGAAACAAGGACTGCTGCATAG -ACGGAAACAAGGACTGCTGACAAG -ACGGAAACAAGGACTGCTAAGCAG -ACGGAAACAAGGACTGCTCGTCAA -ACGGAAACAAGGACTGCTGCTGAA -ACGGAAACAAGGACTGCTAGTACG -ACGGAAACAAGGACTGCTATCCGA -ACGGAAACAAGGACTGCTATGGGA -ACGGAAACAAGGACTGCTGTGCAA -ACGGAAACAAGGACTGCTGAGGAA -ACGGAAACAAGGACTGCTCAGGTA -ACGGAAACAAGGACTGCTGACTCT -ACGGAAACAAGGACTGCTAGTCCT -ACGGAAACAAGGACTGCTTAAGCC -ACGGAAACAAGGACTGCTATAGCC -ACGGAAACAAGGACTGCTTAACCG -ACGGAAACAAGGACTGCTATGCCA -ACGGAAACAAGGTCTGGAGGAAAC -ACGGAAACAAGGTCTGGAAACACC -ACGGAAACAAGGTCTGGAATCGAG -ACGGAAACAAGGTCTGGACTCCTT -ACGGAAACAAGGTCTGGACCTGTT -ACGGAAACAAGGTCTGGACGGTTT -ACGGAAACAAGGTCTGGAGTGGTT -ACGGAAACAAGGTCTGGAGCCTTT -ACGGAAACAAGGTCTGGAGGTCTT -ACGGAAACAAGGTCTGGAACGCTT -ACGGAAACAAGGTCTGGAAGCGTT -ACGGAAACAAGGTCTGGATTCGTC -ACGGAAACAAGGTCTGGATCTCTC -ACGGAAACAAGGTCTGGATGGATC -ACGGAAACAAGGTCTGGACACTTC -ACGGAAACAAGGTCTGGAGTACTC -ACGGAAACAAGGTCTGGAGATGTC -ACGGAAACAAGGTCTGGAACAGTC -ACGGAAACAAGGTCTGGATTGCTG -ACGGAAACAAGGTCTGGATCCATG -ACGGAAACAAGGTCTGGATGTGTG -ACGGAAACAAGGTCTGGACTAGTG -ACGGAAACAAGGTCTGGACATCTG -ACGGAAACAAGGTCTGGAGAGTTG -ACGGAAACAAGGTCTGGAAGACTG -ACGGAAACAAGGTCTGGATCGGTA -ACGGAAACAAGGTCTGGATGCCTA -ACGGAAACAAGGTCTGGACCACTA -ACGGAAACAAGGTCTGGAGGAGTA -ACGGAAACAAGGTCTGGATCGTCT -ACGGAAACAAGGTCTGGATGCACT -ACGGAAACAAGGTCTGGACTGACT -ACGGAAACAAGGTCTGGACAACCT -ACGGAAACAAGGTCTGGAGCTACT -ACGGAAACAAGGTCTGGAGGATCT -ACGGAAACAAGGTCTGGAAAGGCT -ACGGAAACAAGGTCTGGATCAACC -ACGGAAACAAGGTCTGGATGTTCC -ACGGAAACAAGGTCTGGAATTCCC -ACGGAAACAAGGTCTGGATTCTCG -ACGGAAACAAGGTCTGGATAGACG -ACGGAAACAAGGTCTGGAGTAACG -ACGGAAACAAGGTCTGGAACTTCG -ACGGAAACAAGGTCTGGATACGCA -ACGGAAACAAGGTCTGGACTTGCA -ACGGAAACAAGGTCTGGACGAACA -ACGGAAACAAGGTCTGGACAGTCA -ACGGAAACAAGGTCTGGAGATCCA -ACGGAAACAAGGTCTGGAACGACA -ACGGAAACAAGGTCTGGAAGCTCA -ACGGAAACAAGGTCTGGATCACGT -ACGGAAACAAGGTCTGGACGTAGT -ACGGAAACAAGGTCTGGAGTCAGT -ACGGAAACAAGGTCTGGAGAAGGT -ACGGAAACAAGGTCTGGAAACCGT -ACGGAAACAAGGTCTGGATTGTGC -ACGGAAACAAGGTCTGGACTAAGC -ACGGAAACAAGGTCTGGAACTAGC -ACGGAAACAAGGTCTGGAAGATGC -ACGGAAACAAGGTCTGGATGAAGG -ACGGAAACAAGGTCTGGACAATGG -ACGGAAACAAGGTCTGGAATGAGG -ACGGAAACAAGGTCTGGAAATGGG -ACGGAAACAAGGTCTGGATCCTGA -ACGGAAACAAGGTCTGGATAGCGA -ACGGAAACAAGGTCTGGACACAGA -ACGGAAACAAGGTCTGGAGCAAGA -ACGGAAACAAGGTCTGGAGGTTGA -ACGGAAACAAGGTCTGGATCCGAT -ACGGAAACAAGGTCTGGATGGCAT -ACGGAAACAAGGTCTGGACGAGAT -ACGGAAACAAGGTCTGGATACCAC -ACGGAAACAAGGTCTGGACAGAAC -ACGGAAACAAGGTCTGGAGTCTAC -ACGGAAACAAGGTCTGGAACGTAC -ACGGAAACAAGGTCTGGAAGTGAC -ACGGAAACAAGGTCTGGACTGTAG -ACGGAAACAAGGTCTGGACCTAAG -ACGGAAACAAGGTCTGGAGTTCAG -ACGGAAACAAGGTCTGGAGCATAG -ACGGAAACAAGGTCTGGAGACAAG -ACGGAAACAAGGTCTGGAAAGCAG -ACGGAAACAAGGTCTGGACGTCAA -ACGGAAACAAGGTCTGGAGCTGAA -ACGGAAACAAGGTCTGGAAGTACG -ACGGAAACAAGGTCTGGAATCCGA -ACGGAAACAAGGTCTGGAATGGGA -ACGGAAACAAGGTCTGGAGTGCAA -ACGGAAACAAGGTCTGGAGAGGAA -ACGGAAACAAGGTCTGGACAGGTA -ACGGAAACAAGGTCTGGAGACTCT -ACGGAAACAAGGTCTGGAAGTCCT -ACGGAAACAAGGTCTGGATAAGCC -ACGGAAACAAGGTCTGGAATAGCC -ACGGAAACAAGGTCTGGATAACCG -ACGGAAACAAGGTCTGGAATGCCA -ACGGAAACAAGGGCTAAGGGAAAC -ACGGAAACAAGGGCTAAGAACACC -ACGGAAACAAGGGCTAAGATCGAG -ACGGAAACAAGGGCTAAGCTCCTT -ACGGAAACAAGGGCTAAGCCTGTT -ACGGAAACAAGGGCTAAGCGGTTT -ACGGAAACAAGGGCTAAGGTGGTT -ACGGAAACAAGGGCTAAGGCCTTT -ACGGAAACAAGGGCTAAGGGTCTT -ACGGAAACAAGGGCTAAGACGCTT -ACGGAAACAAGGGCTAAGAGCGTT -ACGGAAACAAGGGCTAAGTTCGTC -ACGGAAACAAGGGCTAAGTCTCTC -ACGGAAACAAGGGCTAAGTGGATC -ACGGAAACAAGGGCTAAGCACTTC -ACGGAAACAAGGGCTAAGGTACTC -ACGGAAACAAGGGCTAAGGATGTC -ACGGAAACAAGGGCTAAGACAGTC -ACGGAAACAAGGGCTAAGTTGCTG -ACGGAAACAAGGGCTAAGTCCATG -ACGGAAACAAGGGCTAAGTGTGTG -ACGGAAACAAGGGCTAAGCTAGTG -ACGGAAACAAGGGCTAAGCATCTG -ACGGAAACAAGGGCTAAGGAGTTG -ACGGAAACAAGGGCTAAGAGACTG -ACGGAAACAAGGGCTAAGTCGGTA -ACGGAAACAAGGGCTAAGTGCCTA -ACGGAAACAAGGGCTAAGCCACTA -ACGGAAACAAGGGCTAAGGGAGTA -ACGGAAACAAGGGCTAAGTCGTCT -ACGGAAACAAGGGCTAAGTGCACT -ACGGAAACAAGGGCTAAGCTGACT -ACGGAAACAAGGGCTAAGCAACCT -ACGGAAACAAGGGCTAAGGCTACT -ACGGAAACAAGGGCTAAGGGATCT -ACGGAAACAAGGGCTAAGAAGGCT -ACGGAAACAAGGGCTAAGTCAACC -ACGGAAACAAGGGCTAAGTGTTCC -ACGGAAACAAGGGCTAAGATTCCC -ACGGAAACAAGGGCTAAGTTCTCG -ACGGAAACAAGGGCTAAGTAGACG -ACGGAAACAAGGGCTAAGGTAACG -ACGGAAACAAGGGCTAAGACTTCG -ACGGAAACAAGGGCTAAGTACGCA -ACGGAAACAAGGGCTAAGCTTGCA -ACGGAAACAAGGGCTAAGCGAACA -ACGGAAACAAGGGCTAAGCAGTCA -ACGGAAACAAGGGCTAAGGATCCA -ACGGAAACAAGGGCTAAGACGACA -ACGGAAACAAGGGCTAAGAGCTCA -ACGGAAACAAGGGCTAAGTCACGT -ACGGAAACAAGGGCTAAGCGTAGT -ACGGAAACAAGGGCTAAGGTCAGT -ACGGAAACAAGGGCTAAGGAAGGT -ACGGAAACAAGGGCTAAGAACCGT -ACGGAAACAAGGGCTAAGTTGTGC -ACGGAAACAAGGGCTAAGCTAAGC -ACGGAAACAAGGGCTAAGACTAGC -ACGGAAACAAGGGCTAAGAGATGC -ACGGAAACAAGGGCTAAGTGAAGG -ACGGAAACAAGGGCTAAGCAATGG -ACGGAAACAAGGGCTAAGATGAGG -ACGGAAACAAGGGCTAAGAATGGG -ACGGAAACAAGGGCTAAGTCCTGA -ACGGAAACAAGGGCTAAGTAGCGA -ACGGAAACAAGGGCTAAGCACAGA -ACGGAAACAAGGGCTAAGGCAAGA -ACGGAAACAAGGGCTAAGGGTTGA -ACGGAAACAAGGGCTAAGTCCGAT -ACGGAAACAAGGGCTAAGTGGCAT -ACGGAAACAAGGGCTAAGCGAGAT -ACGGAAACAAGGGCTAAGTACCAC -ACGGAAACAAGGGCTAAGCAGAAC -ACGGAAACAAGGGCTAAGGTCTAC -ACGGAAACAAGGGCTAAGACGTAC -ACGGAAACAAGGGCTAAGAGTGAC -ACGGAAACAAGGGCTAAGCTGTAG -ACGGAAACAAGGGCTAAGCCTAAG -ACGGAAACAAGGGCTAAGGTTCAG -ACGGAAACAAGGGCTAAGGCATAG -ACGGAAACAAGGGCTAAGGACAAG -ACGGAAACAAGGGCTAAGAAGCAG -ACGGAAACAAGGGCTAAGCGTCAA -ACGGAAACAAGGGCTAAGGCTGAA -ACGGAAACAAGGGCTAAGAGTACG -ACGGAAACAAGGGCTAAGATCCGA -ACGGAAACAAGGGCTAAGATGGGA -ACGGAAACAAGGGCTAAGGTGCAA -ACGGAAACAAGGGCTAAGGAGGAA -ACGGAAACAAGGGCTAAGCAGGTA -ACGGAAACAAGGGCTAAGGACTCT -ACGGAAACAAGGGCTAAGAGTCCT -ACGGAAACAAGGGCTAAGTAAGCC -ACGGAAACAAGGGCTAAGATAGCC -ACGGAAACAAGGGCTAAGTAACCG -ACGGAAACAAGGGCTAAGATGCCA -ACGGAAACAAGGACCTCAGGAAAC -ACGGAAACAAGGACCTCAAACACC -ACGGAAACAAGGACCTCAATCGAG -ACGGAAACAAGGACCTCACTCCTT -ACGGAAACAAGGACCTCACCTGTT -ACGGAAACAAGGACCTCACGGTTT -ACGGAAACAAGGACCTCAGTGGTT -ACGGAAACAAGGACCTCAGCCTTT -ACGGAAACAAGGACCTCAGGTCTT -ACGGAAACAAGGACCTCAACGCTT -ACGGAAACAAGGACCTCAAGCGTT -ACGGAAACAAGGACCTCATTCGTC -ACGGAAACAAGGACCTCATCTCTC -ACGGAAACAAGGACCTCATGGATC -ACGGAAACAAGGACCTCACACTTC -ACGGAAACAAGGACCTCAGTACTC -ACGGAAACAAGGACCTCAGATGTC -ACGGAAACAAGGACCTCAACAGTC -ACGGAAACAAGGACCTCATTGCTG -ACGGAAACAAGGACCTCATCCATG -ACGGAAACAAGGACCTCATGTGTG -ACGGAAACAAGGACCTCACTAGTG -ACGGAAACAAGGACCTCACATCTG -ACGGAAACAAGGACCTCAGAGTTG -ACGGAAACAAGGACCTCAAGACTG -ACGGAAACAAGGACCTCATCGGTA -ACGGAAACAAGGACCTCATGCCTA -ACGGAAACAAGGACCTCACCACTA -ACGGAAACAAGGACCTCAGGAGTA -ACGGAAACAAGGACCTCATCGTCT -ACGGAAACAAGGACCTCATGCACT -ACGGAAACAAGGACCTCACTGACT -ACGGAAACAAGGACCTCACAACCT -ACGGAAACAAGGACCTCAGCTACT -ACGGAAACAAGGACCTCAGGATCT -ACGGAAACAAGGACCTCAAAGGCT -ACGGAAACAAGGACCTCATCAACC -ACGGAAACAAGGACCTCATGTTCC -ACGGAAACAAGGACCTCAATTCCC -ACGGAAACAAGGACCTCATTCTCG -ACGGAAACAAGGACCTCATAGACG -ACGGAAACAAGGACCTCAGTAACG -ACGGAAACAAGGACCTCAACTTCG -ACGGAAACAAGGACCTCATACGCA -ACGGAAACAAGGACCTCACTTGCA -ACGGAAACAAGGACCTCACGAACA -ACGGAAACAAGGACCTCACAGTCA -ACGGAAACAAGGACCTCAGATCCA -ACGGAAACAAGGACCTCAACGACA -ACGGAAACAAGGACCTCAAGCTCA -ACGGAAACAAGGACCTCATCACGT -ACGGAAACAAGGACCTCACGTAGT -ACGGAAACAAGGACCTCAGTCAGT -ACGGAAACAAGGACCTCAGAAGGT -ACGGAAACAAGGACCTCAAACCGT -ACGGAAACAAGGACCTCATTGTGC -ACGGAAACAAGGACCTCACTAAGC -ACGGAAACAAGGACCTCAACTAGC -ACGGAAACAAGGACCTCAAGATGC -ACGGAAACAAGGACCTCATGAAGG -ACGGAAACAAGGACCTCACAATGG -ACGGAAACAAGGACCTCAATGAGG -ACGGAAACAAGGACCTCAAATGGG -ACGGAAACAAGGACCTCATCCTGA -ACGGAAACAAGGACCTCATAGCGA -ACGGAAACAAGGACCTCACACAGA -ACGGAAACAAGGACCTCAGCAAGA -ACGGAAACAAGGACCTCAGGTTGA -ACGGAAACAAGGACCTCATCCGAT -ACGGAAACAAGGACCTCATGGCAT -ACGGAAACAAGGACCTCACGAGAT -ACGGAAACAAGGACCTCATACCAC -ACGGAAACAAGGACCTCACAGAAC -ACGGAAACAAGGACCTCAGTCTAC -ACGGAAACAAGGACCTCAACGTAC -ACGGAAACAAGGACCTCAAGTGAC -ACGGAAACAAGGACCTCACTGTAG -ACGGAAACAAGGACCTCACCTAAG -ACGGAAACAAGGACCTCAGTTCAG -ACGGAAACAAGGACCTCAGCATAG -ACGGAAACAAGGACCTCAGACAAG -ACGGAAACAAGGACCTCAAAGCAG -ACGGAAACAAGGACCTCACGTCAA -ACGGAAACAAGGACCTCAGCTGAA -ACGGAAACAAGGACCTCAAGTACG -ACGGAAACAAGGACCTCAATCCGA -ACGGAAACAAGGACCTCAATGGGA -ACGGAAACAAGGACCTCAGTGCAA -ACGGAAACAAGGACCTCAGAGGAA -ACGGAAACAAGGACCTCACAGGTA -ACGGAAACAAGGACCTCAGACTCT -ACGGAAACAAGGACCTCAAGTCCT -ACGGAAACAAGGACCTCATAAGCC -ACGGAAACAAGGACCTCAATAGCC -ACGGAAACAAGGACCTCATAACCG -ACGGAAACAAGGACCTCAATGCCA -ACGGAAACAAGGTCCTGTGGAAAC -ACGGAAACAAGGTCCTGTAACACC -ACGGAAACAAGGTCCTGTATCGAG -ACGGAAACAAGGTCCTGTCTCCTT -ACGGAAACAAGGTCCTGTCCTGTT -ACGGAAACAAGGTCCTGTCGGTTT -ACGGAAACAAGGTCCTGTGTGGTT -ACGGAAACAAGGTCCTGTGCCTTT -ACGGAAACAAGGTCCTGTGGTCTT -ACGGAAACAAGGTCCTGTACGCTT -ACGGAAACAAGGTCCTGTAGCGTT -ACGGAAACAAGGTCCTGTTTCGTC -ACGGAAACAAGGTCCTGTTCTCTC -ACGGAAACAAGGTCCTGTTGGATC -ACGGAAACAAGGTCCTGTCACTTC -ACGGAAACAAGGTCCTGTGTACTC -ACGGAAACAAGGTCCTGTGATGTC -ACGGAAACAAGGTCCTGTACAGTC -ACGGAAACAAGGTCCTGTTTGCTG -ACGGAAACAAGGTCCTGTTCCATG -ACGGAAACAAGGTCCTGTTGTGTG -ACGGAAACAAGGTCCTGTCTAGTG -ACGGAAACAAGGTCCTGTCATCTG -ACGGAAACAAGGTCCTGTGAGTTG -ACGGAAACAAGGTCCTGTAGACTG -ACGGAAACAAGGTCCTGTTCGGTA -ACGGAAACAAGGTCCTGTTGCCTA -ACGGAAACAAGGTCCTGTCCACTA -ACGGAAACAAGGTCCTGTGGAGTA -ACGGAAACAAGGTCCTGTTCGTCT -ACGGAAACAAGGTCCTGTTGCACT -ACGGAAACAAGGTCCTGTCTGACT -ACGGAAACAAGGTCCTGTCAACCT -ACGGAAACAAGGTCCTGTGCTACT -ACGGAAACAAGGTCCTGTGGATCT -ACGGAAACAAGGTCCTGTAAGGCT -ACGGAAACAAGGTCCTGTTCAACC -ACGGAAACAAGGTCCTGTTGTTCC -ACGGAAACAAGGTCCTGTATTCCC -ACGGAAACAAGGTCCTGTTTCTCG -ACGGAAACAAGGTCCTGTTAGACG -ACGGAAACAAGGTCCTGTGTAACG -ACGGAAACAAGGTCCTGTACTTCG -ACGGAAACAAGGTCCTGTTACGCA -ACGGAAACAAGGTCCTGTCTTGCA -ACGGAAACAAGGTCCTGTCGAACA -ACGGAAACAAGGTCCTGTCAGTCA -ACGGAAACAAGGTCCTGTGATCCA -ACGGAAACAAGGTCCTGTACGACA -ACGGAAACAAGGTCCTGTAGCTCA -ACGGAAACAAGGTCCTGTTCACGT -ACGGAAACAAGGTCCTGTCGTAGT -ACGGAAACAAGGTCCTGTGTCAGT -ACGGAAACAAGGTCCTGTGAAGGT -ACGGAAACAAGGTCCTGTAACCGT -ACGGAAACAAGGTCCTGTTTGTGC -ACGGAAACAAGGTCCTGTCTAAGC -ACGGAAACAAGGTCCTGTACTAGC -ACGGAAACAAGGTCCTGTAGATGC -ACGGAAACAAGGTCCTGTTGAAGG -ACGGAAACAAGGTCCTGTCAATGG -ACGGAAACAAGGTCCTGTATGAGG -ACGGAAACAAGGTCCTGTAATGGG -ACGGAAACAAGGTCCTGTTCCTGA -ACGGAAACAAGGTCCTGTTAGCGA -ACGGAAACAAGGTCCTGTCACAGA -ACGGAAACAAGGTCCTGTGCAAGA -ACGGAAACAAGGTCCTGTGGTTGA -ACGGAAACAAGGTCCTGTTCCGAT -ACGGAAACAAGGTCCTGTTGGCAT -ACGGAAACAAGGTCCTGTCGAGAT -ACGGAAACAAGGTCCTGTTACCAC -ACGGAAACAAGGTCCTGTCAGAAC -ACGGAAACAAGGTCCTGTGTCTAC -ACGGAAACAAGGTCCTGTACGTAC -ACGGAAACAAGGTCCTGTAGTGAC -ACGGAAACAAGGTCCTGTCTGTAG -ACGGAAACAAGGTCCTGTCCTAAG -ACGGAAACAAGGTCCTGTGTTCAG -ACGGAAACAAGGTCCTGTGCATAG -ACGGAAACAAGGTCCTGTGACAAG -ACGGAAACAAGGTCCTGTAAGCAG -ACGGAAACAAGGTCCTGTCGTCAA -ACGGAAACAAGGTCCTGTGCTGAA -ACGGAAACAAGGTCCTGTAGTACG -ACGGAAACAAGGTCCTGTATCCGA -ACGGAAACAAGGTCCTGTATGGGA -ACGGAAACAAGGTCCTGTGTGCAA -ACGGAAACAAGGTCCTGTGAGGAA -ACGGAAACAAGGTCCTGTCAGGTA -ACGGAAACAAGGTCCTGTGACTCT -ACGGAAACAAGGTCCTGTAGTCCT -ACGGAAACAAGGTCCTGTTAAGCC -ACGGAAACAAGGTCCTGTATAGCC -ACGGAAACAAGGTCCTGTTAACCG -ACGGAAACAAGGTCCTGTATGCCA -ACGGAAACAAGGCCCATTGGAAAC -ACGGAAACAAGGCCCATTAACACC -ACGGAAACAAGGCCCATTATCGAG -ACGGAAACAAGGCCCATTCTCCTT -ACGGAAACAAGGCCCATTCCTGTT -ACGGAAACAAGGCCCATTCGGTTT -ACGGAAACAAGGCCCATTGTGGTT -ACGGAAACAAGGCCCATTGCCTTT -ACGGAAACAAGGCCCATTGGTCTT -ACGGAAACAAGGCCCATTACGCTT -ACGGAAACAAGGCCCATTAGCGTT -ACGGAAACAAGGCCCATTTTCGTC -ACGGAAACAAGGCCCATTTCTCTC -ACGGAAACAAGGCCCATTTGGATC -ACGGAAACAAGGCCCATTCACTTC -ACGGAAACAAGGCCCATTGTACTC -ACGGAAACAAGGCCCATTGATGTC -ACGGAAACAAGGCCCATTACAGTC -ACGGAAACAAGGCCCATTTTGCTG -ACGGAAACAAGGCCCATTTCCATG -ACGGAAACAAGGCCCATTTGTGTG -ACGGAAACAAGGCCCATTCTAGTG -ACGGAAACAAGGCCCATTCATCTG -ACGGAAACAAGGCCCATTGAGTTG -ACGGAAACAAGGCCCATTAGACTG -ACGGAAACAAGGCCCATTTCGGTA -ACGGAAACAAGGCCCATTTGCCTA -ACGGAAACAAGGCCCATTCCACTA -ACGGAAACAAGGCCCATTGGAGTA -ACGGAAACAAGGCCCATTTCGTCT -ACGGAAACAAGGCCCATTTGCACT -ACGGAAACAAGGCCCATTCTGACT -ACGGAAACAAGGCCCATTCAACCT -ACGGAAACAAGGCCCATTGCTACT -ACGGAAACAAGGCCCATTGGATCT -ACGGAAACAAGGCCCATTAAGGCT -ACGGAAACAAGGCCCATTTCAACC -ACGGAAACAAGGCCCATTTGTTCC -ACGGAAACAAGGCCCATTATTCCC -ACGGAAACAAGGCCCATTTTCTCG -ACGGAAACAAGGCCCATTTAGACG -ACGGAAACAAGGCCCATTGTAACG -ACGGAAACAAGGCCCATTACTTCG -ACGGAAACAAGGCCCATTTACGCA -ACGGAAACAAGGCCCATTCTTGCA -ACGGAAACAAGGCCCATTCGAACA -ACGGAAACAAGGCCCATTCAGTCA -ACGGAAACAAGGCCCATTGATCCA -ACGGAAACAAGGCCCATTACGACA -ACGGAAACAAGGCCCATTAGCTCA -ACGGAAACAAGGCCCATTTCACGT -ACGGAAACAAGGCCCATTCGTAGT -ACGGAAACAAGGCCCATTGTCAGT -ACGGAAACAAGGCCCATTGAAGGT -ACGGAAACAAGGCCCATTAACCGT -ACGGAAACAAGGCCCATTTTGTGC -ACGGAAACAAGGCCCATTCTAAGC -ACGGAAACAAGGCCCATTACTAGC -ACGGAAACAAGGCCCATTAGATGC -ACGGAAACAAGGCCCATTTGAAGG -ACGGAAACAAGGCCCATTCAATGG -ACGGAAACAAGGCCCATTATGAGG -ACGGAAACAAGGCCCATTAATGGG -ACGGAAACAAGGCCCATTTCCTGA -ACGGAAACAAGGCCCATTTAGCGA -ACGGAAACAAGGCCCATTCACAGA -ACGGAAACAAGGCCCATTGCAAGA -ACGGAAACAAGGCCCATTGGTTGA -ACGGAAACAAGGCCCATTTCCGAT -ACGGAAACAAGGCCCATTTGGCAT -ACGGAAACAAGGCCCATTCGAGAT -ACGGAAACAAGGCCCATTTACCAC -ACGGAAACAAGGCCCATTCAGAAC -ACGGAAACAAGGCCCATTGTCTAC -ACGGAAACAAGGCCCATTACGTAC -ACGGAAACAAGGCCCATTAGTGAC -ACGGAAACAAGGCCCATTCTGTAG -ACGGAAACAAGGCCCATTCCTAAG -ACGGAAACAAGGCCCATTGTTCAG -ACGGAAACAAGGCCCATTGCATAG -ACGGAAACAAGGCCCATTGACAAG -ACGGAAACAAGGCCCATTAAGCAG -ACGGAAACAAGGCCCATTCGTCAA -ACGGAAACAAGGCCCATTGCTGAA -ACGGAAACAAGGCCCATTAGTACG -ACGGAAACAAGGCCCATTATCCGA -ACGGAAACAAGGCCCATTATGGGA -ACGGAAACAAGGCCCATTGTGCAA -ACGGAAACAAGGCCCATTGAGGAA -ACGGAAACAAGGCCCATTCAGGTA -ACGGAAACAAGGCCCATTGACTCT -ACGGAAACAAGGCCCATTAGTCCT -ACGGAAACAAGGCCCATTTAAGCC -ACGGAAACAAGGCCCATTATAGCC -ACGGAAACAAGGCCCATTTAACCG -ACGGAAACAAGGCCCATTATGCCA -ACGGAAACAAGGTCGTTCGGAAAC -ACGGAAACAAGGTCGTTCAACACC -ACGGAAACAAGGTCGTTCATCGAG -ACGGAAACAAGGTCGTTCCTCCTT -ACGGAAACAAGGTCGTTCCCTGTT -ACGGAAACAAGGTCGTTCCGGTTT -ACGGAAACAAGGTCGTTCGTGGTT -ACGGAAACAAGGTCGTTCGCCTTT -ACGGAAACAAGGTCGTTCGGTCTT -ACGGAAACAAGGTCGTTCACGCTT -ACGGAAACAAGGTCGTTCAGCGTT -ACGGAAACAAGGTCGTTCTTCGTC -ACGGAAACAAGGTCGTTCTCTCTC -ACGGAAACAAGGTCGTTCTGGATC -ACGGAAACAAGGTCGTTCCACTTC -ACGGAAACAAGGTCGTTCGTACTC -ACGGAAACAAGGTCGTTCGATGTC -ACGGAAACAAGGTCGTTCACAGTC -ACGGAAACAAGGTCGTTCTTGCTG -ACGGAAACAAGGTCGTTCTCCATG -ACGGAAACAAGGTCGTTCTGTGTG -ACGGAAACAAGGTCGTTCCTAGTG -ACGGAAACAAGGTCGTTCCATCTG -ACGGAAACAAGGTCGTTCGAGTTG -ACGGAAACAAGGTCGTTCAGACTG -ACGGAAACAAGGTCGTTCTCGGTA -ACGGAAACAAGGTCGTTCTGCCTA -ACGGAAACAAGGTCGTTCCCACTA -ACGGAAACAAGGTCGTTCGGAGTA -ACGGAAACAAGGTCGTTCTCGTCT -ACGGAAACAAGGTCGTTCTGCACT -ACGGAAACAAGGTCGTTCCTGACT -ACGGAAACAAGGTCGTTCCAACCT -ACGGAAACAAGGTCGTTCGCTACT -ACGGAAACAAGGTCGTTCGGATCT -ACGGAAACAAGGTCGTTCAAGGCT -ACGGAAACAAGGTCGTTCTCAACC -ACGGAAACAAGGTCGTTCTGTTCC -ACGGAAACAAGGTCGTTCATTCCC -ACGGAAACAAGGTCGTTCTTCTCG -ACGGAAACAAGGTCGTTCTAGACG -ACGGAAACAAGGTCGTTCGTAACG -ACGGAAACAAGGTCGTTCACTTCG -ACGGAAACAAGGTCGTTCTACGCA -ACGGAAACAAGGTCGTTCCTTGCA -ACGGAAACAAGGTCGTTCCGAACA -ACGGAAACAAGGTCGTTCCAGTCA -ACGGAAACAAGGTCGTTCGATCCA -ACGGAAACAAGGTCGTTCACGACA -ACGGAAACAAGGTCGTTCAGCTCA -ACGGAAACAAGGTCGTTCTCACGT -ACGGAAACAAGGTCGTTCCGTAGT -ACGGAAACAAGGTCGTTCGTCAGT -ACGGAAACAAGGTCGTTCGAAGGT -ACGGAAACAAGGTCGTTCAACCGT -ACGGAAACAAGGTCGTTCTTGTGC -ACGGAAACAAGGTCGTTCCTAAGC -ACGGAAACAAGGTCGTTCACTAGC -ACGGAAACAAGGTCGTTCAGATGC -ACGGAAACAAGGTCGTTCTGAAGG -ACGGAAACAAGGTCGTTCCAATGG -ACGGAAACAAGGTCGTTCATGAGG -ACGGAAACAAGGTCGTTCAATGGG -ACGGAAACAAGGTCGTTCTCCTGA -ACGGAAACAAGGTCGTTCTAGCGA -ACGGAAACAAGGTCGTTCCACAGA -ACGGAAACAAGGTCGTTCGCAAGA -ACGGAAACAAGGTCGTTCGGTTGA -ACGGAAACAAGGTCGTTCTCCGAT -ACGGAAACAAGGTCGTTCTGGCAT -ACGGAAACAAGGTCGTTCCGAGAT -ACGGAAACAAGGTCGTTCTACCAC -ACGGAAACAAGGTCGTTCCAGAAC -ACGGAAACAAGGTCGTTCGTCTAC -ACGGAAACAAGGTCGTTCACGTAC -ACGGAAACAAGGTCGTTCAGTGAC -ACGGAAACAAGGTCGTTCCTGTAG -ACGGAAACAAGGTCGTTCCCTAAG -ACGGAAACAAGGTCGTTCGTTCAG -ACGGAAACAAGGTCGTTCGCATAG -ACGGAAACAAGGTCGTTCGACAAG -ACGGAAACAAGGTCGTTCAAGCAG -ACGGAAACAAGGTCGTTCCGTCAA -ACGGAAACAAGGTCGTTCGCTGAA -ACGGAAACAAGGTCGTTCAGTACG -ACGGAAACAAGGTCGTTCATCCGA -ACGGAAACAAGGTCGTTCATGGGA -ACGGAAACAAGGTCGTTCGTGCAA -ACGGAAACAAGGTCGTTCGAGGAA -ACGGAAACAAGGTCGTTCCAGGTA -ACGGAAACAAGGTCGTTCGACTCT -ACGGAAACAAGGTCGTTCAGTCCT -ACGGAAACAAGGTCGTTCTAAGCC -ACGGAAACAAGGTCGTTCATAGCC -ACGGAAACAAGGTCGTTCTAACCG -ACGGAAACAAGGTCGTTCATGCCA -ACGGAAACAAGGACGTAGGGAAAC -ACGGAAACAAGGACGTAGAACACC -ACGGAAACAAGGACGTAGATCGAG -ACGGAAACAAGGACGTAGCTCCTT -ACGGAAACAAGGACGTAGCCTGTT -ACGGAAACAAGGACGTAGCGGTTT -ACGGAAACAAGGACGTAGGTGGTT -ACGGAAACAAGGACGTAGGCCTTT -ACGGAAACAAGGACGTAGGGTCTT -ACGGAAACAAGGACGTAGACGCTT -ACGGAAACAAGGACGTAGAGCGTT -ACGGAAACAAGGACGTAGTTCGTC -ACGGAAACAAGGACGTAGTCTCTC -ACGGAAACAAGGACGTAGTGGATC -ACGGAAACAAGGACGTAGCACTTC -ACGGAAACAAGGACGTAGGTACTC -ACGGAAACAAGGACGTAGGATGTC -ACGGAAACAAGGACGTAGACAGTC -ACGGAAACAAGGACGTAGTTGCTG -ACGGAAACAAGGACGTAGTCCATG -ACGGAAACAAGGACGTAGTGTGTG -ACGGAAACAAGGACGTAGCTAGTG -ACGGAAACAAGGACGTAGCATCTG -ACGGAAACAAGGACGTAGGAGTTG -ACGGAAACAAGGACGTAGAGACTG -ACGGAAACAAGGACGTAGTCGGTA -ACGGAAACAAGGACGTAGTGCCTA -ACGGAAACAAGGACGTAGCCACTA -ACGGAAACAAGGACGTAGGGAGTA -ACGGAAACAAGGACGTAGTCGTCT -ACGGAAACAAGGACGTAGTGCACT -ACGGAAACAAGGACGTAGCTGACT -ACGGAAACAAGGACGTAGCAACCT -ACGGAAACAAGGACGTAGGCTACT -ACGGAAACAAGGACGTAGGGATCT -ACGGAAACAAGGACGTAGAAGGCT -ACGGAAACAAGGACGTAGTCAACC -ACGGAAACAAGGACGTAGTGTTCC -ACGGAAACAAGGACGTAGATTCCC -ACGGAAACAAGGACGTAGTTCTCG -ACGGAAACAAGGACGTAGTAGACG -ACGGAAACAAGGACGTAGGTAACG -ACGGAAACAAGGACGTAGACTTCG -ACGGAAACAAGGACGTAGTACGCA -ACGGAAACAAGGACGTAGCTTGCA -ACGGAAACAAGGACGTAGCGAACA -ACGGAAACAAGGACGTAGCAGTCA -ACGGAAACAAGGACGTAGGATCCA -ACGGAAACAAGGACGTAGACGACA -ACGGAAACAAGGACGTAGAGCTCA -ACGGAAACAAGGACGTAGTCACGT -ACGGAAACAAGGACGTAGCGTAGT -ACGGAAACAAGGACGTAGGTCAGT -ACGGAAACAAGGACGTAGGAAGGT -ACGGAAACAAGGACGTAGAACCGT -ACGGAAACAAGGACGTAGTTGTGC -ACGGAAACAAGGACGTAGCTAAGC -ACGGAAACAAGGACGTAGACTAGC -ACGGAAACAAGGACGTAGAGATGC -ACGGAAACAAGGACGTAGTGAAGG -ACGGAAACAAGGACGTAGCAATGG -ACGGAAACAAGGACGTAGATGAGG -ACGGAAACAAGGACGTAGAATGGG -ACGGAAACAAGGACGTAGTCCTGA -ACGGAAACAAGGACGTAGTAGCGA -ACGGAAACAAGGACGTAGCACAGA -ACGGAAACAAGGACGTAGGCAAGA -ACGGAAACAAGGACGTAGGGTTGA -ACGGAAACAAGGACGTAGTCCGAT -ACGGAAACAAGGACGTAGTGGCAT -ACGGAAACAAGGACGTAGCGAGAT -ACGGAAACAAGGACGTAGTACCAC -ACGGAAACAAGGACGTAGCAGAAC -ACGGAAACAAGGACGTAGGTCTAC -ACGGAAACAAGGACGTAGACGTAC -ACGGAAACAAGGACGTAGAGTGAC -ACGGAAACAAGGACGTAGCTGTAG -ACGGAAACAAGGACGTAGCCTAAG -ACGGAAACAAGGACGTAGGTTCAG -ACGGAAACAAGGACGTAGGCATAG -ACGGAAACAAGGACGTAGGACAAG -ACGGAAACAAGGACGTAGAAGCAG -ACGGAAACAAGGACGTAGCGTCAA -ACGGAAACAAGGACGTAGGCTGAA -ACGGAAACAAGGACGTAGAGTACG -ACGGAAACAAGGACGTAGATCCGA -ACGGAAACAAGGACGTAGATGGGA -ACGGAAACAAGGACGTAGGTGCAA -ACGGAAACAAGGACGTAGGAGGAA -ACGGAAACAAGGACGTAGCAGGTA -ACGGAAACAAGGACGTAGGACTCT -ACGGAAACAAGGACGTAGAGTCCT -ACGGAAACAAGGACGTAGTAAGCC -ACGGAAACAAGGACGTAGATAGCC -ACGGAAACAAGGACGTAGTAACCG -ACGGAAACAAGGACGTAGATGCCA -ACGGAAACAAGGACGGTAGGAAAC -ACGGAAACAAGGACGGTAAACACC -ACGGAAACAAGGACGGTAATCGAG -ACGGAAACAAGGACGGTACTCCTT -ACGGAAACAAGGACGGTACCTGTT -ACGGAAACAAGGACGGTACGGTTT -ACGGAAACAAGGACGGTAGTGGTT -ACGGAAACAAGGACGGTAGCCTTT -ACGGAAACAAGGACGGTAGGTCTT -ACGGAAACAAGGACGGTAACGCTT -ACGGAAACAAGGACGGTAAGCGTT -ACGGAAACAAGGACGGTATTCGTC -ACGGAAACAAGGACGGTATCTCTC -ACGGAAACAAGGACGGTATGGATC -ACGGAAACAAGGACGGTACACTTC -ACGGAAACAAGGACGGTAGTACTC -ACGGAAACAAGGACGGTAGATGTC -ACGGAAACAAGGACGGTAACAGTC -ACGGAAACAAGGACGGTATTGCTG -ACGGAAACAAGGACGGTATCCATG -ACGGAAACAAGGACGGTATGTGTG -ACGGAAACAAGGACGGTACTAGTG -ACGGAAACAAGGACGGTACATCTG -ACGGAAACAAGGACGGTAGAGTTG -ACGGAAACAAGGACGGTAAGACTG -ACGGAAACAAGGACGGTATCGGTA -ACGGAAACAAGGACGGTATGCCTA -ACGGAAACAAGGACGGTACCACTA -ACGGAAACAAGGACGGTAGGAGTA -ACGGAAACAAGGACGGTATCGTCT -ACGGAAACAAGGACGGTATGCACT -ACGGAAACAAGGACGGTACTGACT -ACGGAAACAAGGACGGTACAACCT -ACGGAAACAAGGACGGTAGCTACT -ACGGAAACAAGGACGGTAGGATCT -ACGGAAACAAGGACGGTAAAGGCT -ACGGAAACAAGGACGGTATCAACC -ACGGAAACAAGGACGGTATGTTCC -ACGGAAACAAGGACGGTAATTCCC -ACGGAAACAAGGACGGTATTCTCG -ACGGAAACAAGGACGGTATAGACG -ACGGAAACAAGGACGGTAGTAACG -ACGGAAACAAGGACGGTAACTTCG -ACGGAAACAAGGACGGTATACGCA -ACGGAAACAAGGACGGTACTTGCA -ACGGAAACAAGGACGGTACGAACA -ACGGAAACAAGGACGGTACAGTCA -ACGGAAACAAGGACGGTAGATCCA -ACGGAAACAAGGACGGTAACGACA -ACGGAAACAAGGACGGTAAGCTCA -ACGGAAACAAGGACGGTATCACGT -ACGGAAACAAGGACGGTACGTAGT -ACGGAAACAAGGACGGTAGTCAGT -ACGGAAACAAGGACGGTAGAAGGT -ACGGAAACAAGGACGGTAAACCGT -ACGGAAACAAGGACGGTATTGTGC -ACGGAAACAAGGACGGTACTAAGC -ACGGAAACAAGGACGGTAACTAGC -ACGGAAACAAGGACGGTAAGATGC -ACGGAAACAAGGACGGTATGAAGG -ACGGAAACAAGGACGGTACAATGG -ACGGAAACAAGGACGGTAATGAGG -ACGGAAACAAGGACGGTAAATGGG -ACGGAAACAAGGACGGTATCCTGA -ACGGAAACAAGGACGGTATAGCGA -ACGGAAACAAGGACGGTACACAGA -ACGGAAACAAGGACGGTAGCAAGA -ACGGAAACAAGGACGGTAGGTTGA -ACGGAAACAAGGACGGTATCCGAT -ACGGAAACAAGGACGGTATGGCAT -ACGGAAACAAGGACGGTACGAGAT -ACGGAAACAAGGACGGTATACCAC -ACGGAAACAAGGACGGTACAGAAC -ACGGAAACAAGGACGGTAGTCTAC -ACGGAAACAAGGACGGTAACGTAC -ACGGAAACAAGGACGGTAAGTGAC -ACGGAAACAAGGACGGTACTGTAG -ACGGAAACAAGGACGGTACCTAAG -ACGGAAACAAGGACGGTAGTTCAG -ACGGAAACAAGGACGGTAGCATAG -ACGGAAACAAGGACGGTAGACAAG -ACGGAAACAAGGACGGTAAAGCAG -ACGGAAACAAGGACGGTACGTCAA -ACGGAAACAAGGACGGTAGCTGAA -ACGGAAACAAGGACGGTAAGTACG -ACGGAAACAAGGACGGTAATCCGA -ACGGAAACAAGGACGGTAATGGGA -ACGGAAACAAGGACGGTAGTGCAA -ACGGAAACAAGGACGGTAGAGGAA -ACGGAAACAAGGACGGTACAGGTA -ACGGAAACAAGGACGGTAGACTCT -ACGGAAACAAGGACGGTAAGTCCT -ACGGAAACAAGGACGGTATAAGCC -ACGGAAACAAGGACGGTAATAGCC -ACGGAAACAAGGACGGTATAACCG -ACGGAAACAAGGACGGTAATGCCA -ACGGAAACAAGGTCGACTGGAAAC -ACGGAAACAAGGTCGACTAACACC -ACGGAAACAAGGTCGACTATCGAG -ACGGAAACAAGGTCGACTCTCCTT -ACGGAAACAAGGTCGACTCCTGTT -ACGGAAACAAGGTCGACTCGGTTT -ACGGAAACAAGGTCGACTGTGGTT -ACGGAAACAAGGTCGACTGCCTTT -ACGGAAACAAGGTCGACTGGTCTT -ACGGAAACAAGGTCGACTACGCTT -ACGGAAACAAGGTCGACTAGCGTT -ACGGAAACAAGGTCGACTTTCGTC -ACGGAAACAAGGTCGACTTCTCTC -ACGGAAACAAGGTCGACTTGGATC -ACGGAAACAAGGTCGACTCACTTC -ACGGAAACAAGGTCGACTGTACTC -ACGGAAACAAGGTCGACTGATGTC -ACGGAAACAAGGTCGACTACAGTC -ACGGAAACAAGGTCGACTTTGCTG -ACGGAAACAAGGTCGACTTCCATG -ACGGAAACAAGGTCGACTTGTGTG -ACGGAAACAAGGTCGACTCTAGTG -ACGGAAACAAGGTCGACTCATCTG -ACGGAAACAAGGTCGACTGAGTTG -ACGGAAACAAGGTCGACTAGACTG -ACGGAAACAAGGTCGACTTCGGTA -ACGGAAACAAGGTCGACTTGCCTA -ACGGAAACAAGGTCGACTCCACTA -ACGGAAACAAGGTCGACTGGAGTA -ACGGAAACAAGGTCGACTTCGTCT -ACGGAAACAAGGTCGACTTGCACT -ACGGAAACAAGGTCGACTCTGACT -ACGGAAACAAGGTCGACTCAACCT -ACGGAAACAAGGTCGACTGCTACT -ACGGAAACAAGGTCGACTGGATCT -ACGGAAACAAGGTCGACTAAGGCT -ACGGAAACAAGGTCGACTTCAACC -ACGGAAACAAGGTCGACTTGTTCC -ACGGAAACAAGGTCGACTATTCCC -ACGGAAACAAGGTCGACTTTCTCG -ACGGAAACAAGGTCGACTTAGACG -ACGGAAACAAGGTCGACTGTAACG -ACGGAAACAAGGTCGACTACTTCG -ACGGAAACAAGGTCGACTTACGCA -ACGGAAACAAGGTCGACTCTTGCA -ACGGAAACAAGGTCGACTCGAACA -ACGGAAACAAGGTCGACTCAGTCA -ACGGAAACAAGGTCGACTGATCCA -ACGGAAACAAGGTCGACTACGACA -ACGGAAACAAGGTCGACTAGCTCA -ACGGAAACAAGGTCGACTTCACGT -ACGGAAACAAGGTCGACTCGTAGT -ACGGAAACAAGGTCGACTGTCAGT -ACGGAAACAAGGTCGACTGAAGGT -ACGGAAACAAGGTCGACTAACCGT -ACGGAAACAAGGTCGACTTTGTGC -ACGGAAACAAGGTCGACTCTAAGC -ACGGAAACAAGGTCGACTACTAGC -ACGGAAACAAGGTCGACTAGATGC -ACGGAAACAAGGTCGACTTGAAGG -ACGGAAACAAGGTCGACTCAATGG -ACGGAAACAAGGTCGACTATGAGG -ACGGAAACAAGGTCGACTAATGGG -ACGGAAACAAGGTCGACTTCCTGA -ACGGAAACAAGGTCGACTTAGCGA -ACGGAAACAAGGTCGACTCACAGA -ACGGAAACAAGGTCGACTGCAAGA -ACGGAAACAAGGTCGACTGGTTGA -ACGGAAACAAGGTCGACTTCCGAT -ACGGAAACAAGGTCGACTTGGCAT -ACGGAAACAAGGTCGACTCGAGAT -ACGGAAACAAGGTCGACTTACCAC -ACGGAAACAAGGTCGACTCAGAAC -ACGGAAACAAGGTCGACTGTCTAC -ACGGAAACAAGGTCGACTACGTAC -ACGGAAACAAGGTCGACTAGTGAC -ACGGAAACAAGGTCGACTCTGTAG -ACGGAAACAAGGTCGACTCCTAAG -ACGGAAACAAGGTCGACTGTTCAG -ACGGAAACAAGGTCGACTGCATAG -ACGGAAACAAGGTCGACTGACAAG -ACGGAAACAAGGTCGACTAAGCAG -ACGGAAACAAGGTCGACTCGTCAA -ACGGAAACAAGGTCGACTGCTGAA -ACGGAAACAAGGTCGACTAGTACG -ACGGAAACAAGGTCGACTATCCGA -ACGGAAACAAGGTCGACTATGGGA -ACGGAAACAAGGTCGACTGTGCAA -ACGGAAACAAGGTCGACTGAGGAA -ACGGAAACAAGGTCGACTCAGGTA -ACGGAAACAAGGTCGACTGACTCT -ACGGAAACAAGGTCGACTAGTCCT -ACGGAAACAAGGTCGACTTAAGCC -ACGGAAACAAGGTCGACTATAGCC -ACGGAAACAAGGTCGACTTAACCG -ACGGAAACAAGGTCGACTATGCCA -ACGGAAACAAGGGCATACGGAAAC -ACGGAAACAAGGGCATACAACACC -ACGGAAACAAGGGCATACATCGAG -ACGGAAACAAGGGCATACCTCCTT -ACGGAAACAAGGGCATACCCTGTT -ACGGAAACAAGGGCATACCGGTTT -ACGGAAACAAGGGCATACGTGGTT -ACGGAAACAAGGGCATACGCCTTT -ACGGAAACAAGGGCATACGGTCTT -ACGGAAACAAGGGCATACACGCTT -ACGGAAACAAGGGCATACAGCGTT -ACGGAAACAAGGGCATACTTCGTC -ACGGAAACAAGGGCATACTCTCTC -ACGGAAACAAGGGCATACTGGATC -ACGGAAACAAGGGCATACCACTTC -ACGGAAACAAGGGCATACGTACTC -ACGGAAACAAGGGCATACGATGTC -ACGGAAACAAGGGCATACACAGTC -ACGGAAACAAGGGCATACTTGCTG -ACGGAAACAAGGGCATACTCCATG -ACGGAAACAAGGGCATACTGTGTG -ACGGAAACAAGGGCATACCTAGTG -ACGGAAACAAGGGCATACCATCTG -ACGGAAACAAGGGCATACGAGTTG -ACGGAAACAAGGGCATACAGACTG -ACGGAAACAAGGGCATACTCGGTA -ACGGAAACAAGGGCATACTGCCTA -ACGGAAACAAGGGCATACCCACTA -ACGGAAACAAGGGCATACGGAGTA -ACGGAAACAAGGGCATACTCGTCT -ACGGAAACAAGGGCATACTGCACT -ACGGAAACAAGGGCATACCTGACT -ACGGAAACAAGGGCATACCAACCT -ACGGAAACAAGGGCATACGCTACT -ACGGAAACAAGGGCATACGGATCT -ACGGAAACAAGGGCATACAAGGCT -ACGGAAACAAGGGCATACTCAACC -ACGGAAACAAGGGCATACTGTTCC -ACGGAAACAAGGGCATACATTCCC -ACGGAAACAAGGGCATACTTCTCG -ACGGAAACAAGGGCATACTAGACG -ACGGAAACAAGGGCATACGTAACG -ACGGAAACAAGGGCATACACTTCG -ACGGAAACAAGGGCATACTACGCA -ACGGAAACAAGGGCATACCTTGCA -ACGGAAACAAGGGCATACCGAACA -ACGGAAACAAGGGCATACCAGTCA -ACGGAAACAAGGGCATACGATCCA -ACGGAAACAAGGGCATACACGACA -ACGGAAACAAGGGCATACAGCTCA -ACGGAAACAAGGGCATACTCACGT -ACGGAAACAAGGGCATACCGTAGT -ACGGAAACAAGGGCATACGTCAGT -ACGGAAACAAGGGCATACGAAGGT -ACGGAAACAAGGGCATACAACCGT -ACGGAAACAAGGGCATACTTGTGC -ACGGAAACAAGGGCATACCTAAGC -ACGGAAACAAGGGCATACACTAGC -ACGGAAACAAGGGCATACAGATGC -ACGGAAACAAGGGCATACTGAAGG -ACGGAAACAAGGGCATACCAATGG -ACGGAAACAAGGGCATACATGAGG -ACGGAAACAAGGGCATACAATGGG -ACGGAAACAAGGGCATACTCCTGA -ACGGAAACAAGGGCATACTAGCGA -ACGGAAACAAGGGCATACCACAGA -ACGGAAACAAGGGCATACGCAAGA -ACGGAAACAAGGGCATACGGTTGA -ACGGAAACAAGGGCATACTCCGAT -ACGGAAACAAGGGCATACTGGCAT -ACGGAAACAAGGGCATACCGAGAT -ACGGAAACAAGGGCATACTACCAC -ACGGAAACAAGGGCATACCAGAAC -ACGGAAACAAGGGCATACGTCTAC -ACGGAAACAAGGGCATACACGTAC -ACGGAAACAAGGGCATACAGTGAC -ACGGAAACAAGGGCATACCTGTAG -ACGGAAACAAGGGCATACCCTAAG -ACGGAAACAAGGGCATACGTTCAG -ACGGAAACAAGGGCATACGCATAG -ACGGAAACAAGGGCATACGACAAG -ACGGAAACAAGGGCATACAAGCAG -ACGGAAACAAGGGCATACCGTCAA -ACGGAAACAAGGGCATACGCTGAA -ACGGAAACAAGGGCATACAGTACG -ACGGAAACAAGGGCATACATCCGA -ACGGAAACAAGGGCATACATGGGA -ACGGAAACAAGGGCATACGTGCAA -ACGGAAACAAGGGCATACGAGGAA -ACGGAAACAAGGGCATACCAGGTA -ACGGAAACAAGGGCATACGACTCT -ACGGAAACAAGGGCATACAGTCCT -ACGGAAACAAGGGCATACTAAGCC -ACGGAAACAAGGGCATACATAGCC -ACGGAAACAAGGGCATACTAACCG -ACGGAAACAAGGGCATACATGCCA -ACGGAAACAAGGGCACTTGGAAAC -ACGGAAACAAGGGCACTTAACACC -ACGGAAACAAGGGCACTTATCGAG -ACGGAAACAAGGGCACTTCTCCTT -ACGGAAACAAGGGCACTTCCTGTT -ACGGAAACAAGGGCACTTCGGTTT -ACGGAAACAAGGGCACTTGTGGTT -ACGGAAACAAGGGCACTTGCCTTT -ACGGAAACAAGGGCACTTGGTCTT -ACGGAAACAAGGGCACTTACGCTT -ACGGAAACAAGGGCACTTAGCGTT -ACGGAAACAAGGGCACTTTTCGTC -ACGGAAACAAGGGCACTTTCTCTC -ACGGAAACAAGGGCACTTTGGATC -ACGGAAACAAGGGCACTTCACTTC -ACGGAAACAAGGGCACTTGTACTC -ACGGAAACAAGGGCACTTGATGTC -ACGGAAACAAGGGCACTTACAGTC -ACGGAAACAAGGGCACTTTTGCTG -ACGGAAACAAGGGCACTTTCCATG -ACGGAAACAAGGGCACTTTGTGTG -ACGGAAACAAGGGCACTTCTAGTG -ACGGAAACAAGGGCACTTCATCTG -ACGGAAACAAGGGCACTTGAGTTG -ACGGAAACAAGGGCACTTAGACTG -ACGGAAACAAGGGCACTTTCGGTA -ACGGAAACAAGGGCACTTTGCCTA -ACGGAAACAAGGGCACTTCCACTA -ACGGAAACAAGGGCACTTGGAGTA -ACGGAAACAAGGGCACTTTCGTCT -ACGGAAACAAGGGCACTTTGCACT -ACGGAAACAAGGGCACTTCTGACT -ACGGAAACAAGGGCACTTCAACCT -ACGGAAACAAGGGCACTTGCTACT -ACGGAAACAAGGGCACTTGGATCT -ACGGAAACAAGGGCACTTAAGGCT -ACGGAAACAAGGGCACTTTCAACC -ACGGAAACAAGGGCACTTTGTTCC -ACGGAAACAAGGGCACTTATTCCC -ACGGAAACAAGGGCACTTTTCTCG -ACGGAAACAAGGGCACTTTAGACG -ACGGAAACAAGGGCACTTGTAACG -ACGGAAACAAGGGCACTTACTTCG -ACGGAAACAAGGGCACTTTACGCA -ACGGAAACAAGGGCACTTCTTGCA -ACGGAAACAAGGGCACTTCGAACA -ACGGAAACAAGGGCACTTCAGTCA -ACGGAAACAAGGGCACTTGATCCA -ACGGAAACAAGGGCACTTACGACA -ACGGAAACAAGGGCACTTAGCTCA -ACGGAAACAAGGGCACTTTCACGT -ACGGAAACAAGGGCACTTCGTAGT -ACGGAAACAAGGGCACTTGTCAGT -ACGGAAACAAGGGCACTTGAAGGT -ACGGAAACAAGGGCACTTAACCGT -ACGGAAACAAGGGCACTTTTGTGC -ACGGAAACAAGGGCACTTCTAAGC -ACGGAAACAAGGGCACTTACTAGC -ACGGAAACAAGGGCACTTAGATGC -ACGGAAACAAGGGCACTTTGAAGG -ACGGAAACAAGGGCACTTCAATGG -ACGGAAACAAGGGCACTTATGAGG -ACGGAAACAAGGGCACTTAATGGG -ACGGAAACAAGGGCACTTTCCTGA -ACGGAAACAAGGGCACTTTAGCGA -ACGGAAACAAGGGCACTTCACAGA -ACGGAAACAAGGGCACTTGCAAGA -ACGGAAACAAGGGCACTTGGTTGA -ACGGAAACAAGGGCACTTTCCGAT -ACGGAAACAAGGGCACTTTGGCAT -ACGGAAACAAGGGCACTTCGAGAT -ACGGAAACAAGGGCACTTTACCAC -ACGGAAACAAGGGCACTTCAGAAC -ACGGAAACAAGGGCACTTGTCTAC -ACGGAAACAAGGGCACTTACGTAC -ACGGAAACAAGGGCACTTAGTGAC -ACGGAAACAAGGGCACTTCTGTAG -ACGGAAACAAGGGCACTTCCTAAG -ACGGAAACAAGGGCACTTGTTCAG -ACGGAAACAAGGGCACTTGCATAG -ACGGAAACAAGGGCACTTGACAAG -ACGGAAACAAGGGCACTTAAGCAG -ACGGAAACAAGGGCACTTCGTCAA -ACGGAAACAAGGGCACTTGCTGAA -ACGGAAACAAGGGCACTTAGTACG -ACGGAAACAAGGGCACTTATCCGA -ACGGAAACAAGGGCACTTATGGGA -ACGGAAACAAGGGCACTTGTGCAA -ACGGAAACAAGGGCACTTGAGGAA -ACGGAAACAAGGGCACTTCAGGTA -ACGGAAACAAGGGCACTTGACTCT -ACGGAAACAAGGGCACTTAGTCCT -ACGGAAACAAGGGCACTTTAAGCC -ACGGAAACAAGGGCACTTATAGCC -ACGGAAACAAGGGCACTTTAACCG -ACGGAAACAAGGGCACTTATGCCA -ACGGAAACAAGGACACGAGGAAAC -ACGGAAACAAGGACACGAAACACC -ACGGAAACAAGGACACGAATCGAG -ACGGAAACAAGGACACGACTCCTT -ACGGAAACAAGGACACGACCTGTT -ACGGAAACAAGGACACGACGGTTT -ACGGAAACAAGGACACGAGTGGTT -ACGGAAACAAGGACACGAGCCTTT -ACGGAAACAAGGACACGAGGTCTT -ACGGAAACAAGGACACGAACGCTT -ACGGAAACAAGGACACGAAGCGTT -ACGGAAACAAGGACACGATTCGTC -ACGGAAACAAGGACACGATCTCTC -ACGGAAACAAGGACACGATGGATC -ACGGAAACAAGGACACGACACTTC -ACGGAAACAAGGACACGAGTACTC -ACGGAAACAAGGACACGAGATGTC -ACGGAAACAAGGACACGAACAGTC -ACGGAAACAAGGACACGATTGCTG -ACGGAAACAAGGACACGATCCATG -ACGGAAACAAGGACACGATGTGTG -ACGGAAACAAGGACACGACTAGTG -ACGGAAACAAGGACACGACATCTG -ACGGAAACAAGGACACGAGAGTTG -ACGGAAACAAGGACACGAAGACTG -ACGGAAACAAGGACACGATCGGTA -ACGGAAACAAGGACACGATGCCTA -ACGGAAACAAGGACACGACCACTA -ACGGAAACAAGGACACGAGGAGTA -ACGGAAACAAGGACACGATCGTCT -ACGGAAACAAGGACACGATGCACT -ACGGAAACAAGGACACGACTGACT -ACGGAAACAAGGACACGACAACCT -ACGGAAACAAGGACACGAGCTACT -ACGGAAACAAGGACACGAGGATCT -ACGGAAACAAGGACACGAAAGGCT -ACGGAAACAAGGACACGATCAACC -ACGGAAACAAGGACACGATGTTCC -ACGGAAACAAGGACACGAATTCCC -ACGGAAACAAGGACACGATTCTCG -ACGGAAACAAGGACACGATAGACG -ACGGAAACAAGGACACGAGTAACG -ACGGAAACAAGGACACGAACTTCG -ACGGAAACAAGGACACGATACGCA -ACGGAAACAAGGACACGACTTGCA -ACGGAAACAAGGACACGACGAACA -ACGGAAACAAGGACACGACAGTCA -ACGGAAACAAGGACACGAGATCCA -ACGGAAACAAGGACACGAACGACA -ACGGAAACAAGGACACGAAGCTCA -ACGGAAACAAGGACACGATCACGT -ACGGAAACAAGGACACGACGTAGT -ACGGAAACAAGGACACGAGTCAGT -ACGGAAACAAGGACACGAGAAGGT -ACGGAAACAAGGACACGAAACCGT -ACGGAAACAAGGACACGATTGTGC -ACGGAAACAAGGACACGACTAAGC -ACGGAAACAAGGACACGAACTAGC -ACGGAAACAAGGACACGAAGATGC -ACGGAAACAAGGACACGATGAAGG -ACGGAAACAAGGACACGACAATGG -ACGGAAACAAGGACACGAATGAGG -ACGGAAACAAGGACACGAAATGGG -ACGGAAACAAGGACACGATCCTGA -ACGGAAACAAGGACACGATAGCGA -ACGGAAACAAGGACACGACACAGA -ACGGAAACAAGGACACGAGCAAGA -ACGGAAACAAGGACACGAGGTTGA -ACGGAAACAAGGACACGATCCGAT -ACGGAAACAAGGACACGATGGCAT -ACGGAAACAAGGACACGACGAGAT -ACGGAAACAAGGACACGATACCAC -ACGGAAACAAGGACACGACAGAAC -ACGGAAACAAGGACACGAGTCTAC -ACGGAAACAAGGACACGAACGTAC -ACGGAAACAAGGACACGAAGTGAC -ACGGAAACAAGGACACGACTGTAG -ACGGAAACAAGGACACGACCTAAG -ACGGAAACAAGGACACGAGTTCAG -ACGGAAACAAGGACACGAGCATAG -ACGGAAACAAGGACACGAGACAAG -ACGGAAACAAGGACACGAAAGCAG -ACGGAAACAAGGACACGACGTCAA -ACGGAAACAAGGACACGAGCTGAA -ACGGAAACAAGGACACGAAGTACG -ACGGAAACAAGGACACGAATCCGA -ACGGAAACAAGGACACGAATGGGA -ACGGAAACAAGGACACGAGTGCAA -ACGGAAACAAGGACACGAGAGGAA -ACGGAAACAAGGACACGACAGGTA -ACGGAAACAAGGACACGAGACTCT -ACGGAAACAAGGACACGAAGTCCT -ACGGAAACAAGGACACGATAAGCC -ACGGAAACAAGGACACGAATAGCC -ACGGAAACAAGGACACGATAACCG -ACGGAAACAAGGACACGAATGCCA -ACGGAAACAAGGTCACAGGGAAAC -ACGGAAACAAGGTCACAGAACACC -ACGGAAACAAGGTCACAGATCGAG -ACGGAAACAAGGTCACAGCTCCTT -ACGGAAACAAGGTCACAGCCTGTT -ACGGAAACAAGGTCACAGCGGTTT -ACGGAAACAAGGTCACAGGTGGTT -ACGGAAACAAGGTCACAGGCCTTT -ACGGAAACAAGGTCACAGGGTCTT -ACGGAAACAAGGTCACAGACGCTT -ACGGAAACAAGGTCACAGAGCGTT -ACGGAAACAAGGTCACAGTTCGTC -ACGGAAACAAGGTCACAGTCTCTC -ACGGAAACAAGGTCACAGTGGATC -ACGGAAACAAGGTCACAGCACTTC -ACGGAAACAAGGTCACAGGTACTC -ACGGAAACAAGGTCACAGGATGTC -ACGGAAACAAGGTCACAGACAGTC -ACGGAAACAAGGTCACAGTTGCTG -ACGGAAACAAGGTCACAGTCCATG -ACGGAAACAAGGTCACAGTGTGTG -ACGGAAACAAGGTCACAGCTAGTG -ACGGAAACAAGGTCACAGCATCTG -ACGGAAACAAGGTCACAGGAGTTG -ACGGAAACAAGGTCACAGAGACTG -ACGGAAACAAGGTCACAGTCGGTA -ACGGAAACAAGGTCACAGTGCCTA -ACGGAAACAAGGTCACAGCCACTA -ACGGAAACAAGGTCACAGGGAGTA -ACGGAAACAAGGTCACAGTCGTCT -ACGGAAACAAGGTCACAGTGCACT -ACGGAAACAAGGTCACAGCTGACT -ACGGAAACAAGGTCACAGCAACCT -ACGGAAACAAGGTCACAGGCTACT -ACGGAAACAAGGTCACAGGGATCT -ACGGAAACAAGGTCACAGAAGGCT -ACGGAAACAAGGTCACAGTCAACC -ACGGAAACAAGGTCACAGTGTTCC -ACGGAAACAAGGTCACAGATTCCC -ACGGAAACAAGGTCACAGTTCTCG -ACGGAAACAAGGTCACAGTAGACG -ACGGAAACAAGGTCACAGGTAACG -ACGGAAACAAGGTCACAGACTTCG -ACGGAAACAAGGTCACAGTACGCA -ACGGAAACAAGGTCACAGCTTGCA -ACGGAAACAAGGTCACAGCGAACA -ACGGAAACAAGGTCACAGCAGTCA -ACGGAAACAAGGTCACAGGATCCA -ACGGAAACAAGGTCACAGACGACA -ACGGAAACAAGGTCACAGAGCTCA -ACGGAAACAAGGTCACAGTCACGT -ACGGAAACAAGGTCACAGCGTAGT -ACGGAAACAAGGTCACAGGTCAGT -ACGGAAACAAGGTCACAGGAAGGT -ACGGAAACAAGGTCACAGAACCGT -ACGGAAACAAGGTCACAGTTGTGC -ACGGAAACAAGGTCACAGCTAAGC -ACGGAAACAAGGTCACAGACTAGC -ACGGAAACAAGGTCACAGAGATGC -ACGGAAACAAGGTCACAGTGAAGG -ACGGAAACAAGGTCACAGCAATGG -ACGGAAACAAGGTCACAGATGAGG -ACGGAAACAAGGTCACAGAATGGG -ACGGAAACAAGGTCACAGTCCTGA -ACGGAAACAAGGTCACAGTAGCGA -ACGGAAACAAGGTCACAGCACAGA -ACGGAAACAAGGTCACAGGCAAGA -ACGGAAACAAGGTCACAGGGTTGA -ACGGAAACAAGGTCACAGTCCGAT -ACGGAAACAAGGTCACAGTGGCAT -ACGGAAACAAGGTCACAGCGAGAT -ACGGAAACAAGGTCACAGTACCAC -ACGGAAACAAGGTCACAGCAGAAC -ACGGAAACAAGGTCACAGGTCTAC -ACGGAAACAAGGTCACAGACGTAC -ACGGAAACAAGGTCACAGAGTGAC -ACGGAAACAAGGTCACAGCTGTAG -ACGGAAACAAGGTCACAGCCTAAG -ACGGAAACAAGGTCACAGGTTCAG -ACGGAAACAAGGTCACAGGCATAG -ACGGAAACAAGGTCACAGGACAAG -ACGGAAACAAGGTCACAGAAGCAG -ACGGAAACAAGGTCACAGCGTCAA -ACGGAAACAAGGTCACAGGCTGAA -ACGGAAACAAGGTCACAGAGTACG -ACGGAAACAAGGTCACAGATCCGA -ACGGAAACAAGGTCACAGATGGGA -ACGGAAACAAGGTCACAGGTGCAA -ACGGAAACAAGGTCACAGGAGGAA -ACGGAAACAAGGTCACAGCAGGTA -ACGGAAACAAGGTCACAGGACTCT -ACGGAAACAAGGTCACAGAGTCCT -ACGGAAACAAGGTCACAGTAAGCC -ACGGAAACAAGGTCACAGATAGCC -ACGGAAACAAGGTCACAGTAACCG -ACGGAAACAAGGTCACAGATGCCA -ACGGAAACAAGGCCAGATGGAAAC -ACGGAAACAAGGCCAGATAACACC -ACGGAAACAAGGCCAGATATCGAG -ACGGAAACAAGGCCAGATCTCCTT -ACGGAAACAAGGCCAGATCCTGTT -ACGGAAACAAGGCCAGATCGGTTT -ACGGAAACAAGGCCAGATGTGGTT -ACGGAAACAAGGCCAGATGCCTTT -ACGGAAACAAGGCCAGATGGTCTT -ACGGAAACAAGGCCAGATACGCTT -ACGGAAACAAGGCCAGATAGCGTT -ACGGAAACAAGGCCAGATTTCGTC -ACGGAAACAAGGCCAGATTCTCTC -ACGGAAACAAGGCCAGATTGGATC -ACGGAAACAAGGCCAGATCACTTC -ACGGAAACAAGGCCAGATGTACTC -ACGGAAACAAGGCCAGATGATGTC -ACGGAAACAAGGCCAGATACAGTC -ACGGAAACAAGGCCAGATTTGCTG -ACGGAAACAAGGCCAGATTCCATG -ACGGAAACAAGGCCAGATTGTGTG -ACGGAAACAAGGCCAGATCTAGTG -ACGGAAACAAGGCCAGATCATCTG -ACGGAAACAAGGCCAGATGAGTTG -ACGGAAACAAGGCCAGATAGACTG -ACGGAAACAAGGCCAGATTCGGTA -ACGGAAACAAGGCCAGATTGCCTA -ACGGAAACAAGGCCAGATCCACTA -ACGGAAACAAGGCCAGATGGAGTA -ACGGAAACAAGGCCAGATTCGTCT -ACGGAAACAAGGCCAGATTGCACT -ACGGAAACAAGGCCAGATCTGACT -ACGGAAACAAGGCCAGATCAACCT -ACGGAAACAAGGCCAGATGCTACT -ACGGAAACAAGGCCAGATGGATCT -ACGGAAACAAGGCCAGATAAGGCT -ACGGAAACAAGGCCAGATTCAACC -ACGGAAACAAGGCCAGATTGTTCC -ACGGAAACAAGGCCAGATATTCCC -ACGGAAACAAGGCCAGATTTCTCG -ACGGAAACAAGGCCAGATTAGACG -ACGGAAACAAGGCCAGATGTAACG -ACGGAAACAAGGCCAGATACTTCG -ACGGAAACAAGGCCAGATTACGCA -ACGGAAACAAGGCCAGATCTTGCA -ACGGAAACAAGGCCAGATCGAACA -ACGGAAACAAGGCCAGATCAGTCA -ACGGAAACAAGGCCAGATGATCCA -ACGGAAACAAGGCCAGATACGACA -ACGGAAACAAGGCCAGATAGCTCA -ACGGAAACAAGGCCAGATTCACGT -ACGGAAACAAGGCCAGATCGTAGT -ACGGAAACAAGGCCAGATGTCAGT -ACGGAAACAAGGCCAGATGAAGGT -ACGGAAACAAGGCCAGATAACCGT -ACGGAAACAAGGCCAGATTTGTGC -ACGGAAACAAGGCCAGATCTAAGC -ACGGAAACAAGGCCAGATACTAGC -ACGGAAACAAGGCCAGATAGATGC -ACGGAAACAAGGCCAGATTGAAGG -ACGGAAACAAGGCCAGATCAATGG -ACGGAAACAAGGCCAGATATGAGG -ACGGAAACAAGGCCAGATAATGGG -ACGGAAACAAGGCCAGATTCCTGA -ACGGAAACAAGGCCAGATTAGCGA -ACGGAAACAAGGCCAGATCACAGA -ACGGAAACAAGGCCAGATGCAAGA -ACGGAAACAAGGCCAGATGGTTGA -ACGGAAACAAGGCCAGATTCCGAT -ACGGAAACAAGGCCAGATTGGCAT -ACGGAAACAAGGCCAGATCGAGAT -ACGGAAACAAGGCCAGATTACCAC -ACGGAAACAAGGCCAGATCAGAAC -ACGGAAACAAGGCCAGATGTCTAC -ACGGAAACAAGGCCAGATACGTAC -ACGGAAACAAGGCCAGATAGTGAC -ACGGAAACAAGGCCAGATCTGTAG -ACGGAAACAAGGCCAGATCCTAAG -ACGGAAACAAGGCCAGATGTTCAG -ACGGAAACAAGGCCAGATGCATAG -ACGGAAACAAGGCCAGATGACAAG -ACGGAAACAAGGCCAGATAAGCAG -ACGGAAACAAGGCCAGATCGTCAA -ACGGAAACAAGGCCAGATGCTGAA -ACGGAAACAAGGCCAGATAGTACG -ACGGAAACAAGGCCAGATATCCGA -ACGGAAACAAGGCCAGATATGGGA -ACGGAAACAAGGCCAGATGTGCAA -ACGGAAACAAGGCCAGATGAGGAA -ACGGAAACAAGGCCAGATCAGGTA -ACGGAAACAAGGCCAGATGACTCT -ACGGAAACAAGGCCAGATAGTCCT -ACGGAAACAAGGCCAGATTAAGCC -ACGGAAACAAGGCCAGATATAGCC -ACGGAAACAAGGCCAGATTAACCG -ACGGAAACAAGGCCAGATATGCCA -ACGGAAACAAGGACAACGGGAAAC -ACGGAAACAAGGACAACGAACACC -ACGGAAACAAGGACAACGATCGAG -ACGGAAACAAGGACAACGCTCCTT -ACGGAAACAAGGACAACGCCTGTT -ACGGAAACAAGGACAACGCGGTTT -ACGGAAACAAGGACAACGGTGGTT -ACGGAAACAAGGACAACGGCCTTT -ACGGAAACAAGGACAACGGGTCTT -ACGGAAACAAGGACAACGACGCTT -ACGGAAACAAGGACAACGAGCGTT -ACGGAAACAAGGACAACGTTCGTC -ACGGAAACAAGGACAACGTCTCTC -ACGGAAACAAGGACAACGTGGATC -ACGGAAACAAGGACAACGCACTTC -ACGGAAACAAGGACAACGGTACTC -ACGGAAACAAGGACAACGGATGTC -ACGGAAACAAGGACAACGACAGTC -ACGGAAACAAGGACAACGTTGCTG -ACGGAAACAAGGACAACGTCCATG -ACGGAAACAAGGACAACGTGTGTG -ACGGAAACAAGGACAACGCTAGTG -ACGGAAACAAGGACAACGCATCTG -ACGGAAACAAGGACAACGGAGTTG -ACGGAAACAAGGACAACGAGACTG -ACGGAAACAAGGACAACGTCGGTA -ACGGAAACAAGGACAACGTGCCTA -ACGGAAACAAGGACAACGCCACTA -ACGGAAACAAGGACAACGGGAGTA -ACGGAAACAAGGACAACGTCGTCT -ACGGAAACAAGGACAACGTGCACT -ACGGAAACAAGGACAACGCTGACT -ACGGAAACAAGGACAACGCAACCT -ACGGAAACAAGGACAACGGCTACT -ACGGAAACAAGGACAACGGGATCT -ACGGAAACAAGGACAACGAAGGCT -ACGGAAACAAGGACAACGTCAACC -ACGGAAACAAGGACAACGTGTTCC -ACGGAAACAAGGACAACGATTCCC -ACGGAAACAAGGACAACGTTCTCG -ACGGAAACAAGGACAACGTAGACG -ACGGAAACAAGGACAACGGTAACG -ACGGAAACAAGGACAACGACTTCG -ACGGAAACAAGGACAACGTACGCA -ACGGAAACAAGGACAACGCTTGCA -ACGGAAACAAGGACAACGCGAACA -ACGGAAACAAGGACAACGCAGTCA -ACGGAAACAAGGACAACGGATCCA -ACGGAAACAAGGACAACGACGACA -ACGGAAACAAGGACAACGAGCTCA -ACGGAAACAAGGACAACGTCACGT -ACGGAAACAAGGACAACGCGTAGT -ACGGAAACAAGGACAACGGTCAGT -ACGGAAACAAGGACAACGGAAGGT -ACGGAAACAAGGACAACGAACCGT -ACGGAAACAAGGACAACGTTGTGC -ACGGAAACAAGGACAACGCTAAGC -ACGGAAACAAGGACAACGACTAGC -ACGGAAACAAGGACAACGAGATGC -ACGGAAACAAGGACAACGTGAAGG -ACGGAAACAAGGACAACGCAATGG -ACGGAAACAAGGACAACGATGAGG -ACGGAAACAAGGACAACGAATGGG -ACGGAAACAAGGACAACGTCCTGA -ACGGAAACAAGGACAACGTAGCGA -ACGGAAACAAGGACAACGCACAGA -ACGGAAACAAGGACAACGGCAAGA -ACGGAAACAAGGACAACGGGTTGA -ACGGAAACAAGGACAACGTCCGAT -ACGGAAACAAGGACAACGTGGCAT -ACGGAAACAAGGACAACGCGAGAT -ACGGAAACAAGGACAACGTACCAC -ACGGAAACAAGGACAACGCAGAAC -ACGGAAACAAGGACAACGGTCTAC -ACGGAAACAAGGACAACGACGTAC -ACGGAAACAAGGACAACGAGTGAC -ACGGAAACAAGGACAACGCTGTAG -ACGGAAACAAGGACAACGCCTAAG -ACGGAAACAAGGACAACGGTTCAG -ACGGAAACAAGGACAACGGCATAG -ACGGAAACAAGGACAACGGACAAG -ACGGAAACAAGGACAACGAAGCAG -ACGGAAACAAGGACAACGCGTCAA -ACGGAAACAAGGACAACGGCTGAA -ACGGAAACAAGGACAACGAGTACG -ACGGAAACAAGGACAACGATCCGA -ACGGAAACAAGGACAACGATGGGA -ACGGAAACAAGGACAACGGTGCAA -ACGGAAACAAGGACAACGGAGGAA -ACGGAAACAAGGACAACGCAGGTA -ACGGAAACAAGGACAACGGACTCT -ACGGAAACAAGGACAACGAGTCCT -ACGGAAACAAGGACAACGTAAGCC -ACGGAAACAAGGACAACGATAGCC -ACGGAAACAAGGACAACGTAACCG -ACGGAAACAAGGACAACGATGCCA -ACGGAAACAAGGTCAAGCGGAAAC -ACGGAAACAAGGTCAAGCAACACC -ACGGAAACAAGGTCAAGCATCGAG -ACGGAAACAAGGTCAAGCCTCCTT -ACGGAAACAAGGTCAAGCCCTGTT -ACGGAAACAAGGTCAAGCCGGTTT -ACGGAAACAAGGTCAAGCGTGGTT -ACGGAAACAAGGTCAAGCGCCTTT -ACGGAAACAAGGTCAAGCGGTCTT -ACGGAAACAAGGTCAAGCACGCTT -ACGGAAACAAGGTCAAGCAGCGTT -ACGGAAACAAGGTCAAGCTTCGTC -ACGGAAACAAGGTCAAGCTCTCTC -ACGGAAACAAGGTCAAGCTGGATC -ACGGAAACAAGGTCAAGCCACTTC -ACGGAAACAAGGTCAAGCGTACTC -ACGGAAACAAGGTCAAGCGATGTC -ACGGAAACAAGGTCAAGCACAGTC -ACGGAAACAAGGTCAAGCTTGCTG -ACGGAAACAAGGTCAAGCTCCATG -ACGGAAACAAGGTCAAGCTGTGTG -ACGGAAACAAGGTCAAGCCTAGTG -ACGGAAACAAGGTCAAGCCATCTG -ACGGAAACAAGGTCAAGCGAGTTG -ACGGAAACAAGGTCAAGCAGACTG -ACGGAAACAAGGTCAAGCTCGGTA -ACGGAAACAAGGTCAAGCTGCCTA -ACGGAAACAAGGTCAAGCCCACTA -ACGGAAACAAGGTCAAGCGGAGTA -ACGGAAACAAGGTCAAGCTCGTCT -ACGGAAACAAGGTCAAGCTGCACT -ACGGAAACAAGGTCAAGCCTGACT -ACGGAAACAAGGTCAAGCCAACCT -ACGGAAACAAGGTCAAGCGCTACT -ACGGAAACAAGGTCAAGCGGATCT -ACGGAAACAAGGTCAAGCAAGGCT -ACGGAAACAAGGTCAAGCTCAACC -ACGGAAACAAGGTCAAGCTGTTCC -ACGGAAACAAGGTCAAGCATTCCC -ACGGAAACAAGGTCAAGCTTCTCG -ACGGAAACAAGGTCAAGCTAGACG -ACGGAAACAAGGTCAAGCGTAACG -ACGGAAACAAGGTCAAGCACTTCG -ACGGAAACAAGGTCAAGCTACGCA -ACGGAAACAAGGTCAAGCCTTGCA -ACGGAAACAAGGTCAAGCCGAACA -ACGGAAACAAGGTCAAGCCAGTCA -ACGGAAACAAGGTCAAGCGATCCA -ACGGAAACAAGGTCAAGCACGACA -ACGGAAACAAGGTCAAGCAGCTCA -ACGGAAACAAGGTCAAGCTCACGT -ACGGAAACAAGGTCAAGCCGTAGT -ACGGAAACAAGGTCAAGCGTCAGT -ACGGAAACAAGGTCAAGCGAAGGT -ACGGAAACAAGGTCAAGCAACCGT -ACGGAAACAAGGTCAAGCTTGTGC -ACGGAAACAAGGTCAAGCCTAAGC -ACGGAAACAAGGTCAAGCACTAGC -ACGGAAACAAGGTCAAGCAGATGC -ACGGAAACAAGGTCAAGCTGAAGG -ACGGAAACAAGGTCAAGCCAATGG -ACGGAAACAAGGTCAAGCATGAGG -ACGGAAACAAGGTCAAGCAATGGG -ACGGAAACAAGGTCAAGCTCCTGA -ACGGAAACAAGGTCAAGCTAGCGA -ACGGAAACAAGGTCAAGCCACAGA -ACGGAAACAAGGTCAAGCGCAAGA -ACGGAAACAAGGTCAAGCGGTTGA -ACGGAAACAAGGTCAAGCTCCGAT -ACGGAAACAAGGTCAAGCTGGCAT -ACGGAAACAAGGTCAAGCCGAGAT -ACGGAAACAAGGTCAAGCTACCAC -ACGGAAACAAGGTCAAGCCAGAAC -ACGGAAACAAGGTCAAGCGTCTAC -ACGGAAACAAGGTCAAGCACGTAC -ACGGAAACAAGGTCAAGCAGTGAC -ACGGAAACAAGGTCAAGCCTGTAG -ACGGAAACAAGGTCAAGCCCTAAG -ACGGAAACAAGGTCAAGCGTTCAG -ACGGAAACAAGGTCAAGCGCATAG -ACGGAAACAAGGTCAAGCGACAAG -ACGGAAACAAGGTCAAGCAAGCAG -ACGGAAACAAGGTCAAGCCGTCAA -ACGGAAACAAGGTCAAGCGCTGAA -ACGGAAACAAGGTCAAGCAGTACG -ACGGAAACAAGGTCAAGCATCCGA -ACGGAAACAAGGTCAAGCATGGGA -ACGGAAACAAGGTCAAGCGTGCAA -ACGGAAACAAGGTCAAGCGAGGAA -ACGGAAACAAGGTCAAGCCAGGTA -ACGGAAACAAGGTCAAGCGACTCT -ACGGAAACAAGGTCAAGCAGTCCT -ACGGAAACAAGGTCAAGCTAAGCC -ACGGAAACAAGGTCAAGCATAGCC -ACGGAAACAAGGTCAAGCTAACCG -ACGGAAACAAGGTCAAGCATGCCA -ACGGAAACAAGGCGTTCAGGAAAC -ACGGAAACAAGGCGTTCAAACACC -ACGGAAACAAGGCGTTCAATCGAG -ACGGAAACAAGGCGTTCACTCCTT -ACGGAAACAAGGCGTTCACCTGTT -ACGGAAACAAGGCGTTCACGGTTT -ACGGAAACAAGGCGTTCAGTGGTT -ACGGAAACAAGGCGTTCAGCCTTT -ACGGAAACAAGGCGTTCAGGTCTT -ACGGAAACAAGGCGTTCAACGCTT -ACGGAAACAAGGCGTTCAAGCGTT -ACGGAAACAAGGCGTTCATTCGTC -ACGGAAACAAGGCGTTCATCTCTC -ACGGAAACAAGGCGTTCATGGATC -ACGGAAACAAGGCGTTCACACTTC -ACGGAAACAAGGCGTTCAGTACTC -ACGGAAACAAGGCGTTCAGATGTC -ACGGAAACAAGGCGTTCAACAGTC -ACGGAAACAAGGCGTTCATTGCTG -ACGGAAACAAGGCGTTCATCCATG -ACGGAAACAAGGCGTTCATGTGTG -ACGGAAACAAGGCGTTCACTAGTG -ACGGAAACAAGGCGTTCACATCTG -ACGGAAACAAGGCGTTCAGAGTTG -ACGGAAACAAGGCGTTCAAGACTG -ACGGAAACAAGGCGTTCATCGGTA -ACGGAAACAAGGCGTTCATGCCTA -ACGGAAACAAGGCGTTCACCACTA -ACGGAAACAAGGCGTTCAGGAGTA -ACGGAAACAAGGCGTTCATCGTCT -ACGGAAACAAGGCGTTCATGCACT -ACGGAAACAAGGCGTTCACTGACT -ACGGAAACAAGGCGTTCACAACCT -ACGGAAACAAGGCGTTCAGCTACT -ACGGAAACAAGGCGTTCAGGATCT -ACGGAAACAAGGCGTTCAAAGGCT -ACGGAAACAAGGCGTTCATCAACC -ACGGAAACAAGGCGTTCATGTTCC -ACGGAAACAAGGCGTTCAATTCCC -ACGGAAACAAGGCGTTCATTCTCG -ACGGAAACAAGGCGTTCATAGACG -ACGGAAACAAGGCGTTCAGTAACG -ACGGAAACAAGGCGTTCAACTTCG -ACGGAAACAAGGCGTTCATACGCA -ACGGAAACAAGGCGTTCACTTGCA -ACGGAAACAAGGCGTTCACGAACA -ACGGAAACAAGGCGTTCACAGTCA -ACGGAAACAAGGCGTTCAGATCCA -ACGGAAACAAGGCGTTCAACGACA -ACGGAAACAAGGCGTTCAAGCTCA -ACGGAAACAAGGCGTTCATCACGT -ACGGAAACAAGGCGTTCACGTAGT -ACGGAAACAAGGCGTTCAGTCAGT -ACGGAAACAAGGCGTTCAGAAGGT -ACGGAAACAAGGCGTTCAAACCGT -ACGGAAACAAGGCGTTCATTGTGC -ACGGAAACAAGGCGTTCACTAAGC -ACGGAAACAAGGCGTTCAACTAGC -ACGGAAACAAGGCGTTCAAGATGC -ACGGAAACAAGGCGTTCATGAAGG -ACGGAAACAAGGCGTTCACAATGG -ACGGAAACAAGGCGTTCAATGAGG -ACGGAAACAAGGCGTTCAAATGGG -ACGGAAACAAGGCGTTCATCCTGA -ACGGAAACAAGGCGTTCATAGCGA -ACGGAAACAAGGCGTTCACACAGA -ACGGAAACAAGGCGTTCAGCAAGA -ACGGAAACAAGGCGTTCAGGTTGA -ACGGAAACAAGGCGTTCATCCGAT -ACGGAAACAAGGCGTTCATGGCAT -ACGGAAACAAGGCGTTCACGAGAT -ACGGAAACAAGGCGTTCATACCAC -ACGGAAACAAGGCGTTCACAGAAC -ACGGAAACAAGGCGTTCAGTCTAC -ACGGAAACAAGGCGTTCAACGTAC -ACGGAAACAAGGCGTTCAAGTGAC -ACGGAAACAAGGCGTTCACTGTAG -ACGGAAACAAGGCGTTCACCTAAG -ACGGAAACAAGGCGTTCAGTTCAG -ACGGAAACAAGGCGTTCAGCATAG -ACGGAAACAAGGCGTTCAGACAAG -ACGGAAACAAGGCGTTCAAAGCAG -ACGGAAACAAGGCGTTCACGTCAA -ACGGAAACAAGGCGTTCAGCTGAA -ACGGAAACAAGGCGTTCAAGTACG -ACGGAAACAAGGCGTTCAATCCGA -ACGGAAACAAGGCGTTCAATGGGA -ACGGAAACAAGGCGTTCAGTGCAA -ACGGAAACAAGGCGTTCAGAGGAA -ACGGAAACAAGGCGTTCACAGGTA -ACGGAAACAAGGCGTTCAGACTCT -ACGGAAACAAGGCGTTCAAGTCCT -ACGGAAACAAGGCGTTCATAAGCC -ACGGAAACAAGGCGTTCAATAGCC -ACGGAAACAAGGCGTTCATAACCG -ACGGAAACAAGGCGTTCAATGCCA -ACGGAAACAAGGAGTCGTGGAAAC -ACGGAAACAAGGAGTCGTAACACC -ACGGAAACAAGGAGTCGTATCGAG -ACGGAAACAAGGAGTCGTCTCCTT -ACGGAAACAAGGAGTCGTCCTGTT -ACGGAAACAAGGAGTCGTCGGTTT -ACGGAAACAAGGAGTCGTGTGGTT -ACGGAAACAAGGAGTCGTGCCTTT -ACGGAAACAAGGAGTCGTGGTCTT -ACGGAAACAAGGAGTCGTACGCTT -ACGGAAACAAGGAGTCGTAGCGTT -ACGGAAACAAGGAGTCGTTTCGTC -ACGGAAACAAGGAGTCGTTCTCTC -ACGGAAACAAGGAGTCGTTGGATC -ACGGAAACAAGGAGTCGTCACTTC -ACGGAAACAAGGAGTCGTGTACTC -ACGGAAACAAGGAGTCGTGATGTC -ACGGAAACAAGGAGTCGTACAGTC -ACGGAAACAAGGAGTCGTTTGCTG -ACGGAAACAAGGAGTCGTTCCATG -ACGGAAACAAGGAGTCGTTGTGTG -ACGGAAACAAGGAGTCGTCTAGTG -ACGGAAACAAGGAGTCGTCATCTG -ACGGAAACAAGGAGTCGTGAGTTG -ACGGAAACAAGGAGTCGTAGACTG -ACGGAAACAAGGAGTCGTTCGGTA -ACGGAAACAAGGAGTCGTTGCCTA -ACGGAAACAAGGAGTCGTCCACTA -ACGGAAACAAGGAGTCGTGGAGTA -ACGGAAACAAGGAGTCGTTCGTCT -ACGGAAACAAGGAGTCGTTGCACT -ACGGAAACAAGGAGTCGTCTGACT -ACGGAAACAAGGAGTCGTCAACCT -ACGGAAACAAGGAGTCGTGCTACT -ACGGAAACAAGGAGTCGTGGATCT -ACGGAAACAAGGAGTCGTAAGGCT -ACGGAAACAAGGAGTCGTTCAACC -ACGGAAACAAGGAGTCGTTGTTCC -ACGGAAACAAGGAGTCGTATTCCC -ACGGAAACAAGGAGTCGTTTCTCG -ACGGAAACAAGGAGTCGTTAGACG -ACGGAAACAAGGAGTCGTGTAACG -ACGGAAACAAGGAGTCGTACTTCG -ACGGAAACAAGGAGTCGTTACGCA -ACGGAAACAAGGAGTCGTCTTGCA -ACGGAAACAAGGAGTCGTCGAACA -ACGGAAACAAGGAGTCGTCAGTCA -ACGGAAACAAGGAGTCGTGATCCA -ACGGAAACAAGGAGTCGTACGACA -ACGGAAACAAGGAGTCGTAGCTCA -ACGGAAACAAGGAGTCGTTCACGT -ACGGAAACAAGGAGTCGTCGTAGT -ACGGAAACAAGGAGTCGTGTCAGT -ACGGAAACAAGGAGTCGTGAAGGT -ACGGAAACAAGGAGTCGTAACCGT -ACGGAAACAAGGAGTCGTTTGTGC -ACGGAAACAAGGAGTCGTCTAAGC -ACGGAAACAAGGAGTCGTACTAGC -ACGGAAACAAGGAGTCGTAGATGC -ACGGAAACAAGGAGTCGTTGAAGG -ACGGAAACAAGGAGTCGTCAATGG -ACGGAAACAAGGAGTCGTATGAGG -ACGGAAACAAGGAGTCGTAATGGG -ACGGAAACAAGGAGTCGTTCCTGA -ACGGAAACAAGGAGTCGTTAGCGA -ACGGAAACAAGGAGTCGTCACAGA -ACGGAAACAAGGAGTCGTGCAAGA -ACGGAAACAAGGAGTCGTGGTTGA -ACGGAAACAAGGAGTCGTTCCGAT -ACGGAAACAAGGAGTCGTTGGCAT -ACGGAAACAAGGAGTCGTCGAGAT -ACGGAAACAAGGAGTCGTTACCAC -ACGGAAACAAGGAGTCGTCAGAAC -ACGGAAACAAGGAGTCGTGTCTAC -ACGGAAACAAGGAGTCGTACGTAC -ACGGAAACAAGGAGTCGTAGTGAC -ACGGAAACAAGGAGTCGTCTGTAG -ACGGAAACAAGGAGTCGTCCTAAG -ACGGAAACAAGGAGTCGTGTTCAG -ACGGAAACAAGGAGTCGTGCATAG -ACGGAAACAAGGAGTCGTGACAAG -ACGGAAACAAGGAGTCGTAAGCAG -ACGGAAACAAGGAGTCGTCGTCAA -ACGGAAACAAGGAGTCGTGCTGAA -ACGGAAACAAGGAGTCGTAGTACG -ACGGAAACAAGGAGTCGTATCCGA -ACGGAAACAAGGAGTCGTATGGGA -ACGGAAACAAGGAGTCGTGTGCAA -ACGGAAACAAGGAGTCGTGAGGAA -ACGGAAACAAGGAGTCGTCAGGTA -ACGGAAACAAGGAGTCGTGACTCT -ACGGAAACAAGGAGTCGTAGTCCT -ACGGAAACAAGGAGTCGTTAAGCC -ACGGAAACAAGGAGTCGTATAGCC -ACGGAAACAAGGAGTCGTTAACCG -ACGGAAACAAGGAGTCGTATGCCA -ACGGAAACAAGGAGTGTCGGAAAC -ACGGAAACAAGGAGTGTCAACACC -ACGGAAACAAGGAGTGTCATCGAG -ACGGAAACAAGGAGTGTCCTCCTT -ACGGAAACAAGGAGTGTCCCTGTT -ACGGAAACAAGGAGTGTCCGGTTT -ACGGAAACAAGGAGTGTCGTGGTT -ACGGAAACAAGGAGTGTCGCCTTT -ACGGAAACAAGGAGTGTCGGTCTT -ACGGAAACAAGGAGTGTCACGCTT -ACGGAAACAAGGAGTGTCAGCGTT -ACGGAAACAAGGAGTGTCTTCGTC -ACGGAAACAAGGAGTGTCTCTCTC -ACGGAAACAAGGAGTGTCTGGATC -ACGGAAACAAGGAGTGTCCACTTC -ACGGAAACAAGGAGTGTCGTACTC -ACGGAAACAAGGAGTGTCGATGTC -ACGGAAACAAGGAGTGTCACAGTC -ACGGAAACAAGGAGTGTCTTGCTG -ACGGAAACAAGGAGTGTCTCCATG -ACGGAAACAAGGAGTGTCTGTGTG -ACGGAAACAAGGAGTGTCCTAGTG -ACGGAAACAAGGAGTGTCCATCTG -ACGGAAACAAGGAGTGTCGAGTTG -ACGGAAACAAGGAGTGTCAGACTG -ACGGAAACAAGGAGTGTCTCGGTA -ACGGAAACAAGGAGTGTCTGCCTA -ACGGAAACAAGGAGTGTCCCACTA -ACGGAAACAAGGAGTGTCGGAGTA -ACGGAAACAAGGAGTGTCTCGTCT -ACGGAAACAAGGAGTGTCTGCACT -ACGGAAACAAGGAGTGTCCTGACT -ACGGAAACAAGGAGTGTCCAACCT -ACGGAAACAAGGAGTGTCGCTACT -ACGGAAACAAGGAGTGTCGGATCT -ACGGAAACAAGGAGTGTCAAGGCT -ACGGAAACAAGGAGTGTCTCAACC -ACGGAAACAAGGAGTGTCTGTTCC -ACGGAAACAAGGAGTGTCATTCCC -ACGGAAACAAGGAGTGTCTTCTCG -ACGGAAACAAGGAGTGTCTAGACG -ACGGAAACAAGGAGTGTCGTAACG -ACGGAAACAAGGAGTGTCACTTCG -ACGGAAACAAGGAGTGTCTACGCA -ACGGAAACAAGGAGTGTCCTTGCA -ACGGAAACAAGGAGTGTCCGAACA -ACGGAAACAAGGAGTGTCCAGTCA -ACGGAAACAAGGAGTGTCGATCCA -ACGGAAACAAGGAGTGTCACGACA -ACGGAAACAAGGAGTGTCAGCTCA -ACGGAAACAAGGAGTGTCTCACGT -ACGGAAACAAGGAGTGTCCGTAGT -ACGGAAACAAGGAGTGTCGTCAGT -ACGGAAACAAGGAGTGTCGAAGGT -ACGGAAACAAGGAGTGTCAACCGT -ACGGAAACAAGGAGTGTCTTGTGC -ACGGAAACAAGGAGTGTCCTAAGC -ACGGAAACAAGGAGTGTCACTAGC -ACGGAAACAAGGAGTGTCAGATGC -ACGGAAACAAGGAGTGTCTGAAGG -ACGGAAACAAGGAGTGTCCAATGG -ACGGAAACAAGGAGTGTCATGAGG -ACGGAAACAAGGAGTGTCAATGGG -ACGGAAACAAGGAGTGTCTCCTGA -ACGGAAACAAGGAGTGTCTAGCGA -ACGGAAACAAGGAGTGTCCACAGA -ACGGAAACAAGGAGTGTCGCAAGA -ACGGAAACAAGGAGTGTCGGTTGA -ACGGAAACAAGGAGTGTCTCCGAT -ACGGAAACAAGGAGTGTCTGGCAT -ACGGAAACAAGGAGTGTCCGAGAT -ACGGAAACAAGGAGTGTCTACCAC -ACGGAAACAAGGAGTGTCCAGAAC -ACGGAAACAAGGAGTGTCGTCTAC -ACGGAAACAAGGAGTGTCACGTAC -ACGGAAACAAGGAGTGTCAGTGAC -ACGGAAACAAGGAGTGTCCTGTAG -ACGGAAACAAGGAGTGTCCCTAAG -ACGGAAACAAGGAGTGTCGTTCAG -ACGGAAACAAGGAGTGTCGCATAG -ACGGAAACAAGGAGTGTCGACAAG -ACGGAAACAAGGAGTGTCAAGCAG -ACGGAAACAAGGAGTGTCCGTCAA -ACGGAAACAAGGAGTGTCGCTGAA -ACGGAAACAAGGAGTGTCAGTACG -ACGGAAACAAGGAGTGTCATCCGA -ACGGAAACAAGGAGTGTCATGGGA -ACGGAAACAAGGAGTGTCGTGCAA -ACGGAAACAAGGAGTGTCGAGGAA -ACGGAAACAAGGAGTGTCCAGGTA -ACGGAAACAAGGAGTGTCGACTCT -ACGGAAACAAGGAGTGTCAGTCCT -ACGGAAACAAGGAGTGTCTAAGCC -ACGGAAACAAGGAGTGTCATAGCC -ACGGAAACAAGGAGTGTCTAACCG -ACGGAAACAAGGAGTGTCATGCCA -ACGGAAACAAGGGGTGAAGGAAAC -ACGGAAACAAGGGGTGAAAACACC -ACGGAAACAAGGGGTGAAATCGAG -ACGGAAACAAGGGGTGAACTCCTT -ACGGAAACAAGGGGTGAACCTGTT -ACGGAAACAAGGGGTGAACGGTTT -ACGGAAACAAGGGGTGAAGTGGTT -ACGGAAACAAGGGGTGAAGCCTTT -ACGGAAACAAGGGGTGAAGGTCTT -ACGGAAACAAGGGGTGAAACGCTT -ACGGAAACAAGGGGTGAAAGCGTT -ACGGAAACAAGGGGTGAATTCGTC -ACGGAAACAAGGGGTGAATCTCTC -ACGGAAACAAGGGGTGAATGGATC -ACGGAAACAAGGGGTGAACACTTC -ACGGAAACAAGGGGTGAAGTACTC -ACGGAAACAAGGGGTGAAGATGTC -ACGGAAACAAGGGGTGAAACAGTC -ACGGAAACAAGGGGTGAATTGCTG -ACGGAAACAAGGGGTGAATCCATG -ACGGAAACAAGGGGTGAATGTGTG -ACGGAAACAAGGGGTGAACTAGTG -ACGGAAACAAGGGGTGAACATCTG -ACGGAAACAAGGGGTGAAGAGTTG -ACGGAAACAAGGGGTGAAAGACTG -ACGGAAACAAGGGGTGAATCGGTA -ACGGAAACAAGGGGTGAATGCCTA -ACGGAAACAAGGGGTGAACCACTA -ACGGAAACAAGGGGTGAAGGAGTA -ACGGAAACAAGGGGTGAATCGTCT -ACGGAAACAAGGGGTGAATGCACT -ACGGAAACAAGGGGTGAACTGACT -ACGGAAACAAGGGGTGAACAACCT -ACGGAAACAAGGGGTGAAGCTACT -ACGGAAACAAGGGGTGAAGGATCT -ACGGAAACAAGGGGTGAAAAGGCT -ACGGAAACAAGGGGTGAATCAACC -ACGGAAACAAGGGGTGAATGTTCC -ACGGAAACAAGGGGTGAAATTCCC -ACGGAAACAAGGGGTGAATTCTCG -ACGGAAACAAGGGGTGAATAGACG -ACGGAAACAAGGGGTGAAGTAACG -ACGGAAACAAGGGGTGAAACTTCG -ACGGAAACAAGGGGTGAATACGCA -ACGGAAACAAGGGGTGAACTTGCA -ACGGAAACAAGGGGTGAACGAACA -ACGGAAACAAGGGGTGAACAGTCA -ACGGAAACAAGGGGTGAAGATCCA -ACGGAAACAAGGGGTGAAACGACA -ACGGAAACAAGGGGTGAAAGCTCA -ACGGAAACAAGGGGTGAATCACGT -ACGGAAACAAGGGGTGAACGTAGT -ACGGAAACAAGGGGTGAAGTCAGT -ACGGAAACAAGGGGTGAAGAAGGT -ACGGAAACAAGGGGTGAAAACCGT -ACGGAAACAAGGGGTGAATTGTGC -ACGGAAACAAGGGGTGAACTAAGC -ACGGAAACAAGGGGTGAAACTAGC -ACGGAAACAAGGGGTGAAAGATGC -ACGGAAACAAGGGGTGAATGAAGG -ACGGAAACAAGGGGTGAACAATGG -ACGGAAACAAGGGGTGAAATGAGG -ACGGAAACAAGGGGTGAAAATGGG -ACGGAAACAAGGGGTGAATCCTGA -ACGGAAACAAGGGGTGAATAGCGA -ACGGAAACAAGGGGTGAACACAGA -ACGGAAACAAGGGGTGAAGCAAGA -ACGGAAACAAGGGGTGAAGGTTGA -ACGGAAACAAGGGGTGAATCCGAT -ACGGAAACAAGGGGTGAATGGCAT -ACGGAAACAAGGGGTGAACGAGAT -ACGGAAACAAGGGGTGAATACCAC -ACGGAAACAAGGGGTGAACAGAAC -ACGGAAACAAGGGGTGAAGTCTAC -ACGGAAACAAGGGGTGAAACGTAC -ACGGAAACAAGGGGTGAAAGTGAC -ACGGAAACAAGGGGTGAACTGTAG -ACGGAAACAAGGGGTGAACCTAAG -ACGGAAACAAGGGGTGAAGTTCAG -ACGGAAACAAGGGGTGAAGCATAG -ACGGAAACAAGGGGTGAAGACAAG -ACGGAAACAAGGGGTGAAAAGCAG -ACGGAAACAAGGGGTGAACGTCAA -ACGGAAACAAGGGGTGAAGCTGAA -ACGGAAACAAGGGGTGAAAGTACG -ACGGAAACAAGGGGTGAAATCCGA -ACGGAAACAAGGGGTGAAATGGGA -ACGGAAACAAGGGGTGAAGTGCAA -ACGGAAACAAGGGGTGAAGAGGAA -ACGGAAACAAGGGGTGAACAGGTA -ACGGAAACAAGGGGTGAAGACTCT -ACGGAAACAAGGGGTGAAAGTCCT -ACGGAAACAAGGGGTGAATAAGCC -ACGGAAACAAGGGGTGAAATAGCC -ACGGAAACAAGGGGTGAATAACCG -ACGGAAACAAGGGGTGAAATGCCA -ACGGAAACAAGGCGTAACGGAAAC -ACGGAAACAAGGCGTAACAACACC -ACGGAAACAAGGCGTAACATCGAG -ACGGAAACAAGGCGTAACCTCCTT -ACGGAAACAAGGCGTAACCCTGTT -ACGGAAACAAGGCGTAACCGGTTT -ACGGAAACAAGGCGTAACGTGGTT -ACGGAAACAAGGCGTAACGCCTTT -ACGGAAACAAGGCGTAACGGTCTT -ACGGAAACAAGGCGTAACACGCTT -ACGGAAACAAGGCGTAACAGCGTT -ACGGAAACAAGGCGTAACTTCGTC -ACGGAAACAAGGCGTAACTCTCTC -ACGGAAACAAGGCGTAACTGGATC -ACGGAAACAAGGCGTAACCACTTC -ACGGAAACAAGGCGTAACGTACTC -ACGGAAACAAGGCGTAACGATGTC -ACGGAAACAAGGCGTAACACAGTC -ACGGAAACAAGGCGTAACTTGCTG -ACGGAAACAAGGCGTAACTCCATG -ACGGAAACAAGGCGTAACTGTGTG -ACGGAAACAAGGCGTAACCTAGTG -ACGGAAACAAGGCGTAACCATCTG -ACGGAAACAAGGCGTAACGAGTTG -ACGGAAACAAGGCGTAACAGACTG -ACGGAAACAAGGCGTAACTCGGTA -ACGGAAACAAGGCGTAACTGCCTA -ACGGAAACAAGGCGTAACCCACTA -ACGGAAACAAGGCGTAACGGAGTA -ACGGAAACAAGGCGTAACTCGTCT -ACGGAAACAAGGCGTAACTGCACT -ACGGAAACAAGGCGTAACCTGACT -ACGGAAACAAGGCGTAACCAACCT -ACGGAAACAAGGCGTAACGCTACT -ACGGAAACAAGGCGTAACGGATCT -ACGGAAACAAGGCGTAACAAGGCT -ACGGAAACAAGGCGTAACTCAACC -ACGGAAACAAGGCGTAACTGTTCC -ACGGAAACAAGGCGTAACATTCCC -ACGGAAACAAGGCGTAACTTCTCG -ACGGAAACAAGGCGTAACTAGACG -ACGGAAACAAGGCGTAACGTAACG -ACGGAAACAAGGCGTAACACTTCG -ACGGAAACAAGGCGTAACTACGCA -ACGGAAACAAGGCGTAACCTTGCA -ACGGAAACAAGGCGTAACCGAACA -ACGGAAACAAGGCGTAACCAGTCA -ACGGAAACAAGGCGTAACGATCCA -ACGGAAACAAGGCGTAACACGACA -ACGGAAACAAGGCGTAACAGCTCA -ACGGAAACAAGGCGTAACTCACGT -ACGGAAACAAGGCGTAACCGTAGT -ACGGAAACAAGGCGTAACGTCAGT -ACGGAAACAAGGCGTAACGAAGGT -ACGGAAACAAGGCGTAACAACCGT -ACGGAAACAAGGCGTAACTTGTGC -ACGGAAACAAGGCGTAACCTAAGC -ACGGAAACAAGGCGTAACACTAGC -ACGGAAACAAGGCGTAACAGATGC -ACGGAAACAAGGCGTAACTGAAGG -ACGGAAACAAGGCGTAACCAATGG -ACGGAAACAAGGCGTAACATGAGG -ACGGAAACAAGGCGTAACAATGGG -ACGGAAACAAGGCGTAACTCCTGA -ACGGAAACAAGGCGTAACTAGCGA -ACGGAAACAAGGCGTAACCACAGA -ACGGAAACAAGGCGTAACGCAAGA -ACGGAAACAAGGCGTAACGGTTGA -ACGGAAACAAGGCGTAACTCCGAT -ACGGAAACAAGGCGTAACTGGCAT -ACGGAAACAAGGCGTAACCGAGAT -ACGGAAACAAGGCGTAACTACCAC -ACGGAAACAAGGCGTAACCAGAAC -ACGGAAACAAGGCGTAACGTCTAC -ACGGAAACAAGGCGTAACACGTAC -ACGGAAACAAGGCGTAACAGTGAC -ACGGAAACAAGGCGTAACCTGTAG -ACGGAAACAAGGCGTAACCCTAAG -ACGGAAACAAGGCGTAACGTTCAG -ACGGAAACAAGGCGTAACGCATAG -ACGGAAACAAGGCGTAACGACAAG -ACGGAAACAAGGCGTAACAAGCAG -ACGGAAACAAGGCGTAACCGTCAA -ACGGAAACAAGGCGTAACGCTGAA -ACGGAAACAAGGCGTAACAGTACG -ACGGAAACAAGGCGTAACATCCGA -ACGGAAACAAGGCGTAACATGGGA -ACGGAAACAAGGCGTAACGTGCAA -ACGGAAACAAGGCGTAACGAGGAA -ACGGAAACAAGGCGTAACCAGGTA -ACGGAAACAAGGCGTAACGACTCT -ACGGAAACAAGGCGTAACAGTCCT -ACGGAAACAAGGCGTAACTAAGCC -ACGGAAACAAGGCGTAACATAGCC -ACGGAAACAAGGCGTAACTAACCG -ACGGAAACAAGGCGTAACATGCCA -ACGGAAACAAGGTGCTTGGGAAAC -ACGGAAACAAGGTGCTTGAACACC -ACGGAAACAAGGTGCTTGATCGAG -ACGGAAACAAGGTGCTTGCTCCTT -ACGGAAACAAGGTGCTTGCCTGTT -ACGGAAACAAGGTGCTTGCGGTTT -ACGGAAACAAGGTGCTTGGTGGTT -ACGGAAACAAGGTGCTTGGCCTTT -ACGGAAACAAGGTGCTTGGGTCTT -ACGGAAACAAGGTGCTTGACGCTT -ACGGAAACAAGGTGCTTGAGCGTT -ACGGAAACAAGGTGCTTGTTCGTC -ACGGAAACAAGGTGCTTGTCTCTC -ACGGAAACAAGGTGCTTGTGGATC -ACGGAAACAAGGTGCTTGCACTTC -ACGGAAACAAGGTGCTTGGTACTC -ACGGAAACAAGGTGCTTGGATGTC -ACGGAAACAAGGTGCTTGACAGTC -ACGGAAACAAGGTGCTTGTTGCTG -ACGGAAACAAGGTGCTTGTCCATG -ACGGAAACAAGGTGCTTGTGTGTG -ACGGAAACAAGGTGCTTGCTAGTG -ACGGAAACAAGGTGCTTGCATCTG -ACGGAAACAAGGTGCTTGGAGTTG -ACGGAAACAAGGTGCTTGAGACTG -ACGGAAACAAGGTGCTTGTCGGTA -ACGGAAACAAGGTGCTTGTGCCTA -ACGGAAACAAGGTGCTTGCCACTA -ACGGAAACAAGGTGCTTGGGAGTA -ACGGAAACAAGGTGCTTGTCGTCT -ACGGAAACAAGGTGCTTGTGCACT -ACGGAAACAAGGTGCTTGCTGACT -ACGGAAACAAGGTGCTTGCAACCT -ACGGAAACAAGGTGCTTGGCTACT -ACGGAAACAAGGTGCTTGGGATCT -ACGGAAACAAGGTGCTTGAAGGCT -ACGGAAACAAGGTGCTTGTCAACC -ACGGAAACAAGGTGCTTGTGTTCC -ACGGAAACAAGGTGCTTGATTCCC -ACGGAAACAAGGTGCTTGTTCTCG -ACGGAAACAAGGTGCTTGTAGACG -ACGGAAACAAGGTGCTTGGTAACG -ACGGAAACAAGGTGCTTGACTTCG -ACGGAAACAAGGTGCTTGTACGCA -ACGGAAACAAGGTGCTTGCTTGCA -ACGGAAACAAGGTGCTTGCGAACA -ACGGAAACAAGGTGCTTGCAGTCA -ACGGAAACAAGGTGCTTGGATCCA -ACGGAAACAAGGTGCTTGACGACA -ACGGAAACAAGGTGCTTGAGCTCA -ACGGAAACAAGGTGCTTGTCACGT -ACGGAAACAAGGTGCTTGCGTAGT -ACGGAAACAAGGTGCTTGGTCAGT -ACGGAAACAAGGTGCTTGGAAGGT -ACGGAAACAAGGTGCTTGAACCGT -ACGGAAACAAGGTGCTTGTTGTGC -ACGGAAACAAGGTGCTTGCTAAGC -ACGGAAACAAGGTGCTTGACTAGC -ACGGAAACAAGGTGCTTGAGATGC -ACGGAAACAAGGTGCTTGTGAAGG -ACGGAAACAAGGTGCTTGCAATGG -ACGGAAACAAGGTGCTTGATGAGG -ACGGAAACAAGGTGCTTGAATGGG -ACGGAAACAAGGTGCTTGTCCTGA -ACGGAAACAAGGTGCTTGTAGCGA -ACGGAAACAAGGTGCTTGCACAGA -ACGGAAACAAGGTGCTTGGCAAGA -ACGGAAACAAGGTGCTTGGGTTGA -ACGGAAACAAGGTGCTTGTCCGAT -ACGGAAACAAGGTGCTTGTGGCAT -ACGGAAACAAGGTGCTTGCGAGAT -ACGGAAACAAGGTGCTTGTACCAC -ACGGAAACAAGGTGCTTGCAGAAC -ACGGAAACAAGGTGCTTGGTCTAC -ACGGAAACAAGGTGCTTGACGTAC -ACGGAAACAAGGTGCTTGAGTGAC -ACGGAAACAAGGTGCTTGCTGTAG -ACGGAAACAAGGTGCTTGCCTAAG -ACGGAAACAAGGTGCTTGGTTCAG -ACGGAAACAAGGTGCTTGGCATAG -ACGGAAACAAGGTGCTTGGACAAG -ACGGAAACAAGGTGCTTGAAGCAG -ACGGAAACAAGGTGCTTGCGTCAA -ACGGAAACAAGGTGCTTGGCTGAA -ACGGAAACAAGGTGCTTGAGTACG -ACGGAAACAAGGTGCTTGATCCGA -ACGGAAACAAGGTGCTTGATGGGA -ACGGAAACAAGGTGCTTGGTGCAA -ACGGAAACAAGGTGCTTGGAGGAA -ACGGAAACAAGGTGCTTGCAGGTA -ACGGAAACAAGGTGCTTGGACTCT -ACGGAAACAAGGTGCTTGAGTCCT -ACGGAAACAAGGTGCTTGTAAGCC -ACGGAAACAAGGTGCTTGATAGCC -ACGGAAACAAGGTGCTTGTAACCG -ACGGAAACAAGGTGCTTGATGCCA -ACGGAAACAAGGAGCCTAGGAAAC -ACGGAAACAAGGAGCCTAAACACC -ACGGAAACAAGGAGCCTAATCGAG -ACGGAAACAAGGAGCCTACTCCTT -ACGGAAACAAGGAGCCTACCTGTT -ACGGAAACAAGGAGCCTACGGTTT -ACGGAAACAAGGAGCCTAGTGGTT -ACGGAAACAAGGAGCCTAGCCTTT -ACGGAAACAAGGAGCCTAGGTCTT -ACGGAAACAAGGAGCCTAACGCTT -ACGGAAACAAGGAGCCTAAGCGTT -ACGGAAACAAGGAGCCTATTCGTC -ACGGAAACAAGGAGCCTATCTCTC -ACGGAAACAAGGAGCCTATGGATC -ACGGAAACAAGGAGCCTACACTTC -ACGGAAACAAGGAGCCTAGTACTC -ACGGAAACAAGGAGCCTAGATGTC -ACGGAAACAAGGAGCCTAACAGTC -ACGGAAACAAGGAGCCTATTGCTG -ACGGAAACAAGGAGCCTATCCATG -ACGGAAACAAGGAGCCTATGTGTG -ACGGAAACAAGGAGCCTACTAGTG -ACGGAAACAAGGAGCCTACATCTG -ACGGAAACAAGGAGCCTAGAGTTG -ACGGAAACAAGGAGCCTAAGACTG -ACGGAAACAAGGAGCCTATCGGTA -ACGGAAACAAGGAGCCTATGCCTA -ACGGAAACAAGGAGCCTACCACTA -ACGGAAACAAGGAGCCTAGGAGTA -ACGGAAACAAGGAGCCTATCGTCT -ACGGAAACAAGGAGCCTATGCACT -ACGGAAACAAGGAGCCTACTGACT -ACGGAAACAAGGAGCCTACAACCT -ACGGAAACAAGGAGCCTAGCTACT -ACGGAAACAAGGAGCCTAGGATCT -ACGGAAACAAGGAGCCTAAAGGCT -ACGGAAACAAGGAGCCTATCAACC -ACGGAAACAAGGAGCCTATGTTCC -ACGGAAACAAGGAGCCTAATTCCC -ACGGAAACAAGGAGCCTATTCTCG -ACGGAAACAAGGAGCCTATAGACG -ACGGAAACAAGGAGCCTAGTAACG -ACGGAAACAAGGAGCCTAACTTCG -ACGGAAACAAGGAGCCTATACGCA -ACGGAAACAAGGAGCCTACTTGCA -ACGGAAACAAGGAGCCTACGAACA -ACGGAAACAAGGAGCCTACAGTCA -ACGGAAACAAGGAGCCTAGATCCA -ACGGAAACAAGGAGCCTAACGACA -ACGGAAACAAGGAGCCTAAGCTCA -ACGGAAACAAGGAGCCTATCACGT -ACGGAAACAAGGAGCCTACGTAGT -ACGGAAACAAGGAGCCTAGTCAGT -ACGGAAACAAGGAGCCTAGAAGGT -ACGGAAACAAGGAGCCTAAACCGT -ACGGAAACAAGGAGCCTATTGTGC -ACGGAAACAAGGAGCCTACTAAGC -ACGGAAACAAGGAGCCTAACTAGC -ACGGAAACAAGGAGCCTAAGATGC -ACGGAAACAAGGAGCCTATGAAGG -ACGGAAACAAGGAGCCTACAATGG -ACGGAAACAAGGAGCCTAATGAGG -ACGGAAACAAGGAGCCTAAATGGG -ACGGAAACAAGGAGCCTATCCTGA -ACGGAAACAAGGAGCCTATAGCGA -ACGGAAACAAGGAGCCTACACAGA -ACGGAAACAAGGAGCCTAGCAAGA -ACGGAAACAAGGAGCCTAGGTTGA -ACGGAAACAAGGAGCCTATCCGAT -ACGGAAACAAGGAGCCTATGGCAT -ACGGAAACAAGGAGCCTACGAGAT -ACGGAAACAAGGAGCCTATACCAC -ACGGAAACAAGGAGCCTACAGAAC -ACGGAAACAAGGAGCCTAGTCTAC -ACGGAAACAAGGAGCCTAACGTAC -ACGGAAACAAGGAGCCTAAGTGAC -ACGGAAACAAGGAGCCTACTGTAG -ACGGAAACAAGGAGCCTACCTAAG -ACGGAAACAAGGAGCCTAGTTCAG -ACGGAAACAAGGAGCCTAGCATAG -ACGGAAACAAGGAGCCTAGACAAG -ACGGAAACAAGGAGCCTAAAGCAG -ACGGAAACAAGGAGCCTACGTCAA -ACGGAAACAAGGAGCCTAGCTGAA -ACGGAAACAAGGAGCCTAAGTACG -ACGGAAACAAGGAGCCTAATCCGA -ACGGAAACAAGGAGCCTAATGGGA -ACGGAAACAAGGAGCCTAGTGCAA -ACGGAAACAAGGAGCCTAGAGGAA -ACGGAAACAAGGAGCCTACAGGTA -ACGGAAACAAGGAGCCTAGACTCT -ACGGAAACAAGGAGCCTAAGTCCT -ACGGAAACAAGGAGCCTATAAGCC -ACGGAAACAAGGAGCCTAATAGCC -ACGGAAACAAGGAGCCTATAACCG -ACGGAAACAAGGAGCCTAATGCCA -ACGGAAACAAGGAGCACTGGAAAC -ACGGAAACAAGGAGCACTAACACC -ACGGAAACAAGGAGCACTATCGAG -ACGGAAACAAGGAGCACTCTCCTT -ACGGAAACAAGGAGCACTCCTGTT -ACGGAAACAAGGAGCACTCGGTTT -ACGGAAACAAGGAGCACTGTGGTT -ACGGAAACAAGGAGCACTGCCTTT -ACGGAAACAAGGAGCACTGGTCTT -ACGGAAACAAGGAGCACTACGCTT -ACGGAAACAAGGAGCACTAGCGTT -ACGGAAACAAGGAGCACTTTCGTC -ACGGAAACAAGGAGCACTTCTCTC -ACGGAAACAAGGAGCACTTGGATC -ACGGAAACAAGGAGCACTCACTTC -ACGGAAACAAGGAGCACTGTACTC -ACGGAAACAAGGAGCACTGATGTC -ACGGAAACAAGGAGCACTACAGTC -ACGGAAACAAGGAGCACTTTGCTG -ACGGAAACAAGGAGCACTTCCATG -ACGGAAACAAGGAGCACTTGTGTG -ACGGAAACAAGGAGCACTCTAGTG -ACGGAAACAAGGAGCACTCATCTG -ACGGAAACAAGGAGCACTGAGTTG -ACGGAAACAAGGAGCACTAGACTG -ACGGAAACAAGGAGCACTTCGGTA -ACGGAAACAAGGAGCACTTGCCTA -ACGGAAACAAGGAGCACTCCACTA -ACGGAAACAAGGAGCACTGGAGTA -ACGGAAACAAGGAGCACTTCGTCT -ACGGAAACAAGGAGCACTTGCACT -ACGGAAACAAGGAGCACTCTGACT -ACGGAAACAAGGAGCACTCAACCT -ACGGAAACAAGGAGCACTGCTACT -ACGGAAACAAGGAGCACTGGATCT -ACGGAAACAAGGAGCACTAAGGCT -ACGGAAACAAGGAGCACTTCAACC -ACGGAAACAAGGAGCACTTGTTCC -ACGGAAACAAGGAGCACTATTCCC -ACGGAAACAAGGAGCACTTTCTCG -ACGGAAACAAGGAGCACTTAGACG -ACGGAAACAAGGAGCACTGTAACG -ACGGAAACAAGGAGCACTACTTCG -ACGGAAACAAGGAGCACTTACGCA -ACGGAAACAAGGAGCACTCTTGCA -ACGGAAACAAGGAGCACTCGAACA -ACGGAAACAAGGAGCACTCAGTCA -ACGGAAACAAGGAGCACTGATCCA -ACGGAAACAAGGAGCACTACGACA -ACGGAAACAAGGAGCACTAGCTCA -ACGGAAACAAGGAGCACTTCACGT -ACGGAAACAAGGAGCACTCGTAGT -ACGGAAACAAGGAGCACTGTCAGT -ACGGAAACAAGGAGCACTGAAGGT -ACGGAAACAAGGAGCACTAACCGT -ACGGAAACAAGGAGCACTTTGTGC -ACGGAAACAAGGAGCACTCTAAGC -ACGGAAACAAGGAGCACTACTAGC -ACGGAAACAAGGAGCACTAGATGC -ACGGAAACAAGGAGCACTTGAAGG -ACGGAAACAAGGAGCACTCAATGG -ACGGAAACAAGGAGCACTATGAGG -ACGGAAACAAGGAGCACTAATGGG -ACGGAAACAAGGAGCACTTCCTGA -ACGGAAACAAGGAGCACTTAGCGA -ACGGAAACAAGGAGCACTCACAGA -ACGGAAACAAGGAGCACTGCAAGA -ACGGAAACAAGGAGCACTGGTTGA -ACGGAAACAAGGAGCACTTCCGAT -ACGGAAACAAGGAGCACTTGGCAT -ACGGAAACAAGGAGCACTCGAGAT -ACGGAAACAAGGAGCACTTACCAC -ACGGAAACAAGGAGCACTCAGAAC -ACGGAAACAAGGAGCACTGTCTAC -ACGGAAACAAGGAGCACTACGTAC -ACGGAAACAAGGAGCACTAGTGAC -ACGGAAACAAGGAGCACTCTGTAG -ACGGAAACAAGGAGCACTCCTAAG -ACGGAAACAAGGAGCACTGTTCAG -ACGGAAACAAGGAGCACTGCATAG -ACGGAAACAAGGAGCACTGACAAG -ACGGAAACAAGGAGCACTAAGCAG -ACGGAAACAAGGAGCACTCGTCAA -ACGGAAACAAGGAGCACTGCTGAA -ACGGAAACAAGGAGCACTAGTACG -ACGGAAACAAGGAGCACTATCCGA -ACGGAAACAAGGAGCACTATGGGA -ACGGAAACAAGGAGCACTGTGCAA -ACGGAAACAAGGAGCACTGAGGAA -ACGGAAACAAGGAGCACTCAGGTA -ACGGAAACAAGGAGCACTGACTCT -ACGGAAACAAGGAGCACTAGTCCT -ACGGAAACAAGGAGCACTTAAGCC -ACGGAAACAAGGAGCACTATAGCC -ACGGAAACAAGGAGCACTTAACCG -ACGGAAACAAGGAGCACTATGCCA -ACGGAAACAAGGTGCAGAGGAAAC -ACGGAAACAAGGTGCAGAAACACC -ACGGAAACAAGGTGCAGAATCGAG -ACGGAAACAAGGTGCAGACTCCTT -ACGGAAACAAGGTGCAGACCTGTT -ACGGAAACAAGGTGCAGACGGTTT -ACGGAAACAAGGTGCAGAGTGGTT -ACGGAAACAAGGTGCAGAGCCTTT -ACGGAAACAAGGTGCAGAGGTCTT -ACGGAAACAAGGTGCAGAACGCTT -ACGGAAACAAGGTGCAGAAGCGTT -ACGGAAACAAGGTGCAGATTCGTC -ACGGAAACAAGGTGCAGATCTCTC -ACGGAAACAAGGTGCAGATGGATC -ACGGAAACAAGGTGCAGACACTTC -ACGGAAACAAGGTGCAGAGTACTC -ACGGAAACAAGGTGCAGAGATGTC -ACGGAAACAAGGTGCAGAACAGTC -ACGGAAACAAGGTGCAGATTGCTG -ACGGAAACAAGGTGCAGATCCATG -ACGGAAACAAGGTGCAGATGTGTG -ACGGAAACAAGGTGCAGACTAGTG -ACGGAAACAAGGTGCAGACATCTG -ACGGAAACAAGGTGCAGAGAGTTG -ACGGAAACAAGGTGCAGAAGACTG -ACGGAAACAAGGTGCAGATCGGTA -ACGGAAACAAGGTGCAGATGCCTA -ACGGAAACAAGGTGCAGACCACTA -ACGGAAACAAGGTGCAGAGGAGTA -ACGGAAACAAGGTGCAGATCGTCT -ACGGAAACAAGGTGCAGATGCACT -ACGGAAACAAGGTGCAGACTGACT -ACGGAAACAAGGTGCAGACAACCT -ACGGAAACAAGGTGCAGAGCTACT -ACGGAAACAAGGTGCAGAGGATCT -ACGGAAACAAGGTGCAGAAAGGCT -ACGGAAACAAGGTGCAGATCAACC -ACGGAAACAAGGTGCAGATGTTCC -ACGGAAACAAGGTGCAGAATTCCC -ACGGAAACAAGGTGCAGATTCTCG -ACGGAAACAAGGTGCAGATAGACG -ACGGAAACAAGGTGCAGAGTAACG -ACGGAAACAAGGTGCAGAACTTCG -ACGGAAACAAGGTGCAGATACGCA -ACGGAAACAAGGTGCAGACTTGCA -ACGGAAACAAGGTGCAGACGAACA -ACGGAAACAAGGTGCAGACAGTCA -ACGGAAACAAGGTGCAGAGATCCA -ACGGAAACAAGGTGCAGAACGACA -ACGGAAACAAGGTGCAGAAGCTCA -ACGGAAACAAGGTGCAGATCACGT -ACGGAAACAAGGTGCAGACGTAGT -ACGGAAACAAGGTGCAGAGTCAGT -ACGGAAACAAGGTGCAGAGAAGGT -ACGGAAACAAGGTGCAGAAACCGT -ACGGAAACAAGGTGCAGATTGTGC -ACGGAAACAAGGTGCAGACTAAGC -ACGGAAACAAGGTGCAGAACTAGC -ACGGAAACAAGGTGCAGAAGATGC -ACGGAAACAAGGTGCAGATGAAGG -ACGGAAACAAGGTGCAGACAATGG -ACGGAAACAAGGTGCAGAATGAGG -ACGGAAACAAGGTGCAGAAATGGG -ACGGAAACAAGGTGCAGATCCTGA -ACGGAAACAAGGTGCAGATAGCGA -ACGGAAACAAGGTGCAGACACAGA -ACGGAAACAAGGTGCAGAGCAAGA -ACGGAAACAAGGTGCAGAGGTTGA -ACGGAAACAAGGTGCAGATCCGAT -ACGGAAACAAGGTGCAGATGGCAT -ACGGAAACAAGGTGCAGACGAGAT -ACGGAAACAAGGTGCAGATACCAC -ACGGAAACAAGGTGCAGACAGAAC -ACGGAAACAAGGTGCAGAGTCTAC -ACGGAAACAAGGTGCAGAACGTAC -ACGGAAACAAGGTGCAGAAGTGAC -ACGGAAACAAGGTGCAGACTGTAG -ACGGAAACAAGGTGCAGACCTAAG -ACGGAAACAAGGTGCAGAGTTCAG -ACGGAAACAAGGTGCAGAGCATAG -ACGGAAACAAGGTGCAGAGACAAG -ACGGAAACAAGGTGCAGAAAGCAG -ACGGAAACAAGGTGCAGACGTCAA -ACGGAAACAAGGTGCAGAGCTGAA -ACGGAAACAAGGTGCAGAAGTACG -ACGGAAACAAGGTGCAGAATCCGA -ACGGAAACAAGGTGCAGAATGGGA -ACGGAAACAAGGTGCAGAGTGCAA -ACGGAAACAAGGTGCAGAGAGGAA -ACGGAAACAAGGTGCAGACAGGTA -ACGGAAACAAGGTGCAGAGACTCT -ACGGAAACAAGGTGCAGAAGTCCT -ACGGAAACAAGGTGCAGATAAGCC -ACGGAAACAAGGTGCAGAATAGCC -ACGGAAACAAGGTGCAGATAACCG -ACGGAAACAAGGTGCAGAATGCCA -ACGGAAACAAGGAGGTGAGGAAAC -ACGGAAACAAGGAGGTGAAACACC -ACGGAAACAAGGAGGTGAATCGAG -ACGGAAACAAGGAGGTGACTCCTT -ACGGAAACAAGGAGGTGACCTGTT -ACGGAAACAAGGAGGTGACGGTTT -ACGGAAACAAGGAGGTGAGTGGTT -ACGGAAACAAGGAGGTGAGCCTTT -ACGGAAACAAGGAGGTGAGGTCTT -ACGGAAACAAGGAGGTGAACGCTT -ACGGAAACAAGGAGGTGAAGCGTT -ACGGAAACAAGGAGGTGATTCGTC -ACGGAAACAAGGAGGTGATCTCTC -ACGGAAACAAGGAGGTGATGGATC -ACGGAAACAAGGAGGTGACACTTC -ACGGAAACAAGGAGGTGAGTACTC -ACGGAAACAAGGAGGTGAGATGTC -ACGGAAACAAGGAGGTGAACAGTC -ACGGAAACAAGGAGGTGATTGCTG -ACGGAAACAAGGAGGTGATCCATG -ACGGAAACAAGGAGGTGATGTGTG -ACGGAAACAAGGAGGTGACTAGTG -ACGGAAACAAGGAGGTGACATCTG -ACGGAAACAAGGAGGTGAGAGTTG -ACGGAAACAAGGAGGTGAAGACTG -ACGGAAACAAGGAGGTGATCGGTA -ACGGAAACAAGGAGGTGATGCCTA -ACGGAAACAAGGAGGTGACCACTA -ACGGAAACAAGGAGGTGAGGAGTA -ACGGAAACAAGGAGGTGATCGTCT -ACGGAAACAAGGAGGTGATGCACT -ACGGAAACAAGGAGGTGACTGACT -ACGGAAACAAGGAGGTGACAACCT -ACGGAAACAAGGAGGTGAGCTACT -ACGGAAACAAGGAGGTGAGGATCT -ACGGAAACAAGGAGGTGAAAGGCT -ACGGAAACAAGGAGGTGATCAACC -ACGGAAACAAGGAGGTGATGTTCC -ACGGAAACAAGGAGGTGAATTCCC -ACGGAAACAAGGAGGTGATTCTCG -ACGGAAACAAGGAGGTGATAGACG -ACGGAAACAAGGAGGTGAGTAACG -ACGGAAACAAGGAGGTGAACTTCG -ACGGAAACAAGGAGGTGATACGCA -ACGGAAACAAGGAGGTGACTTGCA -ACGGAAACAAGGAGGTGACGAACA -ACGGAAACAAGGAGGTGACAGTCA -ACGGAAACAAGGAGGTGAGATCCA -ACGGAAACAAGGAGGTGAACGACA -ACGGAAACAAGGAGGTGAAGCTCA -ACGGAAACAAGGAGGTGATCACGT -ACGGAAACAAGGAGGTGACGTAGT -ACGGAAACAAGGAGGTGAGTCAGT -ACGGAAACAAGGAGGTGAGAAGGT -ACGGAAACAAGGAGGTGAAACCGT -ACGGAAACAAGGAGGTGATTGTGC -ACGGAAACAAGGAGGTGACTAAGC -ACGGAAACAAGGAGGTGAACTAGC -ACGGAAACAAGGAGGTGAAGATGC -ACGGAAACAAGGAGGTGATGAAGG -ACGGAAACAAGGAGGTGACAATGG -ACGGAAACAAGGAGGTGAATGAGG -ACGGAAACAAGGAGGTGAAATGGG -ACGGAAACAAGGAGGTGATCCTGA -ACGGAAACAAGGAGGTGATAGCGA -ACGGAAACAAGGAGGTGACACAGA -ACGGAAACAAGGAGGTGAGCAAGA -ACGGAAACAAGGAGGTGAGGTTGA -ACGGAAACAAGGAGGTGATCCGAT -ACGGAAACAAGGAGGTGATGGCAT -ACGGAAACAAGGAGGTGACGAGAT -ACGGAAACAAGGAGGTGATACCAC -ACGGAAACAAGGAGGTGACAGAAC -ACGGAAACAAGGAGGTGAGTCTAC -ACGGAAACAAGGAGGTGAACGTAC -ACGGAAACAAGGAGGTGAAGTGAC -ACGGAAACAAGGAGGTGACTGTAG -ACGGAAACAAGGAGGTGACCTAAG -ACGGAAACAAGGAGGTGAGTTCAG -ACGGAAACAAGGAGGTGAGCATAG -ACGGAAACAAGGAGGTGAGACAAG -ACGGAAACAAGGAGGTGAAAGCAG -ACGGAAACAAGGAGGTGACGTCAA -ACGGAAACAAGGAGGTGAGCTGAA -ACGGAAACAAGGAGGTGAAGTACG -ACGGAAACAAGGAGGTGAATCCGA -ACGGAAACAAGGAGGTGAATGGGA -ACGGAAACAAGGAGGTGAGTGCAA -ACGGAAACAAGGAGGTGAGAGGAA -ACGGAAACAAGGAGGTGACAGGTA -ACGGAAACAAGGAGGTGAGACTCT -ACGGAAACAAGGAGGTGAAGTCCT -ACGGAAACAAGGAGGTGATAAGCC -ACGGAAACAAGGAGGTGAATAGCC -ACGGAAACAAGGAGGTGATAACCG -ACGGAAACAAGGAGGTGAATGCCA -ACGGAAACAAGGTGGCAAGGAAAC -ACGGAAACAAGGTGGCAAAACACC -ACGGAAACAAGGTGGCAAATCGAG -ACGGAAACAAGGTGGCAACTCCTT -ACGGAAACAAGGTGGCAACCTGTT -ACGGAAACAAGGTGGCAACGGTTT -ACGGAAACAAGGTGGCAAGTGGTT -ACGGAAACAAGGTGGCAAGCCTTT -ACGGAAACAAGGTGGCAAGGTCTT -ACGGAAACAAGGTGGCAAACGCTT -ACGGAAACAAGGTGGCAAAGCGTT -ACGGAAACAAGGTGGCAATTCGTC -ACGGAAACAAGGTGGCAATCTCTC -ACGGAAACAAGGTGGCAATGGATC -ACGGAAACAAGGTGGCAACACTTC -ACGGAAACAAGGTGGCAAGTACTC -ACGGAAACAAGGTGGCAAGATGTC -ACGGAAACAAGGTGGCAAACAGTC -ACGGAAACAAGGTGGCAATTGCTG -ACGGAAACAAGGTGGCAATCCATG -ACGGAAACAAGGTGGCAATGTGTG -ACGGAAACAAGGTGGCAACTAGTG -ACGGAAACAAGGTGGCAACATCTG -ACGGAAACAAGGTGGCAAGAGTTG -ACGGAAACAAGGTGGCAAAGACTG -ACGGAAACAAGGTGGCAATCGGTA -ACGGAAACAAGGTGGCAATGCCTA -ACGGAAACAAGGTGGCAACCACTA -ACGGAAACAAGGTGGCAAGGAGTA -ACGGAAACAAGGTGGCAATCGTCT -ACGGAAACAAGGTGGCAATGCACT -ACGGAAACAAGGTGGCAACTGACT -ACGGAAACAAGGTGGCAACAACCT -ACGGAAACAAGGTGGCAAGCTACT -ACGGAAACAAGGTGGCAAGGATCT -ACGGAAACAAGGTGGCAAAAGGCT -ACGGAAACAAGGTGGCAATCAACC -ACGGAAACAAGGTGGCAATGTTCC -ACGGAAACAAGGTGGCAAATTCCC -ACGGAAACAAGGTGGCAATTCTCG -ACGGAAACAAGGTGGCAATAGACG -ACGGAAACAAGGTGGCAAGTAACG -ACGGAAACAAGGTGGCAAACTTCG -ACGGAAACAAGGTGGCAATACGCA -ACGGAAACAAGGTGGCAACTTGCA -ACGGAAACAAGGTGGCAACGAACA -ACGGAAACAAGGTGGCAACAGTCA -ACGGAAACAAGGTGGCAAGATCCA -ACGGAAACAAGGTGGCAAACGACA -ACGGAAACAAGGTGGCAAAGCTCA -ACGGAAACAAGGTGGCAATCACGT -ACGGAAACAAGGTGGCAACGTAGT -ACGGAAACAAGGTGGCAAGTCAGT -ACGGAAACAAGGTGGCAAGAAGGT -ACGGAAACAAGGTGGCAAAACCGT -ACGGAAACAAGGTGGCAATTGTGC -ACGGAAACAAGGTGGCAACTAAGC -ACGGAAACAAGGTGGCAAACTAGC -ACGGAAACAAGGTGGCAAAGATGC -ACGGAAACAAGGTGGCAATGAAGG -ACGGAAACAAGGTGGCAACAATGG -ACGGAAACAAGGTGGCAAATGAGG -ACGGAAACAAGGTGGCAAAATGGG -ACGGAAACAAGGTGGCAATCCTGA -ACGGAAACAAGGTGGCAATAGCGA -ACGGAAACAAGGTGGCAACACAGA -ACGGAAACAAGGTGGCAAGCAAGA -ACGGAAACAAGGTGGCAAGGTTGA -ACGGAAACAAGGTGGCAATCCGAT -ACGGAAACAAGGTGGCAATGGCAT -ACGGAAACAAGGTGGCAACGAGAT -ACGGAAACAAGGTGGCAATACCAC -ACGGAAACAAGGTGGCAACAGAAC -ACGGAAACAAGGTGGCAAGTCTAC -ACGGAAACAAGGTGGCAAACGTAC -ACGGAAACAAGGTGGCAAAGTGAC -ACGGAAACAAGGTGGCAACTGTAG -ACGGAAACAAGGTGGCAACCTAAG -ACGGAAACAAGGTGGCAAGTTCAG -ACGGAAACAAGGTGGCAAGCATAG -ACGGAAACAAGGTGGCAAGACAAG -ACGGAAACAAGGTGGCAAAAGCAG -ACGGAAACAAGGTGGCAACGTCAA -ACGGAAACAAGGTGGCAAGCTGAA -ACGGAAACAAGGTGGCAAAGTACG -ACGGAAACAAGGTGGCAAATCCGA -ACGGAAACAAGGTGGCAAATGGGA -ACGGAAACAAGGTGGCAAGTGCAA -ACGGAAACAAGGTGGCAAGAGGAA -ACGGAAACAAGGTGGCAACAGGTA -ACGGAAACAAGGTGGCAAGACTCT -ACGGAAACAAGGTGGCAAAGTCCT -ACGGAAACAAGGTGGCAATAAGCC -ACGGAAACAAGGTGGCAAATAGCC -ACGGAAACAAGGTGGCAATAACCG -ACGGAAACAAGGTGGCAAATGCCA -ACGGAAACAAGGAGGATGGGAAAC -ACGGAAACAAGGAGGATGAACACC -ACGGAAACAAGGAGGATGATCGAG -ACGGAAACAAGGAGGATGCTCCTT -ACGGAAACAAGGAGGATGCCTGTT -ACGGAAACAAGGAGGATGCGGTTT -ACGGAAACAAGGAGGATGGTGGTT -ACGGAAACAAGGAGGATGGCCTTT -ACGGAAACAAGGAGGATGGGTCTT -ACGGAAACAAGGAGGATGACGCTT -ACGGAAACAAGGAGGATGAGCGTT -ACGGAAACAAGGAGGATGTTCGTC -ACGGAAACAAGGAGGATGTCTCTC -ACGGAAACAAGGAGGATGTGGATC -ACGGAAACAAGGAGGATGCACTTC -ACGGAAACAAGGAGGATGGTACTC -ACGGAAACAAGGAGGATGGATGTC -ACGGAAACAAGGAGGATGACAGTC -ACGGAAACAAGGAGGATGTTGCTG -ACGGAAACAAGGAGGATGTCCATG -ACGGAAACAAGGAGGATGTGTGTG -ACGGAAACAAGGAGGATGCTAGTG -ACGGAAACAAGGAGGATGCATCTG -ACGGAAACAAGGAGGATGGAGTTG -ACGGAAACAAGGAGGATGAGACTG -ACGGAAACAAGGAGGATGTCGGTA -ACGGAAACAAGGAGGATGTGCCTA -ACGGAAACAAGGAGGATGCCACTA -ACGGAAACAAGGAGGATGGGAGTA -ACGGAAACAAGGAGGATGTCGTCT -ACGGAAACAAGGAGGATGTGCACT -ACGGAAACAAGGAGGATGCTGACT -ACGGAAACAAGGAGGATGCAACCT -ACGGAAACAAGGAGGATGGCTACT -ACGGAAACAAGGAGGATGGGATCT -ACGGAAACAAGGAGGATGAAGGCT -ACGGAAACAAGGAGGATGTCAACC -ACGGAAACAAGGAGGATGTGTTCC -ACGGAAACAAGGAGGATGATTCCC -ACGGAAACAAGGAGGATGTTCTCG -ACGGAAACAAGGAGGATGTAGACG -ACGGAAACAAGGAGGATGGTAACG -ACGGAAACAAGGAGGATGACTTCG -ACGGAAACAAGGAGGATGTACGCA -ACGGAAACAAGGAGGATGCTTGCA -ACGGAAACAAGGAGGATGCGAACA -ACGGAAACAAGGAGGATGCAGTCA -ACGGAAACAAGGAGGATGGATCCA -ACGGAAACAAGGAGGATGACGACA -ACGGAAACAAGGAGGATGAGCTCA -ACGGAAACAAGGAGGATGTCACGT -ACGGAAACAAGGAGGATGCGTAGT -ACGGAAACAAGGAGGATGGTCAGT -ACGGAAACAAGGAGGATGGAAGGT -ACGGAAACAAGGAGGATGAACCGT -ACGGAAACAAGGAGGATGTTGTGC -ACGGAAACAAGGAGGATGCTAAGC -ACGGAAACAAGGAGGATGACTAGC -ACGGAAACAAGGAGGATGAGATGC -ACGGAAACAAGGAGGATGTGAAGG -ACGGAAACAAGGAGGATGCAATGG -ACGGAAACAAGGAGGATGATGAGG -ACGGAAACAAGGAGGATGAATGGG -ACGGAAACAAGGAGGATGTCCTGA -ACGGAAACAAGGAGGATGTAGCGA -ACGGAAACAAGGAGGATGCACAGA -ACGGAAACAAGGAGGATGGCAAGA -ACGGAAACAAGGAGGATGGGTTGA -ACGGAAACAAGGAGGATGTCCGAT -ACGGAAACAAGGAGGATGTGGCAT -ACGGAAACAAGGAGGATGCGAGAT -ACGGAAACAAGGAGGATGTACCAC -ACGGAAACAAGGAGGATGCAGAAC -ACGGAAACAAGGAGGATGGTCTAC -ACGGAAACAAGGAGGATGACGTAC -ACGGAAACAAGGAGGATGAGTGAC -ACGGAAACAAGGAGGATGCTGTAG -ACGGAAACAAGGAGGATGCCTAAG -ACGGAAACAAGGAGGATGGTTCAG -ACGGAAACAAGGAGGATGGCATAG -ACGGAAACAAGGAGGATGGACAAG -ACGGAAACAAGGAGGATGAAGCAG -ACGGAAACAAGGAGGATGCGTCAA -ACGGAAACAAGGAGGATGGCTGAA -ACGGAAACAAGGAGGATGAGTACG -ACGGAAACAAGGAGGATGATCCGA -ACGGAAACAAGGAGGATGATGGGA -ACGGAAACAAGGAGGATGGTGCAA -ACGGAAACAAGGAGGATGGAGGAA -ACGGAAACAAGGAGGATGCAGGTA -ACGGAAACAAGGAGGATGGACTCT -ACGGAAACAAGGAGGATGAGTCCT -ACGGAAACAAGGAGGATGTAAGCC -ACGGAAACAAGGAGGATGATAGCC -ACGGAAACAAGGAGGATGTAACCG -ACGGAAACAAGGAGGATGATGCCA -ACGGAAACAAGGGGGAATGGAAAC -ACGGAAACAAGGGGGAATAACACC -ACGGAAACAAGGGGGAATATCGAG -ACGGAAACAAGGGGGAATCTCCTT -ACGGAAACAAGGGGGAATCCTGTT -ACGGAAACAAGGGGGAATCGGTTT -ACGGAAACAAGGGGGAATGTGGTT -ACGGAAACAAGGGGGAATGCCTTT -ACGGAAACAAGGGGGAATGGTCTT -ACGGAAACAAGGGGGAATACGCTT -ACGGAAACAAGGGGGAATAGCGTT -ACGGAAACAAGGGGGAATTTCGTC -ACGGAAACAAGGGGGAATTCTCTC -ACGGAAACAAGGGGGAATTGGATC -ACGGAAACAAGGGGGAATCACTTC -ACGGAAACAAGGGGGAATGTACTC -ACGGAAACAAGGGGGAATGATGTC -ACGGAAACAAGGGGGAATACAGTC -ACGGAAACAAGGGGGAATTTGCTG -ACGGAAACAAGGGGGAATTCCATG -ACGGAAACAAGGGGGAATTGTGTG -ACGGAAACAAGGGGGAATCTAGTG -ACGGAAACAAGGGGGAATCATCTG -ACGGAAACAAGGGGGAATGAGTTG -ACGGAAACAAGGGGGAATAGACTG -ACGGAAACAAGGGGGAATTCGGTA -ACGGAAACAAGGGGGAATTGCCTA -ACGGAAACAAGGGGGAATCCACTA -ACGGAAACAAGGGGGAATGGAGTA -ACGGAAACAAGGGGGAATTCGTCT -ACGGAAACAAGGGGGAATTGCACT -ACGGAAACAAGGGGGAATCTGACT -ACGGAAACAAGGGGGAATCAACCT -ACGGAAACAAGGGGGAATGCTACT -ACGGAAACAAGGGGGAATGGATCT -ACGGAAACAAGGGGGAATAAGGCT -ACGGAAACAAGGGGGAATTCAACC -ACGGAAACAAGGGGGAATTGTTCC -ACGGAAACAAGGGGGAATATTCCC -ACGGAAACAAGGGGGAATTTCTCG -ACGGAAACAAGGGGGAATTAGACG -ACGGAAACAAGGGGGAATGTAACG -ACGGAAACAAGGGGGAATACTTCG -ACGGAAACAAGGGGGAATTACGCA -ACGGAAACAAGGGGGAATCTTGCA -ACGGAAACAAGGGGGAATCGAACA -ACGGAAACAAGGGGGAATCAGTCA -ACGGAAACAAGGGGGAATGATCCA -ACGGAAACAAGGGGGAATACGACA -ACGGAAACAAGGGGGAATAGCTCA -ACGGAAACAAGGGGGAATTCACGT -ACGGAAACAAGGGGGAATCGTAGT -ACGGAAACAAGGGGGAATGTCAGT -ACGGAAACAAGGGGGAATGAAGGT -ACGGAAACAAGGGGGAATAACCGT -ACGGAAACAAGGGGGAATTTGTGC -ACGGAAACAAGGGGGAATCTAAGC -ACGGAAACAAGGGGGAATACTAGC -ACGGAAACAAGGGGGAATAGATGC -ACGGAAACAAGGGGGAATTGAAGG -ACGGAAACAAGGGGGAATCAATGG -ACGGAAACAAGGGGGAATATGAGG -ACGGAAACAAGGGGGAATAATGGG -ACGGAAACAAGGGGGAATTCCTGA -ACGGAAACAAGGGGGAATTAGCGA -ACGGAAACAAGGGGGAATCACAGA -ACGGAAACAAGGGGGAATGCAAGA -ACGGAAACAAGGGGGAATGGTTGA -ACGGAAACAAGGGGGAATTCCGAT -ACGGAAACAAGGGGGAATTGGCAT -ACGGAAACAAGGGGGAATCGAGAT -ACGGAAACAAGGGGGAATTACCAC -ACGGAAACAAGGGGGAATCAGAAC -ACGGAAACAAGGGGGAATGTCTAC -ACGGAAACAAGGGGGAATACGTAC -ACGGAAACAAGGGGGAATAGTGAC -ACGGAAACAAGGGGGAATCTGTAG -ACGGAAACAAGGGGGAATCCTAAG -ACGGAAACAAGGGGGAATGTTCAG -ACGGAAACAAGGGGGAATGCATAG -ACGGAAACAAGGGGGAATGACAAG -ACGGAAACAAGGGGGAATAAGCAG -ACGGAAACAAGGGGGAATCGTCAA -ACGGAAACAAGGGGGAATGCTGAA -ACGGAAACAAGGGGGAATAGTACG -ACGGAAACAAGGGGGAATATCCGA -ACGGAAACAAGGGGGAATATGGGA -ACGGAAACAAGGGGGAATGTGCAA -ACGGAAACAAGGGGGAATGAGGAA -ACGGAAACAAGGGGGAATCAGGTA -ACGGAAACAAGGGGGAATGACTCT -ACGGAAACAAGGGGGAATAGTCCT -ACGGAAACAAGGGGGAATTAAGCC -ACGGAAACAAGGGGGAATATAGCC -ACGGAAACAAGGGGGAATTAACCG -ACGGAAACAAGGGGGAATATGCCA -ACGGAAACAAGGTGATCCGGAAAC -ACGGAAACAAGGTGATCCAACACC -ACGGAAACAAGGTGATCCATCGAG -ACGGAAACAAGGTGATCCCTCCTT -ACGGAAACAAGGTGATCCCCTGTT -ACGGAAACAAGGTGATCCCGGTTT -ACGGAAACAAGGTGATCCGTGGTT -ACGGAAACAAGGTGATCCGCCTTT -ACGGAAACAAGGTGATCCGGTCTT -ACGGAAACAAGGTGATCCACGCTT -ACGGAAACAAGGTGATCCAGCGTT -ACGGAAACAAGGTGATCCTTCGTC -ACGGAAACAAGGTGATCCTCTCTC -ACGGAAACAAGGTGATCCTGGATC -ACGGAAACAAGGTGATCCCACTTC -ACGGAAACAAGGTGATCCGTACTC -ACGGAAACAAGGTGATCCGATGTC -ACGGAAACAAGGTGATCCACAGTC -ACGGAAACAAGGTGATCCTTGCTG -ACGGAAACAAGGTGATCCTCCATG -ACGGAAACAAGGTGATCCTGTGTG -ACGGAAACAAGGTGATCCCTAGTG -ACGGAAACAAGGTGATCCCATCTG -ACGGAAACAAGGTGATCCGAGTTG -ACGGAAACAAGGTGATCCAGACTG -ACGGAAACAAGGTGATCCTCGGTA -ACGGAAACAAGGTGATCCTGCCTA -ACGGAAACAAGGTGATCCCCACTA -ACGGAAACAAGGTGATCCGGAGTA -ACGGAAACAAGGTGATCCTCGTCT -ACGGAAACAAGGTGATCCTGCACT -ACGGAAACAAGGTGATCCCTGACT -ACGGAAACAAGGTGATCCCAACCT -ACGGAAACAAGGTGATCCGCTACT -ACGGAAACAAGGTGATCCGGATCT -ACGGAAACAAGGTGATCCAAGGCT -ACGGAAACAAGGTGATCCTCAACC -ACGGAAACAAGGTGATCCTGTTCC -ACGGAAACAAGGTGATCCATTCCC -ACGGAAACAAGGTGATCCTTCTCG -ACGGAAACAAGGTGATCCTAGACG -ACGGAAACAAGGTGATCCGTAACG -ACGGAAACAAGGTGATCCACTTCG -ACGGAAACAAGGTGATCCTACGCA -ACGGAAACAAGGTGATCCCTTGCA -ACGGAAACAAGGTGATCCCGAACA -ACGGAAACAAGGTGATCCCAGTCA -ACGGAAACAAGGTGATCCGATCCA -ACGGAAACAAGGTGATCCACGACA -ACGGAAACAAGGTGATCCAGCTCA -ACGGAAACAAGGTGATCCTCACGT -ACGGAAACAAGGTGATCCCGTAGT -ACGGAAACAAGGTGATCCGTCAGT -ACGGAAACAAGGTGATCCGAAGGT -ACGGAAACAAGGTGATCCAACCGT -ACGGAAACAAGGTGATCCTTGTGC -ACGGAAACAAGGTGATCCCTAAGC -ACGGAAACAAGGTGATCCACTAGC -ACGGAAACAAGGTGATCCAGATGC -ACGGAAACAAGGTGATCCTGAAGG -ACGGAAACAAGGTGATCCCAATGG -ACGGAAACAAGGTGATCCATGAGG -ACGGAAACAAGGTGATCCAATGGG -ACGGAAACAAGGTGATCCTCCTGA -ACGGAAACAAGGTGATCCTAGCGA -ACGGAAACAAGGTGATCCCACAGA -ACGGAAACAAGGTGATCCGCAAGA -ACGGAAACAAGGTGATCCGGTTGA -ACGGAAACAAGGTGATCCTCCGAT -ACGGAAACAAGGTGATCCTGGCAT -ACGGAAACAAGGTGATCCCGAGAT -ACGGAAACAAGGTGATCCTACCAC -ACGGAAACAAGGTGATCCCAGAAC -ACGGAAACAAGGTGATCCGTCTAC -ACGGAAACAAGGTGATCCACGTAC -ACGGAAACAAGGTGATCCAGTGAC -ACGGAAACAAGGTGATCCCTGTAG -ACGGAAACAAGGTGATCCCCTAAG -ACGGAAACAAGGTGATCCGTTCAG -ACGGAAACAAGGTGATCCGCATAG -ACGGAAACAAGGTGATCCGACAAG -ACGGAAACAAGGTGATCCAAGCAG -ACGGAAACAAGGTGATCCCGTCAA -ACGGAAACAAGGTGATCCGCTGAA -ACGGAAACAAGGTGATCCAGTACG -ACGGAAACAAGGTGATCCATCCGA -ACGGAAACAAGGTGATCCATGGGA -ACGGAAACAAGGTGATCCGTGCAA -ACGGAAACAAGGTGATCCGAGGAA -ACGGAAACAAGGTGATCCCAGGTA -ACGGAAACAAGGTGATCCGACTCT -ACGGAAACAAGGTGATCCAGTCCT -ACGGAAACAAGGTGATCCTAAGCC -ACGGAAACAAGGTGATCCATAGCC -ACGGAAACAAGGTGATCCTAACCG -ACGGAAACAAGGTGATCCATGCCA -ACGGAAACAAGGCGATAGGGAAAC -ACGGAAACAAGGCGATAGAACACC -ACGGAAACAAGGCGATAGATCGAG -ACGGAAACAAGGCGATAGCTCCTT -ACGGAAACAAGGCGATAGCCTGTT -ACGGAAACAAGGCGATAGCGGTTT -ACGGAAACAAGGCGATAGGTGGTT -ACGGAAACAAGGCGATAGGCCTTT -ACGGAAACAAGGCGATAGGGTCTT -ACGGAAACAAGGCGATAGACGCTT -ACGGAAACAAGGCGATAGAGCGTT -ACGGAAACAAGGCGATAGTTCGTC -ACGGAAACAAGGCGATAGTCTCTC -ACGGAAACAAGGCGATAGTGGATC -ACGGAAACAAGGCGATAGCACTTC -ACGGAAACAAGGCGATAGGTACTC -ACGGAAACAAGGCGATAGGATGTC -ACGGAAACAAGGCGATAGACAGTC -ACGGAAACAAGGCGATAGTTGCTG -ACGGAAACAAGGCGATAGTCCATG -ACGGAAACAAGGCGATAGTGTGTG -ACGGAAACAAGGCGATAGCTAGTG -ACGGAAACAAGGCGATAGCATCTG -ACGGAAACAAGGCGATAGGAGTTG -ACGGAAACAAGGCGATAGAGACTG -ACGGAAACAAGGCGATAGTCGGTA -ACGGAAACAAGGCGATAGTGCCTA -ACGGAAACAAGGCGATAGCCACTA -ACGGAAACAAGGCGATAGGGAGTA -ACGGAAACAAGGCGATAGTCGTCT -ACGGAAACAAGGCGATAGTGCACT -ACGGAAACAAGGCGATAGCTGACT -ACGGAAACAAGGCGATAGCAACCT -ACGGAAACAAGGCGATAGGCTACT -ACGGAAACAAGGCGATAGGGATCT -ACGGAAACAAGGCGATAGAAGGCT -ACGGAAACAAGGCGATAGTCAACC -ACGGAAACAAGGCGATAGTGTTCC -ACGGAAACAAGGCGATAGATTCCC -ACGGAAACAAGGCGATAGTTCTCG -ACGGAAACAAGGCGATAGTAGACG -ACGGAAACAAGGCGATAGGTAACG -ACGGAAACAAGGCGATAGACTTCG -ACGGAAACAAGGCGATAGTACGCA -ACGGAAACAAGGCGATAGCTTGCA -ACGGAAACAAGGCGATAGCGAACA -ACGGAAACAAGGCGATAGCAGTCA -ACGGAAACAAGGCGATAGGATCCA -ACGGAAACAAGGCGATAGACGACA -ACGGAAACAAGGCGATAGAGCTCA -ACGGAAACAAGGCGATAGTCACGT -ACGGAAACAAGGCGATAGCGTAGT -ACGGAAACAAGGCGATAGGTCAGT -ACGGAAACAAGGCGATAGGAAGGT -ACGGAAACAAGGCGATAGAACCGT -ACGGAAACAAGGCGATAGTTGTGC -ACGGAAACAAGGCGATAGCTAAGC -ACGGAAACAAGGCGATAGACTAGC -ACGGAAACAAGGCGATAGAGATGC -ACGGAAACAAGGCGATAGTGAAGG -ACGGAAACAAGGCGATAGCAATGG -ACGGAAACAAGGCGATAGATGAGG -ACGGAAACAAGGCGATAGAATGGG -ACGGAAACAAGGCGATAGTCCTGA -ACGGAAACAAGGCGATAGTAGCGA -ACGGAAACAAGGCGATAGCACAGA -ACGGAAACAAGGCGATAGGCAAGA -ACGGAAACAAGGCGATAGGGTTGA -ACGGAAACAAGGCGATAGTCCGAT -ACGGAAACAAGGCGATAGTGGCAT -ACGGAAACAAGGCGATAGCGAGAT -ACGGAAACAAGGCGATAGTACCAC -ACGGAAACAAGGCGATAGCAGAAC -ACGGAAACAAGGCGATAGGTCTAC -ACGGAAACAAGGCGATAGACGTAC -ACGGAAACAAGGCGATAGAGTGAC -ACGGAAACAAGGCGATAGCTGTAG -ACGGAAACAAGGCGATAGCCTAAG -ACGGAAACAAGGCGATAGGTTCAG -ACGGAAACAAGGCGATAGGCATAG -ACGGAAACAAGGCGATAGGACAAG -ACGGAAACAAGGCGATAGAAGCAG -ACGGAAACAAGGCGATAGCGTCAA -ACGGAAACAAGGCGATAGGCTGAA -ACGGAAACAAGGCGATAGAGTACG -ACGGAAACAAGGCGATAGATCCGA -ACGGAAACAAGGCGATAGATGGGA -ACGGAAACAAGGCGATAGGTGCAA -ACGGAAACAAGGCGATAGGAGGAA -ACGGAAACAAGGCGATAGCAGGTA -ACGGAAACAAGGCGATAGGACTCT -ACGGAAACAAGGCGATAGAGTCCT -ACGGAAACAAGGCGATAGTAAGCC -ACGGAAACAAGGCGATAGATAGCC -ACGGAAACAAGGCGATAGTAACCG -ACGGAAACAAGGCGATAGATGCCA -ACGGAAACAAGGAGACACGGAAAC -ACGGAAACAAGGAGACACAACACC -ACGGAAACAAGGAGACACATCGAG -ACGGAAACAAGGAGACACCTCCTT -ACGGAAACAAGGAGACACCCTGTT -ACGGAAACAAGGAGACACCGGTTT -ACGGAAACAAGGAGACACGTGGTT -ACGGAAACAAGGAGACACGCCTTT -ACGGAAACAAGGAGACACGGTCTT -ACGGAAACAAGGAGACACACGCTT -ACGGAAACAAGGAGACACAGCGTT -ACGGAAACAAGGAGACACTTCGTC -ACGGAAACAAGGAGACACTCTCTC -ACGGAAACAAGGAGACACTGGATC -ACGGAAACAAGGAGACACCACTTC -ACGGAAACAAGGAGACACGTACTC -ACGGAAACAAGGAGACACGATGTC -ACGGAAACAAGGAGACACACAGTC -ACGGAAACAAGGAGACACTTGCTG -ACGGAAACAAGGAGACACTCCATG -ACGGAAACAAGGAGACACTGTGTG -ACGGAAACAAGGAGACACCTAGTG -ACGGAAACAAGGAGACACCATCTG -ACGGAAACAAGGAGACACGAGTTG -ACGGAAACAAGGAGACACAGACTG -ACGGAAACAAGGAGACACTCGGTA -ACGGAAACAAGGAGACACTGCCTA -ACGGAAACAAGGAGACACCCACTA -ACGGAAACAAGGAGACACGGAGTA -ACGGAAACAAGGAGACACTCGTCT -ACGGAAACAAGGAGACACTGCACT -ACGGAAACAAGGAGACACCTGACT -ACGGAAACAAGGAGACACCAACCT -ACGGAAACAAGGAGACACGCTACT -ACGGAAACAAGGAGACACGGATCT -ACGGAAACAAGGAGACACAAGGCT -ACGGAAACAAGGAGACACTCAACC -ACGGAAACAAGGAGACACTGTTCC -ACGGAAACAAGGAGACACATTCCC -ACGGAAACAAGGAGACACTTCTCG -ACGGAAACAAGGAGACACTAGACG -ACGGAAACAAGGAGACACGTAACG -ACGGAAACAAGGAGACACACTTCG -ACGGAAACAAGGAGACACTACGCA -ACGGAAACAAGGAGACACCTTGCA -ACGGAAACAAGGAGACACCGAACA -ACGGAAACAAGGAGACACCAGTCA -ACGGAAACAAGGAGACACGATCCA -ACGGAAACAAGGAGACACACGACA -ACGGAAACAAGGAGACACAGCTCA -ACGGAAACAAGGAGACACTCACGT -ACGGAAACAAGGAGACACCGTAGT -ACGGAAACAAGGAGACACGTCAGT -ACGGAAACAAGGAGACACGAAGGT -ACGGAAACAAGGAGACACAACCGT -ACGGAAACAAGGAGACACTTGTGC -ACGGAAACAAGGAGACACCTAAGC -ACGGAAACAAGGAGACACACTAGC -ACGGAAACAAGGAGACACAGATGC -ACGGAAACAAGGAGACACTGAAGG -ACGGAAACAAGGAGACACCAATGG -ACGGAAACAAGGAGACACATGAGG -ACGGAAACAAGGAGACACAATGGG -ACGGAAACAAGGAGACACTCCTGA -ACGGAAACAAGGAGACACTAGCGA -ACGGAAACAAGGAGACACCACAGA -ACGGAAACAAGGAGACACGCAAGA -ACGGAAACAAGGAGACACGGTTGA -ACGGAAACAAGGAGACACTCCGAT -ACGGAAACAAGGAGACACTGGCAT -ACGGAAACAAGGAGACACCGAGAT -ACGGAAACAAGGAGACACTACCAC -ACGGAAACAAGGAGACACCAGAAC -ACGGAAACAAGGAGACACGTCTAC -ACGGAAACAAGGAGACACACGTAC -ACGGAAACAAGGAGACACAGTGAC -ACGGAAACAAGGAGACACCTGTAG -ACGGAAACAAGGAGACACCCTAAG -ACGGAAACAAGGAGACACGTTCAG -ACGGAAACAAGGAGACACGCATAG -ACGGAAACAAGGAGACACGACAAG -ACGGAAACAAGGAGACACAAGCAG -ACGGAAACAAGGAGACACCGTCAA -ACGGAAACAAGGAGACACGCTGAA -ACGGAAACAAGGAGACACAGTACG -ACGGAAACAAGGAGACACATCCGA -ACGGAAACAAGGAGACACATGGGA -ACGGAAACAAGGAGACACGTGCAA -ACGGAAACAAGGAGACACGAGGAA -ACGGAAACAAGGAGACACCAGGTA -ACGGAAACAAGGAGACACGACTCT -ACGGAAACAAGGAGACACAGTCCT -ACGGAAACAAGGAGACACTAAGCC -ACGGAAACAAGGAGACACATAGCC -ACGGAAACAAGGAGACACTAACCG -ACGGAAACAAGGAGACACATGCCA -ACGGAAACAAGGAGAGCAGGAAAC -ACGGAAACAAGGAGAGCAAACACC -ACGGAAACAAGGAGAGCAATCGAG -ACGGAAACAAGGAGAGCACTCCTT -ACGGAAACAAGGAGAGCACCTGTT -ACGGAAACAAGGAGAGCACGGTTT -ACGGAAACAAGGAGAGCAGTGGTT -ACGGAAACAAGGAGAGCAGCCTTT -ACGGAAACAAGGAGAGCAGGTCTT -ACGGAAACAAGGAGAGCAACGCTT -ACGGAAACAAGGAGAGCAAGCGTT -ACGGAAACAAGGAGAGCATTCGTC -ACGGAAACAAGGAGAGCATCTCTC -ACGGAAACAAGGAGAGCATGGATC -ACGGAAACAAGGAGAGCACACTTC -ACGGAAACAAGGAGAGCAGTACTC -ACGGAAACAAGGAGAGCAGATGTC -ACGGAAACAAGGAGAGCAACAGTC -ACGGAAACAAGGAGAGCATTGCTG -ACGGAAACAAGGAGAGCATCCATG -ACGGAAACAAGGAGAGCATGTGTG -ACGGAAACAAGGAGAGCACTAGTG -ACGGAAACAAGGAGAGCACATCTG -ACGGAAACAAGGAGAGCAGAGTTG -ACGGAAACAAGGAGAGCAAGACTG -ACGGAAACAAGGAGAGCATCGGTA -ACGGAAACAAGGAGAGCATGCCTA -ACGGAAACAAGGAGAGCACCACTA -ACGGAAACAAGGAGAGCAGGAGTA -ACGGAAACAAGGAGAGCATCGTCT -ACGGAAACAAGGAGAGCATGCACT -ACGGAAACAAGGAGAGCACTGACT -ACGGAAACAAGGAGAGCACAACCT -ACGGAAACAAGGAGAGCAGCTACT -ACGGAAACAAGGAGAGCAGGATCT -ACGGAAACAAGGAGAGCAAAGGCT -ACGGAAACAAGGAGAGCATCAACC -ACGGAAACAAGGAGAGCATGTTCC -ACGGAAACAAGGAGAGCAATTCCC -ACGGAAACAAGGAGAGCATTCTCG -ACGGAAACAAGGAGAGCATAGACG -ACGGAAACAAGGAGAGCAGTAACG -ACGGAAACAAGGAGAGCAACTTCG -ACGGAAACAAGGAGAGCATACGCA -ACGGAAACAAGGAGAGCACTTGCA -ACGGAAACAAGGAGAGCACGAACA -ACGGAAACAAGGAGAGCACAGTCA -ACGGAAACAAGGAGAGCAGATCCA -ACGGAAACAAGGAGAGCAACGACA -ACGGAAACAAGGAGAGCAAGCTCA -ACGGAAACAAGGAGAGCATCACGT -ACGGAAACAAGGAGAGCACGTAGT -ACGGAAACAAGGAGAGCAGTCAGT -ACGGAAACAAGGAGAGCAGAAGGT -ACGGAAACAAGGAGAGCAAACCGT -ACGGAAACAAGGAGAGCATTGTGC -ACGGAAACAAGGAGAGCACTAAGC -ACGGAAACAAGGAGAGCAACTAGC -ACGGAAACAAGGAGAGCAAGATGC -ACGGAAACAAGGAGAGCATGAAGG -ACGGAAACAAGGAGAGCACAATGG -ACGGAAACAAGGAGAGCAATGAGG -ACGGAAACAAGGAGAGCAAATGGG -ACGGAAACAAGGAGAGCATCCTGA -ACGGAAACAAGGAGAGCATAGCGA -ACGGAAACAAGGAGAGCACACAGA -ACGGAAACAAGGAGAGCAGCAAGA -ACGGAAACAAGGAGAGCAGGTTGA -ACGGAAACAAGGAGAGCATCCGAT -ACGGAAACAAGGAGAGCATGGCAT -ACGGAAACAAGGAGAGCACGAGAT -ACGGAAACAAGGAGAGCATACCAC -ACGGAAACAAGGAGAGCACAGAAC -ACGGAAACAAGGAGAGCAGTCTAC -ACGGAAACAAGGAGAGCAACGTAC -ACGGAAACAAGGAGAGCAAGTGAC -ACGGAAACAAGGAGAGCACTGTAG -ACGGAAACAAGGAGAGCACCTAAG -ACGGAAACAAGGAGAGCAGTTCAG -ACGGAAACAAGGAGAGCAGCATAG -ACGGAAACAAGGAGAGCAGACAAG -ACGGAAACAAGGAGAGCAAAGCAG -ACGGAAACAAGGAGAGCACGTCAA -ACGGAAACAAGGAGAGCAGCTGAA -ACGGAAACAAGGAGAGCAAGTACG -ACGGAAACAAGGAGAGCAATCCGA -ACGGAAACAAGGAGAGCAATGGGA -ACGGAAACAAGGAGAGCAGTGCAA -ACGGAAACAAGGAGAGCAGAGGAA -ACGGAAACAAGGAGAGCACAGGTA -ACGGAAACAAGGAGAGCAGACTCT -ACGGAAACAAGGAGAGCAAGTCCT -ACGGAAACAAGGAGAGCATAAGCC -ACGGAAACAAGGAGAGCAATAGCC -ACGGAAACAAGGAGAGCATAACCG -ACGGAAACAAGGAGAGCAATGCCA -ACGGAAACAAGGTGAGGTGGAAAC -ACGGAAACAAGGTGAGGTAACACC -ACGGAAACAAGGTGAGGTATCGAG -ACGGAAACAAGGTGAGGTCTCCTT -ACGGAAACAAGGTGAGGTCCTGTT -ACGGAAACAAGGTGAGGTCGGTTT -ACGGAAACAAGGTGAGGTGTGGTT -ACGGAAACAAGGTGAGGTGCCTTT -ACGGAAACAAGGTGAGGTGGTCTT -ACGGAAACAAGGTGAGGTACGCTT -ACGGAAACAAGGTGAGGTAGCGTT -ACGGAAACAAGGTGAGGTTTCGTC -ACGGAAACAAGGTGAGGTTCTCTC -ACGGAAACAAGGTGAGGTTGGATC -ACGGAAACAAGGTGAGGTCACTTC -ACGGAAACAAGGTGAGGTGTACTC -ACGGAAACAAGGTGAGGTGATGTC -ACGGAAACAAGGTGAGGTACAGTC -ACGGAAACAAGGTGAGGTTTGCTG -ACGGAAACAAGGTGAGGTTCCATG -ACGGAAACAAGGTGAGGTTGTGTG -ACGGAAACAAGGTGAGGTCTAGTG -ACGGAAACAAGGTGAGGTCATCTG -ACGGAAACAAGGTGAGGTGAGTTG -ACGGAAACAAGGTGAGGTAGACTG -ACGGAAACAAGGTGAGGTTCGGTA -ACGGAAACAAGGTGAGGTTGCCTA -ACGGAAACAAGGTGAGGTCCACTA -ACGGAAACAAGGTGAGGTGGAGTA -ACGGAAACAAGGTGAGGTTCGTCT -ACGGAAACAAGGTGAGGTTGCACT -ACGGAAACAAGGTGAGGTCTGACT -ACGGAAACAAGGTGAGGTCAACCT -ACGGAAACAAGGTGAGGTGCTACT -ACGGAAACAAGGTGAGGTGGATCT -ACGGAAACAAGGTGAGGTAAGGCT -ACGGAAACAAGGTGAGGTTCAACC -ACGGAAACAAGGTGAGGTTGTTCC -ACGGAAACAAGGTGAGGTATTCCC -ACGGAAACAAGGTGAGGTTTCTCG -ACGGAAACAAGGTGAGGTTAGACG -ACGGAAACAAGGTGAGGTGTAACG -ACGGAAACAAGGTGAGGTACTTCG -ACGGAAACAAGGTGAGGTTACGCA -ACGGAAACAAGGTGAGGTCTTGCA -ACGGAAACAAGGTGAGGTCGAACA -ACGGAAACAAGGTGAGGTCAGTCA -ACGGAAACAAGGTGAGGTGATCCA -ACGGAAACAAGGTGAGGTACGACA -ACGGAAACAAGGTGAGGTAGCTCA -ACGGAAACAAGGTGAGGTTCACGT -ACGGAAACAAGGTGAGGTCGTAGT -ACGGAAACAAGGTGAGGTGTCAGT -ACGGAAACAAGGTGAGGTGAAGGT -ACGGAAACAAGGTGAGGTAACCGT -ACGGAAACAAGGTGAGGTTTGTGC -ACGGAAACAAGGTGAGGTCTAAGC -ACGGAAACAAGGTGAGGTACTAGC -ACGGAAACAAGGTGAGGTAGATGC -ACGGAAACAAGGTGAGGTTGAAGG -ACGGAAACAAGGTGAGGTCAATGG -ACGGAAACAAGGTGAGGTATGAGG -ACGGAAACAAGGTGAGGTAATGGG -ACGGAAACAAGGTGAGGTTCCTGA -ACGGAAACAAGGTGAGGTTAGCGA -ACGGAAACAAGGTGAGGTCACAGA -ACGGAAACAAGGTGAGGTGCAAGA -ACGGAAACAAGGTGAGGTGGTTGA -ACGGAAACAAGGTGAGGTTCCGAT -ACGGAAACAAGGTGAGGTTGGCAT -ACGGAAACAAGGTGAGGTCGAGAT -ACGGAAACAAGGTGAGGTTACCAC -ACGGAAACAAGGTGAGGTCAGAAC -ACGGAAACAAGGTGAGGTGTCTAC -ACGGAAACAAGGTGAGGTACGTAC -ACGGAAACAAGGTGAGGTAGTGAC -ACGGAAACAAGGTGAGGTCTGTAG -ACGGAAACAAGGTGAGGTCCTAAG -ACGGAAACAAGGTGAGGTGTTCAG -ACGGAAACAAGGTGAGGTGCATAG -ACGGAAACAAGGTGAGGTGACAAG -ACGGAAACAAGGTGAGGTAAGCAG -ACGGAAACAAGGTGAGGTCGTCAA -ACGGAAACAAGGTGAGGTGCTGAA -ACGGAAACAAGGTGAGGTAGTACG -ACGGAAACAAGGTGAGGTATCCGA -ACGGAAACAAGGTGAGGTATGGGA -ACGGAAACAAGGTGAGGTGTGCAA -ACGGAAACAAGGTGAGGTGAGGAA -ACGGAAACAAGGTGAGGTCAGGTA -ACGGAAACAAGGTGAGGTGACTCT -ACGGAAACAAGGTGAGGTAGTCCT -ACGGAAACAAGGTGAGGTTAAGCC -ACGGAAACAAGGTGAGGTATAGCC -ACGGAAACAAGGTGAGGTTAACCG -ACGGAAACAAGGTGAGGTATGCCA -ACGGAAACAAGGGATTCCGGAAAC -ACGGAAACAAGGGATTCCAACACC -ACGGAAACAAGGGATTCCATCGAG -ACGGAAACAAGGGATTCCCTCCTT -ACGGAAACAAGGGATTCCCCTGTT -ACGGAAACAAGGGATTCCCGGTTT -ACGGAAACAAGGGATTCCGTGGTT -ACGGAAACAAGGGATTCCGCCTTT -ACGGAAACAAGGGATTCCGGTCTT -ACGGAAACAAGGGATTCCACGCTT -ACGGAAACAAGGGATTCCAGCGTT -ACGGAAACAAGGGATTCCTTCGTC -ACGGAAACAAGGGATTCCTCTCTC -ACGGAAACAAGGGATTCCTGGATC -ACGGAAACAAGGGATTCCCACTTC -ACGGAAACAAGGGATTCCGTACTC -ACGGAAACAAGGGATTCCGATGTC -ACGGAAACAAGGGATTCCACAGTC -ACGGAAACAAGGGATTCCTTGCTG -ACGGAAACAAGGGATTCCTCCATG -ACGGAAACAAGGGATTCCTGTGTG -ACGGAAACAAGGGATTCCCTAGTG -ACGGAAACAAGGGATTCCCATCTG -ACGGAAACAAGGGATTCCGAGTTG -ACGGAAACAAGGGATTCCAGACTG -ACGGAAACAAGGGATTCCTCGGTA -ACGGAAACAAGGGATTCCTGCCTA -ACGGAAACAAGGGATTCCCCACTA -ACGGAAACAAGGGATTCCGGAGTA -ACGGAAACAAGGGATTCCTCGTCT -ACGGAAACAAGGGATTCCTGCACT -ACGGAAACAAGGGATTCCCTGACT -ACGGAAACAAGGGATTCCCAACCT -ACGGAAACAAGGGATTCCGCTACT -ACGGAAACAAGGGATTCCGGATCT -ACGGAAACAAGGGATTCCAAGGCT -ACGGAAACAAGGGATTCCTCAACC -ACGGAAACAAGGGATTCCTGTTCC -ACGGAAACAAGGGATTCCATTCCC -ACGGAAACAAGGGATTCCTTCTCG -ACGGAAACAAGGGATTCCTAGACG -ACGGAAACAAGGGATTCCGTAACG -ACGGAAACAAGGGATTCCACTTCG -ACGGAAACAAGGGATTCCTACGCA -ACGGAAACAAGGGATTCCCTTGCA -ACGGAAACAAGGGATTCCCGAACA -ACGGAAACAAGGGATTCCCAGTCA -ACGGAAACAAGGGATTCCGATCCA -ACGGAAACAAGGGATTCCACGACA -ACGGAAACAAGGGATTCCAGCTCA -ACGGAAACAAGGGATTCCTCACGT -ACGGAAACAAGGGATTCCCGTAGT -ACGGAAACAAGGGATTCCGTCAGT -ACGGAAACAAGGGATTCCGAAGGT -ACGGAAACAAGGGATTCCAACCGT -ACGGAAACAAGGGATTCCTTGTGC -ACGGAAACAAGGGATTCCCTAAGC -ACGGAAACAAGGGATTCCACTAGC -ACGGAAACAAGGGATTCCAGATGC -ACGGAAACAAGGGATTCCTGAAGG -ACGGAAACAAGGGATTCCCAATGG -ACGGAAACAAGGGATTCCATGAGG -ACGGAAACAAGGGATTCCAATGGG -ACGGAAACAAGGGATTCCTCCTGA -ACGGAAACAAGGGATTCCTAGCGA -ACGGAAACAAGGGATTCCCACAGA -ACGGAAACAAGGGATTCCGCAAGA -ACGGAAACAAGGGATTCCGGTTGA -ACGGAAACAAGGGATTCCTCCGAT -ACGGAAACAAGGGATTCCTGGCAT -ACGGAAACAAGGGATTCCCGAGAT -ACGGAAACAAGGGATTCCTACCAC -ACGGAAACAAGGGATTCCCAGAAC -ACGGAAACAAGGGATTCCGTCTAC -ACGGAAACAAGGGATTCCACGTAC -ACGGAAACAAGGGATTCCAGTGAC -ACGGAAACAAGGGATTCCCTGTAG -ACGGAAACAAGGGATTCCCCTAAG -ACGGAAACAAGGGATTCCGTTCAG -ACGGAAACAAGGGATTCCGCATAG -ACGGAAACAAGGGATTCCGACAAG -ACGGAAACAAGGGATTCCAAGCAG -ACGGAAACAAGGGATTCCCGTCAA -ACGGAAACAAGGGATTCCGCTGAA -ACGGAAACAAGGGATTCCAGTACG -ACGGAAACAAGGGATTCCATCCGA -ACGGAAACAAGGGATTCCATGGGA -ACGGAAACAAGGGATTCCGTGCAA -ACGGAAACAAGGGATTCCGAGGAA -ACGGAAACAAGGGATTCCCAGGTA -ACGGAAACAAGGGATTCCGACTCT -ACGGAAACAAGGGATTCCAGTCCT -ACGGAAACAAGGGATTCCTAAGCC -ACGGAAACAAGGGATTCCATAGCC -ACGGAAACAAGGGATTCCTAACCG -ACGGAAACAAGGGATTCCATGCCA -ACGGAAACAAGGCATTGGGGAAAC -ACGGAAACAAGGCATTGGAACACC -ACGGAAACAAGGCATTGGATCGAG -ACGGAAACAAGGCATTGGCTCCTT -ACGGAAACAAGGCATTGGCCTGTT -ACGGAAACAAGGCATTGGCGGTTT -ACGGAAACAAGGCATTGGGTGGTT -ACGGAAACAAGGCATTGGGCCTTT -ACGGAAACAAGGCATTGGGGTCTT -ACGGAAACAAGGCATTGGACGCTT -ACGGAAACAAGGCATTGGAGCGTT -ACGGAAACAAGGCATTGGTTCGTC -ACGGAAACAAGGCATTGGTCTCTC -ACGGAAACAAGGCATTGGTGGATC -ACGGAAACAAGGCATTGGCACTTC -ACGGAAACAAGGCATTGGGTACTC -ACGGAAACAAGGCATTGGGATGTC -ACGGAAACAAGGCATTGGACAGTC -ACGGAAACAAGGCATTGGTTGCTG -ACGGAAACAAGGCATTGGTCCATG -ACGGAAACAAGGCATTGGTGTGTG -ACGGAAACAAGGCATTGGCTAGTG -ACGGAAACAAGGCATTGGCATCTG -ACGGAAACAAGGCATTGGGAGTTG -ACGGAAACAAGGCATTGGAGACTG -ACGGAAACAAGGCATTGGTCGGTA -ACGGAAACAAGGCATTGGTGCCTA -ACGGAAACAAGGCATTGGCCACTA -ACGGAAACAAGGCATTGGGGAGTA -ACGGAAACAAGGCATTGGTCGTCT -ACGGAAACAAGGCATTGGTGCACT -ACGGAAACAAGGCATTGGCTGACT -ACGGAAACAAGGCATTGGCAACCT -ACGGAAACAAGGCATTGGGCTACT -ACGGAAACAAGGCATTGGGGATCT -ACGGAAACAAGGCATTGGAAGGCT -ACGGAAACAAGGCATTGGTCAACC -ACGGAAACAAGGCATTGGTGTTCC -ACGGAAACAAGGCATTGGATTCCC -ACGGAAACAAGGCATTGGTTCTCG -ACGGAAACAAGGCATTGGTAGACG -ACGGAAACAAGGCATTGGGTAACG -ACGGAAACAAGGCATTGGACTTCG -ACGGAAACAAGGCATTGGTACGCA -ACGGAAACAAGGCATTGGCTTGCA -ACGGAAACAAGGCATTGGCGAACA -ACGGAAACAAGGCATTGGCAGTCA -ACGGAAACAAGGCATTGGGATCCA -ACGGAAACAAGGCATTGGACGACA -ACGGAAACAAGGCATTGGAGCTCA -ACGGAAACAAGGCATTGGTCACGT -ACGGAAACAAGGCATTGGCGTAGT -ACGGAAACAAGGCATTGGGTCAGT -ACGGAAACAAGGCATTGGGAAGGT -ACGGAAACAAGGCATTGGAACCGT -ACGGAAACAAGGCATTGGTTGTGC -ACGGAAACAAGGCATTGGCTAAGC -ACGGAAACAAGGCATTGGACTAGC -ACGGAAACAAGGCATTGGAGATGC -ACGGAAACAAGGCATTGGTGAAGG -ACGGAAACAAGGCATTGGCAATGG -ACGGAAACAAGGCATTGGATGAGG -ACGGAAACAAGGCATTGGAATGGG -ACGGAAACAAGGCATTGGTCCTGA -ACGGAAACAAGGCATTGGTAGCGA -ACGGAAACAAGGCATTGGCACAGA -ACGGAAACAAGGCATTGGGCAAGA -ACGGAAACAAGGCATTGGGGTTGA -ACGGAAACAAGGCATTGGTCCGAT -ACGGAAACAAGGCATTGGTGGCAT -ACGGAAACAAGGCATTGGCGAGAT -ACGGAAACAAGGCATTGGTACCAC -ACGGAAACAAGGCATTGGCAGAAC -ACGGAAACAAGGCATTGGGTCTAC -ACGGAAACAAGGCATTGGACGTAC -ACGGAAACAAGGCATTGGAGTGAC -ACGGAAACAAGGCATTGGCTGTAG -ACGGAAACAAGGCATTGGCCTAAG -ACGGAAACAAGGCATTGGGTTCAG -ACGGAAACAAGGCATTGGGCATAG -ACGGAAACAAGGCATTGGGACAAG -ACGGAAACAAGGCATTGGAAGCAG -ACGGAAACAAGGCATTGGCGTCAA -ACGGAAACAAGGCATTGGGCTGAA -ACGGAAACAAGGCATTGGAGTACG -ACGGAAACAAGGCATTGGATCCGA -ACGGAAACAAGGCATTGGATGGGA -ACGGAAACAAGGCATTGGGTGCAA -ACGGAAACAAGGCATTGGGAGGAA -ACGGAAACAAGGCATTGGCAGGTA -ACGGAAACAAGGCATTGGGACTCT -ACGGAAACAAGGCATTGGAGTCCT -ACGGAAACAAGGCATTGGTAAGCC -ACGGAAACAAGGCATTGGATAGCC -ACGGAAACAAGGCATTGGTAACCG -ACGGAAACAAGGCATTGGATGCCA -ACGGAAACAAGGGATCGAGGAAAC -ACGGAAACAAGGGATCGAAACACC -ACGGAAACAAGGGATCGAATCGAG -ACGGAAACAAGGGATCGACTCCTT -ACGGAAACAAGGGATCGACCTGTT -ACGGAAACAAGGGATCGACGGTTT -ACGGAAACAAGGGATCGAGTGGTT -ACGGAAACAAGGGATCGAGCCTTT -ACGGAAACAAGGGATCGAGGTCTT -ACGGAAACAAGGGATCGAACGCTT -ACGGAAACAAGGGATCGAAGCGTT -ACGGAAACAAGGGATCGATTCGTC -ACGGAAACAAGGGATCGATCTCTC -ACGGAAACAAGGGATCGATGGATC -ACGGAAACAAGGGATCGACACTTC -ACGGAAACAAGGGATCGAGTACTC -ACGGAAACAAGGGATCGAGATGTC -ACGGAAACAAGGGATCGAACAGTC -ACGGAAACAAGGGATCGATTGCTG -ACGGAAACAAGGGATCGATCCATG -ACGGAAACAAGGGATCGATGTGTG -ACGGAAACAAGGGATCGACTAGTG -ACGGAAACAAGGGATCGACATCTG -ACGGAAACAAGGGATCGAGAGTTG -ACGGAAACAAGGGATCGAAGACTG -ACGGAAACAAGGGATCGATCGGTA -ACGGAAACAAGGGATCGATGCCTA -ACGGAAACAAGGGATCGACCACTA -ACGGAAACAAGGGATCGAGGAGTA -ACGGAAACAAGGGATCGATCGTCT -ACGGAAACAAGGGATCGATGCACT -ACGGAAACAAGGGATCGACTGACT -ACGGAAACAAGGGATCGACAACCT -ACGGAAACAAGGGATCGAGCTACT -ACGGAAACAAGGGATCGAGGATCT -ACGGAAACAAGGGATCGAAAGGCT -ACGGAAACAAGGGATCGATCAACC -ACGGAAACAAGGGATCGATGTTCC -ACGGAAACAAGGGATCGAATTCCC -ACGGAAACAAGGGATCGATTCTCG -ACGGAAACAAGGGATCGATAGACG -ACGGAAACAAGGGATCGAGTAACG -ACGGAAACAAGGGATCGAACTTCG -ACGGAAACAAGGGATCGATACGCA -ACGGAAACAAGGGATCGACTTGCA -ACGGAAACAAGGGATCGACGAACA -ACGGAAACAAGGGATCGACAGTCA -ACGGAAACAAGGGATCGAGATCCA -ACGGAAACAAGGGATCGAACGACA -ACGGAAACAAGGGATCGAAGCTCA -ACGGAAACAAGGGATCGATCACGT -ACGGAAACAAGGGATCGACGTAGT -ACGGAAACAAGGGATCGAGTCAGT -ACGGAAACAAGGGATCGAGAAGGT -ACGGAAACAAGGGATCGAAACCGT -ACGGAAACAAGGGATCGATTGTGC -ACGGAAACAAGGGATCGACTAAGC -ACGGAAACAAGGGATCGAACTAGC -ACGGAAACAAGGGATCGAAGATGC -ACGGAAACAAGGGATCGATGAAGG -ACGGAAACAAGGGATCGACAATGG -ACGGAAACAAGGGATCGAATGAGG -ACGGAAACAAGGGATCGAAATGGG -ACGGAAACAAGGGATCGATCCTGA -ACGGAAACAAGGGATCGATAGCGA -ACGGAAACAAGGGATCGACACAGA -ACGGAAACAAGGGATCGAGCAAGA -ACGGAAACAAGGGATCGAGGTTGA -ACGGAAACAAGGGATCGATCCGAT -ACGGAAACAAGGGATCGATGGCAT -ACGGAAACAAGGGATCGACGAGAT -ACGGAAACAAGGGATCGATACCAC -ACGGAAACAAGGGATCGACAGAAC -ACGGAAACAAGGGATCGAGTCTAC -ACGGAAACAAGGGATCGAACGTAC -ACGGAAACAAGGGATCGAAGTGAC -ACGGAAACAAGGGATCGACTGTAG -ACGGAAACAAGGGATCGACCTAAG -ACGGAAACAAGGGATCGAGTTCAG -ACGGAAACAAGGGATCGAGCATAG -ACGGAAACAAGGGATCGAGACAAG -ACGGAAACAAGGGATCGAAAGCAG -ACGGAAACAAGGGATCGACGTCAA -ACGGAAACAAGGGATCGAGCTGAA -ACGGAAACAAGGGATCGAAGTACG -ACGGAAACAAGGGATCGAATCCGA -ACGGAAACAAGGGATCGAATGGGA -ACGGAAACAAGGGATCGAGTGCAA -ACGGAAACAAGGGATCGAGAGGAA -ACGGAAACAAGGGATCGACAGGTA -ACGGAAACAAGGGATCGAGACTCT -ACGGAAACAAGGGATCGAAGTCCT -ACGGAAACAAGGGATCGATAAGCC -ACGGAAACAAGGGATCGAATAGCC -ACGGAAACAAGGGATCGATAACCG -ACGGAAACAAGGGATCGAATGCCA -ACGGAAACAAGGCACTACGGAAAC -ACGGAAACAAGGCACTACAACACC -ACGGAAACAAGGCACTACATCGAG -ACGGAAACAAGGCACTACCTCCTT -ACGGAAACAAGGCACTACCCTGTT -ACGGAAACAAGGCACTACCGGTTT -ACGGAAACAAGGCACTACGTGGTT -ACGGAAACAAGGCACTACGCCTTT -ACGGAAACAAGGCACTACGGTCTT -ACGGAAACAAGGCACTACACGCTT -ACGGAAACAAGGCACTACAGCGTT -ACGGAAACAAGGCACTACTTCGTC -ACGGAAACAAGGCACTACTCTCTC -ACGGAAACAAGGCACTACTGGATC -ACGGAAACAAGGCACTACCACTTC -ACGGAAACAAGGCACTACGTACTC -ACGGAAACAAGGCACTACGATGTC -ACGGAAACAAGGCACTACACAGTC -ACGGAAACAAGGCACTACTTGCTG -ACGGAAACAAGGCACTACTCCATG -ACGGAAACAAGGCACTACTGTGTG -ACGGAAACAAGGCACTACCTAGTG -ACGGAAACAAGGCACTACCATCTG -ACGGAAACAAGGCACTACGAGTTG -ACGGAAACAAGGCACTACAGACTG -ACGGAAACAAGGCACTACTCGGTA -ACGGAAACAAGGCACTACTGCCTA -ACGGAAACAAGGCACTACCCACTA -ACGGAAACAAGGCACTACGGAGTA -ACGGAAACAAGGCACTACTCGTCT -ACGGAAACAAGGCACTACTGCACT -ACGGAAACAAGGCACTACCTGACT -ACGGAAACAAGGCACTACCAACCT -ACGGAAACAAGGCACTACGCTACT -ACGGAAACAAGGCACTACGGATCT -ACGGAAACAAGGCACTACAAGGCT -ACGGAAACAAGGCACTACTCAACC -ACGGAAACAAGGCACTACTGTTCC -ACGGAAACAAGGCACTACATTCCC -ACGGAAACAAGGCACTACTTCTCG -ACGGAAACAAGGCACTACTAGACG -ACGGAAACAAGGCACTACGTAACG -ACGGAAACAAGGCACTACACTTCG -ACGGAAACAAGGCACTACTACGCA -ACGGAAACAAGGCACTACCTTGCA -ACGGAAACAAGGCACTACCGAACA -ACGGAAACAAGGCACTACCAGTCA -ACGGAAACAAGGCACTACGATCCA -ACGGAAACAAGGCACTACACGACA -ACGGAAACAAGGCACTACAGCTCA -ACGGAAACAAGGCACTACTCACGT -ACGGAAACAAGGCACTACCGTAGT -ACGGAAACAAGGCACTACGTCAGT -ACGGAAACAAGGCACTACGAAGGT -ACGGAAACAAGGCACTACAACCGT -ACGGAAACAAGGCACTACTTGTGC -ACGGAAACAAGGCACTACCTAAGC -ACGGAAACAAGGCACTACACTAGC -ACGGAAACAAGGCACTACAGATGC -ACGGAAACAAGGCACTACTGAAGG -ACGGAAACAAGGCACTACCAATGG -ACGGAAACAAGGCACTACATGAGG -ACGGAAACAAGGCACTACAATGGG -ACGGAAACAAGGCACTACTCCTGA -ACGGAAACAAGGCACTACTAGCGA -ACGGAAACAAGGCACTACCACAGA -ACGGAAACAAGGCACTACGCAAGA -ACGGAAACAAGGCACTACGGTTGA -ACGGAAACAAGGCACTACTCCGAT -ACGGAAACAAGGCACTACTGGCAT -ACGGAAACAAGGCACTACCGAGAT -ACGGAAACAAGGCACTACTACCAC -ACGGAAACAAGGCACTACCAGAAC -ACGGAAACAAGGCACTACGTCTAC -ACGGAAACAAGGCACTACACGTAC -ACGGAAACAAGGCACTACAGTGAC -ACGGAAACAAGGCACTACCTGTAG -ACGGAAACAAGGCACTACCCTAAG -ACGGAAACAAGGCACTACGTTCAG -ACGGAAACAAGGCACTACGCATAG -ACGGAAACAAGGCACTACGACAAG -ACGGAAACAAGGCACTACAAGCAG -ACGGAAACAAGGCACTACCGTCAA -ACGGAAACAAGGCACTACGCTGAA -ACGGAAACAAGGCACTACAGTACG -ACGGAAACAAGGCACTACATCCGA -ACGGAAACAAGGCACTACATGGGA -ACGGAAACAAGGCACTACGTGCAA -ACGGAAACAAGGCACTACGAGGAA -ACGGAAACAAGGCACTACCAGGTA -ACGGAAACAAGGCACTACGACTCT -ACGGAAACAAGGCACTACAGTCCT -ACGGAAACAAGGCACTACTAAGCC -ACGGAAACAAGGCACTACATAGCC -ACGGAAACAAGGCACTACTAACCG -ACGGAAACAAGGCACTACATGCCA -ACGGAAACAAGGAACCAGGGAAAC -ACGGAAACAAGGAACCAGAACACC -ACGGAAACAAGGAACCAGATCGAG -ACGGAAACAAGGAACCAGCTCCTT -ACGGAAACAAGGAACCAGCCTGTT -ACGGAAACAAGGAACCAGCGGTTT -ACGGAAACAAGGAACCAGGTGGTT -ACGGAAACAAGGAACCAGGCCTTT -ACGGAAACAAGGAACCAGGGTCTT -ACGGAAACAAGGAACCAGACGCTT -ACGGAAACAAGGAACCAGAGCGTT -ACGGAAACAAGGAACCAGTTCGTC -ACGGAAACAAGGAACCAGTCTCTC -ACGGAAACAAGGAACCAGTGGATC -ACGGAAACAAGGAACCAGCACTTC -ACGGAAACAAGGAACCAGGTACTC -ACGGAAACAAGGAACCAGGATGTC -ACGGAAACAAGGAACCAGACAGTC -ACGGAAACAAGGAACCAGTTGCTG -ACGGAAACAAGGAACCAGTCCATG -ACGGAAACAAGGAACCAGTGTGTG -ACGGAAACAAGGAACCAGCTAGTG -ACGGAAACAAGGAACCAGCATCTG -ACGGAAACAAGGAACCAGGAGTTG -ACGGAAACAAGGAACCAGAGACTG -ACGGAAACAAGGAACCAGTCGGTA -ACGGAAACAAGGAACCAGTGCCTA -ACGGAAACAAGGAACCAGCCACTA -ACGGAAACAAGGAACCAGGGAGTA -ACGGAAACAAGGAACCAGTCGTCT -ACGGAAACAAGGAACCAGTGCACT -ACGGAAACAAGGAACCAGCTGACT -ACGGAAACAAGGAACCAGCAACCT -ACGGAAACAAGGAACCAGGCTACT -ACGGAAACAAGGAACCAGGGATCT -ACGGAAACAAGGAACCAGAAGGCT -ACGGAAACAAGGAACCAGTCAACC -ACGGAAACAAGGAACCAGTGTTCC -ACGGAAACAAGGAACCAGATTCCC -ACGGAAACAAGGAACCAGTTCTCG -ACGGAAACAAGGAACCAGTAGACG -ACGGAAACAAGGAACCAGGTAACG -ACGGAAACAAGGAACCAGACTTCG -ACGGAAACAAGGAACCAGTACGCA -ACGGAAACAAGGAACCAGCTTGCA -ACGGAAACAAGGAACCAGCGAACA -ACGGAAACAAGGAACCAGCAGTCA -ACGGAAACAAGGAACCAGGATCCA -ACGGAAACAAGGAACCAGACGACA -ACGGAAACAAGGAACCAGAGCTCA -ACGGAAACAAGGAACCAGTCACGT -ACGGAAACAAGGAACCAGCGTAGT -ACGGAAACAAGGAACCAGGTCAGT -ACGGAAACAAGGAACCAGGAAGGT -ACGGAAACAAGGAACCAGAACCGT -ACGGAAACAAGGAACCAGTTGTGC -ACGGAAACAAGGAACCAGCTAAGC -ACGGAAACAAGGAACCAGACTAGC -ACGGAAACAAGGAACCAGAGATGC -ACGGAAACAAGGAACCAGTGAAGG -ACGGAAACAAGGAACCAGCAATGG -ACGGAAACAAGGAACCAGATGAGG -ACGGAAACAAGGAACCAGAATGGG -ACGGAAACAAGGAACCAGTCCTGA -ACGGAAACAAGGAACCAGTAGCGA -ACGGAAACAAGGAACCAGCACAGA -ACGGAAACAAGGAACCAGGCAAGA -ACGGAAACAAGGAACCAGGGTTGA -ACGGAAACAAGGAACCAGTCCGAT -ACGGAAACAAGGAACCAGTGGCAT -ACGGAAACAAGGAACCAGCGAGAT -ACGGAAACAAGGAACCAGTACCAC -ACGGAAACAAGGAACCAGCAGAAC -ACGGAAACAAGGAACCAGGTCTAC -ACGGAAACAAGGAACCAGACGTAC -ACGGAAACAAGGAACCAGAGTGAC -ACGGAAACAAGGAACCAGCTGTAG -ACGGAAACAAGGAACCAGCCTAAG -ACGGAAACAAGGAACCAGGTTCAG -ACGGAAACAAGGAACCAGGCATAG -ACGGAAACAAGGAACCAGGACAAG -ACGGAAACAAGGAACCAGAAGCAG -ACGGAAACAAGGAACCAGCGTCAA -ACGGAAACAAGGAACCAGGCTGAA -ACGGAAACAAGGAACCAGAGTACG -ACGGAAACAAGGAACCAGATCCGA -ACGGAAACAAGGAACCAGATGGGA -ACGGAAACAAGGAACCAGGTGCAA -ACGGAAACAAGGAACCAGGAGGAA -ACGGAAACAAGGAACCAGCAGGTA -ACGGAAACAAGGAACCAGGACTCT -ACGGAAACAAGGAACCAGAGTCCT -ACGGAAACAAGGAACCAGTAAGCC -ACGGAAACAAGGAACCAGATAGCC -ACGGAAACAAGGAACCAGTAACCG -ACGGAAACAAGGAACCAGATGCCA -ACGGAAACAAGGTACGTCGGAAAC -ACGGAAACAAGGTACGTCAACACC -ACGGAAACAAGGTACGTCATCGAG -ACGGAAACAAGGTACGTCCTCCTT -ACGGAAACAAGGTACGTCCCTGTT -ACGGAAACAAGGTACGTCCGGTTT -ACGGAAACAAGGTACGTCGTGGTT -ACGGAAACAAGGTACGTCGCCTTT -ACGGAAACAAGGTACGTCGGTCTT -ACGGAAACAAGGTACGTCACGCTT -ACGGAAACAAGGTACGTCAGCGTT -ACGGAAACAAGGTACGTCTTCGTC -ACGGAAACAAGGTACGTCTCTCTC -ACGGAAACAAGGTACGTCTGGATC -ACGGAAACAAGGTACGTCCACTTC -ACGGAAACAAGGTACGTCGTACTC -ACGGAAACAAGGTACGTCGATGTC -ACGGAAACAAGGTACGTCACAGTC -ACGGAAACAAGGTACGTCTTGCTG -ACGGAAACAAGGTACGTCTCCATG -ACGGAAACAAGGTACGTCTGTGTG -ACGGAAACAAGGTACGTCCTAGTG -ACGGAAACAAGGTACGTCCATCTG -ACGGAAACAAGGTACGTCGAGTTG -ACGGAAACAAGGTACGTCAGACTG -ACGGAAACAAGGTACGTCTCGGTA -ACGGAAACAAGGTACGTCTGCCTA -ACGGAAACAAGGTACGTCCCACTA -ACGGAAACAAGGTACGTCGGAGTA -ACGGAAACAAGGTACGTCTCGTCT -ACGGAAACAAGGTACGTCTGCACT -ACGGAAACAAGGTACGTCCTGACT -ACGGAAACAAGGTACGTCCAACCT -ACGGAAACAAGGTACGTCGCTACT -ACGGAAACAAGGTACGTCGGATCT -ACGGAAACAAGGTACGTCAAGGCT -ACGGAAACAAGGTACGTCTCAACC -ACGGAAACAAGGTACGTCTGTTCC -ACGGAAACAAGGTACGTCATTCCC -ACGGAAACAAGGTACGTCTTCTCG -ACGGAAACAAGGTACGTCTAGACG -ACGGAAACAAGGTACGTCGTAACG -ACGGAAACAAGGTACGTCACTTCG -ACGGAAACAAGGTACGTCTACGCA -ACGGAAACAAGGTACGTCCTTGCA -ACGGAAACAAGGTACGTCCGAACA -ACGGAAACAAGGTACGTCCAGTCA -ACGGAAACAAGGTACGTCGATCCA -ACGGAAACAAGGTACGTCACGACA -ACGGAAACAAGGTACGTCAGCTCA -ACGGAAACAAGGTACGTCTCACGT -ACGGAAACAAGGTACGTCCGTAGT -ACGGAAACAAGGTACGTCGTCAGT -ACGGAAACAAGGTACGTCGAAGGT -ACGGAAACAAGGTACGTCAACCGT -ACGGAAACAAGGTACGTCTTGTGC -ACGGAAACAAGGTACGTCCTAAGC -ACGGAAACAAGGTACGTCACTAGC -ACGGAAACAAGGTACGTCAGATGC -ACGGAAACAAGGTACGTCTGAAGG -ACGGAAACAAGGTACGTCCAATGG -ACGGAAACAAGGTACGTCATGAGG -ACGGAAACAAGGTACGTCAATGGG -ACGGAAACAAGGTACGTCTCCTGA -ACGGAAACAAGGTACGTCTAGCGA -ACGGAAACAAGGTACGTCCACAGA -ACGGAAACAAGGTACGTCGCAAGA -ACGGAAACAAGGTACGTCGGTTGA -ACGGAAACAAGGTACGTCTCCGAT -ACGGAAACAAGGTACGTCTGGCAT -ACGGAAACAAGGTACGTCCGAGAT -ACGGAAACAAGGTACGTCTACCAC -ACGGAAACAAGGTACGTCCAGAAC -ACGGAAACAAGGTACGTCGTCTAC -ACGGAAACAAGGTACGTCACGTAC -ACGGAAACAAGGTACGTCAGTGAC -ACGGAAACAAGGTACGTCCTGTAG -ACGGAAACAAGGTACGTCCCTAAG -ACGGAAACAAGGTACGTCGTTCAG -ACGGAAACAAGGTACGTCGCATAG -ACGGAAACAAGGTACGTCGACAAG -ACGGAAACAAGGTACGTCAAGCAG -ACGGAAACAAGGTACGTCCGTCAA -ACGGAAACAAGGTACGTCGCTGAA -ACGGAAACAAGGTACGTCAGTACG -ACGGAAACAAGGTACGTCATCCGA -ACGGAAACAAGGTACGTCATGGGA -ACGGAAACAAGGTACGTCGTGCAA -ACGGAAACAAGGTACGTCGAGGAA -ACGGAAACAAGGTACGTCCAGGTA -ACGGAAACAAGGTACGTCGACTCT -ACGGAAACAAGGTACGTCAGTCCT -ACGGAAACAAGGTACGTCTAAGCC -ACGGAAACAAGGTACGTCATAGCC -ACGGAAACAAGGTACGTCTAACCG -ACGGAAACAAGGTACGTCATGCCA -ACGGAAACAAGGTACACGGGAAAC -ACGGAAACAAGGTACACGAACACC -ACGGAAACAAGGTACACGATCGAG -ACGGAAACAAGGTACACGCTCCTT -ACGGAAACAAGGTACACGCCTGTT -ACGGAAACAAGGTACACGCGGTTT -ACGGAAACAAGGTACACGGTGGTT -ACGGAAACAAGGTACACGGCCTTT -ACGGAAACAAGGTACACGGGTCTT -ACGGAAACAAGGTACACGACGCTT -ACGGAAACAAGGTACACGAGCGTT -ACGGAAACAAGGTACACGTTCGTC -ACGGAAACAAGGTACACGTCTCTC -ACGGAAACAAGGTACACGTGGATC -ACGGAAACAAGGTACACGCACTTC -ACGGAAACAAGGTACACGGTACTC -ACGGAAACAAGGTACACGGATGTC -ACGGAAACAAGGTACACGACAGTC -ACGGAAACAAGGTACACGTTGCTG -ACGGAAACAAGGTACACGTCCATG -ACGGAAACAAGGTACACGTGTGTG -ACGGAAACAAGGTACACGCTAGTG -ACGGAAACAAGGTACACGCATCTG -ACGGAAACAAGGTACACGGAGTTG -ACGGAAACAAGGTACACGAGACTG -ACGGAAACAAGGTACACGTCGGTA -ACGGAAACAAGGTACACGTGCCTA -ACGGAAACAAGGTACACGCCACTA -ACGGAAACAAGGTACACGGGAGTA -ACGGAAACAAGGTACACGTCGTCT -ACGGAAACAAGGTACACGTGCACT -ACGGAAACAAGGTACACGCTGACT -ACGGAAACAAGGTACACGCAACCT -ACGGAAACAAGGTACACGGCTACT -ACGGAAACAAGGTACACGGGATCT -ACGGAAACAAGGTACACGAAGGCT -ACGGAAACAAGGTACACGTCAACC -ACGGAAACAAGGTACACGTGTTCC -ACGGAAACAAGGTACACGATTCCC -ACGGAAACAAGGTACACGTTCTCG -ACGGAAACAAGGTACACGTAGACG -ACGGAAACAAGGTACACGGTAACG -ACGGAAACAAGGTACACGACTTCG -ACGGAAACAAGGTACACGTACGCA -ACGGAAACAAGGTACACGCTTGCA -ACGGAAACAAGGTACACGCGAACA -ACGGAAACAAGGTACACGCAGTCA -ACGGAAACAAGGTACACGGATCCA -ACGGAAACAAGGTACACGACGACA -ACGGAAACAAGGTACACGAGCTCA -ACGGAAACAAGGTACACGTCACGT -ACGGAAACAAGGTACACGCGTAGT -ACGGAAACAAGGTACACGGTCAGT -ACGGAAACAAGGTACACGGAAGGT -ACGGAAACAAGGTACACGAACCGT -ACGGAAACAAGGTACACGTTGTGC -ACGGAAACAAGGTACACGCTAAGC -ACGGAAACAAGGTACACGACTAGC -ACGGAAACAAGGTACACGAGATGC -ACGGAAACAAGGTACACGTGAAGG -ACGGAAACAAGGTACACGCAATGG -ACGGAAACAAGGTACACGATGAGG -ACGGAAACAAGGTACACGAATGGG -ACGGAAACAAGGTACACGTCCTGA -ACGGAAACAAGGTACACGTAGCGA -ACGGAAACAAGGTACACGCACAGA -ACGGAAACAAGGTACACGGCAAGA -ACGGAAACAAGGTACACGGGTTGA -ACGGAAACAAGGTACACGTCCGAT -ACGGAAACAAGGTACACGTGGCAT -ACGGAAACAAGGTACACGCGAGAT -ACGGAAACAAGGTACACGTACCAC -ACGGAAACAAGGTACACGCAGAAC -ACGGAAACAAGGTACACGGTCTAC -ACGGAAACAAGGTACACGACGTAC -ACGGAAACAAGGTACACGAGTGAC -ACGGAAACAAGGTACACGCTGTAG -ACGGAAACAAGGTACACGCCTAAG -ACGGAAACAAGGTACACGGTTCAG -ACGGAAACAAGGTACACGGCATAG -ACGGAAACAAGGTACACGGACAAG -ACGGAAACAAGGTACACGAAGCAG -ACGGAAACAAGGTACACGCGTCAA -ACGGAAACAAGGTACACGGCTGAA -ACGGAAACAAGGTACACGAGTACG -ACGGAAACAAGGTACACGATCCGA -ACGGAAACAAGGTACACGATGGGA -ACGGAAACAAGGTACACGGTGCAA -ACGGAAACAAGGTACACGGAGGAA -ACGGAAACAAGGTACACGCAGGTA -ACGGAAACAAGGTACACGGACTCT -ACGGAAACAAGGTACACGAGTCCT -ACGGAAACAAGGTACACGTAAGCC -ACGGAAACAAGGTACACGATAGCC -ACGGAAACAAGGTACACGTAACCG -ACGGAAACAAGGTACACGATGCCA -ACGGAAACAAGGGACAGTGGAAAC -ACGGAAACAAGGGACAGTAACACC -ACGGAAACAAGGGACAGTATCGAG -ACGGAAACAAGGGACAGTCTCCTT -ACGGAAACAAGGGACAGTCCTGTT -ACGGAAACAAGGGACAGTCGGTTT -ACGGAAACAAGGGACAGTGTGGTT -ACGGAAACAAGGGACAGTGCCTTT -ACGGAAACAAGGGACAGTGGTCTT -ACGGAAACAAGGGACAGTACGCTT -ACGGAAACAAGGGACAGTAGCGTT -ACGGAAACAAGGGACAGTTTCGTC -ACGGAAACAAGGGACAGTTCTCTC -ACGGAAACAAGGGACAGTTGGATC -ACGGAAACAAGGGACAGTCACTTC -ACGGAAACAAGGGACAGTGTACTC -ACGGAAACAAGGGACAGTGATGTC -ACGGAAACAAGGGACAGTACAGTC -ACGGAAACAAGGGACAGTTTGCTG -ACGGAAACAAGGGACAGTTCCATG -ACGGAAACAAGGGACAGTTGTGTG -ACGGAAACAAGGGACAGTCTAGTG -ACGGAAACAAGGGACAGTCATCTG -ACGGAAACAAGGGACAGTGAGTTG -ACGGAAACAAGGGACAGTAGACTG -ACGGAAACAAGGGACAGTTCGGTA -ACGGAAACAAGGGACAGTTGCCTA -ACGGAAACAAGGGACAGTCCACTA -ACGGAAACAAGGGACAGTGGAGTA -ACGGAAACAAGGGACAGTTCGTCT -ACGGAAACAAGGGACAGTTGCACT -ACGGAAACAAGGGACAGTCTGACT -ACGGAAACAAGGGACAGTCAACCT -ACGGAAACAAGGGACAGTGCTACT -ACGGAAACAAGGGACAGTGGATCT -ACGGAAACAAGGGACAGTAAGGCT -ACGGAAACAAGGGACAGTTCAACC -ACGGAAACAAGGGACAGTTGTTCC -ACGGAAACAAGGGACAGTATTCCC -ACGGAAACAAGGGACAGTTTCTCG -ACGGAAACAAGGGACAGTTAGACG -ACGGAAACAAGGGACAGTGTAACG -ACGGAAACAAGGGACAGTACTTCG -ACGGAAACAAGGGACAGTTACGCA -ACGGAAACAAGGGACAGTCTTGCA -ACGGAAACAAGGGACAGTCGAACA -ACGGAAACAAGGGACAGTCAGTCA -ACGGAAACAAGGGACAGTGATCCA -ACGGAAACAAGGGACAGTACGACA -ACGGAAACAAGGGACAGTAGCTCA -ACGGAAACAAGGGACAGTTCACGT -ACGGAAACAAGGGACAGTCGTAGT -ACGGAAACAAGGGACAGTGTCAGT -ACGGAAACAAGGGACAGTGAAGGT -ACGGAAACAAGGGACAGTAACCGT -ACGGAAACAAGGGACAGTTTGTGC -ACGGAAACAAGGGACAGTCTAAGC -ACGGAAACAAGGGACAGTACTAGC -ACGGAAACAAGGGACAGTAGATGC -ACGGAAACAAGGGACAGTTGAAGG -ACGGAAACAAGGGACAGTCAATGG -ACGGAAACAAGGGACAGTATGAGG -ACGGAAACAAGGGACAGTAATGGG -ACGGAAACAAGGGACAGTTCCTGA -ACGGAAACAAGGGACAGTTAGCGA -ACGGAAACAAGGGACAGTCACAGA -ACGGAAACAAGGGACAGTGCAAGA -ACGGAAACAAGGGACAGTGGTTGA -ACGGAAACAAGGGACAGTTCCGAT -ACGGAAACAAGGGACAGTTGGCAT -ACGGAAACAAGGGACAGTCGAGAT -ACGGAAACAAGGGACAGTTACCAC -ACGGAAACAAGGGACAGTCAGAAC -ACGGAAACAAGGGACAGTGTCTAC -ACGGAAACAAGGGACAGTACGTAC -ACGGAAACAAGGGACAGTAGTGAC -ACGGAAACAAGGGACAGTCTGTAG -ACGGAAACAAGGGACAGTCCTAAG -ACGGAAACAAGGGACAGTGTTCAG -ACGGAAACAAGGGACAGTGCATAG -ACGGAAACAAGGGACAGTGACAAG -ACGGAAACAAGGGACAGTAAGCAG -ACGGAAACAAGGGACAGTCGTCAA -ACGGAAACAAGGGACAGTGCTGAA -ACGGAAACAAGGGACAGTAGTACG -ACGGAAACAAGGGACAGTATCCGA -ACGGAAACAAGGGACAGTATGGGA -ACGGAAACAAGGGACAGTGTGCAA -ACGGAAACAAGGGACAGTGAGGAA -ACGGAAACAAGGGACAGTCAGGTA -ACGGAAACAAGGGACAGTGACTCT -ACGGAAACAAGGGACAGTAGTCCT -ACGGAAACAAGGGACAGTTAAGCC -ACGGAAACAAGGGACAGTATAGCC -ACGGAAACAAGGGACAGTTAACCG -ACGGAAACAAGGGACAGTATGCCA -ACGGAAACAAGGTAGCTGGGAAAC -ACGGAAACAAGGTAGCTGAACACC -ACGGAAACAAGGTAGCTGATCGAG -ACGGAAACAAGGTAGCTGCTCCTT -ACGGAAACAAGGTAGCTGCCTGTT -ACGGAAACAAGGTAGCTGCGGTTT -ACGGAAACAAGGTAGCTGGTGGTT -ACGGAAACAAGGTAGCTGGCCTTT -ACGGAAACAAGGTAGCTGGGTCTT -ACGGAAACAAGGTAGCTGACGCTT -ACGGAAACAAGGTAGCTGAGCGTT -ACGGAAACAAGGTAGCTGTTCGTC -ACGGAAACAAGGTAGCTGTCTCTC -ACGGAAACAAGGTAGCTGTGGATC -ACGGAAACAAGGTAGCTGCACTTC -ACGGAAACAAGGTAGCTGGTACTC -ACGGAAACAAGGTAGCTGGATGTC -ACGGAAACAAGGTAGCTGACAGTC -ACGGAAACAAGGTAGCTGTTGCTG -ACGGAAACAAGGTAGCTGTCCATG -ACGGAAACAAGGTAGCTGTGTGTG -ACGGAAACAAGGTAGCTGCTAGTG -ACGGAAACAAGGTAGCTGCATCTG -ACGGAAACAAGGTAGCTGGAGTTG -ACGGAAACAAGGTAGCTGAGACTG -ACGGAAACAAGGTAGCTGTCGGTA -ACGGAAACAAGGTAGCTGTGCCTA -ACGGAAACAAGGTAGCTGCCACTA -ACGGAAACAAGGTAGCTGGGAGTA -ACGGAAACAAGGTAGCTGTCGTCT -ACGGAAACAAGGTAGCTGTGCACT -ACGGAAACAAGGTAGCTGCTGACT -ACGGAAACAAGGTAGCTGCAACCT -ACGGAAACAAGGTAGCTGGCTACT -ACGGAAACAAGGTAGCTGGGATCT -ACGGAAACAAGGTAGCTGAAGGCT -ACGGAAACAAGGTAGCTGTCAACC -ACGGAAACAAGGTAGCTGTGTTCC -ACGGAAACAAGGTAGCTGATTCCC -ACGGAAACAAGGTAGCTGTTCTCG -ACGGAAACAAGGTAGCTGTAGACG -ACGGAAACAAGGTAGCTGGTAACG -ACGGAAACAAGGTAGCTGACTTCG -ACGGAAACAAGGTAGCTGTACGCA -ACGGAAACAAGGTAGCTGCTTGCA -ACGGAAACAAGGTAGCTGCGAACA -ACGGAAACAAGGTAGCTGCAGTCA -ACGGAAACAAGGTAGCTGGATCCA -ACGGAAACAAGGTAGCTGACGACA -ACGGAAACAAGGTAGCTGAGCTCA -ACGGAAACAAGGTAGCTGTCACGT -ACGGAAACAAGGTAGCTGCGTAGT -ACGGAAACAAGGTAGCTGGTCAGT -ACGGAAACAAGGTAGCTGGAAGGT -ACGGAAACAAGGTAGCTGAACCGT -ACGGAAACAAGGTAGCTGTTGTGC -ACGGAAACAAGGTAGCTGCTAAGC -ACGGAAACAAGGTAGCTGACTAGC -ACGGAAACAAGGTAGCTGAGATGC -ACGGAAACAAGGTAGCTGTGAAGG -ACGGAAACAAGGTAGCTGCAATGG -ACGGAAACAAGGTAGCTGATGAGG -ACGGAAACAAGGTAGCTGAATGGG -ACGGAAACAAGGTAGCTGTCCTGA -ACGGAAACAAGGTAGCTGTAGCGA -ACGGAAACAAGGTAGCTGCACAGA -ACGGAAACAAGGTAGCTGGCAAGA -ACGGAAACAAGGTAGCTGGGTTGA -ACGGAAACAAGGTAGCTGTCCGAT -ACGGAAACAAGGTAGCTGTGGCAT -ACGGAAACAAGGTAGCTGCGAGAT -ACGGAAACAAGGTAGCTGTACCAC -ACGGAAACAAGGTAGCTGCAGAAC -ACGGAAACAAGGTAGCTGGTCTAC -ACGGAAACAAGGTAGCTGACGTAC -ACGGAAACAAGGTAGCTGAGTGAC -ACGGAAACAAGGTAGCTGCTGTAG -ACGGAAACAAGGTAGCTGCCTAAG -ACGGAAACAAGGTAGCTGGTTCAG -ACGGAAACAAGGTAGCTGGCATAG -ACGGAAACAAGGTAGCTGGACAAG -ACGGAAACAAGGTAGCTGAAGCAG -ACGGAAACAAGGTAGCTGCGTCAA -ACGGAAACAAGGTAGCTGGCTGAA -ACGGAAACAAGGTAGCTGAGTACG -ACGGAAACAAGGTAGCTGATCCGA -ACGGAAACAAGGTAGCTGATGGGA -ACGGAAACAAGGTAGCTGGTGCAA -ACGGAAACAAGGTAGCTGGAGGAA -ACGGAAACAAGGTAGCTGCAGGTA -ACGGAAACAAGGTAGCTGGACTCT -ACGGAAACAAGGTAGCTGAGTCCT -ACGGAAACAAGGTAGCTGTAAGCC -ACGGAAACAAGGTAGCTGATAGCC -ACGGAAACAAGGTAGCTGTAACCG -ACGGAAACAAGGTAGCTGATGCCA -ACGGAAACAAGGAAGCCTGGAAAC -ACGGAAACAAGGAAGCCTAACACC -ACGGAAACAAGGAAGCCTATCGAG -ACGGAAACAAGGAAGCCTCTCCTT -ACGGAAACAAGGAAGCCTCCTGTT -ACGGAAACAAGGAAGCCTCGGTTT -ACGGAAACAAGGAAGCCTGTGGTT -ACGGAAACAAGGAAGCCTGCCTTT -ACGGAAACAAGGAAGCCTGGTCTT -ACGGAAACAAGGAAGCCTACGCTT -ACGGAAACAAGGAAGCCTAGCGTT -ACGGAAACAAGGAAGCCTTTCGTC -ACGGAAACAAGGAAGCCTTCTCTC -ACGGAAACAAGGAAGCCTTGGATC -ACGGAAACAAGGAAGCCTCACTTC -ACGGAAACAAGGAAGCCTGTACTC -ACGGAAACAAGGAAGCCTGATGTC -ACGGAAACAAGGAAGCCTACAGTC -ACGGAAACAAGGAAGCCTTTGCTG -ACGGAAACAAGGAAGCCTTCCATG -ACGGAAACAAGGAAGCCTTGTGTG -ACGGAAACAAGGAAGCCTCTAGTG -ACGGAAACAAGGAAGCCTCATCTG -ACGGAAACAAGGAAGCCTGAGTTG -ACGGAAACAAGGAAGCCTAGACTG -ACGGAAACAAGGAAGCCTTCGGTA -ACGGAAACAAGGAAGCCTTGCCTA -ACGGAAACAAGGAAGCCTCCACTA -ACGGAAACAAGGAAGCCTGGAGTA -ACGGAAACAAGGAAGCCTTCGTCT -ACGGAAACAAGGAAGCCTTGCACT -ACGGAAACAAGGAAGCCTCTGACT -ACGGAAACAAGGAAGCCTCAACCT -ACGGAAACAAGGAAGCCTGCTACT -ACGGAAACAAGGAAGCCTGGATCT -ACGGAAACAAGGAAGCCTAAGGCT -ACGGAAACAAGGAAGCCTTCAACC -ACGGAAACAAGGAAGCCTTGTTCC -ACGGAAACAAGGAAGCCTATTCCC -ACGGAAACAAGGAAGCCTTTCTCG -ACGGAAACAAGGAAGCCTTAGACG -ACGGAAACAAGGAAGCCTGTAACG -ACGGAAACAAGGAAGCCTACTTCG -ACGGAAACAAGGAAGCCTTACGCA -ACGGAAACAAGGAAGCCTCTTGCA -ACGGAAACAAGGAAGCCTCGAACA -ACGGAAACAAGGAAGCCTCAGTCA -ACGGAAACAAGGAAGCCTGATCCA -ACGGAAACAAGGAAGCCTACGACA -ACGGAAACAAGGAAGCCTAGCTCA -ACGGAAACAAGGAAGCCTTCACGT -ACGGAAACAAGGAAGCCTCGTAGT -ACGGAAACAAGGAAGCCTGTCAGT -ACGGAAACAAGGAAGCCTGAAGGT -ACGGAAACAAGGAAGCCTAACCGT -ACGGAAACAAGGAAGCCTTTGTGC -ACGGAAACAAGGAAGCCTCTAAGC -ACGGAAACAAGGAAGCCTACTAGC -ACGGAAACAAGGAAGCCTAGATGC -ACGGAAACAAGGAAGCCTTGAAGG -ACGGAAACAAGGAAGCCTCAATGG -ACGGAAACAAGGAAGCCTATGAGG -ACGGAAACAAGGAAGCCTAATGGG -ACGGAAACAAGGAAGCCTTCCTGA -ACGGAAACAAGGAAGCCTTAGCGA -ACGGAAACAAGGAAGCCTCACAGA -ACGGAAACAAGGAAGCCTGCAAGA -ACGGAAACAAGGAAGCCTGGTTGA -ACGGAAACAAGGAAGCCTTCCGAT -ACGGAAACAAGGAAGCCTTGGCAT -ACGGAAACAAGGAAGCCTCGAGAT -ACGGAAACAAGGAAGCCTTACCAC -ACGGAAACAAGGAAGCCTCAGAAC -ACGGAAACAAGGAAGCCTGTCTAC -ACGGAAACAAGGAAGCCTACGTAC -ACGGAAACAAGGAAGCCTAGTGAC -ACGGAAACAAGGAAGCCTCTGTAG -ACGGAAACAAGGAAGCCTCCTAAG -ACGGAAACAAGGAAGCCTGTTCAG -ACGGAAACAAGGAAGCCTGCATAG -ACGGAAACAAGGAAGCCTGACAAG -ACGGAAACAAGGAAGCCTAAGCAG -ACGGAAACAAGGAAGCCTCGTCAA -ACGGAAACAAGGAAGCCTGCTGAA -ACGGAAACAAGGAAGCCTAGTACG -ACGGAAACAAGGAAGCCTATCCGA -ACGGAAACAAGGAAGCCTATGGGA -ACGGAAACAAGGAAGCCTGTGCAA -ACGGAAACAAGGAAGCCTGAGGAA -ACGGAAACAAGGAAGCCTCAGGTA -ACGGAAACAAGGAAGCCTGACTCT -ACGGAAACAAGGAAGCCTAGTCCT -ACGGAAACAAGGAAGCCTTAAGCC -ACGGAAACAAGGAAGCCTATAGCC -ACGGAAACAAGGAAGCCTTAACCG -ACGGAAACAAGGAAGCCTATGCCA -ACGGAAACAAGGCAGGTTGGAAAC -ACGGAAACAAGGCAGGTTAACACC -ACGGAAACAAGGCAGGTTATCGAG -ACGGAAACAAGGCAGGTTCTCCTT -ACGGAAACAAGGCAGGTTCCTGTT -ACGGAAACAAGGCAGGTTCGGTTT -ACGGAAACAAGGCAGGTTGTGGTT -ACGGAAACAAGGCAGGTTGCCTTT -ACGGAAACAAGGCAGGTTGGTCTT -ACGGAAACAAGGCAGGTTACGCTT -ACGGAAACAAGGCAGGTTAGCGTT -ACGGAAACAAGGCAGGTTTTCGTC -ACGGAAACAAGGCAGGTTTCTCTC -ACGGAAACAAGGCAGGTTTGGATC -ACGGAAACAAGGCAGGTTCACTTC -ACGGAAACAAGGCAGGTTGTACTC -ACGGAAACAAGGCAGGTTGATGTC -ACGGAAACAAGGCAGGTTACAGTC -ACGGAAACAAGGCAGGTTTTGCTG -ACGGAAACAAGGCAGGTTTCCATG -ACGGAAACAAGGCAGGTTTGTGTG -ACGGAAACAAGGCAGGTTCTAGTG -ACGGAAACAAGGCAGGTTCATCTG -ACGGAAACAAGGCAGGTTGAGTTG -ACGGAAACAAGGCAGGTTAGACTG -ACGGAAACAAGGCAGGTTTCGGTA -ACGGAAACAAGGCAGGTTTGCCTA -ACGGAAACAAGGCAGGTTCCACTA -ACGGAAACAAGGCAGGTTGGAGTA -ACGGAAACAAGGCAGGTTTCGTCT -ACGGAAACAAGGCAGGTTTGCACT -ACGGAAACAAGGCAGGTTCTGACT -ACGGAAACAAGGCAGGTTCAACCT -ACGGAAACAAGGCAGGTTGCTACT -ACGGAAACAAGGCAGGTTGGATCT -ACGGAAACAAGGCAGGTTAAGGCT -ACGGAAACAAGGCAGGTTTCAACC -ACGGAAACAAGGCAGGTTTGTTCC -ACGGAAACAAGGCAGGTTATTCCC -ACGGAAACAAGGCAGGTTTTCTCG -ACGGAAACAAGGCAGGTTTAGACG -ACGGAAACAAGGCAGGTTGTAACG -ACGGAAACAAGGCAGGTTACTTCG -ACGGAAACAAGGCAGGTTTACGCA -ACGGAAACAAGGCAGGTTCTTGCA -ACGGAAACAAGGCAGGTTCGAACA -ACGGAAACAAGGCAGGTTCAGTCA -ACGGAAACAAGGCAGGTTGATCCA -ACGGAAACAAGGCAGGTTACGACA -ACGGAAACAAGGCAGGTTAGCTCA -ACGGAAACAAGGCAGGTTTCACGT -ACGGAAACAAGGCAGGTTCGTAGT -ACGGAAACAAGGCAGGTTGTCAGT -ACGGAAACAAGGCAGGTTGAAGGT -ACGGAAACAAGGCAGGTTAACCGT -ACGGAAACAAGGCAGGTTTTGTGC -ACGGAAACAAGGCAGGTTCTAAGC -ACGGAAACAAGGCAGGTTACTAGC -ACGGAAACAAGGCAGGTTAGATGC -ACGGAAACAAGGCAGGTTTGAAGG -ACGGAAACAAGGCAGGTTCAATGG -ACGGAAACAAGGCAGGTTATGAGG -ACGGAAACAAGGCAGGTTAATGGG -ACGGAAACAAGGCAGGTTTCCTGA -ACGGAAACAAGGCAGGTTTAGCGA -ACGGAAACAAGGCAGGTTCACAGA -ACGGAAACAAGGCAGGTTGCAAGA -ACGGAAACAAGGCAGGTTGGTTGA -ACGGAAACAAGGCAGGTTTCCGAT -ACGGAAACAAGGCAGGTTTGGCAT -ACGGAAACAAGGCAGGTTCGAGAT -ACGGAAACAAGGCAGGTTTACCAC -ACGGAAACAAGGCAGGTTCAGAAC -ACGGAAACAAGGCAGGTTGTCTAC -ACGGAAACAAGGCAGGTTACGTAC -ACGGAAACAAGGCAGGTTAGTGAC -ACGGAAACAAGGCAGGTTCTGTAG -ACGGAAACAAGGCAGGTTCCTAAG -ACGGAAACAAGGCAGGTTGTTCAG -ACGGAAACAAGGCAGGTTGCATAG -ACGGAAACAAGGCAGGTTGACAAG -ACGGAAACAAGGCAGGTTAAGCAG -ACGGAAACAAGGCAGGTTCGTCAA -ACGGAAACAAGGCAGGTTGCTGAA -ACGGAAACAAGGCAGGTTAGTACG -ACGGAAACAAGGCAGGTTATCCGA -ACGGAAACAAGGCAGGTTATGGGA -ACGGAAACAAGGCAGGTTGTGCAA -ACGGAAACAAGGCAGGTTGAGGAA -ACGGAAACAAGGCAGGTTCAGGTA -ACGGAAACAAGGCAGGTTGACTCT -ACGGAAACAAGGCAGGTTAGTCCT -ACGGAAACAAGGCAGGTTTAAGCC -ACGGAAACAAGGCAGGTTATAGCC -ACGGAAACAAGGCAGGTTTAACCG -ACGGAAACAAGGCAGGTTATGCCA -ACGGAAACAAGGTAGGCAGGAAAC -ACGGAAACAAGGTAGGCAAACACC -ACGGAAACAAGGTAGGCAATCGAG -ACGGAAACAAGGTAGGCACTCCTT -ACGGAAACAAGGTAGGCACCTGTT -ACGGAAACAAGGTAGGCACGGTTT -ACGGAAACAAGGTAGGCAGTGGTT -ACGGAAACAAGGTAGGCAGCCTTT -ACGGAAACAAGGTAGGCAGGTCTT -ACGGAAACAAGGTAGGCAACGCTT -ACGGAAACAAGGTAGGCAAGCGTT -ACGGAAACAAGGTAGGCATTCGTC -ACGGAAACAAGGTAGGCATCTCTC -ACGGAAACAAGGTAGGCATGGATC -ACGGAAACAAGGTAGGCACACTTC -ACGGAAACAAGGTAGGCAGTACTC -ACGGAAACAAGGTAGGCAGATGTC -ACGGAAACAAGGTAGGCAACAGTC -ACGGAAACAAGGTAGGCATTGCTG -ACGGAAACAAGGTAGGCATCCATG -ACGGAAACAAGGTAGGCATGTGTG -ACGGAAACAAGGTAGGCACTAGTG -ACGGAAACAAGGTAGGCACATCTG -ACGGAAACAAGGTAGGCAGAGTTG -ACGGAAACAAGGTAGGCAAGACTG -ACGGAAACAAGGTAGGCATCGGTA -ACGGAAACAAGGTAGGCATGCCTA -ACGGAAACAAGGTAGGCACCACTA -ACGGAAACAAGGTAGGCAGGAGTA -ACGGAAACAAGGTAGGCATCGTCT -ACGGAAACAAGGTAGGCATGCACT -ACGGAAACAAGGTAGGCACTGACT -ACGGAAACAAGGTAGGCACAACCT -ACGGAAACAAGGTAGGCAGCTACT -ACGGAAACAAGGTAGGCAGGATCT -ACGGAAACAAGGTAGGCAAAGGCT -ACGGAAACAAGGTAGGCATCAACC -ACGGAAACAAGGTAGGCATGTTCC -ACGGAAACAAGGTAGGCAATTCCC -ACGGAAACAAGGTAGGCATTCTCG -ACGGAAACAAGGTAGGCATAGACG -ACGGAAACAAGGTAGGCAGTAACG -ACGGAAACAAGGTAGGCAACTTCG -ACGGAAACAAGGTAGGCATACGCA -ACGGAAACAAGGTAGGCACTTGCA -ACGGAAACAAGGTAGGCACGAACA -ACGGAAACAAGGTAGGCACAGTCA -ACGGAAACAAGGTAGGCAGATCCA -ACGGAAACAAGGTAGGCAACGACA -ACGGAAACAAGGTAGGCAAGCTCA -ACGGAAACAAGGTAGGCATCACGT -ACGGAAACAAGGTAGGCACGTAGT -ACGGAAACAAGGTAGGCAGTCAGT -ACGGAAACAAGGTAGGCAGAAGGT -ACGGAAACAAGGTAGGCAAACCGT -ACGGAAACAAGGTAGGCATTGTGC -ACGGAAACAAGGTAGGCACTAAGC -ACGGAAACAAGGTAGGCAACTAGC -ACGGAAACAAGGTAGGCAAGATGC -ACGGAAACAAGGTAGGCATGAAGG -ACGGAAACAAGGTAGGCACAATGG -ACGGAAACAAGGTAGGCAATGAGG -ACGGAAACAAGGTAGGCAAATGGG -ACGGAAACAAGGTAGGCATCCTGA -ACGGAAACAAGGTAGGCATAGCGA -ACGGAAACAAGGTAGGCACACAGA -ACGGAAACAAGGTAGGCAGCAAGA -ACGGAAACAAGGTAGGCAGGTTGA -ACGGAAACAAGGTAGGCATCCGAT -ACGGAAACAAGGTAGGCATGGCAT -ACGGAAACAAGGTAGGCACGAGAT -ACGGAAACAAGGTAGGCATACCAC -ACGGAAACAAGGTAGGCACAGAAC -ACGGAAACAAGGTAGGCAGTCTAC -ACGGAAACAAGGTAGGCAACGTAC -ACGGAAACAAGGTAGGCAAGTGAC -ACGGAAACAAGGTAGGCACTGTAG -ACGGAAACAAGGTAGGCACCTAAG -ACGGAAACAAGGTAGGCAGTTCAG -ACGGAAACAAGGTAGGCAGCATAG -ACGGAAACAAGGTAGGCAGACAAG -ACGGAAACAAGGTAGGCAAAGCAG -ACGGAAACAAGGTAGGCACGTCAA -ACGGAAACAAGGTAGGCAGCTGAA -ACGGAAACAAGGTAGGCAAGTACG -ACGGAAACAAGGTAGGCAATCCGA -ACGGAAACAAGGTAGGCAATGGGA -ACGGAAACAAGGTAGGCAGTGCAA -ACGGAAACAAGGTAGGCAGAGGAA -ACGGAAACAAGGTAGGCACAGGTA -ACGGAAACAAGGTAGGCAGACTCT -ACGGAAACAAGGTAGGCAAGTCCT -ACGGAAACAAGGTAGGCATAAGCC -ACGGAAACAAGGTAGGCAATAGCC -ACGGAAACAAGGTAGGCATAACCG -ACGGAAACAAGGTAGGCAATGCCA -ACGGAAACAAGGAAGGACGGAAAC -ACGGAAACAAGGAAGGACAACACC -ACGGAAACAAGGAAGGACATCGAG -ACGGAAACAAGGAAGGACCTCCTT -ACGGAAACAAGGAAGGACCCTGTT -ACGGAAACAAGGAAGGACCGGTTT -ACGGAAACAAGGAAGGACGTGGTT -ACGGAAACAAGGAAGGACGCCTTT -ACGGAAACAAGGAAGGACGGTCTT -ACGGAAACAAGGAAGGACACGCTT -ACGGAAACAAGGAAGGACAGCGTT -ACGGAAACAAGGAAGGACTTCGTC -ACGGAAACAAGGAAGGACTCTCTC -ACGGAAACAAGGAAGGACTGGATC -ACGGAAACAAGGAAGGACCACTTC -ACGGAAACAAGGAAGGACGTACTC -ACGGAAACAAGGAAGGACGATGTC -ACGGAAACAAGGAAGGACACAGTC -ACGGAAACAAGGAAGGACTTGCTG -ACGGAAACAAGGAAGGACTCCATG -ACGGAAACAAGGAAGGACTGTGTG -ACGGAAACAAGGAAGGACCTAGTG -ACGGAAACAAGGAAGGACCATCTG -ACGGAAACAAGGAAGGACGAGTTG -ACGGAAACAAGGAAGGACAGACTG -ACGGAAACAAGGAAGGACTCGGTA -ACGGAAACAAGGAAGGACTGCCTA -ACGGAAACAAGGAAGGACCCACTA -ACGGAAACAAGGAAGGACGGAGTA -ACGGAAACAAGGAAGGACTCGTCT -ACGGAAACAAGGAAGGACTGCACT -ACGGAAACAAGGAAGGACCTGACT -ACGGAAACAAGGAAGGACCAACCT -ACGGAAACAAGGAAGGACGCTACT -ACGGAAACAAGGAAGGACGGATCT -ACGGAAACAAGGAAGGACAAGGCT -ACGGAAACAAGGAAGGACTCAACC -ACGGAAACAAGGAAGGACTGTTCC -ACGGAAACAAGGAAGGACATTCCC -ACGGAAACAAGGAAGGACTTCTCG -ACGGAAACAAGGAAGGACTAGACG -ACGGAAACAAGGAAGGACGTAACG -ACGGAAACAAGGAAGGACACTTCG -ACGGAAACAAGGAAGGACTACGCA -ACGGAAACAAGGAAGGACCTTGCA -ACGGAAACAAGGAAGGACCGAACA -ACGGAAACAAGGAAGGACCAGTCA -ACGGAAACAAGGAAGGACGATCCA -ACGGAAACAAGGAAGGACACGACA -ACGGAAACAAGGAAGGACAGCTCA -ACGGAAACAAGGAAGGACTCACGT -ACGGAAACAAGGAAGGACCGTAGT -ACGGAAACAAGGAAGGACGTCAGT -ACGGAAACAAGGAAGGACGAAGGT -ACGGAAACAAGGAAGGACAACCGT -ACGGAAACAAGGAAGGACTTGTGC -ACGGAAACAAGGAAGGACCTAAGC -ACGGAAACAAGGAAGGACACTAGC -ACGGAAACAAGGAAGGACAGATGC -ACGGAAACAAGGAAGGACTGAAGG -ACGGAAACAAGGAAGGACCAATGG -ACGGAAACAAGGAAGGACATGAGG -ACGGAAACAAGGAAGGACAATGGG -ACGGAAACAAGGAAGGACTCCTGA -ACGGAAACAAGGAAGGACTAGCGA -ACGGAAACAAGGAAGGACCACAGA -ACGGAAACAAGGAAGGACGCAAGA -ACGGAAACAAGGAAGGACGGTTGA -ACGGAAACAAGGAAGGACTCCGAT -ACGGAAACAAGGAAGGACTGGCAT -ACGGAAACAAGGAAGGACCGAGAT -ACGGAAACAAGGAAGGACTACCAC -ACGGAAACAAGGAAGGACCAGAAC -ACGGAAACAAGGAAGGACGTCTAC -ACGGAAACAAGGAAGGACACGTAC -ACGGAAACAAGGAAGGACAGTGAC -ACGGAAACAAGGAAGGACCTGTAG -ACGGAAACAAGGAAGGACCCTAAG -ACGGAAACAAGGAAGGACGTTCAG -ACGGAAACAAGGAAGGACGCATAG -ACGGAAACAAGGAAGGACGACAAG -ACGGAAACAAGGAAGGACAAGCAG -ACGGAAACAAGGAAGGACCGTCAA -ACGGAAACAAGGAAGGACGCTGAA -ACGGAAACAAGGAAGGACAGTACG -ACGGAAACAAGGAAGGACATCCGA -ACGGAAACAAGGAAGGACATGGGA -ACGGAAACAAGGAAGGACGTGCAA -ACGGAAACAAGGAAGGACGAGGAA -ACGGAAACAAGGAAGGACCAGGTA -ACGGAAACAAGGAAGGACGACTCT -ACGGAAACAAGGAAGGACAGTCCT -ACGGAAACAAGGAAGGACTAAGCC -ACGGAAACAAGGAAGGACATAGCC -ACGGAAACAAGGAAGGACTAACCG -ACGGAAACAAGGAAGGACATGCCA -ACGGAAACAAGGCAGAAGGGAAAC -ACGGAAACAAGGCAGAAGAACACC -ACGGAAACAAGGCAGAAGATCGAG -ACGGAAACAAGGCAGAAGCTCCTT -ACGGAAACAAGGCAGAAGCCTGTT -ACGGAAACAAGGCAGAAGCGGTTT -ACGGAAACAAGGCAGAAGGTGGTT -ACGGAAACAAGGCAGAAGGCCTTT -ACGGAAACAAGGCAGAAGGGTCTT -ACGGAAACAAGGCAGAAGACGCTT -ACGGAAACAAGGCAGAAGAGCGTT -ACGGAAACAAGGCAGAAGTTCGTC -ACGGAAACAAGGCAGAAGTCTCTC -ACGGAAACAAGGCAGAAGTGGATC -ACGGAAACAAGGCAGAAGCACTTC -ACGGAAACAAGGCAGAAGGTACTC -ACGGAAACAAGGCAGAAGGATGTC -ACGGAAACAAGGCAGAAGACAGTC -ACGGAAACAAGGCAGAAGTTGCTG -ACGGAAACAAGGCAGAAGTCCATG -ACGGAAACAAGGCAGAAGTGTGTG -ACGGAAACAAGGCAGAAGCTAGTG -ACGGAAACAAGGCAGAAGCATCTG -ACGGAAACAAGGCAGAAGGAGTTG -ACGGAAACAAGGCAGAAGAGACTG -ACGGAAACAAGGCAGAAGTCGGTA -ACGGAAACAAGGCAGAAGTGCCTA -ACGGAAACAAGGCAGAAGCCACTA -ACGGAAACAAGGCAGAAGGGAGTA -ACGGAAACAAGGCAGAAGTCGTCT -ACGGAAACAAGGCAGAAGTGCACT -ACGGAAACAAGGCAGAAGCTGACT -ACGGAAACAAGGCAGAAGCAACCT -ACGGAAACAAGGCAGAAGGCTACT -ACGGAAACAAGGCAGAAGGGATCT -ACGGAAACAAGGCAGAAGAAGGCT -ACGGAAACAAGGCAGAAGTCAACC -ACGGAAACAAGGCAGAAGTGTTCC -ACGGAAACAAGGCAGAAGATTCCC -ACGGAAACAAGGCAGAAGTTCTCG -ACGGAAACAAGGCAGAAGTAGACG -ACGGAAACAAGGCAGAAGGTAACG -ACGGAAACAAGGCAGAAGACTTCG -ACGGAAACAAGGCAGAAGTACGCA -ACGGAAACAAGGCAGAAGCTTGCA -ACGGAAACAAGGCAGAAGCGAACA -ACGGAAACAAGGCAGAAGCAGTCA -ACGGAAACAAGGCAGAAGGATCCA -ACGGAAACAAGGCAGAAGACGACA -ACGGAAACAAGGCAGAAGAGCTCA -ACGGAAACAAGGCAGAAGTCACGT -ACGGAAACAAGGCAGAAGCGTAGT -ACGGAAACAAGGCAGAAGGTCAGT -ACGGAAACAAGGCAGAAGGAAGGT -ACGGAAACAAGGCAGAAGAACCGT -ACGGAAACAAGGCAGAAGTTGTGC -ACGGAAACAAGGCAGAAGCTAAGC -ACGGAAACAAGGCAGAAGACTAGC -ACGGAAACAAGGCAGAAGAGATGC -ACGGAAACAAGGCAGAAGTGAAGG -ACGGAAACAAGGCAGAAGCAATGG -ACGGAAACAAGGCAGAAGATGAGG -ACGGAAACAAGGCAGAAGAATGGG -ACGGAAACAAGGCAGAAGTCCTGA -ACGGAAACAAGGCAGAAGTAGCGA -ACGGAAACAAGGCAGAAGCACAGA -ACGGAAACAAGGCAGAAGGCAAGA -ACGGAAACAAGGCAGAAGGGTTGA -ACGGAAACAAGGCAGAAGTCCGAT -ACGGAAACAAGGCAGAAGTGGCAT -ACGGAAACAAGGCAGAAGCGAGAT -ACGGAAACAAGGCAGAAGTACCAC -ACGGAAACAAGGCAGAAGCAGAAC -ACGGAAACAAGGCAGAAGGTCTAC -ACGGAAACAAGGCAGAAGACGTAC -ACGGAAACAAGGCAGAAGAGTGAC -ACGGAAACAAGGCAGAAGCTGTAG -ACGGAAACAAGGCAGAAGCCTAAG -ACGGAAACAAGGCAGAAGGTTCAG -ACGGAAACAAGGCAGAAGGCATAG -ACGGAAACAAGGCAGAAGGACAAG -ACGGAAACAAGGCAGAAGAAGCAG -ACGGAAACAAGGCAGAAGCGTCAA -ACGGAAACAAGGCAGAAGGCTGAA -ACGGAAACAAGGCAGAAGAGTACG -ACGGAAACAAGGCAGAAGATCCGA -ACGGAAACAAGGCAGAAGATGGGA -ACGGAAACAAGGCAGAAGGTGCAA -ACGGAAACAAGGCAGAAGGAGGAA -ACGGAAACAAGGCAGAAGCAGGTA -ACGGAAACAAGGCAGAAGGACTCT -ACGGAAACAAGGCAGAAGAGTCCT -ACGGAAACAAGGCAGAAGTAAGCC -ACGGAAACAAGGCAGAAGATAGCC -ACGGAAACAAGGCAGAAGTAACCG -ACGGAAACAAGGCAGAAGATGCCA -ACGGAAACAAGGCAACGTGGAAAC -ACGGAAACAAGGCAACGTAACACC -ACGGAAACAAGGCAACGTATCGAG -ACGGAAACAAGGCAACGTCTCCTT -ACGGAAACAAGGCAACGTCCTGTT -ACGGAAACAAGGCAACGTCGGTTT -ACGGAAACAAGGCAACGTGTGGTT -ACGGAAACAAGGCAACGTGCCTTT -ACGGAAACAAGGCAACGTGGTCTT -ACGGAAACAAGGCAACGTACGCTT -ACGGAAACAAGGCAACGTAGCGTT -ACGGAAACAAGGCAACGTTTCGTC -ACGGAAACAAGGCAACGTTCTCTC -ACGGAAACAAGGCAACGTTGGATC -ACGGAAACAAGGCAACGTCACTTC -ACGGAAACAAGGCAACGTGTACTC -ACGGAAACAAGGCAACGTGATGTC -ACGGAAACAAGGCAACGTACAGTC -ACGGAAACAAGGCAACGTTTGCTG -ACGGAAACAAGGCAACGTTCCATG -ACGGAAACAAGGCAACGTTGTGTG -ACGGAAACAAGGCAACGTCTAGTG -ACGGAAACAAGGCAACGTCATCTG -ACGGAAACAAGGCAACGTGAGTTG -ACGGAAACAAGGCAACGTAGACTG -ACGGAAACAAGGCAACGTTCGGTA -ACGGAAACAAGGCAACGTTGCCTA -ACGGAAACAAGGCAACGTCCACTA -ACGGAAACAAGGCAACGTGGAGTA -ACGGAAACAAGGCAACGTTCGTCT -ACGGAAACAAGGCAACGTTGCACT -ACGGAAACAAGGCAACGTCTGACT -ACGGAAACAAGGCAACGTCAACCT -ACGGAAACAAGGCAACGTGCTACT -ACGGAAACAAGGCAACGTGGATCT -ACGGAAACAAGGCAACGTAAGGCT -ACGGAAACAAGGCAACGTTCAACC -ACGGAAACAAGGCAACGTTGTTCC -ACGGAAACAAGGCAACGTATTCCC -ACGGAAACAAGGCAACGTTTCTCG -ACGGAAACAAGGCAACGTTAGACG -ACGGAAACAAGGCAACGTGTAACG -ACGGAAACAAGGCAACGTACTTCG -ACGGAAACAAGGCAACGTTACGCA -ACGGAAACAAGGCAACGTCTTGCA -ACGGAAACAAGGCAACGTCGAACA -ACGGAAACAAGGCAACGTCAGTCA -ACGGAAACAAGGCAACGTGATCCA -ACGGAAACAAGGCAACGTACGACA -ACGGAAACAAGGCAACGTAGCTCA -ACGGAAACAAGGCAACGTTCACGT -ACGGAAACAAGGCAACGTCGTAGT -ACGGAAACAAGGCAACGTGTCAGT -ACGGAAACAAGGCAACGTGAAGGT -ACGGAAACAAGGCAACGTAACCGT -ACGGAAACAAGGCAACGTTTGTGC -ACGGAAACAAGGCAACGTCTAAGC -ACGGAAACAAGGCAACGTACTAGC -ACGGAAACAAGGCAACGTAGATGC -ACGGAAACAAGGCAACGTTGAAGG -ACGGAAACAAGGCAACGTCAATGG -ACGGAAACAAGGCAACGTATGAGG -ACGGAAACAAGGCAACGTAATGGG -ACGGAAACAAGGCAACGTTCCTGA -ACGGAAACAAGGCAACGTTAGCGA -ACGGAAACAAGGCAACGTCACAGA -ACGGAAACAAGGCAACGTGCAAGA -ACGGAAACAAGGCAACGTGGTTGA -ACGGAAACAAGGCAACGTTCCGAT -ACGGAAACAAGGCAACGTTGGCAT -ACGGAAACAAGGCAACGTCGAGAT -ACGGAAACAAGGCAACGTTACCAC -ACGGAAACAAGGCAACGTCAGAAC -ACGGAAACAAGGCAACGTGTCTAC -ACGGAAACAAGGCAACGTACGTAC -ACGGAAACAAGGCAACGTAGTGAC -ACGGAAACAAGGCAACGTCTGTAG -ACGGAAACAAGGCAACGTCCTAAG -ACGGAAACAAGGCAACGTGTTCAG -ACGGAAACAAGGCAACGTGCATAG -ACGGAAACAAGGCAACGTGACAAG -ACGGAAACAAGGCAACGTAAGCAG -ACGGAAACAAGGCAACGTCGTCAA -ACGGAAACAAGGCAACGTGCTGAA -ACGGAAACAAGGCAACGTAGTACG -ACGGAAACAAGGCAACGTATCCGA -ACGGAAACAAGGCAACGTATGGGA -ACGGAAACAAGGCAACGTGTGCAA -ACGGAAACAAGGCAACGTGAGGAA -ACGGAAACAAGGCAACGTCAGGTA -ACGGAAACAAGGCAACGTGACTCT -ACGGAAACAAGGCAACGTAGTCCT -ACGGAAACAAGGCAACGTTAAGCC -ACGGAAACAAGGCAACGTATAGCC -ACGGAAACAAGGCAACGTTAACCG -ACGGAAACAAGGCAACGTATGCCA -ACGGAAACAAGGGAAGCTGGAAAC -ACGGAAACAAGGGAAGCTAACACC -ACGGAAACAAGGGAAGCTATCGAG -ACGGAAACAAGGGAAGCTCTCCTT -ACGGAAACAAGGGAAGCTCCTGTT -ACGGAAACAAGGGAAGCTCGGTTT -ACGGAAACAAGGGAAGCTGTGGTT -ACGGAAACAAGGGAAGCTGCCTTT -ACGGAAACAAGGGAAGCTGGTCTT -ACGGAAACAAGGGAAGCTACGCTT -ACGGAAACAAGGGAAGCTAGCGTT -ACGGAAACAAGGGAAGCTTTCGTC -ACGGAAACAAGGGAAGCTTCTCTC -ACGGAAACAAGGGAAGCTTGGATC -ACGGAAACAAGGGAAGCTCACTTC -ACGGAAACAAGGGAAGCTGTACTC -ACGGAAACAAGGGAAGCTGATGTC -ACGGAAACAAGGGAAGCTACAGTC -ACGGAAACAAGGGAAGCTTTGCTG -ACGGAAACAAGGGAAGCTTCCATG -ACGGAAACAAGGGAAGCTTGTGTG -ACGGAAACAAGGGAAGCTCTAGTG -ACGGAAACAAGGGAAGCTCATCTG -ACGGAAACAAGGGAAGCTGAGTTG -ACGGAAACAAGGGAAGCTAGACTG -ACGGAAACAAGGGAAGCTTCGGTA -ACGGAAACAAGGGAAGCTTGCCTA -ACGGAAACAAGGGAAGCTCCACTA -ACGGAAACAAGGGAAGCTGGAGTA -ACGGAAACAAGGGAAGCTTCGTCT -ACGGAAACAAGGGAAGCTTGCACT -ACGGAAACAAGGGAAGCTCTGACT -ACGGAAACAAGGGAAGCTCAACCT -ACGGAAACAAGGGAAGCTGCTACT -ACGGAAACAAGGGAAGCTGGATCT -ACGGAAACAAGGGAAGCTAAGGCT -ACGGAAACAAGGGAAGCTTCAACC -ACGGAAACAAGGGAAGCTTGTTCC -ACGGAAACAAGGGAAGCTATTCCC -ACGGAAACAAGGGAAGCTTTCTCG -ACGGAAACAAGGGAAGCTTAGACG -ACGGAAACAAGGGAAGCTGTAACG -ACGGAAACAAGGGAAGCTACTTCG -ACGGAAACAAGGGAAGCTTACGCA -ACGGAAACAAGGGAAGCTCTTGCA -ACGGAAACAAGGGAAGCTCGAACA -ACGGAAACAAGGGAAGCTCAGTCA -ACGGAAACAAGGGAAGCTGATCCA -ACGGAAACAAGGGAAGCTACGACA -ACGGAAACAAGGGAAGCTAGCTCA -ACGGAAACAAGGGAAGCTTCACGT -ACGGAAACAAGGGAAGCTCGTAGT -ACGGAAACAAGGGAAGCTGTCAGT -ACGGAAACAAGGGAAGCTGAAGGT -ACGGAAACAAGGGAAGCTAACCGT -ACGGAAACAAGGGAAGCTTTGTGC -ACGGAAACAAGGGAAGCTCTAAGC -ACGGAAACAAGGGAAGCTACTAGC -ACGGAAACAAGGGAAGCTAGATGC -ACGGAAACAAGGGAAGCTTGAAGG -ACGGAAACAAGGGAAGCTCAATGG -ACGGAAACAAGGGAAGCTATGAGG -ACGGAAACAAGGGAAGCTAATGGG -ACGGAAACAAGGGAAGCTTCCTGA -ACGGAAACAAGGGAAGCTTAGCGA -ACGGAAACAAGGGAAGCTCACAGA -ACGGAAACAAGGGAAGCTGCAAGA -ACGGAAACAAGGGAAGCTGGTTGA -ACGGAAACAAGGGAAGCTTCCGAT -ACGGAAACAAGGGAAGCTTGGCAT -ACGGAAACAAGGGAAGCTCGAGAT -ACGGAAACAAGGGAAGCTTACCAC -ACGGAAACAAGGGAAGCTCAGAAC -ACGGAAACAAGGGAAGCTGTCTAC -ACGGAAACAAGGGAAGCTACGTAC -ACGGAAACAAGGGAAGCTAGTGAC -ACGGAAACAAGGGAAGCTCTGTAG -ACGGAAACAAGGGAAGCTCCTAAG -ACGGAAACAAGGGAAGCTGTTCAG -ACGGAAACAAGGGAAGCTGCATAG -ACGGAAACAAGGGAAGCTGACAAG -ACGGAAACAAGGGAAGCTAAGCAG -ACGGAAACAAGGGAAGCTCGTCAA -ACGGAAACAAGGGAAGCTGCTGAA -ACGGAAACAAGGGAAGCTAGTACG -ACGGAAACAAGGGAAGCTATCCGA -ACGGAAACAAGGGAAGCTATGGGA -ACGGAAACAAGGGAAGCTGTGCAA -ACGGAAACAAGGGAAGCTGAGGAA -ACGGAAACAAGGGAAGCTCAGGTA -ACGGAAACAAGGGAAGCTGACTCT -ACGGAAACAAGGGAAGCTAGTCCT -ACGGAAACAAGGGAAGCTTAAGCC -ACGGAAACAAGGGAAGCTATAGCC -ACGGAAACAAGGGAAGCTTAACCG -ACGGAAACAAGGGAAGCTATGCCA -ACGGAAACAAGGACGAGTGGAAAC -ACGGAAACAAGGACGAGTAACACC -ACGGAAACAAGGACGAGTATCGAG -ACGGAAACAAGGACGAGTCTCCTT -ACGGAAACAAGGACGAGTCCTGTT -ACGGAAACAAGGACGAGTCGGTTT -ACGGAAACAAGGACGAGTGTGGTT -ACGGAAACAAGGACGAGTGCCTTT -ACGGAAACAAGGACGAGTGGTCTT -ACGGAAACAAGGACGAGTACGCTT -ACGGAAACAAGGACGAGTAGCGTT -ACGGAAACAAGGACGAGTTTCGTC -ACGGAAACAAGGACGAGTTCTCTC -ACGGAAACAAGGACGAGTTGGATC -ACGGAAACAAGGACGAGTCACTTC -ACGGAAACAAGGACGAGTGTACTC -ACGGAAACAAGGACGAGTGATGTC -ACGGAAACAAGGACGAGTACAGTC -ACGGAAACAAGGACGAGTTTGCTG -ACGGAAACAAGGACGAGTTCCATG -ACGGAAACAAGGACGAGTTGTGTG -ACGGAAACAAGGACGAGTCTAGTG -ACGGAAACAAGGACGAGTCATCTG -ACGGAAACAAGGACGAGTGAGTTG -ACGGAAACAAGGACGAGTAGACTG -ACGGAAACAAGGACGAGTTCGGTA -ACGGAAACAAGGACGAGTTGCCTA -ACGGAAACAAGGACGAGTCCACTA -ACGGAAACAAGGACGAGTGGAGTA -ACGGAAACAAGGACGAGTTCGTCT -ACGGAAACAAGGACGAGTTGCACT -ACGGAAACAAGGACGAGTCTGACT -ACGGAAACAAGGACGAGTCAACCT -ACGGAAACAAGGACGAGTGCTACT -ACGGAAACAAGGACGAGTGGATCT -ACGGAAACAAGGACGAGTAAGGCT -ACGGAAACAAGGACGAGTTCAACC -ACGGAAACAAGGACGAGTTGTTCC -ACGGAAACAAGGACGAGTATTCCC -ACGGAAACAAGGACGAGTTTCTCG -ACGGAAACAAGGACGAGTTAGACG -ACGGAAACAAGGACGAGTGTAACG -ACGGAAACAAGGACGAGTACTTCG -ACGGAAACAAGGACGAGTTACGCA -ACGGAAACAAGGACGAGTCTTGCA -ACGGAAACAAGGACGAGTCGAACA -ACGGAAACAAGGACGAGTCAGTCA -ACGGAAACAAGGACGAGTGATCCA -ACGGAAACAAGGACGAGTACGACA -ACGGAAACAAGGACGAGTAGCTCA -ACGGAAACAAGGACGAGTTCACGT -ACGGAAACAAGGACGAGTCGTAGT -ACGGAAACAAGGACGAGTGTCAGT -ACGGAAACAAGGACGAGTGAAGGT -ACGGAAACAAGGACGAGTAACCGT -ACGGAAACAAGGACGAGTTTGTGC -ACGGAAACAAGGACGAGTCTAAGC -ACGGAAACAAGGACGAGTACTAGC -ACGGAAACAAGGACGAGTAGATGC -ACGGAAACAAGGACGAGTTGAAGG -ACGGAAACAAGGACGAGTCAATGG -ACGGAAACAAGGACGAGTATGAGG -ACGGAAACAAGGACGAGTAATGGG -ACGGAAACAAGGACGAGTTCCTGA -ACGGAAACAAGGACGAGTTAGCGA -ACGGAAACAAGGACGAGTCACAGA -ACGGAAACAAGGACGAGTGCAAGA -ACGGAAACAAGGACGAGTGGTTGA -ACGGAAACAAGGACGAGTTCCGAT -ACGGAAACAAGGACGAGTTGGCAT -ACGGAAACAAGGACGAGTCGAGAT -ACGGAAACAAGGACGAGTTACCAC -ACGGAAACAAGGACGAGTCAGAAC -ACGGAAACAAGGACGAGTGTCTAC -ACGGAAACAAGGACGAGTACGTAC -ACGGAAACAAGGACGAGTAGTGAC -ACGGAAACAAGGACGAGTCTGTAG -ACGGAAACAAGGACGAGTCCTAAG -ACGGAAACAAGGACGAGTGTTCAG -ACGGAAACAAGGACGAGTGCATAG -ACGGAAACAAGGACGAGTGACAAG -ACGGAAACAAGGACGAGTAAGCAG -ACGGAAACAAGGACGAGTCGTCAA -ACGGAAACAAGGACGAGTGCTGAA -ACGGAAACAAGGACGAGTAGTACG -ACGGAAACAAGGACGAGTATCCGA -ACGGAAACAAGGACGAGTATGGGA -ACGGAAACAAGGACGAGTGTGCAA -ACGGAAACAAGGACGAGTGAGGAA -ACGGAAACAAGGACGAGTCAGGTA -ACGGAAACAAGGACGAGTGACTCT -ACGGAAACAAGGACGAGTAGTCCT -ACGGAAACAAGGACGAGTTAAGCC -ACGGAAACAAGGACGAGTATAGCC -ACGGAAACAAGGACGAGTTAACCG -ACGGAAACAAGGACGAGTATGCCA -ACGGAAACAAGGCGAATCGGAAAC -ACGGAAACAAGGCGAATCAACACC -ACGGAAACAAGGCGAATCATCGAG -ACGGAAACAAGGCGAATCCTCCTT -ACGGAAACAAGGCGAATCCCTGTT -ACGGAAACAAGGCGAATCCGGTTT -ACGGAAACAAGGCGAATCGTGGTT -ACGGAAACAAGGCGAATCGCCTTT -ACGGAAACAAGGCGAATCGGTCTT -ACGGAAACAAGGCGAATCACGCTT -ACGGAAACAAGGCGAATCAGCGTT -ACGGAAACAAGGCGAATCTTCGTC -ACGGAAACAAGGCGAATCTCTCTC -ACGGAAACAAGGCGAATCTGGATC -ACGGAAACAAGGCGAATCCACTTC -ACGGAAACAAGGCGAATCGTACTC -ACGGAAACAAGGCGAATCGATGTC -ACGGAAACAAGGCGAATCACAGTC -ACGGAAACAAGGCGAATCTTGCTG -ACGGAAACAAGGCGAATCTCCATG -ACGGAAACAAGGCGAATCTGTGTG -ACGGAAACAAGGCGAATCCTAGTG -ACGGAAACAAGGCGAATCCATCTG -ACGGAAACAAGGCGAATCGAGTTG -ACGGAAACAAGGCGAATCAGACTG -ACGGAAACAAGGCGAATCTCGGTA -ACGGAAACAAGGCGAATCTGCCTA -ACGGAAACAAGGCGAATCCCACTA -ACGGAAACAAGGCGAATCGGAGTA -ACGGAAACAAGGCGAATCTCGTCT -ACGGAAACAAGGCGAATCTGCACT -ACGGAAACAAGGCGAATCCTGACT -ACGGAAACAAGGCGAATCCAACCT -ACGGAAACAAGGCGAATCGCTACT -ACGGAAACAAGGCGAATCGGATCT -ACGGAAACAAGGCGAATCAAGGCT -ACGGAAACAAGGCGAATCTCAACC -ACGGAAACAAGGCGAATCTGTTCC -ACGGAAACAAGGCGAATCATTCCC -ACGGAAACAAGGCGAATCTTCTCG -ACGGAAACAAGGCGAATCTAGACG -ACGGAAACAAGGCGAATCGTAACG -ACGGAAACAAGGCGAATCACTTCG -ACGGAAACAAGGCGAATCTACGCA -ACGGAAACAAGGCGAATCCTTGCA -ACGGAAACAAGGCGAATCCGAACA -ACGGAAACAAGGCGAATCCAGTCA -ACGGAAACAAGGCGAATCGATCCA -ACGGAAACAAGGCGAATCACGACA -ACGGAAACAAGGCGAATCAGCTCA -ACGGAAACAAGGCGAATCTCACGT -ACGGAAACAAGGCGAATCCGTAGT -ACGGAAACAAGGCGAATCGTCAGT -ACGGAAACAAGGCGAATCGAAGGT -ACGGAAACAAGGCGAATCAACCGT -ACGGAAACAAGGCGAATCTTGTGC -ACGGAAACAAGGCGAATCCTAAGC -ACGGAAACAAGGCGAATCACTAGC -ACGGAAACAAGGCGAATCAGATGC -ACGGAAACAAGGCGAATCTGAAGG -ACGGAAACAAGGCGAATCCAATGG -ACGGAAACAAGGCGAATCATGAGG -ACGGAAACAAGGCGAATCAATGGG -ACGGAAACAAGGCGAATCTCCTGA -ACGGAAACAAGGCGAATCTAGCGA -ACGGAAACAAGGCGAATCCACAGA -ACGGAAACAAGGCGAATCGCAAGA -ACGGAAACAAGGCGAATCGGTTGA -ACGGAAACAAGGCGAATCTCCGAT -ACGGAAACAAGGCGAATCTGGCAT -ACGGAAACAAGGCGAATCCGAGAT -ACGGAAACAAGGCGAATCTACCAC -ACGGAAACAAGGCGAATCCAGAAC -ACGGAAACAAGGCGAATCGTCTAC -ACGGAAACAAGGCGAATCACGTAC -ACGGAAACAAGGCGAATCAGTGAC -ACGGAAACAAGGCGAATCCTGTAG -ACGGAAACAAGGCGAATCCCTAAG -ACGGAAACAAGGCGAATCGTTCAG -ACGGAAACAAGGCGAATCGCATAG -ACGGAAACAAGGCGAATCGACAAG -ACGGAAACAAGGCGAATCAAGCAG -ACGGAAACAAGGCGAATCCGTCAA -ACGGAAACAAGGCGAATCGCTGAA -ACGGAAACAAGGCGAATCAGTACG -ACGGAAACAAGGCGAATCATCCGA -ACGGAAACAAGGCGAATCATGGGA -ACGGAAACAAGGCGAATCGTGCAA -ACGGAAACAAGGCGAATCGAGGAA -ACGGAAACAAGGCGAATCCAGGTA -ACGGAAACAAGGCGAATCGACTCT -ACGGAAACAAGGCGAATCAGTCCT -ACGGAAACAAGGCGAATCTAAGCC -ACGGAAACAAGGCGAATCATAGCC -ACGGAAACAAGGCGAATCTAACCG -ACGGAAACAAGGCGAATCATGCCA -ACGGAAACAAGGGGAATGGGAAAC -ACGGAAACAAGGGGAATGAACACC -ACGGAAACAAGGGGAATGATCGAG -ACGGAAACAAGGGGAATGCTCCTT -ACGGAAACAAGGGGAATGCCTGTT -ACGGAAACAAGGGGAATGCGGTTT -ACGGAAACAAGGGGAATGGTGGTT -ACGGAAACAAGGGGAATGGCCTTT -ACGGAAACAAGGGGAATGGGTCTT -ACGGAAACAAGGGGAATGACGCTT -ACGGAAACAAGGGGAATGAGCGTT -ACGGAAACAAGGGGAATGTTCGTC -ACGGAAACAAGGGGAATGTCTCTC -ACGGAAACAAGGGGAATGTGGATC -ACGGAAACAAGGGGAATGCACTTC -ACGGAAACAAGGGGAATGGTACTC -ACGGAAACAAGGGGAATGGATGTC -ACGGAAACAAGGGGAATGACAGTC -ACGGAAACAAGGGGAATGTTGCTG -ACGGAAACAAGGGGAATGTCCATG -ACGGAAACAAGGGGAATGTGTGTG -ACGGAAACAAGGGGAATGCTAGTG -ACGGAAACAAGGGGAATGCATCTG -ACGGAAACAAGGGGAATGGAGTTG -ACGGAAACAAGGGGAATGAGACTG -ACGGAAACAAGGGGAATGTCGGTA -ACGGAAACAAGGGGAATGTGCCTA -ACGGAAACAAGGGGAATGCCACTA -ACGGAAACAAGGGGAATGGGAGTA -ACGGAAACAAGGGGAATGTCGTCT -ACGGAAACAAGGGGAATGTGCACT -ACGGAAACAAGGGGAATGCTGACT -ACGGAAACAAGGGGAATGCAACCT -ACGGAAACAAGGGGAATGGCTACT -ACGGAAACAAGGGGAATGGGATCT -ACGGAAACAAGGGGAATGAAGGCT -ACGGAAACAAGGGGAATGTCAACC -ACGGAAACAAGGGGAATGTGTTCC -ACGGAAACAAGGGGAATGATTCCC -ACGGAAACAAGGGGAATGTTCTCG -ACGGAAACAAGGGGAATGTAGACG -ACGGAAACAAGGGGAATGGTAACG -ACGGAAACAAGGGGAATGACTTCG -ACGGAAACAAGGGGAATGTACGCA -ACGGAAACAAGGGGAATGCTTGCA -ACGGAAACAAGGGGAATGCGAACA -ACGGAAACAAGGGGAATGCAGTCA -ACGGAAACAAGGGGAATGGATCCA -ACGGAAACAAGGGGAATGACGACA -ACGGAAACAAGGGGAATGAGCTCA -ACGGAAACAAGGGGAATGTCACGT -ACGGAAACAAGGGGAATGCGTAGT -ACGGAAACAAGGGGAATGGTCAGT -ACGGAAACAAGGGGAATGGAAGGT -ACGGAAACAAGGGGAATGAACCGT -ACGGAAACAAGGGGAATGTTGTGC -ACGGAAACAAGGGGAATGCTAAGC -ACGGAAACAAGGGGAATGACTAGC -ACGGAAACAAGGGGAATGAGATGC -ACGGAAACAAGGGGAATGTGAAGG -ACGGAAACAAGGGGAATGCAATGG -ACGGAAACAAGGGGAATGATGAGG -ACGGAAACAAGGGGAATGAATGGG -ACGGAAACAAGGGGAATGTCCTGA -ACGGAAACAAGGGGAATGTAGCGA -ACGGAAACAAGGGGAATGCACAGA -ACGGAAACAAGGGGAATGGCAAGA -ACGGAAACAAGGGGAATGGGTTGA -ACGGAAACAAGGGGAATGTCCGAT -ACGGAAACAAGGGGAATGTGGCAT -ACGGAAACAAGGGGAATGCGAGAT -ACGGAAACAAGGGGAATGTACCAC -ACGGAAACAAGGGGAATGCAGAAC -ACGGAAACAAGGGGAATGGTCTAC -ACGGAAACAAGGGGAATGACGTAC -ACGGAAACAAGGGGAATGAGTGAC -ACGGAAACAAGGGGAATGCTGTAG -ACGGAAACAAGGGGAATGCCTAAG -ACGGAAACAAGGGGAATGGTTCAG -ACGGAAACAAGGGGAATGGCATAG -ACGGAAACAAGGGGAATGGACAAG -ACGGAAACAAGGGGAATGAAGCAG -ACGGAAACAAGGGGAATGCGTCAA -ACGGAAACAAGGGGAATGGCTGAA -ACGGAAACAAGGGGAATGAGTACG -ACGGAAACAAGGGGAATGATCCGA -ACGGAAACAAGGGGAATGATGGGA -ACGGAAACAAGGGGAATGGTGCAA -ACGGAAACAAGGGGAATGGAGGAA -ACGGAAACAAGGGGAATGCAGGTA -ACGGAAACAAGGGGAATGGACTCT -ACGGAAACAAGGGGAATGAGTCCT -ACGGAAACAAGGGGAATGTAAGCC -ACGGAAACAAGGGGAATGATAGCC -ACGGAAACAAGGGGAATGTAACCG -ACGGAAACAAGGGGAATGATGCCA -ACGGAAACAAGGCAAGTGGGAAAC -ACGGAAACAAGGCAAGTGAACACC -ACGGAAACAAGGCAAGTGATCGAG -ACGGAAACAAGGCAAGTGCTCCTT -ACGGAAACAAGGCAAGTGCCTGTT -ACGGAAACAAGGCAAGTGCGGTTT -ACGGAAACAAGGCAAGTGGTGGTT -ACGGAAACAAGGCAAGTGGCCTTT -ACGGAAACAAGGCAAGTGGGTCTT -ACGGAAACAAGGCAAGTGACGCTT -ACGGAAACAAGGCAAGTGAGCGTT -ACGGAAACAAGGCAAGTGTTCGTC -ACGGAAACAAGGCAAGTGTCTCTC -ACGGAAACAAGGCAAGTGTGGATC -ACGGAAACAAGGCAAGTGCACTTC -ACGGAAACAAGGCAAGTGGTACTC -ACGGAAACAAGGCAAGTGGATGTC -ACGGAAACAAGGCAAGTGACAGTC -ACGGAAACAAGGCAAGTGTTGCTG -ACGGAAACAAGGCAAGTGTCCATG -ACGGAAACAAGGCAAGTGTGTGTG -ACGGAAACAAGGCAAGTGCTAGTG -ACGGAAACAAGGCAAGTGCATCTG -ACGGAAACAAGGCAAGTGGAGTTG -ACGGAAACAAGGCAAGTGAGACTG -ACGGAAACAAGGCAAGTGTCGGTA -ACGGAAACAAGGCAAGTGTGCCTA -ACGGAAACAAGGCAAGTGCCACTA -ACGGAAACAAGGCAAGTGGGAGTA -ACGGAAACAAGGCAAGTGTCGTCT -ACGGAAACAAGGCAAGTGTGCACT -ACGGAAACAAGGCAAGTGCTGACT -ACGGAAACAAGGCAAGTGCAACCT -ACGGAAACAAGGCAAGTGGCTACT -ACGGAAACAAGGCAAGTGGGATCT -ACGGAAACAAGGCAAGTGAAGGCT -ACGGAAACAAGGCAAGTGTCAACC -ACGGAAACAAGGCAAGTGTGTTCC -ACGGAAACAAGGCAAGTGATTCCC -ACGGAAACAAGGCAAGTGTTCTCG -ACGGAAACAAGGCAAGTGTAGACG -ACGGAAACAAGGCAAGTGGTAACG -ACGGAAACAAGGCAAGTGACTTCG -ACGGAAACAAGGCAAGTGTACGCA -ACGGAAACAAGGCAAGTGCTTGCA -ACGGAAACAAGGCAAGTGCGAACA -ACGGAAACAAGGCAAGTGCAGTCA -ACGGAAACAAGGCAAGTGGATCCA -ACGGAAACAAGGCAAGTGACGACA -ACGGAAACAAGGCAAGTGAGCTCA -ACGGAAACAAGGCAAGTGTCACGT -ACGGAAACAAGGCAAGTGCGTAGT -ACGGAAACAAGGCAAGTGGTCAGT -ACGGAAACAAGGCAAGTGGAAGGT -ACGGAAACAAGGCAAGTGAACCGT -ACGGAAACAAGGCAAGTGTTGTGC -ACGGAAACAAGGCAAGTGCTAAGC -ACGGAAACAAGGCAAGTGACTAGC -ACGGAAACAAGGCAAGTGAGATGC -ACGGAAACAAGGCAAGTGTGAAGG -ACGGAAACAAGGCAAGTGCAATGG -ACGGAAACAAGGCAAGTGATGAGG -ACGGAAACAAGGCAAGTGAATGGG -ACGGAAACAAGGCAAGTGTCCTGA -ACGGAAACAAGGCAAGTGTAGCGA -ACGGAAACAAGGCAAGTGCACAGA -ACGGAAACAAGGCAAGTGGCAAGA -ACGGAAACAAGGCAAGTGGGTTGA -ACGGAAACAAGGCAAGTGTCCGAT -ACGGAAACAAGGCAAGTGTGGCAT -ACGGAAACAAGGCAAGTGCGAGAT -ACGGAAACAAGGCAAGTGTACCAC -ACGGAAACAAGGCAAGTGCAGAAC -ACGGAAACAAGGCAAGTGGTCTAC -ACGGAAACAAGGCAAGTGACGTAC -ACGGAAACAAGGCAAGTGAGTGAC -ACGGAAACAAGGCAAGTGCTGTAG -ACGGAAACAAGGCAAGTGCCTAAG -ACGGAAACAAGGCAAGTGGTTCAG -ACGGAAACAAGGCAAGTGGCATAG -ACGGAAACAAGGCAAGTGGACAAG -ACGGAAACAAGGCAAGTGAAGCAG -ACGGAAACAAGGCAAGTGCGTCAA -ACGGAAACAAGGCAAGTGGCTGAA -ACGGAAACAAGGCAAGTGAGTACG -ACGGAAACAAGGCAAGTGATCCGA -ACGGAAACAAGGCAAGTGATGGGA -ACGGAAACAAGGCAAGTGGTGCAA -ACGGAAACAAGGCAAGTGGAGGAA -ACGGAAACAAGGCAAGTGCAGGTA -ACGGAAACAAGGCAAGTGGACTCT -ACGGAAACAAGGCAAGTGAGTCCT -ACGGAAACAAGGCAAGTGTAAGCC -ACGGAAACAAGGCAAGTGATAGCC -ACGGAAACAAGGCAAGTGTAACCG -ACGGAAACAAGGCAAGTGATGCCA -ACGGAAACAAGGGAAGAGGGAAAC -ACGGAAACAAGGGAAGAGAACACC -ACGGAAACAAGGGAAGAGATCGAG -ACGGAAACAAGGGAAGAGCTCCTT -ACGGAAACAAGGGAAGAGCCTGTT -ACGGAAACAAGGGAAGAGCGGTTT -ACGGAAACAAGGGAAGAGGTGGTT -ACGGAAACAAGGGAAGAGGCCTTT -ACGGAAACAAGGGAAGAGGGTCTT -ACGGAAACAAGGGAAGAGACGCTT -ACGGAAACAAGGGAAGAGAGCGTT -ACGGAAACAAGGGAAGAGTTCGTC -ACGGAAACAAGGGAAGAGTCTCTC -ACGGAAACAAGGGAAGAGTGGATC -ACGGAAACAAGGGAAGAGCACTTC -ACGGAAACAAGGGAAGAGGTACTC -ACGGAAACAAGGGAAGAGGATGTC -ACGGAAACAAGGGAAGAGACAGTC -ACGGAAACAAGGGAAGAGTTGCTG -ACGGAAACAAGGGAAGAGTCCATG -ACGGAAACAAGGGAAGAGTGTGTG -ACGGAAACAAGGGAAGAGCTAGTG -ACGGAAACAAGGGAAGAGCATCTG -ACGGAAACAAGGGAAGAGGAGTTG -ACGGAAACAAGGGAAGAGAGACTG -ACGGAAACAAGGGAAGAGTCGGTA -ACGGAAACAAGGGAAGAGTGCCTA -ACGGAAACAAGGGAAGAGCCACTA -ACGGAAACAAGGGAAGAGGGAGTA -ACGGAAACAAGGGAAGAGTCGTCT -ACGGAAACAAGGGAAGAGTGCACT -ACGGAAACAAGGGAAGAGCTGACT -ACGGAAACAAGGGAAGAGCAACCT -ACGGAAACAAGGGAAGAGGCTACT -ACGGAAACAAGGGAAGAGGGATCT -ACGGAAACAAGGGAAGAGAAGGCT -ACGGAAACAAGGGAAGAGTCAACC -ACGGAAACAAGGGAAGAGTGTTCC -ACGGAAACAAGGGAAGAGATTCCC -ACGGAAACAAGGGAAGAGTTCTCG -ACGGAAACAAGGGAAGAGTAGACG -ACGGAAACAAGGGAAGAGGTAACG -ACGGAAACAAGGGAAGAGACTTCG -ACGGAAACAAGGGAAGAGTACGCA -ACGGAAACAAGGGAAGAGCTTGCA -ACGGAAACAAGGGAAGAGCGAACA -ACGGAAACAAGGGAAGAGCAGTCA -ACGGAAACAAGGGAAGAGGATCCA -ACGGAAACAAGGGAAGAGACGACA -ACGGAAACAAGGGAAGAGAGCTCA -ACGGAAACAAGGGAAGAGTCACGT -ACGGAAACAAGGGAAGAGCGTAGT -ACGGAAACAAGGGAAGAGGTCAGT -ACGGAAACAAGGGAAGAGGAAGGT -ACGGAAACAAGGGAAGAGAACCGT -ACGGAAACAAGGGAAGAGTTGTGC -ACGGAAACAAGGGAAGAGCTAAGC -ACGGAAACAAGGGAAGAGACTAGC -ACGGAAACAAGGGAAGAGAGATGC -ACGGAAACAAGGGAAGAGTGAAGG -ACGGAAACAAGGGAAGAGCAATGG -ACGGAAACAAGGGAAGAGATGAGG -ACGGAAACAAGGGAAGAGAATGGG -ACGGAAACAAGGGAAGAGTCCTGA -ACGGAAACAAGGGAAGAGTAGCGA -ACGGAAACAAGGGAAGAGCACAGA -ACGGAAACAAGGGAAGAGGCAAGA -ACGGAAACAAGGGAAGAGGGTTGA -ACGGAAACAAGGGAAGAGTCCGAT -ACGGAAACAAGGGAAGAGTGGCAT -ACGGAAACAAGGGAAGAGCGAGAT -ACGGAAACAAGGGAAGAGTACCAC -ACGGAAACAAGGGAAGAGCAGAAC -ACGGAAACAAGGGAAGAGGTCTAC -ACGGAAACAAGGGAAGAGACGTAC -ACGGAAACAAGGGAAGAGAGTGAC -ACGGAAACAAGGGAAGAGCTGTAG -ACGGAAACAAGGGAAGAGCCTAAG -ACGGAAACAAGGGAAGAGGTTCAG -ACGGAAACAAGGGAAGAGGCATAG -ACGGAAACAAGGGAAGAGGACAAG -ACGGAAACAAGGGAAGAGAAGCAG -ACGGAAACAAGGGAAGAGCGTCAA -ACGGAAACAAGGGAAGAGGCTGAA -ACGGAAACAAGGGAAGAGAGTACG -ACGGAAACAAGGGAAGAGATCCGA -ACGGAAACAAGGGAAGAGATGGGA -ACGGAAACAAGGGAAGAGGTGCAA -ACGGAAACAAGGGAAGAGGAGGAA -ACGGAAACAAGGGAAGAGCAGGTA -ACGGAAACAAGGGAAGAGGACTCT -ACGGAAACAAGGGAAGAGAGTCCT -ACGGAAACAAGGGAAGAGTAAGCC -ACGGAAACAAGGGAAGAGATAGCC -ACGGAAACAAGGGAAGAGTAACCG -ACGGAAACAAGGGAAGAGATGCCA -ACGGAAACAAGGGTACAGGGAAAC -ACGGAAACAAGGGTACAGAACACC -ACGGAAACAAGGGTACAGATCGAG -ACGGAAACAAGGGTACAGCTCCTT -ACGGAAACAAGGGTACAGCCTGTT -ACGGAAACAAGGGTACAGCGGTTT -ACGGAAACAAGGGTACAGGTGGTT -ACGGAAACAAGGGTACAGGCCTTT -ACGGAAACAAGGGTACAGGGTCTT -ACGGAAACAAGGGTACAGACGCTT -ACGGAAACAAGGGTACAGAGCGTT -ACGGAAACAAGGGTACAGTTCGTC -ACGGAAACAAGGGTACAGTCTCTC -ACGGAAACAAGGGTACAGTGGATC -ACGGAAACAAGGGTACAGCACTTC -ACGGAAACAAGGGTACAGGTACTC -ACGGAAACAAGGGTACAGGATGTC -ACGGAAACAAGGGTACAGACAGTC -ACGGAAACAAGGGTACAGTTGCTG -ACGGAAACAAGGGTACAGTCCATG -ACGGAAACAAGGGTACAGTGTGTG -ACGGAAACAAGGGTACAGCTAGTG -ACGGAAACAAGGGTACAGCATCTG -ACGGAAACAAGGGTACAGGAGTTG -ACGGAAACAAGGGTACAGAGACTG -ACGGAAACAAGGGTACAGTCGGTA -ACGGAAACAAGGGTACAGTGCCTA -ACGGAAACAAGGGTACAGCCACTA -ACGGAAACAAGGGTACAGGGAGTA -ACGGAAACAAGGGTACAGTCGTCT -ACGGAAACAAGGGTACAGTGCACT -ACGGAAACAAGGGTACAGCTGACT -ACGGAAACAAGGGTACAGCAACCT -ACGGAAACAAGGGTACAGGCTACT -ACGGAAACAAGGGTACAGGGATCT -ACGGAAACAAGGGTACAGAAGGCT -ACGGAAACAAGGGTACAGTCAACC -ACGGAAACAAGGGTACAGTGTTCC -ACGGAAACAAGGGTACAGATTCCC -ACGGAAACAAGGGTACAGTTCTCG -ACGGAAACAAGGGTACAGTAGACG -ACGGAAACAAGGGTACAGGTAACG -ACGGAAACAAGGGTACAGACTTCG -ACGGAAACAAGGGTACAGTACGCA -ACGGAAACAAGGGTACAGCTTGCA -ACGGAAACAAGGGTACAGCGAACA -ACGGAAACAAGGGTACAGCAGTCA -ACGGAAACAAGGGTACAGGATCCA -ACGGAAACAAGGGTACAGACGACA -ACGGAAACAAGGGTACAGAGCTCA -ACGGAAACAAGGGTACAGTCACGT -ACGGAAACAAGGGTACAGCGTAGT -ACGGAAACAAGGGTACAGGTCAGT -ACGGAAACAAGGGTACAGGAAGGT -ACGGAAACAAGGGTACAGAACCGT -ACGGAAACAAGGGTACAGTTGTGC -ACGGAAACAAGGGTACAGCTAAGC -ACGGAAACAAGGGTACAGACTAGC -ACGGAAACAAGGGTACAGAGATGC -ACGGAAACAAGGGTACAGTGAAGG -ACGGAAACAAGGGTACAGCAATGG -ACGGAAACAAGGGTACAGATGAGG -ACGGAAACAAGGGTACAGAATGGG -ACGGAAACAAGGGTACAGTCCTGA -ACGGAAACAAGGGTACAGTAGCGA -ACGGAAACAAGGGTACAGCACAGA -ACGGAAACAAGGGTACAGGCAAGA -ACGGAAACAAGGGTACAGGGTTGA -ACGGAAACAAGGGTACAGTCCGAT -ACGGAAACAAGGGTACAGTGGCAT -ACGGAAACAAGGGTACAGCGAGAT -ACGGAAACAAGGGTACAGTACCAC -ACGGAAACAAGGGTACAGCAGAAC -ACGGAAACAAGGGTACAGGTCTAC -ACGGAAACAAGGGTACAGACGTAC -ACGGAAACAAGGGTACAGAGTGAC -ACGGAAACAAGGGTACAGCTGTAG -ACGGAAACAAGGGTACAGCCTAAG -ACGGAAACAAGGGTACAGGTTCAG -ACGGAAACAAGGGTACAGGCATAG -ACGGAAACAAGGGTACAGGACAAG -ACGGAAACAAGGGTACAGAAGCAG -ACGGAAACAAGGGTACAGCGTCAA -ACGGAAACAAGGGTACAGGCTGAA -ACGGAAACAAGGGTACAGAGTACG -ACGGAAACAAGGGTACAGATCCGA -ACGGAAACAAGGGTACAGATGGGA -ACGGAAACAAGGGTACAGGTGCAA -ACGGAAACAAGGGTACAGGAGGAA -ACGGAAACAAGGGTACAGCAGGTA -ACGGAAACAAGGGTACAGGACTCT -ACGGAAACAAGGGTACAGAGTCCT -ACGGAAACAAGGGTACAGTAAGCC -ACGGAAACAAGGGTACAGATAGCC -ACGGAAACAAGGGTACAGTAACCG -ACGGAAACAAGGGTACAGATGCCA -ACGGAAACAAGGTCTGACGGAAAC -ACGGAAACAAGGTCTGACAACACC -ACGGAAACAAGGTCTGACATCGAG -ACGGAAACAAGGTCTGACCTCCTT -ACGGAAACAAGGTCTGACCCTGTT -ACGGAAACAAGGTCTGACCGGTTT -ACGGAAACAAGGTCTGACGTGGTT -ACGGAAACAAGGTCTGACGCCTTT -ACGGAAACAAGGTCTGACGGTCTT -ACGGAAACAAGGTCTGACACGCTT -ACGGAAACAAGGTCTGACAGCGTT -ACGGAAACAAGGTCTGACTTCGTC -ACGGAAACAAGGTCTGACTCTCTC -ACGGAAACAAGGTCTGACTGGATC -ACGGAAACAAGGTCTGACCACTTC -ACGGAAACAAGGTCTGACGTACTC -ACGGAAACAAGGTCTGACGATGTC -ACGGAAACAAGGTCTGACACAGTC -ACGGAAACAAGGTCTGACTTGCTG -ACGGAAACAAGGTCTGACTCCATG -ACGGAAACAAGGTCTGACTGTGTG -ACGGAAACAAGGTCTGACCTAGTG -ACGGAAACAAGGTCTGACCATCTG -ACGGAAACAAGGTCTGACGAGTTG -ACGGAAACAAGGTCTGACAGACTG -ACGGAAACAAGGTCTGACTCGGTA -ACGGAAACAAGGTCTGACTGCCTA -ACGGAAACAAGGTCTGACCCACTA -ACGGAAACAAGGTCTGACGGAGTA -ACGGAAACAAGGTCTGACTCGTCT -ACGGAAACAAGGTCTGACTGCACT -ACGGAAACAAGGTCTGACCTGACT -ACGGAAACAAGGTCTGACCAACCT -ACGGAAACAAGGTCTGACGCTACT -ACGGAAACAAGGTCTGACGGATCT -ACGGAAACAAGGTCTGACAAGGCT -ACGGAAACAAGGTCTGACTCAACC -ACGGAAACAAGGTCTGACTGTTCC -ACGGAAACAAGGTCTGACATTCCC -ACGGAAACAAGGTCTGACTTCTCG -ACGGAAACAAGGTCTGACTAGACG -ACGGAAACAAGGTCTGACGTAACG -ACGGAAACAAGGTCTGACACTTCG -ACGGAAACAAGGTCTGACTACGCA -ACGGAAACAAGGTCTGACCTTGCA -ACGGAAACAAGGTCTGACCGAACA -ACGGAAACAAGGTCTGACCAGTCA -ACGGAAACAAGGTCTGACGATCCA -ACGGAAACAAGGTCTGACACGACA -ACGGAAACAAGGTCTGACAGCTCA -ACGGAAACAAGGTCTGACTCACGT -ACGGAAACAAGGTCTGACCGTAGT -ACGGAAACAAGGTCTGACGTCAGT -ACGGAAACAAGGTCTGACGAAGGT -ACGGAAACAAGGTCTGACAACCGT -ACGGAAACAAGGTCTGACTTGTGC -ACGGAAACAAGGTCTGACCTAAGC -ACGGAAACAAGGTCTGACACTAGC -ACGGAAACAAGGTCTGACAGATGC -ACGGAAACAAGGTCTGACTGAAGG -ACGGAAACAAGGTCTGACCAATGG -ACGGAAACAAGGTCTGACATGAGG -ACGGAAACAAGGTCTGACAATGGG -ACGGAAACAAGGTCTGACTCCTGA -ACGGAAACAAGGTCTGACTAGCGA -ACGGAAACAAGGTCTGACCACAGA -ACGGAAACAAGGTCTGACGCAAGA -ACGGAAACAAGGTCTGACGGTTGA -ACGGAAACAAGGTCTGACTCCGAT -ACGGAAACAAGGTCTGACTGGCAT -ACGGAAACAAGGTCTGACCGAGAT -ACGGAAACAAGGTCTGACTACCAC -ACGGAAACAAGGTCTGACCAGAAC -ACGGAAACAAGGTCTGACGTCTAC -ACGGAAACAAGGTCTGACACGTAC -ACGGAAACAAGGTCTGACAGTGAC -ACGGAAACAAGGTCTGACCTGTAG -ACGGAAACAAGGTCTGACCCTAAG -ACGGAAACAAGGTCTGACGTTCAG -ACGGAAACAAGGTCTGACGCATAG -ACGGAAACAAGGTCTGACGACAAG -ACGGAAACAAGGTCTGACAAGCAG -ACGGAAACAAGGTCTGACCGTCAA -ACGGAAACAAGGTCTGACGCTGAA -ACGGAAACAAGGTCTGACAGTACG -ACGGAAACAAGGTCTGACATCCGA -ACGGAAACAAGGTCTGACATGGGA -ACGGAAACAAGGTCTGACGTGCAA -ACGGAAACAAGGTCTGACGAGGAA -ACGGAAACAAGGTCTGACCAGGTA -ACGGAAACAAGGTCTGACGACTCT -ACGGAAACAAGGTCTGACAGTCCT -ACGGAAACAAGGTCTGACTAAGCC -ACGGAAACAAGGTCTGACATAGCC -ACGGAAACAAGGTCTGACTAACCG -ACGGAAACAAGGTCTGACATGCCA -ACGGAAACAAGGCCTAGTGGAAAC -ACGGAAACAAGGCCTAGTAACACC -ACGGAAACAAGGCCTAGTATCGAG -ACGGAAACAAGGCCTAGTCTCCTT -ACGGAAACAAGGCCTAGTCCTGTT -ACGGAAACAAGGCCTAGTCGGTTT -ACGGAAACAAGGCCTAGTGTGGTT -ACGGAAACAAGGCCTAGTGCCTTT -ACGGAAACAAGGCCTAGTGGTCTT -ACGGAAACAAGGCCTAGTACGCTT -ACGGAAACAAGGCCTAGTAGCGTT -ACGGAAACAAGGCCTAGTTTCGTC -ACGGAAACAAGGCCTAGTTCTCTC -ACGGAAACAAGGCCTAGTTGGATC -ACGGAAACAAGGCCTAGTCACTTC -ACGGAAACAAGGCCTAGTGTACTC -ACGGAAACAAGGCCTAGTGATGTC -ACGGAAACAAGGCCTAGTACAGTC -ACGGAAACAAGGCCTAGTTTGCTG -ACGGAAACAAGGCCTAGTTCCATG -ACGGAAACAAGGCCTAGTTGTGTG -ACGGAAACAAGGCCTAGTCTAGTG -ACGGAAACAAGGCCTAGTCATCTG -ACGGAAACAAGGCCTAGTGAGTTG -ACGGAAACAAGGCCTAGTAGACTG -ACGGAAACAAGGCCTAGTTCGGTA -ACGGAAACAAGGCCTAGTTGCCTA -ACGGAAACAAGGCCTAGTCCACTA -ACGGAAACAAGGCCTAGTGGAGTA -ACGGAAACAAGGCCTAGTTCGTCT -ACGGAAACAAGGCCTAGTTGCACT -ACGGAAACAAGGCCTAGTCTGACT -ACGGAAACAAGGCCTAGTCAACCT -ACGGAAACAAGGCCTAGTGCTACT -ACGGAAACAAGGCCTAGTGGATCT -ACGGAAACAAGGCCTAGTAAGGCT -ACGGAAACAAGGCCTAGTTCAACC -ACGGAAACAAGGCCTAGTTGTTCC -ACGGAAACAAGGCCTAGTATTCCC -ACGGAAACAAGGCCTAGTTTCTCG -ACGGAAACAAGGCCTAGTTAGACG -ACGGAAACAAGGCCTAGTGTAACG -ACGGAAACAAGGCCTAGTACTTCG -ACGGAAACAAGGCCTAGTTACGCA -ACGGAAACAAGGCCTAGTCTTGCA -ACGGAAACAAGGCCTAGTCGAACA -ACGGAAACAAGGCCTAGTCAGTCA -ACGGAAACAAGGCCTAGTGATCCA -ACGGAAACAAGGCCTAGTACGACA -ACGGAAACAAGGCCTAGTAGCTCA -ACGGAAACAAGGCCTAGTTCACGT -ACGGAAACAAGGCCTAGTCGTAGT -ACGGAAACAAGGCCTAGTGTCAGT -ACGGAAACAAGGCCTAGTGAAGGT -ACGGAAACAAGGCCTAGTAACCGT -ACGGAAACAAGGCCTAGTTTGTGC -ACGGAAACAAGGCCTAGTCTAAGC -ACGGAAACAAGGCCTAGTACTAGC -ACGGAAACAAGGCCTAGTAGATGC -ACGGAAACAAGGCCTAGTTGAAGG -ACGGAAACAAGGCCTAGTCAATGG -ACGGAAACAAGGCCTAGTATGAGG -ACGGAAACAAGGCCTAGTAATGGG -ACGGAAACAAGGCCTAGTTCCTGA -ACGGAAACAAGGCCTAGTTAGCGA -ACGGAAACAAGGCCTAGTCACAGA -ACGGAAACAAGGCCTAGTGCAAGA -ACGGAAACAAGGCCTAGTGGTTGA -ACGGAAACAAGGCCTAGTTCCGAT -ACGGAAACAAGGCCTAGTTGGCAT -ACGGAAACAAGGCCTAGTCGAGAT -ACGGAAACAAGGCCTAGTTACCAC -ACGGAAACAAGGCCTAGTCAGAAC -ACGGAAACAAGGCCTAGTGTCTAC -ACGGAAACAAGGCCTAGTACGTAC -ACGGAAACAAGGCCTAGTAGTGAC -ACGGAAACAAGGCCTAGTCTGTAG -ACGGAAACAAGGCCTAGTCCTAAG -ACGGAAACAAGGCCTAGTGTTCAG -ACGGAAACAAGGCCTAGTGCATAG -ACGGAAACAAGGCCTAGTGACAAG -ACGGAAACAAGGCCTAGTAAGCAG -ACGGAAACAAGGCCTAGTCGTCAA -ACGGAAACAAGGCCTAGTGCTGAA -ACGGAAACAAGGCCTAGTAGTACG -ACGGAAACAAGGCCTAGTATCCGA -ACGGAAACAAGGCCTAGTATGGGA -ACGGAAACAAGGCCTAGTGTGCAA -ACGGAAACAAGGCCTAGTGAGGAA -ACGGAAACAAGGCCTAGTCAGGTA -ACGGAAACAAGGCCTAGTGACTCT -ACGGAAACAAGGCCTAGTAGTCCT -ACGGAAACAAGGCCTAGTTAAGCC -ACGGAAACAAGGCCTAGTATAGCC -ACGGAAACAAGGCCTAGTTAACCG -ACGGAAACAAGGCCTAGTATGCCA -ACGGAAACAAGGGCCTAAGGAAAC -ACGGAAACAAGGGCCTAAAACACC -ACGGAAACAAGGGCCTAAATCGAG -ACGGAAACAAGGGCCTAACTCCTT -ACGGAAACAAGGGCCTAACCTGTT -ACGGAAACAAGGGCCTAACGGTTT -ACGGAAACAAGGGCCTAAGTGGTT -ACGGAAACAAGGGCCTAAGCCTTT -ACGGAAACAAGGGCCTAAGGTCTT -ACGGAAACAAGGGCCTAAACGCTT -ACGGAAACAAGGGCCTAAAGCGTT -ACGGAAACAAGGGCCTAATTCGTC -ACGGAAACAAGGGCCTAATCTCTC -ACGGAAACAAGGGCCTAATGGATC -ACGGAAACAAGGGCCTAACACTTC -ACGGAAACAAGGGCCTAAGTACTC -ACGGAAACAAGGGCCTAAGATGTC -ACGGAAACAAGGGCCTAAACAGTC -ACGGAAACAAGGGCCTAATTGCTG -ACGGAAACAAGGGCCTAATCCATG -ACGGAAACAAGGGCCTAATGTGTG -ACGGAAACAAGGGCCTAACTAGTG -ACGGAAACAAGGGCCTAACATCTG -ACGGAAACAAGGGCCTAAGAGTTG -ACGGAAACAAGGGCCTAAAGACTG -ACGGAAACAAGGGCCTAATCGGTA -ACGGAAACAAGGGCCTAATGCCTA -ACGGAAACAAGGGCCTAACCACTA -ACGGAAACAAGGGCCTAAGGAGTA -ACGGAAACAAGGGCCTAATCGTCT -ACGGAAACAAGGGCCTAATGCACT -ACGGAAACAAGGGCCTAACTGACT -ACGGAAACAAGGGCCTAACAACCT -ACGGAAACAAGGGCCTAAGCTACT -ACGGAAACAAGGGCCTAAGGATCT -ACGGAAACAAGGGCCTAAAAGGCT -ACGGAAACAAGGGCCTAATCAACC -ACGGAAACAAGGGCCTAATGTTCC -ACGGAAACAAGGGCCTAAATTCCC -ACGGAAACAAGGGCCTAATTCTCG -ACGGAAACAAGGGCCTAATAGACG -ACGGAAACAAGGGCCTAAGTAACG -ACGGAAACAAGGGCCTAAACTTCG -ACGGAAACAAGGGCCTAATACGCA -ACGGAAACAAGGGCCTAACTTGCA -ACGGAAACAAGGGCCTAACGAACA -ACGGAAACAAGGGCCTAACAGTCA -ACGGAAACAAGGGCCTAAGATCCA -ACGGAAACAAGGGCCTAAACGACA -ACGGAAACAAGGGCCTAAAGCTCA -ACGGAAACAAGGGCCTAATCACGT -ACGGAAACAAGGGCCTAACGTAGT -ACGGAAACAAGGGCCTAAGTCAGT -ACGGAAACAAGGGCCTAAGAAGGT -ACGGAAACAAGGGCCTAAAACCGT -ACGGAAACAAGGGCCTAATTGTGC -ACGGAAACAAGGGCCTAACTAAGC -ACGGAAACAAGGGCCTAAACTAGC -ACGGAAACAAGGGCCTAAAGATGC -ACGGAAACAAGGGCCTAATGAAGG -ACGGAAACAAGGGCCTAACAATGG -ACGGAAACAAGGGCCTAAATGAGG -ACGGAAACAAGGGCCTAAAATGGG -ACGGAAACAAGGGCCTAATCCTGA -ACGGAAACAAGGGCCTAATAGCGA -ACGGAAACAAGGGCCTAACACAGA -ACGGAAACAAGGGCCTAAGCAAGA -ACGGAAACAAGGGCCTAAGGTTGA -ACGGAAACAAGGGCCTAATCCGAT -ACGGAAACAAGGGCCTAATGGCAT -ACGGAAACAAGGGCCTAACGAGAT -ACGGAAACAAGGGCCTAATACCAC -ACGGAAACAAGGGCCTAACAGAAC -ACGGAAACAAGGGCCTAAGTCTAC -ACGGAAACAAGGGCCTAAACGTAC -ACGGAAACAAGGGCCTAAAGTGAC -ACGGAAACAAGGGCCTAACTGTAG -ACGGAAACAAGGGCCTAACCTAAG -ACGGAAACAAGGGCCTAAGTTCAG -ACGGAAACAAGGGCCTAAGCATAG -ACGGAAACAAGGGCCTAAGACAAG -ACGGAAACAAGGGCCTAAAAGCAG -ACGGAAACAAGGGCCTAACGTCAA -ACGGAAACAAGGGCCTAAGCTGAA -ACGGAAACAAGGGCCTAAAGTACG -ACGGAAACAAGGGCCTAAATCCGA -ACGGAAACAAGGGCCTAAATGGGA -ACGGAAACAAGGGCCTAAGTGCAA -ACGGAAACAAGGGCCTAAGAGGAA -ACGGAAACAAGGGCCTAACAGGTA -ACGGAAACAAGGGCCTAAGACTCT -ACGGAAACAAGGGCCTAAAGTCCT -ACGGAAACAAGGGCCTAATAAGCC -ACGGAAACAAGGGCCTAAATAGCC -ACGGAAACAAGGGCCTAATAACCG -ACGGAAACAAGGGCCTAAATGCCA -ACGGAAACAAGGGCCATAGGAAAC -ACGGAAACAAGGGCCATAAACACC -ACGGAAACAAGGGCCATAATCGAG -ACGGAAACAAGGGCCATACTCCTT -ACGGAAACAAGGGCCATACCTGTT -ACGGAAACAAGGGCCATACGGTTT -ACGGAAACAAGGGCCATAGTGGTT -ACGGAAACAAGGGCCATAGCCTTT -ACGGAAACAAGGGCCATAGGTCTT -ACGGAAACAAGGGCCATAACGCTT -ACGGAAACAAGGGCCATAAGCGTT -ACGGAAACAAGGGCCATATTCGTC -ACGGAAACAAGGGCCATATCTCTC -ACGGAAACAAGGGCCATATGGATC -ACGGAAACAAGGGCCATACACTTC -ACGGAAACAAGGGCCATAGTACTC -ACGGAAACAAGGGCCATAGATGTC -ACGGAAACAAGGGCCATAACAGTC -ACGGAAACAAGGGCCATATTGCTG -ACGGAAACAAGGGCCATATCCATG -ACGGAAACAAGGGCCATATGTGTG -ACGGAAACAAGGGCCATACTAGTG -ACGGAAACAAGGGCCATACATCTG -ACGGAAACAAGGGCCATAGAGTTG -ACGGAAACAAGGGCCATAAGACTG -ACGGAAACAAGGGCCATATCGGTA -ACGGAAACAAGGGCCATATGCCTA -ACGGAAACAAGGGCCATACCACTA -ACGGAAACAAGGGCCATAGGAGTA -ACGGAAACAAGGGCCATATCGTCT -ACGGAAACAAGGGCCATATGCACT -ACGGAAACAAGGGCCATACTGACT -ACGGAAACAAGGGCCATACAACCT -ACGGAAACAAGGGCCATAGCTACT -ACGGAAACAAGGGCCATAGGATCT -ACGGAAACAAGGGCCATAAAGGCT -ACGGAAACAAGGGCCATATCAACC -ACGGAAACAAGGGCCATATGTTCC -ACGGAAACAAGGGCCATAATTCCC -ACGGAAACAAGGGCCATATTCTCG -ACGGAAACAAGGGCCATATAGACG -ACGGAAACAAGGGCCATAGTAACG -ACGGAAACAAGGGCCATAACTTCG -ACGGAAACAAGGGCCATATACGCA -ACGGAAACAAGGGCCATACTTGCA -ACGGAAACAAGGGCCATACGAACA -ACGGAAACAAGGGCCATACAGTCA -ACGGAAACAAGGGCCATAGATCCA -ACGGAAACAAGGGCCATAACGACA -ACGGAAACAAGGGCCATAAGCTCA -ACGGAAACAAGGGCCATATCACGT -ACGGAAACAAGGGCCATACGTAGT -ACGGAAACAAGGGCCATAGTCAGT -ACGGAAACAAGGGCCATAGAAGGT -ACGGAAACAAGGGCCATAAACCGT -ACGGAAACAAGGGCCATATTGTGC -ACGGAAACAAGGGCCATACTAAGC -ACGGAAACAAGGGCCATAACTAGC -ACGGAAACAAGGGCCATAAGATGC -ACGGAAACAAGGGCCATATGAAGG -ACGGAAACAAGGGCCATACAATGG -ACGGAAACAAGGGCCATAATGAGG -ACGGAAACAAGGGCCATAAATGGG -ACGGAAACAAGGGCCATATCCTGA -ACGGAAACAAGGGCCATATAGCGA -ACGGAAACAAGGGCCATACACAGA -ACGGAAACAAGGGCCATAGCAAGA -ACGGAAACAAGGGCCATAGGTTGA -ACGGAAACAAGGGCCATATCCGAT -ACGGAAACAAGGGCCATATGGCAT -ACGGAAACAAGGGCCATACGAGAT -ACGGAAACAAGGGCCATATACCAC -ACGGAAACAAGGGCCATACAGAAC -ACGGAAACAAGGGCCATAGTCTAC -ACGGAAACAAGGGCCATAACGTAC -ACGGAAACAAGGGCCATAAGTGAC -ACGGAAACAAGGGCCATACTGTAG -ACGGAAACAAGGGCCATACCTAAG -ACGGAAACAAGGGCCATAGTTCAG -ACGGAAACAAGGGCCATAGCATAG -ACGGAAACAAGGGCCATAGACAAG -ACGGAAACAAGGGCCATAAAGCAG -ACGGAAACAAGGGCCATACGTCAA -ACGGAAACAAGGGCCATAGCTGAA -ACGGAAACAAGGGCCATAAGTACG -ACGGAAACAAGGGCCATAATCCGA -ACGGAAACAAGGGCCATAATGGGA -ACGGAAACAAGGGCCATAGTGCAA -ACGGAAACAAGGGCCATAGAGGAA -ACGGAAACAAGGGCCATACAGGTA -ACGGAAACAAGGGCCATAGACTCT -ACGGAAACAAGGGCCATAAGTCCT -ACGGAAACAAGGGCCATATAAGCC -ACGGAAACAAGGGCCATAATAGCC -ACGGAAACAAGGGCCATATAACCG -ACGGAAACAAGGGCCATAATGCCA -ACGGAAACAAGGCCGTAAGGAAAC -ACGGAAACAAGGCCGTAAAACACC -ACGGAAACAAGGCCGTAAATCGAG -ACGGAAACAAGGCCGTAACTCCTT -ACGGAAACAAGGCCGTAACCTGTT -ACGGAAACAAGGCCGTAACGGTTT -ACGGAAACAAGGCCGTAAGTGGTT -ACGGAAACAAGGCCGTAAGCCTTT -ACGGAAACAAGGCCGTAAGGTCTT -ACGGAAACAAGGCCGTAAACGCTT -ACGGAAACAAGGCCGTAAAGCGTT -ACGGAAACAAGGCCGTAATTCGTC -ACGGAAACAAGGCCGTAATCTCTC -ACGGAAACAAGGCCGTAATGGATC -ACGGAAACAAGGCCGTAACACTTC -ACGGAAACAAGGCCGTAAGTACTC -ACGGAAACAAGGCCGTAAGATGTC -ACGGAAACAAGGCCGTAAACAGTC -ACGGAAACAAGGCCGTAATTGCTG -ACGGAAACAAGGCCGTAATCCATG -ACGGAAACAAGGCCGTAATGTGTG -ACGGAAACAAGGCCGTAACTAGTG -ACGGAAACAAGGCCGTAACATCTG -ACGGAAACAAGGCCGTAAGAGTTG -ACGGAAACAAGGCCGTAAAGACTG -ACGGAAACAAGGCCGTAATCGGTA -ACGGAAACAAGGCCGTAATGCCTA -ACGGAAACAAGGCCGTAACCACTA -ACGGAAACAAGGCCGTAAGGAGTA -ACGGAAACAAGGCCGTAATCGTCT -ACGGAAACAAGGCCGTAATGCACT -ACGGAAACAAGGCCGTAACTGACT -ACGGAAACAAGGCCGTAACAACCT -ACGGAAACAAGGCCGTAAGCTACT -ACGGAAACAAGGCCGTAAGGATCT -ACGGAAACAAGGCCGTAAAAGGCT -ACGGAAACAAGGCCGTAATCAACC -ACGGAAACAAGGCCGTAATGTTCC -ACGGAAACAAGGCCGTAAATTCCC -ACGGAAACAAGGCCGTAATTCTCG -ACGGAAACAAGGCCGTAATAGACG -ACGGAAACAAGGCCGTAAGTAACG -ACGGAAACAAGGCCGTAAACTTCG -ACGGAAACAAGGCCGTAATACGCA -ACGGAAACAAGGCCGTAACTTGCA -ACGGAAACAAGGCCGTAACGAACA -ACGGAAACAAGGCCGTAACAGTCA -ACGGAAACAAGGCCGTAAGATCCA -ACGGAAACAAGGCCGTAAACGACA -ACGGAAACAAGGCCGTAAAGCTCA -ACGGAAACAAGGCCGTAATCACGT -ACGGAAACAAGGCCGTAACGTAGT -ACGGAAACAAGGCCGTAAGTCAGT -ACGGAAACAAGGCCGTAAGAAGGT -ACGGAAACAAGGCCGTAAAACCGT -ACGGAAACAAGGCCGTAATTGTGC -ACGGAAACAAGGCCGTAACTAAGC -ACGGAAACAAGGCCGTAAACTAGC -ACGGAAACAAGGCCGTAAAGATGC -ACGGAAACAAGGCCGTAATGAAGG -ACGGAAACAAGGCCGTAACAATGG -ACGGAAACAAGGCCGTAAATGAGG -ACGGAAACAAGGCCGTAAAATGGG -ACGGAAACAAGGCCGTAATCCTGA -ACGGAAACAAGGCCGTAATAGCGA -ACGGAAACAAGGCCGTAACACAGA -ACGGAAACAAGGCCGTAAGCAAGA -ACGGAAACAAGGCCGTAAGGTTGA -ACGGAAACAAGGCCGTAATCCGAT -ACGGAAACAAGGCCGTAATGGCAT -ACGGAAACAAGGCCGTAACGAGAT -ACGGAAACAAGGCCGTAATACCAC -ACGGAAACAAGGCCGTAACAGAAC -ACGGAAACAAGGCCGTAAGTCTAC -ACGGAAACAAGGCCGTAAACGTAC -ACGGAAACAAGGCCGTAAAGTGAC -ACGGAAACAAGGCCGTAACTGTAG -ACGGAAACAAGGCCGTAACCTAAG -ACGGAAACAAGGCCGTAAGTTCAG -ACGGAAACAAGGCCGTAAGCATAG -ACGGAAACAAGGCCGTAAGACAAG -ACGGAAACAAGGCCGTAAAAGCAG -ACGGAAACAAGGCCGTAACGTCAA -ACGGAAACAAGGCCGTAAGCTGAA -ACGGAAACAAGGCCGTAAAGTACG -ACGGAAACAAGGCCGTAAATCCGA -ACGGAAACAAGGCCGTAAATGGGA -ACGGAAACAAGGCCGTAAGTGCAA -ACGGAAACAAGGCCGTAAGAGGAA -ACGGAAACAAGGCCGTAACAGGTA -ACGGAAACAAGGCCGTAAGACTCT -ACGGAAACAAGGCCGTAAAGTCCT -ACGGAAACAAGGCCGTAATAAGCC -ACGGAAACAAGGCCGTAAATAGCC -ACGGAAACAAGGCCGTAATAACCG -ACGGAAACAAGGCCGTAAATGCCA -ACGGAAACAAGGCCAATGGGAAAC -ACGGAAACAAGGCCAATGAACACC -ACGGAAACAAGGCCAATGATCGAG -ACGGAAACAAGGCCAATGCTCCTT -ACGGAAACAAGGCCAATGCCTGTT -ACGGAAACAAGGCCAATGCGGTTT -ACGGAAACAAGGCCAATGGTGGTT -ACGGAAACAAGGCCAATGGCCTTT -ACGGAAACAAGGCCAATGGGTCTT -ACGGAAACAAGGCCAATGACGCTT -ACGGAAACAAGGCCAATGAGCGTT -ACGGAAACAAGGCCAATGTTCGTC -ACGGAAACAAGGCCAATGTCTCTC -ACGGAAACAAGGCCAATGTGGATC -ACGGAAACAAGGCCAATGCACTTC -ACGGAAACAAGGCCAATGGTACTC -ACGGAAACAAGGCCAATGGATGTC -ACGGAAACAAGGCCAATGACAGTC -ACGGAAACAAGGCCAATGTTGCTG -ACGGAAACAAGGCCAATGTCCATG -ACGGAAACAAGGCCAATGTGTGTG -ACGGAAACAAGGCCAATGCTAGTG -ACGGAAACAAGGCCAATGCATCTG -ACGGAAACAAGGCCAATGGAGTTG -ACGGAAACAAGGCCAATGAGACTG -ACGGAAACAAGGCCAATGTCGGTA -ACGGAAACAAGGCCAATGTGCCTA -ACGGAAACAAGGCCAATGCCACTA -ACGGAAACAAGGCCAATGGGAGTA -ACGGAAACAAGGCCAATGTCGTCT -ACGGAAACAAGGCCAATGTGCACT -ACGGAAACAAGGCCAATGCTGACT -ACGGAAACAAGGCCAATGCAACCT -ACGGAAACAAGGCCAATGGCTACT -ACGGAAACAAGGCCAATGGGATCT -ACGGAAACAAGGCCAATGAAGGCT -ACGGAAACAAGGCCAATGTCAACC -ACGGAAACAAGGCCAATGTGTTCC -ACGGAAACAAGGCCAATGATTCCC -ACGGAAACAAGGCCAATGTTCTCG -ACGGAAACAAGGCCAATGTAGACG -ACGGAAACAAGGCCAATGGTAACG -ACGGAAACAAGGCCAATGACTTCG -ACGGAAACAAGGCCAATGTACGCA -ACGGAAACAAGGCCAATGCTTGCA -ACGGAAACAAGGCCAATGCGAACA -ACGGAAACAAGGCCAATGCAGTCA -ACGGAAACAAGGCCAATGGATCCA -ACGGAAACAAGGCCAATGACGACA -ACGGAAACAAGGCCAATGAGCTCA -ACGGAAACAAGGCCAATGTCACGT -ACGGAAACAAGGCCAATGCGTAGT -ACGGAAACAAGGCCAATGGTCAGT -ACGGAAACAAGGCCAATGGAAGGT -ACGGAAACAAGGCCAATGAACCGT -ACGGAAACAAGGCCAATGTTGTGC -ACGGAAACAAGGCCAATGCTAAGC -ACGGAAACAAGGCCAATGACTAGC -ACGGAAACAAGGCCAATGAGATGC -ACGGAAACAAGGCCAATGTGAAGG -ACGGAAACAAGGCCAATGCAATGG -ACGGAAACAAGGCCAATGATGAGG -ACGGAAACAAGGCCAATGAATGGG -ACGGAAACAAGGCCAATGTCCTGA -ACGGAAACAAGGCCAATGTAGCGA -ACGGAAACAAGGCCAATGCACAGA -ACGGAAACAAGGCCAATGGCAAGA -ACGGAAACAAGGCCAATGGGTTGA -ACGGAAACAAGGCCAATGTCCGAT -ACGGAAACAAGGCCAATGTGGCAT -ACGGAAACAAGGCCAATGCGAGAT -ACGGAAACAAGGCCAATGTACCAC -ACGGAAACAAGGCCAATGCAGAAC -ACGGAAACAAGGCCAATGGTCTAC -ACGGAAACAAGGCCAATGACGTAC -ACGGAAACAAGGCCAATGAGTGAC -ACGGAAACAAGGCCAATGCTGTAG -ACGGAAACAAGGCCAATGCCTAAG -ACGGAAACAAGGCCAATGGTTCAG -ACGGAAACAAGGCCAATGGCATAG -ACGGAAACAAGGCCAATGGACAAG -ACGGAAACAAGGCCAATGAAGCAG -ACGGAAACAAGGCCAATGCGTCAA -ACGGAAACAAGGCCAATGGCTGAA -ACGGAAACAAGGCCAATGAGTACG -ACGGAAACAAGGCCAATGATCCGA -ACGGAAACAAGGCCAATGATGGGA -ACGGAAACAAGGCCAATGGTGCAA -ACGGAAACAAGGCCAATGGAGGAA -ACGGAAACAAGGCCAATGCAGGTA -ACGGAAACAAGGCCAATGGACTCT -ACGGAAACAAGGCCAATGAGTCCT -ACGGAAACAAGGCCAATGTAAGCC -ACGGAAACAAGGCCAATGATAGCC -ACGGAAACAAGGCCAATGTAACCG -ACGGAAACAAGGCCAATGATGCCA -ACGGAAAGCAGAAACGGAGGAAAC -ACGGAAAGCAGAAACGGAAACACC -ACGGAAAGCAGAAACGGAATCGAG -ACGGAAAGCAGAAACGGACTCCTT -ACGGAAAGCAGAAACGGACCTGTT -ACGGAAAGCAGAAACGGACGGTTT -ACGGAAAGCAGAAACGGAGTGGTT -ACGGAAAGCAGAAACGGAGCCTTT -ACGGAAAGCAGAAACGGAGGTCTT -ACGGAAAGCAGAAACGGAACGCTT -ACGGAAAGCAGAAACGGAAGCGTT -ACGGAAAGCAGAAACGGATTCGTC -ACGGAAAGCAGAAACGGATCTCTC -ACGGAAAGCAGAAACGGATGGATC -ACGGAAAGCAGAAACGGACACTTC -ACGGAAAGCAGAAACGGAGTACTC -ACGGAAAGCAGAAACGGAGATGTC -ACGGAAAGCAGAAACGGAACAGTC -ACGGAAAGCAGAAACGGATTGCTG -ACGGAAAGCAGAAACGGATCCATG -ACGGAAAGCAGAAACGGATGTGTG -ACGGAAAGCAGAAACGGACTAGTG -ACGGAAAGCAGAAACGGACATCTG -ACGGAAAGCAGAAACGGAGAGTTG -ACGGAAAGCAGAAACGGAAGACTG -ACGGAAAGCAGAAACGGATCGGTA -ACGGAAAGCAGAAACGGATGCCTA -ACGGAAAGCAGAAACGGACCACTA -ACGGAAAGCAGAAACGGAGGAGTA -ACGGAAAGCAGAAACGGATCGTCT -ACGGAAAGCAGAAACGGATGCACT -ACGGAAAGCAGAAACGGACTGACT -ACGGAAAGCAGAAACGGACAACCT -ACGGAAAGCAGAAACGGAGCTACT -ACGGAAAGCAGAAACGGAGGATCT -ACGGAAAGCAGAAACGGAAAGGCT -ACGGAAAGCAGAAACGGATCAACC -ACGGAAAGCAGAAACGGATGTTCC -ACGGAAAGCAGAAACGGAATTCCC -ACGGAAAGCAGAAACGGATTCTCG -ACGGAAAGCAGAAACGGATAGACG -ACGGAAAGCAGAAACGGAGTAACG -ACGGAAAGCAGAAACGGAACTTCG -ACGGAAAGCAGAAACGGATACGCA -ACGGAAAGCAGAAACGGACTTGCA -ACGGAAAGCAGAAACGGACGAACA -ACGGAAAGCAGAAACGGACAGTCA -ACGGAAAGCAGAAACGGAGATCCA -ACGGAAAGCAGAAACGGAACGACA -ACGGAAAGCAGAAACGGAAGCTCA -ACGGAAAGCAGAAACGGATCACGT -ACGGAAAGCAGAAACGGACGTAGT -ACGGAAAGCAGAAACGGAGTCAGT -ACGGAAAGCAGAAACGGAGAAGGT -ACGGAAAGCAGAAACGGAAACCGT -ACGGAAAGCAGAAACGGATTGTGC -ACGGAAAGCAGAAACGGACTAAGC -ACGGAAAGCAGAAACGGAACTAGC -ACGGAAAGCAGAAACGGAAGATGC -ACGGAAAGCAGAAACGGATGAAGG -ACGGAAAGCAGAAACGGACAATGG -ACGGAAAGCAGAAACGGAATGAGG -ACGGAAAGCAGAAACGGAAATGGG -ACGGAAAGCAGAAACGGATCCTGA -ACGGAAAGCAGAAACGGATAGCGA -ACGGAAAGCAGAAACGGACACAGA -ACGGAAAGCAGAAACGGAGCAAGA -ACGGAAAGCAGAAACGGAGGTTGA -ACGGAAAGCAGAAACGGATCCGAT -ACGGAAAGCAGAAACGGATGGCAT -ACGGAAAGCAGAAACGGACGAGAT -ACGGAAAGCAGAAACGGATACCAC -ACGGAAAGCAGAAACGGACAGAAC -ACGGAAAGCAGAAACGGAGTCTAC -ACGGAAAGCAGAAACGGAACGTAC -ACGGAAAGCAGAAACGGAAGTGAC -ACGGAAAGCAGAAACGGACTGTAG -ACGGAAAGCAGAAACGGACCTAAG -ACGGAAAGCAGAAACGGAGTTCAG -ACGGAAAGCAGAAACGGAGCATAG -ACGGAAAGCAGAAACGGAGACAAG -ACGGAAAGCAGAAACGGAAAGCAG -ACGGAAAGCAGAAACGGACGTCAA -ACGGAAAGCAGAAACGGAGCTGAA -ACGGAAAGCAGAAACGGAAGTACG -ACGGAAAGCAGAAACGGAATCCGA -ACGGAAAGCAGAAACGGAATGGGA -ACGGAAAGCAGAAACGGAGTGCAA -ACGGAAAGCAGAAACGGAGAGGAA -ACGGAAAGCAGAAACGGACAGGTA -ACGGAAAGCAGAAACGGAGACTCT -ACGGAAAGCAGAAACGGAAGTCCT -ACGGAAAGCAGAAACGGATAAGCC -ACGGAAAGCAGAAACGGAATAGCC -ACGGAAAGCAGAAACGGATAACCG -ACGGAAAGCAGAAACGGAATGCCA -ACGGAAAGCAGAACCAACGGAAAC -ACGGAAAGCAGAACCAACAACACC -ACGGAAAGCAGAACCAACATCGAG -ACGGAAAGCAGAACCAACCTCCTT -ACGGAAAGCAGAACCAACCCTGTT -ACGGAAAGCAGAACCAACCGGTTT -ACGGAAAGCAGAACCAACGTGGTT -ACGGAAAGCAGAACCAACGCCTTT -ACGGAAAGCAGAACCAACGGTCTT -ACGGAAAGCAGAACCAACACGCTT -ACGGAAAGCAGAACCAACAGCGTT -ACGGAAAGCAGAACCAACTTCGTC -ACGGAAAGCAGAACCAACTCTCTC -ACGGAAAGCAGAACCAACTGGATC -ACGGAAAGCAGAACCAACCACTTC -ACGGAAAGCAGAACCAACGTACTC -ACGGAAAGCAGAACCAACGATGTC -ACGGAAAGCAGAACCAACACAGTC -ACGGAAAGCAGAACCAACTTGCTG -ACGGAAAGCAGAACCAACTCCATG -ACGGAAAGCAGAACCAACTGTGTG -ACGGAAAGCAGAACCAACCTAGTG -ACGGAAAGCAGAACCAACCATCTG -ACGGAAAGCAGAACCAACGAGTTG -ACGGAAAGCAGAACCAACAGACTG -ACGGAAAGCAGAACCAACTCGGTA -ACGGAAAGCAGAACCAACTGCCTA -ACGGAAAGCAGAACCAACCCACTA -ACGGAAAGCAGAACCAACGGAGTA -ACGGAAAGCAGAACCAACTCGTCT -ACGGAAAGCAGAACCAACTGCACT -ACGGAAAGCAGAACCAACCTGACT -ACGGAAAGCAGAACCAACCAACCT -ACGGAAAGCAGAACCAACGCTACT -ACGGAAAGCAGAACCAACGGATCT -ACGGAAAGCAGAACCAACAAGGCT -ACGGAAAGCAGAACCAACTCAACC -ACGGAAAGCAGAACCAACTGTTCC -ACGGAAAGCAGAACCAACATTCCC -ACGGAAAGCAGAACCAACTTCTCG -ACGGAAAGCAGAACCAACTAGACG -ACGGAAAGCAGAACCAACGTAACG -ACGGAAAGCAGAACCAACACTTCG -ACGGAAAGCAGAACCAACTACGCA -ACGGAAAGCAGAACCAACCTTGCA -ACGGAAAGCAGAACCAACCGAACA -ACGGAAAGCAGAACCAACCAGTCA -ACGGAAAGCAGAACCAACGATCCA -ACGGAAAGCAGAACCAACACGACA -ACGGAAAGCAGAACCAACAGCTCA -ACGGAAAGCAGAACCAACTCACGT -ACGGAAAGCAGAACCAACCGTAGT -ACGGAAAGCAGAACCAACGTCAGT -ACGGAAAGCAGAACCAACGAAGGT -ACGGAAAGCAGAACCAACAACCGT -ACGGAAAGCAGAACCAACTTGTGC -ACGGAAAGCAGAACCAACCTAAGC -ACGGAAAGCAGAACCAACACTAGC -ACGGAAAGCAGAACCAACAGATGC -ACGGAAAGCAGAACCAACTGAAGG -ACGGAAAGCAGAACCAACCAATGG -ACGGAAAGCAGAACCAACATGAGG -ACGGAAAGCAGAACCAACAATGGG -ACGGAAAGCAGAACCAACTCCTGA -ACGGAAAGCAGAACCAACTAGCGA -ACGGAAAGCAGAACCAACCACAGA -ACGGAAAGCAGAACCAACGCAAGA -ACGGAAAGCAGAACCAACGGTTGA -ACGGAAAGCAGAACCAACTCCGAT -ACGGAAAGCAGAACCAACTGGCAT -ACGGAAAGCAGAACCAACCGAGAT -ACGGAAAGCAGAACCAACTACCAC -ACGGAAAGCAGAACCAACCAGAAC -ACGGAAAGCAGAACCAACGTCTAC -ACGGAAAGCAGAACCAACACGTAC -ACGGAAAGCAGAACCAACAGTGAC -ACGGAAAGCAGAACCAACCTGTAG -ACGGAAAGCAGAACCAACCCTAAG -ACGGAAAGCAGAACCAACGTTCAG -ACGGAAAGCAGAACCAACGCATAG -ACGGAAAGCAGAACCAACGACAAG -ACGGAAAGCAGAACCAACAAGCAG -ACGGAAAGCAGAACCAACCGTCAA -ACGGAAAGCAGAACCAACGCTGAA -ACGGAAAGCAGAACCAACAGTACG -ACGGAAAGCAGAACCAACATCCGA -ACGGAAAGCAGAACCAACATGGGA -ACGGAAAGCAGAACCAACGTGCAA -ACGGAAAGCAGAACCAACGAGGAA -ACGGAAAGCAGAACCAACCAGGTA -ACGGAAAGCAGAACCAACGACTCT -ACGGAAAGCAGAACCAACAGTCCT -ACGGAAAGCAGAACCAACTAAGCC -ACGGAAAGCAGAACCAACATAGCC -ACGGAAAGCAGAACCAACTAACCG -ACGGAAAGCAGAACCAACATGCCA -ACGGAAAGCAGAGAGATCGGAAAC -ACGGAAAGCAGAGAGATCAACACC -ACGGAAAGCAGAGAGATCATCGAG -ACGGAAAGCAGAGAGATCCTCCTT -ACGGAAAGCAGAGAGATCCCTGTT -ACGGAAAGCAGAGAGATCCGGTTT -ACGGAAAGCAGAGAGATCGTGGTT -ACGGAAAGCAGAGAGATCGCCTTT -ACGGAAAGCAGAGAGATCGGTCTT -ACGGAAAGCAGAGAGATCACGCTT -ACGGAAAGCAGAGAGATCAGCGTT -ACGGAAAGCAGAGAGATCTTCGTC -ACGGAAAGCAGAGAGATCTCTCTC -ACGGAAAGCAGAGAGATCTGGATC -ACGGAAAGCAGAGAGATCCACTTC -ACGGAAAGCAGAGAGATCGTACTC -ACGGAAAGCAGAGAGATCGATGTC -ACGGAAAGCAGAGAGATCACAGTC -ACGGAAAGCAGAGAGATCTTGCTG -ACGGAAAGCAGAGAGATCTCCATG -ACGGAAAGCAGAGAGATCTGTGTG -ACGGAAAGCAGAGAGATCCTAGTG -ACGGAAAGCAGAGAGATCCATCTG -ACGGAAAGCAGAGAGATCGAGTTG -ACGGAAAGCAGAGAGATCAGACTG -ACGGAAAGCAGAGAGATCTCGGTA -ACGGAAAGCAGAGAGATCTGCCTA -ACGGAAAGCAGAGAGATCCCACTA -ACGGAAAGCAGAGAGATCGGAGTA -ACGGAAAGCAGAGAGATCTCGTCT -ACGGAAAGCAGAGAGATCTGCACT -ACGGAAAGCAGAGAGATCCTGACT -ACGGAAAGCAGAGAGATCCAACCT -ACGGAAAGCAGAGAGATCGCTACT -ACGGAAAGCAGAGAGATCGGATCT -ACGGAAAGCAGAGAGATCAAGGCT -ACGGAAAGCAGAGAGATCTCAACC -ACGGAAAGCAGAGAGATCTGTTCC -ACGGAAAGCAGAGAGATCATTCCC -ACGGAAAGCAGAGAGATCTTCTCG -ACGGAAAGCAGAGAGATCTAGACG -ACGGAAAGCAGAGAGATCGTAACG -ACGGAAAGCAGAGAGATCACTTCG -ACGGAAAGCAGAGAGATCTACGCA -ACGGAAAGCAGAGAGATCCTTGCA -ACGGAAAGCAGAGAGATCCGAACA -ACGGAAAGCAGAGAGATCCAGTCA -ACGGAAAGCAGAGAGATCGATCCA -ACGGAAAGCAGAGAGATCACGACA -ACGGAAAGCAGAGAGATCAGCTCA -ACGGAAAGCAGAGAGATCTCACGT -ACGGAAAGCAGAGAGATCCGTAGT -ACGGAAAGCAGAGAGATCGTCAGT -ACGGAAAGCAGAGAGATCGAAGGT -ACGGAAAGCAGAGAGATCAACCGT -ACGGAAAGCAGAGAGATCTTGTGC -ACGGAAAGCAGAGAGATCCTAAGC -ACGGAAAGCAGAGAGATCACTAGC -ACGGAAAGCAGAGAGATCAGATGC -ACGGAAAGCAGAGAGATCTGAAGG -ACGGAAAGCAGAGAGATCCAATGG -ACGGAAAGCAGAGAGATCATGAGG -ACGGAAAGCAGAGAGATCAATGGG -ACGGAAAGCAGAGAGATCTCCTGA -ACGGAAAGCAGAGAGATCTAGCGA -ACGGAAAGCAGAGAGATCCACAGA -ACGGAAAGCAGAGAGATCGCAAGA -ACGGAAAGCAGAGAGATCGGTTGA -ACGGAAAGCAGAGAGATCTCCGAT -ACGGAAAGCAGAGAGATCTGGCAT -ACGGAAAGCAGAGAGATCCGAGAT -ACGGAAAGCAGAGAGATCTACCAC -ACGGAAAGCAGAGAGATCCAGAAC -ACGGAAAGCAGAGAGATCGTCTAC -ACGGAAAGCAGAGAGATCACGTAC -ACGGAAAGCAGAGAGATCAGTGAC -ACGGAAAGCAGAGAGATCCTGTAG -ACGGAAAGCAGAGAGATCCCTAAG -ACGGAAAGCAGAGAGATCGTTCAG -ACGGAAAGCAGAGAGATCGCATAG -ACGGAAAGCAGAGAGATCGACAAG -ACGGAAAGCAGAGAGATCAAGCAG -ACGGAAAGCAGAGAGATCCGTCAA -ACGGAAAGCAGAGAGATCGCTGAA -ACGGAAAGCAGAGAGATCAGTACG -ACGGAAAGCAGAGAGATCATCCGA -ACGGAAAGCAGAGAGATCATGGGA -ACGGAAAGCAGAGAGATCGTGCAA -ACGGAAAGCAGAGAGATCGAGGAA -ACGGAAAGCAGAGAGATCCAGGTA -ACGGAAAGCAGAGAGATCGACTCT -ACGGAAAGCAGAGAGATCAGTCCT -ACGGAAAGCAGAGAGATCTAAGCC -ACGGAAAGCAGAGAGATCATAGCC -ACGGAAAGCAGAGAGATCTAACCG -ACGGAAAGCAGAGAGATCATGCCA -ACGGAAAGCAGACTTCTCGGAAAC -ACGGAAAGCAGACTTCTCAACACC -ACGGAAAGCAGACTTCTCATCGAG -ACGGAAAGCAGACTTCTCCTCCTT -ACGGAAAGCAGACTTCTCCCTGTT -ACGGAAAGCAGACTTCTCCGGTTT -ACGGAAAGCAGACTTCTCGTGGTT -ACGGAAAGCAGACTTCTCGCCTTT -ACGGAAAGCAGACTTCTCGGTCTT -ACGGAAAGCAGACTTCTCACGCTT -ACGGAAAGCAGACTTCTCAGCGTT -ACGGAAAGCAGACTTCTCTTCGTC -ACGGAAAGCAGACTTCTCTCTCTC -ACGGAAAGCAGACTTCTCTGGATC -ACGGAAAGCAGACTTCTCCACTTC -ACGGAAAGCAGACTTCTCGTACTC -ACGGAAAGCAGACTTCTCGATGTC -ACGGAAAGCAGACTTCTCACAGTC -ACGGAAAGCAGACTTCTCTTGCTG -ACGGAAAGCAGACTTCTCTCCATG -ACGGAAAGCAGACTTCTCTGTGTG -ACGGAAAGCAGACTTCTCCTAGTG -ACGGAAAGCAGACTTCTCCATCTG -ACGGAAAGCAGACTTCTCGAGTTG -ACGGAAAGCAGACTTCTCAGACTG -ACGGAAAGCAGACTTCTCTCGGTA -ACGGAAAGCAGACTTCTCTGCCTA -ACGGAAAGCAGACTTCTCCCACTA -ACGGAAAGCAGACTTCTCGGAGTA -ACGGAAAGCAGACTTCTCTCGTCT -ACGGAAAGCAGACTTCTCTGCACT -ACGGAAAGCAGACTTCTCCTGACT -ACGGAAAGCAGACTTCTCCAACCT -ACGGAAAGCAGACTTCTCGCTACT -ACGGAAAGCAGACTTCTCGGATCT -ACGGAAAGCAGACTTCTCAAGGCT -ACGGAAAGCAGACTTCTCTCAACC -ACGGAAAGCAGACTTCTCTGTTCC -ACGGAAAGCAGACTTCTCATTCCC -ACGGAAAGCAGACTTCTCTTCTCG -ACGGAAAGCAGACTTCTCTAGACG -ACGGAAAGCAGACTTCTCGTAACG -ACGGAAAGCAGACTTCTCACTTCG -ACGGAAAGCAGACTTCTCTACGCA -ACGGAAAGCAGACTTCTCCTTGCA -ACGGAAAGCAGACTTCTCCGAACA -ACGGAAAGCAGACTTCTCCAGTCA -ACGGAAAGCAGACTTCTCGATCCA -ACGGAAAGCAGACTTCTCACGACA -ACGGAAAGCAGACTTCTCAGCTCA -ACGGAAAGCAGACTTCTCTCACGT -ACGGAAAGCAGACTTCTCCGTAGT -ACGGAAAGCAGACTTCTCGTCAGT -ACGGAAAGCAGACTTCTCGAAGGT -ACGGAAAGCAGACTTCTCAACCGT -ACGGAAAGCAGACTTCTCTTGTGC -ACGGAAAGCAGACTTCTCCTAAGC -ACGGAAAGCAGACTTCTCACTAGC -ACGGAAAGCAGACTTCTCAGATGC -ACGGAAAGCAGACTTCTCTGAAGG -ACGGAAAGCAGACTTCTCCAATGG -ACGGAAAGCAGACTTCTCATGAGG -ACGGAAAGCAGACTTCTCAATGGG -ACGGAAAGCAGACTTCTCTCCTGA -ACGGAAAGCAGACTTCTCTAGCGA -ACGGAAAGCAGACTTCTCCACAGA -ACGGAAAGCAGACTTCTCGCAAGA -ACGGAAAGCAGACTTCTCGGTTGA -ACGGAAAGCAGACTTCTCTCCGAT -ACGGAAAGCAGACTTCTCTGGCAT -ACGGAAAGCAGACTTCTCCGAGAT -ACGGAAAGCAGACTTCTCTACCAC -ACGGAAAGCAGACTTCTCCAGAAC -ACGGAAAGCAGACTTCTCGTCTAC -ACGGAAAGCAGACTTCTCACGTAC -ACGGAAAGCAGACTTCTCAGTGAC -ACGGAAAGCAGACTTCTCCTGTAG -ACGGAAAGCAGACTTCTCCCTAAG -ACGGAAAGCAGACTTCTCGTTCAG -ACGGAAAGCAGACTTCTCGCATAG -ACGGAAAGCAGACTTCTCGACAAG -ACGGAAAGCAGACTTCTCAAGCAG -ACGGAAAGCAGACTTCTCCGTCAA -ACGGAAAGCAGACTTCTCGCTGAA -ACGGAAAGCAGACTTCTCAGTACG -ACGGAAAGCAGACTTCTCATCCGA -ACGGAAAGCAGACTTCTCATGGGA -ACGGAAAGCAGACTTCTCGTGCAA -ACGGAAAGCAGACTTCTCGAGGAA -ACGGAAAGCAGACTTCTCCAGGTA -ACGGAAAGCAGACTTCTCGACTCT -ACGGAAAGCAGACTTCTCAGTCCT -ACGGAAAGCAGACTTCTCTAAGCC -ACGGAAAGCAGACTTCTCATAGCC -ACGGAAAGCAGACTTCTCTAACCG -ACGGAAAGCAGACTTCTCATGCCA -ACGGAAAGCAGAGTTCCTGGAAAC -ACGGAAAGCAGAGTTCCTAACACC -ACGGAAAGCAGAGTTCCTATCGAG -ACGGAAAGCAGAGTTCCTCTCCTT -ACGGAAAGCAGAGTTCCTCCTGTT -ACGGAAAGCAGAGTTCCTCGGTTT -ACGGAAAGCAGAGTTCCTGTGGTT -ACGGAAAGCAGAGTTCCTGCCTTT -ACGGAAAGCAGAGTTCCTGGTCTT -ACGGAAAGCAGAGTTCCTACGCTT -ACGGAAAGCAGAGTTCCTAGCGTT -ACGGAAAGCAGAGTTCCTTTCGTC -ACGGAAAGCAGAGTTCCTTCTCTC -ACGGAAAGCAGAGTTCCTTGGATC -ACGGAAAGCAGAGTTCCTCACTTC -ACGGAAAGCAGAGTTCCTGTACTC -ACGGAAAGCAGAGTTCCTGATGTC -ACGGAAAGCAGAGTTCCTACAGTC -ACGGAAAGCAGAGTTCCTTTGCTG -ACGGAAAGCAGAGTTCCTTCCATG -ACGGAAAGCAGAGTTCCTTGTGTG -ACGGAAAGCAGAGTTCCTCTAGTG -ACGGAAAGCAGAGTTCCTCATCTG -ACGGAAAGCAGAGTTCCTGAGTTG -ACGGAAAGCAGAGTTCCTAGACTG -ACGGAAAGCAGAGTTCCTTCGGTA -ACGGAAAGCAGAGTTCCTTGCCTA -ACGGAAAGCAGAGTTCCTCCACTA -ACGGAAAGCAGAGTTCCTGGAGTA -ACGGAAAGCAGAGTTCCTTCGTCT -ACGGAAAGCAGAGTTCCTTGCACT -ACGGAAAGCAGAGTTCCTCTGACT -ACGGAAAGCAGAGTTCCTCAACCT -ACGGAAAGCAGAGTTCCTGCTACT -ACGGAAAGCAGAGTTCCTGGATCT -ACGGAAAGCAGAGTTCCTAAGGCT -ACGGAAAGCAGAGTTCCTTCAACC -ACGGAAAGCAGAGTTCCTTGTTCC -ACGGAAAGCAGAGTTCCTATTCCC -ACGGAAAGCAGAGTTCCTTTCTCG -ACGGAAAGCAGAGTTCCTTAGACG -ACGGAAAGCAGAGTTCCTGTAACG -ACGGAAAGCAGAGTTCCTACTTCG -ACGGAAAGCAGAGTTCCTTACGCA -ACGGAAAGCAGAGTTCCTCTTGCA -ACGGAAAGCAGAGTTCCTCGAACA -ACGGAAAGCAGAGTTCCTCAGTCA -ACGGAAAGCAGAGTTCCTGATCCA -ACGGAAAGCAGAGTTCCTACGACA -ACGGAAAGCAGAGTTCCTAGCTCA -ACGGAAAGCAGAGTTCCTTCACGT -ACGGAAAGCAGAGTTCCTCGTAGT -ACGGAAAGCAGAGTTCCTGTCAGT -ACGGAAAGCAGAGTTCCTGAAGGT -ACGGAAAGCAGAGTTCCTAACCGT -ACGGAAAGCAGAGTTCCTTTGTGC -ACGGAAAGCAGAGTTCCTCTAAGC -ACGGAAAGCAGAGTTCCTACTAGC -ACGGAAAGCAGAGTTCCTAGATGC -ACGGAAAGCAGAGTTCCTTGAAGG -ACGGAAAGCAGAGTTCCTCAATGG -ACGGAAAGCAGAGTTCCTATGAGG -ACGGAAAGCAGAGTTCCTAATGGG -ACGGAAAGCAGAGTTCCTTCCTGA -ACGGAAAGCAGAGTTCCTTAGCGA -ACGGAAAGCAGAGTTCCTCACAGA -ACGGAAAGCAGAGTTCCTGCAAGA -ACGGAAAGCAGAGTTCCTGGTTGA -ACGGAAAGCAGAGTTCCTTCCGAT -ACGGAAAGCAGAGTTCCTTGGCAT -ACGGAAAGCAGAGTTCCTCGAGAT -ACGGAAAGCAGAGTTCCTTACCAC -ACGGAAAGCAGAGTTCCTCAGAAC -ACGGAAAGCAGAGTTCCTGTCTAC -ACGGAAAGCAGAGTTCCTACGTAC -ACGGAAAGCAGAGTTCCTAGTGAC -ACGGAAAGCAGAGTTCCTCTGTAG -ACGGAAAGCAGAGTTCCTCCTAAG -ACGGAAAGCAGAGTTCCTGTTCAG -ACGGAAAGCAGAGTTCCTGCATAG -ACGGAAAGCAGAGTTCCTGACAAG -ACGGAAAGCAGAGTTCCTAAGCAG -ACGGAAAGCAGAGTTCCTCGTCAA -ACGGAAAGCAGAGTTCCTGCTGAA -ACGGAAAGCAGAGTTCCTAGTACG -ACGGAAAGCAGAGTTCCTATCCGA -ACGGAAAGCAGAGTTCCTATGGGA -ACGGAAAGCAGAGTTCCTGTGCAA -ACGGAAAGCAGAGTTCCTGAGGAA -ACGGAAAGCAGAGTTCCTCAGGTA -ACGGAAAGCAGAGTTCCTGACTCT -ACGGAAAGCAGAGTTCCTAGTCCT -ACGGAAAGCAGAGTTCCTTAAGCC -ACGGAAAGCAGAGTTCCTATAGCC -ACGGAAAGCAGAGTTCCTTAACCG -ACGGAAAGCAGAGTTCCTATGCCA -ACGGAAAGCAGATTTCGGGGAAAC -ACGGAAAGCAGATTTCGGAACACC -ACGGAAAGCAGATTTCGGATCGAG -ACGGAAAGCAGATTTCGGCTCCTT -ACGGAAAGCAGATTTCGGCCTGTT -ACGGAAAGCAGATTTCGGCGGTTT -ACGGAAAGCAGATTTCGGGTGGTT -ACGGAAAGCAGATTTCGGGCCTTT -ACGGAAAGCAGATTTCGGGGTCTT -ACGGAAAGCAGATTTCGGACGCTT -ACGGAAAGCAGATTTCGGAGCGTT -ACGGAAAGCAGATTTCGGTTCGTC -ACGGAAAGCAGATTTCGGTCTCTC -ACGGAAAGCAGATTTCGGTGGATC -ACGGAAAGCAGATTTCGGCACTTC -ACGGAAAGCAGATTTCGGGTACTC -ACGGAAAGCAGATTTCGGGATGTC -ACGGAAAGCAGATTTCGGACAGTC -ACGGAAAGCAGATTTCGGTTGCTG -ACGGAAAGCAGATTTCGGTCCATG -ACGGAAAGCAGATTTCGGTGTGTG -ACGGAAAGCAGATTTCGGCTAGTG -ACGGAAAGCAGATTTCGGCATCTG -ACGGAAAGCAGATTTCGGGAGTTG -ACGGAAAGCAGATTTCGGAGACTG -ACGGAAAGCAGATTTCGGTCGGTA -ACGGAAAGCAGATTTCGGTGCCTA -ACGGAAAGCAGATTTCGGCCACTA -ACGGAAAGCAGATTTCGGGGAGTA -ACGGAAAGCAGATTTCGGTCGTCT -ACGGAAAGCAGATTTCGGTGCACT -ACGGAAAGCAGATTTCGGCTGACT -ACGGAAAGCAGATTTCGGCAACCT -ACGGAAAGCAGATTTCGGGCTACT -ACGGAAAGCAGATTTCGGGGATCT -ACGGAAAGCAGATTTCGGAAGGCT -ACGGAAAGCAGATTTCGGTCAACC -ACGGAAAGCAGATTTCGGTGTTCC -ACGGAAAGCAGATTTCGGATTCCC -ACGGAAAGCAGATTTCGGTTCTCG -ACGGAAAGCAGATTTCGGTAGACG -ACGGAAAGCAGATTTCGGGTAACG -ACGGAAAGCAGATTTCGGACTTCG -ACGGAAAGCAGATTTCGGTACGCA -ACGGAAAGCAGATTTCGGCTTGCA -ACGGAAAGCAGATTTCGGCGAACA -ACGGAAAGCAGATTTCGGCAGTCA -ACGGAAAGCAGATTTCGGGATCCA -ACGGAAAGCAGATTTCGGACGACA -ACGGAAAGCAGATTTCGGAGCTCA -ACGGAAAGCAGATTTCGGTCACGT -ACGGAAAGCAGATTTCGGCGTAGT -ACGGAAAGCAGATTTCGGGTCAGT -ACGGAAAGCAGATTTCGGGAAGGT -ACGGAAAGCAGATTTCGGAACCGT -ACGGAAAGCAGATTTCGGTTGTGC -ACGGAAAGCAGATTTCGGCTAAGC -ACGGAAAGCAGATTTCGGACTAGC -ACGGAAAGCAGATTTCGGAGATGC -ACGGAAAGCAGATTTCGGTGAAGG -ACGGAAAGCAGATTTCGGCAATGG -ACGGAAAGCAGATTTCGGATGAGG -ACGGAAAGCAGATTTCGGAATGGG -ACGGAAAGCAGATTTCGGTCCTGA -ACGGAAAGCAGATTTCGGTAGCGA -ACGGAAAGCAGATTTCGGCACAGA -ACGGAAAGCAGATTTCGGGCAAGA -ACGGAAAGCAGATTTCGGGGTTGA -ACGGAAAGCAGATTTCGGTCCGAT -ACGGAAAGCAGATTTCGGTGGCAT -ACGGAAAGCAGATTTCGGCGAGAT -ACGGAAAGCAGATTTCGGTACCAC -ACGGAAAGCAGATTTCGGCAGAAC -ACGGAAAGCAGATTTCGGGTCTAC -ACGGAAAGCAGATTTCGGACGTAC -ACGGAAAGCAGATTTCGGAGTGAC -ACGGAAAGCAGATTTCGGCTGTAG -ACGGAAAGCAGATTTCGGCCTAAG -ACGGAAAGCAGATTTCGGGTTCAG -ACGGAAAGCAGATTTCGGGCATAG -ACGGAAAGCAGATTTCGGGACAAG -ACGGAAAGCAGATTTCGGAAGCAG -ACGGAAAGCAGATTTCGGCGTCAA -ACGGAAAGCAGATTTCGGGCTGAA -ACGGAAAGCAGATTTCGGAGTACG -ACGGAAAGCAGATTTCGGATCCGA -ACGGAAAGCAGATTTCGGATGGGA -ACGGAAAGCAGATTTCGGGTGCAA -ACGGAAAGCAGATTTCGGGAGGAA -ACGGAAAGCAGATTTCGGCAGGTA -ACGGAAAGCAGATTTCGGGACTCT -ACGGAAAGCAGATTTCGGAGTCCT -ACGGAAAGCAGATTTCGGTAAGCC -ACGGAAAGCAGATTTCGGATAGCC -ACGGAAAGCAGATTTCGGTAACCG -ACGGAAAGCAGATTTCGGATGCCA -ACGGAAAGCAGAGTTGTGGGAAAC -ACGGAAAGCAGAGTTGTGAACACC -ACGGAAAGCAGAGTTGTGATCGAG -ACGGAAAGCAGAGTTGTGCTCCTT -ACGGAAAGCAGAGTTGTGCCTGTT -ACGGAAAGCAGAGTTGTGCGGTTT -ACGGAAAGCAGAGTTGTGGTGGTT -ACGGAAAGCAGAGTTGTGGCCTTT -ACGGAAAGCAGAGTTGTGGGTCTT -ACGGAAAGCAGAGTTGTGACGCTT -ACGGAAAGCAGAGTTGTGAGCGTT -ACGGAAAGCAGAGTTGTGTTCGTC -ACGGAAAGCAGAGTTGTGTCTCTC -ACGGAAAGCAGAGTTGTGTGGATC -ACGGAAAGCAGAGTTGTGCACTTC -ACGGAAAGCAGAGTTGTGGTACTC -ACGGAAAGCAGAGTTGTGGATGTC -ACGGAAAGCAGAGTTGTGACAGTC -ACGGAAAGCAGAGTTGTGTTGCTG -ACGGAAAGCAGAGTTGTGTCCATG -ACGGAAAGCAGAGTTGTGTGTGTG -ACGGAAAGCAGAGTTGTGCTAGTG -ACGGAAAGCAGAGTTGTGCATCTG -ACGGAAAGCAGAGTTGTGGAGTTG -ACGGAAAGCAGAGTTGTGAGACTG -ACGGAAAGCAGAGTTGTGTCGGTA -ACGGAAAGCAGAGTTGTGTGCCTA -ACGGAAAGCAGAGTTGTGCCACTA -ACGGAAAGCAGAGTTGTGGGAGTA -ACGGAAAGCAGAGTTGTGTCGTCT -ACGGAAAGCAGAGTTGTGTGCACT -ACGGAAAGCAGAGTTGTGCTGACT -ACGGAAAGCAGAGTTGTGCAACCT -ACGGAAAGCAGAGTTGTGGCTACT -ACGGAAAGCAGAGTTGTGGGATCT -ACGGAAAGCAGAGTTGTGAAGGCT -ACGGAAAGCAGAGTTGTGTCAACC -ACGGAAAGCAGAGTTGTGTGTTCC -ACGGAAAGCAGAGTTGTGATTCCC -ACGGAAAGCAGAGTTGTGTTCTCG -ACGGAAAGCAGAGTTGTGTAGACG -ACGGAAAGCAGAGTTGTGGTAACG -ACGGAAAGCAGAGTTGTGACTTCG -ACGGAAAGCAGAGTTGTGTACGCA -ACGGAAAGCAGAGTTGTGCTTGCA -ACGGAAAGCAGAGTTGTGCGAACA -ACGGAAAGCAGAGTTGTGCAGTCA -ACGGAAAGCAGAGTTGTGGATCCA -ACGGAAAGCAGAGTTGTGACGACA -ACGGAAAGCAGAGTTGTGAGCTCA -ACGGAAAGCAGAGTTGTGTCACGT -ACGGAAAGCAGAGTTGTGCGTAGT -ACGGAAAGCAGAGTTGTGGTCAGT -ACGGAAAGCAGAGTTGTGGAAGGT -ACGGAAAGCAGAGTTGTGAACCGT -ACGGAAAGCAGAGTTGTGTTGTGC -ACGGAAAGCAGAGTTGTGCTAAGC -ACGGAAAGCAGAGTTGTGACTAGC -ACGGAAAGCAGAGTTGTGAGATGC -ACGGAAAGCAGAGTTGTGTGAAGG -ACGGAAAGCAGAGTTGTGCAATGG -ACGGAAAGCAGAGTTGTGATGAGG -ACGGAAAGCAGAGTTGTGAATGGG -ACGGAAAGCAGAGTTGTGTCCTGA -ACGGAAAGCAGAGTTGTGTAGCGA -ACGGAAAGCAGAGTTGTGCACAGA -ACGGAAAGCAGAGTTGTGGCAAGA -ACGGAAAGCAGAGTTGTGGGTTGA -ACGGAAAGCAGAGTTGTGTCCGAT -ACGGAAAGCAGAGTTGTGTGGCAT -ACGGAAAGCAGAGTTGTGCGAGAT -ACGGAAAGCAGAGTTGTGTACCAC -ACGGAAAGCAGAGTTGTGCAGAAC -ACGGAAAGCAGAGTTGTGGTCTAC -ACGGAAAGCAGAGTTGTGACGTAC -ACGGAAAGCAGAGTTGTGAGTGAC -ACGGAAAGCAGAGTTGTGCTGTAG -ACGGAAAGCAGAGTTGTGCCTAAG -ACGGAAAGCAGAGTTGTGGTTCAG -ACGGAAAGCAGAGTTGTGGCATAG -ACGGAAAGCAGAGTTGTGGACAAG -ACGGAAAGCAGAGTTGTGAAGCAG -ACGGAAAGCAGAGTTGTGCGTCAA -ACGGAAAGCAGAGTTGTGGCTGAA -ACGGAAAGCAGAGTTGTGAGTACG -ACGGAAAGCAGAGTTGTGATCCGA -ACGGAAAGCAGAGTTGTGATGGGA -ACGGAAAGCAGAGTTGTGGTGCAA -ACGGAAAGCAGAGTTGTGGAGGAA -ACGGAAAGCAGAGTTGTGCAGGTA -ACGGAAAGCAGAGTTGTGGACTCT -ACGGAAAGCAGAGTTGTGAGTCCT -ACGGAAAGCAGAGTTGTGTAAGCC -ACGGAAAGCAGAGTTGTGATAGCC -ACGGAAAGCAGAGTTGTGTAACCG -ACGGAAAGCAGAGTTGTGATGCCA -ACGGAAAGCAGATTTGCCGGAAAC -ACGGAAAGCAGATTTGCCAACACC -ACGGAAAGCAGATTTGCCATCGAG -ACGGAAAGCAGATTTGCCCTCCTT -ACGGAAAGCAGATTTGCCCCTGTT -ACGGAAAGCAGATTTGCCCGGTTT -ACGGAAAGCAGATTTGCCGTGGTT -ACGGAAAGCAGATTTGCCGCCTTT -ACGGAAAGCAGATTTGCCGGTCTT -ACGGAAAGCAGATTTGCCACGCTT -ACGGAAAGCAGATTTGCCAGCGTT -ACGGAAAGCAGATTTGCCTTCGTC -ACGGAAAGCAGATTTGCCTCTCTC -ACGGAAAGCAGATTTGCCTGGATC -ACGGAAAGCAGATTTGCCCACTTC -ACGGAAAGCAGATTTGCCGTACTC -ACGGAAAGCAGATTTGCCGATGTC -ACGGAAAGCAGATTTGCCACAGTC -ACGGAAAGCAGATTTGCCTTGCTG -ACGGAAAGCAGATTTGCCTCCATG -ACGGAAAGCAGATTTGCCTGTGTG -ACGGAAAGCAGATTTGCCCTAGTG -ACGGAAAGCAGATTTGCCCATCTG -ACGGAAAGCAGATTTGCCGAGTTG -ACGGAAAGCAGATTTGCCAGACTG -ACGGAAAGCAGATTTGCCTCGGTA -ACGGAAAGCAGATTTGCCTGCCTA -ACGGAAAGCAGATTTGCCCCACTA -ACGGAAAGCAGATTTGCCGGAGTA -ACGGAAAGCAGATTTGCCTCGTCT -ACGGAAAGCAGATTTGCCTGCACT -ACGGAAAGCAGATTTGCCCTGACT -ACGGAAAGCAGATTTGCCCAACCT -ACGGAAAGCAGATTTGCCGCTACT -ACGGAAAGCAGATTTGCCGGATCT -ACGGAAAGCAGATTTGCCAAGGCT -ACGGAAAGCAGATTTGCCTCAACC -ACGGAAAGCAGATTTGCCTGTTCC -ACGGAAAGCAGATTTGCCATTCCC -ACGGAAAGCAGATTTGCCTTCTCG -ACGGAAAGCAGATTTGCCTAGACG -ACGGAAAGCAGATTTGCCGTAACG -ACGGAAAGCAGATTTGCCACTTCG -ACGGAAAGCAGATTTGCCTACGCA -ACGGAAAGCAGATTTGCCCTTGCA -ACGGAAAGCAGATTTGCCCGAACA -ACGGAAAGCAGATTTGCCCAGTCA -ACGGAAAGCAGATTTGCCGATCCA -ACGGAAAGCAGATTTGCCACGACA -ACGGAAAGCAGATTTGCCAGCTCA -ACGGAAAGCAGATTTGCCTCACGT -ACGGAAAGCAGATTTGCCCGTAGT -ACGGAAAGCAGATTTGCCGTCAGT -ACGGAAAGCAGATTTGCCGAAGGT -ACGGAAAGCAGATTTGCCAACCGT -ACGGAAAGCAGATTTGCCTTGTGC -ACGGAAAGCAGATTTGCCCTAAGC -ACGGAAAGCAGATTTGCCACTAGC -ACGGAAAGCAGATTTGCCAGATGC -ACGGAAAGCAGATTTGCCTGAAGG -ACGGAAAGCAGATTTGCCCAATGG -ACGGAAAGCAGATTTGCCATGAGG -ACGGAAAGCAGATTTGCCAATGGG -ACGGAAAGCAGATTTGCCTCCTGA -ACGGAAAGCAGATTTGCCTAGCGA -ACGGAAAGCAGATTTGCCCACAGA -ACGGAAAGCAGATTTGCCGCAAGA -ACGGAAAGCAGATTTGCCGGTTGA -ACGGAAAGCAGATTTGCCTCCGAT -ACGGAAAGCAGATTTGCCTGGCAT -ACGGAAAGCAGATTTGCCCGAGAT -ACGGAAAGCAGATTTGCCTACCAC -ACGGAAAGCAGATTTGCCCAGAAC -ACGGAAAGCAGATTTGCCGTCTAC -ACGGAAAGCAGATTTGCCACGTAC -ACGGAAAGCAGATTTGCCAGTGAC -ACGGAAAGCAGATTTGCCCTGTAG -ACGGAAAGCAGATTTGCCCCTAAG -ACGGAAAGCAGATTTGCCGTTCAG -ACGGAAAGCAGATTTGCCGCATAG -ACGGAAAGCAGATTTGCCGACAAG -ACGGAAAGCAGATTTGCCAAGCAG -ACGGAAAGCAGATTTGCCCGTCAA -ACGGAAAGCAGATTTGCCGCTGAA -ACGGAAAGCAGATTTGCCAGTACG -ACGGAAAGCAGATTTGCCATCCGA -ACGGAAAGCAGATTTGCCATGGGA -ACGGAAAGCAGATTTGCCGTGCAA -ACGGAAAGCAGATTTGCCGAGGAA -ACGGAAAGCAGATTTGCCCAGGTA -ACGGAAAGCAGATTTGCCGACTCT -ACGGAAAGCAGATTTGCCAGTCCT -ACGGAAAGCAGATTTGCCTAAGCC -ACGGAAAGCAGATTTGCCATAGCC -ACGGAAAGCAGATTTGCCTAACCG -ACGGAAAGCAGATTTGCCATGCCA -ACGGAAAGCAGACTTGGTGGAAAC -ACGGAAAGCAGACTTGGTAACACC -ACGGAAAGCAGACTTGGTATCGAG -ACGGAAAGCAGACTTGGTCTCCTT -ACGGAAAGCAGACTTGGTCCTGTT -ACGGAAAGCAGACTTGGTCGGTTT -ACGGAAAGCAGACTTGGTGTGGTT -ACGGAAAGCAGACTTGGTGCCTTT -ACGGAAAGCAGACTTGGTGGTCTT -ACGGAAAGCAGACTTGGTACGCTT -ACGGAAAGCAGACTTGGTAGCGTT -ACGGAAAGCAGACTTGGTTTCGTC -ACGGAAAGCAGACTTGGTTCTCTC -ACGGAAAGCAGACTTGGTTGGATC -ACGGAAAGCAGACTTGGTCACTTC -ACGGAAAGCAGACTTGGTGTACTC -ACGGAAAGCAGACTTGGTGATGTC -ACGGAAAGCAGACTTGGTACAGTC -ACGGAAAGCAGACTTGGTTTGCTG -ACGGAAAGCAGACTTGGTTCCATG -ACGGAAAGCAGACTTGGTTGTGTG -ACGGAAAGCAGACTTGGTCTAGTG -ACGGAAAGCAGACTTGGTCATCTG -ACGGAAAGCAGACTTGGTGAGTTG -ACGGAAAGCAGACTTGGTAGACTG -ACGGAAAGCAGACTTGGTTCGGTA -ACGGAAAGCAGACTTGGTTGCCTA -ACGGAAAGCAGACTTGGTCCACTA -ACGGAAAGCAGACTTGGTGGAGTA -ACGGAAAGCAGACTTGGTTCGTCT -ACGGAAAGCAGACTTGGTTGCACT -ACGGAAAGCAGACTTGGTCTGACT -ACGGAAAGCAGACTTGGTCAACCT -ACGGAAAGCAGACTTGGTGCTACT -ACGGAAAGCAGACTTGGTGGATCT -ACGGAAAGCAGACTTGGTAAGGCT -ACGGAAAGCAGACTTGGTTCAACC -ACGGAAAGCAGACTTGGTTGTTCC -ACGGAAAGCAGACTTGGTATTCCC -ACGGAAAGCAGACTTGGTTTCTCG -ACGGAAAGCAGACTTGGTTAGACG -ACGGAAAGCAGACTTGGTGTAACG -ACGGAAAGCAGACTTGGTACTTCG -ACGGAAAGCAGACTTGGTTACGCA -ACGGAAAGCAGACTTGGTCTTGCA -ACGGAAAGCAGACTTGGTCGAACA -ACGGAAAGCAGACTTGGTCAGTCA -ACGGAAAGCAGACTTGGTGATCCA -ACGGAAAGCAGACTTGGTACGACA -ACGGAAAGCAGACTTGGTAGCTCA -ACGGAAAGCAGACTTGGTTCACGT -ACGGAAAGCAGACTTGGTCGTAGT -ACGGAAAGCAGACTTGGTGTCAGT -ACGGAAAGCAGACTTGGTGAAGGT -ACGGAAAGCAGACTTGGTAACCGT -ACGGAAAGCAGACTTGGTTTGTGC -ACGGAAAGCAGACTTGGTCTAAGC -ACGGAAAGCAGACTTGGTACTAGC -ACGGAAAGCAGACTTGGTAGATGC -ACGGAAAGCAGACTTGGTTGAAGG -ACGGAAAGCAGACTTGGTCAATGG -ACGGAAAGCAGACTTGGTATGAGG -ACGGAAAGCAGACTTGGTAATGGG -ACGGAAAGCAGACTTGGTTCCTGA -ACGGAAAGCAGACTTGGTTAGCGA -ACGGAAAGCAGACTTGGTCACAGA -ACGGAAAGCAGACTTGGTGCAAGA -ACGGAAAGCAGACTTGGTGGTTGA -ACGGAAAGCAGACTTGGTTCCGAT -ACGGAAAGCAGACTTGGTTGGCAT -ACGGAAAGCAGACTTGGTCGAGAT -ACGGAAAGCAGACTTGGTTACCAC -ACGGAAAGCAGACTTGGTCAGAAC -ACGGAAAGCAGACTTGGTGTCTAC -ACGGAAAGCAGACTTGGTACGTAC -ACGGAAAGCAGACTTGGTAGTGAC -ACGGAAAGCAGACTTGGTCTGTAG -ACGGAAAGCAGACTTGGTCCTAAG -ACGGAAAGCAGACTTGGTGTTCAG -ACGGAAAGCAGACTTGGTGCATAG -ACGGAAAGCAGACTTGGTGACAAG -ACGGAAAGCAGACTTGGTAAGCAG -ACGGAAAGCAGACTTGGTCGTCAA -ACGGAAAGCAGACTTGGTGCTGAA -ACGGAAAGCAGACTTGGTAGTACG -ACGGAAAGCAGACTTGGTATCCGA -ACGGAAAGCAGACTTGGTATGGGA -ACGGAAAGCAGACTTGGTGTGCAA -ACGGAAAGCAGACTTGGTGAGGAA -ACGGAAAGCAGACTTGGTCAGGTA -ACGGAAAGCAGACTTGGTGACTCT -ACGGAAAGCAGACTTGGTAGTCCT -ACGGAAAGCAGACTTGGTTAAGCC -ACGGAAAGCAGACTTGGTATAGCC -ACGGAAAGCAGACTTGGTTAACCG -ACGGAAAGCAGACTTGGTATGCCA -ACGGAAAGCAGACTTACGGGAAAC -ACGGAAAGCAGACTTACGAACACC -ACGGAAAGCAGACTTACGATCGAG -ACGGAAAGCAGACTTACGCTCCTT -ACGGAAAGCAGACTTACGCCTGTT -ACGGAAAGCAGACTTACGCGGTTT -ACGGAAAGCAGACTTACGGTGGTT -ACGGAAAGCAGACTTACGGCCTTT -ACGGAAAGCAGACTTACGGGTCTT -ACGGAAAGCAGACTTACGACGCTT -ACGGAAAGCAGACTTACGAGCGTT -ACGGAAAGCAGACTTACGTTCGTC -ACGGAAAGCAGACTTACGTCTCTC -ACGGAAAGCAGACTTACGTGGATC -ACGGAAAGCAGACTTACGCACTTC -ACGGAAAGCAGACTTACGGTACTC -ACGGAAAGCAGACTTACGGATGTC -ACGGAAAGCAGACTTACGACAGTC -ACGGAAAGCAGACTTACGTTGCTG -ACGGAAAGCAGACTTACGTCCATG -ACGGAAAGCAGACTTACGTGTGTG -ACGGAAAGCAGACTTACGCTAGTG -ACGGAAAGCAGACTTACGCATCTG -ACGGAAAGCAGACTTACGGAGTTG -ACGGAAAGCAGACTTACGAGACTG -ACGGAAAGCAGACTTACGTCGGTA -ACGGAAAGCAGACTTACGTGCCTA -ACGGAAAGCAGACTTACGCCACTA -ACGGAAAGCAGACTTACGGGAGTA -ACGGAAAGCAGACTTACGTCGTCT -ACGGAAAGCAGACTTACGTGCACT -ACGGAAAGCAGACTTACGCTGACT -ACGGAAAGCAGACTTACGCAACCT -ACGGAAAGCAGACTTACGGCTACT -ACGGAAAGCAGACTTACGGGATCT -ACGGAAAGCAGACTTACGAAGGCT -ACGGAAAGCAGACTTACGTCAACC -ACGGAAAGCAGACTTACGTGTTCC -ACGGAAAGCAGACTTACGATTCCC -ACGGAAAGCAGACTTACGTTCTCG -ACGGAAAGCAGACTTACGTAGACG -ACGGAAAGCAGACTTACGGTAACG -ACGGAAAGCAGACTTACGACTTCG -ACGGAAAGCAGACTTACGTACGCA -ACGGAAAGCAGACTTACGCTTGCA -ACGGAAAGCAGACTTACGCGAACA -ACGGAAAGCAGACTTACGCAGTCA -ACGGAAAGCAGACTTACGGATCCA -ACGGAAAGCAGACTTACGACGACA -ACGGAAAGCAGACTTACGAGCTCA -ACGGAAAGCAGACTTACGTCACGT -ACGGAAAGCAGACTTACGCGTAGT -ACGGAAAGCAGACTTACGGTCAGT -ACGGAAAGCAGACTTACGGAAGGT -ACGGAAAGCAGACTTACGAACCGT -ACGGAAAGCAGACTTACGTTGTGC -ACGGAAAGCAGACTTACGCTAAGC -ACGGAAAGCAGACTTACGACTAGC -ACGGAAAGCAGACTTACGAGATGC -ACGGAAAGCAGACTTACGTGAAGG -ACGGAAAGCAGACTTACGCAATGG -ACGGAAAGCAGACTTACGATGAGG -ACGGAAAGCAGACTTACGAATGGG -ACGGAAAGCAGACTTACGTCCTGA -ACGGAAAGCAGACTTACGTAGCGA -ACGGAAAGCAGACTTACGCACAGA -ACGGAAAGCAGACTTACGGCAAGA -ACGGAAAGCAGACTTACGGGTTGA -ACGGAAAGCAGACTTACGTCCGAT -ACGGAAAGCAGACTTACGTGGCAT -ACGGAAAGCAGACTTACGCGAGAT -ACGGAAAGCAGACTTACGTACCAC -ACGGAAAGCAGACTTACGCAGAAC -ACGGAAAGCAGACTTACGGTCTAC -ACGGAAAGCAGACTTACGACGTAC -ACGGAAAGCAGACTTACGAGTGAC -ACGGAAAGCAGACTTACGCTGTAG -ACGGAAAGCAGACTTACGCCTAAG -ACGGAAAGCAGACTTACGGTTCAG -ACGGAAAGCAGACTTACGGCATAG -ACGGAAAGCAGACTTACGGACAAG -ACGGAAAGCAGACTTACGAAGCAG -ACGGAAAGCAGACTTACGCGTCAA -ACGGAAAGCAGACTTACGGCTGAA -ACGGAAAGCAGACTTACGAGTACG -ACGGAAAGCAGACTTACGATCCGA -ACGGAAAGCAGACTTACGATGGGA -ACGGAAAGCAGACTTACGGTGCAA -ACGGAAAGCAGACTTACGGAGGAA -ACGGAAAGCAGACTTACGCAGGTA -ACGGAAAGCAGACTTACGGACTCT -ACGGAAAGCAGACTTACGAGTCCT -ACGGAAAGCAGACTTACGTAAGCC -ACGGAAAGCAGACTTACGATAGCC -ACGGAAAGCAGACTTACGTAACCG -ACGGAAAGCAGACTTACGATGCCA -ACGGAAAGCAGAGTTAGCGGAAAC -ACGGAAAGCAGAGTTAGCAACACC -ACGGAAAGCAGAGTTAGCATCGAG -ACGGAAAGCAGAGTTAGCCTCCTT -ACGGAAAGCAGAGTTAGCCCTGTT -ACGGAAAGCAGAGTTAGCCGGTTT -ACGGAAAGCAGAGTTAGCGTGGTT -ACGGAAAGCAGAGTTAGCGCCTTT -ACGGAAAGCAGAGTTAGCGGTCTT -ACGGAAAGCAGAGTTAGCACGCTT -ACGGAAAGCAGAGTTAGCAGCGTT -ACGGAAAGCAGAGTTAGCTTCGTC -ACGGAAAGCAGAGTTAGCTCTCTC -ACGGAAAGCAGAGTTAGCTGGATC -ACGGAAAGCAGAGTTAGCCACTTC -ACGGAAAGCAGAGTTAGCGTACTC -ACGGAAAGCAGAGTTAGCGATGTC -ACGGAAAGCAGAGTTAGCACAGTC -ACGGAAAGCAGAGTTAGCTTGCTG -ACGGAAAGCAGAGTTAGCTCCATG -ACGGAAAGCAGAGTTAGCTGTGTG -ACGGAAAGCAGAGTTAGCCTAGTG -ACGGAAAGCAGAGTTAGCCATCTG -ACGGAAAGCAGAGTTAGCGAGTTG -ACGGAAAGCAGAGTTAGCAGACTG -ACGGAAAGCAGAGTTAGCTCGGTA -ACGGAAAGCAGAGTTAGCTGCCTA -ACGGAAAGCAGAGTTAGCCCACTA -ACGGAAAGCAGAGTTAGCGGAGTA -ACGGAAAGCAGAGTTAGCTCGTCT -ACGGAAAGCAGAGTTAGCTGCACT -ACGGAAAGCAGAGTTAGCCTGACT -ACGGAAAGCAGAGTTAGCCAACCT -ACGGAAAGCAGAGTTAGCGCTACT -ACGGAAAGCAGAGTTAGCGGATCT -ACGGAAAGCAGAGTTAGCAAGGCT -ACGGAAAGCAGAGTTAGCTCAACC -ACGGAAAGCAGAGTTAGCTGTTCC -ACGGAAAGCAGAGTTAGCATTCCC -ACGGAAAGCAGAGTTAGCTTCTCG -ACGGAAAGCAGAGTTAGCTAGACG -ACGGAAAGCAGAGTTAGCGTAACG -ACGGAAAGCAGAGTTAGCACTTCG -ACGGAAAGCAGAGTTAGCTACGCA -ACGGAAAGCAGAGTTAGCCTTGCA -ACGGAAAGCAGAGTTAGCCGAACA -ACGGAAAGCAGAGTTAGCCAGTCA -ACGGAAAGCAGAGTTAGCGATCCA -ACGGAAAGCAGAGTTAGCACGACA -ACGGAAAGCAGAGTTAGCAGCTCA -ACGGAAAGCAGAGTTAGCTCACGT -ACGGAAAGCAGAGTTAGCCGTAGT -ACGGAAAGCAGAGTTAGCGTCAGT -ACGGAAAGCAGAGTTAGCGAAGGT -ACGGAAAGCAGAGTTAGCAACCGT -ACGGAAAGCAGAGTTAGCTTGTGC -ACGGAAAGCAGAGTTAGCCTAAGC -ACGGAAAGCAGAGTTAGCACTAGC -ACGGAAAGCAGAGTTAGCAGATGC -ACGGAAAGCAGAGTTAGCTGAAGG -ACGGAAAGCAGAGTTAGCCAATGG -ACGGAAAGCAGAGTTAGCATGAGG -ACGGAAAGCAGAGTTAGCAATGGG -ACGGAAAGCAGAGTTAGCTCCTGA -ACGGAAAGCAGAGTTAGCTAGCGA -ACGGAAAGCAGAGTTAGCCACAGA -ACGGAAAGCAGAGTTAGCGCAAGA -ACGGAAAGCAGAGTTAGCGGTTGA -ACGGAAAGCAGAGTTAGCTCCGAT -ACGGAAAGCAGAGTTAGCTGGCAT -ACGGAAAGCAGAGTTAGCCGAGAT -ACGGAAAGCAGAGTTAGCTACCAC -ACGGAAAGCAGAGTTAGCCAGAAC -ACGGAAAGCAGAGTTAGCGTCTAC -ACGGAAAGCAGAGTTAGCACGTAC -ACGGAAAGCAGAGTTAGCAGTGAC -ACGGAAAGCAGAGTTAGCCTGTAG -ACGGAAAGCAGAGTTAGCCCTAAG -ACGGAAAGCAGAGTTAGCGTTCAG -ACGGAAAGCAGAGTTAGCGCATAG -ACGGAAAGCAGAGTTAGCGACAAG -ACGGAAAGCAGAGTTAGCAAGCAG -ACGGAAAGCAGAGTTAGCCGTCAA -ACGGAAAGCAGAGTTAGCGCTGAA -ACGGAAAGCAGAGTTAGCAGTACG -ACGGAAAGCAGAGTTAGCATCCGA -ACGGAAAGCAGAGTTAGCATGGGA -ACGGAAAGCAGAGTTAGCGTGCAA -ACGGAAAGCAGAGTTAGCGAGGAA -ACGGAAAGCAGAGTTAGCCAGGTA -ACGGAAAGCAGAGTTAGCGACTCT -ACGGAAAGCAGAGTTAGCAGTCCT -ACGGAAAGCAGAGTTAGCTAAGCC -ACGGAAAGCAGAGTTAGCATAGCC -ACGGAAAGCAGAGTTAGCTAACCG -ACGGAAAGCAGAGTTAGCATGCCA -ACGGAAAGCAGAGTCTTCGGAAAC -ACGGAAAGCAGAGTCTTCAACACC -ACGGAAAGCAGAGTCTTCATCGAG -ACGGAAAGCAGAGTCTTCCTCCTT -ACGGAAAGCAGAGTCTTCCCTGTT -ACGGAAAGCAGAGTCTTCCGGTTT -ACGGAAAGCAGAGTCTTCGTGGTT -ACGGAAAGCAGAGTCTTCGCCTTT -ACGGAAAGCAGAGTCTTCGGTCTT -ACGGAAAGCAGAGTCTTCACGCTT -ACGGAAAGCAGAGTCTTCAGCGTT -ACGGAAAGCAGAGTCTTCTTCGTC -ACGGAAAGCAGAGTCTTCTCTCTC -ACGGAAAGCAGAGTCTTCTGGATC -ACGGAAAGCAGAGTCTTCCACTTC -ACGGAAAGCAGAGTCTTCGTACTC -ACGGAAAGCAGAGTCTTCGATGTC -ACGGAAAGCAGAGTCTTCACAGTC -ACGGAAAGCAGAGTCTTCTTGCTG -ACGGAAAGCAGAGTCTTCTCCATG -ACGGAAAGCAGAGTCTTCTGTGTG -ACGGAAAGCAGAGTCTTCCTAGTG -ACGGAAAGCAGAGTCTTCCATCTG -ACGGAAAGCAGAGTCTTCGAGTTG -ACGGAAAGCAGAGTCTTCAGACTG -ACGGAAAGCAGAGTCTTCTCGGTA -ACGGAAAGCAGAGTCTTCTGCCTA -ACGGAAAGCAGAGTCTTCCCACTA -ACGGAAAGCAGAGTCTTCGGAGTA -ACGGAAAGCAGAGTCTTCTCGTCT -ACGGAAAGCAGAGTCTTCTGCACT -ACGGAAAGCAGAGTCTTCCTGACT -ACGGAAAGCAGAGTCTTCCAACCT -ACGGAAAGCAGAGTCTTCGCTACT -ACGGAAAGCAGAGTCTTCGGATCT -ACGGAAAGCAGAGTCTTCAAGGCT -ACGGAAAGCAGAGTCTTCTCAACC -ACGGAAAGCAGAGTCTTCTGTTCC -ACGGAAAGCAGAGTCTTCATTCCC -ACGGAAAGCAGAGTCTTCTTCTCG -ACGGAAAGCAGAGTCTTCTAGACG -ACGGAAAGCAGAGTCTTCGTAACG -ACGGAAAGCAGAGTCTTCACTTCG -ACGGAAAGCAGAGTCTTCTACGCA -ACGGAAAGCAGAGTCTTCCTTGCA -ACGGAAAGCAGAGTCTTCCGAACA -ACGGAAAGCAGAGTCTTCCAGTCA -ACGGAAAGCAGAGTCTTCGATCCA -ACGGAAAGCAGAGTCTTCACGACA -ACGGAAAGCAGAGTCTTCAGCTCA -ACGGAAAGCAGAGTCTTCTCACGT -ACGGAAAGCAGAGTCTTCCGTAGT -ACGGAAAGCAGAGTCTTCGTCAGT -ACGGAAAGCAGAGTCTTCGAAGGT -ACGGAAAGCAGAGTCTTCAACCGT -ACGGAAAGCAGAGTCTTCTTGTGC -ACGGAAAGCAGAGTCTTCCTAAGC -ACGGAAAGCAGAGTCTTCACTAGC -ACGGAAAGCAGAGTCTTCAGATGC -ACGGAAAGCAGAGTCTTCTGAAGG -ACGGAAAGCAGAGTCTTCCAATGG -ACGGAAAGCAGAGTCTTCATGAGG -ACGGAAAGCAGAGTCTTCAATGGG -ACGGAAAGCAGAGTCTTCTCCTGA -ACGGAAAGCAGAGTCTTCTAGCGA -ACGGAAAGCAGAGTCTTCCACAGA -ACGGAAAGCAGAGTCTTCGCAAGA -ACGGAAAGCAGAGTCTTCGGTTGA -ACGGAAAGCAGAGTCTTCTCCGAT -ACGGAAAGCAGAGTCTTCTGGCAT -ACGGAAAGCAGAGTCTTCCGAGAT -ACGGAAAGCAGAGTCTTCTACCAC -ACGGAAAGCAGAGTCTTCCAGAAC -ACGGAAAGCAGAGTCTTCGTCTAC -ACGGAAAGCAGAGTCTTCACGTAC -ACGGAAAGCAGAGTCTTCAGTGAC -ACGGAAAGCAGAGTCTTCCTGTAG -ACGGAAAGCAGAGTCTTCCCTAAG -ACGGAAAGCAGAGTCTTCGTTCAG -ACGGAAAGCAGAGTCTTCGCATAG -ACGGAAAGCAGAGTCTTCGACAAG -ACGGAAAGCAGAGTCTTCAAGCAG -ACGGAAAGCAGAGTCTTCCGTCAA -ACGGAAAGCAGAGTCTTCGCTGAA -ACGGAAAGCAGAGTCTTCAGTACG -ACGGAAAGCAGAGTCTTCATCCGA -ACGGAAAGCAGAGTCTTCATGGGA -ACGGAAAGCAGAGTCTTCGTGCAA -ACGGAAAGCAGAGTCTTCGAGGAA -ACGGAAAGCAGAGTCTTCCAGGTA -ACGGAAAGCAGAGTCTTCGACTCT -ACGGAAAGCAGAGTCTTCAGTCCT -ACGGAAAGCAGAGTCTTCTAAGCC -ACGGAAAGCAGAGTCTTCATAGCC -ACGGAAAGCAGAGTCTTCTAACCG -ACGGAAAGCAGAGTCTTCATGCCA -ACGGAAAGCAGACTCTCTGGAAAC -ACGGAAAGCAGACTCTCTAACACC -ACGGAAAGCAGACTCTCTATCGAG -ACGGAAAGCAGACTCTCTCTCCTT -ACGGAAAGCAGACTCTCTCCTGTT -ACGGAAAGCAGACTCTCTCGGTTT -ACGGAAAGCAGACTCTCTGTGGTT -ACGGAAAGCAGACTCTCTGCCTTT -ACGGAAAGCAGACTCTCTGGTCTT -ACGGAAAGCAGACTCTCTACGCTT -ACGGAAAGCAGACTCTCTAGCGTT -ACGGAAAGCAGACTCTCTTTCGTC -ACGGAAAGCAGACTCTCTTCTCTC -ACGGAAAGCAGACTCTCTTGGATC -ACGGAAAGCAGACTCTCTCACTTC -ACGGAAAGCAGACTCTCTGTACTC -ACGGAAAGCAGACTCTCTGATGTC -ACGGAAAGCAGACTCTCTACAGTC -ACGGAAAGCAGACTCTCTTTGCTG -ACGGAAAGCAGACTCTCTTCCATG -ACGGAAAGCAGACTCTCTTGTGTG -ACGGAAAGCAGACTCTCTCTAGTG -ACGGAAAGCAGACTCTCTCATCTG -ACGGAAAGCAGACTCTCTGAGTTG -ACGGAAAGCAGACTCTCTAGACTG -ACGGAAAGCAGACTCTCTTCGGTA -ACGGAAAGCAGACTCTCTTGCCTA -ACGGAAAGCAGACTCTCTCCACTA -ACGGAAAGCAGACTCTCTGGAGTA -ACGGAAAGCAGACTCTCTTCGTCT -ACGGAAAGCAGACTCTCTTGCACT -ACGGAAAGCAGACTCTCTCTGACT -ACGGAAAGCAGACTCTCTCAACCT -ACGGAAAGCAGACTCTCTGCTACT -ACGGAAAGCAGACTCTCTGGATCT -ACGGAAAGCAGACTCTCTAAGGCT -ACGGAAAGCAGACTCTCTTCAACC -ACGGAAAGCAGACTCTCTTGTTCC -ACGGAAAGCAGACTCTCTATTCCC -ACGGAAAGCAGACTCTCTTTCTCG -ACGGAAAGCAGACTCTCTTAGACG -ACGGAAAGCAGACTCTCTGTAACG -ACGGAAAGCAGACTCTCTACTTCG -ACGGAAAGCAGACTCTCTTACGCA -ACGGAAAGCAGACTCTCTCTTGCA -ACGGAAAGCAGACTCTCTCGAACA -ACGGAAAGCAGACTCTCTCAGTCA -ACGGAAAGCAGACTCTCTGATCCA -ACGGAAAGCAGACTCTCTACGACA -ACGGAAAGCAGACTCTCTAGCTCA -ACGGAAAGCAGACTCTCTTCACGT -ACGGAAAGCAGACTCTCTCGTAGT -ACGGAAAGCAGACTCTCTGTCAGT -ACGGAAAGCAGACTCTCTGAAGGT -ACGGAAAGCAGACTCTCTAACCGT -ACGGAAAGCAGACTCTCTTTGTGC -ACGGAAAGCAGACTCTCTCTAAGC -ACGGAAAGCAGACTCTCTACTAGC -ACGGAAAGCAGACTCTCTAGATGC -ACGGAAAGCAGACTCTCTTGAAGG -ACGGAAAGCAGACTCTCTCAATGG -ACGGAAAGCAGACTCTCTATGAGG -ACGGAAAGCAGACTCTCTAATGGG -ACGGAAAGCAGACTCTCTTCCTGA -ACGGAAAGCAGACTCTCTTAGCGA -ACGGAAAGCAGACTCTCTCACAGA -ACGGAAAGCAGACTCTCTGCAAGA -ACGGAAAGCAGACTCTCTGGTTGA -ACGGAAAGCAGACTCTCTTCCGAT -ACGGAAAGCAGACTCTCTTGGCAT -ACGGAAAGCAGACTCTCTCGAGAT -ACGGAAAGCAGACTCTCTTACCAC -ACGGAAAGCAGACTCTCTCAGAAC -ACGGAAAGCAGACTCTCTGTCTAC -ACGGAAAGCAGACTCTCTACGTAC -ACGGAAAGCAGACTCTCTAGTGAC -ACGGAAAGCAGACTCTCTCTGTAG -ACGGAAAGCAGACTCTCTCCTAAG -ACGGAAAGCAGACTCTCTGTTCAG -ACGGAAAGCAGACTCTCTGCATAG -ACGGAAAGCAGACTCTCTGACAAG -ACGGAAAGCAGACTCTCTAAGCAG -ACGGAAAGCAGACTCTCTCGTCAA -ACGGAAAGCAGACTCTCTGCTGAA -ACGGAAAGCAGACTCTCTAGTACG -ACGGAAAGCAGACTCTCTATCCGA -ACGGAAAGCAGACTCTCTATGGGA -ACGGAAAGCAGACTCTCTGTGCAA -ACGGAAAGCAGACTCTCTGAGGAA -ACGGAAAGCAGACTCTCTCAGGTA -ACGGAAAGCAGACTCTCTGACTCT -ACGGAAAGCAGACTCTCTAGTCCT -ACGGAAAGCAGACTCTCTTAAGCC -ACGGAAAGCAGACTCTCTATAGCC -ACGGAAAGCAGACTCTCTTAACCG -ACGGAAAGCAGACTCTCTATGCCA -ACGGAAAGCAGAATCTGGGGAAAC -ACGGAAAGCAGAATCTGGAACACC -ACGGAAAGCAGAATCTGGATCGAG -ACGGAAAGCAGAATCTGGCTCCTT -ACGGAAAGCAGAATCTGGCCTGTT -ACGGAAAGCAGAATCTGGCGGTTT -ACGGAAAGCAGAATCTGGGTGGTT -ACGGAAAGCAGAATCTGGGCCTTT -ACGGAAAGCAGAATCTGGGGTCTT -ACGGAAAGCAGAATCTGGACGCTT -ACGGAAAGCAGAATCTGGAGCGTT -ACGGAAAGCAGAATCTGGTTCGTC -ACGGAAAGCAGAATCTGGTCTCTC -ACGGAAAGCAGAATCTGGTGGATC -ACGGAAAGCAGAATCTGGCACTTC -ACGGAAAGCAGAATCTGGGTACTC -ACGGAAAGCAGAATCTGGGATGTC -ACGGAAAGCAGAATCTGGACAGTC -ACGGAAAGCAGAATCTGGTTGCTG -ACGGAAAGCAGAATCTGGTCCATG -ACGGAAAGCAGAATCTGGTGTGTG -ACGGAAAGCAGAATCTGGCTAGTG -ACGGAAAGCAGAATCTGGCATCTG -ACGGAAAGCAGAATCTGGGAGTTG -ACGGAAAGCAGAATCTGGAGACTG -ACGGAAAGCAGAATCTGGTCGGTA -ACGGAAAGCAGAATCTGGTGCCTA -ACGGAAAGCAGAATCTGGCCACTA -ACGGAAAGCAGAATCTGGGGAGTA -ACGGAAAGCAGAATCTGGTCGTCT -ACGGAAAGCAGAATCTGGTGCACT -ACGGAAAGCAGAATCTGGCTGACT -ACGGAAAGCAGAATCTGGCAACCT -ACGGAAAGCAGAATCTGGGCTACT -ACGGAAAGCAGAATCTGGGGATCT -ACGGAAAGCAGAATCTGGAAGGCT -ACGGAAAGCAGAATCTGGTCAACC -ACGGAAAGCAGAATCTGGTGTTCC -ACGGAAAGCAGAATCTGGATTCCC -ACGGAAAGCAGAATCTGGTTCTCG -ACGGAAAGCAGAATCTGGTAGACG -ACGGAAAGCAGAATCTGGGTAACG -ACGGAAAGCAGAATCTGGACTTCG -ACGGAAAGCAGAATCTGGTACGCA -ACGGAAAGCAGAATCTGGCTTGCA -ACGGAAAGCAGAATCTGGCGAACA -ACGGAAAGCAGAATCTGGCAGTCA -ACGGAAAGCAGAATCTGGGATCCA -ACGGAAAGCAGAATCTGGACGACA -ACGGAAAGCAGAATCTGGAGCTCA -ACGGAAAGCAGAATCTGGTCACGT -ACGGAAAGCAGAATCTGGCGTAGT -ACGGAAAGCAGAATCTGGGTCAGT -ACGGAAAGCAGAATCTGGGAAGGT -ACGGAAAGCAGAATCTGGAACCGT -ACGGAAAGCAGAATCTGGTTGTGC -ACGGAAAGCAGAATCTGGCTAAGC -ACGGAAAGCAGAATCTGGACTAGC -ACGGAAAGCAGAATCTGGAGATGC -ACGGAAAGCAGAATCTGGTGAAGG -ACGGAAAGCAGAATCTGGCAATGG -ACGGAAAGCAGAATCTGGATGAGG -ACGGAAAGCAGAATCTGGAATGGG -ACGGAAAGCAGAATCTGGTCCTGA -ACGGAAAGCAGAATCTGGTAGCGA -ACGGAAAGCAGAATCTGGCACAGA -ACGGAAAGCAGAATCTGGGCAAGA -ACGGAAAGCAGAATCTGGGGTTGA -ACGGAAAGCAGAATCTGGTCCGAT -ACGGAAAGCAGAATCTGGTGGCAT -ACGGAAAGCAGAATCTGGCGAGAT -ACGGAAAGCAGAATCTGGTACCAC -ACGGAAAGCAGAATCTGGCAGAAC -ACGGAAAGCAGAATCTGGGTCTAC -ACGGAAAGCAGAATCTGGACGTAC -ACGGAAAGCAGAATCTGGAGTGAC -ACGGAAAGCAGAATCTGGCTGTAG -ACGGAAAGCAGAATCTGGCCTAAG -ACGGAAAGCAGAATCTGGGTTCAG -ACGGAAAGCAGAATCTGGGCATAG -ACGGAAAGCAGAATCTGGGACAAG -ACGGAAAGCAGAATCTGGAAGCAG -ACGGAAAGCAGAATCTGGCGTCAA -ACGGAAAGCAGAATCTGGGCTGAA -ACGGAAAGCAGAATCTGGAGTACG -ACGGAAAGCAGAATCTGGATCCGA -ACGGAAAGCAGAATCTGGATGGGA -ACGGAAAGCAGAATCTGGGTGCAA -ACGGAAAGCAGAATCTGGGAGGAA -ACGGAAAGCAGAATCTGGCAGGTA -ACGGAAAGCAGAATCTGGGACTCT -ACGGAAAGCAGAATCTGGAGTCCT -ACGGAAAGCAGAATCTGGTAAGCC -ACGGAAAGCAGAATCTGGATAGCC -ACGGAAAGCAGAATCTGGTAACCG -ACGGAAAGCAGAATCTGGATGCCA -ACGGAAAGCAGATTCCACGGAAAC -ACGGAAAGCAGATTCCACAACACC -ACGGAAAGCAGATTCCACATCGAG -ACGGAAAGCAGATTCCACCTCCTT -ACGGAAAGCAGATTCCACCCTGTT -ACGGAAAGCAGATTCCACCGGTTT -ACGGAAAGCAGATTCCACGTGGTT -ACGGAAAGCAGATTCCACGCCTTT -ACGGAAAGCAGATTCCACGGTCTT -ACGGAAAGCAGATTCCACACGCTT -ACGGAAAGCAGATTCCACAGCGTT -ACGGAAAGCAGATTCCACTTCGTC -ACGGAAAGCAGATTCCACTCTCTC -ACGGAAAGCAGATTCCACTGGATC -ACGGAAAGCAGATTCCACCACTTC -ACGGAAAGCAGATTCCACGTACTC -ACGGAAAGCAGATTCCACGATGTC -ACGGAAAGCAGATTCCACACAGTC -ACGGAAAGCAGATTCCACTTGCTG -ACGGAAAGCAGATTCCACTCCATG -ACGGAAAGCAGATTCCACTGTGTG -ACGGAAAGCAGATTCCACCTAGTG -ACGGAAAGCAGATTCCACCATCTG -ACGGAAAGCAGATTCCACGAGTTG -ACGGAAAGCAGATTCCACAGACTG -ACGGAAAGCAGATTCCACTCGGTA -ACGGAAAGCAGATTCCACTGCCTA -ACGGAAAGCAGATTCCACCCACTA -ACGGAAAGCAGATTCCACGGAGTA -ACGGAAAGCAGATTCCACTCGTCT -ACGGAAAGCAGATTCCACTGCACT -ACGGAAAGCAGATTCCACCTGACT -ACGGAAAGCAGATTCCACCAACCT -ACGGAAAGCAGATTCCACGCTACT -ACGGAAAGCAGATTCCACGGATCT -ACGGAAAGCAGATTCCACAAGGCT -ACGGAAAGCAGATTCCACTCAACC -ACGGAAAGCAGATTCCACTGTTCC -ACGGAAAGCAGATTCCACATTCCC -ACGGAAAGCAGATTCCACTTCTCG -ACGGAAAGCAGATTCCACTAGACG -ACGGAAAGCAGATTCCACGTAACG -ACGGAAAGCAGATTCCACACTTCG -ACGGAAAGCAGATTCCACTACGCA -ACGGAAAGCAGATTCCACCTTGCA -ACGGAAAGCAGATTCCACCGAACA -ACGGAAAGCAGATTCCACCAGTCA -ACGGAAAGCAGATTCCACGATCCA -ACGGAAAGCAGATTCCACACGACA -ACGGAAAGCAGATTCCACAGCTCA -ACGGAAAGCAGATTCCACTCACGT -ACGGAAAGCAGATTCCACCGTAGT -ACGGAAAGCAGATTCCACGTCAGT -ACGGAAAGCAGATTCCACGAAGGT -ACGGAAAGCAGATTCCACAACCGT -ACGGAAAGCAGATTCCACTTGTGC -ACGGAAAGCAGATTCCACCTAAGC -ACGGAAAGCAGATTCCACACTAGC -ACGGAAAGCAGATTCCACAGATGC -ACGGAAAGCAGATTCCACTGAAGG -ACGGAAAGCAGATTCCACCAATGG -ACGGAAAGCAGATTCCACATGAGG -ACGGAAAGCAGATTCCACAATGGG -ACGGAAAGCAGATTCCACTCCTGA -ACGGAAAGCAGATTCCACTAGCGA -ACGGAAAGCAGATTCCACCACAGA -ACGGAAAGCAGATTCCACGCAAGA -ACGGAAAGCAGATTCCACGGTTGA -ACGGAAAGCAGATTCCACTCCGAT -ACGGAAAGCAGATTCCACTGGCAT -ACGGAAAGCAGATTCCACCGAGAT -ACGGAAAGCAGATTCCACTACCAC -ACGGAAAGCAGATTCCACCAGAAC -ACGGAAAGCAGATTCCACGTCTAC -ACGGAAAGCAGATTCCACACGTAC -ACGGAAAGCAGATTCCACAGTGAC -ACGGAAAGCAGATTCCACCTGTAG -ACGGAAAGCAGATTCCACCCTAAG -ACGGAAAGCAGATTCCACGTTCAG -ACGGAAAGCAGATTCCACGCATAG -ACGGAAAGCAGATTCCACGACAAG -ACGGAAAGCAGATTCCACAAGCAG -ACGGAAAGCAGATTCCACCGTCAA -ACGGAAAGCAGATTCCACGCTGAA -ACGGAAAGCAGATTCCACAGTACG -ACGGAAAGCAGATTCCACATCCGA -ACGGAAAGCAGATTCCACATGGGA -ACGGAAAGCAGATTCCACGTGCAA -ACGGAAAGCAGATTCCACGAGGAA -ACGGAAAGCAGATTCCACCAGGTA -ACGGAAAGCAGATTCCACGACTCT -ACGGAAAGCAGATTCCACAGTCCT -ACGGAAAGCAGATTCCACTAAGCC -ACGGAAAGCAGATTCCACATAGCC -ACGGAAAGCAGATTCCACTAACCG -ACGGAAAGCAGATTCCACATGCCA -ACGGAAAGCAGACTCGTAGGAAAC -ACGGAAAGCAGACTCGTAAACACC -ACGGAAAGCAGACTCGTAATCGAG -ACGGAAAGCAGACTCGTACTCCTT -ACGGAAAGCAGACTCGTACCTGTT -ACGGAAAGCAGACTCGTACGGTTT -ACGGAAAGCAGACTCGTAGTGGTT -ACGGAAAGCAGACTCGTAGCCTTT -ACGGAAAGCAGACTCGTAGGTCTT -ACGGAAAGCAGACTCGTAACGCTT -ACGGAAAGCAGACTCGTAAGCGTT -ACGGAAAGCAGACTCGTATTCGTC -ACGGAAAGCAGACTCGTATCTCTC -ACGGAAAGCAGACTCGTATGGATC -ACGGAAAGCAGACTCGTACACTTC -ACGGAAAGCAGACTCGTAGTACTC -ACGGAAAGCAGACTCGTAGATGTC -ACGGAAAGCAGACTCGTAACAGTC -ACGGAAAGCAGACTCGTATTGCTG -ACGGAAAGCAGACTCGTATCCATG -ACGGAAAGCAGACTCGTATGTGTG -ACGGAAAGCAGACTCGTACTAGTG -ACGGAAAGCAGACTCGTACATCTG -ACGGAAAGCAGACTCGTAGAGTTG -ACGGAAAGCAGACTCGTAAGACTG -ACGGAAAGCAGACTCGTATCGGTA -ACGGAAAGCAGACTCGTATGCCTA -ACGGAAAGCAGACTCGTACCACTA -ACGGAAAGCAGACTCGTAGGAGTA -ACGGAAAGCAGACTCGTATCGTCT -ACGGAAAGCAGACTCGTATGCACT -ACGGAAAGCAGACTCGTACTGACT -ACGGAAAGCAGACTCGTACAACCT -ACGGAAAGCAGACTCGTAGCTACT -ACGGAAAGCAGACTCGTAGGATCT -ACGGAAAGCAGACTCGTAAAGGCT -ACGGAAAGCAGACTCGTATCAACC -ACGGAAAGCAGACTCGTATGTTCC -ACGGAAAGCAGACTCGTAATTCCC -ACGGAAAGCAGACTCGTATTCTCG -ACGGAAAGCAGACTCGTATAGACG -ACGGAAAGCAGACTCGTAGTAACG -ACGGAAAGCAGACTCGTAACTTCG -ACGGAAAGCAGACTCGTATACGCA -ACGGAAAGCAGACTCGTACTTGCA -ACGGAAAGCAGACTCGTACGAACA -ACGGAAAGCAGACTCGTACAGTCA -ACGGAAAGCAGACTCGTAGATCCA -ACGGAAAGCAGACTCGTAACGACA -ACGGAAAGCAGACTCGTAAGCTCA -ACGGAAAGCAGACTCGTATCACGT -ACGGAAAGCAGACTCGTACGTAGT -ACGGAAAGCAGACTCGTAGTCAGT -ACGGAAAGCAGACTCGTAGAAGGT -ACGGAAAGCAGACTCGTAAACCGT -ACGGAAAGCAGACTCGTATTGTGC -ACGGAAAGCAGACTCGTACTAAGC -ACGGAAAGCAGACTCGTAACTAGC -ACGGAAAGCAGACTCGTAAGATGC -ACGGAAAGCAGACTCGTATGAAGG -ACGGAAAGCAGACTCGTACAATGG -ACGGAAAGCAGACTCGTAATGAGG -ACGGAAAGCAGACTCGTAAATGGG -ACGGAAAGCAGACTCGTATCCTGA -ACGGAAAGCAGACTCGTATAGCGA -ACGGAAAGCAGACTCGTACACAGA -ACGGAAAGCAGACTCGTAGCAAGA -ACGGAAAGCAGACTCGTAGGTTGA -ACGGAAAGCAGACTCGTATCCGAT -ACGGAAAGCAGACTCGTATGGCAT -ACGGAAAGCAGACTCGTACGAGAT -ACGGAAAGCAGACTCGTATACCAC -ACGGAAAGCAGACTCGTACAGAAC -ACGGAAAGCAGACTCGTAGTCTAC -ACGGAAAGCAGACTCGTAACGTAC -ACGGAAAGCAGACTCGTAAGTGAC -ACGGAAAGCAGACTCGTACTGTAG -ACGGAAAGCAGACTCGTACCTAAG -ACGGAAAGCAGACTCGTAGTTCAG -ACGGAAAGCAGACTCGTAGCATAG -ACGGAAAGCAGACTCGTAGACAAG -ACGGAAAGCAGACTCGTAAAGCAG -ACGGAAAGCAGACTCGTACGTCAA -ACGGAAAGCAGACTCGTAGCTGAA -ACGGAAAGCAGACTCGTAAGTACG -ACGGAAAGCAGACTCGTAATCCGA -ACGGAAAGCAGACTCGTAATGGGA -ACGGAAAGCAGACTCGTAGTGCAA -ACGGAAAGCAGACTCGTAGAGGAA -ACGGAAAGCAGACTCGTACAGGTA -ACGGAAAGCAGACTCGTAGACTCT -ACGGAAAGCAGACTCGTAAGTCCT -ACGGAAAGCAGACTCGTATAAGCC -ACGGAAAGCAGACTCGTAATAGCC -ACGGAAAGCAGACTCGTATAACCG -ACGGAAAGCAGACTCGTAATGCCA -ACGGAAAGCAGAGTCGATGGAAAC -ACGGAAAGCAGAGTCGATAACACC -ACGGAAAGCAGAGTCGATATCGAG -ACGGAAAGCAGAGTCGATCTCCTT -ACGGAAAGCAGAGTCGATCCTGTT -ACGGAAAGCAGAGTCGATCGGTTT -ACGGAAAGCAGAGTCGATGTGGTT -ACGGAAAGCAGAGTCGATGCCTTT -ACGGAAAGCAGAGTCGATGGTCTT -ACGGAAAGCAGAGTCGATACGCTT -ACGGAAAGCAGAGTCGATAGCGTT -ACGGAAAGCAGAGTCGATTTCGTC -ACGGAAAGCAGAGTCGATTCTCTC -ACGGAAAGCAGAGTCGATTGGATC -ACGGAAAGCAGAGTCGATCACTTC -ACGGAAAGCAGAGTCGATGTACTC -ACGGAAAGCAGAGTCGATGATGTC -ACGGAAAGCAGAGTCGATACAGTC -ACGGAAAGCAGAGTCGATTTGCTG -ACGGAAAGCAGAGTCGATTCCATG -ACGGAAAGCAGAGTCGATTGTGTG -ACGGAAAGCAGAGTCGATCTAGTG -ACGGAAAGCAGAGTCGATCATCTG -ACGGAAAGCAGAGTCGATGAGTTG -ACGGAAAGCAGAGTCGATAGACTG -ACGGAAAGCAGAGTCGATTCGGTA -ACGGAAAGCAGAGTCGATTGCCTA -ACGGAAAGCAGAGTCGATCCACTA -ACGGAAAGCAGAGTCGATGGAGTA -ACGGAAAGCAGAGTCGATTCGTCT -ACGGAAAGCAGAGTCGATTGCACT -ACGGAAAGCAGAGTCGATCTGACT -ACGGAAAGCAGAGTCGATCAACCT -ACGGAAAGCAGAGTCGATGCTACT -ACGGAAAGCAGAGTCGATGGATCT -ACGGAAAGCAGAGTCGATAAGGCT -ACGGAAAGCAGAGTCGATTCAACC -ACGGAAAGCAGAGTCGATTGTTCC -ACGGAAAGCAGAGTCGATATTCCC -ACGGAAAGCAGAGTCGATTTCTCG -ACGGAAAGCAGAGTCGATTAGACG -ACGGAAAGCAGAGTCGATGTAACG -ACGGAAAGCAGAGTCGATACTTCG -ACGGAAAGCAGAGTCGATTACGCA -ACGGAAAGCAGAGTCGATCTTGCA -ACGGAAAGCAGAGTCGATCGAACA -ACGGAAAGCAGAGTCGATCAGTCA -ACGGAAAGCAGAGTCGATGATCCA -ACGGAAAGCAGAGTCGATACGACA -ACGGAAAGCAGAGTCGATAGCTCA -ACGGAAAGCAGAGTCGATTCACGT -ACGGAAAGCAGAGTCGATCGTAGT -ACGGAAAGCAGAGTCGATGTCAGT -ACGGAAAGCAGAGTCGATGAAGGT -ACGGAAAGCAGAGTCGATAACCGT -ACGGAAAGCAGAGTCGATTTGTGC -ACGGAAAGCAGAGTCGATCTAAGC -ACGGAAAGCAGAGTCGATACTAGC -ACGGAAAGCAGAGTCGATAGATGC -ACGGAAAGCAGAGTCGATTGAAGG -ACGGAAAGCAGAGTCGATCAATGG -ACGGAAAGCAGAGTCGATATGAGG -ACGGAAAGCAGAGTCGATAATGGG -ACGGAAAGCAGAGTCGATTCCTGA -ACGGAAAGCAGAGTCGATTAGCGA -ACGGAAAGCAGAGTCGATCACAGA -ACGGAAAGCAGAGTCGATGCAAGA -ACGGAAAGCAGAGTCGATGGTTGA -ACGGAAAGCAGAGTCGATTCCGAT -ACGGAAAGCAGAGTCGATTGGCAT -ACGGAAAGCAGAGTCGATCGAGAT -ACGGAAAGCAGAGTCGATTACCAC -ACGGAAAGCAGAGTCGATCAGAAC -ACGGAAAGCAGAGTCGATGTCTAC -ACGGAAAGCAGAGTCGATACGTAC -ACGGAAAGCAGAGTCGATAGTGAC -ACGGAAAGCAGAGTCGATCTGTAG -ACGGAAAGCAGAGTCGATCCTAAG -ACGGAAAGCAGAGTCGATGTTCAG -ACGGAAAGCAGAGTCGATGCATAG -ACGGAAAGCAGAGTCGATGACAAG -ACGGAAAGCAGAGTCGATAAGCAG -ACGGAAAGCAGAGTCGATCGTCAA -ACGGAAAGCAGAGTCGATGCTGAA -ACGGAAAGCAGAGTCGATAGTACG -ACGGAAAGCAGAGTCGATATCCGA -ACGGAAAGCAGAGTCGATATGGGA -ACGGAAAGCAGAGTCGATGTGCAA -ACGGAAAGCAGAGTCGATGAGGAA -ACGGAAAGCAGAGTCGATCAGGTA -ACGGAAAGCAGAGTCGATGACTCT -ACGGAAAGCAGAGTCGATAGTCCT -ACGGAAAGCAGAGTCGATTAAGCC -ACGGAAAGCAGAGTCGATATAGCC -ACGGAAAGCAGAGTCGATTAACCG -ACGGAAAGCAGAGTCGATATGCCA -ACGGAAAGCAGAGTCACAGGAAAC -ACGGAAAGCAGAGTCACAAACACC -ACGGAAAGCAGAGTCACAATCGAG -ACGGAAAGCAGAGTCACACTCCTT -ACGGAAAGCAGAGTCACACCTGTT -ACGGAAAGCAGAGTCACACGGTTT -ACGGAAAGCAGAGTCACAGTGGTT -ACGGAAAGCAGAGTCACAGCCTTT -ACGGAAAGCAGAGTCACAGGTCTT -ACGGAAAGCAGAGTCACAACGCTT -ACGGAAAGCAGAGTCACAAGCGTT -ACGGAAAGCAGAGTCACATTCGTC -ACGGAAAGCAGAGTCACATCTCTC -ACGGAAAGCAGAGTCACATGGATC -ACGGAAAGCAGAGTCACACACTTC -ACGGAAAGCAGAGTCACAGTACTC -ACGGAAAGCAGAGTCACAGATGTC -ACGGAAAGCAGAGTCACAACAGTC -ACGGAAAGCAGAGTCACATTGCTG -ACGGAAAGCAGAGTCACATCCATG -ACGGAAAGCAGAGTCACATGTGTG -ACGGAAAGCAGAGTCACACTAGTG -ACGGAAAGCAGAGTCACACATCTG -ACGGAAAGCAGAGTCACAGAGTTG -ACGGAAAGCAGAGTCACAAGACTG -ACGGAAAGCAGAGTCACATCGGTA -ACGGAAAGCAGAGTCACATGCCTA -ACGGAAAGCAGAGTCACACCACTA -ACGGAAAGCAGAGTCACAGGAGTA -ACGGAAAGCAGAGTCACATCGTCT -ACGGAAAGCAGAGTCACATGCACT -ACGGAAAGCAGAGTCACACTGACT -ACGGAAAGCAGAGTCACACAACCT -ACGGAAAGCAGAGTCACAGCTACT -ACGGAAAGCAGAGTCACAGGATCT -ACGGAAAGCAGAGTCACAAAGGCT -ACGGAAAGCAGAGTCACATCAACC -ACGGAAAGCAGAGTCACATGTTCC -ACGGAAAGCAGAGTCACAATTCCC -ACGGAAAGCAGAGTCACATTCTCG -ACGGAAAGCAGAGTCACATAGACG -ACGGAAAGCAGAGTCACAGTAACG -ACGGAAAGCAGAGTCACAACTTCG -ACGGAAAGCAGAGTCACATACGCA -ACGGAAAGCAGAGTCACACTTGCA -ACGGAAAGCAGAGTCACACGAACA -ACGGAAAGCAGAGTCACACAGTCA -ACGGAAAGCAGAGTCACAGATCCA -ACGGAAAGCAGAGTCACAACGACA -ACGGAAAGCAGAGTCACAAGCTCA -ACGGAAAGCAGAGTCACATCACGT -ACGGAAAGCAGAGTCACACGTAGT -ACGGAAAGCAGAGTCACAGTCAGT -ACGGAAAGCAGAGTCACAGAAGGT -ACGGAAAGCAGAGTCACAAACCGT -ACGGAAAGCAGAGTCACATTGTGC -ACGGAAAGCAGAGTCACACTAAGC -ACGGAAAGCAGAGTCACAACTAGC -ACGGAAAGCAGAGTCACAAGATGC -ACGGAAAGCAGAGTCACATGAAGG -ACGGAAAGCAGAGTCACACAATGG -ACGGAAAGCAGAGTCACAATGAGG -ACGGAAAGCAGAGTCACAAATGGG -ACGGAAAGCAGAGTCACATCCTGA -ACGGAAAGCAGAGTCACATAGCGA -ACGGAAAGCAGAGTCACACACAGA -ACGGAAAGCAGAGTCACAGCAAGA -ACGGAAAGCAGAGTCACAGGTTGA -ACGGAAAGCAGAGTCACATCCGAT -ACGGAAAGCAGAGTCACATGGCAT -ACGGAAAGCAGAGTCACACGAGAT -ACGGAAAGCAGAGTCACATACCAC -ACGGAAAGCAGAGTCACACAGAAC -ACGGAAAGCAGAGTCACAGTCTAC -ACGGAAAGCAGAGTCACAACGTAC -ACGGAAAGCAGAGTCACAAGTGAC -ACGGAAAGCAGAGTCACACTGTAG -ACGGAAAGCAGAGTCACACCTAAG -ACGGAAAGCAGAGTCACAGTTCAG -ACGGAAAGCAGAGTCACAGCATAG -ACGGAAAGCAGAGTCACAGACAAG -ACGGAAAGCAGAGTCACAAAGCAG -ACGGAAAGCAGAGTCACACGTCAA -ACGGAAAGCAGAGTCACAGCTGAA -ACGGAAAGCAGAGTCACAAGTACG -ACGGAAAGCAGAGTCACAATCCGA -ACGGAAAGCAGAGTCACAATGGGA -ACGGAAAGCAGAGTCACAGTGCAA -ACGGAAAGCAGAGTCACAGAGGAA -ACGGAAAGCAGAGTCACACAGGTA -ACGGAAAGCAGAGTCACAGACTCT -ACGGAAAGCAGAGTCACAAGTCCT -ACGGAAAGCAGAGTCACATAAGCC -ACGGAAAGCAGAGTCACAATAGCC -ACGGAAAGCAGAGTCACATAACCG -ACGGAAAGCAGAGTCACAATGCCA -ACGGAAAGCAGACTGTTGGGAAAC -ACGGAAAGCAGACTGTTGAACACC -ACGGAAAGCAGACTGTTGATCGAG -ACGGAAAGCAGACTGTTGCTCCTT -ACGGAAAGCAGACTGTTGCCTGTT -ACGGAAAGCAGACTGTTGCGGTTT -ACGGAAAGCAGACTGTTGGTGGTT -ACGGAAAGCAGACTGTTGGCCTTT -ACGGAAAGCAGACTGTTGGGTCTT -ACGGAAAGCAGACTGTTGACGCTT -ACGGAAAGCAGACTGTTGAGCGTT -ACGGAAAGCAGACTGTTGTTCGTC -ACGGAAAGCAGACTGTTGTCTCTC -ACGGAAAGCAGACTGTTGTGGATC -ACGGAAAGCAGACTGTTGCACTTC -ACGGAAAGCAGACTGTTGGTACTC -ACGGAAAGCAGACTGTTGGATGTC -ACGGAAAGCAGACTGTTGACAGTC -ACGGAAAGCAGACTGTTGTTGCTG -ACGGAAAGCAGACTGTTGTCCATG -ACGGAAAGCAGACTGTTGTGTGTG -ACGGAAAGCAGACTGTTGCTAGTG -ACGGAAAGCAGACTGTTGCATCTG -ACGGAAAGCAGACTGTTGGAGTTG -ACGGAAAGCAGACTGTTGAGACTG -ACGGAAAGCAGACTGTTGTCGGTA -ACGGAAAGCAGACTGTTGTGCCTA -ACGGAAAGCAGACTGTTGCCACTA -ACGGAAAGCAGACTGTTGGGAGTA -ACGGAAAGCAGACTGTTGTCGTCT -ACGGAAAGCAGACTGTTGTGCACT -ACGGAAAGCAGACTGTTGCTGACT -ACGGAAAGCAGACTGTTGCAACCT -ACGGAAAGCAGACTGTTGGCTACT -ACGGAAAGCAGACTGTTGGGATCT -ACGGAAAGCAGACTGTTGAAGGCT -ACGGAAAGCAGACTGTTGTCAACC -ACGGAAAGCAGACTGTTGTGTTCC -ACGGAAAGCAGACTGTTGATTCCC -ACGGAAAGCAGACTGTTGTTCTCG -ACGGAAAGCAGACTGTTGTAGACG -ACGGAAAGCAGACTGTTGGTAACG -ACGGAAAGCAGACTGTTGACTTCG -ACGGAAAGCAGACTGTTGTACGCA -ACGGAAAGCAGACTGTTGCTTGCA -ACGGAAAGCAGACTGTTGCGAACA -ACGGAAAGCAGACTGTTGCAGTCA -ACGGAAAGCAGACTGTTGGATCCA -ACGGAAAGCAGACTGTTGACGACA -ACGGAAAGCAGACTGTTGAGCTCA -ACGGAAAGCAGACTGTTGTCACGT -ACGGAAAGCAGACTGTTGCGTAGT -ACGGAAAGCAGACTGTTGGTCAGT -ACGGAAAGCAGACTGTTGGAAGGT -ACGGAAAGCAGACTGTTGAACCGT -ACGGAAAGCAGACTGTTGTTGTGC -ACGGAAAGCAGACTGTTGCTAAGC -ACGGAAAGCAGACTGTTGACTAGC -ACGGAAAGCAGACTGTTGAGATGC -ACGGAAAGCAGACTGTTGTGAAGG -ACGGAAAGCAGACTGTTGCAATGG -ACGGAAAGCAGACTGTTGATGAGG -ACGGAAAGCAGACTGTTGAATGGG -ACGGAAAGCAGACTGTTGTCCTGA -ACGGAAAGCAGACTGTTGTAGCGA -ACGGAAAGCAGACTGTTGCACAGA -ACGGAAAGCAGACTGTTGGCAAGA -ACGGAAAGCAGACTGTTGGGTTGA -ACGGAAAGCAGACTGTTGTCCGAT -ACGGAAAGCAGACTGTTGTGGCAT -ACGGAAAGCAGACTGTTGCGAGAT -ACGGAAAGCAGACTGTTGTACCAC -ACGGAAAGCAGACTGTTGCAGAAC -ACGGAAAGCAGACTGTTGGTCTAC -ACGGAAAGCAGACTGTTGACGTAC -ACGGAAAGCAGACTGTTGAGTGAC -ACGGAAAGCAGACTGTTGCTGTAG -ACGGAAAGCAGACTGTTGCCTAAG -ACGGAAAGCAGACTGTTGGTTCAG -ACGGAAAGCAGACTGTTGGCATAG -ACGGAAAGCAGACTGTTGGACAAG -ACGGAAAGCAGACTGTTGAAGCAG -ACGGAAAGCAGACTGTTGCGTCAA -ACGGAAAGCAGACTGTTGGCTGAA -ACGGAAAGCAGACTGTTGAGTACG -ACGGAAAGCAGACTGTTGATCCGA -ACGGAAAGCAGACTGTTGATGGGA -ACGGAAAGCAGACTGTTGGTGCAA -ACGGAAAGCAGACTGTTGGAGGAA -ACGGAAAGCAGACTGTTGCAGGTA -ACGGAAAGCAGACTGTTGGACTCT -ACGGAAAGCAGACTGTTGAGTCCT -ACGGAAAGCAGACTGTTGTAAGCC -ACGGAAAGCAGACTGTTGATAGCC -ACGGAAAGCAGACTGTTGTAACCG -ACGGAAAGCAGACTGTTGATGCCA -ACGGAAAGCAGAATGTCCGGAAAC -ACGGAAAGCAGAATGTCCAACACC -ACGGAAAGCAGAATGTCCATCGAG -ACGGAAAGCAGAATGTCCCTCCTT -ACGGAAAGCAGAATGTCCCCTGTT -ACGGAAAGCAGAATGTCCCGGTTT -ACGGAAAGCAGAATGTCCGTGGTT -ACGGAAAGCAGAATGTCCGCCTTT -ACGGAAAGCAGAATGTCCGGTCTT -ACGGAAAGCAGAATGTCCACGCTT -ACGGAAAGCAGAATGTCCAGCGTT -ACGGAAAGCAGAATGTCCTTCGTC -ACGGAAAGCAGAATGTCCTCTCTC -ACGGAAAGCAGAATGTCCTGGATC -ACGGAAAGCAGAATGTCCCACTTC -ACGGAAAGCAGAATGTCCGTACTC -ACGGAAAGCAGAATGTCCGATGTC -ACGGAAAGCAGAATGTCCACAGTC -ACGGAAAGCAGAATGTCCTTGCTG -ACGGAAAGCAGAATGTCCTCCATG -ACGGAAAGCAGAATGTCCTGTGTG -ACGGAAAGCAGAATGTCCCTAGTG -ACGGAAAGCAGAATGTCCCATCTG -ACGGAAAGCAGAATGTCCGAGTTG -ACGGAAAGCAGAATGTCCAGACTG -ACGGAAAGCAGAATGTCCTCGGTA -ACGGAAAGCAGAATGTCCTGCCTA -ACGGAAAGCAGAATGTCCCCACTA -ACGGAAAGCAGAATGTCCGGAGTA -ACGGAAAGCAGAATGTCCTCGTCT -ACGGAAAGCAGAATGTCCTGCACT -ACGGAAAGCAGAATGTCCCTGACT -ACGGAAAGCAGAATGTCCCAACCT -ACGGAAAGCAGAATGTCCGCTACT -ACGGAAAGCAGAATGTCCGGATCT -ACGGAAAGCAGAATGTCCAAGGCT -ACGGAAAGCAGAATGTCCTCAACC -ACGGAAAGCAGAATGTCCTGTTCC -ACGGAAAGCAGAATGTCCATTCCC -ACGGAAAGCAGAATGTCCTTCTCG -ACGGAAAGCAGAATGTCCTAGACG -ACGGAAAGCAGAATGTCCGTAACG -ACGGAAAGCAGAATGTCCACTTCG -ACGGAAAGCAGAATGTCCTACGCA -ACGGAAAGCAGAATGTCCCTTGCA -ACGGAAAGCAGAATGTCCCGAACA -ACGGAAAGCAGAATGTCCCAGTCA -ACGGAAAGCAGAATGTCCGATCCA -ACGGAAAGCAGAATGTCCACGACA -ACGGAAAGCAGAATGTCCAGCTCA -ACGGAAAGCAGAATGTCCTCACGT -ACGGAAAGCAGAATGTCCCGTAGT -ACGGAAAGCAGAATGTCCGTCAGT -ACGGAAAGCAGAATGTCCGAAGGT -ACGGAAAGCAGAATGTCCAACCGT -ACGGAAAGCAGAATGTCCTTGTGC -ACGGAAAGCAGAATGTCCCTAAGC -ACGGAAAGCAGAATGTCCACTAGC -ACGGAAAGCAGAATGTCCAGATGC -ACGGAAAGCAGAATGTCCTGAAGG -ACGGAAAGCAGAATGTCCCAATGG -ACGGAAAGCAGAATGTCCATGAGG -ACGGAAAGCAGAATGTCCAATGGG -ACGGAAAGCAGAATGTCCTCCTGA -ACGGAAAGCAGAATGTCCTAGCGA -ACGGAAAGCAGAATGTCCCACAGA -ACGGAAAGCAGAATGTCCGCAAGA -ACGGAAAGCAGAATGTCCGGTTGA -ACGGAAAGCAGAATGTCCTCCGAT -ACGGAAAGCAGAATGTCCTGGCAT -ACGGAAAGCAGAATGTCCCGAGAT -ACGGAAAGCAGAATGTCCTACCAC -ACGGAAAGCAGAATGTCCCAGAAC -ACGGAAAGCAGAATGTCCGTCTAC -ACGGAAAGCAGAATGTCCACGTAC -ACGGAAAGCAGAATGTCCAGTGAC -ACGGAAAGCAGAATGTCCCTGTAG -ACGGAAAGCAGAATGTCCCCTAAG -ACGGAAAGCAGAATGTCCGTTCAG -ACGGAAAGCAGAATGTCCGCATAG -ACGGAAAGCAGAATGTCCGACAAG -ACGGAAAGCAGAATGTCCAAGCAG -ACGGAAAGCAGAATGTCCCGTCAA -ACGGAAAGCAGAATGTCCGCTGAA -ACGGAAAGCAGAATGTCCAGTACG -ACGGAAAGCAGAATGTCCATCCGA -ACGGAAAGCAGAATGTCCATGGGA -ACGGAAAGCAGAATGTCCGTGCAA -ACGGAAAGCAGAATGTCCGAGGAA -ACGGAAAGCAGAATGTCCCAGGTA -ACGGAAAGCAGAATGTCCGACTCT -ACGGAAAGCAGAATGTCCAGTCCT -ACGGAAAGCAGAATGTCCTAAGCC -ACGGAAAGCAGAATGTCCATAGCC -ACGGAAAGCAGAATGTCCTAACCG -ACGGAAAGCAGAATGTCCATGCCA -ACGGAAAGCAGAGTGTGTGGAAAC -ACGGAAAGCAGAGTGTGTAACACC -ACGGAAAGCAGAGTGTGTATCGAG -ACGGAAAGCAGAGTGTGTCTCCTT -ACGGAAAGCAGAGTGTGTCCTGTT -ACGGAAAGCAGAGTGTGTCGGTTT -ACGGAAAGCAGAGTGTGTGTGGTT -ACGGAAAGCAGAGTGTGTGCCTTT -ACGGAAAGCAGAGTGTGTGGTCTT -ACGGAAAGCAGAGTGTGTACGCTT -ACGGAAAGCAGAGTGTGTAGCGTT -ACGGAAAGCAGAGTGTGTTTCGTC -ACGGAAAGCAGAGTGTGTTCTCTC -ACGGAAAGCAGAGTGTGTTGGATC -ACGGAAAGCAGAGTGTGTCACTTC -ACGGAAAGCAGAGTGTGTGTACTC -ACGGAAAGCAGAGTGTGTGATGTC -ACGGAAAGCAGAGTGTGTACAGTC -ACGGAAAGCAGAGTGTGTTTGCTG -ACGGAAAGCAGAGTGTGTTCCATG -ACGGAAAGCAGAGTGTGTTGTGTG -ACGGAAAGCAGAGTGTGTCTAGTG -ACGGAAAGCAGAGTGTGTCATCTG -ACGGAAAGCAGAGTGTGTGAGTTG -ACGGAAAGCAGAGTGTGTAGACTG -ACGGAAAGCAGAGTGTGTTCGGTA -ACGGAAAGCAGAGTGTGTTGCCTA -ACGGAAAGCAGAGTGTGTCCACTA -ACGGAAAGCAGAGTGTGTGGAGTA -ACGGAAAGCAGAGTGTGTTCGTCT -ACGGAAAGCAGAGTGTGTTGCACT -ACGGAAAGCAGAGTGTGTCTGACT -ACGGAAAGCAGAGTGTGTCAACCT -ACGGAAAGCAGAGTGTGTGCTACT -ACGGAAAGCAGAGTGTGTGGATCT -ACGGAAAGCAGAGTGTGTAAGGCT -ACGGAAAGCAGAGTGTGTTCAACC -ACGGAAAGCAGAGTGTGTTGTTCC -ACGGAAAGCAGAGTGTGTATTCCC -ACGGAAAGCAGAGTGTGTTTCTCG -ACGGAAAGCAGAGTGTGTTAGACG -ACGGAAAGCAGAGTGTGTGTAACG -ACGGAAAGCAGAGTGTGTACTTCG -ACGGAAAGCAGAGTGTGTTACGCA -ACGGAAAGCAGAGTGTGTCTTGCA -ACGGAAAGCAGAGTGTGTCGAACA -ACGGAAAGCAGAGTGTGTCAGTCA -ACGGAAAGCAGAGTGTGTGATCCA -ACGGAAAGCAGAGTGTGTACGACA -ACGGAAAGCAGAGTGTGTAGCTCA -ACGGAAAGCAGAGTGTGTTCACGT -ACGGAAAGCAGAGTGTGTCGTAGT -ACGGAAAGCAGAGTGTGTGTCAGT -ACGGAAAGCAGAGTGTGTGAAGGT -ACGGAAAGCAGAGTGTGTAACCGT -ACGGAAAGCAGAGTGTGTTTGTGC -ACGGAAAGCAGAGTGTGTCTAAGC -ACGGAAAGCAGAGTGTGTACTAGC -ACGGAAAGCAGAGTGTGTAGATGC -ACGGAAAGCAGAGTGTGTTGAAGG -ACGGAAAGCAGAGTGTGTCAATGG -ACGGAAAGCAGAGTGTGTATGAGG -ACGGAAAGCAGAGTGTGTAATGGG -ACGGAAAGCAGAGTGTGTTCCTGA -ACGGAAAGCAGAGTGTGTTAGCGA -ACGGAAAGCAGAGTGTGTCACAGA -ACGGAAAGCAGAGTGTGTGCAAGA -ACGGAAAGCAGAGTGTGTGGTTGA -ACGGAAAGCAGAGTGTGTTCCGAT -ACGGAAAGCAGAGTGTGTTGGCAT -ACGGAAAGCAGAGTGTGTCGAGAT -ACGGAAAGCAGAGTGTGTTACCAC -ACGGAAAGCAGAGTGTGTCAGAAC -ACGGAAAGCAGAGTGTGTGTCTAC -ACGGAAAGCAGAGTGTGTACGTAC -ACGGAAAGCAGAGTGTGTAGTGAC -ACGGAAAGCAGAGTGTGTCTGTAG -ACGGAAAGCAGAGTGTGTCCTAAG -ACGGAAAGCAGAGTGTGTGTTCAG -ACGGAAAGCAGAGTGTGTGCATAG -ACGGAAAGCAGAGTGTGTGACAAG -ACGGAAAGCAGAGTGTGTAAGCAG -ACGGAAAGCAGAGTGTGTCGTCAA -ACGGAAAGCAGAGTGTGTGCTGAA -ACGGAAAGCAGAGTGTGTAGTACG -ACGGAAAGCAGAGTGTGTATCCGA -ACGGAAAGCAGAGTGTGTATGGGA -ACGGAAAGCAGAGTGTGTGTGCAA -ACGGAAAGCAGAGTGTGTGAGGAA -ACGGAAAGCAGAGTGTGTCAGGTA -ACGGAAAGCAGAGTGTGTGACTCT -ACGGAAAGCAGAGTGTGTAGTCCT -ACGGAAAGCAGAGTGTGTTAAGCC -ACGGAAAGCAGAGTGTGTATAGCC -ACGGAAAGCAGAGTGTGTTAACCG -ACGGAAAGCAGAGTGTGTATGCCA -ACGGAAAGCAGAGTGCTAGGAAAC -ACGGAAAGCAGAGTGCTAAACACC -ACGGAAAGCAGAGTGCTAATCGAG -ACGGAAAGCAGAGTGCTACTCCTT -ACGGAAAGCAGAGTGCTACCTGTT -ACGGAAAGCAGAGTGCTACGGTTT -ACGGAAAGCAGAGTGCTAGTGGTT -ACGGAAAGCAGAGTGCTAGCCTTT -ACGGAAAGCAGAGTGCTAGGTCTT -ACGGAAAGCAGAGTGCTAACGCTT -ACGGAAAGCAGAGTGCTAAGCGTT -ACGGAAAGCAGAGTGCTATTCGTC -ACGGAAAGCAGAGTGCTATCTCTC -ACGGAAAGCAGAGTGCTATGGATC -ACGGAAAGCAGAGTGCTACACTTC -ACGGAAAGCAGAGTGCTAGTACTC -ACGGAAAGCAGAGTGCTAGATGTC -ACGGAAAGCAGAGTGCTAACAGTC -ACGGAAAGCAGAGTGCTATTGCTG -ACGGAAAGCAGAGTGCTATCCATG -ACGGAAAGCAGAGTGCTATGTGTG -ACGGAAAGCAGAGTGCTACTAGTG -ACGGAAAGCAGAGTGCTACATCTG -ACGGAAAGCAGAGTGCTAGAGTTG -ACGGAAAGCAGAGTGCTAAGACTG -ACGGAAAGCAGAGTGCTATCGGTA -ACGGAAAGCAGAGTGCTATGCCTA -ACGGAAAGCAGAGTGCTACCACTA -ACGGAAAGCAGAGTGCTAGGAGTA -ACGGAAAGCAGAGTGCTATCGTCT -ACGGAAAGCAGAGTGCTATGCACT -ACGGAAAGCAGAGTGCTACTGACT -ACGGAAAGCAGAGTGCTACAACCT -ACGGAAAGCAGAGTGCTAGCTACT -ACGGAAAGCAGAGTGCTAGGATCT -ACGGAAAGCAGAGTGCTAAAGGCT -ACGGAAAGCAGAGTGCTATCAACC -ACGGAAAGCAGAGTGCTATGTTCC -ACGGAAAGCAGAGTGCTAATTCCC -ACGGAAAGCAGAGTGCTATTCTCG -ACGGAAAGCAGAGTGCTATAGACG -ACGGAAAGCAGAGTGCTAGTAACG -ACGGAAAGCAGAGTGCTAACTTCG -ACGGAAAGCAGAGTGCTATACGCA -ACGGAAAGCAGAGTGCTACTTGCA -ACGGAAAGCAGAGTGCTACGAACA -ACGGAAAGCAGAGTGCTACAGTCA -ACGGAAAGCAGAGTGCTAGATCCA -ACGGAAAGCAGAGTGCTAACGACA -ACGGAAAGCAGAGTGCTAAGCTCA -ACGGAAAGCAGAGTGCTATCACGT -ACGGAAAGCAGAGTGCTACGTAGT -ACGGAAAGCAGAGTGCTAGTCAGT -ACGGAAAGCAGAGTGCTAGAAGGT -ACGGAAAGCAGAGTGCTAAACCGT -ACGGAAAGCAGAGTGCTATTGTGC -ACGGAAAGCAGAGTGCTACTAAGC -ACGGAAAGCAGAGTGCTAACTAGC -ACGGAAAGCAGAGTGCTAAGATGC -ACGGAAAGCAGAGTGCTATGAAGG -ACGGAAAGCAGAGTGCTACAATGG -ACGGAAAGCAGAGTGCTAATGAGG -ACGGAAAGCAGAGTGCTAAATGGG -ACGGAAAGCAGAGTGCTATCCTGA -ACGGAAAGCAGAGTGCTATAGCGA -ACGGAAAGCAGAGTGCTACACAGA -ACGGAAAGCAGAGTGCTAGCAAGA -ACGGAAAGCAGAGTGCTAGGTTGA -ACGGAAAGCAGAGTGCTATCCGAT -ACGGAAAGCAGAGTGCTATGGCAT -ACGGAAAGCAGAGTGCTACGAGAT -ACGGAAAGCAGAGTGCTATACCAC -ACGGAAAGCAGAGTGCTACAGAAC -ACGGAAAGCAGAGTGCTAGTCTAC -ACGGAAAGCAGAGTGCTAACGTAC -ACGGAAAGCAGAGTGCTAAGTGAC -ACGGAAAGCAGAGTGCTACTGTAG -ACGGAAAGCAGAGTGCTACCTAAG -ACGGAAAGCAGAGTGCTAGTTCAG -ACGGAAAGCAGAGTGCTAGCATAG -ACGGAAAGCAGAGTGCTAGACAAG -ACGGAAAGCAGAGTGCTAAAGCAG -ACGGAAAGCAGAGTGCTACGTCAA -ACGGAAAGCAGAGTGCTAGCTGAA -ACGGAAAGCAGAGTGCTAAGTACG -ACGGAAAGCAGAGTGCTAATCCGA -ACGGAAAGCAGAGTGCTAATGGGA -ACGGAAAGCAGAGTGCTAGTGCAA -ACGGAAAGCAGAGTGCTAGAGGAA -ACGGAAAGCAGAGTGCTACAGGTA -ACGGAAAGCAGAGTGCTAGACTCT -ACGGAAAGCAGAGTGCTAAGTCCT -ACGGAAAGCAGAGTGCTATAAGCC -ACGGAAAGCAGAGTGCTAATAGCC -ACGGAAAGCAGAGTGCTATAACCG -ACGGAAAGCAGAGTGCTAATGCCA -ACGGAAAGCAGACTGCATGGAAAC -ACGGAAAGCAGACTGCATAACACC -ACGGAAAGCAGACTGCATATCGAG -ACGGAAAGCAGACTGCATCTCCTT -ACGGAAAGCAGACTGCATCCTGTT -ACGGAAAGCAGACTGCATCGGTTT -ACGGAAAGCAGACTGCATGTGGTT -ACGGAAAGCAGACTGCATGCCTTT -ACGGAAAGCAGACTGCATGGTCTT -ACGGAAAGCAGACTGCATACGCTT -ACGGAAAGCAGACTGCATAGCGTT -ACGGAAAGCAGACTGCATTTCGTC -ACGGAAAGCAGACTGCATTCTCTC -ACGGAAAGCAGACTGCATTGGATC -ACGGAAAGCAGACTGCATCACTTC -ACGGAAAGCAGACTGCATGTACTC -ACGGAAAGCAGACTGCATGATGTC -ACGGAAAGCAGACTGCATACAGTC -ACGGAAAGCAGACTGCATTTGCTG -ACGGAAAGCAGACTGCATTCCATG -ACGGAAAGCAGACTGCATTGTGTG -ACGGAAAGCAGACTGCATCTAGTG -ACGGAAAGCAGACTGCATCATCTG -ACGGAAAGCAGACTGCATGAGTTG -ACGGAAAGCAGACTGCATAGACTG -ACGGAAAGCAGACTGCATTCGGTA -ACGGAAAGCAGACTGCATTGCCTA -ACGGAAAGCAGACTGCATCCACTA -ACGGAAAGCAGACTGCATGGAGTA -ACGGAAAGCAGACTGCATTCGTCT -ACGGAAAGCAGACTGCATTGCACT -ACGGAAAGCAGACTGCATCTGACT -ACGGAAAGCAGACTGCATCAACCT -ACGGAAAGCAGACTGCATGCTACT -ACGGAAAGCAGACTGCATGGATCT -ACGGAAAGCAGACTGCATAAGGCT -ACGGAAAGCAGACTGCATTCAACC -ACGGAAAGCAGACTGCATTGTTCC -ACGGAAAGCAGACTGCATATTCCC -ACGGAAAGCAGACTGCATTTCTCG -ACGGAAAGCAGACTGCATTAGACG -ACGGAAAGCAGACTGCATGTAACG -ACGGAAAGCAGACTGCATACTTCG -ACGGAAAGCAGACTGCATTACGCA -ACGGAAAGCAGACTGCATCTTGCA -ACGGAAAGCAGACTGCATCGAACA -ACGGAAAGCAGACTGCATCAGTCA -ACGGAAAGCAGACTGCATGATCCA -ACGGAAAGCAGACTGCATACGACA -ACGGAAAGCAGACTGCATAGCTCA -ACGGAAAGCAGACTGCATTCACGT -ACGGAAAGCAGACTGCATCGTAGT -ACGGAAAGCAGACTGCATGTCAGT -ACGGAAAGCAGACTGCATGAAGGT -ACGGAAAGCAGACTGCATAACCGT -ACGGAAAGCAGACTGCATTTGTGC -ACGGAAAGCAGACTGCATCTAAGC -ACGGAAAGCAGACTGCATACTAGC -ACGGAAAGCAGACTGCATAGATGC -ACGGAAAGCAGACTGCATTGAAGG -ACGGAAAGCAGACTGCATCAATGG -ACGGAAAGCAGACTGCATATGAGG -ACGGAAAGCAGACTGCATAATGGG -ACGGAAAGCAGACTGCATTCCTGA -ACGGAAAGCAGACTGCATTAGCGA -ACGGAAAGCAGACTGCATCACAGA -ACGGAAAGCAGACTGCATGCAAGA -ACGGAAAGCAGACTGCATGGTTGA -ACGGAAAGCAGACTGCATTCCGAT -ACGGAAAGCAGACTGCATTGGCAT -ACGGAAAGCAGACTGCATCGAGAT -ACGGAAAGCAGACTGCATTACCAC -ACGGAAAGCAGACTGCATCAGAAC -ACGGAAAGCAGACTGCATGTCTAC -ACGGAAAGCAGACTGCATACGTAC -ACGGAAAGCAGACTGCATAGTGAC -ACGGAAAGCAGACTGCATCTGTAG -ACGGAAAGCAGACTGCATCCTAAG -ACGGAAAGCAGACTGCATGTTCAG -ACGGAAAGCAGACTGCATGCATAG -ACGGAAAGCAGACTGCATGACAAG -ACGGAAAGCAGACTGCATAAGCAG -ACGGAAAGCAGACTGCATCGTCAA -ACGGAAAGCAGACTGCATGCTGAA -ACGGAAAGCAGACTGCATAGTACG -ACGGAAAGCAGACTGCATATCCGA -ACGGAAAGCAGACTGCATATGGGA -ACGGAAAGCAGACTGCATGTGCAA -ACGGAAAGCAGACTGCATGAGGAA -ACGGAAAGCAGACTGCATCAGGTA -ACGGAAAGCAGACTGCATGACTCT -ACGGAAAGCAGACTGCATAGTCCT -ACGGAAAGCAGACTGCATTAAGCC -ACGGAAAGCAGACTGCATATAGCC -ACGGAAAGCAGACTGCATTAACCG -ACGGAAAGCAGACTGCATATGCCA -ACGGAAAGCAGATTGGAGGGAAAC -ACGGAAAGCAGATTGGAGAACACC -ACGGAAAGCAGATTGGAGATCGAG -ACGGAAAGCAGATTGGAGCTCCTT -ACGGAAAGCAGATTGGAGCCTGTT -ACGGAAAGCAGATTGGAGCGGTTT -ACGGAAAGCAGATTGGAGGTGGTT -ACGGAAAGCAGATTGGAGGCCTTT -ACGGAAAGCAGATTGGAGGGTCTT -ACGGAAAGCAGATTGGAGACGCTT -ACGGAAAGCAGATTGGAGAGCGTT -ACGGAAAGCAGATTGGAGTTCGTC -ACGGAAAGCAGATTGGAGTCTCTC -ACGGAAAGCAGATTGGAGTGGATC -ACGGAAAGCAGATTGGAGCACTTC -ACGGAAAGCAGATTGGAGGTACTC -ACGGAAAGCAGATTGGAGGATGTC -ACGGAAAGCAGATTGGAGACAGTC -ACGGAAAGCAGATTGGAGTTGCTG -ACGGAAAGCAGATTGGAGTCCATG -ACGGAAAGCAGATTGGAGTGTGTG -ACGGAAAGCAGATTGGAGCTAGTG -ACGGAAAGCAGATTGGAGCATCTG -ACGGAAAGCAGATTGGAGGAGTTG -ACGGAAAGCAGATTGGAGAGACTG -ACGGAAAGCAGATTGGAGTCGGTA -ACGGAAAGCAGATTGGAGTGCCTA -ACGGAAAGCAGATTGGAGCCACTA -ACGGAAAGCAGATTGGAGGGAGTA -ACGGAAAGCAGATTGGAGTCGTCT -ACGGAAAGCAGATTGGAGTGCACT -ACGGAAAGCAGATTGGAGCTGACT -ACGGAAAGCAGATTGGAGCAACCT -ACGGAAAGCAGATTGGAGGCTACT -ACGGAAAGCAGATTGGAGGGATCT -ACGGAAAGCAGATTGGAGAAGGCT -ACGGAAAGCAGATTGGAGTCAACC -ACGGAAAGCAGATTGGAGTGTTCC -ACGGAAAGCAGATTGGAGATTCCC -ACGGAAAGCAGATTGGAGTTCTCG -ACGGAAAGCAGATTGGAGTAGACG -ACGGAAAGCAGATTGGAGGTAACG -ACGGAAAGCAGATTGGAGACTTCG -ACGGAAAGCAGATTGGAGTACGCA -ACGGAAAGCAGATTGGAGCTTGCA -ACGGAAAGCAGATTGGAGCGAACA -ACGGAAAGCAGATTGGAGCAGTCA -ACGGAAAGCAGATTGGAGGATCCA -ACGGAAAGCAGATTGGAGACGACA -ACGGAAAGCAGATTGGAGAGCTCA -ACGGAAAGCAGATTGGAGTCACGT -ACGGAAAGCAGATTGGAGCGTAGT -ACGGAAAGCAGATTGGAGGTCAGT -ACGGAAAGCAGATTGGAGGAAGGT -ACGGAAAGCAGATTGGAGAACCGT -ACGGAAAGCAGATTGGAGTTGTGC -ACGGAAAGCAGATTGGAGCTAAGC -ACGGAAAGCAGATTGGAGACTAGC -ACGGAAAGCAGATTGGAGAGATGC -ACGGAAAGCAGATTGGAGTGAAGG -ACGGAAAGCAGATTGGAGCAATGG -ACGGAAAGCAGATTGGAGATGAGG -ACGGAAAGCAGATTGGAGAATGGG -ACGGAAAGCAGATTGGAGTCCTGA -ACGGAAAGCAGATTGGAGTAGCGA -ACGGAAAGCAGATTGGAGCACAGA -ACGGAAAGCAGATTGGAGGCAAGA -ACGGAAAGCAGATTGGAGGGTTGA -ACGGAAAGCAGATTGGAGTCCGAT -ACGGAAAGCAGATTGGAGTGGCAT -ACGGAAAGCAGATTGGAGCGAGAT -ACGGAAAGCAGATTGGAGTACCAC -ACGGAAAGCAGATTGGAGCAGAAC -ACGGAAAGCAGATTGGAGGTCTAC -ACGGAAAGCAGATTGGAGACGTAC -ACGGAAAGCAGATTGGAGAGTGAC -ACGGAAAGCAGATTGGAGCTGTAG -ACGGAAAGCAGATTGGAGCCTAAG -ACGGAAAGCAGATTGGAGGTTCAG -ACGGAAAGCAGATTGGAGGCATAG -ACGGAAAGCAGATTGGAGGACAAG -ACGGAAAGCAGATTGGAGAAGCAG -ACGGAAAGCAGATTGGAGCGTCAA -ACGGAAAGCAGATTGGAGGCTGAA -ACGGAAAGCAGATTGGAGAGTACG -ACGGAAAGCAGATTGGAGATCCGA -ACGGAAAGCAGATTGGAGATGGGA -ACGGAAAGCAGATTGGAGGTGCAA -ACGGAAAGCAGATTGGAGGAGGAA -ACGGAAAGCAGATTGGAGCAGGTA -ACGGAAAGCAGATTGGAGGACTCT -ACGGAAAGCAGATTGGAGAGTCCT -ACGGAAAGCAGATTGGAGTAAGCC -ACGGAAAGCAGATTGGAGATAGCC -ACGGAAAGCAGATTGGAGTAACCG -ACGGAAAGCAGATTGGAGATGCCA -ACGGAAAGCAGACTGAGAGGAAAC -ACGGAAAGCAGACTGAGAAACACC -ACGGAAAGCAGACTGAGAATCGAG -ACGGAAAGCAGACTGAGACTCCTT -ACGGAAAGCAGACTGAGACCTGTT -ACGGAAAGCAGACTGAGACGGTTT -ACGGAAAGCAGACTGAGAGTGGTT -ACGGAAAGCAGACTGAGAGCCTTT -ACGGAAAGCAGACTGAGAGGTCTT -ACGGAAAGCAGACTGAGAACGCTT -ACGGAAAGCAGACTGAGAAGCGTT -ACGGAAAGCAGACTGAGATTCGTC -ACGGAAAGCAGACTGAGATCTCTC -ACGGAAAGCAGACTGAGATGGATC -ACGGAAAGCAGACTGAGACACTTC -ACGGAAAGCAGACTGAGAGTACTC -ACGGAAAGCAGACTGAGAGATGTC -ACGGAAAGCAGACTGAGAACAGTC -ACGGAAAGCAGACTGAGATTGCTG -ACGGAAAGCAGACTGAGATCCATG -ACGGAAAGCAGACTGAGATGTGTG -ACGGAAAGCAGACTGAGACTAGTG -ACGGAAAGCAGACTGAGACATCTG -ACGGAAAGCAGACTGAGAGAGTTG -ACGGAAAGCAGACTGAGAAGACTG -ACGGAAAGCAGACTGAGATCGGTA -ACGGAAAGCAGACTGAGATGCCTA -ACGGAAAGCAGACTGAGACCACTA -ACGGAAAGCAGACTGAGAGGAGTA -ACGGAAAGCAGACTGAGATCGTCT -ACGGAAAGCAGACTGAGATGCACT -ACGGAAAGCAGACTGAGACTGACT -ACGGAAAGCAGACTGAGACAACCT -ACGGAAAGCAGACTGAGAGCTACT -ACGGAAAGCAGACTGAGAGGATCT -ACGGAAAGCAGACTGAGAAAGGCT -ACGGAAAGCAGACTGAGATCAACC -ACGGAAAGCAGACTGAGATGTTCC -ACGGAAAGCAGACTGAGAATTCCC -ACGGAAAGCAGACTGAGATTCTCG -ACGGAAAGCAGACTGAGATAGACG -ACGGAAAGCAGACTGAGAGTAACG -ACGGAAAGCAGACTGAGAACTTCG -ACGGAAAGCAGACTGAGATACGCA -ACGGAAAGCAGACTGAGACTTGCA -ACGGAAAGCAGACTGAGACGAACA -ACGGAAAGCAGACTGAGACAGTCA -ACGGAAAGCAGACTGAGAGATCCA -ACGGAAAGCAGACTGAGAACGACA -ACGGAAAGCAGACTGAGAAGCTCA -ACGGAAAGCAGACTGAGATCACGT -ACGGAAAGCAGACTGAGACGTAGT -ACGGAAAGCAGACTGAGAGTCAGT -ACGGAAAGCAGACTGAGAGAAGGT -ACGGAAAGCAGACTGAGAAACCGT -ACGGAAAGCAGACTGAGATTGTGC -ACGGAAAGCAGACTGAGACTAAGC -ACGGAAAGCAGACTGAGAACTAGC -ACGGAAAGCAGACTGAGAAGATGC -ACGGAAAGCAGACTGAGATGAAGG -ACGGAAAGCAGACTGAGACAATGG -ACGGAAAGCAGACTGAGAATGAGG -ACGGAAAGCAGACTGAGAAATGGG -ACGGAAAGCAGACTGAGATCCTGA -ACGGAAAGCAGACTGAGATAGCGA -ACGGAAAGCAGACTGAGACACAGA -ACGGAAAGCAGACTGAGAGCAAGA -ACGGAAAGCAGACTGAGAGGTTGA -ACGGAAAGCAGACTGAGATCCGAT -ACGGAAAGCAGACTGAGATGGCAT -ACGGAAAGCAGACTGAGACGAGAT -ACGGAAAGCAGACTGAGATACCAC -ACGGAAAGCAGACTGAGACAGAAC -ACGGAAAGCAGACTGAGAGTCTAC -ACGGAAAGCAGACTGAGAACGTAC -ACGGAAAGCAGACTGAGAAGTGAC -ACGGAAAGCAGACTGAGACTGTAG -ACGGAAAGCAGACTGAGACCTAAG -ACGGAAAGCAGACTGAGAGTTCAG -ACGGAAAGCAGACTGAGAGCATAG -ACGGAAAGCAGACTGAGAGACAAG -ACGGAAAGCAGACTGAGAAAGCAG -ACGGAAAGCAGACTGAGACGTCAA -ACGGAAAGCAGACTGAGAGCTGAA -ACGGAAAGCAGACTGAGAAGTACG -ACGGAAAGCAGACTGAGAATCCGA -ACGGAAAGCAGACTGAGAATGGGA -ACGGAAAGCAGACTGAGAGTGCAA -ACGGAAAGCAGACTGAGAGAGGAA -ACGGAAAGCAGACTGAGACAGGTA -ACGGAAAGCAGACTGAGAGACTCT -ACGGAAAGCAGACTGAGAAGTCCT -ACGGAAAGCAGACTGAGATAAGCC -ACGGAAAGCAGACTGAGAATAGCC -ACGGAAAGCAGACTGAGATAACCG -ACGGAAAGCAGACTGAGAATGCCA -ACGGAAAGCAGAGTATCGGGAAAC -ACGGAAAGCAGAGTATCGAACACC -ACGGAAAGCAGAGTATCGATCGAG -ACGGAAAGCAGAGTATCGCTCCTT -ACGGAAAGCAGAGTATCGCCTGTT -ACGGAAAGCAGAGTATCGCGGTTT -ACGGAAAGCAGAGTATCGGTGGTT -ACGGAAAGCAGAGTATCGGCCTTT -ACGGAAAGCAGAGTATCGGGTCTT -ACGGAAAGCAGAGTATCGACGCTT -ACGGAAAGCAGAGTATCGAGCGTT -ACGGAAAGCAGAGTATCGTTCGTC -ACGGAAAGCAGAGTATCGTCTCTC -ACGGAAAGCAGAGTATCGTGGATC -ACGGAAAGCAGAGTATCGCACTTC -ACGGAAAGCAGAGTATCGGTACTC -ACGGAAAGCAGAGTATCGGATGTC -ACGGAAAGCAGAGTATCGACAGTC -ACGGAAAGCAGAGTATCGTTGCTG -ACGGAAAGCAGAGTATCGTCCATG -ACGGAAAGCAGAGTATCGTGTGTG -ACGGAAAGCAGAGTATCGCTAGTG -ACGGAAAGCAGAGTATCGCATCTG -ACGGAAAGCAGAGTATCGGAGTTG -ACGGAAAGCAGAGTATCGAGACTG -ACGGAAAGCAGAGTATCGTCGGTA -ACGGAAAGCAGAGTATCGTGCCTA -ACGGAAAGCAGAGTATCGCCACTA -ACGGAAAGCAGAGTATCGGGAGTA -ACGGAAAGCAGAGTATCGTCGTCT -ACGGAAAGCAGAGTATCGTGCACT -ACGGAAAGCAGAGTATCGCTGACT -ACGGAAAGCAGAGTATCGCAACCT -ACGGAAAGCAGAGTATCGGCTACT -ACGGAAAGCAGAGTATCGGGATCT -ACGGAAAGCAGAGTATCGAAGGCT -ACGGAAAGCAGAGTATCGTCAACC -ACGGAAAGCAGAGTATCGTGTTCC -ACGGAAAGCAGAGTATCGATTCCC -ACGGAAAGCAGAGTATCGTTCTCG -ACGGAAAGCAGAGTATCGTAGACG -ACGGAAAGCAGAGTATCGGTAACG -ACGGAAAGCAGAGTATCGACTTCG -ACGGAAAGCAGAGTATCGTACGCA -ACGGAAAGCAGAGTATCGCTTGCA -ACGGAAAGCAGAGTATCGCGAACA -ACGGAAAGCAGAGTATCGCAGTCA -ACGGAAAGCAGAGTATCGGATCCA -ACGGAAAGCAGAGTATCGACGACA -ACGGAAAGCAGAGTATCGAGCTCA -ACGGAAAGCAGAGTATCGTCACGT -ACGGAAAGCAGAGTATCGCGTAGT -ACGGAAAGCAGAGTATCGGTCAGT -ACGGAAAGCAGAGTATCGGAAGGT -ACGGAAAGCAGAGTATCGAACCGT -ACGGAAAGCAGAGTATCGTTGTGC -ACGGAAAGCAGAGTATCGCTAAGC -ACGGAAAGCAGAGTATCGACTAGC -ACGGAAAGCAGAGTATCGAGATGC -ACGGAAAGCAGAGTATCGTGAAGG -ACGGAAAGCAGAGTATCGCAATGG -ACGGAAAGCAGAGTATCGATGAGG -ACGGAAAGCAGAGTATCGAATGGG -ACGGAAAGCAGAGTATCGTCCTGA -ACGGAAAGCAGAGTATCGTAGCGA -ACGGAAAGCAGAGTATCGCACAGA -ACGGAAAGCAGAGTATCGGCAAGA -ACGGAAAGCAGAGTATCGGGTTGA -ACGGAAAGCAGAGTATCGTCCGAT -ACGGAAAGCAGAGTATCGTGGCAT -ACGGAAAGCAGAGTATCGCGAGAT -ACGGAAAGCAGAGTATCGTACCAC -ACGGAAAGCAGAGTATCGCAGAAC -ACGGAAAGCAGAGTATCGGTCTAC -ACGGAAAGCAGAGTATCGACGTAC -ACGGAAAGCAGAGTATCGAGTGAC -ACGGAAAGCAGAGTATCGCTGTAG -ACGGAAAGCAGAGTATCGCCTAAG -ACGGAAAGCAGAGTATCGGTTCAG -ACGGAAAGCAGAGTATCGGCATAG -ACGGAAAGCAGAGTATCGGACAAG -ACGGAAAGCAGAGTATCGAAGCAG -ACGGAAAGCAGAGTATCGCGTCAA -ACGGAAAGCAGAGTATCGGCTGAA -ACGGAAAGCAGAGTATCGAGTACG -ACGGAAAGCAGAGTATCGATCCGA -ACGGAAAGCAGAGTATCGATGGGA -ACGGAAAGCAGAGTATCGGTGCAA -ACGGAAAGCAGAGTATCGGAGGAA -ACGGAAAGCAGAGTATCGCAGGTA -ACGGAAAGCAGAGTATCGGACTCT -ACGGAAAGCAGAGTATCGAGTCCT -ACGGAAAGCAGAGTATCGTAAGCC -ACGGAAAGCAGAGTATCGATAGCC -ACGGAAAGCAGAGTATCGTAACCG -ACGGAAAGCAGAGTATCGATGCCA -ACGGAAAGCAGACTATGCGGAAAC -ACGGAAAGCAGACTATGCAACACC -ACGGAAAGCAGACTATGCATCGAG -ACGGAAAGCAGACTATGCCTCCTT -ACGGAAAGCAGACTATGCCCTGTT -ACGGAAAGCAGACTATGCCGGTTT -ACGGAAAGCAGACTATGCGTGGTT -ACGGAAAGCAGACTATGCGCCTTT -ACGGAAAGCAGACTATGCGGTCTT -ACGGAAAGCAGACTATGCACGCTT -ACGGAAAGCAGACTATGCAGCGTT -ACGGAAAGCAGACTATGCTTCGTC -ACGGAAAGCAGACTATGCTCTCTC -ACGGAAAGCAGACTATGCTGGATC -ACGGAAAGCAGACTATGCCACTTC -ACGGAAAGCAGACTATGCGTACTC -ACGGAAAGCAGACTATGCGATGTC -ACGGAAAGCAGACTATGCACAGTC -ACGGAAAGCAGACTATGCTTGCTG -ACGGAAAGCAGACTATGCTCCATG -ACGGAAAGCAGACTATGCTGTGTG -ACGGAAAGCAGACTATGCCTAGTG -ACGGAAAGCAGACTATGCCATCTG -ACGGAAAGCAGACTATGCGAGTTG -ACGGAAAGCAGACTATGCAGACTG -ACGGAAAGCAGACTATGCTCGGTA -ACGGAAAGCAGACTATGCTGCCTA -ACGGAAAGCAGACTATGCCCACTA -ACGGAAAGCAGACTATGCGGAGTA -ACGGAAAGCAGACTATGCTCGTCT -ACGGAAAGCAGACTATGCTGCACT -ACGGAAAGCAGACTATGCCTGACT -ACGGAAAGCAGACTATGCCAACCT -ACGGAAAGCAGACTATGCGCTACT -ACGGAAAGCAGACTATGCGGATCT -ACGGAAAGCAGACTATGCAAGGCT -ACGGAAAGCAGACTATGCTCAACC -ACGGAAAGCAGACTATGCTGTTCC -ACGGAAAGCAGACTATGCATTCCC -ACGGAAAGCAGACTATGCTTCTCG -ACGGAAAGCAGACTATGCTAGACG -ACGGAAAGCAGACTATGCGTAACG -ACGGAAAGCAGACTATGCACTTCG -ACGGAAAGCAGACTATGCTACGCA -ACGGAAAGCAGACTATGCCTTGCA -ACGGAAAGCAGACTATGCCGAACA -ACGGAAAGCAGACTATGCCAGTCA -ACGGAAAGCAGACTATGCGATCCA -ACGGAAAGCAGACTATGCACGACA -ACGGAAAGCAGACTATGCAGCTCA -ACGGAAAGCAGACTATGCTCACGT -ACGGAAAGCAGACTATGCCGTAGT -ACGGAAAGCAGACTATGCGTCAGT -ACGGAAAGCAGACTATGCGAAGGT -ACGGAAAGCAGACTATGCAACCGT -ACGGAAAGCAGACTATGCTTGTGC -ACGGAAAGCAGACTATGCCTAAGC -ACGGAAAGCAGACTATGCACTAGC -ACGGAAAGCAGACTATGCAGATGC -ACGGAAAGCAGACTATGCTGAAGG -ACGGAAAGCAGACTATGCCAATGG -ACGGAAAGCAGACTATGCATGAGG -ACGGAAAGCAGACTATGCAATGGG -ACGGAAAGCAGACTATGCTCCTGA -ACGGAAAGCAGACTATGCTAGCGA -ACGGAAAGCAGACTATGCCACAGA -ACGGAAAGCAGACTATGCGCAAGA -ACGGAAAGCAGACTATGCGGTTGA -ACGGAAAGCAGACTATGCTCCGAT -ACGGAAAGCAGACTATGCTGGCAT -ACGGAAAGCAGACTATGCCGAGAT -ACGGAAAGCAGACTATGCTACCAC -ACGGAAAGCAGACTATGCCAGAAC -ACGGAAAGCAGACTATGCGTCTAC -ACGGAAAGCAGACTATGCACGTAC -ACGGAAAGCAGACTATGCAGTGAC -ACGGAAAGCAGACTATGCCTGTAG -ACGGAAAGCAGACTATGCCCTAAG -ACGGAAAGCAGACTATGCGTTCAG -ACGGAAAGCAGACTATGCGCATAG -ACGGAAAGCAGACTATGCGACAAG -ACGGAAAGCAGACTATGCAAGCAG -ACGGAAAGCAGACTATGCCGTCAA -ACGGAAAGCAGACTATGCGCTGAA -ACGGAAAGCAGACTATGCAGTACG -ACGGAAAGCAGACTATGCATCCGA -ACGGAAAGCAGACTATGCATGGGA -ACGGAAAGCAGACTATGCGTGCAA -ACGGAAAGCAGACTATGCGAGGAA -ACGGAAAGCAGACTATGCCAGGTA -ACGGAAAGCAGACTATGCGACTCT -ACGGAAAGCAGACTATGCAGTCCT -ACGGAAAGCAGACTATGCTAAGCC -ACGGAAAGCAGACTATGCATAGCC -ACGGAAAGCAGACTATGCTAACCG -ACGGAAAGCAGACTATGCATGCCA -ACGGAAAGCAGACTACCAGGAAAC -ACGGAAAGCAGACTACCAAACACC -ACGGAAAGCAGACTACCAATCGAG -ACGGAAAGCAGACTACCACTCCTT -ACGGAAAGCAGACTACCACCTGTT -ACGGAAAGCAGACTACCACGGTTT -ACGGAAAGCAGACTACCAGTGGTT -ACGGAAAGCAGACTACCAGCCTTT -ACGGAAAGCAGACTACCAGGTCTT -ACGGAAAGCAGACTACCAACGCTT -ACGGAAAGCAGACTACCAAGCGTT -ACGGAAAGCAGACTACCATTCGTC -ACGGAAAGCAGACTACCATCTCTC -ACGGAAAGCAGACTACCATGGATC -ACGGAAAGCAGACTACCACACTTC -ACGGAAAGCAGACTACCAGTACTC -ACGGAAAGCAGACTACCAGATGTC -ACGGAAAGCAGACTACCAACAGTC -ACGGAAAGCAGACTACCATTGCTG -ACGGAAAGCAGACTACCATCCATG -ACGGAAAGCAGACTACCATGTGTG -ACGGAAAGCAGACTACCACTAGTG -ACGGAAAGCAGACTACCACATCTG -ACGGAAAGCAGACTACCAGAGTTG -ACGGAAAGCAGACTACCAAGACTG -ACGGAAAGCAGACTACCATCGGTA -ACGGAAAGCAGACTACCATGCCTA -ACGGAAAGCAGACTACCACCACTA -ACGGAAAGCAGACTACCAGGAGTA -ACGGAAAGCAGACTACCATCGTCT -ACGGAAAGCAGACTACCATGCACT -ACGGAAAGCAGACTACCACTGACT -ACGGAAAGCAGACTACCACAACCT -ACGGAAAGCAGACTACCAGCTACT -ACGGAAAGCAGACTACCAGGATCT -ACGGAAAGCAGACTACCAAAGGCT -ACGGAAAGCAGACTACCATCAACC -ACGGAAAGCAGACTACCATGTTCC -ACGGAAAGCAGACTACCAATTCCC -ACGGAAAGCAGACTACCATTCTCG -ACGGAAAGCAGACTACCATAGACG -ACGGAAAGCAGACTACCAGTAACG -ACGGAAAGCAGACTACCAACTTCG -ACGGAAAGCAGACTACCATACGCA -ACGGAAAGCAGACTACCACTTGCA -ACGGAAAGCAGACTACCACGAACA -ACGGAAAGCAGACTACCACAGTCA -ACGGAAAGCAGACTACCAGATCCA -ACGGAAAGCAGACTACCAACGACA -ACGGAAAGCAGACTACCAAGCTCA -ACGGAAAGCAGACTACCATCACGT -ACGGAAAGCAGACTACCACGTAGT -ACGGAAAGCAGACTACCAGTCAGT -ACGGAAAGCAGACTACCAGAAGGT -ACGGAAAGCAGACTACCAAACCGT -ACGGAAAGCAGACTACCATTGTGC -ACGGAAAGCAGACTACCACTAAGC -ACGGAAAGCAGACTACCAACTAGC -ACGGAAAGCAGACTACCAAGATGC -ACGGAAAGCAGACTACCATGAAGG -ACGGAAAGCAGACTACCACAATGG -ACGGAAAGCAGACTACCAATGAGG -ACGGAAAGCAGACTACCAAATGGG -ACGGAAAGCAGACTACCATCCTGA -ACGGAAAGCAGACTACCATAGCGA -ACGGAAAGCAGACTACCACACAGA -ACGGAAAGCAGACTACCAGCAAGA -ACGGAAAGCAGACTACCAGGTTGA -ACGGAAAGCAGACTACCATCCGAT -ACGGAAAGCAGACTACCATGGCAT -ACGGAAAGCAGACTACCACGAGAT -ACGGAAAGCAGACTACCATACCAC -ACGGAAAGCAGACTACCACAGAAC -ACGGAAAGCAGACTACCAGTCTAC -ACGGAAAGCAGACTACCAACGTAC -ACGGAAAGCAGACTACCAAGTGAC -ACGGAAAGCAGACTACCACTGTAG -ACGGAAAGCAGACTACCACCTAAG -ACGGAAAGCAGACTACCAGTTCAG -ACGGAAAGCAGACTACCAGCATAG -ACGGAAAGCAGACTACCAGACAAG -ACGGAAAGCAGACTACCAAAGCAG -ACGGAAAGCAGACTACCACGTCAA -ACGGAAAGCAGACTACCAGCTGAA -ACGGAAAGCAGACTACCAAGTACG -ACGGAAAGCAGACTACCAATCCGA -ACGGAAAGCAGACTACCAATGGGA -ACGGAAAGCAGACTACCAGTGCAA -ACGGAAAGCAGACTACCAGAGGAA -ACGGAAAGCAGACTACCACAGGTA -ACGGAAAGCAGACTACCAGACTCT -ACGGAAAGCAGACTACCAAGTCCT -ACGGAAAGCAGACTACCATAAGCC -ACGGAAAGCAGACTACCAATAGCC -ACGGAAAGCAGACTACCATAACCG -ACGGAAAGCAGACTACCAATGCCA -ACGGAAAGCAGAGTAGGAGGAAAC -ACGGAAAGCAGAGTAGGAAACACC -ACGGAAAGCAGAGTAGGAATCGAG -ACGGAAAGCAGAGTAGGACTCCTT -ACGGAAAGCAGAGTAGGACCTGTT -ACGGAAAGCAGAGTAGGACGGTTT -ACGGAAAGCAGAGTAGGAGTGGTT -ACGGAAAGCAGAGTAGGAGCCTTT -ACGGAAAGCAGAGTAGGAGGTCTT -ACGGAAAGCAGAGTAGGAACGCTT -ACGGAAAGCAGAGTAGGAAGCGTT -ACGGAAAGCAGAGTAGGATTCGTC -ACGGAAAGCAGAGTAGGATCTCTC -ACGGAAAGCAGAGTAGGATGGATC -ACGGAAAGCAGAGTAGGACACTTC -ACGGAAAGCAGAGTAGGAGTACTC -ACGGAAAGCAGAGTAGGAGATGTC -ACGGAAAGCAGAGTAGGAACAGTC -ACGGAAAGCAGAGTAGGATTGCTG -ACGGAAAGCAGAGTAGGATCCATG -ACGGAAAGCAGAGTAGGATGTGTG -ACGGAAAGCAGAGTAGGACTAGTG -ACGGAAAGCAGAGTAGGACATCTG -ACGGAAAGCAGAGTAGGAGAGTTG -ACGGAAAGCAGAGTAGGAAGACTG -ACGGAAAGCAGAGTAGGATCGGTA -ACGGAAAGCAGAGTAGGATGCCTA -ACGGAAAGCAGAGTAGGACCACTA -ACGGAAAGCAGAGTAGGAGGAGTA -ACGGAAAGCAGAGTAGGATCGTCT -ACGGAAAGCAGAGTAGGATGCACT -ACGGAAAGCAGAGTAGGACTGACT -ACGGAAAGCAGAGTAGGACAACCT -ACGGAAAGCAGAGTAGGAGCTACT -ACGGAAAGCAGAGTAGGAGGATCT -ACGGAAAGCAGAGTAGGAAAGGCT -ACGGAAAGCAGAGTAGGATCAACC -ACGGAAAGCAGAGTAGGATGTTCC -ACGGAAAGCAGAGTAGGAATTCCC -ACGGAAAGCAGAGTAGGATTCTCG -ACGGAAAGCAGAGTAGGATAGACG -ACGGAAAGCAGAGTAGGAGTAACG -ACGGAAAGCAGAGTAGGAACTTCG -ACGGAAAGCAGAGTAGGATACGCA -ACGGAAAGCAGAGTAGGACTTGCA -ACGGAAAGCAGAGTAGGACGAACA -ACGGAAAGCAGAGTAGGACAGTCA -ACGGAAAGCAGAGTAGGAGATCCA -ACGGAAAGCAGAGTAGGAACGACA -ACGGAAAGCAGAGTAGGAAGCTCA -ACGGAAAGCAGAGTAGGATCACGT -ACGGAAAGCAGAGTAGGACGTAGT -ACGGAAAGCAGAGTAGGAGTCAGT -ACGGAAAGCAGAGTAGGAGAAGGT -ACGGAAAGCAGAGTAGGAAACCGT -ACGGAAAGCAGAGTAGGATTGTGC -ACGGAAAGCAGAGTAGGACTAAGC -ACGGAAAGCAGAGTAGGAACTAGC -ACGGAAAGCAGAGTAGGAAGATGC -ACGGAAAGCAGAGTAGGATGAAGG -ACGGAAAGCAGAGTAGGACAATGG -ACGGAAAGCAGAGTAGGAATGAGG -ACGGAAAGCAGAGTAGGAAATGGG -ACGGAAAGCAGAGTAGGATCCTGA -ACGGAAAGCAGAGTAGGATAGCGA -ACGGAAAGCAGAGTAGGACACAGA -ACGGAAAGCAGAGTAGGAGCAAGA -ACGGAAAGCAGAGTAGGAGGTTGA -ACGGAAAGCAGAGTAGGATCCGAT -ACGGAAAGCAGAGTAGGATGGCAT -ACGGAAAGCAGAGTAGGACGAGAT -ACGGAAAGCAGAGTAGGATACCAC -ACGGAAAGCAGAGTAGGACAGAAC -ACGGAAAGCAGAGTAGGAGTCTAC -ACGGAAAGCAGAGTAGGAACGTAC -ACGGAAAGCAGAGTAGGAAGTGAC -ACGGAAAGCAGAGTAGGACTGTAG -ACGGAAAGCAGAGTAGGACCTAAG -ACGGAAAGCAGAGTAGGAGTTCAG -ACGGAAAGCAGAGTAGGAGCATAG -ACGGAAAGCAGAGTAGGAGACAAG -ACGGAAAGCAGAGTAGGAAAGCAG -ACGGAAAGCAGAGTAGGACGTCAA -ACGGAAAGCAGAGTAGGAGCTGAA -ACGGAAAGCAGAGTAGGAAGTACG -ACGGAAAGCAGAGTAGGAATCCGA -ACGGAAAGCAGAGTAGGAATGGGA -ACGGAAAGCAGAGTAGGAGTGCAA -ACGGAAAGCAGAGTAGGAGAGGAA -ACGGAAAGCAGAGTAGGACAGGTA -ACGGAAAGCAGAGTAGGAGACTCT -ACGGAAAGCAGAGTAGGAAGTCCT -ACGGAAAGCAGAGTAGGATAAGCC -ACGGAAAGCAGAGTAGGAATAGCC -ACGGAAAGCAGAGTAGGATAACCG -ACGGAAAGCAGAGTAGGAATGCCA -ACGGAAAGCAGATCTTCGGGAAAC -ACGGAAAGCAGATCTTCGAACACC -ACGGAAAGCAGATCTTCGATCGAG -ACGGAAAGCAGATCTTCGCTCCTT -ACGGAAAGCAGATCTTCGCCTGTT -ACGGAAAGCAGATCTTCGCGGTTT -ACGGAAAGCAGATCTTCGGTGGTT -ACGGAAAGCAGATCTTCGGCCTTT -ACGGAAAGCAGATCTTCGGGTCTT -ACGGAAAGCAGATCTTCGACGCTT -ACGGAAAGCAGATCTTCGAGCGTT -ACGGAAAGCAGATCTTCGTTCGTC -ACGGAAAGCAGATCTTCGTCTCTC -ACGGAAAGCAGATCTTCGTGGATC -ACGGAAAGCAGATCTTCGCACTTC -ACGGAAAGCAGATCTTCGGTACTC -ACGGAAAGCAGATCTTCGGATGTC -ACGGAAAGCAGATCTTCGACAGTC -ACGGAAAGCAGATCTTCGTTGCTG -ACGGAAAGCAGATCTTCGTCCATG -ACGGAAAGCAGATCTTCGTGTGTG -ACGGAAAGCAGATCTTCGCTAGTG -ACGGAAAGCAGATCTTCGCATCTG -ACGGAAAGCAGATCTTCGGAGTTG -ACGGAAAGCAGATCTTCGAGACTG -ACGGAAAGCAGATCTTCGTCGGTA -ACGGAAAGCAGATCTTCGTGCCTA -ACGGAAAGCAGATCTTCGCCACTA -ACGGAAAGCAGATCTTCGGGAGTA -ACGGAAAGCAGATCTTCGTCGTCT -ACGGAAAGCAGATCTTCGTGCACT -ACGGAAAGCAGATCTTCGCTGACT -ACGGAAAGCAGATCTTCGCAACCT -ACGGAAAGCAGATCTTCGGCTACT -ACGGAAAGCAGATCTTCGGGATCT -ACGGAAAGCAGATCTTCGAAGGCT -ACGGAAAGCAGATCTTCGTCAACC -ACGGAAAGCAGATCTTCGTGTTCC -ACGGAAAGCAGATCTTCGATTCCC -ACGGAAAGCAGATCTTCGTTCTCG -ACGGAAAGCAGATCTTCGTAGACG -ACGGAAAGCAGATCTTCGGTAACG -ACGGAAAGCAGATCTTCGACTTCG -ACGGAAAGCAGATCTTCGTACGCA -ACGGAAAGCAGATCTTCGCTTGCA -ACGGAAAGCAGATCTTCGCGAACA -ACGGAAAGCAGATCTTCGCAGTCA -ACGGAAAGCAGATCTTCGGATCCA -ACGGAAAGCAGATCTTCGACGACA -ACGGAAAGCAGATCTTCGAGCTCA -ACGGAAAGCAGATCTTCGTCACGT -ACGGAAAGCAGATCTTCGCGTAGT -ACGGAAAGCAGATCTTCGGTCAGT -ACGGAAAGCAGATCTTCGGAAGGT -ACGGAAAGCAGATCTTCGAACCGT -ACGGAAAGCAGATCTTCGTTGTGC -ACGGAAAGCAGATCTTCGCTAAGC -ACGGAAAGCAGATCTTCGACTAGC -ACGGAAAGCAGATCTTCGAGATGC -ACGGAAAGCAGATCTTCGTGAAGG -ACGGAAAGCAGATCTTCGCAATGG -ACGGAAAGCAGATCTTCGATGAGG -ACGGAAAGCAGATCTTCGAATGGG -ACGGAAAGCAGATCTTCGTCCTGA -ACGGAAAGCAGATCTTCGTAGCGA -ACGGAAAGCAGATCTTCGCACAGA -ACGGAAAGCAGATCTTCGGCAAGA -ACGGAAAGCAGATCTTCGGGTTGA -ACGGAAAGCAGATCTTCGTCCGAT -ACGGAAAGCAGATCTTCGTGGCAT -ACGGAAAGCAGATCTTCGCGAGAT -ACGGAAAGCAGATCTTCGTACCAC -ACGGAAAGCAGATCTTCGCAGAAC -ACGGAAAGCAGATCTTCGGTCTAC -ACGGAAAGCAGATCTTCGACGTAC -ACGGAAAGCAGATCTTCGAGTGAC -ACGGAAAGCAGATCTTCGCTGTAG -ACGGAAAGCAGATCTTCGCCTAAG -ACGGAAAGCAGATCTTCGGTTCAG -ACGGAAAGCAGATCTTCGGCATAG -ACGGAAAGCAGATCTTCGGACAAG -ACGGAAAGCAGATCTTCGAAGCAG -ACGGAAAGCAGATCTTCGCGTCAA -ACGGAAAGCAGATCTTCGGCTGAA -ACGGAAAGCAGATCTTCGAGTACG -ACGGAAAGCAGATCTTCGATCCGA -ACGGAAAGCAGATCTTCGATGGGA -ACGGAAAGCAGATCTTCGGTGCAA -ACGGAAAGCAGATCTTCGGAGGAA -ACGGAAAGCAGATCTTCGCAGGTA -ACGGAAAGCAGATCTTCGGACTCT -ACGGAAAGCAGATCTTCGAGTCCT -ACGGAAAGCAGATCTTCGTAAGCC -ACGGAAAGCAGATCTTCGATAGCC -ACGGAAAGCAGATCTTCGTAACCG -ACGGAAAGCAGATCTTCGATGCCA -ACGGAAAGCAGAACTTGCGGAAAC -ACGGAAAGCAGAACTTGCAACACC -ACGGAAAGCAGAACTTGCATCGAG -ACGGAAAGCAGAACTTGCCTCCTT -ACGGAAAGCAGAACTTGCCCTGTT -ACGGAAAGCAGAACTTGCCGGTTT -ACGGAAAGCAGAACTTGCGTGGTT -ACGGAAAGCAGAACTTGCGCCTTT -ACGGAAAGCAGAACTTGCGGTCTT -ACGGAAAGCAGAACTTGCACGCTT -ACGGAAAGCAGAACTTGCAGCGTT -ACGGAAAGCAGAACTTGCTTCGTC -ACGGAAAGCAGAACTTGCTCTCTC -ACGGAAAGCAGAACTTGCTGGATC -ACGGAAAGCAGAACTTGCCACTTC -ACGGAAAGCAGAACTTGCGTACTC -ACGGAAAGCAGAACTTGCGATGTC -ACGGAAAGCAGAACTTGCACAGTC -ACGGAAAGCAGAACTTGCTTGCTG -ACGGAAAGCAGAACTTGCTCCATG -ACGGAAAGCAGAACTTGCTGTGTG -ACGGAAAGCAGAACTTGCCTAGTG -ACGGAAAGCAGAACTTGCCATCTG -ACGGAAAGCAGAACTTGCGAGTTG -ACGGAAAGCAGAACTTGCAGACTG -ACGGAAAGCAGAACTTGCTCGGTA -ACGGAAAGCAGAACTTGCTGCCTA -ACGGAAAGCAGAACTTGCCCACTA -ACGGAAAGCAGAACTTGCGGAGTA -ACGGAAAGCAGAACTTGCTCGTCT -ACGGAAAGCAGAACTTGCTGCACT -ACGGAAAGCAGAACTTGCCTGACT -ACGGAAAGCAGAACTTGCCAACCT -ACGGAAAGCAGAACTTGCGCTACT -ACGGAAAGCAGAACTTGCGGATCT -ACGGAAAGCAGAACTTGCAAGGCT -ACGGAAAGCAGAACTTGCTCAACC -ACGGAAAGCAGAACTTGCTGTTCC -ACGGAAAGCAGAACTTGCATTCCC -ACGGAAAGCAGAACTTGCTTCTCG -ACGGAAAGCAGAACTTGCTAGACG -ACGGAAAGCAGAACTTGCGTAACG -ACGGAAAGCAGAACTTGCACTTCG -ACGGAAAGCAGAACTTGCTACGCA -ACGGAAAGCAGAACTTGCCTTGCA -ACGGAAAGCAGAACTTGCCGAACA -ACGGAAAGCAGAACTTGCCAGTCA -ACGGAAAGCAGAACTTGCGATCCA -ACGGAAAGCAGAACTTGCACGACA -ACGGAAAGCAGAACTTGCAGCTCA -ACGGAAAGCAGAACTTGCTCACGT -ACGGAAAGCAGAACTTGCCGTAGT -ACGGAAAGCAGAACTTGCGTCAGT -ACGGAAAGCAGAACTTGCGAAGGT -ACGGAAAGCAGAACTTGCAACCGT -ACGGAAAGCAGAACTTGCTTGTGC -ACGGAAAGCAGAACTTGCCTAAGC -ACGGAAAGCAGAACTTGCACTAGC -ACGGAAAGCAGAACTTGCAGATGC -ACGGAAAGCAGAACTTGCTGAAGG -ACGGAAAGCAGAACTTGCCAATGG -ACGGAAAGCAGAACTTGCATGAGG -ACGGAAAGCAGAACTTGCAATGGG -ACGGAAAGCAGAACTTGCTCCTGA -ACGGAAAGCAGAACTTGCTAGCGA -ACGGAAAGCAGAACTTGCCACAGA -ACGGAAAGCAGAACTTGCGCAAGA -ACGGAAAGCAGAACTTGCGGTTGA -ACGGAAAGCAGAACTTGCTCCGAT -ACGGAAAGCAGAACTTGCTGGCAT -ACGGAAAGCAGAACTTGCCGAGAT -ACGGAAAGCAGAACTTGCTACCAC -ACGGAAAGCAGAACTTGCCAGAAC -ACGGAAAGCAGAACTTGCGTCTAC -ACGGAAAGCAGAACTTGCACGTAC -ACGGAAAGCAGAACTTGCAGTGAC -ACGGAAAGCAGAACTTGCCTGTAG -ACGGAAAGCAGAACTTGCCCTAAG -ACGGAAAGCAGAACTTGCGTTCAG -ACGGAAAGCAGAACTTGCGCATAG -ACGGAAAGCAGAACTTGCGACAAG -ACGGAAAGCAGAACTTGCAAGCAG -ACGGAAAGCAGAACTTGCCGTCAA -ACGGAAAGCAGAACTTGCGCTGAA -ACGGAAAGCAGAACTTGCAGTACG -ACGGAAAGCAGAACTTGCATCCGA -ACGGAAAGCAGAACTTGCATGGGA -ACGGAAAGCAGAACTTGCGTGCAA -ACGGAAAGCAGAACTTGCGAGGAA -ACGGAAAGCAGAACTTGCCAGGTA -ACGGAAAGCAGAACTTGCGACTCT -ACGGAAAGCAGAACTTGCAGTCCT -ACGGAAAGCAGAACTTGCTAAGCC -ACGGAAAGCAGAACTTGCATAGCC -ACGGAAAGCAGAACTTGCTAACCG -ACGGAAAGCAGAACTTGCATGCCA -ACGGAAAGCAGAACTCTGGGAAAC -ACGGAAAGCAGAACTCTGAACACC -ACGGAAAGCAGAACTCTGATCGAG -ACGGAAAGCAGAACTCTGCTCCTT -ACGGAAAGCAGAACTCTGCCTGTT -ACGGAAAGCAGAACTCTGCGGTTT -ACGGAAAGCAGAACTCTGGTGGTT -ACGGAAAGCAGAACTCTGGCCTTT -ACGGAAAGCAGAACTCTGGGTCTT -ACGGAAAGCAGAACTCTGACGCTT -ACGGAAAGCAGAACTCTGAGCGTT -ACGGAAAGCAGAACTCTGTTCGTC -ACGGAAAGCAGAACTCTGTCTCTC -ACGGAAAGCAGAACTCTGTGGATC -ACGGAAAGCAGAACTCTGCACTTC -ACGGAAAGCAGAACTCTGGTACTC -ACGGAAAGCAGAACTCTGGATGTC -ACGGAAAGCAGAACTCTGACAGTC -ACGGAAAGCAGAACTCTGTTGCTG -ACGGAAAGCAGAACTCTGTCCATG -ACGGAAAGCAGAACTCTGTGTGTG -ACGGAAAGCAGAACTCTGCTAGTG -ACGGAAAGCAGAACTCTGCATCTG -ACGGAAAGCAGAACTCTGGAGTTG -ACGGAAAGCAGAACTCTGAGACTG -ACGGAAAGCAGAACTCTGTCGGTA -ACGGAAAGCAGAACTCTGTGCCTA -ACGGAAAGCAGAACTCTGCCACTA -ACGGAAAGCAGAACTCTGGGAGTA -ACGGAAAGCAGAACTCTGTCGTCT -ACGGAAAGCAGAACTCTGTGCACT -ACGGAAAGCAGAACTCTGCTGACT -ACGGAAAGCAGAACTCTGCAACCT -ACGGAAAGCAGAACTCTGGCTACT -ACGGAAAGCAGAACTCTGGGATCT -ACGGAAAGCAGAACTCTGAAGGCT -ACGGAAAGCAGAACTCTGTCAACC -ACGGAAAGCAGAACTCTGTGTTCC -ACGGAAAGCAGAACTCTGATTCCC -ACGGAAAGCAGAACTCTGTTCTCG -ACGGAAAGCAGAACTCTGTAGACG -ACGGAAAGCAGAACTCTGGTAACG -ACGGAAAGCAGAACTCTGACTTCG -ACGGAAAGCAGAACTCTGTACGCA -ACGGAAAGCAGAACTCTGCTTGCA -ACGGAAAGCAGAACTCTGCGAACA -ACGGAAAGCAGAACTCTGCAGTCA -ACGGAAAGCAGAACTCTGGATCCA -ACGGAAAGCAGAACTCTGACGACA -ACGGAAAGCAGAACTCTGAGCTCA -ACGGAAAGCAGAACTCTGTCACGT -ACGGAAAGCAGAACTCTGCGTAGT -ACGGAAAGCAGAACTCTGGTCAGT -ACGGAAAGCAGAACTCTGGAAGGT -ACGGAAAGCAGAACTCTGAACCGT -ACGGAAAGCAGAACTCTGTTGTGC -ACGGAAAGCAGAACTCTGCTAAGC -ACGGAAAGCAGAACTCTGACTAGC -ACGGAAAGCAGAACTCTGAGATGC -ACGGAAAGCAGAACTCTGTGAAGG -ACGGAAAGCAGAACTCTGCAATGG -ACGGAAAGCAGAACTCTGATGAGG -ACGGAAAGCAGAACTCTGAATGGG -ACGGAAAGCAGAACTCTGTCCTGA -ACGGAAAGCAGAACTCTGTAGCGA -ACGGAAAGCAGAACTCTGCACAGA -ACGGAAAGCAGAACTCTGGCAAGA -ACGGAAAGCAGAACTCTGGGTTGA -ACGGAAAGCAGAACTCTGTCCGAT -ACGGAAAGCAGAACTCTGTGGCAT -ACGGAAAGCAGAACTCTGCGAGAT -ACGGAAAGCAGAACTCTGTACCAC -ACGGAAAGCAGAACTCTGCAGAAC -ACGGAAAGCAGAACTCTGGTCTAC -ACGGAAAGCAGAACTCTGACGTAC -ACGGAAAGCAGAACTCTGAGTGAC -ACGGAAAGCAGAACTCTGCTGTAG -ACGGAAAGCAGAACTCTGCCTAAG -ACGGAAAGCAGAACTCTGGTTCAG -ACGGAAAGCAGAACTCTGGCATAG -ACGGAAAGCAGAACTCTGGACAAG -ACGGAAAGCAGAACTCTGAAGCAG -ACGGAAAGCAGAACTCTGCGTCAA -ACGGAAAGCAGAACTCTGGCTGAA -ACGGAAAGCAGAACTCTGAGTACG -ACGGAAAGCAGAACTCTGATCCGA -ACGGAAAGCAGAACTCTGATGGGA -ACGGAAAGCAGAACTCTGGTGCAA -ACGGAAAGCAGAACTCTGGAGGAA -ACGGAAAGCAGAACTCTGCAGGTA -ACGGAAAGCAGAACTCTGGACTCT -ACGGAAAGCAGAACTCTGAGTCCT -ACGGAAAGCAGAACTCTGTAAGCC -ACGGAAAGCAGAACTCTGATAGCC -ACGGAAAGCAGAACTCTGTAACCG -ACGGAAAGCAGAACTCTGATGCCA -ACGGAAAGCAGACCTCAAGGAAAC -ACGGAAAGCAGACCTCAAAACACC -ACGGAAAGCAGACCTCAAATCGAG -ACGGAAAGCAGACCTCAACTCCTT -ACGGAAAGCAGACCTCAACCTGTT -ACGGAAAGCAGACCTCAACGGTTT -ACGGAAAGCAGACCTCAAGTGGTT -ACGGAAAGCAGACCTCAAGCCTTT -ACGGAAAGCAGACCTCAAGGTCTT -ACGGAAAGCAGACCTCAAACGCTT -ACGGAAAGCAGACCTCAAAGCGTT -ACGGAAAGCAGACCTCAATTCGTC -ACGGAAAGCAGACCTCAATCTCTC -ACGGAAAGCAGACCTCAATGGATC -ACGGAAAGCAGACCTCAACACTTC -ACGGAAAGCAGACCTCAAGTACTC -ACGGAAAGCAGACCTCAAGATGTC -ACGGAAAGCAGACCTCAAACAGTC -ACGGAAAGCAGACCTCAATTGCTG -ACGGAAAGCAGACCTCAATCCATG -ACGGAAAGCAGACCTCAATGTGTG -ACGGAAAGCAGACCTCAACTAGTG -ACGGAAAGCAGACCTCAACATCTG -ACGGAAAGCAGACCTCAAGAGTTG -ACGGAAAGCAGACCTCAAAGACTG -ACGGAAAGCAGACCTCAATCGGTA -ACGGAAAGCAGACCTCAATGCCTA -ACGGAAAGCAGACCTCAACCACTA -ACGGAAAGCAGACCTCAAGGAGTA -ACGGAAAGCAGACCTCAATCGTCT -ACGGAAAGCAGACCTCAATGCACT -ACGGAAAGCAGACCTCAACTGACT -ACGGAAAGCAGACCTCAACAACCT -ACGGAAAGCAGACCTCAAGCTACT -ACGGAAAGCAGACCTCAAGGATCT -ACGGAAAGCAGACCTCAAAAGGCT -ACGGAAAGCAGACCTCAATCAACC -ACGGAAAGCAGACCTCAATGTTCC -ACGGAAAGCAGACCTCAAATTCCC -ACGGAAAGCAGACCTCAATTCTCG -ACGGAAAGCAGACCTCAATAGACG -ACGGAAAGCAGACCTCAAGTAACG -ACGGAAAGCAGACCTCAAACTTCG -ACGGAAAGCAGACCTCAATACGCA -ACGGAAAGCAGACCTCAACTTGCA -ACGGAAAGCAGACCTCAACGAACA -ACGGAAAGCAGACCTCAACAGTCA -ACGGAAAGCAGACCTCAAGATCCA -ACGGAAAGCAGACCTCAAACGACA -ACGGAAAGCAGACCTCAAAGCTCA -ACGGAAAGCAGACCTCAATCACGT -ACGGAAAGCAGACCTCAACGTAGT -ACGGAAAGCAGACCTCAAGTCAGT -ACGGAAAGCAGACCTCAAGAAGGT -ACGGAAAGCAGACCTCAAAACCGT -ACGGAAAGCAGACCTCAATTGTGC -ACGGAAAGCAGACCTCAACTAAGC -ACGGAAAGCAGACCTCAAACTAGC -ACGGAAAGCAGACCTCAAAGATGC -ACGGAAAGCAGACCTCAATGAAGG -ACGGAAAGCAGACCTCAACAATGG -ACGGAAAGCAGACCTCAAATGAGG -ACGGAAAGCAGACCTCAAAATGGG -ACGGAAAGCAGACCTCAATCCTGA -ACGGAAAGCAGACCTCAATAGCGA -ACGGAAAGCAGACCTCAACACAGA -ACGGAAAGCAGACCTCAAGCAAGA -ACGGAAAGCAGACCTCAAGGTTGA -ACGGAAAGCAGACCTCAATCCGAT -ACGGAAAGCAGACCTCAATGGCAT -ACGGAAAGCAGACCTCAACGAGAT -ACGGAAAGCAGACCTCAATACCAC -ACGGAAAGCAGACCTCAACAGAAC -ACGGAAAGCAGACCTCAAGTCTAC -ACGGAAAGCAGACCTCAAACGTAC -ACGGAAAGCAGACCTCAAAGTGAC -ACGGAAAGCAGACCTCAACTGTAG -ACGGAAAGCAGACCTCAACCTAAG -ACGGAAAGCAGACCTCAAGTTCAG -ACGGAAAGCAGACCTCAAGCATAG -ACGGAAAGCAGACCTCAAGACAAG -ACGGAAAGCAGACCTCAAAAGCAG -ACGGAAAGCAGACCTCAACGTCAA -ACGGAAAGCAGACCTCAAGCTGAA -ACGGAAAGCAGACCTCAAAGTACG -ACGGAAAGCAGACCTCAAATCCGA -ACGGAAAGCAGACCTCAAATGGGA -ACGGAAAGCAGACCTCAAGTGCAA -ACGGAAAGCAGACCTCAAGAGGAA -ACGGAAAGCAGACCTCAACAGGTA -ACGGAAAGCAGACCTCAAGACTCT -ACGGAAAGCAGACCTCAAAGTCCT -ACGGAAAGCAGACCTCAATAAGCC -ACGGAAAGCAGACCTCAAATAGCC -ACGGAAAGCAGACCTCAATAACCG -ACGGAAAGCAGACCTCAAATGCCA -ACGGAAAGCAGAACTGCTGGAAAC -ACGGAAAGCAGAACTGCTAACACC -ACGGAAAGCAGAACTGCTATCGAG -ACGGAAAGCAGAACTGCTCTCCTT -ACGGAAAGCAGAACTGCTCCTGTT -ACGGAAAGCAGAACTGCTCGGTTT -ACGGAAAGCAGAACTGCTGTGGTT -ACGGAAAGCAGAACTGCTGCCTTT -ACGGAAAGCAGAACTGCTGGTCTT -ACGGAAAGCAGAACTGCTACGCTT -ACGGAAAGCAGAACTGCTAGCGTT -ACGGAAAGCAGAACTGCTTTCGTC -ACGGAAAGCAGAACTGCTTCTCTC -ACGGAAAGCAGAACTGCTTGGATC -ACGGAAAGCAGAACTGCTCACTTC -ACGGAAAGCAGAACTGCTGTACTC -ACGGAAAGCAGAACTGCTGATGTC -ACGGAAAGCAGAACTGCTACAGTC -ACGGAAAGCAGAACTGCTTTGCTG -ACGGAAAGCAGAACTGCTTCCATG -ACGGAAAGCAGAACTGCTTGTGTG -ACGGAAAGCAGAACTGCTCTAGTG -ACGGAAAGCAGAACTGCTCATCTG -ACGGAAAGCAGAACTGCTGAGTTG -ACGGAAAGCAGAACTGCTAGACTG -ACGGAAAGCAGAACTGCTTCGGTA -ACGGAAAGCAGAACTGCTTGCCTA -ACGGAAAGCAGAACTGCTCCACTA -ACGGAAAGCAGAACTGCTGGAGTA -ACGGAAAGCAGAACTGCTTCGTCT -ACGGAAAGCAGAACTGCTTGCACT -ACGGAAAGCAGAACTGCTCTGACT -ACGGAAAGCAGAACTGCTCAACCT -ACGGAAAGCAGAACTGCTGCTACT -ACGGAAAGCAGAACTGCTGGATCT -ACGGAAAGCAGAACTGCTAAGGCT -ACGGAAAGCAGAACTGCTTCAACC -ACGGAAAGCAGAACTGCTTGTTCC -ACGGAAAGCAGAACTGCTATTCCC -ACGGAAAGCAGAACTGCTTTCTCG -ACGGAAAGCAGAACTGCTTAGACG -ACGGAAAGCAGAACTGCTGTAACG -ACGGAAAGCAGAACTGCTACTTCG -ACGGAAAGCAGAACTGCTTACGCA -ACGGAAAGCAGAACTGCTCTTGCA -ACGGAAAGCAGAACTGCTCGAACA -ACGGAAAGCAGAACTGCTCAGTCA -ACGGAAAGCAGAACTGCTGATCCA -ACGGAAAGCAGAACTGCTACGACA -ACGGAAAGCAGAACTGCTAGCTCA -ACGGAAAGCAGAACTGCTTCACGT -ACGGAAAGCAGAACTGCTCGTAGT -ACGGAAAGCAGAACTGCTGTCAGT -ACGGAAAGCAGAACTGCTGAAGGT -ACGGAAAGCAGAACTGCTAACCGT -ACGGAAAGCAGAACTGCTTTGTGC -ACGGAAAGCAGAACTGCTCTAAGC -ACGGAAAGCAGAACTGCTACTAGC -ACGGAAAGCAGAACTGCTAGATGC -ACGGAAAGCAGAACTGCTTGAAGG -ACGGAAAGCAGAACTGCTCAATGG -ACGGAAAGCAGAACTGCTATGAGG -ACGGAAAGCAGAACTGCTAATGGG -ACGGAAAGCAGAACTGCTTCCTGA -ACGGAAAGCAGAACTGCTTAGCGA -ACGGAAAGCAGAACTGCTCACAGA -ACGGAAAGCAGAACTGCTGCAAGA -ACGGAAAGCAGAACTGCTGGTTGA -ACGGAAAGCAGAACTGCTTCCGAT -ACGGAAAGCAGAACTGCTTGGCAT -ACGGAAAGCAGAACTGCTCGAGAT -ACGGAAAGCAGAACTGCTTACCAC -ACGGAAAGCAGAACTGCTCAGAAC -ACGGAAAGCAGAACTGCTGTCTAC -ACGGAAAGCAGAACTGCTACGTAC -ACGGAAAGCAGAACTGCTAGTGAC -ACGGAAAGCAGAACTGCTCTGTAG -ACGGAAAGCAGAACTGCTCCTAAG -ACGGAAAGCAGAACTGCTGTTCAG -ACGGAAAGCAGAACTGCTGCATAG -ACGGAAAGCAGAACTGCTGACAAG -ACGGAAAGCAGAACTGCTAAGCAG -ACGGAAAGCAGAACTGCTCGTCAA -ACGGAAAGCAGAACTGCTGCTGAA -ACGGAAAGCAGAACTGCTAGTACG -ACGGAAAGCAGAACTGCTATCCGA -ACGGAAAGCAGAACTGCTATGGGA -ACGGAAAGCAGAACTGCTGTGCAA -ACGGAAAGCAGAACTGCTGAGGAA -ACGGAAAGCAGAACTGCTCAGGTA -ACGGAAAGCAGAACTGCTGACTCT -ACGGAAAGCAGAACTGCTAGTCCT -ACGGAAAGCAGAACTGCTTAAGCC -ACGGAAAGCAGAACTGCTATAGCC -ACGGAAAGCAGAACTGCTTAACCG -ACGGAAAGCAGAACTGCTATGCCA -ACGGAAAGCAGATCTGGAGGAAAC -ACGGAAAGCAGATCTGGAAACACC -ACGGAAAGCAGATCTGGAATCGAG -ACGGAAAGCAGATCTGGACTCCTT -ACGGAAAGCAGATCTGGACCTGTT -ACGGAAAGCAGATCTGGACGGTTT -ACGGAAAGCAGATCTGGAGTGGTT -ACGGAAAGCAGATCTGGAGCCTTT -ACGGAAAGCAGATCTGGAGGTCTT -ACGGAAAGCAGATCTGGAACGCTT -ACGGAAAGCAGATCTGGAAGCGTT -ACGGAAAGCAGATCTGGATTCGTC -ACGGAAAGCAGATCTGGATCTCTC -ACGGAAAGCAGATCTGGATGGATC -ACGGAAAGCAGATCTGGACACTTC -ACGGAAAGCAGATCTGGAGTACTC -ACGGAAAGCAGATCTGGAGATGTC -ACGGAAAGCAGATCTGGAACAGTC -ACGGAAAGCAGATCTGGATTGCTG -ACGGAAAGCAGATCTGGATCCATG -ACGGAAAGCAGATCTGGATGTGTG -ACGGAAAGCAGATCTGGACTAGTG -ACGGAAAGCAGATCTGGACATCTG -ACGGAAAGCAGATCTGGAGAGTTG -ACGGAAAGCAGATCTGGAAGACTG -ACGGAAAGCAGATCTGGATCGGTA -ACGGAAAGCAGATCTGGATGCCTA -ACGGAAAGCAGATCTGGACCACTA -ACGGAAAGCAGATCTGGAGGAGTA -ACGGAAAGCAGATCTGGATCGTCT -ACGGAAAGCAGATCTGGATGCACT -ACGGAAAGCAGATCTGGACTGACT -ACGGAAAGCAGATCTGGACAACCT -ACGGAAAGCAGATCTGGAGCTACT -ACGGAAAGCAGATCTGGAGGATCT -ACGGAAAGCAGATCTGGAAAGGCT -ACGGAAAGCAGATCTGGATCAACC -ACGGAAAGCAGATCTGGATGTTCC -ACGGAAAGCAGATCTGGAATTCCC -ACGGAAAGCAGATCTGGATTCTCG -ACGGAAAGCAGATCTGGATAGACG -ACGGAAAGCAGATCTGGAGTAACG -ACGGAAAGCAGATCTGGAACTTCG -ACGGAAAGCAGATCTGGATACGCA -ACGGAAAGCAGATCTGGACTTGCA -ACGGAAAGCAGATCTGGACGAACA -ACGGAAAGCAGATCTGGACAGTCA -ACGGAAAGCAGATCTGGAGATCCA -ACGGAAAGCAGATCTGGAACGACA -ACGGAAAGCAGATCTGGAAGCTCA -ACGGAAAGCAGATCTGGATCACGT -ACGGAAAGCAGATCTGGACGTAGT -ACGGAAAGCAGATCTGGAGTCAGT -ACGGAAAGCAGATCTGGAGAAGGT -ACGGAAAGCAGATCTGGAAACCGT -ACGGAAAGCAGATCTGGATTGTGC -ACGGAAAGCAGATCTGGACTAAGC -ACGGAAAGCAGATCTGGAACTAGC -ACGGAAAGCAGATCTGGAAGATGC -ACGGAAAGCAGATCTGGATGAAGG -ACGGAAAGCAGATCTGGACAATGG -ACGGAAAGCAGATCTGGAATGAGG -ACGGAAAGCAGATCTGGAAATGGG -ACGGAAAGCAGATCTGGATCCTGA -ACGGAAAGCAGATCTGGATAGCGA -ACGGAAAGCAGATCTGGACACAGA -ACGGAAAGCAGATCTGGAGCAAGA -ACGGAAAGCAGATCTGGAGGTTGA -ACGGAAAGCAGATCTGGATCCGAT -ACGGAAAGCAGATCTGGATGGCAT -ACGGAAAGCAGATCTGGACGAGAT -ACGGAAAGCAGATCTGGATACCAC -ACGGAAAGCAGATCTGGACAGAAC -ACGGAAAGCAGATCTGGAGTCTAC -ACGGAAAGCAGATCTGGAACGTAC -ACGGAAAGCAGATCTGGAAGTGAC -ACGGAAAGCAGATCTGGACTGTAG -ACGGAAAGCAGATCTGGACCTAAG -ACGGAAAGCAGATCTGGAGTTCAG -ACGGAAAGCAGATCTGGAGCATAG -ACGGAAAGCAGATCTGGAGACAAG -ACGGAAAGCAGATCTGGAAAGCAG -ACGGAAAGCAGATCTGGACGTCAA -ACGGAAAGCAGATCTGGAGCTGAA -ACGGAAAGCAGATCTGGAAGTACG -ACGGAAAGCAGATCTGGAATCCGA -ACGGAAAGCAGATCTGGAATGGGA -ACGGAAAGCAGATCTGGAGTGCAA -ACGGAAAGCAGATCTGGAGAGGAA -ACGGAAAGCAGATCTGGACAGGTA -ACGGAAAGCAGATCTGGAGACTCT -ACGGAAAGCAGATCTGGAAGTCCT -ACGGAAAGCAGATCTGGATAAGCC -ACGGAAAGCAGATCTGGAATAGCC -ACGGAAAGCAGATCTGGATAACCG -ACGGAAAGCAGATCTGGAATGCCA -ACGGAAAGCAGAGCTAAGGGAAAC -ACGGAAAGCAGAGCTAAGAACACC -ACGGAAAGCAGAGCTAAGATCGAG -ACGGAAAGCAGAGCTAAGCTCCTT -ACGGAAAGCAGAGCTAAGCCTGTT -ACGGAAAGCAGAGCTAAGCGGTTT -ACGGAAAGCAGAGCTAAGGTGGTT -ACGGAAAGCAGAGCTAAGGCCTTT -ACGGAAAGCAGAGCTAAGGGTCTT -ACGGAAAGCAGAGCTAAGACGCTT -ACGGAAAGCAGAGCTAAGAGCGTT -ACGGAAAGCAGAGCTAAGTTCGTC -ACGGAAAGCAGAGCTAAGTCTCTC -ACGGAAAGCAGAGCTAAGTGGATC -ACGGAAAGCAGAGCTAAGCACTTC -ACGGAAAGCAGAGCTAAGGTACTC -ACGGAAAGCAGAGCTAAGGATGTC -ACGGAAAGCAGAGCTAAGACAGTC -ACGGAAAGCAGAGCTAAGTTGCTG -ACGGAAAGCAGAGCTAAGTCCATG -ACGGAAAGCAGAGCTAAGTGTGTG -ACGGAAAGCAGAGCTAAGCTAGTG -ACGGAAAGCAGAGCTAAGCATCTG -ACGGAAAGCAGAGCTAAGGAGTTG -ACGGAAAGCAGAGCTAAGAGACTG -ACGGAAAGCAGAGCTAAGTCGGTA -ACGGAAAGCAGAGCTAAGTGCCTA -ACGGAAAGCAGAGCTAAGCCACTA -ACGGAAAGCAGAGCTAAGGGAGTA -ACGGAAAGCAGAGCTAAGTCGTCT -ACGGAAAGCAGAGCTAAGTGCACT -ACGGAAAGCAGAGCTAAGCTGACT -ACGGAAAGCAGAGCTAAGCAACCT -ACGGAAAGCAGAGCTAAGGCTACT -ACGGAAAGCAGAGCTAAGGGATCT -ACGGAAAGCAGAGCTAAGAAGGCT -ACGGAAAGCAGAGCTAAGTCAACC -ACGGAAAGCAGAGCTAAGTGTTCC -ACGGAAAGCAGAGCTAAGATTCCC -ACGGAAAGCAGAGCTAAGTTCTCG -ACGGAAAGCAGAGCTAAGTAGACG -ACGGAAAGCAGAGCTAAGGTAACG -ACGGAAAGCAGAGCTAAGACTTCG -ACGGAAAGCAGAGCTAAGTACGCA -ACGGAAAGCAGAGCTAAGCTTGCA -ACGGAAAGCAGAGCTAAGCGAACA -ACGGAAAGCAGAGCTAAGCAGTCA -ACGGAAAGCAGAGCTAAGGATCCA -ACGGAAAGCAGAGCTAAGACGACA -ACGGAAAGCAGAGCTAAGAGCTCA -ACGGAAAGCAGAGCTAAGTCACGT -ACGGAAAGCAGAGCTAAGCGTAGT -ACGGAAAGCAGAGCTAAGGTCAGT -ACGGAAAGCAGAGCTAAGGAAGGT -ACGGAAAGCAGAGCTAAGAACCGT -ACGGAAAGCAGAGCTAAGTTGTGC -ACGGAAAGCAGAGCTAAGCTAAGC -ACGGAAAGCAGAGCTAAGACTAGC -ACGGAAAGCAGAGCTAAGAGATGC -ACGGAAAGCAGAGCTAAGTGAAGG -ACGGAAAGCAGAGCTAAGCAATGG -ACGGAAAGCAGAGCTAAGATGAGG -ACGGAAAGCAGAGCTAAGAATGGG -ACGGAAAGCAGAGCTAAGTCCTGA -ACGGAAAGCAGAGCTAAGTAGCGA -ACGGAAAGCAGAGCTAAGCACAGA -ACGGAAAGCAGAGCTAAGGCAAGA -ACGGAAAGCAGAGCTAAGGGTTGA -ACGGAAAGCAGAGCTAAGTCCGAT -ACGGAAAGCAGAGCTAAGTGGCAT -ACGGAAAGCAGAGCTAAGCGAGAT -ACGGAAAGCAGAGCTAAGTACCAC -ACGGAAAGCAGAGCTAAGCAGAAC -ACGGAAAGCAGAGCTAAGGTCTAC -ACGGAAAGCAGAGCTAAGACGTAC -ACGGAAAGCAGAGCTAAGAGTGAC -ACGGAAAGCAGAGCTAAGCTGTAG -ACGGAAAGCAGAGCTAAGCCTAAG -ACGGAAAGCAGAGCTAAGGTTCAG -ACGGAAAGCAGAGCTAAGGCATAG -ACGGAAAGCAGAGCTAAGGACAAG -ACGGAAAGCAGAGCTAAGAAGCAG -ACGGAAAGCAGAGCTAAGCGTCAA -ACGGAAAGCAGAGCTAAGGCTGAA -ACGGAAAGCAGAGCTAAGAGTACG -ACGGAAAGCAGAGCTAAGATCCGA -ACGGAAAGCAGAGCTAAGATGGGA -ACGGAAAGCAGAGCTAAGGTGCAA -ACGGAAAGCAGAGCTAAGGAGGAA -ACGGAAAGCAGAGCTAAGCAGGTA -ACGGAAAGCAGAGCTAAGGACTCT -ACGGAAAGCAGAGCTAAGAGTCCT -ACGGAAAGCAGAGCTAAGTAAGCC -ACGGAAAGCAGAGCTAAGATAGCC -ACGGAAAGCAGAGCTAAGTAACCG -ACGGAAAGCAGAGCTAAGATGCCA -ACGGAAAGCAGAACCTCAGGAAAC -ACGGAAAGCAGAACCTCAAACACC -ACGGAAAGCAGAACCTCAATCGAG -ACGGAAAGCAGAACCTCACTCCTT -ACGGAAAGCAGAACCTCACCTGTT -ACGGAAAGCAGAACCTCACGGTTT -ACGGAAAGCAGAACCTCAGTGGTT -ACGGAAAGCAGAACCTCAGCCTTT -ACGGAAAGCAGAACCTCAGGTCTT -ACGGAAAGCAGAACCTCAACGCTT -ACGGAAAGCAGAACCTCAAGCGTT -ACGGAAAGCAGAACCTCATTCGTC -ACGGAAAGCAGAACCTCATCTCTC -ACGGAAAGCAGAACCTCATGGATC -ACGGAAAGCAGAACCTCACACTTC -ACGGAAAGCAGAACCTCAGTACTC -ACGGAAAGCAGAACCTCAGATGTC -ACGGAAAGCAGAACCTCAACAGTC -ACGGAAAGCAGAACCTCATTGCTG -ACGGAAAGCAGAACCTCATCCATG -ACGGAAAGCAGAACCTCATGTGTG -ACGGAAAGCAGAACCTCACTAGTG -ACGGAAAGCAGAACCTCACATCTG -ACGGAAAGCAGAACCTCAGAGTTG -ACGGAAAGCAGAACCTCAAGACTG -ACGGAAAGCAGAACCTCATCGGTA -ACGGAAAGCAGAACCTCATGCCTA -ACGGAAAGCAGAACCTCACCACTA -ACGGAAAGCAGAACCTCAGGAGTA -ACGGAAAGCAGAACCTCATCGTCT -ACGGAAAGCAGAACCTCATGCACT -ACGGAAAGCAGAACCTCACTGACT -ACGGAAAGCAGAACCTCACAACCT -ACGGAAAGCAGAACCTCAGCTACT -ACGGAAAGCAGAACCTCAGGATCT -ACGGAAAGCAGAACCTCAAAGGCT -ACGGAAAGCAGAACCTCATCAACC -ACGGAAAGCAGAACCTCATGTTCC -ACGGAAAGCAGAACCTCAATTCCC -ACGGAAAGCAGAACCTCATTCTCG -ACGGAAAGCAGAACCTCATAGACG -ACGGAAAGCAGAACCTCAGTAACG -ACGGAAAGCAGAACCTCAACTTCG -ACGGAAAGCAGAACCTCATACGCA -ACGGAAAGCAGAACCTCACTTGCA -ACGGAAAGCAGAACCTCACGAACA -ACGGAAAGCAGAACCTCACAGTCA -ACGGAAAGCAGAACCTCAGATCCA -ACGGAAAGCAGAACCTCAACGACA -ACGGAAAGCAGAACCTCAAGCTCA -ACGGAAAGCAGAACCTCATCACGT -ACGGAAAGCAGAACCTCACGTAGT -ACGGAAAGCAGAACCTCAGTCAGT -ACGGAAAGCAGAACCTCAGAAGGT -ACGGAAAGCAGAACCTCAAACCGT -ACGGAAAGCAGAACCTCATTGTGC -ACGGAAAGCAGAACCTCACTAAGC -ACGGAAAGCAGAACCTCAACTAGC -ACGGAAAGCAGAACCTCAAGATGC -ACGGAAAGCAGAACCTCATGAAGG -ACGGAAAGCAGAACCTCACAATGG -ACGGAAAGCAGAACCTCAATGAGG -ACGGAAAGCAGAACCTCAAATGGG -ACGGAAAGCAGAACCTCATCCTGA -ACGGAAAGCAGAACCTCATAGCGA -ACGGAAAGCAGAACCTCACACAGA -ACGGAAAGCAGAACCTCAGCAAGA -ACGGAAAGCAGAACCTCAGGTTGA -ACGGAAAGCAGAACCTCATCCGAT -ACGGAAAGCAGAACCTCATGGCAT -ACGGAAAGCAGAACCTCACGAGAT -ACGGAAAGCAGAACCTCATACCAC -ACGGAAAGCAGAACCTCACAGAAC -ACGGAAAGCAGAACCTCAGTCTAC -ACGGAAAGCAGAACCTCAACGTAC -ACGGAAAGCAGAACCTCAAGTGAC -ACGGAAAGCAGAACCTCACTGTAG -ACGGAAAGCAGAACCTCACCTAAG -ACGGAAAGCAGAACCTCAGTTCAG -ACGGAAAGCAGAACCTCAGCATAG -ACGGAAAGCAGAACCTCAGACAAG -ACGGAAAGCAGAACCTCAAAGCAG -ACGGAAAGCAGAACCTCACGTCAA -ACGGAAAGCAGAACCTCAGCTGAA -ACGGAAAGCAGAACCTCAAGTACG -ACGGAAAGCAGAACCTCAATCCGA -ACGGAAAGCAGAACCTCAATGGGA -ACGGAAAGCAGAACCTCAGTGCAA -ACGGAAAGCAGAACCTCAGAGGAA -ACGGAAAGCAGAACCTCACAGGTA -ACGGAAAGCAGAACCTCAGACTCT -ACGGAAAGCAGAACCTCAAGTCCT -ACGGAAAGCAGAACCTCATAAGCC -ACGGAAAGCAGAACCTCAATAGCC -ACGGAAAGCAGAACCTCATAACCG -ACGGAAAGCAGAACCTCAATGCCA -ACGGAAAGCAGATCCTGTGGAAAC -ACGGAAAGCAGATCCTGTAACACC -ACGGAAAGCAGATCCTGTATCGAG -ACGGAAAGCAGATCCTGTCTCCTT -ACGGAAAGCAGATCCTGTCCTGTT -ACGGAAAGCAGATCCTGTCGGTTT -ACGGAAAGCAGATCCTGTGTGGTT -ACGGAAAGCAGATCCTGTGCCTTT -ACGGAAAGCAGATCCTGTGGTCTT -ACGGAAAGCAGATCCTGTACGCTT -ACGGAAAGCAGATCCTGTAGCGTT -ACGGAAAGCAGATCCTGTTTCGTC -ACGGAAAGCAGATCCTGTTCTCTC -ACGGAAAGCAGATCCTGTTGGATC -ACGGAAAGCAGATCCTGTCACTTC -ACGGAAAGCAGATCCTGTGTACTC -ACGGAAAGCAGATCCTGTGATGTC -ACGGAAAGCAGATCCTGTACAGTC -ACGGAAAGCAGATCCTGTTTGCTG -ACGGAAAGCAGATCCTGTTCCATG -ACGGAAAGCAGATCCTGTTGTGTG -ACGGAAAGCAGATCCTGTCTAGTG -ACGGAAAGCAGATCCTGTCATCTG -ACGGAAAGCAGATCCTGTGAGTTG -ACGGAAAGCAGATCCTGTAGACTG -ACGGAAAGCAGATCCTGTTCGGTA -ACGGAAAGCAGATCCTGTTGCCTA -ACGGAAAGCAGATCCTGTCCACTA -ACGGAAAGCAGATCCTGTGGAGTA -ACGGAAAGCAGATCCTGTTCGTCT -ACGGAAAGCAGATCCTGTTGCACT -ACGGAAAGCAGATCCTGTCTGACT -ACGGAAAGCAGATCCTGTCAACCT -ACGGAAAGCAGATCCTGTGCTACT -ACGGAAAGCAGATCCTGTGGATCT -ACGGAAAGCAGATCCTGTAAGGCT -ACGGAAAGCAGATCCTGTTCAACC -ACGGAAAGCAGATCCTGTTGTTCC -ACGGAAAGCAGATCCTGTATTCCC -ACGGAAAGCAGATCCTGTTTCTCG -ACGGAAAGCAGATCCTGTTAGACG -ACGGAAAGCAGATCCTGTGTAACG -ACGGAAAGCAGATCCTGTACTTCG -ACGGAAAGCAGATCCTGTTACGCA -ACGGAAAGCAGATCCTGTCTTGCA -ACGGAAAGCAGATCCTGTCGAACA -ACGGAAAGCAGATCCTGTCAGTCA -ACGGAAAGCAGATCCTGTGATCCA -ACGGAAAGCAGATCCTGTACGACA -ACGGAAAGCAGATCCTGTAGCTCA -ACGGAAAGCAGATCCTGTTCACGT -ACGGAAAGCAGATCCTGTCGTAGT -ACGGAAAGCAGATCCTGTGTCAGT -ACGGAAAGCAGATCCTGTGAAGGT -ACGGAAAGCAGATCCTGTAACCGT -ACGGAAAGCAGATCCTGTTTGTGC -ACGGAAAGCAGATCCTGTCTAAGC -ACGGAAAGCAGATCCTGTACTAGC -ACGGAAAGCAGATCCTGTAGATGC -ACGGAAAGCAGATCCTGTTGAAGG -ACGGAAAGCAGATCCTGTCAATGG -ACGGAAAGCAGATCCTGTATGAGG -ACGGAAAGCAGATCCTGTAATGGG -ACGGAAAGCAGATCCTGTTCCTGA -ACGGAAAGCAGATCCTGTTAGCGA -ACGGAAAGCAGATCCTGTCACAGA -ACGGAAAGCAGATCCTGTGCAAGA -ACGGAAAGCAGATCCTGTGGTTGA -ACGGAAAGCAGATCCTGTTCCGAT -ACGGAAAGCAGATCCTGTTGGCAT -ACGGAAAGCAGATCCTGTCGAGAT -ACGGAAAGCAGATCCTGTTACCAC -ACGGAAAGCAGATCCTGTCAGAAC -ACGGAAAGCAGATCCTGTGTCTAC -ACGGAAAGCAGATCCTGTACGTAC -ACGGAAAGCAGATCCTGTAGTGAC -ACGGAAAGCAGATCCTGTCTGTAG -ACGGAAAGCAGATCCTGTCCTAAG -ACGGAAAGCAGATCCTGTGTTCAG -ACGGAAAGCAGATCCTGTGCATAG -ACGGAAAGCAGATCCTGTGACAAG -ACGGAAAGCAGATCCTGTAAGCAG -ACGGAAAGCAGATCCTGTCGTCAA -ACGGAAAGCAGATCCTGTGCTGAA -ACGGAAAGCAGATCCTGTAGTACG -ACGGAAAGCAGATCCTGTATCCGA -ACGGAAAGCAGATCCTGTATGGGA -ACGGAAAGCAGATCCTGTGTGCAA -ACGGAAAGCAGATCCTGTGAGGAA -ACGGAAAGCAGATCCTGTCAGGTA -ACGGAAAGCAGATCCTGTGACTCT -ACGGAAAGCAGATCCTGTAGTCCT -ACGGAAAGCAGATCCTGTTAAGCC -ACGGAAAGCAGATCCTGTATAGCC -ACGGAAAGCAGATCCTGTTAACCG -ACGGAAAGCAGATCCTGTATGCCA -ACGGAAAGCAGACCCATTGGAAAC -ACGGAAAGCAGACCCATTAACACC -ACGGAAAGCAGACCCATTATCGAG -ACGGAAAGCAGACCCATTCTCCTT -ACGGAAAGCAGACCCATTCCTGTT -ACGGAAAGCAGACCCATTCGGTTT -ACGGAAAGCAGACCCATTGTGGTT -ACGGAAAGCAGACCCATTGCCTTT -ACGGAAAGCAGACCCATTGGTCTT -ACGGAAAGCAGACCCATTACGCTT -ACGGAAAGCAGACCCATTAGCGTT -ACGGAAAGCAGACCCATTTTCGTC -ACGGAAAGCAGACCCATTTCTCTC -ACGGAAAGCAGACCCATTTGGATC -ACGGAAAGCAGACCCATTCACTTC -ACGGAAAGCAGACCCATTGTACTC -ACGGAAAGCAGACCCATTGATGTC -ACGGAAAGCAGACCCATTACAGTC -ACGGAAAGCAGACCCATTTTGCTG -ACGGAAAGCAGACCCATTTCCATG -ACGGAAAGCAGACCCATTTGTGTG -ACGGAAAGCAGACCCATTCTAGTG -ACGGAAAGCAGACCCATTCATCTG -ACGGAAAGCAGACCCATTGAGTTG -ACGGAAAGCAGACCCATTAGACTG -ACGGAAAGCAGACCCATTTCGGTA -ACGGAAAGCAGACCCATTTGCCTA -ACGGAAAGCAGACCCATTCCACTA -ACGGAAAGCAGACCCATTGGAGTA -ACGGAAAGCAGACCCATTTCGTCT -ACGGAAAGCAGACCCATTTGCACT -ACGGAAAGCAGACCCATTCTGACT -ACGGAAAGCAGACCCATTCAACCT -ACGGAAAGCAGACCCATTGCTACT -ACGGAAAGCAGACCCATTGGATCT -ACGGAAAGCAGACCCATTAAGGCT -ACGGAAAGCAGACCCATTTCAACC -ACGGAAAGCAGACCCATTTGTTCC -ACGGAAAGCAGACCCATTATTCCC -ACGGAAAGCAGACCCATTTTCTCG -ACGGAAAGCAGACCCATTTAGACG -ACGGAAAGCAGACCCATTGTAACG -ACGGAAAGCAGACCCATTACTTCG -ACGGAAAGCAGACCCATTTACGCA -ACGGAAAGCAGACCCATTCTTGCA -ACGGAAAGCAGACCCATTCGAACA -ACGGAAAGCAGACCCATTCAGTCA -ACGGAAAGCAGACCCATTGATCCA -ACGGAAAGCAGACCCATTACGACA -ACGGAAAGCAGACCCATTAGCTCA -ACGGAAAGCAGACCCATTTCACGT -ACGGAAAGCAGACCCATTCGTAGT -ACGGAAAGCAGACCCATTGTCAGT -ACGGAAAGCAGACCCATTGAAGGT -ACGGAAAGCAGACCCATTAACCGT -ACGGAAAGCAGACCCATTTTGTGC -ACGGAAAGCAGACCCATTCTAAGC -ACGGAAAGCAGACCCATTACTAGC -ACGGAAAGCAGACCCATTAGATGC -ACGGAAAGCAGACCCATTTGAAGG -ACGGAAAGCAGACCCATTCAATGG -ACGGAAAGCAGACCCATTATGAGG -ACGGAAAGCAGACCCATTAATGGG -ACGGAAAGCAGACCCATTTCCTGA -ACGGAAAGCAGACCCATTTAGCGA -ACGGAAAGCAGACCCATTCACAGA -ACGGAAAGCAGACCCATTGCAAGA -ACGGAAAGCAGACCCATTGGTTGA -ACGGAAAGCAGACCCATTTCCGAT -ACGGAAAGCAGACCCATTTGGCAT -ACGGAAAGCAGACCCATTCGAGAT -ACGGAAAGCAGACCCATTTACCAC -ACGGAAAGCAGACCCATTCAGAAC -ACGGAAAGCAGACCCATTGTCTAC -ACGGAAAGCAGACCCATTACGTAC -ACGGAAAGCAGACCCATTAGTGAC -ACGGAAAGCAGACCCATTCTGTAG -ACGGAAAGCAGACCCATTCCTAAG -ACGGAAAGCAGACCCATTGTTCAG -ACGGAAAGCAGACCCATTGCATAG -ACGGAAAGCAGACCCATTGACAAG -ACGGAAAGCAGACCCATTAAGCAG -ACGGAAAGCAGACCCATTCGTCAA -ACGGAAAGCAGACCCATTGCTGAA -ACGGAAAGCAGACCCATTAGTACG -ACGGAAAGCAGACCCATTATCCGA -ACGGAAAGCAGACCCATTATGGGA -ACGGAAAGCAGACCCATTGTGCAA -ACGGAAAGCAGACCCATTGAGGAA -ACGGAAAGCAGACCCATTCAGGTA -ACGGAAAGCAGACCCATTGACTCT -ACGGAAAGCAGACCCATTAGTCCT -ACGGAAAGCAGACCCATTTAAGCC -ACGGAAAGCAGACCCATTATAGCC -ACGGAAAGCAGACCCATTTAACCG -ACGGAAAGCAGACCCATTATGCCA -ACGGAAAGCAGATCGTTCGGAAAC -ACGGAAAGCAGATCGTTCAACACC -ACGGAAAGCAGATCGTTCATCGAG -ACGGAAAGCAGATCGTTCCTCCTT -ACGGAAAGCAGATCGTTCCCTGTT -ACGGAAAGCAGATCGTTCCGGTTT -ACGGAAAGCAGATCGTTCGTGGTT -ACGGAAAGCAGATCGTTCGCCTTT -ACGGAAAGCAGATCGTTCGGTCTT -ACGGAAAGCAGATCGTTCACGCTT -ACGGAAAGCAGATCGTTCAGCGTT -ACGGAAAGCAGATCGTTCTTCGTC -ACGGAAAGCAGATCGTTCTCTCTC -ACGGAAAGCAGATCGTTCTGGATC -ACGGAAAGCAGATCGTTCCACTTC -ACGGAAAGCAGATCGTTCGTACTC -ACGGAAAGCAGATCGTTCGATGTC -ACGGAAAGCAGATCGTTCACAGTC -ACGGAAAGCAGATCGTTCTTGCTG -ACGGAAAGCAGATCGTTCTCCATG -ACGGAAAGCAGATCGTTCTGTGTG -ACGGAAAGCAGATCGTTCCTAGTG -ACGGAAAGCAGATCGTTCCATCTG -ACGGAAAGCAGATCGTTCGAGTTG -ACGGAAAGCAGATCGTTCAGACTG -ACGGAAAGCAGATCGTTCTCGGTA -ACGGAAAGCAGATCGTTCTGCCTA -ACGGAAAGCAGATCGTTCCCACTA -ACGGAAAGCAGATCGTTCGGAGTA -ACGGAAAGCAGATCGTTCTCGTCT -ACGGAAAGCAGATCGTTCTGCACT -ACGGAAAGCAGATCGTTCCTGACT -ACGGAAAGCAGATCGTTCCAACCT -ACGGAAAGCAGATCGTTCGCTACT -ACGGAAAGCAGATCGTTCGGATCT -ACGGAAAGCAGATCGTTCAAGGCT -ACGGAAAGCAGATCGTTCTCAACC -ACGGAAAGCAGATCGTTCTGTTCC -ACGGAAAGCAGATCGTTCATTCCC -ACGGAAAGCAGATCGTTCTTCTCG -ACGGAAAGCAGATCGTTCTAGACG -ACGGAAAGCAGATCGTTCGTAACG -ACGGAAAGCAGATCGTTCACTTCG -ACGGAAAGCAGATCGTTCTACGCA -ACGGAAAGCAGATCGTTCCTTGCA -ACGGAAAGCAGATCGTTCCGAACA -ACGGAAAGCAGATCGTTCCAGTCA -ACGGAAAGCAGATCGTTCGATCCA -ACGGAAAGCAGATCGTTCACGACA -ACGGAAAGCAGATCGTTCAGCTCA -ACGGAAAGCAGATCGTTCTCACGT -ACGGAAAGCAGATCGTTCCGTAGT -ACGGAAAGCAGATCGTTCGTCAGT -ACGGAAAGCAGATCGTTCGAAGGT -ACGGAAAGCAGATCGTTCAACCGT -ACGGAAAGCAGATCGTTCTTGTGC -ACGGAAAGCAGATCGTTCCTAAGC -ACGGAAAGCAGATCGTTCACTAGC -ACGGAAAGCAGATCGTTCAGATGC -ACGGAAAGCAGATCGTTCTGAAGG -ACGGAAAGCAGATCGTTCCAATGG -ACGGAAAGCAGATCGTTCATGAGG -ACGGAAAGCAGATCGTTCAATGGG -ACGGAAAGCAGATCGTTCTCCTGA -ACGGAAAGCAGATCGTTCTAGCGA -ACGGAAAGCAGATCGTTCCACAGA -ACGGAAAGCAGATCGTTCGCAAGA -ACGGAAAGCAGATCGTTCGGTTGA -ACGGAAAGCAGATCGTTCTCCGAT -ACGGAAAGCAGATCGTTCTGGCAT -ACGGAAAGCAGATCGTTCCGAGAT -ACGGAAAGCAGATCGTTCTACCAC -ACGGAAAGCAGATCGTTCCAGAAC -ACGGAAAGCAGATCGTTCGTCTAC -ACGGAAAGCAGATCGTTCACGTAC -ACGGAAAGCAGATCGTTCAGTGAC -ACGGAAAGCAGATCGTTCCTGTAG -ACGGAAAGCAGATCGTTCCCTAAG -ACGGAAAGCAGATCGTTCGTTCAG -ACGGAAAGCAGATCGTTCGCATAG -ACGGAAAGCAGATCGTTCGACAAG -ACGGAAAGCAGATCGTTCAAGCAG -ACGGAAAGCAGATCGTTCCGTCAA -ACGGAAAGCAGATCGTTCGCTGAA -ACGGAAAGCAGATCGTTCAGTACG -ACGGAAAGCAGATCGTTCATCCGA -ACGGAAAGCAGATCGTTCATGGGA -ACGGAAAGCAGATCGTTCGTGCAA -ACGGAAAGCAGATCGTTCGAGGAA -ACGGAAAGCAGATCGTTCCAGGTA -ACGGAAAGCAGATCGTTCGACTCT -ACGGAAAGCAGATCGTTCAGTCCT -ACGGAAAGCAGATCGTTCTAAGCC -ACGGAAAGCAGATCGTTCATAGCC -ACGGAAAGCAGATCGTTCTAACCG -ACGGAAAGCAGATCGTTCATGCCA -ACGGAAAGCAGAACGTAGGGAAAC -ACGGAAAGCAGAACGTAGAACACC -ACGGAAAGCAGAACGTAGATCGAG -ACGGAAAGCAGAACGTAGCTCCTT -ACGGAAAGCAGAACGTAGCCTGTT -ACGGAAAGCAGAACGTAGCGGTTT -ACGGAAAGCAGAACGTAGGTGGTT -ACGGAAAGCAGAACGTAGGCCTTT -ACGGAAAGCAGAACGTAGGGTCTT -ACGGAAAGCAGAACGTAGACGCTT -ACGGAAAGCAGAACGTAGAGCGTT -ACGGAAAGCAGAACGTAGTTCGTC -ACGGAAAGCAGAACGTAGTCTCTC -ACGGAAAGCAGAACGTAGTGGATC -ACGGAAAGCAGAACGTAGCACTTC -ACGGAAAGCAGAACGTAGGTACTC -ACGGAAAGCAGAACGTAGGATGTC -ACGGAAAGCAGAACGTAGACAGTC -ACGGAAAGCAGAACGTAGTTGCTG -ACGGAAAGCAGAACGTAGTCCATG -ACGGAAAGCAGAACGTAGTGTGTG -ACGGAAAGCAGAACGTAGCTAGTG -ACGGAAAGCAGAACGTAGCATCTG -ACGGAAAGCAGAACGTAGGAGTTG -ACGGAAAGCAGAACGTAGAGACTG -ACGGAAAGCAGAACGTAGTCGGTA -ACGGAAAGCAGAACGTAGTGCCTA -ACGGAAAGCAGAACGTAGCCACTA -ACGGAAAGCAGAACGTAGGGAGTA -ACGGAAAGCAGAACGTAGTCGTCT -ACGGAAAGCAGAACGTAGTGCACT -ACGGAAAGCAGAACGTAGCTGACT -ACGGAAAGCAGAACGTAGCAACCT -ACGGAAAGCAGAACGTAGGCTACT -ACGGAAAGCAGAACGTAGGGATCT -ACGGAAAGCAGAACGTAGAAGGCT -ACGGAAAGCAGAACGTAGTCAACC -ACGGAAAGCAGAACGTAGTGTTCC -ACGGAAAGCAGAACGTAGATTCCC -ACGGAAAGCAGAACGTAGTTCTCG -ACGGAAAGCAGAACGTAGTAGACG -ACGGAAAGCAGAACGTAGGTAACG -ACGGAAAGCAGAACGTAGACTTCG -ACGGAAAGCAGAACGTAGTACGCA -ACGGAAAGCAGAACGTAGCTTGCA -ACGGAAAGCAGAACGTAGCGAACA -ACGGAAAGCAGAACGTAGCAGTCA -ACGGAAAGCAGAACGTAGGATCCA -ACGGAAAGCAGAACGTAGACGACA -ACGGAAAGCAGAACGTAGAGCTCA -ACGGAAAGCAGAACGTAGTCACGT -ACGGAAAGCAGAACGTAGCGTAGT -ACGGAAAGCAGAACGTAGGTCAGT -ACGGAAAGCAGAACGTAGGAAGGT -ACGGAAAGCAGAACGTAGAACCGT -ACGGAAAGCAGAACGTAGTTGTGC -ACGGAAAGCAGAACGTAGCTAAGC -ACGGAAAGCAGAACGTAGACTAGC -ACGGAAAGCAGAACGTAGAGATGC -ACGGAAAGCAGAACGTAGTGAAGG -ACGGAAAGCAGAACGTAGCAATGG -ACGGAAAGCAGAACGTAGATGAGG -ACGGAAAGCAGAACGTAGAATGGG -ACGGAAAGCAGAACGTAGTCCTGA -ACGGAAAGCAGAACGTAGTAGCGA -ACGGAAAGCAGAACGTAGCACAGA -ACGGAAAGCAGAACGTAGGCAAGA -ACGGAAAGCAGAACGTAGGGTTGA -ACGGAAAGCAGAACGTAGTCCGAT -ACGGAAAGCAGAACGTAGTGGCAT -ACGGAAAGCAGAACGTAGCGAGAT -ACGGAAAGCAGAACGTAGTACCAC -ACGGAAAGCAGAACGTAGCAGAAC -ACGGAAAGCAGAACGTAGGTCTAC -ACGGAAAGCAGAACGTAGACGTAC -ACGGAAAGCAGAACGTAGAGTGAC -ACGGAAAGCAGAACGTAGCTGTAG -ACGGAAAGCAGAACGTAGCCTAAG -ACGGAAAGCAGAACGTAGGTTCAG -ACGGAAAGCAGAACGTAGGCATAG -ACGGAAAGCAGAACGTAGGACAAG -ACGGAAAGCAGAACGTAGAAGCAG -ACGGAAAGCAGAACGTAGCGTCAA -ACGGAAAGCAGAACGTAGGCTGAA -ACGGAAAGCAGAACGTAGAGTACG -ACGGAAAGCAGAACGTAGATCCGA -ACGGAAAGCAGAACGTAGATGGGA -ACGGAAAGCAGAACGTAGGTGCAA -ACGGAAAGCAGAACGTAGGAGGAA -ACGGAAAGCAGAACGTAGCAGGTA -ACGGAAAGCAGAACGTAGGACTCT -ACGGAAAGCAGAACGTAGAGTCCT -ACGGAAAGCAGAACGTAGTAAGCC -ACGGAAAGCAGAACGTAGATAGCC -ACGGAAAGCAGAACGTAGTAACCG -ACGGAAAGCAGAACGTAGATGCCA -ACGGAAAGCAGAACGGTAGGAAAC -ACGGAAAGCAGAACGGTAAACACC -ACGGAAAGCAGAACGGTAATCGAG -ACGGAAAGCAGAACGGTACTCCTT -ACGGAAAGCAGAACGGTACCTGTT -ACGGAAAGCAGAACGGTACGGTTT -ACGGAAAGCAGAACGGTAGTGGTT -ACGGAAAGCAGAACGGTAGCCTTT -ACGGAAAGCAGAACGGTAGGTCTT -ACGGAAAGCAGAACGGTAACGCTT -ACGGAAAGCAGAACGGTAAGCGTT -ACGGAAAGCAGAACGGTATTCGTC -ACGGAAAGCAGAACGGTATCTCTC -ACGGAAAGCAGAACGGTATGGATC -ACGGAAAGCAGAACGGTACACTTC -ACGGAAAGCAGAACGGTAGTACTC -ACGGAAAGCAGAACGGTAGATGTC -ACGGAAAGCAGAACGGTAACAGTC -ACGGAAAGCAGAACGGTATTGCTG -ACGGAAAGCAGAACGGTATCCATG -ACGGAAAGCAGAACGGTATGTGTG -ACGGAAAGCAGAACGGTACTAGTG -ACGGAAAGCAGAACGGTACATCTG -ACGGAAAGCAGAACGGTAGAGTTG -ACGGAAAGCAGAACGGTAAGACTG -ACGGAAAGCAGAACGGTATCGGTA -ACGGAAAGCAGAACGGTATGCCTA -ACGGAAAGCAGAACGGTACCACTA -ACGGAAAGCAGAACGGTAGGAGTA -ACGGAAAGCAGAACGGTATCGTCT -ACGGAAAGCAGAACGGTATGCACT -ACGGAAAGCAGAACGGTACTGACT -ACGGAAAGCAGAACGGTACAACCT -ACGGAAAGCAGAACGGTAGCTACT -ACGGAAAGCAGAACGGTAGGATCT -ACGGAAAGCAGAACGGTAAAGGCT -ACGGAAAGCAGAACGGTATCAACC -ACGGAAAGCAGAACGGTATGTTCC -ACGGAAAGCAGAACGGTAATTCCC -ACGGAAAGCAGAACGGTATTCTCG -ACGGAAAGCAGAACGGTATAGACG -ACGGAAAGCAGAACGGTAGTAACG -ACGGAAAGCAGAACGGTAACTTCG -ACGGAAAGCAGAACGGTATACGCA -ACGGAAAGCAGAACGGTACTTGCA -ACGGAAAGCAGAACGGTACGAACA -ACGGAAAGCAGAACGGTACAGTCA -ACGGAAAGCAGAACGGTAGATCCA -ACGGAAAGCAGAACGGTAACGACA -ACGGAAAGCAGAACGGTAAGCTCA -ACGGAAAGCAGAACGGTATCACGT -ACGGAAAGCAGAACGGTACGTAGT -ACGGAAAGCAGAACGGTAGTCAGT -ACGGAAAGCAGAACGGTAGAAGGT -ACGGAAAGCAGAACGGTAAACCGT -ACGGAAAGCAGAACGGTATTGTGC -ACGGAAAGCAGAACGGTACTAAGC -ACGGAAAGCAGAACGGTAACTAGC -ACGGAAAGCAGAACGGTAAGATGC -ACGGAAAGCAGAACGGTATGAAGG -ACGGAAAGCAGAACGGTACAATGG -ACGGAAAGCAGAACGGTAATGAGG -ACGGAAAGCAGAACGGTAAATGGG -ACGGAAAGCAGAACGGTATCCTGA -ACGGAAAGCAGAACGGTATAGCGA -ACGGAAAGCAGAACGGTACACAGA -ACGGAAAGCAGAACGGTAGCAAGA -ACGGAAAGCAGAACGGTAGGTTGA -ACGGAAAGCAGAACGGTATCCGAT -ACGGAAAGCAGAACGGTATGGCAT -ACGGAAAGCAGAACGGTACGAGAT -ACGGAAAGCAGAACGGTATACCAC -ACGGAAAGCAGAACGGTACAGAAC -ACGGAAAGCAGAACGGTAGTCTAC -ACGGAAAGCAGAACGGTAACGTAC -ACGGAAAGCAGAACGGTAAGTGAC -ACGGAAAGCAGAACGGTACTGTAG -ACGGAAAGCAGAACGGTACCTAAG -ACGGAAAGCAGAACGGTAGTTCAG -ACGGAAAGCAGAACGGTAGCATAG -ACGGAAAGCAGAACGGTAGACAAG -ACGGAAAGCAGAACGGTAAAGCAG -ACGGAAAGCAGAACGGTACGTCAA -ACGGAAAGCAGAACGGTAGCTGAA -ACGGAAAGCAGAACGGTAAGTACG -ACGGAAAGCAGAACGGTAATCCGA -ACGGAAAGCAGAACGGTAATGGGA -ACGGAAAGCAGAACGGTAGTGCAA -ACGGAAAGCAGAACGGTAGAGGAA -ACGGAAAGCAGAACGGTACAGGTA -ACGGAAAGCAGAACGGTAGACTCT -ACGGAAAGCAGAACGGTAAGTCCT -ACGGAAAGCAGAACGGTATAAGCC -ACGGAAAGCAGAACGGTAATAGCC -ACGGAAAGCAGAACGGTATAACCG -ACGGAAAGCAGAACGGTAATGCCA -ACGGAAAGCAGATCGACTGGAAAC -ACGGAAAGCAGATCGACTAACACC -ACGGAAAGCAGATCGACTATCGAG -ACGGAAAGCAGATCGACTCTCCTT -ACGGAAAGCAGATCGACTCCTGTT -ACGGAAAGCAGATCGACTCGGTTT -ACGGAAAGCAGATCGACTGTGGTT -ACGGAAAGCAGATCGACTGCCTTT -ACGGAAAGCAGATCGACTGGTCTT -ACGGAAAGCAGATCGACTACGCTT -ACGGAAAGCAGATCGACTAGCGTT -ACGGAAAGCAGATCGACTTTCGTC -ACGGAAAGCAGATCGACTTCTCTC -ACGGAAAGCAGATCGACTTGGATC -ACGGAAAGCAGATCGACTCACTTC -ACGGAAAGCAGATCGACTGTACTC -ACGGAAAGCAGATCGACTGATGTC -ACGGAAAGCAGATCGACTACAGTC -ACGGAAAGCAGATCGACTTTGCTG -ACGGAAAGCAGATCGACTTCCATG -ACGGAAAGCAGATCGACTTGTGTG -ACGGAAAGCAGATCGACTCTAGTG -ACGGAAAGCAGATCGACTCATCTG -ACGGAAAGCAGATCGACTGAGTTG -ACGGAAAGCAGATCGACTAGACTG -ACGGAAAGCAGATCGACTTCGGTA -ACGGAAAGCAGATCGACTTGCCTA -ACGGAAAGCAGATCGACTCCACTA -ACGGAAAGCAGATCGACTGGAGTA -ACGGAAAGCAGATCGACTTCGTCT -ACGGAAAGCAGATCGACTTGCACT -ACGGAAAGCAGATCGACTCTGACT -ACGGAAAGCAGATCGACTCAACCT -ACGGAAAGCAGATCGACTGCTACT -ACGGAAAGCAGATCGACTGGATCT -ACGGAAAGCAGATCGACTAAGGCT -ACGGAAAGCAGATCGACTTCAACC -ACGGAAAGCAGATCGACTTGTTCC -ACGGAAAGCAGATCGACTATTCCC -ACGGAAAGCAGATCGACTTTCTCG -ACGGAAAGCAGATCGACTTAGACG -ACGGAAAGCAGATCGACTGTAACG -ACGGAAAGCAGATCGACTACTTCG -ACGGAAAGCAGATCGACTTACGCA -ACGGAAAGCAGATCGACTCTTGCA -ACGGAAAGCAGATCGACTCGAACA -ACGGAAAGCAGATCGACTCAGTCA -ACGGAAAGCAGATCGACTGATCCA -ACGGAAAGCAGATCGACTACGACA -ACGGAAAGCAGATCGACTAGCTCA -ACGGAAAGCAGATCGACTTCACGT -ACGGAAAGCAGATCGACTCGTAGT -ACGGAAAGCAGATCGACTGTCAGT -ACGGAAAGCAGATCGACTGAAGGT -ACGGAAAGCAGATCGACTAACCGT -ACGGAAAGCAGATCGACTTTGTGC -ACGGAAAGCAGATCGACTCTAAGC -ACGGAAAGCAGATCGACTACTAGC -ACGGAAAGCAGATCGACTAGATGC -ACGGAAAGCAGATCGACTTGAAGG -ACGGAAAGCAGATCGACTCAATGG -ACGGAAAGCAGATCGACTATGAGG -ACGGAAAGCAGATCGACTAATGGG -ACGGAAAGCAGATCGACTTCCTGA -ACGGAAAGCAGATCGACTTAGCGA -ACGGAAAGCAGATCGACTCACAGA -ACGGAAAGCAGATCGACTGCAAGA -ACGGAAAGCAGATCGACTGGTTGA -ACGGAAAGCAGATCGACTTCCGAT -ACGGAAAGCAGATCGACTTGGCAT -ACGGAAAGCAGATCGACTCGAGAT -ACGGAAAGCAGATCGACTTACCAC -ACGGAAAGCAGATCGACTCAGAAC -ACGGAAAGCAGATCGACTGTCTAC -ACGGAAAGCAGATCGACTACGTAC -ACGGAAAGCAGATCGACTAGTGAC -ACGGAAAGCAGATCGACTCTGTAG -ACGGAAAGCAGATCGACTCCTAAG -ACGGAAAGCAGATCGACTGTTCAG -ACGGAAAGCAGATCGACTGCATAG -ACGGAAAGCAGATCGACTGACAAG -ACGGAAAGCAGATCGACTAAGCAG -ACGGAAAGCAGATCGACTCGTCAA -ACGGAAAGCAGATCGACTGCTGAA -ACGGAAAGCAGATCGACTAGTACG -ACGGAAAGCAGATCGACTATCCGA -ACGGAAAGCAGATCGACTATGGGA -ACGGAAAGCAGATCGACTGTGCAA -ACGGAAAGCAGATCGACTGAGGAA -ACGGAAAGCAGATCGACTCAGGTA -ACGGAAAGCAGATCGACTGACTCT -ACGGAAAGCAGATCGACTAGTCCT -ACGGAAAGCAGATCGACTTAAGCC -ACGGAAAGCAGATCGACTATAGCC -ACGGAAAGCAGATCGACTTAACCG -ACGGAAAGCAGATCGACTATGCCA -ACGGAAAGCAGAGCATACGGAAAC -ACGGAAAGCAGAGCATACAACACC -ACGGAAAGCAGAGCATACATCGAG -ACGGAAAGCAGAGCATACCTCCTT -ACGGAAAGCAGAGCATACCCTGTT -ACGGAAAGCAGAGCATACCGGTTT -ACGGAAAGCAGAGCATACGTGGTT -ACGGAAAGCAGAGCATACGCCTTT -ACGGAAAGCAGAGCATACGGTCTT -ACGGAAAGCAGAGCATACACGCTT -ACGGAAAGCAGAGCATACAGCGTT -ACGGAAAGCAGAGCATACTTCGTC -ACGGAAAGCAGAGCATACTCTCTC -ACGGAAAGCAGAGCATACTGGATC -ACGGAAAGCAGAGCATACCACTTC -ACGGAAAGCAGAGCATACGTACTC -ACGGAAAGCAGAGCATACGATGTC -ACGGAAAGCAGAGCATACACAGTC -ACGGAAAGCAGAGCATACTTGCTG -ACGGAAAGCAGAGCATACTCCATG -ACGGAAAGCAGAGCATACTGTGTG -ACGGAAAGCAGAGCATACCTAGTG -ACGGAAAGCAGAGCATACCATCTG -ACGGAAAGCAGAGCATACGAGTTG -ACGGAAAGCAGAGCATACAGACTG -ACGGAAAGCAGAGCATACTCGGTA -ACGGAAAGCAGAGCATACTGCCTA -ACGGAAAGCAGAGCATACCCACTA -ACGGAAAGCAGAGCATACGGAGTA -ACGGAAAGCAGAGCATACTCGTCT -ACGGAAAGCAGAGCATACTGCACT -ACGGAAAGCAGAGCATACCTGACT -ACGGAAAGCAGAGCATACCAACCT -ACGGAAAGCAGAGCATACGCTACT -ACGGAAAGCAGAGCATACGGATCT -ACGGAAAGCAGAGCATACAAGGCT -ACGGAAAGCAGAGCATACTCAACC -ACGGAAAGCAGAGCATACTGTTCC -ACGGAAAGCAGAGCATACATTCCC -ACGGAAAGCAGAGCATACTTCTCG -ACGGAAAGCAGAGCATACTAGACG -ACGGAAAGCAGAGCATACGTAACG -ACGGAAAGCAGAGCATACACTTCG -ACGGAAAGCAGAGCATACTACGCA -ACGGAAAGCAGAGCATACCTTGCA -ACGGAAAGCAGAGCATACCGAACA -ACGGAAAGCAGAGCATACCAGTCA -ACGGAAAGCAGAGCATACGATCCA -ACGGAAAGCAGAGCATACACGACA -ACGGAAAGCAGAGCATACAGCTCA -ACGGAAAGCAGAGCATACTCACGT -ACGGAAAGCAGAGCATACCGTAGT -ACGGAAAGCAGAGCATACGTCAGT -ACGGAAAGCAGAGCATACGAAGGT -ACGGAAAGCAGAGCATACAACCGT -ACGGAAAGCAGAGCATACTTGTGC -ACGGAAAGCAGAGCATACCTAAGC -ACGGAAAGCAGAGCATACACTAGC -ACGGAAAGCAGAGCATACAGATGC -ACGGAAAGCAGAGCATACTGAAGG -ACGGAAAGCAGAGCATACCAATGG -ACGGAAAGCAGAGCATACATGAGG -ACGGAAAGCAGAGCATACAATGGG -ACGGAAAGCAGAGCATACTCCTGA -ACGGAAAGCAGAGCATACTAGCGA -ACGGAAAGCAGAGCATACCACAGA -ACGGAAAGCAGAGCATACGCAAGA -ACGGAAAGCAGAGCATACGGTTGA -ACGGAAAGCAGAGCATACTCCGAT -ACGGAAAGCAGAGCATACTGGCAT -ACGGAAAGCAGAGCATACCGAGAT -ACGGAAAGCAGAGCATACTACCAC -ACGGAAAGCAGAGCATACCAGAAC -ACGGAAAGCAGAGCATACGTCTAC -ACGGAAAGCAGAGCATACACGTAC -ACGGAAAGCAGAGCATACAGTGAC -ACGGAAAGCAGAGCATACCTGTAG -ACGGAAAGCAGAGCATACCCTAAG -ACGGAAAGCAGAGCATACGTTCAG -ACGGAAAGCAGAGCATACGCATAG -ACGGAAAGCAGAGCATACGACAAG -ACGGAAAGCAGAGCATACAAGCAG -ACGGAAAGCAGAGCATACCGTCAA -ACGGAAAGCAGAGCATACGCTGAA -ACGGAAAGCAGAGCATACAGTACG -ACGGAAAGCAGAGCATACATCCGA -ACGGAAAGCAGAGCATACATGGGA -ACGGAAAGCAGAGCATACGTGCAA -ACGGAAAGCAGAGCATACGAGGAA -ACGGAAAGCAGAGCATACCAGGTA -ACGGAAAGCAGAGCATACGACTCT -ACGGAAAGCAGAGCATACAGTCCT -ACGGAAAGCAGAGCATACTAAGCC -ACGGAAAGCAGAGCATACATAGCC -ACGGAAAGCAGAGCATACTAACCG -ACGGAAAGCAGAGCATACATGCCA -ACGGAAAGCAGAGCACTTGGAAAC -ACGGAAAGCAGAGCACTTAACACC -ACGGAAAGCAGAGCACTTATCGAG -ACGGAAAGCAGAGCACTTCTCCTT -ACGGAAAGCAGAGCACTTCCTGTT -ACGGAAAGCAGAGCACTTCGGTTT -ACGGAAAGCAGAGCACTTGTGGTT -ACGGAAAGCAGAGCACTTGCCTTT -ACGGAAAGCAGAGCACTTGGTCTT -ACGGAAAGCAGAGCACTTACGCTT -ACGGAAAGCAGAGCACTTAGCGTT -ACGGAAAGCAGAGCACTTTTCGTC -ACGGAAAGCAGAGCACTTTCTCTC -ACGGAAAGCAGAGCACTTTGGATC -ACGGAAAGCAGAGCACTTCACTTC -ACGGAAAGCAGAGCACTTGTACTC -ACGGAAAGCAGAGCACTTGATGTC -ACGGAAAGCAGAGCACTTACAGTC -ACGGAAAGCAGAGCACTTTTGCTG -ACGGAAAGCAGAGCACTTTCCATG -ACGGAAAGCAGAGCACTTTGTGTG -ACGGAAAGCAGAGCACTTCTAGTG -ACGGAAAGCAGAGCACTTCATCTG -ACGGAAAGCAGAGCACTTGAGTTG -ACGGAAAGCAGAGCACTTAGACTG -ACGGAAAGCAGAGCACTTTCGGTA -ACGGAAAGCAGAGCACTTTGCCTA -ACGGAAAGCAGAGCACTTCCACTA -ACGGAAAGCAGAGCACTTGGAGTA -ACGGAAAGCAGAGCACTTTCGTCT -ACGGAAAGCAGAGCACTTTGCACT -ACGGAAAGCAGAGCACTTCTGACT -ACGGAAAGCAGAGCACTTCAACCT -ACGGAAAGCAGAGCACTTGCTACT -ACGGAAAGCAGAGCACTTGGATCT -ACGGAAAGCAGAGCACTTAAGGCT -ACGGAAAGCAGAGCACTTTCAACC -ACGGAAAGCAGAGCACTTTGTTCC -ACGGAAAGCAGAGCACTTATTCCC -ACGGAAAGCAGAGCACTTTTCTCG -ACGGAAAGCAGAGCACTTTAGACG -ACGGAAAGCAGAGCACTTGTAACG -ACGGAAAGCAGAGCACTTACTTCG -ACGGAAAGCAGAGCACTTTACGCA -ACGGAAAGCAGAGCACTTCTTGCA -ACGGAAAGCAGAGCACTTCGAACA -ACGGAAAGCAGAGCACTTCAGTCA -ACGGAAAGCAGAGCACTTGATCCA -ACGGAAAGCAGAGCACTTACGACA -ACGGAAAGCAGAGCACTTAGCTCA -ACGGAAAGCAGAGCACTTTCACGT -ACGGAAAGCAGAGCACTTCGTAGT -ACGGAAAGCAGAGCACTTGTCAGT -ACGGAAAGCAGAGCACTTGAAGGT -ACGGAAAGCAGAGCACTTAACCGT -ACGGAAAGCAGAGCACTTTTGTGC -ACGGAAAGCAGAGCACTTCTAAGC -ACGGAAAGCAGAGCACTTACTAGC -ACGGAAAGCAGAGCACTTAGATGC -ACGGAAAGCAGAGCACTTTGAAGG -ACGGAAAGCAGAGCACTTCAATGG -ACGGAAAGCAGAGCACTTATGAGG -ACGGAAAGCAGAGCACTTAATGGG -ACGGAAAGCAGAGCACTTTCCTGA -ACGGAAAGCAGAGCACTTTAGCGA -ACGGAAAGCAGAGCACTTCACAGA -ACGGAAAGCAGAGCACTTGCAAGA -ACGGAAAGCAGAGCACTTGGTTGA -ACGGAAAGCAGAGCACTTTCCGAT -ACGGAAAGCAGAGCACTTTGGCAT -ACGGAAAGCAGAGCACTTCGAGAT -ACGGAAAGCAGAGCACTTTACCAC -ACGGAAAGCAGAGCACTTCAGAAC -ACGGAAAGCAGAGCACTTGTCTAC -ACGGAAAGCAGAGCACTTACGTAC -ACGGAAAGCAGAGCACTTAGTGAC -ACGGAAAGCAGAGCACTTCTGTAG -ACGGAAAGCAGAGCACTTCCTAAG -ACGGAAAGCAGAGCACTTGTTCAG -ACGGAAAGCAGAGCACTTGCATAG -ACGGAAAGCAGAGCACTTGACAAG -ACGGAAAGCAGAGCACTTAAGCAG -ACGGAAAGCAGAGCACTTCGTCAA -ACGGAAAGCAGAGCACTTGCTGAA -ACGGAAAGCAGAGCACTTAGTACG -ACGGAAAGCAGAGCACTTATCCGA -ACGGAAAGCAGAGCACTTATGGGA -ACGGAAAGCAGAGCACTTGTGCAA -ACGGAAAGCAGAGCACTTGAGGAA -ACGGAAAGCAGAGCACTTCAGGTA -ACGGAAAGCAGAGCACTTGACTCT -ACGGAAAGCAGAGCACTTAGTCCT -ACGGAAAGCAGAGCACTTTAAGCC -ACGGAAAGCAGAGCACTTATAGCC -ACGGAAAGCAGAGCACTTTAACCG -ACGGAAAGCAGAGCACTTATGCCA -ACGGAAAGCAGAACACGAGGAAAC -ACGGAAAGCAGAACACGAAACACC -ACGGAAAGCAGAACACGAATCGAG -ACGGAAAGCAGAACACGACTCCTT -ACGGAAAGCAGAACACGACCTGTT -ACGGAAAGCAGAACACGACGGTTT -ACGGAAAGCAGAACACGAGTGGTT -ACGGAAAGCAGAACACGAGCCTTT -ACGGAAAGCAGAACACGAGGTCTT -ACGGAAAGCAGAACACGAACGCTT -ACGGAAAGCAGAACACGAAGCGTT -ACGGAAAGCAGAACACGATTCGTC -ACGGAAAGCAGAACACGATCTCTC -ACGGAAAGCAGAACACGATGGATC -ACGGAAAGCAGAACACGACACTTC -ACGGAAAGCAGAACACGAGTACTC -ACGGAAAGCAGAACACGAGATGTC -ACGGAAAGCAGAACACGAACAGTC -ACGGAAAGCAGAACACGATTGCTG -ACGGAAAGCAGAACACGATCCATG -ACGGAAAGCAGAACACGATGTGTG -ACGGAAAGCAGAACACGACTAGTG -ACGGAAAGCAGAACACGACATCTG -ACGGAAAGCAGAACACGAGAGTTG -ACGGAAAGCAGAACACGAAGACTG -ACGGAAAGCAGAACACGATCGGTA -ACGGAAAGCAGAACACGATGCCTA -ACGGAAAGCAGAACACGACCACTA -ACGGAAAGCAGAACACGAGGAGTA -ACGGAAAGCAGAACACGATCGTCT -ACGGAAAGCAGAACACGATGCACT -ACGGAAAGCAGAACACGACTGACT -ACGGAAAGCAGAACACGACAACCT -ACGGAAAGCAGAACACGAGCTACT -ACGGAAAGCAGAACACGAGGATCT -ACGGAAAGCAGAACACGAAAGGCT -ACGGAAAGCAGAACACGATCAACC -ACGGAAAGCAGAACACGATGTTCC -ACGGAAAGCAGAACACGAATTCCC -ACGGAAAGCAGAACACGATTCTCG -ACGGAAAGCAGAACACGATAGACG -ACGGAAAGCAGAACACGAGTAACG -ACGGAAAGCAGAACACGAACTTCG -ACGGAAAGCAGAACACGATACGCA -ACGGAAAGCAGAACACGACTTGCA -ACGGAAAGCAGAACACGACGAACA -ACGGAAAGCAGAACACGACAGTCA -ACGGAAAGCAGAACACGAGATCCA -ACGGAAAGCAGAACACGAACGACA -ACGGAAAGCAGAACACGAAGCTCA -ACGGAAAGCAGAACACGATCACGT -ACGGAAAGCAGAACACGACGTAGT -ACGGAAAGCAGAACACGAGTCAGT -ACGGAAAGCAGAACACGAGAAGGT -ACGGAAAGCAGAACACGAAACCGT -ACGGAAAGCAGAACACGATTGTGC -ACGGAAAGCAGAACACGACTAAGC -ACGGAAAGCAGAACACGAACTAGC -ACGGAAAGCAGAACACGAAGATGC -ACGGAAAGCAGAACACGATGAAGG -ACGGAAAGCAGAACACGACAATGG -ACGGAAAGCAGAACACGAATGAGG -ACGGAAAGCAGAACACGAAATGGG -ACGGAAAGCAGAACACGATCCTGA -ACGGAAAGCAGAACACGATAGCGA -ACGGAAAGCAGAACACGACACAGA -ACGGAAAGCAGAACACGAGCAAGA -ACGGAAAGCAGAACACGAGGTTGA -ACGGAAAGCAGAACACGATCCGAT -ACGGAAAGCAGAACACGATGGCAT -ACGGAAAGCAGAACACGACGAGAT -ACGGAAAGCAGAACACGATACCAC -ACGGAAAGCAGAACACGACAGAAC -ACGGAAAGCAGAACACGAGTCTAC -ACGGAAAGCAGAACACGAACGTAC -ACGGAAAGCAGAACACGAAGTGAC -ACGGAAAGCAGAACACGACTGTAG -ACGGAAAGCAGAACACGACCTAAG -ACGGAAAGCAGAACACGAGTTCAG -ACGGAAAGCAGAACACGAGCATAG -ACGGAAAGCAGAACACGAGACAAG -ACGGAAAGCAGAACACGAAAGCAG -ACGGAAAGCAGAACACGACGTCAA -ACGGAAAGCAGAACACGAGCTGAA -ACGGAAAGCAGAACACGAAGTACG -ACGGAAAGCAGAACACGAATCCGA -ACGGAAAGCAGAACACGAATGGGA -ACGGAAAGCAGAACACGAGTGCAA -ACGGAAAGCAGAACACGAGAGGAA -ACGGAAAGCAGAACACGACAGGTA -ACGGAAAGCAGAACACGAGACTCT -ACGGAAAGCAGAACACGAAGTCCT -ACGGAAAGCAGAACACGATAAGCC -ACGGAAAGCAGAACACGAATAGCC -ACGGAAAGCAGAACACGATAACCG -ACGGAAAGCAGAACACGAATGCCA -ACGGAAAGCAGATCACAGGGAAAC -ACGGAAAGCAGATCACAGAACACC -ACGGAAAGCAGATCACAGATCGAG -ACGGAAAGCAGATCACAGCTCCTT -ACGGAAAGCAGATCACAGCCTGTT -ACGGAAAGCAGATCACAGCGGTTT -ACGGAAAGCAGATCACAGGTGGTT -ACGGAAAGCAGATCACAGGCCTTT -ACGGAAAGCAGATCACAGGGTCTT -ACGGAAAGCAGATCACAGACGCTT -ACGGAAAGCAGATCACAGAGCGTT -ACGGAAAGCAGATCACAGTTCGTC -ACGGAAAGCAGATCACAGTCTCTC -ACGGAAAGCAGATCACAGTGGATC -ACGGAAAGCAGATCACAGCACTTC -ACGGAAAGCAGATCACAGGTACTC -ACGGAAAGCAGATCACAGGATGTC -ACGGAAAGCAGATCACAGACAGTC -ACGGAAAGCAGATCACAGTTGCTG -ACGGAAAGCAGATCACAGTCCATG -ACGGAAAGCAGATCACAGTGTGTG -ACGGAAAGCAGATCACAGCTAGTG -ACGGAAAGCAGATCACAGCATCTG -ACGGAAAGCAGATCACAGGAGTTG -ACGGAAAGCAGATCACAGAGACTG -ACGGAAAGCAGATCACAGTCGGTA -ACGGAAAGCAGATCACAGTGCCTA -ACGGAAAGCAGATCACAGCCACTA -ACGGAAAGCAGATCACAGGGAGTA -ACGGAAAGCAGATCACAGTCGTCT -ACGGAAAGCAGATCACAGTGCACT -ACGGAAAGCAGATCACAGCTGACT -ACGGAAAGCAGATCACAGCAACCT -ACGGAAAGCAGATCACAGGCTACT -ACGGAAAGCAGATCACAGGGATCT -ACGGAAAGCAGATCACAGAAGGCT -ACGGAAAGCAGATCACAGTCAACC -ACGGAAAGCAGATCACAGTGTTCC -ACGGAAAGCAGATCACAGATTCCC -ACGGAAAGCAGATCACAGTTCTCG -ACGGAAAGCAGATCACAGTAGACG -ACGGAAAGCAGATCACAGGTAACG -ACGGAAAGCAGATCACAGACTTCG -ACGGAAAGCAGATCACAGTACGCA -ACGGAAAGCAGATCACAGCTTGCA -ACGGAAAGCAGATCACAGCGAACA -ACGGAAAGCAGATCACAGCAGTCA -ACGGAAAGCAGATCACAGGATCCA -ACGGAAAGCAGATCACAGACGACA -ACGGAAAGCAGATCACAGAGCTCA -ACGGAAAGCAGATCACAGTCACGT -ACGGAAAGCAGATCACAGCGTAGT -ACGGAAAGCAGATCACAGGTCAGT -ACGGAAAGCAGATCACAGGAAGGT -ACGGAAAGCAGATCACAGAACCGT -ACGGAAAGCAGATCACAGTTGTGC -ACGGAAAGCAGATCACAGCTAAGC -ACGGAAAGCAGATCACAGACTAGC -ACGGAAAGCAGATCACAGAGATGC -ACGGAAAGCAGATCACAGTGAAGG -ACGGAAAGCAGATCACAGCAATGG -ACGGAAAGCAGATCACAGATGAGG -ACGGAAAGCAGATCACAGAATGGG -ACGGAAAGCAGATCACAGTCCTGA -ACGGAAAGCAGATCACAGTAGCGA -ACGGAAAGCAGATCACAGCACAGA -ACGGAAAGCAGATCACAGGCAAGA -ACGGAAAGCAGATCACAGGGTTGA -ACGGAAAGCAGATCACAGTCCGAT -ACGGAAAGCAGATCACAGTGGCAT -ACGGAAAGCAGATCACAGCGAGAT -ACGGAAAGCAGATCACAGTACCAC -ACGGAAAGCAGATCACAGCAGAAC -ACGGAAAGCAGATCACAGGTCTAC -ACGGAAAGCAGATCACAGACGTAC -ACGGAAAGCAGATCACAGAGTGAC -ACGGAAAGCAGATCACAGCTGTAG -ACGGAAAGCAGATCACAGCCTAAG -ACGGAAAGCAGATCACAGGTTCAG -ACGGAAAGCAGATCACAGGCATAG -ACGGAAAGCAGATCACAGGACAAG -ACGGAAAGCAGATCACAGAAGCAG -ACGGAAAGCAGATCACAGCGTCAA -ACGGAAAGCAGATCACAGGCTGAA -ACGGAAAGCAGATCACAGAGTACG -ACGGAAAGCAGATCACAGATCCGA -ACGGAAAGCAGATCACAGATGGGA -ACGGAAAGCAGATCACAGGTGCAA -ACGGAAAGCAGATCACAGGAGGAA -ACGGAAAGCAGATCACAGCAGGTA -ACGGAAAGCAGATCACAGGACTCT -ACGGAAAGCAGATCACAGAGTCCT -ACGGAAAGCAGATCACAGTAAGCC -ACGGAAAGCAGATCACAGATAGCC -ACGGAAAGCAGATCACAGTAACCG -ACGGAAAGCAGATCACAGATGCCA -ACGGAAAGCAGACCAGATGGAAAC -ACGGAAAGCAGACCAGATAACACC -ACGGAAAGCAGACCAGATATCGAG -ACGGAAAGCAGACCAGATCTCCTT -ACGGAAAGCAGACCAGATCCTGTT -ACGGAAAGCAGACCAGATCGGTTT -ACGGAAAGCAGACCAGATGTGGTT -ACGGAAAGCAGACCAGATGCCTTT -ACGGAAAGCAGACCAGATGGTCTT -ACGGAAAGCAGACCAGATACGCTT -ACGGAAAGCAGACCAGATAGCGTT -ACGGAAAGCAGACCAGATTTCGTC -ACGGAAAGCAGACCAGATTCTCTC -ACGGAAAGCAGACCAGATTGGATC -ACGGAAAGCAGACCAGATCACTTC -ACGGAAAGCAGACCAGATGTACTC -ACGGAAAGCAGACCAGATGATGTC -ACGGAAAGCAGACCAGATACAGTC -ACGGAAAGCAGACCAGATTTGCTG -ACGGAAAGCAGACCAGATTCCATG -ACGGAAAGCAGACCAGATTGTGTG -ACGGAAAGCAGACCAGATCTAGTG -ACGGAAAGCAGACCAGATCATCTG -ACGGAAAGCAGACCAGATGAGTTG -ACGGAAAGCAGACCAGATAGACTG -ACGGAAAGCAGACCAGATTCGGTA -ACGGAAAGCAGACCAGATTGCCTA -ACGGAAAGCAGACCAGATCCACTA -ACGGAAAGCAGACCAGATGGAGTA -ACGGAAAGCAGACCAGATTCGTCT -ACGGAAAGCAGACCAGATTGCACT -ACGGAAAGCAGACCAGATCTGACT -ACGGAAAGCAGACCAGATCAACCT -ACGGAAAGCAGACCAGATGCTACT -ACGGAAAGCAGACCAGATGGATCT -ACGGAAAGCAGACCAGATAAGGCT -ACGGAAAGCAGACCAGATTCAACC -ACGGAAAGCAGACCAGATTGTTCC -ACGGAAAGCAGACCAGATATTCCC -ACGGAAAGCAGACCAGATTTCTCG -ACGGAAAGCAGACCAGATTAGACG -ACGGAAAGCAGACCAGATGTAACG -ACGGAAAGCAGACCAGATACTTCG -ACGGAAAGCAGACCAGATTACGCA -ACGGAAAGCAGACCAGATCTTGCA -ACGGAAAGCAGACCAGATCGAACA -ACGGAAAGCAGACCAGATCAGTCA -ACGGAAAGCAGACCAGATGATCCA -ACGGAAAGCAGACCAGATACGACA -ACGGAAAGCAGACCAGATAGCTCA -ACGGAAAGCAGACCAGATTCACGT -ACGGAAAGCAGACCAGATCGTAGT -ACGGAAAGCAGACCAGATGTCAGT -ACGGAAAGCAGACCAGATGAAGGT -ACGGAAAGCAGACCAGATAACCGT -ACGGAAAGCAGACCAGATTTGTGC -ACGGAAAGCAGACCAGATCTAAGC -ACGGAAAGCAGACCAGATACTAGC -ACGGAAAGCAGACCAGATAGATGC -ACGGAAAGCAGACCAGATTGAAGG -ACGGAAAGCAGACCAGATCAATGG -ACGGAAAGCAGACCAGATATGAGG -ACGGAAAGCAGACCAGATAATGGG -ACGGAAAGCAGACCAGATTCCTGA -ACGGAAAGCAGACCAGATTAGCGA -ACGGAAAGCAGACCAGATCACAGA -ACGGAAAGCAGACCAGATGCAAGA -ACGGAAAGCAGACCAGATGGTTGA -ACGGAAAGCAGACCAGATTCCGAT -ACGGAAAGCAGACCAGATTGGCAT -ACGGAAAGCAGACCAGATCGAGAT -ACGGAAAGCAGACCAGATTACCAC -ACGGAAAGCAGACCAGATCAGAAC -ACGGAAAGCAGACCAGATGTCTAC -ACGGAAAGCAGACCAGATACGTAC -ACGGAAAGCAGACCAGATAGTGAC -ACGGAAAGCAGACCAGATCTGTAG -ACGGAAAGCAGACCAGATCCTAAG -ACGGAAAGCAGACCAGATGTTCAG -ACGGAAAGCAGACCAGATGCATAG -ACGGAAAGCAGACCAGATGACAAG -ACGGAAAGCAGACCAGATAAGCAG -ACGGAAAGCAGACCAGATCGTCAA -ACGGAAAGCAGACCAGATGCTGAA -ACGGAAAGCAGACCAGATAGTACG -ACGGAAAGCAGACCAGATATCCGA -ACGGAAAGCAGACCAGATATGGGA -ACGGAAAGCAGACCAGATGTGCAA -ACGGAAAGCAGACCAGATGAGGAA -ACGGAAAGCAGACCAGATCAGGTA -ACGGAAAGCAGACCAGATGACTCT -ACGGAAAGCAGACCAGATAGTCCT -ACGGAAAGCAGACCAGATTAAGCC -ACGGAAAGCAGACCAGATATAGCC -ACGGAAAGCAGACCAGATTAACCG -ACGGAAAGCAGACCAGATATGCCA -ACGGAAAGCAGAACAACGGGAAAC -ACGGAAAGCAGAACAACGAACACC -ACGGAAAGCAGAACAACGATCGAG -ACGGAAAGCAGAACAACGCTCCTT -ACGGAAAGCAGAACAACGCCTGTT -ACGGAAAGCAGAACAACGCGGTTT -ACGGAAAGCAGAACAACGGTGGTT -ACGGAAAGCAGAACAACGGCCTTT -ACGGAAAGCAGAACAACGGGTCTT -ACGGAAAGCAGAACAACGACGCTT -ACGGAAAGCAGAACAACGAGCGTT -ACGGAAAGCAGAACAACGTTCGTC -ACGGAAAGCAGAACAACGTCTCTC -ACGGAAAGCAGAACAACGTGGATC -ACGGAAAGCAGAACAACGCACTTC -ACGGAAAGCAGAACAACGGTACTC -ACGGAAAGCAGAACAACGGATGTC -ACGGAAAGCAGAACAACGACAGTC -ACGGAAAGCAGAACAACGTTGCTG -ACGGAAAGCAGAACAACGTCCATG -ACGGAAAGCAGAACAACGTGTGTG -ACGGAAAGCAGAACAACGCTAGTG -ACGGAAAGCAGAACAACGCATCTG -ACGGAAAGCAGAACAACGGAGTTG -ACGGAAAGCAGAACAACGAGACTG -ACGGAAAGCAGAACAACGTCGGTA -ACGGAAAGCAGAACAACGTGCCTA -ACGGAAAGCAGAACAACGCCACTA -ACGGAAAGCAGAACAACGGGAGTA -ACGGAAAGCAGAACAACGTCGTCT -ACGGAAAGCAGAACAACGTGCACT -ACGGAAAGCAGAACAACGCTGACT -ACGGAAAGCAGAACAACGCAACCT -ACGGAAAGCAGAACAACGGCTACT -ACGGAAAGCAGAACAACGGGATCT -ACGGAAAGCAGAACAACGAAGGCT -ACGGAAAGCAGAACAACGTCAACC -ACGGAAAGCAGAACAACGTGTTCC -ACGGAAAGCAGAACAACGATTCCC -ACGGAAAGCAGAACAACGTTCTCG -ACGGAAAGCAGAACAACGTAGACG -ACGGAAAGCAGAACAACGGTAACG -ACGGAAAGCAGAACAACGACTTCG -ACGGAAAGCAGAACAACGTACGCA -ACGGAAAGCAGAACAACGCTTGCA -ACGGAAAGCAGAACAACGCGAACA -ACGGAAAGCAGAACAACGCAGTCA -ACGGAAAGCAGAACAACGGATCCA -ACGGAAAGCAGAACAACGACGACA -ACGGAAAGCAGAACAACGAGCTCA -ACGGAAAGCAGAACAACGTCACGT -ACGGAAAGCAGAACAACGCGTAGT -ACGGAAAGCAGAACAACGGTCAGT -ACGGAAAGCAGAACAACGGAAGGT -ACGGAAAGCAGAACAACGAACCGT -ACGGAAAGCAGAACAACGTTGTGC -ACGGAAAGCAGAACAACGCTAAGC -ACGGAAAGCAGAACAACGACTAGC -ACGGAAAGCAGAACAACGAGATGC -ACGGAAAGCAGAACAACGTGAAGG -ACGGAAAGCAGAACAACGCAATGG -ACGGAAAGCAGAACAACGATGAGG -ACGGAAAGCAGAACAACGAATGGG -ACGGAAAGCAGAACAACGTCCTGA -ACGGAAAGCAGAACAACGTAGCGA -ACGGAAAGCAGAACAACGCACAGA -ACGGAAAGCAGAACAACGGCAAGA -ACGGAAAGCAGAACAACGGGTTGA -ACGGAAAGCAGAACAACGTCCGAT -ACGGAAAGCAGAACAACGTGGCAT -ACGGAAAGCAGAACAACGCGAGAT -ACGGAAAGCAGAACAACGTACCAC -ACGGAAAGCAGAACAACGCAGAAC -ACGGAAAGCAGAACAACGGTCTAC -ACGGAAAGCAGAACAACGACGTAC -ACGGAAAGCAGAACAACGAGTGAC -ACGGAAAGCAGAACAACGCTGTAG -ACGGAAAGCAGAACAACGCCTAAG -ACGGAAAGCAGAACAACGGTTCAG -ACGGAAAGCAGAACAACGGCATAG -ACGGAAAGCAGAACAACGGACAAG -ACGGAAAGCAGAACAACGAAGCAG -ACGGAAAGCAGAACAACGCGTCAA -ACGGAAAGCAGAACAACGGCTGAA -ACGGAAAGCAGAACAACGAGTACG -ACGGAAAGCAGAACAACGATCCGA -ACGGAAAGCAGAACAACGATGGGA -ACGGAAAGCAGAACAACGGTGCAA -ACGGAAAGCAGAACAACGGAGGAA -ACGGAAAGCAGAACAACGCAGGTA -ACGGAAAGCAGAACAACGGACTCT -ACGGAAAGCAGAACAACGAGTCCT -ACGGAAAGCAGAACAACGTAAGCC -ACGGAAAGCAGAACAACGATAGCC -ACGGAAAGCAGAACAACGTAACCG -ACGGAAAGCAGAACAACGATGCCA -ACGGAAAGCAGATCAAGCGGAAAC -ACGGAAAGCAGATCAAGCAACACC -ACGGAAAGCAGATCAAGCATCGAG -ACGGAAAGCAGATCAAGCCTCCTT -ACGGAAAGCAGATCAAGCCCTGTT -ACGGAAAGCAGATCAAGCCGGTTT -ACGGAAAGCAGATCAAGCGTGGTT -ACGGAAAGCAGATCAAGCGCCTTT -ACGGAAAGCAGATCAAGCGGTCTT -ACGGAAAGCAGATCAAGCACGCTT -ACGGAAAGCAGATCAAGCAGCGTT -ACGGAAAGCAGATCAAGCTTCGTC -ACGGAAAGCAGATCAAGCTCTCTC -ACGGAAAGCAGATCAAGCTGGATC -ACGGAAAGCAGATCAAGCCACTTC -ACGGAAAGCAGATCAAGCGTACTC -ACGGAAAGCAGATCAAGCGATGTC -ACGGAAAGCAGATCAAGCACAGTC -ACGGAAAGCAGATCAAGCTTGCTG -ACGGAAAGCAGATCAAGCTCCATG -ACGGAAAGCAGATCAAGCTGTGTG -ACGGAAAGCAGATCAAGCCTAGTG -ACGGAAAGCAGATCAAGCCATCTG -ACGGAAAGCAGATCAAGCGAGTTG -ACGGAAAGCAGATCAAGCAGACTG -ACGGAAAGCAGATCAAGCTCGGTA -ACGGAAAGCAGATCAAGCTGCCTA -ACGGAAAGCAGATCAAGCCCACTA -ACGGAAAGCAGATCAAGCGGAGTA -ACGGAAAGCAGATCAAGCTCGTCT -ACGGAAAGCAGATCAAGCTGCACT -ACGGAAAGCAGATCAAGCCTGACT -ACGGAAAGCAGATCAAGCCAACCT -ACGGAAAGCAGATCAAGCGCTACT -ACGGAAAGCAGATCAAGCGGATCT -ACGGAAAGCAGATCAAGCAAGGCT -ACGGAAAGCAGATCAAGCTCAACC -ACGGAAAGCAGATCAAGCTGTTCC -ACGGAAAGCAGATCAAGCATTCCC -ACGGAAAGCAGATCAAGCTTCTCG -ACGGAAAGCAGATCAAGCTAGACG -ACGGAAAGCAGATCAAGCGTAACG -ACGGAAAGCAGATCAAGCACTTCG -ACGGAAAGCAGATCAAGCTACGCA -ACGGAAAGCAGATCAAGCCTTGCA -ACGGAAAGCAGATCAAGCCGAACA -ACGGAAAGCAGATCAAGCCAGTCA -ACGGAAAGCAGATCAAGCGATCCA -ACGGAAAGCAGATCAAGCACGACA -ACGGAAAGCAGATCAAGCAGCTCA -ACGGAAAGCAGATCAAGCTCACGT -ACGGAAAGCAGATCAAGCCGTAGT -ACGGAAAGCAGATCAAGCGTCAGT -ACGGAAAGCAGATCAAGCGAAGGT -ACGGAAAGCAGATCAAGCAACCGT -ACGGAAAGCAGATCAAGCTTGTGC -ACGGAAAGCAGATCAAGCCTAAGC -ACGGAAAGCAGATCAAGCACTAGC -ACGGAAAGCAGATCAAGCAGATGC -ACGGAAAGCAGATCAAGCTGAAGG -ACGGAAAGCAGATCAAGCCAATGG -ACGGAAAGCAGATCAAGCATGAGG -ACGGAAAGCAGATCAAGCAATGGG -ACGGAAAGCAGATCAAGCTCCTGA -ACGGAAAGCAGATCAAGCTAGCGA -ACGGAAAGCAGATCAAGCCACAGA -ACGGAAAGCAGATCAAGCGCAAGA -ACGGAAAGCAGATCAAGCGGTTGA -ACGGAAAGCAGATCAAGCTCCGAT -ACGGAAAGCAGATCAAGCTGGCAT -ACGGAAAGCAGATCAAGCCGAGAT -ACGGAAAGCAGATCAAGCTACCAC -ACGGAAAGCAGATCAAGCCAGAAC -ACGGAAAGCAGATCAAGCGTCTAC -ACGGAAAGCAGATCAAGCACGTAC -ACGGAAAGCAGATCAAGCAGTGAC -ACGGAAAGCAGATCAAGCCTGTAG -ACGGAAAGCAGATCAAGCCCTAAG -ACGGAAAGCAGATCAAGCGTTCAG -ACGGAAAGCAGATCAAGCGCATAG -ACGGAAAGCAGATCAAGCGACAAG -ACGGAAAGCAGATCAAGCAAGCAG -ACGGAAAGCAGATCAAGCCGTCAA -ACGGAAAGCAGATCAAGCGCTGAA -ACGGAAAGCAGATCAAGCAGTACG -ACGGAAAGCAGATCAAGCATCCGA -ACGGAAAGCAGATCAAGCATGGGA -ACGGAAAGCAGATCAAGCGTGCAA -ACGGAAAGCAGATCAAGCGAGGAA -ACGGAAAGCAGATCAAGCCAGGTA -ACGGAAAGCAGATCAAGCGACTCT -ACGGAAAGCAGATCAAGCAGTCCT -ACGGAAAGCAGATCAAGCTAAGCC -ACGGAAAGCAGATCAAGCATAGCC -ACGGAAAGCAGATCAAGCTAACCG -ACGGAAAGCAGATCAAGCATGCCA -ACGGAAAGCAGACGTTCAGGAAAC -ACGGAAAGCAGACGTTCAAACACC -ACGGAAAGCAGACGTTCAATCGAG -ACGGAAAGCAGACGTTCACTCCTT -ACGGAAAGCAGACGTTCACCTGTT -ACGGAAAGCAGACGTTCACGGTTT -ACGGAAAGCAGACGTTCAGTGGTT -ACGGAAAGCAGACGTTCAGCCTTT -ACGGAAAGCAGACGTTCAGGTCTT -ACGGAAAGCAGACGTTCAACGCTT -ACGGAAAGCAGACGTTCAAGCGTT -ACGGAAAGCAGACGTTCATTCGTC -ACGGAAAGCAGACGTTCATCTCTC -ACGGAAAGCAGACGTTCATGGATC -ACGGAAAGCAGACGTTCACACTTC -ACGGAAAGCAGACGTTCAGTACTC -ACGGAAAGCAGACGTTCAGATGTC -ACGGAAAGCAGACGTTCAACAGTC -ACGGAAAGCAGACGTTCATTGCTG -ACGGAAAGCAGACGTTCATCCATG -ACGGAAAGCAGACGTTCATGTGTG -ACGGAAAGCAGACGTTCACTAGTG -ACGGAAAGCAGACGTTCACATCTG -ACGGAAAGCAGACGTTCAGAGTTG -ACGGAAAGCAGACGTTCAAGACTG -ACGGAAAGCAGACGTTCATCGGTA -ACGGAAAGCAGACGTTCATGCCTA -ACGGAAAGCAGACGTTCACCACTA -ACGGAAAGCAGACGTTCAGGAGTA -ACGGAAAGCAGACGTTCATCGTCT -ACGGAAAGCAGACGTTCATGCACT -ACGGAAAGCAGACGTTCACTGACT -ACGGAAAGCAGACGTTCACAACCT -ACGGAAAGCAGACGTTCAGCTACT -ACGGAAAGCAGACGTTCAGGATCT -ACGGAAAGCAGACGTTCAAAGGCT -ACGGAAAGCAGACGTTCATCAACC -ACGGAAAGCAGACGTTCATGTTCC -ACGGAAAGCAGACGTTCAATTCCC -ACGGAAAGCAGACGTTCATTCTCG -ACGGAAAGCAGACGTTCATAGACG -ACGGAAAGCAGACGTTCAGTAACG -ACGGAAAGCAGACGTTCAACTTCG -ACGGAAAGCAGACGTTCATACGCA -ACGGAAAGCAGACGTTCACTTGCA -ACGGAAAGCAGACGTTCACGAACA -ACGGAAAGCAGACGTTCACAGTCA -ACGGAAAGCAGACGTTCAGATCCA -ACGGAAAGCAGACGTTCAACGACA -ACGGAAAGCAGACGTTCAAGCTCA -ACGGAAAGCAGACGTTCATCACGT -ACGGAAAGCAGACGTTCACGTAGT -ACGGAAAGCAGACGTTCAGTCAGT -ACGGAAAGCAGACGTTCAGAAGGT -ACGGAAAGCAGACGTTCAAACCGT -ACGGAAAGCAGACGTTCATTGTGC -ACGGAAAGCAGACGTTCACTAAGC -ACGGAAAGCAGACGTTCAACTAGC -ACGGAAAGCAGACGTTCAAGATGC -ACGGAAAGCAGACGTTCATGAAGG -ACGGAAAGCAGACGTTCACAATGG -ACGGAAAGCAGACGTTCAATGAGG -ACGGAAAGCAGACGTTCAAATGGG -ACGGAAAGCAGACGTTCATCCTGA -ACGGAAAGCAGACGTTCATAGCGA -ACGGAAAGCAGACGTTCACACAGA -ACGGAAAGCAGACGTTCAGCAAGA -ACGGAAAGCAGACGTTCAGGTTGA -ACGGAAAGCAGACGTTCATCCGAT -ACGGAAAGCAGACGTTCATGGCAT -ACGGAAAGCAGACGTTCACGAGAT -ACGGAAAGCAGACGTTCATACCAC -ACGGAAAGCAGACGTTCACAGAAC -ACGGAAAGCAGACGTTCAGTCTAC -ACGGAAAGCAGACGTTCAACGTAC -ACGGAAAGCAGACGTTCAAGTGAC -ACGGAAAGCAGACGTTCACTGTAG -ACGGAAAGCAGACGTTCACCTAAG -ACGGAAAGCAGACGTTCAGTTCAG -ACGGAAAGCAGACGTTCAGCATAG -ACGGAAAGCAGACGTTCAGACAAG -ACGGAAAGCAGACGTTCAAAGCAG -ACGGAAAGCAGACGTTCACGTCAA -ACGGAAAGCAGACGTTCAGCTGAA -ACGGAAAGCAGACGTTCAAGTACG -ACGGAAAGCAGACGTTCAATCCGA -ACGGAAAGCAGACGTTCAATGGGA -ACGGAAAGCAGACGTTCAGTGCAA -ACGGAAAGCAGACGTTCAGAGGAA -ACGGAAAGCAGACGTTCACAGGTA -ACGGAAAGCAGACGTTCAGACTCT -ACGGAAAGCAGACGTTCAAGTCCT -ACGGAAAGCAGACGTTCATAAGCC -ACGGAAAGCAGACGTTCAATAGCC -ACGGAAAGCAGACGTTCATAACCG -ACGGAAAGCAGACGTTCAATGCCA -ACGGAAAGCAGAAGTCGTGGAAAC -ACGGAAAGCAGAAGTCGTAACACC -ACGGAAAGCAGAAGTCGTATCGAG -ACGGAAAGCAGAAGTCGTCTCCTT -ACGGAAAGCAGAAGTCGTCCTGTT -ACGGAAAGCAGAAGTCGTCGGTTT -ACGGAAAGCAGAAGTCGTGTGGTT -ACGGAAAGCAGAAGTCGTGCCTTT -ACGGAAAGCAGAAGTCGTGGTCTT -ACGGAAAGCAGAAGTCGTACGCTT -ACGGAAAGCAGAAGTCGTAGCGTT -ACGGAAAGCAGAAGTCGTTTCGTC -ACGGAAAGCAGAAGTCGTTCTCTC -ACGGAAAGCAGAAGTCGTTGGATC -ACGGAAAGCAGAAGTCGTCACTTC -ACGGAAAGCAGAAGTCGTGTACTC -ACGGAAAGCAGAAGTCGTGATGTC -ACGGAAAGCAGAAGTCGTACAGTC -ACGGAAAGCAGAAGTCGTTTGCTG -ACGGAAAGCAGAAGTCGTTCCATG -ACGGAAAGCAGAAGTCGTTGTGTG -ACGGAAAGCAGAAGTCGTCTAGTG -ACGGAAAGCAGAAGTCGTCATCTG -ACGGAAAGCAGAAGTCGTGAGTTG -ACGGAAAGCAGAAGTCGTAGACTG -ACGGAAAGCAGAAGTCGTTCGGTA -ACGGAAAGCAGAAGTCGTTGCCTA -ACGGAAAGCAGAAGTCGTCCACTA -ACGGAAAGCAGAAGTCGTGGAGTA -ACGGAAAGCAGAAGTCGTTCGTCT -ACGGAAAGCAGAAGTCGTTGCACT -ACGGAAAGCAGAAGTCGTCTGACT -ACGGAAAGCAGAAGTCGTCAACCT -ACGGAAAGCAGAAGTCGTGCTACT -ACGGAAAGCAGAAGTCGTGGATCT -ACGGAAAGCAGAAGTCGTAAGGCT -ACGGAAAGCAGAAGTCGTTCAACC -ACGGAAAGCAGAAGTCGTTGTTCC -ACGGAAAGCAGAAGTCGTATTCCC -ACGGAAAGCAGAAGTCGTTTCTCG -ACGGAAAGCAGAAGTCGTTAGACG -ACGGAAAGCAGAAGTCGTGTAACG -ACGGAAAGCAGAAGTCGTACTTCG -ACGGAAAGCAGAAGTCGTTACGCA -ACGGAAAGCAGAAGTCGTCTTGCA -ACGGAAAGCAGAAGTCGTCGAACA -ACGGAAAGCAGAAGTCGTCAGTCA -ACGGAAAGCAGAAGTCGTGATCCA -ACGGAAAGCAGAAGTCGTACGACA -ACGGAAAGCAGAAGTCGTAGCTCA -ACGGAAAGCAGAAGTCGTTCACGT -ACGGAAAGCAGAAGTCGTCGTAGT -ACGGAAAGCAGAAGTCGTGTCAGT -ACGGAAAGCAGAAGTCGTGAAGGT -ACGGAAAGCAGAAGTCGTAACCGT -ACGGAAAGCAGAAGTCGTTTGTGC -ACGGAAAGCAGAAGTCGTCTAAGC -ACGGAAAGCAGAAGTCGTACTAGC -ACGGAAAGCAGAAGTCGTAGATGC -ACGGAAAGCAGAAGTCGTTGAAGG -ACGGAAAGCAGAAGTCGTCAATGG -ACGGAAAGCAGAAGTCGTATGAGG -ACGGAAAGCAGAAGTCGTAATGGG -ACGGAAAGCAGAAGTCGTTCCTGA -ACGGAAAGCAGAAGTCGTTAGCGA -ACGGAAAGCAGAAGTCGTCACAGA -ACGGAAAGCAGAAGTCGTGCAAGA -ACGGAAAGCAGAAGTCGTGGTTGA -ACGGAAAGCAGAAGTCGTTCCGAT -ACGGAAAGCAGAAGTCGTTGGCAT -ACGGAAAGCAGAAGTCGTCGAGAT -ACGGAAAGCAGAAGTCGTTACCAC -ACGGAAAGCAGAAGTCGTCAGAAC -ACGGAAAGCAGAAGTCGTGTCTAC -ACGGAAAGCAGAAGTCGTACGTAC -ACGGAAAGCAGAAGTCGTAGTGAC -ACGGAAAGCAGAAGTCGTCTGTAG -ACGGAAAGCAGAAGTCGTCCTAAG -ACGGAAAGCAGAAGTCGTGTTCAG -ACGGAAAGCAGAAGTCGTGCATAG -ACGGAAAGCAGAAGTCGTGACAAG -ACGGAAAGCAGAAGTCGTAAGCAG -ACGGAAAGCAGAAGTCGTCGTCAA -ACGGAAAGCAGAAGTCGTGCTGAA -ACGGAAAGCAGAAGTCGTAGTACG -ACGGAAAGCAGAAGTCGTATCCGA -ACGGAAAGCAGAAGTCGTATGGGA -ACGGAAAGCAGAAGTCGTGTGCAA -ACGGAAAGCAGAAGTCGTGAGGAA -ACGGAAAGCAGAAGTCGTCAGGTA -ACGGAAAGCAGAAGTCGTGACTCT -ACGGAAAGCAGAAGTCGTAGTCCT -ACGGAAAGCAGAAGTCGTTAAGCC -ACGGAAAGCAGAAGTCGTATAGCC -ACGGAAAGCAGAAGTCGTTAACCG -ACGGAAAGCAGAAGTCGTATGCCA -ACGGAAAGCAGAAGTGTCGGAAAC -ACGGAAAGCAGAAGTGTCAACACC -ACGGAAAGCAGAAGTGTCATCGAG -ACGGAAAGCAGAAGTGTCCTCCTT -ACGGAAAGCAGAAGTGTCCCTGTT -ACGGAAAGCAGAAGTGTCCGGTTT -ACGGAAAGCAGAAGTGTCGTGGTT -ACGGAAAGCAGAAGTGTCGCCTTT -ACGGAAAGCAGAAGTGTCGGTCTT -ACGGAAAGCAGAAGTGTCACGCTT -ACGGAAAGCAGAAGTGTCAGCGTT -ACGGAAAGCAGAAGTGTCTTCGTC -ACGGAAAGCAGAAGTGTCTCTCTC -ACGGAAAGCAGAAGTGTCTGGATC -ACGGAAAGCAGAAGTGTCCACTTC -ACGGAAAGCAGAAGTGTCGTACTC -ACGGAAAGCAGAAGTGTCGATGTC -ACGGAAAGCAGAAGTGTCACAGTC -ACGGAAAGCAGAAGTGTCTTGCTG -ACGGAAAGCAGAAGTGTCTCCATG -ACGGAAAGCAGAAGTGTCTGTGTG -ACGGAAAGCAGAAGTGTCCTAGTG -ACGGAAAGCAGAAGTGTCCATCTG -ACGGAAAGCAGAAGTGTCGAGTTG -ACGGAAAGCAGAAGTGTCAGACTG -ACGGAAAGCAGAAGTGTCTCGGTA -ACGGAAAGCAGAAGTGTCTGCCTA -ACGGAAAGCAGAAGTGTCCCACTA -ACGGAAAGCAGAAGTGTCGGAGTA -ACGGAAAGCAGAAGTGTCTCGTCT -ACGGAAAGCAGAAGTGTCTGCACT -ACGGAAAGCAGAAGTGTCCTGACT -ACGGAAAGCAGAAGTGTCCAACCT -ACGGAAAGCAGAAGTGTCGCTACT -ACGGAAAGCAGAAGTGTCGGATCT -ACGGAAAGCAGAAGTGTCAAGGCT -ACGGAAAGCAGAAGTGTCTCAACC -ACGGAAAGCAGAAGTGTCTGTTCC -ACGGAAAGCAGAAGTGTCATTCCC -ACGGAAAGCAGAAGTGTCTTCTCG -ACGGAAAGCAGAAGTGTCTAGACG -ACGGAAAGCAGAAGTGTCGTAACG -ACGGAAAGCAGAAGTGTCACTTCG -ACGGAAAGCAGAAGTGTCTACGCA -ACGGAAAGCAGAAGTGTCCTTGCA -ACGGAAAGCAGAAGTGTCCGAACA -ACGGAAAGCAGAAGTGTCCAGTCA -ACGGAAAGCAGAAGTGTCGATCCA -ACGGAAAGCAGAAGTGTCACGACA -ACGGAAAGCAGAAGTGTCAGCTCA -ACGGAAAGCAGAAGTGTCTCACGT -ACGGAAAGCAGAAGTGTCCGTAGT -ACGGAAAGCAGAAGTGTCGTCAGT -ACGGAAAGCAGAAGTGTCGAAGGT -ACGGAAAGCAGAAGTGTCAACCGT -ACGGAAAGCAGAAGTGTCTTGTGC -ACGGAAAGCAGAAGTGTCCTAAGC -ACGGAAAGCAGAAGTGTCACTAGC -ACGGAAAGCAGAAGTGTCAGATGC -ACGGAAAGCAGAAGTGTCTGAAGG -ACGGAAAGCAGAAGTGTCCAATGG -ACGGAAAGCAGAAGTGTCATGAGG -ACGGAAAGCAGAAGTGTCAATGGG -ACGGAAAGCAGAAGTGTCTCCTGA -ACGGAAAGCAGAAGTGTCTAGCGA -ACGGAAAGCAGAAGTGTCCACAGA -ACGGAAAGCAGAAGTGTCGCAAGA -ACGGAAAGCAGAAGTGTCGGTTGA -ACGGAAAGCAGAAGTGTCTCCGAT -ACGGAAAGCAGAAGTGTCTGGCAT -ACGGAAAGCAGAAGTGTCCGAGAT -ACGGAAAGCAGAAGTGTCTACCAC -ACGGAAAGCAGAAGTGTCCAGAAC -ACGGAAAGCAGAAGTGTCGTCTAC -ACGGAAAGCAGAAGTGTCACGTAC -ACGGAAAGCAGAAGTGTCAGTGAC -ACGGAAAGCAGAAGTGTCCTGTAG -ACGGAAAGCAGAAGTGTCCCTAAG -ACGGAAAGCAGAAGTGTCGTTCAG -ACGGAAAGCAGAAGTGTCGCATAG -ACGGAAAGCAGAAGTGTCGACAAG -ACGGAAAGCAGAAGTGTCAAGCAG -ACGGAAAGCAGAAGTGTCCGTCAA -ACGGAAAGCAGAAGTGTCGCTGAA -ACGGAAAGCAGAAGTGTCAGTACG -ACGGAAAGCAGAAGTGTCATCCGA -ACGGAAAGCAGAAGTGTCATGGGA -ACGGAAAGCAGAAGTGTCGTGCAA -ACGGAAAGCAGAAGTGTCGAGGAA -ACGGAAAGCAGAAGTGTCCAGGTA -ACGGAAAGCAGAAGTGTCGACTCT -ACGGAAAGCAGAAGTGTCAGTCCT -ACGGAAAGCAGAAGTGTCTAAGCC -ACGGAAAGCAGAAGTGTCATAGCC -ACGGAAAGCAGAAGTGTCTAACCG -ACGGAAAGCAGAAGTGTCATGCCA -ACGGAAAGCAGAGGTGAAGGAAAC -ACGGAAAGCAGAGGTGAAAACACC -ACGGAAAGCAGAGGTGAAATCGAG -ACGGAAAGCAGAGGTGAACTCCTT -ACGGAAAGCAGAGGTGAACCTGTT -ACGGAAAGCAGAGGTGAACGGTTT -ACGGAAAGCAGAGGTGAAGTGGTT -ACGGAAAGCAGAGGTGAAGCCTTT -ACGGAAAGCAGAGGTGAAGGTCTT -ACGGAAAGCAGAGGTGAAACGCTT -ACGGAAAGCAGAGGTGAAAGCGTT -ACGGAAAGCAGAGGTGAATTCGTC -ACGGAAAGCAGAGGTGAATCTCTC -ACGGAAAGCAGAGGTGAATGGATC -ACGGAAAGCAGAGGTGAACACTTC -ACGGAAAGCAGAGGTGAAGTACTC -ACGGAAAGCAGAGGTGAAGATGTC -ACGGAAAGCAGAGGTGAAACAGTC -ACGGAAAGCAGAGGTGAATTGCTG -ACGGAAAGCAGAGGTGAATCCATG -ACGGAAAGCAGAGGTGAATGTGTG -ACGGAAAGCAGAGGTGAACTAGTG -ACGGAAAGCAGAGGTGAACATCTG -ACGGAAAGCAGAGGTGAAGAGTTG -ACGGAAAGCAGAGGTGAAAGACTG -ACGGAAAGCAGAGGTGAATCGGTA -ACGGAAAGCAGAGGTGAATGCCTA -ACGGAAAGCAGAGGTGAACCACTA -ACGGAAAGCAGAGGTGAAGGAGTA -ACGGAAAGCAGAGGTGAATCGTCT -ACGGAAAGCAGAGGTGAATGCACT -ACGGAAAGCAGAGGTGAACTGACT -ACGGAAAGCAGAGGTGAACAACCT -ACGGAAAGCAGAGGTGAAGCTACT -ACGGAAAGCAGAGGTGAAGGATCT -ACGGAAAGCAGAGGTGAAAAGGCT -ACGGAAAGCAGAGGTGAATCAACC -ACGGAAAGCAGAGGTGAATGTTCC -ACGGAAAGCAGAGGTGAAATTCCC -ACGGAAAGCAGAGGTGAATTCTCG -ACGGAAAGCAGAGGTGAATAGACG -ACGGAAAGCAGAGGTGAAGTAACG -ACGGAAAGCAGAGGTGAAACTTCG -ACGGAAAGCAGAGGTGAATACGCA -ACGGAAAGCAGAGGTGAACTTGCA -ACGGAAAGCAGAGGTGAACGAACA -ACGGAAAGCAGAGGTGAACAGTCA -ACGGAAAGCAGAGGTGAAGATCCA -ACGGAAAGCAGAGGTGAAACGACA -ACGGAAAGCAGAGGTGAAAGCTCA -ACGGAAAGCAGAGGTGAATCACGT -ACGGAAAGCAGAGGTGAACGTAGT -ACGGAAAGCAGAGGTGAAGTCAGT -ACGGAAAGCAGAGGTGAAGAAGGT -ACGGAAAGCAGAGGTGAAAACCGT -ACGGAAAGCAGAGGTGAATTGTGC -ACGGAAAGCAGAGGTGAACTAAGC -ACGGAAAGCAGAGGTGAAACTAGC -ACGGAAAGCAGAGGTGAAAGATGC -ACGGAAAGCAGAGGTGAATGAAGG -ACGGAAAGCAGAGGTGAACAATGG -ACGGAAAGCAGAGGTGAAATGAGG -ACGGAAAGCAGAGGTGAAAATGGG -ACGGAAAGCAGAGGTGAATCCTGA -ACGGAAAGCAGAGGTGAATAGCGA -ACGGAAAGCAGAGGTGAACACAGA -ACGGAAAGCAGAGGTGAAGCAAGA -ACGGAAAGCAGAGGTGAAGGTTGA -ACGGAAAGCAGAGGTGAATCCGAT -ACGGAAAGCAGAGGTGAATGGCAT -ACGGAAAGCAGAGGTGAACGAGAT -ACGGAAAGCAGAGGTGAATACCAC -ACGGAAAGCAGAGGTGAACAGAAC -ACGGAAAGCAGAGGTGAAGTCTAC -ACGGAAAGCAGAGGTGAAACGTAC -ACGGAAAGCAGAGGTGAAAGTGAC -ACGGAAAGCAGAGGTGAACTGTAG -ACGGAAAGCAGAGGTGAACCTAAG -ACGGAAAGCAGAGGTGAAGTTCAG -ACGGAAAGCAGAGGTGAAGCATAG -ACGGAAAGCAGAGGTGAAGACAAG -ACGGAAAGCAGAGGTGAAAAGCAG -ACGGAAAGCAGAGGTGAACGTCAA -ACGGAAAGCAGAGGTGAAGCTGAA -ACGGAAAGCAGAGGTGAAAGTACG -ACGGAAAGCAGAGGTGAAATCCGA -ACGGAAAGCAGAGGTGAAATGGGA -ACGGAAAGCAGAGGTGAAGTGCAA -ACGGAAAGCAGAGGTGAAGAGGAA -ACGGAAAGCAGAGGTGAACAGGTA -ACGGAAAGCAGAGGTGAAGACTCT -ACGGAAAGCAGAGGTGAAAGTCCT -ACGGAAAGCAGAGGTGAATAAGCC -ACGGAAAGCAGAGGTGAAATAGCC -ACGGAAAGCAGAGGTGAATAACCG -ACGGAAAGCAGAGGTGAAATGCCA -ACGGAAAGCAGACGTAACGGAAAC -ACGGAAAGCAGACGTAACAACACC -ACGGAAAGCAGACGTAACATCGAG -ACGGAAAGCAGACGTAACCTCCTT -ACGGAAAGCAGACGTAACCCTGTT -ACGGAAAGCAGACGTAACCGGTTT -ACGGAAAGCAGACGTAACGTGGTT -ACGGAAAGCAGACGTAACGCCTTT -ACGGAAAGCAGACGTAACGGTCTT -ACGGAAAGCAGACGTAACACGCTT -ACGGAAAGCAGACGTAACAGCGTT -ACGGAAAGCAGACGTAACTTCGTC -ACGGAAAGCAGACGTAACTCTCTC -ACGGAAAGCAGACGTAACTGGATC -ACGGAAAGCAGACGTAACCACTTC -ACGGAAAGCAGACGTAACGTACTC -ACGGAAAGCAGACGTAACGATGTC -ACGGAAAGCAGACGTAACACAGTC -ACGGAAAGCAGACGTAACTTGCTG -ACGGAAAGCAGACGTAACTCCATG -ACGGAAAGCAGACGTAACTGTGTG -ACGGAAAGCAGACGTAACCTAGTG -ACGGAAAGCAGACGTAACCATCTG -ACGGAAAGCAGACGTAACGAGTTG -ACGGAAAGCAGACGTAACAGACTG -ACGGAAAGCAGACGTAACTCGGTA -ACGGAAAGCAGACGTAACTGCCTA -ACGGAAAGCAGACGTAACCCACTA -ACGGAAAGCAGACGTAACGGAGTA -ACGGAAAGCAGACGTAACTCGTCT -ACGGAAAGCAGACGTAACTGCACT -ACGGAAAGCAGACGTAACCTGACT -ACGGAAAGCAGACGTAACCAACCT -ACGGAAAGCAGACGTAACGCTACT -ACGGAAAGCAGACGTAACGGATCT -ACGGAAAGCAGACGTAACAAGGCT -ACGGAAAGCAGACGTAACTCAACC -ACGGAAAGCAGACGTAACTGTTCC -ACGGAAAGCAGACGTAACATTCCC -ACGGAAAGCAGACGTAACTTCTCG -ACGGAAAGCAGACGTAACTAGACG -ACGGAAAGCAGACGTAACGTAACG -ACGGAAAGCAGACGTAACACTTCG -ACGGAAAGCAGACGTAACTACGCA -ACGGAAAGCAGACGTAACCTTGCA -ACGGAAAGCAGACGTAACCGAACA -ACGGAAAGCAGACGTAACCAGTCA -ACGGAAAGCAGACGTAACGATCCA -ACGGAAAGCAGACGTAACACGACA -ACGGAAAGCAGACGTAACAGCTCA -ACGGAAAGCAGACGTAACTCACGT -ACGGAAAGCAGACGTAACCGTAGT -ACGGAAAGCAGACGTAACGTCAGT -ACGGAAAGCAGACGTAACGAAGGT -ACGGAAAGCAGACGTAACAACCGT -ACGGAAAGCAGACGTAACTTGTGC -ACGGAAAGCAGACGTAACCTAAGC -ACGGAAAGCAGACGTAACACTAGC -ACGGAAAGCAGACGTAACAGATGC -ACGGAAAGCAGACGTAACTGAAGG -ACGGAAAGCAGACGTAACCAATGG -ACGGAAAGCAGACGTAACATGAGG -ACGGAAAGCAGACGTAACAATGGG -ACGGAAAGCAGACGTAACTCCTGA -ACGGAAAGCAGACGTAACTAGCGA -ACGGAAAGCAGACGTAACCACAGA -ACGGAAAGCAGACGTAACGCAAGA -ACGGAAAGCAGACGTAACGGTTGA -ACGGAAAGCAGACGTAACTCCGAT -ACGGAAAGCAGACGTAACTGGCAT -ACGGAAAGCAGACGTAACCGAGAT -ACGGAAAGCAGACGTAACTACCAC -ACGGAAAGCAGACGTAACCAGAAC -ACGGAAAGCAGACGTAACGTCTAC -ACGGAAAGCAGACGTAACACGTAC -ACGGAAAGCAGACGTAACAGTGAC -ACGGAAAGCAGACGTAACCTGTAG -ACGGAAAGCAGACGTAACCCTAAG -ACGGAAAGCAGACGTAACGTTCAG -ACGGAAAGCAGACGTAACGCATAG -ACGGAAAGCAGACGTAACGACAAG -ACGGAAAGCAGACGTAACAAGCAG -ACGGAAAGCAGACGTAACCGTCAA -ACGGAAAGCAGACGTAACGCTGAA -ACGGAAAGCAGACGTAACAGTACG -ACGGAAAGCAGACGTAACATCCGA -ACGGAAAGCAGACGTAACATGGGA -ACGGAAAGCAGACGTAACGTGCAA -ACGGAAAGCAGACGTAACGAGGAA -ACGGAAAGCAGACGTAACCAGGTA -ACGGAAAGCAGACGTAACGACTCT -ACGGAAAGCAGACGTAACAGTCCT -ACGGAAAGCAGACGTAACTAAGCC -ACGGAAAGCAGACGTAACATAGCC -ACGGAAAGCAGACGTAACTAACCG -ACGGAAAGCAGACGTAACATGCCA -ACGGAAAGCAGATGCTTGGGAAAC -ACGGAAAGCAGATGCTTGAACACC -ACGGAAAGCAGATGCTTGATCGAG -ACGGAAAGCAGATGCTTGCTCCTT -ACGGAAAGCAGATGCTTGCCTGTT -ACGGAAAGCAGATGCTTGCGGTTT -ACGGAAAGCAGATGCTTGGTGGTT -ACGGAAAGCAGATGCTTGGCCTTT -ACGGAAAGCAGATGCTTGGGTCTT -ACGGAAAGCAGATGCTTGACGCTT -ACGGAAAGCAGATGCTTGAGCGTT -ACGGAAAGCAGATGCTTGTTCGTC -ACGGAAAGCAGATGCTTGTCTCTC -ACGGAAAGCAGATGCTTGTGGATC -ACGGAAAGCAGATGCTTGCACTTC -ACGGAAAGCAGATGCTTGGTACTC -ACGGAAAGCAGATGCTTGGATGTC -ACGGAAAGCAGATGCTTGACAGTC -ACGGAAAGCAGATGCTTGTTGCTG -ACGGAAAGCAGATGCTTGTCCATG -ACGGAAAGCAGATGCTTGTGTGTG -ACGGAAAGCAGATGCTTGCTAGTG -ACGGAAAGCAGATGCTTGCATCTG -ACGGAAAGCAGATGCTTGGAGTTG -ACGGAAAGCAGATGCTTGAGACTG -ACGGAAAGCAGATGCTTGTCGGTA -ACGGAAAGCAGATGCTTGTGCCTA -ACGGAAAGCAGATGCTTGCCACTA -ACGGAAAGCAGATGCTTGGGAGTA -ACGGAAAGCAGATGCTTGTCGTCT -ACGGAAAGCAGATGCTTGTGCACT -ACGGAAAGCAGATGCTTGCTGACT -ACGGAAAGCAGATGCTTGCAACCT -ACGGAAAGCAGATGCTTGGCTACT -ACGGAAAGCAGATGCTTGGGATCT -ACGGAAAGCAGATGCTTGAAGGCT -ACGGAAAGCAGATGCTTGTCAACC -ACGGAAAGCAGATGCTTGTGTTCC -ACGGAAAGCAGATGCTTGATTCCC -ACGGAAAGCAGATGCTTGTTCTCG -ACGGAAAGCAGATGCTTGTAGACG -ACGGAAAGCAGATGCTTGGTAACG -ACGGAAAGCAGATGCTTGACTTCG -ACGGAAAGCAGATGCTTGTACGCA -ACGGAAAGCAGATGCTTGCTTGCA -ACGGAAAGCAGATGCTTGCGAACA -ACGGAAAGCAGATGCTTGCAGTCA -ACGGAAAGCAGATGCTTGGATCCA -ACGGAAAGCAGATGCTTGACGACA -ACGGAAAGCAGATGCTTGAGCTCA -ACGGAAAGCAGATGCTTGTCACGT -ACGGAAAGCAGATGCTTGCGTAGT -ACGGAAAGCAGATGCTTGGTCAGT -ACGGAAAGCAGATGCTTGGAAGGT -ACGGAAAGCAGATGCTTGAACCGT -ACGGAAAGCAGATGCTTGTTGTGC -ACGGAAAGCAGATGCTTGCTAAGC -ACGGAAAGCAGATGCTTGACTAGC -ACGGAAAGCAGATGCTTGAGATGC -ACGGAAAGCAGATGCTTGTGAAGG -ACGGAAAGCAGATGCTTGCAATGG -ACGGAAAGCAGATGCTTGATGAGG -ACGGAAAGCAGATGCTTGAATGGG -ACGGAAAGCAGATGCTTGTCCTGA -ACGGAAAGCAGATGCTTGTAGCGA -ACGGAAAGCAGATGCTTGCACAGA -ACGGAAAGCAGATGCTTGGCAAGA -ACGGAAAGCAGATGCTTGGGTTGA -ACGGAAAGCAGATGCTTGTCCGAT -ACGGAAAGCAGATGCTTGTGGCAT -ACGGAAAGCAGATGCTTGCGAGAT -ACGGAAAGCAGATGCTTGTACCAC -ACGGAAAGCAGATGCTTGCAGAAC -ACGGAAAGCAGATGCTTGGTCTAC -ACGGAAAGCAGATGCTTGACGTAC -ACGGAAAGCAGATGCTTGAGTGAC -ACGGAAAGCAGATGCTTGCTGTAG -ACGGAAAGCAGATGCTTGCCTAAG -ACGGAAAGCAGATGCTTGGTTCAG -ACGGAAAGCAGATGCTTGGCATAG -ACGGAAAGCAGATGCTTGGACAAG -ACGGAAAGCAGATGCTTGAAGCAG -ACGGAAAGCAGATGCTTGCGTCAA -ACGGAAAGCAGATGCTTGGCTGAA -ACGGAAAGCAGATGCTTGAGTACG -ACGGAAAGCAGATGCTTGATCCGA -ACGGAAAGCAGATGCTTGATGGGA -ACGGAAAGCAGATGCTTGGTGCAA -ACGGAAAGCAGATGCTTGGAGGAA -ACGGAAAGCAGATGCTTGCAGGTA -ACGGAAAGCAGATGCTTGGACTCT -ACGGAAAGCAGATGCTTGAGTCCT -ACGGAAAGCAGATGCTTGTAAGCC -ACGGAAAGCAGATGCTTGATAGCC -ACGGAAAGCAGATGCTTGTAACCG -ACGGAAAGCAGATGCTTGATGCCA -ACGGAAAGCAGAAGCCTAGGAAAC -ACGGAAAGCAGAAGCCTAAACACC -ACGGAAAGCAGAAGCCTAATCGAG -ACGGAAAGCAGAAGCCTACTCCTT -ACGGAAAGCAGAAGCCTACCTGTT -ACGGAAAGCAGAAGCCTACGGTTT -ACGGAAAGCAGAAGCCTAGTGGTT -ACGGAAAGCAGAAGCCTAGCCTTT -ACGGAAAGCAGAAGCCTAGGTCTT -ACGGAAAGCAGAAGCCTAACGCTT -ACGGAAAGCAGAAGCCTAAGCGTT -ACGGAAAGCAGAAGCCTATTCGTC -ACGGAAAGCAGAAGCCTATCTCTC -ACGGAAAGCAGAAGCCTATGGATC -ACGGAAAGCAGAAGCCTACACTTC -ACGGAAAGCAGAAGCCTAGTACTC -ACGGAAAGCAGAAGCCTAGATGTC -ACGGAAAGCAGAAGCCTAACAGTC -ACGGAAAGCAGAAGCCTATTGCTG -ACGGAAAGCAGAAGCCTATCCATG -ACGGAAAGCAGAAGCCTATGTGTG -ACGGAAAGCAGAAGCCTACTAGTG -ACGGAAAGCAGAAGCCTACATCTG -ACGGAAAGCAGAAGCCTAGAGTTG -ACGGAAAGCAGAAGCCTAAGACTG -ACGGAAAGCAGAAGCCTATCGGTA -ACGGAAAGCAGAAGCCTATGCCTA -ACGGAAAGCAGAAGCCTACCACTA -ACGGAAAGCAGAAGCCTAGGAGTA -ACGGAAAGCAGAAGCCTATCGTCT -ACGGAAAGCAGAAGCCTATGCACT -ACGGAAAGCAGAAGCCTACTGACT -ACGGAAAGCAGAAGCCTACAACCT -ACGGAAAGCAGAAGCCTAGCTACT -ACGGAAAGCAGAAGCCTAGGATCT -ACGGAAAGCAGAAGCCTAAAGGCT -ACGGAAAGCAGAAGCCTATCAACC -ACGGAAAGCAGAAGCCTATGTTCC -ACGGAAAGCAGAAGCCTAATTCCC -ACGGAAAGCAGAAGCCTATTCTCG -ACGGAAAGCAGAAGCCTATAGACG -ACGGAAAGCAGAAGCCTAGTAACG -ACGGAAAGCAGAAGCCTAACTTCG -ACGGAAAGCAGAAGCCTATACGCA -ACGGAAAGCAGAAGCCTACTTGCA -ACGGAAAGCAGAAGCCTACGAACA -ACGGAAAGCAGAAGCCTACAGTCA -ACGGAAAGCAGAAGCCTAGATCCA -ACGGAAAGCAGAAGCCTAACGACA -ACGGAAAGCAGAAGCCTAAGCTCA -ACGGAAAGCAGAAGCCTATCACGT -ACGGAAAGCAGAAGCCTACGTAGT -ACGGAAAGCAGAAGCCTAGTCAGT -ACGGAAAGCAGAAGCCTAGAAGGT -ACGGAAAGCAGAAGCCTAAACCGT -ACGGAAAGCAGAAGCCTATTGTGC -ACGGAAAGCAGAAGCCTACTAAGC -ACGGAAAGCAGAAGCCTAACTAGC -ACGGAAAGCAGAAGCCTAAGATGC -ACGGAAAGCAGAAGCCTATGAAGG -ACGGAAAGCAGAAGCCTACAATGG -ACGGAAAGCAGAAGCCTAATGAGG -ACGGAAAGCAGAAGCCTAAATGGG -ACGGAAAGCAGAAGCCTATCCTGA -ACGGAAAGCAGAAGCCTATAGCGA -ACGGAAAGCAGAAGCCTACACAGA -ACGGAAAGCAGAAGCCTAGCAAGA -ACGGAAAGCAGAAGCCTAGGTTGA -ACGGAAAGCAGAAGCCTATCCGAT -ACGGAAAGCAGAAGCCTATGGCAT -ACGGAAAGCAGAAGCCTACGAGAT -ACGGAAAGCAGAAGCCTATACCAC -ACGGAAAGCAGAAGCCTACAGAAC -ACGGAAAGCAGAAGCCTAGTCTAC -ACGGAAAGCAGAAGCCTAACGTAC -ACGGAAAGCAGAAGCCTAAGTGAC -ACGGAAAGCAGAAGCCTACTGTAG -ACGGAAAGCAGAAGCCTACCTAAG -ACGGAAAGCAGAAGCCTAGTTCAG -ACGGAAAGCAGAAGCCTAGCATAG -ACGGAAAGCAGAAGCCTAGACAAG -ACGGAAAGCAGAAGCCTAAAGCAG -ACGGAAAGCAGAAGCCTACGTCAA -ACGGAAAGCAGAAGCCTAGCTGAA -ACGGAAAGCAGAAGCCTAAGTACG -ACGGAAAGCAGAAGCCTAATCCGA -ACGGAAAGCAGAAGCCTAATGGGA -ACGGAAAGCAGAAGCCTAGTGCAA -ACGGAAAGCAGAAGCCTAGAGGAA -ACGGAAAGCAGAAGCCTACAGGTA -ACGGAAAGCAGAAGCCTAGACTCT -ACGGAAAGCAGAAGCCTAAGTCCT -ACGGAAAGCAGAAGCCTATAAGCC -ACGGAAAGCAGAAGCCTAATAGCC -ACGGAAAGCAGAAGCCTATAACCG -ACGGAAAGCAGAAGCCTAATGCCA -ACGGAAAGCAGAAGCACTGGAAAC -ACGGAAAGCAGAAGCACTAACACC -ACGGAAAGCAGAAGCACTATCGAG -ACGGAAAGCAGAAGCACTCTCCTT -ACGGAAAGCAGAAGCACTCCTGTT -ACGGAAAGCAGAAGCACTCGGTTT -ACGGAAAGCAGAAGCACTGTGGTT -ACGGAAAGCAGAAGCACTGCCTTT -ACGGAAAGCAGAAGCACTGGTCTT -ACGGAAAGCAGAAGCACTACGCTT -ACGGAAAGCAGAAGCACTAGCGTT -ACGGAAAGCAGAAGCACTTTCGTC -ACGGAAAGCAGAAGCACTTCTCTC -ACGGAAAGCAGAAGCACTTGGATC -ACGGAAAGCAGAAGCACTCACTTC -ACGGAAAGCAGAAGCACTGTACTC -ACGGAAAGCAGAAGCACTGATGTC -ACGGAAAGCAGAAGCACTACAGTC -ACGGAAAGCAGAAGCACTTTGCTG -ACGGAAAGCAGAAGCACTTCCATG -ACGGAAAGCAGAAGCACTTGTGTG -ACGGAAAGCAGAAGCACTCTAGTG -ACGGAAAGCAGAAGCACTCATCTG -ACGGAAAGCAGAAGCACTGAGTTG -ACGGAAAGCAGAAGCACTAGACTG -ACGGAAAGCAGAAGCACTTCGGTA -ACGGAAAGCAGAAGCACTTGCCTA -ACGGAAAGCAGAAGCACTCCACTA -ACGGAAAGCAGAAGCACTGGAGTA -ACGGAAAGCAGAAGCACTTCGTCT -ACGGAAAGCAGAAGCACTTGCACT -ACGGAAAGCAGAAGCACTCTGACT -ACGGAAAGCAGAAGCACTCAACCT -ACGGAAAGCAGAAGCACTGCTACT -ACGGAAAGCAGAAGCACTGGATCT -ACGGAAAGCAGAAGCACTAAGGCT -ACGGAAAGCAGAAGCACTTCAACC -ACGGAAAGCAGAAGCACTTGTTCC -ACGGAAAGCAGAAGCACTATTCCC -ACGGAAAGCAGAAGCACTTTCTCG -ACGGAAAGCAGAAGCACTTAGACG -ACGGAAAGCAGAAGCACTGTAACG -ACGGAAAGCAGAAGCACTACTTCG -ACGGAAAGCAGAAGCACTTACGCA -ACGGAAAGCAGAAGCACTCTTGCA -ACGGAAAGCAGAAGCACTCGAACA -ACGGAAAGCAGAAGCACTCAGTCA -ACGGAAAGCAGAAGCACTGATCCA -ACGGAAAGCAGAAGCACTACGACA -ACGGAAAGCAGAAGCACTAGCTCA -ACGGAAAGCAGAAGCACTTCACGT -ACGGAAAGCAGAAGCACTCGTAGT -ACGGAAAGCAGAAGCACTGTCAGT -ACGGAAAGCAGAAGCACTGAAGGT -ACGGAAAGCAGAAGCACTAACCGT -ACGGAAAGCAGAAGCACTTTGTGC -ACGGAAAGCAGAAGCACTCTAAGC -ACGGAAAGCAGAAGCACTACTAGC -ACGGAAAGCAGAAGCACTAGATGC -ACGGAAAGCAGAAGCACTTGAAGG -ACGGAAAGCAGAAGCACTCAATGG -ACGGAAAGCAGAAGCACTATGAGG -ACGGAAAGCAGAAGCACTAATGGG -ACGGAAAGCAGAAGCACTTCCTGA -ACGGAAAGCAGAAGCACTTAGCGA -ACGGAAAGCAGAAGCACTCACAGA -ACGGAAAGCAGAAGCACTGCAAGA -ACGGAAAGCAGAAGCACTGGTTGA -ACGGAAAGCAGAAGCACTTCCGAT -ACGGAAAGCAGAAGCACTTGGCAT -ACGGAAAGCAGAAGCACTCGAGAT -ACGGAAAGCAGAAGCACTTACCAC -ACGGAAAGCAGAAGCACTCAGAAC -ACGGAAAGCAGAAGCACTGTCTAC -ACGGAAAGCAGAAGCACTACGTAC -ACGGAAAGCAGAAGCACTAGTGAC -ACGGAAAGCAGAAGCACTCTGTAG -ACGGAAAGCAGAAGCACTCCTAAG -ACGGAAAGCAGAAGCACTGTTCAG -ACGGAAAGCAGAAGCACTGCATAG -ACGGAAAGCAGAAGCACTGACAAG -ACGGAAAGCAGAAGCACTAAGCAG -ACGGAAAGCAGAAGCACTCGTCAA -ACGGAAAGCAGAAGCACTGCTGAA -ACGGAAAGCAGAAGCACTAGTACG -ACGGAAAGCAGAAGCACTATCCGA -ACGGAAAGCAGAAGCACTATGGGA -ACGGAAAGCAGAAGCACTGTGCAA -ACGGAAAGCAGAAGCACTGAGGAA -ACGGAAAGCAGAAGCACTCAGGTA -ACGGAAAGCAGAAGCACTGACTCT -ACGGAAAGCAGAAGCACTAGTCCT -ACGGAAAGCAGAAGCACTTAAGCC -ACGGAAAGCAGAAGCACTATAGCC -ACGGAAAGCAGAAGCACTTAACCG -ACGGAAAGCAGAAGCACTATGCCA -ACGGAAAGCAGATGCAGAGGAAAC -ACGGAAAGCAGATGCAGAAACACC -ACGGAAAGCAGATGCAGAATCGAG -ACGGAAAGCAGATGCAGACTCCTT -ACGGAAAGCAGATGCAGACCTGTT -ACGGAAAGCAGATGCAGACGGTTT -ACGGAAAGCAGATGCAGAGTGGTT -ACGGAAAGCAGATGCAGAGCCTTT -ACGGAAAGCAGATGCAGAGGTCTT -ACGGAAAGCAGATGCAGAACGCTT -ACGGAAAGCAGATGCAGAAGCGTT -ACGGAAAGCAGATGCAGATTCGTC -ACGGAAAGCAGATGCAGATCTCTC -ACGGAAAGCAGATGCAGATGGATC -ACGGAAAGCAGATGCAGACACTTC -ACGGAAAGCAGATGCAGAGTACTC -ACGGAAAGCAGATGCAGAGATGTC -ACGGAAAGCAGATGCAGAACAGTC -ACGGAAAGCAGATGCAGATTGCTG -ACGGAAAGCAGATGCAGATCCATG -ACGGAAAGCAGATGCAGATGTGTG -ACGGAAAGCAGATGCAGACTAGTG -ACGGAAAGCAGATGCAGACATCTG -ACGGAAAGCAGATGCAGAGAGTTG -ACGGAAAGCAGATGCAGAAGACTG -ACGGAAAGCAGATGCAGATCGGTA -ACGGAAAGCAGATGCAGATGCCTA -ACGGAAAGCAGATGCAGACCACTA -ACGGAAAGCAGATGCAGAGGAGTA -ACGGAAAGCAGATGCAGATCGTCT -ACGGAAAGCAGATGCAGATGCACT -ACGGAAAGCAGATGCAGACTGACT -ACGGAAAGCAGATGCAGACAACCT -ACGGAAAGCAGATGCAGAGCTACT -ACGGAAAGCAGATGCAGAGGATCT -ACGGAAAGCAGATGCAGAAAGGCT -ACGGAAAGCAGATGCAGATCAACC -ACGGAAAGCAGATGCAGATGTTCC -ACGGAAAGCAGATGCAGAATTCCC -ACGGAAAGCAGATGCAGATTCTCG -ACGGAAAGCAGATGCAGATAGACG -ACGGAAAGCAGATGCAGAGTAACG -ACGGAAAGCAGATGCAGAACTTCG -ACGGAAAGCAGATGCAGATACGCA -ACGGAAAGCAGATGCAGACTTGCA -ACGGAAAGCAGATGCAGACGAACA -ACGGAAAGCAGATGCAGACAGTCA -ACGGAAAGCAGATGCAGAGATCCA -ACGGAAAGCAGATGCAGAACGACA -ACGGAAAGCAGATGCAGAAGCTCA -ACGGAAAGCAGATGCAGATCACGT -ACGGAAAGCAGATGCAGACGTAGT -ACGGAAAGCAGATGCAGAGTCAGT -ACGGAAAGCAGATGCAGAGAAGGT -ACGGAAAGCAGATGCAGAAACCGT -ACGGAAAGCAGATGCAGATTGTGC -ACGGAAAGCAGATGCAGACTAAGC -ACGGAAAGCAGATGCAGAACTAGC -ACGGAAAGCAGATGCAGAAGATGC -ACGGAAAGCAGATGCAGATGAAGG -ACGGAAAGCAGATGCAGACAATGG -ACGGAAAGCAGATGCAGAATGAGG -ACGGAAAGCAGATGCAGAAATGGG -ACGGAAAGCAGATGCAGATCCTGA -ACGGAAAGCAGATGCAGATAGCGA -ACGGAAAGCAGATGCAGACACAGA -ACGGAAAGCAGATGCAGAGCAAGA -ACGGAAAGCAGATGCAGAGGTTGA -ACGGAAAGCAGATGCAGATCCGAT -ACGGAAAGCAGATGCAGATGGCAT -ACGGAAAGCAGATGCAGACGAGAT -ACGGAAAGCAGATGCAGATACCAC -ACGGAAAGCAGATGCAGACAGAAC -ACGGAAAGCAGATGCAGAGTCTAC -ACGGAAAGCAGATGCAGAACGTAC -ACGGAAAGCAGATGCAGAAGTGAC -ACGGAAAGCAGATGCAGACTGTAG -ACGGAAAGCAGATGCAGACCTAAG -ACGGAAAGCAGATGCAGAGTTCAG -ACGGAAAGCAGATGCAGAGCATAG -ACGGAAAGCAGATGCAGAGACAAG -ACGGAAAGCAGATGCAGAAAGCAG -ACGGAAAGCAGATGCAGACGTCAA -ACGGAAAGCAGATGCAGAGCTGAA -ACGGAAAGCAGATGCAGAAGTACG -ACGGAAAGCAGATGCAGAATCCGA -ACGGAAAGCAGATGCAGAATGGGA -ACGGAAAGCAGATGCAGAGTGCAA -ACGGAAAGCAGATGCAGAGAGGAA -ACGGAAAGCAGATGCAGACAGGTA -ACGGAAAGCAGATGCAGAGACTCT -ACGGAAAGCAGATGCAGAAGTCCT -ACGGAAAGCAGATGCAGATAAGCC -ACGGAAAGCAGATGCAGAATAGCC -ACGGAAAGCAGATGCAGATAACCG -ACGGAAAGCAGATGCAGAATGCCA -ACGGAAAGCAGAAGGTGAGGAAAC -ACGGAAAGCAGAAGGTGAAACACC -ACGGAAAGCAGAAGGTGAATCGAG -ACGGAAAGCAGAAGGTGACTCCTT -ACGGAAAGCAGAAGGTGACCTGTT -ACGGAAAGCAGAAGGTGACGGTTT -ACGGAAAGCAGAAGGTGAGTGGTT -ACGGAAAGCAGAAGGTGAGCCTTT -ACGGAAAGCAGAAGGTGAGGTCTT -ACGGAAAGCAGAAGGTGAACGCTT -ACGGAAAGCAGAAGGTGAAGCGTT -ACGGAAAGCAGAAGGTGATTCGTC -ACGGAAAGCAGAAGGTGATCTCTC -ACGGAAAGCAGAAGGTGATGGATC -ACGGAAAGCAGAAGGTGACACTTC -ACGGAAAGCAGAAGGTGAGTACTC -ACGGAAAGCAGAAGGTGAGATGTC -ACGGAAAGCAGAAGGTGAACAGTC -ACGGAAAGCAGAAGGTGATTGCTG -ACGGAAAGCAGAAGGTGATCCATG -ACGGAAAGCAGAAGGTGATGTGTG -ACGGAAAGCAGAAGGTGACTAGTG -ACGGAAAGCAGAAGGTGACATCTG -ACGGAAAGCAGAAGGTGAGAGTTG -ACGGAAAGCAGAAGGTGAAGACTG -ACGGAAAGCAGAAGGTGATCGGTA -ACGGAAAGCAGAAGGTGATGCCTA -ACGGAAAGCAGAAGGTGACCACTA -ACGGAAAGCAGAAGGTGAGGAGTA -ACGGAAAGCAGAAGGTGATCGTCT -ACGGAAAGCAGAAGGTGATGCACT -ACGGAAAGCAGAAGGTGACTGACT -ACGGAAAGCAGAAGGTGACAACCT -ACGGAAAGCAGAAGGTGAGCTACT -ACGGAAAGCAGAAGGTGAGGATCT -ACGGAAAGCAGAAGGTGAAAGGCT -ACGGAAAGCAGAAGGTGATCAACC -ACGGAAAGCAGAAGGTGATGTTCC -ACGGAAAGCAGAAGGTGAATTCCC -ACGGAAAGCAGAAGGTGATTCTCG -ACGGAAAGCAGAAGGTGATAGACG -ACGGAAAGCAGAAGGTGAGTAACG -ACGGAAAGCAGAAGGTGAACTTCG -ACGGAAAGCAGAAGGTGATACGCA -ACGGAAAGCAGAAGGTGACTTGCA -ACGGAAAGCAGAAGGTGACGAACA -ACGGAAAGCAGAAGGTGACAGTCA -ACGGAAAGCAGAAGGTGAGATCCA -ACGGAAAGCAGAAGGTGAACGACA -ACGGAAAGCAGAAGGTGAAGCTCA -ACGGAAAGCAGAAGGTGATCACGT -ACGGAAAGCAGAAGGTGACGTAGT -ACGGAAAGCAGAAGGTGAGTCAGT -ACGGAAAGCAGAAGGTGAGAAGGT -ACGGAAAGCAGAAGGTGAAACCGT -ACGGAAAGCAGAAGGTGATTGTGC -ACGGAAAGCAGAAGGTGACTAAGC -ACGGAAAGCAGAAGGTGAACTAGC -ACGGAAAGCAGAAGGTGAAGATGC -ACGGAAAGCAGAAGGTGATGAAGG -ACGGAAAGCAGAAGGTGACAATGG -ACGGAAAGCAGAAGGTGAATGAGG -ACGGAAAGCAGAAGGTGAAATGGG -ACGGAAAGCAGAAGGTGATCCTGA -ACGGAAAGCAGAAGGTGATAGCGA -ACGGAAAGCAGAAGGTGACACAGA -ACGGAAAGCAGAAGGTGAGCAAGA -ACGGAAAGCAGAAGGTGAGGTTGA -ACGGAAAGCAGAAGGTGATCCGAT -ACGGAAAGCAGAAGGTGATGGCAT -ACGGAAAGCAGAAGGTGACGAGAT -ACGGAAAGCAGAAGGTGATACCAC -ACGGAAAGCAGAAGGTGACAGAAC -ACGGAAAGCAGAAGGTGAGTCTAC -ACGGAAAGCAGAAGGTGAACGTAC -ACGGAAAGCAGAAGGTGAAGTGAC -ACGGAAAGCAGAAGGTGACTGTAG -ACGGAAAGCAGAAGGTGACCTAAG -ACGGAAAGCAGAAGGTGAGTTCAG -ACGGAAAGCAGAAGGTGAGCATAG -ACGGAAAGCAGAAGGTGAGACAAG -ACGGAAAGCAGAAGGTGAAAGCAG -ACGGAAAGCAGAAGGTGACGTCAA -ACGGAAAGCAGAAGGTGAGCTGAA -ACGGAAAGCAGAAGGTGAAGTACG -ACGGAAAGCAGAAGGTGAATCCGA -ACGGAAAGCAGAAGGTGAATGGGA -ACGGAAAGCAGAAGGTGAGTGCAA -ACGGAAAGCAGAAGGTGAGAGGAA -ACGGAAAGCAGAAGGTGACAGGTA -ACGGAAAGCAGAAGGTGAGACTCT -ACGGAAAGCAGAAGGTGAAGTCCT -ACGGAAAGCAGAAGGTGATAAGCC -ACGGAAAGCAGAAGGTGAATAGCC -ACGGAAAGCAGAAGGTGATAACCG -ACGGAAAGCAGAAGGTGAATGCCA -ACGGAAAGCAGATGGCAAGGAAAC -ACGGAAAGCAGATGGCAAAACACC -ACGGAAAGCAGATGGCAAATCGAG -ACGGAAAGCAGATGGCAACTCCTT -ACGGAAAGCAGATGGCAACCTGTT -ACGGAAAGCAGATGGCAACGGTTT -ACGGAAAGCAGATGGCAAGTGGTT -ACGGAAAGCAGATGGCAAGCCTTT -ACGGAAAGCAGATGGCAAGGTCTT -ACGGAAAGCAGATGGCAAACGCTT -ACGGAAAGCAGATGGCAAAGCGTT -ACGGAAAGCAGATGGCAATTCGTC -ACGGAAAGCAGATGGCAATCTCTC -ACGGAAAGCAGATGGCAATGGATC -ACGGAAAGCAGATGGCAACACTTC -ACGGAAAGCAGATGGCAAGTACTC -ACGGAAAGCAGATGGCAAGATGTC -ACGGAAAGCAGATGGCAAACAGTC -ACGGAAAGCAGATGGCAATTGCTG -ACGGAAAGCAGATGGCAATCCATG -ACGGAAAGCAGATGGCAATGTGTG -ACGGAAAGCAGATGGCAACTAGTG -ACGGAAAGCAGATGGCAACATCTG -ACGGAAAGCAGATGGCAAGAGTTG -ACGGAAAGCAGATGGCAAAGACTG -ACGGAAAGCAGATGGCAATCGGTA -ACGGAAAGCAGATGGCAATGCCTA -ACGGAAAGCAGATGGCAACCACTA -ACGGAAAGCAGATGGCAAGGAGTA -ACGGAAAGCAGATGGCAATCGTCT -ACGGAAAGCAGATGGCAATGCACT -ACGGAAAGCAGATGGCAACTGACT -ACGGAAAGCAGATGGCAACAACCT -ACGGAAAGCAGATGGCAAGCTACT -ACGGAAAGCAGATGGCAAGGATCT -ACGGAAAGCAGATGGCAAAAGGCT -ACGGAAAGCAGATGGCAATCAACC -ACGGAAAGCAGATGGCAATGTTCC -ACGGAAAGCAGATGGCAAATTCCC -ACGGAAAGCAGATGGCAATTCTCG -ACGGAAAGCAGATGGCAATAGACG -ACGGAAAGCAGATGGCAAGTAACG -ACGGAAAGCAGATGGCAAACTTCG -ACGGAAAGCAGATGGCAATACGCA -ACGGAAAGCAGATGGCAACTTGCA -ACGGAAAGCAGATGGCAACGAACA -ACGGAAAGCAGATGGCAACAGTCA -ACGGAAAGCAGATGGCAAGATCCA -ACGGAAAGCAGATGGCAAACGACA -ACGGAAAGCAGATGGCAAAGCTCA -ACGGAAAGCAGATGGCAATCACGT -ACGGAAAGCAGATGGCAACGTAGT -ACGGAAAGCAGATGGCAAGTCAGT -ACGGAAAGCAGATGGCAAGAAGGT -ACGGAAAGCAGATGGCAAAACCGT -ACGGAAAGCAGATGGCAATTGTGC -ACGGAAAGCAGATGGCAACTAAGC -ACGGAAAGCAGATGGCAAACTAGC -ACGGAAAGCAGATGGCAAAGATGC -ACGGAAAGCAGATGGCAATGAAGG -ACGGAAAGCAGATGGCAACAATGG -ACGGAAAGCAGATGGCAAATGAGG -ACGGAAAGCAGATGGCAAAATGGG -ACGGAAAGCAGATGGCAATCCTGA -ACGGAAAGCAGATGGCAATAGCGA -ACGGAAAGCAGATGGCAACACAGA -ACGGAAAGCAGATGGCAAGCAAGA -ACGGAAAGCAGATGGCAAGGTTGA -ACGGAAAGCAGATGGCAATCCGAT -ACGGAAAGCAGATGGCAATGGCAT -ACGGAAAGCAGATGGCAACGAGAT -ACGGAAAGCAGATGGCAATACCAC -ACGGAAAGCAGATGGCAACAGAAC -ACGGAAAGCAGATGGCAAGTCTAC -ACGGAAAGCAGATGGCAAACGTAC -ACGGAAAGCAGATGGCAAAGTGAC -ACGGAAAGCAGATGGCAACTGTAG -ACGGAAAGCAGATGGCAACCTAAG -ACGGAAAGCAGATGGCAAGTTCAG -ACGGAAAGCAGATGGCAAGCATAG -ACGGAAAGCAGATGGCAAGACAAG -ACGGAAAGCAGATGGCAAAAGCAG -ACGGAAAGCAGATGGCAACGTCAA -ACGGAAAGCAGATGGCAAGCTGAA -ACGGAAAGCAGATGGCAAAGTACG -ACGGAAAGCAGATGGCAAATCCGA -ACGGAAAGCAGATGGCAAATGGGA -ACGGAAAGCAGATGGCAAGTGCAA -ACGGAAAGCAGATGGCAAGAGGAA -ACGGAAAGCAGATGGCAACAGGTA -ACGGAAAGCAGATGGCAAGACTCT -ACGGAAAGCAGATGGCAAAGTCCT -ACGGAAAGCAGATGGCAATAAGCC -ACGGAAAGCAGATGGCAAATAGCC -ACGGAAAGCAGATGGCAATAACCG -ACGGAAAGCAGATGGCAAATGCCA -ACGGAAAGCAGAAGGATGGGAAAC -ACGGAAAGCAGAAGGATGAACACC -ACGGAAAGCAGAAGGATGATCGAG -ACGGAAAGCAGAAGGATGCTCCTT -ACGGAAAGCAGAAGGATGCCTGTT -ACGGAAAGCAGAAGGATGCGGTTT -ACGGAAAGCAGAAGGATGGTGGTT -ACGGAAAGCAGAAGGATGGCCTTT -ACGGAAAGCAGAAGGATGGGTCTT -ACGGAAAGCAGAAGGATGACGCTT -ACGGAAAGCAGAAGGATGAGCGTT -ACGGAAAGCAGAAGGATGTTCGTC -ACGGAAAGCAGAAGGATGTCTCTC -ACGGAAAGCAGAAGGATGTGGATC -ACGGAAAGCAGAAGGATGCACTTC -ACGGAAAGCAGAAGGATGGTACTC -ACGGAAAGCAGAAGGATGGATGTC -ACGGAAAGCAGAAGGATGACAGTC -ACGGAAAGCAGAAGGATGTTGCTG -ACGGAAAGCAGAAGGATGTCCATG -ACGGAAAGCAGAAGGATGTGTGTG -ACGGAAAGCAGAAGGATGCTAGTG -ACGGAAAGCAGAAGGATGCATCTG -ACGGAAAGCAGAAGGATGGAGTTG -ACGGAAAGCAGAAGGATGAGACTG -ACGGAAAGCAGAAGGATGTCGGTA -ACGGAAAGCAGAAGGATGTGCCTA -ACGGAAAGCAGAAGGATGCCACTA -ACGGAAAGCAGAAGGATGGGAGTA -ACGGAAAGCAGAAGGATGTCGTCT -ACGGAAAGCAGAAGGATGTGCACT -ACGGAAAGCAGAAGGATGCTGACT -ACGGAAAGCAGAAGGATGCAACCT -ACGGAAAGCAGAAGGATGGCTACT -ACGGAAAGCAGAAGGATGGGATCT -ACGGAAAGCAGAAGGATGAAGGCT -ACGGAAAGCAGAAGGATGTCAACC -ACGGAAAGCAGAAGGATGTGTTCC -ACGGAAAGCAGAAGGATGATTCCC -ACGGAAAGCAGAAGGATGTTCTCG -ACGGAAAGCAGAAGGATGTAGACG -ACGGAAAGCAGAAGGATGGTAACG -ACGGAAAGCAGAAGGATGACTTCG -ACGGAAAGCAGAAGGATGTACGCA -ACGGAAAGCAGAAGGATGCTTGCA -ACGGAAAGCAGAAGGATGCGAACA -ACGGAAAGCAGAAGGATGCAGTCA -ACGGAAAGCAGAAGGATGGATCCA -ACGGAAAGCAGAAGGATGACGACA -ACGGAAAGCAGAAGGATGAGCTCA -ACGGAAAGCAGAAGGATGTCACGT -ACGGAAAGCAGAAGGATGCGTAGT -ACGGAAAGCAGAAGGATGGTCAGT -ACGGAAAGCAGAAGGATGGAAGGT -ACGGAAAGCAGAAGGATGAACCGT -ACGGAAAGCAGAAGGATGTTGTGC -ACGGAAAGCAGAAGGATGCTAAGC -ACGGAAAGCAGAAGGATGACTAGC -ACGGAAAGCAGAAGGATGAGATGC -ACGGAAAGCAGAAGGATGTGAAGG -ACGGAAAGCAGAAGGATGCAATGG -ACGGAAAGCAGAAGGATGATGAGG -ACGGAAAGCAGAAGGATGAATGGG -ACGGAAAGCAGAAGGATGTCCTGA -ACGGAAAGCAGAAGGATGTAGCGA -ACGGAAAGCAGAAGGATGCACAGA -ACGGAAAGCAGAAGGATGGCAAGA -ACGGAAAGCAGAAGGATGGGTTGA -ACGGAAAGCAGAAGGATGTCCGAT -ACGGAAAGCAGAAGGATGTGGCAT -ACGGAAAGCAGAAGGATGCGAGAT -ACGGAAAGCAGAAGGATGTACCAC -ACGGAAAGCAGAAGGATGCAGAAC -ACGGAAAGCAGAAGGATGGTCTAC -ACGGAAAGCAGAAGGATGACGTAC -ACGGAAAGCAGAAGGATGAGTGAC -ACGGAAAGCAGAAGGATGCTGTAG -ACGGAAAGCAGAAGGATGCCTAAG -ACGGAAAGCAGAAGGATGGTTCAG -ACGGAAAGCAGAAGGATGGCATAG -ACGGAAAGCAGAAGGATGGACAAG -ACGGAAAGCAGAAGGATGAAGCAG -ACGGAAAGCAGAAGGATGCGTCAA -ACGGAAAGCAGAAGGATGGCTGAA -ACGGAAAGCAGAAGGATGAGTACG -ACGGAAAGCAGAAGGATGATCCGA -ACGGAAAGCAGAAGGATGATGGGA -ACGGAAAGCAGAAGGATGGTGCAA -ACGGAAAGCAGAAGGATGGAGGAA -ACGGAAAGCAGAAGGATGCAGGTA -ACGGAAAGCAGAAGGATGGACTCT -ACGGAAAGCAGAAGGATGAGTCCT -ACGGAAAGCAGAAGGATGTAAGCC -ACGGAAAGCAGAAGGATGATAGCC -ACGGAAAGCAGAAGGATGTAACCG -ACGGAAAGCAGAAGGATGATGCCA -ACGGAAAGCAGAGGGAATGGAAAC -ACGGAAAGCAGAGGGAATAACACC -ACGGAAAGCAGAGGGAATATCGAG -ACGGAAAGCAGAGGGAATCTCCTT -ACGGAAAGCAGAGGGAATCCTGTT -ACGGAAAGCAGAGGGAATCGGTTT -ACGGAAAGCAGAGGGAATGTGGTT -ACGGAAAGCAGAGGGAATGCCTTT -ACGGAAAGCAGAGGGAATGGTCTT -ACGGAAAGCAGAGGGAATACGCTT -ACGGAAAGCAGAGGGAATAGCGTT -ACGGAAAGCAGAGGGAATTTCGTC -ACGGAAAGCAGAGGGAATTCTCTC -ACGGAAAGCAGAGGGAATTGGATC -ACGGAAAGCAGAGGGAATCACTTC -ACGGAAAGCAGAGGGAATGTACTC -ACGGAAAGCAGAGGGAATGATGTC -ACGGAAAGCAGAGGGAATACAGTC -ACGGAAAGCAGAGGGAATTTGCTG -ACGGAAAGCAGAGGGAATTCCATG -ACGGAAAGCAGAGGGAATTGTGTG -ACGGAAAGCAGAGGGAATCTAGTG -ACGGAAAGCAGAGGGAATCATCTG -ACGGAAAGCAGAGGGAATGAGTTG -ACGGAAAGCAGAGGGAATAGACTG -ACGGAAAGCAGAGGGAATTCGGTA -ACGGAAAGCAGAGGGAATTGCCTA -ACGGAAAGCAGAGGGAATCCACTA -ACGGAAAGCAGAGGGAATGGAGTA -ACGGAAAGCAGAGGGAATTCGTCT -ACGGAAAGCAGAGGGAATTGCACT -ACGGAAAGCAGAGGGAATCTGACT -ACGGAAAGCAGAGGGAATCAACCT -ACGGAAAGCAGAGGGAATGCTACT -ACGGAAAGCAGAGGGAATGGATCT -ACGGAAAGCAGAGGGAATAAGGCT -ACGGAAAGCAGAGGGAATTCAACC -ACGGAAAGCAGAGGGAATTGTTCC -ACGGAAAGCAGAGGGAATATTCCC -ACGGAAAGCAGAGGGAATTTCTCG -ACGGAAAGCAGAGGGAATTAGACG -ACGGAAAGCAGAGGGAATGTAACG -ACGGAAAGCAGAGGGAATACTTCG -ACGGAAAGCAGAGGGAATTACGCA -ACGGAAAGCAGAGGGAATCTTGCA -ACGGAAAGCAGAGGGAATCGAACA -ACGGAAAGCAGAGGGAATCAGTCA -ACGGAAAGCAGAGGGAATGATCCA -ACGGAAAGCAGAGGGAATACGACA -ACGGAAAGCAGAGGGAATAGCTCA -ACGGAAAGCAGAGGGAATTCACGT -ACGGAAAGCAGAGGGAATCGTAGT -ACGGAAAGCAGAGGGAATGTCAGT -ACGGAAAGCAGAGGGAATGAAGGT -ACGGAAAGCAGAGGGAATAACCGT -ACGGAAAGCAGAGGGAATTTGTGC -ACGGAAAGCAGAGGGAATCTAAGC -ACGGAAAGCAGAGGGAATACTAGC -ACGGAAAGCAGAGGGAATAGATGC -ACGGAAAGCAGAGGGAATTGAAGG -ACGGAAAGCAGAGGGAATCAATGG -ACGGAAAGCAGAGGGAATATGAGG -ACGGAAAGCAGAGGGAATAATGGG -ACGGAAAGCAGAGGGAATTCCTGA -ACGGAAAGCAGAGGGAATTAGCGA -ACGGAAAGCAGAGGGAATCACAGA -ACGGAAAGCAGAGGGAATGCAAGA -ACGGAAAGCAGAGGGAATGGTTGA -ACGGAAAGCAGAGGGAATTCCGAT -ACGGAAAGCAGAGGGAATTGGCAT -ACGGAAAGCAGAGGGAATCGAGAT -ACGGAAAGCAGAGGGAATTACCAC -ACGGAAAGCAGAGGGAATCAGAAC -ACGGAAAGCAGAGGGAATGTCTAC -ACGGAAAGCAGAGGGAATACGTAC -ACGGAAAGCAGAGGGAATAGTGAC -ACGGAAAGCAGAGGGAATCTGTAG -ACGGAAAGCAGAGGGAATCCTAAG -ACGGAAAGCAGAGGGAATGTTCAG -ACGGAAAGCAGAGGGAATGCATAG -ACGGAAAGCAGAGGGAATGACAAG -ACGGAAAGCAGAGGGAATAAGCAG -ACGGAAAGCAGAGGGAATCGTCAA -ACGGAAAGCAGAGGGAATGCTGAA -ACGGAAAGCAGAGGGAATAGTACG -ACGGAAAGCAGAGGGAATATCCGA -ACGGAAAGCAGAGGGAATATGGGA -ACGGAAAGCAGAGGGAATGTGCAA -ACGGAAAGCAGAGGGAATGAGGAA -ACGGAAAGCAGAGGGAATCAGGTA -ACGGAAAGCAGAGGGAATGACTCT -ACGGAAAGCAGAGGGAATAGTCCT -ACGGAAAGCAGAGGGAATTAAGCC -ACGGAAAGCAGAGGGAATATAGCC -ACGGAAAGCAGAGGGAATTAACCG -ACGGAAAGCAGAGGGAATATGCCA -ACGGAAAGCAGATGATCCGGAAAC -ACGGAAAGCAGATGATCCAACACC -ACGGAAAGCAGATGATCCATCGAG -ACGGAAAGCAGATGATCCCTCCTT -ACGGAAAGCAGATGATCCCCTGTT -ACGGAAAGCAGATGATCCCGGTTT -ACGGAAAGCAGATGATCCGTGGTT -ACGGAAAGCAGATGATCCGCCTTT -ACGGAAAGCAGATGATCCGGTCTT -ACGGAAAGCAGATGATCCACGCTT -ACGGAAAGCAGATGATCCAGCGTT -ACGGAAAGCAGATGATCCTTCGTC -ACGGAAAGCAGATGATCCTCTCTC -ACGGAAAGCAGATGATCCTGGATC -ACGGAAAGCAGATGATCCCACTTC -ACGGAAAGCAGATGATCCGTACTC -ACGGAAAGCAGATGATCCGATGTC -ACGGAAAGCAGATGATCCACAGTC -ACGGAAAGCAGATGATCCTTGCTG -ACGGAAAGCAGATGATCCTCCATG -ACGGAAAGCAGATGATCCTGTGTG -ACGGAAAGCAGATGATCCCTAGTG -ACGGAAAGCAGATGATCCCATCTG -ACGGAAAGCAGATGATCCGAGTTG -ACGGAAAGCAGATGATCCAGACTG -ACGGAAAGCAGATGATCCTCGGTA -ACGGAAAGCAGATGATCCTGCCTA -ACGGAAAGCAGATGATCCCCACTA -ACGGAAAGCAGATGATCCGGAGTA -ACGGAAAGCAGATGATCCTCGTCT -ACGGAAAGCAGATGATCCTGCACT -ACGGAAAGCAGATGATCCCTGACT -ACGGAAAGCAGATGATCCCAACCT -ACGGAAAGCAGATGATCCGCTACT -ACGGAAAGCAGATGATCCGGATCT -ACGGAAAGCAGATGATCCAAGGCT -ACGGAAAGCAGATGATCCTCAACC -ACGGAAAGCAGATGATCCTGTTCC -ACGGAAAGCAGATGATCCATTCCC -ACGGAAAGCAGATGATCCTTCTCG -ACGGAAAGCAGATGATCCTAGACG -ACGGAAAGCAGATGATCCGTAACG -ACGGAAAGCAGATGATCCACTTCG -ACGGAAAGCAGATGATCCTACGCA -ACGGAAAGCAGATGATCCCTTGCA -ACGGAAAGCAGATGATCCCGAACA -ACGGAAAGCAGATGATCCCAGTCA -ACGGAAAGCAGATGATCCGATCCA -ACGGAAAGCAGATGATCCACGACA -ACGGAAAGCAGATGATCCAGCTCA -ACGGAAAGCAGATGATCCTCACGT -ACGGAAAGCAGATGATCCCGTAGT -ACGGAAAGCAGATGATCCGTCAGT -ACGGAAAGCAGATGATCCGAAGGT -ACGGAAAGCAGATGATCCAACCGT -ACGGAAAGCAGATGATCCTTGTGC -ACGGAAAGCAGATGATCCCTAAGC -ACGGAAAGCAGATGATCCACTAGC -ACGGAAAGCAGATGATCCAGATGC -ACGGAAAGCAGATGATCCTGAAGG -ACGGAAAGCAGATGATCCCAATGG -ACGGAAAGCAGATGATCCATGAGG -ACGGAAAGCAGATGATCCAATGGG -ACGGAAAGCAGATGATCCTCCTGA -ACGGAAAGCAGATGATCCTAGCGA -ACGGAAAGCAGATGATCCCACAGA -ACGGAAAGCAGATGATCCGCAAGA -ACGGAAAGCAGATGATCCGGTTGA -ACGGAAAGCAGATGATCCTCCGAT -ACGGAAAGCAGATGATCCTGGCAT -ACGGAAAGCAGATGATCCCGAGAT -ACGGAAAGCAGATGATCCTACCAC -ACGGAAAGCAGATGATCCCAGAAC -ACGGAAAGCAGATGATCCGTCTAC -ACGGAAAGCAGATGATCCACGTAC -ACGGAAAGCAGATGATCCAGTGAC -ACGGAAAGCAGATGATCCCTGTAG -ACGGAAAGCAGATGATCCCCTAAG -ACGGAAAGCAGATGATCCGTTCAG -ACGGAAAGCAGATGATCCGCATAG -ACGGAAAGCAGATGATCCGACAAG -ACGGAAAGCAGATGATCCAAGCAG -ACGGAAAGCAGATGATCCCGTCAA -ACGGAAAGCAGATGATCCGCTGAA -ACGGAAAGCAGATGATCCAGTACG -ACGGAAAGCAGATGATCCATCCGA -ACGGAAAGCAGATGATCCATGGGA -ACGGAAAGCAGATGATCCGTGCAA -ACGGAAAGCAGATGATCCGAGGAA -ACGGAAAGCAGATGATCCCAGGTA -ACGGAAAGCAGATGATCCGACTCT -ACGGAAAGCAGATGATCCAGTCCT -ACGGAAAGCAGATGATCCTAAGCC -ACGGAAAGCAGATGATCCATAGCC -ACGGAAAGCAGATGATCCTAACCG -ACGGAAAGCAGATGATCCATGCCA -ACGGAAAGCAGACGATAGGGAAAC -ACGGAAAGCAGACGATAGAACACC -ACGGAAAGCAGACGATAGATCGAG -ACGGAAAGCAGACGATAGCTCCTT -ACGGAAAGCAGACGATAGCCTGTT -ACGGAAAGCAGACGATAGCGGTTT -ACGGAAAGCAGACGATAGGTGGTT -ACGGAAAGCAGACGATAGGCCTTT -ACGGAAAGCAGACGATAGGGTCTT -ACGGAAAGCAGACGATAGACGCTT -ACGGAAAGCAGACGATAGAGCGTT -ACGGAAAGCAGACGATAGTTCGTC -ACGGAAAGCAGACGATAGTCTCTC -ACGGAAAGCAGACGATAGTGGATC -ACGGAAAGCAGACGATAGCACTTC -ACGGAAAGCAGACGATAGGTACTC -ACGGAAAGCAGACGATAGGATGTC -ACGGAAAGCAGACGATAGACAGTC -ACGGAAAGCAGACGATAGTTGCTG -ACGGAAAGCAGACGATAGTCCATG -ACGGAAAGCAGACGATAGTGTGTG -ACGGAAAGCAGACGATAGCTAGTG -ACGGAAAGCAGACGATAGCATCTG -ACGGAAAGCAGACGATAGGAGTTG -ACGGAAAGCAGACGATAGAGACTG -ACGGAAAGCAGACGATAGTCGGTA -ACGGAAAGCAGACGATAGTGCCTA -ACGGAAAGCAGACGATAGCCACTA -ACGGAAAGCAGACGATAGGGAGTA -ACGGAAAGCAGACGATAGTCGTCT -ACGGAAAGCAGACGATAGTGCACT -ACGGAAAGCAGACGATAGCTGACT -ACGGAAAGCAGACGATAGCAACCT -ACGGAAAGCAGACGATAGGCTACT -ACGGAAAGCAGACGATAGGGATCT -ACGGAAAGCAGACGATAGAAGGCT -ACGGAAAGCAGACGATAGTCAACC -ACGGAAAGCAGACGATAGTGTTCC -ACGGAAAGCAGACGATAGATTCCC -ACGGAAAGCAGACGATAGTTCTCG -ACGGAAAGCAGACGATAGTAGACG -ACGGAAAGCAGACGATAGGTAACG -ACGGAAAGCAGACGATAGACTTCG -ACGGAAAGCAGACGATAGTACGCA -ACGGAAAGCAGACGATAGCTTGCA -ACGGAAAGCAGACGATAGCGAACA -ACGGAAAGCAGACGATAGCAGTCA -ACGGAAAGCAGACGATAGGATCCA -ACGGAAAGCAGACGATAGACGACA -ACGGAAAGCAGACGATAGAGCTCA -ACGGAAAGCAGACGATAGTCACGT -ACGGAAAGCAGACGATAGCGTAGT -ACGGAAAGCAGACGATAGGTCAGT -ACGGAAAGCAGACGATAGGAAGGT -ACGGAAAGCAGACGATAGAACCGT -ACGGAAAGCAGACGATAGTTGTGC -ACGGAAAGCAGACGATAGCTAAGC -ACGGAAAGCAGACGATAGACTAGC -ACGGAAAGCAGACGATAGAGATGC -ACGGAAAGCAGACGATAGTGAAGG -ACGGAAAGCAGACGATAGCAATGG -ACGGAAAGCAGACGATAGATGAGG -ACGGAAAGCAGACGATAGAATGGG -ACGGAAAGCAGACGATAGTCCTGA -ACGGAAAGCAGACGATAGTAGCGA -ACGGAAAGCAGACGATAGCACAGA -ACGGAAAGCAGACGATAGGCAAGA -ACGGAAAGCAGACGATAGGGTTGA -ACGGAAAGCAGACGATAGTCCGAT -ACGGAAAGCAGACGATAGTGGCAT -ACGGAAAGCAGACGATAGCGAGAT -ACGGAAAGCAGACGATAGTACCAC -ACGGAAAGCAGACGATAGCAGAAC -ACGGAAAGCAGACGATAGGTCTAC -ACGGAAAGCAGACGATAGACGTAC -ACGGAAAGCAGACGATAGAGTGAC -ACGGAAAGCAGACGATAGCTGTAG -ACGGAAAGCAGACGATAGCCTAAG -ACGGAAAGCAGACGATAGGTTCAG -ACGGAAAGCAGACGATAGGCATAG -ACGGAAAGCAGACGATAGGACAAG -ACGGAAAGCAGACGATAGAAGCAG -ACGGAAAGCAGACGATAGCGTCAA -ACGGAAAGCAGACGATAGGCTGAA -ACGGAAAGCAGACGATAGAGTACG -ACGGAAAGCAGACGATAGATCCGA -ACGGAAAGCAGACGATAGATGGGA -ACGGAAAGCAGACGATAGGTGCAA -ACGGAAAGCAGACGATAGGAGGAA -ACGGAAAGCAGACGATAGCAGGTA -ACGGAAAGCAGACGATAGGACTCT -ACGGAAAGCAGACGATAGAGTCCT -ACGGAAAGCAGACGATAGTAAGCC -ACGGAAAGCAGACGATAGATAGCC -ACGGAAAGCAGACGATAGTAACCG -ACGGAAAGCAGACGATAGATGCCA -ACGGAAAGCAGAAGACACGGAAAC -ACGGAAAGCAGAAGACACAACACC -ACGGAAAGCAGAAGACACATCGAG -ACGGAAAGCAGAAGACACCTCCTT -ACGGAAAGCAGAAGACACCCTGTT -ACGGAAAGCAGAAGACACCGGTTT -ACGGAAAGCAGAAGACACGTGGTT -ACGGAAAGCAGAAGACACGCCTTT -ACGGAAAGCAGAAGACACGGTCTT -ACGGAAAGCAGAAGACACACGCTT -ACGGAAAGCAGAAGACACAGCGTT -ACGGAAAGCAGAAGACACTTCGTC -ACGGAAAGCAGAAGACACTCTCTC -ACGGAAAGCAGAAGACACTGGATC -ACGGAAAGCAGAAGACACCACTTC -ACGGAAAGCAGAAGACACGTACTC -ACGGAAAGCAGAAGACACGATGTC -ACGGAAAGCAGAAGACACACAGTC -ACGGAAAGCAGAAGACACTTGCTG -ACGGAAAGCAGAAGACACTCCATG -ACGGAAAGCAGAAGACACTGTGTG -ACGGAAAGCAGAAGACACCTAGTG -ACGGAAAGCAGAAGACACCATCTG -ACGGAAAGCAGAAGACACGAGTTG -ACGGAAAGCAGAAGACACAGACTG -ACGGAAAGCAGAAGACACTCGGTA -ACGGAAAGCAGAAGACACTGCCTA -ACGGAAAGCAGAAGACACCCACTA -ACGGAAAGCAGAAGACACGGAGTA -ACGGAAAGCAGAAGACACTCGTCT -ACGGAAAGCAGAAGACACTGCACT -ACGGAAAGCAGAAGACACCTGACT -ACGGAAAGCAGAAGACACCAACCT -ACGGAAAGCAGAAGACACGCTACT -ACGGAAAGCAGAAGACACGGATCT -ACGGAAAGCAGAAGACACAAGGCT -ACGGAAAGCAGAAGACACTCAACC -ACGGAAAGCAGAAGACACTGTTCC -ACGGAAAGCAGAAGACACATTCCC -ACGGAAAGCAGAAGACACTTCTCG -ACGGAAAGCAGAAGACACTAGACG -ACGGAAAGCAGAAGACACGTAACG -ACGGAAAGCAGAAGACACACTTCG -ACGGAAAGCAGAAGACACTACGCA -ACGGAAAGCAGAAGACACCTTGCA -ACGGAAAGCAGAAGACACCGAACA -ACGGAAAGCAGAAGACACCAGTCA -ACGGAAAGCAGAAGACACGATCCA -ACGGAAAGCAGAAGACACACGACA -ACGGAAAGCAGAAGACACAGCTCA -ACGGAAAGCAGAAGACACTCACGT -ACGGAAAGCAGAAGACACCGTAGT -ACGGAAAGCAGAAGACACGTCAGT -ACGGAAAGCAGAAGACACGAAGGT -ACGGAAAGCAGAAGACACAACCGT -ACGGAAAGCAGAAGACACTTGTGC -ACGGAAAGCAGAAGACACCTAAGC -ACGGAAAGCAGAAGACACACTAGC -ACGGAAAGCAGAAGACACAGATGC -ACGGAAAGCAGAAGACACTGAAGG -ACGGAAAGCAGAAGACACCAATGG -ACGGAAAGCAGAAGACACATGAGG -ACGGAAAGCAGAAGACACAATGGG -ACGGAAAGCAGAAGACACTCCTGA -ACGGAAAGCAGAAGACACTAGCGA -ACGGAAAGCAGAAGACACCACAGA -ACGGAAAGCAGAAGACACGCAAGA -ACGGAAAGCAGAAGACACGGTTGA -ACGGAAAGCAGAAGACACTCCGAT -ACGGAAAGCAGAAGACACTGGCAT -ACGGAAAGCAGAAGACACCGAGAT -ACGGAAAGCAGAAGACACTACCAC -ACGGAAAGCAGAAGACACCAGAAC -ACGGAAAGCAGAAGACACGTCTAC -ACGGAAAGCAGAAGACACACGTAC -ACGGAAAGCAGAAGACACAGTGAC -ACGGAAAGCAGAAGACACCTGTAG -ACGGAAAGCAGAAGACACCCTAAG -ACGGAAAGCAGAAGACACGTTCAG -ACGGAAAGCAGAAGACACGCATAG -ACGGAAAGCAGAAGACACGACAAG -ACGGAAAGCAGAAGACACAAGCAG -ACGGAAAGCAGAAGACACCGTCAA -ACGGAAAGCAGAAGACACGCTGAA -ACGGAAAGCAGAAGACACAGTACG -ACGGAAAGCAGAAGACACATCCGA -ACGGAAAGCAGAAGACACATGGGA -ACGGAAAGCAGAAGACACGTGCAA -ACGGAAAGCAGAAGACACGAGGAA -ACGGAAAGCAGAAGACACCAGGTA -ACGGAAAGCAGAAGACACGACTCT -ACGGAAAGCAGAAGACACAGTCCT -ACGGAAAGCAGAAGACACTAAGCC -ACGGAAAGCAGAAGACACATAGCC -ACGGAAAGCAGAAGACACTAACCG -ACGGAAAGCAGAAGACACATGCCA -ACGGAAAGCAGAAGAGCAGGAAAC -ACGGAAAGCAGAAGAGCAAACACC -ACGGAAAGCAGAAGAGCAATCGAG -ACGGAAAGCAGAAGAGCACTCCTT -ACGGAAAGCAGAAGAGCACCTGTT -ACGGAAAGCAGAAGAGCACGGTTT -ACGGAAAGCAGAAGAGCAGTGGTT -ACGGAAAGCAGAAGAGCAGCCTTT -ACGGAAAGCAGAAGAGCAGGTCTT -ACGGAAAGCAGAAGAGCAACGCTT -ACGGAAAGCAGAAGAGCAAGCGTT -ACGGAAAGCAGAAGAGCATTCGTC -ACGGAAAGCAGAAGAGCATCTCTC -ACGGAAAGCAGAAGAGCATGGATC -ACGGAAAGCAGAAGAGCACACTTC -ACGGAAAGCAGAAGAGCAGTACTC -ACGGAAAGCAGAAGAGCAGATGTC -ACGGAAAGCAGAAGAGCAACAGTC -ACGGAAAGCAGAAGAGCATTGCTG -ACGGAAAGCAGAAGAGCATCCATG -ACGGAAAGCAGAAGAGCATGTGTG -ACGGAAAGCAGAAGAGCACTAGTG -ACGGAAAGCAGAAGAGCACATCTG -ACGGAAAGCAGAAGAGCAGAGTTG -ACGGAAAGCAGAAGAGCAAGACTG -ACGGAAAGCAGAAGAGCATCGGTA -ACGGAAAGCAGAAGAGCATGCCTA -ACGGAAAGCAGAAGAGCACCACTA -ACGGAAAGCAGAAGAGCAGGAGTA -ACGGAAAGCAGAAGAGCATCGTCT -ACGGAAAGCAGAAGAGCATGCACT -ACGGAAAGCAGAAGAGCACTGACT -ACGGAAAGCAGAAGAGCACAACCT -ACGGAAAGCAGAAGAGCAGCTACT -ACGGAAAGCAGAAGAGCAGGATCT -ACGGAAAGCAGAAGAGCAAAGGCT -ACGGAAAGCAGAAGAGCATCAACC -ACGGAAAGCAGAAGAGCATGTTCC -ACGGAAAGCAGAAGAGCAATTCCC -ACGGAAAGCAGAAGAGCATTCTCG -ACGGAAAGCAGAAGAGCATAGACG -ACGGAAAGCAGAAGAGCAGTAACG -ACGGAAAGCAGAAGAGCAACTTCG -ACGGAAAGCAGAAGAGCATACGCA -ACGGAAAGCAGAAGAGCACTTGCA -ACGGAAAGCAGAAGAGCACGAACA -ACGGAAAGCAGAAGAGCACAGTCA -ACGGAAAGCAGAAGAGCAGATCCA -ACGGAAAGCAGAAGAGCAACGACA -ACGGAAAGCAGAAGAGCAAGCTCA -ACGGAAAGCAGAAGAGCATCACGT -ACGGAAAGCAGAAGAGCACGTAGT -ACGGAAAGCAGAAGAGCAGTCAGT -ACGGAAAGCAGAAGAGCAGAAGGT -ACGGAAAGCAGAAGAGCAAACCGT -ACGGAAAGCAGAAGAGCATTGTGC -ACGGAAAGCAGAAGAGCACTAAGC -ACGGAAAGCAGAAGAGCAACTAGC -ACGGAAAGCAGAAGAGCAAGATGC -ACGGAAAGCAGAAGAGCATGAAGG -ACGGAAAGCAGAAGAGCACAATGG -ACGGAAAGCAGAAGAGCAATGAGG -ACGGAAAGCAGAAGAGCAAATGGG -ACGGAAAGCAGAAGAGCATCCTGA -ACGGAAAGCAGAAGAGCATAGCGA -ACGGAAAGCAGAAGAGCACACAGA -ACGGAAAGCAGAAGAGCAGCAAGA -ACGGAAAGCAGAAGAGCAGGTTGA -ACGGAAAGCAGAAGAGCATCCGAT -ACGGAAAGCAGAAGAGCATGGCAT -ACGGAAAGCAGAAGAGCACGAGAT -ACGGAAAGCAGAAGAGCATACCAC -ACGGAAAGCAGAAGAGCACAGAAC -ACGGAAAGCAGAAGAGCAGTCTAC -ACGGAAAGCAGAAGAGCAACGTAC -ACGGAAAGCAGAAGAGCAAGTGAC -ACGGAAAGCAGAAGAGCACTGTAG -ACGGAAAGCAGAAGAGCACCTAAG -ACGGAAAGCAGAAGAGCAGTTCAG -ACGGAAAGCAGAAGAGCAGCATAG -ACGGAAAGCAGAAGAGCAGACAAG -ACGGAAAGCAGAAGAGCAAAGCAG -ACGGAAAGCAGAAGAGCACGTCAA -ACGGAAAGCAGAAGAGCAGCTGAA -ACGGAAAGCAGAAGAGCAAGTACG -ACGGAAAGCAGAAGAGCAATCCGA -ACGGAAAGCAGAAGAGCAATGGGA -ACGGAAAGCAGAAGAGCAGTGCAA -ACGGAAAGCAGAAGAGCAGAGGAA -ACGGAAAGCAGAAGAGCACAGGTA -ACGGAAAGCAGAAGAGCAGACTCT -ACGGAAAGCAGAAGAGCAAGTCCT -ACGGAAAGCAGAAGAGCATAAGCC -ACGGAAAGCAGAAGAGCAATAGCC -ACGGAAAGCAGAAGAGCATAACCG -ACGGAAAGCAGAAGAGCAATGCCA -ACGGAAAGCAGATGAGGTGGAAAC -ACGGAAAGCAGATGAGGTAACACC -ACGGAAAGCAGATGAGGTATCGAG -ACGGAAAGCAGATGAGGTCTCCTT -ACGGAAAGCAGATGAGGTCCTGTT -ACGGAAAGCAGATGAGGTCGGTTT -ACGGAAAGCAGATGAGGTGTGGTT -ACGGAAAGCAGATGAGGTGCCTTT -ACGGAAAGCAGATGAGGTGGTCTT -ACGGAAAGCAGATGAGGTACGCTT -ACGGAAAGCAGATGAGGTAGCGTT -ACGGAAAGCAGATGAGGTTTCGTC -ACGGAAAGCAGATGAGGTTCTCTC -ACGGAAAGCAGATGAGGTTGGATC -ACGGAAAGCAGATGAGGTCACTTC -ACGGAAAGCAGATGAGGTGTACTC -ACGGAAAGCAGATGAGGTGATGTC -ACGGAAAGCAGATGAGGTACAGTC -ACGGAAAGCAGATGAGGTTTGCTG -ACGGAAAGCAGATGAGGTTCCATG -ACGGAAAGCAGATGAGGTTGTGTG -ACGGAAAGCAGATGAGGTCTAGTG -ACGGAAAGCAGATGAGGTCATCTG -ACGGAAAGCAGATGAGGTGAGTTG -ACGGAAAGCAGATGAGGTAGACTG -ACGGAAAGCAGATGAGGTTCGGTA -ACGGAAAGCAGATGAGGTTGCCTA -ACGGAAAGCAGATGAGGTCCACTA -ACGGAAAGCAGATGAGGTGGAGTA -ACGGAAAGCAGATGAGGTTCGTCT -ACGGAAAGCAGATGAGGTTGCACT -ACGGAAAGCAGATGAGGTCTGACT -ACGGAAAGCAGATGAGGTCAACCT -ACGGAAAGCAGATGAGGTGCTACT -ACGGAAAGCAGATGAGGTGGATCT -ACGGAAAGCAGATGAGGTAAGGCT -ACGGAAAGCAGATGAGGTTCAACC -ACGGAAAGCAGATGAGGTTGTTCC -ACGGAAAGCAGATGAGGTATTCCC -ACGGAAAGCAGATGAGGTTTCTCG -ACGGAAAGCAGATGAGGTTAGACG -ACGGAAAGCAGATGAGGTGTAACG -ACGGAAAGCAGATGAGGTACTTCG -ACGGAAAGCAGATGAGGTTACGCA -ACGGAAAGCAGATGAGGTCTTGCA -ACGGAAAGCAGATGAGGTCGAACA -ACGGAAAGCAGATGAGGTCAGTCA -ACGGAAAGCAGATGAGGTGATCCA -ACGGAAAGCAGATGAGGTACGACA -ACGGAAAGCAGATGAGGTAGCTCA -ACGGAAAGCAGATGAGGTTCACGT -ACGGAAAGCAGATGAGGTCGTAGT -ACGGAAAGCAGATGAGGTGTCAGT -ACGGAAAGCAGATGAGGTGAAGGT -ACGGAAAGCAGATGAGGTAACCGT -ACGGAAAGCAGATGAGGTTTGTGC -ACGGAAAGCAGATGAGGTCTAAGC -ACGGAAAGCAGATGAGGTACTAGC -ACGGAAAGCAGATGAGGTAGATGC -ACGGAAAGCAGATGAGGTTGAAGG -ACGGAAAGCAGATGAGGTCAATGG -ACGGAAAGCAGATGAGGTATGAGG -ACGGAAAGCAGATGAGGTAATGGG -ACGGAAAGCAGATGAGGTTCCTGA -ACGGAAAGCAGATGAGGTTAGCGA -ACGGAAAGCAGATGAGGTCACAGA -ACGGAAAGCAGATGAGGTGCAAGA -ACGGAAAGCAGATGAGGTGGTTGA -ACGGAAAGCAGATGAGGTTCCGAT -ACGGAAAGCAGATGAGGTTGGCAT -ACGGAAAGCAGATGAGGTCGAGAT -ACGGAAAGCAGATGAGGTTACCAC -ACGGAAAGCAGATGAGGTCAGAAC -ACGGAAAGCAGATGAGGTGTCTAC -ACGGAAAGCAGATGAGGTACGTAC -ACGGAAAGCAGATGAGGTAGTGAC -ACGGAAAGCAGATGAGGTCTGTAG -ACGGAAAGCAGATGAGGTCCTAAG -ACGGAAAGCAGATGAGGTGTTCAG -ACGGAAAGCAGATGAGGTGCATAG -ACGGAAAGCAGATGAGGTGACAAG -ACGGAAAGCAGATGAGGTAAGCAG -ACGGAAAGCAGATGAGGTCGTCAA -ACGGAAAGCAGATGAGGTGCTGAA -ACGGAAAGCAGATGAGGTAGTACG -ACGGAAAGCAGATGAGGTATCCGA -ACGGAAAGCAGATGAGGTATGGGA -ACGGAAAGCAGATGAGGTGTGCAA -ACGGAAAGCAGATGAGGTGAGGAA -ACGGAAAGCAGATGAGGTCAGGTA -ACGGAAAGCAGATGAGGTGACTCT -ACGGAAAGCAGATGAGGTAGTCCT -ACGGAAAGCAGATGAGGTTAAGCC -ACGGAAAGCAGATGAGGTATAGCC -ACGGAAAGCAGATGAGGTTAACCG -ACGGAAAGCAGATGAGGTATGCCA -ACGGAAAGCAGAGATTCCGGAAAC -ACGGAAAGCAGAGATTCCAACACC -ACGGAAAGCAGAGATTCCATCGAG -ACGGAAAGCAGAGATTCCCTCCTT -ACGGAAAGCAGAGATTCCCCTGTT -ACGGAAAGCAGAGATTCCCGGTTT -ACGGAAAGCAGAGATTCCGTGGTT -ACGGAAAGCAGAGATTCCGCCTTT -ACGGAAAGCAGAGATTCCGGTCTT -ACGGAAAGCAGAGATTCCACGCTT -ACGGAAAGCAGAGATTCCAGCGTT -ACGGAAAGCAGAGATTCCTTCGTC -ACGGAAAGCAGAGATTCCTCTCTC -ACGGAAAGCAGAGATTCCTGGATC -ACGGAAAGCAGAGATTCCCACTTC -ACGGAAAGCAGAGATTCCGTACTC -ACGGAAAGCAGAGATTCCGATGTC -ACGGAAAGCAGAGATTCCACAGTC -ACGGAAAGCAGAGATTCCTTGCTG -ACGGAAAGCAGAGATTCCTCCATG -ACGGAAAGCAGAGATTCCTGTGTG -ACGGAAAGCAGAGATTCCCTAGTG -ACGGAAAGCAGAGATTCCCATCTG -ACGGAAAGCAGAGATTCCGAGTTG -ACGGAAAGCAGAGATTCCAGACTG -ACGGAAAGCAGAGATTCCTCGGTA -ACGGAAAGCAGAGATTCCTGCCTA -ACGGAAAGCAGAGATTCCCCACTA -ACGGAAAGCAGAGATTCCGGAGTA -ACGGAAAGCAGAGATTCCTCGTCT -ACGGAAAGCAGAGATTCCTGCACT -ACGGAAAGCAGAGATTCCCTGACT -ACGGAAAGCAGAGATTCCCAACCT -ACGGAAAGCAGAGATTCCGCTACT -ACGGAAAGCAGAGATTCCGGATCT -ACGGAAAGCAGAGATTCCAAGGCT -ACGGAAAGCAGAGATTCCTCAACC -ACGGAAAGCAGAGATTCCTGTTCC -ACGGAAAGCAGAGATTCCATTCCC -ACGGAAAGCAGAGATTCCTTCTCG -ACGGAAAGCAGAGATTCCTAGACG -ACGGAAAGCAGAGATTCCGTAACG -ACGGAAAGCAGAGATTCCACTTCG -ACGGAAAGCAGAGATTCCTACGCA -ACGGAAAGCAGAGATTCCCTTGCA -ACGGAAAGCAGAGATTCCCGAACA -ACGGAAAGCAGAGATTCCCAGTCA -ACGGAAAGCAGAGATTCCGATCCA -ACGGAAAGCAGAGATTCCACGACA -ACGGAAAGCAGAGATTCCAGCTCA -ACGGAAAGCAGAGATTCCTCACGT -ACGGAAAGCAGAGATTCCCGTAGT -ACGGAAAGCAGAGATTCCGTCAGT -ACGGAAAGCAGAGATTCCGAAGGT -ACGGAAAGCAGAGATTCCAACCGT -ACGGAAAGCAGAGATTCCTTGTGC -ACGGAAAGCAGAGATTCCCTAAGC -ACGGAAAGCAGAGATTCCACTAGC -ACGGAAAGCAGAGATTCCAGATGC -ACGGAAAGCAGAGATTCCTGAAGG -ACGGAAAGCAGAGATTCCCAATGG -ACGGAAAGCAGAGATTCCATGAGG -ACGGAAAGCAGAGATTCCAATGGG -ACGGAAAGCAGAGATTCCTCCTGA -ACGGAAAGCAGAGATTCCTAGCGA -ACGGAAAGCAGAGATTCCCACAGA -ACGGAAAGCAGAGATTCCGCAAGA -ACGGAAAGCAGAGATTCCGGTTGA -ACGGAAAGCAGAGATTCCTCCGAT -ACGGAAAGCAGAGATTCCTGGCAT -ACGGAAAGCAGAGATTCCCGAGAT -ACGGAAAGCAGAGATTCCTACCAC -ACGGAAAGCAGAGATTCCCAGAAC -ACGGAAAGCAGAGATTCCGTCTAC -ACGGAAAGCAGAGATTCCACGTAC -ACGGAAAGCAGAGATTCCAGTGAC -ACGGAAAGCAGAGATTCCCTGTAG -ACGGAAAGCAGAGATTCCCCTAAG -ACGGAAAGCAGAGATTCCGTTCAG -ACGGAAAGCAGAGATTCCGCATAG -ACGGAAAGCAGAGATTCCGACAAG -ACGGAAAGCAGAGATTCCAAGCAG -ACGGAAAGCAGAGATTCCCGTCAA -ACGGAAAGCAGAGATTCCGCTGAA -ACGGAAAGCAGAGATTCCAGTACG -ACGGAAAGCAGAGATTCCATCCGA -ACGGAAAGCAGAGATTCCATGGGA -ACGGAAAGCAGAGATTCCGTGCAA -ACGGAAAGCAGAGATTCCGAGGAA -ACGGAAAGCAGAGATTCCCAGGTA -ACGGAAAGCAGAGATTCCGACTCT -ACGGAAAGCAGAGATTCCAGTCCT -ACGGAAAGCAGAGATTCCTAAGCC -ACGGAAAGCAGAGATTCCATAGCC -ACGGAAAGCAGAGATTCCTAACCG -ACGGAAAGCAGAGATTCCATGCCA -ACGGAAAGCAGACATTGGGGAAAC -ACGGAAAGCAGACATTGGAACACC -ACGGAAAGCAGACATTGGATCGAG -ACGGAAAGCAGACATTGGCTCCTT -ACGGAAAGCAGACATTGGCCTGTT -ACGGAAAGCAGACATTGGCGGTTT -ACGGAAAGCAGACATTGGGTGGTT -ACGGAAAGCAGACATTGGGCCTTT -ACGGAAAGCAGACATTGGGGTCTT -ACGGAAAGCAGACATTGGACGCTT -ACGGAAAGCAGACATTGGAGCGTT -ACGGAAAGCAGACATTGGTTCGTC -ACGGAAAGCAGACATTGGTCTCTC -ACGGAAAGCAGACATTGGTGGATC -ACGGAAAGCAGACATTGGCACTTC -ACGGAAAGCAGACATTGGGTACTC -ACGGAAAGCAGACATTGGGATGTC -ACGGAAAGCAGACATTGGACAGTC -ACGGAAAGCAGACATTGGTTGCTG -ACGGAAAGCAGACATTGGTCCATG -ACGGAAAGCAGACATTGGTGTGTG -ACGGAAAGCAGACATTGGCTAGTG -ACGGAAAGCAGACATTGGCATCTG -ACGGAAAGCAGACATTGGGAGTTG -ACGGAAAGCAGACATTGGAGACTG -ACGGAAAGCAGACATTGGTCGGTA -ACGGAAAGCAGACATTGGTGCCTA -ACGGAAAGCAGACATTGGCCACTA -ACGGAAAGCAGACATTGGGGAGTA -ACGGAAAGCAGACATTGGTCGTCT -ACGGAAAGCAGACATTGGTGCACT -ACGGAAAGCAGACATTGGCTGACT -ACGGAAAGCAGACATTGGCAACCT -ACGGAAAGCAGACATTGGGCTACT -ACGGAAAGCAGACATTGGGGATCT -ACGGAAAGCAGACATTGGAAGGCT -ACGGAAAGCAGACATTGGTCAACC -ACGGAAAGCAGACATTGGTGTTCC -ACGGAAAGCAGACATTGGATTCCC -ACGGAAAGCAGACATTGGTTCTCG -ACGGAAAGCAGACATTGGTAGACG -ACGGAAAGCAGACATTGGGTAACG -ACGGAAAGCAGACATTGGACTTCG -ACGGAAAGCAGACATTGGTACGCA -ACGGAAAGCAGACATTGGCTTGCA -ACGGAAAGCAGACATTGGCGAACA -ACGGAAAGCAGACATTGGCAGTCA -ACGGAAAGCAGACATTGGGATCCA -ACGGAAAGCAGACATTGGACGACA -ACGGAAAGCAGACATTGGAGCTCA -ACGGAAAGCAGACATTGGTCACGT -ACGGAAAGCAGACATTGGCGTAGT -ACGGAAAGCAGACATTGGGTCAGT -ACGGAAAGCAGACATTGGGAAGGT -ACGGAAAGCAGACATTGGAACCGT -ACGGAAAGCAGACATTGGTTGTGC -ACGGAAAGCAGACATTGGCTAAGC -ACGGAAAGCAGACATTGGACTAGC -ACGGAAAGCAGACATTGGAGATGC -ACGGAAAGCAGACATTGGTGAAGG -ACGGAAAGCAGACATTGGCAATGG -ACGGAAAGCAGACATTGGATGAGG -ACGGAAAGCAGACATTGGAATGGG -ACGGAAAGCAGACATTGGTCCTGA -ACGGAAAGCAGACATTGGTAGCGA -ACGGAAAGCAGACATTGGCACAGA -ACGGAAAGCAGACATTGGGCAAGA -ACGGAAAGCAGACATTGGGGTTGA -ACGGAAAGCAGACATTGGTCCGAT -ACGGAAAGCAGACATTGGTGGCAT -ACGGAAAGCAGACATTGGCGAGAT -ACGGAAAGCAGACATTGGTACCAC -ACGGAAAGCAGACATTGGCAGAAC -ACGGAAAGCAGACATTGGGTCTAC -ACGGAAAGCAGACATTGGACGTAC -ACGGAAAGCAGACATTGGAGTGAC -ACGGAAAGCAGACATTGGCTGTAG -ACGGAAAGCAGACATTGGCCTAAG -ACGGAAAGCAGACATTGGGTTCAG -ACGGAAAGCAGACATTGGGCATAG -ACGGAAAGCAGACATTGGGACAAG -ACGGAAAGCAGACATTGGAAGCAG -ACGGAAAGCAGACATTGGCGTCAA -ACGGAAAGCAGACATTGGGCTGAA -ACGGAAAGCAGACATTGGAGTACG -ACGGAAAGCAGACATTGGATCCGA -ACGGAAAGCAGACATTGGATGGGA -ACGGAAAGCAGACATTGGGTGCAA -ACGGAAAGCAGACATTGGGAGGAA -ACGGAAAGCAGACATTGGCAGGTA -ACGGAAAGCAGACATTGGGACTCT -ACGGAAAGCAGACATTGGAGTCCT -ACGGAAAGCAGACATTGGTAAGCC -ACGGAAAGCAGACATTGGATAGCC -ACGGAAAGCAGACATTGGTAACCG -ACGGAAAGCAGACATTGGATGCCA -ACGGAAAGCAGAGATCGAGGAAAC -ACGGAAAGCAGAGATCGAAACACC -ACGGAAAGCAGAGATCGAATCGAG -ACGGAAAGCAGAGATCGACTCCTT -ACGGAAAGCAGAGATCGACCTGTT -ACGGAAAGCAGAGATCGACGGTTT -ACGGAAAGCAGAGATCGAGTGGTT -ACGGAAAGCAGAGATCGAGCCTTT -ACGGAAAGCAGAGATCGAGGTCTT -ACGGAAAGCAGAGATCGAACGCTT -ACGGAAAGCAGAGATCGAAGCGTT -ACGGAAAGCAGAGATCGATTCGTC -ACGGAAAGCAGAGATCGATCTCTC -ACGGAAAGCAGAGATCGATGGATC -ACGGAAAGCAGAGATCGACACTTC -ACGGAAAGCAGAGATCGAGTACTC -ACGGAAAGCAGAGATCGAGATGTC -ACGGAAAGCAGAGATCGAACAGTC -ACGGAAAGCAGAGATCGATTGCTG -ACGGAAAGCAGAGATCGATCCATG -ACGGAAAGCAGAGATCGATGTGTG -ACGGAAAGCAGAGATCGACTAGTG -ACGGAAAGCAGAGATCGACATCTG -ACGGAAAGCAGAGATCGAGAGTTG -ACGGAAAGCAGAGATCGAAGACTG -ACGGAAAGCAGAGATCGATCGGTA -ACGGAAAGCAGAGATCGATGCCTA -ACGGAAAGCAGAGATCGACCACTA -ACGGAAAGCAGAGATCGAGGAGTA -ACGGAAAGCAGAGATCGATCGTCT -ACGGAAAGCAGAGATCGATGCACT -ACGGAAAGCAGAGATCGACTGACT -ACGGAAAGCAGAGATCGACAACCT -ACGGAAAGCAGAGATCGAGCTACT -ACGGAAAGCAGAGATCGAGGATCT -ACGGAAAGCAGAGATCGAAAGGCT -ACGGAAAGCAGAGATCGATCAACC -ACGGAAAGCAGAGATCGATGTTCC -ACGGAAAGCAGAGATCGAATTCCC -ACGGAAAGCAGAGATCGATTCTCG -ACGGAAAGCAGAGATCGATAGACG -ACGGAAAGCAGAGATCGAGTAACG -ACGGAAAGCAGAGATCGAACTTCG -ACGGAAAGCAGAGATCGATACGCA -ACGGAAAGCAGAGATCGACTTGCA -ACGGAAAGCAGAGATCGACGAACA -ACGGAAAGCAGAGATCGACAGTCA -ACGGAAAGCAGAGATCGAGATCCA -ACGGAAAGCAGAGATCGAACGACA -ACGGAAAGCAGAGATCGAAGCTCA -ACGGAAAGCAGAGATCGATCACGT -ACGGAAAGCAGAGATCGACGTAGT -ACGGAAAGCAGAGATCGAGTCAGT -ACGGAAAGCAGAGATCGAGAAGGT -ACGGAAAGCAGAGATCGAAACCGT -ACGGAAAGCAGAGATCGATTGTGC -ACGGAAAGCAGAGATCGACTAAGC -ACGGAAAGCAGAGATCGAACTAGC -ACGGAAAGCAGAGATCGAAGATGC -ACGGAAAGCAGAGATCGATGAAGG -ACGGAAAGCAGAGATCGACAATGG -ACGGAAAGCAGAGATCGAATGAGG -ACGGAAAGCAGAGATCGAAATGGG -ACGGAAAGCAGAGATCGATCCTGA -ACGGAAAGCAGAGATCGATAGCGA -ACGGAAAGCAGAGATCGACACAGA -ACGGAAAGCAGAGATCGAGCAAGA -ACGGAAAGCAGAGATCGAGGTTGA -ACGGAAAGCAGAGATCGATCCGAT -ACGGAAAGCAGAGATCGATGGCAT -ACGGAAAGCAGAGATCGACGAGAT -ACGGAAAGCAGAGATCGATACCAC -ACGGAAAGCAGAGATCGACAGAAC -ACGGAAAGCAGAGATCGAGTCTAC -ACGGAAAGCAGAGATCGAACGTAC -ACGGAAAGCAGAGATCGAAGTGAC -ACGGAAAGCAGAGATCGACTGTAG -ACGGAAAGCAGAGATCGACCTAAG -ACGGAAAGCAGAGATCGAGTTCAG -ACGGAAAGCAGAGATCGAGCATAG -ACGGAAAGCAGAGATCGAGACAAG -ACGGAAAGCAGAGATCGAAAGCAG -ACGGAAAGCAGAGATCGACGTCAA -ACGGAAAGCAGAGATCGAGCTGAA -ACGGAAAGCAGAGATCGAAGTACG -ACGGAAAGCAGAGATCGAATCCGA -ACGGAAAGCAGAGATCGAATGGGA -ACGGAAAGCAGAGATCGAGTGCAA -ACGGAAAGCAGAGATCGAGAGGAA -ACGGAAAGCAGAGATCGACAGGTA -ACGGAAAGCAGAGATCGAGACTCT -ACGGAAAGCAGAGATCGAAGTCCT -ACGGAAAGCAGAGATCGATAAGCC -ACGGAAAGCAGAGATCGAATAGCC -ACGGAAAGCAGAGATCGATAACCG -ACGGAAAGCAGAGATCGAATGCCA -ACGGAAAGCAGACACTACGGAAAC -ACGGAAAGCAGACACTACAACACC -ACGGAAAGCAGACACTACATCGAG -ACGGAAAGCAGACACTACCTCCTT -ACGGAAAGCAGACACTACCCTGTT -ACGGAAAGCAGACACTACCGGTTT -ACGGAAAGCAGACACTACGTGGTT -ACGGAAAGCAGACACTACGCCTTT -ACGGAAAGCAGACACTACGGTCTT -ACGGAAAGCAGACACTACACGCTT -ACGGAAAGCAGACACTACAGCGTT -ACGGAAAGCAGACACTACTTCGTC -ACGGAAAGCAGACACTACTCTCTC -ACGGAAAGCAGACACTACTGGATC -ACGGAAAGCAGACACTACCACTTC -ACGGAAAGCAGACACTACGTACTC -ACGGAAAGCAGACACTACGATGTC -ACGGAAAGCAGACACTACACAGTC -ACGGAAAGCAGACACTACTTGCTG -ACGGAAAGCAGACACTACTCCATG -ACGGAAAGCAGACACTACTGTGTG -ACGGAAAGCAGACACTACCTAGTG -ACGGAAAGCAGACACTACCATCTG -ACGGAAAGCAGACACTACGAGTTG -ACGGAAAGCAGACACTACAGACTG -ACGGAAAGCAGACACTACTCGGTA -ACGGAAAGCAGACACTACTGCCTA -ACGGAAAGCAGACACTACCCACTA -ACGGAAAGCAGACACTACGGAGTA -ACGGAAAGCAGACACTACTCGTCT -ACGGAAAGCAGACACTACTGCACT -ACGGAAAGCAGACACTACCTGACT -ACGGAAAGCAGACACTACCAACCT -ACGGAAAGCAGACACTACGCTACT -ACGGAAAGCAGACACTACGGATCT -ACGGAAAGCAGACACTACAAGGCT -ACGGAAAGCAGACACTACTCAACC -ACGGAAAGCAGACACTACTGTTCC -ACGGAAAGCAGACACTACATTCCC -ACGGAAAGCAGACACTACTTCTCG -ACGGAAAGCAGACACTACTAGACG -ACGGAAAGCAGACACTACGTAACG -ACGGAAAGCAGACACTACACTTCG -ACGGAAAGCAGACACTACTACGCA -ACGGAAAGCAGACACTACCTTGCA -ACGGAAAGCAGACACTACCGAACA -ACGGAAAGCAGACACTACCAGTCA -ACGGAAAGCAGACACTACGATCCA -ACGGAAAGCAGACACTACACGACA -ACGGAAAGCAGACACTACAGCTCA -ACGGAAAGCAGACACTACTCACGT -ACGGAAAGCAGACACTACCGTAGT -ACGGAAAGCAGACACTACGTCAGT -ACGGAAAGCAGACACTACGAAGGT -ACGGAAAGCAGACACTACAACCGT -ACGGAAAGCAGACACTACTTGTGC -ACGGAAAGCAGACACTACCTAAGC -ACGGAAAGCAGACACTACACTAGC -ACGGAAAGCAGACACTACAGATGC -ACGGAAAGCAGACACTACTGAAGG -ACGGAAAGCAGACACTACCAATGG -ACGGAAAGCAGACACTACATGAGG -ACGGAAAGCAGACACTACAATGGG -ACGGAAAGCAGACACTACTCCTGA -ACGGAAAGCAGACACTACTAGCGA -ACGGAAAGCAGACACTACCACAGA -ACGGAAAGCAGACACTACGCAAGA -ACGGAAAGCAGACACTACGGTTGA -ACGGAAAGCAGACACTACTCCGAT -ACGGAAAGCAGACACTACTGGCAT -ACGGAAAGCAGACACTACCGAGAT -ACGGAAAGCAGACACTACTACCAC -ACGGAAAGCAGACACTACCAGAAC -ACGGAAAGCAGACACTACGTCTAC -ACGGAAAGCAGACACTACACGTAC -ACGGAAAGCAGACACTACAGTGAC -ACGGAAAGCAGACACTACCTGTAG -ACGGAAAGCAGACACTACCCTAAG -ACGGAAAGCAGACACTACGTTCAG -ACGGAAAGCAGACACTACGCATAG -ACGGAAAGCAGACACTACGACAAG -ACGGAAAGCAGACACTACAAGCAG -ACGGAAAGCAGACACTACCGTCAA -ACGGAAAGCAGACACTACGCTGAA -ACGGAAAGCAGACACTACAGTACG -ACGGAAAGCAGACACTACATCCGA -ACGGAAAGCAGACACTACATGGGA -ACGGAAAGCAGACACTACGTGCAA -ACGGAAAGCAGACACTACGAGGAA -ACGGAAAGCAGACACTACCAGGTA -ACGGAAAGCAGACACTACGACTCT -ACGGAAAGCAGACACTACAGTCCT -ACGGAAAGCAGACACTACTAAGCC -ACGGAAAGCAGACACTACATAGCC -ACGGAAAGCAGACACTACTAACCG -ACGGAAAGCAGACACTACATGCCA -ACGGAAAGCAGAAACCAGGGAAAC -ACGGAAAGCAGAAACCAGAACACC -ACGGAAAGCAGAAACCAGATCGAG -ACGGAAAGCAGAAACCAGCTCCTT -ACGGAAAGCAGAAACCAGCCTGTT -ACGGAAAGCAGAAACCAGCGGTTT -ACGGAAAGCAGAAACCAGGTGGTT -ACGGAAAGCAGAAACCAGGCCTTT -ACGGAAAGCAGAAACCAGGGTCTT -ACGGAAAGCAGAAACCAGACGCTT -ACGGAAAGCAGAAACCAGAGCGTT -ACGGAAAGCAGAAACCAGTTCGTC -ACGGAAAGCAGAAACCAGTCTCTC -ACGGAAAGCAGAAACCAGTGGATC -ACGGAAAGCAGAAACCAGCACTTC -ACGGAAAGCAGAAACCAGGTACTC -ACGGAAAGCAGAAACCAGGATGTC -ACGGAAAGCAGAAACCAGACAGTC -ACGGAAAGCAGAAACCAGTTGCTG -ACGGAAAGCAGAAACCAGTCCATG -ACGGAAAGCAGAAACCAGTGTGTG -ACGGAAAGCAGAAACCAGCTAGTG -ACGGAAAGCAGAAACCAGCATCTG -ACGGAAAGCAGAAACCAGGAGTTG -ACGGAAAGCAGAAACCAGAGACTG -ACGGAAAGCAGAAACCAGTCGGTA -ACGGAAAGCAGAAACCAGTGCCTA -ACGGAAAGCAGAAACCAGCCACTA -ACGGAAAGCAGAAACCAGGGAGTA -ACGGAAAGCAGAAACCAGTCGTCT -ACGGAAAGCAGAAACCAGTGCACT -ACGGAAAGCAGAAACCAGCTGACT -ACGGAAAGCAGAAACCAGCAACCT -ACGGAAAGCAGAAACCAGGCTACT -ACGGAAAGCAGAAACCAGGGATCT -ACGGAAAGCAGAAACCAGAAGGCT -ACGGAAAGCAGAAACCAGTCAACC -ACGGAAAGCAGAAACCAGTGTTCC -ACGGAAAGCAGAAACCAGATTCCC -ACGGAAAGCAGAAACCAGTTCTCG -ACGGAAAGCAGAAACCAGTAGACG -ACGGAAAGCAGAAACCAGGTAACG -ACGGAAAGCAGAAACCAGACTTCG -ACGGAAAGCAGAAACCAGTACGCA -ACGGAAAGCAGAAACCAGCTTGCA -ACGGAAAGCAGAAACCAGCGAACA -ACGGAAAGCAGAAACCAGCAGTCA -ACGGAAAGCAGAAACCAGGATCCA -ACGGAAAGCAGAAACCAGACGACA -ACGGAAAGCAGAAACCAGAGCTCA -ACGGAAAGCAGAAACCAGTCACGT -ACGGAAAGCAGAAACCAGCGTAGT -ACGGAAAGCAGAAACCAGGTCAGT -ACGGAAAGCAGAAACCAGGAAGGT -ACGGAAAGCAGAAACCAGAACCGT -ACGGAAAGCAGAAACCAGTTGTGC -ACGGAAAGCAGAAACCAGCTAAGC -ACGGAAAGCAGAAACCAGACTAGC -ACGGAAAGCAGAAACCAGAGATGC -ACGGAAAGCAGAAACCAGTGAAGG -ACGGAAAGCAGAAACCAGCAATGG -ACGGAAAGCAGAAACCAGATGAGG -ACGGAAAGCAGAAACCAGAATGGG -ACGGAAAGCAGAAACCAGTCCTGA -ACGGAAAGCAGAAACCAGTAGCGA -ACGGAAAGCAGAAACCAGCACAGA -ACGGAAAGCAGAAACCAGGCAAGA -ACGGAAAGCAGAAACCAGGGTTGA -ACGGAAAGCAGAAACCAGTCCGAT -ACGGAAAGCAGAAACCAGTGGCAT -ACGGAAAGCAGAAACCAGCGAGAT -ACGGAAAGCAGAAACCAGTACCAC -ACGGAAAGCAGAAACCAGCAGAAC -ACGGAAAGCAGAAACCAGGTCTAC -ACGGAAAGCAGAAACCAGACGTAC -ACGGAAAGCAGAAACCAGAGTGAC -ACGGAAAGCAGAAACCAGCTGTAG -ACGGAAAGCAGAAACCAGCCTAAG -ACGGAAAGCAGAAACCAGGTTCAG -ACGGAAAGCAGAAACCAGGCATAG -ACGGAAAGCAGAAACCAGGACAAG -ACGGAAAGCAGAAACCAGAAGCAG -ACGGAAAGCAGAAACCAGCGTCAA -ACGGAAAGCAGAAACCAGGCTGAA -ACGGAAAGCAGAAACCAGAGTACG -ACGGAAAGCAGAAACCAGATCCGA -ACGGAAAGCAGAAACCAGATGGGA -ACGGAAAGCAGAAACCAGGTGCAA -ACGGAAAGCAGAAACCAGGAGGAA -ACGGAAAGCAGAAACCAGCAGGTA -ACGGAAAGCAGAAACCAGGACTCT -ACGGAAAGCAGAAACCAGAGTCCT -ACGGAAAGCAGAAACCAGTAAGCC -ACGGAAAGCAGAAACCAGATAGCC -ACGGAAAGCAGAAACCAGTAACCG -ACGGAAAGCAGAAACCAGATGCCA -ACGGAAAGCAGATACGTCGGAAAC -ACGGAAAGCAGATACGTCAACACC -ACGGAAAGCAGATACGTCATCGAG -ACGGAAAGCAGATACGTCCTCCTT -ACGGAAAGCAGATACGTCCCTGTT -ACGGAAAGCAGATACGTCCGGTTT -ACGGAAAGCAGATACGTCGTGGTT -ACGGAAAGCAGATACGTCGCCTTT -ACGGAAAGCAGATACGTCGGTCTT -ACGGAAAGCAGATACGTCACGCTT -ACGGAAAGCAGATACGTCAGCGTT -ACGGAAAGCAGATACGTCTTCGTC -ACGGAAAGCAGATACGTCTCTCTC -ACGGAAAGCAGATACGTCTGGATC -ACGGAAAGCAGATACGTCCACTTC -ACGGAAAGCAGATACGTCGTACTC -ACGGAAAGCAGATACGTCGATGTC -ACGGAAAGCAGATACGTCACAGTC -ACGGAAAGCAGATACGTCTTGCTG -ACGGAAAGCAGATACGTCTCCATG -ACGGAAAGCAGATACGTCTGTGTG -ACGGAAAGCAGATACGTCCTAGTG -ACGGAAAGCAGATACGTCCATCTG -ACGGAAAGCAGATACGTCGAGTTG -ACGGAAAGCAGATACGTCAGACTG -ACGGAAAGCAGATACGTCTCGGTA -ACGGAAAGCAGATACGTCTGCCTA -ACGGAAAGCAGATACGTCCCACTA -ACGGAAAGCAGATACGTCGGAGTA -ACGGAAAGCAGATACGTCTCGTCT -ACGGAAAGCAGATACGTCTGCACT -ACGGAAAGCAGATACGTCCTGACT -ACGGAAAGCAGATACGTCCAACCT -ACGGAAAGCAGATACGTCGCTACT -ACGGAAAGCAGATACGTCGGATCT -ACGGAAAGCAGATACGTCAAGGCT -ACGGAAAGCAGATACGTCTCAACC -ACGGAAAGCAGATACGTCTGTTCC -ACGGAAAGCAGATACGTCATTCCC -ACGGAAAGCAGATACGTCTTCTCG -ACGGAAAGCAGATACGTCTAGACG -ACGGAAAGCAGATACGTCGTAACG -ACGGAAAGCAGATACGTCACTTCG -ACGGAAAGCAGATACGTCTACGCA -ACGGAAAGCAGATACGTCCTTGCA -ACGGAAAGCAGATACGTCCGAACA -ACGGAAAGCAGATACGTCCAGTCA -ACGGAAAGCAGATACGTCGATCCA -ACGGAAAGCAGATACGTCACGACA -ACGGAAAGCAGATACGTCAGCTCA -ACGGAAAGCAGATACGTCTCACGT -ACGGAAAGCAGATACGTCCGTAGT -ACGGAAAGCAGATACGTCGTCAGT -ACGGAAAGCAGATACGTCGAAGGT -ACGGAAAGCAGATACGTCAACCGT -ACGGAAAGCAGATACGTCTTGTGC -ACGGAAAGCAGATACGTCCTAAGC -ACGGAAAGCAGATACGTCACTAGC -ACGGAAAGCAGATACGTCAGATGC -ACGGAAAGCAGATACGTCTGAAGG -ACGGAAAGCAGATACGTCCAATGG -ACGGAAAGCAGATACGTCATGAGG -ACGGAAAGCAGATACGTCAATGGG -ACGGAAAGCAGATACGTCTCCTGA -ACGGAAAGCAGATACGTCTAGCGA -ACGGAAAGCAGATACGTCCACAGA -ACGGAAAGCAGATACGTCGCAAGA -ACGGAAAGCAGATACGTCGGTTGA -ACGGAAAGCAGATACGTCTCCGAT -ACGGAAAGCAGATACGTCTGGCAT -ACGGAAAGCAGATACGTCCGAGAT -ACGGAAAGCAGATACGTCTACCAC -ACGGAAAGCAGATACGTCCAGAAC -ACGGAAAGCAGATACGTCGTCTAC -ACGGAAAGCAGATACGTCACGTAC -ACGGAAAGCAGATACGTCAGTGAC -ACGGAAAGCAGATACGTCCTGTAG -ACGGAAAGCAGATACGTCCCTAAG -ACGGAAAGCAGATACGTCGTTCAG -ACGGAAAGCAGATACGTCGCATAG -ACGGAAAGCAGATACGTCGACAAG -ACGGAAAGCAGATACGTCAAGCAG -ACGGAAAGCAGATACGTCCGTCAA -ACGGAAAGCAGATACGTCGCTGAA -ACGGAAAGCAGATACGTCAGTACG -ACGGAAAGCAGATACGTCATCCGA -ACGGAAAGCAGATACGTCATGGGA -ACGGAAAGCAGATACGTCGTGCAA -ACGGAAAGCAGATACGTCGAGGAA -ACGGAAAGCAGATACGTCCAGGTA -ACGGAAAGCAGATACGTCGACTCT -ACGGAAAGCAGATACGTCAGTCCT -ACGGAAAGCAGATACGTCTAAGCC -ACGGAAAGCAGATACGTCATAGCC -ACGGAAAGCAGATACGTCTAACCG -ACGGAAAGCAGATACGTCATGCCA -ACGGAAAGCAGATACACGGGAAAC -ACGGAAAGCAGATACACGAACACC -ACGGAAAGCAGATACACGATCGAG -ACGGAAAGCAGATACACGCTCCTT -ACGGAAAGCAGATACACGCCTGTT -ACGGAAAGCAGATACACGCGGTTT -ACGGAAAGCAGATACACGGTGGTT -ACGGAAAGCAGATACACGGCCTTT -ACGGAAAGCAGATACACGGGTCTT -ACGGAAAGCAGATACACGACGCTT -ACGGAAAGCAGATACACGAGCGTT -ACGGAAAGCAGATACACGTTCGTC -ACGGAAAGCAGATACACGTCTCTC -ACGGAAAGCAGATACACGTGGATC -ACGGAAAGCAGATACACGCACTTC -ACGGAAAGCAGATACACGGTACTC -ACGGAAAGCAGATACACGGATGTC -ACGGAAAGCAGATACACGACAGTC -ACGGAAAGCAGATACACGTTGCTG -ACGGAAAGCAGATACACGTCCATG -ACGGAAAGCAGATACACGTGTGTG -ACGGAAAGCAGATACACGCTAGTG -ACGGAAAGCAGATACACGCATCTG -ACGGAAAGCAGATACACGGAGTTG -ACGGAAAGCAGATACACGAGACTG -ACGGAAAGCAGATACACGTCGGTA -ACGGAAAGCAGATACACGTGCCTA -ACGGAAAGCAGATACACGCCACTA -ACGGAAAGCAGATACACGGGAGTA -ACGGAAAGCAGATACACGTCGTCT -ACGGAAAGCAGATACACGTGCACT -ACGGAAAGCAGATACACGCTGACT -ACGGAAAGCAGATACACGCAACCT -ACGGAAAGCAGATACACGGCTACT -ACGGAAAGCAGATACACGGGATCT -ACGGAAAGCAGATACACGAAGGCT -ACGGAAAGCAGATACACGTCAACC -ACGGAAAGCAGATACACGTGTTCC -ACGGAAAGCAGATACACGATTCCC -ACGGAAAGCAGATACACGTTCTCG -ACGGAAAGCAGATACACGTAGACG -ACGGAAAGCAGATACACGGTAACG -ACGGAAAGCAGATACACGACTTCG -ACGGAAAGCAGATACACGTACGCA -ACGGAAAGCAGATACACGCTTGCA -ACGGAAAGCAGATACACGCGAACA -ACGGAAAGCAGATACACGCAGTCA -ACGGAAAGCAGATACACGGATCCA -ACGGAAAGCAGATACACGACGACA -ACGGAAAGCAGATACACGAGCTCA -ACGGAAAGCAGATACACGTCACGT -ACGGAAAGCAGATACACGCGTAGT -ACGGAAAGCAGATACACGGTCAGT -ACGGAAAGCAGATACACGGAAGGT -ACGGAAAGCAGATACACGAACCGT -ACGGAAAGCAGATACACGTTGTGC -ACGGAAAGCAGATACACGCTAAGC -ACGGAAAGCAGATACACGACTAGC -ACGGAAAGCAGATACACGAGATGC -ACGGAAAGCAGATACACGTGAAGG -ACGGAAAGCAGATACACGCAATGG -ACGGAAAGCAGATACACGATGAGG -ACGGAAAGCAGATACACGAATGGG -ACGGAAAGCAGATACACGTCCTGA -ACGGAAAGCAGATACACGTAGCGA -ACGGAAAGCAGATACACGCACAGA -ACGGAAAGCAGATACACGGCAAGA -ACGGAAAGCAGATACACGGGTTGA -ACGGAAAGCAGATACACGTCCGAT -ACGGAAAGCAGATACACGTGGCAT -ACGGAAAGCAGATACACGCGAGAT -ACGGAAAGCAGATACACGTACCAC -ACGGAAAGCAGATACACGCAGAAC -ACGGAAAGCAGATACACGGTCTAC -ACGGAAAGCAGATACACGACGTAC -ACGGAAAGCAGATACACGAGTGAC -ACGGAAAGCAGATACACGCTGTAG -ACGGAAAGCAGATACACGCCTAAG -ACGGAAAGCAGATACACGGTTCAG -ACGGAAAGCAGATACACGGCATAG -ACGGAAAGCAGATACACGGACAAG -ACGGAAAGCAGATACACGAAGCAG -ACGGAAAGCAGATACACGCGTCAA -ACGGAAAGCAGATACACGGCTGAA -ACGGAAAGCAGATACACGAGTACG -ACGGAAAGCAGATACACGATCCGA -ACGGAAAGCAGATACACGATGGGA -ACGGAAAGCAGATACACGGTGCAA -ACGGAAAGCAGATACACGGAGGAA -ACGGAAAGCAGATACACGCAGGTA -ACGGAAAGCAGATACACGGACTCT -ACGGAAAGCAGATACACGAGTCCT -ACGGAAAGCAGATACACGTAAGCC -ACGGAAAGCAGATACACGATAGCC -ACGGAAAGCAGATACACGTAACCG -ACGGAAAGCAGATACACGATGCCA -ACGGAAAGCAGAGACAGTGGAAAC -ACGGAAAGCAGAGACAGTAACACC -ACGGAAAGCAGAGACAGTATCGAG -ACGGAAAGCAGAGACAGTCTCCTT -ACGGAAAGCAGAGACAGTCCTGTT -ACGGAAAGCAGAGACAGTCGGTTT -ACGGAAAGCAGAGACAGTGTGGTT -ACGGAAAGCAGAGACAGTGCCTTT -ACGGAAAGCAGAGACAGTGGTCTT -ACGGAAAGCAGAGACAGTACGCTT -ACGGAAAGCAGAGACAGTAGCGTT -ACGGAAAGCAGAGACAGTTTCGTC -ACGGAAAGCAGAGACAGTTCTCTC -ACGGAAAGCAGAGACAGTTGGATC -ACGGAAAGCAGAGACAGTCACTTC -ACGGAAAGCAGAGACAGTGTACTC -ACGGAAAGCAGAGACAGTGATGTC -ACGGAAAGCAGAGACAGTACAGTC -ACGGAAAGCAGAGACAGTTTGCTG -ACGGAAAGCAGAGACAGTTCCATG -ACGGAAAGCAGAGACAGTTGTGTG -ACGGAAAGCAGAGACAGTCTAGTG -ACGGAAAGCAGAGACAGTCATCTG -ACGGAAAGCAGAGACAGTGAGTTG -ACGGAAAGCAGAGACAGTAGACTG -ACGGAAAGCAGAGACAGTTCGGTA -ACGGAAAGCAGAGACAGTTGCCTA -ACGGAAAGCAGAGACAGTCCACTA -ACGGAAAGCAGAGACAGTGGAGTA -ACGGAAAGCAGAGACAGTTCGTCT -ACGGAAAGCAGAGACAGTTGCACT -ACGGAAAGCAGAGACAGTCTGACT -ACGGAAAGCAGAGACAGTCAACCT -ACGGAAAGCAGAGACAGTGCTACT -ACGGAAAGCAGAGACAGTGGATCT -ACGGAAAGCAGAGACAGTAAGGCT -ACGGAAAGCAGAGACAGTTCAACC -ACGGAAAGCAGAGACAGTTGTTCC -ACGGAAAGCAGAGACAGTATTCCC -ACGGAAAGCAGAGACAGTTTCTCG -ACGGAAAGCAGAGACAGTTAGACG -ACGGAAAGCAGAGACAGTGTAACG -ACGGAAAGCAGAGACAGTACTTCG -ACGGAAAGCAGAGACAGTTACGCA -ACGGAAAGCAGAGACAGTCTTGCA -ACGGAAAGCAGAGACAGTCGAACA -ACGGAAAGCAGAGACAGTCAGTCA -ACGGAAAGCAGAGACAGTGATCCA -ACGGAAAGCAGAGACAGTACGACA -ACGGAAAGCAGAGACAGTAGCTCA -ACGGAAAGCAGAGACAGTTCACGT -ACGGAAAGCAGAGACAGTCGTAGT -ACGGAAAGCAGAGACAGTGTCAGT -ACGGAAAGCAGAGACAGTGAAGGT -ACGGAAAGCAGAGACAGTAACCGT -ACGGAAAGCAGAGACAGTTTGTGC -ACGGAAAGCAGAGACAGTCTAAGC -ACGGAAAGCAGAGACAGTACTAGC -ACGGAAAGCAGAGACAGTAGATGC -ACGGAAAGCAGAGACAGTTGAAGG -ACGGAAAGCAGAGACAGTCAATGG -ACGGAAAGCAGAGACAGTATGAGG -ACGGAAAGCAGAGACAGTAATGGG -ACGGAAAGCAGAGACAGTTCCTGA -ACGGAAAGCAGAGACAGTTAGCGA -ACGGAAAGCAGAGACAGTCACAGA -ACGGAAAGCAGAGACAGTGCAAGA -ACGGAAAGCAGAGACAGTGGTTGA -ACGGAAAGCAGAGACAGTTCCGAT -ACGGAAAGCAGAGACAGTTGGCAT -ACGGAAAGCAGAGACAGTCGAGAT -ACGGAAAGCAGAGACAGTTACCAC -ACGGAAAGCAGAGACAGTCAGAAC -ACGGAAAGCAGAGACAGTGTCTAC -ACGGAAAGCAGAGACAGTACGTAC -ACGGAAAGCAGAGACAGTAGTGAC -ACGGAAAGCAGAGACAGTCTGTAG -ACGGAAAGCAGAGACAGTCCTAAG -ACGGAAAGCAGAGACAGTGTTCAG -ACGGAAAGCAGAGACAGTGCATAG -ACGGAAAGCAGAGACAGTGACAAG -ACGGAAAGCAGAGACAGTAAGCAG -ACGGAAAGCAGAGACAGTCGTCAA -ACGGAAAGCAGAGACAGTGCTGAA -ACGGAAAGCAGAGACAGTAGTACG -ACGGAAAGCAGAGACAGTATCCGA -ACGGAAAGCAGAGACAGTATGGGA -ACGGAAAGCAGAGACAGTGTGCAA -ACGGAAAGCAGAGACAGTGAGGAA -ACGGAAAGCAGAGACAGTCAGGTA -ACGGAAAGCAGAGACAGTGACTCT -ACGGAAAGCAGAGACAGTAGTCCT -ACGGAAAGCAGAGACAGTTAAGCC -ACGGAAAGCAGAGACAGTATAGCC -ACGGAAAGCAGAGACAGTTAACCG -ACGGAAAGCAGAGACAGTATGCCA -ACGGAAAGCAGATAGCTGGGAAAC -ACGGAAAGCAGATAGCTGAACACC -ACGGAAAGCAGATAGCTGATCGAG -ACGGAAAGCAGATAGCTGCTCCTT -ACGGAAAGCAGATAGCTGCCTGTT -ACGGAAAGCAGATAGCTGCGGTTT -ACGGAAAGCAGATAGCTGGTGGTT -ACGGAAAGCAGATAGCTGGCCTTT -ACGGAAAGCAGATAGCTGGGTCTT -ACGGAAAGCAGATAGCTGACGCTT -ACGGAAAGCAGATAGCTGAGCGTT -ACGGAAAGCAGATAGCTGTTCGTC -ACGGAAAGCAGATAGCTGTCTCTC -ACGGAAAGCAGATAGCTGTGGATC -ACGGAAAGCAGATAGCTGCACTTC -ACGGAAAGCAGATAGCTGGTACTC -ACGGAAAGCAGATAGCTGGATGTC -ACGGAAAGCAGATAGCTGACAGTC -ACGGAAAGCAGATAGCTGTTGCTG -ACGGAAAGCAGATAGCTGTCCATG -ACGGAAAGCAGATAGCTGTGTGTG -ACGGAAAGCAGATAGCTGCTAGTG -ACGGAAAGCAGATAGCTGCATCTG -ACGGAAAGCAGATAGCTGGAGTTG -ACGGAAAGCAGATAGCTGAGACTG -ACGGAAAGCAGATAGCTGTCGGTA -ACGGAAAGCAGATAGCTGTGCCTA -ACGGAAAGCAGATAGCTGCCACTA -ACGGAAAGCAGATAGCTGGGAGTA -ACGGAAAGCAGATAGCTGTCGTCT -ACGGAAAGCAGATAGCTGTGCACT -ACGGAAAGCAGATAGCTGCTGACT -ACGGAAAGCAGATAGCTGCAACCT -ACGGAAAGCAGATAGCTGGCTACT -ACGGAAAGCAGATAGCTGGGATCT -ACGGAAAGCAGATAGCTGAAGGCT -ACGGAAAGCAGATAGCTGTCAACC -ACGGAAAGCAGATAGCTGTGTTCC -ACGGAAAGCAGATAGCTGATTCCC -ACGGAAAGCAGATAGCTGTTCTCG -ACGGAAAGCAGATAGCTGTAGACG -ACGGAAAGCAGATAGCTGGTAACG -ACGGAAAGCAGATAGCTGACTTCG -ACGGAAAGCAGATAGCTGTACGCA -ACGGAAAGCAGATAGCTGCTTGCA -ACGGAAAGCAGATAGCTGCGAACA -ACGGAAAGCAGATAGCTGCAGTCA -ACGGAAAGCAGATAGCTGGATCCA -ACGGAAAGCAGATAGCTGACGACA -ACGGAAAGCAGATAGCTGAGCTCA -ACGGAAAGCAGATAGCTGTCACGT -ACGGAAAGCAGATAGCTGCGTAGT -ACGGAAAGCAGATAGCTGGTCAGT -ACGGAAAGCAGATAGCTGGAAGGT -ACGGAAAGCAGATAGCTGAACCGT -ACGGAAAGCAGATAGCTGTTGTGC -ACGGAAAGCAGATAGCTGCTAAGC -ACGGAAAGCAGATAGCTGACTAGC -ACGGAAAGCAGATAGCTGAGATGC -ACGGAAAGCAGATAGCTGTGAAGG -ACGGAAAGCAGATAGCTGCAATGG -ACGGAAAGCAGATAGCTGATGAGG -ACGGAAAGCAGATAGCTGAATGGG -ACGGAAAGCAGATAGCTGTCCTGA -ACGGAAAGCAGATAGCTGTAGCGA -ACGGAAAGCAGATAGCTGCACAGA -ACGGAAAGCAGATAGCTGGCAAGA -ACGGAAAGCAGATAGCTGGGTTGA -ACGGAAAGCAGATAGCTGTCCGAT -ACGGAAAGCAGATAGCTGTGGCAT -ACGGAAAGCAGATAGCTGCGAGAT -ACGGAAAGCAGATAGCTGTACCAC -ACGGAAAGCAGATAGCTGCAGAAC -ACGGAAAGCAGATAGCTGGTCTAC -ACGGAAAGCAGATAGCTGACGTAC -ACGGAAAGCAGATAGCTGAGTGAC -ACGGAAAGCAGATAGCTGCTGTAG -ACGGAAAGCAGATAGCTGCCTAAG -ACGGAAAGCAGATAGCTGGTTCAG -ACGGAAAGCAGATAGCTGGCATAG -ACGGAAAGCAGATAGCTGGACAAG -ACGGAAAGCAGATAGCTGAAGCAG -ACGGAAAGCAGATAGCTGCGTCAA -ACGGAAAGCAGATAGCTGGCTGAA -ACGGAAAGCAGATAGCTGAGTACG -ACGGAAAGCAGATAGCTGATCCGA -ACGGAAAGCAGATAGCTGATGGGA -ACGGAAAGCAGATAGCTGGTGCAA -ACGGAAAGCAGATAGCTGGAGGAA -ACGGAAAGCAGATAGCTGCAGGTA -ACGGAAAGCAGATAGCTGGACTCT -ACGGAAAGCAGATAGCTGAGTCCT -ACGGAAAGCAGATAGCTGTAAGCC -ACGGAAAGCAGATAGCTGATAGCC -ACGGAAAGCAGATAGCTGTAACCG -ACGGAAAGCAGATAGCTGATGCCA -ACGGAAAGCAGAAAGCCTGGAAAC -ACGGAAAGCAGAAAGCCTAACACC -ACGGAAAGCAGAAAGCCTATCGAG -ACGGAAAGCAGAAAGCCTCTCCTT -ACGGAAAGCAGAAAGCCTCCTGTT -ACGGAAAGCAGAAAGCCTCGGTTT -ACGGAAAGCAGAAAGCCTGTGGTT -ACGGAAAGCAGAAAGCCTGCCTTT -ACGGAAAGCAGAAAGCCTGGTCTT -ACGGAAAGCAGAAAGCCTACGCTT -ACGGAAAGCAGAAAGCCTAGCGTT -ACGGAAAGCAGAAAGCCTTTCGTC -ACGGAAAGCAGAAAGCCTTCTCTC -ACGGAAAGCAGAAAGCCTTGGATC -ACGGAAAGCAGAAAGCCTCACTTC -ACGGAAAGCAGAAAGCCTGTACTC -ACGGAAAGCAGAAAGCCTGATGTC -ACGGAAAGCAGAAAGCCTACAGTC -ACGGAAAGCAGAAAGCCTTTGCTG -ACGGAAAGCAGAAAGCCTTCCATG -ACGGAAAGCAGAAAGCCTTGTGTG -ACGGAAAGCAGAAAGCCTCTAGTG -ACGGAAAGCAGAAAGCCTCATCTG -ACGGAAAGCAGAAAGCCTGAGTTG -ACGGAAAGCAGAAAGCCTAGACTG -ACGGAAAGCAGAAAGCCTTCGGTA -ACGGAAAGCAGAAAGCCTTGCCTA -ACGGAAAGCAGAAAGCCTCCACTA -ACGGAAAGCAGAAAGCCTGGAGTA -ACGGAAAGCAGAAAGCCTTCGTCT -ACGGAAAGCAGAAAGCCTTGCACT -ACGGAAAGCAGAAAGCCTCTGACT -ACGGAAAGCAGAAAGCCTCAACCT -ACGGAAAGCAGAAAGCCTGCTACT -ACGGAAAGCAGAAAGCCTGGATCT -ACGGAAAGCAGAAAGCCTAAGGCT -ACGGAAAGCAGAAAGCCTTCAACC -ACGGAAAGCAGAAAGCCTTGTTCC -ACGGAAAGCAGAAAGCCTATTCCC -ACGGAAAGCAGAAAGCCTTTCTCG -ACGGAAAGCAGAAAGCCTTAGACG -ACGGAAAGCAGAAAGCCTGTAACG -ACGGAAAGCAGAAAGCCTACTTCG -ACGGAAAGCAGAAAGCCTTACGCA -ACGGAAAGCAGAAAGCCTCTTGCA -ACGGAAAGCAGAAAGCCTCGAACA -ACGGAAAGCAGAAAGCCTCAGTCA -ACGGAAAGCAGAAAGCCTGATCCA -ACGGAAAGCAGAAAGCCTACGACA -ACGGAAAGCAGAAAGCCTAGCTCA -ACGGAAAGCAGAAAGCCTTCACGT -ACGGAAAGCAGAAAGCCTCGTAGT -ACGGAAAGCAGAAAGCCTGTCAGT -ACGGAAAGCAGAAAGCCTGAAGGT -ACGGAAAGCAGAAAGCCTAACCGT -ACGGAAAGCAGAAAGCCTTTGTGC -ACGGAAAGCAGAAAGCCTCTAAGC -ACGGAAAGCAGAAAGCCTACTAGC -ACGGAAAGCAGAAAGCCTAGATGC -ACGGAAAGCAGAAAGCCTTGAAGG -ACGGAAAGCAGAAAGCCTCAATGG -ACGGAAAGCAGAAAGCCTATGAGG -ACGGAAAGCAGAAAGCCTAATGGG -ACGGAAAGCAGAAAGCCTTCCTGA -ACGGAAAGCAGAAAGCCTTAGCGA -ACGGAAAGCAGAAAGCCTCACAGA -ACGGAAAGCAGAAAGCCTGCAAGA -ACGGAAAGCAGAAAGCCTGGTTGA -ACGGAAAGCAGAAAGCCTTCCGAT -ACGGAAAGCAGAAAGCCTTGGCAT -ACGGAAAGCAGAAAGCCTCGAGAT -ACGGAAAGCAGAAAGCCTTACCAC -ACGGAAAGCAGAAAGCCTCAGAAC -ACGGAAAGCAGAAAGCCTGTCTAC -ACGGAAAGCAGAAAGCCTACGTAC -ACGGAAAGCAGAAAGCCTAGTGAC -ACGGAAAGCAGAAAGCCTCTGTAG -ACGGAAAGCAGAAAGCCTCCTAAG -ACGGAAAGCAGAAAGCCTGTTCAG -ACGGAAAGCAGAAAGCCTGCATAG -ACGGAAAGCAGAAAGCCTGACAAG -ACGGAAAGCAGAAAGCCTAAGCAG -ACGGAAAGCAGAAAGCCTCGTCAA -ACGGAAAGCAGAAAGCCTGCTGAA -ACGGAAAGCAGAAAGCCTAGTACG -ACGGAAAGCAGAAAGCCTATCCGA -ACGGAAAGCAGAAAGCCTATGGGA -ACGGAAAGCAGAAAGCCTGTGCAA -ACGGAAAGCAGAAAGCCTGAGGAA -ACGGAAAGCAGAAAGCCTCAGGTA -ACGGAAAGCAGAAAGCCTGACTCT -ACGGAAAGCAGAAAGCCTAGTCCT -ACGGAAAGCAGAAAGCCTTAAGCC -ACGGAAAGCAGAAAGCCTATAGCC -ACGGAAAGCAGAAAGCCTTAACCG -ACGGAAAGCAGAAAGCCTATGCCA -ACGGAAAGCAGACAGGTTGGAAAC -ACGGAAAGCAGACAGGTTAACACC -ACGGAAAGCAGACAGGTTATCGAG -ACGGAAAGCAGACAGGTTCTCCTT -ACGGAAAGCAGACAGGTTCCTGTT -ACGGAAAGCAGACAGGTTCGGTTT -ACGGAAAGCAGACAGGTTGTGGTT -ACGGAAAGCAGACAGGTTGCCTTT -ACGGAAAGCAGACAGGTTGGTCTT -ACGGAAAGCAGACAGGTTACGCTT -ACGGAAAGCAGACAGGTTAGCGTT -ACGGAAAGCAGACAGGTTTTCGTC -ACGGAAAGCAGACAGGTTTCTCTC -ACGGAAAGCAGACAGGTTTGGATC -ACGGAAAGCAGACAGGTTCACTTC -ACGGAAAGCAGACAGGTTGTACTC -ACGGAAAGCAGACAGGTTGATGTC -ACGGAAAGCAGACAGGTTACAGTC -ACGGAAAGCAGACAGGTTTTGCTG -ACGGAAAGCAGACAGGTTTCCATG -ACGGAAAGCAGACAGGTTTGTGTG -ACGGAAAGCAGACAGGTTCTAGTG -ACGGAAAGCAGACAGGTTCATCTG -ACGGAAAGCAGACAGGTTGAGTTG -ACGGAAAGCAGACAGGTTAGACTG -ACGGAAAGCAGACAGGTTTCGGTA -ACGGAAAGCAGACAGGTTTGCCTA -ACGGAAAGCAGACAGGTTCCACTA -ACGGAAAGCAGACAGGTTGGAGTA -ACGGAAAGCAGACAGGTTTCGTCT -ACGGAAAGCAGACAGGTTTGCACT -ACGGAAAGCAGACAGGTTCTGACT -ACGGAAAGCAGACAGGTTCAACCT -ACGGAAAGCAGACAGGTTGCTACT -ACGGAAAGCAGACAGGTTGGATCT -ACGGAAAGCAGACAGGTTAAGGCT -ACGGAAAGCAGACAGGTTTCAACC -ACGGAAAGCAGACAGGTTTGTTCC -ACGGAAAGCAGACAGGTTATTCCC -ACGGAAAGCAGACAGGTTTTCTCG -ACGGAAAGCAGACAGGTTTAGACG -ACGGAAAGCAGACAGGTTGTAACG -ACGGAAAGCAGACAGGTTACTTCG -ACGGAAAGCAGACAGGTTTACGCA -ACGGAAAGCAGACAGGTTCTTGCA -ACGGAAAGCAGACAGGTTCGAACA -ACGGAAAGCAGACAGGTTCAGTCA -ACGGAAAGCAGACAGGTTGATCCA -ACGGAAAGCAGACAGGTTACGACA -ACGGAAAGCAGACAGGTTAGCTCA -ACGGAAAGCAGACAGGTTTCACGT -ACGGAAAGCAGACAGGTTCGTAGT -ACGGAAAGCAGACAGGTTGTCAGT -ACGGAAAGCAGACAGGTTGAAGGT -ACGGAAAGCAGACAGGTTAACCGT -ACGGAAAGCAGACAGGTTTTGTGC -ACGGAAAGCAGACAGGTTCTAAGC -ACGGAAAGCAGACAGGTTACTAGC -ACGGAAAGCAGACAGGTTAGATGC -ACGGAAAGCAGACAGGTTTGAAGG -ACGGAAAGCAGACAGGTTCAATGG -ACGGAAAGCAGACAGGTTATGAGG -ACGGAAAGCAGACAGGTTAATGGG -ACGGAAAGCAGACAGGTTTCCTGA -ACGGAAAGCAGACAGGTTTAGCGA -ACGGAAAGCAGACAGGTTCACAGA -ACGGAAAGCAGACAGGTTGCAAGA -ACGGAAAGCAGACAGGTTGGTTGA -ACGGAAAGCAGACAGGTTTCCGAT -ACGGAAAGCAGACAGGTTTGGCAT -ACGGAAAGCAGACAGGTTCGAGAT -ACGGAAAGCAGACAGGTTTACCAC -ACGGAAAGCAGACAGGTTCAGAAC -ACGGAAAGCAGACAGGTTGTCTAC -ACGGAAAGCAGACAGGTTACGTAC -ACGGAAAGCAGACAGGTTAGTGAC -ACGGAAAGCAGACAGGTTCTGTAG -ACGGAAAGCAGACAGGTTCCTAAG -ACGGAAAGCAGACAGGTTGTTCAG -ACGGAAAGCAGACAGGTTGCATAG -ACGGAAAGCAGACAGGTTGACAAG -ACGGAAAGCAGACAGGTTAAGCAG -ACGGAAAGCAGACAGGTTCGTCAA -ACGGAAAGCAGACAGGTTGCTGAA -ACGGAAAGCAGACAGGTTAGTACG -ACGGAAAGCAGACAGGTTATCCGA -ACGGAAAGCAGACAGGTTATGGGA -ACGGAAAGCAGACAGGTTGTGCAA -ACGGAAAGCAGACAGGTTGAGGAA -ACGGAAAGCAGACAGGTTCAGGTA -ACGGAAAGCAGACAGGTTGACTCT -ACGGAAAGCAGACAGGTTAGTCCT -ACGGAAAGCAGACAGGTTTAAGCC -ACGGAAAGCAGACAGGTTATAGCC -ACGGAAAGCAGACAGGTTTAACCG -ACGGAAAGCAGACAGGTTATGCCA -ACGGAAAGCAGATAGGCAGGAAAC -ACGGAAAGCAGATAGGCAAACACC -ACGGAAAGCAGATAGGCAATCGAG -ACGGAAAGCAGATAGGCACTCCTT -ACGGAAAGCAGATAGGCACCTGTT -ACGGAAAGCAGATAGGCACGGTTT -ACGGAAAGCAGATAGGCAGTGGTT -ACGGAAAGCAGATAGGCAGCCTTT -ACGGAAAGCAGATAGGCAGGTCTT -ACGGAAAGCAGATAGGCAACGCTT -ACGGAAAGCAGATAGGCAAGCGTT -ACGGAAAGCAGATAGGCATTCGTC -ACGGAAAGCAGATAGGCATCTCTC -ACGGAAAGCAGATAGGCATGGATC -ACGGAAAGCAGATAGGCACACTTC -ACGGAAAGCAGATAGGCAGTACTC -ACGGAAAGCAGATAGGCAGATGTC -ACGGAAAGCAGATAGGCAACAGTC -ACGGAAAGCAGATAGGCATTGCTG -ACGGAAAGCAGATAGGCATCCATG -ACGGAAAGCAGATAGGCATGTGTG -ACGGAAAGCAGATAGGCACTAGTG -ACGGAAAGCAGATAGGCACATCTG -ACGGAAAGCAGATAGGCAGAGTTG -ACGGAAAGCAGATAGGCAAGACTG -ACGGAAAGCAGATAGGCATCGGTA -ACGGAAAGCAGATAGGCATGCCTA -ACGGAAAGCAGATAGGCACCACTA -ACGGAAAGCAGATAGGCAGGAGTA -ACGGAAAGCAGATAGGCATCGTCT -ACGGAAAGCAGATAGGCATGCACT -ACGGAAAGCAGATAGGCACTGACT -ACGGAAAGCAGATAGGCACAACCT -ACGGAAAGCAGATAGGCAGCTACT -ACGGAAAGCAGATAGGCAGGATCT -ACGGAAAGCAGATAGGCAAAGGCT -ACGGAAAGCAGATAGGCATCAACC -ACGGAAAGCAGATAGGCATGTTCC -ACGGAAAGCAGATAGGCAATTCCC -ACGGAAAGCAGATAGGCATTCTCG -ACGGAAAGCAGATAGGCATAGACG -ACGGAAAGCAGATAGGCAGTAACG -ACGGAAAGCAGATAGGCAACTTCG -ACGGAAAGCAGATAGGCATACGCA -ACGGAAAGCAGATAGGCACTTGCA -ACGGAAAGCAGATAGGCACGAACA -ACGGAAAGCAGATAGGCACAGTCA -ACGGAAAGCAGATAGGCAGATCCA -ACGGAAAGCAGATAGGCAACGACA -ACGGAAAGCAGATAGGCAAGCTCA -ACGGAAAGCAGATAGGCATCACGT -ACGGAAAGCAGATAGGCACGTAGT -ACGGAAAGCAGATAGGCAGTCAGT -ACGGAAAGCAGATAGGCAGAAGGT -ACGGAAAGCAGATAGGCAAACCGT -ACGGAAAGCAGATAGGCATTGTGC -ACGGAAAGCAGATAGGCACTAAGC -ACGGAAAGCAGATAGGCAACTAGC -ACGGAAAGCAGATAGGCAAGATGC -ACGGAAAGCAGATAGGCATGAAGG -ACGGAAAGCAGATAGGCACAATGG -ACGGAAAGCAGATAGGCAATGAGG -ACGGAAAGCAGATAGGCAAATGGG -ACGGAAAGCAGATAGGCATCCTGA -ACGGAAAGCAGATAGGCATAGCGA -ACGGAAAGCAGATAGGCACACAGA -ACGGAAAGCAGATAGGCAGCAAGA -ACGGAAAGCAGATAGGCAGGTTGA -ACGGAAAGCAGATAGGCATCCGAT -ACGGAAAGCAGATAGGCATGGCAT -ACGGAAAGCAGATAGGCACGAGAT -ACGGAAAGCAGATAGGCATACCAC -ACGGAAAGCAGATAGGCACAGAAC -ACGGAAAGCAGATAGGCAGTCTAC -ACGGAAAGCAGATAGGCAACGTAC -ACGGAAAGCAGATAGGCAAGTGAC -ACGGAAAGCAGATAGGCACTGTAG -ACGGAAAGCAGATAGGCACCTAAG -ACGGAAAGCAGATAGGCAGTTCAG -ACGGAAAGCAGATAGGCAGCATAG -ACGGAAAGCAGATAGGCAGACAAG -ACGGAAAGCAGATAGGCAAAGCAG -ACGGAAAGCAGATAGGCACGTCAA -ACGGAAAGCAGATAGGCAGCTGAA -ACGGAAAGCAGATAGGCAAGTACG -ACGGAAAGCAGATAGGCAATCCGA -ACGGAAAGCAGATAGGCAATGGGA -ACGGAAAGCAGATAGGCAGTGCAA -ACGGAAAGCAGATAGGCAGAGGAA -ACGGAAAGCAGATAGGCACAGGTA -ACGGAAAGCAGATAGGCAGACTCT -ACGGAAAGCAGATAGGCAAGTCCT -ACGGAAAGCAGATAGGCATAAGCC -ACGGAAAGCAGATAGGCAATAGCC -ACGGAAAGCAGATAGGCATAACCG -ACGGAAAGCAGATAGGCAATGCCA -ACGGAAAGCAGAAAGGACGGAAAC -ACGGAAAGCAGAAAGGACAACACC -ACGGAAAGCAGAAAGGACATCGAG -ACGGAAAGCAGAAAGGACCTCCTT -ACGGAAAGCAGAAAGGACCCTGTT -ACGGAAAGCAGAAAGGACCGGTTT -ACGGAAAGCAGAAAGGACGTGGTT -ACGGAAAGCAGAAAGGACGCCTTT -ACGGAAAGCAGAAAGGACGGTCTT -ACGGAAAGCAGAAAGGACACGCTT -ACGGAAAGCAGAAAGGACAGCGTT -ACGGAAAGCAGAAAGGACTTCGTC -ACGGAAAGCAGAAAGGACTCTCTC -ACGGAAAGCAGAAAGGACTGGATC -ACGGAAAGCAGAAAGGACCACTTC -ACGGAAAGCAGAAAGGACGTACTC -ACGGAAAGCAGAAAGGACGATGTC -ACGGAAAGCAGAAAGGACACAGTC -ACGGAAAGCAGAAAGGACTTGCTG -ACGGAAAGCAGAAAGGACTCCATG -ACGGAAAGCAGAAAGGACTGTGTG -ACGGAAAGCAGAAAGGACCTAGTG -ACGGAAAGCAGAAAGGACCATCTG -ACGGAAAGCAGAAAGGACGAGTTG -ACGGAAAGCAGAAAGGACAGACTG -ACGGAAAGCAGAAAGGACTCGGTA -ACGGAAAGCAGAAAGGACTGCCTA -ACGGAAAGCAGAAAGGACCCACTA -ACGGAAAGCAGAAAGGACGGAGTA -ACGGAAAGCAGAAAGGACTCGTCT -ACGGAAAGCAGAAAGGACTGCACT -ACGGAAAGCAGAAAGGACCTGACT -ACGGAAAGCAGAAAGGACCAACCT -ACGGAAAGCAGAAAGGACGCTACT -ACGGAAAGCAGAAAGGACGGATCT -ACGGAAAGCAGAAAGGACAAGGCT -ACGGAAAGCAGAAAGGACTCAACC -ACGGAAAGCAGAAAGGACTGTTCC -ACGGAAAGCAGAAAGGACATTCCC -ACGGAAAGCAGAAAGGACTTCTCG -ACGGAAAGCAGAAAGGACTAGACG -ACGGAAAGCAGAAAGGACGTAACG -ACGGAAAGCAGAAAGGACACTTCG -ACGGAAAGCAGAAAGGACTACGCA -ACGGAAAGCAGAAAGGACCTTGCA -ACGGAAAGCAGAAAGGACCGAACA -ACGGAAAGCAGAAAGGACCAGTCA -ACGGAAAGCAGAAAGGACGATCCA -ACGGAAAGCAGAAAGGACACGACA -ACGGAAAGCAGAAAGGACAGCTCA -ACGGAAAGCAGAAAGGACTCACGT -ACGGAAAGCAGAAAGGACCGTAGT -ACGGAAAGCAGAAAGGACGTCAGT -ACGGAAAGCAGAAAGGACGAAGGT -ACGGAAAGCAGAAAGGACAACCGT -ACGGAAAGCAGAAAGGACTTGTGC -ACGGAAAGCAGAAAGGACCTAAGC -ACGGAAAGCAGAAAGGACACTAGC -ACGGAAAGCAGAAAGGACAGATGC -ACGGAAAGCAGAAAGGACTGAAGG -ACGGAAAGCAGAAAGGACCAATGG -ACGGAAAGCAGAAAGGACATGAGG -ACGGAAAGCAGAAAGGACAATGGG -ACGGAAAGCAGAAAGGACTCCTGA -ACGGAAAGCAGAAAGGACTAGCGA -ACGGAAAGCAGAAAGGACCACAGA -ACGGAAAGCAGAAAGGACGCAAGA -ACGGAAAGCAGAAAGGACGGTTGA -ACGGAAAGCAGAAAGGACTCCGAT -ACGGAAAGCAGAAAGGACTGGCAT -ACGGAAAGCAGAAAGGACCGAGAT -ACGGAAAGCAGAAAGGACTACCAC -ACGGAAAGCAGAAAGGACCAGAAC -ACGGAAAGCAGAAAGGACGTCTAC -ACGGAAAGCAGAAAGGACACGTAC -ACGGAAAGCAGAAAGGACAGTGAC -ACGGAAAGCAGAAAGGACCTGTAG -ACGGAAAGCAGAAAGGACCCTAAG -ACGGAAAGCAGAAAGGACGTTCAG -ACGGAAAGCAGAAAGGACGCATAG -ACGGAAAGCAGAAAGGACGACAAG -ACGGAAAGCAGAAAGGACAAGCAG -ACGGAAAGCAGAAAGGACCGTCAA -ACGGAAAGCAGAAAGGACGCTGAA -ACGGAAAGCAGAAAGGACAGTACG -ACGGAAAGCAGAAAGGACATCCGA -ACGGAAAGCAGAAAGGACATGGGA -ACGGAAAGCAGAAAGGACGTGCAA -ACGGAAAGCAGAAAGGACGAGGAA -ACGGAAAGCAGAAAGGACCAGGTA -ACGGAAAGCAGAAAGGACGACTCT -ACGGAAAGCAGAAAGGACAGTCCT -ACGGAAAGCAGAAAGGACTAAGCC -ACGGAAAGCAGAAAGGACATAGCC -ACGGAAAGCAGAAAGGACTAACCG -ACGGAAAGCAGAAAGGACATGCCA -ACGGAAAGCAGACAGAAGGGAAAC -ACGGAAAGCAGACAGAAGAACACC -ACGGAAAGCAGACAGAAGATCGAG -ACGGAAAGCAGACAGAAGCTCCTT -ACGGAAAGCAGACAGAAGCCTGTT -ACGGAAAGCAGACAGAAGCGGTTT -ACGGAAAGCAGACAGAAGGTGGTT -ACGGAAAGCAGACAGAAGGCCTTT -ACGGAAAGCAGACAGAAGGGTCTT -ACGGAAAGCAGACAGAAGACGCTT -ACGGAAAGCAGACAGAAGAGCGTT -ACGGAAAGCAGACAGAAGTTCGTC -ACGGAAAGCAGACAGAAGTCTCTC -ACGGAAAGCAGACAGAAGTGGATC -ACGGAAAGCAGACAGAAGCACTTC -ACGGAAAGCAGACAGAAGGTACTC -ACGGAAAGCAGACAGAAGGATGTC -ACGGAAAGCAGACAGAAGACAGTC -ACGGAAAGCAGACAGAAGTTGCTG -ACGGAAAGCAGACAGAAGTCCATG -ACGGAAAGCAGACAGAAGTGTGTG -ACGGAAAGCAGACAGAAGCTAGTG -ACGGAAAGCAGACAGAAGCATCTG -ACGGAAAGCAGACAGAAGGAGTTG -ACGGAAAGCAGACAGAAGAGACTG -ACGGAAAGCAGACAGAAGTCGGTA -ACGGAAAGCAGACAGAAGTGCCTA -ACGGAAAGCAGACAGAAGCCACTA -ACGGAAAGCAGACAGAAGGGAGTA -ACGGAAAGCAGACAGAAGTCGTCT -ACGGAAAGCAGACAGAAGTGCACT -ACGGAAAGCAGACAGAAGCTGACT -ACGGAAAGCAGACAGAAGCAACCT -ACGGAAAGCAGACAGAAGGCTACT -ACGGAAAGCAGACAGAAGGGATCT -ACGGAAAGCAGACAGAAGAAGGCT -ACGGAAAGCAGACAGAAGTCAACC -ACGGAAAGCAGACAGAAGTGTTCC -ACGGAAAGCAGACAGAAGATTCCC -ACGGAAAGCAGACAGAAGTTCTCG -ACGGAAAGCAGACAGAAGTAGACG -ACGGAAAGCAGACAGAAGGTAACG -ACGGAAAGCAGACAGAAGACTTCG -ACGGAAAGCAGACAGAAGTACGCA -ACGGAAAGCAGACAGAAGCTTGCA -ACGGAAAGCAGACAGAAGCGAACA -ACGGAAAGCAGACAGAAGCAGTCA -ACGGAAAGCAGACAGAAGGATCCA -ACGGAAAGCAGACAGAAGACGACA -ACGGAAAGCAGACAGAAGAGCTCA -ACGGAAAGCAGACAGAAGTCACGT -ACGGAAAGCAGACAGAAGCGTAGT -ACGGAAAGCAGACAGAAGGTCAGT -ACGGAAAGCAGACAGAAGGAAGGT -ACGGAAAGCAGACAGAAGAACCGT -ACGGAAAGCAGACAGAAGTTGTGC -ACGGAAAGCAGACAGAAGCTAAGC -ACGGAAAGCAGACAGAAGACTAGC -ACGGAAAGCAGACAGAAGAGATGC -ACGGAAAGCAGACAGAAGTGAAGG -ACGGAAAGCAGACAGAAGCAATGG -ACGGAAAGCAGACAGAAGATGAGG -ACGGAAAGCAGACAGAAGAATGGG -ACGGAAAGCAGACAGAAGTCCTGA -ACGGAAAGCAGACAGAAGTAGCGA -ACGGAAAGCAGACAGAAGCACAGA -ACGGAAAGCAGACAGAAGGCAAGA -ACGGAAAGCAGACAGAAGGGTTGA -ACGGAAAGCAGACAGAAGTCCGAT -ACGGAAAGCAGACAGAAGTGGCAT -ACGGAAAGCAGACAGAAGCGAGAT -ACGGAAAGCAGACAGAAGTACCAC -ACGGAAAGCAGACAGAAGCAGAAC -ACGGAAAGCAGACAGAAGGTCTAC -ACGGAAAGCAGACAGAAGACGTAC -ACGGAAAGCAGACAGAAGAGTGAC -ACGGAAAGCAGACAGAAGCTGTAG -ACGGAAAGCAGACAGAAGCCTAAG -ACGGAAAGCAGACAGAAGGTTCAG -ACGGAAAGCAGACAGAAGGCATAG -ACGGAAAGCAGACAGAAGGACAAG -ACGGAAAGCAGACAGAAGAAGCAG -ACGGAAAGCAGACAGAAGCGTCAA -ACGGAAAGCAGACAGAAGGCTGAA -ACGGAAAGCAGACAGAAGAGTACG -ACGGAAAGCAGACAGAAGATCCGA -ACGGAAAGCAGACAGAAGATGGGA -ACGGAAAGCAGACAGAAGGTGCAA -ACGGAAAGCAGACAGAAGGAGGAA -ACGGAAAGCAGACAGAAGCAGGTA -ACGGAAAGCAGACAGAAGGACTCT -ACGGAAAGCAGACAGAAGAGTCCT -ACGGAAAGCAGACAGAAGTAAGCC -ACGGAAAGCAGACAGAAGATAGCC -ACGGAAAGCAGACAGAAGTAACCG -ACGGAAAGCAGACAGAAGATGCCA -ACGGAAAGCAGACAACGTGGAAAC -ACGGAAAGCAGACAACGTAACACC -ACGGAAAGCAGACAACGTATCGAG -ACGGAAAGCAGACAACGTCTCCTT -ACGGAAAGCAGACAACGTCCTGTT -ACGGAAAGCAGACAACGTCGGTTT -ACGGAAAGCAGACAACGTGTGGTT -ACGGAAAGCAGACAACGTGCCTTT -ACGGAAAGCAGACAACGTGGTCTT -ACGGAAAGCAGACAACGTACGCTT -ACGGAAAGCAGACAACGTAGCGTT -ACGGAAAGCAGACAACGTTTCGTC -ACGGAAAGCAGACAACGTTCTCTC -ACGGAAAGCAGACAACGTTGGATC -ACGGAAAGCAGACAACGTCACTTC -ACGGAAAGCAGACAACGTGTACTC -ACGGAAAGCAGACAACGTGATGTC -ACGGAAAGCAGACAACGTACAGTC -ACGGAAAGCAGACAACGTTTGCTG -ACGGAAAGCAGACAACGTTCCATG -ACGGAAAGCAGACAACGTTGTGTG -ACGGAAAGCAGACAACGTCTAGTG -ACGGAAAGCAGACAACGTCATCTG -ACGGAAAGCAGACAACGTGAGTTG -ACGGAAAGCAGACAACGTAGACTG -ACGGAAAGCAGACAACGTTCGGTA -ACGGAAAGCAGACAACGTTGCCTA -ACGGAAAGCAGACAACGTCCACTA -ACGGAAAGCAGACAACGTGGAGTA -ACGGAAAGCAGACAACGTTCGTCT -ACGGAAAGCAGACAACGTTGCACT -ACGGAAAGCAGACAACGTCTGACT -ACGGAAAGCAGACAACGTCAACCT -ACGGAAAGCAGACAACGTGCTACT -ACGGAAAGCAGACAACGTGGATCT -ACGGAAAGCAGACAACGTAAGGCT -ACGGAAAGCAGACAACGTTCAACC -ACGGAAAGCAGACAACGTTGTTCC -ACGGAAAGCAGACAACGTATTCCC -ACGGAAAGCAGACAACGTTTCTCG -ACGGAAAGCAGACAACGTTAGACG -ACGGAAAGCAGACAACGTGTAACG -ACGGAAAGCAGACAACGTACTTCG -ACGGAAAGCAGACAACGTTACGCA -ACGGAAAGCAGACAACGTCTTGCA -ACGGAAAGCAGACAACGTCGAACA -ACGGAAAGCAGACAACGTCAGTCA -ACGGAAAGCAGACAACGTGATCCA -ACGGAAAGCAGACAACGTACGACA -ACGGAAAGCAGACAACGTAGCTCA -ACGGAAAGCAGACAACGTTCACGT -ACGGAAAGCAGACAACGTCGTAGT -ACGGAAAGCAGACAACGTGTCAGT -ACGGAAAGCAGACAACGTGAAGGT -ACGGAAAGCAGACAACGTAACCGT -ACGGAAAGCAGACAACGTTTGTGC -ACGGAAAGCAGACAACGTCTAAGC -ACGGAAAGCAGACAACGTACTAGC -ACGGAAAGCAGACAACGTAGATGC -ACGGAAAGCAGACAACGTTGAAGG -ACGGAAAGCAGACAACGTCAATGG -ACGGAAAGCAGACAACGTATGAGG -ACGGAAAGCAGACAACGTAATGGG -ACGGAAAGCAGACAACGTTCCTGA -ACGGAAAGCAGACAACGTTAGCGA -ACGGAAAGCAGACAACGTCACAGA -ACGGAAAGCAGACAACGTGCAAGA -ACGGAAAGCAGACAACGTGGTTGA -ACGGAAAGCAGACAACGTTCCGAT -ACGGAAAGCAGACAACGTTGGCAT -ACGGAAAGCAGACAACGTCGAGAT -ACGGAAAGCAGACAACGTTACCAC -ACGGAAAGCAGACAACGTCAGAAC -ACGGAAAGCAGACAACGTGTCTAC -ACGGAAAGCAGACAACGTACGTAC -ACGGAAAGCAGACAACGTAGTGAC -ACGGAAAGCAGACAACGTCTGTAG -ACGGAAAGCAGACAACGTCCTAAG -ACGGAAAGCAGACAACGTGTTCAG -ACGGAAAGCAGACAACGTGCATAG -ACGGAAAGCAGACAACGTGACAAG -ACGGAAAGCAGACAACGTAAGCAG -ACGGAAAGCAGACAACGTCGTCAA -ACGGAAAGCAGACAACGTGCTGAA -ACGGAAAGCAGACAACGTAGTACG -ACGGAAAGCAGACAACGTATCCGA -ACGGAAAGCAGACAACGTATGGGA -ACGGAAAGCAGACAACGTGTGCAA -ACGGAAAGCAGACAACGTGAGGAA -ACGGAAAGCAGACAACGTCAGGTA -ACGGAAAGCAGACAACGTGACTCT -ACGGAAAGCAGACAACGTAGTCCT -ACGGAAAGCAGACAACGTTAAGCC -ACGGAAAGCAGACAACGTATAGCC -ACGGAAAGCAGACAACGTTAACCG -ACGGAAAGCAGACAACGTATGCCA -ACGGAAAGCAGAGAAGCTGGAAAC -ACGGAAAGCAGAGAAGCTAACACC -ACGGAAAGCAGAGAAGCTATCGAG -ACGGAAAGCAGAGAAGCTCTCCTT -ACGGAAAGCAGAGAAGCTCCTGTT -ACGGAAAGCAGAGAAGCTCGGTTT -ACGGAAAGCAGAGAAGCTGTGGTT -ACGGAAAGCAGAGAAGCTGCCTTT -ACGGAAAGCAGAGAAGCTGGTCTT -ACGGAAAGCAGAGAAGCTACGCTT -ACGGAAAGCAGAGAAGCTAGCGTT -ACGGAAAGCAGAGAAGCTTTCGTC -ACGGAAAGCAGAGAAGCTTCTCTC -ACGGAAAGCAGAGAAGCTTGGATC -ACGGAAAGCAGAGAAGCTCACTTC -ACGGAAAGCAGAGAAGCTGTACTC -ACGGAAAGCAGAGAAGCTGATGTC -ACGGAAAGCAGAGAAGCTACAGTC -ACGGAAAGCAGAGAAGCTTTGCTG -ACGGAAAGCAGAGAAGCTTCCATG -ACGGAAAGCAGAGAAGCTTGTGTG -ACGGAAAGCAGAGAAGCTCTAGTG -ACGGAAAGCAGAGAAGCTCATCTG -ACGGAAAGCAGAGAAGCTGAGTTG -ACGGAAAGCAGAGAAGCTAGACTG -ACGGAAAGCAGAGAAGCTTCGGTA -ACGGAAAGCAGAGAAGCTTGCCTA -ACGGAAAGCAGAGAAGCTCCACTA -ACGGAAAGCAGAGAAGCTGGAGTA -ACGGAAAGCAGAGAAGCTTCGTCT -ACGGAAAGCAGAGAAGCTTGCACT -ACGGAAAGCAGAGAAGCTCTGACT -ACGGAAAGCAGAGAAGCTCAACCT -ACGGAAAGCAGAGAAGCTGCTACT -ACGGAAAGCAGAGAAGCTGGATCT -ACGGAAAGCAGAGAAGCTAAGGCT -ACGGAAAGCAGAGAAGCTTCAACC -ACGGAAAGCAGAGAAGCTTGTTCC -ACGGAAAGCAGAGAAGCTATTCCC -ACGGAAAGCAGAGAAGCTTTCTCG -ACGGAAAGCAGAGAAGCTTAGACG -ACGGAAAGCAGAGAAGCTGTAACG -ACGGAAAGCAGAGAAGCTACTTCG -ACGGAAAGCAGAGAAGCTTACGCA -ACGGAAAGCAGAGAAGCTCTTGCA -ACGGAAAGCAGAGAAGCTCGAACA -ACGGAAAGCAGAGAAGCTCAGTCA -ACGGAAAGCAGAGAAGCTGATCCA -ACGGAAAGCAGAGAAGCTACGACA -ACGGAAAGCAGAGAAGCTAGCTCA -ACGGAAAGCAGAGAAGCTTCACGT -ACGGAAAGCAGAGAAGCTCGTAGT -ACGGAAAGCAGAGAAGCTGTCAGT -ACGGAAAGCAGAGAAGCTGAAGGT -ACGGAAAGCAGAGAAGCTAACCGT -ACGGAAAGCAGAGAAGCTTTGTGC -ACGGAAAGCAGAGAAGCTCTAAGC -ACGGAAAGCAGAGAAGCTACTAGC -ACGGAAAGCAGAGAAGCTAGATGC -ACGGAAAGCAGAGAAGCTTGAAGG -ACGGAAAGCAGAGAAGCTCAATGG -ACGGAAAGCAGAGAAGCTATGAGG -ACGGAAAGCAGAGAAGCTAATGGG -ACGGAAAGCAGAGAAGCTTCCTGA -ACGGAAAGCAGAGAAGCTTAGCGA -ACGGAAAGCAGAGAAGCTCACAGA -ACGGAAAGCAGAGAAGCTGCAAGA -ACGGAAAGCAGAGAAGCTGGTTGA -ACGGAAAGCAGAGAAGCTTCCGAT -ACGGAAAGCAGAGAAGCTTGGCAT -ACGGAAAGCAGAGAAGCTCGAGAT -ACGGAAAGCAGAGAAGCTTACCAC -ACGGAAAGCAGAGAAGCTCAGAAC -ACGGAAAGCAGAGAAGCTGTCTAC -ACGGAAAGCAGAGAAGCTACGTAC -ACGGAAAGCAGAGAAGCTAGTGAC -ACGGAAAGCAGAGAAGCTCTGTAG -ACGGAAAGCAGAGAAGCTCCTAAG -ACGGAAAGCAGAGAAGCTGTTCAG -ACGGAAAGCAGAGAAGCTGCATAG -ACGGAAAGCAGAGAAGCTGACAAG -ACGGAAAGCAGAGAAGCTAAGCAG -ACGGAAAGCAGAGAAGCTCGTCAA -ACGGAAAGCAGAGAAGCTGCTGAA -ACGGAAAGCAGAGAAGCTAGTACG -ACGGAAAGCAGAGAAGCTATCCGA -ACGGAAAGCAGAGAAGCTATGGGA -ACGGAAAGCAGAGAAGCTGTGCAA -ACGGAAAGCAGAGAAGCTGAGGAA -ACGGAAAGCAGAGAAGCTCAGGTA -ACGGAAAGCAGAGAAGCTGACTCT -ACGGAAAGCAGAGAAGCTAGTCCT -ACGGAAAGCAGAGAAGCTTAAGCC -ACGGAAAGCAGAGAAGCTATAGCC -ACGGAAAGCAGAGAAGCTTAACCG -ACGGAAAGCAGAGAAGCTATGCCA -ACGGAAAGCAGAACGAGTGGAAAC -ACGGAAAGCAGAACGAGTAACACC -ACGGAAAGCAGAACGAGTATCGAG -ACGGAAAGCAGAACGAGTCTCCTT -ACGGAAAGCAGAACGAGTCCTGTT -ACGGAAAGCAGAACGAGTCGGTTT -ACGGAAAGCAGAACGAGTGTGGTT -ACGGAAAGCAGAACGAGTGCCTTT -ACGGAAAGCAGAACGAGTGGTCTT -ACGGAAAGCAGAACGAGTACGCTT -ACGGAAAGCAGAACGAGTAGCGTT -ACGGAAAGCAGAACGAGTTTCGTC -ACGGAAAGCAGAACGAGTTCTCTC -ACGGAAAGCAGAACGAGTTGGATC -ACGGAAAGCAGAACGAGTCACTTC -ACGGAAAGCAGAACGAGTGTACTC -ACGGAAAGCAGAACGAGTGATGTC -ACGGAAAGCAGAACGAGTACAGTC -ACGGAAAGCAGAACGAGTTTGCTG -ACGGAAAGCAGAACGAGTTCCATG -ACGGAAAGCAGAACGAGTTGTGTG -ACGGAAAGCAGAACGAGTCTAGTG -ACGGAAAGCAGAACGAGTCATCTG -ACGGAAAGCAGAACGAGTGAGTTG -ACGGAAAGCAGAACGAGTAGACTG -ACGGAAAGCAGAACGAGTTCGGTA -ACGGAAAGCAGAACGAGTTGCCTA -ACGGAAAGCAGAACGAGTCCACTA -ACGGAAAGCAGAACGAGTGGAGTA -ACGGAAAGCAGAACGAGTTCGTCT -ACGGAAAGCAGAACGAGTTGCACT -ACGGAAAGCAGAACGAGTCTGACT -ACGGAAAGCAGAACGAGTCAACCT -ACGGAAAGCAGAACGAGTGCTACT -ACGGAAAGCAGAACGAGTGGATCT -ACGGAAAGCAGAACGAGTAAGGCT -ACGGAAAGCAGAACGAGTTCAACC -ACGGAAAGCAGAACGAGTTGTTCC -ACGGAAAGCAGAACGAGTATTCCC -ACGGAAAGCAGAACGAGTTTCTCG -ACGGAAAGCAGAACGAGTTAGACG -ACGGAAAGCAGAACGAGTGTAACG -ACGGAAAGCAGAACGAGTACTTCG -ACGGAAAGCAGAACGAGTTACGCA -ACGGAAAGCAGAACGAGTCTTGCA -ACGGAAAGCAGAACGAGTCGAACA -ACGGAAAGCAGAACGAGTCAGTCA -ACGGAAAGCAGAACGAGTGATCCA -ACGGAAAGCAGAACGAGTACGACA -ACGGAAAGCAGAACGAGTAGCTCA -ACGGAAAGCAGAACGAGTTCACGT -ACGGAAAGCAGAACGAGTCGTAGT -ACGGAAAGCAGAACGAGTGTCAGT -ACGGAAAGCAGAACGAGTGAAGGT -ACGGAAAGCAGAACGAGTAACCGT -ACGGAAAGCAGAACGAGTTTGTGC -ACGGAAAGCAGAACGAGTCTAAGC -ACGGAAAGCAGAACGAGTACTAGC -ACGGAAAGCAGAACGAGTAGATGC -ACGGAAAGCAGAACGAGTTGAAGG -ACGGAAAGCAGAACGAGTCAATGG -ACGGAAAGCAGAACGAGTATGAGG -ACGGAAAGCAGAACGAGTAATGGG -ACGGAAAGCAGAACGAGTTCCTGA -ACGGAAAGCAGAACGAGTTAGCGA -ACGGAAAGCAGAACGAGTCACAGA -ACGGAAAGCAGAACGAGTGCAAGA -ACGGAAAGCAGAACGAGTGGTTGA -ACGGAAAGCAGAACGAGTTCCGAT -ACGGAAAGCAGAACGAGTTGGCAT -ACGGAAAGCAGAACGAGTCGAGAT -ACGGAAAGCAGAACGAGTTACCAC -ACGGAAAGCAGAACGAGTCAGAAC -ACGGAAAGCAGAACGAGTGTCTAC -ACGGAAAGCAGAACGAGTACGTAC -ACGGAAAGCAGAACGAGTAGTGAC -ACGGAAAGCAGAACGAGTCTGTAG -ACGGAAAGCAGAACGAGTCCTAAG -ACGGAAAGCAGAACGAGTGTTCAG -ACGGAAAGCAGAACGAGTGCATAG -ACGGAAAGCAGAACGAGTGACAAG -ACGGAAAGCAGAACGAGTAAGCAG -ACGGAAAGCAGAACGAGTCGTCAA -ACGGAAAGCAGAACGAGTGCTGAA -ACGGAAAGCAGAACGAGTAGTACG -ACGGAAAGCAGAACGAGTATCCGA -ACGGAAAGCAGAACGAGTATGGGA -ACGGAAAGCAGAACGAGTGTGCAA -ACGGAAAGCAGAACGAGTGAGGAA -ACGGAAAGCAGAACGAGTCAGGTA -ACGGAAAGCAGAACGAGTGACTCT -ACGGAAAGCAGAACGAGTAGTCCT -ACGGAAAGCAGAACGAGTTAAGCC -ACGGAAAGCAGAACGAGTATAGCC -ACGGAAAGCAGAACGAGTTAACCG -ACGGAAAGCAGAACGAGTATGCCA -ACGGAAAGCAGACGAATCGGAAAC -ACGGAAAGCAGACGAATCAACACC -ACGGAAAGCAGACGAATCATCGAG -ACGGAAAGCAGACGAATCCTCCTT -ACGGAAAGCAGACGAATCCCTGTT -ACGGAAAGCAGACGAATCCGGTTT -ACGGAAAGCAGACGAATCGTGGTT -ACGGAAAGCAGACGAATCGCCTTT -ACGGAAAGCAGACGAATCGGTCTT -ACGGAAAGCAGACGAATCACGCTT -ACGGAAAGCAGACGAATCAGCGTT -ACGGAAAGCAGACGAATCTTCGTC -ACGGAAAGCAGACGAATCTCTCTC -ACGGAAAGCAGACGAATCTGGATC -ACGGAAAGCAGACGAATCCACTTC -ACGGAAAGCAGACGAATCGTACTC -ACGGAAAGCAGACGAATCGATGTC -ACGGAAAGCAGACGAATCACAGTC -ACGGAAAGCAGACGAATCTTGCTG -ACGGAAAGCAGACGAATCTCCATG -ACGGAAAGCAGACGAATCTGTGTG -ACGGAAAGCAGACGAATCCTAGTG -ACGGAAAGCAGACGAATCCATCTG -ACGGAAAGCAGACGAATCGAGTTG -ACGGAAAGCAGACGAATCAGACTG -ACGGAAAGCAGACGAATCTCGGTA -ACGGAAAGCAGACGAATCTGCCTA -ACGGAAAGCAGACGAATCCCACTA -ACGGAAAGCAGACGAATCGGAGTA -ACGGAAAGCAGACGAATCTCGTCT -ACGGAAAGCAGACGAATCTGCACT -ACGGAAAGCAGACGAATCCTGACT -ACGGAAAGCAGACGAATCCAACCT -ACGGAAAGCAGACGAATCGCTACT -ACGGAAAGCAGACGAATCGGATCT -ACGGAAAGCAGACGAATCAAGGCT -ACGGAAAGCAGACGAATCTCAACC -ACGGAAAGCAGACGAATCTGTTCC -ACGGAAAGCAGACGAATCATTCCC -ACGGAAAGCAGACGAATCTTCTCG -ACGGAAAGCAGACGAATCTAGACG -ACGGAAAGCAGACGAATCGTAACG -ACGGAAAGCAGACGAATCACTTCG -ACGGAAAGCAGACGAATCTACGCA -ACGGAAAGCAGACGAATCCTTGCA -ACGGAAAGCAGACGAATCCGAACA -ACGGAAAGCAGACGAATCCAGTCA -ACGGAAAGCAGACGAATCGATCCA -ACGGAAAGCAGACGAATCACGACA -ACGGAAAGCAGACGAATCAGCTCA -ACGGAAAGCAGACGAATCTCACGT -ACGGAAAGCAGACGAATCCGTAGT -ACGGAAAGCAGACGAATCGTCAGT -ACGGAAAGCAGACGAATCGAAGGT -ACGGAAAGCAGACGAATCAACCGT -ACGGAAAGCAGACGAATCTTGTGC -ACGGAAAGCAGACGAATCCTAAGC -ACGGAAAGCAGACGAATCACTAGC -ACGGAAAGCAGACGAATCAGATGC -ACGGAAAGCAGACGAATCTGAAGG -ACGGAAAGCAGACGAATCCAATGG -ACGGAAAGCAGACGAATCATGAGG -ACGGAAAGCAGACGAATCAATGGG -ACGGAAAGCAGACGAATCTCCTGA -ACGGAAAGCAGACGAATCTAGCGA -ACGGAAAGCAGACGAATCCACAGA -ACGGAAAGCAGACGAATCGCAAGA -ACGGAAAGCAGACGAATCGGTTGA -ACGGAAAGCAGACGAATCTCCGAT -ACGGAAAGCAGACGAATCTGGCAT -ACGGAAAGCAGACGAATCCGAGAT -ACGGAAAGCAGACGAATCTACCAC -ACGGAAAGCAGACGAATCCAGAAC -ACGGAAAGCAGACGAATCGTCTAC -ACGGAAAGCAGACGAATCACGTAC -ACGGAAAGCAGACGAATCAGTGAC -ACGGAAAGCAGACGAATCCTGTAG -ACGGAAAGCAGACGAATCCCTAAG -ACGGAAAGCAGACGAATCGTTCAG -ACGGAAAGCAGACGAATCGCATAG -ACGGAAAGCAGACGAATCGACAAG -ACGGAAAGCAGACGAATCAAGCAG -ACGGAAAGCAGACGAATCCGTCAA -ACGGAAAGCAGACGAATCGCTGAA -ACGGAAAGCAGACGAATCAGTACG -ACGGAAAGCAGACGAATCATCCGA -ACGGAAAGCAGACGAATCATGGGA -ACGGAAAGCAGACGAATCGTGCAA -ACGGAAAGCAGACGAATCGAGGAA -ACGGAAAGCAGACGAATCCAGGTA -ACGGAAAGCAGACGAATCGACTCT -ACGGAAAGCAGACGAATCAGTCCT -ACGGAAAGCAGACGAATCTAAGCC -ACGGAAAGCAGACGAATCATAGCC -ACGGAAAGCAGACGAATCTAACCG -ACGGAAAGCAGACGAATCATGCCA -ACGGAAAGCAGAGGAATGGGAAAC -ACGGAAAGCAGAGGAATGAACACC -ACGGAAAGCAGAGGAATGATCGAG -ACGGAAAGCAGAGGAATGCTCCTT -ACGGAAAGCAGAGGAATGCCTGTT -ACGGAAAGCAGAGGAATGCGGTTT -ACGGAAAGCAGAGGAATGGTGGTT -ACGGAAAGCAGAGGAATGGCCTTT -ACGGAAAGCAGAGGAATGGGTCTT -ACGGAAAGCAGAGGAATGACGCTT -ACGGAAAGCAGAGGAATGAGCGTT -ACGGAAAGCAGAGGAATGTTCGTC -ACGGAAAGCAGAGGAATGTCTCTC -ACGGAAAGCAGAGGAATGTGGATC -ACGGAAAGCAGAGGAATGCACTTC -ACGGAAAGCAGAGGAATGGTACTC -ACGGAAAGCAGAGGAATGGATGTC -ACGGAAAGCAGAGGAATGACAGTC -ACGGAAAGCAGAGGAATGTTGCTG -ACGGAAAGCAGAGGAATGTCCATG -ACGGAAAGCAGAGGAATGTGTGTG -ACGGAAAGCAGAGGAATGCTAGTG -ACGGAAAGCAGAGGAATGCATCTG -ACGGAAAGCAGAGGAATGGAGTTG -ACGGAAAGCAGAGGAATGAGACTG -ACGGAAAGCAGAGGAATGTCGGTA -ACGGAAAGCAGAGGAATGTGCCTA -ACGGAAAGCAGAGGAATGCCACTA -ACGGAAAGCAGAGGAATGGGAGTA -ACGGAAAGCAGAGGAATGTCGTCT -ACGGAAAGCAGAGGAATGTGCACT -ACGGAAAGCAGAGGAATGCTGACT -ACGGAAAGCAGAGGAATGCAACCT -ACGGAAAGCAGAGGAATGGCTACT -ACGGAAAGCAGAGGAATGGGATCT -ACGGAAAGCAGAGGAATGAAGGCT -ACGGAAAGCAGAGGAATGTCAACC -ACGGAAAGCAGAGGAATGTGTTCC -ACGGAAAGCAGAGGAATGATTCCC -ACGGAAAGCAGAGGAATGTTCTCG -ACGGAAAGCAGAGGAATGTAGACG -ACGGAAAGCAGAGGAATGGTAACG -ACGGAAAGCAGAGGAATGACTTCG -ACGGAAAGCAGAGGAATGTACGCA -ACGGAAAGCAGAGGAATGCTTGCA -ACGGAAAGCAGAGGAATGCGAACA -ACGGAAAGCAGAGGAATGCAGTCA -ACGGAAAGCAGAGGAATGGATCCA -ACGGAAAGCAGAGGAATGACGACA -ACGGAAAGCAGAGGAATGAGCTCA -ACGGAAAGCAGAGGAATGTCACGT -ACGGAAAGCAGAGGAATGCGTAGT -ACGGAAAGCAGAGGAATGGTCAGT -ACGGAAAGCAGAGGAATGGAAGGT -ACGGAAAGCAGAGGAATGAACCGT -ACGGAAAGCAGAGGAATGTTGTGC -ACGGAAAGCAGAGGAATGCTAAGC -ACGGAAAGCAGAGGAATGACTAGC -ACGGAAAGCAGAGGAATGAGATGC -ACGGAAAGCAGAGGAATGTGAAGG -ACGGAAAGCAGAGGAATGCAATGG -ACGGAAAGCAGAGGAATGATGAGG -ACGGAAAGCAGAGGAATGAATGGG -ACGGAAAGCAGAGGAATGTCCTGA -ACGGAAAGCAGAGGAATGTAGCGA -ACGGAAAGCAGAGGAATGCACAGA -ACGGAAAGCAGAGGAATGGCAAGA -ACGGAAAGCAGAGGAATGGGTTGA -ACGGAAAGCAGAGGAATGTCCGAT -ACGGAAAGCAGAGGAATGTGGCAT -ACGGAAAGCAGAGGAATGCGAGAT -ACGGAAAGCAGAGGAATGTACCAC -ACGGAAAGCAGAGGAATGCAGAAC -ACGGAAAGCAGAGGAATGGTCTAC -ACGGAAAGCAGAGGAATGACGTAC -ACGGAAAGCAGAGGAATGAGTGAC -ACGGAAAGCAGAGGAATGCTGTAG -ACGGAAAGCAGAGGAATGCCTAAG -ACGGAAAGCAGAGGAATGGTTCAG -ACGGAAAGCAGAGGAATGGCATAG -ACGGAAAGCAGAGGAATGGACAAG -ACGGAAAGCAGAGGAATGAAGCAG -ACGGAAAGCAGAGGAATGCGTCAA -ACGGAAAGCAGAGGAATGGCTGAA -ACGGAAAGCAGAGGAATGAGTACG -ACGGAAAGCAGAGGAATGATCCGA -ACGGAAAGCAGAGGAATGATGGGA -ACGGAAAGCAGAGGAATGGTGCAA -ACGGAAAGCAGAGGAATGGAGGAA -ACGGAAAGCAGAGGAATGCAGGTA -ACGGAAAGCAGAGGAATGGACTCT -ACGGAAAGCAGAGGAATGAGTCCT -ACGGAAAGCAGAGGAATGTAAGCC -ACGGAAAGCAGAGGAATGATAGCC -ACGGAAAGCAGAGGAATGTAACCG -ACGGAAAGCAGAGGAATGATGCCA -ACGGAAAGCAGACAAGTGGGAAAC -ACGGAAAGCAGACAAGTGAACACC -ACGGAAAGCAGACAAGTGATCGAG -ACGGAAAGCAGACAAGTGCTCCTT -ACGGAAAGCAGACAAGTGCCTGTT -ACGGAAAGCAGACAAGTGCGGTTT -ACGGAAAGCAGACAAGTGGTGGTT -ACGGAAAGCAGACAAGTGGCCTTT -ACGGAAAGCAGACAAGTGGGTCTT -ACGGAAAGCAGACAAGTGACGCTT -ACGGAAAGCAGACAAGTGAGCGTT -ACGGAAAGCAGACAAGTGTTCGTC -ACGGAAAGCAGACAAGTGTCTCTC -ACGGAAAGCAGACAAGTGTGGATC -ACGGAAAGCAGACAAGTGCACTTC -ACGGAAAGCAGACAAGTGGTACTC -ACGGAAAGCAGACAAGTGGATGTC -ACGGAAAGCAGACAAGTGACAGTC -ACGGAAAGCAGACAAGTGTTGCTG -ACGGAAAGCAGACAAGTGTCCATG -ACGGAAAGCAGACAAGTGTGTGTG -ACGGAAAGCAGACAAGTGCTAGTG -ACGGAAAGCAGACAAGTGCATCTG -ACGGAAAGCAGACAAGTGGAGTTG -ACGGAAAGCAGACAAGTGAGACTG -ACGGAAAGCAGACAAGTGTCGGTA -ACGGAAAGCAGACAAGTGTGCCTA -ACGGAAAGCAGACAAGTGCCACTA -ACGGAAAGCAGACAAGTGGGAGTA -ACGGAAAGCAGACAAGTGTCGTCT -ACGGAAAGCAGACAAGTGTGCACT -ACGGAAAGCAGACAAGTGCTGACT -ACGGAAAGCAGACAAGTGCAACCT -ACGGAAAGCAGACAAGTGGCTACT -ACGGAAAGCAGACAAGTGGGATCT -ACGGAAAGCAGACAAGTGAAGGCT -ACGGAAAGCAGACAAGTGTCAACC -ACGGAAAGCAGACAAGTGTGTTCC -ACGGAAAGCAGACAAGTGATTCCC -ACGGAAAGCAGACAAGTGTTCTCG -ACGGAAAGCAGACAAGTGTAGACG -ACGGAAAGCAGACAAGTGGTAACG -ACGGAAAGCAGACAAGTGACTTCG -ACGGAAAGCAGACAAGTGTACGCA -ACGGAAAGCAGACAAGTGCTTGCA -ACGGAAAGCAGACAAGTGCGAACA -ACGGAAAGCAGACAAGTGCAGTCA -ACGGAAAGCAGACAAGTGGATCCA -ACGGAAAGCAGACAAGTGACGACA -ACGGAAAGCAGACAAGTGAGCTCA -ACGGAAAGCAGACAAGTGTCACGT -ACGGAAAGCAGACAAGTGCGTAGT -ACGGAAAGCAGACAAGTGGTCAGT -ACGGAAAGCAGACAAGTGGAAGGT -ACGGAAAGCAGACAAGTGAACCGT -ACGGAAAGCAGACAAGTGTTGTGC -ACGGAAAGCAGACAAGTGCTAAGC -ACGGAAAGCAGACAAGTGACTAGC -ACGGAAAGCAGACAAGTGAGATGC -ACGGAAAGCAGACAAGTGTGAAGG -ACGGAAAGCAGACAAGTGCAATGG -ACGGAAAGCAGACAAGTGATGAGG -ACGGAAAGCAGACAAGTGAATGGG -ACGGAAAGCAGACAAGTGTCCTGA -ACGGAAAGCAGACAAGTGTAGCGA -ACGGAAAGCAGACAAGTGCACAGA -ACGGAAAGCAGACAAGTGGCAAGA -ACGGAAAGCAGACAAGTGGGTTGA -ACGGAAAGCAGACAAGTGTCCGAT -ACGGAAAGCAGACAAGTGTGGCAT -ACGGAAAGCAGACAAGTGCGAGAT -ACGGAAAGCAGACAAGTGTACCAC -ACGGAAAGCAGACAAGTGCAGAAC -ACGGAAAGCAGACAAGTGGTCTAC -ACGGAAAGCAGACAAGTGACGTAC -ACGGAAAGCAGACAAGTGAGTGAC -ACGGAAAGCAGACAAGTGCTGTAG -ACGGAAAGCAGACAAGTGCCTAAG -ACGGAAAGCAGACAAGTGGTTCAG -ACGGAAAGCAGACAAGTGGCATAG -ACGGAAAGCAGACAAGTGGACAAG -ACGGAAAGCAGACAAGTGAAGCAG -ACGGAAAGCAGACAAGTGCGTCAA -ACGGAAAGCAGACAAGTGGCTGAA -ACGGAAAGCAGACAAGTGAGTACG -ACGGAAAGCAGACAAGTGATCCGA -ACGGAAAGCAGACAAGTGATGGGA -ACGGAAAGCAGACAAGTGGTGCAA -ACGGAAAGCAGACAAGTGGAGGAA -ACGGAAAGCAGACAAGTGCAGGTA -ACGGAAAGCAGACAAGTGGACTCT -ACGGAAAGCAGACAAGTGAGTCCT -ACGGAAAGCAGACAAGTGTAAGCC -ACGGAAAGCAGACAAGTGATAGCC -ACGGAAAGCAGACAAGTGTAACCG -ACGGAAAGCAGACAAGTGATGCCA -ACGGAAAGCAGAGAAGAGGGAAAC -ACGGAAAGCAGAGAAGAGAACACC -ACGGAAAGCAGAGAAGAGATCGAG -ACGGAAAGCAGAGAAGAGCTCCTT -ACGGAAAGCAGAGAAGAGCCTGTT -ACGGAAAGCAGAGAAGAGCGGTTT -ACGGAAAGCAGAGAAGAGGTGGTT -ACGGAAAGCAGAGAAGAGGCCTTT -ACGGAAAGCAGAGAAGAGGGTCTT -ACGGAAAGCAGAGAAGAGACGCTT -ACGGAAAGCAGAGAAGAGAGCGTT -ACGGAAAGCAGAGAAGAGTTCGTC -ACGGAAAGCAGAGAAGAGTCTCTC -ACGGAAAGCAGAGAAGAGTGGATC -ACGGAAAGCAGAGAAGAGCACTTC -ACGGAAAGCAGAGAAGAGGTACTC -ACGGAAAGCAGAGAAGAGGATGTC -ACGGAAAGCAGAGAAGAGACAGTC -ACGGAAAGCAGAGAAGAGTTGCTG -ACGGAAAGCAGAGAAGAGTCCATG -ACGGAAAGCAGAGAAGAGTGTGTG -ACGGAAAGCAGAGAAGAGCTAGTG -ACGGAAAGCAGAGAAGAGCATCTG -ACGGAAAGCAGAGAAGAGGAGTTG -ACGGAAAGCAGAGAAGAGAGACTG -ACGGAAAGCAGAGAAGAGTCGGTA -ACGGAAAGCAGAGAAGAGTGCCTA -ACGGAAAGCAGAGAAGAGCCACTA -ACGGAAAGCAGAGAAGAGGGAGTA -ACGGAAAGCAGAGAAGAGTCGTCT -ACGGAAAGCAGAGAAGAGTGCACT -ACGGAAAGCAGAGAAGAGCTGACT -ACGGAAAGCAGAGAAGAGCAACCT -ACGGAAAGCAGAGAAGAGGCTACT -ACGGAAAGCAGAGAAGAGGGATCT -ACGGAAAGCAGAGAAGAGAAGGCT -ACGGAAAGCAGAGAAGAGTCAACC -ACGGAAAGCAGAGAAGAGTGTTCC -ACGGAAAGCAGAGAAGAGATTCCC -ACGGAAAGCAGAGAAGAGTTCTCG -ACGGAAAGCAGAGAAGAGTAGACG -ACGGAAAGCAGAGAAGAGGTAACG -ACGGAAAGCAGAGAAGAGACTTCG -ACGGAAAGCAGAGAAGAGTACGCA -ACGGAAAGCAGAGAAGAGCTTGCA -ACGGAAAGCAGAGAAGAGCGAACA -ACGGAAAGCAGAGAAGAGCAGTCA -ACGGAAAGCAGAGAAGAGGATCCA -ACGGAAAGCAGAGAAGAGACGACA -ACGGAAAGCAGAGAAGAGAGCTCA -ACGGAAAGCAGAGAAGAGTCACGT -ACGGAAAGCAGAGAAGAGCGTAGT -ACGGAAAGCAGAGAAGAGGTCAGT -ACGGAAAGCAGAGAAGAGGAAGGT -ACGGAAAGCAGAGAAGAGAACCGT -ACGGAAAGCAGAGAAGAGTTGTGC -ACGGAAAGCAGAGAAGAGCTAAGC -ACGGAAAGCAGAGAAGAGACTAGC -ACGGAAAGCAGAGAAGAGAGATGC -ACGGAAAGCAGAGAAGAGTGAAGG -ACGGAAAGCAGAGAAGAGCAATGG -ACGGAAAGCAGAGAAGAGATGAGG -ACGGAAAGCAGAGAAGAGAATGGG -ACGGAAAGCAGAGAAGAGTCCTGA -ACGGAAAGCAGAGAAGAGTAGCGA -ACGGAAAGCAGAGAAGAGCACAGA -ACGGAAAGCAGAGAAGAGGCAAGA -ACGGAAAGCAGAGAAGAGGGTTGA -ACGGAAAGCAGAGAAGAGTCCGAT -ACGGAAAGCAGAGAAGAGTGGCAT -ACGGAAAGCAGAGAAGAGCGAGAT -ACGGAAAGCAGAGAAGAGTACCAC -ACGGAAAGCAGAGAAGAGCAGAAC -ACGGAAAGCAGAGAAGAGGTCTAC -ACGGAAAGCAGAGAAGAGACGTAC -ACGGAAAGCAGAGAAGAGAGTGAC -ACGGAAAGCAGAGAAGAGCTGTAG -ACGGAAAGCAGAGAAGAGCCTAAG -ACGGAAAGCAGAGAAGAGGTTCAG -ACGGAAAGCAGAGAAGAGGCATAG -ACGGAAAGCAGAGAAGAGGACAAG -ACGGAAAGCAGAGAAGAGAAGCAG -ACGGAAAGCAGAGAAGAGCGTCAA -ACGGAAAGCAGAGAAGAGGCTGAA -ACGGAAAGCAGAGAAGAGAGTACG -ACGGAAAGCAGAGAAGAGATCCGA -ACGGAAAGCAGAGAAGAGATGGGA -ACGGAAAGCAGAGAAGAGGTGCAA -ACGGAAAGCAGAGAAGAGGAGGAA -ACGGAAAGCAGAGAAGAGCAGGTA -ACGGAAAGCAGAGAAGAGGACTCT -ACGGAAAGCAGAGAAGAGAGTCCT -ACGGAAAGCAGAGAAGAGTAAGCC -ACGGAAAGCAGAGAAGAGATAGCC -ACGGAAAGCAGAGAAGAGTAACCG -ACGGAAAGCAGAGAAGAGATGCCA -ACGGAAAGCAGAGTACAGGGAAAC -ACGGAAAGCAGAGTACAGAACACC -ACGGAAAGCAGAGTACAGATCGAG -ACGGAAAGCAGAGTACAGCTCCTT -ACGGAAAGCAGAGTACAGCCTGTT -ACGGAAAGCAGAGTACAGCGGTTT -ACGGAAAGCAGAGTACAGGTGGTT -ACGGAAAGCAGAGTACAGGCCTTT -ACGGAAAGCAGAGTACAGGGTCTT -ACGGAAAGCAGAGTACAGACGCTT -ACGGAAAGCAGAGTACAGAGCGTT -ACGGAAAGCAGAGTACAGTTCGTC -ACGGAAAGCAGAGTACAGTCTCTC -ACGGAAAGCAGAGTACAGTGGATC -ACGGAAAGCAGAGTACAGCACTTC -ACGGAAAGCAGAGTACAGGTACTC -ACGGAAAGCAGAGTACAGGATGTC -ACGGAAAGCAGAGTACAGACAGTC -ACGGAAAGCAGAGTACAGTTGCTG -ACGGAAAGCAGAGTACAGTCCATG -ACGGAAAGCAGAGTACAGTGTGTG -ACGGAAAGCAGAGTACAGCTAGTG -ACGGAAAGCAGAGTACAGCATCTG -ACGGAAAGCAGAGTACAGGAGTTG -ACGGAAAGCAGAGTACAGAGACTG -ACGGAAAGCAGAGTACAGTCGGTA -ACGGAAAGCAGAGTACAGTGCCTA -ACGGAAAGCAGAGTACAGCCACTA -ACGGAAAGCAGAGTACAGGGAGTA -ACGGAAAGCAGAGTACAGTCGTCT -ACGGAAAGCAGAGTACAGTGCACT -ACGGAAAGCAGAGTACAGCTGACT -ACGGAAAGCAGAGTACAGCAACCT -ACGGAAAGCAGAGTACAGGCTACT -ACGGAAAGCAGAGTACAGGGATCT -ACGGAAAGCAGAGTACAGAAGGCT -ACGGAAAGCAGAGTACAGTCAACC -ACGGAAAGCAGAGTACAGTGTTCC -ACGGAAAGCAGAGTACAGATTCCC -ACGGAAAGCAGAGTACAGTTCTCG -ACGGAAAGCAGAGTACAGTAGACG -ACGGAAAGCAGAGTACAGGTAACG -ACGGAAAGCAGAGTACAGACTTCG -ACGGAAAGCAGAGTACAGTACGCA -ACGGAAAGCAGAGTACAGCTTGCA -ACGGAAAGCAGAGTACAGCGAACA -ACGGAAAGCAGAGTACAGCAGTCA -ACGGAAAGCAGAGTACAGGATCCA -ACGGAAAGCAGAGTACAGACGACA -ACGGAAAGCAGAGTACAGAGCTCA -ACGGAAAGCAGAGTACAGTCACGT -ACGGAAAGCAGAGTACAGCGTAGT -ACGGAAAGCAGAGTACAGGTCAGT -ACGGAAAGCAGAGTACAGGAAGGT -ACGGAAAGCAGAGTACAGAACCGT -ACGGAAAGCAGAGTACAGTTGTGC -ACGGAAAGCAGAGTACAGCTAAGC -ACGGAAAGCAGAGTACAGACTAGC -ACGGAAAGCAGAGTACAGAGATGC -ACGGAAAGCAGAGTACAGTGAAGG -ACGGAAAGCAGAGTACAGCAATGG -ACGGAAAGCAGAGTACAGATGAGG -ACGGAAAGCAGAGTACAGAATGGG -ACGGAAAGCAGAGTACAGTCCTGA -ACGGAAAGCAGAGTACAGTAGCGA -ACGGAAAGCAGAGTACAGCACAGA -ACGGAAAGCAGAGTACAGGCAAGA -ACGGAAAGCAGAGTACAGGGTTGA -ACGGAAAGCAGAGTACAGTCCGAT -ACGGAAAGCAGAGTACAGTGGCAT -ACGGAAAGCAGAGTACAGCGAGAT -ACGGAAAGCAGAGTACAGTACCAC -ACGGAAAGCAGAGTACAGCAGAAC -ACGGAAAGCAGAGTACAGGTCTAC -ACGGAAAGCAGAGTACAGACGTAC -ACGGAAAGCAGAGTACAGAGTGAC -ACGGAAAGCAGAGTACAGCTGTAG -ACGGAAAGCAGAGTACAGCCTAAG -ACGGAAAGCAGAGTACAGGTTCAG -ACGGAAAGCAGAGTACAGGCATAG -ACGGAAAGCAGAGTACAGGACAAG -ACGGAAAGCAGAGTACAGAAGCAG -ACGGAAAGCAGAGTACAGCGTCAA -ACGGAAAGCAGAGTACAGGCTGAA -ACGGAAAGCAGAGTACAGAGTACG -ACGGAAAGCAGAGTACAGATCCGA -ACGGAAAGCAGAGTACAGATGGGA -ACGGAAAGCAGAGTACAGGTGCAA -ACGGAAAGCAGAGTACAGGAGGAA -ACGGAAAGCAGAGTACAGCAGGTA -ACGGAAAGCAGAGTACAGGACTCT -ACGGAAAGCAGAGTACAGAGTCCT -ACGGAAAGCAGAGTACAGTAAGCC -ACGGAAAGCAGAGTACAGATAGCC -ACGGAAAGCAGAGTACAGTAACCG -ACGGAAAGCAGAGTACAGATGCCA -ACGGAAAGCAGATCTGACGGAAAC -ACGGAAAGCAGATCTGACAACACC -ACGGAAAGCAGATCTGACATCGAG -ACGGAAAGCAGATCTGACCTCCTT -ACGGAAAGCAGATCTGACCCTGTT -ACGGAAAGCAGATCTGACCGGTTT -ACGGAAAGCAGATCTGACGTGGTT -ACGGAAAGCAGATCTGACGCCTTT -ACGGAAAGCAGATCTGACGGTCTT -ACGGAAAGCAGATCTGACACGCTT -ACGGAAAGCAGATCTGACAGCGTT -ACGGAAAGCAGATCTGACTTCGTC -ACGGAAAGCAGATCTGACTCTCTC -ACGGAAAGCAGATCTGACTGGATC -ACGGAAAGCAGATCTGACCACTTC -ACGGAAAGCAGATCTGACGTACTC -ACGGAAAGCAGATCTGACGATGTC -ACGGAAAGCAGATCTGACACAGTC -ACGGAAAGCAGATCTGACTTGCTG -ACGGAAAGCAGATCTGACTCCATG -ACGGAAAGCAGATCTGACTGTGTG -ACGGAAAGCAGATCTGACCTAGTG -ACGGAAAGCAGATCTGACCATCTG -ACGGAAAGCAGATCTGACGAGTTG -ACGGAAAGCAGATCTGACAGACTG -ACGGAAAGCAGATCTGACTCGGTA -ACGGAAAGCAGATCTGACTGCCTA -ACGGAAAGCAGATCTGACCCACTA -ACGGAAAGCAGATCTGACGGAGTA -ACGGAAAGCAGATCTGACTCGTCT -ACGGAAAGCAGATCTGACTGCACT -ACGGAAAGCAGATCTGACCTGACT -ACGGAAAGCAGATCTGACCAACCT -ACGGAAAGCAGATCTGACGCTACT -ACGGAAAGCAGATCTGACGGATCT -ACGGAAAGCAGATCTGACAAGGCT -ACGGAAAGCAGATCTGACTCAACC -ACGGAAAGCAGATCTGACTGTTCC -ACGGAAAGCAGATCTGACATTCCC -ACGGAAAGCAGATCTGACTTCTCG -ACGGAAAGCAGATCTGACTAGACG -ACGGAAAGCAGATCTGACGTAACG -ACGGAAAGCAGATCTGACACTTCG -ACGGAAAGCAGATCTGACTACGCA -ACGGAAAGCAGATCTGACCTTGCA -ACGGAAAGCAGATCTGACCGAACA -ACGGAAAGCAGATCTGACCAGTCA -ACGGAAAGCAGATCTGACGATCCA -ACGGAAAGCAGATCTGACACGACA -ACGGAAAGCAGATCTGACAGCTCA -ACGGAAAGCAGATCTGACTCACGT -ACGGAAAGCAGATCTGACCGTAGT -ACGGAAAGCAGATCTGACGTCAGT -ACGGAAAGCAGATCTGACGAAGGT -ACGGAAAGCAGATCTGACAACCGT -ACGGAAAGCAGATCTGACTTGTGC -ACGGAAAGCAGATCTGACCTAAGC -ACGGAAAGCAGATCTGACACTAGC -ACGGAAAGCAGATCTGACAGATGC -ACGGAAAGCAGATCTGACTGAAGG -ACGGAAAGCAGATCTGACCAATGG -ACGGAAAGCAGATCTGACATGAGG -ACGGAAAGCAGATCTGACAATGGG -ACGGAAAGCAGATCTGACTCCTGA -ACGGAAAGCAGATCTGACTAGCGA -ACGGAAAGCAGATCTGACCACAGA -ACGGAAAGCAGATCTGACGCAAGA -ACGGAAAGCAGATCTGACGGTTGA -ACGGAAAGCAGATCTGACTCCGAT -ACGGAAAGCAGATCTGACTGGCAT -ACGGAAAGCAGATCTGACCGAGAT -ACGGAAAGCAGATCTGACTACCAC -ACGGAAAGCAGATCTGACCAGAAC -ACGGAAAGCAGATCTGACGTCTAC -ACGGAAAGCAGATCTGACACGTAC -ACGGAAAGCAGATCTGACAGTGAC -ACGGAAAGCAGATCTGACCTGTAG -ACGGAAAGCAGATCTGACCCTAAG -ACGGAAAGCAGATCTGACGTTCAG -ACGGAAAGCAGATCTGACGCATAG -ACGGAAAGCAGATCTGACGACAAG -ACGGAAAGCAGATCTGACAAGCAG -ACGGAAAGCAGATCTGACCGTCAA -ACGGAAAGCAGATCTGACGCTGAA -ACGGAAAGCAGATCTGACAGTACG -ACGGAAAGCAGATCTGACATCCGA -ACGGAAAGCAGATCTGACATGGGA -ACGGAAAGCAGATCTGACGTGCAA -ACGGAAAGCAGATCTGACGAGGAA -ACGGAAAGCAGATCTGACCAGGTA -ACGGAAAGCAGATCTGACGACTCT -ACGGAAAGCAGATCTGACAGTCCT -ACGGAAAGCAGATCTGACTAAGCC -ACGGAAAGCAGATCTGACATAGCC -ACGGAAAGCAGATCTGACTAACCG -ACGGAAAGCAGATCTGACATGCCA -ACGGAAAGCAGACCTAGTGGAAAC -ACGGAAAGCAGACCTAGTAACACC -ACGGAAAGCAGACCTAGTATCGAG -ACGGAAAGCAGACCTAGTCTCCTT -ACGGAAAGCAGACCTAGTCCTGTT -ACGGAAAGCAGACCTAGTCGGTTT -ACGGAAAGCAGACCTAGTGTGGTT -ACGGAAAGCAGACCTAGTGCCTTT -ACGGAAAGCAGACCTAGTGGTCTT -ACGGAAAGCAGACCTAGTACGCTT -ACGGAAAGCAGACCTAGTAGCGTT -ACGGAAAGCAGACCTAGTTTCGTC -ACGGAAAGCAGACCTAGTTCTCTC -ACGGAAAGCAGACCTAGTTGGATC -ACGGAAAGCAGACCTAGTCACTTC -ACGGAAAGCAGACCTAGTGTACTC -ACGGAAAGCAGACCTAGTGATGTC -ACGGAAAGCAGACCTAGTACAGTC -ACGGAAAGCAGACCTAGTTTGCTG -ACGGAAAGCAGACCTAGTTCCATG -ACGGAAAGCAGACCTAGTTGTGTG -ACGGAAAGCAGACCTAGTCTAGTG -ACGGAAAGCAGACCTAGTCATCTG -ACGGAAAGCAGACCTAGTGAGTTG -ACGGAAAGCAGACCTAGTAGACTG -ACGGAAAGCAGACCTAGTTCGGTA -ACGGAAAGCAGACCTAGTTGCCTA -ACGGAAAGCAGACCTAGTCCACTA -ACGGAAAGCAGACCTAGTGGAGTA -ACGGAAAGCAGACCTAGTTCGTCT -ACGGAAAGCAGACCTAGTTGCACT -ACGGAAAGCAGACCTAGTCTGACT -ACGGAAAGCAGACCTAGTCAACCT -ACGGAAAGCAGACCTAGTGCTACT -ACGGAAAGCAGACCTAGTGGATCT -ACGGAAAGCAGACCTAGTAAGGCT -ACGGAAAGCAGACCTAGTTCAACC -ACGGAAAGCAGACCTAGTTGTTCC -ACGGAAAGCAGACCTAGTATTCCC -ACGGAAAGCAGACCTAGTTTCTCG -ACGGAAAGCAGACCTAGTTAGACG -ACGGAAAGCAGACCTAGTGTAACG -ACGGAAAGCAGACCTAGTACTTCG -ACGGAAAGCAGACCTAGTTACGCA -ACGGAAAGCAGACCTAGTCTTGCA -ACGGAAAGCAGACCTAGTCGAACA -ACGGAAAGCAGACCTAGTCAGTCA -ACGGAAAGCAGACCTAGTGATCCA -ACGGAAAGCAGACCTAGTACGACA -ACGGAAAGCAGACCTAGTAGCTCA -ACGGAAAGCAGACCTAGTTCACGT -ACGGAAAGCAGACCTAGTCGTAGT -ACGGAAAGCAGACCTAGTGTCAGT -ACGGAAAGCAGACCTAGTGAAGGT -ACGGAAAGCAGACCTAGTAACCGT -ACGGAAAGCAGACCTAGTTTGTGC -ACGGAAAGCAGACCTAGTCTAAGC -ACGGAAAGCAGACCTAGTACTAGC -ACGGAAAGCAGACCTAGTAGATGC -ACGGAAAGCAGACCTAGTTGAAGG -ACGGAAAGCAGACCTAGTCAATGG -ACGGAAAGCAGACCTAGTATGAGG -ACGGAAAGCAGACCTAGTAATGGG -ACGGAAAGCAGACCTAGTTCCTGA -ACGGAAAGCAGACCTAGTTAGCGA -ACGGAAAGCAGACCTAGTCACAGA -ACGGAAAGCAGACCTAGTGCAAGA -ACGGAAAGCAGACCTAGTGGTTGA -ACGGAAAGCAGACCTAGTTCCGAT -ACGGAAAGCAGACCTAGTTGGCAT -ACGGAAAGCAGACCTAGTCGAGAT -ACGGAAAGCAGACCTAGTTACCAC -ACGGAAAGCAGACCTAGTCAGAAC -ACGGAAAGCAGACCTAGTGTCTAC -ACGGAAAGCAGACCTAGTACGTAC -ACGGAAAGCAGACCTAGTAGTGAC -ACGGAAAGCAGACCTAGTCTGTAG -ACGGAAAGCAGACCTAGTCCTAAG -ACGGAAAGCAGACCTAGTGTTCAG -ACGGAAAGCAGACCTAGTGCATAG -ACGGAAAGCAGACCTAGTGACAAG -ACGGAAAGCAGACCTAGTAAGCAG -ACGGAAAGCAGACCTAGTCGTCAA -ACGGAAAGCAGACCTAGTGCTGAA -ACGGAAAGCAGACCTAGTAGTACG -ACGGAAAGCAGACCTAGTATCCGA -ACGGAAAGCAGACCTAGTATGGGA -ACGGAAAGCAGACCTAGTGTGCAA -ACGGAAAGCAGACCTAGTGAGGAA -ACGGAAAGCAGACCTAGTCAGGTA -ACGGAAAGCAGACCTAGTGACTCT -ACGGAAAGCAGACCTAGTAGTCCT -ACGGAAAGCAGACCTAGTTAAGCC -ACGGAAAGCAGACCTAGTATAGCC -ACGGAAAGCAGACCTAGTTAACCG -ACGGAAAGCAGACCTAGTATGCCA -ACGGAAAGCAGAGCCTAAGGAAAC -ACGGAAAGCAGAGCCTAAAACACC -ACGGAAAGCAGAGCCTAAATCGAG -ACGGAAAGCAGAGCCTAACTCCTT -ACGGAAAGCAGAGCCTAACCTGTT -ACGGAAAGCAGAGCCTAACGGTTT -ACGGAAAGCAGAGCCTAAGTGGTT -ACGGAAAGCAGAGCCTAAGCCTTT -ACGGAAAGCAGAGCCTAAGGTCTT -ACGGAAAGCAGAGCCTAAACGCTT -ACGGAAAGCAGAGCCTAAAGCGTT -ACGGAAAGCAGAGCCTAATTCGTC -ACGGAAAGCAGAGCCTAATCTCTC -ACGGAAAGCAGAGCCTAATGGATC -ACGGAAAGCAGAGCCTAACACTTC -ACGGAAAGCAGAGCCTAAGTACTC -ACGGAAAGCAGAGCCTAAGATGTC -ACGGAAAGCAGAGCCTAAACAGTC -ACGGAAAGCAGAGCCTAATTGCTG -ACGGAAAGCAGAGCCTAATCCATG -ACGGAAAGCAGAGCCTAATGTGTG -ACGGAAAGCAGAGCCTAACTAGTG -ACGGAAAGCAGAGCCTAACATCTG -ACGGAAAGCAGAGCCTAAGAGTTG -ACGGAAAGCAGAGCCTAAAGACTG -ACGGAAAGCAGAGCCTAATCGGTA -ACGGAAAGCAGAGCCTAATGCCTA -ACGGAAAGCAGAGCCTAACCACTA -ACGGAAAGCAGAGCCTAAGGAGTA -ACGGAAAGCAGAGCCTAATCGTCT -ACGGAAAGCAGAGCCTAATGCACT -ACGGAAAGCAGAGCCTAACTGACT -ACGGAAAGCAGAGCCTAACAACCT -ACGGAAAGCAGAGCCTAAGCTACT -ACGGAAAGCAGAGCCTAAGGATCT -ACGGAAAGCAGAGCCTAAAAGGCT -ACGGAAAGCAGAGCCTAATCAACC -ACGGAAAGCAGAGCCTAATGTTCC -ACGGAAAGCAGAGCCTAAATTCCC -ACGGAAAGCAGAGCCTAATTCTCG -ACGGAAAGCAGAGCCTAATAGACG -ACGGAAAGCAGAGCCTAAGTAACG -ACGGAAAGCAGAGCCTAAACTTCG -ACGGAAAGCAGAGCCTAATACGCA -ACGGAAAGCAGAGCCTAACTTGCA -ACGGAAAGCAGAGCCTAACGAACA -ACGGAAAGCAGAGCCTAACAGTCA -ACGGAAAGCAGAGCCTAAGATCCA -ACGGAAAGCAGAGCCTAAACGACA -ACGGAAAGCAGAGCCTAAAGCTCA -ACGGAAAGCAGAGCCTAATCACGT -ACGGAAAGCAGAGCCTAACGTAGT -ACGGAAAGCAGAGCCTAAGTCAGT -ACGGAAAGCAGAGCCTAAGAAGGT -ACGGAAAGCAGAGCCTAAAACCGT -ACGGAAAGCAGAGCCTAATTGTGC -ACGGAAAGCAGAGCCTAACTAAGC -ACGGAAAGCAGAGCCTAAACTAGC -ACGGAAAGCAGAGCCTAAAGATGC -ACGGAAAGCAGAGCCTAATGAAGG -ACGGAAAGCAGAGCCTAACAATGG -ACGGAAAGCAGAGCCTAAATGAGG -ACGGAAAGCAGAGCCTAAAATGGG -ACGGAAAGCAGAGCCTAATCCTGA -ACGGAAAGCAGAGCCTAATAGCGA -ACGGAAAGCAGAGCCTAACACAGA -ACGGAAAGCAGAGCCTAAGCAAGA -ACGGAAAGCAGAGCCTAAGGTTGA -ACGGAAAGCAGAGCCTAATCCGAT -ACGGAAAGCAGAGCCTAATGGCAT -ACGGAAAGCAGAGCCTAACGAGAT -ACGGAAAGCAGAGCCTAATACCAC -ACGGAAAGCAGAGCCTAACAGAAC -ACGGAAAGCAGAGCCTAAGTCTAC -ACGGAAAGCAGAGCCTAAACGTAC -ACGGAAAGCAGAGCCTAAAGTGAC -ACGGAAAGCAGAGCCTAACTGTAG -ACGGAAAGCAGAGCCTAACCTAAG -ACGGAAAGCAGAGCCTAAGTTCAG -ACGGAAAGCAGAGCCTAAGCATAG -ACGGAAAGCAGAGCCTAAGACAAG -ACGGAAAGCAGAGCCTAAAAGCAG -ACGGAAAGCAGAGCCTAACGTCAA -ACGGAAAGCAGAGCCTAAGCTGAA -ACGGAAAGCAGAGCCTAAAGTACG -ACGGAAAGCAGAGCCTAAATCCGA -ACGGAAAGCAGAGCCTAAATGGGA -ACGGAAAGCAGAGCCTAAGTGCAA -ACGGAAAGCAGAGCCTAAGAGGAA -ACGGAAAGCAGAGCCTAACAGGTA -ACGGAAAGCAGAGCCTAAGACTCT -ACGGAAAGCAGAGCCTAAAGTCCT -ACGGAAAGCAGAGCCTAATAAGCC -ACGGAAAGCAGAGCCTAAATAGCC -ACGGAAAGCAGAGCCTAATAACCG -ACGGAAAGCAGAGCCTAAATGCCA -ACGGAAAGCAGAGCCATAGGAAAC -ACGGAAAGCAGAGCCATAAACACC -ACGGAAAGCAGAGCCATAATCGAG -ACGGAAAGCAGAGCCATACTCCTT -ACGGAAAGCAGAGCCATACCTGTT -ACGGAAAGCAGAGCCATACGGTTT -ACGGAAAGCAGAGCCATAGTGGTT -ACGGAAAGCAGAGCCATAGCCTTT -ACGGAAAGCAGAGCCATAGGTCTT -ACGGAAAGCAGAGCCATAACGCTT -ACGGAAAGCAGAGCCATAAGCGTT -ACGGAAAGCAGAGCCATATTCGTC -ACGGAAAGCAGAGCCATATCTCTC -ACGGAAAGCAGAGCCATATGGATC -ACGGAAAGCAGAGCCATACACTTC -ACGGAAAGCAGAGCCATAGTACTC -ACGGAAAGCAGAGCCATAGATGTC -ACGGAAAGCAGAGCCATAACAGTC -ACGGAAAGCAGAGCCATATTGCTG -ACGGAAAGCAGAGCCATATCCATG -ACGGAAAGCAGAGCCATATGTGTG -ACGGAAAGCAGAGCCATACTAGTG -ACGGAAAGCAGAGCCATACATCTG -ACGGAAAGCAGAGCCATAGAGTTG -ACGGAAAGCAGAGCCATAAGACTG -ACGGAAAGCAGAGCCATATCGGTA -ACGGAAAGCAGAGCCATATGCCTA -ACGGAAAGCAGAGCCATACCACTA -ACGGAAAGCAGAGCCATAGGAGTA -ACGGAAAGCAGAGCCATATCGTCT -ACGGAAAGCAGAGCCATATGCACT -ACGGAAAGCAGAGCCATACTGACT -ACGGAAAGCAGAGCCATACAACCT -ACGGAAAGCAGAGCCATAGCTACT -ACGGAAAGCAGAGCCATAGGATCT -ACGGAAAGCAGAGCCATAAAGGCT -ACGGAAAGCAGAGCCATATCAACC -ACGGAAAGCAGAGCCATATGTTCC -ACGGAAAGCAGAGCCATAATTCCC -ACGGAAAGCAGAGCCATATTCTCG -ACGGAAAGCAGAGCCATATAGACG -ACGGAAAGCAGAGCCATAGTAACG -ACGGAAAGCAGAGCCATAACTTCG -ACGGAAAGCAGAGCCATATACGCA -ACGGAAAGCAGAGCCATACTTGCA -ACGGAAAGCAGAGCCATACGAACA -ACGGAAAGCAGAGCCATACAGTCA -ACGGAAAGCAGAGCCATAGATCCA -ACGGAAAGCAGAGCCATAACGACA -ACGGAAAGCAGAGCCATAAGCTCA -ACGGAAAGCAGAGCCATATCACGT -ACGGAAAGCAGAGCCATACGTAGT -ACGGAAAGCAGAGCCATAGTCAGT -ACGGAAAGCAGAGCCATAGAAGGT -ACGGAAAGCAGAGCCATAAACCGT -ACGGAAAGCAGAGCCATATTGTGC -ACGGAAAGCAGAGCCATACTAAGC -ACGGAAAGCAGAGCCATAACTAGC -ACGGAAAGCAGAGCCATAAGATGC -ACGGAAAGCAGAGCCATATGAAGG -ACGGAAAGCAGAGCCATACAATGG -ACGGAAAGCAGAGCCATAATGAGG -ACGGAAAGCAGAGCCATAAATGGG -ACGGAAAGCAGAGCCATATCCTGA -ACGGAAAGCAGAGCCATATAGCGA -ACGGAAAGCAGAGCCATACACAGA -ACGGAAAGCAGAGCCATAGCAAGA -ACGGAAAGCAGAGCCATAGGTTGA -ACGGAAAGCAGAGCCATATCCGAT -ACGGAAAGCAGAGCCATATGGCAT -ACGGAAAGCAGAGCCATACGAGAT -ACGGAAAGCAGAGCCATATACCAC -ACGGAAAGCAGAGCCATACAGAAC -ACGGAAAGCAGAGCCATAGTCTAC -ACGGAAAGCAGAGCCATAACGTAC -ACGGAAAGCAGAGCCATAAGTGAC -ACGGAAAGCAGAGCCATACTGTAG -ACGGAAAGCAGAGCCATACCTAAG -ACGGAAAGCAGAGCCATAGTTCAG -ACGGAAAGCAGAGCCATAGCATAG -ACGGAAAGCAGAGCCATAGACAAG -ACGGAAAGCAGAGCCATAAAGCAG -ACGGAAAGCAGAGCCATACGTCAA -ACGGAAAGCAGAGCCATAGCTGAA -ACGGAAAGCAGAGCCATAAGTACG -ACGGAAAGCAGAGCCATAATCCGA -ACGGAAAGCAGAGCCATAATGGGA -ACGGAAAGCAGAGCCATAGTGCAA -ACGGAAAGCAGAGCCATAGAGGAA -ACGGAAAGCAGAGCCATACAGGTA -ACGGAAAGCAGAGCCATAGACTCT -ACGGAAAGCAGAGCCATAAGTCCT -ACGGAAAGCAGAGCCATATAAGCC -ACGGAAAGCAGAGCCATAATAGCC -ACGGAAAGCAGAGCCATATAACCG -ACGGAAAGCAGAGCCATAATGCCA -ACGGAAAGCAGACCGTAAGGAAAC -ACGGAAAGCAGACCGTAAAACACC -ACGGAAAGCAGACCGTAAATCGAG -ACGGAAAGCAGACCGTAACTCCTT -ACGGAAAGCAGACCGTAACCTGTT -ACGGAAAGCAGACCGTAACGGTTT -ACGGAAAGCAGACCGTAAGTGGTT -ACGGAAAGCAGACCGTAAGCCTTT -ACGGAAAGCAGACCGTAAGGTCTT -ACGGAAAGCAGACCGTAAACGCTT -ACGGAAAGCAGACCGTAAAGCGTT -ACGGAAAGCAGACCGTAATTCGTC -ACGGAAAGCAGACCGTAATCTCTC -ACGGAAAGCAGACCGTAATGGATC -ACGGAAAGCAGACCGTAACACTTC -ACGGAAAGCAGACCGTAAGTACTC -ACGGAAAGCAGACCGTAAGATGTC -ACGGAAAGCAGACCGTAAACAGTC -ACGGAAAGCAGACCGTAATTGCTG -ACGGAAAGCAGACCGTAATCCATG -ACGGAAAGCAGACCGTAATGTGTG -ACGGAAAGCAGACCGTAACTAGTG -ACGGAAAGCAGACCGTAACATCTG -ACGGAAAGCAGACCGTAAGAGTTG -ACGGAAAGCAGACCGTAAAGACTG -ACGGAAAGCAGACCGTAATCGGTA -ACGGAAAGCAGACCGTAATGCCTA -ACGGAAAGCAGACCGTAACCACTA -ACGGAAAGCAGACCGTAAGGAGTA -ACGGAAAGCAGACCGTAATCGTCT -ACGGAAAGCAGACCGTAATGCACT -ACGGAAAGCAGACCGTAACTGACT -ACGGAAAGCAGACCGTAACAACCT -ACGGAAAGCAGACCGTAAGCTACT -ACGGAAAGCAGACCGTAAGGATCT -ACGGAAAGCAGACCGTAAAAGGCT -ACGGAAAGCAGACCGTAATCAACC -ACGGAAAGCAGACCGTAATGTTCC -ACGGAAAGCAGACCGTAAATTCCC -ACGGAAAGCAGACCGTAATTCTCG -ACGGAAAGCAGACCGTAATAGACG -ACGGAAAGCAGACCGTAAGTAACG -ACGGAAAGCAGACCGTAAACTTCG -ACGGAAAGCAGACCGTAATACGCA -ACGGAAAGCAGACCGTAACTTGCA -ACGGAAAGCAGACCGTAACGAACA -ACGGAAAGCAGACCGTAACAGTCA -ACGGAAAGCAGACCGTAAGATCCA -ACGGAAAGCAGACCGTAAACGACA -ACGGAAAGCAGACCGTAAAGCTCA -ACGGAAAGCAGACCGTAATCACGT -ACGGAAAGCAGACCGTAACGTAGT -ACGGAAAGCAGACCGTAAGTCAGT -ACGGAAAGCAGACCGTAAGAAGGT -ACGGAAAGCAGACCGTAAAACCGT -ACGGAAAGCAGACCGTAATTGTGC -ACGGAAAGCAGACCGTAACTAAGC -ACGGAAAGCAGACCGTAAACTAGC -ACGGAAAGCAGACCGTAAAGATGC -ACGGAAAGCAGACCGTAATGAAGG -ACGGAAAGCAGACCGTAACAATGG -ACGGAAAGCAGACCGTAAATGAGG -ACGGAAAGCAGACCGTAAAATGGG -ACGGAAAGCAGACCGTAATCCTGA -ACGGAAAGCAGACCGTAATAGCGA -ACGGAAAGCAGACCGTAACACAGA -ACGGAAAGCAGACCGTAAGCAAGA -ACGGAAAGCAGACCGTAAGGTTGA -ACGGAAAGCAGACCGTAATCCGAT -ACGGAAAGCAGACCGTAATGGCAT -ACGGAAAGCAGACCGTAACGAGAT -ACGGAAAGCAGACCGTAATACCAC -ACGGAAAGCAGACCGTAACAGAAC -ACGGAAAGCAGACCGTAAGTCTAC -ACGGAAAGCAGACCGTAAACGTAC -ACGGAAAGCAGACCGTAAAGTGAC -ACGGAAAGCAGACCGTAACTGTAG -ACGGAAAGCAGACCGTAACCTAAG -ACGGAAAGCAGACCGTAAGTTCAG -ACGGAAAGCAGACCGTAAGCATAG -ACGGAAAGCAGACCGTAAGACAAG -ACGGAAAGCAGACCGTAAAAGCAG -ACGGAAAGCAGACCGTAACGTCAA -ACGGAAAGCAGACCGTAAGCTGAA -ACGGAAAGCAGACCGTAAAGTACG -ACGGAAAGCAGACCGTAAATCCGA -ACGGAAAGCAGACCGTAAATGGGA -ACGGAAAGCAGACCGTAAGTGCAA -ACGGAAAGCAGACCGTAAGAGGAA -ACGGAAAGCAGACCGTAACAGGTA -ACGGAAAGCAGACCGTAAGACTCT -ACGGAAAGCAGACCGTAAAGTCCT -ACGGAAAGCAGACCGTAATAAGCC -ACGGAAAGCAGACCGTAAATAGCC -ACGGAAAGCAGACCGTAATAACCG -ACGGAAAGCAGACCGTAAATGCCA -ACGGAAAGCAGACCAATGGGAAAC -ACGGAAAGCAGACCAATGAACACC -ACGGAAAGCAGACCAATGATCGAG -ACGGAAAGCAGACCAATGCTCCTT -ACGGAAAGCAGACCAATGCCTGTT -ACGGAAAGCAGACCAATGCGGTTT -ACGGAAAGCAGACCAATGGTGGTT -ACGGAAAGCAGACCAATGGCCTTT -ACGGAAAGCAGACCAATGGGTCTT -ACGGAAAGCAGACCAATGACGCTT -ACGGAAAGCAGACCAATGAGCGTT -ACGGAAAGCAGACCAATGTTCGTC -ACGGAAAGCAGACCAATGTCTCTC -ACGGAAAGCAGACCAATGTGGATC -ACGGAAAGCAGACCAATGCACTTC -ACGGAAAGCAGACCAATGGTACTC -ACGGAAAGCAGACCAATGGATGTC -ACGGAAAGCAGACCAATGACAGTC -ACGGAAAGCAGACCAATGTTGCTG -ACGGAAAGCAGACCAATGTCCATG -ACGGAAAGCAGACCAATGTGTGTG -ACGGAAAGCAGACCAATGCTAGTG -ACGGAAAGCAGACCAATGCATCTG -ACGGAAAGCAGACCAATGGAGTTG -ACGGAAAGCAGACCAATGAGACTG -ACGGAAAGCAGACCAATGTCGGTA -ACGGAAAGCAGACCAATGTGCCTA -ACGGAAAGCAGACCAATGCCACTA -ACGGAAAGCAGACCAATGGGAGTA -ACGGAAAGCAGACCAATGTCGTCT -ACGGAAAGCAGACCAATGTGCACT -ACGGAAAGCAGACCAATGCTGACT -ACGGAAAGCAGACCAATGCAACCT -ACGGAAAGCAGACCAATGGCTACT -ACGGAAAGCAGACCAATGGGATCT -ACGGAAAGCAGACCAATGAAGGCT -ACGGAAAGCAGACCAATGTCAACC -ACGGAAAGCAGACCAATGTGTTCC -ACGGAAAGCAGACCAATGATTCCC -ACGGAAAGCAGACCAATGTTCTCG -ACGGAAAGCAGACCAATGTAGACG -ACGGAAAGCAGACCAATGGTAACG -ACGGAAAGCAGACCAATGACTTCG -ACGGAAAGCAGACCAATGTACGCA -ACGGAAAGCAGACCAATGCTTGCA -ACGGAAAGCAGACCAATGCGAACA -ACGGAAAGCAGACCAATGCAGTCA -ACGGAAAGCAGACCAATGGATCCA -ACGGAAAGCAGACCAATGACGACA -ACGGAAAGCAGACCAATGAGCTCA -ACGGAAAGCAGACCAATGTCACGT -ACGGAAAGCAGACCAATGCGTAGT -ACGGAAAGCAGACCAATGGTCAGT -ACGGAAAGCAGACCAATGGAAGGT -ACGGAAAGCAGACCAATGAACCGT -ACGGAAAGCAGACCAATGTTGTGC -ACGGAAAGCAGACCAATGCTAAGC -ACGGAAAGCAGACCAATGACTAGC -ACGGAAAGCAGACCAATGAGATGC -ACGGAAAGCAGACCAATGTGAAGG -ACGGAAAGCAGACCAATGCAATGG -ACGGAAAGCAGACCAATGATGAGG -ACGGAAAGCAGACCAATGAATGGG -ACGGAAAGCAGACCAATGTCCTGA -ACGGAAAGCAGACCAATGTAGCGA -ACGGAAAGCAGACCAATGCACAGA -ACGGAAAGCAGACCAATGGCAAGA -ACGGAAAGCAGACCAATGGGTTGA -ACGGAAAGCAGACCAATGTCCGAT -ACGGAAAGCAGACCAATGTGGCAT -ACGGAAAGCAGACCAATGCGAGAT -ACGGAAAGCAGACCAATGTACCAC -ACGGAAAGCAGACCAATGCAGAAC -ACGGAAAGCAGACCAATGGTCTAC -ACGGAAAGCAGACCAATGACGTAC -ACGGAAAGCAGACCAATGAGTGAC -ACGGAAAGCAGACCAATGCTGTAG -ACGGAAAGCAGACCAATGCCTAAG -ACGGAAAGCAGACCAATGGTTCAG -ACGGAAAGCAGACCAATGGCATAG -ACGGAAAGCAGACCAATGGACAAG -ACGGAAAGCAGACCAATGAAGCAG -ACGGAAAGCAGACCAATGCGTCAA -ACGGAAAGCAGACCAATGGCTGAA -ACGGAAAGCAGACCAATGAGTACG -ACGGAAAGCAGACCAATGATCCGA -ACGGAAAGCAGACCAATGATGGGA -ACGGAAAGCAGACCAATGGTGCAA -ACGGAAAGCAGACCAATGGAGGAA -ACGGAAAGCAGACCAATGCAGGTA -ACGGAAAGCAGACCAATGGACTCT -ACGGAAAGCAGACCAATGAGTCCT -ACGGAAAGCAGACCAATGTAAGCC -ACGGAAAGCAGACCAATGATAGCC -ACGGAAAGCAGACCAATGTAACCG -ACGGAAAGCAGACCAATGATGCCA -ACGGAAGTCAACAACGGAGGAAAC -ACGGAAGTCAACAACGGAAACACC -ACGGAAGTCAACAACGGAATCGAG -ACGGAAGTCAACAACGGACTCCTT -ACGGAAGTCAACAACGGACCTGTT -ACGGAAGTCAACAACGGACGGTTT -ACGGAAGTCAACAACGGAGTGGTT -ACGGAAGTCAACAACGGAGCCTTT -ACGGAAGTCAACAACGGAGGTCTT -ACGGAAGTCAACAACGGAACGCTT -ACGGAAGTCAACAACGGAAGCGTT -ACGGAAGTCAACAACGGATTCGTC -ACGGAAGTCAACAACGGATCTCTC -ACGGAAGTCAACAACGGATGGATC -ACGGAAGTCAACAACGGACACTTC -ACGGAAGTCAACAACGGAGTACTC -ACGGAAGTCAACAACGGAGATGTC -ACGGAAGTCAACAACGGAACAGTC -ACGGAAGTCAACAACGGATTGCTG -ACGGAAGTCAACAACGGATCCATG -ACGGAAGTCAACAACGGATGTGTG -ACGGAAGTCAACAACGGACTAGTG -ACGGAAGTCAACAACGGACATCTG -ACGGAAGTCAACAACGGAGAGTTG -ACGGAAGTCAACAACGGAAGACTG -ACGGAAGTCAACAACGGATCGGTA -ACGGAAGTCAACAACGGATGCCTA -ACGGAAGTCAACAACGGACCACTA -ACGGAAGTCAACAACGGAGGAGTA -ACGGAAGTCAACAACGGATCGTCT -ACGGAAGTCAACAACGGATGCACT -ACGGAAGTCAACAACGGACTGACT -ACGGAAGTCAACAACGGACAACCT -ACGGAAGTCAACAACGGAGCTACT -ACGGAAGTCAACAACGGAGGATCT -ACGGAAGTCAACAACGGAAAGGCT -ACGGAAGTCAACAACGGATCAACC -ACGGAAGTCAACAACGGATGTTCC -ACGGAAGTCAACAACGGAATTCCC -ACGGAAGTCAACAACGGATTCTCG -ACGGAAGTCAACAACGGATAGACG -ACGGAAGTCAACAACGGAGTAACG -ACGGAAGTCAACAACGGAACTTCG -ACGGAAGTCAACAACGGATACGCA -ACGGAAGTCAACAACGGACTTGCA -ACGGAAGTCAACAACGGACGAACA -ACGGAAGTCAACAACGGACAGTCA -ACGGAAGTCAACAACGGAGATCCA -ACGGAAGTCAACAACGGAACGACA -ACGGAAGTCAACAACGGAAGCTCA -ACGGAAGTCAACAACGGATCACGT -ACGGAAGTCAACAACGGACGTAGT -ACGGAAGTCAACAACGGAGTCAGT -ACGGAAGTCAACAACGGAGAAGGT -ACGGAAGTCAACAACGGAAACCGT -ACGGAAGTCAACAACGGATTGTGC -ACGGAAGTCAACAACGGACTAAGC -ACGGAAGTCAACAACGGAACTAGC -ACGGAAGTCAACAACGGAAGATGC -ACGGAAGTCAACAACGGATGAAGG -ACGGAAGTCAACAACGGACAATGG -ACGGAAGTCAACAACGGAATGAGG -ACGGAAGTCAACAACGGAAATGGG -ACGGAAGTCAACAACGGATCCTGA -ACGGAAGTCAACAACGGATAGCGA -ACGGAAGTCAACAACGGACACAGA -ACGGAAGTCAACAACGGAGCAAGA -ACGGAAGTCAACAACGGAGGTTGA -ACGGAAGTCAACAACGGATCCGAT -ACGGAAGTCAACAACGGATGGCAT -ACGGAAGTCAACAACGGACGAGAT -ACGGAAGTCAACAACGGATACCAC -ACGGAAGTCAACAACGGACAGAAC -ACGGAAGTCAACAACGGAGTCTAC -ACGGAAGTCAACAACGGAACGTAC -ACGGAAGTCAACAACGGAAGTGAC -ACGGAAGTCAACAACGGACTGTAG -ACGGAAGTCAACAACGGACCTAAG -ACGGAAGTCAACAACGGAGTTCAG -ACGGAAGTCAACAACGGAGCATAG -ACGGAAGTCAACAACGGAGACAAG -ACGGAAGTCAACAACGGAAAGCAG -ACGGAAGTCAACAACGGACGTCAA -ACGGAAGTCAACAACGGAGCTGAA -ACGGAAGTCAACAACGGAAGTACG -ACGGAAGTCAACAACGGAATCCGA -ACGGAAGTCAACAACGGAATGGGA -ACGGAAGTCAACAACGGAGTGCAA -ACGGAAGTCAACAACGGAGAGGAA -ACGGAAGTCAACAACGGACAGGTA -ACGGAAGTCAACAACGGAGACTCT -ACGGAAGTCAACAACGGAAGTCCT -ACGGAAGTCAACAACGGATAAGCC -ACGGAAGTCAACAACGGAATAGCC -ACGGAAGTCAACAACGGATAACCG -ACGGAAGTCAACAACGGAATGCCA -ACGGAAGTCAACACCAACGGAAAC -ACGGAAGTCAACACCAACAACACC -ACGGAAGTCAACACCAACATCGAG -ACGGAAGTCAACACCAACCTCCTT -ACGGAAGTCAACACCAACCCTGTT -ACGGAAGTCAACACCAACCGGTTT -ACGGAAGTCAACACCAACGTGGTT -ACGGAAGTCAACACCAACGCCTTT -ACGGAAGTCAACACCAACGGTCTT -ACGGAAGTCAACACCAACACGCTT -ACGGAAGTCAACACCAACAGCGTT -ACGGAAGTCAACACCAACTTCGTC -ACGGAAGTCAACACCAACTCTCTC -ACGGAAGTCAACACCAACTGGATC -ACGGAAGTCAACACCAACCACTTC -ACGGAAGTCAACACCAACGTACTC -ACGGAAGTCAACACCAACGATGTC -ACGGAAGTCAACACCAACACAGTC -ACGGAAGTCAACACCAACTTGCTG -ACGGAAGTCAACACCAACTCCATG -ACGGAAGTCAACACCAACTGTGTG -ACGGAAGTCAACACCAACCTAGTG -ACGGAAGTCAACACCAACCATCTG -ACGGAAGTCAACACCAACGAGTTG -ACGGAAGTCAACACCAACAGACTG -ACGGAAGTCAACACCAACTCGGTA -ACGGAAGTCAACACCAACTGCCTA -ACGGAAGTCAACACCAACCCACTA -ACGGAAGTCAACACCAACGGAGTA -ACGGAAGTCAACACCAACTCGTCT -ACGGAAGTCAACACCAACTGCACT -ACGGAAGTCAACACCAACCTGACT -ACGGAAGTCAACACCAACCAACCT -ACGGAAGTCAACACCAACGCTACT -ACGGAAGTCAACACCAACGGATCT -ACGGAAGTCAACACCAACAAGGCT -ACGGAAGTCAACACCAACTCAACC -ACGGAAGTCAACACCAACTGTTCC -ACGGAAGTCAACACCAACATTCCC -ACGGAAGTCAACACCAACTTCTCG -ACGGAAGTCAACACCAACTAGACG -ACGGAAGTCAACACCAACGTAACG -ACGGAAGTCAACACCAACACTTCG -ACGGAAGTCAACACCAACTACGCA -ACGGAAGTCAACACCAACCTTGCA -ACGGAAGTCAACACCAACCGAACA -ACGGAAGTCAACACCAACCAGTCA -ACGGAAGTCAACACCAACGATCCA -ACGGAAGTCAACACCAACACGACA -ACGGAAGTCAACACCAACAGCTCA -ACGGAAGTCAACACCAACTCACGT -ACGGAAGTCAACACCAACCGTAGT -ACGGAAGTCAACACCAACGTCAGT -ACGGAAGTCAACACCAACGAAGGT -ACGGAAGTCAACACCAACAACCGT -ACGGAAGTCAACACCAACTTGTGC -ACGGAAGTCAACACCAACCTAAGC -ACGGAAGTCAACACCAACACTAGC -ACGGAAGTCAACACCAACAGATGC -ACGGAAGTCAACACCAACTGAAGG -ACGGAAGTCAACACCAACCAATGG -ACGGAAGTCAACACCAACATGAGG -ACGGAAGTCAACACCAACAATGGG -ACGGAAGTCAACACCAACTCCTGA -ACGGAAGTCAACACCAACTAGCGA -ACGGAAGTCAACACCAACCACAGA -ACGGAAGTCAACACCAACGCAAGA -ACGGAAGTCAACACCAACGGTTGA -ACGGAAGTCAACACCAACTCCGAT -ACGGAAGTCAACACCAACTGGCAT -ACGGAAGTCAACACCAACCGAGAT -ACGGAAGTCAACACCAACTACCAC -ACGGAAGTCAACACCAACCAGAAC -ACGGAAGTCAACACCAACGTCTAC -ACGGAAGTCAACACCAACACGTAC -ACGGAAGTCAACACCAACAGTGAC -ACGGAAGTCAACACCAACCTGTAG -ACGGAAGTCAACACCAACCCTAAG -ACGGAAGTCAACACCAACGTTCAG -ACGGAAGTCAACACCAACGCATAG -ACGGAAGTCAACACCAACGACAAG -ACGGAAGTCAACACCAACAAGCAG -ACGGAAGTCAACACCAACCGTCAA -ACGGAAGTCAACACCAACGCTGAA -ACGGAAGTCAACACCAACAGTACG -ACGGAAGTCAACACCAACATCCGA -ACGGAAGTCAACACCAACATGGGA -ACGGAAGTCAACACCAACGTGCAA -ACGGAAGTCAACACCAACGAGGAA -ACGGAAGTCAACACCAACCAGGTA -ACGGAAGTCAACACCAACGACTCT -ACGGAAGTCAACACCAACAGTCCT -ACGGAAGTCAACACCAACTAAGCC -ACGGAAGTCAACACCAACATAGCC -ACGGAAGTCAACACCAACTAACCG -ACGGAAGTCAACACCAACATGCCA -ACGGAAGTCAACGAGATCGGAAAC -ACGGAAGTCAACGAGATCAACACC -ACGGAAGTCAACGAGATCATCGAG -ACGGAAGTCAACGAGATCCTCCTT -ACGGAAGTCAACGAGATCCCTGTT -ACGGAAGTCAACGAGATCCGGTTT -ACGGAAGTCAACGAGATCGTGGTT -ACGGAAGTCAACGAGATCGCCTTT -ACGGAAGTCAACGAGATCGGTCTT -ACGGAAGTCAACGAGATCACGCTT -ACGGAAGTCAACGAGATCAGCGTT -ACGGAAGTCAACGAGATCTTCGTC -ACGGAAGTCAACGAGATCTCTCTC -ACGGAAGTCAACGAGATCTGGATC -ACGGAAGTCAACGAGATCCACTTC -ACGGAAGTCAACGAGATCGTACTC -ACGGAAGTCAACGAGATCGATGTC -ACGGAAGTCAACGAGATCACAGTC -ACGGAAGTCAACGAGATCTTGCTG -ACGGAAGTCAACGAGATCTCCATG -ACGGAAGTCAACGAGATCTGTGTG -ACGGAAGTCAACGAGATCCTAGTG -ACGGAAGTCAACGAGATCCATCTG -ACGGAAGTCAACGAGATCGAGTTG -ACGGAAGTCAACGAGATCAGACTG -ACGGAAGTCAACGAGATCTCGGTA -ACGGAAGTCAACGAGATCTGCCTA -ACGGAAGTCAACGAGATCCCACTA -ACGGAAGTCAACGAGATCGGAGTA -ACGGAAGTCAACGAGATCTCGTCT -ACGGAAGTCAACGAGATCTGCACT -ACGGAAGTCAACGAGATCCTGACT -ACGGAAGTCAACGAGATCCAACCT -ACGGAAGTCAACGAGATCGCTACT -ACGGAAGTCAACGAGATCGGATCT -ACGGAAGTCAACGAGATCAAGGCT -ACGGAAGTCAACGAGATCTCAACC -ACGGAAGTCAACGAGATCTGTTCC -ACGGAAGTCAACGAGATCATTCCC -ACGGAAGTCAACGAGATCTTCTCG -ACGGAAGTCAACGAGATCTAGACG -ACGGAAGTCAACGAGATCGTAACG -ACGGAAGTCAACGAGATCACTTCG -ACGGAAGTCAACGAGATCTACGCA -ACGGAAGTCAACGAGATCCTTGCA -ACGGAAGTCAACGAGATCCGAACA -ACGGAAGTCAACGAGATCCAGTCA -ACGGAAGTCAACGAGATCGATCCA -ACGGAAGTCAACGAGATCACGACA -ACGGAAGTCAACGAGATCAGCTCA -ACGGAAGTCAACGAGATCTCACGT -ACGGAAGTCAACGAGATCCGTAGT -ACGGAAGTCAACGAGATCGTCAGT -ACGGAAGTCAACGAGATCGAAGGT -ACGGAAGTCAACGAGATCAACCGT -ACGGAAGTCAACGAGATCTTGTGC -ACGGAAGTCAACGAGATCCTAAGC -ACGGAAGTCAACGAGATCACTAGC -ACGGAAGTCAACGAGATCAGATGC -ACGGAAGTCAACGAGATCTGAAGG -ACGGAAGTCAACGAGATCCAATGG -ACGGAAGTCAACGAGATCATGAGG -ACGGAAGTCAACGAGATCAATGGG -ACGGAAGTCAACGAGATCTCCTGA -ACGGAAGTCAACGAGATCTAGCGA -ACGGAAGTCAACGAGATCCACAGA -ACGGAAGTCAACGAGATCGCAAGA -ACGGAAGTCAACGAGATCGGTTGA -ACGGAAGTCAACGAGATCTCCGAT -ACGGAAGTCAACGAGATCTGGCAT -ACGGAAGTCAACGAGATCCGAGAT -ACGGAAGTCAACGAGATCTACCAC -ACGGAAGTCAACGAGATCCAGAAC -ACGGAAGTCAACGAGATCGTCTAC -ACGGAAGTCAACGAGATCACGTAC -ACGGAAGTCAACGAGATCAGTGAC -ACGGAAGTCAACGAGATCCTGTAG -ACGGAAGTCAACGAGATCCCTAAG -ACGGAAGTCAACGAGATCGTTCAG -ACGGAAGTCAACGAGATCGCATAG -ACGGAAGTCAACGAGATCGACAAG -ACGGAAGTCAACGAGATCAAGCAG -ACGGAAGTCAACGAGATCCGTCAA -ACGGAAGTCAACGAGATCGCTGAA -ACGGAAGTCAACGAGATCAGTACG -ACGGAAGTCAACGAGATCATCCGA -ACGGAAGTCAACGAGATCATGGGA -ACGGAAGTCAACGAGATCGTGCAA -ACGGAAGTCAACGAGATCGAGGAA -ACGGAAGTCAACGAGATCCAGGTA -ACGGAAGTCAACGAGATCGACTCT -ACGGAAGTCAACGAGATCAGTCCT -ACGGAAGTCAACGAGATCTAAGCC -ACGGAAGTCAACGAGATCATAGCC -ACGGAAGTCAACGAGATCTAACCG -ACGGAAGTCAACGAGATCATGCCA -ACGGAAGTCAACCTTCTCGGAAAC -ACGGAAGTCAACCTTCTCAACACC -ACGGAAGTCAACCTTCTCATCGAG -ACGGAAGTCAACCTTCTCCTCCTT -ACGGAAGTCAACCTTCTCCCTGTT -ACGGAAGTCAACCTTCTCCGGTTT -ACGGAAGTCAACCTTCTCGTGGTT -ACGGAAGTCAACCTTCTCGCCTTT -ACGGAAGTCAACCTTCTCGGTCTT -ACGGAAGTCAACCTTCTCACGCTT -ACGGAAGTCAACCTTCTCAGCGTT -ACGGAAGTCAACCTTCTCTTCGTC -ACGGAAGTCAACCTTCTCTCTCTC -ACGGAAGTCAACCTTCTCTGGATC -ACGGAAGTCAACCTTCTCCACTTC -ACGGAAGTCAACCTTCTCGTACTC -ACGGAAGTCAACCTTCTCGATGTC -ACGGAAGTCAACCTTCTCACAGTC -ACGGAAGTCAACCTTCTCTTGCTG -ACGGAAGTCAACCTTCTCTCCATG -ACGGAAGTCAACCTTCTCTGTGTG -ACGGAAGTCAACCTTCTCCTAGTG -ACGGAAGTCAACCTTCTCCATCTG -ACGGAAGTCAACCTTCTCGAGTTG -ACGGAAGTCAACCTTCTCAGACTG -ACGGAAGTCAACCTTCTCTCGGTA -ACGGAAGTCAACCTTCTCTGCCTA -ACGGAAGTCAACCTTCTCCCACTA -ACGGAAGTCAACCTTCTCGGAGTA -ACGGAAGTCAACCTTCTCTCGTCT -ACGGAAGTCAACCTTCTCTGCACT -ACGGAAGTCAACCTTCTCCTGACT -ACGGAAGTCAACCTTCTCCAACCT -ACGGAAGTCAACCTTCTCGCTACT -ACGGAAGTCAACCTTCTCGGATCT -ACGGAAGTCAACCTTCTCAAGGCT -ACGGAAGTCAACCTTCTCTCAACC -ACGGAAGTCAACCTTCTCTGTTCC -ACGGAAGTCAACCTTCTCATTCCC -ACGGAAGTCAACCTTCTCTTCTCG -ACGGAAGTCAACCTTCTCTAGACG -ACGGAAGTCAACCTTCTCGTAACG -ACGGAAGTCAACCTTCTCACTTCG -ACGGAAGTCAACCTTCTCTACGCA -ACGGAAGTCAACCTTCTCCTTGCA -ACGGAAGTCAACCTTCTCCGAACA -ACGGAAGTCAACCTTCTCCAGTCA -ACGGAAGTCAACCTTCTCGATCCA -ACGGAAGTCAACCTTCTCACGACA -ACGGAAGTCAACCTTCTCAGCTCA -ACGGAAGTCAACCTTCTCTCACGT -ACGGAAGTCAACCTTCTCCGTAGT -ACGGAAGTCAACCTTCTCGTCAGT -ACGGAAGTCAACCTTCTCGAAGGT -ACGGAAGTCAACCTTCTCAACCGT -ACGGAAGTCAACCTTCTCTTGTGC -ACGGAAGTCAACCTTCTCCTAAGC -ACGGAAGTCAACCTTCTCACTAGC -ACGGAAGTCAACCTTCTCAGATGC -ACGGAAGTCAACCTTCTCTGAAGG -ACGGAAGTCAACCTTCTCCAATGG -ACGGAAGTCAACCTTCTCATGAGG -ACGGAAGTCAACCTTCTCAATGGG -ACGGAAGTCAACCTTCTCTCCTGA -ACGGAAGTCAACCTTCTCTAGCGA -ACGGAAGTCAACCTTCTCCACAGA -ACGGAAGTCAACCTTCTCGCAAGA -ACGGAAGTCAACCTTCTCGGTTGA -ACGGAAGTCAACCTTCTCTCCGAT -ACGGAAGTCAACCTTCTCTGGCAT -ACGGAAGTCAACCTTCTCCGAGAT -ACGGAAGTCAACCTTCTCTACCAC -ACGGAAGTCAACCTTCTCCAGAAC -ACGGAAGTCAACCTTCTCGTCTAC -ACGGAAGTCAACCTTCTCACGTAC -ACGGAAGTCAACCTTCTCAGTGAC -ACGGAAGTCAACCTTCTCCTGTAG -ACGGAAGTCAACCTTCTCCCTAAG -ACGGAAGTCAACCTTCTCGTTCAG -ACGGAAGTCAACCTTCTCGCATAG -ACGGAAGTCAACCTTCTCGACAAG -ACGGAAGTCAACCTTCTCAAGCAG -ACGGAAGTCAACCTTCTCCGTCAA -ACGGAAGTCAACCTTCTCGCTGAA -ACGGAAGTCAACCTTCTCAGTACG -ACGGAAGTCAACCTTCTCATCCGA -ACGGAAGTCAACCTTCTCATGGGA -ACGGAAGTCAACCTTCTCGTGCAA -ACGGAAGTCAACCTTCTCGAGGAA -ACGGAAGTCAACCTTCTCCAGGTA -ACGGAAGTCAACCTTCTCGACTCT -ACGGAAGTCAACCTTCTCAGTCCT -ACGGAAGTCAACCTTCTCTAAGCC -ACGGAAGTCAACCTTCTCATAGCC -ACGGAAGTCAACCTTCTCTAACCG -ACGGAAGTCAACCTTCTCATGCCA -ACGGAAGTCAACGTTCCTGGAAAC -ACGGAAGTCAACGTTCCTAACACC -ACGGAAGTCAACGTTCCTATCGAG -ACGGAAGTCAACGTTCCTCTCCTT -ACGGAAGTCAACGTTCCTCCTGTT -ACGGAAGTCAACGTTCCTCGGTTT -ACGGAAGTCAACGTTCCTGTGGTT -ACGGAAGTCAACGTTCCTGCCTTT -ACGGAAGTCAACGTTCCTGGTCTT -ACGGAAGTCAACGTTCCTACGCTT -ACGGAAGTCAACGTTCCTAGCGTT -ACGGAAGTCAACGTTCCTTTCGTC -ACGGAAGTCAACGTTCCTTCTCTC -ACGGAAGTCAACGTTCCTTGGATC -ACGGAAGTCAACGTTCCTCACTTC -ACGGAAGTCAACGTTCCTGTACTC -ACGGAAGTCAACGTTCCTGATGTC -ACGGAAGTCAACGTTCCTACAGTC -ACGGAAGTCAACGTTCCTTTGCTG -ACGGAAGTCAACGTTCCTTCCATG -ACGGAAGTCAACGTTCCTTGTGTG -ACGGAAGTCAACGTTCCTCTAGTG -ACGGAAGTCAACGTTCCTCATCTG -ACGGAAGTCAACGTTCCTGAGTTG -ACGGAAGTCAACGTTCCTAGACTG -ACGGAAGTCAACGTTCCTTCGGTA -ACGGAAGTCAACGTTCCTTGCCTA -ACGGAAGTCAACGTTCCTCCACTA -ACGGAAGTCAACGTTCCTGGAGTA -ACGGAAGTCAACGTTCCTTCGTCT -ACGGAAGTCAACGTTCCTTGCACT -ACGGAAGTCAACGTTCCTCTGACT -ACGGAAGTCAACGTTCCTCAACCT -ACGGAAGTCAACGTTCCTGCTACT -ACGGAAGTCAACGTTCCTGGATCT -ACGGAAGTCAACGTTCCTAAGGCT -ACGGAAGTCAACGTTCCTTCAACC -ACGGAAGTCAACGTTCCTTGTTCC -ACGGAAGTCAACGTTCCTATTCCC -ACGGAAGTCAACGTTCCTTTCTCG -ACGGAAGTCAACGTTCCTTAGACG -ACGGAAGTCAACGTTCCTGTAACG -ACGGAAGTCAACGTTCCTACTTCG -ACGGAAGTCAACGTTCCTTACGCA -ACGGAAGTCAACGTTCCTCTTGCA -ACGGAAGTCAACGTTCCTCGAACA -ACGGAAGTCAACGTTCCTCAGTCA -ACGGAAGTCAACGTTCCTGATCCA -ACGGAAGTCAACGTTCCTACGACA -ACGGAAGTCAACGTTCCTAGCTCA -ACGGAAGTCAACGTTCCTTCACGT -ACGGAAGTCAACGTTCCTCGTAGT -ACGGAAGTCAACGTTCCTGTCAGT -ACGGAAGTCAACGTTCCTGAAGGT -ACGGAAGTCAACGTTCCTAACCGT -ACGGAAGTCAACGTTCCTTTGTGC -ACGGAAGTCAACGTTCCTCTAAGC -ACGGAAGTCAACGTTCCTACTAGC -ACGGAAGTCAACGTTCCTAGATGC -ACGGAAGTCAACGTTCCTTGAAGG -ACGGAAGTCAACGTTCCTCAATGG -ACGGAAGTCAACGTTCCTATGAGG -ACGGAAGTCAACGTTCCTAATGGG -ACGGAAGTCAACGTTCCTTCCTGA -ACGGAAGTCAACGTTCCTTAGCGA -ACGGAAGTCAACGTTCCTCACAGA -ACGGAAGTCAACGTTCCTGCAAGA -ACGGAAGTCAACGTTCCTGGTTGA -ACGGAAGTCAACGTTCCTTCCGAT -ACGGAAGTCAACGTTCCTTGGCAT -ACGGAAGTCAACGTTCCTCGAGAT -ACGGAAGTCAACGTTCCTTACCAC -ACGGAAGTCAACGTTCCTCAGAAC -ACGGAAGTCAACGTTCCTGTCTAC -ACGGAAGTCAACGTTCCTACGTAC -ACGGAAGTCAACGTTCCTAGTGAC -ACGGAAGTCAACGTTCCTCTGTAG -ACGGAAGTCAACGTTCCTCCTAAG -ACGGAAGTCAACGTTCCTGTTCAG -ACGGAAGTCAACGTTCCTGCATAG -ACGGAAGTCAACGTTCCTGACAAG -ACGGAAGTCAACGTTCCTAAGCAG -ACGGAAGTCAACGTTCCTCGTCAA -ACGGAAGTCAACGTTCCTGCTGAA -ACGGAAGTCAACGTTCCTAGTACG -ACGGAAGTCAACGTTCCTATCCGA -ACGGAAGTCAACGTTCCTATGGGA -ACGGAAGTCAACGTTCCTGTGCAA -ACGGAAGTCAACGTTCCTGAGGAA -ACGGAAGTCAACGTTCCTCAGGTA -ACGGAAGTCAACGTTCCTGACTCT -ACGGAAGTCAACGTTCCTAGTCCT -ACGGAAGTCAACGTTCCTTAAGCC -ACGGAAGTCAACGTTCCTATAGCC -ACGGAAGTCAACGTTCCTTAACCG -ACGGAAGTCAACGTTCCTATGCCA -ACGGAAGTCAACTTTCGGGGAAAC -ACGGAAGTCAACTTTCGGAACACC -ACGGAAGTCAACTTTCGGATCGAG -ACGGAAGTCAACTTTCGGCTCCTT -ACGGAAGTCAACTTTCGGCCTGTT -ACGGAAGTCAACTTTCGGCGGTTT -ACGGAAGTCAACTTTCGGGTGGTT -ACGGAAGTCAACTTTCGGGCCTTT -ACGGAAGTCAACTTTCGGGGTCTT -ACGGAAGTCAACTTTCGGACGCTT -ACGGAAGTCAACTTTCGGAGCGTT -ACGGAAGTCAACTTTCGGTTCGTC -ACGGAAGTCAACTTTCGGTCTCTC -ACGGAAGTCAACTTTCGGTGGATC -ACGGAAGTCAACTTTCGGCACTTC -ACGGAAGTCAACTTTCGGGTACTC -ACGGAAGTCAACTTTCGGGATGTC -ACGGAAGTCAACTTTCGGACAGTC -ACGGAAGTCAACTTTCGGTTGCTG -ACGGAAGTCAACTTTCGGTCCATG -ACGGAAGTCAACTTTCGGTGTGTG -ACGGAAGTCAACTTTCGGCTAGTG -ACGGAAGTCAACTTTCGGCATCTG -ACGGAAGTCAACTTTCGGGAGTTG -ACGGAAGTCAACTTTCGGAGACTG -ACGGAAGTCAACTTTCGGTCGGTA -ACGGAAGTCAACTTTCGGTGCCTA -ACGGAAGTCAACTTTCGGCCACTA -ACGGAAGTCAACTTTCGGGGAGTA -ACGGAAGTCAACTTTCGGTCGTCT -ACGGAAGTCAACTTTCGGTGCACT -ACGGAAGTCAACTTTCGGCTGACT -ACGGAAGTCAACTTTCGGCAACCT -ACGGAAGTCAACTTTCGGGCTACT -ACGGAAGTCAACTTTCGGGGATCT -ACGGAAGTCAACTTTCGGAAGGCT -ACGGAAGTCAACTTTCGGTCAACC -ACGGAAGTCAACTTTCGGTGTTCC -ACGGAAGTCAACTTTCGGATTCCC -ACGGAAGTCAACTTTCGGTTCTCG -ACGGAAGTCAACTTTCGGTAGACG -ACGGAAGTCAACTTTCGGGTAACG -ACGGAAGTCAACTTTCGGACTTCG -ACGGAAGTCAACTTTCGGTACGCA -ACGGAAGTCAACTTTCGGCTTGCA -ACGGAAGTCAACTTTCGGCGAACA -ACGGAAGTCAACTTTCGGCAGTCA -ACGGAAGTCAACTTTCGGGATCCA -ACGGAAGTCAACTTTCGGACGACA -ACGGAAGTCAACTTTCGGAGCTCA -ACGGAAGTCAACTTTCGGTCACGT -ACGGAAGTCAACTTTCGGCGTAGT -ACGGAAGTCAACTTTCGGGTCAGT -ACGGAAGTCAACTTTCGGGAAGGT -ACGGAAGTCAACTTTCGGAACCGT -ACGGAAGTCAACTTTCGGTTGTGC -ACGGAAGTCAACTTTCGGCTAAGC -ACGGAAGTCAACTTTCGGACTAGC -ACGGAAGTCAACTTTCGGAGATGC -ACGGAAGTCAACTTTCGGTGAAGG -ACGGAAGTCAACTTTCGGCAATGG -ACGGAAGTCAACTTTCGGATGAGG -ACGGAAGTCAACTTTCGGAATGGG -ACGGAAGTCAACTTTCGGTCCTGA -ACGGAAGTCAACTTTCGGTAGCGA -ACGGAAGTCAACTTTCGGCACAGA -ACGGAAGTCAACTTTCGGGCAAGA -ACGGAAGTCAACTTTCGGGGTTGA -ACGGAAGTCAACTTTCGGTCCGAT -ACGGAAGTCAACTTTCGGTGGCAT -ACGGAAGTCAACTTTCGGCGAGAT -ACGGAAGTCAACTTTCGGTACCAC -ACGGAAGTCAACTTTCGGCAGAAC -ACGGAAGTCAACTTTCGGGTCTAC -ACGGAAGTCAACTTTCGGACGTAC -ACGGAAGTCAACTTTCGGAGTGAC -ACGGAAGTCAACTTTCGGCTGTAG -ACGGAAGTCAACTTTCGGCCTAAG -ACGGAAGTCAACTTTCGGGTTCAG -ACGGAAGTCAACTTTCGGGCATAG -ACGGAAGTCAACTTTCGGGACAAG -ACGGAAGTCAACTTTCGGAAGCAG -ACGGAAGTCAACTTTCGGCGTCAA -ACGGAAGTCAACTTTCGGGCTGAA -ACGGAAGTCAACTTTCGGAGTACG -ACGGAAGTCAACTTTCGGATCCGA -ACGGAAGTCAACTTTCGGATGGGA -ACGGAAGTCAACTTTCGGGTGCAA -ACGGAAGTCAACTTTCGGGAGGAA -ACGGAAGTCAACTTTCGGCAGGTA -ACGGAAGTCAACTTTCGGGACTCT -ACGGAAGTCAACTTTCGGAGTCCT -ACGGAAGTCAACTTTCGGTAAGCC -ACGGAAGTCAACTTTCGGATAGCC -ACGGAAGTCAACTTTCGGTAACCG -ACGGAAGTCAACTTTCGGATGCCA -ACGGAAGTCAACGTTGTGGGAAAC -ACGGAAGTCAACGTTGTGAACACC -ACGGAAGTCAACGTTGTGATCGAG -ACGGAAGTCAACGTTGTGCTCCTT -ACGGAAGTCAACGTTGTGCCTGTT -ACGGAAGTCAACGTTGTGCGGTTT -ACGGAAGTCAACGTTGTGGTGGTT -ACGGAAGTCAACGTTGTGGCCTTT -ACGGAAGTCAACGTTGTGGGTCTT -ACGGAAGTCAACGTTGTGACGCTT -ACGGAAGTCAACGTTGTGAGCGTT -ACGGAAGTCAACGTTGTGTTCGTC -ACGGAAGTCAACGTTGTGTCTCTC -ACGGAAGTCAACGTTGTGTGGATC -ACGGAAGTCAACGTTGTGCACTTC -ACGGAAGTCAACGTTGTGGTACTC -ACGGAAGTCAACGTTGTGGATGTC -ACGGAAGTCAACGTTGTGACAGTC -ACGGAAGTCAACGTTGTGTTGCTG -ACGGAAGTCAACGTTGTGTCCATG -ACGGAAGTCAACGTTGTGTGTGTG -ACGGAAGTCAACGTTGTGCTAGTG -ACGGAAGTCAACGTTGTGCATCTG -ACGGAAGTCAACGTTGTGGAGTTG -ACGGAAGTCAACGTTGTGAGACTG -ACGGAAGTCAACGTTGTGTCGGTA -ACGGAAGTCAACGTTGTGTGCCTA -ACGGAAGTCAACGTTGTGCCACTA -ACGGAAGTCAACGTTGTGGGAGTA -ACGGAAGTCAACGTTGTGTCGTCT -ACGGAAGTCAACGTTGTGTGCACT -ACGGAAGTCAACGTTGTGCTGACT -ACGGAAGTCAACGTTGTGCAACCT -ACGGAAGTCAACGTTGTGGCTACT -ACGGAAGTCAACGTTGTGGGATCT -ACGGAAGTCAACGTTGTGAAGGCT -ACGGAAGTCAACGTTGTGTCAACC -ACGGAAGTCAACGTTGTGTGTTCC -ACGGAAGTCAACGTTGTGATTCCC -ACGGAAGTCAACGTTGTGTTCTCG -ACGGAAGTCAACGTTGTGTAGACG -ACGGAAGTCAACGTTGTGGTAACG -ACGGAAGTCAACGTTGTGACTTCG -ACGGAAGTCAACGTTGTGTACGCA -ACGGAAGTCAACGTTGTGCTTGCA -ACGGAAGTCAACGTTGTGCGAACA -ACGGAAGTCAACGTTGTGCAGTCA -ACGGAAGTCAACGTTGTGGATCCA -ACGGAAGTCAACGTTGTGACGACA -ACGGAAGTCAACGTTGTGAGCTCA -ACGGAAGTCAACGTTGTGTCACGT -ACGGAAGTCAACGTTGTGCGTAGT -ACGGAAGTCAACGTTGTGGTCAGT -ACGGAAGTCAACGTTGTGGAAGGT -ACGGAAGTCAACGTTGTGAACCGT -ACGGAAGTCAACGTTGTGTTGTGC -ACGGAAGTCAACGTTGTGCTAAGC -ACGGAAGTCAACGTTGTGACTAGC -ACGGAAGTCAACGTTGTGAGATGC -ACGGAAGTCAACGTTGTGTGAAGG -ACGGAAGTCAACGTTGTGCAATGG -ACGGAAGTCAACGTTGTGATGAGG -ACGGAAGTCAACGTTGTGAATGGG -ACGGAAGTCAACGTTGTGTCCTGA -ACGGAAGTCAACGTTGTGTAGCGA -ACGGAAGTCAACGTTGTGCACAGA -ACGGAAGTCAACGTTGTGGCAAGA -ACGGAAGTCAACGTTGTGGGTTGA -ACGGAAGTCAACGTTGTGTCCGAT -ACGGAAGTCAACGTTGTGTGGCAT -ACGGAAGTCAACGTTGTGCGAGAT -ACGGAAGTCAACGTTGTGTACCAC -ACGGAAGTCAACGTTGTGCAGAAC -ACGGAAGTCAACGTTGTGGTCTAC -ACGGAAGTCAACGTTGTGACGTAC -ACGGAAGTCAACGTTGTGAGTGAC -ACGGAAGTCAACGTTGTGCTGTAG -ACGGAAGTCAACGTTGTGCCTAAG -ACGGAAGTCAACGTTGTGGTTCAG -ACGGAAGTCAACGTTGTGGCATAG -ACGGAAGTCAACGTTGTGGACAAG -ACGGAAGTCAACGTTGTGAAGCAG -ACGGAAGTCAACGTTGTGCGTCAA -ACGGAAGTCAACGTTGTGGCTGAA -ACGGAAGTCAACGTTGTGAGTACG -ACGGAAGTCAACGTTGTGATCCGA -ACGGAAGTCAACGTTGTGATGGGA -ACGGAAGTCAACGTTGTGGTGCAA -ACGGAAGTCAACGTTGTGGAGGAA -ACGGAAGTCAACGTTGTGCAGGTA -ACGGAAGTCAACGTTGTGGACTCT -ACGGAAGTCAACGTTGTGAGTCCT -ACGGAAGTCAACGTTGTGTAAGCC -ACGGAAGTCAACGTTGTGATAGCC -ACGGAAGTCAACGTTGTGTAACCG -ACGGAAGTCAACGTTGTGATGCCA -ACGGAAGTCAACTTTGCCGGAAAC -ACGGAAGTCAACTTTGCCAACACC -ACGGAAGTCAACTTTGCCATCGAG -ACGGAAGTCAACTTTGCCCTCCTT -ACGGAAGTCAACTTTGCCCCTGTT -ACGGAAGTCAACTTTGCCCGGTTT -ACGGAAGTCAACTTTGCCGTGGTT -ACGGAAGTCAACTTTGCCGCCTTT -ACGGAAGTCAACTTTGCCGGTCTT -ACGGAAGTCAACTTTGCCACGCTT -ACGGAAGTCAACTTTGCCAGCGTT -ACGGAAGTCAACTTTGCCTTCGTC -ACGGAAGTCAACTTTGCCTCTCTC -ACGGAAGTCAACTTTGCCTGGATC -ACGGAAGTCAACTTTGCCCACTTC -ACGGAAGTCAACTTTGCCGTACTC -ACGGAAGTCAACTTTGCCGATGTC -ACGGAAGTCAACTTTGCCACAGTC -ACGGAAGTCAACTTTGCCTTGCTG -ACGGAAGTCAACTTTGCCTCCATG -ACGGAAGTCAACTTTGCCTGTGTG -ACGGAAGTCAACTTTGCCCTAGTG -ACGGAAGTCAACTTTGCCCATCTG -ACGGAAGTCAACTTTGCCGAGTTG -ACGGAAGTCAACTTTGCCAGACTG -ACGGAAGTCAACTTTGCCTCGGTA -ACGGAAGTCAACTTTGCCTGCCTA -ACGGAAGTCAACTTTGCCCCACTA -ACGGAAGTCAACTTTGCCGGAGTA -ACGGAAGTCAACTTTGCCTCGTCT -ACGGAAGTCAACTTTGCCTGCACT -ACGGAAGTCAACTTTGCCCTGACT -ACGGAAGTCAACTTTGCCCAACCT -ACGGAAGTCAACTTTGCCGCTACT -ACGGAAGTCAACTTTGCCGGATCT -ACGGAAGTCAACTTTGCCAAGGCT -ACGGAAGTCAACTTTGCCTCAACC -ACGGAAGTCAACTTTGCCTGTTCC -ACGGAAGTCAACTTTGCCATTCCC -ACGGAAGTCAACTTTGCCTTCTCG -ACGGAAGTCAACTTTGCCTAGACG -ACGGAAGTCAACTTTGCCGTAACG -ACGGAAGTCAACTTTGCCACTTCG -ACGGAAGTCAACTTTGCCTACGCA -ACGGAAGTCAACTTTGCCCTTGCA -ACGGAAGTCAACTTTGCCCGAACA -ACGGAAGTCAACTTTGCCCAGTCA -ACGGAAGTCAACTTTGCCGATCCA -ACGGAAGTCAACTTTGCCACGACA -ACGGAAGTCAACTTTGCCAGCTCA -ACGGAAGTCAACTTTGCCTCACGT -ACGGAAGTCAACTTTGCCCGTAGT -ACGGAAGTCAACTTTGCCGTCAGT -ACGGAAGTCAACTTTGCCGAAGGT -ACGGAAGTCAACTTTGCCAACCGT -ACGGAAGTCAACTTTGCCTTGTGC -ACGGAAGTCAACTTTGCCCTAAGC -ACGGAAGTCAACTTTGCCACTAGC -ACGGAAGTCAACTTTGCCAGATGC -ACGGAAGTCAACTTTGCCTGAAGG -ACGGAAGTCAACTTTGCCCAATGG -ACGGAAGTCAACTTTGCCATGAGG -ACGGAAGTCAACTTTGCCAATGGG -ACGGAAGTCAACTTTGCCTCCTGA -ACGGAAGTCAACTTTGCCTAGCGA -ACGGAAGTCAACTTTGCCCACAGA -ACGGAAGTCAACTTTGCCGCAAGA -ACGGAAGTCAACTTTGCCGGTTGA -ACGGAAGTCAACTTTGCCTCCGAT -ACGGAAGTCAACTTTGCCTGGCAT -ACGGAAGTCAACTTTGCCCGAGAT -ACGGAAGTCAACTTTGCCTACCAC -ACGGAAGTCAACTTTGCCCAGAAC -ACGGAAGTCAACTTTGCCGTCTAC -ACGGAAGTCAACTTTGCCACGTAC -ACGGAAGTCAACTTTGCCAGTGAC -ACGGAAGTCAACTTTGCCCTGTAG -ACGGAAGTCAACTTTGCCCCTAAG -ACGGAAGTCAACTTTGCCGTTCAG -ACGGAAGTCAACTTTGCCGCATAG -ACGGAAGTCAACTTTGCCGACAAG -ACGGAAGTCAACTTTGCCAAGCAG -ACGGAAGTCAACTTTGCCCGTCAA -ACGGAAGTCAACTTTGCCGCTGAA -ACGGAAGTCAACTTTGCCAGTACG -ACGGAAGTCAACTTTGCCATCCGA -ACGGAAGTCAACTTTGCCATGGGA -ACGGAAGTCAACTTTGCCGTGCAA -ACGGAAGTCAACTTTGCCGAGGAA -ACGGAAGTCAACTTTGCCCAGGTA -ACGGAAGTCAACTTTGCCGACTCT -ACGGAAGTCAACTTTGCCAGTCCT -ACGGAAGTCAACTTTGCCTAAGCC -ACGGAAGTCAACTTTGCCATAGCC -ACGGAAGTCAACTTTGCCTAACCG -ACGGAAGTCAACTTTGCCATGCCA -ACGGAAGTCAACCTTGGTGGAAAC -ACGGAAGTCAACCTTGGTAACACC -ACGGAAGTCAACCTTGGTATCGAG -ACGGAAGTCAACCTTGGTCTCCTT -ACGGAAGTCAACCTTGGTCCTGTT -ACGGAAGTCAACCTTGGTCGGTTT -ACGGAAGTCAACCTTGGTGTGGTT -ACGGAAGTCAACCTTGGTGCCTTT -ACGGAAGTCAACCTTGGTGGTCTT -ACGGAAGTCAACCTTGGTACGCTT -ACGGAAGTCAACCTTGGTAGCGTT -ACGGAAGTCAACCTTGGTTTCGTC -ACGGAAGTCAACCTTGGTTCTCTC -ACGGAAGTCAACCTTGGTTGGATC -ACGGAAGTCAACCTTGGTCACTTC -ACGGAAGTCAACCTTGGTGTACTC -ACGGAAGTCAACCTTGGTGATGTC -ACGGAAGTCAACCTTGGTACAGTC -ACGGAAGTCAACCTTGGTTTGCTG -ACGGAAGTCAACCTTGGTTCCATG -ACGGAAGTCAACCTTGGTTGTGTG -ACGGAAGTCAACCTTGGTCTAGTG -ACGGAAGTCAACCTTGGTCATCTG -ACGGAAGTCAACCTTGGTGAGTTG -ACGGAAGTCAACCTTGGTAGACTG -ACGGAAGTCAACCTTGGTTCGGTA -ACGGAAGTCAACCTTGGTTGCCTA -ACGGAAGTCAACCTTGGTCCACTA -ACGGAAGTCAACCTTGGTGGAGTA -ACGGAAGTCAACCTTGGTTCGTCT -ACGGAAGTCAACCTTGGTTGCACT -ACGGAAGTCAACCTTGGTCTGACT -ACGGAAGTCAACCTTGGTCAACCT -ACGGAAGTCAACCTTGGTGCTACT -ACGGAAGTCAACCTTGGTGGATCT -ACGGAAGTCAACCTTGGTAAGGCT -ACGGAAGTCAACCTTGGTTCAACC -ACGGAAGTCAACCTTGGTTGTTCC -ACGGAAGTCAACCTTGGTATTCCC -ACGGAAGTCAACCTTGGTTTCTCG -ACGGAAGTCAACCTTGGTTAGACG -ACGGAAGTCAACCTTGGTGTAACG -ACGGAAGTCAACCTTGGTACTTCG -ACGGAAGTCAACCTTGGTTACGCA -ACGGAAGTCAACCTTGGTCTTGCA -ACGGAAGTCAACCTTGGTCGAACA -ACGGAAGTCAACCTTGGTCAGTCA -ACGGAAGTCAACCTTGGTGATCCA -ACGGAAGTCAACCTTGGTACGACA -ACGGAAGTCAACCTTGGTAGCTCA -ACGGAAGTCAACCTTGGTTCACGT -ACGGAAGTCAACCTTGGTCGTAGT -ACGGAAGTCAACCTTGGTGTCAGT -ACGGAAGTCAACCTTGGTGAAGGT -ACGGAAGTCAACCTTGGTAACCGT -ACGGAAGTCAACCTTGGTTTGTGC -ACGGAAGTCAACCTTGGTCTAAGC -ACGGAAGTCAACCTTGGTACTAGC -ACGGAAGTCAACCTTGGTAGATGC -ACGGAAGTCAACCTTGGTTGAAGG -ACGGAAGTCAACCTTGGTCAATGG -ACGGAAGTCAACCTTGGTATGAGG -ACGGAAGTCAACCTTGGTAATGGG -ACGGAAGTCAACCTTGGTTCCTGA -ACGGAAGTCAACCTTGGTTAGCGA -ACGGAAGTCAACCTTGGTCACAGA -ACGGAAGTCAACCTTGGTGCAAGA -ACGGAAGTCAACCTTGGTGGTTGA -ACGGAAGTCAACCTTGGTTCCGAT -ACGGAAGTCAACCTTGGTTGGCAT -ACGGAAGTCAACCTTGGTCGAGAT -ACGGAAGTCAACCTTGGTTACCAC -ACGGAAGTCAACCTTGGTCAGAAC -ACGGAAGTCAACCTTGGTGTCTAC -ACGGAAGTCAACCTTGGTACGTAC -ACGGAAGTCAACCTTGGTAGTGAC -ACGGAAGTCAACCTTGGTCTGTAG -ACGGAAGTCAACCTTGGTCCTAAG -ACGGAAGTCAACCTTGGTGTTCAG -ACGGAAGTCAACCTTGGTGCATAG -ACGGAAGTCAACCTTGGTGACAAG -ACGGAAGTCAACCTTGGTAAGCAG -ACGGAAGTCAACCTTGGTCGTCAA -ACGGAAGTCAACCTTGGTGCTGAA -ACGGAAGTCAACCTTGGTAGTACG -ACGGAAGTCAACCTTGGTATCCGA -ACGGAAGTCAACCTTGGTATGGGA -ACGGAAGTCAACCTTGGTGTGCAA -ACGGAAGTCAACCTTGGTGAGGAA -ACGGAAGTCAACCTTGGTCAGGTA -ACGGAAGTCAACCTTGGTGACTCT -ACGGAAGTCAACCTTGGTAGTCCT -ACGGAAGTCAACCTTGGTTAAGCC -ACGGAAGTCAACCTTGGTATAGCC -ACGGAAGTCAACCTTGGTTAACCG -ACGGAAGTCAACCTTGGTATGCCA -ACGGAAGTCAACCTTACGGGAAAC -ACGGAAGTCAACCTTACGAACACC -ACGGAAGTCAACCTTACGATCGAG -ACGGAAGTCAACCTTACGCTCCTT -ACGGAAGTCAACCTTACGCCTGTT -ACGGAAGTCAACCTTACGCGGTTT -ACGGAAGTCAACCTTACGGTGGTT -ACGGAAGTCAACCTTACGGCCTTT -ACGGAAGTCAACCTTACGGGTCTT -ACGGAAGTCAACCTTACGACGCTT -ACGGAAGTCAACCTTACGAGCGTT -ACGGAAGTCAACCTTACGTTCGTC -ACGGAAGTCAACCTTACGTCTCTC -ACGGAAGTCAACCTTACGTGGATC -ACGGAAGTCAACCTTACGCACTTC -ACGGAAGTCAACCTTACGGTACTC -ACGGAAGTCAACCTTACGGATGTC -ACGGAAGTCAACCTTACGACAGTC -ACGGAAGTCAACCTTACGTTGCTG -ACGGAAGTCAACCTTACGTCCATG -ACGGAAGTCAACCTTACGTGTGTG -ACGGAAGTCAACCTTACGCTAGTG -ACGGAAGTCAACCTTACGCATCTG -ACGGAAGTCAACCTTACGGAGTTG -ACGGAAGTCAACCTTACGAGACTG -ACGGAAGTCAACCTTACGTCGGTA -ACGGAAGTCAACCTTACGTGCCTA -ACGGAAGTCAACCTTACGCCACTA -ACGGAAGTCAACCTTACGGGAGTA -ACGGAAGTCAACCTTACGTCGTCT -ACGGAAGTCAACCTTACGTGCACT -ACGGAAGTCAACCTTACGCTGACT -ACGGAAGTCAACCTTACGCAACCT -ACGGAAGTCAACCTTACGGCTACT -ACGGAAGTCAACCTTACGGGATCT -ACGGAAGTCAACCTTACGAAGGCT -ACGGAAGTCAACCTTACGTCAACC -ACGGAAGTCAACCTTACGTGTTCC -ACGGAAGTCAACCTTACGATTCCC -ACGGAAGTCAACCTTACGTTCTCG -ACGGAAGTCAACCTTACGTAGACG -ACGGAAGTCAACCTTACGGTAACG -ACGGAAGTCAACCTTACGACTTCG -ACGGAAGTCAACCTTACGTACGCA -ACGGAAGTCAACCTTACGCTTGCA -ACGGAAGTCAACCTTACGCGAACA -ACGGAAGTCAACCTTACGCAGTCA -ACGGAAGTCAACCTTACGGATCCA -ACGGAAGTCAACCTTACGACGACA -ACGGAAGTCAACCTTACGAGCTCA -ACGGAAGTCAACCTTACGTCACGT -ACGGAAGTCAACCTTACGCGTAGT -ACGGAAGTCAACCTTACGGTCAGT -ACGGAAGTCAACCTTACGGAAGGT -ACGGAAGTCAACCTTACGAACCGT -ACGGAAGTCAACCTTACGTTGTGC -ACGGAAGTCAACCTTACGCTAAGC -ACGGAAGTCAACCTTACGACTAGC -ACGGAAGTCAACCTTACGAGATGC -ACGGAAGTCAACCTTACGTGAAGG -ACGGAAGTCAACCTTACGCAATGG -ACGGAAGTCAACCTTACGATGAGG -ACGGAAGTCAACCTTACGAATGGG -ACGGAAGTCAACCTTACGTCCTGA -ACGGAAGTCAACCTTACGTAGCGA -ACGGAAGTCAACCTTACGCACAGA -ACGGAAGTCAACCTTACGGCAAGA -ACGGAAGTCAACCTTACGGGTTGA -ACGGAAGTCAACCTTACGTCCGAT -ACGGAAGTCAACCTTACGTGGCAT -ACGGAAGTCAACCTTACGCGAGAT -ACGGAAGTCAACCTTACGTACCAC -ACGGAAGTCAACCTTACGCAGAAC -ACGGAAGTCAACCTTACGGTCTAC -ACGGAAGTCAACCTTACGACGTAC -ACGGAAGTCAACCTTACGAGTGAC -ACGGAAGTCAACCTTACGCTGTAG -ACGGAAGTCAACCTTACGCCTAAG -ACGGAAGTCAACCTTACGGTTCAG -ACGGAAGTCAACCTTACGGCATAG -ACGGAAGTCAACCTTACGGACAAG -ACGGAAGTCAACCTTACGAAGCAG -ACGGAAGTCAACCTTACGCGTCAA -ACGGAAGTCAACCTTACGGCTGAA -ACGGAAGTCAACCTTACGAGTACG -ACGGAAGTCAACCTTACGATCCGA -ACGGAAGTCAACCTTACGATGGGA -ACGGAAGTCAACCTTACGGTGCAA -ACGGAAGTCAACCTTACGGAGGAA -ACGGAAGTCAACCTTACGCAGGTA -ACGGAAGTCAACCTTACGGACTCT -ACGGAAGTCAACCTTACGAGTCCT -ACGGAAGTCAACCTTACGTAAGCC -ACGGAAGTCAACCTTACGATAGCC -ACGGAAGTCAACCTTACGTAACCG -ACGGAAGTCAACCTTACGATGCCA -ACGGAAGTCAACGTTAGCGGAAAC -ACGGAAGTCAACGTTAGCAACACC -ACGGAAGTCAACGTTAGCATCGAG -ACGGAAGTCAACGTTAGCCTCCTT -ACGGAAGTCAACGTTAGCCCTGTT -ACGGAAGTCAACGTTAGCCGGTTT -ACGGAAGTCAACGTTAGCGTGGTT -ACGGAAGTCAACGTTAGCGCCTTT -ACGGAAGTCAACGTTAGCGGTCTT -ACGGAAGTCAACGTTAGCACGCTT -ACGGAAGTCAACGTTAGCAGCGTT -ACGGAAGTCAACGTTAGCTTCGTC -ACGGAAGTCAACGTTAGCTCTCTC -ACGGAAGTCAACGTTAGCTGGATC -ACGGAAGTCAACGTTAGCCACTTC -ACGGAAGTCAACGTTAGCGTACTC -ACGGAAGTCAACGTTAGCGATGTC -ACGGAAGTCAACGTTAGCACAGTC -ACGGAAGTCAACGTTAGCTTGCTG -ACGGAAGTCAACGTTAGCTCCATG -ACGGAAGTCAACGTTAGCTGTGTG -ACGGAAGTCAACGTTAGCCTAGTG -ACGGAAGTCAACGTTAGCCATCTG -ACGGAAGTCAACGTTAGCGAGTTG -ACGGAAGTCAACGTTAGCAGACTG -ACGGAAGTCAACGTTAGCTCGGTA -ACGGAAGTCAACGTTAGCTGCCTA -ACGGAAGTCAACGTTAGCCCACTA -ACGGAAGTCAACGTTAGCGGAGTA -ACGGAAGTCAACGTTAGCTCGTCT -ACGGAAGTCAACGTTAGCTGCACT -ACGGAAGTCAACGTTAGCCTGACT -ACGGAAGTCAACGTTAGCCAACCT -ACGGAAGTCAACGTTAGCGCTACT -ACGGAAGTCAACGTTAGCGGATCT -ACGGAAGTCAACGTTAGCAAGGCT -ACGGAAGTCAACGTTAGCTCAACC -ACGGAAGTCAACGTTAGCTGTTCC -ACGGAAGTCAACGTTAGCATTCCC -ACGGAAGTCAACGTTAGCTTCTCG -ACGGAAGTCAACGTTAGCTAGACG -ACGGAAGTCAACGTTAGCGTAACG -ACGGAAGTCAACGTTAGCACTTCG -ACGGAAGTCAACGTTAGCTACGCA -ACGGAAGTCAACGTTAGCCTTGCA -ACGGAAGTCAACGTTAGCCGAACA -ACGGAAGTCAACGTTAGCCAGTCA -ACGGAAGTCAACGTTAGCGATCCA -ACGGAAGTCAACGTTAGCACGACA -ACGGAAGTCAACGTTAGCAGCTCA -ACGGAAGTCAACGTTAGCTCACGT -ACGGAAGTCAACGTTAGCCGTAGT -ACGGAAGTCAACGTTAGCGTCAGT -ACGGAAGTCAACGTTAGCGAAGGT -ACGGAAGTCAACGTTAGCAACCGT -ACGGAAGTCAACGTTAGCTTGTGC -ACGGAAGTCAACGTTAGCCTAAGC -ACGGAAGTCAACGTTAGCACTAGC -ACGGAAGTCAACGTTAGCAGATGC -ACGGAAGTCAACGTTAGCTGAAGG -ACGGAAGTCAACGTTAGCCAATGG -ACGGAAGTCAACGTTAGCATGAGG -ACGGAAGTCAACGTTAGCAATGGG -ACGGAAGTCAACGTTAGCTCCTGA -ACGGAAGTCAACGTTAGCTAGCGA -ACGGAAGTCAACGTTAGCCACAGA -ACGGAAGTCAACGTTAGCGCAAGA -ACGGAAGTCAACGTTAGCGGTTGA -ACGGAAGTCAACGTTAGCTCCGAT -ACGGAAGTCAACGTTAGCTGGCAT -ACGGAAGTCAACGTTAGCCGAGAT -ACGGAAGTCAACGTTAGCTACCAC -ACGGAAGTCAACGTTAGCCAGAAC -ACGGAAGTCAACGTTAGCGTCTAC -ACGGAAGTCAACGTTAGCACGTAC -ACGGAAGTCAACGTTAGCAGTGAC -ACGGAAGTCAACGTTAGCCTGTAG -ACGGAAGTCAACGTTAGCCCTAAG -ACGGAAGTCAACGTTAGCGTTCAG -ACGGAAGTCAACGTTAGCGCATAG -ACGGAAGTCAACGTTAGCGACAAG -ACGGAAGTCAACGTTAGCAAGCAG -ACGGAAGTCAACGTTAGCCGTCAA -ACGGAAGTCAACGTTAGCGCTGAA -ACGGAAGTCAACGTTAGCAGTACG -ACGGAAGTCAACGTTAGCATCCGA -ACGGAAGTCAACGTTAGCATGGGA -ACGGAAGTCAACGTTAGCGTGCAA -ACGGAAGTCAACGTTAGCGAGGAA -ACGGAAGTCAACGTTAGCCAGGTA -ACGGAAGTCAACGTTAGCGACTCT -ACGGAAGTCAACGTTAGCAGTCCT -ACGGAAGTCAACGTTAGCTAAGCC -ACGGAAGTCAACGTTAGCATAGCC -ACGGAAGTCAACGTTAGCTAACCG -ACGGAAGTCAACGTTAGCATGCCA -ACGGAAGTCAACGTCTTCGGAAAC -ACGGAAGTCAACGTCTTCAACACC -ACGGAAGTCAACGTCTTCATCGAG -ACGGAAGTCAACGTCTTCCTCCTT -ACGGAAGTCAACGTCTTCCCTGTT -ACGGAAGTCAACGTCTTCCGGTTT -ACGGAAGTCAACGTCTTCGTGGTT -ACGGAAGTCAACGTCTTCGCCTTT -ACGGAAGTCAACGTCTTCGGTCTT -ACGGAAGTCAACGTCTTCACGCTT -ACGGAAGTCAACGTCTTCAGCGTT -ACGGAAGTCAACGTCTTCTTCGTC -ACGGAAGTCAACGTCTTCTCTCTC -ACGGAAGTCAACGTCTTCTGGATC -ACGGAAGTCAACGTCTTCCACTTC -ACGGAAGTCAACGTCTTCGTACTC -ACGGAAGTCAACGTCTTCGATGTC -ACGGAAGTCAACGTCTTCACAGTC -ACGGAAGTCAACGTCTTCTTGCTG -ACGGAAGTCAACGTCTTCTCCATG -ACGGAAGTCAACGTCTTCTGTGTG -ACGGAAGTCAACGTCTTCCTAGTG -ACGGAAGTCAACGTCTTCCATCTG -ACGGAAGTCAACGTCTTCGAGTTG -ACGGAAGTCAACGTCTTCAGACTG -ACGGAAGTCAACGTCTTCTCGGTA -ACGGAAGTCAACGTCTTCTGCCTA -ACGGAAGTCAACGTCTTCCCACTA -ACGGAAGTCAACGTCTTCGGAGTA -ACGGAAGTCAACGTCTTCTCGTCT -ACGGAAGTCAACGTCTTCTGCACT -ACGGAAGTCAACGTCTTCCTGACT -ACGGAAGTCAACGTCTTCCAACCT -ACGGAAGTCAACGTCTTCGCTACT -ACGGAAGTCAACGTCTTCGGATCT -ACGGAAGTCAACGTCTTCAAGGCT -ACGGAAGTCAACGTCTTCTCAACC -ACGGAAGTCAACGTCTTCTGTTCC -ACGGAAGTCAACGTCTTCATTCCC -ACGGAAGTCAACGTCTTCTTCTCG -ACGGAAGTCAACGTCTTCTAGACG -ACGGAAGTCAACGTCTTCGTAACG -ACGGAAGTCAACGTCTTCACTTCG -ACGGAAGTCAACGTCTTCTACGCA -ACGGAAGTCAACGTCTTCCTTGCA -ACGGAAGTCAACGTCTTCCGAACA -ACGGAAGTCAACGTCTTCCAGTCA -ACGGAAGTCAACGTCTTCGATCCA -ACGGAAGTCAACGTCTTCACGACA -ACGGAAGTCAACGTCTTCAGCTCA -ACGGAAGTCAACGTCTTCTCACGT -ACGGAAGTCAACGTCTTCCGTAGT -ACGGAAGTCAACGTCTTCGTCAGT -ACGGAAGTCAACGTCTTCGAAGGT -ACGGAAGTCAACGTCTTCAACCGT -ACGGAAGTCAACGTCTTCTTGTGC -ACGGAAGTCAACGTCTTCCTAAGC -ACGGAAGTCAACGTCTTCACTAGC -ACGGAAGTCAACGTCTTCAGATGC -ACGGAAGTCAACGTCTTCTGAAGG -ACGGAAGTCAACGTCTTCCAATGG -ACGGAAGTCAACGTCTTCATGAGG -ACGGAAGTCAACGTCTTCAATGGG -ACGGAAGTCAACGTCTTCTCCTGA -ACGGAAGTCAACGTCTTCTAGCGA -ACGGAAGTCAACGTCTTCCACAGA -ACGGAAGTCAACGTCTTCGCAAGA -ACGGAAGTCAACGTCTTCGGTTGA -ACGGAAGTCAACGTCTTCTCCGAT -ACGGAAGTCAACGTCTTCTGGCAT -ACGGAAGTCAACGTCTTCCGAGAT -ACGGAAGTCAACGTCTTCTACCAC -ACGGAAGTCAACGTCTTCCAGAAC -ACGGAAGTCAACGTCTTCGTCTAC -ACGGAAGTCAACGTCTTCACGTAC -ACGGAAGTCAACGTCTTCAGTGAC -ACGGAAGTCAACGTCTTCCTGTAG -ACGGAAGTCAACGTCTTCCCTAAG -ACGGAAGTCAACGTCTTCGTTCAG -ACGGAAGTCAACGTCTTCGCATAG -ACGGAAGTCAACGTCTTCGACAAG -ACGGAAGTCAACGTCTTCAAGCAG -ACGGAAGTCAACGTCTTCCGTCAA -ACGGAAGTCAACGTCTTCGCTGAA -ACGGAAGTCAACGTCTTCAGTACG -ACGGAAGTCAACGTCTTCATCCGA -ACGGAAGTCAACGTCTTCATGGGA -ACGGAAGTCAACGTCTTCGTGCAA -ACGGAAGTCAACGTCTTCGAGGAA -ACGGAAGTCAACGTCTTCCAGGTA -ACGGAAGTCAACGTCTTCGACTCT -ACGGAAGTCAACGTCTTCAGTCCT -ACGGAAGTCAACGTCTTCTAAGCC -ACGGAAGTCAACGTCTTCATAGCC -ACGGAAGTCAACGTCTTCTAACCG -ACGGAAGTCAACGTCTTCATGCCA -ACGGAAGTCAACCTCTCTGGAAAC -ACGGAAGTCAACCTCTCTAACACC -ACGGAAGTCAACCTCTCTATCGAG -ACGGAAGTCAACCTCTCTCTCCTT -ACGGAAGTCAACCTCTCTCCTGTT -ACGGAAGTCAACCTCTCTCGGTTT -ACGGAAGTCAACCTCTCTGTGGTT -ACGGAAGTCAACCTCTCTGCCTTT -ACGGAAGTCAACCTCTCTGGTCTT -ACGGAAGTCAACCTCTCTACGCTT -ACGGAAGTCAACCTCTCTAGCGTT -ACGGAAGTCAACCTCTCTTTCGTC -ACGGAAGTCAACCTCTCTTCTCTC -ACGGAAGTCAACCTCTCTTGGATC -ACGGAAGTCAACCTCTCTCACTTC -ACGGAAGTCAACCTCTCTGTACTC -ACGGAAGTCAACCTCTCTGATGTC -ACGGAAGTCAACCTCTCTACAGTC -ACGGAAGTCAACCTCTCTTTGCTG -ACGGAAGTCAACCTCTCTTCCATG -ACGGAAGTCAACCTCTCTTGTGTG -ACGGAAGTCAACCTCTCTCTAGTG -ACGGAAGTCAACCTCTCTCATCTG -ACGGAAGTCAACCTCTCTGAGTTG -ACGGAAGTCAACCTCTCTAGACTG -ACGGAAGTCAACCTCTCTTCGGTA -ACGGAAGTCAACCTCTCTTGCCTA -ACGGAAGTCAACCTCTCTCCACTA -ACGGAAGTCAACCTCTCTGGAGTA -ACGGAAGTCAACCTCTCTTCGTCT -ACGGAAGTCAACCTCTCTTGCACT -ACGGAAGTCAACCTCTCTCTGACT -ACGGAAGTCAACCTCTCTCAACCT -ACGGAAGTCAACCTCTCTGCTACT -ACGGAAGTCAACCTCTCTGGATCT -ACGGAAGTCAACCTCTCTAAGGCT -ACGGAAGTCAACCTCTCTTCAACC -ACGGAAGTCAACCTCTCTTGTTCC -ACGGAAGTCAACCTCTCTATTCCC -ACGGAAGTCAACCTCTCTTTCTCG -ACGGAAGTCAACCTCTCTTAGACG -ACGGAAGTCAACCTCTCTGTAACG -ACGGAAGTCAACCTCTCTACTTCG -ACGGAAGTCAACCTCTCTTACGCA -ACGGAAGTCAACCTCTCTCTTGCA -ACGGAAGTCAACCTCTCTCGAACA -ACGGAAGTCAACCTCTCTCAGTCA -ACGGAAGTCAACCTCTCTGATCCA -ACGGAAGTCAACCTCTCTACGACA -ACGGAAGTCAACCTCTCTAGCTCA -ACGGAAGTCAACCTCTCTTCACGT -ACGGAAGTCAACCTCTCTCGTAGT -ACGGAAGTCAACCTCTCTGTCAGT -ACGGAAGTCAACCTCTCTGAAGGT -ACGGAAGTCAACCTCTCTAACCGT -ACGGAAGTCAACCTCTCTTTGTGC -ACGGAAGTCAACCTCTCTCTAAGC -ACGGAAGTCAACCTCTCTACTAGC -ACGGAAGTCAACCTCTCTAGATGC -ACGGAAGTCAACCTCTCTTGAAGG -ACGGAAGTCAACCTCTCTCAATGG -ACGGAAGTCAACCTCTCTATGAGG -ACGGAAGTCAACCTCTCTAATGGG -ACGGAAGTCAACCTCTCTTCCTGA -ACGGAAGTCAACCTCTCTTAGCGA -ACGGAAGTCAACCTCTCTCACAGA -ACGGAAGTCAACCTCTCTGCAAGA -ACGGAAGTCAACCTCTCTGGTTGA -ACGGAAGTCAACCTCTCTTCCGAT -ACGGAAGTCAACCTCTCTTGGCAT -ACGGAAGTCAACCTCTCTCGAGAT -ACGGAAGTCAACCTCTCTTACCAC -ACGGAAGTCAACCTCTCTCAGAAC -ACGGAAGTCAACCTCTCTGTCTAC -ACGGAAGTCAACCTCTCTACGTAC -ACGGAAGTCAACCTCTCTAGTGAC -ACGGAAGTCAACCTCTCTCTGTAG -ACGGAAGTCAACCTCTCTCCTAAG -ACGGAAGTCAACCTCTCTGTTCAG -ACGGAAGTCAACCTCTCTGCATAG -ACGGAAGTCAACCTCTCTGACAAG -ACGGAAGTCAACCTCTCTAAGCAG -ACGGAAGTCAACCTCTCTCGTCAA -ACGGAAGTCAACCTCTCTGCTGAA -ACGGAAGTCAACCTCTCTAGTACG -ACGGAAGTCAACCTCTCTATCCGA -ACGGAAGTCAACCTCTCTATGGGA -ACGGAAGTCAACCTCTCTGTGCAA -ACGGAAGTCAACCTCTCTGAGGAA -ACGGAAGTCAACCTCTCTCAGGTA -ACGGAAGTCAACCTCTCTGACTCT -ACGGAAGTCAACCTCTCTAGTCCT -ACGGAAGTCAACCTCTCTTAAGCC -ACGGAAGTCAACCTCTCTATAGCC -ACGGAAGTCAACCTCTCTTAACCG -ACGGAAGTCAACCTCTCTATGCCA -ACGGAAGTCAACATCTGGGGAAAC -ACGGAAGTCAACATCTGGAACACC -ACGGAAGTCAACATCTGGATCGAG -ACGGAAGTCAACATCTGGCTCCTT -ACGGAAGTCAACATCTGGCCTGTT -ACGGAAGTCAACATCTGGCGGTTT -ACGGAAGTCAACATCTGGGTGGTT -ACGGAAGTCAACATCTGGGCCTTT -ACGGAAGTCAACATCTGGGGTCTT -ACGGAAGTCAACATCTGGACGCTT -ACGGAAGTCAACATCTGGAGCGTT -ACGGAAGTCAACATCTGGTTCGTC -ACGGAAGTCAACATCTGGTCTCTC -ACGGAAGTCAACATCTGGTGGATC -ACGGAAGTCAACATCTGGCACTTC -ACGGAAGTCAACATCTGGGTACTC -ACGGAAGTCAACATCTGGGATGTC -ACGGAAGTCAACATCTGGACAGTC -ACGGAAGTCAACATCTGGTTGCTG -ACGGAAGTCAACATCTGGTCCATG -ACGGAAGTCAACATCTGGTGTGTG -ACGGAAGTCAACATCTGGCTAGTG -ACGGAAGTCAACATCTGGCATCTG -ACGGAAGTCAACATCTGGGAGTTG -ACGGAAGTCAACATCTGGAGACTG -ACGGAAGTCAACATCTGGTCGGTA -ACGGAAGTCAACATCTGGTGCCTA -ACGGAAGTCAACATCTGGCCACTA -ACGGAAGTCAACATCTGGGGAGTA -ACGGAAGTCAACATCTGGTCGTCT -ACGGAAGTCAACATCTGGTGCACT -ACGGAAGTCAACATCTGGCTGACT -ACGGAAGTCAACATCTGGCAACCT -ACGGAAGTCAACATCTGGGCTACT -ACGGAAGTCAACATCTGGGGATCT -ACGGAAGTCAACATCTGGAAGGCT -ACGGAAGTCAACATCTGGTCAACC -ACGGAAGTCAACATCTGGTGTTCC -ACGGAAGTCAACATCTGGATTCCC -ACGGAAGTCAACATCTGGTTCTCG -ACGGAAGTCAACATCTGGTAGACG -ACGGAAGTCAACATCTGGGTAACG -ACGGAAGTCAACATCTGGACTTCG -ACGGAAGTCAACATCTGGTACGCA -ACGGAAGTCAACATCTGGCTTGCA -ACGGAAGTCAACATCTGGCGAACA -ACGGAAGTCAACATCTGGCAGTCA -ACGGAAGTCAACATCTGGGATCCA -ACGGAAGTCAACATCTGGACGACA -ACGGAAGTCAACATCTGGAGCTCA -ACGGAAGTCAACATCTGGTCACGT -ACGGAAGTCAACATCTGGCGTAGT -ACGGAAGTCAACATCTGGGTCAGT -ACGGAAGTCAACATCTGGGAAGGT -ACGGAAGTCAACATCTGGAACCGT -ACGGAAGTCAACATCTGGTTGTGC -ACGGAAGTCAACATCTGGCTAAGC -ACGGAAGTCAACATCTGGACTAGC -ACGGAAGTCAACATCTGGAGATGC -ACGGAAGTCAACATCTGGTGAAGG -ACGGAAGTCAACATCTGGCAATGG -ACGGAAGTCAACATCTGGATGAGG -ACGGAAGTCAACATCTGGAATGGG -ACGGAAGTCAACATCTGGTCCTGA -ACGGAAGTCAACATCTGGTAGCGA -ACGGAAGTCAACATCTGGCACAGA -ACGGAAGTCAACATCTGGGCAAGA -ACGGAAGTCAACATCTGGGGTTGA -ACGGAAGTCAACATCTGGTCCGAT -ACGGAAGTCAACATCTGGTGGCAT -ACGGAAGTCAACATCTGGCGAGAT -ACGGAAGTCAACATCTGGTACCAC -ACGGAAGTCAACATCTGGCAGAAC -ACGGAAGTCAACATCTGGGTCTAC -ACGGAAGTCAACATCTGGACGTAC -ACGGAAGTCAACATCTGGAGTGAC -ACGGAAGTCAACATCTGGCTGTAG -ACGGAAGTCAACATCTGGCCTAAG -ACGGAAGTCAACATCTGGGTTCAG -ACGGAAGTCAACATCTGGGCATAG -ACGGAAGTCAACATCTGGGACAAG -ACGGAAGTCAACATCTGGAAGCAG -ACGGAAGTCAACATCTGGCGTCAA -ACGGAAGTCAACATCTGGGCTGAA -ACGGAAGTCAACATCTGGAGTACG -ACGGAAGTCAACATCTGGATCCGA -ACGGAAGTCAACATCTGGATGGGA -ACGGAAGTCAACATCTGGGTGCAA -ACGGAAGTCAACATCTGGGAGGAA -ACGGAAGTCAACATCTGGCAGGTA -ACGGAAGTCAACATCTGGGACTCT -ACGGAAGTCAACATCTGGAGTCCT -ACGGAAGTCAACATCTGGTAAGCC -ACGGAAGTCAACATCTGGATAGCC -ACGGAAGTCAACATCTGGTAACCG -ACGGAAGTCAACATCTGGATGCCA -ACGGAAGTCAACTTCCACGGAAAC -ACGGAAGTCAACTTCCACAACACC -ACGGAAGTCAACTTCCACATCGAG -ACGGAAGTCAACTTCCACCTCCTT -ACGGAAGTCAACTTCCACCCTGTT -ACGGAAGTCAACTTCCACCGGTTT -ACGGAAGTCAACTTCCACGTGGTT -ACGGAAGTCAACTTCCACGCCTTT -ACGGAAGTCAACTTCCACGGTCTT -ACGGAAGTCAACTTCCACACGCTT -ACGGAAGTCAACTTCCACAGCGTT -ACGGAAGTCAACTTCCACTTCGTC -ACGGAAGTCAACTTCCACTCTCTC -ACGGAAGTCAACTTCCACTGGATC -ACGGAAGTCAACTTCCACCACTTC -ACGGAAGTCAACTTCCACGTACTC -ACGGAAGTCAACTTCCACGATGTC -ACGGAAGTCAACTTCCACACAGTC -ACGGAAGTCAACTTCCACTTGCTG -ACGGAAGTCAACTTCCACTCCATG -ACGGAAGTCAACTTCCACTGTGTG -ACGGAAGTCAACTTCCACCTAGTG -ACGGAAGTCAACTTCCACCATCTG -ACGGAAGTCAACTTCCACGAGTTG -ACGGAAGTCAACTTCCACAGACTG -ACGGAAGTCAACTTCCACTCGGTA -ACGGAAGTCAACTTCCACTGCCTA -ACGGAAGTCAACTTCCACCCACTA -ACGGAAGTCAACTTCCACGGAGTA -ACGGAAGTCAACTTCCACTCGTCT -ACGGAAGTCAACTTCCACTGCACT -ACGGAAGTCAACTTCCACCTGACT -ACGGAAGTCAACTTCCACCAACCT -ACGGAAGTCAACTTCCACGCTACT -ACGGAAGTCAACTTCCACGGATCT -ACGGAAGTCAACTTCCACAAGGCT -ACGGAAGTCAACTTCCACTCAACC -ACGGAAGTCAACTTCCACTGTTCC -ACGGAAGTCAACTTCCACATTCCC -ACGGAAGTCAACTTCCACTTCTCG -ACGGAAGTCAACTTCCACTAGACG -ACGGAAGTCAACTTCCACGTAACG -ACGGAAGTCAACTTCCACACTTCG -ACGGAAGTCAACTTCCACTACGCA -ACGGAAGTCAACTTCCACCTTGCA -ACGGAAGTCAACTTCCACCGAACA -ACGGAAGTCAACTTCCACCAGTCA -ACGGAAGTCAACTTCCACGATCCA -ACGGAAGTCAACTTCCACACGACA -ACGGAAGTCAACTTCCACAGCTCA -ACGGAAGTCAACTTCCACTCACGT -ACGGAAGTCAACTTCCACCGTAGT -ACGGAAGTCAACTTCCACGTCAGT -ACGGAAGTCAACTTCCACGAAGGT -ACGGAAGTCAACTTCCACAACCGT -ACGGAAGTCAACTTCCACTTGTGC -ACGGAAGTCAACTTCCACCTAAGC -ACGGAAGTCAACTTCCACACTAGC -ACGGAAGTCAACTTCCACAGATGC -ACGGAAGTCAACTTCCACTGAAGG -ACGGAAGTCAACTTCCACCAATGG -ACGGAAGTCAACTTCCACATGAGG -ACGGAAGTCAACTTCCACAATGGG -ACGGAAGTCAACTTCCACTCCTGA -ACGGAAGTCAACTTCCACTAGCGA -ACGGAAGTCAACTTCCACCACAGA -ACGGAAGTCAACTTCCACGCAAGA -ACGGAAGTCAACTTCCACGGTTGA -ACGGAAGTCAACTTCCACTCCGAT -ACGGAAGTCAACTTCCACTGGCAT -ACGGAAGTCAACTTCCACCGAGAT -ACGGAAGTCAACTTCCACTACCAC -ACGGAAGTCAACTTCCACCAGAAC -ACGGAAGTCAACTTCCACGTCTAC -ACGGAAGTCAACTTCCACACGTAC -ACGGAAGTCAACTTCCACAGTGAC -ACGGAAGTCAACTTCCACCTGTAG -ACGGAAGTCAACTTCCACCCTAAG -ACGGAAGTCAACTTCCACGTTCAG -ACGGAAGTCAACTTCCACGCATAG -ACGGAAGTCAACTTCCACGACAAG -ACGGAAGTCAACTTCCACAAGCAG -ACGGAAGTCAACTTCCACCGTCAA -ACGGAAGTCAACTTCCACGCTGAA -ACGGAAGTCAACTTCCACAGTACG -ACGGAAGTCAACTTCCACATCCGA -ACGGAAGTCAACTTCCACATGGGA -ACGGAAGTCAACTTCCACGTGCAA -ACGGAAGTCAACTTCCACGAGGAA -ACGGAAGTCAACTTCCACCAGGTA -ACGGAAGTCAACTTCCACGACTCT -ACGGAAGTCAACTTCCACAGTCCT -ACGGAAGTCAACTTCCACTAAGCC -ACGGAAGTCAACTTCCACATAGCC -ACGGAAGTCAACTTCCACTAACCG -ACGGAAGTCAACTTCCACATGCCA -ACGGAAGTCAACCTCGTAGGAAAC -ACGGAAGTCAACCTCGTAAACACC -ACGGAAGTCAACCTCGTAATCGAG -ACGGAAGTCAACCTCGTACTCCTT -ACGGAAGTCAACCTCGTACCTGTT -ACGGAAGTCAACCTCGTACGGTTT -ACGGAAGTCAACCTCGTAGTGGTT -ACGGAAGTCAACCTCGTAGCCTTT -ACGGAAGTCAACCTCGTAGGTCTT -ACGGAAGTCAACCTCGTAACGCTT -ACGGAAGTCAACCTCGTAAGCGTT -ACGGAAGTCAACCTCGTATTCGTC -ACGGAAGTCAACCTCGTATCTCTC -ACGGAAGTCAACCTCGTATGGATC -ACGGAAGTCAACCTCGTACACTTC -ACGGAAGTCAACCTCGTAGTACTC -ACGGAAGTCAACCTCGTAGATGTC -ACGGAAGTCAACCTCGTAACAGTC -ACGGAAGTCAACCTCGTATTGCTG -ACGGAAGTCAACCTCGTATCCATG -ACGGAAGTCAACCTCGTATGTGTG -ACGGAAGTCAACCTCGTACTAGTG -ACGGAAGTCAACCTCGTACATCTG -ACGGAAGTCAACCTCGTAGAGTTG -ACGGAAGTCAACCTCGTAAGACTG -ACGGAAGTCAACCTCGTATCGGTA -ACGGAAGTCAACCTCGTATGCCTA -ACGGAAGTCAACCTCGTACCACTA -ACGGAAGTCAACCTCGTAGGAGTA -ACGGAAGTCAACCTCGTATCGTCT -ACGGAAGTCAACCTCGTATGCACT -ACGGAAGTCAACCTCGTACTGACT -ACGGAAGTCAACCTCGTACAACCT -ACGGAAGTCAACCTCGTAGCTACT -ACGGAAGTCAACCTCGTAGGATCT -ACGGAAGTCAACCTCGTAAAGGCT -ACGGAAGTCAACCTCGTATCAACC -ACGGAAGTCAACCTCGTATGTTCC -ACGGAAGTCAACCTCGTAATTCCC -ACGGAAGTCAACCTCGTATTCTCG -ACGGAAGTCAACCTCGTATAGACG -ACGGAAGTCAACCTCGTAGTAACG -ACGGAAGTCAACCTCGTAACTTCG -ACGGAAGTCAACCTCGTATACGCA -ACGGAAGTCAACCTCGTACTTGCA -ACGGAAGTCAACCTCGTACGAACA -ACGGAAGTCAACCTCGTACAGTCA -ACGGAAGTCAACCTCGTAGATCCA -ACGGAAGTCAACCTCGTAACGACA -ACGGAAGTCAACCTCGTAAGCTCA -ACGGAAGTCAACCTCGTATCACGT -ACGGAAGTCAACCTCGTACGTAGT -ACGGAAGTCAACCTCGTAGTCAGT -ACGGAAGTCAACCTCGTAGAAGGT -ACGGAAGTCAACCTCGTAAACCGT -ACGGAAGTCAACCTCGTATTGTGC -ACGGAAGTCAACCTCGTACTAAGC -ACGGAAGTCAACCTCGTAACTAGC -ACGGAAGTCAACCTCGTAAGATGC -ACGGAAGTCAACCTCGTATGAAGG -ACGGAAGTCAACCTCGTACAATGG -ACGGAAGTCAACCTCGTAATGAGG -ACGGAAGTCAACCTCGTAAATGGG -ACGGAAGTCAACCTCGTATCCTGA -ACGGAAGTCAACCTCGTATAGCGA -ACGGAAGTCAACCTCGTACACAGA -ACGGAAGTCAACCTCGTAGCAAGA -ACGGAAGTCAACCTCGTAGGTTGA -ACGGAAGTCAACCTCGTATCCGAT -ACGGAAGTCAACCTCGTATGGCAT -ACGGAAGTCAACCTCGTACGAGAT -ACGGAAGTCAACCTCGTATACCAC -ACGGAAGTCAACCTCGTACAGAAC -ACGGAAGTCAACCTCGTAGTCTAC -ACGGAAGTCAACCTCGTAACGTAC -ACGGAAGTCAACCTCGTAAGTGAC -ACGGAAGTCAACCTCGTACTGTAG -ACGGAAGTCAACCTCGTACCTAAG -ACGGAAGTCAACCTCGTAGTTCAG -ACGGAAGTCAACCTCGTAGCATAG -ACGGAAGTCAACCTCGTAGACAAG -ACGGAAGTCAACCTCGTAAAGCAG -ACGGAAGTCAACCTCGTACGTCAA -ACGGAAGTCAACCTCGTAGCTGAA -ACGGAAGTCAACCTCGTAAGTACG -ACGGAAGTCAACCTCGTAATCCGA -ACGGAAGTCAACCTCGTAATGGGA -ACGGAAGTCAACCTCGTAGTGCAA -ACGGAAGTCAACCTCGTAGAGGAA -ACGGAAGTCAACCTCGTACAGGTA -ACGGAAGTCAACCTCGTAGACTCT -ACGGAAGTCAACCTCGTAAGTCCT -ACGGAAGTCAACCTCGTATAAGCC -ACGGAAGTCAACCTCGTAATAGCC -ACGGAAGTCAACCTCGTATAACCG -ACGGAAGTCAACCTCGTAATGCCA -ACGGAAGTCAACGTCGATGGAAAC -ACGGAAGTCAACGTCGATAACACC -ACGGAAGTCAACGTCGATATCGAG -ACGGAAGTCAACGTCGATCTCCTT -ACGGAAGTCAACGTCGATCCTGTT -ACGGAAGTCAACGTCGATCGGTTT -ACGGAAGTCAACGTCGATGTGGTT -ACGGAAGTCAACGTCGATGCCTTT -ACGGAAGTCAACGTCGATGGTCTT -ACGGAAGTCAACGTCGATACGCTT -ACGGAAGTCAACGTCGATAGCGTT -ACGGAAGTCAACGTCGATTTCGTC -ACGGAAGTCAACGTCGATTCTCTC -ACGGAAGTCAACGTCGATTGGATC -ACGGAAGTCAACGTCGATCACTTC -ACGGAAGTCAACGTCGATGTACTC -ACGGAAGTCAACGTCGATGATGTC -ACGGAAGTCAACGTCGATACAGTC -ACGGAAGTCAACGTCGATTTGCTG -ACGGAAGTCAACGTCGATTCCATG -ACGGAAGTCAACGTCGATTGTGTG -ACGGAAGTCAACGTCGATCTAGTG -ACGGAAGTCAACGTCGATCATCTG -ACGGAAGTCAACGTCGATGAGTTG -ACGGAAGTCAACGTCGATAGACTG -ACGGAAGTCAACGTCGATTCGGTA -ACGGAAGTCAACGTCGATTGCCTA -ACGGAAGTCAACGTCGATCCACTA -ACGGAAGTCAACGTCGATGGAGTA -ACGGAAGTCAACGTCGATTCGTCT -ACGGAAGTCAACGTCGATTGCACT -ACGGAAGTCAACGTCGATCTGACT -ACGGAAGTCAACGTCGATCAACCT -ACGGAAGTCAACGTCGATGCTACT -ACGGAAGTCAACGTCGATGGATCT -ACGGAAGTCAACGTCGATAAGGCT -ACGGAAGTCAACGTCGATTCAACC -ACGGAAGTCAACGTCGATTGTTCC -ACGGAAGTCAACGTCGATATTCCC -ACGGAAGTCAACGTCGATTTCTCG -ACGGAAGTCAACGTCGATTAGACG -ACGGAAGTCAACGTCGATGTAACG -ACGGAAGTCAACGTCGATACTTCG -ACGGAAGTCAACGTCGATTACGCA -ACGGAAGTCAACGTCGATCTTGCA -ACGGAAGTCAACGTCGATCGAACA -ACGGAAGTCAACGTCGATCAGTCA -ACGGAAGTCAACGTCGATGATCCA -ACGGAAGTCAACGTCGATACGACA -ACGGAAGTCAACGTCGATAGCTCA -ACGGAAGTCAACGTCGATTCACGT -ACGGAAGTCAACGTCGATCGTAGT -ACGGAAGTCAACGTCGATGTCAGT -ACGGAAGTCAACGTCGATGAAGGT -ACGGAAGTCAACGTCGATAACCGT -ACGGAAGTCAACGTCGATTTGTGC -ACGGAAGTCAACGTCGATCTAAGC -ACGGAAGTCAACGTCGATACTAGC -ACGGAAGTCAACGTCGATAGATGC -ACGGAAGTCAACGTCGATTGAAGG -ACGGAAGTCAACGTCGATCAATGG -ACGGAAGTCAACGTCGATATGAGG -ACGGAAGTCAACGTCGATAATGGG -ACGGAAGTCAACGTCGATTCCTGA -ACGGAAGTCAACGTCGATTAGCGA -ACGGAAGTCAACGTCGATCACAGA -ACGGAAGTCAACGTCGATGCAAGA -ACGGAAGTCAACGTCGATGGTTGA -ACGGAAGTCAACGTCGATTCCGAT -ACGGAAGTCAACGTCGATTGGCAT -ACGGAAGTCAACGTCGATCGAGAT -ACGGAAGTCAACGTCGATTACCAC -ACGGAAGTCAACGTCGATCAGAAC -ACGGAAGTCAACGTCGATGTCTAC -ACGGAAGTCAACGTCGATACGTAC -ACGGAAGTCAACGTCGATAGTGAC -ACGGAAGTCAACGTCGATCTGTAG -ACGGAAGTCAACGTCGATCCTAAG -ACGGAAGTCAACGTCGATGTTCAG -ACGGAAGTCAACGTCGATGCATAG -ACGGAAGTCAACGTCGATGACAAG -ACGGAAGTCAACGTCGATAAGCAG -ACGGAAGTCAACGTCGATCGTCAA -ACGGAAGTCAACGTCGATGCTGAA -ACGGAAGTCAACGTCGATAGTACG -ACGGAAGTCAACGTCGATATCCGA -ACGGAAGTCAACGTCGATATGGGA -ACGGAAGTCAACGTCGATGTGCAA -ACGGAAGTCAACGTCGATGAGGAA -ACGGAAGTCAACGTCGATCAGGTA -ACGGAAGTCAACGTCGATGACTCT -ACGGAAGTCAACGTCGATAGTCCT -ACGGAAGTCAACGTCGATTAAGCC -ACGGAAGTCAACGTCGATATAGCC -ACGGAAGTCAACGTCGATTAACCG -ACGGAAGTCAACGTCGATATGCCA -ACGGAAGTCAACGTCACAGGAAAC -ACGGAAGTCAACGTCACAAACACC -ACGGAAGTCAACGTCACAATCGAG -ACGGAAGTCAACGTCACACTCCTT -ACGGAAGTCAACGTCACACCTGTT -ACGGAAGTCAACGTCACACGGTTT -ACGGAAGTCAACGTCACAGTGGTT -ACGGAAGTCAACGTCACAGCCTTT -ACGGAAGTCAACGTCACAGGTCTT -ACGGAAGTCAACGTCACAACGCTT -ACGGAAGTCAACGTCACAAGCGTT -ACGGAAGTCAACGTCACATTCGTC -ACGGAAGTCAACGTCACATCTCTC -ACGGAAGTCAACGTCACATGGATC -ACGGAAGTCAACGTCACACACTTC -ACGGAAGTCAACGTCACAGTACTC -ACGGAAGTCAACGTCACAGATGTC -ACGGAAGTCAACGTCACAACAGTC -ACGGAAGTCAACGTCACATTGCTG -ACGGAAGTCAACGTCACATCCATG -ACGGAAGTCAACGTCACATGTGTG -ACGGAAGTCAACGTCACACTAGTG -ACGGAAGTCAACGTCACACATCTG -ACGGAAGTCAACGTCACAGAGTTG -ACGGAAGTCAACGTCACAAGACTG -ACGGAAGTCAACGTCACATCGGTA -ACGGAAGTCAACGTCACATGCCTA -ACGGAAGTCAACGTCACACCACTA -ACGGAAGTCAACGTCACAGGAGTA -ACGGAAGTCAACGTCACATCGTCT -ACGGAAGTCAACGTCACATGCACT -ACGGAAGTCAACGTCACACTGACT -ACGGAAGTCAACGTCACACAACCT -ACGGAAGTCAACGTCACAGCTACT -ACGGAAGTCAACGTCACAGGATCT -ACGGAAGTCAACGTCACAAAGGCT -ACGGAAGTCAACGTCACATCAACC -ACGGAAGTCAACGTCACATGTTCC -ACGGAAGTCAACGTCACAATTCCC -ACGGAAGTCAACGTCACATTCTCG -ACGGAAGTCAACGTCACATAGACG -ACGGAAGTCAACGTCACAGTAACG -ACGGAAGTCAACGTCACAACTTCG -ACGGAAGTCAACGTCACATACGCA -ACGGAAGTCAACGTCACACTTGCA -ACGGAAGTCAACGTCACACGAACA -ACGGAAGTCAACGTCACACAGTCA -ACGGAAGTCAACGTCACAGATCCA -ACGGAAGTCAACGTCACAACGACA -ACGGAAGTCAACGTCACAAGCTCA -ACGGAAGTCAACGTCACATCACGT -ACGGAAGTCAACGTCACACGTAGT -ACGGAAGTCAACGTCACAGTCAGT -ACGGAAGTCAACGTCACAGAAGGT -ACGGAAGTCAACGTCACAAACCGT -ACGGAAGTCAACGTCACATTGTGC -ACGGAAGTCAACGTCACACTAAGC -ACGGAAGTCAACGTCACAACTAGC -ACGGAAGTCAACGTCACAAGATGC -ACGGAAGTCAACGTCACATGAAGG -ACGGAAGTCAACGTCACACAATGG -ACGGAAGTCAACGTCACAATGAGG -ACGGAAGTCAACGTCACAAATGGG -ACGGAAGTCAACGTCACATCCTGA -ACGGAAGTCAACGTCACATAGCGA -ACGGAAGTCAACGTCACACACAGA -ACGGAAGTCAACGTCACAGCAAGA -ACGGAAGTCAACGTCACAGGTTGA -ACGGAAGTCAACGTCACATCCGAT -ACGGAAGTCAACGTCACATGGCAT -ACGGAAGTCAACGTCACACGAGAT -ACGGAAGTCAACGTCACATACCAC -ACGGAAGTCAACGTCACACAGAAC -ACGGAAGTCAACGTCACAGTCTAC -ACGGAAGTCAACGTCACAACGTAC -ACGGAAGTCAACGTCACAAGTGAC -ACGGAAGTCAACGTCACACTGTAG -ACGGAAGTCAACGTCACACCTAAG -ACGGAAGTCAACGTCACAGTTCAG -ACGGAAGTCAACGTCACAGCATAG -ACGGAAGTCAACGTCACAGACAAG -ACGGAAGTCAACGTCACAAAGCAG -ACGGAAGTCAACGTCACACGTCAA -ACGGAAGTCAACGTCACAGCTGAA -ACGGAAGTCAACGTCACAAGTACG -ACGGAAGTCAACGTCACAATCCGA -ACGGAAGTCAACGTCACAATGGGA -ACGGAAGTCAACGTCACAGTGCAA -ACGGAAGTCAACGTCACAGAGGAA -ACGGAAGTCAACGTCACACAGGTA -ACGGAAGTCAACGTCACAGACTCT -ACGGAAGTCAACGTCACAAGTCCT -ACGGAAGTCAACGTCACATAAGCC -ACGGAAGTCAACGTCACAATAGCC -ACGGAAGTCAACGTCACATAACCG -ACGGAAGTCAACGTCACAATGCCA -ACGGAAGTCAACCTGTTGGGAAAC -ACGGAAGTCAACCTGTTGAACACC -ACGGAAGTCAACCTGTTGATCGAG -ACGGAAGTCAACCTGTTGCTCCTT -ACGGAAGTCAACCTGTTGCCTGTT -ACGGAAGTCAACCTGTTGCGGTTT -ACGGAAGTCAACCTGTTGGTGGTT -ACGGAAGTCAACCTGTTGGCCTTT -ACGGAAGTCAACCTGTTGGGTCTT -ACGGAAGTCAACCTGTTGACGCTT -ACGGAAGTCAACCTGTTGAGCGTT -ACGGAAGTCAACCTGTTGTTCGTC -ACGGAAGTCAACCTGTTGTCTCTC -ACGGAAGTCAACCTGTTGTGGATC -ACGGAAGTCAACCTGTTGCACTTC -ACGGAAGTCAACCTGTTGGTACTC -ACGGAAGTCAACCTGTTGGATGTC -ACGGAAGTCAACCTGTTGACAGTC -ACGGAAGTCAACCTGTTGTTGCTG -ACGGAAGTCAACCTGTTGTCCATG -ACGGAAGTCAACCTGTTGTGTGTG -ACGGAAGTCAACCTGTTGCTAGTG -ACGGAAGTCAACCTGTTGCATCTG -ACGGAAGTCAACCTGTTGGAGTTG -ACGGAAGTCAACCTGTTGAGACTG -ACGGAAGTCAACCTGTTGTCGGTA -ACGGAAGTCAACCTGTTGTGCCTA -ACGGAAGTCAACCTGTTGCCACTA -ACGGAAGTCAACCTGTTGGGAGTA -ACGGAAGTCAACCTGTTGTCGTCT -ACGGAAGTCAACCTGTTGTGCACT -ACGGAAGTCAACCTGTTGCTGACT -ACGGAAGTCAACCTGTTGCAACCT -ACGGAAGTCAACCTGTTGGCTACT -ACGGAAGTCAACCTGTTGGGATCT -ACGGAAGTCAACCTGTTGAAGGCT -ACGGAAGTCAACCTGTTGTCAACC -ACGGAAGTCAACCTGTTGTGTTCC -ACGGAAGTCAACCTGTTGATTCCC -ACGGAAGTCAACCTGTTGTTCTCG -ACGGAAGTCAACCTGTTGTAGACG -ACGGAAGTCAACCTGTTGGTAACG -ACGGAAGTCAACCTGTTGACTTCG -ACGGAAGTCAACCTGTTGTACGCA -ACGGAAGTCAACCTGTTGCTTGCA -ACGGAAGTCAACCTGTTGCGAACA -ACGGAAGTCAACCTGTTGCAGTCA -ACGGAAGTCAACCTGTTGGATCCA -ACGGAAGTCAACCTGTTGACGACA -ACGGAAGTCAACCTGTTGAGCTCA -ACGGAAGTCAACCTGTTGTCACGT -ACGGAAGTCAACCTGTTGCGTAGT -ACGGAAGTCAACCTGTTGGTCAGT -ACGGAAGTCAACCTGTTGGAAGGT -ACGGAAGTCAACCTGTTGAACCGT -ACGGAAGTCAACCTGTTGTTGTGC -ACGGAAGTCAACCTGTTGCTAAGC -ACGGAAGTCAACCTGTTGACTAGC -ACGGAAGTCAACCTGTTGAGATGC -ACGGAAGTCAACCTGTTGTGAAGG -ACGGAAGTCAACCTGTTGCAATGG -ACGGAAGTCAACCTGTTGATGAGG -ACGGAAGTCAACCTGTTGAATGGG -ACGGAAGTCAACCTGTTGTCCTGA -ACGGAAGTCAACCTGTTGTAGCGA -ACGGAAGTCAACCTGTTGCACAGA -ACGGAAGTCAACCTGTTGGCAAGA -ACGGAAGTCAACCTGTTGGGTTGA -ACGGAAGTCAACCTGTTGTCCGAT -ACGGAAGTCAACCTGTTGTGGCAT -ACGGAAGTCAACCTGTTGCGAGAT -ACGGAAGTCAACCTGTTGTACCAC -ACGGAAGTCAACCTGTTGCAGAAC -ACGGAAGTCAACCTGTTGGTCTAC -ACGGAAGTCAACCTGTTGACGTAC -ACGGAAGTCAACCTGTTGAGTGAC -ACGGAAGTCAACCTGTTGCTGTAG -ACGGAAGTCAACCTGTTGCCTAAG -ACGGAAGTCAACCTGTTGGTTCAG -ACGGAAGTCAACCTGTTGGCATAG -ACGGAAGTCAACCTGTTGGACAAG -ACGGAAGTCAACCTGTTGAAGCAG -ACGGAAGTCAACCTGTTGCGTCAA -ACGGAAGTCAACCTGTTGGCTGAA -ACGGAAGTCAACCTGTTGAGTACG -ACGGAAGTCAACCTGTTGATCCGA -ACGGAAGTCAACCTGTTGATGGGA -ACGGAAGTCAACCTGTTGGTGCAA -ACGGAAGTCAACCTGTTGGAGGAA -ACGGAAGTCAACCTGTTGCAGGTA -ACGGAAGTCAACCTGTTGGACTCT -ACGGAAGTCAACCTGTTGAGTCCT -ACGGAAGTCAACCTGTTGTAAGCC -ACGGAAGTCAACCTGTTGATAGCC -ACGGAAGTCAACCTGTTGTAACCG -ACGGAAGTCAACCTGTTGATGCCA -ACGGAAGTCAACATGTCCGGAAAC -ACGGAAGTCAACATGTCCAACACC -ACGGAAGTCAACATGTCCATCGAG -ACGGAAGTCAACATGTCCCTCCTT -ACGGAAGTCAACATGTCCCCTGTT -ACGGAAGTCAACATGTCCCGGTTT -ACGGAAGTCAACATGTCCGTGGTT -ACGGAAGTCAACATGTCCGCCTTT -ACGGAAGTCAACATGTCCGGTCTT -ACGGAAGTCAACATGTCCACGCTT -ACGGAAGTCAACATGTCCAGCGTT -ACGGAAGTCAACATGTCCTTCGTC -ACGGAAGTCAACATGTCCTCTCTC -ACGGAAGTCAACATGTCCTGGATC -ACGGAAGTCAACATGTCCCACTTC -ACGGAAGTCAACATGTCCGTACTC -ACGGAAGTCAACATGTCCGATGTC -ACGGAAGTCAACATGTCCACAGTC -ACGGAAGTCAACATGTCCTTGCTG -ACGGAAGTCAACATGTCCTCCATG -ACGGAAGTCAACATGTCCTGTGTG -ACGGAAGTCAACATGTCCCTAGTG -ACGGAAGTCAACATGTCCCATCTG -ACGGAAGTCAACATGTCCGAGTTG -ACGGAAGTCAACATGTCCAGACTG -ACGGAAGTCAACATGTCCTCGGTA -ACGGAAGTCAACATGTCCTGCCTA -ACGGAAGTCAACATGTCCCCACTA -ACGGAAGTCAACATGTCCGGAGTA -ACGGAAGTCAACATGTCCTCGTCT -ACGGAAGTCAACATGTCCTGCACT -ACGGAAGTCAACATGTCCCTGACT -ACGGAAGTCAACATGTCCCAACCT -ACGGAAGTCAACATGTCCGCTACT -ACGGAAGTCAACATGTCCGGATCT -ACGGAAGTCAACATGTCCAAGGCT -ACGGAAGTCAACATGTCCTCAACC -ACGGAAGTCAACATGTCCTGTTCC -ACGGAAGTCAACATGTCCATTCCC -ACGGAAGTCAACATGTCCTTCTCG -ACGGAAGTCAACATGTCCTAGACG -ACGGAAGTCAACATGTCCGTAACG -ACGGAAGTCAACATGTCCACTTCG -ACGGAAGTCAACATGTCCTACGCA -ACGGAAGTCAACATGTCCCTTGCA -ACGGAAGTCAACATGTCCCGAACA -ACGGAAGTCAACATGTCCCAGTCA -ACGGAAGTCAACATGTCCGATCCA -ACGGAAGTCAACATGTCCACGACA -ACGGAAGTCAACATGTCCAGCTCA -ACGGAAGTCAACATGTCCTCACGT -ACGGAAGTCAACATGTCCCGTAGT -ACGGAAGTCAACATGTCCGTCAGT -ACGGAAGTCAACATGTCCGAAGGT -ACGGAAGTCAACATGTCCAACCGT -ACGGAAGTCAACATGTCCTTGTGC -ACGGAAGTCAACATGTCCCTAAGC -ACGGAAGTCAACATGTCCACTAGC -ACGGAAGTCAACATGTCCAGATGC -ACGGAAGTCAACATGTCCTGAAGG -ACGGAAGTCAACATGTCCCAATGG -ACGGAAGTCAACATGTCCATGAGG -ACGGAAGTCAACATGTCCAATGGG -ACGGAAGTCAACATGTCCTCCTGA -ACGGAAGTCAACATGTCCTAGCGA -ACGGAAGTCAACATGTCCCACAGA -ACGGAAGTCAACATGTCCGCAAGA -ACGGAAGTCAACATGTCCGGTTGA -ACGGAAGTCAACATGTCCTCCGAT -ACGGAAGTCAACATGTCCTGGCAT -ACGGAAGTCAACATGTCCCGAGAT -ACGGAAGTCAACATGTCCTACCAC -ACGGAAGTCAACATGTCCCAGAAC -ACGGAAGTCAACATGTCCGTCTAC -ACGGAAGTCAACATGTCCACGTAC -ACGGAAGTCAACATGTCCAGTGAC -ACGGAAGTCAACATGTCCCTGTAG -ACGGAAGTCAACATGTCCCCTAAG -ACGGAAGTCAACATGTCCGTTCAG -ACGGAAGTCAACATGTCCGCATAG -ACGGAAGTCAACATGTCCGACAAG -ACGGAAGTCAACATGTCCAAGCAG -ACGGAAGTCAACATGTCCCGTCAA -ACGGAAGTCAACATGTCCGCTGAA -ACGGAAGTCAACATGTCCAGTACG -ACGGAAGTCAACATGTCCATCCGA -ACGGAAGTCAACATGTCCATGGGA -ACGGAAGTCAACATGTCCGTGCAA -ACGGAAGTCAACATGTCCGAGGAA -ACGGAAGTCAACATGTCCCAGGTA -ACGGAAGTCAACATGTCCGACTCT -ACGGAAGTCAACATGTCCAGTCCT -ACGGAAGTCAACATGTCCTAAGCC -ACGGAAGTCAACATGTCCATAGCC -ACGGAAGTCAACATGTCCTAACCG -ACGGAAGTCAACATGTCCATGCCA -ACGGAAGTCAACGTGTGTGGAAAC -ACGGAAGTCAACGTGTGTAACACC -ACGGAAGTCAACGTGTGTATCGAG -ACGGAAGTCAACGTGTGTCTCCTT -ACGGAAGTCAACGTGTGTCCTGTT -ACGGAAGTCAACGTGTGTCGGTTT -ACGGAAGTCAACGTGTGTGTGGTT -ACGGAAGTCAACGTGTGTGCCTTT -ACGGAAGTCAACGTGTGTGGTCTT -ACGGAAGTCAACGTGTGTACGCTT -ACGGAAGTCAACGTGTGTAGCGTT -ACGGAAGTCAACGTGTGTTTCGTC -ACGGAAGTCAACGTGTGTTCTCTC -ACGGAAGTCAACGTGTGTTGGATC -ACGGAAGTCAACGTGTGTCACTTC -ACGGAAGTCAACGTGTGTGTACTC -ACGGAAGTCAACGTGTGTGATGTC -ACGGAAGTCAACGTGTGTACAGTC -ACGGAAGTCAACGTGTGTTTGCTG -ACGGAAGTCAACGTGTGTTCCATG -ACGGAAGTCAACGTGTGTTGTGTG -ACGGAAGTCAACGTGTGTCTAGTG -ACGGAAGTCAACGTGTGTCATCTG -ACGGAAGTCAACGTGTGTGAGTTG -ACGGAAGTCAACGTGTGTAGACTG -ACGGAAGTCAACGTGTGTTCGGTA -ACGGAAGTCAACGTGTGTTGCCTA -ACGGAAGTCAACGTGTGTCCACTA -ACGGAAGTCAACGTGTGTGGAGTA -ACGGAAGTCAACGTGTGTTCGTCT -ACGGAAGTCAACGTGTGTTGCACT -ACGGAAGTCAACGTGTGTCTGACT -ACGGAAGTCAACGTGTGTCAACCT -ACGGAAGTCAACGTGTGTGCTACT -ACGGAAGTCAACGTGTGTGGATCT -ACGGAAGTCAACGTGTGTAAGGCT -ACGGAAGTCAACGTGTGTTCAACC -ACGGAAGTCAACGTGTGTTGTTCC -ACGGAAGTCAACGTGTGTATTCCC -ACGGAAGTCAACGTGTGTTTCTCG -ACGGAAGTCAACGTGTGTTAGACG -ACGGAAGTCAACGTGTGTGTAACG -ACGGAAGTCAACGTGTGTACTTCG -ACGGAAGTCAACGTGTGTTACGCA -ACGGAAGTCAACGTGTGTCTTGCA -ACGGAAGTCAACGTGTGTCGAACA -ACGGAAGTCAACGTGTGTCAGTCA -ACGGAAGTCAACGTGTGTGATCCA -ACGGAAGTCAACGTGTGTACGACA -ACGGAAGTCAACGTGTGTAGCTCA -ACGGAAGTCAACGTGTGTTCACGT -ACGGAAGTCAACGTGTGTCGTAGT -ACGGAAGTCAACGTGTGTGTCAGT -ACGGAAGTCAACGTGTGTGAAGGT -ACGGAAGTCAACGTGTGTAACCGT -ACGGAAGTCAACGTGTGTTTGTGC -ACGGAAGTCAACGTGTGTCTAAGC -ACGGAAGTCAACGTGTGTACTAGC -ACGGAAGTCAACGTGTGTAGATGC -ACGGAAGTCAACGTGTGTTGAAGG -ACGGAAGTCAACGTGTGTCAATGG -ACGGAAGTCAACGTGTGTATGAGG -ACGGAAGTCAACGTGTGTAATGGG -ACGGAAGTCAACGTGTGTTCCTGA -ACGGAAGTCAACGTGTGTTAGCGA -ACGGAAGTCAACGTGTGTCACAGA -ACGGAAGTCAACGTGTGTGCAAGA -ACGGAAGTCAACGTGTGTGGTTGA -ACGGAAGTCAACGTGTGTTCCGAT -ACGGAAGTCAACGTGTGTTGGCAT -ACGGAAGTCAACGTGTGTCGAGAT -ACGGAAGTCAACGTGTGTTACCAC -ACGGAAGTCAACGTGTGTCAGAAC -ACGGAAGTCAACGTGTGTGTCTAC -ACGGAAGTCAACGTGTGTACGTAC -ACGGAAGTCAACGTGTGTAGTGAC -ACGGAAGTCAACGTGTGTCTGTAG -ACGGAAGTCAACGTGTGTCCTAAG -ACGGAAGTCAACGTGTGTGTTCAG -ACGGAAGTCAACGTGTGTGCATAG -ACGGAAGTCAACGTGTGTGACAAG -ACGGAAGTCAACGTGTGTAAGCAG -ACGGAAGTCAACGTGTGTCGTCAA -ACGGAAGTCAACGTGTGTGCTGAA -ACGGAAGTCAACGTGTGTAGTACG -ACGGAAGTCAACGTGTGTATCCGA -ACGGAAGTCAACGTGTGTATGGGA -ACGGAAGTCAACGTGTGTGTGCAA -ACGGAAGTCAACGTGTGTGAGGAA -ACGGAAGTCAACGTGTGTCAGGTA -ACGGAAGTCAACGTGTGTGACTCT -ACGGAAGTCAACGTGTGTAGTCCT -ACGGAAGTCAACGTGTGTTAAGCC -ACGGAAGTCAACGTGTGTATAGCC -ACGGAAGTCAACGTGTGTTAACCG -ACGGAAGTCAACGTGTGTATGCCA -ACGGAAGTCAACGTGCTAGGAAAC -ACGGAAGTCAACGTGCTAAACACC -ACGGAAGTCAACGTGCTAATCGAG -ACGGAAGTCAACGTGCTACTCCTT -ACGGAAGTCAACGTGCTACCTGTT -ACGGAAGTCAACGTGCTACGGTTT -ACGGAAGTCAACGTGCTAGTGGTT -ACGGAAGTCAACGTGCTAGCCTTT -ACGGAAGTCAACGTGCTAGGTCTT -ACGGAAGTCAACGTGCTAACGCTT -ACGGAAGTCAACGTGCTAAGCGTT -ACGGAAGTCAACGTGCTATTCGTC -ACGGAAGTCAACGTGCTATCTCTC -ACGGAAGTCAACGTGCTATGGATC -ACGGAAGTCAACGTGCTACACTTC -ACGGAAGTCAACGTGCTAGTACTC -ACGGAAGTCAACGTGCTAGATGTC -ACGGAAGTCAACGTGCTAACAGTC -ACGGAAGTCAACGTGCTATTGCTG -ACGGAAGTCAACGTGCTATCCATG -ACGGAAGTCAACGTGCTATGTGTG -ACGGAAGTCAACGTGCTACTAGTG -ACGGAAGTCAACGTGCTACATCTG -ACGGAAGTCAACGTGCTAGAGTTG -ACGGAAGTCAACGTGCTAAGACTG -ACGGAAGTCAACGTGCTATCGGTA -ACGGAAGTCAACGTGCTATGCCTA -ACGGAAGTCAACGTGCTACCACTA -ACGGAAGTCAACGTGCTAGGAGTA -ACGGAAGTCAACGTGCTATCGTCT -ACGGAAGTCAACGTGCTATGCACT -ACGGAAGTCAACGTGCTACTGACT -ACGGAAGTCAACGTGCTACAACCT -ACGGAAGTCAACGTGCTAGCTACT -ACGGAAGTCAACGTGCTAGGATCT -ACGGAAGTCAACGTGCTAAAGGCT -ACGGAAGTCAACGTGCTATCAACC -ACGGAAGTCAACGTGCTATGTTCC -ACGGAAGTCAACGTGCTAATTCCC -ACGGAAGTCAACGTGCTATTCTCG -ACGGAAGTCAACGTGCTATAGACG -ACGGAAGTCAACGTGCTAGTAACG -ACGGAAGTCAACGTGCTAACTTCG -ACGGAAGTCAACGTGCTATACGCA -ACGGAAGTCAACGTGCTACTTGCA -ACGGAAGTCAACGTGCTACGAACA -ACGGAAGTCAACGTGCTACAGTCA -ACGGAAGTCAACGTGCTAGATCCA -ACGGAAGTCAACGTGCTAACGACA -ACGGAAGTCAACGTGCTAAGCTCA -ACGGAAGTCAACGTGCTATCACGT -ACGGAAGTCAACGTGCTACGTAGT -ACGGAAGTCAACGTGCTAGTCAGT -ACGGAAGTCAACGTGCTAGAAGGT -ACGGAAGTCAACGTGCTAAACCGT -ACGGAAGTCAACGTGCTATTGTGC -ACGGAAGTCAACGTGCTACTAAGC -ACGGAAGTCAACGTGCTAACTAGC -ACGGAAGTCAACGTGCTAAGATGC -ACGGAAGTCAACGTGCTATGAAGG -ACGGAAGTCAACGTGCTACAATGG -ACGGAAGTCAACGTGCTAATGAGG -ACGGAAGTCAACGTGCTAAATGGG -ACGGAAGTCAACGTGCTATCCTGA -ACGGAAGTCAACGTGCTATAGCGA -ACGGAAGTCAACGTGCTACACAGA -ACGGAAGTCAACGTGCTAGCAAGA -ACGGAAGTCAACGTGCTAGGTTGA -ACGGAAGTCAACGTGCTATCCGAT -ACGGAAGTCAACGTGCTATGGCAT -ACGGAAGTCAACGTGCTACGAGAT -ACGGAAGTCAACGTGCTATACCAC -ACGGAAGTCAACGTGCTACAGAAC -ACGGAAGTCAACGTGCTAGTCTAC -ACGGAAGTCAACGTGCTAACGTAC -ACGGAAGTCAACGTGCTAAGTGAC -ACGGAAGTCAACGTGCTACTGTAG -ACGGAAGTCAACGTGCTACCTAAG -ACGGAAGTCAACGTGCTAGTTCAG -ACGGAAGTCAACGTGCTAGCATAG -ACGGAAGTCAACGTGCTAGACAAG -ACGGAAGTCAACGTGCTAAAGCAG -ACGGAAGTCAACGTGCTACGTCAA -ACGGAAGTCAACGTGCTAGCTGAA -ACGGAAGTCAACGTGCTAAGTACG -ACGGAAGTCAACGTGCTAATCCGA -ACGGAAGTCAACGTGCTAATGGGA -ACGGAAGTCAACGTGCTAGTGCAA -ACGGAAGTCAACGTGCTAGAGGAA -ACGGAAGTCAACGTGCTACAGGTA -ACGGAAGTCAACGTGCTAGACTCT -ACGGAAGTCAACGTGCTAAGTCCT -ACGGAAGTCAACGTGCTATAAGCC -ACGGAAGTCAACGTGCTAATAGCC -ACGGAAGTCAACGTGCTATAACCG -ACGGAAGTCAACGTGCTAATGCCA -ACGGAAGTCAACCTGCATGGAAAC -ACGGAAGTCAACCTGCATAACACC -ACGGAAGTCAACCTGCATATCGAG -ACGGAAGTCAACCTGCATCTCCTT -ACGGAAGTCAACCTGCATCCTGTT -ACGGAAGTCAACCTGCATCGGTTT -ACGGAAGTCAACCTGCATGTGGTT -ACGGAAGTCAACCTGCATGCCTTT -ACGGAAGTCAACCTGCATGGTCTT -ACGGAAGTCAACCTGCATACGCTT -ACGGAAGTCAACCTGCATAGCGTT -ACGGAAGTCAACCTGCATTTCGTC -ACGGAAGTCAACCTGCATTCTCTC -ACGGAAGTCAACCTGCATTGGATC -ACGGAAGTCAACCTGCATCACTTC -ACGGAAGTCAACCTGCATGTACTC -ACGGAAGTCAACCTGCATGATGTC -ACGGAAGTCAACCTGCATACAGTC -ACGGAAGTCAACCTGCATTTGCTG -ACGGAAGTCAACCTGCATTCCATG -ACGGAAGTCAACCTGCATTGTGTG -ACGGAAGTCAACCTGCATCTAGTG -ACGGAAGTCAACCTGCATCATCTG -ACGGAAGTCAACCTGCATGAGTTG -ACGGAAGTCAACCTGCATAGACTG -ACGGAAGTCAACCTGCATTCGGTA -ACGGAAGTCAACCTGCATTGCCTA -ACGGAAGTCAACCTGCATCCACTA -ACGGAAGTCAACCTGCATGGAGTA -ACGGAAGTCAACCTGCATTCGTCT -ACGGAAGTCAACCTGCATTGCACT -ACGGAAGTCAACCTGCATCTGACT -ACGGAAGTCAACCTGCATCAACCT -ACGGAAGTCAACCTGCATGCTACT -ACGGAAGTCAACCTGCATGGATCT -ACGGAAGTCAACCTGCATAAGGCT -ACGGAAGTCAACCTGCATTCAACC -ACGGAAGTCAACCTGCATTGTTCC -ACGGAAGTCAACCTGCATATTCCC -ACGGAAGTCAACCTGCATTTCTCG -ACGGAAGTCAACCTGCATTAGACG -ACGGAAGTCAACCTGCATGTAACG -ACGGAAGTCAACCTGCATACTTCG -ACGGAAGTCAACCTGCATTACGCA -ACGGAAGTCAACCTGCATCTTGCA -ACGGAAGTCAACCTGCATCGAACA -ACGGAAGTCAACCTGCATCAGTCA -ACGGAAGTCAACCTGCATGATCCA -ACGGAAGTCAACCTGCATACGACA -ACGGAAGTCAACCTGCATAGCTCA -ACGGAAGTCAACCTGCATTCACGT -ACGGAAGTCAACCTGCATCGTAGT -ACGGAAGTCAACCTGCATGTCAGT -ACGGAAGTCAACCTGCATGAAGGT -ACGGAAGTCAACCTGCATAACCGT -ACGGAAGTCAACCTGCATTTGTGC -ACGGAAGTCAACCTGCATCTAAGC -ACGGAAGTCAACCTGCATACTAGC -ACGGAAGTCAACCTGCATAGATGC -ACGGAAGTCAACCTGCATTGAAGG -ACGGAAGTCAACCTGCATCAATGG -ACGGAAGTCAACCTGCATATGAGG -ACGGAAGTCAACCTGCATAATGGG -ACGGAAGTCAACCTGCATTCCTGA -ACGGAAGTCAACCTGCATTAGCGA -ACGGAAGTCAACCTGCATCACAGA -ACGGAAGTCAACCTGCATGCAAGA -ACGGAAGTCAACCTGCATGGTTGA -ACGGAAGTCAACCTGCATTCCGAT -ACGGAAGTCAACCTGCATTGGCAT -ACGGAAGTCAACCTGCATCGAGAT -ACGGAAGTCAACCTGCATTACCAC -ACGGAAGTCAACCTGCATCAGAAC -ACGGAAGTCAACCTGCATGTCTAC -ACGGAAGTCAACCTGCATACGTAC -ACGGAAGTCAACCTGCATAGTGAC -ACGGAAGTCAACCTGCATCTGTAG -ACGGAAGTCAACCTGCATCCTAAG -ACGGAAGTCAACCTGCATGTTCAG -ACGGAAGTCAACCTGCATGCATAG -ACGGAAGTCAACCTGCATGACAAG -ACGGAAGTCAACCTGCATAAGCAG -ACGGAAGTCAACCTGCATCGTCAA -ACGGAAGTCAACCTGCATGCTGAA -ACGGAAGTCAACCTGCATAGTACG -ACGGAAGTCAACCTGCATATCCGA -ACGGAAGTCAACCTGCATATGGGA -ACGGAAGTCAACCTGCATGTGCAA -ACGGAAGTCAACCTGCATGAGGAA -ACGGAAGTCAACCTGCATCAGGTA -ACGGAAGTCAACCTGCATGACTCT -ACGGAAGTCAACCTGCATAGTCCT -ACGGAAGTCAACCTGCATTAAGCC -ACGGAAGTCAACCTGCATATAGCC -ACGGAAGTCAACCTGCATTAACCG -ACGGAAGTCAACCTGCATATGCCA -ACGGAAGTCAACTTGGAGGGAAAC -ACGGAAGTCAACTTGGAGAACACC -ACGGAAGTCAACTTGGAGATCGAG -ACGGAAGTCAACTTGGAGCTCCTT -ACGGAAGTCAACTTGGAGCCTGTT -ACGGAAGTCAACTTGGAGCGGTTT -ACGGAAGTCAACTTGGAGGTGGTT -ACGGAAGTCAACTTGGAGGCCTTT -ACGGAAGTCAACTTGGAGGGTCTT -ACGGAAGTCAACTTGGAGACGCTT -ACGGAAGTCAACTTGGAGAGCGTT -ACGGAAGTCAACTTGGAGTTCGTC -ACGGAAGTCAACTTGGAGTCTCTC -ACGGAAGTCAACTTGGAGTGGATC -ACGGAAGTCAACTTGGAGCACTTC -ACGGAAGTCAACTTGGAGGTACTC -ACGGAAGTCAACTTGGAGGATGTC -ACGGAAGTCAACTTGGAGACAGTC -ACGGAAGTCAACTTGGAGTTGCTG -ACGGAAGTCAACTTGGAGTCCATG -ACGGAAGTCAACTTGGAGTGTGTG -ACGGAAGTCAACTTGGAGCTAGTG -ACGGAAGTCAACTTGGAGCATCTG -ACGGAAGTCAACTTGGAGGAGTTG -ACGGAAGTCAACTTGGAGAGACTG -ACGGAAGTCAACTTGGAGTCGGTA -ACGGAAGTCAACTTGGAGTGCCTA -ACGGAAGTCAACTTGGAGCCACTA -ACGGAAGTCAACTTGGAGGGAGTA -ACGGAAGTCAACTTGGAGTCGTCT -ACGGAAGTCAACTTGGAGTGCACT -ACGGAAGTCAACTTGGAGCTGACT -ACGGAAGTCAACTTGGAGCAACCT -ACGGAAGTCAACTTGGAGGCTACT -ACGGAAGTCAACTTGGAGGGATCT -ACGGAAGTCAACTTGGAGAAGGCT -ACGGAAGTCAACTTGGAGTCAACC -ACGGAAGTCAACTTGGAGTGTTCC -ACGGAAGTCAACTTGGAGATTCCC -ACGGAAGTCAACTTGGAGTTCTCG -ACGGAAGTCAACTTGGAGTAGACG -ACGGAAGTCAACTTGGAGGTAACG -ACGGAAGTCAACTTGGAGACTTCG -ACGGAAGTCAACTTGGAGTACGCA -ACGGAAGTCAACTTGGAGCTTGCA -ACGGAAGTCAACTTGGAGCGAACA -ACGGAAGTCAACTTGGAGCAGTCA -ACGGAAGTCAACTTGGAGGATCCA -ACGGAAGTCAACTTGGAGACGACA -ACGGAAGTCAACTTGGAGAGCTCA -ACGGAAGTCAACTTGGAGTCACGT -ACGGAAGTCAACTTGGAGCGTAGT -ACGGAAGTCAACTTGGAGGTCAGT -ACGGAAGTCAACTTGGAGGAAGGT -ACGGAAGTCAACTTGGAGAACCGT -ACGGAAGTCAACTTGGAGTTGTGC -ACGGAAGTCAACTTGGAGCTAAGC -ACGGAAGTCAACTTGGAGACTAGC -ACGGAAGTCAACTTGGAGAGATGC -ACGGAAGTCAACTTGGAGTGAAGG -ACGGAAGTCAACTTGGAGCAATGG -ACGGAAGTCAACTTGGAGATGAGG -ACGGAAGTCAACTTGGAGAATGGG -ACGGAAGTCAACTTGGAGTCCTGA -ACGGAAGTCAACTTGGAGTAGCGA -ACGGAAGTCAACTTGGAGCACAGA -ACGGAAGTCAACTTGGAGGCAAGA -ACGGAAGTCAACTTGGAGGGTTGA -ACGGAAGTCAACTTGGAGTCCGAT -ACGGAAGTCAACTTGGAGTGGCAT -ACGGAAGTCAACTTGGAGCGAGAT -ACGGAAGTCAACTTGGAGTACCAC -ACGGAAGTCAACTTGGAGCAGAAC -ACGGAAGTCAACTTGGAGGTCTAC -ACGGAAGTCAACTTGGAGACGTAC -ACGGAAGTCAACTTGGAGAGTGAC -ACGGAAGTCAACTTGGAGCTGTAG -ACGGAAGTCAACTTGGAGCCTAAG -ACGGAAGTCAACTTGGAGGTTCAG -ACGGAAGTCAACTTGGAGGCATAG -ACGGAAGTCAACTTGGAGGACAAG -ACGGAAGTCAACTTGGAGAAGCAG -ACGGAAGTCAACTTGGAGCGTCAA -ACGGAAGTCAACTTGGAGGCTGAA -ACGGAAGTCAACTTGGAGAGTACG -ACGGAAGTCAACTTGGAGATCCGA -ACGGAAGTCAACTTGGAGATGGGA -ACGGAAGTCAACTTGGAGGTGCAA -ACGGAAGTCAACTTGGAGGAGGAA -ACGGAAGTCAACTTGGAGCAGGTA -ACGGAAGTCAACTTGGAGGACTCT -ACGGAAGTCAACTTGGAGAGTCCT -ACGGAAGTCAACTTGGAGTAAGCC -ACGGAAGTCAACTTGGAGATAGCC -ACGGAAGTCAACTTGGAGTAACCG -ACGGAAGTCAACTTGGAGATGCCA -ACGGAAGTCAACCTGAGAGGAAAC -ACGGAAGTCAACCTGAGAAACACC -ACGGAAGTCAACCTGAGAATCGAG -ACGGAAGTCAACCTGAGACTCCTT -ACGGAAGTCAACCTGAGACCTGTT -ACGGAAGTCAACCTGAGACGGTTT -ACGGAAGTCAACCTGAGAGTGGTT -ACGGAAGTCAACCTGAGAGCCTTT -ACGGAAGTCAACCTGAGAGGTCTT -ACGGAAGTCAACCTGAGAACGCTT -ACGGAAGTCAACCTGAGAAGCGTT -ACGGAAGTCAACCTGAGATTCGTC -ACGGAAGTCAACCTGAGATCTCTC -ACGGAAGTCAACCTGAGATGGATC -ACGGAAGTCAACCTGAGACACTTC -ACGGAAGTCAACCTGAGAGTACTC -ACGGAAGTCAACCTGAGAGATGTC -ACGGAAGTCAACCTGAGAACAGTC -ACGGAAGTCAACCTGAGATTGCTG -ACGGAAGTCAACCTGAGATCCATG -ACGGAAGTCAACCTGAGATGTGTG -ACGGAAGTCAACCTGAGACTAGTG -ACGGAAGTCAACCTGAGACATCTG -ACGGAAGTCAACCTGAGAGAGTTG -ACGGAAGTCAACCTGAGAAGACTG -ACGGAAGTCAACCTGAGATCGGTA -ACGGAAGTCAACCTGAGATGCCTA -ACGGAAGTCAACCTGAGACCACTA -ACGGAAGTCAACCTGAGAGGAGTA -ACGGAAGTCAACCTGAGATCGTCT -ACGGAAGTCAACCTGAGATGCACT -ACGGAAGTCAACCTGAGACTGACT -ACGGAAGTCAACCTGAGACAACCT -ACGGAAGTCAACCTGAGAGCTACT -ACGGAAGTCAACCTGAGAGGATCT -ACGGAAGTCAACCTGAGAAAGGCT -ACGGAAGTCAACCTGAGATCAACC -ACGGAAGTCAACCTGAGATGTTCC -ACGGAAGTCAACCTGAGAATTCCC -ACGGAAGTCAACCTGAGATTCTCG -ACGGAAGTCAACCTGAGATAGACG -ACGGAAGTCAACCTGAGAGTAACG -ACGGAAGTCAACCTGAGAACTTCG -ACGGAAGTCAACCTGAGATACGCA -ACGGAAGTCAACCTGAGACTTGCA -ACGGAAGTCAACCTGAGACGAACA -ACGGAAGTCAACCTGAGACAGTCA -ACGGAAGTCAACCTGAGAGATCCA -ACGGAAGTCAACCTGAGAACGACA -ACGGAAGTCAACCTGAGAAGCTCA -ACGGAAGTCAACCTGAGATCACGT -ACGGAAGTCAACCTGAGACGTAGT -ACGGAAGTCAACCTGAGAGTCAGT -ACGGAAGTCAACCTGAGAGAAGGT -ACGGAAGTCAACCTGAGAAACCGT -ACGGAAGTCAACCTGAGATTGTGC -ACGGAAGTCAACCTGAGACTAAGC -ACGGAAGTCAACCTGAGAACTAGC -ACGGAAGTCAACCTGAGAAGATGC -ACGGAAGTCAACCTGAGATGAAGG -ACGGAAGTCAACCTGAGACAATGG -ACGGAAGTCAACCTGAGAATGAGG -ACGGAAGTCAACCTGAGAAATGGG -ACGGAAGTCAACCTGAGATCCTGA -ACGGAAGTCAACCTGAGATAGCGA -ACGGAAGTCAACCTGAGACACAGA -ACGGAAGTCAACCTGAGAGCAAGA -ACGGAAGTCAACCTGAGAGGTTGA -ACGGAAGTCAACCTGAGATCCGAT -ACGGAAGTCAACCTGAGATGGCAT -ACGGAAGTCAACCTGAGACGAGAT -ACGGAAGTCAACCTGAGATACCAC -ACGGAAGTCAACCTGAGACAGAAC -ACGGAAGTCAACCTGAGAGTCTAC -ACGGAAGTCAACCTGAGAACGTAC -ACGGAAGTCAACCTGAGAAGTGAC -ACGGAAGTCAACCTGAGACTGTAG -ACGGAAGTCAACCTGAGACCTAAG -ACGGAAGTCAACCTGAGAGTTCAG -ACGGAAGTCAACCTGAGAGCATAG -ACGGAAGTCAACCTGAGAGACAAG -ACGGAAGTCAACCTGAGAAAGCAG -ACGGAAGTCAACCTGAGACGTCAA -ACGGAAGTCAACCTGAGAGCTGAA -ACGGAAGTCAACCTGAGAAGTACG -ACGGAAGTCAACCTGAGAATCCGA -ACGGAAGTCAACCTGAGAATGGGA -ACGGAAGTCAACCTGAGAGTGCAA -ACGGAAGTCAACCTGAGAGAGGAA -ACGGAAGTCAACCTGAGACAGGTA -ACGGAAGTCAACCTGAGAGACTCT -ACGGAAGTCAACCTGAGAAGTCCT -ACGGAAGTCAACCTGAGATAAGCC -ACGGAAGTCAACCTGAGAATAGCC -ACGGAAGTCAACCTGAGATAACCG -ACGGAAGTCAACCTGAGAATGCCA -ACGGAAGTCAACGTATCGGGAAAC -ACGGAAGTCAACGTATCGAACACC -ACGGAAGTCAACGTATCGATCGAG -ACGGAAGTCAACGTATCGCTCCTT -ACGGAAGTCAACGTATCGCCTGTT -ACGGAAGTCAACGTATCGCGGTTT -ACGGAAGTCAACGTATCGGTGGTT -ACGGAAGTCAACGTATCGGCCTTT -ACGGAAGTCAACGTATCGGGTCTT -ACGGAAGTCAACGTATCGACGCTT -ACGGAAGTCAACGTATCGAGCGTT -ACGGAAGTCAACGTATCGTTCGTC -ACGGAAGTCAACGTATCGTCTCTC -ACGGAAGTCAACGTATCGTGGATC -ACGGAAGTCAACGTATCGCACTTC -ACGGAAGTCAACGTATCGGTACTC -ACGGAAGTCAACGTATCGGATGTC -ACGGAAGTCAACGTATCGACAGTC -ACGGAAGTCAACGTATCGTTGCTG -ACGGAAGTCAACGTATCGTCCATG -ACGGAAGTCAACGTATCGTGTGTG -ACGGAAGTCAACGTATCGCTAGTG -ACGGAAGTCAACGTATCGCATCTG -ACGGAAGTCAACGTATCGGAGTTG -ACGGAAGTCAACGTATCGAGACTG -ACGGAAGTCAACGTATCGTCGGTA -ACGGAAGTCAACGTATCGTGCCTA -ACGGAAGTCAACGTATCGCCACTA -ACGGAAGTCAACGTATCGGGAGTA -ACGGAAGTCAACGTATCGTCGTCT -ACGGAAGTCAACGTATCGTGCACT -ACGGAAGTCAACGTATCGCTGACT -ACGGAAGTCAACGTATCGCAACCT -ACGGAAGTCAACGTATCGGCTACT -ACGGAAGTCAACGTATCGGGATCT -ACGGAAGTCAACGTATCGAAGGCT -ACGGAAGTCAACGTATCGTCAACC -ACGGAAGTCAACGTATCGTGTTCC -ACGGAAGTCAACGTATCGATTCCC -ACGGAAGTCAACGTATCGTTCTCG -ACGGAAGTCAACGTATCGTAGACG -ACGGAAGTCAACGTATCGGTAACG -ACGGAAGTCAACGTATCGACTTCG -ACGGAAGTCAACGTATCGTACGCA -ACGGAAGTCAACGTATCGCTTGCA -ACGGAAGTCAACGTATCGCGAACA -ACGGAAGTCAACGTATCGCAGTCA -ACGGAAGTCAACGTATCGGATCCA -ACGGAAGTCAACGTATCGACGACA -ACGGAAGTCAACGTATCGAGCTCA -ACGGAAGTCAACGTATCGTCACGT -ACGGAAGTCAACGTATCGCGTAGT -ACGGAAGTCAACGTATCGGTCAGT -ACGGAAGTCAACGTATCGGAAGGT -ACGGAAGTCAACGTATCGAACCGT -ACGGAAGTCAACGTATCGTTGTGC -ACGGAAGTCAACGTATCGCTAAGC -ACGGAAGTCAACGTATCGACTAGC -ACGGAAGTCAACGTATCGAGATGC -ACGGAAGTCAACGTATCGTGAAGG -ACGGAAGTCAACGTATCGCAATGG -ACGGAAGTCAACGTATCGATGAGG -ACGGAAGTCAACGTATCGAATGGG -ACGGAAGTCAACGTATCGTCCTGA -ACGGAAGTCAACGTATCGTAGCGA -ACGGAAGTCAACGTATCGCACAGA -ACGGAAGTCAACGTATCGGCAAGA -ACGGAAGTCAACGTATCGGGTTGA -ACGGAAGTCAACGTATCGTCCGAT -ACGGAAGTCAACGTATCGTGGCAT -ACGGAAGTCAACGTATCGCGAGAT -ACGGAAGTCAACGTATCGTACCAC -ACGGAAGTCAACGTATCGCAGAAC -ACGGAAGTCAACGTATCGGTCTAC -ACGGAAGTCAACGTATCGACGTAC -ACGGAAGTCAACGTATCGAGTGAC -ACGGAAGTCAACGTATCGCTGTAG -ACGGAAGTCAACGTATCGCCTAAG -ACGGAAGTCAACGTATCGGTTCAG -ACGGAAGTCAACGTATCGGCATAG -ACGGAAGTCAACGTATCGGACAAG -ACGGAAGTCAACGTATCGAAGCAG -ACGGAAGTCAACGTATCGCGTCAA -ACGGAAGTCAACGTATCGGCTGAA -ACGGAAGTCAACGTATCGAGTACG -ACGGAAGTCAACGTATCGATCCGA -ACGGAAGTCAACGTATCGATGGGA -ACGGAAGTCAACGTATCGGTGCAA -ACGGAAGTCAACGTATCGGAGGAA -ACGGAAGTCAACGTATCGCAGGTA -ACGGAAGTCAACGTATCGGACTCT -ACGGAAGTCAACGTATCGAGTCCT -ACGGAAGTCAACGTATCGTAAGCC -ACGGAAGTCAACGTATCGATAGCC -ACGGAAGTCAACGTATCGTAACCG -ACGGAAGTCAACGTATCGATGCCA -ACGGAAGTCAACCTATGCGGAAAC -ACGGAAGTCAACCTATGCAACACC -ACGGAAGTCAACCTATGCATCGAG -ACGGAAGTCAACCTATGCCTCCTT -ACGGAAGTCAACCTATGCCCTGTT -ACGGAAGTCAACCTATGCCGGTTT -ACGGAAGTCAACCTATGCGTGGTT -ACGGAAGTCAACCTATGCGCCTTT -ACGGAAGTCAACCTATGCGGTCTT -ACGGAAGTCAACCTATGCACGCTT -ACGGAAGTCAACCTATGCAGCGTT -ACGGAAGTCAACCTATGCTTCGTC -ACGGAAGTCAACCTATGCTCTCTC -ACGGAAGTCAACCTATGCTGGATC -ACGGAAGTCAACCTATGCCACTTC -ACGGAAGTCAACCTATGCGTACTC -ACGGAAGTCAACCTATGCGATGTC -ACGGAAGTCAACCTATGCACAGTC -ACGGAAGTCAACCTATGCTTGCTG -ACGGAAGTCAACCTATGCTCCATG -ACGGAAGTCAACCTATGCTGTGTG -ACGGAAGTCAACCTATGCCTAGTG -ACGGAAGTCAACCTATGCCATCTG -ACGGAAGTCAACCTATGCGAGTTG -ACGGAAGTCAACCTATGCAGACTG -ACGGAAGTCAACCTATGCTCGGTA -ACGGAAGTCAACCTATGCTGCCTA -ACGGAAGTCAACCTATGCCCACTA -ACGGAAGTCAACCTATGCGGAGTA -ACGGAAGTCAACCTATGCTCGTCT -ACGGAAGTCAACCTATGCTGCACT -ACGGAAGTCAACCTATGCCTGACT -ACGGAAGTCAACCTATGCCAACCT -ACGGAAGTCAACCTATGCGCTACT -ACGGAAGTCAACCTATGCGGATCT -ACGGAAGTCAACCTATGCAAGGCT -ACGGAAGTCAACCTATGCTCAACC -ACGGAAGTCAACCTATGCTGTTCC -ACGGAAGTCAACCTATGCATTCCC -ACGGAAGTCAACCTATGCTTCTCG -ACGGAAGTCAACCTATGCTAGACG -ACGGAAGTCAACCTATGCGTAACG -ACGGAAGTCAACCTATGCACTTCG -ACGGAAGTCAACCTATGCTACGCA -ACGGAAGTCAACCTATGCCTTGCA -ACGGAAGTCAACCTATGCCGAACA -ACGGAAGTCAACCTATGCCAGTCA -ACGGAAGTCAACCTATGCGATCCA -ACGGAAGTCAACCTATGCACGACA -ACGGAAGTCAACCTATGCAGCTCA -ACGGAAGTCAACCTATGCTCACGT -ACGGAAGTCAACCTATGCCGTAGT -ACGGAAGTCAACCTATGCGTCAGT -ACGGAAGTCAACCTATGCGAAGGT -ACGGAAGTCAACCTATGCAACCGT -ACGGAAGTCAACCTATGCTTGTGC -ACGGAAGTCAACCTATGCCTAAGC -ACGGAAGTCAACCTATGCACTAGC -ACGGAAGTCAACCTATGCAGATGC -ACGGAAGTCAACCTATGCTGAAGG -ACGGAAGTCAACCTATGCCAATGG -ACGGAAGTCAACCTATGCATGAGG -ACGGAAGTCAACCTATGCAATGGG -ACGGAAGTCAACCTATGCTCCTGA -ACGGAAGTCAACCTATGCTAGCGA -ACGGAAGTCAACCTATGCCACAGA -ACGGAAGTCAACCTATGCGCAAGA -ACGGAAGTCAACCTATGCGGTTGA -ACGGAAGTCAACCTATGCTCCGAT -ACGGAAGTCAACCTATGCTGGCAT -ACGGAAGTCAACCTATGCCGAGAT -ACGGAAGTCAACCTATGCTACCAC -ACGGAAGTCAACCTATGCCAGAAC -ACGGAAGTCAACCTATGCGTCTAC -ACGGAAGTCAACCTATGCACGTAC -ACGGAAGTCAACCTATGCAGTGAC -ACGGAAGTCAACCTATGCCTGTAG -ACGGAAGTCAACCTATGCCCTAAG -ACGGAAGTCAACCTATGCGTTCAG -ACGGAAGTCAACCTATGCGCATAG -ACGGAAGTCAACCTATGCGACAAG -ACGGAAGTCAACCTATGCAAGCAG -ACGGAAGTCAACCTATGCCGTCAA -ACGGAAGTCAACCTATGCGCTGAA -ACGGAAGTCAACCTATGCAGTACG -ACGGAAGTCAACCTATGCATCCGA -ACGGAAGTCAACCTATGCATGGGA -ACGGAAGTCAACCTATGCGTGCAA -ACGGAAGTCAACCTATGCGAGGAA -ACGGAAGTCAACCTATGCCAGGTA -ACGGAAGTCAACCTATGCGACTCT -ACGGAAGTCAACCTATGCAGTCCT -ACGGAAGTCAACCTATGCTAAGCC -ACGGAAGTCAACCTATGCATAGCC -ACGGAAGTCAACCTATGCTAACCG -ACGGAAGTCAACCTATGCATGCCA -ACGGAAGTCAACCTACCAGGAAAC -ACGGAAGTCAACCTACCAAACACC -ACGGAAGTCAACCTACCAATCGAG -ACGGAAGTCAACCTACCACTCCTT -ACGGAAGTCAACCTACCACCTGTT -ACGGAAGTCAACCTACCACGGTTT -ACGGAAGTCAACCTACCAGTGGTT -ACGGAAGTCAACCTACCAGCCTTT -ACGGAAGTCAACCTACCAGGTCTT -ACGGAAGTCAACCTACCAACGCTT -ACGGAAGTCAACCTACCAAGCGTT -ACGGAAGTCAACCTACCATTCGTC -ACGGAAGTCAACCTACCATCTCTC -ACGGAAGTCAACCTACCATGGATC -ACGGAAGTCAACCTACCACACTTC -ACGGAAGTCAACCTACCAGTACTC -ACGGAAGTCAACCTACCAGATGTC -ACGGAAGTCAACCTACCAACAGTC -ACGGAAGTCAACCTACCATTGCTG -ACGGAAGTCAACCTACCATCCATG -ACGGAAGTCAACCTACCATGTGTG -ACGGAAGTCAACCTACCACTAGTG -ACGGAAGTCAACCTACCACATCTG -ACGGAAGTCAACCTACCAGAGTTG -ACGGAAGTCAACCTACCAAGACTG -ACGGAAGTCAACCTACCATCGGTA -ACGGAAGTCAACCTACCATGCCTA -ACGGAAGTCAACCTACCACCACTA -ACGGAAGTCAACCTACCAGGAGTA -ACGGAAGTCAACCTACCATCGTCT -ACGGAAGTCAACCTACCATGCACT -ACGGAAGTCAACCTACCACTGACT -ACGGAAGTCAACCTACCACAACCT -ACGGAAGTCAACCTACCAGCTACT -ACGGAAGTCAACCTACCAGGATCT -ACGGAAGTCAACCTACCAAAGGCT -ACGGAAGTCAACCTACCATCAACC -ACGGAAGTCAACCTACCATGTTCC -ACGGAAGTCAACCTACCAATTCCC -ACGGAAGTCAACCTACCATTCTCG -ACGGAAGTCAACCTACCATAGACG -ACGGAAGTCAACCTACCAGTAACG -ACGGAAGTCAACCTACCAACTTCG -ACGGAAGTCAACCTACCATACGCA -ACGGAAGTCAACCTACCACTTGCA -ACGGAAGTCAACCTACCACGAACA -ACGGAAGTCAACCTACCACAGTCA -ACGGAAGTCAACCTACCAGATCCA -ACGGAAGTCAACCTACCAACGACA -ACGGAAGTCAACCTACCAAGCTCA -ACGGAAGTCAACCTACCATCACGT -ACGGAAGTCAACCTACCACGTAGT -ACGGAAGTCAACCTACCAGTCAGT -ACGGAAGTCAACCTACCAGAAGGT -ACGGAAGTCAACCTACCAAACCGT -ACGGAAGTCAACCTACCATTGTGC -ACGGAAGTCAACCTACCACTAAGC -ACGGAAGTCAACCTACCAACTAGC -ACGGAAGTCAACCTACCAAGATGC -ACGGAAGTCAACCTACCATGAAGG -ACGGAAGTCAACCTACCACAATGG -ACGGAAGTCAACCTACCAATGAGG -ACGGAAGTCAACCTACCAAATGGG -ACGGAAGTCAACCTACCATCCTGA -ACGGAAGTCAACCTACCATAGCGA -ACGGAAGTCAACCTACCACACAGA -ACGGAAGTCAACCTACCAGCAAGA -ACGGAAGTCAACCTACCAGGTTGA -ACGGAAGTCAACCTACCATCCGAT -ACGGAAGTCAACCTACCATGGCAT -ACGGAAGTCAACCTACCACGAGAT -ACGGAAGTCAACCTACCATACCAC -ACGGAAGTCAACCTACCACAGAAC -ACGGAAGTCAACCTACCAGTCTAC -ACGGAAGTCAACCTACCAACGTAC -ACGGAAGTCAACCTACCAAGTGAC -ACGGAAGTCAACCTACCACTGTAG -ACGGAAGTCAACCTACCACCTAAG -ACGGAAGTCAACCTACCAGTTCAG -ACGGAAGTCAACCTACCAGCATAG -ACGGAAGTCAACCTACCAGACAAG -ACGGAAGTCAACCTACCAAAGCAG -ACGGAAGTCAACCTACCACGTCAA -ACGGAAGTCAACCTACCAGCTGAA -ACGGAAGTCAACCTACCAAGTACG -ACGGAAGTCAACCTACCAATCCGA -ACGGAAGTCAACCTACCAATGGGA -ACGGAAGTCAACCTACCAGTGCAA -ACGGAAGTCAACCTACCAGAGGAA -ACGGAAGTCAACCTACCACAGGTA -ACGGAAGTCAACCTACCAGACTCT -ACGGAAGTCAACCTACCAAGTCCT -ACGGAAGTCAACCTACCATAAGCC -ACGGAAGTCAACCTACCAATAGCC -ACGGAAGTCAACCTACCATAACCG -ACGGAAGTCAACCTACCAATGCCA -ACGGAAGTCAACGTAGGAGGAAAC -ACGGAAGTCAACGTAGGAAACACC -ACGGAAGTCAACGTAGGAATCGAG -ACGGAAGTCAACGTAGGACTCCTT -ACGGAAGTCAACGTAGGACCTGTT -ACGGAAGTCAACGTAGGACGGTTT -ACGGAAGTCAACGTAGGAGTGGTT -ACGGAAGTCAACGTAGGAGCCTTT -ACGGAAGTCAACGTAGGAGGTCTT -ACGGAAGTCAACGTAGGAACGCTT -ACGGAAGTCAACGTAGGAAGCGTT -ACGGAAGTCAACGTAGGATTCGTC -ACGGAAGTCAACGTAGGATCTCTC -ACGGAAGTCAACGTAGGATGGATC -ACGGAAGTCAACGTAGGACACTTC -ACGGAAGTCAACGTAGGAGTACTC -ACGGAAGTCAACGTAGGAGATGTC -ACGGAAGTCAACGTAGGAACAGTC -ACGGAAGTCAACGTAGGATTGCTG -ACGGAAGTCAACGTAGGATCCATG -ACGGAAGTCAACGTAGGATGTGTG -ACGGAAGTCAACGTAGGACTAGTG -ACGGAAGTCAACGTAGGACATCTG -ACGGAAGTCAACGTAGGAGAGTTG -ACGGAAGTCAACGTAGGAAGACTG -ACGGAAGTCAACGTAGGATCGGTA -ACGGAAGTCAACGTAGGATGCCTA -ACGGAAGTCAACGTAGGACCACTA -ACGGAAGTCAACGTAGGAGGAGTA -ACGGAAGTCAACGTAGGATCGTCT -ACGGAAGTCAACGTAGGATGCACT -ACGGAAGTCAACGTAGGACTGACT -ACGGAAGTCAACGTAGGACAACCT -ACGGAAGTCAACGTAGGAGCTACT -ACGGAAGTCAACGTAGGAGGATCT -ACGGAAGTCAACGTAGGAAAGGCT -ACGGAAGTCAACGTAGGATCAACC -ACGGAAGTCAACGTAGGATGTTCC -ACGGAAGTCAACGTAGGAATTCCC -ACGGAAGTCAACGTAGGATTCTCG -ACGGAAGTCAACGTAGGATAGACG -ACGGAAGTCAACGTAGGAGTAACG -ACGGAAGTCAACGTAGGAACTTCG -ACGGAAGTCAACGTAGGATACGCA -ACGGAAGTCAACGTAGGACTTGCA -ACGGAAGTCAACGTAGGACGAACA -ACGGAAGTCAACGTAGGACAGTCA -ACGGAAGTCAACGTAGGAGATCCA -ACGGAAGTCAACGTAGGAACGACA -ACGGAAGTCAACGTAGGAAGCTCA -ACGGAAGTCAACGTAGGATCACGT -ACGGAAGTCAACGTAGGACGTAGT -ACGGAAGTCAACGTAGGAGTCAGT -ACGGAAGTCAACGTAGGAGAAGGT -ACGGAAGTCAACGTAGGAAACCGT -ACGGAAGTCAACGTAGGATTGTGC -ACGGAAGTCAACGTAGGACTAAGC -ACGGAAGTCAACGTAGGAACTAGC -ACGGAAGTCAACGTAGGAAGATGC -ACGGAAGTCAACGTAGGATGAAGG -ACGGAAGTCAACGTAGGACAATGG -ACGGAAGTCAACGTAGGAATGAGG -ACGGAAGTCAACGTAGGAAATGGG -ACGGAAGTCAACGTAGGATCCTGA -ACGGAAGTCAACGTAGGATAGCGA -ACGGAAGTCAACGTAGGACACAGA -ACGGAAGTCAACGTAGGAGCAAGA -ACGGAAGTCAACGTAGGAGGTTGA -ACGGAAGTCAACGTAGGATCCGAT -ACGGAAGTCAACGTAGGATGGCAT -ACGGAAGTCAACGTAGGACGAGAT -ACGGAAGTCAACGTAGGATACCAC -ACGGAAGTCAACGTAGGACAGAAC -ACGGAAGTCAACGTAGGAGTCTAC -ACGGAAGTCAACGTAGGAACGTAC -ACGGAAGTCAACGTAGGAAGTGAC -ACGGAAGTCAACGTAGGACTGTAG -ACGGAAGTCAACGTAGGACCTAAG -ACGGAAGTCAACGTAGGAGTTCAG -ACGGAAGTCAACGTAGGAGCATAG -ACGGAAGTCAACGTAGGAGACAAG -ACGGAAGTCAACGTAGGAAAGCAG -ACGGAAGTCAACGTAGGACGTCAA -ACGGAAGTCAACGTAGGAGCTGAA -ACGGAAGTCAACGTAGGAAGTACG -ACGGAAGTCAACGTAGGAATCCGA -ACGGAAGTCAACGTAGGAATGGGA -ACGGAAGTCAACGTAGGAGTGCAA -ACGGAAGTCAACGTAGGAGAGGAA -ACGGAAGTCAACGTAGGACAGGTA -ACGGAAGTCAACGTAGGAGACTCT -ACGGAAGTCAACGTAGGAAGTCCT -ACGGAAGTCAACGTAGGATAAGCC -ACGGAAGTCAACGTAGGAATAGCC -ACGGAAGTCAACGTAGGATAACCG -ACGGAAGTCAACGTAGGAATGCCA -ACGGAAGTCAACTCTTCGGGAAAC -ACGGAAGTCAACTCTTCGAACACC -ACGGAAGTCAACTCTTCGATCGAG -ACGGAAGTCAACTCTTCGCTCCTT -ACGGAAGTCAACTCTTCGCCTGTT -ACGGAAGTCAACTCTTCGCGGTTT -ACGGAAGTCAACTCTTCGGTGGTT -ACGGAAGTCAACTCTTCGGCCTTT -ACGGAAGTCAACTCTTCGGGTCTT -ACGGAAGTCAACTCTTCGACGCTT -ACGGAAGTCAACTCTTCGAGCGTT -ACGGAAGTCAACTCTTCGTTCGTC -ACGGAAGTCAACTCTTCGTCTCTC -ACGGAAGTCAACTCTTCGTGGATC -ACGGAAGTCAACTCTTCGCACTTC -ACGGAAGTCAACTCTTCGGTACTC -ACGGAAGTCAACTCTTCGGATGTC -ACGGAAGTCAACTCTTCGACAGTC -ACGGAAGTCAACTCTTCGTTGCTG -ACGGAAGTCAACTCTTCGTCCATG -ACGGAAGTCAACTCTTCGTGTGTG -ACGGAAGTCAACTCTTCGCTAGTG -ACGGAAGTCAACTCTTCGCATCTG -ACGGAAGTCAACTCTTCGGAGTTG -ACGGAAGTCAACTCTTCGAGACTG -ACGGAAGTCAACTCTTCGTCGGTA -ACGGAAGTCAACTCTTCGTGCCTA -ACGGAAGTCAACTCTTCGCCACTA -ACGGAAGTCAACTCTTCGGGAGTA -ACGGAAGTCAACTCTTCGTCGTCT -ACGGAAGTCAACTCTTCGTGCACT -ACGGAAGTCAACTCTTCGCTGACT -ACGGAAGTCAACTCTTCGCAACCT -ACGGAAGTCAACTCTTCGGCTACT -ACGGAAGTCAACTCTTCGGGATCT -ACGGAAGTCAACTCTTCGAAGGCT -ACGGAAGTCAACTCTTCGTCAACC -ACGGAAGTCAACTCTTCGTGTTCC -ACGGAAGTCAACTCTTCGATTCCC -ACGGAAGTCAACTCTTCGTTCTCG -ACGGAAGTCAACTCTTCGTAGACG -ACGGAAGTCAACTCTTCGGTAACG -ACGGAAGTCAACTCTTCGACTTCG -ACGGAAGTCAACTCTTCGTACGCA -ACGGAAGTCAACTCTTCGCTTGCA -ACGGAAGTCAACTCTTCGCGAACA -ACGGAAGTCAACTCTTCGCAGTCA -ACGGAAGTCAACTCTTCGGATCCA -ACGGAAGTCAACTCTTCGACGACA -ACGGAAGTCAACTCTTCGAGCTCA -ACGGAAGTCAACTCTTCGTCACGT -ACGGAAGTCAACTCTTCGCGTAGT -ACGGAAGTCAACTCTTCGGTCAGT -ACGGAAGTCAACTCTTCGGAAGGT -ACGGAAGTCAACTCTTCGAACCGT -ACGGAAGTCAACTCTTCGTTGTGC -ACGGAAGTCAACTCTTCGCTAAGC -ACGGAAGTCAACTCTTCGACTAGC -ACGGAAGTCAACTCTTCGAGATGC -ACGGAAGTCAACTCTTCGTGAAGG -ACGGAAGTCAACTCTTCGCAATGG -ACGGAAGTCAACTCTTCGATGAGG -ACGGAAGTCAACTCTTCGAATGGG -ACGGAAGTCAACTCTTCGTCCTGA -ACGGAAGTCAACTCTTCGTAGCGA -ACGGAAGTCAACTCTTCGCACAGA -ACGGAAGTCAACTCTTCGGCAAGA -ACGGAAGTCAACTCTTCGGGTTGA -ACGGAAGTCAACTCTTCGTCCGAT -ACGGAAGTCAACTCTTCGTGGCAT -ACGGAAGTCAACTCTTCGCGAGAT -ACGGAAGTCAACTCTTCGTACCAC -ACGGAAGTCAACTCTTCGCAGAAC -ACGGAAGTCAACTCTTCGGTCTAC -ACGGAAGTCAACTCTTCGACGTAC -ACGGAAGTCAACTCTTCGAGTGAC -ACGGAAGTCAACTCTTCGCTGTAG -ACGGAAGTCAACTCTTCGCCTAAG -ACGGAAGTCAACTCTTCGGTTCAG -ACGGAAGTCAACTCTTCGGCATAG -ACGGAAGTCAACTCTTCGGACAAG -ACGGAAGTCAACTCTTCGAAGCAG -ACGGAAGTCAACTCTTCGCGTCAA -ACGGAAGTCAACTCTTCGGCTGAA -ACGGAAGTCAACTCTTCGAGTACG -ACGGAAGTCAACTCTTCGATCCGA -ACGGAAGTCAACTCTTCGATGGGA -ACGGAAGTCAACTCTTCGGTGCAA -ACGGAAGTCAACTCTTCGGAGGAA -ACGGAAGTCAACTCTTCGCAGGTA -ACGGAAGTCAACTCTTCGGACTCT -ACGGAAGTCAACTCTTCGAGTCCT -ACGGAAGTCAACTCTTCGTAAGCC -ACGGAAGTCAACTCTTCGATAGCC -ACGGAAGTCAACTCTTCGTAACCG -ACGGAAGTCAACTCTTCGATGCCA -ACGGAAGTCAACACTTGCGGAAAC -ACGGAAGTCAACACTTGCAACACC -ACGGAAGTCAACACTTGCATCGAG -ACGGAAGTCAACACTTGCCTCCTT -ACGGAAGTCAACACTTGCCCTGTT -ACGGAAGTCAACACTTGCCGGTTT -ACGGAAGTCAACACTTGCGTGGTT -ACGGAAGTCAACACTTGCGCCTTT -ACGGAAGTCAACACTTGCGGTCTT -ACGGAAGTCAACACTTGCACGCTT -ACGGAAGTCAACACTTGCAGCGTT -ACGGAAGTCAACACTTGCTTCGTC -ACGGAAGTCAACACTTGCTCTCTC -ACGGAAGTCAACACTTGCTGGATC -ACGGAAGTCAACACTTGCCACTTC -ACGGAAGTCAACACTTGCGTACTC -ACGGAAGTCAACACTTGCGATGTC -ACGGAAGTCAACACTTGCACAGTC -ACGGAAGTCAACACTTGCTTGCTG -ACGGAAGTCAACACTTGCTCCATG -ACGGAAGTCAACACTTGCTGTGTG -ACGGAAGTCAACACTTGCCTAGTG -ACGGAAGTCAACACTTGCCATCTG -ACGGAAGTCAACACTTGCGAGTTG -ACGGAAGTCAACACTTGCAGACTG -ACGGAAGTCAACACTTGCTCGGTA -ACGGAAGTCAACACTTGCTGCCTA -ACGGAAGTCAACACTTGCCCACTA -ACGGAAGTCAACACTTGCGGAGTA -ACGGAAGTCAACACTTGCTCGTCT -ACGGAAGTCAACACTTGCTGCACT -ACGGAAGTCAACACTTGCCTGACT -ACGGAAGTCAACACTTGCCAACCT -ACGGAAGTCAACACTTGCGCTACT -ACGGAAGTCAACACTTGCGGATCT -ACGGAAGTCAACACTTGCAAGGCT -ACGGAAGTCAACACTTGCTCAACC -ACGGAAGTCAACACTTGCTGTTCC -ACGGAAGTCAACACTTGCATTCCC -ACGGAAGTCAACACTTGCTTCTCG -ACGGAAGTCAACACTTGCTAGACG -ACGGAAGTCAACACTTGCGTAACG -ACGGAAGTCAACACTTGCACTTCG -ACGGAAGTCAACACTTGCTACGCA -ACGGAAGTCAACACTTGCCTTGCA -ACGGAAGTCAACACTTGCCGAACA -ACGGAAGTCAACACTTGCCAGTCA -ACGGAAGTCAACACTTGCGATCCA -ACGGAAGTCAACACTTGCACGACA -ACGGAAGTCAACACTTGCAGCTCA -ACGGAAGTCAACACTTGCTCACGT -ACGGAAGTCAACACTTGCCGTAGT -ACGGAAGTCAACACTTGCGTCAGT -ACGGAAGTCAACACTTGCGAAGGT -ACGGAAGTCAACACTTGCAACCGT -ACGGAAGTCAACACTTGCTTGTGC -ACGGAAGTCAACACTTGCCTAAGC -ACGGAAGTCAACACTTGCACTAGC -ACGGAAGTCAACACTTGCAGATGC -ACGGAAGTCAACACTTGCTGAAGG -ACGGAAGTCAACACTTGCCAATGG -ACGGAAGTCAACACTTGCATGAGG -ACGGAAGTCAACACTTGCAATGGG -ACGGAAGTCAACACTTGCTCCTGA -ACGGAAGTCAACACTTGCTAGCGA -ACGGAAGTCAACACTTGCCACAGA -ACGGAAGTCAACACTTGCGCAAGA -ACGGAAGTCAACACTTGCGGTTGA -ACGGAAGTCAACACTTGCTCCGAT -ACGGAAGTCAACACTTGCTGGCAT -ACGGAAGTCAACACTTGCCGAGAT -ACGGAAGTCAACACTTGCTACCAC -ACGGAAGTCAACACTTGCCAGAAC -ACGGAAGTCAACACTTGCGTCTAC -ACGGAAGTCAACACTTGCACGTAC -ACGGAAGTCAACACTTGCAGTGAC -ACGGAAGTCAACACTTGCCTGTAG -ACGGAAGTCAACACTTGCCCTAAG -ACGGAAGTCAACACTTGCGTTCAG -ACGGAAGTCAACACTTGCGCATAG -ACGGAAGTCAACACTTGCGACAAG -ACGGAAGTCAACACTTGCAAGCAG -ACGGAAGTCAACACTTGCCGTCAA -ACGGAAGTCAACACTTGCGCTGAA -ACGGAAGTCAACACTTGCAGTACG -ACGGAAGTCAACACTTGCATCCGA -ACGGAAGTCAACACTTGCATGGGA -ACGGAAGTCAACACTTGCGTGCAA -ACGGAAGTCAACACTTGCGAGGAA -ACGGAAGTCAACACTTGCCAGGTA -ACGGAAGTCAACACTTGCGACTCT -ACGGAAGTCAACACTTGCAGTCCT -ACGGAAGTCAACACTTGCTAAGCC -ACGGAAGTCAACACTTGCATAGCC -ACGGAAGTCAACACTTGCTAACCG -ACGGAAGTCAACACTTGCATGCCA -ACGGAAGTCAACACTCTGGGAAAC -ACGGAAGTCAACACTCTGAACACC -ACGGAAGTCAACACTCTGATCGAG -ACGGAAGTCAACACTCTGCTCCTT -ACGGAAGTCAACACTCTGCCTGTT -ACGGAAGTCAACACTCTGCGGTTT -ACGGAAGTCAACACTCTGGTGGTT -ACGGAAGTCAACACTCTGGCCTTT -ACGGAAGTCAACACTCTGGGTCTT -ACGGAAGTCAACACTCTGACGCTT -ACGGAAGTCAACACTCTGAGCGTT -ACGGAAGTCAACACTCTGTTCGTC -ACGGAAGTCAACACTCTGTCTCTC -ACGGAAGTCAACACTCTGTGGATC -ACGGAAGTCAACACTCTGCACTTC -ACGGAAGTCAACACTCTGGTACTC -ACGGAAGTCAACACTCTGGATGTC -ACGGAAGTCAACACTCTGACAGTC -ACGGAAGTCAACACTCTGTTGCTG -ACGGAAGTCAACACTCTGTCCATG -ACGGAAGTCAACACTCTGTGTGTG -ACGGAAGTCAACACTCTGCTAGTG -ACGGAAGTCAACACTCTGCATCTG -ACGGAAGTCAACACTCTGGAGTTG -ACGGAAGTCAACACTCTGAGACTG -ACGGAAGTCAACACTCTGTCGGTA -ACGGAAGTCAACACTCTGTGCCTA -ACGGAAGTCAACACTCTGCCACTA -ACGGAAGTCAACACTCTGGGAGTA -ACGGAAGTCAACACTCTGTCGTCT -ACGGAAGTCAACACTCTGTGCACT -ACGGAAGTCAACACTCTGCTGACT -ACGGAAGTCAACACTCTGCAACCT -ACGGAAGTCAACACTCTGGCTACT -ACGGAAGTCAACACTCTGGGATCT -ACGGAAGTCAACACTCTGAAGGCT -ACGGAAGTCAACACTCTGTCAACC -ACGGAAGTCAACACTCTGTGTTCC -ACGGAAGTCAACACTCTGATTCCC -ACGGAAGTCAACACTCTGTTCTCG -ACGGAAGTCAACACTCTGTAGACG -ACGGAAGTCAACACTCTGGTAACG -ACGGAAGTCAACACTCTGACTTCG -ACGGAAGTCAACACTCTGTACGCA -ACGGAAGTCAACACTCTGCTTGCA -ACGGAAGTCAACACTCTGCGAACA -ACGGAAGTCAACACTCTGCAGTCA -ACGGAAGTCAACACTCTGGATCCA -ACGGAAGTCAACACTCTGACGACA -ACGGAAGTCAACACTCTGAGCTCA -ACGGAAGTCAACACTCTGTCACGT -ACGGAAGTCAACACTCTGCGTAGT -ACGGAAGTCAACACTCTGGTCAGT -ACGGAAGTCAACACTCTGGAAGGT -ACGGAAGTCAACACTCTGAACCGT -ACGGAAGTCAACACTCTGTTGTGC -ACGGAAGTCAACACTCTGCTAAGC -ACGGAAGTCAACACTCTGACTAGC -ACGGAAGTCAACACTCTGAGATGC -ACGGAAGTCAACACTCTGTGAAGG -ACGGAAGTCAACACTCTGCAATGG -ACGGAAGTCAACACTCTGATGAGG -ACGGAAGTCAACACTCTGAATGGG -ACGGAAGTCAACACTCTGTCCTGA -ACGGAAGTCAACACTCTGTAGCGA -ACGGAAGTCAACACTCTGCACAGA -ACGGAAGTCAACACTCTGGCAAGA -ACGGAAGTCAACACTCTGGGTTGA -ACGGAAGTCAACACTCTGTCCGAT -ACGGAAGTCAACACTCTGTGGCAT -ACGGAAGTCAACACTCTGCGAGAT -ACGGAAGTCAACACTCTGTACCAC -ACGGAAGTCAACACTCTGCAGAAC -ACGGAAGTCAACACTCTGGTCTAC -ACGGAAGTCAACACTCTGACGTAC -ACGGAAGTCAACACTCTGAGTGAC -ACGGAAGTCAACACTCTGCTGTAG -ACGGAAGTCAACACTCTGCCTAAG -ACGGAAGTCAACACTCTGGTTCAG -ACGGAAGTCAACACTCTGGCATAG -ACGGAAGTCAACACTCTGGACAAG -ACGGAAGTCAACACTCTGAAGCAG -ACGGAAGTCAACACTCTGCGTCAA -ACGGAAGTCAACACTCTGGCTGAA -ACGGAAGTCAACACTCTGAGTACG -ACGGAAGTCAACACTCTGATCCGA -ACGGAAGTCAACACTCTGATGGGA -ACGGAAGTCAACACTCTGGTGCAA -ACGGAAGTCAACACTCTGGAGGAA -ACGGAAGTCAACACTCTGCAGGTA -ACGGAAGTCAACACTCTGGACTCT -ACGGAAGTCAACACTCTGAGTCCT -ACGGAAGTCAACACTCTGTAAGCC -ACGGAAGTCAACACTCTGATAGCC -ACGGAAGTCAACACTCTGTAACCG -ACGGAAGTCAACACTCTGATGCCA -ACGGAAGTCAACCCTCAAGGAAAC -ACGGAAGTCAACCCTCAAAACACC -ACGGAAGTCAACCCTCAAATCGAG -ACGGAAGTCAACCCTCAACTCCTT -ACGGAAGTCAACCCTCAACCTGTT -ACGGAAGTCAACCCTCAACGGTTT -ACGGAAGTCAACCCTCAAGTGGTT -ACGGAAGTCAACCCTCAAGCCTTT -ACGGAAGTCAACCCTCAAGGTCTT -ACGGAAGTCAACCCTCAAACGCTT -ACGGAAGTCAACCCTCAAAGCGTT -ACGGAAGTCAACCCTCAATTCGTC -ACGGAAGTCAACCCTCAATCTCTC -ACGGAAGTCAACCCTCAATGGATC -ACGGAAGTCAACCCTCAACACTTC -ACGGAAGTCAACCCTCAAGTACTC -ACGGAAGTCAACCCTCAAGATGTC -ACGGAAGTCAACCCTCAAACAGTC -ACGGAAGTCAACCCTCAATTGCTG -ACGGAAGTCAACCCTCAATCCATG -ACGGAAGTCAACCCTCAATGTGTG -ACGGAAGTCAACCCTCAACTAGTG -ACGGAAGTCAACCCTCAACATCTG -ACGGAAGTCAACCCTCAAGAGTTG -ACGGAAGTCAACCCTCAAAGACTG -ACGGAAGTCAACCCTCAATCGGTA -ACGGAAGTCAACCCTCAATGCCTA -ACGGAAGTCAACCCTCAACCACTA -ACGGAAGTCAACCCTCAAGGAGTA -ACGGAAGTCAACCCTCAATCGTCT -ACGGAAGTCAACCCTCAATGCACT -ACGGAAGTCAACCCTCAACTGACT -ACGGAAGTCAACCCTCAACAACCT -ACGGAAGTCAACCCTCAAGCTACT -ACGGAAGTCAACCCTCAAGGATCT -ACGGAAGTCAACCCTCAAAAGGCT -ACGGAAGTCAACCCTCAATCAACC -ACGGAAGTCAACCCTCAATGTTCC -ACGGAAGTCAACCCTCAAATTCCC -ACGGAAGTCAACCCTCAATTCTCG -ACGGAAGTCAACCCTCAATAGACG -ACGGAAGTCAACCCTCAAGTAACG -ACGGAAGTCAACCCTCAAACTTCG -ACGGAAGTCAACCCTCAATACGCA -ACGGAAGTCAACCCTCAACTTGCA -ACGGAAGTCAACCCTCAACGAACA -ACGGAAGTCAACCCTCAACAGTCA -ACGGAAGTCAACCCTCAAGATCCA -ACGGAAGTCAACCCTCAAACGACA -ACGGAAGTCAACCCTCAAAGCTCA -ACGGAAGTCAACCCTCAATCACGT -ACGGAAGTCAACCCTCAACGTAGT -ACGGAAGTCAACCCTCAAGTCAGT -ACGGAAGTCAACCCTCAAGAAGGT -ACGGAAGTCAACCCTCAAAACCGT -ACGGAAGTCAACCCTCAATTGTGC -ACGGAAGTCAACCCTCAACTAAGC -ACGGAAGTCAACCCTCAAACTAGC -ACGGAAGTCAACCCTCAAAGATGC -ACGGAAGTCAACCCTCAATGAAGG -ACGGAAGTCAACCCTCAACAATGG -ACGGAAGTCAACCCTCAAATGAGG -ACGGAAGTCAACCCTCAAAATGGG -ACGGAAGTCAACCCTCAATCCTGA -ACGGAAGTCAACCCTCAATAGCGA -ACGGAAGTCAACCCTCAACACAGA -ACGGAAGTCAACCCTCAAGCAAGA -ACGGAAGTCAACCCTCAAGGTTGA -ACGGAAGTCAACCCTCAATCCGAT -ACGGAAGTCAACCCTCAATGGCAT -ACGGAAGTCAACCCTCAACGAGAT -ACGGAAGTCAACCCTCAATACCAC -ACGGAAGTCAACCCTCAACAGAAC -ACGGAAGTCAACCCTCAAGTCTAC -ACGGAAGTCAACCCTCAAACGTAC -ACGGAAGTCAACCCTCAAAGTGAC -ACGGAAGTCAACCCTCAACTGTAG -ACGGAAGTCAACCCTCAACCTAAG -ACGGAAGTCAACCCTCAAGTTCAG -ACGGAAGTCAACCCTCAAGCATAG -ACGGAAGTCAACCCTCAAGACAAG -ACGGAAGTCAACCCTCAAAAGCAG -ACGGAAGTCAACCCTCAACGTCAA -ACGGAAGTCAACCCTCAAGCTGAA -ACGGAAGTCAACCCTCAAAGTACG -ACGGAAGTCAACCCTCAAATCCGA -ACGGAAGTCAACCCTCAAATGGGA -ACGGAAGTCAACCCTCAAGTGCAA -ACGGAAGTCAACCCTCAAGAGGAA -ACGGAAGTCAACCCTCAACAGGTA -ACGGAAGTCAACCCTCAAGACTCT -ACGGAAGTCAACCCTCAAAGTCCT -ACGGAAGTCAACCCTCAATAAGCC -ACGGAAGTCAACCCTCAAATAGCC -ACGGAAGTCAACCCTCAATAACCG -ACGGAAGTCAACCCTCAAATGCCA -ACGGAAGTCAACACTGCTGGAAAC -ACGGAAGTCAACACTGCTAACACC -ACGGAAGTCAACACTGCTATCGAG -ACGGAAGTCAACACTGCTCTCCTT -ACGGAAGTCAACACTGCTCCTGTT -ACGGAAGTCAACACTGCTCGGTTT -ACGGAAGTCAACACTGCTGTGGTT -ACGGAAGTCAACACTGCTGCCTTT -ACGGAAGTCAACACTGCTGGTCTT -ACGGAAGTCAACACTGCTACGCTT -ACGGAAGTCAACACTGCTAGCGTT -ACGGAAGTCAACACTGCTTTCGTC -ACGGAAGTCAACACTGCTTCTCTC -ACGGAAGTCAACACTGCTTGGATC -ACGGAAGTCAACACTGCTCACTTC -ACGGAAGTCAACACTGCTGTACTC -ACGGAAGTCAACACTGCTGATGTC -ACGGAAGTCAACACTGCTACAGTC -ACGGAAGTCAACACTGCTTTGCTG -ACGGAAGTCAACACTGCTTCCATG -ACGGAAGTCAACACTGCTTGTGTG -ACGGAAGTCAACACTGCTCTAGTG -ACGGAAGTCAACACTGCTCATCTG -ACGGAAGTCAACACTGCTGAGTTG -ACGGAAGTCAACACTGCTAGACTG -ACGGAAGTCAACACTGCTTCGGTA -ACGGAAGTCAACACTGCTTGCCTA -ACGGAAGTCAACACTGCTCCACTA -ACGGAAGTCAACACTGCTGGAGTA -ACGGAAGTCAACACTGCTTCGTCT -ACGGAAGTCAACACTGCTTGCACT -ACGGAAGTCAACACTGCTCTGACT -ACGGAAGTCAACACTGCTCAACCT -ACGGAAGTCAACACTGCTGCTACT -ACGGAAGTCAACACTGCTGGATCT -ACGGAAGTCAACACTGCTAAGGCT -ACGGAAGTCAACACTGCTTCAACC -ACGGAAGTCAACACTGCTTGTTCC -ACGGAAGTCAACACTGCTATTCCC -ACGGAAGTCAACACTGCTTTCTCG -ACGGAAGTCAACACTGCTTAGACG -ACGGAAGTCAACACTGCTGTAACG -ACGGAAGTCAACACTGCTACTTCG -ACGGAAGTCAACACTGCTTACGCA -ACGGAAGTCAACACTGCTCTTGCA -ACGGAAGTCAACACTGCTCGAACA -ACGGAAGTCAACACTGCTCAGTCA -ACGGAAGTCAACACTGCTGATCCA -ACGGAAGTCAACACTGCTACGACA -ACGGAAGTCAACACTGCTAGCTCA -ACGGAAGTCAACACTGCTTCACGT -ACGGAAGTCAACACTGCTCGTAGT -ACGGAAGTCAACACTGCTGTCAGT -ACGGAAGTCAACACTGCTGAAGGT -ACGGAAGTCAACACTGCTAACCGT -ACGGAAGTCAACACTGCTTTGTGC -ACGGAAGTCAACACTGCTCTAAGC -ACGGAAGTCAACACTGCTACTAGC -ACGGAAGTCAACACTGCTAGATGC -ACGGAAGTCAACACTGCTTGAAGG -ACGGAAGTCAACACTGCTCAATGG -ACGGAAGTCAACACTGCTATGAGG -ACGGAAGTCAACACTGCTAATGGG -ACGGAAGTCAACACTGCTTCCTGA -ACGGAAGTCAACACTGCTTAGCGA -ACGGAAGTCAACACTGCTCACAGA -ACGGAAGTCAACACTGCTGCAAGA -ACGGAAGTCAACACTGCTGGTTGA -ACGGAAGTCAACACTGCTTCCGAT -ACGGAAGTCAACACTGCTTGGCAT -ACGGAAGTCAACACTGCTCGAGAT -ACGGAAGTCAACACTGCTTACCAC -ACGGAAGTCAACACTGCTCAGAAC -ACGGAAGTCAACACTGCTGTCTAC -ACGGAAGTCAACACTGCTACGTAC -ACGGAAGTCAACACTGCTAGTGAC -ACGGAAGTCAACACTGCTCTGTAG -ACGGAAGTCAACACTGCTCCTAAG -ACGGAAGTCAACACTGCTGTTCAG -ACGGAAGTCAACACTGCTGCATAG -ACGGAAGTCAACACTGCTGACAAG -ACGGAAGTCAACACTGCTAAGCAG -ACGGAAGTCAACACTGCTCGTCAA -ACGGAAGTCAACACTGCTGCTGAA -ACGGAAGTCAACACTGCTAGTACG -ACGGAAGTCAACACTGCTATCCGA -ACGGAAGTCAACACTGCTATGGGA -ACGGAAGTCAACACTGCTGTGCAA -ACGGAAGTCAACACTGCTGAGGAA -ACGGAAGTCAACACTGCTCAGGTA -ACGGAAGTCAACACTGCTGACTCT -ACGGAAGTCAACACTGCTAGTCCT -ACGGAAGTCAACACTGCTTAAGCC -ACGGAAGTCAACACTGCTATAGCC -ACGGAAGTCAACACTGCTTAACCG -ACGGAAGTCAACACTGCTATGCCA -ACGGAAGTCAACTCTGGAGGAAAC -ACGGAAGTCAACTCTGGAAACACC -ACGGAAGTCAACTCTGGAATCGAG -ACGGAAGTCAACTCTGGACTCCTT -ACGGAAGTCAACTCTGGACCTGTT -ACGGAAGTCAACTCTGGACGGTTT -ACGGAAGTCAACTCTGGAGTGGTT -ACGGAAGTCAACTCTGGAGCCTTT -ACGGAAGTCAACTCTGGAGGTCTT -ACGGAAGTCAACTCTGGAACGCTT -ACGGAAGTCAACTCTGGAAGCGTT -ACGGAAGTCAACTCTGGATTCGTC -ACGGAAGTCAACTCTGGATCTCTC -ACGGAAGTCAACTCTGGATGGATC -ACGGAAGTCAACTCTGGACACTTC -ACGGAAGTCAACTCTGGAGTACTC -ACGGAAGTCAACTCTGGAGATGTC -ACGGAAGTCAACTCTGGAACAGTC -ACGGAAGTCAACTCTGGATTGCTG -ACGGAAGTCAACTCTGGATCCATG -ACGGAAGTCAACTCTGGATGTGTG -ACGGAAGTCAACTCTGGACTAGTG -ACGGAAGTCAACTCTGGACATCTG -ACGGAAGTCAACTCTGGAGAGTTG -ACGGAAGTCAACTCTGGAAGACTG -ACGGAAGTCAACTCTGGATCGGTA -ACGGAAGTCAACTCTGGATGCCTA -ACGGAAGTCAACTCTGGACCACTA -ACGGAAGTCAACTCTGGAGGAGTA -ACGGAAGTCAACTCTGGATCGTCT -ACGGAAGTCAACTCTGGATGCACT -ACGGAAGTCAACTCTGGACTGACT -ACGGAAGTCAACTCTGGACAACCT -ACGGAAGTCAACTCTGGAGCTACT -ACGGAAGTCAACTCTGGAGGATCT -ACGGAAGTCAACTCTGGAAAGGCT -ACGGAAGTCAACTCTGGATCAACC -ACGGAAGTCAACTCTGGATGTTCC -ACGGAAGTCAACTCTGGAATTCCC -ACGGAAGTCAACTCTGGATTCTCG -ACGGAAGTCAACTCTGGATAGACG -ACGGAAGTCAACTCTGGAGTAACG -ACGGAAGTCAACTCTGGAACTTCG -ACGGAAGTCAACTCTGGATACGCA -ACGGAAGTCAACTCTGGACTTGCA -ACGGAAGTCAACTCTGGACGAACA -ACGGAAGTCAACTCTGGACAGTCA -ACGGAAGTCAACTCTGGAGATCCA -ACGGAAGTCAACTCTGGAACGACA -ACGGAAGTCAACTCTGGAAGCTCA -ACGGAAGTCAACTCTGGATCACGT -ACGGAAGTCAACTCTGGACGTAGT -ACGGAAGTCAACTCTGGAGTCAGT -ACGGAAGTCAACTCTGGAGAAGGT -ACGGAAGTCAACTCTGGAAACCGT -ACGGAAGTCAACTCTGGATTGTGC -ACGGAAGTCAACTCTGGACTAAGC -ACGGAAGTCAACTCTGGAACTAGC -ACGGAAGTCAACTCTGGAAGATGC -ACGGAAGTCAACTCTGGATGAAGG -ACGGAAGTCAACTCTGGACAATGG -ACGGAAGTCAACTCTGGAATGAGG -ACGGAAGTCAACTCTGGAAATGGG -ACGGAAGTCAACTCTGGATCCTGA -ACGGAAGTCAACTCTGGATAGCGA -ACGGAAGTCAACTCTGGACACAGA -ACGGAAGTCAACTCTGGAGCAAGA -ACGGAAGTCAACTCTGGAGGTTGA -ACGGAAGTCAACTCTGGATCCGAT -ACGGAAGTCAACTCTGGATGGCAT -ACGGAAGTCAACTCTGGACGAGAT -ACGGAAGTCAACTCTGGATACCAC -ACGGAAGTCAACTCTGGACAGAAC -ACGGAAGTCAACTCTGGAGTCTAC -ACGGAAGTCAACTCTGGAACGTAC -ACGGAAGTCAACTCTGGAAGTGAC -ACGGAAGTCAACTCTGGACTGTAG -ACGGAAGTCAACTCTGGACCTAAG -ACGGAAGTCAACTCTGGAGTTCAG -ACGGAAGTCAACTCTGGAGCATAG -ACGGAAGTCAACTCTGGAGACAAG -ACGGAAGTCAACTCTGGAAAGCAG -ACGGAAGTCAACTCTGGACGTCAA -ACGGAAGTCAACTCTGGAGCTGAA -ACGGAAGTCAACTCTGGAAGTACG -ACGGAAGTCAACTCTGGAATCCGA -ACGGAAGTCAACTCTGGAATGGGA -ACGGAAGTCAACTCTGGAGTGCAA -ACGGAAGTCAACTCTGGAGAGGAA -ACGGAAGTCAACTCTGGACAGGTA -ACGGAAGTCAACTCTGGAGACTCT -ACGGAAGTCAACTCTGGAAGTCCT -ACGGAAGTCAACTCTGGATAAGCC -ACGGAAGTCAACTCTGGAATAGCC -ACGGAAGTCAACTCTGGATAACCG -ACGGAAGTCAACTCTGGAATGCCA -ACGGAAGTCAACGCTAAGGGAAAC -ACGGAAGTCAACGCTAAGAACACC -ACGGAAGTCAACGCTAAGATCGAG -ACGGAAGTCAACGCTAAGCTCCTT -ACGGAAGTCAACGCTAAGCCTGTT -ACGGAAGTCAACGCTAAGCGGTTT -ACGGAAGTCAACGCTAAGGTGGTT -ACGGAAGTCAACGCTAAGGCCTTT -ACGGAAGTCAACGCTAAGGGTCTT -ACGGAAGTCAACGCTAAGACGCTT -ACGGAAGTCAACGCTAAGAGCGTT -ACGGAAGTCAACGCTAAGTTCGTC -ACGGAAGTCAACGCTAAGTCTCTC -ACGGAAGTCAACGCTAAGTGGATC -ACGGAAGTCAACGCTAAGCACTTC -ACGGAAGTCAACGCTAAGGTACTC -ACGGAAGTCAACGCTAAGGATGTC -ACGGAAGTCAACGCTAAGACAGTC -ACGGAAGTCAACGCTAAGTTGCTG -ACGGAAGTCAACGCTAAGTCCATG -ACGGAAGTCAACGCTAAGTGTGTG -ACGGAAGTCAACGCTAAGCTAGTG -ACGGAAGTCAACGCTAAGCATCTG -ACGGAAGTCAACGCTAAGGAGTTG -ACGGAAGTCAACGCTAAGAGACTG -ACGGAAGTCAACGCTAAGTCGGTA -ACGGAAGTCAACGCTAAGTGCCTA -ACGGAAGTCAACGCTAAGCCACTA -ACGGAAGTCAACGCTAAGGGAGTA -ACGGAAGTCAACGCTAAGTCGTCT -ACGGAAGTCAACGCTAAGTGCACT -ACGGAAGTCAACGCTAAGCTGACT -ACGGAAGTCAACGCTAAGCAACCT -ACGGAAGTCAACGCTAAGGCTACT -ACGGAAGTCAACGCTAAGGGATCT -ACGGAAGTCAACGCTAAGAAGGCT -ACGGAAGTCAACGCTAAGTCAACC -ACGGAAGTCAACGCTAAGTGTTCC -ACGGAAGTCAACGCTAAGATTCCC -ACGGAAGTCAACGCTAAGTTCTCG -ACGGAAGTCAACGCTAAGTAGACG -ACGGAAGTCAACGCTAAGGTAACG -ACGGAAGTCAACGCTAAGACTTCG -ACGGAAGTCAACGCTAAGTACGCA -ACGGAAGTCAACGCTAAGCTTGCA -ACGGAAGTCAACGCTAAGCGAACA -ACGGAAGTCAACGCTAAGCAGTCA -ACGGAAGTCAACGCTAAGGATCCA -ACGGAAGTCAACGCTAAGACGACA -ACGGAAGTCAACGCTAAGAGCTCA -ACGGAAGTCAACGCTAAGTCACGT -ACGGAAGTCAACGCTAAGCGTAGT -ACGGAAGTCAACGCTAAGGTCAGT -ACGGAAGTCAACGCTAAGGAAGGT -ACGGAAGTCAACGCTAAGAACCGT -ACGGAAGTCAACGCTAAGTTGTGC -ACGGAAGTCAACGCTAAGCTAAGC -ACGGAAGTCAACGCTAAGACTAGC -ACGGAAGTCAACGCTAAGAGATGC -ACGGAAGTCAACGCTAAGTGAAGG -ACGGAAGTCAACGCTAAGCAATGG -ACGGAAGTCAACGCTAAGATGAGG -ACGGAAGTCAACGCTAAGAATGGG -ACGGAAGTCAACGCTAAGTCCTGA -ACGGAAGTCAACGCTAAGTAGCGA -ACGGAAGTCAACGCTAAGCACAGA -ACGGAAGTCAACGCTAAGGCAAGA -ACGGAAGTCAACGCTAAGGGTTGA -ACGGAAGTCAACGCTAAGTCCGAT -ACGGAAGTCAACGCTAAGTGGCAT -ACGGAAGTCAACGCTAAGCGAGAT -ACGGAAGTCAACGCTAAGTACCAC -ACGGAAGTCAACGCTAAGCAGAAC -ACGGAAGTCAACGCTAAGGTCTAC -ACGGAAGTCAACGCTAAGACGTAC -ACGGAAGTCAACGCTAAGAGTGAC -ACGGAAGTCAACGCTAAGCTGTAG -ACGGAAGTCAACGCTAAGCCTAAG -ACGGAAGTCAACGCTAAGGTTCAG -ACGGAAGTCAACGCTAAGGCATAG -ACGGAAGTCAACGCTAAGGACAAG -ACGGAAGTCAACGCTAAGAAGCAG -ACGGAAGTCAACGCTAAGCGTCAA -ACGGAAGTCAACGCTAAGGCTGAA -ACGGAAGTCAACGCTAAGAGTACG -ACGGAAGTCAACGCTAAGATCCGA -ACGGAAGTCAACGCTAAGATGGGA -ACGGAAGTCAACGCTAAGGTGCAA -ACGGAAGTCAACGCTAAGGAGGAA -ACGGAAGTCAACGCTAAGCAGGTA -ACGGAAGTCAACGCTAAGGACTCT -ACGGAAGTCAACGCTAAGAGTCCT -ACGGAAGTCAACGCTAAGTAAGCC -ACGGAAGTCAACGCTAAGATAGCC -ACGGAAGTCAACGCTAAGTAACCG -ACGGAAGTCAACGCTAAGATGCCA -ACGGAAGTCAACACCTCAGGAAAC -ACGGAAGTCAACACCTCAAACACC -ACGGAAGTCAACACCTCAATCGAG -ACGGAAGTCAACACCTCACTCCTT -ACGGAAGTCAACACCTCACCTGTT -ACGGAAGTCAACACCTCACGGTTT -ACGGAAGTCAACACCTCAGTGGTT -ACGGAAGTCAACACCTCAGCCTTT -ACGGAAGTCAACACCTCAGGTCTT -ACGGAAGTCAACACCTCAACGCTT -ACGGAAGTCAACACCTCAAGCGTT -ACGGAAGTCAACACCTCATTCGTC -ACGGAAGTCAACACCTCATCTCTC -ACGGAAGTCAACACCTCATGGATC -ACGGAAGTCAACACCTCACACTTC -ACGGAAGTCAACACCTCAGTACTC -ACGGAAGTCAACACCTCAGATGTC -ACGGAAGTCAACACCTCAACAGTC -ACGGAAGTCAACACCTCATTGCTG -ACGGAAGTCAACACCTCATCCATG -ACGGAAGTCAACACCTCATGTGTG -ACGGAAGTCAACACCTCACTAGTG -ACGGAAGTCAACACCTCACATCTG -ACGGAAGTCAACACCTCAGAGTTG -ACGGAAGTCAACACCTCAAGACTG -ACGGAAGTCAACACCTCATCGGTA -ACGGAAGTCAACACCTCATGCCTA -ACGGAAGTCAACACCTCACCACTA -ACGGAAGTCAACACCTCAGGAGTA -ACGGAAGTCAACACCTCATCGTCT -ACGGAAGTCAACACCTCATGCACT -ACGGAAGTCAACACCTCACTGACT -ACGGAAGTCAACACCTCACAACCT -ACGGAAGTCAACACCTCAGCTACT -ACGGAAGTCAACACCTCAGGATCT -ACGGAAGTCAACACCTCAAAGGCT -ACGGAAGTCAACACCTCATCAACC -ACGGAAGTCAACACCTCATGTTCC -ACGGAAGTCAACACCTCAATTCCC -ACGGAAGTCAACACCTCATTCTCG -ACGGAAGTCAACACCTCATAGACG -ACGGAAGTCAACACCTCAGTAACG -ACGGAAGTCAACACCTCAACTTCG -ACGGAAGTCAACACCTCATACGCA -ACGGAAGTCAACACCTCACTTGCA -ACGGAAGTCAACACCTCACGAACA -ACGGAAGTCAACACCTCACAGTCA -ACGGAAGTCAACACCTCAGATCCA -ACGGAAGTCAACACCTCAACGACA -ACGGAAGTCAACACCTCAAGCTCA -ACGGAAGTCAACACCTCATCACGT -ACGGAAGTCAACACCTCACGTAGT -ACGGAAGTCAACACCTCAGTCAGT -ACGGAAGTCAACACCTCAGAAGGT -ACGGAAGTCAACACCTCAAACCGT -ACGGAAGTCAACACCTCATTGTGC -ACGGAAGTCAACACCTCACTAAGC -ACGGAAGTCAACACCTCAACTAGC -ACGGAAGTCAACACCTCAAGATGC -ACGGAAGTCAACACCTCATGAAGG -ACGGAAGTCAACACCTCACAATGG -ACGGAAGTCAACACCTCAATGAGG -ACGGAAGTCAACACCTCAAATGGG -ACGGAAGTCAACACCTCATCCTGA -ACGGAAGTCAACACCTCATAGCGA -ACGGAAGTCAACACCTCACACAGA -ACGGAAGTCAACACCTCAGCAAGA -ACGGAAGTCAACACCTCAGGTTGA -ACGGAAGTCAACACCTCATCCGAT -ACGGAAGTCAACACCTCATGGCAT -ACGGAAGTCAACACCTCACGAGAT -ACGGAAGTCAACACCTCATACCAC -ACGGAAGTCAACACCTCACAGAAC -ACGGAAGTCAACACCTCAGTCTAC -ACGGAAGTCAACACCTCAACGTAC -ACGGAAGTCAACACCTCAAGTGAC -ACGGAAGTCAACACCTCACTGTAG -ACGGAAGTCAACACCTCACCTAAG -ACGGAAGTCAACACCTCAGTTCAG -ACGGAAGTCAACACCTCAGCATAG -ACGGAAGTCAACACCTCAGACAAG -ACGGAAGTCAACACCTCAAAGCAG -ACGGAAGTCAACACCTCACGTCAA -ACGGAAGTCAACACCTCAGCTGAA -ACGGAAGTCAACACCTCAAGTACG -ACGGAAGTCAACACCTCAATCCGA -ACGGAAGTCAACACCTCAATGGGA -ACGGAAGTCAACACCTCAGTGCAA -ACGGAAGTCAACACCTCAGAGGAA -ACGGAAGTCAACACCTCACAGGTA -ACGGAAGTCAACACCTCAGACTCT -ACGGAAGTCAACACCTCAAGTCCT -ACGGAAGTCAACACCTCATAAGCC -ACGGAAGTCAACACCTCAATAGCC -ACGGAAGTCAACACCTCATAACCG -ACGGAAGTCAACACCTCAATGCCA -ACGGAAGTCAACTCCTGTGGAAAC -ACGGAAGTCAACTCCTGTAACACC -ACGGAAGTCAACTCCTGTATCGAG -ACGGAAGTCAACTCCTGTCTCCTT -ACGGAAGTCAACTCCTGTCCTGTT -ACGGAAGTCAACTCCTGTCGGTTT -ACGGAAGTCAACTCCTGTGTGGTT -ACGGAAGTCAACTCCTGTGCCTTT -ACGGAAGTCAACTCCTGTGGTCTT -ACGGAAGTCAACTCCTGTACGCTT -ACGGAAGTCAACTCCTGTAGCGTT -ACGGAAGTCAACTCCTGTTTCGTC -ACGGAAGTCAACTCCTGTTCTCTC -ACGGAAGTCAACTCCTGTTGGATC -ACGGAAGTCAACTCCTGTCACTTC -ACGGAAGTCAACTCCTGTGTACTC -ACGGAAGTCAACTCCTGTGATGTC -ACGGAAGTCAACTCCTGTACAGTC -ACGGAAGTCAACTCCTGTTTGCTG -ACGGAAGTCAACTCCTGTTCCATG -ACGGAAGTCAACTCCTGTTGTGTG -ACGGAAGTCAACTCCTGTCTAGTG -ACGGAAGTCAACTCCTGTCATCTG -ACGGAAGTCAACTCCTGTGAGTTG -ACGGAAGTCAACTCCTGTAGACTG -ACGGAAGTCAACTCCTGTTCGGTA -ACGGAAGTCAACTCCTGTTGCCTA -ACGGAAGTCAACTCCTGTCCACTA -ACGGAAGTCAACTCCTGTGGAGTA -ACGGAAGTCAACTCCTGTTCGTCT -ACGGAAGTCAACTCCTGTTGCACT -ACGGAAGTCAACTCCTGTCTGACT -ACGGAAGTCAACTCCTGTCAACCT -ACGGAAGTCAACTCCTGTGCTACT -ACGGAAGTCAACTCCTGTGGATCT -ACGGAAGTCAACTCCTGTAAGGCT -ACGGAAGTCAACTCCTGTTCAACC -ACGGAAGTCAACTCCTGTTGTTCC -ACGGAAGTCAACTCCTGTATTCCC -ACGGAAGTCAACTCCTGTTTCTCG -ACGGAAGTCAACTCCTGTTAGACG -ACGGAAGTCAACTCCTGTGTAACG -ACGGAAGTCAACTCCTGTACTTCG -ACGGAAGTCAACTCCTGTTACGCA -ACGGAAGTCAACTCCTGTCTTGCA -ACGGAAGTCAACTCCTGTCGAACA -ACGGAAGTCAACTCCTGTCAGTCA -ACGGAAGTCAACTCCTGTGATCCA -ACGGAAGTCAACTCCTGTACGACA -ACGGAAGTCAACTCCTGTAGCTCA -ACGGAAGTCAACTCCTGTTCACGT -ACGGAAGTCAACTCCTGTCGTAGT -ACGGAAGTCAACTCCTGTGTCAGT -ACGGAAGTCAACTCCTGTGAAGGT -ACGGAAGTCAACTCCTGTAACCGT -ACGGAAGTCAACTCCTGTTTGTGC -ACGGAAGTCAACTCCTGTCTAAGC -ACGGAAGTCAACTCCTGTACTAGC -ACGGAAGTCAACTCCTGTAGATGC -ACGGAAGTCAACTCCTGTTGAAGG -ACGGAAGTCAACTCCTGTCAATGG -ACGGAAGTCAACTCCTGTATGAGG -ACGGAAGTCAACTCCTGTAATGGG -ACGGAAGTCAACTCCTGTTCCTGA -ACGGAAGTCAACTCCTGTTAGCGA -ACGGAAGTCAACTCCTGTCACAGA -ACGGAAGTCAACTCCTGTGCAAGA -ACGGAAGTCAACTCCTGTGGTTGA -ACGGAAGTCAACTCCTGTTCCGAT -ACGGAAGTCAACTCCTGTTGGCAT -ACGGAAGTCAACTCCTGTCGAGAT -ACGGAAGTCAACTCCTGTTACCAC -ACGGAAGTCAACTCCTGTCAGAAC -ACGGAAGTCAACTCCTGTGTCTAC -ACGGAAGTCAACTCCTGTACGTAC -ACGGAAGTCAACTCCTGTAGTGAC -ACGGAAGTCAACTCCTGTCTGTAG -ACGGAAGTCAACTCCTGTCCTAAG -ACGGAAGTCAACTCCTGTGTTCAG -ACGGAAGTCAACTCCTGTGCATAG -ACGGAAGTCAACTCCTGTGACAAG -ACGGAAGTCAACTCCTGTAAGCAG -ACGGAAGTCAACTCCTGTCGTCAA -ACGGAAGTCAACTCCTGTGCTGAA -ACGGAAGTCAACTCCTGTAGTACG -ACGGAAGTCAACTCCTGTATCCGA -ACGGAAGTCAACTCCTGTATGGGA -ACGGAAGTCAACTCCTGTGTGCAA -ACGGAAGTCAACTCCTGTGAGGAA -ACGGAAGTCAACTCCTGTCAGGTA -ACGGAAGTCAACTCCTGTGACTCT -ACGGAAGTCAACTCCTGTAGTCCT -ACGGAAGTCAACTCCTGTTAAGCC -ACGGAAGTCAACTCCTGTATAGCC -ACGGAAGTCAACTCCTGTTAACCG -ACGGAAGTCAACTCCTGTATGCCA -ACGGAAGTCAACCCCATTGGAAAC -ACGGAAGTCAACCCCATTAACACC -ACGGAAGTCAACCCCATTATCGAG -ACGGAAGTCAACCCCATTCTCCTT -ACGGAAGTCAACCCCATTCCTGTT -ACGGAAGTCAACCCCATTCGGTTT -ACGGAAGTCAACCCCATTGTGGTT -ACGGAAGTCAACCCCATTGCCTTT -ACGGAAGTCAACCCCATTGGTCTT -ACGGAAGTCAACCCCATTACGCTT -ACGGAAGTCAACCCCATTAGCGTT -ACGGAAGTCAACCCCATTTTCGTC -ACGGAAGTCAACCCCATTTCTCTC -ACGGAAGTCAACCCCATTTGGATC -ACGGAAGTCAACCCCATTCACTTC -ACGGAAGTCAACCCCATTGTACTC -ACGGAAGTCAACCCCATTGATGTC -ACGGAAGTCAACCCCATTACAGTC -ACGGAAGTCAACCCCATTTTGCTG -ACGGAAGTCAACCCCATTTCCATG -ACGGAAGTCAACCCCATTTGTGTG -ACGGAAGTCAACCCCATTCTAGTG -ACGGAAGTCAACCCCATTCATCTG -ACGGAAGTCAACCCCATTGAGTTG -ACGGAAGTCAACCCCATTAGACTG -ACGGAAGTCAACCCCATTTCGGTA -ACGGAAGTCAACCCCATTTGCCTA -ACGGAAGTCAACCCCATTCCACTA -ACGGAAGTCAACCCCATTGGAGTA -ACGGAAGTCAACCCCATTTCGTCT -ACGGAAGTCAACCCCATTTGCACT -ACGGAAGTCAACCCCATTCTGACT -ACGGAAGTCAACCCCATTCAACCT -ACGGAAGTCAACCCCATTGCTACT -ACGGAAGTCAACCCCATTGGATCT -ACGGAAGTCAACCCCATTAAGGCT -ACGGAAGTCAACCCCATTTCAACC -ACGGAAGTCAACCCCATTTGTTCC -ACGGAAGTCAACCCCATTATTCCC -ACGGAAGTCAACCCCATTTTCTCG -ACGGAAGTCAACCCCATTTAGACG -ACGGAAGTCAACCCCATTGTAACG -ACGGAAGTCAACCCCATTACTTCG -ACGGAAGTCAACCCCATTTACGCA -ACGGAAGTCAACCCCATTCTTGCA -ACGGAAGTCAACCCCATTCGAACA -ACGGAAGTCAACCCCATTCAGTCA -ACGGAAGTCAACCCCATTGATCCA -ACGGAAGTCAACCCCATTACGACA -ACGGAAGTCAACCCCATTAGCTCA -ACGGAAGTCAACCCCATTTCACGT -ACGGAAGTCAACCCCATTCGTAGT -ACGGAAGTCAACCCCATTGTCAGT -ACGGAAGTCAACCCCATTGAAGGT -ACGGAAGTCAACCCCATTAACCGT -ACGGAAGTCAACCCCATTTTGTGC -ACGGAAGTCAACCCCATTCTAAGC -ACGGAAGTCAACCCCATTACTAGC -ACGGAAGTCAACCCCATTAGATGC -ACGGAAGTCAACCCCATTTGAAGG -ACGGAAGTCAACCCCATTCAATGG -ACGGAAGTCAACCCCATTATGAGG -ACGGAAGTCAACCCCATTAATGGG -ACGGAAGTCAACCCCATTTCCTGA -ACGGAAGTCAACCCCATTTAGCGA -ACGGAAGTCAACCCCATTCACAGA -ACGGAAGTCAACCCCATTGCAAGA -ACGGAAGTCAACCCCATTGGTTGA -ACGGAAGTCAACCCCATTTCCGAT -ACGGAAGTCAACCCCATTTGGCAT -ACGGAAGTCAACCCCATTCGAGAT -ACGGAAGTCAACCCCATTTACCAC -ACGGAAGTCAACCCCATTCAGAAC -ACGGAAGTCAACCCCATTGTCTAC -ACGGAAGTCAACCCCATTACGTAC -ACGGAAGTCAACCCCATTAGTGAC -ACGGAAGTCAACCCCATTCTGTAG -ACGGAAGTCAACCCCATTCCTAAG -ACGGAAGTCAACCCCATTGTTCAG -ACGGAAGTCAACCCCATTGCATAG -ACGGAAGTCAACCCCATTGACAAG -ACGGAAGTCAACCCCATTAAGCAG -ACGGAAGTCAACCCCATTCGTCAA -ACGGAAGTCAACCCCATTGCTGAA -ACGGAAGTCAACCCCATTAGTACG -ACGGAAGTCAACCCCATTATCCGA -ACGGAAGTCAACCCCATTATGGGA -ACGGAAGTCAACCCCATTGTGCAA -ACGGAAGTCAACCCCATTGAGGAA -ACGGAAGTCAACCCCATTCAGGTA -ACGGAAGTCAACCCCATTGACTCT -ACGGAAGTCAACCCCATTAGTCCT -ACGGAAGTCAACCCCATTTAAGCC -ACGGAAGTCAACCCCATTATAGCC -ACGGAAGTCAACCCCATTTAACCG -ACGGAAGTCAACCCCATTATGCCA -ACGGAAGTCAACTCGTTCGGAAAC -ACGGAAGTCAACTCGTTCAACACC -ACGGAAGTCAACTCGTTCATCGAG -ACGGAAGTCAACTCGTTCCTCCTT -ACGGAAGTCAACTCGTTCCCTGTT -ACGGAAGTCAACTCGTTCCGGTTT -ACGGAAGTCAACTCGTTCGTGGTT -ACGGAAGTCAACTCGTTCGCCTTT -ACGGAAGTCAACTCGTTCGGTCTT -ACGGAAGTCAACTCGTTCACGCTT -ACGGAAGTCAACTCGTTCAGCGTT -ACGGAAGTCAACTCGTTCTTCGTC -ACGGAAGTCAACTCGTTCTCTCTC -ACGGAAGTCAACTCGTTCTGGATC -ACGGAAGTCAACTCGTTCCACTTC -ACGGAAGTCAACTCGTTCGTACTC -ACGGAAGTCAACTCGTTCGATGTC -ACGGAAGTCAACTCGTTCACAGTC -ACGGAAGTCAACTCGTTCTTGCTG -ACGGAAGTCAACTCGTTCTCCATG -ACGGAAGTCAACTCGTTCTGTGTG -ACGGAAGTCAACTCGTTCCTAGTG -ACGGAAGTCAACTCGTTCCATCTG -ACGGAAGTCAACTCGTTCGAGTTG -ACGGAAGTCAACTCGTTCAGACTG -ACGGAAGTCAACTCGTTCTCGGTA -ACGGAAGTCAACTCGTTCTGCCTA -ACGGAAGTCAACTCGTTCCCACTA -ACGGAAGTCAACTCGTTCGGAGTA -ACGGAAGTCAACTCGTTCTCGTCT -ACGGAAGTCAACTCGTTCTGCACT -ACGGAAGTCAACTCGTTCCTGACT -ACGGAAGTCAACTCGTTCCAACCT -ACGGAAGTCAACTCGTTCGCTACT -ACGGAAGTCAACTCGTTCGGATCT -ACGGAAGTCAACTCGTTCAAGGCT -ACGGAAGTCAACTCGTTCTCAACC -ACGGAAGTCAACTCGTTCTGTTCC -ACGGAAGTCAACTCGTTCATTCCC -ACGGAAGTCAACTCGTTCTTCTCG -ACGGAAGTCAACTCGTTCTAGACG -ACGGAAGTCAACTCGTTCGTAACG -ACGGAAGTCAACTCGTTCACTTCG -ACGGAAGTCAACTCGTTCTACGCA -ACGGAAGTCAACTCGTTCCTTGCA -ACGGAAGTCAACTCGTTCCGAACA -ACGGAAGTCAACTCGTTCCAGTCA -ACGGAAGTCAACTCGTTCGATCCA -ACGGAAGTCAACTCGTTCACGACA -ACGGAAGTCAACTCGTTCAGCTCA -ACGGAAGTCAACTCGTTCTCACGT -ACGGAAGTCAACTCGTTCCGTAGT -ACGGAAGTCAACTCGTTCGTCAGT -ACGGAAGTCAACTCGTTCGAAGGT -ACGGAAGTCAACTCGTTCAACCGT -ACGGAAGTCAACTCGTTCTTGTGC -ACGGAAGTCAACTCGTTCCTAAGC -ACGGAAGTCAACTCGTTCACTAGC -ACGGAAGTCAACTCGTTCAGATGC -ACGGAAGTCAACTCGTTCTGAAGG -ACGGAAGTCAACTCGTTCCAATGG -ACGGAAGTCAACTCGTTCATGAGG -ACGGAAGTCAACTCGTTCAATGGG -ACGGAAGTCAACTCGTTCTCCTGA -ACGGAAGTCAACTCGTTCTAGCGA -ACGGAAGTCAACTCGTTCCACAGA -ACGGAAGTCAACTCGTTCGCAAGA -ACGGAAGTCAACTCGTTCGGTTGA -ACGGAAGTCAACTCGTTCTCCGAT -ACGGAAGTCAACTCGTTCTGGCAT -ACGGAAGTCAACTCGTTCCGAGAT -ACGGAAGTCAACTCGTTCTACCAC -ACGGAAGTCAACTCGTTCCAGAAC -ACGGAAGTCAACTCGTTCGTCTAC -ACGGAAGTCAACTCGTTCACGTAC -ACGGAAGTCAACTCGTTCAGTGAC -ACGGAAGTCAACTCGTTCCTGTAG -ACGGAAGTCAACTCGTTCCCTAAG -ACGGAAGTCAACTCGTTCGTTCAG -ACGGAAGTCAACTCGTTCGCATAG -ACGGAAGTCAACTCGTTCGACAAG -ACGGAAGTCAACTCGTTCAAGCAG -ACGGAAGTCAACTCGTTCCGTCAA -ACGGAAGTCAACTCGTTCGCTGAA -ACGGAAGTCAACTCGTTCAGTACG -ACGGAAGTCAACTCGTTCATCCGA -ACGGAAGTCAACTCGTTCATGGGA -ACGGAAGTCAACTCGTTCGTGCAA -ACGGAAGTCAACTCGTTCGAGGAA -ACGGAAGTCAACTCGTTCCAGGTA -ACGGAAGTCAACTCGTTCGACTCT -ACGGAAGTCAACTCGTTCAGTCCT -ACGGAAGTCAACTCGTTCTAAGCC -ACGGAAGTCAACTCGTTCATAGCC -ACGGAAGTCAACTCGTTCTAACCG -ACGGAAGTCAACTCGTTCATGCCA -ACGGAAGTCAACACGTAGGGAAAC -ACGGAAGTCAACACGTAGAACACC -ACGGAAGTCAACACGTAGATCGAG -ACGGAAGTCAACACGTAGCTCCTT -ACGGAAGTCAACACGTAGCCTGTT -ACGGAAGTCAACACGTAGCGGTTT -ACGGAAGTCAACACGTAGGTGGTT -ACGGAAGTCAACACGTAGGCCTTT -ACGGAAGTCAACACGTAGGGTCTT -ACGGAAGTCAACACGTAGACGCTT -ACGGAAGTCAACACGTAGAGCGTT -ACGGAAGTCAACACGTAGTTCGTC -ACGGAAGTCAACACGTAGTCTCTC -ACGGAAGTCAACACGTAGTGGATC -ACGGAAGTCAACACGTAGCACTTC -ACGGAAGTCAACACGTAGGTACTC -ACGGAAGTCAACACGTAGGATGTC -ACGGAAGTCAACACGTAGACAGTC -ACGGAAGTCAACACGTAGTTGCTG -ACGGAAGTCAACACGTAGTCCATG -ACGGAAGTCAACACGTAGTGTGTG -ACGGAAGTCAACACGTAGCTAGTG -ACGGAAGTCAACACGTAGCATCTG -ACGGAAGTCAACACGTAGGAGTTG -ACGGAAGTCAACACGTAGAGACTG -ACGGAAGTCAACACGTAGTCGGTA -ACGGAAGTCAACACGTAGTGCCTA -ACGGAAGTCAACACGTAGCCACTA -ACGGAAGTCAACACGTAGGGAGTA -ACGGAAGTCAACACGTAGTCGTCT -ACGGAAGTCAACACGTAGTGCACT -ACGGAAGTCAACACGTAGCTGACT -ACGGAAGTCAACACGTAGCAACCT -ACGGAAGTCAACACGTAGGCTACT -ACGGAAGTCAACACGTAGGGATCT -ACGGAAGTCAACACGTAGAAGGCT -ACGGAAGTCAACACGTAGTCAACC -ACGGAAGTCAACACGTAGTGTTCC -ACGGAAGTCAACACGTAGATTCCC -ACGGAAGTCAACACGTAGTTCTCG -ACGGAAGTCAACACGTAGTAGACG -ACGGAAGTCAACACGTAGGTAACG -ACGGAAGTCAACACGTAGACTTCG -ACGGAAGTCAACACGTAGTACGCA -ACGGAAGTCAACACGTAGCTTGCA -ACGGAAGTCAACACGTAGCGAACA -ACGGAAGTCAACACGTAGCAGTCA -ACGGAAGTCAACACGTAGGATCCA -ACGGAAGTCAACACGTAGACGACA -ACGGAAGTCAACACGTAGAGCTCA -ACGGAAGTCAACACGTAGTCACGT -ACGGAAGTCAACACGTAGCGTAGT -ACGGAAGTCAACACGTAGGTCAGT -ACGGAAGTCAACACGTAGGAAGGT -ACGGAAGTCAACACGTAGAACCGT -ACGGAAGTCAACACGTAGTTGTGC -ACGGAAGTCAACACGTAGCTAAGC -ACGGAAGTCAACACGTAGACTAGC -ACGGAAGTCAACACGTAGAGATGC -ACGGAAGTCAACACGTAGTGAAGG -ACGGAAGTCAACACGTAGCAATGG -ACGGAAGTCAACACGTAGATGAGG -ACGGAAGTCAACACGTAGAATGGG -ACGGAAGTCAACACGTAGTCCTGA -ACGGAAGTCAACACGTAGTAGCGA -ACGGAAGTCAACACGTAGCACAGA -ACGGAAGTCAACACGTAGGCAAGA -ACGGAAGTCAACACGTAGGGTTGA -ACGGAAGTCAACACGTAGTCCGAT -ACGGAAGTCAACACGTAGTGGCAT -ACGGAAGTCAACACGTAGCGAGAT -ACGGAAGTCAACACGTAGTACCAC -ACGGAAGTCAACACGTAGCAGAAC -ACGGAAGTCAACACGTAGGTCTAC -ACGGAAGTCAACACGTAGACGTAC -ACGGAAGTCAACACGTAGAGTGAC -ACGGAAGTCAACACGTAGCTGTAG -ACGGAAGTCAACACGTAGCCTAAG -ACGGAAGTCAACACGTAGGTTCAG -ACGGAAGTCAACACGTAGGCATAG -ACGGAAGTCAACACGTAGGACAAG -ACGGAAGTCAACACGTAGAAGCAG -ACGGAAGTCAACACGTAGCGTCAA -ACGGAAGTCAACACGTAGGCTGAA -ACGGAAGTCAACACGTAGAGTACG -ACGGAAGTCAACACGTAGATCCGA -ACGGAAGTCAACACGTAGATGGGA -ACGGAAGTCAACACGTAGGTGCAA -ACGGAAGTCAACACGTAGGAGGAA -ACGGAAGTCAACACGTAGCAGGTA -ACGGAAGTCAACACGTAGGACTCT -ACGGAAGTCAACACGTAGAGTCCT -ACGGAAGTCAACACGTAGTAAGCC -ACGGAAGTCAACACGTAGATAGCC -ACGGAAGTCAACACGTAGTAACCG -ACGGAAGTCAACACGTAGATGCCA -ACGGAAGTCAACACGGTAGGAAAC -ACGGAAGTCAACACGGTAAACACC -ACGGAAGTCAACACGGTAATCGAG -ACGGAAGTCAACACGGTACTCCTT -ACGGAAGTCAACACGGTACCTGTT -ACGGAAGTCAACACGGTACGGTTT -ACGGAAGTCAACACGGTAGTGGTT -ACGGAAGTCAACACGGTAGCCTTT -ACGGAAGTCAACACGGTAGGTCTT -ACGGAAGTCAACACGGTAACGCTT -ACGGAAGTCAACACGGTAAGCGTT -ACGGAAGTCAACACGGTATTCGTC -ACGGAAGTCAACACGGTATCTCTC -ACGGAAGTCAACACGGTATGGATC -ACGGAAGTCAACACGGTACACTTC -ACGGAAGTCAACACGGTAGTACTC -ACGGAAGTCAACACGGTAGATGTC -ACGGAAGTCAACACGGTAACAGTC -ACGGAAGTCAACACGGTATTGCTG -ACGGAAGTCAACACGGTATCCATG -ACGGAAGTCAACACGGTATGTGTG -ACGGAAGTCAACACGGTACTAGTG -ACGGAAGTCAACACGGTACATCTG -ACGGAAGTCAACACGGTAGAGTTG -ACGGAAGTCAACACGGTAAGACTG -ACGGAAGTCAACACGGTATCGGTA -ACGGAAGTCAACACGGTATGCCTA -ACGGAAGTCAACACGGTACCACTA -ACGGAAGTCAACACGGTAGGAGTA -ACGGAAGTCAACACGGTATCGTCT -ACGGAAGTCAACACGGTATGCACT -ACGGAAGTCAACACGGTACTGACT -ACGGAAGTCAACACGGTACAACCT -ACGGAAGTCAACACGGTAGCTACT -ACGGAAGTCAACACGGTAGGATCT -ACGGAAGTCAACACGGTAAAGGCT -ACGGAAGTCAACACGGTATCAACC -ACGGAAGTCAACACGGTATGTTCC -ACGGAAGTCAACACGGTAATTCCC -ACGGAAGTCAACACGGTATTCTCG -ACGGAAGTCAACACGGTATAGACG -ACGGAAGTCAACACGGTAGTAACG -ACGGAAGTCAACACGGTAACTTCG -ACGGAAGTCAACACGGTATACGCA -ACGGAAGTCAACACGGTACTTGCA -ACGGAAGTCAACACGGTACGAACA -ACGGAAGTCAACACGGTACAGTCA -ACGGAAGTCAACACGGTAGATCCA -ACGGAAGTCAACACGGTAACGACA -ACGGAAGTCAACACGGTAAGCTCA -ACGGAAGTCAACACGGTATCACGT -ACGGAAGTCAACACGGTACGTAGT -ACGGAAGTCAACACGGTAGTCAGT -ACGGAAGTCAACACGGTAGAAGGT -ACGGAAGTCAACACGGTAAACCGT -ACGGAAGTCAACACGGTATTGTGC -ACGGAAGTCAACACGGTACTAAGC -ACGGAAGTCAACACGGTAACTAGC -ACGGAAGTCAACACGGTAAGATGC -ACGGAAGTCAACACGGTATGAAGG -ACGGAAGTCAACACGGTACAATGG -ACGGAAGTCAACACGGTAATGAGG -ACGGAAGTCAACACGGTAAATGGG -ACGGAAGTCAACACGGTATCCTGA -ACGGAAGTCAACACGGTATAGCGA -ACGGAAGTCAACACGGTACACAGA -ACGGAAGTCAACACGGTAGCAAGA -ACGGAAGTCAACACGGTAGGTTGA -ACGGAAGTCAACACGGTATCCGAT -ACGGAAGTCAACACGGTATGGCAT -ACGGAAGTCAACACGGTACGAGAT -ACGGAAGTCAACACGGTATACCAC -ACGGAAGTCAACACGGTACAGAAC -ACGGAAGTCAACACGGTAGTCTAC -ACGGAAGTCAACACGGTAACGTAC -ACGGAAGTCAACACGGTAAGTGAC -ACGGAAGTCAACACGGTACTGTAG -ACGGAAGTCAACACGGTACCTAAG -ACGGAAGTCAACACGGTAGTTCAG -ACGGAAGTCAACACGGTAGCATAG -ACGGAAGTCAACACGGTAGACAAG -ACGGAAGTCAACACGGTAAAGCAG -ACGGAAGTCAACACGGTACGTCAA -ACGGAAGTCAACACGGTAGCTGAA -ACGGAAGTCAACACGGTAAGTACG -ACGGAAGTCAACACGGTAATCCGA -ACGGAAGTCAACACGGTAATGGGA -ACGGAAGTCAACACGGTAGTGCAA -ACGGAAGTCAACACGGTAGAGGAA -ACGGAAGTCAACACGGTACAGGTA -ACGGAAGTCAACACGGTAGACTCT -ACGGAAGTCAACACGGTAAGTCCT -ACGGAAGTCAACACGGTATAAGCC -ACGGAAGTCAACACGGTAATAGCC -ACGGAAGTCAACACGGTATAACCG -ACGGAAGTCAACACGGTAATGCCA -ACGGAAGTCAACTCGACTGGAAAC -ACGGAAGTCAACTCGACTAACACC -ACGGAAGTCAACTCGACTATCGAG -ACGGAAGTCAACTCGACTCTCCTT -ACGGAAGTCAACTCGACTCCTGTT -ACGGAAGTCAACTCGACTCGGTTT -ACGGAAGTCAACTCGACTGTGGTT -ACGGAAGTCAACTCGACTGCCTTT -ACGGAAGTCAACTCGACTGGTCTT -ACGGAAGTCAACTCGACTACGCTT -ACGGAAGTCAACTCGACTAGCGTT -ACGGAAGTCAACTCGACTTTCGTC -ACGGAAGTCAACTCGACTTCTCTC -ACGGAAGTCAACTCGACTTGGATC -ACGGAAGTCAACTCGACTCACTTC -ACGGAAGTCAACTCGACTGTACTC -ACGGAAGTCAACTCGACTGATGTC -ACGGAAGTCAACTCGACTACAGTC -ACGGAAGTCAACTCGACTTTGCTG -ACGGAAGTCAACTCGACTTCCATG -ACGGAAGTCAACTCGACTTGTGTG -ACGGAAGTCAACTCGACTCTAGTG -ACGGAAGTCAACTCGACTCATCTG -ACGGAAGTCAACTCGACTGAGTTG -ACGGAAGTCAACTCGACTAGACTG -ACGGAAGTCAACTCGACTTCGGTA -ACGGAAGTCAACTCGACTTGCCTA -ACGGAAGTCAACTCGACTCCACTA -ACGGAAGTCAACTCGACTGGAGTA -ACGGAAGTCAACTCGACTTCGTCT -ACGGAAGTCAACTCGACTTGCACT -ACGGAAGTCAACTCGACTCTGACT -ACGGAAGTCAACTCGACTCAACCT -ACGGAAGTCAACTCGACTGCTACT -ACGGAAGTCAACTCGACTGGATCT -ACGGAAGTCAACTCGACTAAGGCT -ACGGAAGTCAACTCGACTTCAACC -ACGGAAGTCAACTCGACTTGTTCC -ACGGAAGTCAACTCGACTATTCCC -ACGGAAGTCAACTCGACTTTCTCG -ACGGAAGTCAACTCGACTTAGACG -ACGGAAGTCAACTCGACTGTAACG -ACGGAAGTCAACTCGACTACTTCG -ACGGAAGTCAACTCGACTTACGCA -ACGGAAGTCAACTCGACTCTTGCA -ACGGAAGTCAACTCGACTCGAACA -ACGGAAGTCAACTCGACTCAGTCA -ACGGAAGTCAACTCGACTGATCCA -ACGGAAGTCAACTCGACTACGACA -ACGGAAGTCAACTCGACTAGCTCA -ACGGAAGTCAACTCGACTTCACGT -ACGGAAGTCAACTCGACTCGTAGT -ACGGAAGTCAACTCGACTGTCAGT -ACGGAAGTCAACTCGACTGAAGGT -ACGGAAGTCAACTCGACTAACCGT -ACGGAAGTCAACTCGACTTTGTGC -ACGGAAGTCAACTCGACTCTAAGC -ACGGAAGTCAACTCGACTACTAGC -ACGGAAGTCAACTCGACTAGATGC -ACGGAAGTCAACTCGACTTGAAGG -ACGGAAGTCAACTCGACTCAATGG -ACGGAAGTCAACTCGACTATGAGG -ACGGAAGTCAACTCGACTAATGGG -ACGGAAGTCAACTCGACTTCCTGA -ACGGAAGTCAACTCGACTTAGCGA -ACGGAAGTCAACTCGACTCACAGA -ACGGAAGTCAACTCGACTGCAAGA -ACGGAAGTCAACTCGACTGGTTGA -ACGGAAGTCAACTCGACTTCCGAT -ACGGAAGTCAACTCGACTTGGCAT -ACGGAAGTCAACTCGACTCGAGAT -ACGGAAGTCAACTCGACTTACCAC -ACGGAAGTCAACTCGACTCAGAAC -ACGGAAGTCAACTCGACTGTCTAC -ACGGAAGTCAACTCGACTACGTAC -ACGGAAGTCAACTCGACTAGTGAC -ACGGAAGTCAACTCGACTCTGTAG -ACGGAAGTCAACTCGACTCCTAAG -ACGGAAGTCAACTCGACTGTTCAG -ACGGAAGTCAACTCGACTGCATAG -ACGGAAGTCAACTCGACTGACAAG -ACGGAAGTCAACTCGACTAAGCAG -ACGGAAGTCAACTCGACTCGTCAA -ACGGAAGTCAACTCGACTGCTGAA -ACGGAAGTCAACTCGACTAGTACG -ACGGAAGTCAACTCGACTATCCGA -ACGGAAGTCAACTCGACTATGGGA -ACGGAAGTCAACTCGACTGTGCAA -ACGGAAGTCAACTCGACTGAGGAA -ACGGAAGTCAACTCGACTCAGGTA -ACGGAAGTCAACTCGACTGACTCT -ACGGAAGTCAACTCGACTAGTCCT -ACGGAAGTCAACTCGACTTAAGCC -ACGGAAGTCAACTCGACTATAGCC -ACGGAAGTCAACTCGACTTAACCG -ACGGAAGTCAACTCGACTATGCCA -ACGGAAGTCAACGCATACGGAAAC -ACGGAAGTCAACGCATACAACACC -ACGGAAGTCAACGCATACATCGAG -ACGGAAGTCAACGCATACCTCCTT -ACGGAAGTCAACGCATACCCTGTT -ACGGAAGTCAACGCATACCGGTTT -ACGGAAGTCAACGCATACGTGGTT -ACGGAAGTCAACGCATACGCCTTT -ACGGAAGTCAACGCATACGGTCTT -ACGGAAGTCAACGCATACACGCTT -ACGGAAGTCAACGCATACAGCGTT -ACGGAAGTCAACGCATACTTCGTC -ACGGAAGTCAACGCATACTCTCTC -ACGGAAGTCAACGCATACTGGATC -ACGGAAGTCAACGCATACCACTTC -ACGGAAGTCAACGCATACGTACTC -ACGGAAGTCAACGCATACGATGTC -ACGGAAGTCAACGCATACACAGTC -ACGGAAGTCAACGCATACTTGCTG -ACGGAAGTCAACGCATACTCCATG -ACGGAAGTCAACGCATACTGTGTG -ACGGAAGTCAACGCATACCTAGTG -ACGGAAGTCAACGCATACCATCTG -ACGGAAGTCAACGCATACGAGTTG -ACGGAAGTCAACGCATACAGACTG -ACGGAAGTCAACGCATACTCGGTA -ACGGAAGTCAACGCATACTGCCTA -ACGGAAGTCAACGCATACCCACTA -ACGGAAGTCAACGCATACGGAGTA -ACGGAAGTCAACGCATACTCGTCT -ACGGAAGTCAACGCATACTGCACT -ACGGAAGTCAACGCATACCTGACT -ACGGAAGTCAACGCATACCAACCT -ACGGAAGTCAACGCATACGCTACT -ACGGAAGTCAACGCATACGGATCT -ACGGAAGTCAACGCATACAAGGCT -ACGGAAGTCAACGCATACTCAACC -ACGGAAGTCAACGCATACTGTTCC -ACGGAAGTCAACGCATACATTCCC -ACGGAAGTCAACGCATACTTCTCG -ACGGAAGTCAACGCATACTAGACG -ACGGAAGTCAACGCATACGTAACG -ACGGAAGTCAACGCATACACTTCG -ACGGAAGTCAACGCATACTACGCA -ACGGAAGTCAACGCATACCTTGCA -ACGGAAGTCAACGCATACCGAACA -ACGGAAGTCAACGCATACCAGTCA -ACGGAAGTCAACGCATACGATCCA -ACGGAAGTCAACGCATACACGACA -ACGGAAGTCAACGCATACAGCTCA -ACGGAAGTCAACGCATACTCACGT -ACGGAAGTCAACGCATACCGTAGT -ACGGAAGTCAACGCATACGTCAGT -ACGGAAGTCAACGCATACGAAGGT -ACGGAAGTCAACGCATACAACCGT -ACGGAAGTCAACGCATACTTGTGC -ACGGAAGTCAACGCATACCTAAGC -ACGGAAGTCAACGCATACACTAGC -ACGGAAGTCAACGCATACAGATGC -ACGGAAGTCAACGCATACTGAAGG -ACGGAAGTCAACGCATACCAATGG -ACGGAAGTCAACGCATACATGAGG -ACGGAAGTCAACGCATACAATGGG -ACGGAAGTCAACGCATACTCCTGA -ACGGAAGTCAACGCATACTAGCGA -ACGGAAGTCAACGCATACCACAGA -ACGGAAGTCAACGCATACGCAAGA -ACGGAAGTCAACGCATACGGTTGA -ACGGAAGTCAACGCATACTCCGAT -ACGGAAGTCAACGCATACTGGCAT -ACGGAAGTCAACGCATACCGAGAT -ACGGAAGTCAACGCATACTACCAC -ACGGAAGTCAACGCATACCAGAAC -ACGGAAGTCAACGCATACGTCTAC -ACGGAAGTCAACGCATACACGTAC -ACGGAAGTCAACGCATACAGTGAC -ACGGAAGTCAACGCATACCTGTAG -ACGGAAGTCAACGCATACCCTAAG -ACGGAAGTCAACGCATACGTTCAG -ACGGAAGTCAACGCATACGCATAG -ACGGAAGTCAACGCATACGACAAG -ACGGAAGTCAACGCATACAAGCAG -ACGGAAGTCAACGCATACCGTCAA -ACGGAAGTCAACGCATACGCTGAA -ACGGAAGTCAACGCATACAGTACG -ACGGAAGTCAACGCATACATCCGA -ACGGAAGTCAACGCATACATGGGA -ACGGAAGTCAACGCATACGTGCAA -ACGGAAGTCAACGCATACGAGGAA -ACGGAAGTCAACGCATACCAGGTA -ACGGAAGTCAACGCATACGACTCT -ACGGAAGTCAACGCATACAGTCCT -ACGGAAGTCAACGCATACTAAGCC -ACGGAAGTCAACGCATACATAGCC -ACGGAAGTCAACGCATACTAACCG -ACGGAAGTCAACGCATACATGCCA -ACGGAAGTCAACGCACTTGGAAAC -ACGGAAGTCAACGCACTTAACACC -ACGGAAGTCAACGCACTTATCGAG -ACGGAAGTCAACGCACTTCTCCTT -ACGGAAGTCAACGCACTTCCTGTT -ACGGAAGTCAACGCACTTCGGTTT -ACGGAAGTCAACGCACTTGTGGTT -ACGGAAGTCAACGCACTTGCCTTT -ACGGAAGTCAACGCACTTGGTCTT -ACGGAAGTCAACGCACTTACGCTT -ACGGAAGTCAACGCACTTAGCGTT -ACGGAAGTCAACGCACTTTTCGTC -ACGGAAGTCAACGCACTTTCTCTC -ACGGAAGTCAACGCACTTTGGATC -ACGGAAGTCAACGCACTTCACTTC -ACGGAAGTCAACGCACTTGTACTC -ACGGAAGTCAACGCACTTGATGTC -ACGGAAGTCAACGCACTTACAGTC -ACGGAAGTCAACGCACTTTTGCTG -ACGGAAGTCAACGCACTTTCCATG -ACGGAAGTCAACGCACTTTGTGTG -ACGGAAGTCAACGCACTTCTAGTG -ACGGAAGTCAACGCACTTCATCTG -ACGGAAGTCAACGCACTTGAGTTG -ACGGAAGTCAACGCACTTAGACTG -ACGGAAGTCAACGCACTTTCGGTA -ACGGAAGTCAACGCACTTTGCCTA -ACGGAAGTCAACGCACTTCCACTA -ACGGAAGTCAACGCACTTGGAGTA -ACGGAAGTCAACGCACTTTCGTCT -ACGGAAGTCAACGCACTTTGCACT -ACGGAAGTCAACGCACTTCTGACT -ACGGAAGTCAACGCACTTCAACCT -ACGGAAGTCAACGCACTTGCTACT -ACGGAAGTCAACGCACTTGGATCT -ACGGAAGTCAACGCACTTAAGGCT -ACGGAAGTCAACGCACTTTCAACC -ACGGAAGTCAACGCACTTTGTTCC -ACGGAAGTCAACGCACTTATTCCC -ACGGAAGTCAACGCACTTTTCTCG -ACGGAAGTCAACGCACTTTAGACG -ACGGAAGTCAACGCACTTGTAACG -ACGGAAGTCAACGCACTTACTTCG -ACGGAAGTCAACGCACTTTACGCA -ACGGAAGTCAACGCACTTCTTGCA -ACGGAAGTCAACGCACTTCGAACA -ACGGAAGTCAACGCACTTCAGTCA -ACGGAAGTCAACGCACTTGATCCA -ACGGAAGTCAACGCACTTACGACA -ACGGAAGTCAACGCACTTAGCTCA -ACGGAAGTCAACGCACTTTCACGT -ACGGAAGTCAACGCACTTCGTAGT -ACGGAAGTCAACGCACTTGTCAGT -ACGGAAGTCAACGCACTTGAAGGT -ACGGAAGTCAACGCACTTAACCGT -ACGGAAGTCAACGCACTTTTGTGC -ACGGAAGTCAACGCACTTCTAAGC -ACGGAAGTCAACGCACTTACTAGC -ACGGAAGTCAACGCACTTAGATGC -ACGGAAGTCAACGCACTTTGAAGG -ACGGAAGTCAACGCACTTCAATGG -ACGGAAGTCAACGCACTTATGAGG -ACGGAAGTCAACGCACTTAATGGG -ACGGAAGTCAACGCACTTTCCTGA -ACGGAAGTCAACGCACTTTAGCGA -ACGGAAGTCAACGCACTTCACAGA -ACGGAAGTCAACGCACTTGCAAGA -ACGGAAGTCAACGCACTTGGTTGA -ACGGAAGTCAACGCACTTTCCGAT -ACGGAAGTCAACGCACTTTGGCAT -ACGGAAGTCAACGCACTTCGAGAT -ACGGAAGTCAACGCACTTTACCAC -ACGGAAGTCAACGCACTTCAGAAC -ACGGAAGTCAACGCACTTGTCTAC -ACGGAAGTCAACGCACTTACGTAC -ACGGAAGTCAACGCACTTAGTGAC -ACGGAAGTCAACGCACTTCTGTAG -ACGGAAGTCAACGCACTTCCTAAG -ACGGAAGTCAACGCACTTGTTCAG -ACGGAAGTCAACGCACTTGCATAG -ACGGAAGTCAACGCACTTGACAAG -ACGGAAGTCAACGCACTTAAGCAG -ACGGAAGTCAACGCACTTCGTCAA -ACGGAAGTCAACGCACTTGCTGAA -ACGGAAGTCAACGCACTTAGTACG -ACGGAAGTCAACGCACTTATCCGA -ACGGAAGTCAACGCACTTATGGGA -ACGGAAGTCAACGCACTTGTGCAA -ACGGAAGTCAACGCACTTGAGGAA -ACGGAAGTCAACGCACTTCAGGTA -ACGGAAGTCAACGCACTTGACTCT -ACGGAAGTCAACGCACTTAGTCCT -ACGGAAGTCAACGCACTTTAAGCC -ACGGAAGTCAACGCACTTATAGCC -ACGGAAGTCAACGCACTTTAACCG -ACGGAAGTCAACGCACTTATGCCA -ACGGAAGTCAACACACGAGGAAAC -ACGGAAGTCAACACACGAAACACC -ACGGAAGTCAACACACGAATCGAG -ACGGAAGTCAACACACGACTCCTT -ACGGAAGTCAACACACGACCTGTT -ACGGAAGTCAACACACGACGGTTT -ACGGAAGTCAACACACGAGTGGTT -ACGGAAGTCAACACACGAGCCTTT -ACGGAAGTCAACACACGAGGTCTT -ACGGAAGTCAACACACGAACGCTT -ACGGAAGTCAACACACGAAGCGTT -ACGGAAGTCAACACACGATTCGTC -ACGGAAGTCAACACACGATCTCTC -ACGGAAGTCAACACACGATGGATC -ACGGAAGTCAACACACGACACTTC -ACGGAAGTCAACACACGAGTACTC -ACGGAAGTCAACACACGAGATGTC -ACGGAAGTCAACACACGAACAGTC -ACGGAAGTCAACACACGATTGCTG -ACGGAAGTCAACACACGATCCATG -ACGGAAGTCAACACACGATGTGTG -ACGGAAGTCAACACACGACTAGTG -ACGGAAGTCAACACACGACATCTG -ACGGAAGTCAACACACGAGAGTTG -ACGGAAGTCAACACACGAAGACTG -ACGGAAGTCAACACACGATCGGTA -ACGGAAGTCAACACACGATGCCTA -ACGGAAGTCAACACACGACCACTA -ACGGAAGTCAACACACGAGGAGTA -ACGGAAGTCAACACACGATCGTCT -ACGGAAGTCAACACACGATGCACT -ACGGAAGTCAACACACGACTGACT -ACGGAAGTCAACACACGACAACCT -ACGGAAGTCAACACACGAGCTACT -ACGGAAGTCAACACACGAGGATCT -ACGGAAGTCAACACACGAAAGGCT -ACGGAAGTCAACACACGATCAACC -ACGGAAGTCAACACACGATGTTCC -ACGGAAGTCAACACACGAATTCCC -ACGGAAGTCAACACACGATTCTCG -ACGGAAGTCAACACACGATAGACG -ACGGAAGTCAACACACGAGTAACG -ACGGAAGTCAACACACGAACTTCG -ACGGAAGTCAACACACGATACGCA -ACGGAAGTCAACACACGACTTGCA -ACGGAAGTCAACACACGACGAACA -ACGGAAGTCAACACACGACAGTCA -ACGGAAGTCAACACACGAGATCCA -ACGGAAGTCAACACACGAACGACA -ACGGAAGTCAACACACGAAGCTCA -ACGGAAGTCAACACACGATCACGT -ACGGAAGTCAACACACGACGTAGT -ACGGAAGTCAACACACGAGTCAGT -ACGGAAGTCAACACACGAGAAGGT -ACGGAAGTCAACACACGAAACCGT -ACGGAAGTCAACACACGATTGTGC -ACGGAAGTCAACACACGACTAAGC -ACGGAAGTCAACACACGAACTAGC -ACGGAAGTCAACACACGAAGATGC -ACGGAAGTCAACACACGATGAAGG -ACGGAAGTCAACACACGACAATGG -ACGGAAGTCAACACACGAATGAGG -ACGGAAGTCAACACACGAAATGGG -ACGGAAGTCAACACACGATCCTGA -ACGGAAGTCAACACACGATAGCGA -ACGGAAGTCAACACACGACACAGA -ACGGAAGTCAACACACGAGCAAGA -ACGGAAGTCAACACACGAGGTTGA -ACGGAAGTCAACACACGATCCGAT -ACGGAAGTCAACACACGATGGCAT -ACGGAAGTCAACACACGACGAGAT -ACGGAAGTCAACACACGATACCAC -ACGGAAGTCAACACACGACAGAAC -ACGGAAGTCAACACACGAGTCTAC -ACGGAAGTCAACACACGAACGTAC -ACGGAAGTCAACACACGAAGTGAC -ACGGAAGTCAACACACGACTGTAG -ACGGAAGTCAACACACGACCTAAG -ACGGAAGTCAACACACGAGTTCAG -ACGGAAGTCAACACACGAGCATAG -ACGGAAGTCAACACACGAGACAAG -ACGGAAGTCAACACACGAAAGCAG -ACGGAAGTCAACACACGACGTCAA -ACGGAAGTCAACACACGAGCTGAA -ACGGAAGTCAACACACGAAGTACG -ACGGAAGTCAACACACGAATCCGA -ACGGAAGTCAACACACGAATGGGA -ACGGAAGTCAACACACGAGTGCAA -ACGGAAGTCAACACACGAGAGGAA -ACGGAAGTCAACACACGACAGGTA -ACGGAAGTCAACACACGAGACTCT -ACGGAAGTCAACACACGAAGTCCT -ACGGAAGTCAACACACGATAAGCC -ACGGAAGTCAACACACGAATAGCC -ACGGAAGTCAACACACGATAACCG -ACGGAAGTCAACACACGAATGCCA -ACGGAAGTCAACTCACAGGGAAAC -ACGGAAGTCAACTCACAGAACACC -ACGGAAGTCAACTCACAGATCGAG -ACGGAAGTCAACTCACAGCTCCTT -ACGGAAGTCAACTCACAGCCTGTT -ACGGAAGTCAACTCACAGCGGTTT -ACGGAAGTCAACTCACAGGTGGTT -ACGGAAGTCAACTCACAGGCCTTT -ACGGAAGTCAACTCACAGGGTCTT -ACGGAAGTCAACTCACAGACGCTT -ACGGAAGTCAACTCACAGAGCGTT -ACGGAAGTCAACTCACAGTTCGTC -ACGGAAGTCAACTCACAGTCTCTC -ACGGAAGTCAACTCACAGTGGATC -ACGGAAGTCAACTCACAGCACTTC -ACGGAAGTCAACTCACAGGTACTC -ACGGAAGTCAACTCACAGGATGTC -ACGGAAGTCAACTCACAGACAGTC -ACGGAAGTCAACTCACAGTTGCTG -ACGGAAGTCAACTCACAGTCCATG -ACGGAAGTCAACTCACAGTGTGTG -ACGGAAGTCAACTCACAGCTAGTG -ACGGAAGTCAACTCACAGCATCTG -ACGGAAGTCAACTCACAGGAGTTG -ACGGAAGTCAACTCACAGAGACTG -ACGGAAGTCAACTCACAGTCGGTA -ACGGAAGTCAACTCACAGTGCCTA -ACGGAAGTCAACTCACAGCCACTA -ACGGAAGTCAACTCACAGGGAGTA -ACGGAAGTCAACTCACAGTCGTCT -ACGGAAGTCAACTCACAGTGCACT -ACGGAAGTCAACTCACAGCTGACT -ACGGAAGTCAACTCACAGCAACCT -ACGGAAGTCAACTCACAGGCTACT -ACGGAAGTCAACTCACAGGGATCT -ACGGAAGTCAACTCACAGAAGGCT -ACGGAAGTCAACTCACAGTCAACC -ACGGAAGTCAACTCACAGTGTTCC -ACGGAAGTCAACTCACAGATTCCC -ACGGAAGTCAACTCACAGTTCTCG -ACGGAAGTCAACTCACAGTAGACG -ACGGAAGTCAACTCACAGGTAACG -ACGGAAGTCAACTCACAGACTTCG -ACGGAAGTCAACTCACAGTACGCA -ACGGAAGTCAACTCACAGCTTGCA -ACGGAAGTCAACTCACAGCGAACA -ACGGAAGTCAACTCACAGCAGTCA -ACGGAAGTCAACTCACAGGATCCA -ACGGAAGTCAACTCACAGACGACA -ACGGAAGTCAACTCACAGAGCTCA -ACGGAAGTCAACTCACAGTCACGT -ACGGAAGTCAACTCACAGCGTAGT -ACGGAAGTCAACTCACAGGTCAGT -ACGGAAGTCAACTCACAGGAAGGT -ACGGAAGTCAACTCACAGAACCGT -ACGGAAGTCAACTCACAGTTGTGC -ACGGAAGTCAACTCACAGCTAAGC -ACGGAAGTCAACTCACAGACTAGC -ACGGAAGTCAACTCACAGAGATGC -ACGGAAGTCAACTCACAGTGAAGG -ACGGAAGTCAACTCACAGCAATGG -ACGGAAGTCAACTCACAGATGAGG -ACGGAAGTCAACTCACAGAATGGG -ACGGAAGTCAACTCACAGTCCTGA -ACGGAAGTCAACTCACAGTAGCGA -ACGGAAGTCAACTCACAGCACAGA -ACGGAAGTCAACTCACAGGCAAGA -ACGGAAGTCAACTCACAGGGTTGA -ACGGAAGTCAACTCACAGTCCGAT -ACGGAAGTCAACTCACAGTGGCAT -ACGGAAGTCAACTCACAGCGAGAT -ACGGAAGTCAACTCACAGTACCAC -ACGGAAGTCAACTCACAGCAGAAC -ACGGAAGTCAACTCACAGGTCTAC -ACGGAAGTCAACTCACAGACGTAC -ACGGAAGTCAACTCACAGAGTGAC -ACGGAAGTCAACTCACAGCTGTAG -ACGGAAGTCAACTCACAGCCTAAG -ACGGAAGTCAACTCACAGGTTCAG -ACGGAAGTCAACTCACAGGCATAG -ACGGAAGTCAACTCACAGGACAAG -ACGGAAGTCAACTCACAGAAGCAG -ACGGAAGTCAACTCACAGCGTCAA -ACGGAAGTCAACTCACAGGCTGAA -ACGGAAGTCAACTCACAGAGTACG -ACGGAAGTCAACTCACAGATCCGA -ACGGAAGTCAACTCACAGATGGGA -ACGGAAGTCAACTCACAGGTGCAA -ACGGAAGTCAACTCACAGGAGGAA -ACGGAAGTCAACTCACAGCAGGTA -ACGGAAGTCAACTCACAGGACTCT -ACGGAAGTCAACTCACAGAGTCCT -ACGGAAGTCAACTCACAGTAAGCC -ACGGAAGTCAACTCACAGATAGCC -ACGGAAGTCAACTCACAGTAACCG -ACGGAAGTCAACTCACAGATGCCA -ACGGAAGTCAACCCAGATGGAAAC -ACGGAAGTCAACCCAGATAACACC -ACGGAAGTCAACCCAGATATCGAG -ACGGAAGTCAACCCAGATCTCCTT -ACGGAAGTCAACCCAGATCCTGTT -ACGGAAGTCAACCCAGATCGGTTT -ACGGAAGTCAACCCAGATGTGGTT -ACGGAAGTCAACCCAGATGCCTTT -ACGGAAGTCAACCCAGATGGTCTT -ACGGAAGTCAACCCAGATACGCTT -ACGGAAGTCAACCCAGATAGCGTT -ACGGAAGTCAACCCAGATTTCGTC -ACGGAAGTCAACCCAGATTCTCTC -ACGGAAGTCAACCCAGATTGGATC -ACGGAAGTCAACCCAGATCACTTC -ACGGAAGTCAACCCAGATGTACTC -ACGGAAGTCAACCCAGATGATGTC -ACGGAAGTCAACCCAGATACAGTC -ACGGAAGTCAACCCAGATTTGCTG -ACGGAAGTCAACCCAGATTCCATG -ACGGAAGTCAACCCAGATTGTGTG -ACGGAAGTCAACCCAGATCTAGTG -ACGGAAGTCAACCCAGATCATCTG -ACGGAAGTCAACCCAGATGAGTTG -ACGGAAGTCAACCCAGATAGACTG -ACGGAAGTCAACCCAGATTCGGTA -ACGGAAGTCAACCCAGATTGCCTA -ACGGAAGTCAACCCAGATCCACTA -ACGGAAGTCAACCCAGATGGAGTA -ACGGAAGTCAACCCAGATTCGTCT -ACGGAAGTCAACCCAGATTGCACT -ACGGAAGTCAACCCAGATCTGACT -ACGGAAGTCAACCCAGATCAACCT -ACGGAAGTCAACCCAGATGCTACT -ACGGAAGTCAACCCAGATGGATCT -ACGGAAGTCAACCCAGATAAGGCT -ACGGAAGTCAACCCAGATTCAACC -ACGGAAGTCAACCCAGATTGTTCC -ACGGAAGTCAACCCAGATATTCCC -ACGGAAGTCAACCCAGATTTCTCG -ACGGAAGTCAACCCAGATTAGACG -ACGGAAGTCAACCCAGATGTAACG -ACGGAAGTCAACCCAGATACTTCG -ACGGAAGTCAACCCAGATTACGCA -ACGGAAGTCAACCCAGATCTTGCA -ACGGAAGTCAACCCAGATCGAACA -ACGGAAGTCAACCCAGATCAGTCA -ACGGAAGTCAACCCAGATGATCCA -ACGGAAGTCAACCCAGATACGACA -ACGGAAGTCAACCCAGATAGCTCA -ACGGAAGTCAACCCAGATTCACGT -ACGGAAGTCAACCCAGATCGTAGT -ACGGAAGTCAACCCAGATGTCAGT -ACGGAAGTCAACCCAGATGAAGGT -ACGGAAGTCAACCCAGATAACCGT -ACGGAAGTCAACCCAGATTTGTGC -ACGGAAGTCAACCCAGATCTAAGC -ACGGAAGTCAACCCAGATACTAGC -ACGGAAGTCAACCCAGATAGATGC -ACGGAAGTCAACCCAGATTGAAGG -ACGGAAGTCAACCCAGATCAATGG -ACGGAAGTCAACCCAGATATGAGG -ACGGAAGTCAACCCAGATAATGGG -ACGGAAGTCAACCCAGATTCCTGA -ACGGAAGTCAACCCAGATTAGCGA -ACGGAAGTCAACCCAGATCACAGA -ACGGAAGTCAACCCAGATGCAAGA -ACGGAAGTCAACCCAGATGGTTGA -ACGGAAGTCAACCCAGATTCCGAT -ACGGAAGTCAACCCAGATTGGCAT -ACGGAAGTCAACCCAGATCGAGAT -ACGGAAGTCAACCCAGATTACCAC -ACGGAAGTCAACCCAGATCAGAAC -ACGGAAGTCAACCCAGATGTCTAC -ACGGAAGTCAACCCAGATACGTAC -ACGGAAGTCAACCCAGATAGTGAC -ACGGAAGTCAACCCAGATCTGTAG -ACGGAAGTCAACCCAGATCCTAAG -ACGGAAGTCAACCCAGATGTTCAG -ACGGAAGTCAACCCAGATGCATAG -ACGGAAGTCAACCCAGATGACAAG -ACGGAAGTCAACCCAGATAAGCAG -ACGGAAGTCAACCCAGATCGTCAA -ACGGAAGTCAACCCAGATGCTGAA -ACGGAAGTCAACCCAGATAGTACG -ACGGAAGTCAACCCAGATATCCGA -ACGGAAGTCAACCCAGATATGGGA -ACGGAAGTCAACCCAGATGTGCAA -ACGGAAGTCAACCCAGATGAGGAA -ACGGAAGTCAACCCAGATCAGGTA -ACGGAAGTCAACCCAGATGACTCT -ACGGAAGTCAACCCAGATAGTCCT -ACGGAAGTCAACCCAGATTAAGCC -ACGGAAGTCAACCCAGATATAGCC -ACGGAAGTCAACCCAGATTAACCG -ACGGAAGTCAACCCAGATATGCCA -ACGGAAGTCAACACAACGGGAAAC -ACGGAAGTCAACACAACGAACACC -ACGGAAGTCAACACAACGATCGAG -ACGGAAGTCAACACAACGCTCCTT -ACGGAAGTCAACACAACGCCTGTT -ACGGAAGTCAACACAACGCGGTTT -ACGGAAGTCAACACAACGGTGGTT -ACGGAAGTCAACACAACGGCCTTT -ACGGAAGTCAACACAACGGGTCTT -ACGGAAGTCAACACAACGACGCTT -ACGGAAGTCAACACAACGAGCGTT -ACGGAAGTCAACACAACGTTCGTC -ACGGAAGTCAACACAACGTCTCTC -ACGGAAGTCAACACAACGTGGATC -ACGGAAGTCAACACAACGCACTTC -ACGGAAGTCAACACAACGGTACTC -ACGGAAGTCAACACAACGGATGTC -ACGGAAGTCAACACAACGACAGTC -ACGGAAGTCAACACAACGTTGCTG -ACGGAAGTCAACACAACGTCCATG -ACGGAAGTCAACACAACGTGTGTG -ACGGAAGTCAACACAACGCTAGTG -ACGGAAGTCAACACAACGCATCTG -ACGGAAGTCAACACAACGGAGTTG -ACGGAAGTCAACACAACGAGACTG -ACGGAAGTCAACACAACGTCGGTA -ACGGAAGTCAACACAACGTGCCTA -ACGGAAGTCAACACAACGCCACTA -ACGGAAGTCAACACAACGGGAGTA -ACGGAAGTCAACACAACGTCGTCT -ACGGAAGTCAACACAACGTGCACT -ACGGAAGTCAACACAACGCTGACT -ACGGAAGTCAACACAACGCAACCT -ACGGAAGTCAACACAACGGCTACT -ACGGAAGTCAACACAACGGGATCT -ACGGAAGTCAACACAACGAAGGCT -ACGGAAGTCAACACAACGTCAACC -ACGGAAGTCAACACAACGTGTTCC -ACGGAAGTCAACACAACGATTCCC -ACGGAAGTCAACACAACGTTCTCG -ACGGAAGTCAACACAACGTAGACG -ACGGAAGTCAACACAACGGTAACG -ACGGAAGTCAACACAACGACTTCG -ACGGAAGTCAACACAACGTACGCA -ACGGAAGTCAACACAACGCTTGCA -ACGGAAGTCAACACAACGCGAACA -ACGGAAGTCAACACAACGCAGTCA -ACGGAAGTCAACACAACGGATCCA -ACGGAAGTCAACACAACGACGACA -ACGGAAGTCAACACAACGAGCTCA -ACGGAAGTCAACACAACGTCACGT -ACGGAAGTCAACACAACGCGTAGT -ACGGAAGTCAACACAACGGTCAGT -ACGGAAGTCAACACAACGGAAGGT -ACGGAAGTCAACACAACGAACCGT -ACGGAAGTCAACACAACGTTGTGC -ACGGAAGTCAACACAACGCTAAGC -ACGGAAGTCAACACAACGACTAGC -ACGGAAGTCAACACAACGAGATGC -ACGGAAGTCAACACAACGTGAAGG -ACGGAAGTCAACACAACGCAATGG -ACGGAAGTCAACACAACGATGAGG -ACGGAAGTCAACACAACGAATGGG -ACGGAAGTCAACACAACGTCCTGA -ACGGAAGTCAACACAACGTAGCGA -ACGGAAGTCAACACAACGCACAGA -ACGGAAGTCAACACAACGGCAAGA -ACGGAAGTCAACACAACGGGTTGA -ACGGAAGTCAACACAACGTCCGAT -ACGGAAGTCAACACAACGTGGCAT -ACGGAAGTCAACACAACGCGAGAT -ACGGAAGTCAACACAACGTACCAC -ACGGAAGTCAACACAACGCAGAAC -ACGGAAGTCAACACAACGGTCTAC -ACGGAAGTCAACACAACGACGTAC -ACGGAAGTCAACACAACGAGTGAC -ACGGAAGTCAACACAACGCTGTAG -ACGGAAGTCAACACAACGCCTAAG -ACGGAAGTCAACACAACGGTTCAG -ACGGAAGTCAACACAACGGCATAG -ACGGAAGTCAACACAACGGACAAG -ACGGAAGTCAACACAACGAAGCAG -ACGGAAGTCAACACAACGCGTCAA -ACGGAAGTCAACACAACGGCTGAA -ACGGAAGTCAACACAACGAGTACG -ACGGAAGTCAACACAACGATCCGA -ACGGAAGTCAACACAACGATGGGA -ACGGAAGTCAACACAACGGTGCAA -ACGGAAGTCAACACAACGGAGGAA -ACGGAAGTCAACACAACGCAGGTA -ACGGAAGTCAACACAACGGACTCT -ACGGAAGTCAACACAACGAGTCCT -ACGGAAGTCAACACAACGTAAGCC -ACGGAAGTCAACACAACGATAGCC -ACGGAAGTCAACACAACGTAACCG -ACGGAAGTCAACACAACGATGCCA -ACGGAAGTCAACTCAAGCGGAAAC -ACGGAAGTCAACTCAAGCAACACC -ACGGAAGTCAACTCAAGCATCGAG -ACGGAAGTCAACTCAAGCCTCCTT -ACGGAAGTCAACTCAAGCCCTGTT -ACGGAAGTCAACTCAAGCCGGTTT -ACGGAAGTCAACTCAAGCGTGGTT -ACGGAAGTCAACTCAAGCGCCTTT -ACGGAAGTCAACTCAAGCGGTCTT -ACGGAAGTCAACTCAAGCACGCTT -ACGGAAGTCAACTCAAGCAGCGTT -ACGGAAGTCAACTCAAGCTTCGTC -ACGGAAGTCAACTCAAGCTCTCTC -ACGGAAGTCAACTCAAGCTGGATC -ACGGAAGTCAACTCAAGCCACTTC -ACGGAAGTCAACTCAAGCGTACTC -ACGGAAGTCAACTCAAGCGATGTC -ACGGAAGTCAACTCAAGCACAGTC -ACGGAAGTCAACTCAAGCTTGCTG -ACGGAAGTCAACTCAAGCTCCATG -ACGGAAGTCAACTCAAGCTGTGTG -ACGGAAGTCAACTCAAGCCTAGTG -ACGGAAGTCAACTCAAGCCATCTG -ACGGAAGTCAACTCAAGCGAGTTG -ACGGAAGTCAACTCAAGCAGACTG -ACGGAAGTCAACTCAAGCTCGGTA -ACGGAAGTCAACTCAAGCTGCCTA -ACGGAAGTCAACTCAAGCCCACTA -ACGGAAGTCAACTCAAGCGGAGTA -ACGGAAGTCAACTCAAGCTCGTCT -ACGGAAGTCAACTCAAGCTGCACT -ACGGAAGTCAACTCAAGCCTGACT -ACGGAAGTCAACTCAAGCCAACCT -ACGGAAGTCAACTCAAGCGCTACT -ACGGAAGTCAACTCAAGCGGATCT -ACGGAAGTCAACTCAAGCAAGGCT -ACGGAAGTCAACTCAAGCTCAACC -ACGGAAGTCAACTCAAGCTGTTCC -ACGGAAGTCAACTCAAGCATTCCC -ACGGAAGTCAACTCAAGCTTCTCG -ACGGAAGTCAACTCAAGCTAGACG -ACGGAAGTCAACTCAAGCGTAACG -ACGGAAGTCAACTCAAGCACTTCG -ACGGAAGTCAACTCAAGCTACGCA -ACGGAAGTCAACTCAAGCCTTGCA -ACGGAAGTCAACTCAAGCCGAACA -ACGGAAGTCAACTCAAGCCAGTCA -ACGGAAGTCAACTCAAGCGATCCA -ACGGAAGTCAACTCAAGCACGACA -ACGGAAGTCAACTCAAGCAGCTCA -ACGGAAGTCAACTCAAGCTCACGT -ACGGAAGTCAACTCAAGCCGTAGT -ACGGAAGTCAACTCAAGCGTCAGT -ACGGAAGTCAACTCAAGCGAAGGT -ACGGAAGTCAACTCAAGCAACCGT -ACGGAAGTCAACTCAAGCTTGTGC -ACGGAAGTCAACTCAAGCCTAAGC -ACGGAAGTCAACTCAAGCACTAGC -ACGGAAGTCAACTCAAGCAGATGC -ACGGAAGTCAACTCAAGCTGAAGG -ACGGAAGTCAACTCAAGCCAATGG -ACGGAAGTCAACTCAAGCATGAGG -ACGGAAGTCAACTCAAGCAATGGG -ACGGAAGTCAACTCAAGCTCCTGA -ACGGAAGTCAACTCAAGCTAGCGA -ACGGAAGTCAACTCAAGCCACAGA -ACGGAAGTCAACTCAAGCGCAAGA -ACGGAAGTCAACTCAAGCGGTTGA -ACGGAAGTCAACTCAAGCTCCGAT -ACGGAAGTCAACTCAAGCTGGCAT -ACGGAAGTCAACTCAAGCCGAGAT -ACGGAAGTCAACTCAAGCTACCAC -ACGGAAGTCAACTCAAGCCAGAAC -ACGGAAGTCAACTCAAGCGTCTAC -ACGGAAGTCAACTCAAGCACGTAC -ACGGAAGTCAACTCAAGCAGTGAC -ACGGAAGTCAACTCAAGCCTGTAG -ACGGAAGTCAACTCAAGCCCTAAG -ACGGAAGTCAACTCAAGCGTTCAG -ACGGAAGTCAACTCAAGCGCATAG -ACGGAAGTCAACTCAAGCGACAAG -ACGGAAGTCAACTCAAGCAAGCAG -ACGGAAGTCAACTCAAGCCGTCAA -ACGGAAGTCAACTCAAGCGCTGAA -ACGGAAGTCAACTCAAGCAGTACG -ACGGAAGTCAACTCAAGCATCCGA -ACGGAAGTCAACTCAAGCATGGGA -ACGGAAGTCAACTCAAGCGTGCAA -ACGGAAGTCAACTCAAGCGAGGAA -ACGGAAGTCAACTCAAGCCAGGTA -ACGGAAGTCAACTCAAGCGACTCT -ACGGAAGTCAACTCAAGCAGTCCT -ACGGAAGTCAACTCAAGCTAAGCC -ACGGAAGTCAACTCAAGCATAGCC -ACGGAAGTCAACTCAAGCTAACCG -ACGGAAGTCAACTCAAGCATGCCA -ACGGAAGTCAACCGTTCAGGAAAC -ACGGAAGTCAACCGTTCAAACACC -ACGGAAGTCAACCGTTCAATCGAG -ACGGAAGTCAACCGTTCACTCCTT -ACGGAAGTCAACCGTTCACCTGTT -ACGGAAGTCAACCGTTCACGGTTT -ACGGAAGTCAACCGTTCAGTGGTT -ACGGAAGTCAACCGTTCAGCCTTT -ACGGAAGTCAACCGTTCAGGTCTT -ACGGAAGTCAACCGTTCAACGCTT -ACGGAAGTCAACCGTTCAAGCGTT -ACGGAAGTCAACCGTTCATTCGTC -ACGGAAGTCAACCGTTCATCTCTC -ACGGAAGTCAACCGTTCATGGATC -ACGGAAGTCAACCGTTCACACTTC -ACGGAAGTCAACCGTTCAGTACTC -ACGGAAGTCAACCGTTCAGATGTC -ACGGAAGTCAACCGTTCAACAGTC -ACGGAAGTCAACCGTTCATTGCTG -ACGGAAGTCAACCGTTCATCCATG -ACGGAAGTCAACCGTTCATGTGTG -ACGGAAGTCAACCGTTCACTAGTG -ACGGAAGTCAACCGTTCACATCTG -ACGGAAGTCAACCGTTCAGAGTTG -ACGGAAGTCAACCGTTCAAGACTG -ACGGAAGTCAACCGTTCATCGGTA -ACGGAAGTCAACCGTTCATGCCTA -ACGGAAGTCAACCGTTCACCACTA -ACGGAAGTCAACCGTTCAGGAGTA -ACGGAAGTCAACCGTTCATCGTCT -ACGGAAGTCAACCGTTCATGCACT -ACGGAAGTCAACCGTTCACTGACT -ACGGAAGTCAACCGTTCACAACCT -ACGGAAGTCAACCGTTCAGCTACT -ACGGAAGTCAACCGTTCAGGATCT -ACGGAAGTCAACCGTTCAAAGGCT -ACGGAAGTCAACCGTTCATCAACC -ACGGAAGTCAACCGTTCATGTTCC -ACGGAAGTCAACCGTTCAATTCCC -ACGGAAGTCAACCGTTCATTCTCG -ACGGAAGTCAACCGTTCATAGACG -ACGGAAGTCAACCGTTCAGTAACG -ACGGAAGTCAACCGTTCAACTTCG -ACGGAAGTCAACCGTTCATACGCA -ACGGAAGTCAACCGTTCACTTGCA -ACGGAAGTCAACCGTTCACGAACA -ACGGAAGTCAACCGTTCACAGTCA -ACGGAAGTCAACCGTTCAGATCCA -ACGGAAGTCAACCGTTCAACGACA -ACGGAAGTCAACCGTTCAAGCTCA -ACGGAAGTCAACCGTTCATCACGT -ACGGAAGTCAACCGTTCACGTAGT -ACGGAAGTCAACCGTTCAGTCAGT -ACGGAAGTCAACCGTTCAGAAGGT -ACGGAAGTCAACCGTTCAAACCGT -ACGGAAGTCAACCGTTCATTGTGC -ACGGAAGTCAACCGTTCACTAAGC -ACGGAAGTCAACCGTTCAACTAGC -ACGGAAGTCAACCGTTCAAGATGC -ACGGAAGTCAACCGTTCATGAAGG -ACGGAAGTCAACCGTTCACAATGG -ACGGAAGTCAACCGTTCAATGAGG -ACGGAAGTCAACCGTTCAAATGGG -ACGGAAGTCAACCGTTCATCCTGA -ACGGAAGTCAACCGTTCATAGCGA -ACGGAAGTCAACCGTTCACACAGA -ACGGAAGTCAACCGTTCAGCAAGA -ACGGAAGTCAACCGTTCAGGTTGA -ACGGAAGTCAACCGTTCATCCGAT -ACGGAAGTCAACCGTTCATGGCAT -ACGGAAGTCAACCGTTCACGAGAT -ACGGAAGTCAACCGTTCATACCAC -ACGGAAGTCAACCGTTCACAGAAC -ACGGAAGTCAACCGTTCAGTCTAC -ACGGAAGTCAACCGTTCAACGTAC -ACGGAAGTCAACCGTTCAAGTGAC -ACGGAAGTCAACCGTTCACTGTAG -ACGGAAGTCAACCGTTCACCTAAG -ACGGAAGTCAACCGTTCAGTTCAG -ACGGAAGTCAACCGTTCAGCATAG -ACGGAAGTCAACCGTTCAGACAAG -ACGGAAGTCAACCGTTCAAAGCAG -ACGGAAGTCAACCGTTCACGTCAA -ACGGAAGTCAACCGTTCAGCTGAA -ACGGAAGTCAACCGTTCAAGTACG -ACGGAAGTCAACCGTTCAATCCGA -ACGGAAGTCAACCGTTCAATGGGA -ACGGAAGTCAACCGTTCAGTGCAA -ACGGAAGTCAACCGTTCAGAGGAA -ACGGAAGTCAACCGTTCACAGGTA -ACGGAAGTCAACCGTTCAGACTCT -ACGGAAGTCAACCGTTCAAGTCCT -ACGGAAGTCAACCGTTCATAAGCC -ACGGAAGTCAACCGTTCAATAGCC -ACGGAAGTCAACCGTTCATAACCG -ACGGAAGTCAACCGTTCAATGCCA -ACGGAAGTCAACAGTCGTGGAAAC -ACGGAAGTCAACAGTCGTAACACC -ACGGAAGTCAACAGTCGTATCGAG -ACGGAAGTCAACAGTCGTCTCCTT -ACGGAAGTCAACAGTCGTCCTGTT -ACGGAAGTCAACAGTCGTCGGTTT -ACGGAAGTCAACAGTCGTGTGGTT -ACGGAAGTCAACAGTCGTGCCTTT -ACGGAAGTCAACAGTCGTGGTCTT -ACGGAAGTCAACAGTCGTACGCTT -ACGGAAGTCAACAGTCGTAGCGTT -ACGGAAGTCAACAGTCGTTTCGTC -ACGGAAGTCAACAGTCGTTCTCTC -ACGGAAGTCAACAGTCGTTGGATC -ACGGAAGTCAACAGTCGTCACTTC -ACGGAAGTCAACAGTCGTGTACTC -ACGGAAGTCAACAGTCGTGATGTC -ACGGAAGTCAACAGTCGTACAGTC -ACGGAAGTCAACAGTCGTTTGCTG -ACGGAAGTCAACAGTCGTTCCATG -ACGGAAGTCAACAGTCGTTGTGTG -ACGGAAGTCAACAGTCGTCTAGTG -ACGGAAGTCAACAGTCGTCATCTG -ACGGAAGTCAACAGTCGTGAGTTG -ACGGAAGTCAACAGTCGTAGACTG -ACGGAAGTCAACAGTCGTTCGGTA -ACGGAAGTCAACAGTCGTTGCCTA -ACGGAAGTCAACAGTCGTCCACTA -ACGGAAGTCAACAGTCGTGGAGTA -ACGGAAGTCAACAGTCGTTCGTCT -ACGGAAGTCAACAGTCGTTGCACT -ACGGAAGTCAACAGTCGTCTGACT -ACGGAAGTCAACAGTCGTCAACCT -ACGGAAGTCAACAGTCGTGCTACT -ACGGAAGTCAACAGTCGTGGATCT -ACGGAAGTCAACAGTCGTAAGGCT -ACGGAAGTCAACAGTCGTTCAACC -ACGGAAGTCAACAGTCGTTGTTCC -ACGGAAGTCAACAGTCGTATTCCC -ACGGAAGTCAACAGTCGTTTCTCG -ACGGAAGTCAACAGTCGTTAGACG -ACGGAAGTCAACAGTCGTGTAACG -ACGGAAGTCAACAGTCGTACTTCG -ACGGAAGTCAACAGTCGTTACGCA -ACGGAAGTCAACAGTCGTCTTGCA -ACGGAAGTCAACAGTCGTCGAACA -ACGGAAGTCAACAGTCGTCAGTCA -ACGGAAGTCAACAGTCGTGATCCA -ACGGAAGTCAACAGTCGTACGACA -ACGGAAGTCAACAGTCGTAGCTCA -ACGGAAGTCAACAGTCGTTCACGT -ACGGAAGTCAACAGTCGTCGTAGT -ACGGAAGTCAACAGTCGTGTCAGT -ACGGAAGTCAACAGTCGTGAAGGT -ACGGAAGTCAACAGTCGTAACCGT -ACGGAAGTCAACAGTCGTTTGTGC -ACGGAAGTCAACAGTCGTCTAAGC -ACGGAAGTCAACAGTCGTACTAGC -ACGGAAGTCAACAGTCGTAGATGC -ACGGAAGTCAACAGTCGTTGAAGG -ACGGAAGTCAACAGTCGTCAATGG -ACGGAAGTCAACAGTCGTATGAGG -ACGGAAGTCAACAGTCGTAATGGG -ACGGAAGTCAACAGTCGTTCCTGA -ACGGAAGTCAACAGTCGTTAGCGA -ACGGAAGTCAACAGTCGTCACAGA -ACGGAAGTCAACAGTCGTGCAAGA -ACGGAAGTCAACAGTCGTGGTTGA -ACGGAAGTCAACAGTCGTTCCGAT -ACGGAAGTCAACAGTCGTTGGCAT -ACGGAAGTCAACAGTCGTCGAGAT -ACGGAAGTCAACAGTCGTTACCAC -ACGGAAGTCAACAGTCGTCAGAAC -ACGGAAGTCAACAGTCGTGTCTAC -ACGGAAGTCAACAGTCGTACGTAC -ACGGAAGTCAACAGTCGTAGTGAC -ACGGAAGTCAACAGTCGTCTGTAG -ACGGAAGTCAACAGTCGTCCTAAG -ACGGAAGTCAACAGTCGTGTTCAG -ACGGAAGTCAACAGTCGTGCATAG -ACGGAAGTCAACAGTCGTGACAAG -ACGGAAGTCAACAGTCGTAAGCAG -ACGGAAGTCAACAGTCGTCGTCAA -ACGGAAGTCAACAGTCGTGCTGAA -ACGGAAGTCAACAGTCGTAGTACG -ACGGAAGTCAACAGTCGTATCCGA -ACGGAAGTCAACAGTCGTATGGGA -ACGGAAGTCAACAGTCGTGTGCAA -ACGGAAGTCAACAGTCGTGAGGAA -ACGGAAGTCAACAGTCGTCAGGTA -ACGGAAGTCAACAGTCGTGACTCT -ACGGAAGTCAACAGTCGTAGTCCT -ACGGAAGTCAACAGTCGTTAAGCC -ACGGAAGTCAACAGTCGTATAGCC -ACGGAAGTCAACAGTCGTTAACCG -ACGGAAGTCAACAGTCGTATGCCA -ACGGAAGTCAACAGTGTCGGAAAC -ACGGAAGTCAACAGTGTCAACACC -ACGGAAGTCAACAGTGTCATCGAG -ACGGAAGTCAACAGTGTCCTCCTT -ACGGAAGTCAACAGTGTCCCTGTT -ACGGAAGTCAACAGTGTCCGGTTT -ACGGAAGTCAACAGTGTCGTGGTT -ACGGAAGTCAACAGTGTCGCCTTT -ACGGAAGTCAACAGTGTCGGTCTT -ACGGAAGTCAACAGTGTCACGCTT -ACGGAAGTCAACAGTGTCAGCGTT -ACGGAAGTCAACAGTGTCTTCGTC -ACGGAAGTCAACAGTGTCTCTCTC -ACGGAAGTCAACAGTGTCTGGATC -ACGGAAGTCAACAGTGTCCACTTC -ACGGAAGTCAACAGTGTCGTACTC -ACGGAAGTCAACAGTGTCGATGTC -ACGGAAGTCAACAGTGTCACAGTC -ACGGAAGTCAACAGTGTCTTGCTG -ACGGAAGTCAACAGTGTCTCCATG -ACGGAAGTCAACAGTGTCTGTGTG -ACGGAAGTCAACAGTGTCCTAGTG -ACGGAAGTCAACAGTGTCCATCTG -ACGGAAGTCAACAGTGTCGAGTTG -ACGGAAGTCAACAGTGTCAGACTG -ACGGAAGTCAACAGTGTCTCGGTA -ACGGAAGTCAACAGTGTCTGCCTA -ACGGAAGTCAACAGTGTCCCACTA -ACGGAAGTCAACAGTGTCGGAGTA -ACGGAAGTCAACAGTGTCTCGTCT -ACGGAAGTCAACAGTGTCTGCACT -ACGGAAGTCAACAGTGTCCTGACT -ACGGAAGTCAACAGTGTCCAACCT -ACGGAAGTCAACAGTGTCGCTACT -ACGGAAGTCAACAGTGTCGGATCT -ACGGAAGTCAACAGTGTCAAGGCT -ACGGAAGTCAACAGTGTCTCAACC -ACGGAAGTCAACAGTGTCTGTTCC -ACGGAAGTCAACAGTGTCATTCCC -ACGGAAGTCAACAGTGTCTTCTCG -ACGGAAGTCAACAGTGTCTAGACG -ACGGAAGTCAACAGTGTCGTAACG -ACGGAAGTCAACAGTGTCACTTCG -ACGGAAGTCAACAGTGTCTACGCA -ACGGAAGTCAACAGTGTCCTTGCA -ACGGAAGTCAACAGTGTCCGAACA -ACGGAAGTCAACAGTGTCCAGTCA -ACGGAAGTCAACAGTGTCGATCCA -ACGGAAGTCAACAGTGTCACGACA -ACGGAAGTCAACAGTGTCAGCTCA -ACGGAAGTCAACAGTGTCTCACGT -ACGGAAGTCAACAGTGTCCGTAGT -ACGGAAGTCAACAGTGTCGTCAGT -ACGGAAGTCAACAGTGTCGAAGGT -ACGGAAGTCAACAGTGTCAACCGT -ACGGAAGTCAACAGTGTCTTGTGC -ACGGAAGTCAACAGTGTCCTAAGC -ACGGAAGTCAACAGTGTCACTAGC -ACGGAAGTCAACAGTGTCAGATGC -ACGGAAGTCAACAGTGTCTGAAGG -ACGGAAGTCAACAGTGTCCAATGG -ACGGAAGTCAACAGTGTCATGAGG -ACGGAAGTCAACAGTGTCAATGGG -ACGGAAGTCAACAGTGTCTCCTGA -ACGGAAGTCAACAGTGTCTAGCGA -ACGGAAGTCAACAGTGTCCACAGA -ACGGAAGTCAACAGTGTCGCAAGA -ACGGAAGTCAACAGTGTCGGTTGA -ACGGAAGTCAACAGTGTCTCCGAT -ACGGAAGTCAACAGTGTCTGGCAT -ACGGAAGTCAACAGTGTCCGAGAT -ACGGAAGTCAACAGTGTCTACCAC -ACGGAAGTCAACAGTGTCCAGAAC -ACGGAAGTCAACAGTGTCGTCTAC -ACGGAAGTCAACAGTGTCACGTAC -ACGGAAGTCAACAGTGTCAGTGAC -ACGGAAGTCAACAGTGTCCTGTAG -ACGGAAGTCAACAGTGTCCCTAAG -ACGGAAGTCAACAGTGTCGTTCAG -ACGGAAGTCAACAGTGTCGCATAG -ACGGAAGTCAACAGTGTCGACAAG -ACGGAAGTCAACAGTGTCAAGCAG -ACGGAAGTCAACAGTGTCCGTCAA -ACGGAAGTCAACAGTGTCGCTGAA -ACGGAAGTCAACAGTGTCAGTACG -ACGGAAGTCAACAGTGTCATCCGA -ACGGAAGTCAACAGTGTCATGGGA -ACGGAAGTCAACAGTGTCGTGCAA -ACGGAAGTCAACAGTGTCGAGGAA -ACGGAAGTCAACAGTGTCCAGGTA -ACGGAAGTCAACAGTGTCGACTCT -ACGGAAGTCAACAGTGTCAGTCCT -ACGGAAGTCAACAGTGTCTAAGCC -ACGGAAGTCAACAGTGTCATAGCC -ACGGAAGTCAACAGTGTCTAACCG -ACGGAAGTCAACAGTGTCATGCCA -ACGGAAGTCAACGGTGAAGGAAAC -ACGGAAGTCAACGGTGAAAACACC -ACGGAAGTCAACGGTGAAATCGAG -ACGGAAGTCAACGGTGAACTCCTT -ACGGAAGTCAACGGTGAACCTGTT -ACGGAAGTCAACGGTGAACGGTTT -ACGGAAGTCAACGGTGAAGTGGTT -ACGGAAGTCAACGGTGAAGCCTTT -ACGGAAGTCAACGGTGAAGGTCTT -ACGGAAGTCAACGGTGAAACGCTT -ACGGAAGTCAACGGTGAAAGCGTT -ACGGAAGTCAACGGTGAATTCGTC -ACGGAAGTCAACGGTGAATCTCTC -ACGGAAGTCAACGGTGAATGGATC -ACGGAAGTCAACGGTGAACACTTC -ACGGAAGTCAACGGTGAAGTACTC -ACGGAAGTCAACGGTGAAGATGTC -ACGGAAGTCAACGGTGAAACAGTC -ACGGAAGTCAACGGTGAATTGCTG -ACGGAAGTCAACGGTGAATCCATG -ACGGAAGTCAACGGTGAATGTGTG -ACGGAAGTCAACGGTGAACTAGTG -ACGGAAGTCAACGGTGAACATCTG -ACGGAAGTCAACGGTGAAGAGTTG -ACGGAAGTCAACGGTGAAAGACTG -ACGGAAGTCAACGGTGAATCGGTA -ACGGAAGTCAACGGTGAATGCCTA -ACGGAAGTCAACGGTGAACCACTA -ACGGAAGTCAACGGTGAAGGAGTA -ACGGAAGTCAACGGTGAATCGTCT -ACGGAAGTCAACGGTGAATGCACT -ACGGAAGTCAACGGTGAACTGACT -ACGGAAGTCAACGGTGAACAACCT -ACGGAAGTCAACGGTGAAGCTACT -ACGGAAGTCAACGGTGAAGGATCT -ACGGAAGTCAACGGTGAAAAGGCT -ACGGAAGTCAACGGTGAATCAACC -ACGGAAGTCAACGGTGAATGTTCC -ACGGAAGTCAACGGTGAAATTCCC -ACGGAAGTCAACGGTGAATTCTCG -ACGGAAGTCAACGGTGAATAGACG -ACGGAAGTCAACGGTGAAGTAACG -ACGGAAGTCAACGGTGAAACTTCG -ACGGAAGTCAACGGTGAATACGCA -ACGGAAGTCAACGGTGAACTTGCA -ACGGAAGTCAACGGTGAACGAACA -ACGGAAGTCAACGGTGAACAGTCA -ACGGAAGTCAACGGTGAAGATCCA -ACGGAAGTCAACGGTGAAACGACA -ACGGAAGTCAACGGTGAAAGCTCA -ACGGAAGTCAACGGTGAATCACGT -ACGGAAGTCAACGGTGAACGTAGT -ACGGAAGTCAACGGTGAAGTCAGT -ACGGAAGTCAACGGTGAAGAAGGT -ACGGAAGTCAACGGTGAAAACCGT -ACGGAAGTCAACGGTGAATTGTGC -ACGGAAGTCAACGGTGAACTAAGC -ACGGAAGTCAACGGTGAAACTAGC -ACGGAAGTCAACGGTGAAAGATGC -ACGGAAGTCAACGGTGAATGAAGG -ACGGAAGTCAACGGTGAACAATGG -ACGGAAGTCAACGGTGAAATGAGG -ACGGAAGTCAACGGTGAAAATGGG -ACGGAAGTCAACGGTGAATCCTGA -ACGGAAGTCAACGGTGAATAGCGA -ACGGAAGTCAACGGTGAACACAGA -ACGGAAGTCAACGGTGAAGCAAGA -ACGGAAGTCAACGGTGAAGGTTGA -ACGGAAGTCAACGGTGAATCCGAT -ACGGAAGTCAACGGTGAATGGCAT -ACGGAAGTCAACGGTGAACGAGAT -ACGGAAGTCAACGGTGAATACCAC -ACGGAAGTCAACGGTGAACAGAAC -ACGGAAGTCAACGGTGAAGTCTAC -ACGGAAGTCAACGGTGAAACGTAC -ACGGAAGTCAACGGTGAAAGTGAC -ACGGAAGTCAACGGTGAACTGTAG -ACGGAAGTCAACGGTGAACCTAAG -ACGGAAGTCAACGGTGAAGTTCAG -ACGGAAGTCAACGGTGAAGCATAG -ACGGAAGTCAACGGTGAAGACAAG -ACGGAAGTCAACGGTGAAAAGCAG -ACGGAAGTCAACGGTGAACGTCAA -ACGGAAGTCAACGGTGAAGCTGAA -ACGGAAGTCAACGGTGAAAGTACG -ACGGAAGTCAACGGTGAAATCCGA -ACGGAAGTCAACGGTGAAATGGGA -ACGGAAGTCAACGGTGAAGTGCAA -ACGGAAGTCAACGGTGAAGAGGAA -ACGGAAGTCAACGGTGAACAGGTA -ACGGAAGTCAACGGTGAAGACTCT -ACGGAAGTCAACGGTGAAAGTCCT -ACGGAAGTCAACGGTGAATAAGCC -ACGGAAGTCAACGGTGAAATAGCC -ACGGAAGTCAACGGTGAATAACCG -ACGGAAGTCAACGGTGAAATGCCA -ACGGAAGTCAACCGTAACGGAAAC -ACGGAAGTCAACCGTAACAACACC -ACGGAAGTCAACCGTAACATCGAG -ACGGAAGTCAACCGTAACCTCCTT -ACGGAAGTCAACCGTAACCCTGTT -ACGGAAGTCAACCGTAACCGGTTT -ACGGAAGTCAACCGTAACGTGGTT -ACGGAAGTCAACCGTAACGCCTTT -ACGGAAGTCAACCGTAACGGTCTT -ACGGAAGTCAACCGTAACACGCTT -ACGGAAGTCAACCGTAACAGCGTT -ACGGAAGTCAACCGTAACTTCGTC -ACGGAAGTCAACCGTAACTCTCTC -ACGGAAGTCAACCGTAACTGGATC -ACGGAAGTCAACCGTAACCACTTC -ACGGAAGTCAACCGTAACGTACTC -ACGGAAGTCAACCGTAACGATGTC -ACGGAAGTCAACCGTAACACAGTC -ACGGAAGTCAACCGTAACTTGCTG -ACGGAAGTCAACCGTAACTCCATG -ACGGAAGTCAACCGTAACTGTGTG -ACGGAAGTCAACCGTAACCTAGTG -ACGGAAGTCAACCGTAACCATCTG -ACGGAAGTCAACCGTAACGAGTTG -ACGGAAGTCAACCGTAACAGACTG -ACGGAAGTCAACCGTAACTCGGTA -ACGGAAGTCAACCGTAACTGCCTA -ACGGAAGTCAACCGTAACCCACTA -ACGGAAGTCAACCGTAACGGAGTA -ACGGAAGTCAACCGTAACTCGTCT -ACGGAAGTCAACCGTAACTGCACT -ACGGAAGTCAACCGTAACCTGACT -ACGGAAGTCAACCGTAACCAACCT -ACGGAAGTCAACCGTAACGCTACT -ACGGAAGTCAACCGTAACGGATCT -ACGGAAGTCAACCGTAACAAGGCT -ACGGAAGTCAACCGTAACTCAACC -ACGGAAGTCAACCGTAACTGTTCC -ACGGAAGTCAACCGTAACATTCCC -ACGGAAGTCAACCGTAACTTCTCG -ACGGAAGTCAACCGTAACTAGACG -ACGGAAGTCAACCGTAACGTAACG -ACGGAAGTCAACCGTAACACTTCG -ACGGAAGTCAACCGTAACTACGCA -ACGGAAGTCAACCGTAACCTTGCA -ACGGAAGTCAACCGTAACCGAACA -ACGGAAGTCAACCGTAACCAGTCA -ACGGAAGTCAACCGTAACGATCCA -ACGGAAGTCAACCGTAACACGACA -ACGGAAGTCAACCGTAACAGCTCA -ACGGAAGTCAACCGTAACTCACGT -ACGGAAGTCAACCGTAACCGTAGT -ACGGAAGTCAACCGTAACGTCAGT -ACGGAAGTCAACCGTAACGAAGGT -ACGGAAGTCAACCGTAACAACCGT -ACGGAAGTCAACCGTAACTTGTGC -ACGGAAGTCAACCGTAACCTAAGC -ACGGAAGTCAACCGTAACACTAGC -ACGGAAGTCAACCGTAACAGATGC -ACGGAAGTCAACCGTAACTGAAGG -ACGGAAGTCAACCGTAACCAATGG -ACGGAAGTCAACCGTAACATGAGG -ACGGAAGTCAACCGTAACAATGGG -ACGGAAGTCAACCGTAACTCCTGA -ACGGAAGTCAACCGTAACTAGCGA -ACGGAAGTCAACCGTAACCACAGA -ACGGAAGTCAACCGTAACGCAAGA -ACGGAAGTCAACCGTAACGGTTGA -ACGGAAGTCAACCGTAACTCCGAT -ACGGAAGTCAACCGTAACTGGCAT -ACGGAAGTCAACCGTAACCGAGAT -ACGGAAGTCAACCGTAACTACCAC -ACGGAAGTCAACCGTAACCAGAAC -ACGGAAGTCAACCGTAACGTCTAC -ACGGAAGTCAACCGTAACACGTAC -ACGGAAGTCAACCGTAACAGTGAC -ACGGAAGTCAACCGTAACCTGTAG -ACGGAAGTCAACCGTAACCCTAAG -ACGGAAGTCAACCGTAACGTTCAG -ACGGAAGTCAACCGTAACGCATAG -ACGGAAGTCAACCGTAACGACAAG -ACGGAAGTCAACCGTAACAAGCAG -ACGGAAGTCAACCGTAACCGTCAA -ACGGAAGTCAACCGTAACGCTGAA -ACGGAAGTCAACCGTAACAGTACG -ACGGAAGTCAACCGTAACATCCGA -ACGGAAGTCAACCGTAACATGGGA -ACGGAAGTCAACCGTAACGTGCAA -ACGGAAGTCAACCGTAACGAGGAA -ACGGAAGTCAACCGTAACCAGGTA -ACGGAAGTCAACCGTAACGACTCT -ACGGAAGTCAACCGTAACAGTCCT -ACGGAAGTCAACCGTAACTAAGCC -ACGGAAGTCAACCGTAACATAGCC -ACGGAAGTCAACCGTAACTAACCG -ACGGAAGTCAACCGTAACATGCCA -ACGGAAGTCAACTGCTTGGGAAAC -ACGGAAGTCAACTGCTTGAACACC -ACGGAAGTCAACTGCTTGATCGAG -ACGGAAGTCAACTGCTTGCTCCTT -ACGGAAGTCAACTGCTTGCCTGTT -ACGGAAGTCAACTGCTTGCGGTTT -ACGGAAGTCAACTGCTTGGTGGTT -ACGGAAGTCAACTGCTTGGCCTTT -ACGGAAGTCAACTGCTTGGGTCTT -ACGGAAGTCAACTGCTTGACGCTT -ACGGAAGTCAACTGCTTGAGCGTT -ACGGAAGTCAACTGCTTGTTCGTC -ACGGAAGTCAACTGCTTGTCTCTC -ACGGAAGTCAACTGCTTGTGGATC -ACGGAAGTCAACTGCTTGCACTTC -ACGGAAGTCAACTGCTTGGTACTC -ACGGAAGTCAACTGCTTGGATGTC -ACGGAAGTCAACTGCTTGACAGTC -ACGGAAGTCAACTGCTTGTTGCTG -ACGGAAGTCAACTGCTTGTCCATG -ACGGAAGTCAACTGCTTGTGTGTG -ACGGAAGTCAACTGCTTGCTAGTG -ACGGAAGTCAACTGCTTGCATCTG -ACGGAAGTCAACTGCTTGGAGTTG -ACGGAAGTCAACTGCTTGAGACTG -ACGGAAGTCAACTGCTTGTCGGTA -ACGGAAGTCAACTGCTTGTGCCTA -ACGGAAGTCAACTGCTTGCCACTA -ACGGAAGTCAACTGCTTGGGAGTA -ACGGAAGTCAACTGCTTGTCGTCT -ACGGAAGTCAACTGCTTGTGCACT -ACGGAAGTCAACTGCTTGCTGACT -ACGGAAGTCAACTGCTTGCAACCT -ACGGAAGTCAACTGCTTGGCTACT -ACGGAAGTCAACTGCTTGGGATCT -ACGGAAGTCAACTGCTTGAAGGCT -ACGGAAGTCAACTGCTTGTCAACC -ACGGAAGTCAACTGCTTGTGTTCC -ACGGAAGTCAACTGCTTGATTCCC -ACGGAAGTCAACTGCTTGTTCTCG -ACGGAAGTCAACTGCTTGTAGACG -ACGGAAGTCAACTGCTTGGTAACG -ACGGAAGTCAACTGCTTGACTTCG -ACGGAAGTCAACTGCTTGTACGCA -ACGGAAGTCAACTGCTTGCTTGCA -ACGGAAGTCAACTGCTTGCGAACA -ACGGAAGTCAACTGCTTGCAGTCA -ACGGAAGTCAACTGCTTGGATCCA -ACGGAAGTCAACTGCTTGACGACA -ACGGAAGTCAACTGCTTGAGCTCA -ACGGAAGTCAACTGCTTGTCACGT -ACGGAAGTCAACTGCTTGCGTAGT -ACGGAAGTCAACTGCTTGGTCAGT -ACGGAAGTCAACTGCTTGGAAGGT -ACGGAAGTCAACTGCTTGAACCGT -ACGGAAGTCAACTGCTTGTTGTGC -ACGGAAGTCAACTGCTTGCTAAGC -ACGGAAGTCAACTGCTTGACTAGC -ACGGAAGTCAACTGCTTGAGATGC -ACGGAAGTCAACTGCTTGTGAAGG -ACGGAAGTCAACTGCTTGCAATGG -ACGGAAGTCAACTGCTTGATGAGG -ACGGAAGTCAACTGCTTGAATGGG -ACGGAAGTCAACTGCTTGTCCTGA -ACGGAAGTCAACTGCTTGTAGCGA -ACGGAAGTCAACTGCTTGCACAGA -ACGGAAGTCAACTGCTTGGCAAGA -ACGGAAGTCAACTGCTTGGGTTGA -ACGGAAGTCAACTGCTTGTCCGAT -ACGGAAGTCAACTGCTTGTGGCAT -ACGGAAGTCAACTGCTTGCGAGAT -ACGGAAGTCAACTGCTTGTACCAC -ACGGAAGTCAACTGCTTGCAGAAC -ACGGAAGTCAACTGCTTGGTCTAC -ACGGAAGTCAACTGCTTGACGTAC -ACGGAAGTCAACTGCTTGAGTGAC -ACGGAAGTCAACTGCTTGCTGTAG -ACGGAAGTCAACTGCTTGCCTAAG -ACGGAAGTCAACTGCTTGGTTCAG -ACGGAAGTCAACTGCTTGGCATAG -ACGGAAGTCAACTGCTTGGACAAG -ACGGAAGTCAACTGCTTGAAGCAG -ACGGAAGTCAACTGCTTGCGTCAA -ACGGAAGTCAACTGCTTGGCTGAA -ACGGAAGTCAACTGCTTGAGTACG -ACGGAAGTCAACTGCTTGATCCGA -ACGGAAGTCAACTGCTTGATGGGA -ACGGAAGTCAACTGCTTGGTGCAA -ACGGAAGTCAACTGCTTGGAGGAA -ACGGAAGTCAACTGCTTGCAGGTA -ACGGAAGTCAACTGCTTGGACTCT -ACGGAAGTCAACTGCTTGAGTCCT -ACGGAAGTCAACTGCTTGTAAGCC -ACGGAAGTCAACTGCTTGATAGCC -ACGGAAGTCAACTGCTTGTAACCG -ACGGAAGTCAACTGCTTGATGCCA -ACGGAAGTCAACAGCCTAGGAAAC -ACGGAAGTCAACAGCCTAAACACC -ACGGAAGTCAACAGCCTAATCGAG -ACGGAAGTCAACAGCCTACTCCTT -ACGGAAGTCAACAGCCTACCTGTT -ACGGAAGTCAACAGCCTACGGTTT -ACGGAAGTCAACAGCCTAGTGGTT -ACGGAAGTCAACAGCCTAGCCTTT -ACGGAAGTCAACAGCCTAGGTCTT -ACGGAAGTCAACAGCCTAACGCTT -ACGGAAGTCAACAGCCTAAGCGTT -ACGGAAGTCAACAGCCTATTCGTC -ACGGAAGTCAACAGCCTATCTCTC -ACGGAAGTCAACAGCCTATGGATC -ACGGAAGTCAACAGCCTACACTTC -ACGGAAGTCAACAGCCTAGTACTC -ACGGAAGTCAACAGCCTAGATGTC -ACGGAAGTCAACAGCCTAACAGTC -ACGGAAGTCAACAGCCTATTGCTG -ACGGAAGTCAACAGCCTATCCATG -ACGGAAGTCAACAGCCTATGTGTG -ACGGAAGTCAACAGCCTACTAGTG -ACGGAAGTCAACAGCCTACATCTG -ACGGAAGTCAACAGCCTAGAGTTG -ACGGAAGTCAACAGCCTAAGACTG -ACGGAAGTCAACAGCCTATCGGTA -ACGGAAGTCAACAGCCTATGCCTA -ACGGAAGTCAACAGCCTACCACTA -ACGGAAGTCAACAGCCTAGGAGTA -ACGGAAGTCAACAGCCTATCGTCT -ACGGAAGTCAACAGCCTATGCACT -ACGGAAGTCAACAGCCTACTGACT -ACGGAAGTCAACAGCCTACAACCT -ACGGAAGTCAACAGCCTAGCTACT -ACGGAAGTCAACAGCCTAGGATCT -ACGGAAGTCAACAGCCTAAAGGCT -ACGGAAGTCAACAGCCTATCAACC -ACGGAAGTCAACAGCCTATGTTCC -ACGGAAGTCAACAGCCTAATTCCC -ACGGAAGTCAACAGCCTATTCTCG -ACGGAAGTCAACAGCCTATAGACG -ACGGAAGTCAACAGCCTAGTAACG -ACGGAAGTCAACAGCCTAACTTCG -ACGGAAGTCAACAGCCTATACGCA -ACGGAAGTCAACAGCCTACTTGCA -ACGGAAGTCAACAGCCTACGAACA -ACGGAAGTCAACAGCCTACAGTCA -ACGGAAGTCAACAGCCTAGATCCA -ACGGAAGTCAACAGCCTAACGACA -ACGGAAGTCAACAGCCTAAGCTCA -ACGGAAGTCAACAGCCTATCACGT -ACGGAAGTCAACAGCCTACGTAGT -ACGGAAGTCAACAGCCTAGTCAGT -ACGGAAGTCAACAGCCTAGAAGGT -ACGGAAGTCAACAGCCTAAACCGT -ACGGAAGTCAACAGCCTATTGTGC -ACGGAAGTCAACAGCCTACTAAGC -ACGGAAGTCAACAGCCTAACTAGC -ACGGAAGTCAACAGCCTAAGATGC -ACGGAAGTCAACAGCCTATGAAGG -ACGGAAGTCAACAGCCTACAATGG -ACGGAAGTCAACAGCCTAATGAGG -ACGGAAGTCAACAGCCTAAATGGG -ACGGAAGTCAACAGCCTATCCTGA -ACGGAAGTCAACAGCCTATAGCGA -ACGGAAGTCAACAGCCTACACAGA -ACGGAAGTCAACAGCCTAGCAAGA -ACGGAAGTCAACAGCCTAGGTTGA -ACGGAAGTCAACAGCCTATCCGAT -ACGGAAGTCAACAGCCTATGGCAT -ACGGAAGTCAACAGCCTACGAGAT -ACGGAAGTCAACAGCCTATACCAC -ACGGAAGTCAACAGCCTACAGAAC -ACGGAAGTCAACAGCCTAGTCTAC -ACGGAAGTCAACAGCCTAACGTAC -ACGGAAGTCAACAGCCTAAGTGAC -ACGGAAGTCAACAGCCTACTGTAG -ACGGAAGTCAACAGCCTACCTAAG -ACGGAAGTCAACAGCCTAGTTCAG -ACGGAAGTCAACAGCCTAGCATAG -ACGGAAGTCAACAGCCTAGACAAG -ACGGAAGTCAACAGCCTAAAGCAG -ACGGAAGTCAACAGCCTACGTCAA -ACGGAAGTCAACAGCCTAGCTGAA -ACGGAAGTCAACAGCCTAAGTACG -ACGGAAGTCAACAGCCTAATCCGA -ACGGAAGTCAACAGCCTAATGGGA -ACGGAAGTCAACAGCCTAGTGCAA -ACGGAAGTCAACAGCCTAGAGGAA -ACGGAAGTCAACAGCCTACAGGTA -ACGGAAGTCAACAGCCTAGACTCT -ACGGAAGTCAACAGCCTAAGTCCT -ACGGAAGTCAACAGCCTATAAGCC -ACGGAAGTCAACAGCCTAATAGCC -ACGGAAGTCAACAGCCTATAACCG -ACGGAAGTCAACAGCCTAATGCCA -ACGGAAGTCAACAGCACTGGAAAC -ACGGAAGTCAACAGCACTAACACC -ACGGAAGTCAACAGCACTATCGAG -ACGGAAGTCAACAGCACTCTCCTT -ACGGAAGTCAACAGCACTCCTGTT -ACGGAAGTCAACAGCACTCGGTTT -ACGGAAGTCAACAGCACTGTGGTT -ACGGAAGTCAACAGCACTGCCTTT -ACGGAAGTCAACAGCACTGGTCTT -ACGGAAGTCAACAGCACTACGCTT -ACGGAAGTCAACAGCACTAGCGTT -ACGGAAGTCAACAGCACTTTCGTC -ACGGAAGTCAACAGCACTTCTCTC -ACGGAAGTCAACAGCACTTGGATC -ACGGAAGTCAACAGCACTCACTTC -ACGGAAGTCAACAGCACTGTACTC -ACGGAAGTCAACAGCACTGATGTC -ACGGAAGTCAACAGCACTACAGTC -ACGGAAGTCAACAGCACTTTGCTG -ACGGAAGTCAACAGCACTTCCATG -ACGGAAGTCAACAGCACTTGTGTG -ACGGAAGTCAACAGCACTCTAGTG -ACGGAAGTCAACAGCACTCATCTG -ACGGAAGTCAACAGCACTGAGTTG -ACGGAAGTCAACAGCACTAGACTG -ACGGAAGTCAACAGCACTTCGGTA -ACGGAAGTCAACAGCACTTGCCTA -ACGGAAGTCAACAGCACTCCACTA -ACGGAAGTCAACAGCACTGGAGTA -ACGGAAGTCAACAGCACTTCGTCT -ACGGAAGTCAACAGCACTTGCACT -ACGGAAGTCAACAGCACTCTGACT -ACGGAAGTCAACAGCACTCAACCT -ACGGAAGTCAACAGCACTGCTACT -ACGGAAGTCAACAGCACTGGATCT -ACGGAAGTCAACAGCACTAAGGCT -ACGGAAGTCAACAGCACTTCAACC -ACGGAAGTCAACAGCACTTGTTCC -ACGGAAGTCAACAGCACTATTCCC -ACGGAAGTCAACAGCACTTTCTCG -ACGGAAGTCAACAGCACTTAGACG -ACGGAAGTCAACAGCACTGTAACG -ACGGAAGTCAACAGCACTACTTCG -ACGGAAGTCAACAGCACTTACGCA -ACGGAAGTCAACAGCACTCTTGCA -ACGGAAGTCAACAGCACTCGAACA -ACGGAAGTCAACAGCACTCAGTCA -ACGGAAGTCAACAGCACTGATCCA -ACGGAAGTCAACAGCACTACGACA -ACGGAAGTCAACAGCACTAGCTCA -ACGGAAGTCAACAGCACTTCACGT -ACGGAAGTCAACAGCACTCGTAGT -ACGGAAGTCAACAGCACTGTCAGT -ACGGAAGTCAACAGCACTGAAGGT -ACGGAAGTCAACAGCACTAACCGT -ACGGAAGTCAACAGCACTTTGTGC -ACGGAAGTCAACAGCACTCTAAGC -ACGGAAGTCAACAGCACTACTAGC -ACGGAAGTCAACAGCACTAGATGC -ACGGAAGTCAACAGCACTTGAAGG -ACGGAAGTCAACAGCACTCAATGG -ACGGAAGTCAACAGCACTATGAGG -ACGGAAGTCAACAGCACTAATGGG -ACGGAAGTCAACAGCACTTCCTGA -ACGGAAGTCAACAGCACTTAGCGA -ACGGAAGTCAACAGCACTCACAGA -ACGGAAGTCAACAGCACTGCAAGA -ACGGAAGTCAACAGCACTGGTTGA -ACGGAAGTCAACAGCACTTCCGAT -ACGGAAGTCAACAGCACTTGGCAT -ACGGAAGTCAACAGCACTCGAGAT -ACGGAAGTCAACAGCACTTACCAC -ACGGAAGTCAACAGCACTCAGAAC -ACGGAAGTCAACAGCACTGTCTAC -ACGGAAGTCAACAGCACTACGTAC -ACGGAAGTCAACAGCACTAGTGAC -ACGGAAGTCAACAGCACTCTGTAG -ACGGAAGTCAACAGCACTCCTAAG -ACGGAAGTCAACAGCACTGTTCAG -ACGGAAGTCAACAGCACTGCATAG -ACGGAAGTCAACAGCACTGACAAG -ACGGAAGTCAACAGCACTAAGCAG -ACGGAAGTCAACAGCACTCGTCAA -ACGGAAGTCAACAGCACTGCTGAA -ACGGAAGTCAACAGCACTAGTACG -ACGGAAGTCAACAGCACTATCCGA -ACGGAAGTCAACAGCACTATGGGA -ACGGAAGTCAACAGCACTGTGCAA -ACGGAAGTCAACAGCACTGAGGAA -ACGGAAGTCAACAGCACTCAGGTA -ACGGAAGTCAACAGCACTGACTCT -ACGGAAGTCAACAGCACTAGTCCT -ACGGAAGTCAACAGCACTTAAGCC -ACGGAAGTCAACAGCACTATAGCC -ACGGAAGTCAACAGCACTTAACCG -ACGGAAGTCAACAGCACTATGCCA -ACGGAAGTCAACTGCAGAGGAAAC -ACGGAAGTCAACTGCAGAAACACC -ACGGAAGTCAACTGCAGAATCGAG -ACGGAAGTCAACTGCAGACTCCTT -ACGGAAGTCAACTGCAGACCTGTT -ACGGAAGTCAACTGCAGACGGTTT -ACGGAAGTCAACTGCAGAGTGGTT -ACGGAAGTCAACTGCAGAGCCTTT -ACGGAAGTCAACTGCAGAGGTCTT -ACGGAAGTCAACTGCAGAACGCTT -ACGGAAGTCAACTGCAGAAGCGTT -ACGGAAGTCAACTGCAGATTCGTC -ACGGAAGTCAACTGCAGATCTCTC -ACGGAAGTCAACTGCAGATGGATC -ACGGAAGTCAACTGCAGACACTTC -ACGGAAGTCAACTGCAGAGTACTC -ACGGAAGTCAACTGCAGAGATGTC -ACGGAAGTCAACTGCAGAACAGTC -ACGGAAGTCAACTGCAGATTGCTG -ACGGAAGTCAACTGCAGATCCATG -ACGGAAGTCAACTGCAGATGTGTG -ACGGAAGTCAACTGCAGACTAGTG -ACGGAAGTCAACTGCAGACATCTG -ACGGAAGTCAACTGCAGAGAGTTG -ACGGAAGTCAACTGCAGAAGACTG -ACGGAAGTCAACTGCAGATCGGTA -ACGGAAGTCAACTGCAGATGCCTA -ACGGAAGTCAACTGCAGACCACTA -ACGGAAGTCAACTGCAGAGGAGTA -ACGGAAGTCAACTGCAGATCGTCT -ACGGAAGTCAACTGCAGATGCACT -ACGGAAGTCAACTGCAGACTGACT -ACGGAAGTCAACTGCAGACAACCT -ACGGAAGTCAACTGCAGAGCTACT -ACGGAAGTCAACTGCAGAGGATCT -ACGGAAGTCAACTGCAGAAAGGCT -ACGGAAGTCAACTGCAGATCAACC -ACGGAAGTCAACTGCAGATGTTCC -ACGGAAGTCAACTGCAGAATTCCC -ACGGAAGTCAACTGCAGATTCTCG -ACGGAAGTCAACTGCAGATAGACG -ACGGAAGTCAACTGCAGAGTAACG -ACGGAAGTCAACTGCAGAACTTCG -ACGGAAGTCAACTGCAGATACGCA -ACGGAAGTCAACTGCAGACTTGCA -ACGGAAGTCAACTGCAGACGAACA -ACGGAAGTCAACTGCAGACAGTCA -ACGGAAGTCAACTGCAGAGATCCA -ACGGAAGTCAACTGCAGAACGACA -ACGGAAGTCAACTGCAGAAGCTCA -ACGGAAGTCAACTGCAGATCACGT -ACGGAAGTCAACTGCAGACGTAGT -ACGGAAGTCAACTGCAGAGTCAGT -ACGGAAGTCAACTGCAGAGAAGGT -ACGGAAGTCAACTGCAGAAACCGT -ACGGAAGTCAACTGCAGATTGTGC -ACGGAAGTCAACTGCAGACTAAGC -ACGGAAGTCAACTGCAGAACTAGC -ACGGAAGTCAACTGCAGAAGATGC -ACGGAAGTCAACTGCAGATGAAGG -ACGGAAGTCAACTGCAGACAATGG -ACGGAAGTCAACTGCAGAATGAGG -ACGGAAGTCAACTGCAGAAATGGG -ACGGAAGTCAACTGCAGATCCTGA -ACGGAAGTCAACTGCAGATAGCGA -ACGGAAGTCAACTGCAGACACAGA -ACGGAAGTCAACTGCAGAGCAAGA -ACGGAAGTCAACTGCAGAGGTTGA -ACGGAAGTCAACTGCAGATCCGAT -ACGGAAGTCAACTGCAGATGGCAT -ACGGAAGTCAACTGCAGACGAGAT -ACGGAAGTCAACTGCAGATACCAC -ACGGAAGTCAACTGCAGACAGAAC -ACGGAAGTCAACTGCAGAGTCTAC -ACGGAAGTCAACTGCAGAACGTAC -ACGGAAGTCAACTGCAGAAGTGAC -ACGGAAGTCAACTGCAGACTGTAG -ACGGAAGTCAACTGCAGACCTAAG -ACGGAAGTCAACTGCAGAGTTCAG -ACGGAAGTCAACTGCAGAGCATAG -ACGGAAGTCAACTGCAGAGACAAG -ACGGAAGTCAACTGCAGAAAGCAG -ACGGAAGTCAACTGCAGACGTCAA -ACGGAAGTCAACTGCAGAGCTGAA -ACGGAAGTCAACTGCAGAAGTACG -ACGGAAGTCAACTGCAGAATCCGA -ACGGAAGTCAACTGCAGAATGGGA -ACGGAAGTCAACTGCAGAGTGCAA -ACGGAAGTCAACTGCAGAGAGGAA -ACGGAAGTCAACTGCAGACAGGTA -ACGGAAGTCAACTGCAGAGACTCT -ACGGAAGTCAACTGCAGAAGTCCT -ACGGAAGTCAACTGCAGATAAGCC -ACGGAAGTCAACTGCAGAATAGCC -ACGGAAGTCAACTGCAGATAACCG -ACGGAAGTCAACTGCAGAATGCCA -ACGGAAGTCAACAGGTGAGGAAAC -ACGGAAGTCAACAGGTGAAACACC -ACGGAAGTCAACAGGTGAATCGAG -ACGGAAGTCAACAGGTGACTCCTT -ACGGAAGTCAACAGGTGACCTGTT -ACGGAAGTCAACAGGTGACGGTTT -ACGGAAGTCAACAGGTGAGTGGTT -ACGGAAGTCAACAGGTGAGCCTTT -ACGGAAGTCAACAGGTGAGGTCTT -ACGGAAGTCAACAGGTGAACGCTT -ACGGAAGTCAACAGGTGAAGCGTT -ACGGAAGTCAACAGGTGATTCGTC -ACGGAAGTCAACAGGTGATCTCTC -ACGGAAGTCAACAGGTGATGGATC -ACGGAAGTCAACAGGTGACACTTC -ACGGAAGTCAACAGGTGAGTACTC -ACGGAAGTCAACAGGTGAGATGTC -ACGGAAGTCAACAGGTGAACAGTC -ACGGAAGTCAACAGGTGATTGCTG -ACGGAAGTCAACAGGTGATCCATG -ACGGAAGTCAACAGGTGATGTGTG -ACGGAAGTCAACAGGTGACTAGTG -ACGGAAGTCAACAGGTGACATCTG -ACGGAAGTCAACAGGTGAGAGTTG -ACGGAAGTCAACAGGTGAAGACTG -ACGGAAGTCAACAGGTGATCGGTA -ACGGAAGTCAACAGGTGATGCCTA -ACGGAAGTCAACAGGTGACCACTA -ACGGAAGTCAACAGGTGAGGAGTA -ACGGAAGTCAACAGGTGATCGTCT -ACGGAAGTCAACAGGTGATGCACT -ACGGAAGTCAACAGGTGACTGACT -ACGGAAGTCAACAGGTGACAACCT -ACGGAAGTCAACAGGTGAGCTACT -ACGGAAGTCAACAGGTGAGGATCT -ACGGAAGTCAACAGGTGAAAGGCT -ACGGAAGTCAACAGGTGATCAACC -ACGGAAGTCAACAGGTGATGTTCC -ACGGAAGTCAACAGGTGAATTCCC -ACGGAAGTCAACAGGTGATTCTCG -ACGGAAGTCAACAGGTGATAGACG -ACGGAAGTCAACAGGTGAGTAACG -ACGGAAGTCAACAGGTGAACTTCG -ACGGAAGTCAACAGGTGATACGCA -ACGGAAGTCAACAGGTGACTTGCA -ACGGAAGTCAACAGGTGACGAACA -ACGGAAGTCAACAGGTGACAGTCA -ACGGAAGTCAACAGGTGAGATCCA -ACGGAAGTCAACAGGTGAACGACA -ACGGAAGTCAACAGGTGAAGCTCA -ACGGAAGTCAACAGGTGATCACGT -ACGGAAGTCAACAGGTGACGTAGT -ACGGAAGTCAACAGGTGAGTCAGT -ACGGAAGTCAACAGGTGAGAAGGT -ACGGAAGTCAACAGGTGAAACCGT -ACGGAAGTCAACAGGTGATTGTGC -ACGGAAGTCAACAGGTGACTAAGC -ACGGAAGTCAACAGGTGAACTAGC -ACGGAAGTCAACAGGTGAAGATGC -ACGGAAGTCAACAGGTGATGAAGG -ACGGAAGTCAACAGGTGACAATGG -ACGGAAGTCAACAGGTGAATGAGG -ACGGAAGTCAACAGGTGAAATGGG -ACGGAAGTCAACAGGTGATCCTGA -ACGGAAGTCAACAGGTGATAGCGA -ACGGAAGTCAACAGGTGACACAGA -ACGGAAGTCAACAGGTGAGCAAGA -ACGGAAGTCAACAGGTGAGGTTGA -ACGGAAGTCAACAGGTGATCCGAT -ACGGAAGTCAACAGGTGATGGCAT -ACGGAAGTCAACAGGTGACGAGAT -ACGGAAGTCAACAGGTGATACCAC -ACGGAAGTCAACAGGTGACAGAAC -ACGGAAGTCAACAGGTGAGTCTAC -ACGGAAGTCAACAGGTGAACGTAC -ACGGAAGTCAACAGGTGAAGTGAC -ACGGAAGTCAACAGGTGACTGTAG -ACGGAAGTCAACAGGTGACCTAAG -ACGGAAGTCAACAGGTGAGTTCAG -ACGGAAGTCAACAGGTGAGCATAG -ACGGAAGTCAACAGGTGAGACAAG -ACGGAAGTCAACAGGTGAAAGCAG -ACGGAAGTCAACAGGTGACGTCAA -ACGGAAGTCAACAGGTGAGCTGAA -ACGGAAGTCAACAGGTGAAGTACG -ACGGAAGTCAACAGGTGAATCCGA -ACGGAAGTCAACAGGTGAATGGGA -ACGGAAGTCAACAGGTGAGTGCAA -ACGGAAGTCAACAGGTGAGAGGAA -ACGGAAGTCAACAGGTGACAGGTA -ACGGAAGTCAACAGGTGAGACTCT -ACGGAAGTCAACAGGTGAAGTCCT -ACGGAAGTCAACAGGTGATAAGCC -ACGGAAGTCAACAGGTGAATAGCC -ACGGAAGTCAACAGGTGATAACCG -ACGGAAGTCAACAGGTGAATGCCA -ACGGAAGTCAACTGGCAAGGAAAC -ACGGAAGTCAACTGGCAAAACACC -ACGGAAGTCAACTGGCAAATCGAG -ACGGAAGTCAACTGGCAACTCCTT -ACGGAAGTCAACTGGCAACCTGTT -ACGGAAGTCAACTGGCAACGGTTT -ACGGAAGTCAACTGGCAAGTGGTT -ACGGAAGTCAACTGGCAAGCCTTT -ACGGAAGTCAACTGGCAAGGTCTT -ACGGAAGTCAACTGGCAAACGCTT -ACGGAAGTCAACTGGCAAAGCGTT -ACGGAAGTCAACTGGCAATTCGTC -ACGGAAGTCAACTGGCAATCTCTC -ACGGAAGTCAACTGGCAATGGATC -ACGGAAGTCAACTGGCAACACTTC -ACGGAAGTCAACTGGCAAGTACTC -ACGGAAGTCAACTGGCAAGATGTC -ACGGAAGTCAACTGGCAAACAGTC -ACGGAAGTCAACTGGCAATTGCTG -ACGGAAGTCAACTGGCAATCCATG -ACGGAAGTCAACTGGCAATGTGTG -ACGGAAGTCAACTGGCAACTAGTG -ACGGAAGTCAACTGGCAACATCTG -ACGGAAGTCAACTGGCAAGAGTTG -ACGGAAGTCAACTGGCAAAGACTG -ACGGAAGTCAACTGGCAATCGGTA -ACGGAAGTCAACTGGCAATGCCTA -ACGGAAGTCAACTGGCAACCACTA -ACGGAAGTCAACTGGCAAGGAGTA -ACGGAAGTCAACTGGCAATCGTCT -ACGGAAGTCAACTGGCAATGCACT -ACGGAAGTCAACTGGCAACTGACT -ACGGAAGTCAACTGGCAACAACCT -ACGGAAGTCAACTGGCAAGCTACT -ACGGAAGTCAACTGGCAAGGATCT -ACGGAAGTCAACTGGCAAAAGGCT -ACGGAAGTCAACTGGCAATCAACC -ACGGAAGTCAACTGGCAATGTTCC -ACGGAAGTCAACTGGCAAATTCCC -ACGGAAGTCAACTGGCAATTCTCG -ACGGAAGTCAACTGGCAATAGACG -ACGGAAGTCAACTGGCAAGTAACG -ACGGAAGTCAACTGGCAAACTTCG -ACGGAAGTCAACTGGCAATACGCA -ACGGAAGTCAACTGGCAACTTGCA -ACGGAAGTCAACTGGCAACGAACA -ACGGAAGTCAACTGGCAACAGTCA -ACGGAAGTCAACTGGCAAGATCCA -ACGGAAGTCAACTGGCAAACGACA -ACGGAAGTCAACTGGCAAAGCTCA -ACGGAAGTCAACTGGCAATCACGT -ACGGAAGTCAACTGGCAACGTAGT -ACGGAAGTCAACTGGCAAGTCAGT -ACGGAAGTCAACTGGCAAGAAGGT -ACGGAAGTCAACTGGCAAAACCGT -ACGGAAGTCAACTGGCAATTGTGC -ACGGAAGTCAACTGGCAACTAAGC -ACGGAAGTCAACTGGCAAACTAGC -ACGGAAGTCAACTGGCAAAGATGC -ACGGAAGTCAACTGGCAATGAAGG -ACGGAAGTCAACTGGCAACAATGG -ACGGAAGTCAACTGGCAAATGAGG -ACGGAAGTCAACTGGCAAAATGGG -ACGGAAGTCAACTGGCAATCCTGA -ACGGAAGTCAACTGGCAATAGCGA -ACGGAAGTCAACTGGCAACACAGA -ACGGAAGTCAACTGGCAAGCAAGA -ACGGAAGTCAACTGGCAAGGTTGA -ACGGAAGTCAACTGGCAATCCGAT -ACGGAAGTCAACTGGCAATGGCAT -ACGGAAGTCAACTGGCAACGAGAT -ACGGAAGTCAACTGGCAATACCAC -ACGGAAGTCAACTGGCAACAGAAC -ACGGAAGTCAACTGGCAAGTCTAC -ACGGAAGTCAACTGGCAAACGTAC -ACGGAAGTCAACTGGCAAAGTGAC -ACGGAAGTCAACTGGCAACTGTAG -ACGGAAGTCAACTGGCAACCTAAG -ACGGAAGTCAACTGGCAAGTTCAG -ACGGAAGTCAACTGGCAAGCATAG -ACGGAAGTCAACTGGCAAGACAAG -ACGGAAGTCAACTGGCAAAAGCAG -ACGGAAGTCAACTGGCAACGTCAA -ACGGAAGTCAACTGGCAAGCTGAA -ACGGAAGTCAACTGGCAAAGTACG -ACGGAAGTCAACTGGCAAATCCGA -ACGGAAGTCAACTGGCAAATGGGA -ACGGAAGTCAACTGGCAAGTGCAA -ACGGAAGTCAACTGGCAAGAGGAA -ACGGAAGTCAACTGGCAACAGGTA -ACGGAAGTCAACTGGCAAGACTCT -ACGGAAGTCAACTGGCAAAGTCCT -ACGGAAGTCAACTGGCAATAAGCC -ACGGAAGTCAACTGGCAAATAGCC -ACGGAAGTCAACTGGCAATAACCG -ACGGAAGTCAACTGGCAAATGCCA -ACGGAAGTCAACAGGATGGGAAAC -ACGGAAGTCAACAGGATGAACACC -ACGGAAGTCAACAGGATGATCGAG -ACGGAAGTCAACAGGATGCTCCTT -ACGGAAGTCAACAGGATGCCTGTT -ACGGAAGTCAACAGGATGCGGTTT -ACGGAAGTCAACAGGATGGTGGTT -ACGGAAGTCAACAGGATGGCCTTT -ACGGAAGTCAACAGGATGGGTCTT -ACGGAAGTCAACAGGATGACGCTT -ACGGAAGTCAACAGGATGAGCGTT -ACGGAAGTCAACAGGATGTTCGTC -ACGGAAGTCAACAGGATGTCTCTC -ACGGAAGTCAACAGGATGTGGATC -ACGGAAGTCAACAGGATGCACTTC -ACGGAAGTCAACAGGATGGTACTC -ACGGAAGTCAACAGGATGGATGTC -ACGGAAGTCAACAGGATGACAGTC -ACGGAAGTCAACAGGATGTTGCTG -ACGGAAGTCAACAGGATGTCCATG -ACGGAAGTCAACAGGATGTGTGTG -ACGGAAGTCAACAGGATGCTAGTG -ACGGAAGTCAACAGGATGCATCTG -ACGGAAGTCAACAGGATGGAGTTG -ACGGAAGTCAACAGGATGAGACTG -ACGGAAGTCAACAGGATGTCGGTA -ACGGAAGTCAACAGGATGTGCCTA -ACGGAAGTCAACAGGATGCCACTA -ACGGAAGTCAACAGGATGGGAGTA -ACGGAAGTCAACAGGATGTCGTCT -ACGGAAGTCAACAGGATGTGCACT -ACGGAAGTCAACAGGATGCTGACT -ACGGAAGTCAACAGGATGCAACCT -ACGGAAGTCAACAGGATGGCTACT -ACGGAAGTCAACAGGATGGGATCT -ACGGAAGTCAACAGGATGAAGGCT -ACGGAAGTCAACAGGATGTCAACC -ACGGAAGTCAACAGGATGTGTTCC -ACGGAAGTCAACAGGATGATTCCC -ACGGAAGTCAACAGGATGTTCTCG -ACGGAAGTCAACAGGATGTAGACG -ACGGAAGTCAACAGGATGGTAACG -ACGGAAGTCAACAGGATGACTTCG -ACGGAAGTCAACAGGATGTACGCA -ACGGAAGTCAACAGGATGCTTGCA -ACGGAAGTCAACAGGATGCGAACA -ACGGAAGTCAACAGGATGCAGTCA -ACGGAAGTCAACAGGATGGATCCA -ACGGAAGTCAACAGGATGACGACA -ACGGAAGTCAACAGGATGAGCTCA -ACGGAAGTCAACAGGATGTCACGT -ACGGAAGTCAACAGGATGCGTAGT -ACGGAAGTCAACAGGATGGTCAGT -ACGGAAGTCAACAGGATGGAAGGT -ACGGAAGTCAACAGGATGAACCGT -ACGGAAGTCAACAGGATGTTGTGC -ACGGAAGTCAACAGGATGCTAAGC -ACGGAAGTCAACAGGATGACTAGC -ACGGAAGTCAACAGGATGAGATGC -ACGGAAGTCAACAGGATGTGAAGG -ACGGAAGTCAACAGGATGCAATGG -ACGGAAGTCAACAGGATGATGAGG -ACGGAAGTCAACAGGATGAATGGG -ACGGAAGTCAACAGGATGTCCTGA -ACGGAAGTCAACAGGATGTAGCGA -ACGGAAGTCAACAGGATGCACAGA -ACGGAAGTCAACAGGATGGCAAGA -ACGGAAGTCAACAGGATGGGTTGA -ACGGAAGTCAACAGGATGTCCGAT -ACGGAAGTCAACAGGATGTGGCAT -ACGGAAGTCAACAGGATGCGAGAT -ACGGAAGTCAACAGGATGTACCAC -ACGGAAGTCAACAGGATGCAGAAC -ACGGAAGTCAACAGGATGGTCTAC -ACGGAAGTCAACAGGATGACGTAC -ACGGAAGTCAACAGGATGAGTGAC -ACGGAAGTCAACAGGATGCTGTAG -ACGGAAGTCAACAGGATGCCTAAG -ACGGAAGTCAACAGGATGGTTCAG -ACGGAAGTCAACAGGATGGCATAG -ACGGAAGTCAACAGGATGGACAAG -ACGGAAGTCAACAGGATGAAGCAG -ACGGAAGTCAACAGGATGCGTCAA -ACGGAAGTCAACAGGATGGCTGAA -ACGGAAGTCAACAGGATGAGTACG -ACGGAAGTCAACAGGATGATCCGA -ACGGAAGTCAACAGGATGATGGGA -ACGGAAGTCAACAGGATGGTGCAA -ACGGAAGTCAACAGGATGGAGGAA -ACGGAAGTCAACAGGATGCAGGTA -ACGGAAGTCAACAGGATGGACTCT -ACGGAAGTCAACAGGATGAGTCCT -ACGGAAGTCAACAGGATGTAAGCC -ACGGAAGTCAACAGGATGATAGCC -ACGGAAGTCAACAGGATGTAACCG -ACGGAAGTCAACAGGATGATGCCA -ACGGAAGTCAACGGGAATGGAAAC -ACGGAAGTCAACGGGAATAACACC -ACGGAAGTCAACGGGAATATCGAG -ACGGAAGTCAACGGGAATCTCCTT -ACGGAAGTCAACGGGAATCCTGTT -ACGGAAGTCAACGGGAATCGGTTT -ACGGAAGTCAACGGGAATGTGGTT -ACGGAAGTCAACGGGAATGCCTTT -ACGGAAGTCAACGGGAATGGTCTT -ACGGAAGTCAACGGGAATACGCTT -ACGGAAGTCAACGGGAATAGCGTT -ACGGAAGTCAACGGGAATTTCGTC -ACGGAAGTCAACGGGAATTCTCTC -ACGGAAGTCAACGGGAATTGGATC -ACGGAAGTCAACGGGAATCACTTC -ACGGAAGTCAACGGGAATGTACTC -ACGGAAGTCAACGGGAATGATGTC -ACGGAAGTCAACGGGAATACAGTC -ACGGAAGTCAACGGGAATTTGCTG -ACGGAAGTCAACGGGAATTCCATG -ACGGAAGTCAACGGGAATTGTGTG -ACGGAAGTCAACGGGAATCTAGTG -ACGGAAGTCAACGGGAATCATCTG -ACGGAAGTCAACGGGAATGAGTTG -ACGGAAGTCAACGGGAATAGACTG -ACGGAAGTCAACGGGAATTCGGTA -ACGGAAGTCAACGGGAATTGCCTA -ACGGAAGTCAACGGGAATCCACTA -ACGGAAGTCAACGGGAATGGAGTA -ACGGAAGTCAACGGGAATTCGTCT -ACGGAAGTCAACGGGAATTGCACT -ACGGAAGTCAACGGGAATCTGACT -ACGGAAGTCAACGGGAATCAACCT -ACGGAAGTCAACGGGAATGCTACT -ACGGAAGTCAACGGGAATGGATCT -ACGGAAGTCAACGGGAATAAGGCT -ACGGAAGTCAACGGGAATTCAACC -ACGGAAGTCAACGGGAATTGTTCC -ACGGAAGTCAACGGGAATATTCCC -ACGGAAGTCAACGGGAATTTCTCG -ACGGAAGTCAACGGGAATTAGACG -ACGGAAGTCAACGGGAATGTAACG -ACGGAAGTCAACGGGAATACTTCG -ACGGAAGTCAACGGGAATTACGCA -ACGGAAGTCAACGGGAATCTTGCA -ACGGAAGTCAACGGGAATCGAACA -ACGGAAGTCAACGGGAATCAGTCA -ACGGAAGTCAACGGGAATGATCCA -ACGGAAGTCAACGGGAATACGACA -ACGGAAGTCAACGGGAATAGCTCA -ACGGAAGTCAACGGGAATTCACGT -ACGGAAGTCAACGGGAATCGTAGT -ACGGAAGTCAACGGGAATGTCAGT -ACGGAAGTCAACGGGAATGAAGGT -ACGGAAGTCAACGGGAATAACCGT -ACGGAAGTCAACGGGAATTTGTGC -ACGGAAGTCAACGGGAATCTAAGC -ACGGAAGTCAACGGGAATACTAGC -ACGGAAGTCAACGGGAATAGATGC -ACGGAAGTCAACGGGAATTGAAGG -ACGGAAGTCAACGGGAATCAATGG -ACGGAAGTCAACGGGAATATGAGG -ACGGAAGTCAACGGGAATAATGGG -ACGGAAGTCAACGGGAATTCCTGA -ACGGAAGTCAACGGGAATTAGCGA -ACGGAAGTCAACGGGAATCACAGA -ACGGAAGTCAACGGGAATGCAAGA -ACGGAAGTCAACGGGAATGGTTGA -ACGGAAGTCAACGGGAATTCCGAT -ACGGAAGTCAACGGGAATTGGCAT -ACGGAAGTCAACGGGAATCGAGAT -ACGGAAGTCAACGGGAATTACCAC -ACGGAAGTCAACGGGAATCAGAAC -ACGGAAGTCAACGGGAATGTCTAC -ACGGAAGTCAACGGGAATACGTAC -ACGGAAGTCAACGGGAATAGTGAC -ACGGAAGTCAACGGGAATCTGTAG -ACGGAAGTCAACGGGAATCCTAAG -ACGGAAGTCAACGGGAATGTTCAG -ACGGAAGTCAACGGGAATGCATAG -ACGGAAGTCAACGGGAATGACAAG -ACGGAAGTCAACGGGAATAAGCAG -ACGGAAGTCAACGGGAATCGTCAA -ACGGAAGTCAACGGGAATGCTGAA -ACGGAAGTCAACGGGAATAGTACG -ACGGAAGTCAACGGGAATATCCGA -ACGGAAGTCAACGGGAATATGGGA -ACGGAAGTCAACGGGAATGTGCAA -ACGGAAGTCAACGGGAATGAGGAA -ACGGAAGTCAACGGGAATCAGGTA -ACGGAAGTCAACGGGAATGACTCT -ACGGAAGTCAACGGGAATAGTCCT -ACGGAAGTCAACGGGAATTAAGCC -ACGGAAGTCAACGGGAATATAGCC -ACGGAAGTCAACGGGAATTAACCG -ACGGAAGTCAACGGGAATATGCCA -ACGGAAGTCAACTGATCCGGAAAC -ACGGAAGTCAACTGATCCAACACC -ACGGAAGTCAACTGATCCATCGAG -ACGGAAGTCAACTGATCCCTCCTT -ACGGAAGTCAACTGATCCCCTGTT -ACGGAAGTCAACTGATCCCGGTTT -ACGGAAGTCAACTGATCCGTGGTT -ACGGAAGTCAACTGATCCGCCTTT -ACGGAAGTCAACTGATCCGGTCTT -ACGGAAGTCAACTGATCCACGCTT -ACGGAAGTCAACTGATCCAGCGTT -ACGGAAGTCAACTGATCCTTCGTC -ACGGAAGTCAACTGATCCTCTCTC -ACGGAAGTCAACTGATCCTGGATC -ACGGAAGTCAACTGATCCCACTTC -ACGGAAGTCAACTGATCCGTACTC -ACGGAAGTCAACTGATCCGATGTC -ACGGAAGTCAACTGATCCACAGTC -ACGGAAGTCAACTGATCCTTGCTG -ACGGAAGTCAACTGATCCTCCATG -ACGGAAGTCAACTGATCCTGTGTG -ACGGAAGTCAACTGATCCCTAGTG -ACGGAAGTCAACTGATCCCATCTG -ACGGAAGTCAACTGATCCGAGTTG -ACGGAAGTCAACTGATCCAGACTG -ACGGAAGTCAACTGATCCTCGGTA -ACGGAAGTCAACTGATCCTGCCTA -ACGGAAGTCAACTGATCCCCACTA -ACGGAAGTCAACTGATCCGGAGTA -ACGGAAGTCAACTGATCCTCGTCT -ACGGAAGTCAACTGATCCTGCACT -ACGGAAGTCAACTGATCCCTGACT -ACGGAAGTCAACTGATCCCAACCT -ACGGAAGTCAACTGATCCGCTACT -ACGGAAGTCAACTGATCCGGATCT -ACGGAAGTCAACTGATCCAAGGCT -ACGGAAGTCAACTGATCCTCAACC -ACGGAAGTCAACTGATCCTGTTCC -ACGGAAGTCAACTGATCCATTCCC -ACGGAAGTCAACTGATCCTTCTCG -ACGGAAGTCAACTGATCCTAGACG -ACGGAAGTCAACTGATCCGTAACG -ACGGAAGTCAACTGATCCACTTCG -ACGGAAGTCAACTGATCCTACGCA -ACGGAAGTCAACTGATCCCTTGCA -ACGGAAGTCAACTGATCCCGAACA -ACGGAAGTCAACTGATCCCAGTCA -ACGGAAGTCAACTGATCCGATCCA -ACGGAAGTCAACTGATCCACGACA -ACGGAAGTCAACTGATCCAGCTCA -ACGGAAGTCAACTGATCCTCACGT -ACGGAAGTCAACTGATCCCGTAGT -ACGGAAGTCAACTGATCCGTCAGT -ACGGAAGTCAACTGATCCGAAGGT -ACGGAAGTCAACTGATCCAACCGT -ACGGAAGTCAACTGATCCTTGTGC -ACGGAAGTCAACTGATCCCTAAGC -ACGGAAGTCAACTGATCCACTAGC -ACGGAAGTCAACTGATCCAGATGC -ACGGAAGTCAACTGATCCTGAAGG -ACGGAAGTCAACTGATCCCAATGG -ACGGAAGTCAACTGATCCATGAGG -ACGGAAGTCAACTGATCCAATGGG -ACGGAAGTCAACTGATCCTCCTGA -ACGGAAGTCAACTGATCCTAGCGA -ACGGAAGTCAACTGATCCCACAGA -ACGGAAGTCAACTGATCCGCAAGA -ACGGAAGTCAACTGATCCGGTTGA -ACGGAAGTCAACTGATCCTCCGAT -ACGGAAGTCAACTGATCCTGGCAT -ACGGAAGTCAACTGATCCCGAGAT -ACGGAAGTCAACTGATCCTACCAC -ACGGAAGTCAACTGATCCCAGAAC -ACGGAAGTCAACTGATCCGTCTAC -ACGGAAGTCAACTGATCCACGTAC -ACGGAAGTCAACTGATCCAGTGAC -ACGGAAGTCAACTGATCCCTGTAG -ACGGAAGTCAACTGATCCCCTAAG -ACGGAAGTCAACTGATCCGTTCAG -ACGGAAGTCAACTGATCCGCATAG -ACGGAAGTCAACTGATCCGACAAG -ACGGAAGTCAACTGATCCAAGCAG -ACGGAAGTCAACTGATCCCGTCAA -ACGGAAGTCAACTGATCCGCTGAA -ACGGAAGTCAACTGATCCAGTACG -ACGGAAGTCAACTGATCCATCCGA -ACGGAAGTCAACTGATCCATGGGA -ACGGAAGTCAACTGATCCGTGCAA -ACGGAAGTCAACTGATCCGAGGAA -ACGGAAGTCAACTGATCCCAGGTA -ACGGAAGTCAACTGATCCGACTCT -ACGGAAGTCAACTGATCCAGTCCT -ACGGAAGTCAACTGATCCTAAGCC -ACGGAAGTCAACTGATCCATAGCC -ACGGAAGTCAACTGATCCTAACCG -ACGGAAGTCAACTGATCCATGCCA -ACGGAAGTCAACCGATAGGGAAAC -ACGGAAGTCAACCGATAGAACACC -ACGGAAGTCAACCGATAGATCGAG -ACGGAAGTCAACCGATAGCTCCTT -ACGGAAGTCAACCGATAGCCTGTT -ACGGAAGTCAACCGATAGCGGTTT -ACGGAAGTCAACCGATAGGTGGTT -ACGGAAGTCAACCGATAGGCCTTT -ACGGAAGTCAACCGATAGGGTCTT -ACGGAAGTCAACCGATAGACGCTT -ACGGAAGTCAACCGATAGAGCGTT -ACGGAAGTCAACCGATAGTTCGTC -ACGGAAGTCAACCGATAGTCTCTC -ACGGAAGTCAACCGATAGTGGATC -ACGGAAGTCAACCGATAGCACTTC -ACGGAAGTCAACCGATAGGTACTC -ACGGAAGTCAACCGATAGGATGTC -ACGGAAGTCAACCGATAGACAGTC -ACGGAAGTCAACCGATAGTTGCTG -ACGGAAGTCAACCGATAGTCCATG -ACGGAAGTCAACCGATAGTGTGTG -ACGGAAGTCAACCGATAGCTAGTG -ACGGAAGTCAACCGATAGCATCTG -ACGGAAGTCAACCGATAGGAGTTG -ACGGAAGTCAACCGATAGAGACTG -ACGGAAGTCAACCGATAGTCGGTA -ACGGAAGTCAACCGATAGTGCCTA -ACGGAAGTCAACCGATAGCCACTA -ACGGAAGTCAACCGATAGGGAGTA -ACGGAAGTCAACCGATAGTCGTCT -ACGGAAGTCAACCGATAGTGCACT -ACGGAAGTCAACCGATAGCTGACT -ACGGAAGTCAACCGATAGCAACCT -ACGGAAGTCAACCGATAGGCTACT -ACGGAAGTCAACCGATAGGGATCT -ACGGAAGTCAACCGATAGAAGGCT -ACGGAAGTCAACCGATAGTCAACC -ACGGAAGTCAACCGATAGTGTTCC -ACGGAAGTCAACCGATAGATTCCC -ACGGAAGTCAACCGATAGTTCTCG -ACGGAAGTCAACCGATAGTAGACG -ACGGAAGTCAACCGATAGGTAACG -ACGGAAGTCAACCGATAGACTTCG -ACGGAAGTCAACCGATAGTACGCA -ACGGAAGTCAACCGATAGCTTGCA -ACGGAAGTCAACCGATAGCGAACA -ACGGAAGTCAACCGATAGCAGTCA -ACGGAAGTCAACCGATAGGATCCA -ACGGAAGTCAACCGATAGACGACA -ACGGAAGTCAACCGATAGAGCTCA -ACGGAAGTCAACCGATAGTCACGT -ACGGAAGTCAACCGATAGCGTAGT -ACGGAAGTCAACCGATAGGTCAGT -ACGGAAGTCAACCGATAGGAAGGT -ACGGAAGTCAACCGATAGAACCGT -ACGGAAGTCAACCGATAGTTGTGC -ACGGAAGTCAACCGATAGCTAAGC -ACGGAAGTCAACCGATAGACTAGC -ACGGAAGTCAACCGATAGAGATGC -ACGGAAGTCAACCGATAGTGAAGG -ACGGAAGTCAACCGATAGCAATGG -ACGGAAGTCAACCGATAGATGAGG -ACGGAAGTCAACCGATAGAATGGG -ACGGAAGTCAACCGATAGTCCTGA -ACGGAAGTCAACCGATAGTAGCGA -ACGGAAGTCAACCGATAGCACAGA -ACGGAAGTCAACCGATAGGCAAGA -ACGGAAGTCAACCGATAGGGTTGA -ACGGAAGTCAACCGATAGTCCGAT -ACGGAAGTCAACCGATAGTGGCAT -ACGGAAGTCAACCGATAGCGAGAT -ACGGAAGTCAACCGATAGTACCAC -ACGGAAGTCAACCGATAGCAGAAC -ACGGAAGTCAACCGATAGGTCTAC -ACGGAAGTCAACCGATAGACGTAC -ACGGAAGTCAACCGATAGAGTGAC -ACGGAAGTCAACCGATAGCTGTAG -ACGGAAGTCAACCGATAGCCTAAG -ACGGAAGTCAACCGATAGGTTCAG -ACGGAAGTCAACCGATAGGCATAG -ACGGAAGTCAACCGATAGGACAAG -ACGGAAGTCAACCGATAGAAGCAG -ACGGAAGTCAACCGATAGCGTCAA -ACGGAAGTCAACCGATAGGCTGAA -ACGGAAGTCAACCGATAGAGTACG -ACGGAAGTCAACCGATAGATCCGA -ACGGAAGTCAACCGATAGATGGGA -ACGGAAGTCAACCGATAGGTGCAA -ACGGAAGTCAACCGATAGGAGGAA -ACGGAAGTCAACCGATAGCAGGTA -ACGGAAGTCAACCGATAGGACTCT -ACGGAAGTCAACCGATAGAGTCCT -ACGGAAGTCAACCGATAGTAAGCC -ACGGAAGTCAACCGATAGATAGCC -ACGGAAGTCAACCGATAGTAACCG -ACGGAAGTCAACCGATAGATGCCA -ACGGAAGTCAACAGACACGGAAAC -ACGGAAGTCAACAGACACAACACC -ACGGAAGTCAACAGACACATCGAG -ACGGAAGTCAACAGACACCTCCTT -ACGGAAGTCAACAGACACCCTGTT -ACGGAAGTCAACAGACACCGGTTT -ACGGAAGTCAACAGACACGTGGTT -ACGGAAGTCAACAGACACGCCTTT -ACGGAAGTCAACAGACACGGTCTT -ACGGAAGTCAACAGACACACGCTT -ACGGAAGTCAACAGACACAGCGTT -ACGGAAGTCAACAGACACTTCGTC -ACGGAAGTCAACAGACACTCTCTC -ACGGAAGTCAACAGACACTGGATC -ACGGAAGTCAACAGACACCACTTC -ACGGAAGTCAACAGACACGTACTC -ACGGAAGTCAACAGACACGATGTC -ACGGAAGTCAACAGACACACAGTC -ACGGAAGTCAACAGACACTTGCTG -ACGGAAGTCAACAGACACTCCATG -ACGGAAGTCAACAGACACTGTGTG -ACGGAAGTCAACAGACACCTAGTG -ACGGAAGTCAACAGACACCATCTG -ACGGAAGTCAACAGACACGAGTTG -ACGGAAGTCAACAGACACAGACTG -ACGGAAGTCAACAGACACTCGGTA -ACGGAAGTCAACAGACACTGCCTA -ACGGAAGTCAACAGACACCCACTA -ACGGAAGTCAACAGACACGGAGTA -ACGGAAGTCAACAGACACTCGTCT -ACGGAAGTCAACAGACACTGCACT -ACGGAAGTCAACAGACACCTGACT -ACGGAAGTCAACAGACACCAACCT -ACGGAAGTCAACAGACACGCTACT -ACGGAAGTCAACAGACACGGATCT -ACGGAAGTCAACAGACACAAGGCT -ACGGAAGTCAACAGACACTCAACC -ACGGAAGTCAACAGACACTGTTCC -ACGGAAGTCAACAGACACATTCCC -ACGGAAGTCAACAGACACTTCTCG -ACGGAAGTCAACAGACACTAGACG -ACGGAAGTCAACAGACACGTAACG -ACGGAAGTCAACAGACACACTTCG -ACGGAAGTCAACAGACACTACGCA -ACGGAAGTCAACAGACACCTTGCA -ACGGAAGTCAACAGACACCGAACA -ACGGAAGTCAACAGACACCAGTCA -ACGGAAGTCAACAGACACGATCCA -ACGGAAGTCAACAGACACACGACA -ACGGAAGTCAACAGACACAGCTCA -ACGGAAGTCAACAGACACTCACGT -ACGGAAGTCAACAGACACCGTAGT -ACGGAAGTCAACAGACACGTCAGT -ACGGAAGTCAACAGACACGAAGGT -ACGGAAGTCAACAGACACAACCGT -ACGGAAGTCAACAGACACTTGTGC -ACGGAAGTCAACAGACACCTAAGC -ACGGAAGTCAACAGACACACTAGC -ACGGAAGTCAACAGACACAGATGC -ACGGAAGTCAACAGACACTGAAGG -ACGGAAGTCAACAGACACCAATGG -ACGGAAGTCAACAGACACATGAGG -ACGGAAGTCAACAGACACAATGGG -ACGGAAGTCAACAGACACTCCTGA -ACGGAAGTCAACAGACACTAGCGA -ACGGAAGTCAACAGACACCACAGA -ACGGAAGTCAACAGACACGCAAGA -ACGGAAGTCAACAGACACGGTTGA -ACGGAAGTCAACAGACACTCCGAT -ACGGAAGTCAACAGACACTGGCAT -ACGGAAGTCAACAGACACCGAGAT -ACGGAAGTCAACAGACACTACCAC -ACGGAAGTCAACAGACACCAGAAC -ACGGAAGTCAACAGACACGTCTAC -ACGGAAGTCAACAGACACACGTAC -ACGGAAGTCAACAGACACAGTGAC -ACGGAAGTCAACAGACACCTGTAG -ACGGAAGTCAACAGACACCCTAAG -ACGGAAGTCAACAGACACGTTCAG -ACGGAAGTCAACAGACACGCATAG -ACGGAAGTCAACAGACACGACAAG -ACGGAAGTCAACAGACACAAGCAG -ACGGAAGTCAACAGACACCGTCAA -ACGGAAGTCAACAGACACGCTGAA -ACGGAAGTCAACAGACACAGTACG -ACGGAAGTCAACAGACACATCCGA -ACGGAAGTCAACAGACACATGGGA -ACGGAAGTCAACAGACACGTGCAA -ACGGAAGTCAACAGACACGAGGAA -ACGGAAGTCAACAGACACCAGGTA -ACGGAAGTCAACAGACACGACTCT -ACGGAAGTCAACAGACACAGTCCT -ACGGAAGTCAACAGACACTAAGCC -ACGGAAGTCAACAGACACATAGCC -ACGGAAGTCAACAGACACTAACCG -ACGGAAGTCAACAGACACATGCCA -ACGGAAGTCAACAGAGCAGGAAAC -ACGGAAGTCAACAGAGCAAACACC -ACGGAAGTCAACAGAGCAATCGAG -ACGGAAGTCAACAGAGCACTCCTT -ACGGAAGTCAACAGAGCACCTGTT -ACGGAAGTCAACAGAGCACGGTTT -ACGGAAGTCAACAGAGCAGTGGTT -ACGGAAGTCAACAGAGCAGCCTTT -ACGGAAGTCAACAGAGCAGGTCTT -ACGGAAGTCAACAGAGCAACGCTT -ACGGAAGTCAACAGAGCAAGCGTT -ACGGAAGTCAACAGAGCATTCGTC -ACGGAAGTCAACAGAGCATCTCTC -ACGGAAGTCAACAGAGCATGGATC -ACGGAAGTCAACAGAGCACACTTC -ACGGAAGTCAACAGAGCAGTACTC -ACGGAAGTCAACAGAGCAGATGTC -ACGGAAGTCAACAGAGCAACAGTC -ACGGAAGTCAACAGAGCATTGCTG -ACGGAAGTCAACAGAGCATCCATG -ACGGAAGTCAACAGAGCATGTGTG -ACGGAAGTCAACAGAGCACTAGTG -ACGGAAGTCAACAGAGCACATCTG -ACGGAAGTCAACAGAGCAGAGTTG -ACGGAAGTCAACAGAGCAAGACTG -ACGGAAGTCAACAGAGCATCGGTA -ACGGAAGTCAACAGAGCATGCCTA -ACGGAAGTCAACAGAGCACCACTA -ACGGAAGTCAACAGAGCAGGAGTA -ACGGAAGTCAACAGAGCATCGTCT -ACGGAAGTCAACAGAGCATGCACT -ACGGAAGTCAACAGAGCACTGACT -ACGGAAGTCAACAGAGCACAACCT -ACGGAAGTCAACAGAGCAGCTACT -ACGGAAGTCAACAGAGCAGGATCT -ACGGAAGTCAACAGAGCAAAGGCT -ACGGAAGTCAACAGAGCATCAACC -ACGGAAGTCAACAGAGCATGTTCC -ACGGAAGTCAACAGAGCAATTCCC -ACGGAAGTCAACAGAGCATTCTCG -ACGGAAGTCAACAGAGCATAGACG -ACGGAAGTCAACAGAGCAGTAACG -ACGGAAGTCAACAGAGCAACTTCG -ACGGAAGTCAACAGAGCATACGCA -ACGGAAGTCAACAGAGCACTTGCA -ACGGAAGTCAACAGAGCACGAACA -ACGGAAGTCAACAGAGCACAGTCA -ACGGAAGTCAACAGAGCAGATCCA -ACGGAAGTCAACAGAGCAACGACA -ACGGAAGTCAACAGAGCAAGCTCA -ACGGAAGTCAACAGAGCATCACGT -ACGGAAGTCAACAGAGCACGTAGT -ACGGAAGTCAACAGAGCAGTCAGT -ACGGAAGTCAACAGAGCAGAAGGT -ACGGAAGTCAACAGAGCAAACCGT -ACGGAAGTCAACAGAGCATTGTGC -ACGGAAGTCAACAGAGCACTAAGC -ACGGAAGTCAACAGAGCAACTAGC -ACGGAAGTCAACAGAGCAAGATGC -ACGGAAGTCAACAGAGCATGAAGG -ACGGAAGTCAACAGAGCACAATGG -ACGGAAGTCAACAGAGCAATGAGG -ACGGAAGTCAACAGAGCAAATGGG -ACGGAAGTCAACAGAGCATCCTGA -ACGGAAGTCAACAGAGCATAGCGA -ACGGAAGTCAACAGAGCACACAGA -ACGGAAGTCAACAGAGCAGCAAGA -ACGGAAGTCAACAGAGCAGGTTGA -ACGGAAGTCAACAGAGCATCCGAT -ACGGAAGTCAACAGAGCATGGCAT -ACGGAAGTCAACAGAGCACGAGAT -ACGGAAGTCAACAGAGCATACCAC -ACGGAAGTCAACAGAGCACAGAAC -ACGGAAGTCAACAGAGCAGTCTAC -ACGGAAGTCAACAGAGCAACGTAC -ACGGAAGTCAACAGAGCAAGTGAC -ACGGAAGTCAACAGAGCACTGTAG -ACGGAAGTCAACAGAGCACCTAAG -ACGGAAGTCAACAGAGCAGTTCAG -ACGGAAGTCAACAGAGCAGCATAG -ACGGAAGTCAACAGAGCAGACAAG -ACGGAAGTCAACAGAGCAAAGCAG -ACGGAAGTCAACAGAGCACGTCAA -ACGGAAGTCAACAGAGCAGCTGAA -ACGGAAGTCAACAGAGCAAGTACG -ACGGAAGTCAACAGAGCAATCCGA -ACGGAAGTCAACAGAGCAATGGGA -ACGGAAGTCAACAGAGCAGTGCAA -ACGGAAGTCAACAGAGCAGAGGAA -ACGGAAGTCAACAGAGCACAGGTA -ACGGAAGTCAACAGAGCAGACTCT -ACGGAAGTCAACAGAGCAAGTCCT -ACGGAAGTCAACAGAGCATAAGCC -ACGGAAGTCAACAGAGCAATAGCC -ACGGAAGTCAACAGAGCATAACCG -ACGGAAGTCAACAGAGCAATGCCA -ACGGAAGTCAACTGAGGTGGAAAC -ACGGAAGTCAACTGAGGTAACACC -ACGGAAGTCAACTGAGGTATCGAG -ACGGAAGTCAACTGAGGTCTCCTT -ACGGAAGTCAACTGAGGTCCTGTT -ACGGAAGTCAACTGAGGTCGGTTT -ACGGAAGTCAACTGAGGTGTGGTT -ACGGAAGTCAACTGAGGTGCCTTT -ACGGAAGTCAACTGAGGTGGTCTT -ACGGAAGTCAACTGAGGTACGCTT -ACGGAAGTCAACTGAGGTAGCGTT -ACGGAAGTCAACTGAGGTTTCGTC -ACGGAAGTCAACTGAGGTTCTCTC -ACGGAAGTCAACTGAGGTTGGATC -ACGGAAGTCAACTGAGGTCACTTC -ACGGAAGTCAACTGAGGTGTACTC -ACGGAAGTCAACTGAGGTGATGTC -ACGGAAGTCAACTGAGGTACAGTC -ACGGAAGTCAACTGAGGTTTGCTG -ACGGAAGTCAACTGAGGTTCCATG -ACGGAAGTCAACTGAGGTTGTGTG -ACGGAAGTCAACTGAGGTCTAGTG -ACGGAAGTCAACTGAGGTCATCTG -ACGGAAGTCAACTGAGGTGAGTTG -ACGGAAGTCAACTGAGGTAGACTG -ACGGAAGTCAACTGAGGTTCGGTA -ACGGAAGTCAACTGAGGTTGCCTA -ACGGAAGTCAACTGAGGTCCACTA -ACGGAAGTCAACTGAGGTGGAGTA -ACGGAAGTCAACTGAGGTTCGTCT -ACGGAAGTCAACTGAGGTTGCACT -ACGGAAGTCAACTGAGGTCTGACT -ACGGAAGTCAACTGAGGTCAACCT -ACGGAAGTCAACTGAGGTGCTACT -ACGGAAGTCAACTGAGGTGGATCT -ACGGAAGTCAACTGAGGTAAGGCT -ACGGAAGTCAACTGAGGTTCAACC -ACGGAAGTCAACTGAGGTTGTTCC -ACGGAAGTCAACTGAGGTATTCCC -ACGGAAGTCAACTGAGGTTTCTCG -ACGGAAGTCAACTGAGGTTAGACG -ACGGAAGTCAACTGAGGTGTAACG -ACGGAAGTCAACTGAGGTACTTCG -ACGGAAGTCAACTGAGGTTACGCA -ACGGAAGTCAACTGAGGTCTTGCA -ACGGAAGTCAACTGAGGTCGAACA -ACGGAAGTCAACTGAGGTCAGTCA -ACGGAAGTCAACTGAGGTGATCCA -ACGGAAGTCAACTGAGGTACGACA -ACGGAAGTCAACTGAGGTAGCTCA -ACGGAAGTCAACTGAGGTTCACGT -ACGGAAGTCAACTGAGGTCGTAGT -ACGGAAGTCAACTGAGGTGTCAGT -ACGGAAGTCAACTGAGGTGAAGGT -ACGGAAGTCAACTGAGGTAACCGT -ACGGAAGTCAACTGAGGTTTGTGC -ACGGAAGTCAACTGAGGTCTAAGC -ACGGAAGTCAACTGAGGTACTAGC -ACGGAAGTCAACTGAGGTAGATGC -ACGGAAGTCAACTGAGGTTGAAGG -ACGGAAGTCAACTGAGGTCAATGG -ACGGAAGTCAACTGAGGTATGAGG -ACGGAAGTCAACTGAGGTAATGGG -ACGGAAGTCAACTGAGGTTCCTGA -ACGGAAGTCAACTGAGGTTAGCGA -ACGGAAGTCAACTGAGGTCACAGA -ACGGAAGTCAACTGAGGTGCAAGA -ACGGAAGTCAACTGAGGTGGTTGA -ACGGAAGTCAACTGAGGTTCCGAT -ACGGAAGTCAACTGAGGTTGGCAT -ACGGAAGTCAACTGAGGTCGAGAT -ACGGAAGTCAACTGAGGTTACCAC -ACGGAAGTCAACTGAGGTCAGAAC -ACGGAAGTCAACTGAGGTGTCTAC -ACGGAAGTCAACTGAGGTACGTAC -ACGGAAGTCAACTGAGGTAGTGAC -ACGGAAGTCAACTGAGGTCTGTAG -ACGGAAGTCAACTGAGGTCCTAAG -ACGGAAGTCAACTGAGGTGTTCAG -ACGGAAGTCAACTGAGGTGCATAG -ACGGAAGTCAACTGAGGTGACAAG -ACGGAAGTCAACTGAGGTAAGCAG -ACGGAAGTCAACTGAGGTCGTCAA -ACGGAAGTCAACTGAGGTGCTGAA -ACGGAAGTCAACTGAGGTAGTACG -ACGGAAGTCAACTGAGGTATCCGA -ACGGAAGTCAACTGAGGTATGGGA -ACGGAAGTCAACTGAGGTGTGCAA -ACGGAAGTCAACTGAGGTGAGGAA -ACGGAAGTCAACTGAGGTCAGGTA -ACGGAAGTCAACTGAGGTGACTCT -ACGGAAGTCAACTGAGGTAGTCCT -ACGGAAGTCAACTGAGGTTAAGCC -ACGGAAGTCAACTGAGGTATAGCC -ACGGAAGTCAACTGAGGTTAACCG -ACGGAAGTCAACTGAGGTATGCCA -ACGGAAGTCAACGATTCCGGAAAC -ACGGAAGTCAACGATTCCAACACC -ACGGAAGTCAACGATTCCATCGAG -ACGGAAGTCAACGATTCCCTCCTT -ACGGAAGTCAACGATTCCCCTGTT -ACGGAAGTCAACGATTCCCGGTTT -ACGGAAGTCAACGATTCCGTGGTT -ACGGAAGTCAACGATTCCGCCTTT -ACGGAAGTCAACGATTCCGGTCTT -ACGGAAGTCAACGATTCCACGCTT -ACGGAAGTCAACGATTCCAGCGTT -ACGGAAGTCAACGATTCCTTCGTC -ACGGAAGTCAACGATTCCTCTCTC -ACGGAAGTCAACGATTCCTGGATC -ACGGAAGTCAACGATTCCCACTTC -ACGGAAGTCAACGATTCCGTACTC -ACGGAAGTCAACGATTCCGATGTC -ACGGAAGTCAACGATTCCACAGTC -ACGGAAGTCAACGATTCCTTGCTG -ACGGAAGTCAACGATTCCTCCATG -ACGGAAGTCAACGATTCCTGTGTG -ACGGAAGTCAACGATTCCCTAGTG -ACGGAAGTCAACGATTCCCATCTG -ACGGAAGTCAACGATTCCGAGTTG -ACGGAAGTCAACGATTCCAGACTG -ACGGAAGTCAACGATTCCTCGGTA -ACGGAAGTCAACGATTCCTGCCTA -ACGGAAGTCAACGATTCCCCACTA -ACGGAAGTCAACGATTCCGGAGTA -ACGGAAGTCAACGATTCCTCGTCT -ACGGAAGTCAACGATTCCTGCACT -ACGGAAGTCAACGATTCCCTGACT -ACGGAAGTCAACGATTCCCAACCT -ACGGAAGTCAACGATTCCGCTACT -ACGGAAGTCAACGATTCCGGATCT -ACGGAAGTCAACGATTCCAAGGCT -ACGGAAGTCAACGATTCCTCAACC -ACGGAAGTCAACGATTCCTGTTCC -ACGGAAGTCAACGATTCCATTCCC -ACGGAAGTCAACGATTCCTTCTCG -ACGGAAGTCAACGATTCCTAGACG -ACGGAAGTCAACGATTCCGTAACG -ACGGAAGTCAACGATTCCACTTCG -ACGGAAGTCAACGATTCCTACGCA -ACGGAAGTCAACGATTCCCTTGCA -ACGGAAGTCAACGATTCCCGAACA -ACGGAAGTCAACGATTCCCAGTCA -ACGGAAGTCAACGATTCCGATCCA -ACGGAAGTCAACGATTCCACGACA -ACGGAAGTCAACGATTCCAGCTCA -ACGGAAGTCAACGATTCCTCACGT -ACGGAAGTCAACGATTCCCGTAGT -ACGGAAGTCAACGATTCCGTCAGT -ACGGAAGTCAACGATTCCGAAGGT -ACGGAAGTCAACGATTCCAACCGT -ACGGAAGTCAACGATTCCTTGTGC -ACGGAAGTCAACGATTCCCTAAGC -ACGGAAGTCAACGATTCCACTAGC -ACGGAAGTCAACGATTCCAGATGC -ACGGAAGTCAACGATTCCTGAAGG -ACGGAAGTCAACGATTCCCAATGG -ACGGAAGTCAACGATTCCATGAGG -ACGGAAGTCAACGATTCCAATGGG -ACGGAAGTCAACGATTCCTCCTGA -ACGGAAGTCAACGATTCCTAGCGA -ACGGAAGTCAACGATTCCCACAGA -ACGGAAGTCAACGATTCCGCAAGA -ACGGAAGTCAACGATTCCGGTTGA -ACGGAAGTCAACGATTCCTCCGAT -ACGGAAGTCAACGATTCCTGGCAT -ACGGAAGTCAACGATTCCCGAGAT -ACGGAAGTCAACGATTCCTACCAC -ACGGAAGTCAACGATTCCCAGAAC -ACGGAAGTCAACGATTCCGTCTAC -ACGGAAGTCAACGATTCCACGTAC -ACGGAAGTCAACGATTCCAGTGAC -ACGGAAGTCAACGATTCCCTGTAG -ACGGAAGTCAACGATTCCCCTAAG -ACGGAAGTCAACGATTCCGTTCAG -ACGGAAGTCAACGATTCCGCATAG -ACGGAAGTCAACGATTCCGACAAG -ACGGAAGTCAACGATTCCAAGCAG -ACGGAAGTCAACGATTCCCGTCAA -ACGGAAGTCAACGATTCCGCTGAA -ACGGAAGTCAACGATTCCAGTACG -ACGGAAGTCAACGATTCCATCCGA -ACGGAAGTCAACGATTCCATGGGA -ACGGAAGTCAACGATTCCGTGCAA -ACGGAAGTCAACGATTCCGAGGAA -ACGGAAGTCAACGATTCCCAGGTA -ACGGAAGTCAACGATTCCGACTCT -ACGGAAGTCAACGATTCCAGTCCT -ACGGAAGTCAACGATTCCTAAGCC -ACGGAAGTCAACGATTCCATAGCC -ACGGAAGTCAACGATTCCTAACCG -ACGGAAGTCAACGATTCCATGCCA -ACGGAAGTCAACCATTGGGGAAAC -ACGGAAGTCAACCATTGGAACACC -ACGGAAGTCAACCATTGGATCGAG -ACGGAAGTCAACCATTGGCTCCTT -ACGGAAGTCAACCATTGGCCTGTT -ACGGAAGTCAACCATTGGCGGTTT -ACGGAAGTCAACCATTGGGTGGTT -ACGGAAGTCAACCATTGGGCCTTT -ACGGAAGTCAACCATTGGGGTCTT -ACGGAAGTCAACCATTGGACGCTT -ACGGAAGTCAACCATTGGAGCGTT -ACGGAAGTCAACCATTGGTTCGTC -ACGGAAGTCAACCATTGGTCTCTC -ACGGAAGTCAACCATTGGTGGATC -ACGGAAGTCAACCATTGGCACTTC -ACGGAAGTCAACCATTGGGTACTC -ACGGAAGTCAACCATTGGGATGTC -ACGGAAGTCAACCATTGGACAGTC -ACGGAAGTCAACCATTGGTTGCTG -ACGGAAGTCAACCATTGGTCCATG -ACGGAAGTCAACCATTGGTGTGTG -ACGGAAGTCAACCATTGGCTAGTG -ACGGAAGTCAACCATTGGCATCTG -ACGGAAGTCAACCATTGGGAGTTG -ACGGAAGTCAACCATTGGAGACTG -ACGGAAGTCAACCATTGGTCGGTA -ACGGAAGTCAACCATTGGTGCCTA -ACGGAAGTCAACCATTGGCCACTA -ACGGAAGTCAACCATTGGGGAGTA -ACGGAAGTCAACCATTGGTCGTCT -ACGGAAGTCAACCATTGGTGCACT -ACGGAAGTCAACCATTGGCTGACT -ACGGAAGTCAACCATTGGCAACCT -ACGGAAGTCAACCATTGGGCTACT -ACGGAAGTCAACCATTGGGGATCT -ACGGAAGTCAACCATTGGAAGGCT -ACGGAAGTCAACCATTGGTCAACC -ACGGAAGTCAACCATTGGTGTTCC -ACGGAAGTCAACCATTGGATTCCC -ACGGAAGTCAACCATTGGTTCTCG -ACGGAAGTCAACCATTGGTAGACG -ACGGAAGTCAACCATTGGGTAACG -ACGGAAGTCAACCATTGGACTTCG -ACGGAAGTCAACCATTGGTACGCA -ACGGAAGTCAACCATTGGCTTGCA -ACGGAAGTCAACCATTGGCGAACA -ACGGAAGTCAACCATTGGCAGTCA -ACGGAAGTCAACCATTGGGATCCA -ACGGAAGTCAACCATTGGACGACA -ACGGAAGTCAACCATTGGAGCTCA -ACGGAAGTCAACCATTGGTCACGT -ACGGAAGTCAACCATTGGCGTAGT -ACGGAAGTCAACCATTGGGTCAGT -ACGGAAGTCAACCATTGGGAAGGT -ACGGAAGTCAACCATTGGAACCGT -ACGGAAGTCAACCATTGGTTGTGC -ACGGAAGTCAACCATTGGCTAAGC -ACGGAAGTCAACCATTGGACTAGC -ACGGAAGTCAACCATTGGAGATGC -ACGGAAGTCAACCATTGGTGAAGG -ACGGAAGTCAACCATTGGCAATGG -ACGGAAGTCAACCATTGGATGAGG -ACGGAAGTCAACCATTGGAATGGG -ACGGAAGTCAACCATTGGTCCTGA -ACGGAAGTCAACCATTGGTAGCGA -ACGGAAGTCAACCATTGGCACAGA -ACGGAAGTCAACCATTGGGCAAGA -ACGGAAGTCAACCATTGGGGTTGA -ACGGAAGTCAACCATTGGTCCGAT -ACGGAAGTCAACCATTGGTGGCAT -ACGGAAGTCAACCATTGGCGAGAT -ACGGAAGTCAACCATTGGTACCAC -ACGGAAGTCAACCATTGGCAGAAC -ACGGAAGTCAACCATTGGGTCTAC -ACGGAAGTCAACCATTGGACGTAC -ACGGAAGTCAACCATTGGAGTGAC -ACGGAAGTCAACCATTGGCTGTAG -ACGGAAGTCAACCATTGGCCTAAG -ACGGAAGTCAACCATTGGGTTCAG -ACGGAAGTCAACCATTGGGCATAG -ACGGAAGTCAACCATTGGGACAAG -ACGGAAGTCAACCATTGGAAGCAG -ACGGAAGTCAACCATTGGCGTCAA -ACGGAAGTCAACCATTGGGCTGAA -ACGGAAGTCAACCATTGGAGTACG -ACGGAAGTCAACCATTGGATCCGA -ACGGAAGTCAACCATTGGATGGGA -ACGGAAGTCAACCATTGGGTGCAA -ACGGAAGTCAACCATTGGGAGGAA -ACGGAAGTCAACCATTGGCAGGTA -ACGGAAGTCAACCATTGGGACTCT -ACGGAAGTCAACCATTGGAGTCCT -ACGGAAGTCAACCATTGGTAAGCC -ACGGAAGTCAACCATTGGATAGCC -ACGGAAGTCAACCATTGGTAACCG -ACGGAAGTCAACCATTGGATGCCA -ACGGAAGTCAACGATCGAGGAAAC -ACGGAAGTCAACGATCGAAACACC -ACGGAAGTCAACGATCGAATCGAG -ACGGAAGTCAACGATCGACTCCTT -ACGGAAGTCAACGATCGACCTGTT -ACGGAAGTCAACGATCGACGGTTT -ACGGAAGTCAACGATCGAGTGGTT -ACGGAAGTCAACGATCGAGCCTTT -ACGGAAGTCAACGATCGAGGTCTT -ACGGAAGTCAACGATCGAACGCTT -ACGGAAGTCAACGATCGAAGCGTT -ACGGAAGTCAACGATCGATTCGTC -ACGGAAGTCAACGATCGATCTCTC -ACGGAAGTCAACGATCGATGGATC -ACGGAAGTCAACGATCGACACTTC -ACGGAAGTCAACGATCGAGTACTC -ACGGAAGTCAACGATCGAGATGTC -ACGGAAGTCAACGATCGAACAGTC -ACGGAAGTCAACGATCGATTGCTG -ACGGAAGTCAACGATCGATCCATG -ACGGAAGTCAACGATCGATGTGTG -ACGGAAGTCAACGATCGACTAGTG -ACGGAAGTCAACGATCGACATCTG -ACGGAAGTCAACGATCGAGAGTTG -ACGGAAGTCAACGATCGAAGACTG -ACGGAAGTCAACGATCGATCGGTA -ACGGAAGTCAACGATCGATGCCTA -ACGGAAGTCAACGATCGACCACTA -ACGGAAGTCAACGATCGAGGAGTA -ACGGAAGTCAACGATCGATCGTCT -ACGGAAGTCAACGATCGATGCACT -ACGGAAGTCAACGATCGACTGACT -ACGGAAGTCAACGATCGACAACCT -ACGGAAGTCAACGATCGAGCTACT -ACGGAAGTCAACGATCGAGGATCT -ACGGAAGTCAACGATCGAAAGGCT -ACGGAAGTCAACGATCGATCAACC -ACGGAAGTCAACGATCGATGTTCC -ACGGAAGTCAACGATCGAATTCCC -ACGGAAGTCAACGATCGATTCTCG -ACGGAAGTCAACGATCGATAGACG -ACGGAAGTCAACGATCGAGTAACG -ACGGAAGTCAACGATCGAACTTCG -ACGGAAGTCAACGATCGATACGCA -ACGGAAGTCAACGATCGACTTGCA -ACGGAAGTCAACGATCGACGAACA -ACGGAAGTCAACGATCGACAGTCA -ACGGAAGTCAACGATCGAGATCCA -ACGGAAGTCAACGATCGAACGACA -ACGGAAGTCAACGATCGAAGCTCA -ACGGAAGTCAACGATCGATCACGT -ACGGAAGTCAACGATCGACGTAGT -ACGGAAGTCAACGATCGAGTCAGT -ACGGAAGTCAACGATCGAGAAGGT -ACGGAAGTCAACGATCGAAACCGT -ACGGAAGTCAACGATCGATTGTGC -ACGGAAGTCAACGATCGACTAAGC -ACGGAAGTCAACGATCGAACTAGC -ACGGAAGTCAACGATCGAAGATGC -ACGGAAGTCAACGATCGATGAAGG -ACGGAAGTCAACGATCGACAATGG -ACGGAAGTCAACGATCGAATGAGG -ACGGAAGTCAACGATCGAAATGGG -ACGGAAGTCAACGATCGATCCTGA -ACGGAAGTCAACGATCGATAGCGA -ACGGAAGTCAACGATCGACACAGA -ACGGAAGTCAACGATCGAGCAAGA -ACGGAAGTCAACGATCGAGGTTGA -ACGGAAGTCAACGATCGATCCGAT -ACGGAAGTCAACGATCGATGGCAT -ACGGAAGTCAACGATCGACGAGAT -ACGGAAGTCAACGATCGATACCAC -ACGGAAGTCAACGATCGACAGAAC -ACGGAAGTCAACGATCGAGTCTAC -ACGGAAGTCAACGATCGAACGTAC -ACGGAAGTCAACGATCGAAGTGAC -ACGGAAGTCAACGATCGACTGTAG -ACGGAAGTCAACGATCGACCTAAG -ACGGAAGTCAACGATCGAGTTCAG -ACGGAAGTCAACGATCGAGCATAG -ACGGAAGTCAACGATCGAGACAAG -ACGGAAGTCAACGATCGAAAGCAG -ACGGAAGTCAACGATCGACGTCAA -ACGGAAGTCAACGATCGAGCTGAA -ACGGAAGTCAACGATCGAAGTACG -ACGGAAGTCAACGATCGAATCCGA -ACGGAAGTCAACGATCGAATGGGA -ACGGAAGTCAACGATCGAGTGCAA -ACGGAAGTCAACGATCGAGAGGAA -ACGGAAGTCAACGATCGACAGGTA -ACGGAAGTCAACGATCGAGACTCT -ACGGAAGTCAACGATCGAAGTCCT -ACGGAAGTCAACGATCGATAAGCC -ACGGAAGTCAACGATCGAATAGCC -ACGGAAGTCAACGATCGATAACCG -ACGGAAGTCAACGATCGAATGCCA -ACGGAAGTCAACCACTACGGAAAC -ACGGAAGTCAACCACTACAACACC -ACGGAAGTCAACCACTACATCGAG -ACGGAAGTCAACCACTACCTCCTT -ACGGAAGTCAACCACTACCCTGTT -ACGGAAGTCAACCACTACCGGTTT -ACGGAAGTCAACCACTACGTGGTT -ACGGAAGTCAACCACTACGCCTTT -ACGGAAGTCAACCACTACGGTCTT -ACGGAAGTCAACCACTACACGCTT -ACGGAAGTCAACCACTACAGCGTT -ACGGAAGTCAACCACTACTTCGTC -ACGGAAGTCAACCACTACTCTCTC -ACGGAAGTCAACCACTACTGGATC -ACGGAAGTCAACCACTACCACTTC -ACGGAAGTCAACCACTACGTACTC -ACGGAAGTCAACCACTACGATGTC -ACGGAAGTCAACCACTACACAGTC -ACGGAAGTCAACCACTACTTGCTG -ACGGAAGTCAACCACTACTCCATG -ACGGAAGTCAACCACTACTGTGTG -ACGGAAGTCAACCACTACCTAGTG -ACGGAAGTCAACCACTACCATCTG -ACGGAAGTCAACCACTACGAGTTG -ACGGAAGTCAACCACTACAGACTG -ACGGAAGTCAACCACTACTCGGTA -ACGGAAGTCAACCACTACTGCCTA -ACGGAAGTCAACCACTACCCACTA -ACGGAAGTCAACCACTACGGAGTA -ACGGAAGTCAACCACTACTCGTCT -ACGGAAGTCAACCACTACTGCACT -ACGGAAGTCAACCACTACCTGACT -ACGGAAGTCAACCACTACCAACCT -ACGGAAGTCAACCACTACGCTACT -ACGGAAGTCAACCACTACGGATCT -ACGGAAGTCAACCACTACAAGGCT -ACGGAAGTCAACCACTACTCAACC -ACGGAAGTCAACCACTACTGTTCC -ACGGAAGTCAACCACTACATTCCC -ACGGAAGTCAACCACTACTTCTCG -ACGGAAGTCAACCACTACTAGACG -ACGGAAGTCAACCACTACGTAACG -ACGGAAGTCAACCACTACACTTCG -ACGGAAGTCAACCACTACTACGCA -ACGGAAGTCAACCACTACCTTGCA -ACGGAAGTCAACCACTACCGAACA -ACGGAAGTCAACCACTACCAGTCA -ACGGAAGTCAACCACTACGATCCA -ACGGAAGTCAACCACTACACGACA -ACGGAAGTCAACCACTACAGCTCA -ACGGAAGTCAACCACTACTCACGT -ACGGAAGTCAACCACTACCGTAGT -ACGGAAGTCAACCACTACGTCAGT -ACGGAAGTCAACCACTACGAAGGT -ACGGAAGTCAACCACTACAACCGT -ACGGAAGTCAACCACTACTTGTGC -ACGGAAGTCAACCACTACCTAAGC -ACGGAAGTCAACCACTACACTAGC -ACGGAAGTCAACCACTACAGATGC -ACGGAAGTCAACCACTACTGAAGG -ACGGAAGTCAACCACTACCAATGG -ACGGAAGTCAACCACTACATGAGG -ACGGAAGTCAACCACTACAATGGG -ACGGAAGTCAACCACTACTCCTGA -ACGGAAGTCAACCACTACTAGCGA -ACGGAAGTCAACCACTACCACAGA -ACGGAAGTCAACCACTACGCAAGA -ACGGAAGTCAACCACTACGGTTGA -ACGGAAGTCAACCACTACTCCGAT -ACGGAAGTCAACCACTACTGGCAT -ACGGAAGTCAACCACTACCGAGAT -ACGGAAGTCAACCACTACTACCAC -ACGGAAGTCAACCACTACCAGAAC -ACGGAAGTCAACCACTACGTCTAC -ACGGAAGTCAACCACTACACGTAC -ACGGAAGTCAACCACTACAGTGAC -ACGGAAGTCAACCACTACCTGTAG -ACGGAAGTCAACCACTACCCTAAG -ACGGAAGTCAACCACTACGTTCAG -ACGGAAGTCAACCACTACGCATAG -ACGGAAGTCAACCACTACGACAAG -ACGGAAGTCAACCACTACAAGCAG -ACGGAAGTCAACCACTACCGTCAA -ACGGAAGTCAACCACTACGCTGAA -ACGGAAGTCAACCACTACAGTACG -ACGGAAGTCAACCACTACATCCGA -ACGGAAGTCAACCACTACATGGGA -ACGGAAGTCAACCACTACGTGCAA -ACGGAAGTCAACCACTACGAGGAA -ACGGAAGTCAACCACTACCAGGTA -ACGGAAGTCAACCACTACGACTCT -ACGGAAGTCAACCACTACAGTCCT -ACGGAAGTCAACCACTACTAAGCC -ACGGAAGTCAACCACTACATAGCC -ACGGAAGTCAACCACTACTAACCG -ACGGAAGTCAACCACTACATGCCA -ACGGAAGTCAACAACCAGGGAAAC -ACGGAAGTCAACAACCAGAACACC -ACGGAAGTCAACAACCAGATCGAG -ACGGAAGTCAACAACCAGCTCCTT -ACGGAAGTCAACAACCAGCCTGTT -ACGGAAGTCAACAACCAGCGGTTT -ACGGAAGTCAACAACCAGGTGGTT -ACGGAAGTCAACAACCAGGCCTTT -ACGGAAGTCAACAACCAGGGTCTT -ACGGAAGTCAACAACCAGACGCTT -ACGGAAGTCAACAACCAGAGCGTT -ACGGAAGTCAACAACCAGTTCGTC -ACGGAAGTCAACAACCAGTCTCTC -ACGGAAGTCAACAACCAGTGGATC -ACGGAAGTCAACAACCAGCACTTC -ACGGAAGTCAACAACCAGGTACTC -ACGGAAGTCAACAACCAGGATGTC -ACGGAAGTCAACAACCAGACAGTC -ACGGAAGTCAACAACCAGTTGCTG -ACGGAAGTCAACAACCAGTCCATG -ACGGAAGTCAACAACCAGTGTGTG -ACGGAAGTCAACAACCAGCTAGTG -ACGGAAGTCAACAACCAGCATCTG -ACGGAAGTCAACAACCAGGAGTTG -ACGGAAGTCAACAACCAGAGACTG -ACGGAAGTCAACAACCAGTCGGTA -ACGGAAGTCAACAACCAGTGCCTA -ACGGAAGTCAACAACCAGCCACTA -ACGGAAGTCAACAACCAGGGAGTA -ACGGAAGTCAACAACCAGTCGTCT -ACGGAAGTCAACAACCAGTGCACT -ACGGAAGTCAACAACCAGCTGACT -ACGGAAGTCAACAACCAGCAACCT -ACGGAAGTCAACAACCAGGCTACT -ACGGAAGTCAACAACCAGGGATCT -ACGGAAGTCAACAACCAGAAGGCT -ACGGAAGTCAACAACCAGTCAACC -ACGGAAGTCAACAACCAGTGTTCC -ACGGAAGTCAACAACCAGATTCCC -ACGGAAGTCAACAACCAGTTCTCG -ACGGAAGTCAACAACCAGTAGACG -ACGGAAGTCAACAACCAGGTAACG -ACGGAAGTCAACAACCAGACTTCG -ACGGAAGTCAACAACCAGTACGCA -ACGGAAGTCAACAACCAGCTTGCA -ACGGAAGTCAACAACCAGCGAACA -ACGGAAGTCAACAACCAGCAGTCA -ACGGAAGTCAACAACCAGGATCCA -ACGGAAGTCAACAACCAGACGACA -ACGGAAGTCAACAACCAGAGCTCA -ACGGAAGTCAACAACCAGTCACGT -ACGGAAGTCAACAACCAGCGTAGT -ACGGAAGTCAACAACCAGGTCAGT -ACGGAAGTCAACAACCAGGAAGGT -ACGGAAGTCAACAACCAGAACCGT -ACGGAAGTCAACAACCAGTTGTGC -ACGGAAGTCAACAACCAGCTAAGC -ACGGAAGTCAACAACCAGACTAGC -ACGGAAGTCAACAACCAGAGATGC -ACGGAAGTCAACAACCAGTGAAGG -ACGGAAGTCAACAACCAGCAATGG -ACGGAAGTCAACAACCAGATGAGG -ACGGAAGTCAACAACCAGAATGGG -ACGGAAGTCAACAACCAGTCCTGA -ACGGAAGTCAACAACCAGTAGCGA -ACGGAAGTCAACAACCAGCACAGA -ACGGAAGTCAACAACCAGGCAAGA -ACGGAAGTCAACAACCAGGGTTGA -ACGGAAGTCAACAACCAGTCCGAT -ACGGAAGTCAACAACCAGTGGCAT -ACGGAAGTCAACAACCAGCGAGAT -ACGGAAGTCAACAACCAGTACCAC -ACGGAAGTCAACAACCAGCAGAAC -ACGGAAGTCAACAACCAGGTCTAC -ACGGAAGTCAACAACCAGACGTAC -ACGGAAGTCAACAACCAGAGTGAC -ACGGAAGTCAACAACCAGCTGTAG -ACGGAAGTCAACAACCAGCCTAAG -ACGGAAGTCAACAACCAGGTTCAG -ACGGAAGTCAACAACCAGGCATAG -ACGGAAGTCAACAACCAGGACAAG -ACGGAAGTCAACAACCAGAAGCAG -ACGGAAGTCAACAACCAGCGTCAA -ACGGAAGTCAACAACCAGGCTGAA -ACGGAAGTCAACAACCAGAGTACG -ACGGAAGTCAACAACCAGATCCGA -ACGGAAGTCAACAACCAGATGGGA -ACGGAAGTCAACAACCAGGTGCAA -ACGGAAGTCAACAACCAGGAGGAA -ACGGAAGTCAACAACCAGCAGGTA -ACGGAAGTCAACAACCAGGACTCT -ACGGAAGTCAACAACCAGAGTCCT -ACGGAAGTCAACAACCAGTAAGCC -ACGGAAGTCAACAACCAGATAGCC -ACGGAAGTCAACAACCAGTAACCG -ACGGAAGTCAACAACCAGATGCCA -ACGGAAGTCAACTACGTCGGAAAC -ACGGAAGTCAACTACGTCAACACC -ACGGAAGTCAACTACGTCATCGAG -ACGGAAGTCAACTACGTCCTCCTT -ACGGAAGTCAACTACGTCCCTGTT -ACGGAAGTCAACTACGTCCGGTTT -ACGGAAGTCAACTACGTCGTGGTT -ACGGAAGTCAACTACGTCGCCTTT -ACGGAAGTCAACTACGTCGGTCTT -ACGGAAGTCAACTACGTCACGCTT -ACGGAAGTCAACTACGTCAGCGTT -ACGGAAGTCAACTACGTCTTCGTC -ACGGAAGTCAACTACGTCTCTCTC -ACGGAAGTCAACTACGTCTGGATC -ACGGAAGTCAACTACGTCCACTTC -ACGGAAGTCAACTACGTCGTACTC -ACGGAAGTCAACTACGTCGATGTC -ACGGAAGTCAACTACGTCACAGTC -ACGGAAGTCAACTACGTCTTGCTG -ACGGAAGTCAACTACGTCTCCATG -ACGGAAGTCAACTACGTCTGTGTG -ACGGAAGTCAACTACGTCCTAGTG -ACGGAAGTCAACTACGTCCATCTG -ACGGAAGTCAACTACGTCGAGTTG -ACGGAAGTCAACTACGTCAGACTG -ACGGAAGTCAACTACGTCTCGGTA -ACGGAAGTCAACTACGTCTGCCTA -ACGGAAGTCAACTACGTCCCACTA -ACGGAAGTCAACTACGTCGGAGTA -ACGGAAGTCAACTACGTCTCGTCT -ACGGAAGTCAACTACGTCTGCACT -ACGGAAGTCAACTACGTCCTGACT -ACGGAAGTCAACTACGTCCAACCT -ACGGAAGTCAACTACGTCGCTACT -ACGGAAGTCAACTACGTCGGATCT -ACGGAAGTCAACTACGTCAAGGCT -ACGGAAGTCAACTACGTCTCAACC -ACGGAAGTCAACTACGTCTGTTCC -ACGGAAGTCAACTACGTCATTCCC -ACGGAAGTCAACTACGTCTTCTCG -ACGGAAGTCAACTACGTCTAGACG -ACGGAAGTCAACTACGTCGTAACG -ACGGAAGTCAACTACGTCACTTCG -ACGGAAGTCAACTACGTCTACGCA -ACGGAAGTCAACTACGTCCTTGCA -ACGGAAGTCAACTACGTCCGAACA -ACGGAAGTCAACTACGTCCAGTCA -ACGGAAGTCAACTACGTCGATCCA -ACGGAAGTCAACTACGTCACGACA -ACGGAAGTCAACTACGTCAGCTCA -ACGGAAGTCAACTACGTCTCACGT -ACGGAAGTCAACTACGTCCGTAGT -ACGGAAGTCAACTACGTCGTCAGT -ACGGAAGTCAACTACGTCGAAGGT -ACGGAAGTCAACTACGTCAACCGT -ACGGAAGTCAACTACGTCTTGTGC -ACGGAAGTCAACTACGTCCTAAGC -ACGGAAGTCAACTACGTCACTAGC -ACGGAAGTCAACTACGTCAGATGC -ACGGAAGTCAACTACGTCTGAAGG -ACGGAAGTCAACTACGTCCAATGG -ACGGAAGTCAACTACGTCATGAGG -ACGGAAGTCAACTACGTCAATGGG -ACGGAAGTCAACTACGTCTCCTGA -ACGGAAGTCAACTACGTCTAGCGA -ACGGAAGTCAACTACGTCCACAGA -ACGGAAGTCAACTACGTCGCAAGA -ACGGAAGTCAACTACGTCGGTTGA -ACGGAAGTCAACTACGTCTCCGAT -ACGGAAGTCAACTACGTCTGGCAT -ACGGAAGTCAACTACGTCCGAGAT -ACGGAAGTCAACTACGTCTACCAC -ACGGAAGTCAACTACGTCCAGAAC -ACGGAAGTCAACTACGTCGTCTAC -ACGGAAGTCAACTACGTCACGTAC -ACGGAAGTCAACTACGTCAGTGAC -ACGGAAGTCAACTACGTCCTGTAG -ACGGAAGTCAACTACGTCCCTAAG -ACGGAAGTCAACTACGTCGTTCAG -ACGGAAGTCAACTACGTCGCATAG -ACGGAAGTCAACTACGTCGACAAG -ACGGAAGTCAACTACGTCAAGCAG -ACGGAAGTCAACTACGTCCGTCAA -ACGGAAGTCAACTACGTCGCTGAA -ACGGAAGTCAACTACGTCAGTACG -ACGGAAGTCAACTACGTCATCCGA -ACGGAAGTCAACTACGTCATGGGA -ACGGAAGTCAACTACGTCGTGCAA -ACGGAAGTCAACTACGTCGAGGAA -ACGGAAGTCAACTACGTCCAGGTA -ACGGAAGTCAACTACGTCGACTCT -ACGGAAGTCAACTACGTCAGTCCT -ACGGAAGTCAACTACGTCTAAGCC -ACGGAAGTCAACTACGTCATAGCC -ACGGAAGTCAACTACGTCTAACCG -ACGGAAGTCAACTACGTCATGCCA -ACGGAAGTCAACTACACGGGAAAC -ACGGAAGTCAACTACACGAACACC -ACGGAAGTCAACTACACGATCGAG -ACGGAAGTCAACTACACGCTCCTT -ACGGAAGTCAACTACACGCCTGTT -ACGGAAGTCAACTACACGCGGTTT -ACGGAAGTCAACTACACGGTGGTT -ACGGAAGTCAACTACACGGCCTTT -ACGGAAGTCAACTACACGGGTCTT -ACGGAAGTCAACTACACGACGCTT -ACGGAAGTCAACTACACGAGCGTT -ACGGAAGTCAACTACACGTTCGTC -ACGGAAGTCAACTACACGTCTCTC -ACGGAAGTCAACTACACGTGGATC -ACGGAAGTCAACTACACGCACTTC -ACGGAAGTCAACTACACGGTACTC -ACGGAAGTCAACTACACGGATGTC -ACGGAAGTCAACTACACGACAGTC -ACGGAAGTCAACTACACGTTGCTG -ACGGAAGTCAACTACACGTCCATG -ACGGAAGTCAACTACACGTGTGTG -ACGGAAGTCAACTACACGCTAGTG -ACGGAAGTCAACTACACGCATCTG -ACGGAAGTCAACTACACGGAGTTG -ACGGAAGTCAACTACACGAGACTG -ACGGAAGTCAACTACACGTCGGTA -ACGGAAGTCAACTACACGTGCCTA -ACGGAAGTCAACTACACGCCACTA -ACGGAAGTCAACTACACGGGAGTA -ACGGAAGTCAACTACACGTCGTCT -ACGGAAGTCAACTACACGTGCACT -ACGGAAGTCAACTACACGCTGACT -ACGGAAGTCAACTACACGCAACCT -ACGGAAGTCAACTACACGGCTACT -ACGGAAGTCAACTACACGGGATCT -ACGGAAGTCAACTACACGAAGGCT -ACGGAAGTCAACTACACGTCAACC -ACGGAAGTCAACTACACGTGTTCC -ACGGAAGTCAACTACACGATTCCC -ACGGAAGTCAACTACACGTTCTCG -ACGGAAGTCAACTACACGTAGACG -ACGGAAGTCAACTACACGGTAACG -ACGGAAGTCAACTACACGACTTCG -ACGGAAGTCAACTACACGTACGCA -ACGGAAGTCAACTACACGCTTGCA -ACGGAAGTCAACTACACGCGAACA -ACGGAAGTCAACTACACGCAGTCA -ACGGAAGTCAACTACACGGATCCA -ACGGAAGTCAACTACACGACGACA -ACGGAAGTCAACTACACGAGCTCA -ACGGAAGTCAACTACACGTCACGT -ACGGAAGTCAACTACACGCGTAGT -ACGGAAGTCAACTACACGGTCAGT -ACGGAAGTCAACTACACGGAAGGT -ACGGAAGTCAACTACACGAACCGT -ACGGAAGTCAACTACACGTTGTGC -ACGGAAGTCAACTACACGCTAAGC -ACGGAAGTCAACTACACGACTAGC -ACGGAAGTCAACTACACGAGATGC -ACGGAAGTCAACTACACGTGAAGG -ACGGAAGTCAACTACACGCAATGG -ACGGAAGTCAACTACACGATGAGG -ACGGAAGTCAACTACACGAATGGG -ACGGAAGTCAACTACACGTCCTGA -ACGGAAGTCAACTACACGTAGCGA -ACGGAAGTCAACTACACGCACAGA -ACGGAAGTCAACTACACGGCAAGA -ACGGAAGTCAACTACACGGGTTGA -ACGGAAGTCAACTACACGTCCGAT -ACGGAAGTCAACTACACGTGGCAT -ACGGAAGTCAACTACACGCGAGAT -ACGGAAGTCAACTACACGTACCAC -ACGGAAGTCAACTACACGCAGAAC -ACGGAAGTCAACTACACGGTCTAC -ACGGAAGTCAACTACACGACGTAC -ACGGAAGTCAACTACACGAGTGAC -ACGGAAGTCAACTACACGCTGTAG -ACGGAAGTCAACTACACGCCTAAG -ACGGAAGTCAACTACACGGTTCAG -ACGGAAGTCAACTACACGGCATAG -ACGGAAGTCAACTACACGGACAAG -ACGGAAGTCAACTACACGAAGCAG -ACGGAAGTCAACTACACGCGTCAA -ACGGAAGTCAACTACACGGCTGAA -ACGGAAGTCAACTACACGAGTACG -ACGGAAGTCAACTACACGATCCGA -ACGGAAGTCAACTACACGATGGGA -ACGGAAGTCAACTACACGGTGCAA -ACGGAAGTCAACTACACGGAGGAA -ACGGAAGTCAACTACACGCAGGTA -ACGGAAGTCAACTACACGGACTCT -ACGGAAGTCAACTACACGAGTCCT -ACGGAAGTCAACTACACGTAAGCC -ACGGAAGTCAACTACACGATAGCC -ACGGAAGTCAACTACACGTAACCG -ACGGAAGTCAACTACACGATGCCA -ACGGAAGTCAACGACAGTGGAAAC -ACGGAAGTCAACGACAGTAACACC -ACGGAAGTCAACGACAGTATCGAG -ACGGAAGTCAACGACAGTCTCCTT -ACGGAAGTCAACGACAGTCCTGTT -ACGGAAGTCAACGACAGTCGGTTT -ACGGAAGTCAACGACAGTGTGGTT -ACGGAAGTCAACGACAGTGCCTTT -ACGGAAGTCAACGACAGTGGTCTT -ACGGAAGTCAACGACAGTACGCTT -ACGGAAGTCAACGACAGTAGCGTT -ACGGAAGTCAACGACAGTTTCGTC -ACGGAAGTCAACGACAGTTCTCTC -ACGGAAGTCAACGACAGTTGGATC -ACGGAAGTCAACGACAGTCACTTC -ACGGAAGTCAACGACAGTGTACTC -ACGGAAGTCAACGACAGTGATGTC -ACGGAAGTCAACGACAGTACAGTC -ACGGAAGTCAACGACAGTTTGCTG -ACGGAAGTCAACGACAGTTCCATG -ACGGAAGTCAACGACAGTTGTGTG -ACGGAAGTCAACGACAGTCTAGTG -ACGGAAGTCAACGACAGTCATCTG -ACGGAAGTCAACGACAGTGAGTTG -ACGGAAGTCAACGACAGTAGACTG -ACGGAAGTCAACGACAGTTCGGTA -ACGGAAGTCAACGACAGTTGCCTA -ACGGAAGTCAACGACAGTCCACTA -ACGGAAGTCAACGACAGTGGAGTA -ACGGAAGTCAACGACAGTTCGTCT -ACGGAAGTCAACGACAGTTGCACT -ACGGAAGTCAACGACAGTCTGACT -ACGGAAGTCAACGACAGTCAACCT -ACGGAAGTCAACGACAGTGCTACT -ACGGAAGTCAACGACAGTGGATCT -ACGGAAGTCAACGACAGTAAGGCT -ACGGAAGTCAACGACAGTTCAACC -ACGGAAGTCAACGACAGTTGTTCC -ACGGAAGTCAACGACAGTATTCCC -ACGGAAGTCAACGACAGTTTCTCG -ACGGAAGTCAACGACAGTTAGACG -ACGGAAGTCAACGACAGTGTAACG -ACGGAAGTCAACGACAGTACTTCG -ACGGAAGTCAACGACAGTTACGCA -ACGGAAGTCAACGACAGTCTTGCA -ACGGAAGTCAACGACAGTCGAACA -ACGGAAGTCAACGACAGTCAGTCA -ACGGAAGTCAACGACAGTGATCCA -ACGGAAGTCAACGACAGTACGACA -ACGGAAGTCAACGACAGTAGCTCA -ACGGAAGTCAACGACAGTTCACGT -ACGGAAGTCAACGACAGTCGTAGT -ACGGAAGTCAACGACAGTGTCAGT -ACGGAAGTCAACGACAGTGAAGGT -ACGGAAGTCAACGACAGTAACCGT -ACGGAAGTCAACGACAGTTTGTGC -ACGGAAGTCAACGACAGTCTAAGC -ACGGAAGTCAACGACAGTACTAGC -ACGGAAGTCAACGACAGTAGATGC -ACGGAAGTCAACGACAGTTGAAGG -ACGGAAGTCAACGACAGTCAATGG -ACGGAAGTCAACGACAGTATGAGG -ACGGAAGTCAACGACAGTAATGGG -ACGGAAGTCAACGACAGTTCCTGA -ACGGAAGTCAACGACAGTTAGCGA -ACGGAAGTCAACGACAGTCACAGA -ACGGAAGTCAACGACAGTGCAAGA -ACGGAAGTCAACGACAGTGGTTGA -ACGGAAGTCAACGACAGTTCCGAT -ACGGAAGTCAACGACAGTTGGCAT -ACGGAAGTCAACGACAGTCGAGAT -ACGGAAGTCAACGACAGTTACCAC -ACGGAAGTCAACGACAGTCAGAAC -ACGGAAGTCAACGACAGTGTCTAC -ACGGAAGTCAACGACAGTACGTAC -ACGGAAGTCAACGACAGTAGTGAC -ACGGAAGTCAACGACAGTCTGTAG -ACGGAAGTCAACGACAGTCCTAAG -ACGGAAGTCAACGACAGTGTTCAG -ACGGAAGTCAACGACAGTGCATAG -ACGGAAGTCAACGACAGTGACAAG -ACGGAAGTCAACGACAGTAAGCAG -ACGGAAGTCAACGACAGTCGTCAA -ACGGAAGTCAACGACAGTGCTGAA -ACGGAAGTCAACGACAGTAGTACG -ACGGAAGTCAACGACAGTATCCGA -ACGGAAGTCAACGACAGTATGGGA -ACGGAAGTCAACGACAGTGTGCAA -ACGGAAGTCAACGACAGTGAGGAA -ACGGAAGTCAACGACAGTCAGGTA -ACGGAAGTCAACGACAGTGACTCT -ACGGAAGTCAACGACAGTAGTCCT -ACGGAAGTCAACGACAGTTAAGCC -ACGGAAGTCAACGACAGTATAGCC -ACGGAAGTCAACGACAGTTAACCG -ACGGAAGTCAACGACAGTATGCCA -ACGGAAGTCAACTAGCTGGGAAAC -ACGGAAGTCAACTAGCTGAACACC -ACGGAAGTCAACTAGCTGATCGAG -ACGGAAGTCAACTAGCTGCTCCTT -ACGGAAGTCAACTAGCTGCCTGTT -ACGGAAGTCAACTAGCTGCGGTTT -ACGGAAGTCAACTAGCTGGTGGTT -ACGGAAGTCAACTAGCTGGCCTTT -ACGGAAGTCAACTAGCTGGGTCTT -ACGGAAGTCAACTAGCTGACGCTT -ACGGAAGTCAACTAGCTGAGCGTT -ACGGAAGTCAACTAGCTGTTCGTC -ACGGAAGTCAACTAGCTGTCTCTC -ACGGAAGTCAACTAGCTGTGGATC -ACGGAAGTCAACTAGCTGCACTTC -ACGGAAGTCAACTAGCTGGTACTC -ACGGAAGTCAACTAGCTGGATGTC -ACGGAAGTCAACTAGCTGACAGTC -ACGGAAGTCAACTAGCTGTTGCTG -ACGGAAGTCAACTAGCTGTCCATG -ACGGAAGTCAACTAGCTGTGTGTG -ACGGAAGTCAACTAGCTGCTAGTG -ACGGAAGTCAACTAGCTGCATCTG -ACGGAAGTCAACTAGCTGGAGTTG -ACGGAAGTCAACTAGCTGAGACTG -ACGGAAGTCAACTAGCTGTCGGTA -ACGGAAGTCAACTAGCTGTGCCTA -ACGGAAGTCAACTAGCTGCCACTA -ACGGAAGTCAACTAGCTGGGAGTA -ACGGAAGTCAACTAGCTGTCGTCT -ACGGAAGTCAACTAGCTGTGCACT -ACGGAAGTCAACTAGCTGCTGACT -ACGGAAGTCAACTAGCTGCAACCT -ACGGAAGTCAACTAGCTGGCTACT -ACGGAAGTCAACTAGCTGGGATCT -ACGGAAGTCAACTAGCTGAAGGCT -ACGGAAGTCAACTAGCTGTCAACC -ACGGAAGTCAACTAGCTGTGTTCC -ACGGAAGTCAACTAGCTGATTCCC -ACGGAAGTCAACTAGCTGTTCTCG -ACGGAAGTCAACTAGCTGTAGACG -ACGGAAGTCAACTAGCTGGTAACG -ACGGAAGTCAACTAGCTGACTTCG -ACGGAAGTCAACTAGCTGTACGCA -ACGGAAGTCAACTAGCTGCTTGCA -ACGGAAGTCAACTAGCTGCGAACA -ACGGAAGTCAACTAGCTGCAGTCA -ACGGAAGTCAACTAGCTGGATCCA -ACGGAAGTCAACTAGCTGACGACA -ACGGAAGTCAACTAGCTGAGCTCA -ACGGAAGTCAACTAGCTGTCACGT -ACGGAAGTCAACTAGCTGCGTAGT -ACGGAAGTCAACTAGCTGGTCAGT -ACGGAAGTCAACTAGCTGGAAGGT -ACGGAAGTCAACTAGCTGAACCGT -ACGGAAGTCAACTAGCTGTTGTGC -ACGGAAGTCAACTAGCTGCTAAGC -ACGGAAGTCAACTAGCTGACTAGC -ACGGAAGTCAACTAGCTGAGATGC -ACGGAAGTCAACTAGCTGTGAAGG -ACGGAAGTCAACTAGCTGCAATGG -ACGGAAGTCAACTAGCTGATGAGG -ACGGAAGTCAACTAGCTGAATGGG -ACGGAAGTCAACTAGCTGTCCTGA -ACGGAAGTCAACTAGCTGTAGCGA -ACGGAAGTCAACTAGCTGCACAGA -ACGGAAGTCAACTAGCTGGCAAGA -ACGGAAGTCAACTAGCTGGGTTGA -ACGGAAGTCAACTAGCTGTCCGAT -ACGGAAGTCAACTAGCTGTGGCAT -ACGGAAGTCAACTAGCTGCGAGAT -ACGGAAGTCAACTAGCTGTACCAC -ACGGAAGTCAACTAGCTGCAGAAC -ACGGAAGTCAACTAGCTGGTCTAC -ACGGAAGTCAACTAGCTGACGTAC -ACGGAAGTCAACTAGCTGAGTGAC -ACGGAAGTCAACTAGCTGCTGTAG -ACGGAAGTCAACTAGCTGCCTAAG -ACGGAAGTCAACTAGCTGGTTCAG -ACGGAAGTCAACTAGCTGGCATAG -ACGGAAGTCAACTAGCTGGACAAG -ACGGAAGTCAACTAGCTGAAGCAG -ACGGAAGTCAACTAGCTGCGTCAA -ACGGAAGTCAACTAGCTGGCTGAA -ACGGAAGTCAACTAGCTGAGTACG -ACGGAAGTCAACTAGCTGATCCGA -ACGGAAGTCAACTAGCTGATGGGA -ACGGAAGTCAACTAGCTGGTGCAA -ACGGAAGTCAACTAGCTGGAGGAA -ACGGAAGTCAACTAGCTGCAGGTA -ACGGAAGTCAACTAGCTGGACTCT -ACGGAAGTCAACTAGCTGAGTCCT -ACGGAAGTCAACTAGCTGTAAGCC -ACGGAAGTCAACTAGCTGATAGCC -ACGGAAGTCAACTAGCTGTAACCG -ACGGAAGTCAACTAGCTGATGCCA -ACGGAAGTCAACAAGCCTGGAAAC -ACGGAAGTCAACAAGCCTAACACC -ACGGAAGTCAACAAGCCTATCGAG -ACGGAAGTCAACAAGCCTCTCCTT -ACGGAAGTCAACAAGCCTCCTGTT -ACGGAAGTCAACAAGCCTCGGTTT -ACGGAAGTCAACAAGCCTGTGGTT -ACGGAAGTCAACAAGCCTGCCTTT -ACGGAAGTCAACAAGCCTGGTCTT -ACGGAAGTCAACAAGCCTACGCTT -ACGGAAGTCAACAAGCCTAGCGTT -ACGGAAGTCAACAAGCCTTTCGTC -ACGGAAGTCAACAAGCCTTCTCTC -ACGGAAGTCAACAAGCCTTGGATC -ACGGAAGTCAACAAGCCTCACTTC -ACGGAAGTCAACAAGCCTGTACTC -ACGGAAGTCAACAAGCCTGATGTC -ACGGAAGTCAACAAGCCTACAGTC -ACGGAAGTCAACAAGCCTTTGCTG -ACGGAAGTCAACAAGCCTTCCATG -ACGGAAGTCAACAAGCCTTGTGTG -ACGGAAGTCAACAAGCCTCTAGTG -ACGGAAGTCAACAAGCCTCATCTG -ACGGAAGTCAACAAGCCTGAGTTG -ACGGAAGTCAACAAGCCTAGACTG -ACGGAAGTCAACAAGCCTTCGGTA -ACGGAAGTCAACAAGCCTTGCCTA -ACGGAAGTCAACAAGCCTCCACTA -ACGGAAGTCAACAAGCCTGGAGTA -ACGGAAGTCAACAAGCCTTCGTCT -ACGGAAGTCAACAAGCCTTGCACT -ACGGAAGTCAACAAGCCTCTGACT -ACGGAAGTCAACAAGCCTCAACCT -ACGGAAGTCAACAAGCCTGCTACT -ACGGAAGTCAACAAGCCTGGATCT -ACGGAAGTCAACAAGCCTAAGGCT -ACGGAAGTCAACAAGCCTTCAACC -ACGGAAGTCAACAAGCCTTGTTCC -ACGGAAGTCAACAAGCCTATTCCC -ACGGAAGTCAACAAGCCTTTCTCG -ACGGAAGTCAACAAGCCTTAGACG -ACGGAAGTCAACAAGCCTGTAACG -ACGGAAGTCAACAAGCCTACTTCG -ACGGAAGTCAACAAGCCTTACGCA -ACGGAAGTCAACAAGCCTCTTGCA -ACGGAAGTCAACAAGCCTCGAACA -ACGGAAGTCAACAAGCCTCAGTCA -ACGGAAGTCAACAAGCCTGATCCA -ACGGAAGTCAACAAGCCTACGACA -ACGGAAGTCAACAAGCCTAGCTCA -ACGGAAGTCAACAAGCCTTCACGT -ACGGAAGTCAACAAGCCTCGTAGT -ACGGAAGTCAACAAGCCTGTCAGT -ACGGAAGTCAACAAGCCTGAAGGT -ACGGAAGTCAACAAGCCTAACCGT -ACGGAAGTCAACAAGCCTTTGTGC -ACGGAAGTCAACAAGCCTCTAAGC -ACGGAAGTCAACAAGCCTACTAGC -ACGGAAGTCAACAAGCCTAGATGC -ACGGAAGTCAACAAGCCTTGAAGG -ACGGAAGTCAACAAGCCTCAATGG -ACGGAAGTCAACAAGCCTATGAGG -ACGGAAGTCAACAAGCCTAATGGG -ACGGAAGTCAACAAGCCTTCCTGA -ACGGAAGTCAACAAGCCTTAGCGA -ACGGAAGTCAACAAGCCTCACAGA -ACGGAAGTCAACAAGCCTGCAAGA -ACGGAAGTCAACAAGCCTGGTTGA -ACGGAAGTCAACAAGCCTTCCGAT -ACGGAAGTCAACAAGCCTTGGCAT -ACGGAAGTCAACAAGCCTCGAGAT -ACGGAAGTCAACAAGCCTTACCAC -ACGGAAGTCAACAAGCCTCAGAAC -ACGGAAGTCAACAAGCCTGTCTAC -ACGGAAGTCAACAAGCCTACGTAC -ACGGAAGTCAACAAGCCTAGTGAC -ACGGAAGTCAACAAGCCTCTGTAG -ACGGAAGTCAACAAGCCTCCTAAG -ACGGAAGTCAACAAGCCTGTTCAG -ACGGAAGTCAACAAGCCTGCATAG -ACGGAAGTCAACAAGCCTGACAAG -ACGGAAGTCAACAAGCCTAAGCAG -ACGGAAGTCAACAAGCCTCGTCAA -ACGGAAGTCAACAAGCCTGCTGAA -ACGGAAGTCAACAAGCCTAGTACG -ACGGAAGTCAACAAGCCTATCCGA -ACGGAAGTCAACAAGCCTATGGGA -ACGGAAGTCAACAAGCCTGTGCAA -ACGGAAGTCAACAAGCCTGAGGAA -ACGGAAGTCAACAAGCCTCAGGTA -ACGGAAGTCAACAAGCCTGACTCT -ACGGAAGTCAACAAGCCTAGTCCT -ACGGAAGTCAACAAGCCTTAAGCC -ACGGAAGTCAACAAGCCTATAGCC -ACGGAAGTCAACAAGCCTTAACCG -ACGGAAGTCAACAAGCCTATGCCA -ACGGAAGTCAACCAGGTTGGAAAC -ACGGAAGTCAACCAGGTTAACACC -ACGGAAGTCAACCAGGTTATCGAG -ACGGAAGTCAACCAGGTTCTCCTT -ACGGAAGTCAACCAGGTTCCTGTT -ACGGAAGTCAACCAGGTTCGGTTT -ACGGAAGTCAACCAGGTTGTGGTT -ACGGAAGTCAACCAGGTTGCCTTT -ACGGAAGTCAACCAGGTTGGTCTT -ACGGAAGTCAACCAGGTTACGCTT -ACGGAAGTCAACCAGGTTAGCGTT -ACGGAAGTCAACCAGGTTTTCGTC -ACGGAAGTCAACCAGGTTTCTCTC -ACGGAAGTCAACCAGGTTTGGATC -ACGGAAGTCAACCAGGTTCACTTC -ACGGAAGTCAACCAGGTTGTACTC -ACGGAAGTCAACCAGGTTGATGTC -ACGGAAGTCAACCAGGTTACAGTC -ACGGAAGTCAACCAGGTTTTGCTG -ACGGAAGTCAACCAGGTTTCCATG -ACGGAAGTCAACCAGGTTTGTGTG -ACGGAAGTCAACCAGGTTCTAGTG -ACGGAAGTCAACCAGGTTCATCTG -ACGGAAGTCAACCAGGTTGAGTTG -ACGGAAGTCAACCAGGTTAGACTG -ACGGAAGTCAACCAGGTTTCGGTA -ACGGAAGTCAACCAGGTTTGCCTA -ACGGAAGTCAACCAGGTTCCACTA -ACGGAAGTCAACCAGGTTGGAGTA -ACGGAAGTCAACCAGGTTTCGTCT -ACGGAAGTCAACCAGGTTTGCACT -ACGGAAGTCAACCAGGTTCTGACT -ACGGAAGTCAACCAGGTTCAACCT -ACGGAAGTCAACCAGGTTGCTACT -ACGGAAGTCAACCAGGTTGGATCT -ACGGAAGTCAACCAGGTTAAGGCT -ACGGAAGTCAACCAGGTTTCAACC -ACGGAAGTCAACCAGGTTTGTTCC -ACGGAAGTCAACCAGGTTATTCCC -ACGGAAGTCAACCAGGTTTTCTCG -ACGGAAGTCAACCAGGTTTAGACG -ACGGAAGTCAACCAGGTTGTAACG -ACGGAAGTCAACCAGGTTACTTCG -ACGGAAGTCAACCAGGTTTACGCA -ACGGAAGTCAACCAGGTTCTTGCA -ACGGAAGTCAACCAGGTTCGAACA -ACGGAAGTCAACCAGGTTCAGTCA -ACGGAAGTCAACCAGGTTGATCCA -ACGGAAGTCAACCAGGTTACGACA -ACGGAAGTCAACCAGGTTAGCTCA -ACGGAAGTCAACCAGGTTTCACGT -ACGGAAGTCAACCAGGTTCGTAGT -ACGGAAGTCAACCAGGTTGTCAGT -ACGGAAGTCAACCAGGTTGAAGGT -ACGGAAGTCAACCAGGTTAACCGT -ACGGAAGTCAACCAGGTTTTGTGC -ACGGAAGTCAACCAGGTTCTAAGC -ACGGAAGTCAACCAGGTTACTAGC -ACGGAAGTCAACCAGGTTAGATGC -ACGGAAGTCAACCAGGTTTGAAGG -ACGGAAGTCAACCAGGTTCAATGG -ACGGAAGTCAACCAGGTTATGAGG -ACGGAAGTCAACCAGGTTAATGGG -ACGGAAGTCAACCAGGTTTCCTGA -ACGGAAGTCAACCAGGTTTAGCGA -ACGGAAGTCAACCAGGTTCACAGA -ACGGAAGTCAACCAGGTTGCAAGA -ACGGAAGTCAACCAGGTTGGTTGA -ACGGAAGTCAACCAGGTTTCCGAT -ACGGAAGTCAACCAGGTTTGGCAT -ACGGAAGTCAACCAGGTTCGAGAT -ACGGAAGTCAACCAGGTTTACCAC -ACGGAAGTCAACCAGGTTCAGAAC -ACGGAAGTCAACCAGGTTGTCTAC -ACGGAAGTCAACCAGGTTACGTAC -ACGGAAGTCAACCAGGTTAGTGAC -ACGGAAGTCAACCAGGTTCTGTAG -ACGGAAGTCAACCAGGTTCCTAAG -ACGGAAGTCAACCAGGTTGTTCAG -ACGGAAGTCAACCAGGTTGCATAG -ACGGAAGTCAACCAGGTTGACAAG -ACGGAAGTCAACCAGGTTAAGCAG -ACGGAAGTCAACCAGGTTCGTCAA -ACGGAAGTCAACCAGGTTGCTGAA -ACGGAAGTCAACCAGGTTAGTACG -ACGGAAGTCAACCAGGTTATCCGA -ACGGAAGTCAACCAGGTTATGGGA -ACGGAAGTCAACCAGGTTGTGCAA -ACGGAAGTCAACCAGGTTGAGGAA -ACGGAAGTCAACCAGGTTCAGGTA -ACGGAAGTCAACCAGGTTGACTCT -ACGGAAGTCAACCAGGTTAGTCCT -ACGGAAGTCAACCAGGTTTAAGCC -ACGGAAGTCAACCAGGTTATAGCC -ACGGAAGTCAACCAGGTTTAACCG -ACGGAAGTCAACCAGGTTATGCCA -ACGGAAGTCAACTAGGCAGGAAAC -ACGGAAGTCAACTAGGCAAACACC -ACGGAAGTCAACTAGGCAATCGAG -ACGGAAGTCAACTAGGCACTCCTT -ACGGAAGTCAACTAGGCACCTGTT -ACGGAAGTCAACTAGGCACGGTTT -ACGGAAGTCAACTAGGCAGTGGTT -ACGGAAGTCAACTAGGCAGCCTTT -ACGGAAGTCAACTAGGCAGGTCTT -ACGGAAGTCAACTAGGCAACGCTT -ACGGAAGTCAACTAGGCAAGCGTT -ACGGAAGTCAACTAGGCATTCGTC -ACGGAAGTCAACTAGGCATCTCTC -ACGGAAGTCAACTAGGCATGGATC -ACGGAAGTCAACTAGGCACACTTC -ACGGAAGTCAACTAGGCAGTACTC -ACGGAAGTCAACTAGGCAGATGTC -ACGGAAGTCAACTAGGCAACAGTC -ACGGAAGTCAACTAGGCATTGCTG -ACGGAAGTCAACTAGGCATCCATG -ACGGAAGTCAACTAGGCATGTGTG -ACGGAAGTCAACTAGGCACTAGTG -ACGGAAGTCAACTAGGCACATCTG -ACGGAAGTCAACTAGGCAGAGTTG -ACGGAAGTCAACTAGGCAAGACTG -ACGGAAGTCAACTAGGCATCGGTA -ACGGAAGTCAACTAGGCATGCCTA -ACGGAAGTCAACTAGGCACCACTA -ACGGAAGTCAACTAGGCAGGAGTA -ACGGAAGTCAACTAGGCATCGTCT -ACGGAAGTCAACTAGGCATGCACT -ACGGAAGTCAACTAGGCACTGACT -ACGGAAGTCAACTAGGCACAACCT -ACGGAAGTCAACTAGGCAGCTACT -ACGGAAGTCAACTAGGCAGGATCT -ACGGAAGTCAACTAGGCAAAGGCT -ACGGAAGTCAACTAGGCATCAACC -ACGGAAGTCAACTAGGCATGTTCC -ACGGAAGTCAACTAGGCAATTCCC -ACGGAAGTCAACTAGGCATTCTCG -ACGGAAGTCAACTAGGCATAGACG -ACGGAAGTCAACTAGGCAGTAACG -ACGGAAGTCAACTAGGCAACTTCG -ACGGAAGTCAACTAGGCATACGCA -ACGGAAGTCAACTAGGCACTTGCA -ACGGAAGTCAACTAGGCACGAACA -ACGGAAGTCAACTAGGCACAGTCA -ACGGAAGTCAACTAGGCAGATCCA -ACGGAAGTCAACTAGGCAACGACA -ACGGAAGTCAACTAGGCAAGCTCA -ACGGAAGTCAACTAGGCATCACGT -ACGGAAGTCAACTAGGCACGTAGT -ACGGAAGTCAACTAGGCAGTCAGT -ACGGAAGTCAACTAGGCAGAAGGT -ACGGAAGTCAACTAGGCAAACCGT -ACGGAAGTCAACTAGGCATTGTGC -ACGGAAGTCAACTAGGCACTAAGC -ACGGAAGTCAACTAGGCAACTAGC -ACGGAAGTCAACTAGGCAAGATGC -ACGGAAGTCAACTAGGCATGAAGG -ACGGAAGTCAACTAGGCACAATGG -ACGGAAGTCAACTAGGCAATGAGG -ACGGAAGTCAACTAGGCAAATGGG -ACGGAAGTCAACTAGGCATCCTGA -ACGGAAGTCAACTAGGCATAGCGA -ACGGAAGTCAACTAGGCACACAGA -ACGGAAGTCAACTAGGCAGCAAGA -ACGGAAGTCAACTAGGCAGGTTGA -ACGGAAGTCAACTAGGCATCCGAT -ACGGAAGTCAACTAGGCATGGCAT -ACGGAAGTCAACTAGGCACGAGAT -ACGGAAGTCAACTAGGCATACCAC -ACGGAAGTCAACTAGGCACAGAAC -ACGGAAGTCAACTAGGCAGTCTAC -ACGGAAGTCAACTAGGCAACGTAC -ACGGAAGTCAACTAGGCAAGTGAC -ACGGAAGTCAACTAGGCACTGTAG -ACGGAAGTCAACTAGGCACCTAAG -ACGGAAGTCAACTAGGCAGTTCAG -ACGGAAGTCAACTAGGCAGCATAG -ACGGAAGTCAACTAGGCAGACAAG -ACGGAAGTCAACTAGGCAAAGCAG -ACGGAAGTCAACTAGGCACGTCAA -ACGGAAGTCAACTAGGCAGCTGAA -ACGGAAGTCAACTAGGCAAGTACG -ACGGAAGTCAACTAGGCAATCCGA -ACGGAAGTCAACTAGGCAATGGGA -ACGGAAGTCAACTAGGCAGTGCAA -ACGGAAGTCAACTAGGCAGAGGAA -ACGGAAGTCAACTAGGCACAGGTA -ACGGAAGTCAACTAGGCAGACTCT -ACGGAAGTCAACTAGGCAAGTCCT -ACGGAAGTCAACTAGGCATAAGCC -ACGGAAGTCAACTAGGCAATAGCC -ACGGAAGTCAACTAGGCATAACCG -ACGGAAGTCAACTAGGCAATGCCA -ACGGAAGTCAACAAGGACGGAAAC -ACGGAAGTCAACAAGGACAACACC -ACGGAAGTCAACAAGGACATCGAG -ACGGAAGTCAACAAGGACCTCCTT -ACGGAAGTCAACAAGGACCCTGTT -ACGGAAGTCAACAAGGACCGGTTT -ACGGAAGTCAACAAGGACGTGGTT -ACGGAAGTCAACAAGGACGCCTTT -ACGGAAGTCAACAAGGACGGTCTT -ACGGAAGTCAACAAGGACACGCTT -ACGGAAGTCAACAAGGACAGCGTT -ACGGAAGTCAACAAGGACTTCGTC -ACGGAAGTCAACAAGGACTCTCTC -ACGGAAGTCAACAAGGACTGGATC -ACGGAAGTCAACAAGGACCACTTC -ACGGAAGTCAACAAGGACGTACTC -ACGGAAGTCAACAAGGACGATGTC -ACGGAAGTCAACAAGGACACAGTC -ACGGAAGTCAACAAGGACTTGCTG -ACGGAAGTCAACAAGGACTCCATG -ACGGAAGTCAACAAGGACTGTGTG -ACGGAAGTCAACAAGGACCTAGTG -ACGGAAGTCAACAAGGACCATCTG -ACGGAAGTCAACAAGGACGAGTTG -ACGGAAGTCAACAAGGACAGACTG -ACGGAAGTCAACAAGGACTCGGTA -ACGGAAGTCAACAAGGACTGCCTA -ACGGAAGTCAACAAGGACCCACTA -ACGGAAGTCAACAAGGACGGAGTA -ACGGAAGTCAACAAGGACTCGTCT -ACGGAAGTCAACAAGGACTGCACT -ACGGAAGTCAACAAGGACCTGACT -ACGGAAGTCAACAAGGACCAACCT -ACGGAAGTCAACAAGGACGCTACT -ACGGAAGTCAACAAGGACGGATCT -ACGGAAGTCAACAAGGACAAGGCT -ACGGAAGTCAACAAGGACTCAACC -ACGGAAGTCAACAAGGACTGTTCC -ACGGAAGTCAACAAGGACATTCCC -ACGGAAGTCAACAAGGACTTCTCG -ACGGAAGTCAACAAGGACTAGACG -ACGGAAGTCAACAAGGACGTAACG -ACGGAAGTCAACAAGGACACTTCG -ACGGAAGTCAACAAGGACTACGCA -ACGGAAGTCAACAAGGACCTTGCA -ACGGAAGTCAACAAGGACCGAACA -ACGGAAGTCAACAAGGACCAGTCA -ACGGAAGTCAACAAGGACGATCCA -ACGGAAGTCAACAAGGACACGACA -ACGGAAGTCAACAAGGACAGCTCA -ACGGAAGTCAACAAGGACTCACGT -ACGGAAGTCAACAAGGACCGTAGT -ACGGAAGTCAACAAGGACGTCAGT -ACGGAAGTCAACAAGGACGAAGGT -ACGGAAGTCAACAAGGACAACCGT -ACGGAAGTCAACAAGGACTTGTGC -ACGGAAGTCAACAAGGACCTAAGC -ACGGAAGTCAACAAGGACACTAGC -ACGGAAGTCAACAAGGACAGATGC -ACGGAAGTCAACAAGGACTGAAGG -ACGGAAGTCAACAAGGACCAATGG -ACGGAAGTCAACAAGGACATGAGG -ACGGAAGTCAACAAGGACAATGGG -ACGGAAGTCAACAAGGACTCCTGA -ACGGAAGTCAACAAGGACTAGCGA -ACGGAAGTCAACAAGGACCACAGA -ACGGAAGTCAACAAGGACGCAAGA -ACGGAAGTCAACAAGGACGGTTGA -ACGGAAGTCAACAAGGACTCCGAT -ACGGAAGTCAACAAGGACTGGCAT -ACGGAAGTCAACAAGGACCGAGAT -ACGGAAGTCAACAAGGACTACCAC -ACGGAAGTCAACAAGGACCAGAAC -ACGGAAGTCAACAAGGACGTCTAC -ACGGAAGTCAACAAGGACACGTAC -ACGGAAGTCAACAAGGACAGTGAC -ACGGAAGTCAACAAGGACCTGTAG -ACGGAAGTCAACAAGGACCCTAAG -ACGGAAGTCAACAAGGACGTTCAG -ACGGAAGTCAACAAGGACGCATAG -ACGGAAGTCAACAAGGACGACAAG -ACGGAAGTCAACAAGGACAAGCAG -ACGGAAGTCAACAAGGACCGTCAA -ACGGAAGTCAACAAGGACGCTGAA -ACGGAAGTCAACAAGGACAGTACG -ACGGAAGTCAACAAGGACATCCGA -ACGGAAGTCAACAAGGACATGGGA -ACGGAAGTCAACAAGGACGTGCAA -ACGGAAGTCAACAAGGACGAGGAA -ACGGAAGTCAACAAGGACCAGGTA -ACGGAAGTCAACAAGGACGACTCT -ACGGAAGTCAACAAGGACAGTCCT -ACGGAAGTCAACAAGGACTAAGCC -ACGGAAGTCAACAAGGACATAGCC -ACGGAAGTCAACAAGGACTAACCG -ACGGAAGTCAACAAGGACATGCCA -ACGGAAGTCAACCAGAAGGGAAAC -ACGGAAGTCAACCAGAAGAACACC -ACGGAAGTCAACCAGAAGATCGAG -ACGGAAGTCAACCAGAAGCTCCTT -ACGGAAGTCAACCAGAAGCCTGTT -ACGGAAGTCAACCAGAAGCGGTTT -ACGGAAGTCAACCAGAAGGTGGTT -ACGGAAGTCAACCAGAAGGCCTTT -ACGGAAGTCAACCAGAAGGGTCTT -ACGGAAGTCAACCAGAAGACGCTT -ACGGAAGTCAACCAGAAGAGCGTT -ACGGAAGTCAACCAGAAGTTCGTC -ACGGAAGTCAACCAGAAGTCTCTC -ACGGAAGTCAACCAGAAGTGGATC -ACGGAAGTCAACCAGAAGCACTTC -ACGGAAGTCAACCAGAAGGTACTC -ACGGAAGTCAACCAGAAGGATGTC -ACGGAAGTCAACCAGAAGACAGTC -ACGGAAGTCAACCAGAAGTTGCTG -ACGGAAGTCAACCAGAAGTCCATG -ACGGAAGTCAACCAGAAGTGTGTG -ACGGAAGTCAACCAGAAGCTAGTG -ACGGAAGTCAACCAGAAGCATCTG -ACGGAAGTCAACCAGAAGGAGTTG -ACGGAAGTCAACCAGAAGAGACTG -ACGGAAGTCAACCAGAAGTCGGTA -ACGGAAGTCAACCAGAAGTGCCTA -ACGGAAGTCAACCAGAAGCCACTA -ACGGAAGTCAACCAGAAGGGAGTA -ACGGAAGTCAACCAGAAGTCGTCT -ACGGAAGTCAACCAGAAGTGCACT -ACGGAAGTCAACCAGAAGCTGACT -ACGGAAGTCAACCAGAAGCAACCT -ACGGAAGTCAACCAGAAGGCTACT -ACGGAAGTCAACCAGAAGGGATCT -ACGGAAGTCAACCAGAAGAAGGCT -ACGGAAGTCAACCAGAAGTCAACC -ACGGAAGTCAACCAGAAGTGTTCC -ACGGAAGTCAACCAGAAGATTCCC -ACGGAAGTCAACCAGAAGTTCTCG -ACGGAAGTCAACCAGAAGTAGACG -ACGGAAGTCAACCAGAAGGTAACG -ACGGAAGTCAACCAGAAGACTTCG -ACGGAAGTCAACCAGAAGTACGCA -ACGGAAGTCAACCAGAAGCTTGCA -ACGGAAGTCAACCAGAAGCGAACA -ACGGAAGTCAACCAGAAGCAGTCA -ACGGAAGTCAACCAGAAGGATCCA -ACGGAAGTCAACCAGAAGACGACA -ACGGAAGTCAACCAGAAGAGCTCA -ACGGAAGTCAACCAGAAGTCACGT -ACGGAAGTCAACCAGAAGCGTAGT -ACGGAAGTCAACCAGAAGGTCAGT -ACGGAAGTCAACCAGAAGGAAGGT -ACGGAAGTCAACCAGAAGAACCGT -ACGGAAGTCAACCAGAAGTTGTGC -ACGGAAGTCAACCAGAAGCTAAGC -ACGGAAGTCAACCAGAAGACTAGC -ACGGAAGTCAACCAGAAGAGATGC -ACGGAAGTCAACCAGAAGTGAAGG -ACGGAAGTCAACCAGAAGCAATGG -ACGGAAGTCAACCAGAAGATGAGG -ACGGAAGTCAACCAGAAGAATGGG -ACGGAAGTCAACCAGAAGTCCTGA -ACGGAAGTCAACCAGAAGTAGCGA -ACGGAAGTCAACCAGAAGCACAGA -ACGGAAGTCAACCAGAAGGCAAGA -ACGGAAGTCAACCAGAAGGGTTGA -ACGGAAGTCAACCAGAAGTCCGAT -ACGGAAGTCAACCAGAAGTGGCAT -ACGGAAGTCAACCAGAAGCGAGAT -ACGGAAGTCAACCAGAAGTACCAC -ACGGAAGTCAACCAGAAGCAGAAC -ACGGAAGTCAACCAGAAGGTCTAC -ACGGAAGTCAACCAGAAGACGTAC -ACGGAAGTCAACCAGAAGAGTGAC -ACGGAAGTCAACCAGAAGCTGTAG -ACGGAAGTCAACCAGAAGCCTAAG -ACGGAAGTCAACCAGAAGGTTCAG -ACGGAAGTCAACCAGAAGGCATAG -ACGGAAGTCAACCAGAAGGACAAG -ACGGAAGTCAACCAGAAGAAGCAG -ACGGAAGTCAACCAGAAGCGTCAA -ACGGAAGTCAACCAGAAGGCTGAA -ACGGAAGTCAACCAGAAGAGTACG -ACGGAAGTCAACCAGAAGATCCGA -ACGGAAGTCAACCAGAAGATGGGA -ACGGAAGTCAACCAGAAGGTGCAA -ACGGAAGTCAACCAGAAGGAGGAA -ACGGAAGTCAACCAGAAGCAGGTA -ACGGAAGTCAACCAGAAGGACTCT -ACGGAAGTCAACCAGAAGAGTCCT -ACGGAAGTCAACCAGAAGTAAGCC -ACGGAAGTCAACCAGAAGATAGCC -ACGGAAGTCAACCAGAAGTAACCG -ACGGAAGTCAACCAGAAGATGCCA -ACGGAAGTCAACCAACGTGGAAAC -ACGGAAGTCAACCAACGTAACACC -ACGGAAGTCAACCAACGTATCGAG -ACGGAAGTCAACCAACGTCTCCTT -ACGGAAGTCAACCAACGTCCTGTT -ACGGAAGTCAACCAACGTCGGTTT -ACGGAAGTCAACCAACGTGTGGTT -ACGGAAGTCAACCAACGTGCCTTT -ACGGAAGTCAACCAACGTGGTCTT -ACGGAAGTCAACCAACGTACGCTT -ACGGAAGTCAACCAACGTAGCGTT -ACGGAAGTCAACCAACGTTTCGTC -ACGGAAGTCAACCAACGTTCTCTC -ACGGAAGTCAACCAACGTTGGATC -ACGGAAGTCAACCAACGTCACTTC -ACGGAAGTCAACCAACGTGTACTC -ACGGAAGTCAACCAACGTGATGTC -ACGGAAGTCAACCAACGTACAGTC -ACGGAAGTCAACCAACGTTTGCTG -ACGGAAGTCAACCAACGTTCCATG -ACGGAAGTCAACCAACGTTGTGTG -ACGGAAGTCAACCAACGTCTAGTG -ACGGAAGTCAACCAACGTCATCTG -ACGGAAGTCAACCAACGTGAGTTG -ACGGAAGTCAACCAACGTAGACTG -ACGGAAGTCAACCAACGTTCGGTA -ACGGAAGTCAACCAACGTTGCCTA -ACGGAAGTCAACCAACGTCCACTA -ACGGAAGTCAACCAACGTGGAGTA -ACGGAAGTCAACCAACGTTCGTCT -ACGGAAGTCAACCAACGTTGCACT -ACGGAAGTCAACCAACGTCTGACT -ACGGAAGTCAACCAACGTCAACCT -ACGGAAGTCAACCAACGTGCTACT -ACGGAAGTCAACCAACGTGGATCT -ACGGAAGTCAACCAACGTAAGGCT -ACGGAAGTCAACCAACGTTCAACC -ACGGAAGTCAACCAACGTTGTTCC -ACGGAAGTCAACCAACGTATTCCC -ACGGAAGTCAACCAACGTTTCTCG -ACGGAAGTCAACCAACGTTAGACG -ACGGAAGTCAACCAACGTGTAACG -ACGGAAGTCAACCAACGTACTTCG -ACGGAAGTCAACCAACGTTACGCA -ACGGAAGTCAACCAACGTCTTGCA -ACGGAAGTCAACCAACGTCGAACA -ACGGAAGTCAACCAACGTCAGTCA -ACGGAAGTCAACCAACGTGATCCA -ACGGAAGTCAACCAACGTACGACA -ACGGAAGTCAACCAACGTAGCTCA -ACGGAAGTCAACCAACGTTCACGT -ACGGAAGTCAACCAACGTCGTAGT -ACGGAAGTCAACCAACGTGTCAGT -ACGGAAGTCAACCAACGTGAAGGT -ACGGAAGTCAACCAACGTAACCGT -ACGGAAGTCAACCAACGTTTGTGC -ACGGAAGTCAACCAACGTCTAAGC -ACGGAAGTCAACCAACGTACTAGC -ACGGAAGTCAACCAACGTAGATGC -ACGGAAGTCAACCAACGTTGAAGG -ACGGAAGTCAACCAACGTCAATGG -ACGGAAGTCAACCAACGTATGAGG -ACGGAAGTCAACCAACGTAATGGG -ACGGAAGTCAACCAACGTTCCTGA -ACGGAAGTCAACCAACGTTAGCGA -ACGGAAGTCAACCAACGTCACAGA -ACGGAAGTCAACCAACGTGCAAGA -ACGGAAGTCAACCAACGTGGTTGA -ACGGAAGTCAACCAACGTTCCGAT -ACGGAAGTCAACCAACGTTGGCAT -ACGGAAGTCAACCAACGTCGAGAT -ACGGAAGTCAACCAACGTTACCAC -ACGGAAGTCAACCAACGTCAGAAC -ACGGAAGTCAACCAACGTGTCTAC -ACGGAAGTCAACCAACGTACGTAC -ACGGAAGTCAACCAACGTAGTGAC -ACGGAAGTCAACCAACGTCTGTAG -ACGGAAGTCAACCAACGTCCTAAG -ACGGAAGTCAACCAACGTGTTCAG -ACGGAAGTCAACCAACGTGCATAG -ACGGAAGTCAACCAACGTGACAAG -ACGGAAGTCAACCAACGTAAGCAG -ACGGAAGTCAACCAACGTCGTCAA -ACGGAAGTCAACCAACGTGCTGAA -ACGGAAGTCAACCAACGTAGTACG -ACGGAAGTCAACCAACGTATCCGA -ACGGAAGTCAACCAACGTATGGGA -ACGGAAGTCAACCAACGTGTGCAA -ACGGAAGTCAACCAACGTGAGGAA -ACGGAAGTCAACCAACGTCAGGTA -ACGGAAGTCAACCAACGTGACTCT -ACGGAAGTCAACCAACGTAGTCCT -ACGGAAGTCAACCAACGTTAAGCC -ACGGAAGTCAACCAACGTATAGCC -ACGGAAGTCAACCAACGTTAACCG -ACGGAAGTCAACCAACGTATGCCA -ACGGAAGTCAACGAAGCTGGAAAC -ACGGAAGTCAACGAAGCTAACACC -ACGGAAGTCAACGAAGCTATCGAG -ACGGAAGTCAACGAAGCTCTCCTT -ACGGAAGTCAACGAAGCTCCTGTT -ACGGAAGTCAACGAAGCTCGGTTT -ACGGAAGTCAACGAAGCTGTGGTT -ACGGAAGTCAACGAAGCTGCCTTT -ACGGAAGTCAACGAAGCTGGTCTT -ACGGAAGTCAACGAAGCTACGCTT -ACGGAAGTCAACGAAGCTAGCGTT -ACGGAAGTCAACGAAGCTTTCGTC -ACGGAAGTCAACGAAGCTTCTCTC -ACGGAAGTCAACGAAGCTTGGATC -ACGGAAGTCAACGAAGCTCACTTC -ACGGAAGTCAACGAAGCTGTACTC -ACGGAAGTCAACGAAGCTGATGTC -ACGGAAGTCAACGAAGCTACAGTC -ACGGAAGTCAACGAAGCTTTGCTG -ACGGAAGTCAACGAAGCTTCCATG -ACGGAAGTCAACGAAGCTTGTGTG -ACGGAAGTCAACGAAGCTCTAGTG -ACGGAAGTCAACGAAGCTCATCTG -ACGGAAGTCAACGAAGCTGAGTTG -ACGGAAGTCAACGAAGCTAGACTG -ACGGAAGTCAACGAAGCTTCGGTA -ACGGAAGTCAACGAAGCTTGCCTA -ACGGAAGTCAACGAAGCTCCACTA -ACGGAAGTCAACGAAGCTGGAGTA -ACGGAAGTCAACGAAGCTTCGTCT -ACGGAAGTCAACGAAGCTTGCACT -ACGGAAGTCAACGAAGCTCTGACT -ACGGAAGTCAACGAAGCTCAACCT -ACGGAAGTCAACGAAGCTGCTACT -ACGGAAGTCAACGAAGCTGGATCT -ACGGAAGTCAACGAAGCTAAGGCT -ACGGAAGTCAACGAAGCTTCAACC -ACGGAAGTCAACGAAGCTTGTTCC -ACGGAAGTCAACGAAGCTATTCCC -ACGGAAGTCAACGAAGCTTTCTCG -ACGGAAGTCAACGAAGCTTAGACG -ACGGAAGTCAACGAAGCTGTAACG -ACGGAAGTCAACGAAGCTACTTCG -ACGGAAGTCAACGAAGCTTACGCA -ACGGAAGTCAACGAAGCTCTTGCA -ACGGAAGTCAACGAAGCTCGAACA -ACGGAAGTCAACGAAGCTCAGTCA -ACGGAAGTCAACGAAGCTGATCCA -ACGGAAGTCAACGAAGCTACGACA -ACGGAAGTCAACGAAGCTAGCTCA -ACGGAAGTCAACGAAGCTTCACGT -ACGGAAGTCAACGAAGCTCGTAGT -ACGGAAGTCAACGAAGCTGTCAGT -ACGGAAGTCAACGAAGCTGAAGGT -ACGGAAGTCAACGAAGCTAACCGT -ACGGAAGTCAACGAAGCTTTGTGC -ACGGAAGTCAACGAAGCTCTAAGC -ACGGAAGTCAACGAAGCTACTAGC -ACGGAAGTCAACGAAGCTAGATGC -ACGGAAGTCAACGAAGCTTGAAGG -ACGGAAGTCAACGAAGCTCAATGG -ACGGAAGTCAACGAAGCTATGAGG -ACGGAAGTCAACGAAGCTAATGGG -ACGGAAGTCAACGAAGCTTCCTGA -ACGGAAGTCAACGAAGCTTAGCGA -ACGGAAGTCAACGAAGCTCACAGA -ACGGAAGTCAACGAAGCTGCAAGA -ACGGAAGTCAACGAAGCTGGTTGA -ACGGAAGTCAACGAAGCTTCCGAT -ACGGAAGTCAACGAAGCTTGGCAT -ACGGAAGTCAACGAAGCTCGAGAT -ACGGAAGTCAACGAAGCTTACCAC -ACGGAAGTCAACGAAGCTCAGAAC -ACGGAAGTCAACGAAGCTGTCTAC -ACGGAAGTCAACGAAGCTACGTAC -ACGGAAGTCAACGAAGCTAGTGAC -ACGGAAGTCAACGAAGCTCTGTAG -ACGGAAGTCAACGAAGCTCCTAAG -ACGGAAGTCAACGAAGCTGTTCAG -ACGGAAGTCAACGAAGCTGCATAG -ACGGAAGTCAACGAAGCTGACAAG -ACGGAAGTCAACGAAGCTAAGCAG -ACGGAAGTCAACGAAGCTCGTCAA -ACGGAAGTCAACGAAGCTGCTGAA -ACGGAAGTCAACGAAGCTAGTACG -ACGGAAGTCAACGAAGCTATCCGA -ACGGAAGTCAACGAAGCTATGGGA -ACGGAAGTCAACGAAGCTGTGCAA -ACGGAAGTCAACGAAGCTGAGGAA -ACGGAAGTCAACGAAGCTCAGGTA -ACGGAAGTCAACGAAGCTGACTCT -ACGGAAGTCAACGAAGCTAGTCCT -ACGGAAGTCAACGAAGCTTAAGCC -ACGGAAGTCAACGAAGCTATAGCC -ACGGAAGTCAACGAAGCTTAACCG -ACGGAAGTCAACGAAGCTATGCCA -ACGGAAGTCAACACGAGTGGAAAC -ACGGAAGTCAACACGAGTAACACC -ACGGAAGTCAACACGAGTATCGAG -ACGGAAGTCAACACGAGTCTCCTT -ACGGAAGTCAACACGAGTCCTGTT -ACGGAAGTCAACACGAGTCGGTTT -ACGGAAGTCAACACGAGTGTGGTT -ACGGAAGTCAACACGAGTGCCTTT -ACGGAAGTCAACACGAGTGGTCTT -ACGGAAGTCAACACGAGTACGCTT -ACGGAAGTCAACACGAGTAGCGTT -ACGGAAGTCAACACGAGTTTCGTC -ACGGAAGTCAACACGAGTTCTCTC -ACGGAAGTCAACACGAGTTGGATC -ACGGAAGTCAACACGAGTCACTTC -ACGGAAGTCAACACGAGTGTACTC -ACGGAAGTCAACACGAGTGATGTC -ACGGAAGTCAACACGAGTACAGTC -ACGGAAGTCAACACGAGTTTGCTG -ACGGAAGTCAACACGAGTTCCATG -ACGGAAGTCAACACGAGTTGTGTG -ACGGAAGTCAACACGAGTCTAGTG -ACGGAAGTCAACACGAGTCATCTG -ACGGAAGTCAACACGAGTGAGTTG -ACGGAAGTCAACACGAGTAGACTG -ACGGAAGTCAACACGAGTTCGGTA -ACGGAAGTCAACACGAGTTGCCTA -ACGGAAGTCAACACGAGTCCACTA -ACGGAAGTCAACACGAGTGGAGTA -ACGGAAGTCAACACGAGTTCGTCT -ACGGAAGTCAACACGAGTTGCACT -ACGGAAGTCAACACGAGTCTGACT -ACGGAAGTCAACACGAGTCAACCT -ACGGAAGTCAACACGAGTGCTACT -ACGGAAGTCAACACGAGTGGATCT -ACGGAAGTCAACACGAGTAAGGCT -ACGGAAGTCAACACGAGTTCAACC -ACGGAAGTCAACACGAGTTGTTCC -ACGGAAGTCAACACGAGTATTCCC -ACGGAAGTCAACACGAGTTTCTCG -ACGGAAGTCAACACGAGTTAGACG -ACGGAAGTCAACACGAGTGTAACG -ACGGAAGTCAACACGAGTACTTCG -ACGGAAGTCAACACGAGTTACGCA -ACGGAAGTCAACACGAGTCTTGCA -ACGGAAGTCAACACGAGTCGAACA -ACGGAAGTCAACACGAGTCAGTCA -ACGGAAGTCAACACGAGTGATCCA -ACGGAAGTCAACACGAGTACGACA -ACGGAAGTCAACACGAGTAGCTCA -ACGGAAGTCAACACGAGTTCACGT -ACGGAAGTCAACACGAGTCGTAGT -ACGGAAGTCAACACGAGTGTCAGT -ACGGAAGTCAACACGAGTGAAGGT -ACGGAAGTCAACACGAGTAACCGT -ACGGAAGTCAACACGAGTTTGTGC -ACGGAAGTCAACACGAGTCTAAGC -ACGGAAGTCAACACGAGTACTAGC -ACGGAAGTCAACACGAGTAGATGC -ACGGAAGTCAACACGAGTTGAAGG -ACGGAAGTCAACACGAGTCAATGG -ACGGAAGTCAACACGAGTATGAGG -ACGGAAGTCAACACGAGTAATGGG -ACGGAAGTCAACACGAGTTCCTGA -ACGGAAGTCAACACGAGTTAGCGA -ACGGAAGTCAACACGAGTCACAGA -ACGGAAGTCAACACGAGTGCAAGA -ACGGAAGTCAACACGAGTGGTTGA -ACGGAAGTCAACACGAGTTCCGAT -ACGGAAGTCAACACGAGTTGGCAT -ACGGAAGTCAACACGAGTCGAGAT -ACGGAAGTCAACACGAGTTACCAC -ACGGAAGTCAACACGAGTCAGAAC -ACGGAAGTCAACACGAGTGTCTAC -ACGGAAGTCAACACGAGTACGTAC -ACGGAAGTCAACACGAGTAGTGAC -ACGGAAGTCAACACGAGTCTGTAG -ACGGAAGTCAACACGAGTCCTAAG -ACGGAAGTCAACACGAGTGTTCAG -ACGGAAGTCAACACGAGTGCATAG -ACGGAAGTCAACACGAGTGACAAG -ACGGAAGTCAACACGAGTAAGCAG -ACGGAAGTCAACACGAGTCGTCAA -ACGGAAGTCAACACGAGTGCTGAA -ACGGAAGTCAACACGAGTAGTACG -ACGGAAGTCAACACGAGTATCCGA -ACGGAAGTCAACACGAGTATGGGA -ACGGAAGTCAACACGAGTGTGCAA -ACGGAAGTCAACACGAGTGAGGAA -ACGGAAGTCAACACGAGTCAGGTA -ACGGAAGTCAACACGAGTGACTCT -ACGGAAGTCAACACGAGTAGTCCT -ACGGAAGTCAACACGAGTTAAGCC -ACGGAAGTCAACACGAGTATAGCC -ACGGAAGTCAACACGAGTTAACCG -ACGGAAGTCAACACGAGTATGCCA -ACGGAAGTCAACCGAATCGGAAAC -ACGGAAGTCAACCGAATCAACACC -ACGGAAGTCAACCGAATCATCGAG -ACGGAAGTCAACCGAATCCTCCTT -ACGGAAGTCAACCGAATCCCTGTT -ACGGAAGTCAACCGAATCCGGTTT -ACGGAAGTCAACCGAATCGTGGTT -ACGGAAGTCAACCGAATCGCCTTT -ACGGAAGTCAACCGAATCGGTCTT -ACGGAAGTCAACCGAATCACGCTT -ACGGAAGTCAACCGAATCAGCGTT -ACGGAAGTCAACCGAATCTTCGTC -ACGGAAGTCAACCGAATCTCTCTC -ACGGAAGTCAACCGAATCTGGATC -ACGGAAGTCAACCGAATCCACTTC -ACGGAAGTCAACCGAATCGTACTC -ACGGAAGTCAACCGAATCGATGTC -ACGGAAGTCAACCGAATCACAGTC -ACGGAAGTCAACCGAATCTTGCTG -ACGGAAGTCAACCGAATCTCCATG -ACGGAAGTCAACCGAATCTGTGTG -ACGGAAGTCAACCGAATCCTAGTG -ACGGAAGTCAACCGAATCCATCTG -ACGGAAGTCAACCGAATCGAGTTG -ACGGAAGTCAACCGAATCAGACTG -ACGGAAGTCAACCGAATCTCGGTA -ACGGAAGTCAACCGAATCTGCCTA -ACGGAAGTCAACCGAATCCCACTA -ACGGAAGTCAACCGAATCGGAGTA -ACGGAAGTCAACCGAATCTCGTCT -ACGGAAGTCAACCGAATCTGCACT -ACGGAAGTCAACCGAATCCTGACT -ACGGAAGTCAACCGAATCCAACCT -ACGGAAGTCAACCGAATCGCTACT -ACGGAAGTCAACCGAATCGGATCT -ACGGAAGTCAACCGAATCAAGGCT -ACGGAAGTCAACCGAATCTCAACC -ACGGAAGTCAACCGAATCTGTTCC -ACGGAAGTCAACCGAATCATTCCC -ACGGAAGTCAACCGAATCTTCTCG -ACGGAAGTCAACCGAATCTAGACG -ACGGAAGTCAACCGAATCGTAACG -ACGGAAGTCAACCGAATCACTTCG -ACGGAAGTCAACCGAATCTACGCA -ACGGAAGTCAACCGAATCCTTGCA -ACGGAAGTCAACCGAATCCGAACA -ACGGAAGTCAACCGAATCCAGTCA -ACGGAAGTCAACCGAATCGATCCA -ACGGAAGTCAACCGAATCACGACA -ACGGAAGTCAACCGAATCAGCTCA -ACGGAAGTCAACCGAATCTCACGT -ACGGAAGTCAACCGAATCCGTAGT -ACGGAAGTCAACCGAATCGTCAGT -ACGGAAGTCAACCGAATCGAAGGT -ACGGAAGTCAACCGAATCAACCGT -ACGGAAGTCAACCGAATCTTGTGC -ACGGAAGTCAACCGAATCCTAAGC -ACGGAAGTCAACCGAATCACTAGC -ACGGAAGTCAACCGAATCAGATGC -ACGGAAGTCAACCGAATCTGAAGG -ACGGAAGTCAACCGAATCCAATGG -ACGGAAGTCAACCGAATCATGAGG -ACGGAAGTCAACCGAATCAATGGG -ACGGAAGTCAACCGAATCTCCTGA -ACGGAAGTCAACCGAATCTAGCGA -ACGGAAGTCAACCGAATCCACAGA -ACGGAAGTCAACCGAATCGCAAGA -ACGGAAGTCAACCGAATCGGTTGA -ACGGAAGTCAACCGAATCTCCGAT -ACGGAAGTCAACCGAATCTGGCAT -ACGGAAGTCAACCGAATCCGAGAT -ACGGAAGTCAACCGAATCTACCAC -ACGGAAGTCAACCGAATCCAGAAC -ACGGAAGTCAACCGAATCGTCTAC -ACGGAAGTCAACCGAATCACGTAC -ACGGAAGTCAACCGAATCAGTGAC -ACGGAAGTCAACCGAATCCTGTAG -ACGGAAGTCAACCGAATCCCTAAG -ACGGAAGTCAACCGAATCGTTCAG -ACGGAAGTCAACCGAATCGCATAG -ACGGAAGTCAACCGAATCGACAAG -ACGGAAGTCAACCGAATCAAGCAG -ACGGAAGTCAACCGAATCCGTCAA -ACGGAAGTCAACCGAATCGCTGAA -ACGGAAGTCAACCGAATCAGTACG -ACGGAAGTCAACCGAATCATCCGA -ACGGAAGTCAACCGAATCATGGGA -ACGGAAGTCAACCGAATCGTGCAA -ACGGAAGTCAACCGAATCGAGGAA -ACGGAAGTCAACCGAATCCAGGTA -ACGGAAGTCAACCGAATCGACTCT -ACGGAAGTCAACCGAATCAGTCCT -ACGGAAGTCAACCGAATCTAAGCC -ACGGAAGTCAACCGAATCATAGCC -ACGGAAGTCAACCGAATCTAACCG -ACGGAAGTCAACCGAATCATGCCA -ACGGAAGTCAACGGAATGGGAAAC -ACGGAAGTCAACGGAATGAACACC -ACGGAAGTCAACGGAATGATCGAG -ACGGAAGTCAACGGAATGCTCCTT -ACGGAAGTCAACGGAATGCCTGTT -ACGGAAGTCAACGGAATGCGGTTT -ACGGAAGTCAACGGAATGGTGGTT -ACGGAAGTCAACGGAATGGCCTTT -ACGGAAGTCAACGGAATGGGTCTT -ACGGAAGTCAACGGAATGACGCTT -ACGGAAGTCAACGGAATGAGCGTT -ACGGAAGTCAACGGAATGTTCGTC -ACGGAAGTCAACGGAATGTCTCTC -ACGGAAGTCAACGGAATGTGGATC -ACGGAAGTCAACGGAATGCACTTC -ACGGAAGTCAACGGAATGGTACTC -ACGGAAGTCAACGGAATGGATGTC -ACGGAAGTCAACGGAATGACAGTC -ACGGAAGTCAACGGAATGTTGCTG -ACGGAAGTCAACGGAATGTCCATG -ACGGAAGTCAACGGAATGTGTGTG -ACGGAAGTCAACGGAATGCTAGTG -ACGGAAGTCAACGGAATGCATCTG -ACGGAAGTCAACGGAATGGAGTTG -ACGGAAGTCAACGGAATGAGACTG -ACGGAAGTCAACGGAATGTCGGTA -ACGGAAGTCAACGGAATGTGCCTA -ACGGAAGTCAACGGAATGCCACTA -ACGGAAGTCAACGGAATGGGAGTA -ACGGAAGTCAACGGAATGTCGTCT -ACGGAAGTCAACGGAATGTGCACT -ACGGAAGTCAACGGAATGCTGACT -ACGGAAGTCAACGGAATGCAACCT -ACGGAAGTCAACGGAATGGCTACT -ACGGAAGTCAACGGAATGGGATCT -ACGGAAGTCAACGGAATGAAGGCT -ACGGAAGTCAACGGAATGTCAACC -ACGGAAGTCAACGGAATGTGTTCC -ACGGAAGTCAACGGAATGATTCCC -ACGGAAGTCAACGGAATGTTCTCG -ACGGAAGTCAACGGAATGTAGACG -ACGGAAGTCAACGGAATGGTAACG -ACGGAAGTCAACGGAATGACTTCG -ACGGAAGTCAACGGAATGTACGCA -ACGGAAGTCAACGGAATGCTTGCA -ACGGAAGTCAACGGAATGCGAACA -ACGGAAGTCAACGGAATGCAGTCA -ACGGAAGTCAACGGAATGGATCCA -ACGGAAGTCAACGGAATGACGACA -ACGGAAGTCAACGGAATGAGCTCA -ACGGAAGTCAACGGAATGTCACGT -ACGGAAGTCAACGGAATGCGTAGT -ACGGAAGTCAACGGAATGGTCAGT -ACGGAAGTCAACGGAATGGAAGGT -ACGGAAGTCAACGGAATGAACCGT -ACGGAAGTCAACGGAATGTTGTGC -ACGGAAGTCAACGGAATGCTAAGC -ACGGAAGTCAACGGAATGACTAGC -ACGGAAGTCAACGGAATGAGATGC -ACGGAAGTCAACGGAATGTGAAGG -ACGGAAGTCAACGGAATGCAATGG -ACGGAAGTCAACGGAATGATGAGG -ACGGAAGTCAACGGAATGAATGGG -ACGGAAGTCAACGGAATGTCCTGA -ACGGAAGTCAACGGAATGTAGCGA -ACGGAAGTCAACGGAATGCACAGA -ACGGAAGTCAACGGAATGGCAAGA -ACGGAAGTCAACGGAATGGGTTGA -ACGGAAGTCAACGGAATGTCCGAT -ACGGAAGTCAACGGAATGTGGCAT -ACGGAAGTCAACGGAATGCGAGAT -ACGGAAGTCAACGGAATGTACCAC -ACGGAAGTCAACGGAATGCAGAAC -ACGGAAGTCAACGGAATGGTCTAC -ACGGAAGTCAACGGAATGACGTAC -ACGGAAGTCAACGGAATGAGTGAC -ACGGAAGTCAACGGAATGCTGTAG -ACGGAAGTCAACGGAATGCCTAAG -ACGGAAGTCAACGGAATGGTTCAG -ACGGAAGTCAACGGAATGGCATAG -ACGGAAGTCAACGGAATGGACAAG -ACGGAAGTCAACGGAATGAAGCAG -ACGGAAGTCAACGGAATGCGTCAA -ACGGAAGTCAACGGAATGGCTGAA -ACGGAAGTCAACGGAATGAGTACG -ACGGAAGTCAACGGAATGATCCGA -ACGGAAGTCAACGGAATGATGGGA -ACGGAAGTCAACGGAATGGTGCAA -ACGGAAGTCAACGGAATGGAGGAA -ACGGAAGTCAACGGAATGCAGGTA -ACGGAAGTCAACGGAATGGACTCT -ACGGAAGTCAACGGAATGAGTCCT -ACGGAAGTCAACGGAATGTAAGCC -ACGGAAGTCAACGGAATGATAGCC -ACGGAAGTCAACGGAATGTAACCG -ACGGAAGTCAACGGAATGATGCCA -ACGGAAGTCAACCAAGTGGGAAAC -ACGGAAGTCAACCAAGTGAACACC -ACGGAAGTCAACCAAGTGATCGAG -ACGGAAGTCAACCAAGTGCTCCTT -ACGGAAGTCAACCAAGTGCCTGTT -ACGGAAGTCAACCAAGTGCGGTTT -ACGGAAGTCAACCAAGTGGTGGTT -ACGGAAGTCAACCAAGTGGCCTTT -ACGGAAGTCAACCAAGTGGGTCTT -ACGGAAGTCAACCAAGTGACGCTT -ACGGAAGTCAACCAAGTGAGCGTT -ACGGAAGTCAACCAAGTGTTCGTC -ACGGAAGTCAACCAAGTGTCTCTC -ACGGAAGTCAACCAAGTGTGGATC -ACGGAAGTCAACCAAGTGCACTTC -ACGGAAGTCAACCAAGTGGTACTC -ACGGAAGTCAACCAAGTGGATGTC -ACGGAAGTCAACCAAGTGACAGTC -ACGGAAGTCAACCAAGTGTTGCTG -ACGGAAGTCAACCAAGTGTCCATG -ACGGAAGTCAACCAAGTGTGTGTG -ACGGAAGTCAACCAAGTGCTAGTG -ACGGAAGTCAACCAAGTGCATCTG -ACGGAAGTCAACCAAGTGGAGTTG -ACGGAAGTCAACCAAGTGAGACTG -ACGGAAGTCAACCAAGTGTCGGTA -ACGGAAGTCAACCAAGTGTGCCTA -ACGGAAGTCAACCAAGTGCCACTA -ACGGAAGTCAACCAAGTGGGAGTA -ACGGAAGTCAACCAAGTGTCGTCT -ACGGAAGTCAACCAAGTGTGCACT -ACGGAAGTCAACCAAGTGCTGACT -ACGGAAGTCAACCAAGTGCAACCT -ACGGAAGTCAACCAAGTGGCTACT -ACGGAAGTCAACCAAGTGGGATCT -ACGGAAGTCAACCAAGTGAAGGCT -ACGGAAGTCAACCAAGTGTCAACC -ACGGAAGTCAACCAAGTGTGTTCC -ACGGAAGTCAACCAAGTGATTCCC -ACGGAAGTCAACCAAGTGTTCTCG -ACGGAAGTCAACCAAGTGTAGACG -ACGGAAGTCAACCAAGTGGTAACG -ACGGAAGTCAACCAAGTGACTTCG -ACGGAAGTCAACCAAGTGTACGCA -ACGGAAGTCAACCAAGTGCTTGCA -ACGGAAGTCAACCAAGTGCGAACA -ACGGAAGTCAACCAAGTGCAGTCA -ACGGAAGTCAACCAAGTGGATCCA -ACGGAAGTCAACCAAGTGACGACA -ACGGAAGTCAACCAAGTGAGCTCA -ACGGAAGTCAACCAAGTGTCACGT -ACGGAAGTCAACCAAGTGCGTAGT -ACGGAAGTCAACCAAGTGGTCAGT -ACGGAAGTCAACCAAGTGGAAGGT -ACGGAAGTCAACCAAGTGAACCGT -ACGGAAGTCAACCAAGTGTTGTGC -ACGGAAGTCAACCAAGTGCTAAGC -ACGGAAGTCAACCAAGTGACTAGC -ACGGAAGTCAACCAAGTGAGATGC -ACGGAAGTCAACCAAGTGTGAAGG -ACGGAAGTCAACCAAGTGCAATGG -ACGGAAGTCAACCAAGTGATGAGG -ACGGAAGTCAACCAAGTGAATGGG -ACGGAAGTCAACCAAGTGTCCTGA -ACGGAAGTCAACCAAGTGTAGCGA -ACGGAAGTCAACCAAGTGCACAGA -ACGGAAGTCAACCAAGTGGCAAGA -ACGGAAGTCAACCAAGTGGGTTGA -ACGGAAGTCAACCAAGTGTCCGAT -ACGGAAGTCAACCAAGTGTGGCAT -ACGGAAGTCAACCAAGTGCGAGAT -ACGGAAGTCAACCAAGTGTACCAC -ACGGAAGTCAACCAAGTGCAGAAC -ACGGAAGTCAACCAAGTGGTCTAC -ACGGAAGTCAACCAAGTGACGTAC -ACGGAAGTCAACCAAGTGAGTGAC -ACGGAAGTCAACCAAGTGCTGTAG -ACGGAAGTCAACCAAGTGCCTAAG -ACGGAAGTCAACCAAGTGGTTCAG -ACGGAAGTCAACCAAGTGGCATAG -ACGGAAGTCAACCAAGTGGACAAG -ACGGAAGTCAACCAAGTGAAGCAG -ACGGAAGTCAACCAAGTGCGTCAA -ACGGAAGTCAACCAAGTGGCTGAA -ACGGAAGTCAACCAAGTGAGTACG -ACGGAAGTCAACCAAGTGATCCGA -ACGGAAGTCAACCAAGTGATGGGA -ACGGAAGTCAACCAAGTGGTGCAA -ACGGAAGTCAACCAAGTGGAGGAA -ACGGAAGTCAACCAAGTGCAGGTA -ACGGAAGTCAACCAAGTGGACTCT -ACGGAAGTCAACCAAGTGAGTCCT -ACGGAAGTCAACCAAGTGTAAGCC -ACGGAAGTCAACCAAGTGATAGCC -ACGGAAGTCAACCAAGTGTAACCG -ACGGAAGTCAACCAAGTGATGCCA -ACGGAAGTCAACGAAGAGGGAAAC -ACGGAAGTCAACGAAGAGAACACC -ACGGAAGTCAACGAAGAGATCGAG -ACGGAAGTCAACGAAGAGCTCCTT -ACGGAAGTCAACGAAGAGCCTGTT -ACGGAAGTCAACGAAGAGCGGTTT -ACGGAAGTCAACGAAGAGGTGGTT -ACGGAAGTCAACGAAGAGGCCTTT -ACGGAAGTCAACGAAGAGGGTCTT -ACGGAAGTCAACGAAGAGACGCTT -ACGGAAGTCAACGAAGAGAGCGTT -ACGGAAGTCAACGAAGAGTTCGTC -ACGGAAGTCAACGAAGAGTCTCTC -ACGGAAGTCAACGAAGAGTGGATC -ACGGAAGTCAACGAAGAGCACTTC -ACGGAAGTCAACGAAGAGGTACTC -ACGGAAGTCAACGAAGAGGATGTC -ACGGAAGTCAACGAAGAGACAGTC -ACGGAAGTCAACGAAGAGTTGCTG -ACGGAAGTCAACGAAGAGTCCATG -ACGGAAGTCAACGAAGAGTGTGTG -ACGGAAGTCAACGAAGAGCTAGTG -ACGGAAGTCAACGAAGAGCATCTG -ACGGAAGTCAACGAAGAGGAGTTG -ACGGAAGTCAACGAAGAGAGACTG -ACGGAAGTCAACGAAGAGTCGGTA -ACGGAAGTCAACGAAGAGTGCCTA -ACGGAAGTCAACGAAGAGCCACTA -ACGGAAGTCAACGAAGAGGGAGTA -ACGGAAGTCAACGAAGAGTCGTCT -ACGGAAGTCAACGAAGAGTGCACT -ACGGAAGTCAACGAAGAGCTGACT -ACGGAAGTCAACGAAGAGCAACCT -ACGGAAGTCAACGAAGAGGCTACT -ACGGAAGTCAACGAAGAGGGATCT -ACGGAAGTCAACGAAGAGAAGGCT -ACGGAAGTCAACGAAGAGTCAACC -ACGGAAGTCAACGAAGAGTGTTCC -ACGGAAGTCAACGAAGAGATTCCC -ACGGAAGTCAACGAAGAGTTCTCG -ACGGAAGTCAACGAAGAGTAGACG -ACGGAAGTCAACGAAGAGGTAACG -ACGGAAGTCAACGAAGAGACTTCG -ACGGAAGTCAACGAAGAGTACGCA -ACGGAAGTCAACGAAGAGCTTGCA -ACGGAAGTCAACGAAGAGCGAACA -ACGGAAGTCAACGAAGAGCAGTCA -ACGGAAGTCAACGAAGAGGATCCA -ACGGAAGTCAACGAAGAGACGACA -ACGGAAGTCAACGAAGAGAGCTCA -ACGGAAGTCAACGAAGAGTCACGT -ACGGAAGTCAACGAAGAGCGTAGT -ACGGAAGTCAACGAAGAGGTCAGT -ACGGAAGTCAACGAAGAGGAAGGT -ACGGAAGTCAACGAAGAGAACCGT -ACGGAAGTCAACGAAGAGTTGTGC -ACGGAAGTCAACGAAGAGCTAAGC -ACGGAAGTCAACGAAGAGACTAGC -ACGGAAGTCAACGAAGAGAGATGC -ACGGAAGTCAACGAAGAGTGAAGG -ACGGAAGTCAACGAAGAGCAATGG -ACGGAAGTCAACGAAGAGATGAGG -ACGGAAGTCAACGAAGAGAATGGG -ACGGAAGTCAACGAAGAGTCCTGA -ACGGAAGTCAACGAAGAGTAGCGA -ACGGAAGTCAACGAAGAGCACAGA -ACGGAAGTCAACGAAGAGGCAAGA -ACGGAAGTCAACGAAGAGGGTTGA -ACGGAAGTCAACGAAGAGTCCGAT -ACGGAAGTCAACGAAGAGTGGCAT -ACGGAAGTCAACGAAGAGCGAGAT -ACGGAAGTCAACGAAGAGTACCAC -ACGGAAGTCAACGAAGAGCAGAAC -ACGGAAGTCAACGAAGAGGTCTAC -ACGGAAGTCAACGAAGAGACGTAC -ACGGAAGTCAACGAAGAGAGTGAC -ACGGAAGTCAACGAAGAGCTGTAG -ACGGAAGTCAACGAAGAGCCTAAG -ACGGAAGTCAACGAAGAGGTTCAG -ACGGAAGTCAACGAAGAGGCATAG -ACGGAAGTCAACGAAGAGGACAAG -ACGGAAGTCAACGAAGAGAAGCAG -ACGGAAGTCAACGAAGAGCGTCAA -ACGGAAGTCAACGAAGAGGCTGAA -ACGGAAGTCAACGAAGAGAGTACG -ACGGAAGTCAACGAAGAGATCCGA -ACGGAAGTCAACGAAGAGATGGGA -ACGGAAGTCAACGAAGAGGTGCAA -ACGGAAGTCAACGAAGAGGAGGAA -ACGGAAGTCAACGAAGAGCAGGTA -ACGGAAGTCAACGAAGAGGACTCT -ACGGAAGTCAACGAAGAGAGTCCT -ACGGAAGTCAACGAAGAGTAAGCC -ACGGAAGTCAACGAAGAGATAGCC -ACGGAAGTCAACGAAGAGTAACCG -ACGGAAGTCAACGAAGAGATGCCA -ACGGAAGTCAACGTACAGGGAAAC -ACGGAAGTCAACGTACAGAACACC -ACGGAAGTCAACGTACAGATCGAG -ACGGAAGTCAACGTACAGCTCCTT -ACGGAAGTCAACGTACAGCCTGTT -ACGGAAGTCAACGTACAGCGGTTT -ACGGAAGTCAACGTACAGGTGGTT -ACGGAAGTCAACGTACAGGCCTTT -ACGGAAGTCAACGTACAGGGTCTT -ACGGAAGTCAACGTACAGACGCTT -ACGGAAGTCAACGTACAGAGCGTT -ACGGAAGTCAACGTACAGTTCGTC -ACGGAAGTCAACGTACAGTCTCTC -ACGGAAGTCAACGTACAGTGGATC -ACGGAAGTCAACGTACAGCACTTC -ACGGAAGTCAACGTACAGGTACTC -ACGGAAGTCAACGTACAGGATGTC -ACGGAAGTCAACGTACAGACAGTC -ACGGAAGTCAACGTACAGTTGCTG -ACGGAAGTCAACGTACAGTCCATG -ACGGAAGTCAACGTACAGTGTGTG -ACGGAAGTCAACGTACAGCTAGTG -ACGGAAGTCAACGTACAGCATCTG -ACGGAAGTCAACGTACAGGAGTTG -ACGGAAGTCAACGTACAGAGACTG -ACGGAAGTCAACGTACAGTCGGTA -ACGGAAGTCAACGTACAGTGCCTA -ACGGAAGTCAACGTACAGCCACTA -ACGGAAGTCAACGTACAGGGAGTA -ACGGAAGTCAACGTACAGTCGTCT -ACGGAAGTCAACGTACAGTGCACT -ACGGAAGTCAACGTACAGCTGACT -ACGGAAGTCAACGTACAGCAACCT -ACGGAAGTCAACGTACAGGCTACT -ACGGAAGTCAACGTACAGGGATCT -ACGGAAGTCAACGTACAGAAGGCT -ACGGAAGTCAACGTACAGTCAACC -ACGGAAGTCAACGTACAGTGTTCC -ACGGAAGTCAACGTACAGATTCCC -ACGGAAGTCAACGTACAGTTCTCG -ACGGAAGTCAACGTACAGTAGACG -ACGGAAGTCAACGTACAGGTAACG -ACGGAAGTCAACGTACAGACTTCG -ACGGAAGTCAACGTACAGTACGCA -ACGGAAGTCAACGTACAGCTTGCA -ACGGAAGTCAACGTACAGCGAACA -ACGGAAGTCAACGTACAGCAGTCA -ACGGAAGTCAACGTACAGGATCCA -ACGGAAGTCAACGTACAGACGACA -ACGGAAGTCAACGTACAGAGCTCA -ACGGAAGTCAACGTACAGTCACGT -ACGGAAGTCAACGTACAGCGTAGT -ACGGAAGTCAACGTACAGGTCAGT -ACGGAAGTCAACGTACAGGAAGGT -ACGGAAGTCAACGTACAGAACCGT -ACGGAAGTCAACGTACAGTTGTGC -ACGGAAGTCAACGTACAGCTAAGC -ACGGAAGTCAACGTACAGACTAGC -ACGGAAGTCAACGTACAGAGATGC -ACGGAAGTCAACGTACAGTGAAGG -ACGGAAGTCAACGTACAGCAATGG -ACGGAAGTCAACGTACAGATGAGG -ACGGAAGTCAACGTACAGAATGGG -ACGGAAGTCAACGTACAGTCCTGA -ACGGAAGTCAACGTACAGTAGCGA -ACGGAAGTCAACGTACAGCACAGA -ACGGAAGTCAACGTACAGGCAAGA -ACGGAAGTCAACGTACAGGGTTGA -ACGGAAGTCAACGTACAGTCCGAT -ACGGAAGTCAACGTACAGTGGCAT -ACGGAAGTCAACGTACAGCGAGAT -ACGGAAGTCAACGTACAGTACCAC -ACGGAAGTCAACGTACAGCAGAAC -ACGGAAGTCAACGTACAGGTCTAC -ACGGAAGTCAACGTACAGACGTAC -ACGGAAGTCAACGTACAGAGTGAC -ACGGAAGTCAACGTACAGCTGTAG -ACGGAAGTCAACGTACAGCCTAAG -ACGGAAGTCAACGTACAGGTTCAG -ACGGAAGTCAACGTACAGGCATAG -ACGGAAGTCAACGTACAGGACAAG -ACGGAAGTCAACGTACAGAAGCAG -ACGGAAGTCAACGTACAGCGTCAA -ACGGAAGTCAACGTACAGGCTGAA -ACGGAAGTCAACGTACAGAGTACG -ACGGAAGTCAACGTACAGATCCGA -ACGGAAGTCAACGTACAGATGGGA -ACGGAAGTCAACGTACAGGTGCAA -ACGGAAGTCAACGTACAGGAGGAA -ACGGAAGTCAACGTACAGCAGGTA -ACGGAAGTCAACGTACAGGACTCT -ACGGAAGTCAACGTACAGAGTCCT -ACGGAAGTCAACGTACAGTAAGCC -ACGGAAGTCAACGTACAGATAGCC -ACGGAAGTCAACGTACAGTAACCG -ACGGAAGTCAACGTACAGATGCCA -ACGGAAGTCAACTCTGACGGAAAC -ACGGAAGTCAACTCTGACAACACC -ACGGAAGTCAACTCTGACATCGAG -ACGGAAGTCAACTCTGACCTCCTT -ACGGAAGTCAACTCTGACCCTGTT -ACGGAAGTCAACTCTGACCGGTTT -ACGGAAGTCAACTCTGACGTGGTT -ACGGAAGTCAACTCTGACGCCTTT -ACGGAAGTCAACTCTGACGGTCTT -ACGGAAGTCAACTCTGACACGCTT -ACGGAAGTCAACTCTGACAGCGTT -ACGGAAGTCAACTCTGACTTCGTC -ACGGAAGTCAACTCTGACTCTCTC -ACGGAAGTCAACTCTGACTGGATC -ACGGAAGTCAACTCTGACCACTTC -ACGGAAGTCAACTCTGACGTACTC -ACGGAAGTCAACTCTGACGATGTC -ACGGAAGTCAACTCTGACACAGTC -ACGGAAGTCAACTCTGACTTGCTG -ACGGAAGTCAACTCTGACTCCATG -ACGGAAGTCAACTCTGACTGTGTG -ACGGAAGTCAACTCTGACCTAGTG -ACGGAAGTCAACTCTGACCATCTG -ACGGAAGTCAACTCTGACGAGTTG -ACGGAAGTCAACTCTGACAGACTG -ACGGAAGTCAACTCTGACTCGGTA -ACGGAAGTCAACTCTGACTGCCTA -ACGGAAGTCAACTCTGACCCACTA -ACGGAAGTCAACTCTGACGGAGTA -ACGGAAGTCAACTCTGACTCGTCT -ACGGAAGTCAACTCTGACTGCACT -ACGGAAGTCAACTCTGACCTGACT -ACGGAAGTCAACTCTGACCAACCT -ACGGAAGTCAACTCTGACGCTACT -ACGGAAGTCAACTCTGACGGATCT -ACGGAAGTCAACTCTGACAAGGCT -ACGGAAGTCAACTCTGACTCAACC -ACGGAAGTCAACTCTGACTGTTCC -ACGGAAGTCAACTCTGACATTCCC -ACGGAAGTCAACTCTGACTTCTCG -ACGGAAGTCAACTCTGACTAGACG -ACGGAAGTCAACTCTGACGTAACG -ACGGAAGTCAACTCTGACACTTCG -ACGGAAGTCAACTCTGACTACGCA -ACGGAAGTCAACTCTGACCTTGCA -ACGGAAGTCAACTCTGACCGAACA -ACGGAAGTCAACTCTGACCAGTCA -ACGGAAGTCAACTCTGACGATCCA -ACGGAAGTCAACTCTGACACGACA -ACGGAAGTCAACTCTGACAGCTCA -ACGGAAGTCAACTCTGACTCACGT -ACGGAAGTCAACTCTGACCGTAGT -ACGGAAGTCAACTCTGACGTCAGT -ACGGAAGTCAACTCTGACGAAGGT -ACGGAAGTCAACTCTGACAACCGT -ACGGAAGTCAACTCTGACTTGTGC -ACGGAAGTCAACTCTGACCTAAGC -ACGGAAGTCAACTCTGACACTAGC -ACGGAAGTCAACTCTGACAGATGC -ACGGAAGTCAACTCTGACTGAAGG -ACGGAAGTCAACTCTGACCAATGG -ACGGAAGTCAACTCTGACATGAGG -ACGGAAGTCAACTCTGACAATGGG -ACGGAAGTCAACTCTGACTCCTGA -ACGGAAGTCAACTCTGACTAGCGA -ACGGAAGTCAACTCTGACCACAGA -ACGGAAGTCAACTCTGACGCAAGA -ACGGAAGTCAACTCTGACGGTTGA -ACGGAAGTCAACTCTGACTCCGAT -ACGGAAGTCAACTCTGACTGGCAT -ACGGAAGTCAACTCTGACCGAGAT -ACGGAAGTCAACTCTGACTACCAC -ACGGAAGTCAACTCTGACCAGAAC -ACGGAAGTCAACTCTGACGTCTAC -ACGGAAGTCAACTCTGACACGTAC -ACGGAAGTCAACTCTGACAGTGAC -ACGGAAGTCAACTCTGACCTGTAG -ACGGAAGTCAACTCTGACCCTAAG -ACGGAAGTCAACTCTGACGTTCAG -ACGGAAGTCAACTCTGACGCATAG -ACGGAAGTCAACTCTGACGACAAG -ACGGAAGTCAACTCTGACAAGCAG -ACGGAAGTCAACTCTGACCGTCAA -ACGGAAGTCAACTCTGACGCTGAA -ACGGAAGTCAACTCTGACAGTACG -ACGGAAGTCAACTCTGACATCCGA -ACGGAAGTCAACTCTGACATGGGA -ACGGAAGTCAACTCTGACGTGCAA -ACGGAAGTCAACTCTGACGAGGAA -ACGGAAGTCAACTCTGACCAGGTA -ACGGAAGTCAACTCTGACGACTCT -ACGGAAGTCAACTCTGACAGTCCT -ACGGAAGTCAACTCTGACTAAGCC -ACGGAAGTCAACTCTGACATAGCC -ACGGAAGTCAACTCTGACTAACCG -ACGGAAGTCAACTCTGACATGCCA -ACGGAAGTCAACCCTAGTGGAAAC -ACGGAAGTCAACCCTAGTAACACC -ACGGAAGTCAACCCTAGTATCGAG -ACGGAAGTCAACCCTAGTCTCCTT -ACGGAAGTCAACCCTAGTCCTGTT -ACGGAAGTCAACCCTAGTCGGTTT -ACGGAAGTCAACCCTAGTGTGGTT -ACGGAAGTCAACCCTAGTGCCTTT -ACGGAAGTCAACCCTAGTGGTCTT -ACGGAAGTCAACCCTAGTACGCTT -ACGGAAGTCAACCCTAGTAGCGTT -ACGGAAGTCAACCCTAGTTTCGTC -ACGGAAGTCAACCCTAGTTCTCTC -ACGGAAGTCAACCCTAGTTGGATC -ACGGAAGTCAACCCTAGTCACTTC -ACGGAAGTCAACCCTAGTGTACTC -ACGGAAGTCAACCCTAGTGATGTC -ACGGAAGTCAACCCTAGTACAGTC -ACGGAAGTCAACCCTAGTTTGCTG -ACGGAAGTCAACCCTAGTTCCATG -ACGGAAGTCAACCCTAGTTGTGTG -ACGGAAGTCAACCCTAGTCTAGTG -ACGGAAGTCAACCCTAGTCATCTG -ACGGAAGTCAACCCTAGTGAGTTG -ACGGAAGTCAACCCTAGTAGACTG -ACGGAAGTCAACCCTAGTTCGGTA -ACGGAAGTCAACCCTAGTTGCCTA -ACGGAAGTCAACCCTAGTCCACTA -ACGGAAGTCAACCCTAGTGGAGTA -ACGGAAGTCAACCCTAGTTCGTCT -ACGGAAGTCAACCCTAGTTGCACT -ACGGAAGTCAACCCTAGTCTGACT -ACGGAAGTCAACCCTAGTCAACCT -ACGGAAGTCAACCCTAGTGCTACT -ACGGAAGTCAACCCTAGTGGATCT -ACGGAAGTCAACCCTAGTAAGGCT -ACGGAAGTCAACCCTAGTTCAACC -ACGGAAGTCAACCCTAGTTGTTCC -ACGGAAGTCAACCCTAGTATTCCC -ACGGAAGTCAACCCTAGTTTCTCG -ACGGAAGTCAACCCTAGTTAGACG -ACGGAAGTCAACCCTAGTGTAACG -ACGGAAGTCAACCCTAGTACTTCG -ACGGAAGTCAACCCTAGTTACGCA -ACGGAAGTCAACCCTAGTCTTGCA -ACGGAAGTCAACCCTAGTCGAACA -ACGGAAGTCAACCCTAGTCAGTCA -ACGGAAGTCAACCCTAGTGATCCA -ACGGAAGTCAACCCTAGTACGACA -ACGGAAGTCAACCCTAGTAGCTCA -ACGGAAGTCAACCCTAGTTCACGT -ACGGAAGTCAACCCTAGTCGTAGT -ACGGAAGTCAACCCTAGTGTCAGT -ACGGAAGTCAACCCTAGTGAAGGT -ACGGAAGTCAACCCTAGTAACCGT -ACGGAAGTCAACCCTAGTTTGTGC -ACGGAAGTCAACCCTAGTCTAAGC -ACGGAAGTCAACCCTAGTACTAGC -ACGGAAGTCAACCCTAGTAGATGC -ACGGAAGTCAACCCTAGTTGAAGG -ACGGAAGTCAACCCTAGTCAATGG -ACGGAAGTCAACCCTAGTATGAGG -ACGGAAGTCAACCCTAGTAATGGG -ACGGAAGTCAACCCTAGTTCCTGA -ACGGAAGTCAACCCTAGTTAGCGA -ACGGAAGTCAACCCTAGTCACAGA -ACGGAAGTCAACCCTAGTGCAAGA -ACGGAAGTCAACCCTAGTGGTTGA -ACGGAAGTCAACCCTAGTTCCGAT -ACGGAAGTCAACCCTAGTTGGCAT -ACGGAAGTCAACCCTAGTCGAGAT -ACGGAAGTCAACCCTAGTTACCAC -ACGGAAGTCAACCCTAGTCAGAAC -ACGGAAGTCAACCCTAGTGTCTAC -ACGGAAGTCAACCCTAGTACGTAC -ACGGAAGTCAACCCTAGTAGTGAC -ACGGAAGTCAACCCTAGTCTGTAG -ACGGAAGTCAACCCTAGTCCTAAG -ACGGAAGTCAACCCTAGTGTTCAG -ACGGAAGTCAACCCTAGTGCATAG -ACGGAAGTCAACCCTAGTGACAAG -ACGGAAGTCAACCCTAGTAAGCAG -ACGGAAGTCAACCCTAGTCGTCAA -ACGGAAGTCAACCCTAGTGCTGAA -ACGGAAGTCAACCCTAGTAGTACG -ACGGAAGTCAACCCTAGTATCCGA -ACGGAAGTCAACCCTAGTATGGGA -ACGGAAGTCAACCCTAGTGTGCAA -ACGGAAGTCAACCCTAGTGAGGAA -ACGGAAGTCAACCCTAGTCAGGTA -ACGGAAGTCAACCCTAGTGACTCT -ACGGAAGTCAACCCTAGTAGTCCT -ACGGAAGTCAACCCTAGTTAAGCC -ACGGAAGTCAACCCTAGTATAGCC -ACGGAAGTCAACCCTAGTTAACCG -ACGGAAGTCAACCCTAGTATGCCA -ACGGAAGTCAACGCCTAAGGAAAC -ACGGAAGTCAACGCCTAAAACACC -ACGGAAGTCAACGCCTAAATCGAG -ACGGAAGTCAACGCCTAACTCCTT -ACGGAAGTCAACGCCTAACCTGTT -ACGGAAGTCAACGCCTAACGGTTT -ACGGAAGTCAACGCCTAAGTGGTT -ACGGAAGTCAACGCCTAAGCCTTT -ACGGAAGTCAACGCCTAAGGTCTT -ACGGAAGTCAACGCCTAAACGCTT -ACGGAAGTCAACGCCTAAAGCGTT -ACGGAAGTCAACGCCTAATTCGTC -ACGGAAGTCAACGCCTAATCTCTC -ACGGAAGTCAACGCCTAATGGATC -ACGGAAGTCAACGCCTAACACTTC -ACGGAAGTCAACGCCTAAGTACTC -ACGGAAGTCAACGCCTAAGATGTC -ACGGAAGTCAACGCCTAAACAGTC -ACGGAAGTCAACGCCTAATTGCTG -ACGGAAGTCAACGCCTAATCCATG -ACGGAAGTCAACGCCTAATGTGTG -ACGGAAGTCAACGCCTAACTAGTG -ACGGAAGTCAACGCCTAACATCTG -ACGGAAGTCAACGCCTAAGAGTTG -ACGGAAGTCAACGCCTAAAGACTG -ACGGAAGTCAACGCCTAATCGGTA -ACGGAAGTCAACGCCTAATGCCTA -ACGGAAGTCAACGCCTAACCACTA -ACGGAAGTCAACGCCTAAGGAGTA -ACGGAAGTCAACGCCTAATCGTCT -ACGGAAGTCAACGCCTAATGCACT -ACGGAAGTCAACGCCTAACTGACT -ACGGAAGTCAACGCCTAACAACCT -ACGGAAGTCAACGCCTAAGCTACT -ACGGAAGTCAACGCCTAAGGATCT -ACGGAAGTCAACGCCTAAAAGGCT -ACGGAAGTCAACGCCTAATCAACC -ACGGAAGTCAACGCCTAATGTTCC -ACGGAAGTCAACGCCTAAATTCCC -ACGGAAGTCAACGCCTAATTCTCG -ACGGAAGTCAACGCCTAATAGACG -ACGGAAGTCAACGCCTAAGTAACG -ACGGAAGTCAACGCCTAAACTTCG -ACGGAAGTCAACGCCTAATACGCA -ACGGAAGTCAACGCCTAACTTGCA -ACGGAAGTCAACGCCTAACGAACA -ACGGAAGTCAACGCCTAACAGTCA -ACGGAAGTCAACGCCTAAGATCCA -ACGGAAGTCAACGCCTAAACGACA -ACGGAAGTCAACGCCTAAAGCTCA -ACGGAAGTCAACGCCTAATCACGT -ACGGAAGTCAACGCCTAACGTAGT -ACGGAAGTCAACGCCTAAGTCAGT -ACGGAAGTCAACGCCTAAGAAGGT -ACGGAAGTCAACGCCTAAAACCGT -ACGGAAGTCAACGCCTAATTGTGC -ACGGAAGTCAACGCCTAACTAAGC -ACGGAAGTCAACGCCTAAACTAGC -ACGGAAGTCAACGCCTAAAGATGC -ACGGAAGTCAACGCCTAATGAAGG -ACGGAAGTCAACGCCTAACAATGG -ACGGAAGTCAACGCCTAAATGAGG -ACGGAAGTCAACGCCTAAAATGGG -ACGGAAGTCAACGCCTAATCCTGA -ACGGAAGTCAACGCCTAATAGCGA -ACGGAAGTCAACGCCTAACACAGA -ACGGAAGTCAACGCCTAAGCAAGA -ACGGAAGTCAACGCCTAAGGTTGA -ACGGAAGTCAACGCCTAATCCGAT -ACGGAAGTCAACGCCTAATGGCAT -ACGGAAGTCAACGCCTAACGAGAT -ACGGAAGTCAACGCCTAATACCAC -ACGGAAGTCAACGCCTAACAGAAC -ACGGAAGTCAACGCCTAAGTCTAC -ACGGAAGTCAACGCCTAAACGTAC -ACGGAAGTCAACGCCTAAAGTGAC -ACGGAAGTCAACGCCTAACTGTAG -ACGGAAGTCAACGCCTAACCTAAG -ACGGAAGTCAACGCCTAAGTTCAG -ACGGAAGTCAACGCCTAAGCATAG -ACGGAAGTCAACGCCTAAGACAAG -ACGGAAGTCAACGCCTAAAAGCAG -ACGGAAGTCAACGCCTAACGTCAA -ACGGAAGTCAACGCCTAAGCTGAA -ACGGAAGTCAACGCCTAAAGTACG -ACGGAAGTCAACGCCTAAATCCGA -ACGGAAGTCAACGCCTAAATGGGA -ACGGAAGTCAACGCCTAAGTGCAA -ACGGAAGTCAACGCCTAAGAGGAA -ACGGAAGTCAACGCCTAACAGGTA -ACGGAAGTCAACGCCTAAGACTCT -ACGGAAGTCAACGCCTAAAGTCCT -ACGGAAGTCAACGCCTAATAAGCC -ACGGAAGTCAACGCCTAAATAGCC -ACGGAAGTCAACGCCTAATAACCG -ACGGAAGTCAACGCCTAAATGCCA -ACGGAAGTCAACGCCATAGGAAAC -ACGGAAGTCAACGCCATAAACACC -ACGGAAGTCAACGCCATAATCGAG -ACGGAAGTCAACGCCATACTCCTT -ACGGAAGTCAACGCCATACCTGTT -ACGGAAGTCAACGCCATACGGTTT -ACGGAAGTCAACGCCATAGTGGTT -ACGGAAGTCAACGCCATAGCCTTT -ACGGAAGTCAACGCCATAGGTCTT -ACGGAAGTCAACGCCATAACGCTT -ACGGAAGTCAACGCCATAAGCGTT -ACGGAAGTCAACGCCATATTCGTC -ACGGAAGTCAACGCCATATCTCTC -ACGGAAGTCAACGCCATATGGATC -ACGGAAGTCAACGCCATACACTTC -ACGGAAGTCAACGCCATAGTACTC -ACGGAAGTCAACGCCATAGATGTC -ACGGAAGTCAACGCCATAACAGTC -ACGGAAGTCAACGCCATATTGCTG -ACGGAAGTCAACGCCATATCCATG -ACGGAAGTCAACGCCATATGTGTG -ACGGAAGTCAACGCCATACTAGTG -ACGGAAGTCAACGCCATACATCTG -ACGGAAGTCAACGCCATAGAGTTG -ACGGAAGTCAACGCCATAAGACTG -ACGGAAGTCAACGCCATATCGGTA -ACGGAAGTCAACGCCATATGCCTA -ACGGAAGTCAACGCCATACCACTA -ACGGAAGTCAACGCCATAGGAGTA -ACGGAAGTCAACGCCATATCGTCT -ACGGAAGTCAACGCCATATGCACT -ACGGAAGTCAACGCCATACTGACT -ACGGAAGTCAACGCCATACAACCT -ACGGAAGTCAACGCCATAGCTACT -ACGGAAGTCAACGCCATAGGATCT -ACGGAAGTCAACGCCATAAAGGCT -ACGGAAGTCAACGCCATATCAACC -ACGGAAGTCAACGCCATATGTTCC -ACGGAAGTCAACGCCATAATTCCC -ACGGAAGTCAACGCCATATTCTCG -ACGGAAGTCAACGCCATATAGACG -ACGGAAGTCAACGCCATAGTAACG -ACGGAAGTCAACGCCATAACTTCG -ACGGAAGTCAACGCCATATACGCA -ACGGAAGTCAACGCCATACTTGCA -ACGGAAGTCAACGCCATACGAACA -ACGGAAGTCAACGCCATACAGTCA -ACGGAAGTCAACGCCATAGATCCA -ACGGAAGTCAACGCCATAACGACA -ACGGAAGTCAACGCCATAAGCTCA -ACGGAAGTCAACGCCATATCACGT -ACGGAAGTCAACGCCATACGTAGT -ACGGAAGTCAACGCCATAGTCAGT -ACGGAAGTCAACGCCATAGAAGGT -ACGGAAGTCAACGCCATAAACCGT -ACGGAAGTCAACGCCATATTGTGC -ACGGAAGTCAACGCCATACTAAGC -ACGGAAGTCAACGCCATAACTAGC -ACGGAAGTCAACGCCATAAGATGC -ACGGAAGTCAACGCCATATGAAGG -ACGGAAGTCAACGCCATACAATGG -ACGGAAGTCAACGCCATAATGAGG -ACGGAAGTCAACGCCATAAATGGG -ACGGAAGTCAACGCCATATCCTGA -ACGGAAGTCAACGCCATATAGCGA -ACGGAAGTCAACGCCATACACAGA -ACGGAAGTCAACGCCATAGCAAGA -ACGGAAGTCAACGCCATAGGTTGA -ACGGAAGTCAACGCCATATCCGAT -ACGGAAGTCAACGCCATATGGCAT -ACGGAAGTCAACGCCATACGAGAT -ACGGAAGTCAACGCCATATACCAC -ACGGAAGTCAACGCCATACAGAAC -ACGGAAGTCAACGCCATAGTCTAC -ACGGAAGTCAACGCCATAACGTAC -ACGGAAGTCAACGCCATAAGTGAC -ACGGAAGTCAACGCCATACTGTAG -ACGGAAGTCAACGCCATACCTAAG -ACGGAAGTCAACGCCATAGTTCAG -ACGGAAGTCAACGCCATAGCATAG -ACGGAAGTCAACGCCATAGACAAG -ACGGAAGTCAACGCCATAAAGCAG -ACGGAAGTCAACGCCATACGTCAA -ACGGAAGTCAACGCCATAGCTGAA -ACGGAAGTCAACGCCATAAGTACG -ACGGAAGTCAACGCCATAATCCGA -ACGGAAGTCAACGCCATAATGGGA -ACGGAAGTCAACGCCATAGTGCAA -ACGGAAGTCAACGCCATAGAGGAA -ACGGAAGTCAACGCCATACAGGTA -ACGGAAGTCAACGCCATAGACTCT -ACGGAAGTCAACGCCATAAGTCCT -ACGGAAGTCAACGCCATATAAGCC -ACGGAAGTCAACGCCATAATAGCC -ACGGAAGTCAACGCCATATAACCG -ACGGAAGTCAACGCCATAATGCCA -ACGGAAGTCAACCCGTAAGGAAAC -ACGGAAGTCAACCCGTAAAACACC -ACGGAAGTCAACCCGTAAATCGAG -ACGGAAGTCAACCCGTAACTCCTT -ACGGAAGTCAACCCGTAACCTGTT -ACGGAAGTCAACCCGTAACGGTTT -ACGGAAGTCAACCCGTAAGTGGTT -ACGGAAGTCAACCCGTAAGCCTTT -ACGGAAGTCAACCCGTAAGGTCTT -ACGGAAGTCAACCCGTAAACGCTT -ACGGAAGTCAACCCGTAAAGCGTT -ACGGAAGTCAACCCGTAATTCGTC -ACGGAAGTCAACCCGTAATCTCTC -ACGGAAGTCAACCCGTAATGGATC -ACGGAAGTCAACCCGTAACACTTC -ACGGAAGTCAACCCGTAAGTACTC -ACGGAAGTCAACCCGTAAGATGTC -ACGGAAGTCAACCCGTAAACAGTC -ACGGAAGTCAACCCGTAATTGCTG -ACGGAAGTCAACCCGTAATCCATG -ACGGAAGTCAACCCGTAATGTGTG -ACGGAAGTCAACCCGTAACTAGTG -ACGGAAGTCAACCCGTAACATCTG -ACGGAAGTCAACCCGTAAGAGTTG -ACGGAAGTCAACCCGTAAAGACTG -ACGGAAGTCAACCCGTAATCGGTA -ACGGAAGTCAACCCGTAATGCCTA -ACGGAAGTCAACCCGTAACCACTA -ACGGAAGTCAACCCGTAAGGAGTA -ACGGAAGTCAACCCGTAATCGTCT -ACGGAAGTCAACCCGTAATGCACT -ACGGAAGTCAACCCGTAACTGACT -ACGGAAGTCAACCCGTAACAACCT -ACGGAAGTCAACCCGTAAGCTACT -ACGGAAGTCAACCCGTAAGGATCT -ACGGAAGTCAACCCGTAAAAGGCT -ACGGAAGTCAACCCGTAATCAACC -ACGGAAGTCAACCCGTAATGTTCC -ACGGAAGTCAACCCGTAAATTCCC -ACGGAAGTCAACCCGTAATTCTCG -ACGGAAGTCAACCCGTAATAGACG -ACGGAAGTCAACCCGTAAGTAACG -ACGGAAGTCAACCCGTAAACTTCG -ACGGAAGTCAACCCGTAATACGCA -ACGGAAGTCAACCCGTAACTTGCA -ACGGAAGTCAACCCGTAACGAACA -ACGGAAGTCAACCCGTAACAGTCA -ACGGAAGTCAACCCGTAAGATCCA -ACGGAAGTCAACCCGTAAACGACA -ACGGAAGTCAACCCGTAAAGCTCA -ACGGAAGTCAACCCGTAATCACGT -ACGGAAGTCAACCCGTAACGTAGT -ACGGAAGTCAACCCGTAAGTCAGT -ACGGAAGTCAACCCGTAAGAAGGT -ACGGAAGTCAACCCGTAAAACCGT -ACGGAAGTCAACCCGTAATTGTGC -ACGGAAGTCAACCCGTAACTAAGC -ACGGAAGTCAACCCGTAAACTAGC -ACGGAAGTCAACCCGTAAAGATGC -ACGGAAGTCAACCCGTAATGAAGG -ACGGAAGTCAACCCGTAACAATGG -ACGGAAGTCAACCCGTAAATGAGG -ACGGAAGTCAACCCGTAAAATGGG -ACGGAAGTCAACCCGTAATCCTGA -ACGGAAGTCAACCCGTAATAGCGA -ACGGAAGTCAACCCGTAACACAGA -ACGGAAGTCAACCCGTAAGCAAGA -ACGGAAGTCAACCCGTAAGGTTGA -ACGGAAGTCAACCCGTAATCCGAT -ACGGAAGTCAACCCGTAATGGCAT -ACGGAAGTCAACCCGTAACGAGAT -ACGGAAGTCAACCCGTAATACCAC -ACGGAAGTCAACCCGTAACAGAAC -ACGGAAGTCAACCCGTAAGTCTAC -ACGGAAGTCAACCCGTAAACGTAC -ACGGAAGTCAACCCGTAAAGTGAC -ACGGAAGTCAACCCGTAACTGTAG -ACGGAAGTCAACCCGTAACCTAAG -ACGGAAGTCAACCCGTAAGTTCAG -ACGGAAGTCAACCCGTAAGCATAG -ACGGAAGTCAACCCGTAAGACAAG -ACGGAAGTCAACCCGTAAAAGCAG -ACGGAAGTCAACCCGTAACGTCAA -ACGGAAGTCAACCCGTAAGCTGAA -ACGGAAGTCAACCCGTAAAGTACG -ACGGAAGTCAACCCGTAAATCCGA -ACGGAAGTCAACCCGTAAATGGGA -ACGGAAGTCAACCCGTAAGTGCAA -ACGGAAGTCAACCCGTAAGAGGAA -ACGGAAGTCAACCCGTAACAGGTA -ACGGAAGTCAACCCGTAAGACTCT -ACGGAAGTCAACCCGTAAAGTCCT -ACGGAAGTCAACCCGTAATAAGCC -ACGGAAGTCAACCCGTAAATAGCC -ACGGAAGTCAACCCGTAATAACCG -ACGGAAGTCAACCCGTAAATGCCA -ACGGAAGTCAACCCAATGGGAAAC -ACGGAAGTCAACCCAATGAACACC -ACGGAAGTCAACCCAATGATCGAG -ACGGAAGTCAACCCAATGCTCCTT -ACGGAAGTCAACCCAATGCCTGTT -ACGGAAGTCAACCCAATGCGGTTT -ACGGAAGTCAACCCAATGGTGGTT -ACGGAAGTCAACCCAATGGCCTTT -ACGGAAGTCAACCCAATGGGTCTT -ACGGAAGTCAACCCAATGACGCTT -ACGGAAGTCAACCCAATGAGCGTT -ACGGAAGTCAACCCAATGTTCGTC -ACGGAAGTCAACCCAATGTCTCTC -ACGGAAGTCAACCCAATGTGGATC -ACGGAAGTCAACCCAATGCACTTC -ACGGAAGTCAACCCAATGGTACTC -ACGGAAGTCAACCCAATGGATGTC -ACGGAAGTCAACCCAATGACAGTC -ACGGAAGTCAACCCAATGTTGCTG -ACGGAAGTCAACCCAATGTCCATG -ACGGAAGTCAACCCAATGTGTGTG -ACGGAAGTCAACCCAATGCTAGTG -ACGGAAGTCAACCCAATGCATCTG -ACGGAAGTCAACCCAATGGAGTTG -ACGGAAGTCAACCCAATGAGACTG -ACGGAAGTCAACCCAATGTCGGTA -ACGGAAGTCAACCCAATGTGCCTA -ACGGAAGTCAACCCAATGCCACTA -ACGGAAGTCAACCCAATGGGAGTA -ACGGAAGTCAACCCAATGTCGTCT -ACGGAAGTCAACCCAATGTGCACT -ACGGAAGTCAACCCAATGCTGACT -ACGGAAGTCAACCCAATGCAACCT -ACGGAAGTCAACCCAATGGCTACT -ACGGAAGTCAACCCAATGGGATCT -ACGGAAGTCAACCCAATGAAGGCT -ACGGAAGTCAACCCAATGTCAACC -ACGGAAGTCAACCCAATGTGTTCC -ACGGAAGTCAACCCAATGATTCCC -ACGGAAGTCAACCCAATGTTCTCG -ACGGAAGTCAACCCAATGTAGACG -ACGGAAGTCAACCCAATGGTAACG -ACGGAAGTCAACCCAATGACTTCG -ACGGAAGTCAACCCAATGTACGCA -ACGGAAGTCAACCCAATGCTTGCA -ACGGAAGTCAACCCAATGCGAACA -ACGGAAGTCAACCCAATGCAGTCA -ACGGAAGTCAACCCAATGGATCCA -ACGGAAGTCAACCCAATGACGACA -ACGGAAGTCAACCCAATGAGCTCA -ACGGAAGTCAACCCAATGTCACGT -ACGGAAGTCAACCCAATGCGTAGT -ACGGAAGTCAACCCAATGGTCAGT -ACGGAAGTCAACCCAATGGAAGGT -ACGGAAGTCAACCCAATGAACCGT -ACGGAAGTCAACCCAATGTTGTGC -ACGGAAGTCAACCCAATGCTAAGC -ACGGAAGTCAACCCAATGACTAGC -ACGGAAGTCAACCCAATGAGATGC -ACGGAAGTCAACCCAATGTGAAGG -ACGGAAGTCAACCCAATGCAATGG -ACGGAAGTCAACCCAATGATGAGG -ACGGAAGTCAACCCAATGAATGGG -ACGGAAGTCAACCCAATGTCCTGA -ACGGAAGTCAACCCAATGTAGCGA -ACGGAAGTCAACCCAATGCACAGA -ACGGAAGTCAACCCAATGGCAAGA -ACGGAAGTCAACCCAATGGGTTGA -ACGGAAGTCAACCCAATGTCCGAT -ACGGAAGTCAACCCAATGTGGCAT -ACGGAAGTCAACCCAATGCGAGAT -ACGGAAGTCAACCCAATGTACCAC -ACGGAAGTCAACCCAATGCAGAAC -ACGGAAGTCAACCCAATGGTCTAC -ACGGAAGTCAACCCAATGACGTAC -ACGGAAGTCAACCCAATGAGTGAC -ACGGAAGTCAACCCAATGCTGTAG -ACGGAAGTCAACCCAATGCCTAAG -ACGGAAGTCAACCCAATGGTTCAG -ACGGAAGTCAACCCAATGGCATAG -ACGGAAGTCAACCCAATGGACAAG -ACGGAAGTCAACCCAATGAAGCAG -ACGGAAGTCAACCCAATGCGTCAA -ACGGAAGTCAACCCAATGGCTGAA -ACGGAAGTCAACCCAATGAGTACG -ACGGAAGTCAACCCAATGATCCGA -ACGGAAGTCAACCCAATGATGGGA -ACGGAAGTCAACCCAATGGTGCAA -ACGGAAGTCAACCCAATGGAGGAA -ACGGAAGTCAACCCAATGCAGGTA -ACGGAAGTCAACCCAATGGACTCT -ACGGAAGTCAACCCAATGAGTCCT -ACGGAAGTCAACCCAATGTAAGCC -ACGGAAGTCAACCCAATGATAGCC -ACGGAAGTCAACCCAATGTAACCG -ACGGAAGTCAACCCAATGATGCCA -ACGGAACTGAAGAACGGAGGAAAC -ACGGAACTGAAGAACGGAAACACC -ACGGAACTGAAGAACGGAATCGAG -ACGGAACTGAAGAACGGACTCCTT -ACGGAACTGAAGAACGGACCTGTT -ACGGAACTGAAGAACGGACGGTTT -ACGGAACTGAAGAACGGAGTGGTT -ACGGAACTGAAGAACGGAGCCTTT -ACGGAACTGAAGAACGGAGGTCTT -ACGGAACTGAAGAACGGAACGCTT -ACGGAACTGAAGAACGGAAGCGTT -ACGGAACTGAAGAACGGATTCGTC -ACGGAACTGAAGAACGGATCTCTC -ACGGAACTGAAGAACGGATGGATC -ACGGAACTGAAGAACGGACACTTC -ACGGAACTGAAGAACGGAGTACTC -ACGGAACTGAAGAACGGAGATGTC -ACGGAACTGAAGAACGGAACAGTC -ACGGAACTGAAGAACGGATTGCTG -ACGGAACTGAAGAACGGATCCATG -ACGGAACTGAAGAACGGATGTGTG -ACGGAACTGAAGAACGGACTAGTG -ACGGAACTGAAGAACGGACATCTG -ACGGAACTGAAGAACGGAGAGTTG -ACGGAACTGAAGAACGGAAGACTG -ACGGAACTGAAGAACGGATCGGTA -ACGGAACTGAAGAACGGATGCCTA -ACGGAACTGAAGAACGGACCACTA -ACGGAACTGAAGAACGGAGGAGTA -ACGGAACTGAAGAACGGATCGTCT -ACGGAACTGAAGAACGGATGCACT -ACGGAACTGAAGAACGGACTGACT -ACGGAACTGAAGAACGGACAACCT -ACGGAACTGAAGAACGGAGCTACT -ACGGAACTGAAGAACGGAGGATCT -ACGGAACTGAAGAACGGAAAGGCT -ACGGAACTGAAGAACGGATCAACC -ACGGAACTGAAGAACGGATGTTCC -ACGGAACTGAAGAACGGAATTCCC -ACGGAACTGAAGAACGGATTCTCG -ACGGAACTGAAGAACGGATAGACG -ACGGAACTGAAGAACGGAGTAACG -ACGGAACTGAAGAACGGAACTTCG -ACGGAACTGAAGAACGGATACGCA -ACGGAACTGAAGAACGGACTTGCA -ACGGAACTGAAGAACGGACGAACA -ACGGAACTGAAGAACGGACAGTCA -ACGGAACTGAAGAACGGAGATCCA -ACGGAACTGAAGAACGGAACGACA -ACGGAACTGAAGAACGGAAGCTCA -ACGGAACTGAAGAACGGATCACGT -ACGGAACTGAAGAACGGACGTAGT -ACGGAACTGAAGAACGGAGTCAGT -ACGGAACTGAAGAACGGAGAAGGT -ACGGAACTGAAGAACGGAAACCGT -ACGGAACTGAAGAACGGATTGTGC -ACGGAACTGAAGAACGGACTAAGC -ACGGAACTGAAGAACGGAACTAGC -ACGGAACTGAAGAACGGAAGATGC -ACGGAACTGAAGAACGGATGAAGG -ACGGAACTGAAGAACGGACAATGG -ACGGAACTGAAGAACGGAATGAGG -ACGGAACTGAAGAACGGAAATGGG -ACGGAACTGAAGAACGGATCCTGA -ACGGAACTGAAGAACGGATAGCGA -ACGGAACTGAAGAACGGACACAGA -ACGGAACTGAAGAACGGAGCAAGA -ACGGAACTGAAGAACGGAGGTTGA -ACGGAACTGAAGAACGGATCCGAT -ACGGAACTGAAGAACGGATGGCAT -ACGGAACTGAAGAACGGACGAGAT -ACGGAACTGAAGAACGGATACCAC -ACGGAACTGAAGAACGGACAGAAC -ACGGAACTGAAGAACGGAGTCTAC -ACGGAACTGAAGAACGGAACGTAC -ACGGAACTGAAGAACGGAAGTGAC -ACGGAACTGAAGAACGGACTGTAG -ACGGAACTGAAGAACGGACCTAAG -ACGGAACTGAAGAACGGAGTTCAG -ACGGAACTGAAGAACGGAGCATAG -ACGGAACTGAAGAACGGAGACAAG -ACGGAACTGAAGAACGGAAAGCAG -ACGGAACTGAAGAACGGACGTCAA -ACGGAACTGAAGAACGGAGCTGAA -ACGGAACTGAAGAACGGAAGTACG -ACGGAACTGAAGAACGGAATCCGA -ACGGAACTGAAGAACGGAATGGGA -ACGGAACTGAAGAACGGAGTGCAA -ACGGAACTGAAGAACGGAGAGGAA -ACGGAACTGAAGAACGGACAGGTA -ACGGAACTGAAGAACGGAGACTCT -ACGGAACTGAAGAACGGAAGTCCT -ACGGAACTGAAGAACGGATAAGCC -ACGGAACTGAAGAACGGAATAGCC -ACGGAACTGAAGAACGGATAACCG -ACGGAACTGAAGAACGGAATGCCA -ACGGAACTGAAGACCAACGGAAAC -ACGGAACTGAAGACCAACAACACC -ACGGAACTGAAGACCAACATCGAG -ACGGAACTGAAGACCAACCTCCTT -ACGGAACTGAAGACCAACCCTGTT -ACGGAACTGAAGACCAACCGGTTT -ACGGAACTGAAGACCAACGTGGTT -ACGGAACTGAAGACCAACGCCTTT -ACGGAACTGAAGACCAACGGTCTT -ACGGAACTGAAGACCAACACGCTT -ACGGAACTGAAGACCAACAGCGTT -ACGGAACTGAAGACCAACTTCGTC -ACGGAACTGAAGACCAACTCTCTC -ACGGAACTGAAGACCAACTGGATC -ACGGAACTGAAGACCAACCACTTC -ACGGAACTGAAGACCAACGTACTC -ACGGAACTGAAGACCAACGATGTC -ACGGAACTGAAGACCAACACAGTC -ACGGAACTGAAGACCAACTTGCTG -ACGGAACTGAAGACCAACTCCATG -ACGGAACTGAAGACCAACTGTGTG -ACGGAACTGAAGACCAACCTAGTG -ACGGAACTGAAGACCAACCATCTG -ACGGAACTGAAGACCAACGAGTTG -ACGGAACTGAAGACCAACAGACTG -ACGGAACTGAAGACCAACTCGGTA -ACGGAACTGAAGACCAACTGCCTA -ACGGAACTGAAGACCAACCCACTA -ACGGAACTGAAGACCAACGGAGTA -ACGGAACTGAAGACCAACTCGTCT -ACGGAACTGAAGACCAACTGCACT -ACGGAACTGAAGACCAACCTGACT -ACGGAACTGAAGACCAACCAACCT -ACGGAACTGAAGACCAACGCTACT -ACGGAACTGAAGACCAACGGATCT -ACGGAACTGAAGACCAACAAGGCT -ACGGAACTGAAGACCAACTCAACC -ACGGAACTGAAGACCAACTGTTCC -ACGGAACTGAAGACCAACATTCCC -ACGGAACTGAAGACCAACTTCTCG -ACGGAACTGAAGACCAACTAGACG -ACGGAACTGAAGACCAACGTAACG -ACGGAACTGAAGACCAACACTTCG -ACGGAACTGAAGACCAACTACGCA -ACGGAACTGAAGACCAACCTTGCA -ACGGAACTGAAGACCAACCGAACA -ACGGAACTGAAGACCAACCAGTCA -ACGGAACTGAAGACCAACGATCCA -ACGGAACTGAAGACCAACACGACA -ACGGAACTGAAGACCAACAGCTCA -ACGGAACTGAAGACCAACTCACGT -ACGGAACTGAAGACCAACCGTAGT -ACGGAACTGAAGACCAACGTCAGT -ACGGAACTGAAGACCAACGAAGGT -ACGGAACTGAAGACCAACAACCGT -ACGGAACTGAAGACCAACTTGTGC -ACGGAACTGAAGACCAACCTAAGC -ACGGAACTGAAGACCAACACTAGC -ACGGAACTGAAGACCAACAGATGC -ACGGAACTGAAGACCAACTGAAGG -ACGGAACTGAAGACCAACCAATGG -ACGGAACTGAAGACCAACATGAGG -ACGGAACTGAAGACCAACAATGGG -ACGGAACTGAAGACCAACTCCTGA -ACGGAACTGAAGACCAACTAGCGA -ACGGAACTGAAGACCAACCACAGA -ACGGAACTGAAGACCAACGCAAGA -ACGGAACTGAAGACCAACGGTTGA -ACGGAACTGAAGACCAACTCCGAT -ACGGAACTGAAGACCAACTGGCAT -ACGGAACTGAAGACCAACCGAGAT -ACGGAACTGAAGACCAACTACCAC -ACGGAACTGAAGACCAACCAGAAC -ACGGAACTGAAGACCAACGTCTAC -ACGGAACTGAAGACCAACACGTAC -ACGGAACTGAAGACCAACAGTGAC -ACGGAACTGAAGACCAACCTGTAG -ACGGAACTGAAGACCAACCCTAAG -ACGGAACTGAAGACCAACGTTCAG -ACGGAACTGAAGACCAACGCATAG -ACGGAACTGAAGACCAACGACAAG -ACGGAACTGAAGACCAACAAGCAG -ACGGAACTGAAGACCAACCGTCAA -ACGGAACTGAAGACCAACGCTGAA -ACGGAACTGAAGACCAACAGTACG -ACGGAACTGAAGACCAACATCCGA -ACGGAACTGAAGACCAACATGGGA -ACGGAACTGAAGACCAACGTGCAA -ACGGAACTGAAGACCAACGAGGAA -ACGGAACTGAAGACCAACCAGGTA -ACGGAACTGAAGACCAACGACTCT -ACGGAACTGAAGACCAACAGTCCT -ACGGAACTGAAGACCAACTAAGCC -ACGGAACTGAAGACCAACATAGCC -ACGGAACTGAAGACCAACTAACCG -ACGGAACTGAAGACCAACATGCCA -ACGGAACTGAAGGAGATCGGAAAC -ACGGAACTGAAGGAGATCAACACC -ACGGAACTGAAGGAGATCATCGAG -ACGGAACTGAAGGAGATCCTCCTT -ACGGAACTGAAGGAGATCCCTGTT -ACGGAACTGAAGGAGATCCGGTTT -ACGGAACTGAAGGAGATCGTGGTT -ACGGAACTGAAGGAGATCGCCTTT -ACGGAACTGAAGGAGATCGGTCTT -ACGGAACTGAAGGAGATCACGCTT -ACGGAACTGAAGGAGATCAGCGTT -ACGGAACTGAAGGAGATCTTCGTC -ACGGAACTGAAGGAGATCTCTCTC -ACGGAACTGAAGGAGATCTGGATC -ACGGAACTGAAGGAGATCCACTTC -ACGGAACTGAAGGAGATCGTACTC -ACGGAACTGAAGGAGATCGATGTC -ACGGAACTGAAGGAGATCACAGTC -ACGGAACTGAAGGAGATCTTGCTG -ACGGAACTGAAGGAGATCTCCATG -ACGGAACTGAAGGAGATCTGTGTG -ACGGAACTGAAGGAGATCCTAGTG -ACGGAACTGAAGGAGATCCATCTG -ACGGAACTGAAGGAGATCGAGTTG -ACGGAACTGAAGGAGATCAGACTG -ACGGAACTGAAGGAGATCTCGGTA -ACGGAACTGAAGGAGATCTGCCTA -ACGGAACTGAAGGAGATCCCACTA -ACGGAACTGAAGGAGATCGGAGTA -ACGGAACTGAAGGAGATCTCGTCT -ACGGAACTGAAGGAGATCTGCACT -ACGGAACTGAAGGAGATCCTGACT -ACGGAACTGAAGGAGATCCAACCT -ACGGAACTGAAGGAGATCGCTACT -ACGGAACTGAAGGAGATCGGATCT -ACGGAACTGAAGGAGATCAAGGCT -ACGGAACTGAAGGAGATCTCAACC -ACGGAACTGAAGGAGATCTGTTCC -ACGGAACTGAAGGAGATCATTCCC -ACGGAACTGAAGGAGATCTTCTCG -ACGGAACTGAAGGAGATCTAGACG -ACGGAACTGAAGGAGATCGTAACG -ACGGAACTGAAGGAGATCACTTCG -ACGGAACTGAAGGAGATCTACGCA -ACGGAACTGAAGGAGATCCTTGCA -ACGGAACTGAAGGAGATCCGAACA -ACGGAACTGAAGGAGATCCAGTCA -ACGGAACTGAAGGAGATCGATCCA -ACGGAACTGAAGGAGATCACGACA -ACGGAACTGAAGGAGATCAGCTCA -ACGGAACTGAAGGAGATCTCACGT -ACGGAACTGAAGGAGATCCGTAGT -ACGGAACTGAAGGAGATCGTCAGT -ACGGAACTGAAGGAGATCGAAGGT -ACGGAACTGAAGGAGATCAACCGT -ACGGAACTGAAGGAGATCTTGTGC -ACGGAACTGAAGGAGATCCTAAGC -ACGGAACTGAAGGAGATCACTAGC -ACGGAACTGAAGGAGATCAGATGC -ACGGAACTGAAGGAGATCTGAAGG -ACGGAACTGAAGGAGATCCAATGG -ACGGAACTGAAGGAGATCATGAGG -ACGGAACTGAAGGAGATCAATGGG -ACGGAACTGAAGGAGATCTCCTGA -ACGGAACTGAAGGAGATCTAGCGA -ACGGAACTGAAGGAGATCCACAGA -ACGGAACTGAAGGAGATCGCAAGA -ACGGAACTGAAGGAGATCGGTTGA -ACGGAACTGAAGGAGATCTCCGAT -ACGGAACTGAAGGAGATCTGGCAT -ACGGAACTGAAGGAGATCCGAGAT -ACGGAACTGAAGGAGATCTACCAC -ACGGAACTGAAGGAGATCCAGAAC -ACGGAACTGAAGGAGATCGTCTAC -ACGGAACTGAAGGAGATCACGTAC -ACGGAACTGAAGGAGATCAGTGAC -ACGGAACTGAAGGAGATCCTGTAG -ACGGAACTGAAGGAGATCCCTAAG -ACGGAACTGAAGGAGATCGTTCAG -ACGGAACTGAAGGAGATCGCATAG -ACGGAACTGAAGGAGATCGACAAG -ACGGAACTGAAGGAGATCAAGCAG -ACGGAACTGAAGGAGATCCGTCAA -ACGGAACTGAAGGAGATCGCTGAA -ACGGAACTGAAGGAGATCAGTACG -ACGGAACTGAAGGAGATCATCCGA -ACGGAACTGAAGGAGATCATGGGA -ACGGAACTGAAGGAGATCGTGCAA -ACGGAACTGAAGGAGATCGAGGAA -ACGGAACTGAAGGAGATCCAGGTA -ACGGAACTGAAGGAGATCGACTCT -ACGGAACTGAAGGAGATCAGTCCT -ACGGAACTGAAGGAGATCTAAGCC -ACGGAACTGAAGGAGATCATAGCC -ACGGAACTGAAGGAGATCTAACCG -ACGGAACTGAAGGAGATCATGCCA -ACGGAACTGAAGCTTCTCGGAAAC -ACGGAACTGAAGCTTCTCAACACC -ACGGAACTGAAGCTTCTCATCGAG -ACGGAACTGAAGCTTCTCCTCCTT -ACGGAACTGAAGCTTCTCCCTGTT -ACGGAACTGAAGCTTCTCCGGTTT -ACGGAACTGAAGCTTCTCGTGGTT -ACGGAACTGAAGCTTCTCGCCTTT -ACGGAACTGAAGCTTCTCGGTCTT -ACGGAACTGAAGCTTCTCACGCTT -ACGGAACTGAAGCTTCTCAGCGTT -ACGGAACTGAAGCTTCTCTTCGTC -ACGGAACTGAAGCTTCTCTCTCTC -ACGGAACTGAAGCTTCTCTGGATC -ACGGAACTGAAGCTTCTCCACTTC -ACGGAACTGAAGCTTCTCGTACTC -ACGGAACTGAAGCTTCTCGATGTC -ACGGAACTGAAGCTTCTCACAGTC -ACGGAACTGAAGCTTCTCTTGCTG -ACGGAACTGAAGCTTCTCTCCATG -ACGGAACTGAAGCTTCTCTGTGTG -ACGGAACTGAAGCTTCTCCTAGTG -ACGGAACTGAAGCTTCTCCATCTG -ACGGAACTGAAGCTTCTCGAGTTG -ACGGAACTGAAGCTTCTCAGACTG -ACGGAACTGAAGCTTCTCTCGGTA -ACGGAACTGAAGCTTCTCTGCCTA -ACGGAACTGAAGCTTCTCCCACTA -ACGGAACTGAAGCTTCTCGGAGTA -ACGGAACTGAAGCTTCTCTCGTCT -ACGGAACTGAAGCTTCTCTGCACT -ACGGAACTGAAGCTTCTCCTGACT -ACGGAACTGAAGCTTCTCCAACCT -ACGGAACTGAAGCTTCTCGCTACT -ACGGAACTGAAGCTTCTCGGATCT -ACGGAACTGAAGCTTCTCAAGGCT -ACGGAACTGAAGCTTCTCTCAACC -ACGGAACTGAAGCTTCTCTGTTCC -ACGGAACTGAAGCTTCTCATTCCC -ACGGAACTGAAGCTTCTCTTCTCG -ACGGAACTGAAGCTTCTCTAGACG -ACGGAACTGAAGCTTCTCGTAACG -ACGGAACTGAAGCTTCTCACTTCG -ACGGAACTGAAGCTTCTCTACGCA -ACGGAACTGAAGCTTCTCCTTGCA -ACGGAACTGAAGCTTCTCCGAACA -ACGGAACTGAAGCTTCTCCAGTCA -ACGGAACTGAAGCTTCTCGATCCA -ACGGAACTGAAGCTTCTCACGACA -ACGGAACTGAAGCTTCTCAGCTCA -ACGGAACTGAAGCTTCTCTCACGT -ACGGAACTGAAGCTTCTCCGTAGT -ACGGAACTGAAGCTTCTCGTCAGT -ACGGAACTGAAGCTTCTCGAAGGT -ACGGAACTGAAGCTTCTCAACCGT -ACGGAACTGAAGCTTCTCTTGTGC -ACGGAACTGAAGCTTCTCCTAAGC -ACGGAACTGAAGCTTCTCACTAGC -ACGGAACTGAAGCTTCTCAGATGC -ACGGAACTGAAGCTTCTCTGAAGG -ACGGAACTGAAGCTTCTCCAATGG -ACGGAACTGAAGCTTCTCATGAGG -ACGGAACTGAAGCTTCTCAATGGG -ACGGAACTGAAGCTTCTCTCCTGA -ACGGAACTGAAGCTTCTCTAGCGA -ACGGAACTGAAGCTTCTCCACAGA -ACGGAACTGAAGCTTCTCGCAAGA -ACGGAACTGAAGCTTCTCGGTTGA -ACGGAACTGAAGCTTCTCTCCGAT -ACGGAACTGAAGCTTCTCTGGCAT -ACGGAACTGAAGCTTCTCCGAGAT -ACGGAACTGAAGCTTCTCTACCAC -ACGGAACTGAAGCTTCTCCAGAAC -ACGGAACTGAAGCTTCTCGTCTAC -ACGGAACTGAAGCTTCTCACGTAC -ACGGAACTGAAGCTTCTCAGTGAC -ACGGAACTGAAGCTTCTCCTGTAG -ACGGAACTGAAGCTTCTCCCTAAG -ACGGAACTGAAGCTTCTCGTTCAG -ACGGAACTGAAGCTTCTCGCATAG -ACGGAACTGAAGCTTCTCGACAAG -ACGGAACTGAAGCTTCTCAAGCAG -ACGGAACTGAAGCTTCTCCGTCAA -ACGGAACTGAAGCTTCTCGCTGAA -ACGGAACTGAAGCTTCTCAGTACG -ACGGAACTGAAGCTTCTCATCCGA -ACGGAACTGAAGCTTCTCATGGGA -ACGGAACTGAAGCTTCTCGTGCAA -ACGGAACTGAAGCTTCTCGAGGAA -ACGGAACTGAAGCTTCTCCAGGTA -ACGGAACTGAAGCTTCTCGACTCT -ACGGAACTGAAGCTTCTCAGTCCT -ACGGAACTGAAGCTTCTCTAAGCC -ACGGAACTGAAGCTTCTCATAGCC -ACGGAACTGAAGCTTCTCTAACCG -ACGGAACTGAAGCTTCTCATGCCA -ACGGAACTGAAGGTTCCTGGAAAC -ACGGAACTGAAGGTTCCTAACACC -ACGGAACTGAAGGTTCCTATCGAG -ACGGAACTGAAGGTTCCTCTCCTT -ACGGAACTGAAGGTTCCTCCTGTT -ACGGAACTGAAGGTTCCTCGGTTT -ACGGAACTGAAGGTTCCTGTGGTT -ACGGAACTGAAGGTTCCTGCCTTT -ACGGAACTGAAGGTTCCTGGTCTT -ACGGAACTGAAGGTTCCTACGCTT -ACGGAACTGAAGGTTCCTAGCGTT -ACGGAACTGAAGGTTCCTTTCGTC -ACGGAACTGAAGGTTCCTTCTCTC -ACGGAACTGAAGGTTCCTTGGATC -ACGGAACTGAAGGTTCCTCACTTC -ACGGAACTGAAGGTTCCTGTACTC -ACGGAACTGAAGGTTCCTGATGTC -ACGGAACTGAAGGTTCCTACAGTC -ACGGAACTGAAGGTTCCTTTGCTG -ACGGAACTGAAGGTTCCTTCCATG -ACGGAACTGAAGGTTCCTTGTGTG -ACGGAACTGAAGGTTCCTCTAGTG -ACGGAACTGAAGGTTCCTCATCTG -ACGGAACTGAAGGTTCCTGAGTTG -ACGGAACTGAAGGTTCCTAGACTG -ACGGAACTGAAGGTTCCTTCGGTA -ACGGAACTGAAGGTTCCTTGCCTA -ACGGAACTGAAGGTTCCTCCACTA -ACGGAACTGAAGGTTCCTGGAGTA -ACGGAACTGAAGGTTCCTTCGTCT -ACGGAACTGAAGGTTCCTTGCACT -ACGGAACTGAAGGTTCCTCTGACT -ACGGAACTGAAGGTTCCTCAACCT -ACGGAACTGAAGGTTCCTGCTACT -ACGGAACTGAAGGTTCCTGGATCT -ACGGAACTGAAGGTTCCTAAGGCT -ACGGAACTGAAGGTTCCTTCAACC -ACGGAACTGAAGGTTCCTTGTTCC -ACGGAACTGAAGGTTCCTATTCCC -ACGGAACTGAAGGTTCCTTTCTCG -ACGGAACTGAAGGTTCCTTAGACG -ACGGAACTGAAGGTTCCTGTAACG -ACGGAACTGAAGGTTCCTACTTCG -ACGGAACTGAAGGTTCCTTACGCA -ACGGAACTGAAGGTTCCTCTTGCA -ACGGAACTGAAGGTTCCTCGAACA -ACGGAACTGAAGGTTCCTCAGTCA -ACGGAACTGAAGGTTCCTGATCCA -ACGGAACTGAAGGTTCCTACGACA -ACGGAACTGAAGGTTCCTAGCTCA -ACGGAACTGAAGGTTCCTTCACGT -ACGGAACTGAAGGTTCCTCGTAGT -ACGGAACTGAAGGTTCCTGTCAGT -ACGGAACTGAAGGTTCCTGAAGGT -ACGGAACTGAAGGTTCCTAACCGT -ACGGAACTGAAGGTTCCTTTGTGC -ACGGAACTGAAGGTTCCTCTAAGC -ACGGAACTGAAGGTTCCTACTAGC -ACGGAACTGAAGGTTCCTAGATGC -ACGGAACTGAAGGTTCCTTGAAGG -ACGGAACTGAAGGTTCCTCAATGG -ACGGAACTGAAGGTTCCTATGAGG -ACGGAACTGAAGGTTCCTAATGGG -ACGGAACTGAAGGTTCCTTCCTGA -ACGGAACTGAAGGTTCCTTAGCGA -ACGGAACTGAAGGTTCCTCACAGA -ACGGAACTGAAGGTTCCTGCAAGA -ACGGAACTGAAGGTTCCTGGTTGA -ACGGAACTGAAGGTTCCTTCCGAT -ACGGAACTGAAGGTTCCTTGGCAT -ACGGAACTGAAGGTTCCTCGAGAT -ACGGAACTGAAGGTTCCTTACCAC -ACGGAACTGAAGGTTCCTCAGAAC -ACGGAACTGAAGGTTCCTGTCTAC -ACGGAACTGAAGGTTCCTACGTAC -ACGGAACTGAAGGTTCCTAGTGAC -ACGGAACTGAAGGTTCCTCTGTAG -ACGGAACTGAAGGTTCCTCCTAAG -ACGGAACTGAAGGTTCCTGTTCAG -ACGGAACTGAAGGTTCCTGCATAG -ACGGAACTGAAGGTTCCTGACAAG -ACGGAACTGAAGGTTCCTAAGCAG -ACGGAACTGAAGGTTCCTCGTCAA -ACGGAACTGAAGGTTCCTGCTGAA -ACGGAACTGAAGGTTCCTAGTACG -ACGGAACTGAAGGTTCCTATCCGA -ACGGAACTGAAGGTTCCTATGGGA -ACGGAACTGAAGGTTCCTGTGCAA -ACGGAACTGAAGGTTCCTGAGGAA -ACGGAACTGAAGGTTCCTCAGGTA -ACGGAACTGAAGGTTCCTGACTCT -ACGGAACTGAAGGTTCCTAGTCCT -ACGGAACTGAAGGTTCCTTAAGCC -ACGGAACTGAAGGTTCCTATAGCC -ACGGAACTGAAGGTTCCTTAACCG -ACGGAACTGAAGGTTCCTATGCCA -ACGGAACTGAAGTTTCGGGGAAAC -ACGGAACTGAAGTTTCGGAACACC -ACGGAACTGAAGTTTCGGATCGAG -ACGGAACTGAAGTTTCGGCTCCTT -ACGGAACTGAAGTTTCGGCCTGTT -ACGGAACTGAAGTTTCGGCGGTTT -ACGGAACTGAAGTTTCGGGTGGTT -ACGGAACTGAAGTTTCGGGCCTTT -ACGGAACTGAAGTTTCGGGGTCTT -ACGGAACTGAAGTTTCGGACGCTT -ACGGAACTGAAGTTTCGGAGCGTT -ACGGAACTGAAGTTTCGGTTCGTC -ACGGAACTGAAGTTTCGGTCTCTC -ACGGAACTGAAGTTTCGGTGGATC -ACGGAACTGAAGTTTCGGCACTTC -ACGGAACTGAAGTTTCGGGTACTC -ACGGAACTGAAGTTTCGGGATGTC -ACGGAACTGAAGTTTCGGACAGTC -ACGGAACTGAAGTTTCGGTTGCTG -ACGGAACTGAAGTTTCGGTCCATG -ACGGAACTGAAGTTTCGGTGTGTG -ACGGAACTGAAGTTTCGGCTAGTG -ACGGAACTGAAGTTTCGGCATCTG -ACGGAACTGAAGTTTCGGGAGTTG -ACGGAACTGAAGTTTCGGAGACTG -ACGGAACTGAAGTTTCGGTCGGTA -ACGGAACTGAAGTTTCGGTGCCTA -ACGGAACTGAAGTTTCGGCCACTA -ACGGAACTGAAGTTTCGGGGAGTA -ACGGAACTGAAGTTTCGGTCGTCT -ACGGAACTGAAGTTTCGGTGCACT -ACGGAACTGAAGTTTCGGCTGACT -ACGGAACTGAAGTTTCGGCAACCT -ACGGAACTGAAGTTTCGGGCTACT -ACGGAACTGAAGTTTCGGGGATCT -ACGGAACTGAAGTTTCGGAAGGCT -ACGGAACTGAAGTTTCGGTCAACC -ACGGAACTGAAGTTTCGGTGTTCC -ACGGAACTGAAGTTTCGGATTCCC -ACGGAACTGAAGTTTCGGTTCTCG -ACGGAACTGAAGTTTCGGTAGACG -ACGGAACTGAAGTTTCGGGTAACG -ACGGAACTGAAGTTTCGGACTTCG -ACGGAACTGAAGTTTCGGTACGCA -ACGGAACTGAAGTTTCGGCTTGCA -ACGGAACTGAAGTTTCGGCGAACA -ACGGAACTGAAGTTTCGGCAGTCA -ACGGAACTGAAGTTTCGGGATCCA -ACGGAACTGAAGTTTCGGACGACA -ACGGAACTGAAGTTTCGGAGCTCA -ACGGAACTGAAGTTTCGGTCACGT -ACGGAACTGAAGTTTCGGCGTAGT -ACGGAACTGAAGTTTCGGGTCAGT -ACGGAACTGAAGTTTCGGGAAGGT -ACGGAACTGAAGTTTCGGAACCGT -ACGGAACTGAAGTTTCGGTTGTGC -ACGGAACTGAAGTTTCGGCTAAGC -ACGGAACTGAAGTTTCGGACTAGC -ACGGAACTGAAGTTTCGGAGATGC -ACGGAACTGAAGTTTCGGTGAAGG -ACGGAACTGAAGTTTCGGCAATGG -ACGGAACTGAAGTTTCGGATGAGG -ACGGAACTGAAGTTTCGGAATGGG -ACGGAACTGAAGTTTCGGTCCTGA -ACGGAACTGAAGTTTCGGTAGCGA -ACGGAACTGAAGTTTCGGCACAGA -ACGGAACTGAAGTTTCGGGCAAGA -ACGGAACTGAAGTTTCGGGGTTGA -ACGGAACTGAAGTTTCGGTCCGAT -ACGGAACTGAAGTTTCGGTGGCAT -ACGGAACTGAAGTTTCGGCGAGAT -ACGGAACTGAAGTTTCGGTACCAC -ACGGAACTGAAGTTTCGGCAGAAC -ACGGAACTGAAGTTTCGGGTCTAC -ACGGAACTGAAGTTTCGGACGTAC -ACGGAACTGAAGTTTCGGAGTGAC -ACGGAACTGAAGTTTCGGCTGTAG -ACGGAACTGAAGTTTCGGCCTAAG -ACGGAACTGAAGTTTCGGGTTCAG -ACGGAACTGAAGTTTCGGGCATAG -ACGGAACTGAAGTTTCGGGACAAG -ACGGAACTGAAGTTTCGGAAGCAG -ACGGAACTGAAGTTTCGGCGTCAA -ACGGAACTGAAGTTTCGGGCTGAA -ACGGAACTGAAGTTTCGGAGTACG -ACGGAACTGAAGTTTCGGATCCGA -ACGGAACTGAAGTTTCGGATGGGA -ACGGAACTGAAGTTTCGGGTGCAA -ACGGAACTGAAGTTTCGGGAGGAA -ACGGAACTGAAGTTTCGGCAGGTA -ACGGAACTGAAGTTTCGGGACTCT -ACGGAACTGAAGTTTCGGAGTCCT -ACGGAACTGAAGTTTCGGTAAGCC -ACGGAACTGAAGTTTCGGATAGCC -ACGGAACTGAAGTTTCGGTAACCG -ACGGAACTGAAGTTTCGGATGCCA -ACGGAACTGAAGGTTGTGGGAAAC -ACGGAACTGAAGGTTGTGAACACC -ACGGAACTGAAGGTTGTGATCGAG -ACGGAACTGAAGGTTGTGCTCCTT -ACGGAACTGAAGGTTGTGCCTGTT -ACGGAACTGAAGGTTGTGCGGTTT -ACGGAACTGAAGGTTGTGGTGGTT -ACGGAACTGAAGGTTGTGGCCTTT -ACGGAACTGAAGGTTGTGGGTCTT -ACGGAACTGAAGGTTGTGACGCTT -ACGGAACTGAAGGTTGTGAGCGTT -ACGGAACTGAAGGTTGTGTTCGTC -ACGGAACTGAAGGTTGTGTCTCTC -ACGGAACTGAAGGTTGTGTGGATC -ACGGAACTGAAGGTTGTGCACTTC -ACGGAACTGAAGGTTGTGGTACTC -ACGGAACTGAAGGTTGTGGATGTC -ACGGAACTGAAGGTTGTGACAGTC -ACGGAACTGAAGGTTGTGTTGCTG -ACGGAACTGAAGGTTGTGTCCATG -ACGGAACTGAAGGTTGTGTGTGTG -ACGGAACTGAAGGTTGTGCTAGTG -ACGGAACTGAAGGTTGTGCATCTG -ACGGAACTGAAGGTTGTGGAGTTG -ACGGAACTGAAGGTTGTGAGACTG -ACGGAACTGAAGGTTGTGTCGGTA -ACGGAACTGAAGGTTGTGTGCCTA -ACGGAACTGAAGGTTGTGCCACTA -ACGGAACTGAAGGTTGTGGGAGTA -ACGGAACTGAAGGTTGTGTCGTCT -ACGGAACTGAAGGTTGTGTGCACT -ACGGAACTGAAGGTTGTGCTGACT -ACGGAACTGAAGGTTGTGCAACCT -ACGGAACTGAAGGTTGTGGCTACT -ACGGAACTGAAGGTTGTGGGATCT -ACGGAACTGAAGGTTGTGAAGGCT -ACGGAACTGAAGGTTGTGTCAACC -ACGGAACTGAAGGTTGTGTGTTCC -ACGGAACTGAAGGTTGTGATTCCC -ACGGAACTGAAGGTTGTGTTCTCG -ACGGAACTGAAGGTTGTGTAGACG -ACGGAACTGAAGGTTGTGGTAACG -ACGGAACTGAAGGTTGTGACTTCG -ACGGAACTGAAGGTTGTGTACGCA -ACGGAACTGAAGGTTGTGCTTGCA -ACGGAACTGAAGGTTGTGCGAACA -ACGGAACTGAAGGTTGTGCAGTCA -ACGGAACTGAAGGTTGTGGATCCA -ACGGAACTGAAGGTTGTGACGACA -ACGGAACTGAAGGTTGTGAGCTCA -ACGGAACTGAAGGTTGTGTCACGT -ACGGAACTGAAGGTTGTGCGTAGT -ACGGAACTGAAGGTTGTGGTCAGT -ACGGAACTGAAGGTTGTGGAAGGT -ACGGAACTGAAGGTTGTGAACCGT -ACGGAACTGAAGGTTGTGTTGTGC -ACGGAACTGAAGGTTGTGCTAAGC -ACGGAACTGAAGGTTGTGACTAGC -ACGGAACTGAAGGTTGTGAGATGC -ACGGAACTGAAGGTTGTGTGAAGG -ACGGAACTGAAGGTTGTGCAATGG -ACGGAACTGAAGGTTGTGATGAGG -ACGGAACTGAAGGTTGTGAATGGG -ACGGAACTGAAGGTTGTGTCCTGA -ACGGAACTGAAGGTTGTGTAGCGA -ACGGAACTGAAGGTTGTGCACAGA -ACGGAACTGAAGGTTGTGGCAAGA -ACGGAACTGAAGGTTGTGGGTTGA -ACGGAACTGAAGGTTGTGTCCGAT -ACGGAACTGAAGGTTGTGTGGCAT -ACGGAACTGAAGGTTGTGCGAGAT -ACGGAACTGAAGGTTGTGTACCAC -ACGGAACTGAAGGTTGTGCAGAAC -ACGGAACTGAAGGTTGTGGTCTAC -ACGGAACTGAAGGTTGTGACGTAC -ACGGAACTGAAGGTTGTGAGTGAC -ACGGAACTGAAGGTTGTGCTGTAG -ACGGAACTGAAGGTTGTGCCTAAG -ACGGAACTGAAGGTTGTGGTTCAG -ACGGAACTGAAGGTTGTGGCATAG -ACGGAACTGAAGGTTGTGGACAAG -ACGGAACTGAAGGTTGTGAAGCAG -ACGGAACTGAAGGTTGTGCGTCAA -ACGGAACTGAAGGTTGTGGCTGAA -ACGGAACTGAAGGTTGTGAGTACG -ACGGAACTGAAGGTTGTGATCCGA -ACGGAACTGAAGGTTGTGATGGGA -ACGGAACTGAAGGTTGTGGTGCAA -ACGGAACTGAAGGTTGTGGAGGAA -ACGGAACTGAAGGTTGTGCAGGTA -ACGGAACTGAAGGTTGTGGACTCT -ACGGAACTGAAGGTTGTGAGTCCT -ACGGAACTGAAGGTTGTGTAAGCC -ACGGAACTGAAGGTTGTGATAGCC -ACGGAACTGAAGGTTGTGTAACCG -ACGGAACTGAAGGTTGTGATGCCA -ACGGAACTGAAGTTTGCCGGAAAC -ACGGAACTGAAGTTTGCCAACACC -ACGGAACTGAAGTTTGCCATCGAG -ACGGAACTGAAGTTTGCCCTCCTT -ACGGAACTGAAGTTTGCCCCTGTT -ACGGAACTGAAGTTTGCCCGGTTT -ACGGAACTGAAGTTTGCCGTGGTT -ACGGAACTGAAGTTTGCCGCCTTT -ACGGAACTGAAGTTTGCCGGTCTT -ACGGAACTGAAGTTTGCCACGCTT -ACGGAACTGAAGTTTGCCAGCGTT -ACGGAACTGAAGTTTGCCTTCGTC -ACGGAACTGAAGTTTGCCTCTCTC -ACGGAACTGAAGTTTGCCTGGATC -ACGGAACTGAAGTTTGCCCACTTC -ACGGAACTGAAGTTTGCCGTACTC -ACGGAACTGAAGTTTGCCGATGTC -ACGGAACTGAAGTTTGCCACAGTC -ACGGAACTGAAGTTTGCCTTGCTG -ACGGAACTGAAGTTTGCCTCCATG -ACGGAACTGAAGTTTGCCTGTGTG -ACGGAACTGAAGTTTGCCCTAGTG -ACGGAACTGAAGTTTGCCCATCTG -ACGGAACTGAAGTTTGCCGAGTTG -ACGGAACTGAAGTTTGCCAGACTG -ACGGAACTGAAGTTTGCCTCGGTA -ACGGAACTGAAGTTTGCCTGCCTA -ACGGAACTGAAGTTTGCCCCACTA -ACGGAACTGAAGTTTGCCGGAGTA -ACGGAACTGAAGTTTGCCTCGTCT -ACGGAACTGAAGTTTGCCTGCACT -ACGGAACTGAAGTTTGCCCTGACT -ACGGAACTGAAGTTTGCCCAACCT -ACGGAACTGAAGTTTGCCGCTACT -ACGGAACTGAAGTTTGCCGGATCT -ACGGAACTGAAGTTTGCCAAGGCT -ACGGAACTGAAGTTTGCCTCAACC -ACGGAACTGAAGTTTGCCTGTTCC -ACGGAACTGAAGTTTGCCATTCCC -ACGGAACTGAAGTTTGCCTTCTCG -ACGGAACTGAAGTTTGCCTAGACG -ACGGAACTGAAGTTTGCCGTAACG -ACGGAACTGAAGTTTGCCACTTCG -ACGGAACTGAAGTTTGCCTACGCA -ACGGAACTGAAGTTTGCCCTTGCA -ACGGAACTGAAGTTTGCCCGAACA -ACGGAACTGAAGTTTGCCCAGTCA -ACGGAACTGAAGTTTGCCGATCCA -ACGGAACTGAAGTTTGCCACGACA -ACGGAACTGAAGTTTGCCAGCTCA -ACGGAACTGAAGTTTGCCTCACGT -ACGGAACTGAAGTTTGCCCGTAGT -ACGGAACTGAAGTTTGCCGTCAGT -ACGGAACTGAAGTTTGCCGAAGGT -ACGGAACTGAAGTTTGCCAACCGT -ACGGAACTGAAGTTTGCCTTGTGC -ACGGAACTGAAGTTTGCCCTAAGC -ACGGAACTGAAGTTTGCCACTAGC -ACGGAACTGAAGTTTGCCAGATGC -ACGGAACTGAAGTTTGCCTGAAGG -ACGGAACTGAAGTTTGCCCAATGG -ACGGAACTGAAGTTTGCCATGAGG -ACGGAACTGAAGTTTGCCAATGGG -ACGGAACTGAAGTTTGCCTCCTGA -ACGGAACTGAAGTTTGCCTAGCGA -ACGGAACTGAAGTTTGCCCACAGA -ACGGAACTGAAGTTTGCCGCAAGA -ACGGAACTGAAGTTTGCCGGTTGA -ACGGAACTGAAGTTTGCCTCCGAT -ACGGAACTGAAGTTTGCCTGGCAT -ACGGAACTGAAGTTTGCCCGAGAT -ACGGAACTGAAGTTTGCCTACCAC -ACGGAACTGAAGTTTGCCCAGAAC -ACGGAACTGAAGTTTGCCGTCTAC -ACGGAACTGAAGTTTGCCACGTAC -ACGGAACTGAAGTTTGCCAGTGAC -ACGGAACTGAAGTTTGCCCTGTAG -ACGGAACTGAAGTTTGCCCCTAAG -ACGGAACTGAAGTTTGCCGTTCAG -ACGGAACTGAAGTTTGCCGCATAG -ACGGAACTGAAGTTTGCCGACAAG -ACGGAACTGAAGTTTGCCAAGCAG -ACGGAACTGAAGTTTGCCCGTCAA -ACGGAACTGAAGTTTGCCGCTGAA -ACGGAACTGAAGTTTGCCAGTACG -ACGGAACTGAAGTTTGCCATCCGA -ACGGAACTGAAGTTTGCCATGGGA -ACGGAACTGAAGTTTGCCGTGCAA -ACGGAACTGAAGTTTGCCGAGGAA -ACGGAACTGAAGTTTGCCCAGGTA -ACGGAACTGAAGTTTGCCGACTCT -ACGGAACTGAAGTTTGCCAGTCCT -ACGGAACTGAAGTTTGCCTAAGCC -ACGGAACTGAAGTTTGCCATAGCC -ACGGAACTGAAGTTTGCCTAACCG -ACGGAACTGAAGTTTGCCATGCCA -ACGGAACTGAAGCTTGGTGGAAAC -ACGGAACTGAAGCTTGGTAACACC -ACGGAACTGAAGCTTGGTATCGAG -ACGGAACTGAAGCTTGGTCTCCTT -ACGGAACTGAAGCTTGGTCCTGTT -ACGGAACTGAAGCTTGGTCGGTTT -ACGGAACTGAAGCTTGGTGTGGTT -ACGGAACTGAAGCTTGGTGCCTTT -ACGGAACTGAAGCTTGGTGGTCTT -ACGGAACTGAAGCTTGGTACGCTT -ACGGAACTGAAGCTTGGTAGCGTT -ACGGAACTGAAGCTTGGTTTCGTC -ACGGAACTGAAGCTTGGTTCTCTC -ACGGAACTGAAGCTTGGTTGGATC -ACGGAACTGAAGCTTGGTCACTTC -ACGGAACTGAAGCTTGGTGTACTC -ACGGAACTGAAGCTTGGTGATGTC -ACGGAACTGAAGCTTGGTACAGTC -ACGGAACTGAAGCTTGGTTTGCTG -ACGGAACTGAAGCTTGGTTCCATG -ACGGAACTGAAGCTTGGTTGTGTG -ACGGAACTGAAGCTTGGTCTAGTG -ACGGAACTGAAGCTTGGTCATCTG -ACGGAACTGAAGCTTGGTGAGTTG -ACGGAACTGAAGCTTGGTAGACTG -ACGGAACTGAAGCTTGGTTCGGTA -ACGGAACTGAAGCTTGGTTGCCTA -ACGGAACTGAAGCTTGGTCCACTA -ACGGAACTGAAGCTTGGTGGAGTA -ACGGAACTGAAGCTTGGTTCGTCT -ACGGAACTGAAGCTTGGTTGCACT -ACGGAACTGAAGCTTGGTCTGACT -ACGGAACTGAAGCTTGGTCAACCT -ACGGAACTGAAGCTTGGTGCTACT -ACGGAACTGAAGCTTGGTGGATCT -ACGGAACTGAAGCTTGGTAAGGCT -ACGGAACTGAAGCTTGGTTCAACC -ACGGAACTGAAGCTTGGTTGTTCC -ACGGAACTGAAGCTTGGTATTCCC -ACGGAACTGAAGCTTGGTTTCTCG -ACGGAACTGAAGCTTGGTTAGACG -ACGGAACTGAAGCTTGGTGTAACG -ACGGAACTGAAGCTTGGTACTTCG -ACGGAACTGAAGCTTGGTTACGCA -ACGGAACTGAAGCTTGGTCTTGCA -ACGGAACTGAAGCTTGGTCGAACA -ACGGAACTGAAGCTTGGTCAGTCA -ACGGAACTGAAGCTTGGTGATCCA -ACGGAACTGAAGCTTGGTACGACA -ACGGAACTGAAGCTTGGTAGCTCA -ACGGAACTGAAGCTTGGTTCACGT -ACGGAACTGAAGCTTGGTCGTAGT -ACGGAACTGAAGCTTGGTGTCAGT -ACGGAACTGAAGCTTGGTGAAGGT -ACGGAACTGAAGCTTGGTAACCGT -ACGGAACTGAAGCTTGGTTTGTGC -ACGGAACTGAAGCTTGGTCTAAGC -ACGGAACTGAAGCTTGGTACTAGC -ACGGAACTGAAGCTTGGTAGATGC -ACGGAACTGAAGCTTGGTTGAAGG -ACGGAACTGAAGCTTGGTCAATGG -ACGGAACTGAAGCTTGGTATGAGG -ACGGAACTGAAGCTTGGTAATGGG -ACGGAACTGAAGCTTGGTTCCTGA -ACGGAACTGAAGCTTGGTTAGCGA -ACGGAACTGAAGCTTGGTCACAGA -ACGGAACTGAAGCTTGGTGCAAGA -ACGGAACTGAAGCTTGGTGGTTGA -ACGGAACTGAAGCTTGGTTCCGAT -ACGGAACTGAAGCTTGGTTGGCAT -ACGGAACTGAAGCTTGGTCGAGAT -ACGGAACTGAAGCTTGGTTACCAC -ACGGAACTGAAGCTTGGTCAGAAC -ACGGAACTGAAGCTTGGTGTCTAC -ACGGAACTGAAGCTTGGTACGTAC -ACGGAACTGAAGCTTGGTAGTGAC -ACGGAACTGAAGCTTGGTCTGTAG -ACGGAACTGAAGCTTGGTCCTAAG -ACGGAACTGAAGCTTGGTGTTCAG -ACGGAACTGAAGCTTGGTGCATAG -ACGGAACTGAAGCTTGGTGACAAG -ACGGAACTGAAGCTTGGTAAGCAG -ACGGAACTGAAGCTTGGTCGTCAA -ACGGAACTGAAGCTTGGTGCTGAA -ACGGAACTGAAGCTTGGTAGTACG -ACGGAACTGAAGCTTGGTATCCGA -ACGGAACTGAAGCTTGGTATGGGA -ACGGAACTGAAGCTTGGTGTGCAA -ACGGAACTGAAGCTTGGTGAGGAA -ACGGAACTGAAGCTTGGTCAGGTA -ACGGAACTGAAGCTTGGTGACTCT -ACGGAACTGAAGCTTGGTAGTCCT -ACGGAACTGAAGCTTGGTTAAGCC -ACGGAACTGAAGCTTGGTATAGCC -ACGGAACTGAAGCTTGGTTAACCG -ACGGAACTGAAGCTTGGTATGCCA -ACGGAACTGAAGCTTACGGGAAAC -ACGGAACTGAAGCTTACGAACACC -ACGGAACTGAAGCTTACGATCGAG -ACGGAACTGAAGCTTACGCTCCTT -ACGGAACTGAAGCTTACGCCTGTT -ACGGAACTGAAGCTTACGCGGTTT -ACGGAACTGAAGCTTACGGTGGTT -ACGGAACTGAAGCTTACGGCCTTT -ACGGAACTGAAGCTTACGGGTCTT -ACGGAACTGAAGCTTACGACGCTT -ACGGAACTGAAGCTTACGAGCGTT -ACGGAACTGAAGCTTACGTTCGTC -ACGGAACTGAAGCTTACGTCTCTC -ACGGAACTGAAGCTTACGTGGATC -ACGGAACTGAAGCTTACGCACTTC -ACGGAACTGAAGCTTACGGTACTC -ACGGAACTGAAGCTTACGGATGTC -ACGGAACTGAAGCTTACGACAGTC -ACGGAACTGAAGCTTACGTTGCTG -ACGGAACTGAAGCTTACGTCCATG -ACGGAACTGAAGCTTACGTGTGTG -ACGGAACTGAAGCTTACGCTAGTG -ACGGAACTGAAGCTTACGCATCTG -ACGGAACTGAAGCTTACGGAGTTG -ACGGAACTGAAGCTTACGAGACTG -ACGGAACTGAAGCTTACGTCGGTA -ACGGAACTGAAGCTTACGTGCCTA -ACGGAACTGAAGCTTACGCCACTA -ACGGAACTGAAGCTTACGGGAGTA -ACGGAACTGAAGCTTACGTCGTCT -ACGGAACTGAAGCTTACGTGCACT -ACGGAACTGAAGCTTACGCTGACT -ACGGAACTGAAGCTTACGCAACCT -ACGGAACTGAAGCTTACGGCTACT -ACGGAACTGAAGCTTACGGGATCT -ACGGAACTGAAGCTTACGAAGGCT -ACGGAACTGAAGCTTACGTCAACC -ACGGAACTGAAGCTTACGTGTTCC -ACGGAACTGAAGCTTACGATTCCC -ACGGAACTGAAGCTTACGTTCTCG -ACGGAACTGAAGCTTACGTAGACG -ACGGAACTGAAGCTTACGGTAACG -ACGGAACTGAAGCTTACGACTTCG -ACGGAACTGAAGCTTACGTACGCA -ACGGAACTGAAGCTTACGCTTGCA -ACGGAACTGAAGCTTACGCGAACA -ACGGAACTGAAGCTTACGCAGTCA -ACGGAACTGAAGCTTACGGATCCA -ACGGAACTGAAGCTTACGACGACA -ACGGAACTGAAGCTTACGAGCTCA -ACGGAACTGAAGCTTACGTCACGT -ACGGAACTGAAGCTTACGCGTAGT -ACGGAACTGAAGCTTACGGTCAGT -ACGGAACTGAAGCTTACGGAAGGT -ACGGAACTGAAGCTTACGAACCGT -ACGGAACTGAAGCTTACGTTGTGC -ACGGAACTGAAGCTTACGCTAAGC -ACGGAACTGAAGCTTACGACTAGC -ACGGAACTGAAGCTTACGAGATGC -ACGGAACTGAAGCTTACGTGAAGG -ACGGAACTGAAGCTTACGCAATGG -ACGGAACTGAAGCTTACGATGAGG -ACGGAACTGAAGCTTACGAATGGG -ACGGAACTGAAGCTTACGTCCTGA -ACGGAACTGAAGCTTACGTAGCGA -ACGGAACTGAAGCTTACGCACAGA -ACGGAACTGAAGCTTACGGCAAGA -ACGGAACTGAAGCTTACGGGTTGA -ACGGAACTGAAGCTTACGTCCGAT -ACGGAACTGAAGCTTACGTGGCAT -ACGGAACTGAAGCTTACGCGAGAT -ACGGAACTGAAGCTTACGTACCAC -ACGGAACTGAAGCTTACGCAGAAC -ACGGAACTGAAGCTTACGGTCTAC -ACGGAACTGAAGCTTACGACGTAC -ACGGAACTGAAGCTTACGAGTGAC -ACGGAACTGAAGCTTACGCTGTAG -ACGGAACTGAAGCTTACGCCTAAG -ACGGAACTGAAGCTTACGGTTCAG -ACGGAACTGAAGCTTACGGCATAG -ACGGAACTGAAGCTTACGGACAAG -ACGGAACTGAAGCTTACGAAGCAG -ACGGAACTGAAGCTTACGCGTCAA -ACGGAACTGAAGCTTACGGCTGAA -ACGGAACTGAAGCTTACGAGTACG -ACGGAACTGAAGCTTACGATCCGA -ACGGAACTGAAGCTTACGATGGGA -ACGGAACTGAAGCTTACGGTGCAA -ACGGAACTGAAGCTTACGGAGGAA -ACGGAACTGAAGCTTACGCAGGTA -ACGGAACTGAAGCTTACGGACTCT -ACGGAACTGAAGCTTACGAGTCCT -ACGGAACTGAAGCTTACGTAAGCC -ACGGAACTGAAGCTTACGATAGCC -ACGGAACTGAAGCTTACGTAACCG -ACGGAACTGAAGCTTACGATGCCA -ACGGAACTGAAGGTTAGCGGAAAC -ACGGAACTGAAGGTTAGCAACACC -ACGGAACTGAAGGTTAGCATCGAG -ACGGAACTGAAGGTTAGCCTCCTT -ACGGAACTGAAGGTTAGCCCTGTT -ACGGAACTGAAGGTTAGCCGGTTT -ACGGAACTGAAGGTTAGCGTGGTT -ACGGAACTGAAGGTTAGCGCCTTT -ACGGAACTGAAGGTTAGCGGTCTT -ACGGAACTGAAGGTTAGCACGCTT -ACGGAACTGAAGGTTAGCAGCGTT -ACGGAACTGAAGGTTAGCTTCGTC -ACGGAACTGAAGGTTAGCTCTCTC -ACGGAACTGAAGGTTAGCTGGATC -ACGGAACTGAAGGTTAGCCACTTC -ACGGAACTGAAGGTTAGCGTACTC -ACGGAACTGAAGGTTAGCGATGTC -ACGGAACTGAAGGTTAGCACAGTC -ACGGAACTGAAGGTTAGCTTGCTG -ACGGAACTGAAGGTTAGCTCCATG -ACGGAACTGAAGGTTAGCTGTGTG -ACGGAACTGAAGGTTAGCCTAGTG -ACGGAACTGAAGGTTAGCCATCTG -ACGGAACTGAAGGTTAGCGAGTTG -ACGGAACTGAAGGTTAGCAGACTG -ACGGAACTGAAGGTTAGCTCGGTA -ACGGAACTGAAGGTTAGCTGCCTA -ACGGAACTGAAGGTTAGCCCACTA -ACGGAACTGAAGGTTAGCGGAGTA -ACGGAACTGAAGGTTAGCTCGTCT -ACGGAACTGAAGGTTAGCTGCACT -ACGGAACTGAAGGTTAGCCTGACT -ACGGAACTGAAGGTTAGCCAACCT -ACGGAACTGAAGGTTAGCGCTACT -ACGGAACTGAAGGTTAGCGGATCT -ACGGAACTGAAGGTTAGCAAGGCT -ACGGAACTGAAGGTTAGCTCAACC -ACGGAACTGAAGGTTAGCTGTTCC -ACGGAACTGAAGGTTAGCATTCCC -ACGGAACTGAAGGTTAGCTTCTCG -ACGGAACTGAAGGTTAGCTAGACG -ACGGAACTGAAGGTTAGCGTAACG -ACGGAACTGAAGGTTAGCACTTCG -ACGGAACTGAAGGTTAGCTACGCA -ACGGAACTGAAGGTTAGCCTTGCA -ACGGAACTGAAGGTTAGCCGAACA -ACGGAACTGAAGGTTAGCCAGTCA -ACGGAACTGAAGGTTAGCGATCCA -ACGGAACTGAAGGTTAGCACGACA -ACGGAACTGAAGGTTAGCAGCTCA -ACGGAACTGAAGGTTAGCTCACGT -ACGGAACTGAAGGTTAGCCGTAGT -ACGGAACTGAAGGTTAGCGTCAGT -ACGGAACTGAAGGTTAGCGAAGGT -ACGGAACTGAAGGTTAGCAACCGT -ACGGAACTGAAGGTTAGCTTGTGC -ACGGAACTGAAGGTTAGCCTAAGC -ACGGAACTGAAGGTTAGCACTAGC -ACGGAACTGAAGGTTAGCAGATGC -ACGGAACTGAAGGTTAGCTGAAGG -ACGGAACTGAAGGTTAGCCAATGG -ACGGAACTGAAGGTTAGCATGAGG -ACGGAACTGAAGGTTAGCAATGGG -ACGGAACTGAAGGTTAGCTCCTGA -ACGGAACTGAAGGTTAGCTAGCGA -ACGGAACTGAAGGTTAGCCACAGA -ACGGAACTGAAGGTTAGCGCAAGA -ACGGAACTGAAGGTTAGCGGTTGA -ACGGAACTGAAGGTTAGCTCCGAT -ACGGAACTGAAGGTTAGCTGGCAT -ACGGAACTGAAGGTTAGCCGAGAT -ACGGAACTGAAGGTTAGCTACCAC -ACGGAACTGAAGGTTAGCCAGAAC -ACGGAACTGAAGGTTAGCGTCTAC -ACGGAACTGAAGGTTAGCACGTAC -ACGGAACTGAAGGTTAGCAGTGAC -ACGGAACTGAAGGTTAGCCTGTAG -ACGGAACTGAAGGTTAGCCCTAAG -ACGGAACTGAAGGTTAGCGTTCAG -ACGGAACTGAAGGTTAGCGCATAG -ACGGAACTGAAGGTTAGCGACAAG -ACGGAACTGAAGGTTAGCAAGCAG -ACGGAACTGAAGGTTAGCCGTCAA -ACGGAACTGAAGGTTAGCGCTGAA -ACGGAACTGAAGGTTAGCAGTACG -ACGGAACTGAAGGTTAGCATCCGA -ACGGAACTGAAGGTTAGCATGGGA -ACGGAACTGAAGGTTAGCGTGCAA -ACGGAACTGAAGGTTAGCGAGGAA -ACGGAACTGAAGGTTAGCCAGGTA -ACGGAACTGAAGGTTAGCGACTCT -ACGGAACTGAAGGTTAGCAGTCCT -ACGGAACTGAAGGTTAGCTAAGCC -ACGGAACTGAAGGTTAGCATAGCC -ACGGAACTGAAGGTTAGCTAACCG -ACGGAACTGAAGGTTAGCATGCCA -ACGGAACTGAAGGTCTTCGGAAAC -ACGGAACTGAAGGTCTTCAACACC -ACGGAACTGAAGGTCTTCATCGAG -ACGGAACTGAAGGTCTTCCTCCTT -ACGGAACTGAAGGTCTTCCCTGTT -ACGGAACTGAAGGTCTTCCGGTTT -ACGGAACTGAAGGTCTTCGTGGTT -ACGGAACTGAAGGTCTTCGCCTTT -ACGGAACTGAAGGTCTTCGGTCTT -ACGGAACTGAAGGTCTTCACGCTT -ACGGAACTGAAGGTCTTCAGCGTT -ACGGAACTGAAGGTCTTCTTCGTC -ACGGAACTGAAGGTCTTCTCTCTC -ACGGAACTGAAGGTCTTCTGGATC -ACGGAACTGAAGGTCTTCCACTTC -ACGGAACTGAAGGTCTTCGTACTC -ACGGAACTGAAGGTCTTCGATGTC -ACGGAACTGAAGGTCTTCACAGTC -ACGGAACTGAAGGTCTTCTTGCTG -ACGGAACTGAAGGTCTTCTCCATG -ACGGAACTGAAGGTCTTCTGTGTG -ACGGAACTGAAGGTCTTCCTAGTG -ACGGAACTGAAGGTCTTCCATCTG -ACGGAACTGAAGGTCTTCGAGTTG -ACGGAACTGAAGGTCTTCAGACTG -ACGGAACTGAAGGTCTTCTCGGTA -ACGGAACTGAAGGTCTTCTGCCTA -ACGGAACTGAAGGTCTTCCCACTA -ACGGAACTGAAGGTCTTCGGAGTA -ACGGAACTGAAGGTCTTCTCGTCT -ACGGAACTGAAGGTCTTCTGCACT -ACGGAACTGAAGGTCTTCCTGACT -ACGGAACTGAAGGTCTTCCAACCT -ACGGAACTGAAGGTCTTCGCTACT -ACGGAACTGAAGGTCTTCGGATCT -ACGGAACTGAAGGTCTTCAAGGCT -ACGGAACTGAAGGTCTTCTCAACC -ACGGAACTGAAGGTCTTCTGTTCC -ACGGAACTGAAGGTCTTCATTCCC -ACGGAACTGAAGGTCTTCTTCTCG -ACGGAACTGAAGGTCTTCTAGACG -ACGGAACTGAAGGTCTTCGTAACG -ACGGAACTGAAGGTCTTCACTTCG -ACGGAACTGAAGGTCTTCTACGCA -ACGGAACTGAAGGTCTTCCTTGCA -ACGGAACTGAAGGTCTTCCGAACA -ACGGAACTGAAGGTCTTCCAGTCA -ACGGAACTGAAGGTCTTCGATCCA -ACGGAACTGAAGGTCTTCACGACA -ACGGAACTGAAGGTCTTCAGCTCA -ACGGAACTGAAGGTCTTCTCACGT -ACGGAACTGAAGGTCTTCCGTAGT -ACGGAACTGAAGGTCTTCGTCAGT -ACGGAACTGAAGGTCTTCGAAGGT -ACGGAACTGAAGGTCTTCAACCGT -ACGGAACTGAAGGTCTTCTTGTGC -ACGGAACTGAAGGTCTTCCTAAGC -ACGGAACTGAAGGTCTTCACTAGC -ACGGAACTGAAGGTCTTCAGATGC -ACGGAACTGAAGGTCTTCTGAAGG -ACGGAACTGAAGGTCTTCCAATGG -ACGGAACTGAAGGTCTTCATGAGG -ACGGAACTGAAGGTCTTCAATGGG -ACGGAACTGAAGGTCTTCTCCTGA -ACGGAACTGAAGGTCTTCTAGCGA -ACGGAACTGAAGGTCTTCCACAGA -ACGGAACTGAAGGTCTTCGCAAGA -ACGGAACTGAAGGTCTTCGGTTGA -ACGGAACTGAAGGTCTTCTCCGAT -ACGGAACTGAAGGTCTTCTGGCAT -ACGGAACTGAAGGTCTTCCGAGAT -ACGGAACTGAAGGTCTTCTACCAC -ACGGAACTGAAGGTCTTCCAGAAC -ACGGAACTGAAGGTCTTCGTCTAC -ACGGAACTGAAGGTCTTCACGTAC -ACGGAACTGAAGGTCTTCAGTGAC -ACGGAACTGAAGGTCTTCCTGTAG -ACGGAACTGAAGGTCTTCCCTAAG -ACGGAACTGAAGGTCTTCGTTCAG -ACGGAACTGAAGGTCTTCGCATAG -ACGGAACTGAAGGTCTTCGACAAG -ACGGAACTGAAGGTCTTCAAGCAG -ACGGAACTGAAGGTCTTCCGTCAA -ACGGAACTGAAGGTCTTCGCTGAA -ACGGAACTGAAGGTCTTCAGTACG -ACGGAACTGAAGGTCTTCATCCGA -ACGGAACTGAAGGTCTTCATGGGA -ACGGAACTGAAGGTCTTCGTGCAA -ACGGAACTGAAGGTCTTCGAGGAA -ACGGAACTGAAGGTCTTCCAGGTA -ACGGAACTGAAGGTCTTCGACTCT -ACGGAACTGAAGGTCTTCAGTCCT -ACGGAACTGAAGGTCTTCTAAGCC -ACGGAACTGAAGGTCTTCATAGCC -ACGGAACTGAAGGTCTTCTAACCG -ACGGAACTGAAGGTCTTCATGCCA -ACGGAACTGAAGCTCTCTGGAAAC -ACGGAACTGAAGCTCTCTAACACC -ACGGAACTGAAGCTCTCTATCGAG -ACGGAACTGAAGCTCTCTCTCCTT -ACGGAACTGAAGCTCTCTCCTGTT -ACGGAACTGAAGCTCTCTCGGTTT -ACGGAACTGAAGCTCTCTGTGGTT -ACGGAACTGAAGCTCTCTGCCTTT -ACGGAACTGAAGCTCTCTGGTCTT -ACGGAACTGAAGCTCTCTACGCTT -ACGGAACTGAAGCTCTCTAGCGTT -ACGGAACTGAAGCTCTCTTTCGTC -ACGGAACTGAAGCTCTCTTCTCTC -ACGGAACTGAAGCTCTCTTGGATC -ACGGAACTGAAGCTCTCTCACTTC -ACGGAACTGAAGCTCTCTGTACTC -ACGGAACTGAAGCTCTCTGATGTC -ACGGAACTGAAGCTCTCTACAGTC -ACGGAACTGAAGCTCTCTTTGCTG -ACGGAACTGAAGCTCTCTTCCATG -ACGGAACTGAAGCTCTCTTGTGTG -ACGGAACTGAAGCTCTCTCTAGTG -ACGGAACTGAAGCTCTCTCATCTG -ACGGAACTGAAGCTCTCTGAGTTG -ACGGAACTGAAGCTCTCTAGACTG -ACGGAACTGAAGCTCTCTTCGGTA -ACGGAACTGAAGCTCTCTTGCCTA -ACGGAACTGAAGCTCTCTCCACTA -ACGGAACTGAAGCTCTCTGGAGTA -ACGGAACTGAAGCTCTCTTCGTCT -ACGGAACTGAAGCTCTCTTGCACT -ACGGAACTGAAGCTCTCTCTGACT -ACGGAACTGAAGCTCTCTCAACCT -ACGGAACTGAAGCTCTCTGCTACT -ACGGAACTGAAGCTCTCTGGATCT -ACGGAACTGAAGCTCTCTAAGGCT -ACGGAACTGAAGCTCTCTTCAACC -ACGGAACTGAAGCTCTCTTGTTCC -ACGGAACTGAAGCTCTCTATTCCC -ACGGAACTGAAGCTCTCTTTCTCG -ACGGAACTGAAGCTCTCTTAGACG -ACGGAACTGAAGCTCTCTGTAACG -ACGGAACTGAAGCTCTCTACTTCG -ACGGAACTGAAGCTCTCTTACGCA -ACGGAACTGAAGCTCTCTCTTGCA -ACGGAACTGAAGCTCTCTCGAACA -ACGGAACTGAAGCTCTCTCAGTCA -ACGGAACTGAAGCTCTCTGATCCA -ACGGAACTGAAGCTCTCTACGACA -ACGGAACTGAAGCTCTCTAGCTCA -ACGGAACTGAAGCTCTCTTCACGT -ACGGAACTGAAGCTCTCTCGTAGT -ACGGAACTGAAGCTCTCTGTCAGT -ACGGAACTGAAGCTCTCTGAAGGT -ACGGAACTGAAGCTCTCTAACCGT -ACGGAACTGAAGCTCTCTTTGTGC -ACGGAACTGAAGCTCTCTCTAAGC -ACGGAACTGAAGCTCTCTACTAGC -ACGGAACTGAAGCTCTCTAGATGC -ACGGAACTGAAGCTCTCTTGAAGG -ACGGAACTGAAGCTCTCTCAATGG -ACGGAACTGAAGCTCTCTATGAGG -ACGGAACTGAAGCTCTCTAATGGG -ACGGAACTGAAGCTCTCTTCCTGA -ACGGAACTGAAGCTCTCTTAGCGA -ACGGAACTGAAGCTCTCTCACAGA -ACGGAACTGAAGCTCTCTGCAAGA -ACGGAACTGAAGCTCTCTGGTTGA -ACGGAACTGAAGCTCTCTTCCGAT -ACGGAACTGAAGCTCTCTTGGCAT -ACGGAACTGAAGCTCTCTCGAGAT -ACGGAACTGAAGCTCTCTTACCAC -ACGGAACTGAAGCTCTCTCAGAAC -ACGGAACTGAAGCTCTCTGTCTAC -ACGGAACTGAAGCTCTCTACGTAC -ACGGAACTGAAGCTCTCTAGTGAC -ACGGAACTGAAGCTCTCTCTGTAG -ACGGAACTGAAGCTCTCTCCTAAG -ACGGAACTGAAGCTCTCTGTTCAG -ACGGAACTGAAGCTCTCTGCATAG -ACGGAACTGAAGCTCTCTGACAAG -ACGGAACTGAAGCTCTCTAAGCAG -ACGGAACTGAAGCTCTCTCGTCAA -ACGGAACTGAAGCTCTCTGCTGAA -ACGGAACTGAAGCTCTCTAGTACG -ACGGAACTGAAGCTCTCTATCCGA -ACGGAACTGAAGCTCTCTATGGGA -ACGGAACTGAAGCTCTCTGTGCAA -ACGGAACTGAAGCTCTCTGAGGAA -ACGGAACTGAAGCTCTCTCAGGTA -ACGGAACTGAAGCTCTCTGACTCT -ACGGAACTGAAGCTCTCTAGTCCT -ACGGAACTGAAGCTCTCTTAAGCC -ACGGAACTGAAGCTCTCTATAGCC -ACGGAACTGAAGCTCTCTTAACCG -ACGGAACTGAAGCTCTCTATGCCA -ACGGAACTGAAGATCTGGGGAAAC -ACGGAACTGAAGATCTGGAACACC -ACGGAACTGAAGATCTGGATCGAG -ACGGAACTGAAGATCTGGCTCCTT -ACGGAACTGAAGATCTGGCCTGTT -ACGGAACTGAAGATCTGGCGGTTT -ACGGAACTGAAGATCTGGGTGGTT -ACGGAACTGAAGATCTGGGCCTTT -ACGGAACTGAAGATCTGGGGTCTT -ACGGAACTGAAGATCTGGACGCTT -ACGGAACTGAAGATCTGGAGCGTT -ACGGAACTGAAGATCTGGTTCGTC -ACGGAACTGAAGATCTGGTCTCTC -ACGGAACTGAAGATCTGGTGGATC -ACGGAACTGAAGATCTGGCACTTC -ACGGAACTGAAGATCTGGGTACTC -ACGGAACTGAAGATCTGGGATGTC -ACGGAACTGAAGATCTGGACAGTC -ACGGAACTGAAGATCTGGTTGCTG -ACGGAACTGAAGATCTGGTCCATG -ACGGAACTGAAGATCTGGTGTGTG -ACGGAACTGAAGATCTGGCTAGTG -ACGGAACTGAAGATCTGGCATCTG -ACGGAACTGAAGATCTGGGAGTTG -ACGGAACTGAAGATCTGGAGACTG -ACGGAACTGAAGATCTGGTCGGTA -ACGGAACTGAAGATCTGGTGCCTA -ACGGAACTGAAGATCTGGCCACTA -ACGGAACTGAAGATCTGGGGAGTA -ACGGAACTGAAGATCTGGTCGTCT -ACGGAACTGAAGATCTGGTGCACT -ACGGAACTGAAGATCTGGCTGACT -ACGGAACTGAAGATCTGGCAACCT -ACGGAACTGAAGATCTGGGCTACT -ACGGAACTGAAGATCTGGGGATCT -ACGGAACTGAAGATCTGGAAGGCT -ACGGAACTGAAGATCTGGTCAACC -ACGGAACTGAAGATCTGGTGTTCC -ACGGAACTGAAGATCTGGATTCCC -ACGGAACTGAAGATCTGGTTCTCG -ACGGAACTGAAGATCTGGTAGACG -ACGGAACTGAAGATCTGGGTAACG -ACGGAACTGAAGATCTGGACTTCG -ACGGAACTGAAGATCTGGTACGCA -ACGGAACTGAAGATCTGGCTTGCA -ACGGAACTGAAGATCTGGCGAACA -ACGGAACTGAAGATCTGGCAGTCA -ACGGAACTGAAGATCTGGGATCCA -ACGGAACTGAAGATCTGGACGACA -ACGGAACTGAAGATCTGGAGCTCA -ACGGAACTGAAGATCTGGTCACGT -ACGGAACTGAAGATCTGGCGTAGT -ACGGAACTGAAGATCTGGGTCAGT -ACGGAACTGAAGATCTGGGAAGGT -ACGGAACTGAAGATCTGGAACCGT -ACGGAACTGAAGATCTGGTTGTGC -ACGGAACTGAAGATCTGGCTAAGC -ACGGAACTGAAGATCTGGACTAGC -ACGGAACTGAAGATCTGGAGATGC -ACGGAACTGAAGATCTGGTGAAGG -ACGGAACTGAAGATCTGGCAATGG -ACGGAACTGAAGATCTGGATGAGG -ACGGAACTGAAGATCTGGAATGGG -ACGGAACTGAAGATCTGGTCCTGA -ACGGAACTGAAGATCTGGTAGCGA -ACGGAACTGAAGATCTGGCACAGA -ACGGAACTGAAGATCTGGGCAAGA -ACGGAACTGAAGATCTGGGGTTGA -ACGGAACTGAAGATCTGGTCCGAT -ACGGAACTGAAGATCTGGTGGCAT -ACGGAACTGAAGATCTGGCGAGAT -ACGGAACTGAAGATCTGGTACCAC -ACGGAACTGAAGATCTGGCAGAAC -ACGGAACTGAAGATCTGGGTCTAC -ACGGAACTGAAGATCTGGACGTAC -ACGGAACTGAAGATCTGGAGTGAC -ACGGAACTGAAGATCTGGCTGTAG -ACGGAACTGAAGATCTGGCCTAAG -ACGGAACTGAAGATCTGGGTTCAG -ACGGAACTGAAGATCTGGGCATAG -ACGGAACTGAAGATCTGGGACAAG -ACGGAACTGAAGATCTGGAAGCAG -ACGGAACTGAAGATCTGGCGTCAA -ACGGAACTGAAGATCTGGGCTGAA -ACGGAACTGAAGATCTGGAGTACG -ACGGAACTGAAGATCTGGATCCGA -ACGGAACTGAAGATCTGGATGGGA -ACGGAACTGAAGATCTGGGTGCAA -ACGGAACTGAAGATCTGGGAGGAA -ACGGAACTGAAGATCTGGCAGGTA -ACGGAACTGAAGATCTGGGACTCT -ACGGAACTGAAGATCTGGAGTCCT -ACGGAACTGAAGATCTGGTAAGCC -ACGGAACTGAAGATCTGGATAGCC -ACGGAACTGAAGATCTGGTAACCG -ACGGAACTGAAGATCTGGATGCCA -ACGGAACTGAAGTTCCACGGAAAC -ACGGAACTGAAGTTCCACAACACC -ACGGAACTGAAGTTCCACATCGAG -ACGGAACTGAAGTTCCACCTCCTT -ACGGAACTGAAGTTCCACCCTGTT -ACGGAACTGAAGTTCCACCGGTTT -ACGGAACTGAAGTTCCACGTGGTT -ACGGAACTGAAGTTCCACGCCTTT -ACGGAACTGAAGTTCCACGGTCTT -ACGGAACTGAAGTTCCACACGCTT -ACGGAACTGAAGTTCCACAGCGTT -ACGGAACTGAAGTTCCACTTCGTC -ACGGAACTGAAGTTCCACTCTCTC -ACGGAACTGAAGTTCCACTGGATC -ACGGAACTGAAGTTCCACCACTTC -ACGGAACTGAAGTTCCACGTACTC -ACGGAACTGAAGTTCCACGATGTC -ACGGAACTGAAGTTCCACACAGTC -ACGGAACTGAAGTTCCACTTGCTG -ACGGAACTGAAGTTCCACTCCATG -ACGGAACTGAAGTTCCACTGTGTG -ACGGAACTGAAGTTCCACCTAGTG -ACGGAACTGAAGTTCCACCATCTG -ACGGAACTGAAGTTCCACGAGTTG -ACGGAACTGAAGTTCCACAGACTG -ACGGAACTGAAGTTCCACTCGGTA -ACGGAACTGAAGTTCCACTGCCTA -ACGGAACTGAAGTTCCACCCACTA -ACGGAACTGAAGTTCCACGGAGTA -ACGGAACTGAAGTTCCACTCGTCT -ACGGAACTGAAGTTCCACTGCACT -ACGGAACTGAAGTTCCACCTGACT -ACGGAACTGAAGTTCCACCAACCT -ACGGAACTGAAGTTCCACGCTACT -ACGGAACTGAAGTTCCACGGATCT -ACGGAACTGAAGTTCCACAAGGCT -ACGGAACTGAAGTTCCACTCAACC -ACGGAACTGAAGTTCCACTGTTCC -ACGGAACTGAAGTTCCACATTCCC -ACGGAACTGAAGTTCCACTTCTCG -ACGGAACTGAAGTTCCACTAGACG -ACGGAACTGAAGTTCCACGTAACG -ACGGAACTGAAGTTCCACACTTCG -ACGGAACTGAAGTTCCACTACGCA -ACGGAACTGAAGTTCCACCTTGCA -ACGGAACTGAAGTTCCACCGAACA -ACGGAACTGAAGTTCCACCAGTCA -ACGGAACTGAAGTTCCACGATCCA -ACGGAACTGAAGTTCCACACGACA -ACGGAACTGAAGTTCCACAGCTCA -ACGGAACTGAAGTTCCACTCACGT -ACGGAACTGAAGTTCCACCGTAGT -ACGGAACTGAAGTTCCACGTCAGT -ACGGAACTGAAGTTCCACGAAGGT -ACGGAACTGAAGTTCCACAACCGT -ACGGAACTGAAGTTCCACTTGTGC -ACGGAACTGAAGTTCCACCTAAGC -ACGGAACTGAAGTTCCACACTAGC -ACGGAACTGAAGTTCCACAGATGC -ACGGAACTGAAGTTCCACTGAAGG -ACGGAACTGAAGTTCCACCAATGG -ACGGAACTGAAGTTCCACATGAGG -ACGGAACTGAAGTTCCACAATGGG -ACGGAACTGAAGTTCCACTCCTGA -ACGGAACTGAAGTTCCACTAGCGA -ACGGAACTGAAGTTCCACCACAGA -ACGGAACTGAAGTTCCACGCAAGA -ACGGAACTGAAGTTCCACGGTTGA -ACGGAACTGAAGTTCCACTCCGAT -ACGGAACTGAAGTTCCACTGGCAT -ACGGAACTGAAGTTCCACCGAGAT -ACGGAACTGAAGTTCCACTACCAC -ACGGAACTGAAGTTCCACCAGAAC -ACGGAACTGAAGTTCCACGTCTAC -ACGGAACTGAAGTTCCACACGTAC -ACGGAACTGAAGTTCCACAGTGAC -ACGGAACTGAAGTTCCACCTGTAG -ACGGAACTGAAGTTCCACCCTAAG -ACGGAACTGAAGTTCCACGTTCAG -ACGGAACTGAAGTTCCACGCATAG -ACGGAACTGAAGTTCCACGACAAG -ACGGAACTGAAGTTCCACAAGCAG -ACGGAACTGAAGTTCCACCGTCAA -ACGGAACTGAAGTTCCACGCTGAA -ACGGAACTGAAGTTCCACAGTACG -ACGGAACTGAAGTTCCACATCCGA -ACGGAACTGAAGTTCCACATGGGA -ACGGAACTGAAGTTCCACGTGCAA -ACGGAACTGAAGTTCCACGAGGAA -ACGGAACTGAAGTTCCACCAGGTA -ACGGAACTGAAGTTCCACGACTCT -ACGGAACTGAAGTTCCACAGTCCT -ACGGAACTGAAGTTCCACTAAGCC -ACGGAACTGAAGTTCCACATAGCC -ACGGAACTGAAGTTCCACTAACCG -ACGGAACTGAAGTTCCACATGCCA -ACGGAACTGAAGCTCGTAGGAAAC -ACGGAACTGAAGCTCGTAAACACC -ACGGAACTGAAGCTCGTAATCGAG -ACGGAACTGAAGCTCGTACTCCTT -ACGGAACTGAAGCTCGTACCTGTT -ACGGAACTGAAGCTCGTACGGTTT -ACGGAACTGAAGCTCGTAGTGGTT -ACGGAACTGAAGCTCGTAGCCTTT -ACGGAACTGAAGCTCGTAGGTCTT -ACGGAACTGAAGCTCGTAACGCTT -ACGGAACTGAAGCTCGTAAGCGTT -ACGGAACTGAAGCTCGTATTCGTC -ACGGAACTGAAGCTCGTATCTCTC -ACGGAACTGAAGCTCGTATGGATC -ACGGAACTGAAGCTCGTACACTTC -ACGGAACTGAAGCTCGTAGTACTC -ACGGAACTGAAGCTCGTAGATGTC -ACGGAACTGAAGCTCGTAACAGTC -ACGGAACTGAAGCTCGTATTGCTG -ACGGAACTGAAGCTCGTATCCATG -ACGGAACTGAAGCTCGTATGTGTG -ACGGAACTGAAGCTCGTACTAGTG -ACGGAACTGAAGCTCGTACATCTG -ACGGAACTGAAGCTCGTAGAGTTG -ACGGAACTGAAGCTCGTAAGACTG -ACGGAACTGAAGCTCGTATCGGTA -ACGGAACTGAAGCTCGTATGCCTA -ACGGAACTGAAGCTCGTACCACTA -ACGGAACTGAAGCTCGTAGGAGTA -ACGGAACTGAAGCTCGTATCGTCT -ACGGAACTGAAGCTCGTATGCACT -ACGGAACTGAAGCTCGTACTGACT -ACGGAACTGAAGCTCGTACAACCT -ACGGAACTGAAGCTCGTAGCTACT -ACGGAACTGAAGCTCGTAGGATCT -ACGGAACTGAAGCTCGTAAAGGCT -ACGGAACTGAAGCTCGTATCAACC -ACGGAACTGAAGCTCGTATGTTCC -ACGGAACTGAAGCTCGTAATTCCC -ACGGAACTGAAGCTCGTATTCTCG -ACGGAACTGAAGCTCGTATAGACG -ACGGAACTGAAGCTCGTAGTAACG -ACGGAACTGAAGCTCGTAACTTCG -ACGGAACTGAAGCTCGTATACGCA -ACGGAACTGAAGCTCGTACTTGCA -ACGGAACTGAAGCTCGTACGAACA -ACGGAACTGAAGCTCGTACAGTCA -ACGGAACTGAAGCTCGTAGATCCA -ACGGAACTGAAGCTCGTAACGACA -ACGGAACTGAAGCTCGTAAGCTCA -ACGGAACTGAAGCTCGTATCACGT -ACGGAACTGAAGCTCGTACGTAGT -ACGGAACTGAAGCTCGTAGTCAGT -ACGGAACTGAAGCTCGTAGAAGGT -ACGGAACTGAAGCTCGTAAACCGT -ACGGAACTGAAGCTCGTATTGTGC -ACGGAACTGAAGCTCGTACTAAGC -ACGGAACTGAAGCTCGTAACTAGC -ACGGAACTGAAGCTCGTAAGATGC -ACGGAACTGAAGCTCGTATGAAGG -ACGGAACTGAAGCTCGTACAATGG -ACGGAACTGAAGCTCGTAATGAGG -ACGGAACTGAAGCTCGTAAATGGG -ACGGAACTGAAGCTCGTATCCTGA -ACGGAACTGAAGCTCGTATAGCGA -ACGGAACTGAAGCTCGTACACAGA -ACGGAACTGAAGCTCGTAGCAAGA -ACGGAACTGAAGCTCGTAGGTTGA -ACGGAACTGAAGCTCGTATCCGAT -ACGGAACTGAAGCTCGTATGGCAT -ACGGAACTGAAGCTCGTACGAGAT -ACGGAACTGAAGCTCGTATACCAC -ACGGAACTGAAGCTCGTACAGAAC -ACGGAACTGAAGCTCGTAGTCTAC -ACGGAACTGAAGCTCGTAACGTAC -ACGGAACTGAAGCTCGTAAGTGAC -ACGGAACTGAAGCTCGTACTGTAG -ACGGAACTGAAGCTCGTACCTAAG -ACGGAACTGAAGCTCGTAGTTCAG -ACGGAACTGAAGCTCGTAGCATAG -ACGGAACTGAAGCTCGTAGACAAG -ACGGAACTGAAGCTCGTAAAGCAG -ACGGAACTGAAGCTCGTACGTCAA -ACGGAACTGAAGCTCGTAGCTGAA -ACGGAACTGAAGCTCGTAAGTACG -ACGGAACTGAAGCTCGTAATCCGA -ACGGAACTGAAGCTCGTAATGGGA -ACGGAACTGAAGCTCGTAGTGCAA -ACGGAACTGAAGCTCGTAGAGGAA -ACGGAACTGAAGCTCGTACAGGTA -ACGGAACTGAAGCTCGTAGACTCT -ACGGAACTGAAGCTCGTAAGTCCT -ACGGAACTGAAGCTCGTATAAGCC -ACGGAACTGAAGCTCGTAATAGCC -ACGGAACTGAAGCTCGTATAACCG -ACGGAACTGAAGCTCGTAATGCCA -ACGGAACTGAAGGTCGATGGAAAC -ACGGAACTGAAGGTCGATAACACC -ACGGAACTGAAGGTCGATATCGAG -ACGGAACTGAAGGTCGATCTCCTT -ACGGAACTGAAGGTCGATCCTGTT -ACGGAACTGAAGGTCGATCGGTTT -ACGGAACTGAAGGTCGATGTGGTT -ACGGAACTGAAGGTCGATGCCTTT -ACGGAACTGAAGGTCGATGGTCTT -ACGGAACTGAAGGTCGATACGCTT -ACGGAACTGAAGGTCGATAGCGTT -ACGGAACTGAAGGTCGATTTCGTC -ACGGAACTGAAGGTCGATTCTCTC -ACGGAACTGAAGGTCGATTGGATC -ACGGAACTGAAGGTCGATCACTTC -ACGGAACTGAAGGTCGATGTACTC -ACGGAACTGAAGGTCGATGATGTC -ACGGAACTGAAGGTCGATACAGTC -ACGGAACTGAAGGTCGATTTGCTG -ACGGAACTGAAGGTCGATTCCATG -ACGGAACTGAAGGTCGATTGTGTG -ACGGAACTGAAGGTCGATCTAGTG -ACGGAACTGAAGGTCGATCATCTG -ACGGAACTGAAGGTCGATGAGTTG -ACGGAACTGAAGGTCGATAGACTG -ACGGAACTGAAGGTCGATTCGGTA -ACGGAACTGAAGGTCGATTGCCTA -ACGGAACTGAAGGTCGATCCACTA -ACGGAACTGAAGGTCGATGGAGTA -ACGGAACTGAAGGTCGATTCGTCT -ACGGAACTGAAGGTCGATTGCACT -ACGGAACTGAAGGTCGATCTGACT -ACGGAACTGAAGGTCGATCAACCT -ACGGAACTGAAGGTCGATGCTACT -ACGGAACTGAAGGTCGATGGATCT -ACGGAACTGAAGGTCGATAAGGCT -ACGGAACTGAAGGTCGATTCAACC -ACGGAACTGAAGGTCGATTGTTCC -ACGGAACTGAAGGTCGATATTCCC -ACGGAACTGAAGGTCGATTTCTCG -ACGGAACTGAAGGTCGATTAGACG -ACGGAACTGAAGGTCGATGTAACG -ACGGAACTGAAGGTCGATACTTCG -ACGGAACTGAAGGTCGATTACGCA -ACGGAACTGAAGGTCGATCTTGCA -ACGGAACTGAAGGTCGATCGAACA -ACGGAACTGAAGGTCGATCAGTCA -ACGGAACTGAAGGTCGATGATCCA -ACGGAACTGAAGGTCGATACGACA -ACGGAACTGAAGGTCGATAGCTCA -ACGGAACTGAAGGTCGATTCACGT -ACGGAACTGAAGGTCGATCGTAGT -ACGGAACTGAAGGTCGATGTCAGT -ACGGAACTGAAGGTCGATGAAGGT -ACGGAACTGAAGGTCGATAACCGT -ACGGAACTGAAGGTCGATTTGTGC -ACGGAACTGAAGGTCGATCTAAGC -ACGGAACTGAAGGTCGATACTAGC -ACGGAACTGAAGGTCGATAGATGC -ACGGAACTGAAGGTCGATTGAAGG -ACGGAACTGAAGGTCGATCAATGG -ACGGAACTGAAGGTCGATATGAGG -ACGGAACTGAAGGTCGATAATGGG -ACGGAACTGAAGGTCGATTCCTGA -ACGGAACTGAAGGTCGATTAGCGA -ACGGAACTGAAGGTCGATCACAGA -ACGGAACTGAAGGTCGATGCAAGA -ACGGAACTGAAGGTCGATGGTTGA -ACGGAACTGAAGGTCGATTCCGAT -ACGGAACTGAAGGTCGATTGGCAT -ACGGAACTGAAGGTCGATCGAGAT -ACGGAACTGAAGGTCGATTACCAC -ACGGAACTGAAGGTCGATCAGAAC -ACGGAACTGAAGGTCGATGTCTAC -ACGGAACTGAAGGTCGATACGTAC -ACGGAACTGAAGGTCGATAGTGAC -ACGGAACTGAAGGTCGATCTGTAG -ACGGAACTGAAGGTCGATCCTAAG -ACGGAACTGAAGGTCGATGTTCAG -ACGGAACTGAAGGTCGATGCATAG -ACGGAACTGAAGGTCGATGACAAG -ACGGAACTGAAGGTCGATAAGCAG -ACGGAACTGAAGGTCGATCGTCAA -ACGGAACTGAAGGTCGATGCTGAA -ACGGAACTGAAGGTCGATAGTACG -ACGGAACTGAAGGTCGATATCCGA -ACGGAACTGAAGGTCGATATGGGA -ACGGAACTGAAGGTCGATGTGCAA -ACGGAACTGAAGGTCGATGAGGAA -ACGGAACTGAAGGTCGATCAGGTA -ACGGAACTGAAGGTCGATGACTCT -ACGGAACTGAAGGTCGATAGTCCT -ACGGAACTGAAGGTCGATTAAGCC -ACGGAACTGAAGGTCGATATAGCC -ACGGAACTGAAGGTCGATTAACCG -ACGGAACTGAAGGTCGATATGCCA -ACGGAACTGAAGGTCACAGGAAAC -ACGGAACTGAAGGTCACAAACACC -ACGGAACTGAAGGTCACAATCGAG -ACGGAACTGAAGGTCACACTCCTT -ACGGAACTGAAGGTCACACCTGTT -ACGGAACTGAAGGTCACACGGTTT -ACGGAACTGAAGGTCACAGTGGTT -ACGGAACTGAAGGTCACAGCCTTT -ACGGAACTGAAGGTCACAGGTCTT -ACGGAACTGAAGGTCACAACGCTT -ACGGAACTGAAGGTCACAAGCGTT -ACGGAACTGAAGGTCACATTCGTC -ACGGAACTGAAGGTCACATCTCTC -ACGGAACTGAAGGTCACATGGATC -ACGGAACTGAAGGTCACACACTTC -ACGGAACTGAAGGTCACAGTACTC -ACGGAACTGAAGGTCACAGATGTC -ACGGAACTGAAGGTCACAACAGTC -ACGGAACTGAAGGTCACATTGCTG -ACGGAACTGAAGGTCACATCCATG -ACGGAACTGAAGGTCACATGTGTG -ACGGAACTGAAGGTCACACTAGTG -ACGGAACTGAAGGTCACACATCTG -ACGGAACTGAAGGTCACAGAGTTG -ACGGAACTGAAGGTCACAAGACTG -ACGGAACTGAAGGTCACATCGGTA -ACGGAACTGAAGGTCACATGCCTA -ACGGAACTGAAGGTCACACCACTA -ACGGAACTGAAGGTCACAGGAGTA -ACGGAACTGAAGGTCACATCGTCT -ACGGAACTGAAGGTCACATGCACT -ACGGAACTGAAGGTCACACTGACT -ACGGAACTGAAGGTCACACAACCT -ACGGAACTGAAGGTCACAGCTACT -ACGGAACTGAAGGTCACAGGATCT -ACGGAACTGAAGGTCACAAAGGCT -ACGGAACTGAAGGTCACATCAACC -ACGGAACTGAAGGTCACATGTTCC -ACGGAACTGAAGGTCACAATTCCC -ACGGAACTGAAGGTCACATTCTCG -ACGGAACTGAAGGTCACATAGACG -ACGGAACTGAAGGTCACAGTAACG -ACGGAACTGAAGGTCACAACTTCG -ACGGAACTGAAGGTCACATACGCA -ACGGAACTGAAGGTCACACTTGCA -ACGGAACTGAAGGTCACACGAACA -ACGGAACTGAAGGTCACACAGTCA -ACGGAACTGAAGGTCACAGATCCA -ACGGAACTGAAGGTCACAACGACA -ACGGAACTGAAGGTCACAAGCTCA -ACGGAACTGAAGGTCACATCACGT -ACGGAACTGAAGGTCACACGTAGT -ACGGAACTGAAGGTCACAGTCAGT -ACGGAACTGAAGGTCACAGAAGGT -ACGGAACTGAAGGTCACAAACCGT -ACGGAACTGAAGGTCACATTGTGC -ACGGAACTGAAGGTCACACTAAGC -ACGGAACTGAAGGTCACAACTAGC -ACGGAACTGAAGGTCACAAGATGC -ACGGAACTGAAGGTCACATGAAGG -ACGGAACTGAAGGTCACACAATGG -ACGGAACTGAAGGTCACAATGAGG -ACGGAACTGAAGGTCACAAATGGG -ACGGAACTGAAGGTCACATCCTGA -ACGGAACTGAAGGTCACATAGCGA -ACGGAACTGAAGGTCACACACAGA -ACGGAACTGAAGGTCACAGCAAGA -ACGGAACTGAAGGTCACAGGTTGA -ACGGAACTGAAGGTCACATCCGAT -ACGGAACTGAAGGTCACATGGCAT -ACGGAACTGAAGGTCACACGAGAT -ACGGAACTGAAGGTCACATACCAC -ACGGAACTGAAGGTCACACAGAAC -ACGGAACTGAAGGTCACAGTCTAC -ACGGAACTGAAGGTCACAACGTAC -ACGGAACTGAAGGTCACAAGTGAC -ACGGAACTGAAGGTCACACTGTAG -ACGGAACTGAAGGTCACACCTAAG -ACGGAACTGAAGGTCACAGTTCAG -ACGGAACTGAAGGTCACAGCATAG -ACGGAACTGAAGGTCACAGACAAG -ACGGAACTGAAGGTCACAAAGCAG -ACGGAACTGAAGGTCACACGTCAA -ACGGAACTGAAGGTCACAGCTGAA -ACGGAACTGAAGGTCACAAGTACG -ACGGAACTGAAGGTCACAATCCGA -ACGGAACTGAAGGTCACAATGGGA -ACGGAACTGAAGGTCACAGTGCAA -ACGGAACTGAAGGTCACAGAGGAA -ACGGAACTGAAGGTCACACAGGTA -ACGGAACTGAAGGTCACAGACTCT -ACGGAACTGAAGGTCACAAGTCCT -ACGGAACTGAAGGTCACATAAGCC -ACGGAACTGAAGGTCACAATAGCC -ACGGAACTGAAGGTCACATAACCG -ACGGAACTGAAGGTCACAATGCCA -ACGGAACTGAAGCTGTTGGGAAAC -ACGGAACTGAAGCTGTTGAACACC -ACGGAACTGAAGCTGTTGATCGAG -ACGGAACTGAAGCTGTTGCTCCTT -ACGGAACTGAAGCTGTTGCCTGTT -ACGGAACTGAAGCTGTTGCGGTTT -ACGGAACTGAAGCTGTTGGTGGTT -ACGGAACTGAAGCTGTTGGCCTTT -ACGGAACTGAAGCTGTTGGGTCTT -ACGGAACTGAAGCTGTTGACGCTT -ACGGAACTGAAGCTGTTGAGCGTT -ACGGAACTGAAGCTGTTGTTCGTC -ACGGAACTGAAGCTGTTGTCTCTC -ACGGAACTGAAGCTGTTGTGGATC -ACGGAACTGAAGCTGTTGCACTTC -ACGGAACTGAAGCTGTTGGTACTC -ACGGAACTGAAGCTGTTGGATGTC -ACGGAACTGAAGCTGTTGACAGTC -ACGGAACTGAAGCTGTTGTTGCTG -ACGGAACTGAAGCTGTTGTCCATG -ACGGAACTGAAGCTGTTGTGTGTG -ACGGAACTGAAGCTGTTGCTAGTG -ACGGAACTGAAGCTGTTGCATCTG -ACGGAACTGAAGCTGTTGGAGTTG -ACGGAACTGAAGCTGTTGAGACTG -ACGGAACTGAAGCTGTTGTCGGTA -ACGGAACTGAAGCTGTTGTGCCTA -ACGGAACTGAAGCTGTTGCCACTA -ACGGAACTGAAGCTGTTGGGAGTA -ACGGAACTGAAGCTGTTGTCGTCT -ACGGAACTGAAGCTGTTGTGCACT -ACGGAACTGAAGCTGTTGCTGACT -ACGGAACTGAAGCTGTTGCAACCT -ACGGAACTGAAGCTGTTGGCTACT -ACGGAACTGAAGCTGTTGGGATCT -ACGGAACTGAAGCTGTTGAAGGCT -ACGGAACTGAAGCTGTTGTCAACC -ACGGAACTGAAGCTGTTGTGTTCC -ACGGAACTGAAGCTGTTGATTCCC -ACGGAACTGAAGCTGTTGTTCTCG -ACGGAACTGAAGCTGTTGTAGACG -ACGGAACTGAAGCTGTTGGTAACG -ACGGAACTGAAGCTGTTGACTTCG -ACGGAACTGAAGCTGTTGTACGCA -ACGGAACTGAAGCTGTTGCTTGCA -ACGGAACTGAAGCTGTTGCGAACA -ACGGAACTGAAGCTGTTGCAGTCA -ACGGAACTGAAGCTGTTGGATCCA -ACGGAACTGAAGCTGTTGACGACA -ACGGAACTGAAGCTGTTGAGCTCA -ACGGAACTGAAGCTGTTGTCACGT -ACGGAACTGAAGCTGTTGCGTAGT -ACGGAACTGAAGCTGTTGGTCAGT -ACGGAACTGAAGCTGTTGGAAGGT -ACGGAACTGAAGCTGTTGAACCGT -ACGGAACTGAAGCTGTTGTTGTGC -ACGGAACTGAAGCTGTTGCTAAGC -ACGGAACTGAAGCTGTTGACTAGC -ACGGAACTGAAGCTGTTGAGATGC -ACGGAACTGAAGCTGTTGTGAAGG -ACGGAACTGAAGCTGTTGCAATGG -ACGGAACTGAAGCTGTTGATGAGG -ACGGAACTGAAGCTGTTGAATGGG -ACGGAACTGAAGCTGTTGTCCTGA -ACGGAACTGAAGCTGTTGTAGCGA -ACGGAACTGAAGCTGTTGCACAGA -ACGGAACTGAAGCTGTTGGCAAGA -ACGGAACTGAAGCTGTTGGGTTGA -ACGGAACTGAAGCTGTTGTCCGAT -ACGGAACTGAAGCTGTTGTGGCAT -ACGGAACTGAAGCTGTTGCGAGAT -ACGGAACTGAAGCTGTTGTACCAC -ACGGAACTGAAGCTGTTGCAGAAC -ACGGAACTGAAGCTGTTGGTCTAC -ACGGAACTGAAGCTGTTGACGTAC -ACGGAACTGAAGCTGTTGAGTGAC -ACGGAACTGAAGCTGTTGCTGTAG -ACGGAACTGAAGCTGTTGCCTAAG -ACGGAACTGAAGCTGTTGGTTCAG -ACGGAACTGAAGCTGTTGGCATAG -ACGGAACTGAAGCTGTTGGACAAG -ACGGAACTGAAGCTGTTGAAGCAG -ACGGAACTGAAGCTGTTGCGTCAA -ACGGAACTGAAGCTGTTGGCTGAA -ACGGAACTGAAGCTGTTGAGTACG -ACGGAACTGAAGCTGTTGATCCGA -ACGGAACTGAAGCTGTTGATGGGA -ACGGAACTGAAGCTGTTGGTGCAA -ACGGAACTGAAGCTGTTGGAGGAA -ACGGAACTGAAGCTGTTGCAGGTA -ACGGAACTGAAGCTGTTGGACTCT -ACGGAACTGAAGCTGTTGAGTCCT -ACGGAACTGAAGCTGTTGTAAGCC -ACGGAACTGAAGCTGTTGATAGCC -ACGGAACTGAAGCTGTTGTAACCG -ACGGAACTGAAGCTGTTGATGCCA -ACGGAACTGAAGATGTCCGGAAAC -ACGGAACTGAAGATGTCCAACACC -ACGGAACTGAAGATGTCCATCGAG -ACGGAACTGAAGATGTCCCTCCTT -ACGGAACTGAAGATGTCCCCTGTT -ACGGAACTGAAGATGTCCCGGTTT -ACGGAACTGAAGATGTCCGTGGTT -ACGGAACTGAAGATGTCCGCCTTT -ACGGAACTGAAGATGTCCGGTCTT -ACGGAACTGAAGATGTCCACGCTT -ACGGAACTGAAGATGTCCAGCGTT -ACGGAACTGAAGATGTCCTTCGTC -ACGGAACTGAAGATGTCCTCTCTC -ACGGAACTGAAGATGTCCTGGATC -ACGGAACTGAAGATGTCCCACTTC -ACGGAACTGAAGATGTCCGTACTC -ACGGAACTGAAGATGTCCGATGTC -ACGGAACTGAAGATGTCCACAGTC -ACGGAACTGAAGATGTCCTTGCTG -ACGGAACTGAAGATGTCCTCCATG -ACGGAACTGAAGATGTCCTGTGTG -ACGGAACTGAAGATGTCCCTAGTG -ACGGAACTGAAGATGTCCCATCTG -ACGGAACTGAAGATGTCCGAGTTG -ACGGAACTGAAGATGTCCAGACTG -ACGGAACTGAAGATGTCCTCGGTA -ACGGAACTGAAGATGTCCTGCCTA -ACGGAACTGAAGATGTCCCCACTA -ACGGAACTGAAGATGTCCGGAGTA -ACGGAACTGAAGATGTCCTCGTCT -ACGGAACTGAAGATGTCCTGCACT -ACGGAACTGAAGATGTCCCTGACT -ACGGAACTGAAGATGTCCCAACCT -ACGGAACTGAAGATGTCCGCTACT -ACGGAACTGAAGATGTCCGGATCT -ACGGAACTGAAGATGTCCAAGGCT -ACGGAACTGAAGATGTCCTCAACC -ACGGAACTGAAGATGTCCTGTTCC -ACGGAACTGAAGATGTCCATTCCC -ACGGAACTGAAGATGTCCTTCTCG -ACGGAACTGAAGATGTCCTAGACG -ACGGAACTGAAGATGTCCGTAACG -ACGGAACTGAAGATGTCCACTTCG -ACGGAACTGAAGATGTCCTACGCA -ACGGAACTGAAGATGTCCCTTGCA -ACGGAACTGAAGATGTCCCGAACA -ACGGAACTGAAGATGTCCCAGTCA -ACGGAACTGAAGATGTCCGATCCA -ACGGAACTGAAGATGTCCACGACA -ACGGAACTGAAGATGTCCAGCTCA -ACGGAACTGAAGATGTCCTCACGT -ACGGAACTGAAGATGTCCCGTAGT -ACGGAACTGAAGATGTCCGTCAGT -ACGGAACTGAAGATGTCCGAAGGT -ACGGAACTGAAGATGTCCAACCGT -ACGGAACTGAAGATGTCCTTGTGC -ACGGAACTGAAGATGTCCCTAAGC -ACGGAACTGAAGATGTCCACTAGC -ACGGAACTGAAGATGTCCAGATGC -ACGGAACTGAAGATGTCCTGAAGG -ACGGAACTGAAGATGTCCCAATGG -ACGGAACTGAAGATGTCCATGAGG -ACGGAACTGAAGATGTCCAATGGG -ACGGAACTGAAGATGTCCTCCTGA -ACGGAACTGAAGATGTCCTAGCGA -ACGGAACTGAAGATGTCCCACAGA -ACGGAACTGAAGATGTCCGCAAGA -ACGGAACTGAAGATGTCCGGTTGA -ACGGAACTGAAGATGTCCTCCGAT -ACGGAACTGAAGATGTCCTGGCAT -ACGGAACTGAAGATGTCCCGAGAT -ACGGAACTGAAGATGTCCTACCAC -ACGGAACTGAAGATGTCCCAGAAC -ACGGAACTGAAGATGTCCGTCTAC -ACGGAACTGAAGATGTCCACGTAC -ACGGAACTGAAGATGTCCAGTGAC -ACGGAACTGAAGATGTCCCTGTAG -ACGGAACTGAAGATGTCCCCTAAG -ACGGAACTGAAGATGTCCGTTCAG -ACGGAACTGAAGATGTCCGCATAG -ACGGAACTGAAGATGTCCGACAAG -ACGGAACTGAAGATGTCCAAGCAG -ACGGAACTGAAGATGTCCCGTCAA -ACGGAACTGAAGATGTCCGCTGAA -ACGGAACTGAAGATGTCCAGTACG -ACGGAACTGAAGATGTCCATCCGA -ACGGAACTGAAGATGTCCATGGGA -ACGGAACTGAAGATGTCCGTGCAA -ACGGAACTGAAGATGTCCGAGGAA -ACGGAACTGAAGATGTCCCAGGTA -ACGGAACTGAAGATGTCCGACTCT -ACGGAACTGAAGATGTCCAGTCCT -ACGGAACTGAAGATGTCCTAAGCC -ACGGAACTGAAGATGTCCATAGCC -ACGGAACTGAAGATGTCCTAACCG -ACGGAACTGAAGATGTCCATGCCA -ACGGAACTGAAGGTGTGTGGAAAC -ACGGAACTGAAGGTGTGTAACACC -ACGGAACTGAAGGTGTGTATCGAG -ACGGAACTGAAGGTGTGTCTCCTT -ACGGAACTGAAGGTGTGTCCTGTT -ACGGAACTGAAGGTGTGTCGGTTT -ACGGAACTGAAGGTGTGTGTGGTT -ACGGAACTGAAGGTGTGTGCCTTT -ACGGAACTGAAGGTGTGTGGTCTT -ACGGAACTGAAGGTGTGTACGCTT -ACGGAACTGAAGGTGTGTAGCGTT -ACGGAACTGAAGGTGTGTTTCGTC -ACGGAACTGAAGGTGTGTTCTCTC -ACGGAACTGAAGGTGTGTTGGATC -ACGGAACTGAAGGTGTGTCACTTC -ACGGAACTGAAGGTGTGTGTACTC -ACGGAACTGAAGGTGTGTGATGTC -ACGGAACTGAAGGTGTGTACAGTC -ACGGAACTGAAGGTGTGTTTGCTG -ACGGAACTGAAGGTGTGTTCCATG -ACGGAACTGAAGGTGTGTTGTGTG -ACGGAACTGAAGGTGTGTCTAGTG -ACGGAACTGAAGGTGTGTCATCTG -ACGGAACTGAAGGTGTGTGAGTTG -ACGGAACTGAAGGTGTGTAGACTG -ACGGAACTGAAGGTGTGTTCGGTA -ACGGAACTGAAGGTGTGTTGCCTA -ACGGAACTGAAGGTGTGTCCACTA -ACGGAACTGAAGGTGTGTGGAGTA -ACGGAACTGAAGGTGTGTTCGTCT -ACGGAACTGAAGGTGTGTTGCACT -ACGGAACTGAAGGTGTGTCTGACT -ACGGAACTGAAGGTGTGTCAACCT -ACGGAACTGAAGGTGTGTGCTACT -ACGGAACTGAAGGTGTGTGGATCT -ACGGAACTGAAGGTGTGTAAGGCT -ACGGAACTGAAGGTGTGTTCAACC -ACGGAACTGAAGGTGTGTTGTTCC -ACGGAACTGAAGGTGTGTATTCCC -ACGGAACTGAAGGTGTGTTTCTCG -ACGGAACTGAAGGTGTGTTAGACG -ACGGAACTGAAGGTGTGTGTAACG -ACGGAACTGAAGGTGTGTACTTCG -ACGGAACTGAAGGTGTGTTACGCA -ACGGAACTGAAGGTGTGTCTTGCA -ACGGAACTGAAGGTGTGTCGAACA -ACGGAACTGAAGGTGTGTCAGTCA -ACGGAACTGAAGGTGTGTGATCCA -ACGGAACTGAAGGTGTGTACGACA -ACGGAACTGAAGGTGTGTAGCTCA -ACGGAACTGAAGGTGTGTTCACGT -ACGGAACTGAAGGTGTGTCGTAGT -ACGGAACTGAAGGTGTGTGTCAGT -ACGGAACTGAAGGTGTGTGAAGGT -ACGGAACTGAAGGTGTGTAACCGT -ACGGAACTGAAGGTGTGTTTGTGC -ACGGAACTGAAGGTGTGTCTAAGC -ACGGAACTGAAGGTGTGTACTAGC -ACGGAACTGAAGGTGTGTAGATGC -ACGGAACTGAAGGTGTGTTGAAGG -ACGGAACTGAAGGTGTGTCAATGG -ACGGAACTGAAGGTGTGTATGAGG -ACGGAACTGAAGGTGTGTAATGGG -ACGGAACTGAAGGTGTGTTCCTGA -ACGGAACTGAAGGTGTGTTAGCGA -ACGGAACTGAAGGTGTGTCACAGA -ACGGAACTGAAGGTGTGTGCAAGA -ACGGAACTGAAGGTGTGTGGTTGA -ACGGAACTGAAGGTGTGTTCCGAT -ACGGAACTGAAGGTGTGTTGGCAT -ACGGAACTGAAGGTGTGTCGAGAT -ACGGAACTGAAGGTGTGTTACCAC -ACGGAACTGAAGGTGTGTCAGAAC -ACGGAACTGAAGGTGTGTGTCTAC -ACGGAACTGAAGGTGTGTACGTAC -ACGGAACTGAAGGTGTGTAGTGAC -ACGGAACTGAAGGTGTGTCTGTAG -ACGGAACTGAAGGTGTGTCCTAAG -ACGGAACTGAAGGTGTGTGTTCAG -ACGGAACTGAAGGTGTGTGCATAG -ACGGAACTGAAGGTGTGTGACAAG -ACGGAACTGAAGGTGTGTAAGCAG -ACGGAACTGAAGGTGTGTCGTCAA -ACGGAACTGAAGGTGTGTGCTGAA -ACGGAACTGAAGGTGTGTAGTACG -ACGGAACTGAAGGTGTGTATCCGA -ACGGAACTGAAGGTGTGTATGGGA -ACGGAACTGAAGGTGTGTGTGCAA -ACGGAACTGAAGGTGTGTGAGGAA -ACGGAACTGAAGGTGTGTCAGGTA -ACGGAACTGAAGGTGTGTGACTCT -ACGGAACTGAAGGTGTGTAGTCCT -ACGGAACTGAAGGTGTGTTAAGCC -ACGGAACTGAAGGTGTGTATAGCC -ACGGAACTGAAGGTGTGTTAACCG -ACGGAACTGAAGGTGTGTATGCCA -ACGGAACTGAAGGTGCTAGGAAAC -ACGGAACTGAAGGTGCTAAACACC -ACGGAACTGAAGGTGCTAATCGAG -ACGGAACTGAAGGTGCTACTCCTT -ACGGAACTGAAGGTGCTACCTGTT -ACGGAACTGAAGGTGCTACGGTTT -ACGGAACTGAAGGTGCTAGTGGTT -ACGGAACTGAAGGTGCTAGCCTTT -ACGGAACTGAAGGTGCTAGGTCTT -ACGGAACTGAAGGTGCTAACGCTT -ACGGAACTGAAGGTGCTAAGCGTT -ACGGAACTGAAGGTGCTATTCGTC -ACGGAACTGAAGGTGCTATCTCTC -ACGGAACTGAAGGTGCTATGGATC -ACGGAACTGAAGGTGCTACACTTC -ACGGAACTGAAGGTGCTAGTACTC -ACGGAACTGAAGGTGCTAGATGTC -ACGGAACTGAAGGTGCTAACAGTC -ACGGAACTGAAGGTGCTATTGCTG -ACGGAACTGAAGGTGCTATCCATG -ACGGAACTGAAGGTGCTATGTGTG -ACGGAACTGAAGGTGCTACTAGTG -ACGGAACTGAAGGTGCTACATCTG -ACGGAACTGAAGGTGCTAGAGTTG -ACGGAACTGAAGGTGCTAAGACTG -ACGGAACTGAAGGTGCTATCGGTA -ACGGAACTGAAGGTGCTATGCCTA -ACGGAACTGAAGGTGCTACCACTA -ACGGAACTGAAGGTGCTAGGAGTA -ACGGAACTGAAGGTGCTATCGTCT -ACGGAACTGAAGGTGCTATGCACT -ACGGAACTGAAGGTGCTACTGACT -ACGGAACTGAAGGTGCTACAACCT -ACGGAACTGAAGGTGCTAGCTACT -ACGGAACTGAAGGTGCTAGGATCT -ACGGAACTGAAGGTGCTAAAGGCT -ACGGAACTGAAGGTGCTATCAACC -ACGGAACTGAAGGTGCTATGTTCC -ACGGAACTGAAGGTGCTAATTCCC -ACGGAACTGAAGGTGCTATTCTCG -ACGGAACTGAAGGTGCTATAGACG -ACGGAACTGAAGGTGCTAGTAACG -ACGGAACTGAAGGTGCTAACTTCG -ACGGAACTGAAGGTGCTATACGCA -ACGGAACTGAAGGTGCTACTTGCA -ACGGAACTGAAGGTGCTACGAACA -ACGGAACTGAAGGTGCTACAGTCA -ACGGAACTGAAGGTGCTAGATCCA -ACGGAACTGAAGGTGCTAACGACA -ACGGAACTGAAGGTGCTAAGCTCA -ACGGAACTGAAGGTGCTATCACGT -ACGGAACTGAAGGTGCTACGTAGT -ACGGAACTGAAGGTGCTAGTCAGT -ACGGAACTGAAGGTGCTAGAAGGT -ACGGAACTGAAGGTGCTAAACCGT -ACGGAACTGAAGGTGCTATTGTGC -ACGGAACTGAAGGTGCTACTAAGC -ACGGAACTGAAGGTGCTAACTAGC -ACGGAACTGAAGGTGCTAAGATGC -ACGGAACTGAAGGTGCTATGAAGG -ACGGAACTGAAGGTGCTACAATGG -ACGGAACTGAAGGTGCTAATGAGG -ACGGAACTGAAGGTGCTAAATGGG -ACGGAACTGAAGGTGCTATCCTGA -ACGGAACTGAAGGTGCTATAGCGA -ACGGAACTGAAGGTGCTACACAGA -ACGGAACTGAAGGTGCTAGCAAGA -ACGGAACTGAAGGTGCTAGGTTGA -ACGGAACTGAAGGTGCTATCCGAT -ACGGAACTGAAGGTGCTATGGCAT -ACGGAACTGAAGGTGCTACGAGAT -ACGGAACTGAAGGTGCTATACCAC -ACGGAACTGAAGGTGCTACAGAAC -ACGGAACTGAAGGTGCTAGTCTAC -ACGGAACTGAAGGTGCTAACGTAC -ACGGAACTGAAGGTGCTAAGTGAC -ACGGAACTGAAGGTGCTACTGTAG -ACGGAACTGAAGGTGCTACCTAAG -ACGGAACTGAAGGTGCTAGTTCAG -ACGGAACTGAAGGTGCTAGCATAG -ACGGAACTGAAGGTGCTAGACAAG -ACGGAACTGAAGGTGCTAAAGCAG -ACGGAACTGAAGGTGCTACGTCAA -ACGGAACTGAAGGTGCTAGCTGAA -ACGGAACTGAAGGTGCTAAGTACG -ACGGAACTGAAGGTGCTAATCCGA -ACGGAACTGAAGGTGCTAATGGGA -ACGGAACTGAAGGTGCTAGTGCAA -ACGGAACTGAAGGTGCTAGAGGAA -ACGGAACTGAAGGTGCTACAGGTA -ACGGAACTGAAGGTGCTAGACTCT -ACGGAACTGAAGGTGCTAAGTCCT -ACGGAACTGAAGGTGCTATAAGCC -ACGGAACTGAAGGTGCTAATAGCC -ACGGAACTGAAGGTGCTATAACCG -ACGGAACTGAAGGTGCTAATGCCA -ACGGAACTGAAGCTGCATGGAAAC -ACGGAACTGAAGCTGCATAACACC -ACGGAACTGAAGCTGCATATCGAG -ACGGAACTGAAGCTGCATCTCCTT -ACGGAACTGAAGCTGCATCCTGTT -ACGGAACTGAAGCTGCATCGGTTT -ACGGAACTGAAGCTGCATGTGGTT -ACGGAACTGAAGCTGCATGCCTTT -ACGGAACTGAAGCTGCATGGTCTT -ACGGAACTGAAGCTGCATACGCTT -ACGGAACTGAAGCTGCATAGCGTT -ACGGAACTGAAGCTGCATTTCGTC -ACGGAACTGAAGCTGCATTCTCTC -ACGGAACTGAAGCTGCATTGGATC -ACGGAACTGAAGCTGCATCACTTC -ACGGAACTGAAGCTGCATGTACTC -ACGGAACTGAAGCTGCATGATGTC -ACGGAACTGAAGCTGCATACAGTC -ACGGAACTGAAGCTGCATTTGCTG -ACGGAACTGAAGCTGCATTCCATG -ACGGAACTGAAGCTGCATTGTGTG -ACGGAACTGAAGCTGCATCTAGTG -ACGGAACTGAAGCTGCATCATCTG -ACGGAACTGAAGCTGCATGAGTTG -ACGGAACTGAAGCTGCATAGACTG -ACGGAACTGAAGCTGCATTCGGTA -ACGGAACTGAAGCTGCATTGCCTA -ACGGAACTGAAGCTGCATCCACTA -ACGGAACTGAAGCTGCATGGAGTA -ACGGAACTGAAGCTGCATTCGTCT -ACGGAACTGAAGCTGCATTGCACT -ACGGAACTGAAGCTGCATCTGACT -ACGGAACTGAAGCTGCATCAACCT -ACGGAACTGAAGCTGCATGCTACT -ACGGAACTGAAGCTGCATGGATCT -ACGGAACTGAAGCTGCATAAGGCT -ACGGAACTGAAGCTGCATTCAACC -ACGGAACTGAAGCTGCATTGTTCC -ACGGAACTGAAGCTGCATATTCCC -ACGGAACTGAAGCTGCATTTCTCG -ACGGAACTGAAGCTGCATTAGACG -ACGGAACTGAAGCTGCATGTAACG -ACGGAACTGAAGCTGCATACTTCG -ACGGAACTGAAGCTGCATTACGCA -ACGGAACTGAAGCTGCATCTTGCA -ACGGAACTGAAGCTGCATCGAACA -ACGGAACTGAAGCTGCATCAGTCA -ACGGAACTGAAGCTGCATGATCCA -ACGGAACTGAAGCTGCATACGACA -ACGGAACTGAAGCTGCATAGCTCA -ACGGAACTGAAGCTGCATTCACGT -ACGGAACTGAAGCTGCATCGTAGT -ACGGAACTGAAGCTGCATGTCAGT -ACGGAACTGAAGCTGCATGAAGGT -ACGGAACTGAAGCTGCATAACCGT -ACGGAACTGAAGCTGCATTTGTGC -ACGGAACTGAAGCTGCATCTAAGC -ACGGAACTGAAGCTGCATACTAGC -ACGGAACTGAAGCTGCATAGATGC -ACGGAACTGAAGCTGCATTGAAGG -ACGGAACTGAAGCTGCATCAATGG -ACGGAACTGAAGCTGCATATGAGG -ACGGAACTGAAGCTGCATAATGGG -ACGGAACTGAAGCTGCATTCCTGA -ACGGAACTGAAGCTGCATTAGCGA -ACGGAACTGAAGCTGCATCACAGA -ACGGAACTGAAGCTGCATGCAAGA -ACGGAACTGAAGCTGCATGGTTGA -ACGGAACTGAAGCTGCATTCCGAT -ACGGAACTGAAGCTGCATTGGCAT -ACGGAACTGAAGCTGCATCGAGAT -ACGGAACTGAAGCTGCATTACCAC -ACGGAACTGAAGCTGCATCAGAAC -ACGGAACTGAAGCTGCATGTCTAC -ACGGAACTGAAGCTGCATACGTAC -ACGGAACTGAAGCTGCATAGTGAC -ACGGAACTGAAGCTGCATCTGTAG -ACGGAACTGAAGCTGCATCCTAAG -ACGGAACTGAAGCTGCATGTTCAG -ACGGAACTGAAGCTGCATGCATAG -ACGGAACTGAAGCTGCATGACAAG -ACGGAACTGAAGCTGCATAAGCAG -ACGGAACTGAAGCTGCATCGTCAA -ACGGAACTGAAGCTGCATGCTGAA -ACGGAACTGAAGCTGCATAGTACG -ACGGAACTGAAGCTGCATATCCGA -ACGGAACTGAAGCTGCATATGGGA -ACGGAACTGAAGCTGCATGTGCAA -ACGGAACTGAAGCTGCATGAGGAA -ACGGAACTGAAGCTGCATCAGGTA -ACGGAACTGAAGCTGCATGACTCT -ACGGAACTGAAGCTGCATAGTCCT -ACGGAACTGAAGCTGCATTAAGCC -ACGGAACTGAAGCTGCATATAGCC -ACGGAACTGAAGCTGCATTAACCG -ACGGAACTGAAGCTGCATATGCCA -ACGGAACTGAAGTTGGAGGGAAAC -ACGGAACTGAAGTTGGAGAACACC -ACGGAACTGAAGTTGGAGATCGAG -ACGGAACTGAAGTTGGAGCTCCTT -ACGGAACTGAAGTTGGAGCCTGTT -ACGGAACTGAAGTTGGAGCGGTTT -ACGGAACTGAAGTTGGAGGTGGTT -ACGGAACTGAAGTTGGAGGCCTTT -ACGGAACTGAAGTTGGAGGGTCTT -ACGGAACTGAAGTTGGAGACGCTT -ACGGAACTGAAGTTGGAGAGCGTT -ACGGAACTGAAGTTGGAGTTCGTC -ACGGAACTGAAGTTGGAGTCTCTC -ACGGAACTGAAGTTGGAGTGGATC -ACGGAACTGAAGTTGGAGCACTTC -ACGGAACTGAAGTTGGAGGTACTC -ACGGAACTGAAGTTGGAGGATGTC -ACGGAACTGAAGTTGGAGACAGTC -ACGGAACTGAAGTTGGAGTTGCTG -ACGGAACTGAAGTTGGAGTCCATG -ACGGAACTGAAGTTGGAGTGTGTG -ACGGAACTGAAGTTGGAGCTAGTG -ACGGAACTGAAGTTGGAGCATCTG -ACGGAACTGAAGTTGGAGGAGTTG -ACGGAACTGAAGTTGGAGAGACTG -ACGGAACTGAAGTTGGAGTCGGTA -ACGGAACTGAAGTTGGAGTGCCTA -ACGGAACTGAAGTTGGAGCCACTA -ACGGAACTGAAGTTGGAGGGAGTA -ACGGAACTGAAGTTGGAGTCGTCT -ACGGAACTGAAGTTGGAGTGCACT -ACGGAACTGAAGTTGGAGCTGACT -ACGGAACTGAAGTTGGAGCAACCT -ACGGAACTGAAGTTGGAGGCTACT -ACGGAACTGAAGTTGGAGGGATCT -ACGGAACTGAAGTTGGAGAAGGCT -ACGGAACTGAAGTTGGAGTCAACC -ACGGAACTGAAGTTGGAGTGTTCC -ACGGAACTGAAGTTGGAGATTCCC -ACGGAACTGAAGTTGGAGTTCTCG -ACGGAACTGAAGTTGGAGTAGACG -ACGGAACTGAAGTTGGAGGTAACG -ACGGAACTGAAGTTGGAGACTTCG -ACGGAACTGAAGTTGGAGTACGCA -ACGGAACTGAAGTTGGAGCTTGCA -ACGGAACTGAAGTTGGAGCGAACA -ACGGAACTGAAGTTGGAGCAGTCA -ACGGAACTGAAGTTGGAGGATCCA -ACGGAACTGAAGTTGGAGACGACA -ACGGAACTGAAGTTGGAGAGCTCA -ACGGAACTGAAGTTGGAGTCACGT -ACGGAACTGAAGTTGGAGCGTAGT -ACGGAACTGAAGTTGGAGGTCAGT -ACGGAACTGAAGTTGGAGGAAGGT -ACGGAACTGAAGTTGGAGAACCGT -ACGGAACTGAAGTTGGAGTTGTGC -ACGGAACTGAAGTTGGAGCTAAGC -ACGGAACTGAAGTTGGAGACTAGC -ACGGAACTGAAGTTGGAGAGATGC -ACGGAACTGAAGTTGGAGTGAAGG -ACGGAACTGAAGTTGGAGCAATGG -ACGGAACTGAAGTTGGAGATGAGG -ACGGAACTGAAGTTGGAGAATGGG -ACGGAACTGAAGTTGGAGTCCTGA -ACGGAACTGAAGTTGGAGTAGCGA -ACGGAACTGAAGTTGGAGCACAGA -ACGGAACTGAAGTTGGAGGCAAGA -ACGGAACTGAAGTTGGAGGGTTGA -ACGGAACTGAAGTTGGAGTCCGAT -ACGGAACTGAAGTTGGAGTGGCAT -ACGGAACTGAAGTTGGAGCGAGAT -ACGGAACTGAAGTTGGAGTACCAC -ACGGAACTGAAGTTGGAGCAGAAC -ACGGAACTGAAGTTGGAGGTCTAC -ACGGAACTGAAGTTGGAGACGTAC -ACGGAACTGAAGTTGGAGAGTGAC -ACGGAACTGAAGTTGGAGCTGTAG -ACGGAACTGAAGTTGGAGCCTAAG -ACGGAACTGAAGTTGGAGGTTCAG -ACGGAACTGAAGTTGGAGGCATAG -ACGGAACTGAAGTTGGAGGACAAG -ACGGAACTGAAGTTGGAGAAGCAG -ACGGAACTGAAGTTGGAGCGTCAA -ACGGAACTGAAGTTGGAGGCTGAA -ACGGAACTGAAGTTGGAGAGTACG -ACGGAACTGAAGTTGGAGATCCGA -ACGGAACTGAAGTTGGAGATGGGA -ACGGAACTGAAGTTGGAGGTGCAA -ACGGAACTGAAGTTGGAGGAGGAA -ACGGAACTGAAGTTGGAGCAGGTA -ACGGAACTGAAGTTGGAGGACTCT -ACGGAACTGAAGTTGGAGAGTCCT -ACGGAACTGAAGTTGGAGTAAGCC -ACGGAACTGAAGTTGGAGATAGCC -ACGGAACTGAAGTTGGAGTAACCG -ACGGAACTGAAGTTGGAGATGCCA -ACGGAACTGAAGCTGAGAGGAAAC -ACGGAACTGAAGCTGAGAAACACC -ACGGAACTGAAGCTGAGAATCGAG -ACGGAACTGAAGCTGAGACTCCTT -ACGGAACTGAAGCTGAGACCTGTT -ACGGAACTGAAGCTGAGACGGTTT -ACGGAACTGAAGCTGAGAGTGGTT -ACGGAACTGAAGCTGAGAGCCTTT -ACGGAACTGAAGCTGAGAGGTCTT -ACGGAACTGAAGCTGAGAACGCTT -ACGGAACTGAAGCTGAGAAGCGTT -ACGGAACTGAAGCTGAGATTCGTC -ACGGAACTGAAGCTGAGATCTCTC -ACGGAACTGAAGCTGAGATGGATC -ACGGAACTGAAGCTGAGACACTTC -ACGGAACTGAAGCTGAGAGTACTC -ACGGAACTGAAGCTGAGAGATGTC -ACGGAACTGAAGCTGAGAACAGTC -ACGGAACTGAAGCTGAGATTGCTG -ACGGAACTGAAGCTGAGATCCATG -ACGGAACTGAAGCTGAGATGTGTG -ACGGAACTGAAGCTGAGACTAGTG -ACGGAACTGAAGCTGAGACATCTG -ACGGAACTGAAGCTGAGAGAGTTG -ACGGAACTGAAGCTGAGAAGACTG -ACGGAACTGAAGCTGAGATCGGTA -ACGGAACTGAAGCTGAGATGCCTA -ACGGAACTGAAGCTGAGACCACTA -ACGGAACTGAAGCTGAGAGGAGTA -ACGGAACTGAAGCTGAGATCGTCT -ACGGAACTGAAGCTGAGATGCACT -ACGGAACTGAAGCTGAGACTGACT -ACGGAACTGAAGCTGAGACAACCT -ACGGAACTGAAGCTGAGAGCTACT -ACGGAACTGAAGCTGAGAGGATCT -ACGGAACTGAAGCTGAGAAAGGCT -ACGGAACTGAAGCTGAGATCAACC -ACGGAACTGAAGCTGAGATGTTCC -ACGGAACTGAAGCTGAGAATTCCC -ACGGAACTGAAGCTGAGATTCTCG -ACGGAACTGAAGCTGAGATAGACG -ACGGAACTGAAGCTGAGAGTAACG -ACGGAACTGAAGCTGAGAACTTCG -ACGGAACTGAAGCTGAGATACGCA -ACGGAACTGAAGCTGAGACTTGCA -ACGGAACTGAAGCTGAGACGAACA -ACGGAACTGAAGCTGAGACAGTCA -ACGGAACTGAAGCTGAGAGATCCA -ACGGAACTGAAGCTGAGAACGACA -ACGGAACTGAAGCTGAGAAGCTCA -ACGGAACTGAAGCTGAGATCACGT -ACGGAACTGAAGCTGAGACGTAGT -ACGGAACTGAAGCTGAGAGTCAGT -ACGGAACTGAAGCTGAGAGAAGGT -ACGGAACTGAAGCTGAGAAACCGT -ACGGAACTGAAGCTGAGATTGTGC -ACGGAACTGAAGCTGAGACTAAGC -ACGGAACTGAAGCTGAGAACTAGC -ACGGAACTGAAGCTGAGAAGATGC -ACGGAACTGAAGCTGAGATGAAGG -ACGGAACTGAAGCTGAGACAATGG -ACGGAACTGAAGCTGAGAATGAGG -ACGGAACTGAAGCTGAGAAATGGG -ACGGAACTGAAGCTGAGATCCTGA -ACGGAACTGAAGCTGAGATAGCGA -ACGGAACTGAAGCTGAGACACAGA -ACGGAACTGAAGCTGAGAGCAAGA -ACGGAACTGAAGCTGAGAGGTTGA -ACGGAACTGAAGCTGAGATCCGAT -ACGGAACTGAAGCTGAGATGGCAT -ACGGAACTGAAGCTGAGACGAGAT -ACGGAACTGAAGCTGAGATACCAC -ACGGAACTGAAGCTGAGACAGAAC -ACGGAACTGAAGCTGAGAGTCTAC -ACGGAACTGAAGCTGAGAACGTAC -ACGGAACTGAAGCTGAGAAGTGAC -ACGGAACTGAAGCTGAGACTGTAG -ACGGAACTGAAGCTGAGACCTAAG -ACGGAACTGAAGCTGAGAGTTCAG -ACGGAACTGAAGCTGAGAGCATAG -ACGGAACTGAAGCTGAGAGACAAG -ACGGAACTGAAGCTGAGAAAGCAG -ACGGAACTGAAGCTGAGACGTCAA -ACGGAACTGAAGCTGAGAGCTGAA -ACGGAACTGAAGCTGAGAAGTACG -ACGGAACTGAAGCTGAGAATCCGA -ACGGAACTGAAGCTGAGAATGGGA -ACGGAACTGAAGCTGAGAGTGCAA -ACGGAACTGAAGCTGAGAGAGGAA -ACGGAACTGAAGCTGAGACAGGTA -ACGGAACTGAAGCTGAGAGACTCT -ACGGAACTGAAGCTGAGAAGTCCT -ACGGAACTGAAGCTGAGATAAGCC -ACGGAACTGAAGCTGAGAATAGCC -ACGGAACTGAAGCTGAGATAACCG -ACGGAACTGAAGCTGAGAATGCCA -ACGGAACTGAAGGTATCGGGAAAC -ACGGAACTGAAGGTATCGAACACC -ACGGAACTGAAGGTATCGATCGAG -ACGGAACTGAAGGTATCGCTCCTT -ACGGAACTGAAGGTATCGCCTGTT -ACGGAACTGAAGGTATCGCGGTTT -ACGGAACTGAAGGTATCGGTGGTT -ACGGAACTGAAGGTATCGGCCTTT -ACGGAACTGAAGGTATCGGGTCTT -ACGGAACTGAAGGTATCGACGCTT -ACGGAACTGAAGGTATCGAGCGTT -ACGGAACTGAAGGTATCGTTCGTC -ACGGAACTGAAGGTATCGTCTCTC -ACGGAACTGAAGGTATCGTGGATC -ACGGAACTGAAGGTATCGCACTTC -ACGGAACTGAAGGTATCGGTACTC -ACGGAACTGAAGGTATCGGATGTC -ACGGAACTGAAGGTATCGACAGTC -ACGGAACTGAAGGTATCGTTGCTG -ACGGAACTGAAGGTATCGTCCATG -ACGGAACTGAAGGTATCGTGTGTG -ACGGAACTGAAGGTATCGCTAGTG -ACGGAACTGAAGGTATCGCATCTG -ACGGAACTGAAGGTATCGGAGTTG -ACGGAACTGAAGGTATCGAGACTG -ACGGAACTGAAGGTATCGTCGGTA -ACGGAACTGAAGGTATCGTGCCTA -ACGGAACTGAAGGTATCGCCACTA -ACGGAACTGAAGGTATCGGGAGTA -ACGGAACTGAAGGTATCGTCGTCT -ACGGAACTGAAGGTATCGTGCACT -ACGGAACTGAAGGTATCGCTGACT -ACGGAACTGAAGGTATCGCAACCT -ACGGAACTGAAGGTATCGGCTACT -ACGGAACTGAAGGTATCGGGATCT -ACGGAACTGAAGGTATCGAAGGCT -ACGGAACTGAAGGTATCGTCAACC -ACGGAACTGAAGGTATCGTGTTCC -ACGGAACTGAAGGTATCGATTCCC -ACGGAACTGAAGGTATCGTTCTCG -ACGGAACTGAAGGTATCGTAGACG -ACGGAACTGAAGGTATCGGTAACG -ACGGAACTGAAGGTATCGACTTCG -ACGGAACTGAAGGTATCGTACGCA -ACGGAACTGAAGGTATCGCTTGCA -ACGGAACTGAAGGTATCGCGAACA -ACGGAACTGAAGGTATCGCAGTCA -ACGGAACTGAAGGTATCGGATCCA -ACGGAACTGAAGGTATCGACGACA -ACGGAACTGAAGGTATCGAGCTCA -ACGGAACTGAAGGTATCGTCACGT -ACGGAACTGAAGGTATCGCGTAGT -ACGGAACTGAAGGTATCGGTCAGT -ACGGAACTGAAGGTATCGGAAGGT -ACGGAACTGAAGGTATCGAACCGT -ACGGAACTGAAGGTATCGTTGTGC -ACGGAACTGAAGGTATCGCTAAGC -ACGGAACTGAAGGTATCGACTAGC -ACGGAACTGAAGGTATCGAGATGC -ACGGAACTGAAGGTATCGTGAAGG -ACGGAACTGAAGGTATCGCAATGG -ACGGAACTGAAGGTATCGATGAGG -ACGGAACTGAAGGTATCGAATGGG -ACGGAACTGAAGGTATCGTCCTGA -ACGGAACTGAAGGTATCGTAGCGA -ACGGAACTGAAGGTATCGCACAGA -ACGGAACTGAAGGTATCGGCAAGA -ACGGAACTGAAGGTATCGGGTTGA -ACGGAACTGAAGGTATCGTCCGAT -ACGGAACTGAAGGTATCGTGGCAT -ACGGAACTGAAGGTATCGCGAGAT -ACGGAACTGAAGGTATCGTACCAC -ACGGAACTGAAGGTATCGCAGAAC -ACGGAACTGAAGGTATCGGTCTAC -ACGGAACTGAAGGTATCGACGTAC -ACGGAACTGAAGGTATCGAGTGAC -ACGGAACTGAAGGTATCGCTGTAG -ACGGAACTGAAGGTATCGCCTAAG -ACGGAACTGAAGGTATCGGTTCAG -ACGGAACTGAAGGTATCGGCATAG -ACGGAACTGAAGGTATCGGACAAG -ACGGAACTGAAGGTATCGAAGCAG -ACGGAACTGAAGGTATCGCGTCAA -ACGGAACTGAAGGTATCGGCTGAA -ACGGAACTGAAGGTATCGAGTACG -ACGGAACTGAAGGTATCGATCCGA -ACGGAACTGAAGGTATCGATGGGA -ACGGAACTGAAGGTATCGGTGCAA -ACGGAACTGAAGGTATCGGAGGAA -ACGGAACTGAAGGTATCGCAGGTA -ACGGAACTGAAGGTATCGGACTCT -ACGGAACTGAAGGTATCGAGTCCT -ACGGAACTGAAGGTATCGTAAGCC -ACGGAACTGAAGGTATCGATAGCC -ACGGAACTGAAGGTATCGTAACCG -ACGGAACTGAAGGTATCGATGCCA -ACGGAACTGAAGCTATGCGGAAAC -ACGGAACTGAAGCTATGCAACACC -ACGGAACTGAAGCTATGCATCGAG -ACGGAACTGAAGCTATGCCTCCTT -ACGGAACTGAAGCTATGCCCTGTT -ACGGAACTGAAGCTATGCCGGTTT -ACGGAACTGAAGCTATGCGTGGTT -ACGGAACTGAAGCTATGCGCCTTT -ACGGAACTGAAGCTATGCGGTCTT -ACGGAACTGAAGCTATGCACGCTT -ACGGAACTGAAGCTATGCAGCGTT -ACGGAACTGAAGCTATGCTTCGTC -ACGGAACTGAAGCTATGCTCTCTC -ACGGAACTGAAGCTATGCTGGATC -ACGGAACTGAAGCTATGCCACTTC -ACGGAACTGAAGCTATGCGTACTC -ACGGAACTGAAGCTATGCGATGTC -ACGGAACTGAAGCTATGCACAGTC -ACGGAACTGAAGCTATGCTTGCTG -ACGGAACTGAAGCTATGCTCCATG -ACGGAACTGAAGCTATGCTGTGTG -ACGGAACTGAAGCTATGCCTAGTG -ACGGAACTGAAGCTATGCCATCTG -ACGGAACTGAAGCTATGCGAGTTG -ACGGAACTGAAGCTATGCAGACTG -ACGGAACTGAAGCTATGCTCGGTA -ACGGAACTGAAGCTATGCTGCCTA -ACGGAACTGAAGCTATGCCCACTA -ACGGAACTGAAGCTATGCGGAGTA -ACGGAACTGAAGCTATGCTCGTCT -ACGGAACTGAAGCTATGCTGCACT -ACGGAACTGAAGCTATGCCTGACT -ACGGAACTGAAGCTATGCCAACCT -ACGGAACTGAAGCTATGCGCTACT -ACGGAACTGAAGCTATGCGGATCT -ACGGAACTGAAGCTATGCAAGGCT -ACGGAACTGAAGCTATGCTCAACC -ACGGAACTGAAGCTATGCTGTTCC -ACGGAACTGAAGCTATGCATTCCC -ACGGAACTGAAGCTATGCTTCTCG -ACGGAACTGAAGCTATGCTAGACG -ACGGAACTGAAGCTATGCGTAACG -ACGGAACTGAAGCTATGCACTTCG -ACGGAACTGAAGCTATGCTACGCA -ACGGAACTGAAGCTATGCCTTGCA -ACGGAACTGAAGCTATGCCGAACA -ACGGAACTGAAGCTATGCCAGTCA -ACGGAACTGAAGCTATGCGATCCA -ACGGAACTGAAGCTATGCACGACA -ACGGAACTGAAGCTATGCAGCTCA -ACGGAACTGAAGCTATGCTCACGT -ACGGAACTGAAGCTATGCCGTAGT -ACGGAACTGAAGCTATGCGTCAGT -ACGGAACTGAAGCTATGCGAAGGT -ACGGAACTGAAGCTATGCAACCGT -ACGGAACTGAAGCTATGCTTGTGC -ACGGAACTGAAGCTATGCCTAAGC -ACGGAACTGAAGCTATGCACTAGC -ACGGAACTGAAGCTATGCAGATGC -ACGGAACTGAAGCTATGCTGAAGG -ACGGAACTGAAGCTATGCCAATGG -ACGGAACTGAAGCTATGCATGAGG -ACGGAACTGAAGCTATGCAATGGG -ACGGAACTGAAGCTATGCTCCTGA -ACGGAACTGAAGCTATGCTAGCGA -ACGGAACTGAAGCTATGCCACAGA -ACGGAACTGAAGCTATGCGCAAGA -ACGGAACTGAAGCTATGCGGTTGA -ACGGAACTGAAGCTATGCTCCGAT -ACGGAACTGAAGCTATGCTGGCAT -ACGGAACTGAAGCTATGCCGAGAT -ACGGAACTGAAGCTATGCTACCAC -ACGGAACTGAAGCTATGCCAGAAC -ACGGAACTGAAGCTATGCGTCTAC -ACGGAACTGAAGCTATGCACGTAC -ACGGAACTGAAGCTATGCAGTGAC -ACGGAACTGAAGCTATGCCTGTAG -ACGGAACTGAAGCTATGCCCTAAG -ACGGAACTGAAGCTATGCGTTCAG -ACGGAACTGAAGCTATGCGCATAG -ACGGAACTGAAGCTATGCGACAAG -ACGGAACTGAAGCTATGCAAGCAG -ACGGAACTGAAGCTATGCCGTCAA -ACGGAACTGAAGCTATGCGCTGAA -ACGGAACTGAAGCTATGCAGTACG -ACGGAACTGAAGCTATGCATCCGA -ACGGAACTGAAGCTATGCATGGGA -ACGGAACTGAAGCTATGCGTGCAA -ACGGAACTGAAGCTATGCGAGGAA -ACGGAACTGAAGCTATGCCAGGTA -ACGGAACTGAAGCTATGCGACTCT -ACGGAACTGAAGCTATGCAGTCCT -ACGGAACTGAAGCTATGCTAAGCC -ACGGAACTGAAGCTATGCATAGCC -ACGGAACTGAAGCTATGCTAACCG -ACGGAACTGAAGCTATGCATGCCA -ACGGAACTGAAGCTACCAGGAAAC -ACGGAACTGAAGCTACCAAACACC -ACGGAACTGAAGCTACCAATCGAG -ACGGAACTGAAGCTACCACTCCTT -ACGGAACTGAAGCTACCACCTGTT -ACGGAACTGAAGCTACCACGGTTT -ACGGAACTGAAGCTACCAGTGGTT -ACGGAACTGAAGCTACCAGCCTTT -ACGGAACTGAAGCTACCAGGTCTT -ACGGAACTGAAGCTACCAACGCTT -ACGGAACTGAAGCTACCAAGCGTT -ACGGAACTGAAGCTACCATTCGTC -ACGGAACTGAAGCTACCATCTCTC -ACGGAACTGAAGCTACCATGGATC -ACGGAACTGAAGCTACCACACTTC -ACGGAACTGAAGCTACCAGTACTC -ACGGAACTGAAGCTACCAGATGTC -ACGGAACTGAAGCTACCAACAGTC -ACGGAACTGAAGCTACCATTGCTG -ACGGAACTGAAGCTACCATCCATG -ACGGAACTGAAGCTACCATGTGTG -ACGGAACTGAAGCTACCACTAGTG -ACGGAACTGAAGCTACCACATCTG -ACGGAACTGAAGCTACCAGAGTTG -ACGGAACTGAAGCTACCAAGACTG -ACGGAACTGAAGCTACCATCGGTA -ACGGAACTGAAGCTACCATGCCTA -ACGGAACTGAAGCTACCACCACTA -ACGGAACTGAAGCTACCAGGAGTA -ACGGAACTGAAGCTACCATCGTCT -ACGGAACTGAAGCTACCATGCACT -ACGGAACTGAAGCTACCACTGACT -ACGGAACTGAAGCTACCACAACCT -ACGGAACTGAAGCTACCAGCTACT -ACGGAACTGAAGCTACCAGGATCT -ACGGAACTGAAGCTACCAAAGGCT -ACGGAACTGAAGCTACCATCAACC -ACGGAACTGAAGCTACCATGTTCC -ACGGAACTGAAGCTACCAATTCCC -ACGGAACTGAAGCTACCATTCTCG -ACGGAACTGAAGCTACCATAGACG -ACGGAACTGAAGCTACCAGTAACG -ACGGAACTGAAGCTACCAACTTCG -ACGGAACTGAAGCTACCATACGCA -ACGGAACTGAAGCTACCACTTGCA -ACGGAACTGAAGCTACCACGAACA -ACGGAACTGAAGCTACCACAGTCA -ACGGAACTGAAGCTACCAGATCCA -ACGGAACTGAAGCTACCAACGACA -ACGGAACTGAAGCTACCAAGCTCA -ACGGAACTGAAGCTACCATCACGT -ACGGAACTGAAGCTACCACGTAGT -ACGGAACTGAAGCTACCAGTCAGT -ACGGAACTGAAGCTACCAGAAGGT -ACGGAACTGAAGCTACCAAACCGT -ACGGAACTGAAGCTACCATTGTGC -ACGGAACTGAAGCTACCACTAAGC -ACGGAACTGAAGCTACCAACTAGC -ACGGAACTGAAGCTACCAAGATGC -ACGGAACTGAAGCTACCATGAAGG -ACGGAACTGAAGCTACCACAATGG -ACGGAACTGAAGCTACCAATGAGG -ACGGAACTGAAGCTACCAAATGGG -ACGGAACTGAAGCTACCATCCTGA -ACGGAACTGAAGCTACCATAGCGA -ACGGAACTGAAGCTACCACACAGA -ACGGAACTGAAGCTACCAGCAAGA -ACGGAACTGAAGCTACCAGGTTGA -ACGGAACTGAAGCTACCATCCGAT -ACGGAACTGAAGCTACCATGGCAT -ACGGAACTGAAGCTACCACGAGAT -ACGGAACTGAAGCTACCATACCAC -ACGGAACTGAAGCTACCACAGAAC -ACGGAACTGAAGCTACCAGTCTAC -ACGGAACTGAAGCTACCAACGTAC -ACGGAACTGAAGCTACCAAGTGAC -ACGGAACTGAAGCTACCACTGTAG -ACGGAACTGAAGCTACCACCTAAG -ACGGAACTGAAGCTACCAGTTCAG -ACGGAACTGAAGCTACCAGCATAG -ACGGAACTGAAGCTACCAGACAAG -ACGGAACTGAAGCTACCAAAGCAG -ACGGAACTGAAGCTACCACGTCAA -ACGGAACTGAAGCTACCAGCTGAA -ACGGAACTGAAGCTACCAAGTACG -ACGGAACTGAAGCTACCAATCCGA -ACGGAACTGAAGCTACCAATGGGA -ACGGAACTGAAGCTACCAGTGCAA -ACGGAACTGAAGCTACCAGAGGAA -ACGGAACTGAAGCTACCACAGGTA -ACGGAACTGAAGCTACCAGACTCT -ACGGAACTGAAGCTACCAAGTCCT -ACGGAACTGAAGCTACCATAAGCC -ACGGAACTGAAGCTACCAATAGCC -ACGGAACTGAAGCTACCATAACCG -ACGGAACTGAAGCTACCAATGCCA -ACGGAACTGAAGGTAGGAGGAAAC -ACGGAACTGAAGGTAGGAAACACC -ACGGAACTGAAGGTAGGAATCGAG -ACGGAACTGAAGGTAGGACTCCTT -ACGGAACTGAAGGTAGGACCTGTT -ACGGAACTGAAGGTAGGACGGTTT -ACGGAACTGAAGGTAGGAGTGGTT -ACGGAACTGAAGGTAGGAGCCTTT -ACGGAACTGAAGGTAGGAGGTCTT -ACGGAACTGAAGGTAGGAACGCTT -ACGGAACTGAAGGTAGGAAGCGTT -ACGGAACTGAAGGTAGGATTCGTC -ACGGAACTGAAGGTAGGATCTCTC -ACGGAACTGAAGGTAGGATGGATC -ACGGAACTGAAGGTAGGACACTTC -ACGGAACTGAAGGTAGGAGTACTC -ACGGAACTGAAGGTAGGAGATGTC -ACGGAACTGAAGGTAGGAACAGTC -ACGGAACTGAAGGTAGGATTGCTG -ACGGAACTGAAGGTAGGATCCATG -ACGGAACTGAAGGTAGGATGTGTG -ACGGAACTGAAGGTAGGACTAGTG -ACGGAACTGAAGGTAGGACATCTG -ACGGAACTGAAGGTAGGAGAGTTG -ACGGAACTGAAGGTAGGAAGACTG -ACGGAACTGAAGGTAGGATCGGTA -ACGGAACTGAAGGTAGGATGCCTA -ACGGAACTGAAGGTAGGACCACTA -ACGGAACTGAAGGTAGGAGGAGTA -ACGGAACTGAAGGTAGGATCGTCT -ACGGAACTGAAGGTAGGATGCACT -ACGGAACTGAAGGTAGGACTGACT -ACGGAACTGAAGGTAGGACAACCT -ACGGAACTGAAGGTAGGAGCTACT -ACGGAACTGAAGGTAGGAGGATCT -ACGGAACTGAAGGTAGGAAAGGCT -ACGGAACTGAAGGTAGGATCAACC -ACGGAACTGAAGGTAGGATGTTCC -ACGGAACTGAAGGTAGGAATTCCC -ACGGAACTGAAGGTAGGATTCTCG -ACGGAACTGAAGGTAGGATAGACG -ACGGAACTGAAGGTAGGAGTAACG -ACGGAACTGAAGGTAGGAACTTCG -ACGGAACTGAAGGTAGGATACGCA -ACGGAACTGAAGGTAGGACTTGCA -ACGGAACTGAAGGTAGGACGAACA -ACGGAACTGAAGGTAGGACAGTCA -ACGGAACTGAAGGTAGGAGATCCA -ACGGAACTGAAGGTAGGAACGACA -ACGGAACTGAAGGTAGGAAGCTCA -ACGGAACTGAAGGTAGGATCACGT -ACGGAACTGAAGGTAGGACGTAGT -ACGGAACTGAAGGTAGGAGTCAGT -ACGGAACTGAAGGTAGGAGAAGGT -ACGGAACTGAAGGTAGGAAACCGT -ACGGAACTGAAGGTAGGATTGTGC -ACGGAACTGAAGGTAGGACTAAGC -ACGGAACTGAAGGTAGGAACTAGC -ACGGAACTGAAGGTAGGAAGATGC -ACGGAACTGAAGGTAGGATGAAGG -ACGGAACTGAAGGTAGGACAATGG -ACGGAACTGAAGGTAGGAATGAGG -ACGGAACTGAAGGTAGGAAATGGG -ACGGAACTGAAGGTAGGATCCTGA -ACGGAACTGAAGGTAGGATAGCGA -ACGGAACTGAAGGTAGGACACAGA -ACGGAACTGAAGGTAGGAGCAAGA -ACGGAACTGAAGGTAGGAGGTTGA -ACGGAACTGAAGGTAGGATCCGAT -ACGGAACTGAAGGTAGGATGGCAT -ACGGAACTGAAGGTAGGACGAGAT -ACGGAACTGAAGGTAGGATACCAC -ACGGAACTGAAGGTAGGACAGAAC -ACGGAACTGAAGGTAGGAGTCTAC -ACGGAACTGAAGGTAGGAACGTAC -ACGGAACTGAAGGTAGGAAGTGAC -ACGGAACTGAAGGTAGGACTGTAG -ACGGAACTGAAGGTAGGACCTAAG -ACGGAACTGAAGGTAGGAGTTCAG -ACGGAACTGAAGGTAGGAGCATAG -ACGGAACTGAAGGTAGGAGACAAG -ACGGAACTGAAGGTAGGAAAGCAG -ACGGAACTGAAGGTAGGACGTCAA -ACGGAACTGAAGGTAGGAGCTGAA -ACGGAACTGAAGGTAGGAAGTACG -ACGGAACTGAAGGTAGGAATCCGA -ACGGAACTGAAGGTAGGAATGGGA -ACGGAACTGAAGGTAGGAGTGCAA -ACGGAACTGAAGGTAGGAGAGGAA -ACGGAACTGAAGGTAGGACAGGTA -ACGGAACTGAAGGTAGGAGACTCT -ACGGAACTGAAGGTAGGAAGTCCT -ACGGAACTGAAGGTAGGATAAGCC -ACGGAACTGAAGGTAGGAATAGCC -ACGGAACTGAAGGTAGGATAACCG -ACGGAACTGAAGGTAGGAATGCCA -ACGGAACTGAAGTCTTCGGGAAAC -ACGGAACTGAAGTCTTCGAACACC -ACGGAACTGAAGTCTTCGATCGAG -ACGGAACTGAAGTCTTCGCTCCTT -ACGGAACTGAAGTCTTCGCCTGTT -ACGGAACTGAAGTCTTCGCGGTTT -ACGGAACTGAAGTCTTCGGTGGTT -ACGGAACTGAAGTCTTCGGCCTTT -ACGGAACTGAAGTCTTCGGGTCTT -ACGGAACTGAAGTCTTCGACGCTT -ACGGAACTGAAGTCTTCGAGCGTT -ACGGAACTGAAGTCTTCGTTCGTC -ACGGAACTGAAGTCTTCGTCTCTC -ACGGAACTGAAGTCTTCGTGGATC -ACGGAACTGAAGTCTTCGCACTTC -ACGGAACTGAAGTCTTCGGTACTC -ACGGAACTGAAGTCTTCGGATGTC -ACGGAACTGAAGTCTTCGACAGTC -ACGGAACTGAAGTCTTCGTTGCTG -ACGGAACTGAAGTCTTCGTCCATG -ACGGAACTGAAGTCTTCGTGTGTG -ACGGAACTGAAGTCTTCGCTAGTG -ACGGAACTGAAGTCTTCGCATCTG -ACGGAACTGAAGTCTTCGGAGTTG -ACGGAACTGAAGTCTTCGAGACTG -ACGGAACTGAAGTCTTCGTCGGTA -ACGGAACTGAAGTCTTCGTGCCTA -ACGGAACTGAAGTCTTCGCCACTA -ACGGAACTGAAGTCTTCGGGAGTA -ACGGAACTGAAGTCTTCGTCGTCT -ACGGAACTGAAGTCTTCGTGCACT -ACGGAACTGAAGTCTTCGCTGACT -ACGGAACTGAAGTCTTCGCAACCT -ACGGAACTGAAGTCTTCGGCTACT -ACGGAACTGAAGTCTTCGGGATCT -ACGGAACTGAAGTCTTCGAAGGCT -ACGGAACTGAAGTCTTCGTCAACC -ACGGAACTGAAGTCTTCGTGTTCC -ACGGAACTGAAGTCTTCGATTCCC -ACGGAACTGAAGTCTTCGTTCTCG -ACGGAACTGAAGTCTTCGTAGACG -ACGGAACTGAAGTCTTCGGTAACG -ACGGAACTGAAGTCTTCGACTTCG -ACGGAACTGAAGTCTTCGTACGCA -ACGGAACTGAAGTCTTCGCTTGCA -ACGGAACTGAAGTCTTCGCGAACA -ACGGAACTGAAGTCTTCGCAGTCA -ACGGAACTGAAGTCTTCGGATCCA -ACGGAACTGAAGTCTTCGACGACA -ACGGAACTGAAGTCTTCGAGCTCA -ACGGAACTGAAGTCTTCGTCACGT -ACGGAACTGAAGTCTTCGCGTAGT -ACGGAACTGAAGTCTTCGGTCAGT -ACGGAACTGAAGTCTTCGGAAGGT -ACGGAACTGAAGTCTTCGAACCGT -ACGGAACTGAAGTCTTCGTTGTGC -ACGGAACTGAAGTCTTCGCTAAGC -ACGGAACTGAAGTCTTCGACTAGC -ACGGAACTGAAGTCTTCGAGATGC -ACGGAACTGAAGTCTTCGTGAAGG -ACGGAACTGAAGTCTTCGCAATGG -ACGGAACTGAAGTCTTCGATGAGG -ACGGAACTGAAGTCTTCGAATGGG -ACGGAACTGAAGTCTTCGTCCTGA -ACGGAACTGAAGTCTTCGTAGCGA -ACGGAACTGAAGTCTTCGCACAGA -ACGGAACTGAAGTCTTCGGCAAGA -ACGGAACTGAAGTCTTCGGGTTGA -ACGGAACTGAAGTCTTCGTCCGAT -ACGGAACTGAAGTCTTCGTGGCAT -ACGGAACTGAAGTCTTCGCGAGAT -ACGGAACTGAAGTCTTCGTACCAC -ACGGAACTGAAGTCTTCGCAGAAC -ACGGAACTGAAGTCTTCGGTCTAC -ACGGAACTGAAGTCTTCGACGTAC -ACGGAACTGAAGTCTTCGAGTGAC -ACGGAACTGAAGTCTTCGCTGTAG -ACGGAACTGAAGTCTTCGCCTAAG -ACGGAACTGAAGTCTTCGGTTCAG -ACGGAACTGAAGTCTTCGGCATAG -ACGGAACTGAAGTCTTCGGACAAG -ACGGAACTGAAGTCTTCGAAGCAG -ACGGAACTGAAGTCTTCGCGTCAA -ACGGAACTGAAGTCTTCGGCTGAA -ACGGAACTGAAGTCTTCGAGTACG -ACGGAACTGAAGTCTTCGATCCGA -ACGGAACTGAAGTCTTCGATGGGA -ACGGAACTGAAGTCTTCGGTGCAA -ACGGAACTGAAGTCTTCGGAGGAA -ACGGAACTGAAGTCTTCGCAGGTA -ACGGAACTGAAGTCTTCGGACTCT -ACGGAACTGAAGTCTTCGAGTCCT -ACGGAACTGAAGTCTTCGTAAGCC -ACGGAACTGAAGTCTTCGATAGCC -ACGGAACTGAAGTCTTCGTAACCG -ACGGAACTGAAGTCTTCGATGCCA -ACGGAACTGAAGACTTGCGGAAAC -ACGGAACTGAAGACTTGCAACACC -ACGGAACTGAAGACTTGCATCGAG -ACGGAACTGAAGACTTGCCTCCTT -ACGGAACTGAAGACTTGCCCTGTT -ACGGAACTGAAGACTTGCCGGTTT -ACGGAACTGAAGACTTGCGTGGTT -ACGGAACTGAAGACTTGCGCCTTT -ACGGAACTGAAGACTTGCGGTCTT -ACGGAACTGAAGACTTGCACGCTT -ACGGAACTGAAGACTTGCAGCGTT -ACGGAACTGAAGACTTGCTTCGTC -ACGGAACTGAAGACTTGCTCTCTC -ACGGAACTGAAGACTTGCTGGATC -ACGGAACTGAAGACTTGCCACTTC -ACGGAACTGAAGACTTGCGTACTC -ACGGAACTGAAGACTTGCGATGTC -ACGGAACTGAAGACTTGCACAGTC -ACGGAACTGAAGACTTGCTTGCTG -ACGGAACTGAAGACTTGCTCCATG -ACGGAACTGAAGACTTGCTGTGTG -ACGGAACTGAAGACTTGCCTAGTG -ACGGAACTGAAGACTTGCCATCTG -ACGGAACTGAAGACTTGCGAGTTG -ACGGAACTGAAGACTTGCAGACTG -ACGGAACTGAAGACTTGCTCGGTA -ACGGAACTGAAGACTTGCTGCCTA -ACGGAACTGAAGACTTGCCCACTA -ACGGAACTGAAGACTTGCGGAGTA -ACGGAACTGAAGACTTGCTCGTCT -ACGGAACTGAAGACTTGCTGCACT -ACGGAACTGAAGACTTGCCTGACT -ACGGAACTGAAGACTTGCCAACCT -ACGGAACTGAAGACTTGCGCTACT -ACGGAACTGAAGACTTGCGGATCT -ACGGAACTGAAGACTTGCAAGGCT -ACGGAACTGAAGACTTGCTCAACC -ACGGAACTGAAGACTTGCTGTTCC -ACGGAACTGAAGACTTGCATTCCC -ACGGAACTGAAGACTTGCTTCTCG -ACGGAACTGAAGACTTGCTAGACG -ACGGAACTGAAGACTTGCGTAACG -ACGGAACTGAAGACTTGCACTTCG -ACGGAACTGAAGACTTGCTACGCA -ACGGAACTGAAGACTTGCCTTGCA -ACGGAACTGAAGACTTGCCGAACA -ACGGAACTGAAGACTTGCCAGTCA -ACGGAACTGAAGACTTGCGATCCA -ACGGAACTGAAGACTTGCACGACA -ACGGAACTGAAGACTTGCAGCTCA -ACGGAACTGAAGACTTGCTCACGT -ACGGAACTGAAGACTTGCCGTAGT -ACGGAACTGAAGACTTGCGTCAGT -ACGGAACTGAAGACTTGCGAAGGT -ACGGAACTGAAGACTTGCAACCGT -ACGGAACTGAAGACTTGCTTGTGC -ACGGAACTGAAGACTTGCCTAAGC -ACGGAACTGAAGACTTGCACTAGC -ACGGAACTGAAGACTTGCAGATGC -ACGGAACTGAAGACTTGCTGAAGG -ACGGAACTGAAGACTTGCCAATGG -ACGGAACTGAAGACTTGCATGAGG -ACGGAACTGAAGACTTGCAATGGG -ACGGAACTGAAGACTTGCTCCTGA -ACGGAACTGAAGACTTGCTAGCGA -ACGGAACTGAAGACTTGCCACAGA -ACGGAACTGAAGACTTGCGCAAGA -ACGGAACTGAAGACTTGCGGTTGA -ACGGAACTGAAGACTTGCTCCGAT -ACGGAACTGAAGACTTGCTGGCAT -ACGGAACTGAAGACTTGCCGAGAT -ACGGAACTGAAGACTTGCTACCAC -ACGGAACTGAAGACTTGCCAGAAC -ACGGAACTGAAGACTTGCGTCTAC -ACGGAACTGAAGACTTGCACGTAC -ACGGAACTGAAGACTTGCAGTGAC -ACGGAACTGAAGACTTGCCTGTAG -ACGGAACTGAAGACTTGCCCTAAG -ACGGAACTGAAGACTTGCGTTCAG -ACGGAACTGAAGACTTGCGCATAG -ACGGAACTGAAGACTTGCGACAAG -ACGGAACTGAAGACTTGCAAGCAG -ACGGAACTGAAGACTTGCCGTCAA -ACGGAACTGAAGACTTGCGCTGAA -ACGGAACTGAAGACTTGCAGTACG -ACGGAACTGAAGACTTGCATCCGA -ACGGAACTGAAGACTTGCATGGGA -ACGGAACTGAAGACTTGCGTGCAA -ACGGAACTGAAGACTTGCGAGGAA -ACGGAACTGAAGACTTGCCAGGTA -ACGGAACTGAAGACTTGCGACTCT -ACGGAACTGAAGACTTGCAGTCCT -ACGGAACTGAAGACTTGCTAAGCC -ACGGAACTGAAGACTTGCATAGCC -ACGGAACTGAAGACTTGCTAACCG -ACGGAACTGAAGACTTGCATGCCA -ACGGAACTGAAGACTCTGGGAAAC -ACGGAACTGAAGACTCTGAACACC -ACGGAACTGAAGACTCTGATCGAG -ACGGAACTGAAGACTCTGCTCCTT -ACGGAACTGAAGACTCTGCCTGTT -ACGGAACTGAAGACTCTGCGGTTT -ACGGAACTGAAGACTCTGGTGGTT -ACGGAACTGAAGACTCTGGCCTTT -ACGGAACTGAAGACTCTGGGTCTT -ACGGAACTGAAGACTCTGACGCTT -ACGGAACTGAAGACTCTGAGCGTT -ACGGAACTGAAGACTCTGTTCGTC -ACGGAACTGAAGACTCTGTCTCTC -ACGGAACTGAAGACTCTGTGGATC -ACGGAACTGAAGACTCTGCACTTC -ACGGAACTGAAGACTCTGGTACTC -ACGGAACTGAAGACTCTGGATGTC -ACGGAACTGAAGACTCTGACAGTC -ACGGAACTGAAGACTCTGTTGCTG -ACGGAACTGAAGACTCTGTCCATG -ACGGAACTGAAGACTCTGTGTGTG -ACGGAACTGAAGACTCTGCTAGTG -ACGGAACTGAAGACTCTGCATCTG -ACGGAACTGAAGACTCTGGAGTTG -ACGGAACTGAAGACTCTGAGACTG -ACGGAACTGAAGACTCTGTCGGTA -ACGGAACTGAAGACTCTGTGCCTA -ACGGAACTGAAGACTCTGCCACTA -ACGGAACTGAAGACTCTGGGAGTA -ACGGAACTGAAGACTCTGTCGTCT -ACGGAACTGAAGACTCTGTGCACT -ACGGAACTGAAGACTCTGCTGACT -ACGGAACTGAAGACTCTGCAACCT -ACGGAACTGAAGACTCTGGCTACT -ACGGAACTGAAGACTCTGGGATCT -ACGGAACTGAAGACTCTGAAGGCT -ACGGAACTGAAGACTCTGTCAACC -ACGGAACTGAAGACTCTGTGTTCC -ACGGAACTGAAGACTCTGATTCCC -ACGGAACTGAAGACTCTGTTCTCG -ACGGAACTGAAGACTCTGTAGACG -ACGGAACTGAAGACTCTGGTAACG -ACGGAACTGAAGACTCTGACTTCG -ACGGAACTGAAGACTCTGTACGCA -ACGGAACTGAAGACTCTGCTTGCA -ACGGAACTGAAGACTCTGCGAACA -ACGGAACTGAAGACTCTGCAGTCA -ACGGAACTGAAGACTCTGGATCCA -ACGGAACTGAAGACTCTGACGACA -ACGGAACTGAAGACTCTGAGCTCA -ACGGAACTGAAGACTCTGTCACGT -ACGGAACTGAAGACTCTGCGTAGT -ACGGAACTGAAGACTCTGGTCAGT -ACGGAACTGAAGACTCTGGAAGGT -ACGGAACTGAAGACTCTGAACCGT -ACGGAACTGAAGACTCTGTTGTGC -ACGGAACTGAAGACTCTGCTAAGC -ACGGAACTGAAGACTCTGACTAGC -ACGGAACTGAAGACTCTGAGATGC -ACGGAACTGAAGACTCTGTGAAGG -ACGGAACTGAAGACTCTGCAATGG -ACGGAACTGAAGACTCTGATGAGG -ACGGAACTGAAGACTCTGAATGGG -ACGGAACTGAAGACTCTGTCCTGA -ACGGAACTGAAGACTCTGTAGCGA -ACGGAACTGAAGACTCTGCACAGA -ACGGAACTGAAGACTCTGGCAAGA -ACGGAACTGAAGACTCTGGGTTGA -ACGGAACTGAAGACTCTGTCCGAT -ACGGAACTGAAGACTCTGTGGCAT -ACGGAACTGAAGACTCTGCGAGAT -ACGGAACTGAAGACTCTGTACCAC -ACGGAACTGAAGACTCTGCAGAAC -ACGGAACTGAAGACTCTGGTCTAC -ACGGAACTGAAGACTCTGACGTAC -ACGGAACTGAAGACTCTGAGTGAC -ACGGAACTGAAGACTCTGCTGTAG -ACGGAACTGAAGACTCTGCCTAAG -ACGGAACTGAAGACTCTGGTTCAG -ACGGAACTGAAGACTCTGGCATAG -ACGGAACTGAAGACTCTGGACAAG -ACGGAACTGAAGACTCTGAAGCAG -ACGGAACTGAAGACTCTGCGTCAA -ACGGAACTGAAGACTCTGGCTGAA -ACGGAACTGAAGACTCTGAGTACG -ACGGAACTGAAGACTCTGATCCGA -ACGGAACTGAAGACTCTGATGGGA -ACGGAACTGAAGACTCTGGTGCAA -ACGGAACTGAAGACTCTGGAGGAA -ACGGAACTGAAGACTCTGCAGGTA -ACGGAACTGAAGACTCTGGACTCT -ACGGAACTGAAGACTCTGAGTCCT -ACGGAACTGAAGACTCTGTAAGCC -ACGGAACTGAAGACTCTGATAGCC -ACGGAACTGAAGACTCTGTAACCG -ACGGAACTGAAGACTCTGATGCCA -ACGGAACTGAAGCCTCAAGGAAAC -ACGGAACTGAAGCCTCAAAACACC -ACGGAACTGAAGCCTCAAATCGAG -ACGGAACTGAAGCCTCAACTCCTT -ACGGAACTGAAGCCTCAACCTGTT -ACGGAACTGAAGCCTCAACGGTTT -ACGGAACTGAAGCCTCAAGTGGTT -ACGGAACTGAAGCCTCAAGCCTTT -ACGGAACTGAAGCCTCAAGGTCTT -ACGGAACTGAAGCCTCAAACGCTT -ACGGAACTGAAGCCTCAAAGCGTT -ACGGAACTGAAGCCTCAATTCGTC -ACGGAACTGAAGCCTCAATCTCTC -ACGGAACTGAAGCCTCAATGGATC -ACGGAACTGAAGCCTCAACACTTC -ACGGAACTGAAGCCTCAAGTACTC -ACGGAACTGAAGCCTCAAGATGTC -ACGGAACTGAAGCCTCAAACAGTC -ACGGAACTGAAGCCTCAATTGCTG -ACGGAACTGAAGCCTCAATCCATG -ACGGAACTGAAGCCTCAATGTGTG -ACGGAACTGAAGCCTCAACTAGTG -ACGGAACTGAAGCCTCAACATCTG -ACGGAACTGAAGCCTCAAGAGTTG -ACGGAACTGAAGCCTCAAAGACTG -ACGGAACTGAAGCCTCAATCGGTA -ACGGAACTGAAGCCTCAATGCCTA -ACGGAACTGAAGCCTCAACCACTA -ACGGAACTGAAGCCTCAAGGAGTA -ACGGAACTGAAGCCTCAATCGTCT -ACGGAACTGAAGCCTCAATGCACT -ACGGAACTGAAGCCTCAACTGACT -ACGGAACTGAAGCCTCAACAACCT -ACGGAACTGAAGCCTCAAGCTACT -ACGGAACTGAAGCCTCAAGGATCT -ACGGAACTGAAGCCTCAAAAGGCT -ACGGAACTGAAGCCTCAATCAACC -ACGGAACTGAAGCCTCAATGTTCC -ACGGAACTGAAGCCTCAAATTCCC -ACGGAACTGAAGCCTCAATTCTCG -ACGGAACTGAAGCCTCAATAGACG -ACGGAACTGAAGCCTCAAGTAACG -ACGGAACTGAAGCCTCAAACTTCG -ACGGAACTGAAGCCTCAATACGCA -ACGGAACTGAAGCCTCAACTTGCA -ACGGAACTGAAGCCTCAACGAACA -ACGGAACTGAAGCCTCAACAGTCA -ACGGAACTGAAGCCTCAAGATCCA -ACGGAACTGAAGCCTCAAACGACA -ACGGAACTGAAGCCTCAAAGCTCA -ACGGAACTGAAGCCTCAATCACGT -ACGGAACTGAAGCCTCAACGTAGT -ACGGAACTGAAGCCTCAAGTCAGT -ACGGAACTGAAGCCTCAAGAAGGT -ACGGAACTGAAGCCTCAAAACCGT -ACGGAACTGAAGCCTCAATTGTGC -ACGGAACTGAAGCCTCAACTAAGC -ACGGAACTGAAGCCTCAAACTAGC -ACGGAACTGAAGCCTCAAAGATGC -ACGGAACTGAAGCCTCAATGAAGG -ACGGAACTGAAGCCTCAACAATGG -ACGGAACTGAAGCCTCAAATGAGG -ACGGAACTGAAGCCTCAAAATGGG -ACGGAACTGAAGCCTCAATCCTGA -ACGGAACTGAAGCCTCAATAGCGA -ACGGAACTGAAGCCTCAACACAGA -ACGGAACTGAAGCCTCAAGCAAGA -ACGGAACTGAAGCCTCAAGGTTGA -ACGGAACTGAAGCCTCAATCCGAT -ACGGAACTGAAGCCTCAATGGCAT -ACGGAACTGAAGCCTCAACGAGAT -ACGGAACTGAAGCCTCAATACCAC -ACGGAACTGAAGCCTCAACAGAAC -ACGGAACTGAAGCCTCAAGTCTAC -ACGGAACTGAAGCCTCAAACGTAC -ACGGAACTGAAGCCTCAAAGTGAC -ACGGAACTGAAGCCTCAACTGTAG -ACGGAACTGAAGCCTCAACCTAAG -ACGGAACTGAAGCCTCAAGTTCAG -ACGGAACTGAAGCCTCAAGCATAG -ACGGAACTGAAGCCTCAAGACAAG -ACGGAACTGAAGCCTCAAAAGCAG -ACGGAACTGAAGCCTCAACGTCAA -ACGGAACTGAAGCCTCAAGCTGAA -ACGGAACTGAAGCCTCAAAGTACG -ACGGAACTGAAGCCTCAAATCCGA -ACGGAACTGAAGCCTCAAATGGGA -ACGGAACTGAAGCCTCAAGTGCAA -ACGGAACTGAAGCCTCAAGAGGAA -ACGGAACTGAAGCCTCAACAGGTA -ACGGAACTGAAGCCTCAAGACTCT -ACGGAACTGAAGCCTCAAAGTCCT -ACGGAACTGAAGCCTCAATAAGCC -ACGGAACTGAAGCCTCAAATAGCC -ACGGAACTGAAGCCTCAATAACCG -ACGGAACTGAAGCCTCAAATGCCA -ACGGAACTGAAGACTGCTGGAAAC -ACGGAACTGAAGACTGCTAACACC -ACGGAACTGAAGACTGCTATCGAG -ACGGAACTGAAGACTGCTCTCCTT -ACGGAACTGAAGACTGCTCCTGTT -ACGGAACTGAAGACTGCTCGGTTT -ACGGAACTGAAGACTGCTGTGGTT -ACGGAACTGAAGACTGCTGCCTTT -ACGGAACTGAAGACTGCTGGTCTT -ACGGAACTGAAGACTGCTACGCTT -ACGGAACTGAAGACTGCTAGCGTT -ACGGAACTGAAGACTGCTTTCGTC -ACGGAACTGAAGACTGCTTCTCTC -ACGGAACTGAAGACTGCTTGGATC -ACGGAACTGAAGACTGCTCACTTC -ACGGAACTGAAGACTGCTGTACTC -ACGGAACTGAAGACTGCTGATGTC -ACGGAACTGAAGACTGCTACAGTC -ACGGAACTGAAGACTGCTTTGCTG -ACGGAACTGAAGACTGCTTCCATG -ACGGAACTGAAGACTGCTTGTGTG -ACGGAACTGAAGACTGCTCTAGTG -ACGGAACTGAAGACTGCTCATCTG -ACGGAACTGAAGACTGCTGAGTTG -ACGGAACTGAAGACTGCTAGACTG -ACGGAACTGAAGACTGCTTCGGTA -ACGGAACTGAAGACTGCTTGCCTA -ACGGAACTGAAGACTGCTCCACTA -ACGGAACTGAAGACTGCTGGAGTA -ACGGAACTGAAGACTGCTTCGTCT -ACGGAACTGAAGACTGCTTGCACT -ACGGAACTGAAGACTGCTCTGACT -ACGGAACTGAAGACTGCTCAACCT -ACGGAACTGAAGACTGCTGCTACT -ACGGAACTGAAGACTGCTGGATCT -ACGGAACTGAAGACTGCTAAGGCT -ACGGAACTGAAGACTGCTTCAACC -ACGGAACTGAAGACTGCTTGTTCC -ACGGAACTGAAGACTGCTATTCCC -ACGGAACTGAAGACTGCTTTCTCG -ACGGAACTGAAGACTGCTTAGACG -ACGGAACTGAAGACTGCTGTAACG -ACGGAACTGAAGACTGCTACTTCG -ACGGAACTGAAGACTGCTTACGCA -ACGGAACTGAAGACTGCTCTTGCA -ACGGAACTGAAGACTGCTCGAACA -ACGGAACTGAAGACTGCTCAGTCA -ACGGAACTGAAGACTGCTGATCCA -ACGGAACTGAAGACTGCTACGACA -ACGGAACTGAAGACTGCTAGCTCA -ACGGAACTGAAGACTGCTTCACGT -ACGGAACTGAAGACTGCTCGTAGT -ACGGAACTGAAGACTGCTGTCAGT -ACGGAACTGAAGACTGCTGAAGGT -ACGGAACTGAAGACTGCTAACCGT -ACGGAACTGAAGACTGCTTTGTGC -ACGGAACTGAAGACTGCTCTAAGC -ACGGAACTGAAGACTGCTACTAGC -ACGGAACTGAAGACTGCTAGATGC -ACGGAACTGAAGACTGCTTGAAGG -ACGGAACTGAAGACTGCTCAATGG -ACGGAACTGAAGACTGCTATGAGG -ACGGAACTGAAGACTGCTAATGGG -ACGGAACTGAAGACTGCTTCCTGA -ACGGAACTGAAGACTGCTTAGCGA -ACGGAACTGAAGACTGCTCACAGA -ACGGAACTGAAGACTGCTGCAAGA -ACGGAACTGAAGACTGCTGGTTGA -ACGGAACTGAAGACTGCTTCCGAT -ACGGAACTGAAGACTGCTTGGCAT -ACGGAACTGAAGACTGCTCGAGAT -ACGGAACTGAAGACTGCTTACCAC -ACGGAACTGAAGACTGCTCAGAAC -ACGGAACTGAAGACTGCTGTCTAC -ACGGAACTGAAGACTGCTACGTAC -ACGGAACTGAAGACTGCTAGTGAC -ACGGAACTGAAGACTGCTCTGTAG -ACGGAACTGAAGACTGCTCCTAAG -ACGGAACTGAAGACTGCTGTTCAG -ACGGAACTGAAGACTGCTGCATAG -ACGGAACTGAAGACTGCTGACAAG -ACGGAACTGAAGACTGCTAAGCAG -ACGGAACTGAAGACTGCTCGTCAA -ACGGAACTGAAGACTGCTGCTGAA -ACGGAACTGAAGACTGCTAGTACG -ACGGAACTGAAGACTGCTATCCGA -ACGGAACTGAAGACTGCTATGGGA -ACGGAACTGAAGACTGCTGTGCAA -ACGGAACTGAAGACTGCTGAGGAA -ACGGAACTGAAGACTGCTCAGGTA -ACGGAACTGAAGACTGCTGACTCT -ACGGAACTGAAGACTGCTAGTCCT -ACGGAACTGAAGACTGCTTAAGCC -ACGGAACTGAAGACTGCTATAGCC -ACGGAACTGAAGACTGCTTAACCG -ACGGAACTGAAGACTGCTATGCCA -ACGGAACTGAAGTCTGGAGGAAAC -ACGGAACTGAAGTCTGGAAACACC -ACGGAACTGAAGTCTGGAATCGAG -ACGGAACTGAAGTCTGGACTCCTT -ACGGAACTGAAGTCTGGACCTGTT -ACGGAACTGAAGTCTGGACGGTTT -ACGGAACTGAAGTCTGGAGTGGTT -ACGGAACTGAAGTCTGGAGCCTTT -ACGGAACTGAAGTCTGGAGGTCTT -ACGGAACTGAAGTCTGGAACGCTT -ACGGAACTGAAGTCTGGAAGCGTT -ACGGAACTGAAGTCTGGATTCGTC -ACGGAACTGAAGTCTGGATCTCTC -ACGGAACTGAAGTCTGGATGGATC -ACGGAACTGAAGTCTGGACACTTC -ACGGAACTGAAGTCTGGAGTACTC -ACGGAACTGAAGTCTGGAGATGTC -ACGGAACTGAAGTCTGGAACAGTC -ACGGAACTGAAGTCTGGATTGCTG -ACGGAACTGAAGTCTGGATCCATG -ACGGAACTGAAGTCTGGATGTGTG -ACGGAACTGAAGTCTGGACTAGTG -ACGGAACTGAAGTCTGGACATCTG -ACGGAACTGAAGTCTGGAGAGTTG -ACGGAACTGAAGTCTGGAAGACTG -ACGGAACTGAAGTCTGGATCGGTA -ACGGAACTGAAGTCTGGATGCCTA -ACGGAACTGAAGTCTGGACCACTA -ACGGAACTGAAGTCTGGAGGAGTA -ACGGAACTGAAGTCTGGATCGTCT -ACGGAACTGAAGTCTGGATGCACT -ACGGAACTGAAGTCTGGACTGACT -ACGGAACTGAAGTCTGGACAACCT -ACGGAACTGAAGTCTGGAGCTACT -ACGGAACTGAAGTCTGGAGGATCT -ACGGAACTGAAGTCTGGAAAGGCT -ACGGAACTGAAGTCTGGATCAACC -ACGGAACTGAAGTCTGGATGTTCC -ACGGAACTGAAGTCTGGAATTCCC -ACGGAACTGAAGTCTGGATTCTCG -ACGGAACTGAAGTCTGGATAGACG -ACGGAACTGAAGTCTGGAGTAACG -ACGGAACTGAAGTCTGGAACTTCG -ACGGAACTGAAGTCTGGATACGCA -ACGGAACTGAAGTCTGGACTTGCA -ACGGAACTGAAGTCTGGACGAACA -ACGGAACTGAAGTCTGGACAGTCA -ACGGAACTGAAGTCTGGAGATCCA -ACGGAACTGAAGTCTGGAACGACA -ACGGAACTGAAGTCTGGAAGCTCA -ACGGAACTGAAGTCTGGATCACGT -ACGGAACTGAAGTCTGGACGTAGT -ACGGAACTGAAGTCTGGAGTCAGT -ACGGAACTGAAGTCTGGAGAAGGT -ACGGAACTGAAGTCTGGAAACCGT -ACGGAACTGAAGTCTGGATTGTGC -ACGGAACTGAAGTCTGGACTAAGC -ACGGAACTGAAGTCTGGAACTAGC -ACGGAACTGAAGTCTGGAAGATGC -ACGGAACTGAAGTCTGGATGAAGG -ACGGAACTGAAGTCTGGACAATGG -ACGGAACTGAAGTCTGGAATGAGG -ACGGAACTGAAGTCTGGAAATGGG -ACGGAACTGAAGTCTGGATCCTGA -ACGGAACTGAAGTCTGGATAGCGA -ACGGAACTGAAGTCTGGACACAGA -ACGGAACTGAAGTCTGGAGCAAGA -ACGGAACTGAAGTCTGGAGGTTGA -ACGGAACTGAAGTCTGGATCCGAT -ACGGAACTGAAGTCTGGATGGCAT -ACGGAACTGAAGTCTGGACGAGAT -ACGGAACTGAAGTCTGGATACCAC -ACGGAACTGAAGTCTGGACAGAAC -ACGGAACTGAAGTCTGGAGTCTAC -ACGGAACTGAAGTCTGGAACGTAC -ACGGAACTGAAGTCTGGAAGTGAC -ACGGAACTGAAGTCTGGACTGTAG -ACGGAACTGAAGTCTGGACCTAAG -ACGGAACTGAAGTCTGGAGTTCAG -ACGGAACTGAAGTCTGGAGCATAG -ACGGAACTGAAGTCTGGAGACAAG -ACGGAACTGAAGTCTGGAAAGCAG -ACGGAACTGAAGTCTGGACGTCAA -ACGGAACTGAAGTCTGGAGCTGAA -ACGGAACTGAAGTCTGGAAGTACG -ACGGAACTGAAGTCTGGAATCCGA -ACGGAACTGAAGTCTGGAATGGGA -ACGGAACTGAAGTCTGGAGTGCAA -ACGGAACTGAAGTCTGGAGAGGAA -ACGGAACTGAAGTCTGGACAGGTA -ACGGAACTGAAGTCTGGAGACTCT -ACGGAACTGAAGTCTGGAAGTCCT -ACGGAACTGAAGTCTGGATAAGCC -ACGGAACTGAAGTCTGGAATAGCC -ACGGAACTGAAGTCTGGATAACCG -ACGGAACTGAAGTCTGGAATGCCA -ACGGAACTGAAGGCTAAGGGAAAC -ACGGAACTGAAGGCTAAGAACACC -ACGGAACTGAAGGCTAAGATCGAG -ACGGAACTGAAGGCTAAGCTCCTT -ACGGAACTGAAGGCTAAGCCTGTT -ACGGAACTGAAGGCTAAGCGGTTT -ACGGAACTGAAGGCTAAGGTGGTT -ACGGAACTGAAGGCTAAGGCCTTT -ACGGAACTGAAGGCTAAGGGTCTT -ACGGAACTGAAGGCTAAGACGCTT -ACGGAACTGAAGGCTAAGAGCGTT -ACGGAACTGAAGGCTAAGTTCGTC -ACGGAACTGAAGGCTAAGTCTCTC -ACGGAACTGAAGGCTAAGTGGATC -ACGGAACTGAAGGCTAAGCACTTC -ACGGAACTGAAGGCTAAGGTACTC -ACGGAACTGAAGGCTAAGGATGTC -ACGGAACTGAAGGCTAAGACAGTC -ACGGAACTGAAGGCTAAGTTGCTG -ACGGAACTGAAGGCTAAGTCCATG -ACGGAACTGAAGGCTAAGTGTGTG -ACGGAACTGAAGGCTAAGCTAGTG -ACGGAACTGAAGGCTAAGCATCTG -ACGGAACTGAAGGCTAAGGAGTTG -ACGGAACTGAAGGCTAAGAGACTG -ACGGAACTGAAGGCTAAGTCGGTA -ACGGAACTGAAGGCTAAGTGCCTA -ACGGAACTGAAGGCTAAGCCACTA -ACGGAACTGAAGGCTAAGGGAGTA -ACGGAACTGAAGGCTAAGTCGTCT -ACGGAACTGAAGGCTAAGTGCACT -ACGGAACTGAAGGCTAAGCTGACT -ACGGAACTGAAGGCTAAGCAACCT -ACGGAACTGAAGGCTAAGGCTACT -ACGGAACTGAAGGCTAAGGGATCT -ACGGAACTGAAGGCTAAGAAGGCT -ACGGAACTGAAGGCTAAGTCAACC -ACGGAACTGAAGGCTAAGTGTTCC -ACGGAACTGAAGGCTAAGATTCCC -ACGGAACTGAAGGCTAAGTTCTCG -ACGGAACTGAAGGCTAAGTAGACG -ACGGAACTGAAGGCTAAGGTAACG -ACGGAACTGAAGGCTAAGACTTCG -ACGGAACTGAAGGCTAAGTACGCA -ACGGAACTGAAGGCTAAGCTTGCA -ACGGAACTGAAGGCTAAGCGAACA -ACGGAACTGAAGGCTAAGCAGTCA -ACGGAACTGAAGGCTAAGGATCCA -ACGGAACTGAAGGCTAAGACGACA -ACGGAACTGAAGGCTAAGAGCTCA -ACGGAACTGAAGGCTAAGTCACGT -ACGGAACTGAAGGCTAAGCGTAGT -ACGGAACTGAAGGCTAAGGTCAGT -ACGGAACTGAAGGCTAAGGAAGGT -ACGGAACTGAAGGCTAAGAACCGT -ACGGAACTGAAGGCTAAGTTGTGC -ACGGAACTGAAGGCTAAGCTAAGC -ACGGAACTGAAGGCTAAGACTAGC -ACGGAACTGAAGGCTAAGAGATGC -ACGGAACTGAAGGCTAAGTGAAGG -ACGGAACTGAAGGCTAAGCAATGG -ACGGAACTGAAGGCTAAGATGAGG -ACGGAACTGAAGGCTAAGAATGGG -ACGGAACTGAAGGCTAAGTCCTGA -ACGGAACTGAAGGCTAAGTAGCGA -ACGGAACTGAAGGCTAAGCACAGA -ACGGAACTGAAGGCTAAGGCAAGA -ACGGAACTGAAGGCTAAGGGTTGA -ACGGAACTGAAGGCTAAGTCCGAT -ACGGAACTGAAGGCTAAGTGGCAT -ACGGAACTGAAGGCTAAGCGAGAT -ACGGAACTGAAGGCTAAGTACCAC -ACGGAACTGAAGGCTAAGCAGAAC -ACGGAACTGAAGGCTAAGGTCTAC -ACGGAACTGAAGGCTAAGACGTAC -ACGGAACTGAAGGCTAAGAGTGAC -ACGGAACTGAAGGCTAAGCTGTAG -ACGGAACTGAAGGCTAAGCCTAAG -ACGGAACTGAAGGCTAAGGTTCAG -ACGGAACTGAAGGCTAAGGCATAG -ACGGAACTGAAGGCTAAGGACAAG -ACGGAACTGAAGGCTAAGAAGCAG -ACGGAACTGAAGGCTAAGCGTCAA -ACGGAACTGAAGGCTAAGGCTGAA -ACGGAACTGAAGGCTAAGAGTACG -ACGGAACTGAAGGCTAAGATCCGA -ACGGAACTGAAGGCTAAGATGGGA -ACGGAACTGAAGGCTAAGGTGCAA -ACGGAACTGAAGGCTAAGGAGGAA -ACGGAACTGAAGGCTAAGCAGGTA -ACGGAACTGAAGGCTAAGGACTCT -ACGGAACTGAAGGCTAAGAGTCCT -ACGGAACTGAAGGCTAAGTAAGCC -ACGGAACTGAAGGCTAAGATAGCC -ACGGAACTGAAGGCTAAGTAACCG -ACGGAACTGAAGGCTAAGATGCCA -ACGGAACTGAAGACCTCAGGAAAC -ACGGAACTGAAGACCTCAAACACC -ACGGAACTGAAGACCTCAATCGAG -ACGGAACTGAAGACCTCACTCCTT -ACGGAACTGAAGACCTCACCTGTT -ACGGAACTGAAGACCTCACGGTTT -ACGGAACTGAAGACCTCAGTGGTT -ACGGAACTGAAGACCTCAGCCTTT -ACGGAACTGAAGACCTCAGGTCTT -ACGGAACTGAAGACCTCAACGCTT -ACGGAACTGAAGACCTCAAGCGTT -ACGGAACTGAAGACCTCATTCGTC -ACGGAACTGAAGACCTCATCTCTC -ACGGAACTGAAGACCTCATGGATC -ACGGAACTGAAGACCTCACACTTC -ACGGAACTGAAGACCTCAGTACTC -ACGGAACTGAAGACCTCAGATGTC -ACGGAACTGAAGACCTCAACAGTC -ACGGAACTGAAGACCTCATTGCTG -ACGGAACTGAAGACCTCATCCATG -ACGGAACTGAAGACCTCATGTGTG -ACGGAACTGAAGACCTCACTAGTG -ACGGAACTGAAGACCTCACATCTG -ACGGAACTGAAGACCTCAGAGTTG -ACGGAACTGAAGACCTCAAGACTG -ACGGAACTGAAGACCTCATCGGTA -ACGGAACTGAAGACCTCATGCCTA -ACGGAACTGAAGACCTCACCACTA -ACGGAACTGAAGACCTCAGGAGTA -ACGGAACTGAAGACCTCATCGTCT -ACGGAACTGAAGACCTCATGCACT -ACGGAACTGAAGACCTCACTGACT -ACGGAACTGAAGACCTCACAACCT -ACGGAACTGAAGACCTCAGCTACT -ACGGAACTGAAGACCTCAGGATCT -ACGGAACTGAAGACCTCAAAGGCT -ACGGAACTGAAGACCTCATCAACC -ACGGAACTGAAGACCTCATGTTCC -ACGGAACTGAAGACCTCAATTCCC -ACGGAACTGAAGACCTCATTCTCG -ACGGAACTGAAGACCTCATAGACG -ACGGAACTGAAGACCTCAGTAACG -ACGGAACTGAAGACCTCAACTTCG -ACGGAACTGAAGACCTCATACGCA -ACGGAACTGAAGACCTCACTTGCA -ACGGAACTGAAGACCTCACGAACA -ACGGAACTGAAGACCTCACAGTCA -ACGGAACTGAAGACCTCAGATCCA -ACGGAACTGAAGACCTCAACGACA -ACGGAACTGAAGACCTCAAGCTCA -ACGGAACTGAAGACCTCATCACGT -ACGGAACTGAAGACCTCACGTAGT -ACGGAACTGAAGACCTCAGTCAGT -ACGGAACTGAAGACCTCAGAAGGT -ACGGAACTGAAGACCTCAAACCGT -ACGGAACTGAAGACCTCATTGTGC -ACGGAACTGAAGACCTCACTAAGC -ACGGAACTGAAGACCTCAACTAGC -ACGGAACTGAAGACCTCAAGATGC -ACGGAACTGAAGACCTCATGAAGG -ACGGAACTGAAGACCTCACAATGG -ACGGAACTGAAGACCTCAATGAGG -ACGGAACTGAAGACCTCAAATGGG -ACGGAACTGAAGACCTCATCCTGA -ACGGAACTGAAGACCTCATAGCGA -ACGGAACTGAAGACCTCACACAGA -ACGGAACTGAAGACCTCAGCAAGA -ACGGAACTGAAGACCTCAGGTTGA -ACGGAACTGAAGACCTCATCCGAT -ACGGAACTGAAGACCTCATGGCAT -ACGGAACTGAAGACCTCACGAGAT -ACGGAACTGAAGACCTCATACCAC -ACGGAACTGAAGACCTCACAGAAC -ACGGAACTGAAGACCTCAGTCTAC -ACGGAACTGAAGACCTCAACGTAC -ACGGAACTGAAGACCTCAAGTGAC -ACGGAACTGAAGACCTCACTGTAG -ACGGAACTGAAGACCTCACCTAAG -ACGGAACTGAAGACCTCAGTTCAG -ACGGAACTGAAGACCTCAGCATAG -ACGGAACTGAAGACCTCAGACAAG -ACGGAACTGAAGACCTCAAAGCAG -ACGGAACTGAAGACCTCACGTCAA -ACGGAACTGAAGACCTCAGCTGAA -ACGGAACTGAAGACCTCAAGTACG -ACGGAACTGAAGACCTCAATCCGA -ACGGAACTGAAGACCTCAATGGGA -ACGGAACTGAAGACCTCAGTGCAA -ACGGAACTGAAGACCTCAGAGGAA -ACGGAACTGAAGACCTCACAGGTA -ACGGAACTGAAGACCTCAGACTCT -ACGGAACTGAAGACCTCAAGTCCT -ACGGAACTGAAGACCTCATAAGCC -ACGGAACTGAAGACCTCAATAGCC -ACGGAACTGAAGACCTCATAACCG -ACGGAACTGAAGACCTCAATGCCA -ACGGAACTGAAGTCCTGTGGAAAC -ACGGAACTGAAGTCCTGTAACACC -ACGGAACTGAAGTCCTGTATCGAG -ACGGAACTGAAGTCCTGTCTCCTT -ACGGAACTGAAGTCCTGTCCTGTT -ACGGAACTGAAGTCCTGTCGGTTT -ACGGAACTGAAGTCCTGTGTGGTT -ACGGAACTGAAGTCCTGTGCCTTT -ACGGAACTGAAGTCCTGTGGTCTT -ACGGAACTGAAGTCCTGTACGCTT -ACGGAACTGAAGTCCTGTAGCGTT -ACGGAACTGAAGTCCTGTTTCGTC -ACGGAACTGAAGTCCTGTTCTCTC -ACGGAACTGAAGTCCTGTTGGATC -ACGGAACTGAAGTCCTGTCACTTC -ACGGAACTGAAGTCCTGTGTACTC -ACGGAACTGAAGTCCTGTGATGTC -ACGGAACTGAAGTCCTGTACAGTC -ACGGAACTGAAGTCCTGTTTGCTG -ACGGAACTGAAGTCCTGTTCCATG -ACGGAACTGAAGTCCTGTTGTGTG -ACGGAACTGAAGTCCTGTCTAGTG -ACGGAACTGAAGTCCTGTCATCTG -ACGGAACTGAAGTCCTGTGAGTTG -ACGGAACTGAAGTCCTGTAGACTG -ACGGAACTGAAGTCCTGTTCGGTA -ACGGAACTGAAGTCCTGTTGCCTA -ACGGAACTGAAGTCCTGTCCACTA -ACGGAACTGAAGTCCTGTGGAGTA -ACGGAACTGAAGTCCTGTTCGTCT -ACGGAACTGAAGTCCTGTTGCACT -ACGGAACTGAAGTCCTGTCTGACT -ACGGAACTGAAGTCCTGTCAACCT -ACGGAACTGAAGTCCTGTGCTACT -ACGGAACTGAAGTCCTGTGGATCT -ACGGAACTGAAGTCCTGTAAGGCT -ACGGAACTGAAGTCCTGTTCAACC -ACGGAACTGAAGTCCTGTTGTTCC -ACGGAACTGAAGTCCTGTATTCCC -ACGGAACTGAAGTCCTGTTTCTCG -ACGGAACTGAAGTCCTGTTAGACG -ACGGAACTGAAGTCCTGTGTAACG -ACGGAACTGAAGTCCTGTACTTCG -ACGGAACTGAAGTCCTGTTACGCA -ACGGAACTGAAGTCCTGTCTTGCA -ACGGAACTGAAGTCCTGTCGAACA -ACGGAACTGAAGTCCTGTCAGTCA -ACGGAACTGAAGTCCTGTGATCCA -ACGGAACTGAAGTCCTGTACGACA -ACGGAACTGAAGTCCTGTAGCTCA -ACGGAACTGAAGTCCTGTTCACGT -ACGGAACTGAAGTCCTGTCGTAGT -ACGGAACTGAAGTCCTGTGTCAGT -ACGGAACTGAAGTCCTGTGAAGGT -ACGGAACTGAAGTCCTGTAACCGT -ACGGAACTGAAGTCCTGTTTGTGC -ACGGAACTGAAGTCCTGTCTAAGC -ACGGAACTGAAGTCCTGTACTAGC -ACGGAACTGAAGTCCTGTAGATGC -ACGGAACTGAAGTCCTGTTGAAGG -ACGGAACTGAAGTCCTGTCAATGG -ACGGAACTGAAGTCCTGTATGAGG -ACGGAACTGAAGTCCTGTAATGGG -ACGGAACTGAAGTCCTGTTCCTGA -ACGGAACTGAAGTCCTGTTAGCGA -ACGGAACTGAAGTCCTGTCACAGA -ACGGAACTGAAGTCCTGTGCAAGA -ACGGAACTGAAGTCCTGTGGTTGA -ACGGAACTGAAGTCCTGTTCCGAT -ACGGAACTGAAGTCCTGTTGGCAT -ACGGAACTGAAGTCCTGTCGAGAT -ACGGAACTGAAGTCCTGTTACCAC -ACGGAACTGAAGTCCTGTCAGAAC -ACGGAACTGAAGTCCTGTGTCTAC -ACGGAACTGAAGTCCTGTACGTAC -ACGGAACTGAAGTCCTGTAGTGAC -ACGGAACTGAAGTCCTGTCTGTAG -ACGGAACTGAAGTCCTGTCCTAAG -ACGGAACTGAAGTCCTGTGTTCAG -ACGGAACTGAAGTCCTGTGCATAG -ACGGAACTGAAGTCCTGTGACAAG -ACGGAACTGAAGTCCTGTAAGCAG -ACGGAACTGAAGTCCTGTCGTCAA -ACGGAACTGAAGTCCTGTGCTGAA -ACGGAACTGAAGTCCTGTAGTACG -ACGGAACTGAAGTCCTGTATCCGA -ACGGAACTGAAGTCCTGTATGGGA -ACGGAACTGAAGTCCTGTGTGCAA -ACGGAACTGAAGTCCTGTGAGGAA -ACGGAACTGAAGTCCTGTCAGGTA -ACGGAACTGAAGTCCTGTGACTCT -ACGGAACTGAAGTCCTGTAGTCCT -ACGGAACTGAAGTCCTGTTAAGCC -ACGGAACTGAAGTCCTGTATAGCC -ACGGAACTGAAGTCCTGTTAACCG -ACGGAACTGAAGTCCTGTATGCCA -ACGGAACTGAAGCCCATTGGAAAC -ACGGAACTGAAGCCCATTAACACC -ACGGAACTGAAGCCCATTATCGAG -ACGGAACTGAAGCCCATTCTCCTT -ACGGAACTGAAGCCCATTCCTGTT -ACGGAACTGAAGCCCATTCGGTTT -ACGGAACTGAAGCCCATTGTGGTT -ACGGAACTGAAGCCCATTGCCTTT -ACGGAACTGAAGCCCATTGGTCTT -ACGGAACTGAAGCCCATTACGCTT -ACGGAACTGAAGCCCATTAGCGTT -ACGGAACTGAAGCCCATTTTCGTC -ACGGAACTGAAGCCCATTTCTCTC -ACGGAACTGAAGCCCATTTGGATC -ACGGAACTGAAGCCCATTCACTTC -ACGGAACTGAAGCCCATTGTACTC -ACGGAACTGAAGCCCATTGATGTC -ACGGAACTGAAGCCCATTACAGTC -ACGGAACTGAAGCCCATTTTGCTG -ACGGAACTGAAGCCCATTTCCATG -ACGGAACTGAAGCCCATTTGTGTG -ACGGAACTGAAGCCCATTCTAGTG -ACGGAACTGAAGCCCATTCATCTG -ACGGAACTGAAGCCCATTGAGTTG -ACGGAACTGAAGCCCATTAGACTG -ACGGAACTGAAGCCCATTTCGGTA -ACGGAACTGAAGCCCATTTGCCTA -ACGGAACTGAAGCCCATTCCACTA -ACGGAACTGAAGCCCATTGGAGTA -ACGGAACTGAAGCCCATTTCGTCT -ACGGAACTGAAGCCCATTTGCACT -ACGGAACTGAAGCCCATTCTGACT -ACGGAACTGAAGCCCATTCAACCT -ACGGAACTGAAGCCCATTGCTACT -ACGGAACTGAAGCCCATTGGATCT -ACGGAACTGAAGCCCATTAAGGCT -ACGGAACTGAAGCCCATTTCAACC -ACGGAACTGAAGCCCATTTGTTCC -ACGGAACTGAAGCCCATTATTCCC -ACGGAACTGAAGCCCATTTTCTCG -ACGGAACTGAAGCCCATTTAGACG -ACGGAACTGAAGCCCATTGTAACG -ACGGAACTGAAGCCCATTACTTCG -ACGGAACTGAAGCCCATTTACGCA -ACGGAACTGAAGCCCATTCTTGCA -ACGGAACTGAAGCCCATTCGAACA -ACGGAACTGAAGCCCATTCAGTCA -ACGGAACTGAAGCCCATTGATCCA -ACGGAACTGAAGCCCATTACGACA -ACGGAACTGAAGCCCATTAGCTCA -ACGGAACTGAAGCCCATTTCACGT -ACGGAACTGAAGCCCATTCGTAGT -ACGGAACTGAAGCCCATTGTCAGT -ACGGAACTGAAGCCCATTGAAGGT -ACGGAACTGAAGCCCATTAACCGT -ACGGAACTGAAGCCCATTTTGTGC -ACGGAACTGAAGCCCATTCTAAGC -ACGGAACTGAAGCCCATTACTAGC -ACGGAACTGAAGCCCATTAGATGC -ACGGAACTGAAGCCCATTTGAAGG -ACGGAACTGAAGCCCATTCAATGG -ACGGAACTGAAGCCCATTATGAGG -ACGGAACTGAAGCCCATTAATGGG -ACGGAACTGAAGCCCATTTCCTGA -ACGGAACTGAAGCCCATTTAGCGA -ACGGAACTGAAGCCCATTCACAGA -ACGGAACTGAAGCCCATTGCAAGA -ACGGAACTGAAGCCCATTGGTTGA -ACGGAACTGAAGCCCATTTCCGAT -ACGGAACTGAAGCCCATTTGGCAT -ACGGAACTGAAGCCCATTCGAGAT -ACGGAACTGAAGCCCATTTACCAC -ACGGAACTGAAGCCCATTCAGAAC -ACGGAACTGAAGCCCATTGTCTAC -ACGGAACTGAAGCCCATTACGTAC -ACGGAACTGAAGCCCATTAGTGAC -ACGGAACTGAAGCCCATTCTGTAG -ACGGAACTGAAGCCCATTCCTAAG -ACGGAACTGAAGCCCATTGTTCAG -ACGGAACTGAAGCCCATTGCATAG -ACGGAACTGAAGCCCATTGACAAG -ACGGAACTGAAGCCCATTAAGCAG -ACGGAACTGAAGCCCATTCGTCAA -ACGGAACTGAAGCCCATTGCTGAA -ACGGAACTGAAGCCCATTAGTACG -ACGGAACTGAAGCCCATTATCCGA -ACGGAACTGAAGCCCATTATGGGA -ACGGAACTGAAGCCCATTGTGCAA -ACGGAACTGAAGCCCATTGAGGAA -ACGGAACTGAAGCCCATTCAGGTA -ACGGAACTGAAGCCCATTGACTCT -ACGGAACTGAAGCCCATTAGTCCT -ACGGAACTGAAGCCCATTTAAGCC -ACGGAACTGAAGCCCATTATAGCC -ACGGAACTGAAGCCCATTTAACCG -ACGGAACTGAAGCCCATTATGCCA -ACGGAACTGAAGTCGTTCGGAAAC -ACGGAACTGAAGTCGTTCAACACC -ACGGAACTGAAGTCGTTCATCGAG -ACGGAACTGAAGTCGTTCCTCCTT -ACGGAACTGAAGTCGTTCCCTGTT -ACGGAACTGAAGTCGTTCCGGTTT -ACGGAACTGAAGTCGTTCGTGGTT -ACGGAACTGAAGTCGTTCGCCTTT -ACGGAACTGAAGTCGTTCGGTCTT -ACGGAACTGAAGTCGTTCACGCTT -ACGGAACTGAAGTCGTTCAGCGTT -ACGGAACTGAAGTCGTTCTTCGTC -ACGGAACTGAAGTCGTTCTCTCTC -ACGGAACTGAAGTCGTTCTGGATC -ACGGAACTGAAGTCGTTCCACTTC -ACGGAACTGAAGTCGTTCGTACTC -ACGGAACTGAAGTCGTTCGATGTC -ACGGAACTGAAGTCGTTCACAGTC -ACGGAACTGAAGTCGTTCTTGCTG -ACGGAACTGAAGTCGTTCTCCATG -ACGGAACTGAAGTCGTTCTGTGTG -ACGGAACTGAAGTCGTTCCTAGTG -ACGGAACTGAAGTCGTTCCATCTG -ACGGAACTGAAGTCGTTCGAGTTG -ACGGAACTGAAGTCGTTCAGACTG -ACGGAACTGAAGTCGTTCTCGGTA -ACGGAACTGAAGTCGTTCTGCCTA -ACGGAACTGAAGTCGTTCCCACTA -ACGGAACTGAAGTCGTTCGGAGTA -ACGGAACTGAAGTCGTTCTCGTCT -ACGGAACTGAAGTCGTTCTGCACT -ACGGAACTGAAGTCGTTCCTGACT -ACGGAACTGAAGTCGTTCCAACCT -ACGGAACTGAAGTCGTTCGCTACT -ACGGAACTGAAGTCGTTCGGATCT -ACGGAACTGAAGTCGTTCAAGGCT -ACGGAACTGAAGTCGTTCTCAACC -ACGGAACTGAAGTCGTTCTGTTCC -ACGGAACTGAAGTCGTTCATTCCC -ACGGAACTGAAGTCGTTCTTCTCG -ACGGAACTGAAGTCGTTCTAGACG -ACGGAACTGAAGTCGTTCGTAACG -ACGGAACTGAAGTCGTTCACTTCG -ACGGAACTGAAGTCGTTCTACGCA -ACGGAACTGAAGTCGTTCCTTGCA -ACGGAACTGAAGTCGTTCCGAACA -ACGGAACTGAAGTCGTTCCAGTCA -ACGGAACTGAAGTCGTTCGATCCA -ACGGAACTGAAGTCGTTCACGACA -ACGGAACTGAAGTCGTTCAGCTCA -ACGGAACTGAAGTCGTTCTCACGT -ACGGAACTGAAGTCGTTCCGTAGT -ACGGAACTGAAGTCGTTCGTCAGT -ACGGAACTGAAGTCGTTCGAAGGT -ACGGAACTGAAGTCGTTCAACCGT -ACGGAACTGAAGTCGTTCTTGTGC -ACGGAACTGAAGTCGTTCCTAAGC -ACGGAACTGAAGTCGTTCACTAGC -ACGGAACTGAAGTCGTTCAGATGC -ACGGAACTGAAGTCGTTCTGAAGG -ACGGAACTGAAGTCGTTCCAATGG -ACGGAACTGAAGTCGTTCATGAGG -ACGGAACTGAAGTCGTTCAATGGG -ACGGAACTGAAGTCGTTCTCCTGA -ACGGAACTGAAGTCGTTCTAGCGA -ACGGAACTGAAGTCGTTCCACAGA -ACGGAACTGAAGTCGTTCGCAAGA -ACGGAACTGAAGTCGTTCGGTTGA -ACGGAACTGAAGTCGTTCTCCGAT -ACGGAACTGAAGTCGTTCTGGCAT -ACGGAACTGAAGTCGTTCCGAGAT -ACGGAACTGAAGTCGTTCTACCAC -ACGGAACTGAAGTCGTTCCAGAAC -ACGGAACTGAAGTCGTTCGTCTAC -ACGGAACTGAAGTCGTTCACGTAC -ACGGAACTGAAGTCGTTCAGTGAC -ACGGAACTGAAGTCGTTCCTGTAG -ACGGAACTGAAGTCGTTCCCTAAG -ACGGAACTGAAGTCGTTCGTTCAG -ACGGAACTGAAGTCGTTCGCATAG -ACGGAACTGAAGTCGTTCGACAAG -ACGGAACTGAAGTCGTTCAAGCAG -ACGGAACTGAAGTCGTTCCGTCAA -ACGGAACTGAAGTCGTTCGCTGAA -ACGGAACTGAAGTCGTTCAGTACG -ACGGAACTGAAGTCGTTCATCCGA -ACGGAACTGAAGTCGTTCATGGGA -ACGGAACTGAAGTCGTTCGTGCAA -ACGGAACTGAAGTCGTTCGAGGAA -ACGGAACTGAAGTCGTTCCAGGTA -ACGGAACTGAAGTCGTTCGACTCT -ACGGAACTGAAGTCGTTCAGTCCT -ACGGAACTGAAGTCGTTCTAAGCC -ACGGAACTGAAGTCGTTCATAGCC -ACGGAACTGAAGTCGTTCTAACCG -ACGGAACTGAAGTCGTTCATGCCA -ACGGAACTGAAGACGTAGGGAAAC -ACGGAACTGAAGACGTAGAACACC -ACGGAACTGAAGACGTAGATCGAG -ACGGAACTGAAGACGTAGCTCCTT -ACGGAACTGAAGACGTAGCCTGTT -ACGGAACTGAAGACGTAGCGGTTT -ACGGAACTGAAGACGTAGGTGGTT -ACGGAACTGAAGACGTAGGCCTTT -ACGGAACTGAAGACGTAGGGTCTT -ACGGAACTGAAGACGTAGACGCTT -ACGGAACTGAAGACGTAGAGCGTT -ACGGAACTGAAGACGTAGTTCGTC -ACGGAACTGAAGACGTAGTCTCTC -ACGGAACTGAAGACGTAGTGGATC -ACGGAACTGAAGACGTAGCACTTC -ACGGAACTGAAGACGTAGGTACTC -ACGGAACTGAAGACGTAGGATGTC -ACGGAACTGAAGACGTAGACAGTC -ACGGAACTGAAGACGTAGTTGCTG -ACGGAACTGAAGACGTAGTCCATG -ACGGAACTGAAGACGTAGTGTGTG -ACGGAACTGAAGACGTAGCTAGTG -ACGGAACTGAAGACGTAGCATCTG -ACGGAACTGAAGACGTAGGAGTTG -ACGGAACTGAAGACGTAGAGACTG -ACGGAACTGAAGACGTAGTCGGTA -ACGGAACTGAAGACGTAGTGCCTA -ACGGAACTGAAGACGTAGCCACTA -ACGGAACTGAAGACGTAGGGAGTA -ACGGAACTGAAGACGTAGTCGTCT -ACGGAACTGAAGACGTAGTGCACT -ACGGAACTGAAGACGTAGCTGACT -ACGGAACTGAAGACGTAGCAACCT -ACGGAACTGAAGACGTAGGCTACT -ACGGAACTGAAGACGTAGGGATCT -ACGGAACTGAAGACGTAGAAGGCT -ACGGAACTGAAGACGTAGTCAACC -ACGGAACTGAAGACGTAGTGTTCC -ACGGAACTGAAGACGTAGATTCCC -ACGGAACTGAAGACGTAGTTCTCG -ACGGAACTGAAGACGTAGTAGACG -ACGGAACTGAAGACGTAGGTAACG -ACGGAACTGAAGACGTAGACTTCG -ACGGAACTGAAGACGTAGTACGCA -ACGGAACTGAAGACGTAGCTTGCA -ACGGAACTGAAGACGTAGCGAACA -ACGGAACTGAAGACGTAGCAGTCA -ACGGAACTGAAGACGTAGGATCCA -ACGGAACTGAAGACGTAGACGACA -ACGGAACTGAAGACGTAGAGCTCA -ACGGAACTGAAGACGTAGTCACGT -ACGGAACTGAAGACGTAGCGTAGT -ACGGAACTGAAGACGTAGGTCAGT -ACGGAACTGAAGACGTAGGAAGGT -ACGGAACTGAAGACGTAGAACCGT -ACGGAACTGAAGACGTAGTTGTGC -ACGGAACTGAAGACGTAGCTAAGC -ACGGAACTGAAGACGTAGACTAGC -ACGGAACTGAAGACGTAGAGATGC -ACGGAACTGAAGACGTAGTGAAGG -ACGGAACTGAAGACGTAGCAATGG -ACGGAACTGAAGACGTAGATGAGG -ACGGAACTGAAGACGTAGAATGGG -ACGGAACTGAAGACGTAGTCCTGA -ACGGAACTGAAGACGTAGTAGCGA -ACGGAACTGAAGACGTAGCACAGA -ACGGAACTGAAGACGTAGGCAAGA -ACGGAACTGAAGACGTAGGGTTGA -ACGGAACTGAAGACGTAGTCCGAT -ACGGAACTGAAGACGTAGTGGCAT -ACGGAACTGAAGACGTAGCGAGAT -ACGGAACTGAAGACGTAGTACCAC -ACGGAACTGAAGACGTAGCAGAAC -ACGGAACTGAAGACGTAGGTCTAC -ACGGAACTGAAGACGTAGACGTAC -ACGGAACTGAAGACGTAGAGTGAC -ACGGAACTGAAGACGTAGCTGTAG -ACGGAACTGAAGACGTAGCCTAAG -ACGGAACTGAAGACGTAGGTTCAG -ACGGAACTGAAGACGTAGGCATAG -ACGGAACTGAAGACGTAGGACAAG -ACGGAACTGAAGACGTAGAAGCAG -ACGGAACTGAAGACGTAGCGTCAA -ACGGAACTGAAGACGTAGGCTGAA -ACGGAACTGAAGACGTAGAGTACG -ACGGAACTGAAGACGTAGATCCGA -ACGGAACTGAAGACGTAGATGGGA -ACGGAACTGAAGACGTAGGTGCAA -ACGGAACTGAAGACGTAGGAGGAA -ACGGAACTGAAGACGTAGCAGGTA -ACGGAACTGAAGACGTAGGACTCT -ACGGAACTGAAGACGTAGAGTCCT -ACGGAACTGAAGACGTAGTAAGCC -ACGGAACTGAAGACGTAGATAGCC -ACGGAACTGAAGACGTAGTAACCG -ACGGAACTGAAGACGTAGATGCCA -ACGGAACTGAAGACGGTAGGAAAC -ACGGAACTGAAGACGGTAAACACC -ACGGAACTGAAGACGGTAATCGAG -ACGGAACTGAAGACGGTACTCCTT -ACGGAACTGAAGACGGTACCTGTT -ACGGAACTGAAGACGGTACGGTTT -ACGGAACTGAAGACGGTAGTGGTT -ACGGAACTGAAGACGGTAGCCTTT -ACGGAACTGAAGACGGTAGGTCTT -ACGGAACTGAAGACGGTAACGCTT -ACGGAACTGAAGACGGTAAGCGTT -ACGGAACTGAAGACGGTATTCGTC -ACGGAACTGAAGACGGTATCTCTC -ACGGAACTGAAGACGGTATGGATC -ACGGAACTGAAGACGGTACACTTC -ACGGAACTGAAGACGGTAGTACTC -ACGGAACTGAAGACGGTAGATGTC -ACGGAACTGAAGACGGTAACAGTC -ACGGAACTGAAGACGGTATTGCTG -ACGGAACTGAAGACGGTATCCATG -ACGGAACTGAAGACGGTATGTGTG -ACGGAACTGAAGACGGTACTAGTG -ACGGAACTGAAGACGGTACATCTG -ACGGAACTGAAGACGGTAGAGTTG -ACGGAACTGAAGACGGTAAGACTG -ACGGAACTGAAGACGGTATCGGTA -ACGGAACTGAAGACGGTATGCCTA -ACGGAACTGAAGACGGTACCACTA -ACGGAACTGAAGACGGTAGGAGTA -ACGGAACTGAAGACGGTATCGTCT -ACGGAACTGAAGACGGTATGCACT -ACGGAACTGAAGACGGTACTGACT -ACGGAACTGAAGACGGTACAACCT -ACGGAACTGAAGACGGTAGCTACT -ACGGAACTGAAGACGGTAGGATCT -ACGGAACTGAAGACGGTAAAGGCT -ACGGAACTGAAGACGGTATCAACC -ACGGAACTGAAGACGGTATGTTCC -ACGGAACTGAAGACGGTAATTCCC -ACGGAACTGAAGACGGTATTCTCG -ACGGAACTGAAGACGGTATAGACG -ACGGAACTGAAGACGGTAGTAACG -ACGGAACTGAAGACGGTAACTTCG -ACGGAACTGAAGACGGTATACGCA -ACGGAACTGAAGACGGTACTTGCA -ACGGAACTGAAGACGGTACGAACA -ACGGAACTGAAGACGGTACAGTCA -ACGGAACTGAAGACGGTAGATCCA -ACGGAACTGAAGACGGTAACGACA -ACGGAACTGAAGACGGTAAGCTCA -ACGGAACTGAAGACGGTATCACGT -ACGGAACTGAAGACGGTACGTAGT -ACGGAACTGAAGACGGTAGTCAGT -ACGGAACTGAAGACGGTAGAAGGT -ACGGAACTGAAGACGGTAAACCGT -ACGGAACTGAAGACGGTATTGTGC -ACGGAACTGAAGACGGTACTAAGC -ACGGAACTGAAGACGGTAACTAGC -ACGGAACTGAAGACGGTAAGATGC -ACGGAACTGAAGACGGTATGAAGG -ACGGAACTGAAGACGGTACAATGG -ACGGAACTGAAGACGGTAATGAGG -ACGGAACTGAAGACGGTAAATGGG -ACGGAACTGAAGACGGTATCCTGA -ACGGAACTGAAGACGGTATAGCGA -ACGGAACTGAAGACGGTACACAGA -ACGGAACTGAAGACGGTAGCAAGA -ACGGAACTGAAGACGGTAGGTTGA -ACGGAACTGAAGACGGTATCCGAT -ACGGAACTGAAGACGGTATGGCAT -ACGGAACTGAAGACGGTACGAGAT -ACGGAACTGAAGACGGTATACCAC -ACGGAACTGAAGACGGTACAGAAC -ACGGAACTGAAGACGGTAGTCTAC -ACGGAACTGAAGACGGTAACGTAC -ACGGAACTGAAGACGGTAAGTGAC -ACGGAACTGAAGACGGTACTGTAG -ACGGAACTGAAGACGGTACCTAAG -ACGGAACTGAAGACGGTAGTTCAG -ACGGAACTGAAGACGGTAGCATAG -ACGGAACTGAAGACGGTAGACAAG -ACGGAACTGAAGACGGTAAAGCAG -ACGGAACTGAAGACGGTACGTCAA -ACGGAACTGAAGACGGTAGCTGAA -ACGGAACTGAAGACGGTAAGTACG -ACGGAACTGAAGACGGTAATCCGA -ACGGAACTGAAGACGGTAATGGGA -ACGGAACTGAAGACGGTAGTGCAA -ACGGAACTGAAGACGGTAGAGGAA -ACGGAACTGAAGACGGTACAGGTA -ACGGAACTGAAGACGGTAGACTCT -ACGGAACTGAAGACGGTAAGTCCT -ACGGAACTGAAGACGGTATAAGCC -ACGGAACTGAAGACGGTAATAGCC -ACGGAACTGAAGACGGTATAACCG -ACGGAACTGAAGACGGTAATGCCA -ACGGAACTGAAGTCGACTGGAAAC -ACGGAACTGAAGTCGACTAACACC -ACGGAACTGAAGTCGACTATCGAG -ACGGAACTGAAGTCGACTCTCCTT -ACGGAACTGAAGTCGACTCCTGTT -ACGGAACTGAAGTCGACTCGGTTT -ACGGAACTGAAGTCGACTGTGGTT -ACGGAACTGAAGTCGACTGCCTTT -ACGGAACTGAAGTCGACTGGTCTT -ACGGAACTGAAGTCGACTACGCTT -ACGGAACTGAAGTCGACTAGCGTT -ACGGAACTGAAGTCGACTTTCGTC -ACGGAACTGAAGTCGACTTCTCTC -ACGGAACTGAAGTCGACTTGGATC -ACGGAACTGAAGTCGACTCACTTC -ACGGAACTGAAGTCGACTGTACTC -ACGGAACTGAAGTCGACTGATGTC -ACGGAACTGAAGTCGACTACAGTC -ACGGAACTGAAGTCGACTTTGCTG -ACGGAACTGAAGTCGACTTCCATG -ACGGAACTGAAGTCGACTTGTGTG -ACGGAACTGAAGTCGACTCTAGTG -ACGGAACTGAAGTCGACTCATCTG -ACGGAACTGAAGTCGACTGAGTTG -ACGGAACTGAAGTCGACTAGACTG -ACGGAACTGAAGTCGACTTCGGTA -ACGGAACTGAAGTCGACTTGCCTA -ACGGAACTGAAGTCGACTCCACTA -ACGGAACTGAAGTCGACTGGAGTA -ACGGAACTGAAGTCGACTTCGTCT -ACGGAACTGAAGTCGACTTGCACT -ACGGAACTGAAGTCGACTCTGACT -ACGGAACTGAAGTCGACTCAACCT -ACGGAACTGAAGTCGACTGCTACT -ACGGAACTGAAGTCGACTGGATCT -ACGGAACTGAAGTCGACTAAGGCT -ACGGAACTGAAGTCGACTTCAACC -ACGGAACTGAAGTCGACTTGTTCC -ACGGAACTGAAGTCGACTATTCCC -ACGGAACTGAAGTCGACTTTCTCG -ACGGAACTGAAGTCGACTTAGACG -ACGGAACTGAAGTCGACTGTAACG -ACGGAACTGAAGTCGACTACTTCG -ACGGAACTGAAGTCGACTTACGCA -ACGGAACTGAAGTCGACTCTTGCA -ACGGAACTGAAGTCGACTCGAACA -ACGGAACTGAAGTCGACTCAGTCA -ACGGAACTGAAGTCGACTGATCCA -ACGGAACTGAAGTCGACTACGACA -ACGGAACTGAAGTCGACTAGCTCA -ACGGAACTGAAGTCGACTTCACGT -ACGGAACTGAAGTCGACTCGTAGT -ACGGAACTGAAGTCGACTGTCAGT -ACGGAACTGAAGTCGACTGAAGGT -ACGGAACTGAAGTCGACTAACCGT -ACGGAACTGAAGTCGACTTTGTGC -ACGGAACTGAAGTCGACTCTAAGC -ACGGAACTGAAGTCGACTACTAGC -ACGGAACTGAAGTCGACTAGATGC -ACGGAACTGAAGTCGACTTGAAGG -ACGGAACTGAAGTCGACTCAATGG -ACGGAACTGAAGTCGACTATGAGG -ACGGAACTGAAGTCGACTAATGGG -ACGGAACTGAAGTCGACTTCCTGA -ACGGAACTGAAGTCGACTTAGCGA -ACGGAACTGAAGTCGACTCACAGA -ACGGAACTGAAGTCGACTGCAAGA -ACGGAACTGAAGTCGACTGGTTGA -ACGGAACTGAAGTCGACTTCCGAT -ACGGAACTGAAGTCGACTTGGCAT -ACGGAACTGAAGTCGACTCGAGAT -ACGGAACTGAAGTCGACTTACCAC -ACGGAACTGAAGTCGACTCAGAAC -ACGGAACTGAAGTCGACTGTCTAC -ACGGAACTGAAGTCGACTACGTAC -ACGGAACTGAAGTCGACTAGTGAC -ACGGAACTGAAGTCGACTCTGTAG -ACGGAACTGAAGTCGACTCCTAAG -ACGGAACTGAAGTCGACTGTTCAG -ACGGAACTGAAGTCGACTGCATAG -ACGGAACTGAAGTCGACTGACAAG -ACGGAACTGAAGTCGACTAAGCAG -ACGGAACTGAAGTCGACTCGTCAA -ACGGAACTGAAGTCGACTGCTGAA -ACGGAACTGAAGTCGACTAGTACG -ACGGAACTGAAGTCGACTATCCGA -ACGGAACTGAAGTCGACTATGGGA -ACGGAACTGAAGTCGACTGTGCAA -ACGGAACTGAAGTCGACTGAGGAA -ACGGAACTGAAGTCGACTCAGGTA -ACGGAACTGAAGTCGACTGACTCT -ACGGAACTGAAGTCGACTAGTCCT -ACGGAACTGAAGTCGACTTAAGCC -ACGGAACTGAAGTCGACTATAGCC -ACGGAACTGAAGTCGACTTAACCG -ACGGAACTGAAGTCGACTATGCCA -ACGGAACTGAAGGCATACGGAAAC -ACGGAACTGAAGGCATACAACACC -ACGGAACTGAAGGCATACATCGAG -ACGGAACTGAAGGCATACCTCCTT -ACGGAACTGAAGGCATACCCTGTT -ACGGAACTGAAGGCATACCGGTTT -ACGGAACTGAAGGCATACGTGGTT -ACGGAACTGAAGGCATACGCCTTT -ACGGAACTGAAGGCATACGGTCTT -ACGGAACTGAAGGCATACACGCTT -ACGGAACTGAAGGCATACAGCGTT -ACGGAACTGAAGGCATACTTCGTC -ACGGAACTGAAGGCATACTCTCTC -ACGGAACTGAAGGCATACTGGATC -ACGGAACTGAAGGCATACCACTTC -ACGGAACTGAAGGCATACGTACTC -ACGGAACTGAAGGCATACGATGTC -ACGGAACTGAAGGCATACACAGTC -ACGGAACTGAAGGCATACTTGCTG -ACGGAACTGAAGGCATACTCCATG -ACGGAACTGAAGGCATACTGTGTG -ACGGAACTGAAGGCATACCTAGTG -ACGGAACTGAAGGCATACCATCTG -ACGGAACTGAAGGCATACGAGTTG -ACGGAACTGAAGGCATACAGACTG -ACGGAACTGAAGGCATACTCGGTA -ACGGAACTGAAGGCATACTGCCTA -ACGGAACTGAAGGCATACCCACTA -ACGGAACTGAAGGCATACGGAGTA -ACGGAACTGAAGGCATACTCGTCT -ACGGAACTGAAGGCATACTGCACT -ACGGAACTGAAGGCATACCTGACT -ACGGAACTGAAGGCATACCAACCT -ACGGAACTGAAGGCATACGCTACT -ACGGAACTGAAGGCATACGGATCT -ACGGAACTGAAGGCATACAAGGCT -ACGGAACTGAAGGCATACTCAACC -ACGGAACTGAAGGCATACTGTTCC -ACGGAACTGAAGGCATACATTCCC -ACGGAACTGAAGGCATACTTCTCG -ACGGAACTGAAGGCATACTAGACG -ACGGAACTGAAGGCATACGTAACG -ACGGAACTGAAGGCATACACTTCG -ACGGAACTGAAGGCATACTACGCA -ACGGAACTGAAGGCATACCTTGCA -ACGGAACTGAAGGCATACCGAACA -ACGGAACTGAAGGCATACCAGTCA -ACGGAACTGAAGGCATACGATCCA -ACGGAACTGAAGGCATACACGACA -ACGGAACTGAAGGCATACAGCTCA -ACGGAACTGAAGGCATACTCACGT -ACGGAACTGAAGGCATACCGTAGT -ACGGAACTGAAGGCATACGTCAGT -ACGGAACTGAAGGCATACGAAGGT -ACGGAACTGAAGGCATACAACCGT -ACGGAACTGAAGGCATACTTGTGC -ACGGAACTGAAGGCATACCTAAGC -ACGGAACTGAAGGCATACACTAGC -ACGGAACTGAAGGCATACAGATGC -ACGGAACTGAAGGCATACTGAAGG -ACGGAACTGAAGGCATACCAATGG -ACGGAACTGAAGGCATACATGAGG -ACGGAACTGAAGGCATACAATGGG -ACGGAACTGAAGGCATACTCCTGA -ACGGAACTGAAGGCATACTAGCGA -ACGGAACTGAAGGCATACCACAGA -ACGGAACTGAAGGCATACGCAAGA -ACGGAACTGAAGGCATACGGTTGA -ACGGAACTGAAGGCATACTCCGAT -ACGGAACTGAAGGCATACTGGCAT -ACGGAACTGAAGGCATACCGAGAT -ACGGAACTGAAGGCATACTACCAC -ACGGAACTGAAGGCATACCAGAAC -ACGGAACTGAAGGCATACGTCTAC -ACGGAACTGAAGGCATACACGTAC -ACGGAACTGAAGGCATACAGTGAC -ACGGAACTGAAGGCATACCTGTAG -ACGGAACTGAAGGCATACCCTAAG -ACGGAACTGAAGGCATACGTTCAG -ACGGAACTGAAGGCATACGCATAG -ACGGAACTGAAGGCATACGACAAG -ACGGAACTGAAGGCATACAAGCAG -ACGGAACTGAAGGCATACCGTCAA -ACGGAACTGAAGGCATACGCTGAA -ACGGAACTGAAGGCATACAGTACG -ACGGAACTGAAGGCATACATCCGA -ACGGAACTGAAGGCATACATGGGA -ACGGAACTGAAGGCATACGTGCAA -ACGGAACTGAAGGCATACGAGGAA -ACGGAACTGAAGGCATACCAGGTA -ACGGAACTGAAGGCATACGACTCT -ACGGAACTGAAGGCATACAGTCCT -ACGGAACTGAAGGCATACTAAGCC -ACGGAACTGAAGGCATACATAGCC -ACGGAACTGAAGGCATACTAACCG -ACGGAACTGAAGGCATACATGCCA -ACGGAACTGAAGGCACTTGGAAAC -ACGGAACTGAAGGCACTTAACACC -ACGGAACTGAAGGCACTTATCGAG -ACGGAACTGAAGGCACTTCTCCTT -ACGGAACTGAAGGCACTTCCTGTT -ACGGAACTGAAGGCACTTCGGTTT -ACGGAACTGAAGGCACTTGTGGTT -ACGGAACTGAAGGCACTTGCCTTT -ACGGAACTGAAGGCACTTGGTCTT -ACGGAACTGAAGGCACTTACGCTT -ACGGAACTGAAGGCACTTAGCGTT -ACGGAACTGAAGGCACTTTTCGTC -ACGGAACTGAAGGCACTTTCTCTC -ACGGAACTGAAGGCACTTTGGATC -ACGGAACTGAAGGCACTTCACTTC -ACGGAACTGAAGGCACTTGTACTC -ACGGAACTGAAGGCACTTGATGTC -ACGGAACTGAAGGCACTTACAGTC -ACGGAACTGAAGGCACTTTTGCTG -ACGGAACTGAAGGCACTTTCCATG -ACGGAACTGAAGGCACTTTGTGTG -ACGGAACTGAAGGCACTTCTAGTG -ACGGAACTGAAGGCACTTCATCTG -ACGGAACTGAAGGCACTTGAGTTG -ACGGAACTGAAGGCACTTAGACTG -ACGGAACTGAAGGCACTTTCGGTA -ACGGAACTGAAGGCACTTTGCCTA -ACGGAACTGAAGGCACTTCCACTA -ACGGAACTGAAGGCACTTGGAGTA -ACGGAACTGAAGGCACTTTCGTCT -ACGGAACTGAAGGCACTTTGCACT -ACGGAACTGAAGGCACTTCTGACT -ACGGAACTGAAGGCACTTCAACCT -ACGGAACTGAAGGCACTTGCTACT -ACGGAACTGAAGGCACTTGGATCT -ACGGAACTGAAGGCACTTAAGGCT -ACGGAACTGAAGGCACTTTCAACC -ACGGAACTGAAGGCACTTTGTTCC -ACGGAACTGAAGGCACTTATTCCC -ACGGAACTGAAGGCACTTTTCTCG -ACGGAACTGAAGGCACTTTAGACG -ACGGAACTGAAGGCACTTGTAACG -ACGGAACTGAAGGCACTTACTTCG -ACGGAACTGAAGGCACTTTACGCA -ACGGAACTGAAGGCACTTCTTGCA -ACGGAACTGAAGGCACTTCGAACA -ACGGAACTGAAGGCACTTCAGTCA -ACGGAACTGAAGGCACTTGATCCA -ACGGAACTGAAGGCACTTACGACA -ACGGAACTGAAGGCACTTAGCTCA -ACGGAACTGAAGGCACTTTCACGT -ACGGAACTGAAGGCACTTCGTAGT -ACGGAACTGAAGGCACTTGTCAGT -ACGGAACTGAAGGCACTTGAAGGT -ACGGAACTGAAGGCACTTAACCGT -ACGGAACTGAAGGCACTTTTGTGC -ACGGAACTGAAGGCACTTCTAAGC -ACGGAACTGAAGGCACTTACTAGC -ACGGAACTGAAGGCACTTAGATGC -ACGGAACTGAAGGCACTTTGAAGG -ACGGAACTGAAGGCACTTCAATGG -ACGGAACTGAAGGCACTTATGAGG -ACGGAACTGAAGGCACTTAATGGG -ACGGAACTGAAGGCACTTTCCTGA -ACGGAACTGAAGGCACTTTAGCGA -ACGGAACTGAAGGCACTTCACAGA -ACGGAACTGAAGGCACTTGCAAGA -ACGGAACTGAAGGCACTTGGTTGA -ACGGAACTGAAGGCACTTTCCGAT -ACGGAACTGAAGGCACTTTGGCAT -ACGGAACTGAAGGCACTTCGAGAT -ACGGAACTGAAGGCACTTTACCAC -ACGGAACTGAAGGCACTTCAGAAC -ACGGAACTGAAGGCACTTGTCTAC -ACGGAACTGAAGGCACTTACGTAC -ACGGAACTGAAGGCACTTAGTGAC -ACGGAACTGAAGGCACTTCTGTAG -ACGGAACTGAAGGCACTTCCTAAG -ACGGAACTGAAGGCACTTGTTCAG -ACGGAACTGAAGGCACTTGCATAG -ACGGAACTGAAGGCACTTGACAAG -ACGGAACTGAAGGCACTTAAGCAG -ACGGAACTGAAGGCACTTCGTCAA -ACGGAACTGAAGGCACTTGCTGAA -ACGGAACTGAAGGCACTTAGTACG -ACGGAACTGAAGGCACTTATCCGA -ACGGAACTGAAGGCACTTATGGGA -ACGGAACTGAAGGCACTTGTGCAA -ACGGAACTGAAGGCACTTGAGGAA -ACGGAACTGAAGGCACTTCAGGTA -ACGGAACTGAAGGCACTTGACTCT -ACGGAACTGAAGGCACTTAGTCCT -ACGGAACTGAAGGCACTTTAAGCC -ACGGAACTGAAGGCACTTATAGCC -ACGGAACTGAAGGCACTTTAACCG -ACGGAACTGAAGGCACTTATGCCA -ACGGAACTGAAGACACGAGGAAAC -ACGGAACTGAAGACACGAAACACC -ACGGAACTGAAGACACGAATCGAG -ACGGAACTGAAGACACGACTCCTT -ACGGAACTGAAGACACGACCTGTT -ACGGAACTGAAGACACGACGGTTT -ACGGAACTGAAGACACGAGTGGTT -ACGGAACTGAAGACACGAGCCTTT -ACGGAACTGAAGACACGAGGTCTT -ACGGAACTGAAGACACGAACGCTT -ACGGAACTGAAGACACGAAGCGTT -ACGGAACTGAAGACACGATTCGTC -ACGGAACTGAAGACACGATCTCTC -ACGGAACTGAAGACACGATGGATC -ACGGAACTGAAGACACGACACTTC -ACGGAACTGAAGACACGAGTACTC -ACGGAACTGAAGACACGAGATGTC -ACGGAACTGAAGACACGAACAGTC -ACGGAACTGAAGACACGATTGCTG -ACGGAACTGAAGACACGATCCATG -ACGGAACTGAAGACACGATGTGTG -ACGGAACTGAAGACACGACTAGTG -ACGGAACTGAAGACACGACATCTG -ACGGAACTGAAGACACGAGAGTTG -ACGGAACTGAAGACACGAAGACTG -ACGGAACTGAAGACACGATCGGTA -ACGGAACTGAAGACACGATGCCTA -ACGGAACTGAAGACACGACCACTA -ACGGAACTGAAGACACGAGGAGTA -ACGGAACTGAAGACACGATCGTCT -ACGGAACTGAAGACACGATGCACT -ACGGAACTGAAGACACGACTGACT -ACGGAACTGAAGACACGACAACCT -ACGGAACTGAAGACACGAGCTACT -ACGGAACTGAAGACACGAGGATCT -ACGGAACTGAAGACACGAAAGGCT -ACGGAACTGAAGACACGATCAACC -ACGGAACTGAAGACACGATGTTCC -ACGGAACTGAAGACACGAATTCCC -ACGGAACTGAAGACACGATTCTCG -ACGGAACTGAAGACACGATAGACG -ACGGAACTGAAGACACGAGTAACG -ACGGAACTGAAGACACGAACTTCG -ACGGAACTGAAGACACGATACGCA -ACGGAACTGAAGACACGACTTGCA -ACGGAACTGAAGACACGACGAACA -ACGGAACTGAAGACACGACAGTCA -ACGGAACTGAAGACACGAGATCCA -ACGGAACTGAAGACACGAACGACA -ACGGAACTGAAGACACGAAGCTCA -ACGGAACTGAAGACACGATCACGT -ACGGAACTGAAGACACGACGTAGT -ACGGAACTGAAGACACGAGTCAGT -ACGGAACTGAAGACACGAGAAGGT -ACGGAACTGAAGACACGAAACCGT -ACGGAACTGAAGACACGATTGTGC -ACGGAACTGAAGACACGACTAAGC -ACGGAACTGAAGACACGAACTAGC -ACGGAACTGAAGACACGAAGATGC -ACGGAACTGAAGACACGATGAAGG -ACGGAACTGAAGACACGACAATGG -ACGGAACTGAAGACACGAATGAGG -ACGGAACTGAAGACACGAAATGGG -ACGGAACTGAAGACACGATCCTGA -ACGGAACTGAAGACACGATAGCGA -ACGGAACTGAAGACACGACACAGA -ACGGAACTGAAGACACGAGCAAGA -ACGGAACTGAAGACACGAGGTTGA -ACGGAACTGAAGACACGATCCGAT -ACGGAACTGAAGACACGATGGCAT -ACGGAACTGAAGACACGACGAGAT -ACGGAACTGAAGACACGATACCAC -ACGGAACTGAAGACACGACAGAAC -ACGGAACTGAAGACACGAGTCTAC -ACGGAACTGAAGACACGAACGTAC -ACGGAACTGAAGACACGAAGTGAC -ACGGAACTGAAGACACGACTGTAG -ACGGAACTGAAGACACGACCTAAG -ACGGAACTGAAGACACGAGTTCAG -ACGGAACTGAAGACACGAGCATAG -ACGGAACTGAAGACACGAGACAAG -ACGGAACTGAAGACACGAAAGCAG -ACGGAACTGAAGACACGACGTCAA -ACGGAACTGAAGACACGAGCTGAA -ACGGAACTGAAGACACGAAGTACG -ACGGAACTGAAGACACGAATCCGA -ACGGAACTGAAGACACGAATGGGA -ACGGAACTGAAGACACGAGTGCAA -ACGGAACTGAAGACACGAGAGGAA -ACGGAACTGAAGACACGACAGGTA -ACGGAACTGAAGACACGAGACTCT -ACGGAACTGAAGACACGAAGTCCT -ACGGAACTGAAGACACGATAAGCC -ACGGAACTGAAGACACGAATAGCC -ACGGAACTGAAGACACGATAACCG -ACGGAACTGAAGACACGAATGCCA -ACGGAACTGAAGTCACAGGGAAAC -ACGGAACTGAAGTCACAGAACACC -ACGGAACTGAAGTCACAGATCGAG -ACGGAACTGAAGTCACAGCTCCTT -ACGGAACTGAAGTCACAGCCTGTT -ACGGAACTGAAGTCACAGCGGTTT -ACGGAACTGAAGTCACAGGTGGTT -ACGGAACTGAAGTCACAGGCCTTT -ACGGAACTGAAGTCACAGGGTCTT -ACGGAACTGAAGTCACAGACGCTT -ACGGAACTGAAGTCACAGAGCGTT -ACGGAACTGAAGTCACAGTTCGTC -ACGGAACTGAAGTCACAGTCTCTC -ACGGAACTGAAGTCACAGTGGATC -ACGGAACTGAAGTCACAGCACTTC -ACGGAACTGAAGTCACAGGTACTC -ACGGAACTGAAGTCACAGGATGTC -ACGGAACTGAAGTCACAGACAGTC -ACGGAACTGAAGTCACAGTTGCTG -ACGGAACTGAAGTCACAGTCCATG -ACGGAACTGAAGTCACAGTGTGTG -ACGGAACTGAAGTCACAGCTAGTG -ACGGAACTGAAGTCACAGCATCTG -ACGGAACTGAAGTCACAGGAGTTG -ACGGAACTGAAGTCACAGAGACTG -ACGGAACTGAAGTCACAGTCGGTA -ACGGAACTGAAGTCACAGTGCCTA -ACGGAACTGAAGTCACAGCCACTA -ACGGAACTGAAGTCACAGGGAGTA -ACGGAACTGAAGTCACAGTCGTCT -ACGGAACTGAAGTCACAGTGCACT -ACGGAACTGAAGTCACAGCTGACT -ACGGAACTGAAGTCACAGCAACCT -ACGGAACTGAAGTCACAGGCTACT -ACGGAACTGAAGTCACAGGGATCT -ACGGAACTGAAGTCACAGAAGGCT -ACGGAACTGAAGTCACAGTCAACC -ACGGAACTGAAGTCACAGTGTTCC -ACGGAACTGAAGTCACAGATTCCC -ACGGAACTGAAGTCACAGTTCTCG -ACGGAACTGAAGTCACAGTAGACG -ACGGAACTGAAGTCACAGGTAACG -ACGGAACTGAAGTCACAGACTTCG -ACGGAACTGAAGTCACAGTACGCA -ACGGAACTGAAGTCACAGCTTGCA -ACGGAACTGAAGTCACAGCGAACA -ACGGAACTGAAGTCACAGCAGTCA -ACGGAACTGAAGTCACAGGATCCA -ACGGAACTGAAGTCACAGACGACA -ACGGAACTGAAGTCACAGAGCTCA -ACGGAACTGAAGTCACAGTCACGT -ACGGAACTGAAGTCACAGCGTAGT -ACGGAACTGAAGTCACAGGTCAGT -ACGGAACTGAAGTCACAGGAAGGT -ACGGAACTGAAGTCACAGAACCGT -ACGGAACTGAAGTCACAGTTGTGC -ACGGAACTGAAGTCACAGCTAAGC -ACGGAACTGAAGTCACAGACTAGC -ACGGAACTGAAGTCACAGAGATGC -ACGGAACTGAAGTCACAGTGAAGG -ACGGAACTGAAGTCACAGCAATGG -ACGGAACTGAAGTCACAGATGAGG -ACGGAACTGAAGTCACAGAATGGG -ACGGAACTGAAGTCACAGTCCTGA -ACGGAACTGAAGTCACAGTAGCGA -ACGGAACTGAAGTCACAGCACAGA -ACGGAACTGAAGTCACAGGCAAGA -ACGGAACTGAAGTCACAGGGTTGA -ACGGAACTGAAGTCACAGTCCGAT -ACGGAACTGAAGTCACAGTGGCAT -ACGGAACTGAAGTCACAGCGAGAT -ACGGAACTGAAGTCACAGTACCAC -ACGGAACTGAAGTCACAGCAGAAC -ACGGAACTGAAGTCACAGGTCTAC -ACGGAACTGAAGTCACAGACGTAC -ACGGAACTGAAGTCACAGAGTGAC -ACGGAACTGAAGTCACAGCTGTAG -ACGGAACTGAAGTCACAGCCTAAG -ACGGAACTGAAGTCACAGGTTCAG -ACGGAACTGAAGTCACAGGCATAG -ACGGAACTGAAGTCACAGGACAAG -ACGGAACTGAAGTCACAGAAGCAG -ACGGAACTGAAGTCACAGCGTCAA -ACGGAACTGAAGTCACAGGCTGAA -ACGGAACTGAAGTCACAGAGTACG -ACGGAACTGAAGTCACAGATCCGA -ACGGAACTGAAGTCACAGATGGGA -ACGGAACTGAAGTCACAGGTGCAA -ACGGAACTGAAGTCACAGGAGGAA -ACGGAACTGAAGTCACAGCAGGTA -ACGGAACTGAAGTCACAGGACTCT -ACGGAACTGAAGTCACAGAGTCCT -ACGGAACTGAAGTCACAGTAAGCC -ACGGAACTGAAGTCACAGATAGCC -ACGGAACTGAAGTCACAGTAACCG -ACGGAACTGAAGTCACAGATGCCA -ACGGAACTGAAGCCAGATGGAAAC -ACGGAACTGAAGCCAGATAACACC -ACGGAACTGAAGCCAGATATCGAG -ACGGAACTGAAGCCAGATCTCCTT -ACGGAACTGAAGCCAGATCCTGTT -ACGGAACTGAAGCCAGATCGGTTT -ACGGAACTGAAGCCAGATGTGGTT -ACGGAACTGAAGCCAGATGCCTTT -ACGGAACTGAAGCCAGATGGTCTT -ACGGAACTGAAGCCAGATACGCTT -ACGGAACTGAAGCCAGATAGCGTT -ACGGAACTGAAGCCAGATTTCGTC -ACGGAACTGAAGCCAGATTCTCTC -ACGGAACTGAAGCCAGATTGGATC -ACGGAACTGAAGCCAGATCACTTC -ACGGAACTGAAGCCAGATGTACTC -ACGGAACTGAAGCCAGATGATGTC -ACGGAACTGAAGCCAGATACAGTC -ACGGAACTGAAGCCAGATTTGCTG -ACGGAACTGAAGCCAGATTCCATG -ACGGAACTGAAGCCAGATTGTGTG -ACGGAACTGAAGCCAGATCTAGTG -ACGGAACTGAAGCCAGATCATCTG -ACGGAACTGAAGCCAGATGAGTTG -ACGGAACTGAAGCCAGATAGACTG -ACGGAACTGAAGCCAGATTCGGTA -ACGGAACTGAAGCCAGATTGCCTA -ACGGAACTGAAGCCAGATCCACTA -ACGGAACTGAAGCCAGATGGAGTA -ACGGAACTGAAGCCAGATTCGTCT -ACGGAACTGAAGCCAGATTGCACT -ACGGAACTGAAGCCAGATCTGACT -ACGGAACTGAAGCCAGATCAACCT -ACGGAACTGAAGCCAGATGCTACT -ACGGAACTGAAGCCAGATGGATCT -ACGGAACTGAAGCCAGATAAGGCT -ACGGAACTGAAGCCAGATTCAACC -ACGGAACTGAAGCCAGATTGTTCC -ACGGAACTGAAGCCAGATATTCCC -ACGGAACTGAAGCCAGATTTCTCG -ACGGAACTGAAGCCAGATTAGACG -ACGGAACTGAAGCCAGATGTAACG -ACGGAACTGAAGCCAGATACTTCG -ACGGAACTGAAGCCAGATTACGCA -ACGGAACTGAAGCCAGATCTTGCA -ACGGAACTGAAGCCAGATCGAACA -ACGGAACTGAAGCCAGATCAGTCA -ACGGAACTGAAGCCAGATGATCCA -ACGGAACTGAAGCCAGATACGACA -ACGGAACTGAAGCCAGATAGCTCA -ACGGAACTGAAGCCAGATTCACGT -ACGGAACTGAAGCCAGATCGTAGT -ACGGAACTGAAGCCAGATGTCAGT -ACGGAACTGAAGCCAGATGAAGGT -ACGGAACTGAAGCCAGATAACCGT -ACGGAACTGAAGCCAGATTTGTGC -ACGGAACTGAAGCCAGATCTAAGC -ACGGAACTGAAGCCAGATACTAGC -ACGGAACTGAAGCCAGATAGATGC -ACGGAACTGAAGCCAGATTGAAGG -ACGGAACTGAAGCCAGATCAATGG -ACGGAACTGAAGCCAGATATGAGG -ACGGAACTGAAGCCAGATAATGGG -ACGGAACTGAAGCCAGATTCCTGA -ACGGAACTGAAGCCAGATTAGCGA -ACGGAACTGAAGCCAGATCACAGA -ACGGAACTGAAGCCAGATGCAAGA -ACGGAACTGAAGCCAGATGGTTGA -ACGGAACTGAAGCCAGATTCCGAT -ACGGAACTGAAGCCAGATTGGCAT -ACGGAACTGAAGCCAGATCGAGAT -ACGGAACTGAAGCCAGATTACCAC -ACGGAACTGAAGCCAGATCAGAAC -ACGGAACTGAAGCCAGATGTCTAC -ACGGAACTGAAGCCAGATACGTAC -ACGGAACTGAAGCCAGATAGTGAC -ACGGAACTGAAGCCAGATCTGTAG -ACGGAACTGAAGCCAGATCCTAAG -ACGGAACTGAAGCCAGATGTTCAG -ACGGAACTGAAGCCAGATGCATAG -ACGGAACTGAAGCCAGATGACAAG -ACGGAACTGAAGCCAGATAAGCAG -ACGGAACTGAAGCCAGATCGTCAA -ACGGAACTGAAGCCAGATGCTGAA -ACGGAACTGAAGCCAGATAGTACG -ACGGAACTGAAGCCAGATATCCGA -ACGGAACTGAAGCCAGATATGGGA -ACGGAACTGAAGCCAGATGTGCAA -ACGGAACTGAAGCCAGATGAGGAA -ACGGAACTGAAGCCAGATCAGGTA -ACGGAACTGAAGCCAGATGACTCT -ACGGAACTGAAGCCAGATAGTCCT -ACGGAACTGAAGCCAGATTAAGCC -ACGGAACTGAAGCCAGATATAGCC -ACGGAACTGAAGCCAGATTAACCG -ACGGAACTGAAGCCAGATATGCCA -ACGGAACTGAAGACAACGGGAAAC -ACGGAACTGAAGACAACGAACACC -ACGGAACTGAAGACAACGATCGAG -ACGGAACTGAAGACAACGCTCCTT -ACGGAACTGAAGACAACGCCTGTT -ACGGAACTGAAGACAACGCGGTTT -ACGGAACTGAAGACAACGGTGGTT -ACGGAACTGAAGACAACGGCCTTT -ACGGAACTGAAGACAACGGGTCTT -ACGGAACTGAAGACAACGACGCTT -ACGGAACTGAAGACAACGAGCGTT -ACGGAACTGAAGACAACGTTCGTC -ACGGAACTGAAGACAACGTCTCTC -ACGGAACTGAAGACAACGTGGATC -ACGGAACTGAAGACAACGCACTTC -ACGGAACTGAAGACAACGGTACTC -ACGGAACTGAAGACAACGGATGTC -ACGGAACTGAAGACAACGACAGTC -ACGGAACTGAAGACAACGTTGCTG -ACGGAACTGAAGACAACGTCCATG -ACGGAACTGAAGACAACGTGTGTG -ACGGAACTGAAGACAACGCTAGTG -ACGGAACTGAAGACAACGCATCTG -ACGGAACTGAAGACAACGGAGTTG -ACGGAACTGAAGACAACGAGACTG -ACGGAACTGAAGACAACGTCGGTA -ACGGAACTGAAGACAACGTGCCTA -ACGGAACTGAAGACAACGCCACTA -ACGGAACTGAAGACAACGGGAGTA -ACGGAACTGAAGACAACGTCGTCT -ACGGAACTGAAGACAACGTGCACT -ACGGAACTGAAGACAACGCTGACT -ACGGAACTGAAGACAACGCAACCT -ACGGAACTGAAGACAACGGCTACT -ACGGAACTGAAGACAACGGGATCT -ACGGAACTGAAGACAACGAAGGCT -ACGGAACTGAAGACAACGTCAACC -ACGGAACTGAAGACAACGTGTTCC -ACGGAACTGAAGACAACGATTCCC -ACGGAACTGAAGACAACGTTCTCG -ACGGAACTGAAGACAACGTAGACG -ACGGAACTGAAGACAACGGTAACG -ACGGAACTGAAGACAACGACTTCG -ACGGAACTGAAGACAACGTACGCA -ACGGAACTGAAGACAACGCTTGCA -ACGGAACTGAAGACAACGCGAACA -ACGGAACTGAAGACAACGCAGTCA -ACGGAACTGAAGACAACGGATCCA -ACGGAACTGAAGACAACGACGACA -ACGGAACTGAAGACAACGAGCTCA -ACGGAACTGAAGACAACGTCACGT -ACGGAACTGAAGACAACGCGTAGT -ACGGAACTGAAGACAACGGTCAGT -ACGGAACTGAAGACAACGGAAGGT -ACGGAACTGAAGACAACGAACCGT -ACGGAACTGAAGACAACGTTGTGC -ACGGAACTGAAGACAACGCTAAGC -ACGGAACTGAAGACAACGACTAGC -ACGGAACTGAAGACAACGAGATGC -ACGGAACTGAAGACAACGTGAAGG -ACGGAACTGAAGACAACGCAATGG -ACGGAACTGAAGACAACGATGAGG -ACGGAACTGAAGACAACGAATGGG -ACGGAACTGAAGACAACGTCCTGA -ACGGAACTGAAGACAACGTAGCGA -ACGGAACTGAAGACAACGCACAGA -ACGGAACTGAAGACAACGGCAAGA -ACGGAACTGAAGACAACGGGTTGA -ACGGAACTGAAGACAACGTCCGAT -ACGGAACTGAAGACAACGTGGCAT -ACGGAACTGAAGACAACGCGAGAT -ACGGAACTGAAGACAACGTACCAC -ACGGAACTGAAGACAACGCAGAAC -ACGGAACTGAAGACAACGGTCTAC -ACGGAACTGAAGACAACGACGTAC -ACGGAACTGAAGACAACGAGTGAC -ACGGAACTGAAGACAACGCTGTAG -ACGGAACTGAAGACAACGCCTAAG -ACGGAACTGAAGACAACGGTTCAG -ACGGAACTGAAGACAACGGCATAG -ACGGAACTGAAGACAACGGACAAG -ACGGAACTGAAGACAACGAAGCAG -ACGGAACTGAAGACAACGCGTCAA -ACGGAACTGAAGACAACGGCTGAA -ACGGAACTGAAGACAACGAGTACG -ACGGAACTGAAGACAACGATCCGA -ACGGAACTGAAGACAACGATGGGA -ACGGAACTGAAGACAACGGTGCAA -ACGGAACTGAAGACAACGGAGGAA -ACGGAACTGAAGACAACGCAGGTA -ACGGAACTGAAGACAACGGACTCT -ACGGAACTGAAGACAACGAGTCCT -ACGGAACTGAAGACAACGTAAGCC -ACGGAACTGAAGACAACGATAGCC -ACGGAACTGAAGACAACGTAACCG -ACGGAACTGAAGACAACGATGCCA -ACGGAACTGAAGTCAAGCGGAAAC -ACGGAACTGAAGTCAAGCAACACC -ACGGAACTGAAGTCAAGCATCGAG -ACGGAACTGAAGTCAAGCCTCCTT -ACGGAACTGAAGTCAAGCCCTGTT -ACGGAACTGAAGTCAAGCCGGTTT -ACGGAACTGAAGTCAAGCGTGGTT -ACGGAACTGAAGTCAAGCGCCTTT -ACGGAACTGAAGTCAAGCGGTCTT -ACGGAACTGAAGTCAAGCACGCTT -ACGGAACTGAAGTCAAGCAGCGTT -ACGGAACTGAAGTCAAGCTTCGTC -ACGGAACTGAAGTCAAGCTCTCTC -ACGGAACTGAAGTCAAGCTGGATC -ACGGAACTGAAGTCAAGCCACTTC -ACGGAACTGAAGTCAAGCGTACTC -ACGGAACTGAAGTCAAGCGATGTC -ACGGAACTGAAGTCAAGCACAGTC -ACGGAACTGAAGTCAAGCTTGCTG -ACGGAACTGAAGTCAAGCTCCATG -ACGGAACTGAAGTCAAGCTGTGTG -ACGGAACTGAAGTCAAGCCTAGTG -ACGGAACTGAAGTCAAGCCATCTG -ACGGAACTGAAGTCAAGCGAGTTG -ACGGAACTGAAGTCAAGCAGACTG -ACGGAACTGAAGTCAAGCTCGGTA -ACGGAACTGAAGTCAAGCTGCCTA -ACGGAACTGAAGTCAAGCCCACTA -ACGGAACTGAAGTCAAGCGGAGTA -ACGGAACTGAAGTCAAGCTCGTCT -ACGGAACTGAAGTCAAGCTGCACT -ACGGAACTGAAGTCAAGCCTGACT -ACGGAACTGAAGTCAAGCCAACCT -ACGGAACTGAAGTCAAGCGCTACT -ACGGAACTGAAGTCAAGCGGATCT -ACGGAACTGAAGTCAAGCAAGGCT -ACGGAACTGAAGTCAAGCTCAACC -ACGGAACTGAAGTCAAGCTGTTCC -ACGGAACTGAAGTCAAGCATTCCC -ACGGAACTGAAGTCAAGCTTCTCG -ACGGAACTGAAGTCAAGCTAGACG -ACGGAACTGAAGTCAAGCGTAACG -ACGGAACTGAAGTCAAGCACTTCG -ACGGAACTGAAGTCAAGCTACGCA -ACGGAACTGAAGTCAAGCCTTGCA -ACGGAACTGAAGTCAAGCCGAACA -ACGGAACTGAAGTCAAGCCAGTCA -ACGGAACTGAAGTCAAGCGATCCA -ACGGAACTGAAGTCAAGCACGACA -ACGGAACTGAAGTCAAGCAGCTCA -ACGGAACTGAAGTCAAGCTCACGT -ACGGAACTGAAGTCAAGCCGTAGT -ACGGAACTGAAGTCAAGCGTCAGT -ACGGAACTGAAGTCAAGCGAAGGT -ACGGAACTGAAGTCAAGCAACCGT -ACGGAACTGAAGTCAAGCTTGTGC -ACGGAACTGAAGTCAAGCCTAAGC -ACGGAACTGAAGTCAAGCACTAGC -ACGGAACTGAAGTCAAGCAGATGC -ACGGAACTGAAGTCAAGCTGAAGG -ACGGAACTGAAGTCAAGCCAATGG -ACGGAACTGAAGTCAAGCATGAGG -ACGGAACTGAAGTCAAGCAATGGG -ACGGAACTGAAGTCAAGCTCCTGA -ACGGAACTGAAGTCAAGCTAGCGA -ACGGAACTGAAGTCAAGCCACAGA -ACGGAACTGAAGTCAAGCGCAAGA -ACGGAACTGAAGTCAAGCGGTTGA -ACGGAACTGAAGTCAAGCTCCGAT -ACGGAACTGAAGTCAAGCTGGCAT -ACGGAACTGAAGTCAAGCCGAGAT -ACGGAACTGAAGTCAAGCTACCAC -ACGGAACTGAAGTCAAGCCAGAAC -ACGGAACTGAAGTCAAGCGTCTAC -ACGGAACTGAAGTCAAGCACGTAC -ACGGAACTGAAGTCAAGCAGTGAC -ACGGAACTGAAGTCAAGCCTGTAG -ACGGAACTGAAGTCAAGCCCTAAG -ACGGAACTGAAGTCAAGCGTTCAG -ACGGAACTGAAGTCAAGCGCATAG -ACGGAACTGAAGTCAAGCGACAAG -ACGGAACTGAAGTCAAGCAAGCAG -ACGGAACTGAAGTCAAGCCGTCAA -ACGGAACTGAAGTCAAGCGCTGAA -ACGGAACTGAAGTCAAGCAGTACG -ACGGAACTGAAGTCAAGCATCCGA -ACGGAACTGAAGTCAAGCATGGGA -ACGGAACTGAAGTCAAGCGTGCAA -ACGGAACTGAAGTCAAGCGAGGAA -ACGGAACTGAAGTCAAGCCAGGTA -ACGGAACTGAAGTCAAGCGACTCT -ACGGAACTGAAGTCAAGCAGTCCT -ACGGAACTGAAGTCAAGCTAAGCC -ACGGAACTGAAGTCAAGCATAGCC -ACGGAACTGAAGTCAAGCTAACCG -ACGGAACTGAAGTCAAGCATGCCA -ACGGAACTGAAGCGTTCAGGAAAC -ACGGAACTGAAGCGTTCAAACACC -ACGGAACTGAAGCGTTCAATCGAG -ACGGAACTGAAGCGTTCACTCCTT -ACGGAACTGAAGCGTTCACCTGTT -ACGGAACTGAAGCGTTCACGGTTT -ACGGAACTGAAGCGTTCAGTGGTT -ACGGAACTGAAGCGTTCAGCCTTT -ACGGAACTGAAGCGTTCAGGTCTT -ACGGAACTGAAGCGTTCAACGCTT -ACGGAACTGAAGCGTTCAAGCGTT -ACGGAACTGAAGCGTTCATTCGTC -ACGGAACTGAAGCGTTCATCTCTC -ACGGAACTGAAGCGTTCATGGATC -ACGGAACTGAAGCGTTCACACTTC -ACGGAACTGAAGCGTTCAGTACTC -ACGGAACTGAAGCGTTCAGATGTC -ACGGAACTGAAGCGTTCAACAGTC -ACGGAACTGAAGCGTTCATTGCTG -ACGGAACTGAAGCGTTCATCCATG -ACGGAACTGAAGCGTTCATGTGTG -ACGGAACTGAAGCGTTCACTAGTG -ACGGAACTGAAGCGTTCACATCTG -ACGGAACTGAAGCGTTCAGAGTTG -ACGGAACTGAAGCGTTCAAGACTG -ACGGAACTGAAGCGTTCATCGGTA -ACGGAACTGAAGCGTTCATGCCTA -ACGGAACTGAAGCGTTCACCACTA -ACGGAACTGAAGCGTTCAGGAGTA -ACGGAACTGAAGCGTTCATCGTCT -ACGGAACTGAAGCGTTCATGCACT -ACGGAACTGAAGCGTTCACTGACT -ACGGAACTGAAGCGTTCACAACCT -ACGGAACTGAAGCGTTCAGCTACT -ACGGAACTGAAGCGTTCAGGATCT -ACGGAACTGAAGCGTTCAAAGGCT -ACGGAACTGAAGCGTTCATCAACC -ACGGAACTGAAGCGTTCATGTTCC -ACGGAACTGAAGCGTTCAATTCCC -ACGGAACTGAAGCGTTCATTCTCG -ACGGAACTGAAGCGTTCATAGACG -ACGGAACTGAAGCGTTCAGTAACG -ACGGAACTGAAGCGTTCAACTTCG -ACGGAACTGAAGCGTTCATACGCA -ACGGAACTGAAGCGTTCACTTGCA -ACGGAACTGAAGCGTTCACGAACA -ACGGAACTGAAGCGTTCACAGTCA -ACGGAACTGAAGCGTTCAGATCCA -ACGGAACTGAAGCGTTCAACGACA -ACGGAACTGAAGCGTTCAAGCTCA -ACGGAACTGAAGCGTTCATCACGT -ACGGAACTGAAGCGTTCACGTAGT -ACGGAACTGAAGCGTTCAGTCAGT -ACGGAACTGAAGCGTTCAGAAGGT -ACGGAACTGAAGCGTTCAAACCGT -ACGGAACTGAAGCGTTCATTGTGC -ACGGAACTGAAGCGTTCACTAAGC -ACGGAACTGAAGCGTTCAACTAGC -ACGGAACTGAAGCGTTCAAGATGC -ACGGAACTGAAGCGTTCATGAAGG -ACGGAACTGAAGCGTTCACAATGG -ACGGAACTGAAGCGTTCAATGAGG -ACGGAACTGAAGCGTTCAAATGGG -ACGGAACTGAAGCGTTCATCCTGA -ACGGAACTGAAGCGTTCATAGCGA -ACGGAACTGAAGCGTTCACACAGA -ACGGAACTGAAGCGTTCAGCAAGA -ACGGAACTGAAGCGTTCAGGTTGA -ACGGAACTGAAGCGTTCATCCGAT -ACGGAACTGAAGCGTTCATGGCAT -ACGGAACTGAAGCGTTCACGAGAT -ACGGAACTGAAGCGTTCATACCAC -ACGGAACTGAAGCGTTCACAGAAC -ACGGAACTGAAGCGTTCAGTCTAC -ACGGAACTGAAGCGTTCAACGTAC -ACGGAACTGAAGCGTTCAAGTGAC -ACGGAACTGAAGCGTTCACTGTAG -ACGGAACTGAAGCGTTCACCTAAG -ACGGAACTGAAGCGTTCAGTTCAG -ACGGAACTGAAGCGTTCAGCATAG -ACGGAACTGAAGCGTTCAGACAAG -ACGGAACTGAAGCGTTCAAAGCAG -ACGGAACTGAAGCGTTCACGTCAA -ACGGAACTGAAGCGTTCAGCTGAA -ACGGAACTGAAGCGTTCAAGTACG -ACGGAACTGAAGCGTTCAATCCGA -ACGGAACTGAAGCGTTCAATGGGA -ACGGAACTGAAGCGTTCAGTGCAA -ACGGAACTGAAGCGTTCAGAGGAA -ACGGAACTGAAGCGTTCACAGGTA -ACGGAACTGAAGCGTTCAGACTCT -ACGGAACTGAAGCGTTCAAGTCCT -ACGGAACTGAAGCGTTCATAAGCC -ACGGAACTGAAGCGTTCAATAGCC -ACGGAACTGAAGCGTTCATAACCG -ACGGAACTGAAGCGTTCAATGCCA -ACGGAACTGAAGAGTCGTGGAAAC -ACGGAACTGAAGAGTCGTAACACC -ACGGAACTGAAGAGTCGTATCGAG -ACGGAACTGAAGAGTCGTCTCCTT -ACGGAACTGAAGAGTCGTCCTGTT -ACGGAACTGAAGAGTCGTCGGTTT -ACGGAACTGAAGAGTCGTGTGGTT -ACGGAACTGAAGAGTCGTGCCTTT -ACGGAACTGAAGAGTCGTGGTCTT -ACGGAACTGAAGAGTCGTACGCTT -ACGGAACTGAAGAGTCGTAGCGTT -ACGGAACTGAAGAGTCGTTTCGTC -ACGGAACTGAAGAGTCGTTCTCTC -ACGGAACTGAAGAGTCGTTGGATC -ACGGAACTGAAGAGTCGTCACTTC -ACGGAACTGAAGAGTCGTGTACTC -ACGGAACTGAAGAGTCGTGATGTC -ACGGAACTGAAGAGTCGTACAGTC -ACGGAACTGAAGAGTCGTTTGCTG -ACGGAACTGAAGAGTCGTTCCATG -ACGGAACTGAAGAGTCGTTGTGTG -ACGGAACTGAAGAGTCGTCTAGTG -ACGGAACTGAAGAGTCGTCATCTG -ACGGAACTGAAGAGTCGTGAGTTG -ACGGAACTGAAGAGTCGTAGACTG -ACGGAACTGAAGAGTCGTTCGGTA -ACGGAACTGAAGAGTCGTTGCCTA -ACGGAACTGAAGAGTCGTCCACTA -ACGGAACTGAAGAGTCGTGGAGTA -ACGGAACTGAAGAGTCGTTCGTCT -ACGGAACTGAAGAGTCGTTGCACT -ACGGAACTGAAGAGTCGTCTGACT -ACGGAACTGAAGAGTCGTCAACCT -ACGGAACTGAAGAGTCGTGCTACT -ACGGAACTGAAGAGTCGTGGATCT -ACGGAACTGAAGAGTCGTAAGGCT -ACGGAACTGAAGAGTCGTTCAACC -ACGGAACTGAAGAGTCGTTGTTCC -ACGGAACTGAAGAGTCGTATTCCC -ACGGAACTGAAGAGTCGTTTCTCG -ACGGAACTGAAGAGTCGTTAGACG -ACGGAACTGAAGAGTCGTGTAACG -ACGGAACTGAAGAGTCGTACTTCG -ACGGAACTGAAGAGTCGTTACGCA -ACGGAACTGAAGAGTCGTCTTGCA -ACGGAACTGAAGAGTCGTCGAACA -ACGGAACTGAAGAGTCGTCAGTCA -ACGGAACTGAAGAGTCGTGATCCA -ACGGAACTGAAGAGTCGTACGACA -ACGGAACTGAAGAGTCGTAGCTCA -ACGGAACTGAAGAGTCGTTCACGT -ACGGAACTGAAGAGTCGTCGTAGT -ACGGAACTGAAGAGTCGTGTCAGT -ACGGAACTGAAGAGTCGTGAAGGT -ACGGAACTGAAGAGTCGTAACCGT -ACGGAACTGAAGAGTCGTTTGTGC -ACGGAACTGAAGAGTCGTCTAAGC -ACGGAACTGAAGAGTCGTACTAGC -ACGGAACTGAAGAGTCGTAGATGC -ACGGAACTGAAGAGTCGTTGAAGG -ACGGAACTGAAGAGTCGTCAATGG -ACGGAACTGAAGAGTCGTATGAGG -ACGGAACTGAAGAGTCGTAATGGG -ACGGAACTGAAGAGTCGTTCCTGA -ACGGAACTGAAGAGTCGTTAGCGA -ACGGAACTGAAGAGTCGTCACAGA -ACGGAACTGAAGAGTCGTGCAAGA -ACGGAACTGAAGAGTCGTGGTTGA -ACGGAACTGAAGAGTCGTTCCGAT -ACGGAACTGAAGAGTCGTTGGCAT -ACGGAACTGAAGAGTCGTCGAGAT -ACGGAACTGAAGAGTCGTTACCAC -ACGGAACTGAAGAGTCGTCAGAAC -ACGGAACTGAAGAGTCGTGTCTAC -ACGGAACTGAAGAGTCGTACGTAC -ACGGAACTGAAGAGTCGTAGTGAC -ACGGAACTGAAGAGTCGTCTGTAG -ACGGAACTGAAGAGTCGTCCTAAG -ACGGAACTGAAGAGTCGTGTTCAG -ACGGAACTGAAGAGTCGTGCATAG -ACGGAACTGAAGAGTCGTGACAAG -ACGGAACTGAAGAGTCGTAAGCAG -ACGGAACTGAAGAGTCGTCGTCAA -ACGGAACTGAAGAGTCGTGCTGAA -ACGGAACTGAAGAGTCGTAGTACG -ACGGAACTGAAGAGTCGTATCCGA -ACGGAACTGAAGAGTCGTATGGGA -ACGGAACTGAAGAGTCGTGTGCAA -ACGGAACTGAAGAGTCGTGAGGAA -ACGGAACTGAAGAGTCGTCAGGTA -ACGGAACTGAAGAGTCGTGACTCT -ACGGAACTGAAGAGTCGTAGTCCT -ACGGAACTGAAGAGTCGTTAAGCC -ACGGAACTGAAGAGTCGTATAGCC -ACGGAACTGAAGAGTCGTTAACCG -ACGGAACTGAAGAGTCGTATGCCA -ACGGAACTGAAGAGTGTCGGAAAC -ACGGAACTGAAGAGTGTCAACACC -ACGGAACTGAAGAGTGTCATCGAG -ACGGAACTGAAGAGTGTCCTCCTT -ACGGAACTGAAGAGTGTCCCTGTT -ACGGAACTGAAGAGTGTCCGGTTT -ACGGAACTGAAGAGTGTCGTGGTT -ACGGAACTGAAGAGTGTCGCCTTT -ACGGAACTGAAGAGTGTCGGTCTT -ACGGAACTGAAGAGTGTCACGCTT -ACGGAACTGAAGAGTGTCAGCGTT -ACGGAACTGAAGAGTGTCTTCGTC -ACGGAACTGAAGAGTGTCTCTCTC -ACGGAACTGAAGAGTGTCTGGATC -ACGGAACTGAAGAGTGTCCACTTC -ACGGAACTGAAGAGTGTCGTACTC -ACGGAACTGAAGAGTGTCGATGTC -ACGGAACTGAAGAGTGTCACAGTC -ACGGAACTGAAGAGTGTCTTGCTG -ACGGAACTGAAGAGTGTCTCCATG -ACGGAACTGAAGAGTGTCTGTGTG -ACGGAACTGAAGAGTGTCCTAGTG -ACGGAACTGAAGAGTGTCCATCTG -ACGGAACTGAAGAGTGTCGAGTTG -ACGGAACTGAAGAGTGTCAGACTG -ACGGAACTGAAGAGTGTCTCGGTA -ACGGAACTGAAGAGTGTCTGCCTA -ACGGAACTGAAGAGTGTCCCACTA -ACGGAACTGAAGAGTGTCGGAGTA -ACGGAACTGAAGAGTGTCTCGTCT -ACGGAACTGAAGAGTGTCTGCACT -ACGGAACTGAAGAGTGTCCTGACT -ACGGAACTGAAGAGTGTCCAACCT -ACGGAACTGAAGAGTGTCGCTACT -ACGGAACTGAAGAGTGTCGGATCT -ACGGAACTGAAGAGTGTCAAGGCT -ACGGAACTGAAGAGTGTCTCAACC -ACGGAACTGAAGAGTGTCTGTTCC -ACGGAACTGAAGAGTGTCATTCCC -ACGGAACTGAAGAGTGTCTTCTCG -ACGGAACTGAAGAGTGTCTAGACG -ACGGAACTGAAGAGTGTCGTAACG -ACGGAACTGAAGAGTGTCACTTCG -ACGGAACTGAAGAGTGTCTACGCA -ACGGAACTGAAGAGTGTCCTTGCA -ACGGAACTGAAGAGTGTCCGAACA -ACGGAACTGAAGAGTGTCCAGTCA -ACGGAACTGAAGAGTGTCGATCCA -ACGGAACTGAAGAGTGTCACGACA -ACGGAACTGAAGAGTGTCAGCTCA -ACGGAACTGAAGAGTGTCTCACGT -ACGGAACTGAAGAGTGTCCGTAGT -ACGGAACTGAAGAGTGTCGTCAGT -ACGGAACTGAAGAGTGTCGAAGGT -ACGGAACTGAAGAGTGTCAACCGT -ACGGAACTGAAGAGTGTCTTGTGC -ACGGAACTGAAGAGTGTCCTAAGC -ACGGAACTGAAGAGTGTCACTAGC -ACGGAACTGAAGAGTGTCAGATGC -ACGGAACTGAAGAGTGTCTGAAGG -ACGGAACTGAAGAGTGTCCAATGG -ACGGAACTGAAGAGTGTCATGAGG -ACGGAACTGAAGAGTGTCAATGGG -ACGGAACTGAAGAGTGTCTCCTGA -ACGGAACTGAAGAGTGTCTAGCGA -ACGGAACTGAAGAGTGTCCACAGA -ACGGAACTGAAGAGTGTCGCAAGA -ACGGAACTGAAGAGTGTCGGTTGA -ACGGAACTGAAGAGTGTCTCCGAT -ACGGAACTGAAGAGTGTCTGGCAT -ACGGAACTGAAGAGTGTCCGAGAT -ACGGAACTGAAGAGTGTCTACCAC -ACGGAACTGAAGAGTGTCCAGAAC -ACGGAACTGAAGAGTGTCGTCTAC -ACGGAACTGAAGAGTGTCACGTAC -ACGGAACTGAAGAGTGTCAGTGAC -ACGGAACTGAAGAGTGTCCTGTAG -ACGGAACTGAAGAGTGTCCCTAAG -ACGGAACTGAAGAGTGTCGTTCAG -ACGGAACTGAAGAGTGTCGCATAG -ACGGAACTGAAGAGTGTCGACAAG -ACGGAACTGAAGAGTGTCAAGCAG -ACGGAACTGAAGAGTGTCCGTCAA -ACGGAACTGAAGAGTGTCGCTGAA -ACGGAACTGAAGAGTGTCAGTACG -ACGGAACTGAAGAGTGTCATCCGA -ACGGAACTGAAGAGTGTCATGGGA -ACGGAACTGAAGAGTGTCGTGCAA -ACGGAACTGAAGAGTGTCGAGGAA -ACGGAACTGAAGAGTGTCCAGGTA -ACGGAACTGAAGAGTGTCGACTCT -ACGGAACTGAAGAGTGTCAGTCCT -ACGGAACTGAAGAGTGTCTAAGCC -ACGGAACTGAAGAGTGTCATAGCC -ACGGAACTGAAGAGTGTCTAACCG -ACGGAACTGAAGAGTGTCATGCCA -ACGGAACTGAAGGGTGAAGGAAAC -ACGGAACTGAAGGGTGAAAACACC -ACGGAACTGAAGGGTGAAATCGAG -ACGGAACTGAAGGGTGAACTCCTT -ACGGAACTGAAGGGTGAACCTGTT -ACGGAACTGAAGGGTGAACGGTTT -ACGGAACTGAAGGGTGAAGTGGTT -ACGGAACTGAAGGGTGAAGCCTTT -ACGGAACTGAAGGGTGAAGGTCTT -ACGGAACTGAAGGGTGAAACGCTT -ACGGAACTGAAGGGTGAAAGCGTT -ACGGAACTGAAGGGTGAATTCGTC -ACGGAACTGAAGGGTGAATCTCTC -ACGGAACTGAAGGGTGAATGGATC -ACGGAACTGAAGGGTGAACACTTC -ACGGAACTGAAGGGTGAAGTACTC -ACGGAACTGAAGGGTGAAGATGTC -ACGGAACTGAAGGGTGAAACAGTC -ACGGAACTGAAGGGTGAATTGCTG -ACGGAACTGAAGGGTGAATCCATG -ACGGAACTGAAGGGTGAATGTGTG -ACGGAACTGAAGGGTGAACTAGTG -ACGGAACTGAAGGGTGAACATCTG -ACGGAACTGAAGGGTGAAGAGTTG -ACGGAACTGAAGGGTGAAAGACTG -ACGGAACTGAAGGGTGAATCGGTA -ACGGAACTGAAGGGTGAATGCCTA -ACGGAACTGAAGGGTGAACCACTA -ACGGAACTGAAGGGTGAAGGAGTA -ACGGAACTGAAGGGTGAATCGTCT -ACGGAACTGAAGGGTGAATGCACT -ACGGAACTGAAGGGTGAACTGACT -ACGGAACTGAAGGGTGAACAACCT -ACGGAACTGAAGGGTGAAGCTACT -ACGGAACTGAAGGGTGAAGGATCT -ACGGAACTGAAGGGTGAAAAGGCT -ACGGAACTGAAGGGTGAATCAACC -ACGGAACTGAAGGGTGAATGTTCC -ACGGAACTGAAGGGTGAAATTCCC -ACGGAACTGAAGGGTGAATTCTCG -ACGGAACTGAAGGGTGAATAGACG -ACGGAACTGAAGGGTGAAGTAACG -ACGGAACTGAAGGGTGAAACTTCG -ACGGAACTGAAGGGTGAATACGCA -ACGGAACTGAAGGGTGAACTTGCA -ACGGAACTGAAGGGTGAACGAACA -ACGGAACTGAAGGGTGAACAGTCA -ACGGAACTGAAGGGTGAAGATCCA -ACGGAACTGAAGGGTGAAACGACA -ACGGAACTGAAGGGTGAAAGCTCA -ACGGAACTGAAGGGTGAATCACGT -ACGGAACTGAAGGGTGAACGTAGT -ACGGAACTGAAGGGTGAAGTCAGT -ACGGAACTGAAGGGTGAAGAAGGT -ACGGAACTGAAGGGTGAAAACCGT -ACGGAACTGAAGGGTGAATTGTGC -ACGGAACTGAAGGGTGAACTAAGC -ACGGAACTGAAGGGTGAAACTAGC -ACGGAACTGAAGGGTGAAAGATGC -ACGGAACTGAAGGGTGAATGAAGG -ACGGAACTGAAGGGTGAACAATGG -ACGGAACTGAAGGGTGAAATGAGG -ACGGAACTGAAGGGTGAAAATGGG -ACGGAACTGAAGGGTGAATCCTGA -ACGGAACTGAAGGGTGAATAGCGA -ACGGAACTGAAGGGTGAACACAGA -ACGGAACTGAAGGGTGAAGCAAGA -ACGGAACTGAAGGGTGAAGGTTGA -ACGGAACTGAAGGGTGAATCCGAT -ACGGAACTGAAGGGTGAATGGCAT -ACGGAACTGAAGGGTGAACGAGAT -ACGGAACTGAAGGGTGAATACCAC -ACGGAACTGAAGGGTGAACAGAAC -ACGGAACTGAAGGGTGAAGTCTAC -ACGGAACTGAAGGGTGAAACGTAC -ACGGAACTGAAGGGTGAAAGTGAC -ACGGAACTGAAGGGTGAACTGTAG -ACGGAACTGAAGGGTGAACCTAAG -ACGGAACTGAAGGGTGAAGTTCAG -ACGGAACTGAAGGGTGAAGCATAG -ACGGAACTGAAGGGTGAAGACAAG -ACGGAACTGAAGGGTGAAAAGCAG -ACGGAACTGAAGGGTGAACGTCAA -ACGGAACTGAAGGGTGAAGCTGAA -ACGGAACTGAAGGGTGAAAGTACG -ACGGAACTGAAGGGTGAAATCCGA -ACGGAACTGAAGGGTGAAATGGGA -ACGGAACTGAAGGGTGAAGTGCAA -ACGGAACTGAAGGGTGAAGAGGAA -ACGGAACTGAAGGGTGAACAGGTA -ACGGAACTGAAGGGTGAAGACTCT -ACGGAACTGAAGGGTGAAAGTCCT -ACGGAACTGAAGGGTGAATAAGCC -ACGGAACTGAAGGGTGAAATAGCC -ACGGAACTGAAGGGTGAATAACCG -ACGGAACTGAAGGGTGAAATGCCA -ACGGAACTGAAGCGTAACGGAAAC -ACGGAACTGAAGCGTAACAACACC -ACGGAACTGAAGCGTAACATCGAG -ACGGAACTGAAGCGTAACCTCCTT -ACGGAACTGAAGCGTAACCCTGTT -ACGGAACTGAAGCGTAACCGGTTT -ACGGAACTGAAGCGTAACGTGGTT -ACGGAACTGAAGCGTAACGCCTTT -ACGGAACTGAAGCGTAACGGTCTT -ACGGAACTGAAGCGTAACACGCTT -ACGGAACTGAAGCGTAACAGCGTT -ACGGAACTGAAGCGTAACTTCGTC -ACGGAACTGAAGCGTAACTCTCTC -ACGGAACTGAAGCGTAACTGGATC -ACGGAACTGAAGCGTAACCACTTC -ACGGAACTGAAGCGTAACGTACTC -ACGGAACTGAAGCGTAACGATGTC -ACGGAACTGAAGCGTAACACAGTC -ACGGAACTGAAGCGTAACTTGCTG -ACGGAACTGAAGCGTAACTCCATG -ACGGAACTGAAGCGTAACTGTGTG -ACGGAACTGAAGCGTAACCTAGTG -ACGGAACTGAAGCGTAACCATCTG -ACGGAACTGAAGCGTAACGAGTTG -ACGGAACTGAAGCGTAACAGACTG -ACGGAACTGAAGCGTAACTCGGTA -ACGGAACTGAAGCGTAACTGCCTA -ACGGAACTGAAGCGTAACCCACTA -ACGGAACTGAAGCGTAACGGAGTA -ACGGAACTGAAGCGTAACTCGTCT -ACGGAACTGAAGCGTAACTGCACT -ACGGAACTGAAGCGTAACCTGACT -ACGGAACTGAAGCGTAACCAACCT -ACGGAACTGAAGCGTAACGCTACT -ACGGAACTGAAGCGTAACGGATCT -ACGGAACTGAAGCGTAACAAGGCT -ACGGAACTGAAGCGTAACTCAACC -ACGGAACTGAAGCGTAACTGTTCC -ACGGAACTGAAGCGTAACATTCCC -ACGGAACTGAAGCGTAACTTCTCG -ACGGAACTGAAGCGTAACTAGACG -ACGGAACTGAAGCGTAACGTAACG -ACGGAACTGAAGCGTAACACTTCG -ACGGAACTGAAGCGTAACTACGCA -ACGGAACTGAAGCGTAACCTTGCA -ACGGAACTGAAGCGTAACCGAACA -ACGGAACTGAAGCGTAACCAGTCA -ACGGAACTGAAGCGTAACGATCCA -ACGGAACTGAAGCGTAACACGACA -ACGGAACTGAAGCGTAACAGCTCA -ACGGAACTGAAGCGTAACTCACGT -ACGGAACTGAAGCGTAACCGTAGT -ACGGAACTGAAGCGTAACGTCAGT -ACGGAACTGAAGCGTAACGAAGGT -ACGGAACTGAAGCGTAACAACCGT -ACGGAACTGAAGCGTAACTTGTGC -ACGGAACTGAAGCGTAACCTAAGC -ACGGAACTGAAGCGTAACACTAGC -ACGGAACTGAAGCGTAACAGATGC -ACGGAACTGAAGCGTAACTGAAGG -ACGGAACTGAAGCGTAACCAATGG -ACGGAACTGAAGCGTAACATGAGG -ACGGAACTGAAGCGTAACAATGGG -ACGGAACTGAAGCGTAACTCCTGA -ACGGAACTGAAGCGTAACTAGCGA -ACGGAACTGAAGCGTAACCACAGA -ACGGAACTGAAGCGTAACGCAAGA -ACGGAACTGAAGCGTAACGGTTGA -ACGGAACTGAAGCGTAACTCCGAT -ACGGAACTGAAGCGTAACTGGCAT -ACGGAACTGAAGCGTAACCGAGAT -ACGGAACTGAAGCGTAACTACCAC -ACGGAACTGAAGCGTAACCAGAAC -ACGGAACTGAAGCGTAACGTCTAC -ACGGAACTGAAGCGTAACACGTAC -ACGGAACTGAAGCGTAACAGTGAC -ACGGAACTGAAGCGTAACCTGTAG -ACGGAACTGAAGCGTAACCCTAAG -ACGGAACTGAAGCGTAACGTTCAG -ACGGAACTGAAGCGTAACGCATAG -ACGGAACTGAAGCGTAACGACAAG -ACGGAACTGAAGCGTAACAAGCAG -ACGGAACTGAAGCGTAACCGTCAA -ACGGAACTGAAGCGTAACGCTGAA -ACGGAACTGAAGCGTAACAGTACG -ACGGAACTGAAGCGTAACATCCGA -ACGGAACTGAAGCGTAACATGGGA -ACGGAACTGAAGCGTAACGTGCAA -ACGGAACTGAAGCGTAACGAGGAA -ACGGAACTGAAGCGTAACCAGGTA -ACGGAACTGAAGCGTAACGACTCT -ACGGAACTGAAGCGTAACAGTCCT -ACGGAACTGAAGCGTAACTAAGCC -ACGGAACTGAAGCGTAACATAGCC -ACGGAACTGAAGCGTAACTAACCG -ACGGAACTGAAGCGTAACATGCCA -ACGGAACTGAAGTGCTTGGGAAAC -ACGGAACTGAAGTGCTTGAACACC -ACGGAACTGAAGTGCTTGATCGAG -ACGGAACTGAAGTGCTTGCTCCTT -ACGGAACTGAAGTGCTTGCCTGTT -ACGGAACTGAAGTGCTTGCGGTTT -ACGGAACTGAAGTGCTTGGTGGTT -ACGGAACTGAAGTGCTTGGCCTTT -ACGGAACTGAAGTGCTTGGGTCTT -ACGGAACTGAAGTGCTTGACGCTT -ACGGAACTGAAGTGCTTGAGCGTT -ACGGAACTGAAGTGCTTGTTCGTC -ACGGAACTGAAGTGCTTGTCTCTC -ACGGAACTGAAGTGCTTGTGGATC -ACGGAACTGAAGTGCTTGCACTTC -ACGGAACTGAAGTGCTTGGTACTC -ACGGAACTGAAGTGCTTGGATGTC -ACGGAACTGAAGTGCTTGACAGTC -ACGGAACTGAAGTGCTTGTTGCTG -ACGGAACTGAAGTGCTTGTCCATG -ACGGAACTGAAGTGCTTGTGTGTG -ACGGAACTGAAGTGCTTGCTAGTG -ACGGAACTGAAGTGCTTGCATCTG -ACGGAACTGAAGTGCTTGGAGTTG -ACGGAACTGAAGTGCTTGAGACTG -ACGGAACTGAAGTGCTTGTCGGTA -ACGGAACTGAAGTGCTTGTGCCTA -ACGGAACTGAAGTGCTTGCCACTA -ACGGAACTGAAGTGCTTGGGAGTA -ACGGAACTGAAGTGCTTGTCGTCT -ACGGAACTGAAGTGCTTGTGCACT -ACGGAACTGAAGTGCTTGCTGACT -ACGGAACTGAAGTGCTTGCAACCT -ACGGAACTGAAGTGCTTGGCTACT -ACGGAACTGAAGTGCTTGGGATCT -ACGGAACTGAAGTGCTTGAAGGCT -ACGGAACTGAAGTGCTTGTCAACC -ACGGAACTGAAGTGCTTGTGTTCC -ACGGAACTGAAGTGCTTGATTCCC -ACGGAACTGAAGTGCTTGTTCTCG -ACGGAACTGAAGTGCTTGTAGACG -ACGGAACTGAAGTGCTTGGTAACG -ACGGAACTGAAGTGCTTGACTTCG -ACGGAACTGAAGTGCTTGTACGCA -ACGGAACTGAAGTGCTTGCTTGCA -ACGGAACTGAAGTGCTTGCGAACA -ACGGAACTGAAGTGCTTGCAGTCA -ACGGAACTGAAGTGCTTGGATCCA -ACGGAACTGAAGTGCTTGACGACA -ACGGAACTGAAGTGCTTGAGCTCA -ACGGAACTGAAGTGCTTGTCACGT -ACGGAACTGAAGTGCTTGCGTAGT -ACGGAACTGAAGTGCTTGGTCAGT -ACGGAACTGAAGTGCTTGGAAGGT -ACGGAACTGAAGTGCTTGAACCGT -ACGGAACTGAAGTGCTTGTTGTGC -ACGGAACTGAAGTGCTTGCTAAGC -ACGGAACTGAAGTGCTTGACTAGC -ACGGAACTGAAGTGCTTGAGATGC -ACGGAACTGAAGTGCTTGTGAAGG -ACGGAACTGAAGTGCTTGCAATGG -ACGGAACTGAAGTGCTTGATGAGG -ACGGAACTGAAGTGCTTGAATGGG -ACGGAACTGAAGTGCTTGTCCTGA -ACGGAACTGAAGTGCTTGTAGCGA -ACGGAACTGAAGTGCTTGCACAGA -ACGGAACTGAAGTGCTTGGCAAGA -ACGGAACTGAAGTGCTTGGGTTGA -ACGGAACTGAAGTGCTTGTCCGAT -ACGGAACTGAAGTGCTTGTGGCAT -ACGGAACTGAAGTGCTTGCGAGAT -ACGGAACTGAAGTGCTTGTACCAC -ACGGAACTGAAGTGCTTGCAGAAC -ACGGAACTGAAGTGCTTGGTCTAC -ACGGAACTGAAGTGCTTGACGTAC -ACGGAACTGAAGTGCTTGAGTGAC -ACGGAACTGAAGTGCTTGCTGTAG -ACGGAACTGAAGTGCTTGCCTAAG -ACGGAACTGAAGTGCTTGGTTCAG -ACGGAACTGAAGTGCTTGGCATAG -ACGGAACTGAAGTGCTTGGACAAG -ACGGAACTGAAGTGCTTGAAGCAG -ACGGAACTGAAGTGCTTGCGTCAA -ACGGAACTGAAGTGCTTGGCTGAA -ACGGAACTGAAGTGCTTGAGTACG -ACGGAACTGAAGTGCTTGATCCGA -ACGGAACTGAAGTGCTTGATGGGA -ACGGAACTGAAGTGCTTGGTGCAA -ACGGAACTGAAGTGCTTGGAGGAA -ACGGAACTGAAGTGCTTGCAGGTA -ACGGAACTGAAGTGCTTGGACTCT -ACGGAACTGAAGTGCTTGAGTCCT -ACGGAACTGAAGTGCTTGTAAGCC -ACGGAACTGAAGTGCTTGATAGCC -ACGGAACTGAAGTGCTTGTAACCG -ACGGAACTGAAGTGCTTGATGCCA -ACGGAACTGAAGAGCCTAGGAAAC -ACGGAACTGAAGAGCCTAAACACC -ACGGAACTGAAGAGCCTAATCGAG -ACGGAACTGAAGAGCCTACTCCTT -ACGGAACTGAAGAGCCTACCTGTT -ACGGAACTGAAGAGCCTACGGTTT -ACGGAACTGAAGAGCCTAGTGGTT -ACGGAACTGAAGAGCCTAGCCTTT -ACGGAACTGAAGAGCCTAGGTCTT -ACGGAACTGAAGAGCCTAACGCTT -ACGGAACTGAAGAGCCTAAGCGTT -ACGGAACTGAAGAGCCTATTCGTC -ACGGAACTGAAGAGCCTATCTCTC -ACGGAACTGAAGAGCCTATGGATC -ACGGAACTGAAGAGCCTACACTTC -ACGGAACTGAAGAGCCTAGTACTC -ACGGAACTGAAGAGCCTAGATGTC -ACGGAACTGAAGAGCCTAACAGTC -ACGGAACTGAAGAGCCTATTGCTG -ACGGAACTGAAGAGCCTATCCATG -ACGGAACTGAAGAGCCTATGTGTG -ACGGAACTGAAGAGCCTACTAGTG -ACGGAACTGAAGAGCCTACATCTG -ACGGAACTGAAGAGCCTAGAGTTG -ACGGAACTGAAGAGCCTAAGACTG -ACGGAACTGAAGAGCCTATCGGTA -ACGGAACTGAAGAGCCTATGCCTA -ACGGAACTGAAGAGCCTACCACTA -ACGGAACTGAAGAGCCTAGGAGTA -ACGGAACTGAAGAGCCTATCGTCT -ACGGAACTGAAGAGCCTATGCACT -ACGGAACTGAAGAGCCTACTGACT -ACGGAACTGAAGAGCCTACAACCT -ACGGAACTGAAGAGCCTAGCTACT -ACGGAACTGAAGAGCCTAGGATCT -ACGGAACTGAAGAGCCTAAAGGCT -ACGGAACTGAAGAGCCTATCAACC -ACGGAACTGAAGAGCCTATGTTCC -ACGGAACTGAAGAGCCTAATTCCC -ACGGAACTGAAGAGCCTATTCTCG -ACGGAACTGAAGAGCCTATAGACG -ACGGAACTGAAGAGCCTAGTAACG -ACGGAACTGAAGAGCCTAACTTCG -ACGGAACTGAAGAGCCTATACGCA -ACGGAACTGAAGAGCCTACTTGCA -ACGGAACTGAAGAGCCTACGAACA -ACGGAACTGAAGAGCCTACAGTCA -ACGGAACTGAAGAGCCTAGATCCA -ACGGAACTGAAGAGCCTAACGACA -ACGGAACTGAAGAGCCTAAGCTCA -ACGGAACTGAAGAGCCTATCACGT -ACGGAACTGAAGAGCCTACGTAGT -ACGGAACTGAAGAGCCTAGTCAGT -ACGGAACTGAAGAGCCTAGAAGGT -ACGGAACTGAAGAGCCTAAACCGT -ACGGAACTGAAGAGCCTATTGTGC -ACGGAACTGAAGAGCCTACTAAGC -ACGGAACTGAAGAGCCTAACTAGC -ACGGAACTGAAGAGCCTAAGATGC -ACGGAACTGAAGAGCCTATGAAGG -ACGGAACTGAAGAGCCTACAATGG -ACGGAACTGAAGAGCCTAATGAGG -ACGGAACTGAAGAGCCTAAATGGG -ACGGAACTGAAGAGCCTATCCTGA -ACGGAACTGAAGAGCCTATAGCGA -ACGGAACTGAAGAGCCTACACAGA -ACGGAACTGAAGAGCCTAGCAAGA -ACGGAACTGAAGAGCCTAGGTTGA -ACGGAACTGAAGAGCCTATCCGAT -ACGGAACTGAAGAGCCTATGGCAT -ACGGAACTGAAGAGCCTACGAGAT -ACGGAACTGAAGAGCCTATACCAC -ACGGAACTGAAGAGCCTACAGAAC -ACGGAACTGAAGAGCCTAGTCTAC -ACGGAACTGAAGAGCCTAACGTAC -ACGGAACTGAAGAGCCTAAGTGAC -ACGGAACTGAAGAGCCTACTGTAG -ACGGAACTGAAGAGCCTACCTAAG -ACGGAACTGAAGAGCCTAGTTCAG -ACGGAACTGAAGAGCCTAGCATAG -ACGGAACTGAAGAGCCTAGACAAG -ACGGAACTGAAGAGCCTAAAGCAG -ACGGAACTGAAGAGCCTACGTCAA -ACGGAACTGAAGAGCCTAGCTGAA -ACGGAACTGAAGAGCCTAAGTACG -ACGGAACTGAAGAGCCTAATCCGA -ACGGAACTGAAGAGCCTAATGGGA -ACGGAACTGAAGAGCCTAGTGCAA -ACGGAACTGAAGAGCCTAGAGGAA -ACGGAACTGAAGAGCCTACAGGTA -ACGGAACTGAAGAGCCTAGACTCT -ACGGAACTGAAGAGCCTAAGTCCT -ACGGAACTGAAGAGCCTATAAGCC -ACGGAACTGAAGAGCCTAATAGCC -ACGGAACTGAAGAGCCTATAACCG -ACGGAACTGAAGAGCCTAATGCCA -ACGGAACTGAAGAGCACTGGAAAC -ACGGAACTGAAGAGCACTAACACC -ACGGAACTGAAGAGCACTATCGAG -ACGGAACTGAAGAGCACTCTCCTT -ACGGAACTGAAGAGCACTCCTGTT -ACGGAACTGAAGAGCACTCGGTTT -ACGGAACTGAAGAGCACTGTGGTT -ACGGAACTGAAGAGCACTGCCTTT -ACGGAACTGAAGAGCACTGGTCTT -ACGGAACTGAAGAGCACTACGCTT -ACGGAACTGAAGAGCACTAGCGTT -ACGGAACTGAAGAGCACTTTCGTC -ACGGAACTGAAGAGCACTTCTCTC -ACGGAACTGAAGAGCACTTGGATC -ACGGAACTGAAGAGCACTCACTTC -ACGGAACTGAAGAGCACTGTACTC -ACGGAACTGAAGAGCACTGATGTC -ACGGAACTGAAGAGCACTACAGTC -ACGGAACTGAAGAGCACTTTGCTG -ACGGAACTGAAGAGCACTTCCATG -ACGGAACTGAAGAGCACTTGTGTG -ACGGAACTGAAGAGCACTCTAGTG -ACGGAACTGAAGAGCACTCATCTG -ACGGAACTGAAGAGCACTGAGTTG -ACGGAACTGAAGAGCACTAGACTG -ACGGAACTGAAGAGCACTTCGGTA -ACGGAACTGAAGAGCACTTGCCTA -ACGGAACTGAAGAGCACTCCACTA -ACGGAACTGAAGAGCACTGGAGTA -ACGGAACTGAAGAGCACTTCGTCT -ACGGAACTGAAGAGCACTTGCACT -ACGGAACTGAAGAGCACTCTGACT -ACGGAACTGAAGAGCACTCAACCT -ACGGAACTGAAGAGCACTGCTACT -ACGGAACTGAAGAGCACTGGATCT -ACGGAACTGAAGAGCACTAAGGCT -ACGGAACTGAAGAGCACTTCAACC -ACGGAACTGAAGAGCACTTGTTCC -ACGGAACTGAAGAGCACTATTCCC -ACGGAACTGAAGAGCACTTTCTCG -ACGGAACTGAAGAGCACTTAGACG -ACGGAACTGAAGAGCACTGTAACG -ACGGAACTGAAGAGCACTACTTCG -ACGGAACTGAAGAGCACTTACGCA -ACGGAACTGAAGAGCACTCTTGCA -ACGGAACTGAAGAGCACTCGAACA -ACGGAACTGAAGAGCACTCAGTCA -ACGGAACTGAAGAGCACTGATCCA -ACGGAACTGAAGAGCACTACGACA -ACGGAACTGAAGAGCACTAGCTCA -ACGGAACTGAAGAGCACTTCACGT -ACGGAACTGAAGAGCACTCGTAGT -ACGGAACTGAAGAGCACTGTCAGT -ACGGAACTGAAGAGCACTGAAGGT -ACGGAACTGAAGAGCACTAACCGT -ACGGAACTGAAGAGCACTTTGTGC -ACGGAACTGAAGAGCACTCTAAGC -ACGGAACTGAAGAGCACTACTAGC -ACGGAACTGAAGAGCACTAGATGC -ACGGAACTGAAGAGCACTTGAAGG -ACGGAACTGAAGAGCACTCAATGG -ACGGAACTGAAGAGCACTATGAGG -ACGGAACTGAAGAGCACTAATGGG -ACGGAACTGAAGAGCACTTCCTGA -ACGGAACTGAAGAGCACTTAGCGA -ACGGAACTGAAGAGCACTCACAGA -ACGGAACTGAAGAGCACTGCAAGA -ACGGAACTGAAGAGCACTGGTTGA -ACGGAACTGAAGAGCACTTCCGAT -ACGGAACTGAAGAGCACTTGGCAT -ACGGAACTGAAGAGCACTCGAGAT -ACGGAACTGAAGAGCACTTACCAC -ACGGAACTGAAGAGCACTCAGAAC -ACGGAACTGAAGAGCACTGTCTAC -ACGGAACTGAAGAGCACTACGTAC -ACGGAACTGAAGAGCACTAGTGAC -ACGGAACTGAAGAGCACTCTGTAG -ACGGAACTGAAGAGCACTCCTAAG -ACGGAACTGAAGAGCACTGTTCAG -ACGGAACTGAAGAGCACTGCATAG -ACGGAACTGAAGAGCACTGACAAG -ACGGAACTGAAGAGCACTAAGCAG -ACGGAACTGAAGAGCACTCGTCAA -ACGGAACTGAAGAGCACTGCTGAA -ACGGAACTGAAGAGCACTAGTACG -ACGGAACTGAAGAGCACTATCCGA -ACGGAACTGAAGAGCACTATGGGA -ACGGAACTGAAGAGCACTGTGCAA -ACGGAACTGAAGAGCACTGAGGAA -ACGGAACTGAAGAGCACTCAGGTA -ACGGAACTGAAGAGCACTGACTCT -ACGGAACTGAAGAGCACTAGTCCT -ACGGAACTGAAGAGCACTTAAGCC -ACGGAACTGAAGAGCACTATAGCC -ACGGAACTGAAGAGCACTTAACCG -ACGGAACTGAAGAGCACTATGCCA -ACGGAACTGAAGTGCAGAGGAAAC -ACGGAACTGAAGTGCAGAAACACC -ACGGAACTGAAGTGCAGAATCGAG -ACGGAACTGAAGTGCAGACTCCTT -ACGGAACTGAAGTGCAGACCTGTT -ACGGAACTGAAGTGCAGACGGTTT -ACGGAACTGAAGTGCAGAGTGGTT -ACGGAACTGAAGTGCAGAGCCTTT -ACGGAACTGAAGTGCAGAGGTCTT -ACGGAACTGAAGTGCAGAACGCTT -ACGGAACTGAAGTGCAGAAGCGTT -ACGGAACTGAAGTGCAGATTCGTC -ACGGAACTGAAGTGCAGATCTCTC -ACGGAACTGAAGTGCAGATGGATC -ACGGAACTGAAGTGCAGACACTTC -ACGGAACTGAAGTGCAGAGTACTC -ACGGAACTGAAGTGCAGAGATGTC -ACGGAACTGAAGTGCAGAACAGTC -ACGGAACTGAAGTGCAGATTGCTG -ACGGAACTGAAGTGCAGATCCATG -ACGGAACTGAAGTGCAGATGTGTG -ACGGAACTGAAGTGCAGACTAGTG -ACGGAACTGAAGTGCAGACATCTG -ACGGAACTGAAGTGCAGAGAGTTG -ACGGAACTGAAGTGCAGAAGACTG -ACGGAACTGAAGTGCAGATCGGTA -ACGGAACTGAAGTGCAGATGCCTA -ACGGAACTGAAGTGCAGACCACTA -ACGGAACTGAAGTGCAGAGGAGTA -ACGGAACTGAAGTGCAGATCGTCT -ACGGAACTGAAGTGCAGATGCACT -ACGGAACTGAAGTGCAGACTGACT -ACGGAACTGAAGTGCAGACAACCT -ACGGAACTGAAGTGCAGAGCTACT -ACGGAACTGAAGTGCAGAGGATCT -ACGGAACTGAAGTGCAGAAAGGCT -ACGGAACTGAAGTGCAGATCAACC -ACGGAACTGAAGTGCAGATGTTCC -ACGGAACTGAAGTGCAGAATTCCC -ACGGAACTGAAGTGCAGATTCTCG -ACGGAACTGAAGTGCAGATAGACG -ACGGAACTGAAGTGCAGAGTAACG -ACGGAACTGAAGTGCAGAACTTCG -ACGGAACTGAAGTGCAGATACGCA -ACGGAACTGAAGTGCAGACTTGCA -ACGGAACTGAAGTGCAGACGAACA -ACGGAACTGAAGTGCAGACAGTCA -ACGGAACTGAAGTGCAGAGATCCA -ACGGAACTGAAGTGCAGAACGACA -ACGGAACTGAAGTGCAGAAGCTCA -ACGGAACTGAAGTGCAGATCACGT -ACGGAACTGAAGTGCAGACGTAGT -ACGGAACTGAAGTGCAGAGTCAGT -ACGGAACTGAAGTGCAGAGAAGGT -ACGGAACTGAAGTGCAGAAACCGT -ACGGAACTGAAGTGCAGATTGTGC -ACGGAACTGAAGTGCAGACTAAGC -ACGGAACTGAAGTGCAGAACTAGC -ACGGAACTGAAGTGCAGAAGATGC -ACGGAACTGAAGTGCAGATGAAGG -ACGGAACTGAAGTGCAGACAATGG -ACGGAACTGAAGTGCAGAATGAGG -ACGGAACTGAAGTGCAGAAATGGG -ACGGAACTGAAGTGCAGATCCTGA -ACGGAACTGAAGTGCAGATAGCGA -ACGGAACTGAAGTGCAGACACAGA -ACGGAACTGAAGTGCAGAGCAAGA -ACGGAACTGAAGTGCAGAGGTTGA -ACGGAACTGAAGTGCAGATCCGAT -ACGGAACTGAAGTGCAGATGGCAT -ACGGAACTGAAGTGCAGACGAGAT -ACGGAACTGAAGTGCAGATACCAC -ACGGAACTGAAGTGCAGACAGAAC -ACGGAACTGAAGTGCAGAGTCTAC -ACGGAACTGAAGTGCAGAACGTAC -ACGGAACTGAAGTGCAGAAGTGAC -ACGGAACTGAAGTGCAGACTGTAG -ACGGAACTGAAGTGCAGACCTAAG -ACGGAACTGAAGTGCAGAGTTCAG -ACGGAACTGAAGTGCAGAGCATAG -ACGGAACTGAAGTGCAGAGACAAG -ACGGAACTGAAGTGCAGAAAGCAG -ACGGAACTGAAGTGCAGACGTCAA -ACGGAACTGAAGTGCAGAGCTGAA -ACGGAACTGAAGTGCAGAAGTACG -ACGGAACTGAAGTGCAGAATCCGA -ACGGAACTGAAGTGCAGAATGGGA -ACGGAACTGAAGTGCAGAGTGCAA -ACGGAACTGAAGTGCAGAGAGGAA -ACGGAACTGAAGTGCAGACAGGTA -ACGGAACTGAAGTGCAGAGACTCT -ACGGAACTGAAGTGCAGAAGTCCT -ACGGAACTGAAGTGCAGATAAGCC -ACGGAACTGAAGTGCAGAATAGCC -ACGGAACTGAAGTGCAGATAACCG -ACGGAACTGAAGTGCAGAATGCCA -ACGGAACTGAAGAGGTGAGGAAAC -ACGGAACTGAAGAGGTGAAACACC -ACGGAACTGAAGAGGTGAATCGAG -ACGGAACTGAAGAGGTGACTCCTT -ACGGAACTGAAGAGGTGACCTGTT -ACGGAACTGAAGAGGTGACGGTTT -ACGGAACTGAAGAGGTGAGTGGTT -ACGGAACTGAAGAGGTGAGCCTTT -ACGGAACTGAAGAGGTGAGGTCTT -ACGGAACTGAAGAGGTGAACGCTT -ACGGAACTGAAGAGGTGAAGCGTT -ACGGAACTGAAGAGGTGATTCGTC -ACGGAACTGAAGAGGTGATCTCTC -ACGGAACTGAAGAGGTGATGGATC -ACGGAACTGAAGAGGTGACACTTC -ACGGAACTGAAGAGGTGAGTACTC -ACGGAACTGAAGAGGTGAGATGTC -ACGGAACTGAAGAGGTGAACAGTC -ACGGAACTGAAGAGGTGATTGCTG -ACGGAACTGAAGAGGTGATCCATG -ACGGAACTGAAGAGGTGATGTGTG -ACGGAACTGAAGAGGTGACTAGTG -ACGGAACTGAAGAGGTGACATCTG -ACGGAACTGAAGAGGTGAGAGTTG -ACGGAACTGAAGAGGTGAAGACTG -ACGGAACTGAAGAGGTGATCGGTA -ACGGAACTGAAGAGGTGATGCCTA -ACGGAACTGAAGAGGTGACCACTA -ACGGAACTGAAGAGGTGAGGAGTA -ACGGAACTGAAGAGGTGATCGTCT -ACGGAACTGAAGAGGTGATGCACT -ACGGAACTGAAGAGGTGACTGACT -ACGGAACTGAAGAGGTGACAACCT -ACGGAACTGAAGAGGTGAGCTACT -ACGGAACTGAAGAGGTGAGGATCT -ACGGAACTGAAGAGGTGAAAGGCT -ACGGAACTGAAGAGGTGATCAACC -ACGGAACTGAAGAGGTGATGTTCC -ACGGAACTGAAGAGGTGAATTCCC -ACGGAACTGAAGAGGTGATTCTCG -ACGGAACTGAAGAGGTGATAGACG -ACGGAACTGAAGAGGTGAGTAACG -ACGGAACTGAAGAGGTGAACTTCG -ACGGAACTGAAGAGGTGATACGCA -ACGGAACTGAAGAGGTGACTTGCA -ACGGAACTGAAGAGGTGACGAACA -ACGGAACTGAAGAGGTGACAGTCA -ACGGAACTGAAGAGGTGAGATCCA -ACGGAACTGAAGAGGTGAACGACA -ACGGAACTGAAGAGGTGAAGCTCA -ACGGAACTGAAGAGGTGATCACGT -ACGGAACTGAAGAGGTGACGTAGT -ACGGAACTGAAGAGGTGAGTCAGT -ACGGAACTGAAGAGGTGAGAAGGT -ACGGAACTGAAGAGGTGAAACCGT -ACGGAACTGAAGAGGTGATTGTGC -ACGGAACTGAAGAGGTGACTAAGC -ACGGAACTGAAGAGGTGAACTAGC -ACGGAACTGAAGAGGTGAAGATGC -ACGGAACTGAAGAGGTGATGAAGG -ACGGAACTGAAGAGGTGACAATGG -ACGGAACTGAAGAGGTGAATGAGG -ACGGAACTGAAGAGGTGAAATGGG -ACGGAACTGAAGAGGTGATCCTGA -ACGGAACTGAAGAGGTGATAGCGA -ACGGAACTGAAGAGGTGACACAGA -ACGGAACTGAAGAGGTGAGCAAGA -ACGGAACTGAAGAGGTGAGGTTGA -ACGGAACTGAAGAGGTGATCCGAT -ACGGAACTGAAGAGGTGATGGCAT -ACGGAACTGAAGAGGTGACGAGAT -ACGGAACTGAAGAGGTGATACCAC -ACGGAACTGAAGAGGTGACAGAAC -ACGGAACTGAAGAGGTGAGTCTAC -ACGGAACTGAAGAGGTGAACGTAC -ACGGAACTGAAGAGGTGAAGTGAC -ACGGAACTGAAGAGGTGACTGTAG -ACGGAACTGAAGAGGTGACCTAAG -ACGGAACTGAAGAGGTGAGTTCAG -ACGGAACTGAAGAGGTGAGCATAG -ACGGAACTGAAGAGGTGAGACAAG -ACGGAACTGAAGAGGTGAAAGCAG -ACGGAACTGAAGAGGTGACGTCAA -ACGGAACTGAAGAGGTGAGCTGAA -ACGGAACTGAAGAGGTGAAGTACG -ACGGAACTGAAGAGGTGAATCCGA -ACGGAACTGAAGAGGTGAATGGGA -ACGGAACTGAAGAGGTGAGTGCAA -ACGGAACTGAAGAGGTGAGAGGAA -ACGGAACTGAAGAGGTGACAGGTA -ACGGAACTGAAGAGGTGAGACTCT -ACGGAACTGAAGAGGTGAAGTCCT -ACGGAACTGAAGAGGTGATAAGCC -ACGGAACTGAAGAGGTGAATAGCC -ACGGAACTGAAGAGGTGATAACCG -ACGGAACTGAAGAGGTGAATGCCA -ACGGAACTGAAGTGGCAAGGAAAC -ACGGAACTGAAGTGGCAAAACACC -ACGGAACTGAAGTGGCAAATCGAG -ACGGAACTGAAGTGGCAACTCCTT -ACGGAACTGAAGTGGCAACCTGTT -ACGGAACTGAAGTGGCAACGGTTT -ACGGAACTGAAGTGGCAAGTGGTT -ACGGAACTGAAGTGGCAAGCCTTT -ACGGAACTGAAGTGGCAAGGTCTT -ACGGAACTGAAGTGGCAAACGCTT -ACGGAACTGAAGTGGCAAAGCGTT -ACGGAACTGAAGTGGCAATTCGTC -ACGGAACTGAAGTGGCAATCTCTC -ACGGAACTGAAGTGGCAATGGATC -ACGGAACTGAAGTGGCAACACTTC -ACGGAACTGAAGTGGCAAGTACTC -ACGGAACTGAAGTGGCAAGATGTC -ACGGAACTGAAGTGGCAAACAGTC -ACGGAACTGAAGTGGCAATTGCTG -ACGGAACTGAAGTGGCAATCCATG -ACGGAACTGAAGTGGCAATGTGTG -ACGGAACTGAAGTGGCAACTAGTG -ACGGAACTGAAGTGGCAACATCTG -ACGGAACTGAAGTGGCAAGAGTTG -ACGGAACTGAAGTGGCAAAGACTG -ACGGAACTGAAGTGGCAATCGGTA -ACGGAACTGAAGTGGCAATGCCTA -ACGGAACTGAAGTGGCAACCACTA -ACGGAACTGAAGTGGCAAGGAGTA -ACGGAACTGAAGTGGCAATCGTCT -ACGGAACTGAAGTGGCAATGCACT -ACGGAACTGAAGTGGCAACTGACT -ACGGAACTGAAGTGGCAACAACCT -ACGGAACTGAAGTGGCAAGCTACT -ACGGAACTGAAGTGGCAAGGATCT -ACGGAACTGAAGTGGCAAAAGGCT -ACGGAACTGAAGTGGCAATCAACC -ACGGAACTGAAGTGGCAATGTTCC -ACGGAACTGAAGTGGCAAATTCCC -ACGGAACTGAAGTGGCAATTCTCG -ACGGAACTGAAGTGGCAATAGACG -ACGGAACTGAAGTGGCAAGTAACG -ACGGAACTGAAGTGGCAAACTTCG -ACGGAACTGAAGTGGCAATACGCA -ACGGAACTGAAGTGGCAACTTGCA -ACGGAACTGAAGTGGCAACGAACA -ACGGAACTGAAGTGGCAACAGTCA -ACGGAACTGAAGTGGCAAGATCCA -ACGGAACTGAAGTGGCAAACGACA -ACGGAACTGAAGTGGCAAAGCTCA -ACGGAACTGAAGTGGCAATCACGT -ACGGAACTGAAGTGGCAACGTAGT -ACGGAACTGAAGTGGCAAGTCAGT -ACGGAACTGAAGTGGCAAGAAGGT -ACGGAACTGAAGTGGCAAAACCGT -ACGGAACTGAAGTGGCAATTGTGC -ACGGAACTGAAGTGGCAACTAAGC -ACGGAACTGAAGTGGCAAACTAGC -ACGGAACTGAAGTGGCAAAGATGC -ACGGAACTGAAGTGGCAATGAAGG -ACGGAACTGAAGTGGCAACAATGG -ACGGAACTGAAGTGGCAAATGAGG -ACGGAACTGAAGTGGCAAAATGGG -ACGGAACTGAAGTGGCAATCCTGA -ACGGAACTGAAGTGGCAATAGCGA -ACGGAACTGAAGTGGCAACACAGA -ACGGAACTGAAGTGGCAAGCAAGA -ACGGAACTGAAGTGGCAAGGTTGA -ACGGAACTGAAGTGGCAATCCGAT -ACGGAACTGAAGTGGCAATGGCAT -ACGGAACTGAAGTGGCAACGAGAT -ACGGAACTGAAGTGGCAATACCAC -ACGGAACTGAAGTGGCAACAGAAC -ACGGAACTGAAGTGGCAAGTCTAC -ACGGAACTGAAGTGGCAAACGTAC -ACGGAACTGAAGTGGCAAAGTGAC -ACGGAACTGAAGTGGCAACTGTAG -ACGGAACTGAAGTGGCAACCTAAG -ACGGAACTGAAGTGGCAAGTTCAG -ACGGAACTGAAGTGGCAAGCATAG -ACGGAACTGAAGTGGCAAGACAAG -ACGGAACTGAAGTGGCAAAAGCAG -ACGGAACTGAAGTGGCAACGTCAA -ACGGAACTGAAGTGGCAAGCTGAA -ACGGAACTGAAGTGGCAAAGTACG -ACGGAACTGAAGTGGCAAATCCGA -ACGGAACTGAAGTGGCAAATGGGA -ACGGAACTGAAGTGGCAAGTGCAA -ACGGAACTGAAGTGGCAAGAGGAA -ACGGAACTGAAGTGGCAACAGGTA -ACGGAACTGAAGTGGCAAGACTCT -ACGGAACTGAAGTGGCAAAGTCCT -ACGGAACTGAAGTGGCAATAAGCC -ACGGAACTGAAGTGGCAAATAGCC -ACGGAACTGAAGTGGCAATAACCG -ACGGAACTGAAGTGGCAAATGCCA -ACGGAACTGAAGAGGATGGGAAAC -ACGGAACTGAAGAGGATGAACACC -ACGGAACTGAAGAGGATGATCGAG -ACGGAACTGAAGAGGATGCTCCTT -ACGGAACTGAAGAGGATGCCTGTT -ACGGAACTGAAGAGGATGCGGTTT -ACGGAACTGAAGAGGATGGTGGTT -ACGGAACTGAAGAGGATGGCCTTT -ACGGAACTGAAGAGGATGGGTCTT -ACGGAACTGAAGAGGATGACGCTT -ACGGAACTGAAGAGGATGAGCGTT -ACGGAACTGAAGAGGATGTTCGTC -ACGGAACTGAAGAGGATGTCTCTC -ACGGAACTGAAGAGGATGTGGATC -ACGGAACTGAAGAGGATGCACTTC -ACGGAACTGAAGAGGATGGTACTC -ACGGAACTGAAGAGGATGGATGTC -ACGGAACTGAAGAGGATGACAGTC -ACGGAACTGAAGAGGATGTTGCTG -ACGGAACTGAAGAGGATGTCCATG -ACGGAACTGAAGAGGATGTGTGTG -ACGGAACTGAAGAGGATGCTAGTG -ACGGAACTGAAGAGGATGCATCTG -ACGGAACTGAAGAGGATGGAGTTG -ACGGAACTGAAGAGGATGAGACTG -ACGGAACTGAAGAGGATGTCGGTA -ACGGAACTGAAGAGGATGTGCCTA -ACGGAACTGAAGAGGATGCCACTA -ACGGAACTGAAGAGGATGGGAGTA -ACGGAACTGAAGAGGATGTCGTCT -ACGGAACTGAAGAGGATGTGCACT -ACGGAACTGAAGAGGATGCTGACT -ACGGAACTGAAGAGGATGCAACCT -ACGGAACTGAAGAGGATGGCTACT -ACGGAACTGAAGAGGATGGGATCT -ACGGAACTGAAGAGGATGAAGGCT -ACGGAACTGAAGAGGATGTCAACC -ACGGAACTGAAGAGGATGTGTTCC -ACGGAACTGAAGAGGATGATTCCC -ACGGAACTGAAGAGGATGTTCTCG -ACGGAACTGAAGAGGATGTAGACG -ACGGAACTGAAGAGGATGGTAACG -ACGGAACTGAAGAGGATGACTTCG -ACGGAACTGAAGAGGATGTACGCA -ACGGAACTGAAGAGGATGCTTGCA -ACGGAACTGAAGAGGATGCGAACA -ACGGAACTGAAGAGGATGCAGTCA -ACGGAACTGAAGAGGATGGATCCA -ACGGAACTGAAGAGGATGACGACA -ACGGAACTGAAGAGGATGAGCTCA -ACGGAACTGAAGAGGATGTCACGT -ACGGAACTGAAGAGGATGCGTAGT -ACGGAACTGAAGAGGATGGTCAGT -ACGGAACTGAAGAGGATGGAAGGT -ACGGAACTGAAGAGGATGAACCGT -ACGGAACTGAAGAGGATGTTGTGC -ACGGAACTGAAGAGGATGCTAAGC -ACGGAACTGAAGAGGATGACTAGC -ACGGAACTGAAGAGGATGAGATGC -ACGGAACTGAAGAGGATGTGAAGG -ACGGAACTGAAGAGGATGCAATGG -ACGGAACTGAAGAGGATGATGAGG -ACGGAACTGAAGAGGATGAATGGG -ACGGAACTGAAGAGGATGTCCTGA -ACGGAACTGAAGAGGATGTAGCGA -ACGGAACTGAAGAGGATGCACAGA -ACGGAACTGAAGAGGATGGCAAGA -ACGGAACTGAAGAGGATGGGTTGA -ACGGAACTGAAGAGGATGTCCGAT -ACGGAACTGAAGAGGATGTGGCAT -ACGGAACTGAAGAGGATGCGAGAT -ACGGAACTGAAGAGGATGTACCAC -ACGGAACTGAAGAGGATGCAGAAC -ACGGAACTGAAGAGGATGGTCTAC -ACGGAACTGAAGAGGATGACGTAC -ACGGAACTGAAGAGGATGAGTGAC -ACGGAACTGAAGAGGATGCTGTAG -ACGGAACTGAAGAGGATGCCTAAG -ACGGAACTGAAGAGGATGGTTCAG -ACGGAACTGAAGAGGATGGCATAG -ACGGAACTGAAGAGGATGGACAAG -ACGGAACTGAAGAGGATGAAGCAG -ACGGAACTGAAGAGGATGCGTCAA -ACGGAACTGAAGAGGATGGCTGAA -ACGGAACTGAAGAGGATGAGTACG -ACGGAACTGAAGAGGATGATCCGA -ACGGAACTGAAGAGGATGATGGGA -ACGGAACTGAAGAGGATGGTGCAA -ACGGAACTGAAGAGGATGGAGGAA -ACGGAACTGAAGAGGATGCAGGTA -ACGGAACTGAAGAGGATGGACTCT -ACGGAACTGAAGAGGATGAGTCCT -ACGGAACTGAAGAGGATGTAAGCC -ACGGAACTGAAGAGGATGATAGCC -ACGGAACTGAAGAGGATGTAACCG -ACGGAACTGAAGAGGATGATGCCA -ACGGAACTGAAGGGGAATGGAAAC -ACGGAACTGAAGGGGAATAACACC -ACGGAACTGAAGGGGAATATCGAG -ACGGAACTGAAGGGGAATCTCCTT -ACGGAACTGAAGGGGAATCCTGTT -ACGGAACTGAAGGGGAATCGGTTT -ACGGAACTGAAGGGGAATGTGGTT -ACGGAACTGAAGGGGAATGCCTTT -ACGGAACTGAAGGGGAATGGTCTT -ACGGAACTGAAGGGGAATACGCTT -ACGGAACTGAAGGGGAATAGCGTT -ACGGAACTGAAGGGGAATTTCGTC -ACGGAACTGAAGGGGAATTCTCTC -ACGGAACTGAAGGGGAATTGGATC -ACGGAACTGAAGGGGAATCACTTC -ACGGAACTGAAGGGGAATGTACTC -ACGGAACTGAAGGGGAATGATGTC -ACGGAACTGAAGGGGAATACAGTC -ACGGAACTGAAGGGGAATTTGCTG -ACGGAACTGAAGGGGAATTCCATG -ACGGAACTGAAGGGGAATTGTGTG -ACGGAACTGAAGGGGAATCTAGTG -ACGGAACTGAAGGGGAATCATCTG -ACGGAACTGAAGGGGAATGAGTTG -ACGGAACTGAAGGGGAATAGACTG -ACGGAACTGAAGGGGAATTCGGTA -ACGGAACTGAAGGGGAATTGCCTA -ACGGAACTGAAGGGGAATCCACTA -ACGGAACTGAAGGGGAATGGAGTA -ACGGAACTGAAGGGGAATTCGTCT -ACGGAACTGAAGGGGAATTGCACT -ACGGAACTGAAGGGGAATCTGACT -ACGGAACTGAAGGGGAATCAACCT -ACGGAACTGAAGGGGAATGCTACT -ACGGAACTGAAGGGGAATGGATCT -ACGGAACTGAAGGGGAATAAGGCT -ACGGAACTGAAGGGGAATTCAACC -ACGGAACTGAAGGGGAATTGTTCC -ACGGAACTGAAGGGGAATATTCCC -ACGGAACTGAAGGGGAATTTCTCG -ACGGAACTGAAGGGGAATTAGACG -ACGGAACTGAAGGGGAATGTAACG -ACGGAACTGAAGGGGAATACTTCG -ACGGAACTGAAGGGGAATTACGCA -ACGGAACTGAAGGGGAATCTTGCA -ACGGAACTGAAGGGGAATCGAACA -ACGGAACTGAAGGGGAATCAGTCA -ACGGAACTGAAGGGGAATGATCCA -ACGGAACTGAAGGGGAATACGACA -ACGGAACTGAAGGGGAATAGCTCA -ACGGAACTGAAGGGGAATTCACGT -ACGGAACTGAAGGGGAATCGTAGT -ACGGAACTGAAGGGGAATGTCAGT -ACGGAACTGAAGGGGAATGAAGGT -ACGGAACTGAAGGGGAATAACCGT -ACGGAACTGAAGGGGAATTTGTGC -ACGGAACTGAAGGGGAATCTAAGC -ACGGAACTGAAGGGGAATACTAGC -ACGGAACTGAAGGGGAATAGATGC -ACGGAACTGAAGGGGAATTGAAGG -ACGGAACTGAAGGGGAATCAATGG -ACGGAACTGAAGGGGAATATGAGG -ACGGAACTGAAGGGGAATAATGGG -ACGGAACTGAAGGGGAATTCCTGA -ACGGAACTGAAGGGGAATTAGCGA -ACGGAACTGAAGGGGAATCACAGA -ACGGAACTGAAGGGGAATGCAAGA -ACGGAACTGAAGGGGAATGGTTGA -ACGGAACTGAAGGGGAATTCCGAT -ACGGAACTGAAGGGGAATTGGCAT -ACGGAACTGAAGGGGAATCGAGAT -ACGGAACTGAAGGGGAATTACCAC -ACGGAACTGAAGGGGAATCAGAAC -ACGGAACTGAAGGGGAATGTCTAC -ACGGAACTGAAGGGGAATACGTAC -ACGGAACTGAAGGGGAATAGTGAC -ACGGAACTGAAGGGGAATCTGTAG -ACGGAACTGAAGGGGAATCCTAAG -ACGGAACTGAAGGGGAATGTTCAG -ACGGAACTGAAGGGGAATGCATAG -ACGGAACTGAAGGGGAATGACAAG -ACGGAACTGAAGGGGAATAAGCAG -ACGGAACTGAAGGGGAATCGTCAA -ACGGAACTGAAGGGGAATGCTGAA -ACGGAACTGAAGGGGAATAGTACG -ACGGAACTGAAGGGGAATATCCGA -ACGGAACTGAAGGGGAATATGGGA -ACGGAACTGAAGGGGAATGTGCAA -ACGGAACTGAAGGGGAATGAGGAA -ACGGAACTGAAGGGGAATCAGGTA -ACGGAACTGAAGGGGAATGACTCT -ACGGAACTGAAGGGGAATAGTCCT -ACGGAACTGAAGGGGAATTAAGCC -ACGGAACTGAAGGGGAATATAGCC -ACGGAACTGAAGGGGAATTAACCG -ACGGAACTGAAGGGGAATATGCCA -ACGGAACTGAAGTGATCCGGAAAC -ACGGAACTGAAGTGATCCAACACC -ACGGAACTGAAGTGATCCATCGAG -ACGGAACTGAAGTGATCCCTCCTT -ACGGAACTGAAGTGATCCCCTGTT -ACGGAACTGAAGTGATCCCGGTTT -ACGGAACTGAAGTGATCCGTGGTT -ACGGAACTGAAGTGATCCGCCTTT -ACGGAACTGAAGTGATCCGGTCTT -ACGGAACTGAAGTGATCCACGCTT -ACGGAACTGAAGTGATCCAGCGTT -ACGGAACTGAAGTGATCCTTCGTC -ACGGAACTGAAGTGATCCTCTCTC -ACGGAACTGAAGTGATCCTGGATC -ACGGAACTGAAGTGATCCCACTTC -ACGGAACTGAAGTGATCCGTACTC -ACGGAACTGAAGTGATCCGATGTC -ACGGAACTGAAGTGATCCACAGTC -ACGGAACTGAAGTGATCCTTGCTG -ACGGAACTGAAGTGATCCTCCATG -ACGGAACTGAAGTGATCCTGTGTG -ACGGAACTGAAGTGATCCCTAGTG -ACGGAACTGAAGTGATCCCATCTG -ACGGAACTGAAGTGATCCGAGTTG -ACGGAACTGAAGTGATCCAGACTG -ACGGAACTGAAGTGATCCTCGGTA -ACGGAACTGAAGTGATCCTGCCTA -ACGGAACTGAAGTGATCCCCACTA -ACGGAACTGAAGTGATCCGGAGTA -ACGGAACTGAAGTGATCCTCGTCT -ACGGAACTGAAGTGATCCTGCACT -ACGGAACTGAAGTGATCCCTGACT -ACGGAACTGAAGTGATCCCAACCT -ACGGAACTGAAGTGATCCGCTACT -ACGGAACTGAAGTGATCCGGATCT -ACGGAACTGAAGTGATCCAAGGCT -ACGGAACTGAAGTGATCCTCAACC -ACGGAACTGAAGTGATCCTGTTCC -ACGGAACTGAAGTGATCCATTCCC -ACGGAACTGAAGTGATCCTTCTCG -ACGGAACTGAAGTGATCCTAGACG -ACGGAACTGAAGTGATCCGTAACG -ACGGAACTGAAGTGATCCACTTCG -ACGGAACTGAAGTGATCCTACGCA -ACGGAACTGAAGTGATCCCTTGCA -ACGGAACTGAAGTGATCCCGAACA -ACGGAACTGAAGTGATCCCAGTCA -ACGGAACTGAAGTGATCCGATCCA -ACGGAACTGAAGTGATCCACGACA -ACGGAACTGAAGTGATCCAGCTCA -ACGGAACTGAAGTGATCCTCACGT -ACGGAACTGAAGTGATCCCGTAGT -ACGGAACTGAAGTGATCCGTCAGT -ACGGAACTGAAGTGATCCGAAGGT -ACGGAACTGAAGTGATCCAACCGT -ACGGAACTGAAGTGATCCTTGTGC -ACGGAACTGAAGTGATCCCTAAGC -ACGGAACTGAAGTGATCCACTAGC -ACGGAACTGAAGTGATCCAGATGC -ACGGAACTGAAGTGATCCTGAAGG -ACGGAACTGAAGTGATCCCAATGG -ACGGAACTGAAGTGATCCATGAGG -ACGGAACTGAAGTGATCCAATGGG -ACGGAACTGAAGTGATCCTCCTGA -ACGGAACTGAAGTGATCCTAGCGA -ACGGAACTGAAGTGATCCCACAGA -ACGGAACTGAAGTGATCCGCAAGA -ACGGAACTGAAGTGATCCGGTTGA -ACGGAACTGAAGTGATCCTCCGAT -ACGGAACTGAAGTGATCCTGGCAT -ACGGAACTGAAGTGATCCCGAGAT -ACGGAACTGAAGTGATCCTACCAC -ACGGAACTGAAGTGATCCCAGAAC -ACGGAACTGAAGTGATCCGTCTAC -ACGGAACTGAAGTGATCCACGTAC -ACGGAACTGAAGTGATCCAGTGAC -ACGGAACTGAAGTGATCCCTGTAG -ACGGAACTGAAGTGATCCCCTAAG -ACGGAACTGAAGTGATCCGTTCAG -ACGGAACTGAAGTGATCCGCATAG -ACGGAACTGAAGTGATCCGACAAG -ACGGAACTGAAGTGATCCAAGCAG -ACGGAACTGAAGTGATCCCGTCAA -ACGGAACTGAAGTGATCCGCTGAA -ACGGAACTGAAGTGATCCAGTACG -ACGGAACTGAAGTGATCCATCCGA -ACGGAACTGAAGTGATCCATGGGA -ACGGAACTGAAGTGATCCGTGCAA -ACGGAACTGAAGTGATCCGAGGAA -ACGGAACTGAAGTGATCCCAGGTA -ACGGAACTGAAGTGATCCGACTCT -ACGGAACTGAAGTGATCCAGTCCT -ACGGAACTGAAGTGATCCTAAGCC -ACGGAACTGAAGTGATCCATAGCC -ACGGAACTGAAGTGATCCTAACCG -ACGGAACTGAAGTGATCCATGCCA -ACGGAACTGAAGCGATAGGGAAAC -ACGGAACTGAAGCGATAGAACACC -ACGGAACTGAAGCGATAGATCGAG -ACGGAACTGAAGCGATAGCTCCTT -ACGGAACTGAAGCGATAGCCTGTT -ACGGAACTGAAGCGATAGCGGTTT -ACGGAACTGAAGCGATAGGTGGTT -ACGGAACTGAAGCGATAGGCCTTT -ACGGAACTGAAGCGATAGGGTCTT -ACGGAACTGAAGCGATAGACGCTT -ACGGAACTGAAGCGATAGAGCGTT -ACGGAACTGAAGCGATAGTTCGTC -ACGGAACTGAAGCGATAGTCTCTC -ACGGAACTGAAGCGATAGTGGATC -ACGGAACTGAAGCGATAGCACTTC -ACGGAACTGAAGCGATAGGTACTC -ACGGAACTGAAGCGATAGGATGTC -ACGGAACTGAAGCGATAGACAGTC -ACGGAACTGAAGCGATAGTTGCTG -ACGGAACTGAAGCGATAGTCCATG -ACGGAACTGAAGCGATAGTGTGTG -ACGGAACTGAAGCGATAGCTAGTG -ACGGAACTGAAGCGATAGCATCTG -ACGGAACTGAAGCGATAGGAGTTG -ACGGAACTGAAGCGATAGAGACTG -ACGGAACTGAAGCGATAGTCGGTA -ACGGAACTGAAGCGATAGTGCCTA -ACGGAACTGAAGCGATAGCCACTA -ACGGAACTGAAGCGATAGGGAGTA -ACGGAACTGAAGCGATAGTCGTCT -ACGGAACTGAAGCGATAGTGCACT -ACGGAACTGAAGCGATAGCTGACT -ACGGAACTGAAGCGATAGCAACCT -ACGGAACTGAAGCGATAGGCTACT -ACGGAACTGAAGCGATAGGGATCT -ACGGAACTGAAGCGATAGAAGGCT -ACGGAACTGAAGCGATAGTCAACC -ACGGAACTGAAGCGATAGTGTTCC -ACGGAACTGAAGCGATAGATTCCC -ACGGAACTGAAGCGATAGTTCTCG -ACGGAACTGAAGCGATAGTAGACG -ACGGAACTGAAGCGATAGGTAACG -ACGGAACTGAAGCGATAGACTTCG -ACGGAACTGAAGCGATAGTACGCA -ACGGAACTGAAGCGATAGCTTGCA -ACGGAACTGAAGCGATAGCGAACA -ACGGAACTGAAGCGATAGCAGTCA -ACGGAACTGAAGCGATAGGATCCA -ACGGAACTGAAGCGATAGACGACA -ACGGAACTGAAGCGATAGAGCTCA -ACGGAACTGAAGCGATAGTCACGT -ACGGAACTGAAGCGATAGCGTAGT -ACGGAACTGAAGCGATAGGTCAGT -ACGGAACTGAAGCGATAGGAAGGT -ACGGAACTGAAGCGATAGAACCGT -ACGGAACTGAAGCGATAGTTGTGC -ACGGAACTGAAGCGATAGCTAAGC -ACGGAACTGAAGCGATAGACTAGC -ACGGAACTGAAGCGATAGAGATGC -ACGGAACTGAAGCGATAGTGAAGG -ACGGAACTGAAGCGATAGCAATGG -ACGGAACTGAAGCGATAGATGAGG -ACGGAACTGAAGCGATAGAATGGG -ACGGAACTGAAGCGATAGTCCTGA -ACGGAACTGAAGCGATAGTAGCGA -ACGGAACTGAAGCGATAGCACAGA -ACGGAACTGAAGCGATAGGCAAGA -ACGGAACTGAAGCGATAGGGTTGA -ACGGAACTGAAGCGATAGTCCGAT -ACGGAACTGAAGCGATAGTGGCAT -ACGGAACTGAAGCGATAGCGAGAT -ACGGAACTGAAGCGATAGTACCAC -ACGGAACTGAAGCGATAGCAGAAC -ACGGAACTGAAGCGATAGGTCTAC -ACGGAACTGAAGCGATAGACGTAC -ACGGAACTGAAGCGATAGAGTGAC -ACGGAACTGAAGCGATAGCTGTAG -ACGGAACTGAAGCGATAGCCTAAG -ACGGAACTGAAGCGATAGGTTCAG -ACGGAACTGAAGCGATAGGCATAG -ACGGAACTGAAGCGATAGGACAAG -ACGGAACTGAAGCGATAGAAGCAG -ACGGAACTGAAGCGATAGCGTCAA -ACGGAACTGAAGCGATAGGCTGAA -ACGGAACTGAAGCGATAGAGTACG -ACGGAACTGAAGCGATAGATCCGA -ACGGAACTGAAGCGATAGATGGGA -ACGGAACTGAAGCGATAGGTGCAA -ACGGAACTGAAGCGATAGGAGGAA -ACGGAACTGAAGCGATAGCAGGTA -ACGGAACTGAAGCGATAGGACTCT -ACGGAACTGAAGCGATAGAGTCCT -ACGGAACTGAAGCGATAGTAAGCC -ACGGAACTGAAGCGATAGATAGCC -ACGGAACTGAAGCGATAGTAACCG -ACGGAACTGAAGCGATAGATGCCA -ACGGAACTGAAGAGACACGGAAAC -ACGGAACTGAAGAGACACAACACC -ACGGAACTGAAGAGACACATCGAG -ACGGAACTGAAGAGACACCTCCTT -ACGGAACTGAAGAGACACCCTGTT -ACGGAACTGAAGAGACACCGGTTT -ACGGAACTGAAGAGACACGTGGTT -ACGGAACTGAAGAGACACGCCTTT -ACGGAACTGAAGAGACACGGTCTT -ACGGAACTGAAGAGACACACGCTT -ACGGAACTGAAGAGACACAGCGTT -ACGGAACTGAAGAGACACTTCGTC -ACGGAACTGAAGAGACACTCTCTC -ACGGAACTGAAGAGACACTGGATC -ACGGAACTGAAGAGACACCACTTC -ACGGAACTGAAGAGACACGTACTC -ACGGAACTGAAGAGACACGATGTC -ACGGAACTGAAGAGACACACAGTC -ACGGAACTGAAGAGACACTTGCTG -ACGGAACTGAAGAGACACTCCATG -ACGGAACTGAAGAGACACTGTGTG -ACGGAACTGAAGAGACACCTAGTG -ACGGAACTGAAGAGACACCATCTG -ACGGAACTGAAGAGACACGAGTTG -ACGGAACTGAAGAGACACAGACTG -ACGGAACTGAAGAGACACTCGGTA -ACGGAACTGAAGAGACACTGCCTA -ACGGAACTGAAGAGACACCCACTA -ACGGAACTGAAGAGACACGGAGTA -ACGGAACTGAAGAGACACTCGTCT -ACGGAACTGAAGAGACACTGCACT -ACGGAACTGAAGAGACACCTGACT -ACGGAACTGAAGAGACACCAACCT -ACGGAACTGAAGAGACACGCTACT -ACGGAACTGAAGAGACACGGATCT -ACGGAACTGAAGAGACACAAGGCT -ACGGAACTGAAGAGACACTCAACC -ACGGAACTGAAGAGACACTGTTCC -ACGGAACTGAAGAGACACATTCCC -ACGGAACTGAAGAGACACTTCTCG -ACGGAACTGAAGAGACACTAGACG -ACGGAACTGAAGAGACACGTAACG -ACGGAACTGAAGAGACACACTTCG -ACGGAACTGAAGAGACACTACGCA -ACGGAACTGAAGAGACACCTTGCA -ACGGAACTGAAGAGACACCGAACA -ACGGAACTGAAGAGACACCAGTCA -ACGGAACTGAAGAGACACGATCCA -ACGGAACTGAAGAGACACACGACA -ACGGAACTGAAGAGACACAGCTCA -ACGGAACTGAAGAGACACTCACGT -ACGGAACTGAAGAGACACCGTAGT -ACGGAACTGAAGAGACACGTCAGT -ACGGAACTGAAGAGACACGAAGGT -ACGGAACTGAAGAGACACAACCGT -ACGGAACTGAAGAGACACTTGTGC -ACGGAACTGAAGAGACACCTAAGC -ACGGAACTGAAGAGACACACTAGC -ACGGAACTGAAGAGACACAGATGC -ACGGAACTGAAGAGACACTGAAGG -ACGGAACTGAAGAGACACCAATGG -ACGGAACTGAAGAGACACATGAGG -ACGGAACTGAAGAGACACAATGGG -ACGGAACTGAAGAGACACTCCTGA -ACGGAACTGAAGAGACACTAGCGA -ACGGAACTGAAGAGACACCACAGA -ACGGAACTGAAGAGACACGCAAGA -ACGGAACTGAAGAGACACGGTTGA -ACGGAACTGAAGAGACACTCCGAT -ACGGAACTGAAGAGACACTGGCAT -ACGGAACTGAAGAGACACCGAGAT -ACGGAACTGAAGAGACACTACCAC -ACGGAACTGAAGAGACACCAGAAC -ACGGAACTGAAGAGACACGTCTAC -ACGGAACTGAAGAGACACACGTAC -ACGGAACTGAAGAGACACAGTGAC -ACGGAACTGAAGAGACACCTGTAG -ACGGAACTGAAGAGACACCCTAAG -ACGGAACTGAAGAGACACGTTCAG -ACGGAACTGAAGAGACACGCATAG -ACGGAACTGAAGAGACACGACAAG -ACGGAACTGAAGAGACACAAGCAG -ACGGAACTGAAGAGACACCGTCAA -ACGGAACTGAAGAGACACGCTGAA -ACGGAACTGAAGAGACACAGTACG -ACGGAACTGAAGAGACACATCCGA -ACGGAACTGAAGAGACACATGGGA -ACGGAACTGAAGAGACACGTGCAA -ACGGAACTGAAGAGACACGAGGAA -ACGGAACTGAAGAGACACCAGGTA -ACGGAACTGAAGAGACACGACTCT -ACGGAACTGAAGAGACACAGTCCT -ACGGAACTGAAGAGACACTAAGCC -ACGGAACTGAAGAGACACATAGCC -ACGGAACTGAAGAGACACTAACCG -ACGGAACTGAAGAGACACATGCCA -ACGGAACTGAAGAGAGCAGGAAAC -ACGGAACTGAAGAGAGCAAACACC -ACGGAACTGAAGAGAGCAATCGAG -ACGGAACTGAAGAGAGCACTCCTT -ACGGAACTGAAGAGAGCACCTGTT -ACGGAACTGAAGAGAGCACGGTTT -ACGGAACTGAAGAGAGCAGTGGTT -ACGGAACTGAAGAGAGCAGCCTTT -ACGGAACTGAAGAGAGCAGGTCTT -ACGGAACTGAAGAGAGCAACGCTT -ACGGAACTGAAGAGAGCAAGCGTT -ACGGAACTGAAGAGAGCATTCGTC -ACGGAACTGAAGAGAGCATCTCTC -ACGGAACTGAAGAGAGCATGGATC -ACGGAACTGAAGAGAGCACACTTC -ACGGAACTGAAGAGAGCAGTACTC -ACGGAACTGAAGAGAGCAGATGTC -ACGGAACTGAAGAGAGCAACAGTC -ACGGAACTGAAGAGAGCATTGCTG -ACGGAACTGAAGAGAGCATCCATG -ACGGAACTGAAGAGAGCATGTGTG -ACGGAACTGAAGAGAGCACTAGTG -ACGGAACTGAAGAGAGCACATCTG -ACGGAACTGAAGAGAGCAGAGTTG -ACGGAACTGAAGAGAGCAAGACTG -ACGGAACTGAAGAGAGCATCGGTA -ACGGAACTGAAGAGAGCATGCCTA -ACGGAACTGAAGAGAGCACCACTA -ACGGAACTGAAGAGAGCAGGAGTA -ACGGAACTGAAGAGAGCATCGTCT -ACGGAACTGAAGAGAGCATGCACT -ACGGAACTGAAGAGAGCACTGACT -ACGGAACTGAAGAGAGCACAACCT -ACGGAACTGAAGAGAGCAGCTACT -ACGGAACTGAAGAGAGCAGGATCT -ACGGAACTGAAGAGAGCAAAGGCT -ACGGAACTGAAGAGAGCATCAACC -ACGGAACTGAAGAGAGCATGTTCC -ACGGAACTGAAGAGAGCAATTCCC -ACGGAACTGAAGAGAGCATTCTCG -ACGGAACTGAAGAGAGCATAGACG -ACGGAACTGAAGAGAGCAGTAACG -ACGGAACTGAAGAGAGCAACTTCG -ACGGAACTGAAGAGAGCATACGCA -ACGGAACTGAAGAGAGCACTTGCA -ACGGAACTGAAGAGAGCACGAACA -ACGGAACTGAAGAGAGCACAGTCA -ACGGAACTGAAGAGAGCAGATCCA -ACGGAACTGAAGAGAGCAACGACA -ACGGAACTGAAGAGAGCAAGCTCA -ACGGAACTGAAGAGAGCATCACGT -ACGGAACTGAAGAGAGCACGTAGT -ACGGAACTGAAGAGAGCAGTCAGT -ACGGAACTGAAGAGAGCAGAAGGT -ACGGAACTGAAGAGAGCAAACCGT -ACGGAACTGAAGAGAGCATTGTGC -ACGGAACTGAAGAGAGCACTAAGC -ACGGAACTGAAGAGAGCAACTAGC -ACGGAACTGAAGAGAGCAAGATGC -ACGGAACTGAAGAGAGCATGAAGG -ACGGAACTGAAGAGAGCACAATGG -ACGGAACTGAAGAGAGCAATGAGG -ACGGAACTGAAGAGAGCAAATGGG -ACGGAACTGAAGAGAGCATCCTGA -ACGGAACTGAAGAGAGCATAGCGA -ACGGAACTGAAGAGAGCACACAGA -ACGGAACTGAAGAGAGCAGCAAGA -ACGGAACTGAAGAGAGCAGGTTGA -ACGGAACTGAAGAGAGCATCCGAT -ACGGAACTGAAGAGAGCATGGCAT -ACGGAACTGAAGAGAGCACGAGAT -ACGGAACTGAAGAGAGCATACCAC -ACGGAACTGAAGAGAGCACAGAAC -ACGGAACTGAAGAGAGCAGTCTAC -ACGGAACTGAAGAGAGCAACGTAC -ACGGAACTGAAGAGAGCAAGTGAC -ACGGAACTGAAGAGAGCACTGTAG -ACGGAACTGAAGAGAGCACCTAAG -ACGGAACTGAAGAGAGCAGTTCAG -ACGGAACTGAAGAGAGCAGCATAG -ACGGAACTGAAGAGAGCAGACAAG -ACGGAACTGAAGAGAGCAAAGCAG -ACGGAACTGAAGAGAGCACGTCAA -ACGGAACTGAAGAGAGCAGCTGAA -ACGGAACTGAAGAGAGCAAGTACG -ACGGAACTGAAGAGAGCAATCCGA -ACGGAACTGAAGAGAGCAATGGGA -ACGGAACTGAAGAGAGCAGTGCAA -ACGGAACTGAAGAGAGCAGAGGAA -ACGGAACTGAAGAGAGCACAGGTA -ACGGAACTGAAGAGAGCAGACTCT -ACGGAACTGAAGAGAGCAAGTCCT -ACGGAACTGAAGAGAGCATAAGCC -ACGGAACTGAAGAGAGCAATAGCC -ACGGAACTGAAGAGAGCATAACCG -ACGGAACTGAAGAGAGCAATGCCA -ACGGAACTGAAGTGAGGTGGAAAC -ACGGAACTGAAGTGAGGTAACACC -ACGGAACTGAAGTGAGGTATCGAG -ACGGAACTGAAGTGAGGTCTCCTT -ACGGAACTGAAGTGAGGTCCTGTT -ACGGAACTGAAGTGAGGTCGGTTT -ACGGAACTGAAGTGAGGTGTGGTT -ACGGAACTGAAGTGAGGTGCCTTT -ACGGAACTGAAGTGAGGTGGTCTT -ACGGAACTGAAGTGAGGTACGCTT -ACGGAACTGAAGTGAGGTAGCGTT -ACGGAACTGAAGTGAGGTTTCGTC -ACGGAACTGAAGTGAGGTTCTCTC -ACGGAACTGAAGTGAGGTTGGATC -ACGGAACTGAAGTGAGGTCACTTC -ACGGAACTGAAGTGAGGTGTACTC -ACGGAACTGAAGTGAGGTGATGTC -ACGGAACTGAAGTGAGGTACAGTC -ACGGAACTGAAGTGAGGTTTGCTG -ACGGAACTGAAGTGAGGTTCCATG -ACGGAACTGAAGTGAGGTTGTGTG -ACGGAACTGAAGTGAGGTCTAGTG -ACGGAACTGAAGTGAGGTCATCTG -ACGGAACTGAAGTGAGGTGAGTTG -ACGGAACTGAAGTGAGGTAGACTG -ACGGAACTGAAGTGAGGTTCGGTA -ACGGAACTGAAGTGAGGTTGCCTA -ACGGAACTGAAGTGAGGTCCACTA -ACGGAACTGAAGTGAGGTGGAGTA -ACGGAACTGAAGTGAGGTTCGTCT -ACGGAACTGAAGTGAGGTTGCACT -ACGGAACTGAAGTGAGGTCTGACT -ACGGAACTGAAGTGAGGTCAACCT -ACGGAACTGAAGTGAGGTGCTACT -ACGGAACTGAAGTGAGGTGGATCT -ACGGAACTGAAGTGAGGTAAGGCT -ACGGAACTGAAGTGAGGTTCAACC -ACGGAACTGAAGTGAGGTTGTTCC -ACGGAACTGAAGTGAGGTATTCCC -ACGGAACTGAAGTGAGGTTTCTCG -ACGGAACTGAAGTGAGGTTAGACG -ACGGAACTGAAGTGAGGTGTAACG -ACGGAACTGAAGTGAGGTACTTCG -ACGGAACTGAAGTGAGGTTACGCA -ACGGAACTGAAGTGAGGTCTTGCA -ACGGAACTGAAGTGAGGTCGAACA -ACGGAACTGAAGTGAGGTCAGTCA -ACGGAACTGAAGTGAGGTGATCCA -ACGGAACTGAAGTGAGGTACGACA -ACGGAACTGAAGTGAGGTAGCTCA -ACGGAACTGAAGTGAGGTTCACGT -ACGGAACTGAAGTGAGGTCGTAGT -ACGGAACTGAAGTGAGGTGTCAGT -ACGGAACTGAAGTGAGGTGAAGGT -ACGGAACTGAAGTGAGGTAACCGT -ACGGAACTGAAGTGAGGTTTGTGC -ACGGAACTGAAGTGAGGTCTAAGC -ACGGAACTGAAGTGAGGTACTAGC -ACGGAACTGAAGTGAGGTAGATGC -ACGGAACTGAAGTGAGGTTGAAGG -ACGGAACTGAAGTGAGGTCAATGG -ACGGAACTGAAGTGAGGTATGAGG -ACGGAACTGAAGTGAGGTAATGGG -ACGGAACTGAAGTGAGGTTCCTGA -ACGGAACTGAAGTGAGGTTAGCGA -ACGGAACTGAAGTGAGGTCACAGA -ACGGAACTGAAGTGAGGTGCAAGA -ACGGAACTGAAGTGAGGTGGTTGA -ACGGAACTGAAGTGAGGTTCCGAT -ACGGAACTGAAGTGAGGTTGGCAT -ACGGAACTGAAGTGAGGTCGAGAT -ACGGAACTGAAGTGAGGTTACCAC -ACGGAACTGAAGTGAGGTCAGAAC -ACGGAACTGAAGTGAGGTGTCTAC -ACGGAACTGAAGTGAGGTACGTAC -ACGGAACTGAAGTGAGGTAGTGAC -ACGGAACTGAAGTGAGGTCTGTAG -ACGGAACTGAAGTGAGGTCCTAAG -ACGGAACTGAAGTGAGGTGTTCAG -ACGGAACTGAAGTGAGGTGCATAG -ACGGAACTGAAGTGAGGTGACAAG -ACGGAACTGAAGTGAGGTAAGCAG -ACGGAACTGAAGTGAGGTCGTCAA -ACGGAACTGAAGTGAGGTGCTGAA -ACGGAACTGAAGTGAGGTAGTACG -ACGGAACTGAAGTGAGGTATCCGA -ACGGAACTGAAGTGAGGTATGGGA -ACGGAACTGAAGTGAGGTGTGCAA -ACGGAACTGAAGTGAGGTGAGGAA -ACGGAACTGAAGTGAGGTCAGGTA -ACGGAACTGAAGTGAGGTGACTCT -ACGGAACTGAAGTGAGGTAGTCCT -ACGGAACTGAAGTGAGGTTAAGCC -ACGGAACTGAAGTGAGGTATAGCC -ACGGAACTGAAGTGAGGTTAACCG -ACGGAACTGAAGTGAGGTATGCCA -ACGGAACTGAAGGATTCCGGAAAC -ACGGAACTGAAGGATTCCAACACC -ACGGAACTGAAGGATTCCATCGAG -ACGGAACTGAAGGATTCCCTCCTT -ACGGAACTGAAGGATTCCCCTGTT -ACGGAACTGAAGGATTCCCGGTTT -ACGGAACTGAAGGATTCCGTGGTT -ACGGAACTGAAGGATTCCGCCTTT -ACGGAACTGAAGGATTCCGGTCTT -ACGGAACTGAAGGATTCCACGCTT -ACGGAACTGAAGGATTCCAGCGTT -ACGGAACTGAAGGATTCCTTCGTC -ACGGAACTGAAGGATTCCTCTCTC -ACGGAACTGAAGGATTCCTGGATC -ACGGAACTGAAGGATTCCCACTTC -ACGGAACTGAAGGATTCCGTACTC -ACGGAACTGAAGGATTCCGATGTC -ACGGAACTGAAGGATTCCACAGTC -ACGGAACTGAAGGATTCCTTGCTG -ACGGAACTGAAGGATTCCTCCATG -ACGGAACTGAAGGATTCCTGTGTG -ACGGAACTGAAGGATTCCCTAGTG -ACGGAACTGAAGGATTCCCATCTG -ACGGAACTGAAGGATTCCGAGTTG -ACGGAACTGAAGGATTCCAGACTG -ACGGAACTGAAGGATTCCTCGGTA -ACGGAACTGAAGGATTCCTGCCTA -ACGGAACTGAAGGATTCCCCACTA -ACGGAACTGAAGGATTCCGGAGTA -ACGGAACTGAAGGATTCCTCGTCT -ACGGAACTGAAGGATTCCTGCACT -ACGGAACTGAAGGATTCCCTGACT -ACGGAACTGAAGGATTCCCAACCT -ACGGAACTGAAGGATTCCGCTACT -ACGGAACTGAAGGATTCCGGATCT -ACGGAACTGAAGGATTCCAAGGCT -ACGGAACTGAAGGATTCCTCAACC -ACGGAACTGAAGGATTCCTGTTCC -ACGGAACTGAAGGATTCCATTCCC -ACGGAACTGAAGGATTCCTTCTCG -ACGGAACTGAAGGATTCCTAGACG -ACGGAACTGAAGGATTCCGTAACG -ACGGAACTGAAGGATTCCACTTCG -ACGGAACTGAAGGATTCCTACGCA -ACGGAACTGAAGGATTCCCTTGCA -ACGGAACTGAAGGATTCCCGAACA -ACGGAACTGAAGGATTCCCAGTCA -ACGGAACTGAAGGATTCCGATCCA -ACGGAACTGAAGGATTCCACGACA -ACGGAACTGAAGGATTCCAGCTCA -ACGGAACTGAAGGATTCCTCACGT -ACGGAACTGAAGGATTCCCGTAGT -ACGGAACTGAAGGATTCCGTCAGT -ACGGAACTGAAGGATTCCGAAGGT -ACGGAACTGAAGGATTCCAACCGT -ACGGAACTGAAGGATTCCTTGTGC -ACGGAACTGAAGGATTCCCTAAGC -ACGGAACTGAAGGATTCCACTAGC -ACGGAACTGAAGGATTCCAGATGC -ACGGAACTGAAGGATTCCTGAAGG -ACGGAACTGAAGGATTCCCAATGG -ACGGAACTGAAGGATTCCATGAGG -ACGGAACTGAAGGATTCCAATGGG -ACGGAACTGAAGGATTCCTCCTGA -ACGGAACTGAAGGATTCCTAGCGA -ACGGAACTGAAGGATTCCCACAGA -ACGGAACTGAAGGATTCCGCAAGA -ACGGAACTGAAGGATTCCGGTTGA -ACGGAACTGAAGGATTCCTCCGAT -ACGGAACTGAAGGATTCCTGGCAT -ACGGAACTGAAGGATTCCCGAGAT -ACGGAACTGAAGGATTCCTACCAC -ACGGAACTGAAGGATTCCCAGAAC -ACGGAACTGAAGGATTCCGTCTAC -ACGGAACTGAAGGATTCCACGTAC -ACGGAACTGAAGGATTCCAGTGAC -ACGGAACTGAAGGATTCCCTGTAG -ACGGAACTGAAGGATTCCCCTAAG -ACGGAACTGAAGGATTCCGTTCAG -ACGGAACTGAAGGATTCCGCATAG -ACGGAACTGAAGGATTCCGACAAG -ACGGAACTGAAGGATTCCAAGCAG -ACGGAACTGAAGGATTCCCGTCAA -ACGGAACTGAAGGATTCCGCTGAA -ACGGAACTGAAGGATTCCAGTACG -ACGGAACTGAAGGATTCCATCCGA -ACGGAACTGAAGGATTCCATGGGA -ACGGAACTGAAGGATTCCGTGCAA -ACGGAACTGAAGGATTCCGAGGAA -ACGGAACTGAAGGATTCCCAGGTA -ACGGAACTGAAGGATTCCGACTCT -ACGGAACTGAAGGATTCCAGTCCT -ACGGAACTGAAGGATTCCTAAGCC -ACGGAACTGAAGGATTCCATAGCC -ACGGAACTGAAGGATTCCTAACCG -ACGGAACTGAAGGATTCCATGCCA -ACGGAACTGAAGCATTGGGGAAAC -ACGGAACTGAAGCATTGGAACACC -ACGGAACTGAAGCATTGGATCGAG -ACGGAACTGAAGCATTGGCTCCTT -ACGGAACTGAAGCATTGGCCTGTT -ACGGAACTGAAGCATTGGCGGTTT -ACGGAACTGAAGCATTGGGTGGTT -ACGGAACTGAAGCATTGGGCCTTT -ACGGAACTGAAGCATTGGGGTCTT -ACGGAACTGAAGCATTGGACGCTT -ACGGAACTGAAGCATTGGAGCGTT -ACGGAACTGAAGCATTGGTTCGTC -ACGGAACTGAAGCATTGGTCTCTC -ACGGAACTGAAGCATTGGTGGATC -ACGGAACTGAAGCATTGGCACTTC -ACGGAACTGAAGCATTGGGTACTC -ACGGAACTGAAGCATTGGGATGTC -ACGGAACTGAAGCATTGGACAGTC -ACGGAACTGAAGCATTGGTTGCTG -ACGGAACTGAAGCATTGGTCCATG -ACGGAACTGAAGCATTGGTGTGTG -ACGGAACTGAAGCATTGGCTAGTG -ACGGAACTGAAGCATTGGCATCTG -ACGGAACTGAAGCATTGGGAGTTG -ACGGAACTGAAGCATTGGAGACTG -ACGGAACTGAAGCATTGGTCGGTA -ACGGAACTGAAGCATTGGTGCCTA -ACGGAACTGAAGCATTGGCCACTA -ACGGAACTGAAGCATTGGGGAGTA -ACGGAACTGAAGCATTGGTCGTCT -ACGGAACTGAAGCATTGGTGCACT -ACGGAACTGAAGCATTGGCTGACT -ACGGAACTGAAGCATTGGCAACCT -ACGGAACTGAAGCATTGGGCTACT -ACGGAACTGAAGCATTGGGGATCT -ACGGAACTGAAGCATTGGAAGGCT -ACGGAACTGAAGCATTGGTCAACC -ACGGAACTGAAGCATTGGTGTTCC -ACGGAACTGAAGCATTGGATTCCC -ACGGAACTGAAGCATTGGTTCTCG -ACGGAACTGAAGCATTGGTAGACG -ACGGAACTGAAGCATTGGGTAACG -ACGGAACTGAAGCATTGGACTTCG -ACGGAACTGAAGCATTGGTACGCA -ACGGAACTGAAGCATTGGCTTGCA -ACGGAACTGAAGCATTGGCGAACA -ACGGAACTGAAGCATTGGCAGTCA -ACGGAACTGAAGCATTGGGATCCA -ACGGAACTGAAGCATTGGACGACA -ACGGAACTGAAGCATTGGAGCTCA -ACGGAACTGAAGCATTGGTCACGT -ACGGAACTGAAGCATTGGCGTAGT -ACGGAACTGAAGCATTGGGTCAGT -ACGGAACTGAAGCATTGGGAAGGT -ACGGAACTGAAGCATTGGAACCGT -ACGGAACTGAAGCATTGGTTGTGC -ACGGAACTGAAGCATTGGCTAAGC -ACGGAACTGAAGCATTGGACTAGC -ACGGAACTGAAGCATTGGAGATGC -ACGGAACTGAAGCATTGGTGAAGG -ACGGAACTGAAGCATTGGCAATGG -ACGGAACTGAAGCATTGGATGAGG -ACGGAACTGAAGCATTGGAATGGG -ACGGAACTGAAGCATTGGTCCTGA -ACGGAACTGAAGCATTGGTAGCGA -ACGGAACTGAAGCATTGGCACAGA -ACGGAACTGAAGCATTGGGCAAGA -ACGGAACTGAAGCATTGGGGTTGA -ACGGAACTGAAGCATTGGTCCGAT -ACGGAACTGAAGCATTGGTGGCAT -ACGGAACTGAAGCATTGGCGAGAT -ACGGAACTGAAGCATTGGTACCAC -ACGGAACTGAAGCATTGGCAGAAC -ACGGAACTGAAGCATTGGGTCTAC -ACGGAACTGAAGCATTGGACGTAC -ACGGAACTGAAGCATTGGAGTGAC -ACGGAACTGAAGCATTGGCTGTAG -ACGGAACTGAAGCATTGGCCTAAG -ACGGAACTGAAGCATTGGGTTCAG -ACGGAACTGAAGCATTGGGCATAG -ACGGAACTGAAGCATTGGGACAAG -ACGGAACTGAAGCATTGGAAGCAG -ACGGAACTGAAGCATTGGCGTCAA -ACGGAACTGAAGCATTGGGCTGAA -ACGGAACTGAAGCATTGGAGTACG -ACGGAACTGAAGCATTGGATCCGA -ACGGAACTGAAGCATTGGATGGGA -ACGGAACTGAAGCATTGGGTGCAA -ACGGAACTGAAGCATTGGGAGGAA -ACGGAACTGAAGCATTGGCAGGTA -ACGGAACTGAAGCATTGGGACTCT -ACGGAACTGAAGCATTGGAGTCCT -ACGGAACTGAAGCATTGGTAAGCC -ACGGAACTGAAGCATTGGATAGCC -ACGGAACTGAAGCATTGGTAACCG -ACGGAACTGAAGCATTGGATGCCA -ACGGAACTGAAGGATCGAGGAAAC -ACGGAACTGAAGGATCGAAACACC -ACGGAACTGAAGGATCGAATCGAG -ACGGAACTGAAGGATCGACTCCTT -ACGGAACTGAAGGATCGACCTGTT -ACGGAACTGAAGGATCGACGGTTT -ACGGAACTGAAGGATCGAGTGGTT -ACGGAACTGAAGGATCGAGCCTTT -ACGGAACTGAAGGATCGAGGTCTT -ACGGAACTGAAGGATCGAACGCTT -ACGGAACTGAAGGATCGAAGCGTT -ACGGAACTGAAGGATCGATTCGTC -ACGGAACTGAAGGATCGATCTCTC -ACGGAACTGAAGGATCGATGGATC -ACGGAACTGAAGGATCGACACTTC -ACGGAACTGAAGGATCGAGTACTC -ACGGAACTGAAGGATCGAGATGTC -ACGGAACTGAAGGATCGAACAGTC -ACGGAACTGAAGGATCGATTGCTG -ACGGAACTGAAGGATCGATCCATG -ACGGAACTGAAGGATCGATGTGTG -ACGGAACTGAAGGATCGACTAGTG -ACGGAACTGAAGGATCGACATCTG -ACGGAACTGAAGGATCGAGAGTTG -ACGGAACTGAAGGATCGAAGACTG -ACGGAACTGAAGGATCGATCGGTA -ACGGAACTGAAGGATCGATGCCTA -ACGGAACTGAAGGATCGACCACTA -ACGGAACTGAAGGATCGAGGAGTA -ACGGAACTGAAGGATCGATCGTCT -ACGGAACTGAAGGATCGATGCACT -ACGGAACTGAAGGATCGACTGACT -ACGGAACTGAAGGATCGACAACCT -ACGGAACTGAAGGATCGAGCTACT -ACGGAACTGAAGGATCGAGGATCT -ACGGAACTGAAGGATCGAAAGGCT -ACGGAACTGAAGGATCGATCAACC -ACGGAACTGAAGGATCGATGTTCC -ACGGAACTGAAGGATCGAATTCCC -ACGGAACTGAAGGATCGATTCTCG -ACGGAACTGAAGGATCGATAGACG -ACGGAACTGAAGGATCGAGTAACG -ACGGAACTGAAGGATCGAACTTCG -ACGGAACTGAAGGATCGATACGCA -ACGGAACTGAAGGATCGACTTGCA -ACGGAACTGAAGGATCGACGAACA -ACGGAACTGAAGGATCGACAGTCA -ACGGAACTGAAGGATCGAGATCCA -ACGGAACTGAAGGATCGAACGACA -ACGGAACTGAAGGATCGAAGCTCA -ACGGAACTGAAGGATCGATCACGT -ACGGAACTGAAGGATCGACGTAGT -ACGGAACTGAAGGATCGAGTCAGT -ACGGAACTGAAGGATCGAGAAGGT -ACGGAACTGAAGGATCGAAACCGT -ACGGAACTGAAGGATCGATTGTGC -ACGGAACTGAAGGATCGACTAAGC -ACGGAACTGAAGGATCGAACTAGC -ACGGAACTGAAGGATCGAAGATGC -ACGGAACTGAAGGATCGATGAAGG -ACGGAACTGAAGGATCGACAATGG -ACGGAACTGAAGGATCGAATGAGG -ACGGAACTGAAGGATCGAAATGGG -ACGGAACTGAAGGATCGATCCTGA -ACGGAACTGAAGGATCGATAGCGA -ACGGAACTGAAGGATCGACACAGA -ACGGAACTGAAGGATCGAGCAAGA -ACGGAACTGAAGGATCGAGGTTGA -ACGGAACTGAAGGATCGATCCGAT -ACGGAACTGAAGGATCGATGGCAT -ACGGAACTGAAGGATCGACGAGAT -ACGGAACTGAAGGATCGATACCAC -ACGGAACTGAAGGATCGACAGAAC -ACGGAACTGAAGGATCGAGTCTAC -ACGGAACTGAAGGATCGAACGTAC -ACGGAACTGAAGGATCGAAGTGAC -ACGGAACTGAAGGATCGACTGTAG -ACGGAACTGAAGGATCGACCTAAG -ACGGAACTGAAGGATCGAGTTCAG -ACGGAACTGAAGGATCGAGCATAG -ACGGAACTGAAGGATCGAGACAAG -ACGGAACTGAAGGATCGAAAGCAG -ACGGAACTGAAGGATCGACGTCAA -ACGGAACTGAAGGATCGAGCTGAA -ACGGAACTGAAGGATCGAAGTACG -ACGGAACTGAAGGATCGAATCCGA -ACGGAACTGAAGGATCGAATGGGA -ACGGAACTGAAGGATCGAGTGCAA -ACGGAACTGAAGGATCGAGAGGAA -ACGGAACTGAAGGATCGACAGGTA -ACGGAACTGAAGGATCGAGACTCT -ACGGAACTGAAGGATCGAAGTCCT -ACGGAACTGAAGGATCGATAAGCC -ACGGAACTGAAGGATCGAATAGCC -ACGGAACTGAAGGATCGATAACCG -ACGGAACTGAAGGATCGAATGCCA -ACGGAACTGAAGCACTACGGAAAC -ACGGAACTGAAGCACTACAACACC -ACGGAACTGAAGCACTACATCGAG -ACGGAACTGAAGCACTACCTCCTT -ACGGAACTGAAGCACTACCCTGTT -ACGGAACTGAAGCACTACCGGTTT -ACGGAACTGAAGCACTACGTGGTT -ACGGAACTGAAGCACTACGCCTTT -ACGGAACTGAAGCACTACGGTCTT -ACGGAACTGAAGCACTACACGCTT -ACGGAACTGAAGCACTACAGCGTT -ACGGAACTGAAGCACTACTTCGTC -ACGGAACTGAAGCACTACTCTCTC -ACGGAACTGAAGCACTACTGGATC -ACGGAACTGAAGCACTACCACTTC -ACGGAACTGAAGCACTACGTACTC -ACGGAACTGAAGCACTACGATGTC -ACGGAACTGAAGCACTACACAGTC -ACGGAACTGAAGCACTACTTGCTG -ACGGAACTGAAGCACTACTCCATG -ACGGAACTGAAGCACTACTGTGTG -ACGGAACTGAAGCACTACCTAGTG -ACGGAACTGAAGCACTACCATCTG -ACGGAACTGAAGCACTACGAGTTG -ACGGAACTGAAGCACTACAGACTG -ACGGAACTGAAGCACTACTCGGTA -ACGGAACTGAAGCACTACTGCCTA -ACGGAACTGAAGCACTACCCACTA -ACGGAACTGAAGCACTACGGAGTA -ACGGAACTGAAGCACTACTCGTCT -ACGGAACTGAAGCACTACTGCACT -ACGGAACTGAAGCACTACCTGACT -ACGGAACTGAAGCACTACCAACCT -ACGGAACTGAAGCACTACGCTACT -ACGGAACTGAAGCACTACGGATCT -ACGGAACTGAAGCACTACAAGGCT -ACGGAACTGAAGCACTACTCAACC -ACGGAACTGAAGCACTACTGTTCC -ACGGAACTGAAGCACTACATTCCC -ACGGAACTGAAGCACTACTTCTCG -ACGGAACTGAAGCACTACTAGACG -ACGGAACTGAAGCACTACGTAACG -ACGGAACTGAAGCACTACACTTCG -ACGGAACTGAAGCACTACTACGCA -ACGGAACTGAAGCACTACCTTGCA -ACGGAACTGAAGCACTACCGAACA -ACGGAACTGAAGCACTACCAGTCA -ACGGAACTGAAGCACTACGATCCA -ACGGAACTGAAGCACTACACGACA -ACGGAACTGAAGCACTACAGCTCA -ACGGAACTGAAGCACTACTCACGT -ACGGAACTGAAGCACTACCGTAGT -ACGGAACTGAAGCACTACGTCAGT -ACGGAACTGAAGCACTACGAAGGT -ACGGAACTGAAGCACTACAACCGT -ACGGAACTGAAGCACTACTTGTGC -ACGGAACTGAAGCACTACCTAAGC -ACGGAACTGAAGCACTACACTAGC -ACGGAACTGAAGCACTACAGATGC -ACGGAACTGAAGCACTACTGAAGG -ACGGAACTGAAGCACTACCAATGG -ACGGAACTGAAGCACTACATGAGG -ACGGAACTGAAGCACTACAATGGG -ACGGAACTGAAGCACTACTCCTGA -ACGGAACTGAAGCACTACTAGCGA -ACGGAACTGAAGCACTACCACAGA -ACGGAACTGAAGCACTACGCAAGA -ACGGAACTGAAGCACTACGGTTGA -ACGGAACTGAAGCACTACTCCGAT -ACGGAACTGAAGCACTACTGGCAT -ACGGAACTGAAGCACTACCGAGAT -ACGGAACTGAAGCACTACTACCAC -ACGGAACTGAAGCACTACCAGAAC -ACGGAACTGAAGCACTACGTCTAC -ACGGAACTGAAGCACTACACGTAC -ACGGAACTGAAGCACTACAGTGAC -ACGGAACTGAAGCACTACCTGTAG -ACGGAACTGAAGCACTACCCTAAG -ACGGAACTGAAGCACTACGTTCAG -ACGGAACTGAAGCACTACGCATAG -ACGGAACTGAAGCACTACGACAAG -ACGGAACTGAAGCACTACAAGCAG -ACGGAACTGAAGCACTACCGTCAA -ACGGAACTGAAGCACTACGCTGAA -ACGGAACTGAAGCACTACAGTACG -ACGGAACTGAAGCACTACATCCGA -ACGGAACTGAAGCACTACATGGGA -ACGGAACTGAAGCACTACGTGCAA -ACGGAACTGAAGCACTACGAGGAA -ACGGAACTGAAGCACTACCAGGTA -ACGGAACTGAAGCACTACGACTCT -ACGGAACTGAAGCACTACAGTCCT -ACGGAACTGAAGCACTACTAAGCC -ACGGAACTGAAGCACTACATAGCC -ACGGAACTGAAGCACTACTAACCG -ACGGAACTGAAGCACTACATGCCA -ACGGAACTGAAGAACCAGGGAAAC -ACGGAACTGAAGAACCAGAACACC -ACGGAACTGAAGAACCAGATCGAG -ACGGAACTGAAGAACCAGCTCCTT -ACGGAACTGAAGAACCAGCCTGTT -ACGGAACTGAAGAACCAGCGGTTT -ACGGAACTGAAGAACCAGGTGGTT -ACGGAACTGAAGAACCAGGCCTTT -ACGGAACTGAAGAACCAGGGTCTT -ACGGAACTGAAGAACCAGACGCTT -ACGGAACTGAAGAACCAGAGCGTT -ACGGAACTGAAGAACCAGTTCGTC -ACGGAACTGAAGAACCAGTCTCTC -ACGGAACTGAAGAACCAGTGGATC -ACGGAACTGAAGAACCAGCACTTC -ACGGAACTGAAGAACCAGGTACTC -ACGGAACTGAAGAACCAGGATGTC -ACGGAACTGAAGAACCAGACAGTC -ACGGAACTGAAGAACCAGTTGCTG -ACGGAACTGAAGAACCAGTCCATG -ACGGAACTGAAGAACCAGTGTGTG -ACGGAACTGAAGAACCAGCTAGTG -ACGGAACTGAAGAACCAGCATCTG -ACGGAACTGAAGAACCAGGAGTTG -ACGGAACTGAAGAACCAGAGACTG -ACGGAACTGAAGAACCAGTCGGTA -ACGGAACTGAAGAACCAGTGCCTA -ACGGAACTGAAGAACCAGCCACTA -ACGGAACTGAAGAACCAGGGAGTA -ACGGAACTGAAGAACCAGTCGTCT -ACGGAACTGAAGAACCAGTGCACT -ACGGAACTGAAGAACCAGCTGACT -ACGGAACTGAAGAACCAGCAACCT -ACGGAACTGAAGAACCAGGCTACT -ACGGAACTGAAGAACCAGGGATCT -ACGGAACTGAAGAACCAGAAGGCT -ACGGAACTGAAGAACCAGTCAACC -ACGGAACTGAAGAACCAGTGTTCC -ACGGAACTGAAGAACCAGATTCCC -ACGGAACTGAAGAACCAGTTCTCG -ACGGAACTGAAGAACCAGTAGACG -ACGGAACTGAAGAACCAGGTAACG -ACGGAACTGAAGAACCAGACTTCG -ACGGAACTGAAGAACCAGTACGCA -ACGGAACTGAAGAACCAGCTTGCA -ACGGAACTGAAGAACCAGCGAACA -ACGGAACTGAAGAACCAGCAGTCA -ACGGAACTGAAGAACCAGGATCCA -ACGGAACTGAAGAACCAGACGACA -ACGGAACTGAAGAACCAGAGCTCA -ACGGAACTGAAGAACCAGTCACGT -ACGGAACTGAAGAACCAGCGTAGT -ACGGAACTGAAGAACCAGGTCAGT -ACGGAACTGAAGAACCAGGAAGGT -ACGGAACTGAAGAACCAGAACCGT -ACGGAACTGAAGAACCAGTTGTGC -ACGGAACTGAAGAACCAGCTAAGC -ACGGAACTGAAGAACCAGACTAGC -ACGGAACTGAAGAACCAGAGATGC -ACGGAACTGAAGAACCAGTGAAGG -ACGGAACTGAAGAACCAGCAATGG -ACGGAACTGAAGAACCAGATGAGG -ACGGAACTGAAGAACCAGAATGGG -ACGGAACTGAAGAACCAGTCCTGA -ACGGAACTGAAGAACCAGTAGCGA -ACGGAACTGAAGAACCAGCACAGA -ACGGAACTGAAGAACCAGGCAAGA -ACGGAACTGAAGAACCAGGGTTGA -ACGGAACTGAAGAACCAGTCCGAT -ACGGAACTGAAGAACCAGTGGCAT -ACGGAACTGAAGAACCAGCGAGAT -ACGGAACTGAAGAACCAGTACCAC -ACGGAACTGAAGAACCAGCAGAAC -ACGGAACTGAAGAACCAGGTCTAC -ACGGAACTGAAGAACCAGACGTAC -ACGGAACTGAAGAACCAGAGTGAC -ACGGAACTGAAGAACCAGCTGTAG -ACGGAACTGAAGAACCAGCCTAAG -ACGGAACTGAAGAACCAGGTTCAG -ACGGAACTGAAGAACCAGGCATAG -ACGGAACTGAAGAACCAGGACAAG -ACGGAACTGAAGAACCAGAAGCAG -ACGGAACTGAAGAACCAGCGTCAA -ACGGAACTGAAGAACCAGGCTGAA -ACGGAACTGAAGAACCAGAGTACG -ACGGAACTGAAGAACCAGATCCGA -ACGGAACTGAAGAACCAGATGGGA -ACGGAACTGAAGAACCAGGTGCAA -ACGGAACTGAAGAACCAGGAGGAA -ACGGAACTGAAGAACCAGCAGGTA -ACGGAACTGAAGAACCAGGACTCT -ACGGAACTGAAGAACCAGAGTCCT -ACGGAACTGAAGAACCAGTAAGCC -ACGGAACTGAAGAACCAGATAGCC -ACGGAACTGAAGAACCAGTAACCG -ACGGAACTGAAGAACCAGATGCCA -ACGGAACTGAAGTACGTCGGAAAC -ACGGAACTGAAGTACGTCAACACC -ACGGAACTGAAGTACGTCATCGAG -ACGGAACTGAAGTACGTCCTCCTT -ACGGAACTGAAGTACGTCCCTGTT -ACGGAACTGAAGTACGTCCGGTTT -ACGGAACTGAAGTACGTCGTGGTT -ACGGAACTGAAGTACGTCGCCTTT -ACGGAACTGAAGTACGTCGGTCTT -ACGGAACTGAAGTACGTCACGCTT -ACGGAACTGAAGTACGTCAGCGTT -ACGGAACTGAAGTACGTCTTCGTC -ACGGAACTGAAGTACGTCTCTCTC -ACGGAACTGAAGTACGTCTGGATC -ACGGAACTGAAGTACGTCCACTTC -ACGGAACTGAAGTACGTCGTACTC -ACGGAACTGAAGTACGTCGATGTC -ACGGAACTGAAGTACGTCACAGTC -ACGGAACTGAAGTACGTCTTGCTG -ACGGAACTGAAGTACGTCTCCATG -ACGGAACTGAAGTACGTCTGTGTG -ACGGAACTGAAGTACGTCCTAGTG -ACGGAACTGAAGTACGTCCATCTG -ACGGAACTGAAGTACGTCGAGTTG -ACGGAACTGAAGTACGTCAGACTG -ACGGAACTGAAGTACGTCTCGGTA -ACGGAACTGAAGTACGTCTGCCTA -ACGGAACTGAAGTACGTCCCACTA -ACGGAACTGAAGTACGTCGGAGTA -ACGGAACTGAAGTACGTCTCGTCT -ACGGAACTGAAGTACGTCTGCACT -ACGGAACTGAAGTACGTCCTGACT -ACGGAACTGAAGTACGTCCAACCT -ACGGAACTGAAGTACGTCGCTACT -ACGGAACTGAAGTACGTCGGATCT -ACGGAACTGAAGTACGTCAAGGCT -ACGGAACTGAAGTACGTCTCAACC -ACGGAACTGAAGTACGTCTGTTCC -ACGGAACTGAAGTACGTCATTCCC -ACGGAACTGAAGTACGTCTTCTCG -ACGGAACTGAAGTACGTCTAGACG -ACGGAACTGAAGTACGTCGTAACG -ACGGAACTGAAGTACGTCACTTCG -ACGGAACTGAAGTACGTCTACGCA -ACGGAACTGAAGTACGTCCTTGCA -ACGGAACTGAAGTACGTCCGAACA -ACGGAACTGAAGTACGTCCAGTCA -ACGGAACTGAAGTACGTCGATCCA -ACGGAACTGAAGTACGTCACGACA -ACGGAACTGAAGTACGTCAGCTCA -ACGGAACTGAAGTACGTCTCACGT -ACGGAACTGAAGTACGTCCGTAGT -ACGGAACTGAAGTACGTCGTCAGT -ACGGAACTGAAGTACGTCGAAGGT -ACGGAACTGAAGTACGTCAACCGT -ACGGAACTGAAGTACGTCTTGTGC -ACGGAACTGAAGTACGTCCTAAGC -ACGGAACTGAAGTACGTCACTAGC -ACGGAACTGAAGTACGTCAGATGC -ACGGAACTGAAGTACGTCTGAAGG -ACGGAACTGAAGTACGTCCAATGG -ACGGAACTGAAGTACGTCATGAGG -ACGGAACTGAAGTACGTCAATGGG -ACGGAACTGAAGTACGTCTCCTGA -ACGGAACTGAAGTACGTCTAGCGA -ACGGAACTGAAGTACGTCCACAGA -ACGGAACTGAAGTACGTCGCAAGA -ACGGAACTGAAGTACGTCGGTTGA -ACGGAACTGAAGTACGTCTCCGAT -ACGGAACTGAAGTACGTCTGGCAT -ACGGAACTGAAGTACGTCCGAGAT -ACGGAACTGAAGTACGTCTACCAC -ACGGAACTGAAGTACGTCCAGAAC -ACGGAACTGAAGTACGTCGTCTAC -ACGGAACTGAAGTACGTCACGTAC -ACGGAACTGAAGTACGTCAGTGAC -ACGGAACTGAAGTACGTCCTGTAG -ACGGAACTGAAGTACGTCCCTAAG -ACGGAACTGAAGTACGTCGTTCAG -ACGGAACTGAAGTACGTCGCATAG -ACGGAACTGAAGTACGTCGACAAG -ACGGAACTGAAGTACGTCAAGCAG -ACGGAACTGAAGTACGTCCGTCAA -ACGGAACTGAAGTACGTCGCTGAA -ACGGAACTGAAGTACGTCAGTACG -ACGGAACTGAAGTACGTCATCCGA -ACGGAACTGAAGTACGTCATGGGA -ACGGAACTGAAGTACGTCGTGCAA -ACGGAACTGAAGTACGTCGAGGAA -ACGGAACTGAAGTACGTCCAGGTA -ACGGAACTGAAGTACGTCGACTCT -ACGGAACTGAAGTACGTCAGTCCT -ACGGAACTGAAGTACGTCTAAGCC -ACGGAACTGAAGTACGTCATAGCC -ACGGAACTGAAGTACGTCTAACCG -ACGGAACTGAAGTACGTCATGCCA -ACGGAACTGAAGTACACGGGAAAC -ACGGAACTGAAGTACACGAACACC -ACGGAACTGAAGTACACGATCGAG -ACGGAACTGAAGTACACGCTCCTT -ACGGAACTGAAGTACACGCCTGTT -ACGGAACTGAAGTACACGCGGTTT -ACGGAACTGAAGTACACGGTGGTT -ACGGAACTGAAGTACACGGCCTTT -ACGGAACTGAAGTACACGGGTCTT -ACGGAACTGAAGTACACGACGCTT -ACGGAACTGAAGTACACGAGCGTT -ACGGAACTGAAGTACACGTTCGTC -ACGGAACTGAAGTACACGTCTCTC -ACGGAACTGAAGTACACGTGGATC -ACGGAACTGAAGTACACGCACTTC -ACGGAACTGAAGTACACGGTACTC -ACGGAACTGAAGTACACGGATGTC -ACGGAACTGAAGTACACGACAGTC -ACGGAACTGAAGTACACGTTGCTG -ACGGAACTGAAGTACACGTCCATG -ACGGAACTGAAGTACACGTGTGTG -ACGGAACTGAAGTACACGCTAGTG -ACGGAACTGAAGTACACGCATCTG -ACGGAACTGAAGTACACGGAGTTG -ACGGAACTGAAGTACACGAGACTG -ACGGAACTGAAGTACACGTCGGTA -ACGGAACTGAAGTACACGTGCCTA -ACGGAACTGAAGTACACGCCACTA -ACGGAACTGAAGTACACGGGAGTA -ACGGAACTGAAGTACACGTCGTCT -ACGGAACTGAAGTACACGTGCACT -ACGGAACTGAAGTACACGCTGACT -ACGGAACTGAAGTACACGCAACCT -ACGGAACTGAAGTACACGGCTACT -ACGGAACTGAAGTACACGGGATCT -ACGGAACTGAAGTACACGAAGGCT -ACGGAACTGAAGTACACGTCAACC -ACGGAACTGAAGTACACGTGTTCC -ACGGAACTGAAGTACACGATTCCC -ACGGAACTGAAGTACACGTTCTCG -ACGGAACTGAAGTACACGTAGACG -ACGGAACTGAAGTACACGGTAACG -ACGGAACTGAAGTACACGACTTCG -ACGGAACTGAAGTACACGTACGCA -ACGGAACTGAAGTACACGCTTGCA -ACGGAACTGAAGTACACGCGAACA -ACGGAACTGAAGTACACGCAGTCA -ACGGAACTGAAGTACACGGATCCA -ACGGAACTGAAGTACACGACGACA -ACGGAACTGAAGTACACGAGCTCA -ACGGAACTGAAGTACACGTCACGT -ACGGAACTGAAGTACACGCGTAGT -ACGGAACTGAAGTACACGGTCAGT -ACGGAACTGAAGTACACGGAAGGT -ACGGAACTGAAGTACACGAACCGT -ACGGAACTGAAGTACACGTTGTGC -ACGGAACTGAAGTACACGCTAAGC -ACGGAACTGAAGTACACGACTAGC -ACGGAACTGAAGTACACGAGATGC -ACGGAACTGAAGTACACGTGAAGG -ACGGAACTGAAGTACACGCAATGG -ACGGAACTGAAGTACACGATGAGG -ACGGAACTGAAGTACACGAATGGG -ACGGAACTGAAGTACACGTCCTGA -ACGGAACTGAAGTACACGTAGCGA -ACGGAACTGAAGTACACGCACAGA -ACGGAACTGAAGTACACGGCAAGA -ACGGAACTGAAGTACACGGGTTGA -ACGGAACTGAAGTACACGTCCGAT -ACGGAACTGAAGTACACGTGGCAT -ACGGAACTGAAGTACACGCGAGAT -ACGGAACTGAAGTACACGTACCAC -ACGGAACTGAAGTACACGCAGAAC -ACGGAACTGAAGTACACGGTCTAC -ACGGAACTGAAGTACACGACGTAC -ACGGAACTGAAGTACACGAGTGAC -ACGGAACTGAAGTACACGCTGTAG -ACGGAACTGAAGTACACGCCTAAG -ACGGAACTGAAGTACACGGTTCAG -ACGGAACTGAAGTACACGGCATAG -ACGGAACTGAAGTACACGGACAAG -ACGGAACTGAAGTACACGAAGCAG -ACGGAACTGAAGTACACGCGTCAA -ACGGAACTGAAGTACACGGCTGAA -ACGGAACTGAAGTACACGAGTACG -ACGGAACTGAAGTACACGATCCGA -ACGGAACTGAAGTACACGATGGGA -ACGGAACTGAAGTACACGGTGCAA -ACGGAACTGAAGTACACGGAGGAA -ACGGAACTGAAGTACACGCAGGTA -ACGGAACTGAAGTACACGGACTCT -ACGGAACTGAAGTACACGAGTCCT -ACGGAACTGAAGTACACGTAAGCC -ACGGAACTGAAGTACACGATAGCC -ACGGAACTGAAGTACACGTAACCG -ACGGAACTGAAGTACACGATGCCA -ACGGAACTGAAGGACAGTGGAAAC -ACGGAACTGAAGGACAGTAACACC -ACGGAACTGAAGGACAGTATCGAG -ACGGAACTGAAGGACAGTCTCCTT -ACGGAACTGAAGGACAGTCCTGTT -ACGGAACTGAAGGACAGTCGGTTT -ACGGAACTGAAGGACAGTGTGGTT -ACGGAACTGAAGGACAGTGCCTTT -ACGGAACTGAAGGACAGTGGTCTT -ACGGAACTGAAGGACAGTACGCTT -ACGGAACTGAAGGACAGTAGCGTT -ACGGAACTGAAGGACAGTTTCGTC -ACGGAACTGAAGGACAGTTCTCTC -ACGGAACTGAAGGACAGTTGGATC -ACGGAACTGAAGGACAGTCACTTC -ACGGAACTGAAGGACAGTGTACTC -ACGGAACTGAAGGACAGTGATGTC -ACGGAACTGAAGGACAGTACAGTC -ACGGAACTGAAGGACAGTTTGCTG -ACGGAACTGAAGGACAGTTCCATG -ACGGAACTGAAGGACAGTTGTGTG -ACGGAACTGAAGGACAGTCTAGTG -ACGGAACTGAAGGACAGTCATCTG -ACGGAACTGAAGGACAGTGAGTTG -ACGGAACTGAAGGACAGTAGACTG -ACGGAACTGAAGGACAGTTCGGTA -ACGGAACTGAAGGACAGTTGCCTA -ACGGAACTGAAGGACAGTCCACTA -ACGGAACTGAAGGACAGTGGAGTA -ACGGAACTGAAGGACAGTTCGTCT -ACGGAACTGAAGGACAGTTGCACT -ACGGAACTGAAGGACAGTCTGACT -ACGGAACTGAAGGACAGTCAACCT -ACGGAACTGAAGGACAGTGCTACT -ACGGAACTGAAGGACAGTGGATCT -ACGGAACTGAAGGACAGTAAGGCT -ACGGAACTGAAGGACAGTTCAACC -ACGGAACTGAAGGACAGTTGTTCC -ACGGAACTGAAGGACAGTATTCCC -ACGGAACTGAAGGACAGTTTCTCG -ACGGAACTGAAGGACAGTTAGACG -ACGGAACTGAAGGACAGTGTAACG -ACGGAACTGAAGGACAGTACTTCG -ACGGAACTGAAGGACAGTTACGCA -ACGGAACTGAAGGACAGTCTTGCA -ACGGAACTGAAGGACAGTCGAACA -ACGGAACTGAAGGACAGTCAGTCA -ACGGAACTGAAGGACAGTGATCCA -ACGGAACTGAAGGACAGTACGACA -ACGGAACTGAAGGACAGTAGCTCA -ACGGAACTGAAGGACAGTTCACGT -ACGGAACTGAAGGACAGTCGTAGT -ACGGAACTGAAGGACAGTGTCAGT -ACGGAACTGAAGGACAGTGAAGGT -ACGGAACTGAAGGACAGTAACCGT -ACGGAACTGAAGGACAGTTTGTGC -ACGGAACTGAAGGACAGTCTAAGC -ACGGAACTGAAGGACAGTACTAGC -ACGGAACTGAAGGACAGTAGATGC -ACGGAACTGAAGGACAGTTGAAGG -ACGGAACTGAAGGACAGTCAATGG -ACGGAACTGAAGGACAGTATGAGG -ACGGAACTGAAGGACAGTAATGGG -ACGGAACTGAAGGACAGTTCCTGA -ACGGAACTGAAGGACAGTTAGCGA -ACGGAACTGAAGGACAGTCACAGA -ACGGAACTGAAGGACAGTGCAAGA -ACGGAACTGAAGGACAGTGGTTGA -ACGGAACTGAAGGACAGTTCCGAT -ACGGAACTGAAGGACAGTTGGCAT -ACGGAACTGAAGGACAGTCGAGAT -ACGGAACTGAAGGACAGTTACCAC -ACGGAACTGAAGGACAGTCAGAAC -ACGGAACTGAAGGACAGTGTCTAC -ACGGAACTGAAGGACAGTACGTAC -ACGGAACTGAAGGACAGTAGTGAC -ACGGAACTGAAGGACAGTCTGTAG -ACGGAACTGAAGGACAGTCCTAAG -ACGGAACTGAAGGACAGTGTTCAG -ACGGAACTGAAGGACAGTGCATAG -ACGGAACTGAAGGACAGTGACAAG -ACGGAACTGAAGGACAGTAAGCAG -ACGGAACTGAAGGACAGTCGTCAA -ACGGAACTGAAGGACAGTGCTGAA -ACGGAACTGAAGGACAGTAGTACG -ACGGAACTGAAGGACAGTATCCGA -ACGGAACTGAAGGACAGTATGGGA -ACGGAACTGAAGGACAGTGTGCAA -ACGGAACTGAAGGACAGTGAGGAA -ACGGAACTGAAGGACAGTCAGGTA -ACGGAACTGAAGGACAGTGACTCT -ACGGAACTGAAGGACAGTAGTCCT -ACGGAACTGAAGGACAGTTAAGCC -ACGGAACTGAAGGACAGTATAGCC -ACGGAACTGAAGGACAGTTAACCG -ACGGAACTGAAGGACAGTATGCCA -ACGGAACTGAAGTAGCTGGGAAAC -ACGGAACTGAAGTAGCTGAACACC -ACGGAACTGAAGTAGCTGATCGAG -ACGGAACTGAAGTAGCTGCTCCTT -ACGGAACTGAAGTAGCTGCCTGTT -ACGGAACTGAAGTAGCTGCGGTTT -ACGGAACTGAAGTAGCTGGTGGTT -ACGGAACTGAAGTAGCTGGCCTTT -ACGGAACTGAAGTAGCTGGGTCTT -ACGGAACTGAAGTAGCTGACGCTT -ACGGAACTGAAGTAGCTGAGCGTT -ACGGAACTGAAGTAGCTGTTCGTC -ACGGAACTGAAGTAGCTGTCTCTC -ACGGAACTGAAGTAGCTGTGGATC -ACGGAACTGAAGTAGCTGCACTTC -ACGGAACTGAAGTAGCTGGTACTC -ACGGAACTGAAGTAGCTGGATGTC -ACGGAACTGAAGTAGCTGACAGTC -ACGGAACTGAAGTAGCTGTTGCTG -ACGGAACTGAAGTAGCTGTCCATG -ACGGAACTGAAGTAGCTGTGTGTG -ACGGAACTGAAGTAGCTGCTAGTG -ACGGAACTGAAGTAGCTGCATCTG -ACGGAACTGAAGTAGCTGGAGTTG -ACGGAACTGAAGTAGCTGAGACTG -ACGGAACTGAAGTAGCTGTCGGTA -ACGGAACTGAAGTAGCTGTGCCTA -ACGGAACTGAAGTAGCTGCCACTA -ACGGAACTGAAGTAGCTGGGAGTA -ACGGAACTGAAGTAGCTGTCGTCT -ACGGAACTGAAGTAGCTGTGCACT -ACGGAACTGAAGTAGCTGCTGACT -ACGGAACTGAAGTAGCTGCAACCT -ACGGAACTGAAGTAGCTGGCTACT -ACGGAACTGAAGTAGCTGGGATCT -ACGGAACTGAAGTAGCTGAAGGCT -ACGGAACTGAAGTAGCTGTCAACC -ACGGAACTGAAGTAGCTGTGTTCC -ACGGAACTGAAGTAGCTGATTCCC -ACGGAACTGAAGTAGCTGTTCTCG -ACGGAACTGAAGTAGCTGTAGACG -ACGGAACTGAAGTAGCTGGTAACG -ACGGAACTGAAGTAGCTGACTTCG -ACGGAACTGAAGTAGCTGTACGCA -ACGGAACTGAAGTAGCTGCTTGCA -ACGGAACTGAAGTAGCTGCGAACA -ACGGAACTGAAGTAGCTGCAGTCA -ACGGAACTGAAGTAGCTGGATCCA -ACGGAACTGAAGTAGCTGACGACA -ACGGAACTGAAGTAGCTGAGCTCA -ACGGAACTGAAGTAGCTGTCACGT -ACGGAACTGAAGTAGCTGCGTAGT -ACGGAACTGAAGTAGCTGGTCAGT -ACGGAACTGAAGTAGCTGGAAGGT -ACGGAACTGAAGTAGCTGAACCGT -ACGGAACTGAAGTAGCTGTTGTGC -ACGGAACTGAAGTAGCTGCTAAGC -ACGGAACTGAAGTAGCTGACTAGC -ACGGAACTGAAGTAGCTGAGATGC -ACGGAACTGAAGTAGCTGTGAAGG -ACGGAACTGAAGTAGCTGCAATGG -ACGGAACTGAAGTAGCTGATGAGG -ACGGAACTGAAGTAGCTGAATGGG -ACGGAACTGAAGTAGCTGTCCTGA -ACGGAACTGAAGTAGCTGTAGCGA -ACGGAACTGAAGTAGCTGCACAGA -ACGGAACTGAAGTAGCTGGCAAGA -ACGGAACTGAAGTAGCTGGGTTGA -ACGGAACTGAAGTAGCTGTCCGAT -ACGGAACTGAAGTAGCTGTGGCAT -ACGGAACTGAAGTAGCTGCGAGAT -ACGGAACTGAAGTAGCTGTACCAC -ACGGAACTGAAGTAGCTGCAGAAC -ACGGAACTGAAGTAGCTGGTCTAC -ACGGAACTGAAGTAGCTGACGTAC -ACGGAACTGAAGTAGCTGAGTGAC -ACGGAACTGAAGTAGCTGCTGTAG -ACGGAACTGAAGTAGCTGCCTAAG -ACGGAACTGAAGTAGCTGGTTCAG -ACGGAACTGAAGTAGCTGGCATAG -ACGGAACTGAAGTAGCTGGACAAG -ACGGAACTGAAGTAGCTGAAGCAG -ACGGAACTGAAGTAGCTGCGTCAA -ACGGAACTGAAGTAGCTGGCTGAA -ACGGAACTGAAGTAGCTGAGTACG -ACGGAACTGAAGTAGCTGATCCGA -ACGGAACTGAAGTAGCTGATGGGA -ACGGAACTGAAGTAGCTGGTGCAA -ACGGAACTGAAGTAGCTGGAGGAA -ACGGAACTGAAGTAGCTGCAGGTA -ACGGAACTGAAGTAGCTGGACTCT -ACGGAACTGAAGTAGCTGAGTCCT -ACGGAACTGAAGTAGCTGTAAGCC -ACGGAACTGAAGTAGCTGATAGCC -ACGGAACTGAAGTAGCTGTAACCG -ACGGAACTGAAGTAGCTGATGCCA -ACGGAACTGAAGAAGCCTGGAAAC -ACGGAACTGAAGAAGCCTAACACC -ACGGAACTGAAGAAGCCTATCGAG -ACGGAACTGAAGAAGCCTCTCCTT -ACGGAACTGAAGAAGCCTCCTGTT -ACGGAACTGAAGAAGCCTCGGTTT -ACGGAACTGAAGAAGCCTGTGGTT -ACGGAACTGAAGAAGCCTGCCTTT -ACGGAACTGAAGAAGCCTGGTCTT -ACGGAACTGAAGAAGCCTACGCTT -ACGGAACTGAAGAAGCCTAGCGTT -ACGGAACTGAAGAAGCCTTTCGTC -ACGGAACTGAAGAAGCCTTCTCTC -ACGGAACTGAAGAAGCCTTGGATC -ACGGAACTGAAGAAGCCTCACTTC -ACGGAACTGAAGAAGCCTGTACTC -ACGGAACTGAAGAAGCCTGATGTC -ACGGAACTGAAGAAGCCTACAGTC -ACGGAACTGAAGAAGCCTTTGCTG -ACGGAACTGAAGAAGCCTTCCATG -ACGGAACTGAAGAAGCCTTGTGTG -ACGGAACTGAAGAAGCCTCTAGTG -ACGGAACTGAAGAAGCCTCATCTG -ACGGAACTGAAGAAGCCTGAGTTG -ACGGAACTGAAGAAGCCTAGACTG -ACGGAACTGAAGAAGCCTTCGGTA -ACGGAACTGAAGAAGCCTTGCCTA -ACGGAACTGAAGAAGCCTCCACTA -ACGGAACTGAAGAAGCCTGGAGTA -ACGGAACTGAAGAAGCCTTCGTCT -ACGGAACTGAAGAAGCCTTGCACT -ACGGAACTGAAGAAGCCTCTGACT -ACGGAACTGAAGAAGCCTCAACCT -ACGGAACTGAAGAAGCCTGCTACT -ACGGAACTGAAGAAGCCTGGATCT -ACGGAACTGAAGAAGCCTAAGGCT -ACGGAACTGAAGAAGCCTTCAACC -ACGGAACTGAAGAAGCCTTGTTCC -ACGGAACTGAAGAAGCCTATTCCC -ACGGAACTGAAGAAGCCTTTCTCG -ACGGAACTGAAGAAGCCTTAGACG -ACGGAACTGAAGAAGCCTGTAACG -ACGGAACTGAAGAAGCCTACTTCG -ACGGAACTGAAGAAGCCTTACGCA -ACGGAACTGAAGAAGCCTCTTGCA -ACGGAACTGAAGAAGCCTCGAACA -ACGGAACTGAAGAAGCCTCAGTCA -ACGGAACTGAAGAAGCCTGATCCA -ACGGAACTGAAGAAGCCTACGACA -ACGGAACTGAAGAAGCCTAGCTCA -ACGGAACTGAAGAAGCCTTCACGT -ACGGAACTGAAGAAGCCTCGTAGT -ACGGAACTGAAGAAGCCTGTCAGT -ACGGAACTGAAGAAGCCTGAAGGT -ACGGAACTGAAGAAGCCTAACCGT -ACGGAACTGAAGAAGCCTTTGTGC -ACGGAACTGAAGAAGCCTCTAAGC -ACGGAACTGAAGAAGCCTACTAGC -ACGGAACTGAAGAAGCCTAGATGC -ACGGAACTGAAGAAGCCTTGAAGG -ACGGAACTGAAGAAGCCTCAATGG -ACGGAACTGAAGAAGCCTATGAGG -ACGGAACTGAAGAAGCCTAATGGG -ACGGAACTGAAGAAGCCTTCCTGA -ACGGAACTGAAGAAGCCTTAGCGA -ACGGAACTGAAGAAGCCTCACAGA -ACGGAACTGAAGAAGCCTGCAAGA -ACGGAACTGAAGAAGCCTGGTTGA -ACGGAACTGAAGAAGCCTTCCGAT -ACGGAACTGAAGAAGCCTTGGCAT -ACGGAACTGAAGAAGCCTCGAGAT -ACGGAACTGAAGAAGCCTTACCAC -ACGGAACTGAAGAAGCCTCAGAAC -ACGGAACTGAAGAAGCCTGTCTAC -ACGGAACTGAAGAAGCCTACGTAC -ACGGAACTGAAGAAGCCTAGTGAC -ACGGAACTGAAGAAGCCTCTGTAG -ACGGAACTGAAGAAGCCTCCTAAG -ACGGAACTGAAGAAGCCTGTTCAG -ACGGAACTGAAGAAGCCTGCATAG -ACGGAACTGAAGAAGCCTGACAAG -ACGGAACTGAAGAAGCCTAAGCAG -ACGGAACTGAAGAAGCCTCGTCAA -ACGGAACTGAAGAAGCCTGCTGAA -ACGGAACTGAAGAAGCCTAGTACG -ACGGAACTGAAGAAGCCTATCCGA -ACGGAACTGAAGAAGCCTATGGGA -ACGGAACTGAAGAAGCCTGTGCAA -ACGGAACTGAAGAAGCCTGAGGAA -ACGGAACTGAAGAAGCCTCAGGTA -ACGGAACTGAAGAAGCCTGACTCT -ACGGAACTGAAGAAGCCTAGTCCT -ACGGAACTGAAGAAGCCTTAAGCC -ACGGAACTGAAGAAGCCTATAGCC -ACGGAACTGAAGAAGCCTTAACCG -ACGGAACTGAAGAAGCCTATGCCA -ACGGAACTGAAGCAGGTTGGAAAC -ACGGAACTGAAGCAGGTTAACACC -ACGGAACTGAAGCAGGTTATCGAG -ACGGAACTGAAGCAGGTTCTCCTT -ACGGAACTGAAGCAGGTTCCTGTT -ACGGAACTGAAGCAGGTTCGGTTT -ACGGAACTGAAGCAGGTTGTGGTT -ACGGAACTGAAGCAGGTTGCCTTT -ACGGAACTGAAGCAGGTTGGTCTT -ACGGAACTGAAGCAGGTTACGCTT -ACGGAACTGAAGCAGGTTAGCGTT -ACGGAACTGAAGCAGGTTTTCGTC -ACGGAACTGAAGCAGGTTTCTCTC -ACGGAACTGAAGCAGGTTTGGATC -ACGGAACTGAAGCAGGTTCACTTC -ACGGAACTGAAGCAGGTTGTACTC -ACGGAACTGAAGCAGGTTGATGTC -ACGGAACTGAAGCAGGTTACAGTC -ACGGAACTGAAGCAGGTTTTGCTG -ACGGAACTGAAGCAGGTTTCCATG -ACGGAACTGAAGCAGGTTTGTGTG -ACGGAACTGAAGCAGGTTCTAGTG -ACGGAACTGAAGCAGGTTCATCTG -ACGGAACTGAAGCAGGTTGAGTTG -ACGGAACTGAAGCAGGTTAGACTG -ACGGAACTGAAGCAGGTTTCGGTA -ACGGAACTGAAGCAGGTTTGCCTA -ACGGAACTGAAGCAGGTTCCACTA -ACGGAACTGAAGCAGGTTGGAGTA -ACGGAACTGAAGCAGGTTTCGTCT -ACGGAACTGAAGCAGGTTTGCACT -ACGGAACTGAAGCAGGTTCTGACT -ACGGAACTGAAGCAGGTTCAACCT -ACGGAACTGAAGCAGGTTGCTACT -ACGGAACTGAAGCAGGTTGGATCT -ACGGAACTGAAGCAGGTTAAGGCT -ACGGAACTGAAGCAGGTTTCAACC -ACGGAACTGAAGCAGGTTTGTTCC -ACGGAACTGAAGCAGGTTATTCCC -ACGGAACTGAAGCAGGTTTTCTCG -ACGGAACTGAAGCAGGTTTAGACG -ACGGAACTGAAGCAGGTTGTAACG -ACGGAACTGAAGCAGGTTACTTCG -ACGGAACTGAAGCAGGTTTACGCA -ACGGAACTGAAGCAGGTTCTTGCA -ACGGAACTGAAGCAGGTTCGAACA -ACGGAACTGAAGCAGGTTCAGTCA -ACGGAACTGAAGCAGGTTGATCCA -ACGGAACTGAAGCAGGTTACGACA -ACGGAACTGAAGCAGGTTAGCTCA -ACGGAACTGAAGCAGGTTTCACGT -ACGGAACTGAAGCAGGTTCGTAGT -ACGGAACTGAAGCAGGTTGTCAGT -ACGGAACTGAAGCAGGTTGAAGGT -ACGGAACTGAAGCAGGTTAACCGT -ACGGAACTGAAGCAGGTTTTGTGC -ACGGAACTGAAGCAGGTTCTAAGC -ACGGAACTGAAGCAGGTTACTAGC -ACGGAACTGAAGCAGGTTAGATGC -ACGGAACTGAAGCAGGTTTGAAGG -ACGGAACTGAAGCAGGTTCAATGG -ACGGAACTGAAGCAGGTTATGAGG -ACGGAACTGAAGCAGGTTAATGGG -ACGGAACTGAAGCAGGTTTCCTGA -ACGGAACTGAAGCAGGTTTAGCGA -ACGGAACTGAAGCAGGTTCACAGA -ACGGAACTGAAGCAGGTTGCAAGA -ACGGAACTGAAGCAGGTTGGTTGA -ACGGAACTGAAGCAGGTTTCCGAT -ACGGAACTGAAGCAGGTTTGGCAT -ACGGAACTGAAGCAGGTTCGAGAT -ACGGAACTGAAGCAGGTTTACCAC -ACGGAACTGAAGCAGGTTCAGAAC -ACGGAACTGAAGCAGGTTGTCTAC -ACGGAACTGAAGCAGGTTACGTAC -ACGGAACTGAAGCAGGTTAGTGAC -ACGGAACTGAAGCAGGTTCTGTAG -ACGGAACTGAAGCAGGTTCCTAAG -ACGGAACTGAAGCAGGTTGTTCAG -ACGGAACTGAAGCAGGTTGCATAG -ACGGAACTGAAGCAGGTTGACAAG -ACGGAACTGAAGCAGGTTAAGCAG -ACGGAACTGAAGCAGGTTCGTCAA -ACGGAACTGAAGCAGGTTGCTGAA -ACGGAACTGAAGCAGGTTAGTACG -ACGGAACTGAAGCAGGTTATCCGA -ACGGAACTGAAGCAGGTTATGGGA -ACGGAACTGAAGCAGGTTGTGCAA -ACGGAACTGAAGCAGGTTGAGGAA -ACGGAACTGAAGCAGGTTCAGGTA -ACGGAACTGAAGCAGGTTGACTCT -ACGGAACTGAAGCAGGTTAGTCCT -ACGGAACTGAAGCAGGTTTAAGCC -ACGGAACTGAAGCAGGTTATAGCC -ACGGAACTGAAGCAGGTTTAACCG -ACGGAACTGAAGCAGGTTATGCCA -ACGGAACTGAAGTAGGCAGGAAAC -ACGGAACTGAAGTAGGCAAACACC -ACGGAACTGAAGTAGGCAATCGAG -ACGGAACTGAAGTAGGCACTCCTT -ACGGAACTGAAGTAGGCACCTGTT -ACGGAACTGAAGTAGGCACGGTTT -ACGGAACTGAAGTAGGCAGTGGTT -ACGGAACTGAAGTAGGCAGCCTTT -ACGGAACTGAAGTAGGCAGGTCTT -ACGGAACTGAAGTAGGCAACGCTT -ACGGAACTGAAGTAGGCAAGCGTT -ACGGAACTGAAGTAGGCATTCGTC -ACGGAACTGAAGTAGGCATCTCTC -ACGGAACTGAAGTAGGCATGGATC -ACGGAACTGAAGTAGGCACACTTC -ACGGAACTGAAGTAGGCAGTACTC -ACGGAACTGAAGTAGGCAGATGTC -ACGGAACTGAAGTAGGCAACAGTC -ACGGAACTGAAGTAGGCATTGCTG -ACGGAACTGAAGTAGGCATCCATG -ACGGAACTGAAGTAGGCATGTGTG -ACGGAACTGAAGTAGGCACTAGTG -ACGGAACTGAAGTAGGCACATCTG -ACGGAACTGAAGTAGGCAGAGTTG -ACGGAACTGAAGTAGGCAAGACTG -ACGGAACTGAAGTAGGCATCGGTA -ACGGAACTGAAGTAGGCATGCCTA -ACGGAACTGAAGTAGGCACCACTA -ACGGAACTGAAGTAGGCAGGAGTA -ACGGAACTGAAGTAGGCATCGTCT -ACGGAACTGAAGTAGGCATGCACT -ACGGAACTGAAGTAGGCACTGACT -ACGGAACTGAAGTAGGCACAACCT -ACGGAACTGAAGTAGGCAGCTACT -ACGGAACTGAAGTAGGCAGGATCT -ACGGAACTGAAGTAGGCAAAGGCT -ACGGAACTGAAGTAGGCATCAACC -ACGGAACTGAAGTAGGCATGTTCC -ACGGAACTGAAGTAGGCAATTCCC -ACGGAACTGAAGTAGGCATTCTCG -ACGGAACTGAAGTAGGCATAGACG -ACGGAACTGAAGTAGGCAGTAACG -ACGGAACTGAAGTAGGCAACTTCG -ACGGAACTGAAGTAGGCATACGCA -ACGGAACTGAAGTAGGCACTTGCA -ACGGAACTGAAGTAGGCACGAACA -ACGGAACTGAAGTAGGCACAGTCA -ACGGAACTGAAGTAGGCAGATCCA -ACGGAACTGAAGTAGGCAACGACA -ACGGAACTGAAGTAGGCAAGCTCA -ACGGAACTGAAGTAGGCATCACGT -ACGGAACTGAAGTAGGCACGTAGT -ACGGAACTGAAGTAGGCAGTCAGT -ACGGAACTGAAGTAGGCAGAAGGT -ACGGAACTGAAGTAGGCAAACCGT -ACGGAACTGAAGTAGGCATTGTGC -ACGGAACTGAAGTAGGCACTAAGC -ACGGAACTGAAGTAGGCAACTAGC -ACGGAACTGAAGTAGGCAAGATGC -ACGGAACTGAAGTAGGCATGAAGG -ACGGAACTGAAGTAGGCACAATGG -ACGGAACTGAAGTAGGCAATGAGG -ACGGAACTGAAGTAGGCAAATGGG -ACGGAACTGAAGTAGGCATCCTGA -ACGGAACTGAAGTAGGCATAGCGA -ACGGAACTGAAGTAGGCACACAGA -ACGGAACTGAAGTAGGCAGCAAGA -ACGGAACTGAAGTAGGCAGGTTGA -ACGGAACTGAAGTAGGCATCCGAT -ACGGAACTGAAGTAGGCATGGCAT -ACGGAACTGAAGTAGGCACGAGAT -ACGGAACTGAAGTAGGCATACCAC -ACGGAACTGAAGTAGGCACAGAAC -ACGGAACTGAAGTAGGCAGTCTAC -ACGGAACTGAAGTAGGCAACGTAC -ACGGAACTGAAGTAGGCAAGTGAC -ACGGAACTGAAGTAGGCACTGTAG -ACGGAACTGAAGTAGGCACCTAAG -ACGGAACTGAAGTAGGCAGTTCAG -ACGGAACTGAAGTAGGCAGCATAG -ACGGAACTGAAGTAGGCAGACAAG -ACGGAACTGAAGTAGGCAAAGCAG -ACGGAACTGAAGTAGGCACGTCAA -ACGGAACTGAAGTAGGCAGCTGAA -ACGGAACTGAAGTAGGCAAGTACG -ACGGAACTGAAGTAGGCAATCCGA -ACGGAACTGAAGTAGGCAATGGGA -ACGGAACTGAAGTAGGCAGTGCAA -ACGGAACTGAAGTAGGCAGAGGAA -ACGGAACTGAAGTAGGCACAGGTA -ACGGAACTGAAGTAGGCAGACTCT -ACGGAACTGAAGTAGGCAAGTCCT -ACGGAACTGAAGTAGGCATAAGCC -ACGGAACTGAAGTAGGCAATAGCC -ACGGAACTGAAGTAGGCATAACCG -ACGGAACTGAAGTAGGCAATGCCA -ACGGAACTGAAGAAGGACGGAAAC -ACGGAACTGAAGAAGGACAACACC -ACGGAACTGAAGAAGGACATCGAG -ACGGAACTGAAGAAGGACCTCCTT -ACGGAACTGAAGAAGGACCCTGTT -ACGGAACTGAAGAAGGACCGGTTT -ACGGAACTGAAGAAGGACGTGGTT -ACGGAACTGAAGAAGGACGCCTTT -ACGGAACTGAAGAAGGACGGTCTT -ACGGAACTGAAGAAGGACACGCTT -ACGGAACTGAAGAAGGACAGCGTT -ACGGAACTGAAGAAGGACTTCGTC -ACGGAACTGAAGAAGGACTCTCTC -ACGGAACTGAAGAAGGACTGGATC -ACGGAACTGAAGAAGGACCACTTC -ACGGAACTGAAGAAGGACGTACTC -ACGGAACTGAAGAAGGACGATGTC -ACGGAACTGAAGAAGGACACAGTC -ACGGAACTGAAGAAGGACTTGCTG -ACGGAACTGAAGAAGGACTCCATG -ACGGAACTGAAGAAGGACTGTGTG -ACGGAACTGAAGAAGGACCTAGTG -ACGGAACTGAAGAAGGACCATCTG -ACGGAACTGAAGAAGGACGAGTTG -ACGGAACTGAAGAAGGACAGACTG -ACGGAACTGAAGAAGGACTCGGTA -ACGGAACTGAAGAAGGACTGCCTA -ACGGAACTGAAGAAGGACCCACTA -ACGGAACTGAAGAAGGACGGAGTA -ACGGAACTGAAGAAGGACTCGTCT -ACGGAACTGAAGAAGGACTGCACT -ACGGAACTGAAGAAGGACCTGACT -ACGGAACTGAAGAAGGACCAACCT -ACGGAACTGAAGAAGGACGCTACT -ACGGAACTGAAGAAGGACGGATCT -ACGGAACTGAAGAAGGACAAGGCT -ACGGAACTGAAGAAGGACTCAACC -ACGGAACTGAAGAAGGACTGTTCC -ACGGAACTGAAGAAGGACATTCCC -ACGGAACTGAAGAAGGACTTCTCG -ACGGAACTGAAGAAGGACTAGACG -ACGGAACTGAAGAAGGACGTAACG -ACGGAACTGAAGAAGGACACTTCG -ACGGAACTGAAGAAGGACTACGCA -ACGGAACTGAAGAAGGACCTTGCA -ACGGAACTGAAGAAGGACCGAACA -ACGGAACTGAAGAAGGACCAGTCA -ACGGAACTGAAGAAGGACGATCCA -ACGGAACTGAAGAAGGACACGACA -ACGGAACTGAAGAAGGACAGCTCA -ACGGAACTGAAGAAGGACTCACGT -ACGGAACTGAAGAAGGACCGTAGT -ACGGAACTGAAGAAGGACGTCAGT -ACGGAACTGAAGAAGGACGAAGGT -ACGGAACTGAAGAAGGACAACCGT -ACGGAACTGAAGAAGGACTTGTGC -ACGGAACTGAAGAAGGACCTAAGC -ACGGAACTGAAGAAGGACACTAGC -ACGGAACTGAAGAAGGACAGATGC -ACGGAACTGAAGAAGGACTGAAGG -ACGGAACTGAAGAAGGACCAATGG -ACGGAACTGAAGAAGGACATGAGG -ACGGAACTGAAGAAGGACAATGGG -ACGGAACTGAAGAAGGACTCCTGA -ACGGAACTGAAGAAGGACTAGCGA -ACGGAACTGAAGAAGGACCACAGA -ACGGAACTGAAGAAGGACGCAAGA -ACGGAACTGAAGAAGGACGGTTGA -ACGGAACTGAAGAAGGACTCCGAT -ACGGAACTGAAGAAGGACTGGCAT -ACGGAACTGAAGAAGGACCGAGAT -ACGGAACTGAAGAAGGACTACCAC -ACGGAACTGAAGAAGGACCAGAAC -ACGGAACTGAAGAAGGACGTCTAC -ACGGAACTGAAGAAGGACACGTAC -ACGGAACTGAAGAAGGACAGTGAC -ACGGAACTGAAGAAGGACCTGTAG -ACGGAACTGAAGAAGGACCCTAAG -ACGGAACTGAAGAAGGACGTTCAG -ACGGAACTGAAGAAGGACGCATAG -ACGGAACTGAAGAAGGACGACAAG -ACGGAACTGAAGAAGGACAAGCAG -ACGGAACTGAAGAAGGACCGTCAA -ACGGAACTGAAGAAGGACGCTGAA -ACGGAACTGAAGAAGGACAGTACG -ACGGAACTGAAGAAGGACATCCGA -ACGGAACTGAAGAAGGACATGGGA -ACGGAACTGAAGAAGGACGTGCAA -ACGGAACTGAAGAAGGACGAGGAA -ACGGAACTGAAGAAGGACCAGGTA -ACGGAACTGAAGAAGGACGACTCT -ACGGAACTGAAGAAGGACAGTCCT -ACGGAACTGAAGAAGGACTAAGCC -ACGGAACTGAAGAAGGACATAGCC -ACGGAACTGAAGAAGGACTAACCG -ACGGAACTGAAGAAGGACATGCCA -ACGGAACTGAAGCAGAAGGGAAAC -ACGGAACTGAAGCAGAAGAACACC -ACGGAACTGAAGCAGAAGATCGAG -ACGGAACTGAAGCAGAAGCTCCTT -ACGGAACTGAAGCAGAAGCCTGTT -ACGGAACTGAAGCAGAAGCGGTTT -ACGGAACTGAAGCAGAAGGTGGTT -ACGGAACTGAAGCAGAAGGCCTTT -ACGGAACTGAAGCAGAAGGGTCTT -ACGGAACTGAAGCAGAAGACGCTT -ACGGAACTGAAGCAGAAGAGCGTT -ACGGAACTGAAGCAGAAGTTCGTC -ACGGAACTGAAGCAGAAGTCTCTC -ACGGAACTGAAGCAGAAGTGGATC -ACGGAACTGAAGCAGAAGCACTTC -ACGGAACTGAAGCAGAAGGTACTC -ACGGAACTGAAGCAGAAGGATGTC -ACGGAACTGAAGCAGAAGACAGTC -ACGGAACTGAAGCAGAAGTTGCTG -ACGGAACTGAAGCAGAAGTCCATG -ACGGAACTGAAGCAGAAGTGTGTG -ACGGAACTGAAGCAGAAGCTAGTG -ACGGAACTGAAGCAGAAGCATCTG -ACGGAACTGAAGCAGAAGGAGTTG -ACGGAACTGAAGCAGAAGAGACTG -ACGGAACTGAAGCAGAAGTCGGTA -ACGGAACTGAAGCAGAAGTGCCTA -ACGGAACTGAAGCAGAAGCCACTA -ACGGAACTGAAGCAGAAGGGAGTA -ACGGAACTGAAGCAGAAGTCGTCT -ACGGAACTGAAGCAGAAGTGCACT -ACGGAACTGAAGCAGAAGCTGACT -ACGGAACTGAAGCAGAAGCAACCT -ACGGAACTGAAGCAGAAGGCTACT -ACGGAACTGAAGCAGAAGGGATCT -ACGGAACTGAAGCAGAAGAAGGCT -ACGGAACTGAAGCAGAAGTCAACC -ACGGAACTGAAGCAGAAGTGTTCC -ACGGAACTGAAGCAGAAGATTCCC -ACGGAACTGAAGCAGAAGTTCTCG -ACGGAACTGAAGCAGAAGTAGACG -ACGGAACTGAAGCAGAAGGTAACG -ACGGAACTGAAGCAGAAGACTTCG -ACGGAACTGAAGCAGAAGTACGCA -ACGGAACTGAAGCAGAAGCTTGCA -ACGGAACTGAAGCAGAAGCGAACA -ACGGAACTGAAGCAGAAGCAGTCA -ACGGAACTGAAGCAGAAGGATCCA -ACGGAACTGAAGCAGAAGACGACA -ACGGAACTGAAGCAGAAGAGCTCA -ACGGAACTGAAGCAGAAGTCACGT -ACGGAACTGAAGCAGAAGCGTAGT -ACGGAACTGAAGCAGAAGGTCAGT -ACGGAACTGAAGCAGAAGGAAGGT -ACGGAACTGAAGCAGAAGAACCGT -ACGGAACTGAAGCAGAAGTTGTGC -ACGGAACTGAAGCAGAAGCTAAGC -ACGGAACTGAAGCAGAAGACTAGC -ACGGAACTGAAGCAGAAGAGATGC -ACGGAACTGAAGCAGAAGTGAAGG -ACGGAACTGAAGCAGAAGCAATGG -ACGGAACTGAAGCAGAAGATGAGG -ACGGAACTGAAGCAGAAGAATGGG -ACGGAACTGAAGCAGAAGTCCTGA -ACGGAACTGAAGCAGAAGTAGCGA -ACGGAACTGAAGCAGAAGCACAGA -ACGGAACTGAAGCAGAAGGCAAGA -ACGGAACTGAAGCAGAAGGGTTGA -ACGGAACTGAAGCAGAAGTCCGAT -ACGGAACTGAAGCAGAAGTGGCAT -ACGGAACTGAAGCAGAAGCGAGAT -ACGGAACTGAAGCAGAAGTACCAC -ACGGAACTGAAGCAGAAGCAGAAC -ACGGAACTGAAGCAGAAGGTCTAC -ACGGAACTGAAGCAGAAGACGTAC -ACGGAACTGAAGCAGAAGAGTGAC -ACGGAACTGAAGCAGAAGCTGTAG -ACGGAACTGAAGCAGAAGCCTAAG -ACGGAACTGAAGCAGAAGGTTCAG -ACGGAACTGAAGCAGAAGGCATAG -ACGGAACTGAAGCAGAAGGACAAG -ACGGAACTGAAGCAGAAGAAGCAG -ACGGAACTGAAGCAGAAGCGTCAA -ACGGAACTGAAGCAGAAGGCTGAA -ACGGAACTGAAGCAGAAGAGTACG -ACGGAACTGAAGCAGAAGATCCGA -ACGGAACTGAAGCAGAAGATGGGA -ACGGAACTGAAGCAGAAGGTGCAA -ACGGAACTGAAGCAGAAGGAGGAA -ACGGAACTGAAGCAGAAGCAGGTA -ACGGAACTGAAGCAGAAGGACTCT -ACGGAACTGAAGCAGAAGAGTCCT -ACGGAACTGAAGCAGAAGTAAGCC -ACGGAACTGAAGCAGAAGATAGCC -ACGGAACTGAAGCAGAAGTAACCG -ACGGAACTGAAGCAGAAGATGCCA -ACGGAACTGAAGCAACGTGGAAAC -ACGGAACTGAAGCAACGTAACACC -ACGGAACTGAAGCAACGTATCGAG -ACGGAACTGAAGCAACGTCTCCTT -ACGGAACTGAAGCAACGTCCTGTT -ACGGAACTGAAGCAACGTCGGTTT -ACGGAACTGAAGCAACGTGTGGTT -ACGGAACTGAAGCAACGTGCCTTT -ACGGAACTGAAGCAACGTGGTCTT -ACGGAACTGAAGCAACGTACGCTT -ACGGAACTGAAGCAACGTAGCGTT -ACGGAACTGAAGCAACGTTTCGTC -ACGGAACTGAAGCAACGTTCTCTC -ACGGAACTGAAGCAACGTTGGATC -ACGGAACTGAAGCAACGTCACTTC -ACGGAACTGAAGCAACGTGTACTC -ACGGAACTGAAGCAACGTGATGTC -ACGGAACTGAAGCAACGTACAGTC -ACGGAACTGAAGCAACGTTTGCTG -ACGGAACTGAAGCAACGTTCCATG -ACGGAACTGAAGCAACGTTGTGTG -ACGGAACTGAAGCAACGTCTAGTG -ACGGAACTGAAGCAACGTCATCTG -ACGGAACTGAAGCAACGTGAGTTG -ACGGAACTGAAGCAACGTAGACTG -ACGGAACTGAAGCAACGTTCGGTA -ACGGAACTGAAGCAACGTTGCCTA -ACGGAACTGAAGCAACGTCCACTA -ACGGAACTGAAGCAACGTGGAGTA -ACGGAACTGAAGCAACGTTCGTCT -ACGGAACTGAAGCAACGTTGCACT -ACGGAACTGAAGCAACGTCTGACT -ACGGAACTGAAGCAACGTCAACCT -ACGGAACTGAAGCAACGTGCTACT -ACGGAACTGAAGCAACGTGGATCT -ACGGAACTGAAGCAACGTAAGGCT -ACGGAACTGAAGCAACGTTCAACC -ACGGAACTGAAGCAACGTTGTTCC -ACGGAACTGAAGCAACGTATTCCC -ACGGAACTGAAGCAACGTTTCTCG -ACGGAACTGAAGCAACGTTAGACG -ACGGAACTGAAGCAACGTGTAACG -ACGGAACTGAAGCAACGTACTTCG -ACGGAACTGAAGCAACGTTACGCA -ACGGAACTGAAGCAACGTCTTGCA -ACGGAACTGAAGCAACGTCGAACA -ACGGAACTGAAGCAACGTCAGTCA -ACGGAACTGAAGCAACGTGATCCA -ACGGAACTGAAGCAACGTACGACA -ACGGAACTGAAGCAACGTAGCTCA -ACGGAACTGAAGCAACGTTCACGT -ACGGAACTGAAGCAACGTCGTAGT -ACGGAACTGAAGCAACGTGTCAGT -ACGGAACTGAAGCAACGTGAAGGT -ACGGAACTGAAGCAACGTAACCGT -ACGGAACTGAAGCAACGTTTGTGC -ACGGAACTGAAGCAACGTCTAAGC -ACGGAACTGAAGCAACGTACTAGC -ACGGAACTGAAGCAACGTAGATGC -ACGGAACTGAAGCAACGTTGAAGG -ACGGAACTGAAGCAACGTCAATGG -ACGGAACTGAAGCAACGTATGAGG -ACGGAACTGAAGCAACGTAATGGG -ACGGAACTGAAGCAACGTTCCTGA -ACGGAACTGAAGCAACGTTAGCGA -ACGGAACTGAAGCAACGTCACAGA -ACGGAACTGAAGCAACGTGCAAGA -ACGGAACTGAAGCAACGTGGTTGA -ACGGAACTGAAGCAACGTTCCGAT -ACGGAACTGAAGCAACGTTGGCAT -ACGGAACTGAAGCAACGTCGAGAT -ACGGAACTGAAGCAACGTTACCAC -ACGGAACTGAAGCAACGTCAGAAC -ACGGAACTGAAGCAACGTGTCTAC -ACGGAACTGAAGCAACGTACGTAC -ACGGAACTGAAGCAACGTAGTGAC -ACGGAACTGAAGCAACGTCTGTAG -ACGGAACTGAAGCAACGTCCTAAG -ACGGAACTGAAGCAACGTGTTCAG -ACGGAACTGAAGCAACGTGCATAG -ACGGAACTGAAGCAACGTGACAAG -ACGGAACTGAAGCAACGTAAGCAG -ACGGAACTGAAGCAACGTCGTCAA -ACGGAACTGAAGCAACGTGCTGAA -ACGGAACTGAAGCAACGTAGTACG -ACGGAACTGAAGCAACGTATCCGA -ACGGAACTGAAGCAACGTATGGGA -ACGGAACTGAAGCAACGTGTGCAA -ACGGAACTGAAGCAACGTGAGGAA -ACGGAACTGAAGCAACGTCAGGTA -ACGGAACTGAAGCAACGTGACTCT -ACGGAACTGAAGCAACGTAGTCCT -ACGGAACTGAAGCAACGTTAAGCC -ACGGAACTGAAGCAACGTATAGCC -ACGGAACTGAAGCAACGTTAACCG -ACGGAACTGAAGCAACGTATGCCA -ACGGAACTGAAGGAAGCTGGAAAC -ACGGAACTGAAGGAAGCTAACACC -ACGGAACTGAAGGAAGCTATCGAG -ACGGAACTGAAGGAAGCTCTCCTT -ACGGAACTGAAGGAAGCTCCTGTT -ACGGAACTGAAGGAAGCTCGGTTT -ACGGAACTGAAGGAAGCTGTGGTT -ACGGAACTGAAGGAAGCTGCCTTT -ACGGAACTGAAGGAAGCTGGTCTT -ACGGAACTGAAGGAAGCTACGCTT -ACGGAACTGAAGGAAGCTAGCGTT -ACGGAACTGAAGGAAGCTTTCGTC -ACGGAACTGAAGGAAGCTTCTCTC -ACGGAACTGAAGGAAGCTTGGATC -ACGGAACTGAAGGAAGCTCACTTC -ACGGAACTGAAGGAAGCTGTACTC -ACGGAACTGAAGGAAGCTGATGTC -ACGGAACTGAAGGAAGCTACAGTC -ACGGAACTGAAGGAAGCTTTGCTG -ACGGAACTGAAGGAAGCTTCCATG -ACGGAACTGAAGGAAGCTTGTGTG -ACGGAACTGAAGGAAGCTCTAGTG -ACGGAACTGAAGGAAGCTCATCTG -ACGGAACTGAAGGAAGCTGAGTTG -ACGGAACTGAAGGAAGCTAGACTG -ACGGAACTGAAGGAAGCTTCGGTA -ACGGAACTGAAGGAAGCTTGCCTA -ACGGAACTGAAGGAAGCTCCACTA -ACGGAACTGAAGGAAGCTGGAGTA -ACGGAACTGAAGGAAGCTTCGTCT -ACGGAACTGAAGGAAGCTTGCACT -ACGGAACTGAAGGAAGCTCTGACT -ACGGAACTGAAGGAAGCTCAACCT -ACGGAACTGAAGGAAGCTGCTACT -ACGGAACTGAAGGAAGCTGGATCT -ACGGAACTGAAGGAAGCTAAGGCT -ACGGAACTGAAGGAAGCTTCAACC -ACGGAACTGAAGGAAGCTTGTTCC -ACGGAACTGAAGGAAGCTATTCCC -ACGGAACTGAAGGAAGCTTTCTCG -ACGGAACTGAAGGAAGCTTAGACG -ACGGAACTGAAGGAAGCTGTAACG -ACGGAACTGAAGGAAGCTACTTCG -ACGGAACTGAAGGAAGCTTACGCA -ACGGAACTGAAGGAAGCTCTTGCA -ACGGAACTGAAGGAAGCTCGAACA -ACGGAACTGAAGGAAGCTCAGTCA -ACGGAACTGAAGGAAGCTGATCCA -ACGGAACTGAAGGAAGCTACGACA -ACGGAACTGAAGGAAGCTAGCTCA -ACGGAACTGAAGGAAGCTTCACGT -ACGGAACTGAAGGAAGCTCGTAGT -ACGGAACTGAAGGAAGCTGTCAGT -ACGGAACTGAAGGAAGCTGAAGGT -ACGGAACTGAAGGAAGCTAACCGT -ACGGAACTGAAGGAAGCTTTGTGC -ACGGAACTGAAGGAAGCTCTAAGC -ACGGAACTGAAGGAAGCTACTAGC -ACGGAACTGAAGGAAGCTAGATGC -ACGGAACTGAAGGAAGCTTGAAGG -ACGGAACTGAAGGAAGCTCAATGG -ACGGAACTGAAGGAAGCTATGAGG -ACGGAACTGAAGGAAGCTAATGGG -ACGGAACTGAAGGAAGCTTCCTGA -ACGGAACTGAAGGAAGCTTAGCGA -ACGGAACTGAAGGAAGCTCACAGA -ACGGAACTGAAGGAAGCTGCAAGA -ACGGAACTGAAGGAAGCTGGTTGA -ACGGAACTGAAGGAAGCTTCCGAT -ACGGAACTGAAGGAAGCTTGGCAT -ACGGAACTGAAGGAAGCTCGAGAT -ACGGAACTGAAGGAAGCTTACCAC -ACGGAACTGAAGGAAGCTCAGAAC -ACGGAACTGAAGGAAGCTGTCTAC -ACGGAACTGAAGGAAGCTACGTAC -ACGGAACTGAAGGAAGCTAGTGAC -ACGGAACTGAAGGAAGCTCTGTAG -ACGGAACTGAAGGAAGCTCCTAAG -ACGGAACTGAAGGAAGCTGTTCAG -ACGGAACTGAAGGAAGCTGCATAG -ACGGAACTGAAGGAAGCTGACAAG -ACGGAACTGAAGGAAGCTAAGCAG -ACGGAACTGAAGGAAGCTCGTCAA -ACGGAACTGAAGGAAGCTGCTGAA -ACGGAACTGAAGGAAGCTAGTACG -ACGGAACTGAAGGAAGCTATCCGA -ACGGAACTGAAGGAAGCTATGGGA -ACGGAACTGAAGGAAGCTGTGCAA -ACGGAACTGAAGGAAGCTGAGGAA -ACGGAACTGAAGGAAGCTCAGGTA -ACGGAACTGAAGGAAGCTGACTCT -ACGGAACTGAAGGAAGCTAGTCCT -ACGGAACTGAAGGAAGCTTAAGCC -ACGGAACTGAAGGAAGCTATAGCC -ACGGAACTGAAGGAAGCTTAACCG -ACGGAACTGAAGGAAGCTATGCCA -ACGGAACTGAAGACGAGTGGAAAC -ACGGAACTGAAGACGAGTAACACC -ACGGAACTGAAGACGAGTATCGAG -ACGGAACTGAAGACGAGTCTCCTT -ACGGAACTGAAGACGAGTCCTGTT -ACGGAACTGAAGACGAGTCGGTTT -ACGGAACTGAAGACGAGTGTGGTT -ACGGAACTGAAGACGAGTGCCTTT -ACGGAACTGAAGACGAGTGGTCTT -ACGGAACTGAAGACGAGTACGCTT -ACGGAACTGAAGACGAGTAGCGTT -ACGGAACTGAAGACGAGTTTCGTC -ACGGAACTGAAGACGAGTTCTCTC -ACGGAACTGAAGACGAGTTGGATC -ACGGAACTGAAGACGAGTCACTTC -ACGGAACTGAAGACGAGTGTACTC -ACGGAACTGAAGACGAGTGATGTC -ACGGAACTGAAGACGAGTACAGTC -ACGGAACTGAAGACGAGTTTGCTG -ACGGAACTGAAGACGAGTTCCATG -ACGGAACTGAAGACGAGTTGTGTG -ACGGAACTGAAGACGAGTCTAGTG -ACGGAACTGAAGACGAGTCATCTG -ACGGAACTGAAGACGAGTGAGTTG -ACGGAACTGAAGACGAGTAGACTG -ACGGAACTGAAGACGAGTTCGGTA -ACGGAACTGAAGACGAGTTGCCTA -ACGGAACTGAAGACGAGTCCACTA -ACGGAACTGAAGACGAGTGGAGTA -ACGGAACTGAAGACGAGTTCGTCT -ACGGAACTGAAGACGAGTTGCACT -ACGGAACTGAAGACGAGTCTGACT -ACGGAACTGAAGACGAGTCAACCT -ACGGAACTGAAGACGAGTGCTACT -ACGGAACTGAAGACGAGTGGATCT -ACGGAACTGAAGACGAGTAAGGCT -ACGGAACTGAAGACGAGTTCAACC -ACGGAACTGAAGACGAGTTGTTCC -ACGGAACTGAAGACGAGTATTCCC -ACGGAACTGAAGACGAGTTTCTCG -ACGGAACTGAAGACGAGTTAGACG -ACGGAACTGAAGACGAGTGTAACG -ACGGAACTGAAGACGAGTACTTCG -ACGGAACTGAAGACGAGTTACGCA -ACGGAACTGAAGACGAGTCTTGCA -ACGGAACTGAAGACGAGTCGAACA -ACGGAACTGAAGACGAGTCAGTCA -ACGGAACTGAAGACGAGTGATCCA -ACGGAACTGAAGACGAGTACGACA -ACGGAACTGAAGACGAGTAGCTCA -ACGGAACTGAAGACGAGTTCACGT -ACGGAACTGAAGACGAGTCGTAGT -ACGGAACTGAAGACGAGTGTCAGT -ACGGAACTGAAGACGAGTGAAGGT -ACGGAACTGAAGACGAGTAACCGT -ACGGAACTGAAGACGAGTTTGTGC -ACGGAACTGAAGACGAGTCTAAGC -ACGGAACTGAAGACGAGTACTAGC -ACGGAACTGAAGACGAGTAGATGC -ACGGAACTGAAGACGAGTTGAAGG -ACGGAACTGAAGACGAGTCAATGG -ACGGAACTGAAGACGAGTATGAGG -ACGGAACTGAAGACGAGTAATGGG -ACGGAACTGAAGACGAGTTCCTGA -ACGGAACTGAAGACGAGTTAGCGA -ACGGAACTGAAGACGAGTCACAGA -ACGGAACTGAAGACGAGTGCAAGA -ACGGAACTGAAGACGAGTGGTTGA -ACGGAACTGAAGACGAGTTCCGAT -ACGGAACTGAAGACGAGTTGGCAT -ACGGAACTGAAGACGAGTCGAGAT -ACGGAACTGAAGACGAGTTACCAC -ACGGAACTGAAGACGAGTCAGAAC -ACGGAACTGAAGACGAGTGTCTAC -ACGGAACTGAAGACGAGTACGTAC -ACGGAACTGAAGACGAGTAGTGAC -ACGGAACTGAAGACGAGTCTGTAG -ACGGAACTGAAGACGAGTCCTAAG -ACGGAACTGAAGACGAGTGTTCAG -ACGGAACTGAAGACGAGTGCATAG -ACGGAACTGAAGACGAGTGACAAG -ACGGAACTGAAGACGAGTAAGCAG -ACGGAACTGAAGACGAGTCGTCAA -ACGGAACTGAAGACGAGTGCTGAA -ACGGAACTGAAGACGAGTAGTACG -ACGGAACTGAAGACGAGTATCCGA -ACGGAACTGAAGACGAGTATGGGA -ACGGAACTGAAGACGAGTGTGCAA -ACGGAACTGAAGACGAGTGAGGAA -ACGGAACTGAAGACGAGTCAGGTA -ACGGAACTGAAGACGAGTGACTCT -ACGGAACTGAAGACGAGTAGTCCT -ACGGAACTGAAGACGAGTTAAGCC -ACGGAACTGAAGACGAGTATAGCC -ACGGAACTGAAGACGAGTTAACCG -ACGGAACTGAAGACGAGTATGCCA -ACGGAACTGAAGCGAATCGGAAAC -ACGGAACTGAAGCGAATCAACACC -ACGGAACTGAAGCGAATCATCGAG -ACGGAACTGAAGCGAATCCTCCTT -ACGGAACTGAAGCGAATCCCTGTT -ACGGAACTGAAGCGAATCCGGTTT -ACGGAACTGAAGCGAATCGTGGTT -ACGGAACTGAAGCGAATCGCCTTT -ACGGAACTGAAGCGAATCGGTCTT -ACGGAACTGAAGCGAATCACGCTT -ACGGAACTGAAGCGAATCAGCGTT -ACGGAACTGAAGCGAATCTTCGTC -ACGGAACTGAAGCGAATCTCTCTC -ACGGAACTGAAGCGAATCTGGATC -ACGGAACTGAAGCGAATCCACTTC -ACGGAACTGAAGCGAATCGTACTC -ACGGAACTGAAGCGAATCGATGTC -ACGGAACTGAAGCGAATCACAGTC -ACGGAACTGAAGCGAATCTTGCTG -ACGGAACTGAAGCGAATCTCCATG -ACGGAACTGAAGCGAATCTGTGTG -ACGGAACTGAAGCGAATCCTAGTG -ACGGAACTGAAGCGAATCCATCTG -ACGGAACTGAAGCGAATCGAGTTG -ACGGAACTGAAGCGAATCAGACTG -ACGGAACTGAAGCGAATCTCGGTA -ACGGAACTGAAGCGAATCTGCCTA -ACGGAACTGAAGCGAATCCCACTA -ACGGAACTGAAGCGAATCGGAGTA -ACGGAACTGAAGCGAATCTCGTCT -ACGGAACTGAAGCGAATCTGCACT -ACGGAACTGAAGCGAATCCTGACT -ACGGAACTGAAGCGAATCCAACCT -ACGGAACTGAAGCGAATCGCTACT -ACGGAACTGAAGCGAATCGGATCT -ACGGAACTGAAGCGAATCAAGGCT -ACGGAACTGAAGCGAATCTCAACC -ACGGAACTGAAGCGAATCTGTTCC -ACGGAACTGAAGCGAATCATTCCC -ACGGAACTGAAGCGAATCTTCTCG -ACGGAACTGAAGCGAATCTAGACG -ACGGAACTGAAGCGAATCGTAACG -ACGGAACTGAAGCGAATCACTTCG -ACGGAACTGAAGCGAATCTACGCA -ACGGAACTGAAGCGAATCCTTGCA -ACGGAACTGAAGCGAATCCGAACA -ACGGAACTGAAGCGAATCCAGTCA -ACGGAACTGAAGCGAATCGATCCA -ACGGAACTGAAGCGAATCACGACA -ACGGAACTGAAGCGAATCAGCTCA -ACGGAACTGAAGCGAATCTCACGT -ACGGAACTGAAGCGAATCCGTAGT -ACGGAACTGAAGCGAATCGTCAGT -ACGGAACTGAAGCGAATCGAAGGT -ACGGAACTGAAGCGAATCAACCGT -ACGGAACTGAAGCGAATCTTGTGC -ACGGAACTGAAGCGAATCCTAAGC -ACGGAACTGAAGCGAATCACTAGC -ACGGAACTGAAGCGAATCAGATGC -ACGGAACTGAAGCGAATCTGAAGG -ACGGAACTGAAGCGAATCCAATGG -ACGGAACTGAAGCGAATCATGAGG -ACGGAACTGAAGCGAATCAATGGG -ACGGAACTGAAGCGAATCTCCTGA -ACGGAACTGAAGCGAATCTAGCGA -ACGGAACTGAAGCGAATCCACAGA -ACGGAACTGAAGCGAATCGCAAGA -ACGGAACTGAAGCGAATCGGTTGA -ACGGAACTGAAGCGAATCTCCGAT -ACGGAACTGAAGCGAATCTGGCAT -ACGGAACTGAAGCGAATCCGAGAT -ACGGAACTGAAGCGAATCTACCAC -ACGGAACTGAAGCGAATCCAGAAC -ACGGAACTGAAGCGAATCGTCTAC -ACGGAACTGAAGCGAATCACGTAC -ACGGAACTGAAGCGAATCAGTGAC -ACGGAACTGAAGCGAATCCTGTAG -ACGGAACTGAAGCGAATCCCTAAG -ACGGAACTGAAGCGAATCGTTCAG -ACGGAACTGAAGCGAATCGCATAG -ACGGAACTGAAGCGAATCGACAAG -ACGGAACTGAAGCGAATCAAGCAG -ACGGAACTGAAGCGAATCCGTCAA -ACGGAACTGAAGCGAATCGCTGAA -ACGGAACTGAAGCGAATCAGTACG -ACGGAACTGAAGCGAATCATCCGA -ACGGAACTGAAGCGAATCATGGGA -ACGGAACTGAAGCGAATCGTGCAA -ACGGAACTGAAGCGAATCGAGGAA -ACGGAACTGAAGCGAATCCAGGTA -ACGGAACTGAAGCGAATCGACTCT -ACGGAACTGAAGCGAATCAGTCCT -ACGGAACTGAAGCGAATCTAAGCC -ACGGAACTGAAGCGAATCATAGCC -ACGGAACTGAAGCGAATCTAACCG -ACGGAACTGAAGCGAATCATGCCA -ACGGAACTGAAGGGAATGGGAAAC -ACGGAACTGAAGGGAATGAACACC -ACGGAACTGAAGGGAATGATCGAG -ACGGAACTGAAGGGAATGCTCCTT -ACGGAACTGAAGGGAATGCCTGTT -ACGGAACTGAAGGGAATGCGGTTT -ACGGAACTGAAGGGAATGGTGGTT -ACGGAACTGAAGGGAATGGCCTTT -ACGGAACTGAAGGGAATGGGTCTT -ACGGAACTGAAGGGAATGACGCTT -ACGGAACTGAAGGGAATGAGCGTT -ACGGAACTGAAGGGAATGTTCGTC -ACGGAACTGAAGGGAATGTCTCTC -ACGGAACTGAAGGGAATGTGGATC -ACGGAACTGAAGGGAATGCACTTC -ACGGAACTGAAGGGAATGGTACTC -ACGGAACTGAAGGGAATGGATGTC -ACGGAACTGAAGGGAATGACAGTC -ACGGAACTGAAGGGAATGTTGCTG -ACGGAACTGAAGGGAATGTCCATG -ACGGAACTGAAGGGAATGTGTGTG -ACGGAACTGAAGGGAATGCTAGTG -ACGGAACTGAAGGGAATGCATCTG -ACGGAACTGAAGGGAATGGAGTTG -ACGGAACTGAAGGGAATGAGACTG -ACGGAACTGAAGGGAATGTCGGTA -ACGGAACTGAAGGGAATGTGCCTA -ACGGAACTGAAGGGAATGCCACTA -ACGGAACTGAAGGGAATGGGAGTA -ACGGAACTGAAGGGAATGTCGTCT -ACGGAACTGAAGGGAATGTGCACT -ACGGAACTGAAGGGAATGCTGACT -ACGGAACTGAAGGGAATGCAACCT -ACGGAACTGAAGGGAATGGCTACT -ACGGAACTGAAGGGAATGGGATCT -ACGGAACTGAAGGGAATGAAGGCT -ACGGAACTGAAGGGAATGTCAACC -ACGGAACTGAAGGGAATGTGTTCC -ACGGAACTGAAGGGAATGATTCCC -ACGGAACTGAAGGGAATGTTCTCG -ACGGAACTGAAGGGAATGTAGACG -ACGGAACTGAAGGGAATGGTAACG -ACGGAACTGAAGGGAATGACTTCG -ACGGAACTGAAGGGAATGTACGCA -ACGGAACTGAAGGGAATGCTTGCA -ACGGAACTGAAGGGAATGCGAACA -ACGGAACTGAAGGGAATGCAGTCA -ACGGAACTGAAGGGAATGGATCCA -ACGGAACTGAAGGGAATGACGACA -ACGGAACTGAAGGGAATGAGCTCA -ACGGAACTGAAGGGAATGTCACGT -ACGGAACTGAAGGGAATGCGTAGT -ACGGAACTGAAGGGAATGGTCAGT -ACGGAACTGAAGGGAATGGAAGGT -ACGGAACTGAAGGGAATGAACCGT -ACGGAACTGAAGGGAATGTTGTGC -ACGGAACTGAAGGGAATGCTAAGC -ACGGAACTGAAGGGAATGACTAGC -ACGGAACTGAAGGGAATGAGATGC -ACGGAACTGAAGGGAATGTGAAGG -ACGGAACTGAAGGGAATGCAATGG -ACGGAACTGAAGGGAATGATGAGG -ACGGAACTGAAGGGAATGAATGGG -ACGGAACTGAAGGGAATGTCCTGA -ACGGAACTGAAGGGAATGTAGCGA -ACGGAACTGAAGGGAATGCACAGA -ACGGAACTGAAGGGAATGGCAAGA -ACGGAACTGAAGGGAATGGGTTGA -ACGGAACTGAAGGGAATGTCCGAT -ACGGAACTGAAGGGAATGTGGCAT -ACGGAACTGAAGGGAATGCGAGAT -ACGGAACTGAAGGGAATGTACCAC -ACGGAACTGAAGGGAATGCAGAAC -ACGGAACTGAAGGGAATGGTCTAC -ACGGAACTGAAGGGAATGACGTAC -ACGGAACTGAAGGGAATGAGTGAC -ACGGAACTGAAGGGAATGCTGTAG -ACGGAACTGAAGGGAATGCCTAAG -ACGGAACTGAAGGGAATGGTTCAG -ACGGAACTGAAGGGAATGGCATAG -ACGGAACTGAAGGGAATGGACAAG -ACGGAACTGAAGGGAATGAAGCAG -ACGGAACTGAAGGGAATGCGTCAA -ACGGAACTGAAGGGAATGGCTGAA -ACGGAACTGAAGGGAATGAGTACG -ACGGAACTGAAGGGAATGATCCGA -ACGGAACTGAAGGGAATGATGGGA -ACGGAACTGAAGGGAATGGTGCAA -ACGGAACTGAAGGGAATGGAGGAA -ACGGAACTGAAGGGAATGCAGGTA -ACGGAACTGAAGGGAATGGACTCT -ACGGAACTGAAGGGAATGAGTCCT -ACGGAACTGAAGGGAATGTAAGCC -ACGGAACTGAAGGGAATGATAGCC -ACGGAACTGAAGGGAATGTAACCG -ACGGAACTGAAGGGAATGATGCCA -ACGGAACTGAAGCAAGTGGGAAAC -ACGGAACTGAAGCAAGTGAACACC -ACGGAACTGAAGCAAGTGATCGAG -ACGGAACTGAAGCAAGTGCTCCTT -ACGGAACTGAAGCAAGTGCCTGTT -ACGGAACTGAAGCAAGTGCGGTTT -ACGGAACTGAAGCAAGTGGTGGTT -ACGGAACTGAAGCAAGTGGCCTTT -ACGGAACTGAAGCAAGTGGGTCTT -ACGGAACTGAAGCAAGTGACGCTT -ACGGAACTGAAGCAAGTGAGCGTT -ACGGAACTGAAGCAAGTGTTCGTC -ACGGAACTGAAGCAAGTGTCTCTC -ACGGAACTGAAGCAAGTGTGGATC -ACGGAACTGAAGCAAGTGCACTTC -ACGGAACTGAAGCAAGTGGTACTC -ACGGAACTGAAGCAAGTGGATGTC -ACGGAACTGAAGCAAGTGACAGTC -ACGGAACTGAAGCAAGTGTTGCTG -ACGGAACTGAAGCAAGTGTCCATG -ACGGAACTGAAGCAAGTGTGTGTG -ACGGAACTGAAGCAAGTGCTAGTG -ACGGAACTGAAGCAAGTGCATCTG -ACGGAACTGAAGCAAGTGGAGTTG -ACGGAACTGAAGCAAGTGAGACTG -ACGGAACTGAAGCAAGTGTCGGTA -ACGGAACTGAAGCAAGTGTGCCTA -ACGGAACTGAAGCAAGTGCCACTA -ACGGAACTGAAGCAAGTGGGAGTA -ACGGAACTGAAGCAAGTGTCGTCT -ACGGAACTGAAGCAAGTGTGCACT -ACGGAACTGAAGCAAGTGCTGACT -ACGGAACTGAAGCAAGTGCAACCT -ACGGAACTGAAGCAAGTGGCTACT -ACGGAACTGAAGCAAGTGGGATCT -ACGGAACTGAAGCAAGTGAAGGCT -ACGGAACTGAAGCAAGTGTCAACC -ACGGAACTGAAGCAAGTGTGTTCC -ACGGAACTGAAGCAAGTGATTCCC -ACGGAACTGAAGCAAGTGTTCTCG -ACGGAACTGAAGCAAGTGTAGACG -ACGGAACTGAAGCAAGTGGTAACG -ACGGAACTGAAGCAAGTGACTTCG -ACGGAACTGAAGCAAGTGTACGCA -ACGGAACTGAAGCAAGTGCTTGCA -ACGGAACTGAAGCAAGTGCGAACA -ACGGAACTGAAGCAAGTGCAGTCA -ACGGAACTGAAGCAAGTGGATCCA -ACGGAACTGAAGCAAGTGACGACA -ACGGAACTGAAGCAAGTGAGCTCA -ACGGAACTGAAGCAAGTGTCACGT -ACGGAACTGAAGCAAGTGCGTAGT -ACGGAACTGAAGCAAGTGGTCAGT -ACGGAACTGAAGCAAGTGGAAGGT -ACGGAACTGAAGCAAGTGAACCGT -ACGGAACTGAAGCAAGTGTTGTGC -ACGGAACTGAAGCAAGTGCTAAGC -ACGGAACTGAAGCAAGTGACTAGC -ACGGAACTGAAGCAAGTGAGATGC -ACGGAACTGAAGCAAGTGTGAAGG -ACGGAACTGAAGCAAGTGCAATGG -ACGGAACTGAAGCAAGTGATGAGG -ACGGAACTGAAGCAAGTGAATGGG -ACGGAACTGAAGCAAGTGTCCTGA -ACGGAACTGAAGCAAGTGTAGCGA -ACGGAACTGAAGCAAGTGCACAGA -ACGGAACTGAAGCAAGTGGCAAGA -ACGGAACTGAAGCAAGTGGGTTGA -ACGGAACTGAAGCAAGTGTCCGAT -ACGGAACTGAAGCAAGTGTGGCAT -ACGGAACTGAAGCAAGTGCGAGAT -ACGGAACTGAAGCAAGTGTACCAC -ACGGAACTGAAGCAAGTGCAGAAC -ACGGAACTGAAGCAAGTGGTCTAC -ACGGAACTGAAGCAAGTGACGTAC -ACGGAACTGAAGCAAGTGAGTGAC -ACGGAACTGAAGCAAGTGCTGTAG -ACGGAACTGAAGCAAGTGCCTAAG -ACGGAACTGAAGCAAGTGGTTCAG -ACGGAACTGAAGCAAGTGGCATAG -ACGGAACTGAAGCAAGTGGACAAG -ACGGAACTGAAGCAAGTGAAGCAG -ACGGAACTGAAGCAAGTGCGTCAA -ACGGAACTGAAGCAAGTGGCTGAA -ACGGAACTGAAGCAAGTGAGTACG -ACGGAACTGAAGCAAGTGATCCGA -ACGGAACTGAAGCAAGTGATGGGA -ACGGAACTGAAGCAAGTGGTGCAA -ACGGAACTGAAGCAAGTGGAGGAA -ACGGAACTGAAGCAAGTGCAGGTA -ACGGAACTGAAGCAAGTGGACTCT -ACGGAACTGAAGCAAGTGAGTCCT -ACGGAACTGAAGCAAGTGTAAGCC -ACGGAACTGAAGCAAGTGATAGCC -ACGGAACTGAAGCAAGTGTAACCG -ACGGAACTGAAGCAAGTGATGCCA -ACGGAACTGAAGGAAGAGGGAAAC -ACGGAACTGAAGGAAGAGAACACC -ACGGAACTGAAGGAAGAGATCGAG -ACGGAACTGAAGGAAGAGCTCCTT -ACGGAACTGAAGGAAGAGCCTGTT -ACGGAACTGAAGGAAGAGCGGTTT -ACGGAACTGAAGGAAGAGGTGGTT -ACGGAACTGAAGGAAGAGGCCTTT -ACGGAACTGAAGGAAGAGGGTCTT -ACGGAACTGAAGGAAGAGACGCTT -ACGGAACTGAAGGAAGAGAGCGTT -ACGGAACTGAAGGAAGAGTTCGTC -ACGGAACTGAAGGAAGAGTCTCTC -ACGGAACTGAAGGAAGAGTGGATC -ACGGAACTGAAGGAAGAGCACTTC -ACGGAACTGAAGGAAGAGGTACTC -ACGGAACTGAAGGAAGAGGATGTC -ACGGAACTGAAGGAAGAGACAGTC -ACGGAACTGAAGGAAGAGTTGCTG -ACGGAACTGAAGGAAGAGTCCATG -ACGGAACTGAAGGAAGAGTGTGTG -ACGGAACTGAAGGAAGAGCTAGTG -ACGGAACTGAAGGAAGAGCATCTG -ACGGAACTGAAGGAAGAGGAGTTG -ACGGAACTGAAGGAAGAGAGACTG -ACGGAACTGAAGGAAGAGTCGGTA -ACGGAACTGAAGGAAGAGTGCCTA -ACGGAACTGAAGGAAGAGCCACTA -ACGGAACTGAAGGAAGAGGGAGTA -ACGGAACTGAAGGAAGAGTCGTCT -ACGGAACTGAAGGAAGAGTGCACT -ACGGAACTGAAGGAAGAGCTGACT -ACGGAACTGAAGGAAGAGCAACCT -ACGGAACTGAAGGAAGAGGCTACT -ACGGAACTGAAGGAAGAGGGATCT -ACGGAACTGAAGGAAGAGAAGGCT -ACGGAACTGAAGGAAGAGTCAACC -ACGGAACTGAAGGAAGAGTGTTCC -ACGGAACTGAAGGAAGAGATTCCC -ACGGAACTGAAGGAAGAGTTCTCG -ACGGAACTGAAGGAAGAGTAGACG -ACGGAACTGAAGGAAGAGGTAACG -ACGGAACTGAAGGAAGAGACTTCG -ACGGAACTGAAGGAAGAGTACGCA -ACGGAACTGAAGGAAGAGCTTGCA -ACGGAACTGAAGGAAGAGCGAACA -ACGGAACTGAAGGAAGAGCAGTCA -ACGGAACTGAAGGAAGAGGATCCA -ACGGAACTGAAGGAAGAGACGACA -ACGGAACTGAAGGAAGAGAGCTCA -ACGGAACTGAAGGAAGAGTCACGT -ACGGAACTGAAGGAAGAGCGTAGT -ACGGAACTGAAGGAAGAGGTCAGT -ACGGAACTGAAGGAAGAGGAAGGT -ACGGAACTGAAGGAAGAGAACCGT -ACGGAACTGAAGGAAGAGTTGTGC -ACGGAACTGAAGGAAGAGCTAAGC -ACGGAACTGAAGGAAGAGACTAGC -ACGGAACTGAAGGAAGAGAGATGC -ACGGAACTGAAGGAAGAGTGAAGG -ACGGAACTGAAGGAAGAGCAATGG -ACGGAACTGAAGGAAGAGATGAGG -ACGGAACTGAAGGAAGAGAATGGG -ACGGAACTGAAGGAAGAGTCCTGA -ACGGAACTGAAGGAAGAGTAGCGA -ACGGAACTGAAGGAAGAGCACAGA -ACGGAACTGAAGGAAGAGGCAAGA -ACGGAACTGAAGGAAGAGGGTTGA -ACGGAACTGAAGGAAGAGTCCGAT -ACGGAACTGAAGGAAGAGTGGCAT -ACGGAACTGAAGGAAGAGCGAGAT -ACGGAACTGAAGGAAGAGTACCAC -ACGGAACTGAAGGAAGAGCAGAAC -ACGGAACTGAAGGAAGAGGTCTAC -ACGGAACTGAAGGAAGAGACGTAC -ACGGAACTGAAGGAAGAGAGTGAC -ACGGAACTGAAGGAAGAGCTGTAG -ACGGAACTGAAGGAAGAGCCTAAG -ACGGAACTGAAGGAAGAGGTTCAG -ACGGAACTGAAGGAAGAGGCATAG -ACGGAACTGAAGGAAGAGGACAAG -ACGGAACTGAAGGAAGAGAAGCAG -ACGGAACTGAAGGAAGAGCGTCAA -ACGGAACTGAAGGAAGAGGCTGAA -ACGGAACTGAAGGAAGAGAGTACG -ACGGAACTGAAGGAAGAGATCCGA -ACGGAACTGAAGGAAGAGATGGGA -ACGGAACTGAAGGAAGAGGTGCAA -ACGGAACTGAAGGAAGAGGAGGAA -ACGGAACTGAAGGAAGAGCAGGTA -ACGGAACTGAAGGAAGAGGACTCT -ACGGAACTGAAGGAAGAGAGTCCT -ACGGAACTGAAGGAAGAGTAAGCC -ACGGAACTGAAGGAAGAGATAGCC -ACGGAACTGAAGGAAGAGTAACCG -ACGGAACTGAAGGAAGAGATGCCA -ACGGAACTGAAGGTACAGGGAAAC -ACGGAACTGAAGGTACAGAACACC -ACGGAACTGAAGGTACAGATCGAG -ACGGAACTGAAGGTACAGCTCCTT -ACGGAACTGAAGGTACAGCCTGTT -ACGGAACTGAAGGTACAGCGGTTT -ACGGAACTGAAGGTACAGGTGGTT -ACGGAACTGAAGGTACAGGCCTTT -ACGGAACTGAAGGTACAGGGTCTT -ACGGAACTGAAGGTACAGACGCTT -ACGGAACTGAAGGTACAGAGCGTT -ACGGAACTGAAGGTACAGTTCGTC -ACGGAACTGAAGGTACAGTCTCTC -ACGGAACTGAAGGTACAGTGGATC -ACGGAACTGAAGGTACAGCACTTC -ACGGAACTGAAGGTACAGGTACTC -ACGGAACTGAAGGTACAGGATGTC -ACGGAACTGAAGGTACAGACAGTC -ACGGAACTGAAGGTACAGTTGCTG -ACGGAACTGAAGGTACAGTCCATG -ACGGAACTGAAGGTACAGTGTGTG -ACGGAACTGAAGGTACAGCTAGTG -ACGGAACTGAAGGTACAGCATCTG -ACGGAACTGAAGGTACAGGAGTTG -ACGGAACTGAAGGTACAGAGACTG -ACGGAACTGAAGGTACAGTCGGTA -ACGGAACTGAAGGTACAGTGCCTA -ACGGAACTGAAGGTACAGCCACTA -ACGGAACTGAAGGTACAGGGAGTA -ACGGAACTGAAGGTACAGTCGTCT -ACGGAACTGAAGGTACAGTGCACT -ACGGAACTGAAGGTACAGCTGACT -ACGGAACTGAAGGTACAGCAACCT -ACGGAACTGAAGGTACAGGCTACT -ACGGAACTGAAGGTACAGGGATCT -ACGGAACTGAAGGTACAGAAGGCT -ACGGAACTGAAGGTACAGTCAACC -ACGGAACTGAAGGTACAGTGTTCC -ACGGAACTGAAGGTACAGATTCCC -ACGGAACTGAAGGTACAGTTCTCG -ACGGAACTGAAGGTACAGTAGACG -ACGGAACTGAAGGTACAGGTAACG -ACGGAACTGAAGGTACAGACTTCG -ACGGAACTGAAGGTACAGTACGCA -ACGGAACTGAAGGTACAGCTTGCA -ACGGAACTGAAGGTACAGCGAACA -ACGGAACTGAAGGTACAGCAGTCA -ACGGAACTGAAGGTACAGGATCCA -ACGGAACTGAAGGTACAGACGACA -ACGGAACTGAAGGTACAGAGCTCA -ACGGAACTGAAGGTACAGTCACGT -ACGGAACTGAAGGTACAGCGTAGT -ACGGAACTGAAGGTACAGGTCAGT -ACGGAACTGAAGGTACAGGAAGGT -ACGGAACTGAAGGTACAGAACCGT -ACGGAACTGAAGGTACAGTTGTGC -ACGGAACTGAAGGTACAGCTAAGC -ACGGAACTGAAGGTACAGACTAGC -ACGGAACTGAAGGTACAGAGATGC -ACGGAACTGAAGGTACAGTGAAGG -ACGGAACTGAAGGTACAGCAATGG -ACGGAACTGAAGGTACAGATGAGG -ACGGAACTGAAGGTACAGAATGGG -ACGGAACTGAAGGTACAGTCCTGA -ACGGAACTGAAGGTACAGTAGCGA -ACGGAACTGAAGGTACAGCACAGA -ACGGAACTGAAGGTACAGGCAAGA -ACGGAACTGAAGGTACAGGGTTGA -ACGGAACTGAAGGTACAGTCCGAT -ACGGAACTGAAGGTACAGTGGCAT -ACGGAACTGAAGGTACAGCGAGAT -ACGGAACTGAAGGTACAGTACCAC -ACGGAACTGAAGGTACAGCAGAAC -ACGGAACTGAAGGTACAGGTCTAC -ACGGAACTGAAGGTACAGACGTAC -ACGGAACTGAAGGTACAGAGTGAC -ACGGAACTGAAGGTACAGCTGTAG -ACGGAACTGAAGGTACAGCCTAAG -ACGGAACTGAAGGTACAGGTTCAG -ACGGAACTGAAGGTACAGGCATAG -ACGGAACTGAAGGTACAGGACAAG -ACGGAACTGAAGGTACAGAAGCAG -ACGGAACTGAAGGTACAGCGTCAA -ACGGAACTGAAGGTACAGGCTGAA -ACGGAACTGAAGGTACAGAGTACG -ACGGAACTGAAGGTACAGATCCGA -ACGGAACTGAAGGTACAGATGGGA -ACGGAACTGAAGGTACAGGTGCAA -ACGGAACTGAAGGTACAGGAGGAA -ACGGAACTGAAGGTACAGCAGGTA -ACGGAACTGAAGGTACAGGACTCT -ACGGAACTGAAGGTACAGAGTCCT -ACGGAACTGAAGGTACAGTAAGCC -ACGGAACTGAAGGTACAGATAGCC -ACGGAACTGAAGGTACAGTAACCG -ACGGAACTGAAGGTACAGATGCCA -ACGGAACTGAAGTCTGACGGAAAC -ACGGAACTGAAGTCTGACAACACC -ACGGAACTGAAGTCTGACATCGAG -ACGGAACTGAAGTCTGACCTCCTT -ACGGAACTGAAGTCTGACCCTGTT -ACGGAACTGAAGTCTGACCGGTTT -ACGGAACTGAAGTCTGACGTGGTT -ACGGAACTGAAGTCTGACGCCTTT -ACGGAACTGAAGTCTGACGGTCTT -ACGGAACTGAAGTCTGACACGCTT -ACGGAACTGAAGTCTGACAGCGTT -ACGGAACTGAAGTCTGACTTCGTC -ACGGAACTGAAGTCTGACTCTCTC -ACGGAACTGAAGTCTGACTGGATC -ACGGAACTGAAGTCTGACCACTTC -ACGGAACTGAAGTCTGACGTACTC -ACGGAACTGAAGTCTGACGATGTC -ACGGAACTGAAGTCTGACACAGTC -ACGGAACTGAAGTCTGACTTGCTG -ACGGAACTGAAGTCTGACTCCATG -ACGGAACTGAAGTCTGACTGTGTG -ACGGAACTGAAGTCTGACCTAGTG -ACGGAACTGAAGTCTGACCATCTG -ACGGAACTGAAGTCTGACGAGTTG -ACGGAACTGAAGTCTGACAGACTG -ACGGAACTGAAGTCTGACTCGGTA -ACGGAACTGAAGTCTGACTGCCTA -ACGGAACTGAAGTCTGACCCACTA -ACGGAACTGAAGTCTGACGGAGTA -ACGGAACTGAAGTCTGACTCGTCT -ACGGAACTGAAGTCTGACTGCACT -ACGGAACTGAAGTCTGACCTGACT -ACGGAACTGAAGTCTGACCAACCT -ACGGAACTGAAGTCTGACGCTACT -ACGGAACTGAAGTCTGACGGATCT -ACGGAACTGAAGTCTGACAAGGCT -ACGGAACTGAAGTCTGACTCAACC -ACGGAACTGAAGTCTGACTGTTCC -ACGGAACTGAAGTCTGACATTCCC -ACGGAACTGAAGTCTGACTTCTCG -ACGGAACTGAAGTCTGACTAGACG -ACGGAACTGAAGTCTGACGTAACG -ACGGAACTGAAGTCTGACACTTCG -ACGGAACTGAAGTCTGACTACGCA -ACGGAACTGAAGTCTGACCTTGCA -ACGGAACTGAAGTCTGACCGAACA -ACGGAACTGAAGTCTGACCAGTCA -ACGGAACTGAAGTCTGACGATCCA -ACGGAACTGAAGTCTGACACGACA -ACGGAACTGAAGTCTGACAGCTCA -ACGGAACTGAAGTCTGACTCACGT -ACGGAACTGAAGTCTGACCGTAGT -ACGGAACTGAAGTCTGACGTCAGT -ACGGAACTGAAGTCTGACGAAGGT -ACGGAACTGAAGTCTGACAACCGT -ACGGAACTGAAGTCTGACTTGTGC -ACGGAACTGAAGTCTGACCTAAGC -ACGGAACTGAAGTCTGACACTAGC -ACGGAACTGAAGTCTGACAGATGC -ACGGAACTGAAGTCTGACTGAAGG -ACGGAACTGAAGTCTGACCAATGG -ACGGAACTGAAGTCTGACATGAGG -ACGGAACTGAAGTCTGACAATGGG -ACGGAACTGAAGTCTGACTCCTGA -ACGGAACTGAAGTCTGACTAGCGA -ACGGAACTGAAGTCTGACCACAGA -ACGGAACTGAAGTCTGACGCAAGA -ACGGAACTGAAGTCTGACGGTTGA -ACGGAACTGAAGTCTGACTCCGAT -ACGGAACTGAAGTCTGACTGGCAT -ACGGAACTGAAGTCTGACCGAGAT -ACGGAACTGAAGTCTGACTACCAC -ACGGAACTGAAGTCTGACCAGAAC -ACGGAACTGAAGTCTGACGTCTAC -ACGGAACTGAAGTCTGACACGTAC -ACGGAACTGAAGTCTGACAGTGAC -ACGGAACTGAAGTCTGACCTGTAG -ACGGAACTGAAGTCTGACCCTAAG -ACGGAACTGAAGTCTGACGTTCAG -ACGGAACTGAAGTCTGACGCATAG -ACGGAACTGAAGTCTGACGACAAG -ACGGAACTGAAGTCTGACAAGCAG -ACGGAACTGAAGTCTGACCGTCAA -ACGGAACTGAAGTCTGACGCTGAA -ACGGAACTGAAGTCTGACAGTACG -ACGGAACTGAAGTCTGACATCCGA -ACGGAACTGAAGTCTGACATGGGA -ACGGAACTGAAGTCTGACGTGCAA -ACGGAACTGAAGTCTGACGAGGAA -ACGGAACTGAAGTCTGACCAGGTA -ACGGAACTGAAGTCTGACGACTCT -ACGGAACTGAAGTCTGACAGTCCT -ACGGAACTGAAGTCTGACTAAGCC -ACGGAACTGAAGTCTGACATAGCC -ACGGAACTGAAGTCTGACTAACCG -ACGGAACTGAAGTCTGACATGCCA -ACGGAACTGAAGCCTAGTGGAAAC -ACGGAACTGAAGCCTAGTAACACC -ACGGAACTGAAGCCTAGTATCGAG -ACGGAACTGAAGCCTAGTCTCCTT -ACGGAACTGAAGCCTAGTCCTGTT -ACGGAACTGAAGCCTAGTCGGTTT -ACGGAACTGAAGCCTAGTGTGGTT -ACGGAACTGAAGCCTAGTGCCTTT -ACGGAACTGAAGCCTAGTGGTCTT -ACGGAACTGAAGCCTAGTACGCTT -ACGGAACTGAAGCCTAGTAGCGTT -ACGGAACTGAAGCCTAGTTTCGTC -ACGGAACTGAAGCCTAGTTCTCTC -ACGGAACTGAAGCCTAGTTGGATC -ACGGAACTGAAGCCTAGTCACTTC -ACGGAACTGAAGCCTAGTGTACTC -ACGGAACTGAAGCCTAGTGATGTC -ACGGAACTGAAGCCTAGTACAGTC -ACGGAACTGAAGCCTAGTTTGCTG -ACGGAACTGAAGCCTAGTTCCATG -ACGGAACTGAAGCCTAGTTGTGTG -ACGGAACTGAAGCCTAGTCTAGTG -ACGGAACTGAAGCCTAGTCATCTG -ACGGAACTGAAGCCTAGTGAGTTG -ACGGAACTGAAGCCTAGTAGACTG -ACGGAACTGAAGCCTAGTTCGGTA -ACGGAACTGAAGCCTAGTTGCCTA -ACGGAACTGAAGCCTAGTCCACTA -ACGGAACTGAAGCCTAGTGGAGTA -ACGGAACTGAAGCCTAGTTCGTCT -ACGGAACTGAAGCCTAGTTGCACT -ACGGAACTGAAGCCTAGTCTGACT -ACGGAACTGAAGCCTAGTCAACCT -ACGGAACTGAAGCCTAGTGCTACT -ACGGAACTGAAGCCTAGTGGATCT -ACGGAACTGAAGCCTAGTAAGGCT -ACGGAACTGAAGCCTAGTTCAACC -ACGGAACTGAAGCCTAGTTGTTCC -ACGGAACTGAAGCCTAGTATTCCC -ACGGAACTGAAGCCTAGTTTCTCG -ACGGAACTGAAGCCTAGTTAGACG -ACGGAACTGAAGCCTAGTGTAACG -ACGGAACTGAAGCCTAGTACTTCG -ACGGAACTGAAGCCTAGTTACGCA -ACGGAACTGAAGCCTAGTCTTGCA -ACGGAACTGAAGCCTAGTCGAACA -ACGGAACTGAAGCCTAGTCAGTCA -ACGGAACTGAAGCCTAGTGATCCA -ACGGAACTGAAGCCTAGTACGACA -ACGGAACTGAAGCCTAGTAGCTCA -ACGGAACTGAAGCCTAGTTCACGT -ACGGAACTGAAGCCTAGTCGTAGT -ACGGAACTGAAGCCTAGTGTCAGT -ACGGAACTGAAGCCTAGTGAAGGT -ACGGAACTGAAGCCTAGTAACCGT -ACGGAACTGAAGCCTAGTTTGTGC -ACGGAACTGAAGCCTAGTCTAAGC -ACGGAACTGAAGCCTAGTACTAGC -ACGGAACTGAAGCCTAGTAGATGC -ACGGAACTGAAGCCTAGTTGAAGG -ACGGAACTGAAGCCTAGTCAATGG -ACGGAACTGAAGCCTAGTATGAGG -ACGGAACTGAAGCCTAGTAATGGG -ACGGAACTGAAGCCTAGTTCCTGA -ACGGAACTGAAGCCTAGTTAGCGA -ACGGAACTGAAGCCTAGTCACAGA -ACGGAACTGAAGCCTAGTGCAAGA -ACGGAACTGAAGCCTAGTGGTTGA -ACGGAACTGAAGCCTAGTTCCGAT -ACGGAACTGAAGCCTAGTTGGCAT -ACGGAACTGAAGCCTAGTCGAGAT -ACGGAACTGAAGCCTAGTTACCAC -ACGGAACTGAAGCCTAGTCAGAAC -ACGGAACTGAAGCCTAGTGTCTAC -ACGGAACTGAAGCCTAGTACGTAC -ACGGAACTGAAGCCTAGTAGTGAC -ACGGAACTGAAGCCTAGTCTGTAG -ACGGAACTGAAGCCTAGTCCTAAG -ACGGAACTGAAGCCTAGTGTTCAG -ACGGAACTGAAGCCTAGTGCATAG -ACGGAACTGAAGCCTAGTGACAAG -ACGGAACTGAAGCCTAGTAAGCAG -ACGGAACTGAAGCCTAGTCGTCAA -ACGGAACTGAAGCCTAGTGCTGAA -ACGGAACTGAAGCCTAGTAGTACG -ACGGAACTGAAGCCTAGTATCCGA -ACGGAACTGAAGCCTAGTATGGGA -ACGGAACTGAAGCCTAGTGTGCAA -ACGGAACTGAAGCCTAGTGAGGAA -ACGGAACTGAAGCCTAGTCAGGTA -ACGGAACTGAAGCCTAGTGACTCT -ACGGAACTGAAGCCTAGTAGTCCT -ACGGAACTGAAGCCTAGTTAAGCC -ACGGAACTGAAGCCTAGTATAGCC -ACGGAACTGAAGCCTAGTTAACCG -ACGGAACTGAAGCCTAGTATGCCA -ACGGAACTGAAGGCCTAAGGAAAC -ACGGAACTGAAGGCCTAAAACACC -ACGGAACTGAAGGCCTAAATCGAG -ACGGAACTGAAGGCCTAACTCCTT -ACGGAACTGAAGGCCTAACCTGTT -ACGGAACTGAAGGCCTAACGGTTT -ACGGAACTGAAGGCCTAAGTGGTT -ACGGAACTGAAGGCCTAAGCCTTT -ACGGAACTGAAGGCCTAAGGTCTT -ACGGAACTGAAGGCCTAAACGCTT -ACGGAACTGAAGGCCTAAAGCGTT -ACGGAACTGAAGGCCTAATTCGTC -ACGGAACTGAAGGCCTAATCTCTC -ACGGAACTGAAGGCCTAATGGATC -ACGGAACTGAAGGCCTAACACTTC -ACGGAACTGAAGGCCTAAGTACTC -ACGGAACTGAAGGCCTAAGATGTC -ACGGAACTGAAGGCCTAAACAGTC -ACGGAACTGAAGGCCTAATTGCTG -ACGGAACTGAAGGCCTAATCCATG -ACGGAACTGAAGGCCTAATGTGTG -ACGGAACTGAAGGCCTAACTAGTG -ACGGAACTGAAGGCCTAACATCTG -ACGGAACTGAAGGCCTAAGAGTTG -ACGGAACTGAAGGCCTAAAGACTG -ACGGAACTGAAGGCCTAATCGGTA -ACGGAACTGAAGGCCTAATGCCTA -ACGGAACTGAAGGCCTAACCACTA -ACGGAACTGAAGGCCTAAGGAGTA -ACGGAACTGAAGGCCTAATCGTCT -ACGGAACTGAAGGCCTAATGCACT -ACGGAACTGAAGGCCTAACTGACT -ACGGAACTGAAGGCCTAACAACCT -ACGGAACTGAAGGCCTAAGCTACT -ACGGAACTGAAGGCCTAAGGATCT -ACGGAACTGAAGGCCTAAAAGGCT -ACGGAACTGAAGGCCTAATCAACC -ACGGAACTGAAGGCCTAATGTTCC -ACGGAACTGAAGGCCTAAATTCCC -ACGGAACTGAAGGCCTAATTCTCG -ACGGAACTGAAGGCCTAATAGACG -ACGGAACTGAAGGCCTAAGTAACG -ACGGAACTGAAGGCCTAAACTTCG -ACGGAACTGAAGGCCTAATACGCA -ACGGAACTGAAGGCCTAACTTGCA -ACGGAACTGAAGGCCTAACGAACA -ACGGAACTGAAGGCCTAACAGTCA -ACGGAACTGAAGGCCTAAGATCCA -ACGGAACTGAAGGCCTAAACGACA -ACGGAACTGAAGGCCTAAAGCTCA -ACGGAACTGAAGGCCTAATCACGT -ACGGAACTGAAGGCCTAACGTAGT -ACGGAACTGAAGGCCTAAGTCAGT -ACGGAACTGAAGGCCTAAGAAGGT -ACGGAACTGAAGGCCTAAAACCGT -ACGGAACTGAAGGCCTAATTGTGC -ACGGAACTGAAGGCCTAACTAAGC -ACGGAACTGAAGGCCTAAACTAGC -ACGGAACTGAAGGCCTAAAGATGC -ACGGAACTGAAGGCCTAATGAAGG -ACGGAACTGAAGGCCTAACAATGG -ACGGAACTGAAGGCCTAAATGAGG -ACGGAACTGAAGGCCTAAAATGGG -ACGGAACTGAAGGCCTAATCCTGA -ACGGAACTGAAGGCCTAATAGCGA -ACGGAACTGAAGGCCTAACACAGA -ACGGAACTGAAGGCCTAAGCAAGA -ACGGAACTGAAGGCCTAAGGTTGA -ACGGAACTGAAGGCCTAATCCGAT -ACGGAACTGAAGGCCTAATGGCAT -ACGGAACTGAAGGCCTAACGAGAT -ACGGAACTGAAGGCCTAATACCAC -ACGGAACTGAAGGCCTAACAGAAC -ACGGAACTGAAGGCCTAAGTCTAC -ACGGAACTGAAGGCCTAAACGTAC -ACGGAACTGAAGGCCTAAAGTGAC -ACGGAACTGAAGGCCTAACTGTAG -ACGGAACTGAAGGCCTAACCTAAG -ACGGAACTGAAGGCCTAAGTTCAG -ACGGAACTGAAGGCCTAAGCATAG -ACGGAACTGAAGGCCTAAGACAAG -ACGGAACTGAAGGCCTAAAAGCAG -ACGGAACTGAAGGCCTAACGTCAA -ACGGAACTGAAGGCCTAAGCTGAA -ACGGAACTGAAGGCCTAAAGTACG -ACGGAACTGAAGGCCTAAATCCGA -ACGGAACTGAAGGCCTAAATGGGA -ACGGAACTGAAGGCCTAAGTGCAA -ACGGAACTGAAGGCCTAAGAGGAA -ACGGAACTGAAGGCCTAACAGGTA -ACGGAACTGAAGGCCTAAGACTCT -ACGGAACTGAAGGCCTAAAGTCCT -ACGGAACTGAAGGCCTAATAAGCC -ACGGAACTGAAGGCCTAAATAGCC -ACGGAACTGAAGGCCTAATAACCG -ACGGAACTGAAGGCCTAAATGCCA -ACGGAACTGAAGGCCATAGGAAAC -ACGGAACTGAAGGCCATAAACACC -ACGGAACTGAAGGCCATAATCGAG -ACGGAACTGAAGGCCATACTCCTT -ACGGAACTGAAGGCCATACCTGTT -ACGGAACTGAAGGCCATACGGTTT -ACGGAACTGAAGGCCATAGTGGTT -ACGGAACTGAAGGCCATAGCCTTT -ACGGAACTGAAGGCCATAGGTCTT -ACGGAACTGAAGGCCATAACGCTT -ACGGAACTGAAGGCCATAAGCGTT -ACGGAACTGAAGGCCATATTCGTC -ACGGAACTGAAGGCCATATCTCTC -ACGGAACTGAAGGCCATATGGATC -ACGGAACTGAAGGCCATACACTTC -ACGGAACTGAAGGCCATAGTACTC -ACGGAACTGAAGGCCATAGATGTC -ACGGAACTGAAGGCCATAACAGTC -ACGGAACTGAAGGCCATATTGCTG -ACGGAACTGAAGGCCATATCCATG -ACGGAACTGAAGGCCATATGTGTG -ACGGAACTGAAGGCCATACTAGTG -ACGGAACTGAAGGCCATACATCTG -ACGGAACTGAAGGCCATAGAGTTG -ACGGAACTGAAGGCCATAAGACTG -ACGGAACTGAAGGCCATATCGGTA -ACGGAACTGAAGGCCATATGCCTA -ACGGAACTGAAGGCCATACCACTA -ACGGAACTGAAGGCCATAGGAGTA -ACGGAACTGAAGGCCATATCGTCT -ACGGAACTGAAGGCCATATGCACT -ACGGAACTGAAGGCCATACTGACT -ACGGAACTGAAGGCCATACAACCT -ACGGAACTGAAGGCCATAGCTACT -ACGGAACTGAAGGCCATAGGATCT -ACGGAACTGAAGGCCATAAAGGCT -ACGGAACTGAAGGCCATATCAACC -ACGGAACTGAAGGCCATATGTTCC -ACGGAACTGAAGGCCATAATTCCC -ACGGAACTGAAGGCCATATTCTCG -ACGGAACTGAAGGCCATATAGACG -ACGGAACTGAAGGCCATAGTAACG -ACGGAACTGAAGGCCATAACTTCG -ACGGAACTGAAGGCCATATACGCA -ACGGAACTGAAGGCCATACTTGCA -ACGGAACTGAAGGCCATACGAACA -ACGGAACTGAAGGCCATACAGTCA -ACGGAACTGAAGGCCATAGATCCA -ACGGAACTGAAGGCCATAACGACA -ACGGAACTGAAGGCCATAAGCTCA -ACGGAACTGAAGGCCATATCACGT -ACGGAACTGAAGGCCATACGTAGT -ACGGAACTGAAGGCCATAGTCAGT -ACGGAACTGAAGGCCATAGAAGGT -ACGGAACTGAAGGCCATAAACCGT -ACGGAACTGAAGGCCATATTGTGC -ACGGAACTGAAGGCCATACTAAGC -ACGGAACTGAAGGCCATAACTAGC -ACGGAACTGAAGGCCATAAGATGC -ACGGAACTGAAGGCCATATGAAGG -ACGGAACTGAAGGCCATACAATGG -ACGGAACTGAAGGCCATAATGAGG -ACGGAACTGAAGGCCATAAATGGG -ACGGAACTGAAGGCCATATCCTGA -ACGGAACTGAAGGCCATATAGCGA -ACGGAACTGAAGGCCATACACAGA -ACGGAACTGAAGGCCATAGCAAGA -ACGGAACTGAAGGCCATAGGTTGA -ACGGAACTGAAGGCCATATCCGAT -ACGGAACTGAAGGCCATATGGCAT -ACGGAACTGAAGGCCATACGAGAT -ACGGAACTGAAGGCCATATACCAC -ACGGAACTGAAGGCCATACAGAAC -ACGGAACTGAAGGCCATAGTCTAC -ACGGAACTGAAGGCCATAACGTAC -ACGGAACTGAAGGCCATAAGTGAC -ACGGAACTGAAGGCCATACTGTAG -ACGGAACTGAAGGCCATACCTAAG -ACGGAACTGAAGGCCATAGTTCAG -ACGGAACTGAAGGCCATAGCATAG -ACGGAACTGAAGGCCATAGACAAG -ACGGAACTGAAGGCCATAAAGCAG -ACGGAACTGAAGGCCATACGTCAA -ACGGAACTGAAGGCCATAGCTGAA -ACGGAACTGAAGGCCATAAGTACG -ACGGAACTGAAGGCCATAATCCGA -ACGGAACTGAAGGCCATAATGGGA -ACGGAACTGAAGGCCATAGTGCAA -ACGGAACTGAAGGCCATAGAGGAA -ACGGAACTGAAGGCCATACAGGTA -ACGGAACTGAAGGCCATAGACTCT -ACGGAACTGAAGGCCATAAGTCCT -ACGGAACTGAAGGCCATATAAGCC -ACGGAACTGAAGGCCATAATAGCC -ACGGAACTGAAGGCCATATAACCG -ACGGAACTGAAGGCCATAATGCCA -ACGGAACTGAAGCCGTAAGGAAAC -ACGGAACTGAAGCCGTAAAACACC -ACGGAACTGAAGCCGTAAATCGAG -ACGGAACTGAAGCCGTAACTCCTT -ACGGAACTGAAGCCGTAACCTGTT -ACGGAACTGAAGCCGTAACGGTTT -ACGGAACTGAAGCCGTAAGTGGTT -ACGGAACTGAAGCCGTAAGCCTTT -ACGGAACTGAAGCCGTAAGGTCTT -ACGGAACTGAAGCCGTAAACGCTT -ACGGAACTGAAGCCGTAAAGCGTT -ACGGAACTGAAGCCGTAATTCGTC -ACGGAACTGAAGCCGTAATCTCTC -ACGGAACTGAAGCCGTAATGGATC -ACGGAACTGAAGCCGTAACACTTC -ACGGAACTGAAGCCGTAAGTACTC -ACGGAACTGAAGCCGTAAGATGTC -ACGGAACTGAAGCCGTAAACAGTC -ACGGAACTGAAGCCGTAATTGCTG -ACGGAACTGAAGCCGTAATCCATG -ACGGAACTGAAGCCGTAATGTGTG -ACGGAACTGAAGCCGTAACTAGTG -ACGGAACTGAAGCCGTAACATCTG -ACGGAACTGAAGCCGTAAGAGTTG -ACGGAACTGAAGCCGTAAAGACTG -ACGGAACTGAAGCCGTAATCGGTA -ACGGAACTGAAGCCGTAATGCCTA -ACGGAACTGAAGCCGTAACCACTA -ACGGAACTGAAGCCGTAAGGAGTA -ACGGAACTGAAGCCGTAATCGTCT -ACGGAACTGAAGCCGTAATGCACT -ACGGAACTGAAGCCGTAACTGACT -ACGGAACTGAAGCCGTAACAACCT -ACGGAACTGAAGCCGTAAGCTACT -ACGGAACTGAAGCCGTAAGGATCT -ACGGAACTGAAGCCGTAAAAGGCT -ACGGAACTGAAGCCGTAATCAACC -ACGGAACTGAAGCCGTAATGTTCC -ACGGAACTGAAGCCGTAAATTCCC -ACGGAACTGAAGCCGTAATTCTCG -ACGGAACTGAAGCCGTAATAGACG -ACGGAACTGAAGCCGTAAGTAACG -ACGGAACTGAAGCCGTAAACTTCG -ACGGAACTGAAGCCGTAATACGCA -ACGGAACTGAAGCCGTAACTTGCA -ACGGAACTGAAGCCGTAACGAACA -ACGGAACTGAAGCCGTAACAGTCA -ACGGAACTGAAGCCGTAAGATCCA -ACGGAACTGAAGCCGTAAACGACA -ACGGAACTGAAGCCGTAAAGCTCA -ACGGAACTGAAGCCGTAATCACGT -ACGGAACTGAAGCCGTAACGTAGT -ACGGAACTGAAGCCGTAAGTCAGT -ACGGAACTGAAGCCGTAAGAAGGT -ACGGAACTGAAGCCGTAAAACCGT -ACGGAACTGAAGCCGTAATTGTGC -ACGGAACTGAAGCCGTAACTAAGC -ACGGAACTGAAGCCGTAAACTAGC -ACGGAACTGAAGCCGTAAAGATGC -ACGGAACTGAAGCCGTAATGAAGG -ACGGAACTGAAGCCGTAACAATGG -ACGGAACTGAAGCCGTAAATGAGG -ACGGAACTGAAGCCGTAAAATGGG -ACGGAACTGAAGCCGTAATCCTGA -ACGGAACTGAAGCCGTAATAGCGA -ACGGAACTGAAGCCGTAACACAGA -ACGGAACTGAAGCCGTAAGCAAGA -ACGGAACTGAAGCCGTAAGGTTGA -ACGGAACTGAAGCCGTAATCCGAT -ACGGAACTGAAGCCGTAATGGCAT -ACGGAACTGAAGCCGTAACGAGAT -ACGGAACTGAAGCCGTAATACCAC -ACGGAACTGAAGCCGTAACAGAAC -ACGGAACTGAAGCCGTAAGTCTAC -ACGGAACTGAAGCCGTAAACGTAC -ACGGAACTGAAGCCGTAAAGTGAC -ACGGAACTGAAGCCGTAACTGTAG -ACGGAACTGAAGCCGTAACCTAAG -ACGGAACTGAAGCCGTAAGTTCAG -ACGGAACTGAAGCCGTAAGCATAG -ACGGAACTGAAGCCGTAAGACAAG -ACGGAACTGAAGCCGTAAAAGCAG -ACGGAACTGAAGCCGTAACGTCAA -ACGGAACTGAAGCCGTAAGCTGAA -ACGGAACTGAAGCCGTAAAGTACG -ACGGAACTGAAGCCGTAAATCCGA -ACGGAACTGAAGCCGTAAATGGGA -ACGGAACTGAAGCCGTAAGTGCAA -ACGGAACTGAAGCCGTAAGAGGAA -ACGGAACTGAAGCCGTAACAGGTA -ACGGAACTGAAGCCGTAAGACTCT -ACGGAACTGAAGCCGTAAAGTCCT -ACGGAACTGAAGCCGTAATAAGCC -ACGGAACTGAAGCCGTAAATAGCC -ACGGAACTGAAGCCGTAATAACCG -ACGGAACTGAAGCCGTAAATGCCA -ACGGAACTGAAGCCAATGGGAAAC -ACGGAACTGAAGCCAATGAACACC -ACGGAACTGAAGCCAATGATCGAG -ACGGAACTGAAGCCAATGCTCCTT -ACGGAACTGAAGCCAATGCCTGTT -ACGGAACTGAAGCCAATGCGGTTT -ACGGAACTGAAGCCAATGGTGGTT -ACGGAACTGAAGCCAATGGCCTTT -ACGGAACTGAAGCCAATGGGTCTT -ACGGAACTGAAGCCAATGACGCTT -ACGGAACTGAAGCCAATGAGCGTT -ACGGAACTGAAGCCAATGTTCGTC -ACGGAACTGAAGCCAATGTCTCTC -ACGGAACTGAAGCCAATGTGGATC -ACGGAACTGAAGCCAATGCACTTC -ACGGAACTGAAGCCAATGGTACTC -ACGGAACTGAAGCCAATGGATGTC -ACGGAACTGAAGCCAATGACAGTC -ACGGAACTGAAGCCAATGTTGCTG -ACGGAACTGAAGCCAATGTCCATG -ACGGAACTGAAGCCAATGTGTGTG -ACGGAACTGAAGCCAATGCTAGTG -ACGGAACTGAAGCCAATGCATCTG -ACGGAACTGAAGCCAATGGAGTTG -ACGGAACTGAAGCCAATGAGACTG -ACGGAACTGAAGCCAATGTCGGTA -ACGGAACTGAAGCCAATGTGCCTA -ACGGAACTGAAGCCAATGCCACTA -ACGGAACTGAAGCCAATGGGAGTA -ACGGAACTGAAGCCAATGTCGTCT -ACGGAACTGAAGCCAATGTGCACT -ACGGAACTGAAGCCAATGCTGACT -ACGGAACTGAAGCCAATGCAACCT -ACGGAACTGAAGCCAATGGCTACT -ACGGAACTGAAGCCAATGGGATCT -ACGGAACTGAAGCCAATGAAGGCT -ACGGAACTGAAGCCAATGTCAACC -ACGGAACTGAAGCCAATGTGTTCC -ACGGAACTGAAGCCAATGATTCCC -ACGGAACTGAAGCCAATGTTCTCG -ACGGAACTGAAGCCAATGTAGACG -ACGGAACTGAAGCCAATGGTAACG -ACGGAACTGAAGCCAATGACTTCG -ACGGAACTGAAGCCAATGTACGCA -ACGGAACTGAAGCCAATGCTTGCA -ACGGAACTGAAGCCAATGCGAACA -ACGGAACTGAAGCCAATGCAGTCA -ACGGAACTGAAGCCAATGGATCCA -ACGGAACTGAAGCCAATGACGACA -ACGGAACTGAAGCCAATGAGCTCA -ACGGAACTGAAGCCAATGTCACGT -ACGGAACTGAAGCCAATGCGTAGT -ACGGAACTGAAGCCAATGGTCAGT -ACGGAACTGAAGCCAATGGAAGGT -ACGGAACTGAAGCCAATGAACCGT -ACGGAACTGAAGCCAATGTTGTGC -ACGGAACTGAAGCCAATGCTAAGC -ACGGAACTGAAGCCAATGACTAGC -ACGGAACTGAAGCCAATGAGATGC -ACGGAACTGAAGCCAATGTGAAGG -ACGGAACTGAAGCCAATGCAATGG -ACGGAACTGAAGCCAATGATGAGG -ACGGAACTGAAGCCAATGAATGGG -ACGGAACTGAAGCCAATGTCCTGA -ACGGAACTGAAGCCAATGTAGCGA -ACGGAACTGAAGCCAATGCACAGA -ACGGAACTGAAGCCAATGGCAAGA -ACGGAACTGAAGCCAATGGGTTGA -ACGGAACTGAAGCCAATGTCCGAT -ACGGAACTGAAGCCAATGTGGCAT -ACGGAACTGAAGCCAATGCGAGAT -ACGGAACTGAAGCCAATGTACCAC -ACGGAACTGAAGCCAATGCAGAAC -ACGGAACTGAAGCCAATGGTCTAC -ACGGAACTGAAGCCAATGACGTAC -ACGGAACTGAAGCCAATGAGTGAC -ACGGAACTGAAGCCAATGCTGTAG -ACGGAACTGAAGCCAATGCCTAAG -ACGGAACTGAAGCCAATGGTTCAG -ACGGAACTGAAGCCAATGGCATAG -ACGGAACTGAAGCCAATGGACAAG -ACGGAACTGAAGCCAATGAAGCAG -ACGGAACTGAAGCCAATGCGTCAA -ACGGAACTGAAGCCAATGGCTGAA -ACGGAACTGAAGCCAATGAGTACG -ACGGAACTGAAGCCAATGATCCGA -ACGGAACTGAAGCCAATGATGGGA -ACGGAACTGAAGCCAATGGTGCAA -ACGGAACTGAAGCCAATGGAGGAA -ACGGAACTGAAGCCAATGCAGGTA -ACGGAACTGAAGCCAATGGACTCT -ACGGAACTGAAGCCAATGAGTCCT -ACGGAACTGAAGCCAATGTAAGCC -ACGGAACTGAAGCCAATGATAGCC -ACGGAACTGAAGCCAATGTAACCG -ACGGAACTGAAGCCAATGATGCCA -ACGGAAGTACGAAACGGAGGAAAC -ACGGAAGTACGAAACGGAAACACC -ACGGAAGTACGAAACGGAATCGAG -ACGGAAGTACGAAACGGACTCCTT -ACGGAAGTACGAAACGGACCTGTT -ACGGAAGTACGAAACGGACGGTTT -ACGGAAGTACGAAACGGAGTGGTT -ACGGAAGTACGAAACGGAGCCTTT -ACGGAAGTACGAAACGGAGGTCTT -ACGGAAGTACGAAACGGAACGCTT -ACGGAAGTACGAAACGGAAGCGTT -ACGGAAGTACGAAACGGATTCGTC -ACGGAAGTACGAAACGGATCTCTC -ACGGAAGTACGAAACGGATGGATC -ACGGAAGTACGAAACGGACACTTC -ACGGAAGTACGAAACGGAGTACTC -ACGGAAGTACGAAACGGAGATGTC -ACGGAAGTACGAAACGGAACAGTC -ACGGAAGTACGAAACGGATTGCTG -ACGGAAGTACGAAACGGATCCATG -ACGGAAGTACGAAACGGATGTGTG -ACGGAAGTACGAAACGGACTAGTG -ACGGAAGTACGAAACGGACATCTG -ACGGAAGTACGAAACGGAGAGTTG -ACGGAAGTACGAAACGGAAGACTG -ACGGAAGTACGAAACGGATCGGTA -ACGGAAGTACGAAACGGATGCCTA -ACGGAAGTACGAAACGGACCACTA -ACGGAAGTACGAAACGGAGGAGTA -ACGGAAGTACGAAACGGATCGTCT -ACGGAAGTACGAAACGGATGCACT -ACGGAAGTACGAAACGGACTGACT -ACGGAAGTACGAAACGGACAACCT -ACGGAAGTACGAAACGGAGCTACT -ACGGAAGTACGAAACGGAGGATCT -ACGGAAGTACGAAACGGAAAGGCT -ACGGAAGTACGAAACGGATCAACC -ACGGAAGTACGAAACGGATGTTCC -ACGGAAGTACGAAACGGAATTCCC -ACGGAAGTACGAAACGGATTCTCG -ACGGAAGTACGAAACGGATAGACG -ACGGAAGTACGAAACGGAGTAACG -ACGGAAGTACGAAACGGAACTTCG -ACGGAAGTACGAAACGGATACGCA -ACGGAAGTACGAAACGGACTTGCA -ACGGAAGTACGAAACGGACGAACA -ACGGAAGTACGAAACGGACAGTCA -ACGGAAGTACGAAACGGAGATCCA -ACGGAAGTACGAAACGGAACGACA -ACGGAAGTACGAAACGGAAGCTCA -ACGGAAGTACGAAACGGATCACGT -ACGGAAGTACGAAACGGACGTAGT -ACGGAAGTACGAAACGGAGTCAGT -ACGGAAGTACGAAACGGAGAAGGT -ACGGAAGTACGAAACGGAAACCGT -ACGGAAGTACGAAACGGATTGTGC -ACGGAAGTACGAAACGGACTAAGC -ACGGAAGTACGAAACGGAACTAGC -ACGGAAGTACGAAACGGAAGATGC -ACGGAAGTACGAAACGGATGAAGG -ACGGAAGTACGAAACGGACAATGG -ACGGAAGTACGAAACGGAATGAGG -ACGGAAGTACGAAACGGAAATGGG -ACGGAAGTACGAAACGGATCCTGA -ACGGAAGTACGAAACGGATAGCGA -ACGGAAGTACGAAACGGACACAGA -ACGGAAGTACGAAACGGAGCAAGA -ACGGAAGTACGAAACGGAGGTTGA -ACGGAAGTACGAAACGGATCCGAT -ACGGAAGTACGAAACGGATGGCAT -ACGGAAGTACGAAACGGACGAGAT -ACGGAAGTACGAAACGGATACCAC -ACGGAAGTACGAAACGGACAGAAC -ACGGAAGTACGAAACGGAGTCTAC -ACGGAAGTACGAAACGGAACGTAC -ACGGAAGTACGAAACGGAAGTGAC -ACGGAAGTACGAAACGGACTGTAG -ACGGAAGTACGAAACGGACCTAAG -ACGGAAGTACGAAACGGAGTTCAG -ACGGAAGTACGAAACGGAGCATAG -ACGGAAGTACGAAACGGAGACAAG -ACGGAAGTACGAAACGGAAAGCAG -ACGGAAGTACGAAACGGACGTCAA -ACGGAAGTACGAAACGGAGCTGAA -ACGGAAGTACGAAACGGAAGTACG -ACGGAAGTACGAAACGGAATCCGA -ACGGAAGTACGAAACGGAATGGGA -ACGGAAGTACGAAACGGAGTGCAA -ACGGAAGTACGAAACGGAGAGGAA -ACGGAAGTACGAAACGGACAGGTA -ACGGAAGTACGAAACGGAGACTCT -ACGGAAGTACGAAACGGAAGTCCT -ACGGAAGTACGAAACGGATAAGCC -ACGGAAGTACGAAACGGAATAGCC -ACGGAAGTACGAAACGGATAACCG -ACGGAAGTACGAAACGGAATGCCA -ACGGAAGTACGAACCAACGGAAAC -ACGGAAGTACGAACCAACAACACC -ACGGAAGTACGAACCAACATCGAG -ACGGAAGTACGAACCAACCTCCTT -ACGGAAGTACGAACCAACCCTGTT -ACGGAAGTACGAACCAACCGGTTT -ACGGAAGTACGAACCAACGTGGTT -ACGGAAGTACGAACCAACGCCTTT -ACGGAAGTACGAACCAACGGTCTT -ACGGAAGTACGAACCAACACGCTT -ACGGAAGTACGAACCAACAGCGTT -ACGGAAGTACGAACCAACTTCGTC -ACGGAAGTACGAACCAACTCTCTC -ACGGAAGTACGAACCAACTGGATC -ACGGAAGTACGAACCAACCACTTC -ACGGAAGTACGAACCAACGTACTC -ACGGAAGTACGAACCAACGATGTC -ACGGAAGTACGAACCAACACAGTC -ACGGAAGTACGAACCAACTTGCTG -ACGGAAGTACGAACCAACTCCATG -ACGGAAGTACGAACCAACTGTGTG -ACGGAAGTACGAACCAACCTAGTG -ACGGAAGTACGAACCAACCATCTG -ACGGAAGTACGAACCAACGAGTTG -ACGGAAGTACGAACCAACAGACTG -ACGGAAGTACGAACCAACTCGGTA -ACGGAAGTACGAACCAACTGCCTA -ACGGAAGTACGAACCAACCCACTA -ACGGAAGTACGAACCAACGGAGTA -ACGGAAGTACGAACCAACTCGTCT -ACGGAAGTACGAACCAACTGCACT -ACGGAAGTACGAACCAACCTGACT -ACGGAAGTACGAACCAACCAACCT -ACGGAAGTACGAACCAACGCTACT -ACGGAAGTACGAACCAACGGATCT -ACGGAAGTACGAACCAACAAGGCT -ACGGAAGTACGAACCAACTCAACC -ACGGAAGTACGAACCAACTGTTCC -ACGGAAGTACGAACCAACATTCCC -ACGGAAGTACGAACCAACTTCTCG -ACGGAAGTACGAACCAACTAGACG -ACGGAAGTACGAACCAACGTAACG -ACGGAAGTACGAACCAACACTTCG -ACGGAAGTACGAACCAACTACGCA -ACGGAAGTACGAACCAACCTTGCA -ACGGAAGTACGAACCAACCGAACA -ACGGAAGTACGAACCAACCAGTCA -ACGGAAGTACGAACCAACGATCCA -ACGGAAGTACGAACCAACACGACA -ACGGAAGTACGAACCAACAGCTCA -ACGGAAGTACGAACCAACTCACGT -ACGGAAGTACGAACCAACCGTAGT -ACGGAAGTACGAACCAACGTCAGT -ACGGAAGTACGAACCAACGAAGGT -ACGGAAGTACGAACCAACAACCGT -ACGGAAGTACGAACCAACTTGTGC -ACGGAAGTACGAACCAACCTAAGC -ACGGAAGTACGAACCAACACTAGC -ACGGAAGTACGAACCAACAGATGC -ACGGAAGTACGAACCAACTGAAGG -ACGGAAGTACGAACCAACCAATGG -ACGGAAGTACGAACCAACATGAGG -ACGGAAGTACGAACCAACAATGGG -ACGGAAGTACGAACCAACTCCTGA -ACGGAAGTACGAACCAACTAGCGA -ACGGAAGTACGAACCAACCACAGA -ACGGAAGTACGAACCAACGCAAGA -ACGGAAGTACGAACCAACGGTTGA -ACGGAAGTACGAACCAACTCCGAT -ACGGAAGTACGAACCAACTGGCAT -ACGGAAGTACGAACCAACCGAGAT -ACGGAAGTACGAACCAACTACCAC -ACGGAAGTACGAACCAACCAGAAC -ACGGAAGTACGAACCAACGTCTAC -ACGGAAGTACGAACCAACACGTAC -ACGGAAGTACGAACCAACAGTGAC -ACGGAAGTACGAACCAACCTGTAG -ACGGAAGTACGAACCAACCCTAAG -ACGGAAGTACGAACCAACGTTCAG -ACGGAAGTACGAACCAACGCATAG -ACGGAAGTACGAACCAACGACAAG -ACGGAAGTACGAACCAACAAGCAG -ACGGAAGTACGAACCAACCGTCAA -ACGGAAGTACGAACCAACGCTGAA -ACGGAAGTACGAACCAACAGTACG -ACGGAAGTACGAACCAACATCCGA -ACGGAAGTACGAACCAACATGGGA -ACGGAAGTACGAACCAACGTGCAA -ACGGAAGTACGAACCAACGAGGAA -ACGGAAGTACGAACCAACCAGGTA -ACGGAAGTACGAACCAACGACTCT -ACGGAAGTACGAACCAACAGTCCT -ACGGAAGTACGAACCAACTAAGCC -ACGGAAGTACGAACCAACATAGCC -ACGGAAGTACGAACCAACTAACCG -ACGGAAGTACGAACCAACATGCCA -ACGGAAGTACGAGAGATCGGAAAC -ACGGAAGTACGAGAGATCAACACC -ACGGAAGTACGAGAGATCATCGAG -ACGGAAGTACGAGAGATCCTCCTT -ACGGAAGTACGAGAGATCCCTGTT -ACGGAAGTACGAGAGATCCGGTTT -ACGGAAGTACGAGAGATCGTGGTT -ACGGAAGTACGAGAGATCGCCTTT -ACGGAAGTACGAGAGATCGGTCTT -ACGGAAGTACGAGAGATCACGCTT -ACGGAAGTACGAGAGATCAGCGTT -ACGGAAGTACGAGAGATCTTCGTC -ACGGAAGTACGAGAGATCTCTCTC -ACGGAAGTACGAGAGATCTGGATC -ACGGAAGTACGAGAGATCCACTTC -ACGGAAGTACGAGAGATCGTACTC -ACGGAAGTACGAGAGATCGATGTC -ACGGAAGTACGAGAGATCACAGTC -ACGGAAGTACGAGAGATCTTGCTG -ACGGAAGTACGAGAGATCTCCATG -ACGGAAGTACGAGAGATCTGTGTG -ACGGAAGTACGAGAGATCCTAGTG -ACGGAAGTACGAGAGATCCATCTG -ACGGAAGTACGAGAGATCGAGTTG -ACGGAAGTACGAGAGATCAGACTG -ACGGAAGTACGAGAGATCTCGGTA -ACGGAAGTACGAGAGATCTGCCTA -ACGGAAGTACGAGAGATCCCACTA -ACGGAAGTACGAGAGATCGGAGTA -ACGGAAGTACGAGAGATCTCGTCT -ACGGAAGTACGAGAGATCTGCACT -ACGGAAGTACGAGAGATCCTGACT -ACGGAAGTACGAGAGATCCAACCT -ACGGAAGTACGAGAGATCGCTACT -ACGGAAGTACGAGAGATCGGATCT -ACGGAAGTACGAGAGATCAAGGCT -ACGGAAGTACGAGAGATCTCAACC -ACGGAAGTACGAGAGATCTGTTCC -ACGGAAGTACGAGAGATCATTCCC -ACGGAAGTACGAGAGATCTTCTCG -ACGGAAGTACGAGAGATCTAGACG -ACGGAAGTACGAGAGATCGTAACG -ACGGAAGTACGAGAGATCACTTCG -ACGGAAGTACGAGAGATCTACGCA -ACGGAAGTACGAGAGATCCTTGCA -ACGGAAGTACGAGAGATCCGAACA -ACGGAAGTACGAGAGATCCAGTCA -ACGGAAGTACGAGAGATCGATCCA -ACGGAAGTACGAGAGATCACGACA -ACGGAAGTACGAGAGATCAGCTCA -ACGGAAGTACGAGAGATCTCACGT -ACGGAAGTACGAGAGATCCGTAGT -ACGGAAGTACGAGAGATCGTCAGT -ACGGAAGTACGAGAGATCGAAGGT -ACGGAAGTACGAGAGATCAACCGT -ACGGAAGTACGAGAGATCTTGTGC -ACGGAAGTACGAGAGATCCTAAGC -ACGGAAGTACGAGAGATCACTAGC -ACGGAAGTACGAGAGATCAGATGC -ACGGAAGTACGAGAGATCTGAAGG -ACGGAAGTACGAGAGATCCAATGG -ACGGAAGTACGAGAGATCATGAGG -ACGGAAGTACGAGAGATCAATGGG -ACGGAAGTACGAGAGATCTCCTGA -ACGGAAGTACGAGAGATCTAGCGA -ACGGAAGTACGAGAGATCCACAGA -ACGGAAGTACGAGAGATCGCAAGA -ACGGAAGTACGAGAGATCGGTTGA -ACGGAAGTACGAGAGATCTCCGAT -ACGGAAGTACGAGAGATCTGGCAT -ACGGAAGTACGAGAGATCCGAGAT -ACGGAAGTACGAGAGATCTACCAC -ACGGAAGTACGAGAGATCCAGAAC -ACGGAAGTACGAGAGATCGTCTAC -ACGGAAGTACGAGAGATCACGTAC -ACGGAAGTACGAGAGATCAGTGAC -ACGGAAGTACGAGAGATCCTGTAG -ACGGAAGTACGAGAGATCCCTAAG -ACGGAAGTACGAGAGATCGTTCAG -ACGGAAGTACGAGAGATCGCATAG -ACGGAAGTACGAGAGATCGACAAG -ACGGAAGTACGAGAGATCAAGCAG -ACGGAAGTACGAGAGATCCGTCAA -ACGGAAGTACGAGAGATCGCTGAA -ACGGAAGTACGAGAGATCAGTACG -ACGGAAGTACGAGAGATCATCCGA -ACGGAAGTACGAGAGATCATGGGA -ACGGAAGTACGAGAGATCGTGCAA -ACGGAAGTACGAGAGATCGAGGAA -ACGGAAGTACGAGAGATCCAGGTA -ACGGAAGTACGAGAGATCGACTCT -ACGGAAGTACGAGAGATCAGTCCT -ACGGAAGTACGAGAGATCTAAGCC -ACGGAAGTACGAGAGATCATAGCC -ACGGAAGTACGAGAGATCTAACCG -ACGGAAGTACGAGAGATCATGCCA -ACGGAAGTACGACTTCTCGGAAAC -ACGGAAGTACGACTTCTCAACACC -ACGGAAGTACGACTTCTCATCGAG -ACGGAAGTACGACTTCTCCTCCTT -ACGGAAGTACGACTTCTCCCTGTT -ACGGAAGTACGACTTCTCCGGTTT -ACGGAAGTACGACTTCTCGTGGTT -ACGGAAGTACGACTTCTCGCCTTT -ACGGAAGTACGACTTCTCGGTCTT -ACGGAAGTACGACTTCTCACGCTT -ACGGAAGTACGACTTCTCAGCGTT -ACGGAAGTACGACTTCTCTTCGTC -ACGGAAGTACGACTTCTCTCTCTC -ACGGAAGTACGACTTCTCTGGATC -ACGGAAGTACGACTTCTCCACTTC -ACGGAAGTACGACTTCTCGTACTC -ACGGAAGTACGACTTCTCGATGTC -ACGGAAGTACGACTTCTCACAGTC -ACGGAAGTACGACTTCTCTTGCTG -ACGGAAGTACGACTTCTCTCCATG -ACGGAAGTACGACTTCTCTGTGTG -ACGGAAGTACGACTTCTCCTAGTG -ACGGAAGTACGACTTCTCCATCTG -ACGGAAGTACGACTTCTCGAGTTG -ACGGAAGTACGACTTCTCAGACTG -ACGGAAGTACGACTTCTCTCGGTA -ACGGAAGTACGACTTCTCTGCCTA -ACGGAAGTACGACTTCTCCCACTA -ACGGAAGTACGACTTCTCGGAGTA -ACGGAAGTACGACTTCTCTCGTCT -ACGGAAGTACGACTTCTCTGCACT -ACGGAAGTACGACTTCTCCTGACT -ACGGAAGTACGACTTCTCCAACCT -ACGGAAGTACGACTTCTCGCTACT -ACGGAAGTACGACTTCTCGGATCT -ACGGAAGTACGACTTCTCAAGGCT -ACGGAAGTACGACTTCTCTCAACC -ACGGAAGTACGACTTCTCTGTTCC -ACGGAAGTACGACTTCTCATTCCC -ACGGAAGTACGACTTCTCTTCTCG -ACGGAAGTACGACTTCTCTAGACG -ACGGAAGTACGACTTCTCGTAACG -ACGGAAGTACGACTTCTCACTTCG -ACGGAAGTACGACTTCTCTACGCA -ACGGAAGTACGACTTCTCCTTGCA -ACGGAAGTACGACTTCTCCGAACA -ACGGAAGTACGACTTCTCCAGTCA -ACGGAAGTACGACTTCTCGATCCA -ACGGAAGTACGACTTCTCACGACA -ACGGAAGTACGACTTCTCAGCTCA -ACGGAAGTACGACTTCTCTCACGT -ACGGAAGTACGACTTCTCCGTAGT -ACGGAAGTACGACTTCTCGTCAGT -ACGGAAGTACGACTTCTCGAAGGT -ACGGAAGTACGACTTCTCAACCGT -ACGGAAGTACGACTTCTCTTGTGC -ACGGAAGTACGACTTCTCCTAAGC -ACGGAAGTACGACTTCTCACTAGC -ACGGAAGTACGACTTCTCAGATGC -ACGGAAGTACGACTTCTCTGAAGG -ACGGAAGTACGACTTCTCCAATGG -ACGGAAGTACGACTTCTCATGAGG -ACGGAAGTACGACTTCTCAATGGG -ACGGAAGTACGACTTCTCTCCTGA -ACGGAAGTACGACTTCTCTAGCGA -ACGGAAGTACGACTTCTCCACAGA -ACGGAAGTACGACTTCTCGCAAGA -ACGGAAGTACGACTTCTCGGTTGA -ACGGAAGTACGACTTCTCTCCGAT -ACGGAAGTACGACTTCTCTGGCAT -ACGGAAGTACGACTTCTCCGAGAT -ACGGAAGTACGACTTCTCTACCAC -ACGGAAGTACGACTTCTCCAGAAC -ACGGAAGTACGACTTCTCGTCTAC -ACGGAAGTACGACTTCTCACGTAC -ACGGAAGTACGACTTCTCAGTGAC -ACGGAAGTACGACTTCTCCTGTAG -ACGGAAGTACGACTTCTCCCTAAG -ACGGAAGTACGACTTCTCGTTCAG -ACGGAAGTACGACTTCTCGCATAG -ACGGAAGTACGACTTCTCGACAAG -ACGGAAGTACGACTTCTCAAGCAG -ACGGAAGTACGACTTCTCCGTCAA -ACGGAAGTACGACTTCTCGCTGAA -ACGGAAGTACGACTTCTCAGTACG -ACGGAAGTACGACTTCTCATCCGA -ACGGAAGTACGACTTCTCATGGGA -ACGGAAGTACGACTTCTCGTGCAA -ACGGAAGTACGACTTCTCGAGGAA -ACGGAAGTACGACTTCTCCAGGTA -ACGGAAGTACGACTTCTCGACTCT -ACGGAAGTACGACTTCTCAGTCCT -ACGGAAGTACGACTTCTCTAAGCC -ACGGAAGTACGACTTCTCATAGCC -ACGGAAGTACGACTTCTCTAACCG -ACGGAAGTACGACTTCTCATGCCA -ACGGAAGTACGAGTTCCTGGAAAC -ACGGAAGTACGAGTTCCTAACACC -ACGGAAGTACGAGTTCCTATCGAG -ACGGAAGTACGAGTTCCTCTCCTT -ACGGAAGTACGAGTTCCTCCTGTT -ACGGAAGTACGAGTTCCTCGGTTT -ACGGAAGTACGAGTTCCTGTGGTT -ACGGAAGTACGAGTTCCTGCCTTT -ACGGAAGTACGAGTTCCTGGTCTT -ACGGAAGTACGAGTTCCTACGCTT -ACGGAAGTACGAGTTCCTAGCGTT -ACGGAAGTACGAGTTCCTTTCGTC -ACGGAAGTACGAGTTCCTTCTCTC -ACGGAAGTACGAGTTCCTTGGATC -ACGGAAGTACGAGTTCCTCACTTC -ACGGAAGTACGAGTTCCTGTACTC -ACGGAAGTACGAGTTCCTGATGTC -ACGGAAGTACGAGTTCCTACAGTC -ACGGAAGTACGAGTTCCTTTGCTG -ACGGAAGTACGAGTTCCTTCCATG -ACGGAAGTACGAGTTCCTTGTGTG -ACGGAAGTACGAGTTCCTCTAGTG -ACGGAAGTACGAGTTCCTCATCTG -ACGGAAGTACGAGTTCCTGAGTTG -ACGGAAGTACGAGTTCCTAGACTG -ACGGAAGTACGAGTTCCTTCGGTA -ACGGAAGTACGAGTTCCTTGCCTA -ACGGAAGTACGAGTTCCTCCACTA -ACGGAAGTACGAGTTCCTGGAGTA -ACGGAAGTACGAGTTCCTTCGTCT -ACGGAAGTACGAGTTCCTTGCACT -ACGGAAGTACGAGTTCCTCTGACT -ACGGAAGTACGAGTTCCTCAACCT -ACGGAAGTACGAGTTCCTGCTACT -ACGGAAGTACGAGTTCCTGGATCT -ACGGAAGTACGAGTTCCTAAGGCT -ACGGAAGTACGAGTTCCTTCAACC -ACGGAAGTACGAGTTCCTTGTTCC -ACGGAAGTACGAGTTCCTATTCCC -ACGGAAGTACGAGTTCCTTTCTCG -ACGGAAGTACGAGTTCCTTAGACG -ACGGAAGTACGAGTTCCTGTAACG -ACGGAAGTACGAGTTCCTACTTCG -ACGGAAGTACGAGTTCCTTACGCA -ACGGAAGTACGAGTTCCTCTTGCA -ACGGAAGTACGAGTTCCTCGAACA -ACGGAAGTACGAGTTCCTCAGTCA -ACGGAAGTACGAGTTCCTGATCCA -ACGGAAGTACGAGTTCCTACGACA -ACGGAAGTACGAGTTCCTAGCTCA -ACGGAAGTACGAGTTCCTTCACGT -ACGGAAGTACGAGTTCCTCGTAGT -ACGGAAGTACGAGTTCCTGTCAGT -ACGGAAGTACGAGTTCCTGAAGGT -ACGGAAGTACGAGTTCCTAACCGT -ACGGAAGTACGAGTTCCTTTGTGC -ACGGAAGTACGAGTTCCTCTAAGC -ACGGAAGTACGAGTTCCTACTAGC -ACGGAAGTACGAGTTCCTAGATGC -ACGGAAGTACGAGTTCCTTGAAGG -ACGGAAGTACGAGTTCCTCAATGG -ACGGAAGTACGAGTTCCTATGAGG -ACGGAAGTACGAGTTCCTAATGGG -ACGGAAGTACGAGTTCCTTCCTGA -ACGGAAGTACGAGTTCCTTAGCGA -ACGGAAGTACGAGTTCCTCACAGA -ACGGAAGTACGAGTTCCTGCAAGA -ACGGAAGTACGAGTTCCTGGTTGA -ACGGAAGTACGAGTTCCTTCCGAT -ACGGAAGTACGAGTTCCTTGGCAT -ACGGAAGTACGAGTTCCTCGAGAT -ACGGAAGTACGAGTTCCTTACCAC -ACGGAAGTACGAGTTCCTCAGAAC -ACGGAAGTACGAGTTCCTGTCTAC -ACGGAAGTACGAGTTCCTACGTAC -ACGGAAGTACGAGTTCCTAGTGAC -ACGGAAGTACGAGTTCCTCTGTAG -ACGGAAGTACGAGTTCCTCCTAAG -ACGGAAGTACGAGTTCCTGTTCAG -ACGGAAGTACGAGTTCCTGCATAG -ACGGAAGTACGAGTTCCTGACAAG -ACGGAAGTACGAGTTCCTAAGCAG -ACGGAAGTACGAGTTCCTCGTCAA -ACGGAAGTACGAGTTCCTGCTGAA -ACGGAAGTACGAGTTCCTAGTACG -ACGGAAGTACGAGTTCCTATCCGA -ACGGAAGTACGAGTTCCTATGGGA -ACGGAAGTACGAGTTCCTGTGCAA -ACGGAAGTACGAGTTCCTGAGGAA -ACGGAAGTACGAGTTCCTCAGGTA -ACGGAAGTACGAGTTCCTGACTCT -ACGGAAGTACGAGTTCCTAGTCCT -ACGGAAGTACGAGTTCCTTAAGCC -ACGGAAGTACGAGTTCCTATAGCC -ACGGAAGTACGAGTTCCTTAACCG -ACGGAAGTACGAGTTCCTATGCCA -ACGGAAGTACGATTTCGGGGAAAC -ACGGAAGTACGATTTCGGAACACC -ACGGAAGTACGATTTCGGATCGAG -ACGGAAGTACGATTTCGGCTCCTT -ACGGAAGTACGATTTCGGCCTGTT -ACGGAAGTACGATTTCGGCGGTTT -ACGGAAGTACGATTTCGGGTGGTT -ACGGAAGTACGATTTCGGGCCTTT -ACGGAAGTACGATTTCGGGGTCTT -ACGGAAGTACGATTTCGGACGCTT -ACGGAAGTACGATTTCGGAGCGTT -ACGGAAGTACGATTTCGGTTCGTC -ACGGAAGTACGATTTCGGTCTCTC -ACGGAAGTACGATTTCGGTGGATC -ACGGAAGTACGATTTCGGCACTTC -ACGGAAGTACGATTTCGGGTACTC -ACGGAAGTACGATTTCGGGATGTC -ACGGAAGTACGATTTCGGACAGTC -ACGGAAGTACGATTTCGGTTGCTG -ACGGAAGTACGATTTCGGTCCATG -ACGGAAGTACGATTTCGGTGTGTG -ACGGAAGTACGATTTCGGCTAGTG -ACGGAAGTACGATTTCGGCATCTG -ACGGAAGTACGATTTCGGGAGTTG -ACGGAAGTACGATTTCGGAGACTG -ACGGAAGTACGATTTCGGTCGGTA -ACGGAAGTACGATTTCGGTGCCTA -ACGGAAGTACGATTTCGGCCACTA -ACGGAAGTACGATTTCGGGGAGTA -ACGGAAGTACGATTTCGGTCGTCT -ACGGAAGTACGATTTCGGTGCACT -ACGGAAGTACGATTTCGGCTGACT -ACGGAAGTACGATTTCGGCAACCT -ACGGAAGTACGATTTCGGGCTACT -ACGGAAGTACGATTTCGGGGATCT -ACGGAAGTACGATTTCGGAAGGCT -ACGGAAGTACGATTTCGGTCAACC -ACGGAAGTACGATTTCGGTGTTCC -ACGGAAGTACGATTTCGGATTCCC -ACGGAAGTACGATTTCGGTTCTCG -ACGGAAGTACGATTTCGGTAGACG -ACGGAAGTACGATTTCGGGTAACG -ACGGAAGTACGATTTCGGACTTCG -ACGGAAGTACGATTTCGGTACGCA -ACGGAAGTACGATTTCGGCTTGCA -ACGGAAGTACGATTTCGGCGAACA -ACGGAAGTACGATTTCGGCAGTCA -ACGGAAGTACGATTTCGGGATCCA -ACGGAAGTACGATTTCGGACGACA -ACGGAAGTACGATTTCGGAGCTCA -ACGGAAGTACGATTTCGGTCACGT -ACGGAAGTACGATTTCGGCGTAGT -ACGGAAGTACGATTTCGGGTCAGT -ACGGAAGTACGATTTCGGGAAGGT -ACGGAAGTACGATTTCGGAACCGT -ACGGAAGTACGATTTCGGTTGTGC -ACGGAAGTACGATTTCGGCTAAGC -ACGGAAGTACGATTTCGGACTAGC -ACGGAAGTACGATTTCGGAGATGC -ACGGAAGTACGATTTCGGTGAAGG -ACGGAAGTACGATTTCGGCAATGG -ACGGAAGTACGATTTCGGATGAGG -ACGGAAGTACGATTTCGGAATGGG -ACGGAAGTACGATTTCGGTCCTGA -ACGGAAGTACGATTTCGGTAGCGA -ACGGAAGTACGATTTCGGCACAGA -ACGGAAGTACGATTTCGGGCAAGA -ACGGAAGTACGATTTCGGGGTTGA -ACGGAAGTACGATTTCGGTCCGAT -ACGGAAGTACGATTTCGGTGGCAT -ACGGAAGTACGATTTCGGCGAGAT -ACGGAAGTACGATTTCGGTACCAC -ACGGAAGTACGATTTCGGCAGAAC -ACGGAAGTACGATTTCGGGTCTAC -ACGGAAGTACGATTTCGGACGTAC -ACGGAAGTACGATTTCGGAGTGAC -ACGGAAGTACGATTTCGGCTGTAG -ACGGAAGTACGATTTCGGCCTAAG -ACGGAAGTACGATTTCGGGTTCAG -ACGGAAGTACGATTTCGGGCATAG -ACGGAAGTACGATTTCGGGACAAG -ACGGAAGTACGATTTCGGAAGCAG -ACGGAAGTACGATTTCGGCGTCAA -ACGGAAGTACGATTTCGGGCTGAA -ACGGAAGTACGATTTCGGAGTACG -ACGGAAGTACGATTTCGGATCCGA -ACGGAAGTACGATTTCGGATGGGA -ACGGAAGTACGATTTCGGGTGCAA -ACGGAAGTACGATTTCGGGAGGAA -ACGGAAGTACGATTTCGGCAGGTA -ACGGAAGTACGATTTCGGGACTCT -ACGGAAGTACGATTTCGGAGTCCT -ACGGAAGTACGATTTCGGTAAGCC -ACGGAAGTACGATTTCGGATAGCC -ACGGAAGTACGATTTCGGTAACCG -ACGGAAGTACGATTTCGGATGCCA -ACGGAAGTACGAGTTGTGGGAAAC -ACGGAAGTACGAGTTGTGAACACC -ACGGAAGTACGAGTTGTGATCGAG -ACGGAAGTACGAGTTGTGCTCCTT -ACGGAAGTACGAGTTGTGCCTGTT -ACGGAAGTACGAGTTGTGCGGTTT -ACGGAAGTACGAGTTGTGGTGGTT -ACGGAAGTACGAGTTGTGGCCTTT -ACGGAAGTACGAGTTGTGGGTCTT -ACGGAAGTACGAGTTGTGACGCTT -ACGGAAGTACGAGTTGTGAGCGTT -ACGGAAGTACGAGTTGTGTTCGTC -ACGGAAGTACGAGTTGTGTCTCTC -ACGGAAGTACGAGTTGTGTGGATC -ACGGAAGTACGAGTTGTGCACTTC -ACGGAAGTACGAGTTGTGGTACTC -ACGGAAGTACGAGTTGTGGATGTC -ACGGAAGTACGAGTTGTGACAGTC -ACGGAAGTACGAGTTGTGTTGCTG -ACGGAAGTACGAGTTGTGTCCATG -ACGGAAGTACGAGTTGTGTGTGTG -ACGGAAGTACGAGTTGTGCTAGTG -ACGGAAGTACGAGTTGTGCATCTG -ACGGAAGTACGAGTTGTGGAGTTG -ACGGAAGTACGAGTTGTGAGACTG -ACGGAAGTACGAGTTGTGTCGGTA -ACGGAAGTACGAGTTGTGTGCCTA -ACGGAAGTACGAGTTGTGCCACTA -ACGGAAGTACGAGTTGTGGGAGTA -ACGGAAGTACGAGTTGTGTCGTCT -ACGGAAGTACGAGTTGTGTGCACT -ACGGAAGTACGAGTTGTGCTGACT -ACGGAAGTACGAGTTGTGCAACCT -ACGGAAGTACGAGTTGTGGCTACT -ACGGAAGTACGAGTTGTGGGATCT -ACGGAAGTACGAGTTGTGAAGGCT -ACGGAAGTACGAGTTGTGTCAACC -ACGGAAGTACGAGTTGTGTGTTCC -ACGGAAGTACGAGTTGTGATTCCC -ACGGAAGTACGAGTTGTGTTCTCG -ACGGAAGTACGAGTTGTGTAGACG -ACGGAAGTACGAGTTGTGGTAACG -ACGGAAGTACGAGTTGTGACTTCG -ACGGAAGTACGAGTTGTGTACGCA -ACGGAAGTACGAGTTGTGCTTGCA -ACGGAAGTACGAGTTGTGCGAACA -ACGGAAGTACGAGTTGTGCAGTCA -ACGGAAGTACGAGTTGTGGATCCA -ACGGAAGTACGAGTTGTGACGACA -ACGGAAGTACGAGTTGTGAGCTCA -ACGGAAGTACGAGTTGTGTCACGT -ACGGAAGTACGAGTTGTGCGTAGT -ACGGAAGTACGAGTTGTGGTCAGT -ACGGAAGTACGAGTTGTGGAAGGT -ACGGAAGTACGAGTTGTGAACCGT -ACGGAAGTACGAGTTGTGTTGTGC -ACGGAAGTACGAGTTGTGCTAAGC -ACGGAAGTACGAGTTGTGACTAGC -ACGGAAGTACGAGTTGTGAGATGC -ACGGAAGTACGAGTTGTGTGAAGG -ACGGAAGTACGAGTTGTGCAATGG -ACGGAAGTACGAGTTGTGATGAGG -ACGGAAGTACGAGTTGTGAATGGG -ACGGAAGTACGAGTTGTGTCCTGA -ACGGAAGTACGAGTTGTGTAGCGA -ACGGAAGTACGAGTTGTGCACAGA -ACGGAAGTACGAGTTGTGGCAAGA -ACGGAAGTACGAGTTGTGGGTTGA -ACGGAAGTACGAGTTGTGTCCGAT -ACGGAAGTACGAGTTGTGTGGCAT -ACGGAAGTACGAGTTGTGCGAGAT -ACGGAAGTACGAGTTGTGTACCAC -ACGGAAGTACGAGTTGTGCAGAAC -ACGGAAGTACGAGTTGTGGTCTAC -ACGGAAGTACGAGTTGTGACGTAC -ACGGAAGTACGAGTTGTGAGTGAC -ACGGAAGTACGAGTTGTGCTGTAG -ACGGAAGTACGAGTTGTGCCTAAG -ACGGAAGTACGAGTTGTGGTTCAG -ACGGAAGTACGAGTTGTGGCATAG -ACGGAAGTACGAGTTGTGGACAAG -ACGGAAGTACGAGTTGTGAAGCAG -ACGGAAGTACGAGTTGTGCGTCAA -ACGGAAGTACGAGTTGTGGCTGAA -ACGGAAGTACGAGTTGTGAGTACG -ACGGAAGTACGAGTTGTGATCCGA -ACGGAAGTACGAGTTGTGATGGGA -ACGGAAGTACGAGTTGTGGTGCAA -ACGGAAGTACGAGTTGTGGAGGAA -ACGGAAGTACGAGTTGTGCAGGTA -ACGGAAGTACGAGTTGTGGACTCT -ACGGAAGTACGAGTTGTGAGTCCT -ACGGAAGTACGAGTTGTGTAAGCC -ACGGAAGTACGAGTTGTGATAGCC -ACGGAAGTACGAGTTGTGTAACCG -ACGGAAGTACGAGTTGTGATGCCA -ACGGAAGTACGATTTGCCGGAAAC -ACGGAAGTACGATTTGCCAACACC -ACGGAAGTACGATTTGCCATCGAG -ACGGAAGTACGATTTGCCCTCCTT -ACGGAAGTACGATTTGCCCCTGTT -ACGGAAGTACGATTTGCCCGGTTT -ACGGAAGTACGATTTGCCGTGGTT -ACGGAAGTACGATTTGCCGCCTTT -ACGGAAGTACGATTTGCCGGTCTT -ACGGAAGTACGATTTGCCACGCTT -ACGGAAGTACGATTTGCCAGCGTT -ACGGAAGTACGATTTGCCTTCGTC -ACGGAAGTACGATTTGCCTCTCTC -ACGGAAGTACGATTTGCCTGGATC -ACGGAAGTACGATTTGCCCACTTC -ACGGAAGTACGATTTGCCGTACTC -ACGGAAGTACGATTTGCCGATGTC -ACGGAAGTACGATTTGCCACAGTC -ACGGAAGTACGATTTGCCTTGCTG -ACGGAAGTACGATTTGCCTCCATG -ACGGAAGTACGATTTGCCTGTGTG -ACGGAAGTACGATTTGCCCTAGTG -ACGGAAGTACGATTTGCCCATCTG -ACGGAAGTACGATTTGCCGAGTTG -ACGGAAGTACGATTTGCCAGACTG -ACGGAAGTACGATTTGCCTCGGTA -ACGGAAGTACGATTTGCCTGCCTA -ACGGAAGTACGATTTGCCCCACTA -ACGGAAGTACGATTTGCCGGAGTA -ACGGAAGTACGATTTGCCTCGTCT -ACGGAAGTACGATTTGCCTGCACT -ACGGAAGTACGATTTGCCCTGACT -ACGGAAGTACGATTTGCCCAACCT -ACGGAAGTACGATTTGCCGCTACT -ACGGAAGTACGATTTGCCGGATCT -ACGGAAGTACGATTTGCCAAGGCT -ACGGAAGTACGATTTGCCTCAACC -ACGGAAGTACGATTTGCCTGTTCC -ACGGAAGTACGATTTGCCATTCCC -ACGGAAGTACGATTTGCCTTCTCG -ACGGAAGTACGATTTGCCTAGACG -ACGGAAGTACGATTTGCCGTAACG -ACGGAAGTACGATTTGCCACTTCG -ACGGAAGTACGATTTGCCTACGCA -ACGGAAGTACGATTTGCCCTTGCA -ACGGAAGTACGATTTGCCCGAACA -ACGGAAGTACGATTTGCCCAGTCA -ACGGAAGTACGATTTGCCGATCCA -ACGGAAGTACGATTTGCCACGACA -ACGGAAGTACGATTTGCCAGCTCA -ACGGAAGTACGATTTGCCTCACGT -ACGGAAGTACGATTTGCCCGTAGT -ACGGAAGTACGATTTGCCGTCAGT -ACGGAAGTACGATTTGCCGAAGGT -ACGGAAGTACGATTTGCCAACCGT -ACGGAAGTACGATTTGCCTTGTGC -ACGGAAGTACGATTTGCCCTAAGC -ACGGAAGTACGATTTGCCACTAGC -ACGGAAGTACGATTTGCCAGATGC -ACGGAAGTACGATTTGCCTGAAGG -ACGGAAGTACGATTTGCCCAATGG -ACGGAAGTACGATTTGCCATGAGG -ACGGAAGTACGATTTGCCAATGGG -ACGGAAGTACGATTTGCCTCCTGA -ACGGAAGTACGATTTGCCTAGCGA -ACGGAAGTACGATTTGCCCACAGA -ACGGAAGTACGATTTGCCGCAAGA -ACGGAAGTACGATTTGCCGGTTGA -ACGGAAGTACGATTTGCCTCCGAT -ACGGAAGTACGATTTGCCTGGCAT -ACGGAAGTACGATTTGCCCGAGAT -ACGGAAGTACGATTTGCCTACCAC -ACGGAAGTACGATTTGCCCAGAAC -ACGGAAGTACGATTTGCCGTCTAC -ACGGAAGTACGATTTGCCACGTAC -ACGGAAGTACGATTTGCCAGTGAC -ACGGAAGTACGATTTGCCCTGTAG -ACGGAAGTACGATTTGCCCCTAAG -ACGGAAGTACGATTTGCCGTTCAG -ACGGAAGTACGATTTGCCGCATAG -ACGGAAGTACGATTTGCCGACAAG -ACGGAAGTACGATTTGCCAAGCAG -ACGGAAGTACGATTTGCCCGTCAA -ACGGAAGTACGATTTGCCGCTGAA -ACGGAAGTACGATTTGCCAGTACG -ACGGAAGTACGATTTGCCATCCGA -ACGGAAGTACGATTTGCCATGGGA -ACGGAAGTACGATTTGCCGTGCAA -ACGGAAGTACGATTTGCCGAGGAA -ACGGAAGTACGATTTGCCCAGGTA -ACGGAAGTACGATTTGCCGACTCT -ACGGAAGTACGATTTGCCAGTCCT -ACGGAAGTACGATTTGCCTAAGCC -ACGGAAGTACGATTTGCCATAGCC -ACGGAAGTACGATTTGCCTAACCG -ACGGAAGTACGATTTGCCATGCCA -ACGGAAGTACGACTTGGTGGAAAC -ACGGAAGTACGACTTGGTAACACC -ACGGAAGTACGACTTGGTATCGAG -ACGGAAGTACGACTTGGTCTCCTT -ACGGAAGTACGACTTGGTCCTGTT -ACGGAAGTACGACTTGGTCGGTTT -ACGGAAGTACGACTTGGTGTGGTT -ACGGAAGTACGACTTGGTGCCTTT -ACGGAAGTACGACTTGGTGGTCTT -ACGGAAGTACGACTTGGTACGCTT -ACGGAAGTACGACTTGGTAGCGTT -ACGGAAGTACGACTTGGTTTCGTC -ACGGAAGTACGACTTGGTTCTCTC -ACGGAAGTACGACTTGGTTGGATC -ACGGAAGTACGACTTGGTCACTTC -ACGGAAGTACGACTTGGTGTACTC -ACGGAAGTACGACTTGGTGATGTC -ACGGAAGTACGACTTGGTACAGTC -ACGGAAGTACGACTTGGTTTGCTG -ACGGAAGTACGACTTGGTTCCATG -ACGGAAGTACGACTTGGTTGTGTG -ACGGAAGTACGACTTGGTCTAGTG -ACGGAAGTACGACTTGGTCATCTG -ACGGAAGTACGACTTGGTGAGTTG -ACGGAAGTACGACTTGGTAGACTG -ACGGAAGTACGACTTGGTTCGGTA -ACGGAAGTACGACTTGGTTGCCTA -ACGGAAGTACGACTTGGTCCACTA -ACGGAAGTACGACTTGGTGGAGTA -ACGGAAGTACGACTTGGTTCGTCT -ACGGAAGTACGACTTGGTTGCACT -ACGGAAGTACGACTTGGTCTGACT -ACGGAAGTACGACTTGGTCAACCT -ACGGAAGTACGACTTGGTGCTACT -ACGGAAGTACGACTTGGTGGATCT -ACGGAAGTACGACTTGGTAAGGCT -ACGGAAGTACGACTTGGTTCAACC -ACGGAAGTACGACTTGGTTGTTCC -ACGGAAGTACGACTTGGTATTCCC -ACGGAAGTACGACTTGGTTTCTCG -ACGGAAGTACGACTTGGTTAGACG -ACGGAAGTACGACTTGGTGTAACG -ACGGAAGTACGACTTGGTACTTCG -ACGGAAGTACGACTTGGTTACGCA -ACGGAAGTACGACTTGGTCTTGCA -ACGGAAGTACGACTTGGTCGAACA -ACGGAAGTACGACTTGGTCAGTCA -ACGGAAGTACGACTTGGTGATCCA -ACGGAAGTACGACTTGGTACGACA -ACGGAAGTACGACTTGGTAGCTCA -ACGGAAGTACGACTTGGTTCACGT -ACGGAAGTACGACTTGGTCGTAGT -ACGGAAGTACGACTTGGTGTCAGT -ACGGAAGTACGACTTGGTGAAGGT -ACGGAAGTACGACTTGGTAACCGT -ACGGAAGTACGACTTGGTTTGTGC -ACGGAAGTACGACTTGGTCTAAGC -ACGGAAGTACGACTTGGTACTAGC -ACGGAAGTACGACTTGGTAGATGC -ACGGAAGTACGACTTGGTTGAAGG -ACGGAAGTACGACTTGGTCAATGG -ACGGAAGTACGACTTGGTATGAGG -ACGGAAGTACGACTTGGTAATGGG -ACGGAAGTACGACTTGGTTCCTGA -ACGGAAGTACGACTTGGTTAGCGA -ACGGAAGTACGACTTGGTCACAGA -ACGGAAGTACGACTTGGTGCAAGA -ACGGAAGTACGACTTGGTGGTTGA -ACGGAAGTACGACTTGGTTCCGAT -ACGGAAGTACGACTTGGTTGGCAT -ACGGAAGTACGACTTGGTCGAGAT -ACGGAAGTACGACTTGGTTACCAC -ACGGAAGTACGACTTGGTCAGAAC -ACGGAAGTACGACTTGGTGTCTAC -ACGGAAGTACGACTTGGTACGTAC -ACGGAAGTACGACTTGGTAGTGAC -ACGGAAGTACGACTTGGTCTGTAG -ACGGAAGTACGACTTGGTCCTAAG -ACGGAAGTACGACTTGGTGTTCAG -ACGGAAGTACGACTTGGTGCATAG -ACGGAAGTACGACTTGGTGACAAG -ACGGAAGTACGACTTGGTAAGCAG -ACGGAAGTACGACTTGGTCGTCAA -ACGGAAGTACGACTTGGTGCTGAA -ACGGAAGTACGACTTGGTAGTACG -ACGGAAGTACGACTTGGTATCCGA -ACGGAAGTACGACTTGGTATGGGA -ACGGAAGTACGACTTGGTGTGCAA -ACGGAAGTACGACTTGGTGAGGAA -ACGGAAGTACGACTTGGTCAGGTA -ACGGAAGTACGACTTGGTGACTCT -ACGGAAGTACGACTTGGTAGTCCT -ACGGAAGTACGACTTGGTTAAGCC -ACGGAAGTACGACTTGGTATAGCC -ACGGAAGTACGACTTGGTTAACCG -ACGGAAGTACGACTTGGTATGCCA -ACGGAAGTACGACTTACGGGAAAC -ACGGAAGTACGACTTACGAACACC -ACGGAAGTACGACTTACGATCGAG -ACGGAAGTACGACTTACGCTCCTT -ACGGAAGTACGACTTACGCCTGTT -ACGGAAGTACGACTTACGCGGTTT -ACGGAAGTACGACTTACGGTGGTT -ACGGAAGTACGACTTACGGCCTTT -ACGGAAGTACGACTTACGGGTCTT -ACGGAAGTACGACTTACGACGCTT -ACGGAAGTACGACTTACGAGCGTT -ACGGAAGTACGACTTACGTTCGTC -ACGGAAGTACGACTTACGTCTCTC -ACGGAAGTACGACTTACGTGGATC -ACGGAAGTACGACTTACGCACTTC -ACGGAAGTACGACTTACGGTACTC -ACGGAAGTACGACTTACGGATGTC -ACGGAAGTACGACTTACGACAGTC -ACGGAAGTACGACTTACGTTGCTG -ACGGAAGTACGACTTACGTCCATG -ACGGAAGTACGACTTACGTGTGTG -ACGGAAGTACGACTTACGCTAGTG -ACGGAAGTACGACTTACGCATCTG -ACGGAAGTACGACTTACGGAGTTG -ACGGAAGTACGACTTACGAGACTG -ACGGAAGTACGACTTACGTCGGTA -ACGGAAGTACGACTTACGTGCCTA -ACGGAAGTACGACTTACGCCACTA -ACGGAAGTACGACTTACGGGAGTA -ACGGAAGTACGACTTACGTCGTCT -ACGGAAGTACGACTTACGTGCACT -ACGGAAGTACGACTTACGCTGACT -ACGGAAGTACGACTTACGCAACCT -ACGGAAGTACGACTTACGGCTACT -ACGGAAGTACGACTTACGGGATCT -ACGGAAGTACGACTTACGAAGGCT -ACGGAAGTACGACTTACGTCAACC -ACGGAAGTACGACTTACGTGTTCC -ACGGAAGTACGACTTACGATTCCC -ACGGAAGTACGACTTACGTTCTCG -ACGGAAGTACGACTTACGTAGACG -ACGGAAGTACGACTTACGGTAACG -ACGGAAGTACGACTTACGACTTCG -ACGGAAGTACGACTTACGTACGCA -ACGGAAGTACGACTTACGCTTGCA -ACGGAAGTACGACTTACGCGAACA -ACGGAAGTACGACTTACGCAGTCA -ACGGAAGTACGACTTACGGATCCA -ACGGAAGTACGACTTACGACGACA -ACGGAAGTACGACTTACGAGCTCA -ACGGAAGTACGACTTACGTCACGT -ACGGAAGTACGACTTACGCGTAGT -ACGGAAGTACGACTTACGGTCAGT -ACGGAAGTACGACTTACGGAAGGT -ACGGAAGTACGACTTACGAACCGT -ACGGAAGTACGACTTACGTTGTGC -ACGGAAGTACGACTTACGCTAAGC -ACGGAAGTACGACTTACGACTAGC -ACGGAAGTACGACTTACGAGATGC -ACGGAAGTACGACTTACGTGAAGG -ACGGAAGTACGACTTACGCAATGG -ACGGAAGTACGACTTACGATGAGG -ACGGAAGTACGACTTACGAATGGG -ACGGAAGTACGACTTACGTCCTGA -ACGGAAGTACGACTTACGTAGCGA -ACGGAAGTACGACTTACGCACAGA -ACGGAAGTACGACTTACGGCAAGA -ACGGAAGTACGACTTACGGGTTGA -ACGGAAGTACGACTTACGTCCGAT -ACGGAAGTACGACTTACGTGGCAT -ACGGAAGTACGACTTACGCGAGAT -ACGGAAGTACGACTTACGTACCAC -ACGGAAGTACGACTTACGCAGAAC -ACGGAAGTACGACTTACGGTCTAC -ACGGAAGTACGACTTACGACGTAC -ACGGAAGTACGACTTACGAGTGAC -ACGGAAGTACGACTTACGCTGTAG -ACGGAAGTACGACTTACGCCTAAG -ACGGAAGTACGACTTACGGTTCAG -ACGGAAGTACGACTTACGGCATAG -ACGGAAGTACGACTTACGGACAAG -ACGGAAGTACGACTTACGAAGCAG -ACGGAAGTACGACTTACGCGTCAA -ACGGAAGTACGACTTACGGCTGAA -ACGGAAGTACGACTTACGAGTACG -ACGGAAGTACGACTTACGATCCGA -ACGGAAGTACGACTTACGATGGGA -ACGGAAGTACGACTTACGGTGCAA -ACGGAAGTACGACTTACGGAGGAA -ACGGAAGTACGACTTACGCAGGTA -ACGGAAGTACGACTTACGGACTCT -ACGGAAGTACGACTTACGAGTCCT -ACGGAAGTACGACTTACGTAAGCC -ACGGAAGTACGACTTACGATAGCC -ACGGAAGTACGACTTACGTAACCG -ACGGAAGTACGACTTACGATGCCA -ACGGAAGTACGAGTTAGCGGAAAC -ACGGAAGTACGAGTTAGCAACACC -ACGGAAGTACGAGTTAGCATCGAG -ACGGAAGTACGAGTTAGCCTCCTT -ACGGAAGTACGAGTTAGCCCTGTT -ACGGAAGTACGAGTTAGCCGGTTT -ACGGAAGTACGAGTTAGCGTGGTT -ACGGAAGTACGAGTTAGCGCCTTT -ACGGAAGTACGAGTTAGCGGTCTT -ACGGAAGTACGAGTTAGCACGCTT -ACGGAAGTACGAGTTAGCAGCGTT -ACGGAAGTACGAGTTAGCTTCGTC -ACGGAAGTACGAGTTAGCTCTCTC -ACGGAAGTACGAGTTAGCTGGATC -ACGGAAGTACGAGTTAGCCACTTC -ACGGAAGTACGAGTTAGCGTACTC -ACGGAAGTACGAGTTAGCGATGTC -ACGGAAGTACGAGTTAGCACAGTC -ACGGAAGTACGAGTTAGCTTGCTG -ACGGAAGTACGAGTTAGCTCCATG -ACGGAAGTACGAGTTAGCTGTGTG -ACGGAAGTACGAGTTAGCCTAGTG -ACGGAAGTACGAGTTAGCCATCTG -ACGGAAGTACGAGTTAGCGAGTTG -ACGGAAGTACGAGTTAGCAGACTG -ACGGAAGTACGAGTTAGCTCGGTA -ACGGAAGTACGAGTTAGCTGCCTA -ACGGAAGTACGAGTTAGCCCACTA -ACGGAAGTACGAGTTAGCGGAGTA -ACGGAAGTACGAGTTAGCTCGTCT -ACGGAAGTACGAGTTAGCTGCACT -ACGGAAGTACGAGTTAGCCTGACT -ACGGAAGTACGAGTTAGCCAACCT -ACGGAAGTACGAGTTAGCGCTACT -ACGGAAGTACGAGTTAGCGGATCT -ACGGAAGTACGAGTTAGCAAGGCT -ACGGAAGTACGAGTTAGCTCAACC -ACGGAAGTACGAGTTAGCTGTTCC -ACGGAAGTACGAGTTAGCATTCCC -ACGGAAGTACGAGTTAGCTTCTCG -ACGGAAGTACGAGTTAGCTAGACG -ACGGAAGTACGAGTTAGCGTAACG -ACGGAAGTACGAGTTAGCACTTCG -ACGGAAGTACGAGTTAGCTACGCA -ACGGAAGTACGAGTTAGCCTTGCA -ACGGAAGTACGAGTTAGCCGAACA -ACGGAAGTACGAGTTAGCCAGTCA -ACGGAAGTACGAGTTAGCGATCCA -ACGGAAGTACGAGTTAGCACGACA -ACGGAAGTACGAGTTAGCAGCTCA -ACGGAAGTACGAGTTAGCTCACGT -ACGGAAGTACGAGTTAGCCGTAGT -ACGGAAGTACGAGTTAGCGTCAGT -ACGGAAGTACGAGTTAGCGAAGGT -ACGGAAGTACGAGTTAGCAACCGT -ACGGAAGTACGAGTTAGCTTGTGC -ACGGAAGTACGAGTTAGCCTAAGC -ACGGAAGTACGAGTTAGCACTAGC -ACGGAAGTACGAGTTAGCAGATGC -ACGGAAGTACGAGTTAGCTGAAGG -ACGGAAGTACGAGTTAGCCAATGG -ACGGAAGTACGAGTTAGCATGAGG -ACGGAAGTACGAGTTAGCAATGGG -ACGGAAGTACGAGTTAGCTCCTGA -ACGGAAGTACGAGTTAGCTAGCGA -ACGGAAGTACGAGTTAGCCACAGA -ACGGAAGTACGAGTTAGCGCAAGA -ACGGAAGTACGAGTTAGCGGTTGA -ACGGAAGTACGAGTTAGCTCCGAT -ACGGAAGTACGAGTTAGCTGGCAT -ACGGAAGTACGAGTTAGCCGAGAT -ACGGAAGTACGAGTTAGCTACCAC -ACGGAAGTACGAGTTAGCCAGAAC -ACGGAAGTACGAGTTAGCGTCTAC -ACGGAAGTACGAGTTAGCACGTAC -ACGGAAGTACGAGTTAGCAGTGAC -ACGGAAGTACGAGTTAGCCTGTAG -ACGGAAGTACGAGTTAGCCCTAAG -ACGGAAGTACGAGTTAGCGTTCAG -ACGGAAGTACGAGTTAGCGCATAG -ACGGAAGTACGAGTTAGCGACAAG -ACGGAAGTACGAGTTAGCAAGCAG -ACGGAAGTACGAGTTAGCCGTCAA -ACGGAAGTACGAGTTAGCGCTGAA -ACGGAAGTACGAGTTAGCAGTACG -ACGGAAGTACGAGTTAGCATCCGA -ACGGAAGTACGAGTTAGCATGGGA -ACGGAAGTACGAGTTAGCGTGCAA -ACGGAAGTACGAGTTAGCGAGGAA -ACGGAAGTACGAGTTAGCCAGGTA -ACGGAAGTACGAGTTAGCGACTCT -ACGGAAGTACGAGTTAGCAGTCCT -ACGGAAGTACGAGTTAGCTAAGCC -ACGGAAGTACGAGTTAGCATAGCC -ACGGAAGTACGAGTTAGCTAACCG -ACGGAAGTACGAGTTAGCATGCCA -ACGGAAGTACGAGTCTTCGGAAAC -ACGGAAGTACGAGTCTTCAACACC -ACGGAAGTACGAGTCTTCATCGAG -ACGGAAGTACGAGTCTTCCTCCTT -ACGGAAGTACGAGTCTTCCCTGTT -ACGGAAGTACGAGTCTTCCGGTTT -ACGGAAGTACGAGTCTTCGTGGTT -ACGGAAGTACGAGTCTTCGCCTTT -ACGGAAGTACGAGTCTTCGGTCTT -ACGGAAGTACGAGTCTTCACGCTT -ACGGAAGTACGAGTCTTCAGCGTT -ACGGAAGTACGAGTCTTCTTCGTC -ACGGAAGTACGAGTCTTCTCTCTC -ACGGAAGTACGAGTCTTCTGGATC -ACGGAAGTACGAGTCTTCCACTTC -ACGGAAGTACGAGTCTTCGTACTC -ACGGAAGTACGAGTCTTCGATGTC -ACGGAAGTACGAGTCTTCACAGTC -ACGGAAGTACGAGTCTTCTTGCTG -ACGGAAGTACGAGTCTTCTCCATG -ACGGAAGTACGAGTCTTCTGTGTG -ACGGAAGTACGAGTCTTCCTAGTG -ACGGAAGTACGAGTCTTCCATCTG -ACGGAAGTACGAGTCTTCGAGTTG -ACGGAAGTACGAGTCTTCAGACTG -ACGGAAGTACGAGTCTTCTCGGTA -ACGGAAGTACGAGTCTTCTGCCTA -ACGGAAGTACGAGTCTTCCCACTA -ACGGAAGTACGAGTCTTCGGAGTA -ACGGAAGTACGAGTCTTCTCGTCT -ACGGAAGTACGAGTCTTCTGCACT -ACGGAAGTACGAGTCTTCCTGACT -ACGGAAGTACGAGTCTTCCAACCT -ACGGAAGTACGAGTCTTCGCTACT -ACGGAAGTACGAGTCTTCGGATCT -ACGGAAGTACGAGTCTTCAAGGCT -ACGGAAGTACGAGTCTTCTCAACC -ACGGAAGTACGAGTCTTCTGTTCC -ACGGAAGTACGAGTCTTCATTCCC -ACGGAAGTACGAGTCTTCTTCTCG -ACGGAAGTACGAGTCTTCTAGACG -ACGGAAGTACGAGTCTTCGTAACG -ACGGAAGTACGAGTCTTCACTTCG -ACGGAAGTACGAGTCTTCTACGCA -ACGGAAGTACGAGTCTTCCTTGCA -ACGGAAGTACGAGTCTTCCGAACA -ACGGAAGTACGAGTCTTCCAGTCA -ACGGAAGTACGAGTCTTCGATCCA -ACGGAAGTACGAGTCTTCACGACA -ACGGAAGTACGAGTCTTCAGCTCA -ACGGAAGTACGAGTCTTCTCACGT -ACGGAAGTACGAGTCTTCCGTAGT -ACGGAAGTACGAGTCTTCGTCAGT -ACGGAAGTACGAGTCTTCGAAGGT -ACGGAAGTACGAGTCTTCAACCGT -ACGGAAGTACGAGTCTTCTTGTGC -ACGGAAGTACGAGTCTTCCTAAGC -ACGGAAGTACGAGTCTTCACTAGC -ACGGAAGTACGAGTCTTCAGATGC -ACGGAAGTACGAGTCTTCTGAAGG -ACGGAAGTACGAGTCTTCCAATGG -ACGGAAGTACGAGTCTTCATGAGG -ACGGAAGTACGAGTCTTCAATGGG -ACGGAAGTACGAGTCTTCTCCTGA -ACGGAAGTACGAGTCTTCTAGCGA -ACGGAAGTACGAGTCTTCCACAGA -ACGGAAGTACGAGTCTTCGCAAGA -ACGGAAGTACGAGTCTTCGGTTGA -ACGGAAGTACGAGTCTTCTCCGAT -ACGGAAGTACGAGTCTTCTGGCAT -ACGGAAGTACGAGTCTTCCGAGAT -ACGGAAGTACGAGTCTTCTACCAC -ACGGAAGTACGAGTCTTCCAGAAC -ACGGAAGTACGAGTCTTCGTCTAC -ACGGAAGTACGAGTCTTCACGTAC -ACGGAAGTACGAGTCTTCAGTGAC -ACGGAAGTACGAGTCTTCCTGTAG -ACGGAAGTACGAGTCTTCCCTAAG -ACGGAAGTACGAGTCTTCGTTCAG -ACGGAAGTACGAGTCTTCGCATAG -ACGGAAGTACGAGTCTTCGACAAG -ACGGAAGTACGAGTCTTCAAGCAG -ACGGAAGTACGAGTCTTCCGTCAA -ACGGAAGTACGAGTCTTCGCTGAA -ACGGAAGTACGAGTCTTCAGTACG -ACGGAAGTACGAGTCTTCATCCGA -ACGGAAGTACGAGTCTTCATGGGA -ACGGAAGTACGAGTCTTCGTGCAA -ACGGAAGTACGAGTCTTCGAGGAA -ACGGAAGTACGAGTCTTCCAGGTA -ACGGAAGTACGAGTCTTCGACTCT -ACGGAAGTACGAGTCTTCAGTCCT -ACGGAAGTACGAGTCTTCTAAGCC -ACGGAAGTACGAGTCTTCATAGCC -ACGGAAGTACGAGTCTTCTAACCG -ACGGAAGTACGAGTCTTCATGCCA -ACGGAAGTACGACTCTCTGGAAAC -ACGGAAGTACGACTCTCTAACACC -ACGGAAGTACGACTCTCTATCGAG -ACGGAAGTACGACTCTCTCTCCTT -ACGGAAGTACGACTCTCTCCTGTT -ACGGAAGTACGACTCTCTCGGTTT -ACGGAAGTACGACTCTCTGTGGTT -ACGGAAGTACGACTCTCTGCCTTT -ACGGAAGTACGACTCTCTGGTCTT -ACGGAAGTACGACTCTCTACGCTT -ACGGAAGTACGACTCTCTAGCGTT -ACGGAAGTACGACTCTCTTTCGTC -ACGGAAGTACGACTCTCTTCTCTC -ACGGAAGTACGACTCTCTTGGATC -ACGGAAGTACGACTCTCTCACTTC -ACGGAAGTACGACTCTCTGTACTC -ACGGAAGTACGACTCTCTGATGTC -ACGGAAGTACGACTCTCTACAGTC -ACGGAAGTACGACTCTCTTTGCTG -ACGGAAGTACGACTCTCTTCCATG -ACGGAAGTACGACTCTCTTGTGTG -ACGGAAGTACGACTCTCTCTAGTG -ACGGAAGTACGACTCTCTCATCTG -ACGGAAGTACGACTCTCTGAGTTG -ACGGAAGTACGACTCTCTAGACTG -ACGGAAGTACGACTCTCTTCGGTA -ACGGAAGTACGACTCTCTTGCCTA -ACGGAAGTACGACTCTCTCCACTA -ACGGAAGTACGACTCTCTGGAGTA -ACGGAAGTACGACTCTCTTCGTCT -ACGGAAGTACGACTCTCTTGCACT -ACGGAAGTACGACTCTCTCTGACT -ACGGAAGTACGACTCTCTCAACCT -ACGGAAGTACGACTCTCTGCTACT -ACGGAAGTACGACTCTCTGGATCT -ACGGAAGTACGACTCTCTAAGGCT -ACGGAAGTACGACTCTCTTCAACC -ACGGAAGTACGACTCTCTTGTTCC -ACGGAAGTACGACTCTCTATTCCC -ACGGAAGTACGACTCTCTTTCTCG -ACGGAAGTACGACTCTCTTAGACG -ACGGAAGTACGACTCTCTGTAACG -ACGGAAGTACGACTCTCTACTTCG -ACGGAAGTACGACTCTCTTACGCA -ACGGAAGTACGACTCTCTCTTGCA -ACGGAAGTACGACTCTCTCGAACA -ACGGAAGTACGACTCTCTCAGTCA -ACGGAAGTACGACTCTCTGATCCA -ACGGAAGTACGACTCTCTACGACA -ACGGAAGTACGACTCTCTAGCTCA -ACGGAAGTACGACTCTCTTCACGT -ACGGAAGTACGACTCTCTCGTAGT -ACGGAAGTACGACTCTCTGTCAGT -ACGGAAGTACGACTCTCTGAAGGT -ACGGAAGTACGACTCTCTAACCGT -ACGGAAGTACGACTCTCTTTGTGC -ACGGAAGTACGACTCTCTCTAAGC -ACGGAAGTACGACTCTCTACTAGC -ACGGAAGTACGACTCTCTAGATGC -ACGGAAGTACGACTCTCTTGAAGG -ACGGAAGTACGACTCTCTCAATGG -ACGGAAGTACGACTCTCTATGAGG -ACGGAAGTACGACTCTCTAATGGG -ACGGAAGTACGACTCTCTTCCTGA -ACGGAAGTACGACTCTCTTAGCGA -ACGGAAGTACGACTCTCTCACAGA -ACGGAAGTACGACTCTCTGCAAGA -ACGGAAGTACGACTCTCTGGTTGA -ACGGAAGTACGACTCTCTTCCGAT -ACGGAAGTACGACTCTCTTGGCAT -ACGGAAGTACGACTCTCTCGAGAT -ACGGAAGTACGACTCTCTTACCAC -ACGGAAGTACGACTCTCTCAGAAC -ACGGAAGTACGACTCTCTGTCTAC -ACGGAAGTACGACTCTCTACGTAC -ACGGAAGTACGACTCTCTAGTGAC -ACGGAAGTACGACTCTCTCTGTAG -ACGGAAGTACGACTCTCTCCTAAG -ACGGAAGTACGACTCTCTGTTCAG -ACGGAAGTACGACTCTCTGCATAG -ACGGAAGTACGACTCTCTGACAAG -ACGGAAGTACGACTCTCTAAGCAG -ACGGAAGTACGACTCTCTCGTCAA -ACGGAAGTACGACTCTCTGCTGAA -ACGGAAGTACGACTCTCTAGTACG -ACGGAAGTACGACTCTCTATCCGA -ACGGAAGTACGACTCTCTATGGGA -ACGGAAGTACGACTCTCTGTGCAA -ACGGAAGTACGACTCTCTGAGGAA -ACGGAAGTACGACTCTCTCAGGTA -ACGGAAGTACGACTCTCTGACTCT -ACGGAAGTACGACTCTCTAGTCCT -ACGGAAGTACGACTCTCTTAAGCC -ACGGAAGTACGACTCTCTATAGCC -ACGGAAGTACGACTCTCTTAACCG -ACGGAAGTACGACTCTCTATGCCA -ACGGAAGTACGAATCTGGGGAAAC -ACGGAAGTACGAATCTGGAACACC -ACGGAAGTACGAATCTGGATCGAG -ACGGAAGTACGAATCTGGCTCCTT -ACGGAAGTACGAATCTGGCCTGTT -ACGGAAGTACGAATCTGGCGGTTT -ACGGAAGTACGAATCTGGGTGGTT -ACGGAAGTACGAATCTGGGCCTTT -ACGGAAGTACGAATCTGGGGTCTT -ACGGAAGTACGAATCTGGACGCTT -ACGGAAGTACGAATCTGGAGCGTT -ACGGAAGTACGAATCTGGTTCGTC -ACGGAAGTACGAATCTGGTCTCTC -ACGGAAGTACGAATCTGGTGGATC -ACGGAAGTACGAATCTGGCACTTC -ACGGAAGTACGAATCTGGGTACTC -ACGGAAGTACGAATCTGGGATGTC -ACGGAAGTACGAATCTGGACAGTC -ACGGAAGTACGAATCTGGTTGCTG -ACGGAAGTACGAATCTGGTCCATG -ACGGAAGTACGAATCTGGTGTGTG -ACGGAAGTACGAATCTGGCTAGTG -ACGGAAGTACGAATCTGGCATCTG -ACGGAAGTACGAATCTGGGAGTTG -ACGGAAGTACGAATCTGGAGACTG -ACGGAAGTACGAATCTGGTCGGTA -ACGGAAGTACGAATCTGGTGCCTA -ACGGAAGTACGAATCTGGCCACTA -ACGGAAGTACGAATCTGGGGAGTA -ACGGAAGTACGAATCTGGTCGTCT -ACGGAAGTACGAATCTGGTGCACT -ACGGAAGTACGAATCTGGCTGACT -ACGGAAGTACGAATCTGGCAACCT -ACGGAAGTACGAATCTGGGCTACT -ACGGAAGTACGAATCTGGGGATCT -ACGGAAGTACGAATCTGGAAGGCT -ACGGAAGTACGAATCTGGTCAACC -ACGGAAGTACGAATCTGGTGTTCC -ACGGAAGTACGAATCTGGATTCCC -ACGGAAGTACGAATCTGGTTCTCG -ACGGAAGTACGAATCTGGTAGACG -ACGGAAGTACGAATCTGGGTAACG -ACGGAAGTACGAATCTGGACTTCG -ACGGAAGTACGAATCTGGTACGCA -ACGGAAGTACGAATCTGGCTTGCA -ACGGAAGTACGAATCTGGCGAACA -ACGGAAGTACGAATCTGGCAGTCA -ACGGAAGTACGAATCTGGGATCCA -ACGGAAGTACGAATCTGGACGACA -ACGGAAGTACGAATCTGGAGCTCA -ACGGAAGTACGAATCTGGTCACGT -ACGGAAGTACGAATCTGGCGTAGT -ACGGAAGTACGAATCTGGGTCAGT -ACGGAAGTACGAATCTGGGAAGGT -ACGGAAGTACGAATCTGGAACCGT -ACGGAAGTACGAATCTGGTTGTGC -ACGGAAGTACGAATCTGGCTAAGC -ACGGAAGTACGAATCTGGACTAGC -ACGGAAGTACGAATCTGGAGATGC -ACGGAAGTACGAATCTGGTGAAGG -ACGGAAGTACGAATCTGGCAATGG -ACGGAAGTACGAATCTGGATGAGG -ACGGAAGTACGAATCTGGAATGGG -ACGGAAGTACGAATCTGGTCCTGA -ACGGAAGTACGAATCTGGTAGCGA -ACGGAAGTACGAATCTGGCACAGA -ACGGAAGTACGAATCTGGGCAAGA -ACGGAAGTACGAATCTGGGGTTGA -ACGGAAGTACGAATCTGGTCCGAT -ACGGAAGTACGAATCTGGTGGCAT -ACGGAAGTACGAATCTGGCGAGAT -ACGGAAGTACGAATCTGGTACCAC -ACGGAAGTACGAATCTGGCAGAAC -ACGGAAGTACGAATCTGGGTCTAC -ACGGAAGTACGAATCTGGACGTAC -ACGGAAGTACGAATCTGGAGTGAC -ACGGAAGTACGAATCTGGCTGTAG -ACGGAAGTACGAATCTGGCCTAAG -ACGGAAGTACGAATCTGGGTTCAG -ACGGAAGTACGAATCTGGGCATAG -ACGGAAGTACGAATCTGGGACAAG -ACGGAAGTACGAATCTGGAAGCAG -ACGGAAGTACGAATCTGGCGTCAA -ACGGAAGTACGAATCTGGGCTGAA -ACGGAAGTACGAATCTGGAGTACG -ACGGAAGTACGAATCTGGATCCGA -ACGGAAGTACGAATCTGGATGGGA -ACGGAAGTACGAATCTGGGTGCAA -ACGGAAGTACGAATCTGGGAGGAA -ACGGAAGTACGAATCTGGCAGGTA -ACGGAAGTACGAATCTGGGACTCT -ACGGAAGTACGAATCTGGAGTCCT -ACGGAAGTACGAATCTGGTAAGCC -ACGGAAGTACGAATCTGGATAGCC -ACGGAAGTACGAATCTGGTAACCG -ACGGAAGTACGAATCTGGATGCCA -ACGGAAGTACGATTCCACGGAAAC -ACGGAAGTACGATTCCACAACACC -ACGGAAGTACGATTCCACATCGAG -ACGGAAGTACGATTCCACCTCCTT -ACGGAAGTACGATTCCACCCTGTT -ACGGAAGTACGATTCCACCGGTTT -ACGGAAGTACGATTCCACGTGGTT -ACGGAAGTACGATTCCACGCCTTT -ACGGAAGTACGATTCCACGGTCTT -ACGGAAGTACGATTCCACACGCTT -ACGGAAGTACGATTCCACAGCGTT -ACGGAAGTACGATTCCACTTCGTC -ACGGAAGTACGATTCCACTCTCTC -ACGGAAGTACGATTCCACTGGATC -ACGGAAGTACGATTCCACCACTTC -ACGGAAGTACGATTCCACGTACTC -ACGGAAGTACGATTCCACGATGTC -ACGGAAGTACGATTCCACACAGTC -ACGGAAGTACGATTCCACTTGCTG -ACGGAAGTACGATTCCACTCCATG -ACGGAAGTACGATTCCACTGTGTG -ACGGAAGTACGATTCCACCTAGTG -ACGGAAGTACGATTCCACCATCTG -ACGGAAGTACGATTCCACGAGTTG -ACGGAAGTACGATTCCACAGACTG -ACGGAAGTACGATTCCACTCGGTA -ACGGAAGTACGATTCCACTGCCTA -ACGGAAGTACGATTCCACCCACTA -ACGGAAGTACGATTCCACGGAGTA -ACGGAAGTACGATTCCACTCGTCT -ACGGAAGTACGATTCCACTGCACT -ACGGAAGTACGATTCCACCTGACT -ACGGAAGTACGATTCCACCAACCT -ACGGAAGTACGATTCCACGCTACT -ACGGAAGTACGATTCCACGGATCT -ACGGAAGTACGATTCCACAAGGCT -ACGGAAGTACGATTCCACTCAACC -ACGGAAGTACGATTCCACTGTTCC -ACGGAAGTACGATTCCACATTCCC -ACGGAAGTACGATTCCACTTCTCG -ACGGAAGTACGATTCCACTAGACG -ACGGAAGTACGATTCCACGTAACG -ACGGAAGTACGATTCCACACTTCG -ACGGAAGTACGATTCCACTACGCA -ACGGAAGTACGATTCCACCTTGCA -ACGGAAGTACGATTCCACCGAACA -ACGGAAGTACGATTCCACCAGTCA -ACGGAAGTACGATTCCACGATCCA -ACGGAAGTACGATTCCACACGACA -ACGGAAGTACGATTCCACAGCTCA -ACGGAAGTACGATTCCACTCACGT -ACGGAAGTACGATTCCACCGTAGT -ACGGAAGTACGATTCCACGTCAGT -ACGGAAGTACGATTCCACGAAGGT -ACGGAAGTACGATTCCACAACCGT -ACGGAAGTACGATTCCACTTGTGC -ACGGAAGTACGATTCCACCTAAGC -ACGGAAGTACGATTCCACACTAGC -ACGGAAGTACGATTCCACAGATGC -ACGGAAGTACGATTCCACTGAAGG -ACGGAAGTACGATTCCACCAATGG -ACGGAAGTACGATTCCACATGAGG -ACGGAAGTACGATTCCACAATGGG -ACGGAAGTACGATTCCACTCCTGA -ACGGAAGTACGATTCCACTAGCGA -ACGGAAGTACGATTCCACCACAGA -ACGGAAGTACGATTCCACGCAAGA -ACGGAAGTACGATTCCACGGTTGA -ACGGAAGTACGATTCCACTCCGAT -ACGGAAGTACGATTCCACTGGCAT -ACGGAAGTACGATTCCACCGAGAT -ACGGAAGTACGATTCCACTACCAC -ACGGAAGTACGATTCCACCAGAAC -ACGGAAGTACGATTCCACGTCTAC -ACGGAAGTACGATTCCACACGTAC -ACGGAAGTACGATTCCACAGTGAC -ACGGAAGTACGATTCCACCTGTAG -ACGGAAGTACGATTCCACCCTAAG -ACGGAAGTACGATTCCACGTTCAG -ACGGAAGTACGATTCCACGCATAG -ACGGAAGTACGATTCCACGACAAG -ACGGAAGTACGATTCCACAAGCAG -ACGGAAGTACGATTCCACCGTCAA -ACGGAAGTACGATTCCACGCTGAA -ACGGAAGTACGATTCCACAGTACG -ACGGAAGTACGATTCCACATCCGA -ACGGAAGTACGATTCCACATGGGA -ACGGAAGTACGATTCCACGTGCAA -ACGGAAGTACGATTCCACGAGGAA -ACGGAAGTACGATTCCACCAGGTA -ACGGAAGTACGATTCCACGACTCT -ACGGAAGTACGATTCCACAGTCCT -ACGGAAGTACGATTCCACTAAGCC -ACGGAAGTACGATTCCACATAGCC -ACGGAAGTACGATTCCACTAACCG -ACGGAAGTACGATTCCACATGCCA -ACGGAAGTACGACTCGTAGGAAAC -ACGGAAGTACGACTCGTAAACACC -ACGGAAGTACGACTCGTAATCGAG -ACGGAAGTACGACTCGTACTCCTT -ACGGAAGTACGACTCGTACCTGTT -ACGGAAGTACGACTCGTACGGTTT -ACGGAAGTACGACTCGTAGTGGTT -ACGGAAGTACGACTCGTAGCCTTT -ACGGAAGTACGACTCGTAGGTCTT -ACGGAAGTACGACTCGTAACGCTT -ACGGAAGTACGACTCGTAAGCGTT -ACGGAAGTACGACTCGTATTCGTC -ACGGAAGTACGACTCGTATCTCTC -ACGGAAGTACGACTCGTATGGATC -ACGGAAGTACGACTCGTACACTTC -ACGGAAGTACGACTCGTAGTACTC -ACGGAAGTACGACTCGTAGATGTC -ACGGAAGTACGACTCGTAACAGTC -ACGGAAGTACGACTCGTATTGCTG -ACGGAAGTACGACTCGTATCCATG -ACGGAAGTACGACTCGTATGTGTG -ACGGAAGTACGACTCGTACTAGTG -ACGGAAGTACGACTCGTACATCTG -ACGGAAGTACGACTCGTAGAGTTG -ACGGAAGTACGACTCGTAAGACTG -ACGGAAGTACGACTCGTATCGGTA -ACGGAAGTACGACTCGTATGCCTA -ACGGAAGTACGACTCGTACCACTA -ACGGAAGTACGACTCGTAGGAGTA -ACGGAAGTACGACTCGTATCGTCT -ACGGAAGTACGACTCGTATGCACT -ACGGAAGTACGACTCGTACTGACT -ACGGAAGTACGACTCGTACAACCT -ACGGAAGTACGACTCGTAGCTACT -ACGGAAGTACGACTCGTAGGATCT -ACGGAAGTACGACTCGTAAAGGCT -ACGGAAGTACGACTCGTATCAACC -ACGGAAGTACGACTCGTATGTTCC -ACGGAAGTACGACTCGTAATTCCC -ACGGAAGTACGACTCGTATTCTCG -ACGGAAGTACGACTCGTATAGACG -ACGGAAGTACGACTCGTAGTAACG -ACGGAAGTACGACTCGTAACTTCG -ACGGAAGTACGACTCGTATACGCA -ACGGAAGTACGACTCGTACTTGCA -ACGGAAGTACGACTCGTACGAACA -ACGGAAGTACGACTCGTACAGTCA -ACGGAAGTACGACTCGTAGATCCA -ACGGAAGTACGACTCGTAACGACA -ACGGAAGTACGACTCGTAAGCTCA -ACGGAAGTACGACTCGTATCACGT -ACGGAAGTACGACTCGTACGTAGT -ACGGAAGTACGACTCGTAGTCAGT -ACGGAAGTACGACTCGTAGAAGGT -ACGGAAGTACGACTCGTAAACCGT -ACGGAAGTACGACTCGTATTGTGC -ACGGAAGTACGACTCGTACTAAGC -ACGGAAGTACGACTCGTAACTAGC -ACGGAAGTACGACTCGTAAGATGC -ACGGAAGTACGACTCGTATGAAGG -ACGGAAGTACGACTCGTACAATGG -ACGGAAGTACGACTCGTAATGAGG -ACGGAAGTACGACTCGTAAATGGG -ACGGAAGTACGACTCGTATCCTGA -ACGGAAGTACGACTCGTATAGCGA -ACGGAAGTACGACTCGTACACAGA -ACGGAAGTACGACTCGTAGCAAGA -ACGGAAGTACGACTCGTAGGTTGA -ACGGAAGTACGACTCGTATCCGAT -ACGGAAGTACGACTCGTATGGCAT -ACGGAAGTACGACTCGTACGAGAT -ACGGAAGTACGACTCGTATACCAC -ACGGAAGTACGACTCGTACAGAAC -ACGGAAGTACGACTCGTAGTCTAC -ACGGAAGTACGACTCGTAACGTAC -ACGGAAGTACGACTCGTAAGTGAC -ACGGAAGTACGACTCGTACTGTAG -ACGGAAGTACGACTCGTACCTAAG -ACGGAAGTACGACTCGTAGTTCAG -ACGGAAGTACGACTCGTAGCATAG -ACGGAAGTACGACTCGTAGACAAG -ACGGAAGTACGACTCGTAAAGCAG -ACGGAAGTACGACTCGTACGTCAA -ACGGAAGTACGACTCGTAGCTGAA -ACGGAAGTACGACTCGTAAGTACG -ACGGAAGTACGACTCGTAATCCGA -ACGGAAGTACGACTCGTAATGGGA -ACGGAAGTACGACTCGTAGTGCAA -ACGGAAGTACGACTCGTAGAGGAA -ACGGAAGTACGACTCGTACAGGTA -ACGGAAGTACGACTCGTAGACTCT -ACGGAAGTACGACTCGTAAGTCCT -ACGGAAGTACGACTCGTATAAGCC -ACGGAAGTACGACTCGTAATAGCC -ACGGAAGTACGACTCGTATAACCG -ACGGAAGTACGACTCGTAATGCCA -ACGGAAGTACGAGTCGATGGAAAC -ACGGAAGTACGAGTCGATAACACC -ACGGAAGTACGAGTCGATATCGAG -ACGGAAGTACGAGTCGATCTCCTT -ACGGAAGTACGAGTCGATCCTGTT -ACGGAAGTACGAGTCGATCGGTTT -ACGGAAGTACGAGTCGATGTGGTT -ACGGAAGTACGAGTCGATGCCTTT -ACGGAAGTACGAGTCGATGGTCTT -ACGGAAGTACGAGTCGATACGCTT -ACGGAAGTACGAGTCGATAGCGTT -ACGGAAGTACGAGTCGATTTCGTC -ACGGAAGTACGAGTCGATTCTCTC -ACGGAAGTACGAGTCGATTGGATC -ACGGAAGTACGAGTCGATCACTTC -ACGGAAGTACGAGTCGATGTACTC -ACGGAAGTACGAGTCGATGATGTC -ACGGAAGTACGAGTCGATACAGTC -ACGGAAGTACGAGTCGATTTGCTG -ACGGAAGTACGAGTCGATTCCATG -ACGGAAGTACGAGTCGATTGTGTG -ACGGAAGTACGAGTCGATCTAGTG -ACGGAAGTACGAGTCGATCATCTG -ACGGAAGTACGAGTCGATGAGTTG -ACGGAAGTACGAGTCGATAGACTG -ACGGAAGTACGAGTCGATTCGGTA -ACGGAAGTACGAGTCGATTGCCTA -ACGGAAGTACGAGTCGATCCACTA -ACGGAAGTACGAGTCGATGGAGTA -ACGGAAGTACGAGTCGATTCGTCT -ACGGAAGTACGAGTCGATTGCACT -ACGGAAGTACGAGTCGATCTGACT -ACGGAAGTACGAGTCGATCAACCT -ACGGAAGTACGAGTCGATGCTACT -ACGGAAGTACGAGTCGATGGATCT -ACGGAAGTACGAGTCGATAAGGCT -ACGGAAGTACGAGTCGATTCAACC -ACGGAAGTACGAGTCGATTGTTCC -ACGGAAGTACGAGTCGATATTCCC -ACGGAAGTACGAGTCGATTTCTCG -ACGGAAGTACGAGTCGATTAGACG -ACGGAAGTACGAGTCGATGTAACG -ACGGAAGTACGAGTCGATACTTCG -ACGGAAGTACGAGTCGATTACGCA -ACGGAAGTACGAGTCGATCTTGCA -ACGGAAGTACGAGTCGATCGAACA -ACGGAAGTACGAGTCGATCAGTCA -ACGGAAGTACGAGTCGATGATCCA -ACGGAAGTACGAGTCGATACGACA -ACGGAAGTACGAGTCGATAGCTCA -ACGGAAGTACGAGTCGATTCACGT -ACGGAAGTACGAGTCGATCGTAGT -ACGGAAGTACGAGTCGATGTCAGT -ACGGAAGTACGAGTCGATGAAGGT -ACGGAAGTACGAGTCGATAACCGT -ACGGAAGTACGAGTCGATTTGTGC -ACGGAAGTACGAGTCGATCTAAGC -ACGGAAGTACGAGTCGATACTAGC -ACGGAAGTACGAGTCGATAGATGC -ACGGAAGTACGAGTCGATTGAAGG -ACGGAAGTACGAGTCGATCAATGG -ACGGAAGTACGAGTCGATATGAGG -ACGGAAGTACGAGTCGATAATGGG -ACGGAAGTACGAGTCGATTCCTGA -ACGGAAGTACGAGTCGATTAGCGA -ACGGAAGTACGAGTCGATCACAGA -ACGGAAGTACGAGTCGATGCAAGA -ACGGAAGTACGAGTCGATGGTTGA -ACGGAAGTACGAGTCGATTCCGAT -ACGGAAGTACGAGTCGATTGGCAT -ACGGAAGTACGAGTCGATCGAGAT -ACGGAAGTACGAGTCGATTACCAC -ACGGAAGTACGAGTCGATCAGAAC -ACGGAAGTACGAGTCGATGTCTAC -ACGGAAGTACGAGTCGATACGTAC -ACGGAAGTACGAGTCGATAGTGAC -ACGGAAGTACGAGTCGATCTGTAG -ACGGAAGTACGAGTCGATCCTAAG -ACGGAAGTACGAGTCGATGTTCAG -ACGGAAGTACGAGTCGATGCATAG -ACGGAAGTACGAGTCGATGACAAG -ACGGAAGTACGAGTCGATAAGCAG -ACGGAAGTACGAGTCGATCGTCAA -ACGGAAGTACGAGTCGATGCTGAA -ACGGAAGTACGAGTCGATAGTACG -ACGGAAGTACGAGTCGATATCCGA -ACGGAAGTACGAGTCGATATGGGA -ACGGAAGTACGAGTCGATGTGCAA -ACGGAAGTACGAGTCGATGAGGAA -ACGGAAGTACGAGTCGATCAGGTA -ACGGAAGTACGAGTCGATGACTCT -ACGGAAGTACGAGTCGATAGTCCT -ACGGAAGTACGAGTCGATTAAGCC -ACGGAAGTACGAGTCGATATAGCC -ACGGAAGTACGAGTCGATTAACCG -ACGGAAGTACGAGTCGATATGCCA -ACGGAAGTACGAGTCACAGGAAAC -ACGGAAGTACGAGTCACAAACACC -ACGGAAGTACGAGTCACAATCGAG -ACGGAAGTACGAGTCACACTCCTT -ACGGAAGTACGAGTCACACCTGTT -ACGGAAGTACGAGTCACACGGTTT -ACGGAAGTACGAGTCACAGTGGTT -ACGGAAGTACGAGTCACAGCCTTT -ACGGAAGTACGAGTCACAGGTCTT -ACGGAAGTACGAGTCACAACGCTT -ACGGAAGTACGAGTCACAAGCGTT -ACGGAAGTACGAGTCACATTCGTC -ACGGAAGTACGAGTCACATCTCTC -ACGGAAGTACGAGTCACATGGATC -ACGGAAGTACGAGTCACACACTTC -ACGGAAGTACGAGTCACAGTACTC -ACGGAAGTACGAGTCACAGATGTC -ACGGAAGTACGAGTCACAACAGTC -ACGGAAGTACGAGTCACATTGCTG -ACGGAAGTACGAGTCACATCCATG -ACGGAAGTACGAGTCACATGTGTG -ACGGAAGTACGAGTCACACTAGTG -ACGGAAGTACGAGTCACACATCTG -ACGGAAGTACGAGTCACAGAGTTG -ACGGAAGTACGAGTCACAAGACTG -ACGGAAGTACGAGTCACATCGGTA -ACGGAAGTACGAGTCACATGCCTA -ACGGAAGTACGAGTCACACCACTA -ACGGAAGTACGAGTCACAGGAGTA -ACGGAAGTACGAGTCACATCGTCT -ACGGAAGTACGAGTCACATGCACT -ACGGAAGTACGAGTCACACTGACT -ACGGAAGTACGAGTCACACAACCT -ACGGAAGTACGAGTCACAGCTACT -ACGGAAGTACGAGTCACAGGATCT -ACGGAAGTACGAGTCACAAAGGCT -ACGGAAGTACGAGTCACATCAACC -ACGGAAGTACGAGTCACATGTTCC -ACGGAAGTACGAGTCACAATTCCC -ACGGAAGTACGAGTCACATTCTCG -ACGGAAGTACGAGTCACATAGACG -ACGGAAGTACGAGTCACAGTAACG -ACGGAAGTACGAGTCACAACTTCG -ACGGAAGTACGAGTCACATACGCA -ACGGAAGTACGAGTCACACTTGCA -ACGGAAGTACGAGTCACACGAACA -ACGGAAGTACGAGTCACACAGTCA -ACGGAAGTACGAGTCACAGATCCA -ACGGAAGTACGAGTCACAACGACA -ACGGAAGTACGAGTCACAAGCTCA -ACGGAAGTACGAGTCACATCACGT -ACGGAAGTACGAGTCACACGTAGT -ACGGAAGTACGAGTCACAGTCAGT -ACGGAAGTACGAGTCACAGAAGGT -ACGGAAGTACGAGTCACAAACCGT -ACGGAAGTACGAGTCACATTGTGC -ACGGAAGTACGAGTCACACTAAGC -ACGGAAGTACGAGTCACAACTAGC -ACGGAAGTACGAGTCACAAGATGC -ACGGAAGTACGAGTCACATGAAGG -ACGGAAGTACGAGTCACACAATGG -ACGGAAGTACGAGTCACAATGAGG -ACGGAAGTACGAGTCACAAATGGG -ACGGAAGTACGAGTCACATCCTGA -ACGGAAGTACGAGTCACATAGCGA -ACGGAAGTACGAGTCACACACAGA -ACGGAAGTACGAGTCACAGCAAGA -ACGGAAGTACGAGTCACAGGTTGA -ACGGAAGTACGAGTCACATCCGAT -ACGGAAGTACGAGTCACATGGCAT -ACGGAAGTACGAGTCACACGAGAT -ACGGAAGTACGAGTCACATACCAC -ACGGAAGTACGAGTCACACAGAAC -ACGGAAGTACGAGTCACAGTCTAC -ACGGAAGTACGAGTCACAACGTAC -ACGGAAGTACGAGTCACAAGTGAC -ACGGAAGTACGAGTCACACTGTAG -ACGGAAGTACGAGTCACACCTAAG -ACGGAAGTACGAGTCACAGTTCAG -ACGGAAGTACGAGTCACAGCATAG -ACGGAAGTACGAGTCACAGACAAG -ACGGAAGTACGAGTCACAAAGCAG -ACGGAAGTACGAGTCACACGTCAA -ACGGAAGTACGAGTCACAGCTGAA -ACGGAAGTACGAGTCACAAGTACG -ACGGAAGTACGAGTCACAATCCGA -ACGGAAGTACGAGTCACAATGGGA -ACGGAAGTACGAGTCACAGTGCAA -ACGGAAGTACGAGTCACAGAGGAA -ACGGAAGTACGAGTCACACAGGTA -ACGGAAGTACGAGTCACAGACTCT -ACGGAAGTACGAGTCACAAGTCCT -ACGGAAGTACGAGTCACATAAGCC -ACGGAAGTACGAGTCACAATAGCC -ACGGAAGTACGAGTCACATAACCG -ACGGAAGTACGAGTCACAATGCCA -ACGGAAGTACGACTGTTGGGAAAC -ACGGAAGTACGACTGTTGAACACC -ACGGAAGTACGACTGTTGATCGAG -ACGGAAGTACGACTGTTGCTCCTT -ACGGAAGTACGACTGTTGCCTGTT -ACGGAAGTACGACTGTTGCGGTTT -ACGGAAGTACGACTGTTGGTGGTT -ACGGAAGTACGACTGTTGGCCTTT -ACGGAAGTACGACTGTTGGGTCTT -ACGGAAGTACGACTGTTGACGCTT -ACGGAAGTACGACTGTTGAGCGTT -ACGGAAGTACGACTGTTGTTCGTC -ACGGAAGTACGACTGTTGTCTCTC -ACGGAAGTACGACTGTTGTGGATC -ACGGAAGTACGACTGTTGCACTTC -ACGGAAGTACGACTGTTGGTACTC -ACGGAAGTACGACTGTTGGATGTC -ACGGAAGTACGACTGTTGACAGTC -ACGGAAGTACGACTGTTGTTGCTG -ACGGAAGTACGACTGTTGTCCATG -ACGGAAGTACGACTGTTGTGTGTG -ACGGAAGTACGACTGTTGCTAGTG -ACGGAAGTACGACTGTTGCATCTG -ACGGAAGTACGACTGTTGGAGTTG -ACGGAAGTACGACTGTTGAGACTG -ACGGAAGTACGACTGTTGTCGGTA -ACGGAAGTACGACTGTTGTGCCTA -ACGGAAGTACGACTGTTGCCACTA -ACGGAAGTACGACTGTTGGGAGTA -ACGGAAGTACGACTGTTGTCGTCT -ACGGAAGTACGACTGTTGTGCACT -ACGGAAGTACGACTGTTGCTGACT -ACGGAAGTACGACTGTTGCAACCT -ACGGAAGTACGACTGTTGGCTACT -ACGGAAGTACGACTGTTGGGATCT -ACGGAAGTACGACTGTTGAAGGCT -ACGGAAGTACGACTGTTGTCAACC -ACGGAAGTACGACTGTTGTGTTCC -ACGGAAGTACGACTGTTGATTCCC -ACGGAAGTACGACTGTTGTTCTCG -ACGGAAGTACGACTGTTGTAGACG -ACGGAAGTACGACTGTTGGTAACG -ACGGAAGTACGACTGTTGACTTCG -ACGGAAGTACGACTGTTGTACGCA -ACGGAAGTACGACTGTTGCTTGCA -ACGGAAGTACGACTGTTGCGAACA -ACGGAAGTACGACTGTTGCAGTCA -ACGGAAGTACGACTGTTGGATCCA -ACGGAAGTACGACTGTTGACGACA -ACGGAAGTACGACTGTTGAGCTCA -ACGGAAGTACGACTGTTGTCACGT -ACGGAAGTACGACTGTTGCGTAGT -ACGGAAGTACGACTGTTGGTCAGT -ACGGAAGTACGACTGTTGGAAGGT -ACGGAAGTACGACTGTTGAACCGT -ACGGAAGTACGACTGTTGTTGTGC -ACGGAAGTACGACTGTTGCTAAGC -ACGGAAGTACGACTGTTGACTAGC -ACGGAAGTACGACTGTTGAGATGC -ACGGAAGTACGACTGTTGTGAAGG -ACGGAAGTACGACTGTTGCAATGG -ACGGAAGTACGACTGTTGATGAGG -ACGGAAGTACGACTGTTGAATGGG -ACGGAAGTACGACTGTTGTCCTGA -ACGGAAGTACGACTGTTGTAGCGA -ACGGAAGTACGACTGTTGCACAGA -ACGGAAGTACGACTGTTGGCAAGA -ACGGAAGTACGACTGTTGGGTTGA -ACGGAAGTACGACTGTTGTCCGAT -ACGGAAGTACGACTGTTGTGGCAT -ACGGAAGTACGACTGTTGCGAGAT -ACGGAAGTACGACTGTTGTACCAC -ACGGAAGTACGACTGTTGCAGAAC -ACGGAAGTACGACTGTTGGTCTAC -ACGGAAGTACGACTGTTGACGTAC -ACGGAAGTACGACTGTTGAGTGAC -ACGGAAGTACGACTGTTGCTGTAG -ACGGAAGTACGACTGTTGCCTAAG -ACGGAAGTACGACTGTTGGTTCAG -ACGGAAGTACGACTGTTGGCATAG -ACGGAAGTACGACTGTTGGACAAG -ACGGAAGTACGACTGTTGAAGCAG -ACGGAAGTACGACTGTTGCGTCAA -ACGGAAGTACGACTGTTGGCTGAA -ACGGAAGTACGACTGTTGAGTACG -ACGGAAGTACGACTGTTGATCCGA -ACGGAAGTACGACTGTTGATGGGA -ACGGAAGTACGACTGTTGGTGCAA -ACGGAAGTACGACTGTTGGAGGAA -ACGGAAGTACGACTGTTGCAGGTA -ACGGAAGTACGACTGTTGGACTCT -ACGGAAGTACGACTGTTGAGTCCT -ACGGAAGTACGACTGTTGTAAGCC -ACGGAAGTACGACTGTTGATAGCC -ACGGAAGTACGACTGTTGTAACCG -ACGGAAGTACGACTGTTGATGCCA -ACGGAAGTACGAATGTCCGGAAAC -ACGGAAGTACGAATGTCCAACACC -ACGGAAGTACGAATGTCCATCGAG -ACGGAAGTACGAATGTCCCTCCTT -ACGGAAGTACGAATGTCCCCTGTT -ACGGAAGTACGAATGTCCCGGTTT -ACGGAAGTACGAATGTCCGTGGTT -ACGGAAGTACGAATGTCCGCCTTT -ACGGAAGTACGAATGTCCGGTCTT -ACGGAAGTACGAATGTCCACGCTT -ACGGAAGTACGAATGTCCAGCGTT -ACGGAAGTACGAATGTCCTTCGTC -ACGGAAGTACGAATGTCCTCTCTC -ACGGAAGTACGAATGTCCTGGATC -ACGGAAGTACGAATGTCCCACTTC -ACGGAAGTACGAATGTCCGTACTC -ACGGAAGTACGAATGTCCGATGTC -ACGGAAGTACGAATGTCCACAGTC -ACGGAAGTACGAATGTCCTTGCTG -ACGGAAGTACGAATGTCCTCCATG -ACGGAAGTACGAATGTCCTGTGTG -ACGGAAGTACGAATGTCCCTAGTG -ACGGAAGTACGAATGTCCCATCTG -ACGGAAGTACGAATGTCCGAGTTG -ACGGAAGTACGAATGTCCAGACTG -ACGGAAGTACGAATGTCCTCGGTA -ACGGAAGTACGAATGTCCTGCCTA -ACGGAAGTACGAATGTCCCCACTA -ACGGAAGTACGAATGTCCGGAGTA -ACGGAAGTACGAATGTCCTCGTCT -ACGGAAGTACGAATGTCCTGCACT -ACGGAAGTACGAATGTCCCTGACT -ACGGAAGTACGAATGTCCCAACCT -ACGGAAGTACGAATGTCCGCTACT -ACGGAAGTACGAATGTCCGGATCT -ACGGAAGTACGAATGTCCAAGGCT -ACGGAAGTACGAATGTCCTCAACC -ACGGAAGTACGAATGTCCTGTTCC -ACGGAAGTACGAATGTCCATTCCC -ACGGAAGTACGAATGTCCTTCTCG -ACGGAAGTACGAATGTCCTAGACG -ACGGAAGTACGAATGTCCGTAACG -ACGGAAGTACGAATGTCCACTTCG -ACGGAAGTACGAATGTCCTACGCA -ACGGAAGTACGAATGTCCCTTGCA -ACGGAAGTACGAATGTCCCGAACA -ACGGAAGTACGAATGTCCCAGTCA -ACGGAAGTACGAATGTCCGATCCA -ACGGAAGTACGAATGTCCACGACA -ACGGAAGTACGAATGTCCAGCTCA -ACGGAAGTACGAATGTCCTCACGT -ACGGAAGTACGAATGTCCCGTAGT -ACGGAAGTACGAATGTCCGTCAGT -ACGGAAGTACGAATGTCCGAAGGT -ACGGAAGTACGAATGTCCAACCGT -ACGGAAGTACGAATGTCCTTGTGC -ACGGAAGTACGAATGTCCCTAAGC -ACGGAAGTACGAATGTCCACTAGC -ACGGAAGTACGAATGTCCAGATGC -ACGGAAGTACGAATGTCCTGAAGG -ACGGAAGTACGAATGTCCCAATGG -ACGGAAGTACGAATGTCCATGAGG -ACGGAAGTACGAATGTCCAATGGG -ACGGAAGTACGAATGTCCTCCTGA -ACGGAAGTACGAATGTCCTAGCGA -ACGGAAGTACGAATGTCCCACAGA -ACGGAAGTACGAATGTCCGCAAGA -ACGGAAGTACGAATGTCCGGTTGA -ACGGAAGTACGAATGTCCTCCGAT -ACGGAAGTACGAATGTCCTGGCAT -ACGGAAGTACGAATGTCCCGAGAT -ACGGAAGTACGAATGTCCTACCAC -ACGGAAGTACGAATGTCCCAGAAC -ACGGAAGTACGAATGTCCGTCTAC -ACGGAAGTACGAATGTCCACGTAC -ACGGAAGTACGAATGTCCAGTGAC -ACGGAAGTACGAATGTCCCTGTAG -ACGGAAGTACGAATGTCCCCTAAG -ACGGAAGTACGAATGTCCGTTCAG -ACGGAAGTACGAATGTCCGCATAG -ACGGAAGTACGAATGTCCGACAAG -ACGGAAGTACGAATGTCCAAGCAG -ACGGAAGTACGAATGTCCCGTCAA -ACGGAAGTACGAATGTCCGCTGAA -ACGGAAGTACGAATGTCCAGTACG -ACGGAAGTACGAATGTCCATCCGA -ACGGAAGTACGAATGTCCATGGGA -ACGGAAGTACGAATGTCCGTGCAA -ACGGAAGTACGAATGTCCGAGGAA -ACGGAAGTACGAATGTCCCAGGTA -ACGGAAGTACGAATGTCCGACTCT -ACGGAAGTACGAATGTCCAGTCCT -ACGGAAGTACGAATGTCCTAAGCC -ACGGAAGTACGAATGTCCATAGCC -ACGGAAGTACGAATGTCCTAACCG -ACGGAAGTACGAATGTCCATGCCA -ACGGAAGTACGAGTGTGTGGAAAC -ACGGAAGTACGAGTGTGTAACACC -ACGGAAGTACGAGTGTGTATCGAG -ACGGAAGTACGAGTGTGTCTCCTT -ACGGAAGTACGAGTGTGTCCTGTT -ACGGAAGTACGAGTGTGTCGGTTT -ACGGAAGTACGAGTGTGTGTGGTT -ACGGAAGTACGAGTGTGTGCCTTT -ACGGAAGTACGAGTGTGTGGTCTT -ACGGAAGTACGAGTGTGTACGCTT -ACGGAAGTACGAGTGTGTAGCGTT -ACGGAAGTACGAGTGTGTTTCGTC -ACGGAAGTACGAGTGTGTTCTCTC -ACGGAAGTACGAGTGTGTTGGATC -ACGGAAGTACGAGTGTGTCACTTC -ACGGAAGTACGAGTGTGTGTACTC -ACGGAAGTACGAGTGTGTGATGTC -ACGGAAGTACGAGTGTGTACAGTC -ACGGAAGTACGAGTGTGTTTGCTG -ACGGAAGTACGAGTGTGTTCCATG -ACGGAAGTACGAGTGTGTTGTGTG -ACGGAAGTACGAGTGTGTCTAGTG -ACGGAAGTACGAGTGTGTCATCTG -ACGGAAGTACGAGTGTGTGAGTTG -ACGGAAGTACGAGTGTGTAGACTG -ACGGAAGTACGAGTGTGTTCGGTA -ACGGAAGTACGAGTGTGTTGCCTA -ACGGAAGTACGAGTGTGTCCACTA -ACGGAAGTACGAGTGTGTGGAGTA -ACGGAAGTACGAGTGTGTTCGTCT -ACGGAAGTACGAGTGTGTTGCACT -ACGGAAGTACGAGTGTGTCTGACT -ACGGAAGTACGAGTGTGTCAACCT -ACGGAAGTACGAGTGTGTGCTACT -ACGGAAGTACGAGTGTGTGGATCT -ACGGAAGTACGAGTGTGTAAGGCT -ACGGAAGTACGAGTGTGTTCAACC -ACGGAAGTACGAGTGTGTTGTTCC -ACGGAAGTACGAGTGTGTATTCCC -ACGGAAGTACGAGTGTGTTTCTCG -ACGGAAGTACGAGTGTGTTAGACG -ACGGAAGTACGAGTGTGTGTAACG -ACGGAAGTACGAGTGTGTACTTCG -ACGGAAGTACGAGTGTGTTACGCA -ACGGAAGTACGAGTGTGTCTTGCA -ACGGAAGTACGAGTGTGTCGAACA -ACGGAAGTACGAGTGTGTCAGTCA -ACGGAAGTACGAGTGTGTGATCCA -ACGGAAGTACGAGTGTGTACGACA -ACGGAAGTACGAGTGTGTAGCTCA -ACGGAAGTACGAGTGTGTTCACGT -ACGGAAGTACGAGTGTGTCGTAGT -ACGGAAGTACGAGTGTGTGTCAGT -ACGGAAGTACGAGTGTGTGAAGGT -ACGGAAGTACGAGTGTGTAACCGT -ACGGAAGTACGAGTGTGTTTGTGC -ACGGAAGTACGAGTGTGTCTAAGC -ACGGAAGTACGAGTGTGTACTAGC -ACGGAAGTACGAGTGTGTAGATGC -ACGGAAGTACGAGTGTGTTGAAGG -ACGGAAGTACGAGTGTGTCAATGG -ACGGAAGTACGAGTGTGTATGAGG -ACGGAAGTACGAGTGTGTAATGGG -ACGGAAGTACGAGTGTGTTCCTGA -ACGGAAGTACGAGTGTGTTAGCGA -ACGGAAGTACGAGTGTGTCACAGA -ACGGAAGTACGAGTGTGTGCAAGA -ACGGAAGTACGAGTGTGTGGTTGA -ACGGAAGTACGAGTGTGTTCCGAT -ACGGAAGTACGAGTGTGTTGGCAT -ACGGAAGTACGAGTGTGTCGAGAT -ACGGAAGTACGAGTGTGTTACCAC -ACGGAAGTACGAGTGTGTCAGAAC -ACGGAAGTACGAGTGTGTGTCTAC -ACGGAAGTACGAGTGTGTACGTAC -ACGGAAGTACGAGTGTGTAGTGAC -ACGGAAGTACGAGTGTGTCTGTAG -ACGGAAGTACGAGTGTGTCCTAAG -ACGGAAGTACGAGTGTGTGTTCAG -ACGGAAGTACGAGTGTGTGCATAG -ACGGAAGTACGAGTGTGTGACAAG -ACGGAAGTACGAGTGTGTAAGCAG -ACGGAAGTACGAGTGTGTCGTCAA -ACGGAAGTACGAGTGTGTGCTGAA -ACGGAAGTACGAGTGTGTAGTACG -ACGGAAGTACGAGTGTGTATCCGA -ACGGAAGTACGAGTGTGTATGGGA -ACGGAAGTACGAGTGTGTGTGCAA -ACGGAAGTACGAGTGTGTGAGGAA -ACGGAAGTACGAGTGTGTCAGGTA -ACGGAAGTACGAGTGTGTGACTCT -ACGGAAGTACGAGTGTGTAGTCCT -ACGGAAGTACGAGTGTGTTAAGCC -ACGGAAGTACGAGTGTGTATAGCC -ACGGAAGTACGAGTGTGTTAACCG -ACGGAAGTACGAGTGTGTATGCCA -ACGGAAGTACGAGTGCTAGGAAAC -ACGGAAGTACGAGTGCTAAACACC -ACGGAAGTACGAGTGCTAATCGAG -ACGGAAGTACGAGTGCTACTCCTT -ACGGAAGTACGAGTGCTACCTGTT -ACGGAAGTACGAGTGCTACGGTTT -ACGGAAGTACGAGTGCTAGTGGTT -ACGGAAGTACGAGTGCTAGCCTTT -ACGGAAGTACGAGTGCTAGGTCTT -ACGGAAGTACGAGTGCTAACGCTT -ACGGAAGTACGAGTGCTAAGCGTT -ACGGAAGTACGAGTGCTATTCGTC -ACGGAAGTACGAGTGCTATCTCTC -ACGGAAGTACGAGTGCTATGGATC -ACGGAAGTACGAGTGCTACACTTC -ACGGAAGTACGAGTGCTAGTACTC -ACGGAAGTACGAGTGCTAGATGTC -ACGGAAGTACGAGTGCTAACAGTC -ACGGAAGTACGAGTGCTATTGCTG -ACGGAAGTACGAGTGCTATCCATG -ACGGAAGTACGAGTGCTATGTGTG -ACGGAAGTACGAGTGCTACTAGTG -ACGGAAGTACGAGTGCTACATCTG -ACGGAAGTACGAGTGCTAGAGTTG -ACGGAAGTACGAGTGCTAAGACTG -ACGGAAGTACGAGTGCTATCGGTA -ACGGAAGTACGAGTGCTATGCCTA -ACGGAAGTACGAGTGCTACCACTA -ACGGAAGTACGAGTGCTAGGAGTA -ACGGAAGTACGAGTGCTATCGTCT -ACGGAAGTACGAGTGCTATGCACT -ACGGAAGTACGAGTGCTACTGACT -ACGGAAGTACGAGTGCTACAACCT -ACGGAAGTACGAGTGCTAGCTACT -ACGGAAGTACGAGTGCTAGGATCT -ACGGAAGTACGAGTGCTAAAGGCT -ACGGAAGTACGAGTGCTATCAACC -ACGGAAGTACGAGTGCTATGTTCC -ACGGAAGTACGAGTGCTAATTCCC -ACGGAAGTACGAGTGCTATTCTCG -ACGGAAGTACGAGTGCTATAGACG -ACGGAAGTACGAGTGCTAGTAACG -ACGGAAGTACGAGTGCTAACTTCG -ACGGAAGTACGAGTGCTATACGCA -ACGGAAGTACGAGTGCTACTTGCA -ACGGAAGTACGAGTGCTACGAACA -ACGGAAGTACGAGTGCTACAGTCA -ACGGAAGTACGAGTGCTAGATCCA -ACGGAAGTACGAGTGCTAACGACA -ACGGAAGTACGAGTGCTAAGCTCA -ACGGAAGTACGAGTGCTATCACGT -ACGGAAGTACGAGTGCTACGTAGT -ACGGAAGTACGAGTGCTAGTCAGT -ACGGAAGTACGAGTGCTAGAAGGT -ACGGAAGTACGAGTGCTAAACCGT -ACGGAAGTACGAGTGCTATTGTGC -ACGGAAGTACGAGTGCTACTAAGC -ACGGAAGTACGAGTGCTAACTAGC -ACGGAAGTACGAGTGCTAAGATGC -ACGGAAGTACGAGTGCTATGAAGG -ACGGAAGTACGAGTGCTACAATGG -ACGGAAGTACGAGTGCTAATGAGG -ACGGAAGTACGAGTGCTAAATGGG -ACGGAAGTACGAGTGCTATCCTGA -ACGGAAGTACGAGTGCTATAGCGA -ACGGAAGTACGAGTGCTACACAGA -ACGGAAGTACGAGTGCTAGCAAGA -ACGGAAGTACGAGTGCTAGGTTGA -ACGGAAGTACGAGTGCTATCCGAT -ACGGAAGTACGAGTGCTATGGCAT -ACGGAAGTACGAGTGCTACGAGAT -ACGGAAGTACGAGTGCTATACCAC -ACGGAAGTACGAGTGCTACAGAAC -ACGGAAGTACGAGTGCTAGTCTAC -ACGGAAGTACGAGTGCTAACGTAC -ACGGAAGTACGAGTGCTAAGTGAC -ACGGAAGTACGAGTGCTACTGTAG -ACGGAAGTACGAGTGCTACCTAAG -ACGGAAGTACGAGTGCTAGTTCAG -ACGGAAGTACGAGTGCTAGCATAG -ACGGAAGTACGAGTGCTAGACAAG -ACGGAAGTACGAGTGCTAAAGCAG -ACGGAAGTACGAGTGCTACGTCAA -ACGGAAGTACGAGTGCTAGCTGAA -ACGGAAGTACGAGTGCTAAGTACG -ACGGAAGTACGAGTGCTAATCCGA -ACGGAAGTACGAGTGCTAATGGGA -ACGGAAGTACGAGTGCTAGTGCAA -ACGGAAGTACGAGTGCTAGAGGAA -ACGGAAGTACGAGTGCTACAGGTA -ACGGAAGTACGAGTGCTAGACTCT -ACGGAAGTACGAGTGCTAAGTCCT -ACGGAAGTACGAGTGCTATAAGCC -ACGGAAGTACGAGTGCTAATAGCC -ACGGAAGTACGAGTGCTATAACCG -ACGGAAGTACGAGTGCTAATGCCA -ACGGAAGTACGACTGCATGGAAAC -ACGGAAGTACGACTGCATAACACC -ACGGAAGTACGACTGCATATCGAG -ACGGAAGTACGACTGCATCTCCTT -ACGGAAGTACGACTGCATCCTGTT -ACGGAAGTACGACTGCATCGGTTT -ACGGAAGTACGACTGCATGTGGTT -ACGGAAGTACGACTGCATGCCTTT -ACGGAAGTACGACTGCATGGTCTT -ACGGAAGTACGACTGCATACGCTT -ACGGAAGTACGACTGCATAGCGTT -ACGGAAGTACGACTGCATTTCGTC -ACGGAAGTACGACTGCATTCTCTC -ACGGAAGTACGACTGCATTGGATC -ACGGAAGTACGACTGCATCACTTC -ACGGAAGTACGACTGCATGTACTC -ACGGAAGTACGACTGCATGATGTC -ACGGAAGTACGACTGCATACAGTC -ACGGAAGTACGACTGCATTTGCTG -ACGGAAGTACGACTGCATTCCATG -ACGGAAGTACGACTGCATTGTGTG -ACGGAAGTACGACTGCATCTAGTG -ACGGAAGTACGACTGCATCATCTG -ACGGAAGTACGACTGCATGAGTTG -ACGGAAGTACGACTGCATAGACTG -ACGGAAGTACGACTGCATTCGGTA -ACGGAAGTACGACTGCATTGCCTA -ACGGAAGTACGACTGCATCCACTA -ACGGAAGTACGACTGCATGGAGTA -ACGGAAGTACGACTGCATTCGTCT -ACGGAAGTACGACTGCATTGCACT -ACGGAAGTACGACTGCATCTGACT -ACGGAAGTACGACTGCATCAACCT -ACGGAAGTACGACTGCATGCTACT -ACGGAAGTACGACTGCATGGATCT -ACGGAAGTACGACTGCATAAGGCT -ACGGAAGTACGACTGCATTCAACC -ACGGAAGTACGACTGCATTGTTCC -ACGGAAGTACGACTGCATATTCCC -ACGGAAGTACGACTGCATTTCTCG -ACGGAAGTACGACTGCATTAGACG -ACGGAAGTACGACTGCATGTAACG -ACGGAAGTACGACTGCATACTTCG -ACGGAAGTACGACTGCATTACGCA -ACGGAAGTACGACTGCATCTTGCA -ACGGAAGTACGACTGCATCGAACA -ACGGAAGTACGACTGCATCAGTCA -ACGGAAGTACGACTGCATGATCCA -ACGGAAGTACGACTGCATACGACA -ACGGAAGTACGACTGCATAGCTCA -ACGGAAGTACGACTGCATTCACGT -ACGGAAGTACGACTGCATCGTAGT -ACGGAAGTACGACTGCATGTCAGT -ACGGAAGTACGACTGCATGAAGGT -ACGGAAGTACGACTGCATAACCGT -ACGGAAGTACGACTGCATTTGTGC -ACGGAAGTACGACTGCATCTAAGC -ACGGAAGTACGACTGCATACTAGC -ACGGAAGTACGACTGCATAGATGC -ACGGAAGTACGACTGCATTGAAGG -ACGGAAGTACGACTGCATCAATGG -ACGGAAGTACGACTGCATATGAGG -ACGGAAGTACGACTGCATAATGGG -ACGGAAGTACGACTGCATTCCTGA -ACGGAAGTACGACTGCATTAGCGA -ACGGAAGTACGACTGCATCACAGA -ACGGAAGTACGACTGCATGCAAGA -ACGGAAGTACGACTGCATGGTTGA -ACGGAAGTACGACTGCATTCCGAT -ACGGAAGTACGACTGCATTGGCAT -ACGGAAGTACGACTGCATCGAGAT -ACGGAAGTACGACTGCATTACCAC -ACGGAAGTACGACTGCATCAGAAC -ACGGAAGTACGACTGCATGTCTAC -ACGGAAGTACGACTGCATACGTAC -ACGGAAGTACGACTGCATAGTGAC -ACGGAAGTACGACTGCATCTGTAG -ACGGAAGTACGACTGCATCCTAAG -ACGGAAGTACGACTGCATGTTCAG -ACGGAAGTACGACTGCATGCATAG -ACGGAAGTACGACTGCATGACAAG -ACGGAAGTACGACTGCATAAGCAG -ACGGAAGTACGACTGCATCGTCAA -ACGGAAGTACGACTGCATGCTGAA -ACGGAAGTACGACTGCATAGTACG -ACGGAAGTACGACTGCATATCCGA -ACGGAAGTACGACTGCATATGGGA -ACGGAAGTACGACTGCATGTGCAA -ACGGAAGTACGACTGCATGAGGAA -ACGGAAGTACGACTGCATCAGGTA -ACGGAAGTACGACTGCATGACTCT -ACGGAAGTACGACTGCATAGTCCT -ACGGAAGTACGACTGCATTAAGCC -ACGGAAGTACGACTGCATATAGCC -ACGGAAGTACGACTGCATTAACCG -ACGGAAGTACGACTGCATATGCCA -ACGGAAGTACGATTGGAGGGAAAC -ACGGAAGTACGATTGGAGAACACC -ACGGAAGTACGATTGGAGATCGAG -ACGGAAGTACGATTGGAGCTCCTT -ACGGAAGTACGATTGGAGCCTGTT -ACGGAAGTACGATTGGAGCGGTTT -ACGGAAGTACGATTGGAGGTGGTT -ACGGAAGTACGATTGGAGGCCTTT -ACGGAAGTACGATTGGAGGGTCTT -ACGGAAGTACGATTGGAGACGCTT -ACGGAAGTACGATTGGAGAGCGTT -ACGGAAGTACGATTGGAGTTCGTC -ACGGAAGTACGATTGGAGTCTCTC -ACGGAAGTACGATTGGAGTGGATC -ACGGAAGTACGATTGGAGCACTTC -ACGGAAGTACGATTGGAGGTACTC -ACGGAAGTACGATTGGAGGATGTC -ACGGAAGTACGATTGGAGACAGTC -ACGGAAGTACGATTGGAGTTGCTG -ACGGAAGTACGATTGGAGTCCATG -ACGGAAGTACGATTGGAGTGTGTG -ACGGAAGTACGATTGGAGCTAGTG -ACGGAAGTACGATTGGAGCATCTG -ACGGAAGTACGATTGGAGGAGTTG -ACGGAAGTACGATTGGAGAGACTG -ACGGAAGTACGATTGGAGTCGGTA -ACGGAAGTACGATTGGAGTGCCTA -ACGGAAGTACGATTGGAGCCACTA -ACGGAAGTACGATTGGAGGGAGTA -ACGGAAGTACGATTGGAGTCGTCT -ACGGAAGTACGATTGGAGTGCACT -ACGGAAGTACGATTGGAGCTGACT -ACGGAAGTACGATTGGAGCAACCT -ACGGAAGTACGATTGGAGGCTACT -ACGGAAGTACGATTGGAGGGATCT -ACGGAAGTACGATTGGAGAAGGCT -ACGGAAGTACGATTGGAGTCAACC -ACGGAAGTACGATTGGAGTGTTCC -ACGGAAGTACGATTGGAGATTCCC -ACGGAAGTACGATTGGAGTTCTCG -ACGGAAGTACGATTGGAGTAGACG -ACGGAAGTACGATTGGAGGTAACG -ACGGAAGTACGATTGGAGACTTCG -ACGGAAGTACGATTGGAGTACGCA -ACGGAAGTACGATTGGAGCTTGCA -ACGGAAGTACGATTGGAGCGAACA -ACGGAAGTACGATTGGAGCAGTCA -ACGGAAGTACGATTGGAGGATCCA -ACGGAAGTACGATTGGAGACGACA -ACGGAAGTACGATTGGAGAGCTCA -ACGGAAGTACGATTGGAGTCACGT -ACGGAAGTACGATTGGAGCGTAGT -ACGGAAGTACGATTGGAGGTCAGT -ACGGAAGTACGATTGGAGGAAGGT -ACGGAAGTACGATTGGAGAACCGT -ACGGAAGTACGATTGGAGTTGTGC -ACGGAAGTACGATTGGAGCTAAGC -ACGGAAGTACGATTGGAGACTAGC -ACGGAAGTACGATTGGAGAGATGC -ACGGAAGTACGATTGGAGTGAAGG -ACGGAAGTACGATTGGAGCAATGG -ACGGAAGTACGATTGGAGATGAGG -ACGGAAGTACGATTGGAGAATGGG -ACGGAAGTACGATTGGAGTCCTGA -ACGGAAGTACGATTGGAGTAGCGA -ACGGAAGTACGATTGGAGCACAGA -ACGGAAGTACGATTGGAGGCAAGA -ACGGAAGTACGATTGGAGGGTTGA -ACGGAAGTACGATTGGAGTCCGAT -ACGGAAGTACGATTGGAGTGGCAT -ACGGAAGTACGATTGGAGCGAGAT -ACGGAAGTACGATTGGAGTACCAC -ACGGAAGTACGATTGGAGCAGAAC -ACGGAAGTACGATTGGAGGTCTAC -ACGGAAGTACGATTGGAGACGTAC -ACGGAAGTACGATTGGAGAGTGAC -ACGGAAGTACGATTGGAGCTGTAG -ACGGAAGTACGATTGGAGCCTAAG -ACGGAAGTACGATTGGAGGTTCAG -ACGGAAGTACGATTGGAGGCATAG -ACGGAAGTACGATTGGAGGACAAG -ACGGAAGTACGATTGGAGAAGCAG -ACGGAAGTACGATTGGAGCGTCAA -ACGGAAGTACGATTGGAGGCTGAA -ACGGAAGTACGATTGGAGAGTACG -ACGGAAGTACGATTGGAGATCCGA -ACGGAAGTACGATTGGAGATGGGA -ACGGAAGTACGATTGGAGGTGCAA -ACGGAAGTACGATTGGAGGAGGAA -ACGGAAGTACGATTGGAGCAGGTA -ACGGAAGTACGATTGGAGGACTCT -ACGGAAGTACGATTGGAGAGTCCT -ACGGAAGTACGATTGGAGTAAGCC -ACGGAAGTACGATTGGAGATAGCC -ACGGAAGTACGATTGGAGTAACCG -ACGGAAGTACGATTGGAGATGCCA -ACGGAAGTACGACTGAGAGGAAAC -ACGGAAGTACGACTGAGAAACACC -ACGGAAGTACGACTGAGAATCGAG -ACGGAAGTACGACTGAGACTCCTT -ACGGAAGTACGACTGAGACCTGTT -ACGGAAGTACGACTGAGACGGTTT -ACGGAAGTACGACTGAGAGTGGTT -ACGGAAGTACGACTGAGAGCCTTT -ACGGAAGTACGACTGAGAGGTCTT -ACGGAAGTACGACTGAGAACGCTT -ACGGAAGTACGACTGAGAAGCGTT -ACGGAAGTACGACTGAGATTCGTC -ACGGAAGTACGACTGAGATCTCTC -ACGGAAGTACGACTGAGATGGATC -ACGGAAGTACGACTGAGACACTTC -ACGGAAGTACGACTGAGAGTACTC -ACGGAAGTACGACTGAGAGATGTC -ACGGAAGTACGACTGAGAACAGTC -ACGGAAGTACGACTGAGATTGCTG -ACGGAAGTACGACTGAGATCCATG -ACGGAAGTACGACTGAGATGTGTG -ACGGAAGTACGACTGAGACTAGTG -ACGGAAGTACGACTGAGACATCTG -ACGGAAGTACGACTGAGAGAGTTG -ACGGAAGTACGACTGAGAAGACTG -ACGGAAGTACGACTGAGATCGGTA -ACGGAAGTACGACTGAGATGCCTA -ACGGAAGTACGACTGAGACCACTA -ACGGAAGTACGACTGAGAGGAGTA -ACGGAAGTACGACTGAGATCGTCT -ACGGAAGTACGACTGAGATGCACT -ACGGAAGTACGACTGAGACTGACT -ACGGAAGTACGACTGAGACAACCT -ACGGAAGTACGACTGAGAGCTACT -ACGGAAGTACGACTGAGAGGATCT -ACGGAAGTACGACTGAGAAAGGCT -ACGGAAGTACGACTGAGATCAACC -ACGGAAGTACGACTGAGATGTTCC -ACGGAAGTACGACTGAGAATTCCC -ACGGAAGTACGACTGAGATTCTCG -ACGGAAGTACGACTGAGATAGACG -ACGGAAGTACGACTGAGAGTAACG -ACGGAAGTACGACTGAGAACTTCG -ACGGAAGTACGACTGAGATACGCA -ACGGAAGTACGACTGAGACTTGCA -ACGGAAGTACGACTGAGACGAACA -ACGGAAGTACGACTGAGACAGTCA -ACGGAAGTACGACTGAGAGATCCA -ACGGAAGTACGACTGAGAACGACA -ACGGAAGTACGACTGAGAAGCTCA -ACGGAAGTACGACTGAGATCACGT -ACGGAAGTACGACTGAGACGTAGT -ACGGAAGTACGACTGAGAGTCAGT -ACGGAAGTACGACTGAGAGAAGGT -ACGGAAGTACGACTGAGAAACCGT -ACGGAAGTACGACTGAGATTGTGC -ACGGAAGTACGACTGAGACTAAGC -ACGGAAGTACGACTGAGAACTAGC -ACGGAAGTACGACTGAGAAGATGC -ACGGAAGTACGACTGAGATGAAGG -ACGGAAGTACGACTGAGACAATGG -ACGGAAGTACGACTGAGAATGAGG -ACGGAAGTACGACTGAGAAATGGG -ACGGAAGTACGACTGAGATCCTGA -ACGGAAGTACGACTGAGATAGCGA -ACGGAAGTACGACTGAGACACAGA -ACGGAAGTACGACTGAGAGCAAGA -ACGGAAGTACGACTGAGAGGTTGA -ACGGAAGTACGACTGAGATCCGAT -ACGGAAGTACGACTGAGATGGCAT -ACGGAAGTACGACTGAGACGAGAT -ACGGAAGTACGACTGAGATACCAC -ACGGAAGTACGACTGAGACAGAAC -ACGGAAGTACGACTGAGAGTCTAC -ACGGAAGTACGACTGAGAACGTAC -ACGGAAGTACGACTGAGAAGTGAC -ACGGAAGTACGACTGAGACTGTAG -ACGGAAGTACGACTGAGACCTAAG -ACGGAAGTACGACTGAGAGTTCAG -ACGGAAGTACGACTGAGAGCATAG -ACGGAAGTACGACTGAGAGACAAG -ACGGAAGTACGACTGAGAAAGCAG -ACGGAAGTACGACTGAGACGTCAA -ACGGAAGTACGACTGAGAGCTGAA -ACGGAAGTACGACTGAGAAGTACG -ACGGAAGTACGACTGAGAATCCGA -ACGGAAGTACGACTGAGAATGGGA -ACGGAAGTACGACTGAGAGTGCAA -ACGGAAGTACGACTGAGAGAGGAA -ACGGAAGTACGACTGAGACAGGTA -ACGGAAGTACGACTGAGAGACTCT -ACGGAAGTACGACTGAGAAGTCCT -ACGGAAGTACGACTGAGATAAGCC -ACGGAAGTACGACTGAGAATAGCC -ACGGAAGTACGACTGAGATAACCG -ACGGAAGTACGACTGAGAATGCCA -ACGGAAGTACGAGTATCGGGAAAC -ACGGAAGTACGAGTATCGAACACC -ACGGAAGTACGAGTATCGATCGAG -ACGGAAGTACGAGTATCGCTCCTT -ACGGAAGTACGAGTATCGCCTGTT -ACGGAAGTACGAGTATCGCGGTTT -ACGGAAGTACGAGTATCGGTGGTT -ACGGAAGTACGAGTATCGGCCTTT -ACGGAAGTACGAGTATCGGGTCTT -ACGGAAGTACGAGTATCGACGCTT -ACGGAAGTACGAGTATCGAGCGTT -ACGGAAGTACGAGTATCGTTCGTC -ACGGAAGTACGAGTATCGTCTCTC -ACGGAAGTACGAGTATCGTGGATC -ACGGAAGTACGAGTATCGCACTTC -ACGGAAGTACGAGTATCGGTACTC -ACGGAAGTACGAGTATCGGATGTC -ACGGAAGTACGAGTATCGACAGTC -ACGGAAGTACGAGTATCGTTGCTG -ACGGAAGTACGAGTATCGTCCATG -ACGGAAGTACGAGTATCGTGTGTG -ACGGAAGTACGAGTATCGCTAGTG -ACGGAAGTACGAGTATCGCATCTG -ACGGAAGTACGAGTATCGGAGTTG -ACGGAAGTACGAGTATCGAGACTG -ACGGAAGTACGAGTATCGTCGGTA -ACGGAAGTACGAGTATCGTGCCTA -ACGGAAGTACGAGTATCGCCACTA -ACGGAAGTACGAGTATCGGGAGTA -ACGGAAGTACGAGTATCGTCGTCT -ACGGAAGTACGAGTATCGTGCACT -ACGGAAGTACGAGTATCGCTGACT -ACGGAAGTACGAGTATCGCAACCT -ACGGAAGTACGAGTATCGGCTACT -ACGGAAGTACGAGTATCGGGATCT -ACGGAAGTACGAGTATCGAAGGCT -ACGGAAGTACGAGTATCGTCAACC -ACGGAAGTACGAGTATCGTGTTCC -ACGGAAGTACGAGTATCGATTCCC -ACGGAAGTACGAGTATCGTTCTCG -ACGGAAGTACGAGTATCGTAGACG -ACGGAAGTACGAGTATCGGTAACG -ACGGAAGTACGAGTATCGACTTCG -ACGGAAGTACGAGTATCGTACGCA -ACGGAAGTACGAGTATCGCTTGCA -ACGGAAGTACGAGTATCGCGAACA -ACGGAAGTACGAGTATCGCAGTCA -ACGGAAGTACGAGTATCGGATCCA -ACGGAAGTACGAGTATCGACGACA -ACGGAAGTACGAGTATCGAGCTCA -ACGGAAGTACGAGTATCGTCACGT -ACGGAAGTACGAGTATCGCGTAGT -ACGGAAGTACGAGTATCGGTCAGT -ACGGAAGTACGAGTATCGGAAGGT -ACGGAAGTACGAGTATCGAACCGT -ACGGAAGTACGAGTATCGTTGTGC -ACGGAAGTACGAGTATCGCTAAGC -ACGGAAGTACGAGTATCGACTAGC -ACGGAAGTACGAGTATCGAGATGC -ACGGAAGTACGAGTATCGTGAAGG -ACGGAAGTACGAGTATCGCAATGG -ACGGAAGTACGAGTATCGATGAGG -ACGGAAGTACGAGTATCGAATGGG -ACGGAAGTACGAGTATCGTCCTGA -ACGGAAGTACGAGTATCGTAGCGA -ACGGAAGTACGAGTATCGCACAGA -ACGGAAGTACGAGTATCGGCAAGA -ACGGAAGTACGAGTATCGGGTTGA -ACGGAAGTACGAGTATCGTCCGAT -ACGGAAGTACGAGTATCGTGGCAT -ACGGAAGTACGAGTATCGCGAGAT -ACGGAAGTACGAGTATCGTACCAC -ACGGAAGTACGAGTATCGCAGAAC -ACGGAAGTACGAGTATCGGTCTAC -ACGGAAGTACGAGTATCGACGTAC -ACGGAAGTACGAGTATCGAGTGAC -ACGGAAGTACGAGTATCGCTGTAG -ACGGAAGTACGAGTATCGCCTAAG -ACGGAAGTACGAGTATCGGTTCAG -ACGGAAGTACGAGTATCGGCATAG -ACGGAAGTACGAGTATCGGACAAG -ACGGAAGTACGAGTATCGAAGCAG -ACGGAAGTACGAGTATCGCGTCAA -ACGGAAGTACGAGTATCGGCTGAA -ACGGAAGTACGAGTATCGAGTACG -ACGGAAGTACGAGTATCGATCCGA -ACGGAAGTACGAGTATCGATGGGA -ACGGAAGTACGAGTATCGGTGCAA -ACGGAAGTACGAGTATCGGAGGAA -ACGGAAGTACGAGTATCGCAGGTA -ACGGAAGTACGAGTATCGGACTCT -ACGGAAGTACGAGTATCGAGTCCT -ACGGAAGTACGAGTATCGTAAGCC -ACGGAAGTACGAGTATCGATAGCC -ACGGAAGTACGAGTATCGTAACCG -ACGGAAGTACGAGTATCGATGCCA -ACGGAAGTACGACTATGCGGAAAC -ACGGAAGTACGACTATGCAACACC -ACGGAAGTACGACTATGCATCGAG -ACGGAAGTACGACTATGCCTCCTT -ACGGAAGTACGACTATGCCCTGTT -ACGGAAGTACGACTATGCCGGTTT -ACGGAAGTACGACTATGCGTGGTT -ACGGAAGTACGACTATGCGCCTTT -ACGGAAGTACGACTATGCGGTCTT -ACGGAAGTACGACTATGCACGCTT -ACGGAAGTACGACTATGCAGCGTT -ACGGAAGTACGACTATGCTTCGTC -ACGGAAGTACGACTATGCTCTCTC -ACGGAAGTACGACTATGCTGGATC -ACGGAAGTACGACTATGCCACTTC -ACGGAAGTACGACTATGCGTACTC -ACGGAAGTACGACTATGCGATGTC -ACGGAAGTACGACTATGCACAGTC -ACGGAAGTACGACTATGCTTGCTG -ACGGAAGTACGACTATGCTCCATG -ACGGAAGTACGACTATGCTGTGTG -ACGGAAGTACGACTATGCCTAGTG -ACGGAAGTACGACTATGCCATCTG -ACGGAAGTACGACTATGCGAGTTG -ACGGAAGTACGACTATGCAGACTG -ACGGAAGTACGACTATGCTCGGTA -ACGGAAGTACGACTATGCTGCCTA -ACGGAAGTACGACTATGCCCACTA -ACGGAAGTACGACTATGCGGAGTA -ACGGAAGTACGACTATGCTCGTCT -ACGGAAGTACGACTATGCTGCACT -ACGGAAGTACGACTATGCCTGACT -ACGGAAGTACGACTATGCCAACCT -ACGGAAGTACGACTATGCGCTACT -ACGGAAGTACGACTATGCGGATCT -ACGGAAGTACGACTATGCAAGGCT -ACGGAAGTACGACTATGCTCAACC -ACGGAAGTACGACTATGCTGTTCC -ACGGAAGTACGACTATGCATTCCC -ACGGAAGTACGACTATGCTTCTCG -ACGGAAGTACGACTATGCTAGACG -ACGGAAGTACGACTATGCGTAACG -ACGGAAGTACGACTATGCACTTCG -ACGGAAGTACGACTATGCTACGCA -ACGGAAGTACGACTATGCCTTGCA -ACGGAAGTACGACTATGCCGAACA -ACGGAAGTACGACTATGCCAGTCA -ACGGAAGTACGACTATGCGATCCA -ACGGAAGTACGACTATGCACGACA -ACGGAAGTACGACTATGCAGCTCA -ACGGAAGTACGACTATGCTCACGT -ACGGAAGTACGACTATGCCGTAGT -ACGGAAGTACGACTATGCGTCAGT -ACGGAAGTACGACTATGCGAAGGT -ACGGAAGTACGACTATGCAACCGT -ACGGAAGTACGACTATGCTTGTGC -ACGGAAGTACGACTATGCCTAAGC -ACGGAAGTACGACTATGCACTAGC -ACGGAAGTACGACTATGCAGATGC -ACGGAAGTACGACTATGCTGAAGG -ACGGAAGTACGACTATGCCAATGG -ACGGAAGTACGACTATGCATGAGG -ACGGAAGTACGACTATGCAATGGG -ACGGAAGTACGACTATGCTCCTGA -ACGGAAGTACGACTATGCTAGCGA -ACGGAAGTACGACTATGCCACAGA -ACGGAAGTACGACTATGCGCAAGA -ACGGAAGTACGACTATGCGGTTGA -ACGGAAGTACGACTATGCTCCGAT -ACGGAAGTACGACTATGCTGGCAT -ACGGAAGTACGACTATGCCGAGAT -ACGGAAGTACGACTATGCTACCAC -ACGGAAGTACGACTATGCCAGAAC -ACGGAAGTACGACTATGCGTCTAC -ACGGAAGTACGACTATGCACGTAC -ACGGAAGTACGACTATGCAGTGAC -ACGGAAGTACGACTATGCCTGTAG -ACGGAAGTACGACTATGCCCTAAG -ACGGAAGTACGACTATGCGTTCAG -ACGGAAGTACGACTATGCGCATAG -ACGGAAGTACGACTATGCGACAAG -ACGGAAGTACGACTATGCAAGCAG -ACGGAAGTACGACTATGCCGTCAA -ACGGAAGTACGACTATGCGCTGAA -ACGGAAGTACGACTATGCAGTACG -ACGGAAGTACGACTATGCATCCGA -ACGGAAGTACGACTATGCATGGGA -ACGGAAGTACGACTATGCGTGCAA -ACGGAAGTACGACTATGCGAGGAA -ACGGAAGTACGACTATGCCAGGTA -ACGGAAGTACGACTATGCGACTCT -ACGGAAGTACGACTATGCAGTCCT -ACGGAAGTACGACTATGCTAAGCC -ACGGAAGTACGACTATGCATAGCC -ACGGAAGTACGACTATGCTAACCG -ACGGAAGTACGACTATGCATGCCA -ACGGAAGTACGACTACCAGGAAAC -ACGGAAGTACGACTACCAAACACC -ACGGAAGTACGACTACCAATCGAG -ACGGAAGTACGACTACCACTCCTT -ACGGAAGTACGACTACCACCTGTT -ACGGAAGTACGACTACCACGGTTT -ACGGAAGTACGACTACCAGTGGTT -ACGGAAGTACGACTACCAGCCTTT -ACGGAAGTACGACTACCAGGTCTT -ACGGAAGTACGACTACCAACGCTT -ACGGAAGTACGACTACCAAGCGTT -ACGGAAGTACGACTACCATTCGTC -ACGGAAGTACGACTACCATCTCTC -ACGGAAGTACGACTACCATGGATC -ACGGAAGTACGACTACCACACTTC -ACGGAAGTACGACTACCAGTACTC -ACGGAAGTACGACTACCAGATGTC -ACGGAAGTACGACTACCAACAGTC -ACGGAAGTACGACTACCATTGCTG -ACGGAAGTACGACTACCATCCATG -ACGGAAGTACGACTACCATGTGTG -ACGGAAGTACGACTACCACTAGTG -ACGGAAGTACGACTACCACATCTG -ACGGAAGTACGACTACCAGAGTTG -ACGGAAGTACGACTACCAAGACTG -ACGGAAGTACGACTACCATCGGTA -ACGGAAGTACGACTACCATGCCTA -ACGGAAGTACGACTACCACCACTA -ACGGAAGTACGACTACCAGGAGTA -ACGGAAGTACGACTACCATCGTCT -ACGGAAGTACGACTACCATGCACT -ACGGAAGTACGACTACCACTGACT -ACGGAAGTACGACTACCACAACCT -ACGGAAGTACGACTACCAGCTACT -ACGGAAGTACGACTACCAGGATCT -ACGGAAGTACGACTACCAAAGGCT -ACGGAAGTACGACTACCATCAACC -ACGGAAGTACGACTACCATGTTCC -ACGGAAGTACGACTACCAATTCCC -ACGGAAGTACGACTACCATTCTCG -ACGGAAGTACGACTACCATAGACG -ACGGAAGTACGACTACCAGTAACG -ACGGAAGTACGACTACCAACTTCG -ACGGAAGTACGACTACCATACGCA -ACGGAAGTACGACTACCACTTGCA -ACGGAAGTACGACTACCACGAACA -ACGGAAGTACGACTACCACAGTCA -ACGGAAGTACGACTACCAGATCCA -ACGGAAGTACGACTACCAACGACA -ACGGAAGTACGACTACCAAGCTCA -ACGGAAGTACGACTACCATCACGT -ACGGAAGTACGACTACCACGTAGT -ACGGAAGTACGACTACCAGTCAGT -ACGGAAGTACGACTACCAGAAGGT -ACGGAAGTACGACTACCAAACCGT -ACGGAAGTACGACTACCATTGTGC -ACGGAAGTACGACTACCACTAAGC -ACGGAAGTACGACTACCAACTAGC -ACGGAAGTACGACTACCAAGATGC -ACGGAAGTACGACTACCATGAAGG -ACGGAAGTACGACTACCACAATGG -ACGGAAGTACGACTACCAATGAGG -ACGGAAGTACGACTACCAAATGGG -ACGGAAGTACGACTACCATCCTGA -ACGGAAGTACGACTACCATAGCGA -ACGGAAGTACGACTACCACACAGA -ACGGAAGTACGACTACCAGCAAGA -ACGGAAGTACGACTACCAGGTTGA -ACGGAAGTACGACTACCATCCGAT -ACGGAAGTACGACTACCATGGCAT -ACGGAAGTACGACTACCACGAGAT -ACGGAAGTACGACTACCATACCAC -ACGGAAGTACGACTACCACAGAAC -ACGGAAGTACGACTACCAGTCTAC -ACGGAAGTACGACTACCAACGTAC -ACGGAAGTACGACTACCAAGTGAC -ACGGAAGTACGACTACCACTGTAG -ACGGAAGTACGACTACCACCTAAG -ACGGAAGTACGACTACCAGTTCAG -ACGGAAGTACGACTACCAGCATAG -ACGGAAGTACGACTACCAGACAAG -ACGGAAGTACGACTACCAAAGCAG -ACGGAAGTACGACTACCACGTCAA -ACGGAAGTACGACTACCAGCTGAA -ACGGAAGTACGACTACCAAGTACG -ACGGAAGTACGACTACCAATCCGA -ACGGAAGTACGACTACCAATGGGA -ACGGAAGTACGACTACCAGTGCAA -ACGGAAGTACGACTACCAGAGGAA -ACGGAAGTACGACTACCACAGGTA -ACGGAAGTACGACTACCAGACTCT -ACGGAAGTACGACTACCAAGTCCT -ACGGAAGTACGACTACCATAAGCC -ACGGAAGTACGACTACCAATAGCC -ACGGAAGTACGACTACCATAACCG -ACGGAAGTACGACTACCAATGCCA -ACGGAAGTACGAGTAGGAGGAAAC -ACGGAAGTACGAGTAGGAAACACC -ACGGAAGTACGAGTAGGAATCGAG -ACGGAAGTACGAGTAGGACTCCTT -ACGGAAGTACGAGTAGGACCTGTT -ACGGAAGTACGAGTAGGACGGTTT -ACGGAAGTACGAGTAGGAGTGGTT -ACGGAAGTACGAGTAGGAGCCTTT -ACGGAAGTACGAGTAGGAGGTCTT -ACGGAAGTACGAGTAGGAACGCTT -ACGGAAGTACGAGTAGGAAGCGTT -ACGGAAGTACGAGTAGGATTCGTC -ACGGAAGTACGAGTAGGATCTCTC -ACGGAAGTACGAGTAGGATGGATC -ACGGAAGTACGAGTAGGACACTTC -ACGGAAGTACGAGTAGGAGTACTC -ACGGAAGTACGAGTAGGAGATGTC -ACGGAAGTACGAGTAGGAACAGTC -ACGGAAGTACGAGTAGGATTGCTG -ACGGAAGTACGAGTAGGATCCATG -ACGGAAGTACGAGTAGGATGTGTG -ACGGAAGTACGAGTAGGACTAGTG -ACGGAAGTACGAGTAGGACATCTG -ACGGAAGTACGAGTAGGAGAGTTG -ACGGAAGTACGAGTAGGAAGACTG -ACGGAAGTACGAGTAGGATCGGTA -ACGGAAGTACGAGTAGGATGCCTA -ACGGAAGTACGAGTAGGACCACTA -ACGGAAGTACGAGTAGGAGGAGTA -ACGGAAGTACGAGTAGGATCGTCT -ACGGAAGTACGAGTAGGATGCACT -ACGGAAGTACGAGTAGGACTGACT -ACGGAAGTACGAGTAGGACAACCT -ACGGAAGTACGAGTAGGAGCTACT -ACGGAAGTACGAGTAGGAGGATCT -ACGGAAGTACGAGTAGGAAAGGCT -ACGGAAGTACGAGTAGGATCAACC -ACGGAAGTACGAGTAGGATGTTCC -ACGGAAGTACGAGTAGGAATTCCC -ACGGAAGTACGAGTAGGATTCTCG -ACGGAAGTACGAGTAGGATAGACG -ACGGAAGTACGAGTAGGAGTAACG -ACGGAAGTACGAGTAGGAACTTCG -ACGGAAGTACGAGTAGGATACGCA -ACGGAAGTACGAGTAGGACTTGCA -ACGGAAGTACGAGTAGGACGAACA -ACGGAAGTACGAGTAGGACAGTCA -ACGGAAGTACGAGTAGGAGATCCA -ACGGAAGTACGAGTAGGAACGACA -ACGGAAGTACGAGTAGGAAGCTCA -ACGGAAGTACGAGTAGGATCACGT -ACGGAAGTACGAGTAGGACGTAGT -ACGGAAGTACGAGTAGGAGTCAGT -ACGGAAGTACGAGTAGGAGAAGGT -ACGGAAGTACGAGTAGGAAACCGT -ACGGAAGTACGAGTAGGATTGTGC -ACGGAAGTACGAGTAGGACTAAGC -ACGGAAGTACGAGTAGGAACTAGC -ACGGAAGTACGAGTAGGAAGATGC -ACGGAAGTACGAGTAGGATGAAGG -ACGGAAGTACGAGTAGGACAATGG -ACGGAAGTACGAGTAGGAATGAGG -ACGGAAGTACGAGTAGGAAATGGG -ACGGAAGTACGAGTAGGATCCTGA -ACGGAAGTACGAGTAGGATAGCGA -ACGGAAGTACGAGTAGGACACAGA -ACGGAAGTACGAGTAGGAGCAAGA -ACGGAAGTACGAGTAGGAGGTTGA -ACGGAAGTACGAGTAGGATCCGAT -ACGGAAGTACGAGTAGGATGGCAT -ACGGAAGTACGAGTAGGACGAGAT -ACGGAAGTACGAGTAGGATACCAC -ACGGAAGTACGAGTAGGACAGAAC -ACGGAAGTACGAGTAGGAGTCTAC -ACGGAAGTACGAGTAGGAACGTAC -ACGGAAGTACGAGTAGGAAGTGAC -ACGGAAGTACGAGTAGGACTGTAG -ACGGAAGTACGAGTAGGACCTAAG -ACGGAAGTACGAGTAGGAGTTCAG -ACGGAAGTACGAGTAGGAGCATAG -ACGGAAGTACGAGTAGGAGACAAG -ACGGAAGTACGAGTAGGAAAGCAG -ACGGAAGTACGAGTAGGACGTCAA -ACGGAAGTACGAGTAGGAGCTGAA -ACGGAAGTACGAGTAGGAAGTACG -ACGGAAGTACGAGTAGGAATCCGA -ACGGAAGTACGAGTAGGAATGGGA -ACGGAAGTACGAGTAGGAGTGCAA -ACGGAAGTACGAGTAGGAGAGGAA -ACGGAAGTACGAGTAGGACAGGTA -ACGGAAGTACGAGTAGGAGACTCT -ACGGAAGTACGAGTAGGAAGTCCT -ACGGAAGTACGAGTAGGATAAGCC -ACGGAAGTACGAGTAGGAATAGCC -ACGGAAGTACGAGTAGGATAACCG -ACGGAAGTACGAGTAGGAATGCCA -ACGGAAGTACGATCTTCGGGAAAC -ACGGAAGTACGATCTTCGAACACC -ACGGAAGTACGATCTTCGATCGAG -ACGGAAGTACGATCTTCGCTCCTT -ACGGAAGTACGATCTTCGCCTGTT -ACGGAAGTACGATCTTCGCGGTTT -ACGGAAGTACGATCTTCGGTGGTT -ACGGAAGTACGATCTTCGGCCTTT -ACGGAAGTACGATCTTCGGGTCTT -ACGGAAGTACGATCTTCGACGCTT -ACGGAAGTACGATCTTCGAGCGTT -ACGGAAGTACGATCTTCGTTCGTC -ACGGAAGTACGATCTTCGTCTCTC -ACGGAAGTACGATCTTCGTGGATC -ACGGAAGTACGATCTTCGCACTTC -ACGGAAGTACGATCTTCGGTACTC -ACGGAAGTACGATCTTCGGATGTC -ACGGAAGTACGATCTTCGACAGTC -ACGGAAGTACGATCTTCGTTGCTG -ACGGAAGTACGATCTTCGTCCATG -ACGGAAGTACGATCTTCGTGTGTG -ACGGAAGTACGATCTTCGCTAGTG -ACGGAAGTACGATCTTCGCATCTG -ACGGAAGTACGATCTTCGGAGTTG -ACGGAAGTACGATCTTCGAGACTG -ACGGAAGTACGATCTTCGTCGGTA -ACGGAAGTACGATCTTCGTGCCTA -ACGGAAGTACGATCTTCGCCACTA -ACGGAAGTACGATCTTCGGGAGTA -ACGGAAGTACGATCTTCGTCGTCT -ACGGAAGTACGATCTTCGTGCACT -ACGGAAGTACGATCTTCGCTGACT -ACGGAAGTACGATCTTCGCAACCT -ACGGAAGTACGATCTTCGGCTACT -ACGGAAGTACGATCTTCGGGATCT -ACGGAAGTACGATCTTCGAAGGCT -ACGGAAGTACGATCTTCGTCAACC -ACGGAAGTACGATCTTCGTGTTCC -ACGGAAGTACGATCTTCGATTCCC -ACGGAAGTACGATCTTCGTTCTCG -ACGGAAGTACGATCTTCGTAGACG -ACGGAAGTACGATCTTCGGTAACG -ACGGAAGTACGATCTTCGACTTCG -ACGGAAGTACGATCTTCGTACGCA -ACGGAAGTACGATCTTCGCTTGCA -ACGGAAGTACGATCTTCGCGAACA -ACGGAAGTACGATCTTCGCAGTCA -ACGGAAGTACGATCTTCGGATCCA -ACGGAAGTACGATCTTCGACGACA -ACGGAAGTACGATCTTCGAGCTCA -ACGGAAGTACGATCTTCGTCACGT -ACGGAAGTACGATCTTCGCGTAGT -ACGGAAGTACGATCTTCGGTCAGT -ACGGAAGTACGATCTTCGGAAGGT -ACGGAAGTACGATCTTCGAACCGT -ACGGAAGTACGATCTTCGTTGTGC -ACGGAAGTACGATCTTCGCTAAGC -ACGGAAGTACGATCTTCGACTAGC -ACGGAAGTACGATCTTCGAGATGC -ACGGAAGTACGATCTTCGTGAAGG -ACGGAAGTACGATCTTCGCAATGG -ACGGAAGTACGATCTTCGATGAGG -ACGGAAGTACGATCTTCGAATGGG -ACGGAAGTACGATCTTCGTCCTGA -ACGGAAGTACGATCTTCGTAGCGA -ACGGAAGTACGATCTTCGCACAGA -ACGGAAGTACGATCTTCGGCAAGA -ACGGAAGTACGATCTTCGGGTTGA -ACGGAAGTACGATCTTCGTCCGAT -ACGGAAGTACGATCTTCGTGGCAT -ACGGAAGTACGATCTTCGCGAGAT -ACGGAAGTACGATCTTCGTACCAC -ACGGAAGTACGATCTTCGCAGAAC -ACGGAAGTACGATCTTCGGTCTAC -ACGGAAGTACGATCTTCGACGTAC -ACGGAAGTACGATCTTCGAGTGAC -ACGGAAGTACGATCTTCGCTGTAG -ACGGAAGTACGATCTTCGCCTAAG -ACGGAAGTACGATCTTCGGTTCAG -ACGGAAGTACGATCTTCGGCATAG -ACGGAAGTACGATCTTCGGACAAG -ACGGAAGTACGATCTTCGAAGCAG -ACGGAAGTACGATCTTCGCGTCAA -ACGGAAGTACGATCTTCGGCTGAA -ACGGAAGTACGATCTTCGAGTACG -ACGGAAGTACGATCTTCGATCCGA -ACGGAAGTACGATCTTCGATGGGA -ACGGAAGTACGATCTTCGGTGCAA -ACGGAAGTACGATCTTCGGAGGAA -ACGGAAGTACGATCTTCGCAGGTA -ACGGAAGTACGATCTTCGGACTCT -ACGGAAGTACGATCTTCGAGTCCT -ACGGAAGTACGATCTTCGTAAGCC -ACGGAAGTACGATCTTCGATAGCC -ACGGAAGTACGATCTTCGTAACCG -ACGGAAGTACGATCTTCGATGCCA -ACGGAAGTACGAACTTGCGGAAAC -ACGGAAGTACGAACTTGCAACACC -ACGGAAGTACGAACTTGCATCGAG -ACGGAAGTACGAACTTGCCTCCTT -ACGGAAGTACGAACTTGCCCTGTT -ACGGAAGTACGAACTTGCCGGTTT -ACGGAAGTACGAACTTGCGTGGTT -ACGGAAGTACGAACTTGCGCCTTT -ACGGAAGTACGAACTTGCGGTCTT -ACGGAAGTACGAACTTGCACGCTT -ACGGAAGTACGAACTTGCAGCGTT -ACGGAAGTACGAACTTGCTTCGTC -ACGGAAGTACGAACTTGCTCTCTC -ACGGAAGTACGAACTTGCTGGATC -ACGGAAGTACGAACTTGCCACTTC -ACGGAAGTACGAACTTGCGTACTC -ACGGAAGTACGAACTTGCGATGTC -ACGGAAGTACGAACTTGCACAGTC -ACGGAAGTACGAACTTGCTTGCTG -ACGGAAGTACGAACTTGCTCCATG -ACGGAAGTACGAACTTGCTGTGTG -ACGGAAGTACGAACTTGCCTAGTG -ACGGAAGTACGAACTTGCCATCTG -ACGGAAGTACGAACTTGCGAGTTG -ACGGAAGTACGAACTTGCAGACTG -ACGGAAGTACGAACTTGCTCGGTA -ACGGAAGTACGAACTTGCTGCCTA -ACGGAAGTACGAACTTGCCCACTA -ACGGAAGTACGAACTTGCGGAGTA -ACGGAAGTACGAACTTGCTCGTCT -ACGGAAGTACGAACTTGCTGCACT -ACGGAAGTACGAACTTGCCTGACT -ACGGAAGTACGAACTTGCCAACCT -ACGGAAGTACGAACTTGCGCTACT -ACGGAAGTACGAACTTGCGGATCT -ACGGAAGTACGAACTTGCAAGGCT -ACGGAAGTACGAACTTGCTCAACC -ACGGAAGTACGAACTTGCTGTTCC -ACGGAAGTACGAACTTGCATTCCC -ACGGAAGTACGAACTTGCTTCTCG -ACGGAAGTACGAACTTGCTAGACG -ACGGAAGTACGAACTTGCGTAACG -ACGGAAGTACGAACTTGCACTTCG -ACGGAAGTACGAACTTGCTACGCA -ACGGAAGTACGAACTTGCCTTGCA -ACGGAAGTACGAACTTGCCGAACA -ACGGAAGTACGAACTTGCCAGTCA -ACGGAAGTACGAACTTGCGATCCA -ACGGAAGTACGAACTTGCACGACA -ACGGAAGTACGAACTTGCAGCTCA -ACGGAAGTACGAACTTGCTCACGT -ACGGAAGTACGAACTTGCCGTAGT -ACGGAAGTACGAACTTGCGTCAGT -ACGGAAGTACGAACTTGCGAAGGT -ACGGAAGTACGAACTTGCAACCGT -ACGGAAGTACGAACTTGCTTGTGC -ACGGAAGTACGAACTTGCCTAAGC -ACGGAAGTACGAACTTGCACTAGC -ACGGAAGTACGAACTTGCAGATGC -ACGGAAGTACGAACTTGCTGAAGG -ACGGAAGTACGAACTTGCCAATGG -ACGGAAGTACGAACTTGCATGAGG -ACGGAAGTACGAACTTGCAATGGG -ACGGAAGTACGAACTTGCTCCTGA -ACGGAAGTACGAACTTGCTAGCGA -ACGGAAGTACGAACTTGCCACAGA -ACGGAAGTACGAACTTGCGCAAGA -ACGGAAGTACGAACTTGCGGTTGA -ACGGAAGTACGAACTTGCTCCGAT -ACGGAAGTACGAACTTGCTGGCAT -ACGGAAGTACGAACTTGCCGAGAT -ACGGAAGTACGAACTTGCTACCAC -ACGGAAGTACGAACTTGCCAGAAC -ACGGAAGTACGAACTTGCGTCTAC -ACGGAAGTACGAACTTGCACGTAC -ACGGAAGTACGAACTTGCAGTGAC -ACGGAAGTACGAACTTGCCTGTAG -ACGGAAGTACGAACTTGCCCTAAG -ACGGAAGTACGAACTTGCGTTCAG -ACGGAAGTACGAACTTGCGCATAG -ACGGAAGTACGAACTTGCGACAAG -ACGGAAGTACGAACTTGCAAGCAG -ACGGAAGTACGAACTTGCCGTCAA -ACGGAAGTACGAACTTGCGCTGAA -ACGGAAGTACGAACTTGCAGTACG -ACGGAAGTACGAACTTGCATCCGA -ACGGAAGTACGAACTTGCATGGGA -ACGGAAGTACGAACTTGCGTGCAA -ACGGAAGTACGAACTTGCGAGGAA -ACGGAAGTACGAACTTGCCAGGTA -ACGGAAGTACGAACTTGCGACTCT -ACGGAAGTACGAACTTGCAGTCCT -ACGGAAGTACGAACTTGCTAAGCC -ACGGAAGTACGAACTTGCATAGCC -ACGGAAGTACGAACTTGCTAACCG -ACGGAAGTACGAACTTGCATGCCA -ACGGAAGTACGAACTCTGGGAAAC -ACGGAAGTACGAACTCTGAACACC -ACGGAAGTACGAACTCTGATCGAG -ACGGAAGTACGAACTCTGCTCCTT -ACGGAAGTACGAACTCTGCCTGTT -ACGGAAGTACGAACTCTGCGGTTT -ACGGAAGTACGAACTCTGGTGGTT -ACGGAAGTACGAACTCTGGCCTTT -ACGGAAGTACGAACTCTGGGTCTT -ACGGAAGTACGAACTCTGACGCTT -ACGGAAGTACGAACTCTGAGCGTT -ACGGAAGTACGAACTCTGTTCGTC -ACGGAAGTACGAACTCTGTCTCTC -ACGGAAGTACGAACTCTGTGGATC -ACGGAAGTACGAACTCTGCACTTC -ACGGAAGTACGAACTCTGGTACTC -ACGGAAGTACGAACTCTGGATGTC -ACGGAAGTACGAACTCTGACAGTC -ACGGAAGTACGAACTCTGTTGCTG -ACGGAAGTACGAACTCTGTCCATG -ACGGAAGTACGAACTCTGTGTGTG -ACGGAAGTACGAACTCTGCTAGTG -ACGGAAGTACGAACTCTGCATCTG -ACGGAAGTACGAACTCTGGAGTTG -ACGGAAGTACGAACTCTGAGACTG -ACGGAAGTACGAACTCTGTCGGTA -ACGGAAGTACGAACTCTGTGCCTA -ACGGAAGTACGAACTCTGCCACTA -ACGGAAGTACGAACTCTGGGAGTA -ACGGAAGTACGAACTCTGTCGTCT -ACGGAAGTACGAACTCTGTGCACT -ACGGAAGTACGAACTCTGCTGACT -ACGGAAGTACGAACTCTGCAACCT -ACGGAAGTACGAACTCTGGCTACT -ACGGAAGTACGAACTCTGGGATCT -ACGGAAGTACGAACTCTGAAGGCT -ACGGAAGTACGAACTCTGTCAACC -ACGGAAGTACGAACTCTGTGTTCC -ACGGAAGTACGAACTCTGATTCCC -ACGGAAGTACGAACTCTGTTCTCG -ACGGAAGTACGAACTCTGTAGACG -ACGGAAGTACGAACTCTGGTAACG -ACGGAAGTACGAACTCTGACTTCG -ACGGAAGTACGAACTCTGTACGCA -ACGGAAGTACGAACTCTGCTTGCA -ACGGAAGTACGAACTCTGCGAACA -ACGGAAGTACGAACTCTGCAGTCA -ACGGAAGTACGAACTCTGGATCCA -ACGGAAGTACGAACTCTGACGACA -ACGGAAGTACGAACTCTGAGCTCA -ACGGAAGTACGAACTCTGTCACGT -ACGGAAGTACGAACTCTGCGTAGT -ACGGAAGTACGAACTCTGGTCAGT -ACGGAAGTACGAACTCTGGAAGGT -ACGGAAGTACGAACTCTGAACCGT -ACGGAAGTACGAACTCTGTTGTGC -ACGGAAGTACGAACTCTGCTAAGC -ACGGAAGTACGAACTCTGACTAGC -ACGGAAGTACGAACTCTGAGATGC -ACGGAAGTACGAACTCTGTGAAGG -ACGGAAGTACGAACTCTGCAATGG -ACGGAAGTACGAACTCTGATGAGG -ACGGAAGTACGAACTCTGAATGGG -ACGGAAGTACGAACTCTGTCCTGA -ACGGAAGTACGAACTCTGTAGCGA -ACGGAAGTACGAACTCTGCACAGA -ACGGAAGTACGAACTCTGGCAAGA -ACGGAAGTACGAACTCTGGGTTGA -ACGGAAGTACGAACTCTGTCCGAT -ACGGAAGTACGAACTCTGTGGCAT -ACGGAAGTACGAACTCTGCGAGAT -ACGGAAGTACGAACTCTGTACCAC -ACGGAAGTACGAACTCTGCAGAAC -ACGGAAGTACGAACTCTGGTCTAC -ACGGAAGTACGAACTCTGACGTAC -ACGGAAGTACGAACTCTGAGTGAC -ACGGAAGTACGAACTCTGCTGTAG -ACGGAAGTACGAACTCTGCCTAAG -ACGGAAGTACGAACTCTGGTTCAG -ACGGAAGTACGAACTCTGGCATAG -ACGGAAGTACGAACTCTGGACAAG -ACGGAAGTACGAACTCTGAAGCAG -ACGGAAGTACGAACTCTGCGTCAA -ACGGAAGTACGAACTCTGGCTGAA -ACGGAAGTACGAACTCTGAGTACG -ACGGAAGTACGAACTCTGATCCGA -ACGGAAGTACGAACTCTGATGGGA -ACGGAAGTACGAACTCTGGTGCAA -ACGGAAGTACGAACTCTGGAGGAA -ACGGAAGTACGAACTCTGCAGGTA -ACGGAAGTACGAACTCTGGACTCT -ACGGAAGTACGAACTCTGAGTCCT -ACGGAAGTACGAACTCTGTAAGCC -ACGGAAGTACGAACTCTGATAGCC -ACGGAAGTACGAACTCTGTAACCG -ACGGAAGTACGAACTCTGATGCCA -ACGGAAGTACGACCTCAAGGAAAC -ACGGAAGTACGACCTCAAAACACC -ACGGAAGTACGACCTCAAATCGAG -ACGGAAGTACGACCTCAACTCCTT -ACGGAAGTACGACCTCAACCTGTT -ACGGAAGTACGACCTCAACGGTTT -ACGGAAGTACGACCTCAAGTGGTT -ACGGAAGTACGACCTCAAGCCTTT -ACGGAAGTACGACCTCAAGGTCTT -ACGGAAGTACGACCTCAAACGCTT -ACGGAAGTACGACCTCAAAGCGTT -ACGGAAGTACGACCTCAATTCGTC -ACGGAAGTACGACCTCAATCTCTC -ACGGAAGTACGACCTCAATGGATC -ACGGAAGTACGACCTCAACACTTC -ACGGAAGTACGACCTCAAGTACTC -ACGGAAGTACGACCTCAAGATGTC -ACGGAAGTACGACCTCAAACAGTC -ACGGAAGTACGACCTCAATTGCTG -ACGGAAGTACGACCTCAATCCATG -ACGGAAGTACGACCTCAATGTGTG -ACGGAAGTACGACCTCAACTAGTG -ACGGAAGTACGACCTCAACATCTG -ACGGAAGTACGACCTCAAGAGTTG -ACGGAAGTACGACCTCAAAGACTG -ACGGAAGTACGACCTCAATCGGTA -ACGGAAGTACGACCTCAATGCCTA -ACGGAAGTACGACCTCAACCACTA -ACGGAAGTACGACCTCAAGGAGTA -ACGGAAGTACGACCTCAATCGTCT -ACGGAAGTACGACCTCAATGCACT -ACGGAAGTACGACCTCAACTGACT -ACGGAAGTACGACCTCAACAACCT -ACGGAAGTACGACCTCAAGCTACT -ACGGAAGTACGACCTCAAGGATCT -ACGGAAGTACGACCTCAAAAGGCT -ACGGAAGTACGACCTCAATCAACC -ACGGAAGTACGACCTCAATGTTCC -ACGGAAGTACGACCTCAAATTCCC -ACGGAAGTACGACCTCAATTCTCG -ACGGAAGTACGACCTCAATAGACG -ACGGAAGTACGACCTCAAGTAACG -ACGGAAGTACGACCTCAAACTTCG -ACGGAAGTACGACCTCAATACGCA -ACGGAAGTACGACCTCAACTTGCA -ACGGAAGTACGACCTCAACGAACA -ACGGAAGTACGACCTCAACAGTCA -ACGGAAGTACGACCTCAAGATCCA -ACGGAAGTACGACCTCAAACGACA -ACGGAAGTACGACCTCAAAGCTCA -ACGGAAGTACGACCTCAATCACGT -ACGGAAGTACGACCTCAACGTAGT -ACGGAAGTACGACCTCAAGTCAGT -ACGGAAGTACGACCTCAAGAAGGT -ACGGAAGTACGACCTCAAAACCGT -ACGGAAGTACGACCTCAATTGTGC -ACGGAAGTACGACCTCAACTAAGC -ACGGAAGTACGACCTCAAACTAGC -ACGGAAGTACGACCTCAAAGATGC -ACGGAAGTACGACCTCAATGAAGG -ACGGAAGTACGACCTCAACAATGG -ACGGAAGTACGACCTCAAATGAGG -ACGGAAGTACGACCTCAAAATGGG -ACGGAAGTACGACCTCAATCCTGA -ACGGAAGTACGACCTCAATAGCGA -ACGGAAGTACGACCTCAACACAGA -ACGGAAGTACGACCTCAAGCAAGA -ACGGAAGTACGACCTCAAGGTTGA -ACGGAAGTACGACCTCAATCCGAT -ACGGAAGTACGACCTCAATGGCAT -ACGGAAGTACGACCTCAACGAGAT -ACGGAAGTACGACCTCAATACCAC -ACGGAAGTACGACCTCAACAGAAC -ACGGAAGTACGACCTCAAGTCTAC -ACGGAAGTACGACCTCAAACGTAC -ACGGAAGTACGACCTCAAAGTGAC -ACGGAAGTACGACCTCAACTGTAG -ACGGAAGTACGACCTCAACCTAAG -ACGGAAGTACGACCTCAAGTTCAG -ACGGAAGTACGACCTCAAGCATAG -ACGGAAGTACGACCTCAAGACAAG -ACGGAAGTACGACCTCAAAAGCAG -ACGGAAGTACGACCTCAACGTCAA -ACGGAAGTACGACCTCAAGCTGAA -ACGGAAGTACGACCTCAAAGTACG -ACGGAAGTACGACCTCAAATCCGA -ACGGAAGTACGACCTCAAATGGGA -ACGGAAGTACGACCTCAAGTGCAA -ACGGAAGTACGACCTCAAGAGGAA -ACGGAAGTACGACCTCAACAGGTA -ACGGAAGTACGACCTCAAGACTCT -ACGGAAGTACGACCTCAAAGTCCT -ACGGAAGTACGACCTCAATAAGCC -ACGGAAGTACGACCTCAAATAGCC -ACGGAAGTACGACCTCAATAACCG -ACGGAAGTACGACCTCAAATGCCA -ACGGAAGTACGAACTGCTGGAAAC -ACGGAAGTACGAACTGCTAACACC -ACGGAAGTACGAACTGCTATCGAG -ACGGAAGTACGAACTGCTCTCCTT -ACGGAAGTACGAACTGCTCCTGTT -ACGGAAGTACGAACTGCTCGGTTT -ACGGAAGTACGAACTGCTGTGGTT -ACGGAAGTACGAACTGCTGCCTTT -ACGGAAGTACGAACTGCTGGTCTT -ACGGAAGTACGAACTGCTACGCTT -ACGGAAGTACGAACTGCTAGCGTT -ACGGAAGTACGAACTGCTTTCGTC -ACGGAAGTACGAACTGCTTCTCTC -ACGGAAGTACGAACTGCTTGGATC -ACGGAAGTACGAACTGCTCACTTC -ACGGAAGTACGAACTGCTGTACTC -ACGGAAGTACGAACTGCTGATGTC -ACGGAAGTACGAACTGCTACAGTC -ACGGAAGTACGAACTGCTTTGCTG -ACGGAAGTACGAACTGCTTCCATG -ACGGAAGTACGAACTGCTTGTGTG -ACGGAAGTACGAACTGCTCTAGTG -ACGGAAGTACGAACTGCTCATCTG -ACGGAAGTACGAACTGCTGAGTTG -ACGGAAGTACGAACTGCTAGACTG -ACGGAAGTACGAACTGCTTCGGTA -ACGGAAGTACGAACTGCTTGCCTA -ACGGAAGTACGAACTGCTCCACTA -ACGGAAGTACGAACTGCTGGAGTA -ACGGAAGTACGAACTGCTTCGTCT -ACGGAAGTACGAACTGCTTGCACT -ACGGAAGTACGAACTGCTCTGACT -ACGGAAGTACGAACTGCTCAACCT -ACGGAAGTACGAACTGCTGCTACT -ACGGAAGTACGAACTGCTGGATCT -ACGGAAGTACGAACTGCTAAGGCT -ACGGAAGTACGAACTGCTTCAACC -ACGGAAGTACGAACTGCTTGTTCC -ACGGAAGTACGAACTGCTATTCCC -ACGGAAGTACGAACTGCTTTCTCG -ACGGAAGTACGAACTGCTTAGACG -ACGGAAGTACGAACTGCTGTAACG -ACGGAAGTACGAACTGCTACTTCG -ACGGAAGTACGAACTGCTTACGCA -ACGGAAGTACGAACTGCTCTTGCA -ACGGAAGTACGAACTGCTCGAACA -ACGGAAGTACGAACTGCTCAGTCA -ACGGAAGTACGAACTGCTGATCCA -ACGGAAGTACGAACTGCTACGACA -ACGGAAGTACGAACTGCTAGCTCA -ACGGAAGTACGAACTGCTTCACGT -ACGGAAGTACGAACTGCTCGTAGT -ACGGAAGTACGAACTGCTGTCAGT -ACGGAAGTACGAACTGCTGAAGGT -ACGGAAGTACGAACTGCTAACCGT -ACGGAAGTACGAACTGCTTTGTGC -ACGGAAGTACGAACTGCTCTAAGC -ACGGAAGTACGAACTGCTACTAGC -ACGGAAGTACGAACTGCTAGATGC -ACGGAAGTACGAACTGCTTGAAGG -ACGGAAGTACGAACTGCTCAATGG -ACGGAAGTACGAACTGCTATGAGG -ACGGAAGTACGAACTGCTAATGGG -ACGGAAGTACGAACTGCTTCCTGA -ACGGAAGTACGAACTGCTTAGCGA -ACGGAAGTACGAACTGCTCACAGA -ACGGAAGTACGAACTGCTGCAAGA -ACGGAAGTACGAACTGCTGGTTGA -ACGGAAGTACGAACTGCTTCCGAT -ACGGAAGTACGAACTGCTTGGCAT -ACGGAAGTACGAACTGCTCGAGAT -ACGGAAGTACGAACTGCTTACCAC -ACGGAAGTACGAACTGCTCAGAAC -ACGGAAGTACGAACTGCTGTCTAC -ACGGAAGTACGAACTGCTACGTAC -ACGGAAGTACGAACTGCTAGTGAC -ACGGAAGTACGAACTGCTCTGTAG -ACGGAAGTACGAACTGCTCCTAAG -ACGGAAGTACGAACTGCTGTTCAG -ACGGAAGTACGAACTGCTGCATAG -ACGGAAGTACGAACTGCTGACAAG -ACGGAAGTACGAACTGCTAAGCAG -ACGGAAGTACGAACTGCTCGTCAA -ACGGAAGTACGAACTGCTGCTGAA -ACGGAAGTACGAACTGCTAGTACG -ACGGAAGTACGAACTGCTATCCGA -ACGGAAGTACGAACTGCTATGGGA -ACGGAAGTACGAACTGCTGTGCAA -ACGGAAGTACGAACTGCTGAGGAA -ACGGAAGTACGAACTGCTCAGGTA -ACGGAAGTACGAACTGCTGACTCT -ACGGAAGTACGAACTGCTAGTCCT -ACGGAAGTACGAACTGCTTAAGCC -ACGGAAGTACGAACTGCTATAGCC -ACGGAAGTACGAACTGCTTAACCG -ACGGAAGTACGAACTGCTATGCCA -ACGGAAGTACGATCTGGAGGAAAC -ACGGAAGTACGATCTGGAAACACC -ACGGAAGTACGATCTGGAATCGAG -ACGGAAGTACGATCTGGACTCCTT -ACGGAAGTACGATCTGGACCTGTT -ACGGAAGTACGATCTGGACGGTTT -ACGGAAGTACGATCTGGAGTGGTT -ACGGAAGTACGATCTGGAGCCTTT -ACGGAAGTACGATCTGGAGGTCTT -ACGGAAGTACGATCTGGAACGCTT -ACGGAAGTACGATCTGGAAGCGTT -ACGGAAGTACGATCTGGATTCGTC -ACGGAAGTACGATCTGGATCTCTC -ACGGAAGTACGATCTGGATGGATC -ACGGAAGTACGATCTGGACACTTC -ACGGAAGTACGATCTGGAGTACTC -ACGGAAGTACGATCTGGAGATGTC -ACGGAAGTACGATCTGGAACAGTC -ACGGAAGTACGATCTGGATTGCTG -ACGGAAGTACGATCTGGATCCATG -ACGGAAGTACGATCTGGATGTGTG -ACGGAAGTACGATCTGGACTAGTG -ACGGAAGTACGATCTGGACATCTG -ACGGAAGTACGATCTGGAGAGTTG -ACGGAAGTACGATCTGGAAGACTG -ACGGAAGTACGATCTGGATCGGTA -ACGGAAGTACGATCTGGATGCCTA -ACGGAAGTACGATCTGGACCACTA -ACGGAAGTACGATCTGGAGGAGTA -ACGGAAGTACGATCTGGATCGTCT -ACGGAAGTACGATCTGGATGCACT -ACGGAAGTACGATCTGGACTGACT -ACGGAAGTACGATCTGGACAACCT -ACGGAAGTACGATCTGGAGCTACT -ACGGAAGTACGATCTGGAGGATCT -ACGGAAGTACGATCTGGAAAGGCT -ACGGAAGTACGATCTGGATCAACC -ACGGAAGTACGATCTGGATGTTCC -ACGGAAGTACGATCTGGAATTCCC -ACGGAAGTACGATCTGGATTCTCG -ACGGAAGTACGATCTGGATAGACG -ACGGAAGTACGATCTGGAGTAACG -ACGGAAGTACGATCTGGAACTTCG -ACGGAAGTACGATCTGGATACGCA -ACGGAAGTACGATCTGGACTTGCA -ACGGAAGTACGATCTGGACGAACA -ACGGAAGTACGATCTGGACAGTCA -ACGGAAGTACGATCTGGAGATCCA -ACGGAAGTACGATCTGGAACGACA -ACGGAAGTACGATCTGGAAGCTCA -ACGGAAGTACGATCTGGATCACGT -ACGGAAGTACGATCTGGACGTAGT -ACGGAAGTACGATCTGGAGTCAGT -ACGGAAGTACGATCTGGAGAAGGT -ACGGAAGTACGATCTGGAAACCGT -ACGGAAGTACGATCTGGATTGTGC -ACGGAAGTACGATCTGGACTAAGC -ACGGAAGTACGATCTGGAACTAGC -ACGGAAGTACGATCTGGAAGATGC -ACGGAAGTACGATCTGGATGAAGG -ACGGAAGTACGATCTGGACAATGG -ACGGAAGTACGATCTGGAATGAGG -ACGGAAGTACGATCTGGAAATGGG -ACGGAAGTACGATCTGGATCCTGA -ACGGAAGTACGATCTGGATAGCGA -ACGGAAGTACGATCTGGACACAGA -ACGGAAGTACGATCTGGAGCAAGA -ACGGAAGTACGATCTGGAGGTTGA -ACGGAAGTACGATCTGGATCCGAT -ACGGAAGTACGATCTGGATGGCAT -ACGGAAGTACGATCTGGACGAGAT -ACGGAAGTACGATCTGGATACCAC -ACGGAAGTACGATCTGGACAGAAC -ACGGAAGTACGATCTGGAGTCTAC -ACGGAAGTACGATCTGGAACGTAC -ACGGAAGTACGATCTGGAAGTGAC -ACGGAAGTACGATCTGGACTGTAG -ACGGAAGTACGATCTGGACCTAAG -ACGGAAGTACGATCTGGAGTTCAG -ACGGAAGTACGATCTGGAGCATAG -ACGGAAGTACGATCTGGAGACAAG -ACGGAAGTACGATCTGGAAAGCAG -ACGGAAGTACGATCTGGACGTCAA -ACGGAAGTACGATCTGGAGCTGAA -ACGGAAGTACGATCTGGAAGTACG -ACGGAAGTACGATCTGGAATCCGA -ACGGAAGTACGATCTGGAATGGGA -ACGGAAGTACGATCTGGAGTGCAA -ACGGAAGTACGATCTGGAGAGGAA -ACGGAAGTACGATCTGGACAGGTA -ACGGAAGTACGATCTGGAGACTCT -ACGGAAGTACGATCTGGAAGTCCT -ACGGAAGTACGATCTGGATAAGCC -ACGGAAGTACGATCTGGAATAGCC -ACGGAAGTACGATCTGGATAACCG -ACGGAAGTACGATCTGGAATGCCA -ACGGAAGTACGAGCTAAGGGAAAC -ACGGAAGTACGAGCTAAGAACACC -ACGGAAGTACGAGCTAAGATCGAG -ACGGAAGTACGAGCTAAGCTCCTT -ACGGAAGTACGAGCTAAGCCTGTT -ACGGAAGTACGAGCTAAGCGGTTT -ACGGAAGTACGAGCTAAGGTGGTT -ACGGAAGTACGAGCTAAGGCCTTT -ACGGAAGTACGAGCTAAGGGTCTT -ACGGAAGTACGAGCTAAGACGCTT -ACGGAAGTACGAGCTAAGAGCGTT -ACGGAAGTACGAGCTAAGTTCGTC -ACGGAAGTACGAGCTAAGTCTCTC -ACGGAAGTACGAGCTAAGTGGATC -ACGGAAGTACGAGCTAAGCACTTC -ACGGAAGTACGAGCTAAGGTACTC -ACGGAAGTACGAGCTAAGGATGTC -ACGGAAGTACGAGCTAAGACAGTC -ACGGAAGTACGAGCTAAGTTGCTG -ACGGAAGTACGAGCTAAGTCCATG -ACGGAAGTACGAGCTAAGTGTGTG -ACGGAAGTACGAGCTAAGCTAGTG -ACGGAAGTACGAGCTAAGCATCTG -ACGGAAGTACGAGCTAAGGAGTTG -ACGGAAGTACGAGCTAAGAGACTG -ACGGAAGTACGAGCTAAGTCGGTA -ACGGAAGTACGAGCTAAGTGCCTA -ACGGAAGTACGAGCTAAGCCACTA -ACGGAAGTACGAGCTAAGGGAGTA -ACGGAAGTACGAGCTAAGTCGTCT -ACGGAAGTACGAGCTAAGTGCACT -ACGGAAGTACGAGCTAAGCTGACT -ACGGAAGTACGAGCTAAGCAACCT -ACGGAAGTACGAGCTAAGGCTACT -ACGGAAGTACGAGCTAAGGGATCT -ACGGAAGTACGAGCTAAGAAGGCT -ACGGAAGTACGAGCTAAGTCAACC -ACGGAAGTACGAGCTAAGTGTTCC -ACGGAAGTACGAGCTAAGATTCCC -ACGGAAGTACGAGCTAAGTTCTCG -ACGGAAGTACGAGCTAAGTAGACG -ACGGAAGTACGAGCTAAGGTAACG -ACGGAAGTACGAGCTAAGACTTCG -ACGGAAGTACGAGCTAAGTACGCA -ACGGAAGTACGAGCTAAGCTTGCA -ACGGAAGTACGAGCTAAGCGAACA -ACGGAAGTACGAGCTAAGCAGTCA -ACGGAAGTACGAGCTAAGGATCCA -ACGGAAGTACGAGCTAAGACGACA -ACGGAAGTACGAGCTAAGAGCTCA -ACGGAAGTACGAGCTAAGTCACGT -ACGGAAGTACGAGCTAAGCGTAGT -ACGGAAGTACGAGCTAAGGTCAGT -ACGGAAGTACGAGCTAAGGAAGGT -ACGGAAGTACGAGCTAAGAACCGT -ACGGAAGTACGAGCTAAGTTGTGC -ACGGAAGTACGAGCTAAGCTAAGC -ACGGAAGTACGAGCTAAGACTAGC -ACGGAAGTACGAGCTAAGAGATGC -ACGGAAGTACGAGCTAAGTGAAGG -ACGGAAGTACGAGCTAAGCAATGG -ACGGAAGTACGAGCTAAGATGAGG -ACGGAAGTACGAGCTAAGAATGGG -ACGGAAGTACGAGCTAAGTCCTGA -ACGGAAGTACGAGCTAAGTAGCGA -ACGGAAGTACGAGCTAAGCACAGA -ACGGAAGTACGAGCTAAGGCAAGA -ACGGAAGTACGAGCTAAGGGTTGA -ACGGAAGTACGAGCTAAGTCCGAT -ACGGAAGTACGAGCTAAGTGGCAT -ACGGAAGTACGAGCTAAGCGAGAT -ACGGAAGTACGAGCTAAGTACCAC -ACGGAAGTACGAGCTAAGCAGAAC -ACGGAAGTACGAGCTAAGGTCTAC -ACGGAAGTACGAGCTAAGACGTAC -ACGGAAGTACGAGCTAAGAGTGAC -ACGGAAGTACGAGCTAAGCTGTAG -ACGGAAGTACGAGCTAAGCCTAAG -ACGGAAGTACGAGCTAAGGTTCAG -ACGGAAGTACGAGCTAAGGCATAG -ACGGAAGTACGAGCTAAGGACAAG -ACGGAAGTACGAGCTAAGAAGCAG -ACGGAAGTACGAGCTAAGCGTCAA -ACGGAAGTACGAGCTAAGGCTGAA -ACGGAAGTACGAGCTAAGAGTACG -ACGGAAGTACGAGCTAAGATCCGA -ACGGAAGTACGAGCTAAGATGGGA -ACGGAAGTACGAGCTAAGGTGCAA -ACGGAAGTACGAGCTAAGGAGGAA -ACGGAAGTACGAGCTAAGCAGGTA -ACGGAAGTACGAGCTAAGGACTCT -ACGGAAGTACGAGCTAAGAGTCCT -ACGGAAGTACGAGCTAAGTAAGCC -ACGGAAGTACGAGCTAAGATAGCC -ACGGAAGTACGAGCTAAGTAACCG -ACGGAAGTACGAGCTAAGATGCCA -ACGGAAGTACGAACCTCAGGAAAC -ACGGAAGTACGAACCTCAAACACC -ACGGAAGTACGAACCTCAATCGAG -ACGGAAGTACGAACCTCACTCCTT -ACGGAAGTACGAACCTCACCTGTT -ACGGAAGTACGAACCTCACGGTTT -ACGGAAGTACGAACCTCAGTGGTT -ACGGAAGTACGAACCTCAGCCTTT -ACGGAAGTACGAACCTCAGGTCTT -ACGGAAGTACGAACCTCAACGCTT -ACGGAAGTACGAACCTCAAGCGTT -ACGGAAGTACGAACCTCATTCGTC -ACGGAAGTACGAACCTCATCTCTC -ACGGAAGTACGAACCTCATGGATC -ACGGAAGTACGAACCTCACACTTC -ACGGAAGTACGAACCTCAGTACTC -ACGGAAGTACGAACCTCAGATGTC -ACGGAAGTACGAACCTCAACAGTC -ACGGAAGTACGAACCTCATTGCTG -ACGGAAGTACGAACCTCATCCATG -ACGGAAGTACGAACCTCATGTGTG -ACGGAAGTACGAACCTCACTAGTG -ACGGAAGTACGAACCTCACATCTG -ACGGAAGTACGAACCTCAGAGTTG -ACGGAAGTACGAACCTCAAGACTG -ACGGAAGTACGAACCTCATCGGTA -ACGGAAGTACGAACCTCATGCCTA -ACGGAAGTACGAACCTCACCACTA -ACGGAAGTACGAACCTCAGGAGTA -ACGGAAGTACGAACCTCATCGTCT -ACGGAAGTACGAACCTCATGCACT -ACGGAAGTACGAACCTCACTGACT -ACGGAAGTACGAACCTCACAACCT -ACGGAAGTACGAACCTCAGCTACT -ACGGAAGTACGAACCTCAGGATCT -ACGGAAGTACGAACCTCAAAGGCT -ACGGAAGTACGAACCTCATCAACC -ACGGAAGTACGAACCTCATGTTCC -ACGGAAGTACGAACCTCAATTCCC -ACGGAAGTACGAACCTCATTCTCG -ACGGAAGTACGAACCTCATAGACG -ACGGAAGTACGAACCTCAGTAACG -ACGGAAGTACGAACCTCAACTTCG -ACGGAAGTACGAACCTCATACGCA -ACGGAAGTACGAACCTCACTTGCA -ACGGAAGTACGAACCTCACGAACA -ACGGAAGTACGAACCTCACAGTCA -ACGGAAGTACGAACCTCAGATCCA -ACGGAAGTACGAACCTCAACGACA -ACGGAAGTACGAACCTCAAGCTCA -ACGGAAGTACGAACCTCATCACGT -ACGGAAGTACGAACCTCACGTAGT -ACGGAAGTACGAACCTCAGTCAGT -ACGGAAGTACGAACCTCAGAAGGT -ACGGAAGTACGAACCTCAAACCGT -ACGGAAGTACGAACCTCATTGTGC -ACGGAAGTACGAACCTCACTAAGC -ACGGAAGTACGAACCTCAACTAGC -ACGGAAGTACGAACCTCAAGATGC -ACGGAAGTACGAACCTCATGAAGG -ACGGAAGTACGAACCTCACAATGG -ACGGAAGTACGAACCTCAATGAGG -ACGGAAGTACGAACCTCAAATGGG -ACGGAAGTACGAACCTCATCCTGA -ACGGAAGTACGAACCTCATAGCGA -ACGGAAGTACGAACCTCACACAGA -ACGGAAGTACGAACCTCAGCAAGA -ACGGAAGTACGAACCTCAGGTTGA -ACGGAAGTACGAACCTCATCCGAT -ACGGAAGTACGAACCTCATGGCAT -ACGGAAGTACGAACCTCACGAGAT -ACGGAAGTACGAACCTCATACCAC -ACGGAAGTACGAACCTCACAGAAC -ACGGAAGTACGAACCTCAGTCTAC -ACGGAAGTACGAACCTCAACGTAC -ACGGAAGTACGAACCTCAAGTGAC -ACGGAAGTACGAACCTCACTGTAG -ACGGAAGTACGAACCTCACCTAAG -ACGGAAGTACGAACCTCAGTTCAG -ACGGAAGTACGAACCTCAGCATAG -ACGGAAGTACGAACCTCAGACAAG -ACGGAAGTACGAACCTCAAAGCAG -ACGGAAGTACGAACCTCACGTCAA -ACGGAAGTACGAACCTCAGCTGAA -ACGGAAGTACGAACCTCAAGTACG -ACGGAAGTACGAACCTCAATCCGA -ACGGAAGTACGAACCTCAATGGGA -ACGGAAGTACGAACCTCAGTGCAA -ACGGAAGTACGAACCTCAGAGGAA -ACGGAAGTACGAACCTCACAGGTA -ACGGAAGTACGAACCTCAGACTCT -ACGGAAGTACGAACCTCAAGTCCT -ACGGAAGTACGAACCTCATAAGCC -ACGGAAGTACGAACCTCAATAGCC -ACGGAAGTACGAACCTCATAACCG -ACGGAAGTACGAACCTCAATGCCA -ACGGAAGTACGATCCTGTGGAAAC -ACGGAAGTACGATCCTGTAACACC -ACGGAAGTACGATCCTGTATCGAG -ACGGAAGTACGATCCTGTCTCCTT -ACGGAAGTACGATCCTGTCCTGTT -ACGGAAGTACGATCCTGTCGGTTT -ACGGAAGTACGATCCTGTGTGGTT -ACGGAAGTACGATCCTGTGCCTTT -ACGGAAGTACGATCCTGTGGTCTT -ACGGAAGTACGATCCTGTACGCTT -ACGGAAGTACGATCCTGTAGCGTT -ACGGAAGTACGATCCTGTTTCGTC -ACGGAAGTACGATCCTGTTCTCTC -ACGGAAGTACGATCCTGTTGGATC -ACGGAAGTACGATCCTGTCACTTC -ACGGAAGTACGATCCTGTGTACTC -ACGGAAGTACGATCCTGTGATGTC -ACGGAAGTACGATCCTGTACAGTC -ACGGAAGTACGATCCTGTTTGCTG -ACGGAAGTACGATCCTGTTCCATG -ACGGAAGTACGATCCTGTTGTGTG -ACGGAAGTACGATCCTGTCTAGTG -ACGGAAGTACGATCCTGTCATCTG -ACGGAAGTACGATCCTGTGAGTTG -ACGGAAGTACGATCCTGTAGACTG -ACGGAAGTACGATCCTGTTCGGTA -ACGGAAGTACGATCCTGTTGCCTA -ACGGAAGTACGATCCTGTCCACTA -ACGGAAGTACGATCCTGTGGAGTA -ACGGAAGTACGATCCTGTTCGTCT -ACGGAAGTACGATCCTGTTGCACT -ACGGAAGTACGATCCTGTCTGACT -ACGGAAGTACGATCCTGTCAACCT -ACGGAAGTACGATCCTGTGCTACT -ACGGAAGTACGATCCTGTGGATCT -ACGGAAGTACGATCCTGTAAGGCT -ACGGAAGTACGATCCTGTTCAACC -ACGGAAGTACGATCCTGTTGTTCC -ACGGAAGTACGATCCTGTATTCCC -ACGGAAGTACGATCCTGTTTCTCG -ACGGAAGTACGATCCTGTTAGACG -ACGGAAGTACGATCCTGTGTAACG -ACGGAAGTACGATCCTGTACTTCG -ACGGAAGTACGATCCTGTTACGCA -ACGGAAGTACGATCCTGTCTTGCA -ACGGAAGTACGATCCTGTCGAACA -ACGGAAGTACGATCCTGTCAGTCA -ACGGAAGTACGATCCTGTGATCCA -ACGGAAGTACGATCCTGTACGACA -ACGGAAGTACGATCCTGTAGCTCA -ACGGAAGTACGATCCTGTTCACGT -ACGGAAGTACGATCCTGTCGTAGT -ACGGAAGTACGATCCTGTGTCAGT -ACGGAAGTACGATCCTGTGAAGGT -ACGGAAGTACGATCCTGTAACCGT -ACGGAAGTACGATCCTGTTTGTGC -ACGGAAGTACGATCCTGTCTAAGC -ACGGAAGTACGATCCTGTACTAGC -ACGGAAGTACGATCCTGTAGATGC -ACGGAAGTACGATCCTGTTGAAGG -ACGGAAGTACGATCCTGTCAATGG -ACGGAAGTACGATCCTGTATGAGG -ACGGAAGTACGATCCTGTAATGGG -ACGGAAGTACGATCCTGTTCCTGA -ACGGAAGTACGATCCTGTTAGCGA -ACGGAAGTACGATCCTGTCACAGA -ACGGAAGTACGATCCTGTGCAAGA -ACGGAAGTACGATCCTGTGGTTGA -ACGGAAGTACGATCCTGTTCCGAT -ACGGAAGTACGATCCTGTTGGCAT -ACGGAAGTACGATCCTGTCGAGAT -ACGGAAGTACGATCCTGTTACCAC -ACGGAAGTACGATCCTGTCAGAAC -ACGGAAGTACGATCCTGTGTCTAC -ACGGAAGTACGATCCTGTACGTAC -ACGGAAGTACGATCCTGTAGTGAC -ACGGAAGTACGATCCTGTCTGTAG -ACGGAAGTACGATCCTGTCCTAAG -ACGGAAGTACGATCCTGTGTTCAG -ACGGAAGTACGATCCTGTGCATAG -ACGGAAGTACGATCCTGTGACAAG -ACGGAAGTACGATCCTGTAAGCAG -ACGGAAGTACGATCCTGTCGTCAA -ACGGAAGTACGATCCTGTGCTGAA -ACGGAAGTACGATCCTGTAGTACG -ACGGAAGTACGATCCTGTATCCGA -ACGGAAGTACGATCCTGTATGGGA -ACGGAAGTACGATCCTGTGTGCAA -ACGGAAGTACGATCCTGTGAGGAA -ACGGAAGTACGATCCTGTCAGGTA -ACGGAAGTACGATCCTGTGACTCT -ACGGAAGTACGATCCTGTAGTCCT -ACGGAAGTACGATCCTGTTAAGCC -ACGGAAGTACGATCCTGTATAGCC -ACGGAAGTACGATCCTGTTAACCG -ACGGAAGTACGATCCTGTATGCCA -ACGGAAGTACGACCCATTGGAAAC -ACGGAAGTACGACCCATTAACACC -ACGGAAGTACGACCCATTATCGAG -ACGGAAGTACGACCCATTCTCCTT -ACGGAAGTACGACCCATTCCTGTT -ACGGAAGTACGACCCATTCGGTTT -ACGGAAGTACGACCCATTGTGGTT -ACGGAAGTACGACCCATTGCCTTT -ACGGAAGTACGACCCATTGGTCTT -ACGGAAGTACGACCCATTACGCTT -ACGGAAGTACGACCCATTAGCGTT -ACGGAAGTACGACCCATTTTCGTC -ACGGAAGTACGACCCATTTCTCTC -ACGGAAGTACGACCCATTTGGATC -ACGGAAGTACGACCCATTCACTTC -ACGGAAGTACGACCCATTGTACTC -ACGGAAGTACGACCCATTGATGTC -ACGGAAGTACGACCCATTACAGTC -ACGGAAGTACGACCCATTTTGCTG -ACGGAAGTACGACCCATTTCCATG -ACGGAAGTACGACCCATTTGTGTG -ACGGAAGTACGACCCATTCTAGTG -ACGGAAGTACGACCCATTCATCTG -ACGGAAGTACGACCCATTGAGTTG -ACGGAAGTACGACCCATTAGACTG -ACGGAAGTACGACCCATTTCGGTA -ACGGAAGTACGACCCATTTGCCTA -ACGGAAGTACGACCCATTCCACTA -ACGGAAGTACGACCCATTGGAGTA -ACGGAAGTACGACCCATTTCGTCT -ACGGAAGTACGACCCATTTGCACT -ACGGAAGTACGACCCATTCTGACT -ACGGAAGTACGACCCATTCAACCT -ACGGAAGTACGACCCATTGCTACT -ACGGAAGTACGACCCATTGGATCT -ACGGAAGTACGACCCATTAAGGCT -ACGGAAGTACGACCCATTTCAACC -ACGGAAGTACGACCCATTTGTTCC -ACGGAAGTACGACCCATTATTCCC -ACGGAAGTACGACCCATTTTCTCG -ACGGAAGTACGACCCATTTAGACG -ACGGAAGTACGACCCATTGTAACG -ACGGAAGTACGACCCATTACTTCG -ACGGAAGTACGACCCATTTACGCA -ACGGAAGTACGACCCATTCTTGCA -ACGGAAGTACGACCCATTCGAACA -ACGGAAGTACGACCCATTCAGTCA -ACGGAAGTACGACCCATTGATCCA -ACGGAAGTACGACCCATTACGACA -ACGGAAGTACGACCCATTAGCTCA -ACGGAAGTACGACCCATTTCACGT -ACGGAAGTACGACCCATTCGTAGT -ACGGAAGTACGACCCATTGTCAGT -ACGGAAGTACGACCCATTGAAGGT -ACGGAAGTACGACCCATTAACCGT -ACGGAAGTACGACCCATTTTGTGC -ACGGAAGTACGACCCATTCTAAGC -ACGGAAGTACGACCCATTACTAGC -ACGGAAGTACGACCCATTAGATGC -ACGGAAGTACGACCCATTTGAAGG -ACGGAAGTACGACCCATTCAATGG -ACGGAAGTACGACCCATTATGAGG -ACGGAAGTACGACCCATTAATGGG -ACGGAAGTACGACCCATTTCCTGA -ACGGAAGTACGACCCATTTAGCGA -ACGGAAGTACGACCCATTCACAGA -ACGGAAGTACGACCCATTGCAAGA -ACGGAAGTACGACCCATTGGTTGA -ACGGAAGTACGACCCATTTCCGAT -ACGGAAGTACGACCCATTTGGCAT -ACGGAAGTACGACCCATTCGAGAT -ACGGAAGTACGACCCATTTACCAC -ACGGAAGTACGACCCATTCAGAAC -ACGGAAGTACGACCCATTGTCTAC -ACGGAAGTACGACCCATTACGTAC -ACGGAAGTACGACCCATTAGTGAC -ACGGAAGTACGACCCATTCTGTAG -ACGGAAGTACGACCCATTCCTAAG -ACGGAAGTACGACCCATTGTTCAG -ACGGAAGTACGACCCATTGCATAG -ACGGAAGTACGACCCATTGACAAG -ACGGAAGTACGACCCATTAAGCAG -ACGGAAGTACGACCCATTCGTCAA -ACGGAAGTACGACCCATTGCTGAA -ACGGAAGTACGACCCATTAGTACG -ACGGAAGTACGACCCATTATCCGA -ACGGAAGTACGACCCATTATGGGA -ACGGAAGTACGACCCATTGTGCAA -ACGGAAGTACGACCCATTGAGGAA -ACGGAAGTACGACCCATTCAGGTA -ACGGAAGTACGACCCATTGACTCT -ACGGAAGTACGACCCATTAGTCCT -ACGGAAGTACGACCCATTTAAGCC -ACGGAAGTACGACCCATTATAGCC -ACGGAAGTACGACCCATTTAACCG -ACGGAAGTACGACCCATTATGCCA -ACGGAAGTACGATCGTTCGGAAAC -ACGGAAGTACGATCGTTCAACACC -ACGGAAGTACGATCGTTCATCGAG -ACGGAAGTACGATCGTTCCTCCTT -ACGGAAGTACGATCGTTCCCTGTT -ACGGAAGTACGATCGTTCCGGTTT -ACGGAAGTACGATCGTTCGTGGTT -ACGGAAGTACGATCGTTCGCCTTT -ACGGAAGTACGATCGTTCGGTCTT -ACGGAAGTACGATCGTTCACGCTT -ACGGAAGTACGATCGTTCAGCGTT -ACGGAAGTACGATCGTTCTTCGTC -ACGGAAGTACGATCGTTCTCTCTC -ACGGAAGTACGATCGTTCTGGATC -ACGGAAGTACGATCGTTCCACTTC -ACGGAAGTACGATCGTTCGTACTC -ACGGAAGTACGATCGTTCGATGTC -ACGGAAGTACGATCGTTCACAGTC -ACGGAAGTACGATCGTTCTTGCTG -ACGGAAGTACGATCGTTCTCCATG -ACGGAAGTACGATCGTTCTGTGTG -ACGGAAGTACGATCGTTCCTAGTG -ACGGAAGTACGATCGTTCCATCTG -ACGGAAGTACGATCGTTCGAGTTG -ACGGAAGTACGATCGTTCAGACTG -ACGGAAGTACGATCGTTCTCGGTA -ACGGAAGTACGATCGTTCTGCCTA -ACGGAAGTACGATCGTTCCCACTA -ACGGAAGTACGATCGTTCGGAGTA -ACGGAAGTACGATCGTTCTCGTCT -ACGGAAGTACGATCGTTCTGCACT -ACGGAAGTACGATCGTTCCTGACT -ACGGAAGTACGATCGTTCCAACCT -ACGGAAGTACGATCGTTCGCTACT -ACGGAAGTACGATCGTTCGGATCT -ACGGAAGTACGATCGTTCAAGGCT -ACGGAAGTACGATCGTTCTCAACC -ACGGAAGTACGATCGTTCTGTTCC -ACGGAAGTACGATCGTTCATTCCC -ACGGAAGTACGATCGTTCTTCTCG -ACGGAAGTACGATCGTTCTAGACG -ACGGAAGTACGATCGTTCGTAACG -ACGGAAGTACGATCGTTCACTTCG -ACGGAAGTACGATCGTTCTACGCA -ACGGAAGTACGATCGTTCCTTGCA -ACGGAAGTACGATCGTTCCGAACA -ACGGAAGTACGATCGTTCCAGTCA -ACGGAAGTACGATCGTTCGATCCA -ACGGAAGTACGATCGTTCACGACA -ACGGAAGTACGATCGTTCAGCTCA -ACGGAAGTACGATCGTTCTCACGT -ACGGAAGTACGATCGTTCCGTAGT -ACGGAAGTACGATCGTTCGTCAGT -ACGGAAGTACGATCGTTCGAAGGT -ACGGAAGTACGATCGTTCAACCGT -ACGGAAGTACGATCGTTCTTGTGC -ACGGAAGTACGATCGTTCCTAAGC -ACGGAAGTACGATCGTTCACTAGC -ACGGAAGTACGATCGTTCAGATGC -ACGGAAGTACGATCGTTCTGAAGG -ACGGAAGTACGATCGTTCCAATGG -ACGGAAGTACGATCGTTCATGAGG -ACGGAAGTACGATCGTTCAATGGG -ACGGAAGTACGATCGTTCTCCTGA -ACGGAAGTACGATCGTTCTAGCGA -ACGGAAGTACGATCGTTCCACAGA -ACGGAAGTACGATCGTTCGCAAGA -ACGGAAGTACGATCGTTCGGTTGA -ACGGAAGTACGATCGTTCTCCGAT -ACGGAAGTACGATCGTTCTGGCAT -ACGGAAGTACGATCGTTCCGAGAT -ACGGAAGTACGATCGTTCTACCAC -ACGGAAGTACGATCGTTCCAGAAC -ACGGAAGTACGATCGTTCGTCTAC -ACGGAAGTACGATCGTTCACGTAC -ACGGAAGTACGATCGTTCAGTGAC -ACGGAAGTACGATCGTTCCTGTAG -ACGGAAGTACGATCGTTCCCTAAG -ACGGAAGTACGATCGTTCGTTCAG -ACGGAAGTACGATCGTTCGCATAG -ACGGAAGTACGATCGTTCGACAAG -ACGGAAGTACGATCGTTCAAGCAG -ACGGAAGTACGATCGTTCCGTCAA -ACGGAAGTACGATCGTTCGCTGAA -ACGGAAGTACGATCGTTCAGTACG -ACGGAAGTACGATCGTTCATCCGA -ACGGAAGTACGATCGTTCATGGGA -ACGGAAGTACGATCGTTCGTGCAA -ACGGAAGTACGATCGTTCGAGGAA -ACGGAAGTACGATCGTTCCAGGTA -ACGGAAGTACGATCGTTCGACTCT -ACGGAAGTACGATCGTTCAGTCCT -ACGGAAGTACGATCGTTCTAAGCC -ACGGAAGTACGATCGTTCATAGCC -ACGGAAGTACGATCGTTCTAACCG -ACGGAAGTACGATCGTTCATGCCA -ACGGAAGTACGAACGTAGGGAAAC -ACGGAAGTACGAACGTAGAACACC -ACGGAAGTACGAACGTAGATCGAG -ACGGAAGTACGAACGTAGCTCCTT -ACGGAAGTACGAACGTAGCCTGTT -ACGGAAGTACGAACGTAGCGGTTT -ACGGAAGTACGAACGTAGGTGGTT -ACGGAAGTACGAACGTAGGCCTTT -ACGGAAGTACGAACGTAGGGTCTT -ACGGAAGTACGAACGTAGACGCTT -ACGGAAGTACGAACGTAGAGCGTT -ACGGAAGTACGAACGTAGTTCGTC -ACGGAAGTACGAACGTAGTCTCTC -ACGGAAGTACGAACGTAGTGGATC -ACGGAAGTACGAACGTAGCACTTC -ACGGAAGTACGAACGTAGGTACTC -ACGGAAGTACGAACGTAGGATGTC -ACGGAAGTACGAACGTAGACAGTC -ACGGAAGTACGAACGTAGTTGCTG -ACGGAAGTACGAACGTAGTCCATG -ACGGAAGTACGAACGTAGTGTGTG -ACGGAAGTACGAACGTAGCTAGTG -ACGGAAGTACGAACGTAGCATCTG -ACGGAAGTACGAACGTAGGAGTTG -ACGGAAGTACGAACGTAGAGACTG -ACGGAAGTACGAACGTAGTCGGTA -ACGGAAGTACGAACGTAGTGCCTA -ACGGAAGTACGAACGTAGCCACTA -ACGGAAGTACGAACGTAGGGAGTA -ACGGAAGTACGAACGTAGTCGTCT -ACGGAAGTACGAACGTAGTGCACT -ACGGAAGTACGAACGTAGCTGACT -ACGGAAGTACGAACGTAGCAACCT -ACGGAAGTACGAACGTAGGCTACT -ACGGAAGTACGAACGTAGGGATCT -ACGGAAGTACGAACGTAGAAGGCT -ACGGAAGTACGAACGTAGTCAACC -ACGGAAGTACGAACGTAGTGTTCC -ACGGAAGTACGAACGTAGATTCCC -ACGGAAGTACGAACGTAGTTCTCG -ACGGAAGTACGAACGTAGTAGACG -ACGGAAGTACGAACGTAGGTAACG -ACGGAAGTACGAACGTAGACTTCG -ACGGAAGTACGAACGTAGTACGCA -ACGGAAGTACGAACGTAGCTTGCA -ACGGAAGTACGAACGTAGCGAACA -ACGGAAGTACGAACGTAGCAGTCA -ACGGAAGTACGAACGTAGGATCCA -ACGGAAGTACGAACGTAGACGACA -ACGGAAGTACGAACGTAGAGCTCA -ACGGAAGTACGAACGTAGTCACGT -ACGGAAGTACGAACGTAGCGTAGT -ACGGAAGTACGAACGTAGGTCAGT -ACGGAAGTACGAACGTAGGAAGGT -ACGGAAGTACGAACGTAGAACCGT -ACGGAAGTACGAACGTAGTTGTGC -ACGGAAGTACGAACGTAGCTAAGC -ACGGAAGTACGAACGTAGACTAGC -ACGGAAGTACGAACGTAGAGATGC -ACGGAAGTACGAACGTAGTGAAGG -ACGGAAGTACGAACGTAGCAATGG -ACGGAAGTACGAACGTAGATGAGG -ACGGAAGTACGAACGTAGAATGGG -ACGGAAGTACGAACGTAGTCCTGA -ACGGAAGTACGAACGTAGTAGCGA -ACGGAAGTACGAACGTAGCACAGA -ACGGAAGTACGAACGTAGGCAAGA -ACGGAAGTACGAACGTAGGGTTGA -ACGGAAGTACGAACGTAGTCCGAT -ACGGAAGTACGAACGTAGTGGCAT -ACGGAAGTACGAACGTAGCGAGAT -ACGGAAGTACGAACGTAGTACCAC -ACGGAAGTACGAACGTAGCAGAAC -ACGGAAGTACGAACGTAGGTCTAC -ACGGAAGTACGAACGTAGACGTAC -ACGGAAGTACGAACGTAGAGTGAC -ACGGAAGTACGAACGTAGCTGTAG -ACGGAAGTACGAACGTAGCCTAAG -ACGGAAGTACGAACGTAGGTTCAG -ACGGAAGTACGAACGTAGGCATAG -ACGGAAGTACGAACGTAGGACAAG -ACGGAAGTACGAACGTAGAAGCAG -ACGGAAGTACGAACGTAGCGTCAA -ACGGAAGTACGAACGTAGGCTGAA -ACGGAAGTACGAACGTAGAGTACG -ACGGAAGTACGAACGTAGATCCGA -ACGGAAGTACGAACGTAGATGGGA -ACGGAAGTACGAACGTAGGTGCAA -ACGGAAGTACGAACGTAGGAGGAA -ACGGAAGTACGAACGTAGCAGGTA -ACGGAAGTACGAACGTAGGACTCT -ACGGAAGTACGAACGTAGAGTCCT -ACGGAAGTACGAACGTAGTAAGCC -ACGGAAGTACGAACGTAGATAGCC -ACGGAAGTACGAACGTAGTAACCG -ACGGAAGTACGAACGTAGATGCCA -ACGGAAGTACGAACGGTAGGAAAC -ACGGAAGTACGAACGGTAAACACC -ACGGAAGTACGAACGGTAATCGAG -ACGGAAGTACGAACGGTACTCCTT -ACGGAAGTACGAACGGTACCTGTT -ACGGAAGTACGAACGGTACGGTTT -ACGGAAGTACGAACGGTAGTGGTT -ACGGAAGTACGAACGGTAGCCTTT -ACGGAAGTACGAACGGTAGGTCTT -ACGGAAGTACGAACGGTAACGCTT -ACGGAAGTACGAACGGTAAGCGTT -ACGGAAGTACGAACGGTATTCGTC -ACGGAAGTACGAACGGTATCTCTC -ACGGAAGTACGAACGGTATGGATC -ACGGAAGTACGAACGGTACACTTC -ACGGAAGTACGAACGGTAGTACTC -ACGGAAGTACGAACGGTAGATGTC -ACGGAAGTACGAACGGTAACAGTC -ACGGAAGTACGAACGGTATTGCTG -ACGGAAGTACGAACGGTATCCATG -ACGGAAGTACGAACGGTATGTGTG -ACGGAAGTACGAACGGTACTAGTG -ACGGAAGTACGAACGGTACATCTG -ACGGAAGTACGAACGGTAGAGTTG -ACGGAAGTACGAACGGTAAGACTG -ACGGAAGTACGAACGGTATCGGTA -ACGGAAGTACGAACGGTATGCCTA -ACGGAAGTACGAACGGTACCACTA -ACGGAAGTACGAACGGTAGGAGTA -ACGGAAGTACGAACGGTATCGTCT -ACGGAAGTACGAACGGTATGCACT -ACGGAAGTACGAACGGTACTGACT -ACGGAAGTACGAACGGTACAACCT -ACGGAAGTACGAACGGTAGCTACT -ACGGAAGTACGAACGGTAGGATCT -ACGGAAGTACGAACGGTAAAGGCT -ACGGAAGTACGAACGGTATCAACC -ACGGAAGTACGAACGGTATGTTCC -ACGGAAGTACGAACGGTAATTCCC -ACGGAAGTACGAACGGTATTCTCG -ACGGAAGTACGAACGGTATAGACG -ACGGAAGTACGAACGGTAGTAACG -ACGGAAGTACGAACGGTAACTTCG -ACGGAAGTACGAACGGTATACGCA -ACGGAAGTACGAACGGTACTTGCA -ACGGAAGTACGAACGGTACGAACA -ACGGAAGTACGAACGGTACAGTCA -ACGGAAGTACGAACGGTAGATCCA -ACGGAAGTACGAACGGTAACGACA -ACGGAAGTACGAACGGTAAGCTCA -ACGGAAGTACGAACGGTATCACGT -ACGGAAGTACGAACGGTACGTAGT -ACGGAAGTACGAACGGTAGTCAGT -ACGGAAGTACGAACGGTAGAAGGT -ACGGAAGTACGAACGGTAAACCGT -ACGGAAGTACGAACGGTATTGTGC -ACGGAAGTACGAACGGTACTAAGC -ACGGAAGTACGAACGGTAACTAGC -ACGGAAGTACGAACGGTAAGATGC -ACGGAAGTACGAACGGTATGAAGG -ACGGAAGTACGAACGGTACAATGG -ACGGAAGTACGAACGGTAATGAGG -ACGGAAGTACGAACGGTAAATGGG -ACGGAAGTACGAACGGTATCCTGA -ACGGAAGTACGAACGGTATAGCGA -ACGGAAGTACGAACGGTACACAGA -ACGGAAGTACGAACGGTAGCAAGA -ACGGAAGTACGAACGGTAGGTTGA -ACGGAAGTACGAACGGTATCCGAT -ACGGAAGTACGAACGGTATGGCAT -ACGGAAGTACGAACGGTACGAGAT -ACGGAAGTACGAACGGTATACCAC -ACGGAAGTACGAACGGTACAGAAC -ACGGAAGTACGAACGGTAGTCTAC -ACGGAAGTACGAACGGTAACGTAC -ACGGAAGTACGAACGGTAAGTGAC -ACGGAAGTACGAACGGTACTGTAG -ACGGAAGTACGAACGGTACCTAAG -ACGGAAGTACGAACGGTAGTTCAG -ACGGAAGTACGAACGGTAGCATAG -ACGGAAGTACGAACGGTAGACAAG -ACGGAAGTACGAACGGTAAAGCAG -ACGGAAGTACGAACGGTACGTCAA -ACGGAAGTACGAACGGTAGCTGAA -ACGGAAGTACGAACGGTAAGTACG -ACGGAAGTACGAACGGTAATCCGA -ACGGAAGTACGAACGGTAATGGGA -ACGGAAGTACGAACGGTAGTGCAA -ACGGAAGTACGAACGGTAGAGGAA -ACGGAAGTACGAACGGTACAGGTA -ACGGAAGTACGAACGGTAGACTCT -ACGGAAGTACGAACGGTAAGTCCT -ACGGAAGTACGAACGGTATAAGCC -ACGGAAGTACGAACGGTAATAGCC -ACGGAAGTACGAACGGTATAACCG -ACGGAAGTACGAACGGTAATGCCA -ACGGAAGTACGATCGACTGGAAAC -ACGGAAGTACGATCGACTAACACC -ACGGAAGTACGATCGACTATCGAG -ACGGAAGTACGATCGACTCTCCTT -ACGGAAGTACGATCGACTCCTGTT -ACGGAAGTACGATCGACTCGGTTT -ACGGAAGTACGATCGACTGTGGTT -ACGGAAGTACGATCGACTGCCTTT -ACGGAAGTACGATCGACTGGTCTT -ACGGAAGTACGATCGACTACGCTT -ACGGAAGTACGATCGACTAGCGTT -ACGGAAGTACGATCGACTTTCGTC -ACGGAAGTACGATCGACTTCTCTC -ACGGAAGTACGATCGACTTGGATC -ACGGAAGTACGATCGACTCACTTC -ACGGAAGTACGATCGACTGTACTC -ACGGAAGTACGATCGACTGATGTC -ACGGAAGTACGATCGACTACAGTC -ACGGAAGTACGATCGACTTTGCTG -ACGGAAGTACGATCGACTTCCATG -ACGGAAGTACGATCGACTTGTGTG -ACGGAAGTACGATCGACTCTAGTG -ACGGAAGTACGATCGACTCATCTG -ACGGAAGTACGATCGACTGAGTTG -ACGGAAGTACGATCGACTAGACTG -ACGGAAGTACGATCGACTTCGGTA -ACGGAAGTACGATCGACTTGCCTA -ACGGAAGTACGATCGACTCCACTA -ACGGAAGTACGATCGACTGGAGTA -ACGGAAGTACGATCGACTTCGTCT -ACGGAAGTACGATCGACTTGCACT -ACGGAAGTACGATCGACTCTGACT -ACGGAAGTACGATCGACTCAACCT -ACGGAAGTACGATCGACTGCTACT -ACGGAAGTACGATCGACTGGATCT -ACGGAAGTACGATCGACTAAGGCT -ACGGAAGTACGATCGACTTCAACC -ACGGAAGTACGATCGACTTGTTCC -ACGGAAGTACGATCGACTATTCCC -ACGGAAGTACGATCGACTTTCTCG -ACGGAAGTACGATCGACTTAGACG -ACGGAAGTACGATCGACTGTAACG -ACGGAAGTACGATCGACTACTTCG -ACGGAAGTACGATCGACTTACGCA -ACGGAAGTACGATCGACTCTTGCA -ACGGAAGTACGATCGACTCGAACA -ACGGAAGTACGATCGACTCAGTCA -ACGGAAGTACGATCGACTGATCCA -ACGGAAGTACGATCGACTACGACA -ACGGAAGTACGATCGACTAGCTCA -ACGGAAGTACGATCGACTTCACGT -ACGGAAGTACGATCGACTCGTAGT -ACGGAAGTACGATCGACTGTCAGT -ACGGAAGTACGATCGACTGAAGGT -ACGGAAGTACGATCGACTAACCGT -ACGGAAGTACGATCGACTTTGTGC -ACGGAAGTACGATCGACTCTAAGC -ACGGAAGTACGATCGACTACTAGC -ACGGAAGTACGATCGACTAGATGC -ACGGAAGTACGATCGACTTGAAGG -ACGGAAGTACGATCGACTCAATGG -ACGGAAGTACGATCGACTATGAGG -ACGGAAGTACGATCGACTAATGGG -ACGGAAGTACGATCGACTTCCTGA -ACGGAAGTACGATCGACTTAGCGA -ACGGAAGTACGATCGACTCACAGA -ACGGAAGTACGATCGACTGCAAGA -ACGGAAGTACGATCGACTGGTTGA -ACGGAAGTACGATCGACTTCCGAT -ACGGAAGTACGATCGACTTGGCAT -ACGGAAGTACGATCGACTCGAGAT -ACGGAAGTACGATCGACTTACCAC -ACGGAAGTACGATCGACTCAGAAC -ACGGAAGTACGATCGACTGTCTAC -ACGGAAGTACGATCGACTACGTAC -ACGGAAGTACGATCGACTAGTGAC -ACGGAAGTACGATCGACTCTGTAG -ACGGAAGTACGATCGACTCCTAAG -ACGGAAGTACGATCGACTGTTCAG -ACGGAAGTACGATCGACTGCATAG -ACGGAAGTACGATCGACTGACAAG -ACGGAAGTACGATCGACTAAGCAG -ACGGAAGTACGATCGACTCGTCAA -ACGGAAGTACGATCGACTGCTGAA -ACGGAAGTACGATCGACTAGTACG -ACGGAAGTACGATCGACTATCCGA -ACGGAAGTACGATCGACTATGGGA -ACGGAAGTACGATCGACTGTGCAA -ACGGAAGTACGATCGACTGAGGAA -ACGGAAGTACGATCGACTCAGGTA -ACGGAAGTACGATCGACTGACTCT -ACGGAAGTACGATCGACTAGTCCT -ACGGAAGTACGATCGACTTAAGCC -ACGGAAGTACGATCGACTATAGCC -ACGGAAGTACGATCGACTTAACCG -ACGGAAGTACGATCGACTATGCCA -ACGGAAGTACGAGCATACGGAAAC -ACGGAAGTACGAGCATACAACACC -ACGGAAGTACGAGCATACATCGAG -ACGGAAGTACGAGCATACCTCCTT -ACGGAAGTACGAGCATACCCTGTT -ACGGAAGTACGAGCATACCGGTTT -ACGGAAGTACGAGCATACGTGGTT -ACGGAAGTACGAGCATACGCCTTT -ACGGAAGTACGAGCATACGGTCTT -ACGGAAGTACGAGCATACACGCTT -ACGGAAGTACGAGCATACAGCGTT -ACGGAAGTACGAGCATACTTCGTC -ACGGAAGTACGAGCATACTCTCTC -ACGGAAGTACGAGCATACTGGATC -ACGGAAGTACGAGCATACCACTTC -ACGGAAGTACGAGCATACGTACTC -ACGGAAGTACGAGCATACGATGTC -ACGGAAGTACGAGCATACACAGTC -ACGGAAGTACGAGCATACTTGCTG -ACGGAAGTACGAGCATACTCCATG -ACGGAAGTACGAGCATACTGTGTG -ACGGAAGTACGAGCATACCTAGTG -ACGGAAGTACGAGCATACCATCTG -ACGGAAGTACGAGCATACGAGTTG -ACGGAAGTACGAGCATACAGACTG -ACGGAAGTACGAGCATACTCGGTA -ACGGAAGTACGAGCATACTGCCTA -ACGGAAGTACGAGCATACCCACTA -ACGGAAGTACGAGCATACGGAGTA -ACGGAAGTACGAGCATACTCGTCT -ACGGAAGTACGAGCATACTGCACT -ACGGAAGTACGAGCATACCTGACT -ACGGAAGTACGAGCATACCAACCT -ACGGAAGTACGAGCATACGCTACT -ACGGAAGTACGAGCATACGGATCT -ACGGAAGTACGAGCATACAAGGCT -ACGGAAGTACGAGCATACTCAACC -ACGGAAGTACGAGCATACTGTTCC -ACGGAAGTACGAGCATACATTCCC -ACGGAAGTACGAGCATACTTCTCG -ACGGAAGTACGAGCATACTAGACG -ACGGAAGTACGAGCATACGTAACG -ACGGAAGTACGAGCATACACTTCG -ACGGAAGTACGAGCATACTACGCA -ACGGAAGTACGAGCATACCTTGCA -ACGGAAGTACGAGCATACCGAACA -ACGGAAGTACGAGCATACCAGTCA -ACGGAAGTACGAGCATACGATCCA -ACGGAAGTACGAGCATACACGACA -ACGGAAGTACGAGCATACAGCTCA -ACGGAAGTACGAGCATACTCACGT -ACGGAAGTACGAGCATACCGTAGT -ACGGAAGTACGAGCATACGTCAGT -ACGGAAGTACGAGCATACGAAGGT -ACGGAAGTACGAGCATACAACCGT -ACGGAAGTACGAGCATACTTGTGC -ACGGAAGTACGAGCATACCTAAGC -ACGGAAGTACGAGCATACACTAGC -ACGGAAGTACGAGCATACAGATGC -ACGGAAGTACGAGCATACTGAAGG -ACGGAAGTACGAGCATACCAATGG -ACGGAAGTACGAGCATACATGAGG -ACGGAAGTACGAGCATACAATGGG -ACGGAAGTACGAGCATACTCCTGA -ACGGAAGTACGAGCATACTAGCGA -ACGGAAGTACGAGCATACCACAGA -ACGGAAGTACGAGCATACGCAAGA -ACGGAAGTACGAGCATACGGTTGA -ACGGAAGTACGAGCATACTCCGAT -ACGGAAGTACGAGCATACTGGCAT -ACGGAAGTACGAGCATACCGAGAT -ACGGAAGTACGAGCATACTACCAC -ACGGAAGTACGAGCATACCAGAAC -ACGGAAGTACGAGCATACGTCTAC -ACGGAAGTACGAGCATACACGTAC -ACGGAAGTACGAGCATACAGTGAC -ACGGAAGTACGAGCATACCTGTAG -ACGGAAGTACGAGCATACCCTAAG -ACGGAAGTACGAGCATACGTTCAG -ACGGAAGTACGAGCATACGCATAG -ACGGAAGTACGAGCATACGACAAG -ACGGAAGTACGAGCATACAAGCAG -ACGGAAGTACGAGCATACCGTCAA -ACGGAAGTACGAGCATACGCTGAA -ACGGAAGTACGAGCATACAGTACG -ACGGAAGTACGAGCATACATCCGA -ACGGAAGTACGAGCATACATGGGA -ACGGAAGTACGAGCATACGTGCAA -ACGGAAGTACGAGCATACGAGGAA -ACGGAAGTACGAGCATACCAGGTA -ACGGAAGTACGAGCATACGACTCT -ACGGAAGTACGAGCATACAGTCCT -ACGGAAGTACGAGCATACTAAGCC -ACGGAAGTACGAGCATACATAGCC -ACGGAAGTACGAGCATACTAACCG -ACGGAAGTACGAGCATACATGCCA -ACGGAAGTACGAGCACTTGGAAAC -ACGGAAGTACGAGCACTTAACACC -ACGGAAGTACGAGCACTTATCGAG -ACGGAAGTACGAGCACTTCTCCTT -ACGGAAGTACGAGCACTTCCTGTT -ACGGAAGTACGAGCACTTCGGTTT -ACGGAAGTACGAGCACTTGTGGTT -ACGGAAGTACGAGCACTTGCCTTT -ACGGAAGTACGAGCACTTGGTCTT -ACGGAAGTACGAGCACTTACGCTT -ACGGAAGTACGAGCACTTAGCGTT -ACGGAAGTACGAGCACTTTTCGTC -ACGGAAGTACGAGCACTTTCTCTC -ACGGAAGTACGAGCACTTTGGATC -ACGGAAGTACGAGCACTTCACTTC -ACGGAAGTACGAGCACTTGTACTC -ACGGAAGTACGAGCACTTGATGTC -ACGGAAGTACGAGCACTTACAGTC -ACGGAAGTACGAGCACTTTTGCTG -ACGGAAGTACGAGCACTTTCCATG -ACGGAAGTACGAGCACTTTGTGTG -ACGGAAGTACGAGCACTTCTAGTG -ACGGAAGTACGAGCACTTCATCTG -ACGGAAGTACGAGCACTTGAGTTG -ACGGAAGTACGAGCACTTAGACTG -ACGGAAGTACGAGCACTTTCGGTA -ACGGAAGTACGAGCACTTTGCCTA -ACGGAAGTACGAGCACTTCCACTA -ACGGAAGTACGAGCACTTGGAGTA -ACGGAAGTACGAGCACTTTCGTCT -ACGGAAGTACGAGCACTTTGCACT -ACGGAAGTACGAGCACTTCTGACT -ACGGAAGTACGAGCACTTCAACCT -ACGGAAGTACGAGCACTTGCTACT -ACGGAAGTACGAGCACTTGGATCT -ACGGAAGTACGAGCACTTAAGGCT -ACGGAAGTACGAGCACTTTCAACC -ACGGAAGTACGAGCACTTTGTTCC -ACGGAAGTACGAGCACTTATTCCC -ACGGAAGTACGAGCACTTTTCTCG -ACGGAAGTACGAGCACTTTAGACG -ACGGAAGTACGAGCACTTGTAACG -ACGGAAGTACGAGCACTTACTTCG -ACGGAAGTACGAGCACTTTACGCA -ACGGAAGTACGAGCACTTCTTGCA -ACGGAAGTACGAGCACTTCGAACA -ACGGAAGTACGAGCACTTCAGTCA -ACGGAAGTACGAGCACTTGATCCA -ACGGAAGTACGAGCACTTACGACA -ACGGAAGTACGAGCACTTAGCTCA -ACGGAAGTACGAGCACTTTCACGT -ACGGAAGTACGAGCACTTCGTAGT -ACGGAAGTACGAGCACTTGTCAGT -ACGGAAGTACGAGCACTTGAAGGT -ACGGAAGTACGAGCACTTAACCGT -ACGGAAGTACGAGCACTTTTGTGC -ACGGAAGTACGAGCACTTCTAAGC -ACGGAAGTACGAGCACTTACTAGC -ACGGAAGTACGAGCACTTAGATGC -ACGGAAGTACGAGCACTTTGAAGG -ACGGAAGTACGAGCACTTCAATGG -ACGGAAGTACGAGCACTTATGAGG -ACGGAAGTACGAGCACTTAATGGG -ACGGAAGTACGAGCACTTTCCTGA -ACGGAAGTACGAGCACTTTAGCGA -ACGGAAGTACGAGCACTTCACAGA -ACGGAAGTACGAGCACTTGCAAGA -ACGGAAGTACGAGCACTTGGTTGA -ACGGAAGTACGAGCACTTTCCGAT -ACGGAAGTACGAGCACTTTGGCAT -ACGGAAGTACGAGCACTTCGAGAT -ACGGAAGTACGAGCACTTTACCAC -ACGGAAGTACGAGCACTTCAGAAC -ACGGAAGTACGAGCACTTGTCTAC -ACGGAAGTACGAGCACTTACGTAC -ACGGAAGTACGAGCACTTAGTGAC -ACGGAAGTACGAGCACTTCTGTAG -ACGGAAGTACGAGCACTTCCTAAG -ACGGAAGTACGAGCACTTGTTCAG -ACGGAAGTACGAGCACTTGCATAG -ACGGAAGTACGAGCACTTGACAAG -ACGGAAGTACGAGCACTTAAGCAG -ACGGAAGTACGAGCACTTCGTCAA -ACGGAAGTACGAGCACTTGCTGAA -ACGGAAGTACGAGCACTTAGTACG -ACGGAAGTACGAGCACTTATCCGA -ACGGAAGTACGAGCACTTATGGGA -ACGGAAGTACGAGCACTTGTGCAA -ACGGAAGTACGAGCACTTGAGGAA -ACGGAAGTACGAGCACTTCAGGTA -ACGGAAGTACGAGCACTTGACTCT -ACGGAAGTACGAGCACTTAGTCCT -ACGGAAGTACGAGCACTTTAAGCC -ACGGAAGTACGAGCACTTATAGCC -ACGGAAGTACGAGCACTTTAACCG -ACGGAAGTACGAGCACTTATGCCA -ACGGAAGTACGAACACGAGGAAAC -ACGGAAGTACGAACACGAAACACC -ACGGAAGTACGAACACGAATCGAG -ACGGAAGTACGAACACGACTCCTT -ACGGAAGTACGAACACGACCTGTT -ACGGAAGTACGAACACGACGGTTT -ACGGAAGTACGAACACGAGTGGTT -ACGGAAGTACGAACACGAGCCTTT -ACGGAAGTACGAACACGAGGTCTT -ACGGAAGTACGAACACGAACGCTT -ACGGAAGTACGAACACGAAGCGTT -ACGGAAGTACGAACACGATTCGTC -ACGGAAGTACGAACACGATCTCTC -ACGGAAGTACGAACACGATGGATC -ACGGAAGTACGAACACGACACTTC -ACGGAAGTACGAACACGAGTACTC -ACGGAAGTACGAACACGAGATGTC -ACGGAAGTACGAACACGAACAGTC -ACGGAAGTACGAACACGATTGCTG -ACGGAAGTACGAACACGATCCATG -ACGGAAGTACGAACACGATGTGTG -ACGGAAGTACGAACACGACTAGTG -ACGGAAGTACGAACACGACATCTG -ACGGAAGTACGAACACGAGAGTTG -ACGGAAGTACGAACACGAAGACTG -ACGGAAGTACGAACACGATCGGTA -ACGGAAGTACGAACACGATGCCTA -ACGGAAGTACGAACACGACCACTA -ACGGAAGTACGAACACGAGGAGTA -ACGGAAGTACGAACACGATCGTCT -ACGGAAGTACGAACACGATGCACT -ACGGAAGTACGAACACGACTGACT -ACGGAAGTACGAACACGACAACCT -ACGGAAGTACGAACACGAGCTACT -ACGGAAGTACGAACACGAGGATCT -ACGGAAGTACGAACACGAAAGGCT -ACGGAAGTACGAACACGATCAACC -ACGGAAGTACGAACACGATGTTCC -ACGGAAGTACGAACACGAATTCCC -ACGGAAGTACGAACACGATTCTCG -ACGGAAGTACGAACACGATAGACG -ACGGAAGTACGAACACGAGTAACG -ACGGAAGTACGAACACGAACTTCG -ACGGAAGTACGAACACGATACGCA -ACGGAAGTACGAACACGACTTGCA -ACGGAAGTACGAACACGACGAACA -ACGGAAGTACGAACACGACAGTCA -ACGGAAGTACGAACACGAGATCCA -ACGGAAGTACGAACACGAACGACA -ACGGAAGTACGAACACGAAGCTCA -ACGGAAGTACGAACACGATCACGT -ACGGAAGTACGAACACGACGTAGT -ACGGAAGTACGAACACGAGTCAGT -ACGGAAGTACGAACACGAGAAGGT -ACGGAAGTACGAACACGAAACCGT -ACGGAAGTACGAACACGATTGTGC -ACGGAAGTACGAACACGACTAAGC -ACGGAAGTACGAACACGAACTAGC -ACGGAAGTACGAACACGAAGATGC -ACGGAAGTACGAACACGATGAAGG -ACGGAAGTACGAACACGACAATGG -ACGGAAGTACGAACACGAATGAGG -ACGGAAGTACGAACACGAAATGGG -ACGGAAGTACGAACACGATCCTGA -ACGGAAGTACGAACACGATAGCGA -ACGGAAGTACGAACACGACACAGA -ACGGAAGTACGAACACGAGCAAGA -ACGGAAGTACGAACACGAGGTTGA -ACGGAAGTACGAACACGATCCGAT -ACGGAAGTACGAACACGATGGCAT -ACGGAAGTACGAACACGACGAGAT -ACGGAAGTACGAACACGATACCAC -ACGGAAGTACGAACACGACAGAAC -ACGGAAGTACGAACACGAGTCTAC -ACGGAAGTACGAACACGAACGTAC -ACGGAAGTACGAACACGAAGTGAC -ACGGAAGTACGAACACGACTGTAG -ACGGAAGTACGAACACGACCTAAG -ACGGAAGTACGAACACGAGTTCAG -ACGGAAGTACGAACACGAGCATAG -ACGGAAGTACGAACACGAGACAAG -ACGGAAGTACGAACACGAAAGCAG -ACGGAAGTACGAACACGACGTCAA -ACGGAAGTACGAACACGAGCTGAA -ACGGAAGTACGAACACGAAGTACG -ACGGAAGTACGAACACGAATCCGA -ACGGAAGTACGAACACGAATGGGA -ACGGAAGTACGAACACGAGTGCAA -ACGGAAGTACGAACACGAGAGGAA -ACGGAAGTACGAACACGACAGGTA -ACGGAAGTACGAACACGAGACTCT -ACGGAAGTACGAACACGAAGTCCT -ACGGAAGTACGAACACGATAAGCC -ACGGAAGTACGAACACGAATAGCC -ACGGAAGTACGAACACGATAACCG -ACGGAAGTACGAACACGAATGCCA -ACGGAAGTACGATCACAGGGAAAC -ACGGAAGTACGATCACAGAACACC -ACGGAAGTACGATCACAGATCGAG -ACGGAAGTACGATCACAGCTCCTT -ACGGAAGTACGATCACAGCCTGTT -ACGGAAGTACGATCACAGCGGTTT -ACGGAAGTACGATCACAGGTGGTT -ACGGAAGTACGATCACAGGCCTTT -ACGGAAGTACGATCACAGGGTCTT -ACGGAAGTACGATCACAGACGCTT -ACGGAAGTACGATCACAGAGCGTT -ACGGAAGTACGATCACAGTTCGTC -ACGGAAGTACGATCACAGTCTCTC -ACGGAAGTACGATCACAGTGGATC -ACGGAAGTACGATCACAGCACTTC -ACGGAAGTACGATCACAGGTACTC -ACGGAAGTACGATCACAGGATGTC -ACGGAAGTACGATCACAGACAGTC -ACGGAAGTACGATCACAGTTGCTG -ACGGAAGTACGATCACAGTCCATG -ACGGAAGTACGATCACAGTGTGTG -ACGGAAGTACGATCACAGCTAGTG -ACGGAAGTACGATCACAGCATCTG -ACGGAAGTACGATCACAGGAGTTG -ACGGAAGTACGATCACAGAGACTG -ACGGAAGTACGATCACAGTCGGTA -ACGGAAGTACGATCACAGTGCCTA -ACGGAAGTACGATCACAGCCACTA -ACGGAAGTACGATCACAGGGAGTA -ACGGAAGTACGATCACAGTCGTCT -ACGGAAGTACGATCACAGTGCACT -ACGGAAGTACGATCACAGCTGACT -ACGGAAGTACGATCACAGCAACCT -ACGGAAGTACGATCACAGGCTACT -ACGGAAGTACGATCACAGGGATCT -ACGGAAGTACGATCACAGAAGGCT -ACGGAAGTACGATCACAGTCAACC -ACGGAAGTACGATCACAGTGTTCC -ACGGAAGTACGATCACAGATTCCC -ACGGAAGTACGATCACAGTTCTCG -ACGGAAGTACGATCACAGTAGACG -ACGGAAGTACGATCACAGGTAACG -ACGGAAGTACGATCACAGACTTCG -ACGGAAGTACGATCACAGTACGCA -ACGGAAGTACGATCACAGCTTGCA -ACGGAAGTACGATCACAGCGAACA -ACGGAAGTACGATCACAGCAGTCA -ACGGAAGTACGATCACAGGATCCA -ACGGAAGTACGATCACAGACGACA -ACGGAAGTACGATCACAGAGCTCA -ACGGAAGTACGATCACAGTCACGT -ACGGAAGTACGATCACAGCGTAGT -ACGGAAGTACGATCACAGGTCAGT -ACGGAAGTACGATCACAGGAAGGT -ACGGAAGTACGATCACAGAACCGT -ACGGAAGTACGATCACAGTTGTGC -ACGGAAGTACGATCACAGCTAAGC -ACGGAAGTACGATCACAGACTAGC -ACGGAAGTACGATCACAGAGATGC -ACGGAAGTACGATCACAGTGAAGG -ACGGAAGTACGATCACAGCAATGG -ACGGAAGTACGATCACAGATGAGG -ACGGAAGTACGATCACAGAATGGG -ACGGAAGTACGATCACAGTCCTGA -ACGGAAGTACGATCACAGTAGCGA -ACGGAAGTACGATCACAGCACAGA -ACGGAAGTACGATCACAGGCAAGA -ACGGAAGTACGATCACAGGGTTGA -ACGGAAGTACGATCACAGTCCGAT -ACGGAAGTACGATCACAGTGGCAT -ACGGAAGTACGATCACAGCGAGAT -ACGGAAGTACGATCACAGTACCAC -ACGGAAGTACGATCACAGCAGAAC -ACGGAAGTACGATCACAGGTCTAC -ACGGAAGTACGATCACAGACGTAC -ACGGAAGTACGATCACAGAGTGAC -ACGGAAGTACGATCACAGCTGTAG -ACGGAAGTACGATCACAGCCTAAG -ACGGAAGTACGATCACAGGTTCAG -ACGGAAGTACGATCACAGGCATAG -ACGGAAGTACGATCACAGGACAAG -ACGGAAGTACGATCACAGAAGCAG -ACGGAAGTACGATCACAGCGTCAA -ACGGAAGTACGATCACAGGCTGAA -ACGGAAGTACGATCACAGAGTACG -ACGGAAGTACGATCACAGATCCGA -ACGGAAGTACGATCACAGATGGGA -ACGGAAGTACGATCACAGGTGCAA -ACGGAAGTACGATCACAGGAGGAA -ACGGAAGTACGATCACAGCAGGTA -ACGGAAGTACGATCACAGGACTCT -ACGGAAGTACGATCACAGAGTCCT -ACGGAAGTACGATCACAGTAAGCC -ACGGAAGTACGATCACAGATAGCC -ACGGAAGTACGATCACAGTAACCG -ACGGAAGTACGATCACAGATGCCA -ACGGAAGTACGACCAGATGGAAAC -ACGGAAGTACGACCAGATAACACC -ACGGAAGTACGACCAGATATCGAG -ACGGAAGTACGACCAGATCTCCTT -ACGGAAGTACGACCAGATCCTGTT -ACGGAAGTACGACCAGATCGGTTT -ACGGAAGTACGACCAGATGTGGTT -ACGGAAGTACGACCAGATGCCTTT -ACGGAAGTACGACCAGATGGTCTT -ACGGAAGTACGACCAGATACGCTT -ACGGAAGTACGACCAGATAGCGTT -ACGGAAGTACGACCAGATTTCGTC -ACGGAAGTACGACCAGATTCTCTC -ACGGAAGTACGACCAGATTGGATC -ACGGAAGTACGACCAGATCACTTC -ACGGAAGTACGACCAGATGTACTC -ACGGAAGTACGACCAGATGATGTC -ACGGAAGTACGACCAGATACAGTC -ACGGAAGTACGACCAGATTTGCTG -ACGGAAGTACGACCAGATTCCATG -ACGGAAGTACGACCAGATTGTGTG -ACGGAAGTACGACCAGATCTAGTG -ACGGAAGTACGACCAGATCATCTG -ACGGAAGTACGACCAGATGAGTTG -ACGGAAGTACGACCAGATAGACTG -ACGGAAGTACGACCAGATTCGGTA -ACGGAAGTACGACCAGATTGCCTA -ACGGAAGTACGACCAGATCCACTA -ACGGAAGTACGACCAGATGGAGTA -ACGGAAGTACGACCAGATTCGTCT -ACGGAAGTACGACCAGATTGCACT -ACGGAAGTACGACCAGATCTGACT -ACGGAAGTACGACCAGATCAACCT -ACGGAAGTACGACCAGATGCTACT -ACGGAAGTACGACCAGATGGATCT -ACGGAAGTACGACCAGATAAGGCT -ACGGAAGTACGACCAGATTCAACC -ACGGAAGTACGACCAGATTGTTCC -ACGGAAGTACGACCAGATATTCCC -ACGGAAGTACGACCAGATTTCTCG -ACGGAAGTACGACCAGATTAGACG -ACGGAAGTACGACCAGATGTAACG -ACGGAAGTACGACCAGATACTTCG -ACGGAAGTACGACCAGATTACGCA -ACGGAAGTACGACCAGATCTTGCA -ACGGAAGTACGACCAGATCGAACA -ACGGAAGTACGACCAGATCAGTCA -ACGGAAGTACGACCAGATGATCCA -ACGGAAGTACGACCAGATACGACA -ACGGAAGTACGACCAGATAGCTCA -ACGGAAGTACGACCAGATTCACGT -ACGGAAGTACGACCAGATCGTAGT -ACGGAAGTACGACCAGATGTCAGT -ACGGAAGTACGACCAGATGAAGGT -ACGGAAGTACGACCAGATAACCGT -ACGGAAGTACGACCAGATTTGTGC -ACGGAAGTACGACCAGATCTAAGC -ACGGAAGTACGACCAGATACTAGC -ACGGAAGTACGACCAGATAGATGC -ACGGAAGTACGACCAGATTGAAGG -ACGGAAGTACGACCAGATCAATGG -ACGGAAGTACGACCAGATATGAGG -ACGGAAGTACGACCAGATAATGGG -ACGGAAGTACGACCAGATTCCTGA -ACGGAAGTACGACCAGATTAGCGA -ACGGAAGTACGACCAGATCACAGA -ACGGAAGTACGACCAGATGCAAGA -ACGGAAGTACGACCAGATGGTTGA -ACGGAAGTACGACCAGATTCCGAT -ACGGAAGTACGACCAGATTGGCAT -ACGGAAGTACGACCAGATCGAGAT -ACGGAAGTACGACCAGATTACCAC -ACGGAAGTACGACCAGATCAGAAC -ACGGAAGTACGACCAGATGTCTAC -ACGGAAGTACGACCAGATACGTAC -ACGGAAGTACGACCAGATAGTGAC -ACGGAAGTACGACCAGATCTGTAG -ACGGAAGTACGACCAGATCCTAAG -ACGGAAGTACGACCAGATGTTCAG -ACGGAAGTACGACCAGATGCATAG -ACGGAAGTACGACCAGATGACAAG -ACGGAAGTACGACCAGATAAGCAG -ACGGAAGTACGACCAGATCGTCAA -ACGGAAGTACGACCAGATGCTGAA -ACGGAAGTACGACCAGATAGTACG -ACGGAAGTACGACCAGATATCCGA -ACGGAAGTACGACCAGATATGGGA -ACGGAAGTACGACCAGATGTGCAA -ACGGAAGTACGACCAGATGAGGAA -ACGGAAGTACGACCAGATCAGGTA -ACGGAAGTACGACCAGATGACTCT -ACGGAAGTACGACCAGATAGTCCT -ACGGAAGTACGACCAGATTAAGCC -ACGGAAGTACGACCAGATATAGCC -ACGGAAGTACGACCAGATTAACCG -ACGGAAGTACGACCAGATATGCCA -ACGGAAGTACGAACAACGGGAAAC -ACGGAAGTACGAACAACGAACACC -ACGGAAGTACGAACAACGATCGAG -ACGGAAGTACGAACAACGCTCCTT -ACGGAAGTACGAACAACGCCTGTT -ACGGAAGTACGAACAACGCGGTTT -ACGGAAGTACGAACAACGGTGGTT -ACGGAAGTACGAACAACGGCCTTT -ACGGAAGTACGAACAACGGGTCTT -ACGGAAGTACGAACAACGACGCTT -ACGGAAGTACGAACAACGAGCGTT -ACGGAAGTACGAACAACGTTCGTC -ACGGAAGTACGAACAACGTCTCTC -ACGGAAGTACGAACAACGTGGATC -ACGGAAGTACGAACAACGCACTTC -ACGGAAGTACGAACAACGGTACTC -ACGGAAGTACGAACAACGGATGTC -ACGGAAGTACGAACAACGACAGTC -ACGGAAGTACGAACAACGTTGCTG -ACGGAAGTACGAACAACGTCCATG -ACGGAAGTACGAACAACGTGTGTG -ACGGAAGTACGAACAACGCTAGTG -ACGGAAGTACGAACAACGCATCTG -ACGGAAGTACGAACAACGGAGTTG -ACGGAAGTACGAACAACGAGACTG -ACGGAAGTACGAACAACGTCGGTA -ACGGAAGTACGAACAACGTGCCTA -ACGGAAGTACGAACAACGCCACTA -ACGGAAGTACGAACAACGGGAGTA -ACGGAAGTACGAACAACGTCGTCT -ACGGAAGTACGAACAACGTGCACT -ACGGAAGTACGAACAACGCTGACT -ACGGAAGTACGAACAACGCAACCT -ACGGAAGTACGAACAACGGCTACT -ACGGAAGTACGAACAACGGGATCT -ACGGAAGTACGAACAACGAAGGCT -ACGGAAGTACGAACAACGTCAACC -ACGGAAGTACGAACAACGTGTTCC -ACGGAAGTACGAACAACGATTCCC -ACGGAAGTACGAACAACGTTCTCG -ACGGAAGTACGAACAACGTAGACG -ACGGAAGTACGAACAACGGTAACG -ACGGAAGTACGAACAACGACTTCG -ACGGAAGTACGAACAACGTACGCA -ACGGAAGTACGAACAACGCTTGCA -ACGGAAGTACGAACAACGCGAACA -ACGGAAGTACGAACAACGCAGTCA -ACGGAAGTACGAACAACGGATCCA -ACGGAAGTACGAACAACGACGACA -ACGGAAGTACGAACAACGAGCTCA -ACGGAAGTACGAACAACGTCACGT -ACGGAAGTACGAACAACGCGTAGT -ACGGAAGTACGAACAACGGTCAGT -ACGGAAGTACGAACAACGGAAGGT -ACGGAAGTACGAACAACGAACCGT -ACGGAAGTACGAACAACGTTGTGC -ACGGAAGTACGAACAACGCTAAGC -ACGGAAGTACGAACAACGACTAGC -ACGGAAGTACGAACAACGAGATGC -ACGGAAGTACGAACAACGTGAAGG -ACGGAAGTACGAACAACGCAATGG -ACGGAAGTACGAACAACGATGAGG -ACGGAAGTACGAACAACGAATGGG -ACGGAAGTACGAACAACGTCCTGA -ACGGAAGTACGAACAACGTAGCGA -ACGGAAGTACGAACAACGCACAGA -ACGGAAGTACGAACAACGGCAAGA -ACGGAAGTACGAACAACGGGTTGA -ACGGAAGTACGAACAACGTCCGAT -ACGGAAGTACGAACAACGTGGCAT -ACGGAAGTACGAACAACGCGAGAT -ACGGAAGTACGAACAACGTACCAC -ACGGAAGTACGAACAACGCAGAAC -ACGGAAGTACGAACAACGGTCTAC -ACGGAAGTACGAACAACGACGTAC -ACGGAAGTACGAACAACGAGTGAC -ACGGAAGTACGAACAACGCTGTAG -ACGGAAGTACGAACAACGCCTAAG -ACGGAAGTACGAACAACGGTTCAG -ACGGAAGTACGAACAACGGCATAG -ACGGAAGTACGAACAACGGACAAG -ACGGAAGTACGAACAACGAAGCAG -ACGGAAGTACGAACAACGCGTCAA -ACGGAAGTACGAACAACGGCTGAA -ACGGAAGTACGAACAACGAGTACG -ACGGAAGTACGAACAACGATCCGA -ACGGAAGTACGAACAACGATGGGA -ACGGAAGTACGAACAACGGTGCAA -ACGGAAGTACGAACAACGGAGGAA -ACGGAAGTACGAACAACGCAGGTA -ACGGAAGTACGAACAACGGACTCT -ACGGAAGTACGAACAACGAGTCCT -ACGGAAGTACGAACAACGTAAGCC -ACGGAAGTACGAACAACGATAGCC -ACGGAAGTACGAACAACGTAACCG -ACGGAAGTACGAACAACGATGCCA -ACGGAAGTACGATCAAGCGGAAAC -ACGGAAGTACGATCAAGCAACACC -ACGGAAGTACGATCAAGCATCGAG -ACGGAAGTACGATCAAGCCTCCTT -ACGGAAGTACGATCAAGCCCTGTT -ACGGAAGTACGATCAAGCCGGTTT -ACGGAAGTACGATCAAGCGTGGTT -ACGGAAGTACGATCAAGCGCCTTT -ACGGAAGTACGATCAAGCGGTCTT -ACGGAAGTACGATCAAGCACGCTT -ACGGAAGTACGATCAAGCAGCGTT -ACGGAAGTACGATCAAGCTTCGTC -ACGGAAGTACGATCAAGCTCTCTC -ACGGAAGTACGATCAAGCTGGATC -ACGGAAGTACGATCAAGCCACTTC -ACGGAAGTACGATCAAGCGTACTC -ACGGAAGTACGATCAAGCGATGTC -ACGGAAGTACGATCAAGCACAGTC -ACGGAAGTACGATCAAGCTTGCTG -ACGGAAGTACGATCAAGCTCCATG -ACGGAAGTACGATCAAGCTGTGTG -ACGGAAGTACGATCAAGCCTAGTG -ACGGAAGTACGATCAAGCCATCTG -ACGGAAGTACGATCAAGCGAGTTG -ACGGAAGTACGATCAAGCAGACTG -ACGGAAGTACGATCAAGCTCGGTA -ACGGAAGTACGATCAAGCTGCCTA -ACGGAAGTACGATCAAGCCCACTA -ACGGAAGTACGATCAAGCGGAGTA -ACGGAAGTACGATCAAGCTCGTCT -ACGGAAGTACGATCAAGCTGCACT -ACGGAAGTACGATCAAGCCTGACT -ACGGAAGTACGATCAAGCCAACCT -ACGGAAGTACGATCAAGCGCTACT -ACGGAAGTACGATCAAGCGGATCT -ACGGAAGTACGATCAAGCAAGGCT -ACGGAAGTACGATCAAGCTCAACC -ACGGAAGTACGATCAAGCTGTTCC -ACGGAAGTACGATCAAGCATTCCC -ACGGAAGTACGATCAAGCTTCTCG -ACGGAAGTACGATCAAGCTAGACG -ACGGAAGTACGATCAAGCGTAACG -ACGGAAGTACGATCAAGCACTTCG -ACGGAAGTACGATCAAGCTACGCA -ACGGAAGTACGATCAAGCCTTGCA -ACGGAAGTACGATCAAGCCGAACA -ACGGAAGTACGATCAAGCCAGTCA -ACGGAAGTACGATCAAGCGATCCA -ACGGAAGTACGATCAAGCACGACA -ACGGAAGTACGATCAAGCAGCTCA -ACGGAAGTACGATCAAGCTCACGT -ACGGAAGTACGATCAAGCCGTAGT -ACGGAAGTACGATCAAGCGTCAGT -ACGGAAGTACGATCAAGCGAAGGT -ACGGAAGTACGATCAAGCAACCGT -ACGGAAGTACGATCAAGCTTGTGC -ACGGAAGTACGATCAAGCCTAAGC -ACGGAAGTACGATCAAGCACTAGC -ACGGAAGTACGATCAAGCAGATGC -ACGGAAGTACGATCAAGCTGAAGG -ACGGAAGTACGATCAAGCCAATGG -ACGGAAGTACGATCAAGCATGAGG -ACGGAAGTACGATCAAGCAATGGG -ACGGAAGTACGATCAAGCTCCTGA -ACGGAAGTACGATCAAGCTAGCGA -ACGGAAGTACGATCAAGCCACAGA -ACGGAAGTACGATCAAGCGCAAGA -ACGGAAGTACGATCAAGCGGTTGA -ACGGAAGTACGATCAAGCTCCGAT -ACGGAAGTACGATCAAGCTGGCAT -ACGGAAGTACGATCAAGCCGAGAT -ACGGAAGTACGATCAAGCTACCAC -ACGGAAGTACGATCAAGCCAGAAC -ACGGAAGTACGATCAAGCGTCTAC -ACGGAAGTACGATCAAGCACGTAC -ACGGAAGTACGATCAAGCAGTGAC -ACGGAAGTACGATCAAGCCTGTAG -ACGGAAGTACGATCAAGCCCTAAG -ACGGAAGTACGATCAAGCGTTCAG -ACGGAAGTACGATCAAGCGCATAG -ACGGAAGTACGATCAAGCGACAAG -ACGGAAGTACGATCAAGCAAGCAG -ACGGAAGTACGATCAAGCCGTCAA -ACGGAAGTACGATCAAGCGCTGAA -ACGGAAGTACGATCAAGCAGTACG -ACGGAAGTACGATCAAGCATCCGA -ACGGAAGTACGATCAAGCATGGGA -ACGGAAGTACGATCAAGCGTGCAA -ACGGAAGTACGATCAAGCGAGGAA -ACGGAAGTACGATCAAGCCAGGTA -ACGGAAGTACGATCAAGCGACTCT -ACGGAAGTACGATCAAGCAGTCCT -ACGGAAGTACGATCAAGCTAAGCC -ACGGAAGTACGATCAAGCATAGCC -ACGGAAGTACGATCAAGCTAACCG -ACGGAAGTACGATCAAGCATGCCA -ACGGAAGTACGACGTTCAGGAAAC -ACGGAAGTACGACGTTCAAACACC -ACGGAAGTACGACGTTCAATCGAG -ACGGAAGTACGACGTTCACTCCTT -ACGGAAGTACGACGTTCACCTGTT -ACGGAAGTACGACGTTCACGGTTT -ACGGAAGTACGACGTTCAGTGGTT -ACGGAAGTACGACGTTCAGCCTTT -ACGGAAGTACGACGTTCAGGTCTT -ACGGAAGTACGACGTTCAACGCTT -ACGGAAGTACGACGTTCAAGCGTT -ACGGAAGTACGACGTTCATTCGTC -ACGGAAGTACGACGTTCATCTCTC -ACGGAAGTACGACGTTCATGGATC -ACGGAAGTACGACGTTCACACTTC -ACGGAAGTACGACGTTCAGTACTC -ACGGAAGTACGACGTTCAGATGTC -ACGGAAGTACGACGTTCAACAGTC -ACGGAAGTACGACGTTCATTGCTG -ACGGAAGTACGACGTTCATCCATG -ACGGAAGTACGACGTTCATGTGTG -ACGGAAGTACGACGTTCACTAGTG -ACGGAAGTACGACGTTCACATCTG -ACGGAAGTACGACGTTCAGAGTTG -ACGGAAGTACGACGTTCAAGACTG -ACGGAAGTACGACGTTCATCGGTA -ACGGAAGTACGACGTTCATGCCTA -ACGGAAGTACGACGTTCACCACTA -ACGGAAGTACGACGTTCAGGAGTA -ACGGAAGTACGACGTTCATCGTCT -ACGGAAGTACGACGTTCATGCACT -ACGGAAGTACGACGTTCACTGACT -ACGGAAGTACGACGTTCACAACCT -ACGGAAGTACGACGTTCAGCTACT -ACGGAAGTACGACGTTCAGGATCT -ACGGAAGTACGACGTTCAAAGGCT -ACGGAAGTACGACGTTCATCAACC -ACGGAAGTACGACGTTCATGTTCC -ACGGAAGTACGACGTTCAATTCCC -ACGGAAGTACGACGTTCATTCTCG -ACGGAAGTACGACGTTCATAGACG -ACGGAAGTACGACGTTCAGTAACG -ACGGAAGTACGACGTTCAACTTCG -ACGGAAGTACGACGTTCATACGCA -ACGGAAGTACGACGTTCACTTGCA -ACGGAAGTACGACGTTCACGAACA -ACGGAAGTACGACGTTCACAGTCA -ACGGAAGTACGACGTTCAGATCCA -ACGGAAGTACGACGTTCAACGACA -ACGGAAGTACGACGTTCAAGCTCA -ACGGAAGTACGACGTTCATCACGT -ACGGAAGTACGACGTTCACGTAGT -ACGGAAGTACGACGTTCAGTCAGT -ACGGAAGTACGACGTTCAGAAGGT -ACGGAAGTACGACGTTCAAACCGT -ACGGAAGTACGACGTTCATTGTGC -ACGGAAGTACGACGTTCACTAAGC -ACGGAAGTACGACGTTCAACTAGC -ACGGAAGTACGACGTTCAAGATGC -ACGGAAGTACGACGTTCATGAAGG -ACGGAAGTACGACGTTCACAATGG -ACGGAAGTACGACGTTCAATGAGG -ACGGAAGTACGACGTTCAAATGGG -ACGGAAGTACGACGTTCATCCTGA -ACGGAAGTACGACGTTCATAGCGA -ACGGAAGTACGACGTTCACACAGA -ACGGAAGTACGACGTTCAGCAAGA -ACGGAAGTACGACGTTCAGGTTGA -ACGGAAGTACGACGTTCATCCGAT -ACGGAAGTACGACGTTCATGGCAT -ACGGAAGTACGACGTTCACGAGAT -ACGGAAGTACGACGTTCATACCAC -ACGGAAGTACGACGTTCACAGAAC -ACGGAAGTACGACGTTCAGTCTAC -ACGGAAGTACGACGTTCAACGTAC -ACGGAAGTACGACGTTCAAGTGAC -ACGGAAGTACGACGTTCACTGTAG -ACGGAAGTACGACGTTCACCTAAG -ACGGAAGTACGACGTTCAGTTCAG -ACGGAAGTACGACGTTCAGCATAG -ACGGAAGTACGACGTTCAGACAAG -ACGGAAGTACGACGTTCAAAGCAG -ACGGAAGTACGACGTTCACGTCAA -ACGGAAGTACGACGTTCAGCTGAA -ACGGAAGTACGACGTTCAAGTACG -ACGGAAGTACGACGTTCAATCCGA -ACGGAAGTACGACGTTCAATGGGA -ACGGAAGTACGACGTTCAGTGCAA -ACGGAAGTACGACGTTCAGAGGAA -ACGGAAGTACGACGTTCACAGGTA -ACGGAAGTACGACGTTCAGACTCT -ACGGAAGTACGACGTTCAAGTCCT -ACGGAAGTACGACGTTCATAAGCC -ACGGAAGTACGACGTTCAATAGCC -ACGGAAGTACGACGTTCATAACCG -ACGGAAGTACGACGTTCAATGCCA -ACGGAAGTACGAAGTCGTGGAAAC -ACGGAAGTACGAAGTCGTAACACC -ACGGAAGTACGAAGTCGTATCGAG -ACGGAAGTACGAAGTCGTCTCCTT -ACGGAAGTACGAAGTCGTCCTGTT -ACGGAAGTACGAAGTCGTCGGTTT -ACGGAAGTACGAAGTCGTGTGGTT -ACGGAAGTACGAAGTCGTGCCTTT -ACGGAAGTACGAAGTCGTGGTCTT -ACGGAAGTACGAAGTCGTACGCTT -ACGGAAGTACGAAGTCGTAGCGTT -ACGGAAGTACGAAGTCGTTTCGTC -ACGGAAGTACGAAGTCGTTCTCTC -ACGGAAGTACGAAGTCGTTGGATC -ACGGAAGTACGAAGTCGTCACTTC -ACGGAAGTACGAAGTCGTGTACTC -ACGGAAGTACGAAGTCGTGATGTC -ACGGAAGTACGAAGTCGTACAGTC -ACGGAAGTACGAAGTCGTTTGCTG -ACGGAAGTACGAAGTCGTTCCATG -ACGGAAGTACGAAGTCGTTGTGTG -ACGGAAGTACGAAGTCGTCTAGTG -ACGGAAGTACGAAGTCGTCATCTG -ACGGAAGTACGAAGTCGTGAGTTG -ACGGAAGTACGAAGTCGTAGACTG -ACGGAAGTACGAAGTCGTTCGGTA -ACGGAAGTACGAAGTCGTTGCCTA -ACGGAAGTACGAAGTCGTCCACTA -ACGGAAGTACGAAGTCGTGGAGTA -ACGGAAGTACGAAGTCGTTCGTCT -ACGGAAGTACGAAGTCGTTGCACT -ACGGAAGTACGAAGTCGTCTGACT -ACGGAAGTACGAAGTCGTCAACCT -ACGGAAGTACGAAGTCGTGCTACT -ACGGAAGTACGAAGTCGTGGATCT -ACGGAAGTACGAAGTCGTAAGGCT -ACGGAAGTACGAAGTCGTTCAACC -ACGGAAGTACGAAGTCGTTGTTCC -ACGGAAGTACGAAGTCGTATTCCC -ACGGAAGTACGAAGTCGTTTCTCG -ACGGAAGTACGAAGTCGTTAGACG -ACGGAAGTACGAAGTCGTGTAACG -ACGGAAGTACGAAGTCGTACTTCG -ACGGAAGTACGAAGTCGTTACGCA -ACGGAAGTACGAAGTCGTCTTGCA -ACGGAAGTACGAAGTCGTCGAACA -ACGGAAGTACGAAGTCGTCAGTCA -ACGGAAGTACGAAGTCGTGATCCA -ACGGAAGTACGAAGTCGTACGACA -ACGGAAGTACGAAGTCGTAGCTCA -ACGGAAGTACGAAGTCGTTCACGT -ACGGAAGTACGAAGTCGTCGTAGT -ACGGAAGTACGAAGTCGTGTCAGT -ACGGAAGTACGAAGTCGTGAAGGT -ACGGAAGTACGAAGTCGTAACCGT -ACGGAAGTACGAAGTCGTTTGTGC -ACGGAAGTACGAAGTCGTCTAAGC -ACGGAAGTACGAAGTCGTACTAGC -ACGGAAGTACGAAGTCGTAGATGC -ACGGAAGTACGAAGTCGTTGAAGG -ACGGAAGTACGAAGTCGTCAATGG -ACGGAAGTACGAAGTCGTATGAGG -ACGGAAGTACGAAGTCGTAATGGG -ACGGAAGTACGAAGTCGTTCCTGA -ACGGAAGTACGAAGTCGTTAGCGA -ACGGAAGTACGAAGTCGTCACAGA -ACGGAAGTACGAAGTCGTGCAAGA -ACGGAAGTACGAAGTCGTGGTTGA -ACGGAAGTACGAAGTCGTTCCGAT -ACGGAAGTACGAAGTCGTTGGCAT -ACGGAAGTACGAAGTCGTCGAGAT -ACGGAAGTACGAAGTCGTTACCAC -ACGGAAGTACGAAGTCGTCAGAAC -ACGGAAGTACGAAGTCGTGTCTAC -ACGGAAGTACGAAGTCGTACGTAC -ACGGAAGTACGAAGTCGTAGTGAC -ACGGAAGTACGAAGTCGTCTGTAG -ACGGAAGTACGAAGTCGTCCTAAG -ACGGAAGTACGAAGTCGTGTTCAG -ACGGAAGTACGAAGTCGTGCATAG -ACGGAAGTACGAAGTCGTGACAAG -ACGGAAGTACGAAGTCGTAAGCAG -ACGGAAGTACGAAGTCGTCGTCAA -ACGGAAGTACGAAGTCGTGCTGAA -ACGGAAGTACGAAGTCGTAGTACG -ACGGAAGTACGAAGTCGTATCCGA -ACGGAAGTACGAAGTCGTATGGGA -ACGGAAGTACGAAGTCGTGTGCAA -ACGGAAGTACGAAGTCGTGAGGAA -ACGGAAGTACGAAGTCGTCAGGTA -ACGGAAGTACGAAGTCGTGACTCT -ACGGAAGTACGAAGTCGTAGTCCT -ACGGAAGTACGAAGTCGTTAAGCC -ACGGAAGTACGAAGTCGTATAGCC -ACGGAAGTACGAAGTCGTTAACCG -ACGGAAGTACGAAGTCGTATGCCA -ACGGAAGTACGAAGTGTCGGAAAC -ACGGAAGTACGAAGTGTCAACACC -ACGGAAGTACGAAGTGTCATCGAG -ACGGAAGTACGAAGTGTCCTCCTT -ACGGAAGTACGAAGTGTCCCTGTT -ACGGAAGTACGAAGTGTCCGGTTT -ACGGAAGTACGAAGTGTCGTGGTT -ACGGAAGTACGAAGTGTCGCCTTT -ACGGAAGTACGAAGTGTCGGTCTT -ACGGAAGTACGAAGTGTCACGCTT -ACGGAAGTACGAAGTGTCAGCGTT -ACGGAAGTACGAAGTGTCTTCGTC -ACGGAAGTACGAAGTGTCTCTCTC -ACGGAAGTACGAAGTGTCTGGATC -ACGGAAGTACGAAGTGTCCACTTC -ACGGAAGTACGAAGTGTCGTACTC -ACGGAAGTACGAAGTGTCGATGTC -ACGGAAGTACGAAGTGTCACAGTC -ACGGAAGTACGAAGTGTCTTGCTG -ACGGAAGTACGAAGTGTCTCCATG -ACGGAAGTACGAAGTGTCTGTGTG -ACGGAAGTACGAAGTGTCCTAGTG -ACGGAAGTACGAAGTGTCCATCTG -ACGGAAGTACGAAGTGTCGAGTTG -ACGGAAGTACGAAGTGTCAGACTG -ACGGAAGTACGAAGTGTCTCGGTA -ACGGAAGTACGAAGTGTCTGCCTA -ACGGAAGTACGAAGTGTCCCACTA -ACGGAAGTACGAAGTGTCGGAGTA -ACGGAAGTACGAAGTGTCTCGTCT -ACGGAAGTACGAAGTGTCTGCACT -ACGGAAGTACGAAGTGTCCTGACT -ACGGAAGTACGAAGTGTCCAACCT -ACGGAAGTACGAAGTGTCGCTACT -ACGGAAGTACGAAGTGTCGGATCT -ACGGAAGTACGAAGTGTCAAGGCT -ACGGAAGTACGAAGTGTCTCAACC -ACGGAAGTACGAAGTGTCTGTTCC -ACGGAAGTACGAAGTGTCATTCCC -ACGGAAGTACGAAGTGTCTTCTCG -ACGGAAGTACGAAGTGTCTAGACG -ACGGAAGTACGAAGTGTCGTAACG -ACGGAAGTACGAAGTGTCACTTCG -ACGGAAGTACGAAGTGTCTACGCA -ACGGAAGTACGAAGTGTCCTTGCA -ACGGAAGTACGAAGTGTCCGAACA -ACGGAAGTACGAAGTGTCCAGTCA -ACGGAAGTACGAAGTGTCGATCCA -ACGGAAGTACGAAGTGTCACGACA -ACGGAAGTACGAAGTGTCAGCTCA -ACGGAAGTACGAAGTGTCTCACGT -ACGGAAGTACGAAGTGTCCGTAGT -ACGGAAGTACGAAGTGTCGTCAGT -ACGGAAGTACGAAGTGTCGAAGGT -ACGGAAGTACGAAGTGTCAACCGT -ACGGAAGTACGAAGTGTCTTGTGC -ACGGAAGTACGAAGTGTCCTAAGC -ACGGAAGTACGAAGTGTCACTAGC -ACGGAAGTACGAAGTGTCAGATGC -ACGGAAGTACGAAGTGTCTGAAGG -ACGGAAGTACGAAGTGTCCAATGG -ACGGAAGTACGAAGTGTCATGAGG -ACGGAAGTACGAAGTGTCAATGGG -ACGGAAGTACGAAGTGTCTCCTGA -ACGGAAGTACGAAGTGTCTAGCGA -ACGGAAGTACGAAGTGTCCACAGA -ACGGAAGTACGAAGTGTCGCAAGA -ACGGAAGTACGAAGTGTCGGTTGA -ACGGAAGTACGAAGTGTCTCCGAT -ACGGAAGTACGAAGTGTCTGGCAT -ACGGAAGTACGAAGTGTCCGAGAT -ACGGAAGTACGAAGTGTCTACCAC -ACGGAAGTACGAAGTGTCCAGAAC -ACGGAAGTACGAAGTGTCGTCTAC -ACGGAAGTACGAAGTGTCACGTAC -ACGGAAGTACGAAGTGTCAGTGAC -ACGGAAGTACGAAGTGTCCTGTAG -ACGGAAGTACGAAGTGTCCCTAAG -ACGGAAGTACGAAGTGTCGTTCAG -ACGGAAGTACGAAGTGTCGCATAG -ACGGAAGTACGAAGTGTCGACAAG -ACGGAAGTACGAAGTGTCAAGCAG -ACGGAAGTACGAAGTGTCCGTCAA -ACGGAAGTACGAAGTGTCGCTGAA -ACGGAAGTACGAAGTGTCAGTACG -ACGGAAGTACGAAGTGTCATCCGA -ACGGAAGTACGAAGTGTCATGGGA -ACGGAAGTACGAAGTGTCGTGCAA -ACGGAAGTACGAAGTGTCGAGGAA -ACGGAAGTACGAAGTGTCCAGGTA -ACGGAAGTACGAAGTGTCGACTCT -ACGGAAGTACGAAGTGTCAGTCCT -ACGGAAGTACGAAGTGTCTAAGCC -ACGGAAGTACGAAGTGTCATAGCC -ACGGAAGTACGAAGTGTCTAACCG -ACGGAAGTACGAAGTGTCATGCCA -ACGGAAGTACGAGGTGAAGGAAAC -ACGGAAGTACGAGGTGAAAACACC -ACGGAAGTACGAGGTGAAATCGAG -ACGGAAGTACGAGGTGAACTCCTT -ACGGAAGTACGAGGTGAACCTGTT -ACGGAAGTACGAGGTGAACGGTTT -ACGGAAGTACGAGGTGAAGTGGTT -ACGGAAGTACGAGGTGAAGCCTTT -ACGGAAGTACGAGGTGAAGGTCTT -ACGGAAGTACGAGGTGAAACGCTT -ACGGAAGTACGAGGTGAAAGCGTT -ACGGAAGTACGAGGTGAATTCGTC -ACGGAAGTACGAGGTGAATCTCTC -ACGGAAGTACGAGGTGAATGGATC -ACGGAAGTACGAGGTGAACACTTC -ACGGAAGTACGAGGTGAAGTACTC -ACGGAAGTACGAGGTGAAGATGTC -ACGGAAGTACGAGGTGAAACAGTC -ACGGAAGTACGAGGTGAATTGCTG -ACGGAAGTACGAGGTGAATCCATG -ACGGAAGTACGAGGTGAATGTGTG -ACGGAAGTACGAGGTGAACTAGTG -ACGGAAGTACGAGGTGAACATCTG -ACGGAAGTACGAGGTGAAGAGTTG -ACGGAAGTACGAGGTGAAAGACTG -ACGGAAGTACGAGGTGAATCGGTA -ACGGAAGTACGAGGTGAATGCCTA -ACGGAAGTACGAGGTGAACCACTA -ACGGAAGTACGAGGTGAAGGAGTA -ACGGAAGTACGAGGTGAATCGTCT -ACGGAAGTACGAGGTGAATGCACT -ACGGAAGTACGAGGTGAACTGACT -ACGGAAGTACGAGGTGAACAACCT -ACGGAAGTACGAGGTGAAGCTACT -ACGGAAGTACGAGGTGAAGGATCT -ACGGAAGTACGAGGTGAAAAGGCT -ACGGAAGTACGAGGTGAATCAACC -ACGGAAGTACGAGGTGAATGTTCC -ACGGAAGTACGAGGTGAAATTCCC -ACGGAAGTACGAGGTGAATTCTCG -ACGGAAGTACGAGGTGAATAGACG -ACGGAAGTACGAGGTGAAGTAACG -ACGGAAGTACGAGGTGAAACTTCG -ACGGAAGTACGAGGTGAATACGCA -ACGGAAGTACGAGGTGAACTTGCA -ACGGAAGTACGAGGTGAACGAACA -ACGGAAGTACGAGGTGAACAGTCA -ACGGAAGTACGAGGTGAAGATCCA -ACGGAAGTACGAGGTGAAACGACA -ACGGAAGTACGAGGTGAAAGCTCA -ACGGAAGTACGAGGTGAATCACGT -ACGGAAGTACGAGGTGAACGTAGT -ACGGAAGTACGAGGTGAAGTCAGT -ACGGAAGTACGAGGTGAAGAAGGT -ACGGAAGTACGAGGTGAAAACCGT -ACGGAAGTACGAGGTGAATTGTGC -ACGGAAGTACGAGGTGAACTAAGC -ACGGAAGTACGAGGTGAAACTAGC -ACGGAAGTACGAGGTGAAAGATGC -ACGGAAGTACGAGGTGAATGAAGG -ACGGAAGTACGAGGTGAACAATGG -ACGGAAGTACGAGGTGAAATGAGG -ACGGAAGTACGAGGTGAAAATGGG -ACGGAAGTACGAGGTGAATCCTGA -ACGGAAGTACGAGGTGAATAGCGA -ACGGAAGTACGAGGTGAACACAGA -ACGGAAGTACGAGGTGAAGCAAGA -ACGGAAGTACGAGGTGAAGGTTGA -ACGGAAGTACGAGGTGAATCCGAT -ACGGAAGTACGAGGTGAATGGCAT -ACGGAAGTACGAGGTGAACGAGAT -ACGGAAGTACGAGGTGAATACCAC -ACGGAAGTACGAGGTGAACAGAAC -ACGGAAGTACGAGGTGAAGTCTAC -ACGGAAGTACGAGGTGAAACGTAC -ACGGAAGTACGAGGTGAAAGTGAC -ACGGAAGTACGAGGTGAACTGTAG -ACGGAAGTACGAGGTGAACCTAAG -ACGGAAGTACGAGGTGAAGTTCAG -ACGGAAGTACGAGGTGAAGCATAG -ACGGAAGTACGAGGTGAAGACAAG -ACGGAAGTACGAGGTGAAAAGCAG -ACGGAAGTACGAGGTGAACGTCAA -ACGGAAGTACGAGGTGAAGCTGAA -ACGGAAGTACGAGGTGAAAGTACG -ACGGAAGTACGAGGTGAAATCCGA -ACGGAAGTACGAGGTGAAATGGGA -ACGGAAGTACGAGGTGAAGTGCAA -ACGGAAGTACGAGGTGAAGAGGAA -ACGGAAGTACGAGGTGAACAGGTA -ACGGAAGTACGAGGTGAAGACTCT -ACGGAAGTACGAGGTGAAAGTCCT -ACGGAAGTACGAGGTGAATAAGCC -ACGGAAGTACGAGGTGAAATAGCC -ACGGAAGTACGAGGTGAATAACCG -ACGGAAGTACGAGGTGAAATGCCA -ACGGAAGTACGACGTAACGGAAAC -ACGGAAGTACGACGTAACAACACC -ACGGAAGTACGACGTAACATCGAG -ACGGAAGTACGACGTAACCTCCTT -ACGGAAGTACGACGTAACCCTGTT -ACGGAAGTACGACGTAACCGGTTT -ACGGAAGTACGACGTAACGTGGTT -ACGGAAGTACGACGTAACGCCTTT -ACGGAAGTACGACGTAACGGTCTT -ACGGAAGTACGACGTAACACGCTT -ACGGAAGTACGACGTAACAGCGTT -ACGGAAGTACGACGTAACTTCGTC -ACGGAAGTACGACGTAACTCTCTC -ACGGAAGTACGACGTAACTGGATC -ACGGAAGTACGACGTAACCACTTC -ACGGAAGTACGACGTAACGTACTC -ACGGAAGTACGACGTAACGATGTC -ACGGAAGTACGACGTAACACAGTC -ACGGAAGTACGACGTAACTTGCTG -ACGGAAGTACGACGTAACTCCATG -ACGGAAGTACGACGTAACTGTGTG -ACGGAAGTACGACGTAACCTAGTG -ACGGAAGTACGACGTAACCATCTG -ACGGAAGTACGACGTAACGAGTTG -ACGGAAGTACGACGTAACAGACTG -ACGGAAGTACGACGTAACTCGGTA -ACGGAAGTACGACGTAACTGCCTA -ACGGAAGTACGACGTAACCCACTA -ACGGAAGTACGACGTAACGGAGTA -ACGGAAGTACGACGTAACTCGTCT -ACGGAAGTACGACGTAACTGCACT -ACGGAAGTACGACGTAACCTGACT -ACGGAAGTACGACGTAACCAACCT -ACGGAAGTACGACGTAACGCTACT -ACGGAAGTACGACGTAACGGATCT -ACGGAAGTACGACGTAACAAGGCT -ACGGAAGTACGACGTAACTCAACC -ACGGAAGTACGACGTAACTGTTCC -ACGGAAGTACGACGTAACATTCCC -ACGGAAGTACGACGTAACTTCTCG -ACGGAAGTACGACGTAACTAGACG -ACGGAAGTACGACGTAACGTAACG -ACGGAAGTACGACGTAACACTTCG -ACGGAAGTACGACGTAACTACGCA -ACGGAAGTACGACGTAACCTTGCA -ACGGAAGTACGACGTAACCGAACA -ACGGAAGTACGACGTAACCAGTCA -ACGGAAGTACGACGTAACGATCCA -ACGGAAGTACGACGTAACACGACA -ACGGAAGTACGACGTAACAGCTCA -ACGGAAGTACGACGTAACTCACGT -ACGGAAGTACGACGTAACCGTAGT -ACGGAAGTACGACGTAACGTCAGT -ACGGAAGTACGACGTAACGAAGGT -ACGGAAGTACGACGTAACAACCGT -ACGGAAGTACGACGTAACTTGTGC -ACGGAAGTACGACGTAACCTAAGC -ACGGAAGTACGACGTAACACTAGC -ACGGAAGTACGACGTAACAGATGC -ACGGAAGTACGACGTAACTGAAGG -ACGGAAGTACGACGTAACCAATGG -ACGGAAGTACGACGTAACATGAGG -ACGGAAGTACGACGTAACAATGGG -ACGGAAGTACGACGTAACTCCTGA -ACGGAAGTACGACGTAACTAGCGA -ACGGAAGTACGACGTAACCACAGA -ACGGAAGTACGACGTAACGCAAGA -ACGGAAGTACGACGTAACGGTTGA -ACGGAAGTACGACGTAACTCCGAT -ACGGAAGTACGACGTAACTGGCAT -ACGGAAGTACGACGTAACCGAGAT -ACGGAAGTACGACGTAACTACCAC -ACGGAAGTACGACGTAACCAGAAC -ACGGAAGTACGACGTAACGTCTAC -ACGGAAGTACGACGTAACACGTAC -ACGGAAGTACGACGTAACAGTGAC -ACGGAAGTACGACGTAACCTGTAG -ACGGAAGTACGACGTAACCCTAAG -ACGGAAGTACGACGTAACGTTCAG -ACGGAAGTACGACGTAACGCATAG -ACGGAAGTACGACGTAACGACAAG -ACGGAAGTACGACGTAACAAGCAG -ACGGAAGTACGACGTAACCGTCAA -ACGGAAGTACGACGTAACGCTGAA -ACGGAAGTACGACGTAACAGTACG -ACGGAAGTACGACGTAACATCCGA -ACGGAAGTACGACGTAACATGGGA -ACGGAAGTACGACGTAACGTGCAA -ACGGAAGTACGACGTAACGAGGAA -ACGGAAGTACGACGTAACCAGGTA -ACGGAAGTACGACGTAACGACTCT -ACGGAAGTACGACGTAACAGTCCT -ACGGAAGTACGACGTAACTAAGCC -ACGGAAGTACGACGTAACATAGCC -ACGGAAGTACGACGTAACTAACCG -ACGGAAGTACGACGTAACATGCCA -ACGGAAGTACGATGCTTGGGAAAC -ACGGAAGTACGATGCTTGAACACC -ACGGAAGTACGATGCTTGATCGAG -ACGGAAGTACGATGCTTGCTCCTT -ACGGAAGTACGATGCTTGCCTGTT -ACGGAAGTACGATGCTTGCGGTTT -ACGGAAGTACGATGCTTGGTGGTT -ACGGAAGTACGATGCTTGGCCTTT -ACGGAAGTACGATGCTTGGGTCTT -ACGGAAGTACGATGCTTGACGCTT -ACGGAAGTACGATGCTTGAGCGTT -ACGGAAGTACGATGCTTGTTCGTC -ACGGAAGTACGATGCTTGTCTCTC -ACGGAAGTACGATGCTTGTGGATC -ACGGAAGTACGATGCTTGCACTTC -ACGGAAGTACGATGCTTGGTACTC -ACGGAAGTACGATGCTTGGATGTC -ACGGAAGTACGATGCTTGACAGTC -ACGGAAGTACGATGCTTGTTGCTG -ACGGAAGTACGATGCTTGTCCATG -ACGGAAGTACGATGCTTGTGTGTG -ACGGAAGTACGATGCTTGCTAGTG -ACGGAAGTACGATGCTTGCATCTG -ACGGAAGTACGATGCTTGGAGTTG -ACGGAAGTACGATGCTTGAGACTG -ACGGAAGTACGATGCTTGTCGGTA -ACGGAAGTACGATGCTTGTGCCTA -ACGGAAGTACGATGCTTGCCACTA -ACGGAAGTACGATGCTTGGGAGTA -ACGGAAGTACGATGCTTGTCGTCT -ACGGAAGTACGATGCTTGTGCACT -ACGGAAGTACGATGCTTGCTGACT -ACGGAAGTACGATGCTTGCAACCT -ACGGAAGTACGATGCTTGGCTACT -ACGGAAGTACGATGCTTGGGATCT -ACGGAAGTACGATGCTTGAAGGCT -ACGGAAGTACGATGCTTGTCAACC -ACGGAAGTACGATGCTTGTGTTCC -ACGGAAGTACGATGCTTGATTCCC -ACGGAAGTACGATGCTTGTTCTCG -ACGGAAGTACGATGCTTGTAGACG -ACGGAAGTACGATGCTTGGTAACG -ACGGAAGTACGATGCTTGACTTCG -ACGGAAGTACGATGCTTGTACGCA -ACGGAAGTACGATGCTTGCTTGCA -ACGGAAGTACGATGCTTGCGAACA -ACGGAAGTACGATGCTTGCAGTCA -ACGGAAGTACGATGCTTGGATCCA -ACGGAAGTACGATGCTTGACGACA -ACGGAAGTACGATGCTTGAGCTCA -ACGGAAGTACGATGCTTGTCACGT -ACGGAAGTACGATGCTTGCGTAGT -ACGGAAGTACGATGCTTGGTCAGT -ACGGAAGTACGATGCTTGGAAGGT -ACGGAAGTACGATGCTTGAACCGT -ACGGAAGTACGATGCTTGTTGTGC -ACGGAAGTACGATGCTTGCTAAGC -ACGGAAGTACGATGCTTGACTAGC -ACGGAAGTACGATGCTTGAGATGC -ACGGAAGTACGATGCTTGTGAAGG -ACGGAAGTACGATGCTTGCAATGG -ACGGAAGTACGATGCTTGATGAGG -ACGGAAGTACGATGCTTGAATGGG -ACGGAAGTACGATGCTTGTCCTGA -ACGGAAGTACGATGCTTGTAGCGA -ACGGAAGTACGATGCTTGCACAGA -ACGGAAGTACGATGCTTGGCAAGA -ACGGAAGTACGATGCTTGGGTTGA -ACGGAAGTACGATGCTTGTCCGAT -ACGGAAGTACGATGCTTGTGGCAT -ACGGAAGTACGATGCTTGCGAGAT -ACGGAAGTACGATGCTTGTACCAC -ACGGAAGTACGATGCTTGCAGAAC -ACGGAAGTACGATGCTTGGTCTAC -ACGGAAGTACGATGCTTGACGTAC -ACGGAAGTACGATGCTTGAGTGAC -ACGGAAGTACGATGCTTGCTGTAG -ACGGAAGTACGATGCTTGCCTAAG -ACGGAAGTACGATGCTTGGTTCAG -ACGGAAGTACGATGCTTGGCATAG -ACGGAAGTACGATGCTTGGACAAG -ACGGAAGTACGATGCTTGAAGCAG -ACGGAAGTACGATGCTTGCGTCAA -ACGGAAGTACGATGCTTGGCTGAA -ACGGAAGTACGATGCTTGAGTACG -ACGGAAGTACGATGCTTGATCCGA -ACGGAAGTACGATGCTTGATGGGA -ACGGAAGTACGATGCTTGGTGCAA -ACGGAAGTACGATGCTTGGAGGAA -ACGGAAGTACGATGCTTGCAGGTA -ACGGAAGTACGATGCTTGGACTCT -ACGGAAGTACGATGCTTGAGTCCT -ACGGAAGTACGATGCTTGTAAGCC -ACGGAAGTACGATGCTTGATAGCC -ACGGAAGTACGATGCTTGTAACCG -ACGGAAGTACGATGCTTGATGCCA -ACGGAAGTACGAAGCCTAGGAAAC -ACGGAAGTACGAAGCCTAAACACC -ACGGAAGTACGAAGCCTAATCGAG -ACGGAAGTACGAAGCCTACTCCTT -ACGGAAGTACGAAGCCTACCTGTT -ACGGAAGTACGAAGCCTACGGTTT -ACGGAAGTACGAAGCCTAGTGGTT -ACGGAAGTACGAAGCCTAGCCTTT -ACGGAAGTACGAAGCCTAGGTCTT -ACGGAAGTACGAAGCCTAACGCTT -ACGGAAGTACGAAGCCTAAGCGTT -ACGGAAGTACGAAGCCTATTCGTC -ACGGAAGTACGAAGCCTATCTCTC -ACGGAAGTACGAAGCCTATGGATC -ACGGAAGTACGAAGCCTACACTTC -ACGGAAGTACGAAGCCTAGTACTC -ACGGAAGTACGAAGCCTAGATGTC -ACGGAAGTACGAAGCCTAACAGTC -ACGGAAGTACGAAGCCTATTGCTG -ACGGAAGTACGAAGCCTATCCATG -ACGGAAGTACGAAGCCTATGTGTG -ACGGAAGTACGAAGCCTACTAGTG -ACGGAAGTACGAAGCCTACATCTG -ACGGAAGTACGAAGCCTAGAGTTG -ACGGAAGTACGAAGCCTAAGACTG -ACGGAAGTACGAAGCCTATCGGTA -ACGGAAGTACGAAGCCTATGCCTA -ACGGAAGTACGAAGCCTACCACTA -ACGGAAGTACGAAGCCTAGGAGTA -ACGGAAGTACGAAGCCTATCGTCT -ACGGAAGTACGAAGCCTATGCACT -ACGGAAGTACGAAGCCTACTGACT -ACGGAAGTACGAAGCCTACAACCT -ACGGAAGTACGAAGCCTAGCTACT -ACGGAAGTACGAAGCCTAGGATCT -ACGGAAGTACGAAGCCTAAAGGCT -ACGGAAGTACGAAGCCTATCAACC -ACGGAAGTACGAAGCCTATGTTCC -ACGGAAGTACGAAGCCTAATTCCC -ACGGAAGTACGAAGCCTATTCTCG -ACGGAAGTACGAAGCCTATAGACG -ACGGAAGTACGAAGCCTAGTAACG -ACGGAAGTACGAAGCCTAACTTCG -ACGGAAGTACGAAGCCTATACGCA -ACGGAAGTACGAAGCCTACTTGCA -ACGGAAGTACGAAGCCTACGAACA -ACGGAAGTACGAAGCCTACAGTCA -ACGGAAGTACGAAGCCTAGATCCA -ACGGAAGTACGAAGCCTAACGACA -ACGGAAGTACGAAGCCTAAGCTCA -ACGGAAGTACGAAGCCTATCACGT -ACGGAAGTACGAAGCCTACGTAGT -ACGGAAGTACGAAGCCTAGTCAGT -ACGGAAGTACGAAGCCTAGAAGGT -ACGGAAGTACGAAGCCTAAACCGT -ACGGAAGTACGAAGCCTATTGTGC -ACGGAAGTACGAAGCCTACTAAGC -ACGGAAGTACGAAGCCTAACTAGC -ACGGAAGTACGAAGCCTAAGATGC -ACGGAAGTACGAAGCCTATGAAGG -ACGGAAGTACGAAGCCTACAATGG -ACGGAAGTACGAAGCCTAATGAGG -ACGGAAGTACGAAGCCTAAATGGG -ACGGAAGTACGAAGCCTATCCTGA -ACGGAAGTACGAAGCCTATAGCGA -ACGGAAGTACGAAGCCTACACAGA -ACGGAAGTACGAAGCCTAGCAAGA -ACGGAAGTACGAAGCCTAGGTTGA -ACGGAAGTACGAAGCCTATCCGAT -ACGGAAGTACGAAGCCTATGGCAT -ACGGAAGTACGAAGCCTACGAGAT -ACGGAAGTACGAAGCCTATACCAC -ACGGAAGTACGAAGCCTACAGAAC -ACGGAAGTACGAAGCCTAGTCTAC -ACGGAAGTACGAAGCCTAACGTAC -ACGGAAGTACGAAGCCTAAGTGAC -ACGGAAGTACGAAGCCTACTGTAG -ACGGAAGTACGAAGCCTACCTAAG -ACGGAAGTACGAAGCCTAGTTCAG -ACGGAAGTACGAAGCCTAGCATAG -ACGGAAGTACGAAGCCTAGACAAG -ACGGAAGTACGAAGCCTAAAGCAG -ACGGAAGTACGAAGCCTACGTCAA -ACGGAAGTACGAAGCCTAGCTGAA -ACGGAAGTACGAAGCCTAAGTACG -ACGGAAGTACGAAGCCTAATCCGA -ACGGAAGTACGAAGCCTAATGGGA -ACGGAAGTACGAAGCCTAGTGCAA -ACGGAAGTACGAAGCCTAGAGGAA -ACGGAAGTACGAAGCCTACAGGTA -ACGGAAGTACGAAGCCTAGACTCT -ACGGAAGTACGAAGCCTAAGTCCT -ACGGAAGTACGAAGCCTATAAGCC -ACGGAAGTACGAAGCCTAATAGCC -ACGGAAGTACGAAGCCTATAACCG -ACGGAAGTACGAAGCCTAATGCCA -ACGGAAGTACGAAGCACTGGAAAC -ACGGAAGTACGAAGCACTAACACC -ACGGAAGTACGAAGCACTATCGAG -ACGGAAGTACGAAGCACTCTCCTT -ACGGAAGTACGAAGCACTCCTGTT -ACGGAAGTACGAAGCACTCGGTTT -ACGGAAGTACGAAGCACTGTGGTT -ACGGAAGTACGAAGCACTGCCTTT -ACGGAAGTACGAAGCACTGGTCTT -ACGGAAGTACGAAGCACTACGCTT -ACGGAAGTACGAAGCACTAGCGTT -ACGGAAGTACGAAGCACTTTCGTC -ACGGAAGTACGAAGCACTTCTCTC -ACGGAAGTACGAAGCACTTGGATC -ACGGAAGTACGAAGCACTCACTTC -ACGGAAGTACGAAGCACTGTACTC -ACGGAAGTACGAAGCACTGATGTC -ACGGAAGTACGAAGCACTACAGTC -ACGGAAGTACGAAGCACTTTGCTG -ACGGAAGTACGAAGCACTTCCATG -ACGGAAGTACGAAGCACTTGTGTG -ACGGAAGTACGAAGCACTCTAGTG -ACGGAAGTACGAAGCACTCATCTG -ACGGAAGTACGAAGCACTGAGTTG -ACGGAAGTACGAAGCACTAGACTG -ACGGAAGTACGAAGCACTTCGGTA -ACGGAAGTACGAAGCACTTGCCTA -ACGGAAGTACGAAGCACTCCACTA -ACGGAAGTACGAAGCACTGGAGTA -ACGGAAGTACGAAGCACTTCGTCT -ACGGAAGTACGAAGCACTTGCACT -ACGGAAGTACGAAGCACTCTGACT -ACGGAAGTACGAAGCACTCAACCT -ACGGAAGTACGAAGCACTGCTACT -ACGGAAGTACGAAGCACTGGATCT -ACGGAAGTACGAAGCACTAAGGCT -ACGGAAGTACGAAGCACTTCAACC -ACGGAAGTACGAAGCACTTGTTCC -ACGGAAGTACGAAGCACTATTCCC -ACGGAAGTACGAAGCACTTTCTCG -ACGGAAGTACGAAGCACTTAGACG -ACGGAAGTACGAAGCACTGTAACG -ACGGAAGTACGAAGCACTACTTCG -ACGGAAGTACGAAGCACTTACGCA -ACGGAAGTACGAAGCACTCTTGCA -ACGGAAGTACGAAGCACTCGAACA -ACGGAAGTACGAAGCACTCAGTCA -ACGGAAGTACGAAGCACTGATCCA -ACGGAAGTACGAAGCACTACGACA -ACGGAAGTACGAAGCACTAGCTCA -ACGGAAGTACGAAGCACTTCACGT -ACGGAAGTACGAAGCACTCGTAGT -ACGGAAGTACGAAGCACTGTCAGT -ACGGAAGTACGAAGCACTGAAGGT -ACGGAAGTACGAAGCACTAACCGT -ACGGAAGTACGAAGCACTTTGTGC -ACGGAAGTACGAAGCACTCTAAGC -ACGGAAGTACGAAGCACTACTAGC -ACGGAAGTACGAAGCACTAGATGC -ACGGAAGTACGAAGCACTTGAAGG -ACGGAAGTACGAAGCACTCAATGG -ACGGAAGTACGAAGCACTATGAGG -ACGGAAGTACGAAGCACTAATGGG -ACGGAAGTACGAAGCACTTCCTGA -ACGGAAGTACGAAGCACTTAGCGA -ACGGAAGTACGAAGCACTCACAGA -ACGGAAGTACGAAGCACTGCAAGA -ACGGAAGTACGAAGCACTGGTTGA -ACGGAAGTACGAAGCACTTCCGAT -ACGGAAGTACGAAGCACTTGGCAT -ACGGAAGTACGAAGCACTCGAGAT -ACGGAAGTACGAAGCACTTACCAC -ACGGAAGTACGAAGCACTCAGAAC -ACGGAAGTACGAAGCACTGTCTAC -ACGGAAGTACGAAGCACTACGTAC -ACGGAAGTACGAAGCACTAGTGAC -ACGGAAGTACGAAGCACTCTGTAG -ACGGAAGTACGAAGCACTCCTAAG -ACGGAAGTACGAAGCACTGTTCAG -ACGGAAGTACGAAGCACTGCATAG -ACGGAAGTACGAAGCACTGACAAG -ACGGAAGTACGAAGCACTAAGCAG -ACGGAAGTACGAAGCACTCGTCAA -ACGGAAGTACGAAGCACTGCTGAA -ACGGAAGTACGAAGCACTAGTACG -ACGGAAGTACGAAGCACTATCCGA -ACGGAAGTACGAAGCACTATGGGA -ACGGAAGTACGAAGCACTGTGCAA -ACGGAAGTACGAAGCACTGAGGAA -ACGGAAGTACGAAGCACTCAGGTA -ACGGAAGTACGAAGCACTGACTCT -ACGGAAGTACGAAGCACTAGTCCT -ACGGAAGTACGAAGCACTTAAGCC -ACGGAAGTACGAAGCACTATAGCC -ACGGAAGTACGAAGCACTTAACCG -ACGGAAGTACGAAGCACTATGCCA -ACGGAAGTACGATGCAGAGGAAAC -ACGGAAGTACGATGCAGAAACACC -ACGGAAGTACGATGCAGAATCGAG -ACGGAAGTACGATGCAGACTCCTT -ACGGAAGTACGATGCAGACCTGTT -ACGGAAGTACGATGCAGACGGTTT -ACGGAAGTACGATGCAGAGTGGTT -ACGGAAGTACGATGCAGAGCCTTT -ACGGAAGTACGATGCAGAGGTCTT -ACGGAAGTACGATGCAGAACGCTT -ACGGAAGTACGATGCAGAAGCGTT -ACGGAAGTACGATGCAGATTCGTC -ACGGAAGTACGATGCAGATCTCTC -ACGGAAGTACGATGCAGATGGATC -ACGGAAGTACGATGCAGACACTTC -ACGGAAGTACGATGCAGAGTACTC -ACGGAAGTACGATGCAGAGATGTC -ACGGAAGTACGATGCAGAACAGTC -ACGGAAGTACGATGCAGATTGCTG -ACGGAAGTACGATGCAGATCCATG -ACGGAAGTACGATGCAGATGTGTG -ACGGAAGTACGATGCAGACTAGTG -ACGGAAGTACGATGCAGACATCTG -ACGGAAGTACGATGCAGAGAGTTG -ACGGAAGTACGATGCAGAAGACTG -ACGGAAGTACGATGCAGATCGGTA -ACGGAAGTACGATGCAGATGCCTA -ACGGAAGTACGATGCAGACCACTA -ACGGAAGTACGATGCAGAGGAGTA -ACGGAAGTACGATGCAGATCGTCT -ACGGAAGTACGATGCAGATGCACT -ACGGAAGTACGATGCAGACTGACT -ACGGAAGTACGATGCAGACAACCT -ACGGAAGTACGATGCAGAGCTACT -ACGGAAGTACGATGCAGAGGATCT -ACGGAAGTACGATGCAGAAAGGCT -ACGGAAGTACGATGCAGATCAACC -ACGGAAGTACGATGCAGATGTTCC -ACGGAAGTACGATGCAGAATTCCC -ACGGAAGTACGATGCAGATTCTCG -ACGGAAGTACGATGCAGATAGACG -ACGGAAGTACGATGCAGAGTAACG -ACGGAAGTACGATGCAGAACTTCG -ACGGAAGTACGATGCAGATACGCA -ACGGAAGTACGATGCAGACTTGCA -ACGGAAGTACGATGCAGACGAACA -ACGGAAGTACGATGCAGACAGTCA -ACGGAAGTACGATGCAGAGATCCA -ACGGAAGTACGATGCAGAACGACA -ACGGAAGTACGATGCAGAAGCTCA -ACGGAAGTACGATGCAGATCACGT -ACGGAAGTACGATGCAGACGTAGT -ACGGAAGTACGATGCAGAGTCAGT -ACGGAAGTACGATGCAGAGAAGGT -ACGGAAGTACGATGCAGAAACCGT -ACGGAAGTACGATGCAGATTGTGC -ACGGAAGTACGATGCAGACTAAGC -ACGGAAGTACGATGCAGAACTAGC -ACGGAAGTACGATGCAGAAGATGC -ACGGAAGTACGATGCAGATGAAGG -ACGGAAGTACGATGCAGACAATGG -ACGGAAGTACGATGCAGAATGAGG -ACGGAAGTACGATGCAGAAATGGG -ACGGAAGTACGATGCAGATCCTGA -ACGGAAGTACGATGCAGATAGCGA -ACGGAAGTACGATGCAGACACAGA -ACGGAAGTACGATGCAGAGCAAGA -ACGGAAGTACGATGCAGAGGTTGA -ACGGAAGTACGATGCAGATCCGAT -ACGGAAGTACGATGCAGATGGCAT -ACGGAAGTACGATGCAGACGAGAT -ACGGAAGTACGATGCAGATACCAC -ACGGAAGTACGATGCAGACAGAAC -ACGGAAGTACGATGCAGAGTCTAC -ACGGAAGTACGATGCAGAACGTAC -ACGGAAGTACGATGCAGAAGTGAC -ACGGAAGTACGATGCAGACTGTAG -ACGGAAGTACGATGCAGACCTAAG -ACGGAAGTACGATGCAGAGTTCAG -ACGGAAGTACGATGCAGAGCATAG -ACGGAAGTACGATGCAGAGACAAG -ACGGAAGTACGATGCAGAAAGCAG -ACGGAAGTACGATGCAGACGTCAA -ACGGAAGTACGATGCAGAGCTGAA -ACGGAAGTACGATGCAGAAGTACG -ACGGAAGTACGATGCAGAATCCGA -ACGGAAGTACGATGCAGAATGGGA -ACGGAAGTACGATGCAGAGTGCAA -ACGGAAGTACGATGCAGAGAGGAA -ACGGAAGTACGATGCAGACAGGTA -ACGGAAGTACGATGCAGAGACTCT -ACGGAAGTACGATGCAGAAGTCCT -ACGGAAGTACGATGCAGATAAGCC -ACGGAAGTACGATGCAGAATAGCC -ACGGAAGTACGATGCAGATAACCG -ACGGAAGTACGATGCAGAATGCCA -ACGGAAGTACGAAGGTGAGGAAAC -ACGGAAGTACGAAGGTGAAACACC -ACGGAAGTACGAAGGTGAATCGAG -ACGGAAGTACGAAGGTGACTCCTT -ACGGAAGTACGAAGGTGACCTGTT -ACGGAAGTACGAAGGTGACGGTTT -ACGGAAGTACGAAGGTGAGTGGTT -ACGGAAGTACGAAGGTGAGCCTTT -ACGGAAGTACGAAGGTGAGGTCTT -ACGGAAGTACGAAGGTGAACGCTT -ACGGAAGTACGAAGGTGAAGCGTT -ACGGAAGTACGAAGGTGATTCGTC -ACGGAAGTACGAAGGTGATCTCTC -ACGGAAGTACGAAGGTGATGGATC -ACGGAAGTACGAAGGTGACACTTC -ACGGAAGTACGAAGGTGAGTACTC -ACGGAAGTACGAAGGTGAGATGTC -ACGGAAGTACGAAGGTGAACAGTC -ACGGAAGTACGAAGGTGATTGCTG -ACGGAAGTACGAAGGTGATCCATG -ACGGAAGTACGAAGGTGATGTGTG -ACGGAAGTACGAAGGTGACTAGTG -ACGGAAGTACGAAGGTGACATCTG -ACGGAAGTACGAAGGTGAGAGTTG -ACGGAAGTACGAAGGTGAAGACTG -ACGGAAGTACGAAGGTGATCGGTA -ACGGAAGTACGAAGGTGATGCCTA -ACGGAAGTACGAAGGTGACCACTA -ACGGAAGTACGAAGGTGAGGAGTA -ACGGAAGTACGAAGGTGATCGTCT -ACGGAAGTACGAAGGTGATGCACT -ACGGAAGTACGAAGGTGACTGACT -ACGGAAGTACGAAGGTGACAACCT -ACGGAAGTACGAAGGTGAGCTACT -ACGGAAGTACGAAGGTGAGGATCT -ACGGAAGTACGAAGGTGAAAGGCT -ACGGAAGTACGAAGGTGATCAACC -ACGGAAGTACGAAGGTGATGTTCC -ACGGAAGTACGAAGGTGAATTCCC -ACGGAAGTACGAAGGTGATTCTCG -ACGGAAGTACGAAGGTGATAGACG -ACGGAAGTACGAAGGTGAGTAACG -ACGGAAGTACGAAGGTGAACTTCG -ACGGAAGTACGAAGGTGATACGCA -ACGGAAGTACGAAGGTGACTTGCA -ACGGAAGTACGAAGGTGACGAACA -ACGGAAGTACGAAGGTGACAGTCA -ACGGAAGTACGAAGGTGAGATCCA -ACGGAAGTACGAAGGTGAACGACA -ACGGAAGTACGAAGGTGAAGCTCA -ACGGAAGTACGAAGGTGATCACGT -ACGGAAGTACGAAGGTGACGTAGT -ACGGAAGTACGAAGGTGAGTCAGT -ACGGAAGTACGAAGGTGAGAAGGT -ACGGAAGTACGAAGGTGAAACCGT -ACGGAAGTACGAAGGTGATTGTGC -ACGGAAGTACGAAGGTGACTAAGC -ACGGAAGTACGAAGGTGAACTAGC -ACGGAAGTACGAAGGTGAAGATGC -ACGGAAGTACGAAGGTGATGAAGG -ACGGAAGTACGAAGGTGACAATGG -ACGGAAGTACGAAGGTGAATGAGG -ACGGAAGTACGAAGGTGAAATGGG -ACGGAAGTACGAAGGTGATCCTGA -ACGGAAGTACGAAGGTGATAGCGA -ACGGAAGTACGAAGGTGACACAGA -ACGGAAGTACGAAGGTGAGCAAGA -ACGGAAGTACGAAGGTGAGGTTGA -ACGGAAGTACGAAGGTGATCCGAT -ACGGAAGTACGAAGGTGATGGCAT -ACGGAAGTACGAAGGTGACGAGAT -ACGGAAGTACGAAGGTGATACCAC -ACGGAAGTACGAAGGTGACAGAAC -ACGGAAGTACGAAGGTGAGTCTAC -ACGGAAGTACGAAGGTGAACGTAC -ACGGAAGTACGAAGGTGAAGTGAC -ACGGAAGTACGAAGGTGACTGTAG -ACGGAAGTACGAAGGTGACCTAAG -ACGGAAGTACGAAGGTGAGTTCAG -ACGGAAGTACGAAGGTGAGCATAG -ACGGAAGTACGAAGGTGAGACAAG -ACGGAAGTACGAAGGTGAAAGCAG -ACGGAAGTACGAAGGTGACGTCAA -ACGGAAGTACGAAGGTGAGCTGAA -ACGGAAGTACGAAGGTGAAGTACG -ACGGAAGTACGAAGGTGAATCCGA -ACGGAAGTACGAAGGTGAATGGGA -ACGGAAGTACGAAGGTGAGTGCAA -ACGGAAGTACGAAGGTGAGAGGAA -ACGGAAGTACGAAGGTGACAGGTA -ACGGAAGTACGAAGGTGAGACTCT -ACGGAAGTACGAAGGTGAAGTCCT -ACGGAAGTACGAAGGTGATAAGCC -ACGGAAGTACGAAGGTGAATAGCC -ACGGAAGTACGAAGGTGATAACCG -ACGGAAGTACGAAGGTGAATGCCA -ACGGAAGTACGATGGCAAGGAAAC -ACGGAAGTACGATGGCAAAACACC -ACGGAAGTACGATGGCAAATCGAG -ACGGAAGTACGATGGCAACTCCTT -ACGGAAGTACGATGGCAACCTGTT -ACGGAAGTACGATGGCAACGGTTT -ACGGAAGTACGATGGCAAGTGGTT -ACGGAAGTACGATGGCAAGCCTTT -ACGGAAGTACGATGGCAAGGTCTT -ACGGAAGTACGATGGCAAACGCTT -ACGGAAGTACGATGGCAAAGCGTT -ACGGAAGTACGATGGCAATTCGTC -ACGGAAGTACGATGGCAATCTCTC -ACGGAAGTACGATGGCAATGGATC -ACGGAAGTACGATGGCAACACTTC -ACGGAAGTACGATGGCAAGTACTC -ACGGAAGTACGATGGCAAGATGTC -ACGGAAGTACGATGGCAAACAGTC -ACGGAAGTACGATGGCAATTGCTG -ACGGAAGTACGATGGCAATCCATG -ACGGAAGTACGATGGCAATGTGTG -ACGGAAGTACGATGGCAACTAGTG -ACGGAAGTACGATGGCAACATCTG -ACGGAAGTACGATGGCAAGAGTTG -ACGGAAGTACGATGGCAAAGACTG -ACGGAAGTACGATGGCAATCGGTA -ACGGAAGTACGATGGCAATGCCTA -ACGGAAGTACGATGGCAACCACTA -ACGGAAGTACGATGGCAAGGAGTA -ACGGAAGTACGATGGCAATCGTCT -ACGGAAGTACGATGGCAATGCACT -ACGGAAGTACGATGGCAACTGACT -ACGGAAGTACGATGGCAACAACCT -ACGGAAGTACGATGGCAAGCTACT -ACGGAAGTACGATGGCAAGGATCT -ACGGAAGTACGATGGCAAAAGGCT -ACGGAAGTACGATGGCAATCAACC -ACGGAAGTACGATGGCAATGTTCC -ACGGAAGTACGATGGCAAATTCCC -ACGGAAGTACGATGGCAATTCTCG -ACGGAAGTACGATGGCAATAGACG -ACGGAAGTACGATGGCAAGTAACG -ACGGAAGTACGATGGCAAACTTCG -ACGGAAGTACGATGGCAATACGCA -ACGGAAGTACGATGGCAACTTGCA -ACGGAAGTACGATGGCAACGAACA -ACGGAAGTACGATGGCAACAGTCA -ACGGAAGTACGATGGCAAGATCCA -ACGGAAGTACGATGGCAAACGACA -ACGGAAGTACGATGGCAAAGCTCA -ACGGAAGTACGATGGCAATCACGT -ACGGAAGTACGATGGCAACGTAGT -ACGGAAGTACGATGGCAAGTCAGT -ACGGAAGTACGATGGCAAGAAGGT -ACGGAAGTACGATGGCAAAACCGT -ACGGAAGTACGATGGCAATTGTGC -ACGGAAGTACGATGGCAACTAAGC -ACGGAAGTACGATGGCAAACTAGC -ACGGAAGTACGATGGCAAAGATGC -ACGGAAGTACGATGGCAATGAAGG -ACGGAAGTACGATGGCAACAATGG -ACGGAAGTACGATGGCAAATGAGG -ACGGAAGTACGATGGCAAAATGGG -ACGGAAGTACGATGGCAATCCTGA -ACGGAAGTACGATGGCAATAGCGA -ACGGAAGTACGATGGCAACACAGA -ACGGAAGTACGATGGCAAGCAAGA -ACGGAAGTACGATGGCAAGGTTGA -ACGGAAGTACGATGGCAATCCGAT -ACGGAAGTACGATGGCAATGGCAT -ACGGAAGTACGATGGCAACGAGAT -ACGGAAGTACGATGGCAATACCAC -ACGGAAGTACGATGGCAACAGAAC -ACGGAAGTACGATGGCAAGTCTAC -ACGGAAGTACGATGGCAAACGTAC -ACGGAAGTACGATGGCAAAGTGAC -ACGGAAGTACGATGGCAACTGTAG -ACGGAAGTACGATGGCAACCTAAG -ACGGAAGTACGATGGCAAGTTCAG -ACGGAAGTACGATGGCAAGCATAG -ACGGAAGTACGATGGCAAGACAAG -ACGGAAGTACGATGGCAAAAGCAG -ACGGAAGTACGATGGCAACGTCAA -ACGGAAGTACGATGGCAAGCTGAA -ACGGAAGTACGATGGCAAAGTACG -ACGGAAGTACGATGGCAAATCCGA -ACGGAAGTACGATGGCAAATGGGA -ACGGAAGTACGATGGCAAGTGCAA -ACGGAAGTACGATGGCAAGAGGAA -ACGGAAGTACGATGGCAACAGGTA -ACGGAAGTACGATGGCAAGACTCT -ACGGAAGTACGATGGCAAAGTCCT -ACGGAAGTACGATGGCAATAAGCC -ACGGAAGTACGATGGCAAATAGCC -ACGGAAGTACGATGGCAATAACCG -ACGGAAGTACGATGGCAAATGCCA -ACGGAAGTACGAAGGATGGGAAAC -ACGGAAGTACGAAGGATGAACACC -ACGGAAGTACGAAGGATGATCGAG -ACGGAAGTACGAAGGATGCTCCTT -ACGGAAGTACGAAGGATGCCTGTT -ACGGAAGTACGAAGGATGCGGTTT -ACGGAAGTACGAAGGATGGTGGTT -ACGGAAGTACGAAGGATGGCCTTT -ACGGAAGTACGAAGGATGGGTCTT -ACGGAAGTACGAAGGATGACGCTT -ACGGAAGTACGAAGGATGAGCGTT -ACGGAAGTACGAAGGATGTTCGTC -ACGGAAGTACGAAGGATGTCTCTC -ACGGAAGTACGAAGGATGTGGATC -ACGGAAGTACGAAGGATGCACTTC -ACGGAAGTACGAAGGATGGTACTC -ACGGAAGTACGAAGGATGGATGTC -ACGGAAGTACGAAGGATGACAGTC -ACGGAAGTACGAAGGATGTTGCTG -ACGGAAGTACGAAGGATGTCCATG -ACGGAAGTACGAAGGATGTGTGTG -ACGGAAGTACGAAGGATGCTAGTG -ACGGAAGTACGAAGGATGCATCTG -ACGGAAGTACGAAGGATGGAGTTG -ACGGAAGTACGAAGGATGAGACTG -ACGGAAGTACGAAGGATGTCGGTA -ACGGAAGTACGAAGGATGTGCCTA -ACGGAAGTACGAAGGATGCCACTA -ACGGAAGTACGAAGGATGGGAGTA -ACGGAAGTACGAAGGATGTCGTCT -ACGGAAGTACGAAGGATGTGCACT -ACGGAAGTACGAAGGATGCTGACT -ACGGAAGTACGAAGGATGCAACCT -ACGGAAGTACGAAGGATGGCTACT -ACGGAAGTACGAAGGATGGGATCT -ACGGAAGTACGAAGGATGAAGGCT -ACGGAAGTACGAAGGATGTCAACC -ACGGAAGTACGAAGGATGTGTTCC -ACGGAAGTACGAAGGATGATTCCC -ACGGAAGTACGAAGGATGTTCTCG -ACGGAAGTACGAAGGATGTAGACG -ACGGAAGTACGAAGGATGGTAACG -ACGGAAGTACGAAGGATGACTTCG -ACGGAAGTACGAAGGATGTACGCA -ACGGAAGTACGAAGGATGCTTGCA -ACGGAAGTACGAAGGATGCGAACA -ACGGAAGTACGAAGGATGCAGTCA -ACGGAAGTACGAAGGATGGATCCA -ACGGAAGTACGAAGGATGACGACA -ACGGAAGTACGAAGGATGAGCTCA -ACGGAAGTACGAAGGATGTCACGT -ACGGAAGTACGAAGGATGCGTAGT -ACGGAAGTACGAAGGATGGTCAGT -ACGGAAGTACGAAGGATGGAAGGT -ACGGAAGTACGAAGGATGAACCGT -ACGGAAGTACGAAGGATGTTGTGC -ACGGAAGTACGAAGGATGCTAAGC -ACGGAAGTACGAAGGATGACTAGC -ACGGAAGTACGAAGGATGAGATGC -ACGGAAGTACGAAGGATGTGAAGG -ACGGAAGTACGAAGGATGCAATGG -ACGGAAGTACGAAGGATGATGAGG -ACGGAAGTACGAAGGATGAATGGG -ACGGAAGTACGAAGGATGTCCTGA -ACGGAAGTACGAAGGATGTAGCGA -ACGGAAGTACGAAGGATGCACAGA -ACGGAAGTACGAAGGATGGCAAGA -ACGGAAGTACGAAGGATGGGTTGA -ACGGAAGTACGAAGGATGTCCGAT -ACGGAAGTACGAAGGATGTGGCAT -ACGGAAGTACGAAGGATGCGAGAT -ACGGAAGTACGAAGGATGTACCAC -ACGGAAGTACGAAGGATGCAGAAC -ACGGAAGTACGAAGGATGGTCTAC -ACGGAAGTACGAAGGATGACGTAC -ACGGAAGTACGAAGGATGAGTGAC -ACGGAAGTACGAAGGATGCTGTAG -ACGGAAGTACGAAGGATGCCTAAG -ACGGAAGTACGAAGGATGGTTCAG -ACGGAAGTACGAAGGATGGCATAG -ACGGAAGTACGAAGGATGGACAAG -ACGGAAGTACGAAGGATGAAGCAG -ACGGAAGTACGAAGGATGCGTCAA -ACGGAAGTACGAAGGATGGCTGAA -ACGGAAGTACGAAGGATGAGTACG -ACGGAAGTACGAAGGATGATCCGA -ACGGAAGTACGAAGGATGATGGGA -ACGGAAGTACGAAGGATGGTGCAA -ACGGAAGTACGAAGGATGGAGGAA -ACGGAAGTACGAAGGATGCAGGTA -ACGGAAGTACGAAGGATGGACTCT -ACGGAAGTACGAAGGATGAGTCCT -ACGGAAGTACGAAGGATGTAAGCC -ACGGAAGTACGAAGGATGATAGCC -ACGGAAGTACGAAGGATGTAACCG -ACGGAAGTACGAAGGATGATGCCA -ACGGAAGTACGAGGGAATGGAAAC -ACGGAAGTACGAGGGAATAACACC -ACGGAAGTACGAGGGAATATCGAG -ACGGAAGTACGAGGGAATCTCCTT -ACGGAAGTACGAGGGAATCCTGTT -ACGGAAGTACGAGGGAATCGGTTT -ACGGAAGTACGAGGGAATGTGGTT -ACGGAAGTACGAGGGAATGCCTTT -ACGGAAGTACGAGGGAATGGTCTT -ACGGAAGTACGAGGGAATACGCTT -ACGGAAGTACGAGGGAATAGCGTT -ACGGAAGTACGAGGGAATTTCGTC -ACGGAAGTACGAGGGAATTCTCTC -ACGGAAGTACGAGGGAATTGGATC -ACGGAAGTACGAGGGAATCACTTC -ACGGAAGTACGAGGGAATGTACTC -ACGGAAGTACGAGGGAATGATGTC -ACGGAAGTACGAGGGAATACAGTC -ACGGAAGTACGAGGGAATTTGCTG -ACGGAAGTACGAGGGAATTCCATG -ACGGAAGTACGAGGGAATTGTGTG -ACGGAAGTACGAGGGAATCTAGTG -ACGGAAGTACGAGGGAATCATCTG -ACGGAAGTACGAGGGAATGAGTTG -ACGGAAGTACGAGGGAATAGACTG -ACGGAAGTACGAGGGAATTCGGTA -ACGGAAGTACGAGGGAATTGCCTA -ACGGAAGTACGAGGGAATCCACTA -ACGGAAGTACGAGGGAATGGAGTA -ACGGAAGTACGAGGGAATTCGTCT -ACGGAAGTACGAGGGAATTGCACT -ACGGAAGTACGAGGGAATCTGACT -ACGGAAGTACGAGGGAATCAACCT -ACGGAAGTACGAGGGAATGCTACT -ACGGAAGTACGAGGGAATGGATCT -ACGGAAGTACGAGGGAATAAGGCT -ACGGAAGTACGAGGGAATTCAACC -ACGGAAGTACGAGGGAATTGTTCC -ACGGAAGTACGAGGGAATATTCCC -ACGGAAGTACGAGGGAATTTCTCG -ACGGAAGTACGAGGGAATTAGACG -ACGGAAGTACGAGGGAATGTAACG -ACGGAAGTACGAGGGAATACTTCG -ACGGAAGTACGAGGGAATTACGCA -ACGGAAGTACGAGGGAATCTTGCA -ACGGAAGTACGAGGGAATCGAACA -ACGGAAGTACGAGGGAATCAGTCA -ACGGAAGTACGAGGGAATGATCCA -ACGGAAGTACGAGGGAATACGACA -ACGGAAGTACGAGGGAATAGCTCA -ACGGAAGTACGAGGGAATTCACGT -ACGGAAGTACGAGGGAATCGTAGT -ACGGAAGTACGAGGGAATGTCAGT -ACGGAAGTACGAGGGAATGAAGGT -ACGGAAGTACGAGGGAATAACCGT -ACGGAAGTACGAGGGAATTTGTGC -ACGGAAGTACGAGGGAATCTAAGC -ACGGAAGTACGAGGGAATACTAGC -ACGGAAGTACGAGGGAATAGATGC -ACGGAAGTACGAGGGAATTGAAGG -ACGGAAGTACGAGGGAATCAATGG -ACGGAAGTACGAGGGAATATGAGG -ACGGAAGTACGAGGGAATAATGGG -ACGGAAGTACGAGGGAATTCCTGA -ACGGAAGTACGAGGGAATTAGCGA -ACGGAAGTACGAGGGAATCACAGA -ACGGAAGTACGAGGGAATGCAAGA -ACGGAAGTACGAGGGAATGGTTGA -ACGGAAGTACGAGGGAATTCCGAT -ACGGAAGTACGAGGGAATTGGCAT -ACGGAAGTACGAGGGAATCGAGAT -ACGGAAGTACGAGGGAATTACCAC -ACGGAAGTACGAGGGAATCAGAAC -ACGGAAGTACGAGGGAATGTCTAC -ACGGAAGTACGAGGGAATACGTAC -ACGGAAGTACGAGGGAATAGTGAC -ACGGAAGTACGAGGGAATCTGTAG -ACGGAAGTACGAGGGAATCCTAAG -ACGGAAGTACGAGGGAATGTTCAG -ACGGAAGTACGAGGGAATGCATAG -ACGGAAGTACGAGGGAATGACAAG -ACGGAAGTACGAGGGAATAAGCAG -ACGGAAGTACGAGGGAATCGTCAA -ACGGAAGTACGAGGGAATGCTGAA -ACGGAAGTACGAGGGAATAGTACG -ACGGAAGTACGAGGGAATATCCGA -ACGGAAGTACGAGGGAATATGGGA -ACGGAAGTACGAGGGAATGTGCAA -ACGGAAGTACGAGGGAATGAGGAA -ACGGAAGTACGAGGGAATCAGGTA -ACGGAAGTACGAGGGAATGACTCT -ACGGAAGTACGAGGGAATAGTCCT -ACGGAAGTACGAGGGAATTAAGCC -ACGGAAGTACGAGGGAATATAGCC -ACGGAAGTACGAGGGAATTAACCG -ACGGAAGTACGAGGGAATATGCCA -ACGGAAGTACGATGATCCGGAAAC -ACGGAAGTACGATGATCCAACACC -ACGGAAGTACGATGATCCATCGAG -ACGGAAGTACGATGATCCCTCCTT -ACGGAAGTACGATGATCCCCTGTT -ACGGAAGTACGATGATCCCGGTTT -ACGGAAGTACGATGATCCGTGGTT -ACGGAAGTACGATGATCCGCCTTT -ACGGAAGTACGATGATCCGGTCTT -ACGGAAGTACGATGATCCACGCTT -ACGGAAGTACGATGATCCAGCGTT -ACGGAAGTACGATGATCCTTCGTC -ACGGAAGTACGATGATCCTCTCTC -ACGGAAGTACGATGATCCTGGATC -ACGGAAGTACGATGATCCCACTTC -ACGGAAGTACGATGATCCGTACTC -ACGGAAGTACGATGATCCGATGTC -ACGGAAGTACGATGATCCACAGTC -ACGGAAGTACGATGATCCTTGCTG -ACGGAAGTACGATGATCCTCCATG -ACGGAAGTACGATGATCCTGTGTG -ACGGAAGTACGATGATCCCTAGTG -ACGGAAGTACGATGATCCCATCTG -ACGGAAGTACGATGATCCGAGTTG -ACGGAAGTACGATGATCCAGACTG -ACGGAAGTACGATGATCCTCGGTA -ACGGAAGTACGATGATCCTGCCTA -ACGGAAGTACGATGATCCCCACTA -ACGGAAGTACGATGATCCGGAGTA -ACGGAAGTACGATGATCCTCGTCT -ACGGAAGTACGATGATCCTGCACT -ACGGAAGTACGATGATCCCTGACT -ACGGAAGTACGATGATCCCAACCT -ACGGAAGTACGATGATCCGCTACT -ACGGAAGTACGATGATCCGGATCT -ACGGAAGTACGATGATCCAAGGCT -ACGGAAGTACGATGATCCTCAACC -ACGGAAGTACGATGATCCTGTTCC -ACGGAAGTACGATGATCCATTCCC -ACGGAAGTACGATGATCCTTCTCG -ACGGAAGTACGATGATCCTAGACG -ACGGAAGTACGATGATCCGTAACG -ACGGAAGTACGATGATCCACTTCG -ACGGAAGTACGATGATCCTACGCA -ACGGAAGTACGATGATCCCTTGCA -ACGGAAGTACGATGATCCCGAACA -ACGGAAGTACGATGATCCCAGTCA -ACGGAAGTACGATGATCCGATCCA -ACGGAAGTACGATGATCCACGACA -ACGGAAGTACGATGATCCAGCTCA -ACGGAAGTACGATGATCCTCACGT -ACGGAAGTACGATGATCCCGTAGT -ACGGAAGTACGATGATCCGTCAGT -ACGGAAGTACGATGATCCGAAGGT -ACGGAAGTACGATGATCCAACCGT -ACGGAAGTACGATGATCCTTGTGC -ACGGAAGTACGATGATCCCTAAGC -ACGGAAGTACGATGATCCACTAGC -ACGGAAGTACGATGATCCAGATGC -ACGGAAGTACGATGATCCTGAAGG -ACGGAAGTACGATGATCCCAATGG -ACGGAAGTACGATGATCCATGAGG -ACGGAAGTACGATGATCCAATGGG -ACGGAAGTACGATGATCCTCCTGA -ACGGAAGTACGATGATCCTAGCGA -ACGGAAGTACGATGATCCCACAGA -ACGGAAGTACGATGATCCGCAAGA -ACGGAAGTACGATGATCCGGTTGA -ACGGAAGTACGATGATCCTCCGAT -ACGGAAGTACGATGATCCTGGCAT -ACGGAAGTACGATGATCCCGAGAT -ACGGAAGTACGATGATCCTACCAC -ACGGAAGTACGATGATCCCAGAAC -ACGGAAGTACGATGATCCGTCTAC -ACGGAAGTACGATGATCCACGTAC -ACGGAAGTACGATGATCCAGTGAC -ACGGAAGTACGATGATCCCTGTAG -ACGGAAGTACGATGATCCCCTAAG -ACGGAAGTACGATGATCCGTTCAG -ACGGAAGTACGATGATCCGCATAG -ACGGAAGTACGATGATCCGACAAG -ACGGAAGTACGATGATCCAAGCAG -ACGGAAGTACGATGATCCCGTCAA -ACGGAAGTACGATGATCCGCTGAA -ACGGAAGTACGATGATCCAGTACG -ACGGAAGTACGATGATCCATCCGA -ACGGAAGTACGATGATCCATGGGA -ACGGAAGTACGATGATCCGTGCAA -ACGGAAGTACGATGATCCGAGGAA -ACGGAAGTACGATGATCCCAGGTA -ACGGAAGTACGATGATCCGACTCT -ACGGAAGTACGATGATCCAGTCCT -ACGGAAGTACGATGATCCTAAGCC -ACGGAAGTACGATGATCCATAGCC -ACGGAAGTACGATGATCCTAACCG -ACGGAAGTACGATGATCCATGCCA -ACGGAAGTACGACGATAGGGAAAC -ACGGAAGTACGACGATAGAACACC -ACGGAAGTACGACGATAGATCGAG -ACGGAAGTACGACGATAGCTCCTT -ACGGAAGTACGACGATAGCCTGTT -ACGGAAGTACGACGATAGCGGTTT -ACGGAAGTACGACGATAGGTGGTT -ACGGAAGTACGACGATAGGCCTTT -ACGGAAGTACGACGATAGGGTCTT -ACGGAAGTACGACGATAGACGCTT -ACGGAAGTACGACGATAGAGCGTT -ACGGAAGTACGACGATAGTTCGTC -ACGGAAGTACGACGATAGTCTCTC -ACGGAAGTACGACGATAGTGGATC -ACGGAAGTACGACGATAGCACTTC -ACGGAAGTACGACGATAGGTACTC -ACGGAAGTACGACGATAGGATGTC -ACGGAAGTACGACGATAGACAGTC -ACGGAAGTACGACGATAGTTGCTG -ACGGAAGTACGACGATAGTCCATG -ACGGAAGTACGACGATAGTGTGTG -ACGGAAGTACGACGATAGCTAGTG -ACGGAAGTACGACGATAGCATCTG -ACGGAAGTACGACGATAGGAGTTG -ACGGAAGTACGACGATAGAGACTG -ACGGAAGTACGACGATAGTCGGTA -ACGGAAGTACGACGATAGTGCCTA -ACGGAAGTACGACGATAGCCACTA -ACGGAAGTACGACGATAGGGAGTA -ACGGAAGTACGACGATAGTCGTCT -ACGGAAGTACGACGATAGTGCACT -ACGGAAGTACGACGATAGCTGACT -ACGGAAGTACGACGATAGCAACCT -ACGGAAGTACGACGATAGGCTACT -ACGGAAGTACGACGATAGGGATCT -ACGGAAGTACGACGATAGAAGGCT -ACGGAAGTACGACGATAGTCAACC -ACGGAAGTACGACGATAGTGTTCC -ACGGAAGTACGACGATAGATTCCC -ACGGAAGTACGACGATAGTTCTCG -ACGGAAGTACGACGATAGTAGACG -ACGGAAGTACGACGATAGGTAACG -ACGGAAGTACGACGATAGACTTCG -ACGGAAGTACGACGATAGTACGCA -ACGGAAGTACGACGATAGCTTGCA -ACGGAAGTACGACGATAGCGAACA -ACGGAAGTACGACGATAGCAGTCA -ACGGAAGTACGACGATAGGATCCA -ACGGAAGTACGACGATAGACGACA -ACGGAAGTACGACGATAGAGCTCA -ACGGAAGTACGACGATAGTCACGT -ACGGAAGTACGACGATAGCGTAGT -ACGGAAGTACGACGATAGGTCAGT -ACGGAAGTACGACGATAGGAAGGT -ACGGAAGTACGACGATAGAACCGT -ACGGAAGTACGACGATAGTTGTGC -ACGGAAGTACGACGATAGCTAAGC -ACGGAAGTACGACGATAGACTAGC -ACGGAAGTACGACGATAGAGATGC -ACGGAAGTACGACGATAGTGAAGG -ACGGAAGTACGACGATAGCAATGG -ACGGAAGTACGACGATAGATGAGG -ACGGAAGTACGACGATAGAATGGG -ACGGAAGTACGACGATAGTCCTGA -ACGGAAGTACGACGATAGTAGCGA -ACGGAAGTACGACGATAGCACAGA -ACGGAAGTACGACGATAGGCAAGA -ACGGAAGTACGACGATAGGGTTGA -ACGGAAGTACGACGATAGTCCGAT -ACGGAAGTACGACGATAGTGGCAT -ACGGAAGTACGACGATAGCGAGAT -ACGGAAGTACGACGATAGTACCAC -ACGGAAGTACGACGATAGCAGAAC -ACGGAAGTACGACGATAGGTCTAC -ACGGAAGTACGACGATAGACGTAC -ACGGAAGTACGACGATAGAGTGAC -ACGGAAGTACGACGATAGCTGTAG -ACGGAAGTACGACGATAGCCTAAG -ACGGAAGTACGACGATAGGTTCAG -ACGGAAGTACGACGATAGGCATAG -ACGGAAGTACGACGATAGGACAAG -ACGGAAGTACGACGATAGAAGCAG -ACGGAAGTACGACGATAGCGTCAA -ACGGAAGTACGACGATAGGCTGAA -ACGGAAGTACGACGATAGAGTACG -ACGGAAGTACGACGATAGATCCGA -ACGGAAGTACGACGATAGATGGGA -ACGGAAGTACGACGATAGGTGCAA -ACGGAAGTACGACGATAGGAGGAA -ACGGAAGTACGACGATAGCAGGTA -ACGGAAGTACGACGATAGGACTCT -ACGGAAGTACGACGATAGAGTCCT -ACGGAAGTACGACGATAGTAAGCC -ACGGAAGTACGACGATAGATAGCC -ACGGAAGTACGACGATAGTAACCG -ACGGAAGTACGACGATAGATGCCA -ACGGAAGTACGAAGACACGGAAAC -ACGGAAGTACGAAGACACAACACC -ACGGAAGTACGAAGACACATCGAG -ACGGAAGTACGAAGACACCTCCTT -ACGGAAGTACGAAGACACCCTGTT -ACGGAAGTACGAAGACACCGGTTT -ACGGAAGTACGAAGACACGTGGTT -ACGGAAGTACGAAGACACGCCTTT -ACGGAAGTACGAAGACACGGTCTT -ACGGAAGTACGAAGACACACGCTT -ACGGAAGTACGAAGACACAGCGTT -ACGGAAGTACGAAGACACTTCGTC -ACGGAAGTACGAAGACACTCTCTC -ACGGAAGTACGAAGACACTGGATC -ACGGAAGTACGAAGACACCACTTC -ACGGAAGTACGAAGACACGTACTC -ACGGAAGTACGAAGACACGATGTC -ACGGAAGTACGAAGACACACAGTC -ACGGAAGTACGAAGACACTTGCTG -ACGGAAGTACGAAGACACTCCATG -ACGGAAGTACGAAGACACTGTGTG -ACGGAAGTACGAAGACACCTAGTG -ACGGAAGTACGAAGACACCATCTG -ACGGAAGTACGAAGACACGAGTTG -ACGGAAGTACGAAGACACAGACTG -ACGGAAGTACGAAGACACTCGGTA -ACGGAAGTACGAAGACACTGCCTA -ACGGAAGTACGAAGACACCCACTA -ACGGAAGTACGAAGACACGGAGTA -ACGGAAGTACGAAGACACTCGTCT -ACGGAAGTACGAAGACACTGCACT -ACGGAAGTACGAAGACACCTGACT -ACGGAAGTACGAAGACACCAACCT -ACGGAAGTACGAAGACACGCTACT -ACGGAAGTACGAAGACACGGATCT -ACGGAAGTACGAAGACACAAGGCT -ACGGAAGTACGAAGACACTCAACC -ACGGAAGTACGAAGACACTGTTCC -ACGGAAGTACGAAGACACATTCCC -ACGGAAGTACGAAGACACTTCTCG -ACGGAAGTACGAAGACACTAGACG -ACGGAAGTACGAAGACACGTAACG -ACGGAAGTACGAAGACACACTTCG -ACGGAAGTACGAAGACACTACGCA -ACGGAAGTACGAAGACACCTTGCA -ACGGAAGTACGAAGACACCGAACA -ACGGAAGTACGAAGACACCAGTCA -ACGGAAGTACGAAGACACGATCCA -ACGGAAGTACGAAGACACACGACA -ACGGAAGTACGAAGACACAGCTCA -ACGGAAGTACGAAGACACTCACGT -ACGGAAGTACGAAGACACCGTAGT -ACGGAAGTACGAAGACACGTCAGT -ACGGAAGTACGAAGACACGAAGGT -ACGGAAGTACGAAGACACAACCGT -ACGGAAGTACGAAGACACTTGTGC -ACGGAAGTACGAAGACACCTAAGC -ACGGAAGTACGAAGACACACTAGC -ACGGAAGTACGAAGACACAGATGC -ACGGAAGTACGAAGACACTGAAGG -ACGGAAGTACGAAGACACCAATGG -ACGGAAGTACGAAGACACATGAGG -ACGGAAGTACGAAGACACAATGGG -ACGGAAGTACGAAGACACTCCTGA -ACGGAAGTACGAAGACACTAGCGA -ACGGAAGTACGAAGACACCACAGA -ACGGAAGTACGAAGACACGCAAGA -ACGGAAGTACGAAGACACGGTTGA -ACGGAAGTACGAAGACACTCCGAT -ACGGAAGTACGAAGACACTGGCAT -ACGGAAGTACGAAGACACCGAGAT -ACGGAAGTACGAAGACACTACCAC -ACGGAAGTACGAAGACACCAGAAC -ACGGAAGTACGAAGACACGTCTAC -ACGGAAGTACGAAGACACACGTAC -ACGGAAGTACGAAGACACAGTGAC -ACGGAAGTACGAAGACACCTGTAG -ACGGAAGTACGAAGACACCCTAAG -ACGGAAGTACGAAGACACGTTCAG -ACGGAAGTACGAAGACACGCATAG -ACGGAAGTACGAAGACACGACAAG -ACGGAAGTACGAAGACACAAGCAG -ACGGAAGTACGAAGACACCGTCAA -ACGGAAGTACGAAGACACGCTGAA -ACGGAAGTACGAAGACACAGTACG -ACGGAAGTACGAAGACACATCCGA -ACGGAAGTACGAAGACACATGGGA -ACGGAAGTACGAAGACACGTGCAA -ACGGAAGTACGAAGACACGAGGAA -ACGGAAGTACGAAGACACCAGGTA -ACGGAAGTACGAAGACACGACTCT -ACGGAAGTACGAAGACACAGTCCT -ACGGAAGTACGAAGACACTAAGCC -ACGGAAGTACGAAGACACATAGCC -ACGGAAGTACGAAGACACTAACCG -ACGGAAGTACGAAGACACATGCCA -ACGGAAGTACGAAGAGCAGGAAAC -ACGGAAGTACGAAGAGCAAACACC -ACGGAAGTACGAAGAGCAATCGAG -ACGGAAGTACGAAGAGCACTCCTT -ACGGAAGTACGAAGAGCACCTGTT -ACGGAAGTACGAAGAGCACGGTTT -ACGGAAGTACGAAGAGCAGTGGTT -ACGGAAGTACGAAGAGCAGCCTTT -ACGGAAGTACGAAGAGCAGGTCTT -ACGGAAGTACGAAGAGCAACGCTT -ACGGAAGTACGAAGAGCAAGCGTT -ACGGAAGTACGAAGAGCATTCGTC -ACGGAAGTACGAAGAGCATCTCTC -ACGGAAGTACGAAGAGCATGGATC -ACGGAAGTACGAAGAGCACACTTC -ACGGAAGTACGAAGAGCAGTACTC -ACGGAAGTACGAAGAGCAGATGTC -ACGGAAGTACGAAGAGCAACAGTC -ACGGAAGTACGAAGAGCATTGCTG -ACGGAAGTACGAAGAGCATCCATG -ACGGAAGTACGAAGAGCATGTGTG -ACGGAAGTACGAAGAGCACTAGTG -ACGGAAGTACGAAGAGCACATCTG -ACGGAAGTACGAAGAGCAGAGTTG -ACGGAAGTACGAAGAGCAAGACTG -ACGGAAGTACGAAGAGCATCGGTA -ACGGAAGTACGAAGAGCATGCCTA -ACGGAAGTACGAAGAGCACCACTA -ACGGAAGTACGAAGAGCAGGAGTA -ACGGAAGTACGAAGAGCATCGTCT -ACGGAAGTACGAAGAGCATGCACT -ACGGAAGTACGAAGAGCACTGACT -ACGGAAGTACGAAGAGCACAACCT -ACGGAAGTACGAAGAGCAGCTACT -ACGGAAGTACGAAGAGCAGGATCT -ACGGAAGTACGAAGAGCAAAGGCT -ACGGAAGTACGAAGAGCATCAACC -ACGGAAGTACGAAGAGCATGTTCC -ACGGAAGTACGAAGAGCAATTCCC -ACGGAAGTACGAAGAGCATTCTCG -ACGGAAGTACGAAGAGCATAGACG -ACGGAAGTACGAAGAGCAGTAACG -ACGGAAGTACGAAGAGCAACTTCG -ACGGAAGTACGAAGAGCATACGCA -ACGGAAGTACGAAGAGCACTTGCA -ACGGAAGTACGAAGAGCACGAACA -ACGGAAGTACGAAGAGCACAGTCA -ACGGAAGTACGAAGAGCAGATCCA -ACGGAAGTACGAAGAGCAACGACA -ACGGAAGTACGAAGAGCAAGCTCA -ACGGAAGTACGAAGAGCATCACGT -ACGGAAGTACGAAGAGCACGTAGT -ACGGAAGTACGAAGAGCAGTCAGT -ACGGAAGTACGAAGAGCAGAAGGT -ACGGAAGTACGAAGAGCAAACCGT -ACGGAAGTACGAAGAGCATTGTGC -ACGGAAGTACGAAGAGCACTAAGC -ACGGAAGTACGAAGAGCAACTAGC -ACGGAAGTACGAAGAGCAAGATGC -ACGGAAGTACGAAGAGCATGAAGG -ACGGAAGTACGAAGAGCACAATGG -ACGGAAGTACGAAGAGCAATGAGG -ACGGAAGTACGAAGAGCAAATGGG -ACGGAAGTACGAAGAGCATCCTGA -ACGGAAGTACGAAGAGCATAGCGA -ACGGAAGTACGAAGAGCACACAGA -ACGGAAGTACGAAGAGCAGCAAGA -ACGGAAGTACGAAGAGCAGGTTGA -ACGGAAGTACGAAGAGCATCCGAT -ACGGAAGTACGAAGAGCATGGCAT -ACGGAAGTACGAAGAGCACGAGAT -ACGGAAGTACGAAGAGCATACCAC -ACGGAAGTACGAAGAGCACAGAAC -ACGGAAGTACGAAGAGCAGTCTAC -ACGGAAGTACGAAGAGCAACGTAC -ACGGAAGTACGAAGAGCAAGTGAC -ACGGAAGTACGAAGAGCACTGTAG -ACGGAAGTACGAAGAGCACCTAAG -ACGGAAGTACGAAGAGCAGTTCAG -ACGGAAGTACGAAGAGCAGCATAG -ACGGAAGTACGAAGAGCAGACAAG -ACGGAAGTACGAAGAGCAAAGCAG -ACGGAAGTACGAAGAGCACGTCAA -ACGGAAGTACGAAGAGCAGCTGAA -ACGGAAGTACGAAGAGCAAGTACG -ACGGAAGTACGAAGAGCAATCCGA -ACGGAAGTACGAAGAGCAATGGGA -ACGGAAGTACGAAGAGCAGTGCAA -ACGGAAGTACGAAGAGCAGAGGAA -ACGGAAGTACGAAGAGCACAGGTA -ACGGAAGTACGAAGAGCAGACTCT -ACGGAAGTACGAAGAGCAAGTCCT -ACGGAAGTACGAAGAGCATAAGCC -ACGGAAGTACGAAGAGCAATAGCC -ACGGAAGTACGAAGAGCATAACCG -ACGGAAGTACGAAGAGCAATGCCA -ACGGAAGTACGATGAGGTGGAAAC -ACGGAAGTACGATGAGGTAACACC -ACGGAAGTACGATGAGGTATCGAG -ACGGAAGTACGATGAGGTCTCCTT -ACGGAAGTACGATGAGGTCCTGTT -ACGGAAGTACGATGAGGTCGGTTT -ACGGAAGTACGATGAGGTGTGGTT -ACGGAAGTACGATGAGGTGCCTTT -ACGGAAGTACGATGAGGTGGTCTT -ACGGAAGTACGATGAGGTACGCTT -ACGGAAGTACGATGAGGTAGCGTT -ACGGAAGTACGATGAGGTTTCGTC -ACGGAAGTACGATGAGGTTCTCTC -ACGGAAGTACGATGAGGTTGGATC -ACGGAAGTACGATGAGGTCACTTC -ACGGAAGTACGATGAGGTGTACTC -ACGGAAGTACGATGAGGTGATGTC -ACGGAAGTACGATGAGGTACAGTC -ACGGAAGTACGATGAGGTTTGCTG -ACGGAAGTACGATGAGGTTCCATG -ACGGAAGTACGATGAGGTTGTGTG -ACGGAAGTACGATGAGGTCTAGTG -ACGGAAGTACGATGAGGTCATCTG -ACGGAAGTACGATGAGGTGAGTTG -ACGGAAGTACGATGAGGTAGACTG -ACGGAAGTACGATGAGGTTCGGTA -ACGGAAGTACGATGAGGTTGCCTA -ACGGAAGTACGATGAGGTCCACTA -ACGGAAGTACGATGAGGTGGAGTA -ACGGAAGTACGATGAGGTTCGTCT -ACGGAAGTACGATGAGGTTGCACT -ACGGAAGTACGATGAGGTCTGACT -ACGGAAGTACGATGAGGTCAACCT -ACGGAAGTACGATGAGGTGCTACT -ACGGAAGTACGATGAGGTGGATCT -ACGGAAGTACGATGAGGTAAGGCT -ACGGAAGTACGATGAGGTTCAACC -ACGGAAGTACGATGAGGTTGTTCC -ACGGAAGTACGATGAGGTATTCCC -ACGGAAGTACGATGAGGTTTCTCG -ACGGAAGTACGATGAGGTTAGACG -ACGGAAGTACGATGAGGTGTAACG -ACGGAAGTACGATGAGGTACTTCG -ACGGAAGTACGATGAGGTTACGCA -ACGGAAGTACGATGAGGTCTTGCA -ACGGAAGTACGATGAGGTCGAACA -ACGGAAGTACGATGAGGTCAGTCA -ACGGAAGTACGATGAGGTGATCCA -ACGGAAGTACGATGAGGTACGACA -ACGGAAGTACGATGAGGTAGCTCA -ACGGAAGTACGATGAGGTTCACGT -ACGGAAGTACGATGAGGTCGTAGT -ACGGAAGTACGATGAGGTGTCAGT -ACGGAAGTACGATGAGGTGAAGGT -ACGGAAGTACGATGAGGTAACCGT -ACGGAAGTACGATGAGGTTTGTGC -ACGGAAGTACGATGAGGTCTAAGC -ACGGAAGTACGATGAGGTACTAGC -ACGGAAGTACGATGAGGTAGATGC -ACGGAAGTACGATGAGGTTGAAGG -ACGGAAGTACGATGAGGTCAATGG -ACGGAAGTACGATGAGGTATGAGG -ACGGAAGTACGATGAGGTAATGGG -ACGGAAGTACGATGAGGTTCCTGA -ACGGAAGTACGATGAGGTTAGCGA -ACGGAAGTACGATGAGGTCACAGA -ACGGAAGTACGATGAGGTGCAAGA -ACGGAAGTACGATGAGGTGGTTGA -ACGGAAGTACGATGAGGTTCCGAT -ACGGAAGTACGATGAGGTTGGCAT -ACGGAAGTACGATGAGGTCGAGAT -ACGGAAGTACGATGAGGTTACCAC -ACGGAAGTACGATGAGGTCAGAAC -ACGGAAGTACGATGAGGTGTCTAC -ACGGAAGTACGATGAGGTACGTAC -ACGGAAGTACGATGAGGTAGTGAC -ACGGAAGTACGATGAGGTCTGTAG -ACGGAAGTACGATGAGGTCCTAAG -ACGGAAGTACGATGAGGTGTTCAG -ACGGAAGTACGATGAGGTGCATAG -ACGGAAGTACGATGAGGTGACAAG -ACGGAAGTACGATGAGGTAAGCAG -ACGGAAGTACGATGAGGTCGTCAA -ACGGAAGTACGATGAGGTGCTGAA -ACGGAAGTACGATGAGGTAGTACG -ACGGAAGTACGATGAGGTATCCGA -ACGGAAGTACGATGAGGTATGGGA -ACGGAAGTACGATGAGGTGTGCAA -ACGGAAGTACGATGAGGTGAGGAA -ACGGAAGTACGATGAGGTCAGGTA -ACGGAAGTACGATGAGGTGACTCT -ACGGAAGTACGATGAGGTAGTCCT -ACGGAAGTACGATGAGGTTAAGCC -ACGGAAGTACGATGAGGTATAGCC -ACGGAAGTACGATGAGGTTAACCG -ACGGAAGTACGATGAGGTATGCCA -ACGGAAGTACGAGATTCCGGAAAC -ACGGAAGTACGAGATTCCAACACC -ACGGAAGTACGAGATTCCATCGAG -ACGGAAGTACGAGATTCCCTCCTT -ACGGAAGTACGAGATTCCCCTGTT -ACGGAAGTACGAGATTCCCGGTTT -ACGGAAGTACGAGATTCCGTGGTT -ACGGAAGTACGAGATTCCGCCTTT -ACGGAAGTACGAGATTCCGGTCTT -ACGGAAGTACGAGATTCCACGCTT -ACGGAAGTACGAGATTCCAGCGTT -ACGGAAGTACGAGATTCCTTCGTC -ACGGAAGTACGAGATTCCTCTCTC -ACGGAAGTACGAGATTCCTGGATC -ACGGAAGTACGAGATTCCCACTTC -ACGGAAGTACGAGATTCCGTACTC -ACGGAAGTACGAGATTCCGATGTC -ACGGAAGTACGAGATTCCACAGTC -ACGGAAGTACGAGATTCCTTGCTG -ACGGAAGTACGAGATTCCTCCATG -ACGGAAGTACGAGATTCCTGTGTG -ACGGAAGTACGAGATTCCCTAGTG -ACGGAAGTACGAGATTCCCATCTG -ACGGAAGTACGAGATTCCGAGTTG -ACGGAAGTACGAGATTCCAGACTG -ACGGAAGTACGAGATTCCTCGGTA -ACGGAAGTACGAGATTCCTGCCTA -ACGGAAGTACGAGATTCCCCACTA -ACGGAAGTACGAGATTCCGGAGTA -ACGGAAGTACGAGATTCCTCGTCT -ACGGAAGTACGAGATTCCTGCACT -ACGGAAGTACGAGATTCCCTGACT -ACGGAAGTACGAGATTCCCAACCT -ACGGAAGTACGAGATTCCGCTACT -ACGGAAGTACGAGATTCCGGATCT -ACGGAAGTACGAGATTCCAAGGCT -ACGGAAGTACGAGATTCCTCAACC -ACGGAAGTACGAGATTCCTGTTCC -ACGGAAGTACGAGATTCCATTCCC -ACGGAAGTACGAGATTCCTTCTCG -ACGGAAGTACGAGATTCCTAGACG -ACGGAAGTACGAGATTCCGTAACG -ACGGAAGTACGAGATTCCACTTCG -ACGGAAGTACGAGATTCCTACGCA -ACGGAAGTACGAGATTCCCTTGCA -ACGGAAGTACGAGATTCCCGAACA -ACGGAAGTACGAGATTCCCAGTCA -ACGGAAGTACGAGATTCCGATCCA -ACGGAAGTACGAGATTCCACGACA -ACGGAAGTACGAGATTCCAGCTCA -ACGGAAGTACGAGATTCCTCACGT -ACGGAAGTACGAGATTCCCGTAGT -ACGGAAGTACGAGATTCCGTCAGT -ACGGAAGTACGAGATTCCGAAGGT -ACGGAAGTACGAGATTCCAACCGT -ACGGAAGTACGAGATTCCTTGTGC -ACGGAAGTACGAGATTCCCTAAGC -ACGGAAGTACGAGATTCCACTAGC -ACGGAAGTACGAGATTCCAGATGC -ACGGAAGTACGAGATTCCTGAAGG -ACGGAAGTACGAGATTCCCAATGG -ACGGAAGTACGAGATTCCATGAGG -ACGGAAGTACGAGATTCCAATGGG -ACGGAAGTACGAGATTCCTCCTGA -ACGGAAGTACGAGATTCCTAGCGA -ACGGAAGTACGAGATTCCCACAGA -ACGGAAGTACGAGATTCCGCAAGA -ACGGAAGTACGAGATTCCGGTTGA -ACGGAAGTACGAGATTCCTCCGAT -ACGGAAGTACGAGATTCCTGGCAT -ACGGAAGTACGAGATTCCCGAGAT -ACGGAAGTACGAGATTCCTACCAC -ACGGAAGTACGAGATTCCCAGAAC -ACGGAAGTACGAGATTCCGTCTAC -ACGGAAGTACGAGATTCCACGTAC -ACGGAAGTACGAGATTCCAGTGAC -ACGGAAGTACGAGATTCCCTGTAG -ACGGAAGTACGAGATTCCCCTAAG -ACGGAAGTACGAGATTCCGTTCAG -ACGGAAGTACGAGATTCCGCATAG -ACGGAAGTACGAGATTCCGACAAG -ACGGAAGTACGAGATTCCAAGCAG -ACGGAAGTACGAGATTCCCGTCAA -ACGGAAGTACGAGATTCCGCTGAA -ACGGAAGTACGAGATTCCAGTACG -ACGGAAGTACGAGATTCCATCCGA -ACGGAAGTACGAGATTCCATGGGA -ACGGAAGTACGAGATTCCGTGCAA -ACGGAAGTACGAGATTCCGAGGAA -ACGGAAGTACGAGATTCCCAGGTA -ACGGAAGTACGAGATTCCGACTCT -ACGGAAGTACGAGATTCCAGTCCT -ACGGAAGTACGAGATTCCTAAGCC -ACGGAAGTACGAGATTCCATAGCC -ACGGAAGTACGAGATTCCTAACCG -ACGGAAGTACGAGATTCCATGCCA -ACGGAAGTACGACATTGGGGAAAC -ACGGAAGTACGACATTGGAACACC -ACGGAAGTACGACATTGGATCGAG -ACGGAAGTACGACATTGGCTCCTT -ACGGAAGTACGACATTGGCCTGTT -ACGGAAGTACGACATTGGCGGTTT -ACGGAAGTACGACATTGGGTGGTT -ACGGAAGTACGACATTGGGCCTTT -ACGGAAGTACGACATTGGGGTCTT -ACGGAAGTACGACATTGGACGCTT -ACGGAAGTACGACATTGGAGCGTT -ACGGAAGTACGACATTGGTTCGTC -ACGGAAGTACGACATTGGTCTCTC -ACGGAAGTACGACATTGGTGGATC -ACGGAAGTACGACATTGGCACTTC -ACGGAAGTACGACATTGGGTACTC -ACGGAAGTACGACATTGGGATGTC -ACGGAAGTACGACATTGGACAGTC -ACGGAAGTACGACATTGGTTGCTG -ACGGAAGTACGACATTGGTCCATG -ACGGAAGTACGACATTGGTGTGTG -ACGGAAGTACGACATTGGCTAGTG -ACGGAAGTACGACATTGGCATCTG -ACGGAAGTACGACATTGGGAGTTG -ACGGAAGTACGACATTGGAGACTG -ACGGAAGTACGACATTGGTCGGTA -ACGGAAGTACGACATTGGTGCCTA -ACGGAAGTACGACATTGGCCACTA -ACGGAAGTACGACATTGGGGAGTA -ACGGAAGTACGACATTGGTCGTCT -ACGGAAGTACGACATTGGTGCACT -ACGGAAGTACGACATTGGCTGACT -ACGGAAGTACGACATTGGCAACCT -ACGGAAGTACGACATTGGGCTACT -ACGGAAGTACGACATTGGGGATCT -ACGGAAGTACGACATTGGAAGGCT -ACGGAAGTACGACATTGGTCAACC -ACGGAAGTACGACATTGGTGTTCC -ACGGAAGTACGACATTGGATTCCC -ACGGAAGTACGACATTGGTTCTCG -ACGGAAGTACGACATTGGTAGACG -ACGGAAGTACGACATTGGGTAACG -ACGGAAGTACGACATTGGACTTCG -ACGGAAGTACGACATTGGTACGCA -ACGGAAGTACGACATTGGCTTGCA -ACGGAAGTACGACATTGGCGAACA -ACGGAAGTACGACATTGGCAGTCA -ACGGAAGTACGACATTGGGATCCA -ACGGAAGTACGACATTGGACGACA -ACGGAAGTACGACATTGGAGCTCA -ACGGAAGTACGACATTGGTCACGT -ACGGAAGTACGACATTGGCGTAGT -ACGGAAGTACGACATTGGGTCAGT -ACGGAAGTACGACATTGGGAAGGT -ACGGAAGTACGACATTGGAACCGT -ACGGAAGTACGACATTGGTTGTGC -ACGGAAGTACGACATTGGCTAAGC -ACGGAAGTACGACATTGGACTAGC -ACGGAAGTACGACATTGGAGATGC -ACGGAAGTACGACATTGGTGAAGG -ACGGAAGTACGACATTGGCAATGG -ACGGAAGTACGACATTGGATGAGG -ACGGAAGTACGACATTGGAATGGG -ACGGAAGTACGACATTGGTCCTGA -ACGGAAGTACGACATTGGTAGCGA -ACGGAAGTACGACATTGGCACAGA -ACGGAAGTACGACATTGGGCAAGA -ACGGAAGTACGACATTGGGGTTGA -ACGGAAGTACGACATTGGTCCGAT -ACGGAAGTACGACATTGGTGGCAT -ACGGAAGTACGACATTGGCGAGAT -ACGGAAGTACGACATTGGTACCAC -ACGGAAGTACGACATTGGCAGAAC -ACGGAAGTACGACATTGGGTCTAC -ACGGAAGTACGACATTGGACGTAC -ACGGAAGTACGACATTGGAGTGAC -ACGGAAGTACGACATTGGCTGTAG -ACGGAAGTACGACATTGGCCTAAG -ACGGAAGTACGACATTGGGTTCAG -ACGGAAGTACGACATTGGGCATAG -ACGGAAGTACGACATTGGGACAAG -ACGGAAGTACGACATTGGAAGCAG -ACGGAAGTACGACATTGGCGTCAA -ACGGAAGTACGACATTGGGCTGAA -ACGGAAGTACGACATTGGAGTACG -ACGGAAGTACGACATTGGATCCGA -ACGGAAGTACGACATTGGATGGGA -ACGGAAGTACGACATTGGGTGCAA -ACGGAAGTACGACATTGGGAGGAA -ACGGAAGTACGACATTGGCAGGTA -ACGGAAGTACGACATTGGGACTCT -ACGGAAGTACGACATTGGAGTCCT -ACGGAAGTACGACATTGGTAAGCC -ACGGAAGTACGACATTGGATAGCC -ACGGAAGTACGACATTGGTAACCG -ACGGAAGTACGACATTGGATGCCA -ACGGAAGTACGAGATCGAGGAAAC -ACGGAAGTACGAGATCGAAACACC -ACGGAAGTACGAGATCGAATCGAG -ACGGAAGTACGAGATCGACTCCTT -ACGGAAGTACGAGATCGACCTGTT -ACGGAAGTACGAGATCGACGGTTT -ACGGAAGTACGAGATCGAGTGGTT -ACGGAAGTACGAGATCGAGCCTTT -ACGGAAGTACGAGATCGAGGTCTT -ACGGAAGTACGAGATCGAACGCTT -ACGGAAGTACGAGATCGAAGCGTT -ACGGAAGTACGAGATCGATTCGTC -ACGGAAGTACGAGATCGATCTCTC -ACGGAAGTACGAGATCGATGGATC -ACGGAAGTACGAGATCGACACTTC -ACGGAAGTACGAGATCGAGTACTC -ACGGAAGTACGAGATCGAGATGTC -ACGGAAGTACGAGATCGAACAGTC -ACGGAAGTACGAGATCGATTGCTG -ACGGAAGTACGAGATCGATCCATG -ACGGAAGTACGAGATCGATGTGTG -ACGGAAGTACGAGATCGACTAGTG -ACGGAAGTACGAGATCGACATCTG -ACGGAAGTACGAGATCGAGAGTTG -ACGGAAGTACGAGATCGAAGACTG -ACGGAAGTACGAGATCGATCGGTA -ACGGAAGTACGAGATCGATGCCTA -ACGGAAGTACGAGATCGACCACTA -ACGGAAGTACGAGATCGAGGAGTA -ACGGAAGTACGAGATCGATCGTCT -ACGGAAGTACGAGATCGATGCACT -ACGGAAGTACGAGATCGACTGACT -ACGGAAGTACGAGATCGACAACCT -ACGGAAGTACGAGATCGAGCTACT -ACGGAAGTACGAGATCGAGGATCT -ACGGAAGTACGAGATCGAAAGGCT -ACGGAAGTACGAGATCGATCAACC -ACGGAAGTACGAGATCGATGTTCC -ACGGAAGTACGAGATCGAATTCCC -ACGGAAGTACGAGATCGATTCTCG -ACGGAAGTACGAGATCGATAGACG -ACGGAAGTACGAGATCGAGTAACG -ACGGAAGTACGAGATCGAACTTCG -ACGGAAGTACGAGATCGATACGCA -ACGGAAGTACGAGATCGACTTGCA -ACGGAAGTACGAGATCGACGAACA -ACGGAAGTACGAGATCGACAGTCA -ACGGAAGTACGAGATCGAGATCCA -ACGGAAGTACGAGATCGAACGACA -ACGGAAGTACGAGATCGAAGCTCA -ACGGAAGTACGAGATCGATCACGT -ACGGAAGTACGAGATCGACGTAGT -ACGGAAGTACGAGATCGAGTCAGT -ACGGAAGTACGAGATCGAGAAGGT -ACGGAAGTACGAGATCGAAACCGT -ACGGAAGTACGAGATCGATTGTGC -ACGGAAGTACGAGATCGACTAAGC -ACGGAAGTACGAGATCGAACTAGC -ACGGAAGTACGAGATCGAAGATGC -ACGGAAGTACGAGATCGATGAAGG -ACGGAAGTACGAGATCGACAATGG -ACGGAAGTACGAGATCGAATGAGG -ACGGAAGTACGAGATCGAAATGGG -ACGGAAGTACGAGATCGATCCTGA -ACGGAAGTACGAGATCGATAGCGA -ACGGAAGTACGAGATCGACACAGA -ACGGAAGTACGAGATCGAGCAAGA -ACGGAAGTACGAGATCGAGGTTGA -ACGGAAGTACGAGATCGATCCGAT -ACGGAAGTACGAGATCGATGGCAT -ACGGAAGTACGAGATCGACGAGAT -ACGGAAGTACGAGATCGATACCAC -ACGGAAGTACGAGATCGACAGAAC -ACGGAAGTACGAGATCGAGTCTAC -ACGGAAGTACGAGATCGAACGTAC -ACGGAAGTACGAGATCGAAGTGAC -ACGGAAGTACGAGATCGACTGTAG -ACGGAAGTACGAGATCGACCTAAG -ACGGAAGTACGAGATCGAGTTCAG -ACGGAAGTACGAGATCGAGCATAG -ACGGAAGTACGAGATCGAGACAAG -ACGGAAGTACGAGATCGAAAGCAG -ACGGAAGTACGAGATCGACGTCAA -ACGGAAGTACGAGATCGAGCTGAA -ACGGAAGTACGAGATCGAAGTACG -ACGGAAGTACGAGATCGAATCCGA -ACGGAAGTACGAGATCGAATGGGA -ACGGAAGTACGAGATCGAGTGCAA -ACGGAAGTACGAGATCGAGAGGAA -ACGGAAGTACGAGATCGACAGGTA -ACGGAAGTACGAGATCGAGACTCT -ACGGAAGTACGAGATCGAAGTCCT -ACGGAAGTACGAGATCGATAAGCC -ACGGAAGTACGAGATCGAATAGCC -ACGGAAGTACGAGATCGATAACCG -ACGGAAGTACGAGATCGAATGCCA -ACGGAAGTACGACACTACGGAAAC -ACGGAAGTACGACACTACAACACC -ACGGAAGTACGACACTACATCGAG -ACGGAAGTACGACACTACCTCCTT -ACGGAAGTACGACACTACCCTGTT -ACGGAAGTACGACACTACCGGTTT -ACGGAAGTACGACACTACGTGGTT -ACGGAAGTACGACACTACGCCTTT -ACGGAAGTACGACACTACGGTCTT -ACGGAAGTACGACACTACACGCTT -ACGGAAGTACGACACTACAGCGTT -ACGGAAGTACGACACTACTTCGTC -ACGGAAGTACGACACTACTCTCTC -ACGGAAGTACGACACTACTGGATC -ACGGAAGTACGACACTACCACTTC -ACGGAAGTACGACACTACGTACTC -ACGGAAGTACGACACTACGATGTC -ACGGAAGTACGACACTACACAGTC -ACGGAAGTACGACACTACTTGCTG -ACGGAAGTACGACACTACTCCATG -ACGGAAGTACGACACTACTGTGTG -ACGGAAGTACGACACTACCTAGTG -ACGGAAGTACGACACTACCATCTG -ACGGAAGTACGACACTACGAGTTG -ACGGAAGTACGACACTACAGACTG -ACGGAAGTACGACACTACTCGGTA -ACGGAAGTACGACACTACTGCCTA -ACGGAAGTACGACACTACCCACTA -ACGGAAGTACGACACTACGGAGTA -ACGGAAGTACGACACTACTCGTCT -ACGGAAGTACGACACTACTGCACT -ACGGAAGTACGACACTACCTGACT -ACGGAAGTACGACACTACCAACCT -ACGGAAGTACGACACTACGCTACT -ACGGAAGTACGACACTACGGATCT -ACGGAAGTACGACACTACAAGGCT -ACGGAAGTACGACACTACTCAACC -ACGGAAGTACGACACTACTGTTCC -ACGGAAGTACGACACTACATTCCC -ACGGAAGTACGACACTACTTCTCG -ACGGAAGTACGACACTACTAGACG -ACGGAAGTACGACACTACGTAACG -ACGGAAGTACGACACTACACTTCG -ACGGAAGTACGACACTACTACGCA -ACGGAAGTACGACACTACCTTGCA -ACGGAAGTACGACACTACCGAACA -ACGGAAGTACGACACTACCAGTCA -ACGGAAGTACGACACTACGATCCA -ACGGAAGTACGACACTACACGACA -ACGGAAGTACGACACTACAGCTCA -ACGGAAGTACGACACTACTCACGT -ACGGAAGTACGACACTACCGTAGT -ACGGAAGTACGACACTACGTCAGT -ACGGAAGTACGACACTACGAAGGT -ACGGAAGTACGACACTACAACCGT -ACGGAAGTACGACACTACTTGTGC -ACGGAAGTACGACACTACCTAAGC -ACGGAAGTACGACACTACACTAGC -ACGGAAGTACGACACTACAGATGC -ACGGAAGTACGACACTACTGAAGG -ACGGAAGTACGACACTACCAATGG -ACGGAAGTACGACACTACATGAGG -ACGGAAGTACGACACTACAATGGG -ACGGAAGTACGACACTACTCCTGA -ACGGAAGTACGACACTACTAGCGA -ACGGAAGTACGACACTACCACAGA -ACGGAAGTACGACACTACGCAAGA -ACGGAAGTACGACACTACGGTTGA -ACGGAAGTACGACACTACTCCGAT -ACGGAAGTACGACACTACTGGCAT -ACGGAAGTACGACACTACCGAGAT -ACGGAAGTACGACACTACTACCAC -ACGGAAGTACGACACTACCAGAAC -ACGGAAGTACGACACTACGTCTAC -ACGGAAGTACGACACTACACGTAC -ACGGAAGTACGACACTACAGTGAC -ACGGAAGTACGACACTACCTGTAG -ACGGAAGTACGACACTACCCTAAG -ACGGAAGTACGACACTACGTTCAG -ACGGAAGTACGACACTACGCATAG -ACGGAAGTACGACACTACGACAAG -ACGGAAGTACGACACTACAAGCAG -ACGGAAGTACGACACTACCGTCAA -ACGGAAGTACGACACTACGCTGAA -ACGGAAGTACGACACTACAGTACG -ACGGAAGTACGACACTACATCCGA -ACGGAAGTACGACACTACATGGGA -ACGGAAGTACGACACTACGTGCAA -ACGGAAGTACGACACTACGAGGAA -ACGGAAGTACGACACTACCAGGTA -ACGGAAGTACGACACTACGACTCT -ACGGAAGTACGACACTACAGTCCT -ACGGAAGTACGACACTACTAAGCC -ACGGAAGTACGACACTACATAGCC -ACGGAAGTACGACACTACTAACCG -ACGGAAGTACGACACTACATGCCA -ACGGAAGTACGAAACCAGGGAAAC -ACGGAAGTACGAAACCAGAACACC -ACGGAAGTACGAAACCAGATCGAG -ACGGAAGTACGAAACCAGCTCCTT -ACGGAAGTACGAAACCAGCCTGTT -ACGGAAGTACGAAACCAGCGGTTT -ACGGAAGTACGAAACCAGGTGGTT -ACGGAAGTACGAAACCAGGCCTTT -ACGGAAGTACGAAACCAGGGTCTT -ACGGAAGTACGAAACCAGACGCTT -ACGGAAGTACGAAACCAGAGCGTT -ACGGAAGTACGAAACCAGTTCGTC -ACGGAAGTACGAAACCAGTCTCTC -ACGGAAGTACGAAACCAGTGGATC -ACGGAAGTACGAAACCAGCACTTC -ACGGAAGTACGAAACCAGGTACTC -ACGGAAGTACGAAACCAGGATGTC -ACGGAAGTACGAAACCAGACAGTC -ACGGAAGTACGAAACCAGTTGCTG -ACGGAAGTACGAAACCAGTCCATG -ACGGAAGTACGAAACCAGTGTGTG -ACGGAAGTACGAAACCAGCTAGTG -ACGGAAGTACGAAACCAGCATCTG -ACGGAAGTACGAAACCAGGAGTTG -ACGGAAGTACGAAACCAGAGACTG -ACGGAAGTACGAAACCAGTCGGTA -ACGGAAGTACGAAACCAGTGCCTA -ACGGAAGTACGAAACCAGCCACTA -ACGGAAGTACGAAACCAGGGAGTA -ACGGAAGTACGAAACCAGTCGTCT -ACGGAAGTACGAAACCAGTGCACT -ACGGAAGTACGAAACCAGCTGACT -ACGGAAGTACGAAACCAGCAACCT -ACGGAAGTACGAAACCAGGCTACT -ACGGAAGTACGAAACCAGGGATCT -ACGGAAGTACGAAACCAGAAGGCT -ACGGAAGTACGAAACCAGTCAACC -ACGGAAGTACGAAACCAGTGTTCC -ACGGAAGTACGAAACCAGATTCCC -ACGGAAGTACGAAACCAGTTCTCG -ACGGAAGTACGAAACCAGTAGACG -ACGGAAGTACGAAACCAGGTAACG -ACGGAAGTACGAAACCAGACTTCG -ACGGAAGTACGAAACCAGTACGCA -ACGGAAGTACGAAACCAGCTTGCA -ACGGAAGTACGAAACCAGCGAACA -ACGGAAGTACGAAACCAGCAGTCA -ACGGAAGTACGAAACCAGGATCCA -ACGGAAGTACGAAACCAGACGACA -ACGGAAGTACGAAACCAGAGCTCA -ACGGAAGTACGAAACCAGTCACGT -ACGGAAGTACGAAACCAGCGTAGT -ACGGAAGTACGAAACCAGGTCAGT -ACGGAAGTACGAAACCAGGAAGGT -ACGGAAGTACGAAACCAGAACCGT -ACGGAAGTACGAAACCAGTTGTGC -ACGGAAGTACGAAACCAGCTAAGC -ACGGAAGTACGAAACCAGACTAGC -ACGGAAGTACGAAACCAGAGATGC -ACGGAAGTACGAAACCAGTGAAGG -ACGGAAGTACGAAACCAGCAATGG -ACGGAAGTACGAAACCAGATGAGG -ACGGAAGTACGAAACCAGAATGGG -ACGGAAGTACGAAACCAGTCCTGA -ACGGAAGTACGAAACCAGTAGCGA -ACGGAAGTACGAAACCAGCACAGA -ACGGAAGTACGAAACCAGGCAAGA -ACGGAAGTACGAAACCAGGGTTGA -ACGGAAGTACGAAACCAGTCCGAT -ACGGAAGTACGAAACCAGTGGCAT -ACGGAAGTACGAAACCAGCGAGAT -ACGGAAGTACGAAACCAGTACCAC -ACGGAAGTACGAAACCAGCAGAAC -ACGGAAGTACGAAACCAGGTCTAC -ACGGAAGTACGAAACCAGACGTAC -ACGGAAGTACGAAACCAGAGTGAC -ACGGAAGTACGAAACCAGCTGTAG -ACGGAAGTACGAAACCAGCCTAAG -ACGGAAGTACGAAACCAGGTTCAG -ACGGAAGTACGAAACCAGGCATAG -ACGGAAGTACGAAACCAGGACAAG -ACGGAAGTACGAAACCAGAAGCAG -ACGGAAGTACGAAACCAGCGTCAA -ACGGAAGTACGAAACCAGGCTGAA -ACGGAAGTACGAAACCAGAGTACG -ACGGAAGTACGAAACCAGATCCGA -ACGGAAGTACGAAACCAGATGGGA -ACGGAAGTACGAAACCAGGTGCAA -ACGGAAGTACGAAACCAGGAGGAA -ACGGAAGTACGAAACCAGCAGGTA -ACGGAAGTACGAAACCAGGACTCT -ACGGAAGTACGAAACCAGAGTCCT -ACGGAAGTACGAAACCAGTAAGCC -ACGGAAGTACGAAACCAGATAGCC -ACGGAAGTACGAAACCAGTAACCG -ACGGAAGTACGAAACCAGATGCCA -ACGGAAGTACGATACGTCGGAAAC -ACGGAAGTACGATACGTCAACACC -ACGGAAGTACGATACGTCATCGAG -ACGGAAGTACGATACGTCCTCCTT -ACGGAAGTACGATACGTCCCTGTT -ACGGAAGTACGATACGTCCGGTTT -ACGGAAGTACGATACGTCGTGGTT -ACGGAAGTACGATACGTCGCCTTT -ACGGAAGTACGATACGTCGGTCTT -ACGGAAGTACGATACGTCACGCTT -ACGGAAGTACGATACGTCAGCGTT -ACGGAAGTACGATACGTCTTCGTC -ACGGAAGTACGATACGTCTCTCTC -ACGGAAGTACGATACGTCTGGATC -ACGGAAGTACGATACGTCCACTTC -ACGGAAGTACGATACGTCGTACTC -ACGGAAGTACGATACGTCGATGTC -ACGGAAGTACGATACGTCACAGTC -ACGGAAGTACGATACGTCTTGCTG -ACGGAAGTACGATACGTCTCCATG -ACGGAAGTACGATACGTCTGTGTG -ACGGAAGTACGATACGTCCTAGTG -ACGGAAGTACGATACGTCCATCTG -ACGGAAGTACGATACGTCGAGTTG -ACGGAAGTACGATACGTCAGACTG -ACGGAAGTACGATACGTCTCGGTA -ACGGAAGTACGATACGTCTGCCTA -ACGGAAGTACGATACGTCCCACTA -ACGGAAGTACGATACGTCGGAGTA -ACGGAAGTACGATACGTCTCGTCT -ACGGAAGTACGATACGTCTGCACT -ACGGAAGTACGATACGTCCTGACT -ACGGAAGTACGATACGTCCAACCT -ACGGAAGTACGATACGTCGCTACT -ACGGAAGTACGATACGTCGGATCT -ACGGAAGTACGATACGTCAAGGCT -ACGGAAGTACGATACGTCTCAACC -ACGGAAGTACGATACGTCTGTTCC -ACGGAAGTACGATACGTCATTCCC -ACGGAAGTACGATACGTCTTCTCG -ACGGAAGTACGATACGTCTAGACG -ACGGAAGTACGATACGTCGTAACG -ACGGAAGTACGATACGTCACTTCG -ACGGAAGTACGATACGTCTACGCA -ACGGAAGTACGATACGTCCTTGCA -ACGGAAGTACGATACGTCCGAACA -ACGGAAGTACGATACGTCCAGTCA -ACGGAAGTACGATACGTCGATCCA -ACGGAAGTACGATACGTCACGACA -ACGGAAGTACGATACGTCAGCTCA -ACGGAAGTACGATACGTCTCACGT -ACGGAAGTACGATACGTCCGTAGT -ACGGAAGTACGATACGTCGTCAGT -ACGGAAGTACGATACGTCGAAGGT -ACGGAAGTACGATACGTCAACCGT -ACGGAAGTACGATACGTCTTGTGC -ACGGAAGTACGATACGTCCTAAGC -ACGGAAGTACGATACGTCACTAGC -ACGGAAGTACGATACGTCAGATGC -ACGGAAGTACGATACGTCTGAAGG -ACGGAAGTACGATACGTCCAATGG -ACGGAAGTACGATACGTCATGAGG -ACGGAAGTACGATACGTCAATGGG -ACGGAAGTACGATACGTCTCCTGA -ACGGAAGTACGATACGTCTAGCGA -ACGGAAGTACGATACGTCCACAGA -ACGGAAGTACGATACGTCGCAAGA -ACGGAAGTACGATACGTCGGTTGA -ACGGAAGTACGATACGTCTCCGAT -ACGGAAGTACGATACGTCTGGCAT -ACGGAAGTACGATACGTCCGAGAT -ACGGAAGTACGATACGTCTACCAC -ACGGAAGTACGATACGTCCAGAAC -ACGGAAGTACGATACGTCGTCTAC -ACGGAAGTACGATACGTCACGTAC -ACGGAAGTACGATACGTCAGTGAC -ACGGAAGTACGATACGTCCTGTAG -ACGGAAGTACGATACGTCCCTAAG -ACGGAAGTACGATACGTCGTTCAG -ACGGAAGTACGATACGTCGCATAG -ACGGAAGTACGATACGTCGACAAG -ACGGAAGTACGATACGTCAAGCAG -ACGGAAGTACGATACGTCCGTCAA -ACGGAAGTACGATACGTCGCTGAA -ACGGAAGTACGATACGTCAGTACG -ACGGAAGTACGATACGTCATCCGA -ACGGAAGTACGATACGTCATGGGA -ACGGAAGTACGATACGTCGTGCAA -ACGGAAGTACGATACGTCGAGGAA -ACGGAAGTACGATACGTCCAGGTA -ACGGAAGTACGATACGTCGACTCT -ACGGAAGTACGATACGTCAGTCCT -ACGGAAGTACGATACGTCTAAGCC -ACGGAAGTACGATACGTCATAGCC -ACGGAAGTACGATACGTCTAACCG -ACGGAAGTACGATACGTCATGCCA -ACGGAAGTACGATACACGGGAAAC -ACGGAAGTACGATACACGAACACC -ACGGAAGTACGATACACGATCGAG -ACGGAAGTACGATACACGCTCCTT -ACGGAAGTACGATACACGCCTGTT -ACGGAAGTACGATACACGCGGTTT -ACGGAAGTACGATACACGGTGGTT -ACGGAAGTACGATACACGGCCTTT -ACGGAAGTACGATACACGGGTCTT -ACGGAAGTACGATACACGACGCTT -ACGGAAGTACGATACACGAGCGTT -ACGGAAGTACGATACACGTTCGTC -ACGGAAGTACGATACACGTCTCTC -ACGGAAGTACGATACACGTGGATC -ACGGAAGTACGATACACGCACTTC -ACGGAAGTACGATACACGGTACTC -ACGGAAGTACGATACACGGATGTC -ACGGAAGTACGATACACGACAGTC -ACGGAAGTACGATACACGTTGCTG -ACGGAAGTACGATACACGTCCATG -ACGGAAGTACGATACACGTGTGTG -ACGGAAGTACGATACACGCTAGTG -ACGGAAGTACGATACACGCATCTG -ACGGAAGTACGATACACGGAGTTG -ACGGAAGTACGATACACGAGACTG -ACGGAAGTACGATACACGTCGGTA -ACGGAAGTACGATACACGTGCCTA -ACGGAAGTACGATACACGCCACTA -ACGGAAGTACGATACACGGGAGTA -ACGGAAGTACGATACACGTCGTCT -ACGGAAGTACGATACACGTGCACT -ACGGAAGTACGATACACGCTGACT -ACGGAAGTACGATACACGCAACCT -ACGGAAGTACGATACACGGCTACT -ACGGAAGTACGATACACGGGATCT -ACGGAAGTACGATACACGAAGGCT -ACGGAAGTACGATACACGTCAACC -ACGGAAGTACGATACACGTGTTCC -ACGGAAGTACGATACACGATTCCC -ACGGAAGTACGATACACGTTCTCG -ACGGAAGTACGATACACGTAGACG -ACGGAAGTACGATACACGGTAACG -ACGGAAGTACGATACACGACTTCG -ACGGAAGTACGATACACGTACGCA -ACGGAAGTACGATACACGCTTGCA -ACGGAAGTACGATACACGCGAACA -ACGGAAGTACGATACACGCAGTCA -ACGGAAGTACGATACACGGATCCA -ACGGAAGTACGATACACGACGACA -ACGGAAGTACGATACACGAGCTCA -ACGGAAGTACGATACACGTCACGT -ACGGAAGTACGATACACGCGTAGT -ACGGAAGTACGATACACGGTCAGT -ACGGAAGTACGATACACGGAAGGT -ACGGAAGTACGATACACGAACCGT -ACGGAAGTACGATACACGTTGTGC -ACGGAAGTACGATACACGCTAAGC -ACGGAAGTACGATACACGACTAGC -ACGGAAGTACGATACACGAGATGC -ACGGAAGTACGATACACGTGAAGG -ACGGAAGTACGATACACGCAATGG -ACGGAAGTACGATACACGATGAGG -ACGGAAGTACGATACACGAATGGG -ACGGAAGTACGATACACGTCCTGA -ACGGAAGTACGATACACGTAGCGA -ACGGAAGTACGATACACGCACAGA -ACGGAAGTACGATACACGGCAAGA -ACGGAAGTACGATACACGGGTTGA -ACGGAAGTACGATACACGTCCGAT -ACGGAAGTACGATACACGTGGCAT -ACGGAAGTACGATACACGCGAGAT -ACGGAAGTACGATACACGTACCAC -ACGGAAGTACGATACACGCAGAAC -ACGGAAGTACGATACACGGTCTAC -ACGGAAGTACGATACACGACGTAC -ACGGAAGTACGATACACGAGTGAC -ACGGAAGTACGATACACGCTGTAG -ACGGAAGTACGATACACGCCTAAG -ACGGAAGTACGATACACGGTTCAG -ACGGAAGTACGATACACGGCATAG -ACGGAAGTACGATACACGGACAAG -ACGGAAGTACGATACACGAAGCAG -ACGGAAGTACGATACACGCGTCAA -ACGGAAGTACGATACACGGCTGAA -ACGGAAGTACGATACACGAGTACG -ACGGAAGTACGATACACGATCCGA -ACGGAAGTACGATACACGATGGGA -ACGGAAGTACGATACACGGTGCAA -ACGGAAGTACGATACACGGAGGAA -ACGGAAGTACGATACACGCAGGTA -ACGGAAGTACGATACACGGACTCT -ACGGAAGTACGATACACGAGTCCT -ACGGAAGTACGATACACGTAAGCC -ACGGAAGTACGATACACGATAGCC -ACGGAAGTACGATACACGTAACCG -ACGGAAGTACGATACACGATGCCA -ACGGAAGTACGAGACAGTGGAAAC -ACGGAAGTACGAGACAGTAACACC -ACGGAAGTACGAGACAGTATCGAG -ACGGAAGTACGAGACAGTCTCCTT -ACGGAAGTACGAGACAGTCCTGTT -ACGGAAGTACGAGACAGTCGGTTT -ACGGAAGTACGAGACAGTGTGGTT -ACGGAAGTACGAGACAGTGCCTTT -ACGGAAGTACGAGACAGTGGTCTT -ACGGAAGTACGAGACAGTACGCTT -ACGGAAGTACGAGACAGTAGCGTT -ACGGAAGTACGAGACAGTTTCGTC -ACGGAAGTACGAGACAGTTCTCTC -ACGGAAGTACGAGACAGTTGGATC -ACGGAAGTACGAGACAGTCACTTC -ACGGAAGTACGAGACAGTGTACTC -ACGGAAGTACGAGACAGTGATGTC -ACGGAAGTACGAGACAGTACAGTC -ACGGAAGTACGAGACAGTTTGCTG -ACGGAAGTACGAGACAGTTCCATG -ACGGAAGTACGAGACAGTTGTGTG -ACGGAAGTACGAGACAGTCTAGTG -ACGGAAGTACGAGACAGTCATCTG -ACGGAAGTACGAGACAGTGAGTTG -ACGGAAGTACGAGACAGTAGACTG -ACGGAAGTACGAGACAGTTCGGTA -ACGGAAGTACGAGACAGTTGCCTA -ACGGAAGTACGAGACAGTCCACTA -ACGGAAGTACGAGACAGTGGAGTA -ACGGAAGTACGAGACAGTTCGTCT -ACGGAAGTACGAGACAGTTGCACT -ACGGAAGTACGAGACAGTCTGACT -ACGGAAGTACGAGACAGTCAACCT -ACGGAAGTACGAGACAGTGCTACT -ACGGAAGTACGAGACAGTGGATCT -ACGGAAGTACGAGACAGTAAGGCT -ACGGAAGTACGAGACAGTTCAACC -ACGGAAGTACGAGACAGTTGTTCC -ACGGAAGTACGAGACAGTATTCCC -ACGGAAGTACGAGACAGTTTCTCG -ACGGAAGTACGAGACAGTTAGACG -ACGGAAGTACGAGACAGTGTAACG -ACGGAAGTACGAGACAGTACTTCG -ACGGAAGTACGAGACAGTTACGCA -ACGGAAGTACGAGACAGTCTTGCA -ACGGAAGTACGAGACAGTCGAACA -ACGGAAGTACGAGACAGTCAGTCA -ACGGAAGTACGAGACAGTGATCCA -ACGGAAGTACGAGACAGTACGACA -ACGGAAGTACGAGACAGTAGCTCA -ACGGAAGTACGAGACAGTTCACGT -ACGGAAGTACGAGACAGTCGTAGT -ACGGAAGTACGAGACAGTGTCAGT -ACGGAAGTACGAGACAGTGAAGGT -ACGGAAGTACGAGACAGTAACCGT -ACGGAAGTACGAGACAGTTTGTGC -ACGGAAGTACGAGACAGTCTAAGC -ACGGAAGTACGAGACAGTACTAGC -ACGGAAGTACGAGACAGTAGATGC -ACGGAAGTACGAGACAGTTGAAGG -ACGGAAGTACGAGACAGTCAATGG -ACGGAAGTACGAGACAGTATGAGG -ACGGAAGTACGAGACAGTAATGGG -ACGGAAGTACGAGACAGTTCCTGA -ACGGAAGTACGAGACAGTTAGCGA -ACGGAAGTACGAGACAGTCACAGA -ACGGAAGTACGAGACAGTGCAAGA -ACGGAAGTACGAGACAGTGGTTGA -ACGGAAGTACGAGACAGTTCCGAT -ACGGAAGTACGAGACAGTTGGCAT -ACGGAAGTACGAGACAGTCGAGAT -ACGGAAGTACGAGACAGTTACCAC -ACGGAAGTACGAGACAGTCAGAAC -ACGGAAGTACGAGACAGTGTCTAC -ACGGAAGTACGAGACAGTACGTAC -ACGGAAGTACGAGACAGTAGTGAC -ACGGAAGTACGAGACAGTCTGTAG -ACGGAAGTACGAGACAGTCCTAAG -ACGGAAGTACGAGACAGTGTTCAG -ACGGAAGTACGAGACAGTGCATAG -ACGGAAGTACGAGACAGTGACAAG -ACGGAAGTACGAGACAGTAAGCAG -ACGGAAGTACGAGACAGTCGTCAA -ACGGAAGTACGAGACAGTGCTGAA -ACGGAAGTACGAGACAGTAGTACG -ACGGAAGTACGAGACAGTATCCGA -ACGGAAGTACGAGACAGTATGGGA -ACGGAAGTACGAGACAGTGTGCAA -ACGGAAGTACGAGACAGTGAGGAA -ACGGAAGTACGAGACAGTCAGGTA -ACGGAAGTACGAGACAGTGACTCT -ACGGAAGTACGAGACAGTAGTCCT -ACGGAAGTACGAGACAGTTAAGCC -ACGGAAGTACGAGACAGTATAGCC -ACGGAAGTACGAGACAGTTAACCG -ACGGAAGTACGAGACAGTATGCCA -ACGGAAGTACGATAGCTGGGAAAC -ACGGAAGTACGATAGCTGAACACC -ACGGAAGTACGATAGCTGATCGAG -ACGGAAGTACGATAGCTGCTCCTT -ACGGAAGTACGATAGCTGCCTGTT -ACGGAAGTACGATAGCTGCGGTTT -ACGGAAGTACGATAGCTGGTGGTT -ACGGAAGTACGATAGCTGGCCTTT -ACGGAAGTACGATAGCTGGGTCTT -ACGGAAGTACGATAGCTGACGCTT -ACGGAAGTACGATAGCTGAGCGTT -ACGGAAGTACGATAGCTGTTCGTC -ACGGAAGTACGATAGCTGTCTCTC -ACGGAAGTACGATAGCTGTGGATC -ACGGAAGTACGATAGCTGCACTTC -ACGGAAGTACGATAGCTGGTACTC -ACGGAAGTACGATAGCTGGATGTC -ACGGAAGTACGATAGCTGACAGTC -ACGGAAGTACGATAGCTGTTGCTG -ACGGAAGTACGATAGCTGTCCATG -ACGGAAGTACGATAGCTGTGTGTG -ACGGAAGTACGATAGCTGCTAGTG -ACGGAAGTACGATAGCTGCATCTG -ACGGAAGTACGATAGCTGGAGTTG -ACGGAAGTACGATAGCTGAGACTG -ACGGAAGTACGATAGCTGTCGGTA -ACGGAAGTACGATAGCTGTGCCTA -ACGGAAGTACGATAGCTGCCACTA -ACGGAAGTACGATAGCTGGGAGTA -ACGGAAGTACGATAGCTGTCGTCT -ACGGAAGTACGATAGCTGTGCACT -ACGGAAGTACGATAGCTGCTGACT -ACGGAAGTACGATAGCTGCAACCT -ACGGAAGTACGATAGCTGGCTACT -ACGGAAGTACGATAGCTGGGATCT -ACGGAAGTACGATAGCTGAAGGCT -ACGGAAGTACGATAGCTGTCAACC -ACGGAAGTACGATAGCTGTGTTCC -ACGGAAGTACGATAGCTGATTCCC -ACGGAAGTACGATAGCTGTTCTCG -ACGGAAGTACGATAGCTGTAGACG -ACGGAAGTACGATAGCTGGTAACG -ACGGAAGTACGATAGCTGACTTCG -ACGGAAGTACGATAGCTGTACGCA -ACGGAAGTACGATAGCTGCTTGCA -ACGGAAGTACGATAGCTGCGAACA -ACGGAAGTACGATAGCTGCAGTCA -ACGGAAGTACGATAGCTGGATCCA -ACGGAAGTACGATAGCTGACGACA -ACGGAAGTACGATAGCTGAGCTCA -ACGGAAGTACGATAGCTGTCACGT -ACGGAAGTACGATAGCTGCGTAGT -ACGGAAGTACGATAGCTGGTCAGT -ACGGAAGTACGATAGCTGGAAGGT -ACGGAAGTACGATAGCTGAACCGT -ACGGAAGTACGATAGCTGTTGTGC -ACGGAAGTACGATAGCTGCTAAGC -ACGGAAGTACGATAGCTGACTAGC -ACGGAAGTACGATAGCTGAGATGC -ACGGAAGTACGATAGCTGTGAAGG -ACGGAAGTACGATAGCTGCAATGG -ACGGAAGTACGATAGCTGATGAGG -ACGGAAGTACGATAGCTGAATGGG -ACGGAAGTACGATAGCTGTCCTGA -ACGGAAGTACGATAGCTGTAGCGA -ACGGAAGTACGATAGCTGCACAGA -ACGGAAGTACGATAGCTGGCAAGA -ACGGAAGTACGATAGCTGGGTTGA -ACGGAAGTACGATAGCTGTCCGAT -ACGGAAGTACGATAGCTGTGGCAT -ACGGAAGTACGATAGCTGCGAGAT -ACGGAAGTACGATAGCTGTACCAC -ACGGAAGTACGATAGCTGCAGAAC -ACGGAAGTACGATAGCTGGTCTAC -ACGGAAGTACGATAGCTGACGTAC -ACGGAAGTACGATAGCTGAGTGAC -ACGGAAGTACGATAGCTGCTGTAG -ACGGAAGTACGATAGCTGCCTAAG -ACGGAAGTACGATAGCTGGTTCAG -ACGGAAGTACGATAGCTGGCATAG -ACGGAAGTACGATAGCTGGACAAG -ACGGAAGTACGATAGCTGAAGCAG -ACGGAAGTACGATAGCTGCGTCAA -ACGGAAGTACGATAGCTGGCTGAA -ACGGAAGTACGATAGCTGAGTACG -ACGGAAGTACGATAGCTGATCCGA -ACGGAAGTACGATAGCTGATGGGA -ACGGAAGTACGATAGCTGGTGCAA -ACGGAAGTACGATAGCTGGAGGAA -ACGGAAGTACGATAGCTGCAGGTA -ACGGAAGTACGATAGCTGGACTCT -ACGGAAGTACGATAGCTGAGTCCT -ACGGAAGTACGATAGCTGTAAGCC -ACGGAAGTACGATAGCTGATAGCC -ACGGAAGTACGATAGCTGTAACCG -ACGGAAGTACGATAGCTGATGCCA -ACGGAAGTACGAAAGCCTGGAAAC -ACGGAAGTACGAAAGCCTAACACC -ACGGAAGTACGAAAGCCTATCGAG -ACGGAAGTACGAAAGCCTCTCCTT -ACGGAAGTACGAAAGCCTCCTGTT -ACGGAAGTACGAAAGCCTCGGTTT -ACGGAAGTACGAAAGCCTGTGGTT -ACGGAAGTACGAAAGCCTGCCTTT -ACGGAAGTACGAAAGCCTGGTCTT -ACGGAAGTACGAAAGCCTACGCTT -ACGGAAGTACGAAAGCCTAGCGTT -ACGGAAGTACGAAAGCCTTTCGTC -ACGGAAGTACGAAAGCCTTCTCTC -ACGGAAGTACGAAAGCCTTGGATC -ACGGAAGTACGAAAGCCTCACTTC -ACGGAAGTACGAAAGCCTGTACTC -ACGGAAGTACGAAAGCCTGATGTC -ACGGAAGTACGAAAGCCTACAGTC -ACGGAAGTACGAAAGCCTTTGCTG -ACGGAAGTACGAAAGCCTTCCATG -ACGGAAGTACGAAAGCCTTGTGTG -ACGGAAGTACGAAAGCCTCTAGTG -ACGGAAGTACGAAAGCCTCATCTG -ACGGAAGTACGAAAGCCTGAGTTG -ACGGAAGTACGAAAGCCTAGACTG -ACGGAAGTACGAAAGCCTTCGGTA -ACGGAAGTACGAAAGCCTTGCCTA -ACGGAAGTACGAAAGCCTCCACTA -ACGGAAGTACGAAAGCCTGGAGTA -ACGGAAGTACGAAAGCCTTCGTCT -ACGGAAGTACGAAAGCCTTGCACT -ACGGAAGTACGAAAGCCTCTGACT -ACGGAAGTACGAAAGCCTCAACCT -ACGGAAGTACGAAAGCCTGCTACT -ACGGAAGTACGAAAGCCTGGATCT -ACGGAAGTACGAAAGCCTAAGGCT -ACGGAAGTACGAAAGCCTTCAACC -ACGGAAGTACGAAAGCCTTGTTCC -ACGGAAGTACGAAAGCCTATTCCC -ACGGAAGTACGAAAGCCTTTCTCG -ACGGAAGTACGAAAGCCTTAGACG -ACGGAAGTACGAAAGCCTGTAACG -ACGGAAGTACGAAAGCCTACTTCG -ACGGAAGTACGAAAGCCTTACGCA -ACGGAAGTACGAAAGCCTCTTGCA -ACGGAAGTACGAAAGCCTCGAACA -ACGGAAGTACGAAAGCCTCAGTCA -ACGGAAGTACGAAAGCCTGATCCA -ACGGAAGTACGAAAGCCTACGACA -ACGGAAGTACGAAAGCCTAGCTCA -ACGGAAGTACGAAAGCCTTCACGT -ACGGAAGTACGAAAGCCTCGTAGT -ACGGAAGTACGAAAGCCTGTCAGT -ACGGAAGTACGAAAGCCTGAAGGT -ACGGAAGTACGAAAGCCTAACCGT -ACGGAAGTACGAAAGCCTTTGTGC -ACGGAAGTACGAAAGCCTCTAAGC -ACGGAAGTACGAAAGCCTACTAGC -ACGGAAGTACGAAAGCCTAGATGC -ACGGAAGTACGAAAGCCTTGAAGG -ACGGAAGTACGAAAGCCTCAATGG -ACGGAAGTACGAAAGCCTATGAGG -ACGGAAGTACGAAAGCCTAATGGG -ACGGAAGTACGAAAGCCTTCCTGA -ACGGAAGTACGAAAGCCTTAGCGA -ACGGAAGTACGAAAGCCTCACAGA -ACGGAAGTACGAAAGCCTGCAAGA -ACGGAAGTACGAAAGCCTGGTTGA -ACGGAAGTACGAAAGCCTTCCGAT -ACGGAAGTACGAAAGCCTTGGCAT -ACGGAAGTACGAAAGCCTCGAGAT -ACGGAAGTACGAAAGCCTTACCAC -ACGGAAGTACGAAAGCCTCAGAAC -ACGGAAGTACGAAAGCCTGTCTAC -ACGGAAGTACGAAAGCCTACGTAC -ACGGAAGTACGAAAGCCTAGTGAC -ACGGAAGTACGAAAGCCTCTGTAG -ACGGAAGTACGAAAGCCTCCTAAG -ACGGAAGTACGAAAGCCTGTTCAG -ACGGAAGTACGAAAGCCTGCATAG -ACGGAAGTACGAAAGCCTGACAAG -ACGGAAGTACGAAAGCCTAAGCAG -ACGGAAGTACGAAAGCCTCGTCAA -ACGGAAGTACGAAAGCCTGCTGAA -ACGGAAGTACGAAAGCCTAGTACG -ACGGAAGTACGAAAGCCTATCCGA -ACGGAAGTACGAAAGCCTATGGGA -ACGGAAGTACGAAAGCCTGTGCAA -ACGGAAGTACGAAAGCCTGAGGAA -ACGGAAGTACGAAAGCCTCAGGTA -ACGGAAGTACGAAAGCCTGACTCT -ACGGAAGTACGAAAGCCTAGTCCT -ACGGAAGTACGAAAGCCTTAAGCC -ACGGAAGTACGAAAGCCTATAGCC -ACGGAAGTACGAAAGCCTTAACCG -ACGGAAGTACGAAAGCCTATGCCA -ACGGAAGTACGACAGGTTGGAAAC -ACGGAAGTACGACAGGTTAACACC -ACGGAAGTACGACAGGTTATCGAG -ACGGAAGTACGACAGGTTCTCCTT -ACGGAAGTACGACAGGTTCCTGTT -ACGGAAGTACGACAGGTTCGGTTT -ACGGAAGTACGACAGGTTGTGGTT -ACGGAAGTACGACAGGTTGCCTTT -ACGGAAGTACGACAGGTTGGTCTT -ACGGAAGTACGACAGGTTACGCTT -ACGGAAGTACGACAGGTTAGCGTT -ACGGAAGTACGACAGGTTTTCGTC -ACGGAAGTACGACAGGTTTCTCTC -ACGGAAGTACGACAGGTTTGGATC -ACGGAAGTACGACAGGTTCACTTC -ACGGAAGTACGACAGGTTGTACTC -ACGGAAGTACGACAGGTTGATGTC -ACGGAAGTACGACAGGTTACAGTC -ACGGAAGTACGACAGGTTTTGCTG -ACGGAAGTACGACAGGTTTCCATG -ACGGAAGTACGACAGGTTTGTGTG -ACGGAAGTACGACAGGTTCTAGTG -ACGGAAGTACGACAGGTTCATCTG -ACGGAAGTACGACAGGTTGAGTTG -ACGGAAGTACGACAGGTTAGACTG -ACGGAAGTACGACAGGTTTCGGTA -ACGGAAGTACGACAGGTTTGCCTA -ACGGAAGTACGACAGGTTCCACTA -ACGGAAGTACGACAGGTTGGAGTA -ACGGAAGTACGACAGGTTTCGTCT -ACGGAAGTACGACAGGTTTGCACT -ACGGAAGTACGACAGGTTCTGACT -ACGGAAGTACGACAGGTTCAACCT -ACGGAAGTACGACAGGTTGCTACT -ACGGAAGTACGACAGGTTGGATCT -ACGGAAGTACGACAGGTTAAGGCT -ACGGAAGTACGACAGGTTTCAACC -ACGGAAGTACGACAGGTTTGTTCC -ACGGAAGTACGACAGGTTATTCCC -ACGGAAGTACGACAGGTTTTCTCG -ACGGAAGTACGACAGGTTTAGACG -ACGGAAGTACGACAGGTTGTAACG -ACGGAAGTACGACAGGTTACTTCG -ACGGAAGTACGACAGGTTTACGCA -ACGGAAGTACGACAGGTTCTTGCA -ACGGAAGTACGACAGGTTCGAACA -ACGGAAGTACGACAGGTTCAGTCA -ACGGAAGTACGACAGGTTGATCCA -ACGGAAGTACGACAGGTTACGACA -ACGGAAGTACGACAGGTTAGCTCA -ACGGAAGTACGACAGGTTTCACGT -ACGGAAGTACGACAGGTTCGTAGT -ACGGAAGTACGACAGGTTGTCAGT -ACGGAAGTACGACAGGTTGAAGGT -ACGGAAGTACGACAGGTTAACCGT -ACGGAAGTACGACAGGTTTTGTGC -ACGGAAGTACGACAGGTTCTAAGC -ACGGAAGTACGACAGGTTACTAGC -ACGGAAGTACGACAGGTTAGATGC -ACGGAAGTACGACAGGTTTGAAGG -ACGGAAGTACGACAGGTTCAATGG -ACGGAAGTACGACAGGTTATGAGG -ACGGAAGTACGACAGGTTAATGGG -ACGGAAGTACGACAGGTTTCCTGA -ACGGAAGTACGACAGGTTTAGCGA -ACGGAAGTACGACAGGTTCACAGA -ACGGAAGTACGACAGGTTGCAAGA -ACGGAAGTACGACAGGTTGGTTGA -ACGGAAGTACGACAGGTTTCCGAT -ACGGAAGTACGACAGGTTTGGCAT -ACGGAAGTACGACAGGTTCGAGAT -ACGGAAGTACGACAGGTTTACCAC -ACGGAAGTACGACAGGTTCAGAAC -ACGGAAGTACGACAGGTTGTCTAC -ACGGAAGTACGACAGGTTACGTAC -ACGGAAGTACGACAGGTTAGTGAC -ACGGAAGTACGACAGGTTCTGTAG -ACGGAAGTACGACAGGTTCCTAAG -ACGGAAGTACGACAGGTTGTTCAG -ACGGAAGTACGACAGGTTGCATAG -ACGGAAGTACGACAGGTTGACAAG -ACGGAAGTACGACAGGTTAAGCAG -ACGGAAGTACGACAGGTTCGTCAA -ACGGAAGTACGACAGGTTGCTGAA -ACGGAAGTACGACAGGTTAGTACG -ACGGAAGTACGACAGGTTATCCGA -ACGGAAGTACGACAGGTTATGGGA -ACGGAAGTACGACAGGTTGTGCAA -ACGGAAGTACGACAGGTTGAGGAA -ACGGAAGTACGACAGGTTCAGGTA -ACGGAAGTACGACAGGTTGACTCT -ACGGAAGTACGACAGGTTAGTCCT -ACGGAAGTACGACAGGTTTAAGCC -ACGGAAGTACGACAGGTTATAGCC -ACGGAAGTACGACAGGTTTAACCG -ACGGAAGTACGACAGGTTATGCCA -ACGGAAGTACGATAGGCAGGAAAC -ACGGAAGTACGATAGGCAAACACC -ACGGAAGTACGATAGGCAATCGAG -ACGGAAGTACGATAGGCACTCCTT -ACGGAAGTACGATAGGCACCTGTT -ACGGAAGTACGATAGGCACGGTTT -ACGGAAGTACGATAGGCAGTGGTT -ACGGAAGTACGATAGGCAGCCTTT -ACGGAAGTACGATAGGCAGGTCTT -ACGGAAGTACGATAGGCAACGCTT -ACGGAAGTACGATAGGCAAGCGTT -ACGGAAGTACGATAGGCATTCGTC -ACGGAAGTACGATAGGCATCTCTC -ACGGAAGTACGATAGGCATGGATC -ACGGAAGTACGATAGGCACACTTC -ACGGAAGTACGATAGGCAGTACTC -ACGGAAGTACGATAGGCAGATGTC -ACGGAAGTACGATAGGCAACAGTC -ACGGAAGTACGATAGGCATTGCTG -ACGGAAGTACGATAGGCATCCATG -ACGGAAGTACGATAGGCATGTGTG -ACGGAAGTACGATAGGCACTAGTG -ACGGAAGTACGATAGGCACATCTG -ACGGAAGTACGATAGGCAGAGTTG -ACGGAAGTACGATAGGCAAGACTG -ACGGAAGTACGATAGGCATCGGTA -ACGGAAGTACGATAGGCATGCCTA -ACGGAAGTACGATAGGCACCACTA -ACGGAAGTACGATAGGCAGGAGTA -ACGGAAGTACGATAGGCATCGTCT -ACGGAAGTACGATAGGCATGCACT -ACGGAAGTACGATAGGCACTGACT -ACGGAAGTACGATAGGCACAACCT -ACGGAAGTACGATAGGCAGCTACT -ACGGAAGTACGATAGGCAGGATCT -ACGGAAGTACGATAGGCAAAGGCT -ACGGAAGTACGATAGGCATCAACC -ACGGAAGTACGATAGGCATGTTCC -ACGGAAGTACGATAGGCAATTCCC -ACGGAAGTACGATAGGCATTCTCG -ACGGAAGTACGATAGGCATAGACG -ACGGAAGTACGATAGGCAGTAACG -ACGGAAGTACGATAGGCAACTTCG -ACGGAAGTACGATAGGCATACGCA -ACGGAAGTACGATAGGCACTTGCA -ACGGAAGTACGATAGGCACGAACA -ACGGAAGTACGATAGGCACAGTCA -ACGGAAGTACGATAGGCAGATCCA -ACGGAAGTACGATAGGCAACGACA -ACGGAAGTACGATAGGCAAGCTCA -ACGGAAGTACGATAGGCATCACGT -ACGGAAGTACGATAGGCACGTAGT -ACGGAAGTACGATAGGCAGTCAGT -ACGGAAGTACGATAGGCAGAAGGT -ACGGAAGTACGATAGGCAAACCGT -ACGGAAGTACGATAGGCATTGTGC -ACGGAAGTACGATAGGCACTAAGC -ACGGAAGTACGATAGGCAACTAGC -ACGGAAGTACGATAGGCAAGATGC -ACGGAAGTACGATAGGCATGAAGG -ACGGAAGTACGATAGGCACAATGG -ACGGAAGTACGATAGGCAATGAGG -ACGGAAGTACGATAGGCAAATGGG -ACGGAAGTACGATAGGCATCCTGA -ACGGAAGTACGATAGGCATAGCGA -ACGGAAGTACGATAGGCACACAGA -ACGGAAGTACGATAGGCAGCAAGA -ACGGAAGTACGATAGGCAGGTTGA -ACGGAAGTACGATAGGCATCCGAT -ACGGAAGTACGATAGGCATGGCAT -ACGGAAGTACGATAGGCACGAGAT -ACGGAAGTACGATAGGCATACCAC -ACGGAAGTACGATAGGCACAGAAC -ACGGAAGTACGATAGGCAGTCTAC -ACGGAAGTACGATAGGCAACGTAC -ACGGAAGTACGATAGGCAAGTGAC -ACGGAAGTACGATAGGCACTGTAG -ACGGAAGTACGATAGGCACCTAAG -ACGGAAGTACGATAGGCAGTTCAG -ACGGAAGTACGATAGGCAGCATAG -ACGGAAGTACGATAGGCAGACAAG -ACGGAAGTACGATAGGCAAAGCAG -ACGGAAGTACGATAGGCACGTCAA -ACGGAAGTACGATAGGCAGCTGAA -ACGGAAGTACGATAGGCAAGTACG -ACGGAAGTACGATAGGCAATCCGA -ACGGAAGTACGATAGGCAATGGGA -ACGGAAGTACGATAGGCAGTGCAA -ACGGAAGTACGATAGGCAGAGGAA -ACGGAAGTACGATAGGCACAGGTA -ACGGAAGTACGATAGGCAGACTCT -ACGGAAGTACGATAGGCAAGTCCT -ACGGAAGTACGATAGGCATAAGCC -ACGGAAGTACGATAGGCAATAGCC -ACGGAAGTACGATAGGCATAACCG -ACGGAAGTACGATAGGCAATGCCA -ACGGAAGTACGAAAGGACGGAAAC -ACGGAAGTACGAAAGGACAACACC -ACGGAAGTACGAAAGGACATCGAG -ACGGAAGTACGAAAGGACCTCCTT -ACGGAAGTACGAAAGGACCCTGTT -ACGGAAGTACGAAAGGACCGGTTT -ACGGAAGTACGAAAGGACGTGGTT -ACGGAAGTACGAAAGGACGCCTTT -ACGGAAGTACGAAAGGACGGTCTT -ACGGAAGTACGAAAGGACACGCTT -ACGGAAGTACGAAAGGACAGCGTT -ACGGAAGTACGAAAGGACTTCGTC -ACGGAAGTACGAAAGGACTCTCTC -ACGGAAGTACGAAAGGACTGGATC -ACGGAAGTACGAAAGGACCACTTC -ACGGAAGTACGAAAGGACGTACTC -ACGGAAGTACGAAAGGACGATGTC -ACGGAAGTACGAAAGGACACAGTC -ACGGAAGTACGAAAGGACTTGCTG -ACGGAAGTACGAAAGGACTCCATG -ACGGAAGTACGAAAGGACTGTGTG -ACGGAAGTACGAAAGGACCTAGTG -ACGGAAGTACGAAAGGACCATCTG -ACGGAAGTACGAAAGGACGAGTTG -ACGGAAGTACGAAAGGACAGACTG -ACGGAAGTACGAAAGGACTCGGTA -ACGGAAGTACGAAAGGACTGCCTA -ACGGAAGTACGAAAGGACCCACTA -ACGGAAGTACGAAAGGACGGAGTA -ACGGAAGTACGAAAGGACTCGTCT -ACGGAAGTACGAAAGGACTGCACT -ACGGAAGTACGAAAGGACCTGACT -ACGGAAGTACGAAAGGACCAACCT -ACGGAAGTACGAAAGGACGCTACT -ACGGAAGTACGAAAGGACGGATCT -ACGGAAGTACGAAAGGACAAGGCT -ACGGAAGTACGAAAGGACTCAACC -ACGGAAGTACGAAAGGACTGTTCC -ACGGAAGTACGAAAGGACATTCCC -ACGGAAGTACGAAAGGACTTCTCG -ACGGAAGTACGAAAGGACTAGACG -ACGGAAGTACGAAAGGACGTAACG -ACGGAAGTACGAAAGGACACTTCG -ACGGAAGTACGAAAGGACTACGCA -ACGGAAGTACGAAAGGACCTTGCA -ACGGAAGTACGAAAGGACCGAACA -ACGGAAGTACGAAAGGACCAGTCA -ACGGAAGTACGAAAGGACGATCCA -ACGGAAGTACGAAAGGACACGACA -ACGGAAGTACGAAAGGACAGCTCA -ACGGAAGTACGAAAGGACTCACGT -ACGGAAGTACGAAAGGACCGTAGT -ACGGAAGTACGAAAGGACGTCAGT -ACGGAAGTACGAAAGGACGAAGGT -ACGGAAGTACGAAAGGACAACCGT -ACGGAAGTACGAAAGGACTTGTGC -ACGGAAGTACGAAAGGACCTAAGC -ACGGAAGTACGAAAGGACACTAGC -ACGGAAGTACGAAAGGACAGATGC -ACGGAAGTACGAAAGGACTGAAGG -ACGGAAGTACGAAAGGACCAATGG -ACGGAAGTACGAAAGGACATGAGG -ACGGAAGTACGAAAGGACAATGGG -ACGGAAGTACGAAAGGACTCCTGA -ACGGAAGTACGAAAGGACTAGCGA -ACGGAAGTACGAAAGGACCACAGA -ACGGAAGTACGAAAGGACGCAAGA -ACGGAAGTACGAAAGGACGGTTGA -ACGGAAGTACGAAAGGACTCCGAT -ACGGAAGTACGAAAGGACTGGCAT -ACGGAAGTACGAAAGGACCGAGAT -ACGGAAGTACGAAAGGACTACCAC -ACGGAAGTACGAAAGGACCAGAAC -ACGGAAGTACGAAAGGACGTCTAC -ACGGAAGTACGAAAGGACACGTAC -ACGGAAGTACGAAAGGACAGTGAC -ACGGAAGTACGAAAGGACCTGTAG -ACGGAAGTACGAAAGGACCCTAAG -ACGGAAGTACGAAAGGACGTTCAG -ACGGAAGTACGAAAGGACGCATAG -ACGGAAGTACGAAAGGACGACAAG -ACGGAAGTACGAAAGGACAAGCAG -ACGGAAGTACGAAAGGACCGTCAA -ACGGAAGTACGAAAGGACGCTGAA -ACGGAAGTACGAAAGGACAGTACG -ACGGAAGTACGAAAGGACATCCGA -ACGGAAGTACGAAAGGACATGGGA -ACGGAAGTACGAAAGGACGTGCAA -ACGGAAGTACGAAAGGACGAGGAA -ACGGAAGTACGAAAGGACCAGGTA -ACGGAAGTACGAAAGGACGACTCT -ACGGAAGTACGAAAGGACAGTCCT -ACGGAAGTACGAAAGGACTAAGCC -ACGGAAGTACGAAAGGACATAGCC -ACGGAAGTACGAAAGGACTAACCG -ACGGAAGTACGAAAGGACATGCCA -ACGGAAGTACGACAGAAGGGAAAC -ACGGAAGTACGACAGAAGAACACC -ACGGAAGTACGACAGAAGATCGAG -ACGGAAGTACGACAGAAGCTCCTT -ACGGAAGTACGACAGAAGCCTGTT -ACGGAAGTACGACAGAAGCGGTTT -ACGGAAGTACGACAGAAGGTGGTT -ACGGAAGTACGACAGAAGGCCTTT -ACGGAAGTACGACAGAAGGGTCTT -ACGGAAGTACGACAGAAGACGCTT -ACGGAAGTACGACAGAAGAGCGTT -ACGGAAGTACGACAGAAGTTCGTC -ACGGAAGTACGACAGAAGTCTCTC -ACGGAAGTACGACAGAAGTGGATC -ACGGAAGTACGACAGAAGCACTTC -ACGGAAGTACGACAGAAGGTACTC -ACGGAAGTACGACAGAAGGATGTC -ACGGAAGTACGACAGAAGACAGTC -ACGGAAGTACGACAGAAGTTGCTG -ACGGAAGTACGACAGAAGTCCATG -ACGGAAGTACGACAGAAGTGTGTG -ACGGAAGTACGACAGAAGCTAGTG -ACGGAAGTACGACAGAAGCATCTG -ACGGAAGTACGACAGAAGGAGTTG -ACGGAAGTACGACAGAAGAGACTG -ACGGAAGTACGACAGAAGTCGGTA -ACGGAAGTACGACAGAAGTGCCTA -ACGGAAGTACGACAGAAGCCACTA -ACGGAAGTACGACAGAAGGGAGTA -ACGGAAGTACGACAGAAGTCGTCT -ACGGAAGTACGACAGAAGTGCACT -ACGGAAGTACGACAGAAGCTGACT -ACGGAAGTACGACAGAAGCAACCT -ACGGAAGTACGACAGAAGGCTACT -ACGGAAGTACGACAGAAGGGATCT -ACGGAAGTACGACAGAAGAAGGCT -ACGGAAGTACGACAGAAGTCAACC -ACGGAAGTACGACAGAAGTGTTCC -ACGGAAGTACGACAGAAGATTCCC -ACGGAAGTACGACAGAAGTTCTCG -ACGGAAGTACGACAGAAGTAGACG -ACGGAAGTACGACAGAAGGTAACG -ACGGAAGTACGACAGAAGACTTCG -ACGGAAGTACGACAGAAGTACGCA -ACGGAAGTACGACAGAAGCTTGCA -ACGGAAGTACGACAGAAGCGAACA -ACGGAAGTACGACAGAAGCAGTCA -ACGGAAGTACGACAGAAGGATCCA -ACGGAAGTACGACAGAAGACGACA -ACGGAAGTACGACAGAAGAGCTCA -ACGGAAGTACGACAGAAGTCACGT -ACGGAAGTACGACAGAAGCGTAGT -ACGGAAGTACGACAGAAGGTCAGT -ACGGAAGTACGACAGAAGGAAGGT -ACGGAAGTACGACAGAAGAACCGT -ACGGAAGTACGACAGAAGTTGTGC -ACGGAAGTACGACAGAAGCTAAGC -ACGGAAGTACGACAGAAGACTAGC -ACGGAAGTACGACAGAAGAGATGC -ACGGAAGTACGACAGAAGTGAAGG -ACGGAAGTACGACAGAAGCAATGG -ACGGAAGTACGACAGAAGATGAGG -ACGGAAGTACGACAGAAGAATGGG -ACGGAAGTACGACAGAAGTCCTGA -ACGGAAGTACGACAGAAGTAGCGA -ACGGAAGTACGACAGAAGCACAGA -ACGGAAGTACGACAGAAGGCAAGA -ACGGAAGTACGACAGAAGGGTTGA -ACGGAAGTACGACAGAAGTCCGAT -ACGGAAGTACGACAGAAGTGGCAT -ACGGAAGTACGACAGAAGCGAGAT -ACGGAAGTACGACAGAAGTACCAC -ACGGAAGTACGACAGAAGCAGAAC -ACGGAAGTACGACAGAAGGTCTAC -ACGGAAGTACGACAGAAGACGTAC -ACGGAAGTACGACAGAAGAGTGAC -ACGGAAGTACGACAGAAGCTGTAG -ACGGAAGTACGACAGAAGCCTAAG -ACGGAAGTACGACAGAAGGTTCAG -ACGGAAGTACGACAGAAGGCATAG -ACGGAAGTACGACAGAAGGACAAG -ACGGAAGTACGACAGAAGAAGCAG -ACGGAAGTACGACAGAAGCGTCAA -ACGGAAGTACGACAGAAGGCTGAA -ACGGAAGTACGACAGAAGAGTACG -ACGGAAGTACGACAGAAGATCCGA -ACGGAAGTACGACAGAAGATGGGA -ACGGAAGTACGACAGAAGGTGCAA -ACGGAAGTACGACAGAAGGAGGAA -ACGGAAGTACGACAGAAGCAGGTA -ACGGAAGTACGACAGAAGGACTCT -ACGGAAGTACGACAGAAGAGTCCT -ACGGAAGTACGACAGAAGTAAGCC -ACGGAAGTACGACAGAAGATAGCC -ACGGAAGTACGACAGAAGTAACCG -ACGGAAGTACGACAGAAGATGCCA -ACGGAAGTACGACAACGTGGAAAC -ACGGAAGTACGACAACGTAACACC -ACGGAAGTACGACAACGTATCGAG -ACGGAAGTACGACAACGTCTCCTT -ACGGAAGTACGACAACGTCCTGTT -ACGGAAGTACGACAACGTCGGTTT -ACGGAAGTACGACAACGTGTGGTT -ACGGAAGTACGACAACGTGCCTTT -ACGGAAGTACGACAACGTGGTCTT -ACGGAAGTACGACAACGTACGCTT -ACGGAAGTACGACAACGTAGCGTT -ACGGAAGTACGACAACGTTTCGTC -ACGGAAGTACGACAACGTTCTCTC -ACGGAAGTACGACAACGTTGGATC -ACGGAAGTACGACAACGTCACTTC -ACGGAAGTACGACAACGTGTACTC -ACGGAAGTACGACAACGTGATGTC -ACGGAAGTACGACAACGTACAGTC -ACGGAAGTACGACAACGTTTGCTG -ACGGAAGTACGACAACGTTCCATG -ACGGAAGTACGACAACGTTGTGTG -ACGGAAGTACGACAACGTCTAGTG -ACGGAAGTACGACAACGTCATCTG -ACGGAAGTACGACAACGTGAGTTG -ACGGAAGTACGACAACGTAGACTG -ACGGAAGTACGACAACGTTCGGTA -ACGGAAGTACGACAACGTTGCCTA -ACGGAAGTACGACAACGTCCACTA -ACGGAAGTACGACAACGTGGAGTA -ACGGAAGTACGACAACGTTCGTCT -ACGGAAGTACGACAACGTTGCACT -ACGGAAGTACGACAACGTCTGACT -ACGGAAGTACGACAACGTCAACCT -ACGGAAGTACGACAACGTGCTACT -ACGGAAGTACGACAACGTGGATCT -ACGGAAGTACGACAACGTAAGGCT -ACGGAAGTACGACAACGTTCAACC -ACGGAAGTACGACAACGTTGTTCC -ACGGAAGTACGACAACGTATTCCC -ACGGAAGTACGACAACGTTTCTCG -ACGGAAGTACGACAACGTTAGACG -ACGGAAGTACGACAACGTGTAACG -ACGGAAGTACGACAACGTACTTCG -ACGGAAGTACGACAACGTTACGCA -ACGGAAGTACGACAACGTCTTGCA -ACGGAAGTACGACAACGTCGAACA -ACGGAAGTACGACAACGTCAGTCA -ACGGAAGTACGACAACGTGATCCA -ACGGAAGTACGACAACGTACGACA -ACGGAAGTACGACAACGTAGCTCA -ACGGAAGTACGACAACGTTCACGT -ACGGAAGTACGACAACGTCGTAGT -ACGGAAGTACGACAACGTGTCAGT -ACGGAAGTACGACAACGTGAAGGT -ACGGAAGTACGACAACGTAACCGT -ACGGAAGTACGACAACGTTTGTGC -ACGGAAGTACGACAACGTCTAAGC -ACGGAAGTACGACAACGTACTAGC -ACGGAAGTACGACAACGTAGATGC -ACGGAAGTACGACAACGTTGAAGG -ACGGAAGTACGACAACGTCAATGG -ACGGAAGTACGACAACGTATGAGG -ACGGAAGTACGACAACGTAATGGG -ACGGAAGTACGACAACGTTCCTGA -ACGGAAGTACGACAACGTTAGCGA -ACGGAAGTACGACAACGTCACAGA -ACGGAAGTACGACAACGTGCAAGA -ACGGAAGTACGACAACGTGGTTGA -ACGGAAGTACGACAACGTTCCGAT -ACGGAAGTACGACAACGTTGGCAT -ACGGAAGTACGACAACGTCGAGAT -ACGGAAGTACGACAACGTTACCAC -ACGGAAGTACGACAACGTCAGAAC -ACGGAAGTACGACAACGTGTCTAC -ACGGAAGTACGACAACGTACGTAC -ACGGAAGTACGACAACGTAGTGAC -ACGGAAGTACGACAACGTCTGTAG -ACGGAAGTACGACAACGTCCTAAG -ACGGAAGTACGACAACGTGTTCAG -ACGGAAGTACGACAACGTGCATAG -ACGGAAGTACGACAACGTGACAAG -ACGGAAGTACGACAACGTAAGCAG -ACGGAAGTACGACAACGTCGTCAA -ACGGAAGTACGACAACGTGCTGAA -ACGGAAGTACGACAACGTAGTACG -ACGGAAGTACGACAACGTATCCGA -ACGGAAGTACGACAACGTATGGGA -ACGGAAGTACGACAACGTGTGCAA -ACGGAAGTACGACAACGTGAGGAA -ACGGAAGTACGACAACGTCAGGTA -ACGGAAGTACGACAACGTGACTCT -ACGGAAGTACGACAACGTAGTCCT -ACGGAAGTACGACAACGTTAAGCC -ACGGAAGTACGACAACGTATAGCC -ACGGAAGTACGACAACGTTAACCG -ACGGAAGTACGACAACGTATGCCA -ACGGAAGTACGAGAAGCTGGAAAC -ACGGAAGTACGAGAAGCTAACACC -ACGGAAGTACGAGAAGCTATCGAG -ACGGAAGTACGAGAAGCTCTCCTT -ACGGAAGTACGAGAAGCTCCTGTT -ACGGAAGTACGAGAAGCTCGGTTT -ACGGAAGTACGAGAAGCTGTGGTT -ACGGAAGTACGAGAAGCTGCCTTT -ACGGAAGTACGAGAAGCTGGTCTT -ACGGAAGTACGAGAAGCTACGCTT -ACGGAAGTACGAGAAGCTAGCGTT -ACGGAAGTACGAGAAGCTTTCGTC -ACGGAAGTACGAGAAGCTTCTCTC -ACGGAAGTACGAGAAGCTTGGATC -ACGGAAGTACGAGAAGCTCACTTC -ACGGAAGTACGAGAAGCTGTACTC -ACGGAAGTACGAGAAGCTGATGTC -ACGGAAGTACGAGAAGCTACAGTC -ACGGAAGTACGAGAAGCTTTGCTG -ACGGAAGTACGAGAAGCTTCCATG -ACGGAAGTACGAGAAGCTTGTGTG -ACGGAAGTACGAGAAGCTCTAGTG -ACGGAAGTACGAGAAGCTCATCTG -ACGGAAGTACGAGAAGCTGAGTTG -ACGGAAGTACGAGAAGCTAGACTG -ACGGAAGTACGAGAAGCTTCGGTA -ACGGAAGTACGAGAAGCTTGCCTA -ACGGAAGTACGAGAAGCTCCACTA -ACGGAAGTACGAGAAGCTGGAGTA -ACGGAAGTACGAGAAGCTTCGTCT -ACGGAAGTACGAGAAGCTTGCACT -ACGGAAGTACGAGAAGCTCTGACT -ACGGAAGTACGAGAAGCTCAACCT -ACGGAAGTACGAGAAGCTGCTACT -ACGGAAGTACGAGAAGCTGGATCT -ACGGAAGTACGAGAAGCTAAGGCT -ACGGAAGTACGAGAAGCTTCAACC -ACGGAAGTACGAGAAGCTTGTTCC -ACGGAAGTACGAGAAGCTATTCCC -ACGGAAGTACGAGAAGCTTTCTCG -ACGGAAGTACGAGAAGCTTAGACG -ACGGAAGTACGAGAAGCTGTAACG -ACGGAAGTACGAGAAGCTACTTCG -ACGGAAGTACGAGAAGCTTACGCA -ACGGAAGTACGAGAAGCTCTTGCA -ACGGAAGTACGAGAAGCTCGAACA -ACGGAAGTACGAGAAGCTCAGTCA -ACGGAAGTACGAGAAGCTGATCCA -ACGGAAGTACGAGAAGCTACGACA -ACGGAAGTACGAGAAGCTAGCTCA -ACGGAAGTACGAGAAGCTTCACGT -ACGGAAGTACGAGAAGCTCGTAGT -ACGGAAGTACGAGAAGCTGTCAGT -ACGGAAGTACGAGAAGCTGAAGGT -ACGGAAGTACGAGAAGCTAACCGT -ACGGAAGTACGAGAAGCTTTGTGC -ACGGAAGTACGAGAAGCTCTAAGC -ACGGAAGTACGAGAAGCTACTAGC -ACGGAAGTACGAGAAGCTAGATGC -ACGGAAGTACGAGAAGCTTGAAGG -ACGGAAGTACGAGAAGCTCAATGG -ACGGAAGTACGAGAAGCTATGAGG -ACGGAAGTACGAGAAGCTAATGGG -ACGGAAGTACGAGAAGCTTCCTGA -ACGGAAGTACGAGAAGCTTAGCGA -ACGGAAGTACGAGAAGCTCACAGA -ACGGAAGTACGAGAAGCTGCAAGA -ACGGAAGTACGAGAAGCTGGTTGA -ACGGAAGTACGAGAAGCTTCCGAT -ACGGAAGTACGAGAAGCTTGGCAT -ACGGAAGTACGAGAAGCTCGAGAT -ACGGAAGTACGAGAAGCTTACCAC -ACGGAAGTACGAGAAGCTCAGAAC -ACGGAAGTACGAGAAGCTGTCTAC -ACGGAAGTACGAGAAGCTACGTAC -ACGGAAGTACGAGAAGCTAGTGAC -ACGGAAGTACGAGAAGCTCTGTAG -ACGGAAGTACGAGAAGCTCCTAAG -ACGGAAGTACGAGAAGCTGTTCAG -ACGGAAGTACGAGAAGCTGCATAG -ACGGAAGTACGAGAAGCTGACAAG -ACGGAAGTACGAGAAGCTAAGCAG -ACGGAAGTACGAGAAGCTCGTCAA -ACGGAAGTACGAGAAGCTGCTGAA -ACGGAAGTACGAGAAGCTAGTACG -ACGGAAGTACGAGAAGCTATCCGA -ACGGAAGTACGAGAAGCTATGGGA -ACGGAAGTACGAGAAGCTGTGCAA -ACGGAAGTACGAGAAGCTGAGGAA -ACGGAAGTACGAGAAGCTCAGGTA -ACGGAAGTACGAGAAGCTGACTCT -ACGGAAGTACGAGAAGCTAGTCCT -ACGGAAGTACGAGAAGCTTAAGCC -ACGGAAGTACGAGAAGCTATAGCC -ACGGAAGTACGAGAAGCTTAACCG -ACGGAAGTACGAGAAGCTATGCCA -ACGGAAGTACGAACGAGTGGAAAC -ACGGAAGTACGAACGAGTAACACC -ACGGAAGTACGAACGAGTATCGAG -ACGGAAGTACGAACGAGTCTCCTT -ACGGAAGTACGAACGAGTCCTGTT -ACGGAAGTACGAACGAGTCGGTTT -ACGGAAGTACGAACGAGTGTGGTT -ACGGAAGTACGAACGAGTGCCTTT -ACGGAAGTACGAACGAGTGGTCTT -ACGGAAGTACGAACGAGTACGCTT -ACGGAAGTACGAACGAGTAGCGTT -ACGGAAGTACGAACGAGTTTCGTC -ACGGAAGTACGAACGAGTTCTCTC -ACGGAAGTACGAACGAGTTGGATC -ACGGAAGTACGAACGAGTCACTTC -ACGGAAGTACGAACGAGTGTACTC -ACGGAAGTACGAACGAGTGATGTC -ACGGAAGTACGAACGAGTACAGTC -ACGGAAGTACGAACGAGTTTGCTG -ACGGAAGTACGAACGAGTTCCATG -ACGGAAGTACGAACGAGTTGTGTG -ACGGAAGTACGAACGAGTCTAGTG -ACGGAAGTACGAACGAGTCATCTG -ACGGAAGTACGAACGAGTGAGTTG -ACGGAAGTACGAACGAGTAGACTG -ACGGAAGTACGAACGAGTTCGGTA -ACGGAAGTACGAACGAGTTGCCTA -ACGGAAGTACGAACGAGTCCACTA -ACGGAAGTACGAACGAGTGGAGTA -ACGGAAGTACGAACGAGTTCGTCT -ACGGAAGTACGAACGAGTTGCACT -ACGGAAGTACGAACGAGTCTGACT -ACGGAAGTACGAACGAGTCAACCT -ACGGAAGTACGAACGAGTGCTACT -ACGGAAGTACGAACGAGTGGATCT -ACGGAAGTACGAACGAGTAAGGCT -ACGGAAGTACGAACGAGTTCAACC -ACGGAAGTACGAACGAGTTGTTCC -ACGGAAGTACGAACGAGTATTCCC -ACGGAAGTACGAACGAGTTTCTCG -ACGGAAGTACGAACGAGTTAGACG -ACGGAAGTACGAACGAGTGTAACG -ACGGAAGTACGAACGAGTACTTCG -ACGGAAGTACGAACGAGTTACGCA -ACGGAAGTACGAACGAGTCTTGCA -ACGGAAGTACGAACGAGTCGAACA -ACGGAAGTACGAACGAGTCAGTCA -ACGGAAGTACGAACGAGTGATCCA -ACGGAAGTACGAACGAGTACGACA -ACGGAAGTACGAACGAGTAGCTCA -ACGGAAGTACGAACGAGTTCACGT -ACGGAAGTACGAACGAGTCGTAGT -ACGGAAGTACGAACGAGTGTCAGT -ACGGAAGTACGAACGAGTGAAGGT -ACGGAAGTACGAACGAGTAACCGT -ACGGAAGTACGAACGAGTTTGTGC -ACGGAAGTACGAACGAGTCTAAGC -ACGGAAGTACGAACGAGTACTAGC -ACGGAAGTACGAACGAGTAGATGC -ACGGAAGTACGAACGAGTTGAAGG -ACGGAAGTACGAACGAGTCAATGG -ACGGAAGTACGAACGAGTATGAGG -ACGGAAGTACGAACGAGTAATGGG -ACGGAAGTACGAACGAGTTCCTGA -ACGGAAGTACGAACGAGTTAGCGA -ACGGAAGTACGAACGAGTCACAGA -ACGGAAGTACGAACGAGTGCAAGA -ACGGAAGTACGAACGAGTGGTTGA -ACGGAAGTACGAACGAGTTCCGAT -ACGGAAGTACGAACGAGTTGGCAT -ACGGAAGTACGAACGAGTCGAGAT -ACGGAAGTACGAACGAGTTACCAC -ACGGAAGTACGAACGAGTCAGAAC -ACGGAAGTACGAACGAGTGTCTAC -ACGGAAGTACGAACGAGTACGTAC -ACGGAAGTACGAACGAGTAGTGAC -ACGGAAGTACGAACGAGTCTGTAG -ACGGAAGTACGAACGAGTCCTAAG -ACGGAAGTACGAACGAGTGTTCAG -ACGGAAGTACGAACGAGTGCATAG -ACGGAAGTACGAACGAGTGACAAG -ACGGAAGTACGAACGAGTAAGCAG -ACGGAAGTACGAACGAGTCGTCAA -ACGGAAGTACGAACGAGTGCTGAA -ACGGAAGTACGAACGAGTAGTACG -ACGGAAGTACGAACGAGTATCCGA -ACGGAAGTACGAACGAGTATGGGA -ACGGAAGTACGAACGAGTGTGCAA -ACGGAAGTACGAACGAGTGAGGAA -ACGGAAGTACGAACGAGTCAGGTA -ACGGAAGTACGAACGAGTGACTCT -ACGGAAGTACGAACGAGTAGTCCT -ACGGAAGTACGAACGAGTTAAGCC -ACGGAAGTACGAACGAGTATAGCC -ACGGAAGTACGAACGAGTTAACCG -ACGGAAGTACGAACGAGTATGCCA -ACGGAAGTACGACGAATCGGAAAC -ACGGAAGTACGACGAATCAACACC -ACGGAAGTACGACGAATCATCGAG -ACGGAAGTACGACGAATCCTCCTT -ACGGAAGTACGACGAATCCCTGTT -ACGGAAGTACGACGAATCCGGTTT -ACGGAAGTACGACGAATCGTGGTT -ACGGAAGTACGACGAATCGCCTTT -ACGGAAGTACGACGAATCGGTCTT -ACGGAAGTACGACGAATCACGCTT -ACGGAAGTACGACGAATCAGCGTT -ACGGAAGTACGACGAATCTTCGTC -ACGGAAGTACGACGAATCTCTCTC -ACGGAAGTACGACGAATCTGGATC -ACGGAAGTACGACGAATCCACTTC -ACGGAAGTACGACGAATCGTACTC -ACGGAAGTACGACGAATCGATGTC -ACGGAAGTACGACGAATCACAGTC -ACGGAAGTACGACGAATCTTGCTG -ACGGAAGTACGACGAATCTCCATG -ACGGAAGTACGACGAATCTGTGTG -ACGGAAGTACGACGAATCCTAGTG -ACGGAAGTACGACGAATCCATCTG -ACGGAAGTACGACGAATCGAGTTG -ACGGAAGTACGACGAATCAGACTG -ACGGAAGTACGACGAATCTCGGTA -ACGGAAGTACGACGAATCTGCCTA -ACGGAAGTACGACGAATCCCACTA -ACGGAAGTACGACGAATCGGAGTA -ACGGAAGTACGACGAATCTCGTCT -ACGGAAGTACGACGAATCTGCACT -ACGGAAGTACGACGAATCCTGACT -ACGGAAGTACGACGAATCCAACCT -ACGGAAGTACGACGAATCGCTACT -ACGGAAGTACGACGAATCGGATCT -ACGGAAGTACGACGAATCAAGGCT -ACGGAAGTACGACGAATCTCAACC -ACGGAAGTACGACGAATCTGTTCC -ACGGAAGTACGACGAATCATTCCC -ACGGAAGTACGACGAATCTTCTCG -ACGGAAGTACGACGAATCTAGACG -ACGGAAGTACGACGAATCGTAACG -ACGGAAGTACGACGAATCACTTCG -ACGGAAGTACGACGAATCTACGCA -ACGGAAGTACGACGAATCCTTGCA -ACGGAAGTACGACGAATCCGAACA -ACGGAAGTACGACGAATCCAGTCA -ACGGAAGTACGACGAATCGATCCA -ACGGAAGTACGACGAATCACGACA -ACGGAAGTACGACGAATCAGCTCA -ACGGAAGTACGACGAATCTCACGT -ACGGAAGTACGACGAATCCGTAGT -ACGGAAGTACGACGAATCGTCAGT -ACGGAAGTACGACGAATCGAAGGT -ACGGAAGTACGACGAATCAACCGT -ACGGAAGTACGACGAATCTTGTGC -ACGGAAGTACGACGAATCCTAAGC -ACGGAAGTACGACGAATCACTAGC -ACGGAAGTACGACGAATCAGATGC -ACGGAAGTACGACGAATCTGAAGG -ACGGAAGTACGACGAATCCAATGG -ACGGAAGTACGACGAATCATGAGG -ACGGAAGTACGACGAATCAATGGG -ACGGAAGTACGACGAATCTCCTGA -ACGGAAGTACGACGAATCTAGCGA -ACGGAAGTACGACGAATCCACAGA -ACGGAAGTACGACGAATCGCAAGA -ACGGAAGTACGACGAATCGGTTGA -ACGGAAGTACGACGAATCTCCGAT -ACGGAAGTACGACGAATCTGGCAT -ACGGAAGTACGACGAATCCGAGAT -ACGGAAGTACGACGAATCTACCAC -ACGGAAGTACGACGAATCCAGAAC -ACGGAAGTACGACGAATCGTCTAC -ACGGAAGTACGACGAATCACGTAC -ACGGAAGTACGACGAATCAGTGAC -ACGGAAGTACGACGAATCCTGTAG -ACGGAAGTACGACGAATCCCTAAG -ACGGAAGTACGACGAATCGTTCAG -ACGGAAGTACGACGAATCGCATAG -ACGGAAGTACGACGAATCGACAAG -ACGGAAGTACGACGAATCAAGCAG -ACGGAAGTACGACGAATCCGTCAA -ACGGAAGTACGACGAATCGCTGAA -ACGGAAGTACGACGAATCAGTACG -ACGGAAGTACGACGAATCATCCGA -ACGGAAGTACGACGAATCATGGGA -ACGGAAGTACGACGAATCGTGCAA -ACGGAAGTACGACGAATCGAGGAA -ACGGAAGTACGACGAATCCAGGTA -ACGGAAGTACGACGAATCGACTCT -ACGGAAGTACGACGAATCAGTCCT -ACGGAAGTACGACGAATCTAAGCC -ACGGAAGTACGACGAATCATAGCC -ACGGAAGTACGACGAATCTAACCG -ACGGAAGTACGACGAATCATGCCA -ACGGAAGTACGAGGAATGGGAAAC -ACGGAAGTACGAGGAATGAACACC -ACGGAAGTACGAGGAATGATCGAG -ACGGAAGTACGAGGAATGCTCCTT -ACGGAAGTACGAGGAATGCCTGTT -ACGGAAGTACGAGGAATGCGGTTT -ACGGAAGTACGAGGAATGGTGGTT -ACGGAAGTACGAGGAATGGCCTTT -ACGGAAGTACGAGGAATGGGTCTT -ACGGAAGTACGAGGAATGACGCTT -ACGGAAGTACGAGGAATGAGCGTT -ACGGAAGTACGAGGAATGTTCGTC -ACGGAAGTACGAGGAATGTCTCTC -ACGGAAGTACGAGGAATGTGGATC -ACGGAAGTACGAGGAATGCACTTC -ACGGAAGTACGAGGAATGGTACTC -ACGGAAGTACGAGGAATGGATGTC -ACGGAAGTACGAGGAATGACAGTC -ACGGAAGTACGAGGAATGTTGCTG -ACGGAAGTACGAGGAATGTCCATG -ACGGAAGTACGAGGAATGTGTGTG -ACGGAAGTACGAGGAATGCTAGTG -ACGGAAGTACGAGGAATGCATCTG -ACGGAAGTACGAGGAATGGAGTTG -ACGGAAGTACGAGGAATGAGACTG -ACGGAAGTACGAGGAATGTCGGTA -ACGGAAGTACGAGGAATGTGCCTA -ACGGAAGTACGAGGAATGCCACTA -ACGGAAGTACGAGGAATGGGAGTA -ACGGAAGTACGAGGAATGTCGTCT -ACGGAAGTACGAGGAATGTGCACT -ACGGAAGTACGAGGAATGCTGACT -ACGGAAGTACGAGGAATGCAACCT -ACGGAAGTACGAGGAATGGCTACT -ACGGAAGTACGAGGAATGGGATCT -ACGGAAGTACGAGGAATGAAGGCT -ACGGAAGTACGAGGAATGTCAACC -ACGGAAGTACGAGGAATGTGTTCC -ACGGAAGTACGAGGAATGATTCCC -ACGGAAGTACGAGGAATGTTCTCG -ACGGAAGTACGAGGAATGTAGACG -ACGGAAGTACGAGGAATGGTAACG -ACGGAAGTACGAGGAATGACTTCG -ACGGAAGTACGAGGAATGTACGCA -ACGGAAGTACGAGGAATGCTTGCA -ACGGAAGTACGAGGAATGCGAACA -ACGGAAGTACGAGGAATGCAGTCA -ACGGAAGTACGAGGAATGGATCCA -ACGGAAGTACGAGGAATGACGACA -ACGGAAGTACGAGGAATGAGCTCA -ACGGAAGTACGAGGAATGTCACGT -ACGGAAGTACGAGGAATGCGTAGT -ACGGAAGTACGAGGAATGGTCAGT -ACGGAAGTACGAGGAATGGAAGGT -ACGGAAGTACGAGGAATGAACCGT -ACGGAAGTACGAGGAATGTTGTGC -ACGGAAGTACGAGGAATGCTAAGC -ACGGAAGTACGAGGAATGACTAGC -ACGGAAGTACGAGGAATGAGATGC -ACGGAAGTACGAGGAATGTGAAGG -ACGGAAGTACGAGGAATGCAATGG -ACGGAAGTACGAGGAATGATGAGG -ACGGAAGTACGAGGAATGAATGGG -ACGGAAGTACGAGGAATGTCCTGA -ACGGAAGTACGAGGAATGTAGCGA -ACGGAAGTACGAGGAATGCACAGA -ACGGAAGTACGAGGAATGGCAAGA -ACGGAAGTACGAGGAATGGGTTGA -ACGGAAGTACGAGGAATGTCCGAT -ACGGAAGTACGAGGAATGTGGCAT -ACGGAAGTACGAGGAATGCGAGAT -ACGGAAGTACGAGGAATGTACCAC -ACGGAAGTACGAGGAATGCAGAAC -ACGGAAGTACGAGGAATGGTCTAC -ACGGAAGTACGAGGAATGACGTAC -ACGGAAGTACGAGGAATGAGTGAC -ACGGAAGTACGAGGAATGCTGTAG -ACGGAAGTACGAGGAATGCCTAAG -ACGGAAGTACGAGGAATGGTTCAG -ACGGAAGTACGAGGAATGGCATAG -ACGGAAGTACGAGGAATGGACAAG -ACGGAAGTACGAGGAATGAAGCAG -ACGGAAGTACGAGGAATGCGTCAA -ACGGAAGTACGAGGAATGGCTGAA -ACGGAAGTACGAGGAATGAGTACG -ACGGAAGTACGAGGAATGATCCGA -ACGGAAGTACGAGGAATGATGGGA -ACGGAAGTACGAGGAATGGTGCAA -ACGGAAGTACGAGGAATGGAGGAA -ACGGAAGTACGAGGAATGCAGGTA -ACGGAAGTACGAGGAATGGACTCT -ACGGAAGTACGAGGAATGAGTCCT -ACGGAAGTACGAGGAATGTAAGCC -ACGGAAGTACGAGGAATGATAGCC -ACGGAAGTACGAGGAATGTAACCG -ACGGAAGTACGAGGAATGATGCCA -ACGGAAGTACGACAAGTGGGAAAC -ACGGAAGTACGACAAGTGAACACC -ACGGAAGTACGACAAGTGATCGAG -ACGGAAGTACGACAAGTGCTCCTT -ACGGAAGTACGACAAGTGCCTGTT -ACGGAAGTACGACAAGTGCGGTTT -ACGGAAGTACGACAAGTGGTGGTT -ACGGAAGTACGACAAGTGGCCTTT -ACGGAAGTACGACAAGTGGGTCTT -ACGGAAGTACGACAAGTGACGCTT -ACGGAAGTACGACAAGTGAGCGTT -ACGGAAGTACGACAAGTGTTCGTC -ACGGAAGTACGACAAGTGTCTCTC -ACGGAAGTACGACAAGTGTGGATC -ACGGAAGTACGACAAGTGCACTTC -ACGGAAGTACGACAAGTGGTACTC -ACGGAAGTACGACAAGTGGATGTC -ACGGAAGTACGACAAGTGACAGTC -ACGGAAGTACGACAAGTGTTGCTG -ACGGAAGTACGACAAGTGTCCATG -ACGGAAGTACGACAAGTGTGTGTG -ACGGAAGTACGACAAGTGCTAGTG -ACGGAAGTACGACAAGTGCATCTG -ACGGAAGTACGACAAGTGGAGTTG -ACGGAAGTACGACAAGTGAGACTG -ACGGAAGTACGACAAGTGTCGGTA -ACGGAAGTACGACAAGTGTGCCTA -ACGGAAGTACGACAAGTGCCACTA -ACGGAAGTACGACAAGTGGGAGTA -ACGGAAGTACGACAAGTGTCGTCT -ACGGAAGTACGACAAGTGTGCACT -ACGGAAGTACGACAAGTGCTGACT -ACGGAAGTACGACAAGTGCAACCT -ACGGAAGTACGACAAGTGGCTACT -ACGGAAGTACGACAAGTGGGATCT -ACGGAAGTACGACAAGTGAAGGCT -ACGGAAGTACGACAAGTGTCAACC -ACGGAAGTACGACAAGTGTGTTCC -ACGGAAGTACGACAAGTGATTCCC -ACGGAAGTACGACAAGTGTTCTCG -ACGGAAGTACGACAAGTGTAGACG -ACGGAAGTACGACAAGTGGTAACG -ACGGAAGTACGACAAGTGACTTCG -ACGGAAGTACGACAAGTGTACGCA -ACGGAAGTACGACAAGTGCTTGCA -ACGGAAGTACGACAAGTGCGAACA -ACGGAAGTACGACAAGTGCAGTCA -ACGGAAGTACGACAAGTGGATCCA -ACGGAAGTACGACAAGTGACGACA -ACGGAAGTACGACAAGTGAGCTCA -ACGGAAGTACGACAAGTGTCACGT -ACGGAAGTACGACAAGTGCGTAGT -ACGGAAGTACGACAAGTGGTCAGT -ACGGAAGTACGACAAGTGGAAGGT -ACGGAAGTACGACAAGTGAACCGT -ACGGAAGTACGACAAGTGTTGTGC -ACGGAAGTACGACAAGTGCTAAGC -ACGGAAGTACGACAAGTGACTAGC -ACGGAAGTACGACAAGTGAGATGC -ACGGAAGTACGACAAGTGTGAAGG -ACGGAAGTACGACAAGTGCAATGG -ACGGAAGTACGACAAGTGATGAGG -ACGGAAGTACGACAAGTGAATGGG -ACGGAAGTACGACAAGTGTCCTGA -ACGGAAGTACGACAAGTGTAGCGA -ACGGAAGTACGACAAGTGCACAGA -ACGGAAGTACGACAAGTGGCAAGA -ACGGAAGTACGACAAGTGGGTTGA -ACGGAAGTACGACAAGTGTCCGAT -ACGGAAGTACGACAAGTGTGGCAT -ACGGAAGTACGACAAGTGCGAGAT -ACGGAAGTACGACAAGTGTACCAC -ACGGAAGTACGACAAGTGCAGAAC -ACGGAAGTACGACAAGTGGTCTAC -ACGGAAGTACGACAAGTGACGTAC -ACGGAAGTACGACAAGTGAGTGAC -ACGGAAGTACGACAAGTGCTGTAG -ACGGAAGTACGACAAGTGCCTAAG -ACGGAAGTACGACAAGTGGTTCAG -ACGGAAGTACGACAAGTGGCATAG -ACGGAAGTACGACAAGTGGACAAG -ACGGAAGTACGACAAGTGAAGCAG -ACGGAAGTACGACAAGTGCGTCAA -ACGGAAGTACGACAAGTGGCTGAA -ACGGAAGTACGACAAGTGAGTACG -ACGGAAGTACGACAAGTGATCCGA -ACGGAAGTACGACAAGTGATGGGA -ACGGAAGTACGACAAGTGGTGCAA -ACGGAAGTACGACAAGTGGAGGAA -ACGGAAGTACGACAAGTGCAGGTA -ACGGAAGTACGACAAGTGGACTCT -ACGGAAGTACGACAAGTGAGTCCT -ACGGAAGTACGACAAGTGTAAGCC -ACGGAAGTACGACAAGTGATAGCC -ACGGAAGTACGACAAGTGTAACCG -ACGGAAGTACGACAAGTGATGCCA -ACGGAAGTACGAGAAGAGGGAAAC -ACGGAAGTACGAGAAGAGAACACC -ACGGAAGTACGAGAAGAGATCGAG -ACGGAAGTACGAGAAGAGCTCCTT -ACGGAAGTACGAGAAGAGCCTGTT -ACGGAAGTACGAGAAGAGCGGTTT -ACGGAAGTACGAGAAGAGGTGGTT -ACGGAAGTACGAGAAGAGGCCTTT -ACGGAAGTACGAGAAGAGGGTCTT -ACGGAAGTACGAGAAGAGACGCTT -ACGGAAGTACGAGAAGAGAGCGTT -ACGGAAGTACGAGAAGAGTTCGTC -ACGGAAGTACGAGAAGAGTCTCTC -ACGGAAGTACGAGAAGAGTGGATC -ACGGAAGTACGAGAAGAGCACTTC -ACGGAAGTACGAGAAGAGGTACTC -ACGGAAGTACGAGAAGAGGATGTC -ACGGAAGTACGAGAAGAGACAGTC -ACGGAAGTACGAGAAGAGTTGCTG -ACGGAAGTACGAGAAGAGTCCATG -ACGGAAGTACGAGAAGAGTGTGTG -ACGGAAGTACGAGAAGAGCTAGTG -ACGGAAGTACGAGAAGAGCATCTG -ACGGAAGTACGAGAAGAGGAGTTG -ACGGAAGTACGAGAAGAGAGACTG -ACGGAAGTACGAGAAGAGTCGGTA -ACGGAAGTACGAGAAGAGTGCCTA -ACGGAAGTACGAGAAGAGCCACTA -ACGGAAGTACGAGAAGAGGGAGTA -ACGGAAGTACGAGAAGAGTCGTCT -ACGGAAGTACGAGAAGAGTGCACT -ACGGAAGTACGAGAAGAGCTGACT -ACGGAAGTACGAGAAGAGCAACCT -ACGGAAGTACGAGAAGAGGCTACT -ACGGAAGTACGAGAAGAGGGATCT -ACGGAAGTACGAGAAGAGAAGGCT -ACGGAAGTACGAGAAGAGTCAACC -ACGGAAGTACGAGAAGAGTGTTCC -ACGGAAGTACGAGAAGAGATTCCC -ACGGAAGTACGAGAAGAGTTCTCG -ACGGAAGTACGAGAAGAGTAGACG -ACGGAAGTACGAGAAGAGGTAACG -ACGGAAGTACGAGAAGAGACTTCG -ACGGAAGTACGAGAAGAGTACGCA -ACGGAAGTACGAGAAGAGCTTGCA -ACGGAAGTACGAGAAGAGCGAACA -ACGGAAGTACGAGAAGAGCAGTCA -ACGGAAGTACGAGAAGAGGATCCA -ACGGAAGTACGAGAAGAGACGACA -ACGGAAGTACGAGAAGAGAGCTCA -ACGGAAGTACGAGAAGAGTCACGT -ACGGAAGTACGAGAAGAGCGTAGT -ACGGAAGTACGAGAAGAGGTCAGT -ACGGAAGTACGAGAAGAGGAAGGT -ACGGAAGTACGAGAAGAGAACCGT -ACGGAAGTACGAGAAGAGTTGTGC -ACGGAAGTACGAGAAGAGCTAAGC -ACGGAAGTACGAGAAGAGACTAGC -ACGGAAGTACGAGAAGAGAGATGC -ACGGAAGTACGAGAAGAGTGAAGG -ACGGAAGTACGAGAAGAGCAATGG -ACGGAAGTACGAGAAGAGATGAGG -ACGGAAGTACGAGAAGAGAATGGG -ACGGAAGTACGAGAAGAGTCCTGA -ACGGAAGTACGAGAAGAGTAGCGA -ACGGAAGTACGAGAAGAGCACAGA -ACGGAAGTACGAGAAGAGGCAAGA -ACGGAAGTACGAGAAGAGGGTTGA -ACGGAAGTACGAGAAGAGTCCGAT -ACGGAAGTACGAGAAGAGTGGCAT -ACGGAAGTACGAGAAGAGCGAGAT -ACGGAAGTACGAGAAGAGTACCAC -ACGGAAGTACGAGAAGAGCAGAAC -ACGGAAGTACGAGAAGAGGTCTAC -ACGGAAGTACGAGAAGAGACGTAC -ACGGAAGTACGAGAAGAGAGTGAC -ACGGAAGTACGAGAAGAGCTGTAG -ACGGAAGTACGAGAAGAGCCTAAG -ACGGAAGTACGAGAAGAGGTTCAG -ACGGAAGTACGAGAAGAGGCATAG -ACGGAAGTACGAGAAGAGGACAAG -ACGGAAGTACGAGAAGAGAAGCAG -ACGGAAGTACGAGAAGAGCGTCAA -ACGGAAGTACGAGAAGAGGCTGAA -ACGGAAGTACGAGAAGAGAGTACG -ACGGAAGTACGAGAAGAGATCCGA -ACGGAAGTACGAGAAGAGATGGGA -ACGGAAGTACGAGAAGAGGTGCAA -ACGGAAGTACGAGAAGAGGAGGAA -ACGGAAGTACGAGAAGAGCAGGTA -ACGGAAGTACGAGAAGAGGACTCT -ACGGAAGTACGAGAAGAGAGTCCT -ACGGAAGTACGAGAAGAGTAAGCC -ACGGAAGTACGAGAAGAGATAGCC -ACGGAAGTACGAGAAGAGTAACCG -ACGGAAGTACGAGAAGAGATGCCA -ACGGAAGTACGAGTACAGGGAAAC -ACGGAAGTACGAGTACAGAACACC -ACGGAAGTACGAGTACAGATCGAG -ACGGAAGTACGAGTACAGCTCCTT -ACGGAAGTACGAGTACAGCCTGTT -ACGGAAGTACGAGTACAGCGGTTT -ACGGAAGTACGAGTACAGGTGGTT -ACGGAAGTACGAGTACAGGCCTTT -ACGGAAGTACGAGTACAGGGTCTT -ACGGAAGTACGAGTACAGACGCTT -ACGGAAGTACGAGTACAGAGCGTT -ACGGAAGTACGAGTACAGTTCGTC -ACGGAAGTACGAGTACAGTCTCTC -ACGGAAGTACGAGTACAGTGGATC -ACGGAAGTACGAGTACAGCACTTC -ACGGAAGTACGAGTACAGGTACTC -ACGGAAGTACGAGTACAGGATGTC -ACGGAAGTACGAGTACAGACAGTC -ACGGAAGTACGAGTACAGTTGCTG -ACGGAAGTACGAGTACAGTCCATG -ACGGAAGTACGAGTACAGTGTGTG -ACGGAAGTACGAGTACAGCTAGTG -ACGGAAGTACGAGTACAGCATCTG -ACGGAAGTACGAGTACAGGAGTTG -ACGGAAGTACGAGTACAGAGACTG -ACGGAAGTACGAGTACAGTCGGTA -ACGGAAGTACGAGTACAGTGCCTA -ACGGAAGTACGAGTACAGCCACTA -ACGGAAGTACGAGTACAGGGAGTA -ACGGAAGTACGAGTACAGTCGTCT -ACGGAAGTACGAGTACAGTGCACT -ACGGAAGTACGAGTACAGCTGACT -ACGGAAGTACGAGTACAGCAACCT -ACGGAAGTACGAGTACAGGCTACT -ACGGAAGTACGAGTACAGGGATCT -ACGGAAGTACGAGTACAGAAGGCT -ACGGAAGTACGAGTACAGTCAACC -ACGGAAGTACGAGTACAGTGTTCC -ACGGAAGTACGAGTACAGATTCCC -ACGGAAGTACGAGTACAGTTCTCG -ACGGAAGTACGAGTACAGTAGACG -ACGGAAGTACGAGTACAGGTAACG -ACGGAAGTACGAGTACAGACTTCG -ACGGAAGTACGAGTACAGTACGCA -ACGGAAGTACGAGTACAGCTTGCA -ACGGAAGTACGAGTACAGCGAACA -ACGGAAGTACGAGTACAGCAGTCA -ACGGAAGTACGAGTACAGGATCCA -ACGGAAGTACGAGTACAGACGACA -ACGGAAGTACGAGTACAGAGCTCA -ACGGAAGTACGAGTACAGTCACGT -ACGGAAGTACGAGTACAGCGTAGT -ACGGAAGTACGAGTACAGGTCAGT -ACGGAAGTACGAGTACAGGAAGGT -ACGGAAGTACGAGTACAGAACCGT -ACGGAAGTACGAGTACAGTTGTGC -ACGGAAGTACGAGTACAGCTAAGC -ACGGAAGTACGAGTACAGACTAGC -ACGGAAGTACGAGTACAGAGATGC -ACGGAAGTACGAGTACAGTGAAGG -ACGGAAGTACGAGTACAGCAATGG -ACGGAAGTACGAGTACAGATGAGG -ACGGAAGTACGAGTACAGAATGGG -ACGGAAGTACGAGTACAGTCCTGA -ACGGAAGTACGAGTACAGTAGCGA -ACGGAAGTACGAGTACAGCACAGA -ACGGAAGTACGAGTACAGGCAAGA -ACGGAAGTACGAGTACAGGGTTGA -ACGGAAGTACGAGTACAGTCCGAT -ACGGAAGTACGAGTACAGTGGCAT -ACGGAAGTACGAGTACAGCGAGAT -ACGGAAGTACGAGTACAGTACCAC -ACGGAAGTACGAGTACAGCAGAAC -ACGGAAGTACGAGTACAGGTCTAC -ACGGAAGTACGAGTACAGACGTAC -ACGGAAGTACGAGTACAGAGTGAC -ACGGAAGTACGAGTACAGCTGTAG -ACGGAAGTACGAGTACAGCCTAAG -ACGGAAGTACGAGTACAGGTTCAG -ACGGAAGTACGAGTACAGGCATAG -ACGGAAGTACGAGTACAGGACAAG -ACGGAAGTACGAGTACAGAAGCAG -ACGGAAGTACGAGTACAGCGTCAA -ACGGAAGTACGAGTACAGGCTGAA -ACGGAAGTACGAGTACAGAGTACG -ACGGAAGTACGAGTACAGATCCGA -ACGGAAGTACGAGTACAGATGGGA -ACGGAAGTACGAGTACAGGTGCAA -ACGGAAGTACGAGTACAGGAGGAA -ACGGAAGTACGAGTACAGCAGGTA -ACGGAAGTACGAGTACAGGACTCT -ACGGAAGTACGAGTACAGAGTCCT -ACGGAAGTACGAGTACAGTAAGCC -ACGGAAGTACGAGTACAGATAGCC -ACGGAAGTACGAGTACAGTAACCG -ACGGAAGTACGAGTACAGATGCCA -ACGGAAGTACGATCTGACGGAAAC -ACGGAAGTACGATCTGACAACACC -ACGGAAGTACGATCTGACATCGAG -ACGGAAGTACGATCTGACCTCCTT -ACGGAAGTACGATCTGACCCTGTT -ACGGAAGTACGATCTGACCGGTTT -ACGGAAGTACGATCTGACGTGGTT -ACGGAAGTACGATCTGACGCCTTT -ACGGAAGTACGATCTGACGGTCTT -ACGGAAGTACGATCTGACACGCTT -ACGGAAGTACGATCTGACAGCGTT -ACGGAAGTACGATCTGACTTCGTC -ACGGAAGTACGATCTGACTCTCTC -ACGGAAGTACGATCTGACTGGATC -ACGGAAGTACGATCTGACCACTTC -ACGGAAGTACGATCTGACGTACTC -ACGGAAGTACGATCTGACGATGTC -ACGGAAGTACGATCTGACACAGTC -ACGGAAGTACGATCTGACTTGCTG -ACGGAAGTACGATCTGACTCCATG -ACGGAAGTACGATCTGACTGTGTG -ACGGAAGTACGATCTGACCTAGTG -ACGGAAGTACGATCTGACCATCTG -ACGGAAGTACGATCTGACGAGTTG -ACGGAAGTACGATCTGACAGACTG -ACGGAAGTACGATCTGACTCGGTA -ACGGAAGTACGATCTGACTGCCTA -ACGGAAGTACGATCTGACCCACTA -ACGGAAGTACGATCTGACGGAGTA -ACGGAAGTACGATCTGACTCGTCT -ACGGAAGTACGATCTGACTGCACT -ACGGAAGTACGATCTGACCTGACT -ACGGAAGTACGATCTGACCAACCT -ACGGAAGTACGATCTGACGCTACT -ACGGAAGTACGATCTGACGGATCT -ACGGAAGTACGATCTGACAAGGCT -ACGGAAGTACGATCTGACTCAACC -ACGGAAGTACGATCTGACTGTTCC -ACGGAAGTACGATCTGACATTCCC -ACGGAAGTACGATCTGACTTCTCG -ACGGAAGTACGATCTGACTAGACG -ACGGAAGTACGATCTGACGTAACG -ACGGAAGTACGATCTGACACTTCG -ACGGAAGTACGATCTGACTACGCA -ACGGAAGTACGATCTGACCTTGCA -ACGGAAGTACGATCTGACCGAACA -ACGGAAGTACGATCTGACCAGTCA -ACGGAAGTACGATCTGACGATCCA -ACGGAAGTACGATCTGACACGACA -ACGGAAGTACGATCTGACAGCTCA -ACGGAAGTACGATCTGACTCACGT -ACGGAAGTACGATCTGACCGTAGT -ACGGAAGTACGATCTGACGTCAGT -ACGGAAGTACGATCTGACGAAGGT -ACGGAAGTACGATCTGACAACCGT -ACGGAAGTACGATCTGACTTGTGC -ACGGAAGTACGATCTGACCTAAGC -ACGGAAGTACGATCTGACACTAGC -ACGGAAGTACGATCTGACAGATGC -ACGGAAGTACGATCTGACTGAAGG -ACGGAAGTACGATCTGACCAATGG -ACGGAAGTACGATCTGACATGAGG -ACGGAAGTACGATCTGACAATGGG -ACGGAAGTACGATCTGACTCCTGA -ACGGAAGTACGATCTGACTAGCGA -ACGGAAGTACGATCTGACCACAGA -ACGGAAGTACGATCTGACGCAAGA -ACGGAAGTACGATCTGACGGTTGA -ACGGAAGTACGATCTGACTCCGAT -ACGGAAGTACGATCTGACTGGCAT -ACGGAAGTACGATCTGACCGAGAT -ACGGAAGTACGATCTGACTACCAC -ACGGAAGTACGATCTGACCAGAAC -ACGGAAGTACGATCTGACGTCTAC -ACGGAAGTACGATCTGACACGTAC -ACGGAAGTACGATCTGACAGTGAC -ACGGAAGTACGATCTGACCTGTAG -ACGGAAGTACGATCTGACCCTAAG -ACGGAAGTACGATCTGACGTTCAG -ACGGAAGTACGATCTGACGCATAG -ACGGAAGTACGATCTGACGACAAG -ACGGAAGTACGATCTGACAAGCAG -ACGGAAGTACGATCTGACCGTCAA -ACGGAAGTACGATCTGACGCTGAA -ACGGAAGTACGATCTGACAGTACG -ACGGAAGTACGATCTGACATCCGA -ACGGAAGTACGATCTGACATGGGA -ACGGAAGTACGATCTGACGTGCAA -ACGGAAGTACGATCTGACGAGGAA -ACGGAAGTACGATCTGACCAGGTA -ACGGAAGTACGATCTGACGACTCT -ACGGAAGTACGATCTGACAGTCCT -ACGGAAGTACGATCTGACTAAGCC -ACGGAAGTACGATCTGACATAGCC -ACGGAAGTACGATCTGACTAACCG -ACGGAAGTACGATCTGACATGCCA -ACGGAAGTACGACCTAGTGGAAAC -ACGGAAGTACGACCTAGTAACACC -ACGGAAGTACGACCTAGTATCGAG -ACGGAAGTACGACCTAGTCTCCTT -ACGGAAGTACGACCTAGTCCTGTT -ACGGAAGTACGACCTAGTCGGTTT -ACGGAAGTACGACCTAGTGTGGTT -ACGGAAGTACGACCTAGTGCCTTT -ACGGAAGTACGACCTAGTGGTCTT -ACGGAAGTACGACCTAGTACGCTT -ACGGAAGTACGACCTAGTAGCGTT -ACGGAAGTACGACCTAGTTTCGTC -ACGGAAGTACGACCTAGTTCTCTC -ACGGAAGTACGACCTAGTTGGATC -ACGGAAGTACGACCTAGTCACTTC -ACGGAAGTACGACCTAGTGTACTC -ACGGAAGTACGACCTAGTGATGTC -ACGGAAGTACGACCTAGTACAGTC -ACGGAAGTACGACCTAGTTTGCTG -ACGGAAGTACGACCTAGTTCCATG -ACGGAAGTACGACCTAGTTGTGTG -ACGGAAGTACGACCTAGTCTAGTG -ACGGAAGTACGACCTAGTCATCTG -ACGGAAGTACGACCTAGTGAGTTG -ACGGAAGTACGACCTAGTAGACTG -ACGGAAGTACGACCTAGTTCGGTA -ACGGAAGTACGACCTAGTTGCCTA -ACGGAAGTACGACCTAGTCCACTA -ACGGAAGTACGACCTAGTGGAGTA -ACGGAAGTACGACCTAGTTCGTCT -ACGGAAGTACGACCTAGTTGCACT -ACGGAAGTACGACCTAGTCTGACT -ACGGAAGTACGACCTAGTCAACCT -ACGGAAGTACGACCTAGTGCTACT -ACGGAAGTACGACCTAGTGGATCT -ACGGAAGTACGACCTAGTAAGGCT -ACGGAAGTACGACCTAGTTCAACC -ACGGAAGTACGACCTAGTTGTTCC -ACGGAAGTACGACCTAGTATTCCC -ACGGAAGTACGACCTAGTTTCTCG -ACGGAAGTACGACCTAGTTAGACG -ACGGAAGTACGACCTAGTGTAACG -ACGGAAGTACGACCTAGTACTTCG -ACGGAAGTACGACCTAGTTACGCA -ACGGAAGTACGACCTAGTCTTGCA -ACGGAAGTACGACCTAGTCGAACA -ACGGAAGTACGACCTAGTCAGTCA -ACGGAAGTACGACCTAGTGATCCA -ACGGAAGTACGACCTAGTACGACA -ACGGAAGTACGACCTAGTAGCTCA -ACGGAAGTACGACCTAGTTCACGT -ACGGAAGTACGACCTAGTCGTAGT -ACGGAAGTACGACCTAGTGTCAGT -ACGGAAGTACGACCTAGTGAAGGT -ACGGAAGTACGACCTAGTAACCGT -ACGGAAGTACGACCTAGTTTGTGC -ACGGAAGTACGACCTAGTCTAAGC -ACGGAAGTACGACCTAGTACTAGC -ACGGAAGTACGACCTAGTAGATGC -ACGGAAGTACGACCTAGTTGAAGG -ACGGAAGTACGACCTAGTCAATGG -ACGGAAGTACGACCTAGTATGAGG -ACGGAAGTACGACCTAGTAATGGG -ACGGAAGTACGACCTAGTTCCTGA -ACGGAAGTACGACCTAGTTAGCGA -ACGGAAGTACGACCTAGTCACAGA -ACGGAAGTACGACCTAGTGCAAGA -ACGGAAGTACGACCTAGTGGTTGA -ACGGAAGTACGACCTAGTTCCGAT -ACGGAAGTACGACCTAGTTGGCAT -ACGGAAGTACGACCTAGTCGAGAT -ACGGAAGTACGACCTAGTTACCAC -ACGGAAGTACGACCTAGTCAGAAC -ACGGAAGTACGACCTAGTGTCTAC -ACGGAAGTACGACCTAGTACGTAC -ACGGAAGTACGACCTAGTAGTGAC -ACGGAAGTACGACCTAGTCTGTAG -ACGGAAGTACGACCTAGTCCTAAG -ACGGAAGTACGACCTAGTGTTCAG -ACGGAAGTACGACCTAGTGCATAG -ACGGAAGTACGACCTAGTGACAAG -ACGGAAGTACGACCTAGTAAGCAG -ACGGAAGTACGACCTAGTCGTCAA -ACGGAAGTACGACCTAGTGCTGAA -ACGGAAGTACGACCTAGTAGTACG -ACGGAAGTACGACCTAGTATCCGA -ACGGAAGTACGACCTAGTATGGGA -ACGGAAGTACGACCTAGTGTGCAA -ACGGAAGTACGACCTAGTGAGGAA -ACGGAAGTACGACCTAGTCAGGTA -ACGGAAGTACGACCTAGTGACTCT -ACGGAAGTACGACCTAGTAGTCCT -ACGGAAGTACGACCTAGTTAAGCC -ACGGAAGTACGACCTAGTATAGCC -ACGGAAGTACGACCTAGTTAACCG -ACGGAAGTACGACCTAGTATGCCA -ACGGAAGTACGAGCCTAAGGAAAC -ACGGAAGTACGAGCCTAAAACACC -ACGGAAGTACGAGCCTAAATCGAG -ACGGAAGTACGAGCCTAACTCCTT -ACGGAAGTACGAGCCTAACCTGTT -ACGGAAGTACGAGCCTAACGGTTT -ACGGAAGTACGAGCCTAAGTGGTT -ACGGAAGTACGAGCCTAAGCCTTT -ACGGAAGTACGAGCCTAAGGTCTT -ACGGAAGTACGAGCCTAAACGCTT -ACGGAAGTACGAGCCTAAAGCGTT -ACGGAAGTACGAGCCTAATTCGTC -ACGGAAGTACGAGCCTAATCTCTC -ACGGAAGTACGAGCCTAATGGATC -ACGGAAGTACGAGCCTAACACTTC -ACGGAAGTACGAGCCTAAGTACTC -ACGGAAGTACGAGCCTAAGATGTC -ACGGAAGTACGAGCCTAAACAGTC -ACGGAAGTACGAGCCTAATTGCTG -ACGGAAGTACGAGCCTAATCCATG -ACGGAAGTACGAGCCTAATGTGTG -ACGGAAGTACGAGCCTAACTAGTG -ACGGAAGTACGAGCCTAACATCTG -ACGGAAGTACGAGCCTAAGAGTTG -ACGGAAGTACGAGCCTAAAGACTG -ACGGAAGTACGAGCCTAATCGGTA -ACGGAAGTACGAGCCTAATGCCTA -ACGGAAGTACGAGCCTAACCACTA -ACGGAAGTACGAGCCTAAGGAGTA -ACGGAAGTACGAGCCTAATCGTCT -ACGGAAGTACGAGCCTAATGCACT -ACGGAAGTACGAGCCTAACTGACT -ACGGAAGTACGAGCCTAACAACCT -ACGGAAGTACGAGCCTAAGCTACT -ACGGAAGTACGAGCCTAAGGATCT -ACGGAAGTACGAGCCTAAAAGGCT -ACGGAAGTACGAGCCTAATCAACC -ACGGAAGTACGAGCCTAATGTTCC -ACGGAAGTACGAGCCTAAATTCCC -ACGGAAGTACGAGCCTAATTCTCG -ACGGAAGTACGAGCCTAATAGACG -ACGGAAGTACGAGCCTAAGTAACG -ACGGAAGTACGAGCCTAAACTTCG -ACGGAAGTACGAGCCTAATACGCA -ACGGAAGTACGAGCCTAACTTGCA -ACGGAAGTACGAGCCTAACGAACA -ACGGAAGTACGAGCCTAACAGTCA -ACGGAAGTACGAGCCTAAGATCCA -ACGGAAGTACGAGCCTAAACGACA -ACGGAAGTACGAGCCTAAAGCTCA -ACGGAAGTACGAGCCTAATCACGT -ACGGAAGTACGAGCCTAACGTAGT -ACGGAAGTACGAGCCTAAGTCAGT -ACGGAAGTACGAGCCTAAGAAGGT -ACGGAAGTACGAGCCTAAAACCGT -ACGGAAGTACGAGCCTAATTGTGC -ACGGAAGTACGAGCCTAACTAAGC -ACGGAAGTACGAGCCTAAACTAGC -ACGGAAGTACGAGCCTAAAGATGC -ACGGAAGTACGAGCCTAATGAAGG -ACGGAAGTACGAGCCTAACAATGG -ACGGAAGTACGAGCCTAAATGAGG -ACGGAAGTACGAGCCTAAAATGGG -ACGGAAGTACGAGCCTAATCCTGA -ACGGAAGTACGAGCCTAATAGCGA -ACGGAAGTACGAGCCTAACACAGA -ACGGAAGTACGAGCCTAAGCAAGA -ACGGAAGTACGAGCCTAAGGTTGA -ACGGAAGTACGAGCCTAATCCGAT -ACGGAAGTACGAGCCTAATGGCAT -ACGGAAGTACGAGCCTAACGAGAT -ACGGAAGTACGAGCCTAATACCAC -ACGGAAGTACGAGCCTAACAGAAC -ACGGAAGTACGAGCCTAAGTCTAC -ACGGAAGTACGAGCCTAAACGTAC -ACGGAAGTACGAGCCTAAAGTGAC -ACGGAAGTACGAGCCTAACTGTAG -ACGGAAGTACGAGCCTAACCTAAG -ACGGAAGTACGAGCCTAAGTTCAG -ACGGAAGTACGAGCCTAAGCATAG -ACGGAAGTACGAGCCTAAGACAAG -ACGGAAGTACGAGCCTAAAAGCAG -ACGGAAGTACGAGCCTAACGTCAA -ACGGAAGTACGAGCCTAAGCTGAA -ACGGAAGTACGAGCCTAAAGTACG -ACGGAAGTACGAGCCTAAATCCGA -ACGGAAGTACGAGCCTAAATGGGA -ACGGAAGTACGAGCCTAAGTGCAA -ACGGAAGTACGAGCCTAAGAGGAA -ACGGAAGTACGAGCCTAACAGGTA -ACGGAAGTACGAGCCTAAGACTCT -ACGGAAGTACGAGCCTAAAGTCCT -ACGGAAGTACGAGCCTAATAAGCC -ACGGAAGTACGAGCCTAAATAGCC -ACGGAAGTACGAGCCTAATAACCG -ACGGAAGTACGAGCCTAAATGCCA -ACGGAAGTACGAGCCATAGGAAAC -ACGGAAGTACGAGCCATAAACACC -ACGGAAGTACGAGCCATAATCGAG -ACGGAAGTACGAGCCATACTCCTT -ACGGAAGTACGAGCCATACCTGTT -ACGGAAGTACGAGCCATACGGTTT -ACGGAAGTACGAGCCATAGTGGTT -ACGGAAGTACGAGCCATAGCCTTT -ACGGAAGTACGAGCCATAGGTCTT -ACGGAAGTACGAGCCATAACGCTT -ACGGAAGTACGAGCCATAAGCGTT -ACGGAAGTACGAGCCATATTCGTC -ACGGAAGTACGAGCCATATCTCTC -ACGGAAGTACGAGCCATATGGATC -ACGGAAGTACGAGCCATACACTTC -ACGGAAGTACGAGCCATAGTACTC -ACGGAAGTACGAGCCATAGATGTC -ACGGAAGTACGAGCCATAACAGTC -ACGGAAGTACGAGCCATATTGCTG -ACGGAAGTACGAGCCATATCCATG -ACGGAAGTACGAGCCATATGTGTG -ACGGAAGTACGAGCCATACTAGTG -ACGGAAGTACGAGCCATACATCTG -ACGGAAGTACGAGCCATAGAGTTG -ACGGAAGTACGAGCCATAAGACTG -ACGGAAGTACGAGCCATATCGGTA -ACGGAAGTACGAGCCATATGCCTA -ACGGAAGTACGAGCCATACCACTA -ACGGAAGTACGAGCCATAGGAGTA -ACGGAAGTACGAGCCATATCGTCT -ACGGAAGTACGAGCCATATGCACT -ACGGAAGTACGAGCCATACTGACT -ACGGAAGTACGAGCCATACAACCT -ACGGAAGTACGAGCCATAGCTACT -ACGGAAGTACGAGCCATAGGATCT -ACGGAAGTACGAGCCATAAAGGCT -ACGGAAGTACGAGCCATATCAACC -ACGGAAGTACGAGCCATATGTTCC -ACGGAAGTACGAGCCATAATTCCC -ACGGAAGTACGAGCCATATTCTCG -ACGGAAGTACGAGCCATATAGACG -ACGGAAGTACGAGCCATAGTAACG -ACGGAAGTACGAGCCATAACTTCG -ACGGAAGTACGAGCCATATACGCA -ACGGAAGTACGAGCCATACTTGCA -ACGGAAGTACGAGCCATACGAACA -ACGGAAGTACGAGCCATACAGTCA -ACGGAAGTACGAGCCATAGATCCA -ACGGAAGTACGAGCCATAACGACA -ACGGAAGTACGAGCCATAAGCTCA -ACGGAAGTACGAGCCATATCACGT -ACGGAAGTACGAGCCATACGTAGT -ACGGAAGTACGAGCCATAGTCAGT -ACGGAAGTACGAGCCATAGAAGGT -ACGGAAGTACGAGCCATAAACCGT -ACGGAAGTACGAGCCATATTGTGC -ACGGAAGTACGAGCCATACTAAGC -ACGGAAGTACGAGCCATAACTAGC -ACGGAAGTACGAGCCATAAGATGC -ACGGAAGTACGAGCCATATGAAGG -ACGGAAGTACGAGCCATACAATGG -ACGGAAGTACGAGCCATAATGAGG -ACGGAAGTACGAGCCATAAATGGG -ACGGAAGTACGAGCCATATCCTGA -ACGGAAGTACGAGCCATATAGCGA -ACGGAAGTACGAGCCATACACAGA -ACGGAAGTACGAGCCATAGCAAGA -ACGGAAGTACGAGCCATAGGTTGA -ACGGAAGTACGAGCCATATCCGAT -ACGGAAGTACGAGCCATATGGCAT -ACGGAAGTACGAGCCATACGAGAT -ACGGAAGTACGAGCCATATACCAC -ACGGAAGTACGAGCCATACAGAAC -ACGGAAGTACGAGCCATAGTCTAC -ACGGAAGTACGAGCCATAACGTAC -ACGGAAGTACGAGCCATAAGTGAC -ACGGAAGTACGAGCCATACTGTAG -ACGGAAGTACGAGCCATACCTAAG -ACGGAAGTACGAGCCATAGTTCAG -ACGGAAGTACGAGCCATAGCATAG -ACGGAAGTACGAGCCATAGACAAG -ACGGAAGTACGAGCCATAAAGCAG -ACGGAAGTACGAGCCATACGTCAA -ACGGAAGTACGAGCCATAGCTGAA -ACGGAAGTACGAGCCATAAGTACG -ACGGAAGTACGAGCCATAATCCGA -ACGGAAGTACGAGCCATAATGGGA -ACGGAAGTACGAGCCATAGTGCAA -ACGGAAGTACGAGCCATAGAGGAA -ACGGAAGTACGAGCCATACAGGTA -ACGGAAGTACGAGCCATAGACTCT -ACGGAAGTACGAGCCATAAGTCCT -ACGGAAGTACGAGCCATATAAGCC -ACGGAAGTACGAGCCATAATAGCC -ACGGAAGTACGAGCCATATAACCG -ACGGAAGTACGAGCCATAATGCCA -ACGGAAGTACGACCGTAAGGAAAC -ACGGAAGTACGACCGTAAAACACC -ACGGAAGTACGACCGTAAATCGAG -ACGGAAGTACGACCGTAACTCCTT -ACGGAAGTACGACCGTAACCTGTT -ACGGAAGTACGACCGTAACGGTTT -ACGGAAGTACGACCGTAAGTGGTT -ACGGAAGTACGACCGTAAGCCTTT -ACGGAAGTACGACCGTAAGGTCTT -ACGGAAGTACGACCGTAAACGCTT -ACGGAAGTACGACCGTAAAGCGTT -ACGGAAGTACGACCGTAATTCGTC -ACGGAAGTACGACCGTAATCTCTC -ACGGAAGTACGACCGTAATGGATC -ACGGAAGTACGACCGTAACACTTC -ACGGAAGTACGACCGTAAGTACTC -ACGGAAGTACGACCGTAAGATGTC -ACGGAAGTACGACCGTAAACAGTC -ACGGAAGTACGACCGTAATTGCTG -ACGGAAGTACGACCGTAATCCATG -ACGGAAGTACGACCGTAATGTGTG -ACGGAAGTACGACCGTAACTAGTG -ACGGAAGTACGACCGTAACATCTG -ACGGAAGTACGACCGTAAGAGTTG -ACGGAAGTACGACCGTAAAGACTG -ACGGAAGTACGACCGTAATCGGTA -ACGGAAGTACGACCGTAATGCCTA -ACGGAAGTACGACCGTAACCACTA -ACGGAAGTACGACCGTAAGGAGTA -ACGGAAGTACGACCGTAATCGTCT -ACGGAAGTACGACCGTAATGCACT -ACGGAAGTACGACCGTAACTGACT -ACGGAAGTACGACCGTAACAACCT -ACGGAAGTACGACCGTAAGCTACT -ACGGAAGTACGACCGTAAGGATCT -ACGGAAGTACGACCGTAAAAGGCT -ACGGAAGTACGACCGTAATCAACC -ACGGAAGTACGACCGTAATGTTCC -ACGGAAGTACGACCGTAAATTCCC -ACGGAAGTACGACCGTAATTCTCG -ACGGAAGTACGACCGTAATAGACG -ACGGAAGTACGACCGTAAGTAACG -ACGGAAGTACGACCGTAAACTTCG -ACGGAAGTACGACCGTAATACGCA -ACGGAAGTACGACCGTAACTTGCA -ACGGAAGTACGACCGTAACGAACA -ACGGAAGTACGACCGTAACAGTCA -ACGGAAGTACGACCGTAAGATCCA -ACGGAAGTACGACCGTAAACGACA -ACGGAAGTACGACCGTAAAGCTCA -ACGGAAGTACGACCGTAATCACGT -ACGGAAGTACGACCGTAACGTAGT -ACGGAAGTACGACCGTAAGTCAGT -ACGGAAGTACGACCGTAAGAAGGT -ACGGAAGTACGACCGTAAAACCGT -ACGGAAGTACGACCGTAATTGTGC -ACGGAAGTACGACCGTAACTAAGC -ACGGAAGTACGACCGTAAACTAGC -ACGGAAGTACGACCGTAAAGATGC -ACGGAAGTACGACCGTAATGAAGG -ACGGAAGTACGACCGTAACAATGG -ACGGAAGTACGACCGTAAATGAGG -ACGGAAGTACGACCGTAAAATGGG -ACGGAAGTACGACCGTAATCCTGA -ACGGAAGTACGACCGTAATAGCGA -ACGGAAGTACGACCGTAACACAGA -ACGGAAGTACGACCGTAAGCAAGA -ACGGAAGTACGACCGTAAGGTTGA -ACGGAAGTACGACCGTAATCCGAT -ACGGAAGTACGACCGTAATGGCAT -ACGGAAGTACGACCGTAACGAGAT -ACGGAAGTACGACCGTAATACCAC -ACGGAAGTACGACCGTAACAGAAC -ACGGAAGTACGACCGTAAGTCTAC -ACGGAAGTACGACCGTAAACGTAC -ACGGAAGTACGACCGTAAAGTGAC -ACGGAAGTACGACCGTAACTGTAG -ACGGAAGTACGACCGTAACCTAAG -ACGGAAGTACGACCGTAAGTTCAG -ACGGAAGTACGACCGTAAGCATAG -ACGGAAGTACGACCGTAAGACAAG -ACGGAAGTACGACCGTAAAAGCAG -ACGGAAGTACGACCGTAACGTCAA -ACGGAAGTACGACCGTAAGCTGAA -ACGGAAGTACGACCGTAAAGTACG -ACGGAAGTACGACCGTAAATCCGA -ACGGAAGTACGACCGTAAATGGGA -ACGGAAGTACGACCGTAAGTGCAA -ACGGAAGTACGACCGTAAGAGGAA -ACGGAAGTACGACCGTAACAGGTA -ACGGAAGTACGACCGTAAGACTCT -ACGGAAGTACGACCGTAAAGTCCT -ACGGAAGTACGACCGTAATAAGCC -ACGGAAGTACGACCGTAAATAGCC -ACGGAAGTACGACCGTAATAACCG -ACGGAAGTACGACCGTAAATGCCA -ACGGAAGTACGACCAATGGGAAAC -ACGGAAGTACGACCAATGAACACC -ACGGAAGTACGACCAATGATCGAG -ACGGAAGTACGACCAATGCTCCTT -ACGGAAGTACGACCAATGCCTGTT -ACGGAAGTACGACCAATGCGGTTT -ACGGAAGTACGACCAATGGTGGTT -ACGGAAGTACGACCAATGGCCTTT -ACGGAAGTACGACCAATGGGTCTT -ACGGAAGTACGACCAATGACGCTT -ACGGAAGTACGACCAATGAGCGTT -ACGGAAGTACGACCAATGTTCGTC -ACGGAAGTACGACCAATGTCTCTC -ACGGAAGTACGACCAATGTGGATC -ACGGAAGTACGACCAATGCACTTC -ACGGAAGTACGACCAATGGTACTC -ACGGAAGTACGACCAATGGATGTC -ACGGAAGTACGACCAATGACAGTC -ACGGAAGTACGACCAATGTTGCTG -ACGGAAGTACGACCAATGTCCATG -ACGGAAGTACGACCAATGTGTGTG -ACGGAAGTACGACCAATGCTAGTG -ACGGAAGTACGACCAATGCATCTG -ACGGAAGTACGACCAATGGAGTTG -ACGGAAGTACGACCAATGAGACTG -ACGGAAGTACGACCAATGTCGGTA -ACGGAAGTACGACCAATGTGCCTA -ACGGAAGTACGACCAATGCCACTA -ACGGAAGTACGACCAATGGGAGTA -ACGGAAGTACGACCAATGTCGTCT -ACGGAAGTACGACCAATGTGCACT -ACGGAAGTACGACCAATGCTGACT -ACGGAAGTACGACCAATGCAACCT -ACGGAAGTACGACCAATGGCTACT -ACGGAAGTACGACCAATGGGATCT -ACGGAAGTACGACCAATGAAGGCT -ACGGAAGTACGACCAATGTCAACC -ACGGAAGTACGACCAATGTGTTCC -ACGGAAGTACGACCAATGATTCCC -ACGGAAGTACGACCAATGTTCTCG -ACGGAAGTACGACCAATGTAGACG -ACGGAAGTACGACCAATGGTAACG -ACGGAAGTACGACCAATGACTTCG -ACGGAAGTACGACCAATGTACGCA -ACGGAAGTACGACCAATGCTTGCA -ACGGAAGTACGACCAATGCGAACA -ACGGAAGTACGACCAATGCAGTCA -ACGGAAGTACGACCAATGGATCCA -ACGGAAGTACGACCAATGACGACA -ACGGAAGTACGACCAATGAGCTCA -ACGGAAGTACGACCAATGTCACGT -ACGGAAGTACGACCAATGCGTAGT -ACGGAAGTACGACCAATGGTCAGT -ACGGAAGTACGACCAATGGAAGGT -ACGGAAGTACGACCAATGAACCGT -ACGGAAGTACGACCAATGTTGTGC -ACGGAAGTACGACCAATGCTAAGC -ACGGAAGTACGACCAATGACTAGC -ACGGAAGTACGACCAATGAGATGC -ACGGAAGTACGACCAATGTGAAGG -ACGGAAGTACGACCAATGCAATGG -ACGGAAGTACGACCAATGATGAGG -ACGGAAGTACGACCAATGAATGGG -ACGGAAGTACGACCAATGTCCTGA -ACGGAAGTACGACCAATGTAGCGA -ACGGAAGTACGACCAATGCACAGA -ACGGAAGTACGACCAATGGCAAGA -ACGGAAGTACGACCAATGGGTTGA -ACGGAAGTACGACCAATGTCCGAT -ACGGAAGTACGACCAATGTGGCAT -ACGGAAGTACGACCAATGCGAGAT -ACGGAAGTACGACCAATGTACCAC -ACGGAAGTACGACCAATGCAGAAC -ACGGAAGTACGACCAATGGTCTAC -ACGGAAGTACGACCAATGACGTAC -ACGGAAGTACGACCAATGAGTGAC -ACGGAAGTACGACCAATGCTGTAG -ACGGAAGTACGACCAATGCCTAAG -ACGGAAGTACGACCAATGGTTCAG -ACGGAAGTACGACCAATGGCATAG -ACGGAAGTACGACCAATGGACAAG -ACGGAAGTACGACCAATGAAGCAG -ACGGAAGTACGACCAATGCGTCAA -ACGGAAGTACGACCAATGGCTGAA -ACGGAAGTACGACCAATGAGTACG -ACGGAAGTACGACCAATGATCCGA -ACGGAAGTACGACCAATGATGGGA -ACGGAAGTACGACCAATGGTGCAA -ACGGAAGTACGACCAATGGAGGAA -ACGGAAGTACGACCAATGCAGGTA -ACGGAAGTACGACCAATGGACTCT -ACGGAAGTACGACCAATGAGTCCT -ACGGAAGTACGACCAATGTAAGCC -ACGGAAGTACGACCAATGATAGCC -ACGGAAGTACGACCAATGTAACCG -ACGGAAGTACGACCAATGATGCCA -ACGGAATCCGAAAACGGAGGAAAC -ACGGAATCCGAAAACGGAAACACC -ACGGAATCCGAAAACGGAATCGAG -ACGGAATCCGAAAACGGACTCCTT -ACGGAATCCGAAAACGGACCTGTT -ACGGAATCCGAAAACGGACGGTTT -ACGGAATCCGAAAACGGAGTGGTT -ACGGAATCCGAAAACGGAGCCTTT -ACGGAATCCGAAAACGGAGGTCTT -ACGGAATCCGAAAACGGAACGCTT -ACGGAATCCGAAAACGGAAGCGTT -ACGGAATCCGAAAACGGATTCGTC -ACGGAATCCGAAAACGGATCTCTC -ACGGAATCCGAAAACGGATGGATC -ACGGAATCCGAAAACGGACACTTC -ACGGAATCCGAAAACGGAGTACTC -ACGGAATCCGAAAACGGAGATGTC -ACGGAATCCGAAAACGGAACAGTC -ACGGAATCCGAAAACGGATTGCTG -ACGGAATCCGAAAACGGATCCATG -ACGGAATCCGAAAACGGATGTGTG -ACGGAATCCGAAAACGGACTAGTG -ACGGAATCCGAAAACGGACATCTG -ACGGAATCCGAAAACGGAGAGTTG -ACGGAATCCGAAAACGGAAGACTG -ACGGAATCCGAAAACGGATCGGTA -ACGGAATCCGAAAACGGATGCCTA -ACGGAATCCGAAAACGGACCACTA -ACGGAATCCGAAAACGGAGGAGTA -ACGGAATCCGAAAACGGATCGTCT -ACGGAATCCGAAAACGGATGCACT -ACGGAATCCGAAAACGGACTGACT -ACGGAATCCGAAAACGGACAACCT -ACGGAATCCGAAAACGGAGCTACT -ACGGAATCCGAAAACGGAGGATCT -ACGGAATCCGAAAACGGAAAGGCT -ACGGAATCCGAAAACGGATCAACC -ACGGAATCCGAAAACGGATGTTCC -ACGGAATCCGAAAACGGAATTCCC -ACGGAATCCGAAAACGGATTCTCG -ACGGAATCCGAAAACGGATAGACG -ACGGAATCCGAAAACGGAGTAACG -ACGGAATCCGAAAACGGAACTTCG -ACGGAATCCGAAAACGGATACGCA -ACGGAATCCGAAAACGGACTTGCA -ACGGAATCCGAAAACGGACGAACA -ACGGAATCCGAAAACGGACAGTCA -ACGGAATCCGAAAACGGAGATCCA -ACGGAATCCGAAAACGGAACGACA -ACGGAATCCGAAAACGGAAGCTCA -ACGGAATCCGAAAACGGATCACGT -ACGGAATCCGAAAACGGACGTAGT -ACGGAATCCGAAAACGGAGTCAGT -ACGGAATCCGAAAACGGAGAAGGT -ACGGAATCCGAAAACGGAAACCGT -ACGGAATCCGAAAACGGATTGTGC -ACGGAATCCGAAAACGGACTAAGC -ACGGAATCCGAAAACGGAACTAGC -ACGGAATCCGAAAACGGAAGATGC -ACGGAATCCGAAAACGGATGAAGG -ACGGAATCCGAAAACGGACAATGG -ACGGAATCCGAAAACGGAATGAGG -ACGGAATCCGAAAACGGAAATGGG -ACGGAATCCGAAAACGGATCCTGA -ACGGAATCCGAAAACGGATAGCGA -ACGGAATCCGAAAACGGACACAGA -ACGGAATCCGAAAACGGAGCAAGA -ACGGAATCCGAAAACGGAGGTTGA -ACGGAATCCGAAAACGGATCCGAT -ACGGAATCCGAAAACGGATGGCAT -ACGGAATCCGAAAACGGACGAGAT -ACGGAATCCGAAAACGGATACCAC -ACGGAATCCGAAAACGGACAGAAC -ACGGAATCCGAAAACGGAGTCTAC -ACGGAATCCGAAAACGGAACGTAC -ACGGAATCCGAAAACGGAAGTGAC -ACGGAATCCGAAAACGGACTGTAG -ACGGAATCCGAAAACGGACCTAAG -ACGGAATCCGAAAACGGAGTTCAG -ACGGAATCCGAAAACGGAGCATAG -ACGGAATCCGAAAACGGAGACAAG -ACGGAATCCGAAAACGGAAAGCAG -ACGGAATCCGAAAACGGACGTCAA -ACGGAATCCGAAAACGGAGCTGAA -ACGGAATCCGAAAACGGAAGTACG -ACGGAATCCGAAAACGGAATCCGA -ACGGAATCCGAAAACGGAATGGGA -ACGGAATCCGAAAACGGAGTGCAA -ACGGAATCCGAAAACGGAGAGGAA -ACGGAATCCGAAAACGGACAGGTA -ACGGAATCCGAAAACGGAGACTCT -ACGGAATCCGAAAACGGAAGTCCT -ACGGAATCCGAAAACGGATAAGCC -ACGGAATCCGAAAACGGAATAGCC -ACGGAATCCGAAAACGGATAACCG -ACGGAATCCGAAAACGGAATGCCA -ACGGAATCCGAAACCAACGGAAAC -ACGGAATCCGAAACCAACAACACC -ACGGAATCCGAAACCAACATCGAG -ACGGAATCCGAAACCAACCTCCTT -ACGGAATCCGAAACCAACCCTGTT -ACGGAATCCGAAACCAACCGGTTT -ACGGAATCCGAAACCAACGTGGTT -ACGGAATCCGAAACCAACGCCTTT -ACGGAATCCGAAACCAACGGTCTT -ACGGAATCCGAAACCAACACGCTT -ACGGAATCCGAAACCAACAGCGTT -ACGGAATCCGAAACCAACTTCGTC -ACGGAATCCGAAACCAACTCTCTC -ACGGAATCCGAAACCAACTGGATC -ACGGAATCCGAAACCAACCACTTC -ACGGAATCCGAAACCAACGTACTC -ACGGAATCCGAAACCAACGATGTC -ACGGAATCCGAAACCAACACAGTC -ACGGAATCCGAAACCAACTTGCTG -ACGGAATCCGAAACCAACTCCATG -ACGGAATCCGAAACCAACTGTGTG -ACGGAATCCGAAACCAACCTAGTG -ACGGAATCCGAAACCAACCATCTG -ACGGAATCCGAAACCAACGAGTTG -ACGGAATCCGAAACCAACAGACTG -ACGGAATCCGAAACCAACTCGGTA -ACGGAATCCGAAACCAACTGCCTA -ACGGAATCCGAAACCAACCCACTA -ACGGAATCCGAAACCAACGGAGTA -ACGGAATCCGAAACCAACTCGTCT -ACGGAATCCGAAACCAACTGCACT -ACGGAATCCGAAACCAACCTGACT -ACGGAATCCGAAACCAACCAACCT -ACGGAATCCGAAACCAACGCTACT -ACGGAATCCGAAACCAACGGATCT -ACGGAATCCGAAACCAACAAGGCT -ACGGAATCCGAAACCAACTCAACC -ACGGAATCCGAAACCAACTGTTCC -ACGGAATCCGAAACCAACATTCCC -ACGGAATCCGAAACCAACTTCTCG -ACGGAATCCGAAACCAACTAGACG -ACGGAATCCGAAACCAACGTAACG -ACGGAATCCGAAACCAACACTTCG -ACGGAATCCGAAACCAACTACGCA -ACGGAATCCGAAACCAACCTTGCA -ACGGAATCCGAAACCAACCGAACA -ACGGAATCCGAAACCAACCAGTCA -ACGGAATCCGAAACCAACGATCCA -ACGGAATCCGAAACCAACACGACA -ACGGAATCCGAAACCAACAGCTCA -ACGGAATCCGAAACCAACTCACGT -ACGGAATCCGAAACCAACCGTAGT -ACGGAATCCGAAACCAACGTCAGT -ACGGAATCCGAAACCAACGAAGGT -ACGGAATCCGAAACCAACAACCGT -ACGGAATCCGAAACCAACTTGTGC -ACGGAATCCGAAACCAACCTAAGC -ACGGAATCCGAAACCAACACTAGC -ACGGAATCCGAAACCAACAGATGC -ACGGAATCCGAAACCAACTGAAGG -ACGGAATCCGAAACCAACCAATGG -ACGGAATCCGAAACCAACATGAGG -ACGGAATCCGAAACCAACAATGGG -ACGGAATCCGAAACCAACTCCTGA -ACGGAATCCGAAACCAACTAGCGA -ACGGAATCCGAAACCAACCACAGA -ACGGAATCCGAAACCAACGCAAGA -ACGGAATCCGAAACCAACGGTTGA -ACGGAATCCGAAACCAACTCCGAT -ACGGAATCCGAAACCAACTGGCAT -ACGGAATCCGAAACCAACCGAGAT -ACGGAATCCGAAACCAACTACCAC -ACGGAATCCGAAACCAACCAGAAC -ACGGAATCCGAAACCAACGTCTAC -ACGGAATCCGAAACCAACACGTAC -ACGGAATCCGAAACCAACAGTGAC -ACGGAATCCGAAACCAACCTGTAG -ACGGAATCCGAAACCAACCCTAAG -ACGGAATCCGAAACCAACGTTCAG -ACGGAATCCGAAACCAACGCATAG -ACGGAATCCGAAACCAACGACAAG -ACGGAATCCGAAACCAACAAGCAG -ACGGAATCCGAAACCAACCGTCAA -ACGGAATCCGAAACCAACGCTGAA -ACGGAATCCGAAACCAACAGTACG -ACGGAATCCGAAACCAACATCCGA -ACGGAATCCGAAACCAACATGGGA -ACGGAATCCGAAACCAACGTGCAA -ACGGAATCCGAAACCAACGAGGAA -ACGGAATCCGAAACCAACCAGGTA -ACGGAATCCGAAACCAACGACTCT -ACGGAATCCGAAACCAACAGTCCT -ACGGAATCCGAAACCAACTAAGCC -ACGGAATCCGAAACCAACATAGCC -ACGGAATCCGAAACCAACTAACCG -ACGGAATCCGAAACCAACATGCCA -ACGGAATCCGAAGAGATCGGAAAC -ACGGAATCCGAAGAGATCAACACC -ACGGAATCCGAAGAGATCATCGAG -ACGGAATCCGAAGAGATCCTCCTT -ACGGAATCCGAAGAGATCCCTGTT -ACGGAATCCGAAGAGATCCGGTTT -ACGGAATCCGAAGAGATCGTGGTT -ACGGAATCCGAAGAGATCGCCTTT -ACGGAATCCGAAGAGATCGGTCTT -ACGGAATCCGAAGAGATCACGCTT -ACGGAATCCGAAGAGATCAGCGTT -ACGGAATCCGAAGAGATCTTCGTC -ACGGAATCCGAAGAGATCTCTCTC -ACGGAATCCGAAGAGATCTGGATC -ACGGAATCCGAAGAGATCCACTTC -ACGGAATCCGAAGAGATCGTACTC -ACGGAATCCGAAGAGATCGATGTC -ACGGAATCCGAAGAGATCACAGTC -ACGGAATCCGAAGAGATCTTGCTG -ACGGAATCCGAAGAGATCTCCATG -ACGGAATCCGAAGAGATCTGTGTG -ACGGAATCCGAAGAGATCCTAGTG -ACGGAATCCGAAGAGATCCATCTG -ACGGAATCCGAAGAGATCGAGTTG -ACGGAATCCGAAGAGATCAGACTG -ACGGAATCCGAAGAGATCTCGGTA -ACGGAATCCGAAGAGATCTGCCTA -ACGGAATCCGAAGAGATCCCACTA -ACGGAATCCGAAGAGATCGGAGTA -ACGGAATCCGAAGAGATCTCGTCT -ACGGAATCCGAAGAGATCTGCACT -ACGGAATCCGAAGAGATCCTGACT -ACGGAATCCGAAGAGATCCAACCT -ACGGAATCCGAAGAGATCGCTACT -ACGGAATCCGAAGAGATCGGATCT -ACGGAATCCGAAGAGATCAAGGCT -ACGGAATCCGAAGAGATCTCAACC -ACGGAATCCGAAGAGATCTGTTCC -ACGGAATCCGAAGAGATCATTCCC -ACGGAATCCGAAGAGATCTTCTCG -ACGGAATCCGAAGAGATCTAGACG -ACGGAATCCGAAGAGATCGTAACG -ACGGAATCCGAAGAGATCACTTCG -ACGGAATCCGAAGAGATCTACGCA -ACGGAATCCGAAGAGATCCTTGCA -ACGGAATCCGAAGAGATCCGAACA -ACGGAATCCGAAGAGATCCAGTCA -ACGGAATCCGAAGAGATCGATCCA -ACGGAATCCGAAGAGATCACGACA -ACGGAATCCGAAGAGATCAGCTCA -ACGGAATCCGAAGAGATCTCACGT -ACGGAATCCGAAGAGATCCGTAGT -ACGGAATCCGAAGAGATCGTCAGT -ACGGAATCCGAAGAGATCGAAGGT -ACGGAATCCGAAGAGATCAACCGT -ACGGAATCCGAAGAGATCTTGTGC -ACGGAATCCGAAGAGATCCTAAGC -ACGGAATCCGAAGAGATCACTAGC -ACGGAATCCGAAGAGATCAGATGC -ACGGAATCCGAAGAGATCTGAAGG -ACGGAATCCGAAGAGATCCAATGG -ACGGAATCCGAAGAGATCATGAGG -ACGGAATCCGAAGAGATCAATGGG -ACGGAATCCGAAGAGATCTCCTGA -ACGGAATCCGAAGAGATCTAGCGA -ACGGAATCCGAAGAGATCCACAGA -ACGGAATCCGAAGAGATCGCAAGA -ACGGAATCCGAAGAGATCGGTTGA -ACGGAATCCGAAGAGATCTCCGAT -ACGGAATCCGAAGAGATCTGGCAT -ACGGAATCCGAAGAGATCCGAGAT -ACGGAATCCGAAGAGATCTACCAC -ACGGAATCCGAAGAGATCCAGAAC -ACGGAATCCGAAGAGATCGTCTAC -ACGGAATCCGAAGAGATCACGTAC -ACGGAATCCGAAGAGATCAGTGAC -ACGGAATCCGAAGAGATCCTGTAG -ACGGAATCCGAAGAGATCCCTAAG -ACGGAATCCGAAGAGATCGTTCAG -ACGGAATCCGAAGAGATCGCATAG -ACGGAATCCGAAGAGATCGACAAG -ACGGAATCCGAAGAGATCAAGCAG -ACGGAATCCGAAGAGATCCGTCAA -ACGGAATCCGAAGAGATCGCTGAA -ACGGAATCCGAAGAGATCAGTACG -ACGGAATCCGAAGAGATCATCCGA -ACGGAATCCGAAGAGATCATGGGA -ACGGAATCCGAAGAGATCGTGCAA -ACGGAATCCGAAGAGATCGAGGAA -ACGGAATCCGAAGAGATCCAGGTA -ACGGAATCCGAAGAGATCGACTCT -ACGGAATCCGAAGAGATCAGTCCT -ACGGAATCCGAAGAGATCTAAGCC -ACGGAATCCGAAGAGATCATAGCC -ACGGAATCCGAAGAGATCTAACCG -ACGGAATCCGAAGAGATCATGCCA -ACGGAATCCGAACTTCTCGGAAAC -ACGGAATCCGAACTTCTCAACACC -ACGGAATCCGAACTTCTCATCGAG -ACGGAATCCGAACTTCTCCTCCTT -ACGGAATCCGAACTTCTCCCTGTT -ACGGAATCCGAACTTCTCCGGTTT -ACGGAATCCGAACTTCTCGTGGTT -ACGGAATCCGAACTTCTCGCCTTT -ACGGAATCCGAACTTCTCGGTCTT -ACGGAATCCGAACTTCTCACGCTT -ACGGAATCCGAACTTCTCAGCGTT -ACGGAATCCGAACTTCTCTTCGTC -ACGGAATCCGAACTTCTCTCTCTC -ACGGAATCCGAACTTCTCTGGATC -ACGGAATCCGAACTTCTCCACTTC -ACGGAATCCGAACTTCTCGTACTC -ACGGAATCCGAACTTCTCGATGTC -ACGGAATCCGAACTTCTCACAGTC -ACGGAATCCGAACTTCTCTTGCTG -ACGGAATCCGAACTTCTCTCCATG -ACGGAATCCGAACTTCTCTGTGTG -ACGGAATCCGAACTTCTCCTAGTG -ACGGAATCCGAACTTCTCCATCTG -ACGGAATCCGAACTTCTCGAGTTG -ACGGAATCCGAACTTCTCAGACTG -ACGGAATCCGAACTTCTCTCGGTA -ACGGAATCCGAACTTCTCTGCCTA -ACGGAATCCGAACTTCTCCCACTA -ACGGAATCCGAACTTCTCGGAGTA -ACGGAATCCGAACTTCTCTCGTCT -ACGGAATCCGAACTTCTCTGCACT -ACGGAATCCGAACTTCTCCTGACT -ACGGAATCCGAACTTCTCCAACCT -ACGGAATCCGAACTTCTCGCTACT -ACGGAATCCGAACTTCTCGGATCT -ACGGAATCCGAACTTCTCAAGGCT -ACGGAATCCGAACTTCTCTCAACC -ACGGAATCCGAACTTCTCTGTTCC -ACGGAATCCGAACTTCTCATTCCC -ACGGAATCCGAACTTCTCTTCTCG -ACGGAATCCGAACTTCTCTAGACG -ACGGAATCCGAACTTCTCGTAACG -ACGGAATCCGAACTTCTCACTTCG -ACGGAATCCGAACTTCTCTACGCA -ACGGAATCCGAACTTCTCCTTGCA -ACGGAATCCGAACTTCTCCGAACA -ACGGAATCCGAACTTCTCCAGTCA -ACGGAATCCGAACTTCTCGATCCA -ACGGAATCCGAACTTCTCACGACA -ACGGAATCCGAACTTCTCAGCTCA -ACGGAATCCGAACTTCTCTCACGT -ACGGAATCCGAACTTCTCCGTAGT -ACGGAATCCGAACTTCTCGTCAGT -ACGGAATCCGAACTTCTCGAAGGT -ACGGAATCCGAACTTCTCAACCGT -ACGGAATCCGAACTTCTCTTGTGC -ACGGAATCCGAACTTCTCCTAAGC -ACGGAATCCGAACTTCTCACTAGC -ACGGAATCCGAACTTCTCAGATGC -ACGGAATCCGAACTTCTCTGAAGG -ACGGAATCCGAACTTCTCCAATGG -ACGGAATCCGAACTTCTCATGAGG -ACGGAATCCGAACTTCTCAATGGG -ACGGAATCCGAACTTCTCTCCTGA -ACGGAATCCGAACTTCTCTAGCGA -ACGGAATCCGAACTTCTCCACAGA -ACGGAATCCGAACTTCTCGCAAGA -ACGGAATCCGAACTTCTCGGTTGA -ACGGAATCCGAACTTCTCTCCGAT -ACGGAATCCGAACTTCTCTGGCAT -ACGGAATCCGAACTTCTCCGAGAT -ACGGAATCCGAACTTCTCTACCAC -ACGGAATCCGAACTTCTCCAGAAC -ACGGAATCCGAACTTCTCGTCTAC -ACGGAATCCGAACTTCTCACGTAC -ACGGAATCCGAACTTCTCAGTGAC -ACGGAATCCGAACTTCTCCTGTAG -ACGGAATCCGAACTTCTCCCTAAG -ACGGAATCCGAACTTCTCGTTCAG -ACGGAATCCGAACTTCTCGCATAG -ACGGAATCCGAACTTCTCGACAAG -ACGGAATCCGAACTTCTCAAGCAG -ACGGAATCCGAACTTCTCCGTCAA -ACGGAATCCGAACTTCTCGCTGAA -ACGGAATCCGAACTTCTCAGTACG -ACGGAATCCGAACTTCTCATCCGA -ACGGAATCCGAACTTCTCATGGGA -ACGGAATCCGAACTTCTCGTGCAA -ACGGAATCCGAACTTCTCGAGGAA -ACGGAATCCGAACTTCTCCAGGTA -ACGGAATCCGAACTTCTCGACTCT -ACGGAATCCGAACTTCTCAGTCCT -ACGGAATCCGAACTTCTCTAAGCC -ACGGAATCCGAACTTCTCATAGCC -ACGGAATCCGAACTTCTCTAACCG -ACGGAATCCGAACTTCTCATGCCA -ACGGAATCCGAAGTTCCTGGAAAC -ACGGAATCCGAAGTTCCTAACACC -ACGGAATCCGAAGTTCCTATCGAG -ACGGAATCCGAAGTTCCTCTCCTT -ACGGAATCCGAAGTTCCTCCTGTT -ACGGAATCCGAAGTTCCTCGGTTT -ACGGAATCCGAAGTTCCTGTGGTT -ACGGAATCCGAAGTTCCTGCCTTT -ACGGAATCCGAAGTTCCTGGTCTT -ACGGAATCCGAAGTTCCTACGCTT -ACGGAATCCGAAGTTCCTAGCGTT -ACGGAATCCGAAGTTCCTTTCGTC -ACGGAATCCGAAGTTCCTTCTCTC -ACGGAATCCGAAGTTCCTTGGATC -ACGGAATCCGAAGTTCCTCACTTC -ACGGAATCCGAAGTTCCTGTACTC -ACGGAATCCGAAGTTCCTGATGTC -ACGGAATCCGAAGTTCCTACAGTC -ACGGAATCCGAAGTTCCTTTGCTG -ACGGAATCCGAAGTTCCTTCCATG -ACGGAATCCGAAGTTCCTTGTGTG -ACGGAATCCGAAGTTCCTCTAGTG -ACGGAATCCGAAGTTCCTCATCTG -ACGGAATCCGAAGTTCCTGAGTTG -ACGGAATCCGAAGTTCCTAGACTG -ACGGAATCCGAAGTTCCTTCGGTA -ACGGAATCCGAAGTTCCTTGCCTA -ACGGAATCCGAAGTTCCTCCACTA -ACGGAATCCGAAGTTCCTGGAGTA -ACGGAATCCGAAGTTCCTTCGTCT -ACGGAATCCGAAGTTCCTTGCACT -ACGGAATCCGAAGTTCCTCTGACT -ACGGAATCCGAAGTTCCTCAACCT -ACGGAATCCGAAGTTCCTGCTACT -ACGGAATCCGAAGTTCCTGGATCT -ACGGAATCCGAAGTTCCTAAGGCT -ACGGAATCCGAAGTTCCTTCAACC -ACGGAATCCGAAGTTCCTTGTTCC -ACGGAATCCGAAGTTCCTATTCCC -ACGGAATCCGAAGTTCCTTTCTCG -ACGGAATCCGAAGTTCCTTAGACG -ACGGAATCCGAAGTTCCTGTAACG -ACGGAATCCGAAGTTCCTACTTCG -ACGGAATCCGAAGTTCCTTACGCA -ACGGAATCCGAAGTTCCTCTTGCA -ACGGAATCCGAAGTTCCTCGAACA -ACGGAATCCGAAGTTCCTCAGTCA -ACGGAATCCGAAGTTCCTGATCCA -ACGGAATCCGAAGTTCCTACGACA -ACGGAATCCGAAGTTCCTAGCTCA -ACGGAATCCGAAGTTCCTTCACGT -ACGGAATCCGAAGTTCCTCGTAGT -ACGGAATCCGAAGTTCCTGTCAGT -ACGGAATCCGAAGTTCCTGAAGGT -ACGGAATCCGAAGTTCCTAACCGT -ACGGAATCCGAAGTTCCTTTGTGC -ACGGAATCCGAAGTTCCTCTAAGC -ACGGAATCCGAAGTTCCTACTAGC -ACGGAATCCGAAGTTCCTAGATGC -ACGGAATCCGAAGTTCCTTGAAGG -ACGGAATCCGAAGTTCCTCAATGG -ACGGAATCCGAAGTTCCTATGAGG -ACGGAATCCGAAGTTCCTAATGGG -ACGGAATCCGAAGTTCCTTCCTGA -ACGGAATCCGAAGTTCCTTAGCGA -ACGGAATCCGAAGTTCCTCACAGA -ACGGAATCCGAAGTTCCTGCAAGA -ACGGAATCCGAAGTTCCTGGTTGA -ACGGAATCCGAAGTTCCTTCCGAT -ACGGAATCCGAAGTTCCTTGGCAT -ACGGAATCCGAAGTTCCTCGAGAT -ACGGAATCCGAAGTTCCTTACCAC -ACGGAATCCGAAGTTCCTCAGAAC -ACGGAATCCGAAGTTCCTGTCTAC -ACGGAATCCGAAGTTCCTACGTAC -ACGGAATCCGAAGTTCCTAGTGAC -ACGGAATCCGAAGTTCCTCTGTAG -ACGGAATCCGAAGTTCCTCCTAAG -ACGGAATCCGAAGTTCCTGTTCAG -ACGGAATCCGAAGTTCCTGCATAG -ACGGAATCCGAAGTTCCTGACAAG -ACGGAATCCGAAGTTCCTAAGCAG -ACGGAATCCGAAGTTCCTCGTCAA -ACGGAATCCGAAGTTCCTGCTGAA -ACGGAATCCGAAGTTCCTAGTACG -ACGGAATCCGAAGTTCCTATCCGA -ACGGAATCCGAAGTTCCTATGGGA -ACGGAATCCGAAGTTCCTGTGCAA -ACGGAATCCGAAGTTCCTGAGGAA -ACGGAATCCGAAGTTCCTCAGGTA -ACGGAATCCGAAGTTCCTGACTCT -ACGGAATCCGAAGTTCCTAGTCCT -ACGGAATCCGAAGTTCCTTAAGCC -ACGGAATCCGAAGTTCCTATAGCC -ACGGAATCCGAAGTTCCTTAACCG -ACGGAATCCGAAGTTCCTATGCCA -ACGGAATCCGAATTTCGGGGAAAC -ACGGAATCCGAATTTCGGAACACC -ACGGAATCCGAATTTCGGATCGAG -ACGGAATCCGAATTTCGGCTCCTT -ACGGAATCCGAATTTCGGCCTGTT -ACGGAATCCGAATTTCGGCGGTTT -ACGGAATCCGAATTTCGGGTGGTT -ACGGAATCCGAATTTCGGGCCTTT -ACGGAATCCGAATTTCGGGGTCTT -ACGGAATCCGAATTTCGGACGCTT -ACGGAATCCGAATTTCGGAGCGTT -ACGGAATCCGAATTTCGGTTCGTC -ACGGAATCCGAATTTCGGTCTCTC -ACGGAATCCGAATTTCGGTGGATC -ACGGAATCCGAATTTCGGCACTTC -ACGGAATCCGAATTTCGGGTACTC -ACGGAATCCGAATTTCGGGATGTC -ACGGAATCCGAATTTCGGACAGTC -ACGGAATCCGAATTTCGGTTGCTG -ACGGAATCCGAATTTCGGTCCATG -ACGGAATCCGAATTTCGGTGTGTG -ACGGAATCCGAATTTCGGCTAGTG -ACGGAATCCGAATTTCGGCATCTG -ACGGAATCCGAATTTCGGGAGTTG -ACGGAATCCGAATTTCGGAGACTG -ACGGAATCCGAATTTCGGTCGGTA -ACGGAATCCGAATTTCGGTGCCTA -ACGGAATCCGAATTTCGGCCACTA -ACGGAATCCGAATTTCGGGGAGTA -ACGGAATCCGAATTTCGGTCGTCT -ACGGAATCCGAATTTCGGTGCACT -ACGGAATCCGAATTTCGGCTGACT -ACGGAATCCGAATTTCGGCAACCT -ACGGAATCCGAATTTCGGGCTACT -ACGGAATCCGAATTTCGGGGATCT -ACGGAATCCGAATTTCGGAAGGCT -ACGGAATCCGAATTTCGGTCAACC -ACGGAATCCGAATTTCGGTGTTCC -ACGGAATCCGAATTTCGGATTCCC -ACGGAATCCGAATTTCGGTTCTCG -ACGGAATCCGAATTTCGGTAGACG -ACGGAATCCGAATTTCGGGTAACG -ACGGAATCCGAATTTCGGACTTCG -ACGGAATCCGAATTTCGGTACGCA -ACGGAATCCGAATTTCGGCTTGCA -ACGGAATCCGAATTTCGGCGAACA -ACGGAATCCGAATTTCGGCAGTCA -ACGGAATCCGAATTTCGGGATCCA -ACGGAATCCGAATTTCGGACGACA -ACGGAATCCGAATTTCGGAGCTCA -ACGGAATCCGAATTTCGGTCACGT -ACGGAATCCGAATTTCGGCGTAGT -ACGGAATCCGAATTTCGGGTCAGT -ACGGAATCCGAATTTCGGGAAGGT -ACGGAATCCGAATTTCGGAACCGT -ACGGAATCCGAATTTCGGTTGTGC -ACGGAATCCGAATTTCGGCTAAGC -ACGGAATCCGAATTTCGGACTAGC -ACGGAATCCGAATTTCGGAGATGC -ACGGAATCCGAATTTCGGTGAAGG -ACGGAATCCGAATTTCGGCAATGG -ACGGAATCCGAATTTCGGATGAGG -ACGGAATCCGAATTTCGGAATGGG -ACGGAATCCGAATTTCGGTCCTGA -ACGGAATCCGAATTTCGGTAGCGA -ACGGAATCCGAATTTCGGCACAGA -ACGGAATCCGAATTTCGGGCAAGA -ACGGAATCCGAATTTCGGGGTTGA -ACGGAATCCGAATTTCGGTCCGAT -ACGGAATCCGAATTTCGGTGGCAT -ACGGAATCCGAATTTCGGCGAGAT -ACGGAATCCGAATTTCGGTACCAC -ACGGAATCCGAATTTCGGCAGAAC -ACGGAATCCGAATTTCGGGTCTAC -ACGGAATCCGAATTTCGGACGTAC -ACGGAATCCGAATTTCGGAGTGAC -ACGGAATCCGAATTTCGGCTGTAG -ACGGAATCCGAATTTCGGCCTAAG -ACGGAATCCGAATTTCGGGTTCAG -ACGGAATCCGAATTTCGGGCATAG -ACGGAATCCGAATTTCGGGACAAG -ACGGAATCCGAATTTCGGAAGCAG -ACGGAATCCGAATTTCGGCGTCAA -ACGGAATCCGAATTTCGGGCTGAA -ACGGAATCCGAATTTCGGAGTACG -ACGGAATCCGAATTTCGGATCCGA -ACGGAATCCGAATTTCGGATGGGA -ACGGAATCCGAATTTCGGGTGCAA -ACGGAATCCGAATTTCGGGAGGAA -ACGGAATCCGAATTTCGGCAGGTA -ACGGAATCCGAATTTCGGGACTCT -ACGGAATCCGAATTTCGGAGTCCT -ACGGAATCCGAATTTCGGTAAGCC -ACGGAATCCGAATTTCGGATAGCC -ACGGAATCCGAATTTCGGTAACCG -ACGGAATCCGAATTTCGGATGCCA -ACGGAATCCGAAGTTGTGGGAAAC -ACGGAATCCGAAGTTGTGAACACC -ACGGAATCCGAAGTTGTGATCGAG -ACGGAATCCGAAGTTGTGCTCCTT -ACGGAATCCGAAGTTGTGCCTGTT -ACGGAATCCGAAGTTGTGCGGTTT -ACGGAATCCGAAGTTGTGGTGGTT -ACGGAATCCGAAGTTGTGGCCTTT -ACGGAATCCGAAGTTGTGGGTCTT -ACGGAATCCGAAGTTGTGACGCTT -ACGGAATCCGAAGTTGTGAGCGTT -ACGGAATCCGAAGTTGTGTTCGTC -ACGGAATCCGAAGTTGTGTCTCTC -ACGGAATCCGAAGTTGTGTGGATC -ACGGAATCCGAAGTTGTGCACTTC -ACGGAATCCGAAGTTGTGGTACTC -ACGGAATCCGAAGTTGTGGATGTC -ACGGAATCCGAAGTTGTGACAGTC -ACGGAATCCGAAGTTGTGTTGCTG -ACGGAATCCGAAGTTGTGTCCATG -ACGGAATCCGAAGTTGTGTGTGTG -ACGGAATCCGAAGTTGTGCTAGTG -ACGGAATCCGAAGTTGTGCATCTG -ACGGAATCCGAAGTTGTGGAGTTG -ACGGAATCCGAAGTTGTGAGACTG -ACGGAATCCGAAGTTGTGTCGGTA -ACGGAATCCGAAGTTGTGTGCCTA -ACGGAATCCGAAGTTGTGCCACTA -ACGGAATCCGAAGTTGTGGGAGTA -ACGGAATCCGAAGTTGTGTCGTCT -ACGGAATCCGAAGTTGTGTGCACT -ACGGAATCCGAAGTTGTGCTGACT -ACGGAATCCGAAGTTGTGCAACCT -ACGGAATCCGAAGTTGTGGCTACT -ACGGAATCCGAAGTTGTGGGATCT -ACGGAATCCGAAGTTGTGAAGGCT -ACGGAATCCGAAGTTGTGTCAACC -ACGGAATCCGAAGTTGTGTGTTCC -ACGGAATCCGAAGTTGTGATTCCC -ACGGAATCCGAAGTTGTGTTCTCG -ACGGAATCCGAAGTTGTGTAGACG -ACGGAATCCGAAGTTGTGGTAACG -ACGGAATCCGAAGTTGTGACTTCG -ACGGAATCCGAAGTTGTGTACGCA -ACGGAATCCGAAGTTGTGCTTGCA -ACGGAATCCGAAGTTGTGCGAACA -ACGGAATCCGAAGTTGTGCAGTCA -ACGGAATCCGAAGTTGTGGATCCA -ACGGAATCCGAAGTTGTGACGACA -ACGGAATCCGAAGTTGTGAGCTCA -ACGGAATCCGAAGTTGTGTCACGT -ACGGAATCCGAAGTTGTGCGTAGT -ACGGAATCCGAAGTTGTGGTCAGT -ACGGAATCCGAAGTTGTGGAAGGT -ACGGAATCCGAAGTTGTGAACCGT -ACGGAATCCGAAGTTGTGTTGTGC -ACGGAATCCGAAGTTGTGCTAAGC -ACGGAATCCGAAGTTGTGACTAGC -ACGGAATCCGAAGTTGTGAGATGC -ACGGAATCCGAAGTTGTGTGAAGG -ACGGAATCCGAAGTTGTGCAATGG -ACGGAATCCGAAGTTGTGATGAGG -ACGGAATCCGAAGTTGTGAATGGG -ACGGAATCCGAAGTTGTGTCCTGA -ACGGAATCCGAAGTTGTGTAGCGA -ACGGAATCCGAAGTTGTGCACAGA -ACGGAATCCGAAGTTGTGGCAAGA -ACGGAATCCGAAGTTGTGGGTTGA -ACGGAATCCGAAGTTGTGTCCGAT -ACGGAATCCGAAGTTGTGTGGCAT -ACGGAATCCGAAGTTGTGCGAGAT -ACGGAATCCGAAGTTGTGTACCAC -ACGGAATCCGAAGTTGTGCAGAAC -ACGGAATCCGAAGTTGTGGTCTAC -ACGGAATCCGAAGTTGTGACGTAC -ACGGAATCCGAAGTTGTGAGTGAC -ACGGAATCCGAAGTTGTGCTGTAG -ACGGAATCCGAAGTTGTGCCTAAG -ACGGAATCCGAAGTTGTGGTTCAG -ACGGAATCCGAAGTTGTGGCATAG -ACGGAATCCGAAGTTGTGGACAAG -ACGGAATCCGAAGTTGTGAAGCAG -ACGGAATCCGAAGTTGTGCGTCAA -ACGGAATCCGAAGTTGTGGCTGAA -ACGGAATCCGAAGTTGTGAGTACG -ACGGAATCCGAAGTTGTGATCCGA -ACGGAATCCGAAGTTGTGATGGGA -ACGGAATCCGAAGTTGTGGTGCAA -ACGGAATCCGAAGTTGTGGAGGAA -ACGGAATCCGAAGTTGTGCAGGTA -ACGGAATCCGAAGTTGTGGACTCT -ACGGAATCCGAAGTTGTGAGTCCT -ACGGAATCCGAAGTTGTGTAAGCC -ACGGAATCCGAAGTTGTGATAGCC -ACGGAATCCGAAGTTGTGTAACCG -ACGGAATCCGAAGTTGTGATGCCA -ACGGAATCCGAATTTGCCGGAAAC -ACGGAATCCGAATTTGCCAACACC -ACGGAATCCGAATTTGCCATCGAG -ACGGAATCCGAATTTGCCCTCCTT -ACGGAATCCGAATTTGCCCCTGTT -ACGGAATCCGAATTTGCCCGGTTT -ACGGAATCCGAATTTGCCGTGGTT -ACGGAATCCGAATTTGCCGCCTTT -ACGGAATCCGAATTTGCCGGTCTT -ACGGAATCCGAATTTGCCACGCTT -ACGGAATCCGAATTTGCCAGCGTT -ACGGAATCCGAATTTGCCTTCGTC -ACGGAATCCGAATTTGCCTCTCTC -ACGGAATCCGAATTTGCCTGGATC -ACGGAATCCGAATTTGCCCACTTC -ACGGAATCCGAATTTGCCGTACTC -ACGGAATCCGAATTTGCCGATGTC -ACGGAATCCGAATTTGCCACAGTC -ACGGAATCCGAATTTGCCTTGCTG -ACGGAATCCGAATTTGCCTCCATG -ACGGAATCCGAATTTGCCTGTGTG -ACGGAATCCGAATTTGCCCTAGTG -ACGGAATCCGAATTTGCCCATCTG -ACGGAATCCGAATTTGCCGAGTTG -ACGGAATCCGAATTTGCCAGACTG -ACGGAATCCGAATTTGCCTCGGTA -ACGGAATCCGAATTTGCCTGCCTA -ACGGAATCCGAATTTGCCCCACTA -ACGGAATCCGAATTTGCCGGAGTA -ACGGAATCCGAATTTGCCTCGTCT -ACGGAATCCGAATTTGCCTGCACT -ACGGAATCCGAATTTGCCCTGACT -ACGGAATCCGAATTTGCCCAACCT -ACGGAATCCGAATTTGCCGCTACT -ACGGAATCCGAATTTGCCGGATCT -ACGGAATCCGAATTTGCCAAGGCT -ACGGAATCCGAATTTGCCTCAACC -ACGGAATCCGAATTTGCCTGTTCC -ACGGAATCCGAATTTGCCATTCCC -ACGGAATCCGAATTTGCCTTCTCG -ACGGAATCCGAATTTGCCTAGACG -ACGGAATCCGAATTTGCCGTAACG -ACGGAATCCGAATTTGCCACTTCG -ACGGAATCCGAATTTGCCTACGCA -ACGGAATCCGAATTTGCCCTTGCA -ACGGAATCCGAATTTGCCCGAACA -ACGGAATCCGAATTTGCCCAGTCA -ACGGAATCCGAATTTGCCGATCCA -ACGGAATCCGAATTTGCCACGACA -ACGGAATCCGAATTTGCCAGCTCA -ACGGAATCCGAATTTGCCTCACGT -ACGGAATCCGAATTTGCCCGTAGT -ACGGAATCCGAATTTGCCGTCAGT -ACGGAATCCGAATTTGCCGAAGGT -ACGGAATCCGAATTTGCCAACCGT -ACGGAATCCGAATTTGCCTTGTGC -ACGGAATCCGAATTTGCCCTAAGC -ACGGAATCCGAATTTGCCACTAGC -ACGGAATCCGAATTTGCCAGATGC -ACGGAATCCGAATTTGCCTGAAGG -ACGGAATCCGAATTTGCCCAATGG -ACGGAATCCGAATTTGCCATGAGG -ACGGAATCCGAATTTGCCAATGGG -ACGGAATCCGAATTTGCCTCCTGA -ACGGAATCCGAATTTGCCTAGCGA -ACGGAATCCGAATTTGCCCACAGA -ACGGAATCCGAATTTGCCGCAAGA -ACGGAATCCGAATTTGCCGGTTGA -ACGGAATCCGAATTTGCCTCCGAT -ACGGAATCCGAATTTGCCTGGCAT -ACGGAATCCGAATTTGCCCGAGAT -ACGGAATCCGAATTTGCCTACCAC -ACGGAATCCGAATTTGCCCAGAAC -ACGGAATCCGAATTTGCCGTCTAC -ACGGAATCCGAATTTGCCACGTAC -ACGGAATCCGAATTTGCCAGTGAC -ACGGAATCCGAATTTGCCCTGTAG -ACGGAATCCGAATTTGCCCCTAAG -ACGGAATCCGAATTTGCCGTTCAG -ACGGAATCCGAATTTGCCGCATAG -ACGGAATCCGAATTTGCCGACAAG -ACGGAATCCGAATTTGCCAAGCAG -ACGGAATCCGAATTTGCCCGTCAA -ACGGAATCCGAATTTGCCGCTGAA -ACGGAATCCGAATTTGCCAGTACG -ACGGAATCCGAATTTGCCATCCGA -ACGGAATCCGAATTTGCCATGGGA -ACGGAATCCGAATTTGCCGTGCAA -ACGGAATCCGAATTTGCCGAGGAA -ACGGAATCCGAATTTGCCCAGGTA -ACGGAATCCGAATTTGCCGACTCT -ACGGAATCCGAATTTGCCAGTCCT -ACGGAATCCGAATTTGCCTAAGCC -ACGGAATCCGAATTTGCCATAGCC -ACGGAATCCGAATTTGCCTAACCG -ACGGAATCCGAATTTGCCATGCCA -ACGGAATCCGAACTTGGTGGAAAC -ACGGAATCCGAACTTGGTAACACC -ACGGAATCCGAACTTGGTATCGAG -ACGGAATCCGAACTTGGTCTCCTT -ACGGAATCCGAACTTGGTCCTGTT -ACGGAATCCGAACTTGGTCGGTTT -ACGGAATCCGAACTTGGTGTGGTT -ACGGAATCCGAACTTGGTGCCTTT -ACGGAATCCGAACTTGGTGGTCTT -ACGGAATCCGAACTTGGTACGCTT -ACGGAATCCGAACTTGGTAGCGTT -ACGGAATCCGAACTTGGTTTCGTC -ACGGAATCCGAACTTGGTTCTCTC -ACGGAATCCGAACTTGGTTGGATC -ACGGAATCCGAACTTGGTCACTTC -ACGGAATCCGAACTTGGTGTACTC -ACGGAATCCGAACTTGGTGATGTC -ACGGAATCCGAACTTGGTACAGTC -ACGGAATCCGAACTTGGTTTGCTG -ACGGAATCCGAACTTGGTTCCATG -ACGGAATCCGAACTTGGTTGTGTG -ACGGAATCCGAACTTGGTCTAGTG -ACGGAATCCGAACTTGGTCATCTG -ACGGAATCCGAACTTGGTGAGTTG -ACGGAATCCGAACTTGGTAGACTG -ACGGAATCCGAACTTGGTTCGGTA -ACGGAATCCGAACTTGGTTGCCTA -ACGGAATCCGAACTTGGTCCACTA -ACGGAATCCGAACTTGGTGGAGTA -ACGGAATCCGAACTTGGTTCGTCT -ACGGAATCCGAACTTGGTTGCACT -ACGGAATCCGAACTTGGTCTGACT -ACGGAATCCGAACTTGGTCAACCT -ACGGAATCCGAACTTGGTGCTACT -ACGGAATCCGAACTTGGTGGATCT -ACGGAATCCGAACTTGGTAAGGCT -ACGGAATCCGAACTTGGTTCAACC -ACGGAATCCGAACTTGGTTGTTCC -ACGGAATCCGAACTTGGTATTCCC -ACGGAATCCGAACTTGGTTTCTCG -ACGGAATCCGAACTTGGTTAGACG -ACGGAATCCGAACTTGGTGTAACG -ACGGAATCCGAACTTGGTACTTCG -ACGGAATCCGAACTTGGTTACGCA -ACGGAATCCGAACTTGGTCTTGCA -ACGGAATCCGAACTTGGTCGAACA -ACGGAATCCGAACTTGGTCAGTCA -ACGGAATCCGAACTTGGTGATCCA -ACGGAATCCGAACTTGGTACGACA -ACGGAATCCGAACTTGGTAGCTCA -ACGGAATCCGAACTTGGTTCACGT -ACGGAATCCGAACTTGGTCGTAGT -ACGGAATCCGAACTTGGTGTCAGT -ACGGAATCCGAACTTGGTGAAGGT -ACGGAATCCGAACTTGGTAACCGT -ACGGAATCCGAACTTGGTTTGTGC -ACGGAATCCGAACTTGGTCTAAGC -ACGGAATCCGAACTTGGTACTAGC -ACGGAATCCGAACTTGGTAGATGC -ACGGAATCCGAACTTGGTTGAAGG -ACGGAATCCGAACTTGGTCAATGG -ACGGAATCCGAACTTGGTATGAGG -ACGGAATCCGAACTTGGTAATGGG -ACGGAATCCGAACTTGGTTCCTGA -ACGGAATCCGAACTTGGTTAGCGA -ACGGAATCCGAACTTGGTCACAGA -ACGGAATCCGAACTTGGTGCAAGA -ACGGAATCCGAACTTGGTGGTTGA -ACGGAATCCGAACTTGGTTCCGAT -ACGGAATCCGAACTTGGTTGGCAT -ACGGAATCCGAACTTGGTCGAGAT -ACGGAATCCGAACTTGGTTACCAC -ACGGAATCCGAACTTGGTCAGAAC -ACGGAATCCGAACTTGGTGTCTAC -ACGGAATCCGAACTTGGTACGTAC -ACGGAATCCGAACTTGGTAGTGAC -ACGGAATCCGAACTTGGTCTGTAG -ACGGAATCCGAACTTGGTCCTAAG -ACGGAATCCGAACTTGGTGTTCAG -ACGGAATCCGAACTTGGTGCATAG -ACGGAATCCGAACTTGGTGACAAG -ACGGAATCCGAACTTGGTAAGCAG -ACGGAATCCGAACTTGGTCGTCAA -ACGGAATCCGAACTTGGTGCTGAA -ACGGAATCCGAACTTGGTAGTACG -ACGGAATCCGAACTTGGTATCCGA -ACGGAATCCGAACTTGGTATGGGA -ACGGAATCCGAACTTGGTGTGCAA -ACGGAATCCGAACTTGGTGAGGAA -ACGGAATCCGAACTTGGTCAGGTA -ACGGAATCCGAACTTGGTGACTCT -ACGGAATCCGAACTTGGTAGTCCT -ACGGAATCCGAACTTGGTTAAGCC -ACGGAATCCGAACTTGGTATAGCC -ACGGAATCCGAACTTGGTTAACCG -ACGGAATCCGAACTTGGTATGCCA -ACGGAATCCGAACTTACGGGAAAC -ACGGAATCCGAACTTACGAACACC -ACGGAATCCGAACTTACGATCGAG -ACGGAATCCGAACTTACGCTCCTT -ACGGAATCCGAACTTACGCCTGTT -ACGGAATCCGAACTTACGCGGTTT -ACGGAATCCGAACTTACGGTGGTT -ACGGAATCCGAACTTACGGCCTTT -ACGGAATCCGAACTTACGGGTCTT -ACGGAATCCGAACTTACGACGCTT -ACGGAATCCGAACTTACGAGCGTT -ACGGAATCCGAACTTACGTTCGTC -ACGGAATCCGAACTTACGTCTCTC -ACGGAATCCGAACTTACGTGGATC -ACGGAATCCGAACTTACGCACTTC -ACGGAATCCGAACTTACGGTACTC -ACGGAATCCGAACTTACGGATGTC -ACGGAATCCGAACTTACGACAGTC -ACGGAATCCGAACTTACGTTGCTG -ACGGAATCCGAACTTACGTCCATG -ACGGAATCCGAACTTACGTGTGTG -ACGGAATCCGAACTTACGCTAGTG -ACGGAATCCGAACTTACGCATCTG -ACGGAATCCGAACTTACGGAGTTG -ACGGAATCCGAACTTACGAGACTG -ACGGAATCCGAACTTACGTCGGTA -ACGGAATCCGAACTTACGTGCCTA -ACGGAATCCGAACTTACGCCACTA -ACGGAATCCGAACTTACGGGAGTA -ACGGAATCCGAACTTACGTCGTCT -ACGGAATCCGAACTTACGTGCACT -ACGGAATCCGAACTTACGCTGACT -ACGGAATCCGAACTTACGCAACCT -ACGGAATCCGAACTTACGGCTACT -ACGGAATCCGAACTTACGGGATCT -ACGGAATCCGAACTTACGAAGGCT -ACGGAATCCGAACTTACGTCAACC -ACGGAATCCGAACTTACGTGTTCC -ACGGAATCCGAACTTACGATTCCC -ACGGAATCCGAACTTACGTTCTCG -ACGGAATCCGAACTTACGTAGACG -ACGGAATCCGAACTTACGGTAACG -ACGGAATCCGAACTTACGACTTCG -ACGGAATCCGAACTTACGTACGCA -ACGGAATCCGAACTTACGCTTGCA -ACGGAATCCGAACTTACGCGAACA -ACGGAATCCGAACTTACGCAGTCA -ACGGAATCCGAACTTACGGATCCA -ACGGAATCCGAACTTACGACGACA -ACGGAATCCGAACTTACGAGCTCA -ACGGAATCCGAACTTACGTCACGT -ACGGAATCCGAACTTACGCGTAGT -ACGGAATCCGAACTTACGGTCAGT -ACGGAATCCGAACTTACGGAAGGT -ACGGAATCCGAACTTACGAACCGT -ACGGAATCCGAACTTACGTTGTGC -ACGGAATCCGAACTTACGCTAAGC -ACGGAATCCGAACTTACGACTAGC -ACGGAATCCGAACTTACGAGATGC -ACGGAATCCGAACTTACGTGAAGG -ACGGAATCCGAACTTACGCAATGG -ACGGAATCCGAACTTACGATGAGG -ACGGAATCCGAACTTACGAATGGG -ACGGAATCCGAACTTACGTCCTGA -ACGGAATCCGAACTTACGTAGCGA -ACGGAATCCGAACTTACGCACAGA -ACGGAATCCGAACTTACGGCAAGA -ACGGAATCCGAACTTACGGGTTGA -ACGGAATCCGAACTTACGTCCGAT -ACGGAATCCGAACTTACGTGGCAT -ACGGAATCCGAACTTACGCGAGAT -ACGGAATCCGAACTTACGTACCAC -ACGGAATCCGAACTTACGCAGAAC -ACGGAATCCGAACTTACGGTCTAC -ACGGAATCCGAACTTACGACGTAC -ACGGAATCCGAACTTACGAGTGAC -ACGGAATCCGAACTTACGCTGTAG -ACGGAATCCGAACTTACGCCTAAG -ACGGAATCCGAACTTACGGTTCAG -ACGGAATCCGAACTTACGGCATAG -ACGGAATCCGAACTTACGGACAAG -ACGGAATCCGAACTTACGAAGCAG -ACGGAATCCGAACTTACGCGTCAA -ACGGAATCCGAACTTACGGCTGAA -ACGGAATCCGAACTTACGAGTACG -ACGGAATCCGAACTTACGATCCGA -ACGGAATCCGAACTTACGATGGGA -ACGGAATCCGAACTTACGGTGCAA -ACGGAATCCGAACTTACGGAGGAA -ACGGAATCCGAACTTACGCAGGTA -ACGGAATCCGAACTTACGGACTCT -ACGGAATCCGAACTTACGAGTCCT -ACGGAATCCGAACTTACGTAAGCC -ACGGAATCCGAACTTACGATAGCC -ACGGAATCCGAACTTACGTAACCG -ACGGAATCCGAACTTACGATGCCA -ACGGAATCCGAAGTTAGCGGAAAC -ACGGAATCCGAAGTTAGCAACACC -ACGGAATCCGAAGTTAGCATCGAG -ACGGAATCCGAAGTTAGCCTCCTT -ACGGAATCCGAAGTTAGCCCTGTT -ACGGAATCCGAAGTTAGCCGGTTT -ACGGAATCCGAAGTTAGCGTGGTT -ACGGAATCCGAAGTTAGCGCCTTT -ACGGAATCCGAAGTTAGCGGTCTT -ACGGAATCCGAAGTTAGCACGCTT -ACGGAATCCGAAGTTAGCAGCGTT -ACGGAATCCGAAGTTAGCTTCGTC -ACGGAATCCGAAGTTAGCTCTCTC -ACGGAATCCGAAGTTAGCTGGATC -ACGGAATCCGAAGTTAGCCACTTC -ACGGAATCCGAAGTTAGCGTACTC -ACGGAATCCGAAGTTAGCGATGTC -ACGGAATCCGAAGTTAGCACAGTC -ACGGAATCCGAAGTTAGCTTGCTG -ACGGAATCCGAAGTTAGCTCCATG -ACGGAATCCGAAGTTAGCTGTGTG -ACGGAATCCGAAGTTAGCCTAGTG -ACGGAATCCGAAGTTAGCCATCTG -ACGGAATCCGAAGTTAGCGAGTTG -ACGGAATCCGAAGTTAGCAGACTG -ACGGAATCCGAAGTTAGCTCGGTA -ACGGAATCCGAAGTTAGCTGCCTA -ACGGAATCCGAAGTTAGCCCACTA -ACGGAATCCGAAGTTAGCGGAGTA -ACGGAATCCGAAGTTAGCTCGTCT -ACGGAATCCGAAGTTAGCTGCACT -ACGGAATCCGAAGTTAGCCTGACT -ACGGAATCCGAAGTTAGCCAACCT -ACGGAATCCGAAGTTAGCGCTACT -ACGGAATCCGAAGTTAGCGGATCT -ACGGAATCCGAAGTTAGCAAGGCT -ACGGAATCCGAAGTTAGCTCAACC -ACGGAATCCGAAGTTAGCTGTTCC -ACGGAATCCGAAGTTAGCATTCCC -ACGGAATCCGAAGTTAGCTTCTCG -ACGGAATCCGAAGTTAGCTAGACG -ACGGAATCCGAAGTTAGCGTAACG -ACGGAATCCGAAGTTAGCACTTCG -ACGGAATCCGAAGTTAGCTACGCA -ACGGAATCCGAAGTTAGCCTTGCA -ACGGAATCCGAAGTTAGCCGAACA -ACGGAATCCGAAGTTAGCCAGTCA -ACGGAATCCGAAGTTAGCGATCCA -ACGGAATCCGAAGTTAGCACGACA -ACGGAATCCGAAGTTAGCAGCTCA -ACGGAATCCGAAGTTAGCTCACGT -ACGGAATCCGAAGTTAGCCGTAGT -ACGGAATCCGAAGTTAGCGTCAGT -ACGGAATCCGAAGTTAGCGAAGGT -ACGGAATCCGAAGTTAGCAACCGT -ACGGAATCCGAAGTTAGCTTGTGC -ACGGAATCCGAAGTTAGCCTAAGC -ACGGAATCCGAAGTTAGCACTAGC -ACGGAATCCGAAGTTAGCAGATGC -ACGGAATCCGAAGTTAGCTGAAGG -ACGGAATCCGAAGTTAGCCAATGG -ACGGAATCCGAAGTTAGCATGAGG -ACGGAATCCGAAGTTAGCAATGGG -ACGGAATCCGAAGTTAGCTCCTGA -ACGGAATCCGAAGTTAGCTAGCGA -ACGGAATCCGAAGTTAGCCACAGA -ACGGAATCCGAAGTTAGCGCAAGA -ACGGAATCCGAAGTTAGCGGTTGA -ACGGAATCCGAAGTTAGCTCCGAT -ACGGAATCCGAAGTTAGCTGGCAT -ACGGAATCCGAAGTTAGCCGAGAT -ACGGAATCCGAAGTTAGCTACCAC -ACGGAATCCGAAGTTAGCCAGAAC -ACGGAATCCGAAGTTAGCGTCTAC -ACGGAATCCGAAGTTAGCACGTAC -ACGGAATCCGAAGTTAGCAGTGAC -ACGGAATCCGAAGTTAGCCTGTAG -ACGGAATCCGAAGTTAGCCCTAAG -ACGGAATCCGAAGTTAGCGTTCAG -ACGGAATCCGAAGTTAGCGCATAG -ACGGAATCCGAAGTTAGCGACAAG -ACGGAATCCGAAGTTAGCAAGCAG -ACGGAATCCGAAGTTAGCCGTCAA -ACGGAATCCGAAGTTAGCGCTGAA -ACGGAATCCGAAGTTAGCAGTACG -ACGGAATCCGAAGTTAGCATCCGA -ACGGAATCCGAAGTTAGCATGGGA -ACGGAATCCGAAGTTAGCGTGCAA -ACGGAATCCGAAGTTAGCGAGGAA -ACGGAATCCGAAGTTAGCCAGGTA -ACGGAATCCGAAGTTAGCGACTCT -ACGGAATCCGAAGTTAGCAGTCCT -ACGGAATCCGAAGTTAGCTAAGCC -ACGGAATCCGAAGTTAGCATAGCC -ACGGAATCCGAAGTTAGCTAACCG -ACGGAATCCGAAGTTAGCATGCCA -ACGGAATCCGAAGTCTTCGGAAAC -ACGGAATCCGAAGTCTTCAACACC -ACGGAATCCGAAGTCTTCATCGAG -ACGGAATCCGAAGTCTTCCTCCTT -ACGGAATCCGAAGTCTTCCCTGTT -ACGGAATCCGAAGTCTTCCGGTTT -ACGGAATCCGAAGTCTTCGTGGTT -ACGGAATCCGAAGTCTTCGCCTTT -ACGGAATCCGAAGTCTTCGGTCTT -ACGGAATCCGAAGTCTTCACGCTT -ACGGAATCCGAAGTCTTCAGCGTT -ACGGAATCCGAAGTCTTCTTCGTC -ACGGAATCCGAAGTCTTCTCTCTC -ACGGAATCCGAAGTCTTCTGGATC -ACGGAATCCGAAGTCTTCCACTTC -ACGGAATCCGAAGTCTTCGTACTC -ACGGAATCCGAAGTCTTCGATGTC -ACGGAATCCGAAGTCTTCACAGTC -ACGGAATCCGAAGTCTTCTTGCTG -ACGGAATCCGAAGTCTTCTCCATG -ACGGAATCCGAAGTCTTCTGTGTG -ACGGAATCCGAAGTCTTCCTAGTG -ACGGAATCCGAAGTCTTCCATCTG -ACGGAATCCGAAGTCTTCGAGTTG -ACGGAATCCGAAGTCTTCAGACTG -ACGGAATCCGAAGTCTTCTCGGTA -ACGGAATCCGAAGTCTTCTGCCTA -ACGGAATCCGAAGTCTTCCCACTA -ACGGAATCCGAAGTCTTCGGAGTA -ACGGAATCCGAAGTCTTCTCGTCT -ACGGAATCCGAAGTCTTCTGCACT -ACGGAATCCGAAGTCTTCCTGACT -ACGGAATCCGAAGTCTTCCAACCT -ACGGAATCCGAAGTCTTCGCTACT -ACGGAATCCGAAGTCTTCGGATCT -ACGGAATCCGAAGTCTTCAAGGCT -ACGGAATCCGAAGTCTTCTCAACC -ACGGAATCCGAAGTCTTCTGTTCC -ACGGAATCCGAAGTCTTCATTCCC -ACGGAATCCGAAGTCTTCTTCTCG -ACGGAATCCGAAGTCTTCTAGACG -ACGGAATCCGAAGTCTTCGTAACG -ACGGAATCCGAAGTCTTCACTTCG -ACGGAATCCGAAGTCTTCTACGCA -ACGGAATCCGAAGTCTTCCTTGCA -ACGGAATCCGAAGTCTTCCGAACA -ACGGAATCCGAAGTCTTCCAGTCA -ACGGAATCCGAAGTCTTCGATCCA -ACGGAATCCGAAGTCTTCACGACA -ACGGAATCCGAAGTCTTCAGCTCA -ACGGAATCCGAAGTCTTCTCACGT -ACGGAATCCGAAGTCTTCCGTAGT -ACGGAATCCGAAGTCTTCGTCAGT -ACGGAATCCGAAGTCTTCGAAGGT -ACGGAATCCGAAGTCTTCAACCGT -ACGGAATCCGAAGTCTTCTTGTGC -ACGGAATCCGAAGTCTTCCTAAGC -ACGGAATCCGAAGTCTTCACTAGC -ACGGAATCCGAAGTCTTCAGATGC -ACGGAATCCGAAGTCTTCTGAAGG -ACGGAATCCGAAGTCTTCCAATGG -ACGGAATCCGAAGTCTTCATGAGG -ACGGAATCCGAAGTCTTCAATGGG -ACGGAATCCGAAGTCTTCTCCTGA -ACGGAATCCGAAGTCTTCTAGCGA -ACGGAATCCGAAGTCTTCCACAGA -ACGGAATCCGAAGTCTTCGCAAGA -ACGGAATCCGAAGTCTTCGGTTGA -ACGGAATCCGAAGTCTTCTCCGAT -ACGGAATCCGAAGTCTTCTGGCAT -ACGGAATCCGAAGTCTTCCGAGAT -ACGGAATCCGAAGTCTTCTACCAC -ACGGAATCCGAAGTCTTCCAGAAC -ACGGAATCCGAAGTCTTCGTCTAC -ACGGAATCCGAAGTCTTCACGTAC -ACGGAATCCGAAGTCTTCAGTGAC -ACGGAATCCGAAGTCTTCCTGTAG -ACGGAATCCGAAGTCTTCCCTAAG -ACGGAATCCGAAGTCTTCGTTCAG -ACGGAATCCGAAGTCTTCGCATAG -ACGGAATCCGAAGTCTTCGACAAG -ACGGAATCCGAAGTCTTCAAGCAG -ACGGAATCCGAAGTCTTCCGTCAA -ACGGAATCCGAAGTCTTCGCTGAA -ACGGAATCCGAAGTCTTCAGTACG -ACGGAATCCGAAGTCTTCATCCGA -ACGGAATCCGAAGTCTTCATGGGA -ACGGAATCCGAAGTCTTCGTGCAA -ACGGAATCCGAAGTCTTCGAGGAA -ACGGAATCCGAAGTCTTCCAGGTA -ACGGAATCCGAAGTCTTCGACTCT -ACGGAATCCGAAGTCTTCAGTCCT -ACGGAATCCGAAGTCTTCTAAGCC -ACGGAATCCGAAGTCTTCATAGCC -ACGGAATCCGAAGTCTTCTAACCG -ACGGAATCCGAAGTCTTCATGCCA -ACGGAATCCGAACTCTCTGGAAAC -ACGGAATCCGAACTCTCTAACACC -ACGGAATCCGAACTCTCTATCGAG -ACGGAATCCGAACTCTCTCTCCTT -ACGGAATCCGAACTCTCTCCTGTT -ACGGAATCCGAACTCTCTCGGTTT -ACGGAATCCGAACTCTCTGTGGTT -ACGGAATCCGAACTCTCTGCCTTT -ACGGAATCCGAACTCTCTGGTCTT -ACGGAATCCGAACTCTCTACGCTT -ACGGAATCCGAACTCTCTAGCGTT -ACGGAATCCGAACTCTCTTTCGTC -ACGGAATCCGAACTCTCTTCTCTC -ACGGAATCCGAACTCTCTTGGATC -ACGGAATCCGAACTCTCTCACTTC -ACGGAATCCGAACTCTCTGTACTC -ACGGAATCCGAACTCTCTGATGTC -ACGGAATCCGAACTCTCTACAGTC -ACGGAATCCGAACTCTCTTTGCTG -ACGGAATCCGAACTCTCTTCCATG -ACGGAATCCGAACTCTCTTGTGTG -ACGGAATCCGAACTCTCTCTAGTG -ACGGAATCCGAACTCTCTCATCTG -ACGGAATCCGAACTCTCTGAGTTG -ACGGAATCCGAACTCTCTAGACTG -ACGGAATCCGAACTCTCTTCGGTA -ACGGAATCCGAACTCTCTTGCCTA -ACGGAATCCGAACTCTCTCCACTA -ACGGAATCCGAACTCTCTGGAGTA -ACGGAATCCGAACTCTCTTCGTCT -ACGGAATCCGAACTCTCTTGCACT -ACGGAATCCGAACTCTCTCTGACT -ACGGAATCCGAACTCTCTCAACCT -ACGGAATCCGAACTCTCTGCTACT -ACGGAATCCGAACTCTCTGGATCT -ACGGAATCCGAACTCTCTAAGGCT -ACGGAATCCGAACTCTCTTCAACC -ACGGAATCCGAACTCTCTTGTTCC -ACGGAATCCGAACTCTCTATTCCC -ACGGAATCCGAACTCTCTTTCTCG -ACGGAATCCGAACTCTCTTAGACG -ACGGAATCCGAACTCTCTGTAACG -ACGGAATCCGAACTCTCTACTTCG -ACGGAATCCGAACTCTCTTACGCA -ACGGAATCCGAACTCTCTCTTGCA -ACGGAATCCGAACTCTCTCGAACA -ACGGAATCCGAACTCTCTCAGTCA -ACGGAATCCGAACTCTCTGATCCA -ACGGAATCCGAACTCTCTACGACA -ACGGAATCCGAACTCTCTAGCTCA -ACGGAATCCGAACTCTCTTCACGT -ACGGAATCCGAACTCTCTCGTAGT -ACGGAATCCGAACTCTCTGTCAGT -ACGGAATCCGAACTCTCTGAAGGT -ACGGAATCCGAACTCTCTAACCGT -ACGGAATCCGAACTCTCTTTGTGC -ACGGAATCCGAACTCTCTCTAAGC -ACGGAATCCGAACTCTCTACTAGC -ACGGAATCCGAACTCTCTAGATGC -ACGGAATCCGAACTCTCTTGAAGG -ACGGAATCCGAACTCTCTCAATGG -ACGGAATCCGAACTCTCTATGAGG -ACGGAATCCGAACTCTCTAATGGG -ACGGAATCCGAACTCTCTTCCTGA -ACGGAATCCGAACTCTCTTAGCGA -ACGGAATCCGAACTCTCTCACAGA -ACGGAATCCGAACTCTCTGCAAGA -ACGGAATCCGAACTCTCTGGTTGA -ACGGAATCCGAACTCTCTTCCGAT -ACGGAATCCGAACTCTCTTGGCAT -ACGGAATCCGAACTCTCTCGAGAT -ACGGAATCCGAACTCTCTTACCAC -ACGGAATCCGAACTCTCTCAGAAC -ACGGAATCCGAACTCTCTGTCTAC -ACGGAATCCGAACTCTCTACGTAC -ACGGAATCCGAACTCTCTAGTGAC -ACGGAATCCGAACTCTCTCTGTAG -ACGGAATCCGAACTCTCTCCTAAG -ACGGAATCCGAACTCTCTGTTCAG -ACGGAATCCGAACTCTCTGCATAG -ACGGAATCCGAACTCTCTGACAAG -ACGGAATCCGAACTCTCTAAGCAG -ACGGAATCCGAACTCTCTCGTCAA -ACGGAATCCGAACTCTCTGCTGAA -ACGGAATCCGAACTCTCTAGTACG -ACGGAATCCGAACTCTCTATCCGA -ACGGAATCCGAACTCTCTATGGGA -ACGGAATCCGAACTCTCTGTGCAA -ACGGAATCCGAACTCTCTGAGGAA -ACGGAATCCGAACTCTCTCAGGTA -ACGGAATCCGAACTCTCTGACTCT -ACGGAATCCGAACTCTCTAGTCCT -ACGGAATCCGAACTCTCTTAAGCC -ACGGAATCCGAACTCTCTATAGCC -ACGGAATCCGAACTCTCTTAACCG -ACGGAATCCGAACTCTCTATGCCA -ACGGAATCCGAAATCTGGGGAAAC -ACGGAATCCGAAATCTGGAACACC -ACGGAATCCGAAATCTGGATCGAG -ACGGAATCCGAAATCTGGCTCCTT -ACGGAATCCGAAATCTGGCCTGTT -ACGGAATCCGAAATCTGGCGGTTT -ACGGAATCCGAAATCTGGGTGGTT -ACGGAATCCGAAATCTGGGCCTTT -ACGGAATCCGAAATCTGGGGTCTT -ACGGAATCCGAAATCTGGACGCTT -ACGGAATCCGAAATCTGGAGCGTT -ACGGAATCCGAAATCTGGTTCGTC -ACGGAATCCGAAATCTGGTCTCTC -ACGGAATCCGAAATCTGGTGGATC -ACGGAATCCGAAATCTGGCACTTC -ACGGAATCCGAAATCTGGGTACTC -ACGGAATCCGAAATCTGGGATGTC -ACGGAATCCGAAATCTGGACAGTC -ACGGAATCCGAAATCTGGTTGCTG -ACGGAATCCGAAATCTGGTCCATG -ACGGAATCCGAAATCTGGTGTGTG -ACGGAATCCGAAATCTGGCTAGTG -ACGGAATCCGAAATCTGGCATCTG -ACGGAATCCGAAATCTGGGAGTTG -ACGGAATCCGAAATCTGGAGACTG -ACGGAATCCGAAATCTGGTCGGTA -ACGGAATCCGAAATCTGGTGCCTA -ACGGAATCCGAAATCTGGCCACTA -ACGGAATCCGAAATCTGGGGAGTA -ACGGAATCCGAAATCTGGTCGTCT -ACGGAATCCGAAATCTGGTGCACT -ACGGAATCCGAAATCTGGCTGACT -ACGGAATCCGAAATCTGGCAACCT -ACGGAATCCGAAATCTGGGCTACT -ACGGAATCCGAAATCTGGGGATCT -ACGGAATCCGAAATCTGGAAGGCT -ACGGAATCCGAAATCTGGTCAACC -ACGGAATCCGAAATCTGGTGTTCC -ACGGAATCCGAAATCTGGATTCCC -ACGGAATCCGAAATCTGGTTCTCG -ACGGAATCCGAAATCTGGTAGACG -ACGGAATCCGAAATCTGGGTAACG -ACGGAATCCGAAATCTGGACTTCG -ACGGAATCCGAAATCTGGTACGCA -ACGGAATCCGAAATCTGGCTTGCA -ACGGAATCCGAAATCTGGCGAACA -ACGGAATCCGAAATCTGGCAGTCA -ACGGAATCCGAAATCTGGGATCCA -ACGGAATCCGAAATCTGGACGACA -ACGGAATCCGAAATCTGGAGCTCA -ACGGAATCCGAAATCTGGTCACGT -ACGGAATCCGAAATCTGGCGTAGT -ACGGAATCCGAAATCTGGGTCAGT -ACGGAATCCGAAATCTGGGAAGGT -ACGGAATCCGAAATCTGGAACCGT -ACGGAATCCGAAATCTGGTTGTGC -ACGGAATCCGAAATCTGGCTAAGC -ACGGAATCCGAAATCTGGACTAGC -ACGGAATCCGAAATCTGGAGATGC -ACGGAATCCGAAATCTGGTGAAGG -ACGGAATCCGAAATCTGGCAATGG -ACGGAATCCGAAATCTGGATGAGG -ACGGAATCCGAAATCTGGAATGGG -ACGGAATCCGAAATCTGGTCCTGA -ACGGAATCCGAAATCTGGTAGCGA -ACGGAATCCGAAATCTGGCACAGA -ACGGAATCCGAAATCTGGGCAAGA -ACGGAATCCGAAATCTGGGGTTGA -ACGGAATCCGAAATCTGGTCCGAT -ACGGAATCCGAAATCTGGTGGCAT -ACGGAATCCGAAATCTGGCGAGAT -ACGGAATCCGAAATCTGGTACCAC -ACGGAATCCGAAATCTGGCAGAAC -ACGGAATCCGAAATCTGGGTCTAC -ACGGAATCCGAAATCTGGACGTAC -ACGGAATCCGAAATCTGGAGTGAC -ACGGAATCCGAAATCTGGCTGTAG -ACGGAATCCGAAATCTGGCCTAAG -ACGGAATCCGAAATCTGGGTTCAG -ACGGAATCCGAAATCTGGGCATAG -ACGGAATCCGAAATCTGGGACAAG -ACGGAATCCGAAATCTGGAAGCAG -ACGGAATCCGAAATCTGGCGTCAA -ACGGAATCCGAAATCTGGGCTGAA -ACGGAATCCGAAATCTGGAGTACG -ACGGAATCCGAAATCTGGATCCGA -ACGGAATCCGAAATCTGGATGGGA -ACGGAATCCGAAATCTGGGTGCAA -ACGGAATCCGAAATCTGGGAGGAA -ACGGAATCCGAAATCTGGCAGGTA -ACGGAATCCGAAATCTGGGACTCT -ACGGAATCCGAAATCTGGAGTCCT -ACGGAATCCGAAATCTGGTAAGCC -ACGGAATCCGAAATCTGGATAGCC -ACGGAATCCGAAATCTGGTAACCG -ACGGAATCCGAAATCTGGATGCCA -ACGGAATCCGAATTCCACGGAAAC -ACGGAATCCGAATTCCACAACACC -ACGGAATCCGAATTCCACATCGAG -ACGGAATCCGAATTCCACCTCCTT -ACGGAATCCGAATTCCACCCTGTT -ACGGAATCCGAATTCCACCGGTTT -ACGGAATCCGAATTCCACGTGGTT -ACGGAATCCGAATTCCACGCCTTT -ACGGAATCCGAATTCCACGGTCTT -ACGGAATCCGAATTCCACACGCTT -ACGGAATCCGAATTCCACAGCGTT -ACGGAATCCGAATTCCACTTCGTC -ACGGAATCCGAATTCCACTCTCTC -ACGGAATCCGAATTCCACTGGATC -ACGGAATCCGAATTCCACCACTTC -ACGGAATCCGAATTCCACGTACTC -ACGGAATCCGAATTCCACGATGTC -ACGGAATCCGAATTCCACACAGTC -ACGGAATCCGAATTCCACTTGCTG -ACGGAATCCGAATTCCACTCCATG -ACGGAATCCGAATTCCACTGTGTG -ACGGAATCCGAATTCCACCTAGTG -ACGGAATCCGAATTCCACCATCTG -ACGGAATCCGAATTCCACGAGTTG -ACGGAATCCGAATTCCACAGACTG -ACGGAATCCGAATTCCACTCGGTA -ACGGAATCCGAATTCCACTGCCTA -ACGGAATCCGAATTCCACCCACTA -ACGGAATCCGAATTCCACGGAGTA -ACGGAATCCGAATTCCACTCGTCT -ACGGAATCCGAATTCCACTGCACT -ACGGAATCCGAATTCCACCTGACT -ACGGAATCCGAATTCCACCAACCT -ACGGAATCCGAATTCCACGCTACT -ACGGAATCCGAATTCCACGGATCT -ACGGAATCCGAATTCCACAAGGCT -ACGGAATCCGAATTCCACTCAACC -ACGGAATCCGAATTCCACTGTTCC -ACGGAATCCGAATTCCACATTCCC -ACGGAATCCGAATTCCACTTCTCG -ACGGAATCCGAATTCCACTAGACG -ACGGAATCCGAATTCCACGTAACG -ACGGAATCCGAATTCCACACTTCG -ACGGAATCCGAATTCCACTACGCA -ACGGAATCCGAATTCCACCTTGCA -ACGGAATCCGAATTCCACCGAACA -ACGGAATCCGAATTCCACCAGTCA -ACGGAATCCGAATTCCACGATCCA -ACGGAATCCGAATTCCACACGACA -ACGGAATCCGAATTCCACAGCTCA -ACGGAATCCGAATTCCACTCACGT -ACGGAATCCGAATTCCACCGTAGT -ACGGAATCCGAATTCCACGTCAGT -ACGGAATCCGAATTCCACGAAGGT -ACGGAATCCGAATTCCACAACCGT -ACGGAATCCGAATTCCACTTGTGC -ACGGAATCCGAATTCCACCTAAGC -ACGGAATCCGAATTCCACACTAGC -ACGGAATCCGAATTCCACAGATGC -ACGGAATCCGAATTCCACTGAAGG -ACGGAATCCGAATTCCACCAATGG -ACGGAATCCGAATTCCACATGAGG -ACGGAATCCGAATTCCACAATGGG -ACGGAATCCGAATTCCACTCCTGA -ACGGAATCCGAATTCCACTAGCGA -ACGGAATCCGAATTCCACCACAGA -ACGGAATCCGAATTCCACGCAAGA -ACGGAATCCGAATTCCACGGTTGA -ACGGAATCCGAATTCCACTCCGAT -ACGGAATCCGAATTCCACTGGCAT -ACGGAATCCGAATTCCACCGAGAT -ACGGAATCCGAATTCCACTACCAC -ACGGAATCCGAATTCCACCAGAAC -ACGGAATCCGAATTCCACGTCTAC -ACGGAATCCGAATTCCACACGTAC -ACGGAATCCGAATTCCACAGTGAC -ACGGAATCCGAATTCCACCTGTAG -ACGGAATCCGAATTCCACCCTAAG -ACGGAATCCGAATTCCACGTTCAG -ACGGAATCCGAATTCCACGCATAG -ACGGAATCCGAATTCCACGACAAG -ACGGAATCCGAATTCCACAAGCAG -ACGGAATCCGAATTCCACCGTCAA -ACGGAATCCGAATTCCACGCTGAA -ACGGAATCCGAATTCCACAGTACG -ACGGAATCCGAATTCCACATCCGA -ACGGAATCCGAATTCCACATGGGA -ACGGAATCCGAATTCCACGTGCAA -ACGGAATCCGAATTCCACGAGGAA -ACGGAATCCGAATTCCACCAGGTA -ACGGAATCCGAATTCCACGACTCT -ACGGAATCCGAATTCCACAGTCCT -ACGGAATCCGAATTCCACTAAGCC -ACGGAATCCGAATTCCACATAGCC -ACGGAATCCGAATTCCACTAACCG -ACGGAATCCGAATTCCACATGCCA -ACGGAATCCGAACTCGTAGGAAAC -ACGGAATCCGAACTCGTAAACACC -ACGGAATCCGAACTCGTAATCGAG -ACGGAATCCGAACTCGTACTCCTT -ACGGAATCCGAACTCGTACCTGTT -ACGGAATCCGAACTCGTACGGTTT -ACGGAATCCGAACTCGTAGTGGTT -ACGGAATCCGAACTCGTAGCCTTT -ACGGAATCCGAACTCGTAGGTCTT -ACGGAATCCGAACTCGTAACGCTT -ACGGAATCCGAACTCGTAAGCGTT -ACGGAATCCGAACTCGTATTCGTC -ACGGAATCCGAACTCGTATCTCTC -ACGGAATCCGAACTCGTATGGATC -ACGGAATCCGAACTCGTACACTTC -ACGGAATCCGAACTCGTAGTACTC -ACGGAATCCGAACTCGTAGATGTC -ACGGAATCCGAACTCGTAACAGTC -ACGGAATCCGAACTCGTATTGCTG -ACGGAATCCGAACTCGTATCCATG -ACGGAATCCGAACTCGTATGTGTG -ACGGAATCCGAACTCGTACTAGTG -ACGGAATCCGAACTCGTACATCTG -ACGGAATCCGAACTCGTAGAGTTG -ACGGAATCCGAACTCGTAAGACTG -ACGGAATCCGAACTCGTATCGGTA -ACGGAATCCGAACTCGTATGCCTA -ACGGAATCCGAACTCGTACCACTA -ACGGAATCCGAACTCGTAGGAGTA -ACGGAATCCGAACTCGTATCGTCT -ACGGAATCCGAACTCGTATGCACT -ACGGAATCCGAACTCGTACTGACT -ACGGAATCCGAACTCGTACAACCT -ACGGAATCCGAACTCGTAGCTACT -ACGGAATCCGAACTCGTAGGATCT -ACGGAATCCGAACTCGTAAAGGCT -ACGGAATCCGAACTCGTATCAACC -ACGGAATCCGAACTCGTATGTTCC -ACGGAATCCGAACTCGTAATTCCC -ACGGAATCCGAACTCGTATTCTCG -ACGGAATCCGAACTCGTATAGACG -ACGGAATCCGAACTCGTAGTAACG -ACGGAATCCGAACTCGTAACTTCG -ACGGAATCCGAACTCGTATACGCA -ACGGAATCCGAACTCGTACTTGCA -ACGGAATCCGAACTCGTACGAACA -ACGGAATCCGAACTCGTACAGTCA -ACGGAATCCGAACTCGTAGATCCA -ACGGAATCCGAACTCGTAACGACA -ACGGAATCCGAACTCGTAAGCTCA -ACGGAATCCGAACTCGTATCACGT -ACGGAATCCGAACTCGTACGTAGT -ACGGAATCCGAACTCGTAGTCAGT -ACGGAATCCGAACTCGTAGAAGGT -ACGGAATCCGAACTCGTAAACCGT -ACGGAATCCGAACTCGTATTGTGC -ACGGAATCCGAACTCGTACTAAGC -ACGGAATCCGAACTCGTAACTAGC -ACGGAATCCGAACTCGTAAGATGC -ACGGAATCCGAACTCGTATGAAGG -ACGGAATCCGAACTCGTACAATGG -ACGGAATCCGAACTCGTAATGAGG -ACGGAATCCGAACTCGTAAATGGG -ACGGAATCCGAACTCGTATCCTGA -ACGGAATCCGAACTCGTATAGCGA -ACGGAATCCGAACTCGTACACAGA -ACGGAATCCGAACTCGTAGCAAGA -ACGGAATCCGAACTCGTAGGTTGA -ACGGAATCCGAACTCGTATCCGAT -ACGGAATCCGAACTCGTATGGCAT -ACGGAATCCGAACTCGTACGAGAT -ACGGAATCCGAACTCGTATACCAC -ACGGAATCCGAACTCGTACAGAAC -ACGGAATCCGAACTCGTAGTCTAC -ACGGAATCCGAACTCGTAACGTAC -ACGGAATCCGAACTCGTAAGTGAC -ACGGAATCCGAACTCGTACTGTAG -ACGGAATCCGAACTCGTACCTAAG -ACGGAATCCGAACTCGTAGTTCAG -ACGGAATCCGAACTCGTAGCATAG -ACGGAATCCGAACTCGTAGACAAG -ACGGAATCCGAACTCGTAAAGCAG -ACGGAATCCGAACTCGTACGTCAA -ACGGAATCCGAACTCGTAGCTGAA -ACGGAATCCGAACTCGTAAGTACG -ACGGAATCCGAACTCGTAATCCGA -ACGGAATCCGAACTCGTAATGGGA -ACGGAATCCGAACTCGTAGTGCAA -ACGGAATCCGAACTCGTAGAGGAA -ACGGAATCCGAACTCGTACAGGTA -ACGGAATCCGAACTCGTAGACTCT -ACGGAATCCGAACTCGTAAGTCCT -ACGGAATCCGAACTCGTATAAGCC -ACGGAATCCGAACTCGTAATAGCC -ACGGAATCCGAACTCGTATAACCG -ACGGAATCCGAACTCGTAATGCCA -ACGGAATCCGAAGTCGATGGAAAC -ACGGAATCCGAAGTCGATAACACC -ACGGAATCCGAAGTCGATATCGAG -ACGGAATCCGAAGTCGATCTCCTT -ACGGAATCCGAAGTCGATCCTGTT -ACGGAATCCGAAGTCGATCGGTTT -ACGGAATCCGAAGTCGATGTGGTT -ACGGAATCCGAAGTCGATGCCTTT -ACGGAATCCGAAGTCGATGGTCTT -ACGGAATCCGAAGTCGATACGCTT -ACGGAATCCGAAGTCGATAGCGTT -ACGGAATCCGAAGTCGATTTCGTC -ACGGAATCCGAAGTCGATTCTCTC -ACGGAATCCGAAGTCGATTGGATC -ACGGAATCCGAAGTCGATCACTTC -ACGGAATCCGAAGTCGATGTACTC -ACGGAATCCGAAGTCGATGATGTC -ACGGAATCCGAAGTCGATACAGTC -ACGGAATCCGAAGTCGATTTGCTG -ACGGAATCCGAAGTCGATTCCATG -ACGGAATCCGAAGTCGATTGTGTG -ACGGAATCCGAAGTCGATCTAGTG -ACGGAATCCGAAGTCGATCATCTG -ACGGAATCCGAAGTCGATGAGTTG -ACGGAATCCGAAGTCGATAGACTG -ACGGAATCCGAAGTCGATTCGGTA -ACGGAATCCGAAGTCGATTGCCTA -ACGGAATCCGAAGTCGATCCACTA -ACGGAATCCGAAGTCGATGGAGTA -ACGGAATCCGAAGTCGATTCGTCT -ACGGAATCCGAAGTCGATTGCACT -ACGGAATCCGAAGTCGATCTGACT -ACGGAATCCGAAGTCGATCAACCT -ACGGAATCCGAAGTCGATGCTACT -ACGGAATCCGAAGTCGATGGATCT -ACGGAATCCGAAGTCGATAAGGCT -ACGGAATCCGAAGTCGATTCAACC -ACGGAATCCGAAGTCGATTGTTCC -ACGGAATCCGAAGTCGATATTCCC -ACGGAATCCGAAGTCGATTTCTCG -ACGGAATCCGAAGTCGATTAGACG -ACGGAATCCGAAGTCGATGTAACG -ACGGAATCCGAAGTCGATACTTCG -ACGGAATCCGAAGTCGATTACGCA -ACGGAATCCGAAGTCGATCTTGCA -ACGGAATCCGAAGTCGATCGAACA -ACGGAATCCGAAGTCGATCAGTCA -ACGGAATCCGAAGTCGATGATCCA -ACGGAATCCGAAGTCGATACGACA -ACGGAATCCGAAGTCGATAGCTCA -ACGGAATCCGAAGTCGATTCACGT -ACGGAATCCGAAGTCGATCGTAGT -ACGGAATCCGAAGTCGATGTCAGT -ACGGAATCCGAAGTCGATGAAGGT -ACGGAATCCGAAGTCGATAACCGT -ACGGAATCCGAAGTCGATTTGTGC -ACGGAATCCGAAGTCGATCTAAGC -ACGGAATCCGAAGTCGATACTAGC -ACGGAATCCGAAGTCGATAGATGC -ACGGAATCCGAAGTCGATTGAAGG -ACGGAATCCGAAGTCGATCAATGG -ACGGAATCCGAAGTCGATATGAGG -ACGGAATCCGAAGTCGATAATGGG -ACGGAATCCGAAGTCGATTCCTGA -ACGGAATCCGAAGTCGATTAGCGA -ACGGAATCCGAAGTCGATCACAGA -ACGGAATCCGAAGTCGATGCAAGA -ACGGAATCCGAAGTCGATGGTTGA -ACGGAATCCGAAGTCGATTCCGAT -ACGGAATCCGAAGTCGATTGGCAT -ACGGAATCCGAAGTCGATCGAGAT -ACGGAATCCGAAGTCGATTACCAC -ACGGAATCCGAAGTCGATCAGAAC -ACGGAATCCGAAGTCGATGTCTAC -ACGGAATCCGAAGTCGATACGTAC -ACGGAATCCGAAGTCGATAGTGAC -ACGGAATCCGAAGTCGATCTGTAG -ACGGAATCCGAAGTCGATCCTAAG -ACGGAATCCGAAGTCGATGTTCAG -ACGGAATCCGAAGTCGATGCATAG -ACGGAATCCGAAGTCGATGACAAG -ACGGAATCCGAAGTCGATAAGCAG -ACGGAATCCGAAGTCGATCGTCAA -ACGGAATCCGAAGTCGATGCTGAA -ACGGAATCCGAAGTCGATAGTACG -ACGGAATCCGAAGTCGATATCCGA -ACGGAATCCGAAGTCGATATGGGA -ACGGAATCCGAAGTCGATGTGCAA -ACGGAATCCGAAGTCGATGAGGAA -ACGGAATCCGAAGTCGATCAGGTA -ACGGAATCCGAAGTCGATGACTCT -ACGGAATCCGAAGTCGATAGTCCT -ACGGAATCCGAAGTCGATTAAGCC -ACGGAATCCGAAGTCGATATAGCC -ACGGAATCCGAAGTCGATTAACCG -ACGGAATCCGAAGTCGATATGCCA -ACGGAATCCGAAGTCACAGGAAAC -ACGGAATCCGAAGTCACAAACACC -ACGGAATCCGAAGTCACAATCGAG -ACGGAATCCGAAGTCACACTCCTT -ACGGAATCCGAAGTCACACCTGTT -ACGGAATCCGAAGTCACACGGTTT -ACGGAATCCGAAGTCACAGTGGTT -ACGGAATCCGAAGTCACAGCCTTT -ACGGAATCCGAAGTCACAGGTCTT -ACGGAATCCGAAGTCACAACGCTT -ACGGAATCCGAAGTCACAAGCGTT -ACGGAATCCGAAGTCACATTCGTC -ACGGAATCCGAAGTCACATCTCTC -ACGGAATCCGAAGTCACATGGATC -ACGGAATCCGAAGTCACACACTTC -ACGGAATCCGAAGTCACAGTACTC -ACGGAATCCGAAGTCACAGATGTC -ACGGAATCCGAAGTCACAACAGTC -ACGGAATCCGAAGTCACATTGCTG -ACGGAATCCGAAGTCACATCCATG -ACGGAATCCGAAGTCACATGTGTG -ACGGAATCCGAAGTCACACTAGTG -ACGGAATCCGAAGTCACACATCTG -ACGGAATCCGAAGTCACAGAGTTG -ACGGAATCCGAAGTCACAAGACTG -ACGGAATCCGAAGTCACATCGGTA -ACGGAATCCGAAGTCACATGCCTA -ACGGAATCCGAAGTCACACCACTA -ACGGAATCCGAAGTCACAGGAGTA -ACGGAATCCGAAGTCACATCGTCT -ACGGAATCCGAAGTCACATGCACT -ACGGAATCCGAAGTCACACTGACT -ACGGAATCCGAAGTCACACAACCT -ACGGAATCCGAAGTCACAGCTACT -ACGGAATCCGAAGTCACAGGATCT -ACGGAATCCGAAGTCACAAAGGCT -ACGGAATCCGAAGTCACATCAACC -ACGGAATCCGAAGTCACATGTTCC -ACGGAATCCGAAGTCACAATTCCC -ACGGAATCCGAAGTCACATTCTCG -ACGGAATCCGAAGTCACATAGACG -ACGGAATCCGAAGTCACAGTAACG -ACGGAATCCGAAGTCACAACTTCG -ACGGAATCCGAAGTCACATACGCA -ACGGAATCCGAAGTCACACTTGCA -ACGGAATCCGAAGTCACACGAACA -ACGGAATCCGAAGTCACACAGTCA -ACGGAATCCGAAGTCACAGATCCA -ACGGAATCCGAAGTCACAACGACA -ACGGAATCCGAAGTCACAAGCTCA -ACGGAATCCGAAGTCACATCACGT -ACGGAATCCGAAGTCACACGTAGT -ACGGAATCCGAAGTCACAGTCAGT -ACGGAATCCGAAGTCACAGAAGGT -ACGGAATCCGAAGTCACAAACCGT -ACGGAATCCGAAGTCACATTGTGC -ACGGAATCCGAAGTCACACTAAGC -ACGGAATCCGAAGTCACAACTAGC -ACGGAATCCGAAGTCACAAGATGC -ACGGAATCCGAAGTCACATGAAGG -ACGGAATCCGAAGTCACACAATGG -ACGGAATCCGAAGTCACAATGAGG -ACGGAATCCGAAGTCACAAATGGG -ACGGAATCCGAAGTCACATCCTGA -ACGGAATCCGAAGTCACATAGCGA -ACGGAATCCGAAGTCACACACAGA -ACGGAATCCGAAGTCACAGCAAGA -ACGGAATCCGAAGTCACAGGTTGA -ACGGAATCCGAAGTCACATCCGAT -ACGGAATCCGAAGTCACATGGCAT -ACGGAATCCGAAGTCACACGAGAT -ACGGAATCCGAAGTCACATACCAC -ACGGAATCCGAAGTCACACAGAAC -ACGGAATCCGAAGTCACAGTCTAC -ACGGAATCCGAAGTCACAACGTAC -ACGGAATCCGAAGTCACAAGTGAC -ACGGAATCCGAAGTCACACTGTAG -ACGGAATCCGAAGTCACACCTAAG -ACGGAATCCGAAGTCACAGTTCAG -ACGGAATCCGAAGTCACAGCATAG -ACGGAATCCGAAGTCACAGACAAG -ACGGAATCCGAAGTCACAAAGCAG -ACGGAATCCGAAGTCACACGTCAA -ACGGAATCCGAAGTCACAGCTGAA -ACGGAATCCGAAGTCACAAGTACG -ACGGAATCCGAAGTCACAATCCGA -ACGGAATCCGAAGTCACAATGGGA -ACGGAATCCGAAGTCACAGTGCAA -ACGGAATCCGAAGTCACAGAGGAA -ACGGAATCCGAAGTCACACAGGTA -ACGGAATCCGAAGTCACAGACTCT -ACGGAATCCGAAGTCACAAGTCCT -ACGGAATCCGAAGTCACATAAGCC -ACGGAATCCGAAGTCACAATAGCC -ACGGAATCCGAAGTCACATAACCG -ACGGAATCCGAAGTCACAATGCCA -ACGGAATCCGAACTGTTGGGAAAC -ACGGAATCCGAACTGTTGAACACC -ACGGAATCCGAACTGTTGATCGAG -ACGGAATCCGAACTGTTGCTCCTT -ACGGAATCCGAACTGTTGCCTGTT -ACGGAATCCGAACTGTTGCGGTTT -ACGGAATCCGAACTGTTGGTGGTT -ACGGAATCCGAACTGTTGGCCTTT -ACGGAATCCGAACTGTTGGGTCTT -ACGGAATCCGAACTGTTGACGCTT -ACGGAATCCGAACTGTTGAGCGTT -ACGGAATCCGAACTGTTGTTCGTC -ACGGAATCCGAACTGTTGTCTCTC -ACGGAATCCGAACTGTTGTGGATC -ACGGAATCCGAACTGTTGCACTTC -ACGGAATCCGAACTGTTGGTACTC -ACGGAATCCGAACTGTTGGATGTC -ACGGAATCCGAACTGTTGACAGTC -ACGGAATCCGAACTGTTGTTGCTG -ACGGAATCCGAACTGTTGTCCATG -ACGGAATCCGAACTGTTGTGTGTG -ACGGAATCCGAACTGTTGCTAGTG -ACGGAATCCGAACTGTTGCATCTG -ACGGAATCCGAACTGTTGGAGTTG -ACGGAATCCGAACTGTTGAGACTG -ACGGAATCCGAACTGTTGTCGGTA -ACGGAATCCGAACTGTTGTGCCTA -ACGGAATCCGAACTGTTGCCACTA -ACGGAATCCGAACTGTTGGGAGTA -ACGGAATCCGAACTGTTGTCGTCT -ACGGAATCCGAACTGTTGTGCACT -ACGGAATCCGAACTGTTGCTGACT -ACGGAATCCGAACTGTTGCAACCT -ACGGAATCCGAACTGTTGGCTACT -ACGGAATCCGAACTGTTGGGATCT -ACGGAATCCGAACTGTTGAAGGCT -ACGGAATCCGAACTGTTGTCAACC -ACGGAATCCGAACTGTTGTGTTCC -ACGGAATCCGAACTGTTGATTCCC -ACGGAATCCGAACTGTTGTTCTCG -ACGGAATCCGAACTGTTGTAGACG -ACGGAATCCGAACTGTTGGTAACG -ACGGAATCCGAACTGTTGACTTCG -ACGGAATCCGAACTGTTGTACGCA -ACGGAATCCGAACTGTTGCTTGCA -ACGGAATCCGAACTGTTGCGAACA -ACGGAATCCGAACTGTTGCAGTCA -ACGGAATCCGAACTGTTGGATCCA -ACGGAATCCGAACTGTTGACGACA -ACGGAATCCGAACTGTTGAGCTCA -ACGGAATCCGAACTGTTGTCACGT -ACGGAATCCGAACTGTTGCGTAGT -ACGGAATCCGAACTGTTGGTCAGT -ACGGAATCCGAACTGTTGGAAGGT -ACGGAATCCGAACTGTTGAACCGT -ACGGAATCCGAACTGTTGTTGTGC -ACGGAATCCGAACTGTTGCTAAGC -ACGGAATCCGAACTGTTGACTAGC -ACGGAATCCGAACTGTTGAGATGC -ACGGAATCCGAACTGTTGTGAAGG -ACGGAATCCGAACTGTTGCAATGG -ACGGAATCCGAACTGTTGATGAGG -ACGGAATCCGAACTGTTGAATGGG -ACGGAATCCGAACTGTTGTCCTGA -ACGGAATCCGAACTGTTGTAGCGA -ACGGAATCCGAACTGTTGCACAGA -ACGGAATCCGAACTGTTGGCAAGA -ACGGAATCCGAACTGTTGGGTTGA -ACGGAATCCGAACTGTTGTCCGAT -ACGGAATCCGAACTGTTGTGGCAT -ACGGAATCCGAACTGTTGCGAGAT -ACGGAATCCGAACTGTTGTACCAC -ACGGAATCCGAACTGTTGCAGAAC -ACGGAATCCGAACTGTTGGTCTAC -ACGGAATCCGAACTGTTGACGTAC -ACGGAATCCGAACTGTTGAGTGAC -ACGGAATCCGAACTGTTGCTGTAG -ACGGAATCCGAACTGTTGCCTAAG -ACGGAATCCGAACTGTTGGTTCAG -ACGGAATCCGAACTGTTGGCATAG -ACGGAATCCGAACTGTTGGACAAG -ACGGAATCCGAACTGTTGAAGCAG -ACGGAATCCGAACTGTTGCGTCAA -ACGGAATCCGAACTGTTGGCTGAA -ACGGAATCCGAACTGTTGAGTACG -ACGGAATCCGAACTGTTGATCCGA -ACGGAATCCGAACTGTTGATGGGA -ACGGAATCCGAACTGTTGGTGCAA -ACGGAATCCGAACTGTTGGAGGAA -ACGGAATCCGAACTGTTGCAGGTA -ACGGAATCCGAACTGTTGGACTCT -ACGGAATCCGAACTGTTGAGTCCT -ACGGAATCCGAACTGTTGTAAGCC -ACGGAATCCGAACTGTTGATAGCC -ACGGAATCCGAACTGTTGTAACCG -ACGGAATCCGAACTGTTGATGCCA -ACGGAATCCGAAATGTCCGGAAAC -ACGGAATCCGAAATGTCCAACACC -ACGGAATCCGAAATGTCCATCGAG -ACGGAATCCGAAATGTCCCTCCTT -ACGGAATCCGAAATGTCCCCTGTT -ACGGAATCCGAAATGTCCCGGTTT -ACGGAATCCGAAATGTCCGTGGTT -ACGGAATCCGAAATGTCCGCCTTT -ACGGAATCCGAAATGTCCGGTCTT -ACGGAATCCGAAATGTCCACGCTT -ACGGAATCCGAAATGTCCAGCGTT -ACGGAATCCGAAATGTCCTTCGTC -ACGGAATCCGAAATGTCCTCTCTC -ACGGAATCCGAAATGTCCTGGATC -ACGGAATCCGAAATGTCCCACTTC -ACGGAATCCGAAATGTCCGTACTC -ACGGAATCCGAAATGTCCGATGTC -ACGGAATCCGAAATGTCCACAGTC -ACGGAATCCGAAATGTCCTTGCTG -ACGGAATCCGAAATGTCCTCCATG -ACGGAATCCGAAATGTCCTGTGTG -ACGGAATCCGAAATGTCCCTAGTG -ACGGAATCCGAAATGTCCCATCTG -ACGGAATCCGAAATGTCCGAGTTG -ACGGAATCCGAAATGTCCAGACTG -ACGGAATCCGAAATGTCCTCGGTA -ACGGAATCCGAAATGTCCTGCCTA -ACGGAATCCGAAATGTCCCCACTA -ACGGAATCCGAAATGTCCGGAGTA -ACGGAATCCGAAATGTCCTCGTCT -ACGGAATCCGAAATGTCCTGCACT -ACGGAATCCGAAATGTCCCTGACT -ACGGAATCCGAAATGTCCCAACCT -ACGGAATCCGAAATGTCCGCTACT -ACGGAATCCGAAATGTCCGGATCT -ACGGAATCCGAAATGTCCAAGGCT -ACGGAATCCGAAATGTCCTCAACC -ACGGAATCCGAAATGTCCTGTTCC -ACGGAATCCGAAATGTCCATTCCC -ACGGAATCCGAAATGTCCTTCTCG -ACGGAATCCGAAATGTCCTAGACG -ACGGAATCCGAAATGTCCGTAACG -ACGGAATCCGAAATGTCCACTTCG -ACGGAATCCGAAATGTCCTACGCA -ACGGAATCCGAAATGTCCCTTGCA -ACGGAATCCGAAATGTCCCGAACA -ACGGAATCCGAAATGTCCCAGTCA -ACGGAATCCGAAATGTCCGATCCA -ACGGAATCCGAAATGTCCACGACA -ACGGAATCCGAAATGTCCAGCTCA -ACGGAATCCGAAATGTCCTCACGT -ACGGAATCCGAAATGTCCCGTAGT -ACGGAATCCGAAATGTCCGTCAGT -ACGGAATCCGAAATGTCCGAAGGT -ACGGAATCCGAAATGTCCAACCGT -ACGGAATCCGAAATGTCCTTGTGC -ACGGAATCCGAAATGTCCCTAAGC -ACGGAATCCGAAATGTCCACTAGC -ACGGAATCCGAAATGTCCAGATGC -ACGGAATCCGAAATGTCCTGAAGG -ACGGAATCCGAAATGTCCCAATGG -ACGGAATCCGAAATGTCCATGAGG -ACGGAATCCGAAATGTCCAATGGG -ACGGAATCCGAAATGTCCTCCTGA -ACGGAATCCGAAATGTCCTAGCGA -ACGGAATCCGAAATGTCCCACAGA -ACGGAATCCGAAATGTCCGCAAGA -ACGGAATCCGAAATGTCCGGTTGA -ACGGAATCCGAAATGTCCTCCGAT -ACGGAATCCGAAATGTCCTGGCAT -ACGGAATCCGAAATGTCCCGAGAT -ACGGAATCCGAAATGTCCTACCAC -ACGGAATCCGAAATGTCCCAGAAC -ACGGAATCCGAAATGTCCGTCTAC -ACGGAATCCGAAATGTCCACGTAC -ACGGAATCCGAAATGTCCAGTGAC -ACGGAATCCGAAATGTCCCTGTAG -ACGGAATCCGAAATGTCCCCTAAG -ACGGAATCCGAAATGTCCGTTCAG -ACGGAATCCGAAATGTCCGCATAG -ACGGAATCCGAAATGTCCGACAAG -ACGGAATCCGAAATGTCCAAGCAG -ACGGAATCCGAAATGTCCCGTCAA -ACGGAATCCGAAATGTCCGCTGAA -ACGGAATCCGAAATGTCCAGTACG -ACGGAATCCGAAATGTCCATCCGA -ACGGAATCCGAAATGTCCATGGGA -ACGGAATCCGAAATGTCCGTGCAA -ACGGAATCCGAAATGTCCGAGGAA -ACGGAATCCGAAATGTCCCAGGTA -ACGGAATCCGAAATGTCCGACTCT -ACGGAATCCGAAATGTCCAGTCCT -ACGGAATCCGAAATGTCCTAAGCC -ACGGAATCCGAAATGTCCATAGCC -ACGGAATCCGAAATGTCCTAACCG -ACGGAATCCGAAATGTCCATGCCA -ACGGAATCCGAAGTGTGTGGAAAC -ACGGAATCCGAAGTGTGTAACACC -ACGGAATCCGAAGTGTGTATCGAG -ACGGAATCCGAAGTGTGTCTCCTT -ACGGAATCCGAAGTGTGTCCTGTT -ACGGAATCCGAAGTGTGTCGGTTT -ACGGAATCCGAAGTGTGTGTGGTT -ACGGAATCCGAAGTGTGTGCCTTT -ACGGAATCCGAAGTGTGTGGTCTT -ACGGAATCCGAAGTGTGTACGCTT -ACGGAATCCGAAGTGTGTAGCGTT -ACGGAATCCGAAGTGTGTTTCGTC -ACGGAATCCGAAGTGTGTTCTCTC -ACGGAATCCGAAGTGTGTTGGATC -ACGGAATCCGAAGTGTGTCACTTC -ACGGAATCCGAAGTGTGTGTACTC -ACGGAATCCGAAGTGTGTGATGTC -ACGGAATCCGAAGTGTGTACAGTC -ACGGAATCCGAAGTGTGTTTGCTG -ACGGAATCCGAAGTGTGTTCCATG -ACGGAATCCGAAGTGTGTTGTGTG -ACGGAATCCGAAGTGTGTCTAGTG -ACGGAATCCGAAGTGTGTCATCTG -ACGGAATCCGAAGTGTGTGAGTTG -ACGGAATCCGAAGTGTGTAGACTG -ACGGAATCCGAAGTGTGTTCGGTA -ACGGAATCCGAAGTGTGTTGCCTA -ACGGAATCCGAAGTGTGTCCACTA -ACGGAATCCGAAGTGTGTGGAGTA -ACGGAATCCGAAGTGTGTTCGTCT -ACGGAATCCGAAGTGTGTTGCACT -ACGGAATCCGAAGTGTGTCTGACT -ACGGAATCCGAAGTGTGTCAACCT -ACGGAATCCGAAGTGTGTGCTACT -ACGGAATCCGAAGTGTGTGGATCT -ACGGAATCCGAAGTGTGTAAGGCT -ACGGAATCCGAAGTGTGTTCAACC -ACGGAATCCGAAGTGTGTTGTTCC -ACGGAATCCGAAGTGTGTATTCCC -ACGGAATCCGAAGTGTGTTTCTCG -ACGGAATCCGAAGTGTGTTAGACG -ACGGAATCCGAAGTGTGTGTAACG -ACGGAATCCGAAGTGTGTACTTCG -ACGGAATCCGAAGTGTGTTACGCA -ACGGAATCCGAAGTGTGTCTTGCA -ACGGAATCCGAAGTGTGTCGAACA -ACGGAATCCGAAGTGTGTCAGTCA -ACGGAATCCGAAGTGTGTGATCCA -ACGGAATCCGAAGTGTGTACGACA -ACGGAATCCGAAGTGTGTAGCTCA -ACGGAATCCGAAGTGTGTTCACGT -ACGGAATCCGAAGTGTGTCGTAGT -ACGGAATCCGAAGTGTGTGTCAGT -ACGGAATCCGAAGTGTGTGAAGGT -ACGGAATCCGAAGTGTGTAACCGT -ACGGAATCCGAAGTGTGTTTGTGC -ACGGAATCCGAAGTGTGTCTAAGC -ACGGAATCCGAAGTGTGTACTAGC -ACGGAATCCGAAGTGTGTAGATGC -ACGGAATCCGAAGTGTGTTGAAGG -ACGGAATCCGAAGTGTGTCAATGG -ACGGAATCCGAAGTGTGTATGAGG -ACGGAATCCGAAGTGTGTAATGGG -ACGGAATCCGAAGTGTGTTCCTGA -ACGGAATCCGAAGTGTGTTAGCGA -ACGGAATCCGAAGTGTGTCACAGA -ACGGAATCCGAAGTGTGTGCAAGA -ACGGAATCCGAAGTGTGTGGTTGA -ACGGAATCCGAAGTGTGTTCCGAT -ACGGAATCCGAAGTGTGTTGGCAT -ACGGAATCCGAAGTGTGTCGAGAT -ACGGAATCCGAAGTGTGTTACCAC -ACGGAATCCGAAGTGTGTCAGAAC -ACGGAATCCGAAGTGTGTGTCTAC -ACGGAATCCGAAGTGTGTACGTAC -ACGGAATCCGAAGTGTGTAGTGAC -ACGGAATCCGAAGTGTGTCTGTAG -ACGGAATCCGAAGTGTGTCCTAAG -ACGGAATCCGAAGTGTGTGTTCAG -ACGGAATCCGAAGTGTGTGCATAG -ACGGAATCCGAAGTGTGTGACAAG -ACGGAATCCGAAGTGTGTAAGCAG -ACGGAATCCGAAGTGTGTCGTCAA -ACGGAATCCGAAGTGTGTGCTGAA -ACGGAATCCGAAGTGTGTAGTACG -ACGGAATCCGAAGTGTGTATCCGA -ACGGAATCCGAAGTGTGTATGGGA -ACGGAATCCGAAGTGTGTGTGCAA -ACGGAATCCGAAGTGTGTGAGGAA -ACGGAATCCGAAGTGTGTCAGGTA -ACGGAATCCGAAGTGTGTGACTCT -ACGGAATCCGAAGTGTGTAGTCCT -ACGGAATCCGAAGTGTGTTAAGCC -ACGGAATCCGAAGTGTGTATAGCC -ACGGAATCCGAAGTGTGTTAACCG -ACGGAATCCGAAGTGTGTATGCCA -ACGGAATCCGAAGTGCTAGGAAAC -ACGGAATCCGAAGTGCTAAACACC -ACGGAATCCGAAGTGCTAATCGAG -ACGGAATCCGAAGTGCTACTCCTT -ACGGAATCCGAAGTGCTACCTGTT -ACGGAATCCGAAGTGCTACGGTTT -ACGGAATCCGAAGTGCTAGTGGTT -ACGGAATCCGAAGTGCTAGCCTTT -ACGGAATCCGAAGTGCTAGGTCTT -ACGGAATCCGAAGTGCTAACGCTT -ACGGAATCCGAAGTGCTAAGCGTT -ACGGAATCCGAAGTGCTATTCGTC -ACGGAATCCGAAGTGCTATCTCTC -ACGGAATCCGAAGTGCTATGGATC -ACGGAATCCGAAGTGCTACACTTC -ACGGAATCCGAAGTGCTAGTACTC -ACGGAATCCGAAGTGCTAGATGTC -ACGGAATCCGAAGTGCTAACAGTC -ACGGAATCCGAAGTGCTATTGCTG -ACGGAATCCGAAGTGCTATCCATG -ACGGAATCCGAAGTGCTATGTGTG -ACGGAATCCGAAGTGCTACTAGTG -ACGGAATCCGAAGTGCTACATCTG -ACGGAATCCGAAGTGCTAGAGTTG -ACGGAATCCGAAGTGCTAAGACTG -ACGGAATCCGAAGTGCTATCGGTA -ACGGAATCCGAAGTGCTATGCCTA -ACGGAATCCGAAGTGCTACCACTA -ACGGAATCCGAAGTGCTAGGAGTA -ACGGAATCCGAAGTGCTATCGTCT -ACGGAATCCGAAGTGCTATGCACT -ACGGAATCCGAAGTGCTACTGACT -ACGGAATCCGAAGTGCTACAACCT -ACGGAATCCGAAGTGCTAGCTACT -ACGGAATCCGAAGTGCTAGGATCT -ACGGAATCCGAAGTGCTAAAGGCT -ACGGAATCCGAAGTGCTATCAACC -ACGGAATCCGAAGTGCTATGTTCC -ACGGAATCCGAAGTGCTAATTCCC -ACGGAATCCGAAGTGCTATTCTCG -ACGGAATCCGAAGTGCTATAGACG -ACGGAATCCGAAGTGCTAGTAACG -ACGGAATCCGAAGTGCTAACTTCG -ACGGAATCCGAAGTGCTATACGCA -ACGGAATCCGAAGTGCTACTTGCA -ACGGAATCCGAAGTGCTACGAACA -ACGGAATCCGAAGTGCTACAGTCA -ACGGAATCCGAAGTGCTAGATCCA -ACGGAATCCGAAGTGCTAACGACA -ACGGAATCCGAAGTGCTAAGCTCA -ACGGAATCCGAAGTGCTATCACGT -ACGGAATCCGAAGTGCTACGTAGT -ACGGAATCCGAAGTGCTAGTCAGT -ACGGAATCCGAAGTGCTAGAAGGT -ACGGAATCCGAAGTGCTAAACCGT -ACGGAATCCGAAGTGCTATTGTGC -ACGGAATCCGAAGTGCTACTAAGC -ACGGAATCCGAAGTGCTAACTAGC -ACGGAATCCGAAGTGCTAAGATGC -ACGGAATCCGAAGTGCTATGAAGG -ACGGAATCCGAAGTGCTACAATGG -ACGGAATCCGAAGTGCTAATGAGG -ACGGAATCCGAAGTGCTAAATGGG -ACGGAATCCGAAGTGCTATCCTGA -ACGGAATCCGAAGTGCTATAGCGA -ACGGAATCCGAAGTGCTACACAGA -ACGGAATCCGAAGTGCTAGCAAGA -ACGGAATCCGAAGTGCTAGGTTGA -ACGGAATCCGAAGTGCTATCCGAT -ACGGAATCCGAAGTGCTATGGCAT -ACGGAATCCGAAGTGCTACGAGAT -ACGGAATCCGAAGTGCTATACCAC -ACGGAATCCGAAGTGCTACAGAAC -ACGGAATCCGAAGTGCTAGTCTAC -ACGGAATCCGAAGTGCTAACGTAC -ACGGAATCCGAAGTGCTAAGTGAC -ACGGAATCCGAAGTGCTACTGTAG -ACGGAATCCGAAGTGCTACCTAAG -ACGGAATCCGAAGTGCTAGTTCAG -ACGGAATCCGAAGTGCTAGCATAG -ACGGAATCCGAAGTGCTAGACAAG -ACGGAATCCGAAGTGCTAAAGCAG -ACGGAATCCGAAGTGCTACGTCAA -ACGGAATCCGAAGTGCTAGCTGAA -ACGGAATCCGAAGTGCTAAGTACG -ACGGAATCCGAAGTGCTAATCCGA -ACGGAATCCGAAGTGCTAATGGGA -ACGGAATCCGAAGTGCTAGTGCAA -ACGGAATCCGAAGTGCTAGAGGAA -ACGGAATCCGAAGTGCTACAGGTA -ACGGAATCCGAAGTGCTAGACTCT -ACGGAATCCGAAGTGCTAAGTCCT -ACGGAATCCGAAGTGCTATAAGCC -ACGGAATCCGAAGTGCTAATAGCC -ACGGAATCCGAAGTGCTATAACCG -ACGGAATCCGAAGTGCTAATGCCA -ACGGAATCCGAACTGCATGGAAAC -ACGGAATCCGAACTGCATAACACC -ACGGAATCCGAACTGCATATCGAG -ACGGAATCCGAACTGCATCTCCTT -ACGGAATCCGAACTGCATCCTGTT -ACGGAATCCGAACTGCATCGGTTT -ACGGAATCCGAACTGCATGTGGTT -ACGGAATCCGAACTGCATGCCTTT -ACGGAATCCGAACTGCATGGTCTT -ACGGAATCCGAACTGCATACGCTT -ACGGAATCCGAACTGCATAGCGTT -ACGGAATCCGAACTGCATTTCGTC -ACGGAATCCGAACTGCATTCTCTC -ACGGAATCCGAACTGCATTGGATC -ACGGAATCCGAACTGCATCACTTC -ACGGAATCCGAACTGCATGTACTC -ACGGAATCCGAACTGCATGATGTC -ACGGAATCCGAACTGCATACAGTC -ACGGAATCCGAACTGCATTTGCTG -ACGGAATCCGAACTGCATTCCATG -ACGGAATCCGAACTGCATTGTGTG -ACGGAATCCGAACTGCATCTAGTG -ACGGAATCCGAACTGCATCATCTG -ACGGAATCCGAACTGCATGAGTTG -ACGGAATCCGAACTGCATAGACTG -ACGGAATCCGAACTGCATTCGGTA -ACGGAATCCGAACTGCATTGCCTA -ACGGAATCCGAACTGCATCCACTA -ACGGAATCCGAACTGCATGGAGTA -ACGGAATCCGAACTGCATTCGTCT -ACGGAATCCGAACTGCATTGCACT -ACGGAATCCGAACTGCATCTGACT -ACGGAATCCGAACTGCATCAACCT -ACGGAATCCGAACTGCATGCTACT -ACGGAATCCGAACTGCATGGATCT -ACGGAATCCGAACTGCATAAGGCT -ACGGAATCCGAACTGCATTCAACC -ACGGAATCCGAACTGCATTGTTCC -ACGGAATCCGAACTGCATATTCCC -ACGGAATCCGAACTGCATTTCTCG -ACGGAATCCGAACTGCATTAGACG -ACGGAATCCGAACTGCATGTAACG -ACGGAATCCGAACTGCATACTTCG -ACGGAATCCGAACTGCATTACGCA -ACGGAATCCGAACTGCATCTTGCA -ACGGAATCCGAACTGCATCGAACA -ACGGAATCCGAACTGCATCAGTCA -ACGGAATCCGAACTGCATGATCCA -ACGGAATCCGAACTGCATACGACA -ACGGAATCCGAACTGCATAGCTCA -ACGGAATCCGAACTGCATTCACGT -ACGGAATCCGAACTGCATCGTAGT -ACGGAATCCGAACTGCATGTCAGT -ACGGAATCCGAACTGCATGAAGGT -ACGGAATCCGAACTGCATAACCGT -ACGGAATCCGAACTGCATTTGTGC -ACGGAATCCGAACTGCATCTAAGC -ACGGAATCCGAACTGCATACTAGC -ACGGAATCCGAACTGCATAGATGC -ACGGAATCCGAACTGCATTGAAGG -ACGGAATCCGAACTGCATCAATGG -ACGGAATCCGAACTGCATATGAGG -ACGGAATCCGAACTGCATAATGGG -ACGGAATCCGAACTGCATTCCTGA -ACGGAATCCGAACTGCATTAGCGA -ACGGAATCCGAACTGCATCACAGA -ACGGAATCCGAACTGCATGCAAGA -ACGGAATCCGAACTGCATGGTTGA -ACGGAATCCGAACTGCATTCCGAT -ACGGAATCCGAACTGCATTGGCAT -ACGGAATCCGAACTGCATCGAGAT -ACGGAATCCGAACTGCATTACCAC -ACGGAATCCGAACTGCATCAGAAC -ACGGAATCCGAACTGCATGTCTAC -ACGGAATCCGAACTGCATACGTAC -ACGGAATCCGAACTGCATAGTGAC -ACGGAATCCGAACTGCATCTGTAG -ACGGAATCCGAACTGCATCCTAAG -ACGGAATCCGAACTGCATGTTCAG -ACGGAATCCGAACTGCATGCATAG -ACGGAATCCGAACTGCATGACAAG -ACGGAATCCGAACTGCATAAGCAG -ACGGAATCCGAACTGCATCGTCAA -ACGGAATCCGAACTGCATGCTGAA -ACGGAATCCGAACTGCATAGTACG -ACGGAATCCGAACTGCATATCCGA -ACGGAATCCGAACTGCATATGGGA -ACGGAATCCGAACTGCATGTGCAA -ACGGAATCCGAACTGCATGAGGAA -ACGGAATCCGAACTGCATCAGGTA -ACGGAATCCGAACTGCATGACTCT -ACGGAATCCGAACTGCATAGTCCT -ACGGAATCCGAACTGCATTAAGCC -ACGGAATCCGAACTGCATATAGCC -ACGGAATCCGAACTGCATTAACCG -ACGGAATCCGAACTGCATATGCCA -ACGGAATCCGAATTGGAGGGAAAC -ACGGAATCCGAATTGGAGAACACC -ACGGAATCCGAATTGGAGATCGAG -ACGGAATCCGAATTGGAGCTCCTT -ACGGAATCCGAATTGGAGCCTGTT -ACGGAATCCGAATTGGAGCGGTTT -ACGGAATCCGAATTGGAGGTGGTT -ACGGAATCCGAATTGGAGGCCTTT -ACGGAATCCGAATTGGAGGGTCTT -ACGGAATCCGAATTGGAGACGCTT -ACGGAATCCGAATTGGAGAGCGTT -ACGGAATCCGAATTGGAGTTCGTC -ACGGAATCCGAATTGGAGTCTCTC -ACGGAATCCGAATTGGAGTGGATC -ACGGAATCCGAATTGGAGCACTTC -ACGGAATCCGAATTGGAGGTACTC -ACGGAATCCGAATTGGAGGATGTC -ACGGAATCCGAATTGGAGACAGTC -ACGGAATCCGAATTGGAGTTGCTG -ACGGAATCCGAATTGGAGTCCATG -ACGGAATCCGAATTGGAGTGTGTG -ACGGAATCCGAATTGGAGCTAGTG -ACGGAATCCGAATTGGAGCATCTG -ACGGAATCCGAATTGGAGGAGTTG -ACGGAATCCGAATTGGAGAGACTG -ACGGAATCCGAATTGGAGTCGGTA -ACGGAATCCGAATTGGAGTGCCTA -ACGGAATCCGAATTGGAGCCACTA -ACGGAATCCGAATTGGAGGGAGTA -ACGGAATCCGAATTGGAGTCGTCT -ACGGAATCCGAATTGGAGTGCACT -ACGGAATCCGAATTGGAGCTGACT -ACGGAATCCGAATTGGAGCAACCT -ACGGAATCCGAATTGGAGGCTACT -ACGGAATCCGAATTGGAGGGATCT -ACGGAATCCGAATTGGAGAAGGCT -ACGGAATCCGAATTGGAGTCAACC -ACGGAATCCGAATTGGAGTGTTCC -ACGGAATCCGAATTGGAGATTCCC -ACGGAATCCGAATTGGAGTTCTCG -ACGGAATCCGAATTGGAGTAGACG -ACGGAATCCGAATTGGAGGTAACG -ACGGAATCCGAATTGGAGACTTCG -ACGGAATCCGAATTGGAGTACGCA -ACGGAATCCGAATTGGAGCTTGCA -ACGGAATCCGAATTGGAGCGAACA -ACGGAATCCGAATTGGAGCAGTCA -ACGGAATCCGAATTGGAGGATCCA -ACGGAATCCGAATTGGAGACGACA -ACGGAATCCGAATTGGAGAGCTCA -ACGGAATCCGAATTGGAGTCACGT -ACGGAATCCGAATTGGAGCGTAGT -ACGGAATCCGAATTGGAGGTCAGT -ACGGAATCCGAATTGGAGGAAGGT -ACGGAATCCGAATTGGAGAACCGT -ACGGAATCCGAATTGGAGTTGTGC -ACGGAATCCGAATTGGAGCTAAGC -ACGGAATCCGAATTGGAGACTAGC -ACGGAATCCGAATTGGAGAGATGC -ACGGAATCCGAATTGGAGTGAAGG -ACGGAATCCGAATTGGAGCAATGG -ACGGAATCCGAATTGGAGATGAGG -ACGGAATCCGAATTGGAGAATGGG -ACGGAATCCGAATTGGAGTCCTGA -ACGGAATCCGAATTGGAGTAGCGA -ACGGAATCCGAATTGGAGCACAGA -ACGGAATCCGAATTGGAGGCAAGA -ACGGAATCCGAATTGGAGGGTTGA -ACGGAATCCGAATTGGAGTCCGAT -ACGGAATCCGAATTGGAGTGGCAT -ACGGAATCCGAATTGGAGCGAGAT -ACGGAATCCGAATTGGAGTACCAC -ACGGAATCCGAATTGGAGCAGAAC -ACGGAATCCGAATTGGAGGTCTAC -ACGGAATCCGAATTGGAGACGTAC -ACGGAATCCGAATTGGAGAGTGAC -ACGGAATCCGAATTGGAGCTGTAG -ACGGAATCCGAATTGGAGCCTAAG -ACGGAATCCGAATTGGAGGTTCAG -ACGGAATCCGAATTGGAGGCATAG -ACGGAATCCGAATTGGAGGACAAG -ACGGAATCCGAATTGGAGAAGCAG -ACGGAATCCGAATTGGAGCGTCAA -ACGGAATCCGAATTGGAGGCTGAA -ACGGAATCCGAATTGGAGAGTACG -ACGGAATCCGAATTGGAGATCCGA -ACGGAATCCGAATTGGAGATGGGA -ACGGAATCCGAATTGGAGGTGCAA -ACGGAATCCGAATTGGAGGAGGAA -ACGGAATCCGAATTGGAGCAGGTA -ACGGAATCCGAATTGGAGGACTCT -ACGGAATCCGAATTGGAGAGTCCT -ACGGAATCCGAATTGGAGTAAGCC -ACGGAATCCGAATTGGAGATAGCC -ACGGAATCCGAATTGGAGTAACCG -ACGGAATCCGAATTGGAGATGCCA -ACGGAATCCGAACTGAGAGGAAAC -ACGGAATCCGAACTGAGAAACACC -ACGGAATCCGAACTGAGAATCGAG -ACGGAATCCGAACTGAGACTCCTT -ACGGAATCCGAACTGAGACCTGTT -ACGGAATCCGAACTGAGACGGTTT -ACGGAATCCGAACTGAGAGTGGTT -ACGGAATCCGAACTGAGAGCCTTT -ACGGAATCCGAACTGAGAGGTCTT -ACGGAATCCGAACTGAGAACGCTT -ACGGAATCCGAACTGAGAAGCGTT -ACGGAATCCGAACTGAGATTCGTC -ACGGAATCCGAACTGAGATCTCTC -ACGGAATCCGAACTGAGATGGATC -ACGGAATCCGAACTGAGACACTTC -ACGGAATCCGAACTGAGAGTACTC -ACGGAATCCGAACTGAGAGATGTC -ACGGAATCCGAACTGAGAACAGTC -ACGGAATCCGAACTGAGATTGCTG -ACGGAATCCGAACTGAGATCCATG -ACGGAATCCGAACTGAGATGTGTG -ACGGAATCCGAACTGAGACTAGTG -ACGGAATCCGAACTGAGACATCTG -ACGGAATCCGAACTGAGAGAGTTG -ACGGAATCCGAACTGAGAAGACTG -ACGGAATCCGAACTGAGATCGGTA -ACGGAATCCGAACTGAGATGCCTA -ACGGAATCCGAACTGAGACCACTA -ACGGAATCCGAACTGAGAGGAGTA -ACGGAATCCGAACTGAGATCGTCT -ACGGAATCCGAACTGAGATGCACT -ACGGAATCCGAACTGAGACTGACT -ACGGAATCCGAACTGAGACAACCT -ACGGAATCCGAACTGAGAGCTACT -ACGGAATCCGAACTGAGAGGATCT -ACGGAATCCGAACTGAGAAAGGCT -ACGGAATCCGAACTGAGATCAACC -ACGGAATCCGAACTGAGATGTTCC -ACGGAATCCGAACTGAGAATTCCC -ACGGAATCCGAACTGAGATTCTCG -ACGGAATCCGAACTGAGATAGACG -ACGGAATCCGAACTGAGAGTAACG -ACGGAATCCGAACTGAGAACTTCG -ACGGAATCCGAACTGAGATACGCA -ACGGAATCCGAACTGAGACTTGCA -ACGGAATCCGAACTGAGACGAACA -ACGGAATCCGAACTGAGACAGTCA -ACGGAATCCGAACTGAGAGATCCA -ACGGAATCCGAACTGAGAACGACA -ACGGAATCCGAACTGAGAAGCTCA -ACGGAATCCGAACTGAGATCACGT -ACGGAATCCGAACTGAGACGTAGT -ACGGAATCCGAACTGAGAGTCAGT -ACGGAATCCGAACTGAGAGAAGGT -ACGGAATCCGAACTGAGAAACCGT -ACGGAATCCGAACTGAGATTGTGC -ACGGAATCCGAACTGAGACTAAGC -ACGGAATCCGAACTGAGAACTAGC -ACGGAATCCGAACTGAGAAGATGC -ACGGAATCCGAACTGAGATGAAGG -ACGGAATCCGAACTGAGACAATGG -ACGGAATCCGAACTGAGAATGAGG -ACGGAATCCGAACTGAGAAATGGG -ACGGAATCCGAACTGAGATCCTGA -ACGGAATCCGAACTGAGATAGCGA -ACGGAATCCGAACTGAGACACAGA -ACGGAATCCGAACTGAGAGCAAGA -ACGGAATCCGAACTGAGAGGTTGA -ACGGAATCCGAACTGAGATCCGAT -ACGGAATCCGAACTGAGATGGCAT -ACGGAATCCGAACTGAGACGAGAT -ACGGAATCCGAACTGAGATACCAC -ACGGAATCCGAACTGAGACAGAAC -ACGGAATCCGAACTGAGAGTCTAC -ACGGAATCCGAACTGAGAACGTAC -ACGGAATCCGAACTGAGAAGTGAC -ACGGAATCCGAACTGAGACTGTAG -ACGGAATCCGAACTGAGACCTAAG -ACGGAATCCGAACTGAGAGTTCAG -ACGGAATCCGAACTGAGAGCATAG -ACGGAATCCGAACTGAGAGACAAG -ACGGAATCCGAACTGAGAAAGCAG -ACGGAATCCGAACTGAGACGTCAA -ACGGAATCCGAACTGAGAGCTGAA -ACGGAATCCGAACTGAGAAGTACG -ACGGAATCCGAACTGAGAATCCGA -ACGGAATCCGAACTGAGAATGGGA -ACGGAATCCGAACTGAGAGTGCAA -ACGGAATCCGAACTGAGAGAGGAA -ACGGAATCCGAACTGAGACAGGTA -ACGGAATCCGAACTGAGAGACTCT -ACGGAATCCGAACTGAGAAGTCCT -ACGGAATCCGAACTGAGATAAGCC -ACGGAATCCGAACTGAGAATAGCC -ACGGAATCCGAACTGAGATAACCG -ACGGAATCCGAACTGAGAATGCCA -ACGGAATCCGAAGTATCGGGAAAC -ACGGAATCCGAAGTATCGAACACC -ACGGAATCCGAAGTATCGATCGAG -ACGGAATCCGAAGTATCGCTCCTT -ACGGAATCCGAAGTATCGCCTGTT -ACGGAATCCGAAGTATCGCGGTTT -ACGGAATCCGAAGTATCGGTGGTT -ACGGAATCCGAAGTATCGGCCTTT -ACGGAATCCGAAGTATCGGGTCTT -ACGGAATCCGAAGTATCGACGCTT -ACGGAATCCGAAGTATCGAGCGTT -ACGGAATCCGAAGTATCGTTCGTC -ACGGAATCCGAAGTATCGTCTCTC -ACGGAATCCGAAGTATCGTGGATC -ACGGAATCCGAAGTATCGCACTTC -ACGGAATCCGAAGTATCGGTACTC -ACGGAATCCGAAGTATCGGATGTC -ACGGAATCCGAAGTATCGACAGTC -ACGGAATCCGAAGTATCGTTGCTG -ACGGAATCCGAAGTATCGTCCATG -ACGGAATCCGAAGTATCGTGTGTG -ACGGAATCCGAAGTATCGCTAGTG -ACGGAATCCGAAGTATCGCATCTG -ACGGAATCCGAAGTATCGGAGTTG -ACGGAATCCGAAGTATCGAGACTG -ACGGAATCCGAAGTATCGTCGGTA -ACGGAATCCGAAGTATCGTGCCTA -ACGGAATCCGAAGTATCGCCACTA -ACGGAATCCGAAGTATCGGGAGTA -ACGGAATCCGAAGTATCGTCGTCT -ACGGAATCCGAAGTATCGTGCACT -ACGGAATCCGAAGTATCGCTGACT -ACGGAATCCGAAGTATCGCAACCT -ACGGAATCCGAAGTATCGGCTACT -ACGGAATCCGAAGTATCGGGATCT -ACGGAATCCGAAGTATCGAAGGCT -ACGGAATCCGAAGTATCGTCAACC -ACGGAATCCGAAGTATCGTGTTCC -ACGGAATCCGAAGTATCGATTCCC -ACGGAATCCGAAGTATCGTTCTCG -ACGGAATCCGAAGTATCGTAGACG -ACGGAATCCGAAGTATCGGTAACG -ACGGAATCCGAAGTATCGACTTCG -ACGGAATCCGAAGTATCGTACGCA -ACGGAATCCGAAGTATCGCTTGCA -ACGGAATCCGAAGTATCGCGAACA -ACGGAATCCGAAGTATCGCAGTCA -ACGGAATCCGAAGTATCGGATCCA -ACGGAATCCGAAGTATCGACGACA -ACGGAATCCGAAGTATCGAGCTCA -ACGGAATCCGAAGTATCGTCACGT -ACGGAATCCGAAGTATCGCGTAGT -ACGGAATCCGAAGTATCGGTCAGT -ACGGAATCCGAAGTATCGGAAGGT -ACGGAATCCGAAGTATCGAACCGT -ACGGAATCCGAAGTATCGTTGTGC -ACGGAATCCGAAGTATCGCTAAGC -ACGGAATCCGAAGTATCGACTAGC -ACGGAATCCGAAGTATCGAGATGC -ACGGAATCCGAAGTATCGTGAAGG -ACGGAATCCGAAGTATCGCAATGG -ACGGAATCCGAAGTATCGATGAGG -ACGGAATCCGAAGTATCGAATGGG -ACGGAATCCGAAGTATCGTCCTGA -ACGGAATCCGAAGTATCGTAGCGA -ACGGAATCCGAAGTATCGCACAGA -ACGGAATCCGAAGTATCGGCAAGA -ACGGAATCCGAAGTATCGGGTTGA -ACGGAATCCGAAGTATCGTCCGAT -ACGGAATCCGAAGTATCGTGGCAT -ACGGAATCCGAAGTATCGCGAGAT -ACGGAATCCGAAGTATCGTACCAC -ACGGAATCCGAAGTATCGCAGAAC -ACGGAATCCGAAGTATCGGTCTAC -ACGGAATCCGAAGTATCGACGTAC -ACGGAATCCGAAGTATCGAGTGAC -ACGGAATCCGAAGTATCGCTGTAG -ACGGAATCCGAAGTATCGCCTAAG -ACGGAATCCGAAGTATCGGTTCAG -ACGGAATCCGAAGTATCGGCATAG -ACGGAATCCGAAGTATCGGACAAG -ACGGAATCCGAAGTATCGAAGCAG -ACGGAATCCGAAGTATCGCGTCAA -ACGGAATCCGAAGTATCGGCTGAA -ACGGAATCCGAAGTATCGAGTACG -ACGGAATCCGAAGTATCGATCCGA -ACGGAATCCGAAGTATCGATGGGA -ACGGAATCCGAAGTATCGGTGCAA -ACGGAATCCGAAGTATCGGAGGAA -ACGGAATCCGAAGTATCGCAGGTA -ACGGAATCCGAAGTATCGGACTCT -ACGGAATCCGAAGTATCGAGTCCT -ACGGAATCCGAAGTATCGTAAGCC -ACGGAATCCGAAGTATCGATAGCC -ACGGAATCCGAAGTATCGTAACCG -ACGGAATCCGAAGTATCGATGCCA -ACGGAATCCGAACTATGCGGAAAC -ACGGAATCCGAACTATGCAACACC -ACGGAATCCGAACTATGCATCGAG -ACGGAATCCGAACTATGCCTCCTT -ACGGAATCCGAACTATGCCCTGTT -ACGGAATCCGAACTATGCCGGTTT -ACGGAATCCGAACTATGCGTGGTT -ACGGAATCCGAACTATGCGCCTTT -ACGGAATCCGAACTATGCGGTCTT -ACGGAATCCGAACTATGCACGCTT -ACGGAATCCGAACTATGCAGCGTT -ACGGAATCCGAACTATGCTTCGTC -ACGGAATCCGAACTATGCTCTCTC -ACGGAATCCGAACTATGCTGGATC -ACGGAATCCGAACTATGCCACTTC -ACGGAATCCGAACTATGCGTACTC -ACGGAATCCGAACTATGCGATGTC -ACGGAATCCGAACTATGCACAGTC -ACGGAATCCGAACTATGCTTGCTG -ACGGAATCCGAACTATGCTCCATG -ACGGAATCCGAACTATGCTGTGTG -ACGGAATCCGAACTATGCCTAGTG -ACGGAATCCGAACTATGCCATCTG -ACGGAATCCGAACTATGCGAGTTG -ACGGAATCCGAACTATGCAGACTG -ACGGAATCCGAACTATGCTCGGTA -ACGGAATCCGAACTATGCTGCCTA -ACGGAATCCGAACTATGCCCACTA -ACGGAATCCGAACTATGCGGAGTA -ACGGAATCCGAACTATGCTCGTCT -ACGGAATCCGAACTATGCTGCACT -ACGGAATCCGAACTATGCCTGACT -ACGGAATCCGAACTATGCCAACCT -ACGGAATCCGAACTATGCGCTACT -ACGGAATCCGAACTATGCGGATCT -ACGGAATCCGAACTATGCAAGGCT -ACGGAATCCGAACTATGCTCAACC -ACGGAATCCGAACTATGCTGTTCC -ACGGAATCCGAACTATGCATTCCC -ACGGAATCCGAACTATGCTTCTCG -ACGGAATCCGAACTATGCTAGACG -ACGGAATCCGAACTATGCGTAACG -ACGGAATCCGAACTATGCACTTCG -ACGGAATCCGAACTATGCTACGCA -ACGGAATCCGAACTATGCCTTGCA -ACGGAATCCGAACTATGCCGAACA -ACGGAATCCGAACTATGCCAGTCA -ACGGAATCCGAACTATGCGATCCA -ACGGAATCCGAACTATGCACGACA -ACGGAATCCGAACTATGCAGCTCA -ACGGAATCCGAACTATGCTCACGT -ACGGAATCCGAACTATGCCGTAGT -ACGGAATCCGAACTATGCGTCAGT -ACGGAATCCGAACTATGCGAAGGT -ACGGAATCCGAACTATGCAACCGT -ACGGAATCCGAACTATGCTTGTGC -ACGGAATCCGAACTATGCCTAAGC -ACGGAATCCGAACTATGCACTAGC -ACGGAATCCGAACTATGCAGATGC -ACGGAATCCGAACTATGCTGAAGG -ACGGAATCCGAACTATGCCAATGG -ACGGAATCCGAACTATGCATGAGG -ACGGAATCCGAACTATGCAATGGG -ACGGAATCCGAACTATGCTCCTGA -ACGGAATCCGAACTATGCTAGCGA -ACGGAATCCGAACTATGCCACAGA -ACGGAATCCGAACTATGCGCAAGA -ACGGAATCCGAACTATGCGGTTGA -ACGGAATCCGAACTATGCTCCGAT -ACGGAATCCGAACTATGCTGGCAT -ACGGAATCCGAACTATGCCGAGAT -ACGGAATCCGAACTATGCTACCAC -ACGGAATCCGAACTATGCCAGAAC -ACGGAATCCGAACTATGCGTCTAC -ACGGAATCCGAACTATGCACGTAC -ACGGAATCCGAACTATGCAGTGAC -ACGGAATCCGAACTATGCCTGTAG -ACGGAATCCGAACTATGCCCTAAG -ACGGAATCCGAACTATGCGTTCAG -ACGGAATCCGAACTATGCGCATAG -ACGGAATCCGAACTATGCGACAAG -ACGGAATCCGAACTATGCAAGCAG -ACGGAATCCGAACTATGCCGTCAA -ACGGAATCCGAACTATGCGCTGAA -ACGGAATCCGAACTATGCAGTACG -ACGGAATCCGAACTATGCATCCGA -ACGGAATCCGAACTATGCATGGGA -ACGGAATCCGAACTATGCGTGCAA -ACGGAATCCGAACTATGCGAGGAA -ACGGAATCCGAACTATGCCAGGTA -ACGGAATCCGAACTATGCGACTCT -ACGGAATCCGAACTATGCAGTCCT -ACGGAATCCGAACTATGCTAAGCC -ACGGAATCCGAACTATGCATAGCC -ACGGAATCCGAACTATGCTAACCG -ACGGAATCCGAACTATGCATGCCA -ACGGAATCCGAACTACCAGGAAAC -ACGGAATCCGAACTACCAAACACC -ACGGAATCCGAACTACCAATCGAG -ACGGAATCCGAACTACCACTCCTT -ACGGAATCCGAACTACCACCTGTT -ACGGAATCCGAACTACCACGGTTT -ACGGAATCCGAACTACCAGTGGTT -ACGGAATCCGAACTACCAGCCTTT -ACGGAATCCGAACTACCAGGTCTT -ACGGAATCCGAACTACCAACGCTT -ACGGAATCCGAACTACCAAGCGTT -ACGGAATCCGAACTACCATTCGTC -ACGGAATCCGAACTACCATCTCTC -ACGGAATCCGAACTACCATGGATC -ACGGAATCCGAACTACCACACTTC -ACGGAATCCGAACTACCAGTACTC -ACGGAATCCGAACTACCAGATGTC -ACGGAATCCGAACTACCAACAGTC -ACGGAATCCGAACTACCATTGCTG -ACGGAATCCGAACTACCATCCATG -ACGGAATCCGAACTACCATGTGTG -ACGGAATCCGAACTACCACTAGTG -ACGGAATCCGAACTACCACATCTG -ACGGAATCCGAACTACCAGAGTTG -ACGGAATCCGAACTACCAAGACTG -ACGGAATCCGAACTACCATCGGTA -ACGGAATCCGAACTACCATGCCTA -ACGGAATCCGAACTACCACCACTA -ACGGAATCCGAACTACCAGGAGTA -ACGGAATCCGAACTACCATCGTCT -ACGGAATCCGAACTACCATGCACT -ACGGAATCCGAACTACCACTGACT -ACGGAATCCGAACTACCACAACCT -ACGGAATCCGAACTACCAGCTACT -ACGGAATCCGAACTACCAGGATCT -ACGGAATCCGAACTACCAAAGGCT -ACGGAATCCGAACTACCATCAACC -ACGGAATCCGAACTACCATGTTCC -ACGGAATCCGAACTACCAATTCCC -ACGGAATCCGAACTACCATTCTCG -ACGGAATCCGAACTACCATAGACG -ACGGAATCCGAACTACCAGTAACG -ACGGAATCCGAACTACCAACTTCG -ACGGAATCCGAACTACCATACGCA -ACGGAATCCGAACTACCACTTGCA -ACGGAATCCGAACTACCACGAACA -ACGGAATCCGAACTACCACAGTCA -ACGGAATCCGAACTACCAGATCCA -ACGGAATCCGAACTACCAACGACA -ACGGAATCCGAACTACCAAGCTCA -ACGGAATCCGAACTACCATCACGT -ACGGAATCCGAACTACCACGTAGT -ACGGAATCCGAACTACCAGTCAGT -ACGGAATCCGAACTACCAGAAGGT -ACGGAATCCGAACTACCAAACCGT -ACGGAATCCGAACTACCATTGTGC -ACGGAATCCGAACTACCACTAAGC -ACGGAATCCGAACTACCAACTAGC -ACGGAATCCGAACTACCAAGATGC -ACGGAATCCGAACTACCATGAAGG -ACGGAATCCGAACTACCACAATGG -ACGGAATCCGAACTACCAATGAGG -ACGGAATCCGAACTACCAAATGGG -ACGGAATCCGAACTACCATCCTGA -ACGGAATCCGAACTACCATAGCGA -ACGGAATCCGAACTACCACACAGA -ACGGAATCCGAACTACCAGCAAGA -ACGGAATCCGAACTACCAGGTTGA -ACGGAATCCGAACTACCATCCGAT -ACGGAATCCGAACTACCATGGCAT -ACGGAATCCGAACTACCACGAGAT -ACGGAATCCGAACTACCATACCAC -ACGGAATCCGAACTACCACAGAAC -ACGGAATCCGAACTACCAGTCTAC -ACGGAATCCGAACTACCAACGTAC -ACGGAATCCGAACTACCAAGTGAC -ACGGAATCCGAACTACCACTGTAG -ACGGAATCCGAACTACCACCTAAG -ACGGAATCCGAACTACCAGTTCAG -ACGGAATCCGAACTACCAGCATAG -ACGGAATCCGAACTACCAGACAAG -ACGGAATCCGAACTACCAAAGCAG -ACGGAATCCGAACTACCACGTCAA -ACGGAATCCGAACTACCAGCTGAA -ACGGAATCCGAACTACCAAGTACG -ACGGAATCCGAACTACCAATCCGA -ACGGAATCCGAACTACCAATGGGA -ACGGAATCCGAACTACCAGTGCAA -ACGGAATCCGAACTACCAGAGGAA -ACGGAATCCGAACTACCACAGGTA -ACGGAATCCGAACTACCAGACTCT -ACGGAATCCGAACTACCAAGTCCT -ACGGAATCCGAACTACCATAAGCC -ACGGAATCCGAACTACCAATAGCC -ACGGAATCCGAACTACCATAACCG -ACGGAATCCGAACTACCAATGCCA -ACGGAATCCGAAGTAGGAGGAAAC -ACGGAATCCGAAGTAGGAAACACC -ACGGAATCCGAAGTAGGAATCGAG -ACGGAATCCGAAGTAGGACTCCTT -ACGGAATCCGAAGTAGGACCTGTT -ACGGAATCCGAAGTAGGACGGTTT -ACGGAATCCGAAGTAGGAGTGGTT -ACGGAATCCGAAGTAGGAGCCTTT -ACGGAATCCGAAGTAGGAGGTCTT -ACGGAATCCGAAGTAGGAACGCTT -ACGGAATCCGAAGTAGGAAGCGTT -ACGGAATCCGAAGTAGGATTCGTC -ACGGAATCCGAAGTAGGATCTCTC -ACGGAATCCGAAGTAGGATGGATC -ACGGAATCCGAAGTAGGACACTTC -ACGGAATCCGAAGTAGGAGTACTC -ACGGAATCCGAAGTAGGAGATGTC -ACGGAATCCGAAGTAGGAACAGTC -ACGGAATCCGAAGTAGGATTGCTG -ACGGAATCCGAAGTAGGATCCATG -ACGGAATCCGAAGTAGGATGTGTG -ACGGAATCCGAAGTAGGACTAGTG -ACGGAATCCGAAGTAGGACATCTG -ACGGAATCCGAAGTAGGAGAGTTG -ACGGAATCCGAAGTAGGAAGACTG -ACGGAATCCGAAGTAGGATCGGTA -ACGGAATCCGAAGTAGGATGCCTA -ACGGAATCCGAAGTAGGACCACTA -ACGGAATCCGAAGTAGGAGGAGTA -ACGGAATCCGAAGTAGGATCGTCT -ACGGAATCCGAAGTAGGATGCACT -ACGGAATCCGAAGTAGGACTGACT -ACGGAATCCGAAGTAGGACAACCT -ACGGAATCCGAAGTAGGAGCTACT -ACGGAATCCGAAGTAGGAGGATCT -ACGGAATCCGAAGTAGGAAAGGCT -ACGGAATCCGAAGTAGGATCAACC -ACGGAATCCGAAGTAGGATGTTCC -ACGGAATCCGAAGTAGGAATTCCC -ACGGAATCCGAAGTAGGATTCTCG -ACGGAATCCGAAGTAGGATAGACG -ACGGAATCCGAAGTAGGAGTAACG -ACGGAATCCGAAGTAGGAACTTCG -ACGGAATCCGAAGTAGGATACGCA -ACGGAATCCGAAGTAGGACTTGCA -ACGGAATCCGAAGTAGGACGAACA -ACGGAATCCGAAGTAGGACAGTCA -ACGGAATCCGAAGTAGGAGATCCA -ACGGAATCCGAAGTAGGAACGACA -ACGGAATCCGAAGTAGGAAGCTCA -ACGGAATCCGAAGTAGGATCACGT -ACGGAATCCGAAGTAGGACGTAGT -ACGGAATCCGAAGTAGGAGTCAGT -ACGGAATCCGAAGTAGGAGAAGGT -ACGGAATCCGAAGTAGGAAACCGT -ACGGAATCCGAAGTAGGATTGTGC -ACGGAATCCGAAGTAGGACTAAGC -ACGGAATCCGAAGTAGGAACTAGC -ACGGAATCCGAAGTAGGAAGATGC -ACGGAATCCGAAGTAGGATGAAGG -ACGGAATCCGAAGTAGGACAATGG -ACGGAATCCGAAGTAGGAATGAGG -ACGGAATCCGAAGTAGGAAATGGG -ACGGAATCCGAAGTAGGATCCTGA -ACGGAATCCGAAGTAGGATAGCGA -ACGGAATCCGAAGTAGGACACAGA -ACGGAATCCGAAGTAGGAGCAAGA -ACGGAATCCGAAGTAGGAGGTTGA -ACGGAATCCGAAGTAGGATCCGAT -ACGGAATCCGAAGTAGGATGGCAT -ACGGAATCCGAAGTAGGACGAGAT -ACGGAATCCGAAGTAGGATACCAC -ACGGAATCCGAAGTAGGACAGAAC -ACGGAATCCGAAGTAGGAGTCTAC -ACGGAATCCGAAGTAGGAACGTAC -ACGGAATCCGAAGTAGGAAGTGAC -ACGGAATCCGAAGTAGGACTGTAG -ACGGAATCCGAAGTAGGACCTAAG -ACGGAATCCGAAGTAGGAGTTCAG -ACGGAATCCGAAGTAGGAGCATAG -ACGGAATCCGAAGTAGGAGACAAG -ACGGAATCCGAAGTAGGAAAGCAG -ACGGAATCCGAAGTAGGACGTCAA -ACGGAATCCGAAGTAGGAGCTGAA -ACGGAATCCGAAGTAGGAAGTACG -ACGGAATCCGAAGTAGGAATCCGA -ACGGAATCCGAAGTAGGAATGGGA -ACGGAATCCGAAGTAGGAGTGCAA -ACGGAATCCGAAGTAGGAGAGGAA -ACGGAATCCGAAGTAGGACAGGTA -ACGGAATCCGAAGTAGGAGACTCT -ACGGAATCCGAAGTAGGAAGTCCT -ACGGAATCCGAAGTAGGATAAGCC -ACGGAATCCGAAGTAGGAATAGCC -ACGGAATCCGAAGTAGGATAACCG -ACGGAATCCGAAGTAGGAATGCCA -ACGGAATCCGAATCTTCGGGAAAC -ACGGAATCCGAATCTTCGAACACC -ACGGAATCCGAATCTTCGATCGAG -ACGGAATCCGAATCTTCGCTCCTT -ACGGAATCCGAATCTTCGCCTGTT -ACGGAATCCGAATCTTCGCGGTTT -ACGGAATCCGAATCTTCGGTGGTT -ACGGAATCCGAATCTTCGGCCTTT -ACGGAATCCGAATCTTCGGGTCTT -ACGGAATCCGAATCTTCGACGCTT -ACGGAATCCGAATCTTCGAGCGTT -ACGGAATCCGAATCTTCGTTCGTC -ACGGAATCCGAATCTTCGTCTCTC -ACGGAATCCGAATCTTCGTGGATC -ACGGAATCCGAATCTTCGCACTTC -ACGGAATCCGAATCTTCGGTACTC -ACGGAATCCGAATCTTCGGATGTC -ACGGAATCCGAATCTTCGACAGTC -ACGGAATCCGAATCTTCGTTGCTG -ACGGAATCCGAATCTTCGTCCATG -ACGGAATCCGAATCTTCGTGTGTG -ACGGAATCCGAATCTTCGCTAGTG -ACGGAATCCGAATCTTCGCATCTG -ACGGAATCCGAATCTTCGGAGTTG -ACGGAATCCGAATCTTCGAGACTG -ACGGAATCCGAATCTTCGTCGGTA -ACGGAATCCGAATCTTCGTGCCTA -ACGGAATCCGAATCTTCGCCACTA -ACGGAATCCGAATCTTCGGGAGTA -ACGGAATCCGAATCTTCGTCGTCT -ACGGAATCCGAATCTTCGTGCACT -ACGGAATCCGAATCTTCGCTGACT -ACGGAATCCGAATCTTCGCAACCT -ACGGAATCCGAATCTTCGGCTACT -ACGGAATCCGAATCTTCGGGATCT -ACGGAATCCGAATCTTCGAAGGCT -ACGGAATCCGAATCTTCGTCAACC -ACGGAATCCGAATCTTCGTGTTCC -ACGGAATCCGAATCTTCGATTCCC -ACGGAATCCGAATCTTCGTTCTCG -ACGGAATCCGAATCTTCGTAGACG -ACGGAATCCGAATCTTCGGTAACG -ACGGAATCCGAATCTTCGACTTCG -ACGGAATCCGAATCTTCGTACGCA -ACGGAATCCGAATCTTCGCTTGCA -ACGGAATCCGAATCTTCGCGAACA -ACGGAATCCGAATCTTCGCAGTCA -ACGGAATCCGAATCTTCGGATCCA -ACGGAATCCGAATCTTCGACGACA -ACGGAATCCGAATCTTCGAGCTCA -ACGGAATCCGAATCTTCGTCACGT -ACGGAATCCGAATCTTCGCGTAGT -ACGGAATCCGAATCTTCGGTCAGT -ACGGAATCCGAATCTTCGGAAGGT -ACGGAATCCGAATCTTCGAACCGT -ACGGAATCCGAATCTTCGTTGTGC -ACGGAATCCGAATCTTCGCTAAGC -ACGGAATCCGAATCTTCGACTAGC -ACGGAATCCGAATCTTCGAGATGC -ACGGAATCCGAATCTTCGTGAAGG -ACGGAATCCGAATCTTCGCAATGG -ACGGAATCCGAATCTTCGATGAGG -ACGGAATCCGAATCTTCGAATGGG -ACGGAATCCGAATCTTCGTCCTGA -ACGGAATCCGAATCTTCGTAGCGA -ACGGAATCCGAATCTTCGCACAGA -ACGGAATCCGAATCTTCGGCAAGA -ACGGAATCCGAATCTTCGGGTTGA -ACGGAATCCGAATCTTCGTCCGAT -ACGGAATCCGAATCTTCGTGGCAT -ACGGAATCCGAATCTTCGCGAGAT -ACGGAATCCGAATCTTCGTACCAC -ACGGAATCCGAATCTTCGCAGAAC -ACGGAATCCGAATCTTCGGTCTAC -ACGGAATCCGAATCTTCGACGTAC -ACGGAATCCGAATCTTCGAGTGAC -ACGGAATCCGAATCTTCGCTGTAG -ACGGAATCCGAATCTTCGCCTAAG -ACGGAATCCGAATCTTCGGTTCAG -ACGGAATCCGAATCTTCGGCATAG -ACGGAATCCGAATCTTCGGACAAG -ACGGAATCCGAATCTTCGAAGCAG -ACGGAATCCGAATCTTCGCGTCAA -ACGGAATCCGAATCTTCGGCTGAA -ACGGAATCCGAATCTTCGAGTACG -ACGGAATCCGAATCTTCGATCCGA -ACGGAATCCGAATCTTCGATGGGA -ACGGAATCCGAATCTTCGGTGCAA -ACGGAATCCGAATCTTCGGAGGAA -ACGGAATCCGAATCTTCGCAGGTA -ACGGAATCCGAATCTTCGGACTCT -ACGGAATCCGAATCTTCGAGTCCT -ACGGAATCCGAATCTTCGTAAGCC -ACGGAATCCGAATCTTCGATAGCC -ACGGAATCCGAATCTTCGTAACCG -ACGGAATCCGAATCTTCGATGCCA -ACGGAATCCGAAACTTGCGGAAAC -ACGGAATCCGAAACTTGCAACACC -ACGGAATCCGAAACTTGCATCGAG -ACGGAATCCGAAACTTGCCTCCTT -ACGGAATCCGAAACTTGCCCTGTT -ACGGAATCCGAAACTTGCCGGTTT -ACGGAATCCGAAACTTGCGTGGTT -ACGGAATCCGAAACTTGCGCCTTT -ACGGAATCCGAAACTTGCGGTCTT -ACGGAATCCGAAACTTGCACGCTT -ACGGAATCCGAAACTTGCAGCGTT -ACGGAATCCGAAACTTGCTTCGTC -ACGGAATCCGAAACTTGCTCTCTC -ACGGAATCCGAAACTTGCTGGATC -ACGGAATCCGAAACTTGCCACTTC -ACGGAATCCGAAACTTGCGTACTC -ACGGAATCCGAAACTTGCGATGTC -ACGGAATCCGAAACTTGCACAGTC -ACGGAATCCGAAACTTGCTTGCTG -ACGGAATCCGAAACTTGCTCCATG -ACGGAATCCGAAACTTGCTGTGTG -ACGGAATCCGAAACTTGCCTAGTG -ACGGAATCCGAAACTTGCCATCTG -ACGGAATCCGAAACTTGCGAGTTG -ACGGAATCCGAAACTTGCAGACTG -ACGGAATCCGAAACTTGCTCGGTA -ACGGAATCCGAAACTTGCTGCCTA -ACGGAATCCGAAACTTGCCCACTA -ACGGAATCCGAAACTTGCGGAGTA -ACGGAATCCGAAACTTGCTCGTCT -ACGGAATCCGAAACTTGCTGCACT -ACGGAATCCGAAACTTGCCTGACT -ACGGAATCCGAAACTTGCCAACCT -ACGGAATCCGAAACTTGCGCTACT -ACGGAATCCGAAACTTGCGGATCT -ACGGAATCCGAAACTTGCAAGGCT -ACGGAATCCGAAACTTGCTCAACC -ACGGAATCCGAAACTTGCTGTTCC -ACGGAATCCGAAACTTGCATTCCC -ACGGAATCCGAAACTTGCTTCTCG -ACGGAATCCGAAACTTGCTAGACG -ACGGAATCCGAAACTTGCGTAACG -ACGGAATCCGAAACTTGCACTTCG -ACGGAATCCGAAACTTGCTACGCA -ACGGAATCCGAAACTTGCCTTGCA -ACGGAATCCGAAACTTGCCGAACA -ACGGAATCCGAAACTTGCCAGTCA -ACGGAATCCGAAACTTGCGATCCA -ACGGAATCCGAAACTTGCACGACA -ACGGAATCCGAAACTTGCAGCTCA -ACGGAATCCGAAACTTGCTCACGT -ACGGAATCCGAAACTTGCCGTAGT -ACGGAATCCGAAACTTGCGTCAGT -ACGGAATCCGAAACTTGCGAAGGT -ACGGAATCCGAAACTTGCAACCGT -ACGGAATCCGAAACTTGCTTGTGC -ACGGAATCCGAAACTTGCCTAAGC -ACGGAATCCGAAACTTGCACTAGC -ACGGAATCCGAAACTTGCAGATGC -ACGGAATCCGAAACTTGCTGAAGG -ACGGAATCCGAAACTTGCCAATGG -ACGGAATCCGAAACTTGCATGAGG -ACGGAATCCGAAACTTGCAATGGG -ACGGAATCCGAAACTTGCTCCTGA -ACGGAATCCGAAACTTGCTAGCGA -ACGGAATCCGAAACTTGCCACAGA -ACGGAATCCGAAACTTGCGCAAGA -ACGGAATCCGAAACTTGCGGTTGA -ACGGAATCCGAAACTTGCTCCGAT -ACGGAATCCGAAACTTGCTGGCAT -ACGGAATCCGAAACTTGCCGAGAT -ACGGAATCCGAAACTTGCTACCAC -ACGGAATCCGAAACTTGCCAGAAC -ACGGAATCCGAAACTTGCGTCTAC -ACGGAATCCGAAACTTGCACGTAC -ACGGAATCCGAAACTTGCAGTGAC -ACGGAATCCGAAACTTGCCTGTAG -ACGGAATCCGAAACTTGCCCTAAG -ACGGAATCCGAAACTTGCGTTCAG -ACGGAATCCGAAACTTGCGCATAG -ACGGAATCCGAAACTTGCGACAAG -ACGGAATCCGAAACTTGCAAGCAG -ACGGAATCCGAAACTTGCCGTCAA -ACGGAATCCGAAACTTGCGCTGAA -ACGGAATCCGAAACTTGCAGTACG -ACGGAATCCGAAACTTGCATCCGA -ACGGAATCCGAAACTTGCATGGGA -ACGGAATCCGAAACTTGCGTGCAA -ACGGAATCCGAAACTTGCGAGGAA -ACGGAATCCGAAACTTGCCAGGTA -ACGGAATCCGAAACTTGCGACTCT -ACGGAATCCGAAACTTGCAGTCCT -ACGGAATCCGAAACTTGCTAAGCC -ACGGAATCCGAAACTTGCATAGCC -ACGGAATCCGAAACTTGCTAACCG -ACGGAATCCGAAACTTGCATGCCA -ACGGAATCCGAAACTCTGGGAAAC -ACGGAATCCGAAACTCTGAACACC -ACGGAATCCGAAACTCTGATCGAG -ACGGAATCCGAAACTCTGCTCCTT -ACGGAATCCGAAACTCTGCCTGTT -ACGGAATCCGAAACTCTGCGGTTT -ACGGAATCCGAAACTCTGGTGGTT -ACGGAATCCGAAACTCTGGCCTTT -ACGGAATCCGAAACTCTGGGTCTT -ACGGAATCCGAAACTCTGACGCTT -ACGGAATCCGAAACTCTGAGCGTT -ACGGAATCCGAAACTCTGTTCGTC -ACGGAATCCGAAACTCTGTCTCTC -ACGGAATCCGAAACTCTGTGGATC -ACGGAATCCGAAACTCTGCACTTC -ACGGAATCCGAAACTCTGGTACTC -ACGGAATCCGAAACTCTGGATGTC -ACGGAATCCGAAACTCTGACAGTC -ACGGAATCCGAAACTCTGTTGCTG -ACGGAATCCGAAACTCTGTCCATG -ACGGAATCCGAAACTCTGTGTGTG -ACGGAATCCGAAACTCTGCTAGTG -ACGGAATCCGAAACTCTGCATCTG -ACGGAATCCGAAACTCTGGAGTTG -ACGGAATCCGAAACTCTGAGACTG -ACGGAATCCGAAACTCTGTCGGTA -ACGGAATCCGAAACTCTGTGCCTA -ACGGAATCCGAAACTCTGCCACTA -ACGGAATCCGAAACTCTGGGAGTA -ACGGAATCCGAAACTCTGTCGTCT -ACGGAATCCGAAACTCTGTGCACT -ACGGAATCCGAAACTCTGCTGACT -ACGGAATCCGAAACTCTGCAACCT -ACGGAATCCGAAACTCTGGCTACT -ACGGAATCCGAAACTCTGGGATCT -ACGGAATCCGAAACTCTGAAGGCT -ACGGAATCCGAAACTCTGTCAACC -ACGGAATCCGAAACTCTGTGTTCC -ACGGAATCCGAAACTCTGATTCCC -ACGGAATCCGAAACTCTGTTCTCG -ACGGAATCCGAAACTCTGTAGACG -ACGGAATCCGAAACTCTGGTAACG -ACGGAATCCGAAACTCTGACTTCG -ACGGAATCCGAAACTCTGTACGCA -ACGGAATCCGAAACTCTGCTTGCA -ACGGAATCCGAAACTCTGCGAACA -ACGGAATCCGAAACTCTGCAGTCA -ACGGAATCCGAAACTCTGGATCCA -ACGGAATCCGAAACTCTGACGACA -ACGGAATCCGAAACTCTGAGCTCA -ACGGAATCCGAAACTCTGTCACGT -ACGGAATCCGAAACTCTGCGTAGT -ACGGAATCCGAAACTCTGGTCAGT -ACGGAATCCGAAACTCTGGAAGGT -ACGGAATCCGAAACTCTGAACCGT -ACGGAATCCGAAACTCTGTTGTGC -ACGGAATCCGAAACTCTGCTAAGC -ACGGAATCCGAAACTCTGACTAGC -ACGGAATCCGAAACTCTGAGATGC -ACGGAATCCGAAACTCTGTGAAGG -ACGGAATCCGAAACTCTGCAATGG -ACGGAATCCGAAACTCTGATGAGG -ACGGAATCCGAAACTCTGAATGGG -ACGGAATCCGAAACTCTGTCCTGA -ACGGAATCCGAAACTCTGTAGCGA -ACGGAATCCGAAACTCTGCACAGA -ACGGAATCCGAAACTCTGGCAAGA -ACGGAATCCGAAACTCTGGGTTGA -ACGGAATCCGAAACTCTGTCCGAT -ACGGAATCCGAAACTCTGTGGCAT -ACGGAATCCGAAACTCTGCGAGAT -ACGGAATCCGAAACTCTGTACCAC -ACGGAATCCGAAACTCTGCAGAAC -ACGGAATCCGAAACTCTGGTCTAC -ACGGAATCCGAAACTCTGACGTAC -ACGGAATCCGAAACTCTGAGTGAC -ACGGAATCCGAAACTCTGCTGTAG -ACGGAATCCGAAACTCTGCCTAAG -ACGGAATCCGAAACTCTGGTTCAG -ACGGAATCCGAAACTCTGGCATAG -ACGGAATCCGAAACTCTGGACAAG -ACGGAATCCGAAACTCTGAAGCAG -ACGGAATCCGAAACTCTGCGTCAA -ACGGAATCCGAAACTCTGGCTGAA -ACGGAATCCGAAACTCTGAGTACG -ACGGAATCCGAAACTCTGATCCGA -ACGGAATCCGAAACTCTGATGGGA -ACGGAATCCGAAACTCTGGTGCAA -ACGGAATCCGAAACTCTGGAGGAA -ACGGAATCCGAAACTCTGCAGGTA -ACGGAATCCGAAACTCTGGACTCT -ACGGAATCCGAAACTCTGAGTCCT -ACGGAATCCGAAACTCTGTAAGCC -ACGGAATCCGAAACTCTGATAGCC -ACGGAATCCGAAACTCTGTAACCG -ACGGAATCCGAAACTCTGATGCCA -ACGGAATCCGAACCTCAAGGAAAC -ACGGAATCCGAACCTCAAAACACC -ACGGAATCCGAACCTCAAATCGAG -ACGGAATCCGAACCTCAACTCCTT -ACGGAATCCGAACCTCAACCTGTT -ACGGAATCCGAACCTCAACGGTTT -ACGGAATCCGAACCTCAAGTGGTT -ACGGAATCCGAACCTCAAGCCTTT -ACGGAATCCGAACCTCAAGGTCTT -ACGGAATCCGAACCTCAAACGCTT -ACGGAATCCGAACCTCAAAGCGTT -ACGGAATCCGAACCTCAATTCGTC -ACGGAATCCGAACCTCAATCTCTC -ACGGAATCCGAACCTCAATGGATC -ACGGAATCCGAACCTCAACACTTC -ACGGAATCCGAACCTCAAGTACTC -ACGGAATCCGAACCTCAAGATGTC -ACGGAATCCGAACCTCAAACAGTC -ACGGAATCCGAACCTCAATTGCTG -ACGGAATCCGAACCTCAATCCATG -ACGGAATCCGAACCTCAATGTGTG -ACGGAATCCGAACCTCAACTAGTG -ACGGAATCCGAACCTCAACATCTG -ACGGAATCCGAACCTCAAGAGTTG -ACGGAATCCGAACCTCAAAGACTG -ACGGAATCCGAACCTCAATCGGTA -ACGGAATCCGAACCTCAATGCCTA -ACGGAATCCGAACCTCAACCACTA -ACGGAATCCGAACCTCAAGGAGTA -ACGGAATCCGAACCTCAATCGTCT -ACGGAATCCGAACCTCAATGCACT -ACGGAATCCGAACCTCAACTGACT -ACGGAATCCGAACCTCAACAACCT -ACGGAATCCGAACCTCAAGCTACT -ACGGAATCCGAACCTCAAGGATCT -ACGGAATCCGAACCTCAAAAGGCT -ACGGAATCCGAACCTCAATCAACC -ACGGAATCCGAACCTCAATGTTCC -ACGGAATCCGAACCTCAAATTCCC -ACGGAATCCGAACCTCAATTCTCG -ACGGAATCCGAACCTCAATAGACG -ACGGAATCCGAACCTCAAGTAACG -ACGGAATCCGAACCTCAAACTTCG -ACGGAATCCGAACCTCAATACGCA -ACGGAATCCGAACCTCAACTTGCA -ACGGAATCCGAACCTCAACGAACA -ACGGAATCCGAACCTCAACAGTCA -ACGGAATCCGAACCTCAAGATCCA -ACGGAATCCGAACCTCAAACGACA -ACGGAATCCGAACCTCAAAGCTCA -ACGGAATCCGAACCTCAATCACGT -ACGGAATCCGAACCTCAACGTAGT -ACGGAATCCGAACCTCAAGTCAGT -ACGGAATCCGAACCTCAAGAAGGT -ACGGAATCCGAACCTCAAAACCGT -ACGGAATCCGAACCTCAATTGTGC -ACGGAATCCGAACCTCAACTAAGC -ACGGAATCCGAACCTCAAACTAGC -ACGGAATCCGAACCTCAAAGATGC -ACGGAATCCGAACCTCAATGAAGG -ACGGAATCCGAACCTCAACAATGG -ACGGAATCCGAACCTCAAATGAGG -ACGGAATCCGAACCTCAAAATGGG -ACGGAATCCGAACCTCAATCCTGA -ACGGAATCCGAACCTCAATAGCGA -ACGGAATCCGAACCTCAACACAGA -ACGGAATCCGAACCTCAAGCAAGA -ACGGAATCCGAACCTCAAGGTTGA -ACGGAATCCGAACCTCAATCCGAT -ACGGAATCCGAACCTCAATGGCAT -ACGGAATCCGAACCTCAACGAGAT -ACGGAATCCGAACCTCAATACCAC -ACGGAATCCGAACCTCAACAGAAC -ACGGAATCCGAACCTCAAGTCTAC -ACGGAATCCGAACCTCAAACGTAC -ACGGAATCCGAACCTCAAAGTGAC -ACGGAATCCGAACCTCAACTGTAG -ACGGAATCCGAACCTCAACCTAAG -ACGGAATCCGAACCTCAAGTTCAG -ACGGAATCCGAACCTCAAGCATAG -ACGGAATCCGAACCTCAAGACAAG -ACGGAATCCGAACCTCAAAAGCAG -ACGGAATCCGAACCTCAACGTCAA -ACGGAATCCGAACCTCAAGCTGAA -ACGGAATCCGAACCTCAAAGTACG -ACGGAATCCGAACCTCAAATCCGA -ACGGAATCCGAACCTCAAATGGGA -ACGGAATCCGAACCTCAAGTGCAA -ACGGAATCCGAACCTCAAGAGGAA -ACGGAATCCGAACCTCAACAGGTA -ACGGAATCCGAACCTCAAGACTCT -ACGGAATCCGAACCTCAAAGTCCT -ACGGAATCCGAACCTCAATAAGCC -ACGGAATCCGAACCTCAAATAGCC -ACGGAATCCGAACCTCAATAACCG -ACGGAATCCGAACCTCAAATGCCA -ACGGAATCCGAAACTGCTGGAAAC -ACGGAATCCGAAACTGCTAACACC -ACGGAATCCGAAACTGCTATCGAG -ACGGAATCCGAAACTGCTCTCCTT -ACGGAATCCGAAACTGCTCCTGTT -ACGGAATCCGAAACTGCTCGGTTT -ACGGAATCCGAAACTGCTGTGGTT -ACGGAATCCGAAACTGCTGCCTTT -ACGGAATCCGAAACTGCTGGTCTT -ACGGAATCCGAAACTGCTACGCTT -ACGGAATCCGAAACTGCTAGCGTT -ACGGAATCCGAAACTGCTTTCGTC -ACGGAATCCGAAACTGCTTCTCTC -ACGGAATCCGAAACTGCTTGGATC -ACGGAATCCGAAACTGCTCACTTC -ACGGAATCCGAAACTGCTGTACTC -ACGGAATCCGAAACTGCTGATGTC -ACGGAATCCGAAACTGCTACAGTC -ACGGAATCCGAAACTGCTTTGCTG -ACGGAATCCGAAACTGCTTCCATG -ACGGAATCCGAAACTGCTTGTGTG -ACGGAATCCGAAACTGCTCTAGTG -ACGGAATCCGAAACTGCTCATCTG -ACGGAATCCGAAACTGCTGAGTTG -ACGGAATCCGAAACTGCTAGACTG -ACGGAATCCGAAACTGCTTCGGTA -ACGGAATCCGAAACTGCTTGCCTA -ACGGAATCCGAAACTGCTCCACTA -ACGGAATCCGAAACTGCTGGAGTA -ACGGAATCCGAAACTGCTTCGTCT -ACGGAATCCGAAACTGCTTGCACT -ACGGAATCCGAAACTGCTCTGACT -ACGGAATCCGAAACTGCTCAACCT -ACGGAATCCGAAACTGCTGCTACT -ACGGAATCCGAAACTGCTGGATCT -ACGGAATCCGAAACTGCTAAGGCT -ACGGAATCCGAAACTGCTTCAACC -ACGGAATCCGAAACTGCTTGTTCC -ACGGAATCCGAAACTGCTATTCCC -ACGGAATCCGAAACTGCTTTCTCG -ACGGAATCCGAAACTGCTTAGACG -ACGGAATCCGAAACTGCTGTAACG -ACGGAATCCGAAACTGCTACTTCG -ACGGAATCCGAAACTGCTTACGCA -ACGGAATCCGAAACTGCTCTTGCA -ACGGAATCCGAAACTGCTCGAACA -ACGGAATCCGAAACTGCTCAGTCA -ACGGAATCCGAAACTGCTGATCCA -ACGGAATCCGAAACTGCTACGACA -ACGGAATCCGAAACTGCTAGCTCA -ACGGAATCCGAAACTGCTTCACGT -ACGGAATCCGAAACTGCTCGTAGT -ACGGAATCCGAAACTGCTGTCAGT -ACGGAATCCGAAACTGCTGAAGGT -ACGGAATCCGAAACTGCTAACCGT -ACGGAATCCGAAACTGCTTTGTGC -ACGGAATCCGAAACTGCTCTAAGC -ACGGAATCCGAAACTGCTACTAGC -ACGGAATCCGAAACTGCTAGATGC -ACGGAATCCGAAACTGCTTGAAGG -ACGGAATCCGAAACTGCTCAATGG -ACGGAATCCGAAACTGCTATGAGG -ACGGAATCCGAAACTGCTAATGGG -ACGGAATCCGAAACTGCTTCCTGA -ACGGAATCCGAAACTGCTTAGCGA -ACGGAATCCGAAACTGCTCACAGA -ACGGAATCCGAAACTGCTGCAAGA -ACGGAATCCGAAACTGCTGGTTGA -ACGGAATCCGAAACTGCTTCCGAT -ACGGAATCCGAAACTGCTTGGCAT -ACGGAATCCGAAACTGCTCGAGAT -ACGGAATCCGAAACTGCTTACCAC -ACGGAATCCGAAACTGCTCAGAAC -ACGGAATCCGAAACTGCTGTCTAC -ACGGAATCCGAAACTGCTACGTAC -ACGGAATCCGAAACTGCTAGTGAC -ACGGAATCCGAAACTGCTCTGTAG -ACGGAATCCGAAACTGCTCCTAAG -ACGGAATCCGAAACTGCTGTTCAG -ACGGAATCCGAAACTGCTGCATAG -ACGGAATCCGAAACTGCTGACAAG -ACGGAATCCGAAACTGCTAAGCAG -ACGGAATCCGAAACTGCTCGTCAA -ACGGAATCCGAAACTGCTGCTGAA -ACGGAATCCGAAACTGCTAGTACG -ACGGAATCCGAAACTGCTATCCGA -ACGGAATCCGAAACTGCTATGGGA -ACGGAATCCGAAACTGCTGTGCAA -ACGGAATCCGAAACTGCTGAGGAA -ACGGAATCCGAAACTGCTCAGGTA -ACGGAATCCGAAACTGCTGACTCT -ACGGAATCCGAAACTGCTAGTCCT -ACGGAATCCGAAACTGCTTAAGCC -ACGGAATCCGAAACTGCTATAGCC -ACGGAATCCGAAACTGCTTAACCG -ACGGAATCCGAAACTGCTATGCCA -ACGGAATCCGAATCTGGAGGAAAC -ACGGAATCCGAATCTGGAAACACC -ACGGAATCCGAATCTGGAATCGAG -ACGGAATCCGAATCTGGACTCCTT -ACGGAATCCGAATCTGGACCTGTT -ACGGAATCCGAATCTGGACGGTTT -ACGGAATCCGAATCTGGAGTGGTT -ACGGAATCCGAATCTGGAGCCTTT -ACGGAATCCGAATCTGGAGGTCTT -ACGGAATCCGAATCTGGAACGCTT -ACGGAATCCGAATCTGGAAGCGTT -ACGGAATCCGAATCTGGATTCGTC -ACGGAATCCGAATCTGGATCTCTC -ACGGAATCCGAATCTGGATGGATC -ACGGAATCCGAATCTGGACACTTC -ACGGAATCCGAATCTGGAGTACTC -ACGGAATCCGAATCTGGAGATGTC -ACGGAATCCGAATCTGGAACAGTC -ACGGAATCCGAATCTGGATTGCTG -ACGGAATCCGAATCTGGATCCATG -ACGGAATCCGAATCTGGATGTGTG -ACGGAATCCGAATCTGGACTAGTG -ACGGAATCCGAATCTGGACATCTG -ACGGAATCCGAATCTGGAGAGTTG -ACGGAATCCGAATCTGGAAGACTG -ACGGAATCCGAATCTGGATCGGTA -ACGGAATCCGAATCTGGATGCCTA -ACGGAATCCGAATCTGGACCACTA -ACGGAATCCGAATCTGGAGGAGTA -ACGGAATCCGAATCTGGATCGTCT -ACGGAATCCGAATCTGGATGCACT -ACGGAATCCGAATCTGGACTGACT -ACGGAATCCGAATCTGGACAACCT -ACGGAATCCGAATCTGGAGCTACT -ACGGAATCCGAATCTGGAGGATCT -ACGGAATCCGAATCTGGAAAGGCT -ACGGAATCCGAATCTGGATCAACC -ACGGAATCCGAATCTGGATGTTCC -ACGGAATCCGAATCTGGAATTCCC -ACGGAATCCGAATCTGGATTCTCG -ACGGAATCCGAATCTGGATAGACG -ACGGAATCCGAATCTGGAGTAACG -ACGGAATCCGAATCTGGAACTTCG -ACGGAATCCGAATCTGGATACGCA -ACGGAATCCGAATCTGGACTTGCA -ACGGAATCCGAATCTGGACGAACA -ACGGAATCCGAATCTGGACAGTCA -ACGGAATCCGAATCTGGAGATCCA -ACGGAATCCGAATCTGGAACGACA -ACGGAATCCGAATCTGGAAGCTCA -ACGGAATCCGAATCTGGATCACGT -ACGGAATCCGAATCTGGACGTAGT -ACGGAATCCGAATCTGGAGTCAGT -ACGGAATCCGAATCTGGAGAAGGT -ACGGAATCCGAATCTGGAAACCGT -ACGGAATCCGAATCTGGATTGTGC -ACGGAATCCGAATCTGGACTAAGC -ACGGAATCCGAATCTGGAACTAGC -ACGGAATCCGAATCTGGAAGATGC -ACGGAATCCGAATCTGGATGAAGG -ACGGAATCCGAATCTGGACAATGG -ACGGAATCCGAATCTGGAATGAGG -ACGGAATCCGAATCTGGAAATGGG -ACGGAATCCGAATCTGGATCCTGA -ACGGAATCCGAATCTGGATAGCGA -ACGGAATCCGAATCTGGACACAGA -ACGGAATCCGAATCTGGAGCAAGA -ACGGAATCCGAATCTGGAGGTTGA -ACGGAATCCGAATCTGGATCCGAT -ACGGAATCCGAATCTGGATGGCAT -ACGGAATCCGAATCTGGACGAGAT -ACGGAATCCGAATCTGGATACCAC -ACGGAATCCGAATCTGGACAGAAC -ACGGAATCCGAATCTGGAGTCTAC -ACGGAATCCGAATCTGGAACGTAC -ACGGAATCCGAATCTGGAAGTGAC -ACGGAATCCGAATCTGGACTGTAG -ACGGAATCCGAATCTGGACCTAAG -ACGGAATCCGAATCTGGAGTTCAG -ACGGAATCCGAATCTGGAGCATAG -ACGGAATCCGAATCTGGAGACAAG -ACGGAATCCGAATCTGGAAAGCAG -ACGGAATCCGAATCTGGACGTCAA -ACGGAATCCGAATCTGGAGCTGAA -ACGGAATCCGAATCTGGAAGTACG -ACGGAATCCGAATCTGGAATCCGA -ACGGAATCCGAATCTGGAATGGGA -ACGGAATCCGAATCTGGAGTGCAA -ACGGAATCCGAATCTGGAGAGGAA -ACGGAATCCGAATCTGGACAGGTA -ACGGAATCCGAATCTGGAGACTCT -ACGGAATCCGAATCTGGAAGTCCT -ACGGAATCCGAATCTGGATAAGCC -ACGGAATCCGAATCTGGAATAGCC -ACGGAATCCGAATCTGGATAACCG -ACGGAATCCGAATCTGGAATGCCA -ACGGAATCCGAAGCTAAGGGAAAC -ACGGAATCCGAAGCTAAGAACACC -ACGGAATCCGAAGCTAAGATCGAG -ACGGAATCCGAAGCTAAGCTCCTT -ACGGAATCCGAAGCTAAGCCTGTT -ACGGAATCCGAAGCTAAGCGGTTT -ACGGAATCCGAAGCTAAGGTGGTT -ACGGAATCCGAAGCTAAGGCCTTT -ACGGAATCCGAAGCTAAGGGTCTT -ACGGAATCCGAAGCTAAGACGCTT -ACGGAATCCGAAGCTAAGAGCGTT -ACGGAATCCGAAGCTAAGTTCGTC -ACGGAATCCGAAGCTAAGTCTCTC -ACGGAATCCGAAGCTAAGTGGATC -ACGGAATCCGAAGCTAAGCACTTC -ACGGAATCCGAAGCTAAGGTACTC -ACGGAATCCGAAGCTAAGGATGTC -ACGGAATCCGAAGCTAAGACAGTC -ACGGAATCCGAAGCTAAGTTGCTG -ACGGAATCCGAAGCTAAGTCCATG -ACGGAATCCGAAGCTAAGTGTGTG -ACGGAATCCGAAGCTAAGCTAGTG -ACGGAATCCGAAGCTAAGCATCTG -ACGGAATCCGAAGCTAAGGAGTTG -ACGGAATCCGAAGCTAAGAGACTG -ACGGAATCCGAAGCTAAGTCGGTA -ACGGAATCCGAAGCTAAGTGCCTA -ACGGAATCCGAAGCTAAGCCACTA -ACGGAATCCGAAGCTAAGGGAGTA -ACGGAATCCGAAGCTAAGTCGTCT -ACGGAATCCGAAGCTAAGTGCACT -ACGGAATCCGAAGCTAAGCTGACT -ACGGAATCCGAAGCTAAGCAACCT -ACGGAATCCGAAGCTAAGGCTACT -ACGGAATCCGAAGCTAAGGGATCT -ACGGAATCCGAAGCTAAGAAGGCT -ACGGAATCCGAAGCTAAGTCAACC -ACGGAATCCGAAGCTAAGTGTTCC -ACGGAATCCGAAGCTAAGATTCCC -ACGGAATCCGAAGCTAAGTTCTCG -ACGGAATCCGAAGCTAAGTAGACG -ACGGAATCCGAAGCTAAGGTAACG -ACGGAATCCGAAGCTAAGACTTCG -ACGGAATCCGAAGCTAAGTACGCA -ACGGAATCCGAAGCTAAGCTTGCA -ACGGAATCCGAAGCTAAGCGAACA -ACGGAATCCGAAGCTAAGCAGTCA -ACGGAATCCGAAGCTAAGGATCCA -ACGGAATCCGAAGCTAAGACGACA -ACGGAATCCGAAGCTAAGAGCTCA -ACGGAATCCGAAGCTAAGTCACGT -ACGGAATCCGAAGCTAAGCGTAGT -ACGGAATCCGAAGCTAAGGTCAGT -ACGGAATCCGAAGCTAAGGAAGGT -ACGGAATCCGAAGCTAAGAACCGT -ACGGAATCCGAAGCTAAGTTGTGC -ACGGAATCCGAAGCTAAGCTAAGC -ACGGAATCCGAAGCTAAGACTAGC -ACGGAATCCGAAGCTAAGAGATGC -ACGGAATCCGAAGCTAAGTGAAGG -ACGGAATCCGAAGCTAAGCAATGG -ACGGAATCCGAAGCTAAGATGAGG -ACGGAATCCGAAGCTAAGAATGGG -ACGGAATCCGAAGCTAAGTCCTGA -ACGGAATCCGAAGCTAAGTAGCGA -ACGGAATCCGAAGCTAAGCACAGA -ACGGAATCCGAAGCTAAGGCAAGA -ACGGAATCCGAAGCTAAGGGTTGA -ACGGAATCCGAAGCTAAGTCCGAT -ACGGAATCCGAAGCTAAGTGGCAT -ACGGAATCCGAAGCTAAGCGAGAT -ACGGAATCCGAAGCTAAGTACCAC -ACGGAATCCGAAGCTAAGCAGAAC -ACGGAATCCGAAGCTAAGGTCTAC -ACGGAATCCGAAGCTAAGACGTAC -ACGGAATCCGAAGCTAAGAGTGAC -ACGGAATCCGAAGCTAAGCTGTAG -ACGGAATCCGAAGCTAAGCCTAAG -ACGGAATCCGAAGCTAAGGTTCAG -ACGGAATCCGAAGCTAAGGCATAG -ACGGAATCCGAAGCTAAGGACAAG -ACGGAATCCGAAGCTAAGAAGCAG -ACGGAATCCGAAGCTAAGCGTCAA -ACGGAATCCGAAGCTAAGGCTGAA -ACGGAATCCGAAGCTAAGAGTACG -ACGGAATCCGAAGCTAAGATCCGA -ACGGAATCCGAAGCTAAGATGGGA -ACGGAATCCGAAGCTAAGGTGCAA -ACGGAATCCGAAGCTAAGGAGGAA -ACGGAATCCGAAGCTAAGCAGGTA -ACGGAATCCGAAGCTAAGGACTCT -ACGGAATCCGAAGCTAAGAGTCCT -ACGGAATCCGAAGCTAAGTAAGCC -ACGGAATCCGAAGCTAAGATAGCC -ACGGAATCCGAAGCTAAGTAACCG -ACGGAATCCGAAGCTAAGATGCCA -ACGGAATCCGAAACCTCAGGAAAC -ACGGAATCCGAAACCTCAAACACC -ACGGAATCCGAAACCTCAATCGAG -ACGGAATCCGAAACCTCACTCCTT -ACGGAATCCGAAACCTCACCTGTT -ACGGAATCCGAAACCTCACGGTTT -ACGGAATCCGAAACCTCAGTGGTT -ACGGAATCCGAAACCTCAGCCTTT -ACGGAATCCGAAACCTCAGGTCTT -ACGGAATCCGAAACCTCAACGCTT -ACGGAATCCGAAACCTCAAGCGTT -ACGGAATCCGAAACCTCATTCGTC -ACGGAATCCGAAACCTCATCTCTC -ACGGAATCCGAAACCTCATGGATC -ACGGAATCCGAAACCTCACACTTC -ACGGAATCCGAAACCTCAGTACTC -ACGGAATCCGAAACCTCAGATGTC -ACGGAATCCGAAACCTCAACAGTC -ACGGAATCCGAAACCTCATTGCTG -ACGGAATCCGAAACCTCATCCATG -ACGGAATCCGAAACCTCATGTGTG -ACGGAATCCGAAACCTCACTAGTG -ACGGAATCCGAAACCTCACATCTG -ACGGAATCCGAAACCTCAGAGTTG -ACGGAATCCGAAACCTCAAGACTG -ACGGAATCCGAAACCTCATCGGTA -ACGGAATCCGAAACCTCATGCCTA -ACGGAATCCGAAACCTCACCACTA -ACGGAATCCGAAACCTCAGGAGTA -ACGGAATCCGAAACCTCATCGTCT -ACGGAATCCGAAACCTCATGCACT -ACGGAATCCGAAACCTCACTGACT -ACGGAATCCGAAACCTCACAACCT -ACGGAATCCGAAACCTCAGCTACT -ACGGAATCCGAAACCTCAGGATCT -ACGGAATCCGAAACCTCAAAGGCT -ACGGAATCCGAAACCTCATCAACC -ACGGAATCCGAAACCTCATGTTCC -ACGGAATCCGAAACCTCAATTCCC -ACGGAATCCGAAACCTCATTCTCG -ACGGAATCCGAAACCTCATAGACG -ACGGAATCCGAAACCTCAGTAACG -ACGGAATCCGAAACCTCAACTTCG -ACGGAATCCGAAACCTCATACGCA -ACGGAATCCGAAACCTCACTTGCA -ACGGAATCCGAAACCTCACGAACA -ACGGAATCCGAAACCTCACAGTCA -ACGGAATCCGAAACCTCAGATCCA -ACGGAATCCGAAACCTCAACGACA -ACGGAATCCGAAACCTCAAGCTCA -ACGGAATCCGAAACCTCATCACGT -ACGGAATCCGAAACCTCACGTAGT -ACGGAATCCGAAACCTCAGTCAGT -ACGGAATCCGAAACCTCAGAAGGT -ACGGAATCCGAAACCTCAAACCGT -ACGGAATCCGAAACCTCATTGTGC -ACGGAATCCGAAACCTCACTAAGC -ACGGAATCCGAAACCTCAACTAGC -ACGGAATCCGAAACCTCAAGATGC -ACGGAATCCGAAACCTCATGAAGG -ACGGAATCCGAAACCTCACAATGG -ACGGAATCCGAAACCTCAATGAGG -ACGGAATCCGAAACCTCAAATGGG -ACGGAATCCGAAACCTCATCCTGA -ACGGAATCCGAAACCTCATAGCGA -ACGGAATCCGAAACCTCACACAGA -ACGGAATCCGAAACCTCAGCAAGA -ACGGAATCCGAAACCTCAGGTTGA -ACGGAATCCGAAACCTCATCCGAT -ACGGAATCCGAAACCTCATGGCAT -ACGGAATCCGAAACCTCACGAGAT -ACGGAATCCGAAACCTCATACCAC -ACGGAATCCGAAACCTCACAGAAC -ACGGAATCCGAAACCTCAGTCTAC -ACGGAATCCGAAACCTCAACGTAC -ACGGAATCCGAAACCTCAAGTGAC -ACGGAATCCGAAACCTCACTGTAG -ACGGAATCCGAAACCTCACCTAAG -ACGGAATCCGAAACCTCAGTTCAG -ACGGAATCCGAAACCTCAGCATAG -ACGGAATCCGAAACCTCAGACAAG -ACGGAATCCGAAACCTCAAAGCAG -ACGGAATCCGAAACCTCACGTCAA -ACGGAATCCGAAACCTCAGCTGAA -ACGGAATCCGAAACCTCAAGTACG -ACGGAATCCGAAACCTCAATCCGA -ACGGAATCCGAAACCTCAATGGGA -ACGGAATCCGAAACCTCAGTGCAA -ACGGAATCCGAAACCTCAGAGGAA -ACGGAATCCGAAACCTCACAGGTA -ACGGAATCCGAAACCTCAGACTCT -ACGGAATCCGAAACCTCAAGTCCT -ACGGAATCCGAAACCTCATAAGCC -ACGGAATCCGAAACCTCAATAGCC -ACGGAATCCGAAACCTCATAACCG -ACGGAATCCGAAACCTCAATGCCA -ACGGAATCCGAATCCTGTGGAAAC -ACGGAATCCGAATCCTGTAACACC -ACGGAATCCGAATCCTGTATCGAG -ACGGAATCCGAATCCTGTCTCCTT -ACGGAATCCGAATCCTGTCCTGTT -ACGGAATCCGAATCCTGTCGGTTT -ACGGAATCCGAATCCTGTGTGGTT -ACGGAATCCGAATCCTGTGCCTTT -ACGGAATCCGAATCCTGTGGTCTT -ACGGAATCCGAATCCTGTACGCTT -ACGGAATCCGAATCCTGTAGCGTT -ACGGAATCCGAATCCTGTTTCGTC -ACGGAATCCGAATCCTGTTCTCTC -ACGGAATCCGAATCCTGTTGGATC -ACGGAATCCGAATCCTGTCACTTC -ACGGAATCCGAATCCTGTGTACTC -ACGGAATCCGAATCCTGTGATGTC -ACGGAATCCGAATCCTGTACAGTC -ACGGAATCCGAATCCTGTTTGCTG -ACGGAATCCGAATCCTGTTCCATG -ACGGAATCCGAATCCTGTTGTGTG -ACGGAATCCGAATCCTGTCTAGTG -ACGGAATCCGAATCCTGTCATCTG -ACGGAATCCGAATCCTGTGAGTTG -ACGGAATCCGAATCCTGTAGACTG -ACGGAATCCGAATCCTGTTCGGTA -ACGGAATCCGAATCCTGTTGCCTA -ACGGAATCCGAATCCTGTCCACTA -ACGGAATCCGAATCCTGTGGAGTA -ACGGAATCCGAATCCTGTTCGTCT -ACGGAATCCGAATCCTGTTGCACT -ACGGAATCCGAATCCTGTCTGACT -ACGGAATCCGAATCCTGTCAACCT -ACGGAATCCGAATCCTGTGCTACT -ACGGAATCCGAATCCTGTGGATCT -ACGGAATCCGAATCCTGTAAGGCT -ACGGAATCCGAATCCTGTTCAACC -ACGGAATCCGAATCCTGTTGTTCC -ACGGAATCCGAATCCTGTATTCCC -ACGGAATCCGAATCCTGTTTCTCG -ACGGAATCCGAATCCTGTTAGACG -ACGGAATCCGAATCCTGTGTAACG -ACGGAATCCGAATCCTGTACTTCG -ACGGAATCCGAATCCTGTTACGCA -ACGGAATCCGAATCCTGTCTTGCA -ACGGAATCCGAATCCTGTCGAACA -ACGGAATCCGAATCCTGTCAGTCA -ACGGAATCCGAATCCTGTGATCCA -ACGGAATCCGAATCCTGTACGACA -ACGGAATCCGAATCCTGTAGCTCA -ACGGAATCCGAATCCTGTTCACGT -ACGGAATCCGAATCCTGTCGTAGT -ACGGAATCCGAATCCTGTGTCAGT -ACGGAATCCGAATCCTGTGAAGGT -ACGGAATCCGAATCCTGTAACCGT -ACGGAATCCGAATCCTGTTTGTGC -ACGGAATCCGAATCCTGTCTAAGC -ACGGAATCCGAATCCTGTACTAGC -ACGGAATCCGAATCCTGTAGATGC -ACGGAATCCGAATCCTGTTGAAGG -ACGGAATCCGAATCCTGTCAATGG -ACGGAATCCGAATCCTGTATGAGG -ACGGAATCCGAATCCTGTAATGGG -ACGGAATCCGAATCCTGTTCCTGA -ACGGAATCCGAATCCTGTTAGCGA -ACGGAATCCGAATCCTGTCACAGA -ACGGAATCCGAATCCTGTGCAAGA -ACGGAATCCGAATCCTGTGGTTGA -ACGGAATCCGAATCCTGTTCCGAT -ACGGAATCCGAATCCTGTTGGCAT -ACGGAATCCGAATCCTGTCGAGAT -ACGGAATCCGAATCCTGTTACCAC -ACGGAATCCGAATCCTGTCAGAAC -ACGGAATCCGAATCCTGTGTCTAC -ACGGAATCCGAATCCTGTACGTAC -ACGGAATCCGAATCCTGTAGTGAC -ACGGAATCCGAATCCTGTCTGTAG -ACGGAATCCGAATCCTGTCCTAAG -ACGGAATCCGAATCCTGTGTTCAG -ACGGAATCCGAATCCTGTGCATAG -ACGGAATCCGAATCCTGTGACAAG -ACGGAATCCGAATCCTGTAAGCAG -ACGGAATCCGAATCCTGTCGTCAA -ACGGAATCCGAATCCTGTGCTGAA -ACGGAATCCGAATCCTGTAGTACG -ACGGAATCCGAATCCTGTATCCGA -ACGGAATCCGAATCCTGTATGGGA -ACGGAATCCGAATCCTGTGTGCAA -ACGGAATCCGAATCCTGTGAGGAA -ACGGAATCCGAATCCTGTCAGGTA -ACGGAATCCGAATCCTGTGACTCT -ACGGAATCCGAATCCTGTAGTCCT -ACGGAATCCGAATCCTGTTAAGCC -ACGGAATCCGAATCCTGTATAGCC -ACGGAATCCGAATCCTGTTAACCG -ACGGAATCCGAATCCTGTATGCCA -ACGGAATCCGAACCCATTGGAAAC -ACGGAATCCGAACCCATTAACACC -ACGGAATCCGAACCCATTATCGAG -ACGGAATCCGAACCCATTCTCCTT -ACGGAATCCGAACCCATTCCTGTT -ACGGAATCCGAACCCATTCGGTTT -ACGGAATCCGAACCCATTGTGGTT -ACGGAATCCGAACCCATTGCCTTT -ACGGAATCCGAACCCATTGGTCTT -ACGGAATCCGAACCCATTACGCTT -ACGGAATCCGAACCCATTAGCGTT -ACGGAATCCGAACCCATTTTCGTC -ACGGAATCCGAACCCATTTCTCTC -ACGGAATCCGAACCCATTTGGATC -ACGGAATCCGAACCCATTCACTTC -ACGGAATCCGAACCCATTGTACTC -ACGGAATCCGAACCCATTGATGTC -ACGGAATCCGAACCCATTACAGTC -ACGGAATCCGAACCCATTTTGCTG -ACGGAATCCGAACCCATTTCCATG -ACGGAATCCGAACCCATTTGTGTG -ACGGAATCCGAACCCATTCTAGTG -ACGGAATCCGAACCCATTCATCTG -ACGGAATCCGAACCCATTGAGTTG -ACGGAATCCGAACCCATTAGACTG -ACGGAATCCGAACCCATTTCGGTA -ACGGAATCCGAACCCATTTGCCTA -ACGGAATCCGAACCCATTCCACTA -ACGGAATCCGAACCCATTGGAGTA -ACGGAATCCGAACCCATTTCGTCT -ACGGAATCCGAACCCATTTGCACT -ACGGAATCCGAACCCATTCTGACT -ACGGAATCCGAACCCATTCAACCT -ACGGAATCCGAACCCATTGCTACT -ACGGAATCCGAACCCATTGGATCT -ACGGAATCCGAACCCATTAAGGCT -ACGGAATCCGAACCCATTTCAACC -ACGGAATCCGAACCCATTTGTTCC -ACGGAATCCGAACCCATTATTCCC -ACGGAATCCGAACCCATTTTCTCG -ACGGAATCCGAACCCATTTAGACG -ACGGAATCCGAACCCATTGTAACG -ACGGAATCCGAACCCATTACTTCG -ACGGAATCCGAACCCATTTACGCA -ACGGAATCCGAACCCATTCTTGCA -ACGGAATCCGAACCCATTCGAACA -ACGGAATCCGAACCCATTCAGTCA -ACGGAATCCGAACCCATTGATCCA -ACGGAATCCGAACCCATTACGACA -ACGGAATCCGAACCCATTAGCTCA -ACGGAATCCGAACCCATTTCACGT -ACGGAATCCGAACCCATTCGTAGT -ACGGAATCCGAACCCATTGTCAGT -ACGGAATCCGAACCCATTGAAGGT -ACGGAATCCGAACCCATTAACCGT -ACGGAATCCGAACCCATTTTGTGC -ACGGAATCCGAACCCATTCTAAGC -ACGGAATCCGAACCCATTACTAGC -ACGGAATCCGAACCCATTAGATGC -ACGGAATCCGAACCCATTTGAAGG -ACGGAATCCGAACCCATTCAATGG -ACGGAATCCGAACCCATTATGAGG -ACGGAATCCGAACCCATTAATGGG -ACGGAATCCGAACCCATTTCCTGA -ACGGAATCCGAACCCATTTAGCGA -ACGGAATCCGAACCCATTCACAGA -ACGGAATCCGAACCCATTGCAAGA -ACGGAATCCGAACCCATTGGTTGA -ACGGAATCCGAACCCATTTCCGAT -ACGGAATCCGAACCCATTTGGCAT -ACGGAATCCGAACCCATTCGAGAT -ACGGAATCCGAACCCATTTACCAC -ACGGAATCCGAACCCATTCAGAAC -ACGGAATCCGAACCCATTGTCTAC -ACGGAATCCGAACCCATTACGTAC -ACGGAATCCGAACCCATTAGTGAC -ACGGAATCCGAACCCATTCTGTAG -ACGGAATCCGAACCCATTCCTAAG -ACGGAATCCGAACCCATTGTTCAG -ACGGAATCCGAACCCATTGCATAG -ACGGAATCCGAACCCATTGACAAG -ACGGAATCCGAACCCATTAAGCAG -ACGGAATCCGAACCCATTCGTCAA -ACGGAATCCGAACCCATTGCTGAA -ACGGAATCCGAACCCATTAGTACG -ACGGAATCCGAACCCATTATCCGA -ACGGAATCCGAACCCATTATGGGA -ACGGAATCCGAACCCATTGTGCAA -ACGGAATCCGAACCCATTGAGGAA -ACGGAATCCGAACCCATTCAGGTA -ACGGAATCCGAACCCATTGACTCT -ACGGAATCCGAACCCATTAGTCCT -ACGGAATCCGAACCCATTTAAGCC -ACGGAATCCGAACCCATTATAGCC -ACGGAATCCGAACCCATTTAACCG -ACGGAATCCGAACCCATTATGCCA -ACGGAATCCGAATCGTTCGGAAAC -ACGGAATCCGAATCGTTCAACACC -ACGGAATCCGAATCGTTCATCGAG -ACGGAATCCGAATCGTTCCTCCTT -ACGGAATCCGAATCGTTCCCTGTT -ACGGAATCCGAATCGTTCCGGTTT -ACGGAATCCGAATCGTTCGTGGTT -ACGGAATCCGAATCGTTCGCCTTT -ACGGAATCCGAATCGTTCGGTCTT -ACGGAATCCGAATCGTTCACGCTT -ACGGAATCCGAATCGTTCAGCGTT -ACGGAATCCGAATCGTTCTTCGTC -ACGGAATCCGAATCGTTCTCTCTC -ACGGAATCCGAATCGTTCTGGATC -ACGGAATCCGAATCGTTCCACTTC -ACGGAATCCGAATCGTTCGTACTC -ACGGAATCCGAATCGTTCGATGTC -ACGGAATCCGAATCGTTCACAGTC -ACGGAATCCGAATCGTTCTTGCTG -ACGGAATCCGAATCGTTCTCCATG -ACGGAATCCGAATCGTTCTGTGTG -ACGGAATCCGAATCGTTCCTAGTG -ACGGAATCCGAATCGTTCCATCTG -ACGGAATCCGAATCGTTCGAGTTG -ACGGAATCCGAATCGTTCAGACTG -ACGGAATCCGAATCGTTCTCGGTA -ACGGAATCCGAATCGTTCTGCCTA -ACGGAATCCGAATCGTTCCCACTA -ACGGAATCCGAATCGTTCGGAGTA -ACGGAATCCGAATCGTTCTCGTCT -ACGGAATCCGAATCGTTCTGCACT -ACGGAATCCGAATCGTTCCTGACT -ACGGAATCCGAATCGTTCCAACCT -ACGGAATCCGAATCGTTCGCTACT -ACGGAATCCGAATCGTTCGGATCT -ACGGAATCCGAATCGTTCAAGGCT -ACGGAATCCGAATCGTTCTCAACC -ACGGAATCCGAATCGTTCTGTTCC -ACGGAATCCGAATCGTTCATTCCC -ACGGAATCCGAATCGTTCTTCTCG -ACGGAATCCGAATCGTTCTAGACG -ACGGAATCCGAATCGTTCGTAACG -ACGGAATCCGAATCGTTCACTTCG -ACGGAATCCGAATCGTTCTACGCA -ACGGAATCCGAATCGTTCCTTGCA -ACGGAATCCGAATCGTTCCGAACA -ACGGAATCCGAATCGTTCCAGTCA -ACGGAATCCGAATCGTTCGATCCA -ACGGAATCCGAATCGTTCACGACA -ACGGAATCCGAATCGTTCAGCTCA -ACGGAATCCGAATCGTTCTCACGT -ACGGAATCCGAATCGTTCCGTAGT -ACGGAATCCGAATCGTTCGTCAGT -ACGGAATCCGAATCGTTCGAAGGT -ACGGAATCCGAATCGTTCAACCGT -ACGGAATCCGAATCGTTCTTGTGC -ACGGAATCCGAATCGTTCCTAAGC -ACGGAATCCGAATCGTTCACTAGC -ACGGAATCCGAATCGTTCAGATGC -ACGGAATCCGAATCGTTCTGAAGG -ACGGAATCCGAATCGTTCCAATGG -ACGGAATCCGAATCGTTCATGAGG -ACGGAATCCGAATCGTTCAATGGG -ACGGAATCCGAATCGTTCTCCTGA -ACGGAATCCGAATCGTTCTAGCGA -ACGGAATCCGAATCGTTCCACAGA -ACGGAATCCGAATCGTTCGCAAGA -ACGGAATCCGAATCGTTCGGTTGA -ACGGAATCCGAATCGTTCTCCGAT -ACGGAATCCGAATCGTTCTGGCAT -ACGGAATCCGAATCGTTCCGAGAT -ACGGAATCCGAATCGTTCTACCAC -ACGGAATCCGAATCGTTCCAGAAC -ACGGAATCCGAATCGTTCGTCTAC -ACGGAATCCGAATCGTTCACGTAC -ACGGAATCCGAATCGTTCAGTGAC -ACGGAATCCGAATCGTTCCTGTAG -ACGGAATCCGAATCGTTCCCTAAG -ACGGAATCCGAATCGTTCGTTCAG -ACGGAATCCGAATCGTTCGCATAG -ACGGAATCCGAATCGTTCGACAAG -ACGGAATCCGAATCGTTCAAGCAG -ACGGAATCCGAATCGTTCCGTCAA -ACGGAATCCGAATCGTTCGCTGAA -ACGGAATCCGAATCGTTCAGTACG -ACGGAATCCGAATCGTTCATCCGA -ACGGAATCCGAATCGTTCATGGGA -ACGGAATCCGAATCGTTCGTGCAA -ACGGAATCCGAATCGTTCGAGGAA -ACGGAATCCGAATCGTTCCAGGTA -ACGGAATCCGAATCGTTCGACTCT -ACGGAATCCGAATCGTTCAGTCCT -ACGGAATCCGAATCGTTCTAAGCC -ACGGAATCCGAATCGTTCATAGCC -ACGGAATCCGAATCGTTCTAACCG -ACGGAATCCGAATCGTTCATGCCA -ACGGAATCCGAAACGTAGGGAAAC -ACGGAATCCGAAACGTAGAACACC -ACGGAATCCGAAACGTAGATCGAG -ACGGAATCCGAAACGTAGCTCCTT -ACGGAATCCGAAACGTAGCCTGTT -ACGGAATCCGAAACGTAGCGGTTT -ACGGAATCCGAAACGTAGGTGGTT -ACGGAATCCGAAACGTAGGCCTTT -ACGGAATCCGAAACGTAGGGTCTT -ACGGAATCCGAAACGTAGACGCTT -ACGGAATCCGAAACGTAGAGCGTT -ACGGAATCCGAAACGTAGTTCGTC -ACGGAATCCGAAACGTAGTCTCTC -ACGGAATCCGAAACGTAGTGGATC -ACGGAATCCGAAACGTAGCACTTC -ACGGAATCCGAAACGTAGGTACTC -ACGGAATCCGAAACGTAGGATGTC -ACGGAATCCGAAACGTAGACAGTC -ACGGAATCCGAAACGTAGTTGCTG -ACGGAATCCGAAACGTAGTCCATG -ACGGAATCCGAAACGTAGTGTGTG -ACGGAATCCGAAACGTAGCTAGTG -ACGGAATCCGAAACGTAGCATCTG -ACGGAATCCGAAACGTAGGAGTTG -ACGGAATCCGAAACGTAGAGACTG -ACGGAATCCGAAACGTAGTCGGTA -ACGGAATCCGAAACGTAGTGCCTA -ACGGAATCCGAAACGTAGCCACTA -ACGGAATCCGAAACGTAGGGAGTA -ACGGAATCCGAAACGTAGTCGTCT -ACGGAATCCGAAACGTAGTGCACT -ACGGAATCCGAAACGTAGCTGACT -ACGGAATCCGAAACGTAGCAACCT -ACGGAATCCGAAACGTAGGCTACT -ACGGAATCCGAAACGTAGGGATCT -ACGGAATCCGAAACGTAGAAGGCT -ACGGAATCCGAAACGTAGTCAACC -ACGGAATCCGAAACGTAGTGTTCC -ACGGAATCCGAAACGTAGATTCCC -ACGGAATCCGAAACGTAGTTCTCG -ACGGAATCCGAAACGTAGTAGACG -ACGGAATCCGAAACGTAGGTAACG -ACGGAATCCGAAACGTAGACTTCG -ACGGAATCCGAAACGTAGTACGCA -ACGGAATCCGAAACGTAGCTTGCA -ACGGAATCCGAAACGTAGCGAACA -ACGGAATCCGAAACGTAGCAGTCA -ACGGAATCCGAAACGTAGGATCCA -ACGGAATCCGAAACGTAGACGACA -ACGGAATCCGAAACGTAGAGCTCA -ACGGAATCCGAAACGTAGTCACGT -ACGGAATCCGAAACGTAGCGTAGT -ACGGAATCCGAAACGTAGGTCAGT -ACGGAATCCGAAACGTAGGAAGGT -ACGGAATCCGAAACGTAGAACCGT -ACGGAATCCGAAACGTAGTTGTGC -ACGGAATCCGAAACGTAGCTAAGC -ACGGAATCCGAAACGTAGACTAGC -ACGGAATCCGAAACGTAGAGATGC -ACGGAATCCGAAACGTAGTGAAGG -ACGGAATCCGAAACGTAGCAATGG -ACGGAATCCGAAACGTAGATGAGG -ACGGAATCCGAAACGTAGAATGGG -ACGGAATCCGAAACGTAGTCCTGA -ACGGAATCCGAAACGTAGTAGCGA -ACGGAATCCGAAACGTAGCACAGA -ACGGAATCCGAAACGTAGGCAAGA -ACGGAATCCGAAACGTAGGGTTGA -ACGGAATCCGAAACGTAGTCCGAT -ACGGAATCCGAAACGTAGTGGCAT -ACGGAATCCGAAACGTAGCGAGAT -ACGGAATCCGAAACGTAGTACCAC -ACGGAATCCGAAACGTAGCAGAAC -ACGGAATCCGAAACGTAGGTCTAC -ACGGAATCCGAAACGTAGACGTAC -ACGGAATCCGAAACGTAGAGTGAC -ACGGAATCCGAAACGTAGCTGTAG -ACGGAATCCGAAACGTAGCCTAAG -ACGGAATCCGAAACGTAGGTTCAG -ACGGAATCCGAAACGTAGGCATAG -ACGGAATCCGAAACGTAGGACAAG -ACGGAATCCGAAACGTAGAAGCAG -ACGGAATCCGAAACGTAGCGTCAA -ACGGAATCCGAAACGTAGGCTGAA -ACGGAATCCGAAACGTAGAGTACG -ACGGAATCCGAAACGTAGATCCGA -ACGGAATCCGAAACGTAGATGGGA -ACGGAATCCGAAACGTAGGTGCAA -ACGGAATCCGAAACGTAGGAGGAA -ACGGAATCCGAAACGTAGCAGGTA -ACGGAATCCGAAACGTAGGACTCT -ACGGAATCCGAAACGTAGAGTCCT -ACGGAATCCGAAACGTAGTAAGCC -ACGGAATCCGAAACGTAGATAGCC -ACGGAATCCGAAACGTAGTAACCG -ACGGAATCCGAAACGTAGATGCCA -ACGGAATCCGAAACGGTAGGAAAC -ACGGAATCCGAAACGGTAAACACC -ACGGAATCCGAAACGGTAATCGAG -ACGGAATCCGAAACGGTACTCCTT -ACGGAATCCGAAACGGTACCTGTT -ACGGAATCCGAAACGGTACGGTTT -ACGGAATCCGAAACGGTAGTGGTT -ACGGAATCCGAAACGGTAGCCTTT -ACGGAATCCGAAACGGTAGGTCTT -ACGGAATCCGAAACGGTAACGCTT -ACGGAATCCGAAACGGTAAGCGTT -ACGGAATCCGAAACGGTATTCGTC -ACGGAATCCGAAACGGTATCTCTC -ACGGAATCCGAAACGGTATGGATC -ACGGAATCCGAAACGGTACACTTC -ACGGAATCCGAAACGGTAGTACTC -ACGGAATCCGAAACGGTAGATGTC -ACGGAATCCGAAACGGTAACAGTC -ACGGAATCCGAAACGGTATTGCTG -ACGGAATCCGAAACGGTATCCATG -ACGGAATCCGAAACGGTATGTGTG -ACGGAATCCGAAACGGTACTAGTG -ACGGAATCCGAAACGGTACATCTG -ACGGAATCCGAAACGGTAGAGTTG -ACGGAATCCGAAACGGTAAGACTG -ACGGAATCCGAAACGGTATCGGTA -ACGGAATCCGAAACGGTATGCCTA -ACGGAATCCGAAACGGTACCACTA -ACGGAATCCGAAACGGTAGGAGTA -ACGGAATCCGAAACGGTATCGTCT -ACGGAATCCGAAACGGTATGCACT -ACGGAATCCGAAACGGTACTGACT -ACGGAATCCGAAACGGTACAACCT -ACGGAATCCGAAACGGTAGCTACT -ACGGAATCCGAAACGGTAGGATCT -ACGGAATCCGAAACGGTAAAGGCT -ACGGAATCCGAAACGGTATCAACC -ACGGAATCCGAAACGGTATGTTCC -ACGGAATCCGAAACGGTAATTCCC -ACGGAATCCGAAACGGTATTCTCG -ACGGAATCCGAAACGGTATAGACG -ACGGAATCCGAAACGGTAGTAACG -ACGGAATCCGAAACGGTAACTTCG -ACGGAATCCGAAACGGTATACGCA -ACGGAATCCGAAACGGTACTTGCA -ACGGAATCCGAAACGGTACGAACA -ACGGAATCCGAAACGGTACAGTCA -ACGGAATCCGAAACGGTAGATCCA -ACGGAATCCGAAACGGTAACGACA -ACGGAATCCGAAACGGTAAGCTCA -ACGGAATCCGAAACGGTATCACGT -ACGGAATCCGAAACGGTACGTAGT -ACGGAATCCGAAACGGTAGTCAGT -ACGGAATCCGAAACGGTAGAAGGT -ACGGAATCCGAAACGGTAAACCGT -ACGGAATCCGAAACGGTATTGTGC -ACGGAATCCGAAACGGTACTAAGC -ACGGAATCCGAAACGGTAACTAGC -ACGGAATCCGAAACGGTAAGATGC -ACGGAATCCGAAACGGTATGAAGG -ACGGAATCCGAAACGGTACAATGG -ACGGAATCCGAAACGGTAATGAGG -ACGGAATCCGAAACGGTAAATGGG -ACGGAATCCGAAACGGTATCCTGA -ACGGAATCCGAAACGGTATAGCGA -ACGGAATCCGAAACGGTACACAGA -ACGGAATCCGAAACGGTAGCAAGA -ACGGAATCCGAAACGGTAGGTTGA -ACGGAATCCGAAACGGTATCCGAT -ACGGAATCCGAAACGGTATGGCAT -ACGGAATCCGAAACGGTACGAGAT -ACGGAATCCGAAACGGTATACCAC -ACGGAATCCGAAACGGTACAGAAC -ACGGAATCCGAAACGGTAGTCTAC -ACGGAATCCGAAACGGTAACGTAC -ACGGAATCCGAAACGGTAAGTGAC -ACGGAATCCGAAACGGTACTGTAG -ACGGAATCCGAAACGGTACCTAAG -ACGGAATCCGAAACGGTAGTTCAG -ACGGAATCCGAAACGGTAGCATAG -ACGGAATCCGAAACGGTAGACAAG -ACGGAATCCGAAACGGTAAAGCAG -ACGGAATCCGAAACGGTACGTCAA -ACGGAATCCGAAACGGTAGCTGAA -ACGGAATCCGAAACGGTAAGTACG -ACGGAATCCGAAACGGTAATCCGA -ACGGAATCCGAAACGGTAATGGGA -ACGGAATCCGAAACGGTAGTGCAA -ACGGAATCCGAAACGGTAGAGGAA -ACGGAATCCGAAACGGTACAGGTA -ACGGAATCCGAAACGGTAGACTCT -ACGGAATCCGAAACGGTAAGTCCT -ACGGAATCCGAAACGGTATAAGCC -ACGGAATCCGAAACGGTAATAGCC -ACGGAATCCGAAACGGTATAACCG -ACGGAATCCGAAACGGTAATGCCA -ACGGAATCCGAATCGACTGGAAAC -ACGGAATCCGAATCGACTAACACC -ACGGAATCCGAATCGACTATCGAG -ACGGAATCCGAATCGACTCTCCTT -ACGGAATCCGAATCGACTCCTGTT -ACGGAATCCGAATCGACTCGGTTT -ACGGAATCCGAATCGACTGTGGTT -ACGGAATCCGAATCGACTGCCTTT -ACGGAATCCGAATCGACTGGTCTT -ACGGAATCCGAATCGACTACGCTT -ACGGAATCCGAATCGACTAGCGTT -ACGGAATCCGAATCGACTTTCGTC -ACGGAATCCGAATCGACTTCTCTC -ACGGAATCCGAATCGACTTGGATC -ACGGAATCCGAATCGACTCACTTC -ACGGAATCCGAATCGACTGTACTC -ACGGAATCCGAATCGACTGATGTC -ACGGAATCCGAATCGACTACAGTC -ACGGAATCCGAATCGACTTTGCTG -ACGGAATCCGAATCGACTTCCATG -ACGGAATCCGAATCGACTTGTGTG -ACGGAATCCGAATCGACTCTAGTG -ACGGAATCCGAATCGACTCATCTG -ACGGAATCCGAATCGACTGAGTTG -ACGGAATCCGAATCGACTAGACTG -ACGGAATCCGAATCGACTTCGGTA -ACGGAATCCGAATCGACTTGCCTA -ACGGAATCCGAATCGACTCCACTA -ACGGAATCCGAATCGACTGGAGTA -ACGGAATCCGAATCGACTTCGTCT -ACGGAATCCGAATCGACTTGCACT -ACGGAATCCGAATCGACTCTGACT -ACGGAATCCGAATCGACTCAACCT -ACGGAATCCGAATCGACTGCTACT -ACGGAATCCGAATCGACTGGATCT -ACGGAATCCGAATCGACTAAGGCT -ACGGAATCCGAATCGACTTCAACC -ACGGAATCCGAATCGACTTGTTCC -ACGGAATCCGAATCGACTATTCCC -ACGGAATCCGAATCGACTTTCTCG -ACGGAATCCGAATCGACTTAGACG -ACGGAATCCGAATCGACTGTAACG -ACGGAATCCGAATCGACTACTTCG -ACGGAATCCGAATCGACTTACGCA -ACGGAATCCGAATCGACTCTTGCA -ACGGAATCCGAATCGACTCGAACA -ACGGAATCCGAATCGACTCAGTCA -ACGGAATCCGAATCGACTGATCCA -ACGGAATCCGAATCGACTACGACA -ACGGAATCCGAATCGACTAGCTCA -ACGGAATCCGAATCGACTTCACGT -ACGGAATCCGAATCGACTCGTAGT -ACGGAATCCGAATCGACTGTCAGT -ACGGAATCCGAATCGACTGAAGGT -ACGGAATCCGAATCGACTAACCGT -ACGGAATCCGAATCGACTTTGTGC -ACGGAATCCGAATCGACTCTAAGC -ACGGAATCCGAATCGACTACTAGC -ACGGAATCCGAATCGACTAGATGC -ACGGAATCCGAATCGACTTGAAGG -ACGGAATCCGAATCGACTCAATGG -ACGGAATCCGAATCGACTATGAGG -ACGGAATCCGAATCGACTAATGGG -ACGGAATCCGAATCGACTTCCTGA -ACGGAATCCGAATCGACTTAGCGA -ACGGAATCCGAATCGACTCACAGA -ACGGAATCCGAATCGACTGCAAGA -ACGGAATCCGAATCGACTGGTTGA -ACGGAATCCGAATCGACTTCCGAT -ACGGAATCCGAATCGACTTGGCAT -ACGGAATCCGAATCGACTCGAGAT -ACGGAATCCGAATCGACTTACCAC -ACGGAATCCGAATCGACTCAGAAC -ACGGAATCCGAATCGACTGTCTAC -ACGGAATCCGAATCGACTACGTAC -ACGGAATCCGAATCGACTAGTGAC -ACGGAATCCGAATCGACTCTGTAG -ACGGAATCCGAATCGACTCCTAAG -ACGGAATCCGAATCGACTGTTCAG -ACGGAATCCGAATCGACTGCATAG -ACGGAATCCGAATCGACTGACAAG -ACGGAATCCGAATCGACTAAGCAG -ACGGAATCCGAATCGACTCGTCAA -ACGGAATCCGAATCGACTGCTGAA -ACGGAATCCGAATCGACTAGTACG -ACGGAATCCGAATCGACTATCCGA -ACGGAATCCGAATCGACTATGGGA -ACGGAATCCGAATCGACTGTGCAA -ACGGAATCCGAATCGACTGAGGAA -ACGGAATCCGAATCGACTCAGGTA -ACGGAATCCGAATCGACTGACTCT -ACGGAATCCGAATCGACTAGTCCT -ACGGAATCCGAATCGACTTAAGCC -ACGGAATCCGAATCGACTATAGCC -ACGGAATCCGAATCGACTTAACCG -ACGGAATCCGAATCGACTATGCCA -ACGGAATCCGAAGCATACGGAAAC -ACGGAATCCGAAGCATACAACACC -ACGGAATCCGAAGCATACATCGAG -ACGGAATCCGAAGCATACCTCCTT -ACGGAATCCGAAGCATACCCTGTT -ACGGAATCCGAAGCATACCGGTTT -ACGGAATCCGAAGCATACGTGGTT -ACGGAATCCGAAGCATACGCCTTT -ACGGAATCCGAAGCATACGGTCTT -ACGGAATCCGAAGCATACACGCTT -ACGGAATCCGAAGCATACAGCGTT -ACGGAATCCGAAGCATACTTCGTC -ACGGAATCCGAAGCATACTCTCTC -ACGGAATCCGAAGCATACTGGATC -ACGGAATCCGAAGCATACCACTTC -ACGGAATCCGAAGCATACGTACTC -ACGGAATCCGAAGCATACGATGTC -ACGGAATCCGAAGCATACACAGTC -ACGGAATCCGAAGCATACTTGCTG -ACGGAATCCGAAGCATACTCCATG -ACGGAATCCGAAGCATACTGTGTG -ACGGAATCCGAAGCATACCTAGTG -ACGGAATCCGAAGCATACCATCTG -ACGGAATCCGAAGCATACGAGTTG -ACGGAATCCGAAGCATACAGACTG -ACGGAATCCGAAGCATACTCGGTA -ACGGAATCCGAAGCATACTGCCTA -ACGGAATCCGAAGCATACCCACTA -ACGGAATCCGAAGCATACGGAGTA -ACGGAATCCGAAGCATACTCGTCT -ACGGAATCCGAAGCATACTGCACT -ACGGAATCCGAAGCATACCTGACT -ACGGAATCCGAAGCATACCAACCT -ACGGAATCCGAAGCATACGCTACT -ACGGAATCCGAAGCATACGGATCT -ACGGAATCCGAAGCATACAAGGCT -ACGGAATCCGAAGCATACTCAACC -ACGGAATCCGAAGCATACTGTTCC -ACGGAATCCGAAGCATACATTCCC -ACGGAATCCGAAGCATACTTCTCG -ACGGAATCCGAAGCATACTAGACG -ACGGAATCCGAAGCATACGTAACG -ACGGAATCCGAAGCATACACTTCG -ACGGAATCCGAAGCATACTACGCA -ACGGAATCCGAAGCATACCTTGCA -ACGGAATCCGAAGCATACCGAACA -ACGGAATCCGAAGCATACCAGTCA -ACGGAATCCGAAGCATACGATCCA -ACGGAATCCGAAGCATACACGACA -ACGGAATCCGAAGCATACAGCTCA -ACGGAATCCGAAGCATACTCACGT -ACGGAATCCGAAGCATACCGTAGT -ACGGAATCCGAAGCATACGTCAGT -ACGGAATCCGAAGCATACGAAGGT -ACGGAATCCGAAGCATACAACCGT -ACGGAATCCGAAGCATACTTGTGC -ACGGAATCCGAAGCATACCTAAGC -ACGGAATCCGAAGCATACACTAGC -ACGGAATCCGAAGCATACAGATGC -ACGGAATCCGAAGCATACTGAAGG -ACGGAATCCGAAGCATACCAATGG -ACGGAATCCGAAGCATACATGAGG -ACGGAATCCGAAGCATACAATGGG -ACGGAATCCGAAGCATACTCCTGA -ACGGAATCCGAAGCATACTAGCGA -ACGGAATCCGAAGCATACCACAGA -ACGGAATCCGAAGCATACGCAAGA -ACGGAATCCGAAGCATACGGTTGA -ACGGAATCCGAAGCATACTCCGAT -ACGGAATCCGAAGCATACTGGCAT -ACGGAATCCGAAGCATACCGAGAT -ACGGAATCCGAAGCATACTACCAC -ACGGAATCCGAAGCATACCAGAAC -ACGGAATCCGAAGCATACGTCTAC -ACGGAATCCGAAGCATACACGTAC -ACGGAATCCGAAGCATACAGTGAC -ACGGAATCCGAAGCATACCTGTAG -ACGGAATCCGAAGCATACCCTAAG -ACGGAATCCGAAGCATACGTTCAG -ACGGAATCCGAAGCATACGCATAG -ACGGAATCCGAAGCATACGACAAG -ACGGAATCCGAAGCATACAAGCAG -ACGGAATCCGAAGCATACCGTCAA -ACGGAATCCGAAGCATACGCTGAA -ACGGAATCCGAAGCATACAGTACG -ACGGAATCCGAAGCATACATCCGA -ACGGAATCCGAAGCATACATGGGA -ACGGAATCCGAAGCATACGTGCAA -ACGGAATCCGAAGCATACGAGGAA -ACGGAATCCGAAGCATACCAGGTA -ACGGAATCCGAAGCATACGACTCT -ACGGAATCCGAAGCATACAGTCCT -ACGGAATCCGAAGCATACTAAGCC -ACGGAATCCGAAGCATACATAGCC -ACGGAATCCGAAGCATACTAACCG -ACGGAATCCGAAGCATACATGCCA -ACGGAATCCGAAGCACTTGGAAAC -ACGGAATCCGAAGCACTTAACACC -ACGGAATCCGAAGCACTTATCGAG -ACGGAATCCGAAGCACTTCTCCTT -ACGGAATCCGAAGCACTTCCTGTT -ACGGAATCCGAAGCACTTCGGTTT -ACGGAATCCGAAGCACTTGTGGTT -ACGGAATCCGAAGCACTTGCCTTT -ACGGAATCCGAAGCACTTGGTCTT -ACGGAATCCGAAGCACTTACGCTT -ACGGAATCCGAAGCACTTAGCGTT -ACGGAATCCGAAGCACTTTTCGTC -ACGGAATCCGAAGCACTTTCTCTC -ACGGAATCCGAAGCACTTTGGATC -ACGGAATCCGAAGCACTTCACTTC -ACGGAATCCGAAGCACTTGTACTC -ACGGAATCCGAAGCACTTGATGTC -ACGGAATCCGAAGCACTTACAGTC -ACGGAATCCGAAGCACTTTTGCTG -ACGGAATCCGAAGCACTTTCCATG -ACGGAATCCGAAGCACTTTGTGTG -ACGGAATCCGAAGCACTTCTAGTG -ACGGAATCCGAAGCACTTCATCTG -ACGGAATCCGAAGCACTTGAGTTG -ACGGAATCCGAAGCACTTAGACTG -ACGGAATCCGAAGCACTTTCGGTA -ACGGAATCCGAAGCACTTTGCCTA -ACGGAATCCGAAGCACTTCCACTA -ACGGAATCCGAAGCACTTGGAGTA -ACGGAATCCGAAGCACTTTCGTCT -ACGGAATCCGAAGCACTTTGCACT -ACGGAATCCGAAGCACTTCTGACT -ACGGAATCCGAAGCACTTCAACCT -ACGGAATCCGAAGCACTTGCTACT -ACGGAATCCGAAGCACTTGGATCT -ACGGAATCCGAAGCACTTAAGGCT -ACGGAATCCGAAGCACTTTCAACC -ACGGAATCCGAAGCACTTTGTTCC -ACGGAATCCGAAGCACTTATTCCC -ACGGAATCCGAAGCACTTTTCTCG -ACGGAATCCGAAGCACTTTAGACG -ACGGAATCCGAAGCACTTGTAACG -ACGGAATCCGAAGCACTTACTTCG -ACGGAATCCGAAGCACTTTACGCA -ACGGAATCCGAAGCACTTCTTGCA -ACGGAATCCGAAGCACTTCGAACA -ACGGAATCCGAAGCACTTCAGTCA -ACGGAATCCGAAGCACTTGATCCA -ACGGAATCCGAAGCACTTACGACA -ACGGAATCCGAAGCACTTAGCTCA -ACGGAATCCGAAGCACTTTCACGT -ACGGAATCCGAAGCACTTCGTAGT -ACGGAATCCGAAGCACTTGTCAGT -ACGGAATCCGAAGCACTTGAAGGT -ACGGAATCCGAAGCACTTAACCGT -ACGGAATCCGAAGCACTTTTGTGC -ACGGAATCCGAAGCACTTCTAAGC -ACGGAATCCGAAGCACTTACTAGC -ACGGAATCCGAAGCACTTAGATGC -ACGGAATCCGAAGCACTTTGAAGG -ACGGAATCCGAAGCACTTCAATGG -ACGGAATCCGAAGCACTTATGAGG -ACGGAATCCGAAGCACTTAATGGG -ACGGAATCCGAAGCACTTTCCTGA -ACGGAATCCGAAGCACTTTAGCGA -ACGGAATCCGAAGCACTTCACAGA -ACGGAATCCGAAGCACTTGCAAGA -ACGGAATCCGAAGCACTTGGTTGA -ACGGAATCCGAAGCACTTTCCGAT -ACGGAATCCGAAGCACTTTGGCAT -ACGGAATCCGAAGCACTTCGAGAT -ACGGAATCCGAAGCACTTTACCAC -ACGGAATCCGAAGCACTTCAGAAC -ACGGAATCCGAAGCACTTGTCTAC -ACGGAATCCGAAGCACTTACGTAC -ACGGAATCCGAAGCACTTAGTGAC -ACGGAATCCGAAGCACTTCTGTAG -ACGGAATCCGAAGCACTTCCTAAG -ACGGAATCCGAAGCACTTGTTCAG -ACGGAATCCGAAGCACTTGCATAG -ACGGAATCCGAAGCACTTGACAAG -ACGGAATCCGAAGCACTTAAGCAG -ACGGAATCCGAAGCACTTCGTCAA -ACGGAATCCGAAGCACTTGCTGAA -ACGGAATCCGAAGCACTTAGTACG -ACGGAATCCGAAGCACTTATCCGA -ACGGAATCCGAAGCACTTATGGGA -ACGGAATCCGAAGCACTTGTGCAA -ACGGAATCCGAAGCACTTGAGGAA -ACGGAATCCGAAGCACTTCAGGTA -ACGGAATCCGAAGCACTTGACTCT -ACGGAATCCGAAGCACTTAGTCCT -ACGGAATCCGAAGCACTTTAAGCC -ACGGAATCCGAAGCACTTATAGCC -ACGGAATCCGAAGCACTTTAACCG -ACGGAATCCGAAGCACTTATGCCA -ACGGAATCCGAAACACGAGGAAAC -ACGGAATCCGAAACACGAAACACC -ACGGAATCCGAAACACGAATCGAG -ACGGAATCCGAAACACGACTCCTT -ACGGAATCCGAAACACGACCTGTT -ACGGAATCCGAAACACGACGGTTT -ACGGAATCCGAAACACGAGTGGTT -ACGGAATCCGAAACACGAGCCTTT -ACGGAATCCGAAACACGAGGTCTT -ACGGAATCCGAAACACGAACGCTT -ACGGAATCCGAAACACGAAGCGTT -ACGGAATCCGAAACACGATTCGTC -ACGGAATCCGAAACACGATCTCTC -ACGGAATCCGAAACACGATGGATC -ACGGAATCCGAAACACGACACTTC -ACGGAATCCGAAACACGAGTACTC -ACGGAATCCGAAACACGAGATGTC -ACGGAATCCGAAACACGAACAGTC -ACGGAATCCGAAACACGATTGCTG -ACGGAATCCGAAACACGATCCATG -ACGGAATCCGAAACACGATGTGTG -ACGGAATCCGAAACACGACTAGTG -ACGGAATCCGAAACACGACATCTG -ACGGAATCCGAAACACGAGAGTTG -ACGGAATCCGAAACACGAAGACTG -ACGGAATCCGAAACACGATCGGTA -ACGGAATCCGAAACACGATGCCTA -ACGGAATCCGAAACACGACCACTA -ACGGAATCCGAAACACGAGGAGTA -ACGGAATCCGAAACACGATCGTCT -ACGGAATCCGAAACACGATGCACT -ACGGAATCCGAAACACGACTGACT -ACGGAATCCGAAACACGACAACCT -ACGGAATCCGAAACACGAGCTACT -ACGGAATCCGAAACACGAGGATCT -ACGGAATCCGAAACACGAAAGGCT -ACGGAATCCGAAACACGATCAACC -ACGGAATCCGAAACACGATGTTCC -ACGGAATCCGAAACACGAATTCCC -ACGGAATCCGAAACACGATTCTCG -ACGGAATCCGAAACACGATAGACG -ACGGAATCCGAAACACGAGTAACG -ACGGAATCCGAAACACGAACTTCG -ACGGAATCCGAAACACGATACGCA -ACGGAATCCGAAACACGACTTGCA -ACGGAATCCGAAACACGACGAACA -ACGGAATCCGAAACACGACAGTCA -ACGGAATCCGAAACACGAGATCCA -ACGGAATCCGAAACACGAACGACA -ACGGAATCCGAAACACGAAGCTCA -ACGGAATCCGAAACACGATCACGT -ACGGAATCCGAAACACGACGTAGT -ACGGAATCCGAAACACGAGTCAGT -ACGGAATCCGAAACACGAGAAGGT -ACGGAATCCGAAACACGAAACCGT -ACGGAATCCGAAACACGATTGTGC -ACGGAATCCGAAACACGACTAAGC -ACGGAATCCGAAACACGAACTAGC -ACGGAATCCGAAACACGAAGATGC -ACGGAATCCGAAACACGATGAAGG -ACGGAATCCGAAACACGACAATGG -ACGGAATCCGAAACACGAATGAGG -ACGGAATCCGAAACACGAAATGGG -ACGGAATCCGAAACACGATCCTGA -ACGGAATCCGAAACACGATAGCGA -ACGGAATCCGAAACACGACACAGA -ACGGAATCCGAAACACGAGCAAGA -ACGGAATCCGAAACACGAGGTTGA -ACGGAATCCGAAACACGATCCGAT -ACGGAATCCGAAACACGATGGCAT -ACGGAATCCGAAACACGACGAGAT -ACGGAATCCGAAACACGATACCAC -ACGGAATCCGAAACACGACAGAAC -ACGGAATCCGAAACACGAGTCTAC -ACGGAATCCGAAACACGAACGTAC -ACGGAATCCGAAACACGAAGTGAC -ACGGAATCCGAAACACGACTGTAG -ACGGAATCCGAAACACGACCTAAG -ACGGAATCCGAAACACGAGTTCAG -ACGGAATCCGAAACACGAGCATAG -ACGGAATCCGAAACACGAGACAAG -ACGGAATCCGAAACACGAAAGCAG -ACGGAATCCGAAACACGACGTCAA -ACGGAATCCGAAACACGAGCTGAA -ACGGAATCCGAAACACGAAGTACG -ACGGAATCCGAAACACGAATCCGA -ACGGAATCCGAAACACGAATGGGA -ACGGAATCCGAAACACGAGTGCAA -ACGGAATCCGAAACACGAGAGGAA -ACGGAATCCGAAACACGACAGGTA -ACGGAATCCGAAACACGAGACTCT -ACGGAATCCGAAACACGAAGTCCT -ACGGAATCCGAAACACGATAAGCC -ACGGAATCCGAAACACGAATAGCC -ACGGAATCCGAAACACGATAACCG -ACGGAATCCGAAACACGAATGCCA -ACGGAATCCGAATCACAGGGAAAC -ACGGAATCCGAATCACAGAACACC -ACGGAATCCGAATCACAGATCGAG -ACGGAATCCGAATCACAGCTCCTT -ACGGAATCCGAATCACAGCCTGTT -ACGGAATCCGAATCACAGCGGTTT -ACGGAATCCGAATCACAGGTGGTT -ACGGAATCCGAATCACAGGCCTTT -ACGGAATCCGAATCACAGGGTCTT -ACGGAATCCGAATCACAGACGCTT -ACGGAATCCGAATCACAGAGCGTT -ACGGAATCCGAATCACAGTTCGTC -ACGGAATCCGAATCACAGTCTCTC -ACGGAATCCGAATCACAGTGGATC -ACGGAATCCGAATCACAGCACTTC -ACGGAATCCGAATCACAGGTACTC -ACGGAATCCGAATCACAGGATGTC -ACGGAATCCGAATCACAGACAGTC -ACGGAATCCGAATCACAGTTGCTG -ACGGAATCCGAATCACAGTCCATG -ACGGAATCCGAATCACAGTGTGTG -ACGGAATCCGAATCACAGCTAGTG -ACGGAATCCGAATCACAGCATCTG -ACGGAATCCGAATCACAGGAGTTG -ACGGAATCCGAATCACAGAGACTG -ACGGAATCCGAATCACAGTCGGTA -ACGGAATCCGAATCACAGTGCCTA -ACGGAATCCGAATCACAGCCACTA -ACGGAATCCGAATCACAGGGAGTA -ACGGAATCCGAATCACAGTCGTCT -ACGGAATCCGAATCACAGTGCACT -ACGGAATCCGAATCACAGCTGACT -ACGGAATCCGAATCACAGCAACCT -ACGGAATCCGAATCACAGGCTACT -ACGGAATCCGAATCACAGGGATCT -ACGGAATCCGAATCACAGAAGGCT -ACGGAATCCGAATCACAGTCAACC -ACGGAATCCGAATCACAGTGTTCC -ACGGAATCCGAATCACAGATTCCC -ACGGAATCCGAATCACAGTTCTCG -ACGGAATCCGAATCACAGTAGACG -ACGGAATCCGAATCACAGGTAACG -ACGGAATCCGAATCACAGACTTCG -ACGGAATCCGAATCACAGTACGCA -ACGGAATCCGAATCACAGCTTGCA -ACGGAATCCGAATCACAGCGAACA -ACGGAATCCGAATCACAGCAGTCA -ACGGAATCCGAATCACAGGATCCA -ACGGAATCCGAATCACAGACGACA -ACGGAATCCGAATCACAGAGCTCA -ACGGAATCCGAATCACAGTCACGT -ACGGAATCCGAATCACAGCGTAGT -ACGGAATCCGAATCACAGGTCAGT -ACGGAATCCGAATCACAGGAAGGT -ACGGAATCCGAATCACAGAACCGT -ACGGAATCCGAATCACAGTTGTGC -ACGGAATCCGAATCACAGCTAAGC -ACGGAATCCGAATCACAGACTAGC -ACGGAATCCGAATCACAGAGATGC -ACGGAATCCGAATCACAGTGAAGG -ACGGAATCCGAATCACAGCAATGG -ACGGAATCCGAATCACAGATGAGG -ACGGAATCCGAATCACAGAATGGG -ACGGAATCCGAATCACAGTCCTGA -ACGGAATCCGAATCACAGTAGCGA -ACGGAATCCGAATCACAGCACAGA -ACGGAATCCGAATCACAGGCAAGA -ACGGAATCCGAATCACAGGGTTGA -ACGGAATCCGAATCACAGTCCGAT -ACGGAATCCGAATCACAGTGGCAT -ACGGAATCCGAATCACAGCGAGAT -ACGGAATCCGAATCACAGTACCAC -ACGGAATCCGAATCACAGCAGAAC -ACGGAATCCGAATCACAGGTCTAC -ACGGAATCCGAATCACAGACGTAC -ACGGAATCCGAATCACAGAGTGAC -ACGGAATCCGAATCACAGCTGTAG -ACGGAATCCGAATCACAGCCTAAG -ACGGAATCCGAATCACAGGTTCAG -ACGGAATCCGAATCACAGGCATAG -ACGGAATCCGAATCACAGGACAAG -ACGGAATCCGAATCACAGAAGCAG -ACGGAATCCGAATCACAGCGTCAA -ACGGAATCCGAATCACAGGCTGAA -ACGGAATCCGAATCACAGAGTACG -ACGGAATCCGAATCACAGATCCGA -ACGGAATCCGAATCACAGATGGGA -ACGGAATCCGAATCACAGGTGCAA -ACGGAATCCGAATCACAGGAGGAA -ACGGAATCCGAATCACAGCAGGTA -ACGGAATCCGAATCACAGGACTCT -ACGGAATCCGAATCACAGAGTCCT -ACGGAATCCGAATCACAGTAAGCC -ACGGAATCCGAATCACAGATAGCC -ACGGAATCCGAATCACAGTAACCG -ACGGAATCCGAATCACAGATGCCA -ACGGAATCCGAACCAGATGGAAAC -ACGGAATCCGAACCAGATAACACC -ACGGAATCCGAACCAGATATCGAG -ACGGAATCCGAACCAGATCTCCTT -ACGGAATCCGAACCAGATCCTGTT -ACGGAATCCGAACCAGATCGGTTT -ACGGAATCCGAACCAGATGTGGTT -ACGGAATCCGAACCAGATGCCTTT -ACGGAATCCGAACCAGATGGTCTT -ACGGAATCCGAACCAGATACGCTT -ACGGAATCCGAACCAGATAGCGTT -ACGGAATCCGAACCAGATTTCGTC -ACGGAATCCGAACCAGATTCTCTC -ACGGAATCCGAACCAGATTGGATC -ACGGAATCCGAACCAGATCACTTC -ACGGAATCCGAACCAGATGTACTC -ACGGAATCCGAACCAGATGATGTC -ACGGAATCCGAACCAGATACAGTC -ACGGAATCCGAACCAGATTTGCTG -ACGGAATCCGAACCAGATTCCATG -ACGGAATCCGAACCAGATTGTGTG -ACGGAATCCGAACCAGATCTAGTG -ACGGAATCCGAACCAGATCATCTG -ACGGAATCCGAACCAGATGAGTTG -ACGGAATCCGAACCAGATAGACTG -ACGGAATCCGAACCAGATTCGGTA -ACGGAATCCGAACCAGATTGCCTA -ACGGAATCCGAACCAGATCCACTA -ACGGAATCCGAACCAGATGGAGTA -ACGGAATCCGAACCAGATTCGTCT -ACGGAATCCGAACCAGATTGCACT -ACGGAATCCGAACCAGATCTGACT -ACGGAATCCGAACCAGATCAACCT -ACGGAATCCGAACCAGATGCTACT -ACGGAATCCGAACCAGATGGATCT -ACGGAATCCGAACCAGATAAGGCT -ACGGAATCCGAACCAGATTCAACC -ACGGAATCCGAACCAGATTGTTCC -ACGGAATCCGAACCAGATATTCCC -ACGGAATCCGAACCAGATTTCTCG -ACGGAATCCGAACCAGATTAGACG -ACGGAATCCGAACCAGATGTAACG -ACGGAATCCGAACCAGATACTTCG -ACGGAATCCGAACCAGATTACGCA -ACGGAATCCGAACCAGATCTTGCA -ACGGAATCCGAACCAGATCGAACA -ACGGAATCCGAACCAGATCAGTCA -ACGGAATCCGAACCAGATGATCCA -ACGGAATCCGAACCAGATACGACA -ACGGAATCCGAACCAGATAGCTCA -ACGGAATCCGAACCAGATTCACGT -ACGGAATCCGAACCAGATCGTAGT -ACGGAATCCGAACCAGATGTCAGT -ACGGAATCCGAACCAGATGAAGGT -ACGGAATCCGAACCAGATAACCGT -ACGGAATCCGAACCAGATTTGTGC -ACGGAATCCGAACCAGATCTAAGC -ACGGAATCCGAACCAGATACTAGC -ACGGAATCCGAACCAGATAGATGC -ACGGAATCCGAACCAGATTGAAGG -ACGGAATCCGAACCAGATCAATGG -ACGGAATCCGAACCAGATATGAGG -ACGGAATCCGAACCAGATAATGGG -ACGGAATCCGAACCAGATTCCTGA -ACGGAATCCGAACCAGATTAGCGA -ACGGAATCCGAACCAGATCACAGA -ACGGAATCCGAACCAGATGCAAGA -ACGGAATCCGAACCAGATGGTTGA -ACGGAATCCGAACCAGATTCCGAT -ACGGAATCCGAACCAGATTGGCAT -ACGGAATCCGAACCAGATCGAGAT -ACGGAATCCGAACCAGATTACCAC -ACGGAATCCGAACCAGATCAGAAC -ACGGAATCCGAACCAGATGTCTAC -ACGGAATCCGAACCAGATACGTAC -ACGGAATCCGAACCAGATAGTGAC -ACGGAATCCGAACCAGATCTGTAG -ACGGAATCCGAACCAGATCCTAAG -ACGGAATCCGAACCAGATGTTCAG -ACGGAATCCGAACCAGATGCATAG -ACGGAATCCGAACCAGATGACAAG -ACGGAATCCGAACCAGATAAGCAG -ACGGAATCCGAACCAGATCGTCAA -ACGGAATCCGAACCAGATGCTGAA -ACGGAATCCGAACCAGATAGTACG -ACGGAATCCGAACCAGATATCCGA -ACGGAATCCGAACCAGATATGGGA -ACGGAATCCGAACCAGATGTGCAA -ACGGAATCCGAACCAGATGAGGAA -ACGGAATCCGAACCAGATCAGGTA -ACGGAATCCGAACCAGATGACTCT -ACGGAATCCGAACCAGATAGTCCT -ACGGAATCCGAACCAGATTAAGCC -ACGGAATCCGAACCAGATATAGCC -ACGGAATCCGAACCAGATTAACCG -ACGGAATCCGAACCAGATATGCCA -ACGGAATCCGAAACAACGGGAAAC -ACGGAATCCGAAACAACGAACACC -ACGGAATCCGAAACAACGATCGAG -ACGGAATCCGAAACAACGCTCCTT -ACGGAATCCGAAACAACGCCTGTT -ACGGAATCCGAAACAACGCGGTTT -ACGGAATCCGAAACAACGGTGGTT -ACGGAATCCGAAACAACGGCCTTT -ACGGAATCCGAAACAACGGGTCTT -ACGGAATCCGAAACAACGACGCTT -ACGGAATCCGAAACAACGAGCGTT -ACGGAATCCGAAACAACGTTCGTC -ACGGAATCCGAAACAACGTCTCTC -ACGGAATCCGAAACAACGTGGATC -ACGGAATCCGAAACAACGCACTTC -ACGGAATCCGAAACAACGGTACTC -ACGGAATCCGAAACAACGGATGTC -ACGGAATCCGAAACAACGACAGTC -ACGGAATCCGAAACAACGTTGCTG -ACGGAATCCGAAACAACGTCCATG -ACGGAATCCGAAACAACGTGTGTG -ACGGAATCCGAAACAACGCTAGTG -ACGGAATCCGAAACAACGCATCTG -ACGGAATCCGAAACAACGGAGTTG -ACGGAATCCGAAACAACGAGACTG -ACGGAATCCGAAACAACGTCGGTA -ACGGAATCCGAAACAACGTGCCTA -ACGGAATCCGAAACAACGCCACTA -ACGGAATCCGAAACAACGGGAGTA -ACGGAATCCGAAACAACGTCGTCT -ACGGAATCCGAAACAACGTGCACT -ACGGAATCCGAAACAACGCTGACT -ACGGAATCCGAAACAACGCAACCT -ACGGAATCCGAAACAACGGCTACT -ACGGAATCCGAAACAACGGGATCT -ACGGAATCCGAAACAACGAAGGCT -ACGGAATCCGAAACAACGTCAACC -ACGGAATCCGAAACAACGTGTTCC -ACGGAATCCGAAACAACGATTCCC -ACGGAATCCGAAACAACGTTCTCG -ACGGAATCCGAAACAACGTAGACG -ACGGAATCCGAAACAACGGTAACG -ACGGAATCCGAAACAACGACTTCG -ACGGAATCCGAAACAACGTACGCA -ACGGAATCCGAAACAACGCTTGCA -ACGGAATCCGAAACAACGCGAACA -ACGGAATCCGAAACAACGCAGTCA -ACGGAATCCGAAACAACGGATCCA -ACGGAATCCGAAACAACGACGACA -ACGGAATCCGAAACAACGAGCTCA -ACGGAATCCGAAACAACGTCACGT -ACGGAATCCGAAACAACGCGTAGT -ACGGAATCCGAAACAACGGTCAGT -ACGGAATCCGAAACAACGGAAGGT -ACGGAATCCGAAACAACGAACCGT -ACGGAATCCGAAACAACGTTGTGC -ACGGAATCCGAAACAACGCTAAGC -ACGGAATCCGAAACAACGACTAGC -ACGGAATCCGAAACAACGAGATGC -ACGGAATCCGAAACAACGTGAAGG -ACGGAATCCGAAACAACGCAATGG -ACGGAATCCGAAACAACGATGAGG -ACGGAATCCGAAACAACGAATGGG -ACGGAATCCGAAACAACGTCCTGA -ACGGAATCCGAAACAACGTAGCGA -ACGGAATCCGAAACAACGCACAGA -ACGGAATCCGAAACAACGGCAAGA -ACGGAATCCGAAACAACGGGTTGA -ACGGAATCCGAAACAACGTCCGAT -ACGGAATCCGAAACAACGTGGCAT -ACGGAATCCGAAACAACGCGAGAT -ACGGAATCCGAAACAACGTACCAC -ACGGAATCCGAAACAACGCAGAAC -ACGGAATCCGAAACAACGGTCTAC -ACGGAATCCGAAACAACGACGTAC -ACGGAATCCGAAACAACGAGTGAC -ACGGAATCCGAAACAACGCTGTAG -ACGGAATCCGAAACAACGCCTAAG -ACGGAATCCGAAACAACGGTTCAG -ACGGAATCCGAAACAACGGCATAG -ACGGAATCCGAAACAACGGACAAG -ACGGAATCCGAAACAACGAAGCAG -ACGGAATCCGAAACAACGCGTCAA -ACGGAATCCGAAACAACGGCTGAA -ACGGAATCCGAAACAACGAGTACG -ACGGAATCCGAAACAACGATCCGA -ACGGAATCCGAAACAACGATGGGA -ACGGAATCCGAAACAACGGTGCAA -ACGGAATCCGAAACAACGGAGGAA -ACGGAATCCGAAACAACGCAGGTA -ACGGAATCCGAAACAACGGACTCT -ACGGAATCCGAAACAACGAGTCCT -ACGGAATCCGAAACAACGTAAGCC -ACGGAATCCGAAACAACGATAGCC -ACGGAATCCGAAACAACGTAACCG -ACGGAATCCGAAACAACGATGCCA -ACGGAATCCGAATCAAGCGGAAAC -ACGGAATCCGAATCAAGCAACACC -ACGGAATCCGAATCAAGCATCGAG -ACGGAATCCGAATCAAGCCTCCTT -ACGGAATCCGAATCAAGCCCTGTT -ACGGAATCCGAATCAAGCCGGTTT -ACGGAATCCGAATCAAGCGTGGTT -ACGGAATCCGAATCAAGCGCCTTT -ACGGAATCCGAATCAAGCGGTCTT -ACGGAATCCGAATCAAGCACGCTT -ACGGAATCCGAATCAAGCAGCGTT -ACGGAATCCGAATCAAGCTTCGTC -ACGGAATCCGAATCAAGCTCTCTC -ACGGAATCCGAATCAAGCTGGATC -ACGGAATCCGAATCAAGCCACTTC -ACGGAATCCGAATCAAGCGTACTC -ACGGAATCCGAATCAAGCGATGTC -ACGGAATCCGAATCAAGCACAGTC -ACGGAATCCGAATCAAGCTTGCTG -ACGGAATCCGAATCAAGCTCCATG -ACGGAATCCGAATCAAGCTGTGTG -ACGGAATCCGAATCAAGCCTAGTG -ACGGAATCCGAATCAAGCCATCTG -ACGGAATCCGAATCAAGCGAGTTG -ACGGAATCCGAATCAAGCAGACTG -ACGGAATCCGAATCAAGCTCGGTA -ACGGAATCCGAATCAAGCTGCCTA -ACGGAATCCGAATCAAGCCCACTA -ACGGAATCCGAATCAAGCGGAGTA -ACGGAATCCGAATCAAGCTCGTCT -ACGGAATCCGAATCAAGCTGCACT -ACGGAATCCGAATCAAGCCTGACT -ACGGAATCCGAATCAAGCCAACCT -ACGGAATCCGAATCAAGCGCTACT -ACGGAATCCGAATCAAGCGGATCT -ACGGAATCCGAATCAAGCAAGGCT -ACGGAATCCGAATCAAGCTCAACC -ACGGAATCCGAATCAAGCTGTTCC -ACGGAATCCGAATCAAGCATTCCC -ACGGAATCCGAATCAAGCTTCTCG -ACGGAATCCGAATCAAGCTAGACG -ACGGAATCCGAATCAAGCGTAACG -ACGGAATCCGAATCAAGCACTTCG -ACGGAATCCGAATCAAGCTACGCA -ACGGAATCCGAATCAAGCCTTGCA -ACGGAATCCGAATCAAGCCGAACA -ACGGAATCCGAATCAAGCCAGTCA -ACGGAATCCGAATCAAGCGATCCA -ACGGAATCCGAATCAAGCACGACA -ACGGAATCCGAATCAAGCAGCTCA -ACGGAATCCGAATCAAGCTCACGT -ACGGAATCCGAATCAAGCCGTAGT -ACGGAATCCGAATCAAGCGTCAGT -ACGGAATCCGAATCAAGCGAAGGT -ACGGAATCCGAATCAAGCAACCGT -ACGGAATCCGAATCAAGCTTGTGC -ACGGAATCCGAATCAAGCCTAAGC -ACGGAATCCGAATCAAGCACTAGC -ACGGAATCCGAATCAAGCAGATGC -ACGGAATCCGAATCAAGCTGAAGG -ACGGAATCCGAATCAAGCCAATGG -ACGGAATCCGAATCAAGCATGAGG -ACGGAATCCGAATCAAGCAATGGG -ACGGAATCCGAATCAAGCTCCTGA -ACGGAATCCGAATCAAGCTAGCGA -ACGGAATCCGAATCAAGCCACAGA -ACGGAATCCGAATCAAGCGCAAGA -ACGGAATCCGAATCAAGCGGTTGA -ACGGAATCCGAATCAAGCTCCGAT -ACGGAATCCGAATCAAGCTGGCAT -ACGGAATCCGAATCAAGCCGAGAT -ACGGAATCCGAATCAAGCTACCAC -ACGGAATCCGAATCAAGCCAGAAC -ACGGAATCCGAATCAAGCGTCTAC -ACGGAATCCGAATCAAGCACGTAC -ACGGAATCCGAATCAAGCAGTGAC -ACGGAATCCGAATCAAGCCTGTAG -ACGGAATCCGAATCAAGCCCTAAG -ACGGAATCCGAATCAAGCGTTCAG -ACGGAATCCGAATCAAGCGCATAG -ACGGAATCCGAATCAAGCGACAAG -ACGGAATCCGAATCAAGCAAGCAG -ACGGAATCCGAATCAAGCCGTCAA -ACGGAATCCGAATCAAGCGCTGAA -ACGGAATCCGAATCAAGCAGTACG -ACGGAATCCGAATCAAGCATCCGA -ACGGAATCCGAATCAAGCATGGGA -ACGGAATCCGAATCAAGCGTGCAA -ACGGAATCCGAATCAAGCGAGGAA -ACGGAATCCGAATCAAGCCAGGTA -ACGGAATCCGAATCAAGCGACTCT -ACGGAATCCGAATCAAGCAGTCCT -ACGGAATCCGAATCAAGCTAAGCC -ACGGAATCCGAATCAAGCATAGCC -ACGGAATCCGAATCAAGCTAACCG -ACGGAATCCGAATCAAGCATGCCA -ACGGAATCCGAACGTTCAGGAAAC -ACGGAATCCGAACGTTCAAACACC -ACGGAATCCGAACGTTCAATCGAG -ACGGAATCCGAACGTTCACTCCTT -ACGGAATCCGAACGTTCACCTGTT -ACGGAATCCGAACGTTCACGGTTT -ACGGAATCCGAACGTTCAGTGGTT -ACGGAATCCGAACGTTCAGCCTTT -ACGGAATCCGAACGTTCAGGTCTT -ACGGAATCCGAACGTTCAACGCTT -ACGGAATCCGAACGTTCAAGCGTT -ACGGAATCCGAACGTTCATTCGTC -ACGGAATCCGAACGTTCATCTCTC -ACGGAATCCGAACGTTCATGGATC -ACGGAATCCGAACGTTCACACTTC -ACGGAATCCGAACGTTCAGTACTC -ACGGAATCCGAACGTTCAGATGTC -ACGGAATCCGAACGTTCAACAGTC -ACGGAATCCGAACGTTCATTGCTG -ACGGAATCCGAACGTTCATCCATG -ACGGAATCCGAACGTTCATGTGTG -ACGGAATCCGAACGTTCACTAGTG -ACGGAATCCGAACGTTCACATCTG -ACGGAATCCGAACGTTCAGAGTTG -ACGGAATCCGAACGTTCAAGACTG -ACGGAATCCGAACGTTCATCGGTA -ACGGAATCCGAACGTTCATGCCTA -ACGGAATCCGAACGTTCACCACTA -ACGGAATCCGAACGTTCAGGAGTA -ACGGAATCCGAACGTTCATCGTCT -ACGGAATCCGAACGTTCATGCACT -ACGGAATCCGAACGTTCACTGACT -ACGGAATCCGAACGTTCACAACCT -ACGGAATCCGAACGTTCAGCTACT -ACGGAATCCGAACGTTCAGGATCT -ACGGAATCCGAACGTTCAAAGGCT -ACGGAATCCGAACGTTCATCAACC -ACGGAATCCGAACGTTCATGTTCC -ACGGAATCCGAACGTTCAATTCCC -ACGGAATCCGAACGTTCATTCTCG -ACGGAATCCGAACGTTCATAGACG -ACGGAATCCGAACGTTCAGTAACG -ACGGAATCCGAACGTTCAACTTCG -ACGGAATCCGAACGTTCATACGCA -ACGGAATCCGAACGTTCACTTGCA -ACGGAATCCGAACGTTCACGAACA -ACGGAATCCGAACGTTCACAGTCA -ACGGAATCCGAACGTTCAGATCCA -ACGGAATCCGAACGTTCAACGACA -ACGGAATCCGAACGTTCAAGCTCA -ACGGAATCCGAACGTTCATCACGT -ACGGAATCCGAACGTTCACGTAGT -ACGGAATCCGAACGTTCAGTCAGT -ACGGAATCCGAACGTTCAGAAGGT -ACGGAATCCGAACGTTCAAACCGT -ACGGAATCCGAACGTTCATTGTGC -ACGGAATCCGAACGTTCACTAAGC -ACGGAATCCGAACGTTCAACTAGC -ACGGAATCCGAACGTTCAAGATGC -ACGGAATCCGAACGTTCATGAAGG -ACGGAATCCGAACGTTCACAATGG -ACGGAATCCGAACGTTCAATGAGG -ACGGAATCCGAACGTTCAAATGGG -ACGGAATCCGAACGTTCATCCTGA -ACGGAATCCGAACGTTCATAGCGA -ACGGAATCCGAACGTTCACACAGA -ACGGAATCCGAACGTTCAGCAAGA -ACGGAATCCGAACGTTCAGGTTGA -ACGGAATCCGAACGTTCATCCGAT -ACGGAATCCGAACGTTCATGGCAT -ACGGAATCCGAACGTTCACGAGAT -ACGGAATCCGAACGTTCATACCAC -ACGGAATCCGAACGTTCACAGAAC -ACGGAATCCGAACGTTCAGTCTAC -ACGGAATCCGAACGTTCAACGTAC -ACGGAATCCGAACGTTCAAGTGAC -ACGGAATCCGAACGTTCACTGTAG -ACGGAATCCGAACGTTCACCTAAG -ACGGAATCCGAACGTTCAGTTCAG -ACGGAATCCGAACGTTCAGCATAG -ACGGAATCCGAACGTTCAGACAAG -ACGGAATCCGAACGTTCAAAGCAG -ACGGAATCCGAACGTTCACGTCAA -ACGGAATCCGAACGTTCAGCTGAA -ACGGAATCCGAACGTTCAAGTACG -ACGGAATCCGAACGTTCAATCCGA -ACGGAATCCGAACGTTCAATGGGA -ACGGAATCCGAACGTTCAGTGCAA -ACGGAATCCGAACGTTCAGAGGAA -ACGGAATCCGAACGTTCACAGGTA -ACGGAATCCGAACGTTCAGACTCT -ACGGAATCCGAACGTTCAAGTCCT -ACGGAATCCGAACGTTCATAAGCC -ACGGAATCCGAACGTTCAATAGCC -ACGGAATCCGAACGTTCATAACCG -ACGGAATCCGAACGTTCAATGCCA -ACGGAATCCGAAAGTCGTGGAAAC -ACGGAATCCGAAAGTCGTAACACC -ACGGAATCCGAAAGTCGTATCGAG -ACGGAATCCGAAAGTCGTCTCCTT -ACGGAATCCGAAAGTCGTCCTGTT -ACGGAATCCGAAAGTCGTCGGTTT -ACGGAATCCGAAAGTCGTGTGGTT -ACGGAATCCGAAAGTCGTGCCTTT -ACGGAATCCGAAAGTCGTGGTCTT -ACGGAATCCGAAAGTCGTACGCTT -ACGGAATCCGAAAGTCGTAGCGTT -ACGGAATCCGAAAGTCGTTTCGTC -ACGGAATCCGAAAGTCGTTCTCTC -ACGGAATCCGAAAGTCGTTGGATC -ACGGAATCCGAAAGTCGTCACTTC -ACGGAATCCGAAAGTCGTGTACTC -ACGGAATCCGAAAGTCGTGATGTC -ACGGAATCCGAAAGTCGTACAGTC -ACGGAATCCGAAAGTCGTTTGCTG -ACGGAATCCGAAAGTCGTTCCATG -ACGGAATCCGAAAGTCGTTGTGTG -ACGGAATCCGAAAGTCGTCTAGTG -ACGGAATCCGAAAGTCGTCATCTG -ACGGAATCCGAAAGTCGTGAGTTG -ACGGAATCCGAAAGTCGTAGACTG -ACGGAATCCGAAAGTCGTTCGGTA -ACGGAATCCGAAAGTCGTTGCCTA -ACGGAATCCGAAAGTCGTCCACTA -ACGGAATCCGAAAGTCGTGGAGTA -ACGGAATCCGAAAGTCGTTCGTCT -ACGGAATCCGAAAGTCGTTGCACT -ACGGAATCCGAAAGTCGTCTGACT -ACGGAATCCGAAAGTCGTCAACCT -ACGGAATCCGAAAGTCGTGCTACT -ACGGAATCCGAAAGTCGTGGATCT -ACGGAATCCGAAAGTCGTAAGGCT -ACGGAATCCGAAAGTCGTTCAACC -ACGGAATCCGAAAGTCGTTGTTCC -ACGGAATCCGAAAGTCGTATTCCC -ACGGAATCCGAAAGTCGTTTCTCG -ACGGAATCCGAAAGTCGTTAGACG -ACGGAATCCGAAAGTCGTGTAACG -ACGGAATCCGAAAGTCGTACTTCG -ACGGAATCCGAAAGTCGTTACGCA -ACGGAATCCGAAAGTCGTCTTGCA -ACGGAATCCGAAAGTCGTCGAACA -ACGGAATCCGAAAGTCGTCAGTCA -ACGGAATCCGAAAGTCGTGATCCA -ACGGAATCCGAAAGTCGTACGACA -ACGGAATCCGAAAGTCGTAGCTCA -ACGGAATCCGAAAGTCGTTCACGT -ACGGAATCCGAAAGTCGTCGTAGT -ACGGAATCCGAAAGTCGTGTCAGT -ACGGAATCCGAAAGTCGTGAAGGT -ACGGAATCCGAAAGTCGTAACCGT -ACGGAATCCGAAAGTCGTTTGTGC -ACGGAATCCGAAAGTCGTCTAAGC -ACGGAATCCGAAAGTCGTACTAGC -ACGGAATCCGAAAGTCGTAGATGC -ACGGAATCCGAAAGTCGTTGAAGG -ACGGAATCCGAAAGTCGTCAATGG -ACGGAATCCGAAAGTCGTATGAGG -ACGGAATCCGAAAGTCGTAATGGG -ACGGAATCCGAAAGTCGTTCCTGA -ACGGAATCCGAAAGTCGTTAGCGA -ACGGAATCCGAAAGTCGTCACAGA -ACGGAATCCGAAAGTCGTGCAAGA -ACGGAATCCGAAAGTCGTGGTTGA -ACGGAATCCGAAAGTCGTTCCGAT -ACGGAATCCGAAAGTCGTTGGCAT -ACGGAATCCGAAAGTCGTCGAGAT -ACGGAATCCGAAAGTCGTTACCAC -ACGGAATCCGAAAGTCGTCAGAAC -ACGGAATCCGAAAGTCGTGTCTAC -ACGGAATCCGAAAGTCGTACGTAC -ACGGAATCCGAAAGTCGTAGTGAC -ACGGAATCCGAAAGTCGTCTGTAG -ACGGAATCCGAAAGTCGTCCTAAG -ACGGAATCCGAAAGTCGTGTTCAG -ACGGAATCCGAAAGTCGTGCATAG -ACGGAATCCGAAAGTCGTGACAAG -ACGGAATCCGAAAGTCGTAAGCAG -ACGGAATCCGAAAGTCGTCGTCAA -ACGGAATCCGAAAGTCGTGCTGAA -ACGGAATCCGAAAGTCGTAGTACG -ACGGAATCCGAAAGTCGTATCCGA -ACGGAATCCGAAAGTCGTATGGGA -ACGGAATCCGAAAGTCGTGTGCAA -ACGGAATCCGAAAGTCGTGAGGAA -ACGGAATCCGAAAGTCGTCAGGTA -ACGGAATCCGAAAGTCGTGACTCT -ACGGAATCCGAAAGTCGTAGTCCT -ACGGAATCCGAAAGTCGTTAAGCC -ACGGAATCCGAAAGTCGTATAGCC -ACGGAATCCGAAAGTCGTTAACCG -ACGGAATCCGAAAGTCGTATGCCA -ACGGAATCCGAAAGTGTCGGAAAC -ACGGAATCCGAAAGTGTCAACACC -ACGGAATCCGAAAGTGTCATCGAG -ACGGAATCCGAAAGTGTCCTCCTT -ACGGAATCCGAAAGTGTCCCTGTT -ACGGAATCCGAAAGTGTCCGGTTT -ACGGAATCCGAAAGTGTCGTGGTT -ACGGAATCCGAAAGTGTCGCCTTT -ACGGAATCCGAAAGTGTCGGTCTT -ACGGAATCCGAAAGTGTCACGCTT -ACGGAATCCGAAAGTGTCAGCGTT -ACGGAATCCGAAAGTGTCTTCGTC -ACGGAATCCGAAAGTGTCTCTCTC -ACGGAATCCGAAAGTGTCTGGATC -ACGGAATCCGAAAGTGTCCACTTC -ACGGAATCCGAAAGTGTCGTACTC -ACGGAATCCGAAAGTGTCGATGTC -ACGGAATCCGAAAGTGTCACAGTC -ACGGAATCCGAAAGTGTCTTGCTG -ACGGAATCCGAAAGTGTCTCCATG -ACGGAATCCGAAAGTGTCTGTGTG -ACGGAATCCGAAAGTGTCCTAGTG -ACGGAATCCGAAAGTGTCCATCTG -ACGGAATCCGAAAGTGTCGAGTTG -ACGGAATCCGAAAGTGTCAGACTG -ACGGAATCCGAAAGTGTCTCGGTA -ACGGAATCCGAAAGTGTCTGCCTA -ACGGAATCCGAAAGTGTCCCACTA -ACGGAATCCGAAAGTGTCGGAGTA -ACGGAATCCGAAAGTGTCTCGTCT -ACGGAATCCGAAAGTGTCTGCACT -ACGGAATCCGAAAGTGTCCTGACT -ACGGAATCCGAAAGTGTCCAACCT -ACGGAATCCGAAAGTGTCGCTACT -ACGGAATCCGAAAGTGTCGGATCT -ACGGAATCCGAAAGTGTCAAGGCT -ACGGAATCCGAAAGTGTCTCAACC -ACGGAATCCGAAAGTGTCTGTTCC -ACGGAATCCGAAAGTGTCATTCCC -ACGGAATCCGAAAGTGTCTTCTCG -ACGGAATCCGAAAGTGTCTAGACG -ACGGAATCCGAAAGTGTCGTAACG -ACGGAATCCGAAAGTGTCACTTCG -ACGGAATCCGAAAGTGTCTACGCA -ACGGAATCCGAAAGTGTCCTTGCA -ACGGAATCCGAAAGTGTCCGAACA -ACGGAATCCGAAAGTGTCCAGTCA -ACGGAATCCGAAAGTGTCGATCCA -ACGGAATCCGAAAGTGTCACGACA -ACGGAATCCGAAAGTGTCAGCTCA -ACGGAATCCGAAAGTGTCTCACGT -ACGGAATCCGAAAGTGTCCGTAGT -ACGGAATCCGAAAGTGTCGTCAGT -ACGGAATCCGAAAGTGTCGAAGGT -ACGGAATCCGAAAGTGTCAACCGT -ACGGAATCCGAAAGTGTCTTGTGC -ACGGAATCCGAAAGTGTCCTAAGC -ACGGAATCCGAAAGTGTCACTAGC -ACGGAATCCGAAAGTGTCAGATGC -ACGGAATCCGAAAGTGTCTGAAGG -ACGGAATCCGAAAGTGTCCAATGG -ACGGAATCCGAAAGTGTCATGAGG -ACGGAATCCGAAAGTGTCAATGGG -ACGGAATCCGAAAGTGTCTCCTGA -ACGGAATCCGAAAGTGTCTAGCGA -ACGGAATCCGAAAGTGTCCACAGA -ACGGAATCCGAAAGTGTCGCAAGA -ACGGAATCCGAAAGTGTCGGTTGA -ACGGAATCCGAAAGTGTCTCCGAT -ACGGAATCCGAAAGTGTCTGGCAT -ACGGAATCCGAAAGTGTCCGAGAT -ACGGAATCCGAAAGTGTCTACCAC -ACGGAATCCGAAAGTGTCCAGAAC -ACGGAATCCGAAAGTGTCGTCTAC -ACGGAATCCGAAAGTGTCACGTAC -ACGGAATCCGAAAGTGTCAGTGAC -ACGGAATCCGAAAGTGTCCTGTAG -ACGGAATCCGAAAGTGTCCCTAAG -ACGGAATCCGAAAGTGTCGTTCAG -ACGGAATCCGAAAGTGTCGCATAG -ACGGAATCCGAAAGTGTCGACAAG -ACGGAATCCGAAAGTGTCAAGCAG -ACGGAATCCGAAAGTGTCCGTCAA -ACGGAATCCGAAAGTGTCGCTGAA -ACGGAATCCGAAAGTGTCAGTACG -ACGGAATCCGAAAGTGTCATCCGA -ACGGAATCCGAAAGTGTCATGGGA -ACGGAATCCGAAAGTGTCGTGCAA -ACGGAATCCGAAAGTGTCGAGGAA -ACGGAATCCGAAAGTGTCCAGGTA -ACGGAATCCGAAAGTGTCGACTCT -ACGGAATCCGAAAGTGTCAGTCCT -ACGGAATCCGAAAGTGTCTAAGCC -ACGGAATCCGAAAGTGTCATAGCC -ACGGAATCCGAAAGTGTCTAACCG -ACGGAATCCGAAAGTGTCATGCCA -ACGGAATCCGAAGGTGAAGGAAAC -ACGGAATCCGAAGGTGAAAACACC -ACGGAATCCGAAGGTGAAATCGAG -ACGGAATCCGAAGGTGAACTCCTT -ACGGAATCCGAAGGTGAACCTGTT -ACGGAATCCGAAGGTGAACGGTTT -ACGGAATCCGAAGGTGAAGTGGTT -ACGGAATCCGAAGGTGAAGCCTTT -ACGGAATCCGAAGGTGAAGGTCTT -ACGGAATCCGAAGGTGAAACGCTT -ACGGAATCCGAAGGTGAAAGCGTT -ACGGAATCCGAAGGTGAATTCGTC -ACGGAATCCGAAGGTGAATCTCTC -ACGGAATCCGAAGGTGAATGGATC -ACGGAATCCGAAGGTGAACACTTC -ACGGAATCCGAAGGTGAAGTACTC -ACGGAATCCGAAGGTGAAGATGTC -ACGGAATCCGAAGGTGAAACAGTC -ACGGAATCCGAAGGTGAATTGCTG -ACGGAATCCGAAGGTGAATCCATG -ACGGAATCCGAAGGTGAATGTGTG -ACGGAATCCGAAGGTGAACTAGTG -ACGGAATCCGAAGGTGAACATCTG -ACGGAATCCGAAGGTGAAGAGTTG -ACGGAATCCGAAGGTGAAAGACTG -ACGGAATCCGAAGGTGAATCGGTA -ACGGAATCCGAAGGTGAATGCCTA -ACGGAATCCGAAGGTGAACCACTA -ACGGAATCCGAAGGTGAAGGAGTA -ACGGAATCCGAAGGTGAATCGTCT -ACGGAATCCGAAGGTGAATGCACT -ACGGAATCCGAAGGTGAACTGACT -ACGGAATCCGAAGGTGAACAACCT -ACGGAATCCGAAGGTGAAGCTACT -ACGGAATCCGAAGGTGAAGGATCT -ACGGAATCCGAAGGTGAAAAGGCT -ACGGAATCCGAAGGTGAATCAACC -ACGGAATCCGAAGGTGAATGTTCC -ACGGAATCCGAAGGTGAAATTCCC -ACGGAATCCGAAGGTGAATTCTCG -ACGGAATCCGAAGGTGAATAGACG -ACGGAATCCGAAGGTGAAGTAACG -ACGGAATCCGAAGGTGAAACTTCG -ACGGAATCCGAAGGTGAATACGCA -ACGGAATCCGAAGGTGAACTTGCA -ACGGAATCCGAAGGTGAACGAACA -ACGGAATCCGAAGGTGAACAGTCA -ACGGAATCCGAAGGTGAAGATCCA -ACGGAATCCGAAGGTGAAACGACA -ACGGAATCCGAAGGTGAAAGCTCA -ACGGAATCCGAAGGTGAATCACGT -ACGGAATCCGAAGGTGAACGTAGT -ACGGAATCCGAAGGTGAAGTCAGT -ACGGAATCCGAAGGTGAAGAAGGT -ACGGAATCCGAAGGTGAAAACCGT -ACGGAATCCGAAGGTGAATTGTGC -ACGGAATCCGAAGGTGAACTAAGC -ACGGAATCCGAAGGTGAAACTAGC -ACGGAATCCGAAGGTGAAAGATGC -ACGGAATCCGAAGGTGAATGAAGG -ACGGAATCCGAAGGTGAACAATGG -ACGGAATCCGAAGGTGAAATGAGG -ACGGAATCCGAAGGTGAAAATGGG -ACGGAATCCGAAGGTGAATCCTGA -ACGGAATCCGAAGGTGAATAGCGA -ACGGAATCCGAAGGTGAACACAGA -ACGGAATCCGAAGGTGAAGCAAGA -ACGGAATCCGAAGGTGAAGGTTGA -ACGGAATCCGAAGGTGAATCCGAT -ACGGAATCCGAAGGTGAATGGCAT -ACGGAATCCGAAGGTGAACGAGAT -ACGGAATCCGAAGGTGAATACCAC -ACGGAATCCGAAGGTGAACAGAAC -ACGGAATCCGAAGGTGAAGTCTAC -ACGGAATCCGAAGGTGAAACGTAC -ACGGAATCCGAAGGTGAAAGTGAC -ACGGAATCCGAAGGTGAACTGTAG -ACGGAATCCGAAGGTGAACCTAAG -ACGGAATCCGAAGGTGAAGTTCAG -ACGGAATCCGAAGGTGAAGCATAG -ACGGAATCCGAAGGTGAAGACAAG -ACGGAATCCGAAGGTGAAAAGCAG -ACGGAATCCGAAGGTGAACGTCAA -ACGGAATCCGAAGGTGAAGCTGAA -ACGGAATCCGAAGGTGAAAGTACG -ACGGAATCCGAAGGTGAAATCCGA -ACGGAATCCGAAGGTGAAATGGGA -ACGGAATCCGAAGGTGAAGTGCAA -ACGGAATCCGAAGGTGAAGAGGAA -ACGGAATCCGAAGGTGAACAGGTA -ACGGAATCCGAAGGTGAAGACTCT -ACGGAATCCGAAGGTGAAAGTCCT -ACGGAATCCGAAGGTGAATAAGCC -ACGGAATCCGAAGGTGAAATAGCC -ACGGAATCCGAAGGTGAATAACCG -ACGGAATCCGAAGGTGAAATGCCA -ACGGAATCCGAACGTAACGGAAAC -ACGGAATCCGAACGTAACAACACC -ACGGAATCCGAACGTAACATCGAG -ACGGAATCCGAACGTAACCTCCTT -ACGGAATCCGAACGTAACCCTGTT -ACGGAATCCGAACGTAACCGGTTT -ACGGAATCCGAACGTAACGTGGTT -ACGGAATCCGAACGTAACGCCTTT -ACGGAATCCGAACGTAACGGTCTT -ACGGAATCCGAACGTAACACGCTT -ACGGAATCCGAACGTAACAGCGTT -ACGGAATCCGAACGTAACTTCGTC -ACGGAATCCGAACGTAACTCTCTC -ACGGAATCCGAACGTAACTGGATC -ACGGAATCCGAACGTAACCACTTC -ACGGAATCCGAACGTAACGTACTC -ACGGAATCCGAACGTAACGATGTC -ACGGAATCCGAACGTAACACAGTC -ACGGAATCCGAACGTAACTTGCTG -ACGGAATCCGAACGTAACTCCATG -ACGGAATCCGAACGTAACTGTGTG -ACGGAATCCGAACGTAACCTAGTG -ACGGAATCCGAACGTAACCATCTG -ACGGAATCCGAACGTAACGAGTTG -ACGGAATCCGAACGTAACAGACTG -ACGGAATCCGAACGTAACTCGGTA -ACGGAATCCGAACGTAACTGCCTA -ACGGAATCCGAACGTAACCCACTA -ACGGAATCCGAACGTAACGGAGTA -ACGGAATCCGAACGTAACTCGTCT -ACGGAATCCGAACGTAACTGCACT -ACGGAATCCGAACGTAACCTGACT -ACGGAATCCGAACGTAACCAACCT -ACGGAATCCGAACGTAACGCTACT -ACGGAATCCGAACGTAACGGATCT -ACGGAATCCGAACGTAACAAGGCT -ACGGAATCCGAACGTAACTCAACC -ACGGAATCCGAACGTAACTGTTCC -ACGGAATCCGAACGTAACATTCCC -ACGGAATCCGAACGTAACTTCTCG -ACGGAATCCGAACGTAACTAGACG -ACGGAATCCGAACGTAACGTAACG -ACGGAATCCGAACGTAACACTTCG -ACGGAATCCGAACGTAACTACGCA -ACGGAATCCGAACGTAACCTTGCA -ACGGAATCCGAACGTAACCGAACA -ACGGAATCCGAACGTAACCAGTCA -ACGGAATCCGAACGTAACGATCCA -ACGGAATCCGAACGTAACACGACA -ACGGAATCCGAACGTAACAGCTCA -ACGGAATCCGAACGTAACTCACGT -ACGGAATCCGAACGTAACCGTAGT -ACGGAATCCGAACGTAACGTCAGT -ACGGAATCCGAACGTAACGAAGGT -ACGGAATCCGAACGTAACAACCGT -ACGGAATCCGAACGTAACTTGTGC -ACGGAATCCGAACGTAACCTAAGC -ACGGAATCCGAACGTAACACTAGC -ACGGAATCCGAACGTAACAGATGC -ACGGAATCCGAACGTAACTGAAGG -ACGGAATCCGAACGTAACCAATGG -ACGGAATCCGAACGTAACATGAGG -ACGGAATCCGAACGTAACAATGGG -ACGGAATCCGAACGTAACTCCTGA -ACGGAATCCGAACGTAACTAGCGA -ACGGAATCCGAACGTAACCACAGA -ACGGAATCCGAACGTAACGCAAGA -ACGGAATCCGAACGTAACGGTTGA -ACGGAATCCGAACGTAACTCCGAT -ACGGAATCCGAACGTAACTGGCAT -ACGGAATCCGAACGTAACCGAGAT -ACGGAATCCGAACGTAACTACCAC -ACGGAATCCGAACGTAACCAGAAC -ACGGAATCCGAACGTAACGTCTAC -ACGGAATCCGAACGTAACACGTAC -ACGGAATCCGAACGTAACAGTGAC -ACGGAATCCGAACGTAACCTGTAG -ACGGAATCCGAACGTAACCCTAAG -ACGGAATCCGAACGTAACGTTCAG -ACGGAATCCGAACGTAACGCATAG -ACGGAATCCGAACGTAACGACAAG -ACGGAATCCGAACGTAACAAGCAG -ACGGAATCCGAACGTAACCGTCAA -ACGGAATCCGAACGTAACGCTGAA -ACGGAATCCGAACGTAACAGTACG -ACGGAATCCGAACGTAACATCCGA -ACGGAATCCGAACGTAACATGGGA -ACGGAATCCGAACGTAACGTGCAA -ACGGAATCCGAACGTAACGAGGAA -ACGGAATCCGAACGTAACCAGGTA -ACGGAATCCGAACGTAACGACTCT -ACGGAATCCGAACGTAACAGTCCT -ACGGAATCCGAACGTAACTAAGCC -ACGGAATCCGAACGTAACATAGCC -ACGGAATCCGAACGTAACTAACCG -ACGGAATCCGAACGTAACATGCCA -ACGGAATCCGAATGCTTGGGAAAC -ACGGAATCCGAATGCTTGAACACC -ACGGAATCCGAATGCTTGATCGAG -ACGGAATCCGAATGCTTGCTCCTT -ACGGAATCCGAATGCTTGCCTGTT -ACGGAATCCGAATGCTTGCGGTTT -ACGGAATCCGAATGCTTGGTGGTT -ACGGAATCCGAATGCTTGGCCTTT -ACGGAATCCGAATGCTTGGGTCTT -ACGGAATCCGAATGCTTGACGCTT -ACGGAATCCGAATGCTTGAGCGTT -ACGGAATCCGAATGCTTGTTCGTC -ACGGAATCCGAATGCTTGTCTCTC -ACGGAATCCGAATGCTTGTGGATC -ACGGAATCCGAATGCTTGCACTTC -ACGGAATCCGAATGCTTGGTACTC -ACGGAATCCGAATGCTTGGATGTC -ACGGAATCCGAATGCTTGACAGTC -ACGGAATCCGAATGCTTGTTGCTG -ACGGAATCCGAATGCTTGTCCATG -ACGGAATCCGAATGCTTGTGTGTG -ACGGAATCCGAATGCTTGCTAGTG -ACGGAATCCGAATGCTTGCATCTG -ACGGAATCCGAATGCTTGGAGTTG -ACGGAATCCGAATGCTTGAGACTG -ACGGAATCCGAATGCTTGTCGGTA -ACGGAATCCGAATGCTTGTGCCTA -ACGGAATCCGAATGCTTGCCACTA -ACGGAATCCGAATGCTTGGGAGTA -ACGGAATCCGAATGCTTGTCGTCT -ACGGAATCCGAATGCTTGTGCACT -ACGGAATCCGAATGCTTGCTGACT -ACGGAATCCGAATGCTTGCAACCT -ACGGAATCCGAATGCTTGGCTACT -ACGGAATCCGAATGCTTGGGATCT -ACGGAATCCGAATGCTTGAAGGCT -ACGGAATCCGAATGCTTGTCAACC -ACGGAATCCGAATGCTTGTGTTCC -ACGGAATCCGAATGCTTGATTCCC -ACGGAATCCGAATGCTTGTTCTCG -ACGGAATCCGAATGCTTGTAGACG -ACGGAATCCGAATGCTTGGTAACG -ACGGAATCCGAATGCTTGACTTCG -ACGGAATCCGAATGCTTGTACGCA -ACGGAATCCGAATGCTTGCTTGCA -ACGGAATCCGAATGCTTGCGAACA -ACGGAATCCGAATGCTTGCAGTCA -ACGGAATCCGAATGCTTGGATCCA -ACGGAATCCGAATGCTTGACGACA -ACGGAATCCGAATGCTTGAGCTCA -ACGGAATCCGAATGCTTGTCACGT -ACGGAATCCGAATGCTTGCGTAGT -ACGGAATCCGAATGCTTGGTCAGT -ACGGAATCCGAATGCTTGGAAGGT -ACGGAATCCGAATGCTTGAACCGT -ACGGAATCCGAATGCTTGTTGTGC -ACGGAATCCGAATGCTTGCTAAGC -ACGGAATCCGAATGCTTGACTAGC -ACGGAATCCGAATGCTTGAGATGC -ACGGAATCCGAATGCTTGTGAAGG -ACGGAATCCGAATGCTTGCAATGG -ACGGAATCCGAATGCTTGATGAGG -ACGGAATCCGAATGCTTGAATGGG -ACGGAATCCGAATGCTTGTCCTGA -ACGGAATCCGAATGCTTGTAGCGA -ACGGAATCCGAATGCTTGCACAGA -ACGGAATCCGAATGCTTGGCAAGA -ACGGAATCCGAATGCTTGGGTTGA -ACGGAATCCGAATGCTTGTCCGAT -ACGGAATCCGAATGCTTGTGGCAT -ACGGAATCCGAATGCTTGCGAGAT -ACGGAATCCGAATGCTTGTACCAC -ACGGAATCCGAATGCTTGCAGAAC -ACGGAATCCGAATGCTTGGTCTAC -ACGGAATCCGAATGCTTGACGTAC -ACGGAATCCGAATGCTTGAGTGAC -ACGGAATCCGAATGCTTGCTGTAG -ACGGAATCCGAATGCTTGCCTAAG -ACGGAATCCGAATGCTTGGTTCAG -ACGGAATCCGAATGCTTGGCATAG -ACGGAATCCGAATGCTTGGACAAG -ACGGAATCCGAATGCTTGAAGCAG -ACGGAATCCGAATGCTTGCGTCAA -ACGGAATCCGAATGCTTGGCTGAA -ACGGAATCCGAATGCTTGAGTACG -ACGGAATCCGAATGCTTGATCCGA -ACGGAATCCGAATGCTTGATGGGA -ACGGAATCCGAATGCTTGGTGCAA -ACGGAATCCGAATGCTTGGAGGAA -ACGGAATCCGAATGCTTGCAGGTA -ACGGAATCCGAATGCTTGGACTCT -ACGGAATCCGAATGCTTGAGTCCT -ACGGAATCCGAATGCTTGTAAGCC -ACGGAATCCGAATGCTTGATAGCC -ACGGAATCCGAATGCTTGTAACCG -ACGGAATCCGAATGCTTGATGCCA -ACGGAATCCGAAAGCCTAGGAAAC -ACGGAATCCGAAAGCCTAAACACC -ACGGAATCCGAAAGCCTAATCGAG -ACGGAATCCGAAAGCCTACTCCTT -ACGGAATCCGAAAGCCTACCTGTT -ACGGAATCCGAAAGCCTACGGTTT -ACGGAATCCGAAAGCCTAGTGGTT -ACGGAATCCGAAAGCCTAGCCTTT -ACGGAATCCGAAAGCCTAGGTCTT -ACGGAATCCGAAAGCCTAACGCTT -ACGGAATCCGAAAGCCTAAGCGTT -ACGGAATCCGAAAGCCTATTCGTC -ACGGAATCCGAAAGCCTATCTCTC -ACGGAATCCGAAAGCCTATGGATC -ACGGAATCCGAAAGCCTACACTTC -ACGGAATCCGAAAGCCTAGTACTC -ACGGAATCCGAAAGCCTAGATGTC -ACGGAATCCGAAAGCCTAACAGTC -ACGGAATCCGAAAGCCTATTGCTG -ACGGAATCCGAAAGCCTATCCATG -ACGGAATCCGAAAGCCTATGTGTG -ACGGAATCCGAAAGCCTACTAGTG -ACGGAATCCGAAAGCCTACATCTG -ACGGAATCCGAAAGCCTAGAGTTG -ACGGAATCCGAAAGCCTAAGACTG -ACGGAATCCGAAAGCCTATCGGTA -ACGGAATCCGAAAGCCTATGCCTA -ACGGAATCCGAAAGCCTACCACTA -ACGGAATCCGAAAGCCTAGGAGTA -ACGGAATCCGAAAGCCTATCGTCT -ACGGAATCCGAAAGCCTATGCACT -ACGGAATCCGAAAGCCTACTGACT -ACGGAATCCGAAAGCCTACAACCT -ACGGAATCCGAAAGCCTAGCTACT -ACGGAATCCGAAAGCCTAGGATCT -ACGGAATCCGAAAGCCTAAAGGCT -ACGGAATCCGAAAGCCTATCAACC -ACGGAATCCGAAAGCCTATGTTCC -ACGGAATCCGAAAGCCTAATTCCC -ACGGAATCCGAAAGCCTATTCTCG -ACGGAATCCGAAAGCCTATAGACG -ACGGAATCCGAAAGCCTAGTAACG -ACGGAATCCGAAAGCCTAACTTCG -ACGGAATCCGAAAGCCTATACGCA -ACGGAATCCGAAAGCCTACTTGCA -ACGGAATCCGAAAGCCTACGAACA -ACGGAATCCGAAAGCCTACAGTCA -ACGGAATCCGAAAGCCTAGATCCA -ACGGAATCCGAAAGCCTAACGACA -ACGGAATCCGAAAGCCTAAGCTCA -ACGGAATCCGAAAGCCTATCACGT -ACGGAATCCGAAAGCCTACGTAGT -ACGGAATCCGAAAGCCTAGTCAGT -ACGGAATCCGAAAGCCTAGAAGGT -ACGGAATCCGAAAGCCTAAACCGT -ACGGAATCCGAAAGCCTATTGTGC -ACGGAATCCGAAAGCCTACTAAGC -ACGGAATCCGAAAGCCTAACTAGC -ACGGAATCCGAAAGCCTAAGATGC -ACGGAATCCGAAAGCCTATGAAGG -ACGGAATCCGAAAGCCTACAATGG -ACGGAATCCGAAAGCCTAATGAGG -ACGGAATCCGAAAGCCTAAATGGG -ACGGAATCCGAAAGCCTATCCTGA -ACGGAATCCGAAAGCCTATAGCGA -ACGGAATCCGAAAGCCTACACAGA -ACGGAATCCGAAAGCCTAGCAAGA -ACGGAATCCGAAAGCCTAGGTTGA -ACGGAATCCGAAAGCCTATCCGAT -ACGGAATCCGAAAGCCTATGGCAT -ACGGAATCCGAAAGCCTACGAGAT -ACGGAATCCGAAAGCCTATACCAC -ACGGAATCCGAAAGCCTACAGAAC -ACGGAATCCGAAAGCCTAGTCTAC -ACGGAATCCGAAAGCCTAACGTAC -ACGGAATCCGAAAGCCTAAGTGAC -ACGGAATCCGAAAGCCTACTGTAG -ACGGAATCCGAAAGCCTACCTAAG -ACGGAATCCGAAAGCCTAGTTCAG -ACGGAATCCGAAAGCCTAGCATAG -ACGGAATCCGAAAGCCTAGACAAG -ACGGAATCCGAAAGCCTAAAGCAG -ACGGAATCCGAAAGCCTACGTCAA -ACGGAATCCGAAAGCCTAGCTGAA -ACGGAATCCGAAAGCCTAAGTACG -ACGGAATCCGAAAGCCTAATCCGA -ACGGAATCCGAAAGCCTAATGGGA -ACGGAATCCGAAAGCCTAGTGCAA -ACGGAATCCGAAAGCCTAGAGGAA -ACGGAATCCGAAAGCCTACAGGTA -ACGGAATCCGAAAGCCTAGACTCT -ACGGAATCCGAAAGCCTAAGTCCT -ACGGAATCCGAAAGCCTATAAGCC -ACGGAATCCGAAAGCCTAATAGCC -ACGGAATCCGAAAGCCTATAACCG -ACGGAATCCGAAAGCCTAATGCCA -ACGGAATCCGAAAGCACTGGAAAC -ACGGAATCCGAAAGCACTAACACC -ACGGAATCCGAAAGCACTATCGAG -ACGGAATCCGAAAGCACTCTCCTT -ACGGAATCCGAAAGCACTCCTGTT -ACGGAATCCGAAAGCACTCGGTTT -ACGGAATCCGAAAGCACTGTGGTT -ACGGAATCCGAAAGCACTGCCTTT -ACGGAATCCGAAAGCACTGGTCTT -ACGGAATCCGAAAGCACTACGCTT -ACGGAATCCGAAAGCACTAGCGTT -ACGGAATCCGAAAGCACTTTCGTC -ACGGAATCCGAAAGCACTTCTCTC -ACGGAATCCGAAAGCACTTGGATC -ACGGAATCCGAAAGCACTCACTTC -ACGGAATCCGAAAGCACTGTACTC -ACGGAATCCGAAAGCACTGATGTC -ACGGAATCCGAAAGCACTACAGTC -ACGGAATCCGAAAGCACTTTGCTG -ACGGAATCCGAAAGCACTTCCATG -ACGGAATCCGAAAGCACTTGTGTG -ACGGAATCCGAAAGCACTCTAGTG -ACGGAATCCGAAAGCACTCATCTG -ACGGAATCCGAAAGCACTGAGTTG -ACGGAATCCGAAAGCACTAGACTG -ACGGAATCCGAAAGCACTTCGGTA -ACGGAATCCGAAAGCACTTGCCTA -ACGGAATCCGAAAGCACTCCACTA -ACGGAATCCGAAAGCACTGGAGTA -ACGGAATCCGAAAGCACTTCGTCT -ACGGAATCCGAAAGCACTTGCACT -ACGGAATCCGAAAGCACTCTGACT -ACGGAATCCGAAAGCACTCAACCT -ACGGAATCCGAAAGCACTGCTACT -ACGGAATCCGAAAGCACTGGATCT -ACGGAATCCGAAAGCACTAAGGCT -ACGGAATCCGAAAGCACTTCAACC -ACGGAATCCGAAAGCACTTGTTCC -ACGGAATCCGAAAGCACTATTCCC -ACGGAATCCGAAAGCACTTTCTCG -ACGGAATCCGAAAGCACTTAGACG -ACGGAATCCGAAAGCACTGTAACG -ACGGAATCCGAAAGCACTACTTCG -ACGGAATCCGAAAGCACTTACGCA -ACGGAATCCGAAAGCACTCTTGCA -ACGGAATCCGAAAGCACTCGAACA -ACGGAATCCGAAAGCACTCAGTCA -ACGGAATCCGAAAGCACTGATCCA -ACGGAATCCGAAAGCACTACGACA -ACGGAATCCGAAAGCACTAGCTCA -ACGGAATCCGAAAGCACTTCACGT -ACGGAATCCGAAAGCACTCGTAGT -ACGGAATCCGAAAGCACTGTCAGT -ACGGAATCCGAAAGCACTGAAGGT -ACGGAATCCGAAAGCACTAACCGT -ACGGAATCCGAAAGCACTTTGTGC -ACGGAATCCGAAAGCACTCTAAGC -ACGGAATCCGAAAGCACTACTAGC -ACGGAATCCGAAAGCACTAGATGC -ACGGAATCCGAAAGCACTTGAAGG -ACGGAATCCGAAAGCACTCAATGG -ACGGAATCCGAAAGCACTATGAGG -ACGGAATCCGAAAGCACTAATGGG -ACGGAATCCGAAAGCACTTCCTGA -ACGGAATCCGAAAGCACTTAGCGA -ACGGAATCCGAAAGCACTCACAGA -ACGGAATCCGAAAGCACTGCAAGA -ACGGAATCCGAAAGCACTGGTTGA -ACGGAATCCGAAAGCACTTCCGAT -ACGGAATCCGAAAGCACTTGGCAT -ACGGAATCCGAAAGCACTCGAGAT -ACGGAATCCGAAAGCACTTACCAC -ACGGAATCCGAAAGCACTCAGAAC -ACGGAATCCGAAAGCACTGTCTAC -ACGGAATCCGAAAGCACTACGTAC -ACGGAATCCGAAAGCACTAGTGAC -ACGGAATCCGAAAGCACTCTGTAG -ACGGAATCCGAAAGCACTCCTAAG -ACGGAATCCGAAAGCACTGTTCAG -ACGGAATCCGAAAGCACTGCATAG -ACGGAATCCGAAAGCACTGACAAG -ACGGAATCCGAAAGCACTAAGCAG -ACGGAATCCGAAAGCACTCGTCAA -ACGGAATCCGAAAGCACTGCTGAA -ACGGAATCCGAAAGCACTAGTACG -ACGGAATCCGAAAGCACTATCCGA -ACGGAATCCGAAAGCACTATGGGA -ACGGAATCCGAAAGCACTGTGCAA -ACGGAATCCGAAAGCACTGAGGAA -ACGGAATCCGAAAGCACTCAGGTA -ACGGAATCCGAAAGCACTGACTCT -ACGGAATCCGAAAGCACTAGTCCT -ACGGAATCCGAAAGCACTTAAGCC -ACGGAATCCGAAAGCACTATAGCC -ACGGAATCCGAAAGCACTTAACCG -ACGGAATCCGAAAGCACTATGCCA -ACGGAATCCGAATGCAGAGGAAAC -ACGGAATCCGAATGCAGAAACACC -ACGGAATCCGAATGCAGAATCGAG -ACGGAATCCGAATGCAGACTCCTT -ACGGAATCCGAATGCAGACCTGTT -ACGGAATCCGAATGCAGACGGTTT -ACGGAATCCGAATGCAGAGTGGTT -ACGGAATCCGAATGCAGAGCCTTT -ACGGAATCCGAATGCAGAGGTCTT -ACGGAATCCGAATGCAGAACGCTT -ACGGAATCCGAATGCAGAAGCGTT -ACGGAATCCGAATGCAGATTCGTC -ACGGAATCCGAATGCAGATCTCTC -ACGGAATCCGAATGCAGATGGATC -ACGGAATCCGAATGCAGACACTTC -ACGGAATCCGAATGCAGAGTACTC -ACGGAATCCGAATGCAGAGATGTC -ACGGAATCCGAATGCAGAACAGTC -ACGGAATCCGAATGCAGATTGCTG -ACGGAATCCGAATGCAGATCCATG -ACGGAATCCGAATGCAGATGTGTG -ACGGAATCCGAATGCAGACTAGTG -ACGGAATCCGAATGCAGACATCTG -ACGGAATCCGAATGCAGAGAGTTG -ACGGAATCCGAATGCAGAAGACTG -ACGGAATCCGAATGCAGATCGGTA -ACGGAATCCGAATGCAGATGCCTA -ACGGAATCCGAATGCAGACCACTA -ACGGAATCCGAATGCAGAGGAGTA -ACGGAATCCGAATGCAGATCGTCT -ACGGAATCCGAATGCAGATGCACT -ACGGAATCCGAATGCAGACTGACT -ACGGAATCCGAATGCAGACAACCT -ACGGAATCCGAATGCAGAGCTACT -ACGGAATCCGAATGCAGAGGATCT -ACGGAATCCGAATGCAGAAAGGCT -ACGGAATCCGAATGCAGATCAACC -ACGGAATCCGAATGCAGATGTTCC -ACGGAATCCGAATGCAGAATTCCC -ACGGAATCCGAATGCAGATTCTCG -ACGGAATCCGAATGCAGATAGACG -ACGGAATCCGAATGCAGAGTAACG -ACGGAATCCGAATGCAGAACTTCG -ACGGAATCCGAATGCAGATACGCA -ACGGAATCCGAATGCAGACTTGCA -ACGGAATCCGAATGCAGACGAACA -ACGGAATCCGAATGCAGACAGTCA -ACGGAATCCGAATGCAGAGATCCA -ACGGAATCCGAATGCAGAACGACA -ACGGAATCCGAATGCAGAAGCTCA -ACGGAATCCGAATGCAGATCACGT -ACGGAATCCGAATGCAGACGTAGT -ACGGAATCCGAATGCAGAGTCAGT -ACGGAATCCGAATGCAGAGAAGGT -ACGGAATCCGAATGCAGAAACCGT -ACGGAATCCGAATGCAGATTGTGC -ACGGAATCCGAATGCAGACTAAGC -ACGGAATCCGAATGCAGAACTAGC -ACGGAATCCGAATGCAGAAGATGC -ACGGAATCCGAATGCAGATGAAGG -ACGGAATCCGAATGCAGACAATGG -ACGGAATCCGAATGCAGAATGAGG -ACGGAATCCGAATGCAGAAATGGG -ACGGAATCCGAATGCAGATCCTGA -ACGGAATCCGAATGCAGATAGCGA -ACGGAATCCGAATGCAGACACAGA -ACGGAATCCGAATGCAGAGCAAGA -ACGGAATCCGAATGCAGAGGTTGA -ACGGAATCCGAATGCAGATCCGAT -ACGGAATCCGAATGCAGATGGCAT -ACGGAATCCGAATGCAGACGAGAT -ACGGAATCCGAATGCAGATACCAC -ACGGAATCCGAATGCAGACAGAAC -ACGGAATCCGAATGCAGAGTCTAC -ACGGAATCCGAATGCAGAACGTAC -ACGGAATCCGAATGCAGAAGTGAC -ACGGAATCCGAATGCAGACTGTAG -ACGGAATCCGAATGCAGACCTAAG -ACGGAATCCGAATGCAGAGTTCAG -ACGGAATCCGAATGCAGAGCATAG -ACGGAATCCGAATGCAGAGACAAG -ACGGAATCCGAATGCAGAAAGCAG -ACGGAATCCGAATGCAGACGTCAA -ACGGAATCCGAATGCAGAGCTGAA -ACGGAATCCGAATGCAGAAGTACG -ACGGAATCCGAATGCAGAATCCGA -ACGGAATCCGAATGCAGAATGGGA -ACGGAATCCGAATGCAGAGTGCAA -ACGGAATCCGAATGCAGAGAGGAA -ACGGAATCCGAATGCAGACAGGTA -ACGGAATCCGAATGCAGAGACTCT -ACGGAATCCGAATGCAGAAGTCCT -ACGGAATCCGAATGCAGATAAGCC -ACGGAATCCGAATGCAGAATAGCC -ACGGAATCCGAATGCAGATAACCG -ACGGAATCCGAATGCAGAATGCCA -ACGGAATCCGAAAGGTGAGGAAAC -ACGGAATCCGAAAGGTGAAACACC -ACGGAATCCGAAAGGTGAATCGAG -ACGGAATCCGAAAGGTGACTCCTT -ACGGAATCCGAAAGGTGACCTGTT -ACGGAATCCGAAAGGTGACGGTTT -ACGGAATCCGAAAGGTGAGTGGTT -ACGGAATCCGAAAGGTGAGCCTTT -ACGGAATCCGAAAGGTGAGGTCTT -ACGGAATCCGAAAGGTGAACGCTT -ACGGAATCCGAAAGGTGAAGCGTT -ACGGAATCCGAAAGGTGATTCGTC -ACGGAATCCGAAAGGTGATCTCTC -ACGGAATCCGAAAGGTGATGGATC -ACGGAATCCGAAAGGTGACACTTC -ACGGAATCCGAAAGGTGAGTACTC -ACGGAATCCGAAAGGTGAGATGTC -ACGGAATCCGAAAGGTGAACAGTC -ACGGAATCCGAAAGGTGATTGCTG -ACGGAATCCGAAAGGTGATCCATG -ACGGAATCCGAAAGGTGATGTGTG -ACGGAATCCGAAAGGTGACTAGTG -ACGGAATCCGAAAGGTGACATCTG -ACGGAATCCGAAAGGTGAGAGTTG -ACGGAATCCGAAAGGTGAAGACTG -ACGGAATCCGAAAGGTGATCGGTA -ACGGAATCCGAAAGGTGATGCCTA -ACGGAATCCGAAAGGTGACCACTA -ACGGAATCCGAAAGGTGAGGAGTA -ACGGAATCCGAAAGGTGATCGTCT -ACGGAATCCGAAAGGTGATGCACT -ACGGAATCCGAAAGGTGACTGACT -ACGGAATCCGAAAGGTGACAACCT -ACGGAATCCGAAAGGTGAGCTACT -ACGGAATCCGAAAGGTGAGGATCT -ACGGAATCCGAAAGGTGAAAGGCT -ACGGAATCCGAAAGGTGATCAACC -ACGGAATCCGAAAGGTGATGTTCC -ACGGAATCCGAAAGGTGAATTCCC -ACGGAATCCGAAAGGTGATTCTCG -ACGGAATCCGAAAGGTGATAGACG -ACGGAATCCGAAAGGTGAGTAACG -ACGGAATCCGAAAGGTGAACTTCG -ACGGAATCCGAAAGGTGATACGCA -ACGGAATCCGAAAGGTGACTTGCA -ACGGAATCCGAAAGGTGACGAACA -ACGGAATCCGAAAGGTGACAGTCA -ACGGAATCCGAAAGGTGAGATCCA -ACGGAATCCGAAAGGTGAACGACA -ACGGAATCCGAAAGGTGAAGCTCA -ACGGAATCCGAAAGGTGATCACGT -ACGGAATCCGAAAGGTGACGTAGT -ACGGAATCCGAAAGGTGAGTCAGT -ACGGAATCCGAAAGGTGAGAAGGT -ACGGAATCCGAAAGGTGAAACCGT -ACGGAATCCGAAAGGTGATTGTGC -ACGGAATCCGAAAGGTGACTAAGC -ACGGAATCCGAAAGGTGAACTAGC -ACGGAATCCGAAAGGTGAAGATGC -ACGGAATCCGAAAGGTGATGAAGG -ACGGAATCCGAAAGGTGACAATGG -ACGGAATCCGAAAGGTGAATGAGG -ACGGAATCCGAAAGGTGAAATGGG -ACGGAATCCGAAAGGTGATCCTGA -ACGGAATCCGAAAGGTGATAGCGA -ACGGAATCCGAAAGGTGACACAGA -ACGGAATCCGAAAGGTGAGCAAGA -ACGGAATCCGAAAGGTGAGGTTGA -ACGGAATCCGAAAGGTGATCCGAT -ACGGAATCCGAAAGGTGATGGCAT -ACGGAATCCGAAAGGTGACGAGAT -ACGGAATCCGAAAGGTGATACCAC -ACGGAATCCGAAAGGTGACAGAAC -ACGGAATCCGAAAGGTGAGTCTAC -ACGGAATCCGAAAGGTGAACGTAC -ACGGAATCCGAAAGGTGAAGTGAC -ACGGAATCCGAAAGGTGACTGTAG -ACGGAATCCGAAAGGTGACCTAAG -ACGGAATCCGAAAGGTGAGTTCAG -ACGGAATCCGAAAGGTGAGCATAG -ACGGAATCCGAAAGGTGAGACAAG -ACGGAATCCGAAAGGTGAAAGCAG -ACGGAATCCGAAAGGTGACGTCAA -ACGGAATCCGAAAGGTGAGCTGAA -ACGGAATCCGAAAGGTGAAGTACG -ACGGAATCCGAAAGGTGAATCCGA -ACGGAATCCGAAAGGTGAATGGGA -ACGGAATCCGAAAGGTGAGTGCAA -ACGGAATCCGAAAGGTGAGAGGAA -ACGGAATCCGAAAGGTGACAGGTA -ACGGAATCCGAAAGGTGAGACTCT -ACGGAATCCGAAAGGTGAAGTCCT -ACGGAATCCGAAAGGTGATAAGCC -ACGGAATCCGAAAGGTGAATAGCC -ACGGAATCCGAAAGGTGATAACCG -ACGGAATCCGAAAGGTGAATGCCA -ACGGAATCCGAATGGCAAGGAAAC -ACGGAATCCGAATGGCAAAACACC -ACGGAATCCGAATGGCAAATCGAG -ACGGAATCCGAATGGCAACTCCTT -ACGGAATCCGAATGGCAACCTGTT -ACGGAATCCGAATGGCAACGGTTT -ACGGAATCCGAATGGCAAGTGGTT -ACGGAATCCGAATGGCAAGCCTTT -ACGGAATCCGAATGGCAAGGTCTT -ACGGAATCCGAATGGCAAACGCTT -ACGGAATCCGAATGGCAAAGCGTT -ACGGAATCCGAATGGCAATTCGTC -ACGGAATCCGAATGGCAATCTCTC -ACGGAATCCGAATGGCAATGGATC -ACGGAATCCGAATGGCAACACTTC -ACGGAATCCGAATGGCAAGTACTC -ACGGAATCCGAATGGCAAGATGTC -ACGGAATCCGAATGGCAAACAGTC -ACGGAATCCGAATGGCAATTGCTG -ACGGAATCCGAATGGCAATCCATG -ACGGAATCCGAATGGCAATGTGTG -ACGGAATCCGAATGGCAACTAGTG -ACGGAATCCGAATGGCAACATCTG -ACGGAATCCGAATGGCAAGAGTTG -ACGGAATCCGAATGGCAAAGACTG -ACGGAATCCGAATGGCAATCGGTA -ACGGAATCCGAATGGCAATGCCTA -ACGGAATCCGAATGGCAACCACTA -ACGGAATCCGAATGGCAAGGAGTA -ACGGAATCCGAATGGCAATCGTCT -ACGGAATCCGAATGGCAATGCACT -ACGGAATCCGAATGGCAACTGACT -ACGGAATCCGAATGGCAACAACCT -ACGGAATCCGAATGGCAAGCTACT -ACGGAATCCGAATGGCAAGGATCT -ACGGAATCCGAATGGCAAAAGGCT -ACGGAATCCGAATGGCAATCAACC -ACGGAATCCGAATGGCAATGTTCC -ACGGAATCCGAATGGCAAATTCCC -ACGGAATCCGAATGGCAATTCTCG -ACGGAATCCGAATGGCAATAGACG -ACGGAATCCGAATGGCAAGTAACG -ACGGAATCCGAATGGCAAACTTCG -ACGGAATCCGAATGGCAATACGCA -ACGGAATCCGAATGGCAACTTGCA -ACGGAATCCGAATGGCAACGAACA -ACGGAATCCGAATGGCAACAGTCA -ACGGAATCCGAATGGCAAGATCCA -ACGGAATCCGAATGGCAAACGACA -ACGGAATCCGAATGGCAAAGCTCA -ACGGAATCCGAATGGCAATCACGT -ACGGAATCCGAATGGCAACGTAGT -ACGGAATCCGAATGGCAAGTCAGT -ACGGAATCCGAATGGCAAGAAGGT -ACGGAATCCGAATGGCAAAACCGT -ACGGAATCCGAATGGCAATTGTGC -ACGGAATCCGAATGGCAACTAAGC -ACGGAATCCGAATGGCAAACTAGC -ACGGAATCCGAATGGCAAAGATGC -ACGGAATCCGAATGGCAATGAAGG -ACGGAATCCGAATGGCAACAATGG -ACGGAATCCGAATGGCAAATGAGG -ACGGAATCCGAATGGCAAAATGGG -ACGGAATCCGAATGGCAATCCTGA -ACGGAATCCGAATGGCAATAGCGA -ACGGAATCCGAATGGCAACACAGA -ACGGAATCCGAATGGCAAGCAAGA -ACGGAATCCGAATGGCAAGGTTGA -ACGGAATCCGAATGGCAATCCGAT -ACGGAATCCGAATGGCAATGGCAT -ACGGAATCCGAATGGCAACGAGAT -ACGGAATCCGAATGGCAATACCAC -ACGGAATCCGAATGGCAACAGAAC -ACGGAATCCGAATGGCAAGTCTAC -ACGGAATCCGAATGGCAAACGTAC -ACGGAATCCGAATGGCAAAGTGAC -ACGGAATCCGAATGGCAACTGTAG -ACGGAATCCGAATGGCAACCTAAG -ACGGAATCCGAATGGCAAGTTCAG -ACGGAATCCGAATGGCAAGCATAG -ACGGAATCCGAATGGCAAGACAAG -ACGGAATCCGAATGGCAAAAGCAG -ACGGAATCCGAATGGCAACGTCAA -ACGGAATCCGAATGGCAAGCTGAA -ACGGAATCCGAATGGCAAAGTACG -ACGGAATCCGAATGGCAAATCCGA -ACGGAATCCGAATGGCAAATGGGA -ACGGAATCCGAATGGCAAGTGCAA -ACGGAATCCGAATGGCAAGAGGAA -ACGGAATCCGAATGGCAACAGGTA -ACGGAATCCGAATGGCAAGACTCT -ACGGAATCCGAATGGCAAAGTCCT -ACGGAATCCGAATGGCAATAAGCC -ACGGAATCCGAATGGCAAATAGCC -ACGGAATCCGAATGGCAATAACCG -ACGGAATCCGAATGGCAAATGCCA -ACGGAATCCGAAAGGATGGGAAAC -ACGGAATCCGAAAGGATGAACACC -ACGGAATCCGAAAGGATGATCGAG -ACGGAATCCGAAAGGATGCTCCTT -ACGGAATCCGAAAGGATGCCTGTT -ACGGAATCCGAAAGGATGCGGTTT -ACGGAATCCGAAAGGATGGTGGTT -ACGGAATCCGAAAGGATGGCCTTT -ACGGAATCCGAAAGGATGGGTCTT -ACGGAATCCGAAAGGATGACGCTT -ACGGAATCCGAAAGGATGAGCGTT -ACGGAATCCGAAAGGATGTTCGTC -ACGGAATCCGAAAGGATGTCTCTC -ACGGAATCCGAAAGGATGTGGATC -ACGGAATCCGAAAGGATGCACTTC -ACGGAATCCGAAAGGATGGTACTC -ACGGAATCCGAAAGGATGGATGTC -ACGGAATCCGAAAGGATGACAGTC -ACGGAATCCGAAAGGATGTTGCTG -ACGGAATCCGAAAGGATGTCCATG -ACGGAATCCGAAAGGATGTGTGTG -ACGGAATCCGAAAGGATGCTAGTG -ACGGAATCCGAAAGGATGCATCTG -ACGGAATCCGAAAGGATGGAGTTG -ACGGAATCCGAAAGGATGAGACTG -ACGGAATCCGAAAGGATGTCGGTA -ACGGAATCCGAAAGGATGTGCCTA -ACGGAATCCGAAAGGATGCCACTA -ACGGAATCCGAAAGGATGGGAGTA -ACGGAATCCGAAAGGATGTCGTCT -ACGGAATCCGAAAGGATGTGCACT -ACGGAATCCGAAAGGATGCTGACT -ACGGAATCCGAAAGGATGCAACCT -ACGGAATCCGAAAGGATGGCTACT -ACGGAATCCGAAAGGATGGGATCT -ACGGAATCCGAAAGGATGAAGGCT -ACGGAATCCGAAAGGATGTCAACC -ACGGAATCCGAAAGGATGTGTTCC -ACGGAATCCGAAAGGATGATTCCC -ACGGAATCCGAAAGGATGTTCTCG -ACGGAATCCGAAAGGATGTAGACG -ACGGAATCCGAAAGGATGGTAACG -ACGGAATCCGAAAGGATGACTTCG -ACGGAATCCGAAAGGATGTACGCA -ACGGAATCCGAAAGGATGCTTGCA -ACGGAATCCGAAAGGATGCGAACA -ACGGAATCCGAAAGGATGCAGTCA -ACGGAATCCGAAAGGATGGATCCA -ACGGAATCCGAAAGGATGACGACA -ACGGAATCCGAAAGGATGAGCTCA -ACGGAATCCGAAAGGATGTCACGT -ACGGAATCCGAAAGGATGCGTAGT -ACGGAATCCGAAAGGATGGTCAGT -ACGGAATCCGAAAGGATGGAAGGT -ACGGAATCCGAAAGGATGAACCGT -ACGGAATCCGAAAGGATGTTGTGC -ACGGAATCCGAAAGGATGCTAAGC -ACGGAATCCGAAAGGATGACTAGC -ACGGAATCCGAAAGGATGAGATGC -ACGGAATCCGAAAGGATGTGAAGG -ACGGAATCCGAAAGGATGCAATGG -ACGGAATCCGAAAGGATGATGAGG -ACGGAATCCGAAAGGATGAATGGG -ACGGAATCCGAAAGGATGTCCTGA -ACGGAATCCGAAAGGATGTAGCGA -ACGGAATCCGAAAGGATGCACAGA -ACGGAATCCGAAAGGATGGCAAGA -ACGGAATCCGAAAGGATGGGTTGA -ACGGAATCCGAAAGGATGTCCGAT -ACGGAATCCGAAAGGATGTGGCAT -ACGGAATCCGAAAGGATGCGAGAT -ACGGAATCCGAAAGGATGTACCAC -ACGGAATCCGAAAGGATGCAGAAC -ACGGAATCCGAAAGGATGGTCTAC -ACGGAATCCGAAAGGATGACGTAC -ACGGAATCCGAAAGGATGAGTGAC -ACGGAATCCGAAAGGATGCTGTAG -ACGGAATCCGAAAGGATGCCTAAG -ACGGAATCCGAAAGGATGGTTCAG -ACGGAATCCGAAAGGATGGCATAG -ACGGAATCCGAAAGGATGGACAAG -ACGGAATCCGAAAGGATGAAGCAG -ACGGAATCCGAAAGGATGCGTCAA -ACGGAATCCGAAAGGATGGCTGAA -ACGGAATCCGAAAGGATGAGTACG -ACGGAATCCGAAAGGATGATCCGA -ACGGAATCCGAAAGGATGATGGGA -ACGGAATCCGAAAGGATGGTGCAA -ACGGAATCCGAAAGGATGGAGGAA -ACGGAATCCGAAAGGATGCAGGTA -ACGGAATCCGAAAGGATGGACTCT -ACGGAATCCGAAAGGATGAGTCCT -ACGGAATCCGAAAGGATGTAAGCC -ACGGAATCCGAAAGGATGATAGCC -ACGGAATCCGAAAGGATGTAACCG -ACGGAATCCGAAAGGATGATGCCA -ACGGAATCCGAAGGGAATGGAAAC -ACGGAATCCGAAGGGAATAACACC -ACGGAATCCGAAGGGAATATCGAG -ACGGAATCCGAAGGGAATCTCCTT -ACGGAATCCGAAGGGAATCCTGTT -ACGGAATCCGAAGGGAATCGGTTT -ACGGAATCCGAAGGGAATGTGGTT -ACGGAATCCGAAGGGAATGCCTTT -ACGGAATCCGAAGGGAATGGTCTT -ACGGAATCCGAAGGGAATACGCTT -ACGGAATCCGAAGGGAATAGCGTT -ACGGAATCCGAAGGGAATTTCGTC -ACGGAATCCGAAGGGAATTCTCTC -ACGGAATCCGAAGGGAATTGGATC -ACGGAATCCGAAGGGAATCACTTC -ACGGAATCCGAAGGGAATGTACTC -ACGGAATCCGAAGGGAATGATGTC -ACGGAATCCGAAGGGAATACAGTC -ACGGAATCCGAAGGGAATTTGCTG -ACGGAATCCGAAGGGAATTCCATG -ACGGAATCCGAAGGGAATTGTGTG -ACGGAATCCGAAGGGAATCTAGTG -ACGGAATCCGAAGGGAATCATCTG -ACGGAATCCGAAGGGAATGAGTTG -ACGGAATCCGAAGGGAATAGACTG -ACGGAATCCGAAGGGAATTCGGTA -ACGGAATCCGAAGGGAATTGCCTA -ACGGAATCCGAAGGGAATCCACTA -ACGGAATCCGAAGGGAATGGAGTA -ACGGAATCCGAAGGGAATTCGTCT -ACGGAATCCGAAGGGAATTGCACT -ACGGAATCCGAAGGGAATCTGACT -ACGGAATCCGAAGGGAATCAACCT -ACGGAATCCGAAGGGAATGCTACT -ACGGAATCCGAAGGGAATGGATCT -ACGGAATCCGAAGGGAATAAGGCT -ACGGAATCCGAAGGGAATTCAACC -ACGGAATCCGAAGGGAATTGTTCC -ACGGAATCCGAAGGGAATATTCCC -ACGGAATCCGAAGGGAATTTCTCG -ACGGAATCCGAAGGGAATTAGACG -ACGGAATCCGAAGGGAATGTAACG -ACGGAATCCGAAGGGAATACTTCG -ACGGAATCCGAAGGGAATTACGCA -ACGGAATCCGAAGGGAATCTTGCA -ACGGAATCCGAAGGGAATCGAACA -ACGGAATCCGAAGGGAATCAGTCA -ACGGAATCCGAAGGGAATGATCCA -ACGGAATCCGAAGGGAATACGACA -ACGGAATCCGAAGGGAATAGCTCA -ACGGAATCCGAAGGGAATTCACGT -ACGGAATCCGAAGGGAATCGTAGT -ACGGAATCCGAAGGGAATGTCAGT -ACGGAATCCGAAGGGAATGAAGGT -ACGGAATCCGAAGGGAATAACCGT -ACGGAATCCGAAGGGAATTTGTGC -ACGGAATCCGAAGGGAATCTAAGC -ACGGAATCCGAAGGGAATACTAGC -ACGGAATCCGAAGGGAATAGATGC -ACGGAATCCGAAGGGAATTGAAGG -ACGGAATCCGAAGGGAATCAATGG -ACGGAATCCGAAGGGAATATGAGG -ACGGAATCCGAAGGGAATAATGGG -ACGGAATCCGAAGGGAATTCCTGA -ACGGAATCCGAAGGGAATTAGCGA -ACGGAATCCGAAGGGAATCACAGA -ACGGAATCCGAAGGGAATGCAAGA -ACGGAATCCGAAGGGAATGGTTGA -ACGGAATCCGAAGGGAATTCCGAT -ACGGAATCCGAAGGGAATTGGCAT -ACGGAATCCGAAGGGAATCGAGAT -ACGGAATCCGAAGGGAATTACCAC -ACGGAATCCGAAGGGAATCAGAAC -ACGGAATCCGAAGGGAATGTCTAC -ACGGAATCCGAAGGGAATACGTAC -ACGGAATCCGAAGGGAATAGTGAC -ACGGAATCCGAAGGGAATCTGTAG -ACGGAATCCGAAGGGAATCCTAAG -ACGGAATCCGAAGGGAATGTTCAG -ACGGAATCCGAAGGGAATGCATAG -ACGGAATCCGAAGGGAATGACAAG -ACGGAATCCGAAGGGAATAAGCAG -ACGGAATCCGAAGGGAATCGTCAA -ACGGAATCCGAAGGGAATGCTGAA -ACGGAATCCGAAGGGAATAGTACG -ACGGAATCCGAAGGGAATATCCGA -ACGGAATCCGAAGGGAATATGGGA -ACGGAATCCGAAGGGAATGTGCAA -ACGGAATCCGAAGGGAATGAGGAA -ACGGAATCCGAAGGGAATCAGGTA -ACGGAATCCGAAGGGAATGACTCT -ACGGAATCCGAAGGGAATAGTCCT -ACGGAATCCGAAGGGAATTAAGCC -ACGGAATCCGAAGGGAATATAGCC -ACGGAATCCGAAGGGAATTAACCG -ACGGAATCCGAAGGGAATATGCCA -ACGGAATCCGAATGATCCGGAAAC -ACGGAATCCGAATGATCCAACACC -ACGGAATCCGAATGATCCATCGAG -ACGGAATCCGAATGATCCCTCCTT -ACGGAATCCGAATGATCCCCTGTT -ACGGAATCCGAATGATCCCGGTTT -ACGGAATCCGAATGATCCGTGGTT -ACGGAATCCGAATGATCCGCCTTT -ACGGAATCCGAATGATCCGGTCTT -ACGGAATCCGAATGATCCACGCTT -ACGGAATCCGAATGATCCAGCGTT -ACGGAATCCGAATGATCCTTCGTC -ACGGAATCCGAATGATCCTCTCTC -ACGGAATCCGAATGATCCTGGATC -ACGGAATCCGAATGATCCCACTTC -ACGGAATCCGAATGATCCGTACTC -ACGGAATCCGAATGATCCGATGTC -ACGGAATCCGAATGATCCACAGTC -ACGGAATCCGAATGATCCTTGCTG -ACGGAATCCGAATGATCCTCCATG -ACGGAATCCGAATGATCCTGTGTG -ACGGAATCCGAATGATCCCTAGTG -ACGGAATCCGAATGATCCCATCTG -ACGGAATCCGAATGATCCGAGTTG -ACGGAATCCGAATGATCCAGACTG -ACGGAATCCGAATGATCCTCGGTA -ACGGAATCCGAATGATCCTGCCTA -ACGGAATCCGAATGATCCCCACTA -ACGGAATCCGAATGATCCGGAGTA -ACGGAATCCGAATGATCCTCGTCT -ACGGAATCCGAATGATCCTGCACT -ACGGAATCCGAATGATCCCTGACT -ACGGAATCCGAATGATCCCAACCT -ACGGAATCCGAATGATCCGCTACT -ACGGAATCCGAATGATCCGGATCT -ACGGAATCCGAATGATCCAAGGCT -ACGGAATCCGAATGATCCTCAACC -ACGGAATCCGAATGATCCTGTTCC -ACGGAATCCGAATGATCCATTCCC -ACGGAATCCGAATGATCCTTCTCG -ACGGAATCCGAATGATCCTAGACG -ACGGAATCCGAATGATCCGTAACG -ACGGAATCCGAATGATCCACTTCG -ACGGAATCCGAATGATCCTACGCA -ACGGAATCCGAATGATCCCTTGCA -ACGGAATCCGAATGATCCCGAACA -ACGGAATCCGAATGATCCCAGTCA -ACGGAATCCGAATGATCCGATCCA -ACGGAATCCGAATGATCCACGACA -ACGGAATCCGAATGATCCAGCTCA -ACGGAATCCGAATGATCCTCACGT -ACGGAATCCGAATGATCCCGTAGT -ACGGAATCCGAATGATCCGTCAGT -ACGGAATCCGAATGATCCGAAGGT -ACGGAATCCGAATGATCCAACCGT -ACGGAATCCGAATGATCCTTGTGC -ACGGAATCCGAATGATCCCTAAGC -ACGGAATCCGAATGATCCACTAGC -ACGGAATCCGAATGATCCAGATGC -ACGGAATCCGAATGATCCTGAAGG -ACGGAATCCGAATGATCCCAATGG -ACGGAATCCGAATGATCCATGAGG -ACGGAATCCGAATGATCCAATGGG -ACGGAATCCGAATGATCCTCCTGA -ACGGAATCCGAATGATCCTAGCGA -ACGGAATCCGAATGATCCCACAGA -ACGGAATCCGAATGATCCGCAAGA -ACGGAATCCGAATGATCCGGTTGA -ACGGAATCCGAATGATCCTCCGAT -ACGGAATCCGAATGATCCTGGCAT -ACGGAATCCGAATGATCCCGAGAT -ACGGAATCCGAATGATCCTACCAC -ACGGAATCCGAATGATCCCAGAAC -ACGGAATCCGAATGATCCGTCTAC -ACGGAATCCGAATGATCCACGTAC -ACGGAATCCGAATGATCCAGTGAC -ACGGAATCCGAATGATCCCTGTAG -ACGGAATCCGAATGATCCCCTAAG -ACGGAATCCGAATGATCCGTTCAG -ACGGAATCCGAATGATCCGCATAG -ACGGAATCCGAATGATCCGACAAG -ACGGAATCCGAATGATCCAAGCAG -ACGGAATCCGAATGATCCCGTCAA -ACGGAATCCGAATGATCCGCTGAA -ACGGAATCCGAATGATCCAGTACG -ACGGAATCCGAATGATCCATCCGA -ACGGAATCCGAATGATCCATGGGA -ACGGAATCCGAATGATCCGTGCAA -ACGGAATCCGAATGATCCGAGGAA -ACGGAATCCGAATGATCCCAGGTA -ACGGAATCCGAATGATCCGACTCT -ACGGAATCCGAATGATCCAGTCCT -ACGGAATCCGAATGATCCTAAGCC -ACGGAATCCGAATGATCCATAGCC -ACGGAATCCGAATGATCCTAACCG -ACGGAATCCGAATGATCCATGCCA -ACGGAATCCGAACGATAGGGAAAC -ACGGAATCCGAACGATAGAACACC -ACGGAATCCGAACGATAGATCGAG -ACGGAATCCGAACGATAGCTCCTT -ACGGAATCCGAACGATAGCCTGTT -ACGGAATCCGAACGATAGCGGTTT -ACGGAATCCGAACGATAGGTGGTT -ACGGAATCCGAACGATAGGCCTTT -ACGGAATCCGAACGATAGGGTCTT -ACGGAATCCGAACGATAGACGCTT -ACGGAATCCGAACGATAGAGCGTT -ACGGAATCCGAACGATAGTTCGTC -ACGGAATCCGAACGATAGTCTCTC -ACGGAATCCGAACGATAGTGGATC -ACGGAATCCGAACGATAGCACTTC -ACGGAATCCGAACGATAGGTACTC -ACGGAATCCGAACGATAGGATGTC -ACGGAATCCGAACGATAGACAGTC -ACGGAATCCGAACGATAGTTGCTG -ACGGAATCCGAACGATAGTCCATG -ACGGAATCCGAACGATAGTGTGTG -ACGGAATCCGAACGATAGCTAGTG -ACGGAATCCGAACGATAGCATCTG -ACGGAATCCGAACGATAGGAGTTG -ACGGAATCCGAACGATAGAGACTG -ACGGAATCCGAACGATAGTCGGTA -ACGGAATCCGAACGATAGTGCCTA -ACGGAATCCGAACGATAGCCACTA -ACGGAATCCGAACGATAGGGAGTA -ACGGAATCCGAACGATAGTCGTCT -ACGGAATCCGAACGATAGTGCACT -ACGGAATCCGAACGATAGCTGACT -ACGGAATCCGAACGATAGCAACCT -ACGGAATCCGAACGATAGGCTACT -ACGGAATCCGAACGATAGGGATCT -ACGGAATCCGAACGATAGAAGGCT -ACGGAATCCGAACGATAGTCAACC -ACGGAATCCGAACGATAGTGTTCC -ACGGAATCCGAACGATAGATTCCC -ACGGAATCCGAACGATAGTTCTCG -ACGGAATCCGAACGATAGTAGACG -ACGGAATCCGAACGATAGGTAACG -ACGGAATCCGAACGATAGACTTCG -ACGGAATCCGAACGATAGTACGCA -ACGGAATCCGAACGATAGCTTGCA -ACGGAATCCGAACGATAGCGAACA -ACGGAATCCGAACGATAGCAGTCA -ACGGAATCCGAACGATAGGATCCA -ACGGAATCCGAACGATAGACGACA -ACGGAATCCGAACGATAGAGCTCA -ACGGAATCCGAACGATAGTCACGT -ACGGAATCCGAACGATAGCGTAGT -ACGGAATCCGAACGATAGGTCAGT -ACGGAATCCGAACGATAGGAAGGT -ACGGAATCCGAACGATAGAACCGT -ACGGAATCCGAACGATAGTTGTGC -ACGGAATCCGAACGATAGCTAAGC -ACGGAATCCGAACGATAGACTAGC -ACGGAATCCGAACGATAGAGATGC -ACGGAATCCGAACGATAGTGAAGG -ACGGAATCCGAACGATAGCAATGG -ACGGAATCCGAACGATAGATGAGG -ACGGAATCCGAACGATAGAATGGG -ACGGAATCCGAACGATAGTCCTGA -ACGGAATCCGAACGATAGTAGCGA -ACGGAATCCGAACGATAGCACAGA -ACGGAATCCGAACGATAGGCAAGA -ACGGAATCCGAACGATAGGGTTGA -ACGGAATCCGAACGATAGTCCGAT -ACGGAATCCGAACGATAGTGGCAT -ACGGAATCCGAACGATAGCGAGAT -ACGGAATCCGAACGATAGTACCAC -ACGGAATCCGAACGATAGCAGAAC -ACGGAATCCGAACGATAGGTCTAC -ACGGAATCCGAACGATAGACGTAC -ACGGAATCCGAACGATAGAGTGAC -ACGGAATCCGAACGATAGCTGTAG -ACGGAATCCGAACGATAGCCTAAG -ACGGAATCCGAACGATAGGTTCAG -ACGGAATCCGAACGATAGGCATAG -ACGGAATCCGAACGATAGGACAAG -ACGGAATCCGAACGATAGAAGCAG -ACGGAATCCGAACGATAGCGTCAA -ACGGAATCCGAACGATAGGCTGAA -ACGGAATCCGAACGATAGAGTACG -ACGGAATCCGAACGATAGATCCGA -ACGGAATCCGAACGATAGATGGGA -ACGGAATCCGAACGATAGGTGCAA -ACGGAATCCGAACGATAGGAGGAA -ACGGAATCCGAACGATAGCAGGTA -ACGGAATCCGAACGATAGGACTCT -ACGGAATCCGAACGATAGAGTCCT -ACGGAATCCGAACGATAGTAAGCC -ACGGAATCCGAACGATAGATAGCC -ACGGAATCCGAACGATAGTAACCG -ACGGAATCCGAACGATAGATGCCA -ACGGAATCCGAAAGACACGGAAAC -ACGGAATCCGAAAGACACAACACC -ACGGAATCCGAAAGACACATCGAG -ACGGAATCCGAAAGACACCTCCTT -ACGGAATCCGAAAGACACCCTGTT -ACGGAATCCGAAAGACACCGGTTT -ACGGAATCCGAAAGACACGTGGTT -ACGGAATCCGAAAGACACGCCTTT -ACGGAATCCGAAAGACACGGTCTT -ACGGAATCCGAAAGACACACGCTT -ACGGAATCCGAAAGACACAGCGTT -ACGGAATCCGAAAGACACTTCGTC -ACGGAATCCGAAAGACACTCTCTC -ACGGAATCCGAAAGACACTGGATC -ACGGAATCCGAAAGACACCACTTC -ACGGAATCCGAAAGACACGTACTC -ACGGAATCCGAAAGACACGATGTC -ACGGAATCCGAAAGACACACAGTC -ACGGAATCCGAAAGACACTTGCTG -ACGGAATCCGAAAGACACTCCATG -ACGGAATCCGAAAGACACTGTGTG -ACGGAATCCGAAAGACACCTAGTG -ACGGAATCCGAAAGACACCATCTG -ACGGAATCCGAAAGACACGAGTTG -ACGGAATCCGAAAGACACAGACTG -ACGGAATCCGAAAGACACTCGGTA -ACGGAATCCGAAAGACACTGCCTA -ACGGAATCCGAAAGACACCCACTA -ACGGAATCCGAAAGACACGGAGTA -ACGGAATCCGAAAGACACTCGTCT -ACGGAATCCGAAAGACACTGCACT -ACGGAATCCGAAAGACACCTGACT -ACGGAATCCGAAAGACACCAACCT -ACGGAATCCGAAAGACACGCTACT -ACGGAATCCGAAAGACACGGATCT -ACGGAATCCGAAAGACACAAGGCT -ACGGAATCCGAAAGACACTCAACC -ACGGAATCCGAAAGACACTGTTCC -ACGGAATCCGAAAGACACATTCCC -ACGGAATCCGAAAGACACTTCTCG -ACGGAATCCGAAAGACACTAGACG -ACGGAATCCGAAAGACACGTAACG -ACGGAATCCGAAAGACACACTTCG -ACGGAATCCGAAAGACACTACGCA -ACGGAATCCGAAAGACACCTTGCA -ACGGAATCCGAAAGACACCGAACA -ACGGAATCCGAAAGACACCAGTCA -ACGGAATCCGAAAGACACGATCCA -ACGGAATCCGAAAGACACACGACA -ACGGAATCCGAAAGACACAGCTCA -ACGGAATCCGAAAGACACTCACGT -ACGGAATCCGAAAGACACCGTAGT -ACGGAATCCGAAAGACACGTCAGT -ACGGAATCCGAAAGACACGAAGGT -ACGGAATCCGAAAGACACAACCGT -ACGGAATCCGAAAGACACTTGTGC -ACGGAATCCGAAAGACACCTAAGC -ACGGAATCCGAAAGACACACTAGC -ACGGAATCCGAAAGACACAGATGC -ACGGAATCCGAAAGACACTGAAGG -ACGGAATCCGAAAGACACCAATGG -ACGGAATCCGAAAGACACATGAGG -ACGGAATCCGAAAGACACAATGGG -ACGGAATCCGAAAGACACTCCTGA -ACGGAATCCGAAAGACACTAGCGA -ACGGAATCCGAAAGACACCACAGA -ACGGAATCCGAAAGACACGCAAGA -ACGGAATCCGAAAGACACGGTTGA -ACGGAATCCGAAAGACACTCCGAT -ACGGAATCCGAAAGACACTGGCAT -ACGGAATCCGAAAGACACCGAGAT -ACGGAATCCGAAAGACACTACCAC -ACGGAATCCGAAAGACACCAGAAC -ACGGAATCCGAAAGACACGTCTAC -ACGGAATCCGAAAGACACACGTAC -ACGGAATCCGAAAGACACAGTGAC -ACGGAATCCGAAAGACACCTGTAG -ACGGAATCCGAAAGACACCCTAAG -ACGGAATCCGAAAGACACGTTCAG -ACGGAATCCGAAAGACACGCATAG -ACGGAATCCGAAAGACACGACAAG -ACGGAATCCGAAAGACACAAGCAG -ACGGAATCCGAAAGACACCGTCAA -ACGGAATCCGAAAGACACGCTGAA -ACGGAATCCGAAAGACACAGTACG -ACGGAATCCGAAAGACACATCCGA -ACGGAATCCGAAAGACACATGGGA -ACGGAATCCGAAAGACACGTGCAA -ACGGAATCCGAAAGACACGAGGAA -ACGGAATCCGAAAGACACCAGGTA -ACGGAATCCGAAAGACACGACTCT -ACGGAATCCGAAAGACACAGTCCT -ACGGAATCCGAAAGACACTAAGCC -ACGGAATCCGAAAGACACATAGCC -ACGGAATCCGAAAGACACTAACCG -ACGGAATCCGAAAGACACATGCCA -ACGGAATCCGAAAGAGCAGGAAAC -ACGGAATCCGAAAGAGCAAACACC -ACGGAATCCGAAAGAGCAATCGAG -ACGGAATCCGAAAGAGCACTCCTT -ACGGAATCCGAAAGAGCACCTGTT -ACGGAATCCGAAAGAGCACGGTTT -ACGGAATCCGAAAGAGCAGTGGTT -ACGGAATCCGAAAGAGCAGCCTTT -ACGGAATCCGAAAGAGCAGGTCTT -ACGGAATCCGAAAGAGCAACGCTT -ACGGAATCCGAAAGAGCAAGCGTT -ACGGAATCCGAAAGAGCATTCGTC -ACGGAATCCGAAAGAGCATCTCTC -ACGGAATCCGAAAGAGCATGGATC -ACGGAATCCGAAAGAGCACACTTC -ACGGAATCCGAAAGAGCAGTACTC -ACGGAATCCGAAAGAGCAGATGTC -ACGGAATCCGAAAGAGCAACAGTC -ACGGAATCCGAAAGAGCATTGCTG -ACGGAATCCGAAAGAGCATCCATG -ACGGAATCCGAAAGAGCATGTGTG -ACGGAATCCGAAAGAGCACTAGTG -ACGGAATCCGAAAGAGCACATCTG -ACGGAATCCGAAAGAGCAGAGTTG -ACGGAATCCGAAAGAGCAAGACTG -ACGGAATCCGAAAGAGCATCGGTA -ACGGAATCCGAAAGAGCATGCCTA -ACGGAATCCGAAAGAGCACCACTA -ACGGAATCCGAAAGAGCAGGAGTA -ACGGAATCCGAAAGAGCATCGTCT -ACGGAATCCGAAAGAGCATGCACT -ACGGAATCCGAAAGAGCACTGACT -ACGGAATCCGAAAGAGCACAACCT -ACGGAATCCGAAAGAGCAGCTACT -ACGGAATCCGAAAGAGCAGGATCT -ACGGAATCCGAAAGAGCAAAGGCT -ACGGAATCCGAAAGAGCATCAACC -ACGGAATCCGAAAGAGCATGTTCC -ACGGAATCCGAAAGAGCAATTCCC -ACGGAATCCGAAAGAGCATTCTCG -ACGGAATCCGAAAGAGCATAGACG -ACGGAATCCGAAAGAGCAGTAACG -ACGGAATCCGAAAGAGCAACTTCG -ACGGAATCCGAAAGAGCATACGCA -ACGGAATCCGAAAGAGCACTTGCA -ACGGAATCCGAAAGAGCACGAACA -ACGGAATCCGAAAGAGCACAGTCA -ACGGAATCCGAAAGAGCAGATCCA -ACGGAATCCGAAAGAGCAACGACA -ACGGAATCCGAAAGAGCAAGCTCA -ACGGAATCCGAAAGAGCATCACGT -ACGGAATCCGAAAGAGCACGTAGT -ACGGAATCCGAAAGAGCAGTCAGT -ACGGAATCCGAAAGAGCAGAAGGT -ACGGAATCCGAAAGAGCAAACCGT -ACGGAATCCGAAAGAGCATTGTGC -ACGGAATCCGAAAGAGCACTAAGC -ACGGAATCCGAAAGAGCAACTAGC -ACGGAATCCGAAAGAGCAAGATGC -ACGGAATCCGAAAGAGCATGAAGG -ACGGAATCCGAAAGAGCACAATGG -ACGGAATCCGAAAGAGCAATGAGG -ACGGAATCCGAAAGAGCAAATGGG -ACGGAATCCGAAAGAGCATCCTGA -ACGGAATCCGAAAGAGCATAGCGA -ACGGAATCCGAAAGAGCACACAGA -ACGGAATCCGAAAGAGCAGCAAGA -ACGGAATCCGAAAGAGCAGGTTGA -ACGGAATCCGAAAGAGCATCCGAT -ACGGAATCCGAAAGAGCATGGCAT -ACGGAATCCGAAAGAGCACGAGAT -ACGGAATCCGAAAGAGCATACCAC -ACGGAATCCGAAAGAGCACAGAAC -ACGGAATCCGAAAGAGCAGTCTAC -ACGGAATCCGAAAGAGCAACGTAC -ACGGAATCCGAAAGAGCAAGTGAC -ACGGAATCCGAAAGAGCACTGTAG -ACGGAATCCGAAAGAGCACCTAAG -ACGGAATCCGAAAGAGCAGTTCAG -ACGGAATCCGAAAGAGCAGCATAG -ACGGAATCCGAAAGAGCAGACAAG -ACGGAATCCGAAAGAGCAAAGCAG -ACGGAATCCGAAAGAGCACGTCAA -ACGGAATCCGAAAGAGCAGCTGAA -ACGGAATCCGAAAGAGCAAGTACG -ACGGAATCCGAAAGAGCAATCCGA -ACGGAATCCGAAAGAGCAATGGGA -ACGGAATCCGAAAGAGCAGTGCAA -ACGGAATCCGAAAGAGCAGAGGAA -ACGGAATCCGAAAGAGCACAGGTA -ACGGAATCCGAAAGAGCAGACTCT -ACGGAATCCGAAAGAGCAAGTCCT -ACGGAATCCGAAAGAGCATAAGCC -ACGGAATCCGAAAGAGCAATAGCC -ACGGAATCCGAAAGAGCATAACCG -ACGGAATCCGAAAGAGCAATGCCA -ACGGAATCCGAATGAGGTGGAAAC -ACGGAATCCGAATGAGGTAACACC -ACGGAATCCGAATGAGGTATCGAG -ACGGAATCCGAATGAGGTCTCCTT -ACGGAATCCGAATGAGGTCCTGTT -ACGGAATCCGAATGAGGTCGGTTT -ACGGAATCCGAATGAGGTGTGGTT -ACGGAATCCGAATGAGGTGCCTTT -ACGGAATCCGAATGAGGTGGTCTT -ACGGAATCCGAATGAGGTACGCTT -ACGGAATCCGAATGAGGTAGCGTT -ACGGAATCCGAATGAGGTTTCGTC -ACGGAATCCGAATGAGGTTCTCTC -ACGGAATCCGAATGAGGTTGGATC -ACGGAATCCGAATGAGGTCACTTC -ACGGAATCCGAATGAGGTGTACTC -ACGGAATCCGAATGAGGTGATGTC -ACGGAATCCGAATGAGGTACAGTC -ACGGAATCCGAATGAGGTTTGCTG -ACGGAATCCGAATGAGGTTCCATG -ACGGAATCCGAATGAGGTTGTGTG -ACGGAATCCGAATGAGGTCTAGTG -ACGGAATCCGAATGAGGTCATCTG -ACGGAATCCGAATGAGGTGAGTTG -ACGGAATCCGAATGAGGTAGACTG -ACGGAATCCGAATGAGGTTCGGTA -ACGGAATCCGAATGAGGTTGCCTA -ACGGAATCCGAATGAGGTCCACTA -ACGGAATCCGAATGAGGTGGAGTA -ACGGAATCCGAATGAGGTTCGTCT -ACGGAATCCGAATGAGGTTGCACT -ACGGAATCCGAATGAGGTCTGACT -ACGGAATCCGAATGAGGTCAACCT -ACGGAATCCGAATGAGGTGCTACT -ACGGAATCCGAATGAGGTGGATCT -ACGGAATCCGAATGAGGTAAGGCT -ACGGAATCCGAATGAGGTTCAACC -ACGGAATCCGAATGAGGTTGTTCC -ACGGAATCCGAATGAGGTATTCCC -ACGGAATCCGAATGAGGTTTCTCG -ACGGAATCCGAATGAGGTTAGACG -ACGGAATCCGAATGAGGTGTAACG -ACGGAATCCGAATGAGGTACTTCG -ACGGAATCCGAATGAGGTTACGCA -ACGGAATCCGAATGAGGTCTTGCA -ACGGAATCCGAATGAGGTCGAACA -ACGGAATCCGAATGAGGTCAGTCA -ACGGAATCCGAATGAGGTGATCCA -ACGGAATCCGAATGAGGTACGACA -ACGGAATCCGAATGAGGTAGCTCA -ACGGAATCCGAATGAGGTTCACGT -ACGGAATCCGAATGAGGTCGTAGT -ACGGAATCCGAATGAGGTGTCAGT -ACGGAATCCGAATGAGGTGAAGGT -ACGGAATCCGAATGAGGTAACCGT -ACGGAATCCGAATGAGGTTTGTGC -ACGGAATCCGAATGAGGTCTAAGC -ACGGAATCCGAATGAGGTACTAGC -ACGGAATCCGAATGAGGTAGATGC -ACGGAATCCGAATGAGGTTGAAGG -ACGGAATCCGAATGAGGTCAATGG -ACGGAATCCGAATGAGGTATGAGG -ACGGAATCCGAATGAGGTAATGGG -ACGGAATCCGAATGAGGTTCCTGA -ACGGAATCCGAATGAGGTTAGCGA -ACGGAATCCGAATGAGGTCACAGA -ACGGAATCCGAATGAGGTGCAAGA -ACGGAATCCGAATGAGGTGGTTGA -ACGGAATCCGAATGAGGTTCCGAT -ACGGAATCCGAATGAGGTTGGCAT -ACGGAATCCGAATGAGGTCGAGAT -ACGGAATCCGAATGAGGTTACCAC -ACGGAATCCGAATGAGGTCAGAAC -ACGGAATCCGAATGAGGTGTCTAC -ACGGAATCCGAATGAGGTACGTAC -ACGGAATCCGAATGAGGTAGTGAC -ACGGAATCCGAATGAGGTCTGTAG -ACGGAATCCGAATGAGGTCCTAAG -ACGGAATCCGAATGAGGTGTTCAG -ACGGAATCCGAATGAGGTGCATAG -ACGGAATCCGAATGAGGTGACAAG -ACGGAATCCGAATGAGGTAAGCAG -ACGGAATCCGAATGAGGTCGTCAA -ACGGAATCCGAATGAGGTGCTGAA -ACGGAATCCGAATGAGGTAGTACG -ACGGAATCCGAATGAGGTATCCGA -ACGGAATCCGAATGAGGTATGGGA -ACGGAATCCGAATGAGGTGTGCAA -ACGGAATCCGAATGAGGTGAGGAA -ACGGAATCCGAATGAGGTCAGGTA -ACGGAATCCGAATGAGGTGACTCT -ACGGAATCCGAATGAGGTAGTCCT -ACGGAATCCGAATGAGGTTAAGCC -ACGGAATCCGAATGAGGTATAGCC -ACGGAATCCGAATGAGGTTAACCG -ACGGAATCCGAATGAGGTATGCCA -ACGGAATCCGAAGATTCCGGAAAC -ACGGAATCCGAAGATTCCAACACC -ACGGAATCCGAAGATTCCATCGAG -ACGGAATCCGAAGATTCCCTCCTT -ACGGAATCCGAAGATTCCCCTGTT -ACGGAATCCGAAGATTCCCGGTTT -ACGGAATCCGAAGATTCCGTGGTT -ACGGAATCCGAAGATTCCGCCTTT -ACGGAATCCGAAGATTCCGGTCTT -ACGGAATCCGAAGATTCCACGCTT -ACGGAATCCGAAGATTCCAGCGTT -ACGGAATCCGAAGATTCCTTCGTC -ACGGAATCCGAAGATTCCTCTCTC -ACGGAATCCGAAGATTCCTGGATC -ACGGAATCCGAAGATTCCCACTTC -ACGGAATCCGAAGATTCCGTACTC -ACGGAATCCGAAGATTCCGATGTC -ACGGAATCCGAAGATTCCACAGTC -ACGGAATCCGAAGATTCCTTGCTG -ACGGAATCCGAAGATTCCTCCATG -ACGGAATCCGAAGATTCCTGTGTG -ACGGAATCCGAAGATTCCCTAGTG -ACGGAATCCGAAGATTCCCATCTG -ACGGAATCCGAAGATTCCGAGTTG -ACGGAATCCGAAGATTCCAGACTG -ACGGAATCCGAAGATTCCTCGGTA -ACGGAATCCGAAGATTCCTGCCTA -ACGGAATCCGAAGATTCCCCACTA -ACGGAATCCGAAGATTCCGGAGTA -ACGGAATCCGAAGATTCCTCGTCT -ACGGAATCCGAAGATTCCTGCACT -ACGGAATCCGAAGATTCCCTGACT -ACGGAATCCGAAGATTCCCAACCT -ACGGAATCCGAAGATTCCGCTACT -ACGGAATCCGAAGATTCCGGATCT -ACGGAATCCGAAGATTCCAAGGCT -ACGGAATCCGAAGATTCCTCAACC -ACGGAATCCGAAGATTCCTGTTCC -ACGGAATCCGAAGATTCCATTCCC -ACGGAATCCGAAGATTCCTTCTCG -ACGGAATCCGAAGATTCCTAGACG -ACGGAATCCGAAGATTCCGTAACG -ACGGAATCCGAAGATTCCACTTCG -ACGGAATCCGAAGATTCCTACGCA -ACGGAATCCGAAGATTCCCTTGCA -ACGGAATCCGAAGATTCCCGAACA -ACGGAATCCGAAGATTCCCAGTCA -ACGGAATCCGAAGATTCCGATCCA -ACGGAATCCGAAGATTCCACGACA -ACGGAATCCGAAGATTCCAGCTCA -ACGGAATCCGAAGATTCCTCACGT -ACGGAATCCGAAGATTCCCGTAGT -ACGGAATCCGAAGATTCCGTCAGT -ACGGAATCCGAAGATTCCGAAGGT -ACGGAATCCGAAGATTCCAACCGT -ACGGAATCCGAAGATTCCTTGTGC -ACGGAATCCGAAGATTCCCTAAGC -ACGGAATCCGAAGATTCCACTAGC -ACGGAATCCGAAGATTCCAGATGC -ACGGAATCCGAAGATTCCTGAAGG -ACGGAATCCGAAGATTCCCAATGG -ACGGAATCCGAAGATTCCATGAGG -ACGGAATCCGAAGATTCCAATGGG -ACGGAATCCGAAGATTCCTCCTGA -ACGGAATCCGAAGATTCCTAGCGA -ACGGAATCCGAAGATTCCCACAGA -ACGGAATCCGAAGATTCCGCAAGA -ACGGAATCCGAAGATTCCGGTTGA -ACGGAATCCGAAGATTCCTCCGAT -ACGGAATCCGAAGATTCCTGGCAT -ACGGAATCCGAAGATTCCCGAGAT -ACGGAATCCGAAGATTCCTACCAC -ACGGAATCCGAAGATTCCCAGAAC -ACGGAATCCGAAGATTCCGTCTAC -ACGGAATCCGAAGATTCCACGTAC -ACGGAATCCGAAGATTCCAGTGAC -ACGGAATCCGAAGATTCCCTGTAG -ACGGAATCCGAAGATTCCCCTAAG -ACGGAATCCGAAGATTCCGTTCAG -ACGGAATCCGAAGATTCCGCATAG -ACGGAATCCGAAGATTCCGACAAG -ACGGAATCCGAAGATTCCAAGCAG -ACGGAATCCGAAGATTCCCGTCAA -ACGGAATCCGAAGATTCCGCTGAA -ACGGAATCCGAAGATTCCAGTACG -ACGGAATCCGAAGATTCCATCCGA -ACGGAATCCGAAGATTCCATGGGA -ACGGAATCCGAAGATTCCGTGCAA -ACGGAATCCGAAGATTCCGAGGAA -ACGGAATCCGAAGATTCCCAGGTA -ACGGAATCCGAAGATTCCGACTCT -ACGGAATCCGAAGATTCCAGTCCT -ACGGAATCCGAAGATTCCTAAGCC -ACGGAATCCGAAGATTCCATAGCC -ACGGAATCCGAAGATTCCTAACCG -ACGGAATCCGAAGATTCCATGCCA -ACGGAATCCGAACATTGGGGAAAC -ACGGAATCCGAACATTGGAACACC -ACGGAATCCGAACATTGGATCGAG -ACGGAATCCGAACATTGGCTCCTT -ACGGAATCCGAACATTGGCCTGTT -ACGGAATCCGAACATTGGCGGTTT -ACGGAATCCGAACATTGGGTGGTT -ACGGAATCCGAACATTGGGCCTTT -ACGGAATCCGAACATTGGGGTCTT -ACGGAATCCGAACATTGGACGCTT -ACGGAATCCGAACATTGGAGCGTT -ACGGAATCCGAACATTGGTTCGTC -ACGGAATCCGAACATTGGTCTCTC -ACGGAATCCGAACATTGGTGGATC -ACGGAATCCGAACATTGGCACTTC -ACGGAATCCGAACATTGGGTACTC -ACGGAATCCGAACATTGGGATGTC -ACGGAATCCGAACATTGGACAGTC -ACGGAATCCGAACATTGGTTGCTG -ACGGAATCCGAACATTGGTCCATG -ACGGAATCCGAACATTGGTGTGTG -ACGGAATCCGAACATTGGCTAGTG -ACGGAATCCGAACATTGGCATCTG -ACGGAATCCGAACATTGGGAGTTG -ACGGAATCCGAACATTGGAGACTG -ACGGAATCCGAACATTGGTCGGTA -ACGGAATCCGAACATTGGTGCCTA -ACGGAATCCGAACATTGGCCACTA -ACGGAATCCGAACATTGGGGAGTA -ACGGAATCCGAACATTGGTCGTCT -ACGGAATCCGAACATTGGTGCACT -ACGGAATCCGAACATTGGCTGACT -ACGGAATCCGAACATTGGCAACCT -ACGGAATCCGAACATTGGGCTACT -ACGGAATCCGAACATTGGGGATCT -ACGGAATCCGAACATTGGAAGGCT -ACGGAATCCGAACATTGGTCAACC -ACGGAATCCGAACATTGGTGTTCC -ACGGAATCCGAACATTGGATTCCC -ACGGAATCCGAACATTGGTTCTCG -ACGGAATCCGAACATTGGTAGACG -ACGGAATCCGAACATTGGGTAACG -ACGGAATCCGAACATTGGACTTCG -ACGGAATCCGAACATTGGTACGCA -ACGGAATCCGAACATTGGCTTGCA -ACGGAATCCGAACATTGGCGAACA -ACGGAATCCGAACATTGGCAGTCA -ACGGAATCCGAACATTGGGATCCA -ACGGAATCCGAACATTGGACGACA -ACGGAATCCGAACATTGGAGCTCA -ACGGAATCCGAACATTGGTCACGT -ACGGAATCCGAACATTGGCGTAGT -ACGGAATCCGAACATTGGGTCAGT -ACGGAATCCGAACATTGGGAAGGT -ACGGAATCCGAACATTGGAACCGT -ACGGAATCCGAACATTGGTTGTGC -ACGGAATCCGAACATTGGCTAAGC -ACGGAATCCGAACATTGGACTAGC -ACGGAATCCGAACATTGGAGATGC -ACGGAATCCGAACATTGGTGAAGG -ACGGAATCCGAACATTGGCAATGG -ACGGAATCCGAACATTGGATGAGG -ACGGAATCCGAACATTGGAATGGG -ACGGAATCCGAACATTGGTCCTGA -ACGGAATCCGAACATTGGTAGCGA -ACGGAATCCGAACATTGGCACAGA -ACGGAATCCGAACATTGGGCAAGA -ACGGAATCCGAACATTGGGGTTGA -ACGGAATCCGAACATTGGTCCGAT -ACGGAATCCGAACATTGGTGGCAT -ACGGAATCCGAACATTGGCGAGAT -ACGGAATCCGAACATTGGTACCAC -ACGGAATCCGAACATTGGCAGAAC -ACGGAATCCGAACATTGGGTCTAC -ACGGAATCCGAACATTGGACGTAC -ACGGAATCCGAACATTGGAGTGAC -ACGGAATCCGAACATTGGCTGTAG -ACGGAATCCGAACATTGGCCTAAG -ACGGAATCCGAACATTGGGTTCAG -ACGGAATCCGAACATTGGGCATAG -ACGGAATCCGAACATTGGGACAAG -ACGGAATCCGAACATTGGAAGCAG -ACGGAATCCGAACATTGGCGTCAA -ACGGAATCCGAACATTGGGCTGAA -ACGGAATCCGAACATTGGAGTACG -ACGGAATCCGAACATTGGATCCGA -ACGGAATCCGAACATTGGATGGGA -ACGGAATCCGAACATTGGGTGCAA -ACGGAATCCGAACATTGGGAGGAA -ACGGAATCCGAACATTGGCAGGTA -ACGGAATCCGAACATTGGGACTCT -ACGGAATCCGAACATTGGAGTCCT -ACGGAATCCGAACATTGGTAAGCC -ACGGAATCCGAACATTGGATAGCC -ACGGAATCCGAACATTGGTAACCG -ACGGAATCCGAACATTGGATGCCA -ACGGAATCCGAAGATCGAGGAAAC -ACGGAATCCGAAGATCGAAACACC -ACGGAATCCGAAGATCGAATCGAG -ACGGAATCCGAAGATCGACTCCTT -ACGGAATCCGAAGATCGACCTGTT -ACGGAATCCGAAGATCGACGGTTT -ACGGAATCCGAAGATCGAGTGGTT -ACGGAATCCGAAGATCGAGCCTTT -ACGGAATCCGAAGATCGAGGTCTT -ACGGAATCCGAAGATCGAACGCTT -ACGGAATCCGAAGATCGAAGCGTT -ACGGAATCCGAAGATCGATTCGTC -ACGGAATCCGAAGATCGATCTCTC -ACGGAATCCGAAGATCGATGGATC -ACGGAATCCGAAGATCGACACTTC -ACGGAATCCGAAGATCGAGTACTC -ACGGAATCCGAAGATCGAGATGTC -ACGGAATCCGAAGATCGAACAGTC -ACGGAATCCGAAGATCGATTGCTG -ACGGAATCCGAAGATCGATCCATG -ACGGAATCCGAAGATCGATGTGTG -ACGGAATCCGAAGATCGACTAGTG -ACGGAATCCGAAGATCGACATCTG -ACGGAATCCGAAGATCGAGAGTTG -ACGGAATCCGAAGATCGAAGACTG -ACGGAATCCGAAGATCGATCGGTA -ACGGAATCCGAAGATCGATGCCTA -ACGGAATCCGAAGATCGACCACTA -ACGGAATCCGAAGATCGAGGAGTA -ACGGAATCCGAAGATCGATCGTCT -ACGGAATCCGAAGATCGATGCACT -ACGGAATCCGAAGATCGACTGACT -ACGGAATCCGAAGATCGACAACCT -ACGGAATCCGAAGATCGAGCTACT -ACGGAATCCGAAGATCGAGGATCT -ACGGAATCCGAAGATCGAAAGGCT -ACGGAATCCGAAGATCGATCAACC -ACGGAATCCGAAGATCGATGTTCC -ACGGAATCCGAAGATCGAATTCCC -ACGGAATCCGAAGATCGATTCTCG -ACGGAATCCGAAGATCGATAGACG -ACGGAATCCGAAGATCGAGTAACG -ACGGAATCCGAAGATCGAACTTCG -ACGGAATCCGAAGATCGATACGCA -ACGGAATCCGAAGATCGACTTGCA -ACGGAATCCGAAGATCGACGAACA -ACGGAATCCGAAGATCGACAGTCA -ACGGAATCCGAAGATCGAGATCCA -ACGGAATCCGAAGATCGAACGACA -ACGGAATCCGAAGATCGAAGCTCA -ACGGAATCCGAAGATCGATCACGT -ACGGAATCCGAAGATCGACGTAGT -ACGGAATCCGAAGATCGAGTCAGT -ACGGAATCCGAAGATCGAGAAGGT -ACGGAATCCGAAGATCGAAACCGT -ACGGAATCCGAAGATCGATTGTGC -ACGGAATCCGAAGATCGACTAAGC -ACGGAATCCGAAGATCGAACTAGC -ACGGAATCCGAAGATCGAAGATGC -ACGGAATCCGAAGATCGATGAAGG -ACGGAATCCGAAGATCGACAATGG -ACGGAATCCGAAGATCGAATGAGG -ACGGAATCCGAAGATCGAAATGGG -ACGGAATCCGAAGATCGATCCTGA -ACGGAATCCGAAGATCGATAGCGA -ACGGAATCCGAAGATCGACACAGA -ACGGAATCCGAAGATCGAGCAAGA -ACGGAATCCGAAGATCGAGGTTGA -ACGGAATCCGAAGATCGATCCGAT -ACGGAATCCGAAGATCGATGGCAT -ACGGAATCCGAAGATCGACGAGAT -ACGGAATCCGAAGATCGATACCAC -ACGGAATCCGAAGATCGACAGAAC -ACGGAATCCGAAGATCGAGTCTAC -ACGGAATCCGAAGATCGAACGTAC -ACGGAATCCGAAGATCGAAGTGAC -ACGGAATCCGAAGATCGACTGTAG -ACGGAATCCGAAGATCGACCTAAG -ACGGAATCCGAAGATCGAGTTCAG -ACGGAATCCGAAGATCGAGCATAG -ACGGAATCCGAAGATCGAGACAAG -ACGGAATCCGAAGATCGAAAGCAG -ACGGAATCCGAAGATCGACGTCAA -ACGGAATCCGAAGATCGAGCTGAA -ACGGAATCCGAAGATCGAAGTACG -ACGGAATCCGAAGATCGAATCCGA -ACGGAATCCGAAGATCGAATGGGA -ACGGAATCCGAAGATCGAGTGCAA -ACGGAATCCGAAGATCGAGAGGAA -ACGGAATCCGAAGATCGACAGGTA -ACGGAATCCGAAGATCGAGACTCT -ACGGAATCCGAAGATCGAAGTCCT -ACGGAATCCGAAGATCGATAAGCC -ACGGAATCCGAAGATCGAATAGCC -ACGGAATCCGAAGATCGATAACCG -ACGGAATCCGAAGATCGAATGCCA -ACGGAATCCGAACACTACGGAAAC -ACGGAATCCGAACACTACAACACC -ACGGAATCCGAACACTACATCGAG -ACGGAATCCGAACACTACCTCCTT -ACGGAATCCGAACACTACCCTGTT -ACGGAATCCGAACACTACCGGTTT -ACGGAATCCGAACACTACGTGGTT -ACGGAATCCGAACACTACGCCTTT -ACGGAATCCGAACACTACGGTCTT -ACGGAATCCGAACACTACACGCTT -ACGGAATCCGAACACTACAGCGTT -ACGGAATCCGAACACTACTTCGTC -ACGGAATCCGAACACTACTCTCTC -ACGGAATCCGAACACTACTGGATC -ACGGAATCCGAACACTACCACTTC -ACGGAATCCGAACACTACGTACTC -ACGGAATCCGAACACTACGATGTC -ACGGAATCCGAACACTACACAGTC -ACGGAATCCGAACACTACTTGCTG -ACGGAATCCGAACACTACTCCATG -ACGGAATCCGAACACTACTGTGTG -ACGGAATCCGAACACTACCTAGTG -ACGGAATCCGAACACTACCATCTG -ACGGAATCCGAACACTACGAGTTG -ACGGAATCCGAACACTACAGACTG -ACGGAATCCGAACACTACTCGGTA -ACGGAATCCGAACACTACTGCCTA -ACGGAATCCGAACACTACCCACTA -ACGGAATCCGAACACTACGGAGTA -ACGGAATCCGAACACTACTCGTCT -ACGGAATCCGAACACTACTGCACT -ACGGAATCCGAACACTACCTGACT -ACGGAATCCGAACACTACCAACCT -ACGGAATCCGAACACTACGCTACT -ACGGAATCCGAACACTACGGATCT -ACGGAATCCGAACACTACAAGGCT -ACGGAATCCGAACACTACTCAACC -ACGGAATCCGAACACTACTGTTCC -ACGGAATCCGAACACTACATTCCC -ACGGAATCCGAACACTACTTCTCG -ACGGAATCCGAACACTACTAGACG -ACGGAATCCGAACACTACGTAACG -ACGGAATCCGAACACTACACTTCG -ACGGAATCCGAACACTACTACGCA -ACGGAATCCGAACACTACCTTGCA -ACGGAATCCGAACACTACCGAACA -ACGGAATCCGAACACTACCAGTCA -ACGGAATCCGAACACTACGATCCA -ACGGAATCCGAACACTACACGACA -ACGGAATCCGAACACTACAGCTCA -ACGGAATCCGAACACTACTCACGT -ACGGAATCCGAACACTACCGTAGT -ACGGAATCCGAACACTACGTCAGT -ACGGAATCCGAACACTACGAAGGT -ACGGAATCCGAACACTACAACCGT -ACGGAATCCGAACACTACTTGTGC -ACGGAATCCGAACACTACCTAAGC -ACGGAATCCGAACACTACACTAGC -ACGGAATCCGAACACTACAGATGC -ACGGAATCCGAACACTACTGAAGG -ACGGAATCCGAACACTACCAATGG -ACGGAATCCGAACACTACATGAGG -ACGGAATCCGAACACTACAATGGG -ACGGAATCCGAACACTACTCCTGA -ACGGAATCCGAACACTACTAGCGA -ACGGAATCCGAACACTACCACAGA -ACGGAATCCGAACACTACGCAAGA -ACGGAATCCGAACACTACGGTTGA -ACGGAATCCGAACACTACTCCGAT -ACGGAATCCGAACACTACTGGCAT -ACGGAATCCGAACACTACCGAGAT -ACGGAATCCGAACACTACTACCAC -ACGGAATCCGAACACTACCAGAAC -ACGGAATCCGAACACTACGTCTAC -ACGGAATCCGAACACTACACGTAC -ACGGAATCCGAACACTACAGTGAC -ACGGAATCCGAACACTACCTGTAG -ACGGAATCCGAACACTACCCTAAG -ACGGAATCCGAACACTACGTTCAG -ACGGAATCCGAACACTACGCATAG -ACGGAATCCGAACACTACGACAAG -ACGGAATCCGAACACTACAAGCAG -ACGGAATCCGAACACTACCGTCAA -ACGGAATCCGAACACTACGCTGAA -ACGGAATCCGAACACTACAGTACG -ACGGAATCCGAACACTACATCCGA -ACGGAATCCGAACACTACATGGGA -ACGGAATCCGAACACTACGTGCAA -ACGGAATCCGAACACTACGAGGAA -ACGGAATCCGAACACTACCAGGTA -ACGGAATCCGAACACTACGACTCT -ACGGAATCCGAACACTACAGTCCT -ACGGAATCCGAACACTACTAAGCC -ACGGAATCCGAACACTACATAGCC -ACGGAATCCGAACACTACTAACCG -ACGGAATCCGAACACTACATGCCA -ACGGAATCCGAAAACCAGGGAAAC -ACGGAATCCGAAAACCAGAACACC -ACGGAATCCGAAAACCAGATCGAG -ACGGAATCCGAAAACCAGCTCCTT -ACGGAATCCGAAAACCAGCCTGTT -ACGGAATCCGAAAACCAGCGGTTT -ACGGAATCCGAAAACCAGGTGGTT -ACGGAATCCGAAAACCAGGCCTTT -ACGGAATCCGAAAACCAGGGTCTT -ACGGAATCCGAAAACCAGACGCTT -ACGGAATCCGAAAACCAGAGCGTT -ACGGAATCCGAAAACCAGTTCGTC -ACGGAATCCGAAAACCAGTCTCTC -ACGGAATCCGAAAACCAGTGGATC -ACGGAATCCGAAAACCAGCACTTC -ACGGAATCCGAAAACCAGGTACTC -ACGGAATCCGAAAACCAGGATGTC -ACGGAATCCGAAAACCAGACAGTC -ACGGAATCCGAAAACCAGTTGCTG -ACGGAATCCGAAAACCAGTCCATG -ACGGAATCCGAAAACCAGTGTGTG -ACGGAATCCGAAAACCAGCTAGTG -ACGGAATCCGAAAACCAGCATCTG -ACGGAATCCGAAAACCAGGAGTTG -ACGGAATCCGAAAACCAGAGACTG -ACGGAATCCGAAAACCAGTCGGTA -ACGGAATCCGAAAACCAGTGCCTA -ACGGAATCCGAAAACCAGCCACTA -ACGGAATCCGAAAACCAGGGAGTA -ACGGAATCCGAAAACCAGTCGTCT -ACGGAATCCGAAAACCAGTGCACT -ACGGAATCCGAAAACCAGCTGACT -ACGGAATCCGAAAACCAGCAACCT -ACGGAATCCGAAAACCAGGCTACT -ACGGAATCCGAAAACCAGGGATCT -ACGGAATCCGAAAACCAGAAGGCT -ACGGAATCCGAAAACCAGTCAACC -ACGGAATCCGAAAACCAGTGTTCC -ACGGAATCCGAAAACCAGATTCCC -ACGGAATCCGAAAACCAGTTCTCG -ACGGAATCCGAAAACCAGTAGACG -ACGGAATCCGAAAACCAGGTAACG -ACGGAATCCGAAAACCAGACTTCG -ACGGAATCCGAAAACCAGTACGCA -ACGGAATCCGAAAACCAGCTTGCA -ACGGAATCCGAAAACCAGCGAACA -ACGGAATCCGAAAACCAGCAGTCA -ACGGAATCCGAAAACCAGGATCCA -ACGGAATCCGAAAACCAGACGACA -ACGGAATCCGAAAACCAGAGCTCA -ACGGAATCCGAAAACCAGTCACGT -ACGGAATCCGAAAACCAGCGTAGT -ACGGAATCCGAAAACCAGGTCAGT -ACGGAATCCGAAAACCAGGAAGGT -ACGGAATCCGAAAACCAGAACCGT -ACGGAATCCGAAAACCAGTTGTGC -ACGGAATCCGAAAACCAGCTAAGC -ACGGAATCCGAAAACCAGACTAGC -ACGGAATCCGAAAACCAGAGATGC -ACGGAATCCGAAAACCAGTGAAGG -ACGGAATCCGAAAACCAGCAATGG -ACGGAATCCGAAAACCAGATGAGG -ACGGAATCCGAAAACCAGAATGGG -ACGGAATCCGAAAACCAGTCCTGA -ACGGAATCCGAAAACCAGTAGCGA -ACGGAATCCGAAAACCAGCACAGA -ACGGAATCCGAAAACCAGGCAAGA -ACGGAATCCGAAAACCAGGGTTGA -ACGGAATCCGAAAACCAGTCCGAT -ACGGAATCCGAAAACCAGTGGCAT -ACGGAATCCGAAAACCAGCGAGAT -ACGGAATCCGAAAACCAGTACCAC -ACGGAATCCGAAAACCAGCAGAAC -ACGGAATCCGAAAACCAGGTCTAC -ACGGAATCCGAAAACCAGACGTAC -ACGGAATCCGAAAACCAGAGTGAC -ACGGAATCCGAAAACCAGCTGTAG -ACGGAATCCGAAAACCAGCCTAAG -ACGGAATCCGAAAACCAGGTTCAG -ACGGAATCCGAAAACCAGGCATAG -ACGGAATCCGAAAACCAGGACAAG -ACGGAATCCGAAAACCAGAAGCAG -ACGGAATCCGAAAACCAGCGTCAA -ACGGAATCCGAAAACCAGGCTGAA -ACGGAATCCGAAAACCAGAGTACG -ACGGAATCCGAAAACCAGATCCGA -ACGGAATCCGAAAACCAGATGGGA -ACGGAATCCGAAAACCAGGTGCAA -ACGGAATCCGAAAACCAGGAGGAA -ACGGAATCCGAAAACCAGCAGGTA -ACGGAATCCGAAAACCAGGACTCT -ACGGAATCCGAAAACCAGAGTCCT -ACGGAATCCGAAAACCAGTAAGCC -ACGGAATCCGAAAACCAGATAGCC -ACGGAATCCGAAAACCAGTAACCG -ACGGAATCCGAAAACCAGATGCCA -ACGGAATCCGAATACGTCGGAAAC -ACGGAATCCGAATACGTCAACACC -ACGGAATCCGAATACGTCATCGAG -ACGGAATCCGAATACGTCCTCCTT -ACGGAATCCGAATACGTCCCTGTT -ACGGAATCCGAATACGTCCGGTTT -ACGGAATCCGAATACGTCGTGGTT -ACGGAATCCGAATACGTCGCCTTT -ACGGAATCCGAATACGTCGGTCTT -ACGGAATCCGAATACGTCACGCTT -ACGGAATCCGAATACGTCAGCGTT -ACGGAATCCGAATACGTCTTCGTC -ACGGAATCCGAATACGTCTCTCTC -ACGGAATCCGAATACGTCTGGATC -ACGGAATCCGAATACGTCCACTTC -ACGGAATCCGAATACGTCGTACTC -ACGGAATCCGAATACGTCGATGTC -ACGGAATCCGAATACGTCACAGTC -ACGGAATCCGAATACGTCTTGCTG -ACGGAATCCGAATACGTCTCCATG -ACGGAATCCGAATACGTCTGTGTG -ACGGAATCCGAATACGTCCTAGTG -ACGGAATCCGAATACGTCCATCTG -ACGGAATCCGAATACGTCGAGTTG -ACGGAATCCGAATACGTCAGACTG -ACGGAATCCGAATACGTCTCGGTA -ACGGAATCCGAATACGTCTGCCTA -ACGGAATCCGAATACGTCCCACTA -ACGGAATCCGAATACGTCGGAGTA -ACGGAATCCGAATACGTCTCGTCT -ACGGAATCCGAATACGTCTGCACT -ACGGAATCCGAATACGTCCTGACT -ACGGAATCCGAATACGTCCAACCT -ACGGAATCCGAATACGTCGCTACT -ACGGAATCCGAATACGTCGGATCT -ACGGAATCCGAATACGTCAAGGCT -ACGGAATCCGAATACGTCTCAACC -ACGGAATCCGAATACGTCTGTTCC -ACGGAATCCGAATACGTCATTCCC -ACGGAATCCGAATACGTCTTCTCG -ACGGAATCCGAATACGTCTAGACG -ACGGAATCCGAATACGTCGTAACG -ACGGAATCCGAATACGTCACTTCG -ACGGAATCCGAATACGTCTACGCA -ACGGAATCCGAATACGTCCTTGCA -ACGGAATCCGAATACGTCCGAACA -ACGGAATCCGAATACGTCCAGTCA -ACGGAATCCGAATACGTCGATCCA -ACGGAATCCGAATACGTCACGACA -ACGGAATCCGAATACGTCAGCTCA -ACGGAATCCGAATACGTCTCACGT -ACGGAATCCGAATACGTCCGTAGT -ACGGAATCCGAATACGTCGTCAGT -ACGGAATCCGAATACGTCGAAGGT -ACGGAATCCGAATACGTCAACCGT -ACGGAATCCGAATACGTCTTGTGC -ACGGAATCCGAATACGTCCTAAGC -ACGGAATCCGAATACGTCACTAGC -ACGGAATCCGAATACGTCAGATGC -ACGGAATCCGAATACGTCTGAAGG -ACGGAATCCGAATACGTCCAATGG -ACGGAATCCGAATACGTCATGAGG -ACGGAATCCGAATACGTCAATGGG -ACGGAATCCGAATACGTCTCCTGA -ACGGAATCCGAATACGTCTAGCGA -ACGGAATCCGAATACGTCCACAGA -ACGGAATCCGAATACGTCGCAAGA -ACGGAATCCGAATACGTCGGTTGA -ACGGAATCCGAATACGTCTCCGAT -ACGGAATCCGAATACGTCTGGCAT -ACGGAATCCGAATACGTCCGAGAT -ACGGAATCCGAATACGTCTACCAC -ACGGAATCCGAATACGTCCAGAAC -ACGGAATCCGAATACGTCGTCTAC -ACGGAATCCGAATACGTCACGTAC -ACGGAATCCGAATACGTCAGTGAC -ACGGAATCCGAATACGTCCTGTAG -ACGGAATCCGAATACGTCCCTAAG -ACGGAATCCGAATACGTCGTTCAG -ACGGAATCCGAATACGTCGCATAG -ACGGAATCCGAATACGTCGACAAG -ACGGAATCCGAATACGTCAAGCAG -ACGGAATCCGAATACGTCCGTCAA -ACGGAATCCGAATACGTCGCTGAA -ACGGAATCCGAATACGTCAGTACG -ACGGAATCCGAATACGTCATCCGA -ACGGAATCCGAATACGTCATGGGA -ACGGAATCCGAATACGTCGTGCAA -ACGGAATCCGAATACGTCGAGGAA -ACGGAATCCGAATACGTCCAGGTA -ACGGAATCCGAATACGTCGACTCT -ACGGAATCCGAATACGTCAGTCCT -ACGGAATCCGAATACGTCTAAGCC -ACGGAATCCGAATACGTCATAGCC -ACGGAATCCGAATACGTCTAACCG -ACGGAATCCGAATACGTCATGCCA -ACGGAATCCGAATACACGGGAAAC -ACGGAATCCGAATACACGAACACC -ACGGAATCCGAATACACGATCGAG -ACGGAATCCGAATACACGCTCCTT -ACGGAATCCGAATACACGCCTGTT -ACGGAATCCGAATACACGCGGTTT -ACGGAATCCGAATACACGGTGGTT -ACGGAATCCGAATACACGGCCTTT -ACGGAATCCGAATACACGGGTCTT -ACGGAATCCGAATACACGACGCTT -ACGGAATCCGAATACACGAGCGTT -ACGGAATCCGAATACACGTTCGTC -ACGGAATCCGAATACACGTCTCTC -ACGGAATCCGAATACACGTGGATC -ACGGAATCCGAATACACGCACTTC -ACGGAATCCGAATACACGGTACTC -ACGGAATCCGAATACACGGATGTC -ACGGAATCCGAATACACGACAGTC -ACGGAATCCGAATACACGTTGCTG -ACGGAATCCGAATACACGTCCATG -ACGGAATCCGAATACACGTGTGTG -ACGGAATCCGAATACACGCTAGTG -ACGGAATCCGAATACACGCATCTG -ACGGAATCCGAATACACGGAGTTG -ACGGAATCCGAATACACGAGACTG -ACGGAATCCGAATACACGTCGGTA -ACGGAATCCGAATACACGTGCCTA -ACGGAATCCGAATACACGCCACTA -ACGGAATCCGAATACACGGGAGTA -ACGGAATCCGAATACACGTCGTCT -ACGGAATCCGAATACACGTGCACT -ACGGAATCCGAATACACGCTGACT -ACGGAATCCGAATACACGCAACCT -ACGGAATCCGAATACACGGCTACT -ACGGAATCCGAATACACGGGATCT -ACGGAATCCGAATACACGAAGGCT -ACGGAATCCGAATACACGTCAACC -ACGGAATCCGAATACACGTGTTCC -ACGGAATCCGAATACACGATTCCC -ACGGAATCCGAATACACGTTCTCG -ACGGAATCCGAATACACGTAGACG -ACGGAATCCGAATACACGGTAACG -ACGGAATCCGAATACACGACTTCG -ACGGAATCCGAATACACGTACGCA -ACGGAATCCGAATACACGCTTGCA -ACGGAATCCGAATACACGCGAACA -ACGGAATCCGAATACACGCAGTCA -ACGGAATCCGAATACACGGATCCA -ACGGAATCCGAATACACGACGACA -ACGGAATCCGAATACACGAGCTCA -ACGGAATCCGAATACACGTCACGT -ACGGAATCCGAATACACGCGTAGT -ACGGAATCCGAATACACGGTCAGT -ACGGAATCCGAATACACGGAAGGT -ACGGAATCCGAATACACGAACCGT -ACGGAATCCGAATACACGTTGTGC -ACGGAATCCGAATACACGCTAAGC -ACGGAATCCGAATACACGACTAGC -ACGGAATCCGAATACACGAGATGC -ACGGAATCCGAATACACGTGAAGG -ACGGAATCCGAATACACGCAATGG -ACGGAATCCGAATACACGATGAGG -ACGGAATCCGAATACACGAATGGG -ACGGAATCCGAATACACGTCCTGA -ACGGAATCCGAATACACGTAGCGA -ACGGAATCCGAATACACGCACAGA -ACGGAATCCGAATACACGGCAAGA -ACGGAATCCGAATACACGGGTTGA -ACGGAATCCGAATACACGTCCGAT -ACGGAATCCGAATACACGTGGCAT -ACGGAATCCGAATACACGCGAGAT -ACGGAATCCGAATACACGTACCAC -ACGGAATCCGAATACACGCAGAAC -ACGGAATCCGAATACACGGTCTAC -ACGGAATCCGAATACACGACGTAC -ACGGAATCCGAATACACGAGTGAC -ACGGAATCCGAATACACGCTGTAG -ACGGAATCCGAATACACGCCTAAG -ACGGAATCCGAATACACGGTTCAG -ACGGAATCCGAATACACGGCATAG -ACGGAATCCGAATACACGGACAAG -ACGGAATCCGAATACACGAAGCAG -ACGGAATCCGAATACACGCGTCAA -ACGGAATCCGAATACACGGCTGAA -ACGGAATCCGAATACACGAGTACG -ACGGAATCCGAATACACGATCCGA -ACGGAATCCGAATACACGATGGGA -ACGGAATCCGAATACACGGTGCAA -ACGGAATCCGAATACACGGAGGAA -ACGGAATCCGAATACACGCAGGTA -ACGGAATCCGAATACACGGACTCT -ACGGAATCCGAATACACGAGTCCT -ACGGAATCCGAATACACGTAAGCC -ACGGAATCCGAATACACGATAGCC -ACGGAATCCGAATACACGTAACCG -ACGGAATCCGAATACACGATGCCA -ACGGAATCCGAAGACAGTGGAAAC -ACGGAATCCGAAGACAGTAACACC -ACGGAATCCGAAGACAGTATCGAG -ACGGAATCCGAAGACAGTCTCCTT -ACGGAATCCGAAGACAGTCCTGTT -ACGGAATCCGAAGACAGTCGGTTT -ACGGAATCCGAAGACAGTGTGGTT -ACGGAATCCGAAGACAGTGCCTTT -ACGGAATCCGAAGACAGTGGTCTT -ACGGAATCCGAAGACAGTACGCTT -ACGGAATCCGAAGACAGTAGCGTT -ACGGAATCCGAAGACAGTTTCGTC -ACGGAATCCGAAGACAGTTCTCTC -ACGGAATCCGAAGACAGTTGGATC -ACGGAATCCGAAGACAGTCACTTC -ACGGAATCCGAAGACAGTGTACTC -ACGGAATCCGAAGACAGTGATGTC -ACGGAATCCGAAGACAGTACAGTC -ACGGAATCCGAAGACAGTTTGCTG -ACGGAATCCGAAGACAGTTCCATG -ACGGAATCCGAAGACAGTTGTGTG -ACGGAATCCGAAGACAGTCTAGTG -ACGGAATCCGAAGACAGTCATCTG -ACGGAATCCGAAGACAGTGAGTTG -ACGGAATCCGAAGACAGTAGACTG -ACGGAATCCGAAGACAGTTCGGTA -ACGGAATCCGAAGACAGTTGCCTA -ACGGAATCCGAAGACAGTCCACTA -ACGGAATCCGAAGACAGTGGAGTA -ACGGAATCCGAAGACAGTTCGTCT -ACGGAATCCGAAGACAGTTGCACT -ACGGAATCCGAAGACAGTCTGACT -ACGGAATCCGAAGACAGTCAACCT -ACGGAATCCGAAGACAGTGCTACT -ACGGAATCCGAAGACAGTGGATCT -ACGGAATCCGAAGACAGTAAGGCT -ACGGAATCCGAAGACAGTTCAACC -ACGGAATCCGAAGACAGTTGTTCC -ACGGAATCCGAAGACAGTATTCCC -ACGGAATCCGAAGACAGTTTCTCG -ACGGAATCCGAAGACAGTTAGACG -ACGGAATCCGAAGACAGTGTAACG -ACGGAATCCGAAGACAGTACTTCG -ACGGAATCCGAAGACAGTTACGCA -ACGGAATCCGAAGACAGTCTTGCA -ACGGAATCCGAAGACAGTCGAACA -ACGGAATCCGAAGACAGTCAGTCA -ACGGAATCCGAAGACAGTGATCCA -ACGGAATCCGAAGACAGTACGACA -ACGGAATCCGAAGACAGTAGCTCA -ACGGAATCCGAAGACAGTTCACGT -ACGGAATCCGAAGACAGTCGTAGT -ACGGAATCCGAAGACAGTGTCAGT -ACGGAATCCGAAGACAGTGAAGGT -ACGGAATCCGAAGACAGTAACCGT -ACGGAATCCGAAGACAGTTTGTGC -ACGGAATCCGAAGACAGTCTAAGC -ACGGAATCCGAAGACAGTACTAGC -ACGGAATCCGAAGACAGTAGATGC -ACGGAATCCGAAGACAGTTGAAGG -ACGGAATCCGAAGACAGTCAATGG -ACGGAATCCGAAGACAGTATGAGG -ACGGAATCCGAAGACAGTAATGGG -ACGGAATCCGAAGACAGTTCCTGA -ACGGAATCCGAAGACAGTTAGCGA -ACGGAATCCGAAGACAGTCACAGA -ACGGAATCCGAAGACAGTGCAAGA -ACGGAATCCGAAGACAGTGGTTGA -ACGGAATCCGAAGACAGTTCCGAT -ACGGAATCCGAAGACAGTTGGCAT -ACGGAATCCGAAGACAGTCGAGAT -ACGGAATCCGAAGACAGTTACCAC -ACGGAATCCGAAGACAGTCAGAAC -ACGGAATCCGAAGACAGTGTCTAC -ACGGAATCCGAAGACAGTACGTAC -ACGGAATCCGAAGACAGTAGTGAC -ACGGAATCCGAAGACAGTCTGTAG -ACGGAATCCGAAGACAGTCCTAAG -ACGGAATCCGAAGACAGTGTTCAG -ACGGAATCCGAAGACAGTGCATAG -ACGGAATCCGAAGACAGTGACAAG -ACGGAATCCGAAGACAGTAAGCAG -ACGGAATCCGAAGACAGTCGTCAA -ACGGAATCCGAAGACAGTGCTGAA -ACGGAATCCGAAGACAGTAGTACG -ACGGAATCCGAAGACAGTATCCGA -ACGGAATCCGAAGACAGTATGGGA -ACGGAATCCGAAGACAGTGTGCAA -ACGGAATCCGAAGACAGTGAGGAA -ACGGAATCCGAAGACAGTCAGGTA -ACGGAATCCGAAGACAGTGACTCT -ACGGAATCCGAAGACAGTAGTCCT -ACGGAATCCGAAGACAGTTAAGCC -ACGGAATCCGAAGACAGTATAGCC -ACGGAATCCGAAGACAGTTAACCG -ACGGAATCCGAAGACAGTATGCCA -ACGGAATCCGAATAGCTGGGAAAC -ACGGAATCCGAATAGCTGAACACC -ACGGAATCCGAATAGCTGATCGAG -ACGGAATCCGAATAGCTGCTCCTT -ACGGAATCCGAATAGCTGCCTGTT -ACGGAATCCGAATAGCTGCGGTTT -ACGGAATCCGAATAGCTGGTGGTT -ACGGAATCCGAATAGCTGGCCTTT -ACGGAATCCGAATAGCTGGGTCTT -ACGGAATCCGAATAGCTGACGCTT -ACGGAATCCGAATAGCTGAGCGTT -ACGGAATCCGAATAGCTGTTCGTC -ACGGAATCCGAATAGCTGTCTCTC -ACGGAATCCGAATAGCTGTGGATC -ACGGAATCCGAATAGCTGCACTTC -ACGGAATCCGAATAGCTGGTACTC -ACGGAATCCGAATAGCTGGATGTC -ACGGAATCCGAATAGCTGACAGTC -ACGGAATCCGAATAGCTGTTGCTG -ACGGAATCCGAATAGCTGTCCATG -ACGGAATCCGAATAGCTGTGTGTG -ACGGAATCCGAATAGCTGCTAGTG -ACGGAATCCGAATAGCTGCATCTG -ACGGAATCCGAATAGCTGGAGTTG -ACGGAATCCGAATAGCTGAGACTG -ACGGAATCCGAATAGCTGTCGGTA -ACGGAATCCGAATAGCTGTGCCTA -ACGGAATCCGAATAGCTGCCACTA -ACGGAATCCGAATAGCTGGGAGTA -ACGGAATCCGAATAGCTGTCGTCT -ACGGAATCCGAATAGCTGTGCACT -ACGGAATCCGAATAGCTGCTGACT -ACGGAATCCGAATAGCTGCAACCT -ACGGAATCCGAATAGCTGGCTACT -ACGGAATCCGAATAGCTGGGATCT -ACGGAATCCGAATAGCTGAAGGCT -ACGGAATCCGAATAGCTGTCAACC -ACGGAATCCGAATAGCTGTGTTCC -ACGGAATCCGAATAGCTGATTCCC -ACGGAATCCGAATAGCTGTTCTCG -ACGGAATCCGAATAGCTGTAGACG -ACGGAATCCGAATAGCTGGTAACG -ACGGAATCCGAATAGCTGACTTCG -ACGGAATCCGAATAGCTGTACGCA -ACGGAATCCGAATAGCTGCTTGCA -ACGGAATCCGAATAGCTGCGAACA -ACGGAATCCGAATAGCTGCAGTCA -ACGGAATCCGAATAGCTGGATCCA -ACGGAATCCGAATAGCTGACGACA -ACGGAATCCGAATAGCTGAGCTCA -ACGGAATCCGAATAGCTGTCACGT -ACGGAATCCGAATAGCTGCGTAGT -ACGGAATCCGAATAGCTGGTCAGT -ACGGAATCCGAATAGCTGGAAGGT -ACGGAATCCGAATAGCTGAACCGT -ACGGAATCCGAATAGCTGTTGTGC -ACGGAATCCGAATAGCTGCTAAGC -ACGGAATCCGAATAGCTGACTAGC -ACGGAATCCGAATAGCTGAGATGC -ACGGAATCCGAATAGCTGTGAAGG -ACGGAATCCGAATAGCTGCAATGG -ACGGAATCCGAATAGCTGATGAGG -ACGGAATCCGAATAGCTGAATGGG -ACGGAATCCGAATAGCTGTCCTGA -ACGGAATCCGAATAGCTGTAGCGA -ACGGAATCCGAATAGCTGCACAGA -ACGGAATCCGAATAGCTGGCAAGA -ACGGAATCCGAATAGCTGGGTTGA -ACGGAATCCGAATAGCTGTCCGAT -ACGGAATCCGAATAGCTGTGGCAT -ACGGAATCCGAATAGCTGCGAGAT -ACGGAATCCGAATAGCTGTACCAC -ACGGAATCCGAATAGCTGCAGAAC -ACGGAATCCGAATAGCTGGTCTAC -ACGGAATCCGAATAGCTGACGTAC -ACGGAATCCGAATAGCTGAGTGAC -ACGGAATCCGAATAGCTGCTGTAG -ACGGAATCCGAATAGCTGCCTAAG -ACGGAATCCGAATAGCTGGTTCAG -ACGGAATCCGAATAGCTGGCATAG -ACGGAATCCGAATAGCTGGACAAG -ACGGAATCCGAATAGCTGAAGCAG -ACGGAATCCGAATAGCTGCGTCAA -ACGGAATCCGAATAGCTGGCTGAA -ACGGAATCCGAATAGCTGAGTACG -ACGGAATCCGAATAGCTGATCCGA -ACGGAATCCGAATAGCTGATGGGA -ACGGAATCCGAATAGCTGGTGCAA -ACGGAATCCGAATAGCTGGAGGAA -ACGGAATCCGAATAGCTGCAGGTA -ACGGAATCCGAATAGCTGGACTCT -ACGGAATCCGAATAGCTGAGTCCT -ACGGAATCCGAATAGCTGTAAGCC -ACGGAATCCGAATAGCTGATAGCC -ACGGAATCCGAATAGCTGTAACCG -ACGGAATCCGAATAGCTGATGCCA -ACGGAATCCGAAAAGCCTGGAAAC -ACGGAATCCGAAAAGCCTAACACC -ACGGAATCCGAAAAGCCTATCGAG -ACGGAATCCGAAAAGCCTCTCCTT -ACGGAATCCGAAAAGCCTCCTGTT -ACGGAATCCGAAAAGCCTCGGTTT -ACGGAATCCGAAAAGCCTGTGGTT -ACGGAATCCGAAAAGCCTGCCTTT -ACGGAATCCGAAAAGCCTGGTCTT -ACGGAATCCGAAAAGCCTACGCTT -ACGGAATCCGAAAAGCCTAGCGTT -ACGGAATCCGAAAAGCCTTTCGTC -ACGGAATCCGAAAAGCCTTCTCTC -ACGGAATCCGAAAAGCCTTGGATC -ACGGAATCCGAAAAGCCTCACTTC -ACGGAATCCGAAAAGCCTGTACTC -ACGGAATCCGAAAAGCCTGATGTC -ACGGAATCCGAAAAGCCTACAGTC -ACGGAATCCGAAAAGCCTTTGCTG -ACGGAATCCGAAAAGCCTTCCATG -ACGGAATCCGAAAAGCCTTGTGTG -ACGGAATCCGAAAAGCCTCTAGTG -ACGGAATCCGAAAAGCCTCATCTG -ACGGAATCCGAAAAGCCTGAGTTG -ACGGAATCCGAAAAGCCTAGACTG -ACGGAATCCGAAAAGCCTTCGGTA -ACGGAATCCGAAAAGCCTTGCCTA -ACGGAATCCGAAAAGCCTCCACTA -ACGGAATCCGAAAAGCCTGGAGTA -ACGGAATCCGAAAAGCCTTCGTCT -ACGGAATCCGAAAAGCCTTGCACT -ACGGAATCCGAAAAGCCTCTGACT -ACGGAATCCGAAAAGCCTCAACCT -ACGGAATCCGAAAAGCCTGCTACT -ACGGAATCCGAAAAGCCTGGATCT -ACGGAATCCGAAAAGCCTAAGGCT -ACGGAATCCGAAAAGCCTTCAACC -ACGGAATCCGAAAAGCCTTGTTCC -ACGGAATCCGAAAAGCCTATTCCC -ACGGAATCCGAAAAGCCTTTCTCG -ACGGAATCCGAAAAGCCTTAGACG -ACGGAATCCGAAAAGCCTGTAACG -ACGGAATCCGAAAAGCCTACTTCG -ACGGAATCCGAAAAGCCTTACGCA -ACGGAATCCGAAAAGCCTCTTGCA -ACGGAATCCGAAAAGCCTCGAACA -ACGGAATCCGAAAAGCCTCAGTCA -ACGGAATCCGAAAAGCCTGATCCA -ACGGAATCCGAAAAGCCTACGACA -ACGGAATCCGAAAAGCCTAGCTCA -ACGGAATCCGAAAAGCCTTCACGT -ACGGAATCCGAAAAGCCTCGTAGT -ACGGAATCCGAAAAGCCTGTCAGT -ACGGAATCCGAAAAGCCTGAAGGT -ACGGAATCCGAAAAGCCTAACCGT -ACGGAATCCGAAAAGCCTTTGTGC -ACGGAATCCGAAAAGCCTCTAAGC -ACGGAATCCGAAAAGCCTACTAGC -ACGGAATCCGAAAAGCCTAGATGC -ACGGAATCCGAAAAGCCTTGAAGG -ACGGAATCCGAAAAGCCTCAATGG -ACGGAATCCGAAAAGCCTATGAGG -ACGGAATCCGAAAAGCCTAATGGG -ACGGAATCCGAAAAGCCTTCCTGA -ACGGAATCCGAAAAGCCTTAGCGA -ACGGAATCCGAAAAGCCTCACAGA -ACGGAATCCGAAAAGCCTGCAAGA -ACGGAATCCGAAAAGCCTGGTTGA -ACGGAATCCGAAAAGCCTTCCGAT -ACGGAATCCGAAAAGCCTTGGCAT -ACGGAATCCGAAAAGCCTCGAGAT -ACGGAATCCGAAAAGCCTTACCAC -ACGGAATCCGAAAAGCCTCAGAAC -ACGGAATCCGAAAAGCCTGTCTAC -ACGGAATCCGAAAAGCCTACGTAC -ACGGAATCCGAAAAGCCTAGTGAC -ACGGAATCCGAAAAGCCTCTGTAG -ACGGAATCCGAAAAGCCTCCTAAG -ACGGAATCCGAAAAGCCTGTTCAG -ACGGAATCCGAAAAGCCTGCATAG -ACGGAATCCGAAAAGCCTGACAAG -ACGGAATCCGAAAAGCCTAAGCAG -ACGGAATCCGAAAAGCCTCGTCAA -ACGGAATCCGAAAAGCCTGCTGAA -ACGGAATCCGAAAAGCCTAGTACG -ACGGAATCCGAAAAGCCTATCCGA -ACGGAATCCGAAAAGCCTATGGGA -ACGGAATCCGAAAAGCCTGTGCAA -ACGGAATCCGAAAAGCCTGAGGAA -ACGGAATCCGAAAAGCCTCAGGTA -ACGGAATCCGAAAAGCCTGACTCT -ACGGAATCCGAAAAGCCTAGTCCT -ACGGAATCCGAAAAGCCTTAAGCC -ACGGAATCCGAAAAGCCTATAGCC -ACGGAATCCGAAAAGCCTTAACCG -ACGGAATCCGAAAAGCCTATGCCA -ACGGAATCCGAACAGGTTGGAAAC -ACGGAATCCGAACAGGTTAACACC -ACGGAATCCGAACAGGTTATCGAG -ACGGAATCCGAACAGGTTCTCCTT -ACGGAATCCGAACAGGTTCCTGTT -ACGGAATCCGAACAGGTTCGGTTT -ACGGAATCCGAACAGGTTGTGGTT -ACGGAATCCGAACAGGTTGCCTTT -ACGGAATCCGAACAGGTTGGTCTT -ACGGAATCCGAACAGGTTACGCTT -ACGGAATCCGAACAGGTTAGCGTT -ACGGAATCCGAACAGGTTTTCGTC -ACGGAATCCGAACAGGTTTCTCTC -ACGGAATCCGAACAGGTTTGGATC -ACGGAATCCGAACAGGTTCACTTC -ACGGAATCCGAACAGGTTGTACTC -ACGGAATCCGAACAGGTTGATGTC -ACGGAATCCGAACAGGTTACAGTC -ACGGAATCCGAACAGGTTTTGCTG -ACGGAATCCGAACAGGTTTCCATG -ACGGAATCCGAACAGGTTTGTGTG -ACGGAATCCGAACAGGTTCTAGTG -ACGGAATCCGAACAGGTTCATCTG -ACGGAATCCGAACAGGTTGAGTTG -ACGGAATCCGAACAGGTTAGACTG -ACGGAATCCGAACAGGTTTCGGTA -ACGGAATCCGAACAGGTTTGCCTA -ACGGAATCCGAACAGGTTCCACTA -ACGGAATCCGAACAGGTTGGAGTA -ACGGAATCCGAACAGGTTTCGTCT -ACGGAATCCGAACAGGTTTGCACT -ACGGAATCCGAACAGGTTCTGACT -ACGGAATCCGAACAGGTTCAACCT -ACGGAATCCGAACAGGTTGCTACT -ACGGAATCCGAACAGGTTGGATCT -ACGGAATCCGAACAGGTTAAGGCT -ACGGAATCCGAACAGGTTTCAACC -ACGGAATCCGAACAGGTTTGTTCC -ACGGAATCCGAACAGGTTATTCCC -ACGGAATCCGAACAGGTTTTCTCG -ACGGAATCCGAACAGGTTTAGACG -ACGGAATCCGAACAGGTTGTAACG -ACGGAATCCGAACAGGTTACTTCG -ACGGAATCCGAACAGGTTTACGCA -ACGGAATCCGAACAGGTTCTTGCA -ACGGAATCCGAACAGGTTCGAACA -ACGGAATCCGAACAGGTTCAGTCA -ACGGAATCCGAACAGGTTGATCCA -ACGGAATCCGAACAGGTTACGACA -ACGGAATCCGAACAGGTTAGCTCA -ACGGAATCCGAACAGGTTTCACGT -ACGGAATCCGAACAGGTTCGTAGT -ACGGAATCCGAACAGGTTGTCAGT -ACGGAATCCGAACAGGTTGAAGGT -ACGGAATCCGAACAGGTTAACCGT -ACGGAATCCGAACAGGTTTTGTGC -ACGGAATCCGAACAGGTTCTAAGC -ACGGAATCCGAACAGGTTACTAGC -ACGGAATCCGAACAGGTTAGATGC -ACGGAATCCGAACAGGTTTGAAGG -ACGGAATCCGAACAGGTTCAATGG -ACGGAATCCGAACAGGTTATGAGG -ACGGAATCCGAACAGGTTAATGGG -ACGGAATCCGAACAGGTTTCCTGA -ACGGAATCCGAACAGGTTTAGCGA -ACGGAATCCGAACAGGTTCACAGA -ACGGAATCCGAACAGGTTGCAAGA -ACGGAATCCGAACAGGTTGGTTGA -ACGGAATCCGAACAGGTTTCCGAT -ACGGAATCCGAACAGGTTTGGCAT -ACGGAATCCGAACAGGTTCGAGAT -ACGGAATCCGAACAGGTTTACCAC -ACGGAATCCGAACAGGTTCAGAAC -ACGGAATCCGAACAGGTTGTCTAC -ACGGAATCCGAACAGGTTACGTAC -ACGGAATCCGAACAGGTTAGTGAC -ACGGAATCCGAACAGGTTCTGTAG -ACGGAATCCGAACAGGTTCCTAAG -ACGGAATCCGAACAGGTTGTTCAG -ACGGAATCCGAACAGGTTGCATAG -ACGGAATCCGAACAGGTTGACAAG -ACGGAATCCGAACAGGTTAAGCAG -ACGGAATCCGAACAGGTTCGTCAA -ACGGAATCCGAACAGGTTGCTGAA -ACGGAATCCGAACAGGTTAGTACG -ACGGAATCCGAACAGGTTATCCGA -ACGGAATCCGAACAGGTTATGGGA -ACGGAATCCGAACAGGTTGTGCAA -ACGGAATCCGAACAGGTTGAGGAA -ACGGAATCCGAACAGGTTCAGGTA -ACGGAATCCGAACAGGTTGACTCT -ACGGAATCCGAACAGGTTAGTCCT -ACGGAATCCGAACAGGTTTAAGCC -ACGGAATCCGAACAGGTTATAGCC -ACGGAATCCGAACAGGTTTAACCG -ACGGAATCCGAACAGGTTATGCCA -ACGGAATCCGAATAGGCAGGAAAC -ACGGAATCCGAATAGGCAAACACC -ACGGAATCCGAATAGGCAATCGAG -ACGGAATCCGAATAGGCACTCCTT -ACGGAATCCGAATAGGCACCTGTT -ACGGAATCCGAATAGGCACGGTTT -ACGGAATCCGAATAGGCAGTGGTT -ACGGAATCCGAATAGGCAGCCTTT -ACGGAATCCGAATAGGCAGGTCTT -ACGGAATCCGAATAGGCAACGCTT -ACGGAATCCGAATAGGCAAGCGTT -ACGGAATCCGAATAGGCATTCGTC -ACGGAATCCGAATAGGCATCTCTC -ACGGAATCCGAATAGGCATGGATC -ACGGAATCCGAATAGGCACACTTC -ACGGAATCCGAATAGGCAGTACTC -ACGGAATCCGAATAGGCAGATGTC -ACGGAATCCGAATAGGCAACAGTC -ACGGAATCCGAATAGGCATTGCTG -ACGGAATCCGAATAGGCATCCATG -ACGGAATCCGAATAGGCATGTGTG -ACGGAATCCGAATAGGCACTAGTG -ACGGAATCCGAATAGGCACATCTG -ACGGAATCCGAATAGGCAGAGTTG -ACGGAATCCGAATAGGCAAGACTG -ACGGAATCCGAATAGGCATCGGTA -ACGGAATCCGAATAGGCATGCCTA -ACGGAATCCGAATAGGCACCACTA -ACGGAATCCGAATAGGCAGGAGTA -ACGGAATCCGAATAGGCATCGTCT -ACGGAATCCGAATAGGCATGCACT -ACGGAATCCGAATAGGCACTGACT -ACGGAATCCGAATAGGCACAACCT -ACGGAATCCGAATAGGCAGCTACT -ACGGAATCCGAATAGGCAGGATCT -ACGGAATCCGAATAGGCAAAGGCT -ACGGAATCCGAATAGGCATCAACC -ACGGAATCCGAATAGGCATGTTCC -ACGGAATCCGAATAGGCAATTCCC -ACGGAATCCGAATAGGCATTCTCG -ACGGAATCCGAATAGGCATAGACG -ACGGAATCCGAATAGGCAGTAACG -ACGGAATCCGAATAGGCAACTTCG -ACGGAATCCGAATAGGCATACGCA -ACGGAATCCGAATAGGCACTTGCA -ACGGAATCCGAATAGGCACGAACA -ACGGAATCCGAATAGGCACAGTCA -ACGGAATCCGAATAGGCAGATCCA -ACGGAATCCGAATAGGCAACGACA -ACGGAATCCGAATAGGCAAGCTCA -ACGGAATCCGAATAGGCATCACGT -ACGGAATCCGAATAGGCACGTAGT -ACGGAATCCGAATAGGCAGTCAGT -ACGGAATCCGAATAGGCAGAAGGT -ACGGAATCCGAATAGGCAAACCGT -ACGGAATCCGAATAGGCATTGTGC -ACGGAATCCGAATAGGCACTAAGC -ACGGAATCCGAATAGGCAACTAGC -ACGGAATCCGAATAGGCAAGATGC -ACGGAATCCGAATAGGCATGAAGG -ACGGAATCCGAATAGGCACAATGG -ACGGAATCCGAATAGGCAATGAGG -ACGGAATCCGAATAGGCAAATGGG -ACGGAATCCGAATAGGCATCCTGA -ACGGAATCCGAATAGGCATAGCGA -ACGGAATCCGAATAGGCACACAGA -ACGGAATCCGAATAGGCAGCAAGA -ACGGAATCCGAATAGGCAGGTTGA -ACGGAATCCGAATAGGCATCCGAT -ACGGAATCCGAATAGGCATGGCAT -ACGGAATCCGAATAGGCACGAGAT -ACGGAATCCGAATAGGCATACCAC -ACGGAATCCGAATAGGCACAGAAC -ACGGAATCCGAATAGGCAGTCTAC -ACGGAATCCGAATAGGCAACGTAC -ACGGAATCCGAATAGGCAAGTGAC -ACGGAATCCGAATAGGCACTGTAG -ACGGAATCCGAATAGGCACCTAAG -ACGGAATCCGAATAGGCAGTTCAG -ACGGAATCCGAATAGGCAGCATAG -ACGGAATCCGAATAGGCAGACAAG -ACGGAATCCGAATAGGCAAAGCAG -ACGGAATCCGAATAGGCACGTCAA -ACGGAATCCGAATAGGCAGCTGAA -ACGGAATCCGAATAGGCAAGTACG -ACGGAATCCGAATAGGCAATCCGA -ACGGAATCCGAATAGGCAATGGGA -ACGGAATCCGAATAGGCAGTGCAA -ACGGAATCCGAATAGGCAGAGGAA -ACGGAATCCGAATAGGCACAGGTA -ACGGAATCCGAATAGGCAGACTCT -ACGGAATCCGAATAGGCAAGTCCT -ACGGAATCCGAATAGGCATAAGCC -ACGGAATCCGAATAGGCAATAGCC -ACGGAATCCGAATAGGCATAACCG -ACGGAATCCGAATAGGCAATGCCA -ACGGAATCCGAAAAGGACGGAAAC -ACGGAATCCGAAAAGGACAACACC -ACGGAATCCGAAAAGGACATCGAG -ACGGAATCCGAAAAGGACCTCCTT -ACGGAATCCGAAAAGGACCCTGTT -ACGGAATCCGAAAAGGACCGGTTT -ACGGAATCCGAAAAGGACGTGGTT -ACGGAATCCGAAAAGGACGCCTTT -ACGGAATCCGAAAAGGACGGTCTT -ACGGAATCCGAAAAGGACACGCTT -ACGGAATCCGAAAAGGACAGCGTT -ACGGAATCCGAAAAGGACTTCGTC -ACGGAATCCGAAAAGGACTCTCTC -ACGGAATCCGAAAAGGACTGGATC -ACGGAATCCGAAAAGGACCACTTC -ACGGAATCCGAAAAGGACGTACTC -ACGGAATCCGAAAAGGACGATGTC -ACGGAATCCGAAAAGGACACAGTC -ACGGAATCCGAAAAGGACTTGCTG -ACGGAATCCGAAAAGGACTCCATG -ACGGAATCCGAAAAGGACTGTGTG -ACGGAATCCGAAAAGGACCTAGTG -ACGGAATCCGAAAAGGACCATCTG -ACGGAATCCGAAAAGGACGAGTTG -ACGGAATCCGAAAAGGACAGACTG -ACGGAATCCGAAAAGGACTCGGTA -ACGGAATCCGAAAAGGACTGCCTA -ACGGAATCCGAAAAGGACCCACTA -ACGGAATCCGAAAAGGACGGAGTA -ACGGAATCCGAAAAGGACTCGTCT -ACGGAATCCGAAAAGGACTGCACT -ACGGAATCCGAAAAGGACCTGACT -ACGGAATCCGAAAAGGACCAACCT -ACGGAATCCGAAAAGGACGCTACT -ACGGAATCCGAAAAGGACGGATCT -ACGGAATCCGAAAAGGACAAGGCT -ACGGAATCCGAAAAGGACTCAACC -ACGGAATCCGAAAAGGACTGTTCC -ACGGAATCCGAAAAGGACATTCCC -ACGGAATCCGAAAAGGACTTCTCG -ACGGAATCCGAAAAGGACTAGACG -ACGGAATCCGAAAAGGACGTAACG -ACGGAATCCGAAAAGGACACTTCG -ACGGAATCCGAAAAGGACTACGCA -ACGGAATCCGAAAAGGACCTTGCA -ACGGAATCCGAAAAGGACCGAACA -ACGGAATCCGAAAAGGACCAGTCA -ACGGAATCCGAAAAGGACGATCCA -ACGGAATCCGAAAAGGACACGACA -ACGGAATCCGAAAAGGACAGCTCA -ACGGAATCCGAAAAGGACTCACGT -ACGGAATCCGAAAAGGACCGTAGT -ACGGAATCCGAAAAGGACGTCAGT -ACGGAATCCGAAAAGGACGAAGGT -ACGGAATCCGAAAAGGACAACCGT -ACGGAATCCGAAAAGGACTTGTGC -ACGGAATCCGAAAAGGACCTAAGC -ACGGAATCCGAAAAGGACACTAGC -ACGGAATCCGAAAAGGACAGATGC -ACGGAATCCGAAAAGGACTGAAGG -ACGGAATCCGAAAAGGACCAATGG -ACGGAATCCGAAAAGGACATGAGG -ACGGAATCCGAAAAGGACAATGGG -ACGGAATCCGAAAAGGACTCCTGA -ACGGAATCCGAAAAGGACTAGCGA -ACGGAATCCGAAAAGGACCACAGA -ACGGAATCCGAAAAGGACGCAAGA -ACGGAATCCGAAAAGGACGGTTGA -ACGGAATCCGAAAAGGACTCCGAT -ACGGAATCCGAAAAGGACTGGCAT -ACGGAATCCGAAAAGGACCGAGAT -ACGGAATCCGAAAAGGACTACCAC -ACGGAATCCGAAAAGGACCAGAAC -ACGGAATCCGAAAAGGACGTCTAC -ACGGAATCCGAAAAGGACACGTAC -ACGGAATCCGAAAAGGACAGTGAC -ACGGAATCCGAAAAGGACCTGTAG -ACGGAATCCGAAAAGGACCCTAAG -ACGGAATCCGAAAAGGACGTTCAG -ACGGAATCCGAAAAGGACGCATAG -ACGGAATCCGAAAAGGACGACAAG -ACGGAATCCGAAAAGGACAAGCAG -ACGGAATCCGAAAAGGACCGTCAA -ACGGAATCCGAAAAGGACGCTGAA -ACGGAATCCGAAAAGGACAGTACG -ACGGAATCCGAAAAGGACATCCGA -ACGGAATCCGAAAAGGACATGGGA -ACGGAATCCGAAAAGGACGTGCAA -ACGGAATCCGAAAAGGACGAGGAA -ACGGAATCCGAAAAGGACCAGGTA -ACGGAATCCGAAAAGGACGACTCT -ACGGAATCCGAAAAGGACAGTCCT -ACGGAATCCGAAAAGGACTAAGCC -ACGGAATCCGAAAAGGACATAGCC -ACGGAATCCGAAAAGGACTAACCG -ACGGAATCCGAAAAGGACATGCCA -ACGGAATCCGAACAGAAGGGAAAC -ACGGAATCCGAACAGAAGAACACC -ACGGAATCCGAACAGAAGATCGAG -ACGGAATCCGAACAGAAGCTCCTT -ACGGAATCCGAACAGAAGCCTGTT -ACGGAATCCGAACAGAAGCGGTTT -ACGGAATCCGAACAGAAGGTGGTT -ACGGAATCCGAACAGAAGGCCTTT -ACGGAATCCGAACAGAAGGGTCTT -ACGGAATCCGAACAGAAGACGCTT -ACGGAATCCGAACAGAAGAGCGTT -ACGGAATCCGAACAGAAGTTCGTC -ACGGAATCCGAACAGAAGTCTCTC -ACGGAATCCGAACAGAAGTGGATC -ACGGAATCCGAACAGAAGCACTTC -ACGGAATCCGAACAGAAGGTACTC -ACGGAATCCGAACAGAAGGATGTC -ACGGAATCCGAACAGAAGACAGTC -ACGGAATCCGAACAGAAGTTGCTG -ACGGAATCCGAACAGAAGTCCATG -ACGGAATCCGAACAGAAGTGTGTG -ACGGAATCCGAACAGAAGCTAGTG -ACGGAATCCGAACAGAAGCATCTG -ACGGAATCCGAACAGAAGGAGTTG -ACGGAATCCGAACAGAAGAGACTG -ACGGAATCCGAACAGAAGTCGGTA -ACGGAATCCGAACAGAAGTGCCTA -ACGGAATCCGAACAGAAGCCACTA -ACGGAATCCGAACAGAAGGGAGTA -ACGGAATCCGAACAGAAGTCGTCT -ACGGAATCCGAACAGAAGTGCACT -ACGGAATCCGAACAGAAGCTGACT -ACGGAATCCGAACAGAAGCAACCT -ACGGAATCCGAACAGAAGGCTACT -ACGGAATCCGAACAGAAGGGATCT -ACGGAATCCGAACAGAAGAAGGCT -ACGGAATCCGAACAGAAGTCAACC -ACGGAATCCGAACAGAAGTGTTCC -ACGGAATCCGAACAGAAGATTCCC -ACGGAATCCGAACAGAAGTTCTCG -ACGGAATCCGAACAGAAGTAGACG -ACGGAATCCGAACAGAAGGTAACG -ACGGAATCCGAACAGAAGACTTCG -ACGGAATCCGAACAGAAGTACGCA -ACGGAATCCGAACAGAAGCTTGCA -ACGGAATCCGAACAGAAGCGAACA -ACGGAATCCGAACAGAAGCAGTCA -ACGGAATCCGAACAGAAGGATCCA -ACGGAATCCGAACAGAAGACGACA -ACGGAATCCGAACAGAAGAGCTCA -ACGGAATCCGAACAGAAGTCACGT -ACGGAATCCGAACAGAAGCGTAGT -ACGGAATCCGAACAGAAGGTCAGT -ACGGAATCCGAACAGAAGGAAGGT -ACGGAATCCGAACAGAAGAACCGT -ACGGAATCCGAACAGAAGTTGTGC -ACGGAATCCGAACAGAAGCTAAGC -ACGGAATCCGAACAGAAGACTAGC -ACGGAATCCGAACAGAAGAGATGC -ACGGAATCCGAACAGAAGTGAAGG -ACGGAATCCGAACAGAAGCAATGG -ACGGAATCCGAACAGAAGATGAGG -ACGGAATCCGAACAGAAGAATGGG -ACGGAATCCGAACAGAAGTCCTGA -ACGGAATCCGAACAGAAGTAGCGA -ACGGAATCCGAACAGAAGCACAGA -ACGGAATCCGAACAGAAGGCAAGA -ACGGAATCCGAACAGAAGGGTTGA -ACGGAATCCGAACAGAAGTCCGAT -ACGGAATCCGAACAGAAGTGGCAT -ACGGAATCCGAACAGAAGCGAGAT -ACGGAATCCGAACAGAAGTACCAC -ACGGAATCCGAACAGAAGCAGAAC -ACGGAATCCGAACAGAAGGTCTAC -ACGGAATCCGAACAGAAGACGTAC -ACGGAATCCGAACAGAAGAGTGAC -ACGGAATCCGAACAGAAGCTGTAG -ACGGAATCCGAACAGAAGCCTAAG -ACGGAATCCGAACAGAAGGTTCAG -ACGGAATCCGAACAGAAGGCATAG -ACGGAATCCGAACAGAAGGACAAG -ACGGAATCCGAACAGAAGAAGCAG -ACGGAATCCGAACAGAAGCGTCAA -ACGGAATCCGAACAGAAGGCTGAA -ACGGAATCCGAACAGAAGAGTACG -ACGGAATCCGAACAGAAGATCCGA -ACGGAATCCGAACAGAAGATGGGA -ACGGAATCCGAACAGAAGGTGCAA -ACGGAATCCGAACAGAAGGAGGAA -ACGGAATCCGAACAGAAGCAGGTA -ACGGAATCCGAACAGAAGGACTCT -ACGGAATCCGAACAGAAGAGTCCT -ACGGAATCCGAACAGAAGTAAGCC -ACGGAATCCGAACAGAAGATAGCC -ACGGAATCCGAACAGAAGTAACCG -ACGGAATCCGAACAGAAGATGCCA -ACGGAATCCGAACAACGTGGAAAC -ACGGAATCCGAACAACGTAACACC -ACGGAATCCGAACAACGTATCGAG -ACGGAATCCGAACAACGTCTCCTT -ACGGAATCCGAACAACGTCCTGTT -ACGGAATCCGAACAACGTCGGTTT -ACGGAATCCGAACAACGTGTGGTT -ACGGAATCCGAACAACGTGCCTTT -ACGGAATCCGAACAACGTGGTCTT -ACGGAATCCGAACAACGTACGCTT -ACGGAATCCGAACAACGTAGCGTT -ACGGAATCCGAACAACGTTTCGTC -ACGGAATCCGAACAACGTTCTCTC -ACGGAATCCGAACAACGTTGGATC -ACGGAATCCGAACAACGTCACTTC -ACGGAATCCGAACAACGTGTACTC -ACGGAATCCGAACAACGTGATGTC -ACGGAATCCGAACAACGTACAGTC -ACGGAATCCGAACAACGTTTGCTG -ACGGAATCCGAACAACGTTCCATG -ACGGAATCCGAACAACGTTGTGTG -ACGGAATCCGAACAACGTCTAGTG -ACGGAATCCGAACAACGTCATCTG -ACGGAATCCGAACAACGTGAGTTG -ACGGAATCCGAACAACGTAGACTG -ACGGAATCCGAACAACGTTCGGTA -ACGGAATCCGAACAACGTTGCCTA -ACGGAATCCGAACAACGTCCACTA -ACGGAATCCGAACAACGTGGAGTA -ACGGAATCCGAACAACGTTCGTCT -ACGGAATCCGAACAACGTTGCACT -ACGGAATCCGAACAACGTCTGACT -ACGGAATCCGAACAACGTCAACCT -ACGGAATCCGAACAACGTGCTACT -ACGGAATCCGAACAACGTGGATCT -ACGGAATCCGAACAACGTAAGGCT -ACGGAATCCGAACAACGTTCAACC -ACGGAATCCGAACAACGTTGTTCC -ACGGAATCCGAACAACGTATTCCC -ACGGAATCCGAACAACGTTTCTCG -ACGGAATCCGAACAACGTTAGACG -ACGGAATCCGAACAACGTGTAACG -ACGGAATCCGAACAACGTACTTCG -ACGGAATCCGAACAACGTTACGCA -ACGGAATCCGAACAACGTCTTGCA -ACGGAATCCGAACAACGTCGAACA -ACGGAATCCGAACAACGTCAGTCA -ACGGAATCCGAACAACGTGATCCA -ACGGAATCCGAACAACGTACGACA -ACGGAATCCGAACAACGTAGCTCA -ACGGAATCCGAACAACGTTCACGT -ACGGAATCCGAACAACGTCGTAGT -ACGGAATCCGAACAACGTGTCAGT -ACGGAATCCGAACAACGTGAAGGT -ACGGAATCCGAACAACGTAACCGT -ACGGAATCCGAACAACGTTTGTGC -ACGGAATCCGAACAACGTCTAAGC -ACGGAATCCGAACAACGTACTAGC -ACGGAATCCGAACAACGTAGATGC -ACGGAATCCGAACAACGTTGAAGG -ACGGAATCCGAACAACGTCAATGG -ACGGAATCCGAACAACGTATGAGG -ACGGAATCCGAACAACGTAATGGG -ACGGAATCCGAACAACGTTCCTGA -ACGGAATCCGAACAACGTTAGCGA -ACGGAATCCGAACAACGTCACAGA -ACGGAATCCGAACAACGTGCAAGA -ACGGAATCCGAACAACGTGGTTGA -ACGGAATCCGAACAACGTTCCGAT -ACGGAATCCGAACAACGTTGGCAT -ACGGAATCCGAACAACGTCGAGAT -ACGGAATCCGAACAACGTTACCAC -ACGGAATCCGAACAACGTCAGAAC -ACGGAATCCGAACAACGTGTCTAC -ACGGAATCCGAACAACGTACGTAC -ACGGAATCCGAACAACGTAGTGAC -ACGGAATCCGAACAACGTCTGTAG -ACGGAATCCGAACAACGTCCTAAG -ACGGAATCCGAACAACGTGTTCAG -ACGGAATCCGAACAACGTGCATAG -ACGGAATCCGAACAACGTGACAAG -ACGGAATCCGAACAACGTAAGCAG -ACGGAATCCGAACAACGTCGTCAA -ACGGAATCCGAACAACGTGCTGAA -ACGGAATCCGAACAACGTAGTACG -ACGGAATCCGAACAACGTATCCGA -ACGGAATCCGAACAACGTATGGGA -ACGGAATCCGAACAACGTGTGCAA -ACGGAATCCGAACAACGTGAGGAA -ACGGAATCCGAACAACGTCAGGTA -ACGGAATCCGAACAACGTGACTCT -ACGGAATCCGAACAACGTAGTCCT -ACGGAATCCGAACAACGTTAAGCC -ACGGAATCCGAACAACGTATAGCC -ACGGAATCCGAACAACGTTAACCG -ACGGAATCCGAACAACGTATGCCA -ACGGAATCCGAAGAAGCTGGAAAC -ACGGAATCCGAAGAAGCTAACACC -ACGGAATCCGAAGAAGCTATCGAG -ACGGAATCCGAAGAAGCTCTCCTT -ACGGAATCCGAAGAAGCTCCTGTT -ACGGAATCCGAAGAAGCTCGGTTT -ACGGAATCCGAAGAAGCTGTGGTT -ACGGAATCCGAAGAAGCTGCCTTT -ACGGAATCCGAAGAAGCTGGTCTT -ACGGAATCCGAAGAAGCTACGCTT -ACGGAATCCGAAGAAGCTAGCGTT -ACGGAATCCGAAGAAGCTTTCGTC -ACGGAATCCGAAGAAGCTTCTCTC -ACGGAATCCGAAGAAGCTTGGATC -ACGGAATCCGAAGAAGCTCACTTC -ACGGAATCCGAAGAAGCTGTACTC -ACGGAATCCGAAGAAGCTGATGTC -ACGGAATCCGAAGAAGCTACAGTC -ACGGAATCCGAAGAAGCTTTGCTG -ACGGAATCCGAAGAAGCTTCCATG -ACGGAATCCGAAGAAGCTTGTGTG -ACGGAATCCGAAGAAGCTCTAGTG -ACGGAATCCGAAGAAGCTCATCTG -ACGGAATCCGAAGAAGCTGAGTTG -ACGGAATCCGAAGAAGCTAGACTG -ACGGAATCCGAAGAAGCTTCGGTA -ACGGAATCCGAAGAAGCTTGCCTA -ACGGAATCCGAAGAAGCTCCACTA -ACGGAATCCGAAGAAGCTGGAGTA -ACGGAATCCGAAGAAGCTTCGTCT -ACGGAATCCGAAGAAGCTTGCACT -ACGGAATCCGAAGAAGCTCTGACT -ACGGAATCCGAAGAAGCTCAACCT -ACGGAATCCGAAGAAGCTGCTACT -ACGGAATCCGAAGAAGCTGGATCT -ACGGAATCCGAAGAAGCTAAGGCT -ACGGAATCCGAAGAAGCTTCAACC -ACGGAATCCGAAGAAGCTTGTTCC -ACGGAATCCGAAGAAGCTATTCCC -ACGGAATCCGAAGAAGCTTTCTCG -ACGGAATCCGAAGAAGCTTAGACG -ACGGAATCCGAAGAAGCTGTAACG -ACGGAATCCGAAGAAGCTACTTCG -ACGGAATCCGAAGAAGCTTACGCA -ACGGAATCCGAAGAAGCTCTTGCA -ACGGAATCCGAAGAAGCTCGAACA -ACGGAATCCGAAGAAGCTCAGTCA -ACGGAATCCGAAGAAGCTGATCCA -ACGGAATCCGAAGAAGCTACGACA -ACGGAATCCGAAGAAGCTAGCTCA -ACGGAATCCGAAGAAGCTTCACGT -ACGGAATCCGAAGAAGCTCGTAGT -ACGGAATCCGAAGAAGCTGTCAGT -ACGGAATCCGAAGAAGCTGAAGGT -ACGGAATCCGAAGAAGCTAACCGT -ACGGAATCCGAAGAAGCTTTGTGC -ACGGAATCCGAAGAAGCTCTAAGC -ACGGAATCCGAAGAAGCTACTAGC -ACGGAATCCGAAGAAGCTAGATGC -ACGGAATCCGAAGAAGCTTGAAGG -ACGGAATCCGAAGAAGCTCAATGG -ACGGAATCCGAAGAAGCTATGAGG -ACGGAATCCGAAGAAGCTAATGGG -ACGGAATCCGAAGAAGCTTCCTGA -ACGGAATCCGAAGAAGCTTAGCGA -ACGGAATCCGAAGAAGCTCACAGA -ACGGAATCCGAAGAAGCTGCAAGA -ACGGAATCCGAAGAAGCTGGTTGA -ACGGAATCCGAAGAAGCTTCCGAT -ACGGAATCCGAAGAAGCTTGGCAT -ACGGAATCCGAAGAAGCTCGAGAT -ACGGAATCCGAAGAAGCTTACCAC -ACGGAATCCGAAGAAGCTCAGAAC -ACGGAATCCGAAGAAGCTGTCTAC -ACGGAATCCGAAGAAGCTACGTAC -ACGGAATCCGAAGAAGCTAGTGAC -ACGGAATCCGAAGAAGCTCTGTAG -ACGGAATCCGAAGAAGCTCCTAAG -ACGGAATCCGAAGAAGCTGTTCAG -ACGGAATCCGAAGAAGCTGCATAG -ACGGAATCCGAAGAAGCTGACAAG -ACGGAATCCGAAGAAGCTAAGCAG -ACGGAATCCGAAGAAGCTCGTCAA -ACGGAATCCGAAGAAGCTGCTGAA -ACGGAATCCGAAGAAGCTAGTACG -ACGGAATCCGAAGAAGCTATCCGA -ACGGAATCCGAAGAAGCTATGGGA -ACGGAATCCGAAGAAGCTGTGCAA -ACGGAATCCGAAGAAGCTGAGGAA -ACGGAATCCGAAGAAGCTCAGGTA -ACGGAATCCGAAGAAGCTGACTCT -ACGGAATCCGAAGAAGCTAGTCCT -ACGGAATCCGAAGAAGCTTAAGCC -ACGGAATCCGAAGAAGCTATAGCC -ACGGAATCCGAAGAAGCTTAACCG -ACGGAATCCGAAGAAGCTATGCCA -ACGGAATCCGAAACGAGTGGAAAC -ACGGAATCCGAAACGAGTAACACC -ACGGAATCCGAAACGAGTATCGAG -ACGGAATCCGAAACGAGTCTCCTT -ACGGAATCCGAAACGAGTCCTGTT -ACGGAATCCGAAACGAGTCGGTTT -ACGGAATCCGAAACGAGTGTGGTT -ACGGAATCCGAAACGAGTGCCTTT -ACGGAATCCGAAACGAGTGGTCTT -ACGGAATCCGAAACGAGTACGCTT -ACGGAATCCGAAACGAGTAGCGTT -ACGGAATCCGAAACGAGTTTCGTC -ACGGAATCCGAAACGAGTTCTCTC -ACGGAATCCGAAACGAGTTGGATC -ACGGAATCCGAAACGAGTCACTTC -ACGGAATCCGAAACGAGTGTACTC -ACGGAATCCGAAACGAGTGATGTC -ACGGAATCCGAAACGAGTACAGTC -ACGGAATCCGAAACGAGTTTGCTG -ACGGAATCCGAAACGAGTTCCATG -ACGGAATCCGAAACGAGTTGTGTG -ACGGAATCCGAAACGAGTCTAGTG -ACGGAATCCGAAACGAGTCATCTG -ACGGAATCCGAAACGAGTGAGTTG -ACGGAATCCGAAACGAGTAGACTG -ACGGAATCCGAAACGAGTTCGGTA -ACGGAATCCGAAACGAGTTGCCTA -ACGGAATCCGAAACGAGTCCACTA -ACGGAATCCGAAACGAGTGGAGTA -ACGGAATCCGAAACGAGTTCGTCT -ACGGAATCCGAAACGAGTTGCACT -ACGGAATCCGAAACGAGTCTGACT -ACGGAATCCGAAACGAGTCAACCT -ACGGAATCCGAAACGAGTGCTACT -ACGGAATCCGAAACGAGTGGATCT -ACGGAATCCGAAACGAGTAAGGCT -ACGGAATCCGAAACGAGTTCAACC -ACGGAATCCGAAACGAGTTGTTCC -ACGGAATCCGAAACGAGTATTCCC -ACGGAATCCGAAACGAGTTTCTCG -ACGGAATCCGAAACGAGTTAGACG -ACGGAATCCGAAACGAGTGTAACG -ACGGAATCCGAAACGAGTACTTCG -ACGGAATCCGAAACGAGTTACGCA -ACGGAATCCGAAACGAGTCTTGCA -ACGGAATCCGAAACGAGTCGAACA -ACGGAATCCGAAACGAGTCAGTCA -ACGGAATCCGAAACGAGTGATCCA -ACGGAATCCGAAACGAGTACGACA -ACGGAATCCGAAACGAGTAGCTCA -ACGGAATCCGAAACGAGTTCACGT -ACGGAATCCGAAACGAGTCGTAGT -ACGGAATCCGAAACGAGTGTCAGT -ACGGAATCCGAAACGAGTGAAGGT -ACGGAATCCGAAACGAGTAACCGT -ACGGAATCCGAAACGAGTTTGTGC -ACGGAATCCGAAACGAGTCTAAGC -ACGGAATCCGAAACGAGTACTAGC -ACGGAATCCGAAACGAGTAGATGC -ACGGAATCCGAAACGAGTTGAAGG -ACGGAATCCGAAACGAGTCAATGG -ACGGAATCCGAAACGAGTATGAGG -ACGGAATCCGAAACGAGTAATGGG -ACGGAATCCGAAACGAGTTCCTGA -ACGGAATCCGAAACGAGTTAGCGA -ACGGAATCCGAAACGAGTCACAGA -ACGGAATCCGAAACGAGTGCAAGA -ACGGAATCCGAAACGAGTGGTTGA -ACGGAATCCGAAACGAGTTCCGAT -ACGGAATCCGAAACGAGTTGGCAT -ACGGAATCCGAAACGAGTCGAGAT -ACGGAATCCGAAACGAGTTACCAC -ACGGAATCCGAAACGAGTCAGAAC -ACGGAATCCGAAACGAGTGTCTAC -ACGGAATCCGAAACGAGTACGTAC -ACGGAATCCGAAACGAGTAGTGAC -ACGGAATCCGAAACGAGTCTGTAG -ACGGAATCCGAAACGAGTCCTAAG -ACGGAATCCGAAACGAGTGTTCAG -ACGGAATCCGAAACGAGTGCATAG -ACGGAATCCGAAACGAGTGACAAG -ACGGAATCCGAAACGAGTAAGCAG -ACGGAATCCGAAACGAGTCGTCAA -ACGGAATCCGAAACGAGTGCTGAA -ACGGAATCCGAAACGAGTAGTACG -ACGGAATCCGAAACGAGTATCCGA -ACGGAATCCGAAACGAGTATGGGA -ACGGAATCCGAAACGAGTGTGCAA -ACGGAATCCGAAACGAGTGAGGAA -ACGGAATCCGAAACGAGTCAGGTA -ACGGAATCCGAAACGAGTGACTCT -ACGGAATCCGAAACGAGTAGTCCT -ACGGAATCCGAAACGAGTTAAGCC -ACGGAATCCGAAACGAGTATAGCC -ACGGAATCCGAAACGAGTTAACCG -ACGGAATCCGAAACGAGTATGCCA -ACGGAATCCGAACGAATCGGAAAC -ACGGAATCCGAACGAATCAACACC -ACGGAATCCGAACGAATCATCGAG -ACGGAATCCGAACGAATCCTCCTT -ACGGAATCCGAACGAATCCCTGTT -ACGGAATCCGAACGAATCCGGTTT -ACGGAATCCGAACGAATCGTGGTT -ACGGAATCCGAACGAATCGCCTTT -ACGGAATCCGAACGAATCGGTCTT -ACGGAATCCGAACGAATCACGCTT -ACGGAATCCGAACGAATCAGCGTT -ACGGAATCCGAACGAATCTTCGTC -ACGGAATCCGAACGAATCTCTCTC -ACGGAATCCGAACGAATCTGGATC -ACGGAATCCGAACGAATCCACTTC -ACGGAATCCGAACGAATCGTACTC -ACGGAATCCGAACGAATCGATGTC -ACGGAATCCGAACGAATCACAGTC -ACGGAATCCGAACGAATCTTGCTG -ACGGAATCCGAACGAATCTCCATG -ACGGAATCCGAACGAATCTGTGTG -ACGGAATCCGAACGAATCCTAGTG -ACGGAATCCGAACGAATCCATCTG -ACGGAATCCGAACGAATCGAGTTG -ACGGAATCCGAACGAATCAGACTG -ACGGAATCCGAACGAATCTCGGTA -ACGGAATCCGAACGAATCTGCCTA -ACGGAATCCGAACGAATCCCACTA -ACGGAATCCGAACGAATCGGAGTA -ACGGAATCCGAACGAATCTCGTCT -ACGGAATCCGAACGAATCTGCACT -ACGGAATCCGAACGAATCCTGACT -ACGGAATCCGAACGAATCCAACCT -ACGGAATCCGAACGAATCGCTACT -ACGGAATCCGAACGAATCGGATCT -ACGGAATCCGAACGAATCAAGGCT -ACGGAATCCGAACGAATCTCAACC -ACGGAATCCGAACGAATCTGTTCC -ACGGAATCCGAACGAATCATTCCC -ACGGAATCCGAACGAATCTTCTCG -ACGGAATCCGAACGAATCTAGACG -ACGGAATCCGAACGAATCGTAACG -ACGGAATCCGAACGAATCACTTCG -ACGGAATCCGAACGAATCTACGCA -ACGGAATCCGAACGAATCCTTGCA -ACGGAATCCGAACGAATCCGAACA -ACGGAATCCGAACGAATCCAGTCA -ACGGAATCCGAACGAATCGATCCA -ACGGAATCCGAACGAATCACGACA -ACGGAATCCGAACGAATCAGCTCA -ACGGAATCCGAACGAATCTCACGT -ACGGAATCCGAACGAATCCGTAGT -ACGGAATCCGAACGAATCGTCAGT -ACGGAATCCGAACGAATCGAAGGT -ACGGAATCCGAACGAATCAACCGT -ACGGAATCCGAACGAATCTTGTGC -ACGGAATCCGAACGAATCCTAAGC -ACGGAATCCGAACGAATCACTAGC -ACGGAATCCGAACGAATCAGATGC -ACGGAATCCGAACGAATCTGAAGG -ACGGAATCCGAACGAATCCAATGG -ACGGAATCCGAACGAATCATGAGG -ACGGAATCCGAACGAATCAATGGG -ACGGAATCCGAACGAATCTCCTGA -ACGGAATCCGAACGAATCTAGCGA -ACGGAATCCGAACGAATCCACAGA -ACGGAATCCGAACGAATCGCAAGA -ACGGAATCCGAACGAATCGGTTGA -ACGGAATCCGAACGAATCTCCGAT -ACGGAATCCGAACGAATCTGGCAT -ACGGAATCCGAACGAATCCGAGAT -ACGGAATCCGAACGAATCTACCAC -ACGGAATCCGAACGAATCCAGAAC -ACGGAATCCGAACGAATCGTCTAC -ACGGAATCCGAACGAATCACGTAC -ACGGAATCCGAACGAATCAGTGAC -ACGGAATCCGAACGAATCCTGTAG -ACGGAATCCGAACGAATCCCTAAG -ACGGAATCCGAACGAATCGTTCAG -ACGGAATCCGAACGAATCGCATAG -ACGGAATCCGAACGAATCGACAAG -ACGGAATCCGAACGAATCAAGCAG -ACGGAATCCGAACGAATCCGTCAA -ACGGAATCCGAACGAATCGCTGAA -ACGGAATCCGAACGAATCAGTACG -ACGGAATCCGAACGAATCATCCGA -ACGGAATCCGAACGAATCATGGGA -ACGGAATCCGAACGAATCGTGCAA -ACGGAATCCGAACGAATCGAGGAA -ACGGAATCCGAACGAATCCAGGTA -ACGGAATCCGAACGAATCGACTCT -ACGGAATCCGAACGAATCAGTCCT -ACGGAATCCGAACGAATCTAAGCC -ACGGAATCCGAACGAATCATAGCC -ACGGAATCCGAACGAATCTAACCG -ACGGAATCCGAACGAATCATGCCA -ACGGAATCCGAAGGAATGGGAAAC -ACGGAATCCGAAGGAATGAACACC -ACGGAATCCGAAGGAATGATCGAG -ACGGAATCCGAAGGAATGCTCCTT -ACGGAATCCGAAGGAATGCCTGTT -ACGGAATCCGAAGGAATGCGGTTT -ACGGAATCCGAAGGAATGGTGGTT -ACGGAATCCGAAGGAATGGCCTTT -ACGGAATCCGAAGGAATGGGTCTT -ACGGAATCCGAAGGAATGACGCTT -ACGGAATCCGAAGGAATGAGCGTT -ACGGAATCCGAAGGAATGTTCGTC -ACGGAATCCGAAGGAATGTCTCTC -ACGGAATCCGAAGGAATGTGGATC -ACGGAATCCGAAGGAATGCACTTC -ACGGAATCCGAAGGAATGGTACTC -ACGGAATCCGAAGGAATGGATGTC -ACGGAATCCGAAGGAATGACAGTC -ACGGAATCCGAAGGAATGTTGCTG -ACGGAATCCGAAGGAATGTCCATG -ACGGAATCCGAAGGAATGTGTGTG -ACGGAATCCGAAGGAATGCTAGTG -ACGGAATCCGAAGGAATGCATCTG -ACGGAATCCGAAGGAATGGAGTTG -ACGGAATCCGAAGGAATGAGACTG -ACGGAATCCGAAGGAATGTCGGTA -ACGGAATCCGAAGGAATGTGCCTA -ACGGAATCCGAAGGAATGCCACTA -ACGGAATCCGAAGGAATGGGAGTA -ACGGAATCCGAAGGAATGTCGTCT -ACGGAATCCGAAGGAATGTGCACT -ACGGAATCCGAAGGAATGCTGACT -ACGGAATCCGAAGGAATGCAACCT -ACGGAATCCGAAGGAATGGCTACT -ACGGAATCCGAAGGAATGGGATCT -ACGGAATCCGAAGGAATGAAGGCT -ACGGAATCCGAAGGAATGTCAACC -ACGGAATCCGAAGGAATGTGTTCC -ACGGAATCCGAAGGAATGATTCCC -ACGGAATCCGAAGGAATGTTCTCG -ACGGAATCCGAAGGAATGTAGACG -ACGGAATCCGAAGGAATGGTAACG -ACGGAATCCGAAGGAATGACTTCG -ACGGAATCCGAAGGAATGTACGCA -ACGGAATCCGAAGGAATGCTTGCA -ACGGAATCCGAAGGAATGCGAACA -ACGGAATCCGAAGGAATGCAGTCA -ACGGAATCCGAAGGAATGGATCCA -ACGGAATCCGAAGGAATGACGACA -ACGGAATCCGAAGGAATGAGCTCA -ACGGAATCCGAAGGAATGTCACGT -ACGGAATCCGAAGGAATGCGTAGT -ACGGAATCCGAAGGAATGGTCAGT -ACGGAATCCGAAGGAATGGAAGGT -ACGGAATCCGAAGGAATGAACCGT -ACGGAATCCGAAGGAATGTTGTGC -ACGGAATCCGAAGGAATGCTAAGC -ACGGAATCCGAAGGAATGACTAGC -ACGGAATCCGAAGGAATGAGATGC -ACGGAATCCGAAGGAATGTGAAGG -ACGGAATCCGAAGGAATGCAATGG -ACGGAATCCGAAGGAATGATGAGG -ACGGAATCCGAAGGAATGAATGGG -ACGGAATCCGAAGGAATGTCCTGA -ACGGAATCCGAAGGAATGTAGCGA -ACGGAATCCGAAGGAATGCACAGA -ACGGAATCCGAAGGAATGGCAAGA -ACGGAATCCGAAGGAATGGGTTGA -ACGGAATCCGAAGGAATGTCCGAT -ACGGAATCCGAAGGAATGTGGCAT -ACGGAATCCGAAGGAATGCGAGAT -ACGGAATCCGAAGGAATGTACCAC -ACGGAATCCGAAGGAATGCAGAAC -ACGGAATCCGAAGGAATGGTCTAC -ACGGAATCCGAAGGAATGACGTAC -ACGGAATCCGAAGGAATGAGTGAC -ACGGAATCCGAAGGAATGCTGTAG -ACGGAATCCGAAGGAATGCCTAAG -ACGGAATCCGAAGGAATGGTTCAG -ACGGAATCCGAAGGAATGGCATAG -ACGGAATCCGAAGGAATGGACAAG -ACGGAATCCGAAGGAATGAAGCAG -ACGGAATCCGAAGGAATGCGTCAA -ACGGAATCCGAAGGAATGGCTGAA -ACGGAATCCGAAGGAATGAGTACG -ACGGAATCCGAAGGAATGATCCGA -ACGGAATCCGAAGGAATGATGGGA -ACGGAATCCGAAGGAATGGTGCAA -ACGGAATCCGAAGGAATGGAGGAA -ACGGAATCCGAAGGAATGCAGGTA -ACGGAATCCGAAGGAATGGACTCT -ACGGAATCCGAAGGAATGAGTCCT -ACGGAATCCGAAGGAATGTAAGCC -ACGGAATCCGAAGGAATGATAGCC -ACGGAATCCGAAGGAATGTAACCG -ACGGAATCCGAAGGAATGATGCCA -ACGGAATCCGAACAAGTGGGAAAC -ACGGAATCCGAACAAGTGAACACC -ACGGAATCCGAACAAGTGATCGAG -ACGGAATCCGAACAAGTGCTCCTT -ACGGAATCCGAACAAGTGCCTGTT -ACGGAATCCGAACAAGTGCGGTTT -ACGGAATCCGAACAAGTGGTGGTT -ACGGAATCCGAACAAGTGGCCTTT -ACGGAATCCGAACAAGTGGGTCTT -ACGGAATCCGAACAAGTGACGCTT -ACGGAATCCGAACAAGTGAGCGTT -ACGGAATCCGAACAAGTGTTCGTC -ACGGAATCCGAACAAGTGTCTCTC -ACGGAATCCGAACAAGTGTGGATC -ACGGAATCCGAACAAGTGCACTTC -ACGGAATCCGAACAAGTGGTACTC -ACGGAATCCGAACAAGTGGATGTC -ACGGAATCCGAACAAGTGACAGTC -ACGGAATCCGAACAAGTGTTGCTG -ACGGAATCCGAACAAGTGTCCATG -ACGGAATCCGAACAAGTGTGTGTG -ACGGAATCCGAACAAGTGCTAGTG -ACGGAATCCGAACAAGTGCATCTG -ACGGAATCCGAACAAGTGGAGTTG -ACGGAATCCGAACAAGTGAGACTG -ACGGAATCCGAACAAGTGTCGGTA -ACGGAATCCGAACAAGTGTGCCTA -ACGGAATCCGAACAAGTGCCACTA -ACGGAATCCGAACAAGTGGGAGTA -ACGGAATCCGAACAAGTGTCGTCT -ACGGAATCCGAACAAGTGTGCACT -ACGGAATCCGAACAAGTGCTGACT -ACGGAATCCGAACAAGTGCAACCT -ACGGAATCCGAACAAGTGGCTACT -ACGGAATCCGAACAAGTGGGATCT -ACGGAATCCGAACAAGTGAAGGCT -ACGGAATCCGAACAAGTGTCAACC -ACGGAATCCGAACAAGTGTGTTCC -ACGGAATCCGAACAAGTGATTCCC -ACGGAATCCGAACAAGTGTTCTCG -ACGGAATCCGAACAAGTGTAGACG -ACGGAATCCGAACAAGTGGTAACG -ACGGAATCCGAACAAGTGACTTCG -ACGGAATCCGAACAAGTGTACGCA -ACGGAATCCGAACAAGTGCTTGCA -ACGGAATCCGAACAAGTGCGAACA -ACGGAATCCGAACAAGTGCAGTCA -ACGGAATCCGAACAAGTGGATCCA -ACGGAATCCGAACAAGTGACGACA -ACGGAATCCGAACAAGTGAGCTCA -ACGGAATCCGAACAAGTGTCACGT -ACGGAATCCGAACAAGTGCGTAGT -ACGGAATCCGAACAAGTGGTCAGT -ACGGAATCCGAACAAGTGGAAGGT -ACGGAATCCGAACAAGTGAACCGT -ACGGAATCCGAACAAGTGTTGTGC -ACGGAATCCGAACAAGTGCTAAGC -ACGGAATCCGAACAAGTGACTAGC -ACGGAATCCGAACAAGTGAGATGC -ACGGAATCCGAACAAGTGTGAAGG -ACGGAATCCGAACAAGTGCAATGG -ACGGAATCCGAACAAGTGATGAGG -ACGGAATCCGAACAAGTGAATGGG -ACGGAATCCGAACAAGTGTCCTGA -ACGGAATCCGAACAAGTGTAGCGA -ACGGAATCCGAACAAGTGCACAGA -ACGGAATCCGAACAAGTGGCAAGA -ACGGAATCCGAACAAGTGGGTTGA -ACGGAATCCGAACAAGTGTCCGAT -ACGGAATCCGAACAAGTGTGGCAT -ACGGAATCCGAACAAGTGCGAGAT -ACGGAATCCGAACAAGTGTACCAC -ACGGAATCCGAACAAGTGCAGAAC -ACGGAATCCGAACAAGTGGTCTAC -ACGGAATCCGAACAAGTGACGTAC -ACGGAATCCGAACAAGTGAGTGAC -ACGGAATCCGAACAAGTGCTGTAG -ACGGAATCCGAACAAGTGCCTAAG -ACGGAATCCGAACAAGTGGTTCAG -ACGGAATCCGAACAAGTGGCATAG -ACGGAATCCGAACAAGTGGACAAG -ACGGAATCCGAACAAGTGAAGCAG -ACGGAATCCGAACAAGTGCGTCAA -ACGGAATCCGAACAAGTGGCTGAA -ACGGAATCCGAACAAGTGAGTACG -ACGGAATCCGAACAAGTGATCCGA -ACGGAATCCGAACAAGTGATGGGA -ACGGAATCCGAACAAGTGGTGCAA -ACGGAATCCGAACAAGTGGAGGAA -ACGGAATCCGAACAAGTGCAGGTA -ACGGAATCCGAACAAGTGGACTCT -ACGGAATCCGAACAAGTGAGTCCT -ACGGAATCCGAACAAGTGTAAGCC -ACGGAATCCGAACAAGTGATAGCC -ACGGAATCCGAACAAGTGTAACCG -ACGGAATCCGAACAAGTGATGCCA -ACGGAATCCGAAGAAGAGGGAAAC -ACGGAATCCGAAGAAGAGAACACC -ACGGAATCCGAAGAAGAGATCGAG -ACGGAATCCGAAGAAGAGCTCCTT -ACGGAATCCGAAGAAGAGCCTGTT -ACGGAATCCGAAGAAGAGCGGTTT -ACGGAATCCGAAGAAGAGGTGGTT -ACGGAATCCGAAGAAGAGGCCTTT -ACGGAATCCGAAGAAGAGGGTCTT -ACGGAATCCGAAGAAGAGACGCTT -ACGGAATCCGAAGAAGAGAGCGTT -ACGGAATCCGAAGAAGAGTTCGTC -ACGGAATCCGAAGAAGAGTCTCTC -ACGGAATCCGAAGAAGAGTGGATC -ACGGAATCCGAAGAAGAGCACTTC -ACGGAATCCGAAGAAGAGGTACTC -ACGGAATCCGAAGAAGAGGATGTC -ACGGAATCCGAAGAAGAGACAGTC -ACGGAATCCGAAGAAGAGTTGCTG -ACGGAATCCGAAGAAGAGTCCATG -ACGGAATCCGAAGAAGAGTGTGTG -ACGGAATCCGAAGAAGAGCTAGTG -ACGGAATCCGAAGAAGAGCATCTG -ACGGAATCCGAAGAAGAGGAGTTG -ACGGAATCCGAAGAAGAGAGACTG -ACGGAATCCGAAGAAGAGTCGGTA -ACGGAATCCGAAGAAGAGTGCCTA -ACGGAATCCGAAGAAGAGCCACTA -ACGGAATCCGAAGAAGAGGGAGTA -ACGGAATCCGAAGAAGAGTCGTCT -ACGGAATCCGAAGAAGAGTGCACT -ACGGAATCCGAAGAAGAGCTGACT -ACGGAATCCGAAGAAGAGCAACCT -ACGGAATCCGAAGAAGAGGCTACT -ACGGAATCCGAAGAAGAGGGATCT -ACGGAATCCGAAGAAGAGAAGGCT -ACGGAATCCGAAGAAGAGTCAACC -ACGGAATCCGAAGAAGAGTGTTCC -ACGGAATCCGAAGAAGAGATTCCC -ACGGAATCCGAAGAAGAGTTCTCG -ACGGAATCCGAAGAAGAGTAGACG -ACGGAATCCGAAGAAGAGGTAACG -ACGGAATCCGAAGAAGAGACTTCG -ACGGAATCCGAAGAAGAGTACGCA -ACGGAATCCGAAGAAGAGCTTGCA -ACGGAATCCGAAGAAGAGCGAACA -ACGGAATCCGAAGAAGAGCAGTCA -ACGGAATCCGAAGAAGAGGATCCA -ACGGAATCCGAAGAAGAGACGACA -ACGGAATCCGAAGAAGAGAGCTCA -ACGGAATCCGAAGAAGAGTCACGT -ACGGAATCCGAAGAAGAGCGTAGT -ACGGAATCCGAAGAAGAGGTCAGT -ACGGAATCCGAAGAAGAGGAAGGT -ACGGAATCCGAAGAAGAGAACCGT -ACGGAATCCGAAGAAGAGTTGTGC -ACGGAATCCGAAGAAGAGCTAAGC -ACGGAATCCGAAGAAGAGACTAGC -ACGGAATCCGAAGAAGAGAGATGC -ACGGAATCCGAAGAAGAGTGAAGG -ACGGAATCCGAAGAAGAGCAATGG -ACGGAATCCGAAGAAGAGATGAGG -ACGGAATCCGAAGAAGAGAATGGG -ACGGAATCCGAAGAAGAGTCCTGA -ACGGAATCCGAAGAAGAGTAGCGA -ACGGAATCCGAAGAAGAGCACAGA -ACGGAATCCGAAGAAGAGGCAAGA -ACGGAATCCGAAGAAGAGGGTTGA -ACGGAATCCGAAGAAGAGTCCGAT -ACGGAATCCGAAGAAGAGTGGCAT -ACGGAATCCGAAGAAGAGCGAGAT -ACGGAATCCGAAGAAGAGTACCAC -ACGGAATCCGAAGAAGAGCAGAAC -ACGGAATCCGAAGAAGAGGTCTAC -ACGGAATCCGAAGAAGAGACGTAC -ACGGAATCCGAAGAAGAGAGTGAC -ACGGAATCCGAAGAAGAGCTGTAG -ACGGAATCCGAAGAAGAGCCTAAG -ACGGAATCCGAAGAAGAGGTTCAG -ACGGAATCCGAAGAAGAGGCATAG -ACGGAATCCGAAGAAGAGGACAAG -ACGGAATCCGAAGAAGAGAAGCAG -ACGGAATCCGAAGAAGAGCGTCAA -ACGGAATCCGAAGAAGAGGCTGAA -ACGGAATCCGAAGAAGAGAGTACG -ACGGAATCCGAAGAAGAGATCCGA -ACGGAATCCGAAGAAGAGATGGGA -ACGGAATCCGAAGAAGAGGTGCAA -ACGGAATCCGAAGAAGAGGAGGAA -ACGGAATCCGAAGAAGAGCAGGTA -ACGGAATCCGAAGAAGAGGACTCT -ACGGAATCCGAAGAAGAGAGTCCT -ACGGAATCCGAAGAAGAGTAAGCC -ACGGAATCCGAAGAAGAGATAGCC -ACGGAATCCGAAGAAGAGTAACCG -ACGGAATCCGAAGAAGAGATGCCA -ACGGAATCCGAAGTACAGGGAAAC -ACGGAATCCGAAGTACAGAACACC -ACGGAATCCGAAGTACAGATCGAG -ACGGAATCCGAAGTACAGCTCCTT -ACGGAATCCGAAGTACAGCCTGTT -ACGGAATCCGAAGTACAGCGGTTT -ACGGAATCCGAAGTACAGGTGGTT -ACGGAATCCGAAGTACAGGCCTTT -ACGGAATCCGAAGTACAGGGTCTT -ACGGAATCCGAAGTACAGACGCTT -ACGGAATCCGAAGTACAGAGCGTT -ACGGAATCCGAAGTACAGTTCGTC -ACGGAATCCGAAGTACAGTCTCTC -ACGGAATCCGAAGTACAGTGGATC -ACGGAATCCGAAGTACAGCACTTC -ACGGAATCCGAAGTACAGGTACTC -ACGGAATCCGAAGTACAGGATGTC -ACGGAATCCGAAGTACAGACAGTC -ACGGAATCCGAAGTACAGTTGCTG -ACGGAATCCGAAGTACAGTCCATG -ACGGAATCCGAAGTACAGTGTGTG -ACGGAATCCGAAGTACAGCTAGTG -ACGGAATCCGAAGTACAGCATCTG -ACGGAATCCGAAGTACAGGAGTTG -ACGGAATCCGAAGTACAGAGACTG -ACGGAATCCGAAGTACAGTCGGTA -ACGGAATCCGAAGTACAGTGCCTA -ACGGAATCCGAAGTACAGCCACTA -ACGGAATCCGAAGTACAGGGAGTA -ACGGAATCCGAAGTACAGTCGTCT -ACGGAATCCGAAGTACAGTGCACT -ACGGAATCCGAAGTACAGCTGACT -ACGGAATCCGAAGTACAGCAACCT -ACGGAATCCGAAGTACAGGCTACT -ACGGAATCCGAAGTACAGGGATCT -ACGGAATCCGAAGTACAGAAGGCT -ACGGAATCCGAAGTACAGTCAACC -ACGGAATCCGAAGTACAGTGTTCC -ACGGAATCCGAAGTACAGATTCCC -ACGGAATCCGAAGTACAGTTCTCG -ACGGAATCCGAAGTACAGTAGACG -ACGGAATCCGAAGTACAGGTAACG -ACGGAATCCGAAGTACAGACTTCG -ACGGAATCCGAAGTACAGTACGCA -ACGGAATCCGAAGTACAGCTTGCA -ACGGAATCCGAAGTACAGCGAACA -ACGGAATCCGAAGTACAGCAGTCA -ACGGAATCCGAAGTACAGGATCCA -ACGGAATCCGAAGTACAGACGACA -ACGGAATCCGAAGTACAGAGCTCA -ACGGAATCCGAAGTACAGTCACGT -ACGGAATCCGAAGTACAGCGTAGT -ACGGAATCCGAAGTACAGGTCAGT -ACGGAATCCGAAGTACAGGAAGGT -ACGGAATCCGAAGTACAGAACCGT -ACGGAATCCGAAGTACAGTTGTGC -ACGGAATCCGAAGTACAGCTAAGC -ACGGAATCCGAAGTACAGACTAGC -ACGGAATCCGAAGTACAGAGATGC -ACGGAATCCGAAGTACAGTGAAGG -ACGGAATCCGAAGTACAGCAATGG -ACGGAATCCGAAGTACAGATGAGG -ACGGAATCCGAAGTACAGAATGGG -ACGGAATCCGAAGTACAGTCCTGA -ACGGAATCCGAAGTACAGTAGCGA -ACGGAATCCGAAGTACAGCACAGA -ACGGAATCCGAAGTACAGGCAAGA -ACGGAATCCGAAGTACAGGGTTGA -ACGGAATCCGAAGTACAGTCCGAT -ACGGAATCCGAAGTACAGTGGCAT -ACGGAATCCGAAGTACAGCGAGAT -ACGGAATCCGAAGTACAGTACCAC -ACGGAATCCGAAGTACAGCAGAAC -ACGGAATCCGAAGTACAGGTCTAC -ACGGAATCCGAAGTACAGACGTAC -ACGGAATCCGAAGTACAGAGTGAC -ACGGAATCCGAAGTACAGCTGTAG -ACGGAATCCGAAGTACAGCCTAAG -ACGGAATCCGAAGTACAGGTTCAG -ACGGAATCCGAAGTACAGGCATAG -ACGGAATCCGAAGTACAGGACAAG -ACGGAATCCGAAGTACAGAAGCAG -ACGGAATCCGAAGTACAGCGTCAA -ACGGAATCCGAAGTACAGGCTGAA -ACGGAATCCGAAGTACAGAGTACG -ACGGAATCCGAAGTACAGATCCGA -ACGGAATCCGAAGTACAGATGGGA -ACGGAATCCGAAGTACAGGTGCAA -ACGGAATCCGAAGTACAGGAGGAA -ACGGAATCCGAAGTACAGCAGGTA -ACGGAATCCGAAGTACAGGACTCT -ACGGAATCCGAAGTACAGAGTCCT -ACGGAATCCGAAGTACAGTAAGCC -ACGGAATCCGAAGTACAGATAGCC -ACGGAATCCGAAGTACAGTAACCG -ACGGAATCCGAAGTACAGATGCCA -ACGGAATCCGAATCTGACGGAAAC -ACGGAATCCGAATCTGACAACACC -ACGGAATCCGAATCTGACATCGAG -ACGGAATCCGAATCTGACCTCCTT -ACGGAATCCGAATCTGACCCTGTT -ACGGAATCCGAATCTGACCGGTTT -ACGGAATCCGAATCTGACGTGGTT -ACGGAATCCGAATCTGACGCCTTT -ACGGAATCCGAATCTGACGGTCTT -ACGGAATCCGAATCTGACACGCTT -ACGGAATCCGAATCTGACAGCGTT -ACGGAATCCGAATCTGACTTCGTC -ACGGAATCCGAATCTGACTCTCTC -ACGGAATCCGAATCTGACTGGATC -ACGGAATCCGAATCTGACCACTTC -ACGGAATCCGAATCTGACGTACTC -ACGGAATCCGAATCTGACGATGTC -ACGGAATCCGAATCTGACACAGTC -ACGGAATCCGAATCTGACTTGCTG -ACGGAATCCGAATCTGACTCCATG -ACGGAATCCGAATCTGACTGTGTG -ACGGAATCCGAATCTGACCTAGTG -ACGGAATCCGAATCTGACCATCTG -ACGGAATCCGAATCTGACGAGTTG -ACGGAATCCGAATCTGACAGACTG -ACGGAATCCGAATCTGACTCGGTA -ACGGAATCCGAATCTGACTGCCTA -ACGGAATCCGAATCTGACCCACTA -ACGGAATCCGAATCTGACGGAGTA -ACGGAATCCGAATCTGACTCGTCT -ACGGAATCCGAATCTGACTGCACT -ACGGAATCCGAATCTGACCTGACT -ACGGAATCCGAATCTGACCAACCT -ACGGAATCCGAATCTGACGCTACT -ACGGAATCCGAATCTGACGGATCT -ACGGAATCCGAATCTGACAAGGCT -ACGGAATCCGAATCTGACTCAACC -ACGGAATCCGAATCTGACTGTTCC -ACGGAATCCGAATCTGACATTCCC -ACGGAATCCGAATCTGACTTCTCG -ACGGAATCCGAATCTGACTAGACG -ACGGAATCCGAATCTGACGTAACG -ACGGAATCCGAATCTGACACTTCG -ACGGAATCCGAATCTGACTACGCA -ACGGAATCCGAATCTGACCTTGCA -ACGGAATCCGAATCTGACCGAACA -ACGGAATCCGAATCTGACCAGTCA -ACGGAATCCGAATCTGACGATCCA -ACGGAATCCGAATCTGACACGACA -ACGGAATCCGAATCTGACAGCTCA -ACGGAATCCGAATCTGACTCACGT -ACGGAATCCGAATCTGACCGTAGT -ACGGAATCCGAATCTGACGTCAGT -ACGGAATCCGAATCTGACGAAGGT -ACGGAATCCGAATCTGACAACCGT -ACGGAATCCGAATCTGACTTGTGC -ACGGAATCCGAATCTGACCTAAGC -ACGGAATCCGAATCTGACACTAGC -ACGGAATCCGAATCTGACAGATGC -ACGGAATCCGAATCTGACTGAAGG -ACGGAATCCGAATCTGACCAATGG -ACGGAATCCGAATCTGACATGAGG -ACGGAATCCGAATCTGACAATGGG -ACGGAATCCGAATCTGACTCCTGA -ACGGAATCCGAATCTGACTAGCGA -ACGGAATCCGAATCTGACCACAGA -ACGGAATCCGAATCTGACGCAAGA -ACGGAATCCGAATCTGACGGTTGA -ACGGAATCCGAATCTGACTCCGAT -ACGGAATCCGAATCTGACTGGCAT -ACGGAATCCGAATCTGACCGAGAT -ACGGAATCCGAATCTGACTACCAC -ACGGAATCCGAATCTGACCAGAAC -ACGGAATCCGAATCTGACGTCTAC -ACGGAATCCGAATCTGACACGTAC -ACGGAATCCGAATCTGACAGTGAC -ACGGAATCCGAATCTGACCTGTAG -ACGGAATCCGAATCTGACCCTAAG -ACGGAATCCGAATCTGACGTTCAG -ACGGAATCCGAATCTGACGCATAG -ACGGAATCCGAATCTGACGACAAG -ACGGAATCCGAATCTGACAAGCAG -ACGGAATCCGAATCTGACCGTCAA -ACGGAATCCGAATCTGACGCTGAA -ACGGAATCCGAATCTGACAGTACG -ACGGAATCCGAATCTGACATCCGA -ACGGAATCCGAATCTGACATGGGA -ACGGAATCCGAATCTGACGTGCAA -ACGGAATCCGAATCTGACGAGGAA -ACGGAATCCGAATCTGACCAGGTA -ACGGAATCCGAATCTGACGACTCT -ACGGAATCCGAATCTGACAGTCCT -ACGGAATCCGAATCTGACTAAGCC -ACGGAATCCGAATCTGACATAGCC -ACGGAATCCGAATCTGACTAACCG -ACGGAATCCGAATCTGACATGCCA -ACGGAATCCGAACCTAGTGGAAAC -ACGGAATCCGAACCTAGTAACACC -ACGGAATCCGAACCTAGTATCGAG -ACGGAATCCGAACCTAGTCTCCTT -ACGGAATCCGAACCTAGTCCTGTT -ACGGAATCCGAACCTAGTCGGTTT -ACGGAATCCGAACCTAGTGTGGTT -ACGGAATCCGAACCTAGTGCCTTT -ACGGAATCCGAACCTAGTGGTCTT -ACGGAATCCGAACCTAGTACGCTT -ACGGAATCCGAACCTAGTAGCGTT -ACGGAATCCGAACCTAGTTTCGTC -ACGGAATCCGAACCTAGTTCTCTC -ACGGAATCCGAACCTAGTTGGATC -ACGGAATCCGAACCTAGTCACTTC -ACGGAATCCGAACCTAGTGTACTC -ACGGAATCCGAACCTAGTGATGTC -ACGGAATCCGAACCTAGTACAGTC -ACGGAATCCGAACCTAGTTTGCTG -ACGGAATCCGAACCTAGTTCCATG -ACGGAATCCGAACCTAGTTGTGTG -ACGGAATCCGAACCTAGTCTAGTG -ACGGAATCCGAACCTAGTCATCTG -ACGGAATCCGAACCTAGTGAGTTG -ACGGAATCCGAACCTAGTAGACTG -ACGGAATCCGAACCTAGTTCGGTA -ACGGAATCCGAACCTAGTTGCCTA -ACGGAATCCGAACCTAGTCCACTA -ACGGAATCCGAACCTAGTGGAGTA -ACGGAATCCGAACCTAGTTCGTCT -ACGGAATCCGAACCTAGTTGCACT -ACGGAATCCGAACCTAGTCTGACT -ACGGAATCCGAACCTAGTCAACCT -ACGGAATCCGAACCTAGTGCTACT -ACGGAATCCGAACCTAGTGGATCT -ACGGAATCCGAACCTAGTAAGGCT -ACGGAATCCGAACCTAGTTCAACC -ACGGAATCCGAACCTAGTTGTTCC -ACGGAATCCGAACCTAGTATTCCC -ACGGAATCCGAACCTAGTTTCTCG -ACGGAATCCGAACCTAGTTAGACG -ACGGAATCCGAACCTAGTGTAACG -ACGGAATCCGAACCTAGTACTTCG -ACGGAATCCGAACCTAGTTACGCA -ACGGAATCCGAACCTAGTCTTGCA -ACGGAATCCGAACCTAGTCGAACA -ACGGAATCCGAACCTAGTCAGTCA -ACGGAATCCGAACCTAGTGATCCA -ACGGAATCCGAACCTAGTACGACA -ACGGAATCCGAACCTAGTAGCTCA -ACGGAATCCGAACCTAGTTCACGT -ACGGAATCCGAACCTAGTCGTAGT -ACGGAATCCGAACCTAGTGTCAGT -ACGGAATCCGAACCTAGTGAAGGT -ACGGAATCCGAACCTAGTAACCGT -ACGGAATCCGAACCTAGTTTGTGC -ACGGAATCCGAACCTAGTCTAAGC -ACGGAATCCGAACCTAGTACTAGC -ACGGAATCCGAACCTAGTAGATGC -ACGGAATCCGAACCTAGTTGAAGG -ACGGAATCCGAACCTAGTCAATGG -ACGGAATCCGAACCTAGTATGAGG -ACGGAATCCGAACCTAGTAATGGG -ACGGAATCCGAACCTAGTTCCTGA -ACGGAATCCGAACCTAGTTAGCGA -ACGGAATCCGAACCTAGTCACAGA -ACGGAATCCGAACCTAGTGCAAGA -ACGGAATCCGAACCTAGTGGTTGA -ACGGAATCCGAACCTAGTTCCGAT -ACGGAATCCGAACCTAGTTGGCAT -ACGGAATCCGAACCTAGTCGAGAT -ACGGAATCCGAACCTAGTTACCAC -ACGGAATCCGAACCTAGTCAGAAC -ACGGAATCCGAACCTAGTGTCTAC -ACGGAATCCGAACCTAGTACGTAC -ACGGAATCCGAACCTAGTAGTGAC -ACGGAATCCGAACCTAGTCTGTAG -ACGGAATCCGAACCTAGTCCTAAG -ACGGAATCCGAACCTAGTGTTCAG -ACGGAATCCGAACCTAGTGCATAG -ACGGAATCCGAACCTAGTGACAAG -ACGGAATCCGAACCTAGTAAGCAG -ACGGAATCCGAACCTAGTCGTCAA -ACGGAATCCGAACCTAGTGCTGAA -ACGGAATCCGAACCTAGTAGTACG -ACGGAATCCGAACCTAGTATCCGA -ACGGAATCCGAACCTAGTATGGGA -ACGGAATCCGAACCTAGTGTGCAA -ACGGAATCCGAACCTAGTGAGGAA -ACGGAATCCGAACCTAGTCAGGTA -ACGGAATCCGAACCTAGTGACTCT -ACGGAATCCGAACCTAGTAGTCCT -ACGGAATCCGAACCTAGTTAAGCC -ACGGAATCCGAACCTAGTATAGCC -ACGGAATCCGAACCTAGTTAACCG -ACGGAATCCGAACCTAGTATGCCA -ACGGAATCCGAAGCCTAAGGAAAC -ACGGAATCCGAAGCCTAAAACACC -ACGGAATCCGAAGCCTAAATCGAG -ACGGAATCCGAAGCCTAACTCCTT -ACGGAATCCGAAGCCTAACCTGTT -ACGGAATCCGAAGCCTAACGGTTT -ACGGAATCCGAAGCCTAAGTGGTT -ACGGAATCCGAAGCCTAAGCCTTT -ACGGAATCCGAAGCCTAAGGTCTT -ACGGAATCCGAAGCCTAAACGCTT -ACGGAATCCGAAGCCTAAAGCGTT -ACGGAATCCGAAGCCTAATTCGTC -ACGGAATCCGAAGCCTAATCTCTC -ACGGAATCCGAAGCCTAATGGATC -ACGGAATCCGAAGCCTAACACTTC -ACGGAATCCGAAGCCTAAGTACTC -ACGGAATCCGAAGCCTAAGATGTC -ACGGAATCCGAAGCCTAAACAGTC -ACGGAATCCGAAGCCTAATTGCTG -ACGGAATCCGAAGCCTAATCCATG -ACGGAATCCGAAGCCTAATGTGTG -ACGGAATCCGAAGCCTAACTAGTG -ACGGAATCCGAAGCCTAACATCTG -ACGGAATCCGAAGCCTAAGAGTTG -ACGGAATCCGAAGCCTAAAGACTG -ACGGAATCCGAAGCCTAATCGGTA -ACGGAATCCGAAGCCTAATGCCTA -ACGGAATCCGAAGCCTAACCACTA -ACGGAATCCGAAGCCTAAGGAGTA -ACGGAATCCGAAGCCTAATCGTCT -ACGGAATCCGAAGCCTAATGCACT -ACGGAATCCGAAGCCTAACTGACT -ACGGAATCCGAAGCCTAACAACCT -ACGGAATCCGAAGCCTAAGCTACT -ACGGAATCCGAAGCCTAAGGATCT -ACGGAATCCGAAGCCTAAAAGGCT -ACGGAATCCGAAGCCTAATCAACC -ACGGAATCCGAAGCCTAATGTTCC -ACGGAATCCGAAGCCTAAATTCCC -ACGGAATCCGAAGCCTAATTCTCG -ACGGAATCCGAAGCCTAATAGACG -ACGGAATCCGAAGCCTAAGTAACG -ACGGAATCCGAAGCCTAAACTTCG -ACGGAATCCGAAGCCTAATACGCA -ACGGAATCCGAAGCCTAACTTGCA -ACGGAATCCGAAGCCTAACGAACA -ACGGAATCCGAAGCCTAACAGTCA -ACGGAATCCGAAGCCTAAGATCCA -ACGGAATCCGAAGCCTAAACGACA -ACGGAATCCGAAGCCTAAAGCTCA -ACGGAATCCGAAGCCTAATCACGT -ACGGAATCCGAAGCCTAACGTAGT -ACGGAATCCGAAGCCTAAGTCAGT -ACGGAATCCGAAGCCTAAGAAGGT -ACGGAATCCGAAGCCTAAAACCGT -ACGGAATCCGAAGCCTAATTGTGC -ACGGAATCCGAAGCCTAACTAAGC -ACGGAATCCGAAGCCTAAACTAGC -ACGGAATCCGAAGCCTAAAGATGC -ACGGAATCCGAAGCCTAATGAAGG -ACGGAATCCGAAGCCTAACAATGG -ACGGAATCCGAAGCCTAAATGAGG -ACGGAATCCGAAGCCTAAAATGGG -ACGGAATCCGAAGCCTAATCCTGA -ACGGAATCCGAAGCCTAATAGCGA -ACGGAATCCGAAGCCTAACACAGA -ACGGAATCCGAAGCCTAAGCAAGA -ACGGAATCCGAAGCCTAAGGTTGA -ACGGAATCCGAAGCCTAATCCGAT -ACGGAATCCGAAGCCTAATGGCAT -ACGGAATCCGAAGCCTAACGAGAT -ACGGAATCCGAAGCCTAATACCAC -ACGGAATCCGAAGCCTAACAGAAC -ACGGAATCCGAAGCCTAAGTCTAC -ACGGAATCCGAAGCCTAAACGTAC -ACGGAATCCGAAGCCTAAAGTGAC -ACGGAATCCGAAGCCTAACTGTAG -ACGGAATCCGAAGCCTAACCTAAG -ACGGAATCCGAAGCCTAAGTTCAG -ACGGAATCCGAAGCCTAAGCATAG -ACGGAATCCGAAGCCTAAGACAAG -ACGGAATCCGAAGCCTAAAAGCAG -ACGGAATCCGAAGCCTAACGTCAA -ACGGAATCCGAAGCCTAAGCTGAA -ACGGAATCCGAAGCCTAAAGTACG -ACGGAATCCGAAGCCTAAATCCGA -ACGGAATCCGAAGCCTAAATGGGA -ACGGAATCCGAAGCCTAAGTGCAA -ACGGAATCCGAAGCCTAAGAGGAA -ACGGAATCCGAAGCCTAACAGGTA -ACGGAATCCGAAGCCTAAGACTCT -ACGGAATCCGAAGCCTAAAGTCCT -ACGGAATCCGAAGCCTAATAAGCC -ACGGAATCCGAAGCCTAAATAGCC -ACGGAATCCGAAGCCTAATAACCG -ACGGAATCCGAAGCCTAAATGCCA -ACGGAATCCGAAGCCATAGGAAAC -ACGGAATCCGAAGCCATAAACACC -ACGGAATCCGAAGCCATAATCGAG -ACGGAATCCGAAGCCATACTCCTT -ACGGAATCCGAAGCCATACCTGTT -ACGGAATCCGAAGCCATACGGTTT -ACGGAATCCGAAGCCATAGTGGTT -ACGGAATCCGAAGCCATAGCCTTT -ACGGAATCCGAAGCCATAGGTCTT -ACGGAATCCGAAGCCATAACGCTT -ACGGAATCCGAAGCCATAAGCGTT -ACGGAATCCGAAGCCATATTCGTC -ACGGAATCCGAAGCCATATCTCTC -ACGGAATCCGAAGCCATATGGATC -ACGGAATCCGAAGCCATACACTTC -ACGGAATCCGAAGCCATAGTACTC -ACGGAATCCGAAGCCATAGATGTC -ACGGAATCCGAAGCCATAACAGTC -ACGGAATCCGAAGCCATATTGCTG -ACGGAATCCGAAGCCATATCCATG -ACGGAATCCGAAGCCATATGTGTG -ACGGAATCCGAAGCCATACTAGTG -ACGGAATCCGAAGCCATACATCTG -ACGGAATCCGAAGCCATAGAGTTG -ACGGAATCCGAAGCCATAAGACTG -ACGGAATCCGAAGCCATATCGGTA -ACGGAATCCGAAGCCATATGCCTA -ACGGAATCCGAAGCCATACCACTA -ACGGAATCCGAAGCCATAGGAGTA -ACGGAATCCGAAGCCATATCGTCT -ACGGAATCCGAAGCCATATGCACT -ACGGAATCCGAAGCCATACTGACT -ACGGAATCCGAAGCCATACAACCT -ACGGAATCCGAAGCCATAGCTACT -ACGGAATCCGAAGCCATAGGATCT -ACGGAATCCGAAGCCATAAAGGCT -ACGGAATCCGAAGCCATATCAACC -ACGGAATCCGAAGCCATATGTTCC -ACGGAATCCGAAGCCATAATTCCC -ACGGAATCCGAAGCCATATTCTCG -ACGGAATCCGAAGCCATATAGACG -ACGGAATCCGAAGCCATAGTAACG -ACGGAATCCGAAGCCATAACTTCG -ACGGAATCCGAAGCCATATACGCA -ACGGAATCCGAAGCCATACTTGCA -ACGGAATCCGAAGCCATACGAACA -ACGGAATCCGAAGCCATACAGTCA -ACGGAATCCGAAGCCATAGATCCA -ACGGAATCCGAAGCCATAACGACA -ACGGAATCCGAAGCCATAAGCTCA -ACGGAATCCGAAGCCATATCACGT -ACGGAATCCGAAGCCATACGTAGT -ACGGAATCCGAAGCCATAGTCAGT -ACGGAATCCGAAGCCATAGAAGGT -ACGGAATCCGAAGCCATAAACCGT -ACGGAATCCGAAGCCATATTGTGC -ACGGAATCCGAAGCCATACTAAGC -ACGGAATCCGAAGCCATAACTAGC -ACGGAATCCGAAGCCATAAGATGC -ACGGAATCCGAAGCCATATGAAGG -ACGGAATCCGAAGCCATACAATGG -ACGGAATCCGAAGCCATAATGAGG -ACGGAATCCGAAGCCATAAATGGG -ACGGAATCCGAAGCCATATCCTGA -ACGGAATCCGAAGCCATATAGCGA -ACGGAATCCGAAGCCATACACAGA -ACGGAATCCGAAGCCATAGCAAGA -ACGGAATCCGAAGCCATAGGTTGA -ACGGAATCCGAAGCCATATCCGAT -ACGGAATCCGAAGCCATATGGCAT -ACGGAATCCGAAGCCATACGAGAT -ACGGAATCCGAAGCCATATACCAC -ACGGAATCCGAAGCCATACAGAAC -ACGGAATCCGAAGCCATAGTCTAC -ACGGAATCCGAAGCCATAACGTAC -ACGGAATCCGAAGCCATAAGTGAC -ACGGAATCCGAAGCCATACTGTAG -ACGGAATCCGAAGCCATACCTAAG -ACGGAATCCGAAGCCATAGTTCAG -ACGGAATCCGAAGCCATAGCATAG -ACGGAATCCGAAGCCATAGACAAG -ACGGAATCCGAAGCCATAAAGCAG -ACGGAATCCGAAGCCATACGTCAA -ACGGAATCCGAAGCCATAGCTGAA -ACGGAATCCGAAGCCATAAGTACG -ACGGAATCCGAAGCCATAATCCGA -ACGGAATCCGAAGCCATAATGGGA -ACGGAATCCGAAGCCATAGTGCAA -ACGGAATCCGAAGCCATAGAGGAA -ACGGAATCCGAAGCCATACAGGTA -ACGGAATCCGAAGCCATAGACTCT -ACGGAATCCGAAGCCATAAGTCCT -ACGGAATCCGAAGCCATATAAGCC -ACGGAATCCGAAGCCATAATAGCC -ACGGAATCCGAAGCCATATAACCG -ACGGAATCCGAAGCCATAATGCCA -ACGGAATCCGAACCGTAAGGAAAC -ACGGAATCCGAACCGTAAAACACC -ACGGAATCCGAACCGTAAATCGAG -ACGGAATCCGAACCGTAACTCCTT -ACGGAATCCGAACCGTAACCTGTT -ACGGAATCCGAACCGTAACGGTTT -ACGGAATCCGAACCGTAAGTGGTT -ACGGAATCCGAACCGTAAGCCTTT -ACGGAATCCGAACCGTAAGGTCTT -ACGGAATCCGAACCGTAAACGCTT -ACGGAATCCGAACCGTAAAGCGTT -ACGGAATCCGAACCGTAATTCGTC -ACGGAATCCGAACCGTAATCTCTC -ACGGAATCCGAACCGTAATGGATC -ACGGAATCCGAACCGTAACACTTC -ACGGAATCCGAACCGTAAGTACTC -ACGGAATCCGAACCGTAAGATGTC -ACGGAATCCGAACCGTAAACAGTC -ACGGAATCCGAACCGTAATTGCTG -ACGGAATCCGAACCGTAATCCATG -ACGGAATCCGAACCGTAATGTGTG -ACGGAATCCGAACCGTAACTAGTG -ACGGAATCCGAACCGTAACATCTG -ACGGAATCCGAACCGTAAGAGTTG -ACGGAATCCGAACCGTAAAGACTG -ACGGAATCCGAACCGTAATCGGTA -ACGGAATCCGAACCGTAATGCCTA -ACGGAATCCGAACCGTAACCACTA -ACGGAATCCGAACCGTAAGGAGTA -ACGGAATCCGAACCGTAATCGTCT -ACGGAATCCGAACCGTAATGCACT -ACGGAATCCGAACCGTAACTGACT -ACGGAATCCGAACCGTAACAACCT -ACGGAATCCGAACCGTAAGCTACT -ACGGAATCCGAACCGTAAGGATCT -ACGGAATCCGAACCGTAAAAGGCT -ACGGAATCCGAACCGTAATCAACC -ACGGAATCCGAACCGTAATGTTCC -ACGGAATCCGAACCGTAAATTCCC -ACGGAATCCGAACCGTAATTCTCG -ACGGAATCCGAACCGTAATAGACG -ACGGAATCCGAACCGTAAGTAACG -ACGGAATCCGAACCGTAAACTTCG -ACGGAATCCGAACCGTAATACGCA -ACGGAATCCGAACCGTAACTTGCA -ACGGAATCCGAACCGTAACGAACA -ACGGAATCCGAACCGTAACAGTCA -ACGGAATCCGAACCGTAAGATCCA -ACGGAATCCGAACCGTAAACGACA -ACGGAATCCGAACCGTAAAGCTCA -ACGGAATCCGAACCGTAATCACGT -ACGGAATCCGAACCGTAACGTAGT -ACGGAATCCGAACCGTAAGTCAGT -ACGGAATCCGAACCGTAAGAAGGT -ACGGAATCCGAACCGTAAAACCGT -ACGGAATCCGAACCGTAATTGTGC -ACGGAATCCGAACCGTAACTAAGC -ACGGAATCCGAACCGTAAACTAGC -ACGGAATCCGAACCGTAAAGATGC -ACGGAATCCGAACCGTAATGAAGG -ACGGAATCCGAACCGTAACAATGG -ACGGAATCCGAACCGTAAATGAGG -ACGGAATCCGAACCGTAAAATGGG -ACGGAATCCGAACCGTAATCCTGA -ACGGAATCCGAACCGTAATAGCGA -ACGGAATCCGAACCGTAACACAGA -ACGGAATCCGAACCGTAAGCAAGA -ACGGAATCCGAACCGTAAGGTTGA -ACGGAATCCGAACCGTAATCCGAT -ACGGAATCCGAACCGTAATGGCAT -ACGGAATCCGAACCGTAACGAGAT -ACGGAATCCGAACCGTAATACCAC -ACGGAATCCGAACCGTAACAGAAC -ACGGAATCCGAACCGTAAGTCTAC -ACGGAATCCGAACCGTAAACGTAC -ACGGAATCCGAACCGTAAAGTGAC -ACGGAATCCGAACCGTAACTGTAG -ACGGAATCCGAACCGTAACCTAAG -ACGGAATCCGAACCGTAAGTTCAG -ACGGAATCCGAACCGTAAGCATAG -ACGGAATCCGAACCGTAAGACAAG -ACGGAATCCGAACCGTAAAAGCAG -ACGGAATCCGAACCGTAACGTCAA -ACGGAATCCGAACCGTAAGCTGAA -ACGGAATCCGAACCGTAAAGTACG -ACGGAATCCGAACCGTAAATCCGA -ACGGAATCCGAACCGTAAATGGGA -ACGGAATCCGAACCGTAAGTGCAA -ACGGAATCCGAACCGTAAGAGGAA -ACGGAATCCGAACCGTAACAGGTA -ACGGAATCCGAACCGTAAGACTCT -ACGGAATCCGAACCGTAAAGTCCT -ACGGAATCCGAACCGTAATAAGCC -ACGGAATCCGAACCGTAAATAGCC -ACGGAATCCGAACCGTAATAACCG -ACGGAATCCGAACCGTAAATGCCA -ACGGAATCCGAACCAATGGGAAAC -ACGGAATCCGAACCAATGAACACC -ACGGAATCCGAACCAATGATCGAG -ACGGAATCCGAACCAATGCTCCTT -ACGGAATCCGAACCAATGCCTGTT -ACGGAATCCGAACCAATGCGGTTT -ACGGAATCCGAACCAATGGTGGTT -ACGGAATCCGAACCAATGGCCTTT -ACGGAATCCGAACCAATGGGTCTT -ACGGAATCCGAACCAATGACGCTT -ACGGAATCCGAACCAATGAGCGTT -ACGGAATCCGAACCAATGTTCGTC -ACGGAATCCGAACCAATGTCTCTC -ACGGAATCCGAACCAATGTGGATC -ACGGAATCCGAACCAATGCACTTC -ACGGAATCCGAACCAATGGTACTC -ACGGAATCCGAACCAATGGATGTC -ACGGAATCCGAACCAATGACAGTC -ACGGAATCCGAACCAATGTTGCTG -ACGGAATCCGAACCAATGTCCATG -ACGGAATCCGAACCAATGTGTGTG -ACGGAATCCGAACCAATGCTAGTG -ACGGAATCCGAACCAATGCATCTG -ACGGAATCCGAACCAATGGAGTTG -ACGGAATCCGAACCAATGAGACTG -ACGGAATCCGAACCAATGTCGGTA -ACGGAATCCGAACCAATGTGCCTA -ACGGAATCCGAACCAATGCCACTA -ACGGAATCCGAACCAATGGGAGTA -ACGGAATCCGAACCAATGTCGTCT -ACGGAATCCGAACCAATGTGCACT -ACGGAATCCGAACCAATGCTGACT -ACGGAATCCGAACCAATGCAACCT -ACGGAATCCGAACCAATGGCTACT -ACGGAATCCGAACCAATGGGATCT -ACGGAATCCGAACCAATGAAGGCT -ACGGAATCCGAACCAATGTCAACC -ACGGAATCCGAACCAATGTGTTCC -ACGGAATCCGAACCAATGATTCCC -ACGGAATCCGAACCAATGTTCTCG -ACGGAATCCGAACCAATGTAGACG -ACGGAATCCGAACCAATGGTAACG -ACGGAATCCGAACCAATGACTTCG -ACGGAATCCGAACCAATGTACGCA -ACGGAATCCGAACCAATGCTTGCA -ACGGAATCCGAACCAATGCGAACA -ACGGAATCCGAACCAATGCAGTCA -ACGGAATCCGAACCAATGGATCCA -ACGGAATCCGAACCAATGACGACA -ACGGAATCCGAACCAATGAGCTCA -ACGGAATCCGAACCAATGTCACGT -ACGGAATCCGAACCAATGCGTAGT -ACGGAATCCGAACCAATGGTCAGT -ACGGAATCCGAACCAATGGAAGGT -ACGGAATCCGAACCAATGAACCGT -ACGGAATCCGAACCAATGTTGTGC -ACGGAATCCGAACCAATGCTAAGC -ACGGAATCCGAACCAATGACTAGC -ACGGAATCCGAACCAATGAGATGC -ACGGAATCCGAACCAATGTGAAGG -ACGGAATCCGAACCAATGCAATGG -ACGGAATCCGAACCAATGATGAGG -ACGGAATCCGAACCAATGAATGGG -ACGGAATCCGAACCAATGTCCTGA -ACGGAATCCGAACCAATGTAGCGA -ACGGAATCCGAACCAATGCACAGA -ACGGAATCCGAACCAATGGCAAGA -ACGGAATCCGAACCAATGGGTTGA -ACGGAATCCGAACCAATGTCCGAT -ACGGAATCCGAACCAATGTGGCAT -ACGGAATCCGAACCAATGCGAGAT -ACGGAATCCGAACCAATGTACCAC -ACGGAATCCGAACCAATGCAGAAC -ACGGAATCCGAACCAATGGTCTAC -ACGGAATCCGAACCAATGACGTAC -ACGGAATCCGAACCAATGAGTGAC -ACGGAATCCGAACCAATGCTGTAG -ACGGAATCCGAACCAATGCCTAAG -ACGGAATCCGAACCAATGGTTCAG -ACGGAATCCGAACCAATGGCATAG -ACGGAATCCGAACCAATGGACAAG -ACGGAATCCGAACCAATGAAGCAG -ACGGAATCCGAACCAATGCGTCAA -ACGGAATCCGAACCAATGGCTGAA -ACGGAATCCGAACCAATGAGTACG -ACGGAATCCGAACCAATGATCCGA -ACGGAATCCGAACCAATGATGGGA -ACGGAATCCGAACCAATGGTGCAA -ACGGAATCCGAACCAATGGAGGAA -ACGGAATCCGAACCAATGCAGGTA -ACGGAATCCGAACCAATGGACTCT -ACGGAATCCGAACCAATGAGTCCT -ACGGAATCCGAACCAATGTAAGCC -ACGGAATCCGAACCAATGATAGCC -ACGGAATCCGAACCAATGTAACCG -ACGGAATCCGAACCAATGATGCCA -ACGGAATGGGAAAACGGAGGAAAC -ACGGAATGGGAAAACGGAAACACC -ACGGAATGGGAAAACGGAATCGAG -ACGGAATGGGAAAACGGACTCCTT -ACGGAATGGGAAAACGGACCTGTT -ACGGAATGGGAAAACGGACGGTTT -ACGGAATGGGAAAACGGAGTGGTT -ACGGAATGGGAAAACGGAGCCTTT -ACGGAATGGGAAAACGGAGGTCTT -ACGGAATGGGAAAACGGAACGCTT -ACGGAATGGGAAAACGGAAGCGTT -ACGGAATGGGAAAACGGATTCGTC -ACGGAATGGGAAAACGGATCTCTC -ACGGAATGGGAAAACGGATGGATC -ACGGAATGGGAAAACGGACACTTC -ACGGAATGGGAAAACGGAGTACTC -ACGGAATGGGAAAACGGAGATGTC -ACGGAATGGGAAAACGGAACAGTC -ACGGAATGGGAAAACGGATTGCTG -ACGGAATGGGAAAACGGATCCATG -ACGGAATGGGAAAACGGATGTGTG -ACGGAATGGGAAAACGGACTAGTG -ACGGAATGGGAAAACGGACATCTG -ACGGAATGGGAAAACGGAGAGTTG -ACGGAATGGGAAAACGGAAGACTG -ACGGAATGGGAAAACGGATCGGTA -ACGGAATGGGAAAACGGATGCCTA -ACGGAATGGGAAAACGGACCACTA -ACGGAATGGGAAAACGGAGGAGTA -ACGGAATGGGAAAACGGATCGTCT -ACGGAATGGGAAAACGGATGCACT -ACGGAATGGGAAAACGGACTGACT -ACGGAATGGGAAAACGGACAACCT -ACGGAATGGGAAAACGGAGCTACT -ACGGAATGGGAAAACGGAGGATCT -ACGGAATGGGAAAACGGAAAGGCT -ACGGAATGGGAAAACGGATCAACC -ACGGAATGGGAAAACGGATGTTCC -ACGGAATGGGAAAACGGAATTCCC -ACGGAATGGGAAAACGGATTCTCG -ACGGAATGGGAAAACGGATAGACG -ACGGAATGGGAAAACGGAGTAACG -ACGGAATGGGAAAACGGAACTTCG -ACGGAATGGGAAAACGGATACGCA -ACGGAATGGGAAAACGGACTTGCA -ACGGAATGGGAAAACGGACGAACA -ACGGAATGGGAAAACGGACAGTCA -ACGGAATGGGAAAACGGAGATCCA -ACGGAATGGGAAAACGGAACGACA -ACGGAATGGGAAAACGGAAGCTCA -ACGGAATGGGAAAACGGATCACGT -ACGGAATGGGAAAACGGACGTAGT -ACGGAATGGGAAAACGGAGTCAGT -ACGGAATGGGAAAACGGAGAAGGT -ACGGAATGGGAAAACGGAAACCGT -ACGGAATGGGAAAACGGATTGTGC -ACGGAATGGGAAAACGGACTAAGC -ACGGAATGGGAAAACGGAACTAGC -ACGGAATGGGAAAACGGAAGATGC -ACGGAATGGGAAAACGGATGAAGG -ACGGAATGGGAAAACGGACAATGG -ACGGAATGGGAAAACGGAATGAGG -ACGGAATGGGAAAACGGAAATGGG -ACGGAATGGGAAAACGGATCCTGA -ACGGAATGGGAAAACGGATAGCGA -ACGGAATGGGAAAACGGACACAGA -ACGGAATGGGAAAACGGAGCAAGA -ACGGAATGGGAAAACGGAGGTTGA -ACGGAATGGGAAAACGGATCCGAT -ACGGAATGGGAAAACGGATGGCAT -ACGGAATGGGAAAACGGACGAGAT -ACGGAATGGGAAAACGGATACCAC -ACGGAATGGGAAAACGGACAGAAC -ACGGAATGGGAAAACGGAGTCTAC -ACGGAATGGGAAAACGGAACGTAC -ACGGAATGGGAAAACGGAAGTGAC -ACGGAATGGGAAAACGGACTGTAG -ACGGAATGGGAAAACGGACCTAAG -ACGGAATGGGAAAACGGAGTTCAG -ACGGAATGGGAAAACGGAGCATAG -ACGGAATGGGAAAACGGAGACAAG -ACGGAATGGGAAAACGGAAAGCAG -ACGGAATGGGAAAACGGACGTCAA -ACGGAATGGGAAAACGGAGCTGAA -ACGGAATGGGAAAACGGAAGTACG -ACGGAATGGGAAAACGGAATCCGA -ACGGAATGGGAAAACGGAATGGGA -ACGGAATGGGAAAACGGAGTGCAA -ACGGAATGGGAAAACGGAGAGGAA -ACGGAATGGGAAAACGGACAGGTA -ACGGAATGGGAAAACGGAGACTCT -ACGGAATGGGAAAACGGAAGTCCT -ACGGAATGGGAAAACGGATAAGCC -ACGGAATGGGAAAACGGAATAGCC -ACGGAATGGGAAAACGGATAACCG -ACGGAATGGGAAAACGGAATGCCA -ACGGAATGGGAAACCAACGGAAAC -ACGGAATGGGAAACCAACAACACC -ACGGAATGGGAAACCAACATCGAG -ACGGAATGGGAAACCAACCTCCTT -ACGGAATGGGAAACCAACCCTGTT -ACGGAATGGGAAACCAACCGGTTT -ACGGAATGGGAAACCAACGTGGTT -ACGGAATGGGAAACCAACGCCTTT -ACGGAATGGGAAACCAACGGTCTT -ACGGAATGGGAAACCAACACGCTT -ACGGAATGGGAAACCAACAGCGTT -ACGGAATGGGAAACCAACTTCGTC -ACGGAATGGGAAACCAACTCTCTC -ACGGAATGGGAAACCAACTGGATC -ACGGAATGGGAAACCAACCACTTC -ACGGAATGGGAAACCAACGTACTC -ACGGAATGGGAAACCAACGATGTC -ACGGAATGGGAAACCAACACAGTC -ACGGAATGGGAAACCAACTTGCTG -ACGGAATGGGAAACCAACTCCATG -ACGGAATGGGAAACCAACTGTGTG -ACGGAATGGGAAACCAACCTAGTG -ACGGAATGGGAAACCAACCATCTG -ACGGAATGGGAAACCAACGAGTTG -ACGGAATGGGAAACCAACAGACTG -ACGGAATGGGAAACCAACTCGGTA -ACGGAATGGGAAACCAACTGCCTA -ACGGAATGGGAAACCAACCCACTA -ACGGAATGGGAAACCAACGGAGTA -ACGGAATGGGAAACCAACTCGTCT -ACGGAATGGGAAACCAACTGCACT -ACGGAATGGGAAACCAACCTGACT -ACGGAATGGGAAACCAACCAACCT -ACGGAATGGGAAACCAACGCTACT -ACGGAATGGGAAACCAACGGATCT -ACGGAATGGGAAACCAACAAGGCT -ACGGAATGGGAAACCAACTCAACC -ACGGAATGGGAAACCAACTGTTCC -ACGGAATGGGAAACCAACATTCCC -ACGGAATGGGAAACCAACTTCTCG -ACGGAATGGGAAACCAACTAGACG -ACGGAATGGGAAACCAACGTAACG -ACGGAATGGGAAACCAACACTTCG -ACGGAATGGGAAACCAACTACGCA -ACGGAATGGGAAACCAACCTTGCA -ACGGAATGGGAAACCAACCGAACA -ACGGAATGGGAAACCAACCAGTCA -ACGGAATGGGAAACCAACGATCCA -ACGGAATGGGAAACCAACACGACA -ACGGAATGGGAAACCAACAGCTCA -ACGGAATGGGAAACCAACTCACGT -ACGGAATGGGAAACCAACCGTAGT -ACGGAATGGGAAACCAACGTCAGT -ACGGAATGGGAAACCAACGAAGGT -ACGGAATGGGAAACCAACAACCGT -ACGGAATGGGAAACCAACTTGTGC -ACGGAATGGGAAACCAACCTAAGC -ACGGAATGGGAAACCAACACTAGC -ACGGAATGGGAAACCAACAGATGC -ACGGAATGGGAAACCAACTGAAGG -ACGGAATGGGAAACCAACCAATGG -ACGGAATGGGAAACCAACATGAGG -ACGGAATGGGAAACCAACAATGGG -ACGGAATGGGAAACCAACTCCTGA -ACGGAATGGGAAACCAACTAGCGA -ACGGAATGGGAAACCAACCACAGA -ACGGAATGGGAAACCAACGCAAGA -ACGGAATGGGAAACCAACGGTTGA -ACGGAATGGGAAACCAACTCCGAT -ACGGAATGGGAAACCAACTGGCAT -ACGGAATGGGAAACCAACCGAGAT -ACGGAATGGGAAACCAACTACCAC -ACGGAATGGGAAACCAACCAGAAC -ACGGAATGGGAAACCAACGTCTAC -ACGGAATGGGAAACCAACACGTAC -ACGGAATGGGAAACCAACAGTGAC -ACGGAATGGGAAACCAACCTGTAG -ACGGAATGGGAAACCAACCCTAAG -ACGGAATGGGAAACCAACGTTCAG -ACGGAATGGGAAACCAACGCATAG -ACGGAATGGGAAACCAACGACAAG -ACGGAATGGGAAACCAACAAGCAG -ACGGAATGGGAAACCAACCGTCAA -ACGGAATGGGAAACCAACGCTGAA -ACGGAATGGGAAACCAACAGTACG -ACGGAATGGGAAACCAACATCCGA -ACGGAATGGGAAACCAACATGGGA -ACGGAATGGGAAACCAACGTGCAA -ACGGAATGGGAAACCAACGAGGAA -ACGGAATGGGAAACCAACCAGGTA -ACGGAATGGGAAACCAACGACTCT -ACGGAATGGGAAACCAACAGTCCT -ACGGAATGGGAAACCAACTAAGCC -ACGGAATGGGAAACCAACATAGCC -ACGGAATGGGAAACCAACTAACCG -ACGGAATGGGAAACCAACATGCCA -ACGGAATGGGAAGAGATCGGAAAC -ACGGAATGGGAAGAGATCAACACC -ACGGAATGGGAAGAGATCATCGAG -ACGGAATGGGAAGAGATCCTCCTT -ACGGAATGGGAAGAGATCCCTGTT -ACGGAATGGGAAGAGATCCGGTTT -ACGGAATGGGAAGAGATCGTGGTT -ACGGAATGGGAAGAGATCGCCTTT -ACGGAATGGGAAGAGATCGGTCTT -ACGGAATGGGAAGAGATCACGCTT -ACGGAATGGGAAGAGATCAGCGTT -ACGGAATGGGAAGAGATCTTCGTC -ACGGAATGGGAAGAGATCTCTCTC -ACGGAATGGGAAGAGATCTGGATC -ACGGAATGGGAAGAGATCCACTTC -ACGGAATGGGAAGAGATCGTACTC -ACGGAATGGGAAGAGATCGATGTC -ACGGAATGGGAAGAGATCACAGTC -ACGGAATGGGAAGAGATCTTGCTG -ACGGAATGGGAAGAGATCTCCATG -ACGGAATGGGAAGAGATCTGTGTG -ACGGAATGGGAAGAGATCCTAGTG -ACGGAATGGGAAGAGATCCATCTG -ACGGAATGGGAAGAGATCGAGTTG -ACGGAATGGGAAGAGATCAGACTG -ACGGAATGGGAAGAGATCTCGGTA -ACGGAATGGGAAGAGATCTGCCTA -ACGGAATGGGAAGAGATCCCACTA -ACGGAATGGGAAGAGATCGGAGTA -ACGGAATGGGAAGAGATCTCGTCT -ACGGAATGGGAAGAGATCTGCACT -ACGGAATGGGAAGAGATCCTGACT -ACGGAATGGGAAGAGATCCAACCT -ACGGAATGGGAAGAGATCGCTACT -ACGGAATGGGAAGAGATCGGATCT -ACGGAATGGGAAGAGATCAAGGCT -ACGGAATGGGAAGAGATCTCAACC -ACGGAATGGGAAGAGATCTGTTCC -ACGGAATGGGAAGAGATCATTCCC -ACGGAATGGGAAGAGATCTTCTCG -ACGGAATGGGAAGAGATCTAGACG -ACGGAATGGGAAGAGATCGTAACG -ACGGAATGGGAAGAGATCACTTCG -ACGGAATGGGAAGAGATCTACGCA -ACGGAATGGGAAGAGATCCTTGCA -ACGGAATGGGAAGAGATCCGAACA -ACGGAATGGGAAGAGATCCAGTCA -ACGGAATGGGAAGAGATCGATCCA -ACGGAATGGGAAGAGATCACGACA -ACGGAATGGGAAGAGATCAGCTCA -ACGGAATGGGAAGAGATCTCACGT -ACGGAATGGGAAGAGATCCGTAGT -ACGGAATGGGAAGAGATCGTCAGT -ACGGAATGGGAAGAGATCGAAGGT -ACGGAATGGGAAGAGATCAACCGT -ACGGAATGGGAAGAGATCTTGTGC -ACGGAATGGGAAGAGATCCTAAGC -ACGGAATGGGAAGAGATCACTAGC -ACGGAATGGGAAGAGATCAGATGC -ACGGAATGGGAAGAGATCTGAAGG -ACGGAATGGGAAGAGATCCAATGG -ACGGAATGGGAAGAGATCATGAGG -ACGGAATGGGAAGAGATCAATGGG -ACGGAATGGGAAGAGATCTCCTGA -ACGGAATGGGAAGAGATCTAGCGA -ACGGAATGGGAAGAGATCCACAGA -ACGGAATGGGAAGAGATCGCAAGA -ACGGAATGGGAAGAGATCGGTTGA -ACGGAATGGGAAGAGATCTCCGAT -ACGGAATGGGAAGAGATCTGGCAT -ACGGAATGGGAAGAGATCCGAGAT -ACGGAATGGGAAGAGATCTACCAC -ACGGAATGGGAAGAGATCCAGAAC -ACGGAATGGGAAGAGATCGTCTAC -ACGGAATGGGAAGAGATCACGTAC -ACGGAATGGGAAGAGATCAGTGAC -ACGGAATGGGAAGAGATCCTGTAG -ACGGAATGGGAAGAGATCCCTAAG -ACGGAATGGGAAGAGATCGTTCAG -ACGGAATGGGAAGAGATCGCATAG -ACGGAATGGGAAGAGATCGACAAG -ACGGAATGGGAAGAGATCAAGCAG -ACGGAATGGGAAGAGATCCGTCAA -ACGGAATGGGAAGAGATCGCTGAA -ACGGAATGGGAAGAGATCAGTACG -ACGGAATGGGAAGAGATCATCCGA -ACGGAATGGGAAGAGATCATGGGA -ACGGAATGGGAAGAGATCGTGCAA -ACGGAATGGGAAGAGATCGAGGAA -ACGGAATGGGAAGAGATCCAGGTA -ACGGAATGGGAAGAGATCGACTCT -ACGGAATGGGAAGAGATCAGTCCT -ACGGAATGGGAAGAGATCTAAGCC -ACGGAATGGGAAGAGATCATAGCC -ACGGAATGGGAAGAGATCTAACCG -ACGGAATGGGAAGAGATCATGCCA -ACGGAATGGGAACTTCTCGGAAAC -ACGGAATGGGAACTTCTCAACACC -ACGGAATGGGAACTTCTCATCGAG -ACGGAATGGGAACTTCTCCTCCTT -ACGGAATGGGAACTTCTCCCTGTT -ACGGAATGGGAACTTCTCCGGTTT -ACGGAATGGGAACTTCTCGTGGTT -ACGGAATGGGAACTTCTCGCCTTT -ACGGAATGGGAACTTCTCGGTCTT -ACGGAATGGGAACTTCTCACGCTT -ACGGAATGGGAACTTCTCAGCGTT -ACGGAATGGGAACTTCTCTTCGTC -ACGGAATGGGAACTTCTCTCTCTC -ACGGAATGGGAACTTCTCTGGATC -ACGGAATGGGAACTTCTCCACTTC -ACGGAATGGGAACTTCTCGTACTC -ACGGAATGGGAACTTCTCGATGTC -ACGGAATGGGAACTTCTCACAGTC -ACGGAATGGGAACTTCTCTTGCTG -ACGGAATGGGAACTTCTCTCCATG -ACGGAATGGGAACTTCTCTGTGTG -ACGGAATGGGAACTTCTCCTAGTG -ACGGAATGGGAACTTCTCCATCTG -ACGGAATGGGAACTTCTCGAGTTG -ACGGAATGGGAACTTCTCAGACTG -ACGGAATGGGAACTTCTCTCGGTA -ACGGAATGGGAACTTCTCTGCCTA -ACGGAATGGGAACTTCTCCCACTA -ACGGAATGGGAACTTCTCGGAGTA -ACGGAATGGGAACTTCTCTCGTCT -ACGGAATGGGAACTTCTCTGCACT -ACGGAATGGGAACTTCTCCTGACT -ACGGAATGGGAACTTCTCCAACCT -ACGGAATGGGAACTTCTCGCTACT -ACGGAATGGGAACTTCTCGGATCT -ACGGAATGGGAACTTCTCAAGGCT -ACGGAATGGGAACTTCTCTCAACC -ACGGAATGGGAACTTCTCTGTTCC -ACGGAATGGGAACTTCTCATTCCC -ACGGAATGGGAACTTCTCTTCTCG -ACGGAATGGGAACTTCTCTAGACG -ACGGAATGGGAACTTCTCGTAACG -ACGGAATGGGAACTTCTCACTTCG -ACGGAATGGGAACTTCTCTACGCA -ACGGAATGGGAACTTCTCCTTGCA -ACGGAATGGGAACTTCTCCGAACA -ACGGAATGGGAACTTCTCCAGTCA -ACGGAATGGGAACTTCTCGATCCA -ACGGAATGGGAACTTCTCACGACA -ACGGAATGGGAACTTCTCAGCTCA -ACGGAATGGGAACTTCTCTCACGT -ACGGAATGGGAACTTCTCCGTAGT -ACGGAATGGGAACTTCTCGTCAGT -ACGGAATGGGAACTTCTCGAAGGT -ACGGAATGGGAACTTCTCAACCGT -ACGGAATGGGAACTTCTCTTGTGC -ACGGAATGGGAACTTCTCCTAAGC -ACGGAATGGGAACTTCTCACTAGC -ACGGAATGGGAACTTCTCAGATGC -ACGGAATGGGAACTTCTCTGAAGG -ACGGAATGGGAACTTCTCCAATGG -ACGGAATGGGAACTTCTCATGAGG -ACGGAATGGGAACTTCTCAATGGG -ACGGAATGGGAACTTCTCTCCTGA -ACGGAATGGGAACTTCTCTAGCGA -ACGGAATGGGAACTTCTCCACAGA -ACGGAATGGGAACTTCTCGCAAGA -ACGGAATGGGAACTTCTCGGTTGA -ACGGAATGGGAACTTCTCTCCGAT -ACGGAATGGGAACTTCTCTGGCAT -ACGGAATGGGAACTTCTCCGAGAT -ACGGAATGGGAACTTCTCTACCAC -ACGGAATGGGAACTTCTCCAGAAC -ACGGAATGGGAACTTCTCGTCTAC -ACGGAATGGGAACTTCTCACGTAC -ACGGAATGGGAACTTCTCAGTGAC -ACGGAATGGGAACTTCTCCTGTAG -ACGGAATGGGAACTTCTCCCTAAG -ACGGAATGGGAACTTCTCGTTCAG -ACGGAATGGGAACTTCTCGCATAG -ACGGAATGGGAACTTCTCGACAAG -ACGGAATGGGAACTTCTCAAGCAG -ACGGAATGGGAACTTCTCCGTCAA -ACGGAATGGGAACTTCTCGCTGAA -ACGGAATGGGAACTTCTCAGTACG -ACGGAATGGGAACTTCTCATCCGA -ACGGAATGGGAACTTCTCATGGGA -ACGGAATGGGAACTTCTCGTGCAA -ACGGAATGGGAACTTCTCGAGGAA -ACGGAATGGGAACTTCTCCAGGTA -ACGGAATGGGAACTTCTCGACTCT -ACGGAATGGGAACTTCTCAGTCCT -ACGGAATGGGAACTTCTCTAAGCC -ACGGAATGGGAACTTCTCATAGCC -ACGGAATGGGAACTTCTCTAACCG -ACGGAATGGGAACTTCTCATGCCA -ACGGAATGGGAAGTTCCTGGAAAC -ACGGAATGGGAAGTTCCTAACACC -ACGGAATGGGAAGTTCCTATCGAG -ACGGAATGGGAAGTTCCTCTCCTT -ACGGAATGGGAAGTTCCTCCTGTT -ACGGAATGGGAAGTTCCTCGGTTT -ACGGAATGGGAAGTTCCTGTGGTT -ACGGAATGGGAAGTTCCTGCCTTT -ACGGAATGGGAAGTTCCTGGTCTT -ACGGAATGGGAAGTTCCTACGCTT -ACGGAATGGGAAGTTCCTAGCGTT -ACGGAATGGGAAGTTCCTTTCGTC -ACGGAATGGGAAGTTCCTTCTCTC -ACGGAATGGGAAGTTCCTTGGATC -ACGGAATGGGAAGTTCCTCACTTC -ACGGAATGGGAAGTTCCTGTACTC -ACGGAATGGGAAGTTCCTGATGTC -ACGGAATGGGAAGTTCCTACAGTC -ACGGAATGGGAAGTTCCTTTGCTG -ACGGAATGGGAAGTTCCTTCCATG -ACGGAATGGGAAGTTCCTTGTGTG -ACGGAATGGGAAGTTCCTCTAGTG -ACGGAATGGGAAGTTCCTCATCTG -ACGGAATGGGAAGTTCCTGAGTTG -ACGGAATGGGAAGTTCCTAGACTG -ACGGAATGGGAAGTTCCTTCGGTA -ACGGAATGGGAAGTTCCTTGCCTA -ACGGAATGGGAAGTTCCTCCACTA -ACGGAATGGGAAGTTCCTGGAGTA -ACGGAATGGGAAGTTCCTTCGTCT -ACGGAATGGGAAGTTCCTTGCACT -ACGGAATGGGAAGTTCCTCTGACT -ACGGAATGGGAAGTTCCTCAACCT -ACGGAATGGGAAGTTCCTGCTACT -ACGGAATGGGAAGTTCCTGGATCT -ACGGAATGGGAAGTTCCTAAGGCT -ACGGAATGGGAAGTTCCTTCAACC -ACGGAATGGGAAGTTCCTTGTTCC -ACGGAATGGGAAGTTCCTATTCCC -ACGGAATGGGAAGTTCCTTTCTCG -ACGGAATGGGAAGTTCCTTAGACG -ACGGAATGGGAAGTTCCTGTAACG -ACGGAATGGGAAGTTCCTACTTCG -ACGGAATGGGAAGTTCCTTACGCA -ACGGAATGGGAAGTTCCTCTTGCA -ACGGAATGGGAAGTTCCTCGAACA -ACGGAATGGGAAGTTCCTCAGTCA -ACGGAATGGGAAGTTCCTGATCCA -ACGGAATGGGAAGTTCCTACGACA -ACGGAATGGGAAGTTCCTAGCTCA -ACGGAATGGGAAGTTCCTTCACGT -ACGGAATGGGAAGTTCCTCGTAGT -ACGGAATGGGAAGTTCCTGTCAGT -ACGGAATGGGAAGTTCCTGAAGGT -ACGGAATGGGAAGTTCCTAACCGT -ACGGAATGGGAAGTTCCTTTGTGC -ACGGAATGGGAAGTTCCTCTAAGC -ACGGAATGGGAAGTTCCTACTAGC -ACGGAATGGGAAGTTCCTAGATGC -ACGGAATGGGAAGTTCCTTGAAGG -ACGGAATGGGAAGTTCCTCAATGG -ACGGAATGGGAAGTTCCTATGAGG -ACGGAATGGGAAGTTCCTAATGGG -ACGGAATGGGAAGTTCCTTCCTGA -ACGGAATGGGAAGTTCCTTAGCGA -ACGGAATGGGAAGTTCCTCACAGA -ACGGAATGGGAAGTTCCTGCAAGA -ACGGAATGGGAAGTTCCTGGTTGA -ACGGAATGGGAAGTTCCTTCCGAT -ACGGAATGGGAAGTTCCTTGGCAT -ACGGAATGGGAAGTTCCTCGAGAT -ACGGAATGGGAAGTTCCTTACCAC -ACGGAATGGGAAGTTCCTCAGAAC -ACGGAATGGGAAGTTCCTGTCTAC -ACGGAATGGGAAGTTCCTACGTAC -ACGGAATGGGAAGTTCCTAGTGAC -ACGGAATGGGAAGTTCCTCTGTAG -ACGGAATGGGAAGTTCCTCCTAAG -ACGGAATGGGAAGTTCCTGTTCAG -ACGGAATGGGAAGTTCCTGCATAG -ACGGAATGGGAAGTTCCTGACAAG -ACGGAATGGGAAGTTCCTAAGCAG -ACGGAATGGGAAGTTCCTCGTCAA -ACGGAATGGGAAGTTCCTGCTGAA -ACGGAATGGGAAGTTCCTAGTACG -ACGGAATGGGAAGTTCCTATCCGA -ACGGAATGGGAAGTTCCTATGGGA -ACGGAATGGGAAGTTCCTGTGCAA -ACGGAATGGGAAGTTCCTGAGGAA -ACGGAATGGGAAGTTCCTCAGGTA -ACGGAATGGGAAGTTCCTGACTCT -ACGGAATGGGAAGTTCCTAGTCCT -ACGGAATGGGAAGTTCCTTAAGCC -ACGGAATGGGAAGTTCCTATAGCC -ACGGAATGGGAAGTTCCTTAACCG -ACGGAATGGGAAGTTCCTATGCCA -ACGGAATGGGAATTTCGGGGAAAC -ACGGAATGGGAATTTCGGAACACC -ACGGAATGGGAATTTCGGATCGAG -ACGGAATGGGAATTTCGGCTCCTT -ACGGAATGGGAATTTCGGCCTGTT -ACGGAATGGGAATTTCGGCGGTTT -ACGGAATGGGAATTTCGGGTGGTT -ACGGAATGGGAATTTCGGGCCTTT -ACGGAATGGGAATTTCGGGGTCTT -ACGGAATGGGAATTTCGGACGCTT -ACGGAATGGGAATTTCGGAGCGTT -ACGGAATGGGAATTTCGGTTCGTC -ACGGAATGGGAATTTCGGTCTCTC -ACGGAATGGGAATTTCGGTGGATC -ACGGAATGGGAATTTCGGCACTTC -ACGGAATGGGAATTTCGGGTACTC -ACGGAATGGGAATTTCGGGATGTC -ACGGAATGGGAATTTCGGACAGTC -ACGGAATGGGAATTTCGGTTGCTG -ACGGAATGGGAATTTCGGTCCATG -ACGGAATGGGAATTTCGGTGTGTG -ACGGAATGGGAATTTCGGCTAGTG -ACGGAATGGGAATTTCGGCATCTG -ACGGAATGGGAATTTCGGGAGTTG -ACGGAATGGGAATTTCGGAGACTG -ACGGAATGGGAATTTCGGTCGGTA -ACGGAATGGGAATTTCGGTGCCTA -ACGGAATGGGAATTTCGGCCACTA -ACGGAATGGGAATTTCGGGGAGTA -ACGGAATGGGAATTTCGGTCGTCT -ACGGAATGGGAATTTCGGTGCACT -ACGGAATGGGAATTTCGGCTGACT -ACGGAATGGGAATTTCGGCAACCT -ACGGAATGGGAATTTCGGGCTACT -ACGGAATGGGAATTTCGGGGATCT -ACGGAATGGGAATTTCGGAAGGCT -ACGGAATGGGAATTTCGGTCAACC -ACGGAATGGGAATTTCGGTGTTCC -ACGGAATGGGAATTTCGGATTCCC -ACGGAATGGGAATTTCGGTTCTCG -ACGGAATGGGAATTTCGGTAGACG -ACGGAATGGGAATTTCGGGTAACG -ACGGAATGGGAATTTCGGACTTCG -ACGGAATGGGAATTTCGGTACGCA -ACGGAATGGGAATTTCGGCTTGCA -ACGGAATGGGAATTTCGGCGAACA -ACGGAATGGGAATTTCGGCAGTCA -ACGGAATGGGAATTTCGGGATCCA -ACGGAATGGGAATTTCGGACGACA -ACGGAATGGGAATTTCGGAGCTCA -ACGGAATGGGAATTTCGGTCACGT -ACGGAATGGGAATTTCGGCGTAGT -ACGGAATGGGAATTTCGGGTCAGT -ACGGAATGGGAATTTCGGGAAGGT -ACGGAATGGGAATTTCGGAACCGT -ACGGAATGGGAATTTCGGTTGTGC -ACGGAATGGGAATTTCGGCTAAGC -ACGGAATGGGAATTTCGGACTAGC -ACGGAATGGGAATTTCGGAGATGC -ACGGAATGGGAATTTCGGTGAAGG -ACGGAATGGGAATTTCGGCAATGG -ACGGAATGGGAATTTCGGATGAGG -ACGGAATGGGAATTTCGGAATGGG -ACGGAATGGGAATTTCGGTCCTGA -ACGGAATGGGAATTTCGGTAGCGA -ACGGAATGGGAATTTCGGCACAGA -ACGGAATGGGAATTTCGGGCAAGA -ACGGAATGGGAATTTCGGGGTTGA -ACGGAATGGGAATTTCGGTCCGAT -ACGGAATGGGAATTTCGGTGGCAT -ACGGAATGGGAATTTCGGCGAGAT -ACGGAATGGGAATTTCGGTACCAC -ACGGAATGGGAATTTCGGCAGAAC -ACGGAATGGGAATTTCGGGTCTAC -ACGGAATGGGAATTTCGGACGTAC -ACGGAATGGGAATTTCGGAGTGAC -ACGGAATGGGAATTTCGGCTGTAG -ACGGAATGGGAATTTCGGCCTAAG -ACGGAATGGGAATTTCGGGTTCAG -ACGGAATGGGAATTTCGGGCATAG -ACGGAATGGGAATTTCGGGACAAG -ACGGAATGGGAATTTCGGAAGCAG -ACGGAATGGGAATTTCGGCGTCAA -ACGGAATGGGAATTTCGGGCTGAA -ACGGAATGGGAATTTCGGAGTACG -ACGGAATGGGAATTTCGGATCCGA -ACGGAATGGGAATTTCGGATGGGA -ACGGAATGGGAATTTCGGGTGCAA -ACGGAATGGGAATTTCGGGAGGAA -ACGGAATGGGAATTTCGGCAGGTA -ACGGAATGGGAATTTCGGGACTCT -ACGGAATGGGAATTTCGGAGTCCT -ACGGAATGGGAATTTCGGTAAGCC -ACGGAATGGGAATTTCGGATAGCC -ACGGAATGGGAATTTCGGTAACCG -ACGGAATGGGAATTTCGGATGCCA -ACGGAATGGGAAGTTGTGGGAAAC -ACGGAATGGGAAGTTGTGAACACC -ACGGAATGGGAAGTTGTGATCGAG -ACGGAATGGGAAGTTGTGCTCCTT -ACGGAATGGGAAGTTGTGCCTGTT -ACGGAATGGGAAGTTGTGCGGTTT -ACGGAATGGGAAGTTGTGGTGGTT -ACGGAATGGGAAGTTGTGGCCTTT -ACGGAATGGGAAGTTGTGGGTCTT -ACGGAATGGGAAGTTGTGACGCTT -ACGGAATGGGAAGTTGTGAGCGTT -ACGGAATGGGAAGTTGTGTTCGTC -ACGGAATGGGAAGTTGTGTCTCTC -ACGGAATGGGAAGTTGTGTGGATC -ACGGAATGGGAAGTTGTGCACTTC -ACGGAATGGGAAGTTGTGGTACTC -ACGGAATGGGAAGTTGTGGATGTC -ACGGAATGGGAAGTTGTGACAGTC -ACGGAATGGGAAGTTGTGTTGCTG -ACGGAATGGGAAGTTGTGTCCATG -ACGGAATGGGAAGTTGTGTGTGTG -ACGGAATGGGAAGTTGTGCTAGTG -ACGGAATGGGAAGTTGTGCATCTG -ACGGAATGGGAAGTTGTGGAGTTG -ACGGAATGGGAAGTTGTGAGACTG -ACGGAATGGGAAGTTGTGTCGGTA -ACGGAATGGGAAGTTGTGTGCCTA -ACGGAATGGGAAGTTGTGCCACTA -ACGGAATGGGAAGTTGTGGGAGTA -ACGGAATGGGAAGTTGTGTCGTCT -ACGGAATGGGAAGTTGTGTGCACT -ACGGAATGGGAAGTTGTGCTGACT -ACGGAATGGGAAGTTGTGCAACCT -ACGGAATGGGAAGTTGTGGCTACT -ACGGAATGGGAAGTTGTGGGATCT -ACGGAATGGGAAGTTGTGAAGGCT -ACGGAATGGGAAGTTGTGTCAACC -ACGGAATGGGAAGTTGTGTGTTCC -ACGGAATGGGAAGTTGTGATTCCC -ACGGAATGGGAAGTTGTGTTCTCG -ACGGAATGGGAAGTTGTGTAGACG -ACGGAATGGGAAGTTGTGGTAACG -ACGGAATGGGAAGTTGTGACTTCG -ACGGAATGGGAAGTTGTGTACGCA -ACGGAATGGGAAGTTGTGCTTGCA -ACGGAATGGGAAGTTGTGCGAACA -ACGGAATGGGAAGTTGTGCAGTCA -ACGGAATGGGAAGTTGTGGATCCA -ACGGAATGGGAAGTTGTGACGACA -ACGGAATGGGAAGTTGTGAGCTCA -ACGGAATGGGAAGTTGTGTCACGT -ACGGAATGGGAAGTTGTGCGTAGT -ACGGAATGGGAAGTTGTGGTCAGT -ACGGAATGGGAAGTTGTGGAAGGT -ACGGAATGGGAAGTTGTGAACCGT -ACGGAATGGGAAGTTGTGTTGTGC -ACGGAATGGGAAGTTGTGCTAAGC -ACGGAATGGGAAGTTGTGACTAGC -ACGGAATGGGAAGTTGTGAGATGC -ACGGAATGGGAAGTTGTGTGAAGG -ACGGAATGGGAAGTTGTGCAATGG -ACGGAATGGGAAGTTGTGATGAGG -ACGGAATGGGAAGTTGTGAATGGG -ACGGAATGGGAAGTTGTGTCCTGA -ACGGAATGGGAAGTTGTGTAGCGA -ACGGAATGGGAAGTTGTGCACAGA -ACGGAATGGGAAGTTGTGGCAAGA -ACGGAATGGGAAGTTGTGGGTTGA -ACGGAATGGGAAGTTGTGTCCGAT -ACGGAATGGGAAGTTGTGTGGCAT -ACGGAATGGGAAGTTGTGCGAGAT -ACGGAATGGGAAGTTGTGTACCAC -ACGGAATGGGAAGTTGTGCAGAAC -ACGGAATGGGAAGTTGTGGTCTAC -ACGGAATGGGAAGTTGTGACGTAC -ACGGAATGGGAAGTTGTGAGTGAC -ACGGAATGGGAAGTTGTGCTGTAG -ACGGAATGGGAAGTTGTGCCTAAG -ACGGAATGGGAAGTTGTGGTTCAG -ACGGAATGGGAAGTTGTGGCATAG -ACGGAATGGGAAGTTGTGGACAAG -ACGGAATGGGAAGTTGTGAAGCAG -ACGGAATGGGAAGTTGTGCGTCAA -ACGGAATGGGAAGTTGTGGCTGAA -ACGGAATGGGAAGTTGTGAGTACG -ACGGAATGGGAAGTTGTGATCCGA -ACGGAATGGGAAGTTGTGATGGGA -ACGGAATGGGAAGTTGTGGTGCAA -ACGGAATGGGAAGTTGTGGAGGAA -ACGGAATGGGAAGTTGTGCAGGTA -ACGGAATGGGAAGTTGTGGACTCT -ACGGAATGGGAAGTTGTGAGTCCT -ACGGAATGGGAAGTTGTGTAAGCC -ACGGAATGGGAAGTTGTGATAGCC -ACGGAATGGGAAGTTGTGTAACCG -ACGGAATGGGAAGTTGTGATGCCA -ACGGAATGGGAATTTGCCGGAAAC -ACGGAATGGGAATTTGCCAACACC -ACGGAATGGGAATTTGCCATCGAG -ACGGAATGGGAATTTGCCCTCCTT -ACGGAATGGGAATTTGCCCCTGTT -ACGGAATGGGAATTTGCCCGGTTT -ACGGAATGGGAATTTGCCGTGGTT -ACGGAATGGGAATTTGCCGCCTTT -ACGGAATGGGAATTTGCCGGTCTT -ACGGAATGGGAATTTGCCACGCTT -ACGGAATGGGAATTTGCCAGCGTT -ACGGAATGGGAATTTGCCTTCGTC -ACGGAATGGGAATTTGCCTCTCTC -ACGGAATGGGAATTTGCCTGGATC -ACGGAATGGGAATTTGCCCACTTC -ACGGAATGGGAATTTGCCGTACTC -ACGGAATGGGAATTTGCCGATGTC -ACGGAATGGGAATTTGCCACAGTC -ACGGAATGGGAATTTGCCTTGCTG -ACGGAATGGGAATTTGCCTCCATG -ACGGAATGGGAATTTGCCTGTGTG -ACGGAATGGGAATTTGCCCTAGTG -ACGGAATGGGAATTTGCCCATCTG -ACGGAATGGGAATTTGCCGAGTTG -ACGGAATGGGAATTTGCCAGACTG -ACGGAATGGGAATTTGCCTCGGTA -ACGGAATGGGAATTTGCCTGCCTA -ACGGAATGGGAATTTGCCCCACTA -ACGGAATGGGAATTTGCCGGAGTA -ACGGAATGGGAATTTGCCTCGTCT -ACGGAATGGGAATTTGCCTGCACT -ACGGAATGGGAATTTGCCCTGACT -ACGGAATGGGAATTTGCCCAACCT -ACGGAATGGGAATTTGCCGCTACT -ACGGAATGGGAATTTGCCGGATCT -ACGGAATGGGAATTTGCCAAGGCT -ACGGAATGGGAATTTGCCTCAACC -ACGGAATGGGAATTTGCCTGTTCC -ACGGAATGGGAATTTGCCATTCCC -ACGGAATGGGAATTTGCCTTCTCG -ACGGAATGGGAATTTGCCTAGACG -ACGGAATGGGAATTTGCCGTAACG -ACGGAATGGGAATTTGCCACTTCG -ACGGAATGGGAATTTGCCTACGCA -ACGGAATGGGAATTTGCCCTTGCA -ACGGAATGGGAATTTGCCCGAACA -ACGGAATGGGAATTTGCCCAGTCA -ACGGAATGGGAATTTGCCGATCCA -ACGGAATGGGAATTTGCCACGACA -ACGGAATGGGAATTTGCCAGCTCA -ACGGAATGGGAATTTGCCTCACGT -ACGGAATGGGAATTTGCCCGTAGT -ACGGAATGGGAATTTGCCGTCAGT -ACGGAATGGGAATTTGCCGAAGGT -ACGGAATGGGAATTTGCCAACCGT -ACGGAATGGGAATTTGCCTTGTGC -ACGGAATGGGAATTTGCCCTAAGC -ACGGAATGGGAATTTGCCACTAGC -ACGGAATGGGAATTTGCCAGATGC -ACGGAATGGGAATTTGCCTGAAGG -ACGGAATGGGAATTTGCCCAATGG -ACGGAATGGGAATTTGCCATGAGG -ACGGAATGGGAATTTGCCAATGGG -ACGGAATGGGAATTTGCCTCCTGA -ACGGAATGGGAATTTGCCTAGCGA -ACGGAATGGGAATTTGCCCACAGA -ACGGAATGGGAATTTGCCGCAAGA -ACGGAATGGGAATTTGCCGGTTGA -ACGGAATGGGAATTTGCCTCCGAT -ACGGAATGGGAATTTGCCTGGCAT -ACGGAATGGGAATTTGCCCGAGAT -ACGGAATGGGAATTTGCCTACCAC -ACGGAATGGGAATTTGCCCAGAAC -ACGGAATGGGAATTTGCCGTCTAC -ACGGAATGGGAATTTGCCACGTAC -ACGGAATGGGAATTTGCCAGTGAC -ACGGAATGGGAATTTGCCCTGTAG -ACGGAATGGGAATTTGCCCCTAAG -ACGGAATGGGAATTTGCCGTTCAG -ACGGAATGGGAATTTGCCGCATAG -ACGGAATGGGAATTTGCCGACAAG -ACGGAATGGGAATTTGCCAAGCAG -ACGGAATGGGAATTTGCCCGTCAA -ACGGAATGGGAATTTGCCGCTGAA -ACGGAATGGGAATTTGCCAGTACG -ACGGAATGGGAATTTGCCATCCGA -ACGGAATGGGAATTTGCCATGGGA -ACGGAATGGGAATTTGCCGTGCAA -ACGGAATGGGAATTTGCCGAGGAA -ACGGAATGGGAATTTGCCCAGGTA -ACGGAATGGGAATTTGCCGACTCT -ACGGAATGGGAATTTGCCAGTCCT -ACGGAATGGGAATTTGCCTAAGCC -ACGGAATGGGAATTTGCCATAGCC -ACGGAATGGGAATTTGCCTAACCG -ACGGAATGGGAATTTGCCATGCCA -ACGGAATGGGAACTTGGTGGAAAC -ACGGAATGGGAACTTGGTAACACC -ACGGAATGGGAACTTGGTATCGAG -ACGGAATGGGAACTTGGTCTCCTT -ACGGAATGGGAACTTGGTCCTGTT -ACGGAATGGGAACTTGGTCGGTTT -ACGGAATGGGAACTTGGTGTGGTT -ACGGAATGGGAACTTGGTGCCTTT -ACGGAATGGGAACTTGGTGGTCTT -ACGGAATGGGAACTTGGTACGCTT -ACGGAATGGGAACTTGGTAGCGTT -ACGGAATGGGAACTTGGTTTCGTC -ACGGAATGGGAACTTGGTTCTCTC -ACGGAATGGGAACTTGGTTGGATC -ACGGAATGGGAACTTGGTCACTTC -ACGGAATGGGAACTTGGTGTACTC -ACGGAATGGGAACTTGGTGATGTC -ACGGAATGGGAACTTGGTACAGTC -ACGGAATGGGAACTTGGTTTGCTG -ACGGAATGGGAACTTGGTTCCATG -ACGGAATGGGAACTTGGTTGTGTG -ACGGAATGGGAACTTGGTCTAGTG -ACGGAATGGGAACTTGGTCATCTG -ACGGAATGGGAACTTGGTGAGTTG -ACGGAATGGGAACTTGGTAGACTG -ACGGAATGGGAACTTGGTTCGGTA -ACGGAATGGGAACTTGGTTGCCTA -ACGGAATGGGAACTTGGTCCACTA -ACGGAATGGGAACTTGGTGGAGTA -ACGGAATGGGAACTTGGTTCGTCT -ACGGAATGGGAACTTGGTTGCACT -ACGGAATGGGAACTTGGTCTGACT -ACGGAATGGGAACTTGGTCAACCT -ACGGAATGGGAACTTGGTGCTACT -ACGGAATGGGAACTTGGTGGATCT -ACGGAATGGGAACTTGGTAAGGCT -ACGGAATGGGAACTTGGTTCAACC -ACGGAATGGGAACTTGGTTGTTCC -ACGGAATGGGAACTTGGTATTCCC -ACGGAATGGGAACTTGGTTTCTCG -ACGGAATGGGAACTTGGTTAGACG -ACGGAATGGGAACTTGGTGTAACG -ACGGAATGGGAACTTGGTACTTCG -ACGGAATGGGAACTTGGTTACGCA -ACGGAATGGGAACTTGGTCTTGCA -ACGGAATGGGAACTTGGTCGAACA -ACGGAATGGGAACTTGGTCAGTCA -ACGGAATGGGAACTTGGTGATCCA -ACGGAATGGGAACTTGGTACGACA -ACGGAATGGGAACTTGGTAGCTCA -ACGGAATGGGAACTTGGTTCACGT -ACGGAATGGGAACTTGGTCGTAGT -ACGGAATGGGAACTTGGTGTCAGT -ACGGAATGGGAACTTGGTGAAGGT -ACGGAATGGGAACTTGGTAACCGT -ACGGAATGGGAACTTGGTTTGTGC -ACGGAATGGGAACTTGGTCTAAGC -ACGGAATGGGAACTTGGTACTAGC -ACGGAATGGGAACTTGGTAGATGC -ACGGAATGGGAACTTGGTTGAAGG -ACGGAATGGGAACTTGGTCAATGG -ACGGAATGGGAACTTGGTATGAGG -ACGGAATGGGAACTTGGTAATGGG -ACGGAATGGGAACTTGGTTCCTGA -ACGGAATGGGAACTTGGTTAGCGA -ACGGAATGGGAACTTGGTCACAGA -ACGGAATGGGAACTTGGTGCAAGA -ACGGAATGGGAACTTGGTGGTTGA -ACGGAATGGGAACTTGGTTCCGAT -ACGGAATGGGAACTTGGTTGGCAT -ACGGAATGGGAACTTGGTCGAGAT -ACGGAATGGGAACTTGGTTACCAC -ACGGAATGGGAACTTGGTCAGAAC -ACGGAATGGGAACTTGGTGTCTAC -ACGGAATGGGAACTTGGTACGTAC -ACGGAATGGGAACTTGGTAGTGAC -ACGGAATGGGAACTTGGTCTGTAG -ACGGAATGGGAACTTGGTCCTAAG -ACGGAATGGGAACTTGGTGTTCAG -ACGGAATGGGAACTTGGTGCATAG -ACGGAATGGGAACTTGGTGACAAG -ACGGAATGGGAACTTGGTAAGCAG -ACGGAATGGGAACTTGGTCGTCAA -ACGGAATGGGAACTTGGTGCTGAA -ACGGAATGGGAACTTGGTAGTACG -ACGGAATGGGAACTTGGTATCCGA -ACGGAATGGGAACTTGGTATGGGA -ACGGAATGGGAACTTGGTGTGCAA -ACGGAATGGGAACTTGGTGAGGAA -ACGGAATGGGAACTTGGTCAGGTA -ACGGAATGGGAACTTGGTGACTCT -ACGGAATGGGAACTTGGTAGTCCT -ACGGAATGGGAACTTGGTTAAGCC -ACGGAATGGGAACTTGGTATAGCC -ACGGAATGGGAACTTGGTTAACCG -ACGGAATGGGAACTTGGTATGCCA -ACGGAATGGGAACTTACGGGAAAC -ACGGAATGGGAACTTACGAACACC -ACGGAATGGGAACTTACGATCGAG -ACGGAATGGGAACTTACGCTCCTT -ACGGAATGGGAACTTACGCCTGTT -ACGGAATGGGAACTTACGCGGTTT -ACGGAATGGGAACTTACGGTGGTT -ACGGAATGGGAACTTACGGCCTTT -ACGGAATGGGAACTTACGGGTCTT -ACGGAATGGGAACTTACGACGCTT -ACGGAATGGGAACTTACGAGCGTT -ACGGAATGGGAACTTACGTTCGTC -ACGGAATGGGAACTTACGTCTCTC -ACGGAATGGGAACTTACGTGGATC -ACGGAATGGGAACTTACGCACTTC -ACGGAATGGGAACTTACGGTACTC -ACGGAATGGGAACTTACGGATGTC -ACGGAATGGGAACTTACGACAGTC -ACGGAATGGGAACTTACGTTGCTG -ACGGAATGGGAACTTACGTCCATG -ACGGAATGGGAACTTACGTGTGTG -ACGGAATGGGAACTTACGCTAGTG -ACGGAATGGGAACTTACGCATCTG -ACGGAATGGGAACTTACGGAGTTG -ACGGAATGGGAACTTACGAGACTG -ACGGAATGGGAACTTACGTCGGTA -ACGGAATGGGAACTTACGTGCCTA -ACGGAATGGGAACTTACGCCACTA -ACGGAATGGGAACTTACGGGAGTA -ACGGAATGGGAACTTACGTCGTCT -ACGGAATGGGAACTTACGTGCACT -ACGGAATGGGAACTTACGCTGACT -ACGGAATGGGAACTTACGCAACCT -ACGGAATGGGAACTTACGGCTACT -ACGGAATGGGAACTTACGGGATCT -ACGGAATGGGAACTTACGAAGGCT -ACGGAATGGGAACTTACGTCAACC -ACGGAATGGGAACTTACGTGTTCC -ACGGAATGGGAACTTACGATTCCC -ACGGAATGGGAACTTACGTTCTCG -ACGGAATGGGAACTTACGTAGACG -ACGGAATGGGAACTTACGGTAACG -ACGGAATGGGAACTTACGACTTCG -ACGGAATGGGAACTTACGTACGCA -ACGGAATGGGAACTTACGCTTGCA -ACGGAATGGGAACTTACGCGAACA -ACGGAATGGGAACTTACGCAGTCA -ACGGAATGGGAACTTACGGATCCA -ACGGAATGGGAACTTACGACGACA -ACGGAATGGGAACTTACGAGCTCA -ACGGAATGGGAACTTACGTCACGT -ACGGAATGGGAACTTACGCGTAGT -ACGGAATGGGAACTTACGGTCAGT -ACGGAATGGGAACTTACGGAAGGT -ACGGAATGGGAACTTACGAACCGT -ACGGAATGGGAACTTACGTTGTGC -ACGGAATGGGAACTTACGCTAAGC -ACGGAATGGGAACTTACGACTAGC -ACGGAATGGGAACTTACGAGATGC -ACGGAATGGGAACTTACGTGAAGG -ACGGAATGGGAACTTACGCAATGG -ACGGAATGGGAACTTACGATGAGG -ACGGAATGGGAACTTACGAATGGG -ACGGAATGGGAACTTACGTCCTGA -ACGGAATGGGAACTTACGTAGCGA -ACGGAATGGGAACTTACGCACAGA -ACGGAATGGGAACTTACGGCAAGA -ACGGAATGGGAACTTACGGGTTGA -ACGGAATGGGAACTTACGTCCGAT -ACGGAATGGGAACTTACGTGGCAT -ACGGAATGGGAACTTACGCGAGAT -ACGGAATGGGAACTTACGTACCAC -ACGGAATGGGAACTTACGCAGAAC -ACGGAATGGGAACTTACGGTCTAC -ACGGAATGGGAACTTACGACGTAC -ACGGAATGGGAACTTACGAGTGAC -ACGGAATGGGAACTTACGCTGTAG -ACGGAATGGGAACTTACGCCTAAG -ACGGAATGGGAACTTACGGTTCAG -ACGGAATGGGAACTTACGGCATAG -ACGGAATGGGAACTTACGGACAAG -ACGGAATGGGAACTTACGAAGCAG -ACGGAATGGGAACTTACGCGTCAA -ACGGAATGGGAACTTACGGCTGAA -ACGGAATGGGAACTTACGAGTACG -ACGGAATGGGAACTTACGATCCGA -ACGGAATGGGAACTTACGATGGGA -ACGGAATGGGAACTTACGGTGCAA -ACGGAATGGGAACTTACGGAGGAA -ACGGAATGGGAACTTACGCAGGTA -ACGGAATGGGAACTTACGGACTCT -ACGGAATGGGAACTTACGAGTCCT -ACGGAATGGGAACTTACGTAAGCC -ACGGAATGGGAACTTACGATAGCC -ACGGAATGGGAACTTACGTAACCG -ACGGAATGGGAACTTACGATGCCA -ACGGAATGGGAAGTTAGCGGAAAC -ACGGAATGGGAAGTTAGCAACACC -ACGGAATGGGAAGTTAGCATCGAG -ACGGAATGGGAAGTTAGCCTCCTT -ACGGAATGGGAAGTTAGCCCTGTT -ACGGAATGGGAAGTTAGCCGGTTT -ACGGAATGGGAAGTTAGCGTGGTT -ACGGAATGGGAAGTTAGCGCCTTT -ACGGAATGGGAAGTTAGCGGTCTT -ACGGAATGGGAAGTTAGCACGCTT -ACGGAATGGGAAGTTAGCAGCGTT -ACGGAATGGGAAGTTAGCTTCGTC -ACGGAATGGGAAGTTAGCTCTCTC -ACGGAATGGGAAGTTAGCTGGATC -ACGGAATGGGAAGTTAGCCACTTC -ACGGAATGGGAAGTTAGCGTACTC -ACGGAATGGGAAGTTAGCGATGTC -ACGGAATGGGAAGTTAGCACAGTC -ACGGAATGGGAAGTTAGCTTGCTG -ACGGAATGGGAAGTTAGCTCCATG -ACGGAATGGGAAGTTAGCTGTGTG -ACGGAATGGGAAGTTAGCCTAGTG -ACGGAATGGGAAGTTAGCCATCTG -ACGGAATGGGAAGTTAGCGAGTTG -ACGGAATGGGAAGTTAGCAGACTG -ACGGAATGGGAAGTTAGCTCGGTA -ACGGAATGGGAAGTTAGCTGCCTA -ACGGAATGGGAAGTTAGCCCACTA -ACGGAATGGGAAGTTAGCGGAGTA -ACGGAATGGGAAGTTAGCTCGTCT -ACGGAATGGGAAGTTAGCTGCACT -ACGGAATGGGAAGTTAGCCTGACT -ACGGAATGGGAAGTTAGCCAACCT -ACGGAATGGGAAGTTAGCGCTACT -ACGGAATGGGAAGTTAGCGGATCT -ACGGAATGGGAAGTTAGCAAGGCT -ACGGAATGGGAAGTTAGCTCAACC -ACGGAATGGGAAGTTAGCTGTTCC -ACGGAATGGGAAGTTAGCATTCCC -ACGGAATGGGAAGTTAGCTTCTCG -ACGGAATGGGAAGTTAGCTAGACG -ACGGAATGGGAAGTTAGCGTAACG -ACGGAATGGGAAGTTAGCACTTCG -ACGGAATGGGAAGTTAGCTACGCA -ACGGAATGGGAAGTTAGCCTTGCA -ACGGAATGGGAAGTTAGCCGAACA -ACGGAATGGGAAGTTAGCCAGTCA -ACGGAATGGGAAGTTAGCGATCCA -ACGGAATGGGAAGTTAGCACGACA -ACGGAATGGGAAGTTAGCAGCTCA -ACGGAATGGGAAGTTAGCTCACGT -ACGGAATGGGAAGTTAGCCGTAGT -ACGGAATGGGAAGTTAGCGTCAGT -ACGGAATGGGAAGTTAGCGAAGGT -ACGGAATGGGAAGTTAGCAACCGT -ACGGAATGGGAAGTTAGCTTGTGC -ACGGAATGGGAAGTTAGCCTAAGC -ACGGAATGGGAAGTTAGCACTAGC -ACGGAATGGGAAGTTAGCAGATGC -ACGGAATGGGAAGTTAGCTGAAGG -ACGGAATGGGAAGTTAGCCAATGG -ACGGAATGGGAAGTTAGCATGAGG -ACGGAATGGGAAGTTAGCAATGGG -ACGGAATGGGAAGTTAGCTCCTGA -ACGGAATGGGAAGTTAGCTAGCGA -ACGGAATGGGAAGTTAGCCACAGA -ACGGAATGGGAAGTTAGCGCAAGA -ACGGAATGGGAAGTTAGCGGTTGA -ACGGAATGGGAAGTTAGCTCCGAT -ACGGAATGGGAAGTTAGCTGGCAT -ACGGAATGGGAAGTTAGCCGAGAT -ACGGAATGGGAAGTTAGCTACCAC -ACGGAATGGGAAGTTAGCCAGAAC -ACGGAATGGGAAGTTAGCGTCTAC -ACGGAATGGGAAGTTAGCACGTAC -ACGGAATGGGAAGTTAGCAGTGAC -ACGGAATGGGAAGTTAGCCTGTAG -ACGGAATGGGAAGTTAGCCCTAAG -ACGGAATGGGAAGTTAGCGTTCAG -ACGGAATGGGAAGTTAGCGCATAG -ACGGAATGGGAAGTTAGCGACAAG -ACGGAATGGGAAGTTAGCAAGCAG -ACGGAATGGGAAGTTAGCCGTCAA -ACGGAATGGGAAGTTAGCGCTGAA -ACGGAATGGGAAGTTAGCAGTACG -ACGGAATGGGAAGTTAGCATCCGA -ACGGAATGGGAAGTTAGCATGGGA -ACGGAATGGGAAGTTAGCGTGCAA -ACGGAATGGGAAGTTAGCGAGGAA -ACGGAATGGGAAGTTAGCCAGGTA -ACGGAATGGGAAGTTAGCGACTCT -ACGGAATGGGAAGTTAGCAGTCCT -ACGGAATGGGAAGTTAGCTAAGCC -ACGGAATGGGAAGTTAGCATAGCC -ACGGAATGGGAAGTTAGCTAACCG -ACGGAATGGGAAGTTAGCATGCCA -ACGGAATGGGAAGTCTTCGGAAAC -ACGGAATGGGAAGTCTTCAACACC -ACGGAATGGGAAGTCTTCATCGAG -ACGGAATGGGAAGTCTTCCTCCTT -ACGGAATGGGAAGTCTTCCCTGTT -ACGGAATGGGAAGTCTTCCGGTTT -ACGGAATGGGAAGTCTTCGTGGTT -ACGGAATGGGAAGTCTTCGCCTTT -ACGGAATGGGAAGTCTTCGGTCTT -ACGGAATGGGAAGTCTTCACGCTT -ACGGAATGGGAAGTCTTCAGCGTT -ACGGAATGGGAAGTCTTCTTCGTC -ACGGAATGGGAAGTCTTCTCTCTC -ACGGAATGGGAAGTCTTCTGGATC -ACGGAATGGGAAGTCTTCCACTTC -ACGGAATGGGAAGTCTTCGTACTC -ACGGAATGGGAAGTCTTCGATGTC -ACGGAATGGGAAGTCTTCACAGTC -ACGGAATGGGAAGTCTTCTTGCTG -ACGGAATGGGAAGTCTTCTCCATG -ACGGAATGGGAAGTCTTCTGTGTG -ACGGAATGGGAAGTCTTCCTAGTG -ACGGAATGGGAAGTCTTCCATCTG -ACGGAATGGGAAGTCTTCGAGTTG -ACGGAATGGGAAGTCTTCAGACTG -ACGGAATGGGAAGTCTTCTCGGTA -ACGGAATGGGAAGTCTTCTGCCTA -ACGGAATGGGAAGTCTTCCCACTA -ACGGAATGGGAAGTCTTCGGAGTA -ACGGAATGGGAAGTCTTCTCGTCT -ACGGAATGGGAAGTCTTCTGCACT -ACGGAATGGGAAGTCTTCCTGACT -ACGGAATGGGAAGTCTTCCAACCT -ACGGAATGGGAAGTCTTCGCTACT -ACGGAATGGGAAGTCTTCGGATCT -ACGGAATGGGAAGTCTTCAAGGCT -ACGGAATGGGAAGTCTTCTCAACC -ACGGAATGGGAAGTCTTCTGTTCC -ACGGAATGGGAAGTCTTCATTCCC -ACGGAATGGGAAGTCTTCTTCTCG -ACGGAATGGGAAGTCTTCTAGACG -ACGGAATGGGAAGTCTTCGTAACG -ACGGAATGGGAAGTCTTCACTTCG -ACGGAATGGGAAGTCTTCTACGCA -ACGGAATGGGAAGTCTTCCTTGCA -ACGGAATGGGAAGTCTTCCGAACA -ACGGAATGGGAAGTCTTCCAGTCA -ACGGAATGGGAAGTCTTCGATCCA -ACGGAATGGGAAGTCTTCACGACA -ACGGAATGGGAAGTCTTCAGCTCA -ACGGAATGGGAAGTCTTCTCACGT -ACGGAATGGGAAGTCTTCCGTAGT -ACGGAATGGGAAGTCTTCGTCAGT -ACGGAATGGGAAGTCTTCGAAGGT -ACGGAATGGGAAGTCTTCAACCGT -ACGGAATGGGAAGTCTTCTTGTGC -ACGGAATGGGAAGTCTTCCTAAGC -ACGGAATGGGAAGTCTTCACTAGC -ACGGAATGGGAAGTCTTCAGATGC -ACGGAATGGGAAGTCTTCTGAAGG -ACGGAATGGGAAGTCTTCCAATGG -ACGGAATGGGAAGTCTTCATGAGG -ACGGAATGGGAAGTCTTCAATGGG -ACGGAATGGGAAGTCTTCTCCTGA -ACGGAATGGGAAGTCTTCTAGCGA -ACGGAATGGGAAGTCTTCCACAGA -ACGGAATGGGAAGTCTTCGCAAGA -ACGGAATGGGAAGTCTTCGGTTGA -ACGGAATGGGAAGTCTTCTCCGAT -ACGGAATGGGAAGTCTTCTGGCAT -ACGGAATGGGAAGTCTTCCGAGAT -ACGGAATGGGAAGTCTTCTACCAC -ACGGAATGGGAAGTCTTCCAGAAC -ACGGAATGGGAAGTCTTCGTCTAC -ACGGAATGGGAAGTCTTCACGTAC -ACGGAATGGGAAGTCTTCAGTGAC -ACGGAATGGGAAGTCTTCCTGTAG -ACGGAATGGGAAGTCTTCCCTAAG -ACGGAATGGGAAGTCTTCGTTCAG -ACGGAATGGGAAGTCTTCGCATAG -ACGGAATGGGAAGTCTTCGACAAG -ACGGAATGGGAAGTCTTCAAGCAG -ACGGAATGGGAAGTCTTCCGTCAA -ACGGAATGGGAAGTCTTCGCTGAA -ACGGAATGGGAAGTCTTCAGTACG -ACGGAATGGGAAGTCTTCATCCGA -ACGGAATGGGAAGTCTTCATGGGA -ACGGAATGGGAAGTCTTCGTGCAA -ACGGAATGGGAAGTCTTCGAGGAA -ACGGAATGGGAAGTCTTCCAGGTA -ACGGAATGGGAAGTCTTCGACTCT -ACGGAATGGGAAGTCTTCAGTCCT -ACGGAATGGGAAGTCTTCTAAGCC -ACGGAATGGGAAGTCTTCATAGCC -ACGGAATGGGAAGTCTTCTAACCG -ACGGAATGGGAAGTCTTCATGCCA -ACGGAATGGGAACTCTCTGGAAAC -ACGGAATGGGAACTCTCTAACACC -ACGGAATGGGAACTCTCTATCGAG -ACGGAATGGGAACTCTCTCTCCTT -ACGGAATGGGAACTCTCTCCTGTT -ACGGAATGGGAACTCTCTCGGTTT -ACGGAATGGGAACTCTCTGTGGTT -ACGGAATGGGAACTCTCTGCCTTT -ACGGAATGGGAACTCTCTGGTCTT -ACGGAATGGGAACTCTCTACGCTT -ACGGAATGGGAACTCTCTAGCGTT -ACGGAATGGGAACTCTCTTTCGTC -ACGGAATGGGAACTCTCTTCTCTC -ACGGAATGGGAACTCTCTTGGATC -ACGGAATGGGAACTCTCTCACTTC -ACGGAATGGGAACTCTCTGTACTC -ACGGAATGGGAACTCTCTGATGTC -ACGGAATGGGAACTCTCTACAGTC -ACGGAATGGGAACTCTCTTTGCTG -ACGGAATGGGAACTCTCTTCCATG -ACGGAATGGGAACTCTCTTGTGTG -ACGGAATGGGAACTCTCTCTAGTG -ACGGAATGGGAACTCTCTCATCTG -ACGGAATGGGAACTCTCTGAGTTG -ACGGAATGGGAACTCTCTAGACTG -ACGGAATGGGAACTCTCTTCGGTA -ACGGAATGGGAACTCTCTTGCCTA -ACGGAATGGGAACTCTCTCCACTA -ACGGAATGGGAACTCTCTGGAGTA -ACGGAATGGGAACTCTCTTCGTCT -ACGGAATGGGAACTCTCTTGCACT -ACGGAATGGGAACTCTCTCTGACT -ACGGAATGGGAACTCTCTCAACCT -ACGGAATGGGAACTCTCTGCTACT -ACGGAATGGGAACTCTCTGGATCT -ACGGAATGGGAACTCTCTAAGGCT -ACGGAATGGGAACTCTCTTCAACC -ACGGAATGGGAACTCTCTTGTTCC -ACGGAATGGGAACTCTCTATTCCC -ACGGAATGGGAACTCTCTTTCTCG -ACGGAATGGGAACTCTCTTAGACG -ACGGAATGGGAACTCTCTGTAACG -ACGGAATGGGAACTCTCTACTTCG -ACGGAATGGGAACTCTCTTACGCA -ACGGAATGGGAACTCTCTCTTGCA -ACGGAATGGGAACTCTCTCGAACA -ACGGAATGGGAACTCTCTCAGTCA -ACGGAATGGGAACTCTCTGATCCA -ACGGAATGGGAACTCTCTACGACA -ACGGAATGGGAACTCTCTAGCTCA -ACGGAATGGGAACTCTCTTCACGT -ACGGAATGGGAACTCTCTCGTAGT -ACGGAATGGGAACTCTCTGTCAGT -ACGGAATGGGAACTCTCTGAAGGT -ACGGAATGGGAACTCTCTAACCGT -ACGGAATGGGAACTCTCTTTGTGC -ACGGAATGGGAACTCTCTCTAAGC -ACGGAATGGGAACTCTCTACTAGC -ACGGAATGGGAACTCTCTAGATGC -ACGGAATGGGAACTCTCTTGAAGG -ACGGAATGGGAACTCTCTCAATGG -ACGGAATGGGAACTCTCTATGAGG -ACGGAATGGGAACTCTCTAATGGG -ACGGAATGGGAACTCTCTTCCTGA -ACGGAATGGGAACTCTCTTAGCGA -ACGGAATGGGAACTCTCTCACAGA -ACGGAATGGGAACTCTCTGCAAGA -ACGGAATGGGAACTCTCTGGTTGA -ACGGAATGGGAACTCTCTTCCGAT -ACGGAATGGGAACTCTCTTGGCAT -ACGGAATGGGAACTCTCTCGAGAT -ACGGAATGGGAACTCTCTTACCAC -ACGGAATGGGAACTCTCTCAGAAC -ACGGAATGGGAACTCTCTGTCTAC -ACGGAATGGGAACTCTCTACGTAC -ACGGAATGGGAACTCTCTAGTGAC -ACGGAATGGGAACTCTCTCTGTAG -ACGGAATGGGAACTCTCTCCTAAG -ACGGAATGGGAACTCTCTGTTCAG -ACGGAATGGGAACTCTCTGCATAG -ACGGAATGGGAACTCTCTGACAAG -ACGGAATGGGAACTCTCTAAGCAG -ACGGAATGGGAACTCTCTCGTCAA -ACGGAATGGGAACTCTCTGCTGAA -ACGGAATGGGAACTCTCTAGTACG -ACGGAATGGGAACTCTCTATCCGA -ACGGAATGGGAACTCTCTATGGGA -ACGGAATGGGAACTCTCTGTGCAA -ACGGAATGGGAACTCTCTGAGGAA -ACGGAATGGGAACTCTCTCAGGTA -ACGGAATGGGAACTCTCTGACTCT -ACGGAATGGGAACTCTCTAGTCCT -ACGGAATGGGAACTCTCTTAAGCC -ACGGAATGGGAACTCTCTATAGCC -ACGGAATGGGAACTCTCTTAACCG -ACGGAATGGGAACTCTCTATGCCA -ACGGAATGGGAAATCTGGGGAAAC -ACGGAATGGGAAATCTGGAACACC -ACGGAATGGGAAATCTGGATCGAG -ACGGAATGGGAAATCTGGCTCCTT -ACGGAATGGGAAATCTGGCCTGTT -ACGGAATGGGAAATCTGGCGGTTT -ACGGAATGGGAAATCTGGGTGGTT -ACGGAATGGGAAATCTGGGCCTTT -ACGGAATGGGAAATCTGGGGTCTT -ACGGAATGGGAAATCTGGACGCTT -ACGGAATGGGAAATCTGGAGCGTT -ACGGAATGGGAAATCTGGTTCGTC -ACGGAATGGGAAATCTGGTCTCTC -ACGGAATGGGAAATCTGGTGGATC -ACGGAATGGGAAATCTGGCACTTC -ACGGAATGGGAAATCTGGGTACTC -ACGGAATGGGAAATCTGGGATGTC -ACGGAATGGGAAATCTGGACAGTC -ACGGAATGGGAAATCTGGTTGCTG -ACGGAATGGGAAATCTGGTCCATG -ACGGAATGGGAAATCTGGTGTGTG -ACGGAATGGGAAATCTGGCTAGTG -ACGGAATGGGAAATCTGGCATCTG -ACGGAATGGGAAATCTGGGAGTTG -ACGGAATGGGAAATCTGGAGACTG -ACGGAATGGGAAATCTGGTCGGTA -ACGGAATGGGAAATCTGGTGCCTA -ACGGAATGGGAAATCTGGCCACTA -ACGGAATGGGAAATCTGGGGAGTA -ACGGAATGGGAAATCTGGTCGTCT -ACGGAATGGGAAATCTGGTGCACT -ACGGAATGGGAAATCTGGCTGACT -ACGGAATGGGAAATCTGGCAACCT -ACGGAATGGGAAATCTGGGCTACT -ACGGAATGGGAAATCTGGGGATCT -ACGGAATGGGAAATCTGGAAGGCT -ACGGAATGGGAAATCTGGTCAACC -ACGGAATGGGAAATCTGGTGTTCC -ACGGAATGGGAAATCTGGATTCCC -ACGGAATGGGAAATCTGGTTCTCG -ACGGAATGGGAAATCTGGTAGACG -ACGGAATGGGAAATCTGGGTAACG -ACGGAATGGGAAATCTGGACTTCG -ACGGAATGGGAAATCTGGTACGCA -ACGGAATGGGAAATCTGGCTTGCA -ACGGAATGGGAAATCTGGCGAACA -ACGGAATGGGAAATCTGGCAGTCA -ACGGAATGGGAAATCTGGGATCCA -ACGGAATGGGAAATCTGGACGACA -ACGGAATGGGAAATCTGGAGCTCA -ACGGAATGGGAAATCTGGTCACGT -ACGGAATGGGAAATCTGGCGTAGT -ACGGAATGGGAAATCTGGGTCAGT -ACGGAATGGGAAATCTGGGAAGGT -ACGGAATGGGAAATCTGGAACCGT -ACGGAATGGGAAATCTGGTTGTGC -ACGGAATGGGAAATCTGGCTAAGC -ACGGAATGGGAAATCTGGACTAGC -ACGGAATGGGAAATCTGGAGATGC -ACGGAATGGGAAATCTGGTGAAGG -ACGGAATGGGAAATCTGGCAATGG -ACGGAATGGGAAATCTGGATGAGG -ACGGAATGGGAAATCTGGAATGGG -ACGGAATGGGAAATCTGGTCCTGA -ACGGAATGGGAAATCTGGTAGCGA -ACGGAATGGGAAATCTGGCACAGA -ACGGAATGGGAAATCTGGGCAAGA -ACGGAATGGGAAATCTGGGGTTGA -ACGGAATGGGAAATCTGGTCCGAT -ACGGAATGGGAAATCTGGTGGCAT -ACGGAATGGGAAATCTGGCGAGAT -ACGGAATGGGAAATCTGGTACCAC -ACGGAATGGGAAATCTGGCAGAAC -ACGGAATGGGAAATCTGGGTCTAC -ACGGAATGGGAAATCTGGACGTAC -ACGGAATGGGAAATCTGGAGTGAC -ACGGAATGGGAAATCTGGCTGTAG -ACGGAATGGGAAATCTGGCCTAAG -ACGGAATGGGAAATCTGGGTTCAG -ACGGAATGGGAAATCTGGGCATAG -ACGGAATGGGAAATCTGGGACAAG -ACGGAATGGGAAATCTGGAAGCAG -ACGGAATGGGAAATCTGGCGTCAA -ACGGAATGGGAAATCTGGGCTGAA -ACGGAATGGGAAATCTGGAGTACG -ACGGAATGGGAAATCTGGATCCGA -ACGGAATGGGAAATCTGGATGGGA -ACGGAATGGGAAATCTGGGTGCAA -ACGGAATGGGAAATCTGGGAGGAA -ACGGAATGGGAAATCTGGCAGGTA -ACGGAATGGGAAATCTGGGACTCT -ACGGAATGGGAAATCTGGAGTCCT -ACGGAATGGGAAATCTGGTAAGCC -ACGGAATGGGAAATCTGGATAGCC -ACGGAATGGGAAATCTGGTAACCG -ACGGAATGGGAAATCTGGATGCCA -ACGGAATGGGAATTCCACGGAAAC -ACGGAATGGGAATTCCACAACACC -ACGGAATGGGAATTCCACATCGAG -ACGGAATGGGAATTCCACCTCCTT -ACGGAATGGGAATTCCACCCTGTT -ACGGAATGGGAATTCCACCGGTTT -ACGGAATGGGAATTCCACGTGGTT -ACGGAATGGGAATTCCACGCCTTT -ACGGAATGGGAATTCCACGGTCTT -ACGGAATGGGAATTCCACACGCTT -ACGGAATGGGAATTCCACAGCGTT -ACGGAATGGGAATTCCACTTCGTC -ACGGAATGGGAATTCCACTCTCTC -ACGGAATGGGAATTCCACTGGATC -ACGGAATGGGAATTCCACCACTTC -ACGGAATGGGAATTCCACGTACTC -ACGGAATGGGAATTCCACGATGTC -ACGGAATGGGAATTCCACACAGTC -ACGGAATGGGAATTCCACTTGCTG -ACGGAATGGGAATTCCACTCCATG -ACGGAATGGGAATTCCACTGTGTG -ACGGAATGGGAATTCCACCTAGTG -ACGGAATGGGAATTCCACCATCTG -ACGGAATGGGAATTCCACGAGTTG -ACGGAATGGGAATTCCACAGACTG -ACGGAATGGGAATTCCACTCGGTA -ACGGAATGGGAATTCCACTGCCTA -ACGGAATGGGAATTCCACCCACTA -ACGGAATGGGAATTCCACGGAGTA -ACGGAATGGGAATTCCACTCGTCT -ACGGAATGGGAATTCCACTGCACT -ACGGAATGGGAATTCCACCTGACT -ACGGAATGGGAATTCCACCAACCT -ACGGAATGGGAATTCCACGCTACT -ACGGAATGGGAATTCCACGGATCT -ACGGAATGGGAATTCCACAAGGCT -ACGGAATGGGAATTCCACTCAACC -ACGGAATGGGAATTCCACTGTTCC -ACGGAATGGGAATTCCACATTCCC -ACGGAATGGGAATTCCACTTCTCG -ACGGAATGGGAATTCCACTAGACG -ACGGAATGGGAATTCCACGTAACG -ACGGAATGGGAATTCCACACTTCG -ACGGAATGGGAATTCCACTACGCA -ACGGAATGGGAATTCCACCTTGCA -ACGGAATGGGAATTCCACCGAACA -ACGGAATGGGAATTCCACCAGTCA -ACGGAATGGGAATTCCACGATCCA -ACGGAATGGGAATTCCACACGACA -ACGGAATGGGAATTCCACAGCTCA -ACGGAATGGGAATTCCACTCACGT -ACGGAATGGGAATTCCACCGTAGT -ACGGAATGGGAATTCCACGTCAGT -ACGGAATGGGAATTCCACGAAGGT -ACGGAATGGGAATTCCACAACCGT -ACGGAATGGGAATTCCACTTGTGC -ACGGAATGGGAATTCCACCTAAGC -ACGGAATGGGAATTCCACACTAGC -ACGGAATGGGAATTCCACAGATGC -ACGGAATGGGAATTCCACTGAAGG -ACGGAATGGGAATTCCACCAATGG -ACGGAATGGGAATTCCACATGAGG -ACGGAATGGGAATTCCACAATGGG -ACGGAATGGGAATTCCACTCCTGA -ACGGAATGGGAATTCCACTAGCGA -ACGGAATGGGAATTCCACCACAGA -ACGGAATGGGAATTCCACGCAAGA -ACGGAATGGGAATTCCACGGTTGA -ACGGAATGGGAATTCCACTCCGAT -ACGGAATGGGAATTCCACTGGCAT -ACGGAATGGGAATTCCACCGAGAT -ACGGAATGGGAATTCCACTACCAC -ACGGAATGGGAATTCCACCAGAAC -ACGGAATGGGAATTCCACGTCTAC -ACGGAATGGGAATTCCACACGTAC -ACGGAATGGGAATTCCACAGTGAC -ACGGAATGGGAATTCCACCTGTAG -ACGGAATGGGAATTCCACCCTAAG -ACGGAATGGGAATTCCACGTTCAG -ACGGAATGGGAATTCCACGCATAG -ACGGAATGGGAATTCCACGACAAG -ACGGAATGGGAATTCCACAAGCAG -ACGGAATGGGAATTCCACCGTCAA -ACGGAATGGGAATTCCACGCTGAA -ACGGAATGGGAATTCCACAGTACG -ACGGAATGGGAATTCCACATCCGA -ACGGAATGGGAATTCCACATGGGA -ACGGAATGGGAATTCCACGTGCAA -ACGGAATGGGAATTCCACGAGGAA -ACGGAATGGGAATTCCACCAGGTA -ACGGAATGGGAATTCCACGACTCT -ACGGAATGGGAATTCCACAGTCCT -ACGGAATGGGAATTCCACTAAGCC -ACGGAATGGGAATTCCACATAGCC -ACGGAATGGGAATTCCACTAACCG -ACGGAATGGGAATTCCACATGCCA -ACGGAATGGGAACTCGTAGGAAAC -ACGGAATGGGAACTCGTAAACACC -ACGGAATGGGAACTCGTAATCGAG -ACGGAATGGGAACTCGTACTCCTT -ACGGAATGGGAACTCGTACCTGTT -ACGGAATGGGAACTCGTACGGTTT -ACGGAATGGGAACTCGTAGTGGTT -ACGGAATGGGAACTCGTAGCCTTT -ACGGAATGGGAACTCGTAGGTCTT -ACGGAATGGGAACTCGTAACGCTT -ACGGAATGGGAACTCGTAAGCGTT -ACGGAATGGGAACTCGTATTCGTC -ACGGAATGGGAACTCGTATCTCTC -ACGGAATGGGAACTCGTATGGATC -ACGGAATGGGAACTCGTACACTTC -ACGGAATGGGAACTCGTAGTACTC -ACGGAATGGGAACTCGTAGATGTC -ACGGAATGGGAACTCGTAACAGTC -ACGGAATGGGAACTCGTATTGCTG -ACGGAATGGGAACTCGTATCCATG -ACGGAATGGGAACTCGTATGTGTG -ACGGAATGGGAACTCGTACTAGTG -ACGGAATGGGAACTCGTACATCTG -ACGGAATGGGAACTCGTAGAGTTG -ACGGAATGGGAACTCGTAAGACTG -ACGGAATGGGAACTCGTATCGGTA -ACGGAATGGGAACTCGTATGCCTA -ACGGAATGGGAACTCGTACCACTA -ACGGAATGGGAACTCGTAGGAGTA -ACGGAATGGGAACTCGTATCGTCT -ACGGAATGGGAACTCGTATGCACT -ACGGAATGGGAACTCGTACTGACT -ACGGAATGGGAACTCGTACAACCT -ACGGAATGGGAACTCGTAGCTACT -ACGGAATGGGAACTCGTAGGATCT -ACGGAATGGGAACTCGTAAAGGCT -ACGGAATGGGAACTCGTATCAACC -ACGGAATGGGAACTCGTATGTTCC -ACGGAATGGGAACTCGTAATTCCC -ACGGAATGGGAACTCGTATTCTCG -ACGGAATGGGAACTCGTATAGACG -ACGGAATGGGAACTCGTAGTAACG -ACGGAATGGGAACTCGTAACTTCG -ACGGAATGGGAACTCGTATACGCA -ACGGAATGGGAACTCGTACTTGCA -ACGGAATGGGAACTCGTACGAACA -ACGGAATGGGAACTCGTACAGTCA -ACGGAATGGGAACTCGTAGATCCA -ACGGAATGGGAACTCGTAACGACA -ACGGAATGGGAACTCGTAAGCTCA -ACGGAATGGGAACTCGTATCACGT -ACGGAATGGGAACTCGTACGTAGT -ACGGAATGGGAACTCGTAGTCAGT -ACGGAATGGGAACTCGTAGAAGGT -ACGGAATGGGAACTCGTAAACCGT -ACGGAATGGGAACTCGTATTGTGC -ACGGAATGGGAACTCGTACTAAGC -ACGGAATGGGAACTCGTAACTAGC -ACGGAATGGGAACTCGTAAGATGC -ACGGAATGGGAACTCGTATGAAGG -ACGGAATGGGAACTCGTACAATGG -ACGGAATGGGAACTCGTAATGAGG -ACGGAATGGGAACTCGTAAATGGG -ACGGAATGGGAACTCGTATCCTGA -ACGGAATGGGAACTCGTATAGCGA -ACGGAATGGGAACTCGTACACAGA -ACGGAATGGGAACTCGTAGCAAGA -ACGGAATGGGAACTCGTAGGTTGA -ACGGAATGGGAACTCGTATCCGAT -ACGGAATGGGAACTCGTATGGCAT -ACGGAATGGGAACTCGTACGAGAT -ACGGAATGGGAACTCGTATACCAC -ACGGAATGGGAACTCGTACAGAAC -ACGGAATGGGAACTCGTAGTCTAC -ACGGAATGGGAACTCGTAACGTAC -ACGGAATGGGAACTCGTAAGTGAC -ACGGAATGGGAACTCGTACTGTAG -ACGGAATGGGAACTCGTACCTAAG -ACGGAATGGGAACTCGTAGTTCAG -ACGGAATGGGAACTCGTAGCATAG -ACGGAATGGGAACTCGTAGACAAG -ACGGAATGGGAACTCGTAAAGCAG -ACGGAATGGGAACTCGTACGTCAA -ACGGAATGGGAACTCGTAGCTGAA -ACGGAATGGGAACTCGTAAGTACG -ACGGAATGGGAACTCGTAATCCGA -ACGGAATGGGAACTCGTAATGGGA -ACGGAATGGGAACTCGTAGTGCAA -ACGGAATGGGAACTCGTAGAGGAA -ACGGAATGGGAACTCGTACAGGTA -ACGGAATGGGAACTCGTAGACTCT -ACGGAATGGGAACTCGTAAGTCCT -ACGGAATGGGAACTCGTATAAGCC -ACGGAATGGGAACTCGTAATAGCC -ACGGAATGGGAACTCGTATAACCG -ACGGAATGGGAACTCGTAATGCCA -ACGGAATGGGAAGTCGATGGAAAC -ACGGAATGGGAAGTCGATAACACC -ACGGAATGGGAAGTCGATATCGAG -ACGGAATGGGAAGTCGATCTCCTT -ACGGAATGGGAAGTCGATCCTGTT -ACGGAATGGGAAGTCGATCGGTTT -ACGGAATGGGAAGTCGATGTGGTT -ACGGAATGGGAAGTCGATGCCTTT -ACGGAATGGGAAGTCGATGGTCTT -ACGGAATGGGAAGTCGATACGCTT -ACGGAATGGGAAGTCGATAGCGTT -ACGGAATGGGAAGTCGATTTCGTC -ACGGAATGGGAAGTCGATTCTCTC -ACGGAATGGGAAGTCGATTGGATC -ACGGAATGGGAAGTCGATCACTTC -ACGGAATGGGAAGTCGATGTACTC -ACGGAATGGGAAGTCGATGATGTC -ACGGAATGGGAAGTCGATACAGTC -ACGGAATGGGAAGTCGATTTGCTG -ACGGAATGGGAAGTCGATTCCATG -ACGGAATGGGAAGTCGATTGTGTG -ACGGAATGGGAAGTCGATCTAGTG -ACGGAATGGGAAGTCGATCATCTG -ACGGAATGGGAAGTCGATGAGTTG -ACGGAATGGGAAGTCGATAGACTG -ACGGAATGGGAAGTCGATTCGGTA -ACGGAATGGGAAGTCGATTGCCTA -ACGGAATGGGAAGTCGATCCACTA -ACGGAATGGGAAGTCGATGGAGTA -ACGGAATGGGAAGTCGATTCGTCT -ACGGAATGGGAAGTCGATTGCACT -ACGGAATGGGAAGTCGATCTGACT -ACGGAATGGGAAGTCGATCAACCT -ACGGAATGGGAAGTCGATGCTACT -ACGGAATGGGAAGTCGATGGATCT -ACGGAATGGGAAGTCGATAAGGCT -ACGGAATGGGAAGTCGATTCAACC -ACGGAATGGGAAGTCGATTGTTCC -ACGGAATGGGAAGTCGATATTCCC -ACGGAATGGGAAGTCGATTTCTCG -ACGGAATGGGAAGTCGATTAGACG -ACGGAATGGGAAGTCGATGTAACG -ACGGAATGGGAAGTCGATACTTCG -ACGGAATGGGAAGTCGATTACGCA -ACGGAATGGGAAGTCGATCTTGCA -ACGGAATGGGAAGTCGATCGAACA -ACGGAATGGGAAGTCGATCAGTCA -ACGGAATGGGAAGTCGATGATCCA -ACGGAATGGGAAGTCGATACGACA -ACGGAATGGGAAGTCGATAGCTCA -ACGGAATGGGAAGTCGATTCACGT -ACGGAATGGGAAGTCGATCGTAGT -ACGGAATGGGAAGTCGATGTCAGT -ACGGAATGGGAAGTCGATGAAGGT -ACGGAATGGGAAGTCGATAACCGT -ACGGAATGGGAAGTCGATTTGTGC -ACGGAATGGGAAGTCGATCTAAGC -ACGGAATGGGAAGTCGATACTAGC -ACGGAATGGGAAGTCGATAGATGC -ACGGAATGGGAAGTCGATTGAAGG -ACGGAATGGGAAGTCGATCAATGG -ACGGAATGGGAAGTCGATATGAGG -ACGGAATGGGAAGTCGATAATGGG -ACGGAATGGGAAGTCGATTCCTGA -ACGGAATGGGAAGTCGATTAGCGA -ACGGAATGGGAAGTCGATCACAGA -ACGGAATGGGAAGTCGATGCAAGA -ACGGAATGGGAAGTCGATGGTTGA -ACGGAATGGGAAGTCGATTCCGAT -ACGGAATGGGAAGTCGATTGGCAT -ACGGAATGGGAAGTCGATCGAGAT -ACGGAATGGGAAGTCGATTACCAC -ACGGAATGGGAAGTCGATCAGAAC -ACGGAATGGGAAGTCGATGTCTAC -ACGGAATGGGAAGTCGATACGTAC -ACGGAATGGGAAGTCGATAGTGAC -ACGGAATGGGAAGTCGATCTGTAG -ACGGAATGGGAAGTCGATCCTAAG -ACGGAATGGGAAGTCGATGTTCAG -ACGGAATGGGAAGTCGATGCATAG -ACGGAATGGGAAGTCGATGACAAG -ACGGAATGGGAAGTCGATAAGCAG -ACGGAATGGGAAGTCGATCGTCAA -ACGGAATGGGAAGTCGATGCTGAA -ACGGAATGGGAAGTCGATAGTACG -ACGGAATGGGAAGTCGATATCCGA -ACGGAATGGGAAGTCGATATGGGA -ACGGAATGGGAAGTCGATGTGCAA -ACGGAATGGGAAGTCGATGAGGAA -ACGGAATGGGAAGTCGATCAGGTA -ACGGAATGGGAAGTCGATGACTCT -ACGGAATGGGAAGTCGATAGTCCT -ACGGAATGGGAAGTCGATTAAGCC -ACGGAATGGGAAGTCGATATAGCC -ACGGAATGGGAAGTCGATTAACCG -ACGGAATGGGAAGTCGATATGCCA -ACGGAATGGGAAGTCACAGGAAAC -ACGGAATGGGAAGTCACAAACACC -ACGGAATGGGAAGTCACAATCGAG -ACGGAATGGGAAGTCACACTCCTT -ACGGAATGGGAAGTCACACCTGTT -ACGGAATGGGAAGTCACACGGTTT -ACGGAATGGGAAGTCACAGTGGTT -ACGGAATGGGAAGTCACAGCCTTT -ACGGAATGGGAAGTCACAGGTCTT -ACGGAATGGGAAGTCACAACGCTT -ACGGAATGGGAAGTCACAAGCGTT -ACGGAATGGGAAGTCACATTCGTC -ACGGAATGGGAAGTCACATCTCTC -ACGGAATGGGAAGTCACATGGATC -ACGGAATGGGAAGTCACACACTTC -ACGGAATGGGAAGTCACAGTACTC -ACGGAATGGGAAGTCACAGATGTC -ACGGAATGGGAAGTCACAACAGTC -ACGGAATGGGAAGTCACATTGCTG -ACGGAATGGGAAGTCACATCCATG -ACGGAATGGGAAGTCACATGTGTG -ACGGAATGGGAAGTCACACTAGTG -ACGGAATGGGAAGTCACACATCTG -ACGGAATGGGAAGTCACAGAGTTG -ACGGAATGGGAAGTCACAAGACTG -ACGGAATGGGAAGTCACATCGGTA -ACGGAATGGGAAGTCACATGCCTA -ACGGAATGGGAAGTCACACCACTA -ACGGAATGGGAAGTCACAGGAGTA -ACGGAATGGGAAGTCACATCGTCT -ACGGAATGGGAAGTCACATGCACT -ACGGAATGGGAAGTCACACTGACT -ACGGAATGGGAAGTCACACAACCT -ACGGAATGGGAAGTCACAGCTACT -ACGGAATGGGAAGTCACAGGATCT -ACGGAATGGGAAGTCACAAAGGCT -ACGGAATGGGAAGTCACATCAACC -ACGGAATGGGAAGTCACATGTTCC -ACGGAATGGGAAGTCACAATTCCC -ACGGAATGGGAAGTCACATTCTCG -ACGGAATGGGAAGTCACATAGACG -ACGGAATGGGAAGTCACAGTAACG -ACGGAATGGGAAGTCACAACTTCG -ACGGAATGGGAAGTCACATACGCA -ACGGAATGGGAAGTCACACTTGCA -ACGGAATGGGAAGTCACACGAACA -ACGGAATGGGAAGTCACACAGTCA -ACGGAATGGGAAGTCACAGATCCA -ACGGAATGGGAAGTCACAACGACA -ACGGAATGGGAAGTCACAAGCTCA -ACGGAATGGGAAGTCACATCACGT -ACGGAATGGGAAGTCACACGTAGT -ACGGAATGGGAAGTCACAGTCAGT -ACGGAATGGGAAGTCACAGAAGGT -ACGGAATGGGAAGTCACAAACCGT -ACGGAATGGGAAGTCACATTGTGC -ACGGAATGGGAAGTCACACTAAGC -ACGGAATGGGAAGTCACAACTAGC -ACGGAATGGGAAGTCACAAGATGC -ACGGAATGGGAAGTCACATGAAGG -ACGGAATGGGAAGTCACACAATGG -ACGGAATGGGAAGTCACAATGAGG -ACGGAATGGGAAGTCACAAATGGG -ACGGAATGGGAAGTCACATCCTGA -ACGGAATGGGAAGTCACATAGCGA -ACGGAATGGGAAGTCACACACAGA -ACGGAATGGGAAGTCACAGCAAGA -ACGGAATGGGAAGTCACAGGTTGA -ACGGAATGGGAAGTCACATCCGAT -ACGGAATGGGAAGTCACATGGCAT -ACGGAATGGGAAGTCACACGAGAT -ACGGAATGGGAAGTCACATACCAC -ACGGAATGGGAAGTCACACAGAAC -ACGGAATGGGAAGTCACAGTCTAC -ACGGAATGGGAAGTCACAACGTAC -ACGGAATGGGAAGTCACAAGTGAC -ACGGAATGGGAAGTCACACTGTAG -ACGGAATGGGAAGTCACACCTAAG -ACGGAATGGGAAGTCACAGTTCAG -ACGGAATGGGAAGTCACAGCATAG -ACGGAATGGGAAGTCACAGACAAG -ACGGAATGGGAAGTCACAAAGCAG -ACGGAATGGGAAGTCACACGTCAA -ACGGAATGGGAAGTCACAGCTGAA -ACGGAATGGGAAGTCACAAGTACG -ACGGAATGGGAAGTCACAATCCGA -ACGGAATGGGAAGTCACAATGGGA -ACGGAATGGGAAGTCACAGTGCAA -ACGGAATGGGAAGTCACAGAGGAA -ACGGAATGGGAAGTCACACAGGTA -ACGGAATGGGAAGTCACAGACTCT -ACGGAATGGGAAGTCACAAGTCCT -ACGGAATGGGAAGTCACATAAGCC -ACGGAATGGGAAGTCACAATAGCC -ACGGAATGGGAAGTCACATAACCG -ACGGAATGGGAAGTCACAATGCCA -ACGGAATGGGAACTGTTGGGAAAC -ACGGAATGGGAACTGTTGAACACC -ACGGAATGGGAACTGTTGATCGAG -ACGGAATGGGAACTGTTGCTCCTT -ACGGAATGGGAACTGTTGCCTGTT -ACGGAATGGGAACTGTTGCGGTTT -ACGGAATGGGAACTGTTGGTGGTT -ACGGAATGGGAACTGTTGGCCTTT -ACGGAATGGGAACTGTTGGGTCTT -ACGGAATGGGAACTGTTGACGCTT -ACGGAATGGGAACTGTTGAGCGTT -ACGGAATGGGAACTGTTGTTCGTC -ACGGAATGGGAACTGTTGTCTCTC -ACGGAATGGGAACTGTTGTGGATC -ACGGAATGGGAACTGTTGCACTTC -ACGGAATGGGAACTGTTGGTACTC -ACGGAATGGGAACTGTTGGATGTC -ACGGAATGGGAACTGTTGACAGTC -ACGGAATGGGAACTGTTGTTGCTG -ACGGAATGGGAACTGTTGTCCATG -ACGGAATGGGAACTGTTGTGTGTG -ACGGAATGGGAACTGTTGCTAGTG -ACGGAATGGGAACTGTTGCATCTG -ACGGAATGGGAACTGTTGGAGTTG -ACGGAATGGGAACTGTTGAGACTG -ACGGAATGGGAACTGTTGTCGGTA -ACGGAATGGGAACTGTTGTGCCTA -ACGGAATGGGAACTGTTGCCACTA -ACGGAATGGGAACTGTTGGGAGTA -ACGGAATGGGAACTGTTGTCGTCT -ACGGAATGGGAACTGTTGTGCACT -ACGGAATGGGAACTGTTGCTGACT -ACGGAATGGGAACTGTTGCAACCT -ACGGAATGGGAACTGTTGGCTACT -ACGGAATGGGAACTGTTGGGATCT -ACGGAATGGGAACTGTTGAAGGCT -ACGGAATGGGAACTGTTGTCAACC -ACGGAATGGGAACTGTTGTGTTCC -ACGGAATGGGAACTGTTGATTCCC -ACGGAATGGGAACTGTTGTTCTCG -ACGGAATGGGAACTGTTGTAGACG -ACGGAATGGGAACTGTTGGTAACG -ACGGAATGGGAACTGTTGACTTCG -ACGGAATGGGAACTGTTGTACGCA -ACGGAATGGGAACTGTTGCTTGCA -ACGGAATGGGAACTGTTGCGAACA -ACGGAATGGGAACTGTTGCAGTCA -ACGGAATGGGAACTGTTGGATCCA -ACGGAATGGGAACTGTTGACGACA -ACGGAATGGGAACTGTTGAGCTCA -ACGGAATGGGAACTGTTGTCACGT -ACGGAATGGGAACTGTTGCGTAGT -ACGGAATGGGAACTGTTGGTCAGT -ACGGAATGGGAACTGTTGGAAGGT -ACGGAATGGGAACTGTTGAACCGT -ACGGAATGGGAACTGTTGTTGTGC -ACGGAATGGGAACTGTTGCTAAGC -ACGGAATGGGAACTGTTGACTAGC -ACGGAATGGGAACTGTTGAGATGC -ACGGAATGGGAACTGTTGTGAAGG -ACGGAATGGGAACTGTTGCAATGG -ACGGAATGGGAACTGTTGATGAGG -ACGGAATGGGAACTGTTGAATGGG -ACGGAATGGGAACTGTTGTCCTGA -ACGGAATGGGAACTGTTGTAGCGA -ACGGAATGGGAACTGTTGCACAGA -ACGGAATGGGAACTGTTGGCAAGA -ACGGAATGGGAACTGTTGGGTTGA -ACGGAATGGGAACTGTTGTCCGAT -ACGGAATGGGAACTGTTGTGGCAT -ACGGAATGGGAACTGTTGCGAGAT -ACGGAATGGGAACTGTTGTACCAC -ACGGAATGGGAACTGTTGCAGAAC -ACGGAATGGGAACTGTTGGTCTAC -ACGGAATGGGAACTGTTGACGTAC -ACGGAATGGGAACTGTTGAGTGAC -ACGGAATGGGAACTGTTGCTGTAG -ACGGAATGGGAACTGTTGCCTAAG -ACGGAATGGGAACTGTTGGTTCAG -ACGGAATGGGAACTGTTGGCATAG -ACGGAATGGGAACTGTTGGACAAG -ACGGAATGGGAACTGTTGAAGCAG -ACGGAATGGGAACTGTTGCGTCAA -ACGGAATGGGAACTGTTGGCTGAA -ACGGAATGGGAACTGTTGAGTACG -ACGGAATGGGAACTGTTGATCCGA -ACGGAATGGGAACTGTTGATGGGA -ACGGAATGGGAACTGTTGGTGCAA -ACGGAATGGGAACTGTTGGAGGAA -ACGGAATGGGAACTGTTGCAGGTA -ACGGAATGGGAACTGTTGGACTCT -ACGGAATGGGAACTGTTGAGTCCT -ACGGAATGGGAACTGTTGTAAGCC -ACGGAATGGGAACTGTTGATAGCC -ACGGAATGGGAACTGTTGTAACCG -ACGGAATGGGAACTGTTGATGCCA -ACGGAATGGGAAATGTCCGGAAAC -ACGGAATGGGAAATGTCCAACACC -ACGGAATGGGAAATGTCCATCGAG -ACGGAATGGGAAATGTCCCTCCTT -ACGGAATGGGAAATGTCCCCTGTT -ACGGAATGGGAAATGTCCCGGTTT -ACGGAATGGGAAATGTCCGTGGTT -ACGGAATGGGAAATGTCCGCCTTT -ACGGAATGGGAAATGTCCGGTCTT -ACGGAATGGGAAATGTCCACGCTT -ACGGAATGGGAAATGTCCAGCGTT -ACGGAATGGGAAATGTCCTTCGTC -ACGGAATGGGAAATGTCCTCTCTC -ACGGAATGGGAAATGTCCTGGATC -ACGGAATGGGAAATGTCCCACTTC -ACGGAATGGGAAATGTCCGTACTC -ACGGAATGGGAAATGTCCGATGTC -ACGGAATGGGAAATGTCCACAGTC -ACGGAATGGGAAATGTCCTTGCTG -ACGGAATGGGAAATGTCCTCCATG -ACGGAATGGGAAATGTCCTGTGTG -ACGGAATGGGAAATGTCCCTAGTG -ACGGAATGGGAAATGTCCCATCTG -ACGGAATGGGAAATGTCCGAGTTG -ACGGAATGGGAAATGTCCAGACTG -ACGGAATGGGAAATGTCCTCGGTA -ACGGAATGGGAAATGTCCTGCCTA -ACGGAATGGGAAATGTCCCCACTA -ACGGAATGGGAAATGTCCGGAGTA -ACGGAATGGGAAATGTCCTCGTCT -ACGGAATGGGAAATGTCCTGCACT -ACGGAATGGGAAATGTCCCTGACT -ACGGAATGGGAAATGTCCCAACCT -ACGGAATGGGAAATGTCCGCTACT -ACGGAATGGGAAATGTCCGGATCT -ACGGAATGGGAAATGTCCAAGGCT -ACGGAATGGGAAATGTCCTCAACC -ACGGAATGGGAAATGTCCTGTTCC -ACGGAATGGGAAATGTCCATTCCC -ACGGAATGGGAAATGTCCTTCTCG -ACGGAATGGGAAATGTCCTAGACG -ACGGAATGGGAAATGTCCGTAACG -ACGGAATGGGAAATGTCCACTTCG -ACGGAATGGGAAATGTCCTACGCA -ACGGAATGGGAAATGTCCCTTGCA -ACGGAATGGGAAATGTCCCGAACA -ACGGAATGGGAAATGTCCCAGTCA -ACGGAATGGGAAATGTCCGATCCA -ACGGAATGGGAAATGTCCACGACA -ACGGAATGGGAAATGTCCAGCTCA -ACGGAATGGGAAATGTCCTCACGT -ACGGAATGGGAAATGTCCCGTAGT -ACGGAATGGGAAATGTCCGTCAGT -ACGGAATGGGAAATGTCCGAAGGT -ACGGAATGGGAAATGTCCAACCGT -ACGGAATGGGAAATGTCCTTGTGC -ACGGAATGGGAAATGTCCCTAAGC -ACGGAATGGGAAATGTCCACTAGC -ACGGAATGGGAAATGTCCAGATGC -ACGGAATGGGAAATGTCCTGAAGG -ACGGAATGGGAAATGTCCCAATGG -ACGGAATGGGAAATGTCCATGAGG -ACGGAATGGGAAATGTCCAATGGG -ACGGAATGGGAAATGTCCTCCTGA -ACGGAATGGGAAATGTCCTAGCGA -ACGGAATGGGAAATGTCCCACAGA -ACGGAATGGGAAATGTCCGCAAGA -ACGGAATGGGAAATGTCCGGTTGA -ACGGAATGGGAAATGTCCTCCGAT -ACGGAATGGGAAATGTCCTGGCAT -ACGGAATGGGAAATGTCCCGAGAT -ACGGAATGGGAAATGTCCTACCAC -ACGGAATGGGAAATGTCCCAGAAC -ACGGAATGGGAAATGTCCGTCTAC -ACGGAATGGGAAATGTCCACGTAC -ACGGAATGGGAAATGTCCAGTGAC -ACGGAATGGGAAATGTCCCTGTAG -ACGGAATGGGAAATGTCCCCTAAG -ACGGAATGGGAAATGTCCGTTCAG -ACGGAATGGGAAATGTCCGCATAG -ACGGAATGGGAAATGTCCGACAAG -ACGGAATGGGAAATGTCCAAGCAG -ACGGAATGGGAAATGTCCCGTCAA -ACGGAATGGGAAATGTCCGCTGAA -ACGGAATGGGAAATGTCCAGTACG -ACGGAATGGGAAATGTCCATCCGA -ACGGAATGGGAAATGTCCATGGGA -ACGGAATGGGAAATGTCCGTGCAA -ACGGAATGGGAAATGTCCGAGGAA -ACGGAATGGGAAATGTCCCAGGTA -ACGGAATGGGAAATGTCCGACTCT -ACGGAATGGGAAATGTCCAGTCCT -ACGGAATGGGAAATGTCCTAAGCC -ACGGAATGGGAAATGTCCATAGCC -ACGGAATGGGAAATGTCCTAACCG -ACGGAATGGGAAATGTCCATGCCA -ACGGAATGGGAAGTGTGTGGAAAC -ACGGAATGGGAAGTGTGTAACACC -ACGGAATGGGAAGTGTGTATCGAG -ACGGAATGGGAAGTGTGTCTCCTT -ACGGAATGGGAAGTGTGTCCTGTT -ACGGAATGGGAAGTGTGTCGGTTT -ACGGAATGGGAAGTGTGTGTGGTT -ACGGAATGGGAAGTGTGTGCCTTT -ACGGAATGGGAAGTGTGTGGTCTT -ACGGAATGGGAAGTGTGTACGCTT -ACGGAATGGGAAGTGTGTAGCGTT -ACGGAATGGGAAGTGTGTTTCGTC -ACGGAATGGGAAGTGTGTTCTCTC -ACGGAATGGGAAGTGTGTTGGATC -ACGGAATGGGAAGTGTGTCACTTC -ACGGAATGGGAAGTGTGTGTACTC -ACGGAATGGGAAGTGTGTGATGTC -ACGGAATGGGAAGTGTGTACAGTC -ACGGAATGGGAAGTGTGTTTGCTG -ACGGAATGGGAAGTGTGTTCCATG -ACGGAATGGGAAGTGTGTTGTGTG -ACGGAATGGGAAGTGTGTCTAGTG -ACGGAATGGGAAGTGTGTCATCTG -ACGGAATGGGAAGTGTGTGAGTTG -ACGGAATGGGAAGTGTGTAGACTG -ACGGAATGGGAAGTGTGTTCGGTA -ACGGAATGGGAAGTGTGTTGCCTA -ACGGAATGGGAAGTGTGTCCACTA -ACGGAATGGGAAGTGTGTGGAGTA -ACGGAATGGGAAGTGTGTTCGTCT -ACGGAATGGGAAGTGTGTTGCACT -ACGGAATGGGAAGTGTGTCTGACT -ACGGAATGGGAAGTGTGTCAACCT -ACGGAATGGGAAGTGTGTGCTACT -ACGGAATGGGAAGTGTGTGGATCT -ACGGAATGGGAAGTGTGTAAGGCT -ACGGAATGGGAAGTGTGTTCAACC -ACGGAATGGGAAGTGTGTTGTTCC -ACGGAATGGGAAGTGTGTATTCCC -ACGGAATGGGAAGTGTGTTTCTCG -ACGGAATGGGAAGTGTGTTAGACG -ACGGAATGGGAAGTGTGTGTAACG -ACGGAATGGGAAGTGTGTACTTCG -ACGGAATGGGAAGTGTGTTACGCA -ACGGAATGGGAAGTGTGTCTTGCA -ACGGAATGGGAAGTGTGTCGAACA -ACGGAATGGGAAGTGTGTCAGTCA -ACGGAATGGGAAGTGTGTGATCCA -ACGGAATGGGAAGTGTGTACGACA -ACGGAATGGGAAGTGTGTAGCTCA -ACGGAATGGGAAGTGTGTTCACGT -ACGGAATGGGAAGTGTGTCGTAGT -ACGGAATGGGAAGTGTGTGTCAGT -ACGGAATGGGAAGTGTGTGAAGGT -ACGGAATGGGAAGTGTGTAACCGT -ACGGAATGGGAAGTGTGTTTGTGC -ACGGAATGGGAAGTGTGTCTAAGC -ACGGAATGGGAAGTGTGTACTAGC -ACGGAATGGGAAGTGTGTAGATGC -ACGGAATGGGAAGTGTGTTGAAGG -ACGGAATGGGAAGTGTGTCAATGG -ACGGAATGGGAAGTGTGTATGAGG -ACGGAATGGGAAGTGTGTAATGGG -ACGGAATGGGAAGTGTGTTCCTGA -ACGGAATGGGAAGTGTGTTAGCGA -ACGGAATGGGAAGTGTGTCACAGA -ACGGAATGGGAAGTGTGTGCAAGA -ACGGAATGGGAAGTGTGTGGTTGA -ACGGAATGGGAAGTGTGTTCCGAT -ACGGAATGGGAAGTGTGTTGGCAT -ACGGAATGGGAAGTGTGTCGAGAT -ACGGAATGGGAAGTGTGTTACCAC -ACGGAATGGGAAGTGTGTCAGAAC -ACGGAATGGGAAGTGTGTGTCTAC -ACGGAATGGGAAGTGTGTACGTAC -ACGGAATGGGAAGTGTGTAGTGAC -ACGGAATGGGAAGTGTGTCTGTAG -ACGGAATGGGAAGTGTGTCCTAAG -ACGGAATGGGAAGTGTGTGTTCAG -ACGGAATGGGAAGTGTGTGCATAG -ACGGAATGGGAAGTGTGTGACAAG -ACGGAATGGGAAGTGTGTAAGCAG -ACGGAATGGGAAGTGTGTCGTCAA -ACGGAATGGGAAGTGTGTGCTGAA -ACGGAATGGGAAGTGTGTAGTACG -ACGGAATGGGAAGTGTGTATCCGA -ACGGAATGGGAAGTGTGTATGGGA -ACGGAATGGGAAGTGTGTGTGCAA -ACGGAATGGGAAGTGTGTGAGGAA -ACGGAATGGGAAGTGTGTCAGGTA -ACGGAATGGGAAGTGTGTGACTCT -ACGGAATGGGAAGTGTGTAGTCCT -ACGGAATGGGAAGTGTGTTAAGCC -ACGGAATGGGAAGTGTGTATAGCC -ACGGAATGGGAAGTGTGTTAACCG -ACGGAATGGGAAGTGTGTATGCCA -ACGGAATGGGAAGTGCTAGGAAAC -ACGGAATGGGAAGTGCTAAACACC -ACGGAATGGGAAGTGCTAATCGAG -ACGGAATGGGAAGTGCTACTCCTT -ACGGAATGGGAAGTGCTACCTGTT -ACGGAATGGGAAGTGCTACGGTTT -ACGGAATGGGAAGTGCTAGTGGTT -ACGGAATGGGAAGTGCTAGCCTTT -ACGGAATGGGAAGTGCTAGGTCTT -ACGGAATGGGAAGTGCTAACGCTT -ACGGAATGGGAAGTGCTAAGCGTT -ACGGAATGGGAAGTGCTATTCGTC -ACGGAATGGGAAGTGCTATCTCTC -ACGGAATGGGAAGTGCTATGGATC -ACGGAATGGGAAGTGCTACACTTC -ACGGAATGGGAAGTGCTAGTACTC -ACGGAATGGGAAGTGCTAGATGTC -ACGGAATGGGAAGTGCTAACAGTC -ACGGAATGGGAAGTGCTATTGCTG -ACGGAATGGGAAGTGCTATCCATG -ACGGAATGGGAAGTGCTATGTGTG -ACGGAATGGGAAGTGCTACTAGTG -ACGGAATGGGAAGTGCTACATCTG -ACGGAATGGGAAGTGCTAGAGTTG -ACGGAATGGGAAGTGCTAAGACTG -ACGGAATGGGAAGTGCTATCGGTA -ACGGAATGGGAAGTGCTATGCCTA -ACGGAATGGGAAGTGCTACCACTA -ACGGAATGGGAAGTGCTAGGAGTA -ACGGAATGGGAAGTGCTATCGTCT -ACGGAATGGGAAGTGCTATGCACT -ACGGAATGGGAAGTGCTACTGACT -ACGGAATGGGAAGTGCTACAACCT -ACGGAATGGGAAGTGCTAGCTACT -ACGGAATGGGAAGTGCTAGGATCT -ACGGAATGGGAAGTGCTAAAGGCT -ACGGAATGGGAAGTGCTATCAACC -ACGGAATGGGAAGTGCTATGTTCC -ACGGAATGGGAAGTGCTAATTCCC -ACGGAATGGGAAGTGCTATTCTCG -ACGGAATGGGAAGTGCTATAGACG -ACGGAATGGGAAGTGCTAGTAACG -ACGGAATGGGAAGTGCTAACTTCG -ACGGAATGGGAAGTGCTATACGCA -ACGGAATGGGAAGTGCTACTTGCA -ACGGAATGGGAAGTGCTACGAACA -ACGGAATGGGAAGTGCTACAGTCA -ACGGAATGGGAAGTGCTAGATCCA -ACGGAATGGGAAGTGCTAACGACA -ACGGAATGGGAAGTGCTAAGCTCA -ACGGAATGGGAAGTGCTATCACGT -ACGGAATGGGAAGTGCTACGTAGT -ACGGAATGGGAAGTGCTAGTCAGT -ACGGAATGGGAAGTGCTAGAAGGT -ACGGAATGGGAAGTGCTAAACCGT -ACGGAATGGGAAGTGCTATTGTGC -ACGGAATGGGAAGTGCTACTAAGC -ACGGAATGGGAAGTGCTAACTAGC -ACGGAATGGGAAGTGCTAAGATGC -ACGGAATGGGAAGTGCTATGAAGG -ACGGAATGGGAAGTGCTACAATGG -ACGGAATGGGAAGTGCTAATGAGG -ACGGAATGGGAAGTGCTAAATGGG -ACGGAATGGGAAGTGCTATCCTGA -ACGGAATGGGAAGTGCTATAGCGA -ACGGAATGGGAAGTGCTACACAGA -ACGGAATGGGAAGTGCTAGCAAGA -ACGGAATGGGAAGTGCTAGGTTGA -ACGGAATGGGAAGTGCTATCCGAT -ACGGAATGGGAAGTGCTATGGCAT -ACGGAATGGGAAGTGCTACGAGAT -ACGGAATGGGAAGTGCTATACCAC -ACGGAATGGGAAGTGCTACAGAAC -ACGGAATGGGAAGTGCTAGTCTAC -ACGGAATGGGAAGTGCTAACGTAC -ACGGAATGGGAAGTGCTAAGTGAC -ACGGAATGGGAAGTGCTACTGTAG -ACGGAATGGGAAGTGCTACCTAAG -ACGGAATGGGAAGTGCTAGTTCAG -ACGGAATGGGAAGTGCTAGCATAG -ACGGAATGGGAAGTGCTAGACAAG -ACGGAATGGGAAGTGCTAAAGCAG -ACGGAATGGGAAGTGCTACGTCAA -ACGGAATGGGAAGTGCTAGCTGAA -ACGGAATGGGAAGTGCTAAGTACG -ACGGAATGGGAAGTGCTAATCCGA -ACGGAATGGGAAGTGCTAATGGGA -ACGGAATGGGAAGTGCTAGTGCAA -ACGGAATGGGAAGTGCTAGAGGAA -ACGGAATGGGAAGTGCTACAGGTA -ACGGAATGGGAAGTGCTAGACTCT -ACGGAATGGGAAGTGCTAAGTCCT -ACGGAATGGGAAGTGCTATAAGCC -ACGGAATGGGAAGTGCTAATAGCC -ACGGAATGGGAAGTGCTATAACCG -ACGGAATGGGAAGTGCTAATGCCA -ACGGAATGGGAACTGCATGGAAAC -ACGGAATGGGAACTGCATAACACC -ACGGAATGGGAACTGCATATCGAG -ACGGAATGGGAACTGCATCTCCTT -ACGGAATGGGAACTGCATCCTGTT -ACGGAATGGGAACTGCATCGGTTT -ACGGAATGGGAACTGCATGTGGTT -ACGGAATGGGAACTGCATGCCTTT -ACGGAATGGGAACTGCATGGTCTT -ACGGAATGGGAACTGCATACGCTT -ACGGAATGGGAACTGCATAGCGTT -ACGGAATGGGAACTGCATTTCGTC -ACGGAATGGGAACTGCATTCTCTC -ACGGAATGGGAACTGCATTGGATC -ACGGAATGGGAACTGCATCACTTC -ACGGAATGGGAACTGCATGTACTC -ACGGAATGGGAACTGCATGATGTC -ACGGAATGGGAACTGCATACAGTC -ACGGAATGGGAACTGCATTTGCTG -ACGGAATGGGAACTGCATTCCATG -ACGGAATGGGAACTGCATTGTGTG -ACGGAATGGGAACTGCATCTAGTG -ACGGAATGGGAACTGCATCATCTG -ACGGAATGGGAACTGCATGAGTTG -ACGGAATGGGAACTGCATAGACTG -ACGGAATGGGAACTGCATTCGGTA -ACGGAATGGGAACTGCATTGCCTA -ACGGAATGGGAACTGCATCCACTA -ACGGAATGGGAACTGCATGGAGTA -ACGGAATGGGAACTGCATTCGTCT -ACGGAATGGGAACTGCATTGCACT -ACGGAATGGGAACTGCATCTGACT -ACGGAATGGGAACTGCATCAACCT -ACGGAATGGGAACTGCATGCTACT -ACGGAATGGGAACTGCATGGATCT -ACGGAATGGGAACTGCATAAGGCT -ACGGAATGGGAACTGCATTCAACC -ACGGAATGGGAACTGCATTGTTCC -ACGGAATGGGAACTGCATATTCCC -ACGGAATGGGAACTGCATTTCTCG -ACGGAATGGGAACTGCATTAGACG -ACGGAATGGGAACTGCATGTAACG -ACGGAATGGGAACTGCATACTTCG -ACGGAATGGGAACTGCATTACGCA -ACGGAATGGGAACTGCATCTTGCA -ACGGAATGGGAACTGCATCGAACA -ACGGAATGGGAACTGCATCAGTCA -ACGGAATGGGAACTGCATGATCCA -ACGGAATGGGAACTGCATACGACA -ACGGAATGGGAACTGCATAGCTCA -ACGGAATGGGAACTGCATTCACGT -ACGGAATGGGAACTGCATCGTAGT -ACGGAATGGGAACTGCATGTCAGT -ACGGAATGGGAACTGCATGAAGGT -ACGGAATGGGAACTGCATAACCGT -ACGGAATGGGAACTGCATTTGTGC -ACGGAATGGGAACTGCATCTAAGC -ACGGAATGGGAACTGCATACTAGC -ACGGAATGGGAACTGCATAGATGC -ACGGAATGGGAACTGCATTGAAGG -ACGGAATGGGAACTGCATCAATGG -ACGGAATGGGAACTGCATATGAGG -ACGGAATGGGAACTGCATAATGGG -ACGGAATGGGAACTGCATTCCTGA -ACGGAATGGGAACTGCATTAGCGA -ACGGAATGGGAACTGCATCACAGA -ACGGAATGGGAACTGCATGCAAGA -ACGGAATGGGAACTGCATGGTTGA -ACGGAATGGGAACTGCATTCCGAT -ACGGAATGGGAACTGCATTGGCAT -ACGGAATGGGAACTGCATCGAGAT -ACGGAATGGGAACTGCATTACCAC -ACGGAATGGGAACTGCATCAGAAC -ACGGAATGGGAACTGCATGTCTAC -ACGGAATGGGAACTGCATACGTAC -ACGGAATGGGAACTGCATAGTGAC -ACGGAATGGGAACTGCATCTGTAG -ACGGAATGGGAACTGCATCCTAAG -ACGGAATGGGAACTGCATGTTCAG -ACGGAATGGGAACTGCATGCATAG -ACGGAATGGGAACTGCATGACAAG -ACGGAATGGGAACTGCATAAGCAG -ACGGAATGGGAACTGCATCGTCAA -ACGGAATGGGAACTGCATGCTGAA -ACGGAATGGGAACTGCATAGTACG -ACGGAATGGGAACTGCATATCCGA -ACGGAATGGGAACTGCATATGGGA -ACGGAATGGGAACTGCATGTGCAA -ACGGAATGGGAACTGCATGAGGAA -ACGGAATGGGAACTGCATCAGGTA -ACGGAATGGGAACTGCATGACTCT -ACGGAATGGGAACTGCATAGTCCT -ACGGAATGGGAACTGCATTAAGCC -ACGGAATGGGAACTGCATATAGCC -ACGGAATGGGAACTGCATTAACCG -ACGGAATGGGAACTGCATATGCCA -ACGGAATGGGAATTGGAGGGAAAC -ACGGAATGGGAATTGGAGAACACC -ACGGAATGGGAATTGGAGATCGAG -ACGGAATGGGAATTGGAGCTCCTT -ACGGAATGGGAATTGGAGCCTGTT -ACGGAATGGGAATTGGAGCGGTTT -ACGGAATGGGAATTGGAGGTGGTT -ACGGAATGGGAATTGGAGGCCTTT -ACGGAATGGGAATTGGAGGGTCTT -ACGGAATGGGAATTGGAGACGCTT -ACGGAATGGGAATTGGAGAGCGTT -ACGGAATGGGAATTGGAGTTCGTC -ACGGAATGGGAATTGGAGTCTCTC -ACGGAATGGGAATTGGAGTGGATC -ACGGAATGGGAATTGGAGCACTTC -ACGGAATGGGAATTGGAGGTACTC -ACGGAATGGGAATTGGAGGATGTC -ACGGAATGGGAATTGGAGACAGTC -ACGGAATGGGAATTGGAGTTGCTG -ACGGAATGGGAATTGGAGTCCATG -ACGGAATGGGAATTGGAGTGTGTG -ACGGAATGGGAATTGGAGCTAGTG -ACGGAATGGGAATTGGAGCATCTG -ACGGAATGGGAATTGGAGGAGTTG -ACGGAATGGGAATTGGAGAGACTG -ACGGAATGGGAATTGGAGTCGGTA -ACGGAATGGGAATTGGAGTGCCTA -ACGGAATGGGAATTGGAGCCACTA -ACGGAATGGGAATTGGAGGGAGTA -ACGGAATGGGAATTGGAGTCGTCT -ACGGAATGGGAATTGGAGTGCACT -ACGGAATGGGAATTGGAGCTGACT -ACGGAATGGGAATTGGAGCAACCT -ACGGAATGGGAATTGGAGGCTACT -ACGGAATGGGAATTGGAGGGATCT -ACGGAATGGGAATTGGAGAAGGCT -ACGGAATGGGAATTGGAGTCAACC -ACGGAATGGGAATTGGAGTGTTCC -ACGGAATGGGAATTGGAGATTCCC -ACGGAATGGGAATTGGAGTTCTCG -ACGGAATGGGAATTGGAGTAGACG -ACGGAATGGGAATTGGAGGTAACG -ACGGAATGGGAATTGGAGACTTCG -ACGGAATGGGAATTGGAGTACGCA -ACGGAATGGGAATTGGAGCTTGCA -ACGGAATGGGAATTGGAGCGAACA -ACGGAATGGGAATTGGAGCAGTCA -ACGGAATGGGAATTGGAGGATCCA -ACGGAATGGGAATTGGAGACGACA -ACGGAATGGGAATTGGAGAGCTCA -ACGGAATGGGAATTGGAGTCACGT -ACGGAATGGGAATTGGAGCGTAGT -ACGGAATGGGAATTGGAGGTCAGT -ACGGAATGGGAATTGGAGGAAGGT -ACGGAATGGGAATTGGAGAACCGT -ACGGAATGGGAATTGGAGTTGTGC -ACGGAATGGGAATTGGAGCTAAGC -ACGGAATGGGAATTGGAGACTAGC -ACGGAATGGGAATTGGAGAGATGC -ACGGAATGGGAATTGGAGTGAAGG -ACGGAATGGGAATTGGAGCAATGG -ACGGAATGGGAATTGGAGATGAGG -ACGGAATGGGAATTGGAGAATGGG -ACGGAATGGGAATTGGAGTCCTGA -ACGGAATGGGAATTGGAGTAGCGA -ACGGAATGGGAATTGGAGCACAGA -ACGGAATGGGAATTGGAGGCAAGA -ACGGAATGGGAATTGGAGGGTTGA -ACGGAATGGGAATTGGAGTCCGAT -ACGGAATGGGAATTGGAGTGGCAT -ACGGAATGGGAATTGGAGCGAGAT -ACGGAATGGGAATTGGAGTACCAC -ACGGAATGGGAATTGGAGCAGAAC -ACGGAATGGGAATTGGAGGTCTAC -ACGGAATGGGAATTGGAGACGTAC -ACGGAATGGGAATTGGAGAGTGAC -ACGGAATGGGAATTGGAGCTGTAG -ACGGAATGGGAATTGGAGCCTAAG -ACGGAATGGGAATTGGAGGTTCAG -ACGGAATGGGAATTGGAGGCATAG -ACGGAATGGGAATTGGAGGACAAG -ACGGAATGGGAATTGGAGAAGCAG -ACGGAATGGGAATTGGAGCGTCAA -ACGGAATGGGAATTGGAGGCTGAA -ACGGAATGGGAATTGGAGAGTACG -ACGGAATGGGAATTGGAGATCCGA -ACGGAATGGGAATTGGAGATGGGA -ACGGAATGGGAATTGGAGGTGCAA -ACGGAATGGGAATTGGAGGAGGAA -ACGGAATGGGAATTGGAGCAGGTA -ACGGAATGGGAATTGGAGGACTCT -ACGGAATGGGAATTGGAGAGTCCT -ACGGAATGGGAATTGGAGTAAGCC -ACGGAATGGGAATTGGAGATAGCC -ACGGAATGGGAATTGGAGTAACCG -ACGGAATGGGAATTGGAGATGCCA -ACGGAATGGGAACTGAGAGGAAAC -ACGGAATGGGAACTGAGAAACACC -ACGGAATGGGAACTGAGAATCGAG -ACGGAATGGGAACTGAGACTCCTT -ACGGAATGGGAACTGAGACCTGTT -ACGGAATGGGAACTGAGACGGTTT -ACGGAATGGGAACTGAGAGTGGTT -ACGGAATGGGAACTGAGAGCCTTT -ACGGAATGGGAACTGAGAGGTCTT -ACGGAATGGGAACTGAGAACGCTT -ACGGAATGGGAACTGAGAAGCGTT -ACGGAATGGGAACTGAGATTCGTC -ACGGAATGGGAACTGAGATCTCTC -ACGGAATGGGAACTGAGATGGATC -ACGGAATGGGAACTGAGACACTTC -ACGGAATGGGAACTGAGAGTACTC -ACGGAATGGGAACTGAGAGATGTC -ACGGAATGGGAACTGAGAACAGTC -ACGGAATGGGAACTGAGATTGCTG -ACGGAATGGGAACTGAGATCCATG -ACGGAATGGGAACTGAGATGTGTG -ACGGAATGGGAACTGAGACTAGTG -ACGGAATGGGAACTGAGACATCTG -ACGGAATGGGAACTGAGAGAGTTG -ACGGAATGGGAACTGAGAAGACTG -ACGGAATGGGAACTGAGATCGGTA -ACGGAATGGGAACTGAGATGCCTA -ACGGAATGGGAACTGAGACCACTA -ACGGAATGGGAACTGAGAGGAGTA -ACGGAATGGGAACTGAGATCGTCT -ACGGAATGGGAACTGAGATGCACT -ACGGAATGGGAACTGAGACTGACT -ACGGAATGGGAACTGAGACAACCT -ACGGAATGGGAACTGAGAGCTACT -ACGGAATGGGAACTGAGAGGATCT -ACGGAATGGGAACTGAGAAAGGCT -ACGGAATGGGAACTGAGATCAACC -ACGGAATGGGAACTGAGATGTTCC -ACGGAATGGGAACTGAGAATTCCC -ACGGAATGGGAACTGAGATTCTCG -ACGGAATGGGAACTGAGATAGACG -ACGGAATGGGAACTGAGAGTAACG -ACGGAATGGGAACTGAGAACTTCG -ACGGAATGGGAACTGAGATACGCA -ACGGAATGGGAACTGAGACTTGCA -ACGGAATGGGAACTGAGACGAACA -ACGGAATGGGAACTGAGACAGTCA -ACGGAATGGGAACTGAGAGATCCA -ACGGAATGGGAACTGAGAACGACA -ACGGAATGGGAACTGAGAAGCTCA -ACGGAATGGGAACTGAGATCACGT -ACGGAATGGGAACTGAGACGTAGT -ACGGAATGGGAACTGAGAGTCAGT -ACGGAATGGGAACTGAGAGAAGGT -ACGGAATGGGAACTGAGAAACCGT -ACGGAATGGGAACTGAGATTGTGC -ACGGAATGGGAACTGAGACTAAGC -ACGGAATGGGAACTGAGAACTAGC -ACGGAATGGGAACTGAGAAGATGC -ACGGAATGGGAACTGAGATGAAGG -ACGGAATGGGAACTGAGACAATGG -ACGGAATGGGAACTGAGAATGAGG -ACGGAATGGGAACTGAGAAATGGG -ACGGAATGGGAACTGAGATCCTGA -ACGGAATGGGAACTGAGATAGCGA -ACGGAATGGGAACTGAGACACAGA -ACGGAATGGGAACTGAGAGCAAGA -ACGGAATGGGAACTGAGAGGTTGA -ACGGAATGGGAACTGAGATCCGAT -ACGGAATGGGAACTGAGATGGCAT -ACGGAATGGGAACTGAGACGAGAT -ACGGAATGGGAACTGAGATACCAC -ACGGAATGGGAACTGAGACAGAAC -ACGGAATGGGAACTGAGAGTCTAC -ACGGAATGGGAACTGAGAACGTAC -ACGGAATGGGAACTGAGAAGTGAC -ACGGAATGGGAACTGAGACTGTAG -ACGGAATGGGAACTGAGACCTAAG -ACGGAATGGGAACTGAGAGTTCAG -ACGGAATGGGAACTGAGAGCATAG -ACGGAATGGGAACTGAGAGACAAG -ACGGAATGGGAACTGAGAAAGCAG -ACGGAATGGGAACTGAGACGTCAA -ACGGAATGGGAACTGAGAGCTGAA -ACGGAATGGGAACTGAGAAGTACG -ACGGAATGGGAACTGAGAATCCGA -ACGGAATGGGAACTGAGAATGGGA -ACGGAATGGGAACTGAGAGTGCAA -ACGGAATGGGAACTGAGAGAGGAA -ACGGAATGGGAACTGAGACAGGTA -ACGGAATGGGAACTGAGAGACTCT -ACGGAATGGGAACTGAGAAGTCCT -ACGGAATGGGAACTGAGATAAGCC -ACGGAATGGGAACTGAGAATAGCC -ACGGAATGGGAACTGAGATAACCG -ACGGAATGGGAACTGAGAATGCCA -ACGGAATGGGAAGTATCGGGAAAC -ACGGAATGGGAAGTATCGAACACC -ACGGAATGGGAAGTATCGATCGAG -ACGGAATGGGAAGTATCGCTCCTT -ACGGAATGGGAAGTATCGCCTGTT -ACGGAATGGGAAGTATCGCGGTTT -ACGGAATGGGAAGTATCGGTGGTT -ACGGAATGGGAAGTATCGGCCTTT -ACGGAATGGGAAGTATCGGGTCTT -ACGGAATGGGAAGTATCGACGCTT -ACGGAATGGGAAGTATCGAGCGTT -ACGGAATGGGAAGTATCGTTCGTC -ACGGAATGGGAAGTATCGTCTCTC -ACGGAATGGGAAGTATCGTGGATC -ACGGAATGGGAAGTATCGCACTTC -ACGGAATGGGAAGTATCGGTACTC -ACGGAATGGGAAGTATCGGATGTC -ACGGAATGGGAAGTATCGACAGTC -ACGGAATGGGAAGTATCGTTGCTG -ACGGAATGGGAAGTATCGTCCATG -ACGGAATGGGAAGTATCGTGTGTG -ACGGAATGGGAAGTATCGCTAGTG -ACGGAATGGGAAGTATCGCATCTG -ACGGAATGGGAAGTATCGGAGTTG -ACGGAATGGGAAGTATCGAGACTG -ACGGAATGGGAAGTATCGTCGGTA -ACGGAATGGGAAGTATCGTGCCTA -ACGGAATGGGAAGTATCGCCACTA -ACGGAATGGGAAGTATCGGGAGTA -ACGGAATGGGAAGTATCGTCGTCT -ACGGAATGGGAAGTATCGTGCACT -ACGGAATGGGAAGTATCGCTGACT -ACGGAATGGGAAGTATCGCAACCT -ACGGAATGGGAAGTATCGGCTACT -ACGGAATGGGAAGTATCGGGATCT -ACGGAATGGGAAGTATCGAAGGCT -ACGGAATGGGAAGTATCGTCAACC -ACGGAATGGGAAGTATCGTGTTCC -ACGGAATGGGAAGTATCGATTCCC -ACGGAATGGGAAGTATCGTTCTCG -ACGGAATGGGAAGTATCGTAGACG -ACGGAATGGGAAGTATCGGTAACG -ACGGAATGGGAAGTATCGACTTCG -ACGGAATGGGAAGTATCGTACGCA -ACGGAATGGGAAGTATCGCTTGCA -ACGGAATGGGAAGTATCGCGAACA -ACGGAATGGGAAGTATCGCAGTCA -ACGGAATGGGAAGTATCGGATCCA -ACGGAATGGGAAGTATCGACGACA -ACGGAATGGGAAGTATCGAGCTCA -ACGGAATGGGAAGTATCGTCACGT -ACGGAATGGGAAGTATCGCGTAGT -ACGGAATGGGAAGTATCGGTCAGT -ACGGAATGGGAAGTATCGGAAGGT -ACGGAATGGGAAGTATCGAACCGT -ACGGAATGGGAAGTATCGTTGTGC -ACGGAATGGGAAGTATCGCTAAGC -ACGGAATGGGAAGTATCGACTAGC -ACGGAATGGGAAGTATCGAGATGC -ACGGAATGGGAAGTATCGTGAAGG -ACGGAATGGGAAGTATCGCAATGG -ACGGAATGGGAAGTATCGATGAGG -ACGGAATGGGAAGTATCGAATGGG -ACGGAATGGGAAGTATCGTCCTGA -ACGGAATGGGAAGTATCGTAGCGA -ACGGAATGGGAAGTATCGCACAGA -ACGGAATGGGAAGTATCGGCAAGA -ACGGAATGGGAAGTATCGGGTTGA -ACGGAATGGGAAGTATCGTCCGAT -ACGGAATGGGAAGTATCGTGGCAT -ACGGAATGGGAAGTATCGCGAGAT -ACGGAATGGGAAGTATCGTACCAC -ACGGAATGGGAAGTATCGCAGAAC -ACGGAATGGGAAGTATCGGTCTAC -ACGGAATGGGAAGTATCGACGTAC -ACGGAATGGGAAGTATCGAGTGAC -ACGGAATGGGAAGTATCGCTGTAG -ACGGAATGGGAAGTATCGCCTAAG -ACGGAATGGGAAGTATCGGTTCAG -ACGGAATGGGAAGTATCGGCATAG -ACGGAATGGGAAGTATCGGACAAG -ACGGAATGGGAAGTATCGAAGCAG -ACGGAATGGGAAGTATCGCGTCAA -ACGGAATGGGAAGTATCGGCTGAA -ACGGAATGGGAAGTATCGAGTACG -ACGGAATGGGAAGTATCGATCCGA -ACGGAATGGGAAGTATCGATGGGA -ACGGAATGGGAAGTATCGGTGCAA -ACGGAATGGGAAGTATCGGAGGAA -ACGGAATGGGAAGTATCGCAGGTA -ACGGAATGGGAAGTATCGGACTCT -ACGGAATGGGAAGTATCGAGTCCT -ACGGAATGGGAAGTATCGTAAGCC -ACGGAATGGGAAGTATCGATAGCC -ACGGAATGGGAAGTATCGTAACCG -ACGGAATGGGAAGTATCGATGCCA -ACGGAATGGGAACTATGCGGAAAC -ACGGAATGGGAACTATGCAACACC -ACGGAATGGGAACTATGCATCGAG -ACGGAATGGGAACTATGCCTCCTT -ACGGAATGGGAACTATGCCCTGTT -ACGGAATGGGAACTATGCCGGTTT -ACGGAATGGGAACTATGCGTGGTT -ACGGAATGGGAACTATGCGCCTTT -ACGGAATGGGAACTATGCGGTCTT -ACGGAATGGGAACTATGCACGCTT -ACGGAATGGGAACTATGCAGCGTT -ACGGAATGGGAACTATGCTTCGTC -ACGGAATGGGAACTATGCTCTCTC -ACGGAATGGGAACTATGCTGGATC -ACGGAATGGGAACTATGCCACTTC -ACGGAATGGGAACTATGCGTACTC -ACGGAATGGGAACTATGCGATGTC -ACGGAATGGGAACTATGCACAGTC -ACGGAATGGGAACTATGCTTGCTG -ACGGAATGGGAACTATGCTCCATG -ACGGAATGGGAACTATGCTGTGTG -ACGGAATGGGAACTATGCCTAGTG -ACGGAATGGGAACTATGCCATCTG -ACGGAATGGGAACTATGCGAGTTG -ACGGAATGGGAACTATGCAGACTG -ACGGAATGGGAACTATGCTCGGTA -ACGGAATGGGAACTATGCTGCCTA -ACGGAATGGGAACTATGCCCACTA -ACGGAATGGGAACTATGCGGAGTA -ACGGAATGGGAACTATGCTCGTCT -ACGGAATGGGAACTATGCTGCACT -ACGGAATGGGAACTATGCCTGACT -ACGGAATGGGAACTATGCCAACCT -ACGGAATGGGAACTATGCGCTACT -ACGGAATGGGAACTATGCGGATCT -ACGGAATGGGAACTATGCAAGGCT -ACGGAATGGGAACTATGCTCAACC -ACGGAATGGGAACTATGCTGTTCC -ACGGAATGGGAACTATGCATTCCC -ACGGAATGGGAACTATGCTTCTCG -ACGGAATGGGAACTATGCTAGACG -ACGGAATGGGAACTATGCGTAACG -ACGGAATGGGAACTATGCACTTCG -ACGGAATGGGAACTATGCTACGCA -ACGGAATGGGAACTATGCCTTGCA -ACGGAATGGGAACTATGCCGAACA -ACGGAATGGGAACTATGCCAGTCA -ACGGAATGGGAACTATGCGATCCA -ACGGAATGGGAACTATGCACGACA -ACGGAATGGGAACTATGCAGCTCA -ACGGAATGGGAACTATGCTCACGT -ACGGAATGGGAACTATGCCGTAGT -ACGGAATGGGAACTATGCGTCAGT -ACGGAATGGGAACTATGCGAAGGT -ACGGAATGGGAACTATGCAACCGT -ACGGAATGGGAACTATGCTTGTGC -ACGGAATGGGAACTATGCCTAAGC -ACGGAATGGGAACTATGCACTAGC -ACGGAATGGGAACTATGCAGATGC -ACGGAATGGGAACTATGCTGAAGG -ACGGAATGGGAACTATGCCAATGG -ACGGAATGGGAACTATGCATGAGG -ACGGAATGGGAACTATGCAATGGG -ACGGAATGGGAACTATGCTCCTGA -ACGGAATGGGAACTATGCTAGCGA -ACGGAATGGGAACTATGCCACAGA -ACGGAATGGGAACTATGCGCAAGA -ACGGAATGGGAACTATGCGGTTGA -ACGGAATGGGAACTATGCTCCGAT -ACGGAATGGGAACTATGCTGGCAT -ACGGAATGGGAACTATGCCGAGAT -ACGGAATGGGAACTATGCTACCAC -ACGGAATGGGAACTATGCCAGAAC -ACGGAATGGGAACTATGCGTCTAC -ACGGAATGGGAACTATGCACGTAC -ACGGAATGGGAACTATGCAGTGAC -ACGGAATGGGAACTATGCCTGTAG -ACGGAATGGGAACTATGCCCTAAG -ACGGAATGGGAACTATGCGTTCAG -ACGGAATGGGAACTATGCGCATAG -ACGGAATGGGAACTATGCGACAAG -ACGGAATGGGAACTATGCAAGCAG -ACGGAATGGGAACTATGCCGTCAA -ACGGAATGGGAACTATGCGCTGAA -ACGGAATGGGAACTATGCAGTACG -ACGGAATGGGAACTATGCATCCGA -ACGGAATGGGAACTATGCATGGGA -ACGGAATGGGAACTATGCGTGCAA -ACGGAATGGGAACTATGCGAGGAA -ACGGAATGGGAACTATGCCAGGTA -ACGGAATGGGAACTATGCGACTCT -ACGGAATGGGAACTATGCAGTCCT -ACGGAATGGGAACTATGCTAAGCC -ACGGAATGGGAACTATGCATAGCC -ACGGAATGGGAACTATGCTAACCG -ACGGAATGGGAACTATGCATGCCA -ACGGAATGGGAACTACCAGGAAAC -ACGGAATGGGAACTACCAAACACC -ACGGAATGGGAACTACCAATCGAG -ACGGAATGGGAACTACCACTCCTT -ACGGAATGGGAACTACCACCTGTT -ACGGAATGGGAACTACCACGGTTT -ACGGAATGGGAACTACCAGTGGTT -ACGGAATGGGAACTACCAGCCTTT -ACGGAATGGGAACTACCAGGTCTT -ACGGAATGGGAACTACCAACGCTT -ACGGAATGGGAACTACCAAGCGTT -ACGGAATGGGAACTACCATTCGTC -ACGGAATGGGAACTACCATCTCTC -ACGGAATGGGAACTACCATGGATC -ACGGAATGGGAACTACCACACTTC -ACGGAATGGGAACTACCAGTACTC -ACGGAATGGGAACTACCAGATGTC -ACGGAATGGGAACTACCAACAGTC -ACGGAATGGGAACTACCATTGCTG -ACGGAATGGGAACTACCATCCATG -ACGGAATGGGAACTACCATGTGTG -ACGGAATGGGAACTACCACTAGTG -ACGGAATGGGAACTACCACATCTG -ACGGAATGGGAACTACCAGAGTTG -ACGGAATGGGAACTACCAAGACTG -ACGGAATGGGAACTACCATCGGTA -ACGGAATGGGAACTACCATGCCTA -ACGGAATGGGAACTACCACCACTA -ACGGAATGGGAACTACCAGGAGTA -ACGGAATGGGAACTACCATCGTCT -ACGGAATGGGAACTACCATGCACT -ACGGAATGGGAACTACCACTGACT -ACGGAATGGGAACTACCACAACCT -ACGGAATGGGAACTACCAGCTACT -ACGGAATGGGAACTACCAGGATCT -ACGGAATGGGAACTACCAAAGGCT -ACGGAATGGGAACTACCATCAACC -ACGGAATGGGAACTACCATGTTCC -ACGGAATGGGAACTACCAATTCCC -ACGGAATGGGAACTACCATTCTCG -ACGGAATGGGAACTACCATAGACG -ACGGAATGGGAACTACCAGTAACG -ACGGAATGGGAACTACCAACTTCG -ACGGAATGGGAACTACCATACGCA -ACGGAATGGGAACTACCACTTGCA -ACGGAATGGGAACTACCACGAACA -ACGGAATGGGAACTACCACAGTCA -ACGGAATGGGAACTACCAGATCCA -ACGGAATGGGAACTACCAACGACA -ACGGAATGGGAACTACCAAGCTCA -ACGGAATGGGAACTACCATCACGT -ACGGAATGGGAACTACCACGTAGT -ACGGAATGGGAACTACCAGTCAGT -ACGGAATGGGAACTACCAGAAGGT -ACGGAATGGGAACTACCAAACCGT -ACGGAATGGGAACTACCATTGTGC -ACGGAATGGGAACTACCACTAAGC -ACGGAATGGGAACTACCAACTAGC -ACGGAATGGGAACTACCAAGATGC -ACGGAATGGGAACTACCATGAAGG -ACGGAATGGGAACTACCACAATGG -ACGGAATGGGAACTACCAATGAGG -ACGGAATGGGAACTACCAAATGGG -ACGGAATGGGAACTACCATCCTGA -ACGGAATGGGAACTACCATAGCGA -ACGGAATGGGAACTACCACACAGA -ACGGAATGGGAACTACCAGCAAGA -ACGGAATGGGAACTACCAGGTTGA -ACGGAATGGGAACTACCATCCGAT -ACGGAATGGGAACTACCATGGCAT -ACGGAATGGGAACTACCACGAGAT -ACGGAATGGGAACTACCATACCAC -ACGGAATGGGAACTACCACAGAAC -ACGGAATGGGAACTACCAGTCTAC -ACGGAATGGGAACTACCAACGTAC -ACGGAATGGGAACTACCAAGTGAC -ACGGAATGGGAACTACCACTGTAG -ACGGAATGGGAACTACCACCTAAG -ACGGAATGGGAACTACCAGTTCAG -ACGGAATGGGAACTACCAGCATAG -ACGGAATGGGAACTACCAGACAAG -ACGGAATGGGAACTACCAAAGCAG -ACGGAATGGGAACTACCACGTCAA -ACGGAATGGGAACTACCAGCTGAA -ACGGAATGGGAACTACCAAGTACG -ACGGAATGGGAACTACCAATCCGA -ACGGAATGGGAACTACCAATGGGA -ACGGAATGGGAACTACCAGTGCAA -ACGGAATGGGAACTACCAGAGGAA -ACGGAATGGGAACTACCACAGGTA -ACGGAATGGGAACTACCAGACTCT -ACGGAATGGGAACTACCAAGTCCT -ACGGAATGGGAACTACCATAAGCC -ACGGAATGGGAACTACCAATAGCC -ACGGAATGGGAACTACCATAACCG -ACGGAATGGGAACTACCAATGCCA -ACGGAATGGGAAGTAGGAGGAAAC -ACGGAATGGGAAGTAGGAAACACC -ACGGAATGGGAAGTAGGAATCGAG -ACGGAATGGGAAGTAGGACTCCTT -ACGGAATGGGAAGTAGGACCTGTT -ACGGAATGGGAAGTAGGACGGTTT -ACGGAATGGGAAGTAGGAGTGGTT -ACGGAATGGGAAGTAGGAGCCTTT -ACGGAATGGGAAGTAGGAGGTCTT -ACGGAATGGGAAGTAGGAACGCTT -ACGGAATGGGAAGTAGGAAGCGTT -ACGGAATGGGAAGTAGGATTCGTC -ACGGAATGGGAAGTAGGATCTCTC -ACGGAATGGGAAGTAGGATGGATC -ACGGAATGGGAAGTAGGACACTTC -ACGGAATGGGAAGTAGGAGTACTC -ACGGAATGGGAAGTAGGAGATGTC -ACGGAATGGGAAGTAGGAACAGTC -ACGGAATGGGAAGTAGGATTGCTG -ACGGAATGGGAAGTAGGATCCATG -ACGGAATGGGAAGTAGGATGTGTG -ACGGAATGGGAAGTAGGACTAGTG -ACGGAATGGGAAGTAGGACATCTG -ACGGAATGGGAAGTAGGAGAGTTG -ACGGAATGGGAAGTAGGAAGACTG -ACGGAATGGGAAGTAGGATCGGTA -ACGGAATGGGAAGTAGGATGCCTA -ACGGAATGGGAAGTAGGACCACTA -ACGGAATGGGAAGTAGGAGGAGTA -ACGGAATGGGAAGTAGGATCGTCT -ACGGAATGGGAAGTAGGATGCACT -ACGGAATGGGAAGTAGGACTGACT -ACGGAATGGGAAGTAGGACAACCT -ACGGAATGGGAAGTAGGAGCTACT -ACGGAATGGGAAGTAGGAGGATCT -ACGGAATGGGAAGTAGGAAAGGCT -ACGGAATGGGAAGTAGGATCAACC -ACGGAATGGGAAGTAGGATGTTCC -ACGGAATGGGAAGTAGGAATTCCC -ACGGAATGGGAAGTAGGATTCTCG -ACGGAATGGGAAGTAGGATAGACG -ACGGAATGGGAAGTAGGAGTAACG -ACGGAATGGGAAGTAGGAACTTCG -ACGGAATGGGAAGTAGGATACGCA -ACGGAATGGGAAGTAGGACTTGCA -ACGGAATGGGAAGTAGGACGAACA -ACGGAATGGGAAGTAGGACAGTCA -ACGGAATGGGAAGTAGGAGATCCA -ACGGAATGGGAAGTAGGAACGACA -ACGGAATGGGAAGTAGGAAGCTCA -ACGGAATGGGAAGTAGGATCACGT -ACGGAATGGGAAGTAGGACGTAGT -ACGGAATGGGAAGTAGGAGTCAGT -ACGGAATGGGAAGTAGGAGAAGGT -ACGGAATGGGAAGTAGGAAACCGT -ACGGAATGGGAAGTAGGATTGTGC -ACGGAATGGGAAGTAGGACTAAGC -ACGGAATGGGAAGTAGGAACTAGC -ACGGAATGGGAAGTAGGAAGATGC -ACGGAATGGGAAGTAGGATGAAGG -ACGGAATGGGAAGTAGGACAATGG -ACGGAATGGGAAGTAGGAATGAGG -ACGGAATGGGAAGTAGGAAATGGG -ACGGAATGGGAAGTAGGATCCTGA -ACGGAATGGGAAGTAGGATAGCGA -ACGGAATGGGAAGTAGGACACAGA -ACGGAATGGGAAGTAGGAGCAAGA -ACGGAATGGGAAGTAGGAGGTTGA -ACGGAATGGGAAGTAGGATCCGAT -ACGGAATGGGAAGTAGGATGGCAT -ACGGAATGGGAAGTAGGACGAGAT -ACGGAATGGGAAGTAGGATACCAC -ACGGAATGGGAAGTAGGACAGAAC -ACGGAATGGGAAGTAGGAGTCTAC -ACGGAATGGGAAGTAGGAACGTAC -ACGGAATGGGAAGTAGGAAGTGAC -ACGGAATGGGAAGTAGGACTGTAG -ACGGAATGGGAAGTAGGACCTAAG -ACGGAATGGGAAGTAGGAGTTCAG -ACGGAATGGGAAGTAGGAGCATAG -ACGGAATGGGAAGTAGGAGACAAG -ACGGAATGGGAAGTAGGAAAGCAG -ACGGAATGGGAAGTAGGACGTCAA -ACGGAATGGGAAGTAGGAGCTGAA -ACGGAATGGGAAGTAGGAAGTACG -ACGGAATGGGAAGTAGGAATCCGA -ACGGAATGGGAAGTAGGAATGGGA -ACGGAATGGGAAGTAGGAGTGCAA -ACGGAATGGGAAGTAGGAGAGGAA -ACGGAATGGGAAGTAGGACAGGTA -ACGGAATGGGAAGTAGGAGACTCT -ACGGAATGGGAAGTAGGAAGTCCT -ACGGAATGGGAAGTAGGATAAGCC -ACGGAATGGGAAGTAGGAATAGCC -ACGGAATGGGAAGTAGGATAACCG -ACGGAATGGGAAGTAGGAATGCCA -ACGGAATGGGAATCTTCGGGAAAC -ACGGAATGGGAATCTTCGAACACC -ACGGAATGGGAATCTTCGATCGAG -ACGGAATGGGAATCTTCGCTCCTT -ACGGAATGGGAATCTTCGCCTGTT -ACGGAATGGGAATCTTCGCGGTTT -ACGGAATGGGAATCTTCGGTGGTT -ACGGAATGGGAATCTTCGGCCTTT -ACGGAATGGGAATCTTCGGGTCTT -ACGGAATGGGAATCTTCGACGCTT -ACGGAATGGGAATCTTCGAGCGTT -ACGGAATGGGAATCTTCGTTCGTC -ACGGAATGGGAATCTTCGTCTCTC -ACGGAATGGGAATCTTCGTGGATC -ACGGAATGGGAATCTTCGCACTTC -ACGGAATGGGAATCTTCGGTACTC -ACGGAATGGGAATCTTCGGATGTC -ACGGAATGGGAATCTTCGACAGTC -ACGGAATGGGAATCTTCGTTGCTG -ACGGAATGGGAATCTTCGTCCATG -ACGGAATGGGAATCTTCGTGTGTG -ACGGAATGGGAATCTTCGCTAGTG -ACGGAATGGGAATCTTCGCATCTG -ACGGAATGGGAATCTTCGGAGTTG -ACGGAATGGGAATCTTCGAGACTG -ACGGAATGGGAATCTTCGTCGGTA -ACGGAATGGGAATCTTCGTGCCTA -ACGGAATGGGAATCTTCGCCACTA -ACGGAATGGGAATCTTCGGGAGTA -ACGGAATGGGAATCTTCGTCGTCT -ACGGAATGGGAATCTTCGTGCACT -ACGGAATGGGAATCTTCGCTGACT -ACGGAATGGGAATCTTCGCAACCT -ACGGAATGGGAATCTTCGGCTACT -ACGGAATGGGAATCTTCGGGATCT -ACGGAATGGGAATCTTCGAAGGCT -ACGGAATGGGAATCTTCGTCAACC -ACGGAATGGGAATCTTCGTGTTCC -ACGGAATGGGAATCTTCGATTCCC -ACGGAATGGGAATCTTCGTTCTCG -ACGGAATGGGAATCTTCGTAGACG -ACGGAATGGGAATCTTCGGTAACG -ACGGAATGGGAATCTTCGACTTCG -ACGGAATGGGAATCTTCGTACGCA -ACGGAATGGGAATCTTCGCTTGCA -ACGGAATGGGAATCTTCGCGAACA -ACGGAATGGGAATCTTCGCAGTCA -ACGGAATGGGAATCTTCGGATCCA -ACGGAATGGGAATCTTCGACGACA -ACGGAATGGGAATCTTCGAGCTCA -ACGGAATGGGAATCTTCGTCACGT -ACGGAATGGGAATCTTCGCGTAGT -ACGGAATGGGAATCTTCGGTCAGT -ACGGAATGGGAATCTTCGGAAGGT -ACGGAATGGGAATCTTCGAACCGT -ACGGAATGGGAATCTTCGTTGTGC -ACGGAATGGGAATCTTCGCTAAGC -ACGGAATGGGAATCTTCGACTAGC -ACGGAATGGGAATCTTCGAGATGC -ACGGAATGGGAATCTTCGTGAAGG -ACGGAATGGGAATCTTCGCAATGG -ACGGAATGGGAATCTTCGATGAGG -ACGGAATGGGAATCTTCGAATGGG -ACGGAATGGGAATCTTCGTCCTGA -ACGGAATGGGAATCTTCGTAGCGA -ACGGAATGGGAATCTTCGCACAGA -ACGGAATGGGAATCTTCGGCAAGA -ACGGAATGGGAATCTTCGGGTTGA -ACGGAATGGGAATCTTCGTCCGAT -ACGGAATGGGAATCTTCGTGGCAT -ACGGAATGGGAATCTTCGCGAGAT -ACGGAATGGGAATCTTCGTACCAC -ACGGAATGGGAATCTTCGCAGAAC -ACGGAATGGGAATCTTCGGTCTAC -ACGGAATGGGAATCTTCGACGTAC -ACGGAATGGGAATCTTCGAGTGAC -ACGGAATGGGAATCTTCGCTGTAG -ACGGAATGGGAATCTTCGCCTAAG -ACGGAATGGGAATCTTCGGTTCAG -ACGGAATGGGAATCTTCGGCATAG -ACGGAATGGGAATCTTCGGACAAG -ACGGAATGGGAATCTTCGAAGCAG -ACGGAATGGGAATCTTCGCGTCAA -ACGGAATGGGAATCTTCGGCTGAA -ACGGAATGGGAATCTTCGAGTACG -ACGGAATGGGAATCTTCGATCCGA -ACGGAATGGGAATCTTCGATGGGA -ACGGAATGGGAATCTTCGGTGCAA -ACGGAATGGGAATCTTCGGAGGAA -ACGGAATGGGAATCTTCGCAGGTA -ACGGAATGGGAATCTTCGGACTCT -ACGGAATGGGAATCTTCGAGTCCT -ACGGAATGGGAATCTTCGTAAGCC -ACGGAATGGGAATCTTCGATAGCC -ACGGAATGGGAATCTTCGTAACCG -ACGGAATGGGAATCTTCGATGCCA -ACGGAATGGGAAACTTGCGGAAAC -ACGGAATGGGAAACTTGCAACACC -ACGGAATGGGAAACTTGCATCGAG -ACGGAATGGGAAACTTGCCTCCTT -ACGGAATGGGAAACTTGCCCTGTT -ACGGAATGGGAAACTTGCCGGTTT -ACGGAATGGGAAACTTGCGTGGTT -ACGGAATGGGAAACTTGCGCCTTT -ACGGAATGGGAAACTTGCGGTCTT -ACGGAATGGGAAACTTGCACGCTT -ACGGAATGGGAAACTTGCAGCGTT -ACGGAATGGGAAACTTGCTTCGTC -ACGGAATGGGAAACTTGCTCTCTC -ACGGAATGGGAAACTTGCTGGATC -ACGGAATGGGAAACTTGCCACTTC -ACGGAATGGGAAACTTGCGTACTC -ACGGAATGGGAAACTTGCGATGTC -ACGGAATGGGAAACTTGCACAGTC -ACGGAATGGGAAACTTGCTTGCTG -ACGGAATGGGAAACTTGCTCCATG -ACGGAATGGGAAACTTGCTGTGTG -ACGGAATGGGAAACTTGCCTAGTG -ACGGAATGGGAAACTTGCCATCTG -ACGGAATGGGAAACTTGCGAGTTG -ACGGAATGGGAAACTTGCAGACTG -ACGGAATGGGAAACTTGCTCGGTA -ACGGAATGGGAAACTTGCTGCCTA -ACGGAATGGGAAACTTGCCCACTA -ACGGAATGGGAAACTTGCGGAGTA -ACGGAATGGGAAACTTGCTCGTCT -ACGGAATGGGAAACTTGCTGCACT -ACGGAATGGGAAACTTGCCTGACT -ACGGAATGGGAAACTTGCCAACCT -ACGGAATGGGAAACTTGCGCTACT -ACGGAATGGGAAACTTGCGGATCT -ACGGAATGGGAAACTTGCAAGGCT -ACGGAATGGGAAACTTGCTCAACC -ACGGAATGGGAAACTTGCTGTTCC -ACGGAATGGGAAACTTGCATTCCC -ACGGAATGGGAAACTTGCTTCTCG -ACGGAATGGGAAACTTGCTAGACG -ACGGAATGGGAAACTTGCGTAACG -ACGGAATGGGAAACTTGCACTTCG -ACGGAATGGGAAACTTGCTACGCA -ACGGAATGGGAAACTTGCCTTGCA -ACGGAATGGGAAACTTGCCGAACA -ACGGAATGGGAAACTTGCCAGTCA -ACGGAATGGGAAACTTGCGATCCA -ACGGAATGGGAAACTTGCACGACA -ACGGAATGGGAAACTTGCAGCTCA -ACGGAATGGGAAACTTGCTCACGT -ACGGAATGGGAAACTTGCCGTAGT -ACGGAATGGGAAACTTGCGTCAGT -ACGGAATGGGAAACTTGCGAAGGT -ACGGAATGGGAAACTTGCAACCGT -ACGGAATGGGAAACTTGCTTGTGC -ACGGAATGGGAAACTTGCCTAAGC -ACGGAATGGGAAACTTGCACTAGC -ACGGAATGGGAAACTTGCAGATGC -ACGGAATGGGAAACTTGCTGAAGG -ACGGAATGGGAAACTTGCCAATGG -ACGGAATGGGAAACTTGCATGAGG -ACGGAATGGGAAACTTGCAATGGG -ACGGAATGGGAAACTTGCTCCTGA -ACGGAATGGGAAACTTGCTAGCGA -ACGGAATGGGAAACTTGCCACAGA -ACGGAATGGGAAACTTGCGCAAGA -ACGGAATGGGAAACTTGCGGTTGA -ACGGAATGGGAAACTTGCTCCGAT -ACGGAATGGGAAACTTGCTGGCAT -ACGGAATGGGAAACTTGCCGAGAT -ACGGAATGGGAAACTTGCTACCAC -ACGGAATGGGAAACTTGCCAGAAC -ACGGAATGGGAAACTTGCGTCTAC -ACGGAATGGGAAACTTGCACGTAC -ACGGAATGGGAAACTTGCAGTGAC -ACGGAATGGGAAACTTGCCTGTAG -ACGGAATGGGAAACTTGCCCTAAG -ACGGAATGGGAAACTTGCGTTCAG -ACGGAATGGGAAACTTGCGCATAG -ACGGAATGGGAAACTTGCGACAAG -ACGGAATGGGAAACTTGCAAGCAG -ACGGAATGGGAAACTTGCCGTCAA -ACGGAATGGGAAACTTGCGCTGAA -ACGGAATGGGAAACTTGCAGTACG -ACGGAATGGGAAACTTGCATCCGA -ACGGAATGGGAAACTTGCATGGGA -ACGGAATGGGAAACTTGCGTGCAA -ACGGAATGGGAAACTTGCGAGGAA -ACGGAATGGGAAACTTGCCAGGTA -ACGGAATGGGAAACTTGCGACTCT -ACGGAATGGGAAACTTGCAGTCCT -ACGGAATGGGAAACTTGCTAAGCC -ACGGAATGGGAAACTTGCATAGCC -ACGGAATGGGAAACTTGCTAACCG -ACGGAATGGGAAACTTGCATGCCA -ACGGAATGGGAAACTCTGGGAAAC -ACGGAATGGGAAACTCTGAACACC -ACGGAATGGGAAACTCTGATCGAG -ACGGAATGGGAAACTCTGCTCCTT -ACGGAATGGGAAACTCTGCCTGTT -ACGGAATGGGAAACTCTGCGGTTT -ACGGAATGGGAAACTCTGGTGGTT -ACGGAATGGGAAACTCTGGCCTTT -ACGGAATGGGAAACTCTGGGTCTT -ACGGAATGGGAAACTCTGACGCTT -ACGGAATGGGAAACTCTGAGCGTT -ACGGAATGGGAAACTCTGTTCGTC -ACGGAATGGGAAACTCTGTCTCTC -ACGGAATGGGAAACTCTGTGGATC -ACGGAATGGGAAACTCTGCACTTC -ACGGAATGGGAAACTCTGGTACTC -ACGGAATGGGAAACTCTGGATGTC -ACGGAATGGGAAACTCTGACAGTC -ACGGAATGGGAAACTCTGTTGCTG -ACGGAATGGGAAACTCTGTCCATG -ACGGAATGGGAAACTCTGTGTGTG -ACGGAATGGGAAACTCTGCTAGTG -ACGGAATGGGAAACTCTGCATCTG -ACGGAATGGGAAACTCTGGAGTTG -ACGGAATGGGAAACTCTGAGACTG -ACGGAATGGGAAACTCTGTCGGTA -ACGGAATGGGAAACTCTGTGCCTA -ACGGAATGGGAAACTCTGCCACTA -ACGGAATGGGAAACTCTGGGAGTA -ACGGAATGGGAAACTCTGTCGTCT -ACGGAATGGGAAACTCTGTGCACT -ACGGAATGGGAAACTCTGCTGACT -ACGGAATGGGAAACTCTGCAACCT -ACGGAATGGGAAACTCTGGCTACT -ACGGAATGGGAAACTCTGGGATCT -ACGGAATGGGAAACTCTGAAGGCT -ACGGAATGGGAAACTCTGTCAACC -ACGGAATGGGAAACTCTGTGTTCC -ACGGAATGGGAAACTCTGATTCCC -ACGGAATGGGAAACTCTGTTCTCG -ACGGAATGGGAAACTCTGTAGACG -ACGGAATGGGAAACTCTGGTAACG -ACGGAATGGGAAACTCTGACTTCG -ACGGAATGGGAAACTCTGTACGCA -ACGGAATGGGAAACTCTGCTTGCA -ACGGAATGGGAAACTCTGCGAACA -ACGGAATGGGAAACTCTGCAGTCA -ACGGAATGGGAAACTCTGGATCCA -ACGGAATGGGAAACTCTGACGACA -ACGGAATGGGAAACTCTGAGCTCA -ACGGAATGGGAAACTCTGTCACGT -ACGGAATGGGAAACTCTGCGTAGT -ACGGAATGGGAAACTCTGGTCAGT -ACGGAATGGGAAACTCTGGAAGGT -ACGGAATGGGAAACTCTGAACCGT -ACGGAATGGGAAACTCTGTTGTGC -ACGGAATGGGAAACTCTGCTAAGC -ACGGAATGGGAAACTCTGACTAGC -ACGGAATGGGAAACTCTGAGATGC -ACGGAATGGGAAACTCTGTGAAGG -ACGGAATGGGAAACTCTGCAATGG -ACGGAATGGGAAACTCTGATGAGG -ACGGAATGGGAAACTCTGAATGGG -ACGGAATGGGAAACTCTGTCCTGA -ACGGAATGGGAAACTCTGTAGCGA -ACGGAATGGGAAACTCTGCACAGA -ACGGAATGGGAAACTCTGGCAAGA -ACGGAATGGGAAACTCTGGGTTGA -ACGGAATGGGAAACTCTGTCCGAT -ACGGAATGGGAAACTCTGTGGCAT -ACGGAATGGGAAACTCTGCGAGAT -ACGGAATGGGAAACTCTGTACCAC -ACGGAATGGGAAACTCTGCAGAAC -ACGGAATGGGAAACTCTGGTCTAC -ACGGAATGGGAAACTCTGACGTAC -ACGGAATGGGAAACTCTGAGTGAC -ACGGAATGGGAAACTCTGCTGTAG -ACGGAATGGGAAACTCTGCCTAAG -ACGGAATGGGAAACTCTGGTTCAG -ACGGAATGGGAAACTCTGGCATAG -ACGGAATGGGAAACTCTGGACAAG -ACGGAATGGGAAACTCTGAAGCAG -ACGGAATGGGAAACTCTGCGTCAA -ACGGAATGGGAAACTCTGGCTGAA -ACGGAATGGGAAACTCTGAGTACG -ACGGAATGGGAAACTCTGATCCGA -ACGGAATGGGAAACTCTGATGGGA -ACGGAATGGGAAACTCTGGTGCAA -ACGGAATGGGAAACTCTGGAGGAA -ACGGAATGGGAAACTCTGCAGGTA -ACGGAATGGGAAACTCTGGACTCT -ACGGAATGGGAAACTCTGAGTCCT -ACGGAATGGGAAACTCTGTAAGCC -ACGGAATGGGAAACTCTGATAGCC -ACGGAATGGGAAACTCTGTAACCG -ACGGAATGGGAAACTCTGATGCCA -ACGGAATGGGAACCTCAAGGAAAC -ACGGAATGGGAACCTCAAAACACC -ACGGAATGGGAACCTCAAATCGAG -ACGGAATGGGAACCTCAACTCCTT -ACGGAATGGGAACCTCAACCTGTT -ACGGAATGGGAACCTCAACGGTTT -ACGGAATGGGAACCTCAAGTGGTT -ACGGAATGGGAACCTCAAGCCTTT -ACGGAATGGGAACCTCAAGGTCTT -ACGGAATGGGAACCTCAAACGCTT -ACGGAATGGGAACCTCAAAGCGTT -ACGGAATGGGAACCTCAATTCGTC -ACGGAATGGGAACCTCAATCTCTC -ACGGAATGGGAACCTCAATGGATC -ACGGAATGGGAACCTCAACACTTC -ACGGAATGGGAACCTCAAGTACTC -ACGGAATGGGAACCTCAAGATGTC -ACGGAATGGGAACCTCAAACAGTC -ACGGAATGGGAACCTCAATTGCTG -ACGGAATGGGAACCTCAATCCATG -ACGGAATGGGAACCTCAATGTGTG -ACGGAATGGGAACCTCAACTAGTG -ACGGAATGGGAACCTCAACATCTG -ACGGAATGGGAACCTCAAGAGTTG -ACGGAATGGGAACCTCAAAGACTG -ACGGAATGGGAACCTCAATCGGTA -ACGGAATGGGAACCTCAATGCCTA -ACGGAATGGGAACCTCAACCACTA -ACGGAATGGGAACCTCAAGGAGTA -ACGGAATGGGAACCTCAATCGTCT -ACGGAATGGGAACCTCAATGCACT -ACGGAATGGGAACCTCAACTGACT -ACGGAATGGGAACCTCAACAACCT -ACGGAATGGGAACCTCAAGCTACT -ACGGAATGGGAACCTCAAGGATCT -ACGGAATGGGAACCTCAAAAGGCT -ACGGAATGGGAACCTCAATCAACC -ACGGAATGGGAACCTCAATGTTCC -ACGGAATGGGAACCTCAAATTCCC -ACGGAATGGGAACCTCAATTCTCG -ACGGAATGGGAACCTCAATAGACG -ACGGAATGGGAACCTCAAGTAACG -ACGGAATGGGAACCTCAAACTTCG -ACGGAATGGGAACCTCAATACGCA -ACGGAATGGGAACCTCAACTTGCA -ACGGAATGGGAACCTCAACGAACA -ACGGAATGGGAACCTCAACAGTCA -ACGGAATGGGAACCTCAAGATCCA -ACGGAATGGGAACCTCAAACGACA -ACGGAATGGGAACCTCAAAGCTCA -ACGGAATGGGAACCTCAATCACGT -ACGGAATGGGAACCTCAACGTAGT -ACGGAATGGGAACCTCAAGTCAGT -ACGGAATGGGAACCTCAAGAAGGT -ACGGAATGGGAACCTCAAAACCGT -ACGGAATGGGAACCTCAATTGTGC -ACGGAATGGGAACCTCAACTAAGC -ACGGAATGGGAACCTCAAACTAGC -ACGGAATGGGAACCTCAAAGATGC -ACGGAATGGGAACCTCAATGAAGG -ACGGAATGGGAACCTCAACAATGG -ACGGAATGGGAACCTCAAATGAGG -ACGGAATGGGAACCTCAAAATGGG -ACGGAATGGGAACCTCAATCCTGA -ACGGAATGGGAACCTCAATAGCGA -ACGGAATGGGAACCTCAACACAGA -ACGGAATGGGAACCTCAAGCAAGA -ACGGAATGGGAACCTCAAGGTTGA -ACGGAATGGGAACCTCAATCCGAT -ACGGAATGGGAACCTCAATGGCAT -ACGGAATGGGAACCTCAACGAGAT -ACGGAATGGGAACCTCAATACCAC -ACGGAATGGGAACCTCAACAGAAC -ACGGAATGGGAACCTCAAGTCTAC -ACGGAATGGGAACCTCAAACGTAC -ACGGAATGGGAACCTCAAAGTGAC -ACGGAATGGGAACCTCAACTGTAG -ACGGAATGGGAACCTCAACCTAAG -ACGGAATGGGAACCTCAAGTTCAG -ACGGAATGGGAACCTCAAGCATAG -ACGGAATGGGAACCTCAAGACAAG -ACGGAATGGGAACCTCAAAAGCAG -ACGGAATGGGAACCTCAACGTCAA -ACGGAATGGGAACCTCAAGCTGAA -ACGGAATGGGAACCTCAAAGTACG -ACGGAATGGGAACCTCAAATCCGA -ACGGAATGGGAACCTCAAATGGGA -ACGGAATGGGAACCTCAAGTGCAA -ACGGAATGGGAACCTCAAGAGGAA -ACGGAATGGGAACCTCAACAGGTA -ACGGAATGGGAACCTCAAGACTCT -ACGGAATGGGAACCTCAAAGTCCT -ACGGAATGGGAACCTCAATAAGCC -ACGGAATGGGAACCTCAAATAGCC -ACGGAATGGGAACCTCAATAACCG -ACGGAATGGGAACCTCAAATGCCA -ACGGAATGGGAAACTGCTGGAAAC -ACGGAATGGGAAACTGCTAACACC -ACGGAATGGGAAACTGCTATCGAG -ACGGAATGGGAAACTGCTCTCCTT -ACGGAATGGGAAACTGCTCCTGTT -ACGGAATGGGAAACTGCTCGGTTT -ACGGAATGGGAAACTGCTGTGGTT -ACGGAATGGGAAACTGCTGCCTTT -ACGGAATGGGAAACTGCTGGTCTT -ACGGAATGGGAAACTGCTACGCTT -ACGGAATGGGAAACTGCTAGCGTT -ACGGAATGGGAAACTGCTTTCGTC -ACGGAATGGGAAACTGCTTCTCTC -ACGGAATGGGAAACTGCTTGGATC -ACGGAATGGGAAACTGCTCACTTC -ACGGAATGGGAAACTGCTGTACTC -ACGGAATGGGAAACTGCTGATGTC -ACGGAATGGGAAACTGCTACAGTC -ACGGAATGGGAAACTGCTTTGCTG -ACGGAATGGGAAACTGCTTCCATG -ACGGAATGGGAAACTGCTTGTGTG -ACGGAATGGGAAACTGCTCTAGTG -ACGGAATGGGAAACTGCTCATCTG -ACGGAATGGGAAACTGCTGAGTTG -ACGGAATGGGAAACTGCTAGACTG -ACGGAATGGGAAACTGCTTCGGTA -ACGGAATGGGAAACTGCTTGCCTA -ACGGAATGGGAAACTGCTCCACTA -ACGGAATGGGAAACTGCTGGAGTA -ACGGAATGGGAAACTGCTTCGTCT -ACGGAATGGGAAACTGCTTGCACT -ACGGAATGGGAAACTGCTCTGACT -ACGGAATGGGAAACTGCTCAACCT -ACGGAATGGGAAACTGCTGCTACT -ACGGAATGGGAAACTGCTGGATCT -ACGGAATGGGAAACTGCTAAGGCT -ACGGAATGGGAAACTGCTTCAACC -ACGGAATGGGAAACTGCTTGTTCC -ACGGAATGGGAAACTGCTATTCCC -ACGGAATGGGAAACTGCTTTCTCG -ACGGAATGGGAAACTGCTTAGACG -ACGGAATGGGAAACTGCTGTAACG -ACGGAATGGGAAACTGCTACTTCG -ACGGAATGGGAAACTGCTTACGCA -ACGGAATGGGAAACTGCTCTTGCA -ACGGAATGGGAAACTGCTCGAACA -ACGGAATGGGAAACTGCTCAGTCA -ACGGAATGGGAAACTGCTGATCCA -ACGGAATGGGAAACTGCTACGACA -ACGGAATGGGAAACTGCTAGCTCA -ACGGAATGGGAAACTGCTTCACGT -ACGGAATGGGAAACTGCTCGTAGT -ACGGAATGGGAAACTGCTGTCAGT -ACGGAATGGGAAACTGCTGAAGGT -ACGGAATGGGAAACTGCTAACCGT -ACGGAATGGGAAACTGCTTTGTGC -ACGGAATGGGAAACTGCTCTAAGC -ACGGAATGGGAAACTGCTACTAGC -ACGGAATGGGAAACTGCTAGATGC -ACGGAATGGGAAACTGCTTGAAGG -ACGGAATGGGAAACTGCTCAATGG -ACGGAATGGGAAACTGCTATGAGG -ACGGAATGGGAAACTGCTAATGGG -ACGGAATGGGAAACTGCTTCCTGA -ACGGAATGGGAAACTGCTTAGCGA -ACGGAATGGGAAACTGCTCACAGA -ACGGAATGGGAAACTGCTGCAAGA -ACGGAATGGGAAACTGCTGGTTGA -ACGGAATGGGAAACTGCTTCCGAT -ACGGAATGGGAAACTGCTTGGCAT -ACGGAATGGGAAACTGCTCGAGAT -ACGGAATGGGAAACTGCTTACCAC -ACGGAATGGGAAACTGCTCAGAAC -ACGGAATGGGAAACTGCTGTCTAC -ACGGAATGGGAAACTGCTACGTAC -ACGGAATGGGAAACTGCTAGTGAC -ACGGAATGGGAAACTGCTCTGTAG -ACGGAATGGGAAACTGCTCCTAAG -ACGGAATGGGAAACTGCTGTTCAG -ACGGAATGGGAAACTGCTGCATAG -ACGGAATGGGAAACTGCTGACAAG -ACGGAATGGGAAACTGCTAAGCAG -ACGGAATGGGAAACTGCTCGTCAA -ACGGAATGGGAAACTGCTGCTGAA -ACGGAATGGGAAACTGCTAGTACG -ACGGAATGGGAAACTGCTATCCGA -ACGGAATGGGAAACTGCTATGGGA -ACGGAATGGGAAACTGCTGTGCAA -ACGGAATGGGAAACTGCTGAGGAA -ACGGAATGGGAAACTGCTCAGGTA -ACGGAATGGGAAACTGCTGACTCT -ACGGAATGGGAAACTGCTAGTCCT -ACGGAATGGGAAACTGCTTAAGCC -ACGGAATGGGAAACTGCTATAGCC -ACGGAATGGGAAACTGCTTAACCG -ACGGAATGGGAAACTGCTATGCCA -ACGGAATGGGAATCTGGAGGAAAC -ACGGAATGGGAATCTGGAAACACC -ACGGAATGGGAATCTGGAATCGAG -ACGGAATGGGAATCTGGACTCCTT -ACGGAATGGGAATCTGGACCTGTT -ACGGAATGGGAATCTGGACGGTTT -ACGGAATGGGAATCTGGAGTGGTT -ACGGAATGGGAATCTGGAGCCTTT -ACGGAATGGGAATCTGGAGGTCTT -ACGGAATGGGAATCTGGAACGCTT -ACGGAATGGGAATCTGGAAGCGTT -ACGGAATGGGAATCTGGATTCGTC -ACGGAATGGGAATCTGGATCTCTC -ACGGAATGGGAATCTGGATGGATC -ACGGAATGGGAATCTGGACACTTC -ACGGAATGGGAATCTGGAGTACTC -ACGGAATGGGAATCTGGAGATGTC -ACGGAATGGGAATCTGGAACAGTC -ACGGAATGGGAATCTGGATTGCTG -ACGGAATGGGAATCTGGATCCATG -ACGGAATGGGAATCTGGATGTGTG -ACGGAATGGGAATCTGGACTAGTG -ACGGAATGGGAATCTGGACATCTG -ACGGAATGGGAATCTGGAGAGTTG -ACGGAATGGGAATCTGGAAGACTG -ACGGAATGGGAATCTGGATCGGTA -ACGGAATGGGAATCTGGATGCCTA -ACGGAATGGGAATCTGGACCACTA -ACGGAATGGGAATCTGGAGGAGTA -ACGGAATGGGAATCTGGATCGTCT -ACGGAATGGGAATCTGGATGCACT -ACGGAATGGGAATCTGGACTGACT -ACGGAATGGGAATCTGGACAACCT -ACGGAATGGGAATCTGGAGCTACT -ACGGAATGGGAATCTGGAGGATCT -ACGGAATGGGAATCTGGAAAGGCT -ACGGAATGGGAATCTGGATCAACC -ACGGAATGGGAATCTGGATGTTCC -ACGGAATGGGAATCTGGAATTCCC -ACGGAATGGGAATCTGGATTCTCG -ACGGAATGGGAATCTGGATAGACG -ACGGAATGGGAATCTGGAGTAACG -ACGGAATGGGAATCTGGAACTTCG -ACGGAATGGGAATCTGGATACGCA -ACGGAATGGGAATCTGGACTTGCA -ACGGAATGGGAATCTGGACGAACA -ACGGAATGGGAATCTGGACAGTCA -ACGGAATGGGAATCTGGAGATCCA -ACGGAATGGGAATCTGGAACGACA -ACGGAATGGGAATCTGGAAGCTCA -ACGGAATGGGAATCTGGATCACGT -ACGGAATGGGAATCTGGACGTAGT -ACGGAATGGGAATCTGGAGTCAGT -ACGGAATGGGAATCTGGAGAAGGT -ACGGAATGGGAATCTGGAAACCGT -ACGGAATGGGAATCTGGATTGTGC -ACGGAATGGGAATCTGGACTAAGC -ACGGAATGGGAATCTGGAACTAGC -ACGGAATGGGAATCTGGAAGATGC -ACGGAATGGGAATCTGGATGAAGG -ACGGAATGGGAATCTGGACAATGG -ACGGAATGGGAATCTGGAATGAGG -ACGGAATGGGAATCTGGAAATGGG -ACGGAATGGGAATCTGGATCCTGA -ACGGAATGGGAATCTGGATAGCGA -ACGGAATGGGAATCTGGACACAGA -ACGGAATGGGAATCTGGAGCAAGA -ACGGAATGGGAATCTGGAGGTTGA -ACGGAATGGGAATCTGGATCCGAT -ACGGAATGGGAATCTGGATGGCAT -ACGGAATGGGAATCTGGACGAGAT -ACGGAATGGGAATCTGGATACCAC -ACGGAATGGGAATCTGGACAGAAC -ACGGAATGGGAATCTGGAGTCTAC -ACGGAATGGGAATCTGGAACGTAC -ACGGAATGGGAATCTGGAAGTGAC -ACGGAATGGGAATCTGGACTGTAG -ACGGAATGGGAATCTGGACCTAAG -ACGGAATGGGAATCTGGAGTTCAG -ACGGAATGGGAATCTGGAGCATAG -ACGGAATGGGAATCTGGAGACAAG -ACGGAATGGGAATCTGGAAAGCAG -ACGGAATGGGAATCTGGACGTCAA -ACGGAATGGGAATCTGGAGCTGAA -ACGGAATGGGAATCTGGAAGTACG -ACGGAATGGGAATCTGGAATCCGA -ACGGAATGGGAATCTGGAATGGGA -ACGGAATGGGAATCTGGAGTGCAA -ACGGAATGGGAATCTGGAGAGGAA -ACGGAATGGGAATCTGGACAGGTA -ACGGAATGGGAATCTGGAGACTCT -ACGGAATGGGAATCTGGAAGTCCT -ACGGAATGGGAATCTGGATAAGCC -ACGGAATGGGAATCTGGAATAGCC -ACGGAATGGGAATCTGGATAACCG -ACGGAATGGGAATCTGGAATGCCA -ACGGAATGGGAAGCTAAGGGAAAC -ACGGAATGGGAAGCTAAGAACACC -ACGGAATGGGAAGCTAAGATCGAG -ACGGAATGGGAAGCTAAGCTCCTT -ACGGAATGGGAAGCTAAGCCTGTT -ACGGAATGGGAAGCTAAGCGGTTT -ACGGAATGGGAAGCTAAGGTGGTT -ACGGAATGGGAAGCTAAGGCCTTT -ACGGAATGGGAAGCTAAGGGTCTT -ACGGAATGGGAAGCTAAGACGCTT -ACGGAATGGGAAGCTAAGAGCGTT -ACGGAATGGGAAGCTAAGTTCGTC -ACGGAATGGGAAGCTAAGTCTCTC -ACGGAATGGGAAGCTAAGTGGATC -ACGGAATGGGAAGCTAAGCACTTC -ACGGAATGGGAAGCTAAGGTACTC -ACGGAATGGGAAGCTAAGGATGTC -ACGGAATGGGAAGCTAAGACAGTC -ACGGAATGGGAAGCTAAGTTGCTG -ACGGAATGGGAAGCTAAGTCCATG -ACGGAATGGGAAGCTAAGTGTGTG -ACGGAATGGGAAGCTAAGCTAGTG -ACGGAATGGGAAGCTAAGCATCTG -ACGGAATGGGAAGCTAAGGAGTTG -ACGGAATGGGAAGCTAAGAGACTG -ACGGAATGGGAAGCTAAGTCGGTA -ACGGAATGGGAAGCTAAGTGCCTA -ACGGAATGGGAAGCTAAGCCACTA -ACGGAATGGGAAGCTAAGGGAGTA -ACGGAATGGGAAGCTAAGTCGTCT -ACGGAATGGGAAGCTAAGTGCACT -ACGGAATGGGAAGCTAAGCTGACT -ACGGAATGGGAAGCTAAGCAACCT -ACGGAATGGGAAGCTAAGGCTACT -ACGGAATGGGAAGCTAAGGGATCT -ACGGAATGGGAAGCTAAGAAGGCT -ACGGAATGGGAAGCTAAGTCAACC -ACGGAATGGGAAGCTAAGTGTTCC -ACGGAATGGGAAGCTAAGATTCCC -ACGGAATGGGAAGCTAAGTTCTCG -ACGGAATGGGAAGCTAAGTAGACG -ACGGAATGGGAAGCTAAGGTAACG -ACGGAATGGGAAGCTAAGACTTCG -ACGGAATGGGAAGCTAAGTACGCA -ACGGAATGGGAAGCTAAGCTTGCA -ACGGAATGGGAAGCTAAGCGAACA -ACGGAATGGGAAGCTAAGCAGTCA -ACGGAATGGGAAGCTAAGGATCCA -ACGGAATGGGAAGCTAAGACGACA -ACGGAATGGGAAGCTAAGAGCTCA -ACGGAATGGGAAGCTAAGTCACGT -ACGGAATGGGAAGCTAAGCGTAGT -ACGGAATGGGAAGCTAAGGTCAGT -ACGGAATGGGAAGCTAAGGAAGGT -ACGGAATGGGAAGCTAAGAACCGT -ACGGAATGGGAAGCTAAGTTGTGC -ACGGAATGGGAAGCTAAGCTAAGC -ACGGAATGGGAAGCTAAGACTAGC -ACGGAATGGGAAGCTAAGAGATGC -ACGGAATGGGAAGCTAAGTGAAGG -ACGGAATGGGAAGCTAAGCAATGG -ACGGAATGGGAAGCTAAGATGAGG -ACGGAATGGGAAGCTAAGAATGGG -ACGGAATGGGAAGCTAAGTCCTGA -ACGGAATGGGAAGCTAAGTAGCGA -ACGGAATGGGAAGCTAAGCACAGA -ACGGAATGGGAAGCTAAGGCAAGA -ACGGAATGGGAAGCTAAGGGTTGA -ACGGAATGGGAAGCTAAGTCCGAT -ACGGAATGGGAAGCTAAGTGGCAT -ACGGAATGGGAAGCTAAGCGAGAT -ACGGAATGGGAAGCTAAGTACCAC -ACGGAATGGGAAGCTAAGCAGAAC -ACGGAATGGGAAGCTAAGGTCTAC -ACGGAATGGGAAGCTAAGACGTAC -ACGGAATGGGAAGCTAAGAGTGAC -ACGGAATGGGAAGCTAAGCTGTAG -ACGGAATGGGAAGCTAAGCCTAAG -ACGGAATGGGAAGCTAAGGTTCAG -ACGGAATGGGAAGCTAAGGCATAG -ACGGAATGGGAAGCTAAGGACAAG -ACGGAATGGGAAGCTAAGAAGCAG -ACGGAATGGGAAGCTAAGCGTCAA -ACGGAATGGGAAGCTAAGGCTGAA -ACGGAATGGGAAGCTAAGAGTACG -ACGGAATGGGAAGCTAAGATCCGA -ACGGAATGGGAAGCTAAGATGGGA -ACGGAATGGGAAGCTAAGGTGCAA -ACGGAATGGGAAGCTAAGGAGGAA -ACGGAATGGGAAGCTAAGCAGGTA -ACGGAATGGGAAGCTAAGGACTCT -ACGGAATGGGAAGCTAAGAGTCCT -ACGGAATGGGAAGCTAAGTAAGCC -ACGGAATGGGAAGCTAAGATAGCC -ACGGAATGGGAAGCTAAGTAACCG -ACGGAATGGGAAGCTAAGATGCCA -ACGGAATGGGAAACCTCAGGAAAC -ACGGAATGGGAAACCTCAAACACC -ACGGAATGGGAAACCTCAATCGAG -ACGGAATGGGAAACCTCACTCCTT -ACGGAATGGGAAACCTCACCTGTT -ACGGAATGGGAAACCTCACGGTTT -ACGGAATGGGAAACCTCAGTGGTT -ACGGAATGGGAAACCTCAGCCTTT -ACGGAATGGGAAACCTCAGGTCTT -ACGGAATGGGAAACCTCAACGCTT -ACGGAATGGGAAACCTCAAGCGTT -ACGGAATGGGAAACCTCATTCGTC -ACGGAATGGGAAACCTCATCTCTC -ACGGAATGGGAAACCTCATGGATC -ACGGAATGGGAAACCTCACACTTC -ACGGAATGGGAAACCTCAGTACTC -ACGGAATGGGAAACCTCAGATGTC -ACGGAATGGGAAACCTCAACAGTC -ACGGAATGGGAAACCTCATTGCTG -ACGGAATGGGAAACCTCATCCATG -ACGGAATGGGAAACCTCATGTGTG -ACGGAATGGGAAACCTCACTAGTG -ACGGAATGGGAAACCTCACATCTG -ACGGAATGGGAAACCTCAGAGTTG -ACGGAATGGGAAACCTCAAGACTG -ACGGAATGGGAAACCTCATCGGTA -ACGGAATGGGAAACCTCATGCCTA -ACGGAATGGGAAACCTCACCACTA -ACGGAATGGGAAACCTCAGGAGTA -ACGGAATGGGAAACCTCATCGTCT -ACGGAATGGGAAACCTCATGCACT -ACGGAATGGGAAACCTCACTGACT -ACGGAATGGGAAACCTCACAACCT -ACGGAATGGGAAACCTCAGCTACT -ACGGAATGGGAAACCTCAGGATCT -ACGGAATGGGAAACCTCAAAGGCT -ACGGAATGGGAAACCTCATCAACC -ACGGAATGGGAAACCTCATGTTCC -ACGGAATGGGAAACCTCAATTCCC -ACGGAATGGGAAACCTCATTCTCG -ACGGAATGGGAAACCTCATAGACG -ACGGAATGGGAAACCTCAGTAACG -ACGGAATGGGAAACCTCAACTTCG -ACGGAATGGGAAACCTCATACGCA -ACGGAATGGGAAACCTCACTTGCA -ACGGAATGGGAAACCTCACGAACA -ACGGAATGGGAAACCTCACAGTCA -ACGGAATGGGAAACCTCAGATCCA -ACGGAATGGGAAACCTCAACGACA -ACGGAATGGGAAACCTCAAGCTCA -ACGGAATGGGAAACCTCATCACGT -ACGGAATGGGAAACCTCACGTAGT -ACGGAATGGGAAACCTCAGTCAGT -ACGGAATGGGAAACCTCAGAAGGT -ACGGAATGGGAAACCTCAAACCGT -ACGGAATGGGAAACCTCATTGTGC -ACGGAATGGGAAACCTCACTAAGC -ACGGAATGGGAAACCTCAACTAGC -ACGGAATGGGAAACCTCAAGATGC -ACGGAATGGGAAACCTCATGAAGG -ACGGAATGGGAAACCTCACAATGG -ACGGAATGGGAAACCTCAATGAGG -ACGGAATGGGAAACCTCAAATGGG -ACGGAATGGGAAACCTCATCCTGA -ACGGAATGGGAAACCTCATAGCGA -ACGGAATGGGAAACCTCACACAGA -ACGGAATGGGAAACCTCAGCAAGA -ACGGAATGGGAAACCTCAGGTTGA -ACGGAATGGGAAACCTCATCCGAT -ACGGAATGGGAAACCTCATGGCAT -ACGGAATGGGAAACCTCACGAGAT -ACGGAATGGGAAACCTCATACCAC -ACGGAATGGGAAACCTCACAGAAC -ACGGAATGGGAAACCTCAGTCTAC -ACGGAATGGGAAACCTCAACGTAC -ACGGAATGGGAAACCTCAAGTGAC -ACGGAATGGGAAACCTCACTGTAG -ACGGAATGGGAAACCTCACCTAAG -ACGGAATGGGAAACCTCAGTTCAG -ACGGAATGGGAAACCTCAGCATAG -ACGGAATGGGAAACCTCAGACAAG -ACGGAATGGGAAACCTCAAAGCAG -ACGGAATGGGAAACCTCACGTCAA -ACGGAATGGGAAACCTCAGCTGAA -ACGGAATGGGAAACCTCAAGTACG -ACGGAATGGGAAACCTCAATCCGA -ACGGAATGGGAAACCTCAATGGGA -ACGGAATGGGAAACCTCAGTGCAA -ACGGAATGGGAAACCTCAGAGGAA -ACGGAATGGGAAACCTCACAGGTA -ACGGAATGGGAAACCTCAGACTCT -ACGGAATGGGAAACCTCAAGTCCT -ACGGAATGGGAAACCTCATAAGCC -ACGGAATGGGAAACCTCAATAGCC -ACGGAATGGGAAACCTCATAACCG -ACGGAATGGGAAACCTCAATGCCA -ACGGAATGGGAATCCTGTGGAAAC -ACGGAATGGGAATCCTGTAACACC -ACGGAATGGGAATCCTGTATCGAG -ACGGAATGGGAATCCTGTCTCCTT -ACGGAATGGGAATCCTGTCCTGTT -ACGGAATGGGAATCCTGTCGGTTT -ACGGAATGGGAATCCTGTGTGGTT -ACGGAATGGGAATCCTGTGCCTTT -ACGGAATGGGAATCCTGTGGTCTT -ACGGAATGGGAATCCTGTACGCTT -ACGGAATGGGAATCCTGTAGCGTT -ACGGAATGGGAATCCTGTTTCGTC -ACGGAATGGGAATCCTGTTCTCTC -ACGGAATGGGAATCCTGTTGGATC -ACGGAATGGGAATCCTGTCACTTC -ACGGAATGGGAATCCTGTGTACTC -ACGGAATGGGAATCCTGTGATGTC -ACGGAATGGGAATCCTGTACAGTC -ACGGAATGGGAATCCTGTTTGCTG -ACGGAATGGGAATCCTGTTCCATG -ACGGAATGGGAATCCTGTTGTGTG -ACGGAATGGGAATCCTGTCTAGTG -ACGGAATGGGAATCCTGTCATCTG -ACGGAATGGGAATCCTGTGAGTTG -ACGGAATGGGAATCCTGTAGACTG -ACGGAATGGGAATCCTGTTCGGTA -ACGGAATGGGAATCCTGTTGCCTA -ACGGAATGGGAATCCTGTCCACTA -ACGGAATGGGAATCCTGTGGAGTA -ACGGAATGGGAATCCTGTTCGTCT -ACGGAATGGGAATCCTGTTGCACT -ACGGAATGGGAATCCTGTCTGACT -ACGGAATGGGAATCCTGTCAACCT -ACGGAATGGGAATCCTGTGCTACT -ACGGAATGGGAATCCTGTGGATCT -ACGGAATGGGAATCCTGTAAGGCT -ACGGAATGGGAATCCTGTTCAACC -ACGGAATGGGAATCCTGTTGTTCC -ACGGAATGGGAATCCTGTATTCCC -ACGGAATGGGAATCCTGTTTCTCG -ACGGAATGGGAATCCTGTTAGACG -ACGGAATGGGAATCCTGTGTAACG -ACGGAATGGGAATCCTGTACTTCG -ACGGAATGGGAATCCTGTTACGCA -ACGGAATGGGAATCCTGTCTTGCA -ACGGAATGGGAATCCTGTCGAACA -ACGGAATGGGAATCCTGTCAGTCA -ACGGAATGGGAATCCTGTGATCCA -ACGGAATGGGAATCCTGTACGACA -ACGGAATGGGAATCCTGTAGCTCA -ACGGAATGGGAATCCTGTTCACGT -ACGGAATGGGAATCCTGTCGTAGT -ACGGAATGGGAATCCTGTGTCAGT -ACGGAATGGGAATCCTGTGAAGGT -ACGGAATGGGAATCCTGTAACCGT -ACGGAATGGGAATCCTGTTTGTGC -ACGGAATGGGAATCCTGTCTAAGC -ACGGAATGGGAATCCTGTACTAGC -ACGGAATGGGAATCCTGTAGATGC -ACGGAATGGGAATCCTGTTGAAGG -ACGGAATGGGAATCCTGTCAATGG -ACGGAATGGGAATCCTGTATGAGG -ACGGAATGGGAATCCTGTAATGGG -ACGGAATGGGAATCCTGTTCCTGA -ACGGAATGGGAATCCTGTTAGCGA -ACGGAATGGGAATCCTGTCACAGA -ACGGAATGGGAATCCTGTGCAAGA -ACGGAATGGGAATCCTGTGGTTGA -ACGGAATGGGAATCCTGTTCCGAT -ACGGAATGGGAATCCTGTTGGCAT -ACGGAATGGGAATCCTGTCGAGAT -ACGGAATGGGAATCCTGTTACCAC -ACGGAATGGGAATCCTGTCAGAAC -ACGGAATGGGAATCCTGTGTCTAC -ACGGAATGGGAATCCTGTACGTAC -ACGGAATGGGAATCCTGTAGTGAC -ACGGAATGGGAATCCTGTCTGTAG -ACGGAATGGGAATCCTGTCCTAAG -ACGGAATGGGAATCCTGTGTTCAG -ACGGAATGGGAATCCTGTGCATAG -ACGGAATGGGAATCCTGTGACAAG -ACGGAATGGGAATCCTGTAAGCAG -ACGGAATGGGAATCCTGTCGTCAA -ACGGAATGGGAATCCTGTGCTGAA -ACGGAATGGGAATCCTGTAGTACG -ACGGAATGGGAATCCTGTATCCGA -ACGGAATGGGAATCCTGTATGGGA -ACGGAATGGGAATCCTGTGTGCAA -ACGGAATGGGAATCCTGTGAGGAA -ACGGAATGGGAATCCTGTCAGGTA -ACGGAATGGGAATCCTGTGACTCT -ACGGAATGGGAATCCTGTAGTCCT -ACGGAATGGGAATCCTGTTAAGCC -ACGGAATGGGAATCCTGTATAGCC -ACGGAATGGGAATCCTGTTAACCG -ACGGAATGGGAATCCTGTATGCCA -ACGGAATGGGAACCCATTGGAAAC -ACGGAATGGGAACCCATTAACACC -ACGGAATGGGAACCCATTATCGAG -ACGGAATGGGAACCCATTCTCCTT -ACGGAATGGGAACCCATTCCTGTT -ACGGAATGGGAACCCATTCGGTTT -ACGGAATGGGAACCCATTGTGGTT -ACGGAATGGGAACCCATTGCCTTT -ACGGAATGGGAACCCATTGGTCTT -ACGGAATGGGAACCCATTACGCTT -ACGGAATGGGAACCCATTAGCGTT -ACGGAATGGGAACCCATTTTCGTC -ACGGAATGGGAACCCATTTCTCTC -ACGGAATGGGAACCCATTTGGATC -ACGGAATGGGAACCCATTCACTTC -ACGGAATGGGAACCCATTGTACTC -ACGGAATGGGAACCCATTGATGTC -ACGGAATGGGAACCCATTACAGTC -ACGGAATGGGAACCCATTTTGCTG -ACGGAATGGGAACCCATTTCCATG -ACGGAATGGGAACCCATTTGTGTG -ACGGAATGGGAACCCATTCTAGTG -ACGGAATGGGAACCCATTCATCTG -ACGGAATGGGAACCCATTGAGTTG -ACGGAATGGGAACCCATTAGACTG -ACGGAATGGGAACCCATTTCGGTA -ACGGAATGGGAACCCATTTGCCTA -ACGGAATGGGAACCCATTCCACTA -ACGGAATGGGAACCCATTGGAGTA -ACGGAATGGGAACCCATTTCGTCT -ACGGAATGGGAACCCATTTGCACT -ACGGAATGGGAACCCATTCTGACT -ACGGAATGGGAACCCATTCAACCT -ACGGAATGGGAACCCATTGCTACT -ACGGAATGGGAACCCATTGGATCT -ACGGAATGGGAACCCATTAAGGCT -ACGGAATGGGAACCCATTTCAACC -ACGGAATGGGAACCCATTTGTTCC -ACGGAATGGGAACCCATTATTCCC -ACGGAATGGGAACCCATTTTCTCG -ACGGAATGGGAACCCATTTAGACG -ACGGAATGGGAACCCATTGTAACG -ACGGAATGGGAACCCATTACTTCG -ACGGAATGGGAACCCATTTACGCA -ACGGAATGGGAACCCATTCTTGCA -ACGGAATGGGAACCCATTCGAACA -ACGGAATGGGAACCCATTCAGTCA -ACGGAATGGGAACCCATTGATCCA -ACGGAATGGGAACCCATTACGACA -ACGGAATGGGAACCCATTAGCTCA -ACGGAATGGGAACCCATTTCACGT -ACGGAATGGGAACCCATTCGTAGT -ACGGAATGGGAACCCATTGTCAGT -ACGGAATGGGAACCCATTGAAGGT -ACGGAATGGGAACCCATTAACCGT -ACGGAATGGGAACCCATTTTGTGC -ACGGAATGGGAACCCATTCTAAGC -ACGGAATGGGAACCCATTACTAGC -ACGGAATGGGAACCCATTAGATGC -ACGGAATGGGAACCCATTTGAAGG -ACGGAATGGGAACCCATTCAATGG -ACGGAATGGGAACCCATTATGAGG -ACGGAATGGGAACCCATTAATGGG -ACGGAATGGGAACCCATTTCCTGA -ACGGAATGGGAACCCATTTAGCGA -ACGGAATGGGAACCCATTCACAGA -ACGGAATGGGAACCCATTGCAAGA -ACGGAATGGGAACCCATTGGTTGA -ACGGAATGGGAACCCATTTCCGAT -ACGGAATGGGAACCCATTTGGCAT -ACGGAATGGGAACCCATTCGAGAT -ACGGAATGGGAACCCATTTACCAC -ACGGAATGGGAACCCATTCAGAAC -ACGGAATGGGAACCCATTGTCTAC -ACGGAATGGGAACCCATTACGTAC -ACGGAATGGGAACCCATTAGTGAC -ACGGAATGGGAACCCATTCTGTAG -ACGGAATGGGAACCCATTCCTAAG -ACGGAATGGGAACCCATTGTTCAG -ACGGAATGGGAACCCATTGCATAG -ACGGAATGGGAACCCATTGACAAG -ACGGAATGGGAACCCATTAAGCAG -ACGGAATGGGAACCCATTCGTCAA -ACGGAATGGGAACCCATTGCTGAA -ACGGAATGGGAACCCATTAGTACG -ACGGAATGGGAACCCATTATCCGA -ACGGAATGGGAACCCATTATGGGA -ACGGAATGGGAACCCATTGTGCAA -ACGGAATGGGAACCCATTGAGGAA -ACGGAATGGGAACCCATTCAGGTA -ACGGAATGGGAACCCATTGACTCT -ACGGAATGGGAACCCATTAGTCCT -ACGGAATGGGAACCCATTTAAGCC -ACGGAATGGGAACCCATTATAGCC -ACGGAATGGGAACCCATTTAACCG -ACGGAATGGGAACCCATTATGCCA -ACGGAATGGGAATCGTTCGGAAAC -ACGGAATGGGAATCGTTCAACACC -ACGGAATGGGAATCGTTCATCGAG -ACGGAATGGGAATCGTTCCTCCTT -ACGGAATGGGAATCGTTCCCTGTT -ACGGAATGGGAATCGTTCCGGTTT -ACGGAATGGGAATCGTTCGTGGTT -ACGGAATGGGAATCGTTCGCCTTT -ACGGAATGGGAATCGTTCGGTCTT -ACGGAATGGGAATCGTTCACGCTT -ACGGAATGGGAATCGTTCAGCGTT -ACGGAATGGGAATCGTTCTTCGTC -ACGGAATGGGAATCGTTCTCTCTC -ACGGAATGGGAATCGTTCTGGATC -ACGGAATGGGAATCGTTCCACTTC -ACGGAATGGGAATCGTTCGTACTC -ACGGAATGGGAATCGTTCGATGTC -ACGGAATGGGAATCGTTCACAGTC -ACGGAATGGGAATCGTTCTTGCTG -ACGGAATGGGAATCGTTCTCCATG -ACGGAATGGGAATCGTTCTGTGTG -ACGGAATGGGAATCGTTCCTAGTG -ACGGAATGGGAATCGTTCCATCTG -ACGGAATGGGAATCGTTCGAGTTG -ACGGAATGGGAATCGTTCAGACTG -ACGGAATGGGAATCGTTCTCGGTA -ACGGAATGGGAATCGTTCTGCCTA -ACGGAATGGGAATCGTTCCCACTA -ACGGAATGGGAATCGTTCGGAGTA -ACGGAATGGGAATCGTTCTCGTCT -ACGGAATGGGAATCGTTCTGCACT -ACGGAATGGGAATCGTTCCTGACT -ACGGAATGGGAATCGTTCCAACCT -ACGGAATGGGAATCGTTCGCTACT -ACGGAATGGGAATCGTTCGGATCT -ACGGAATGGGAATCGTTCAAGGCT -ACGGAATGGGAATCGTTCTCAACC -ACGGAATGGGAATCGTTCTGTTCC -ACGGAATGGGAATCGTTCATTCCC -ACGGAATGGGAATCGTTCTTCTCG -ACGGAATGGGAATCGTTCTAGACG -ACGGAATGGGAATCGTTCGTAACG -ACGGAATGGGAATCGTTCACTTCG -ACGGAATGGGAATCGTTCTACGCA -ACGGAATGGGAATCGTTCCTTGCA -ACGGAATGGGAATCGTTCCGAACA -ACGGAATGGGAATCGTTCCAGTCA -ACGGAATGGGAATCGTTCGATCCA -ACGGAATGGGAATCGTTCACGACA -ACGGAATGGGAATCGTTCAGCTCA -ACGGAATGGGAATCGTTCTCACGT -ACGGAATGGGAATCGTTCCGTAGT -ACGGAATGGGAATCGTTCGTCAGT -ACGGAATGGGAATCGTTCGAAGGT -ACGGAATGGGAATCGTTCAACCGT -ACGGAATGGGAATCGTTCTTGTGC -ACGGAATGGGAATCGTTCCTAAGC -ACGGAATGGGAATCGTTCACTAGC -ACGGAATGGGAATCGTTCAGATGC -ACGGAATGGGAATCGTTCTGAAGG -ACGGAATGGGAATCGTTCCAATGG -ACGGAATGGGAATCGTTCATGAGG -ACGGAATGGGAATCGTTCAATGGG -ACGGAATGGGAATCGTTCTCCTGA -ACGGAATGGGAATCGTTCTAGCGA -ACGGAATGGGAATCGTTCCACAGA -ACGGAATGGGAATCGTTCGCAAGA -ACGGAATGGGAATCGTTCGGTTGA -ACGGAATGGGAATCGTTCTCCGAT -ACGGAATGGGAATCGTTCTGGCAT -ACGGAATGGGAATCGTTCCGAGAT -ACGGAATGGGAATCGTTCTACCAC -ACGGAATGGGAATCGTTCCAGAAC -ACGGAATGGGAATCGTTCGTCTAC -ACGGAATGGGAATCGTTCACGTAC -ACGGAATGGGAATCGTTCAGTGAC -ACGGAATGGGAATCGTTCCTGTAG -ACGGAATGGGAATCGTTCCCTAAG -ACGGAATGGGAATCGTTCGTTCAG -ACGGAATGGGAATCGTTCGCATAG -ACGGAATGGGAATCGTTCGACAAG -ACGGAATGGGAATCGTTCAAGCAG -ACGGAATGGGAATCGTTCCGTCAA -ACGGAATGGGAATCGTTCGCTGAA -ACGGAATGGGAATCGTTCAGTACG -ACGGAATGGGAATCGTTCATCCGA -ACGGAATGGGAATCGTTCATGGGA -ACGGAATGGGAATCGTTCGTGCAA -ACGGAATGGGAATCGTTCGAGGAA -ACGGAATGGGAATCGTTCCAGGTA -ACGGAATGGGAATCGTTCGACTCT -ACGGAATGGGAATCGTTCAGTCCT -ACGGAATGGGAATCGTTCTAAGCC -ACGGAATGGGAATCGTTCATAGCC -ACGGAATGGGAATCGTTCTAACCG -ACGGAATGGGAATCGTTCATGCCA -ACGGAATGGGAAACGTAGGGAAAC -ACGGAATGGGAAACGTAGAACACC -ACGGAATGGGAAACGTAGATCGAG -ACGGAATGGGAAACGTAGCTCCTT -ACGGAATGGGAAACGTAGCCTGTT -ACGGAATGGGAAACGTAGCGGTTT -ACGGAATGGGAAACGTAGGTGGTT -ACGGAATGGGAAACGTAGGCCTTT -ACGGAATGGGAAACGTAGGGTCTT -ACGGAATGGGAAACGTAGACGCTT -ACGGAATGGGAAACGTAGAGCGTT -ACGGAATGGGAAACGTAGTTCGTC -ACGGAATGGGAAACGTAGTCTCTC -ACGGAATGGGAAACGTAGTGGATC -ACGGAATGGGAAACGTAGCACTTC -ACGGAATGGGAAACGTAGGTACTC -ACGGAATGGGAAACGTAGGATGTC -ACGGAATGGGAAACGTAGACAGTC -ACGGAATGGGAAACGTAGTTGCTG -ACGGAATGGGAAACGTAGTCCATG -ACGGAATGGGAAACGTAGTGTGTG -ACGGAATGGGAAACGTAGCTAGTG -ACGGAATGGGAAACGTAGCATCTG -ACGGAATGGGAAACGTAGGAGTTG -ACGGAATGGGAAACGTAGAGACTG -ACGGAATGGGAAACGTAGTCGGTA -ACGGAATGGGAAACGTAGTGCCTA -ACGGAATGGGAAACGTAGCCACTA -ACGGAATGGGAAACGTAGGGAGTA -ACGGAATGGGAAACGTAGTCGTCT -ACGGAATGGGAAACGTAGTGCACT -ACGGAATGGGAAACGTAGCTGACT -ACGGAATGGGAAACGTAGCAACCT -ACGGAATGGGAAACGTAGGCTACT -ACGGAATGGGAAACGTAGGGATCT -ACGGAATGGGAAACGTAGAAGGCT -ACGGAATGGGAAACGTAGTCAACC -ACGGAATGGGAAACGTAGTGTTCC -ACGGAATGGGAAACGTAGATTCCC -ACGGAATGGGAAACGTAGTTCTCG -ACGGAATGGGAAACGTAGTAGACG -ACGGAATGGGAAACGTAGGTAACG -ACGGAATGGGAAACGTAGACTTCG -ACGGAATGGGAAACGTAGTACGCA -ACGGAATGGGAAACGTAGCTTGCA -ACGGAATGGGAAACGTAGCGAACA -ACGGAATGGGAAACGTAGCAGTCA -ACGGAATGGGAAACGTAGGATCCA -ACGGAATGGGAAACGTAGACGACA -ACGGAATGGGAAACGTAGAGCTCA -ACGGAATGGGAAACGTAGTCACGT -ACGGAATGGGAAACGTAGCGTAGT -ACGGAATGGGAAACGTAGGTCAGT -ACGGAATGGGAAACGTAGGAAGGT -ACGGAATGGGAAACGTAGAACCGT -ACGGAATGGGAAACGTAGTTGTGC -ACGGAATGGGAAACGTAGCTAAGC -ACGGAATGGGAAACGTAGACTAGC -ACGGAATGGGAAACGTAGAGATGC -ACGGAATGGGAAACGTAGTGAAGG -ACGGAATGGGAAACGTAGCAATGG -ACGGAATGGGAAACGTAGATGAGG -ACGGAATGGGAAACGTAGAATGGG -ACGGAATGGGAAACGTAGTCCTGA -ACGGAATGGGAAACGTAGTAGCGA -ACGGAATGGGAAACGTAGCACAGA -ACGGAATGGGAAACGTAGGCAAGA -ACGGAATGGGAAACGTAGGGTTGA -ACGGAATGGGAAACGTAGTCCGAT -ACGGAATGGGAAACGTAGTGGCAT -ACGGAATGGGAAACGTAGCGAGAT -ACGGAATGGGAAACGTAGTACCAC -ACGGAATGGGAAACGTAGCAGAAC -ACGGAATGGGAAACGTAGGTCTAC -ACGGAATGGGAAACGTAGACGTAC -ACGGAATGGGAAACGTAGAGTGAC -ACGGAATGGGAAACGTAGCTGTAG -ACGGAATGGGAAACGTAGCCTAAG -ACGGAATGGGAAACGTAGGTTCAG -ACGGAATGGGAAACGTAGGCATAG -ACGGAATGGGAAACGTAGGACAAG -ACGGAATGGGAAACGTAGAAGCAG -ACGGAATGGGAAACGTAGCGTCAA -ACGGAATGGGAAACGTAGGCTGAA -ACGGAATGGGAAACGTAGAGTACG -ACGGAATGGGAAACGTAGATCCGA -ACGGAATGGGAAACGTAGATGGGA -ACGGAATGGGAAACGTAGGTGCAA -ACGGAATGGGAAACGTAGGAGGAA -ACGGAATGGGAAACGTAGCAGGTA -ACGGAATGGGAAACGTAGGACTCT -ACGGAATGGGAAACGTAGAGTCCT -ACGGAATGGGAAACGTAGTAAGCC -ACGGAATGGGAAACGTAGATAGCC -ACGGAATGGGAAACGTAGTAACCG -ACGGAATGGGAAACGTAGATGCCA -ACGGAATGGGAAACGGTAGGAAAC -ACGGAATGGGAAACGGTAAACACC -ACGGAATGGGAAACGGTAATCGAG -ACGGAATGGGAAACGGTACTCCTT -ACGGAATGGGAAACGGTACCTGTT -ACGGAATGGGAAACGGTACGGTTT -ACGGAATGGGAAACGGTAGTGGTT -ACGGAATGGGAAACGGTAGCCTTT -ACGGAATGGGAAACGGTAGGTCTT -ACGGAATGGGAAACGGTAACGCTT -ACGGAATGGGAAACGGTAAGCGTT -ACGGAATGGGAAACGGTATTCGTC -ACGGAATGGGAAACGGTATCTCTC -ACGGAATGGGAAACGGTATGGATC -ACGGAATGGGAAACGGTACACTTC -ACGGAATGGGAAACGGTAGTACTC -ACGGAATGGGAAACGGTAGATGTC -ACGGAATGGGAAACGGTAACAGTC -ACGGAATGGGAAACGGTATTGCTG -ACGGAATGGGAAACGGTATCCATG -ACGGAATGGGAAACGGTATGTGTG -ACGGAATGGGAAACGGTACTAGTG -ACGGAATGGGAAACGGTACATCTG -ACGGAATGGGAAACGGTAGAGTTG -ACGGAATGGGAAACGGTAAGACTG -ACGGAATGGGAAACGGTATCGGTA -ACGGAATGGGAAACGGTATGCCTA -ACGGAATGGGAAACGGTACCACTA -ACGGAATGGGAAACGGTAGGAGTA -ACGGAATGGGAAACGGTATCGTCT -ACGGAATGGGAAACGGTATGCACT -ACGGAATGGGAAACGGTACTGACT -ACGGAATGGGAAACGGTACAACCT -ACGGAATGGGAAACGGTAGCTACT -ACGGAATGGGAAACGGTAGGATCT -ACGGAATGGGAAACGGTAAAGGCT -ACGGAATGGGAAACGGTATCAACC -ACGGAATGGGAAACGGTATGTTCC -ACGGAATGGGAAACGGTAATTCCC -ACGGAATGGGAAACGGTATTCTCG -ACGGAATGGGAAACGGTATAGACG -ACGGAATGGGAAACGGTAGTAACG -ACGGAATGGGAAACGGTAACTTCG -ACGGAATGGGAAACGGTATACGCA -ACGGAATGGGAAACGGTACTTGCA -ACGGAATGGGAAACGGTACGAACA -ACGGAATGGGAAACGGTACAGTCA -ACGGAATGGGAAACGGTAGATCCA -ACGGAATGGGAAACGGTAACGACA -ACGGAATGGGAAACGGTAAGCTCA -ACGGAATGGGAAACGGTATCACGT -ACGGAATGGGAAACGGTACGTAGT -ACGGAATGGGAAACGGTAGTCAGT -ACGGAATGGGAAACGGTAGAAGGT -ACGGAATGGGAAACGGTAAACCGT -ACGGAATGGGAAACGGTATTGTGC -ACGGAATGGGAAACGGTACTAAGC -ACGGAATGGGAAACGGTAACTAGC -ACGGAATGGGAAACGGTAAGATGC -ACGGAATGGGAAACGGTATGAAGG -ACGGAATGGGAAACGGTACAATGG -ACGGAATGGGAAACGGTAATGAGG -ACGGAATGGGAAACGGTAAATGGG -ACGGAATGGGAAACGGTATCCTGA -ACGGAATGGGAAACGGTATAGCGA -ACGGAATGGGAAACGGTACACAGA -ACGGAATGGGAAACGGTAGCAAGA -ACGGAATGGGAAACGGTAGGTTGA -ACGGAATGGGAAACGGTATCCGAT -ACGGAATGGGAAACGGTATGGCAT -ACGGAATGGGAAACGGTACGAGAT -ACGGAATGGGAAACGGTATACCAC -ACGGAATGGGAAACGGTACAGAAC -ACGGAATGGGAAACGGTAGTCTAC -ACGGAATGGGAAACGGTAACGTAC -ACGGAATGGGAAACGGTAAGTGAC -ACGGAATGGGAAACGGTACTGTAG -ACGGAATGGGAAACGGTACCTAAG -ACGGAATGGGAAACGGTAGTTCAG -ACGGAATGGGAAACGGTAGCATAG -ACGGAATGGGAAACGGTAGACAAG -ACGGAATGGGAAACGGTAAAGCAG -ACGGAATGGGAAACGGTACGTCAA -ACGGAATGGGAAACGGTAGCTGAA -ACGGAATGGGAAACGGTAAGTACG -ACGGAATGGGAAACGGTAATCCGA -ACGGAATGGGAAACGGTAATGGGA -ACGGAATGGGAAACGGTAGTGCAA -ACGGAATGGGAAACGGTAGAGGAA -ACGGAATGGGAAACGGTACAGGTA -ACGGAATGGGAAACGGTAGACTCT -ACGGAATGGGAAACGGTAAGTCCT -ACGGAATGGGAAACGGTATAAGCC -ACGGAATGGGAAACGGTAATAGCC -ACGGAATGGGAAACGGTATAACCG -ACGGAATGGGAAACGGTAATGCCA -ACGGAATGGGAATCGACTGGAAAC -ACGGAATGGGAATCGACTAACACC -ACGGAATGGGAATCGACTATCGAG -ACGGAATGGGAATCGACTCTCCTT -ACGGAATGGGAATCGACTCCTGTT -ACGGAATGGGAATCGACTCGGTTT -ACGGAATGGGAATCGACTGTGGTT -ACGGAATGGGAATCGACTGCCTTT -ACGGAATGGGAATCGACTGGTCTT -ACGGAATGGGAATCGACTACGCTT -ACGGAATGGGAATCGACTAGCGTT -ACGGAATGGGAATCGACTTTCGTC -ACGGAATGGGAATCGACTTCTCTC -ACGGAATGGGAATCGACTTGGATC -ACGGAATGGGAATCGACTCACTTC -ACGGAATGGGAATCGACTGTACTC -ACGGAATGGGAATCGACTGATGTC -ACGGAATGGGAATCGACTACAGTC -ACGGAATGGGAATCGACTTTGCTG -ACGGAATGGGAATCGACTTCCATG -ACGGAATGGGAATCGACTTGTGTG -ACGGAATGGGAATCGACTCTAGTG -ACGGAATGGGAATCGACTCATCTG -ACGGAATGGGAATCGACTGAGTTG -ACGGAATGGGAATCGACTAGACTG -ACGGAATGGGAATCGACTTCGGTA -ACGGAATGGGAATCGACTTGCCTA -ACGGAATGGGAATCGACTCCACTA -ACGGAATGGGAATCGACTGGAGTA -ACGGAATGGGAATCGACTTCGTCT -ACGGAATGGGAATCGACTTGCACT -ACGGAATGGGAATCGACTCTGACT -ACGGAATGGGAATCGACTCAACCT -ACGGAATGGGAATCGACTGCTACT -ACGGAATGGGAATCGACTGGATCT -ACGGAATGGGAATCGACTAAGGCT -ACGGAATGGGAATCGACTTCAACC -ACGGAATGGGAATCGACTTGTTCC -ACGGAATGGGAATCGACTATTCCC -ACGGAATGGGAATCGACTTTCTCG -ACGGAATGGGAATCGACTTAGACG -ACGGAATGGGAATCGACTGTAACG -ACGGAATGGGAATCGACTACTTCG -ACGGAATGGGAATCGACTTACGCA -ACGGAATGGGAATCGACTCTTGCA -ACGGAATGGGAATCGACTCGAACA -ACGGAATGGGAATCGACTCAGTCA -ACGGAATGGGAATCGACTGATCCA -ACGGAATGGGAATCGACTACGACA -ACGGAATGGGAATCGACTAGCTCA -ACGGAATGGGAATCGACTTCACGT -ACGGAATGGGAATCGACTCGTAGT -ACGGAATGGGAATCGACTGTCAGT -ACGGAATGGGAATCGACTGAAGGT -ACGGAATGGGAATCGACTAACCGT -ACGGAATGGGAATCGACTTTGTGC -ACGGAATGGGAATCGACTCTAAGC -ACGGAATGGGAATCGACTACTAGC -ACGGAATGGGAATCGACTAGATGC -ACGGAATGGGAATCGACTTGAAGG -ACGGAATGGGAATCGACTCAATGG -ACGGAATGGGAATCGACTATGAGG -ACGGAATGGGAATCGACTAATGGG -ACGGAATGGGAATCGACTTCCTGA -ACGGAATGGGAATCGACTTAGCGA -ACGGAATGGGAATCGACTCACAGA -ACGGAATGGGAATCGACTGCAAGA -ACGGAATGGGAATCGACTGGTTGA -ACGGAATGGGAATCGACTTCCGAT -ACGGAATGGGAATCGACTTGGCAT -ACGGAATGGGAATCGACTCGAGAT -ACGGAATGGGAATCGACTTACCAC -ACGGAATGGGAATCGACTCAGAAC -ACGGAATGGGAATCGACTGTCTAC -ACGGAATGGGAATCGACTACGTAC -ACGGAATGGGAATCGACTAGTGAC -ACGGAATGGGAATCGACTCTGTAG -ACGGAATGGGAATCGACTCCTAAG -ACGGAATGGGAATCGACTGTTCAG -ACGGAATGGGAATCGACTGCATAG -ACGGAATGGGAATCGACTGACAAG -ACGGAATGGGAATCGACTAAGCAG -ACGGAATGGGAATCGACTCGTCAA -ACGGAATGGGAATCGACTGCTGAA -ACGGAATGGGAATCGACTAGTACG -ACGGAATGGGAATCGACTATCCGA -ACGGAATGGGAATCGACTATGGGA -ACGGAATGGGAATCGACTGTGCAA -ACGGAATGGGAATCGACTGAGGAA -ACGGAATGGGAATCGACTCAGGTA -ACGGAATGGGAATCGACTGACTCT -ACGGAATGGGAATCGACTAGTCCT -ACGGAATGGGAATCGACTTAAGCC -ACGGAATGGGAATCGACTATAGCC -ACGGAATGGGAATCGACTTAACCG -ACGGAATGGGAATCGACTATGCCA -ACGGAATGGGAAGCATACGGAAAC -ACGGAATGGGAAGCATACAACACC -ACGGAATGGGAAGCATACATCGAG -ACGGAATGGGAAGCATACCTCCTT -ACGGAATGGGAAGCATACCCTGTT -ACGGAATGGGAAGCATACCGGTTT -ACGGAATGGGAAGCATACGTGGTT -ACGGAATGGGAAGCATACGCCTTT -ACGGAATGGGAAGCATACGGTCTT -ACGGAATGGGAAGCATACACGCTT -ACGGAATGGGAAGCATACAGCGTT -ACGGAATGGGAAGCATACTTCGTC -ACGGAATGGGAAGCATACTCTCTC -ACGGAATGGGAAGCATACTGGATC -ACGGAATGGGAAGCATACCACTTC -ACGGAATGGGAAGCATACGTACTC -ACGGAATGGGAAGCATACGATGTC -ACGGAATGGGAAGCATACACAGTC -ACGGAATGGGAAGCATACTTGCTG -ACGGAATGGGAAGCATACTCCATG -ACGGAATGGGAAGCATACTGTGTG -ACGGAATGGGAAGCATACCTAGTG -ACGGAATGGGAAGCATACCATCTG -ACGGAATGGGAAGCATACGAGTTG -ACGGAATGGGAAGCATACAGACTG -ACGGAATGGGAAGCATACTCGGTA -ACGGAATGGGAAGCATACTGCCTA -ACGGAATGGGAAGCATACCCACTA -ACGGAATGGGAAGCATACGGAGTA -ACGGAATGGGAAGCATACTCGTCT -ACGGAATGGGAAGCATACTGCACT -ACGGAATGGGAAGCATACCTGACT -ACGGAATGGGAAGCATACCAACCT -ACGGAATGGGAAGCATACGCTACT -ACGGAATGGGAAGCATACGGATCT -ACGGAATGGGAAGCATACAAGGCT -ACGGAATGGGAAGCATACTCAACC -ACGGAATGGGAAGCATACTGTTCC -ACGGAATGGGAAGCATACATTCCC -ACGGAATGGGAAGCATACTTCTCG -ACGGAATGGGAAGCATACTAGACG -ACGGAATGGGAAGCATACGTAACG -ACGGAATGGGAAGCATACACTTCG -ACGGAATGGGAAGCATACTACGCA -ACGGAATGGGAAGCATACCTTGCA -ACGGAATGGGAAGCATACCGAACA -ACGGAATGGGAAGCATACCAGTCA -ACGGAATGGGAAGCATACGATCCA -ACGGAATGGGAAGCATACACGACA -ACGGAATGGGAAGCATACAGCTCA -ACGGAATGGGAAGCATACTCACGT -ACGGAATGGGAAGCATACCGTAGT -ACGGAATGGGAAGCATACGTCAGT -ACGGAATGGGAAGCATACGAAGGT -ACGGAATGGGAAGCATACAACCGT -ACGGAATGGGAAGCATACTTGTGC -ACGGAATGGGAAGCATACCTAAGC -ACGGAATGGGAAGCATACACTAGC -ACGGAATGGGAAGCATACAGATGC -ACGGAATGGGAAGCATACTGAAGG -ACGGAATGGGAAGCATACCAATGG -ACGGAATGGGAAGCATACATGAGG -ACGGAATGGGAAGCATACAATGGG -ACGGAATGGGAAGCATACTCCTGA -ACGGAATGGGAAGCATACTAGCGA -ACGGAATGGGAAGCATACCACAGA -ACGGAATGGGAAGCATACGCAAGA -ACGGAATGGGAAGCATACGGTTGA -ACGGAATGGGAAGCATACTCCGAT -ACGGAATGGGAAGCATACTGGCAT -ACGGAATGGGAAGCATACCGAGAT -ACGGAATGGGAAGCATACTACCAC -ACGGAATGGGAAGCATACCAGAAC -ACGGAATGGGAAGCATACGTCTAC -ACGGAATGGGAAGCATACACGTAC -ACGGAATGGGAAGCATACAGTGAC -ACGGAATGGGAAGCATACCTGTAG -ACGGAATGGGAAGCATACCCTAAG -ACGGAATGGGAAGCATACGTTCAG -ACGGAATGGGAAGCATACGCATAG -ACGGAATGGGAAGCATACGACAAG -ACGGAATGGGAAGCATACAAGCAG -ACGGAATGGGAAGCATACCGTCAA -ACGGAATGGGAAGCATACGCTGAA -ACGGAATGGGAAGCATACAGTACG -ACGGAATGGGAAGCATACATCCGA -ACGGAATGGGAAGCATACATGGGA -ACGGAATGGGAAGCATACGTGCAA -ACGGAATGGGAAGCATACGAGGAA -ACGGAATGGGAAGCATACCAGGTA -ACGGAATGGGAAGCATACGACTCT -ACGGAATGGGAAGCATACAGTCCT -ACGGAATGGGAAGCATACTAAGCC -ACGGAATGGGAAGCATACATAGCC -ACGGAATGGGAAGCATACTAACCG -ACGGAATGGGAAGCATACATGCCA -ACGGAATGGGAAGCACTTGGAAAC -ACGGAATGGGAAGCACTTAACACC -ACGGAATGGGAAGCACTTATCGAG -ACGGAATGGGAAGCACTTCTCCTT -ACGGAATGGGAAGCACTTCCTGTT -ACGGAATGGGAAGCACTTCGGTTT -ACGGAATGGGAAGCACTTGTGGTT -ACGGAATGGGAAGCACTTGCCTTT -ACGGAATGGGAAGCACTTGGTCTT -ACGGAATGGGAAGCACTTACGCTT -ACGGAATGGGAAGCACTTAGCGTT -ACGGAATGGGAAGCACTTTTCGTC -ACGGAATGGGAAGCACTTTCTCTC -ACGGAATGGGAAGCACTTTGGATC -ACGGAATGGGAAGCACTTCACTTC -ACGGAATGGGAAGCACTTGTACTC -ACGGAATGGGAAGCACTTGATGTC -ACGGAATGGGAAGCACTTACAGTC -ACGGAATGGGAAGCACTTTTGCTG -ACGGAATGGGAAGCACTTTCCATG -ACGGAATGGGAAGCACTTTGTGTG -ACGGAATGGGAAGCACTTCTAGTG -ACGGAATGGGAAGCACTTCATCTG -ACGGAATGGGAAGCACTTGAGTTG -ACGGAATGGGAAGCACTTAGACTG -ACGGAATGGGAAGCACTTTCGGTA -ACGGAATGGGAAGCACTTTGCCTA -ACGGAATGGGAAGCACTTCCACTA -ACGGAATGGGAAGCACTTGGAGTA -ACGGAATGGGAAGCACTTTCGTCT -ACGGAATGGGAAGCACTTTGCACT -ACGGAATGGGAAGCACTTCTGACT -ACGGAATGGGAAGCACTTCAACCT -ACGGAATGGGAAGCACTTGCTACT -ACGGAATGGGAAGCACTTGGATCT -ACGGAATGGGAAGCACTTAAGGCT -ACGGAATGGGAAGCACTTTCAACC -ACGGAATGGGAAGCACTTTGTTCC -ACGGAATGGGAAGCACTTATTCCC -ACGGAATGGGAAGCACTTTTCTCG -ACGGAATGGGAAGCACTTTAGACG -ACGGAATGGGAAGCACTTGTAACG -ACGGAATGGGAAGCACTTACTTCG -ACGGAATGGGAAGCACTTTACGCA -ACGGAATGGGAAGCACTTCTTGCA -ACGGAATGGGAAGCACTTCGAACA -ACGGAATGGGAAGCACTTCAGTCA -ACGGAATGGGAAGCACTTGATCCA -ACGGAATGGGAAGCACTTACGACA -ACGGAATGGGAAGCACTTAGCTCA -ACGGAATGGGAAGCACTTTCACGT -ACGGAATGGGAAGCACTTCGTAGT -ACGGAATGGGAAGCACTTGTCAGT -ACGGAATGGGAAGCACTTGAAGGT -ACGGAATGGGAAGCACTTAACCGT -ACGGAATGGGAAGCACTTTTGTGC -ACGGAATGGGAAGCACTTCTAAGC -ACGGAATGGGAAGCACTTACTAGC -ACGGAATGGGAAGCACTTAGATGC -ACGGAATGGGAAGCACTTTGAAGG -ACGGAATGGGAAGCACTTCAATGG -ACGGAATGGGAAGCACTTATGAGG -ACGGAATGGGAAGCACTTAATGGG -ACGGAATGGGAAGCACTTTCCTGA -ACGGAATGGGAAGCACTTTAGCGA -ACGGAATGGGAAGCACTTCACAGA -ACGGAATGGGAAGCACTTGCAAGA -ACGGAATGGGAAGCACTTGGTTGA -ACGGAATGGGAAGCACTTTCCGAT -ACGGAATGGGAAGCACTTTGGCAT -ACGGAATGGGAAGCACTTCGAGAT -ACGGAATGGGAAGCACTTTACCAC -ACGGAATGGGAAGCACTTCAGAAC -ACGGAATGGGAAGCACTTGTCTAC -ACGGAATGGGAAGCACTTACGTAC -ACGGAATGGGAAGCACTTAGTGAC -ACGGAATGGGAAGCACTTCTGTAG -ACGGAATGGGAAGCACTTCCTAAG -ACGGAATGGGAAGCACTTGTTCAG -ACGGAATGGGAAGCACTTGCATAG -ACGGAATGGGAAGCACTTGACAAG -ACGGAATGGGAAGCACTTAAGCAG -ACGGAATGGGAAGCACTTCGTCAA -ACGGAATGGGAAGCACTTGCTGAA -ACGGAATGGGAAGCACTTAGTACG -ACGGAATGGGAAGCACTTATCCGA -ACGGAATGGGAAGCACTTATGGGA -ACGGAATGGGAAGCACTTGTGCAA -ACGGAATGGGAAGCACTTGAGGAA -ACGGAATGGGAAGCACTTCAGGTA -ACGGAATGGGAAGCACTTGACTCT -ACGGAATGGGAAGCACTTAGTCCT -ACGGAATGGGAAGCACTTTAAGCC -ACGGAATGGGAAGCACTTATAGCC -ACGGAATGGGAAGCACTTTAACCG -ACGGAATGGGAAGCACTTATGCCA -ACGGAATGGGAAACACGAGGAAAC -ACGGAATGGGAAACACGAAACACC -ACGGAATGGGAAACACGAATCGAG -ACGGAATGGGAAACACGACTCCTT -ACGGAATGGGAAACACGACCTGTT -ACGGAATGGGAAACACGACGGTTT -ACGGAATGGGAAACACGAGTGGTT -ACGGAATGGGAAACACGAGCCTTT -ACGGAATGGGAAACACGAGGTCTT -ACGGAATGGGAAACACGAACGCTT -ACGGAATGGGAAACACGAAGCGTT -ACGGAATGGGAAACACGATTCGTC -ACGGAATGGGAAACACGATCTCTC -ACGGAATGGGAAACACGATGGATC -ACGGAATGGGAAACACGACACTTC -ACGGAATGGGAAACACGAGTACTC -ACGGAATGGGAAACACGAGATGTC -ACGGAATGGGAAACACGAACAGTC -ACGGAATGGGAAACACGATTGCTG -ACGGAATGGGAAACACGATCCATG -ACGGAATGGGAAACACGATGTGTG -ACGGAATGGGAAACACGACTAGTG -ACGGAATGGGAAACACGACATCTG -ACGGAATGGGAAACACGAGAGTTG -ACGGAATGGGAAACACGAAGACTG -ACGGAATGGGAAACACGATCGGTA -ACGGAATGGGAAACACGATGCCTA -ACGGAATGGGAAACACGACCACTA -ACGGAATGGGAAACACGAGGAGTA -ACGGAATGGGAAACACGATCGTCT -ACGGAATGGGAAACACGATGCACT -ACGGAATGGGAAACACGACTGACT -ACGGAATGGGAAACACGACAACCT -ACGGAATGGGAAACACGAGCTACT -ACGGAATGGGAAACACGAGGATCT -ACGGAATGGGAAACACGAAAGGCT -ACGGAATGGGAAACACGATCAACC -ACGGAATGGGAAACACGATGTTCC -ACGGAATGGGAAACACGAATTCCC -ACGGAATGGGAAACACGATTCTCG -ACGGAATGGGAAACACGATAGACG -ACGGAATGGGAAACACGAGTAACG -ACGGAATGGGAAACACGAACTTCG -ACGGAATGGGAAACACGATACGCA -ACGGAATGGGAAACACGACTTGCA -ACGGAATGGGAAACACGACGAACA -ACGGAATGGGAAACACGACAGTCA -ACGGAATGGGAAACACGAGATCCA -ACGGAATGGGAAACACGAACGACA -ACGGAATGGGAAACACGAAGCTCA -ACGGAATGGGAAACACGATCACGT -ACGGAATGGGAAACACGACGTAGT -ACGGAATGGGAAACACGAGTCAGT -ACGGAATGGGAAACACGAGAAGGT -ACGGAATGGGAAACACGAAACCGT -ACGGAATGGGAAACACGATTGTGC -ACGGAATGGGAAACACGACTAAGC -ACGGAATGGGAAACACGAACTAGC -ACGGAATGGGAAACACGAAGATGC -ACGGAATGGGAAACACGATGAAGG -ACGGAATGGGAAACACGACAATGG -ACGGAATGGGAAACACGAATGAGG -ACGGAATGGGAAACACGAAATGGG -ACGGAATGGGAAACACGATCCTGA -ACGGAATGGGAAACACGATAGCGA -ACGGAATGGGAAACACGACACAGA -ACGGAATGGGAAACACGAGCAAGA -ACGGAATGGGAAACACGAGGTTGA -ACGGAATGGGAAACACGATCCGAT -ACGGAATGGGAAACACGATGGCAT -ACGGAATGGGAAACACGACGAGAT -ACGGAATGGGAAACACGATACCAC -ACGGAATGGGAAACACGACAGAAC -ACGGAATGGGAAACACGAGTCTAC -ACGGAATGGGAAACACGAACGTAC -ACGGAATGGGAAACACGAAGTGAC -ACGGAATGGGAAACACGACTGTAG -ACGGAATGGGAAACACGACCTAAG -ACGGAATGGGAAACACGAGTTCAG -ACGGAATGGGAAACACGAGCATAG -ACGGAATGGGAAACACGAGACAAG -ACGGAATGGGAAACACGAAAGCAG -ACGGAATGGGAAACACGACGTCAA -ACGGAATGGGAAACACGAGCTGAA -ACGGAATGGGAAACACGAAGTACG -ACGGAATGGGAAACACGAATCCGA -ACGGAATGGGAAACACGAATGGGA -ACGGAATGGGAAACACGAGTGCAA -ACGGAATGGGAAACACGAGAGGAA -ACGGAATGGGAAACACGACAGGTA -ACGGAATGGGAAACACGAGACTCT -ACGGAATGGGAAACACGAAGTCCT -ACGGAATGGGAAACACGATAAGCC -ACGGAATGGGAAACACGAATAGCC -ACGGAATGGGAAACACGATAACCG -ACGGAATGGGAAACACGAATGCCA -ACGGAATGGGAATCACAGGGAAAC -ACGGAATGGGAATCACAGAACACC -ACGGAATGGGAATCACAGATCGAG -ACGGAATGGGAATCACAGCTCCTT -ACGGAATGGGAATCACAGCCTGTT -ACGGAATGGGAATCACAGCGGTTT -ACGGAATGGGAATCACAGGTGGTT -ACGGAATGGGAATCACAGGCCTTT -ACGGAATGGGAATCACAGGGTCTT -ACGGAATGGGAATCACAGACGCTT -ACGGAATGGGAATCACAGAGCGTT -ACGGAATGGGAATCACAGTTCGTC -ACGGAATGGGAATCACAGTCTCTC -ACGGAATGGGAATCACAGTGGATC -ACGGAATGGGAATCACAGCACTTC -ACGGAATGGGAATCACAGGTACTC -ACGGAATGGGAATCACAGGATGTC -ACGGAATGGGAATCACAGACAGTC -ACGGAATGGGAATCACAGTTGCTG -ACGGAATGGGAATCACAGTCCATG -ACGGAATGGGAATCACAGTGTGTG -ACGGAATGGGAATCACAGCTAGTG -ACGGAATGGGAATCACAGCATCTG -ACGGAATGGGAATCACAGGAGTTG -ACGGAATGGGAATCACAGAGACTG -ACGGAATGGGAATCACAGTCGGTA -ACGGAATGGGAATCACAGTGCCTA -ACGGAATGGGAATCACAGCCACTA -ACGGAATGGGAATCACAGGGAGTA -ACGGAATGGGAATCACAGTCGTCT -ACGGAATGGGAATCACAGTGCACT -ACGGAATGGGAATCACAGCTGACT -ACGGAATGGGAATCACAGCAACCT -ACGGAATGGGAATCACAGGCTACT -ACGGAATGGGAATCACAGGGATCT -ACGGAATGGGAATCACAGAAGGCT -ACGGAATGGGAATCACAGTCAACC -ACGGAATGGGAATCACAGTGTTCC -ACGGAATGGGAATCACAGATTCCC -ACGGAATGGGAATCACAGTTCTCG -ACGGAATGGGAATCACAGTAGACG -ACGGAATGGGAATCACAGGTAACG -ACGGAATGGGAATCACAGACTTCG -ACGGAATGGGAATCACAGTACGCA -ACGGAATGGGAATCACAGCTTGCA -ACGGAATGGGAATCACAGCGAACA -ACGGAATGGGAATCACAGCAGTCA -ACGGAATGGGAATCACAGGATCCA -ACGGAATGGGAATCACAGACGACA -ACGGAATGGGAATCACAGAGCTCA -ACGGAATGGGAATCACAGTCACGT -ACGGAATGGGAATCACAGCGTAGT -ACGGAATGGGAATCACAGGTCAGT -ACGGAATGGGAATCACAGGAAGGT -ACGGAATGGGAATCACAGAACCGT -ACGGAATGGGAATCACAGTTGTGC -ACGGAATGGGAATCACAGCTAAGC -ACGGAATGGGAATCACAGACTAGC -ACGGAATGGGAATCACAGAGATGC -ACGGAATGGGAATCACAGTGAAGG -ACGGAATGGGAATCACAGCAATGG -ACGGAATGGGAATCACAGATGAGG -ACGGAATGGGAATCACAGAATGGG -ACGGAATGGGAATCACAGTCCTGA -ACGGAATGGGAATCACAGTAGCGA -ACGGAATGGGAATCACAGCACAGA -ACGGAATGGGAATCACAGGCAAGA -ACGGAATGGGAATCACAGGGTTGA -ACGGAATGGGAATCACAGTCCGAT -ACGGAATGGGAATCACAGTGGCAT -ACGGAATGGGAATCACAGCGAGAT -ACGGAATGGGAATCACAGTACCAC -ACGGAATGGGAATCACAGCAGAAC -ACGGAATGGGAATCACAGGTCTAC -ACGGAATGGGAATCACAGACGTAC -ACGGAATGGGAATCACAGAGTGAC -ACGGAATGGGAATCACAGCTGTAG -ACGGAATGGGAATCACAGCCTAAG -ACGGAATGGGAATCACAGGTTCAG -ACGGAATGGGAATCACAGGCATAG -ACGGAATGGGAATCACAGGACAAG -ACGGAATGGGAATCACAGAAGCAG -ACGGAATGGGAATCACAGCGTCAA -ACGGAATGGGAATCACAGGCTGAA -ACGGAATGGGAATCACAGAGTACG -ACGGAATGGGAATCACAGATCCGA -ACGGAATGGGAATCACAGATGGGA -ACGGAATGGGAATCACAGGTGCAA -ACGGAATGGGAATCACAGGAGGAA -ACGGAATGGGAATCACAGCAGGTA -ACGGAATGGGAATCACAGGACTCT -ACGGAATGGGAATCACAGAGTCCT -ACGGAATGGGAATCACAGTAAGCC -ACGGAATGGGAATCACAGATAGCC -ACGGAATGGGAATCACAGTAACCG -ACGGAATGGGAATCACAGATGCCA -ACGGAATGGGAACCAGATGGAAAC -ACGGAATGGGAACCAGATAACACC -ACGGAATGGGAACCAGATATCGAG -ACGGAATGGGAACCAGATCTCCTT -ACGGAATGGGAACCAGATCCTGTT -ACGGAATGGGAACCAGATCGGTTT -ACGGAATGGGAACCAGATGTGGTT -ACGGAATGGGAACCAGATGCCTTT -ACGGAATGGGAACCAGATGGTCTT -ACGGAATGGGAACCAGATACGCTT -ACGGAATGGGAACCAGATAGCGTT -ACGGAATGGGAACCAGATTTCGTC -ACGGAATGGGAACCAGATTCTCTC -ACGGAATGGGAACCAGATTGGATC -ACGGAATGGGAACCAGATCACTTC -ACGGAATGGGAACCAGATGTACTC -ACGGAATGGGAACCAGATGATGTC -ACGGAATGGGAACCAGATACAGTC -ACGGAATGGGAACCAGATTTGCTG -ACGGAATGGGAACCAGATTCCATG -ACGGAATGGGAACCAGATTGTGTG -ACGGAATGGGAACCAGATCTAGTG -ACGGAATGGGAACCAGATCATCTG -ACGGAATGGGAACCAGATGAGTTG -ACGGAATGGGAACCAGATAGACTG -ACGGAATGGGAACCAGATTCGGTA -ACGGAATGGGAACCAGATTGCCTA -ACGGAATGGGAACCAGATCCACTA -ACGGAATGGGAACCAGATGGAGTA -ACGGAATGGGAACCAGATTCGTCT -ACGGAATGGGAACCAGATTGCACT -ACGGAATGGGAACCAGATCTGACT -ACGGAATGGGAACCAGATCAACCT -ACGGAATGGGAACCAGATGCTACT -ACGGAATGGGAACCAGATGGATCT -ACGGAATGGGAACCAGATAAGGCT -ACGGAATGGGAACCAGATTCAACC -ACGGAATGGGAACCAGATTGTTCC -ACGGAATGGGAACCAGATATTCCC -ACGGAATGGGAACCAGATTTCTCG -ACGGAATGGGAACCAGATTAGACG -ACGGAATGGGAACCAGATGTAACG -ACGGAATGGGAACCAGATACTTCG -ACGGAATGGGAACCAGATTACGCA -ACGGAATGGGAACCAGATCTTGCA -ACGGAATGGGAACCAGATCGAACA -ACGGAATGGGAACCAGATCAGTCA -ACGGAATGGGAACCAGATGATCCA -ACGGAATGGGAACCAGATACGACA -ACGGAATGGGAACCAGATAGCTCA -ACGGAATGGGAACCAGATTCACGT -ACGGAATGGGAACCAGATCGTAGT -ACGGAATGGGAACCAGATGTCAGT -ACGGAATGGGAACCAGATGAAGGT -ACGGAATGGGAACCAGATAACCGT -ACGGAATGGGAACCAGATTTGTGC -ACGGAATGGGAACCAGATCTAAGC -ACGGAATGGGAACCAGATACTAGC -ACGGAATGGGAACCAGATAGATGC -ACGGAATGGGAACCAGATTGAAGG -ACGGAATGGGAACCAGATCAATGG -ACGGAATGGGAACCAGATATGAGG -ACGGAATGGGAACCAGATAATGGG -ACGGAATGGGAACCAGATTCCTGA -ACGGAATGGGAACCAGATTAGCGA -ACGGAATGGGAACCAGATCACAGA -ACGGAATGGGAACCAGATGCAAGA -ACGGAATGGGAACCAGATGGTTGA -ACGGAATGGGAACCAGATTCCGAT -ACGGAATGGGAACCAGATTGGCAT -ACGGAATGGGAACCAGATCGAGAT -ACGGAATGGGAACCAGATTACCAC -ACGGAATGGGAACCAGATCAGAAC -ACGGAATGGGAACCAGATGTCTAC -ACGGAATGGGAACCAGATACGTAC -ACGGAATGGGAACCAGATAGTGAC -ACGGAATGGGAACCAGATCTGTAG -ACGGAATGGGAACCAGATCCTAAG -ACGGAATGGGAACCAGATGTTCAG -ACGGAATGGGAACCAGATGCATAG -ACGGAATGGGAACCAGATGACAAG -ACGGAATGGGAACCAGATAAGCAG -ACGGAATGGGAACCAGATCGTCAA -ACGGAATGGGAACCAGATGCTGAA -ACGGAATGGGAACCAGATAGTACG -ACGGAATGGGAACCAGATATCCGA -ACGGAATGGGAACCAGATATGGGA -ACGGAATGGGAACCAGATGTGCAA -ACGGAATGGGAACCAGATGAGGAA -ACGGAATGGGAACCAGATCAGGTA -ACGGAATGGGAACCAGATGACTCT -ACGGAATGGGAACCAGATAGTCCT -ACGGAATGGGAACCAGATTAAGCC -ACGGAATGGGAACCAGATATAGCC -ACGGAATGGGAACCAGATTAACCG -ACGGAATGGGAACCAGATATGCCA -ACGGAATGGGAAACAACGGGAAAC -ACGGAATGGGAAACAACGAACACC -ACGGAATGGGAAACAACGATCGAG -ACGGAATGGGAAACAACGCTCCTT -ACGGAATGGGAAACAACGCCTGTT -ACGGAATGGGAAACAACGCGGTTT -ACGGAATGGGAAACAACGGTGGTT -ACGGAATGGGAAACAACGGCCTTT -ACGGAATGGGAAACAACGGGTCTT -ACGGAATGGGAAACAACGACGCTT -ACGGAATGGGAAACAACGAGCGTT -ACGGAATGGGAAACAACGTTCGTC -ACGGAATGGGAAACAACGTCTCTC -ACGGAATGGGAAACAACGTGGATC -ACGGAATGGGAAACAACGCACTTC -ACGGAATGGGAAACAACGGTACTC -ACGGAATGGGAAACAACGGATGTC -ACGGAATGGGAAACAACGACAGTC -ACGGAATGGGAAACAACGTTGCTG -ACGGAATGGGAAACAACGTCCATG -ACGGAATGGGAAACAACGTGTGTG -ACGGAATGGGAAACAACGCTAGTG -ACGGAATGGGAAACAACGCATCTG -ACGGAATGGGAAACAACGGAGTTG -ACGGAATGGGAAACAACGAGACTG -ACGGAATGGGAAACAACGTCGGTA -ACGGAATGGGAAACAACGTGCCTA -ACGGAATGGGAAACAACGCCACTA -ACGGAATGGGAAACAACGGGAGTA -ACGGAATGGGAAACAACGTCGTCT -ACGGAATGGGAAACAACGTGCACT -ACGGAATGGGAAACAACGCTGACT -ACGGAATGGGAAACAACGCAACCT -ACGGAATGGGAAACAACGGCTACT -ACGGAATGGGAAACAACGGGATCT -ACGGAATGGGAAACAACGAAGGCT -ACGGAATGGGAAACAACGTCAACC -ACGGAATGGGAAACAACGTGTTCC -ACGGAATGGGAAACAACGATTCCC -ACGGAATGGGAAACAACGTTCTCG -ACGGAATGGGAAACAACGTAGACG -ACGGAATGGGAAACAACGGTAACG -ACGGAATGGGAAACAACGACTTCG -ACGGAATGGGAAACAACGTACGCA -ACGGAATGGGAAACAACGCTTGCA -ACGGAATGGGAAACAACGCGAACA -ACGGAATGGGAAACAACGCAGTCA -ACGGAATGGGAAACAACGGATCCA -ACGGAATGGGAAACAACGACGACA -ACGGAATGGGAAACAACGAGCTCA -ACGGAATGGGAAACAACGTCACGT -ACGGAATGGGAAACAACGCGTAGT -ACGGAATGGGAAACAACGGTCAGT -ACGGAATGGGAAACAACGGAAGGT -ACGGAATGGGAAACAACGAACCGT -ACGGAATGGGAAACAACGTTGTGC -ACGGAATGGGAAACAACGCTAAGC -ACGGAATGGGAAACAACGACTAGC -ACGGAATGGGAAACAACGAGATGC -ACGGAATGGGAAACAACGTGAAGG -ACGGAATGGGAAACAACGCAATGG -ACGGAATGGGAAACAACGATGAGG -ACGGAATGGGAAACAACGAATGGG -ACGGAATGGGAAACAACGTCCTGA -ACGGAATGGGAAACAACGTAGCGA -ACGGAATGGGAAACAACGCACAGA -ACGGAATGGGAAACAACGGCAAGA -ACGGAATGGGAAACAACGGGTTGA -ACGGAATGGGAAACAACGTCCGAT -ACGGAATGGGAAACAACGTGGCAT -ACGGAATGGGAAACAACGCGAGAT -ACGGAATGGGAAACAACGTACCAC -ACGGAATGGGAAACAACGCAGAAC -ACGGAATGGGAAACAACGGTCTAC -ACGGAATGGGAAACAACGACGTAC -ACGGAATGGGAAACAACGAGTGAC -ACGGAATGGGAAACAACGCTGTAG -ACGGAATGGGAAACAACGCCTAAG -ACGGAATGGGAAACAACGGTTCAG -ACGGAATGGGAAACAACGGCATAG -ACGGAATGGGAAACAACGGACAAG -ACGGAATGGGAAACAACGAAGCAG -ACGGAATGGGAAACAACGCGTCAA -ACGGAATGGGAAACAACGGCTGAA -ACGGAATGGGAAACAACGAGTACG -ACGGAATGGGAAACAACGATCCGA -ACGGAATGGGAAACAACGATGGGA -ACGGAATGGGAAACAACGGTGCAA -ACGGAATGGGAAACAACGGAGGAA -ACGGAATGGGAAACAACGCAGGTA -ACGGAATGGGAAACAACGGACTCT -ACGGAATGGGAAACAACGAGTCCT -ACGGAATGGGAAACAACGTAAGCC -ACGGAATGGGAAACAACGATAGCC -ACGGAATGGGAAACAACGTAACCG -ACGGAATGGGAAACAACGATGCCA -ACGGAATGGGAATCAAGCGGAAAC -ACGGAATGGGAATCAAGCAACACC -ACGGAATGGGAATCAAGCATCGAG -ACGGAATGGGAATCAAGCCTCCTT -ACGGAATGGGAATCAAGCCCTGTT -ACGGAATGGGAATCAAGCCGGTTT -ACGGAATGGGAATCAAGCGTGGTT -ACGGAATGGGAATCAAGCGCCTTT -ACGGAATGGGAATCAAGCGGTCTT -ACGGAATGGGAATCAAGCACGCTT -ACGGAATGGGAATCAAGCAGCGTT -ACGGAATGGGAATCAAGCTTCGTC -ACGGAATGGGAATCAAGCTCTCTC -ACGGAATGGGAATCAAGCTGGATC -ACGGAATGGGAATCAAGCCACTTC -ACGGAATGGGAATCAAGCGTACTC -ACGGAATGGGAATCAAGCGATGTC -ACGGAATGGGAATCAAGCACAGTC -ACGGAATGGGAATCAAGCTTGCTG -ACGGAATGGGAATCAAGCTCCATG -ACGGAATGGGAATCAAGCTGTGTG -ACGGAATGGGAATCAAGCCTAGTG -ACGGAATGGGAATCAAGCCATCTG -ACGGAATGGGAATCAAGCGAGTTG -ACGGAATGGGAATCAAGCAGACTG -ACGGAATGGGAATCAAGCTCGGTA -ACGGAATGGGAATCAAGCTGCCTA -ACGGAATGGGAATCAAGCCCACTA -ACGGAATGGGAATCAAGCGGAGTA -ACGGAATGGGAATCAAGCTCGTCT -ACGGAATGGGAATCAAGCTGCACT -ACGGAATGGGAATCAAGCCTGACT -ACGGAATGGGAATCAAGCCAACCT -ACGGAATGGGAATCAAGCGCTACT -ACGGAATGGGAATCAAGCGGATCT -ACGGAATGGGAATCAAGCAAGGCT -ACGGAATGGGAATCAAGCTCAACC -ACGGAATGGGAATCAAGCTGTTCC -ACGGAATGGGAATCAAGCATTCCC -ACGGAATGGGAATCAAGCTTCTCG -ACGGAATGGGAATCAAGCTAGACG -ACGGAATGGGAATCAAGCGTAACG -ACGGAATGGGAATCAAGCACTTCG -ACGGAATGGGAATCAAGCTACGCA -ACGGAATGGGAATCAAGCCTTGCA -ACGGAATGGGAATCAAGCCGAACA -ACGGAATGGGAATCAAGCCAGTCA -ACGGAATGGGAATCAAGCGATCCA -ACGGAATGGGAATCAAGCACGACA -ACGGAATGGGAATCAAGCAGCTCA -ACGGAATGGGAATCAAGCTCACGT -ACGGAATGGGAATCAAGCCGTAGT -ACGGAATGGGAATCAAGCGTCAGT -ACGGAATGGGAATCAAGCGAAGGT -ACGGAATGGGAATCAAGCAACCGT -ACGGAATGGGAATCAAGCTTGTGC -ACGGAATGGGAATCAAGCCTAAGC -ACGGAATGGGAATCAAGCACTAGC -ACGGAATGGGAATCAAGCAGATGC -ACGGAATGGGAATCAAGCTGAAGG -ACGGAATGGGAATCAAGCCAATGG -ACGGAATGGGAATCAAGCATGAGG -ACGGAATGGGAATCAAGCAATGGG -ACGGAATGGGAATCAAGCTCCTGA -ACGGAATGGGAATCAAGCTAGCGA -ACGGAATGGGAATCAAGCCACAGA -ACGGAATGGGAATCAAGCGCAAGA -ACGGAATGGGAATCAAGCGGTTGA -ACGGAATGGGAATCAAGCTCCGAT -ACGGAATGGGAATCAAGCTGGCAT -ACGGAATGGGAATCAAGCCGAGAT -ACGGAATGGGAATCAAGCTACCAC -ACGGAATGGGAATCAAGCCAGAAC -ACGGAATGGGAATCAAGCGTCTAC -ACGGAATGGGAATCAAGCACGTAC -ACGGAATGGGAATCAAGCAGTGAC -ACGGAATGGGAATCAAGCCTGTAG -ACGGAATGGGAATCAAGCCCTAAG -ACGGAATGGGAATCAAGCGTTCAG -ACGGAATGGGAATCAAGCGCATAG -ACGGAATGGGAATCAAGCGACAAG -ACGGAATGGGAATCAAGCAAGCAG -ACGGAATGGGAATCAAGCCGTCAA -ACGGAATGGGAATCAAGCGCTGAA -ACGGAATGGGAATCAAGCAGTACG -ACGGAATGGGAATCAAGCATCCGA -ACGGAATGGGAATCAAGCATGGGA -ACGGAATGGGAATCAAGCGTGCAA -ACGGAATGGGAATCAAGCGAGGAA -ACGGAATGGGAATCAAGCCAGGTA -ACGGAATGGGAATCAAGCGACTCT -ACGGAATGGGAATCAAGCAGTCCT -ACGGAATGGGAATCAAGCTAAGCC -ACGGAATGGGAATCAAGCATAGCC -ACGGAATGGGAATCAAGCTAACCG -ACGGAATGGGAATCAAGCATGCCA -ACGGAATGGGAACGTTCAGGAAAC -ACGGAATGGGAACGTTCAAACACC -ACGGAATGGGAACGTTCAATCGAG -ACGGAATGGGAACGTTCACTCCTT -ACGGAATGGGAACGTTCACCTGTT -ACGGAATGGGAACGTTCACGGTTT -ACGGAATGGGAACGTTCAGTGGTT -ACGGAATGGGAACGTTCAGCCTTT -ACGGAATGGGAACGTTCAGGTCTT -ACGGAATGGGAACGTTCAACGCTT -ACGGAATGGGAACGTTCAAGCGTT -ACGGAATGGGAACGTTCATTCGTC -ACGGAATGGGAACGTTCATCTCTC -ACGGAATGGGAACGTTCATGGATC -ACGGAATGGGAACGTTCACACTTC -ACGGAATGGGAACGTTCAGTACTC -ACGGAATGGGAACGTTCAGATGTC -ACGGAATGGGAACGTTCAACAGTC -ACGGAATGGGAACGTTCATTGCTG -ACGGAATGGGAACGTTCATCCATG -ACGGAATGGGAACGTTCATGTGTG -ACGGAATGGGAACGTTCACTAGTG -ACGGAATGGGAACGTTCACATCTG -ACGGAATGGGAACGTTCAGAGTTG -ACGGAATGGGAACGTTCAAGACTG -ACGGAATGGGAACGTTCATCGGTA -ACGGAATGGGAACGTTCATGCCTA -ACGGAATGGGAACGTTCACCACTA -ACGGAATGGGAACGTTCAGGAGTA -ACGGAATGGGAACGTTCATCGTCT -ACGGAATGGGAACGTTCATGCACT -ACGGAATGGGAACGTTCACTGACT -ACGGAATGGGAACGTTCACAACCT -ACGGAATGGGAACGTTCAGCTACT -ACGGAATGGGAACGTTCAGGATCT -ACGGAATGGGAACGTTCAAAGGCT -ACGGAATGGGAACGTTCATCAACC -ACGGAATGGGAACGTTCATGTTCC -ACGGAATGGGAACGTTCAATTCCC -ACGGAATGGGAACGTTCATTCTCG -ACGGAATGGGAACGTTCATAGACG -ACGGAATGGGAACGTTCAGTAACG -ACGGAATGGGAACGTTCAACTTCG -ACGGAATGGGAACGTTCATACGCA -ACGGAATGGGAACGTTCACTTGCA -ACGGAATGGGAACGTTCACGAACA -ACGGAATGGGAACGTTCACAGTCA -ACGGAATGGGAACGTTCAGATCCA -ACGGAATGGGAACGTTCAACGACA -ACGGAATGGGAACGTTCAAGCTCA -ACGGAATGGGAACGTTCATCACGT -ACGGAATGGGAACGTTCACGTAGT -ACGGAATGGGAACGTTCAGTCAGT -ACGGAATGGGAACGTTCAGAAGGT -ACGGAATGGGAACGTTCAAACCGT -ACGGAATGGGAACGTTCATTGTGC -ACGGAATGGGAACGTTCACTAAGC -ACGGAATGGGAACGTTCAACTAGC -ACGGAATGGGAACGTTCAAGATGC -ACGGAATGGGAACGTTCATGAAGG -ACGGAATGGGAACGTTCACAATGG -ACGGAATGGGAACGTTCAATGAGG -ACGGAATGGGAACGTTCAAATGGG -ACGGAATGGGAACGTTCATCCTGA -ACGGAATGGGAACGTTCATAGCGA -ACGGAATGGGAACGTTCACACAGA -ACGGAATGGGAACGTTCAGCAAGA -ACGGAATGGGAACGTTCAGGTTGA -ACGGAATGGGAACGTTCATCCGAT -ACGGAATGGGAACGTTCATGGCAT -ACGGAATGGGAACGTTCACGAGAT -ACGGAATGGGAACGTTCATACCAC -ACGGAATGGGAACGTTCACAGAAC -ACGGAATGGGAACGTTCAGTCTAC -ACGGAATGGGAACGTTCAACGTAC -ACGGAATGGGAACGTTCAAGTGAC -ACGGAATGGGAACGTTCACTGTAG -ACGGAATGGGAACGTTCACCTAAG -ACGGAATGGGAACGTTCAGTTCAG -ACGGAATGGGAACGTTCAGCATAG -ACGGAATGGGAACGTTCAGACAAG -ACGGAATGGGAACGTTCAAAGCAG -ACGGAATGGGAACGTTCACGTCAA -ACGGAATGGGAACGTTCAGCTGAA -ACGGAATGGGAACGTTCAAGTACG -ACGGAATGGGAACGTTCAATCCGA -ACGGAATGGGAACGTTCAATGGGA -ACGGAATGGGAACGTTCAGTGCAA -ACGGAATGGGAACGTTCAGAGGAA -ACGGAATGGGAACGTTCACAGGTA -ACGGAATGGGAACGTTCAGACTCT -ACGGAATGGGAACGTTCAAGTCCT -ACGGAATGGGAACGTTCATAAGCC -ACGGAATGGGAACGTTCAATAGCC -ACGGAATGGGAACGTTCATAACCG -ACGGAATGGGAACGTTCAATGCCA -ACGGAATGGGAAAGTCGTGGAAAC -ACGGAATGGGAAAGTCGTAACACC -ACGGAATGGGAAAGTCGTATCGAG -ACGGAATGGGAAAGTCGTCTCCTT -ACGGAATGGGAAAGTCGTCCTGTT -ACGGAATGGGAAAGTCGTCGGTTT -ACGGAATGGGAAAGTCGTGTGGTT -ACGGAATGGGAAAGTCGTGCCTTT -ACGGAATGGGAAAGTCGTGGTCTT -ACGGAATGGGAAAGTCGTACGCTT -ACGGAATGGGAAAGTCGTAGCGTT -ACGGAATGGGAAAGTCGTTTCGTC -ACGGAATGGGAAAGTCGTTCTCTC -ACGGAATGGGAAAGTCGTTGGATC -ACGGAATGGGAAAGTCGTCACTTC -ACGGAATGGGAAAGTCGTGTACTC -ACGGAATGGGAAAGTCGTGATGTC -ACGGAATGGGAAAGTCGTACAGTC -ACGGAATGGGAAAGTCGTTTGCTG -ACGGAATGGGAAAGTCGTTCCATG -ACGGAATGGGAAAGTCGTTGTGTG -ACGGAATGGGAAAGTCGTCTAGTG -ACGGAATGGGAAAGTCGTCATCTG -ACGGAATGGGAAAGTCGTGAGTTG -ACGGAATGGGAAAGTCGTAGACTG -ACGGAATGGGAAAGTCGTTCGGTA -ACGGAATGGGAAAGTCGTTGCCTA -ACGGAATGGGAAAGTCGTCCACTA -ACGGAATGGGAAAGTCGTGGAGTA -ACGGAATGGGAAAGTCGTTCGTCT -ACGGAATGGGAAAGTCGTTGCACT -ACGGAATGGGAAAGTCGTCTGACT -ACGGAATGGGAAAGTCGTCAACCT -ACGGAATGGGAAAGTCGTGCTACT -ACGGAATGGGAAAGTCGTGGATCT -ACGGAATGGGAAAGTCGTAAGGCT -ACGGAATGGGAAAGTCGTTCAACC -ACGGAATGGGAAAGTCGTTGTTCC -ACGGAATGGGAAAGTCGTATTCCC -ACGGAATGGGAAAGTCGTTTCTCG -ACGGAATGGGAAAGTCGTTAGACG -ACGGAATGGGAAAGTCGTGTAACG -ACGGAATGGGAAAGTCGTACTTCG -ACGGAATGGGAAAGTCGTTACGCA -ACGGAATGGGAAAGTCGTCTTGCA -ACGGAATGGGAAAGTCGTCGAACA -ACGGAATGGGAAAGTCGTCAGTCA -ACGGAATGGGAAAGTCGTGATCCA -ACGGAATGGGAAAGTCGTACGACA -ACGGAATGGGAAAGTCGTAGCTCA -ACGGAATGGGAAAGTCGTTCACGT -ACGGAATGGGAAAGTCGTCGTAGT -ACGGAATGGGAAAGTCGTGTCAGT -ACGGAATGGGAAAGTCGTGAAGGT -ACGGAATGGGAAAGTCGTAACCGT -ACGGAATGGGAAAGTCGTTTGTGC -ACGGAATGGGAAAGTCGTCTAAGC -ACGGAATGGGAAAGTCGTACTAGC -ACGGAATGGGAAAGTCGTAGATGC -ACGGAATGGGAAAGTCGTTGAAGG -ACGGAATGGGAAAGTCGTCAATGG -ACGGAATGGGAAAGTCGTATGAGG -ACGGAATGGGAAAGTCGTAATGGG -ACGGAATGGGAAAGTCGTTCCTGA -ACGGAATGGGAAAGTCGTTAGCGA -ACGGAATGGGAAAGTCGTCACAGA -ACGGAATGGGAAAGTCGTGCAAGA -ACGGAATGGGAAAGTCGTGGTTGA -ACGGAATGGGAAAGTCGTTCCGAT -ACGGAATGGGAAAGTCGTTGGCAT -ACGGAATGGGAAAGTCGTCGAGAT -ACGGAATGGGAAAGTCGTTACCAC -ACGGAATGGGAAAGTCGTCAGAAC -ACGGAATGGGAAAGTCGTGTCTAC -ACGGAATGGGAAAGTCGTACGTAC -ACGGAATGGGAAAGTCGTAGTGAC -ACGGAATGGGAAAGTCGTCTGTAG -ACGGAATGGGAAAGTCGTCCTAAG -ACGGAATGGGAAAGTCGTGTTCAG -ACGGAATGGGAAAGTCGTGCATAG -ACGGAATGGGAAAGTCGTGACAAG -ACGGAATGGGAAAGTCGTAAGCAG -ACGGAATGGGAAAGTCGTCGTCAA -ACGGAATGGGAAAGTCGTGCTGAA -ACGGAATGGGAAAGTCGTAGTACG -ACGGAATGGGAAAGTCGTATCCGA -ACGGAATGGGAAAGTCGTATGGGA -ACGGAATGGGAAAGTCGTGTGCAA -ACGGAATGGGAAAGTCGTGAGGAA -ACGGAATGGGAAAGTCGTCAGGTA -ACGGAATGGGAAAGTCGTGACTCT -ACGGAATGGGAAAGTCGTAGTCCT -ACGGAATGGGAAAGTCGTTAAGCC -ACGGAATGGGAAAGTCGTATAGCC -ACGGAATGGGAAAGTCGTTAACCG -ACGGAATGGGAAAGTCGTATGCCA -ACGGAATGGGAAAGTGTCGGAAAC -ACGGAATGGGAAAGTGTCAACACC -ACGGAATGGGAAAGTGTCATCGAG -ACGGAATGGGAAAGTGTCCTCCTT -ACGGAATGGGAAAGTGTCCCTGTT -ACGGAATGGGAAAGTGTCCGGTTT -ACGGAATGGGAAAGTGTCGTGGTT -ACGGAATGGGAAAGTGTCGCCTTT -ACGGAATGGGAAAGTGTCGGTCTT -ACGGAATGGGAAAGTGTCACGCTT -ACGGAATGGGAAAGTGTCAGCGTT -ACGGAATGGGAAAGTGTCTTCGTC -ACGGAATGGGAAAGTGTCTCTCTC -ACGGAATGGGAAAGTGTCTGGATC -ACGGAATGGGAAAGTGTCCACTTC -ACGGAATGGGAAAGTGTCGTACTC -ACGGAATGGGAAAGTGTCGATGTC -ACGGAATGGGAAAGTGTCACAGTC -ACGGAATGGGAAAGTGTCTTGCTG -ACGGAATGGGAAAGTGTCTCCATG -ACGGAATGGGAAAGTGTCTGTGTG -ACGGAATGGGAAAGTGTCCTAGTG -ACGGAATGGGAAAGTGTCCATCTG -ACGGAATGGGAAAGTGTCGAGTTG -ACGGAATGGGAAAGTGTCAGACTG -ACGGAATGGGAAAGTGTCTCGGTA -ACGGAATGGGAAAGTGTCTGCCTA -ACGGAATGGGAAAGTGTCCCACTA -ACGGAATGGGAAAGTGTCGGAGTA -ACGGAATGGGAAAGTGTCTCGTCT -ACGGAATGGGAAAGTGTCTGCACT -ACGGAATGGGAAAGTGTCCTGACT -ACGGAATGGGAAAGTGTCCAACCT -ACGGAATGGGAAAGTGTCGCTACT -ACGGAATGGGAAAGTGTCGGATCT -ACGGAATGGGAAAGTGTCAAGGCT -ACGGAATGGGAAAGTGTCTCAACC -ACGGAATGGGAAAGTGTCTGTTCC -ACGGAATGGGAAAGTGTCATTCCC -ACGGAATGGGAAAGTGTCTTCTCG -ACGGAATGGGAAAGTGTCTAGACG -ACGGAATGGGAAAGTGTCGTAACG -ACGGAATGGGAAAGTGTCACTTCG -ACGGAATGGGAAAGTGTCTACGCA -ACGGAATGGGAAAGTGTCCTTGCA -ACGGAATGGGAAAGTGTCCGAACA -ACGGAATGGGAAAGTGTCCAGTCA -ACGGAATGGGAAAGTGTCGATCCA -ACGGAATGGGAAAGTGTCACGACA -ACGGAATGGGAAAGTGTCAGCTCA -ACGGAATGGGAAAGTGTCTCACGT -ACGGAATGGGAAAGTGTCCGTAGT -ACGGAATGGGAAAGTGTCGTCAGT -ACGGAATGGGAAAGTGTCGAAGGT -ACGGAATGGGAAAGTGTCAACCGT -ACGGAATGGGAAAGTGTCTTGTGC -ACGGAATGGGAAAGTGTCCTAAGC -ACGGAATGGGAAAGTGTCACTAGC -ACGGAATGGGAAAGTGTCAGATGC -ACGGAATGGGAAAGTGTCTGAAGG -ACGGAATGGGAAAGTGTCCAATGG -ACGGAATGGGAAAGTGTCATGAGG -ACGGAATGGGAAAGTGTCAATGGG -ACGGAATGGGAAAGTGTCTCCTGA -ACGGAATGGGAAAGTGTCTAGCGA -ACGGAATGGGAAAGTGTCCACAGA -ACGGAATGGGAAAGTGTCGCAAGA -ACGGAATGGGAAAGTGTCGGTTGA -ACGGAATGGGAAAGTGTCTCCGAT -ACGGAATGGGAAAGTGTCTGGCAT -ACGGAATGGGAAAGTGTCCGAGAT -ACGGAATGGGAAAGTGTCTACCAC -ACGGAATGGGAAAGTGTCCAGAAC -ACGGAATGGGAAAGTGTCGTCTAC -ACGGAATGGGAAAGTGTCACGTAC -ACGGAATGGGAAAGTGTCAGTGAC -ACGGAATGGGAAAGTGTCCTGTAG -ACGGAATGGGAAAGTGTCCCTAAG -ACGGAATGGGAAAGTGTCGTTCAG -ACGGAATGGGAAAGTGTCGCATAG -ACGGAATGGGAAAGTGTCGACAAG -ACGGAATGGGAAAGTGTCAAGCAG -ACGGAATGGGAAAGTGTCCGTCAA -ACGGAATGGGAAAGTGTCGCTGAA -ACGGAATGGGAAAGTGTCAGTACG -ACGGAATGGGAAAGTGTCATCCGA -ACGGAATGGGAAAGTGTCATGGGA -ACGGAATGGGAAAGTGTCGTGCAA -ACGGAATGGGAAAGTGTCGAGGAA -ACGGAATGGGAAAGTGTCCAGGTA -ACGGAATGGGAAAGTGTCGACTCT -ACGGAATGGGAAAGTGTCAGTCCT -ACGGAATGGGAAAGTGTCTAAGCC -ACGGAATGGGAAAGTGTCATAGCC -ACGGAATGGGAAAGTGTCTAACCG -ACGGAATGGGAAAGTGTCATGCCA -ACGGAATGGGAAGGTGAAGGAAAC -ACGGAATGGGAAGGTGAAAACACC -ACGGAATGGGAAGGTGAAATCGAG -ACGGAATGGGAAGGTGAACTCCTT -ACGGAATGGGAAGGTGAACCTGTT -ACGGAATGGGAAGGTGAACGGTTT -ACGGAATGGGAAGGTGAAGTGGTT -ACGGAATGGGAAGGTGAAGCCTTT -ACGGAATGGGAAGGTGAAGGTCTT -ACGGAATGGGAAGGTGAAACGCTT -ACGGAATGGGAAGGTGAAAGCGTT -ACGGAATGGGAAGGTGAATTCGTC -ACGGAATGGGAAGGTGAATCTCTC -ACGGAATGGGAAGGTGAATGGATC -ACGGAATGGGAAGGTGAACACTTC -ACGGAATGGGAAGGTGAAGTACTC -ACGGAATGGGAAGGTGAAGATGTC -ACGGAATGGGAAGGTGAAACAGTC -ACGGAATGGGAAGGTGAATTGCTG -ACGGAATGGGAAGGTGAATCCATG -ACGGAATGGGAAGGTGAATGTGTG -ACGGAATGGGAAGGTGAACTAGTG -ACGGAATGGGAAGGTGAACATCTG -ACGGAATGGGAAGGTGAAGAGTTG -ACGGAATGGGAAGGTGAAAGACTG -ACGGAATGGGAAGGTGAATCGGTA -ACGGAATGGGAAGGTGAATGCCTA -ACGGAATGGGAAGGTGAACCACTA -ACGGAATGGGAAGGTGAAGGAGTA -ACGGAATGGGAAGGTGAATCGTCT -ACGGAATGGGAAGGTGAATGCACT -ACGGAATGGGAAGGTGAACTGACT -ACGGAATGGGAAGGTGAACAACCT -ACGGAATGGGAAGGTGAAGCTACT -ACGGAATGGGAAGGTGAAGGATCT -ACGGAATGGGAAGGTGAAAAGGCT -ACGGAATGGGAAGGTGAATCAACC -ACGGAATGGGAAGGTGAATGTTCC -ACGGAATGGGAAGGTGAAATTCCC -ACGGAATGGGAAGGTGAATTCTCG -ACGGAATGGGAAGGTGAATAGACG -ACGGAATGGGAAGGTGAAGTAACG -ACGGAATGGGAAGGTGAAACTTCG -ACGGAATGGGAAGGTGAATACGCA -ACGGAATGGGAAGGTGAACTTGCA -ACGGAATGGGAAGGTGAACGAACA -ACGGAATGGGAAGGTGAACAGTCA -ACGGAATGGGAAGGTGAAGATCCA -ACGGAATGGGAAGGTGAAACGACA -ACGGAATGGGAAGGTGAAAGCTCA -ACGGAATGGGAAGGTGAATCACGT -ACGGAATGGGAAGGTGAACGTAGT -ACGGAATGGGAAGGTGAAGTCAGT -ACGGAATGGGAAGGTGAAGAAGGT -ACGGAATGGGAAGGTGAAAACCGT -ACGGAATGGGAAGGTGAATTGTGC -ACGGAATGGGAAGGTGAACTAAGC -ACGGAATGGGAAGGTGAAACTAGC -ACGGAATGGGAAGGTGAAAGATGC -ACGGAATGGGAAGGTGAATGAAGG -ACGGAATGGGAAGGTGAACAATGG -ACGGAATGGGAAGGTGAAATGAGG -ACGGAATGGGAAGGTGAAAATGGG -ACGGAATGGGAAGGTGAATCCTGA -ACGGAATGGGAAGGTGAATAGCGA -ACGGAATGGGAAGGTGAACACAGA -ACGGAATGGGAAGGTGAAGCAAGA -ACGGAATGGGAAGGTGAAGGTTGA -ACGGAATGGGAAGGTGAATCCGAT -ACGGAATGGGAAGGTGAATGGCAT -ACGGAATGGGAAGGTGAACGAGAT -ACGGAATGGGAAGGTGAATACCAC -ACGGAATGGGAAGGTGAACAGAAC -ACGGAATGGGAAGGTGAAGTCTAC -ACGGAATGGGAAGGTGAAACGTAC -ACGGAATGGGAAGGTGAAAGTGAC -ACGGAATGGGAAGGTGAACTGTAG -ACGGAATGGGAAGGTGAACCTAAG -ACGGAATGGGAAGGTGAAGTTCAG -ACGGAATGGGAAGGTGAAGCATAG -ACGGAATGGGAAGGTGAAGACAAG -ACGGAATGGGAAGGTGAAAAGCAG -ACGGAATGGGAAGGTGAACGTCAA -ACGGAATGGGAAGGTGAAGCTGAA -ACGGAATGGGAAGGTGAAAGTACG -ACGGAATGGGAAGGTGAAATCCGA -ACGGAATGGGAAGGTGAAATGGGA -ACGGAATGGGAAGGTGAAGTGCAA -ACGGAATGGGAAGGTGAAGAGGAA -ACGGAATGGGAAGGTGAACAGGTA -ACGGAATGGGAAGGTGAAGACTCT -ACGGAATGGGAAGGTGAAAGTCCT -ACGGAATGGGAAGGTGAATAAGCC -ACGGAATGGGAAGGTGAAATAGCC -ACGGAATGGGAAGGTGAATAACCG -ACGGAATGGGAAGGTGAAATGCCA -ACGGAATGGGAACGTAACGGAAAC -ACGGAATGGGAACGTAACAACACC -ACGGAATGGGAACGTAACATCGAG -ACGGAATGGGAACGTAACCTCCTT -ACGGAATGGGAACGTAACCCTGTT -ACGGAATGGGAACGTAACCGGTTT -ACGGAATGGGAACGTAACGTGGTT -ACGGAATGGGAACGTAACGCCTTT -ACGGAATGGGAACGTAACGGTCTT -ACGGAATGGGAACGTAACACGCTT -ACGGAATGGGAACGTAACAGCGTT -ACGGAATGGGAACGTAACTTCGTC -ACGGAATGGGAACGTAACTCTCTC -ACGGAATGGGAACGTAACTGGATC -ACGGAATGGGAACGTAACCACTTC -ACGGAATGGGAACGTAACGTACTC -ACGGAATGGGAACGTAACGATGTC -ACGGAATGGGAACGTAACACAGTC -ACGGAATGGGAACGTAACTTGCTG -ACGGAATGGGAACGTAACTCCATG -ACGGAATGGGAACGTAACTGTGTG -ACGGAATGGGAACGTAACCTAGTG -ACGGAATGGGAACGTAACCATCTG -ACGGAATGGGAACGTAACGAGTTG -ACGGAATGGGAACGTAACAGACTG -ACGGAATGGGAACGTAACTCGGTA -ACGGAATGGGAACGTAACTGCCTA -ACGGAATGGGAACGTAACCCACTA -ACGGAATGGGAACGTAACGGAGTA -ACGGAATGGGAACGTAACTCGTCT -ACGGAATGGGAACGTAACTGCACT -ACGGAATGGGAACGTAACCTGACT -ACGGAATGGGAACGTAACCAACCT -ACGGAATGGGAACGTAACGCTACT -ACGGAATGGGAACGTAACGGATCT -ACGGAATGGGAACGTAACAAGGCT -ACGGAATGGGAACGTAACTCAACC -ACGGAATGGGAACGTAACTGTTCC -ACGGAATGGGAACGTAACATTCCC -ACGGAATGGGAACGTAACTTCTCG -ACGGAATGGGAACGTAACTAGACG -ACGGAATGGGAACGTAACGTAACG -ACGGAATGGGAACGTAACACTTCG -ACGGAATGGGAACGTAACTACGCA -ACGGAATGGGAACGTAACCTTGCA -ACGGAATGGGAACGTAACCGAACA -ACGGAATGGGAACGTAACCAGTCA -ACGGAATGGGAACGTAACGATCCA -ACGGAATGGGAACGTAACACGACA -ACGGAATGGGAACGTAACAGCTCA -ACGGAATGGGAACGTAACTCACGT -ACGGAATGGGAACGTAACCGTAGT -ACGGAATGGGAACGTAACGTCAGT -ACGGAATGGGAACGTAACGAAGGT -ACGGAATGGGAACGTAACAACCGT -ACGGAATGGGAACGTAACTTGTGC -ACGGAATGGGAACGTAACCTAAGC -ACGGAATGGGAACGTAACACTAGC -ACGGAATGGGAACGTAACAGATGC -ACGGAATGGGAACGTAACTGAAGG -ACGGAATGGGAACGTAACCAATGG -ACGGAATGGGAACGTAACATGAGG -ACGGAATGGGAACGTAACAATGGG -ACGGAATGGGAACGTAACTCCTGA -ACGGAATGGGAACGTAACTAGCGA -ACGGAATGGGAACGTAACCACAGA -ACGGAATGGGAACGTAACGCAAGA -ACGGAATGGGAACGTAACGGTTGA -ACGGAATGGGAACGTAACTCCGAT -ACGGAATGGGAACGTAACTGGCAT -ACGGAATGGGAACGTAACCGAGAT -ACGGAATGGGAACGTAACTACCAC -ACGGAATGGGAACGTAACCAGAAC -ACGGAATGGGAACGTAACGTCTAC -ACGGAATGGGAACGTAACACGTAC -ACGGAATGGGAACGTAACAGTGAC -ACGGAATGGGAACGTAACCTGTAG -ACGGAATGGGAACGTAACCCTAAG -ACGGAATGGGAACGTAACGTTCAG -ACGGAATGGGAACGTAACGCATAG -ACGGAATGGGAACGTAACGACAAG -ACGGAATGGGAACGTAACAAGCAG -ACGGAATGGGAACGTAACCGTCAA -ACGGAATGGGAACGTAACGCTGAA -ACGGAATGGGAACGTAACAGTACG -ACGGAATGGGAACGTAACATCCGA -ACGGAATGGGAACGTAACATGGGA -ACGGAATGGGAACGTAACGTGCAA -ACGGAATGGGAACGTAACGAGGAA -ACGGAATGGGAACGTAACCAGGTA -ACGGAATGGGAACGTAACGACTCT -ACGGAATGGGAACGTAACAGTCCT -ACGGAATGGGAACGTAACTAAGCC -ACGGAATGGGAACGTAACATAGCC -ACGGAATGGGAACGTAACTAACCG -ACGGAATGGGAACGTAACATGCCA -ACGGAATGGGAATGCTTGGGAAAC -ACGGAATGGGAATGCTTGAACACC -ACGGAATGGGAATGCTTGATCGAG -ACGGAATGGGAATGCTTGCTCCTT -ACGGAATGGGAATGCTTGCCTGTT -ACGGAATGGGAATGCTTGCGGTTT -ACGGAATGGGAATGCTTGGTGGTT -ACGGAATGGGAATGCTTGGCCTTT -ACGGAATGGGAATGCTTGGGTCTT -ACGGAATGGGAATGCTTGACGCTT -ACGGAATGGGAATGCTTGAGCGTT -ACGGAATGGGAATGCTTGTTCGTC -ACGGAATGGGAATGCTTGTCTCTC -ACGGAATGGGAATGCTTGTGGATC -ACGGAATGGGAATGCTTGCACTTC -ACGGAATGGGAATGCTTGGTACTC -ACGGAATGGGAATGCTTGGATGTC -ACGGAATGGGAATGCTTGACAGTC -ACGGAATGGGAATGCTTGTTGCTG -ACGGAATGGGAATGCTTGTCCATG -ACGGAATGGGAATGCTTGTGTGTG -ACGGAATGGGAATGCTTGCTAGTG -ACGGAATGGGAATGCTTGCATCTG -ACGGAATGGGAATGCTTGGAGTTG -ACGGAATGGGAATGCTTGAGACTG -ACGGAATGGGAATGCTTGTCGGTA -ACGGAATGGGAATGCTTGTGCCTA -ACGGAATGGGAATGCTTGCCACTA -ACGGAATGGGAATGCTTGGGAGTA -ACGGAATGGGAATGCTTGTCGTCT -ACGGAATGGGAATGCTTGTGCACT -ACGGAATGGGAATGCTTGCTGACT -ACGGAATGGGAATGCTTGCAACCT -ACGGAATGGGAATGCTTGGCTACT -ACGGAATGGGAATGCTTGGGATCT -ACGGAATGGGAATGCTTGAAGGCT -ACGGAATGGGAATGCTTGTCAACC -ACGGAATGGGAATGCTTGTGTTCC -ACGGAATGGGAATGCTTGATTCCC -ACGGAATGGGAATGCTTGTTCTCG -ACGGAATGGGAATGCTTGTAGACG -ACGGAATGGGAATGCTTGGTAACG -ACGGAATGGGAATGCTTGACTTCG -ACGGAATGGGAATGCTTGTACGCA -ACGGAATGGGAATGCTTGCTTGCA -ACGGAATGGGAATGCTTGCGAACA -ACGGAATGGGAATGCTTGCAGTCA -ACGGAATGGGAATGCTTGGATCCA -ACGGAATGGGAATGCTTGACGACA -ACGGAATGGGAATGCTTGAGCTCA -ACGGAATGGGAATGCTTGTCACGT -ACGGAATGGGAATGCTTGCGTAGT -ACGGAATGGGAATGCTTGGTCAGT -ACGGAATGGGAATGCTTGGAAGGT -ACGGAATGGGAATGCTTGAACCGT -ACGGAATGGGAATGCTTGTTGTGC -ACGGAATGGGAATGCTTGCTAAGC -ACGGAATGGGAATGCTTGACTAGC -ACGGAATGGGAATGCTTGAGATGC -ACGGAATGGGAATGCTTGTGAAGG -ACGGAATGGGAATGCTTGCAATGG -ACGGAATGGGAATGCTTGATGAGG -ACGGAATGGGAATGCTTGAATGGG -ACGGAATGGGAATGCTTGTCCTGA -ACGGAATGGGAATGCTTGTAGCGA -ACGGAATGGGAATGCTTGCACAGA -ACGGAATGGGAATGCTTGGCAAGA -ACGGAATGGGAATGCTTGGGTTGA -ACGGAATGGGAATGCTTGTCCGAT -ACGGAATGGGAATGCTTGTGGCAT -ACGGAATGGGAATGCTTGCGAGAT -ACGGAATGGGAATGCTTGTACCAC -ACGGAATGGGAATGCTTGCAGAAC -ACGGAATGGGAATGCTTGGTCTAC -ACGGAATGGGAATGCTTGACGTAC -ACGGAATGGGAATGCTTGAGTGAC -ACGGAATGGGAATGCTTGCTGTAG -ACGGAATGGGAATGCTTGCCTAAG -ACGGAATGGGAATGCTTGGTTCAG -ACGGAATGGGAATGCTTGGCATAG -ACGGAATGGGAATGCTTGGACAAG -ACGGAATGGGAATGCTTGAAGCAG -ACGGAATGGGAATGCTTGCGTCAA -ACGGAATGGGAATGCTTGGCTGAA -ACGGAATGGGAATGCTTGAGTACG -ACGGAATGGGAATGCTTGATCCGA -ACGGAATGGGAATGCTTGATGGGA -ACGGAATGGGAATGCTTGGTGCAA -ACGGAATGGGAATGCTTGGAGGAA -ACGGAATGGGAATGCTTGCAGGTA -ACGGAATGGGAATGCTTGGACTCT -ACGGAATGGGAATGCTTGAGTCCT -ACGGAATGGGAATGCTTGTAAGCC -ACGGAATGGGAATGCTTGATAGCC -ACGGAATGGGAATGCTTGTAACCG -ACGGAATGGGAATGCTTGATGCCA -ACGGAATGGGAAAGCCTAGGAAAC -ACGGAATGGGAAAGCCTAAACACC -ACGGAATGGGAAAGCCTAATCGAG -ACGGAATGGGAAAGCCTACTCCTT -ACGGAATGGGAAAGCCTACCTGTT -ACGGAATGGGAAAGCCTACGGTTT -ACGGAATGGGAAAGCCTAGTGGTT -ACGGAATGGGAAAGCCTAGCCTTT -ACGGAATGGGAAAGCCTAGGTCTT -ACGGAATGGGAAAGCCTAACGCTT -ACGGAATGGGAAAGCCTAAGCGTT -ACGGAATGGGAAAGCCTATTCGTC -ACGGAATGGGAAAGCCTATCTCTC -ACGGAATGGGAAAGCCTATGGATC -ACGGAATGGGAAAGCCTACACTTC -ACGGAATGGGAAAGCCTAGTACTC -ACGGAATGGGAAAGCCTAGATGTC -ACGGAATGGGAAAGCCTAACAGTC -ACGGAATGGGAAAGCCTATTGCTG -ACGGAATGGGAAAGCCTATCCATG -ACGGAATGGGAAAGCCTATGTGTG -ACGGAATGGGAAAGCCTACTAGTG -ACGGAATGGGAAAGCCTACATCTG -ACGGAATGGGAAAGCCTAGAGTTG -ACGGAATGGGAAAGCCTAAGACTG -ACGGAATGGGAAAGCCTATCGGTA -ACGGAATGGGAAAGCCTATGCCTA -ACGGAATGGGAAAGCCTACCACTA -ACGGAATGGGAAAGCCTAGGAGTA -ACGGAATGGGAAAGCCTATCGTCT -ACGGAATGGGAAAGCCTATGCACT -ACGGAATGGGAAAGCCTACTGACT -ACGGAATGGGAAAGCCTACAACCT -ACGGAATGGGAAAGCCTAGCTACT -ACGGAATGGGAAAGCCTAGGATCT -ACGGAATGGGAAAGCCTAAAGGCT -ACGGAATGGGAAAGCCTATCAACC -ACGGAATGGGAAAGCCTATGTTCC -ACGGAATGGGAAAGCCTAATTCCC -ACGGAATGGGAAAGCCTATTCTCG -ACGGAATGGGAAAGCCTATAGACG -ACGGAATGGGAAAGCCTAGTAACG -ACGGAATGGGAAAGCCTAACTTCG -ACGGAATGGGAAAGCCTATACGCA -ACGGAATGGGAAAGCCTACTTGCA -ACGGAATGGGAAAGCCTACGAACA -ACGGAATGGGAAAGCCTACAGTCA -ACGGAATGGGAAAGCCTAGATCCA -ACGGAATGGGAAAGCCTAACGACA -ACGGAATGGGAAAGCCTAAGCTCA -ACGGAATGGGAAAGCCTATCACGT -ACGGAATGGGAAAGCCTACGTAGT -ACGGAATGGGAAAGCCTAGTCAGT -ACGGAATGGGAAAGCCTAGAAGGT -ACGGAATGGGAAAGCCTAAACCGT -ACGGAATGGGAAAGCCTATTGTGC -ACGGAATGGGAAAGCCTACTAAGC -ACGGAATGGGAAAGCCTAACTAGC -ACGGAATGGGAAAGCCTAAGATGC -ACGGAATGGGAAAGCCTATGAAGG -ACGGAATGGGAAAGCCTACAATGG -ACGGAATGGGAAAGCCTAATGAGG -ACGGAATGGGAAAGCCTAAATGGG -ACGGAATGGGAAAGCCTATCCTGA -ACGGAATGGGAAAGCCTATAGCGA -ACGGAATGGGAAAGCCTACACAGA -ACGGAATGGGAAAGCCTAGCAAGA -ACGGAATGGGAAAGCCTAGGTTGA -ACGGAATGGGAAAGCCTATCCGAT -ACGGAATGGGAAAGCCTATGGCAT -ACGGAATGGGAAAGCCTACGAGAT -ACGGAATGGGAAAGCCTATACCAC -ACGGAATGGGAAAGCCTACAGAAC -ACGGAATGGGAAAGCCTAGTCTAC -ACGGAATGGGAAAGCCTAACGTAC -ACGGAATGGGAAAGCCTAAGTGAC -ACGGAATGGGAAAGCCTACTGTAG -ACGGAATGGGAAAGCCTACCTAAG -ACGGAATGGGAAAGCCTAGTTCAG -ACGGAATGGGAAAGCCTAGCATAG -ACGGAATGGGAAAGCCTAGACAAG -ACGGAATGGGAAAGCCTAAAGCAG -ACGGAATGGGAAAGCCTACGTCAA -ACGGAATGGGAAAGCCTAGCTGAA -ACGGAATGGGAAAGCCTAAGTACG -ACGGAATGGGAAAGCCTAATCCGA -ACGGAATGGGAAAGCCTAATGGGA -ACGGAATGGGAAAGCCTAGTGCAA -ACGGAATGGGAAAGCCTAGAGGAA -ACGGAATGGGAAAGCCTACAGGTA -ACGGAATGGGAAAGCCTAGACTCT -ACGGAATGGGAAAGCCTAAGTCCT -ACGGAATGGGAAAGCCTATAAGCC -ACGGAATGGGAAAGCCTAATAGCC -ACGGAATGGGAAAGCCTATAACCG -ACGGAATGGGAAAGCCTAATGCCA -ACGGAATGGGAAAGCACTGGAAAC -ACGGAATGGGAAAGCACTAACACC -ACGGAATGGGAAAGCACTATCGAG -ACGGAATGGGAAAGCACTCTCCTT -ACGGAATGGGAAAGCACTCCTGTT -ACGGAATGGGAAAGCACTCGGTTT -ACGGAATGGGAAAGCACTGTGGTT -ACGGAATGGGAAAGCACTGCCTTT -ACGGAATGGGAAAGCACTGGTCTT -ACGGAATGGGAAAGCACTACGCTT -ACGGAATGGGAAAGCACTAGCGTT -ACGGAATGGGAAAGCACTTTCGTC -ACGGAATGGGAAAGCACTTCTCTC -ACGGAATGGGAAAGCACTTGGATC -ACGGAATGGGAAAGCACTCACTTC -ACGGAATGGGAAAGCACTGTACTC -ACGGAATGGGAAAGCACTGATGTC -ACGGAATGGGAAAGCACTACAGTC -ACGGAATGGGAAAGCACTTTGCTG -ACGGAATGGGAAAGCACTTCCATG -ACGGAATGGGAAAGCACTTGTGTG -ACGGAATGGGAAAGCACTCTAGTG -ACGGAATGGGAAAGCACTCATCTG -ACGGAATGGGAAAGCACTGAGTTG -ACGGAATGGGAAAGCACTAGACTG -ACGGAATGGGAAAGCACTTCGGTA -ACGGAATGGGAAAGCACTTGCCTA -ACGGAATGGGAAAGCACTCCACTA -ACGGAATGGGAAAGCACTGGAGTA -ACGGAATGGGAAAGCACTTCGTCT -ACGGAATGGGAAAGCACTTGCACT -ACGGAATGGGAAAGCACTCTGACT -ACGGAATGGGAAAGCACTCAACCT -ACGGAATGGGAAAGCACTGCTACT -ACGGAATGGGAAAGCACTGGATCT -ACGGAATGGGAAAGCACTAAGGCT -ACGGAATGGGAAAGCACTTCAACC -ACGGAATGGGAAAGCACTTGTTCC -ACGGAATGGGAAAGCACTATTCCC -ACGGAATGGGAAAGCACTTTCTCG -ACGGAATGGGAAAGCACTTAGACG -ACGGAATGGGAAAGCACTGTAACG -ACGGAATGGGAAAGCACTACTTCG -ACGGAATGGGAAAGCACTTACGCA -ACGGAATGGGAAAGCACTCTTGCA -ACGGAATGGGAAAGCACTCGAACA -ACGGAATGGGAAAGCACTCAGTCA -ACGGAATGGGAAAGCACTGATCCA -ACGGAATGGGAAAGCACTACGACA -ACGGAATGGGAAAGCACTAGCTCA -ACGGAATGGGAAAGCACTTCACGT -ACGGAATGGGAAAGCACTCGTAGT -ACGGAATGGGAAAGCACTGTCAGT -ACGGAATGGGAAAGCACTGAAGGT -ACGGAATGGGAAAGCACTAACCGT -ACGGAATGGGAAAGCACTTTGTGC -ACGGAATGGGAAAGCACTCTAAGC -ACGGAATGGGAAAGCACTACTAGC -ACGGAATGGGAAAGCACTAGATGC -ACGGAATGGGAAAGCACTTGAAGG -ACGGAATGGGAAAGCACTCAATGG -ACGGAATGGGAAAGCACTATGAGG -ACGGAATGGGAAAGCACTAATGGG -ACGGAATGGGAAAGCACTTCCTGA -ACGGAATGGGAAAGCACTTAGCGA -ACGGAATGGGAAAGCACTCACAGA -ACGGAATGGGAAAGCACTGCAAGA -ACGGAATGGGAAAGCACTGGTTGA -ACGGAATGGGAAAGCACTTCCGAT -ACGGAATGGGAAAGCACTTGGCAT -ACGGAATGGGAAAGCACTCGAGAT -ACGGAATGGGAAAGCACTTACCAC -ACGGAATGGGAAAGCACTCAGAAC -ACGGAATGGGAAAGCACTGTCTAC -ACGGAATGGGAAAGCACTACGTAC -ACGGAATGGGAAAGCACTAGTGAC -ACGGAATGGGAAAGCACTCTGTAG -ACGGAATGGGAAAGCACTCCTAAG -ACGGAATGGGAAAGCACTGTTCAG -ACGGAATGGGAAAGCACTGCATAG -ACGGAATGGGAAAGCACTGACAAG -ACGGAATGGGAAAGCACTAAGCAG -ACGGAATGGGAAAGCACTCGTCAA -ACGGAATGGGAAAGCACTGCTGAA -ACGGAATGGGAAAGCACTAGTACG -ACGGAATGGGAAAGCACTATCCGA -ACGGAATGGGAAAGCACTATGGGA -ACGGAATGGGAAAGCACTGTGCAA -ACGGAATGGGAAAGCACTGAGGAA -ACGGAATGGGAAAGCACTCAGGTA -ACGGAATGGGAAAGCACTGACTCT -ACGGAATGGGAAAGCACTAGTCCT -ACGGAATGGGAAAGCACTTAAGCC -ACGGAATGGGAAAGCACTATAGCC -ACGGAATGGGAAAGCACTTAACCG -ACGGAATGGGAAAGCACTATGCCA -ACGGAATGGGAATGCAGAGGAAAC -ACGGAATGGGAATGCAGAAACACC -ACGGAATGGGAATGCAGAATCGAG -ACGGAATGGGAATGCAGACTCCTT -ACGGAATGGGAATGCAGACCTGTT -ACGGAATGGGAATGCAGACGGTTT -ACGGAATGGGAATGCAGAGTGGTT -ACGGAATGGGAATGCAGAGCCTTT -ACGGAATGGGAATGCAGAGGTCTT -ACGGAATGGGAATGCAGAACGCTT -ACGGAATGGGAATGCAGAAGCGTT -ACGGAATGGGAATGCAGATTCGTC -ACGGAATGGGAATGCAGATCTCTC -ACGGAATGGGAATGCAGATGGATC -ACGGAATGGGAATGCAGACACTTC -ACGGAATGGGAATGCAGAGTACTC -ACGGAATGGGAATGCAGAGATGTC -ACGGAATGGGAATGCAGAACAGTC -ACGGAATGGGAATGCAGATTGCTG -ACGGAATGGGAATGCAGATCCATG -ACGGAATGGGAATGCAGATGTGTG -ACGGAATGGGAATGCAGACTAGTG -ACGGAATGGGAATGCAGACATCTG -ACGGAATGGGAATGCAGAGAGTTG -ACGGAATGGGAATGCAGAAGACTG -ACGGAATGGGAATGCAGATCGGTA -ACGGAATGGGAATGCAGATGCCTA -ACGGAATGGGAATGCAGACCACTA -ACGGAATGGGAATGCAGAGGAGTA -ACGGAATGGGAATGCAGATCGTCT -ACGGAATGGGAATGCAGATGCACT -ACGGAATGGGAATGCAGACTGACT -ACGGAATGGGAATGCAGACAACCT -ACGGAATGGGAATGCAGAGCTACT -ACGGAATGGGAATGCAGAGGATCT -ACGGAATGGGAATGCAGAAAGGCT -ACGGAATGGGAATGCAGATCAACC -ACGGAATGGGAATGCAGATGTTCC -ACGGAATGGGAATGCAGAATTCCC -ACGGAATGGGAATGCAGATTCTCG -ACGGAATGGGAATGCAGATAGACG -ACGGAATGGGAATGCAGAGTAACG -ACGGAATGGGAATGCAGAACTTCG -ACGGAATGGGAATGCAGATACGCA -ACGGAATGGGAATGCAGACTTGCA -ACGGAATGGGAATGCAGACGAACA -ACGGAATGGGAATGCAGACAGTCA -ACGGAATGGGAATGCAGAGATCCA -ACGGAATGGGAATGCAGAACGACA -ACGGAATGGGAATGCAGAAGCTCA -ACGGAATGGGAATGCAGATCACGT -ACGGAATGGGAATGCAGACGTAGT -ACGGAATGGGAATGCAGAGTCAGT -ACGGAATGGGAATGCAGAGAAGGT -ACGGAATGGGAATGCAGAAACCGT -ACGGAATGGGAATGCAGATTGTGC -ACGGAATGGGAATGCAGACTAAGC -ACGGAATGGGAATGCAGAACTAGC -ACGGAATGGGAATGCAGAAGATGC -ACGGAATGGGAATGCAGATGAAGG -ACGGAATGGGAATGCAGACAATGG -ACGGAATGGGAATGCAGAATGAGG -ACGGAATGGGAATGCAGAAATGGG -ACGGAATGGGAATGCAGATCCTGA -ACGGAATGGGAATGCAGATAGCGA -ACGGAATGGGAATGCAGACACAGA -ACGGAATGGGAATGCAGAGCAAGA -ACGGAATGGGAATGCAGAGGTTGA -ACGGAATGGGAATGCAGATCCGAT -ACGGAATGGGAATGCAGATGGCAT -ACGGAATGGGAATGCAGACGAGAT -ACGGAATGGGAATGCAGATACCAC -ACGGAATGGGAATGCAGACAGAAC -ACGGAATGGGAATGCAGAGTCTAC -ACGGAATGGGAATGCAGAACGTAC -ACGGAATGGGAATGCAGAAGTGAC -ACGGAATGGGAATGCAGACTGTAG -ACGGAATGGGAATGCAGACCTAAG -ACGGAATGGGAATGCAGAGTTCAG -ACGGAATGGGAATGCAGAGCATAG -ACGGAATGGGAATGCAGAGACAAG -ACGGAATGGGAATGCAGAAAGCAG -ACGGAATGGGAATGCAGACGTCAA -ACGGAATGGGAATGCAGAGCTGAA -ACGGAATGGGAATGCAGAAGTACG -ACGGAATGGGAATGCAGAATCCGA -ACGGAATGGGAATGCAGAATGGGA -ACGGAATGGGAATGCAGAGTGCAA -ACGGAATGGGAATGCAGAGAGGAA -ACGGAATGGGAATGCAGACAGGTA -ACGGAATGGGAATGCAGAGACTCT -ACGGAATGGGAATGCAGAAGTCCT -ACGGAATGGGAATGCAGATAAGCC -ACGGAATGGGAATGCAGAATAGCC -ACGGAATGGGAATGCAGATAACCG -ACGGAATGGGAATGCAGAATGCCA -ACGGAATGGGAAAGGTGAGGAAAC -ACGGAATGGGAAAGGTGAAACACC -ACGGAATGGGAAAGGTGAATCGAG -ACGGAATGGGAAAGGTGACTCCTT -ACGGAATGGGAAAGGTGACCTGTT -ACGGAATGGGAAAGGTGACGGTTT -ACGGAATGGGAAAGGTGAGTGGTT -ACGGAATGGGAAAGGTGAGCCTTT -ACGGAATGGGAAAGGTGAGGTCTT -ACGGAATGGGAAAGGTGAACGCTT -ACGGAATGGGAAAGGTGAAGCGTT -ACGGAATGGGAAAGGTGATTCGTC -ACGGAATGGGAAAGGTGATCTCTC -ACGGAATGGGAAAGGTGATGGATC -ACGGAATGGGAAAGGTGACACTTC -ACGGAATGGGAAAGGTGAGTACTC -ACGGAATGGGAAAGGTGAGATGTC -ACGGAATGGGAAAGGTGAACAGTC -ACGGAATGGGAAAGGTGATTGCTG -ACGGAATGGGAAAGGTGATCCATG -ACGGAATGGGAAAGGTGATGTGTG -ACGGAATGGGAAAGGTGACTAGTG -ACGGAATGGGAAAGGTGACATCTG -ACGGAATGGGAAAGGTGAGAGTTG -ACGGAATGGGAAAGGTGAAGACTG -ACGGAATGGGAAAGGTGATCGGTA -ACGGAATGGGAAAGGTGATGCCTA -ACGGAATGGGAAAGGTGACCACTA -ACGGAATGGGAAAGGTGAGGAGTA -ACGGAATGGGAAAGGTGATCGTCT -ACGGAATGGGAAAGGTGATGCACT -ACGGAATGGGAAAGGTGACTGACT -ACGGAATGGGAAAGGTGACAACCT -ACGGAATGGGAAAGGTGAGCTACT -ACGGAATGGGAAAGGTGAGGATCT -ACGGAATGGGAAAGGTGAAAGGCT -ACGGAATGGGAAAGGTGATCAACC -ACGGAATGGGAAAGGTGATGTTCC -ACGGAATGGGAAAGGTGAATTCCC -ACGGAATGGGAAAGGTGATTCTCG -ACGGAATGGGAAAGGTGATAGACG -ACGGAATGGGAAAGGTGAGTAACG -ACGGAATGGGAAAGGTGAACTTCG -ACGGAATGGGAAAGGTGATACGCA -ACGGAATGGGAAAGGTGACTTGCA -ACGGAATGGGAAAGGTGACGAACA -ACGGAATGGGAAAGGTGACAGTCA -ACGGAATGGGAAAGGTGAGATCCA -ACGGAATGGGAAAGGTGAACGACA -ACGGAATGGGAAAGGTGAAGCTCA -ACGGAATGGGAAAGGTGATCACGT -ACGGAATGGGAAAGGTGACGTAGT -ACGGAATGGGAAAGGTGAGTCAGT -ACGGAATGGGAAAGGTGAGAAGGT -ACGGAATGGGAAAGGTGAAACCGT -ACGGAATGGGAAAGGTGATTGTGC -ACGGAATGGGAAAGGTGACTAAGC -ACGGAATGGGAAAGGTGAACTAGC -ACGGAATGGGAAAGGTGAAGATGC -ACGGAATGGGAAAGGTGATGAAGG -ACGGAATGGGAAAGGTGACAATGG -ACGGAATGGGAAAGGTGAATGAGG -ACGGAATGGGAAAGGTGAAATGGG -ACGGAATGGGAAAGGTGATCCTGA -ACGGAATGGGAAAGGTGATAGCGA -ACGGAATGGGAAAGGTGACACAGA -ACGGAATGGGAAAGGTGAGCAAGA -ACGGAATGGGAAAGGTGAGGTTGA -ACGGAATGGGAAAGGTGATCCGAT -ACGGAATGGGAAAGGTGATGGCAT -ACGGAATGGGAAAGGTGACGAGAT -ACGGAATGGGAAAGGTGATACCAC -ACGGAATGGGAAAGGTGACAGAAC -ACGGAATGGGAAAGGTGAGTCTAC -ACGGAATGGGAAAGGTGAACGTAC -ACGGAATGGGAAAGGTGAAGTGAC -ACGGAATGGGAAAGGTGACTGTAG -ACGGAATGGGAAAGGTGACCTAAG -ACGGAATGGGAAAGGTGAGTTCAG -ACGGAATGGGAAAGGTGAGCATAG -ACGGAATGGGAAAGGTGAGACAAG -ACGGAATGGGAAAGGTGAAAGCAG -ACGGAATGGGAAAGGTGACGTCAA -ACGGAATGGGAAAGGTGAGCTGAA -ACGGAATGGGAAAGGTGAAGTACG -ACGGAATGGGAAAGGTGAATCCGA -ACGGAATGGGAAAGGTGAATGGGA -ACGGAATGGGAAAGGTGAGTGCAA -ACGGAATGGGAAAGGTGAGAGGAA -ACGGAATGGGAAAGGTGACAGGTA -ACGGAATGGGAAAGGTGAGACTCT -ACGGAATGGGAAAGGTGAAGTCCT -ACGGAATGGGAAAGGTGATAAGCC -ACGGAATGGGAAAGGTGAATAGCC -ACGGAATGGGAAAGGTGATAACCG -ACGGAATGGGAAAGGTGAATGCCA -ACGGAATGGGAATGGCAAGGAAAC -ACGGAATGGGAATGGCAAAACACC -ACGGAATGGGAATGGCAAATCGAG -ACGGAATGGGAATGGCAACTCCTT -ACGGAATGGGAATGGCAACCTGTT -ACGGAATGGGAATGGCAACGGTTT -ACGGAATGGGAATGGCAAGTGGTT -ACGGAATGGGAATGGCAAGCCTTT -ACGGAATGGGAATGGCAAGGTCTT -ACGGAATGGGAATGGCAAACGCTT -ACGGAATGGGAATGGCAAAGCGTT -ACGGAATGGGAATGGCAATTCGTC -ACGGAATGGGAATGGCAATCTCTC -ACGGAATGGGAATGGCAATGGATC -ACGGAATGGGAATGGCAACACTTC -ACGGAATGGGAATGGCAAGTACTC -ACGGAATGGGAATGGCAAGATGTC -ACGGAATGGGAATGGCAAACAGTC -ACGGAATGGGAATGGCAATTGCTG -ACGGAATGGGAATGGCAATCCATG -ACGGAATGGGAATGGCAATGTGTG -ACGGAATGGGAATGGCAACTAGTG -ACGGAATGGGAATGGCAACATCTG -ACGGAATGGGAATGGCAAGAGTTG -ACGGAATGGGAATGGCAAAGACTG -ACGGAATGGGAATGGCAATCGGTA -ACGGAATGGGAATGGCAATGCCTA -ACGGAATGGGAATGGCAACCACTA -ACGGAATGGGAATGGCAAGGAGTA -ACGGAATGGGAATGGCAATCGTCT -ACGGAATGGGAATGGCAATGCACT -ACGGAATGGGAATGGCAACTGACT -ACGGAATGGGAATGGCAACAACCT -ACGGAATGGGAATGGCAAGCTACT -ACGGAATGGGAATGGCAAGGATCT -ACGGAATGGGAATGGCAAAAGGCT -ACGGAATGGGAATGGCAATCAACC -ACGGAATGGGAATGGCAATGTTCC -ACGGAATGGGAATGGCAAATTCCC -ACGGAATGGGAATGGCAATTCTCG -ACGGAATGGGAATGGCAATAGACG -ACGGAATGGGAATGGCAAGTAACG -ACGGAATGGGAATGGCAAACTTCG -ACGGAATGGGAATGGCAATACGCA -ACGGAATGGGAATGGCAACTTGCA -ACGGAATGGGAATGGCAACGAACA -ACGGAATGGGAATGGCAACAGTCA -ACGGAATGGGAATGGCAAGATCCA -ACGGAATGGGAATGGCAAACGACA -ACGGAATGGGAATGGCAAAGCTCA -ACGGAATGGGAATGGCAATCACGT -ACGGAATGGGAATGGCAACGTAGT -ACGGAATGGGAATGGCAAGTCAGT -ACGGAATGGGAATGGCAAGAAGGT -ACGGAATGGGAATGGCAAAACCGT -ACGGAATGGGAATGGCAATTGTGC -ACGGAATGGGAATGGCAACTAAGC -ACGGAATGGGAATGGCAAACTAGC -ACGGAATGGGAATGGCAAAGATGC -ACGGAATGGGAATGGCAATGAAGG -ACGGAATGGGAATGGCAACAATGG -ACGGAATGGGAATGGCAAATGAGG -ACGGAATGGGAATGGCAAAATGGG -ACGGAATGGGAATGGCAATCCTGA -ACGGAATGGGAATGGCAATAGCGA -ACGGAATGGGAATGGCAACACAGA -ACGGAATGGGAATGGCAAGCAAGA -ACGGAATGGGAATGGCAAGGTTGA -ACGGAATGGGAATGGCAATCCGAT -ACGGAATGGGAATGGCAATGGCAT -ACGGAATGGGAATGGCAACGAGAT -ACGGAATGGGAATGGCAATACCAC -ACGGAATGGGAATGGCAACAGAAC -ACGGAATGGGAATGGCAAGTCTAC -ACGGAATGGGAATGGCAAACGTAC -ACGGAATGGGAATGGCAAAGTGAC -ACGGAATGGGAATGGCAACTGTAG -ACGGAATGGGAATGGCAACCTAAG -ACGGAATGGGAATGGCAAGTTCAG -ACGGAATGGGAATGGCAAGCATAG -ACGGAATGGGAATGGCAAGACAAG -ACGGAATGGGAATGGCAAAAGCAG -ACGGAATGGGAATGGCAACGTCAA -ACGGAATGGGAATGGCAAGCTGAA -ACGGAATGGGAATGGCAAAGTACG -ACGGAATGGGAATGGCAAATCCGA -ACGGAATGGGAATGGCAAATGGGA -ACGGAATGGGAATGGCAAGTGCAA -ACGGAATGGGAATGGCAAGAGGAA -ACGGAATGGGAATGGCAACAGGTA -ACGGAATGGGAATGGCAAGACTCT -ACGGAATGGGAATGGCAAAGTCCT -ACGGAATGGGAATGGCAATAAGCC -ACGGAATGGGAATGGCAAATAGCC -ACGGAATGGGAATGGCAATAACCG -ACGGAATGGGAATGGCAAATGCCA -ACGGAATGGGAAAGGATGGGAAAC -ACGGAATGGGAAAGGATGAACACC -ACGGAATGGGAAAGGATGATCGAG -ACGGAATGGGAAAGGATGCTCCTT -ACGGAATGGGAAAGGATGCCTGTT -ACGGAATGGGAAAGGATGCGGTTT -ACGGAATGGGAAAGGATGGTGGTT -ACGGAATGGGAAAGGATGGCCTTT -ACGGAATGGGAAAGGATGGGTCTT -ACGGAATGGGAAAGGATGACGCTT -ACGGAATGGGAAAGGATGAGCGTT -ACGGAATGGGAAAGGATGTTCGTC -ACGGAATGGGAAAGGATGTCTCTC -ACGGAATGGGAAAGGATGTGGATC -ACGGAATGGGAAAGGATGCACTTC -ACGGAATGGGAAAGGATGGTACTC -ACGGAATGGGAAAGGATGGATGTC -ACGGAATGGGAAAGGATGACAGTC -ACGGAATGGGAAAGGATGTTGCTG -ACGGAATGGGAAAGGATGTCCATG -ACGGAATGGGAAAGGATGTGTGTG -ACGGAATGGGAAAGGATGCTAGTG -ACGGAATGGGAAAGGATGCATCTG -ACGGAATGGGAAAGGATGGAGTTG -ACGGAATGGGAAAGGATGAGACTG -ACGGAATGGGAAAGGATGTCGGTA -ACGGAATGGGAAAGGATGTGCCTA -ACGGAATGGGAAAGGATGCCACTA -ACGGAATGGGAAAGGATGGGAGTA -ACGGAATGGGAAAGGATGTCGTCT -ACGGAATGGGAAAGGATGTGCACT -ACGGAATGGGAAAGGATGCTGACT -ACGGAATGGGAAAGGATGCAACCT -ACGGAATGGGAAAGGATGGCTACT -ACGGAATGGGAAAGGATGGGATCT -ACGGAATGGGAAAGGATGAAGGCT -ACGGAATGGGAAAGGATGTCAACC -ACGGAATGGGAAAGGATGTGTTCC -ACGGAATGGGAAAGGATGATTCCC -ACGGAATGGGAAAGGATGTTCTCG -ACGGAATGGGAAAGGATGTAGACG -ACGGAATGGGAAAGGATGGTAACG -ACGGAATGGGAAAGGATGACTTCG -ACGGAATGGGAAAGGATGTACGCA -ACGGAATGGGAAAGGATGCTTGCA -ACGGAATGGGAAAGGATGCGAACA -ACGGAATGGGAAAGGATGCAGTCA -ACGGAATGGGAAAGGATGGATCCA -ACGGAATGGGAAAGGATGACGACA -ACGGAATGGGAAAGGATGAGCTCA -ACGGAATGGGAAAGGATGTCACGT -ACGGAATGGGAAAGGATGCGTAGT -ACGGAATGGGAAAGGATGGTCAGT -ACGGAATGGGAAAGGATGGAAGGT -ACGGAATGGGAAAGGATGAACCGT -ACGGAATGGGAAAGGATGTTGTGC -ACGGAATGGGAAAGGATGCTAAGC -ACGGAATGGGAAAGGATGACTAGC -ACGGAATGGGAAAGGATGAGATGC -ACGGAATGGGAAAGGATGTGAAGG -ACGGAATGGGAAAGGATGCAATGG -ACGGAATGGGAAAGGATGATGAGG -ACGGAATGGGAAAGGATGAATGGG -ACGGAATGGGAAAGGATGTCCTGA -ACGGAATGGGAAAGGATGTAGCGA -ACGGAATGGGAAAGGATGCACAGA -ACGGAATGGGAAAGGATGGCAAGA -ACGGAATGGGAAAGGATGGGTTGA -ACGGAATGGGAAAGGATGTCCGAT -ACGGAATGGGAAAGGATGTGGCAT -ACGGAATGGGAAAGGATGCGAGAT -ACGGAATGGGAAAGGATGTACCAC -ACGGAATGGGAAAGGATGCAGAAC -ACGGAATGGGAAAGGATGGTCTAC -ACGGAATGGGAAAGGATGACGTAC -ACGGAATGGGAAAGGATGAGTGAC -ACGGAATGGGAAAGGATGCTGTAG -ACGGAATGGGAAAGGATGCCTAAG -ACGGAATGGGAAAGGATGGTTCAG -ACGGAATGGGAAAGGATGGCATAG -ACGGAATGGGAAAGGATGGACAAG -ACGGAATGGGAAAGGATGAAGCAG -ACGGAATGGGAAAGGATGCGTCAA -ACGGAATGGGAAAGGATGGCTGAA -ACGGAATGGGAAAGGATGAGTACG -ACGGAATGGGAAAGGATGATCCGA -ACGGAATGGGAAAGGATGATGGGA -ACGGAATGGGAAAGGATGGTGCAA -ACGGAATGGGAAAGGATGGAGGAA -ACGGAATGGGAAAGGATGCAGGTA -ACGGAATGGGAAAGGATGGACTCT -ACGGAATGGGAAAGGATGAGTCCT -ACGGAATGGGAAAGGATGTAAGCC -ACGGAATGGGAAAGGATGATAGCC -ACGGAATGGGAAAGGATGTAACCG -ACGGAATGGGAAAGGATGATGCCA -ACGGAATGGGAAGGGAATGGAAAC -ACGGAATGGGAAGGGAATAACACC -ACGGAATGGGAAGGGAATATCGAG -ACGGAATGGGAAGGGAATCTCCTT -ACGGAATGGGAAGGGAATCCTGTT -ACGGAATGGGAAGGGAATCGGTTT -ACGGAATGGGAAGGGAATGTGGTT -ACGGAATGGGAAGGGAATGCCTTT -ACGGAATGGGAAGGGAATGGTCTT -ACGGAATGGGAAGGGAATACGCTT -ACGGAATGGGAAGGGAATAGCGTT -ACGGAATGGGAAGGGAATTTCGTC -ACGGAATGGGAAGGGAATTCTCTC -ACGGAATGGGAAGGGAATTGGATC -ACGGAATGGGAAGGGAATCACTTC -ACGGAATGGGAAGGGAATGTACTC -ACGGAATGGGAAGGGAATGATGTC -ACGGAATGGGAAGGGAATACAGTC -ACGGAATGGGAAGGGAATTTGCTG -ACGGAATGGGAAGGGAATTCCATG -ACGGAATGGGAAGGGAATTGTGTG -ACGGAATGGGAAGGGAATCTAGTG -ACGGAATGGGAAGGGAATCATCTG -ACGGAATGGGAAGGGAATGAGTTG -ACGGAATGGGAAGGGAATAGACTG -ACGGAATGGGAAGGGAATTCGGTA -ACGGAATGGGAAGGGAATTGCCTA -ACGGAATGGGAAGGGAATCCACTA -ACGGAATGGGAAGGGAATGGAGTA -ACGGAATGGGAAGGGAATTCGTCT -ACGGAATGGGAAGGGAATTGCACT -ACGGAATGGGAAGGGAATCTGACT -ACGGAATGGGAAGGGAATCAACCT -ACGGAATGGGAAGGGAATGCTACT -ACGGAATGGGAAGGGAATGGATCT -ACGGAATGGGAAGGGAATAAGGCT -ACGGAATGGGAAGGGAATTCAACC -ACGGAATGGGAAGGGAATTGTTCC -ACGGAATGGGAAGGGAATATTCCC -ACGGAATGGGAAGGGAATTTCTCG -ACGGAATGGGAAGGGAATTAGACG -ACGGAATGGGAAGGGAATGTAACG -ACGGAATGGGAAGGGAATACTTCG -ACGGAATGGGAAGGGAATTACGCA -ACGGAATGGGAAGGGAATCTTGCA -ACGGAATGGGAAGGGAATCGAACA -ACGGAATGGGAAGGGAATCAGTCA -ACGGAATGGGAAGGGAATGATCCA -ACGGAATGGGAAGGGAATACGACA -ACGGAATGGGAAGGGAATAGCTCA -ACGGAATGGGAAGGGAATTCACGT -ACGGAATGGGAAGGGAATCGTAGT -ACGGAATGGGAAGGGAATGTCAGT -ACGGAATGGGAAGGGAATGAAGGT -ACGGAATGGGAAGGGAATAACCGT -ACGGAATGGGAAGGGAATTTGTGC -ACGGAATGGGAAGGGAATCTAAGC -ACGGAATGGGAAGGGAATACTAGC -ACGGAATGGGAAGGGAATAGATGC -ACGGAATGGGAAGGGAATTGAAGG -ACGGAATGGGAAGGGAATCAATGG -ACGGAATGGGAAGGGAATATGAGG -ACGGAATGGGAAGGGAATAATGGG -ACGGAATGGGAAGGGAATTCCTGA -ACGGAATGGGAAGGGAATTAGCGA -ACGGAATGGGAAGGGAATCACAGA -ACGGAATGGGAAGGGAATGCAAGA -ACGGAATGGGAAGGGAATGGTTGA -ACGGAATGGGAAGGGAATTCCGAT -ACGGAATGGGAAGGGAATTGGCAT -ACGGAATGGGAAGGGAATCGAGAT -ACGGAATGGGAAGGGAATTACCAC -ACGGAATGGGAAGGGAATCAGAAC -ACGGAATGGGAAGGGAATGTCTAC -ACGGAATGGGAAGGGAATACGTAC -ACGGAATGGGAAGGGAATAGTGAC -ACGGAATGGGAAGGGAATCTGTAG -ACGGAATGGGAAGGGAATCCTAAG -ACGGAATGGGAAGGGAATGTTCAG -ACGGAATGGGAAGGGAATGCATAG -ACGGAATGGGAAGGGAATGACAAG -ACGGAATGGGAAGGGAATAAGCAG -ACGGAATGGGAAGGGAATCGTCAA -ACGGAATGGGAAGGGAATGCTGAA -ACGGAATGGGAAGGGAATAGTACG -ACGGAATGGGAAGGGAATATCCGA -ACGGAATGGGAAGGGAATATGGGA -ACGGAATGGGAAGGGAATGTGCAA -ACGGAATGGGAAGGGAATGAGGAA -ACGGAATGGGAAGGGAATCAGGTA -ACGGAATGGGAAGGGAATGACTCT -ACGGAATGGGAAGGGAATAGTCCT -ACGGAATGGGAAGGGAATTAAGCC -ACGGAATGGGAAGGGAATATAGCC -ACGGAATGGGAAGGGAATTAACCG -ACGGAATGGGAAGGGAATATGCCA -ACGGAATGGGAATGATCCGGAAAC -ACGGAATGGGAATGATCCAACACC -ACGGAATGGGAATGATCCATCGAG -ACGGAATGGGAATGATCCCTCCTT -ACGGAATGGGAATGATCCCCTGTT -ACGGAATGGGAATGATCCCGGTTT -ACGGAATGGGAATGATCCGTGGTT -ACGGAATGGGAATGATCCGCCTTT -ACGGAATGGGAATGATCCGGTCTT -ACGGAATGGGAATGATCCACGCTT -ACGGAATGGGAATGATCCAGCGTT -ACGGAATGGGAATGATCCTTCGTC -ACGGAATGGGAATGATCCTCTCTC -ACGGAATGGGAATGATCCTGGATC -ACGGAATGGGAATGATCCCACTTC -ACGGAATGGGAATGATCCGTACTC -ACGGAATGGGAATGATCCGATGTC -ACGGAATGGGAATGATCCACAGTC -ACGGAATGGGAATGATCCTTGCTG -ACGGAATGGGAATGATCCTCCATG -ACGGAATGGGAATGATCCTGTGTG -ACGGAATGGGAATGATCCCTAGTG -ACGGAATGGGAATGATCCCATCTG -ACGGAATGGGAATGATCCGAGTTG -ACGGAATGGGAATGATCCAGACTG -ACGGAATGGGAATGATCCTCGGTA -ACGGAATGGGAATGATCCTGCCTA -ACGGAATGGGAATGATCCCCACTA -ACGGAATGGGAATGATCCGGAGTA -ACGGAATGGGAATGATCCTCGTCT -ACGGAATGGGAATGATCCTGCACT -ACGGAATGGGAATGATCCCTGACT -ACGGAATGGGAATGATCCCAACCT -ACGGAATGGGAATGATCCGCTACT -ACGGAATGGGAATGATCCGGATCT -ACGGAATGGGAATGATCCAAGGCT -ACGGAATGGGAATGATCCTCAACC -ACGGAATGGGAATGATCCTGTTCC -ACGGAATGGGAATGATCCATTCCC -ACGGAATGGGAATGATCCTTCTCG -ACGGAATGGGAATGATCCTAGACG -ACGGAATGGGAATGATCCGTAACG -ACGGAATGGGAATGATCCACTTCG -ACGGAATGGGAATGATCCTACGCA -ACGGAATGGGAATGATCCCTTGCA -ACGGAATGGGAATGATCCCGAACA -ACGGAATGGGAATGATCCCAGTCA -ACGGAATGGGAATGATCCGATCCA -ACGGAATGGGAATGATCCACGACA -ACGGAATGGGAATGATCCAGCTCA -ACGGAATGGGAATGATCCTCACGT -ACGGAATGGGAATGATCCCGTAGT -ACGGAATGGGAATGATCCGTCAGT -ACGGAATGGGAATGATCCGAAGGT -ACGGAATGGGAATGATCCAACCGT -ACGGAATGGGAATGATCCTTGTGC -ACGGAATGGGAATGATCCCTAAGC -ACGGAATGGGAATGATCCACTAGC -ACGGAATGGGAATGATCCAGATGC -ACGGAATGGGAATGATCCTGAAGG -ACGGAATGGGAATGATCCCAATGG -ACGGAATGGGAATGATCCATGAGG -ACGGAATGGGAATGATCCAATGGG -ACGGAATGGGAATGATCCTCCTGA -ACGGAATGGGAATGATCCTAGCGA -ACGGAATGGGAATGATCCCACAGA -ACGGAATGGGAATGATCCGCAAGA -ACGGAATGGGAATGATCCGGTTGA -ACGGAATGGGAATGATCCTCCGAT -ACGGAATGGGAATGATCCTGGCAT -ACGGAATGGGAATGATCCCGAGAT -ACGGAATGGGAATGATCCTACCAC -ACGGAATGGGAATGATCCCAGAAC -ACGGAATGGGAATGATCCGTCTAC -ACGGAATGGGAATGATCCACGTAC -ACGGAATGGGAATGATCCAGTGAC -ACGGAATGGGAATGATCCCTGTAG -ACGGAATGGGAATGATCCCCTAAG -ACGGAATGGGAATGATCCGTTCAG -ACGGAATGGGAATGATCCGCATAG -ACGGAATGGGAATGATCCGACAAG -ACGGAATGGGAATGATCCAAGCAG -ACGGAATGGGAATGATCCCGTCAA -ACGGAATGGGAATGATCCGCTGAA -ACGGAATGGGAATGATCCAGTACG -ACGGAATGGGAATGATCCATCCGA -ACGGAATGGGAATGATCCATGGGA -ACGGAATGGGAATGATCCGTGCAA -ACGGAATGGGAATGATCCGAGGAA -ACGGAATGGGAATGATCCCAGGTA -ACGGAATGGGAATGATCCGACTCT -ACGGAATGGGAATGATCCAGTCCT -ACGGAATGGGAATGATCCTAAGCC -ACGGAATGGGAATGATCCATAGCC -ACGGAATGGGAATGATCCTAACCG -ACGGAATGGGAATGATCCATGCCA -ACGGAATGGGAACGATAGGGAAAC -ACGGAATGGGAACGATAGAACACC -ACGGAATGGGAACGATAGATCGAG -ACGGAATGGGAACGATAGCTCCTT -ACGGAATGGGAACGATAGCCTGTT -ACGGAATGGGAACGATAGCGGTTT -ACGGAATGGGAACGATAGGTGGTT -ACGGAATGGGAACGATAGGCCTTT -ACGGAATGGGAACGATAGGGTCTT -ACGGAATGGGAACGATAGACGCTT -ACGGAATGGGAACGATAGAGCGTT -ACGGAATGGGAACGATAGTTCGTC -ACGGAATGGGAACGATAGTCTCTC -ACGGAATGGGAACGATAGTGGATC -ACGGAATGGGAACGATAGCACTTC -ACGGAATGGGAACGATAGGTACTC -ACGGAATGGGAACGATAGGATGTC -ACGGAATGGGAACGATAGACAGTC -ACGGAATGGGAACGATAGTTGCTG -ACGGAATGGGAACGATAGTCCATG -ACGGAATGGGAACGATAGTGTGTG -ACGGAATGGGAACGATAGCTAGTG -ACGGAATGGGAACGATAGCATCTG -ACGGAATGGGAACGATAGGAGTTG -ACGGAATGGGAACGATAGAGACTG -ACGGAATGGGAACGATAGTCGGTA -ACGGAATGGGAACGATAGTGCCTA -ACGGAATGGGAACGATAGCCACTA -ACGGAATGGGAACGATAGGGAGTA -ACGGAATGGGAACGATAGTCGTCT -ACGGAATGGGAACGATAGTGCACT -ACGGAATGGGAACGATAGCTGACT -ACGGAATGGGAACGATAGCAACCT -ACGGAATGGGAACGATAGGCTACT -ACGGAATGGGAACGATAGGGATCT -ACGGAATGGGAACGATAGAAGGCT -ACGGAATGGGAACGATAGTCAACC -ACGGAATGGGAACGATAGTGTTCC -ACGGAATGGGAACGATAGATTCCC -ACGGAATGGGAACGATAGTTCTCG -ACGGAATGGGAACGATAGTAGACG -ACGGAATGGGAACGATAGGTAACG -ACGGAATGGGAACGATAGACTTCG -ACGGAATGGGAACGATAGTACGCA -ACGGAATGGGAACGATAGCTTGCA -ACGGAATGGGAACGATAGCGAACA -ACGGAATGGGAACGATAGCAGTCA -ACGGAATGGGAACGATAGGATCCA -ACGGAATGGGAACGATAGACGACA -ACGGAATGGGAACGATAGAGCTCA -ACGGAATGGGAACGATAGTCACGT -ACGGAATGGGAACGATAGCGTAGT -ACGGAATGGGAACGATAGGTCAGT -ACGGAATGGGAACGATAGGAAGGT -ACGGAATGGGAACGATAGAACCGT -ACGGAATGGGAACGATAGTTGTGC -ACGGAATGGGAACGATAGCTAAGC -ACGGAATGGGAACGATAGACTAGC -ACGGAATGGGAACGATAGAGATGC -ACGGAATGGGAACGATAGTGAAGG -ACGGAATGGGAACGATAGCAATGG -ACGGAATGGGAACGATAGATGAGG -ACGGAATGGGAACGATAGAATGGG -ACGGAATGGGAACGATAGTCCTGA -ACGGAATGGGAACGATAGTAGCGA -ACGGAATGGGAACGATAGCACAGA -ACGGAATGGGAACGATAGGCAAGA -ACGGAATGGGAACGATAGGGTTGA -ACGGAATGGGAACGATAGTCCGAT -ACGGAATGGGAACGATAGTGGCAT -ACGGAATGGGAACGATAGCGAGAT -ACGGAATGGGAACGATAGTACCAC -ACGGAATGGGAACGATAGCAGAAC -ACGGAATGGGAACGATAGGTCTAC -ACGGAATGGGAACGATAGACGTAC -ACGGAATGGGAACGATAGAGTGAC -ACGGAATGGGAACGATAGCTGTAG -ACGGAATGGGAACGATAGCCTAAG -ACGGAATGGGAACGATAGGTTCAG -ACGGAATGGGAACGATAGGCATAG -ACGGAATGGGAACGATAGGACAAG -ACGGAATGGGAACGATAGAAGCAG -ACGGAATGGGAACGATAGCGTCAA -ACGGAATGGGAACGATAGGCTGAA -ACGGAATGGGAACGATAGAGTACG -ACGGAATGGGAACGATAGATCCGA -ACGGAATGGGAACGATAGATGGGA -ACGGAATGGGAACGATAGGTGCAA -ACGGAATGGGAACGATAGGAGGAA -ACGGAATGGGAACGATAGCAGGTA -ACGGAATGGGAACGATAGGACTCT -ACGGAATGGGAACGATAGAGTCCT -ACGGAATGGGAACGATAGTAAGCC -ACGGAATGGGAACGATAGATAGCC -ACGGAATGGGAACGATAGTAACCG -ACGGAATGGGAACGATAGATGCCA -ACGGAATGGGAAAGACACGGAAAC -ACGGAATGGGAAAGACACAACACC -ACGGAATGGGAAAGACACATCGAG -ACGGAATGGGAAAGACACCTCCTT -ACGGAATGGGAAAGACACCCTGTT -ACGGAATGGGAAAGACACCGGTTT -ACGGAATGGGAAAGACACGTGGTT -ACGGAATGGGAAAGACACGCCTTT -ACGGAATGGGAAAGACACGGTCTT -ACGGAATGGGAAAGACACACGCTT -ACGGAATGGGAAAGACACAGCGTT -ACGGAATGGGAAAGACACTTCGTC -ACGGAATGGGAAAGACACTCTCTC -ACGGAATGGGAAAGACACTGGATC -ACGGAATGGGAAAGACACCACTTC -ACGGAATGGGAAAGACACGTACTC -ACGGAATGGGAAAGACACGATGTC -ACGGAATGGGAAAGACACACAGTC -ACGGAATGGGAAAGACACTTGCTG -ACGGAATGGGAAAGACACTCCATG -ACGGAATGGGAAAGACACTGTGTG -ACGGAATGGGAAAGACACCTAGTG -ACGGAATGGGAAAGACACCATCTG -ACGGAATGGGAAAGACACGAGTTG -ACGGAATGGGAAAGACACAGACTG -ACGGAATGGGAAAGACACTCGGTA -ACGGAATGGGAAAGACACTGCCTA -ACGGAATGGGAAAGACACCCACTA -ACGGAATGGGAAAGACACGGAGTA -ACGGAATGGGAAAGACACTCGTCT -ACGGAATGGGAAAGACACTGCACT -ACGGAATGGGAAAGACACCTGACT -ACGGAATGGGAAAGACACCAACCT -ACGGAATGGGAAAGACACGCTACT -ACGGAATGGGAAAGACACGGATCT -ACGGAATGGGAAAGACACAAGGCT -ACGGAATGGGAAAGACACTCAACC -ACGGAATGGGAAAGACACTGTTCC -ACGGAATGGGAAAGACACATTCCC -ACGGAATGGGAAAGACACTTCTCG -ACGGAATGGGAAAGACACTAGACG -ACGGAATGGGAAAGACACGTAACG -ACGGAATGGGAAAGACACACTTCG -ACGGAATGGGAAAGACACTACGCA -ACGGAATGGGAAAGACACCTTGCA -ACGGAATGGGAAAGACACCGAACA -ACGGAATGGGAAAGACACCAGTCA -ACGGAATGGGAAAGACACGATCCA -ACGGAATGGGAAAGACACACGACA -ACGGAATGGGAAAGACACAGCTCA -ACGGAATGGGAAAGACACTCACGT -ACGGAATGGGAAAGACACCGTAGT -ACGGAATGGGAAAGACACGTCAGT -ACGGAATGGGAAAGACACGAAGGT -ACGGAATGGGAAAGACACAACCGT -ACGGAATGGGAAAGACACTTGTGC -ACGGAATGGGAAAGACACCTAAGC -ACGGAATGGGAAAGACACACTAGC -ACGGAATGGGAAAGACACAGATGC -ACGGAATGGGAAAGACACTGAAGG -ACGGAATGGGAAAGACACCAATGG -ACGGAATGGGAAAGACACATGAGG -ACGGAATGGGAAAGACACAATGGG -ACGGAATGGGAAAGACACTCCTGA -ACGGAATGGGAAAGACACTAGCGA -ACGGAATGGGAAAGACACCACAGA -ACGGAATGGGAAAGACACGCAAGA -ACGGAATGGGAAAGACACGGTTGA -ACGGAATGGGAAAGACACTCCGAT -ACGGAATGGGAAAGACACTGGCAT -ACGGAATGGGAAAGACACCGAGAT -ACGGAATGGGAAAGACACTACCAC -ACGGAATGGGAAAGACACCAGAAC -ACGGAATGGGAAAGACACGTCTAC -ACGGAATGGGAAAGACACACGTAC -ACGGAATGGGAAAGACACAGTGAC -ACGGAATGGGAAAGACACCTGTAG -ACGGAATGGGAAAGACACCCTAAG -ACGGAATGGGAAAGACACGTTCAG -ACGGAATGGGAAAGACACGCATAG -ACGGAATGGGAAAGACACGACAAG -ACGGAATGGGAAAGACACAAGCAG -ACGGAATGGGAAAGACACCGTCAA -ACGGAATGGGAAAGACACGCTGAA -ACGGAATGGGAAAGACACAGTACG -ACGGAATGGGAAAGACACATCCGA -ACGGAATGGGAAAGACACATGGGA -ACGGAATGGGAAAGACACGTGCAA -ACGGAATGGGAAAGACACGAGGAA -ACGGAATGGGAAAGACACCAGGTA -ACGGAATGGGAAAGACACGACTCT -ACGGAATGGGAAAGACACAGTCCT -ACGGAATGGGAAAGACACTAAGCC -ACGGAATGGGAAAGACACATAGCC -ACGGAATGGGAAAGACACTAACCG -ACGGAATGGGAAAGACACATGCCA -ACGGAATGGGAAAGAGCAGGAAAC -ACGGAATGGGAAAGAGCAAACACC -ACGGAATGGGAAAGAGCAATCGAG -ACGGAATGGGAAAGAGCACTCCTT -ACGGAATGGGAAAGAGCACCTGTT -ACGGAATGGGAAAGAGCACGGTTT -ACGGAATGGGAAAGAGCAGTGGTT -ACGGAATGGGAAAGAGCAGCCTTT -ACGGAATGGGAAAGAGCAGGTCTT -ACGGAATGGGAAAGAGCAACGCTT -ACGGAATGGGAAAGAGCAAGCGTT -ACGGAATGGGAAAGAGCATTCGTC -ACGGAATGGGAAAGAGCATCTCTC -ACGGAATGGGAAAGAGCATGGATC -ACGGAATGGGAAAGAGCACACTTC -ACGGAATGGGAAAGAGCAGTACTC -ACGGAATGGGAAAGAGCAGATGTC -ACGGAATGGGAAAGAGCAACAGTC -ACGGAATGGGAAAGAGCATTGCTG -ACGGAATGGGAAAGAGCATCCATG -ACGGAATGGGAAAGAGCATGTGTG -ACGGAATGGGAAAGAGCACTAGTG -ACGGAATGGGAAAGAGCACATCTG -ACGGAATGGGAAAGAGCAGAGTTG -ACGGAATGGGAAAGAGCAAGACTG -ACGGAATGGGAAAGAGCATCGGTA -ACGGAATGGGAAAGAGCATGCCTA -ACGGAATGGGAAAGAGCACCACTA -ACGGAATGGGAAAGAGCAGGAGTA -ACGGAATGGGAAAGAGCATCGTCT -ACGGAATGGGAAAGAGCATGCACT -ACGGAATGGGAAAGAGCACTGACT -ACGGAATGGGAAAGAGCACAACCT -ACGGAATGGGAAAGAGCAGCTACT -ACGGAATGGGAAAGAGCAGGATCT -ACGGAATGGGAAAGAGCAAAGGCT -ACGGAATGGGAAAGAGCATCAACC -ACGGAATGGGAAAGAGCATGTTCC -ACGGAATGGGAAAGAGCAATTCCC -ACGGAATGGGAAAGAGCATTCTCG -ACGGAATGGGAAAGAGCATAGACG -ACGGAATGGGAAAGAGCAGTAACG -ACGGAATGGGAAAGAGCAACTTCG -ACGGAATGGGAAAGAGCATACGCA -ACGGAATGGGAAAGAGCACTTGCA -ACGGAATGGGAAAGAGCACGAACA -ACGGAATGGGAAAGAGCACAGTCA -ACGGAATGGGAAAGAGCAGATCCA -ACGGAATGGGAAAGAGCAACGACA -ACGGAATGGGAAAGAGCAAGCTCA -ACGGAATGGGAAAGAGCATCACGT -ACGGAATGGGAAAGAGCACGTAGT -ACGGAATGGGAAAGAGCAGTCAGT -ACGGAATGGGAAAGAGCAGAAGGT -ACGGAATGGGAAAGAGCAAACCGT -ACGGAATGGGAAAGAGCATTGTGC -ACGGAATGGGAAAGAGCACTAAGC -ACGGAATGGGAAAGAGCAACTAGC -ACGGAATGGGAAAGAGCAAGATGC -ACGGAATGGGAAAGAGCATGAAGG -ACGGAATGGGAAAGAGCACAATGG -ACGGAATGGGAAAGAGCAATGAGG -ACGGAATGGGAAAGAGCAAATGGG -ACGGAATGGGAAAGAGCATCCTGA -ACGGAATGGGAAAGAGCATAGCGA -ACGGAATGGGAAAGAGCACACAGA -ACGGAATGGGAAAGAGCAGCAAGA -ACGGAATGGGAAAGAGCAGGTTGA -ACGGAATGGGAAAGAGCATCCGAT -ACGGAATGGGAAAGAGCATGGCAT -ACGGAATGGGAAAGAGCACGAGAT -ACGGAATGGGAAAGAGCATACCAC -ACGGAATGGGAAAGAGCACAGAAC -ACGGAATGGGAAAGAGCAGTCTAC -ACGGAATGGGAAAGAGCAACGTAC -ACGGAATGGGAAAGAGCAAGTGAC -ACGGAATGGGAAAGAGCACTGTAG -ACGGAATGGGAAAGAGCACCTAAG -ACGGAATGGGAAAGAGCAGTTCAG -ACGGAATGGGAAAGAGCAGCATAG -ACGGAATGGGAAAGAGCAGACAAG -ACGGAATGGGAAAGAGCAAAGCAG -ACGGAATGGGAAAGAGCACGTCAA -ACGGAATGGGAAAGAGCAGCTGAA -ACGGAATGGGAAAGAGCAAGTACG -ACGGAATGGGAAAGAGCAATCCGA -ACGGAATGGGAAAGAGCAATGGGA -ACGGAATGGGAAAGAGCAGTGCAA -ACGGAATGGGAAAGAGCAGAGGAA -ACGGAATGGGAAAGAGCACAGGTA -ACGGAATGGGAAAGAGCAGACTCT -ACGGAATGGGAAAGAGCAAGTCCT -ACGGAATGGGAAAGAGCATAAGCC -ACGGAATGGGAAAGAGCAATAGCC -ACGGAATGGGAAAGAGCATAACCG -ACGGAATGGGAAAGAGCAATGCCA -ACGGAATGGGAATGAGGTGGAAAC -ACGGAATGGGAATGAGGTAACACC -ACGGAATGGGAATGAGGTATCGAG -ACGGAATGGGAATGAGGTCTCCTT -ACGGAATGGGAATGAGGTCCTGTT -ACGGAATGGGAATGAGGTCGGTTT -ACGGAATGGGAATGAGGTGTGGTT -ACGGAATGGGAATGAGGTGCCTTT -ACGGAATGGGAATGAGGTGGTCTT -ACGGAATGGGAATGAGGTACGCTT -ACGGAATGGGAATGAGGTAGCGTT -ACGGAATGGGAATGAGGTTTCGTC -ACGGAATGGGAATGAGGTTCTCTC -ACGGAATGGGAATGAGGTTGGATC -ACGGAATGGGAATGAGGTCACTTC -ACGGAATGGGAATGAGGTGTACTC -ACGGAATGGGAATGAGGTGATGTC -ACGGAATGGGAATGAGGTACAGTC -ACGGAATGGGAATGAGGTTTGCTG -ACGGAATGGGAATGAGGTTCCATG -ACGGAATGGGAATGAGGTTGTGTG -ACGGAATGGGAATGAGGTCTAGTG -ACGGAATGGGAATGAGGTCATCTG -ACGGAATGGGAATGAGGTGAGTTG -ACGGAATGGGAATGAGGTAGACTG -ACGGAATGGGAATGAGGTTCGGTA -ACGGAATGGGAATGAGGTTGCCTA -ACGGAATGGGAATGAGGTCCACTA -ACGGAATGGGAATGAGGTGGAGTA -ACGGAATGGGAATGAGGTTCGTCT -ACGGAATGGGAATGAGGTTGCACT -ACGGAATGGGAATGAGGTCTGACT -ACGGAATGGGAATGAGGTCAACCT -ACGGAATGGGAATGAGGTGCTACT -ACGGAATGGGAATGAGGTGGATCT -ACGGAATGGGAATGAGGTAAGGCT -ACGGAATGGGAATGAGGTTCAACC -ACGGAATGGGAATGAGGTTGTTCC -ACGGAATGGGAATGAGGTATTCCC -ACGGAATGGGAATGAGGTTTCTCG -ACGGAATGGGAATGAGGTTAGACG -ACGGAATGGGAATGAGGTGTAACG -ACGGAATGGGAATGAGGTACTTCG -ACGGAATGGGAATGAGGTTACGCA -ACGGAATGGGAATGAGGTCTTGCA -ACGGAATGGGAATGAGGTCGAACA -ACGGAATGGGAATGAGGTCAGTCA -ACGGAATGGGAATGAGGTGATCCA -ACGGAATGGGAATGAGGTACGACA -ACGGAATGGGAATGAGGTAGCTCA -ACGGAATGGGAATGAGGTTCACGT -ACGGAATGGGAATGAGGTCGTAGT -ACGGAATGGGAATGAGGTGTCAGT -ACGGAATGGGAATGAGGTGAAGGT -ACGGAATGGGAATGAGGTAACCGT -ACGGAATGGGAATGAGGTTTGTGC -ACGGAATGGGAATGAGGTCTAAGC -ACGGAATGGGAATGAGGTACTAGC -ACGGAATGGGAATGAGGTAGATGC -ACGGAATGGGAATGAGGTTGAAGG -ACGGAATGGGAATGAGGTCAATGG -ACGGAATGGGAATGAGGTATGAGG -ACGGAATGGGAATGAGGTAATGGG -ACGGAATGGGAATGAGGTTCCTGA -ACGGAATGGGAATGAGGTTAGCGA -ACGGAATGGGAATGAGGTCACAGA -ACGGAATGGGAATGAGGTGCAAGA -ACGGAATGGGAATGAGGTGGTTGA -ACGGAATGGGAATGAGGTTCCGAT -ACGGAATGGGAATGAGGTTGGCAT -ACGGAATGGGAATGAGGTCGAGAT -ACGGAATGGGAATGAGGTTACCAC -ACGGAATGGGAATGAGGTCAGAAC -ACGGAATGGGAATGAGGTGTCTAC -ACGGAATGGGAATGAGGTACGTAC -ACGGAATGGGAATGAGGTAGTGAC -ACGGAATGGGAATGAGGTCTGTAG -ACGGAATGGGAATGAGGTCCTAAG -ACGGAATGGGAATGAGGTGTTCAG -ACGGAATGGGAATGAGGTGCATAG -ACGGAATGGGAATGAGGTGACAAG -ACGGAATGGGAATGAGGTAAGCAG -ACGGAATGGGAATGAGGTCGTCAA -ACGGAATGGGAATGAGGTGCTGAA -ACGGAATGGGAATGAGGTAGTACG -ACGGAATGGGAATGAGGTATCCGA -ACGGAATGGGAATGAGGTATGGGA -ACGGAATGGGAATGAGGTGTGCAA -ACGGAATGGGAATGAGGTGAGGAA -ACGGAATGGGAATGAGGTCAGGTA -ACGGAATGGGAATGAGGTGACTCT -ACGGAATGGGAATGAGGTAGTCCT -ACGGAATGGGAATGAGGTTAAGCC -ACGGAATGGGAATGAGGTATAGCC -ACGGAATGGGAATGAGGTTAACCG -ACGGAATGGGAATGAGGTATGCCA -ACGGAATGGGAAGATTCCGGAAAC -ACGGAATGGGAAGATTCCAACACC -ACGGAATGGGAAGATTCCATCGAG -ACGGAATGGGAAGATTCCCTCCTT -ACGGAATGGGAAGATTCCCCTGTT -ACGGAATGGGAAGATTCCCGGTTT -ACGGAATGGGAAGATTCCGTGGTT -ACGGAATGGGAAGATTCCGCCTTT -ACGGAATGGGAAGATTCCGGTCTT -ACGGAATGGGAAGATTCCACGCTT -ACGGAATGGGAAGATTCCAGCGTT -ACGGAATGGGAAGATTCCTTCGTC -ACGGAATGGGAAGATTCCTCTCTC -ACGGAATGGGAAGATTCCTGGATC -ACGGAATGGGAAGATTCCCACTTC -ACGGAATGGGAAGATTCCGTACTC -ACGGAATGGGAAGATTCCGATGTC -ACGGAATGGGAAGATTCCACAGTC -ACGGAATGGGAAGATTCCTTGCTG -ACGGAATGGGAAGATTCCTCCATG -ACGGAATGGGAAGATTCCTGTGTG -ACGGAATGGGAAGATTCCCTAGTG -ACGGAATGGGAAGATTCCCATCTG -ACGGAATGGGAAGATTCCGAGTTG -ACGGAATGGGAAGATTCCAGACTG -ACGGAATGGGAAGATTCCTCGGTA -ACGGAATGGGAAGATTCCTGCCTA -ACGGAATGGGAAGATTCCCCACTA -ACGGAATGGGAAGATTCCGGAGTA -ACGGAATGGGAAGATTCCTCGTCT -ACGGAATGGGAAGATTCCTGCACT -ACGGAATGGGAAGATTCCCTGACT -ACGGAATGGGAAGATTCCCAACCT -ACGGAATGGGAAGATTCCGCTACT -ACGGAATGGGAAGATTCCGGATCT -ACGGAATGGGAAGATTCCAAGGCT -ACGGAATGGGAAGATTCCTCAACC -ACGGAATGGGAAGATTCCTGTTCC -ACGGAATGGGAAGATTCCATTCCC -ACGGAATGGGAAGATTCCTTCTCG -ACGGAATGGGAAGATTCCTAGACG -ACGGAATGGGAAGATTCCGTAACG -ACGGAATGGGAAGATTCCACTTCG -ACGGAATGGGAAGATTCCTACGCA -ACGGAATGGGAAGATTCCCTTGCA -ACGGAATGGGAAGATTCCCGAACA -ACGGAATGGGAAGATTCCCAGTCA -ACGGAATGGGAAGATTCCGATCCA -ACGGAATGGGAAGATTCCACGACA -ACGGAATGGGAAGATTCCAGCTCA -ACGGAATGGGAAGATTCCTCACGT -ACGGAATGGGAAGATTCCCGTAGT -ACGGAATGGGAAGATTCCGTCAGT -ACGGAATGGGAAGATTCCGAAGGT -ACGGAATGGGAAGATTCCAACCGT -ACGGAATGGGAAGATTCCTTGTGC -ACGGAATGGGAAGATTCCCTAAGC -ACGGAATGGGAAGATTCCACTAGC -ACGGAATGGGAAGATTCCAGATGC -ACGGAATGGGAAGATTCCTGAAGG -ACGGAATGGGAAGATTCCCAATGG -ACGGAATGGGAAGATTCCATGAGG -ACGGAATGGGAAGATTCCAATGGG -ACGGAATGGGAAGATTCCTCCTGA -ACGGAATGGGAAGATTCCTAGCGA -ACGGAATGGGAAGATTCCCACAGA -ACGGAATGGGAAGATTCCGCAAGA -ACGGAATGGGAAGATTCCGGTTGA -ACGGAATGGGAAGATTCCTCCGAT -ACGGAATGGGAAGATTCCTGGCAT -ACGGAATGGGAAGATTCCCGAGAT -ACGGAATGGGAAGATTCCTACCAC -ACGGAATGGGAAGATTCCCAGAAC -ACGGAATGGGAAGATTCCGTCTAC -ACGGAATGGGAAGATTCCACGTAC -ACGGAATGGGAAGATTCCAGTGAC -ACGGAATGGGAAGATTCCCTGTAG -ACGGAATGGGAAGATTCCCCTAAG -ACGGAATGGGAAGATTCCGTTCAG -ACGGAATGGGAAGATTCCGCATAG -ACGGAATGGGAAGATTCCGACAAG -ACGGAATGGGAAGATTCCAAGCAG -ACGGAATGGGAAGATTCCCGTCAA -ACGGAATGGGAAGATTCCGCTGAA -ACGGAATGGGAAGATTCCAGTACG -ACGGAATGGGAAGATTCCATCCGA -ACGGAATGGGAAGATTCCATGGGA -ACGGAATGGGAAGATTCCGTGCAA -ACGGAATGGGAAGATTCCGAGGAA -ACGGAATGGGAAGATTCCCAGGTA -ACGGAATGGGAAGATTCCGACTCT -ACGGAATGGGAAGATTCCAGTCCT -ACGGAATGGGAAGATTCCTAAGCC -ACGGAATGGGAAGATTCCATAGCC -ACGGAATGGGAAGATTCCTAACCG -ACGGAATGGGAAGATTCCATGCCA -ACGGAATGGGAACATTGGGGAAAC -ACGGAATGGGAACATTGGAACACC -ACGGAATGGGAACATTGGATCGAG -ACGGAATGGGAACATTGGCTCCTT -ACGGAATGGGAACATTGGCCTGTT -ACGGAATGGGAACATTGGCGGTTT -ACGGAATGGGAACATTGGGTGGTT -ACGGAATGGGAACATTGGGCCTTT -ACGGAATGGGAACATTGGGGTCTT -ACGGAATGGGAACATTGGACGCTT -ACGGAATGGGAACATTGGAGCGTT -ACGGAATGGGAACATTGGTTCGTC -ACGGAATGGGAACATTGGTCTCTC -ACGGAATGGGAACATTGGTGGATC -ACGGAATGGGAACATTGGCACTTC -ACGGAATGGGAACATTGGGTACTC -ACGGAATGGGAACATTGGGATGTC -ACGGAATGGGAACATTGGACAGTC -ACGGAATGGGAACATTGGTTGCTG -ACGGAATGGGAACATTGGTCCATG -ACGGAATGGGAACATTGGTGTGTG -ACGGAATGGGAACATTGGCTAGTG -ACGGAATGGGAACATTGGCATCTG -ACGGAATGGGAACATTGGGAGTTG -ACGGAATGGGAACATTGGAGACTG -ACGGAATGGGAACATTGGTCGGTA -ACGGAATGGGAACATTGGTGCCTA -ACGGAATGGGAACATTGGCCACTA -ACGGAATGGGAACATTGGGGAGTA -ACGGAATGGGAACATTGGTCGTCT -ACGGAATGGGAACATTGGTGCACT -ACGGAATGGGAACATTGGCTGACT -ACGGAATGGGAACATTGGCAACCT -ACGGAATGGGAACATTGGGCTACT -ACGGAATGGGAACATTGGGGATCT -ACGGAATGGGAACATTGGAAGGCT -ACGGAATGGGAACATTGGTCAACC -ACGGAATGGGAACATTGGTGTTCC -ACGGAATGGGAACATTGGATTCCC -ACGGAATGGGAACATTGGTTCTCG -ACGGAATGGGAACATTGGTAGACG -ACGGAATGGGAACATTGGGTAACG -ACGGAATGGGAACATTGGACTTCG -ACGGAATGGGAACATTGGTACGCA -ACGGAATGGGAACATTGGCTTGCA -ACGGAATGGGAACATTGGCGAACA -ACGGAATGGGAACATTGGCAGTCA -ACGGAATGGGAACATTGGGATCCA -ACGGAATGGGAACATTGGACGACA -ACGGAATGGGAACATTGGAGCTCA -ACGGAATGGGAACATTGGTCACGT -ACGGAATGGGAACATTGGCGTAGT -ACGGAATGGGAACATTGGGTCAGT -ACGGAATGGGAACATTGGGAAGGT -ACGGAATGGGAACATTGGAACCGT -ACGGAATGGGAACATTGGTTGTGC -ACGGAATGGGAACATTGGCTAAGC -ACGGAATGGGAACATTGGACTAGC -ACGGAATGGGAACATTGGAGATGC -ACGGAATGGGAACATTGGTGAAGG -ACGGAATGGGAACATTGGCAATGG -ACGGAATGGGAACATTGGATGAGG -ACGGAATGGGAACATTGGAATGGG -ACGGAATGGGAACATTGGTCCTGA -ACGGAATGGGAACATTGGTAGCGA -ACGGAATGGGAACATTGGCACAGA -ACGGAATGGGAACATTGGGCAAGA -ACGGAATGGGAACATTGGGGTTGA -ACGGAATGGGAACATTGGTCCGAT -ACGGAATGGGAACATTGGTGGCAT -ACGGAATGGGAACATTGGCGAGAT -ACGGAATGGGAACATTGGTACCAC -ACGGAATGGGAACATTGGCAGAAC -ACGGAATGGGAACATTGGGTCTAC -ACGGAATGGGAACATTGGACGTAC -ACGGAATGGGAACATTGGAGTGAC -ACGGAATGGGAACATTGGCTGTAG -ACGGAATGGGAACATTGGCCTAAG -ACGGAATGGGAACATTGGGTTCAG -ACGGAATGGGAACATTGGGCATAG -ACGGAATGGGAACATTGGGACAAG -ACGGAATGGGAACATTGGAAGCAG -ACGGAATGGGAACATTGGCGTCAA -ACGGAATGGGAACATTGGGCTGAA -ACGGAATGGGAACATTGGAGTACG -ACGGAATGGGAACATTGGATCCGA -ACGGAATGGGAACATTGGATGGGA -ACGGAATGGGAACATTGGGTGCAA -ACGGAATGGGAACATTGGGAGGAA -ACGGAATGGGAACATTGGCAGGTA -ACGGAATGGGAACATTGGGACTCT -ACGGAATGGGAACATTGGAGTCCT -ACGGAATGGGAACATTGGTAAGCC -ACGGAATGGGAACATTGGATAGCC -ACGGAATGGGAACATTGGTAACCG -ACGGAATGGGAACATTGGATGCCA -ACGGAATGGGAAGATCGAGGAAAC -ACGGAATGGGAAGATCGAAACACC -ACGGAATGGGAAGATCGAATCGAG -ACGGAATGGGAAGATCGACTCCTT -ACGGAATGGGAAGATCGACCTGTT -ACGGAATGGGAAGATCGACGGTTT -ACGGAATGGGAAGATCGAGTGGTT -ACGGAATGGGAAGATCGAGCCTTT -ACGGAATGGGAAGATCGAGGTCTT -ACGGAATGGGAAGATCGAACGCTT -ACGGAATGGGAAGATCGAAGCGTT -ACGGAATGGGAAGATCGATTCGTC -ACGGAATGGGAAGATCGATCTCTC -ACGGAATGGGAAGATCGATGGATC -ACGGAATGGGAAGATCGACACTTC -ACGGAATGGGAAGATCGAGTACTC -ACGGAATGGGAAGATCGAGATGTC -ACGGAATGGGAAGATCGAACAGTC -ACGGAATGGGAAGATCGATTGCTG -ACGGAATGGGAAGATCGATCCATG -ACGGAATGGGAAGATCGATGTGTG -ACGGAATGGGAAGATCGACTAGTG -ACGGAATGGGAAGATCGACATCTG -ACGGAATGGGAAGATCGAGAGTTG -ACGGAATGGGAAGATCGAAGACTG -ACGGAATGGGAAGATCGATCGGTA -ACGGAATGGGAAGATCGATGCCTA -ACGGAATGGGAAGATCGACCACTA -ACGGAATGGGAAGATCGAGGAGTA -ACGGAATGGGAAGATCGATCGTCT -ACGGAATGGGAAGATCGATGCACT -ACGGAATGGGAAGATCGACTGACT -ACGGAATGGGAAGATCGACAACCT -ACGGAATGGGAAGATCGAGCTACT -ACGGAATGGGAAGATCGAGGATCT -ACGGAATGGGAAGATCGAAAGGCT -ACGGAATGGGAAGATCGATCAACC -ACGGAATGGGAAGATCGATGTTCC -ACGGAATGGGAAGATCGAATTCCC -ACGGAATGGGAAGATCGATTCTCG -ACGGAATGGGAAGATCGATAGACG -ACGGAATGGGAAGATCGAGTAACG -ACGGAATGGGAAGATCGAACTTCG -ACGGAATGGGAAGATCGATACGCA -ACGGAATGGGAAGATCGACTTGCA -ACGGAATGGGAAGATCGACGAACA -ACGGAATGGGAAGATCGACAGTCA -ACGGAATGGGAAGATCGAGATCCA -ACGGAATGGGAAGATCGAACGACA -ACGGAATGGGAAGATCGAAGCTCA -ACGGAATGGGAAGATCGATCACGT -ACGGAATGGGAAGATCGACGTAGT -ACGGAATGGGAAGATCGAGTCAGT -ACGGAATGGGAAGATCGAGAAGGT -ACGGAATGGGAAGATCGAAACCGT -ACGGAATGGGAAGATCGATTGTGC -ACGGAATGGGAAGATCGACTAAGC -ACGGAATGGGAAGATCGAACTAGC -ACGGAATGGGAAGATCGAAGATGC -ACGGAATGGGAAGATCGATGAAGG -ACGGAATGGGAAGATCGACAATGG -ACGGAATGGGAAGATCGAATGAGG -ACGGAATGGGAAGATCGAAATGGG -ACGGAATGGGAAGATCGATCCTGA -ACGGAATGGGAAGATCGATAGCGA -ACGGAATGGGAAGATCGACACAGA -ACGGAATGGGAAGATCGAGCAAGA -ACGGAATGGGAAGATCGAGGTTGA -ACGGAATGGGAAGATCGATCCGAT -ACGGAATGGGAAGATCGATGGCAT -ACGGAATGGGAAGATCGACGAGAT -ACGGAATGGGAAGATCGATACCAC -ACGGAATGGGAAGATCGACAGAAC -ACGGAATGGGAAGATCGAGTCTAC -ACGGAATGGGAAGATCGAACGTAC -ACGGAATGGGAAGATCGAAGTGAC -ACGGAATGGGAAGATCGACTGTAG -ACGGAATGGGAAGATCGACCTAAG -ACGGAATGGGAAGATCGAGTTCAG -ACGGAATGGGAAGATCGAGCATAG -ACGGAATGGGAAGATCGAGACAAG -ACGGAATGGGAAGATCGAAAGCAG -ACGGAATGGGAAGATCGACGTCAA -ACGGAATGGGAAGATCGAGCTGAA -ACGGAATGGGAAGATCGAAGTACG -ACGGAATGGGAAGATCGAATCCGA -ACGGAATGGGAAGATCGAATGGGA -ACGGAATGGGAAGATCGAGTGCAA -ACGGAATGGGAAGATCGAGAGGAA -ACGGAATGGGAAGATCGACAGGTA -ACGGAATGGGAAGATCGAGACTCT -ACGGAATGGGAAGATCGAAGTCCT -ACGGAATGGGAAGATCGATAAGCC -ACGGAATGGGAAGATCGAATAGCC -ACGGAATGGGAAGATCGATAACCG -ACGGAATGGGAAGATCGAATGCCA -ACGGAATGGGAACACTACGGAAAC -ACGGAATGGGAACACTACAACACC -ACGGAATGGGAACACTACATCGAG -ACGGAATGGGAACACTACCTCCTT -ACGGAATGGGAACACTACCCTGTT -ACGGAATGGGAACACTACCGGTTT -ACGGAATGGGAACACTACGTGGTT -ACGGAATGGGAACACTACGCCTTT -ACGGAATGGGAACACTACGGTCTT -ACGGAATGGGAACACTACACGCTT -ACGGAATGGGAACACTACAGCGTT -ACGGAATGGGAACACTACTTCGTC -ACGGAATGGGAACACTACTCTCTC -ACGGAATGGGAACACTACTGGATC -ACGGAATGGGAACACTACCACTTC -ACGGAATGGGAACACTACGTACTC -ACGGAATGGGAACACTACGATGTC -ACGGAATGGGAACACTACACAGTC -ACGGAATGGGAACACTACTTGCTG -ACGGAATGGGAACACTACTCCATG -ACGGAATGGGAACACTACTGTGTG -ACGGAATGGGAACACTACCTAGTG -ACGGAATGGGAACACTACCATCTG -ACGGAATGGGAACACTACGAGTTG -ACGGAATGGGAACACTACAGACTG -ACGGAATGGGAACACTACTCGGTA -ACGGAATGGGAACACTACTGCCTA -ACGGAATGGGAACACTACCCACTA -ACGGAATGGGAACACTACGGAGTA -ACGGAATGGGAACACTACTCGTCT -ACGGAATGGGAACACTACTGCACT -ACGGAATGGGAACACTACCTGACT -ACGGAATGGGAACACTACCAACCT -ACGGAATGGGAACACTACGCTACT -ACGGAATGGGAACACTACGGATCT -ACGGAATGGGAACACTACAAGGCT -ACGGAATGGGAACACTACTCAACC -ACGGAATGGGAACACTACTGTTCC -ACGGAATGGGAACACTACATTCCC -ACGGAATGGGAACACTACTTCTCG -ACGGAATGGGAACACTACTAGACG -ACGGAATGGGAACACTACGTAACG -ACGGAATGGGAACACTACACTTCG -ACGGAATGGGAACACTACTACGCA -ACGGAATGGGAACACTACCTTGCA -ACGGAATGGGAACACTACCGAACA -ACGGAATGGGAACACTACCAGTCA -ACGGAATGGGAACACTACGATCCA -ACGGAATGGGAACACTACACGACA -ACGGAATGGGAACACTACAGCTCA -ACGGAATGGGAACACTACTCACGT -ACGGAATGGGAACACTACCGTAGT -ACGGAATGGGAACACTACGTCAGT -ACGGAATGGGAACACTACGAAGGT -ACGGAATGGGAACACTACAACCGT -ACGGAATGGGAACACTACTTGTGC -ACGGAATGGGAACACTACCTAAGC -ACGGAATGGGAACACTACACTAGC -ACGGAATGGGAACACTACAGATGC -ACGGAATGGGAACACTACTGAAGG -ACGGAATGGGAACACTACCAATGG -ACGGAATGGGAACACTACATGAGG -ACGGAATGGGAACACTACAATGGG -ACGGAATGGGAACACTACTCCTGA -ACGGAATGGGAACACTACTAGCGA -ACGGAATGGGAACACTACCACAGA -ACGGAATGGGAACACTACGCAAGA -ACGGAATGGGAACACTACGGTTGA -ACGGAATGGGAACACTACTCCGAT -ACGGAATGGGAACACTACTGGCAT -ACGGAATGGGAACACTACCGAGAT -ACGGAATGGGAACACTACTACCAC -ACGGAATGGGAACACTACCAGAAC -ACGGAATGGGAACACTACGTCTAC -ACGGAATGGGAACACTACACGTAC -ACGGAATGGGAACACTACAGTGAC -ACGGAATGGGAACACTACCTGTAG -ACGGAATGGGAACACTACCCTAAG -ACGGAATGGGAACACTACGTTCAG -ACGGAATGGGAACACTACGCATAG -ACGGAATGGGAACACTACGACAAG -ACGGAATGGGAACACTACAAGCAG -ACGGAATGGGAACACTACCGTCAA -ACGGAATGGGAACACTACGCTGAA -ACGGAATGGGAACACTACAGTACG -ACGGAATGGGAACACTACATCCGA -ACGGAATGGGAACACTACATGGGA -ACGGAATGGGAACACTACGTGCAA -ACGGAATGGGAACACTACGAGGAA -ACGGAATGGGAACACTACCAGGTA -ACGGAATGGGAACACTACGACTCT -ACGGAATGGGAACACTACAGTCCT -ACGGAATGGGAACACTACTAAGCC -ACGGAATGGGAACACTACATAGCC -ACGGAATGGGAACACTACTAACCG -ACGGAATGGGAACACTACATGCCA -ACGGAATGGGAAAACCAGGGAAAC -ACGGAATGGGAAAACCAGAACACC -ACGGAATGGGAAAACCAGATCGAG -ACGGAATGGGAAAACCAGCTCCTT -ACGGAATGGGAAAACCAGCCTGTT -ACGGAATGGGAAAACCAGCGGTTT -ACGGAATGGGAAAACCAGGTGGTT -ACGGAATGGGAAAACCAGGCCTTT -ACGGAATGGGAAAACCAGGGTCTT -ACGGAATGGGAAAACCAGACGCTT -ACGGAATGGGAAAACCAGAGCGTT -ACGGAATGGGAAAACCAGTTCGTC -ACGGAATGGGAAAACCAGTCTCTC -ACGGAATGGGAAAACCAGTGGATC -ACGGAATGGGAAAACCAGCACTTC -ACGGAATGGGAAAACCAGGTACTC -ACGGAATGGGAAAACCAGGATGTC -ACGGAATGGGAAAACCAGACAGTC -ACGGAATGGGAAAACCAGTTGCTG -ACGGAATGGGAAAACCAGTCCATG -ACGGAATGGGAAAACCAGTGTGTG -ACGGAATGGGAAAACCAGCTAGTG -ACGGAATGGGAAAACCAGCATCTG -ACGGAATGGGAAAACCAGGAGTTG -ACGGAATGGGAAAACCAGAGACTG -ACGGAATGGGAAAACCAGTCGGTA -ACGGAATGGGAAAACCAGTGCCTA -ACGGAATGGGAAAACCAGCCACTA -ACGGAATGGGAAAACCAGGGAGTA -ACGGAATGGGAAAACCAGTCGTCT -ACGGAATGGGAAAACCAGTGCACT -ACGGAATGGGAAAACCAGCTGACT -ACGGAATGGGAAAACCAGCAACCT -ACGGAATGGGAAAACCAGGCTACT -ACGGAATGGGAAAACCAGGGATCT -ACGGAATGGGAAAACCAGAAGGCT -ACGGAATGGGAAAACCAGTCAACC -ACGGAATGGGAAAACCAGTGTTCC -ACGGAATGGGAAAACCAGATTCCC -ACGGAATGGGAAAACCAGTTCTCG -ACGGAATGGGAAAACCAGTAGACG -ACGGAATGGGAAAACCAGGTAACG -ACGGAATGGGAAAACCAGACTTCG -ACGGAATGGGAAAACCAGTACGCA -ACGGAATGGGAAAACCAGCTTGCA -ACGGAATGGGAAAACCAGCGAACA -ACGGAATGGGAAAACCAGCAGTCA -ACGGAATGGGAAAACCAGGATCCA -ACGGAATGGGAAAACCAGACGACA -ACGGAATGGGAAAACCAGAGCTCA -ACGGAATGGGAAAACCAGTCACGT -ACGGAATGGGAAAACCAGCGTAGT -ACGGAATGGGAAAACCAGGTCAGT -ACGGAATGGGAAAACCAGGAAGGT -ACGGAATGGGAAAACCAGAACCGT -ACGGAATGGGAAAACCAGTTGTGC -ACGGAATGGGAAAACCAGCTAAGC -ACGGAATGGGAAAACCAGACTAGC -ACGGAATGGGAAAACCAGAGATGC -ACGGAATGGGAAAACCAGTGAAGG -ACGGAATGGGAAAACCAGCAATGG -ACGGAATGGGAAAACCAGATGAGG -ACGGAATGGGAAAACCAGAATGGG -ACGGAATGGGAAAACCAGTCCTGA -ACGGAATGGGAAAACCAGTAGCGA -ACGGAATGGGAAAACCAGCACAGA -ACGGAATGGGAAAACCAGGCAAGA -ACGGAATGGGAAAACCAGGGTTGA -ACGGAATGGGAAAACCAGTCCGAT -ACGGAATGGGAAAACCAGTGGCAT -ACGGAATGGGAAAACCAGCGAGAT -ACGGAATGGGAAAACCAGTACCAC -ACGGAATGGGAAAACCAGCAGAAC -ACGGAATGGGAAAACCAGGTCTAC -ACGGAATGGGAAAACCAGACGTAC -ACGGAATGGGAAAACCAGAGTGAC -ACGGAATGGGAAAACCAGCTGTAG -ACGGAATGGGAAAACCAGCCTAAG -ACGGAATGGGAAAACCAGGTTCAG -ACGGAATGGGAAAACCAGGCATAG -ACGGAATGGGAAAACCAGGACAAG -ACGGAATGGGAAAACCAGAAGCAG -ACGGAATGGGAAAACCAGCGTCAA -ACGGAATGGGAAAACCAGGCTGAA -ACGGAATGGGAAAACCAGAGTACG -ACGGAATGGGAAAACCAGATCCGA -ACGGAATGGGAAAACCAGATGGGA -ACGGAATGGGAAAACCAGGTGCAA -ACGGAATGGGAAAACCAGGAGGAA -ACGGAATGGGAAAACCAGCAGGTA -ACGGAATGGGAAAACCAGGACTCT -ACGGAATGGGAAAACCAGAGTCCT -ACGGAATGGGAAAACCAGTAAGCC -ACGGAATGGGAAAACCAGATAGCC -ACGGAATGGGAAAACCAGTAACCG -ACGGAATGGGAAAACCAGATGCCA -ACGGAATGGGAATACGTCGGAAAC -ACGGAATGGGAATACGTCAACACC -ACGGAATGGGAATACGTCATCGAG -ACGGAATGGGAATACGTCCTCCTT -ACGGAATGGGAATACGTCCCTGTT -ACGGAATGGGAATACGTCCGGTTT -ACGGAATGGGAATACGTCGTGGTT -ACGGAATGGGAATACGTCGCCTTT -ACGGAATGGGAATACGTCGGTCTT -ACGGAATGGGAATACGTCACGCTT -ACGGAATGGGAATACGTCAGCGTT -ACGGAATGGGAATACGTCTTCGTC -ACGGAATGGGAATACGTCTCTCTC -ACGGAATGGGAATACGTCTGGATC -ACGGAATGGGAATACGTCCACTTC -ACGGAATGGGAATACGTCGTACTC -ACGGAATGGGAATACGTCGATGTC -ACGGAATGGGAATACGTCACAGTC -ACGGAATGGGAATACGTCTTGCTG -ACGGAATGGGAATACGTCTCCATG -ACGGAATGGGAATACGTCTGTGTG -ACGGAATGGGAATACGTCCTAGTG -ACGGAATGGGAATACGTCCATCTG -ACGGAATGGGAATACGTCGAGTTG -ACGGAATGGGAATACGTCAGACTG -ACGGAATGGGAATACGTCTCGGTA -ACGGAATGGGAATACGTCTGCCTA -ACGGAATGGGAATACGTCCCACTA -ACGGAATGGGAATACGTCGGAGTA -ACGGAATGGGAATACGTCTCGTCT -ACGGAATGGGAATACGTCTGCACT -ACGGAATGGGAATACGTCCTGACT -ACGGAATGGGAATACGTCCAACCT -ACGGAATGGGAATACGTCGCTACT -ACGGAATGGGAATACGTCGGATCT -ACGGAATGGGAATACGTCAAGGCT -ACGGAATGGGAATACGTCTCAACC -ACGGAATGGGAATACGTCTGTTCC -ACGGAATGGGAATACGTCATTCCC -ACGGAATGGGAATACGTCTTCTCG -ACGGAATGGGAATACGTCTAGACG -ACGGAATGGGAATACGTCGTAACG -ACGGAATGGGAATACGTCACTTCG -ACGGAATGGGAATACGTCTACGCA -ACGGAATGGGAATACGTCCTTGCA -ACGGAATGGGAATACGTCCGAACA -ACGGAATGGGAATACGTCCAGTCA -ACGGAATGGGAATACGTCGATCCA -ACGGAATGGGAATACGTCACGACA -ACGGAATGGGAATACGTCAGCTCA -ACGGAATGGGAATACGTCTCACGT -ACGGAATGGGAATACGTCCGTAGT -ACGGAATGGGAATACGTCGTCAGT -ACGGAATGGGAATACGTCGAAGGT -ACGGAATGGGAATACGTCAACCGT -ACGGAATGGGAATACGTCTTGTGC -ACGGAATGGGAATACGTCCTAAGC -ACGGAATGGGAATACGTCACTAGC -ACGGAATGGGAATACGTCAGATGC -ACGGAATGGGAATACGTCTGAAGG -ACGGAATGGGAATACGTCCAATGG -ACGGAATGGGAATACGTCATGAGG -ACGGAATGGGAATACGTCAATGGG -ACGGAATGGGAATACGTCTCCTGA -ACGGAATGGGAATACGTCTAGCGA -ACGGAATGGGAATACGTCCACAGA -ACGGAATGGGAATACGTCGCAAGA -ACGGAATGGGAATACGTCGGTTGA -ACGGAATGGGAATACGTCTCCGAT -ACGGAATGGGAATACGTCTGGCAT -ACGGAATGGGAATACGTCCGAGAT -ACGGAATGGGAATACGTCTACCAC -ACGGAATGGGAATACGTCCAGAAC -ACGGAATGGGAATACGTCGTCTAC -ACGGAATGGGAATACGTCACGTAC -ACGGAATGGGAATACGTCAGTGAC -ACGGAATGGGAATACGTCCTGTAG -ACGGAATGGGAATACGTCCCTAAG -ACGGAATGGGAATACGTCGTTCAG -ACGGAATGGGAATACGTCGCATAG -ACGGAATGGGAATACGTCGACAAG -ACGGAATGGGAATACGTCAAGCAG -ACGGAATGGGAATACGTCCGTCAA -ACGGAATGGGAATACGTCGCTGAA -ACGGAATGGGAATACGTCAGTACG -ACGGAATGGGAATACGTCATCCGA -ACGGAATGGGAATACGTCATGGGA -ACGGAATGGGAATACGTCGTGCAA -ACGGAATGGGAATACGTCGAGGAA -ACGGAATGGGAATACGTCCAGGTA -ACGGAATGGGAATACGTCGACTCT -ACGGAATGGGAATACGTCAGTCCT -ACGGAATGGGAATACGTCTAAGCC -ACGGAATGGGAATACGTCATAGCC -ACGGAATGGGAATACGTCTAACCG -ACGGAATGGGAATACGTCATGCCA -ACGGAATGGGAATACACGGGAAAC -ACGGAATGGGAATACACGAACACC -ACGGAATGGGAATACACGATCGAG -ACGGAATGGGAATACACGCTCCTT -ACGGAATGGGAATACACGCCTGTT -ACGGAATGGGAATACACGCGGTTT -ACGGAATGGGAATACACGGTGGTT -ACGGAATGGGAATACACGGCCTTT -ACGGAATGGGAATACACGGGTCTT -ACGGAATGGGAATACACGACGCTT -ACGGAATGGGAATACACGAGCGTT -ACGGAATGGGAATACACGTTCGTC -ACGGAATGGGAATACACGTCTCTC -ACGGAATGGGAATACACGTGGATC -ACGGAATGGGAATACACGCACTTC -ACGGAATGGGAATACACGGTACTC -ACGGAATGGGAATACACGGATGTC -ACGGAATGGGAATACACGACAGTC -ACGGAATGGGAATACACGTTGCTG -ACGGAATGGGAATACACGTCCATG -ACGGAATGGGAATACACGTGTGTG -ACGGAATGGGAATACACGCTAGTG -ACGGAATGGGAATACACGCATCTG -ACGGAATGGGAATACACGGAGTTG -ACGGAATGGGAATACACGAGACTG -ACGGAATGGGAATACACGTCGGTA -ACGGAATGGGAATACACGTGCCTA -ACGGAATGGGAATACACGCCACTA -ACGGAATGGGAATACACGGGAGTA -ACGGAATGGGAATACACGTCGTCT -ACGGAATGGGAATACACGTGCACT -ACGGAATGGGAATACACGCTGACT -ACGGAATGGGAATACACGCAACCT -ACGGAATGGGAATACACGGCTACT -ACGGAATGGGAATACACGGGATCT -ACGGAATGGGAATACACGAAGGCT -ACGGAATGGGAATACACGTCAACC -ACGGAATGGGAATACACGTGTTCC -ACGGAATGGGAATACACGATTCCC -ACGGAATGGGAATACACGTTCTCG -ACGGAATGGGAATACACGTAGACG -ACGGAATGGGAATACACGGTAACG -ACGGAATGGGAATACACGACTTCG -ACGGAATGGGAATACACGTACGCA -ACGGAATGGGAATACACGCTTGCA -ACGGAATGGGAATACACGCGAACA -ACGGAATGGGAATACACGCAGTCA -ACGGAATGGGAATACACGGATCCA -ACGGAATGGGAATACACGACGACA -ACGGAATGGGAATACACGAGCTCA -ACGGAATGGGAATACACGTCACGT -ACGGAATGGGAATACACGCGTAGT -ACGGAATGGGAATACACGGTCAGT -ACGGAATGGGAATACACGGAAGGT -ACGGAATGGGAATACACGAACCGT -ACGGAATGGGAATACACGTTGTGC -ACGGAATGGGAATACACGCTAAGC -ACGGAATGGGAATACACGACTAGC -ACGGAATGGGAATACACGAGATGC -ACGGAATGGGAATACACGTGAAGG -ACGGAATGGGAATACACGCAATGG -ACGGAATGGGAATACACGATGAGG -ACGGAATGGGAATACACGAATGGG -ACGGAATGGGAATACACGTCCTGA -ACGGAATGGGAATACACGTAGCGA -ACGGAATGGGAATACACGCACAGA -ACGGAATGGGAATACACGGCAAGA -ACGGAATGGGAATACACGGGTTGA -ACGGAATGGGAATACACGTCCGAT -ACGGAATGGGAATACACGTGGCAT -ACGGAATGGGAATACACGCGAGAT -ACGGAATGGGAATACACGTACCAC -ACGGAATGGGAATACACGCAGAAC -ACGGAATGGGAATACACGGTCTAC -ACGGAATGGGAATACACGACGTAC -ACGGAATGGGAATACACGAGTGAC -ACGGAATGGGAATACACGCTGTAG -ACGGAATGGGAATACACGCCTAAG -ACGGAATGGGAATACACGGTTCAG -ACGGAATGGGAATACACGGCATAG -ACGGAATGGGAATACACGGACAAG -ACGGAATGGGAATACACGAAGCAG -ACGGAATGGGAATACACGCGTCAA -ACGGAATGGGAATACACGGCTGAA -ACGGAATGGGAATACACGAGTACG -ACGGAATGGGAATACACGATCCGA -ACGGAATGGGAATACACGATGGGA -ACGGAATGGGAATACACGGTGCAA -ACGGAATGGGAATACACGGAGGAA -ACGGAATGGGAATACACGCAGGTA -ACGGAATGGGAATACACGGACTCT -ACGGAATGGGAATACACGAGTCCT -ACGGAATGGGAATACACGTAAGCC -ACGGAATGGGAATACACGATAGCC -ACGGAATGGGAATACACGTAACCG -ACGGAATGGGAATACACGATGCCA -ACGGAATGGGAAGACAGTGGAAAC -ACGGAATGGGAAGACAGTAACACC -ACGGAATGGGAAGACAGTATCGAG -ACGGAATGGGAAGACAGTCTCCTT -ACGGAATGGGAAGACAGTCCTGTT -ACGGAATGGGAAGACAGTCGGTTT -ACGGAATGGGAAGACAGTGTGGTT -ACGGAATGGGAAGACAGTGCCTTT -ACGGAATGGGAAGACAGTGGTCTT -ACGGAATGGGAAGACAGTACGCTT -ACGGAATGGGAAGACAGTAGCGTT -ACGGAATGGGAAGACAGTTTCGTC -ACGGAATGGGAAGACAGTTCTCTC -ACGGAATGGGAAGACAGTTGGATC -ACGGAATGGGAAGACAGTCACTTC -ACGGAATGGGAAGACAGTGTACTC -ACGGAATGGGAAGACAGTGATGTC -ACGGAATGGGAAGACAGTACAGTC -ACGGAATGGGAAGACAGTTTGCTG -ACGGAATGGGAAGACAGTTCCATG -ACGGAATGGGAAGACAGTTGTGTG -ACGGAATGGGAAGACAGTCTAGTG -ACGGAATGGGAAGACAGTCATCTG -ACGGAATGGGAAGACAGTGAGTTG -ACGGAATGGGAAGACAGTAGACTG -ACGGAATGGGAAGACAGTTCGGTA -ACGGAATGGGAAGACAGTTGCCTA -ACGGAATGGGAAGACAGTCCACTA -ACGGAATGGGAAGACAGTGGAGTA -ACGGAATGGGAAGACAGTTCGTCT -ACGGAATGGGAAGACAGTTGCACT -ACGGAATGGGAAGACAGTCTGACT -ACGGAATGGGAAGACAGTCAACCT -ACGGAATGGGAAGACAGTGCTACT -ACGGAATGGGAAGACAGTGGATCT -ACGGAATGGGAAGACAGTAAGGCT -ACGGAATGGGAAGACAGTTCAACC -ACGGAATGGGAAGACAGTTGTTCC -ACGGAATGGGAAGACAGTATTCCC -ACGGAATGGGAAGACAGTTTCTCG -ACGGAATGGGAAGACAGTTAGACG -ACGGAATGGGAAGACAGTGTAACG -ACGGAATGGGAAGACAGTACTTCG -ACGGAATGGGAAGACAGTTACGCA -ACGGAATGGGAAGACAGTCTTGCA -ACGGAATGGGAAGACAGTCGAACA -ACGGAATGGGAAGACAGTCAGTCA -ACGGAATGGGAAGACAGTGATCCA -ACGGAATGGGAAGACAGTACGACA -ACGGAATGGGAAGACAGTAGCTCA -ACGGAATGGGAAGACAGTTCACGT -ACGGAATGGGAAGACAGTCGTAGT -ACGGAATGGGAAGACAGTGTCAGT -ACGGAATGGGAAGACAGTGAAGGT -ACGGAATGGGAAGACAGTAACCGT -ACGGAATGGGAAGACAGTTTGTGC -ACGGAATGGGAAGACAGTCTAAGC -ACGGAATGGGAAGACAGTACTAGC -ACGGAATGGGAAGACAGTAGATGC -ACGGAATGGGAAGACAGTTGAAGG -ACGGAATGGGAAGACAGTCAATGG -ACGGAATGGGAAGACAGTATGAGG -ACGGAATGGGAAGACAGTAATGGG -ACGGAATGGGAAGACAGTTCCTGA -ACGGAATGGGAAGACAGTTAGCGA -ACGGAATGGGAAGACAGTCACAGA -ACGGAATGGGAAGACAGTGCAAGA -ACGGAATGGGAAGACAGTGGTTGA -ACGGAATGGGAAGACAGTTCCGAT -ACGGAATGGGAAGACAGTTGGCAT -ACGGAATGGGAAGACAGTCGAGAT -ACGGAATGGGAAGACAGTTACCAC -ACGGAATGGGAAGACAGTCAGAAC -ACGGAATGGGAAGACAGTGTCTAC -ACGGAATGGGAAGACAGTACGTAC -ACGGAATGGGAAGACAGTAGTGAC -ACGGAATGGGAAGACAGTCTGTAG -ACGGAATGGGAAGACAGTCCTAAG -ACGGAATGGGAAGACAGTGTTCAG -ACGGAATGGGAAGACAGTGCATAG -ACGGAATGGGAAGACAGTGACAAG -ACGGAATGGGAAGACAGTAAGCAG -ACGGAATGGGAAGACAGTCGTCAA -ACGGAATGGGAAGACAGTGCTGAA -ACGGAATGGGAAGACAGTAGTACG -ACGGAATGGGAAGACAGTATCCGA -ACGGAATGGGAAGACAGTATGGGA -ACGGAATGGGAAGACAGTGTGCAA -ACGGAATGGGAAGACAGTGAGGAA -ACGGAATGGGAAGACAGTCAGGTA -ACGGAATGGGAAGACAGTGACTCT -ACGGAATGGGAAGACAGTAGTCCT -ACGGAATGGGAAGACAGTTAAGCC -ACGGAATGGGAAGACAGTATAGCC -ACGGAATGGGAAGACAGTTAACCG -ACGGAATGGGAAGACAGTATGCCA -ACGGAATGGGAATAGCTGGGAAAC -ACGGAATGGGAATAGCTGAACACC -ACGGAATGGGAATAGCTGATCGAG -ACGGAATGGGAATAGCTGCTCCTT -ACGGAATGGGAATAGCTGCCTGTT -ACGGAATGGGAATAGCTGCGGTTT -ACGGAATGGGAATAGCTGGTGGTT -ACGGAATGGGAATAGCTGGCCTTT -ACGGAATGGGAATAGCTGGGTCTT -ACGGAATGGGAATAGCTGACGCTT -ACGGAATGGGAATAGCTGAGCGTT -ACGGAATGGGAATAGCTGTTCGTC -ACGGAATGGGAATAGCTGTCTCTC -ACGGAATGGGAATAGCTGTGGATC -ACGGAATGGGAATAGCTGCACTTC -ACGGAATGGGAATAGCTGGTACTC -ACGGAATGGGAATAGCTGGATGTC -ACGGAATGGGAATAGCTGACAGTC -ACGGAATGGGAATAGCTGTTGCTG -ACGGAATGGGAATAGCTGTCCATG -ACGGAATGGGAATAGCTGTGTGTG -ACGGAATGGGAATAGCTGCTAGTG -ACGGAATGGGAATAGCTGCATCTG -ACGGAATGGGAATAGCTGGAGTTG -ACGGAATGGGAATAGCTGAGACTG -ACGGAATGGGAATAGCTGTCGGTA -ACGGAATGGGAATAGCTGTGCCTA -ACGGAATGGGAATAGCTGCCACTA -ACGGAATGGGAATAGCTGGGAGTA -ACGGAATGGGAATAGCTGTCGTCT -ACGGAATGGGAATAGCTGTGCACT -ACGGAATGGGAATAGCTGCTGACT -ACGGAATGGGAATAGCTGCAACCT -ACGGAATGGGAATAGCTGGCTACT -ACGGAATGGGAATAGCTGGGATCT -ACGGAATGGGAATAGCTGAAGGCT -ACGGAATGGGAATAGCTGTCAACC -ACGGAATGGGAATAGCTGTGTTCC -ACGGAATGGGAATAGCTGATTCCC -ACGGAATGGGAATAGCTGTTCTCG -ACGGAATGGGAATAGCTGTAGACG -ACGGAATGGGAATAGCTGGTAACG -ACGGAATGGGAATAGCTGACTTCG -ACGGAATGGGAATAGCTGTACGCA -ACGGAATGGGAATAGCTGCTTGCA -ACGGAATGGGAATAGCTGCGAACA -ACGGAATGGGAATAGCTGCAGTCA -ACGGAATGGGAATAGCTGGATCCA -ACGGAATGGGAATAGCTGACGACA -ACGGAATGGGAATAGCTGAGCTCA -ACGGAATGGGAATAGCTGTCACGT -ACGGAATGGGAATAGCTGCGTAGT -ACGGAATGGGAATAGCTGGTCAGT -ACGGAATGGGAATAGCTGGAAGGT -ACGGAATGGGAATAGCTGAACCGT -ACGGAATGGGAATAGCTGTTGTGC -ACGGAATGGGAATAGCTGCTAAGC -ACGGAATGGGAATAGCTGACTAGC -ACGGAATGGGAATAGCTGAGATGC -ACGGAATGGGAATAGCTGTGAAGG -ACGGAATGGGAATAGCTGCAATGG -ACGGAATGGGAATAGCTGATGAGG -ACGGAATGGGAATAGCTGAATGGG -ACGGAATGGGAATAGCTGTCCTGA -ACGGAATGGGAATAGCTGTAGCGA -ACGGAATGGGAATAGCTGCACAGA -ACGGAATGGGAATAGCTGGCAAGA -ACGGAATGGGAATAGCTGGGTTGA -ACGGAATGGGAATAGCTGTCCGAT -ACGGAATGGGAATAGCTGTGGCAT -ACGGAATGGGAATAGCTGCGAGAT -ACGGAATGGGAATAGCTGTACCAC -ACGGAATGGGAATAGCTGCAGAAC -ACGGAATGGGAATAGCTGGTCTAC -ACGGAATGGGAATAGCTGACGTAC -ACGGAATGGGAATAGCTGAGTGAC -ACGGAATGGGAATAGCTGCTGTAG -ACGGAATGGGAATAGCTGCCTAAG -ACGGAATGGGAATAGCTGGTTCAG -ACGGAATGGGAATAGCTGGCATAG -ACGGAATGGGAATAGCTGGACAAG -ACGGAATGGGAATAGCTGAAGCAG -ACGGAATGGGAATAGCTGCGTCAA -ACGGAATGGGAATAGCTGGCTGAA -ACGGAATGGGAATAGCTGAGTACG -ACGGAATGGGAATAGCTGATCCGA -ACGGAATGGGAATAGCTGATGGGA -ACGGAATGGGAATAGCTGGTGCAA -ACGGAATGGGAATAGCTGGAGGAA -ACGGAATGGGAATAGCTGCAGGTA -ACGGAATGGGAATAGCTGGACTCT -ACGGAATGGGAATAGCTGAGTCCT -ACGGAATGGGAATAGCTGTAAGCC -ACGGAATGGGAATAGCTGATAGCC -ACGGAATGGGAATAGCTGTAACCG -ACGGAATGGGAATAGCTGATGCCA -ACGGAATGGGAAAAGCCTGGAAAC -ACGGAATGGGAAAAGCCTAACACC -ACGGAATGGGAAAAGCCTATCGAG -ACGGAATGGGAAAAGCCTCTCCTT -ACGGAATGGGAAAAGCCTCCTGTT -ACGGAATGGGAAAAGCCTCGGTTT -ACGGAATGGGAAAAGCCTGTGGTT -ACGGAATGGGAAAAGCCTGCCTTT -ACGGAATGGGAAAAGCCTGGTCTT -ACGGAATGGGAAAAGCCTACGCTT -ACGGAATGGGAAAAGCCTAGCGTT -ACGGAATGGGAAAAGCCTTTCGTC -ACGGAATGGGAAAAGCCTTCTCTC -ACGGAATGGGAAAAGCCTTGGATC -ACGGAATGGGAAAAGCCTCACTTC -ACGGAATGGGAAAAGCCTGTACTC -ACGGAATGGGAAAAGCCTGATGTC -ACGGAATGGGAAAAGCCTACAGTC -ACGGAATGGGAAAAGCCTTTGCTG -ACGGAATGGGAAAAGCCTTCCATG -ACGGAATGGGAAAAGCCTTGTGTG -ACGGAATGGGAAAAGCCTCTAGTG -ACGGAATGGGAAAAGCCTCATCTG -ACGGAATGGGAAAAGCCTGAGTTG -ACGGAATGGGAAAAGCCTAGACTG -ACGGAATGGGAAAAGCCTTCGGTA -ACGGAATGGGAAAAGCCTTGCCTA -ACGGAATGGGAAAAGCCTCCACTA -ACGGAATGGGAAAAGCCTGGAGTA -ACGGAATGGGAAAAGCCTTCGTCT -ACGGAATGGGAAAAGCCTTGCACT -ACGGAATGGGAAAAGCCTCTGACT -ACGGAATGGGAAAAGCCTCAACCT -ACGGAATGGGAAAAGCCTGCTACT -ACGGAATGGGAAAAGCCTGGATCT -ACGGAATGGGAAAAGCCTAAGGCT -ACGGAATGGGAAAAGCCTTCAACC -ACGGAATGGGAAAAGCCTTGTTCC -ACGGAATGGGAAAAGCCTATTCCC -ACGGAATGGGAAAAGCCTTTCTCG -ACGGAATGGGAAAAGCCTTAGACG -ACGGAATGGGAAAAGCCTGTAACG -ACGGAATGGGAAAAGCCTACTTCG -ACGGAATGGGAAAAGCCTTACGCA -ACGGAATGGGAAAAGCCTCTTGCA -ACGGAATGGGAAAAGCCTCGAACA -ACGGAATGGGAAAAGCCTCAGTCA -ACGGAATGGGAAAAGCCTGATCCA -ACGGAATGGGAAAAGCCTACGACA -ACGGAATGGGAAAAGCCTAGCTCA -ACGGAATGGGAAAAGCCTTCACGT -ACGGAATGGGAAAAGCCTCGTAGT -ACGGAATGGGAAAAGCCTGTCAGT -ACGGAATGGGAAAAGCCTGAAGGT -ACGGAATGGGAAAAGCCTAACCGT -ACGGAATGGGAAAAGCCTTTGTGC -ACGGAATGGGAAAAGCCTCTAAGC -ACGGAATGGGAAAAGCCTACTAGC -ACGGAATGGGAAAAGCCTAGATGC -ACGGAATGGGAAAAGCCTTGAAGG -ACGGAATGGGAAAAGCCTCAATGG -ACGGAATGGGAAAAGCCTATGAGG -ACGGAATGGGAAAAGCCTAATGGG -ACGGAATGGGAAAAGCCTTCCTGA -ACGGAATGGGAAAAGCCTTAGCGA -ACGGAATGGGAAAAGCCTCACAGA -ACGGAATGGGAAAAGCCTGCAAGA -ACGGAATGGGAAAAGCCTGGTTGA -ACGGAATGGGAAAAGCCTTCCGAT -ACGGAATGGGAAAAGCCTTGGCAT -ACGGAATGGGAAAAGCCTCGAGAT -ACGGAATGGGAAAAGCCTTACCAC -ACGGAATGGGAAAAGCCTCAGAAC -ACGGAATGGGAAAAGCCTGTCTAC -ACGGAATGGGAAAAGCCTACGTAC -ACGGAATGGGAAAAGCCTAGTGAC -ACGGAATGGGAAAAGCCTCTGTAG -ACGGAATGGGAAAAGCCTCCTAAG -ACGGAATGGGAAAAGCCTGTTCAG -ACGGAATGGGAAAAGCCTGCATAG -ACGGAATGGGAAAAGCCTGACAAG -ACGGAATGGGAAAAGCCTAAGCAG -ACGGAATGGGAAAAGCCTCGTCAA -ACGGAATGGGAAAAGCCTGCTGAA -ACGGAATGGGAAAAGCCTAGTACG -ACGGAATGGGAAAAGCCTATCCGA -ACGGAATGGGAAAAGCCTATGGGA -ACGGAATGGGAAAAGCCTGTGCAA -ACGGAATGGGAAAAGCCTGAGGAA -ACGGAATGGGAAAAGCCTCAGGTA -ACGGAATGGGAAAAGCCTGACTCT -ACGGAATGGGAAAAGCCTAGTCCT -ACGGAATGGGAAAAGCCTTAAGCC -ACGGAATGGGAAAAGCCTATAGCC -ACGGAATGGGAAAAGCCTTAACCG -ACGGAATGGGAAAAGCCTATGCCA -ACGGAATGGGAACAGGTTGGAAAC -ACGGAATGGGAACAGGTTAACACC -ACGGAATGGGAACAGGTTATCGAG -ACGGAATGGGAACAGGTTCTCCTT -ACGGAATGGGAACAGGTTCCTGTT -ACGGAATGGGAACAGGTTCGGTTT -ACGGAATGGGAACAGGTTGTGGTT -ACGGAATGGGAACAGGTTGCCTTT -ACGGAATGGGAACAGGTTGGTCTT -ACGGAATGGGAACAGGTTACGCTT -ACGGAATGGGAACAGGTTAGCGTT -ACGGAATGGGAACAGGTTTTCGTC -ACGGAATGGGAACAGGTTTCTCTC -ACGGAATGGGAACAGGTTTGGATC -ACGGAATGGGAACAGGTTCACTTC -ACGGAATGGGAACAGGTTGTACTC -ACGGAATGGGAACAGGTTGATGTC -ACGGAATGGGAACAGGTTACAGTC -ACGGAATGGGAACAGGTTTTGCTG -ACGGAATGGGAACAGGTTTCCATG -ACGGAATGGGAACAGGTTTGTGTG -ACGGAATGGGAACAGGTTCTAGTG -ACGGAATGGGAACAGGTTCATCTG -ACGGAATGGGAACAGGTTGAGTTG -ACGGAATGGGAACAGGTTAGACTG -ACGGAATGGGAACAGGTTTCGGTA -ACGGAATGGGAACAGGTTTGCCTA -ACGGAATGGGAACAGGTTCCACTA -ACGGAATGGGAACAGGTTGGAGTA -ACGGAATGGGAACAGGTTTCGTCT -ACGGAATGGGAACAGGTTTGCACT -ACGGAATGGGAACAGGTTCTGACT -ACGGAATGGGAACAGGTTCAACCT -ACGGAATGGGAACAGGTTGCTACT -ACGGAATGGGAACAGGTTGGATCT -ACGGAATGGGAACAGGTTAAGGCT -ACGGAATGGGAACAGGTTTCAACC -ACGGAATGGGAACAGGTTTGTTCC -ACGGAATGGGAACAGGTTATTCCC -ACGGAATGGGAACAGGTTTTCTCG -ACGGAATGGGAACAGGTTTAGACG -ACGGAATGGGAACAGGTTGTAACG -ACGGAATGGGAACAGGTTACTTCG -ACGGAATGGGAACAGGTTTACGCA -ACGGAATGGGAACAGGTTCTTGCA -ACGGAATGGGAACAGGTTCGAACA -ACGGAATGGGAACAGGTTCAGTCA -ACGGAATGGGAACAGGTTGATCCA -ACGGAATGGGAACAGGTTACGACA -ACGGAATGGGAACAGGTTAGCTCA -ACGGAATGGGAACAGGTTTCACGT -ACGGAATGGGAACAGGTTCGTAGT -ACGGAATGGGAACAGGTTGTCAGT -ACGGAATGGGAACAGGTTGAAGGT -ACGGAATGGGAACAGGTTAACCGT -ACGGAATGGGAACAGGTTTTGTGC -ACGGAATGGGAACAGGTTCTAAGC -ACGGAATGGGAACAGGTTACTAGC -ACGGAATGGGAACAGGTTAGATGC -ACGGAATGGGAACAGGTTTGAAGG -ACGGAATGGGAACAGGTTCAATGG -ACGGAATGGGAACAGGTTATGAGG -ACGGAATGGGAACAGGTTAATGGG -ACGGAATGGGAACAGGTTTCCTGA -ACGGAATGGGAACAGGTTTAGCGA -ACGGAATGGGAACAGGTTCACAGA -ACGGAATGGGAACAGGTTGCAAGA -ACGGAATGGGAACAGGTTGGTTGA -ACGGAATGGGAACAGGTTTCCGAT -ACGGAATGGGAACAGGTTTGGCAT -ACGGAATGGGAACAGGTTCGAGAT -ACGGAATGGGAACAGGTTTACCAC -ACGGAATGGGAACAGGTTCAGAAC -ACGGAATGGGAACAGGTTGTCTAC -ACGGAATGGGAACAGGTTACGTAC -ACGGAATGGGAACAGGTTAGTGAC -ACGGAATGGGAACAGGTTCTGTAG -ACGGAATGGGAACAGGTTCCTAAG -ACGGAATGGGAACAGGTTGTTCAG -ACGGAATGGGAACAGGTTGCATAG -ACGGAATGGGAACAGGTTGACAAG -ACGGAATGGGAACAGGTTAAGCAG -ACGGAATGGGAACAGGTTCGTCAA -ACGGAATGGGAACAGGTTGCTGAA -ACGGAATGGGAACAGGTTAGTACG -ACGGAATGGGAACAGGTTATCCGA -ACGGAATGGGAACAGGTTATGGGA -ACGGAATGGGAACAGGTTGTGCAA -ACGGAATGGGAACAGGTTGAGGAA -ACGGAATGGGAACAGGTTCAGGTA -ACGGAATGGGAACAGGTTGACTCT -ACGGAATGGGAACAGGTTAGTCCT -ACGGAATGGGAACAGGTTTAAGCC -ACGGAATGGGAACAGGTTATAGCC -ACGGAATGGGAACAGGTTTAACCG -ACGGAATGGGAACAGGTTATGCCA -ACGGAATGGGAATAGGCAGGAAAC -ACGGAATGGGAATAGGCAAACACC -ACGGAATGGGAATAGGCAATCGAG -ACGGAATGGGAATAGGCACTCCTT -ACGGAATGGGAATAGGCACCTGTT -ACGGAATGGGAATAGGCACGGTTT -ACGGAATGGGAATAGGCAGTGGTT -ACGGAATGGGAATAGGCAGCCTTT -ACGGAATGGGAATAGGCAGGTCTT -ACGGAATGGGAATAGGCAACGCTT -ACGGAATGGGAATAGGCAAGCGTT -ACGGAATGGGAATAGGCATTCGTC -ACGGAATGGGAATAGGCATCTCTC -ACGGAATGGGAATAGGCATGGATC -ACGGAATGGGAATAGGCACACTTC -ACGGAATGGGAATAGGCAGTACTC -ACGGAATGGGAATAGGCAGATGTC -ACGGAATGGGAATAGGCAACAGTC -ACGGAATGGGAATAGGCATTGCTG -ACGGAATGGGAATAGGCATCCATG -ACGGAATGGGAATAGGCATGTGTG -ACGGAATGGGAATAGGCACTAGTG -ACGGAATGGGAATAGGCACATCTG -ACGGAATGGGAATAGGCAGAGTTG -ACGGAATGGGAATAGGCAAGACTG -ACGGAATGGGAATAGGCATCGGTA -ACGGAATGGGAATAGGCATGCCTA -ACGGAATGGGAATAGGCACCACTA -ACGGAATGGGAATAGGCAGGAGTA -ACGGAATGGGAATAGGCATCGTCT -ACGGAATGGGAATAGGCATGCACT -ACGGAATGGGAATAGGCACTGACT -ACGGAATGGGAATAGGCACAACCT -ACGGAATGGGAATAGGCAGCTACT -ACGGAATGGGAATAGGCAGGATCT -ACGGAATGGGAATAGGCAAAGGCT -ACGGAATGGGAATAGGCATCAACC -ACGGAATGGGAATAGGCATGTTCC -ACGGAATGGGAATAGGCAATTCCC -ACGGAATGGGAATAGGCATTCTCG -ACGGAATGGGAATAGGCATAGACG -ACGGAATGGGAATAGGCAGTAACG -ACGGAATGGGAATAGGCAACTTCG -ACGGAATGGGAATAGGCATACGCA -ACGGAATGGGAATAGGCACTTGCA -ACGGAATGGGAATAGGCACGAACA -ACGGAATGGGAATAGGCACAGTCA -ACGGAATGGGAATAGGCAGATCCA -ACGGAATGGGAATAGGCAACGACA -ACGGAATGGGAATAGGCAAGCTCA -ACGGAATGGGAATAGGCATCACGT -ACGGAATGGGAATAGGCACGTAGT -ACGGAATGGGAATAGGCAGTCAGT -ACGGAATGGGAATAGGCAGAAGGT -ACGGAATGGGAATAGGCAAACCGT -ACGGAATGGGAATAGGCATTGTGC -ACGGAATGGGAATAGGCACTAAGC -ACGGAATGGGAATAGGCAACTAGC -ACGGAATGGGAATAGGCAAGATGC -ACGGAATGGGAATAGGCATGAAGG -ACGGAATGGGAATAGGCACAATGG -ACGGAATGGGAATAGGCAATGAGG -ACGGAATGGGAATAGGCAAATGGG -ACGGAATGGGAATAGGCATCCTGA -ACGGAATGGGAATAGGCATAGCGA -ACGGAATGGGAATAGGCACACAGA -ACGGAATGGGAATAGGCAGCAAGA -ACGGAATGGGAATAGGCAGGTTGA -ACGGAATGGGAATAGGCATCCGAT -ACGGAATGGGAATAGGCATGGCAT -ACGGAATGGGAATAGGCACGAGAT -ACGGAATGGGAATAGGCATACCAC -ACGGAATGGGAATAGGCACAGAAC -ACGGAATGGGAATAGGCAGTCTAC -ACGGAATGGGAATAGGCAACGTAC -ACGGAATGGGAATAGGCAAGTGAC -ACGGAATGGGAATAGGCACTGTAG -ACGGAATGGGAATAGGCACCTAAG -ACGGAATGGGAATAGGCAGTTCAG -ACGGAATGGGAATAGGCAGCATAG -ACGGAATGGGAATAGGCAGACAAG -ACGGAATGGGAATAGGCAAAGCAG -ACGGAATGGGAATAGGCACGTCAA -ACGGAATGGGAATAGGCAGCTGAA -ACGGAATGGGAATAGGCAAGTACG -ACGGAATGGGAATAGGCAATCCGA -ACGGAATGGGAATAGGCAATGGGA -ACGGAATGGGAATAGGCAGTGCAA -ACGGAATGGGAATAGGCAGAGGAA -ACGGAATGGGAATAGGCACAGGTA -ACGGAATGGGAATAGGCAGACTCT -ACGGAATGGGAATAGGCAAGTCCT -ACGGAATGGGAATAGGCATAAGCC -ACGGAATGGGAATAGGCAATAGCC -ACGGAATGGGAATAGGCATAACCG -ACGGAATGGGAATAGGCAATGCCA -ACGGAATGGGAAAAGGACGGAAAC -ACGGAATGGGAAAAGGACAACACC -ACGGAATGGGAAAAGGACATCGAG -ACGGAATGGGAAAAGGACCTCCTT -ACGGAATGGGAAAAGGACCCTGTT -ACGGAATGGGAAAAGGACCGGTTT -ACGGAATGGGAAAAGGACGTGGTT -ACGGAATGGGAAAAGGACGCCTTT -ACGGAATGGGAAAAGGACGGTCTT -ACGGAATGGGAAAAGGACACGCTT -ACGGAATGGGAAAAGGACAGCGTT -ACGGAATGGGAAAAGGACTTCGTC -ACGGAATGGGAAAAGGACTCTCTC -ACGGAATGGGAAAAGGACTGGATC -ACGGAATGGGAAAAGGACCACTTC -ACGGAATGGGAAAAGGACGTACTC -ACGGAATGGGAAAAGGACGATGTC -ACGGAATGGGAAAAGGACACAGTC -ACGGAATGGGAAAAGGACTTGCTG -ACGGAATGGGAAAAGGACTCCATG -ACGGAATGGGAAAAGGACTGTGTG -ACGGAATGGGAAAAGGACCTAGTG -ACGGAATGGGAAAAGGACCATCTG -ACGGAATGGGAAAAGGACGAGTTG -ACGGAATGGGAAAAGGACAGACTG -ACGGAATGGGAAAAGGACTCGGTA -ACGGAATGGGAAAAGGACTGCCTA -ACGGAATGGGAAAAGGACCCACTA -ACGGAATGGGAAAAGGACGGAGTA -ACGGAATGGGAAAAGGACTCGTCT -ACGGAATGGGAAAAGGACTGCACT -ACGGAATGGGAAAAGGACCTGACT -ACGGAATGGGAAAAGGACCAACCT -ACGGAATGGGAAAAGGACGCTACT -ACGGAATGGGAAAAGGACGGATCT -ACGGAATGGGAAAAGGACAAGGCT -ACGGAATGGGAAAAGGACTCAACC -ACGGAATGGGAAAAGGACTGTTCC -ACGGAATGGGAAAAGGACATTCCC -ACGGAATGGGAAAAGGACTTCTCG -ACGGAATGGGAAAAGGACTAGACG -ACGGAATGGGAAAAGGACGTAACG -ACGGAATGGGAAAAGGACACTTCG -ACGGAATGGGAAAAGGACTACGCA -ACGGAATGGGAAAAGGACCTTGCA -ACGGAATGGGAAAAGGACCGAACA -ACGGAATGGGAAAAGGACCAGTCA -ACGGAATGGGAAAAGGACGATCCA -ACGGAATGGGAAAAGGACACGACA -ACGGAATGGGAAAAGGACAGCTCA -ACGGAATGGGAAAAGGACTCACGT -ACGGAATGGGAAAAGGACCGTAGT -ACGGAATGGGAAAAGGACGTCAGT -ACGGAATGGGAAAAGGACGAAGGT -ACGGAATGGGAAAAGGACAACCGT -ACGGAATGGGAAAAGGACTTGTGC -ACGGAATGGGAAAAGGACCTAAGC -ACGGAATGGGAAAAGGACACTAGC -ACGGAATGGGAAAAGGACAGATGC -ACGGAATGGGAAAAGGACTGAAGG -ACGGAATGGGAAAAGGACCAATGG -ACGGAATGGGAAAAGGACATGAGG -ACGGAATGGGAAAAGGACAATGGG -ACGGAATGGGAAAAGGACTCCTGA -ACGGAATGGGAAAAGGACTAGCGA -ACGGAATGGGAAAAGGACCACAGA -ACGGAATGGGAAAAGGACGCAAGA -ACGGAATGGGAAAAGGACGGTTGA -ACGGAATGGGAAAAGGACTCCGAT -ACGGAATGGGAAAAGGACTGGCAT -ACGGAATGGGAAAAGGACCGAGAT -ACGGAATGGGAAAAGGACTACCAC -ACGGAATGGGAAAAGGACCAGAAC -ACGGAATGGGAAAAGGACGTCTAC -ACGGAATGGGAAAAGGACACGTAC -ACGGAATGGGAAAAGGACAGTGAC -ACGGAATGGGAAAAGGACCTGTAG -ACGGAATGGGAAAAGGACCCTAAG -ACGGAATGGGAAAAGGACGTTCAG -ACGGAATGGGAAAAGGACGCATAG -ACGGAATGGGAAAAGGACGACAAG -ACGGAATGGGAAAAGGACAAGCAG -ACGGAATGGGAAAAGGACCGTCAA -ACGGAATGGGAAAAGGACGCTGAA -ACGGAATGGGAAAAGGACAGTACG -ACGGAATGGGAAAAGGACATCCGA -ACGGAATGGGAAAAGGACATGGGA -ACGGAATGGGAAAAGGACGTGCAA -ACGGAATGGGAAAAGGACGAGGAA -ACGGAATGGGAAAAGGACCAGGTA -ACGGAATGGGAAAAGGACGACTCT -ACGGAATGGGAAAAGGACAGTCCT -ACGGAATGGGAAAAGGACTAAGCC -ACGGAATGGGAAAAGGACATAGCC -ACGGAATGGGAAAAGGACTAACCG -ACGGAATGGGAAAAGGACATGCCA -ACGGAATGGGAACAGAAGGGAAAC -ACGGAATGGGAACAGAAGAACACC -ACGGAATGGGAACAGAAGATCGAG -ACGGAATGGGAACAGAAGCTCCTT -ACGGAATGGGAACAGAAGCCTGTT -ACGGAATGGGAACAGAAGCGGTTT -ACGGAATGGGAACAGAAGGTGGTT -ACGGAATGGGAACAGAAGGCCTTT -ACGGAATGGGAACAGAAGGGTCTT -ACGGAATGGGAACAGAAGACGCTT -ACGGAATGGGAACAGAAGAGCGTT -ACGGAATGGGAACAGAAGTTCGTC -ACGGAATGGGAACAGAAGTCTCTC -ACGGAATGGGAACAGAAGTGGATC -ACGGAATGGGAACAGAAGCACTTC -ACGGAATGGGAACAGAAGGTACTC -ACGGAATGGGAACAGAAGGATGTC -ACGGAATGGGAACAGAAGACAGTC -ACGGAATGGGAACAGAAGTTGCTG -ACGGAATGGGAACAGAAGTCCATG -ACGGAATGGGAACAGAAGTGTGTG -ACGGAATGGGAACAGAAGCTAGTG -ACGGAATGGGAACAGAAGCATCTG -ACGGAATGGGAACAGAAGGAGTTG -ACGGAATGGGAACAGAAGAGACTG -ACGGAATGGGAACAGAAGTCGGTA -ACGGAATGGGAACAGAAGTGCCTA -ACGGAATGGGAACAGAAGCCACTA -ACGGAATGGGAACAGAAGGGAGTA -ACGGAATGGGAACAGAAGTCGTCT -ACGGAATGGGAACAGAAGTGCACT -ACGGAATGGGAACAGAAGCTGACT -ACGGAATGGGAACAGAAGCAACCT -ACGGAATGGGAACAGAAGGCTACT -ACGGAATGGGAACAGAAGGGATCT -ACGGAATGGGAACAGAAGAAGGCT -ACGGAATGGGAACAGAAGTCAACC -ACGGAATGGGAACAGAAGTGTTCC -ACGGAATGGGAACAGAAGATTCCC -ACGGAATGGGAACAGAAGTTCTCG -ACGGAATGGGAACAGAAGTAGACG -ACGGAATGGGAACAGAAGGTAACG -ACGGAATGGGAACAGAAGACTTCG -ACGGAATGGGAACAGAAGTACGCA -ACGGAATGGGAACAGAAGCTTGCA -ACGGAATGGGAACAGAAGCGAACA -ACGGAATGGGAACAGAAGCAGTCA -ACGGAATGGGAACAGAAGGATCCA -ACGGAATGGGAACAGAAGACGACA -ACGGAATGGGAACAGAAGAGCTCA -ACGGAATGGGAACAGAAGTCACGT -ACGGAATGGGAACAGAAGCGTAGT -ACGGAATGGGAACAGAAGGTCAGT -ACGGAATGGGAACAGAAGGAAGGT -ACGGAATGGGAACAGAAGAACCGT -ACGGAATGGGAACAGAAGTTGTGC -ACGGAATGGGAACAGAAGCTAAGC -ACGGAATGGGAACAGAAGACTAGC -ACGGAATGGGAACAGAAGAGATGC -ACGGAATGGGAACAGAAGTGAAGG -ACGGAATGGGAACAGAAGCAATGG -ACGGAATGGGAACAGAAGATGAGG -ACGGAATGGGAACAGAAGAATGGG -ACGGAATGGGAACAGAAGTCCTGA -ACGGAATGGGAACAGAAGTAGCGA -ACGGAATGGGAACAGAAGCACAGA -ACGGAATGGGAACAGAAGGCAAGA -ACGGAATGGGAACAGAAGGGTTGA -ACGGAATGGGAACAGAAGTCCGAT -ACGGAATGGGAACAGAAGTGGCAT -ACGGAATGGGAACAGAAGCGAGAT -ACGGAATGGGAACAGAAGTACCAC -ACGGAATGGGAACAGAAGCAGAAC -ACGGAATGGGAACAGAAGGTCTAC -ACGGAATGGGAACAGAAGACGTAC -ACGGAATGGGAACAGAAGAGTGAC -ACGGAATGGGAACAGAAGCTGTAG -ACGGAATGGGAACAGAAGCCTAAG -ACGGAATGGGAACAGAAGGTTCAG -ACGGAATGGGAACAGAAGGCATAG -ACGGAATGGGAACAGAAGGACAAG -ACGGAATGGGAACAGAAGAAGCAG -ACGGAATGGGAACAGAAGCGTCAA -ACGGAATGGGAACAGAAGGCTGAA -ACGGAATGGGAACAGAAGAGTACG -ACGGAATGGGAACAGAAGATCCGA -ACGGAATGGGAACAGAAGATGGGA -ACGGAATGGGAACAGAAGGTGCAA -ACGGAATGGGAACAGAAGGAGGAA -ACGGAATGGGAACAGAAGCAGGTA -ACGGAATGGGAACAGAAGGACTCT -ACGGAATGGGAACAGAAGAGTCCT -ACGGAATGGGAACAGAAGTAAGCC -ACGGAATGGGAACAGAAGATAGCC -ACGGAATGGGAACAGAAGTAACCG -ACGGAATGGGAACAGAAGATGCCA -ACGGAATGGGAACAACGTGGAAAC -ACGGAATGGGAACAACGTAACACC -ACGGAATGGGAACAACGTATCGAG -ACGGAATGGGAACAACGTCTCCTT -ACGGAATGGGAACAACGTCCTGTT -ACGGAATGGGAACAACGTCGGTTT -ACGGAATGGGAACAACGTGTGGTT -ACGGAATGGGAACAACGTGCCTTT -ACGGAATGGGAACAACGTGGTCTT -ACGGAATGGGAACAACGTACGCTT -ACGGAATGGGAACAACGTAGCGTT -ACGGAATGGGAACAACGTTTCGTC -ACGGAATGGGAACAACGTTCTCTC -ACGGAATGGGAACAACGTTGGATC -ACGGAATGGGAACAACGTCACTTC -ACGGAATGGGAACAACGTGTACTC -ACGGAATGGGAACAACGTGATGTC -ACGGAATGGGAACAACGTACAGTC -ACGGAATGGGAACAACGTTTGCTG -ACGGAATGGGAACAACGTTCCATG -ACGGAATGGGAACAACGTTGTGTG -ACGGAATGGGAACAACGTCTAGTG -ACGGAATGGGAACAACGTCATCTG -ACGGAATGGGAACAACGTGAGTTG -ACGGAATGGGAACAACGTAGACTG -ACGGAATGGGAACAACGTTCGGTA -ACGGAATGGGAACAACGTTGCCTA -ACGGAATGGGAACAACGTCCACTA -ACGGAATGGGAACAACGTGGAGTA -ACGGAATGGGAACAACGTTCGTCT -ACGGAATGGGAACAACGTTGCACT -ACGGAATGGGAACAACGTCTGACT -ACGGAATGGGAACAACGTCAACCT -ACGGAATGGGAACAACGTGCTACT -ACGGAATGGGAACAACGTGGATCT -ACGGAATGGGAACAACGTAAGGCT -ACGGAATGGGAACAACGTTCAACC -ACGGAATGGGAACAACGTTGTTCC -ACGGAATGGGAACAACGTATTCCC -ACGGAATGGGAACAACGTTTCTCG -ACGGAATGGGAACAACGTTAGACG -ACGGAATGGGAACAACGTGTAACG -ACGGAATGGGAACAACGTACTTCG -ACGGAATGGGAACAACGTTACGCA -ACGGAATGGGAACAACGTCTTGCA -ACGGAATGGGAACAACGTCGAACA -ACGGAATGGGAACAACGTCAGTCA -ACGGAATGGGAACAACGTGATCCA -ACGGAATGGGAACAACGTACGACA -ACGGAATGGGAACAACGTAGCTCA -ACGGAATGGGAACAACGTTCACGT -ACGGAATGGGAACAACGTCGTAGT -ACGGAATGGGAACAACGTGTCAGT -ACGGAATGGGAACAACGTGAAGGT -ACGGAATGGGAACAACGTAACCGT -ACGGAATGGGAACAACGTTTGTGC -ACGGAATGGGAACAACGTCTAAGC -ACGGAATGGGAACAACGTACTAGC -ACGGAATGGGAACAACGTAGATGC -ACGGAATGGGAACAACGTTGAAGG -ACGGAATGGGAACAACGTCAATGG -ACGGAATGGGAACAACGTATGAGG -ACGGAATGGGAACAACGTAATGGG -ACGGAATGGGAACAACGTTCCTGA -ACGGAATGGGAACAACGTTAGCGA -ACGGAATGGGAACAACGTCACAGA -ACGGAATGGGAACAACGTGCAAGA -ACGGAATGGGAACAACGTGGTTGA -ACGGAATGGGAACAACGTTCCGAT -ACGGAATGGGAACAACGTTGGCAT -ACGGAATGGGAACAACGTCGAGAT -ACGGAATGGGAACAACGTTACCAC -ACGGAATGGGAACAACGTCAGAAC -ACGGAATGGGAACAACGTGTCTAC -ACGGAATGGGAACAACGTACGTAC -ACGGAATGGGAACAACGTAGTGAC -ACGGAATGGGAACAACGTCTGTAG -ACGGAATGGGAACAACGTCCTAAG -ACGGAATGGGAACAACGTGTTCAG -ACGGAATGGGAACAACGTGCATAG -ACGGAATGGGAACAACGTGACAAG -ACGGAATGGGAACAACGTAAGCAG -ACGGAATGGGAACAACGTCGTCAA -ACGGAATGGGAACAACGTGCTGAA -ACGGAATGGGAACAACGTAGTACG -ACGGAATGGGAACAACGTATCCGA -ACGGAATGGGAACAACGTATGGGA -ACGGAATGGGAACAACGTGTGCAA -ACGGAATGGGAACAACGTGAGGAA -ACGGAATGGGAACAACGTCAGGTA -ACGGAATGGGAACAACGTGACTCT -ACGGAATGGGAACAACGTAGTCCT -ACGGAATGGGAACAACGTTAAGCC -ACGGAATGGGAACAACGTATAGCC -ACGGAATGGGAACAACGTTAACCG -ACGGAATGGGAACAACGTATGCCA -ACGGAATGGGAAGAAGCTGGAAAC -ACGGAATGGGAAGAAGCTAACACC -ACGGAATGGGAAGAAGCTATCGAG -ACGGAATGGGAAGAAGCTCTCCTT -ACGGAATGGGAAGAAGCTCCTGTT -ACGGAATGGGAAGAAGCTCGGTTT -ACGGAATGGGAAGAAGCTGTGGTT -ACGGAATGGGAAGAAGCTGCCTTT -ACGGAATGGGAAGAAGCTGGTCTT -ACGGAATGGGAAGAAGCTACGCTT -ACGGAATGGGAAGAAGCTAGCGTT -ACGGAATGGGAAGAAGCTTTCGTC -ACGGAATGGGAAGAAGCTTCTCTC -ACGGAATGGGAAGAAGCTTGGATC -ACGGAATGGGAAGAAGCTCACTTC -ACGGAATGGGAAGAAGCTGTACTC -ACGGAATGGGAAGAAGCTGATGTC -ACGGAATGGGAAGAAGCTACAGTC -ACGGAATGGGAAGAAGCTTTGCTG -ACGGAATGGGAAGAAGCTTCCATG -ACGGAATGGGAAGAAGCTTGTGTG -ACGGAATGGGAAGAAGCTCTAGTG -ACGGAATGGGAAGAAGCTCATCTG -ACGGAATGGGAAGAAGCTGAGTTG -ACGGAATGGGAAGAAGCTAGACTG -ACGGAATGGGAAGAAGCTTCGGTA -ACGGAATGGGAAGAAGCTTGCCTA -ACGGAATGGGAAGAAGCTCCACTA -ACGGAATGGGAAGAAGCTGGAGTA -ACGGAATGGGAAGAAGCTTCGTCT -ACGGAATGGGAAGAAGCTTGCACT -ACGGAATGGGAAGAAGCTCTGACT -ACGGAATGGGAAGAAGCTCAACCT -ACGGAATGGGAAGAAGCTGCTACT -ACGGAATGGGAAGAAGCTGGATCT -ACGGAATGGGAAGAAGCTAAGGCT -ACGGAATGGGAAGAAGCTTCAACC -ACGGAATGGGAAGAAGCTTGTTCC -ACGGAATGGGAAGAAGCTATTCCC -ACGGAATGGGAAGAAGCTTTCTCG -ACGGAATGGGAAGAAGCTTAGACG -ACGGAATGGGAAGAAGCTGTAACG -ACGGAATGGGAAGAAGCTACTTCG -ACGGAATGGGAAGAAGCTTACGCA -ACGGAATGGGAAGAAGCTCTTGCA -ACGGAATGGGAAGAAGCTCGAACA -ACGGAATGGGAAGAAGCTCAGTCA -ACGGAATGGGAAGAAGCTGATCCA -ACGGAATGGGAAGAAGCTACGACA -ACGGAATGGGAAGAAGCTAGCTCA -ACGGAATGGGAAGAAGCTTCACGT -ACGGAATGGGAAGAAGCTCGTAGT -ACGGAATGGGAAGAAGCTGTCAGT -ACGGAATGGGAAGAAGCTGAAGGT -ACGGAATGGGAAGAAGCTAACCGT -ACGGAATGGGAAGAAGCTTTGTGC -ACGGAATGGGAAGAAGCTCTAAGC -ACGGAATGGGAAGAAGCTACTAGC -ACGGAATGGGAAGAAGCTAGATGC -ACGGAATGGGAAGAAGCTTGAAGG -ACGGAATGGGAAGAAGCTCAATGG -ACGGAATGGGAAGAAGCTATGAGG -ACGGAATGGGAAGAAGCTAATGGG -ACGGAATGGGAAGAAGCTTCCTGA -ACGGAATGGGAAGAAGCTTAGCGA -ACGGAATGGGAAGAAGCTCACAGA -ACGGAATGGGAAGAAGCTGCAAGA -ACGGAATGGGAAGAAGCTGGTTGA -ACGGAATGGGAAGAAGCTTCCGAT -ACGGAATGGGAAGAAGCTTGGCAT -ACGGAATGGGAAGAAGCTCGAGAT -ACGGAATGGGAAGAAGCTTACCAC -ACGGAATGGGAAGAAGCTCAGAAC -ACGGAATGGGAAGAAGCTGTCTAC -ACGGAATGGGAAGAAGCTACGTAC -ACGGAATGGGAAGAAGCTAGTGAC -ACGGAATGGGAAGAAGCTCTGTAG -ACGGAATGGGAAGAAGCTCCTAAG -ACGGAATGGGAAGAAGCTGTTCAG -ACGGAATGGGAAGAAGCTGCATAG -ACGGAATGGGAAGAAGCTGACAAG -ACGGAATGGGAAGAAGCTAAGCAG -ACGGAATGGGAAGAAGCTCGTCAA -ACGGAATGGGAAGAAGCTGCTGAA -ACGGAATGGGAAGAAGCTAGTACG -ACGGAATGGGAAGAAGCTATCCGA -ACGGAATGGGAAGAAGCTATGGGA -ACGGAATGGGAAGAAGCTGTGCAA -ACGGAATGGGAAGAAGCTGAGGAA -ACGGAATGGGAAGAAGCTCAGGTA -ACGGAATGGGAAGAAGCTGACTCT -ACGGAATGGGAAGAAGCTAGTCCT -ACGGAATGGGAAGAAGCTTAAGCC -ACGGAATGGGAAGAAGCTATAGCC -ACGGAATGGGAAGAAGCTTAACCG -ACGGAATGGGAAGAAGCTATGCCA -ACGGAATGGGAAACGAGTGGAAAC -ACGGAATGGGAAACGAGTAACACC -ACGGAATGGGAAACGAGTATCGAG -ACGGAATGGGAAACGAGTCTCCTT -ACGGAATGGGAAACGAGTCCTGTT -ACGGAATGGGAAACGAGTCGGTTT -ACGGAATGGGAAACGAGTGTGGTT -ACGGAATGGGAAACGAGTGCCTTT -ACGGAATGGGAAACGAGTGGTCTT -ACGGAATGGGAAACGAGTACGCTT -ACGGAATGGGAAACGAGTAGCGTT -ACGGAATGGGAAACGAGTTTCGTC -ACGGAATGGGAAACGAGTTCTCTC -ACGGAATGGGAAACGAGTTGGATC -ACGGAATGGGAAACGAGTCACTTC -ACGGAATGGGAAACGAGTGTACTC -ACGGAATGGGAAACGAGTGATGTC -ACGGAATGGGAAACGAGTACAGTC -ACGGAATGGGAAACGAGTTTGCTG -ACGGAATGGGAAACGAGTTCCATG -ACGGAATGGGAAACGAGTTGTGTG -ACGGAATGGGAAACGAGTCTAGTG -ACGGAATGGGAAACGAGTCATCTG -ACGGAATGGGAAACGAGTGAGTTG -ACGGAATGGGAAACGAGTAGACTG -ACGGAATGGGAAACGAGTTCGGTA -ACGGAATGGGAAACGAGTTGCCTA -ACGGAATGGGAAACGAGTCCACTA -ACGGAATGGGAAACGAGTGGAGTA -ACGGAATGGGAAACGAGTTCGTCT -ACGGAATGGGAAACGAGTTGCACT -ACGGAATGGGAAACGAGTCTGACT -ACGGAATGGGAAACGAGTCAACCT -ACGGAATGGGAAACGAGTGCTACT -ACGGAATGGGAAACGAGTGGATCT -ACGGAATGGGAAACGAGTAAGGCT -ACGGAATGGGAAACGAGTTCAACC -ACGGAATGGGAAACGAGTTGTTCC -ACGGAATGGGAAACGAGTATTCCC -ACGGAATGGGAAACGAGTTTCTCG -ACGGAATGGGAAACGAGTTAGACG -ACGGAATGGGAAACGAGTGTAACG -ACGGAATGGGAAACGAGTACTTCG -ACGGAATGGGAAACGAGTTACGCA -ACGGAATGGGAAACGAGTCTTGCA -ACGGAATGGGAAACGAGTCGAACA -ACGGAATGGGAAACGAGTCAGTCA -ACGGAATGGGAAACGAGTGATCCA -ACGGAATGGGAAACGAGTACGACA -ACGGAATGGGAAACGAGTAGCTCA -ACGGAATGGGAAACGAGTTCACGT -ACGGAATGGGAAACGAGTCGTAGT -ACGGAATGGGAAACGAGTGTCAGT -ACGGAATGGGAAACGAGTGAAGGT -ACGGAATGGGAAACGAGTAACCGT -ACGGAATGGGAAACGAGTTTGTGC -ACGGAATGGGAAACGAGTCTAAGC -ACGGAATGGGAAACGAGTACTAGC -ACGGAATGGGAAACGAGTAGATGC -ACGGAATGGGAAACGAGTTGAAGG -ACGGAATGGGAAACGAGTCAATGG -ACGGAATGGGAAACGAGTATGAGG -ACGGAATGGGAAACGAGTAATGGG -ACGGAATGGGAAACGAGTTCCTGA -ACGGAATGGGAAACGAGTTAGCGA -ACGGAATGGGAAACGAGTCACAGA -ACGGAATGGGAAACGAGTGCAAGA -ACGGAATGGGAAACGAGTGGTTGA -ACGGAATGGGAAACGAGTTCCGAT -ACGGAATGGGAAACGAGTTGGCAT -ACGGAATGGGAAACGAGTCGAGAT -ACGGAATGGGAAACGAGTTACCAC -ACGGAATGGGAAACGAGTCAGAAC -ACGGAATGGGAAACGAGTGTCTAC -ACGGAATGGGAAACGAGTACGTAC -ACGGAATGGGAAACGAGTAGTGAC -ACGGAATGGGAAACGAGTCTGTAG -ACGGAATGGGAAACGAGTCCTAAG -ACGGAATGGGAAACGAGTGTTCAG -ACGGAATGGGAAACGAGTGCATAG -ACGGAATGGGAAACGAGTGACAAG -ACGGAATGGGAAACGAGTAAGCAG -ACGGAATGGGAAACGAGTCGTCAA -ACGGAATGGGAAACGAGTGCTGAA -ACGGAATGGGAAACGAGTAGTACG -ACGGAATGGGAAACGAGTATCCGA -ACGGAATGGGAAACGAGTATGGGA -ACGGAATGGGAAACGAGTGTGCAA -ACGGAATGGGAAACGAGTGAGGAA -ACGGAATGGGAAACGAGTCAGGTA -ACGGAATGGGAAACGAGTGACTCT -ACGGAATGGGAAACGAGTAGTCCT -ACGGAATGGGAAACGAGTTAAGCC -ACGGAATGGGAAACGAGTATAGCC -ACGGAATGGGAAACGAGTTAACCG -ACGGAATGGGAAACGAGTATGCCA -ACGGAATGGGAACGAATCGGAAAC -ACGGAATGGGAACGAATCAACACC -ACGGAATGGGAACGAATCATCGAG -ACGGAATGGGAACGAATCCTCCTT -ACGGAATGGGAACGAATCCCTGTT -ACGGAATGGGAACGAATCCGGTTT -ACGGAATGGGAACGAATCGTGGTT -ACGGAATGGGAACGAATCGCCTTT -ACGGAATGGGAACGAATCGGTCTT -ACGGAATGGGAACGAATCACGCTT -ACGGAATGGGAACGAATCAGCGTT -ACGGAATGGGAACGAATCTTCGTC -ACGGAATGGGAACGAATCTCTCTC -ACGGAATGGGAACGAATCTGGATC -ACGGAATGGGAACGAATCCACTTC -ACGGAATGGGAACGAATCGTACTC -ACGGAATGGGAACGAATCGATGTC -ACGGAATGGGAACGAATCACAGTC -ACGGAATGGGAACGAATCTTGCTG -ACGGAATGGGAACGAATCTCCATG -ACGGAATGGGAACGAATCTGTGTG -ACGGAATGGGAACGAATCCTAGTG -ACGGAATGGGAACGAATCCATCTG -ACGGAATGGGAACGAATCGAGTTG -ACGGAATGGGAACGAATCAGACTG -ACGGAATGGGAACGAATCTCGGTA -ACGGAATGGGAACGAATCTGCCTA -ACGGAATGGGAACGAATCCCACTA -ACGGAATGGGAACGAATCGGAGTA -ACGGAATGGGAACGAATCTCGTCT -ACGGAATGGGAACGAATCTGCACT -ACGGAATGGGAACGAATCCTGACT -ACGGAATGGGAACGAATCCAACCT -ACGGAATGGGAACGAATCGCTACT -ACGGAATGGGAACGAATCGGATCT -ACGGAATGGGAACGAATCAAGGCT -ACGGAATGGGAACGAATCTCAACC -ACGGAATGGGAACGAATCTGTTCC -ACGGAATGGGAACGAATCATTCCC -ACGGAATGGGAACGAATCTTCTCG -ACGGAATGGGAACGAATCTAGACG -ACGGAATGGGAACGAATCGTAACG -ACGGAATGGGAACGAATCACTTCG -ACGGAATGGGAACGAATCTACGCA -ACGGAATGGGAACGAATCCTTGCA -ACGGAATGGGAACGAATCCGAACA -ACGGAATGGGAACGAATCCAGTCA -ACGGAATGGGAACGAATCGATCCA -ACGGAATGGGAACGAATCACGACA -ACGGAATGGGAACGAATCAGCTCA -ACGGAATGGGAACGAATCTCACGT -ACGGAATGGGAACGAATCCGTAGT -ACGGAATGGGAACGAATCGTCAGT -ACGGAATGGGAACGAATCGAAGGT -ACGGAATGGGAACGAATCAACCGT -ACGGAATGGGAACGAATCTTGTGC -ACGGAATGGGAACGAATCCTAAGC -ACGGAATGGGAACGAATCACTAGC -ACGGAATGGGAACGAATCAGATGC -ACGGAATGGGAACGAATCTGAAGG -ACGGAATGGGAACGAATCCAATGG -ACGGAATGGGAACGAATCATGAGG -ACGGAATGGGAACGAATCAATGGG -ACGGAATGGGAACGAATCTCCTGA -ACGGAATGGGAACGAATCTAGCGA -ACGGAATGGGAACGAATCCACAGA -ACGGAATGGGAACGAATCGCAAGA -ACGGAATGGGAACGAATCGGTTGA -ACGGAATGGGAACGAATCTCCGAT -ACGGAATGGGAACGAATCTGGCAT -ACGGAATGGGAACGAATCCGAGAT -ACGGAATGGGAACGAATCTACCAC -ACGGAATGGGAACGAATCCAGAAC -ACGGAATGGGAACGAATCGTCTAC -ACGGAATGGGAACGAATCACGTAC -ACGGAATGGGAACGAATCAGTGAC -ACGGAATGGGAACGAATCCTGTAG -ACGGAATGGGAACGAATCCCTAAG -ACGGAATGGGAACGAATCGTTCAG -ACGGAATGGGAACGAATCGCATAG -ACGGAATGGGAACGAATCGACAAG -ACGGAATGGGAACGAATCAAGCAG -ACGGAATGGGAACGAATCCGTCAA -ACGGAATGGGAACGAATCGCTGAA -ACGGAATGGGAACGAATCAGTACG -ACGGAATGGGAACGAATCATCCGA -ACGGAATGGGAACGAATCATGGGA -ACGGAATGGGAACGAATCGTGCAA -ACGGAATGGGAACGAATCGAGGAA -ACGGAATGGGAACGAATCCAGGTA -ACGGAATGGGAACGAATCGACTCT -ACGGAATGGGAACGAATCAGTCCT -ACGGAATGGGAACGAATCTAAGCC -ACGGAATGGGAACGAATCATAGCC -ACGGAATGGGAACGAATCTAACCG -ACGGAATGGGAACGAATCATGCCA -ACGGAATGGGAAGGAATGGGAAAC -ACGGAATGGGAAGGAATGAACACC -ACGGAATGGGAAGGAATGATCGAG -ACGGAATGGGAAGGAATGCTCCTT -ACGGAATGGGAAGGAATGCCTGTT -ACGGAATGGGAAGGAATGCGGTTT -ACGGAATGGGAAGGAATGGTGGTT -ACGGAATGGGAAGGAATGGCCTTT -ACGGAATGGGAAGGAATGGGTCTT -ACGGAATGGGAAGGAATGACGCTT -ACGGAATGGGAAGGAATGAGCGTT -ACGGAATGGGAAGGAATGTTCGTC -ACGGAATGGGAAGGAATGTCTCTC -ACGGAATGGGAAGGAATGTGGATC -ACGGAATGGGAAGGAATGCACTTC -ACGGAATGGGAAGGAATGGTACTC -ACGGAATGGGAAGGAATGGATGTC -ACGGAATGGGAAGGAATGACAGTC -ACGGAATGGGAAGGAATGTTGCTG -ACGGAATGGGAAGGAATGTCCATG -ACGGAATGGGAAGGAATGTGTGTG -ACGGAATGGGAAGGAATGCTAGTG -ACGGAATGGGAAGGAATGCATCTG -ACGGAATGGGAAGGAATGGAGTTG -ACGGAATGGGAAGGAATGAGACTG -ACGGAATGGGAAGGAATGTCGGTA -ACGGAATGGGAAGGAATGTGCCTA -ACGGAATGGGAAGGAATGCCACTA -ACGGAATGGGAAGGAATGGGAGTA -ACGGAATGGGAAGGAATGTCGTCT -ACGGAATGGGAAGGAATGTGCACT -ACGGAATGGGAAGGAATGCTGACT -ACGGAATGGGAAGGAATGCAACCT -ACGGAATGGGAAGGAATGGCTACT -ACGGAATGGGAAGGAATGGGATCT -ACGGAATGGGAAGGAATGAAGGCT -ACGGAATGGGAAGGAATGTCAACC -ACGGAATGGGAAGGAATGTGTTCC -ACGGAATGGGAAGGAATGATTCCC -ACGGAATGGGAAGGAATGTTCTCG -ACGGAATGGGAAGGAATGTAGACG -ACGGAATGGGAAGGAATGGTAACG -ACGGAATGGGAAGGAATGACTTCG -ACGGAATGGGAAGGAATGTACGCA -ACGGAATGGGAAGGAATGCTTGCA -ACGGAATGGGAAGGAATGCGAACA -ACGGAATGGGAAGGAATGCAGTCA -ACGGAATGGGAAGGAATGGATCCA -ACGGAATGGGAAGGAATGACGACA -ACGGAATGGGAAGGAATGAGCTCA -ACGGAATGGGAAGGAATGTCACGT -ACGGAATGGGAAGGAATGCGTAGT -ACGGAATGGGAAGGAATGGTCAGT -ACGGAATGGGAAGGAATGGAAGGT -ACGGAATGGGAAGGAATGAACCGT -ACGGAATGGGAAGGAATGTTGTGC -ACGGAATGGGAAGGAATGCTAAGC -ACGGAATGGGAAGGAATGACTAGC -ACGGAATGGGAAGGAATGAGATGC -ACGGAATGGGAAGGAATGTGAAGG -ACGGAATGGGAAGGAATGCAATGG -ACGGAATGGGAAGGAATGATGAGG -ACGGAATGGGAAGGAATGAATGGG -ACGGAATGGGAAGGAATGTCCTGA -ACGGAATGGGAAGGAATGTAGCGA -ACGGAATGGGAAGGAATGCACAGA -ACGGAATGGGAAGGAATGGCAAGA -ACGGAATGGGAAGGAATGGGTTGA -ACGGAATGGGAAGGAATGTCCGAT -ACGGAATGGGAAGGAATGTGGCAT -ACGGAATGGGAAGGAATGCGAGAT -ACGGAATGGGAAGGAATGTACCAC -ACGGAATGGGAAGGAATGCAGAAC -ACGGAATGGGAAGGAATGGTCTAC -ACGGAATGGGAAGGAATGACGTAC -ACGGAATGGGAAGGAATGAGTGAC -ACGGAATGGGAAGGAATGCTGTAG -ACGGAATGGGAAGGAATGCCTAAG -ACGGAATGGGAAGGAATGGTTCAG -ACGGAATGGGAAGGAATGGCATAG -ACGGAATGGGAAGGAATGGACAAG -ACGGAATGGGAAGGAATGAAGCAG -ACGGAATGGGAAGGAATGCGTCAA -ACGGAATGGGAAGGAATGGCTGAA -ACGGAATGGGAAGGAATGAGTACG -ACGGAATGGGAAGGAATGATCCGA -ACGGAATGGGAAGGAATGATGGGA -ACGGAATGGGAAGGAATGGTGCAA -ACGGAATGGGAAGGAATGGAGGAA -ACGGAATGGGAAGGAATGCAGGTA -ACGGAATGGGAAGGAATGGACTCT -ACGGAATGGGAAGGAATGAGTCCT -ACGGAATGGGAAGGAATGTAAGCC -ACGGAATGGGAAGGAATGATAGCC -ACGGAATGGGAAGGAATGTAACCG -ACGGAATGGGAAGGAATGATGCCA -ACGGAATGGGAACAAGTGGGAAAC -ACGGAATGGGAACAAGTGAACACC -ACGGAATGGGAACAAGTGATCGAG -ACGGAATGGGAACAAGTGCTCCTT -ACGGAATGGGAACAAGTGCCTGTT -ACGGAATGGGAACAAGTGCGGTTT -ACGGAATGGGAACAAGTGGTGGTT -ACGGAATGGGAACAAGTGGCCTTT -ACGGAATGGGAACAAGTGGGTCTT -ACGGAATGGGAACAAGTGACGCTT -ACGGAATGGGAACAAGTGAGCGTT -ACGGAATGGGAACAAGTGTTCGTC -ACGGAATGGGAACAAGTGTCTCTC -ACGGAATGGGAACAAGTGTGGATC -ACGGAATGGGAACAAGTGCACTTC -ACGGAATGGGAACAAGTGGTACTC -ACGGAATGGGAACAAGTGGATGTC -ACGGAATGGGAACAAGTGACAGTC -ACGGAATGGGAACAAGTGTTGCTG -ACGGAATGGGAACAAGTGTCCATG -ACGGAATGGGAACAAGTGTGTGTG -ACGGAATGGGAACAAGTGCTAGTG -ACGGAATGGGAACAAGTGCATCTG -ACGGAATGGGAACAAGTGGAGTTG -ACGGAATGGGAACAAGTGAGACTG -ACGGAATGGGAACAAGTGTCGGTA -ACGGAATGGGAACAAGTGTGCCTA -ACGGAATGGGAACAAGTGCCACTA -ACGGAATGGGAACAAGTGGGAGTA -ACGGAATGGGAACAAGTGTCGTCT -ACGGAATGGGAACAAGTGTGCACT -ACGGAATGGGAACAAGTGCTGACT -ACGGAATGGGAACAAGTGCAACCT -ACGGAATGGGAACAAGTGGCTACT -ACGGAATGGGAACAAGTGGGATCT -ACGGAATGGGAACAAGTGAAGGCT -ACGGAATGGGAACAAGTGTCAACC -ACGGAATGGGAACAAGTGTGTTCC -ACGGAATGGGAACAAGTGATTCCC -ACGGAATGGGAACAAGTGTTCTCG -ACGGAATGGGAACAAGTGTAGACG -ACGGAATGGGAACAAGTGGTAACG -ACGGAATGGGAACAAGTGACTTCG -ACGGAATGGGAACAAGTGTACGCA -ACGGAATGGGAACAAGTGCTTGCA -ACGGAATGGGAACAAGTGCGAACA -ACGGAATGGGAACAAGTGCAGTCA -ACGGAATGGGAACAAGTGGATCCA -ACGGAATGGGAACAAGTGACGACA -ACGGAATGGGAACAAGTGAGCTCA -ACGGAATGGGAACAAGTGTCACGT -ACGGAATGGGAACAAGTGCGTAGT -ACGGAATGGGAACAAGTGGTCAGT -ACGGAATGGGAACAAGTGGAAGGT -ACGGAATGGGAACAAGTGAACCGT -ACGGAATGGGAACAAGTGTTGTGC -ACGGAATGGGAACAAGTGCTAAGC -ACGGAATGGGAACAAGTGACTAGC -ACGGAATGGGAACAAGTGAGATGC -ACGGAATGGGAACAAGTGTGAAGG -ACGGAATGGGAACAAGTGCAATGG -ACGGAATGGGAACAAGTGATGAGG -ACGGAATGGGAACAAGTGAATGGG -ACGGAATGGGAACAAGTGTCCTGA -ACGGAATGGGAACAAGTGTAGCGA -ACGGAATGGGAACAAGTGCACAGA -ACGGAATGGGAACAAGTGGCAAGA -ACGGAATGGGAACAAGTGGGTTGA -ACGGAATGGGAACAAGTGTCCGAT -ACGGAATGGGAACAAGTGTGGCAT -ACGGAATGGGAACAAGTGCGAGAT -ACGGAATGGGAACAAGTGTACCAC -ACGGAATGGGAACAAGTGCAGAAC -ACGGAATGGGAACAAGTGGTCTAC -ACGGAATGGGAACAAGTGACGTAC -ACGGAATGGGAACAAGTGAGTGAC -ACGGAATGGGAACAAGTGCTGTAG -ACGGAATGGGAACAAGTGCCTAAG -ACGGAATGGGAACAAGTGGTTCAG -ACGGAATGGGAACAAGTGGCATAG -ACGGAATGGGAACAAGTGGACAAG -ACGGAATGGGAACAAGTGAAGCAG -ACGGAATGGGAACAAGTGCGTCAA -ACGGAATGGGAACAAGTGGCTGAA -ACGGAATGGGAACAAGTGAGTACG -ACGGAATGGGAACAAGTGATCCGA -ACGGAATGGGAACAAGTGATGGGA -ACGGAATGGGAACAAGTGGTGCAA -ACGGAATGGGAACAAGTGGAGGAA -ACGGAATGGGAACAAGTGCAGGTA -ACGGAATGGGAACAAGTGGACTCT -ACGGAATGGGAACAAGTGAGTCCT -ACGGAATGGGAACAAGTGTAAGCC -ACGGAATGGGAACAAGTGATAGCC -ACGGAATGGGAACAAGTGTAACCG -ACGGAATGGGAACAAGTGATGCCA -ACGGAATGGGAAGAAGAGGGAAAC -ACGGAATGGGAAGAAGAGAACACC -ACGGAATGGGAAGAAGAGATCGAG -ACGGAATGGGAAGAAGAGCTCCTT -ACGGAATGGGAAGAAGAGCCTGTT -ACGGAATGGGAAGAAGAGCGGTTT -ACGGAATGGGAAGAAGAGGTGGTT -ACGGAATGGGAAGAAGAGGCCTTT -ACGGAATGGGAAGAAGAGGGTCTT -ACGGAATGGGAAGAAGAGACGCTT -ACGGAATGGGAAGAAGAGAGCGTT -ACGGAATGGGAAGAAGAGTTCGTC -ACGGAATGGGAAGAAGAGTCTCTC -ACGGAATGGGAAGAAGAGTGGATC -ACGGAATGGGAAGAAGAGCACTTC -ACGGAATGGGAAGAAGAGGTACTC -ACGGAATGGGAAGAAGAGGATGTC -ACGGAATGGGAAGAAGAGACAGTC -ACGGAATGGGAAGAAGAGTTGCTG -ACGGAATGGGAAGAAGAGTCCATG -ACGGAATGGGAAGAAGAGTGTGTG -ACGGAATGGGAAGAAGAGCTAGTG -ACGGAATGGGAAGAAGAGCATCTG -ACGGAATGGGAAGAAGAGGAGTTG -ACGGAATGGGAAGAAGAGAGACTG -ACGGAATGGGAAGAAGAGTCGGTA -ACGGAATGGGAAGAAGAGTGCCTA -ACGGAATGGGAAGAAGAGCCACTA -ACGGAATGGGAAGAAGAGGGAGTA -ACGGAATGGGAAGAAGAGTCGTCT -ACGGAATGGGAAGAAGAGTGCACT -ACGGAATGGGAAGAAGAGCTGACT -ACGGAATGGGAAGAAGAGCAACCT -ACGGAATGGGAAGAAGAGGCTACT -ACGGAATGGGAAGAAGAGGGATCT -ACGGAATGGGAAGAAGAGAAGGCT -ACGGAATGGGAAGAAGAGTCAACC -ACGGAATGGGAAGAAGAGTGTTCC -ACGGAATGGGAAGAAGAGATTCCC -ACGGAATGGGAAGAAGAGTTCTCG -ACGGAATGGGAAGAAGAGTAGACG -ACGGAATGGGAAGAAGAGGTAACG -ACGGAATGGGAAGAAGAGACTTCG -ACGGAATGGGAAGAAGAGTACGCA -ACGGAATGGGAAGAAGAGCTTGCA -ACGGAATGGGAAGAAGAGCGAACA -ACGGAATGGGAAGAAGAGCAGTCA -ACGGAATGGGAAGAAGAGGATCCA -ACGGAATGGGAAGAAGAGACGACA -ACGGAATGGGAAGAAGAGAGCTCA -ACGGAATGGGAAGAAGAGTCACGT -ACGGAATGGGAAGAAGAGCGTAGT -ACGGAATGGGAAGAAGAGGTCAGT -ACGGAATGGGAAGAAGAGGAAGGT -ACGGAATGGGAAGAAGAGAACCGT -ACGGAATGGGAAGAAGAGTTGTGC -ACGGAATGGGAAGAAGAGCTAAGC -ACGGAATGGGAAGAAGAGACTAGC -ACGGAATGGGAAGAAGAGAGATGC -ACGGAATGGGAAGAAGAGTGAAGG -ACGGAATGGGAAGAAGAGCAATGG -ACGGAATGGGAAGAAGAGATGAGG -ACGGAATGGGAAGAAGAGAATGGG -ACGGAATGGGAAGAAGAGTCCTGA -ACGGAATGGGAAGAAGAGTAGCGA -ACGGAATGGGAAGAAGAGCACAGA -ACGGAATGGGAAGAAGAGGCAAGA -ACGGAATGGGAAGAAGAGGGTTGA -ACGGAATGGGAAGAAGAGTCCGAT -ACGGAATGGGAAGAAGAGTGGCAT -ACGGAATGGGAAGAAGAGCGAGAT -ACGGAATGGGAAGAAGAGTACCAC -ACGGAATGGGAAGAAGAGCAGAAC -ACGGAATGGGAAGAAGAGGTCTAC -ACGGAATGGGAAGAAGAGACGTAC -ACGGAATGGGAAGAAGAGAGTGAC -ACGGAATGGGAAGAAGAGCTGTAG -ACGGAATGGGAAGAAGAGCCTAAG -ACGGAATGGGAAGAAGAGGTTCAG -ACGGAATGGGAAGAAGAGGCATAG -ACGGAATGGGAAGAAGAGGACAAG -ACGGAATGGGAAGAAGAGAAGCAG -ACGGAATGGGAAGAAGAGCGTCAA -ACGGAATGGGAAGAAGAGGCTGAA -ACGGAATGGGAAGAAGAGAGTACG -ACGGAATGGGAAGAAGAGATCCGA -ACGGAATGGGAAGAAGAGATGGGA -ACGGAATGGGAAGAAGAGGTGCAA -ACGGAATGGGAAGAAGAGGAGGAA -ACGGAATGGGAAGAAGAGCAGGTA -ACGGAATGGGAAGAAGAGGACTCT -ACGGAATGGGAAGAAGAGAGTCCT -ACGGAATGGGAAGAAGAGTAAGCC -ACGGAATGGGAAGAAGAGATAGCC -ACGGAATGGGAAGAAGAGTAACCG -ACGGAATGGGAAGAAGAGATGCCA -ACGGAATGGGAAGTACAGGGAAAC -ACGGAATGGGAAGTACAGAACACC -ACGGAATGGGAAGTACAGATCGAG -ACGGAATGGGAAGTACAGCTCCTT -ACGGAATGGGAAGTACAGCCTGTT -ACGGAATGGGAAGTACAGCGGTTT -ACGGAATGGGAAGTACAGGTGGTT -ACGGAATGGGAAGTACAGGCCTTT -ACGGAATGGGAAGTACAGGGTCTT -ACGGAATGGGAAGTACAGACGCTT -ACGGAATGGGAAGTACAGAGCGTT -ACGGAATGGGAAGTACAGTTCGTC -ACGGAATGGGAAGTACAGTCTCTC -ACGGAATGGGAAGTACAGTGGATC -ACGGAATGGGAAGTACAGCACTTC -ACGGAATGGGAAGTACAGGTACTC -ACGGAATGGGAAGTACAGGATGTC -ACGGAATGGGAAGTACAGACAGTC -ACGGAATGGGAAGTACAGTTGCTG -ACGGAATGGGAAGTACAGTCCATG -ACGGAATGGGAAGTACAGTGTGTG -ACGGAATGGGAAGTACAGCTAGTG -ACGGAATGGGAAGTACAGCATCTG -ACGGAATGGGAAGTACAGGAGTTG -ACGGAATGGGAAGTACAGAGACTG -ACGGAATGGGAAGTACAGTCGGTA -ACGGAATGGGAAGTACAGTGCCTA -ACGGAATGGGAAGTACAGCCACTA -ACGGAATGGGAAGTACAGGGAGTA -ACGGAATGGGAAGTACAGTCGTCT -ACGGAATGGGAAGTACAGTGCACT -ACGGAATGGGAAGTACAGCTGACT -ACGGAATGGGAAGTACAGCAACCT -ACGGAATGGGAAGTACAGGCTACT -ACGGAATGGGAAGTACAGGGATCT -ACGGAATGGGAAGTACAGAAGGCT -ACGGAATGGGAAGTACAGTCAACC -ACGGAATGGGAAGTACAGTGTTCC -ACGGAATGGGAAGTACAGATTCCC -ACGGAATGGGAAGTACAGTTCTCG -ACGGAATGGGAAGTACAGTAGACG -ACGGAATGGGAAGTACAGGTAACG -ACGGAATGGGAAGTACAGACTTCG -ACGGAATGGGAAGTACAGTACGCA -ACGGAATGGGAAGTACAGCTTGCA -ACGGAATGGGAAGTACAGCGAACA -ACGGAATGGGAAGTACAGCAGTCA -ACGGAATGGGAAGTACAGGATCCA -ACGGAATGGGAAGTACAGACGACA -ACGGAATGGGAAGTACAGAGCTCA -ACGGAATGGGAAGTACAGTCACGT -ACGGAATGGGAAGTACAGCGTAGT -ACGGAATGGGAAGTACAGGTCAGT -ACGGAATGGGAAGTACAGGAAGGT -ACGGAATGGGAAGTACAGAACCGT -ACGGAATGGGAAGTACAGTTGTGC -ACGGAATGGGAAGTACAGCTAAGC -ACGGAATGGGAAGTACAGACTAGC -ACGGAATGGGAAGTACAGAGATGC -ACGGAATGGGAAGTACAGTGAAGG -ACGGAATGGGAAGTACAGCAATGG -ACGGAATGGGAAGTACAGATGAGG -ACGGAATGGGAAGTACAGAATGGG -ACGGAATGGGAAGTACAGTCCTGA -ACGGAATGGGAAGTACAGTAGCGA -ACGGAATGGGAAGTACAGCACAGA -ACGGAATGGGAAGTACAGGCAAGA -ACGGAATGGGAAGTACAGGGTTGA -ACGGAATGGGAAGTACAGTCCGAT -ACGGAATGGGAAGTACAGTGGCAT -ACGGAATGGGAAGTACAGCGAGAT -ACGGAATGGGAAGTACAGTACCAC -ACGGAATGGGAAGTACAGCAGAAC -ACGGAATGGGAAGTACAGGTCTAC -ACGGAATGGGAAGTACAGACGTAC -ACGGAATGGGAAGTACAGAGTGAC -ACGGAATGGGAAGTACAGCTGTAG -ACGGAATGGGAAGTACAGCCTAAG -ACGGAATGGGAAGTACAGGTTCAG -ACGGAATGGGAAGTACAGGCATAG -ACGGAATGGGAAGTACAGGACAAG -ACGGAATGGGAAGTACAGAAGCAG -ACGGAATGGGAAGTACAGCGTCAA -ACGGAATGGGAAGTACAGGCTGAA -ACGGAATGGGAAGTACAGAGTACG -ACGGAATGGGAAGTACAGATCCGA -ACGGAATGGGAAGTACAGATGGGA -ACGGAATGGGAAGTACAGGTGCAA -ACGGAATGGGAAGTACAGGAGGAA -ACGGAATGGGAAGTACAGCAGGTA -ACGGAATGGGAAGTACAGGACTCT -ACGGAATGGGAAGTACAGAGTCCT -ACGGAATGGGAAGTACAGTAAGCC -ACGGAATGGGAAGTACAGATAGCC -ACGGAATGGGAAGTACAGTAACCG -ACGGAATGGGAAGTACAGATGCCA -ACGGAATGGGAATCTGACGGAAAC -ACGGAATGGGAATCTGACAACACC -ACGGAATGGGAATCTGACATCGAG -ACGGAATGGGAATCTGACCTCCTT -ACGGAATGGGAATCTGACCCTGTT -ACGGAATGGGAATCTGACCGGTTT -ACGGAATGGGAATCTGACGTGGTT -ACGGAATGGGAATCTGACGCCTTT -ACGGAATGGGAATCTGACGGTCTT -ACGGAATGGGAATCTGACACGCTT -ACGGAATGGGAATCTGACAGCGTT -ACGGAATGGGAATCTGACTTCGTC -ACGGAATGGGAATCTGACTCTCTC -ACGGAATGGGAATCTGACTGGATC -ACGGAATGGGAATCTGACCACTTC -ACGGAATGGGAATCTGACGTACTC -ACGGAATGGGAATCTGACGATGTC -ACGGAATGGGAATCTGACACAGTC -ACGGAATGGGAATCTGACTTGCTG -ACGGAATGGGAATCTGACTCCATG -ACGGAATGGGAATCTGACTGTGTG -ACGGAATGGGAATCTGACCTAGTG -ACGGAATGGGAATCTGACCATCTG -ACGGAATGGGAATCTGACGAGTTG -ACGGAATGGGAATCTGACAGACTG -ACGGAATGGGAATCTGACTCGGTA -ACGGAATGGGAATCTGACTGCCTA -ACGGAATGGGAATCTGACCCACTA -ACGGAATGGGAATCTGACGGAGTA -ACGGAATGGGAATCTGACTCGTCT -ACGGAATGGGAATCTGACTGCACT -ACGGAATGGGAATCTGACCTGACT -ACGGAATGGGAATCTGACCAACCT -ACGGAATGGGAATCTGACGCTACT -ACGGAATGGGAATCTGACGGATCT -ACGGAATGGGAATCTGACAAGGCT -ACGGAATGGGAATCTGACTCAACC -ACGGAATGGGAATCTGACTGTTCC -ACGGAATGGGAATCTGACATTCCC -ACGGAATGGGAATCTGACTTCTCG -ACGGAATGGGAATCTGACTAGACG -ACGGAATGGGAATCTGACGTAACG -ACGGAATGGGAATCTGACACTTCG -ACGGAATGGGAATCTGACTACGCA -ACGGAATGGGAATCTGACCTTGCA -ACGGAATGGGAATCTGACCGAACA -ACGGAATGGGAATCTGACCAGTCA -ACGGAATGGGAATCTGACGATCCA -ACGGAATGGGAATCTGACACGACA -ACGGAATGGGAATCTGACAGCTCA -ACGGAATGGGAATCTGACTCACGT -ACGGAATGGGAATCTGACCGTAGT -ACGGAATGGGAATCTGACGTCAGT -ACGGAATGGGAATCTGACGAAGGT -ACGGAATGGGAATCTGACAACCGT -ACGGAATGGGAATCTGACTTGTGC -ACGGAATGGGAATCTGACCTAAGC -ACGGAATGGGAATCTGACACTAGC -ACGGAATGGGAATCTGACAGATGC -ACGGAATGGGAATCTGACTGAAGG -ACGGAATGGGAATCTGACCAATGG -ACGGAATGGGAATCTGACATGAGG -ACGGAATGGGAATCTGACAATGGG -ACGGAATGGGAATCTGACTCCTGA -ACGGAATGGGAATCTGACTAGCGA -ACGGAATGGGAATCTGACCACAGA -ACGGAATGGGAATCTGACGCAAGA -ACGGAATGGGAATCTGACGGTTGA -ACGGAATGGGAATCTGACTCCGAT -ACGGAATGGGAATCTGACTGGCAT -ACGGAATGGGAATCTGACCGAGAT -ACGGAATGGGAATCTGACTACCAC -ACGGAATGGGAATCTGACCAGAAC -ACGGAATGGGAATCTGACGTCTAC -ACGGAATGGGAATCTGACACGTAC -ACGGAATGGGAATCTGACAGTGAC -ACGGAATGGGAATCTGACCTGTAG -ACGGAATGGGAATCTGACCCTAAG -ACGGAATGGGAATCTGACGTTCAG -ACGGAATGGGAATCTGACGCATAG -ACGGAATGGGAATCTGACGACAAG -ACGGAATGGGAATCTGACAAGCAG -ACGGAATGGGAATCTGACCGTCAA -ACGGAATGGGAATCTGACGCTGAA -ACGGAATGGGAATCTGACAGTACG -ACGGAATGGGAATCTGACATCCGA -ACGGAATGGGAATCTGACATGGGA -ACGGAATGGGAATCTGACGTGCAA -ACGGAATGGGAATCTGACGAGGAA -ACGGAATGGGAATCTGACCAGGTA -ACGGAATGGGAATCTGACGACTCT -ACGGAATGGGAATCTGACAGTCCT -ACGGAATGGGAATCTGACTAAGCC -ACGGAATGGGAATCTGACATAGCC -ACGGAATGGGAATCTGACTAACCG -ACGGAATGGGAATCTGACATGCCA -ACGGAATGGGAACCTAGTGGAAAC -ACGGAATGGGAACCTAGTAACACC -ACGGAATGGGAACCTAGTATCGAG -ACGGAATGGGAACCTAGTCTCCTT -ACGGAATGGGAACCTAGTCCTGTT -ACGGAATGGGAACCTAGTCGGTTT -ACGGAATGGGAACCTAGTGTGGTT -ACGGAATGGGAACCTAGTGCCTTT -ACGGAATGGGAACCTAGTGGTCTT -ACGGAATGGGAACCTAGTACGCTT -ACGGAATGGGAACCTAGTAGCGTT -ACGGAATGGGAACCTAGTTTCGTC -ACGGAATGGGAACCTAGTTCTCTC -ACGGAATGGGAACCTAGTTGGATC -ACGGAATGGGAACCTAGTCACTTC -ACGGAATGGGAACCTAGTGTACTC -ACGGAATGGGAACCTAGTGATGTC -ACGGAATGGGAACCTAGTACAGTC -ACGGAATGGGAACCTAGTTTGCTG -ACGGAATGGGAACCTAGTTCCATG -ACGGAATGGGAACCTAGTTGTGTG -ACGGAATGGGAACCTAGTCTAGTG -ACGGAATGGGAACCTAGTCATCTG -ACGGAATGGGAACCTAGTGAGTTG -ACGGAATGGGAACCTAGTAGACTG -ACGGAATGGGAACCTAGTTCGGTA -ACGGAATGGGAACCTAGTTGCCTA -ACGGAATGGGAACCTAGTCCACTA -ACGGAATGGGAACCTAGTGGAGTA -ACGGAATGGGAACCTAGTTCGTCT -ACGGAATGGGAACCTAGTTGCACT -ACGGAATGGGAACCTAGTCTGACT -ACGGAATGGGAACCTAGTCAACCT -ACGGAATGGGAACCTAGTGCTACT -ACGGAATGGGAACCTAGTGGATCT -ACGGAATGGGAACCTAGTAAGGCT -ACGGAATGGGAACCTAGTTCAACC -ACGGAATGGGAACCTAGTTGTTCC -ACGGAATGGGAACCTAGTATTCCC -ACGGAATGGGAACCTAGTTTCTCG -ACGGAATGGGAACCTAGTTAGACG -ACGGAATGGGAACCTAGTGTAACG -ACGGAATGGGAACCTAGTACTTCG -ACGGAATGGGAACCTAGTTACGCA -ACGGAATGGGAACCTAGTCTTGCA -ACGGAATGGGAACCTAGTCGAACA -ACGGAATGGGAACCTAGTCAGTCA -ACGGAATGGGAACCTAGTGATCCA -ACGGAATGGGAACCTAGTACGACA -ACGGAATGGGAACCTAGTAGCTCA -ACGGAATGGGAACCTAGTTCACGT -ACGGAATGGGAACCTAGTCGTAGT -ACGGAATGGGAACCTAGTGTCAGT -ACGGAATGGGAACCTAGTGAAGGT -ACGGAATGGGAACCTAGTAACCGT -ACGGAATGGGAACCTAGTTTGTGC -ACGGAATGGGAACCTAGTCTAAGC -ACGGAATGGGAACCTAGTACTAGC -ACGGAATGGGAACCTAGTAGATGC -ACGGAATGGGAACCTAGTTGAAGG -ACGGAATGGGAACCTAGTCAATGG -ACGGAATGGGAACCTAGTATGAGG -ACGGAATGGGAACCTAGTAATGGG -ACGGAATGGGAACCTAGTTCCTGA -ACGGAATGGGAACCTAGTTAGCGA -ACGGAATGGGAACCTAGTCACAGA -ACGGAATGGGAACCTAGTGCAAGA -ACGGAATGGGAACCTAGTGGTTGA -ACGGAATGGGAACCTAGTTCCGAT -ACGGAATGGGAACCTAGTTGGCAT -ACGGAATGGGAACCTAGTCGAGAT -ACGGAATGGGAACCTAGTTACCAC -ACGGAATGGGAACCTAGTCAGAAC -ACGGAATGGGAACCTAGTGTCTAC -ACGGAATGGGAACCTAGTACGTAC -ACGGAATGGGAACCTAGTAGTGAC -ACGGAATGGGAACCTAGTCTGTAG -ACGGAATGGGAACCTAGTCCTAAG -ACGGAATGGGAACCTAGTGTTCAG -ACGGAATGGGAACCTAGTGCATAG -ACGGAATGGGAACCTAGTGACAAG -ACGGAATGGGAACCTAGTAAGCAG -ACGGAATGGGAACCTAGTCGTCAA -ACGGAATGGGAACCTAGTGCTGAA -ACGGAATGGGAACCTAGTAGTACG -ACGGAATGGGAACCTAGTATCCGA -ACGGAATGGGAACCTAGTATGGGA -ACGGAATGGGAACCTAGTGTGCAA -ACGGAATGGGAACCTAGTGAGGAA -ACGGAATGGGAACCTAGTCAGGTA -ACGGAATGGGAACCTAGTGACTCT -ACGGAATGGGAACCTAGTAGTCCT -ACGGAATGGGAACCTAGTTAAGCC -ACGGAATGGGAACCTAGTATAGCC -ACGGAATGGGAACCTAGTTAACCG -ACGGAATGGGAACCTAGTATGCCA -ACGGAATGGGAAGCCTAAGGAAAC -ACGGAATGGGAAGCCTAAAACACC -ACGGAATGGGAAGCCTAAATCGAG -ACGGAATGGGAAGCCTAACTCCTT -ACGGAATGGGAAGCCTAACCTGTT -ACGGAATGGGAAGCCTAACGGTTT -ACGGAATGGGAAGCCTAAGTGGTT -ACGGAATGGGAAGCCTAAGCCTTT -ACGGAATGGGAAGCCTAAGGTCTT -ACGGAATGGGAAGCCTAAACGCTT -ACGGAATGGGAAGCCTAAAGCGTT -ACGGAATGGGAAGCCTAATTCGTC -ACGGAATGGGAAGCCTAATCTCTC -ACGGAATGGGAAGCCTAATGGATC -ACGGAATGGGAAGCCTAACACTTC -ACGGAATGGGAAGCCTAAGTACTC -ACGGAATGGGAAGCCTAAGATGTC -ACGGAATGGGAAGCCTAAACAGTC -ACGGAATGGGAAGCCTAATTGCTG -ACGGAATGGGAAGCCTAATCCATG -ACGGAATGGGAAGCCTAATGTGTG -ACGGAATGGGAAGCCTAACTAGTG -ACGGAATGGGAAGCCTAACATCTG -ACGGAATGGGAAGCCTAAGAGTTG -ACGGAATGGGAAGCCTAAAGACTG -ACGGAATGGGAAGCCTAATCGGTA -ACGGAATGGGAAGCCTAATGCCTA -ACGGAATGGGAAGCCTAACCACTA -ACGGAATGGGAAGCCTAAGGAGTA -ACGGAATGGGAAGCCTAATCGTCT -ACGGAATGGGAAGCCTAATGCACT -ACGGAATGGGAAGCCTAACTGACT -ACGGAATGGGAAGCCTAACAACCT -ACGGAATGGGAAGCCTAAGCTACT -ACGGAATGGGAAGCCTAAGGATCT -ACGGAATGGGAAGCCTAAAAGGCT -ACGGAATGGGAAGCCTAATCAACC -ACGGAATGGGAAGCCTAATGTTCC -ACGGAATGGGAAGCCTAAATTCCC -ACGGAATGGGAAGCCTAATTCTCG -ACGGAATGGGAAGCCTAATAGACG -ACGGAATGGGAAGCCTAAGTAACG -ACGGAATGGGAAGCCTAAACTTCG -ACGGAATGGGAAGCCTAATACGCA -ACGGAATGGGAAGCCTAACTTGCA -ACGGAATGGGAAGCCTAACGAACA -ACGGAATGGGAAGCCTAACAGTCA -ACGGAATGGGAAGCCTAAGATCCA -ACGGAATGGGAAGCCTAAACGACA -ACGGAATGGGAAGCCTAAAGCTCA -ACGGAATGGGAAGCCTAATCACGT -ACGGAATGGGAAGCCTAACGTAGT -ACGGAATGGGAAGCCTAAGTCAGT -ACGGAATGGGAAGCCTAAGAAGGT -ACGGAATGGGAAGCCTAAAACCGT -ACGGAATGGGAAGCCTAATTGTGC -ACGGAATGGGAAGCCTAACTAAGC -ACGGAATGGGAAGCCTAAACTAGC -ACGGAATGGGAAGCCTAAAGATGC -ACGGAATGGGAAGCCTAATGAAGG -ACGGAATGGGAAGCCTAACAATGG -ACGGAATGGGAAGCCTAAATGAGG -ACGGAATGGGAAGCCTAAAATGGG -ACGGAATGGGAAGCCTAATCCTGA -ACGGAATGGGAAGCCTAATAGCGA -ACGGAATGGGAAGCCTAACACAGA -ACGGAATGGGAAGCCTAAGCAAGA -ACGGAATGGGAAGCCTAAGGTTGA -ACGGAATGGGAAGCCTAATCCGAT -ACGGAATGGGAAGCCTAATGGCAT -ACGGAATGGGAAGCCTAACGAGAT -ACGGAATGGGAAGCCTAATACCAC -ACGGAATGGGAAGCCTAACAGAAC -ACGGAATGGGAAGCCTAAGTCTAC -ACGGAATGGGAAGCCTAAACGTAC -ACGGAATGGGAAGCCTAAAGTGAC -ACGGAATGGGAAGCCTAACTGTAG -ACGGAATGGGAAGCCTAACCTAAG -ACGGAATGGGAAGCCTAAGTTCAG -ACGGAATGGGAAGCCTAAGCATAG -ACGGAATGGGAAGCCTAAGACAAG -ACGGAATGGGAAGCCTAAAAGCAG -ACGGAATGGGAAGCCTAACGTCAA -ACGGAATGGGAAGCCTAAGCTGAA -ACGGAATGGGAAGCCTAAAGTACG -ACGGAATGGGAAGCCTAAATCCGA -ACGGAATGGGAAGCCTAAATGGGA -ACGGAATGGGAAGCCTAAGTGCAA -ACGGAATGGGAAGCCTAAGAGGAA -ACGGAATGGGAAGCCTAACAGGTA -ACGGAATGGGAAGCCTAAGACTCT -ACGGAATGGGAAGCCTAAAGTCCT -ACGGAATGGGAAGCCTAATAAGCC -ACGGAATGGGAAGCCTAAATAGCC -ACGGAATGGGAAGCCTAATAACCG -ACGGAATGGGAAGCCTAAATGCCA -ACGGAATGGGAAGCCATAGGAAAC -ACGGAATGGGAAGCCATAAACACC -ACGGAATGGGAAGCCATAATCGAG -ACGGAATGGGAAGCCATACTCCTT -ACGGAATGGGAAGCCATACCTGTT -ACGGAATGGGAAGCCATACGGTTT -ACGGAATGGGAAGCCATAGTGGTT -ACGGAATGGGAAGCCATAGCCTTT -ACGGAATGGGAAGCCATAGGTCTT -ACGGAATGGGAAGCCATAACGCTT -ACGGAATGGGAAGCCATAAGCGTT -ACGGAATGGGAAGCCATATTCGTC -ACGGAATGGGAAGCCATATCTCTC -ACGGAATGGGAAGCCATATGGATC -ACGGAATGGGAAGCCATACACTTC -ACGGAATGGGAAGCCATAGTACTC -ACGGAATGGGAAGCCATAGATGTC -ACGGAATGGGAAGCCATAACAGTC -ACGGAATGGGAAGCCATATTGCTG -ACGGAATGGGAAGCCATATCCATG -ACGGAATGGGAAGCCATATGTGTG -ACGGAATGGGAAGCCATACTAGTG -ACGGAATGGGAAGCCATACATCTG -ACGGAATGGGAAGCCATAGAGTTG -ACGGAATGGGAAGCCATAAGACTG -ACGGAATGGGAAGCCATATCGGTA -ACGGAATGGGAAGCCATATGCCTA -ACGGAATGGGAAGCCATACCACTA -ACGGAATGGGAAGCCATAGGAGTA -ACGGAATGGGAAGCCATATCGTCT -ACGGAATGGGAAGCCATATGCACT -ACGGAATGGGAAGCCATACTGACT -ACGGAATGGGAAGCCATACAACCT -ACGGAATGGGAAGCCATAGCTACT -ACGGAATGGGAAGCCATAGGATCT -ACGGAATGGGAAGCCATAAAGGCT -ACGGAATGGGAAGCCATATCAACC -ACGGAATGGGAAGCCATATGTTCC -ACGGAATGGGAAGCCATAATTCCC -ACGGAATGGGAAGCCATATTCTCG -ACGGAATGGGAAGCCATATAGACG -ACGGAATGGGAAGCCATAGTAACG -ACGGAATGGGAAGCCATAACTTCG -ACGGAATGGGAAGCCATATACGCA -ACGGAATGGGAAGCCATACTTGCA -ACGGAATGGGAAGCCATACGAACA -ACGGAATGGGAAGCCATACAGTCA -ACGGAATGGGAAGCCATAGATCCA -ACGGAATGGGAAGCCATAACGACA -ACGGAATGGGAAGCCATAAGCTCA -ACGGAATGGGAAGCCATATCACGT -ACGGAATGGGAAGCCATACGTAGT -ACGGAATGGGAAGCCATAGTCAGT -ACGGAATGGGAAGCCATAGAAGGT -ACGGAATGGGAAGCCATAAACCGT -ACGGAATGGGAAGCCATATTGTGC -ACGGAATGGGAAGCCATACTAAGC -ACGGAATGGGAAGCCATAACTAGC -ACGGAATGGGAAGCCATAAGATGC -ACGGAATGGGAAGCCATATGAAGG -ACGGAATGGGAAGCCATACAATGG -ACGGAATGGGAAGCCATAATGAGG -ACGGAATGGGAAGCCATAAATGGG -ACGGAATGGGAAGCCATATCCTGA -ACGGAATGGGAAGCCATATAGCGA -ACGGAATGGGAAGCCATACACAGA -ACGGAATGGGAAGCCATAGCAAGA -ACGGAATGGGAAGCCATAGGTTGA -ACGGAATGGGAAGCCATATCCGAT -ACGGAATGGGAAGCCATATGGCAT -ACGGAATGGGAAGCCATACGAGAT -ACGGAATGGGAAGCCATATACCAC -ACGGAATGGGAAGCCATACAGAAC -ACGGAATGGGAAGCCATAGTCTAC -ACGGAATGGGAAGCCATAACGTAC -ACGGAATGGGAAGCCATAAGTGAC -ACGGAATGGGAAGCCATACTGTAG -ACGGAATGGGAAGCCATACCTAAG -ACGGAATGGGAAGCCATAGTTCAG -ACGGAATGGGAAGCCATAGCATAG -ACGGAATGGGAAGCCATAGACAAG -ACGGAATGGGAAGCCATAAAGCAG -ACGGAATGGGAAGCCATACGTCAA -ACGGAATGGGAAGCCATAGCTGAA -ACGGAATGGGAAGCCATAAGTACG -ACGGAATGGGAAGCCATAATCCGA -ACGGAATGGGAAGCCATAATGGGA -ACGGAATGGGAAGCCATAGTGCAA -ACGGAATGGGAAGCCATAGAGGAA -ACGGAATGGGAAGCCATACAGGTA -ACGGAATGGGAAGCCATAGACTCT -ACGGAATGGGAAGCCATAAGTCCT -ACGGAATGGGAAGCCATATAAGCC -ACGGAATGGGAAGCCATAATAGCC -ACGGAATGGGAAGCCATATAACCG -ACGGAATGGGAAGCCATAATGCCA -ACGGAATGGGAACCGTAAGGAAAC -ACGGAATGGGAACCGTAAAACACC -ACGGAATGGGAACCGTAAATCGAG -ACGGAATGGGAACCGTAACTCCTT -ACGGAATGGGAACCGTAACCTGTT -ACGGAATGGGAACCGTAACGGTTT -ACGGAATGGGAACCGTAAGTGGTT -ACGGAATGGGAACCGTAAGCCTTT -ACGGAATGGGAACCGTAAGGTCTT -ACGGAATGGGAACCGTAAACGCTT -ACGGAATGGGAACCGTAAAGCGTT -ACGGAATGGGAACCGTAATTCGTC -ACGGAATGGGAACCGTAATCTCTC -ACGGAATGGGAACCGTAATGGATC -ACGGAATGGGAACCGTAACACTTC -ACGGAATGGGAACCGTAAGTACTC -ACGGAATGGGAACCGTAAGATGTC -ACGGAATGGGAACCGTAAACAGTC -ACGGAATGGGAACCGTAATTGCTG -ACGGAATGGGAACCGTAATCCATG -ACGGAATGGGAACCGTAATGTGTG -ACGGAATGGGAACCGTAACTAGTG -ACGGAATGGGAACCGTAACATCTG -ACGGAATGGGAACCGTAAGAGTTG -ACGGAATGGGAACCGTAAAGACTG -ACGGAATGGGAACCGTAATCGGTA -ACGGAATGGGAACCGTAATGCCTA -ACGGAATGGGAACCGTAACCACTA -ACGGAATGGGAACCGTAAGGAGTA -ACGGAATGGGAACCGTAATCGTCT -ACGGAATGGGAACCGTAATGCACT -ACGGAATGGGAACCGTAACTGACT -ACGGAATGGGAACCGTAACAACCT -ACGGAATGGGAACCGTAAGCTACT -ACGGAATGGGAACCGTAAGGATCT -ACGGAATGGGAACCGTAAAAGGCT -ACGGAATGGGAACCGTAATCAACC -ACGGAATGGGAACCGTAATGTTCC -ACGGAATGGGAACCGTAAATTCCC -ACGGAATGGGAACCGTAATTCTCG -ACGGAATGGGAACCGTAATAGACG -ACGGAATGGGAACCGTAAGTAACG -ACGGAATGGGAACCGTAAACTTCG -ACGGAATGGGAACCGTAATACGCA -ACGGAATGGGAACCGTAACTTGCA -ACGGAATGGGAACCGTAACGAACA -ACGGAATGGGAACCGTAACAGTCA -ACGGAATGGGAACCGTAAGATCCA -ACGGAATGGGAACCGTAAACGACA -ACGGAATGGGAACCGTAAAGCTCA -ACGGAATGGGAACCGTAATCACGT -ACGGAATGGGAACCGTAACGTAGT -ACGGAATGGGAACCGTAAGTCAGT -ACGGAATGGGAACCGTAAGAAGGT -ACGGAATGGGAACCGTAAAACCGT -ACGGAATGGGAACCGTAATTGTGC -ACGGAATGGGAACCGTAACTAAGC -ACGGAATGGGAACCGTAAACTAGC -ACGGAATGGGAACCGTAAAGATGC -ACGGAATGGGAACCGTAATGAAGG -ACGGAATGGGAACCGTAACAATGG -ACGGAATGGGAACCGTAAATGAGG -ACGGAATGGGAACCGTAAAATGGG -ACGGAATGGGAACCGTAATCCTGA -ACGGAATGGGAACCGTAATAGCGA -ACGGAATGGGAACCGTAACACAGA -ACGGAATGGGAACCGTAAGCAAGA -ACGGAATGGGAACCGTAAGGTTGA -ACGGAATGGGAACCGTAATCCGAT -ACGGAATGGGAACCGTAATGGCAT -ACGGAATGGGAACCGTAACGAGAT -ACGGAATGGGAACCGTAATACCAC -ACGGAATGGGAACCGTAACAGAAC -ACGGAATGGGAACCGTAAGTCTAC -ACGGAATGGGAACCGTAAACGTAC -ACGGAATGGGAACCGTAAAGTGAC -ACGGAATGGGAACCGTAACTGTAG -ACGGAATGGGAACCGTAACCTAAG -ACGGAATGGGAACCGTAAGTTCAG -ACGGAATGGGAACCGTAAGCATAG -ACGGAATGGGAACCGTAAGACAAG -ACGGAATGGGAACCGTAAAAGCAG -ACGGAATGGGAACCGTAACGTCAA -ACGGAATGGGAACCGTAAGCTGAA -ACGGAATGGGAACCGTAAAGTACG -ACGGAATGGGAACCGTAAATCCGA -ACGGAATGGGAACCGTAAATGGGA -ACGGAATGGGAACCGTAAGTGCAA -ACGGAATGGGAACCGTAAGAGGAA -ACGGAATGGGAACCGTAACAGGTA -ACGGAATGGGAACCGTAAGACTCT -ACGGAATGGGAACCGTAAAGTCCT -ACGGAATGGGAACCGTAATAAGCC -ACGGAATGGGAACCGTAAATAGCC -ACGGAATGGGAACCGTAATAACCG -ACGGAATGGGAACCGTAAATGCCA -ACGGAATGGGAACCAATGGGAAAC -ACGGAATGGGAACCAATGAACACC -ACGGAATGGGAACCAATGATCGAG -ACGGAATGGGAACCAATGCTCCTT -ACGGAATGGGAACCAATGCCTGTT -ACGGAATGGGAACCAATGCGGTTT -ACGGAATGGGAACCAATGGTGGTT -ACGGAATGGGAACCAATGGCCTTT -ACGGAATGGGAACCAATGGGTCTT -ACGGAATGGGAACCAATGACGCTT -ACGGAATGGGAACCAATGAGCGTT -ACGGAATGGGAACCAATGTTCGTC -ACGGAATGGGAACCAATGTCTCTC -ACGGAATGGGAACCAATGTGGATC -ACGGAATGGGAACCAATGCACTTC -ACGGAATGGGAACCAATGGTACTC -ACGGAATGGGAACCAATGGATGTC -ACGGAATGGGAACCAATGACAGTC -ACGGAATGGGAACCAATGTTGCTG -ACGGAATGGGAACCAATGTCCATG -ACGGAATGGGAACCAATGTGTGTG -ACGGAATGGGAACCAATGCTAGTG -ACGGAATGGGAACCAATGCATCTG -ACGGAATGGGAACCAATGGAGTTG -ACGGAATGGGAACCAATGAGACTG -ACGGAATGGGAACCAATGTCGGTA -ACGGAATGGGAACCAATGTGCCTA -ACGGAATGGGAACCAATGCCACTA -ACGGAATGGGAACCAATGGGAGTA -ACGGAATGGGAACCAATGTCGTCT -ACGGAATGGGAACCAATGTGCACT -ACGGAATGGGAACCAATGCTGACT -ACGGAATGGGAACCAATGCAACCT -ACGGAATGGGAACCAATGGCTACT -ACGGAATGGGAACCAATGGGATCT -ACGGAATGGGAACCAATGAAGGCT -ACGGAATGGGAACCAATGTCAACC -ACGGAATGGGAACCAATGTGTTCC -ACGGAATGGGAACCAATGATTCCC -ACGGAATGGGAACCAATGTTCTCG -ACGGAATGGGAACCAATGTAGACG -ACGGAATGGGAACCAATGGTAACG -ACGGAATGGGAACCAATGACTTCG -ACGGAATGGGAACCAATGTACGCA -ACGGAATGGGAACCAATGCTTGCA -ACGGAATGGGAACCAATGCGAACA -ACGGAATGGGAACCAATGCAGTCA -ACGGAATGGGAACCAATGGATCCA -ACGGAATGGGAACCAATGACGACA -ACGGAATGGGAACCAATGAGCTCA -ACGGAATGGGAACCAATGTCACGT -ACGGAATGGGAACCAATGCGTAGT -ACGGAATGGGAACCAATGGTCAGT -ACGGAATGGGAACCAATGGAAGGT -ACGGAATGGGAACCAATGAACCGT -ACGGAATGGGAACCAATGTTGTGC -ACGGAATGGGAACCAATGCTAAGC -ACGGAATGGGAACCAATGACTAGC -ACGGAATGGGAACCAATGAGATGC -ACGGAATGGGAACCAATGTGAAGG -ACGGAATGGGAACCAATGCAATGG -ACGGAATGGGAACCAATGATGAGG -ACGGAATGGGAACCAATGAATGGG -ACGGAATGGGAACCAATGTCCTGA -ACGGAATGGGAACCAATGTAGCGA -ACGGAATGGGAACCAATGCACAGA -ACGGAATGGGAACCAATGGCAAGA -ACGGAATGGGAACCAATGGGTTGA -ACGGAATGGGAACCAATGTCCGAT -ACGGAATGGGAACCAATGTGGCAT -ACGGAATGGGAACCAATGCGAGAT -ACGGAATGGGAACCAATGTACCAC -ACGGAATGGGAACCAATGCAGAAC -ACGGAATGGGAACCAATGGTCTAC -ACGGAATGGGAACCAATGACGTAC -ACGGAATGGGAACCAATGAGTGAC -ACGGAATGGGAACCAATGCTGTAG -ACGGAATGGGAACCAATGCCTAAG -ACGGAATGGGAACCAATGGTTCAG -ACGGAATGGGAACCAATGGCATAG -ACGGAATGGGAACCAATGGACAAG -ACGGAATGGGAACCAATGAAGCAG -ACGGAATGGGAACCAATGCGTCAA -ACGGAATGGGAACCAATGGCTGAA -ACGGAATGGGAACCAATGAGTACG -ACGGAATGGGAACCAATGATCCGA -ACGGAATGGGAACCAATGATGGGA -ACGGAATGGGAACCAATGGTGCAA -ACGGAATGGGAACCAATGGAGGAA -ACGGAATGGGAACCAATGCAGGTA -ACGGAATGGGAACCAATGGACTCT -ACGGAATGGGAACCAATGAGTCCT -ACGGAATGGGAACCAATGTAAGCC -ACGGAATGGGAACCAATGATAGCC -ACGGAATGGGAACCAATGTAACCG -ACGGAATGGGAACCAATGATGCCA -ACGGAATGCAAGAACGGAGGAAAC -ACGGAATGCAAGAACGGAAACACC -ACGGAATGCAAGAACGGAATCGAG -ACGGAATGCAAGAACGGACTCCTT -ACGGAATGCAAGAACGGACCTGTT -ACGGAATGCAAGAACGGACGGTTT -ACGGAATGCAAGAACGGAGTGGTT -ACGGAATGCAAGAACGGAGCCTTT -ACGGAATGCAAGAACGGAGGTCTT -ACGGAATGCAAGAACGGAACGCTT -ACGGAATGCAAGAACGGAAGCGTT -ACGGAATGCAAGAACGGATTCGTC -ACGGAATGCAAGAACGGATCTCTC -ACGGAATGCAAGAACGGATGGATC -ACGGAATGCAAGAACGGACACTTC -ACGGAATGCAAGAACGGAGTACTC -ACGGAATGCAAGAACGGAGATGTC -ACGGAATGCAAGAACGGAACAGTC -ACGGAATGCAAGAACGGATTGCTG -ACGGAATGCAAGAACGGATCCATG -ACGGAATGCAAGAACGGATGTGTG -ACGGAATGCAAGAACGGACTAGTG -ACGGAATGCAAGAACGGACATCTG -ACGGAATGCAAGAACGGAGAGTTG -ACGGAATGCAAGAACGGAAGACTG -ACGGAATGCAAGAACGGATCGGTA -ACGGAATGCAAGAACGGATGCCTA -ACGGAATGCAAGAACGGACCACTA -ACGGAATGCAAGAACGGAGGAGTA -ACGGAATGCAAGAACGGATCGTCT -ACGGAATGCAAGAACGGATGCACT -ACGGAATGCAAGAACGGACTGACT -ACGGAATGCAAGAACGGACAACCT -ACGGAATGCAAGAACGGAGCTACT -ACGGAATGCAAGAACGGAGGATCT -ACGGAATGCAAGAACGGAAAGGCT -ACGGAATGCAAGAACGGATCAACC -ACGGAATGCAAGAACGGATGTTCC -ACGGAATGCAAGAACGGAATTCCC -ACGGAATGCAAGAACGGATTCTCG -ACGGAATGCAAGAACGGATAGACG -ACGGAATGCAAGAACGGAGTAACG -ACGGAATGCAAGAACGGAACTTCG -ACGGAATGCAAGAACGGATACGCA -ACGGAATGCAAGAACGGACTTGCA -ACGGAATGCAAGAACGGACGAACA -ACGGAATGCAAGAACGGACAGTCA -ACGGAATGCAAGAACGGAGATCCA -ACGGAATGCAAGAACGGAACGACA -ACGGAATGCAAGAACGGAAGCTCA -ACGGAATGCAAGAACGGATCACGT -ACGGAATGCAAGAACGGACGTAGT -ACGGAATGCAAGAACGGAGTCAGT -ACGGAATGCAAGAACGGAGAAGGT -ACGGAATGCAAGAACGGAAACCGT -ACGGAATGCAAGAACGGATTGTGC -ACGGAATGCAAGAACGGACTAAGC -ACGGAATGCAAGAACGGAACTAGC -ACGGAATGCAAGAACGGAAGATGC -ACGGAATGCAAGAACGGATGAAGG -ACGGAATGCAAGAACGGACAATGG -ACGGAATGCAAGAACGGAATGAGG -ACGGAATGCAAGAACGGAAATGGG -ACGGAATGCAAGAACGGATCCTGA -ACGGAATGCAAGAACGGATAGCGA -ACGGAATGCAAGAACGGACACAGA -ACGGAATGCAAGAACGGAGCAAGA -ACGGAATGCAAGAACGGAGGTTGA -ACGGAATGCAAGAACGGATCCGAT -ACGGAATGCAAGAACGGATGGCAT -ACGGAATGCAAGAACGGACGAGAT -ACGGAATGCAAGAACGGATACCAC -ACGGAATGCAAGAACGGACAGAAC -ACGGAATGCAAGAACGGAGTCTAC -ACGGAATGCAAGAACGGAACGTAC -ACGGAATGCAAGAACGGAAGTGAC -ACGGAATGCAAGAACGGACTGTAG -ACGGAATGCAAGAACGGACCTAAG -ACGGAATGCAAGAACGGAGTTCAG -ACGGAATGCAAGAACGGAGCATAG -ACGGAATGCAAGAACGGAGACAAG -ACGGAATGCAAGAACGGAAAGCAG -ACGGAATGCAAGAACGGACGTCAA -ACGGAATGCAAGAACGGAGCTGAA -ACGGAATGCAAGAACGGAAGTACG -ACGGAATGCAAGAACGGAATCCGA -ACGGAATGCAAGAACGGAATGGGA -ACGGAATGCAAGAACGGAGTGCAA -ACGGAATGCAAGAACGGAGAGGAA -ACGGAATGCAAGAACGGACAGGTA -ACGGAATGCAAGAACGGAGACTCT -ACGGAATGCAAGAACGGAAGTCCT -ACGGAATGCAAGAACGGATAAGCC -ACGGAATGCAAGAACGGAATAGCC -ACGGAATGCAAGAACGGATAACCG -ACGGAATGCAAGAACGGAATGCCA -ACGGAATGCAAGACCAACGGAAAC -ACGGAATGCAAGACCAACAACACC -ACGGAATGCAAGACCAACATCGAG -ACGGAATGCAAGACCAACCTCCTT -ACGGAATGCAAGACCAACCCTGTT -ACGGAATGCAAGACCAACCGGTTT -ACGGAATGCAAGACCAACGTGGTT -ACGGAATGCAAGACCAACGCCTTT -ACGGAATGCAAGACCAACGGTCTT -ACGGAATGCAAGACCAACACGCTT -ACGGAATGCAAGACCAACAGCGTT -ACGGAATGCAAGACCAACTTCGTC -ACGGAATGCAAGACCAACTCTCTC -ACGGAATGCAAGACCAACTGGATC -ACGGAATGCAAGACCAACCACTTC -ACGGAATGCAAGACCAACGTACTC -ACGGAATGCAAGACCAACGATGTC -ACGGAATGCAAGACCAACACAGTC -ACGGAATGCAAGACCAACTTGCTG -ACGGAATGCAAGACCAACTCCATG -ACGGAATGCAAGACCAACTGTGTG -ACGGAATGCAAGACCAACCTAGTG -ACGGAATGCAAGACCAACCATCTG -ACGGAATGCAAGACCAACGAGTTG -ACGGAATGCAAGACCAACAGACTG -ACGGAATGCAAGACCAACTCGGTA -ACGGAATGCAAGACCAACTGCCTA -ACGGAATGCAAGACCAACCCACTA -ACGGAATGCAAGACCAACGGAGTA -ACGGAATGCAAGACCAACTCGTCT -ACGGAATGCAAGACCAACTGCACT -ACGGAATGCAAGACCAACCTGACT -ACGGAATGCAAGACCAACCAACCT -ACGGAATGCAAGACCAACGCTACT -ACGGAATGCAAGACCAACGGATCT -ACGGAATGCAAGACCAACAAGGCT -ACGGAATGCAAGACCAACTCAACC -ACGGAATGCAAGACCAACTGTTCC -ACGGAATGCAAGACCAACATTCCC -ACGGAATGCAAGACCAACTTCTCG -ACGGAATGCAAGACCAACTAGACG -ACGGAATGCAAGACCAACGTAACG -ACGGAATGCAAGACCAACACTTCG -ACGGAATGCAAGACCAACTACGCA -ACGGAATGCAAGACCAACCTTGCA -ACGGAATGCAAGACCAACCGAACA -ACGGAATGCAAGACCAACCAGTCA -ACGGAATGCAAGACCAACGATCCA -ACGGAATGCAAGACCAACACGACA -ACGGAATGCAAGACCAACAGCTCA -ACGGAATGCAAGACCAACTCACGT -ACGGAATGCAAGACCAACCGTAGT -ACGGAATGCAAGACCAACGTCAGT -ACGGAATGCAAGACCAACGAAGGT -ACGGAATGCAAGACCAACAACCGT -ACGGAATGCAAGACCAACTTGTGC -ACGGAATGCAAGACCAACCTAAGC -ACGGAATGCAAGACCAACACTAGC -ACGGAATGCAAGACCAACAGATGC -ACGGAATGCAAGACCAACTGAAGG -ACGGAATGCAAGACCAACCAATGG -ACGGAATGCAAGACCAACATGAGG -ACGGAATGCAAGACCAACAATGGG -ACGGAATGCAAGACCAACTCCTGA -ACGGAATGCAAGACCAACTAGCGA -ACGGAATGCAAGACCAACCACAGA -ACGGAATGCAAGACCAACGCAAGA -ACGGAATGCAAGACCAACGGTTGA -ACGGAATGCAAGACCAACTCCGAT -ACGGAATGCAAGACCAACTGGCAT -ACGGAATGCAAGACCAACCGAGAT -ACGGAATGCAAGACCAACTACCAC -ACGGAATGCAAGACCAACCAGAAC -ACGGAATGCAAGACCAACGTCTAC -ACGGAATGCAAGACCAACACGTAC -ACGGAATGCAAGACCAACAGTGAC -ACGGAATGCAAGACCAACCTGTAG -ACGGAATGCAAGACCAACCCTAAG -ACGGAATGCAAGACCAACGTTCAG -ACGGAATGCAAGACCAACGCATAG -ACGGAATGCAAGACCAACGACAAG -ACGGAATGCAAGACCAACAAGCAG -ACGGAATGCAAGACCAACCGTCAA -ACGGAATGCAAGACCAACGCTGAA -ACGGAATGCAAGACCAACAGTACG -ACGGAATGCAAGACCAACATCCGA -ACGGAATGCAAGACCAACATGGGA -ACGGAATGCAAGACCAACGTGCAA -ACGGAATGCAAGACCAACGAGGAA -ACGGAATGCAAGACCAACCAGGTA -ACGGAATGCAAGACCAACGACTCT -ACGGAATGCAAGACCAACAGTCCT -ACGGAATGCAAGACCAACTAAGCC -ACGGAATGCAAGACCAACATAGCC -ACGGAATGCAAGACCAACTAACCG -ACGGAATGCAAGACCAACATGCCA -ACGGAATGCAAGGAGATCGGAAAC -ACGGAATGCAAGGAGATCAACACC -ACGGAATGCAAGGAGATCATCGAG -ACGGAATGCAAGGAGATCCTCCTT -ACGGAATGCAAGGAGATCCCTGTT -ACGGAATGCAAGGAGATCCGGTTT -ACGGAATGCAAGGAGATCGTGGTT -ACGGAATGCAAGGAGATCGCCTTT -ACGGAATGCAAGGAGATCGGTCTT -ACGGAATGCAAGGAGATCACGCTT -ACGGAATGCAAGGAGATCAGCGTT -ACGGAATGCAAGGAGATCTTCGTC -ACGGAATGCAAGGAGATCTCTCTC -ACGGAATGCAAGGAGATCTGGATC -ACGGAATGCAAGGAGATCCACTTC -ACGGAATGCAAGGAGATCGTACTC -ACGGAATGCAAGGAGATCGATGTC -ACGGAATGCAAGGAGATCACAGTC -ACGGAATGCAAGGAGATCTTGCTG -ACGGAATGCAAGGAGATCTCCATG -ACGGAATGCAAGGAGATCTGTGTG -ACGGAATGCAAGGAGATCCTAGTG -ACGGAATGCAAGGAGATCCATCTG -ACGGAATGCAAGGAGATCGAGTTG -ACGGAATGCAAGGAGATCAGACTG -ACGGAATGCAAGGAGATCTCGGTA -ACGGAATGCAAGGAGATCTGCCTA -ACGGAATGCAAGGAGATCCCACTA -ACGGAATGCAAGGAGATCGGAGTA -ACGGAATGCAAGGAGATCTCGTCT -ACGGAATGCAAGGAGATCTGCACT -ACGGAATGCAAGGAGATCCTGACT -ACGGAATGCAAGGAGATCCAACCT -ACGGAATGCAAGGAGATCGCTACT -ACGGAATGCAAGGAGATCGGATCT -ACGGAATGCAAGGAGATCAAGGCT -ACGGAATGCAAGGAGATCTCAACC -ACGGAATGCAAGGAGATCTGTTCC -ACGGAATGCAAGGAGATCATTCCC -ACGGAATGCAAGGAGATCTTCTCG -ACGGAATGCAAGGAGATCTAGACG -ACGGAATGCAAGGAGATCGTAACG -ACGGAATGCAAGGAGATCACTTCG -ACGGAATGCAAGGAGATCTACGCA -ACGGAATGCAAGGAGATCCTTGCA -ACGGAATGCAAGGAGATCCGAACA -ACGGAATGCAAGGAGATCCAGTCA -ACGGAATGCAAGGAGATCGATCCA -ACGGAATGCAAGGAGATCACGACA -ACGGAATGCAAGGAGATCAGCTCA -ACGGAATGCAAGGAGATCTCACGT -ACGGAATGCAAGGAGATCCGTAGT -ACGGAATGCAAGGAGATCGTCAGT -ACGGAATGCAAGGAGATCGAAGGT -ACGGAATGCAAGGAGATCAACCGT -ACGGAATGCAAGGAGATCTTGTGC -ACGGAATGCAAGGAGATCCTAAGC -ACGGAATGCAAGGAGATCACTAGC -ACGGAATGCAAGGAGATCAGATGC -ACGGAATGCAAGGAGATCTGAAGG -ACGGAATGCAAGGAGATCCAATGG -ACGGAATGCAAGGAGATCATGAGG -ACGGAATGCAAGGAGATCAATGGG -ACGGAATGCAAGGAGATCTCCTGA -ACGGAATGCAAGGAGATCTAGCGA -ACGGAATGCAAGGAGATCCACAGA -ACGGAATGCAAGGAGATCGCAAGA -ACGGAATGCAAGGAGATCGGTTGA -ACGGAATGCAAGGAGATCTCCGAT -ACGGAATGCAAGGAGATCTGGCAT -ACGGAATGCAAGGAGATCCGAGAT -ACGGAATGCAAGGAGATCTACCAC -ACGGAATGCAAGGAGATCCAGAAC -ACGGAATGCAAGGAGATCGTCTAC -ACGGAATGCAAGGAGATCACGTAC -ACGGAATGCAAGGAGATCAGTGAC -ACGGAATGCAAGGAGATCCTGTAG -ACGGAATGCAAGGAGATCCCTAAG -ACGGAATGCAAGGAGATCGTTCAG -ACGGAATGCAAGGAGATCGCATAG -ACGGAATGCAAGGAGATCGACAAG -ACGGAATGCAAGGAGATCAAGCAG -ACGGAATGCAAGGAGATCCGTCAA -ACGGAATGCAAGGAGATCGCTGAA -ACGGAATGCAAGGAGATCAGTACG -ACGGAATGCAAGGAGATCATCCGA -ACGGAATGCAAGGAGATCATGGGA -ACGGAATGCAAGGAGATCGTGCAA -ACGGAATGCAAGGAGATCGAGGAA -ACGGAATGCAAGGAGATCCAGGTA -ACGGAATGCAAGGAGATCGACTCT -ACGGAATGCAAGGAGATCAGTCCT -ACGGAATGCAAGGAGATCTAAGCC -ACGGAATGCAAGGAGATCATAGCC -ACGGAATGCAAGGAGATCTAACCG -ACGGAATGCAAGGAGATCATGCCA -ACGGAATGCAAGCTTCTCGGAAAC -ACGGAATGCAAGCTTCTCAACACC -ACGGAATGCAAGCTTCTCATCGAG -ACGGAATGCAAGCTTCTCCTCCTT -ACGGAATGCAAGCTTCTCCCTGTT -ACGGAATGCAAGCTTCTCCGGTTT -ACGGAATGCAAGCTTCTCGTGGTT -ACGGAATGCAAGCTTCTCGCCTTT -ACGGAATGCAAGCTTCTCGGTCTT -ACGGAATGCAAGCTTCTCACGCTT -ACGGAATGCAAGCTTCTCAGCGTT -ACGGAATGCAAGCTTCTCTTCGTC -ACGGAATGCAAGCTTCTCTCTCTC -ACGGAATGCAAGCTTCTCTGGATC -ACGGAATGCAAGCTTCTCCACTTC -ACGGAATGCAAGCTTCTCGTACTC -ACGGAATGCAAGCTTCTCGATGTC -ACGGAATGCAAGCTTCTCACAGTC -ACGGAATGCAAGCTTCTCTTGCTG -ACGGAATGCAAGCTTCTCTCCATG -ACGGAATGCAAGCTTCTCTGTGTG -ACGGAATGCAAGCTTCTCCTAGTG -ACGGAATGCAAGCTTCTCCATCTG -ACGGAATGCAAGCTTCTCGAGTTG -ACGGAATGCAAGCTTCTCAGACTG -ACGGAATGCAAGCTTCTCTCGGTA -ACGGAATGCAAGCTTCTCTGCCTA -ACGGAATGCAAGCTTCTCCCACTA -ACGGAATGCAAGCTTCTCGGAGTA -ACGGAATGCAAGCTTCTCTCGTCT -ACGGAATGCAAGCTTCTCTGCACT -ACGGAATGCAAGCTTCTCCTGACT -ACGGAATGCAAGCTTCTCCAACCT -ACGGAATGCAAGCTTCTCGCTACT -ACGGAATGCAAGCTTCTCGGATCT -ACGGAATGCAAGCTTCTCAAGGCT -ACGGAATGCAAGCTTCTCTCAACC -ACGGAATGCAAGCTTCTCTGTTCC -ACGGAATGCAAGCTTCTCATTCCC -ACGGAATGCAAGCTTCTCTTCTCG -ACGGAATGCAAGCTTCTCTAGACG -ACGGAATGCAAGCTTCTCGTAACG -ACGGAATGCAAGCTTCTCACTTCG -ACGGAATGCAAGCTTCTCTACGCA -ACGGAATGCAAGCTTCTCCTTGCA -ACGGAATGCAAGCTTCTCCGAACA -ACGGAATGCAAGCTTCTCCAGTCA -ACGGAATGCAAGCTTCTCGATCCA -ACGGAATGCAAGCTTCTCACGACA -ACGGAATGCAAGCTTCTCAGCTCA -ACGGAATGCAAGCTTCTCTCACGT -ACGGAATGCAAGCTTCTCCGTAGT -ACGGAATGCAAGCTTCTCGTCAGT -ACGGAATGCAAGCTTCTCGAAGGT -ACGGAATGCAAGCTTCTCAACCGT -ACGGAATGCAAGCTTCTCTTGTGC -ACGGAATGCAAGCTTCTCCTAAGC -ACGGAATGCAAGCTTCTCACTAGC -ACGGAATGCAAGCTTCTCAGATGC -ACGGAATGCAAGCTTCTCTGAAGG -ACGGAATGCAAGCTTCTCCAATGG -ACGGAATGCAAGCTTCTCATGAGG -ACGGAATGCAAGCTTCTCAATGGG -ACGGAATGCAAGCTTCTCTCCTGA -ACGGAATGCAAGCTTCTCTAGCGA -ACGGAATGCAAGCTTCTCCACAGA -ACGGAATGCAAGCTTCTCGCAAGA -ACGGAATGCAAGCTTCTCGGTTGA -ACGGAATGCAAGCTTCTCTCCGAT -ACGGAATGCAAGCTTCTCTGGCAT -ACGGAATGCAAGCTTCTCCGAGAT -ACGGAATGCAAGCTTCTCTACCAC -ACGGAATGCAAGCTTCTCCAGAAC -ACGGAATGCAAGCTTCTCGTCTAC -ACGGAATGCAAGCTTCTCACGTAC -ACGGAATGCAAGCTTCTCAGTGAC -ACGGAATGCAAGCTTCTCCTGTAG -ACGGAATGCAAGCTTCTCCCTAAG -ACGGAATGCAAGCTTCTCGTTCAG -ACGGAATGCAAGCTTCTCGCATAG -ACGGAATGCAAGCTTCTCGACAAG -ACGGAATGCAAGCTTCTCAAGCAG -ACGGAATGCAAGCTTCTCCGTCAA -ACGGAATGCAAGCTTCTCGCTGAA -ACGGAATGCAAGCTTCTCAGTACG -ACGGAATGCAAGCTTCTCATCCGA -ACGGAATGCAAGCTTCTCATGGGA -ACGGAATGCAAGCTTCTCGTGCAA -ACGGAATGCAAGCTTCTCGAGGAA -ACGGAATGCAAGCTTCTCCAGGTA -ACGGAATGCAAGCTTCTCGACTCT -ACGGAATGCAAGCTTCTCAGTCCT -ACGGAATGCAAGCTTCTCTAAGCC -ACGGAATGCAAGCTTCTCATAGCC -ACGGAATGCAAGCTTCTCTAACCG -ACGGAATGCAAGCTTCTCATGCCA -ACGGAATGCAAGGTTCCTGGAAAC -ACGGAATGCAAGGTTCCTAACACC -ACGGAATGCAAGGTTCCTATCGAG -ACGGAATGCAAGGTTCCTCTCCTT -ACGGAATGCAAGGTTCCTCCTGTT -ACGGAATGCAAGGTTCCTCGGTTT -ACGGAATGCAAGGTTCCTGTGGTT -ACGGAATGCAAGGTTCCTGCCTTT -ACGGAATGCAAGGTTCCTGGTCTT -ACGGAATGCAAGGTTCCTACGCTT -ACGGAATGCAAGGTTCCTAGCGTT -ACGGAATGCAAGGTTCCTTTCGTC -ACGGAATGCAAGGTTCCTTCTCTC -ACGGAATGCAAGGTTCCTTGGATC -ACGGAATGCAAGGTTCCTCACTTC -ACGGAATGCAAGGTTCCTGTACTC -ACGGAATGCAAGGTTCCTGATGTC -ACGGAATGCAAGGTTCCTACAGTC -ACGGAATGCAAGGTTCCTTTGCTG -ACGGAATGCAAGGTTCCTTCCATG -ACGGAATGCAAGGTTCCTTGTGTG -ACGGAATGCAAGGTTCCTCTAGTG -ACGGAATGCAAGGTTCCTCATCTG -ACGGAATGCAAGGTTCCTGAGTTG -ACGGAATGCAAGGTTCCTAGACTG -ACGGAATGCAAGGTTCCTTCGGTA -ACGGAATGCAAGGTTCCTTGCCTA -ACGGAATGCAAGGTTCCTCCACTA -ACGGAATGCAAGGTTCCTGGAGTA -ACGGAATGCAAGGTTCCTTCGTCT -ACGGAATGCAAGGTTCCTTGCACT -ACGGAATGCAAGGTTCCTCTGACT -ACGGAATGCAAGGTTCCTCAACCT -ACGGAATGCAAGGTTCCTGCTACT -ACGGAATGCAAGGTTCCTGGATCT -ACGGAATGCAAGGTTCCTAAGGCT -ACGGAATGCAAGGTTCCTTCAACC -ACGGAATGCAAGGTTCCTTGTTCC -ACGGAATGCAAGGTTCCTATTCCC -ACGGAATGCAAGGTTCCTTTCTCG -ACGGAATGCAAGGTTCCTTAGACG -ACGGAATGCAAGGTTCCTGTAACG -ACGGAATGCAAGGTTCCTACTTCG -ACGGAATGCAAGGTTCCTTACGCA -ACGGAATGCAAGGTTCCTCTTGCA -ACGGAATGCAAGGTTCCTCGAACA -ACGGAATGCAAGGTTCCTCAGTCA -ACGGAATGCAAGGTTCCTGATCCA -ACGGAATGCAAGGTTCCTACGACA -ACGGAATGCAAGGTTCCTAGCTCA -ACGGAATGCAAGGTTCCTTCACGT -ACGGAATGCAAGGTTCCTCGTAGT -ACGGAATGCAAGGTTCCTGTCAGT -ACGGAATGCAAGGTTCCTGAAGGT -ACGGAATGCAAGGTTCCTAACCGT -ACGGAATGCAAGGTTCCTTTGTGC -ACGGAATGCAAGGTTCCTCTAAGC -ACGGAATGCAAGGTTCCTACTAGC -ACGGAATGCAAGGTTCCTAGATGC -ACGGAATGCAAGGTTCCTTGAAGG -ACGGAATGCAAGGTTCCTCAATGG -ACGGAATGCAAGGTTCCTATGAGG -ACGGAATGCAAGGTTCCTAATGGG -ACGGAATGCAAGGTTCCTTCCTGA -ACGGAATGCAAGGTTCCTTAGCGA -ACGGAATGCAAGGTTCCTCACAGA -ACGGAATGCAAGGTTCCTGCAAGA -ACGGAATGCAAGGTTCCTGGTTGA -ACGGAATGCAAGGTTCCTTCCGAT -ACGGAATGCAAGGTTCCTTGGCAT -ACGGAATGCAAGGTTCCTCGAGAT -ACGGAATGCAAGGTTCCTTACCAC -ACGGAATGCAAGGTTCCTCAGAAC -ACGGAATGCAAGGTTCCTGTCTAC -ACGGAATGCAAGGTTCCTACGTAC -ACGGAATGCAAGGTTCCTAGTGAC -ACGGAATGCAAGGTTCCTCTGTAG -ACGGAATGCAAGGTTCCTCCTAAG -ACGGAATGCAAGGTTCCTGTTCAG -ACGGAATGCAAGGTTCCTGCATAG -ACGGAATGCAAGGTTCCTGACAAG -ACGGAATGCAAGGTTCCTAAGCAG -ACGGAATGCAAGGTTCCTCGTCAA -ACGGAATGCAAGGTTCCTGCTGAA -ACGGAATGCAAGGTTCCTAGTACG -ACGGAATGCAAGGTTCCTATCCGA -ACGGAATGCAAGGTTCCTATGGGA -ACGGAATGCAAGGTTCCTGTGCAA -ACGGAATGCAAGGTTCCTGAGGAA -ACGGAATGCAAGGTTCCTCAGGTA -ACGGAATGCAAGGTTCCTGACTCT -ACGGAATGCAAGGTTCCTAGTCCT -ACGGAATGCAAGGTTCCTTAAGCC -ACGGAATGCAAGGTTCCTATAGCC -ACGGAATGCAAGGTTCCTTAACCG -ACGGAATGCAAGGTTCCTATGCCA -ACGGAATGCAAGTTTCGGGGAAAC -ACGGAATGCAAGTTTCGGAACACC -ACGGAATGCAAGTTTCGGATCGAG -ACGGAATGCAAGTTTCGGCTCCTT -ACGGAATGCAAGTTTCGGCCTGTT -ACGGAATGCAAGTTTCGGCGGTTT -ACGGAATGCAAGTTTCGGGTGGTT -ACGGAATGCAAGTTTCGGGCCTTT -ACGGAATGCAAGTTTCGGGGTCTT -ACGGAATGCAAGTTTCGGACGCTT -ACGGAATGCAAGTTTCGGAGCGTT -ACGGAATGCAAGTTTCGGTTCGTC -ACGGAATGCAAGTTTCGGTCTCTC -ACGGAATGCAAGTTTCGGTGGATC -ACGGAATGCAAGTTTCGGCACTTC -ACGGAATGCAAGTTTCGGGTACTC -ACGGAATGCAAGTTTCGGGATGTC -ACGGAATGCAAGTTTCGGACAGTC -ACGGAATGCAAGTTTCGGTTGCTG -ACGGAATGCAAGTTTCGGTCCATG -ACGGAATGCAAGTTTCGGTGTGTG -ACGGAATGCAAGTTTCGGCTAGTG -ACGGAATGCAAGTTTCGGCATCTG -ACGGAATGCAAGTTTCGGGAGTTG -ACGGAATGCAAGTTTCGGAGACTG -ACGGAATGCAAGTTTCGGTCGGTA -ACGGAATGCAAGTTTCGGTGCCTA -ACGGAATGCAAGTTTCGGCCACTA -ACGGAATGCAAGTTTCGGGGAGTA -ACGGAATGCAAGTTTCGGTCGTCT -ACGGAATGCAAGTTTCGGTGCACT -ACGGAATGCAAGTTTCGGCTGACT -ACGGAATGCAAGTTTCGGCAACCT -ACGGAATGCAAGTTTCGGGCTACT -ACGGAATGCAAGTTTCGGGGATCT -ACGGAATGCAAGTTTCGGAAGGCT -ACGGAATGCAAGTTTCGGTCAACC -ACGGAATGCAAGTTTCGGTGTTCC -ACGGAATGCAAGTTTCGGATTCCC -ACGGAATGCAAGTTTCGGTTCTCG -ACGGAATGCAAGTTTCGGTAGACG -ACGGAATGCAAGTTTCGGGTAACG -ACGGAATGCAAGTTTCGGACTTCG -ACGGAATGCAAGTTTCGGTACGCA -ACGGAATGCAAGTTTCGGCTTGCA -ACGGAATGCAAGTTTCGGCGAACA -ACGGAATGCAAGTTTCGGCAGTCA -ACGGAATGCAAGTTTCGGGATCCA -ACGGAATGCAAGTTTCGGACGACA -ACGGAATGCAAGTTTCGGAGCTCA -ACGGAATGCAAGTTTCGGTCACGT -ACGGAATGCAAGTTTCGGCGTAGT -ACGGAATGCAAGTTTCGGGTCAGT -ACGGAATGCAAGTTTCGGGAAGGT -ACGGAATGCAAGTTTCGGAACCGT -ACGGAATGCAAGTTTCGGTTGTGC -ACGGAATGCAAGTTTCGGCTAAGC -ACGGAATGCAAGTTTCGGACTAGC -ACGGAATGCAAGTTTCGGAGATGC -ACGGAATGCAAGTTTCGGTGAAGG -ACGGAATGCAAGTTTCGGCAATGG -ACGGAATGCAAGTTTCGGATGAGG -ACGGAATGCAAGTTTCGGAATGGG -ACGGAATGCAAGTTTCGGTCCTGA -ACGGAATGCAAGTTTCGGTAGCGA -ACGGAATGCAAGTTTCGGCACAGA -ACGGAATGCAAGTTTCGGGCAAGA -ACGGAATGCAAGTTTCGGGGTTGA -ACGGAATGCAAGTTTCGGTCCGAT -ACGGAATGCAAGTTTCGGTGGCAT -ACGGAATGCAAGTTTCGGCGAGAT -ACGGAATGCAAGTTTCGGTACCAC -ACGGAATGCAAGTTTCGGCAGAAC -ACGGAATGCAAGTTTCGGGTCTAC -ACGGAATGCAAGTTTCGGACGTAC -ACGGAATGCAAGTTTCGGAGTGAC -ACGGAATGCAAGTTTCGGCTGTAG -ACGGAATGCAAGTTTCGGCCTAAG -ACGGAATGCAAGTTTCGGGTTCAG -ACGGAATGCAAGTTTCGGGCATAG -ACGGAATGCAAGTTTCGGGACAAG -ACGGAATGCAAGTTTCGGAAGCAG -ACGGAATGCAAGTTTCGGCGTCAA -ACGGAATGCAAGTTTCGGGCTGAA -ACGGAATGCAAGTTTCGGAGTACG -ACGGAATGCAAGTTTCGGATCCGA -ACGGAATGCAAGTTTCGGATGGGA -ACGGAATGCAAGTTTCGGGTGCAA -ACGGAATGCAAGTTTCGGGAGGAA -ACGGAATGCAAGTTTCGGCAGGTA -ACGGAATGCAAGTTTCGGGACTCT -ACGGAATGCAAGTTTCGGAGTCCT -ACGGAATGCAAGTTTCGGTAAGCC -ACGGAATGCAAGTTTCGGATAGCC -ACGGAATGCAAGTTTCGGTAACCG -ACGGAATGCAAGTTTCGGATGCCA -ACGGAATGCAAGGTTGTGGGAAAC -ACGGAATGCAAGGTTGTGAACACC -ACGGAATGCAAGGTTGTGATCGAG -ACGGAATGCAAGGTTGTGCTCCTT -ACGGAATGCAAGGTTGTGCCTGTT -ACGGAATGCAAGGTTGTGCGGTTT -ACGGAATGCAAGGTTGTGGTGGTT -ACGGAATGCAAGGTTGTGGCCTTT -ACGGAATGCAAGGTTGTGGGTCTT -ACGGAATGCAAGGTTGTGACGCTT -ACGGAATGCAAGGTTGTGAGCGTT -ACGGAATGCAAGGTTGTGTTCGTC -ACGGAATGCAAGGTTGTGTCTCTC -ACGGAATGCAAGGTTGTGTGGATC -ACGGAATGCAAGGTTGTGCACTTC -ACGGAATGCAAGGTTGTGGTACTC -ACGGAATGCAAGGTTGTGGATGTC -ACGGAATGCAAGGTTGTGACAGTC -ACGGAATGCAAGGTTGTGTTGCTG -ACGGAATGCAAGGTTGTGTCCATG -ACGGAATGCAAGGTTGTGTGTGTG -ACGGAATGCAAGGTTGTGCTAGTG -ACGGAATGCAAGGTTGTGCATCTG -ACGGAATGCAAGGTTGTGGAGTTG -ACGGAATGCAAGGTTGTGAGACTG -ACGGAATGCAAGGTTGTGTCGGTA -ACGGAATGCAAGGTTGTGTGCCTA -ACGGAATGCAAGGTTGTGCCACTA -ACGGAATGCAAGGTTGTGGGAGTA -ACGGAATGCAAGGTTGTGTCGTCT -ACGGAATGCAAGGTTGTGTGCACT -ACGGAATGCAAGGTTGTGCTGACT -ACGGAATGCAAGGTTGTGCAACCT -ACGGAATGCAAGGTTGTGGCTACT -ACGGAATGCAAGGTTGTGGGATCT -ACGGAATGCAAGGTTGTGAAGGCT -ACGGAATGCAAGGTTGTGTCAACC -ACGGAATGCAAGGTTGTGTGTTCC -ACGGAATGCAAGGTTGTGATTCCC -ACGGAATGCAAGGTTGTGTTCTCG -ACGGAATGCAAGGTTGTGTAGACG -ACGGAATGCAAGGTTGTGGTAACG -ACGGAATGCAAGGTTGTGACTTCG -ACGGAATGCAAGGTTGTGTACGCA -ACGGAATGCAAGGTTGTGCTTGCA -ACGGAATGCAAGGTTGTGCGAACA -ACGGAATGCAAGGTTGTGCAGTCA -ACGGAATGCAAGGTTGTGGATCCA -ACGGAATGCAAGGTTGTGACGACA -ACGGAATGCAAGGTTGTGAGCTCA -ACGGAATGCAAGGTTGTGTCACGT -ACGGAATGCAAGGTTGTGCGTAGT -ACGGAATGCAAGGTTGTGGTCAGT -ACGGAATGCAAGGTTGTGGAAGGT -ACGGAATGCAAGGTTGTGAACCGT -ACGGAATGCAAGGTTGTGTTGTGC -ACGGAATGCAAGGTTGTGCTAAGC -ACGGAATGCAAGGTTGTGACTAGC -ACGGAATGCAAGGTTGTGAGATGC -ACGGAATGCAAGGTTGTGTGAAGG -ACGGAATGCAAGGTTGTGCAATGG -ACGGAATGCAAGGTTGTGATGAGG -ACGGAATGCAAGGTTGTGAATGGG -ACGGAATGCAAGGTTGTGTCCTGA -ACGGAATGCAAGGTTGTGTAGCGA -ACGGAATGCAAGGTTGTGCACAGA -ACGGAATGCAAGGTTGTGGCAAGA -ACGGAATGCAAGGTTGTGGGTTGA -ACGGAATGCAAGGTTGTGTCCGAT -ACGGAATGCAAGGTTGTGTGGCAT -ACGGAATGCAAGGTTGTGCGAGAT -ACGGAATGCAAGGTTGTGTACCAC -ACGGAATGCAAGGTTGTGCAGAAC -ACGGAATGCAAGGTTGTGGTCTAC -ACGGAATGCAAGGTTGTGACGTAC -ACGGAATGCAAGGTTGTGAGTGAC -ACGGAATGCAAGGTTGTGCTGTAG -ACGGAATGCAAGGTTGTGCCTAAG -ACGGAATGCAAGGTTGTGGTTCAG -ACGGAATGCAAGGTTGTGGCATAG -ACGGAATGCAAGGTTGTGGACAAG -ACGGAATGCAAGGTTGTGAAGCAG -ACGGAATGCAAGGTTGTGCGTCAA -ACGGAATGCAAGGTTGTGGCTGAA -ACGGAATGCAAGGTTGTGAGTACG -ACGGAATGCAAGGTTGTGATCCGA -ACGGAATGCAAGGTTGTGATGGGA -ACGGAATGCAAGGTTGTGGTGCAA -ACGGAATGCAAGGTTGTGGAGGAA -ACGGAATGCAAGGTTGTGCAGGTA -ACGGAATGCAAGGTTGTGGACTCT -ACGGAATGCAAGGTTGTGAGTCCT -ACGGAATGCAAGGTTGTGTAAGCC -ACGGAATGCAAGGTTGTGATAGCC -ACGGAATGCAAGGTTGTGTAACCG -ACGGAATGCAAGGTTGTGATGCCA -ACGGAATGCAAGTTTGCCGGAAAC -ACGGAATGCAAGTTTGCCAACACC -ACGGAATGCAAGTTTGCCATCGAG -ACGGAATGCAAGTTTGCCCTCCTT -ACGGAATGCAAGTTTGCCCCTGTT -ACGGAATGCAAGTTTGCCCGGTTT -ACGGAATGCAAGTTTGCCGTGGTT -ACGGAATGCAAGTTTGCCGCCTTT -ACGGAATGCAAGTTTGCCGGTCTT -ACGGAATGCAAGTTTGCCACGCTT -ACGGAATGCAAGTTTGCCAGCGTT -ACGGAATGCAAGTTTGCCTTCGTC -ACGGAATGCAAGTTTGCCTCTCTC -ACGGAATGCAAGTTTGCCTGGATC -ACGGAATGCAAGTTTGCCCACTTC -ACGGAATGCAAGTTTGCCGTACTC -ACGGAATGCAAGTTTGCCGATGTC -ACGGAATGCAAGTTTGCCACAGTC -ACGGAATGCAAGTTTGCCTTGCTG -ACGGAATGCAAGTTTGCCTCCATG -ACGGAATGCAAGTTTGCCTGTGTG -ACGGAATGCAAGTTTGCCCTAGTG -ACGGAATGCAAGTTTGCCCATCTG -ACGGAATGCAAGTTTGCCGAGTTG -ACGGAATGCAAGTTTGCCAGACTG -ACGGAATGCAAGTTTGCCTCGGTA -ACGGAATGCAAGTTTGCCTGCCTA -ACGGAATGCAAGTTTGCCCCACTA -ACGGAATGCAAGTTTGCCGGAGTA -ACGGAATGCAAGTTTGCCTCGTCT -ACGGAATGCAAGTTTGCCTGCACT -ACGGAATGCAAGTTTGCCCTGACT -ACGGAATGCAAGTTTGCCCAACCT -ACGGAATGCAAGTTTGCCGCTACT -ACGGAATGCAAGTTTGCCGGATCT -ACGGAATGCAAGTTTGCCAAGGCT -ACGGAATGCAAGTTTGCCTCAACC -ACGGAATGCAAGTTTGCCTGTTCC -ACGGAATGCAAGTTTGCCATTCCC -ACGGAATGCAAGTTTGCCTTCTCG -ACGGAATGCAAGTTTGCCTAGACG -ACGGAATGCAAGTTTGCCGTAACG -ACGGAATGCAAGTTTGCCACTTCG -ACGGAATGCAAGTTTGCCTACGCA -ACGGAATGCAAGTTTGCCCTTGCA -ACGGAATGCAAGTTTGCCCGAACA -ACGGAATGCAAGTTTGCCCAGTCA -ACGGAATGCAAGTTTGCCGATCCA -ACGGAATGCAAGTTTGCCACGACA -ACGGAATGCAAGTTTGCCAGCTCA -ACGGAATGCAAGTTTGCCTCACGT -ACGGAATGCAAGTTTGCCCGTAGT -ACGGAATGCAAGTTTGCCGTCAGT -ACGGAATGCAAGTTTGCCGAAGGT -ACGGAATGCAAGTTTGCCAACCGT -ACGGAATGCAAGTTTGCCTTGTGC -ACGGAATGCAAGTTTGCCCTAAGC -ACGGAATGCAAGTTTGCCACTAGC -ACGGAATGCAAGTTTGCCAGATGC -ACGGAATGCAAGTTTGCCTGAAGG -ACGGAATGCAAGTTTGCCCAATGG -ACGGAATGCAAGTTTGCCATGAGG -ACGGAATGCAAGTTTGCCAATGGG -ACGGAATGCAAGTTTGCCTCCTGA -ACGGAATGCAAGTTTGCCTAGCGA -ACGGAATGCAAGTTTGCCCACAGA -ACGGAATGCAAGTTTGCCGCAAGA -ACGGAATGCAAGTTTGCCGGTTGA -ACGGAATGCAAGTTTGCCTCCGAT -ACGGAATGCAAGTTTGCCTGGCAT -ACGGAATGCAAGTTTGCCCGAGAT -ACGGAATGCAAGTTTGCCTACCAC -ACGGAATGCAAGTTTGCCCAGAAC -ACGGAATGCAAGTTTGCCGTCTAC -ACGGAATGCAAGTTTGCCACGTAC -ACGGAATGCAAGTTTGCCAGTGAC -ACGGAATGCAAGTTTGCCCTGTAG -ACGGAATGCAAGTTTGCCCCTAAG -ACGGAATGCAAGTTTGCCGTTCAG -ACGGAATGCAAGTTTGCCGCATAG -ACGGAATGCAAGTTTGCCGACAAG -ACGGAATGCAAGTTTGCCAAGCAG -ACGGAATGCAAGTTTGCCCGTCAA -ACGGAATGCAAGTTTGCCGCTGAA -ACGGAATGCAAGTTTGCCAGTACG -ACGGAATGCAAGTTTGCCATCCGA -ACGGAATGCAAGTTTGCCATGGGA -ACGGAATGCAAGTTTGCCGTGCAA -ACGGAATGCAAGTTTGCCGAGGAA -ACGGAATGCAAGTTTGCCCAGGTA -ACGGAATGCAAGTTTGCCGACTCT -ACGGAATGCAAGTTTGCCAGTCCT -ACGGAATGCAAGTTTGCCTAAGCC -ACGGAATGCAAGTTTGCCATAGCC -ACGGAATGCAAGTTTGCCTAACCG -ACGGAATGCAAGTTTGCCATGCCA -ACGGAATGCAAGCTTGGTGGAAAC -ACGGAATGCAAGCTTGGTAACACC -ACGGAATGCAAGCTTGGTATCGAG -ACGGAATGCAAGCTTGGTCTCCTT -ACGGAATGCAAGCTTGGTCCTGTT -ACGGAATGCAAGCTTGGTCGGTTT -ACGGAATGCAAGCTTGGTGTGGTT -ACGGAATGCAAGCTTGGTGCCTTT -ACGGAATGCAAGCTTGGTGGTCTT -ACGGAATGCAAGCTTGGTACGCTT -ACGGAATGCAAGCTTGGTAGCGTT -ACGGAATGCAAGCTTGGTTTCGTC -ACGGAATGCAAGCTTGGTTCTCTC -ACGGAATGCAAGCTTGGTTGGATC -ACGGAATGCAAGCTTGGTCACTTC -ACGGAATGCAAGCTTGGTGTACTC -ACGGAATGCAAGCTTGGTGATGTC -ACGGAATGCAAGCTTGGTACAGTC -ACGGAATGCAAGCTTGGTTTGCTG -ACGGAATGCAAGCTTGGTTCCATG -ACGGAATGCAAGCTTGGTTGTGTG -ACGGAATGCAAGCTTGGTCTAGTG -ACGGAATGCAAGCTTGGTCATCTG -ACGGAATGCAAGCTTGGTGAGTTG -ACGGAATGCAAGCTTGGTAGACTG -ACGGAATGCAAGCTTGGTTCGGTA -ACGGAATGCAAGCTTGGTTGCCTA -ACGGAATGCAAGCTTGGTCCACTA -ACGGAATGCAAGCTTGGTGGAGTA -ACGGAATGCAAGCTTGGTTCGTCT -ACGGAATGCAAGCTTGGTTGCACT -ACGGAATGCAAGCTTGGTCTGACT -ACGGAATGCAAGCTTGGTCAACCT -ACGGAATGCAAGCTTGGTGCTACT -ACGGAATGCAAGCTTGGTGGATCT -ACGGAATGCAAGCTTGGTAAGGCT -ACGGAATGCAAGCTTGGTTCAACC -ACGGAATGCAAGCTTGGTTGTTCC -ACGGAATGCAAGCTTGGTATTCCC -ACGGAATGCAAGCTTGGTTTCTCG -ACGGAATGCAAGCTTGGTTAGACG -ACGGAATGCAAGCTTGGTGTAACG -ACGGAATGCAAGCTTGGTACTTCG -ACGGAATGCAAGCTTGGTTACGCA -ACGGAATGCAAGCTTGGTCTTGCA -ACGGAATGCAAGCTTGGTCGAACA -ACGGAATGCAAGCTTGGTCAGTCA -ACGGAATGCAAGCTTGGTGATCCA -ACGGAATGCAAGCTTGGTACGACA -ACGGAATGCAAGCTTGGTAGCTCA -ACGGAATGCAAGCTTGGTTCACGT -ACGGAATGCAAGCTTGGTCGTAGT -ACGGAATGCAAGCTTGGTGTCAGT -ACGGAATGCAAGCTTGGTGAAGGT -ACGGAATGCAAGCTTGGTAACCGT -ACGGAATGCAAGCTTGGTTTGTGC -ACGGAATGCAAGCTTGGTCTAAGC -ACGGAATGCAAGCTTGGTACTAGC -ACGGAATGCAAGCTTGGTAGATGC -ACGGAATGCAAGCTTGGTTGAAGG -ACGGAATGCAAGCTTGGTCAATGG -ACGGAATGCAAGCTTGGTATGAGG -ACGGAATGCAAGCTTGGTAATGGG -ACGGAATGCAAGCTTGGTTCCTGA -ACGGAATGCAAGCTTGGTTAGCGA -ACGGAATGCAAGCTTGGTCACAGA -ACGGAATGCAAGCTTGGTGCAAGA -ACGGAATGCAAGCTTGGTGGTTGA -ACGGAATGCAAGCTTGGTTCCGAT -ACGGAATGCAAGCTTGGTTGGCAT -ACGGAATGCAAGCTTGGTCGAGAT -ACGGAATGCAAGCTTGGTTACCAC -ACGGAATGCAAGCTTGGTCAGAAC -ACGGAATGCAAGCTTGGTGTCTAC -ACGGAATGCAAGCTTGGTACGTAC -ACGGAATGCAAGCTTGGTAGTGAC -ACGGAATGCAAGCTTGGTCTGTAG -ACGGAATGCAAGCTTGGTCCTAAG -ACGGAATGCAAGCTTGGTGTTCAG -ACGGAATGCAAGCTTGGTGCATAG -ACGGAATGCAAGCTTGGTGACAAG -ACGGAATGCAAGCTTGGTAAGCAG -ACGGAATGCAAGCTTGGTCGTCAA -ACGGAATGCAAGCTTGGTGCTGAA -ACGGAATGCAAGCTTGGTAGTACG -ACGGAATGCAAGCTTGGTATCCGA -ACGGAATGCAAGCTTGGTATGGGA -ACGGAATGCAAGCTTGGTGTGCAA -ACGGAATGCAAGCTTGGTGAGGAA -ACGGAATGCAAGCTTGGTCAGGTA -ACGGAATGCAAGCTTGGTGACTCT -ACGGAATGCAAGCTTGGTAGTCCT -ACGGAATGCAAGCTTGGTTAAGCC -ACGGAATGCAAGCTTGGTATAGCC -ACGGAATGCAAGCTTGGTTAACCG -ACGGAATGCAAGCTTGGTATGCCA -ACGGAATGCAAGCTTACGGGAAAC -ACGGAATGCAAGCTTACGAACACC -ACGGAATGCAAGCTTACGATCGAG -ACGGAATGCAAGCTTACGCTCCTT -ACGGAATGCAAGCTTACGCCTGTT -ACGGAATGCAAGCTTACGCGGTTT -ACGGAATGCAAGCTTACGGTGGTT -ACGGAATGCAAGCTTACGGCCTTT -ACGGAATGCAAGCTTACGGGTCTT -ACGGAATGCAAGCTTACGACGCTT -ACGGAATGCAAGCTTACGAGCGTT -ACGGAATGCAAGCTTACGTTCGTC -ACGGAATGCAAGCTTACGTCTCTC -ACGGAATGCAAGCTTACGTGGATC -ACGGAATGCAAGCTTACGCACTTC -ACGGAATGCAAGCTTACGGTACTC -ACGGAATGCAAGCTTACGGATGTC -ACGGAATGCAAGCTTACGACAGTC -ACGGAATGCAAGCTTACGTTGCTG -ACGGAATGCAAGCTTACGTCCATG -ACGGAATGCAAGCTTACGTGTGTG -ACGGAATGCAAGCTTACGCTAGTG -ACGGAATGCAAGCTTACGCATCTG -ACGGAATGCAAGCTTACGGAGTTG -ACGGAATGCAAGCTTACGAGACTG -ACGGAATGCAAGCTTACGTCGGTA -ACGGAATGCAAGCTTACGTGCCTA -ACGGAATGCAAGCTTACGCCACTA -ACGGAATGCAAGCTTACGGGAGTA -ACGGAATGCAAGCTTACGTCGTCT -ACGGAATGCAAGCTTACGTGCACT -ACGGAATGCAAGCTTACGCTGACT -ACGGAATGCAAGCTTACGCAACCT -ACGGAATGCAAGCTTACGGCTACT -ACGGAATGCAAGCTTACGGGATCT -ACGGAATGCAAGCTTACGAAGGCT -ACGGAATGCAAGCTTACGTCAACC -ACGGAATGCAAGCTTACGTGTTCC -ACGGAATGCAAGCTTACGATTCCC -ACGGAATGCAAGCTTACGTTCTCG -ACGGAATGCAAGCTTACGTAGACG -ACGGAATGCAAGCTTACGGTAACG -ACGGAATGCAAGCTTACGACTTCG -ACGGAATGCAAGCTTACGTACGCA -ACGGAATGCAAGCTTACGCTTGCA -ACGGAATGCAAGCTTACGCGAACA -ACGGAATGCAAGCTTACGCAGTCA -ACGGAATGCAAGCTTACGGATCCA -ACGGAATGCAAGCTTACGACGACA -ACGGAATGCAAGCTTACGAGCTCA -ACGGAATGCAAGCTTACGTCACGT -ACGGAATGCAAGCTTACGCGTAGT -ACGGAATGCAAGCTTACGGTCAGT -ACGGAATGCAAGCTTACGGAAGGT -ACGGAATGCAAGCTTACGAACCGT -ACGGAATGCAAGCTTACGTTGTGC -ACGGAATGCAAGCTTACGCTAAGC -ACGGAATGCAAGCTTACGACTAGC -ACGGAATGCAAGCTTACGAGATGC -ACGGAATGCAAGCTTACGTGAAGG -ACGGAATGCAAGCTTACGCAATGG -ACGGAATGCAAGCTTACGATGAGG -ACGGAATGCAAGCTTACGAATGGG -ACGGAATGCAAGCTTACGTCCTGA -ACGGAATGCAAGCTTACGTAGCGA -ACGGAATGCAAGCTTACGCACAGA -ACGGAATGCAAGCTTACGGCAAGA -ACGGAATGCAAGCTTACGGGTTGA -ACGGAATGCAAGCTTACGTCCGAT -ACGGAATGCAAGCTTACGTGGCAT -ACGGAATGCAAGCTTACGCGAGAT -ACGGAATGCAAGCTTACGTACCAC -ACGGAATGCAAGCTTACGCAGAAC -ACGGAATGCAAGCTTACGGTCTAC -ACGGAATGCAAGCTTACGACGTAC -ACGGAATGCAAGCTTACGAGTGAC -ACGGAATGCAAGCTTACGCTGTAG -ACGGAATGCAAGCTTACGCCTAAG -ACGGAATGCAAGCTTACGGTTCAG -ACGGAATGCAAGCTTACGGCATAG -ACGGAATGCAAGCTTACGGACAAG -ACGGAATGCAAGCTTACGAAGCAG -ACGGAATGCAAGCTTACGCGTCAA -ACGGAATGCAAGCTTACGGCTGAA -ACGGAATGCAAGCTTACGAGTACG -ACGGAATGCAAGCTTACGATCCGA -ACGGAATGCAAGCTTACGATGGGA -ACGGAATGCAAGCTTACGGTGCAA -ACGGAATGCAAGCTTACGGAGGAA -ACGGAATGCAAGCTTACGCAGGTA -ACGGAATGCAAGCTTACGGACTCT -ACGGAATGCAAGCTTACGAGTCCT -ACGGAATGCAAGCTTACGTAAGCC -ACGGAATGCAAGCTTACGATAGCC -ACGGAATGCAAGCTTACGTAACCG -ACGGAATGCAAGCTTACGATGCCA -ACGGAATGCAAGGTTAGCGGAAAC -ACGGAATGCAAGGTTAGCAACACC -ACGGAATGCAAGGTTAGCATCGAG -ACGGAATGCAAGGTTAGCCTCCTT -ACGGAATGCAAGGTTAGCCCTGTT -ACGGAATGCAAGGTTAGCCGGTTT -ACGGAATGCAAGGTTAGCGTGGTT -ACGGAATGCAAGGTTAGCGCCTTT -ACGGAATGCAAGGTTAGCGGTCTT -ACGGAATGCAAGGTTAGCACGCTT -ACGGAATGCAAGGTTAGCAGCGTT -ACGGAATGCAAGGTTAGCTTCGTC -ACGGAATGCAAGGTTAGCTCTCTC -ACGGAATGCAAGGTTAGCTGGATC -ACGGAATGCAAGGTTAGCCACTTC -ACGGAATGCAAGGTTAGCGTACTC -ACGGAATGCAAGGTTAGCGATGTC -ACGGAATGCAAGGTTAGCACAGTC -ACGGAATGCAAGGTTAGCTTGCTG -ACGGAATGCAAGGTTAGCTCCATG -ACGGAATGCAAGGTTAGCTGTGTG -ACGGAATGCAAGGTTAGCCTAGTG -ACGGAATGCAAGGTTAGCCATCTG -ACGGAATGCAAGGTTAGCGAGTTG -ACGGAATGCAAGGTTAGCAGACTG -ACGGAATGCAAGGTTAGCTCGGTA -ACGGAATGCAAGGTTAGCTGCCTA -ACGGAATGCAAGGTTAGCCCACTA -ACGGAATGCAAGGTTAGCGGAGTA -ACGGAATGCAAGGTTAGCTCGTCT -ACGGAATGCAAGGTTAGCTGCACT -ACGGAATGCAAGGTTAGCCTGACT -ACGGAATGCAAGGTTAGCCAACCT -ACGGAATGCAAGGTTAGCGCTACT -ACGGAATGCAAGGTTAGCGGATCT -ACGGAATGCAAGGTTAGCAAGGCT -ACGGAATGCAAGGTTAGCTCAACC -ACGGAATGCAAGGTTAGCTGTTCC -ACGGAATGCAAGGTTAGCATTCCC -ACGGAATGCAAGGTTAGCTTCTCG -ACGGAATGCAAGGTTAGCTAGACG -ACGGAATGCAAGGTTAGCGTAACG -ACGGAATGCAAGGTTAGCACTTCG -ACGGAATGCAAGGTTAGCTACGCA -ACGGAATGCAAGGTTAGCCTTGCA -ACGGAATGCAAGGTTAGCCGAACA -ACGGAATGCAAGGTTAGCCAGTCA -ACGGAATGCAAGGTTAGCGATCCA -ACGGAATGCAAGGTTAGCACGACA -ACGGAATGCAAGGTTAGCAGCTCA -ACGGAATGCAAGGTTAGCTCACGT -ACGGAATGCAAGGTTAGCCGTAGT -ACGGAATGCAAGGTTAGCGTCAGT -ACGGAATGCAAGGTTAGCGAAGGT -ACGGAATGCAAGGTTAGCAACCGT -ACGGAATGCAAGGTTAGCTTGTGC -ACGGAATGCAAGGTTAGCCTAAGC -ACGGAATGCAAGGTTAGCACTAGC -ACGGAATGCAAGGTTAGCAGATGC -ACGGAATGCAAGGTTAGCTGAAGG -ACGGAATGCAAGGTTAGCCAATGG -ACGGAATGCAAGGTTAGCATGAGG -ACGGAATGCAAGGTTAGCAATGGG -ACGGAATGCAAGGTTAGCTCCTGA -ACGGAATGCAAGGTTAGCTAGCGA -ACGGAATGCAAGGTTAGCCACAGA -ACGGAATGCAAGGTTAGCGCAAGA -ACGGAATGCAAGGTTAGCGGTTGA -ACGGAATGCAAGGTTAGCTCCGAT -ACGGAATGCAAGGTTAGCTGGCAT -ACGGAATGCAAGGTTAGCCGAGAT -ACGGAATGCAAGGTTAGCTACCAC -ACGGAATGCAAGGTTAGCCAGAAC -ACGGAATGCAAGGTTAGCGTCTAC -ACGGAATGCAAGGTTAGCACGTAC -ACGGAATGCAAGGTTAGCAGTGAC -ACGGAATGCAAGGTTAGCCTGTAG -ACGGAATGCAAGGTTAGCCCTAAG -ACGGAATGCAAGGTTAGCGTTCAG -ACGGAATGCAAGGTTAGCGCATAG -ACGGAATGCAAGGTTAGCGACAAG -ACGGAATGCAAGGTTAGCAAGCAG -ACGGAATGCAAGGTTAGCCGTCAA -ACGGAATGCAAGGTTAGCGCTGAA -ACGGAATGCAAGGTTAGCAGTACG -ACGGAATGCAAGGTTAGCATCCGA -ACGGAATGCAAGGTTAGCATGGGA -ACGGAATGCAAGGTTAGCGTGCAA -ACGGAATGCAAGGTTAGCGAGGAA -ACGGAATGCAAGGTTAGCCAGGTA -ACGGAATGCAAGGTTAGCGACTCT -ACGGAATGCAAGGTTAGCAGTCCT -ACGGAATGCAAGGTTAGCTAAGCC -ACGGAATGCAAGGTTAGCATAGCC -ACGGAATGCAAGGTTAGCTAACCG -ACGGAATGCAAGGTTAGCATGCCA -ACGGAATGCAAGGTCTTCGGAAAC -ACGGAATGCAAGGTCTTCAACACC -ACGGAATGCAAGGTCTTCATCGAG -ACGGAATGCAAGGTCTTCCTCCTT -ACGGAATGCAAGGTCTTCCCTGTT -ACGGAATGCAAGGTCTTCCGGTTT -ACGGAATGCAAGGTCTTCGTGGTT -ACGGAATGCAAGGTCTTCGCCTTT -ACGGAATGCAAGGTCTTCGGTCTT -ACGGAATGCAAGGTCTTCACGCTT -ACGGAATGCAAGGTCTTCAGCGTT -ACGGAATGCAAGGTCTTCTTCGTC -ACGGAATGCAAGGTCTTCTCTCTC -ACGGAATGCAAGGTCTTCTGGATC -ACGGAATGCAAGGTCTTCCACTTC -ACGGAATGCAAGGTCTTCGTACTC -ACGGAATGCAAGGTCTTCGATGTC -ACGGAATGCAAGGTCTTCACAGTC -ACGGAATGCAAGGTCTTCTTGCTG -ACGGAATGCAAGGTCTTCTCCATG -ACGGAATGCAAGGTCTTCTGTGTG -ACGGAATGCAAGGTCTTCCTAGTG -ACGGAATGCAAGGTCTTCCATCTG -ACGGAATGCAAGGTCTTCGAGTTG -ACGGAATGCAAGGTCTTCAGACTG -ACGGAATGCAAGGTCTTCTCGGTA -ACGGAATGCAAGGTCTTCTGCCTA -ACGGAATGCAAGGTCTTCCCACTA -ACGGAATGCAAGGTCTTCGGAGTA -ACGGAATGCAAGGTCTTCTCGTCT -ACGGAATGCAAGGTCTTCTGCACT -ACGGAATGCAAGGTCTTCCTGACT -ACGGAATGCAAGGTCTTCCAACCT -ACGGAATGCAAGGTCTTCGCTACT -ACGGAATGCAAGGTCTTCGGATCT -ACGGAATGCAAGGTCTTCAAGGCT -ACGGAATGCAAGGTCTTCTCAACC -ACGGAATGCAAGGTCTTCTGTTCC -ACGGAATGCAAGGTCTTCATTCCC -ACGGAATGCAAGGTCTTCTTCTCG -ACGGAATGCAAGGTCTTCTAGACG -ACGGAATGCAAGGTCTTCGTAACG -ACGGAATGCAAGGTCTTCACTTCG -ACGGAATGCAAGGTCTTCTACGCA -ACGGAATGCAAGGTCTTCCTTGCA -ACGGAATGCAAGGTCTTCCGAACA -ACGGAATGCAAGGTCTTCCAGTCA -ACGGAATGCAAGGTCTTCGATCCA -ACGGAATGCAAGGTCTTCACGACA -ACGGAATGCAAGGTCTTCAGCTCA -ACGGAATGCAAGGTCTTCTCACGT -ACGGAATGCAAGGTCTTCCGTAGT -ACGGAATGCAAGGTCTTCGTCAGT -ACGGAATGCAAGGTCTTCGAAGGT -ACGGAATGCAAGGTCTTCAACCGT -ACGGAATGCAAGGTCTTCTTGTGC -ACGGAATGCAAGGTCTTCCTAAGC -ACGGAATGCAAGGTCTTCACTAGC -ACGGAATGCAAGGTCTTCAGATGC -ACGGAATGCAAGGTCTTCTGAAGG -ACGGAATGCAAGGTCTTCCAATGG -ACGGAATGCAAGGTCTTCATGAGG -ACGGAATGCAAGGTCTTCAATGGG -ACGGAATGCAAGGTCTTCTCCTGA -ACGGAATGCAAGGTCTTCTAGCGA -ACGGAATGCAAGGTCTTCCACAGA -ACGGAATGCAAGGTCTTCGCAAGA -ACGGAATGCAAGGTCTTCGGTTGA -ACGGAATGCAAGGTCTTCTCCGAT -ACGGAATGCAAGGTCTTCTGGCAT -ACGGAATGCAAGGTCTTCCGAGAT -ACGGAATGCAAGGTCTTCTACCAC -ACGGAATGCAAGGTCTTCCAGAAC -ACGGAATGCAAGGTCTTCGTCTAC -ACGGAATGCAAGGTCTTCACGTAC -ACGGAATGCAAGGTCTTCAGTGAC -ACGGAATGCAAGGTCTTCCTGTAG -ACGGAATGCAAGGTCTTCCCTAAG -ACGGAATGCAAGGTCTTCGTTCAG -ACGGAATGCAAGGTCTTCGCATAG -ACGGAATGCAAGGTCTTCGACAAG -ACGGAATGCAAGGTCTTCAAGCAG -ACGGAATGCAAGGTCTTCCGTCAA -ACGGAATGCAAGGTCTTCGCTGAA -ACGGAATGCAAGGTCTTCAGTACG -ACGGAATGCAAGGTCTTCATCCGA -ACGGAATGCAAGGTCTTCATGGGA -ACGGAATGCAAGGTCTTCGTGCAA -ACGGAATGCAAGGTCTTCGAGGAA -ACGGAATGCAAGGTCTTCCAGGTA -ACGGAATGCAAGGTCTTCGACTCT -ACGGAATGCAAGGTCTTCAGTCCT -ACGGAATGCAAGGTCTTCTAAGCC -ACGGAATGCAAGGTCTTCATAGCC -ACGGAATGCAAGGTCTTCTAACCG -ACGGAATGCAAGGTCTTCATGCCA -ACGGAATGCAAGCTCTCTGGAAAC -ACGGAATGCAAGCTCTCTAACACC -ACGGAATGCAAGCTCTCTATCGAG -ACGGAATGCAAGCTCTCTCTCCTT -ACGGAATGCAAGCTCTCTCCTGTT -ACGGAATGCAAGCTCTCTCGGTTT -ACGGAATGCAAGCTCTCTGTGGTT -ACGGAATGCAAGCTCTCTGCCTTT -ACGGAATGCAAGCTCTCTGGTCTT -ACGGAATGCAAGCTCTCTACGCTT -ACGGAATGCAAGCTCTCTAGCGTT -ACGGAATGCAAGCTCTCTTTCGTC -ACGGAATGCAAGCTCTCTTCTCTC -ACGGAATGCAAGCTCTCTTGGATC -ACGGAATGCAAGCTCTCTCACTTC -ACGGAATGCAAGCTCTCTGTACTC -ACGGAATGCAAGCTCTCTGATGTC -ACGGAATGCAAGCTCTCTACAGTC -ACGGAATGCAAGCTCTCTTTGCTG -ACGGAATGCAAGCTCTCTTCCATG -ACGGAATGCAAGCTCTCTTGTGTG -ACGGAATGCAAGCTCTCTCTAGTG -ACGGAATGCAAGCTCTCTCATCTG -ACGGAATGCAAGCTCTCTGAGTTG -ACGGAATGCAAGCTCTCTAGACTG -ACGGAATGCAAGCTCTCTTCGGTA -ACGGAATGCAAGCTCTCTTGCCTA -ACGGAATGCAAGCTCTCTCCACTA -ACGGAATGCAAGCTCTCTGGAGTA -ACGGAATGCAAGCTCTCTTCGTCT -ACGGAATGCAAGCTCTCTTGCACT -ACGGAATGCAAGCTCTCTCTGACT -ACGGAATGCAAGCTCTCTCAACCT -ACGGAATGCAAGCTCTCTGCTACT -ACGGAATGCAAGCTCTCTGGATCT -ACGGAATGCAAGCTCTCTAAGGCT -ACGGAATGCAAGCTCTCTTCAACC -ACGGAATGCAAGCTCTCTTGTTCC -ACGGAATGCAAGCTCTCTATTCCC -ACGGAATGCAAGCTCTCTTTCTCG -ACGGAATGCAAGCTCTCTTAGACG -ACGGAATGCAAGCTCTCTGTAACG -ACGGAATGCAAGCTCTCTACTTCG -ACGGAATGCAAGCTCTCTTACGCA -ACGGAATGCAAGCTCTCTCTTGCA -ACGGAATGCAAGCTCTCTCGAACA -ACGGAATGCAAGCTCTCTCAGTCA -ACGGAATGCAAGCTCTCTGATCCA -ACGGAATGCAAGCTCTCTACGACA -ACGGAATGCAAGCTCTCTAGCTCA -ACGGAATGCAAGCTCTCTTCACGT -ACGGAATGCAAGCTCTCTCGTAGT -ACGGAATGCAAGCTCTCTGTCAGT -ACGGAATGCAAGCTCTCTGAAGGT -ACGGAATGCAAGCTCTCTAACCGT -ACGGAATGCAAGCTCTCTTTGTGC -ACGGAATGCAAGCTCTCTCTAAGC -ACGGAATGCAAGCTCTCTACTAGC -ACGGAATGCAAGCTCTCTAGATGC -ACGGAATGCAAGCTCTCTTGAAGG -ACGGAATGCAAGCTCTCTCAATGG -ACGGAATGCAAGCTCTCTATGAGG -ACGGAATGCAAGCTCTCTAATGGG -ACGGAATGCAAGCTCTCTTCCTGA -ACGGAATGCAAGCTCTCTTAGCGA -ACGGAATGCAAGCTCTCTCACAGA -ACGGAATGCAAGCTCTCTGCAAGA -ACGGAATGCAAGCTCTCTGGTTGA -ACGGAATGCAAGCTCTCTTCCGAT -ACGGAATGCAAGCTCTCTTGGCAT -ACGGAATGCAAGCTCTCTCGAGAT -ACGGAATGCAAGCTCTCTTACCAC -ACGGAATGCAAGCTCTCTCAGAAC -ACGGAATGCAAGCTCTCTGTCTAC -ACGGAATGCAAGCTCTCTACGTAC -ACGGAATGCAAGCTCTCTAGTGAC -ACGGAATGCAAGCTCTCTCTGTAG -ACGGAATGCAAGCTCTCTCCTAAG -ACGGAATGCAAGCTCTCTGTTCAG -ACGGAATGCAAGCTCTCTGCATAG -ACGGAATGCAAGCTCTCTGACAAG -ACGGAATGCAAGCTCTCTAAGCAG -ACGGAATGCAAGCTCTCTCGTCAA -ACGGAATGCAAGCTCTCTGCTGAA -ACGGAATGCAAGCTCTCTAGTACG -ACGGAATGCAAGCTCTCTATCCGA -ACGGAATGCAAGCTCTCTATGGGA -ACGGAATGCAAGCTCTCTGTGCAA -ACGGAATGCAAGCTCTCTGAGGAA -ACGGAATGCAAGCTCTCTCAGGTA -ACGGAATGCAAGCTCTCTGACTCT -ACGGAATGCAAGCTCTCTAGTCCT -ACGGAATGCAAGCTCTCTTAAGCC -ACGGAATGCAAGCTCTCTATAGCC -ACGGAATGCAAGCTCTCTTAACCG -ACGGAATGCAAGCTCTCTATGCCA -ACGGAATGCAAGATCTGGGGAAAC -ACGGAATGCAAGATCTGGAACACC -ACGGAATGCAAGATCTGGATCGAG -ACGGAATGCAAGATCTGGCTCCTT -ACGGAATGCAAGATCTGGCCTGTT -ACGGAATGCAAGATCTGGCGGTTT -ACGGAATGCAAGATCTGGGTGGTT -ACGGAATGCAAGATCTGGGCCTTT -ACGGAATGCAAGATCTGGGGTCTT -ACGGAATGCAAGATCTGGACGCTT -ACGGAATGCAAGATCTGGAGCGTT -ACGGAATGCAAGATCTGGTTCGTC -ACGGAATGCAAGATCTGGTCTCTC -ACGGAATGCAAGATCTGGTGGATC -ACGGAATGCAAGATCTGGCACTTC -ACGGAATGCAAGATCTGGGTACTC -ACGGAATGCAAGATCTGGGATGTC -ACGGAATGCAAGATCTGGACAGTC -ACGGAATGCAAGATCTGGTTGCTG -ACGGAATGCAAGATCTGGTCCATG -ACGGAATGCAAGATCTGGTGTGTG -ACGGAATGCAAGATCTGGCTAGTG -ACGGAATGCAAGATCTGGCATCTG -ACGGAATGCAAGATCTGGGAGTTG -ACGGAATGCAAGATCTGGAGACTG -ACGGAATGCAAGATCTGGTCGGTA -ACGGAATGCAAGATCTGGTGCCTA -ACGGAATGCAAGATCTGGCCACTA -ACGGAATGCAAGATCTGGGGAGTA -ACGGAATGCAAGATCTGGTCGTCT -ACGGAATGCAAGATCTGGTGCACT -ACGGAATGCAAGATCTGGCTGACT -ACGGAATGCAAGATCTGGCAACCT -ACGGAATGCAAGATCTGGGCTACT -ACGGAATGCAAGATCTGGGGATCT -ACGGAATGCAAGATCTGGAAGGCT -ACGGAATGCAAGATCTGGTCAACC -ACGGAATGCAAGATCTGGTGTTCC -ACGGAATGCAAGATCTGGATTCCC -ACGGAATGCAAGATCTGGTTCTCG -ACGGAATGCAAGATCTGGTAGACG -ACGGAATGCAAGATCTGGGTAACG -ACGGAATGCAAGATCTGGACTTCG -ACGGAATGCAAGATCTGGTACGCA -ACGGAATGCAAGATCTGGCTTGCA -ACGGAATGCAAGATCTGGCGAACA -ACGGAATGCAAGATCTGGCAGTCA -ACGGAATGCAAGATCTGGGATCCA -ACGGAATGCAAGATCTGGACGACA -ACGGAATGCAAGATCTGGAGCTCA -ACGGAATGCAAGATCTGGTCACGT -ACGGAATGCAAGATCTGGCGTAGT -ACGGAATGCAAGATCTGGGTCAGT -ACGGAATGCAAGATCTGGGAAGGT -ACGGAATGCAAGATCTGGAACCGT -ACGGAATGCAAGATCTGGTTGTGC -ACGGAATGCAAGATCTGGCTAAGC -ACGGAATGCAAGATCTGGACTAGC -ACGGAATGCAAGATCTGGAGATGC -ACGGAATGCAAGATCTGGTGAAGG -ACGGAATGCAAGATCTGGCAATGG -ACGGAATGCAAGATCTGGATGAGG -ACGGAATGCAAGATCTGGAATGGG -ACGGAATGCAAGATCTGGTCCTGA -ACGGAATGCAAGATCTGGTAGCGA -ACGGAATGCAAGATCTGGCACAGA -ACGGAATGCAAGATCTGGGCAAGA -ACGGAATGCAAGATCTGGGGTTGA -ACGGAATGCAAGATCTGGTCCGAT -ACGGAATGCAAGATCTGGTGGCAT -ACGGAATGCAAGATCTGGCGAGAT -ACGGAATGCAAGATCTGGTACCAC -ACGGAATGCAAGATCTGGCAGAAC -ACGGAATGCAAGATCTGGGTCTAC -ACGGAATGCAAGATCTGGACGTAC -ACGGAATGCAAGATCTGGAGTGAC -ACGGAATGCAAGATCTGGCTGTAG -ACGGAATGCAAGATCTGGCCTAAG -ACGGAATGCAAGATCTGGGTTCAG -ACGGAATGCAAGATCTGGGCATAG -ACGGAATGCAAGATCTGGGACAAG -ACGGAATGCAAGATCTGGAAGCAG -ACGGAATGCAAGATCTGGCGTCAA -ACGGAATGCAAGATCTGGGCTGAA -ACGGAATGCAAGATCTGGAGTACG -ACGGAATGCAAGATCTGGATCCGA -ACGGAATGCAAGATCTGGATGGGA -ACGGAATGCAAGATCTGGGTGCAA -ACGGAATGCAAGATCTGGGAGGAA -ACGGAATGCAAGATCTGGCAGGTA -ACGGAATGCAAGATCTGGGACTCT -ACGGAATGCAAGATCTGGAGTCCT -ACGGAATGCAAGATCTGGTAAGCC -ACGGAATGCAAGATCTGGATAGCC -ACGGAATGCAAGATCTGGTAACCG -ACGGAATGCAAGATCTGGATGCCA -ACGGAATGCAAGTTCCACGGAAAC -ACGGAATGCAAGTTCCACAACACC -ACGGAATGCAAGTTCCACATCGAG -ACGGAATGCAAGTTCCACCTCCTT -ACGGAATGCAAGTTCCACCCTGTT -ACGGAATGCAAGTTCCACCGGTTT -ACGGAATGCAAGTTCCACGTGGTT -ACGGAATGCAAGTTCCACGCCTTT -ACGGAATGCAAGTTCCACGGTCTT -ACGGAATGCAAGTTCCACACGCTT -ACGGAATGCAAGTTCCACAGCGTT -ACGGAATGCAAGTTCCACTTCGTC -ACGGAATGCAAGTTCCACTCTCTC -ACGGAATGCAAGTTCCACTGGATC -ACGGAATGCAAGTTCCACCACTTC -ACGGAATGCAAGTTCCACGTACTC -ACGGAATGCAAGTTCCACGATGTC -ACGGAATGCAAGTTCCACACAGTC -ACGGAATGCAAGTTCCACTTGCTG -ACGGAATGCAAGTTCCACTCCATG -ACGGAATGCAAGTTCCACTGTGTG -ACGGAATGCAAGTTCCACCTAGTG -ACGGAATGCAAGTTCCACCATCTG -ACGGAATGCAAGTTCCACGAGTTG -ACGGAATGCAAGTTCCACAGACTG -ACGGAATGCAAGTTCCACTCGGTA -ACGGAATGCAAGTTCCACTGCCTA -ACGGAATGCAAGTTCCACCCACTA -ACGGAATGCAAGTTCCACGGAGTA -ACGGAATGCAAGTTCCACTCGTCT -ACGGAATGCAAGTTCCACTGCACT -ACGGAATGCAAGTTCCACCTGACT -ACGGAATGCAAGTTCCACCAACCT -ACGGAATGCAAGTTCCACGCTACT -ACGGAATGCAAGTTCCACGGATCT -ACGGAATGCAAGTTCCACAAGGCT -ACGGAATGCAAGTTCCACTCAACC -ACGGAATGCAAGTTCCACTGTTCC -ACGGAATGCAAGTTCCACATTCCC -ACGGAATGCAAGTTCCACTTCTCG -ACGGAATGCAAGTTCCACTAGACG -ACGGAATGCAAGTTCCACGTAACG -ACGGAATGCAAGTTCCACACTTCG -ACGGAATGCAAGTTCCACTACGCA -ACGGAATGCAAGTTCCACCTTGCA -ACGGAATGCAAGTTCCACCGAACA -ACGGAATGCAAGTTCCACCAGTCA -ACGGAATGCAAGTTCCACGATCCA -ACGGAATGCAAGTTCCACACGACA -ACGGAATGCAAGTTCCACAGCTCA -ACGGAATGCAAGTTCCACTCACGT -ACGGAATGCAAGTTCCACCGTAGT -ACGGAATGCAAGTTCCACGTCAGT -ACGGAATGCAAGTTCCACGAAGGT -ACGGAATGCAAGTTCCACAACCGT -ACGGAATGCAAGTTCCACTTGTGC -ACGGAATGCAAGTTCCACCTAAGC -ACGGAATGCAAGTTCCACACTAGC -ACGGAATGCAAGTTCCACAGATGC -ACGGAATGCAAGTTCCACTGAAGG -ACGGAATGCAAGTTCCACCAATGG -ACGGAATGCAAGTTCCACATGAGG -ACGGAATGCAAGTTCCACAATGGG -ACGGAATGCAAGTTCCACTCCTGA -ACGGAATGCAAGTTCCACTAGCGA -ACGGAATGCAAGTTCCACCACAGA -ACGGAATGCAAGTTCCACGCAAGA -ACGGAATGCAAGTTCCACGGTTGA -ACGGAATGCAAGTTCCACTCCGAT -ACGGAATGCAAGTTCCACTGGCAT -ACGGAATGCAAGTTCCACCGAGAT -ACGGAATGCAAGTTCCACTACCAC -ACGGAATGCAAGTTCCACCAGAAC -ACGGAATGCAAGTTCCACGTCTAC -ACGGAATGCAAGTTCCACACGTAC -ACGGAATGCAAGTTCCACAGTGAC -ACGGAATGCAAGTTCCACCTGTAG -ACGGAATGCAAGTTCCACCCTAAG -ACGGAATGCAAGTTCCACGTTCAG -ACGGAATGCAAGTTCCACGCATAG -ACGGAATGCAAGTTCCACGACAAG -ACGGAATGCAAGTTCCACAAGCAG -ACGGAATGCAAGTTCCACCGTCAA -ACGGAATGCAAGTTCCACGCTGAA -ACGGAATGCAAGTTCCACAGTACG -ACGGAATGCAAGTTCCACATCCGA -ACGGAATGCAAGTTCCACATGGGA -ACGGAATGCAAGTTCCACGTGCAA -ACGGAATGCAAGTTCCACGAGGAA -ACGGAATGCAAGTTCCACCAGGTA -ACGGAATGCAAGTTCCACGACTCT -ACGGAATGCAAGTTCCACAGTCCT -ACGGAATGCAAGTTCCACTAAGCC -ACGGAATGCAAGTTCCACATAGCC -ACGGAATGCAAGTTCCACTAACCG -ACGGAATGCAAGTTCCACATGCCA -ACGGAATGCAAGCTCGTAGGAAAC -ACGGAATGCAAGCTCGTAAACACC -ACGGAATGCAAGCTCGTAATCGAG -ACGGAATGCAAGCTCGTACTCCTT -ACGGAATGCAAGCTCGTACCTGTT -ACGGAATGCAAGCTCGTACGGTTT -ACGGAATGCAAGCTCGTAGTGGTT -ACGGAATGCAAGCTCGTAGCCTTT -ACGGAATGCAAGCTCGTAGGTCTT -ACGGAATGCAAGCTCGTAACGCTT -ACGGAATGCAAGCTCGTAAGCGTT -ACGGAATGCAAGCTCGTATTCGTC -ACGGAATGCAAGCTCGTATCTCTC -ACGGAATGCAAGCTCGTATGGATC -ACGGAATGCAAGCTCGTACACTTC -ACGGAATGCAAGCTCGTAGTACTC -ACGGAATGCAAGCTCGTAGATGTC -ACGGAATGCAAGCTCGTAACAGTC -ACGGAATGCAAGCTCGTATTGCTG -ACGGAATGCAAGCTCGTATCCATG -ACGGAATGCAAGCTCGTATGTGTG -ACGGAATGCAAGCTCGTACTAGTG -ACGGAATGCAAGCTCGTACATCTG -ACGGAATGCAAGCTCGTAGAGTTG -ACGGAATGCAAGCTCGTAAGACTG -ACGGAATGCAAGCTCGTATCGGTA -ACGGAATGCAAGCTCGTATGCCTA -ACGGAATGCAAGCTCGTACCACTA -ACGGAATGCAAGCTCGTAGGAGTA -ACGGAATGCAAGCTCGTATCGTCT -ACGGAATGCAAGCTCGTATGCACT -ACGGAATGCAAGCTCGTACTGACT -ACGGAATGCAAGCTCGTACAACCT -ACGGAATGCAAGCTCGTAGCTACT -ACGGAATGCAAGCTCGTAGGATCT -ACGGAATGCAAGCTCGTAAAGGCT -ACGGAATGCAAGCTCGTATCAACC -ACGGAATGCAAGCTCGTATGTTCC -ACGGAATGCAAGCTCGTAATTCCC -ACGGAATGCAAGCTCGTATTCTCG -ACGGAATGCAAGCTCGTATAGACG -ACGGAATGCAAGCTCGTAGTAACG -ACGGAATGCAAGCTCGTAACTTCG -ACGGAATGCAAGCTCGTATACGCA -ACGGAATGCAAGCTCGTACTTGCA -ACGGAATGCAAGCTCGTACGAACA -ACGGAATGCAAGCTCGTACAGTCA -ACGGAATGCAAGCTCGTAGATCCA -ACGGAATGCAAGCTCGTAACGACA -ACGGAATGCAAGCTCGTAAGCTCA -ACGGAATGCAAGCTCGTATCACGT -ACGGAATGCAAGCTCGTACGTAGT -ACGGAATGCAAGCTCGTAGTCAGT -ACGGAATGCAAGCTCGTAGAAGGT -ACGGAATGCAAGCTCGTAAACCGT -ACGGAATGCAAGCTCGTATTGTGC -ACGGAATGCAAGCTCGTACTAAGC -ACGGAATGCAAGCTCGTAACTAGC -ACGGAATGCAAGCTCGTAAGATGC -ACGGAATGCAAGCTCGTATGAAGG -ACGGAATGCAAGCTCGTACAATGG -ACGGAATGCAAGCTCGTAATGAGG -ACGGAATGCAAGCTCGTAAATGGG -ACGGAATGCAAGCTCGTATCCTGA -ACGGAATGCAAGCTCGTATAGCGA -ACGGAATGCAAGCTCGTACACAGA -ACGGAATGCAAGCTCGTAGCAAGA -ACGGAATGCAAGCTCGTAGGTTGA -ACGGAATGCAAGCTCGTATCCGAT -ACGGAATGCAAGCTCGTATGGCAT -ACGGAATGCAAGCTCGTACGAGAT -ACGGAATGCAAGCTCGTATACCAC -ACGGAATGCAAGCTCGTACAGAAC -ACGGAATGCAAGCTCGTAGTCTAC -ACGGAATGCAAGCTCGTAACGTAC -ACGGAATGCAAGCTCGTAAGTGAC -ACGGAATGCAAGCTCGTACTGTAG -ACGGAATGCAAGCTCGTACCTAAG -ACGGAATGCAAGCTCGTAGTTCAG -ACGGAATGCAAGCTCGTAGCATAG -ACGGAATGCAAGCTCGTAGACAAG -ACGGAATGCAAGCTCGTAAAGCAG -ACGGAATGCAAGCTCGTACGTCAA -ACGGAATGCAAGCTCGTAGCTGAA -ACGGAATGCAAGCTCGTAAGTACG -ACGGAATGCAAGCTCGTAATCCGA -ACGGAATGCAAGCTCGTAATGGGA -ACGGAATGCAAGCTCGTAGTGCAA -ACGGAATGCAAGCTCGTAGAGGAA -ACGGAATGCAAGCTCGTACAGGTA -ACGGAATGCAAGCTCGTAGACTCT -ACGGAATGCAAGCTCGTAAGTCCT -ACGGAATGCAAGCTCGTATAAGCC -ACGGAATGCAAGCTCGTAATAGCC -ACGGAATGCAAGCTCGTATAACCG -ACGGAATGCAAGCTCGTAATGCCA -ACGGAATGCAAGGTCGATGGAAAC -ACGGAATGCAAGGTCGATAACACC -ACGGAATGCAAGGTCGATATCGAG -ACGGAATGCAAGGTCGATCTCCTT -ACGGAATGCAAGGTCGATCCTGTT -ACGGAATGCAAGGTCGATCGGTTT -ACGGAATGCAAGGTCGATGTGGTT -ACGGAATGCAAGGTCGATGCCTTT -ACGGAATGCAAGGTCGATGGTCTT -ACGGAATGCAAGGTCGATACGCTT -ACGGAATGCAAGGTCGATAGCGTT -ACGGAATGCAAGGTCGATTTCGTC -ACGGAATGCAAGGTCGATTCTCTC -ACGGAATGCAAGGTCGATTGGATC -ACGGAATGCAAGGTCGATCACTTC -ACGGAATGCAAGGTCGATGTACTC -ACGGAATGCAAGGTCGATGATGTC -ACGGAATGCAAGGTCGATACAGTC -ACGGAATGCAAGGTCGATTTGCTG -ACGGAATGCAAGGTCGATTCCATG -ACGGAATGCAAGGTCGATTGTGTG -ACGGAATGCAAGGTCGATCTAGTG -ACGGAATGCAAGGTCGATCATCTG -ACGGAATGCAAGGTCGATGAGTTG -ACGGAATGCAAGGTCGATAGACTG -ACGGAATGCAAGGTCGATTCGGTA -ACGGAATGCAAGGTCGATTGCCTA -ACGGAATGCAAGGTCGATCCACTA -ACGGAATGCAAGGTCGATGGAGTA -ACGGAATGCAAGGTCGATTCGTCT -ACGGAATGCAAGGTCGATTGCACT -ACGGAATGCAAGGTCGATCTGACT -ACGGAATGCAAGGTCGATCAACCT -ACGGAATGCAAGGTCGATGCTACT -ACGGAATGCAAGGTCGATGGATCT -ACGGAATGCAAGGTCGATAAGGCT -ACGGAATGCAAGGTCGATTCAACC -ACGGAATGCAAGGTCGATTGTTCC -ACGGAATGCAAGGTCGATATTCCC -ACGGAATGCAAGGTCGATTTCTCG -ACGGAATGCAAGGTCGATTAGACG -ACGGAATGCAAGGTCGATGTAACG -ACGGAATGCAAGGTCGATACTTCG -ACGGAATGCAAGGTCGATTACGCA -ACGGAATGCAAGGTCGATCTTGCA -ACGGAATGCAAGGTCGATCGAACA -ACGGAATGCAAGGTCGATCAGTCA -ACGGAATGCAAGGTCGATGATCCA -ACGGAATGCAAGGTCGATACGACA -ACGGAATGCAAGGTCGATAGCTCA -ACGGAATGCAAGGTCGATTCACGT -ACGGAATGCAAGGTCGATCGTAGT -ACGGAATGCAAGGTCGATGTCAGT -ACGGAATGCAAGGTCGATGAAGGT -ACGGAATGCAAGGTCGATAACCGT -ACGGAATGCAAGGTCGATTTGTGC -ACGGAATGCAAGGTCGATCTAAGC -ACGGAATGCAAGGTCGATACTAGC -ACGGAATGCAAGGTCGATAGATGC -ACGGAATGCAAGGTCGATTGAAGG -ACGGAATGCAAGGTCGATCAATGG -ACGGAATGCAAGGTCGATATGAGG -ACGGAATGCAAGGTCGATAATGGG -ACGGAATGCAAGGTCGATTCCTGA -ACGGAATGCAAGGTCGATTAGCGA -ACGGAATGCAAGGTCGATCACAGA -ACGGAATGCAAGGTCGATGCAAGA -ACGGAATGCAAGGTCGATGGTTGA -ACGGAATGCAAGGTCGATTCCGAT -ACGGAATGCAAGGTCGATTGGCAT -ACGGAATGCAAGGTCGATCGAGAT -ACGGAATGCAAGGTCGATTACCAC -ACGGAATGCAAGGTCGATCAGAAC -ACGGAATGCAAGGTCGATGTCTAC -ACGGAATGCAAGGTCGATACGTAC -ACGGAATGCAAGGTCGATAGTGAC -ACGGAATGCAAGGTCGATCTGTAG -ACGGAATGCAAGGTCGATCCTAAG -ACGGAATGCAAGGTCGATGTTCAG -ACGGAATGCAAGGTCGATGCATAG -ACGGAATGCAAGGTCGATGACAAG -ACGGAATGCAAGGTCGATAAGCAG -ACGGAATGCAAGGTCGATCGTCAA -ACGGAATGCAAGGTCGATGCTGAA -ACGGAATGCAAGGTCGATAGTACG -ACGGAATGCAAGGTCGATATCCGA -ACGGAATGCAAGGTCGATATGGGA -ACGGAATGCAAGGTCGATGTGCAA -ACGGAATGCAAGGTCGATGAGGAA -ACGGAATGCAAGGTCGATCAGGTA -ACGGAATGCAAGGTCGATGACTCT -ACGGAATGCAAGGTCGATAGTCCT -ACGGAATGCAAGGTCGATTAAGCC -ACGGAATGCAAGGTCGATATAGCC -ACGGAATGCAAGGTCGATTAACCG -ACGGAATGCAAGGTCGATATGCCA -ACGGAATGCAAGGTCACAGGAAAC -ACGGAATGCAAGGTCACAAACACC -ACGGAATGCAAGGTCACAATCGAG -ACGGAATGCAAGGTCACACTCCTT -ACGGAATGCAAGGTCACACCTGTT -ACGGAATGCAAGGTCACACGGTTT -ACGGAATGCAAGGTCACAGTGGTT -ACGGAATGCAAGGTCACAGCCTTT -ACGGAATGCAAGGTCACAGGTCTT -ACGGAATGCAAGGTCACAACGCTT -ACGGAATGCAAGGTCACAAGCGTT -ACGGAATGCAAGGTCACATTCGTC -ACGGAATGCAAGGTCACATCTCTC -ACGGAATGCAAGGTCACATGGATC -ACGGAATGCAAGGTCACACACTTC -ACGGAATGCAAGGTCACAGTACTC -ACGGAATGCAAGGTCACAGATGTC -ACGGAATGCAAGGTCACAACAGTC -ACGGAATGCAAGGTCACATTGCTG -ACGGAATGCAAGGTCACATCCATG -ACGGAATGCAAGGTCACATGTGTG -ACGGAATGCAAGGTCACACTAGTG -ACGGAATGCAAGGTCACACATCTG -ACGGAATGCAAGGTCACAGAGTTG -ACGGAATGCAAGGTCACAAGACTG -ACGGAATGCAAGGTCACATCGGTA -ACGGAATGCAAGGTCACATGCCTA -ACGGAATGCAAGGTCACACCACTA -ACGGAATGCAAGGTCACAGGAGTA -ACGGAATGCAAGGTCACATCGTCT -ACGGAATGCAAGGTCACATGCACT -ACGGAATGCAAGGTCACACTGACT -ACGGAATGCAAGGTCACACAACCT -ACGGAATGCAAGGTCACAGCTACT -ACGGAATGCAAGGTCACAGGATCT -ACGGAATGCAAGGTCACAAAGGCT -ACGGAATGCAAGGTCACATCAACC -ACGGAATGCAAGGTCACATGTTCC -ACGGAATGCAAGGTCACAATTCCC -ACGGAATGCAAGGTCACATTCTCG -ACGGAATGCAAGGTCACATAGACG -ACGGAATGCAAGGTCACAGTAACG -ACGGAATGCAAGGTCACAACTTCG -ACGGAATGCAAGGTCACATACGCA -ACGGAATGCAAGGTCACACTTGCA -ACGGAATGCAAGGTCACACGAACA -ACGGAATGCAAGGTCACACAGTCA -ACGGAATGCAAGGTCACAGATCCA -ACGGAATGCAAGGTCACAACGACA -ACGGAATGCAAGGTCACAAGCTCA -ACGGAATGCAAGGTCACATCACGT -ACGGAATGCAAGGTCACACGTAGT -ACGGAATGCAAGGTCACAGTCAGT -ACGGAATGCAAGGTCACAGAAGGT -ACGGAATGCAAGGTCACAAACCGT -ACGGAATGCAAGGTCACATTGTGC -ACGGAATGCAAGGTCACACTAAGC -ACGGAATGCAAGGTCACAACTAGC -ACGGAATGCAAGGTCACAAGATGC -ACGGAATGCAAGGTCACATGAAGG -ACGGAATGCAAGGTCACACAATGG -ACGGAATGCAAGGTCACAATGAGG -ACGGAATGCAAGGTCACAAATGGG -ACGGAATGCAAGGTCACATCCTGA -ACGGAATGCAAGGTCACATAGCGA -ACGGAATGCAAGGTCACACACAGA -ACGGAATGCAAGGTCACAGCAAGA -ACGGAATGCAAGGTCACAGGTTGA -ACGGAATGCAAGGTCACATCCGAT -ACGGAATGCAAGGTCACATGGCAT -ACGGAATGCAAGGTCACACGAGAT -ACGGAATGCAAGGTCACATACCAC -ACGGAATGCAAGGTCACACAGAAC -ACGGAATGCAAGGTCACAGTCTAC -ACGGAATGCAAGGTCACAACGTAC -ACGGAATGCAAGGTCACAAGTGAC -ACGGAATGCAAGGTCACACTGTAG -ACGGAATGCAAGGTCACACCTAAG -ACGGAATGCAAGGTCACAGTTCAG -ACGGAATGCAAGGTCACAGCATAG -ACGGAATGCAAGGTCACAGACAAG -ACGGAATGCAAGGTCACAAAGCAG -ACGGAATGCAAGGTCACACGTCAA -ACGGAATGCAAGGTCACAGCTGAA -ACGGAATGCAAGGTCACAAGTACG -ACGGAATGCAAGGTCACAATCCGA -ACGGAATGCAAGGTCACAATGGGA -ACGGAATGCAAGGTCACAGTGCAA -ACGGAATGCAAGGTCACAGAGGAA -ACGGAATGCAAGGTCACACAGGTA -ACGGAATGCAAGGTCACAGACTCT -ACGGAATGCAAGGTCACAAGTCCT -ACGGAATGCAAGGTCACATAAGCC -ACGGAATGCAAGGTCACAATAGCC -ACGGAATGCAAGGTCACATAACCG -ACGGAATGCAAGGTCACAATGCCA -ACGGAATGCAAGCTGTTGGGAAAC -ACGGAATGCAAGCTGTTGAACACC -ACGGAATGCAAGCTGTTGATCGAG -ACGGAATGCAAGCTGTTGCTCCTT -ACGGAATGCAAGCTGTTGCCTGTT -ACGGAATGCAAGCTGTTGCGGTTT -ACGGAATGCAAGCTGTTGGTGGTT -ACGGAATGCAAGCTGTTGGCCTTT -ACGGAATGCAAGCTGTTGGGTCTT -ACGGAATGCAAGCTGTTGACGCTT -ACGGAATGCAAGCTGTTGAGCGTT -ACGGAATGCAAGCTGTTGTTCGTC -ACGGAATGCAAGCTGTTGTCTCTC -ACGGAATGCAAGCTGTTGTGGATC -ACGGAATGCAAGCTGTTGCACTTC -ACGGAATGCAAGCTGTTGGTACTC -ACGGAATGCAAGCTGTTGGATGTC -ACGGAATGCAAGCTGTTGACAGTC -ACGGAATGCAAGCTGTTGTTGCTG -ACGGAATGCAAGCTGTTGTCCATG -ACGGAATGCAAGCTGTTGTGTGTG -ACGGAATGCAAGCTGTTGCTAGTG -ACGGAATGCAAGCTGTTGCATCTG -ACGGAATGCAAGCTGTTGGAGTTG -ACGGAATGCAAGCTGTTGAGACTG -ACGGAATGCAAGCTGTTGTCGGTA -ACGGAATGCAAGCTGTTGTGCCTA -ACGGAATGCAAGCTGTTGCCACTA -ACGGAATGCAAGCTGTTGGGAGTA -ACGGAATGCAAGCTGTTGTCGTCT -ACGGAATGCAAGCTGTTGTGCACT -ACGGAATGCAAGCTGTTGCTGACT -ACGGAATGCAAGCTGTTGCAACCT -ACGGAATGCAAGCTGTTGGCTACT -ACGGAATGCAAGCTGTTGGGATCT -ACGGAATGCAAGCTGTTGAAGGCT -ACGGAATGCAAGCTGTTGTCAACC -ACGGAATGCAAGCTGTTGTGTTCC -ACGGAATGCAAGCTGTTGATTCCC -ACGGAATGCAAGCTGTTGTTCTCG -ACGGAATGCAAGCTGTTGTAGACG -ACGGAATGCAAGCTGTTGGTAACG -ACGGAATGCAAGCTGTTGACTTCG -ACGGAATGCAAGCTGTTGTACGCA -ACGGAATGCAAGCTGTTGCTTGCA -ACGGAATGCAAGCTGTTGCGAACA -ACGGAATGCAAGCTGTTGCAGTCA -ACGGAATGCAAGCTGTTGGATCCA -ACGGAATGCAAGCTGTTGACGACA -ACGGAATGCAAGCTGTTGAGCTCA -ACGGAATGCAAGCTGTTGTCACGT -ACGGAATGCAAGCTGTTGCGTAGT -ACGGAATGCAAGCTGTTGGTCAGT -ACGGAATGCAAGCTGTTGGAAGGT -ACGGAATGCAAGCTGTTGAACCGT -ACGGAATGCAAGCTGTTGTTGTGC -ACGGAATGCAAGCTGTTGCTAAGC -ACGGAATGCAAGCTGTTGACTAGC -ACGGAATGCAAGCTGTTGAGATGC -ACGGAATGCAAGCTGTTGTGAAGG -ACGGAATGCAAGCTGTTGCAATGG -ACGGAATGCAAGCTGTTGATGAGG -ACGGAATGCAAGCTGTTGAATGGG -ACGGAATGCAAGCTGTTGTCCTGA -ACGGAATGCAAGCTGTTGTAGCGA -ACGGAATGCAAGCTGTTGCACAGA -ACGGAATGCAAGCTGTTGGCAAGA -ACGGAATGCAAGCTGTTGGGTTGA -ACGGAATGCAAGCTGTTGTCCGAT -ACGGAATGCAAGCTGTTGTGGCAT -ACGGAATGCAAGCTGTTGCGAGAT -ACGGAATGCAAGCTGTTGTACCAC -ACGGAATGCAAGCTGTTGCAGAAC -ACGGAATGCAAGCTGTTGGTCTAC -ACGGAATGCAAGCTGTTGACGTAC -ACGGAATGCAAGCTGTTGAGTGAC -ACGGAATGCAAGCTGTTGCTGTAG -ACGGAATGCAAGCTGTTGCCTAAG -ACGGAATGCAAGCTGTTGGTTCAG -ACGGAATGCAAGCTGTTGGCATAG -ACGGAATGCAAGCTGTTGGACAAG -ACGGAATGCAAGCTGTTGAAGCAG -ACGGAATGCAAGCTGTTGCGTCAA -ACGGAATGCAAGCTGTTGGCTGAA -ACGGAATGCAAGCTGTTGAGTACG -ACGGAATGCAAGCTGTTGATCCGA -ACGGAATGCAAGCTGTTGATGGGA -ACGGAATGCAAGCTGTTGGTGCAA -ACGGAATGCAAGCTGTTGGAGGAA -ACGGAATGCAAGCTGTTGCAGGTA -ACGGAATGCAAGCTGTTGGACTCT -ACGGAATGCAAGCTGTTGAGTCCT -ACGGAATGCAAGCTGTTGTAAGCC -ACGGAATGCAAGCTGTTGATAGCC -ACGGAATGCAAGCTGTTGTAACCG -ACGGAATGCAAGCTGTTGATGCCA -ACGGAATGCAAGATGTCCGGAAAC -ACGGAATGCAAGATGTCCAACACC -ACGGAATGCAAGATGTCCATCGAG -ACGGAATGCAAGATGTCCCTCCTT -ACGGAATGCAAGATGTCCCCTGTT -ACGGAATGCAAGATGTCCCGGTTT -ACGGAATGCAAGATGTCCGTGGTT -ACGGAATGCAAGATGTCCGCCTTT -ACGGAATGCAAGATGTCCGGTCTT -ACGGAATGCAAGATGTCCACGCTT -ACGGAATGCAAGATGTCCAGCGTT -ACGGAATGCAAGATGTCCTTCGTC -ACGGAATGCAAGATGTCCTCTCTC -ACGGAATGCAAGATGTCCTGGATC -ACGGAATGCAAGATGTCCCACTTC -ACGGAATGCAAGATGTCCGTACTC -ACGGAATGCAAGATGTCCGATGTC -ACGGAATGCAAGATGTCCACAGTC -ACGGAATGCAAGATGTCCTTGCTG -ACGGAATGCAAGATGTCCTCCATG -ACGGAATGCAAGATGTCCTGTGTG -ACGGAATGCAAGATGTCCCTAGTG -ACGGAATGCAAGATGTCCCATCTG -ACGGAATGCAAGATGTCCGAGTTG -ACGGAATGCAAGATGTCCAGACTG -ACGGAATGCAAGATGTCCTCGGTA -ACGGAATGCAAGATGTCCTGCCTA -ACGGAATGCAAGATGTCCCCACTA -ACGGAATGCAAGATGTCCGGAGTA -ACGGAATGCAAGATGTCCTCGTCT -ACGGAATGCAAGATGTCCTGCACT -ACGGAATGCAAGATGTCCCTGACT -ACGGAATGCAAGATGTCCCAACCT -ACGGAATGCAAGATGTCCGCTACT -ACGGAATGCAAGATGTCCGGATCT -ACGGAATGCAAGATGTCCAAGGCT -ACGGAATGCAAGATGTCCTCAACC -ACGGAATGCAAGATGTCCTGTTCC -ACGGAATGCAAGATGTCCATTCCC -ACGGAATGCAAGATGTCCTTCTCG -ACGGAATGCAAGATGTCCTAGACG -ACGGAATGCAAGATGTCCGTAACG -ACGGAATGCAAGATGTCCACTTCG -ACGGAATGCAAGATGTCCTACGCA -ACGGAATGCAAGATGTCCCTTGCA -ACGGAATGCAAGATGTCCCGAACA -ACGGAATGCAAGATGTCCCAGTCA -ACGGAATGCAAGATGTCCGATCCA -ACGGAATGCAAGATGTCCACGACA -ACGGAATGCAAGATGTCCAGCTCA -ACGGAATGCAAGATGTCCTCACGT -ACGGAATGCAAGATGTCCCGTAGT -ACGGAATGCAAGATGTCCGTCAGT -ACGGAATGCAAGATGTCCGAAGGT -ACGGAATGCAAGATGTCCAACCGT -ACGGAATGCAAGATGTCCTTGTGC -ACGGAATGCAAGATGTCCCTAAGC -ACGGAATGCAAGATGTCCACTAGC -ACGGAATGCAAGATGTCCAGATGC -ACGGAATGCAAGATGTCCTGAAGG -ACGGAATGCAAGATGTCCCAATGG -ACGGAATGCAAGATGTCCATGAGG -ACGGAATGCAAGATGTCCAATGGG -ACGGAATGCAAGATGTCCTCCTGA -ACGGAATGCAAGATGTCCTAGCGA -ACGGAATGCAAGATGTCCCACAGA -ACGGAATGCAAGATGTCCGCAAGA -ACGGAATGCAAGATGTCCGGTTGA -ACGGAATGCAAGATGTCCTCCGAT -ACGGAATGCAAGATGTCCTGGCAT -ACGGAATGCAAGATGTCCCGAGAT -ACGGAATGCAAGATGTCCTACCAC -ACGGAATGCAAGATGTCCCAGAAC -ACGGAATGCAAGATGTCCGTCTAC -ACGGAATGCAAGATGTCCACGTAC -ACGGAATGCAAGATGTCCAGTGAC -ACGGAATGCAAGATGTCCCTGTAG -ACGGAATGCAAGATGTCCCCTAAG -ACGGAATGCAAGATGTCCGTTCAG -ACGGAATGCAAGATGTCCGCATAG -ACGGAATGCAAGATGTCCGACAAG -ACGGAATGCAAGATGTCCAAGCAG -ACGGAATGCAAGATGTCCCGTCAA -ACGGAATGCAAGATGTCCGCTGAA -ACGGAATGCAAGATGTCCAGTACG -ACGGAATGCAAGATGTCCATCCGA -ACGGAATGCAAGATGTCCATGGGA -ACGGAATGCAAGATGTCCGTGCAA -ACGGAATGCAAGATGTCCGAGGAA -ACGGAATGCAAGATGTCCCAGGTA -ACGGAATGCAAGATGTCCGACTCT -ACGGAATGCAAGATGTCCAGTCCT -ACGGAATGCAAGATGTCCTAAGCC -ACGGAATGCAAGATGTCCATAGCC -ACGGAATGCAAGATGTCCTAACCG -ACGGAATGCAAGATGTCCATGCCA -ACGGAATGCAAGGTGTGTGGAAAC -ACGGAATGCAAGGTGTGTAACACC -ACGGAATGCAAGGTGTGTATCGAG -ACGGAATGCAAGGTGTGTCTCCTT -ACGGAATGCAAGGTGTGTCCTGTT -ACGGAATGCAAGGTGTGTCGGTTT -ACGGAATGCAAGGTGTGTGTGGTT -ACGGAATGCAAGGTGTGTGCCTTT -ACGGAATGCAAGGTGTGTGGTCTT -ACGGAATGCAAGGTGTGTACGCTT -ACGGAATGCAAGGTGTGTAGCGTT -ACGGAATGCAAGGTGTGTTTCGTC -ACGGAATGCAAGGTGTGTTCTCTC -ACGGAATGCAAGGTGTGTTGGATC -ACGGAATGCAAGGTGTGTCACTTC -ACGGAATGCAAGGTGTGTGTACTC -ACGGAATGCAAGGTGTGTGATGTC -ACGGAATGCAAGGTGTGTACAGTC -ACGGAATGCAAGGTGTGTTTGCTG -ACGGAATGCAAGGTGTGTTCCATG -ACGGAATGCAAGGTGTGTTGTGTG -ACGGAATGCAAGGTGTGTCTAGTG -ACGGAATGCAAGGTGTGTCATCTG -ACGGAATGCAAGGTGTGTGAGTTG -ACGGAATGCAAGGTGTGTAGACTG -ACGGAATGCAAGGTGTGTTCGGTA -ACGGAATGCAAGGTGTGTTGCCTA -ACGGAATGCAAGGTGTGTCCACTA -ACGGAATGCAAGGTGTGTGGAGTA -ACGGAATGCAAGGTGTGTTCGTCT -ACGGAATGCAAGGTGTGTTGCACT -ACGGAATGCAAGGTGTGTCTGACT -ACGGAATGCAAGGTGTGTCAACCT -ACGGAATGCAAGGTGTGTGCTACT -ACGGAATGCAAGGTGTGTGGATCT -ACGGAATGCAAGGTGTGTAAGGCT -ACGGAATGCAAGGTGTGTTCAACC -ACGGAATGCAAGGTGTGTTGTTCC -ACGGAATGCAAGGTGTGTATTCCC -ACGGAATGCAAGGTGTGTTTCTCG -ACGGAATGCAAGGTGTGTTAGACG -ACGGAATGCAAGGTGTGTGTAACG -ACGGAATGCAAGGTGTGTACTTCG -ACGGAATGCAAGGTGTGTTACGCA -ACGGAATGCAAGGTGTGTCTTGCA -ACGGAATGCAAGGTGTGTCGAACA -ACGGAATGCAAGGTGTGTCAGTCA -ACGGAATGCAAGGTGTGTGATCCA -ACGGAATGCAAGGTGTGTACGACA -ACGGAATGCAAGGTGTGTAGCTCA -ACGGAATGCAAGGTGTGTTCACGT -ACGGAATGCAAGGTGTGTCGTAGT -ACGGAATGCAAGGTGTGTGTCAGT -ACGGAATGCAAGGTGTGTGAAGGT -ACGGAATGCAAGGTGTGTAACCGT -ACGGAATGCAAGGTGTGTTTGTGC -ACGGAATGCAAGGTGTGTCTAAGC -ACGGAATGCAAGGTGTGTACTAGC -ACGGAATGCAAGGTGTGTAGATGC -ACGGAATGCAAGGTGTGTTGAAGG -ACGGAATGCAAGGTGTGTCAATGG -ACGGAATGCAAGGTGTGTATGAGG -ACGGAATGCAAGGTGTGTAATGGG -ACGGAATGCAAGGTGTGTTCCTGA -ACGGAATGCAAGGTGTGTTAGCGA -ACGGAATGCAAGGTGTGTCACAGA -ACGGAATGCAAGGTGTGTGCAAGA -ACGGAATGCAAGGTGTGTGGTTGA -ACGGAATGCAAGGTGTGTTCCGAT -ACGGAATGCAAGGTGTGTTGGCAT -ACGGAATGCAAGGTGTGTCGAGAT -ACGGAATGCAAGGTGTGTTACCAC -ACGGAATGCAAGGTGTGTCAGAAC -ACGGAATGCAAGGTGTGTGTCTAC -ACGGAATGCAAGGTGTGTACGTAC -ACGGAATGCAAGGTGTGTAGTGAC -ACGGAATGCAAGGTGTGTCTGTAG -ACGGAATGCAAGGTGTGTCCTAAG -ACGGAATGCAAGGTGTGTGTTCAG -ACGGAATGCAAGGTGTGTGCATAG -ACGGAATGCAAGGTGTGTGACAAG -ACGGAATGCAAGGTGTGTAAGCAG -ACGGAATGCAAGGTGTGTCGTCAA -ACGGAATGCAAGGTGTGTGCTGAA -ACGGAATGCAAGGTGTGTAGTACG -ACGGAATGCAAGGTGTGTATCCGA -ACGGAATGCAAGGTGTGTATGGGA -ACGGAATGCAAGGTGTGTGTGCAA -ACGGAATGCAAGGTGTGTGAGGAA -ACGGAATGCAAGGTGTGTCAGGTA -ACGGAATGCAAGGTGTGTGACTCT -ACGGAATGCAAGGTGTGTAGTCCT -ACGGAATGCAAGGTGTGTTAAGCC -ACGGAATGCAAGGTGTGTATAGCC -ACGGAATGCAAGGTGTGTTAACCG -ACGGAATGCAAGGTGTGTATGCCA -ACGGAATGCAAGGTGCTAGGAAAC -ACGGAATGCAAGGTGCTAAACACC -ACGGAATGCAAGGTGCTAATCGAG -ACGGAATGCAAGGTGCTACTCCTT -ACGGAATGCAAGGTGCTACCTGTT -ACGGAATGCAAGGTGCTACGGTTT -ACGGAATGCAAGGTGCTAGTGGTT -ACGGAATGCAAGGTGCTAGCCTTT -ACGGAATGCAAGGTGCTAGGTCTT -ACGGAATGCAAGGTGCTAACGCTT -ACGGAATGCAAGGTGCTAAGCGTT -ACGGAATGCAAGGTGCTATTCGTC -ACGGAATGCAAGGTGCTATCTCTC -ACGGAATGCAAGGTGCTATGGATC -ACGGAATGCAAGGTGCTACACTTC -ACGGAATGCAAGGTGCTAGTACTC -ACGGAATGCAAGGTGCTAGATGTC -ACGGAATGCAAGGTGCTAACAGTC -ACGGAATGCAAGGTGCTATTGCTG -ACGGAATGCAAGGTGCTATCCATG -ACGGAATGCAAGGTGCTATGTGTG -ACGGAATGCAAGGTGCTACTAGTG -ACGGAATGCAAGGTGCTACATCTG -ACGGAATGCAAGGTGCTAGAGTTG -ACGGAATGCAAGGTGCTAAGACTG -ACGGAATGCAAGGTGCTATCGGTA -ACGGAATGCAAGGTGCTATGCCTA -ACGGAATGCAAGGTGCTACCACTA -ACGGAATGCAAGGTGCTAGGAGTA -ACGGAATGCAAGGTGCTATCGTCT -ACGGAATGCAAGGTGCTATGCACT -ACGGAATGCAAGGTGCTACTGACT -ACGGAATGCAAGGTGCTACAACCT -ACGGAATGCAAGGTGCTAGCTACT -ACGGAATGCAAGGTGCTAGGATCT -ACGGAATGCAAGGTGCTAAAGGCT -ACGGAATGCAAGGTGCTATCAACC -ACGGAATGCAAGGTGCTATGTTCC -ACGGAATGCAAGGTGCTAATTCCC -ACGGAATGCAAGGTGCTATTCTCG -ACGGAATGCAAGGTGCTATAGACG -ACGGAATGCAAGGTGCTAGTAACG -ACGGAATGCAAGGTGCTAACTTCG -ACGGAATGCAAGGTGCTATACGCA -ACGGAATGCAAGGTGCTACTTGCA -ACGGAATGCAAGGTGCTACGAACA -ACGGAATGCAAGGTGCTACAGTCA -ACGGAATGCAAGGTGCTAGATCCA -ACGGAATGCAAGGTGCTAACGACA -ACGGAATGCAAGGTGCTAAGCTCA -ACGGAATGCAAGGTGCTATCACGT -ACGGAATGCAAGGTGCTACGTAGT -ACGGAATGCAAGGTGCTAGTCAGT -ACGGAATGCAAGGTGCTAGAAGGT -ACGGAATGCAAGGTGCTAAACCGT -ACGGAATGCAAGGTGCTATTGTGC -ACGGAATGCAAGGTGCTACTAAGC -ACGGAATGCAAGGTGCTAACTAGC -ACGGAATGCAAGGTGCTAAGATGC -ACGGAATGCAAGGTGCTATGAAGG -ACGGAATGCAAGGTGCTACAATGG -ACGGAATGCAAGGTGCTAATGAGG -ACGGAATGCAAGGTGCTAAATGGG -ACGGAATGCAAGGTGCTATCCTGA -ACGGAATGCAAGGTGCTATAGCGA -ACGGAATGCAAGGTGCTACACAGA -ACGGAATGCAAGGTGCTAGCAAGA -ACGGAATGCAAGGTGCTAGGTTGA -ACGGAATGCAAGGTGCTATCCGAT -ACGGAATGCAAGGTGCTATGGCAT -ACGGAATGCAAGGTGCTACGAGAT -ACGGAATGCAAGGTGCTATACCAC -ACGGAATGCAAGGTGCTACAGAAC -ACGGAATGCAAGGTGCTAGTCTAC -ACGGAATGCAAGGTGCTAACGTAC -ACGGAATGCAAGGTGCTAAGTGAC -ACGGAATGCAAGGTGCTACTGTAG -ACGGAATGCAAGGTGCTACCTAAG -ACGGAATGCAAGGTGCTAGTTCAG -ACGGAATGCAAGGTGCTAGCATAG -ACGGAATGCAAGGTGCTAGACAAG -ACGGAATGCAAGGTGCTAAAGCAG -ACGGAATGCAAGGTGCTACGTCAA -ACGGAATGCAAGGTGCTAGCTGAA -ACGGAATGCAAGGTGCTAAGTACG -ACGGAATGCAAGGTGCTAATCCGA -ACGGAATGCAAGGTGCTAATGGGA -ACGGAATGCAAGGTGCTAGTGCAA -ACGGAATGCAAGGTGCTAGAGGAA -ACGGAATGCAAGGTGCTACAGGTA -ACGGAATGCAAGGTGCTAGACTCT -ACGGAATGCAAGGTGCTAAGTCCT -ACGGAATGCAAGGTGCTATAAGCC -ACGGAATGCAAGGTGCTAATAGCC -ACGGAATGCAAGGTGCTATAACCG -ACGGAATGCAAGGTGCTAATGCCA -ACGGAATGCAAGCTGCATGGAAAC -ACGGAATGCAAGCTGCATAACACC -ACGGAATGCAAGCTGCATATCGAG -ACGGAATGCAAGCTGCATCTCCTT -ACGGAATGCAAGCTGCATCCTGTT -ACGGAATGCAAGCTGCATCGGTTT -ACGGAATGCAAGCTGCATGTGGTT -ACGGAATGCAAGCTGCATGCCTTT -ACGGAATGCAAGCTGCATGGTCTT -ACGGAATGCAAGCTGCATACGCTT -ACGGAATGCAAGCTGCATAGCGTT -ACGGAATGCAAGCTGCATTTCGTC -ACGGAATGCAAGCTGCATTCTCTC -ACGGAATGCAAGCTGCATTGGATC -ACGGAATGCAAGCTGCATCACTTC -ACGGAATGCAAGCTGCATGTACTC -ACGGAATGCAAGCTGCATGATGTC -ACGGAATGCAAGCTGCATACAGTC -ACGGAATGCAAGCTGCATTTGCTG -ACGGAATGCAAGCTGCATTCCATG -ACGGAATGCAAGCTGCATTGTGTG -ACGGAATGCAAGCTGCATCTAGTG -ACGGAATGCAAGCTGCATCATCTG -ACGGAATGCAAGCTGCATGAGTTG -ACGGAATGCAAGCTGCATAGACTG -ACGGAATGCAAGCTGCATTCGGTA -ACGGAATGCAAGCTGCATTGCCTA -ACGGAATGCAAGCTGCATCCACTA -ACGGAATGCAAGCTGCATGGAGTA -ACGGAATGCAAGCTGCATTCGTCT -ACGGAATGCAAGCTGCATTGCACT -ACGGAATGCAAGCTGCATCTGACT -ACGGAATGCAAGCTGCATCAACCT -ACGGAATGCAAGCTGCATGCTACT -ACGGAATGCAAGCTGCATGGATCT -ACGGAATGCAAGCTGCATAAGGCT -ACGGAATGCAAGCTGCATTCAACC -ACGGAATGCAAGCTGCATTGTTCC -ACGGAATGCAAGCTGCATATTCCC -ACGGAATGCAAGCTGCATTTCTCG -ACGGAATGCAAGCTGCATTAGACG -ACGGAATGCAAGCTGCATGTAACG -ACGGAATGCAAGCTGCATACTTCG -ACGGAATGCAAGCTGCATTACGCA -ACGGAATGCAAGCTGCATCTTGCA -ACGGAATGCAAGCTGCATCGAACA -ACGGAATGCAAGCTGCATCAGTCA -ACGGAATGCAAGCTGCATGATCCA -ACGGAATGCAAGCTGCATACGACA -ACGGAATGCAAGCTGCATAGCTCA -ACGGAATGCAAGCTGCATTCACGT -ACGGAATGCAAGCTGCATCGTAGT -ACGGAATGCAAGCTGCATGTCAGT -ACGGAATGCAAGCTGCATGAAGGT -ACGGAATGCAAGCTGCATAACCGT -ACGGAATGCAAGCTGCATTTGTGC -ACGGAATGCAAGCTGCATCTAAGC -ACGGAATGCAAGCTGCATACTAGC -ACGGAATGCAAGCTGCATAGATGC -ACGGAATGCAAGCTGCATTGAAGG -ACGGAATGCAAGCTGCATCAATGG -ACGGAATGCAAGCTGCATATGAGG -ACGGAATGCAAGCTGCATAATGGG -ACGGAATGCAAGCTGCATTCCTGA -ACGGAATGCAAGCTGCATTAGCGA -ACGGAATGCAAGCTGCATCACAGA -ACGGAATGCAAGCTGCATGCAAGA -ACGGAATGCAAGCTGCATGGTTGA -ACGGAATGCAAGCTGCATTCCGAT -ACGGAATGCAAGCTGCATTGGCAT -ACGGAATGCAAGCTGCATCGAGAT -ACGGAATGCAAGCTGCATTACCAC -ACGGAATGCAAGCTGCATCAGAAC -ACGGAATGCAAGCTGCATGTCTAC -ACGGAATGCAAGCTGCATACGTAC -ACGGAATGCAAGCTGCATAGTGAC -ACGGAATGCAAGCTGCATCTGTAG -ACGGAATGCAAGCTGCATCCTAAG -ACGGAATGCAAGCTGCATGTTCAG -ACGGAATGCAAGCTGCATGCATAG -ACGGAATGCAAGCTGCATGACAAG -ACGGAATGCAAGCTGCATAAGCAG -ACGGAATGCAAGCTGCATCGTCAA -ACGGAATGCAAGCTGCATGCTGAA -ACGGAATGCAAGCTGCATAGTACG -ACGGAATGCAAGCTGCATATCCGA -ACGGAATGCAAGCTGCATATGGGA -ACGGAATGCAAGCTGCATGTGCAA -ACGGAATGCAAGCTGCATGAGGAA -ACGGAATGCAAGCTGCATCAGGTA -ACGGAATGCAAGCTGCATGACTCT -ACGGAATGCAAGCTGCATAGTCCT -ACGGAATGCAAGCTGCATTAAGCC -ACGGAATGCAAGCTGCATATAGCC -ACGGAATGCAAGCTGCATTAACCG -ACGGAATGCAAGCTGCATATGCCA -ACGGAATGCAAGTTGGAGGGAAAC -ACGGAATGCAAGTTGGAGAACACC -ACGGAATGCAAGTTGGAGATCGAG -ACGGAATGCAAGTTGGAGCTCCTT -ACGGAATGCAAGTTGGAGCCTGTT -ACGGAATGCAAGTTGGAGCGGTTT -ACGGAATGCAAGTTGGAGGTGGTT -ACGGAATGCAAGTTGGAGGCCTTT -ACGGAATGCAAGTTGGAGGGTCTT -ACGGAATGCAAGTTGGAGACGCTT -ACGGAATGCAAGTTGGAGAGCGTT -ACGGAATGCAAGTTGGAGTTCGTC -ACGGAATGCAAGTTGGAGTCTCTC -ACGGAATGCAAGTTGGAGTGGATC -ACGGAATGCAAGTTGGAGCACTTC -ACGGAATGCAAGTTGGAGGTACTC -ACGGAATGCAAGTTGGAGGATGTC -ACGGAATGCAAGTTGGAGACAGTC -ACGGAATGCAAGTTGGAGTTGCTG -ACGGAATGCAAGTTGGAGTCCATG -ACGGAATGCAAGTTGGAGTGTGTG -ACGGAATGCAAGTTGGAGCTAGTG -ACGGAATGCAAGTTGGAGCATCTG -ACGGAATGCAAGTTGGAGGAGTTG -ACGGAATGCAAGTTGGAGAGACTG -ACGGAATGCAAGTTGGAGTCGGTA -ACGGAATGCAAGTTGGAGTGCCTA -ACGGAATGCAAGTTGGAGCCACTA -ACGGAATGCAAGTTGGAGGGAGTA -ACGGAATGCAAGTTGGAGTCGTCT -ACGGAATGCAAGTTGGAGTGCACT -ACGGAATGCAAGTTGGAGCTGACT -ACGGAATGCAAGTTGGAGCAACCT -ACGGAATGCAAGTTGGAGGCTACT -ACGGAATGCAAGTTGGAGGGATCT -ACGGAATGCAAGTTGGAGAAGGCT -ACGGAATGCAAGTTGGAGTCAACC -ACGGAATGCAAGTTGGAGTGTTCC -ACGGAATGCAAGTTGGAGATTCCC -ACGGAATGCAAGTTGGAGTTCTCG -ACGGAATGCAAGTTGGAGTAGACG -ACGGAATGCAAGTTGGAGGTAACG -ACGGAATGCAAGTTGGAGACTTCG -ACGGAATGCAAGTTGGAGTACGCA -ACGGAATGCAAGTTGGAGCTTGCA -ACGGAATGCAAGTTGGAGCGAACA -ACGGAATGCAAGTTGGAGCAGTCA -ACGGAATGCAAGTTGGAGGATCCA -ACGGAATGCAAGTTGGAGACGACA -ACGGAATGCAAGTTGGAGAGCTCA -ACGGAATGCAAGTTGGAGTCACGT -ACGGAATGCAAGTTGGAGCGTAGT -ACGGAATGCAAGTTGGAGGTCAGT -ACGGAATGCAAGTTGGAGGAAGGT -ACGGAATGCAAGTTGGAGAACCGT -ACGGAATGCAAGTTGGAGTTGTGC -ACGGAATGCAAGTTGGAGCTAAGC -ACGGAATGCAAGTTGGAGACTAGC -ACGGAATGCAAGTTGGAGAGATGC -ACGGAATGCAAGTTGGAGTGAAGG -ACGGAATGCAAGTTGGAGCAATGG -ACGGAATGCAAGTTGGAGATGAGG -ACGGAATGCAAGTTGGAGAATGGG -ACGGAATGCAAGTTGGAGTCCTGA -ACGGAATGCAAGTTGGAGTAGCGA -ACGGAATGCAAGTTGGAGCACAGA -ACGGAATGCAAGTTGGAGGCAAGA -ACGGAATGCAAGTTGGAGGGTTGA -ACGGAATGCAAGTTGGAGTCCGAT -ACGGAATGCAAGTTGGAGTGGCAT -ACGGAATGCAAGTTGGAGCGAGAT -ACGGAATGCAAGTTGGAGTACCAC -ACGGAATGCAAGTTGGAGCAGAAC -ACGGAATGCAAGTTGGAGGTCTAC -ACGGAATGCAAGTTGGAGACGTAC -ACGGAATGCAAGTTGGAGAGTGAC -ACGGAATGCAAGTTGGAGCTGTAG -ACGGAATGCAAGTTGGAGCCTAAG -ACGGAATGCAAGTTGGAGGTTCAG -ACGGAATGCAAGTTGGAGGCATAG -ACGGAATGCAAGTTGGAGGACAAG -ACGGAATGCAAGTTGGAGAAGCAG -ACGGAATGCAAGTTGGAGCGTCAA -ACGGAATGCAAGTTGGAGGCTGAA -ACGGAATGCAAGTTGGAGAGTACG -ACGGAATGCAAGTTGGAGATCCGA -ACGGAATGCAAGTTGGAGATGGGA -ACGGAATGCAAGTTGGAGGTGCAA -ACGGAATGCAAGTTGGAGGAGGAA -ACGGAATGCAAGTTGGAGCAGGTA -ACGGAATGCAAGTTGGAGGACTCT -ACGGAATGCAAGTTGGAGAGTCCT -ACGGAATGCAAGTTGGAGTAAGCC -ACGGAATGCAAGTTGGAGATAGCC -ACGGAATGCAAGTTGGAGTAACCG -ACGGAATGCAAGTTGGAGATGCCA -ACGGAATGCAAGCTGAGAGGAAAC -ACGGAATGCAAGCTGAGAAACACC -ACGGAATGCAAGCTGAGAATCGAG -ACGGAATGCAAGCTGAGACTCCTT -ACGGAATGCAAGCTGAGACCTGTT -ACGGAATGCAAGCTGAGACGGTTT -ACGGAATGCAAGCTGAGAGTGGTT -ACGGAATGCAAGCTGAGAGCCTTT -ACGGAATGCAAGCTGAGAGGTCTT -ACGGAATGCAAGCTGAGAACGCTT -ACGGAATGCAAGCTGAGAAGCGTT -ACGGAATGCAAGCTGAGATTCGTC -ACGGAATGCAAGCTGAGATCTCTC -ACGGAATGCAAGCTGAGATGGATC -ACGGAATGCAAGCTGAGACACTTC -ACGGAATGCAAGCTGAGAGTACTC -ACGGAATGCAAGCTGAGAGATGTC -ACGGAATGCAAGCTGAGAACAGTC -ACGGAATGCAAGCTGAGATTGCTG -ACGGAATGCAAGCTGAGATCCATG -ACGGAATGCAAGCTGAGATGTGTG -ACGGAATGCAAGCTGAGACTAGTG -ACGGAATGCAAGCTGAGACATCTG -ACGGAATGCAAGCTGAGAGAGTTG -ACGGAATGCAAGCTGAGAAGACTG -ACGGAATGCAAGCTGAGATCGGTA -ACGGAATGCAAGCTGAGATGCCTA -ACGGAATGCAAGCTGAGACCACTA -ACGGAATGCAAGCTGAGAGGAGTA -ACGGAATGCAAGCTGAGATCGTCT -ACGGAATGCAAGCTGAGATGCACT -ACGGAATGCAAGCTGAGACTGACT -ACGGAATGCAAGCTGAGACAACCT -ACGGAATGCAAGCTGAGAGCTACT -ACGGAATGCAAGCTGAGAGGATCT -ACGGAATGCAAGCTGAGAAAGGCT -ACGGAATGCAAGCTGAGATCAACC -ACGGAATGCAAGCTGAGATGTTCC -ACGGAATGCAAGCTGAGAATTCCC -ACGGAATGCAAGCTGAGATTCTCG -ACGGAATGCAAGCTGAGATAGACG -ACGGAATGCAAGCTGAGAGTAACG -ACGGAATGCAAGCTGAGAACTTCG -ACGGAATGCAAGCTGAGATACGCA -ACGGAATGCAAGCTGAGACTTGCA -ACGGAATGCAAGCTGAGACGAACA -ACGGAATGCAAGCTGAGACAGTCA -ACGGAATGCAAGCTGAGAGATCCA -ACGGAATGCAAGCTGAGAACGACA -ACGGAATGCAAGCTGAGAAGCTCA -ACGGAATGCAAGCTGAGATCACGT -ACGGAATGCAAGCTGAGACGTAGT -ACGGAATGCAAGCTGAGAGTCAGT -ACGGAATGCAAGCTGAGAGAAGGT -ACGGAATGCAAGCTGAGAAACCGT -ACGGAATGCAAGCTGAGATTGTGC -ACGGAATGCAAGCTGAGACTAAGC -ACGGAATGCAAGCTGAGAACTAGC -ACGGAATGCAAGCTGAGAAGATGC -ACGGAATGCAAGCTGAGATGAAGG -ACGGAATGCAAGCTGAGACAATGG -ACGGAATGCAAGCTGAGAATGAGG -ACGGAATGCAAGCTGAGAAATGGG -ACGGAATGCAAGCTGAGATCCTGA -ACGGAATGCAAGCTGAGATAGCGA -ACGGAATGCAAGCTGAGACACAGA -ACGGAATGCAAGCTGAGAGCAAGA -ACGGAATGCAAGCTGAGAGGTTGA -ACGGAATGCAAGCTGAGATCCGAT -ACGGAATGCAAGCTGAGATGGCAT -ACGGAATGCAAGCTGAGACGAGAT -ACGGAATGCAAGCTGAGATACCAC -ACGGAATGCAAGCTGAGACAGAAC -ACGGAATGCAAGCTGAGAGTCTAC -ACGGAATGCAAGCTGAGAACGTAC -ACGGAATGCAAGCTGAGAAGTGAC -ACGGAATGCAAGCTGAGACTGTAG -ACGGAATGCAAGCTGAGACCTAAG -ACGGAATGCAAGCTGAGAGTTCAG -ACGGAATGCAAGCTGAGAGCATAG -ACGGAATGCAAGCTGAGAGACAAG -ACGGAATGCAAGCTGAGAAAGCAG -ACGGAATGCAAGCTGAGACGTCAA -ACGGAATGCAAGCTGAGAGCTGAA -ACGGAATGCAAGCTGAGAAGTACG -ACGGAATGCAAGCTGAGAATCCGA -ACGGAATGCAAGCTGAGAATGGGA -ACGGAATGCAAGCTGAGAGTGCAA -ACGGAATGCAAGCTGAGAGAGGAA -ACGGAATGCAAGCTGAGACAGGTA -ACGGAATGCAAGCTGAGAGACTCT -ACGGAATGCAAGCTGAGAAGTCCT -ACGGAATGCAAGCTGAGATAAGCC -ACGGAATGCAAGCTGAGAATAGCC -ACGGAATGCAAGCTGAGATAACCG -ACGGAATGCAAGCTGAGAATGCCA -ACGGAATGCAAGGTATCGGGAAAC -ACGGAATGCAAGGTATCGAACACC -ACGGAATGCAAGGTATCGATCGAG -ACGGAATGCAAGGTATCGCTCCTT -ACGGAATGCAAGGTATCGCCTGTT -ACGGAATGCAAGGTATCGCGGTTT -ACGGAATGCAAGGTATCGGTGGTT -ACGGAATGCAAGGTATCGGCCTTT -ACGGAATGCAAGGTATCGGGTCTT -ACGGAATGCAAGGTATCGACGCTT -ACGGAATGCAAGGTATCGAGCGTT -ACGGAATGCAAGGTATCGTTCGTC -ACGGAATGCAAGGTATCGTCTCTC -ACGGAATGCAAGGTATCGTGGATC -ACGGAATGCAAGGTATCGCACTTC -ACGGAATGCAAGGTATCGGTACTC -ACGGAATGCAAGGTATCGGATGTC -ACGGAATGCAAGGTATCGACAGTC -ACGGAATGCAAGGTATCGTTGCTG -ACGGAATGCAAGGTATCGTCCATG -ACGGAATGCAAGGTATCGTGTGTG -ACGGAATGCAAGGTATCGCTAGTG -ACGGAATGCAAGGTATCGCATCTG -ACGGAATGCAAGGTATCGGAGTTG -ACGGAATGCAAGGTATCGAGACTG -ACGGAATGCAAGGTATCGTCGGTA -ACGGAATGCAAGGTATCGTGCCTA -ACGGAATGCAAGGTATCGCCACTA -ACGGAATGCAAGGTATCGGGAGTA -ACGGAATGCAAGGTATCGTCGTCT -ACGGAATGCAAGGTATCGTGCACT -ACGGAATGCAAGGTATCGCTGACT -ACGGAATGCAAGGTATCGCAACCT -ACGGAATGCAAGGTATCGGCTACT -ACGGAATGCAAGGTATCGGGATCT -ACGGAATGCAAGGTATCGAAGGCT -ACGGAATGCAAGGTATCGTCAACC -ACGGAATGCAAGGTATCGTGTTCC -ACGGAATGCAAGGTATCGATTCCC -ACGGAATGCAAGGTATCGTTCTCG -ACGGAATGCAAGGTATCGTAGACG -ACGGAATGCAAGGTATCGGTAACG -ACGGAATGCAAGGTATCGACTTCG -ACGGAATGCAAGGTATCGTACGCA -ACGGAATGCAAGGTATCGCTTGCA -ACGGAATGCAAGGTATCGCGAACA -ACGGAATGCAAGGTATCGCAGTCA -ACGGAATGCAAGGTATCGGATCCA -ACGGAATGCAAGGTATCGACGACA -ACGGAATGCAAGGTATCGAGCTCA -ACGGAATGCAAGGTATCGTCACGT -ACGGAATGCAAGGTATCGCGTAGT -ACGGAATGCAAGGTATCGGTCAGT -ACGGAATGCAAGGTATCGGAAGGT -ACGGAATGCAAGGTATCGAACCGT -ACGGAATGCAAGGTATCGTTGTGC -ACGGAATGCAAGGTATCGCTAAGC -ACGGAATGCAAGGTATCGACTAGC -ACGGAATGCAAGGTATCGAGATGC -ACGGAATGCAAGGTATCGTGAAGG -ACGGAATGCAAGGTATCGCAATGG -ACGGAATGCAAGGTATCGATGAGG -ACGGAATGCAAGGTATCGAATGGG -ACGGAATGCAAGGTATCGTCCTGA -ACGGAATGCAAGGTATCGTAGCGA -ACGGAATGCAAGGTATCGCACAGA -ACGGAATGCAAGGTATCGGCAAGA -ACGGAATGCAAGGTATCGGGTTGA -ACGGAATGCAAGGTATCGTCCGAT -ACGGAATGCAAGGTATCGTGGCAT -ACGGAATGCAAGGTATCGCGAGAT -ACGGAATGCAAGGTATCGTACCAC -ACGGAATGCAAGGTATCGCAGAAC -ACGGAATGCAAGGTATCGGTCTAC -ACGGAATGCAAGGTATCGACGTAC -ACGGAATGCAAGGTATCGAGTGAC -ACGGAATGCAAGGTATCGCTGTAG -ACGGAATGCAAGGTATCGCCTAAG -ACGGAATGCAAGGTATCGGTTCAG -ACGGAATGCAAGGTATCGGCATAG -ACGGAATGCAAGGTATCGGACAAG -ACGGAATGCAAGGTATCGAAGCAG -ACGGAATGCAAGGTATCGCGTCAA -ACGGAATGCAAGGTATCGGCTGAA -ACGGAATGCAAGGTATCGAGTACG -ACGGAATGCAAGGTATCGATCCGA -ACGGAATGCAAGGTATCGATGGGA -ACGGAATGCAAGGTATCGGTGCAA -ACGGAATGCAAGGTATCGGAGGAA -ACGGAATGCAAGGTATCGCAGGTA -ACGGAATGCAAGGTATCGGACTCT -ACGGAATGCAAGGTATCGAGTCCT -ACGGAATGCAAGGTATCGTAAGCC -ACGGAATGCAAGGTATCGATAGCC -ACGGAATGCAAGGTATCGTAACCG -ACGGAATGCAAGGTATCGATGCCA -ACGGAATGCAAGCTATGCGGAAAC -ACGGAATGCAAGCTATGCAACACC -ACGGAATGCAAGCTATGCATCGAG -ACGGAATGCAAGCTATGCCTCCTT -ACGGAATGCAAGCTATGCCCTGTT -ACGGAATGCAAGCTATGCCGGTTT -ACGGAATGCAAGCTATGCGTGGTT -ACGGAATGCAAGCTATGCGCCTTT -ACGGAATGCAAGCTATGCGGTCTT -ACGGAATGCAAGCTATGCACGCTT -ACGGAATGCAAGCTATGCAGCGTT -ACGGAATGCAAGCTATGCTTCGTC -ACGGAATGCAAGCTATGCTCTCTC -ACGGAATGCAAGCTATGCTGGATC -ACGGAATGCAAGCTATGCCACTTC -ACGGAATGCAAGCTATGCGTACTC -ACGGAATGCAAGCTATGCGATGTC -ACGGAATGCAAGCTATGCACAGTC -ACGGAATGCAAGCTATGCTTGCTG -ACGGAATGCAAGCTATGCTCCATG -ACGGAATGCAAGCTATGCTGTGTG -ACGGAATGCAAGCTATGCCTAGTG -ACGGAATGCAAGCTATGCCATCTG -ACGGAATGCAAGCTATGCGAGTTG -ACGGAATGCAAGCTATGCAGACTG -ACGGAATGCAAGCTATGCTCGGTA -ACGGAATGCAAGCTATGCTGCCTA -ACGGAATGCAAGCTATGCCCACTA -ACGGAATGCAAGCTATGCGGAGTA -ACGGAATGCAAGCTATGCTCGTCT -ACGGAATGCAAGCTATGCTGCACT -ACGGAATGCAAGCTATGCCTGACT -ACGGAATGCAAGCTATGCCAACCT -ACGGAATGCAAGCTATGCGCTACT -ACGGAATGCAAGCTATGCGGATCT -ACGGAATGCAAGCTATGCAAGGCT -ACGGAATGCAAGCTATGCTCAACC -ACGGAATGCAAGCTATGCTGTTCC -ACGGAATGCAAGCTATGCATTCCC -ACGGAATGCAAGCTATGCTTCTCG -ACGGAATGCAAGCTATGCTAGACG -ACGGAATGCAAGCTATGCGTAACG -ACGGAATGCAAGCTATGCACTTCG -ACGGAATGCAAGCTATGCTACGCA -ACGGAATGCAAGCTATGCCTTGCA -ACGGAATGCAAGCTATGCCGAACA -ACGGAATGCAAGCTATGCCAGTCA -ACGGAATGCAAGCTATGCGATCCA -ACGGAATGCAAGCTATGCACGACA -ACGGAATGCAAGCTATGCAGCTCA -ACGGAATGCAAGCTATGCTCACGT -ACGGAATGCAAGCTATGCCGTAGT -ACGGAATGCAAGCTATGCGTCAGT -ACGGAATGCAAGCTATGCGAAGGT -ACGGAATGCAAGCTATGCAACCGT -ACGGAATGCAAGCTATGCTTGTGC -ACGGAATGCAAGCTATGCCTAAGC -ACGGAATGCAAGCTATGCACTAGC -ACGGAATGCAAGCTATGCAGATGC -ACGGAATGCAAGCTATGCTGAAGG -ACGGAATGCAAGCTATGCCAATGG -ACGGAATGCAAGCTATGCATGAGG -ACGGAATGCAAGCTATGCAATGGG -ACGGAATGCAAGCTATGCTCCTGA -ACGGAATGCAAGCTATGCTAGCGA -ACGGAATGCAAGCTATGCCACAGA -ACGGAATGCAAGCTATGCGCAAGA -ACGGAATGCAAGCTATGCGGTTGA -ACGGAATGCAAGCTATGCTCCGAT -ACGGAATGCAAGCTATGCTGGCAT -ACGGAATGCAAGCTATGCCGAGAT -ACGGAATGCAAGCTATGCTACCAC -ACGGAATGCAAGCTATGCCAGAAC -ACGGAATGCAAGCTATGCGTCTAC -ACGGAATGCAAGCTATGCACGTAC -ACGGAATGCAAGCTATGCAGTGAC -ACGGAATGCAAGCTATGCCTGTAG -ACGGAATGCAAGCTATGCCCTAAG -ACGGAATGCAAGCTATGCGTTCAG -ACGGAATGCAAGCTATGCGCATAG -ACGGAATGCAAGCTATGCGACAAG -ACGGAATGCAAGCTATGCAAGCAG -ACGGAATGCAAGCTATGCCGTCAA -ACGGAATGCAAGCTATGCGCTGAA -ACGGAATGCAAGCTATGCAGTACG -ACGGAATGCAAGCTATGCATCCGA -ACGGAATGCAAGCTATGCATGGGA -ACGGAATGCAAGCTATGCGTGCAA -ACGGAATGCAAGCTATGCGAGGAA -ACGGAATGCAAGCTATGCCAGGTA -ACGGAATGCAAGCTATGCGACTCT -ACGGAATGCAAGCTATGCAGTCCT -ACGGAATGCAAGCTATGCTAAGCC -ACGGAATGCAAGCTATGCATAGCC -ACGGAATGCAAGCTATGCTAACCG -ACGGAATGCAAGCTATGCATGCCA -ACGGAATGCAAGCTACCAGGAAAC -ACGGAATGCAAGCTACCAAACACC -ACGGAATGCAAGCTACCAATCGAG -ACGGAATGCAAGCTACCACTCCTT -ACGGAATGCAAGCTACCACCTGTT -ACGGAATGCAAGCTACCACGGTTT -ACGGAATGCAAGCTACCAGTGGTT -ACGGAATGCAAGCTACCAGCCTTT -ACGGAATGCAAGCTACCAGGTCTT -ACGGAATGCAAGCTACCAACGCTT -ACGGAATGCAAGCTACCAAGCGTT -ACGGAATGCAAGCTACCATTCGTC -ACGGAATGCAAGCTACCATCTCTC -ACGGAATGCAAGCTACCATGGATC -ACGGAATGCAAGCTACCACACTTC -ACGGAATGCAAGCTACCAGTACTC -ACGGAATGCAAGCTACCAGATGTC -ACGGAATGCAAGCTACCAACAGTC -ACGGAATGCAAGCTACCATTGCTG -ACGGAATGCAAGCTACCATCCATG -ACGGAATGCAAGCTACCATGTGTG -ACGGAATGCAAGCTACCACTAGTG -ACGGAATGCAAGCTACCACATCTG -ACGGAATGCAAGCTACCAGAGTTG -ACGGAATGCAAGCTACCAAGACTG -ACGGAATGCAAGCTACCATCGGTA -ACGGAATGCAAGCTACCATGCCTA -ACGGAATGCAAGCTACCACCACTA -ACGGAATGCAAGCTACCAGGAGTA -ACGGAATGCAAGCTACCATCGTCT -ACGGAATGCAAGCTACCATGCACT -ACGGAATGCAAGCTACCACTGACT -ACGGAATGCAAGCTACCACAACCT -ACGGAATGCAAGCTACCAGCTACT -ACGGAATGCAAGCTACCAGGATCT -ACGGAATGCAAGCTACCAAAGGCT -ACGGAATGCAAGCTACCATCAACC -ACGGAATGCAAGCTACCATGTTCC -ACGGAATGCAAGCTACCAATTCCC -ACGGAATGCAAGCTACCATTCTCG -ACGGAATGCAAGCTACCATAGACG -ACGGAATGCAAGCTACCAGTAACG -ACGGAATGCAAGCTACCAACTTCG -ACGGAATGCAAGCTACCATACGCA -ACGGAATGCAAGCTACCACTTGCA -ACGGAATGCAAGCTACCACGAACA -ACGGAATGCAAGCTACCACAGTCA -ACGGAATGCAAGCTACCAGATCCA -ACGGAATGCAAGCTACCAACGACA -ACGGAATGCAAGCTACCAAGCTCA -ACGGAATGCAAGCTACCATCACGT -ACGGAATGCAAGCTACCACGTAGT -ACGGAATGCAAGCTACCAGTCAGT -ACGGAATGCAAGCTACCAGAAGGT -ACGGAATGCAAGCTACCAAACCGT -ACGGAATGCAAGCTACCATTGTGC -ACGGAATGCAAGCTACCACTAAGC -ACGGAATGCAAGCTACCAACTAGC -ACGGAATGCAAGCTACCAAGATGC -ACGGAATGCAAGCTACCATGAAGG -ACGGAATGCAAGCTACCACAATGG -ACGGAATGCAAGCTACCAATGAGG -ACGGAATGCAAGCTACCAAATGGG -ACGGAATGCAAGCTACCATCCTGA -ACGGAATGCAAGCTACCATAGCGA -ACGGAATGCAAGCTACCACACAGA -ACGGAATGCAAGCTACCAGCAAGA -ACGGAATGCAAGCTACCAGGTTGA -ACGGAATGCAAGCTACCATCCGAT -ACGGAATGCAAGCTACCATGGCAT -ACGGAATGCAAGCTACCACGAGAT -ACGGAATGCAAGCTACCATACCAC -ACGGAATGCAAGCTACCACAGAAC -ACGGAATGCAAGCTACCAGTCTAC -ACGGAATGCAAGCTACCAACGTAC -ACGGAATGCAAGCTACCAAGTGAC -ACGGAATGCAAGCTACCACTGTAG -ACGGAATGCAAGCTACCACCTAAG -ACGGAATGCAAGCTACCAGTTCAG -ACGGAATGCAAGCTACCAGCATAG -ACGGAATGCAAGCTACCAGACAAG -ACGGAATGCAAGCTACCAAAGCAG -ACGGAATGCAAGCTACCACGTCAA -ACGGAATGCAAGCTACCAGCTGAA -ACGGAATGCAAGCTACCAAGTACG -ACGGAATGCAAGCTACCAATCCGA -ACGGAATGCAAGCTACCAATGGGA -ACGGAATGCAAGCTACCAGTGCAA -ACGGAATGCAAGCTACCAGAGGAA -ACGGAATGCAAGCTACCACAGGTA -ACGGAATGCAAGCTACCAGACTCT -ACGGAATGCAAGCTACCAAGTCCT -ACGGAATGCAAGCTACCATAAGCC -ACGGAATGCAAGCTACCAATAGCC -ACGGAATGCAAGCTACCATAACCG -ACGGAATGCAAGCTACCAATGCCA -ACGGAATGCAAGGTAGGAGGAAAC -ACGGAATGCAAGGTAGGAAACACC -ACGGAATGCAAGGTAGGAATCGAG -ACGGAATGCAAGGTAGGACTCCTT -ACGGAATGCAAGGTAGGACCTGTT -ACGGAATGCAAGGTAGGACGGTTT -ACGGAATGCAAGGTAGGAGTGGTT -ACGGAATGCAAGGTAGGAGCCTTT -ACGGAATGCAAGGTAGGAGGTCTT -ACGGAATGCAAGGTAGGAACGCTT -ACGGAATGCAAGGTAGGAAGCGTT -ACGGAATGCAAGGTAGGATTCGTC -ACGGAATGCAAGGTAGGATCTCTC -ACGGAATGCAAGGTAGGATGGATC -ACGGAATGCAAGGTAGGACACTTC -ACGGAATGCAAGGTAGGAGTACTC -ACGGAATGCAAGGTAGGAGATGTC -ACGGAATGCAAGGTAGGAACAGTC -ACGGAATGCAAGGTAGGATTGCTG -ACGGAATGCAAGGTAGGATCCATG -ACGGAATGCAAGGTAGGATGTGTG -ACGGAATGCAAGGTAGGACTAGTG -ACGGAATGCAAGGTAGGACATCTG -ACGGAATGCAAGGTAGGAGAGTTG -ACGGAATGCAAGGTAGGAAGACTG -ACGGAATGCAAGGTAGGATCGGTA -ACGGAATGCAAGGTAGGATGCCTA -ACGGAATGCAAGGTAGGACCACTA -ACGGAATGCAAGGTAGGAGGAGTA -ACGGAATGCAAGGTAGGATCGTCT -ACGGAATGCAAGGTAGGATGCACT -ACGGAATGCAAGGTAGGACTGACT -ACGGAATGCAAGGTAGGACAACCT -ACGGAATGCAAGGTAGGAGCTACT -ACGGAATGCAAGGTAGGAGGATCT -ACGGAATGCAAGGTAGGAAAGGCT -ACGGAATGCAAGGTAGGATCAACC -ACGGAATGCAAGGTAGGATGTTCC -ACGGAATGCAAGGTAGGAATTCCC -ACGGAATGCAAGGTAGGATTCTCG -ACGGAATGCAAGGTAGGATAGACG -ACGGAATGCAAGGTAGGAGTAACG -ACGGAATGCAAGGTAGGAACTTCG -ACGGAATGCAAGGTAGGATACGCA -ACGGAATGCAAGGTAGGACTTGCA -ACGGAATGCAAGGTAGGACGAACA -ACGGAATGCAAGGTAGGACAGTCA -ACGGAATGCAAGGTAGGAGATCCA -ACGGAATGCAAGGTAGGAACGACA -ACGGAATGCAAGGTAGGAAGCTCA -ACGGAATGCAAGGTAGGATCACGT -ACGGAATGCAAGGTAGGACGTAGT -ACGGAATGCAAGGTAGGAGTCAGT -ACGGAATGCAAGGTAGGAGAAGGT -ACGGAATGCAAGGTAGGAAACCGT -ACGGAATGCAAGGTAGGATTGTGC -ACGGAATGCAAGGTAGGACTAAGC -ACGGAATGCAAGGTAGGAACTAGC -ACGGAATGCAAGGTAGGAAGATGC -ACGGAATGCAAGGTAGGATGAAGG -ACGGAATGCAAGGTAGGACAATGG -ACGGAATGCAAGGTAGGAATGAGG -ACGGAATGCAAGGTAGGAAATGGG -ACGGAATGCAAGGTAGGATCCTGA -ACGGAATGCAAGGTAGGATAGCGA -ACGGAATGCAAGGTAGGACACAGA -ACGGAATGCAAGGTAGGAGCAAGA -ACGGAATGCAAGGTAGGAGGTTGA -ACGGAATGCAAGGTAGGATCCGAT -ACGGAATGCAAGGTAGGATGGCAT -ACGGAATGCAAGGTAGGACGAGAT -ACGGAATGCAAGGTAGGATACCAC -ACGGAATGCAAGGTAGGACAGAAC -ACGGAATGCAAGGTAGGAGTCTAC -ACGGAATGCAAGGTAGGAACGTAC -ACGGAATGCAAGGTAGGAAGTGAC -ACGGAATGCAAGGTAGGACTGTAG -ACGGAATGCAAGGTAGGACCTAAG -ACGGAATGCAAGGTAGGAGTTCAG -ACGGAATGCAAGGTAGGAGCATAG -ACGGAATGCAAGGTAGGAGACAAG -ACGGAATGCAAGGTAGGAAAGCAG -ACGGAATGCAAGGTAGGACGTCAA -ACGGAATGCAAGGTAGGAGCTGAA -ACGGAATGCAAGGTAGGAAGTACG -ACGGAATGCAAGGTAGGAATCCGA -ACGGAATGCAAGGTAGGAATGGGA -ACGGAATGCAAGGTAGGAGTGCAA -ACGGAATGCAAGGTAGGAGAGGAA -ACGGAATGCAAGGTAGGACAGGTA -ACGGAATGCAAGGTAGGAGACTCT -ACGGAATGCAAGGTAGGAAGTCCT -ACGGAATGCAAGGTAGGATAAGCC -ACGGAATGCAAGGTAGGAATAGCC -ACGGAATGCAAGGTAGGATAACCG -ACGGAATGCAAGGTAGGAATGCCA -ACGGAATGCAAGTCTTCGGGAAAC -ACGGAATGCAAGTCTTCGAACACC -ACGGAATGCAAGTCTTCGATCGAG -ACGGAATGCAAGTCTTCGCTCCTT -ACGGAATGCAAGTCTTCGCCTGTT -ACGGAATGCAAGTCTTCGCGGTTT -ACGGAATGCAAGTCTTCGGTGGTT -ACGGAATGCAAGTCTTCGGCCTTT -ACGGAATGCAAGTCTTCGGGTCTT -ACGGAATGCAAGTCTTCGACGCTT -ACGGAATGCAAGTCTTCGAGCGTT -ACGGAATGCAAGTCTTCGTTCGTC -ACGGAATGCAAGTCTTCGTCTCTC -ACGGAATGCAAGTCTTCGTGGATC -ACGGAATGCAAGTCTTCGCACTTC -ACGGAATGCAAGTCTTCGGTACTC -ACGGAATGCAAGTCTTCGGATGTC -ACGGAATGCAAGTCTTCGACAGTC -ACGGAATGCAAGTCTTCGTTGCTG -ACGGAATGCAAGTCTTCGTCCATG -ACGGAATGCAAGTCTTCGTGTGTG -ACGGAATGCAAGTCTTCGCTAGTG -ACGGAATGCAAGTCTTCGCATCTG -ACGGAATGCAAGTCTTCGGAGTTG -ACGGAATGCAAGTCTTCGAGACTG -ACGGAATGCAAGTCTTCGTCGGTA -ACGGAATGCAAGTCTTCGTGCCTA -ACGGAATGCAAGTCTTCGCCACTA -ACGGAATGCAAGTCTTCGGGAGTA -ACGGAATGCAAGTCTTCGTCGTCT -ACGGAATGCAAGTCTTCGTGCACT -ACGGAATGCAAGTCTTCGCTGACT -ACGGAATGCAAGTCTTCGCAACCT -ACGGAATGCAAGTCTTCGGCTACT -ACGGAATGCAAGTCTTCGGGATCT -ACGGAATGCAAGTCTTCGAAGGCT -ACGGAATGCAAGTCTTCGTCAACC -ACGGAATGCAAGTCTTCGTGTTCC -ACGGAATGCAAGTCTTCGATTCCC -ACGGAATGCAAGTCTTCGTTCTCG -ACGGAATGCAAGTCTTCGTAGACG -ACGGAATGCAAGTCTTCGGTAACG -ACGGAATGCAAGTCTTCGACTTCG -ACGGAATGCAAGTCTTCGTACGCA -ACGGAATGCAAGTCTTCGCTTGCA -ACGGAATGCAAGTCTTCGCGAACA -ACGGAATGCAAGTCTTCGCAGTCA -ACGGAATGCAAGTCTTCGGATCCA -ACGGAATGCAAGTCTTCGACGACA -ACGGAATGCAAGTCTTCGAGCTCA -ACGGAATGCAAGTCTTCGTCACGT -ACGGAATGCAAGTCTTCGCGTAGT -ACGGAATGCAAGTCTTCGGTCAGT -ACGGAATGCAAGTCTTCGGAAGGT -ACGGAATGCAAGTCTTCGAACCGT -ACGGAATGCAAGTCTTCGTTGTGC -ACGGAATGCAAGTCTTCGCTAAGC -ACGGAATGCAAGTCTTCGACTAGC -ACGGAATGCAAGTCTTCGAGATGC -ACGGAATGCAAGTCTTCGTGAAGG -ACGGAATGCAAGTCTTCGCAATGG -ACGGAATGCAAGTCTTCGATGAGG -ACGGAATGCAAGTCTTCGAATGGG -ACGGAATGCAAGTCTTCGTCCTGA -ACGGAATGCAAGTCTTCGTAGCGA -ACGGAATGCAAGTCTTCGCACAGA -ACGGAATGCAAGTCTTCGGCAAGA -ACGGAATGCAAGTCTTCGGGTTGA -ACGGAATGCAAGTCTTCGTCCGAT -ACGGAATGCAAGTCTTCGTGGCAT -ACGGAATGCAAGTCTTCGCGAGAT -ACGGAATGCAAGTCTTCGTACCAC -ACGGAATGCAAGTCTTCGCAGAAC -ACGGAATGCAAGTCTTCGGTCTAC -ACGGAATGCAAGTCTTCGACGTAC -ACGGAATGCAAGTCTTCGAGTGAC -ACGGAATGCAAGTCTTCGCTGTAG -ACGGAATGCAAGTCTTCGCCTAAG -ACGGAATGCAAGTCTTCGGTTCAG -ACGGAATGCAAGTCTTCGGCATAG -ACGGAATGCAAGTCTTCGGACAAG -ACGGAATGCAAGTCTTCGAAGCAG -ACGGAATGCAAGTCTTCGCGTCAA -ACGGAATGCAAGTCTTCGGCTGAA -ACGGAATGCAAGTCTTCGAGTACG -ACGGAATGCAAGTCTTCGATCCGA -ACGGAATGCAAGTCTTCGATGGGA -ACGGAATGCAAGTCTTCGGTGCAA -ACGGAATGCAAGTCTTCGGAGGAA -ACGGAATGCAAGTCTTCGCAGGTA -ACGGAATGCAAGTCTTCGGACTCT -ACGGAATGCAAGTCTTCGAGTCCT -ACGGAATGCAAGTCTTCGTAAGCC -ACGGAATGCAAGTCTTCGATAGCC -ACGGAATGCAAGTCTTCGTAACCG -ACGGAATGCAAGTCTTCGATGCCA -ACGGAATGCAAGACTTGCGGAAAC -ACGGAATGCAAGACTTGCAACACC -ACGGAATGCAAGACTTGCATCGAG -ACGGAATGCAAGACTTGCCTCCTT -ACGGAATGCAAGACTTGCCCTGTT -ACGGAATGCAAGACTTGCCGGTTT -ACGGAATGCAAGACTTGCGTGGTT -ACGGAATGCAAGACTTGCGCCTTT -ACGGAATGCAAGACTTGCGGTCTT -ACGGAATGCAAGACTTGCACGCTT -ACGGAATGCAAGACTTGCAGCGTT -ACGGAATGCAAGACTTGCTTCGTC -ACGGAATGCAAGACTTGCTCTCTC -ACGGAATGCAAGACTTGCTGGATC -ACGGAATGCAAGACTTGCCACTTC -ACGGAATGCAAGACTTGCGTACTC -ACGGAATGCAAGACTTGCGATGTC -ACGGAATGCAAGACTTGCACAGTC -ACGGAATGCAAGACTTGCTTGCTG -ACGGAATGCAAGACTTGCTCCATG -ACGGAATGCAAGACTTGCTGTGTG -ACGGAATGCAAGACTTGCCTAGTG -ACGGAATGCAAGACTTGCCATCTG -ACGGAATGCAAGACTTGCGAGTTG -ACGGAATGCAAGACTTGCAGACTG -ACGGAATGCAAGACTTGCTCGGTA -ACGGAATGCAAGACTTGCTGCCTA -ACGGAATGCAAGACTTGCCCACTA -ACGGAATGCAAGACTTGCGGAGTA -ACGGAATGCAAGACTTGCTCGTCT -ACGGAATGCAAGACTTGCTGCACT -ACGGAATGCAAGACTTGCCTGACT -ACGGAATGCAAGACTTGCCAACCT -ACGGAATGCAAGACTTGCGCTACT -ACGGAATGCAAGACTTGCGGATCT -ACGGAATGCAAGACTTGCAAGGCT -ACGGAATGCAAGACTTGCTCAACC -ACGGAATGCAAGACTTGCTGTTCC -ACGGAATGCAAGACTTGCATTCCC -ACGGAATGCAAGACTTGCTTCTCG -ACGGAATGCAAGACTTGCTAGACG -ACGGAATGCAAGACTTGCGTAACG -ACGGAATGCAAGACTTGCACTTCG -ACGGAATGCAAGACTTGCTACGCA -ACGGAATGCAAGACTTGCCTTGCA -ACGGAATGCAAGACTTGCCGAACA -ACGGAATGCAAGACTTGCCAGTCA -ACGGAATGCAAGACTTGCGATCCA -ACGGAATGCAAGACTTGCACGACA -ACGGAATGCAAGACTTGCAGCTCA -ACGGAATGCAAGACTTGCTCACGT -ACGGAATGCAAGACTTGCCGTAGT -ACGGAATGCAAGACTTGCGTCAGT -ACGGAATGCAAGACTTGCGAAGGT -ACGGAATGCAAGACTTGCAACCGT -ACGGAATGCAAGACTTGCTTGTGC -ACGGAATGCAAGACTTGCCTAAGC -ACGGAATGCAAGACTTGCACTAGC -ACGGAATGCAAGACTTGCAGATGC -ACGGAATGCAAGACTTGCTGAAGG -ACGGAATGCAAGACTTGCCAATGG -ACGGAATGCAAGACTTGCATGAGG -ACGGAATGCAAGACTTGCAATGGG -ACGGAATGCAAGACTTGCTCCTGA -ACGGAATGCAAGACTTGCTAGCGA -ACGGAATGCAAGACTTGCCACAGA -ACGGAATGCAAGACTTGCGCAAGA -ACGGAATGCAAGACTTGCGGTTGA -ACGGAATGCAAGACTTGCTCCGAT -ACGGAATGCAAGACTTGCTGGCAT -ACGGAATGCAAGACTTGCCGAGAT -ACGGAATGCAAGACTTGCTACCAC -ACGGAATGCAAGACTTGCCAGAAC -ACGGAATGCAAGACTTGCGTCTAC -ACGGAATGCAAGACTTGCACGTAC -ACGGAATGCAAGACTTGCAGTGAC -ACGGAATGCAAGACTTGCCTGTAG -ACGGAATGCAAGACTTGCCCTAAG -ACGGAATGCAAGACTTGCGTTCAG -ACGGAATGCAAGACTTGCGCATAG -ACGGAATGCAAGACTTGCGACAAG -ACGGAATGCAAGACTTGCAAGCAG -ACGGAATGCAAGACTTGCCGTCAA -ACGGAATGCAAGACTTGCGCTGAA -ACGGAATGCAAGACTTGCAGTACG -ACGGAATGCAAGACTTGCATCCGA -ACGGAATGCAAGACTTGCATGGGA -ACGGAATGCAAGACTTGCGTGCAA -ACGGAATGCAAGACTTGCGAGGAA -ACGGAATGCAAGACTTGCCAGGTA -ACGGAATGCAAGACTTGCGACTCT -ACGGAATGCAAGACTTGCAGTCCT -ACGGAATGCAAGACTTGCTAAGCC -ACGGAATGCAAGACTTGCATAGCC -ACGGAATGCAAGACTTGCTAACCG -ACGGAATGCAAGACTTGCATGCCA -ACGGAATGCAAGACTCTGGGAAAC -ACGGAATGCAAGACTCTGAACACC -ACGGAATGCAAGACTCTGATCGAG -ACGGAATGCAAGACTCTGCTCCTT -ACGGAATGCAAGACTCTGCCTGTT -ACGGAATGCAAGACTCTGCGGTTT -ACGGAATGCAAGACTCTGGTGGTT -ACGGAATGCAAGACTCTGGCCTTT -ACGGAATGCAAGACTCTGGGTCTT -ACGGAATGCAAGACTCTGACGCTT -ACGGAATGCAAGACTCTGAGCGTT -ACGGAATGCAAGACTCTGTTCGTC -ACGGAATGCAAGACTCTGTCTCTC -ACGGAATGCAAGACTCTGTGGATC -ACGGAATGCAAGACTCTGCACTTC -ACGGAATGCAAGACTCTGGTACTC -ACGGAATGCAAGACTCTGGATGTC -ACGGAATGCAAGACTCTGACAGTC -ACGGAATGCAAGACTCTGTTGCTG -ACGGAATGCAAGACTCTGTCCATG -ACGGAATGCAAGACTCTGTGTGTG -ACGGAATGCAAGACTCTGCTAGTG -ACGGAATGCAAGACTCTGCATCTG -ACGGAATGCAAGACTCTGGAGTTG -ACGGAATGCAAGACTCTGAGACTG -ACGGAATGCAAGACTCTGTCGGTA -ACGGAATGCAAGACTCTGTGCCTA -ACGGAATGCAAGACTCTGCCACTA -ACGGAATGCAAGACTCTGGGAGTA -ACGGAATGCAAGACTCTGTCGTCT -ACGGAATGCAAGACTCTGTGCACT -ACGGAATGCAAGACTCTGCTGACT -ACGGAATGCAAGACTCTGCAACCT -ACGGAATGCAAGACTCTGGCTACT -ACGGAATGCAAGACTCTGGGATCT -ACGGAATGCAAGACTCTGAAGGCT -ACGGAATGCAAGACTCTGTCAACC -ACGGAATGCAAGACTCTGTGTTCC -ACGGAATGCAAGACTCTGATTCCC -ACGGAATGCAAGACTCTGTTCTCG -ACGGAATGCAAGACTCTGTAGACG -ACGGAATGCAAGACTCTGGTAACG -ACGGAATGCAAGACTCTGACTTCG -ACGGAATGCAAGACTCTGTACGCA -ACGGAATGCAAGACTCTGCTTGCA -ACGGAATGCAAGACTCTGCGAACA -ACGGAATGCAAGACTCTGCAGTCA -ACGGAATGCAAGACTCTGGATCCA -ACGGAATGCAAGACTCTGACGACA -ACGGAATGCAAGACTCTGAGCTCA -ACGGAATGCAAGACTCTGTCACGT -ACGGAATGCAAGACTCTGCGTAGT -ACGGAATGCAAGACTCTGGTCAGT -ACGGAATGCAAGACTCTGGAAGGT -ACGGAATGCAAGACTCTGAACCGT -ACGGAATGCAAGACTCTGTTGTGC -ACGGAATGCAAGACTCTGCTAAGC -ACGGAATGCAAGACTCTGACTAGC -ACGGAATGCAAGACTCTGAGATGC -ACGGAATGCAAGACTCTGTGAAGG -ACGGAATGCAAGACTCTGCAATGG -ACGGAATGCAAGACTCTGATGAGG -ACGGAATGCAAGACTCTGAATGGG -ACGGAATGCAAGACTCTGTCCTGA -ACGGAATGCAAGACTCTGTAGCGA -ACGGAATGCAAGACTCTGCACAGA -ACGGAATGCAAGACTCTGGCAAGA -ACGGAATGCAAGACTCTGGGTTGA -ACGGAATGCAAGACTCTGTCCGAT -ACGGAATGCAAGACTCTGTGGCAT -ACGGAATGCAAGACTCTGCGAGAT -ACGGAATGCAAGACTCTGTACCAC -ACGGAATGCAAGACTCTGCAGAAC -ACGGAATGCAAGACTCTGGTCTAC -ACGGAATGCAAGACTCTGACGTAC -ACGGAATGCAAGACTCTGAGTGAC -ACGGAATGCAAGACTCTGCTGTAG -ACGGAATGCAAGACTCTGCCTAAG -ACGGAATGCAAGACTCTGGTTCAG -ACGGAATGCAAGACTCTGGCATAG -ACGGAATGCAAGACTCTGGACAAG -ACGGAATGCAAGACTCTGAAGCAG -ACGGAATGCAAGACTCTGCGTCAA -ACGGAATGCAAGACTCTGGCTGAA -ACGGAATGCAAGACTCTGAGTACG -ACGGAATGCAAGACTCTGATCCGA -ACGGAATGCAAGACTCTGATGGGA -ACGGAATGCAAGACTCTGGTGCAA -ACGGAATGCAAGACTCTGGAGGAA -ACGGAATGCAAGACTCTGCAGGTA -ACGGAATGCAAGACTCTGGACTCT -ACGGAATGCAAGACTCTGAGTCCT -ACGGAATGCAAGACTCTGTAAGCC -ACGGAATGCAAGACTCTGATAGCC -ACGGAATGCAAGACTCTGTAACCG -ACGGAATGCAAGACTCTGATGCCA -ACGGAATGCAAGCCTCAAGGAAAC -ACGGAATGCAAGCCTCAAAACACC -ACGGAATGCAAGCCTCAAATCGAG -ACGGAATGCAAGCCTCAACTCCTT -ACGGAATGCAAGCCTCAACCTGTT -ACGGAATGCAAGCCTCAACGGTTT -ACGGAATGCAAGCCTCAAGTGGTT -ACGGAATGCAAGCCTCAAGCCTTT -ACGGAATGCAAGCCTCAAGGTCTT -ACGGAATGCAAGCCTCAAACGCTT -ACGGAATGCAAGCCTCAAAGCGTT -ACGGAATGCAAGCCTCAATTCGTC -ACGGAATGCAAGCCTCAATCTCTC -ACGGAATGCAAGCCTCAATGGATC -ACGGAATGCAAGCCTCAACACTTC -ACGGAATGCAAGCCTCAAGTACTC -ACGGAATGCAAGCCTCAAGATGTC -ACGGAATGCAAGCCTCAAACAGTC -ACGGAATGCAAGCCTCAATTGCTG -ACGGAATGCAAGCCTCAATCCATG -ACGGAATGCAAGCCTCAATGTGTG -ACGGAATGCAAGCCTCAACTAGTG -ACGGAATGCAAGCCTCAACATCTG -ACGGAATGCAAGCCTCAAGAGTTG -ACGGAATGCAAGCCTCAAAGACTG -ACGGAATGCAAGCCTCAATCGGTA -ACGGAATGCAAGCCTCAATGCCTA -ACGGAATGCAAGCCTCAACCACTA -ACGGAATGCAAGCCTCAAGGAGTA -ACGGAATGCAAGCCTCAATCGTCT -ACGGAATGCAAGCCTCAATGCACT -ACGGAATGCAAGCCTCAACTGACT -ACGGAATGCAAGCCTCAACAACCT -ACGGAATGCAAGCCTCAAGCTACT -ACGGAATGCAAGCCTCAAGGATCT -ACGGAATGCAAGCCTCAAAAGGCT -ACGGAATGCAAGCCTCAATCAACC -ACGGAATGCAAGCCTCAATGTTCC -ACGGAATGCAAGCCTCAAATTCCC -ACGGAATGCAAGCCTCAATTCTCG -ACGGAATGCAAGCCTCAATAGACG -ACGGAATGCAAGCCTCAAGTAACG -ACGGAATGCAAGCCTCAAACTTCG -ACGGAATGCAAGCCTCAATACGCA -ACGGAATGCAAGCCTCAACTTGCA -ACGGAATGCAAGCCTCAACGAACA -ACGGAATGCAAGCCTCAACAGTCA -ACGGAATGCAAGCCTCAAGATCCA -ACGGAATGCAAGCCTCAAACGACA -ACGGAATGCAAGCCTCAAAGCTCA -ACGGAATGCAAGCCTCAATCACGT -ACGGAATGCAAGCCTCAACGTAGT -ACGGAATGCAAGCCTCAAGTCAGT -ACGGAATGCAAGCCTCAAGAAGGT -ACGGAATGCAAGCCTCAAAACCGT -ACGGAATGCAAGCCTCAATTGTGC -ACGGAATGCAAGCCTCAACTAAGC -ACGGAATGCAAGCCTCAAACTAGC -ACGGAATGCAAGCCTCAAAGATGC -ACGGAATGCAAGCCTCAATGAAGG -ACGGAATGCAAGCCTCAACAATGG -ACGGAATGCAAGCCTCAAATGAGG -ACGGAATGCAAGCCTCAAAATGGG -ACGGAATGCAAGCCTCAATCCTGA -ACGGAATGCAAGCCTCAATAGCGA -ACGGAATGCAAGCCTCAACACAGA -ACGGAATGCAAGCCTCAAGCAAGA -ACGGAATGCAAGCCTCAAGGTTGA -ACGGAATGCAAGCCTCAATCCGAT -ACGGAATGCAAGCCTCAATGGCAT -ACGGAATGCAAGCCTCAACGAGAT -ACGGAATGCAAGCCTCAATACCAC -ACGGAATGCAAGCCTCAACAGAAC -ACGGAATGCAAGCCTCAAGTCTAC -ACGGAATGCAAGCCTCAAACGTAC -ACGGAATGCAAGCCTCAAAGTGAC -ACGGAATGCAAGCCTCAACTGTAG -ACGGAATGCAAGCCTCAACCTAAG -ACGGAATGCAAGCCTCAAGTTCAG -ACGGAATGCAAGCCTCAAGCATAG -ACGGAATGCAAGCCTCAAGACAAG -ACGGAATGCAAGCCTCAAAAGCAG -ACGGAATGCAAGCCTCAACGTCAA -ACGGAATGCAAGCCTCAAGCTGAA -ACGGAATGCAAGCCTCAAAGTACG -ACGGAATGCAAGCCTCAAATCCGA -ACGGAATGCAAGCCTCAAATGGGA -ACGGAATGCAAGCCTCAAGTGCAA -ACGGAATGCAAGCCTCAAGAGGAA -ACGGAATGCAAGCCTCAACAGGTA -ACGGAATGCAAGCCTCAAGACTCT -ACGGAATGCAAGCCTCAAAGTCCT -ACGGAATGCAAGCCTCAATAAGCC -ACGGAATGCAAGCCTCAAATAGCC -ACGGAATGCAAGCCTCAATAACCG -ACGGAATGCAAGCCTCAAATGCCA -ACGGAATGCAAGACTGCTGGAAAC -ACGGAATGCAAGACTGCTAACACC -ACGGAATGCAAGACTGCTATCGAG -ACGGAATGCAAGACTGCTCTCCTT -ACGGAATGCAAGACTGCTCCTGTT -ACGGAATGCAAGACTGCTCGGTTT -ACGGAATGCAAGACTGCTGTGGTT -ACGGAATGCAAGACTGCTGCCTTT -ACGGAATGCAAGACTGCTGGTCTT -ACGGAATGCAAGACTGCTACGCTT -ACGGAATGCAAGACTGCTAGCGTT -ACGGAATGCAAGACTGCTTTCGTC -ACGGAATGCAAGACTGCTTCTCTC -ACGGAATGCAAGACTGCTTGGATC -ACGGAATGCAAGACTGCTCACTTC -ACGGAATGCAAGACTGCTGTACTC -ACGGAATGCAAGACTGCTGATGTC -ACGGAATGCAAGACTGCTACAGTC -ACGGAATGCAAGACTGCTTTGCTG -ACGGAATGCAAGACTGCTTCCATG -ACGGAATGCAAGACTGCTTGTGTG -ACGGAATGCAAGACTGCTCTAGTG -ACGGAATGCAAGACTGCTCATCTG -ACGGAATGCAAGACTGCTGAGTTG -ACGGAATGCAAGACTGCTAGACTG -ACGGAATGCAAGACTGCTTCGGTA -ACGGAATGCAAGACTGCTTGCCTA -ACGGAATGCAAGACTGCTCCACTA -ACGGAATGCAAGACTGCTGGAGTA -ACGGAATGCAAGACTGCTTCGTCT -ACGGAATGCAAGACTGCTTGCACT -ACGGAATGCAAGACTGCTCTGACT -ACGGAATGCAAGACTGCTCAACCT -ACGGAATGCAAGACTGCTGCTACT -ACGGAATGCAAGACTGCTGGATCT -ACGGAATGCAAGACTGCTAAGGCT -ACGGAATGCAAGACTGCTTCAACC -ACGGAATGCAAGACTGCTTGTTCC -ACGGAATGCAAGACTGCTATTCCC -ACGGAATGCAAGACTGCTTTCTCG -ACGGAATGCAAGACTGCTTAGACG -ACGGAATGCAAGACTGCTGTAACG -ACGGAATGCAAGACTGCTACTTCG -ACGGAATGCAAGACTGCTTACGCA -ACGGAATGCAAGACTGCTCTTGCA -ACGGAATGCAAGACTGCTCGAACA -ACGGAATGCAAGACTGCTCAGTCA -ACGGAATGCAAGACTGCTGATCCA -ACGGAATGCAAGACTGCTACGACA -ACGGAATGCAAGACTGCTAGCTCA -ACGGAATGCAAGACTGCTTCACGT -ACGGAATGCAAGACTGCTCGTAGT -ACGGAATGCAAGACTGCTGTCAGT -ACGGAATGCAAGACTGCTGAAGGT -ACGGAATGCAAGACTGCTAACCGT -ACGGAATGCAAGACTGCTTTGTGC -ACGGAATGCAAGACTGCTCTAAGC -ACGGAATGCAAGACTGCTACTAGC -ACGGAATGCAAGACTGCTAGATGC -ACGGAATGCAAGACTGCTTGAAGG -ACGGAATGCAAGACTGCTCAATGG -ACGGAATGCAAGACTGCTATGAGG -ACGGAATGCAAGACTGCTAATGGG -ACGGAATGCAAGACTGCTTCCTGA -ACGGAATGCAAGACTGCTTAGCGA -ACGGAATGCAAGACTGCTCACAGA -ACGGAATGCAAGACTGCTGCAAGA -ACGGAATGCAAGACTGCTGGTTGA -ACGGAATGCAAGACTGCTTCCGAT -ACGGAATGCAAGACTGCTTGGCAT -ACGGAATGCAAGACTGCTCGAGAT -ACGGAATGCAAGACTGCTTACCAC -ACGGAATGCAAGACTGCTCAGAAC -ACGGAATGCAAGACTGCTGTCTAC -ACGGAATGCAAGACTGCTACGTAC -ACGGAATGCAAGACTGCTAGTGAC -ACGGAATGCAAGACTGCTCTGTAG -ACGGAATGCAAGACTGCTCCTAAG -ACGGAATGCAAGACTGCTGTTCAG -ACGGAATGCAAGACTGCTGCATAG -ACGGAATGCAAGACTGCTGACAAG -ACGGAATGCAAGACTGCTAAGCAG -ACGGAATGCAAGACTGCTCGTCAA -ACGGAATGCAAGACTGCTGCTGAA -ACGGAATGCAAGACTGCTAGTACG -ACGGAATGCAAGACTGCTATCCGA -ACGGAATGCAAGACTGCTATGGGA -ACGGAATGCAAGACTGCTGTGCAA -ACGGAATGCAAGACTGCTGAGGAA -ACGGAATGCAAGACTGCTCAGGTA -ACGGAATGCAAGACTGCTGACTCT -ACGGAATGCAAGACTGCTAGTCCT -ACGGAATGCAAGACTGCTTAAGCC -ACGGAATGCAAGACTGCTATAGCC -ACGGAATGCAAGACTGCTTAACCG -ACGGAATGCAAGACTGCTATGCCA -ACGGAATGCAAGTCTGGAGGAAAC -ACGGAATGCAAGTCTGGAAACACC -ACGGAATGCAAGTCTGGAATCGAG -ACGGAATGCAAGTCTGGACTCCTT -ACGGAATGCAAGTCTGGACCTGTT -ACGGAATGCAAGTCTGGACGGTTT -ACGGAATGCAAGTCTGGAGTGGTT -ACGGAATGCAAGTCTGGAGCCTTT -ACGGAATGCAAGTCTGGAGGTCTT -ACGGAATGCAAGTCTGGAACGCTT -ACGGAATGCAAGTCTGGAAGCGTT -ACGGAATGCAAGTCTGGATTCGTC -ACGGAATGCAAGTCTGGATCTCTC -ACGGAATGCAAGTCTGGATGGATC -ACGGAATGCAAGTCTGGACACTTC -ACGGAATGCAAGTCTGGAGTACTC -ACGGAATGCAAGTCTGGAGATGTC -ACGGAATGCAAGTCTGGAACAGTC -ACGGAATGCAAGTCTGGATTGCTG -ACGGAATGCAAGTCTGGATCCATG -ACGGAATGCAAGTCTGGATGTGTG -ACGGAATGCAAGTCTGGACTAGTG -ACGGAATGCAAGTCTGGACATCTG -ACGGAATGCAAGTCTGGAGAGTTG -ACGGAATGCAAGTCTGGAAGACTG -ACGGAATGCAAGTCTGGATCGGTA -ACGGAATGCAAGTCTGGATGCCTA -ACGGAATGCAAGTCTGGACCACTA -ACGGAATGCAAGTCTGGAGGAGTA -ACGGAATGCAAGTCTGGATCGTCT -ACGGAATGCAAGTCTGGATGCACT -ACGGAATGCAAGTCTGGACTGACT -ACGGAATGCAAGTCTGGACAACCT -ACGGAATGCAAGTCTGGAGCTACT -ACGGAATGCAAGTCTGGAGGATCT -ACGGAATGCAAGTCTGGAAAGGCT -ACGGAATGCAAGTCTGGATCAACC -ACGGAATGCAAGTCTGGATGTTCC -ACGGAATGCAAGTCTGGAATTCCC -ACGGAATGCAAGTCTGGATTCTCG -ACGGAATGCAAGTCTGGATAGACG -ACGGAATGCAAGTCTGGAGTAACG -ACGGAATGCAAGTCTGGAACTTCG -ACGGAATGCAAGTCTGGATACGCA -ACGGAATGCAAGTCTGGACTTGCA -ACGGAATGCAAGTCTGGACGAACA -ACGGAATGCAAGTCTGGACAGTCA -ACGGAATGCAAGTCTGGAGATCCA -ACGGAATGCAAGTCTGGAACGACA -ACGGAATGCAAGTCTGGAAGCTCA -ACGGAATGCAAGTCTGGATCACGT -ACGGAATGCAAGTCTGGACGTAGT -ACGGAATGCAAGTCTGGAGTCAGT -ACGGAATGCAAGTCTGGAGAAGGT -ACGGAATGCAAGTCTGGAAACCGT -ACGGAATGCAAGTCTGGATTGTGC -ACGGAATGCAAGTCTGGACTAAGC -ACGGAATGCAAGTCTGGAACTAGC -ACGGAATGCAAGTCTGGAAGATGC -ACGGAATGCAAGTCTGGATGAAGG -ACGGAATGCAAGTCTGGACAATGG -ACGGAATGCAAGTCTGGAATGAGG -ACGGAATGCAAGTCTGGAAATGGG -ACGGAATGCAAGTCTGGATCCTGA -ACGGAATGCAAGTCTGGATAGCGA -ACGGAATGCAAGTCTGGACACAGA -ACGGAATGCAAGTCTGGAGCAAGA -ACGGAATGCAAGTCTGGAGGTTGA -ACGGAATGCAAGTCTGGATCCGAT -ACGGAATGCAAGTCTGGATGGCAT -ACGGAATGCAAGTCTGGACGAGAT -ACGGAATGCAAGTCTGGATACCAC -ACGGAATGCAAGTCTGGACAGAAC -ACGGAATGCAAGTCTGGAGTCTAC -ACGGAATGCAAGTCTGGAACGTAC -ACGGAATGCAAGTCTGGAAGTGAC -ACGGAATGCAAGTCTGGACTGTAG -ACGGAATGCAAGTCTGGACCTAAG -ACGGAATGCAAGTCTGGAGTTCAG -ACGGAATGCAAGTCTGGAGCATAG -ACGGAATGCAAGTCTGGAGACAAG -ACGGAATGCAAGTCTGGAAAGCAG -ACGGAATGCAAGTCTGGACGTCAA -ACGGAATGCAAGTCTGGAGCTGAA -ACGGAATGCAAGTCTGGAAGTACG -ACGGAATGCAAGTCTGGAATCCGA -ACGGAATGCAAGTCTGGAATGGGA -ACGGAATGCAAGTCTGGAGTGCAA -ACGGAATGCAAGTCTGGAGAGGAA -ACGGAATGCAAGTCTGGACAGGTA -ACGGAATGCAAGTCTGGAGACTCT -ACGGAATGCAAGTCTGGAAGTCCT -ACGGAATGCAAGTCTGGATAAGCC -ACGGAATGCAAGTCTGGAATAGCC -ACGGAATGCAAGTCTGGATAACCG -ACGGAATGCAAGTCTGGAATGCCA -ACGGAATGCAAGGCTAAGGGAAAC -ACGGAATGCAAGGCTAAGAACACC -ACGGAATGCAAGGCTAAGATCGAG -ACGGAATGCAAGGCTAAGCTCCTT -ACGGAATGCAAGGCTAAGCCTGTT -ACGGAATGCAAGGCTAAGCGGTTT -ACGGAATGCAAGGCTAAGGTGGTT -ACGGAATGCAAGGCTAAGGCCTTT -ACGGAATGCAAGGCTAAGGGTCTT -ACGGAATGCAAGGCTAAGACGCTT -ACGGAATGCAAGGCTAAGAGCGTT -ACGGAATGCAAGGCTAAGTTCGTC -ACGGAATGCAAGGCTAAGTCTCTC -ACGGAATGCAAGGCTAAGTGGATC -ACGGAATGCAAGGCTAAGCACTTC -ACGGAATGCAAGGCTAAGGTACTC -ACGGAATGCAAGGCTAAGGATGTC -ACGGAATGCAAGGCTAAGACAGTC -ACGGAATGCAAGGCTAAGTTGCTG -ACGGAATGCAAGGCTAAGTCCATG -ACGGAATGCAAGGCTAAGTGTGTG -ACGGAATGCAAGGCTAAGCTAGTG -ACGGAATGCAAGGCTAAGCATCTG -ACGGAATGCAAGGCTAAGGAGTTG -ACGGAATGCAAGGCTAAGAGACTG -ACGGAATGCAAGGCTAAGTCGGTA -ACGGAATGCAAGGCTAAGTGCCTA -ACGGAATGCAAGGCTAAGCCACTA -ACGGAATGCAAGGCTAAGGGAGTA -ACGGAATGCAAGGCTAAGTCGTCT -ACGGAATGCAAGGCTAAGTGCACT -ACGGAATGCAAGGCTAAGCTGACT -ACGGAATGCAAGGCTAAGCAACCT -ACGGAATGCAAGGCTAAGGCTACT -ACGGAATGCAAGGCTAAGGGATCT -ACGGAATGCAAGGCTAAGAAGGCT -ACGGAATGCAAGGCTAAGTCAACC -ACGGAATGCAAGGCTAAGTGTTCC -ACGGAATGCAAGGCTAAGATTCCC -ACGGAATGCAAGGCTAAGTTCTCG -ACGGAATGCAAGGCTAAGTAGACG -ACGGAATGCAAGGCTAAGGTAACG -ACGGAATGCAAGGCTAAGACTTCG -ACGGAATGCAAGGCTAAGTACGCA -ACGGAATGCAAGGCTAAGCTTGCA -ACGGAATGCAAGGCTAAGCGAACA -ACGGAATGCAAGGCTAAGCAGTCA -ACGGAATGCAAGGCTAAGGATCCA -ACGGAATGCAAGGCTAAGACGACA -ACGGAATGCAAGGCTAAGAGCTCA -ACGGAATGCAAGGCTAAGTCACGT -ACGGAATGCAAGGCTAAGCGTAGT -ACGGAATGCAAGGCTAAGGTCAGT -ACGGAATGCAAGGCTAAGGAAGGT -ACGGAATGCAAGGCTAAGAACCGT -ACGGAATGCAAGGCTAAGTTGTGC -ACGGAATGCAAGGCTAAGCTAAGC -ACGGAATGCAAGGCTAAGACTAGC -ACGGAATGCAAGGCTAAGAGATGC -ACGGAATGCAAGGCTAAGTGAAGG -ACGGAATGCAAGGCTAAGCAATGG -ACGGAATGCAAGGCTAAGATGAGG -ACGGAATGCAAGGCTAAGAATGGG -ACGGAATGCAAGGCTAAGTCCTGA -ACGGAATGCAAGGCTAAGTAGCGA -ACGGAATGCAAGGCTAAGCACAGA -ACGGAATGCAAGGCTAAGGCAAGA -ACGGAATGCAAGGCTAAGGGTTGA -ACGGAATGCAAGGCTAAGTCCGAT -ACGGAATGCAAGGCTAAGTGGCAT -ACGGAATGCAAGGCTAAGCGAGAT -ACGGAATGCAAGGCTAAGTACCAC -ACGGAATGCAAGGCTAAGCAGAAC -ACGGAATGCAAGGCTAAGGTCTAC -ACGGAATGCAAGGCTAAGACGTAC -ACGGAATGCAAGGCTAAGAGTGAC -ACGGAATGCAAGGCTAAGCTGTAG -ACGGAATGCAAGGCTAAGCCTAAG -ACGGAATGCAAGGCTAAGGTTCAG -ACGGAATGCAAGGCTAAGGCATAG -ACGGAATGCAAGGCTAAGGACAAG -ACGGAATGCAAGGCTAAGAAGCAG -ACGGAATGCAAGGCTAAGCGTCAA -ACGGAATGCAAGGCTAAGGCTGAA -ACGGAATGCAAGGCTAAGAGTACG -ACGGAATGCAAGGCTAAGATCCGA -ACGGAATGCAAGGCTAAGATGGGA -ACGGAATGCAAGGCTAAGGTGCAA -ACGGAATGCAAGGCTAAGGAGGAA -ACGGAATGCAAGGCTAAGCAGGTA -ACGGAATGCAAGGCTAAGGACTCT -ACGGAATGCAAGGCTAAGAGTCCT -ACGGAATGCAAGGCTAAGTAAGCC -ACGGAATGCAAGGCTAAGATAGCC -ACGGAATGCAAGGCTAAGTAACCG -ACGGAATGCAAGGCTAAGATGCCA -ACGGAATGCAAGACCTCAGGAAAC -ACGGAATGCAAGACCTCAAACACC -ACGGAATGCAAGACCTCAATCGAG -ACGGAATGCAAGACCTCACTCCTT -ACGGAATGCAAGACCTCACCTGTT -ACGGAATGCAAGACCTCACGGTTT -ACGGAATGCAAGACCTCAGTGGTT -ACGGAATGCAAGACCTCAGCCTTT -ACGGAATGCAAGACCTCAGGTCTT -ACGGAATGCAAGACCTCAACGCTT -ACGGAATGCAAGACCTCAAGCGTT -ACGGAATGCAAGACCTCATTCGTC -ACGGAATGCAAGACCTCATCTCTC -ACGGAATGCAAGACCTCATGGATC -ACGGAATGCAAGACCTCACACTTC -ACGGAATGCAAGACCTCAGTACTC -ACGGAATGCAAGACCTCAGATGTC -ACGGAATGCAAGACCTCAACAGTC -ACGGAATGCAAGACCTCATTGCTG -ACGGAATGCAAGACCTCATCCATG -ACGGAATGCAAGACCTCATGTGTG -ACGGAATGCAAGACCTCACTAGTG -ACGGAATGCAAGACCTCACATCTG -ACGGAATGCAAGACCTCAGAGTTG -ACGGAATGCAAGACCTCAAGACTG -ACGGAATGCAAGACCTCATCGGTA -ACGGAATGCAAGACCTCATGCCTA -ACGGAATGCAAGACCTCACCACTA -ACGGAATGCAAGACCTCAGGAGTA -ACGGAATGCAAGACCTCATCGTCT -ACGGAATGCAAGACCTCATGCACT -ACGGAATGCAAGACCTCACTGACT -ACGGAATGCAAGACCTCACAACCT -ACGGAATGCAAGACCTCAGCTACT -ACGGAATGCAAGACCTCAGGATCT -ACGGAATGCAAGACCTCAAAGGCT -ACGGAATGCAAGACCTCATCAACC -ACGGAATGCAAGACCTCATGTTCC -ACGGAATGCAAGACCTCAATTCCC -ACGGAATGCAAGACCTCATTCTCG -ACGGAATGCAAGACCTCATAGACG -ACGGAATGCAAGACCTCAGTAACG -ACGGAATGCAAGACCTCAACTTCG -ACGGAATGCAAGACCTCATACGCA -ACGGAATGCAAGACCTCACTTGCA -ACGGAATGCAAGACCTCACGAACA -ACGGAATGCAAGACCTCACAGTCA -ACGGAATGCAAGACCTCAGATCCA -ACGGAATGCAAGACCTCAACGACA -ACGGAATGCAAGACCTCAAGCTCA -ACGGAATGCAAGACCTCATCACGT -ACGGAATGCAAGACCTCACGTAGT -ACGGAATGCAAGACCTCAGTCAGT -ACGGAATGCAAGACCTCAGAAGGT -ACGGAATGCAAGACCTCAAACCGT -ACGGAATGCAAGACCTCATTGTGC -ACGGAATGCAAGACCTCACTAAGC -ACGGAATGCAAGACCTCAACTAGC -ACGGAATGCAAGACCTCAAGATGC -ACGGAATGCAAGACCTCATGAAGG -ACGGAATGCAAGACCTCACAATGG -ACGGAATGCAAGACCTCAATGAGG -ACGGAATGCAAGACCTCAAATGGG -ACGGAATGCAAGACCTCATCCTGA -ACGGAATGCAAGACCTCATAGCGA -ACGGAATGCAAGACCTCACACAGA -ACGGAATGCAAGACCTCAGCAAGA -ACGGAATGCAAGACCTCAGGTTGA -ACGGAATGCAAGACCTCATCCGAT -ACGGAATGCAAGACCTCATGGCAT -ACGGAATGCAAGACCTCACGAGAT -ACGGAATGCAAGACCTCATACCAC -ACGGAATGCAAGACCTCACAGAAC -ACGGAATGCAAGACCTCAGTCTAC -ACGGAATGCAAGACCTCAACGTAC -ACGGAATGCAAGACCTCAAGTGAC -ACGGAATGCAAGACCTCACTGTAG -ACGGAATGCAAGACCTCACCTAAG -ACGGAATGCAAGACCTCAGTTCAG -ACGGAATGCAAGACCTCAGCATAG -ACGGAATGCAAGACCTCAGACAAG -ACGGAATGCAAGACCTCAAAGCAG -ACGGAATGCAAGACCTCACGTCAA -ACGGAATGCAAGACCTCAGCTGAA -ACGGAATGCAAGACCTCAAGTACG -ACGGAATGCAAGACCTCAATCCGA -ACGGAATGCAAGACCTCAATGGGA -ACGGAATGCAAGACCTCAGTGCAA -ACGGAATGCAAGACCTCAGAGGAA -ACGGAATGCAAGACCTCACAGGTA -ACGGAATGCAAGACCTCAGACTCT -ACGGAATGCAAGACCTCAAGTCCT -ACGGAATGCAAGACCTCATAAGCC -ACGGAATGCAAGACCTCAATAGCC -ACGGAATGCAAGACCTCATAACCG -ACGGAATGCAAGACCTCAATGCCA -ACGGAATGCAAGTCCTGTGGAAAC -ACGGAATGCAAGTCCTGTAACACC -ACGGAATGCAAGTCCTGTATCGAG -ACGGAATGCAAGTCCTGTCTCCTT -ACGGAATGCAAGTCCTGTCCTGTT -ACGGAATGCAAGTCCTGTCGGTTT -ACGGAATGCAAGTCCTGTGTGGTT -ACGGAATGCAAGTCCTGTGCCTTT -ACGGAATGCAAGTCCTGTGGTCTT -ACGGAATGCAAGTCCTGTACGCTT -ACGGAATGCAAGTCCTGTAGCGTT -ACGGAATGCAAGTCCTGTTTCGTC -ACGGAATGCAAGTCCTGTTCTCTC -ACGGAATGCAAGTCCTGTTGGATC -ACGGAATGCAAGTCCTGTCACTTC -ACGGAATGCAAGTCCTGTGTACTC -ACGGAATGCAAGTCCTGTGATGTC -ACGGAATGCAAGTCCTGTACAGTC -ACGGAATGCAAGTCCTGTTTGCTG -ACGGAATGCAAGTCCTGTTCCATG -ACGGAATGCAAGTCCTGTTGTGTG -ACGGAATGCAAGTCCTGTCTAGTG -ACGGAATGCAAGTCCTGTCATCTG -ACGGAATGCAAGTCCTGTGAGTTG -ACGGAATGCAAGTCCTGTAGACTG -ACGGAATGCAAGTCCTGTTCGGTA -ACGGAATGCAAGTCCTGTTGCCTA -ACGGAATGCAAGTCCTGTCCACTA -ACGGAATGCAAGTCCTGTGGAGTA -ACGGAATGCAAGTCCTGTTCGTCT -ACGGAATGCAAGTCCTGTTGCACT -ACGGAATGCAAGTCCTGTCTGACT -ACGGAATGCAAGTCCTGTCAACCT -ACGGAATGCAAGTCCTGTGCTACT -ACGGAATGCAAGTCCTGTGGATCT -ACGGAATGCAAGTCCTGTAAGGCT -ACGGAATGCAAGTCCTGTTCAACC -ACGGAATGCAAGTCCTGTTGTTCC -ACGGAATGCAAGTCCTGTATTCCC -ACGGAATGCAAGTCCTGTTTCTCG -ACGGAATGCAAGTCCTGTTAGACG -ACGGAATGCAAGTCCTGTGTAACG -ACGGAATGCAAGTCCTGTACTTCG -ACGGAATGCAAGTCCTGTTACGCA -ACGGAATGCAAGTCCTGTCTTGCA -ACGGAATGCAAGTCCTGTCGAACA -ACGGAATGCAAGTCCTGTCAGTCA -ACGGAATGCAAGTCCTGTGATCCA -ACGGAATGCAAGTCCTGTACGACA -ACGGAATGCAAGTCCTGTAGCTCA -ACGGAATGCAAGTCCTGTTCACGT -ACGGAATGCAAGTCCTGTCGTAGT -ACGGAATGCAAGTCCTGTGTCAGT -ACGGAATGCAAGTCCTGTGAAGGT -ACGGAATGCAAGTCCTGTAACCGT -ACGGAATGCAAGTCCTGTTTGTGC -ACGGAATGCAAGTCCTGTCTAAGC -ACGGAATGCAAGTCCTGTACTAGC -ACGGAATGCAAGTCCTGTAGATGC -ACGGAATGCAAGTCCTGTTGAAGG -ACGGAATGCAAGTCCTGTCAATGG -ACGGAATGCAAGTCCTGTATGAGG -ACGGAATGCAAGTCCTGTAATGGG -ACGGAATGCAAGTCCTGTTCCTGA -ACGGAATGCAAGTCCTGTTAGCGA -ACGGAATGCAAGTCCTGTCACAGA -ACGGAATGCAAGTCCTGTGCAAGA -ACGGAATGCAAGTCCTGTGGTTGA -ACGGAATGCAAGTCCTGTTCCGAT -ACGGAATGCAAGTCCTGTTGGCAT -ACGGAATGCAAGTCCTGTCGAGAT -ACGGAATGCAAGTCCTGTTACCAC -ACGGAATGCAAGTCCTGTCAGAAC -ACGGAATGCAAGTCCTGTGTCTAC -ACGGAATGCAAGTCCTGTACGTAC -ACGGAATGCAAGTCCTGTAGTGAC -ACGGAATGCAAGTCCTGTCTGTAG -ACGGAATGCAAGTCCTGTCCTAAG -ACGGAATGCAAGTCCTGTGTTCAG -ACGGAATGCAAGTCCTGTGCATAG -ACGGAATGCAAGTCCTGTGACAAG -ACGGAATGCAAGTCCTGTAAGCAG -ACGGAATGCAAGTCCTGTCGTCAA -ACGGAATGCAAGTCCTGTGCTGAA -ACGGAATGCAAGTCCTGTAGTACG -ACGGAATGCAAGTCCTGTATCCGA -ACGGAATGCAAGTCCTGTATGGGA -ACGGAATGCAAGTCCTGTGTGCAA -ACGGAATGCAAGTCCTGTGAGGAA -ACGGAATGCAAGTCCTGTCAGGTA -ACGGAATGCAAGTCCTGTGACTCT -ACGGAATGCAAGTCCTGTAGTCCT -ACGGAATGCAAGTCCTGTTAAGCC -ACGGAATGCAAGTCCTGTATAGCC -ACGGAATGCAAGTCCTGTTAACCG -ACGGAATGCAAGTCCTGTATGCCA -ACGGAATGCAAGCCCATTGGAAAC -ACGGAATGCAAGCCCATTAACACC -ACGGAATGCAAGCCCATTATCGAG -ACGGAATGCAAGCCCATTCTCCTT -ACGGAATGCAAGCCCATTCCTGTT -ACGGAATGCAAGCCCATTCGGTTT -ACGGAATGCAAGCCCATTGTGGTT -ACGGAATGCAAGCCCATTGCCTTT -ACGGAATGCAAGCCCATTGGTCTT -ACGGAATGCAAGCCCATTACGCTT -ACGGAATGCAAGCCCATTAGCGTT -ACGGAATGCAAGCCCATTTTCGTC -ACGGAATGCAAGCCCATTTCTCTC -ACGGAATGCAAGCCCATTTGGATC -ACGGAATGCAAGCCCATTCACTTC -ACGGAATGCAAGCCCATTGTACTC -ACGGAATGCAAGCCCATTGATGTC -ACGGAATGCAAGCCCATTACAGTC -ACGGAATGCAAGCCCATTTTGCTG -ACGGAATGCAAGCCCATTTCCATG -ACGGAATGCAAGCCCATTTGTGTG -ACGGAATGCAAGCCCATTCTAGTG -ACGGAATGCAAGCCCATTCATCTG -ACGGAATGCAAGCCCATTGAGTTG -ACGGAATGCAAGCCCATTAGACTG -ACGGAATGCAAGCCCATTTCGGTA -ACGGAATGCAAGCCCATTTGCCTA -ACGGAATGCAAGCCCATTCCACTA -ACGGAATGCAAGCCCATTGGAGTA -ACGGAATGCAAGCCCATTTCGTCT -ACGGAATGCAAGCCCATTTGCACT -ACGGAATGCAAGCCCATTCTGACT -ACGGAATGCAAGCCCATTCAACCT -ACGGAATGCAAGCCCATTGCTACT -ACGGAATGCAAGCCCATTGGATCT -ACGGAATGCAAGCCCATTAAGGCT -ACGGAATGCAAGCCCATTTCAACC -ACGGAATGCAAGCCCATTTGTTCC -ACGGAATGCAAGCCCATTATTCCC -ACGGAATGCAAGCCCATTTTCTCG -ACGGAATGCAAGCCCATTTAGACG -ACGGAATGCAAGCCCATTGTAACG -ACGGAATGCAAGCCCATTACTTCG -ACGGAATGCAAGCCCATTTACGCA -ACGGAATGCAAGCCCATTCTTGCA -ACGGAATGCAAGCCCATTCGAACA -ACGGAATGCAAGCCCATTCAGTCA -ACGGAATGCAAGCCCATTGATCCA -ACGGAATGCAAGCCCATTACGACA -ACGGAATGCAAGCCCATTAGCTCA -ACGGAATGCAAGCCCATTTCACGT -ACGGAATGCAAGCCCATTCGTAGT -ACGGAATGCAAGCCCATTGTCAGT -ACGGAATGCAAGCCCATTGAAGGT -ACGGAATGCAAGCCCATTAACCGT -ACGGAATGCAAGCCCATTTTGTGC -ACGGAATGCAAGCCCATTCTAAGC -ACGGAATGCAAGCCCATTACTAGC -ACGGAATGCAAGCCCATTAGATGC -ACGGAATGCAAGCCCATTTGAAGG -ACGGAATGCAAGCCCATTCAATGG -ACGGAATGCAAGCCCATTATGAGG -ACGGAATGCAAGCCCATTAATGGG -ACGGAATGCAAGCCCATTTCCTGA -ACGGAATGCAAGCCCATTTAGCGA -ACGGAATGCAAGCCCATTCACAGA -ACGGAATGCAAGCCCATTGCAAGA -ACGGAATGCAAGCCCATTGGTTGA -ACGGAATGCAAGCCCATTTCCGAT -ACGGAATGCAAGCCCATTTGGCAT -ACGGAATGCAAGCCCATTCGAGAT -ACGGAATGCAAGCCCATTTACCAC -ACGGAATGCAAGCCCATTCAGAAC -ACGGAATGCAAGCCCATTGTCTAC -ACGGAATGCAAGCCCATTACGTAC -ACGGAATGCAAGCCCATTAGTGAC -ACGGAATGCAAGCCCATTCTGTAG -ACGGAATGCAAGCCCATTCCTAAG -ACGGAATGCAAGCCCATTGTTCAG -ACGGAATGCAAGCCCATTGCATAG -ACGGAATGCAAGCCCATTGACAAG -ACGGAATGCAAGCCCATTAAGCAG -ACGGAATGCAAGCCCATTCGTCAA -ACGGAATGCAAGCCCATTGCTGAA -ACGGAATGCAAGCCCATTAGTACG -ACGGAATGCAAGCCCATTATCCGA -ACGGAATGCAAGCCCATTATGGGA -ACGGAATGCAAGCCCATTGTGCAA -ACGGAATGCAAGCCCATTGAGGAA -ACGGAATGCAAGCCCATTCAGGTA -ACGGAATGCAAGCCCATTGACTCT -ACGGAATGCAAGCCCATTAGTCCT -ACGGAATGCAAGCCCATTTAAGCC -ACGGAATGCAAGCCCATTATAGCC -ACGGAATGCAAGCCCATTTAACCG -ACGGAATGCAAGCCCATTATGCCA -ACGGAATGCAAGTCGTTCGGAAAC -ACGGAATGCAAGTCGTTCAACACC -ACGGAATGCAAGTCGTTCATCGAG -ACGGAATGCAAGTCGTTCCTCCTT -ACGGAATGCAAGTCGTTCCCTGTT -ACGGAATGCAAGTCGTTCCGGTTT -ACGGAATGCAAGTCGTTCGTGGTT -ACGGAATGCAAGTCGTTCGCCTTT -ACGGAATGCAAGTCGTTCGGTCTT -ACGGAATGCAAGTCGTTCACGCTT -ACGGAATGCAAGTCGTTCAGCGTT -ACGGAATGCAAGTCGTTCTTCGTC -ACGGAATGCAAGTCGTTCTCTCTC -ACGGAATGCAAGTCGTTCTGGATC -ACGGAATGCAAGTCGTTCCACTTC -ACGGAATGCAAGTCGTTCGTACTC -ACGGAATGCAAGTCGTTCGATGTC -ACGGAATGCAAGTCGTTCACAGTC -ACGGAATGCAAGTCGTTCTTGCTG -ACGGAATGCAAGTCGTTCTCCATG -ACGGAATGCAAGTCGTTCTGTGTG -ACGGAATGCAAGTCGTTCCTAGTG -ACGGAATGCAAGTCGTTCCATCTG -ACGGAATGCAAGTCGTTCGAGTTG -ACGGAATGCAAGTCGTTCAGACTG -ACGGAATGCAAGTCGTTCTCGGTA -ACGGAATGCAAGTCGTTCTGCCTA -ACGGAATGCAAGTCGTTCCCACTA -ACGGAATGCAAGTCGTTCGGAGTA -ACGGAATGCAAGTCGTTCTCGTCT -ACGGAATGCAAGTCGTTCTGCACT -ACGGAATGCAAGTCGTTCCTGACT -ACGGAATGCAAGTCGTTCCAACCT -ACGGAATGCAAGTCGTTCGCTACT -ACGGAATGCAAGTCGTTCGGATCT -ACGGAATGCAAGTCGTTCAAGGCT -ACGGAATGCAAGTCGTTCTCAACC -ACGGAATGCAAGTCGTTCTGTTCC -ACGGAATGCAAGTCGTTCATTCCC -ACGGAATGCAAGTCGTTCTTCTCG -ACGGAATGCAAGTCGTTCTAGACG -ACGGAATGCAAGTCGTTCGTAACG -ACGGAATGCAAGTCGTTCACTTCG -ACGGAATGCAAGTCGTTCTACGCA -ACGGAATGCAAGTCGTTCCTTGCA -ACGGAATGCAAGTCGTTCCGAACA -ACGGAATGCAAGTCGTTCCAGTCA -ACGGAATGCAAGTCGTTCGATCCA -ACGGAATGCAAGTCGTTCACGACA -ACGGAATGCAAGTCGTTCAGCTCA -ACGGAATGCAAGTCGTTCTCACGT -ACGGAATGCAAGTCGTTCCGTAGT -ACGGAATGCAAGTCGTTCGTCAGT -ACGGAATGCAAGTCGTTCGAAGGT -ACGGAATGCAAGTCGTTCAACCGT -ACGGAATGCAAGTCGTTCTTGTGC -ACGGAATGCAAGTCGTTCCTAAGC -ACGGAATGCAAGTCGTTCACTAGC -ACGGAATGCAAGTCGTTCAGATGC -ACGGAATGCAAGTCGTTCTGAAGG -ACGGAATGCAAGTCGTTCCAATGG -ACGGAATGCAAGTCGTTCATGAGG -ACGGAATGCAAGTCGTTCAATGGG -ACGGAATGCAAGTCGTTCTCCTGA -ACGGAATGCAAGTCGTTCTAGCGA -ACGGAATGCAAGTCGTTCCACAGA -ACGGAATGCAAGTCGTTCGCAAGA -ACGGAATGCAAGTCGTTCGGTTGA -ACGGAATGCAAGTCGTTCTCCGAT -ACGGAATGCAAGTCGTTCTGGCAT -ACGGAATGCAAGTCGTTCCGAGAT -ACGGAATGCAAGTCGTTCTACCAC -ACGGAATGCAAGTCGTTCCAGAAC -ACGGAATGCAAGTCGTTCGTCTAC -ACGGAATGCAAGTCGTTCACGTAC -ACGGAATGCAAGTCGTTCAGTGAC -ACGGAATGCAAGTCGTTCCTGTAG -ACGGAATGCAAGTCGTTCCCTAAG -ACGGAATGCAAGTCGTTCGTTCAG -ACGGAATGCAAGTCGTTCGCATAG -ACGGAATGCAAGTCGTTCGACAAG -ACGGAATGCAAGTCGTTCAAGCAG -ACGGAATGCAAGTCGTTCCGTCAA -ACGGAATGCAAGTCGTTCGCTGAA -ACGGAATGCAAGTCGTTCAGTACG -ACGGAATGCAAGTCGTTCATCCGA -ACGGAATGCAAGTCGTTCATGGGA -ACGGAATGCAAGTCGTTCGTGCAA -ACGGAATGCAAGTCGTTCGAGGAA -ACGGAATGCAAGTCGTTCCAGGTA -ACGGAATGCAAGTCGTTCGACTCT -ACGGAATGCAAGTCGTTCAGTCCT -ACGGAATGCAAGTCGTTCTAAGCC -ACGGAATGCAAGTCGTTCATAGCC -ACGGAATGCAAGTCGTTCTAACCG -ACGGAATGCAAGTCGTTCATGCCA -ACGGAATGCAAGACGTAGGGAAAC -ACGGAATGCAAGACGTAGAACACC -ACGGAATGCAAGACGTAGATCGAG -ACGGAATGCAAGACGTAGCTCCTT -ACGGAATGCAAGACGTAGCCTGTT -ACGGAATGCAAGACGTAGCGGTTT -ACGGAATGCAAGACGTAGGTGGTT -ACGGAATGCAAGACGTAGGCCTTT -ACGGAATGCAAGACGTAGGGTCTT -ACGGAATGCAAGACGTAGACGCTT -ACGGAATGCAAGACGTAGAGCGTT -ACGGAATGCAAGACGTAGTTCGTC -ACGGAATGCAAGACGTAGTCTCTC -ACGGAATGCAAGACGTAGTGGATC -ACGGAATGCAAGACGTAGCACTTC -ACGGAATGCAAGACGTAGGTACTC -ACGGAATGCAAGACGTAGGATGTC -ACGGAATGCAAGACGTAGACAGTC -ACGGAATGCAAGACGTAGTTGCTG -ACGGAATGCAAGACGTAGTCCATG -ACGGAATGCAAGACGTAGTGTGTG -ACGGAATGCAAGACGTAGCTAGTG -ACGGAATGCAAGACGTAGCATCTG -ACGGAATGCAAGACGTAGGAGTTG -ACGGAATGCAAGACGTAGAGACTG -ACGGAATGCAAGACGTAGTCGGTA -ACGGAATGCAAGACGTAGTGCCTA -ACGGAATGCAAGACGTAGCCACTA -ACGGAATGCAAGACGTAGGGAGTA -ACGGAATGCAAGACGTAGTCGTCT -ACGGAATGCAAGACGTAGTGCACT -ACGGAATGCAAGACGTAGCTGACT -ACGGAATGCAAGACGTAGCAACCT -ACGGAATGCAAGACGTAGGCTACT -ACGGAATGCAAGACGTAGGGATCT -ACGGAATGCAAGACGTAGAAGGCT -ACGGAATGCAAGACGTAGTCAACC -ACGGAATGCAAGACGTAGTGTTCC -ACGGAATGCAAGACGTAGATTCCC -ACGGAATGCAAGACGTAGTTCTCG -ACGGAATGCAAGACGTAGTAGACG -ACGGAATGCAAGACGTAGGTAACG -ACGGAATGCAAGACGTAGACTTCG -ACGGAATGCAAGACGTAGTACGCA -ACGGAATGCAAGACGTAGCTTGCA -ACGGAATGCAAGACGTAGCGAACA -ACGGAATGCAAGACGTAGCAGTCA -ACGGAATGCAAGACGTAGGATCCA -ACGGAATGCAAGACGTAGACGACA -ACGGAATGCAAGACGTAGAGCTCA -ACGGAATGCAAGACGTAGTCACGT -ACGGAATGCAAGACGTAGCGTAGT -ACGGAATGCAAGACGTAGGTCAGT -ACGGAATGCAAGACGTAGGAAGGT -ACGGAATGCAAGACGTAGAACCGT -ACGGAATGCAAGACGTAGTTGTGC -ACGGAATGCAAGACGTAGCTAAGC -ACGGAATGCAAGACGTAGACTAGC -ACGGAATGCAAGACGTAGAGATGC -ACGGAATGCAAGACGTAGTGAAGG -ACGGAATGCAAGACGTAGCAATGG -ACGGAATGCAAGACGTAGATGAGG -ACGGAATGCAAGACGTAGAATGGG -ACGGAATGCAAGACGTAGTCCTGA -ACGGAATGCAAGACGTAGTAGCGA -ACGGAATGCAAGACGTAGCACAGA -ACGGAATGCAAGACGTAGGCAAGA -ACGGAATGCAAGACGTAGGGTTGA -ACGGAATGCAAGACGTAGTCCGAT -ACGGAATGCAAGACGTAGTGGCAT -ACGGAATGCAAGACGTAGCGAGAT -ACGGAATGCAAGACGTAGTACCAC -ACGGAATGCAAGACGTAGCAGAAC -ACGGAATGCAAGACGTAGGTCTAC -ACGGAATGCAAGACGTAGACGTAC -ACGGAATGCAAGACGTAGAGTGAC -ACGGAATGCAAGACGTAGCTGTAG -ACGGAATGCAAGACGTAGCCTAAG -ACGGAATGCAAGACGTAGGTTCAG -ACGGAATGCAAGACGTAGGCATAG -ACGGAATGCAAGACGTAGGACAAG -ACGGAATGCAAGACGTAGAAGCAG -ACGGAATGCAAGACGTAGCGTCAA -ACGGAATGCAAGACGTAGGCTGAA -ACGGAATGCAAGACGTAGAGTACG -ACGGAATGCAAGACGTAGATCCGA -ACGGAATGCAAGACGTAGATGGGA -ACGGAATGCAAGACGTAGGTGCAA -ACGGAATGCAAGACGTAGGAGGAA -ACGGAATGCAAGACGTAGCAGGTA -ACGGAATGCAAGACGTAGGACTCT -ACGGAATGCAAGACGTAGAGTCCT -ACGGAATGCAAGACGTAGTAAGCC -ACGGAATGCAAGACGTAGATAGCC -ACGGAATGCAAGACGTAGTAACCG -ACGGAATGCAAGACGTAGATGCCA -ACGGAATGCAAGACGGTAGGAAAC -ACGGAATGCAAGACGGTAAACACC -ACGGAATGCAAGACGGTAATCGAG -ACGGAATGCAAGACGGTACTCCTT -ACGGAATGCAAGACGGTACCTGTT -ACGGAATGCAAGACGGTACGGTTT -ACGGAATGCAAGACGGTAGTGGTT -ACGGAATGCAAGACGGTAGCCTTT -ACGGAATGCAAGACGGTAGGTCTT -ACGGAATGCAAGACGGTAACGCTT -ACGGAATGCAAGACGGTAAGCGTT -ACGGAATGCAAGACGGTATTCGTC -ACGGAATGCAAGACGGTATCTCTC -ACGGAATGCAAGACGGTATGGATC -ACGGAATGCAAGACGGTACACTTC -ACGGAATGCAAGACGGTAGTACTC -ACGGAATGCAAGACGGTAGATGTC -ACGGAATGCAAGACGGTAACAGTC -ACGGAATGCAAGACGGTATTGCTG -ACGGAATGCAAGACGGTATCCATG -ACGGAATGCAAGACGGTATGTGTG -ACGGAATGCAAGACGGTACTAGTG -ACGGAATGCAAGACGGTACATCTG -ACGGAATGCAAGACGGTAGAGTTG -ACGGAATGCAAGACGGTAAGACTG -ACGGAATGCAAGACGGTATCGGTA -ACGGAATGCAAGACGGTATGCCTA -ACGGAATGCAAGACGGTACCACTA -ACGGAATGCAAGACGGTAGGAGTA -ACGGAATGCAAGACGGTATCGTCT -ACGGAATGCAAGACGGTATGCACT -ACGGAATGCAAGACGGTACTGACT -ACGGAATGCAAGACGGTACAACCT -ACGGAATGCAAGACGGTAGCTACT -ACGGAATGCAAGACGGTAGGATCT -ACGGAATGCAAGACGGTAAAGGCT -ACGGAATGCAAGACGGTATCAACC -ACGGAATGCAAGACGGTATGTTCC -ACGGAATGCAAGACGGTAATTCCC -ACGGAATGCAAGACGGTATTCTCG -ACGGAATGCAAGACGGTATAGACG -ACGGAATGCAAGACGGTAGTAACG -ACGGAATGCAAGACGGTAACTTCG -ACGGAATGCAAGACGGTATACGCA -ACGGAATGCAAGACGGTACTTGCA -ACGGAATGCAAGACGGTACGAACA -ACGGAATGCAAGACGGTACAGTCA -ACGGAATGCAAGACGGTAGATCCA -ACGGAATGCAAGACGGTAACGACA -ACGGAATGCAAGACGGTAAGCTCA -ACGGAATGCAAGACGGTATCACGT -ACGGAATGCAAGACGGTACGTAGT -ACGGAATGCAAGACGGTAGTCAGT -ACGGAATGCAAGACGGTAGAAGGT -ACGGAATGCAAGACGGTAAACCGT -ACGGAATGCAAGACGGTATTGTGC -ACGGAATGCAAGACGGTACTAAGC -ACGGAATGCAAGACGGTAACTAGC -ACGGAATGCAAGACGGTAAGATGC -ACGGAATGCAAGACGGTATGAAGG -ACGGAATGCAAGACGGTACAATGG -ACGGAATGCAAGACGGTAATGAGG -ACGGAATGCAAGACGGTAAATGGG -ACGGAATGCAAGACGGTATCCTGA -ACGGAATGCAAGACGGTATAGCGA -ACGGAATGCAAGACGGTACACAGA -ACGGAATGCAAGACGGTAGCAAGA -ACGGAATGCAAGACGGTAGGTTGA -ACGGAATGCAAGACGGTATCCGAT -ACGGAATGCAAGACGGTATGGCAT -ACGGAATGCAAGACGGTACGAGAT -ACGGAATGCAAGACGGTATACCAC -ACGGAATGCAAGACGGTACAGAAC -ACGGAATGCAAGACGGTAGTCTAC -ACGGAATGCAAGACGGTAACGTAC -ACGGAATGCAAGACGGTAAGTGAC -ACGGAATGCAAGACGGTACTGTAG -ACGGAATGCAAGACGGTACCTAAG -ACGGAATGCAAGACGGTAGTTCAG -ACGGAATGCAAGACGGTAGCATAG -ACGGAATGCAAGACGGTAGACAAG -ACGGAATGCAAGACGGTAAAGCAG -ACGGAATGCAAGACGGTACGTCAA -ACGGAATGCAAGACGGTAGCTGAA -ACGGAATGCAAGACGGTAAGTACG -ACGGAATGCAAGACGGTAATCCGA -ACGGAATGCAAGACGGTAATGGGA -ACGGAATGCAAGACGGTAGTGCAA -ACGGAATGCAAGACGGTAGAGGAA -ACGGAATGCAAGACGGTACAGGTA -ACGGAATGCAAGACGGTAGACTCT -ACGGAATGCAAGACGGTAAGTCCT -ACGGAATGCAAGACGGTATAAGCC -ACGGAATGCAAGACGGTAATAGCC -ACGGAATGCAAGACGGTATAACCG -ACGGAATGCAAGACGGTAATGCCA -ACGGAATGCAAGTCGACTGGAAAC -ACGGAATGCAAGTCGACTAACACC -ACGGAATGCAAGTCGACTATCGAG -ACGGAATGCAAGTCGACTCTCCTT -ACGGAATGCAAGTCGACTCCTGTT -ACGGAATGCAAGTCGACTCGGTTT -ACGGAATGCAAGTCGACTGTGGTT -ACGGAATGCAAGTCGACTGCCTTT -ACGGAATGCAAGTCGACTGGTCTT -ACGGAATGCAAGTCGACTACGCTT -ACGGAATGCAAGTCGACTAGCGTT -ACGGAATGCAAGTCGACTTTCGTC -ACGGAATGCAAGTCGACTTCTCTC -ACGGAATGCAAGTCGACTTGGATC -ACGGAATGCAAGTCGACTCACTTC -ACGGAATGCAAGTCGACTGTACTC -ACGGAATGCAAGTCGACTGATGTC -ACGGAATGCAAGTCGACTACAGTC -ACGGAATGCAAGTCGACTTTGCTG -ACGGAATGCAAGTCGACTTCCATG -ACGGAATGCAAGTCGACTTGTGTG -ACGGAATGCAAGTCGACTCTAGTG -ACGGAATGCAAGTCGACTCATCTG -ACGGAATGCAAGTCGACTGAGTTG -ACGGAATGCAAGTCGACTAGACTG -ACGGAATGCAAGTCGACTTCGGTA -ACGGAATGCAAGTCGACTTGCCTA -ACGGAATGCAAGTCGACTCCACTA -ACGGAATGCAAGTCGACTGGAGTA -ACGGAATGCAAGTCGACTTCGTCT -ACGGAATGCAAGTCGACTTGCACT -ACGGAATGCAAGTCGACTCTGACT -ACGGAATGCAAGTCGACTCAACCT -ACGGAATGCAAGTCGACTGCTACT -ACGGAATGCAAGTCGACTGGATCT -ACGGAATGCAAGTCGACTAAGGCT -ACGGAATGCAAGTCGACTTCAACC -ACGGAATGCAAGTCGACTTGTTCC -ACGGAATGCAAGTCGACTATTCCC -ACGGAATGCAAGTCGACTTTCTCG -ACGGAATGCAAGTCGACTTAGACG -ACGGAATGCAAGTCGACTGTAACG -ACGGAATGCAAGTCGACTACTTCG -ACGGAATGCAAGTCGACTTACGCA -ACGGAATGCAAGTCGACTCTTGCA -ACGGAATGCAAGTCGACTCGAACA -ACGGAATGCAAGTCGACTCAGTCA -ACGGAATGCAAGTCGACTGATCCA -ACGGAATGCAAGTCGACTACGACA -ACGGAATGCAAGTCGACTAGCTCA -ACGGAATGCAAGTCGACTTCACGT -ACGGAATGCAAGTCGACTCGTAGT -ACGGAATGCAAGTCGACTGTCAGT -ACGGAATGCAAGTCGACTGAAGGT -ACGGAATGCAAGTCGACTAACCGT -ACGGAATGCAAGTCGACTTTGTGC -ACGGAATGCAAGTCGACTCTAAGC -ACGGAATGCAAGTCGACTACTAGC -ACGGAATGCAAGTCGACTAGATGC -ACGGAATGCAAGTCGACTTGAAGG -ACGGAATGCAAGTCGACTCAATGG -ACGGAATGCAAGTCGACTATGAGG -ACGGAATGCAAGTCGACTAATGGG -ACGGAATGCAAGTCGACTTCCTGA -ACGGAATGCAAGTCGACTTAGCGA -ACGGAATGCAAGTCGACTCACAGA -ACGGAATGCAAGTCGACTGCAAGA -ACGGAATGCAAGTCGACTGGTTGA -ACGGAATGCAAGTCGACTTCCGAT -ACGGAATGCAAGTCGACTTGGCAT -ACGGAATGCAAGTCGACTCGAGAT -ACGGAATGCAAGTCGACTTACCAC -ACGGAATGCAAGTCGACTCAGAAC -ACGGAATGCAAGTCGACTGTCTAC -ACGGAATGCAAGTCGACTACGTAC -ACGGAATGCAAGTCGACTAGTGAC -ACGGAATGCAAGTCGACTCTGTAG -ACGGAATGCAAGTCGACTCCTAAG -ACGGAATGCAAGTCGACTGTTCAG -ACGGAATGCAAGTCGACTGCATAG -ACGGAATGCAAGTCGACTGACAAG -ACGGAATGCAAGTCGACTAAGCAG -ACGGAATGCAAGTCGACTCGTCAA -ACGGAATGCAAGTCGACTGCTGAA -ACGGAATGCAAGTCGACTAGTACG -ACGGAATGCAAGTCGACTATCCGA -ACGGAATGCAAGTCGACTATGGGA -ACGGAATGCAAGTCGACTGTGCAA -ACGGAATGCAAGTCGACTGAGGAA -ACGGAATGCAAGTCGACTCAGGTA -ACGGAATGCAAGTCGACTGACTCT -ACGGAATGCAAGTCGACTAGTCCT -ACGGAATGCAAGTCGACTTAAGCC -ACGGAATGCAAGTCGACTATAGCC -ACGGAATGCAAGTCGACTTAACCG -ACGGAATGCAAGTCGACTATGCCA -ACGGAATGCAAGGCATACGGAAAC -ACGGAATGCAAGGCATACAACACC -ACGGAATGCAAGGCATACATCGAG -ACGGAATGCAAGGCATACCTCCTT -ACGGAATGCAAGGCATACCCTGTT -ACGGAATGCAAGGCATACCGGTTT -ACGGAATGCAAGGCATACGTGGTT -ACGGAATGCAAGGCATACGCCTTT -ACGGAATGCAAGGCATACGGTCTT -ACGGAATGCAAGGCATACACGCTT -ACGGAATGCAAGGCATACAGCGTT -ACGGAATGCAAGGCATACTTCGTC -ACGGAATGCAAGGCATACTCTCTC -ACGGAATGCAAGGCATACTGGATC -ACGGAATGCAAGGCATACCACTTC -ACGGAATGCAAGGCATACGTACTC -ACGGAATGCAAGGCATACGATGTC -ACGGAATGCAAGGCATACACAGTC -ACGGAATGCAAGGCATACTTGCTG -ACGGAATGCAAGGCATACTCCATG -ACGGAATGCAAGGCATACTGTGTG -ACGGAATGCAAGGCATACCTAGTG -ACGGAATGCAAGGCATACCATCTG -ACGGAATGCAAGGCATACGAGTTG -ACGGAATGCAAGGCATACAGACTG -ACGGAATGCAAGGCATACTCGGTA -ACGGAATGCAAGGCATACTGCCTA -ACGGAATGCAAGGCATACCCACTA -ACGGAATGCAAGGCATACGGAGTA -ACGGAATGCAAGGCATACTCGTCT -ACGGAATGCAAGGCATACTGCACT -ACGGAATGCAAGGCATACCTGACT -ACGGAATGCAAGGCATACCAACCT -ACGGAATGCAAGGCATACGCTACT -ACGGAATGCAAGGCATACGGATCT -ACGGAATGCAAGGCATACAAGGCT -ACGGAATGCAAGGCATACTCAACC -ACGGAATGCAAGGCATACTGTTCC -ACGGAATGCAAGGCATACATTCCC -ACGGAATGCAAGGCATACTTCTCG -ACGGAATGCAAGGCATACTAGACG -ACGGAATGCAAGGCATACGTAACG -ACGGAATGCAAGGCATACACTTCG -ACGGAATGCAAGGCATACTACGCA -ACGGAATGCAAGGCATACCTTGCA -ACGGAATGCAAGGCATACCGAACA -ACGGAATGCAAGGCATACCAGTCA -ACGGAATGCAAGGCATACGATCCA -ACGGAATGCAAGGCATACACGACA -ACGGAATGCAAGGCATACAGCTCA -ACGGAATGCAAGGCATACTCACGT -ACGGAATGCAAGGCATACCGTAGT -ACGGAATGCAAGGCATACGTCAGT -ACGGAATGCAAGGCATACGAAGGT -ACGGAATGCAAGGCATACAACCGT -ACGGAATGCAAGGCATACTTGTGC -ACGGAATGCAAGGCATACCTAAGC -ACGGAATGCAAGGCATACACTAGC -ACGGAATGCAAGGCATACAGATGC -ACGGAATGCAAGGCATACTGAAGG -ACGGAATGCAAGGCATACCAATGG -ACGGAATGCAAGGCATACATGAGG -ACGGAATGCAAGGCATACAATGGG -ACGGAATGCAAGGCATACTCCTGA -ACGGAATGCAAGGCATACTAGCGA -ACGGAATGCAAGGCATACCACAGA -ACGGAATGCAAGGCATACGCAAGA -ACGGAATGCAAGGCATACGGTTGA -ACGGAATGCAAGGCATACTCCGAT -ACGGAATGCAAGGCATACTGGCAT -ACGGAATGCAAGGCATACCGAGAT -ACGGAATGCAAGGCATACTACCAC -ACGGAATGCAAGGCATACCAGAAC -ACGGAATGCAAGGCATACGTCTAC -ACGGAATGCAAGGCATACACGTAC -ACGGAATGCAAGGCATACAGTGAC -ACGGAATGCAAGGCATACCTGTAG -ACGGAATGCAAGGCATACCCTAAG -ACGGAATGCAAGGCATACGTTCAG -ACGGAATGCAAGGCATACGCATAG -ACGGAATGCAAGGCATACGACAAG -ACGGAATGCAAGGCATACAAGCAG -ACGGAATGCAAGGCATACCGTCAA -ACGGAATGCAAGGCATACGCTGAA -ACGGAATGCAAGGCATACAGTACG -ACGGAATGCAAGGCATACATCCGA -ACGGAATGCAAGGCATACATGGGA -ACGGAATGCAAGGCATACGTGCAA -ACGGAATGCAAGGCATACGAGGAA -ACGGAATGCAAGGCATACCAGGTA -ACGGAATGCAAGGCATACGACTCT -ACGGAATGCAAGGCATACAGTCCT -ACGGAATGCAAGGCATACTAAGCC -ACGGAATGCAAGGCATACATAGCC -ACGGAATGCAAGGCATACTAACCG -ACGGAATGCAAGGCATACATGCCA -ACGGAATGCAAGGCACTTGGAAAC -ACGGAATGCAAGGCACTTAACACC -ACGGAATGCAAGGCACTTATCGAG -ACGGAATGCAAGGCACTTCTCCTT -ACGGAATGCAAGGCACTTCCTGTT -ACGGAATGCAAGGCACTTCGGTTT -ACGGAATGCAAGGCACTTGTGGTT -ACGGAATGCAAGGCACTTGCCTTT -ACGGAATGCAAGGCACTTGGTCTT -ACGGAATGCAAGGCACTTACGCTT -ACGGAATGCAAGGCACTTAGCGTT -ACGGAATGCAAGGCACTTTTCGTC -ACGGAATGCAAGGCACTTTCTCTC -ACGGAATGCAAGGCACTTTGGATC -ACGGAATGCAAGGCACTTCACTTC -ACGGAATGCAAGGCACTTGTACTC -ACGGAATGCAAGGCACTTGATGTC -ACGGAATGCAAGGCACTTACAGTC -ACGGAATGCAAGGCACTTTTGCTG -ACGGAATGCAAGGCACTTTCCATG -ACGGAATGCAAGGCACTTTGTGTG -ACGGAATGCAAGGCACTTCTAGTG -ACGGAATGCAAGGCACTTCATCTG -ACGGAATGCAAGGCACTTGAGTTG -ACGGAATGCAAGGCACTTAGACTG -ACGGAATGCAAGGCACTTTCGGTA -ACGGAATGCAAGGCACTTTGCCTA -ACGGAATGCAAGGCACTTCCACTA -ACGGAATGCAAGGCACTTGGAGTA -ACGGAATGCAAGGCACTTTCGTCT -ACGGAATGCAAGGCACTTTGCACT -ACGGAATGCAAGGCACTTCTGACT -ACGGAATGCAAGGCACTTCAACCT -ACGGAATGCAAGGCACTTGCTACT -ACGGAATGCAAGGCACTTGGATCT -ACGGAATGCAAGGCACTTAAGGCT -ACGGAATGCAAGGCACTTTCAACC -ACGGAATGCAAGGCACTTTGTTCC -ACGGAATGCAAGGCACTTATTCCC -ACGGAATGCAAGGCACTTTTCTCG -ACGGAATGCAAGGCACTTTAGACG -ACGGAATGCAAGGCACTTGTAACG -ACGGAATGCAAGGCACTTACTTCG -ACGGAATGCAAGGCACTTTACGCA -ACGGAATGCAAGGCACTTCTTGCA -ACGGAATGCAAGGCACTTCGAACA -ACGGAATGCAAGGCACTTCAGTCA -ACGGAATGCAAGGCACTTGATCCA -ACGGAATGCAAGGCACTTACGACA -ACGGAATGCAAGGCACTTAGCTCA -ACGGAATGCAAGGCACTTTCACGT -ACGGAATGCAAGGCACTTCGTAGT -ACGGAATGCAAGGCACTTGTCAGT -ACGGAATGCAAGGCACTTGAAGGT -ACGGAATGCAAGGCACTTAACCGT -ACGGAATGCAAGGCACTTTTGTGC -ACGGAATGCAAGGCACTTCTAAGC -ACGGAATGCAAGGCACTTACTAGC -ACGGAATGCAAGGCACTTAGATGC -ACGGAATGCAAGGCACTTTGAAGG -ACGGAATGCAAGGCACTTCAATGG -ACGGAATGCAAGGCACTTATGAGG -ACGGAATGCAAGGCACTTAATGGG -ACGGAATGCAAGGCACTTTCCTGA -ACGGAATGCAAGGCACTTTAGCGA -ACGGAATGCAAGGCACTTCACAGA -ACGGAATGCAAGGCACTTGCAAGA -ACGGAATGCAAGGCACTTGGTTGA -ACGGAATGCAAGGCACTTTCCGAT -ACGGAATGCAAGGCACTTTGGCAT -ACGGAATGCAAGGCACTTCGAGAT -ACGGAATGCAAGGCACTTTACCAC -ACGGAATGCAAGGCACTTCAGAAC -ACGGAATGCAAGGCACTTGTCTAC -ACGGAATGCAAGGCACTTACGTAC -ACGGAATGCAAGGCACTTAGTGAC -ACGGAATGCAAGGCACTTCTGTAG -ACGGAATGCAAGGCACTTCCTAAG -ACGGAATGCAAGGCACTTGTTCAG -ACGGAATGCAAGGCACTTGCATAG -ACGGAATGCAAGGCACTTGACAAG -ACGGAATGCAAGGCACTTAAGCAG -ACGGAATGCAAGGCACTTCGTCAA -ACGGAATGCAAGGCACTTGCTGAA -ACGGAATGCAAGGCACTTAGTACG -ACGGAATGCAAGGCACTTATCCGA -ACGGAATGCAAGGCACTTATGGGA -ACGGAATGCAAGGCACTTGTGCAA -ACGGAATGCAAGGCACTTGAGGAA -ACGGAATGCAAGGCACTTCAGGTA -ACGGAATGCAAGGCACTTGACTCT -ACGGAATGCAAGGCACTTAGTCCT -ACGGAATGCAAGGCACTTTAAGCC -ACGGAATGCAAGGCACTTATAGCC -ACGGAATGCAAGGCACTTTAACCG -ACGGAATGCAAGGCACTTATGCCA -ACGGAATGCAAGACACGAGGAAAC -ACGGAATGCAAGACACGAAACACC -ACGGAATGCAAGACACGAATCGAG -ACGGAATGCAAGACACGACTCCTT -ACGGAATGCAAGACACGACCTGTT -ACGGAATGCAAGACACGACGGTTT -ACGGAATGCAAGACACGAGTGGTT -ACGGAATGCAAGACACGAGCCTTT -ACGGAATGCAAGACACGAGGTCTT -ACGGAATGCAAGACACGAACGCTT -ACGGAATGCAAGACACGAAGCGTT -ACGGAATGCAAGACACGATTCGTC -ACGGAATGCAAGACACGATCTCTC -ACGGAATGCAAGACACGATGGATC -ACGGAATGCAAGACACGACACTTC -ACGGAATGCAAGACACGAGTACTC -ACGGAATGCAAGACACGAGATGTC -ACGGAATGCAAGACACGAACAGTC -ACGGAATGCAAGACACGATTGCTG -ACGGAATGCAAGACACGATCCATG -ACGGAATGCAAGACACGATGTGTG -ACGGAATGCAAGACACGACTAGTG -ACGGAATGCAAGACACGACATCTG -ACGGAATGCAAGACACGAGAGTTG -ACGGAATGCAAGACACGAAGACTG -ACGGAATGCAAGACACGATCGGTA -ACGGAATGCAAGACACGATGCCTA -ACGGAATGCAAGACACGACCACTA -ACGGAATGCAAGACACGAGGAGTA -ACGGAATGCAAGACACGATCGTCT -ACGGAATGCAAGACACGATGCACT -ACGGAATGCAAGACACGACTGACT -ACGGAATGCAAGACACGACAACCT -ACGGAATGCAAGACACGAGCTACT -ACGGAATGCAAGACACGAGGATCT -ACGGAATGCAAGACACGAAAGGCT -ACGGAATGCAAGACACGATCAACC -ACGGAATGCAAGACACGATGTTCC -ACGGAATGCAAGACACGAATTCCC -ACGGAATGCAAGACACGATTCTCG -ACGGAATGCAAGACACGATAGACG -ACGGAATGCAAGACACGAGTAACG -ACGGAATGCAAGACACGAACTTCG -ACGGAATGCAAGACACGATACGCA -ACGGAATGCAAGACACGACTTGCA -ACGGAATGCAAGACACGACGAACA -ACGGAATGCAAGACACGACAGTCA -ACGGAATGCAAGACACGAGATCCA -ACGGAATGCAAGACACGAACGACA -ACGGAATGCAAGACACGAAGCTCA -ACGGAATGCAAGACACGATCACGT -ACGGAATGCAAGACACGACGTAGT -ACGGAATGCAAGACACGAGTCAGT -ACGGAATGCAAGACACGAGAAGGT -ACGGAATGCAAGACACGAAACCGT -ACGGAATGCAAGACACGATTGTGC -ACGGAATGCAAGACACGACTAAGC -ACGGAATGCAAGACACGAACTAGC -ACGGAATGCAAGACACGAAGATGC -ACGGAATGCAAGACACGATGAAGG -ACGGAATGCAAGACACGACAATGG -ACGGAATGCAAGACACGAATGAGG -ACGGAATGCAAGACACGAAATGGG -ACGGAATGCAAGACACGATCCTGA -ACGGAATGCAAGACACGATAGCGA -ACGGAATGCAAGACACGACACAGA -ACGGAATGCAAGACACGAGCAAGA -ACGGAATGCAAGACACGAGGTTGA -ACGGAATGCAAGACACGATCCGAT -ACGGAATGCAAGACACGATGGCAT -ACGGAATGCAAGACACGACGAGAT -ACGGAATGCAAGACACGATACCAC -ACGGAATGCAAGACACGACAGAAC -ACGGAATGCAAGACACGAGTCTAC -ACGGAATGCAAGACACGAACGTAC -ACGGAATGCAAGACACGAAGTGAC -ACGGAATGCAAGACACGACTGTAG -ACGGAATGCAAGACACGACCTAAG -ACGGAATGCAAGACACGAGTTCAG -ACGGAATGCAAGACACGAGCATAG -ACGGAATGCAAGACACGAGACAAG -ACGGAATGCAAGACACGAAAGCAG -ACGGAATGCAAGACACGACGTCAA -ACGGAATGCAAGACACGAGCTGAA -ACGGAATGCAAGACACGAAGTACG -ACGGAATGCAAGACACGAATCCGA -ACGGAATGCAAGACACGAATGGGA -ACGGAATGCAAGACACGAGTGCAA -ACGGAATGCAAGACACGAGAGGAA -ACGGAATGCAAGACACGACAGGTA -ACGGAATGCAAGACACGAGACTCT -ACGGAATGCAAGACACGAAGTCCT -ACGGAATGCAAGACACGATAAGCC -ACGGAATGCAAGACACGAATAGCC -ACGGAATGCAAGACACGATAACCG -ACGGAATGCAAGACACGAATGCCA -ACGGAATGCAAGTCACAGGGAAAC -ACGGAATGCAAGTCACAGAACACC -ACGGAATGCAAGTCACAGATCGAG -ACGGAATGCAAGTCACAGCTCCTT -ACGGAATGCAAGTCACAGCCTGTT -ACGGAATGCAAGTCACAGCGGTTT -ACGGAATGCAAGTCACAGGTGGTT -ACGGAATGCAAGTCACAGGCCTTT -ACGGAATGCAAGTCACAGGGTCTT -ACGGAATGCAAGTCACAGACGCTT -ACGGAATGCAAGTCACAGAGCGTT -ACGGAATGCAAGTCACAGTTCGTC -ACGGAATGCAAGTCACAGTCTCTC -ACGGAATGCAAGTCACAGTGGATC -ACGGAATGCAAGTCACAGCACTTC -ACGGAATGCAAGTCACAGGTACTC -ACGGAATGCAAGTCACAGGATGTC -ACGGAATGCAAGTCACAGACAGTC -ACGGAATGCAAGTCACAGTTGCTG -ACGGAATGCAAGTCACAGTCCATG -ACGGAATGCAAGTCACAGTGTGTG -ACGGAATGCAAGTCACAGCTAGTG -ACGGAATGCAAGTCACAGCATCTG -ACGGAATGCAAGTCACAGGAGTTG -ACGGAATGCAAGTCACAGAGACTG -ACGGAATGCAAGTCACAGTCGGTA -ACGGAATGCAAGTCACAGTGCCTA -ACGGAATGCAAGTCACAGCCACTA -ACGGAATGCAAGTCACAGGGAGTA -ACGGAATGCAAGTCACAGTCGTCT -ACGGAATGCAAGTCACAGTGCACT -ACGGAATGCAAGTCACAGCTGACT -ACGGAATGCAAGTCACAGCAACCT -ACGGAATGCAAGTCACAGGCTACT -ACGGAATGCAAGTCACAGGGATCT -ACGGAATGCAAGTCACAGAAGGCT -ACGGAATGCAAGTCACAGTCAACC -ACGGAATGCAAGTCACAGTGTTCC -ACGGAATGCAAGTCACAGATTCCC -ACGGAATGCAAGTCACAGTTCTCG -ACGGAATGCAAGTCACAGTAGACG -ACGGAATGCAAGTCACAGGTAACG -ACGGAATGCAAGTCACAGACTTCG -ACGGAATGCAAGTCACAGTACGCA -ACGGAATGCAAGTCACAGCTTGCA -ACGGAATGCAAGTCACAGCGAACA -ACGGAATGCAAGTCACAGCAGTCA -ACGGAATGCAAGTCACAGGATCCA -ACGGAATGCAAGTCACAGACGACA -ACGGAATGCAAGTCACAGAGCTCA -ACGGAATGCAAGTCACAGTCACGT -ACGGAATGCAAGTCACAGCGTAGT -ACGGAATGCAAGTCACAGGTCAGT -ACGGAATGCAAGTCACAGGAAGGT -ACGGAATGCAAGTCACAGAACCGT -ACGGAATGCAAGTCACAGTTGTGC -ACGGAATGCAAGTCACAGCTAAGC -ACGGAATGCAAGTCACAGACTAGC -ACGGAATGCAAGTCACAGAGATGC -ACGGAATGCAAGTCACAGTGAAGG -ACGGAATGCAAGTCACAGCAATGG -ACGGAATGCAAGTCACAGATGAGG -ACGGAATGCAAGTCACAGAATGGG -ACGGAATGCAAGTCACAGTCCTGA -ACGGAATGCAAGTCACAGTAGCGA -ACGGAATGCAAGTCACAGCACAGA -ACGGAATGCAAGTCACAGGCAAGA -ACGGAATGCAAGTCACAGGGTTGA -ACGGAATGCAAGTCACAGTCCGAT -ACGGAATGCAAGTCACAGTGGCAT -ACGGAATGCAAGTCACAGCGAGAT -ACGGAATGCAAGTCACAGTACCAC -ACGGAATGCAAGTCACAGCAGAAC -ACGGAATGCAAGTCACAGGTCTAC -ACGGAATGCAAGTCACAGACGTAC -ACGGAATGCAAGTCACAGAGTGAC -ACGGAATGCAAGTCACAGCTGTAG -ACGGAATGCAAGTCACAGCCTAAG -ACGGAATGCAAGTCACAGGTTCAG -ACGGAATGCAAGTCACAGGCATAG -ACGGAATGCAAGTCACAGGACAAG -ACGGAATGCAAGTCACAGAAGCAG -ACGGAATGCAAGTCACAGCGTCAA -ACGGAATGCAAGTCACAGGCTGAA -ACGGAATGCAAGTCACAGAGTACG -ACGGAATGCAAGTCACAGATCCGA -ACGGAATGCAAGTCACAGATGGGA -ACGGAATGCAAGTCACAGGTGCAA -ACGGAATGCAAGTCACAGGAGGAA -ACGGAATGCAAGTCACAGCAGGTA -ACGGAATGCAAGTCACAGGACTCT -ACGGAATGCAAGTCACAGAGTCCT -ACGGAATGCAAGTCACAGTAAGCC -ACGGAATGCAAGTCACAGATAGCC -ACGGAATGCAAGTCACAGTAACCG -ACGGAATGCAAGTCACAGATGCCA -ACGGAATGCAAGCCAGATGGAAAC -ACGGAATGCAAGCCAGATAACACC -ACGGAATGCAAGCCAGATATCGAG -ACGGAATGCAAGCCAGATCTCCTT -ACGGAATGCAAGCCAGATCCTGTT -ACGGAATGCAAGCCAGATCGGTTT -ACGGAATGCAAGCCAGATGTGGTT -ACGGAATGCAAGCCAGATGCCTTT -ACGGAATGCAAGCCAGATGGTCTT -ACGGAATGCAAGCCAGATACGCTT -ACGGAATGCAAGCCAGATAGCGTT -ACGGAATGCAAGCCAGATTTCGTC -ACGGAATGCAAGCCAGATTCTCTC -ACGGAATGCAAGCCAGATTGGATC -ACGGAATGCAAGCCAGATCACTTC -ACGGAATGCAAGCCAGATGTACTC -ACGGAATGCAAGCCAGATGATGTC -ACGGAATGCAAGCCAGATACAGTC -ACGGAATGCAAGCCAGATTTGCTG -ACGGAATGCAAGCCAGATTCCATG -ACGGAATGCAAGCCAGATTGTGTG -ACGGAATGCAAGCCAGATCTAGTG -ACGGAATGCAAGCCAGATCATCTG -ACGGAATGCAAGCCAGATGAGTTG -ACGGAATGCAAGCCAGATAGACTG -ACGGAATGCAAGCCAGATTCGGTA -ACGGAATGCAAGCCAGATTGCCTA -ACGGAATGCAAGCCAGATCCACTA -ACGGAATGCAAGCCAGATGGAGTA -ACGGAATGCAAGCCAGATTCGTCT -ACGGAATGCAAGCCAGATTGCACT -ACGGAATGCAAGCCAGATCTGACT -ACGGAATGCAAGCCAGATCAACCT -ACGGAATGCAAGCCAGATGCTACT -ACGGAATGCAAGCCAGATGGATCT -ACGGAATGCAAGCCAGATAAGGCT -ACGGAATGCAAGCCAGATTCAACC -ACGGAATGCAAGCCAGATTGTTCC -ACGGAATGCAAGCCAGATATTCCC -ACGGAATGCAAGCCAGATTTCTCG -ACGGAATGCAAGCCAGATTAGACG -ACGGAATGCAAGCCAGATGTAACG -ACGGAATGCAAGCCAGATACTTCG -ACGGAATGCAAGCCAGATTACGCA -ACGGAATGCAAGCCAGATCTTGCA -ACGGAATGCAAGCCAGATCGAACA -ACGGAATGCAAGCCAGATCAGTCA -ACGGAATGCAAGCCAGATGATCCA -ACGGAATGCAAGCCAGATACGACA -ACGGAATGCAAGCCAGATAGCTCA -ACGGAATGCAAGCCAGATTCACGT -ACGGAATGCAAGCCAGATCGTAGT -ACGGAATGCAAGCCAGATGTCAGT -ACGGAATGCAAGCCAGATGAAGGT -ACGGAATGCAAGCCAGATAACCGT -ACGGAATGCAAGCCAGATTTGTGC -ACGGAATGCAAGCCAGATCTAAGC -ACGGAATGCAAGCCAGATACTAGC -ACGGAATGCAAGCCAGATAGATGC -ACGGAATGCAAGCCAGATTGAAGG -ACGGAATGCAAGCCAGATCAATGG -ACGGAATGCAAGCCAGATATGAGG -ACGGAATGCAAGCCAGATAATGGG -ACGGAATGCAAGCCAGATTCCTGA -ACGGAATGCAAGCCAGATTAGCGA -ACGGAATGCAAGCCAGATCACAGA -ACGGAATGCAAGCCAGATGCAAGA -ACGGAATGCAAGCCAGATGGTTGA -ACGGAATGCAAGCCAGATTCCGAT -ACGGAATGCAAGCCAGATTGGCAT -ACGGAATGCAAGCCAGATCGAGAT -ACGGAATGCAAGCCAGATTACCAC -ACGGAATGCAAGCCAGATCAGAAC -ACGGAATGCAAGCCAGATGTCTAC -ACGGAATGCAAGCCAGATACGTAC -ACGGAATGCAAGCCAGATAGTGAC -ACGGAATGCAAGCCAGATCTGTAG -ACGGAATGCAAGCCAGATCCTAAG -ACGGAATGCAAGCCAGATGTTCAG -ACGGAATGCAAGCCAGATGCATAG -ACGGAATGCAAGCCAGATGACAAG -ACGGAATGCAAGCCAGATAAGCAG -ACGGAATGCAAGCCAGATCGTCAA -ACGGAATGCAAGCCAGATGCTGAA -ACGGAATGCAAGCCAGATAGTACG -ACGGAATGCAAGCCAGATATCCGA -ACGGAATGCAAGCCAGATATGGGA -ACGGAATGCAAGCCAGATGTGCAA -ACGGAATGCAAGCCAGATGAGGAA -ACGGAATGCAAGCCAGATCAGGTA -ACGGAATGCAAGCCAGATGACTCT -ACGGAATGCAAGCCAGATAGTCCT -ACGGAATGCAAGCCAGATTAAGCC -ACGGAATGCAAGCCAGATATAGCC -ACGGAATGCAAGCCAGATTAACCG -ACGGAATGCAAGCCAGATATGCCA -ACGGAATGCAAGACAACGGGAAAC -ACGGAATGCAAGACAACGAACACC -ACGGAATGCAAGACAACGATCGAG -ACGGAATGCAAGACAACGCTCCTT -ACGGAATGCAAGACAACGCCTGTT -ACGGAATGCAAGACAACGCGGTTT -ACGGAATGCAAGACAACGGTGGTT -ACGGAATGCAAGACAACGGCCTTT -ACGGAATGCAAGACAACGGGTCTT -ACGGAATGCAAGACAACGACGCTT -ACGGAATGCAAGACAACGAGCGTT -ACGGAATGCAAGACAACGTTCGTC -ACGGAATGCAAGACAACGTCTCTC -ACGGAATGCAAGACAACGTGGATC -ACGGAATGCAAGACAACGCACTTC -ACGGAATGCAAGACAACGGTACTC -ACGGAATGCAAGACAACGGATGTC -ACGGAATGCAAGACAACGACAGTC -ACGGAATGCAAGACAACGTTGCTG -ACGGAATGCAAGACAACGTCCATG -ACGGAATGCAAGACAACGTGTGTG -ACGGAATGCAAGACAACGCTAGTG -ACGGAATGCAAGACAACGCATCTG -ACGGAATGCAAGACAACGGAGTTG -ACGGAATGCAAGACAACGAGACTG -ACGGAATGCAAGACAACGTCGGTA -ACGGAATGCAAGACAACGTGCCTA -ACGGAATGCAAGACAACGCCACTA -ACGGAATGCAAGACAACGGGAGTA -ACGGAATGCAAGACAACGTCGTCT -ACGGAATGCAAGACAACGTGCACT -ACGGAATGCAAGACAACGCTGACT -ACGGAATGCAAGACAACGCAACCT -ACGGAATGCAAGACAACGGCTACT -ACGGAATGCAAGACAACGGGATCT -ACGGAATGCAAGACAACGAAGGCT -ACGGAATGCAAGACAACGTCAACC -ACGGAATGCAAGACAACGTGTTCC -ACGGAATGCAAGACAACGATTCCC -ACGGAATGCAAGACAACGTTCTCG -ACGGAATGCAAGACAACGTAGACG -ACGGAATGCAAGACAACGGTAACG -ACGGAATGCAAGACAACGACTTCG -ACGGAATGCAAGACAACGTACGCA -ACGGAATGCAAGACAACGCTTGCA -ACGGAATGCAAGACAACGCGAACA -ACGGAATGCAAGACAACGCAGTCA -ACGGAATGCAAGACAACGGATCCA -ACGGAATGCAAGACAACGACGACA -ACGGAATGCAAGACAACGAGCTCA -ACGGAATGCAAGACAACGTCACGT -ACGGAATGCAAGACAACGCGTAGT -ACGGAATGCAAGACAACGGTCAGT -ACGGAATGCAAGACAACGGAAGGT -ACGGAATGCAAGACAACGAACCGT -ACGGAATGCAAGACAACGTTGTGC -ACGGAATGCAAGACAACGCTAAGC -ACGGAATGCAAGACAACGACTAGC -ACGGAATGCAAGACAACGAGATGC -ACGGAATGCAAGACAACGTGAAGG -ACGGAATGCAAGACAACGCAATGG -ACGGAATGCAAGACAACGATGAGG -ACGGAATGCAAGACAACGAATGGG -ACGGAATGCAAGACAACGTCCTGA -ACGGAATGCAAGACAACGTAGCGA -ACGGAATGCAAGACAACGCACAGA -ACGGAATGCAAGACAACGGCAAGA -ACGGAATGCAAGACAACGGGTTGA -ACGGAATGCAAGACAACGTCCGAT -ACGGAATGCAAGACAACGTGGCAT -ACGGAATGCAAGACAACGCGAGAT -ACGGAATGCAAGACAACGTACCAC -ACGGAATGCAAGACAACGCAGAAC -ACGGAATGCAAGACAACGGTCTAC -ACGGAATGCAAGACAACGACGTAC -ACGGAATGCAAGACAACGAGTGAC -ACGGAATGCAAGACAACGCTGTAG -ACGGAATGCAAGACAACGCCTAAG -ACGGAATGCAAGACAACGGTTCAG -ACGGAATGCAAGACAACGGCATAG -ACGGAATGCAAGACAACGGACAAG -ACGGAATGCAAGACAACGAAGCAG -ACGGAATGCAAGACAACGCGTCAA -ACGGAATGCAAGACAACGGCTGAA -ACGGAATGCAAGACAACGAGTACG -ACGGAATGCAAGACAACGATCCGA -ACGGAATGCAAGACAACGATGGGA -ACGGAATGCAAGACAACGGTGCAA -ACGGAATGCAAGACAACGGAGGAA -ACGGAATGCAAGACAACGCAGGTA -ACGGAATGCAAGACAACGGACTCT -ACGGAATGCAAGACAACGAGTCCT -ACGGAATGCAAGACAACGTAAGCC -ACGGAATGCAAGACAACGATAGCC -ACGGAATGCAAGACAACGTAACCG -ACGGAATGCAAGACAACGATGCCA -ACGGAATGCAAGTCAAGCGGAAAC -ACGGAATGCAAGTCAAGCAACACC -ACGGAATGCAAGTCAAGCATCGAG -ACGGAATGCAAGTCAAGCCTCCTT -ACGGAATGCAAGTCAAGCCCTGTT -ACGGAATGCAAGTCAAGCCGGTTT -ACGGAATGCAAGTCAAGCGTGGTT -ACGGAATGCAAGTCAAGCGCCTTT -ACGGAATGCAAGTCAAGCGGTCTT -ACGGAATGCAAGTCAAGCACGCTT -ACGGAATGCAAGTCAAGCAGCGTT -ACGGAATGCAAGTCAAGCTTCGTC -ACGGAATGCAAGTCAAGCTCTCTC -ACGGAATGCAAGTCAAGCTGGATC -ACGGAATGCAAGTCAAGCCACTTC -ACGGAATGCAAGTCAAGCGTACTC -ACGGAATGCAAGTCAAGCGATGTC -ACGGAATGCAAGTCAAGCACAGTC -ACGGAATGCAAGTCAAGCTTGCTG -ACGGAATGCAAGTCAAGCTCCATG -ACGGAATGCAAGTCAAGCTGTGTG -ACGGAATGCAAGTCAAGCCTAGTG -ACGGAATGCAAGTCAAGCCATCTG -ACGGAATGCAAGTCAAGCGAGTTG -ACGGAATGCAAGTCAAGCAGACTG -ACGGAATGCAAGTCAAGCTCGGTA -ACGGAATGCAAGTCAAGCTGCCTA -ACGGAATGCAAGTCAAGCCCACTA -ACGGAATGCAAGTCAAGCGGAGTA -ACGGAATGCAAGTCAAGCTCGTCT -ACGGAATGCAAGTCAAGCTGCACT -ACGGAATGCAAGTCAAGCCTGACT -ACGGAATGCAAGTCAAGCCAACCT -ACGGAATGCAAGTCAAGCGCTACT -ACGGAATGCAAGTCAAGCGGATCT -ACGGAATGCAAGTCAAGCAAGGCT -ACGGAATGCAAGTCAAGCTCAACC -ACGGAATGCAAGTCAAGCTGTTCC -ACGGAATGCAAGTCAAGCATTCCC -ACGGAATGCAAGTCAAGCTTCTCG -ACGGAATGCAAGTCAAGCTAGACG -ACGGAATGCAAGTCAAGCGTAACG -ACGGAATGCAAGTCAAGCACTTCG -ACGGAATGCAAGTCAAGCTACGCA -ACGGAATGCAAGTCAAGCCTTGCA -ACGGAATGCAAGTCAAGCCGAACA -ACGGAATGCAAGTCAAGCCAGTCA -ACGGAATGCAAGTCAAGCGATCCA -ACGGAATGCAAGTCAAGCACGACA -ACGGAATGCAAGTCAAGCAGCTCA -ACGGAATGCAAGTCAAGCTCACGT -ACGGAATGCAAGTCAAGCCGTAGT -ACGGAATGCAAGTCAAGCGTCAGT -ACGGAATGCAAGTCAAGCGAAGGT -ACGGAATGCAAGTCAAGCAACCGT -ACGGAATGCAAGTCAAGCTTGTGC -ACGGAATGCAAGTCAAGCCTAAGC -ACGGAATGCAAGTCAAGCACTAGC -ACGGAATGCAAGTCAAGCAGATGC -ACGGAATGCAAGTCAAGCTGAAGG -ACGGAATGCAAGTCAAGCCAATGG -ACGGAATGCAAGTCAAGCATGAGG -ACGGAATGCAAGTCAAGCAATGGG -ACGGAATGCAAGTCAAGCTCCTGA -ACGGAATGCAAGTCAAGCTAGCGA -ACGGAATGCAAGTCAAGCCACAGA -ACGGAATGCAAGTCAAGCGCAAGA -ACGGAATGCAAGTCAAGCGGTTGA -ACGGAATGCAAGTCAAGCTCCGAT -ACGGAATGCAAGTCAAGCTGGCAT -ACGGAATGCAAGTCAAGCCGAGAT -ACGGAATGCAAGTCAAGCTACCAC -ACGGAATGCAAGTCAAGCCAGAAC -ACGGAATGCAAGTCAAGCGTCTAC -ACGGAATGCAAGTCAAGCACGTAC -ACGGAATGCAAGTCAAGCAGTGAC -ACGGAATGCAAGTCAAGCCTGTAG -ACGGAATGCAAGTCAAGCCCTAAG -ACGGAATGCAAGTCAAGCGTTCAG -ACGGAATGCAAGTCAAGCGCATAG -ACGGAATGCAAGTCAAGCGACAAG -ACGGAATGCAAGTCAAGCAAGCAG -ACGGAATGCAAGTCAAGCCGTCAA -ACGGAATGCAAGTCAAGCGCTGAA -ACGGAATGCAAGTCAAGCAGTACG -ACGGAATGCAAGTCAAGCATCCGA -ACGGAATGCAAGTCAAGCATGGGA -ACGGAATGCAAGTCAAGCGTGCAA -ACGGAATGCAAGTCAAGCGAGGAA -ACGGAATGCAAGTCAAGCCAGGTA -ACGGAATGCAAGTCAAGCGACTCT -ACGGAATGCAAGTCAAGCAGTCCT -ACGGAATGCAAGTCAAGCTAAGCC -ACGGAATGCAAGTCAAGCATAGCC -ACGGAATGCAAGTCAAGCTAACCG -ACGGAATGCAAGTCAAGCATGCCA -ACGGAATGCAAGCGTTCAGGAAAC -ACGGAATGCAAGCGTTCAAACACC -ACGGAATGCAAGCGTTCAATCGAG -ACGGAATGCAAGCGTTCACTCCTT -ACGGAATGCAAGCGTTCACCTGTT -ACGGAATGCAAGCGTTCACGGTTT -ACGGAATGCAAGCGTTCAGTGGTT -ACGGAATGCAAGCGTTCAGCCTTT -ACGGAATGCAAGCGTTCAGGTCTT -ACGGAATGCAAGCGTTCAACGCTT -ACGGAATGCAAGCGTTCAAGCGTT -ACGGAATGCAAGCGTTCATTCGTC -ACGGAATGCAAGCGTTCATCTCTC -ACGGAATGCAAGCGTTCATGGATC -ACGGAATGCAAGCGTTCACACTTC -ACGGAATGCAAGCGTTCAGTACTC -ACGGAATGCAAGCGTTCAGATGTC -ACGGAATGCAAGCGTTCAACAGTC -ACGGAATGCAAGCGTTCATTGCTG -ACGGAATGCAAGCGTTCATCCATG -ACGGAATGCAAGCGTTCATGTGTG -ACGGAATGCAAGCGTTCACTAGTG -ACGGAATGCAAGCGTTCACATCTG -ACGGAATGCAAGCGTTCAGAGTTG -ACGGAATGCAAGCGTTCAAGACTG -ACGGAATGCAAGCGTTCATCGGTA -ACGGAATGCAAGCGTTCATGCCTA -ACGGAATGCAAGCGTTCACCACTA -ACGGAATGCAAGCGTTCAGGAGTA -ACGGAATGCAAGCGTTCATCGTCT -ACGGAATGCAAGCGTTCATGCACT -ACGGAATGCAAGCGTTCACTGACT -ACGGAATGCAAGCGTTCACAACCT -ACGGAATGCAAGCGTTCAGCTACT -ACGGAATGCAAGCGTTCAGGATCT -ACGGAATGCAAGCGTTCAAAGGCT -ACGGAATGCAAGCGTTCATCAACC -ACGGAATGCAAGCGTTCATGTTCC -ACGGAATGCAAGCGTTCAATTCCC -ACGGAATGCAAGCGTTCATTCTCG -ACGGAATGCAAGCGTTCATAGACG -ACGGAATGCAAGCGTTCAGTAACG -ACGGAATGCAAGCGTTCAACTTCG -ACGGAATGCAAGCGTTCATACGCA -ACGGAATGCAAGCGTTCACTTGCA -ACGGAATGCAAGCGTTCACGAACA -ACGGAATGCAAGCGTTCACAGTCA -ACGGAATGCAAGCGTTCAGATCCA -ACGGAATGCAAGCGTTCAACGACA -ACGGAATGCAAGCGTTCAAGCTCA -ACGGAATGCAAGCGTTCATCACGT -ACGGAATGCAAGCGTTCACGTAGT -ACGGAATGCAAGCGTTCAGTCAGT -ACGGAATGCAAGCGTTCAGAAGGT -ACGGAATGCAAGCGTTCAAACCGT -ACGGAATGCAAGCGTTCATTGTGC -ACGGAATGCAAGCGTTCACTAAGC -ACGGAATGCAAGCGTTCAACTAGC -ACGGAATGCAAGCGTTCAAGATGC -ACGGAATGCAAGCGTTCATGAAGG -ACGGAATGCAAGCGTTCACAATGG -ACGGAATGCAAGCGTTCAATGAGG -ACGGAATGCAAGCGTTCAAATGGG -ACGGAATGCAAGCGTTCATCCTGA -ACGGAATGCAAGCGTTCATAGCGA -ACGGAATGCAAGCGTTCACACAGA -ACGGAATGCAAGCGTTCAGCAAGA -ACGGAATGCAAGCGTTCAGGTTGA -ACGGAATGCAAGCGTTCATCCGAT -ACGGAATGCAAGCGTTCATGGCAT -ACGGAATGCAAGCGTTCACGAGAT -ACGGAATGCAAGCGTTCATACCAC -ACGGAATGCAAGCGTTCACAGAAC -ACGGAATGCAAGCGTTCAGTCTAC -ACGGAATGCAAGCGTTCAACGTAC -ACGGAATGCAAGCGTTCAAGTGAC -ACGGAATGCAAGCGTTCACTGTAG -ACGGAATGCAAGCGTTCACCTAAG -ACGGAATGCAAGCGTTCAGTTCAG -ACGGAATGCAAGCGTTCAGCATAG -ACGGAATGCAAGCGTTCAGACAAG -ACGGAATGCAAGCGTTCAAAGCAG -ACGGAATGCAAGCGTTCACGTCAA -ACGGAATGCAAGCGTTCAGCTGAA -ACGGAATGCAAGCGTTCAAGTACG -ACGGAATGCAAGCGTTCAATCCGA -ACGGAATGCAAGCGTTCAATGGGA -ACGGAATGCAAGCGTTCAGTGCAA -ACGGAATGCAAGCGTTCAGAGGAA -ACGGAATGCAAGCGTTCACAGGTA -ACGGAATGCAAGCGTTCAGACTCT -ACGGAATGCAAGCGTTCAAGTCCT -ACGGAATGCAAGCGTTCATAAGCC -ACGGAATGCAAGCGTTCAATAGCC -ACGGAATGCAAGCGTTCATAACCG -ACGGAATGCAAGCGTTCAATGCCA -ACGGAATGCAAGAGTCGTGGAAAC -ACGGAATGCAAGAGTCGTAACACC -ACGGAATGCAAGAGTCGTATCGAG -ACGGAATGCAAGAGTCGTCTCCTT -ACGGAATGCAAGAGTCGTCCTGTT -ACGGAATGCAAGAGTCGTCGGTTT -ACGGAATGCAAGAGTCGTGTGGTT -ACGGAATGCAAGAGTCGTGCCTTT -ACGGAATGCAAGAGTCGTGGTCTT -ACGGAATGCAAGAGTCGTACGCTT -ACGGAATGCAAGAGTCGTAGCGTT -ACGGAATGCAAGAGTCGTTTCGTC -ACGGAATGCAAGAGTCGTTCTCTC -ACGGAATGCAAGAGTCGTTGGATC -ACGGAATGCAAGAGTCGTCACTTC -ACGGAATGCAAGAGTCGTGTACTC -ACGGAATGCAAGAGTCGTGATGTC -ACGGAATGCAAGAGTCGTACAGTC -ACGGAATGCAAGAGTCGTTTGCTG -ACGGAATGCAAGAGTCGTTCCATG -ACGGAATGCAAGAGTCGTTGTGTG -ACGGAATGCAAGAGTCGTCTAGTG -ACGGAATGCAAGAGTCGTCATCTG -ACGGAATGCAAGAGTCGTGAGTTG -ACGGAATGCAAGAGTCGTAGACTG -ACGGAATGCAAGAGTCGTTCGGTA -ACGGAATGCAAGAGTCGTTGCCTA -ACGGAATGCAAGAGTCGTCCACTA -ACGGAATGCAAGAGTCGTGGAGTA -ACGGAATGCAAGAGTCGTTCGTCT -ACGGAATGCAAGAGTCGTTGCACT -ACGGAATGCAAGAGTCGTCTGACT -ACGGAATGCAAGAGTCGTCAACCT -ACGGAATGCAAGAGTCGTGCTACT -ACGGAATGCAAGAGTCGTGGATCT -ACGGAATGCAAGAGTCGTAAGGCT -ACGGAATGCAAGAGTCGTTCAACC -ACGGAATGCAAGAGTCGTTGTTCC -ACGGAATGCAAGAGTCGTATTCCC -ACGGAATGCAAGAGTCGTTTCTCG -ACGGAATGCAAGAGTCGTTAGACG -ACGGAATGCAAGAGTCGTGTAACG -ACGGAATGCAAGAGTCGTACTTCG -ACGGAATGCAAGAGTCGTTACGCA -ACGGAATGCAAGAGTCGTCTTGCA -ACGGAATGCAAGAGTCGTCGAACA -ACGGAATGCAAGAGTCGTCAGTCA -ACGGAATGCAAGAGTCGTGATCCA -ACGGAATGCAAGAGTCGTACGACA -ACGGAATGCAAGAGTCGTAGCTCA -ACGGAATGCAAGAGTCGTTCACGT -ACGGAATGCAAGAGTCGTCGTAGT -ACGGAATGCAAGAGTCGTGTCAGT -ACGGAATGCAAGAGTCGTGAAGGT -ACGGAATGCAAGAGTCGTAACCGT -ACGGAATGCAAGAGTCGTTTGTGC -ACGGAATGCAAGAGTCGTCTAAGC -ACGGAATGCAAGAGTCGTACTAGC -ACGGAATGCAAGAGTCGTAGATGC -ACGGAATGCAAGAGTCGTTGAAGG -ACGGAATGCAAGAGTCGTCAATGG -ACGGAATGCAAGAGTCGTATGAGG -ACGGAATGCAAGAGTCGTAATGGG -ACGGAATGCAAGAGTCGTTCCTGA -ACGGAATGCAAGAGTCGTTAGCGA -ACGGAATGCAAGAGTCGTCACAGA -ACGGAATGCAAGAGTCGTGCAAGA -ACGGAATGCAAGAGTCGTGGTTGA -ACGGAATGCAAGAGTCGTTCCGAT -ACGGAATGCAAGAGTCGTTGGCAT -ACGGAATGCAAGAGTCGTCGAGAT -ACGGAATGCAAGAGTCGTTACCAC -ACGGAATGCAAGAGTCGTCAGAAC -ACGGAATGCAAGAGTCGTGTCTAC -ACGGAATGCAAGAGTCGTACGTAC -ACGGAATGCAAGAGTCGTAGTGAC -ACGGAATGCAAGAGTCGTCTGTAG -ACGGAATGCAAGAGTCGTCCTAAG -ACGGAATGCAAGAGTCGTGTTCAG -ACGGAATGCAAGAGTCGTGCATAG -ACGGAATGCAAGAGTCGTGACAAG -ACGGAATGCAAGAGTCGTAAGCAG -ACGGAATGCAAGAGTCGTCGTCAA -ACGGAATGCAAGAGTCGTGCTGAA -ACGGAATGCAAGAGTCGTAGTACG -ACGGAATGCAAGAGTCGTATCCGA -ACGGAATGCAAGAGTCGTATGGGA -ACGGAATGCAAGAGTCGTGTGCAA -ACGGAATGCAAGAGTCGTGAGGAA -ACGGAATGCAAGAGTCGTCAGGTA -ACGGAATGCAAGAGTCGTGACTCT -ACGGAATGCAAGAGTCGTAGTCCT -ACGGAATGCAAGAGTCGTTAAGCC -ACGGAATGCAAGAGTCGTATAGCC -ACGGAATGCAAGAGTCGTTAACCG -ACGGAATGCAAGAGTCGTATGCCA -ACGGAATGCAAGAGTGTCGGAAAC -ACGGAATGCAAGAGTGTCAACACC -ACGGAATGCAAGAGTGTCATCGAG -ACGGAATGCAAGAGTGTCCTCCTT -ACGGAATGCAAGAGTGTCCCTGTT -ACGGAATGCAAGAGTGTCCGGTTT -ACGGAATGCAAGAGTGTCGTGGTT -ACGGAATGCAAGAGTGTCGCCTTT -ACGGAATGCAAGAGTGTCGGTCTT -ACGGAATGCAAGAGTGTCACGCTT -ACGGAATGCAAGAGTGTCAGCGTT -ACGGAATGCAAGAGTGTCTTCGTC -ACGGAATGCAAGAGTGTCTCTCTC -ACGGAATGCAAGAGTGTCTGGATC -ACGGAATGCAAGAGTGTCCACTTC -ACGGAATGCAAGAGTGTCGTACTC -ACGGAATGCAAGAGTGTCGATGTC -ACGGAATGCAAGAGTGTCACAGTC -ACGGAATGCAAGAGTGTCTTGCTG -ACGGAATGCAAGAGTGTCTCCATG -ACGGAATGCAAGAGTGTCTGTGTG -ACGGAATGCAAGAGTGTCCTAGTG -ACGGAATGCAAGAGTGTCCATCTG -ACGGAATGCAAGAGTGTCGAGTTG -ACGGAATGCAAGAGTGTCAGACTG -ACGGAATGCAAGAGTGTCTCGGTA -ACGGAATGCAAGAGTGTCTGCCTA -ACGGAATGCAAGAGTGTCCCACTA -ACGGAATGCAAGAGTGTCGGAGTA -ACGGAATGCAAGAGTGTCTCGTCT -ACGGAATGCAAGAGTGTCTGCACT -ACGGAATGCAAGAGTGTCCTGACT -ACGGAATGCAAGAGTGTCCAACCT -ACGGAATGCAAGAGTGTCGCTACT -ACGGAATGCAAGAGTGTCGGATCT -ACGGAATGCAAGAGTGTCAAGGCT -ACGGAATGCAAGAGTGTCTCAACC -ACGGAATGCAAGAGTGTCTGTTCC -ACGGAATGCAAGAGTGTCATTCCC -ACGGAATGCAAGAGTGTCTTCTCG -ACGGAATGCAAGAGTGTCTAGACG -ACGGAATGCAAGAGTGTCGTAACG -ACGGAATGCAAGAGTGTCACTTCG -ACGGAATGCAAGAGTGTCTACGCA -ACGGAATGCAAGAGTGTCCTTGCA -ACGGAATGCAAGAGTGTCCGAACA -ACGGAATGCAAGAGTGTCCAGTCA -ACGGAATGCAAGAGTGTCGATCCA -ACGGAATGCAAGAGTGTCACGACA -ACGGAATGCAAGAGTGTCAGCTCA -ACGGAATGCAAGAGTGTCTCACGT -ACGGAATGCAAGAGTGTCCGTAGT -ACGGAATGCAAGAGTGTCGTCAGT -ACGGAATGCAAGAGTGTCGAAGGT -ACGGAATGCAAGAGTGTCAACCGT -ACGGAATGCAAGAGTGTCTTGTGC -ACGGAATGCAAGAGTGTCCTAAGC -ACGGAATGCAAGAGTGTCACTAGC -ACGGAATGCAAGAGTGTCAGATGC -ACGGAATGCAAGAGTGTCTGAAGG -ACGGAATGCAAGAGTGTCCAATGG -ACGGAATGCAAGAGTGTCATGAGG -ACGGAATGCAAGAGTGTCAATGGG -ACGGAATGCAAGAGTGTCTCCTGA -ACGGAATGCAAGAGTGTCTAGCGA -ACGGAATGCAAGAGTGTCCACAGA -ACGGAATGCAAGAGTGTCGCAAGA -ACGGAATGCAAGAGTGTCGGTTGA -ACGGAATGCAAGAGTGTCTCCGAT -ACGGAATGCAAGAGTGTCTGGCAT -ACGGAATGCAAGAGTGTCCGAGAT -ACGGAATGCAAGAGTGTCTACCAC -ACGGAATGCAAGAGTGTCCAGAAC -ACGGAATGCAAGAGTGTCGTCTAC -ACGGAATGCAAGAGTGTCACGTAC -ACGGAATGCAAGAGTGTCAGTGAC -ACGGAATGCAAGAGTGTCCTGTAG -ACGGAATGCAAGAGTGTCCCTAAG -ACGGAATGCAAGAGTGTCGTTCAG -ACGGAATGCAAGAGTGTCGCATAG -ACGGAATGCAAGAGTGTCGACAAG -ACGGAATGCAAGAGTGTCAAGCAG -ACGGAATGCAAGAGTGTCCGTCAA -ACGGAATGCAAGAGTGTCGCTGAA -ACGGAATGCAAGAGTGTCAGTACG -ACGGAATGCAAGAGTGTCATCCGA -ACGGAATGCAAGAGTGTCATGGGA -ACGGAATGCAAGAGTGTCGTGCAA -ACGGAATGCAAGAGTGTCGAGGAA -ACGGAATGCAAGAGTGTCCAGGTA -ACGGAATGCAAGAGTGTCGACTCT -ACGGAATGCAAGAGTGTCAGTCCT -ACGGAATGCAAGAGTGTCTAAGCC -ACGGAATGCAAGAGTGTCATAGCC -ACGGAATGCAAGAGTGTCTAACCG -ACGGAATGCAAGAGTGTCATGCCA -ACGGAATGCAAGGGTGAAGGAAAC -ACGGAATGCAAGGGTGAAAACACC -ACGGAATGCAAGGGTGAAATCGAG -ACGGAATGCAAGGGTGAACTCCTT -ACGGAATGCAAGGGTGAACCTGTT -ACGGAATGCAAGGGTGAACGGTTT -ACGGAATGCAAGGGTGAAGTGGTT -ACGGAATGCAAGGGTGAAGCCTTT -ACGGAATGCAAGGGTGAAGGTCTT -ACGGAATGCAAGGGTGAAACGCTT -ACGGAATGCAAGGGTGAAAGCGTT -ACGGAATGCAAGGGTGAATTCGTC -ACGGAATGCAAGGGTGAATCTCTC -ACGGAATGCAAGGGTGAATGGATC -ACGGAATGCAAGGGTGAACACTTC -ACGGAATGCAAGGGTGAAGTACTC -ACGGAATGCAAGGGTGAAGATGTC -ACGGAATGCAAGGGTGAAACAGTC -ACGGAATGCAAGGGTGAATTGCTG -ACGGAATGCAAGGGTGAATCCATG -ACGGAATGCAAGGGTGAATGTGTG -ACGGAATGCAAGGGTGAACTAGTG -ACGGAATGCAAGGGTGAACATCTG -ACGGAATGCAAGGGTGAAGAGTTG -ACGGAATGCAAGGGTGAAAGACTG -ACGGAATGCAAGGGTGAATCGGTA -ACGGAATGCAAGGGTGAATGCCTA -ACGGAATGCAAGGGTGAACCACTA -ACGGAATGCAAGGGTGAAGGAGTA -ACGGAATGCAAGGGTGAATCGTCT -ACGGAATGCAAGGGTGAATGCACT -ACGGAATGCAAGGGTGAACTGACT -ACGGAATGCAAGGGTGAACAACCT -ACGGAATGCAAGGGTGAAGCTACT -ACGGAATGCAAGGGTGAAGGATCT -ACGGAATGCAAGGGTGAAAAGGCT -ACGGAATGCAAGGGTGAATCAACC -ACGGAATGCAAGGGTGAATGTTCC -ACGGAATGCAAGGGTGAAATTCCC -ACGGAATGCAAGGGTGAATTCTCG -ACGGAATGCAAGGGTGAATAGACG -ACGGAATGCAAGGGTGAAGTAACG -ACGGAATGCAAGGGTGAAACTTCG -ACGGAATGCAAGGGTGAATACGCA -ACGGAATGCAAGGGTGAACTTGCA -ACGGAATGCAAGGGTGAACGAACA -ACGGAATGCAAGGGTGAACAGTCA -ACGGAATGCAAGGGTGAAGATCCA -ACGGAATGCAAGGGTGAAACGACA -ACGGAATGCAAGGGTGAAAGCTCA -ACGGAATGCAAGGGTGAATCACGT -ACGGAATGCAAGGGTGAACGTAGT -ACGGAATGCAAGGGTGAAGTCAGT -ACGGAATGCAAGGGTGAAGAAGGT -ACGGAATGCAAGGGTGAAAACCGT -ACGGAATGCAAGGGTGAATTGTGC -ACGGAATGCAAGGGTGAACTAAGC -ACGGAATGCAAGGGTGAAACTAGC -ACGGAATGCAAGGGTGAAAGATGC -ACGGAATGCAAGGGTGAATGAAGG -ACGGAATGCAAGGGTGAACAATGG -ACGGAATGCAAGGGTGAAATGAGG -ACGGAATGCAAGGGTGAAAATGGG -ACGGAATGCAAGGGTGAATCCTGA -ACGGAATGCAAGGGTGAATAGCGA -ACGGAATGCAAGGGTGAACACAGA -ACGGAATGCAAGGGTGAAGCAAGA -ACGGAATGCAAGGGTGAAGGTTGA -ACGGAATGCAAGGGTGAATCCGAT -ACGGAATGCAAGGGTGAATGGCAT -ACGGAATGCAAGGGTGAACGAGAT -ACGGAATGCAAGGGTGAATACCAC -ACGGAATGCAAGGGTGAACAGAAC -ACGGAATGCAAGGGTGAAGTCTAC -ACGGAATGCAAGGGTGAAACGTAC -ACGGAATGCAAGGGTGAAAGTGAC -ACGGAATGCAAGGGTGAACTGTAG -ACGGAATGCAAGGGTGAACCTAAG -ACGGAATGCAAGGGTGAAGTTCAG -ACGGAATGCAAGGGTGAAGCATAG -ACGGAATGCAAGGGTGAAGACAAG -ACGGAATGCAAGGGTGAAAAGCAG -ACGGAATGCAAGGGTGAACGTCAA -ACGGAATGCAAGGGTGAAGCTGAA -ACGGAATGCAAGGGTGAAAGTACG -ACGGAATGCAAGGGTGAAATCCGA -ACGGAATGCAAGGGTGAAATGGGA -ACGGAATGCAAGGGTGAAGTGCAA -ACGGAATGCAAGGGTGAAGAGGAA -ACGGAATGCAAGGGTGAACAGGTA -ACGGAATGCAAGGGTGAAGACTCT -ACGGAATGCAAGGGTGAAAGTCCT -ACGGAATGCAAGGGTGAATAAGCC -ACGGAATGCAAGGGTGAAATAGCC -ACGGAATGCAAGGGTGAATAACCG -ACGGAATGCAAGGGTGAAATGCCA -ACGGAATGCAAGCGTAACGGAAAC -ACGGAATGCAAGCGTAACAACACC -ACGGAATGCAAGCGTAACATCGAG -ACGGAATGCAAGCGTAACCTCCTT -ACGGAATGCAAGCGTAACCCTGTT -ACGGAATGCAAGCGTAACCGGTTT -ACGGAATGCAAGCGTAACGTGGTT -ACGGAATGCAAGCGTAACGCCTTT -ACGGAATGCAAGCGTAACGGTCTT -ACGGAATGCAAGCGTAACACGCTT -ACGGAATGCAAGCGTAACAGCGTT -ACGGAATGCAAGCGTAACTTCGTC -ACGGAATGCAAGCGTAACTCTCTC -ACGGAATGCAAGCGTAACTGGATC -ACGGAATGCAAGCGTAACCACTTC -ACGGAATGCAAGCGTAACGTACTC -ACGGAATGCAAGCGTAACGATGTC -ACGGAATGCAAGCGTAACACAGTC -ACGGAATGCAAGCGTAACTTGCTG -ACGGAATGCAAGCGTAACTCCATG -ACGGAATGCAAGCGTAACTGTGTG -ACGGAATGCAAGCGTAACCTAGTG -ACGGAATGCAAGCGTAACCATCTG -ACGGAATGCAAGCGTAACGAGTTG -ACGGAATGCAAGCGTAACAGACTG -ACGGAATGCAAGCGTAACTCGGTA -ACGGAATGCAAGCGTAACTGCCTA -ACGGAATGCAAGCGTAACCCACTA -ACGGAATGCAAGCGTAACGGAGTA -ACGGAATGCAAGCGTAACTCGTCT -ACGGAATGCAAGCGTAACTGCACT -ACGGAATGCAAGCGTAACCTGACT -ACGGAATGCAAGCGTAACCAACCT -ACGGAATGCAAGCGTAACGCTACT -ACGGAATGCAAGCGTAACGGATCT -ACGGAATGCAAGCGTAACAAGGCT -ACGGAATGCAAGCGTAACTCAACC -ACGGAATGCAAGCGTAACTGTTCC -ACGGAATGCAAGCGTAACATTCCC -ACGGAATGCAAGCGTAACTTCTCG -ACGGAATGCAAGCGTAACTAGACG -ACGGAATGCAAGCGTAACGTAACG -ACGGAATGCAAGCGTAACACTTCG -ACGGAATGCAAGCGTAACTACGCA -ACGGAATGCAAGCGTAACCTTGCA -ACGGAATGCAAGCGTAACCGAACA -ACGGAATGCAAGCGTAACCAGTCA -ACGGAATGCAAGCGTAACGATCCA -ACGGAATGCAAGCGTAACACGACA -ACGGAATGCAAGCGTAACAGCTCA -ACGGAATGCAAGCGTAACTCACGT -ACGGAATGCAAGCGTAACCGTAGT -ACGGAATGCAAGCGTAACGTCAGT -ACGGAATGCAAGCGTAACGAAGGT -ACGGAATGCAAGCGTAACAACCGT -ACGGAATGCAAGCGTAACTTGTGC -ACGGAATGCAAGCGTAACCTAAGC -ACGGAATGCAAGCGTAACACTAGC -ACGGAATGCAAGCGTAACAGATGC -ACGGAATGCAAGCGTAACTGAAGG -ACGGAATGCAAGCGTAACCAATGG -ACGGAATGCAAGCGTAACATGAGG -ACGGAATGCAAGCGTAACAATGGG -ACGGAATGCAAGCGTAACTCCTGA -ACGGAATGCAAGCGTAACTAGCGA -ACGGAATGCAAGCGTAACCACAGA -ACGGAATGCAAGCGTAACGCAAGA -ACGGAATGCAAGCGTAACGGTTGA -ACGGAATGCAAGCGTAACTCCGAT -ACGGAATGCAAGCGTAACTGGCAT -ACGGAATGCAAGCGTAACCGAGAT -ACGGAATGCAAGCGTAACTACCAC -ACGGAATGCAAGCGTAACCAGAAC -ACGGAATGCAAGCGTAACGTCTAC -ACGGAATGCAAGCGTAACACGTAC -ACGGAATGCAAGCGTAACAGTGAC -ACGGAATGCAAGCGTAACCTGTAG -ACGGAATGCAAGCGTAACCCTAAG -ACGGAATGCAAGCGTAACGTTCAG -ACGGAATGCAAGCGTAACGCATAG -ACGGAATGCAAGCGTAACGACAAG -ACGGAATGCAAGCGTAACAAGCAG -ACGGAATGCAAGCGTAACCGTCAA -ACGGAATGCAAGCGTAACGCTGAA -ACGGAATGCAAGCGTAACAGTACG -ACGGAATGCAAGCGTAACATCCGA -ACGGAATGCAAGCGTAACATGGGA -ACGGAATGCAAGCGTAACGTGCAA -ACGGAATGCAAGCGTAACGAGGAA -ACGGAATGCAAGCGTAACCAGGTA -ACGGAATGCAAGCGTAACGACTCT -ACGGAATGCAAGCGTAACAGTCCT -ACGGAATGCAAGCGTAACTAAGCC -ACGGAATGCAAGCGTAACATAGCC -ACGGAATGCAAGCGTAACTAACCG -ACGGAATGCAAGCGTAACATGCCA -ACGGAATGCAAGTGCTTGGGAAAC -ACGGAATGCAAGTGCTTGAACACC -ACGGAATGCAAGTGCTTGATCGAG -ACGGAATGCAAGTGCTTGCTCCTT -ACGGAATGCAAGTGCTTGCCTGTT -ACGGAATGCAAGTGCTTGCGGTTT -ACGGAATGCAAGTGCTTGGTGGTT -ACGGAATGCAAGTGCTTGGCCTTT -ACGGAATGCAAGTGCTTGGGTCTT -ACGGAATGCAAGTGCTTGACGCTT -ACGGAATGCAAGTGCTTGAGCGTT -ACGGAATGCAAGTGCTTGTTCGTC -ACGGAATGCAAGTGCTTGTCTCTC -ACGGAATGCAAGTGCTTGTGGATC -ACGGAATGCAAGTGCTTGCACTTC -ACGGAATGCAAGTGCTTGGTACTC -ACGGAATGCAAGTGCTTGGATGTC -ACGGAATGCAAGTGCTTGACAGTC -ACGGAATGCAAGTGCTTGTTGCTG -ACGGAATGCAAGTGCTTGTCCATG -ACGGAATGCAAGTGCTTGTGTGTG -ACGGAATGCAAGTGCTTGCTAGTG -ACGGAATGCAAGTGCTTGCATCTG -ACGGAATGCAAGTGCTTGGAGTTG -ACGGAATGCAAGTGCTTGAGACTG -ACGGAATGCAAGTGCTTGTCGGTA -ACGGAATGCAAGTGCTTGTGCCTA -ACGGAATGCAAGTGCTTGCCACTA -ACGGAATGCAAGTGCTTGGGAGTA -ACGGAATGCAAGTGCTTGTCGTCT -ACGGAATGCAAGTGCTTGTGCACT -ACGGAATGCAAGTGCTTGCTGACT -ACGGAATGCAAGTGCTTGCAACCT -ACGGAATGCAAGTGCTTGGCTACT -ACGGAATGCAAGTGCTTGGGATCT -ACGGAATGCAAGTGCTTGAAGGCT -ACGGAATGCAAGTGCTTGTCAACC -ACGGAATGCAAGTGCTTGTGTTCC -ACGGAATGCAAGTGCTTGATTCCC -ACGGAATGCAAGTGCTTGTTCTCG -ACGGAATGCAAGTGCTTGTAGACG -ACGGAATGCAAGTGCTTGGTAACG -ACGGAATGCAAGTGCTTGACTTCG -ACGGAATGCAAGTGCTTGTACGCA -ACGGAATGCAAGTGCTTGCTTGCA -ACGGAATGCAAGTGCTTGCGAACA -ACGGAATGCAAGTGCTTGCAGTCA -ACGGAATGCAAGTGCTTGGATCCA -ACGGAATGCAAGTGCTTGACGACA -ACGGAATGCAAGTGCTTGAGCTCA -ACGGAATGCAAGTGCTTGTCACGT -ACGGAATGCAAGTGCTTGCGTAGT -ACGGAATGCAAGTGCTTGGTCAGT -ACGGAATGCAAGTGCTTGGAAGGT -ACGGAATGCAAGTGCTTGAACCGT -ACGGAATGCAAGTGCTTGTTGTGC -ACGGAATGCAAGTGCTTGCTAAGC -ACGGAATGCAAGTGCTTGACTAGC -ACGGAATGCAAGTGCTTGAGATGC -ACGGAATGCAAGTGCTTGTGAAGG -ACGGAATGCAAGTGCTTGCAATGG -ACGGAATGCAAGTGCTTGATGAGG -ACGGAATGCAAGTGCTTGAATGGG -ACGGAATGCAAGTGCTTGTCCTGA -ACGGAATGCAAGTGCTTGTAGCGA -ACGGAATGCAAGTGCTTGCACAGA -ACGGAATGCAAGTGCTTGGCAAGA -ACGGAATGCAAGTGCTTGGGTTGA -ACGGAATGCAAGTGCTTGTCCGAT -ACGGAATGCAAGTGCTTGTGGCAT -ACGGAATGCAAGTGCTTGCGAGAT -ACGGAATGCAAGTGCTTGTACCAC -ACGGAATGCAAGTGCTTGCAGAAC -ACGGAATGCAAGTGCTTGGTCTAC -ACGGAATGCAAGTGCTTGACGTAC -ACGGAATGCAAGTGCTTGAGTGAC -ACGGAATGCAAGTGCTTGCTGTAG -ACGGAATGCAAGTGCTTGCCTAAG -ACGGAATGCAAGTGCTTGGTTCAG -ACGGAATGCAAGTGCTTGGCATAG -ACGGAATGCAAGTGCTTGGACAAG -ACGGAATGCAAGTGCTTGAAGCAG -ACGGAATGCAAGTGCTTGCGTCAA -ACGGAATGCAAGTGCTTGGCTGAA -ACGGAATGCAAGTGCTTGAGTACG -ACGGAATGCAAGTGCTTGATCCGA -ACGGAATGCAAGTGCTTGATGGGA -ACGGAATGCAAGTGCTTGGTGCAA -ACGGAATGCAAGTGCTTGGAGGAA -ACGGAATGCAAGTGCTTGCAGGTA -ACGGAATGCAAGTGCTTGGACTCT -ACGGAATGCAAGTGCTTGAGTCCT -ACGGAATGCAAGTGCTTGTAAGCC -ACGGAATGCAAGTGCTTGATAGCC -ACGGAATGCAAGTGCTTGTAACCG -ACGGAATGCAAGTGCTTGATGCCA -ACGGAATGCAAGAGCCTAGGAAAC -ACGGAATGCAAGAGCCTAAACACC -ACGGAATGCAAGAGCCTAATCGAG -ACGGAATGCAAGAGCCTACTCCTT -ACGGAATGCAAGAGCCTACCTGTT -ACGGAATGCAAGAGCCTACGGTTT -ACGGAATGCAAGAGCCTAGTGGTT -ACGGAATGCAAGAGCCTAGCCTTT -ACGGAATGCAAGAGCCTAGGTCTT -ACGGAATGCAAGAGCCTAACGCTT -ACGGAATGCAAGAGCCTAAGCGTT -ACGGAATGCAAGAGCCTATTCGTC -ACGGAATGCAAGAGCCTATCTCTC -ACGGAATGCAAGAGCCTATGGATC -ACGGAATGCAAGAGCCTACACTTC -ACGGAATGCAAGAGCCTAGTACTC -ACGGAATGCAAGAGCCTAGATGTC -ACGGAATGCAAGAGCCTAACAGTC -ACGGAATGCAAGAGCCTATTGCTG -ACGGAATGCAAGAGCCTATCCATG -ACGGAATGCAAGAGCCTATGTGTG -ACGGAATGCAAGAGCCTACTAGTG -ACGGAATGCAAGAGCCTACATCTG -ACGGAATGCAAGAGCCTAGAGTTG -ACGGAATGCAAGAGCCTAAGACTG -ACGGAATGCAAGAGCCTATCGGTA -ACGGAATGCAAGAGCCTATGCCTA -ACGGAATGCAAGAGCCTACCACTA -ACGGAATGCAAGAGCCTAGGAGTA -ACGGAATGCAAGAGCCTATCGTCT -ACGGAATGCAAGAGCCTATGCACT -ACGGAATGCAAGAGCCTACTGACT -ACGGAATGCAAGAGCCTACAACCT -ACGGAATGCAAGAGCCTAGCTACT -ACGGAATGCAAGAGCCTAGGATCT -ACGGAATGCAAGAGCCTAAAGGCT -ACGGAATGCAAGAGCCTATCAACC -ACGGAATGCAAGAGCCTATGTTCC -ACGGAATGCAAGAGCCTAATTCCC -ACGGAATGCAAGAGCCTATTCTCG -ACGGAATGCAAGAGCCTATAGACG -ACGGAATGCAAGAGCCTAGTAACG -ACGGAATGCAAGAGCCTAACTTCG -ACGGAATGCAAGAGCCTATACGCA -ACGGAATGCAAGAGCCTACTTGCA -ACGGAATGCAAGAGCCTACGAACA -ACGGAATGCAAGAGCCTACAGTCA -ACGGAATGCAAGAGCCTAGATCCA -ACGGAATGCAAGAGCCTAACGACA -ACGGAATGCAAGAGCCTAAGCTCA -ACGGAATGCAAGAGCCTATCACGT -ACGGAATGCAAGAGCCTACGTAGT -ACGGAATGCAAGAGCCTAGTCAGT -ACGGAATGCAAGAGCCTAGAAGGT -ACGGAATGCAAGAGCCTAAACCGT -ACGGAATGCAAGAGCCTATTGTGC -ACGGAATGCAAGAGCCTACTAAGC -ACGGAATGCAAGAGCCTAACTAGC -ACGGAATGCAAGAGCCTAAGATGC -ACGGAATGCAAGAGCCTATGAAGG -ACGGAATGCAAGAGCCTACAATGG -ACGGAATGCAAGAGCCTAATGAGG -ACGGAATGCAAGAGCCTAAATGGG -ACGGAATGCAAGAGCCTATCCTGA -ACGGAATGCAAGAGCCTATAGCGA -ACGGAATGCAAGAGCCTACACAGA -ACGGAATGCAAGAGCCTAGCAAGA -ACGGAATGCAAGAGCCTAGGTTGA -ACGGAATGCAAGAGCCTATCCGAT -ACGGAATGCAAGAGCCTATGGCAT -ACGGAATGCAAGAGCCTACGAGAT -ACGGAATGCAAGAGCCTATACCAC -ACGGAATGCAAGAGCCTACAGAAC -ACGGAATGCAAGAGCCTAGTCTAC -ACGGAATGCAAGAGCCTAACGTAC -ACGGAATGCAAGAGCCTAAGTGAC -ACGGAATGCAAGAGCCTACTGTAG -ACGGAATGCAAGAGCCTACCTAAG -ACGGAATGCAAGAGCCTAGTTCAG -ACGGAATGCAAGAGCCTAGCATAG -ACGGAATGCAAGAGCCTAGACAAG -ACGGAATGCAAGAGCCTAAAGCAG -ACGGAATGCAAGAGCCTACGTCAA -ACGGAATGCAAGAGCCTAGCTGAA -ACGGAATGCAAGAGCCTAAGTACG -ACGGAATGCAAGAGCCTAATCCGA -ACGGAATGCAAGAGCCTAATGGGA -ACGGAATGCAAGAGCCTAGTGCAA -ACGGAATGCAAGAGCCTAGAGGAA -ACGGAATGCAAGAGCCTACAGGTA -ACGGAATGCAAGAGCCTAGACTCT -ACGGAATGCAAGAGCCTAAGTCCT -ACGGAATGCAAGAGCCTATAAGCC -ACGGAATGCAAGAGCCTAATAGCC -ACGGAATGCAAGAGCCTATAACCG -ACGGAATGCAAGAGCCTAATGCCA -ACGGAATGCAAGAGCACTGGAAAC -ACGGAATGCAAGAGCACTAACACC -ACGGAATGCAAGAGCACTATCGAG -ACGGAATGCAAGAGCACTCTCCTT -ACGGAATGCAAGAGCACTCCTGTT -ACGGAATGCAAGAGCACTCGGTTT -ACGGAATGCAAGAGCACTGTGGTT -ACGGAATGCAAGAGCACTGCCTTT -ACGGAATGCAAGAGCACTGGTCTT -ACGGAATGCAAGAGCACTACGCTT -ACGGAATGCAAGAGCACTAGCGTT -ACGGAATGCAAGAGCACTTTCGTC -ACGGAATGCAAGAGCACTTCTCTC -ACGGAATGCAAGAGCACTTGGATC -ACGGAATGCAAGAGCACTCACTTC -ACGGAATGCAAGAGCACTGTACTC -ACGGAATGCAAGAGCACTGATGTC -ACGGAATGCAAGAGCACTACAGTC -ACGGAATGCAAGAGCACTTTGCTG -ACGGAATGCAAGAGCACTTCCATG -ACGGAATGCAAGAGCACTTGTGTG -ACGGAATGCAAGAGCACTCTAGTG -ACGGAATGCAAGAGCACTCATCTG -ACGGAATGCAAGAGCACTGAGTTG -ACGGAATGCAAGAGCACTAGACTG -ACGGAATGCAAGAGCACTTCGGTA -ACGGAATGCAAGAGCACTTGCCTA -ACGGAATGCAAGAGCACTCCACTA -ACGGAATGCAAGAGCACTGGAGTA -ACGGAATGCAAGAGCACTTCGTCT -ACGGAATGCAAGAGCACTTGCACT -ACGGAATGCAAGAGCACTCTGACT -ACGGAATGCAAGAGCACTCAACCT -ACGGAATGCAAGAGCACTGCTACT -ACGGAATGCAAGAGCACTGGATCT -ACGGAATGCAAGAGCACTAAGGCT -ACGGAATGCAAGAGCACTTCAACC -ACGGAATGCAAGAGCACTTGTTCC -ACGGAATGCAAGAGCACTATTCCC -ACGGAATGCAAGAGCACTTTCTCG -ACGGAATGCAAGAGCACTTAGACG -ACGGAATGCAAGAGCACTGTAACG -ACGGAATGCAAGAGCACTACTTCG -ACGGAATGCAAGAGCACTTACGCA -ACGGAATGCAAGAGCACTCTTGCA -ACGGAATGCAAGAGCACTCGAACA -ACGGAATGCAAGAGCACTCAGTCA -ACGGAATGCAAGAGCACTGATCCA -ACGGAATGCAAGAGCACTACGACA -ACGGAATGCAAGAGCACTAGCTCA -ACGGAATGCAAGAGCACTTCACGT -ACGGAATGCAAGAGCACTCGTAGT -ACGGAATGCAAGAGCACTGTCAGT -ACGGAATGCAAGAGCACTGAAGGT -ACGGAATGCAAGAGCACTAACCGT -ACGGAATGCAAGAGCACTTTGTGC -ACGGAATGCAAGAGCACTCTAAGC -ACGGAATGCAAGAGCACTACTAGC -ACGGAATGCAAGAGCACTAGATGC -ACGGAATGCAAGAGCACTTGAAGG -ACGGAATGCAAGAGCACTCAATGG -ACGGAATGCAAGAGCACTATGAGG -ACGGAATGCAAGAGCACTAATGGG -ACGGAATGCAAGAGCACTTCCTGA -ACGGAATGCAAGAGCACTTAGCGA -ACGGAATGCAAGAGCACTCACAGA -ACGGAATGCAAGAGCACTGCAAGA -ACGGAATGCAAGAGCACTGGTTGA -ACGGAATGCAAGAGCACTTCCGAT -ACGGAATGCAAGAGCACTTGGCAT -ACGGAATGCAAGAGCACTCGAGAT -ACGGAATGCAAGAGCACTTACCAC -ACGGAATGCAAGAGCACTCAGAAC -ACGGAATGCAAGAGCACTGTCTAC -ACGGAATGCAAGAGCACTACGTAC -ACGGAATGCAAGAGCACTAGTGAC -ACGGAATGCAAGAGCACTCTGTAG -ACGGAATGCAAGAGCACTCCTAAG -ACGGAATGCAAGAGCACTGTTCAG -ACGGAATGCAAGAGCACTGCATAG -ACGGAATGCAAGAGCACTGACAAG -ACGGAATGCAAGAGCACTAAGCAG -ACGGAATGCAAGAGCACTCGTCAA -ACGGAATGCAAGAGCACTGCTGAA -ACGGAATGCAAGAGCACTAGTACG -ACGGAATGCAAGAGCACTATCCGA -ACGGAATGCAAGAGCACTATGGGA -ACGGAATGCAAGAGCACTGTGCAA -ACGGAATGCAAGAGCACTGAGGAA -ACGGAATGCAAGAGCACTCAGGTA -ACGGAATGCAAGAGCACTGACTCT -ACGGAATGCAAGAGCACTAGTCCT -ACGGAATGCAAGAGCACTTAAGCC -ACGGAATGCAAGAGCACTATAGCC -ACGGAATGCAAGAGCACTTAACCG -ACGGAATGCAAGAGCACTATGCCA -ACGGAATGCAAGTGCAGAGGAAAC -ACGGAATGCAAGTGCAGAAACACC -ACGGAATGCAAGTGCAGAATCGAG -ACGGAATGCAAGTGCAGACTCCTT -ACGGAATGCAAGTGCAGACCTGTT -ACGGAATGCAAGTGCAGACGGTTT -ACGGAATGCAAGTGCAGAGTGGTT -ACGGAATGCAAGTGCAGAGCCTTT -ACGGAATGCAAGTGCAGAGGTCTT -ACGGAATGCAAGTGCAGAACGCTT -ACGGAATGCAAGTGCAGAAGCGTT -ACGGAATGCAAGTGCAGATTCGTC -ACGGAATGCAAGTGCAGATCTCTC -ACGGAATGCAAGTGCAGATGGATC -ACGGAATGCAAGTGCAGACACTTC -ACGGAATGCAAGTGCAGAGTACTC -ACGGAATGCAAGTGCAGAGATGTC -ACGGAATGCAAGTGCAGAACAGTC -ACGGAATGCAAGTGCAGATTGCTG -ACGGAATGCAAGTGCAGATCCATG -ACGGAATGCAAGTGCAGATGTGTG -ACGGAATGCAAGTGCAGACTAGTG -ACGGAATGCAAGTGCAGACATCTG -ACGGAATGCAAGTGCAGAGAGTTG -ACGGAATGCAAGTGCAGAAGACTG -ACGGAATGCAAGTGCAGATCGGTA -ACGGAATGCAAGTGCAGATGCCTA -ACGGAATGCAAGTGCAGACCACTA -ACGGAATGCAAGTGCAGAGGAGTA -ACGGAATGCAAGTGCAGATCGTCT -ACGGAATGCAAGTGCAGATGCACT -ACGGAATGCAAGTGCAGACTGACT -ACGGAATGCAAGTGCAGACAACCT -ACGGAATGCAAGTGCAGAGCTACT -ACGGAATGCAAGTGCAGAGGATCT -ACGGAATGCAAGTGCAGAAAGGCT -ACGGAATGCAAGTGCAGATCAACC -ACGGAATGCAAGTGCAGATGTTCC -ACGGAATGCAAGTGCAGAATTCCC -ACGGAATGCAAGTGCAGATTCTCG -ACGGAATGCAAGTGCAGATAGACG -ACGGAATGCAAGTGCAGAGTAACG -ACGGAATGCAAGTGCAGAACTTCG -ACGGAATGCAAGTGCAGATACGCA -ACGGAATGCAAGTGCAGACTTGCA -ACGGAATGCAAGTGCAGACGAACA -ACGGAATGCAAGTGCAGACAGTCA -ACGGAATGCAAGTGCAGAGATCCA -ACGGAATGCAAGTGCAGAACGACA -ACGGAATGCAAGTGCAGAAGCTCA -ACGGAATGCAAGTGCAGATCACGT -ACGGAATGCAAGTGCAGACGTAGT -ACGGAATGCAAGTGCAGAGTCAGT -ACGGAATGCAAGTGCAGAGAAGGT -ACGGAATGCAAGTGCAGAAACCGT -ACGGAATGCAAGTGCAGATTGTGC -ACGGAATGCAAGTGCAGACTAAGC -ACGGAATGCAAGTGCAGAACTAGC -ACGGAATGCAAGTGCAGAAGATGC -ACGGAATGCAAGTGCAGATGAAGG -ACGGAATGCAAGTGCAGACAATGG -ACGGAATGCAAGTGCAGAATGAGG -ACGGAATGCAAGTGCAGAAATGGG -ACGGAATGCAAGTGCAGATCCTGA -ACGGAATGCAAGTGCAGATAGCGA -ACGGAATGCAAGTGCAGACACAGA -ACGGAATGCAAGTGCAGAGCAAGA -ACGGAATGCAAGTGCAGAGGTTGA -ACGGAATGCAAGTGCAGATCCGAT -ACGGAATGCAAGTGCAGATGGCAT -ACGGAATGCAAGTGCAGACGAGAT -ACGGAATGCAAGTGCAGATACCAC -ACGGAATGCAAGTGCAGACAGAAC -ACGGAATGCAAGTGCAGAGTCTAC -ACGGAATGCAAGTGCAGAACGTAC -ACGGAATGCAAGTGCAGAAGTGAC -ACGGAATGCAAGTGCAGACTGTAG -ACGGAATGCAAGTGCAGACCTAAG -ACGGAATGCAAGTGCAGAGTTCAG -ACGGAATGCAAGTGCAGAGCATAG -ACGGAATGCAAGTGCAGAGACAAG -ACGGAATGCAAGTGCAGAAAGCAG -ACGGAATGCAAGTGCAGACGTCAA -ACGGAATGCAAGTGCAGAGCTGAA -ACGGAATGCAAGTGCAGAAGTACG -ACGGAATGCAAGTGCAGAATCCGA -ACGGAATGCAAGTGCAGAATGGGA -ACGGAATGCAAGTGCAGAGTGCAA -ACGGAATGCAAGTGCAGAGAGGAA -ACGGAATGCAAGTGCAGACAGGTA -ACGGAATGCAAGTGCAGAGACTCT -ACGGAATGCAAGTGCAGAAGTCCT -ACGGAATGCAAGTGCAGATAAGCC -ACGGAATGCAAGTGCAGAATAGCC -ACGGAATGCAAGTGCAGATAACCG -ACGGAATGCAAGTGCAGAATGCCA -ACGGAATGCAAGAGGTGAGGAAAC -ACGGAATGCAAGAGGTGAAACACC -ACGGAATGCAAGAGGTGAATCGAG -ACGGAATGCAAGAGGTGACTCCTT -ACGGAATGCAAGAGGTGACCTGTT -ACGGAATGCAAGAGGTGACGGTTT -ACGGAATGCAAGAGGTGAGTGGTT -ACGGAATGCAAGAGGTGAGCCTTT -ACGGAATGCAAGAGGTGAGGTCTT -ACGGAATGCAAGAGGTGAACGCTT -ACGGAATGCAAGAGGTGAAGCGTT -ACGGAATGCAAGAGGTGATTCGTC -ACGGAATGCAAGAGGTGATCTCTC -ACGGAATGCAAGAGGTGATGGATC -ACGGAATGCAAGAGGTGACACTTC -ACGGAATGCAAGAGGTGAGTACTC -ACGGAATGCAAGAGGTGAGATGTC -ACGGAATGCAAGAGGTGAACAGTC -ACGGAATGCAAGAGGTGATTGCTG -ACGGAATGCAAGAGGTGATCCATG -ACGGAATGCAAGAGGTGATGTGTG -ACGGAATGCAAGAGGTGACTAGTG -ACGGAATGCAAGAGGTGACATCTG -ACGGAATGCAAGAGGTGAGAGTTG -ACGGAATGCAAGAGGTGAAGACTG -ACGGAATGCAAGAGGTGATCGGTA -ACGGAATGCAAGAGGTGATGCCTA -ACGGAATGCAAGAGGTGACCACTA -ACGGAATGCAAGAGGTGAGGAGTA -ACGGAATGCAAGAGGTGATCGTCT -ACGGAATGCAAGAGGTGATGCACT -ACGGAATGCAAGAGGTGACTGACT -ACGGAATGCAAGAGGTGACAACCT -ACGGAATGCAAGAGGTGAGCTACT -ACGGAATGCAAGAGGTGAGGATCT -ACGGAATGCAAGAGGTGAAAGGCT -ACGGAATGCAAGAGGTGATCAACC -ACGGAATGCAAGAGGTGATGTTCC -ACGGAATGCAAGAGGTGAATTCCC -ACGGAATGCAAGAGGTGATTCTCG -ACGGAATGCAAGAGGTGATAGACG -ACGGAATGCAAGAGGTGAGTAACG -ACGGAATGCAAGAGGTGAACTTCG -ACGGAATGCAAGAGGTGATACGCA -ACGGAATGCAAGAGGTGACTTGCA -ACGGAATGCAAGAGGTGACGAACA -ACGGAATGCAAGAGGTGACAGTCA -ACGGAATGCAAGAGGTGAGATCCA -ACGGAATGCAAGAGGTGAACGACA -ACGGAATGCAAGAGGTGAAGCTCA -ACGGAATGCAAGAGGTGATCACGT -ACGGAATGCAAGAGGTGACGTAGT -ACGGAATGCAAGAGGTGAGTCAGT -ACGGAATGCAAGAGGTGAGAAGGT -ACGGAATGCAAGAGGTGAAACCGT -ACGGAATGCAAGAGGTGATTGTGC -ACGGAATGCAAGAGGTGACTAAGC -ACGGAATGCAAGAGGTGAACTAGC -ACGGAATGCAAGAGGTGAAGATGC -ACGGAATGCAAGAGGTGATGAAGG -ACGGAATGCAAGAGGTGACAATGG -ACGGAATGCAAGAGGTGAATGAGG -ACGGAATGCAAGAGGTGAAATGGG -ACGGAATGCAAGAGGTGATCCTGA -ACGGAATGCAAGAGGTGATAGCGA -ACGGAATGCAAGAGGTGACACAGA -ACGGAATGCAAGAGGTGAGCAAGA -ACGGAATGCAAGAGGTGAGGTTGA -ACGGAATGCAAGAGGTGATCCGAT -ACGGAATGCAAGAGGTGATGGCAT -ACGGAATGCAAGAGGTGACGAGAT -ACGGAATGCAAGAGGTGATACCAC -ACGGAATGCAAGAGGTGACAGAAC -ACGGAATGCAAGAGGTGAGTCTAC -ACGGAATGCAAGAGGTGAACGTAC -ACGGAATGCAAGAGGTGAAGTGAC -ACGGAATGCAAGAGGTGACTGTAG -ACGGAATGCAAGAGGTGACCTAAG -ACGGAATGCAAGAGGTGAGTTCAG -ACGGAATGCAAGAGGTGAGCATAG -ACGGAATGCAAGAGGTGAGACAAG -ACGGAATGCAAGAGGTGAAAGCAG -ACGGAATGCAAGAGGTGACGTCAA -ACGGAATGCAAGAGGTGAGCTGAA -ACGGAATGCAAGAGGTGAAGTACG -ACGGAATGCAAGAGGTGAATCCGA -ACGGAATGCAAGAGGTGAATGGGA -ACGGAATGCAAGAGGTGAGTGCAA -ACGGAATGCAAGAGGTGAGAGGAA -ACGGAATGCAAGAGGTGACAGGTA -ACGGAATGCAAGAGGTGAGACTCT -ACGGAATGCAAGAGGTGAAGTCCT -ACGGAATGCAAGAGGTGATAAGCC -ACGGAATGCAAGAGGTGAATAGCC -ACGGAATGCAAGAGGTGATAACCG -ACGGAATGCAAGAGGTGAATGCCA -ACGGAATGCAAGTGGCAAGGAAAC -ACGGAATGCAAGTGGCAAAACACC -ACGGAATGCAAGTGGCAAATCGAG -ACGGAATGCAAGTGGCAACTCCTT -ACGGAATGCAAGTGGCAACCTGTT -ACGGAATGCAAGTGGCAACGGTTT -ACGGAATGCAAGTGGCAAGTGGTT -ACGGAATGCAAGTGGCAAGCCTTT -ACGGAATGCAAGTGGCAAGGTCTT -ACGGAATGCAAGTGGCAAACGCTT -ACGGAATGCAAGTGGCAAAGCGTT -ACGGAATGCAAGTGGCAATTCGTC -ACGGAATGCAAGTGGCAATCTCTC -ACGGAATGCAAGTGGCAATGGATC -ACGGAATGCAAGTGGCAACACTTC -ACGGAATGCAAGTGGCAAGTACTC -ACGGAATGCAAGTGGCAAGATGTC -ACGGAATGCAAGTGGCAAACAGTC -ACGGAATGCAAGTGGCAATTGCTG -ACGGAATGCAAGTGGCAATCCATG -ACGGAATGCAAGTGGCAATGTGTG -ACGGAATGCAAGTGGCAACTAGTG -ACGGAATGCAAGTGGCAACATCTG -ACGGAATGCAAGTGGCAAGAGTTG -ACGGAATGCAAGTGGCAAAGACTG -ACGGAATGCAAGTGGCAATCGGTA -ACGGAATGCAAGTGGCAATGCCTA -ACGGAATGCAAGTGGCAACCACTA -ACGGAATGCAAGTGGCAAGGAGTA -ACGGAATGCAAGTGGCAATCGTCT -ACGGAATGCAAGTGGCAATGCACT -ACGGAATGCAAGTGGCAACTGACT -ACGGAATGCAAGTGGCAACAACCT -ACGGAATGCAAGTGGCAAGCTACT -ACGGAATGCAAGTGGCAAGGATCT -ACGGAATGCAAGTGGCAAAAGGCT -ACGGAATGCAAGTGGCAATCAACC -ACGGAATGCAAGTGGCAATGTTCC -ACGGAATGCAAGTGGCAAATTCCC -ACGGAATGCAAGTGGCAATTCTCG -ACGGAATGCAAGTGGCAATAGACG -ACGGAATGCAAGTGGCAAGTAACG -ACGGAATGCAAGTGGCAAACTTCG -ACGGAATGCAAGTGGCAATACGCA -ACGGAATGCAAGTGGCAACTTGCA -ACGGAATGCAAGTGGCAACGAACA -ACGGAATGCAAGTGGCAACAGTCA -ACGGAATGCAAGTGGCAAGATCCA -ACGGAATGCAAGTGGCAAACGACA -ACGGAATGCAAGTGGCAAAGCTCA -ACGGAATGCAAGTGGCAATCACGT -ACGGAATGCAAGTGGCAACGTAGT -ACGGAATGCAAGTGGCAAGTCAGT -ACGGAATGCAAGTGGCAAGAAGGT -ACGGAATGCAAGTGGCAAAACCGT -ACGGAATGCAAGTGGCAATTGTGC -ACGGAATGCAAGTGGCAACTAAGC -ACGGAATGCAAGTGGCAAACTAGC -ACGGAATGCAAGTGGCAAAGATGC -ACGGAATGCAAGTGGCAATGAAGG -ACGGAATGCAAGTGGCAACAATGG -ACGGAATGCAAGTGGCAAATGAGG -ACGGAATGCAAGTGGCAAAATGGG -ACGGAATGCAAGTGGCAATCCTGA -ACGGAATGCAAGTGGCAATAGCGA -ACGGAATGCAAGTGGCAACACAGA -ACGGAATGCAAGTGGCAAGCAAGA -ACGGAATGCAAGTGGCAAGGTTGA -ACGGAATGCAAGTGGCAATCCGAT -ACGGAATGCAAGTGGCAATGGCAT -ACGGAATGCAAGTGGCAACGAGAT -ACGGAATGCAAGTGGCAATACCAC -ACGGAATGCAAGTGGCAACAGAAC -ACGGAATGCAAGTGGCAAGTCTAC -ACGGAATGCAAGTGGCAAACGTAC -ACGGAATGCAAGTGGCAAAGTGAC -ACGGAATGCAAGTGGCAACTGTAG -ACGGAATGCAAGTGGCAACCTAAG -ACGGAATGCAAGTGGCAAGTTCAG -ACGGAATGCAAGTGGCAAGCATAG -ACGGAATGCAAGTGGCAAGACAAG -ACGGAATGCAAGTGGCAAAAGCAG -ACGGAATGCAAGTGGCAACGTCAA -ACGGAATGCAAGTGGCAAGCTGAA -ACGGAATGCAAGTGGCAAAGTACG -ACGGAATGCAAGTGGCAAATCCGA -ACGGAATGCAAGTGGCAAATGGGA -ACGGAATGCAAGTGGCAAGTGCAA -ACGGAATGCAAGTGGCAAGAGGAA -ACGGAATGCAAGTGGCAACAGGTA -ACGGAATGCAAGTGGCAAGACTCT -ACGGAATGCAAGTGGCAAAGTCCT -ACGGAATGCAAGTGGCAATAAGCC -ACGGAATGCAAGTGGCAAATAGCC -ACGGAATGCAAGTGGCAATAACCG -ACGGAATGCAAGTGGCAAATGCCA -ACGGAATGCAAGAGGATGGGAAAC -ACGGAATGCAAGAGGATGAACACC -ACGGAATGCAAGAGGATGATCGAG -ACGGAATGCAAGAGGATGCTCCTT -ACGGAATGCAAGAGGATGCCTGTT -ACGGAATGCAAGAGGATGCGGTTT -ACGGAATGCAAGAGGATGGTGGTT -ACGGAATGCAAGAGGATGGCCTTT -ACGGAATGCAAGAGGATGGGTCTT -ACGGAATGCAAGAGGATGACGCTT -ACGGAATGCAAGAGGATGAGCGTT -ACGGAATGCAAGAGGATGTTCGTC -ACGGAATGCAAGAGGATGTCTCTC -ACGGAATGCAAGAGGATGTGGATC -ACGGAATGCAAGAGGATGCACTTC -ACGGAATGCAAGAGGATGGTACTC -ACGGAATGCAAGAGGATGGATGTC -ACGGAATGCAAGAGGATGACAGTC -ACGGAATGCAAGAGGATGTTGCTG -ACGGAATGCAAGAGGATGTCCATG -ACGGAATGCAAGAGGATGTGTGTG -ACGGAATGCAAGAGGATGCTAGTG -ACGGAATGCAAGAGGATGCATCTG -ACGGAATGCAAGAGGATGGAGTTG -ACGGAATGCAAGAGGATGAGACTG -ACGGAATGCAAGAGGATGTCGGTA -ACGGAATGCAAGAGGATGTGCCTA -ACGGAATGCAAGAGGATGCCACTA -ACGGAATGCAAGAGGATGGGAGTA -ACGGAATGCAAGAGGATGTCGTCT -ACGGAATGCAAGAGGATGTGCACT -ACGGAATGCAAGAGGATGCTGACT -ACGGAATGCAAGAGGATGCAACCT -ACGGAATGCAAGAGGATGGCTACT -ACGGAATGCAAGAGGATGGGATCT -ACGGAATGCAAGAGGATGAAGGCT -ACGGAATGCAAGAGGATGTCAACC -ACGGAATGCAAGAGGATGTGTTCC -ACGGAATGCAAGAGGATGATTCCC -ACGGAATGCAAGAGGATGTTCTCG -ACGGAATGCAAGAGGATGTAGACG -ACGGAATGCAAGAGGATGGTAACG -ACGGAATGCAAGAGGATGACTTCG -ACGGAATGCAAGAGGATGTACGCA -ACGGAATGCAAGAGGATGCTTGCA -ACGGAATGCAAGAGGATGCGAACA -ACGGAATGCAAGAGGATGCAGTCA -ACGGAATGCAAGAGGATGGATCCA -ACGGAATGCAAGAGGATGACGACA -ACGGAATGCAAGAGGATGAGCTCA -ACGGAATGCAAGAGGATGTCACGT -ACGGAATGCAAGAGGATGCGTAGT -ACGGAATGCAAGAGGATGGTCAGT -ACGGAATGCAAGAGGATGGAAGGT -ACGGAATGCAAGAGGATGAACCGT -ACGGAATGCAAGAGGATGTTGTGC -ACGGAATGCAAGAGGATGCTAAGC -ACGGAATGCAAGAGGATGACTAGC -ACGGAATGCAAGAGGATGAGATGC -ACGGAATGCAAGAGGATGTGAAGG -ACGGAATGCAAGAGGATGCAATGG -ACGGAATGCAAGAGGATGATGAGG -ACGGAATGCAAGAGGATGAATGGG -ACGGAATGCAAGAGGATGTCCTGA -ACGGAATGCAAGAGGATGTAGCGA -ACGGAATGCAAGAGGATGCACAGA -ACGGAATGCAAGAGGATGGCAAGA -ACGGAATGCAAGAGGATGGGTTGA -ACGGAATGCAAGAGGATGTCCGAT -ACGGAATGCAAGAGGATGTGGCAT -ACGGAATGCAAGAGGATGCGAGAT -ACGGAATGCAAGAGGATGTACCAC -ACGGAATGCAAGAGGATGCAGAAC -ACGGAATGCAAGAGGATGGTCTAC -ACGGAATGCAAGAGGATGACGTAC -ACGGAATGCAAGAGGATGAGTGAC -ACGGAATGCAAGAGGATGCTGTAG -ACGGAATGCAAGAGGATGCCTAAG -ACGGAATGCAAGAGGATGGTTCAG -ACGGAATGCAAGAGGATGGCATAG -ACGGAATGCAAGAGGATGGACAAG -ACGGAATGCAAGAGGATGAAGCAG -ACGGAATGCAAGAGGATGCGTCAA -ACGGAATGCAAGAGGATGGCTGAA -ACGGAATGCAAGAGGATGAGTACG -ACGGAATGCAAGAGGATGATCCGA -ACGGAATGCAAGAGGATGATGGGA -ACGGAATGCAAGAGGATGGTGCAA -ACGGAATGCAAGAGGATGGAGGAA -ACGGAATGCAAGAGGATGCAGGTA -ACGGAATGCAAGAGGATGGACTCT -ACGGAATGCAAGAGGATGAGTCCT -ACGGAATGCAAGAGGATGTAAGCC -ACGGAATGCAAGAGGATGATAGCC -ACGGAATGCAAGAGGATGTAACCG -ACGGAATGCAAGAGGATGATGCCA -ACGGAATGCAAGGGGAATGGAAAC -ACGGAATGCAAGGGGAATAACACC -ACGGAATGCAAGGGGAATATCGAG -ACGGAATGCAAGGGGAATCTCCTT -ACGGAATGCAAGGGGAATCCTGTT -ACGGAATGCAAGGGGAATCGGTTT -ACGGAATGCAAGGGGAATGTGGTT -ACGGAATGCAAGGGGAATGCCTTT -ACGGAATGCAAGGGGAATGGTCTT -ACGGAATGCAAGGGGAATACGCTT -ACGGAATGCAAGGGGAATAGCGTT -ACGGAATGCAAGGGGAATTTCGTC -ACGGAATGCAAGGGGAATTCTCTC -ACGGAATGCAAGGGGAATTGGATC -ACGGAATGCAAGGGGAATCACTTC -ACGGAATGCAAGGGGAATGTACTC -ACGGAATGCAAGGGGAATGATGTC -ACGGAATGCAAGGGGAATACAGTC -ACGGAATGCAAGGGGAATTTGCTG -ACGGAATGCAAGGGGAATTCCATG -ACGGAATGCAAGGGGAATTGTGTG -ACGGAATGCAAGGGGAATCTAGTG -ACGGAATGCAAGGGGAATCATCTG -ACGGAATGCAAGGGGAATGAGTTG -ACGGAATGCAAGGGGAATAGACTG -ACGGAATGCAAGGGGAATTCGGTA -ACGGAATGCAAGGGGAATTGCCTA -ACGGAATGCAAGGGGAATCCACTA -ACGGAATGCAAGGGGAATGGAGTA -ACGGAATGCAAGGGGAATTCGTCT -ACGGAATGCAAGGGGAATTGCACT -ACGGAATGCAAGGGGAATCTGACT -ACGGAATGCAAGGGGAATCAACCT -ACGGAATGCAAGGGGAATGCTACT -ACGGAATGCAAGGGGAATGGATCT -ACGGAATGCAAGGGGAATAAGGCT -ACGGAATGCAAGGGGAATTCAACC -ACGGAATGCAAGGGGAATTGTTCC -ACGGAATGCAAGGGGAATATTCCC -ACGGAATGCAAGGGGAATTTCTCG -ACGGAATGCAAGGGGAATTAGACG -ACGGAATGCAAGGGGAATGTAACG -ACGGAATGCAAGGGGAATACTTCG -ACGGAATGCAAGGGGAATTACGCA -ACGGAATGCAAGGGGAATCTTGCA -ACGGAATGCAAGGGGAATCGAACA -ACGGAATGCAAGGGGAATCAGTCA -ACGGAATGCAAGGGGAATGATCCA -ACGGAATGCAAGGGGAATACGACA -ACGGAATGCAAGGGGAATAGCTCA -ACGGAATGCAAGGGGAATTCACGT -ACGGAATGCAAGGGGAATCGTAGT -ACGGAATGCAAGGGGAATGTCAGT -ACGGAATGCAAGGGGAATGAAGGT -ACGGAATGCAAGGGGAATAACCGT -ACGGAATGCAAGGGGAATTTGTGC -ACGGAATGCAAGGGGAATCTAAGC -ACGGAATGCAAGGGGAATACTAGC -ACGGAATGCAAGGGGAATAGATGC -ACGGAATGCAAGGGGAATTGAAGG -ACGGAATGCAAGGGGAATCAATGG -ACGGAATGCAAGGGGAATATGAGG -ACGGAATGCAAGGGGAATAATGGG -ACGGAATGCAAGGGGAATTCCTGA -ACGGAATGCAAGGGGAATTAGCGA -ACGGAATGCAAGGGGAATCACAGA -ACGGAATGCAAGGGGAATGCAAGA -ACGGAATGCAAGGGGAATGGTTGA -ACGGAATGCAAGGGGAATTCCGAT -ACGGAATGCAAGGGGAATTGGCAT -ACGGAATGCAAGGGGAATCGAGAT -ACGGAATGCAAGGGGAATTACCAC -ACGGAATGCAAGGGGAATCAGAAC -ACGGAATGCAAGGGGAATGTCTAC -ACGGAATGCAAGGGGAATACGTAC -ACGGAATGCAAGGGGAATAGTGAC -ACGGAATGCAAGGGGAATCTGTAG -ACGGAATGCAAGGGGAATCCTAAG -ACGGAATGCAAGGGGAATGTTCAG -ACGGAATGCAAGGGGAATGCATAG -ACGGAATGCAAGGGGAATGACAAG -ACGGAATGCAAGGGGAATAAGCAG -ACGGAATGCAAGGGGAATCGTCAA -ACGGAATGCAAGGGGAATGCTGAA -ACGGAATGCAAGGGGAATAGTACG -ACGGAATGCAAGGGGAATATCCGA -ACGGAATGCAAGGGGAATATGGGA -ACGGAATGCAAGGGGAATGTGCAA -ACGGAATGCAAGGGGAATGAGGAA -ACGGAATGCAAGGGGAATCAGGTA -ACGGAATGCAAGGGGAATGACTCT -ACGGAATGCAAGGGGAATAGTCCT -ACGGAATGCAAGGGGAATTAAGCC -ACGGAATGCAAGGGGAATATAGCC -ACGGAATGCAAGGGGAATTAACCG -ACGGAATGCAAGGGGAATATGCCA -ACGGAATGCAAGTGATCCGGAAAC -ACGGAATGCAAGTGATCCAACACC -ACGGAATGCAAGTGATCCATCGAG -ACGGAATGCAAGTGATCCCTCCTT -ACGGAATGCAAGTGATCCCCTGTT -ACGGAATGCAAGTGATCCCGGTTT -ACGGAATGCAAGTGATCCGTGGTT -ACGGAATGCAAGTGATCCGCCTTT -ACGGAATGCAAGTGATCCGGTCTT -ACGGAATGCAAGTGATCCACGCTT -ACGGAATGCAAGTGATCCAGCGTT -ACGGAATGCAAGTGATCCTTCGTC -ACGGAATGCAAGTGATCCTCTCTC -ACGGAATGCAAGTGATCCTGGATC -ACGGAATGCAAGTGATCCCACTTC -ACGGAATGCAAGTGATCCGTACTC -ACGGAATGCAAGTGATCCGATGTC -ACGGAATGCAAGTGATCCACAGTC -ACGGAATGCAAGTGATCCTTGCTG -ACGGAATGCAAGTGATCCTCCATG -ACGGAATGCAAGTGATCCTGTGTG -ACGGAATGCAAGTGATCCCTAGTG -ACGGAATGCAAGTGATCCCATCTG -ACGGAATGCAAGTGATCCGAGTTG -ACGGAATGCAAGTGATCCAGACTG -ACGGAATGCAAGTGATCCTCGGTA -ACGGAATGCAAGTGATCCTGCCTA -ACGGAATGCAAGTGATCCCCACTA -ACGGAATGCAAGTGATCCGGAGTA -ACGGAATGCAAGTGATCCTCGTCT -ACGGAATGCAAGTGATCCTGCACT -ACGGAATGCAAGTGATCCCTGACT -ACGGAATGCAAGTGATCCCAACCT -ACGGAATGCAAGTGATCCGCTACT -ACGGAATGCAAGTGATCCGGATCT -ACGGAATGCAAGTGATCCAAGGCT -ACGGAATGCAAGTGATCCTCAACC -ACGGAATGCAAGTGATCCTGTTCC -ACGGAATGCAAGTGATCCATTCCC -ACGGAATGCAAGTGATCCTTCTCG -ACGGAATGCAAGTGATCCTAGACG -ACGGAATGCAAGTGATCCGTAACG -ACGGAATGCAAGTGATCCACTTCG -ACGGAATGCAAGTGATCCTACGCA -ACGGAATGCAAGTGATCCCTTGCA -ACGGAATGCAAGTGATCCCGAACA -ACGGAATGCAAGTGATCCCAGTCA -ACGGAATGCAAGTGATCCGATCCA -ACGGAATGCAAGTGATCCACGACA -ACGGAATGCAAGTGATCCAGCTCA -ACGGAATGCAAGTGATCCTCACGT -ACGGAATGCAAGTGATCCCGTAGT -ACGGAATGCAAGTGATCCGTCAGT -ACGGAATGCAAGTGATCCGAAGGT -ACGGAATGCAAGTGATCCAACCGT -ACGGAATGCAAGTGATCCTTGTGC -ACGGAATGCAAGTGATCCCTAAGC -ACGGAATGCAAGTGATCCACTAGC -ACGGAATGCAAGTGATCCAGATGC -ACGGAATGCAAGTGATCCTGAAGG -ACGGAATGCAAGTGATCCCAATGG -ACGGAATGCAAGTGATCCATGAGG -ACGGAATGCAAGTGATCCAATGGG -ACGGAATGCAAGTGATCCTCCTGA -ACGGAATGCAAGTGATCCTAGCGA -ACGGAATGCAAGTGATCCCACAGA -ACGGAATGCAAGTGATCCGCAAGA -ACGGAATGCAAGTGATCCGGTTGA -ACGGAATGCAAGTGATCCTCCGAT -ACGGAATGCAAGTGATCCTGGCAT -ACGGAATGCAAGTGATCCCGAGAT -ACGGAATGCAAGTGATCCTACCAC -ACGGAATGCAAGTGATCCCAGAAC -ACGGAATGCAAGTGATCCGTCTAC -ACGGAATGCAAGTGATCCACGTAC -ACGGAATGCAAGTGATCCAGTGAC -ACGGAATGCAAGTGATCCCTGTAG -ACGGAATGCAAGTGATCCCCTAAG -ACGGAATGCAAGTGATCCGTTCAG -ACGGAATGCAAGTGATCCGCATAG -ACGGAATGCAAGTGATCCGACAAG -ACGGAATGCAAGTGATCCAAGCAG -ACGGAATGCAAGTGATCCCGTCAA -ACGGAATGCAAGTGATCCGCTGAA -ACGGAATGCAAGTGATCCAGTACG -ACGGAATGCAAGTGATCCATCCGA -ACGGAATGCAAGTGATCCATGGGA -ACGGAATGCAAGTGATCCGTGCAA -ACGGAATGCAAGTGATCCGAGGAA -ACGGAATGCAAGTGATCCCAGGTA -ACGGAATGCAAGTGATCCGACTCT -ACGGAATGCAAGTGATCCAGTCCT -ACGGAATGCAAGTGATCCTAAGCC -ACGGAATGCAAGTGATCCATAGCC -ACGGAATGCAAGTGATCCTAACCG -ACGGAATGCAAGTGATCCATGCCA -ACGGAATGCAAGCGATAGGGAAAC -ACGGAATGCAAGCGATAGAACACC -ACGGAATGCAAGCGATAGATCGAG -ACGGAATGCAAGCGATAGCTCCTT -ACGGAATGCAAGCGATAGCCTGTT -ACGGAATGCAAGCGATAGCGGTTT -ACGGAATGCAAGCGATAGGTGGTT -ACGGAATGCAAGCGATAGGCCTTT -ACGGAATGCAAGCGATAGGGTCTT -ACGGAATGCAAGCGATAGACGCTT -ACGGAATGCAAGCGATAGAGCGTT -ACGGAATGCAAGCGATAGTTCGTC -ACGGAATGCAAGCGATAGTCTCTC -ACGGAATGCAAGCGATAGTGGATC -ACGGAATGCAAGCGATAGCACTTC -ACGGAATGCAAGCGATAGGTACTC -ACGGAATGCAAGCGATAGGATGTC -ACGGAATGCAAGCGATAGACAGTC -ACGGAATGCAAGCGATAGTTGCTG -ACGGAATGCAAGCGATAGTCCATG -ACGGAATGCAAGCGATAGTGTGTG -ACGGAATGCAAGCGATAGCTAGTG -ACGGAATGCAAGCGATAGCATCTG -ACGGAATGCAAGCGATAGGAGTTG -ACGGAATGCAAGCGATAGAGACTG -ACGGAATGCAAGCGATAGTCGGTA -ACGGAATGCAAGCGATAGTGCCTA -ACGGAATGCAAGCGATAGCCACTA -ACGGAATGCAAGCGATAGGGAGTA -ACGGAATGCAAGCGATAGTCGTCT -ACGGAATGCAAGCGATAGTGCACT -ACGGAATGCAAGCGATAGCTGACT -ACGGAATGCAAGCGATAGCAACCT -ACGGAATGCAAGCGATAGGCTACT -ACGGAATGCAAGCGATAGGGATCT -ACGGAATGCAAGCGATAGAAGGCT -ACGGAATGCAAGCGATAGTCAACC -ACGGAATGCAAGCGATAGTGTTCC -ACGGAATGCAAGCGATAGATTCCC -ACGGAATGCAAGCGATAGTTCTCG -ACGGAATGCAAGCGATAGTAGACG -ACGGAATGCAAGCGATAGGTAACG -ACGGAATGCAAGCGATAGACTTCG -ACGGAATGCAAGCGATAGTACGCA -ACGGAATGCAAGCGATAGCTTGCA -ACGGAATGCAAGCGATAGCGAACA -ACGGAATGCAAGCGATAGCAGTCA -ACGGAATGCAAGCGATAGGATCCA -ACGGAATGCAAGCGATAGACGACA -ACGGAATGCAAGCGATAGAGCTCA -ACGGAATGCAAGCGATAGTCACGT -ACGGAATGCAAGCGATAGCGTAGT -ACGGAATGCAAGCGATAGGTCAGT -ACGGAATGCAAGCGATAGGAAGGT -ACGGAATGCAAGCGATAGAACCGT -ACGGAATGCAAGCGATAGTTGTGC -ACGGAATGCAAGCGATAGCTAAGC -ACGGAATGCAAGCGATAGACTAGC -ACGGAATGCAAGCGATAGAGATGC -ACGGAATGCAAGCGATAGTGAAGG -ACGGAATGCAAGCGATAGCAATGG -ACGGAATGCAAGCGATAGATGAGG -ACGGAATGCAAGCGATAGAATGGG -ACGGAATGCAAGCGATAGTCCTGA -ACGGAATGCAAGCGATAGTAGCGA -ACGGAATGCAAGCGATAGCACAGA -ACGGAATGCAAGCGATAGGCAAGA -ACGGAATGCAAGCGATAGGGTTGA -ACGGAATGCAAGCGATAGTCCGAT -ACGGAATGCAAGCGATAGTGGCAT -ACGGAATGCAAGCGATAGCGAGAT -ACGGAATGCAAGCGATAGTACCAC -ACGGAATGCAAGCGATAGCAGAAC -ACGGAATGCAAGCGATAGGTCTAC -ACGGAATGCAAGCGATAGACGTAC -ACGGAATGCAAGCGATAGAGTGAC -ACGGAATGCAAGCGATAGCTGTAG -ACGGAATGCAAGCGATAGCCTAAG -ACGGAATGCAAGCGATAGGTTCAG -ACGGAATGCAAGCGATAGGCATAG -ACGGAATGCAAGCGATAGGACAAG -ACGGAATGCAAGCGATAGAAGCAG -ACGGAATGCAAGCGATAGCGTCAA -ACGGAATGCAAGCGATAGGCTGAA -ACGGAATGCAAGCGATAGAGTACG -ACGGAATGCAAGCGATAGATCCGA -ACGGAATGCAAGCGATAGATGGGA -ACGGAATGCAAGCGATAGGTGCAA -ACGGAATGCAAGCGATAGGAGGAA -ACGGAATGCAAGCGATAGCAGGTA -ACGGAATGCAAGCGATAGGACTCT -ACGGAATGCAAGCGATAGAGTCCT -ACGGAATGCAAGCGATAGTAAGCC -ACGGAATGCAAGCGATAGATAGCC -ACGGAATGCAAGCGATAGTAACCG -ACGGAATGCAAGCGATAGATGCCA -ACGGAATGCAAGAGACACGGAAAC -ACGGAATGCAAGAGACACAACACC -ACGGAATGCAAGAGACACATCGAG -ACGGAATGCAAGAGACACCTCCTT -ACGGAATGCAAGAGACACCCTGTT -ACGGAATGCAAGAGACACCGGTTT -ACGGAATGCAAGAGACACGTGGTT -ACGGAATGCAAGAGACACGCCTTT -ACGGAATGCAAGAGACACGGTCTT -ACGGAATGCAAGAGACACACGCTT -ACGGAATGCAAGAGACACAGCGTT -ACGGAATGCAAGAGACACTTCGTC -ACGGAATGCAAGAGACACTCTCTC -ACGGAATGCAAGAGACACTGGATC -ACGGAATGCAAGAGACACCACTTC -ACGGAATGCAAGAGACACGTACTC -ACGGAATGCAAGAGACACGATGTC -ACGGAATGCAAGAGACACACAGTC -ACGGAATGCAAGAGACACTTGCTG -ACGGAATGCAAGAGACACTCCATG -ACGGAATGCAAGAGACACTGTGTG -ACGGAATGCAAGAGACACCTAGTG -ACGGAATGCAAGAGACACCATCTG -ACGGAATGCAAGAGACACGAGTTG -ACGGAATGCAAGAGACACAGACTG -ACGGAATGCAAGAGACACTCGGTA -ACGGAATGCAAGAGACACTGCCTA -ACGGAATGCAAGAGACACCCACTA -ACGGAATGCAAGAGACACGGAGTA -ACGGAATGCAAGAGACACTCGTCT -ACGGAATGCAAGAGACACTGCACT -ACGGAATGCAAGAGACACCTGACT -ACGGAATGCAAGAGACACCAACCT -ACGGAATGCAAGAGACACGCTACT -ACGGAATGCAAGAGACACGGATCT -ACGGAATGCAAGAGACACAAGGCT -ACGGAATGCAAGAGACACTCAACC -ACGGAATGCAAGAGACACTGTTCC -ACGGAATGCAAGAGACACATTCCC -ACGGAATGCAAGAGACACTTCTCG -ACGGAATGCAAGAGACACTAGACG -ACGGAATGCAAGAGACACGTAACG -ACGGAATGCAAGAGACACACTTCG -ACGGAATGCAAGAGACACTACGCA -ACGGAATGCAAGAGACACCTTGCA -ACGGAATGCAAGAGACACCGAACA -ACGGAATGCAAGAGACACCAGTCA -ACGGAATGCAAGAGACACGATCCA -ACGGAATGCAAGAGACACACGACA -ACGGAATGCAAGAGACACAGCTCA -ACGGAATGCAAGAGACACTCACGT -ACGGAATGCAAGAGACACCGTAGT -ACGGAATGCAAGAGACACGTCAGT -ACGGAATGCAAGAGACACGAAGGT -ACGGAATGCAAGAGACACAACCGT -ACGGAATGCAAGAGACACTTGTGC -ACGGAATGCAAGAGACACCTAAGC -ACGGAATGCAAGAGACACACTAGC -ACGGAATGCAAGAGACACAGATGC -ACGGAATGCAAGAGACACTGAAGG -ACGGAATGCAAGAGACACCAATGG -ACGGAATGCAAGAGACACATGAGG -ACGGAATGCAAGAGACACAATGGG -ACGGAATGCAAGAGACACTCCTGA -ACGGAATGCAAGAGACACTAGCGA -ACGGAATGCAAGAGACACCACAGA -ACGGAATGCAAGAGACACGCAAGA -ACGGAATGCAAGAGACACGGTTGA -ACGGAATGCAAGAGACACTCCGAT -ACGGAATGCAAGAGACACTGGCAT -ACGGAATGCAAGAGACACCGAGAT -ACGGAATGCAAGAGACACTACCAC -ACGGAATGCAAGAGACACCAGAAC -ACGGAATGCAAGAGACACGTCTAC -ACGGAATGCAAGAGACACACGTAC -ACGGAATGCAAGAGACACAGTGAC -ACGGAATGCAAGAGACACCTGTAG -ACGGAATGCAAGAGACACCCTAAG -ACGGAATGCAAGAGACACGTTCAG -ACGGAATGCAAGAGACACGCATAG -ACGGAATGCAAGAGACACGACAAG -ACGGAATGCAAGAGACACAAGCAG -ACGGAATGCAAGAGACACCGTCAA -ACGGAATGCAAGAGACACGCTGAA -ACGGAATGCAAGAGACACAGTACG -ACGGAATGCAAGAGACACATCCGA -ACGGAATGCAAGAGACACATGGGA -ACGGAATGCAAGAGACACGTGCAA -ACGGAATGCAAGAGACACGAGGAA -ACGGAATGCAAGAGACACCAGGTA -ACGGAATGCAAGAGACACGACTCT -ACGGAATGCAAGAGACACAGTCCT -ACGGAATGCAAGAGACACTAAGCC -ACGGAATGCAAGAGACACATAGCC -ACGGAATGCAAGAGACACTAACCG -ACGGAATGCAAGAGACACATGCCA -ACGGAATGCAAGAGAGCAGGAAAC -ACGGAATGCAAGAGAGCAAACACC -ACGGAATGCAAGAGAGCAATCGAG -ACGGAATGCAAGAGAGCACTCCTT -ACGGAATGCAAGAGAGCACCTGTT -ACGGAATGCAAGAGAGCACGGTTT -ACGGAATGCAAGAGAGCAGTGGTT -ACGGAATGCAAGAGAGCAGCCTTT -ACGGAATGCAAGAGAGCAGGTCTT -ACGGAATGCAAGAGAGCAACGCTT -ACGGAATGCAAGAGAGCAAGCGTT -ACGGAATGCAAGAGAGCATTCGTC -ACGGAATGCAAGAGAGCATCTCTC -ACGGAATGCAAGAGAGCATGGATC -ACGGAATGCAAGAGAGCACACTTC -ACGGAATGCAAGAGAGCAGTACTC -ACGGAATGCAAGAGAGCAGATGTC -ACGGAATGCAAGAGAGCAACAGTC -ACGGAATGCAAGAGAGCATTGCTG -ACGGAATGCAAGAGAGCATCCATG -ACGGAATGCAAGAGAGCATGTGTG -ACGGAATGCAAGAGAGCACTAGTG -ACGGAATGCAAGAGAGCACATCTG -ACGGAATGCAAGAGAGCAGAGTTG -ACGGAATGCAAGAGAGCAAGACTG -ACGGAATGCAAGAGAGCATCGGTA -ACGGAATGCAAGAGAGCATGCCTA -ACGGAATGCAAGAGAGCACCACTA -ACGGAATGCAAGAGAGCAGGAGTA -ACGGAATGCAAGAGAGCATCGTCT -ACGGAATGCAAGAGAGCATGCACT -ACGGAATGCAAGAGAGCACTGACT -ACGGAATGCAAGAGAGCACAACCT -ACGGAATGCAAGAGAGCAGCTACT -ACGGAATGCAAGAGAGCAGGATCT -ACGGAATGCAAGAGAGCAAAGGCT -ACGGAATGCAAGAGAGCATCAACC -ACGGAATGCAAGAGAGCATGTTCC -ACGGAATGCAAGAGAGCAATTCCC -ACGGAATGCAAGAGAGCATTCTCG -ACGGAATGCAAGAGAGCATAGACG -ACGGAATGCAAGAGAGCAGTAACG -ACGGAATGCAAGAGAGCAACTTCG -ACGGAATGCAAGAGAGCATACGCA -ACGGAATGCAAGAGAGCACTTGCA -ACGGAATGCAAGAGAGCACGAACA -ACGGAATGCAAGAGAGCACAGTCA -ACGGAATGCAAGAGAGCAGATCCA -ACGGAATGCAAGAGAGCAACGACA -ACGGAATGCAAGAGAGCAAGCTCA -ACGGAATGCAAGAGAGCATCACGT -ACGGAATGCAAGAGAGCACGTAGT -ACGGAATGCAAGAGAGCAGTCAGT -ACGGAATGCAAGAGAGCAGAAGGT -ACGGAATGCAAGAGAGCAAACCGT -ACGGAATGCAAGAGAGCATTGTGC -ACGGAATGCAAGAGAGCACTAAGC -ACGGAATGCAAGAGAGCAACTAGC -ACGGAATGCAAGAGAGCAAGATGC -ACGGAATGCAAGAGAGCATGAAGG -ACGGAATGCAAGAGAGCACAATGG -ACGGAATGCAAGAGAGCAATGAGG -ACGGAATGCAAGAGAGCAAATGGG -ACGGAATGCAAGAGAGCATCCTGA -ACGGAATGCAAGAGAGCATAGCGA -ACGGAATGCAAGAGAGCACACAGA -ACGGAATGCAAGAGAGCAGCAAGA -ACGGAATGCAAGAGAGCAGGTTGA -ACGGAATGCAAGAGAGCATCCGAT -ACGGAATGCAAGAGAGCATGGCAT -ACGGAATGCAAGAGAGCACGAGAT -ACGGAATGCAAGAGAGCATACCAC -ACGGAATGCAAGAGAGCACAGAAC -ACGGAATGCAAGAGAGCAGTCTAC -ACGGAATGCAAGAGAGCAACGTAC -ACGGAATGCAAGAGAGCAAGTGAC -ACGGAATGCAAGAGAGCACTGTAG -ACGGAATGCAAGAGAGCACCTAAG -ACGGAATGCAAGAGAGCAGTTCAG -ACGGAATGCAAGAGAGCAGCATAG -ACGGAATGCAAGAGAGCAGACAAG -ACGGAATGCAAGAGAGCAAAGCAG -ACGGAATGCAAGAGAGCACGTCAA -ACGGAATGCAAGAGAGCAGCTGAA -ACGGAATGCAAGAGAGCAAGTACG -ACGGAATGCAAGAGAGCAATCCGA -ACGGAATGCAAGAGAGCAATGGGA -ACGGAATGCAAGAGAGCAGTGCAA -ACGGAATGCAAGAGAGCAGAGGAA -ACGGAATGCAAGAGAGCACAGGTA -ACGGAATGCAAGAGAGCAGACTCT -ACGGAATGCAAGAGAGCAAGTCCT -ACGGAATGCAAGAGAGCATAAGCC -ACGGAATGCAAGAGAGCAATAGCC -ACGGAATGCAAGAGAGCATAACCG -ACGGAATGCAAGAGAGCAATGCCA -ACGGAATGCAAGTGAGGTGGAAAC -ACGGAATGCAAGTGAGGTAACACC -ACGGAATGCAAGTGAGGTATCGAG -ACGGAATGCAAGTGAGGTCTCCTT -ACGGAATGCAAGTGAGGTCCTGTT -ACGGAATGCAAGTGAGGTCGGTTT -ACGGAATGCAAGTGAGGTGTGGTT -ACGGAATGCAAGTGAGGTGCCTTT -ACGGAATGCAAGTGAGGTGGTCTT -ACGGAATGCAAGTGAGGTACGCTT -ACGGAATGCAAGTGAGGTAGCGTT -ACGGAATGCAAGTGAGGTTTCGTC -ACGGAATGCAAGTGAGGTTCTCTC -ACGGAATGCAAGTGAGGTTGGATC -ACGGAATGCAAGTGAGGTCACTTC -ACGGAATGCAAGTGAGGTGTACTC -ACGGAATGCAAGTGAGGTGATGTC -ACGGAATGCAAGTGAGGTACAGTC -ACGGAATGCAAGTGAGGTTTGCTG -ACGGAATGCAAGTGAGGTTCCATG -ACGGAATGCAAGTGAGGTTGTGTG -ACGGAATGCAAGTGAGGTCTAGTG -ACGGAATGCAAGTGAGGTCATCTG -ACGGAATGCAAGTGAGGTGAGTTG -ACGGAATGCAAGTGAGGTAGACTG -ACGGAATGCAAGTGAGGTTCGGTA -ACGGAATGCAAGTGAGGTTGCCTA -ACGGAATGCAAGTGAGGTCCACTA -ACGGAATGCAAGTGAGGTGGAGTA -ACGGAATGCAAGTGAGGTTCGTCT -ACGGAATGCAAGTGAGGTTGCACT -ACGGAATGCAAGTGAGGTCTGACT -ACGGAATGCAAGTGAGGTCAACCT -ACGGAATGCAAGTGAGGTGCTACT -ACGGAATGCAAGTGAGGTGGATCT -ACGGAATGCAAGTGAGGTAAGGCT -ACGGAATGCAAGTGAGGTTCAACC -ACGGAATGCAAGTGAGGTTGTTCC -ACGGAATGCAAGTGAGGTATTCCC -ACGGAATGCAAGTGAGGTTTCTCG -ACGGAATGCAAGTGAGGTTAGACG -ACGGAATGCAAGTGAGGTGTAACG -ACGGAATGCAAGTGAGGTACTTCG -ACGGAATGCAAGTGAGGTTACGCA -ACGGAATGCAAGTGAGGTCTTGCA -ACGGAATGCAAGTGAGGTCGAACA -ACGGAATGCAAGTGAGGTCAGTCA -ACGGAATGCAAGTGAGGTGATCCA -ACGGAATGCAAGTGAGGTACGACA -ACGGAATGCAAGTGAGGTAGCTCA -ACGGAATGCAAGTGAGGTTCACGT -ACGGAATGCAAGTGAGGTCGTAGT -ACGGAATGCAAGTGAGGTGTCAGT -ACGGAATGCAAGTGAGGTGAAGGT -ACGGAATGCAAGTGAGGTAACCGT -ACGGAATGCAAGTGAGGTTTGTGC -ACGGAATGCAAGTGAGGTCTAAGC -ACGGAATGCAAGTGAGGTACTAGC -ACGGAATGCAAGTGAGGTAGATGC -ACGGAATGCAAGTGAGGTTGAAGG -ACGGAATGCAAGTGAGGTCAATGG -ACGGAATGCAAGTGAGGTATGAGG -ACGGAATGCAAGTGAGGTAATGGG -ACGGAATGCAAGTGAGGTTCCTGA -ACGGAATGCAAGTGAGGTTAGCGA -ACGGAATGCAAGTGAGGTCACAGA -ACGGAATGCAAGTGAGGTGCAAGA -ACGGAATGCAAGTGAGGTGGTTGA -ACGGAATGCAAGTGAGGTTCCGAT -ACGGAATGCAAGTGAGGTTGGCAT -ACGGAATGCAAGTGAGGTCGAGAT -ACGGAATGCAAGTGAGGTTACCAC -ACGGAATGCAAGTGAGGTCAGAAC -ACGGAATGCAAGTGAGGTGTCTAC -ACGGAATGCAAGTGAGGTACGTAC -ACGGAATGCAAGTGAGGTAGTGAC -ACGGAATGCAAGTGAGGTCTGTAG -ACGGAATGCAAGTGAGGTCCTAAG -ACGGAATGCAAGTGAGGTGTTCAG -ACGGAATGCAAGTGAGGTGCATAG -ACGGAATGCAAGTGAGGTGACAAG -ACGGAATGCAAGTGAGGTAAGCAG -ACGGAATGCAAGTGAGGTCGTCAA -ACGGAATGCAAGTGAGGTGCTGAA -ACGGAATGCAAGTGAGGTAGTACG -ACGGAATGCAAGTGAGGTATCCGA -ACGGAATGCAAGTGAGGTATGGGA -ACGGAATGCAAGTGAGGTGTGCAA -ACGGAATGCAAGTGAGGTGAGGAA -ACGGAATGCAAGTGAGGTCAGGTA -ACGGAATGCAAGTGAGGTGACTCT -ACGGAATGCAAGTGAGGTAGTCCT -ACGGAATGCAAGTGAGGTTAAGCC -ACGGAATGCAAGTGAGGTATAGCC -ACGGAATGCAAGTGAGGTTAACCG -ACGGAATGCAAGTGAGGTATGCCA -ACGGAATGCAAGGATTCCGGAAAC -ACGGAATGCAAGGATTCCAACACC -ACGGAATGCAAGGATTCCATCGAG -ACGGAATGCAAGGATTCCCTCCTT -ACGGAATGCAAGGATTCCCCTGTT -ACGGAATGCAAGGATTCCCGGTTT -ACGGAATGCAAGGATTCCGTGGTT -ACGGAATGCAAGGATTCCGCCTTT -ACGGAATGCAAGGATTCCGGTCTT -ACGGAATGCAAGGATTCCACGCTT -ACGGAATGCAAGGATTCCAGCGTT -ACGGAATGCAAGGATTCCTTCGTC -ACGGAATGCAAGGATTCCTCTCTC -ACGGAATGCAAGGATTCCTGGATC -ACGGAATGCAAGGATTCCCACTTC -ACGGAATGCAAGGATTCCGTACTC -ACGGAATGCAAGGATTCCGATGTC -ACGGAATGCAAGGATTCCACAGTC -ACGGAATGCAAGGATTCCTTGCTG -ACGGAATGCAAGGATTCCTCCATG -ACGGAATGCAAGGATTCCTGTGTG -ACGGAATGCAAGGATTCCCTAGTG -ACGGAATGCAAGGATTCCCATCTG -ACGGAATGCAAGGATTCCGAGTTG -ACGGAATGCAAGGATTCCAGACTG -ACGGAATGCAAGGATTCCTCGGTA -ACGGAATGCAAGGATTCCTGCCTA -ACGGAATGCAAGGATTCCCCACTA -ACGGAATGCAAGGATTCCGGAGTA -ACGGAATGCAAGGATTCCTCGTCT -ACGGAATGCAAGGATTCCTGCACT -ACGGAATGCAAGGATTCCCTGACT -ACGGAATGCAAGGATTCCCAACCT -ACGGAATGCAAGGATTCCGCTACT -ACGGAATGCAAGGATTCCGGATCT -ACGGAATGCAAGGATTCCAAGGCT -ACGGAATGCAAGGATTCCTCAACC -ACGGAATGCAAGGATTCCTGTTCC -ACGGAATGCAAGGATTCCATTCCC -ACGGAATGCAAGGATTCCTTCTCG -ACGGAATGCAAGGATTCCTAGACG -ACGGAATGCAAGGATTCCGTAACG -ACGGAATGCAAGGATTCCACTTCG -ACGGAATGCAAGGATTCCTACGCA -ACGGAATGCAAGGATTCCCTTGCA -ACGGAATGCAAGGATTCCCGAACA -ACGGAATGCAAGGATTCCCAGTCA -ACGGAATGCAAGGATTCCGATCCA -ACGGAATGCAAGGATTCCACGACA -ACGGAATGCAAGGATTCCAGCTCA -ACGGAATGCAAGGATTCCTCACGT -ACGGAATGCAAGGATTCCCGTAGT -ACGGAATGCAAGGATTCCGTCAGT -ACGGAATGCAAGGATTCCGAAGGT -ACGGAATGCAAGGATTCCAACCGT -ACGGAATGCAAGGATTCCTTGTGC -ACGGAATGCAAGGATTCCCTAAGC -ACGGAATGCAAGGATTCCACTAGC -ACGGAATGCAAGGATTCCAGATGC -ACGGAATGCAAGGATTCCTGAAGG -ACGGAATGCAAGGATTCCCAATGG -ACGGAATGCAAGGATTCCATGAGG -ACGGAATGCAAGGATTCCAATGGG -ACGGAATGCAAGGATTCCTCCTGA -ACGGAATGCAAGGATTCCTAGCGA -ACGGAATGCAAGGATTCCCACAGA -ACGGAATGCAAGGATTCCGCAAGA -ACGGAATGCAAGGATTCCGGTTGA -ACGGAATGCAAGGATTCCTCCGAT -ACGGAATGCAAGGATTCCTGGCAT -ACGGAATGCAAGGATTCCCGAGAT -ACGGAATGCAAGGATTCCTACCAC -ACGGAATGCAAGGATTCCCAGAAC -ACGGAATGCAAGGATTCCGTCTAC -ACGGAATGCAAGGATTCCACGTAC -ACGGAATGCAAGGATTCCAGTGAC -ACGGAATGCAAGGATTCCCTGTAG -ACGGAATGCAAGGATTCCCCTAAG -ACGGAATGCAAGGATTCCGTTCAG -ACGGAATGCAAGGATTCCGCATAG -ACGGAATGCAAGGATTCCGACAAG -ACGGAATGCAAGGATTCCAAGCAG -ACGGAATGCAAGGATTCCCGTCAA -ACGGAATGCAAGGATTCCGCTGAA -ACGGAATGCAAGGATTCCAGTACG -ACGGAATGCAAGGATTCCATCCGA -ACGGAATGCAAGGATTCCATGGGA -ACGGAATGCAAGGATTCCGTGCAA -ACGGAATGCAAGGATTCCGAGGAA -ACGGAATGCAAGGATTCCCAGGTA -ACGGAATGCAAGGATTCCGACTCT -ACGGAATGCAAGGATTCCAGTCCT -ACGGAATGCAAGGATTCCTAAGCC -ACGGAATGCAAGGATTCCATAGCC -ACGGAATGCAAGGATTCCTAACCG -ACGGAATGCAAGGATTCCATGCCA -ACGGAATGCAAGCATTGGGGAAAC -ACGGAATGCAAGCATTGGAACACC -ACGGAATGCAAGCATTGGATCGAG -ACGGAATGCAAGCATTGGCTCCTT -ACGGAATGCAAGCATTGGCCTGTT -ACGGAATGCAAGCATTGGCGGTTT -ACGGAATGCAAGCATTGGGTGGTT -ACGGAATGCAAGCATTGGGCCTTT -ACGGAATGCAAGCATTGGGGTCTT -ACGGAATGCAAGCATTGGACGCTT -ACGGAATGCAAGCATTGGAGCGTT -ACGGAATGCAAGCATTGGTTCGTC -ACGGAATGCAAGCATTGGTCTCTC -ACGGAATGCAAGCATTGGTGGATC -ACGGAATGCAAGCATTGGCACTTC -ACGGAATGCAAGCATTGGGTACTC -ACGGAATGCAAGCATTGGGATGTC -ACGGAATGCAAGCATTGGACAGTC -ACGGAATGCAAGCATTGGTTGCTG -ACGGAATGCAAGCATTGGTCCATG -ACGGAATGCAAGCATTGGTGTGTG -ACGGAATGCAAGCATTGGCTAGTG -ACGGAATGCAAGCATTGGCATCTG -ACGGAATGCAAGCATTGGGAGTTG -ACGGAATGCAAGCATTGGAGACTG -ACGGAATGCAAGCATTGGTCGGTA -ACGGAATGCAAGCATTGGTGCCTA -ACGGAATGCAAGCATTGGCCACTA -ACGGAATGCAAGCATTGGGGAGTA -ACGGAATGCAAGCATTGGTCGTCT -ACGGAATGCAAGCATTGGTGCACT -ACGGAATGCAAGCATTGGCTGACT -ACGGAATGCAAGCATTGGCAACCT -ACGGAATGCAAGCATTGGGCTACT -ACGGAATGCAAGCATTGGGGATCT -ACGGAATGCAAGCATTGGAAGGCT -ACGGAATGCAAGCATTGGTCAACC -ACGGAATGCAAGCATTGGTGTTCC -ACGGAATGCAAGCATTGGATTCCC -ACGGAATGCAAGCATTGGTTCTCG -ACGGAATGCAAGCATTGGTAGACG -ACGGAATGCAAGCATTGGGTAACG -ACGGAATGCAAGCATTGGACTTCG -ACGGAATGCAAGCATTGGTACGCA -ACGGAATGCAAGCATTGGCTTGCA -ACGGAATGCAAGCATTGGCGAACA -ACGGAATGCAAGCATTGGCAGTCA -ACGGAATGCAAGCATTGGGATCCA -ACGGAATGCAAGCATTGGACGACA -ACGGAATGCAAGCATTGGAGCTCA -ACGGAATGCAAGCATTGGTCACGT -ACGGAATGCAAGCATTGGCGTAGT -ACGGAATGCAAGCATTGGGTCAGT -ACGGAATGCAAGCATTGGGAAGGT -ACGGAATGCAAGCATTGGAACCGT -ACGGAATGCAAGCATTGGTTGTGC -ACGGAATGCAAGCATTGGCTAAGC -ACGGAATGCAAGCATTGGACTAGC -ACGGAATGCAAGCATTGGAGATGC -ACGGAATGCAAGCATTGGTGAAGG -ACGGAATGCAAGCATTGGCAATGG -ACGGAATGCAAGCATTGGATGAGG -ACGGAATGCAAGCATTGGAATGGG -ACGGAATGCAAGCATTGGTCCTGA -ACGGAATGCAAGCATTGGTAGCGA -ACGGAATGCAAGCATTGGCACAGA -ACGGAATGCAAGCATTGGGCAAGA -ACGGAATGCAAGCATTGGGGTTGA -ACGGAATGCAAGCATTGGTCCGAT -ACGGAATGCAAGCATTGGTGGCAT -ACGGAATGCAAGCATTGGCGAGAT -ACGGAATGCAAGCATTGGTACCAC -ACGGAATGCAAGCATTGGCAGAAC -ACGGAATGCAAGCATTGGGTCTAC -ACGGAATGCAAGCATTGGACGTAC -ACGGAATGCAAGCATTGGAGTGAC -ACGGAATGCAAGCATTGGCTGTAG -ACGGAATGCAAGCATTGGCCTAAG -ACGGAATGCAAGCATTGGGTTCAG -ACGGAATGCAAGCATTGGGCATAG -ACGGAATGCAAGCATTGGGACAAG -ACGGAATGCAAGCATTGGAAGCAG -ACGGAATGCAAGCATTGGCGTCAA -ACGGAATGCAAGCATTGGGCTGAA -ACGGAATGCAAGCATTGGAGTACG -ACGGAATGCAAGCATTGGATCCGA -ACGGAATGCAAGCATTGGATGGGA -ACGGAATGCAAGCATTGGGTGCAA -ACGGAATGCAAGCATTGGGAGGAA -ACGGAATGCAAGCATTGGCAGGTA -ACGGAATGCAAGCATTGGGACTCT -ACGGAATGCAAGCATTGGAGTCCT -ACGGAATGCAAGCATTGGTAAGCC -ACGGAATGCAAGCATTGGATAGCC -ACGGAATGCAAGCATTGGTAACCG -ACGGAATGCAAGCATTGGATGCCA -ACGGAATGCAAGGATCGAGGAAAC -ACGGAATGCAAGGATCGAAACACC -ACGGAATGCAAGGATCGAATCGAG -ACGGAATGCAAGGATCGACTCCTT -ACGGAATGCAAGGATCGACCTGTT -ACGGAATGCAAGGATCGACGGTTT -ACGGAATGCAAGGATCGAGTGGTT -ACGGAATGCAAGGATCGAGCCTTT -ACGGAATGCAAGGATCGAGGTCTT -ACGGAATGCAAGGATCGAACGCTT -ACGGAATGCAAGGATCGAAGCGTT -ACGGAATGCAAGGATCGATTCGTC -ACGGAATGCAAGGATCGATCTCTC -ACGGAATGCAAGGATCGATGGATC -ACGGAATGCAAGGATCGACACTTC -ACGGAATGCAAGGATCGAGTACTC -ACGGAATGCAAGGATCGAGATGTC -ACGGAATGCAAGGATCGAACAGTC -ACGGAATGCAAGGATCGATTGCTG -ACGGAATGCAAGGATCGATCCATG -ACGGAATGCAAGGATCGATGTGTG -ACGGAATGCAAGGATCGACTAGTG -ACGGAATGCAAGGATCGACATCTG -ACGGAATGCAAGGATCGAGAGTTG -ACGGAATGCAAGGATCGAAGACTG -ACGGAATGCAAGGATCGATCGGTA -ACGGAATGCAAGGATCGATGCCTA -ACGGAATGCAAGGATCGACCACTA -ACGGAATGCAAGGATCGAGGAGTA -ACGGAATGCAAGGATCGATCGTCT -ACGGAATGCAAGGATCGATGCACT -ACGGAATGCAAGGATCGACTGACT -ACGGAATGCAAGGATCGACAACCT -ACGGAATGCAAGGATCGAGCTACT -ACGGAATGCAAGGATCGAGGATCT -ACGGAATGCAAGGATCGAAAGGCT -ACGGAATGCAAGGATCGATCAACC -ACGGAATGCAAGGATCGATGTTCC -ACGGAATGCAAGGATCGAATTCCC -ACGGAATGCAAGGATCGATTCTCG -ACGGAATGCAAGGATCGATAGACG -ACGGAATGCAAGGATCGAGTAACG -ACGGAATGCAAGGATCGAACTTCG -ACGGAATGCAAGGATCGATACGCA -ACGGAATGCAAGGATCGACTTGCA -ACGGAATGCAAGGATCGACGAACA -ACGGAATGCAAGGATCGACAGTCA -ACGGAATGCAAGGATCGAGATCCA -ACGGAATGCAAGGATCGAACGACA -ACGGAATGCAAGGATCGAAGCTCA -ACGGAATGCAAGGATCGATCACGT -ACGGAATGCAAGGATCGACGTAGT -ACGGAATGCAAGGATCGAGTCAGT -ACGGAATGCAAGGATCGAGAAGGT -ACGGAATGCAAGGATCGAAACCGT -ACGGAATGCAAGGATCGATTGTGC -ACGGAATGCAAGGATCGACTAAGC -ACGGAATGCAAGGATCGAACTAGC -ACGGAATGCAAGGATCGAAGATGC -ACGGAATGCAAGGATCGATGAAGG -ACGGAATGCAAGGATCGACAATGG -ACGGAATGCAAGGATCGAATGAGG -ACGGAATGCAAGGATCGAAATGGG -ACGGAATGCAAGGATCGATCCTGA -ACGGAATGCAAGGATCGATAGCGA -ACGGAATGCAAGGATCGACACAGA -ACGGAATGCAAGGATCGAGCAAGA -ACGGAATGCAAGGATCGAGGTTGA -ACGGAATGCAAGGATCGATCCGAT -ACGGAATGCAAGGATCGATGGCAT -ACGGAATGCAAGGATCGACGAGAT -ACGGAATGCAAGGATCGATACCAC -ACGGAATGCAAGGATCGACAGAAC -ACGGAATGCAAGGATCGAGTCTAC -ACGGAATGCAAGGATCGAACGTAC -ACGGAATGCAAGGATCGAAGTGAC -ACGGAATGCAAGGATCGACTGTAG -ACGGAATGCAAGGATCGACCTAAG -ACGGAATGCAAGGATCGAGTTCAG -ACGGAATGCAAGGATCGAGCATAG -ACGGAATGCAAGGATCGAGACAAG -ACGGAATGCAAGGATCGAAAGCAG -ACGGAATGCAAGGATCGACGTCAA -ACGGAATGCAAGGATCGAGCTGAA -ACGGAATGCAAGGATCGAAGTACG -ACGGAATGCAAGGATCGAATCCGA -ACGGAATGCAAGGATCGAATGGGA -ACGGAATGCAAGGATCGAGTGCAA -ACGGAATGCAAGGATCGAGAGGAA -ACGGAATGCAAGGATCGACAGGTA -ACGGAATGCAAGGATCGAGACTCT -ACGGAATGCAAGGATCGAAGTCCT -ACGGAATGCAAGGATCGATAAGCC -ACGGAATGCAAGGATCGAATAGCC -ACGGAATGCAAGGATCGATAACCG -ACGGAATGCAAGGATCGAATGCCA -ACGGAATGCAAGCACTACGGAAAC -ACGGAATGCAAGCACTACAACACC -ACGGAATGCAAGCACTACATCGAG -ACGGAATGCAAGCACTACCTCCTT -ACGGAATGCAAGCACTACCCTGTT -ACGGAATGCAAGCACTACCGGTTT -ACGGAATGCAAGCACTACGTGGTT -ACGGAATGCAAGCACTACGCCTTT -ACGGAATGCAAGCACTACGGTCTT -ACGGAATGCAAGCACTACACGCTT -ACGGAATGCAAGCACTACAGCGTT -ACGGAATGCAAGCACTACTTCGTC -ACGGAATGCAAGCACTACTCTCTC -ACGGAATGCAAGCACTACTGGATC -ACGGAATGCAAGCACTACCACTTC -ACGGAATGCAAGCACTACGTACTC -ACGGAATGCAAGCACTACGATGTC -ACGGAATGCAAGCACTACACAGTC -ACGGAATGCAAGCACTACTTGCTG -ACGGAATGCAAGCACTACTCCATG -ACGGAATGCAAGCACTACTGTGTG -ACGGAATGCAAGCACTACCTAGTG -ACGGAATGCAAGCACTACCATCTG -ACGGAATGCAAGCACTACGAGTTG -ACGGAATGCAAGCACTACAGACTG -ACGGAATGCAAGCACTACTCGGTA -ACGGAATGCAAGCACTACTGCCTA -ACGGAATGCAAGCACTACCCACTA -ACGGAATGCAAGCACTACGGAGTA -ACGGAATGCAAGCACTACTCGTCT -ACGGAATGCAAGCACTACTGCACT -ACGGAATGCAAGCACTACCTGACT -ACGGAATGCAAGCACTACCAACCT -ACGGAATGCAAGCACTACGCTACT -ACGGAATGCAAGCACTACGGATCT -ACGGAATGCAAGCACTACAAGGCT -ACGGAATGCAAGCACTACTCAACC -ACGGAATGCAAGCACTACTGTTCC -ACGGAATGCAAGCACTACATTCCC -ACGGAATGCAAGCACTACTTCTCG -ACGGAATGCAAGCACTACTAGACG -ACGGAATGCAAGCACTACGTAACG -ACGGAATGCAAGCACTACACTTCG -ACGGAATGCAAGCACTACTACGCA -ACGGAATGCAAGCACTACCTTGCA -ACGGAATGCAAGCACTACCGAACA -ACGGAATGCAAGCACTACCAGTCA -ACGGAATGCAAGCACTACGATCCA -ACGGAATGCAAGCACTACACGACA -ACGGAATGCAAGCACTACAGCTCA -ACGGAATGCAAGCACTACTCACGT -ACGGAATGCAAGCACTACCGTAGT -ACGGAATGCAAGCACTACGTCAGT -ACGGAATGCAAGCACTACGAAGGT -ACGGAATGCAAGCACTACAACCGT -ACGGAATGCAAGCACTACTTGTGC -ACGGAATGCAAGCACTACCTAAGC -ACGGAATGCAAGCACTACACTAGC -ACGGAATGCAAGCACTACAGATGC -ACGGAATGCAAGCACTACTGAAGG -ACGGAATGCAAGCACTACCAATGG -ACGGAATGCAAGCACTACATGAGG -ACGGAATGCAAGCACTACAATGGG -ACGGAATGCAAGCACTACTCCTGA -ACGGAATGCAAGCACTACTAGCGA -ACGGAATGCAAGCACTACCACAGA -ACGGAATGCAAGCACTACGCAAGA -ACGGAATGCAAGCACTACGGTTGA -ACGGAATGCAAGCACTACTCCGAT -ACGGAATGCAAGCACTACTGGCAT -ACGGAATGCAAGCACTACCGAGAT -ACGGAATGCAAGCACTACTACCAC -ACGGAATGCAAGCACTACCAGAAC -ACGGAATGCAAGCACTACGTCTAC -ACGGAATGCAAGCACTACACGTAC -ACGGAATGCAAGCACTACAGTGAC -ACGGAATGCAAGCACTACCTGTAG -ACGGAATGCAAGCACTACCCTAAG -ACGGAATGCAAGCACTACGTTCAG -ACGGAATGCAAGCACTACGCATAG -ACGGAATGCAAGCACTACGACAAG -ACGGAATGCAAGCACTACAAGCAG -ACGGAATGCAAGCACTACCGTCAA -ACGGAATGCAAGCACTACGCTGAA -ACGGAATGCAAGCACTACAGTACG -ACGGAATGCAAGCACTACATCCGA -ACGGAATGCAAGCACTACATGGGA -ACGGAATGCAAGCACTACGTGCAA -ACGGAATGCAAGCACTACGAGGAA -ACGGAATGCAAGCACTACCAGGTA -ACGGAATGCAAGCACTACGACTCT -ACGGAATGCAAGCACTACAGTCCT -ACGGAATGCAAGCACTACTAAGCC -ACGGAATGCAAGCACTACATAGCC -ACGGAATGCAAGCACTACTAACCG -ACGGAATGCAAGCACTACATGCCA -ACGGAATGCAAGAACCAGGGAAAC -ACGGAATGCAAGAACCAGAACACC -ACGGAATGCAAGAACCAGATCGAG -ACGGAATGCAAGAACCAGCTCCTT -ACGGAATGCAAGAACCAGCCTGTT -ACGGAATGCAAGAACCAGCGGTTT -ACGGAATGCAAGAACCAGGTGGTT -ACGGAATGCAAGAACCAGGCCTTT -ACGGAATGCAAGAACCAGGGTCTT -ACGGAATGCAAGAACCAGACGCTT -ACGGAATGCAAGAACCAGAGCGTT -ACGGAATGCAAGAACCAGTTCGTC -ACGGAATGCAAGAACCAGTCTCTC -ACGGAATGCAAGAACCAGTGGATC -ACGGAATGCAAGAACCAGCACTTC -ACGGAATGCAAGAACCAGGTACTC -ACGGAATGCAAGAACCAGGATGTC -ACGGAATGCAAGAACCAGACAGTC -ACGGAATGCAAGAACCAGTTGCTG -ACGGAATGCAAGAACCAGTCCATG -ACGGAATGCAAGAACCAGTGTGTG -ACGGAATGCAAGAACCAGCTAGTG -ACGGAATGCAAGAACCAGCATCTG -ACGGAATGCAAGAACCAGGAGTTG -ACGGAATGCAAGAACCAGAGACTG -ACGGAATGCAAGAACCAGTCGGTA -ACGGAATGCAAGAACCAGTGCCTA -ACGGAATGCAAGAACCAGCCACTA -ACGGAATGCAAGAACCAGGGAGTA -ACGGAATGCAAGAACCAGTCGTCT -ACGGAATGCAAGAACCAGTGCACT -ACGGAATGCAAGAACCAGCTGACT -ACGGAATGCAAGAACCAGCAACCT -ACGGAATGCAAGAACCAGGCTACT -ACGGAATGCAAGAACCAGGGATCT -ACGGAATGCAAGAACCAGAAGGCT -ACGGAATGCAAGAACCAGTCAACC -ACGGAATGCAAGAACCAGTGTTCC -ACGGAATGCAAGAACCAGATTCCC -ACGGAATGCAAGAACCAGTTCTCG -ACGGAATGCAAGAACCAGTAGACG -ACGGAATGCAAGAACCAGGTAACG -ACGGAATGCAAGAACCAGACTTCG -ACGGAATGCAAGAACCAGTACGCA -ACGGAATGCAAGAACCAGCTTGCA -ACGGAATGCAAGAACCAGCGAACA -ACGGAATGCAAGAACCAGCAGTCA -ACGGAATGCAAGAACCAGGATCCA -ACGGAATGCAAGAACCAGACGACA -ACGGAATGCAAGAACCAGAGCTCA -ACGGAATGCAAGAACCAGTCACGT -ACGGAATGCAAGAACCAGCGTAGT -ACGGAATGCAAGAACCAGGTCAGT -ACGGAATGCAAGAACCAGGAAGGT -ACGGAATGCAAGAACCAGAACCGT -ACGGAATGCAAGAACCAGTTGTGC -ACGGAATGCAAGAACCAGCTAAGC -ACGGAATGCAAGAACCAGACTAGC -ACGGAATGCAAGAACCAGAGATGC -ACGGAATGCAAGAACCAGTGAAGG -ACGGAATGCAAGAACCAGCAATGG -ACGGAATGCAAGAACCAGATGAGG -ACGGAATGCAAGAACCAGAATGGG -ACGGAATGCAAGAACCAGTCCTGA -ACGGAATGCAAGAACCAGTAGCGA -ACGGAATGCAAGAACCAGCACAGA -ACGGAATGCAAGAACCAGGCAAGA -ACGGAATGCAAGAACCAGGGTTGA -ACGGAATGCAAGAACCAGTCCGAT -ACGGAATGCAAGAACCAGTGGCAT -ACGGAATGCAAGAACCAGCGAGAT -ACGGAATGCAAGAACCAGTACCAC -ACGGAATGCAAGAACCAGCAGAAC -ACGGAATGCAAGAACCAGGTCTAC -ACGGAATGCAAGAACCAGACGTAC -ACGGAATGCAAGAACCAGAGTGAC -ACGGAATGCAAGAACCAGCTGTAG -ACGGAATGCAAGAACCAGCCTAAG -ACGGAATGCAAGAACCAGGTTCAG -ACGGAATGCAAGAACCAGGCATAG -ACGGAATGCAAGAACCAGGACAAG -ACGGAATGCAAGAACCAGAAGCAG -ACGGAATGCAAGAACCAGCGTCAA -ACGGAATGCAAGAACCAGGCTGAA -ACGGAATGCAAGAACCAGAGTACG -ACGGAATGCAAGAACCAGATCCGA -ACGGAATGCAAGAACCAGATGGGA -ACGGAATGCAAGAACCAGGTGCAA -ACGGAATGCAAGAACCAGGAGGAA -ACGGAATGCAAGAACCAGCAGGTA -ACGGAATGCAAGAACCAGGACTCT -ACGGAATGCAAGAACCAGAGTCCT -ACGGAATGCAAGAACCAGTAAGCC -ACGGAATGCAAGAACCAGATAGCC -ACGGAATGCAAGAACCAGTAACCG -ACGGAATGCAAGAACCAGATGCCA -ACGGAATGCAAGTACGTCGGAAAC -ACGGAATGCAAGTACGTCAACACC -ACGGAATGCAAGTACGTCATCGAG -ACGGAATGCAAGTACGTCCTCCTT -ACGGAATGCAAGTACGTCCCTGTT -ACGGAATGCAAGTACGTCCGGTTT -ACGGAATGCAAGTACGTCGTGGTT -ACGGAATGCAAGTACGTCGCCTTT -ACGGAATGCAAGTACGTCGGTCTT -ACGGAATGCAAGTACGTCACGCTT -ACGGAATGCAAGTACGTCAGCGTT -ACGGAATGCAAGTACGTCTTCGTC -ACGGAATGCAAGTACGTCTCTCTC -ACGGAATGCAAGTACGTCTGGATC -ACGGAATGCAAGTACGTCCACTTC -ACGGAATGCAAGTACGTCGTACTC -ACGGAATGCAAGTACGTCGATGTC -ACGGAATGCAAGTACGTCACAGTC -ACGGAATGCAAGTACGTCTTGCTG -ACGGAATGCAAGTACGTCTCCATG -ACGGAATGCAAGTACGTCTGTGTG -ACGGAATGCAAGTACGTCCTAGTG -ACGGAATGCAAGTACGTCCATCTG -ACGGAATGCAAGTACGTCGAGTTG -ACGGAATGCAAGTACGTCAGACTG -ACGGAATGCAAGTACGTCTCGGTA -ACGGAATGCAAGTACGTCTGCCTA -ACGGAATGCAAGTACGTCCCACTA -ACGGAATGCAAGTACGTCGGAGTA -ACGGAATGCAAGTACGTCTCGTCT -ACGGAATGCAAGTACGTCTGCACT -ACGGAATGCAAGTACGTCCTGACT -ACGGAATGCAAGTACGTCCAACCT -ACGGAATGCAAGTACGTCGCTACT -ACGGAATGCAAGTACGTCGGATCT -ACGGAATGCAAGTACGTCAAGGCT -ACGGAATGCAAGTACGTCTCAACC -ACGGAATGCAAGTACGTCTGTTCC -ACGGAATGCAAGTACGTCATTCCC -ACGGAATGCAAGTACGTCTTCTCG -ACGGAATGCAAGTACGTCTAGACG -ACGGAATGCAAGTACGTCGTAACG -ACGGAATGCAAGTACGTCACTTCG -ACGGAATGCAAGTACGTCTACGCA -ACGGAATGCAAGTACGTCCTTGCA -ACGGAATGCAAGTACGTCCGAACA -ACGGAATGCAAGTACGTCCAGTCA -ACGGAATGCAAGTACGTCGATCCA -ACGGAATGCAAGTACGTCACGACA -ACGGAATGCAAGTACGTCAGCTCA -ACGGAATGCAAGTACGTCTCACGT -ACGGAATGCAAGTACGTCCGTAGT -ACGGAATGCAAGTACGTCGTCAGT -ACGGAATGCAAGTACGTCGAAGGT -ACGGAATGCAAGTACGTCAACCGT -ACGGAATGCAAGTACGTCTTGTGC -ACGGAATGCAAGTACGTCCTAAGC -ACGGAATGCAAGTACGTCACTAGC -ACGGAATGCAAGTACGTCAGATGC -ACGGAATGCAAGTACGTCTGAAGG -ACGGAATGCAAGTACGTCCAATGG -ACGGAATGCAAGTACGTCATGAGG -ACGGAATGCAAGTACGTCAATGGG -ACGGAATGCAAGTACGTCTCCTGA -ACGGAATGCAAGTACGTCTAGCGA -ACGGAATGCAAGTACGTCCACAGA -ACGGAATGCAAGTACGTCGCAAGA -ACGGAATGCAAGTACGTCGGTTGA -ACGGAATGCAAGTACGTCTCCGAT -ACGGAATGCAAGTACGTCTGGCAT -ACGGAATGCAAGTACGTCCGAGAT -ACGGAATGCAAGTACGTCTACCAC -ACGGAATGCAAGTACGTCCAGAAC -ACGGAATGCAAGTACGTCGTCTAC -ACGGAATGCAAGTACGTCACGTAC -ACGGAATGCAAGTACGTCAGTGAC -ACGGAATGCAAGTACGTCCTGTAG -ACGGAATGCAAGTACGTCCCTAAG -ACGGAATGCAAGTACGTCGTTCAG -ACGGAATGCAAGTACGTCGCATAG -ACGGAATGCAAGTACGTCGACAAG -ACGGAATGCAAGTACGTCAAGCAG -ACGGAATGCAAGTACGTCCGTCAA -ACGGAATGCAAGTACGTCGCTGAA -ACGGAATGCAAGTACGTCAGTACG -ACGGAATGCAAGTACGTCATCCGA -ACGGAATGCAAGTACGTCATGGGA -ACGGAATGCAAGTACGTCGTGCAA -ACGGAATGCAAGTACGTCGAGGAA -ACGGAATGCAAGTACGTCCAGGTA -ACGGAATGCAAGTACGTCGACTCT -ACGGAATGCAAGTACGTCAGTCCT -ACGGAATGCAAGTACGTCTAAGCC -ACGGAATGCAAGTACGTCATAGCC -ACGGAATGCAAGTACGTCTAACCG -ACGGAATGCAAGTACGTCATGCCA -ACGGAATGCAAGTACACGGGAAAC -ACGGAATGCAAGTACACGAACACC -ACGGAATGCAAGTACACGATCGAG -ACGGAATGCAAGTACACGCTCCTT -ACGGAATGCAAGTACACGCCTGTT -ACGGAATGCAAGTACACGCGGTTT -ACGGAATGCAAGTACACGGTGGTT -ACGGAATGCAAGTACACGGCCTTT -ACGGAATGCAAGTACACGGGTCTT -ACGGAATGCAAGTACACGACGCTT -ACGGAATGCAAGTACACGAGCGTT -ACGGAATGCAAGTACACGTTCGTC -ACGGAATGCAAGTACACGTCTCTC -ACGGAATGCAAGTACACGTGGATC -ACGGAATGCAAGTACACGCACTTC -ACGGAATGCAAGTACACGGTACTC -ACGGAATGCAAGTACACGGATGTC -ACGGAATGCAAGTACACGACAGTC -ACGGAATGCAAGTACACGTTGCTG -ACGGAATGCAAGTACACGTCCATG -ACGGAATGCAAGTACACGTGTGTG -ACGGAATGCAAGTACACGCTAGTG -ACGGAATGCAAGTACACGCATCTG -ACGGAATGCAAGTACACGGAGTTG -ACGGAATGCAAGTACACGAGACTG -ACGGAATGCAAGTACACGTCGGTA -ACGGAATGCAAGTACACGTGCCTA -ACGGAATGCAAGTACACGCCACTA -ACGGAATGCAAGTACACGGGAGTA -ACGGAATGCAAGTACACGTCGTCT -ACGGAATGCAAGTACACGTGCACT -ACGGAATGCAAGTACACGCTGACT -ACGGAATGCAAGTACACGCAACCT -ACGGAATGCAAGTACACGGCTACT -ACGGAATGCAAGTACACGGGATCT -ACGGAATGCAAGTACACGAAGGCT -ACGGAATGCAAGTACACGTCAACC -ACGGAATGCAAGTACACGTGTTCC -ACGGAATGCAAGTACACGATTCCC -ACGGAATGCAAGTACACGTTCTCG -ACGGAATGCAAGTACACGTAGACG -ACGGAATGCAAGTACACGGTAACG -ACGGAATGCAAGTACACGACTTCG -ACGGAATGCAAGTACACGTACGCA -ACGGAATGCAAGTACACGCTTGCA -ACGGAATGCAAGTACACGCGAACA -ACGGAATGCAAGTACACGCAGTCA -ACGGAATGCAAGTACACGGATCCA -ACGGAATGCAAGTACACGACGACA -ACGGAATGCAAGTACACGAGCTCA -ACGGAATGCAAGTACACGTCACGT -ACGGAATGCAAGTACACGCGTAGT -ACGGAATGCAAGTACACGGTCAGT -ACGGAATGCAAGTACACGGAAGGT -ACGGAATGCAAGTACACGAACCGT -ACGGAATGCAAGTACACGTTGTGC -ACGGAATGCAAGTACACGCTAAGC -ACGGAATGCAAGTACACGACTAGC -ACGGAATGCAAGTACACGAGATGC -ACGGAATGCAAGTACACGTGAAGG -ACGGAATGCAAGTACACGCAATGG -ACGGAATGCAAGTACACGATGAGG -ACGGAATGCAAGTACACGAATGGG -ACGGAATGCAAGTACACGTCCTGA -ACGGAATGCAAGTACACGTAGCGA -ACGGAATGCAAGTACACGCACAGA -ACGGAATGCAAGTACACGGCAAGA -ACGGAATGCAAGTACACGGGTTGA -ACGGAATGCAAGTACACGTCCGAT -ACGGAATGCAAGTACACGTGGCAT -ACGGAATGCAAGTACACGCGAGAT -ACGGAATGCAAGTACACGTACCAC -ACGGAATGCAAGTACACGCAGAAC -ACGGAATGCAAGTACACGGTCTAC -ACGGAATGCAAGTACACGACGTAC -ACGGAATGCAAGTACACGAGTGAC -ACGGAATGCAAGTACACGCTGTAG -ACGGAATGCAAGTACACGCCTAAG -ACGGAATGCAAGTACACGGTTCAG -ACGGAATGCAAGTACACGGCATAG -ACGGAATGCAAGTACACGGACAAG -ACGGAATGCAAGTACACGAAGCAG -ACGGAATGCAAGTACACGCGTCAA -ACGGAATGCAAGTACACGGCTGAA -ACGGAATGCAAGTACACGAGTACG -ACGGAATGCAAGTACACGATCCGA -ACGGAATGCAAGTACACGATGGGA -ACGGAATGCAAGTACACGGTGCAA -ACGGAATGCAAGTACACGGAGGAA -ACGGAATGCAAGTACACGCAGGTA -ACGGAATGCAAGTACACGGACTCT -ACGGAATGCAAGTACACGAGTCCT -ACGGAATGCAAGTACACGTAAGCC -ACGGAATGCAAGTACACGATAGCC -ACGGAATGCAAGTACACGTAACCG -ACGGAATGCAAGTACACGATGCCA -ACGGAATGCAAGGACAGTGGAAAC -ACGGAATGCAAGGACAGTAACACC -ACGGAATGCAAGGACAGTATCGAG -ACGGAATGCAAGGACAGTCTCCTT -ACGGAATGCAAGGACAGTCCTGTT -ACGGAATGCAAGGACAGTCGGTTT -ACGGAATGCAAGGACAGTGTGGTT -ACGGAATGCAAGGACAGTGCCTTT -ACGGAATGCAAGGACAGTGGTCTT -ACGGAATGCAAGGACAGTACGCTT -ACGGAATGCAAGGACAGTAGCGTT -ACGGAATGCAAGGACAGTTTCGTC -ACGGAATGCAAGGACAGTTCTCTC -ACGGAATGCAAGGACAGTTGGATC -ACGGAATGCAAGGACAGTCACTTC -ACGGAATGCAAGGACAGTGTACTC -ACGGAATGCAAGGACAGTGATGTC -ACGGAATGCAAGGACAGTACAGTC -ACGGAATGCAAGGACAGTTTGCTG -ACGGAATGCAAGGACAGTTCCATG -ACGGAATGCAAGGACAGTTGTGTG -ACGGAATGCAAGGACAGTCTAGTG -ACGGAATGCAAGGACAGTCATCTG -ACGGAATGCAAGGACAGTGAGTTG -ACGGAATGCAAGGACAGTAGACTG -ACGGAATGCAAGGACAGTTCGGTA -ACGGAATGCAAGGACAGTTGCCTA -ACGGAATGCAAGGACAGTCCACTA -ACGGAATGCAAGGACAGTGGAGTA -ACGGAATGCAAGGACAGTTCGTCT -ACGGAATGCAAGGACAGTTGCACT -ACGGAATGCAAGGACAGTCTGACT -ACGGAATGCAAGGACAGTCAACCT -ACGGAATGCAAGGACAGTGCTACT -ACGGAATGCAAGGACAGTGGATCT -ACGGAATGCAAGGACAGTAAGGCT -ACGGAATGCAAGGACAGTTCAACC -ACGGAATGCAAGGACAGTTGTTCC -ACGGAATGCAAGGACAGTATTCCC -ACGGAATGCAAGGACAGTTTCTCG -ACGGAATGCAAGGACAGTTAGACG -ACGGAATGCAAGGACAGTGTAACG -ACGGAATGCAAGGACAGTACTTCG -ACGGAATGCAAGGACAGTTACGCA -ACGGAATGCAAGGACAGTCTTGCA -ACGGAATGCAAGGACAGTCGAACA -ACGGAATGCAAGGACAGTCAGTCA -ACGGAATGCAAGGACAGTGATCCA -ACGGAATGCAAGGACAGTACGACA -ACGGAATGCAAGGACAGTAGCTCA -ACGGAATGCAAGGACAGTTCACGT -ACGGAATGCAAGGACAGTCGTAGT -ACGGAATGCAAGGACAGTGTCAGT -ACGGAATGCAAGGACAGTGAAGGT -ACGGAATGCAAGGACAGTAACCGT -ACGGAATGCAAGGACAGTTTGTGC -ACGGAATGCAAGGACAGTCTAAGC -ACGGAATGCAAGGACAGTACTAGC -ACGGAATGCAAGGACAGTAGATGC -ACGGAATGCAAGGACAGTTGAAGG -ACGGAATGCAAGGACAGTCAATGG -ACGGAATGCAAGGACAGTATGAGG -ACGGAATGCAAGGACAGTAATGGG -ACGGAATGCAAGGACAGTTCCTGA -ACGGAATGCAAGGACAGTTAGCGA -ACGGAATGCAAGGACAGTCACAGA -ACGGAATGCAAGGACAGTGCAAGA -ACGGAATGCAAGGACAGTGGTTGA -ACGGAATGCAAGGACAGTTCCGAT -ACGGAATGCAAGGACAGTTGGCAT -ACGGAATGCAAGGACAGTCGAGAT -ACGGAATGCAAGGACAGTTACCAC -ACGGAATGCAAGGACAGTCAGAAC -ACGGAATGCAAGGACAGTGTCTAC -ACGGAATGCAAGGACAGTACGTAC -ACGGAATGCAAGGACAGTAGTGAC -ACGGAATGCAAGGACAGTCTGTAG -ACGGAATGCAAGGACAGTCCTAAG -ACGGAATGCAAGGACAGTGTTCAG -ACGGAATGCAAGGACAGTGCATAG -ACGGAATGCAAGGACAGTGACAAG -ACGGAATGCAAGGACAGTAAGCAG -ACGGAATGCAAGGACAGTCGTCAA -ACGGAATGCAAGGACAGTGCTGAA -ACGGAATGCAAGGACAGTAGTACG -ACGGAATGCAAGGACAGTATCCGA -ACGGAATGCAAGGACAGTATGGGA -ACGGAATGCAAGGACAGTGTGCAA -ACGGAATGCAAGGACAGTGAGGAA -ACGGAATGCAAGGACAGTCAGGTA -ACGGAATGCAAGGACAGTGACTCT -ACGGAATGCAAGGACAGTAGTCCT -ACGGAATGCAAGGACAGTTAAGCC -ACGGAATGCAAGGACAGTATAGCC -ACGGAATGCAAGGACAGTTAACCG -ACGGAATGCAAGGACAGTATGCCA -ACGGAATGCAAGTAGCTGGGAAAC -ACGGAATGCAAGTAGCTGAACACC -ACGGAATGCAAGTAGCTGATCGAG -ACGGAATGCAAGTAGCTGCTCCTT -ACGGAATGCAAGTAGCTGCCTGTT -ACGGAATGCAAGTAGCTGCGGTTT -ACGGAATGCAAGTAGCTGGTGGTT -ACGGAATGCAAGTAGCTGGCCTTT -ACGGAATGCAAGTAGCTGGGTCTT -ACGGAATGCAAGTAGCTGACGCTT -ACGGAATGCAAGTAGCTGAGCGTT -ACGGAATGCAAGTAGCTGTTCGTC -ACGGAATGCAAGTAGCTGTCTCTC -ACGGAATGCAAGTAGCTGTGGATC -ACGGAATGCAAGTAGCTGCACTTC -ACGGAATGCAAGTAGCTGGTACTC -ACGGAATGCAAGTAGCTGGATGTC -ACGGAATGCAAGTAGCTGACAGTC -ACGGAATGCAAGTAGCTGTTGCTG -ACGGAATGCAAGTAGCTGTCCATG -ACGGAATGCAAGTAGCTGTGTGTG -ACGGAATGCAAGTAGCTGCTAGTG -ACGGAATGCAAGTAGCTGCATCTG -ACGGAATGCAAGTAGCTGGAGTTG -ACGGAATGCAAGTAGCTGAGACTG -ACGGAATGCAAGTAGCTGTCGGTA -ACGGAATGCAAGTAGCTGTGCCTA -ACGGAATGCAAGTAGCTGCCACTA -ACGGAATGCAAGTAGCTGGGAGTA -ACGGAATGCAAGTAGCTGTCGTCT -ACGGAATGCAAGTAGCTGTGCACT -ACGGAATGCAAGTAGCTGCTGACT -ACGGAATGCAAGTAGCTGCAACCT -ACGGAATGCAAGTAGCTGGCTACT -ACGGAATGCAAGTAGCTGGGATCT -ACGGAATGCAAGTAGCTGAAGGCT -ACGGAATGCAAGTAGCTGTCAACC -ACGGAATGCAAGTAGCTGTGTTCC -ACGGAATGCAAGTAGCTGATTCCC -ACGGAATGCAAGTAGCTGTTCTCG -ACGGAATGCAAGTAGCTGTAGACG -ACGGAATGCAAGTAGCTGGTAACG -ACGGAATGCAAGTAGCTGACTTCG -ACGGAATGCAAGTAGCTGTACGCA -ACGGAATGCAAGTAGCTGCTTGCA -ACGGAATGCAAGTAGCTGCGAACA -ACGGAATGCAAGTAGCTGCAGTCA -ACGGAATGCAAGTAGCTGGATCCA -ACGGAATGCAAGTAGCTGACGACA -ACGGAATGCAAGTAGCTGAGCTCA -ACGGAATGCAAGTAGCTGTCACGT -ACGGAATGCAAGTAGCTGCGTAGT -ACGGAATGCAAGTAGCTGGTCAGT -ACGGAATGCAAGTAGCTGGAAGGT -ACGGAATGCAAGTAGCTGAACCGT -ACGGAATGCAAGTAGCTGTTGTGC -ACGGAATGCAAGTAGCTGCTAAGC -ACGGAATGCAAGTAGCTGACTAGC -ACGGAATGCAAGTAGCTGAGATGC -ACGGAATGCAAGTAGCTGTGAAGG -ACGGAATGCAAGTAGCTGCAATGG -ACGGAATGCAAGTAGCTGATGAGG -ACGGAATGCAAGTAGCTGAATGGG -ACGGAATGCAAGTAGCTGTCCTGA -ACGGAATGCAAGTAGCTGTAGCGA -ACGGAATGCAAGTAGCTGCACAGA -ACGGAATGCAAGTAGCTGGCAAGA -ACGGAATGCAAGTAGCTGGGTTGA -ACGGAATGCAAGTAGCTGTCCGAT -ACGGAATGCAAGTAGCTGTGGCAT -ACGGAATGCAAGTAGCTGCGAGAT -ACGGAATGCAAGTAGCTGTACCAC -ACGGAATGCAAGTAGCTGCAGAAC -ACGGAATGCAAGTAGCTGGTCTAC -ACGGAATGCAAGTAGCTGACGTAC -ACGGAATGCAAGTAGCTGAGTGAC -ACGGAATGCAAGTAGCTGCTGTAG -ACGGAATGCAAGTAGCTGCCTAAG -ACGGAATGCAAGTAGCTGGTTCAG -ACGGAATGCAAGTAGCTGGCATAG -ACGGAATGCAAGTAGCTGGACAAG -ACGGAATGCAAGTAGCTGAAGCAG -ACGGAATGCAAGTAGCTGCGTCAA -ACGGAATGCAAGTAGCTGGCTGAA -ACGGAATGCAAGTAGCTGAGTACG -ACGGAATGCAAGTAGCTGATCCGA -ACGGAATGCAAGTAGCTGATGGGA -ACGGAATGCAAGTAGCTGGTGCAA -ACGGAATGCAAGTAGCTGGAGGAA -ACGGAATGCAAGTAGCTGCAGGTA -ACGGAATGCAAGTAGCTGGACTCT -ACGGAATGCAAGTAGCTGAGTCCT -ACGGAATGCAAGTAGCTGTAAGCC -ACGGAATGCAAGTAGCTGATAGCC -ACGGAATGCAAGTAGCTGTAACCG -ACGGAATGCAAGTAGCTGATGCCA -ACGGAATGCAAGAAGCCTGGAAAC -ACGGAATGCAAGAAGCCTAACACC -ACGGAATGCAAGAAGCCTATCGAG -ACGGAATGCAAGAAGCCTCTCCTT -ACGGAATGCAAGAAGCCTCCTGTT -ACGGAATGCAAGAAGCCTCGGTTT -ACGGAATGCAAGAAGCCTGTGGTT -ACGGAATGCAAGAAGCCTGCCTTT -ACGGAATGCAAGAAGCCTGGTCTT -ACGGAATGCAAGAAGCCTACGCTT -ACGGAATGCAAGAAGCCTAGCGTT -ACGGAATGCAAGAAGCCTTTCGTC -ACGGAATGCAAGAAGCCTTCTCTC -ACGGAATGCAAGAAGCCTTGGATC -ACGGAATGCAAGAAGCCTCACTTC -ACGGAATGCAAGAAGCCTGTACTC -ACGGAATGCAAGAAGCCTGATGTC -ACGGAATGCAAGAAGCCTACAGTC -ACGGAATGCAAGAAGCCTTTGCTG -ACGGAATGCAAGAAGCCTTCCATG -ACGGAATGCAAGAAGCCTTGTGTG -ACGGAATGCAAGAAGCCTCTAGTG -ACGGAATGCAAGAAGCCTCATCTG -ACGGAATGCAAGAAGCCTGAGTTG -ACGGAATGCAAGAAGCCTAGACTG -ACGGAATGCAAGAAGCCTTCGGTA -ACGGAATGCAAGAAGCCTTGCCTA -ACGGAATGCAAGAAGCCTCCACTA -ACGGAATGCAAGAAGCCTGGAGTA -ACGGAATGCAAGAAGCCTTCGTCT -ACGGAATGCAAGAAGCCTTGCACT -ACGGAATGCAAGAAGCCTCTGACT -ACGGAATGCAAGAAGCCTCAACCT -ACGGAATGCAAGAAGCCTGCTACT -ACGGAATGCAAGAAGCCTGGATCT -ACGGAATGCAAGAAGCCTAAGGCT -ACGGAATGCAAGAAGCCTTCAACC -ACGGAATGCAAGAAGCCTTGTTCC -ACGGAATGCAAGAAGCCTATTCCC -ACGGAATGCAAGAAGCCTTTCTCG -ACGGAATGCAAGAAGCCTTAGACG -ACGGAATGCAAGAAGCCTGTAACG -ACGGAATGCAAGAAGCCTACTTCG -ACGGAATGCAAGAAGCCTTACGCA -ACGGAATGCAAGAAGCCTCTTGCA -ACGGAATGCAAGAAGCCTCGAACA -ACGGAATGCAAGAAGCCTCAGTCA -ACGGAATGCAAGAAGCCTGATCCA -ACGGAATGCAAGAAGCCTACGACA -ACGGAATGCAAGAAGCCTAGCTCA -ACGGAATGCAAGAAGCCTTCACGT -ACGGAATGCAAGAAGCCTCGTAGT -ACGGAATGCAAGAAGCCTGTCAGT -ACGGAATGCAAGAAGCCTGAAGGT -ACGGAATGCAAGAAGCCTAACCGT -ACGGAATGCAAGAAGCCTTTGTGC -ACGGAATGCAAGAAGCCTCTAAGC -ACGGAATGCAAGAAGCCTACTAGC -ACGGAATGCAAGAAGCCTAGATGC -ACGGAATGCAAGAAGCCTTGAAGG -ACGGAATGCAAGAAGCCTCAATGG -ACGGAATGCAAGAAGCCTATGAGG -ACGGAATGCAAGAAGCCTAATGGG -ACGGAATGCAAGAAGCCTTCCTGA -ACGGAATGCAAGAAGCCTTAGCGA -ACGGAATGCAAGAAGCCTCACAGA -ACGGAATGCAAGAAGCCTGCAAGA -ACGGAATGCAAGAAGCCTGGTTGA -ACGGAATGCAAGAAGCCTTCCGAT -ACGGAATGCAAGAAGCCTTGGCAT -ACGGAATGCAAGAAGCCTCGAGAT -ACGGAATGCAAGAAGCCTTACCAC -ACGGAATGCAAGAAGCCTCAGAAC -ACGGAATGCAAGAAGCCTGTCTAC -ACGGAATGCAAGAAGCCTACGTAC -ACGGAATGCAAGAAGCCTAGTGAC -ACGGAATGCAAGAAGCCTCTGTAG -ACGGAATGCAAGAAGCCTCCTAAG -ACGGAATGCAAGAAGCCTGTTCAG -ACGGAATGCAAGAAGCCTGCATAG -ACGGAATGCAAGAAGCCTGACAAG -ACGGAATGCAAGAAGCCTAAGCAG -ACGGAATGCAAGAAGCCTCGTCAA -ACGGAATGCAAGAAGCCTGCTGAA -ACGGAATGCAAGAAGCCTAGTACG -ACGGAATGCAAGAAGCCTATCCGA -ACGGAATGCAAGAAGCCTATGGGA -ACGGAATGCAAGAAGCCTGTGCAA -ACGGAATGCAAGAAGCCTGAGGAA -ACGGAATGCAAGAAGCCTCAGGTA -ACGGAATGCAAGAAGCCTGACTCT -ACGGAATGCAAGAAGCCTAGTCCT -ACGGAATGCAAGAAGCCTTAAGCC -ACGGAATGCAAGAAGCCTATAGCC -ACGGAATGCAAGAAGCCTTAACCG -ACGGAATGCAAGAAGCCTATGCCA -ACGGAATGCAAGCAGGTTGGAAAC -ACGGAATGCAAGCAGGTTAACACC -ACGGAATGCAAGCAGGTTATCGAG -ACGGAATGCAAGCAGGTTCTCCTT -ACGGAATGCAAGCAGGTTCCTGTT -ACGGAATGCAAGCAGGTTCGGTTT -ACGGAATGCAAGCAGGTTGTGGTT -ACGGAATGCAAGCAGGTTGCCTTT -ACGGAATGCAAGCAGGTTGGTCTT -ACGGAATGCAAGCAGGTTACGCTT -ACGGAATGCAAGCAGGTTAGCGTT -ACGGAATGCAAGCAGGTTTTCGTC -ACGGAATGCAAGCAGGTTTCTCTC -ACGGAATGCAAGCAGGTTTGGATC -ACGGAATGCAAGCAGGTTCACTTC -ACGGAATGCAAGCAGGTTGTACTC -ACGGAATGCAAGCAGGTTGATGTC -ACGGAATGCAAGCAGGTTACAGTC -ACGGAATGCAAGCAGGTTTTGCTG -ACGGAATGCAAGCAGGTTTCCATG -ACGGAATGCAAGCAGGTTTGTGTG -ACGGAATGCAAGCAGGTTCTAGTG -ACGGAATGCAAGCAGGTTCATCTG -ACGGAATGCAAGCAGGTTGAGTTG -ACGGAATGCAAGCAGGTTAGACTG -ACGGAATGCAAGCAGGTTTCGGTA -ACGGAATGCAAGCAGGTTTGCCTA -ACGGAATGCAAGCAGGTTCCACTA -ACGGAATGCAAGCAGGTTGGAGTA -ACGGAATGCAAGCAGGTTTCGTCT -ACGGAATGCAAGCAGGTTTGCACT -ACGGAATGCAAGCAGGTTCTGACT -ACGGAATGCAAGCAGGTTCAACCT -ACGGAATGCAAGCAGGTTGCTACT -ACGGAATGCAAGCAGGTTGGATCT -ACGGAATGCAAGCAGGTTAAGGCT -ACGGAATGCAAGCAGGTTTCAACC -ACGGAATGCAAGCAGGTTTGTTCC -ACGGAATGCAAGCAGGTTATTCCC -ACGGAATGCAAGCAGGTTTTCTCG -ACGGAATGCAAGCAGGTTTAGACG -ACGGAATGCAAGCAGGTTGTAACG -ACGGAATGCAAGCAGGTTACTTCG -ACGGAATGCAAGCAGGTTTACGCA -ACGGAATGCAAGCAGGTTCTTGCA -ACGGAATGCAAGCAGGTTCGAACA -ACGGAATGCAAGCAGGTTCAGTCA -ACGGAATGCAAGCAGGTTGATCCA -ACGGAATGCAAGCAGGTTACGACA -ACGGAATGCAAGCAGGTTAGCTCA -ACGGAATGCAAGCAGGTTTCACGT -ACGGAATGCAAGCAGGTTCGTAGT -ACGGAATGCAAGCAGGTTGTCAGT -ACGGAATGCAAGCAGGTTGAAGGT -ACGGAATGCAAGCAGGTTAACCGT -ACGGAATGCAAGCAGGTTTTGTGC -ACGGAATGCAAGCAGGTTCTAAGC -ACGGAATGCAAGCAGGTTACTAGC -ACGGAATGCAAGCAGGTTAGATGC -ACGGAATGCAAGCAGGTTTGAAGG -ACGGAATGCAAGCAGGTTCAATGG -ACGGAATGCAAGCAGGTTATGAGG -ACGGAATGCAAGCAGGTTAATGGG -ACGGAATGCAAGCAGGTTTCCTGA -ACGGAATGCAAGCAGGTTTAGCGA -ACGGAATGCAAGCAGGTTCACAGA -ACGGAATGCAAGCAGGTTGCAAGA -ACGGAATGCAAGCAGGTTGGTTGA -ACGGAATGCAAGCAGGTTTCCGAT -ACGGAATGCAAGCAGGTTTGGCAT -ACGGAATGCAAGCAGGTTCGAGAT -ACGGAATGCAAGCAGGTTTACCAC -ACGGAATGCAAGCAGGTTCAGAAC -ACGGAATGCAAGCAGGTTGTCTAC -ACGGAATGCAAGCAGGTTACGTAC -ACGGAATGCAAGCAGGTTAGTGAC -ACGGAATGCAAGCAGGTTCTGTAG -ACGGAATGCAAGCAGGTTCCTAAG -ACGGAATGCAAGCAGGTTGTTCAG -ACGGAATGCAAGCAGGTTGCATAG -ACGGAATGCAAGCAGGTTGACAAG -ACGGAATGCAAGCAGGTTAAGCAG -ACGGAATGCAAGCAGGTTCGTCAA -ACGGAATGCAAGCAGGTTGCTGAA -ACGGAATGCAAGCAGGTTAGTACG -ACGGAATGCAAGCAGGTTATCCGA -ACGGAATGCAAGCAGGTTATGGGA -ACGGAATGCAAGCAGGTTGTGCAA -ACGGAATGCAAGCAGGTTGAGGAA -ACGGAATGCAAGCAGGTTCAGGTA -ACGGAATGCAAGCAGGTTGACTCT -ACGGAATGCAAGCAGGTTAGTCCT -ACGGAATGCAAGCAGGTTTAAGCC -ACGGAATGCAAGCAGGTTATAGCC -ACGGAATGCAAGCAGGTTTAACCG -ACGGAATGCAAGCAGGTTATGCCA -ACGGAATGCAAGTAGGCAGGAAAC -ACGGAATGCAAGTAGGCAAACACC -ACGGAATGCAAGTAGGCAATCGAG -ACGGAATGCAAGTAGGCACTCCTT -ACGGAATGCAAGTAGGCACCTGTT -ACGGAATGCAAGTAGGCACGGTTT -ACGGAATGCAAGTAGGCAGTGGTT -ACGGAATGCAAGTAGGCAGCCTTT -ACGGAATGCAAGTAGGCAGGTCTT -ACGGAATGCAAGTAGGCAACGCTT -ACGGAATGCAAGTAGGCAAGCGTT -ACGGAATGCAAGTAGGCATTCGTC -ACGGAATGCAAGTAGGCATCTCTC -ACGGAATGCAAGTAGGCATGGATC -ACGGAATGCAAGTAGGCACACTTC -ACGGAATGCAAGTAGGCAGTACTC -ACGGAATGCAAGTAGGCAGATGTC -ACGGAATGCAAGTAGGCAACAGTC -ACGGAATGCAAGTAGGCATTGCTG -ACGGAATGCAAGTAGGCATCCATG -ACGGAATGCAAGTAGGCATGTGTG -ACGGAATGCAAGTAGGCACTAGTG -ACGGAATGCAAGTAGGCACATCTG -ACGGAATGCAAGTAGGCAGAGTTG -ACGGAATGCAAGTAGGCAAGACTG -ACGGAATGCAAGTAGGCATCGGTA -ACGGAATGCAAGTAGGCATGCCTA -ACGGAATGCAAGTAGGCACCACTA -ACGGAATGCAAGTAGGCAGGAGTA -ACGGAATGCAAGTAGGCATCGTCT -ACGGAATGCAAGTAGGCATGCACT -ACGGAATGCAAGTAGGCACTGACT -ACGGAATGCAAGTAGGCACAACCT -ACGGAATGCAAGTAGGCAGCTACT -ACGGAATGCAAGTAGGCAGGATCT -ACGGAATGCAAGTAGGCAAAGGCT -ACGGAATGCAAGTAGGCATCAACC -ACGGAATGCAAGTAGGCATGTTCC -ACGGAATGCAAGTAGGCAATTCCC -ACGGAATGCAAGTAGGCATTCTCG -ACGGAATGCAAGTAGGCATAGACG -ACGGAATGCAAGTAGGCAGTAACG -ACGGAATGCAAGTAGGCAACTTCG -ACGGAATGCAAGTAGGCATACGCA -ACGGAATGCAAGTAGGCACTTGCA -ACGGAATGCAAGTAGGCACGAACA -ACGGAATGCAAGTAGGCACAGTCA -ACGGAATGCAAGTAGGCAGATCCA -ACGGAATGCAAGTAGGCAACGACA -ACGGAATGCAAGTAGGCAAGCTCA -ACGGAATGCAAGTAGGCATCACGT -ACGGAATGCAAGTAGGCACGTAGT -ACGGAATGCAAGTAGGCAGTCAGT -ACGGAATGCAAGTAGGCAGAAGGT -ACGGAATGCAAGTAGGCAAACCGT -ACGGAATGCAAGTAGGCATTGTGC -ACGGAATGCAAGTAGGCACTAAGC -ACGGAATGCAAGTAGGCAACTAGC -ACGGAATGCAAGTAGGCAAGATGC -ACGGAATGCAAGTAGGCATGAAGG -ACGGAATGCAAGTAGGCACAATGG -ACGGAATGCAAGTAGGCAATGAGG -ACGGAATGCAAGTAGGCAAATGGG -ACGGAATGCAAGTAGGCATCCTGA -ACGGAATGCAAGTAGGCATAGCGA -ACGGAATGCAAGTAGGCACACAGA -ACGGAATGCAAGTAGGCAGCAAGA -ACGGAATGCAAGTAGGCAGGTTGA -ACGGAATGCAAGTAGGCATCCGAT -ACGGAATGCAAGTAGGCATGGCAT -ACGGAATGCAAGTAGGCACGAGAT -ACGGAATGCAAGTAGGCATACCAC -ACGGAATGCAAGTAGGCACAGAAC -ACGGAATGCAAGTAGGCAGTCTAC -ACGGAATGCAAGTAGGCAACGTAC -ACGGAATGCAAGTAGGCAAGTGAC -ACGGAATGCAAGTAGGCACTGTAG -ACGGAATGCAAGTAGGCACCTAAG -ACGGAATGCAAGTAGGCAGTTCAG -ACGGAATGCAAGTAGGCAGCATAG -ACGGAATGCAAGTAGGCAGACAAG -ACGGAATGCAAGTAGGCAAAGCAG -ACGGAATGCAAGTAGGCACGTCAA -ACGGAATGCAAGTAGGCAGCTGAA -ACGGAATGCAAGTAGGCAAGTACG -ACGGAATGCAAGTAGGCAATCCGA -ACGGAATGCAAGTAGGCAATGGGA -ACGGAATGCAAGTAGGCAGTGCAA -ACGGAATGCAAGTAGGCAGAGGAA -ACGGAATGCAAGTAGGCACAGGTA -ACGGAATGCAAGTAGGCAGACTCT -ACGGAATGCAAGTAGGCAAGTCCT -ACGGAATGCAAGTAGGCATAAGCC -ACGGAATGCAAGTAGGCAATAGCC -ACGGAATGCAAGTAGGCATAACCG -ACGGAATGCAAGTAGGCAATGCCA -ACGGAATGCAAGAAGGACGGAAAC -ACGGAATGCAAGAAGGACAACACC -ACGGAATGCAAGAAGGACATCGAG -ACGGAATGCAAGAAGGACCTCCTT -ACGGAATGCAAGAAGGACCCTGTT -ACGGAATGCAAGAAGGACCGGTTT -ACGGAATGCAAGAAGGACGTGGTT -ACGGAATGCAAGAAGGACGCCTTT -ACGGAATGCAAGAAGGACGGTCTT -ACGGAATGCAAGAAGGACACGCTT -ACGGAATGCAAGAAGGACAGCGTT -ACGGAATGCAAGAAGGACTTCGTC -ACGGAATGCAAGAAGGACTCTCTC -ACGGAATGCAAGAAGGACTGGATC -ACGGAATGCAAGAAGGACCACTTC -ACGGAATGCAAGAAGGACGTACTC -ACGGAATGCAAGAAGGACGATGTC -ACGGAATGCAAGAAGGACACAGTC -ACGGAATGCAAGAAGGACTTGCTG -ACGGAATGCAAGAAGGACTCCATG -ACGGAATGCAAGAAGGACTGTGTG -ACGGAATGCAAGAAGGACCTAGTG -ACGGAATGCAAGAAGGACCATCTG -ACGGAATGCAAGAAGGACGAGTTG -ACGGAATGCAAGAAGGACAGACTG -ACGGAATGCAAGAAGGACTCGGTA -ACGGAATGCAAGAAGGACTGCCTA -ACGGAATGCAAGAAGGACCCACTA -ACGGAATGCAAGAAGGACGGAGTA -ACGGAATGCAAGAAGGACTCGTCT -ACGGAATGCAAGAAGGACTGCACT -ACGGAATGCAAGAAGGACCTGACT -ACGGAATGCAAGAAGGACCAACCT -ACGGAATGCAAGAAGGACGCTACT -ACGGAATGCAAGAAGGACGGATCT -ACGGAATGCAAGAAGGACAAGGCT -ACGGAATGCAAGAAGGACTCAACC -ACGGAATGCAAGAAGGACTGTTCC -ACGGAATGCAAGAAGGACATTCCC -ACGGAATGCAAGAAGGACTTCTCG -ACGGAATGCAAGAAGGACTAGACG -ACGGAATGCAAGAAGGACGTAACG -ACGGAATGCAAGAAGGACACTTCG -ACGGAATGCAAGAAGGACTACGCA -ACGGAATGCAAGAAGGACCTTGCA -ACGGAATGCAAGAAGGACCGAACA -ACGGAATGCAAGAAGGACCAGTCA -ACGGAATGCAAGAAGGACGATCCA -ACGGAATGCAAGAAGGACACGACA -ACGGAATGCAAGAAGGACAGCTCA -ACGGAATGCAAGAAGGACTCACGT -ACGGAATGCAAGAAGGACCGTAGT -ACGGAATGCAAGAAGGACGTCAGT -ACGGAATGCAAGAAGGACGAAGGT -ACGGAATGCAAGAAGGACAACCGT -ACGGAATGCAAGAAGGACTTGTGC -ACGGAATGCAAGAAGGACCTAAGC -ACGGAATGCAAGAAGGACACTAGC -ACGGAATGCAAGAAGGACAGATGC -ACGGAATGCAAGAAGGACTGAAGG -ACGGAATGCAAGAAGGACCAATGG -ACGGAATGCAAGAAGGACATGAGG -ACGGAATGCAAGAAGGACAATGGG -ACGGAATGCAAGAAGGACTCCTGA -ACGGAATGCAAGAAGGACTAGCGA -ACGGAATGCAAGAAGGACCACAGA -ACGGAATGCAAGAAGGACGCAAGA -ACGGAATGCAAGAAGGACGGTTGA -ACGGAATGCAAGAAGGACTCCGAT -ACGGAATGCAAGAAGGACTGGCAT -ACGGAATGCAAGAAGGACCGAGAT -ACGGAATGCAAGAAGGACTACCAC -ACGGAATGCAAGAAGGACCAGAAC -ACGGAATGCAAGAAGGACGTCTAC -ACGGAATGCAAGAAGGACACGTAC -ACGGAATGCAAGAAGGACAGTGAC -ACGGAATGCAAGAAGGACCTGTAG -ACGGAATGCAAGAAGGACCCTAAG -ACGGAATGCAAGAAGGACGTTCAG -ACGGAATGCAAGAAGGACGCATAG -ACGGAATGCAAGAAGGACGACAAG -ACGGAATGCAAGAAGGACAAGCAG -ACGGAATGCAAGAAGGACCGTCAA -ACGGAATGCAAGAAGGACGCTGAA -ACGGAATGCAAGAAGGACAGTACG -ACGGAATGCAAGAAGGACATCCGA -ACGGAATGCAAGAAGGACATGGGA -ACGGAATGCAAGAAGGACGTGCAA -ACGGAATGCAAGAAGGACGAGGAA -ACGGAATGCAAGAAGGACCAGGTA -ACGGAATGCAAGAAGGACGACTCT -ACGGAATGCAAGAAGGACAGTCCT -ACGGAATGCAAGAAGGACTAAGCC -ACGGAATGCAAGAAGGACATAGCC -ACGGAATGCAAGAAGGACTAACCG -ACGGAATGCAAGAAGGACATGCCA -ACGGAATGCAAGCAGAAGGGAAAC -ACGGAATGCAAGCAGAAGAACACC -ACGGAATGCAAGCAGAAGATCGAG -ACGGAATGCAAGCAGAAGCTCCTT -ACGGAATGCAAGCAGAAGCCTGTT -ACGGAATGCAAGCAGAAGCGGTTT -ACGGAATGCAAGCAGAAGGTGGTT -ACGGAATGCAAGCAGAAGGCCTTT -ACGGAATGCAAGCAGAAGGGTCTT -ACGGAATGCAAGCAGAAGACGCTT -ACGGAATGCAAGCAGAAGAGCGTT -ACGGAATGCAAGCAGAAGTTCGTC -ACGGAATGCAAGCAGAAGTCTCTC -ACGGAATGCAAGCAGAAGTGGATC -ACGGAATGCAAGCAGAAGCACTTC -ACGGAATGCAAGCAGAAGGTACTC -ACGGAATGCAAGCAGAAGGATGTC -ACGGAATGCAAGCAGAAGACAGTC -ACGGAATGCAAGCAGAAGTTGCTG -ACGGAATGCAAGCAGAAGTCCATG -ACGGAATGCAAGCAGAAGTGTGTG -ACGGAATGCAAGCAGAAGCTAGTG -ACGGAATGCAAGCAGAAGCATCTG -ACGGAATGCAAGCAGAAGGAGTTG -ACGGAATGCAAGCAGAAGAGACTG -ACGGAATGCAAGCAGAAGTCGGTA -ACGGAATGCAAGCAGAAGTGCCTA -ACGGAATGCAAGCAGAAGCCACTA -ACGGAATGCAAGCAGAAGGGAGTA -ACGGAATGCAAGCAGAAGTCGTCT -ACGGAATGCAAGCAGAAGTGCACT -ACGGAATGCAAGCAGAAGCTGACT -ACGGAATGCAAGCAGAAGCAACCT -ACGGAATGCAAGCAGAAGGCTACT -ACGGAATGCAAGCAGAAGGGATCT -ACGGAATGCAAGCAGAAGAAGGCT -ACGGAATGCAAGCAGAAGTCAACC -ACGGAATGCAAGCAGAAGTGTTCC -ACGGAATGCAAGCAGAAGATTCCC -ACGGAATGCAAGCAGAAGTTCTCG -ACGGAATGCAAGCAGAAGTAGACG -ACGGAATGCAAGCAGAAGGTAACG -ACGGAATGCAAGCAGAAGACTTCG -ACGGAATGCAAGCAGAAGTACGCA -ACGGAATGCAAGCAGAAGCTTGCA -ACGGAATGCAAGCAGAAGCGAACA -ACGGAATGCAAGCAGAAGCAGTCA -ACGGAATGCAAGCAGAAGGATCCA -ACGGAATGCAAGCAGAAGACGACA -ACGGAATGCAAGCAGAAGAGCTCA -ACGGAATGCAAGCAGAAGTCACGT -ACGGAATGCAAGCAGAAGCGTAGT -ACGGAATGCAAGCAGAAGGTCAGT -ACGGAATGCAAGCAGAAGGAAGGT -ACGGAATGCAAGCAGAAGAACCGT -ACGGAATGCAAGCAGAAGTTGTGC -ACGGAATGCAAGCAGAAGCTAAGC -ACGGAATGCAAGCAGAAGACTAGC -ACGGAATGCAAGCAGAAGAGATGC -ACGGAATGCAAGCAGAAGTGAAGG -ACGGAATGCAAGCAGAAGCAATGG -ACGGAATGCAAGCAGAAGATGAGG -ACGGAATGCAAGCAGAAGAATGGG -ACGGAATGCAAGCAGAAGTCCTGA -ACGGAATGCAAGCAGAAGTAGCGA -ACGGAATGCAAGCAGAAGCACAGA -ACGGAATGCAAGCAGAAGGCAAGA -ACGGAATGCAAGCAGAAGGGTTGA -ACGGAATGCAAGCAGAAGTCCGAT -ACGGAATGCAAGCAGAAGTGGCAT -ACGGAATGCAAGCAGAAGCGAGAT -ACGGAATGCAAGCAGAAGTACCAC -ACGGAATGCAAGCAGAAGCAGAAC -ACGGAATGCAAGCAGAAGGTCTAC -ACGGAATGCAAGCAGAAGACGTAC -ACGGAATGCAAGCAGAAGAGTGAC -ACGGAATGCAAGCAGAAGCTGTAG -ACGGAATGCAAGCAGAAGCCTAAG -ACGGAATGCAAGCAGAAGGTTCAG -ACGGAATGCAAGCAGAAGGCATAG -ACGGAATGCAAGCAGAAGGACAAG -ACGGAATGCAAGCAGAAGAAGCAG -ACGGAATGCAAGCAGAAGCGTCAA -ACGGAATGCAAGCAGAAGGCTGAA -ACGGAATGCAAGCAGAAGAGTACG -ACGGAATGCAAGCAGAAGATCCGA -ACGGAATGCAAGCAGAAGATGGGA -ACGGAATGCAAGCAGAAGGTGCAA -ACGGAATGCAAGCAGAAGGAGGAA -ACGGAATGCAAGCAGAAGCAGGTA -ACGGAATGCAAGCAGAAGGACTCT -ACGGAATGCAAGCAGAAGAGTCCT -ACGGAATGCAAGCAGAAGTAAGCC -ACGGAATGCAAGCAGAAGATAGCC -ACGGAATGCAAGCAGAAGTAACCG -ACGGAATGCAAGCAGAAGATGCCA -ACGGAATGCAAGCAACGTGGAAAC -ACGGAATGCAAGCAACGTAACACC -ACGGAATGCAAGCAACGTATCGAG -ACGGAATGCAAGCAACGTCTCCTT -ACGGAATGCAAGCAACGTCCTGTT -ACGGAATGCAAGCAACGTCGGTTT -ACGGAATGCAAGCAACGTGTGGTT -ACGGAATGCAAGCAACGTGCCTTT -ACGGAATGCAAGCAACGTGGTCTT -ACGGAATGCAAGCAACGTACGCTT -ACGGAATGCAAGCAACGTAGCGTT -ACGGAATGCAAGCAACGTTTCGTC -ACGGAATGCAAGCAACGTTCTCTC -ACGGAATGCAAGCAACGTTGGATC -ACGGAATGCAAGCAACGTCACTTC -ACGGAATGCAAGCAACGTGTACTC -ACGGAATGCAAGCAACGTGATGTC -ACGGAATGCAAGCAACGTACAGTC -ACGGAATGCAAGCAACGTTTGCTG -ACGGAATGCAAGCAACGTTCCATG -ACGGAATGCAAGCAACGTTGTGTG -ACGGAATGCAAGCAACGTCTAGTG -ACGGAATGCAAGCAACGTCATCTG -ACGGAATGCAAGCAACGTGAGTTG -ACGGAATGCAAGCAACGTAGACTG -ACGGAATGCAAGCAACGTTCGGTA -ACGGAATGCAAGCAACGTTGCCTA -ACGGAATGCAAGCAACGTCCACTA -ACGGAATGCAAGCAACGTGGAGTA -ACGGAATGCAAGCAACGTTCGTCT -ACGGAATGCAAGCAACGTTGCACT -ACGGAATGCAAGCAACGTCTGACT -ACGGAATGCAAGCAACGTCAACCT -ACGGAATGCAAGCAACGTGCTACT -ACGGAATGCAAGCAACGTGGATCT -ACGGAATGCAAGCAACGTAAGGCT -ACGGAATGCAAGCAACGTTCAACC -ACGGAATGCAAGCAACGTTGTTCC -ACGGAATGCAAGCAACGTATTCCC -ACGGAATGCAAGCAACGTTTCTCG -ACGGAATGCAAGCAACGTTAGACG -ACGGAATGCAAGCAACGTGTAACG -ACGGAATGCAAGCAACGTACTTCG -ACGGAATGCAAGCAACGTTACGCA -ACGGAATGCAAGCAACGTCTTGCA -ACGGAATGCAAGCAACGTCGAACA -ACGGAATGCAAGCAACGTCAGTCA -ACGGAATGCAAGCAACGTGATCCA -ACGGAATGCAAGCAACGTACGACA -ACGGAATGCAAGCAACGTAGCTCA -ACGGAATGCAAGCAACGTTCACGT -ACGGAATGCAAGCAACGTCGTAGT -ACGGAATGCAAGCAACGTGTCAGT -ACGGAATGCAAGCAACGTGAAGGT -ACGGAATGCAAGCAACGTAACCGT -ACGGAATGCAAGCAACGTTTGTGC -ACGGAATGCAAGCAACGTCTAAGC -ACGGAATGCAAGCAACGTACTAGC -ACGGAATGCAAGCAACGTAGATGC -ACGGAATGCAAGCAACGTTGAAGG -ACGGAATGCAAGCAACGTCAATGG -ACGGAATGCAAGCAACGTATGAGG -ACGGAATGCAAGCAACGTAATGGG -ACGGAATGCAAGCAACGTTCCTGA -ACGGAATGCAAGCAACGTTAGCGA -ACGGAATGCAAGCAACGTCACAGA -ACGGAATGCAAGCAACGTGCAAGA -ACGGAATGCAAGCAACGTGGTTGA -ACGGAATGCAAGCAACGTTCCGAT -ACGGAATGCAAGCAACGTTGGCAT -ACGGAATGCAAGCAACGTCGAGAT -ACGGAATGCAAGCAACGTTACCAC -ACGGAATGCAAGCAACGTCAGAAC -ACGGAATGCAAGCAACGTGTCTAC -ACGGAATGCAAGCAACGTACGTAC -ACGGAATGCAAGCAACGTAGTGAC -ACGGAATGCAAGCAACGTCTGTAG -ACGGAATGCAAGCAACGTCCTAAG -ACGGAATGCAAGCAACGTGTTCAG -ACGGAATGCAAGCAACGTGCATAG -ACGGAATGCAAGCAACGTGACAAG -ACGGAATGCAAGCAACGTAAGCAG -ACGGAATGCAAGCAACGTCGTCAA -ACGGAATGCAAGCAACGTGCTGAA -ACGGAATGCAAGCAACGTAGTACG -ACGGAATGCAAGCAACGTATCCGA -ACGGAATGCAAGCAACGTATGGGA -ACGGAATGCAAGCAACGTGTGCAA -ACGGAATGCAAGCAACGTGAGGAA -ACGGAATGCAAGCAACGTCAGGTA -ACGGAATGCAAGCAACGTGACTCT -ACGGAATGCAAGCAACGTAGTCCT -ACGGAATGCAAGCAACGTTAAGCC -ACGGAATGCAAGCAACGTATAGCC -ACGGAATGCAAGCAACGTTAACCG -ACGGAATGCAAGCAACGTATGCCA -ACGGAATGCAAGGAAGCTGGAAAC -ACGGAATGCAAGGAAGCTAACACC -ACGGAATGCAAGGAAGCTATCGAG -ACGGAATGCAAGGAAGCTCTCCTT -ACGGAATGCAAGGAAGCTCCTGTT -ACGGAATGCAAGGAAGCTCGGTTT -ACGGAATGCAAGGAAGCTGTGGTT -ACGGAATGCAAGGAAGCTGCCTTT -ACGGAATGCAAGGAAGCTGGTCTT -ACGGAATGCAAGGAAGCTACGCTT -ACGGAATGCAAGGAAGCTAGCGTT -ACGGAATGCAAGGAAGCTTTCGTC -ACGGAATGCAAGGAAGCTTCTCTC -ACGGAATGCAAGGAAGCTTGGATC -ACGGAATGCAAGGAAGCTCACTTC -ACGGAATGCAAGGAAGCTGTACTC -ACGGAATGCAAGGAAGCTGATGTC -ACGGAATGCAAGGAAGCTACAGTC -ACGGAATGCAAGGAAGCTTTGCTG -ACGGAATGCAAGGAAGCTTCCATG -ACGGAATGCAAGGAAGCTTGTGTG -ACGGAATGCAAGGAAGCTCTAGTG -ACGGAATGCAAGGAAGCTCATCTG -ACGGAATGCAAGGAAGCTGAGTTG -ACGGAATGCAAGGAAGCTAGACTG -ACGGAATGCAAGGAAGCTTCGGTA -ACGGAATGCAAGGAAGCTTGCCTA -ACGGAATGCAAGGAAGCTCCACTA -ACGGAATGCAAGGAAGCTGGAGTA -ACGGAATGCAAGGAAGCTTCGTCT -ACGGAATGCAAGGAAGCTTGCACT -ACGGAATGCAAGGAAGCTCTGACT -ACGGAATGCAAGGAAGCTCAACCT -ACGGAATGCAAGGAAGCTGCTACT -ACGGAATGCAAGGAAGCTGGATCT -ACGGAATGCAAGGAAGCTAAGGCT -ACGGAATGCAAGGAAGCTTCAACC -ACGGAATGCAAGGAAGCTTGTTCC -ACGGAATGCAAGGAAGCTATTCCC -ACGGAATGCAAGGAAGCTTTCTCG -ACGGAATGCAAGGAAGCTTAGACG -ACGGAATGCAAGGAAGCTGTAACG -ACGGAATGCAAGGAAGCTACTTCG -ACGGAATGCAAGGAAGCTTACGCA -ACGGAATGCAAGGAAGCTCTTGCA -ACGGAATGCAAGGAAGCTCGAACA -ACGGAATGCAAGGAAGCTCAGTCA -ACGGAATGCAAGGAAGCTGATCCA -ACGGAATGCAAGGAAGCTACGACA -ACGGAATGCAAGGAAGCTAGCTCA -ACGGAATGCAAGGAAGCTTCACGT -ACGGAATGCAAGGAAGCTCGTAGT -ACGGAATGCAAGGAAGCTGTCAGT -ACGGAATGCAAGGAAGCTGAAGGT -ACGGAATGCAAGGAAGCTAACCGT -ACGGAATGCAAGGAAGCTTTGTGC -ACGGAATGCAAGGAAGCTCTAAGC -ACGGAATGCAAGGAAGCTACTAGC -ACGGAATGCAAGGAAGCTAGATGC -ACGGAATGCAAGGAAGCTTGAAGG -ACGGAATGCAAGGAAGCTCAATGG -ACGGAATGCAAGGAAGCTATGAGG -ACGGAATGCAAGGAAGCTAATGGG -ACGGAATGCAAGGAAGCTTCCTGA -ACGGAATGCAAGGAAGCTTAGCGA -ACGGAATGCAAGGAAGCTCACAGA -ACGGAATGCAAGGAAGCTGCAAGA -ACGGAATGCAAGGAAGCTGGTTGA -ACGGAATGCAAGGAAGCTTCCGAT -ACGGAATGCAAGGAAGCTTGGCAT -ACGGAATGCAAGGAAGCTCGAGAT -ACGGAATGCAAGGAAGCTTACCAC -ACGGAATGCAAGGAAGCTCAGAAC -ACGGAATGCAAGGAAGCTGTCTAC -ACGGAATGCAAGGAAGCTACGTAC -ACGGAATGCAAGGAAGCTAGTGAC -ACGGAATGCAAGGAAGCTCTGTAG -ACGGAATGCAAGGAAGCTCCTAAG -ACGGAATGCAAGGAAGCTGTTCAG -ACGGAATGCAAGGAAGCTGCATAG -ACGGAATGCAAGGAAGCTGACAAG -ACGGAATGCAAGGAAGCTAAGCAG -ACGGAATGCAAGGAAGCTCGTCAA -ACGGAATGCAAGGAAGCTGCTGAA -ACGGAATGCAAGGAAGCTAGTACG -ACGGAATGCAAGGAAGCTATCCGA -ACGGAATGCAAGGAAGCTATGGGA -ACGGAATGCAAGGAAGCTGTGCAA -ACGGAATGCAAGGAAGCTGAGGAA -ACGGAATGCAAGGAAGCTCAGGTA -ACGGAATGCAAGGAAGCTGACTCT -ACGGAATGCAAGGAAGCTAGTCCT -ACGGAATGCAAGGAAGCTTAAGCC -ACGGAATGCAAGGAAGCTATAGCC -ACGGAATGCAAGGAAGCTTAACCG -ACGGAATGCAAGGAAGCTATGCCA -ACGGAATGCAAGACGAGTGGAAAC -ACGGAATGCAAGACGAGTAACACC -ACGGAATGCAAGACGAGTATCGAG -ACGGAATGCAAGACGAGTCTCCTT -ACGGAATGCAAGACGAGTCCTGTT -ACGGAATGCAAGACGAGTCGGTTT -ACGGAATGCAAGACGAGTGTGGTT -ACGGAATGCAAGACGAGTGCCTTT -ACGGAATGCAAGACGAGTGGTCTT -ACGGAATGCAAGACGAGTACGCTT -ACGGAATGCAAGACGAGTAGCGTT -ACGGAATGCAAGACGAGTTTCGTC -ACGGAATGCAAGACGAGTTCTCTC -ACGGAATGCAAGACGAGTTGGATC -ACGGAATGCAAGACGAGTCACTTC -ACGGAATGCAAGACGAGTGTACTC -ACGGAATGCAAGACGAGTGATGTC -ACGGAATGCAAGACGAGTACAGTC -ACGGAATGCAAGACGAGTTTGCTG -ACGGAATGCAAGACGAGTTCCATG -ACGGAATGCAAGACGAGTTGTGTG -ACGGAATGCAAGACGAGTCTAGTG -ACGGAATGCAAGACGAGTCATCTG -ACGGAATGCAAGACGAGTGAGTTG -ACGGAATGCAAGACGAGTAGACTG -ACGGAATGCAAGACGAGTTCGGTA -ACGGAATGCAAGACGAGTTGCCTA -ACGGAATGCAAGACGAGTCCACTA -ACGGAATGCAAGACGAGTGGAGTA -ACGGAATGCAAGACGAGTTCGTCT -ACGGAATGCAAGACGAGTTGCACT -ACGGAATGCAAGACGAGTCTGACT -ACGGAATGCAAGACGAGTCAACCT -ACGGAATGCAAGACGAGTGCTACT -ACGGAATGCAAGACGAGTGGATCT -ACGGAATGCAAGACGAGTAAGGCT -ACGGAATGCAAGACGAGTTCAACC -ACGGAATGCAAGACGAGTTGTTCC -ACGGAATGCAAGACGAGTATTCCC -ACGGAATGCAAGACGAGTTTCTCG -ACGGAATGCAAGACGAGTTAGACG -ACGGAATGCAAGACGAGTGTAACG -ACGGAATGCAAGACGAGTACTTCG -ACGGAATGCAAGACGAGTTACGCA -ACGGAATGCAAGACGAGTCTTGCA -ACGGAATGCAAGACGAGTCGAACA -ACGGAATGCAAGACGAGTCAGTCA -ACGGAATGCAAGACGAGTGATCCA -ACGGAATGCAAGACGAGTACGACA -ACGGAATGCAAGACGAGTAGCTCA -ACGGAATGCAAGACGAGTTCACGT -ACGGAATGCAAGACGAGTCGTAGT -ACGGAATGCAAGACGAGTGTCAGT -ACGGAATGCAAGACGAGTGAAGGT -ACGGAATGCAAGACGAGTAACCGT -ACGGAATGCAAGACGAGTTTGTGC -ACGGAATGCAAGACGAGTCTAAGC -ACGGAATGCAAGACGAGTACTAGC -ACGGAATGCAAGACGAGTAGATGC -ACGGAATGCAAGACGAGTTGAAGG -ACGGAATGCAAGACGAGTCAATGG -ACGGAATGCAAGACGAGTATGAGG -ACGGAATGCAAGACGAGTAATGGG -ACGGAATGCAAGACGAGTTCCTGA -ACGGAATGCAAGACGAGTTAGCGA -ACGGAATGCAAGACGAGTCACAGA -ACGGAATGCAAGACGAGTGCAAGA -ACGGAATGCAAGACGAGTGGTTGA -ACGGAATGCAAGACGAGTTCCGAT -ACGGAATGCAAGACGAGTTGGCAT -ACGGAATGCAAGACGAGTCGAGAT -ACGGAATGCAAGACGAGTTACCAC -ACGGAATGCAAGACGAGTCAGAAC -ACGGAATGCAAGACGAGTGTCTAC -ACGGAATGCAAGACGAGTACGTAC -ACGGAATGCAAGACGAGTAGTGAC -ACGGAATGCAAGACGAGTCTGTAG -ACGGAATGCAAGACGAGTCCTAAG -ACGGAATGCAAGACGAGTGTTCAG -ACGGAATGCAAGACGAGTGCATAG -ACGGAATGCAAGACGAGTGACAAG -ACGGAATGCAAGACGAGTAAGCAG -ACGGAATGCAAGACGAGTCGTCAA -ACGGAATGCAAGACGAGTGCTGAA -ACGGAATGCAAGACGAGTAGTACG -ACGGAATGCAAGACGAGTATCCGA -ACGGAATGCAAGACGAGTATGGGA -ACGGAATGCAAGACGAGTGTGCAA -ACGGAATGCAAGACGAGTGAGGAA -ACGGAATGCAAGACGAGTCAGGTA -ACGGAATGCAAGACGAGTGACTCT -ACGGAATGCAAGACGAGTAGTCCT -ACGGAATGCAAGACGAGTTAAGCC -ACGGAATGCAAGACGAGTATAGCC -ACGGAATGCAAGACGAGTTAACCG -ACGGAATGCAAGACGAGTATGCCA -ACGGAATGCAAGCGAATCGGAAAC -ACGGAATGCAAGCGAATCAACACC -ACGGAATGCAAGCGAATCATCGAG -ACGGAATGCAAGCGAATCCTCCTT -ACGGAATGCAAGCGAATCCCTGTT -ACGGAATGCAAGCGAATCCGGTTT -ACGGAATGCAAGCGAATCGTGGTT -ACGGAATGCAAGCGAATCGCCTTT -ACGGAATGCAAGCGAATCGGTCTT -ACGGAATGCAAGCGAATCACGCTT -ACGGAATGCAAGCGAATCAGCGTT -ACGGAATGCAAGCGAATCTTCGTC -ACGGAATGCAAGCGAATCTCTCTC -ACGGAATGCAAGCGAATCTGGATC -ACGGAATGCAAGCGAATCCACTTC -ACGGAATGCAAGCGAATCGTACTC -ACGGAATGCAAGCGAATCGATGTC -ACGGAATGCAAGCGAATCACAGTC -ACGGAATGCAAGCGAATCTTGCTG -ACGGAATGCAAGCGAATCTCCATG -ACGGAATGCAAGCGAATCTGTGTG -ACGGAATGCAAGCGAATCCTAGTG -ACGGAATGCAAGCGAATCCATCTG -ACGGAATGCAAGCGAATCGAGTTG -ACGGAATGCAAGCGAATCAGACTG -ACGGAATGCAAGCGAATCTCGGTA -ACGGAATGCAAGCGAATCTGCCTA -ACGGAATGCAAGCGAATCCCACTA -ACGGAATGCAAGCGAATCGGAGTA -ACGGAATGCAAGCGAATCTCGTCT -ACGGAATGCAAGCGAATCTGCACT -ACGGAATGCAAGCGAATCCTGACT -ACGGAATGCAAGCGAATCCAACCT -ACGGAATGCAAGCGAATCGCTACT -ACGGAATGCAAGCGAATCGGATCT -ACGGAATGCAAGCGAATCAAGGCT -ACGGAATGCAAGCGAATCTCAACC -ACGGAATGCAAGCGAATCTGTTCC -ACGGAATGCAAGCGAATCATTCCC -ACGGAATGCAAGCGAATCTTCTCG -ACGGAATGCAAGCGAATCTAGACG -ACGGAATGCAAGCGAATCGTAACG -ACGGAATGCAAGCGAATCACTTCG -ACGGAATGCAAGCGAATCTACGCA -ACGGAATGCAAGCGAATCCTTGCA -ACGGAATGCAAGCGAATCCGAACA -ACGGAATGCAAGCGAATCCAGTCA -ACGGAATGCAAGCGAATCGATCCA -ACGGAATGCAAGCGAATCACGACA -ACGGAATGCAAGCGAATCAGCTCA -ACGGAATGCAAGCGAATCTCACGT -ACGGAATGCAAGCGAATCCGTAGT -ACGGAATGCAAGCGAATCGTCAGT -ACGGAATGCAAGCGAATCGAAGGT -ACGGAATGCAAGCGAATCAACCGT -ACGGAATGCAAGCGAATCTTGTGC -ACGGAATGCAAGCGAATCCTAAGC -ACGGAATGCAAGCGAATCACTAGC -ACGGAATGCAAGCGAATCAGATGC -ACGGAATGCAAGCGAATCTGAAGG -ACGGAATGCAAGCGAATCCAATGG -ACGGAATGCAAGCGAATCATGAGG -ACGGAATGCAAGCGAATCAATGGG -ACGGAATGCAAGCGAATCTCCTGA -ACGGAATGCAAGCGAATCTAGCGA -ACGGAATGCAAGCGAATCCACAGA -ACGGAATGCAAGCGAATCGCAAGA -ACGGAATGCAAGCGAATCGGTTGA -ACGGAATGCAAGCGAATCTCCGAT -ACGGAATGCAAGCGAATCTGGCAT -ACGGAATGCAAGCGAATCCGAGAT -ACGGAATGCAAGCGAATCTACCAC -ACGGAATGCAAGCGAATCCAGAAC -ACGGAATGCAAGCGAATCGTCTAC -ACGGAATGCAAGCGAATCACGTAC -ACGGAATGCAAGCGAATCAGTGAC -ACGGAATGCAAGCGAATCCTGTAG -ACGGAATGCAAGCGAATCCCTAAG -ACGGAATGCAAGCGAATCGTTCAG -ACGGAATGCAAGCGAATCGCATAG -ACGGAATGCAAGCGAATCGACAAG -ACGGAATGCAAGCGAATCAAGCAG -ACGGAATGCAAGCGAATCCGTCAA -ACGGAATGCAAGCGAATCGCTGAA -ACGGAATGCAAGCGAATCAGTACG -ACGGAATGCAAGCGAATCATCCGA -ACGGAATGCAAGCGAATCATGGGA -ACGGAATGCAAGCGAATCGTGCAA -ACGGAATGCAAGCGAATCGAGGAA -ACGGAATGCAAGCGAATCCAGGTA -ACGGAATGCAAGCGAATCGACTCT -ACGGAATGCAAGCGAATCAGTCCT -ACGGAATGCAAGCGAATCTAAGCC -ACGGAATGCAAGCGAATCATAGCC -ACGGAATGCAAGCGAATCTAACCG -ACGGAATGCAAGCGAATCATGCCA -ACGGAATGCAAGGGAATGGGAAAC -ACGGAATGCAAGGGAATGAACACC -ACGGAATGCAAGGGAATGATCGAG -ACGGAATGCAAGGGAATGCTCCTT -ACGGAATGCAAGGGAATGCCTGTT -ACGGAATGCAAGGGAATGCGGTTT -ACGGAATGCAAGGGAATGGTGGTT -ACGGAATGCAAGGGAATGGCCTTT -ACGGAATGCAAGGGAATGGGTCTT -ACGGAATGCAAGGGAATGACGCTT -ACGGAATGCAAGGGAATGAGCGTT -ACGGAATGCAAGGGAATGTTCGTC -ACGGAATGCAAGGGAATGTCTCTC -ACGGAATGCAAGGGAATGTGGATC -ACGGAATGCAAGGGAATGCACTTC -ACGGAATGCAAGGGAATGGTACTC -ACGGAATGCAAGGGAATGGATGTC -ACGGAATGCAAGGGAATGACAGTC -ACGGAATGCAAGGGAATGTTGCTG -ACGGAATGCAAGGGAATGTCCATG -ACGGAATGCAAGGGAATGTGTGTG -ACGGAATGCAAGGGAATGCTAGTG -ACGGAATGCAAGGGAATGCATCTG -ACGGAATGCAAGGGAATGGAGTTG -ACGGAATGCAAGGGAATGAGACTG -ACGGAATGCAAGGGAATGTCGGTA -ACGGAATGCAAGGGAATGTGCCTA -ACGGAATGCAAGGGAATGCCACTA -ACGGAATGCAAGGGAATGGGAGTA -ACGGAATGCAAGGGAATGTCGTCT -ACGGAATGCAAGGGAATGTGCACT -ACGGAATGCAAGGGAATGCTGACT -ACGGAATGCAAGGGAATGCAACCT -ACGGAATGCAAGGGAATGGCTACT -ACGGAATGCAAGGGAATGGGATCT -ACGGAATGCAAGGGAATGAAGGCT -ACGGAATGCAAGGGAATGTCAACC -ACGGAATGCAAGGGAATGTGTTCC -ACGGAATGCAAGGGAATGATTCCC -ACGGAATGCAAGGGAATGTTCTCG -ACGGAATGCAAGGGAATGTAGACG -ACGGAATGCAAGGGAATGGTAACG -ACGGAATGCAAGGGAATGACTTCG -ACGGAATGCAAGGGAATGTACGCA -ACGGAATGCAAGGGAATGCTTGCA -ACGGAATGCAAGGGAATGCGAACA -ACGGAATGCAAGGGAATGCAGTCA -ACGGAATGCAAGGGAATGGATCCA -ACGGAATGCAAGGGAATGACGACA -ACGGAATGCAAGGGAATGAGCTCA -ACGGAATGCAAGGGAATGTCACGT -ACGGAATGCAAGGGAATGCGTAGT -ACGGAATGCAAGGGAATGGTCAGT -ACGGAATGCAAGGGAATGGAAGGT -ACGGAATGCAAGGGAATGAACCGT -ACGGAATGCAAGGGAATGTTGTGC -ACGGAATGCAAGGGAATGCTAAGC -ACGGAATGCAAGGGAATGACTAGC -ACGGAATGCAAGGGAATGAGATGC -ACGGAATGCAAGGGAATGTGAAGG -ACGGAATGCAAGGGAATGCAATGG -ACGGAATGCAAGGGAATGATGAGG -ACGGAATGCAAGGGAATGAATGGG -ACGGAATGCAAGGGAATGTCCTGA -ACGGAATGCAAGGGAATGTAGCGA -ACGGAATGCAAGGGAATGCACAGA -ACGGAATGCAAGGGAATGGCAAGA -ACGGAATGCAAGGGAATGGGTTGA -ACGGAATGCAAGGGAATGTCCGAT -ACGGAATGCAAGGGAATGTGGCAT -ACGGAATGCAAGGGAATGCGAGAT -ACGGAATGCAAGGGAATGTACCAC -ACGGAATGCAAGGGAATGCAGAAC -ACGGAATGCAAGGGAATGGTCTAC -ACGGAATGCAAGGGAATGACGTAC -ACGGAATGCAAGGGAATGAGTGAC -ACGGAATGCAAGGGAATGCTGTAG -ACGGAATGCAAGGGAATGCCTAAG -ACGGAATGCAAGGGAATGGTTCAG -ACGGAATGCAAGGGAATGGCATAG -ACGGAATGCAAGGGAATGGACAAG -ACGGAATGCAAGGGAATGAAGCAG -ACGGAATGCAAGGGAATGCGTCAA -ACGGAATGCAAGGGAATGGCTGAA -ACGGAATGCAAGGGAATGAGTACG -ACGGAATGCAAGGGAATGATCCGA -ACGGAATGCAAGGGAATGATGGGA -ACGGAATGCAAGGGAATGGTGCAA -ACGGAATGCAAGGGAATGGAGGAA -ACGGAATGCAAGGGAATGCAGGTA -ACGGAATGCAAGGGAATGGACTCT -ACGGAATGCAAGGGAATGAGTCCT -ACGGAATGCAAGGGAATGTAAGCC -ACGGAATGCAAGGGAATGATAGCC -ACGGAATGCAAGGGAATGTAACCG -ACGGAATGCAAGGGAATGATGCCA -ACGGAATGCAAGCAAGTGGGAAAC -ACGGAATGCAAGCAAGTGAACACC -ACGGAATGCAAGCAAGTGATCGAG -ACGGAATGCAAGCAAGTGCTCCTT -ACGGAATGCAAGCAAGTGCCTGTT -ACGGAATGCAAGCAAGTGCGGTTT -ACGGAATGCAAGCAAGTGGTGGTT -ACGGAATGCAAGCAAGTGGCCTTT -ACGGAATGCAAGCAAGTGGGTCTT -ACGGAATGCAAGCAAGTGACGCTT -ACGGAATGCAAGCAAGTGAGCGTT -ACGGAATGCAAGCAAGTGTTCGTC -ACGGAATGCAAGCAAGTGTCTCTC -ACGGAATGCAAGCAAGTGTGGATC -ACGGAATGCAAGCAAGTGCACTTC -ACGGAATGCAAGCAAGTGGTACTC -ACGGAATGCAAGCAAGTGGATGTC -ACGGAATGCAAGCAAGTGACAGTC -ACGGAATGCAAGCAAGTGTTGCTG -ACGGAATGCAAGCAAGTGTCCATG -ACGGAATGCAAGCAAGTGTGTGTG -ACGGAATGCAAGCAAGTGCTAGTG -ACGGAATGCAAGCAAGTGCATCTG -ACGGAATGCAAGCAAGTGGAGTTG -ACGGAATGCAAGCAAGTGAGACTG -ACGGAATGCAAGCAAGTGTCGGTA -ACGGAATGCAAGCAAGTGTGCCTA -ACGGAATGCAAGCAAGTGCCACTA -ACGGAATGCAAGCAAGTGGGAGTA -ACGGAATGCAAGCAAGTGTCGTCT -ACGGAATGCAAGCAAGTGTGCACT -ACGGAATGCAAGCAAGTGCTGACT -ACGGAATGCAAGCAAGTGCAACCT -ACGGAATGCAAGCAAGTGGCTACT -ACGGAATGCAAGCAAGTGGGATCT -ACGGAATGCAAGCAAGTGAAGGCT -ACGGAATGCAAGCAAGTGTCAACC -ACGGAATGCAAGCAAGTGTGTTCC -ACGGAATGCAAGCAAGTGATTCCC -ACGGAATGCAAGCAAGTGTTCTCG -ACGGAATGCAAGCAAGTGTAGACG -ACGGAATGCAAGCAAGTGGTAACG -ACGGAATGCAAGCAAGTGACTTCG -ACGGAATGCAAGCAAGTGTACGCA -ACGGAATGCAAGCAAGTGCTTGCA -ACGGAATGCAAGCAAGTGCGAACA -ACGGAATGCAAGCAAGTGCAGTCA -ACGGAATGCAAGCAAGTGGATCCA -ACGGAATGCAAGCAAGTGACGACA -ACGGAATGCAAGCAAGTGAGCTCA -ACGGAATGCAAGCAAGTGTCACGT -ACGGAATGCAAGCAAGTGCGTAGT -ACGGAATGCAAGCAAGTGGTCAGT -ACGGAATGCAAGCAAGTGGAAGGT -ACGGAATGCAAGCAAGTGAACCGT -ACGGAATGCAAGCAAGTGTTGTGC -ACGGAATGCAAGCAAGTGCTAAGC -ACGGAATGCAAGCAAGTGACTAGC -ACGGAATGCAAGCAAGTGAGATGC -ACGGAATGCAAGCAAGTGTGAAGG -ACGGAATGCAAGCAAGTGCAATGG -ACGGAATGCAAGCAAGTGATGAGG -ACGGAATGCAAGCAAGTGAATGGG -ACGGAATGCAAGCAAGTGTCCTGA -ACGGAATGCAAGCAAGTGTAGCGA -ACGGAATGCAAGCAAGTGCACAGA -ACGGAATGCAAGCAAGTGGCAAGA -ACGGAATGCAAGCAAGTGGGTTGA -ACGGAATGCAAGCAAGTGTCCGAT -ACGGAATGCAAGCAAGTGTGGCAT -ACGGAATGCAAGCAAGTGCGAGAT -ACGGAATGCAAGCAAGTGTACCAC -ACGGAATGCAAGCAAGTGCAGAAC -ACGGAATGCAAGCAAGTGGTCTAC -ACGGAATGCAAGCAAGTGACGTAC -ACGGAATGCAAGCAAGTGAGTGAC -ACGGAATGCAAGCAAGTGCTGTAG -ACGGAATGCAAGCAAGTGCCTAAG -ACGGAATGCAAGCAAGTGGTTCAG -ACGGAATGCAAGCAAGTGGCATAG -ACGGAATGCAAGCAAGTGGACAAG -ACGGAATGCAAGCAAGTGAAGCAG -ACGGAATGCAAGCAAGTGCGTCAA -ACGGAATGCAAGCAAGTGGCTGAA -ACGGAATGCAAGCAAGTGAGTACG -ACGGAATGCAAGCAAGTGATCCGA -ACGGAATGCAAGCAAGTGATGGGA -ACGGAATGCAAGCAAGTGGTGCAA -ACGGAATGCAAGCAAGTGGAGGAA -ACGGAATGCAAGCAAGTGCAGGTA -ACGGAATGCAAGCAAGTGGACTCT -ACGGAATGCAAGCAAGTGAGTCCT -ACGGAATGCAAGCAAGTGTAAGCC -ACGGAATGCAAGCAAGTGATAGCC -ACGGAATGCAAGCAAGTGTAACCG -ACGGAATGCAAGCAAGTGATGCCA -ACGGAATGCAAGGAAGAGGGAAAC -ACGGAATGCAAGGAAGAGAACACC -ACGGAATGCAAGGAAGAGATCGAG -ACGGAATGCAAGGAAGAGCTCCTT -ACGGAATGCAAGGAAGAGCCTGTT -ACGGAATGCAAGGAAGAGCGGTTT -ACGGAATGCAAGGAAGAGGTGGTT -ACGGAATGCAAGGAAGAGGCCTTT -ACGGAATGCAAGGAAGAGGGTCTT -ACGGAATGCAAGGAAGAGACGCTT -ACGGAATGCAAGGAAGAGAGCGTT -ACGGAATGCAAGGAAGAGTTCGTC -ACGGAATGCAAGGAAGAGTCTCTC -ACGGAATGCAAGGAAGAGTGGATC -ACGGAATGCAAGGAAGAGCACTTC -ACGGAATGCAAGGAAGAGGTACTC -ACGGAATGCAAGGAAGAGGATGTC -ACGGAATGCAAGGAAGAGACAGTC -ACGGAATGCAAGGAAGAGTTGCTG -ACGGAATGCAAGGAAGAGTCCATG -ACGGAATGCAAGGAAGAGTGTGTG -ACGGAATGCAAGGAAGAGCTAGTG -ACGGAATGCAAGGAAGAGCATCTG -ACGGAATGCAAGGAAGAGGAGTTG -ACGGAATGCAAGGAAGAGAGACTG -ACGGAATGCAAGGAAGAGTCGGTA -ACGGAATGCAAGGAAGAGTGCCTA -ACGGAATGCAAGGAAGAGCCACTA -ACGGAATGCAAGGAAGAGGGAGTA -ACGGAATGCAAGGAAGAGTCGTCT -ACGGAATGCAAGGAAGAGTGCACT -ACGGAATGCAAGGAAGAGCTGACT -ACGGAATGCAAGGAAGAGCAACCT -ACGGAATGCAAGGAAGAGGCTACT -ACGGAATGCAAGGAAGAGGGATCT -ACGGAATGCAAGGAAGAGAAGGCT -ACGGAATGCAAGGAAGAGTCAACC -ACGGAATGCAAGGAAGAGTGTTCC -ACGGAATGCAAGGAAGAGATTCCC -ACGGAATGCAAGGAAGAGTTCTCG -ACGGAATGCAAGGAAGAGTAGACG -ACGGAATGCAAGGAAGAGGTAACG -ACGGAATGCAAGGAAGAGACTTCG -ACGGAATGCAAGGAAGAGTACGCA -ACGGAATGCAAGGAAGAGCTTGCA -ACGGAATGCAAGGAAGAGCGAACA -ACGGAATGCAAGGAAGAGCAGTCA -ACGGAATGCAAGGAAGAGGATCCA -ACGGAATGCAAGGAAGAGACGACA -ACGGAATGCAAGGAAGAGAGCTCA -ACGGAATGCAAGGAAGAGTCACGT -ACGGAATGCAAGGAAGAGCGTAGT -ACGGAATGCAAGGAAGAGGTCAGT -ACGGAATGCAAGGAAGAGGAAGGT -ACGGAATGCAAGGAAGAGAACCGT -ACGGAATGCAAGGAAGAGTTGTGC -ACGGAATGCAAGGAAGAGCTAAGC -ACGGAATGCAAGGAAGAGACTAGC -ACGGAATGCAAGGAAGAGAGATGC -ACGGAATGCAAGGAAGAGTGAAGG -ACGGAATGCAAGGAAGAGCAATGG -ACGGAATGCAAGGAAGAGATGAGG -ACGGAATGCAAGGAAGAGAATGGG -ACGGAATGCAAGGAAGAGTCCTGA -ACGGAATGCAAGGAAGAGTAGCGA -ACGGAATGCAAGGAAGAGCACAGA -ACGGAATGCAAGGAAGAGGCAAGA -ACGGAATGCAAGGAAGAGGGTTGA -ACGGAATGCAAGGAAGAGTCCGAT -ACGGAATGCAAGGAAGAGTGGCAT -ACGGAATGCAAGGAAGAGCGAGAT -ACGGAATGCAAGGAAGAGTACCAC -ACGGAATGCAAGGAAGAGCAGAAC -ACGGAATGCAAGGAAGAGGTCTAC -ACGGAATGCAAGGAAGAGACGTAC -ACGGAATGCAAGGAAGAGAGTGAC -ACGGAATGCAAGGAAGAGCTGTAG -ACGGAATGCAAGGAAGAGCCTAAG -ACGGAATGCAAGGAAGAGGTTCAG -ACGGAATGCAAGGAAGAGGCATAG -ACGGAATGCAAGGAAGAGGACAAG -ACGGAATGCAAGGAAGAGAAGCAG -ACGGAATGCAAGGAAGAGCGTCAA -ACGGAATGCAAGGAAGAGGCTGAA -ACGGAATGCAAGGAAGAGAGTACG -ACGGAATGCAAGGAAGAGATCCGA -ACGGAATGCAAGGAAGAGATGGGA -ACGGAATGCAAGGAAGAGGTGCAA -ACGGAATGCAAGGAAGAGGAGGAA -ACGGAATGCAAGGAAGAGCAGGTA -ACGGAATGCAAGGAAGAGGACTCT -ACGGAATGCAAGGAAGAGAGTCCT -ACGGAATGCAAGGAAGAGTAAGCC -ACGGAATGCAAGGAAGAGATAGCC -ACGGAATGCAAGGAAGAGTAACCG -ACGGAATGCAAGGAAGAGATGCCA -ACGGAATGCAAGGTACAGGGAAAC -ACGGAATGCAAGGTACAGAACACC -ACGGAATGCAAGGTACAGATCGAG -ACGGAATGCAAGGTACAGCTCCTT -ACGGAATGCAAGGTACAGCCTGTT -ACGGAATGCAAGGTACAGCGGTTT -ACGGAATGCAAGGTACAGGTGGTT -ACGGAATGCAAGGTACAGGCCTTT -ACGGAATGCAAGGTACAGGGTCTT -ACGGAATGCAAGGTACAGACGCTT -ACGGAATGCAAGGTACAGAGCGTT -ACGGAATGCAAGGTACAGTTCGTC -ACGGAATGCAAGGTACAGTCTCTC -ACGGAATGCAAGGTACAGTGGATC -ACGGAATGCAAGGTACAGCACTTC -ACGGAATGCAAGGTACAGGTACTC -ACGGAATGCAAGGTACAGGATGTC -ACGGAATGCAAGGTACAGACAGTC -ACGGAATGCAAGGTACAGTTGCTG -ACGGAATGCAAGGTACAGTCCATG -ACGGAATGCAAGGTACAGTGTGTG -ACGGAATGCAAGGTACAGCTAGTG -ACGGAATGCAAGGTACAGCATCTG -ACGGAATGCAAGGTACAGGAGTTG -ACGGAATGCAAGGTACAGAGACTG -ACGGAATGCAAGGTACAGTCGGTA -ACGGAATGCAAGGTACAGTGCCTA -ACGGAATGCAAGGTACAGCCACTA -ACGGAATGCAAGGTACAGGGAGTA -ACGGAATGCAAGGTACAGTCGTCT -ACGGAATGCAAGGTACAGTGCACT -ACGGAATGCAAGGTACAGCTGACT -ACGGAATGCAAGGTACAGCAACCT -ACGGAATGCAAGGTACAGGCTACT -ACGGAATGCAAGGTACAGGGATCT -ACGGAATGCAAGGTACAGAAGGCT -ACGGAATGCAAGGTACAGTCAACC -ACGGAATGCAAGGTACAGTGTTCC -ACGGAATGCAAGGTACAGATTCCC -ACGGAATGCAAGGTACAGTTCTCG -ACGGAATGCAAGGTACAGTAGACG -ACGGAATGCAAGGTACAGGTAACG -ACGGAATGCAAGGTACAGACTTCG -ACGGAATGCAAGGTACAGTACGCA -ACGGAATGCAAGGTACAGCTTGCA -ACGGAATGCAAGGTACAGCGAACA -ACGGAATGCAAGGTACAGCAGTCA -ACGGAATGCAAGGTACAGGATCCA -ACGGAATGCAAGGTACAGACGACA -ACGGAATGCAAGGTACAGAGCTCA -ACGGAATGCAAGGTACAGTCACGT -ACGGAATGCAAGGTACAGCGTAGT -ACGGAATGCAAGGTACAGGTCAGT -ACGGAATGCAAGGTACAGGAAGGT -ACGGAATGCAAGGTACAGAACCGT -ACGGAATGCAAGGTACAGTTGTGC -ACGGAATGCAAGGTACAGCTAAGC -ACGGAATGCAAGGTACAGACTAGC -ACGGAATGCAAGGTACAGAGATGC -ACGGAATGCAAGGTACAGTGAAGG -ACGGAATGCAAGGTACAGCAATGG -ACGGAATGCAAGGTACAGATGAGG -ACGGAATGCAAGGTACAGAATGGG -ACGGAATGCAAGGTACAGTCCTGA -ACGGAATGCAAGGTACAGTAGCGA -ACGGAATGCAAGGTACAGCACAGA -ACGGAATGCAAGGTACAGGCAAGA -ACGGAATGCAAGGTACAGGGTTGA -ACGGAATGCAAGGTACAGTCCGAT -ACGGAATGCAAGGTACAGTGGCAT -ACGGAATGCAAGGTACAGCGAGAT -ACGGAATGCAAGGTACAGTACCAC -ACGGAATGCAAGGTACAGCAGAAC -ACGGAATGCAAGGTACAGGTCTAC -ACGGAATGCAAGGTACAGACGTAC -ACGGAATGCAAGGTACAGAGTGAC -ACGGAATGCAAGGTACAGCTGTAG -ACGGAATGCAAGGTACAGCCTAAG -ACGGAATGCAAGGTACAGGTTCAG -ACGGAATGCAAGGTACAGGCATAG -ACGGAATGCAAGGTACAGGACAAG -ACGGAATGCAAGGTACAGAAGCAG -ACGGAATGCAAGGTACAGCGTCAA -ACGGAATGCAAGGTACAGGCTGAA -ACGGAATGCAAGGTACAGAGTACG -ACGGAATGCAAGGTACAGATCCGA -ACGGAATGCAAGGTACAGATGGGA -ACGGAATGCAAGGTACAGGTGCAA -ACGGAATGCAAGGTACAGGAGGAA -ACGGAATGCAAGGTACAGCAGGTA -ACGGAATGCAAGGTACAGGACTCT -ACGGAATGCAAGGTACAGAGTCCT -ACGGAATGCAAGGTACAGTAAGCC -ACGGAATGCAAGGTACAGATAGCC -ACGGAATGCAAGGTACAGTAACCG -ACGGAATGCAAGGTACAGATGCCA -ACGGAATGCAAGTCTGACGGAAAC -ACGGAATGCAAGTCTGACAACACC -ACGGAATGCAAGTCTGACATCGAG -ACGGAATGCAAGTCTGACCTCCTT -ACGGAATGCAAGTCTGACCCTGTT -ACGGAATGCAAGTCTGACCGGTTT -ACGGAATGCAAGTCTGACGTGGTT -ACGGAATGCAAGTCTGACGCCTTT -ACGGAATGCAAGTCTGACGGTCTT -ACGGAATGCAAGTCTGACACGCTT -ACGGAATGCAAGTCTGACAGCGTT -ACGGAATGCAAGTCTGACTTCGTC -ACGGAATGCAAGTCTGACTCTCTC -ACGGAATGCAAGTCTGACTGGATC -ACGGAATGCAAGTCTGACCACTTC -ACGGAATGCAAGTCTGACGTACTC -ACGGAATGCAAGTCTGACGATGTC -ACGGAATGCAAGTCTGACACAGTC -ACGGAATGCAAGTCTGACTTGCTG -ACGGAATGCAAGTCTGACTCCATG -ACGGAATGCAAGTCTGACTGTGTG -ACGGAATGCAAGTCTGACCTAGTG -ACGGAATGCAAGTCTGACCATCTG -ACGGAATGCAAGTCTGACGAGTTG -ACGGAATGCAAGTCTGACAGACTG -ACGGAATGCAAGTCTGACTCGGTA -ACGGAATGCAAGTCTGACTGCCTA -ACGGAATGCAAGTCTGACCCACTA -ACGGAATGCAAGTCTGACGGAGTA -ACGGAATGCAAGTCTGACTCGTCT -ACGGAATGCAAGTCTGACTGCACT -ACGGAATGCAAGTCTGACCTGACT -ACGGAATGCAAGTCTGACCAACCT -ACGGAATGCAAGTCTGACGCTACT -ACGGAATGCAAGTCTGACGGATCT -ACGGAATGCAAGTCTGACAAGGCT -ACGGAATGCAAGTCTGACTCAACC -ACGGAATGCAAGTCTGACTGTTCC -ACGGAATGCAAGTCTGACATTCCC -ACGGAATGCAAGTCTGACTTCTCG -ACGGAATGCAAGTCTGACTAGACG -ACGGAATGCAAGTCTGACGTAACG -ACGGAATGCAAGTCTGACACTTCG -ACGGAATGCAAGTCTGACTACGCA -ACGGAATGCAAGTCTGACCTTGCA -ACGGAATGCAAGTCTGACCGAACA -ACGGAATGCAAGTCTGACCAGTCA -ACGGAATGCAAGTCTGACGATCCA -ACGGAATGCAAGTCTGACACGACA -ACGGAATGCAAGTCTGACAGCTCA -ACGGAATGCAAGTCTGACTCACGT -ACGGAATGCAAGTCTGACCGTAGT -ACGGAATGCAAGTCTGACGTCAGT -ACGGAATGCAAGTCTGACGAAGGT -ACGGAATGCAAGTCTGACAACCGT -ACGGAATGCAAGTCTGACTTGTGC -ACGGAATGCAAGTCTGACCTAAGC -ACGGAATGCAAGTCTGACACTAGC -ACGGAATGCAAGTCTGACAGATGC -ACGGAATGCAAGTCTGACTGAAGG -ACGGAATGCAAGTCTGACCAATGG -ACGGAATGCAAGTCTGACATGAGG -ACGGAATGCAAGTCTGACAATGGG -ACGGAATGCAAGTCTGACTCCTGA -ACGGAATGCAAGTCTGACTAGCGA -ACGGAATGCAAGTCTGACCACAGA -ACGGAATGCAAGTCTGACGCAAGA -ACGGAATGCAAGTCTGACGGTTGA -ACGGAATGCAAGTCTGACTCCGAT -ACGGAATGCAAGTCTGACTGGCAT -ACGGAATGCAAGTCTGACCGAGAT -ACGGAATGCAAGTCTGACTACCAC -ACGGAATGCAAGTCTGACCAGAAC -ACGGAATGCAAGTCTGACGTCTAC -ACGGAATGCAAGTCTGACACGTAC -ACGGAATGCAAGTCTGACAGTGAC -ACGGAATGCAAGTCTGACCTGTAG -ACGGAATGCAAGTCTGACCCTAAG -ACGGAATGCAAGTCTGACGTTCAG -ACGGAATGCAAGTCTGACGCATAG -ACGGAATGCAAGTCTGACGACAAG -ACGGAATGCAAGTCTGACAAGCAG -ACGGAATGCAAGTCTGACCGTCAA -ACGGAATGCAAGTCTGACGCTGAA -ACGGAATGCAAGTCTGACAGTACG -ACGGAATGCAAGTCTGACATCCGA -ACGGAATGCAAGTCTGACATGGGA -ACGGAATGCAAGTCTGACGTGCAA -ACGGAATGCAAGTCTGACGAGGAA -ACGGAATGCAAGTCTGACCAGGTA -ACGGAATGCAAGTCTGACGACTCT -ACGGAATGCAAGTCTGACAGTCCT -ACGGAATGCAAGTCTGACTAAGCC -ACGGAATGCAAGTCTGACATAGCC -ACGGAATGCAAGTCTGACTAACCG -ACGGAATGCAAGTCTGACATGCCA -ACGGAATGCAAGCCTAGTGGAAAC -ACGGAATGCAAGCCTAGTAACACC -ACGGAATGCAAGCCTAGTATCGAG -ACGGAATGCAAGCCTAGTCTCCTT -ACGGAATGCAAGCCTAGTCCTGTT -ACGGAATGCAAGCCTAGTCGGTTT -ACGGAATGCAAGCCTAGTGTGGTT -ACGGAATGCAAGCCTAGTGCCTTT -ACGGAATGCAAGCCTAGTGGTCTT -ACGGAATGCAAGCCTAGTACGCTT -ACGGAATGCAAGCCTAGTAGCGTT -ACGGAATGCAAGCCTAGTTTCGTC -ACGGAATGCAAGCCTAGTTCTCTC -ACGGAATGCAAGCCTAGTTGGATC -ACGGAATGCAAGCCTAGTCACTTC -ACGGAATGCAAGCCTAGTGTACTC -ACGGAATGCAAGCCTAGTGATGTC -ACGGAATGCAAGCCTAGTACAGTC -ACGGAATGCAAGCCTAGTTTGCTG -ACGGAATGCAAGCCTAGTTCCATG -ACGGAATGCAAGCCTAGTTGTGTG -ACGGAATGCAAGCCTAGTCTAGTG -ACGGAATGCAAGCCTAGTCATCTG -ACGGAATGCAAGCCTAGTGAGTTG -ACGGAATGCAAGCCTAGTAGACTG -ACGGAATGCAAGCCTAGTTCGGTA -ACGGAATGCAAGCCTAGTTGCCTA -ACGGAATGCAAGCCTAGTCCACTA -ACGGAATGCAAGCCTAGTGGAGTA -ACGGAATGCAAGCCTAGTTCGTCT -ACGGAATGCAAGCCTAGTTGCACT -ACGGAATGCAAGCCTAGTCTGACT -ACGGAATGCAAGCCTAGTCAACCT -ACGGAATGCAAGCCTAGTGCTACT -ACGGAATGCAAGCCTAGTGGATCT -ACGGAATGCAAGCCTAGTAAGGCT -ACGGAATGCAAGCCTAGTTCAACC -ACGGAATGCAAGCCTAGTTGTTCC -ACGGAATGCAAGCCTAGTATTCCC -ACGGAATGCAAGCCTAGTTTCTCG -ACGGAATGCAAGCCTAGTTAGACG -ACGGAATGCAAGCCTAGTGTAACG -ACGGAATGCAAGCCTAGTACTTCG -ACGGAATGCAAGCCTAGTTACGCA -ACGGAATGCAAGCCTAGTCTTGCA -ACGGAATGCAAGCCTAGTCGAACA -ACGGAATGCAAGCCTAGTCAGTCA -ACGGAATGCAAGCCTAGTGATCCA -ACGGAATGCAAGCCTAGTACGACA -ACGGAATGCAAGCCTAGTAGCTCA -ACGGAATGCAAGCCTAGTTCACGT -ACGGAATGCAAGCCTAGTCGTAGT -ACGGAATGCAAGCCTAGTGTCAGT -ACGGAATGCAAGCCTAGTGAAGGT -ACGGAATGCAAGCCTAGTAACCGT -ACGGAATGCAAGCCTAGTTTGTGC -ACGGAATGCAAGCCTAGTCTAAGC -ACGGAATGCAAGCCTAGTACTAGC -ACGGAATGCAAGCCTAGTAGATGC -ACGGAATGCAAGCCTAGTTGAAGG -ACGGAATGCAAGCCTAGTCAATGG -ACGGAATGCAAGCCTAGTATGAGG -ACGGAATGCAAGCCTAGTAATGGG -ACGGAATGCAAGCCTAGTTCCTGA -ACGGAATGCAAGCCTAGTTAGCGA -ACGGAATGCAAGCCTAGTCACAGA -ACGGAATGCAAGCCTAGTGCAAGA -ACGGAATGCAAGCCTAGTGGTTGA -ACGGAATGCAAGCCTAGTTCCGAT -ACGGAATGCAAGCCTAGTTGGCAT -ACGGAATGCAAGCCTAGTCGAGAT -ACGGAATGCAAGCCTAGTTACCAC -ACGGAATGCAAGCCTAGTCAGAAC -ACGGAATGCAAGCCTAGTGTCTAC -ACGGAATGCAAGCCTAGTACGTAC -ACGGAATGCAAGCCTAGTAGTGAC -ACGGAATGCAAGCCTAGTCTGTAG -ACGGAATGCAAGCCTAGTCCTAAG -ACGGAATGCAAGCCTAGTGTTCAG -ACGGAATGCAAGCCTAGTGCATAG -ACGGAATGCAAGCCTAGTGACAAG -ACGGAATGCAAGCCTAGTAAGCAG -ACGGAATGCAAGCCTAGTCGTCAA -ACGGAATGCAAGCCTAGTGCTGAA -ACGGAATGCAAGCCTAGTAGTACG -ACGGAATGCAAGCCTAGTATCCGA -ACGGAATGCAAGCCTAGTATGGGA -ACGGAATGCAAGCCTAGTGTGCAA -ACGGAATGCAAGCCTAGTGAGGAA -ACGGAATGCAAGCCTAGTCAGGTA -ACGGAATGCAAGCCTAGTGACTCT -ACGGAATGCAAGCCTAGTAGTCCT -ACGGAATGCAAGCCTAGTTAAGCC -ACGGAATGCAAGCCTAGTATAGCC -ACGGAATGCAAGCCTAGTTAACCG -ACGGAATGCAAGCCTAGTATGCCA -ACGGAATGCAAGGCCTAAGGAAAC -ACGGAATGCAAGGCCTAAAACACC -ACGGAATGCAAGGCCTAAATCGAG -ACGGAATGCAAGGCCTAACTCCTT -ACGGAATGCAAGGCCTAACCTGTT -ACGGAATGCAAGGCCTAACGGTTT -ACGGAATGCAAGGCCTAAGTGGTT -ACGGAATGCAAGGCCTAAGCCTTT -ACGGAATGCAAGGCCTAAGGTCTT -ACGGAATGCAAGGCCTAAACGCTT -ACGGAATGCAAGGCCTAAAGCGTT -ACGGAATGCAAGGCCTAATTCGTC -ACGGAATGCAAGGCCTAATCTCTC -ACGGAATGCAAGGCCTAATGGATC -ACGGAATGCAAGGCCTAACACTTC -ACGGAATGCAAGGCCTAAGTACTC -ACGGAATGCAAGGCCTAAGATGTC -ACGGAATGCAAGGCCTAAACAGTC -ACGGAATGCAAGGCCTAATTGCTG -ACGGAATGCAAGGCCTAATCCATG -ACGGAATGCAAGGCCTAATGTGTG -ACGGAATGCAAGGCCTAACTAGTG -ACGGAATGCAAGGCCTAACATCTG -ACGGAATGCAAGGCCTAAGAGTTG -ACGGAATGCAAGGCCTAAAGACTG -ACGGAATGCAAGGCCTAATCGGTA -ACGGAATGCAAGGCCTAATGCCTA -ACGGAATGCAAGGCCTAACCACTA -ACGGAATGCAAGGCCTAAGGAGTA -ACGGAATGCAAGGCCTAATCGTCT -ACGGAATGCAAGGCCTAATGCACT -ACGGAATGCAAGGCCTAACTGACT -ACGGAATGCAAGGCCTAACAACCT -ACGGAATGCAAGGCCTAAGCTACT -ACGGAATGCAAGGCCTAAGGATCT -ACGGAATGCAAGGCCTAAAAGGCT -ACGGAATGCAAGGCCTAATCAACC -ACGGAATGCAAGGCCTAATGTTCC -ACGGAATGCAAGGCCTAAATTCCC -ACGGAATGCAAGGCCTAATTCTCG -ACGGAATGCAAGGCCTAATAGACG -ACGGAATGCAAGGCCTAAGTAACG -ACGGAATGCAAGGCCTAAACTTCG -ACGGAATGCAAGGCCTAATACGCA -ACGGAATGCAAGGCCTAACTTGCA -ACGGAATGCAAGGCCTAACGAACA -ACGGAATGCAAGGCCTAACAGTCA -ACGGAATGCAAGGCCTAAGATCCA -ACGGAATGCAAGGCCTAAACGACA -ACGGAATGCAAGGCCTAAAGCTCA -ACGGAATGCAAGGCCTAATCACGT -ACGGAATGCAAGGCCTAACGTAGT -ACGGAATGCAAGGCCTAAGTCAGT -ACGGAATGCAAGGCCTAAGAAGGT -ACGGAATGCAAGGCCTAAAACCGT -ACGGAATGCAAGGCCTAATTGTGC -ACGGAATGCAAGGCCTAACTAAGC -ACGGAATGCAAGGCCTAAACTAGC -ACGGAATGCAAGGCCTAAAGATGC -ACGGAATGCAAGGCCTAATGAAGG -ACGGAATGCAAGGCCTAACAATGG -ACGGAATGCAAGGCCTAAATGAGG -ACGGAATGCAAGGCCTAAAATGGG -ACGGAATGCAAGGCCTAATCCTGA -ACGGAATGCAAGGCCTAATAGCGA -ACGGAATGCAAGGCCTAACACAGA -ACGGAATGCAAGGCCTAAGCAAGA -ACGGAATGCAAGGCCTAAGGTTGA -ACGGAATGCAAGGCCTAATCCGAT -ACGGAATGCAAGGCCTAATGGCAT -ACGGAATGCAAGGCCTAACGAGAT -ACGGAATGCAAGGCCTAATACCAC -ACGGAATGCAAGGCCTAACAGAAC -ACGGAATGCAAGGCCTAAGTCTAC -ACGGAATGCAAGGCCTAAACGTAC -ACGGAATGCAAGGCCTAAAGTGAC -ACGGAATGCAAGGCCTAACTGTAG -ACGGAATGCAAGGCCTAACCTAAG -ACGGAATGCAAGGCCTAAGTTCAG -ACGGAATGCAAGGCCTAAGCATAG -ACGGAATGCAAGGCCTAAGACAAG -ACGGAATGCAAGGCCTAAAAGCAG -ACGGAATGCAAGGCCTAACGTCAA -ACGGAATGCAAGGCCTAAGCTGAA -ACGGAATGCAAGGCCTAAAGTACG -ACGGAATGCAAGGCCTAAATCCGA -ACGGAATGCAAGGCCTAAATGGGA -ACGGAATGCAAGGCCTAAGTGCAA -ACGGAATGCAAGGCCTAAGAGGAA -ACGGAATGCAAGGCCTAACAGGTA -ACGGAATGCAAGGCCTAAGACTCT -ACGGAATGCAAGGCCTAAAGTCCT -ACGGAATGCAAGGCCTAATAAGCC -ACGGAATGCAAGGCCTAAATAGCC -ACGGAATGCAAGGCCTAATAACCG -ACGGAATGCAAGGCCTAAATGCCA -ACGGAATGCAAGGCCATAGGAAAC -ACGGAATGCAAGGCCATAAACACC -ACGGAATGCAAGGCCATAATCGAG -ACGGAATGCAAGGCCATACTCCTT -ACGGAATGCAAGGCCATACCTGTT -ACGGAATGCAAGGCCATACGGTTT -ACGGAATGCAAGGCCATAGTGGTT -ACGGAATGCAAGGCCATAGCCTTT -ACGGAATGCAAGGCCATAGGTCTT -ACGGAATGCAAGGCCATAACGCTT -ACGGAATGCAAGGCCATAAGCGTT -ACGGAATGCAAGGCCATATTCGTC -ACGGAATGCAAGGCCATATCTCTC -ACGGAATGCAAGGCCATATGGATC -ACGGAATGCAAGGCCATACACTTC -ACGGAATGCAAGGCCATAGTACTC -ACGGAATGCAAGGCCATAGATGTC -ACGGAATGCAAGGCCATAACAGTC -ACGGAATGCAAGGCCATATTGCTG -ACGGAATGCAAGGCCATATCCATG -ACGGAATGCAAGGCCATATGTGTG -ACGGAATGCAAGGCCATACTAGTG -ACGGAATGCAAGGCCATACATCTG -ACGGAATGCAAGGCCATAGAGTTG -ACGGAATGCAAGGCCATAAGACTG -ACGGAATGCAAGGCCATATCGGTA -ACGGAATGCAAGGCCATATGCCTA -ACGGAATGCAAGGCCATACCACTA -ACGGAATGCAAGGCCATAGGAGTA -ACGGAATGCAAGGCCATATCGTCT -ACGGAATGCAAGGCCATATGCACT -ACGGAATGCAAGGCCATACTGACT -ACGGAATGCAAGGCCATACAACCT -ACGGAATGCAAGGCCATAGCTACT -ACGGAATGCAAGGCCATAGGATCT -ACGGAATGCAAGGCCATAAAGGCT -ACGGAATGCAAGGCCATATCAACC -ACGGAATGCAAGGCCATATGTTCC -ACGGAATGCAAGGCCATAATTCCC -ACGGAATGCAAGGCCATATTCTCG -ACGGAATGCAAGGCCATATAGACG -ACGGAATGCAAGGCCATAGTAACG -ACGGAATGCAAGGCCATAACTTCG -ACGGAATGCAAGGCCATATACGCA -ACGGAATGCAAGGCCATACTTGCA -ACGGAATGCAAGGCCATACGAACA -ACGGAATGCAAGGCCATACAGTCA -ACGGAATGCAAGGCCATAGATCCA -ACGGAATGCAAGGCCATAACGACA -ACGGAATGCAAGGCCATAAGCTCA -ACGGAATGCAAGGCCATATCACGT -ACGGAATGCAAGGCCATACGTAGT -ACGGAATGCAAGGCCATAGTCAGT -ACGGAATGCAAGGCCATAGAAGGT -ACGGAATGCAAGGCCATAAACCGT -ACGGAATGCAAGGCCATATTGTGC -ACGGAATGCAAGGCCATACTAAGC -ACGGAATGCAAGGCCATAACTAGC -ACGGAATGCAAGGCCATAAGATGC -ACGGAATGCAAGGCCATATGAAGG -ACGGAATGCAAGGCCATACAATGG -ACGGAATGCAAGGCCATAATGAGG -ACGGAATGCAAGGCCATAAATGGG -ACGGAATGCAAGGCCATATCCTGA -ACGGAATGCAAGGCCATATAGCGA -ACGGAATGCAAGGCCATACACAGA -ACGGAATGCAAGGCCATAGCAAGA -ACGGAATGCAAGGCCATAGGTTGA -ACGGAATGCAAGGCCATATCCGAT -ACGGAATGCAAGGCCATATGGCAT -ACGGAATGCAAGGCCATACGAGAT -ACGGAATGCAAGGCCATATACCAC -ACGGAATGCAAGGCCATACAGAAC -ACGGAATGCAAGGCCATAGTCTAC -ACGGAATGCAAGGCCATAACGTAC -ACGGAATGCAAGGCCATAAGTGAC -ACGGAATGCAAGGCCATACTGTAG -ACGGAATGCAAGGCCATACCTAAG -ACGGAATGCAAGGCCATAGTTCAG -ACGGAATGCAAGGCCATAGCATAG -ACGGAATGCAAGGCCATAGACAAG -ACGGAATGCAAGGCCATAAAGCAG -ACGGAATGCAAGGCCATACGTCAA -ACGGAATGCAAGGCCATAGCTGAA -ACGGAATGCAAGGCCATAAGTACG -ACGGAATGCAAGGCCATAATCCGA -ACGGAATGCAAGGCCATAATGGGA -ACGGAATGCAAGGCCATAGTGCAA -ACGGAATGCAAGGCCATAGAGGAA -ACGGAATGCAAGGCCATACAGGTA -ACGGAATGCAAGGCCATAGACTCT -ACGGAATGCAAGGCCATAAGTCCT -ACGGAATGCAAGGCCATATAAGCC -ACGGAATGCAAGGCCATAATAGCC -ACGGAATGCAAGGCCATATAACCG -ACGGAATGCAAGGCCATAATGCCA -ACGGAATGCAAGCCGTAAGGAAAC -ACGGAATGCAAGCCGTAAAACACC -ACGGAATGCAAGCCGTAAATCGAG -ACGGAATGCAAGCCGTAACTCCTT -ACGGAATGCAAGCCGTAACCTGTT -ACGGAATGCAAGCCGTAACGGTTT -ACGGAATGCAAGCCGTAAGTGGTT -ACGGAATGCAAGCCGTAAGCCTTT -ACGGAATGCAAGCCGTAAGGTCTT -ACGGAATGCAAGCCGTAAACGCTT -ACGGAATGCAAGCCGTAAAGCGTT -ACGGAATGCAAGCCGTAATTCGTC -ACGGAATGCAAGCCGTAATCTCTC -ACGGAATGCAAGCCGTAATGGATC -ACGGAATGCAAGCCGTAACACTTC -ACGGAATGCAAGCCGTAAGTACTC -ACGGAATGCAAGCCGTAAGATGTC -ACGGAATGCAAGCCGTAAACAGTC -ACGGAATGCAAGCCGTAATTGCTG -ACGGAATGCAAGCCGTAATCCATG -ACGGAATGCAAGCCGTAATGTGTG -ACGGAATGCAAGCCGTAACTAGTG -ACGGAATGCAAGCCGTAACATCTG -ACGGAATGCAAGCCGTAAGAGTTG -ACGGAATGCAAGCCGTAAAGACTG -ACGGAATGCAAGCCGTAATCGGTA -ACGGAATGCAAGCCGTAATGCCTA -ACGGAATGCAAGCCGTAACCACTA -ACGGAATGCAAGCCGTAAGGAGTA -ACGGAATGCAAGCCGTAATCGTCT -ACGGAATGCAAGCCGTAATGCACT -ACGGAATGCAAGCCGTAACTGACT -ACGGAATGCAAGCCGTAACAACCT -ACGGAATGCAAGCCGTAAGCTACT -ACGGAATGCAAGCCGTAAGGATCT -ACGGAATGCAAGCCGTAAAAGGCT -ACGGAATGCAAGCCGTAATCAACC -ACGGAATGCAAGCCGTAATGTTCC -ACGGAATGCAAGCCGTAAATTCCC -ACGGAATGCAAGCCGTAATTCTCG -ACGGAATGCAAGCCGTAATAGACG -ACGGAATGCAAGCCGTAAGTAACG -ACGGAATGCAAGCCGTAAACTTCG -ACGGAATGCAAGCCGTAATACGCA -ACGGAATGCAAGCCGTAACTTGCA -ACGGAATGCAAGCCGTAACGAACA -ACGGAATGCAAGCCGTAACAGTCA -ACGGAATGCAAGCCGTAAGATCCA -ACGGAATGCAAGCCGTAAACGACA -ACGGAATGCAAGCCGTAAAGCTCA -ACGGAATGCAAGCCGTAATCACGT -ACGGAATGCAAGCCGTAACGTAGT -ACGGAATGCAAGCCGTAAGTCAGT -ACGGAATGCAAGCCGTAAGAAGGT -ACGGAATGCAAGCCGTAAAACCGT -ACGGAATGCAAGCCGTAATTGTGC -ACGGAATGCAAGCCGTAACTAAGC -ACGGAATGCAAGCCGTAAACTAGC -ACGGAATGCAAGCCGTAAAGATGC -ACGGAATGCAAGCCGTAATGAAGG -ACGGAATGCAAGCCGTAACAATGG -ACGGAATGCAAGCCGTAAATGAGG -ACGGAATGCAAGCCGTAAAATGGG -ACGGAATGCAAGCCGTAATCCTGA -ACGGAATGCAAGCCGTAATAGCGA -ACGGAATGCAAGCCGTAACACAGA -ACGGAATGCAAGCCGTAAGCAAGA -ACGGAATGCAAGCCGTAAGGTTGA -ACGGAATGCAAGCCGTAATCCGAT -ACGGAATGCAAGCCGTAATGGCAT -ACGGAATGCAAGCCGTAACGAGAT -ACGGAATGCAAGCCGTAATACCAC -ACGGAATGCAAGCCGTAACAGAAC -ACGGAATGCAAGCCGTAAGTCTAC -ACGGAATGCAAGCCGTAAACGTAC -ACGGAATGCAAGCCGTAAAGTGAC -ACGGAATGCAAGCCGTAACTGTAG -ACGGAATGCAAGCCGTAACCTAAG -ACGGAATGCAAGCCGTAAGTTCAG -ACGGAATGCAAGCCGTAAGCATAG -ACGGAATGCAAGCCGTAAGACAAG -ACGGAATGCAAGCCGTAAAAGCAG -ACGGAATGCAAGCCGTAACGTCAA -ACGGAATGCAAGCCGTAAGCTGAA -ACGGAATGCAAGCCGTAAAGTACG -ACGGAATGCAAGCCGTAAATCCGA -ACGGAATGCAAGCCGTAAATGGGA -ACGGAATGCAAGCCGTAAGTGCAA -ACGGAATGCAAGCCGTAAGAGGAA -ACGGAATGCAAGCCGTAACAGGTA -ACGGAATGCAAGCCGTAAGACTCT -ACGGAATGCAAGCCGTAAAGTCCT -ACGGAATGCAAGCCGTAATAAGCC -ACGGAATGCAAGCCGTAAATAGCC -ACGGAATGCAAGCCGTAATAACCG -ACGGAATGCAAGCCGTAAATGCCA -ACGGAATGCAAGCCAATGGGAAAC -ACGGAATGCAAGCCAATGAACACC -ACGGAATGCAAGCCAATGATCGAG -ACGGAATGCAAGCCAATGCTCCTT -ACGGAATGCAAGCCAATGCCTGTT -ACGGAATGCAAGCCAATGCGGTTT -ACGGAATGCAAGCCAATGGTGGTT -ACGGAATGCAAGCCAATGGCCTTT -ACGGAATGCAAGCCAATGGGTCTT -ACGGAATGCAAGCCAATGACGCTT -ACGGAATGCAAGCCAATGAGCGTT -ACGGAATGCAAGCCAATGTTCGTC -ACGGAATGCAAGCCAATGTCTCTC -ACGGAATGCAAGCCAATGTGGATC -ACGGAATGCAAGCCAATGCACTTC -ACGGAATGCAAGCCAATGGTACTC -ACGGAATGCAAGCCAATGGATGTC -ACGGAATGCAAGCCAATGACAGTC -ACGGAATGCAAGCCAATGTTGCTG -ACGGAATGCAAGCCAATGTCCATG -ACGGAATGCAAGCCAATGTGTGTG -ACGGAATGCAAGCCAATGCTAGTG -ACGGAATGCAAGCCAATGCATCTG -ACGGAATGCAAGCCAATGGAGTTG -ACGGAATGCAAGCCAATGAGACTG -ACGGAATGCAAGCCAATGTCGGTA -ACGGAATGCAAGCCAATGTGCCTA -ACGGAATGCAAGCCAATGCCACTA -ACGGAATGCAAGCCAATGGGAGTA -ACGGAATGCAAGCCAATGTCGTCT -ACGGAATGCAAGCCAATGTGCACT -ACGGAATGCAAGCCAATGCTGACT -ACGGAATGCAAGCCAATGCAACCT -ACGGAATGCAAGCCAATGGCTACT -ACGGAATGCAAGCCAATGGGATCT -ACGGAATGCAAGCCAATGAAGGCT -ACGGAATGCAAGCCAATGTCAACC -ACGGAATGCAAGCCAATGTGTTCC -ACGGAATGCAAGCCAATGATTCCC -ACGGAATGCAAGCCAATGTTCTCG -ACGGAATGCAAGCCAATGTAGACG -ACGGAATGCAAGCCAATGGTAACG -ACGGAATGCAAGCCAATGACTTCG -ACGGAATGCAAGCCAATGTACGCA -ACGGAATGCAAGCCAATGCTTGCA -ACGGAATGCAAGCCAATGCGAACA -ACGGAATGCAAGCCAATGCAGTCA -ACGGAATGCAAGCCAATGGATCCA -ACGGAATGCAAGCCAATGACGACA -ACGGAATGCAAGCCAATGAGCTCA -ACGGAATGCAAGCCAATGTCACGT -ACGGAATGCAAGCCAATGCGTAGT -ACGGAATGCAAGCCAATGGTCAGT -ACGGAATGCAAGCCAATGGAAGGT -ACGGAATGCAAGCCAATGAACCGT -ACGGAATGCAAGCCAATGTTGTGC -ACGGAATGCAAGCCAATGCTAAGC -ACGGAATGCAAGCCAATGACTAGC -ACGGAATGCAAGCCAATGAGATGC -ACGGAATGCAAGCCAATGTGAAGG -ACGGAATGCAAGCCAATGCAATGG -ACGGAATGCAAGCCAATGATGAGG -ACGGAATGCAAGCCAATGAATGGG -ACGGAATGCAAGCCAATGTCCTGA -ACGGAATGCAAGCCAATGTAGCGA -ACGGAATGCAAGCCAATGCACAGA -ACGGAATGCAAGCCAATGGCAAGA -ACGGAATGCAAGCCAATGGGTTGA -ACGGAATGCAAGCCAATGTCCGAT -ACGGAATGCAAGCCAATGTGGCAT -ACGGAATGCAAGCCAATGCGAGAT -ACGGAATGCAAGCCAATGTACCAC -ACGGAATGCAAGCCAATGCAGAAC -ACGGAATGCAAGCCAATGGTCTAC -ACGGAATGCAAGCCAATGACGTAC -ACGGAATGCAAGCCAATGAGTGAC -ACGGAATGCAAGCCAATGCTGTAG -ACGGAATGCAAGCCAATGCCTAAG -ACGGAATGCAAGCCAATGGTTCAG -ACGGAATGCAAGCCAATGGCATAG -ACGGAATGCAAGCCAATGGACAAG -ACGGAATGCAAGCCAATGAAGCAG -ACGGAATGCAAGCCAATGCGTCAA -ACGGAATGCAAGCCAATGGCTGAA -ACGGAATGCAAGCCAATGAGTACG -ACGGAATGCAAGCCAATGATCCGA -ACGGAATGCAAGCCAATGATGGGA -ACGGAATGCAAGCCAATGGTGCAA -ACGGAATGCAAGCCAATGGAGGAA -ACGGAATGCAAGCCAATGCAGGTA -ACGGAATGCAAGCCAATGGACTCT -ACGGAATGCAAGCCAATGAGTCCT -ACGGAATGCAAGCCAATGTAAGCC -ACGGAATGCAAGCCAATGATAGCC -ACGGAATGCAAGCCAATGTAACCG -ACGGAATGCAAGCCAATGATGCCA -ACGGAAAGGAAGAACGGAGGAAAC -ACGGAAAGGAAGAACGGAAACACC -ACGGAAAGGAAGAACGGAATCGAG -ACGGAAAGGAAGAACGGACTCCTT -ACGGAAAGGAAGAACGGACCTGTT -ACGGAAAGGAAGAACGGACGGTTT -ACGGAAAGGAAGAACGGAGTGGTT -ACGGAAAGGAAGAACGGAGCCTTT -ACGGAAAGGAAGAACGGAGGTCTT -ACGGAAAGGAAGAACGGAACGCTT -ACGGAAAGGAAGAACGGAAGCGTT -ACGGAAAGGAAGAACGGATTCGTC -ACGGAAAGGAAGAACGGATCTCTC -ACGGAAAGGAAGAACGGATGGATC -ACGGAAAGGAAGAACGGACACTTC -ACGGAAAGGAAGAACGGAGTACTC -ACGGAAAGGAAGAACGGAGATGTC -ACGGAAAGGAAGAACGGAACAGTC -ACGGAAAGGAAGAACGGATTGCTG -ACGGAAAGGAAGAACGGATCCATG -ACGGAAAGGAAGAACGGATGTGTG -ACGGAAAGGAAGAACGGACTAGTG -ACGGAAAGGAAGAACGGACATCTG -ACGGAAAGGAAGAACGGAGAGTTG -ACGGAAAGGAAGAACGGAAGACTG -ACGGAAAGGAAGAACGGATCGGTA -ACGGAAAGGAAGAACGGATGCCTA -ACGGAAAGGAAGAACGGACCACTA -ACGGAAAGGAAGAACGGAGGAGTA -ACGGAAAGGAAGAACGGATCGTCT -ACGGAAAGGAAGAACGGATGCACT -ACGGAAAGGAAGAACGGACTGACT -ACGGAAAGGAAGAACGGACAACCT -ACGGAAAGGAAGAACGGAGCTACT -ACGGAAAGGAAGAACGGAGGATCT -ACGGAAAGGAAGAACGGAAAGGCT -ACGGAAAGGAAGAACGGATCAACC -ACGGAAAGGAAGAACGGATGTTCC -ACGGAAAGGAAGAACGGAATTCCC -ACGGAAAGGAAGAACGGATTCTCG -ACGGAAAGGAAGAACGGATAGACG -ACGGAAAGGAAGAACGGAGTAACG -ACGGAAAGGAAGAACGGAACTTCG -ACGGAAAGGAAGAACGGATACGCA -ACGGAAAGGAAGAACGGACTTGCA -ACGGAAAGGAAGAACGGACGAACA -ACGGAAAGGAAGAACGGACAGTCA -ACGGAAAGGAAGAACGGAGATCCA -ACGGAAAGGAAGAACGGAACGACA -ACGGAAAGGAAGAACGGAAGCTCA -ACGGAAAGGAAGAACGGATCACGT -ACGGAAAGGAAGAACGGACGTAGT -ACGGAAAGGAAGAACGGAGTCAGT -ACGGAAAGGAAGAACGGAGAAGGT -ACGGAAAGGAAGAACGGAAACCGT -ACGGAAAGGAAGAACGGATTGTGC -ACGGAAAGGAAGAACGGACTAAGC -ACGGAAAGGAAGAACGGAACTAGC -ACGGAAAGGAAGAACGGAAGATGC -ACGGAAAGGAAGAACGGATGAAGG -ACGGAAAGGAAGAACGGACAATGG -ACGGAAAGGAAGAACGGAATGAGG -ACGGAAAGGAAGAACGGAAATGGG -ACGGAAAGGAAGAACGGATCCTGA -ACGGAAAGGAAGAACGGATAGCGA -ACGGAAAGGAAGAACGGACACAGA -ACGGAAAGGAAGAACGGAGCAAGA -ACGGAAAGGAAGAACGGAGGTTGA -ACGGAAAGGAAGAACGGATCCGAT -ACGGAAAGGAAGAACGGATGGCAT -ACGGAAAGGAAGAACGGACGAGAT -ACGGAAAGGAAGAACGGATACCAC -ACGGAAAGGAAGAACGGACAGAAC -ACGGAAAGGAAGAACGGAGTCTAC -ACGGAAAGGAAGAACGGAACGTAC -ACGGAAAGGAAGAACGGAAGTGAC -ACGGAAAGGAAGAACGGACTGTAG -ACGGAAAGGAAGAACGGACCTAAG -ACGGAAAGGAAGAACGGAGTTCAG -ACGGAAAGGAAGAACGGAGCATAG -ACGGAAAGGAAGAACGGAGACAAG -ACGGAAAGGAAGAACGGAAAGCAG -ACGGAAAGGAAGAACGGACGTCAA -ACGGAAAGGAAGAACGGAGCTGAA -ACGGAAAGGAAGAACGGAAGTACG -ACGGAAAGGAAGAACGGAATCCGA -ACGGAAAGGAAGAACGGAATGGGA -ACGGAAAGGAAGAACGGAGTGCAA -ACGGAAAGGAAGAACGGAGAGGAA -ACGGAAAGGAAGAACGGACAGGTA -ACGGAAAGGAAGAACGGAGACTCT -ACGGAAAGGAAGAACGGAAGTCCT -ACGGAAAGGAAGAACGGATAAGCC -ACGGAAAGGAAGAACGGAATAGCC -ACGGAAAGGAAGAACGGATAACCG -ACGGAAAGGAAGAACGGAATGCCA -ACGGAAAGGAAGACCAACGGAAAC -ACGGAAAGGAAGACCAACAACACC -ACGGAAAGGAAGACCAACATCGAG -ACGGAAAGGAAGACCAACCTCCTT -ACGGAAAGGAAGACCAACCCTGTT -ACGGAAAGGAAGACCAACCGGTTT -ACGGAAAGGAAGACCAACGTGGTT -ACGGAAAGGAAGACCAACGCCTTT -ACGGAAAGGAAGACCAACGGTCTT -ACGGAAAGGAAGACCAACACGCTT -ACGGAAAGGAAGACCAACAGCGTT -ACGGAAAGGAAGACCAACTTCGTC -ACGGAAAGGAAGACCAACTCTCTC -ACGGAAAGGAAGACCAACTGGATC -ACGGAAAGGAAGACCAACCACTTC -ACGGAAAGGAAGACCAACGTACTC -ACGGAAAGGAAGACCAACGATGTC -ACGGAAAGGAAGACCAACACAGTC -ACGGAAAGGAAGACCAACTTGCTG -ACGGAAAGGAAGACCAACTCCATG -ACGGAAAGGAAGACCAACTGTGTG -ACGGAAAGGAAGACCAACCTAGTG -ACGGAAAGGAAGACCAACCATCTG -ACGGAAAGGAAGACCAACGAGTTG -ACGGAAAGGAAGACCAACAGACTG -ACGGAAAGGAAGACCAACTCGGTA -ACGGAAAGGAAGACCAACTGCCTA -ACGGAAAGGAAGACCAACCCACTA -ACGGAAAGGAAGACCAACGGAGTA -ACGGAAAGGAAGACCAACTCGTCT -ACGGAAAGGAAGACCAACTGCACT -ACGGAAAGGAAGACCAACCTGACT -ACGGAAAGGAAGACCAACCAACCT -ACGGAAAGGAAGACCAACGCTACT -ACGGAAAGGAAGACCAACGGATCT -ACGGAAAGGAAGACCAACAAGGCT -ACGGAAAGGAAGACCAACTCAACC -ACGGAAAGGAAGACCAACTGTTCC -ACGGAAAGGAAGACCAACATTCCC -ACGGAAAGGAAGACCAACTTCTCG -ACGGAAAGGAAGACCAACTAGACG -ACGGAAAGGAAGACCAACGTAACG -ACGGAAAGGAAGACCAACACTTCG -ACGGAAAGGAAGACCAACTACGCA -ACGGAAAGGAAGACCAACCTTGCA -ACGGAAAGGAAGACCAACCGAACA -ACGGAAAGGAAGACCAACCAGTCA -ACGGAAAGGAAGACCAACGATCCA -ACGGAAAGGAAGACCAACACGACA -ACGGAAAGGAAGACCAACAGCTCA -ACGGAAAGGAAGACCAACTCACGT -ACGGAAAGGAAGACCAACCGTAGT -ACGGAAAGGAAGACCAACGTCAGT -ACGGAAAGGAAGACCAACGAAGGT -ACGGAAAGGAAGACCAACAACCGT -ACGGAAAGGAAGACCAACTTGTGC -ACGGAAAGGAAGACCAACCTAAGC -ACGGAAAGGAAGACCAACACTAGC -ACGGAAAGGAAGACCAACAGATGC -ACGGAAAGGAAGACCAACTGAAGG -ACGGAAAGGAAGACCAACCAATGG -ACGGAAAGGAAGACCAACATGAGG -ACGGAAAGGAAGACCAACAATGGG -ACGGAAAGGAAGACCAACTCCTGA -ACGGAAAGGAAGACCAACTAGCGA -ACGGAAAGGAAGACCAACCACAGA -ACGGAAAGGAAGACCAACGCAAGA -ACGGAAAGGAAGACCAACGGTTGA -ACGGAAAGGAAGACCAACTCCGAT -ACGGAAAGGAAGACCAACTGGCAT -ACGGAAAGGAAGACCAACCGAGAT -ACGGAAAGGAAGACCAACTACCAC -ACGGAAAGGAAGACCAACCAGAAC -ACGGAAAGGAAGACCAACGTCTAC -ACGGAAAGGAAGACCAACACGTAC -ACGGAAAGGAAGACCAACAGTGAC -ACGGAAAGGAAGACCAACCTGTAG -ACGGAAAGGAAGACCAACCCTAAG -ACGGAAAGGAAGACCAACGTTCAG -ACGGAAAGGAAGACCAACGCATAG -ACGGAAAGGAAGACCAACGACAAG -ACGGAAAGGAAGACCAACAAGCAG -ACGGAAAGGAAGACCAACCGTCAA -ACGGAAAGGAAGACCAACGCTGAA -ACGGAAAGGAAGACCAACAGTACG -ACGGAAAGGAAGACCAACATCCGA -ACGGAAAGGAAGACCAACATGGGA -ACGGAAAGGAAGACCAACGTGCAA -ACGGAAAGGAAGACCAACGAGGAA -ACGGAAAGGAAGACCAACCAGGTA -ACGGAAAGGAAGACCAACGACTCT -ACGGAAAGGAAGACCAACAGTCCT -ACGGAAAGGAAGACCAACTAAGCC -ACGGAAAGGAAGACCAACATAGCC -ACGGAAAGGAAGACCAACTAACCG -ACGGAAAGGAAGACCAACATGCCA -ACGGAAAGGAAGGAGATCGGAAAC -ACGGAAAGGAAGGAGATCAACACC -ACGGAAAGGAAGGAGATCATCGAG -ACGGAAAGGAAGGAGATCCTCCTT -ACGGAAAGGAAGGAGATCCCTGTT -ACGGAAAGGAAGGAGATCCGGTTT -ACGGAAAGGAAGGAGATCGTGGTT -ACGGAAAGGAAGGAGATCGCCTTT -ACGGAAAGGAAGGAGATCGGTCTT -ACGGAAAGGAAGGAGATCACGCTT -ACGGAAAGGAAGGAGATCAGCGTT -ACGGAAAGGAAGGAGATCTTCGTC -ACGGAAAGGAAGGAGATCTCTCTC -ACGGAAAGGAAGGAGATCTGGATC -ACGGAAAGGAAGGAGATCCACTTC -ACGGAAAGGAAGGAGATCGTACTC -ACGGAAAGGAAGGAGATCGATGTC -ACGGAAAGGAAGGAGATCACAGTC -ACGGAAAGGAAGGAGATCTTGCTG -ACGGAAAGGAAGGAGATCTCCATG -ACGGAAAGGAAGGAGATCTGTGTG -ACGGAAAGGAAGGAGATCCTAGTG -ACGGAAAGGAAGGAGATCCATCTG -ACGGAAAGGAAGGAGATCGAGTTG -ACGGAAAGGAAGGAGATCAGACTG -ACGGAAAGGAAGGAGATCTCGGTA -ACGGAAAGGAAGGAGATCTGCCTA -ACGGAAAGGAAGGAGATCCCACTA -ACGGAAAGGAAGGAGATCGGAGTA -ACGGAAAGGAAGGAGATCTCGTCT -ACGGAAAGGAAGGAGATCTGCACT -ACGGAAAGGAAGGAGATCCTGACT -ACGGAAAGGAAGGAGATCCAACCT -ACGGAAAGGAAGGAGATCGCTACT -ACGGAAAGGAAGGAGATCGGATCT -ACGGAAAGGAAGGAGATCAAGGCT -ACGGAAAGGAAGGAGATCTCAACC -ACGGAAAGGAAGGAGATCTGTTCC -ACGGAAAGGAAGGAGATCATTCCC -ACGGAAAGGAAGGAGATCTTCTCG -ACGGAAAGGAAGGAGATCTAGACG -ACGGAAAGGAAGGAGATCGTAACG -ACGGAAAGGAAGGAGATCACTTCG -ACGGAAAGGAAGGAGATCTACGCA -ACGGAAAGGAAGGAGATCCTTGCA -ACGGAAAGGAAGGAGATCCGAACA -ACGGAAAGGAAGGAGATCCAGTCA -ACGGAAAGGAAGGAGATCGATCCA -ACGGAAAGGAAGGAGATCACGACA -ACGGAAAGGAAGGAGATCAGCTCA -ACGGAAAGGAAGGAGATCTCACGT -ACGGAAAGGAAGGAGATCCGTAGT -ACGGAAAGGAAGGAGATCGTCAGT -ACGGAAAGGAAGGAGATCGAAGGT -ACGGAAAGGAAGGAGATCAACCGT -ACGGAAAGGAAGGAGATCTTGTGC -ACGGAAAGGAAGGAGATCCTAAGC -ACGGAAAGGAAGGAGATCACTAGC -ACGGAAAGGAAGGAGATCAGATGC -ACGGAAAGGAAGGAGATCTGAAGG -ACGGAAAGGAAGGAGATCCAATGG -ACGGAAAGGAAGGAGATCATGAGG -ACGGAAAGGAAGGAGATCAATGGG -ACGGAAAGGAAGGAGATCTCCTGA -ACGGAAAGGAAGGAGATCTAGCGA -ACGGAAAGGAAGGAGATCCACAGA -ACGGAAAGGAAGGAGATCGCAAGA -ACGGAAAGGAAGGAGATCGGTTGA -ACGGAAAGGAAGGAGATCTCCGAT -ACGGAAAGGAAGGAGATCTGGCAT -ACGGAAAGGAAGGAGATCCGAGAT -ACGGAAAGGAAGGAGATCTACCAC -ACGGAAAGGAAGGAGATCCAGAAC -ACGGAAAGGAAGGAGATCGTCTAC -ACGGAAAGGAAGGAGATCACGTAC -ACGGAAAGGAAGGAGATCAGTGAC -ACGGAAAGGAAGGAGATCCTGTAG -ACGGAAAGGAAGGAGATCCCTAAG -ACGGAAAGGAAGGAGATCGTTCAG -ACGGAAAGGAAGGAGATCGCATAG -ACGGAAAGGAAGGAGATCGACAAG -ACGGAAAGGAAGGAGATCAAGCAG -ACGGAAAGGAAGGAGATCCGTCAA -ACGGAAAGGAAGGAGATCGCTGAA -ACGGAAAGGAAGGAGATCAGTACG -ACGGAAAGGAAGGAGATCATCCGA -ACGGAAAGGAAGGAGATCATGGGA -ACGGAAAGGAAGGAGATCGTGCAA -ACGGAAAGGAAGGAGATCGAGGAA -ACGGAAAGGAAGGAGATCCAGGTA -ACGGAAAGGAAGGAGATCGACTCT -ACGGAAAGGAAGGAGATCAGTCCT -ACGGAAAGGAAGGAGATCTAAGCC -ACGGAAAGGAAGGAGATCATAGCC -ACGGAAAGGAAGGAGATCTAACCG -ACGGAAAGGAAGGAGATCATGCCA -ACGGAAAGGAAGCTTCTCGGAAAC -ACGGAAAGGAAGCTTCTCAACACC -ACGGAAAGGAAGCTTCTCATCGAG -ACGGAAAGGAAGCTTCTCCTCCTT -ACGGAAAGGAAGCTTCTCCCTGTT -ACGGAAAGGAAGCTTCTCCGGTTT -ACGGAAAGGAAGCTTCTCGTGGTT -ACGGAAAGGAAGCTTCTCGCCTTT -ACGGAAAGGAAGCTTCTCGGTCTT -ACGGAAAGGAAGCTTCTCACGCTT -ACGGAAAGGAAGCTTCTCAGCGTT -ACGGAAAGGAAGCTTCTCTTCGTC -ACGGAAAGGAAGCTTCTCTCTCTC -ACGGAAAGGAAGCTTCTCTGGATC -ACGGAAAGGAAGCTTCTCCACTTC -ACGGAAAGGAAGCTTCTCGTACTC -ACGGAAAGGAAGCTTCTCGATGTC -ACGGAAAGGAAGCTTCTCACAGTC -ACGGAAAGGAAGCTTCTCTTGCTG -ACGGAAAGGAAGCTTCTCTCCATG -ACGGAAAGGAAGCTTCTCTGTGTG -ACGGAAAGGAAGCTTCTCCTAGTG -ACGGAAAGGAAGCTTCTCCATCTG -ACGGAAAGGAAGCTTCTCGAGTTG -ACGGAAAGGAAGCTTCTCAGACTG -ACGGAAAGGAAGCTTCTCTCGGTA -ACGGAAAGGAAGCTTCTCTGCCTA -ACGGAAAGGAAGCTTCTCCCACTA -ACGGAAAGGAAGCTTCTCGGAGTA -ACGGAAAGGAAGCTTCTCTCGTCT -ACGGAAAGGAAGCTTCTCTGCACT -ACGGAAAGGAAGCTTCTCCTGACT -ACGGAAAGGAAGCTTCTCCAACCT -ACGGAAAGGAAGCTTCTCGCTACT -ACGGAAAGGAAGCTTCTCGGATCT -ACGGAAAGGAAGCTTCTCAAGGCT -ACGGAAAGGAAGCTTCTCTCAACC -ACGGAAAGGAAGCTTCTCTGTTCC -ACGGAAAGGAAGCTTCTCATTCCC -ACGGAAAGGAAGCTTCTCTTCTCG -ACGGAAAGGAAGCTTCTCTAGACG -ACGGAAAGGAAGCTTCTCGTAACG -ACGGAAAGGAAGCTTCTCACTTCG -ACGGAAAGGAAGCTTCTCTACGCA -ACGGAAAGGAAGCTTCTCCTTGCA -ACGGAAAGGAAGCTTCTCCGAACA -ACGGAAAGGAAGCTTCTCCAGTCA -ACGGAAAGGAAGCTTCTCGATCCA -ACGGAAAGGAAGCTTCTCACGACA -ACGGAAAGGAAGCTTCTCAGCTCA -ACGGAAAGGAAGCTTCTCTCACGT -ACGGAAAGGAAGCTTCTCCGTAGT -ACGGAAAGGAAGCTTCTCGTCAGT -ACGGAAAGGAAGCTTCTCGAAGGT -ACGGAAAGGAAGCTTCTCAACCGT -ACGGAAAGGAAGCTTCTCTTGTGC -ACGGAAAGGAAGCTTCTCCTAAGC -ACGGAAAGGAAGCTTCTCACTAGC -ACGGAAAGGAAGCTTCTCAGATGC -ACGGAAAGGAAGCTTCTCTGAAGG -ACGGAAAGGAAGCTTCTCCAATGG -ACGGAAAGGAAGCTTCTCATGAGG -ACGGAAAGGAAGCTTCTCAATGGG -ACGGAAAGGAAGCTTCTCTCCTGA -ACGGAAAGGAAGCTTCTCTAGCGA -ACGGAAAGGAAGCTTCTCCACAGA -ACGGAAAGGAAGCTTCTCGCAAGA -ACGGAAAGGAAGCTTCTCGGTTGA -ACGGAAAGGAAGCTTCTCTCCGAT -ACGGAAAGGAAGCTTCTCTGGCAT -ACGGAAAGGAAGCTTCTCCGAGAT -ACGGAAAGGAAGCTTCTCTACCAC -ACGGAAAGGAAGCTTCTCCAGAAC -ACGGAAAGGAAGCTTCTCGTCTAC -ACGGAAAGGAAGCTTCTCACGTAC -ACGGAAAGGAAGCTTCTCAGTGAC -ACGGAAAGGAAGCTTCTCCTGTAG -ACGGAAAGGAAGCTTCTCCCTAAG -ACGGAAAGGAAGCTTCTCGTTCAG -ACGGAAAGGAAGCTTCTCGCATAG -ACGGAAAGGAAGCTTCTCGACAAG -ACGGAAAGGAAGCTTCTCAAGCAG -ACGGAAAGGAAGCTTCTCCGTCAA -ACGGAAAGGAAGCTTCTCGCTGAA -ACGGAAAGGAAGCTTCTCAGTACG -ACGGAAAGGAAGCTTCTCATCCGA -ACGGAAAGGAAGCTTCTCATGGGA -ACGGAAAGGAAGCTTCTCGTGCAA -ACGGAAAGGAAGCTTCTCGAGGAA -ACGGAAAGGAAGCTTCTCCAGGTA -ACGGAAAGGAAGCTTCTCGACTCT -ACGGAAAGGAAGCTTCTCAGTCCT -ACGGAAAGGAAGCTTCTCTAAGCC -ACGGAAAGGAAGCTTCTCATAGCC -ACGGAAAGGAAGCTTCTCTAACCG -ACGGAAAGGAAGCTTCTCATGCCA -ACGGAAAGGAAGGTTCCTGGAAAC -ACGGAAAGGAAGGTTCCTAACACC -ACGGAAAGGAAGGTTCCTATCGAG -ACGGAAAGGAAGGTTCCTCTCCTT -ACGGAAAGGAAGGTTCCTCCTGTT -ACGGAAAGGAAGGTTCCTCGGTTT -ACGGAAAGGAAGGTTCCTGTGGTT -ACGGAAAGGAAGGTTCCTGCCTTT -ACGGAAAGGAAGGTTCCTGGTCTT -ACGGAAAGGAAGGTTCCTACGCTT -ACGGAAAGGAAGGTTCCTAGCGTT -ACGGAAAGGAAGGTTCCTTTCGTC -ACGGAAAGGAAGGTTCCTTCTCTC -ACGGAAAGGAAGGTTCCTTGGATC -ACGGAAAGGAAGGTTCCTCACTTC -ACGGAAAGGAAGGTTCCTGTACTC -ACGGAAAGGAAGGTTCCTGATGTC -ACGGAAAGGAAGGTTCCTACAGTC -ACGGAAAGGAAGGTTCCTTTGCTG -ACGGAAAGGAAGGTTCCTTCCATG -ACGGAAAGGAAGGTTCCTTGTGTG -ACGGAAAGGAAGGTTCCTCTAGTG -ACGGAAAGGAAGGTTCCTCATCTG -ACGGAAAGGAAGGTTCCTGAGTTG -ACGGAAAGGAAGGTTCCTAGACTG -ACGGAAAGGAAGGTTCCTTCGGTA -ACGGAAAGGAAGGTTCCTTGCCTA -ACGGAAAGGAAGGTTCCTCCACTA -ACGGAAAGGAAGGTTCCTGGAGTA -ACGGAAAGGAAGGTTCCTTCGTCT -ACGGAAAGGAAGGTTCCTTGCACT -ACGGAAAGGAAGGTTCCTCTGACT -ACGGAAAGGAAGGTTCCTCAACCT -ACGGAAAGGAAGGTTCCTGCTACT -ACGGAAAGGAAGGTTCCTGGATCT -ACGGAAAGGAAGGTTCCTAAGGCT -ACGGAAAGGAAGGTTCCTTCAACC -ACGGAAAGGAAGGTTCCTTGTTCC -ACGGAAAGGAAGGTTCCTATTCCC -ACGGAAAGGAAGGTTCCTTTCTCG -ACGGAAAGGAAGGTTCCTTAGACG -ACGGAAAGGAAGGTTCCTGTAACG -ACGGAAAGGAAGGTTCCTACTTCG -ACGGAAAGGAAGGTTCCTTACGCA -ACGGAAAGGAAGGTTCCTCTTGCA -ACGGAAAGGAAGGTTCCTCGAACA -ACGGAAAGGAAGGTTCCTCAGTCA -ACGGAAAGGAAGGTTCCTGATCCA -ACGGAAAGGAAGGTTCCTACGACA -ACGGAAAGGAAGGTTCCTAGCTCA -ACGGAAAGGAAGGTTCCTTCACGT -ACGGAAAGGAAGGTTCCTCGTAGT -ACGGAAAGGAAGGTTCCTGTCAGT -ACGGAAAGGAAGGTTCCTGAAGGT -ACGGAAAGGAAGGTTCCTAACCGT -ACGGAAAGGAAGGTTCCTTTGTGC -ACGGAAAGGAAGGTTCCTCTAAGC -ACGGAAAGGAAGGTTCCTACTAGC -ACGGAAAGGAAGGTTCCTAGATGC -ACGGAAAGGAAGGTTCCTTGAAGG -ACGGAAAGGAAGGTTCCTCAATGG -ACGGAAAGGAAGGTTCCTATGAGG -ACGGAAAGGAAGGTTCCTAATGGG -ACGGAAAGGAAGGTTCCTTCCTGA -ACGGAAAGGAAGGTTCCTTAGCGA -ACGGAAAGGAAGGTTCCTCACAGA -ACGGAAAGGAAGGTTCCTGCAAGA -ACGGAAAGGAAGGTTCCTGGTTGA -ACGGAAAGGAAGGTTCCTTCCGAT -ACGGAAAGGAAGGTTCCTTGGCAT -ACGGAAAGGAAGGTTCCTCGAGAT -ACGGAAAGGAAGGTTCCTTACCAC -ACGGAAAGGAAGGTTCCTCAGAAC -ACGGAAAGGAAGGTTCCTGTCTAC -ACGGAAAGGAAGGTTCCTACGTAC -ACGGAAAGGAAGGTTCCTAGTGAC -ACGGAAAGGAAGGTTCCTCTGTAG -ACGGAAAGGAAGGTTCCTCCTAAG -ACGGAAAGGAAGGTTCCTGTTCAG -ACGGAAAGGAAGGTTCCTGCATAG -ACGGAAAGGAAGGTTCCTGACAAG -ACGGAAAGGAAGGTTCCTAAGCAG -ACGGAAAGGAAGGTTCCTCGTCAA -ACGGAAAGGAAGGTTCCTGCTGAA -ACGGAAAGGAAGGTTCCTAGTACG -ACGGAAAGGAAGGTTCCTATCCGA -ACGGAAAGGAAGGTTCCTATGGGA -ACGGAAAGGAAGGTTCCTGTGCAA -ACGGAAAGGAAGGTTCCTGAGGAA -ACGGAAAGGAAGGTTCCTCAGGTA -ACGGAAAGGAAGGTTCCTGACTCT -ACGGAAAGGAAGGTTCCTAGTCCT -ACGGAAAGGAAGGTTCCTTAAGCC -ACGGAAAGGAAGGTTCCTATAGCC -ACGGAAAGGAAGGTTCCTTAACCG -ACGGAAAGGAAGGTTCCTATGCCA -ACGGAAAGGAAGTTTCGGGGAAAC -ACGGAAAGGAAGTTTCGGAACACC -ACGGAAAGGAAGTTTCGGATCGAG -ACGGAAAGGAAGTTTCGGCTCCTT -ACGGAAAGGAAGTTTCGGCCTGTT -ACGGAAAGGAAGTTTCGGCGGTTT -ACGGAAAGGAAGTTTCGGGTGGTT -ACGGAAAGGAAGTTTCGGGCCTTT -ACGGAAAGGAAGTTTCGGGGTCTT -ACGGAAAGGAAGTTTCGGACGCTT -ACGGAAAGGAAGTTTCGGAGCGTT -ACGGAAAGGAAGTTTCGGTTCGTC -ACGGAAAGGAAGTTTCGGTCTCTC -ACGGAAAGGAAGTTTCGGTGGATC -ACGGAAAGGAAGTTTCGGCACTTC -ACGGAAAGGAAGTTTCGGGTACTC -ACGGAAAGGAAGTTTCGGGATGTC -ACGGAAAGGAAGTTTCGGACAGTC -ACGGAAAGGAAGTTTCGGTTGCTG -ACGGAAAGGAAGTTTCGGTCCATG -ACGGAAAGGAAGTTTCGGTGTGTG -ACGGAAAGGAAGTTTCGGCTAGTG -ACGGAAAGGAAGTTTCGGCATCTG -ACGGAAAGGAAGTTTCGGGAGTTG -ACGGAAAGGAAGTTTCGGAGACTG -ACGGAAAGGAAGTTTCGGTCGGTA -ACGGAAAGGAAGTTTCGGTGCCTA -ACGGAAAGGAAGTTTCGGCCACTA -ACGGAAAGGAAGTTTCGGGGAGTA -ACGGAAAGGAAGTTTCGGTCGTCT -ACGGAAAGGAAGTTTCGGTGCACT -ACGGAAAGGAAGTTTCGGCTGACT -ACGGAAAGGAAGTTTCGGCAACCT -ACGGAAAGGAAGTTTCGGGCTACT -ACGGAAAGGAAGTTTCGGGGATCT -ACGGAAAGGAAGTTTCGGAAGGCT -ACGGAAAGGAAGTTTCGGTCAACC -ACGGAAAGGAAGTTTCGGTGTTCC -ACGGAAAGGAAGTTTCGGATTCCC -ACGGAAAGGAAGTTTCGGTTCTCG -ACGGAAAGGAAGTTTCGGTAGACG -ACGGAAAGGAAGTTTCGGGTAACG -ACGGAAAGGAAGTTTCGGACTTCG -ACGGAAAGGAAGTTTCGGTACGCA -ACGGAAAGGAAGTTTCGGCTTGCA -ACGGAAAGGAAGTTTCGGCGAACA -ACGGAAAGGAAGTTTCGGCAGTCA -ACGGAAAGGAAGTTTCGGGATCCA -ACGGAAAGGAAGTTTCGGACGACA -ACGGAAAGGAAGTTTCGGAGCTCA -ACGGAAAGGAAGTTTCGGTCACGT -ACGGAAAGGAAGTTTCGGCGTAGT -ACGGAAAGGAAGTTTCGGGTCAGT -ACGGAAAGGAAGTTTCGGGAAGGT -ACGGAAAGGAAGTTTCGGAACCGT -ACGGAAAGGAAGTTTCGGTTGTGC -ACGGAAAGGAAGTTTCGGCTAAGC -ACGGAAAGGAAGTTTCGGACTAGC -ACGGAAAGGAAGTTTCGGAGATGC -ACGGAAAGGAAGTTTCGGTGAAGG -ACGGAAAGGAAGTTTCGGCAATGG -ACGGAAAGGAAGTTTCGGATGAGG -ACGGAAAGGAAGTTTCGGAATGGG -ACGGAAAGGAAGTTTCGGTCCTGA -ACGGAAAGGAAGTTTCGGTAGCGA -ACGGAAAGGAAGTTTCGGCACAGA -ACGGAAAGGAAGTTTCGGGCAAGA -ACGGAAAGGAAGTTTCGGGGTTGA -ACGGAAAGGAAGTTTCGGTCCGAT -ACGGAAAGGAAGTTTCGGTGGCAT -ACGGAAAGGAAGTTTCGGCGAGAT -ACGGAAAGGAAGTTTCGGTACCAC -ACGGAAAGGAAGTTTCGGCAGAAC -ACGGAAAGGAAGTTTCGGGTCTAC -ACGGAAAGGAAGTTTCGGACGTAC -ACGGAAAGGAAGTTTCGGAGTGAC -ACGGAAAGGAAGTTTCGGCTGTAG -ACGGAAAGGAAGTTTCGGCCTAAG -ACGGAAAGGAAGTTTCGGGTTCAG -ACGGAAAGGAAGTTTCGGGCATAG -ACGGAAAGGAAGTTTCGGGACAAG -ACGGAAAGGAAGTTTCGGAAGCAG -ACGGAAAGGAAGTTTCGGCGTCAA -ACGGAAAGGAAGTTTCGGGCTGAA -ACGGAAAGGAAGTTTCGGAGTACG -ACGGAAAGGAAGTTTCGGATCCGA -ACGGAAAGGAAGTTTCGGATGGGA -ACGGAAAGGAAGTTTCGGGTGCAA -ACGGAAAGGAAGTTTCGGGAGGAA -ACGGAAAGGAAGTTTCGGCAGGTA -ACGGAAAGGAAGTTTCGGGACTCT -ACGGAAAGGAAGTTTCGGAGTCCT -ACGGAAAGGAAGTTTCGGTAAGCC -ACGGAAAGGAAGTTTCGGATAGCC -ACGGAAAGGAAGTTTCGGTAACCG -ACGGAAAGGAAGTTTCGGATGCCA -ACGGAAAGGAAGGTTGTGGGAAAC -ACGGAAAGGAAGGTTGTGAACACC -ACGGAAAGGAAGGTTGTGATCGAG -ACGGAAAGGAAGGTTGTGCTCCTT -ACGGAAAGGAAGGTTGTGCCTGTT -ACGGAAAGGAAGGTTGTGCGGTTT -ACGGAAAGGAAGGTTGTGGTGGTT -ACGGAAAGGAAGGTTGTGGCCTTT -ACGGAAAGGAAGGTTGTGGGTCTT -ACGGAAAGGAAGGTTGTGACGCTT -ACGGAAAGGAAGGTTGTGAGCGTT -ACGGAAAGGAAGGTTGTGTTCGTC -ACGGAAAGGAAGGTTGTGTCTCTC -ACGGAAAGGAAGGTTGTGTGGATC -ACGGAAAGGAAGGTTGTGCACTTC -ACGGAAAGGAAGGTTGTGGTACTC -ACGGAAAGGAAGGTTGTGGATGTC -ACGGAAAGGAAGGTTGTGACAGTC -ACGGAAAGGAAGGTTGTGTTGCTG -ACGGAAAGGAAGGTTGTGTCCATG -ACGGAAAGGAAGGTTGTGTGTGTG -ACGGAAAGGAAGGTTGTGCTAGTG -ACGGAAAGGAAGGTTGTGCATCTG -ACGGAAAGGAAGGTTGTGGAGTTG -ACGGAAAGGAAGGTTGTGAGACTG -ACGGAAAGGAAGGTTGTGTCGGTA -ACGGAAAGGAAGGTTGTGTGCCTA -ACGGAAAGGAAGGTTGTGCCACTA -ACGGAAAGGAAGGTTGTGGGAGTA -ACGGAAAGGAAGGTTGTGTCGTCT -ACGGAAAGGAAGGTTGTGTGCACT -ACGGAAAGGAAGGTTGTGCTGACT -ACGGAAAGGAAGGTTGTGCAACCT -ACGGAAAGGAAGGTTGTGGCTACT -ACGGAAAGGAAGGTTGTGGGATCT -ACGGAAAGGAAGGTTGTGAAGGCT -ACGGAAAGGAAGGTTGTGTCAACC -ACGGAAAGGAAGGTTGTGTGTTCC -ACGGAAAGGAAGGTTGTGATTCCC -ACGGAAAGGAAGGTTGTGTTCTCG -ACGGAAAGGAAGGTTGTGTAGACG -ACGGAAAGGAAGGTTGTGGTAACG -ACGGAAAGGAAGGTTGTGACTTCG -ACGGAAAGGAAGGTTGTGTACGCA -ACGGAAAGGAAGGTTGTGCTTGCA -ACGGAAAGGAAGGTTGTGCGAACA -ACGGAAAGGAAGGTTGTGCAGTCA -ACGGAAAGGAAGGTTGTGGATCCA -ACGGAAAGGAAGGTTGTGACGACA -ACGGAAAGGAAGGTTGTGAGCTCA -ACGGAAAGGAAGGTTGTGTCACGT -ACGGAAAGGAAGGTTGTGCGTAGT -ACGGAAAGGAAGGTTGTGGTCAGT -ACGGAAAGGAAGGTTGTGGAAGGT -ACGGAAAGGAAGGTTGTGAACCGT -ACGGAAAGGAAGGTTGTGTTGTGC -ACGGAAAGGAAGGTTGTGCTAAGC -ACGGAAAGGAAGGTTGTGACTAGC -ACGGAAAGGAAGGTTGTGAGATGC -ACGGAAAGGAAGGTTGTGTGAAGG -ACGGAAAGGAAGGTTGTGCAATGG -ACGGAAAGGAAGGTTGTGATGAGG -ACGGAAAGGAAGGTTGTGAATGGG -ACGGAAAGGAAGGTTGTGTCCTGA -ACGGAAAGGAAGGTTGTGTAGCGA -ACGGAAAGGAAGGTTGTGCACAGA -ACGGAAAGGAAGGTTGTGGCAAGA -ACGGAAAGGAAGGTTGTGGGTTGA -ACGGAAAGGAAGGTTGTGTCCGAT -ACGGAAAGGAAGGTTGTGTGGCAT -ACGGAAAGGAAGGTTGTGCGAGAT -ACGGAAAGGAAGGTTGTGTACCAC -ACGGAAAGGAAGGTTGTGCAGAAC -ACGGAAAGGAAGGTTGTGGTCTAC -ACGGAAAGGAAGGTTGTGACGTAC -ACGGAAAGGAAGGTTGTGAGTGAC -ACGGAAAGGAAGGTTGTGCTGTAG -ACGGAAAGGAAGGTTGTGCCTAAG -ACGGAAAGGAAGGTTGTGGTTCAG -ACGGAAAGGAAGGTTGTGGCATAG -ACGGAAAGGAAGGTTGTGGACAAG -ACGGAAAGGAAGGTTGTGAAGCAG -ACGGAAAGGAAGGTTGTGCGTCAA -ACGGAAAGGAAGGTTGTGGCTGAA -ACGGAAAGGAAGGTTGTGAGTACG -ACGGAAAGGAAGGTTGTGATCCGA -ACGGAAAGGAAGGTTGTGATGGGA -ACGGAAAGGAAGGTTGTGGTGCAA -ACGGAAAGGAAGGTTGTGGAGGAA -ACGGAAAGGAAGGTTGTGCAGGTA -ACGGAAAGGAAGGTTGTGGACTCT -ACGGAAAGGAAGGTTGTGAGTCCT -ACGGAAAGGAAGGTTGTGTAAGCC -ACGGAAAGGAAGGTTGTGATAGCC -ACGGAAAGGAAGGTTGTGTAACCG -ACGGAAAGGAAGGTTGTGATGCCA -ACGGAAAGGAAGTTTGCCGGAAAC -ACGGAAAGGAAGTTTGCCAACACC -ACGGAAAGGAAGTTTGCCATCGAG -ACGGAAAGGAAGTTTGCCCTCCTT -ACGGAAAGGAAGTTTGCCCCTGTT -ACGGAAAGGAAGTTTGCCCGGTTT -ACGGAAAGGAAGTTTGCCGTGGTT -ACGGAAAGGAAGTTTGCCGCCTTT -ACGGAAAGGAAGTTTGCCGGTCTT -ACGGAAAGGAAGTTTGCCACGCTT -ACGGAAAGGAAGTTTGCCAGCGTT -ACGGAAAGGAAGTTTGCCTTCGTC -ACGGAAAGGAAGTTTGCCTCTCTC -ACGGAAAGGAAGTTTGCCTGGATC -ACGGAAAGGAAGTTTGCCCACTTC -ACGGAAAGGAAGTTTGCCGTACTC -ACGGAAAGGAAGTTTGCCGATGTC -ACGGAAAGGAAGTTTGCCACAGTC -ACGGAAAGGAAGTTTGCCTTGCTG -ACGGAAAGGAAGTTTGCCTCCATG -ACGGAAAGGAAGTTTGCCTGTGTG -ACGGAAAGGAAGTTTGCCCTAGTG -ACGGAAAGGAAGTTTGCCCATCTG -ACGGAAAGGAAGTTTGCCGAGTTG -ACGGAAAGGAAGTTTGCCAGACTG -ACGGAAAGGAAGTTTGCCTCGGTA -ACGGAAAGGAAGTTTGCCTGCCTA -ACGGAAAGGAAGTTTGCCCCACTA -ACGGAAAGGAAGTTTGCCGGAGTA -ACGGAAAGGAAGTTTGCCTCGTCT -ACGGAAAGGAAGTTTGCCTGCACT -ACGGAAAGGAAGTTTGCCCTGACT -ACGGAAAGGAAGTTTGCCCAACCT -ACGGAAAGGAAGTTTGCCGCTACT -ACGGAAAGGAAGTTTGCCGGATCT -ACGGAAAGGAAGTTTGCCAAGGCT -ACGGAAAGGAAGTTTGCCTCAACC -ACGGAAAGGAAGTTTGCCTGTTCC -ACGGAAAGGAAGTTTGCCATTCCC -ACGGAAAGGAAGTTTGCCTTCTCG -ACGGAAAGGAAGTTTGCCTAGACG -ACGGAAAGGAAGTTTGCCGTAACG -ACGGAAAGGAAGTTTGCCACTTCG -ACGGAAAGGAAGTTTGCCTACGCA -ACGGAAAGGAAGTTTGCCCTTGCA -ACGGAAAGGAAGTTTGCCCGAACA -ACGGAAAGGAAGTTTGCCCAGTCA -ACGGAAAGGAAGTTTGCCGATCCA -ACGGAAAGGAAGTTTGCCACGACA -ACGGAAAGGAAGTTTGCCAGCTCA -ACGGAAAGGAAGTTTGCCTCACGT -ACGGAAAGGAAGTTTGCCCGTAGT -ACGGAAAGGAAGTTTGCCGTCAGT -ACGGAAAGGAAGTTTGCCGAAGGT -ACGGAAAGGAAGTTTGCCAACCGT -ACGGAAAGGAAGTTTGCCTTGTGC -ACGGAAAGGAAGTTTGCCCTAAGC -ACGGAAAGGAAGTTTGCCACTAGC -ACGGAAAGGAAGTTTGCCAGATGC -ACGGAAAGGAAGTTTGCCTGAAGG -ACGGAAAGGAAGTTTGCCCAATGG -ACGGAAAGGAAGTTTGCCATGAGG -ACGGAAAGGAAGTTTGCCAATGGG -ACGGAAAGGAAGTTTGCCTCCTGA -ACGGAAAGGAAGTTTGCCTAGCGA -ACGGAAAGGAAGTTTGCCCACAGA -ACGGAAAGGAAGTTTGCCGCAAGA -ACGGAAAGGAAGTTTGCCGGTTGA -ACGGAAAGGAAGTTTGCCTCCGAT -ACGGAAAGGAAGTTTGCCTGGCAT -ACGGAAAGGAAGTTTGCCCGAGAT -ACGGAAAGGAAGTTTGCCTACCAC -ACGGAAAGGAAGTTTGCCCAGAAC -ACGGAAAGGAAGTTTGCCGTCTAC -ACGGAAAGGAAGTTTGCCACGTAC -ACGGAAAGGAAGTTTGCCAGTGAC -ACGGAAAGGAAGTTTGCCCTGTAG -ACGGAAAGGAAGTTTGCCCCTAAG -ACGGAAAGGAAGTTTGCCGTTCAG -ACGGAAAGGAAGTTTGCCGCATAG -ACGGAAAGGAAGTTTGCCGACAAG -ACGGAAAGGAAGTTTGCCAAGCAG -ACGGAAAGGAAGTTTGCCCGTCAA -ACGGAAAGGAAGTTTGCCGCTGAA -ACGGAAAGGAAGTTTGCCAGTACG -ACGGAAAGGAAGTTTGCCATCCGA -ACGGAAAGGAAGTTTGCCATGGGA -ACGGAAAGGAAGTTTGCCGTGCAA -ACGGAAAGGAAGTTTGCCGAGGAA -ACGGAAAGGAAGTTTGCCCAGGTA -ACGGAAAGGAAGTTTGCCGACTCT -ACGGAAAGGAAGTTTGCCAGTCCT -ACGGAAAGGAAGTTTGCCTAAGCC -ACGGAAAGGAAGTTTGCCATAGCC -ACGGAAAGGAAGTTTGCCTAACCG -ACGGAAAGGAAGTTTGCCATGCCA -ACGGAAAGGAAGCTTGGTGGAAAC -ACGGAAAGGAAGCTTGGTAACACC -ACGGAAAGGAAGCTTGGTATCGAG -ACGGAAAGGAAGCTTGGTCTCCTT -ACGGAAAGGAAGCTTGGTCCTGTT -ACGGAAAGGAAGCTTGGTCGGTTT -ACGGAAAGGAAGCTTGGTGTGGTT -ACGGAAAGGAAGCTTGGTGCCTTT -ACGGAAAGGAAGCTTGGTGGTCTT -ACGGAAAGGAAGCTTGGTACGCTT -ACGGAAAGGAAGCTTGGTAGCGTT -ACGGAAAGGAAGCTTGGTTTCGTC -ACGGAAAGGAAGCTTGGTTCTCTC -ACGGAAAGGAAGCTTGGTTGGATC -ACGGAAAGGAAGCTTGGTCACTTC -ACGGAAAGGAAGCTTGGTGTACTC -ACGGAAAGGAAGCTTGGTGATGTC -ACGGAAAGGAAGCTTGGTACAGTC -ACGGAAAGGAAGCTTGGTTTGCTG -ACGGAAAGGAAGCTTGGTTCCATG -ACGGAAAGGAAGCTTGGTTGTGTG -ACGGAAAGGAAGCTTGGTCTAGTG -ACGGAAAGGAAGCTTGGTCATCTG -ACGGAAAGGAAGCTTGGTGAGTTG -ACGGAAAGGAAGCTTGGTAGACTG -ACGGAAAGGAAGCTTGGTTCGGTA -ACGGAAAGGAAGCTTGGTTGCCTA -ACGGAAAGGAAGCTTGGTCCACTA -ACGGAAAGGAAGCTTGGTGGAGTA -ACGGAAAGGAAGCTTGGTTCGTCT -ACGGAAAGGAAGCTTGGTTGCACT -ACGGAAAGGAAGCTTGGTCTGACT -ACGGAAAGGAAGCTTGGTCAACCT -ACGGAAAGGAAGCTTGGTGCTACT -ACGGAAAGGAAGCTTGGTGGATCT -ACGGAAAGGAAGCTTGGTAAGGCT -ACGGAAAGGAAGCTTGGTTCAACC -ACGGAAAGGAAGCTTGGTTGTTCC -ACGGAAAGGAAGCTTGGTATTCCC -ACGGAAAGGAAGCTTGGTTTCTCG -ACGGAAAGGAAGCTTGGTTAGACG -ACGGAAAGGAAGCTTGGTGTAACG -ACGGAAAGGAAGCTTGGTACTTCG -ACGGAAAGGAAGCTTGGTTACGCA -ACGGAAAGGAAGCTTGGTCTTGCA -ACGGAAAGGAAGCTTGGTCGAACA -ACGGAAAGGAAGCTTGGTCAGTCA -ACGGAAAGGAAGCTTGGTGATCCA -ACGGAAAGGAAGCTTGGTACGACA -ACGGAAAGGAAGCTTGGTAGCTCA -ACGGAAAGGAAGCTTGGTTCACGT -ACGGAAAGGAAGCTTGGTCGTAGT -ACGGAAAGGAAGCTTGGTGTCAGT -ACGGAAAGGAAGCTTGGTGAAGGT -ACGGAAAGGAAGCTTGGTAACCGT -ACGGAAAGGAAGCTTGGTTTGTGC -ACGGAAAGGAAGCTTGGTCTAAGC -ACGGAAAGGAAGCTTGGTACTAGC -ACGGAAAGGAAGCTTGGTAGATGC -ACGGAAAGGAAGCTTGGTTGAAGG -ACGGAAAGGAAGCTTGGTCAATGG -ACGGAAAGGAAGCTTGGTATGAGG -ACGGAAAGGAAGCTTGGTAATGGG -ACGGAAAGGAAGCTTGGTTCCTGA -ACGGAAAGGAAGCTTGGTTAGCGA -ACGGAAAGGAAGCTTGGTCACAGA -ACGGAAAGGAAGCTTGGTGCAAGA -ACGGAAAGGAAGCTTGGTGGTTGA -ACGGAAAGGAAGCTTGGTTCCGAT -ACGGAAAGGAAGCTTGGTTGGCAT -ACGGAAAGGAAGCTTGGTCGAGAT -ACGGAAAGGAAGCTTGGTTACCAC -ACGGAAAGGAAGCTTGGTCAGAAC -ACGGAAAGGAAGCTTGGTGTCTAC -ACGGAAAGGAAGCTTGGTACGTAC -ACGGAAAGGAAGCTTGGTAGTGAC -ACGGAAAGGAAGCTTGGTCTGTAG -ACGGAAAGGAAGCTTGGTCCTAAG -ACGGAAAGGAAGCTTGGTGTTCAG -ACGGAAAGGAAGCTTGGTGCATAG -ACGGAAAGGAAGCTTGGTGACAAG -ACGGAAAGGAAGCTTGGTAAGCAG -ACGGAAAGGAAGCTTGGTCGTCAA -ACGGAAAGGAAGCTTGGTGCTGAA -ACGGAAAGGAAGCTTGGTAGTACG -ACGGAAAGGAAGCTTGGTATCCGA -ACGGAAAGGAAGCTTGGTATGGGA -ACGGAAAGGAAGCTTGGTGTGCAA -ACGGAAAGGAAGCTTGGTGAGGAA -ACGGAAAGGAAGCTTGGTCAGGTA -ACGGAAAGGAAGCTTGGTGACTCT -ACGGAAAGGAAGCTTGGTAGTCCT -ACGGAAAGGAAGCTTGGTTAAGCC -ACGGAAAGGAAGCTTGGTATAGCC -ACGGAAAGGAAGCTTGGTTAACCG -ACGGAAAGGAAGCTTGGTATGCCA -ACGGAAAGGAAGCTTACGGGAAAC -ACGGAAAGGAAGCTTACGAACACC -ACGGAAAGGAAGCTTACGATCGAG -ACGGAAAGGAAGCTTACGCTCCTT -ACGGAAAGGAAGCTTACGCCTGTT -ACGGAAAGGAAGCTTACGCGGTTT -ACGGAAAGGAAGCTTACGGTGGTT -ACGGAAAGGAAGCTTACGGCCTTT -ACGGAAAGGAAGCTTACGGGTCTT -ACGGAAAGGAAGCTTACGACGCTT -ACGGAAAGGAAGCTTACGAGCGTT -ACGGAAAGGAAGCTTACGTTCGTC -ACGGAAAGGAAGCTTACGTCTCTC -ACGGAAAGGAAGCTTACGTGGATC -ACGGAAAGGAAGCTTACGCACTTC -ACGGAAAGGAAGCTTACGGTACTC -ACGGAAAGGAAGCTTACGGATGTC -ACGGAAAGGAAGCTTACGACAGTC -ACGGAAAGGAAGCTTACGTTGCTG -ACGGAAAGGAAGCTTACGTCCATG -ACGGAAAGGAAGCTTACGTGTGTG -ACGGAAAGGAAGCTTACGCTAGTG -ACGGAAAGGAAGCTTACGCATCTG -ACGGAAAGGAAGCTTACGGAGTTG -ACGGAAAGGAAGCTTACGAGACTG -ACGGAAAGGAAGCTTACGTCGGTA -ACGGAAAGGAAGCTTACGTGCCTA -ACGGAAAGGAAGCTTACGCCACTA -ACGGAAAGGAAGCTTACGGGAGTA -ACGGAAAGGAAGCTTACGTCGTCT -ACGGAAAGGAAGCTTACGTGCACT -ACGGAAAGGAAGCTTACGCTGACT -ACGGAAAGGAAGCTTACGCAACCT -ACGGAAAGGAAGCTTACGGCTACT -ACGGAAAGGAAGCTTACGGGATCT -ACGGAAAGGAAGCTTACGAAGGCT -ACGGAAAGGAAGCTTACGTCAACC -ACGGAAAGGAAGCTTACGTGTTCC -ACGGAAAGGAAGCTTACGATTCCC -ACGGAAAGGAAGCTTACGTTCTCG -ACGGAAAGGAAGCTTACGTAGACG -ACGGAAAGGAAGCTTACGGTAACG -ACGGAAAGGAAGCTTACGACTTCG -ACGGAAAGGAAGCTTACGTACGCA -ACGGAAAGGAAGCTTACGCTTGCA -ACGGAAAGGAAGCTTACGCGAACA -ACGGAAAGGAAGCTTACGCAGTCA -ACGGAAAGGAAGCTTACGGATCCA -ACGGAAAGGAAGCTTACGACGACA -ACGGAAAGGAAGCTTACGAGCTCA -ACGGAAAGGAAGCTTACGTCACGT -ACGGAAAGGAAGCTTACGCGTAGT -ACGGAAAGGAAGCTTACGGTCAGT -ACGGAAAGGAAGCTTACGGAAGGT -ACGGAAAGGAAGCTTACGAACCGT -ACGGAAAGGAAGCTTACGTTGTGC -ACGGAAAGGAAGCTTACGCTAAGC -ACGGAAAGGAAGCTTACGACTAGC -ACGGAAAGGAAGCTTACGAGATGC -ACGGAAAGGAAGCTTACGTGAAGG -ACGGAAAGGAAGCTTACGCAATGG -ACGGAAAGGAAGCTTACGATGAGG -ACGGAAAGGAAGCTTACGAATGGG -ACGGAAAGGAAGCTTACGTCCTGA -ACGGAAAGGAAGCTTACGTAGCGA -ACGGAAAGGAAGCTTACGCACAGA -ACGGAAAGGAAGCTTACGGCAAGA -ACGGAAAGGAAGCTTACGGGTTGA -ACGGAAAGGAAGCTTACGTCCGAT -ACGGAAAGGAAGCTTACGTGGCAT -ACGGAAAGGAAGCTTACGCGAGAT -ACGGAAAGGAAGCTTACGTACCAC -ACGGAAAGGAAGCTTACGCAGAAC -ACGGAAAGGAAGCTTACGGTCTAC -ACGGAAAGGAAGCTTACGACGTAC -ACGGAAAGGAAGCTTACGAGTGAC -ACGGAAAGGAAGCTTACGCTGTAG -ACGGAAAGGAAGCTTACGCCTAAG -ACGGAAAGGAAGCTTACGGTTCAG -ACGGAAAGGAAGCTTACGGCATAG -ACGGAAAGGAAGCTTACGGACAAG -ACGGAAAGGAAGCTTACGAAGCAG -ACGGAAAGGAAGCTTACGCGTCAA -ACGGAAAGGAAGCTTACGGCTGAA -ACGGAAAGGAAGCTTACGAGTACG -ACGGAAAGGAAGCTTACGATCCGA -ACGGAAAGGAAGCTTACGATGGGA -ACGGAAAGGAAGCTTACGGTGCAA -ACGGAAAGGAAGCTTACGGAGGAA -ACGGAAAGGAAGCTTACGCAGGTA -ACGGAAAGGAAGCTTACGGACTCT -ACGGAAAGGAAGCTTACGAGTCCT -ACGGAAAGGAAGCTTACGTAAGCC -ACGGAAAGGAAGCTTACGATAGCC -ACGGAAAGGAAGCTTACGTAACCG -ACGGAAAGGAAGCTTACGATGCCA -ACGGAAAGGAAGGTTAGCGGAAAC -ACGGAAAGGAAGGTTAGCAACACC -ACGGAAAGGAAGGTTAGCATCGAG -ACGGAAAGGAAGGTTAGCCTCCTT -ACGGAAAGGAAGGTTAGCCCTGTT -ACGGAAAGGAAGGTTAGCCGGTTT -ACGGAAAGGAAGGTTAGCGTGGTT -ACGGAAAGGAAGGTTAGCGCCTTT -ACGGAAAGGAAGGTTAGCGGTCTT -ACGGAAAGGAAGGTTAGCACGCTT -ACGGAAAGGAAGGTTAGCAGCGTT -ACGGAAAGGAAGGTTAGCTTCGTC -ACGGAAAGGAAGGTTAGCTCTCTC -ACGGAAAGGAAGGTTAGCTGGATC -ACGGAAAGGAAGGTTAGCCACTTC -ACGGAAAGGAAGGTTAGCGTACTC -ACGGAAAGGAAGGTTAGCGATGTC -ACGGAAAGGAAGGTTAGCACAGTC -ACGGAAAGGAAGGTTAGCTTGCTG -ACGGAAAGGAAGGTTAGCTCCATG -ACGGAAAGGAAGGTTAGCTGTGTG -ACGGAAAGGAAGGTTAGCCTAGTG -ACGGAAAGGAAGGTTAGCCATCTG -ACGGAAAGGAAGGTTAGCGAGTTG -ACGGAAAGGAAGGTTAGCAGACTG -ACGGAAAGGAAGGTTAGCTCGGTA -ACGGAAAGGAAGGTTAGCTGCCTA -ACGGAAAGGAAGGTTAGCCCACTA -ACGGAAAGGAAGGTTAGCGGAGTA -ACGGAAAGGAAGGTTAGCTCGTCT -ACGGAAAGGAAGGTTAGCTGCACT -ACGGAAAGGAAGGTTAGCCTGACT -ACGGAAAGGAAGGTTAGCCAACCT -ACGGAAAGGAAGGTTAGCGCTACT -ACGGAAAGGAAGGTTAGCGGATCT -ACGGAAAGGAAGGTTAGCAAGGCT -ACGGAAAGGAAGGTTAGCTCAACC -ACGGAAAGGAAGGTTAGCTGTTCC -ACGGAAAGGAAGGTTAGCATTCCC -ACGGAAAGGAAGGTTAGCTTCTCG -ACGGAAAGGAAGGTTAGCTAGACG -ACGGAAAGGAAGGTTAGCGTAACG -ACGGAAAGGAAGGTTAGCACTTCG -ACGGAAAGGAAGGTTAGCTACGCA -ACGGAAAGGAAGGTTAGCCTTGCA -ACGGAAAGGAAGGTTAGCCGAACA -ACGGAAAGGAAGGTTAGCCAGTCA -ACGGAAAGGAAGGTTAGCGATCCA -ACGGAAAGGAAGGTTAGCACGACA -ACGGAAAGGAAGGTTAGCAGCTCA -ACGGAAAGGAAGGTTAGCTCACGT -ACGGAAAGGAAGGTTAGCCGTAGT -ACGGAAAGGAAGGTTAGCGTCAGT -ACGGAAAGGAAGGTTAGCGAAGGT -ACGGAAAGGAAGGTTAGCAACCGT -ACGGAAAGGAAGGTTAGCTTGTGC -ACGGAAAGGAAGGTTAGCCTAAGC -ACGGAAAGGAAGGTTAGCACTAGC -ACGGAAAGGAAGGTTAGCAGATGC -ACGGAAAGGAAGGTTAGCTGAAGG -ACGGAAAGGAAGGTTAGCCAATGG -ACGGAAAGGAAGGTTAGCATGAGG -ACGGAAAGGAAGGTTAGCAATGGG -ACGGAAAGGAAGGTTAGCTCCTGA -ACGGAAAGGAAGGTTAGCTAGCGA -ACGGAAAGGAAGGTTAGCCACAGA -ACGGAAAGGAAGGTTAGCGCAAGA -ACGGAAAGGAAGGTTAGCGGTTGA -ACGGAAAGGAAGGTTAGCTCCGAT -ACGGAAAGGAAGGTTAGCTGGCAT -ACGGAAAGGAAGGTTAGCCGAGAT -ACGGAAAGGAAGGTTAGCTACCAC -ACGGAAAGGAAGGTTAGCCAGAAC -ACGGAAAGGAAGGTTAGCGTCTAC -ACGGAAAGGAAGGTTAGCACGTAC -ACGGAAAGGAAGGTTAGCAGTGAC -ACGGAAAGGAAGGTTAGCCTGTAG -ACGGAAAGGAAGGTTAGCCCTAAG -ACGGAAAGGAAGGTTAGCGTTCAG -ACGGAAAGGAAGGTTAGCGCATAG -ACGGAAAGGAAGGTTAGCGACAAG -ACGGAAAGGAAGGTTAGCAAGCAG -ACGGAAAGGAAGGTTAGCCGTCAA -ACGGAAAGGAAGGTTAGCGCTGAA -ACGGAAAGGAAGGTTAGCAGTACG -ACGGAAAGGAAGGTTAGCATCCGA -ACGGAAAGGAAGGTTAGCATGGGA -ACGGAAAGGAAGGTTAGCGTGCAA -ACGGAAAGGAAGGTTAGCGAGGAA -ACGGAAAGGAAGGTTAGCCAGGTA -ACGGAAAGGAAGGTTAGCGACTCT -ACGGAAAGGAAGGTTAGCAGTCCT -ACGGAAAGGAAGGTTAGCTAAGCC -ACGGAAAGGAAGGTTAGCATAGCC -ACGGAAAGGAAGGTTAGCTAACCG -ACGGAAAGGAAGGTTAGCATGCCA -ACGGAAAGGAAGGTCTTCGGAAAC -ACGGAAAGGAAGGTCTTCAACACC -ACGGAAAGGAAGGTCTTCATCGAG -ACGGAAAGGAAGGTCTTCCTCCTT -ACGGAAAGGAAGGTCTTCCCTGTT -ACGGAAAGGAAGGTCTTCCGGTTT -ACGGAAAGGAAGGTCTTCGTGGTT -ACGGAAAGGAAGGTCTTCGCCTTT -ACGGAAAGGAAGGTCTTCGGTCTT -ACGGAAAGGAAGGTCTTCACGCTT -ACGGAAAGGAAGGTCTTCAGCGTT -ACGGAAAGGAAGGTCTTCTTCGTC -ACGGAAAGGAAGGTCTTCTCTCTC -ACGGAAAGGAAGGTCTTCTGGATC -ACGGAAAGGAAGGTCTTCCACTTC -ACGGAAAGGAAGGTCTTCGTACTC -ACGGAAAGGAAGGTCTTCGATGTC -ACGGAAAGGAAGGTCTTCACAGTC -ACGGAAAGGAAGGTCTTCTTGCTG -ACGGAAAGGAAGGTCTTCTCCATG -ACGGAAAGGAAGGTCTTCTGTGTG -ACGGAAAGGAAGGTCTTCCTAGTG -ACGGAAAGGAAGGTCTTCCATCTG -ACGGAAAGGAAGGTCTTCGAGTTG -ACGGAAAGGAAGGTCTTCAGACTG -ACGGAAAGGAAGGTCTTCTCGGTA -ACGGAAAGGAAGGTCTTCTGCCTA -ACGGAAAGGAAGGTCTTCCCACTA -ACGGAAAGGAAGGTCTTCGGAGTA -ACGGAAAGGAAGGTCTTCTCGTCT -ACGGAAAGGAAGGTCTTCTGCACT -ACGGAAAGGAAGGTCTTCCTGACT -ACGGAAAGGAAGGTCTTCCAACCT -ACGGAAAGGAAGGTCTTCGCTACT -ACGGAAAGGAAGGTCTTCGGATCT -ACGGAAAGGAAGGTCTTCAAGGCT -ACGGAAAGGAAGGTCTTCTCAACC -ACGGAAAGGAAGGTCTTCTGTTCC -ACGGAAAGGAAGGTCTTCATTCCC -ACGGAAAGGAAGGTCTTCTTCTCG -ACGGAAAGGAAGGTCTTCTAGACG -ACGGAAAGGAAGGTCTTCGTAACG -ACGGAAAGGAAGGTCTTCACTTCG -ACGGAAAGGAAGGTCTTCTACGCA -ACGGAAAGGAAGGTCTTCCTTGCA -ACGGAAAGGAAGGTCTTCCGAACA -ACGGAAAGGAAGGTCTTCCAGTCA -ACGGAAAGGAAGGTCTTCGATCCA -ACGGAAAGGAAGGTCTTCACGACA -ACGGAAAGGAAGGTCTTCAGCTCA -ACGGAAAGGAAGGTCTTCTCACGT -ACGGAAAGGAAGGTCTTCCGTAGT -ACGGAAAGGAAGGTCTTCGTCAGT -ACGGAAAGGAAGGTCTTCGAAGGT -ACGGAAAGGAAGGTCTTCAACCGT -ACGGAAAGGAAGGTCTTCTTGTGC -ACGGAAAGGAAGGTCTTCCTAAGC -ACGGAAAGGAAGGTCTTCACTAGC -ACGGAAAGGAAGGTCTTCAGATGC -ACGGAAAGGAAGGTCTTCTGAAGG -ACGGAAAGGAAGGTCTTCCAATGG -ACGGAAAGGAAGGTCTTCATGAGG -ACGGAAAGGAAGGTCTTCAATGGG -ACGGAAAGGAAGGTCTTCTCCTGA -ACGGAAAGGAAGGTCTTCTAGCGA -ACGGAAAGGAAGGTCTTCCACAGA -ACGGAAAGGAAGGTCTTCGCAAGA -ACGGAAAGGAAGGTCTTCGGTTGA -ACGGAAAGGAAGGTCTTCTCCGAT -ACGGAAAGGAAGGTCTTCTGGCAT -ACGGAAAGGAAGGTCTTCCGAGAT -ACGGAAAGGAAGGTCTTCTACCAC -ACGGAAAGGAAGGTCTTCCAGAAC -ACGGAAAGGAAGGTCTTCGTCTAC -ACGGAAAGGAAGGTCTTCACGTAC -ACGGAAAGGAAGGTCTTCAGTGAC -ACGGAAAGGAAGGTCTTCCTGTAG -ACGGAAAGGAAGGTCTTCCCTAAG -ACGGAAAGGAAGGTCTTCGTTCAG -ACGGAAAGGAAGGTCTTCGCATAG -ACGGAAAGGAAGGTCTTCGACAAG -ACGGAAAGGAAGGTCTTCAAGCAG -ACGGAAAGGAAGGTCTTCCGTCAA -ACGGAAAGGAAGGTCTTCGCTGAA -ACGGAAAGGAAGGTCTTCAGTACG -ACGGAAAGGAAGGTCTTCATCCGA -ACGGAAAGGAAGGTCTTCATGGGA -ACGGAAAGGAAGGTCTTCGTGCAA -ACGGAAAGGAAGGTCTTCGAGGAA -ACGGAAAGGAAGGTCTTCCAGGTA -ACGGAAAGGAAGGTCTTCGACTCT -ACGGAAAGGAAGGTCTTCAGTCCT -ACGGAAAGGAAGGTCTTCTAAGCC -ACGGAAAGGAAGGTCTTCATAGCC -ACGGAAAGGAAGGTCTTCTAACCG -ACGGAAAGGAAGGTCTTCATGCCA -ACGGAAAGGAAGCTCTCTGGAAAC -ACGGAAAGGAAGCTCTCTAACACC -ACGGAAAGGAAGCTCTCTATCGAG -ACGGAAAGGAAGCTCTCTCTCCTT -ACGGAAAGGAAGCTCTCTCCTGTT -ACGGAAAGGAAGCTCTCTCGGTTT -ACGGAAAGGAAGCTCTCTGTGGTT -ACGGAAAGGAAGCTCTCTGCCTTT -ACGGAAAGGAAGCTCTCTGGTCTT -ACGGAAAGGAAGCTCTCTACGCTT -ACGGAAAGGAAGCTCTCTAGCGTT -ACGGAAAGGAAGCTCTCTTTCGTC -ACGGAAAGGAAGCTCTCTTCTCTC -ACGGAAAGGAAGCTCTCTTGGATC -ACGGAAAGGAAGCTCTCTCACTTC -ACGGAAAGGAAGCTCTCTGTACTC -ACGGAAAGGAAGCTCTCTGATGTC -ACGGAAAGGAAGCTCTCTACAGTC -ACGGAAAGGAAGCTCTCTTTGCTG -ACGGAAAGGAAGCTCTCTTCCATG -ACGGAAAGGAAGCTCTCTTGTGTG -ACGGAAAGGAAGCTCTCTCTAGTG -ACGGAAAGGAAGCTCTCTCATCTG -ACGGAAAGGAAGCTCTCTGAGTTG -ACGGAAAGGAAGCTCTCTAGACTG -ACGGAAAGGAAGCTCTCTTCGGTA -ACGGAAAGGAAGCTCTCTTGCCTA -ACGGAAAGGAAGCTCTCTCCACTA -ACGGAAAGGAAGCTCTCTGGAGTA -ACGGAAAGGAAGCTCTCTTCGTCT -ACGGAAAGGAAGCTCTCTTGCACT -ACGGAAAGGAAGCTCTCTCTGACT -ACGGAAAGGAAGCTCTCTCAACCT -ACGGAAAGGAAGCTCTCTGCTACT -ACGGAAAGGAAGCTCTCTGGATCT -ACGGAAAGGAAGCTCTCTAAGGCT -ACGGAAAGGAAGCTCTCTTCAACC -ACGGAAAGGAAGCTCTCTTGTTCC -ACGGAAAGGAAGCTCTCTATTCCC -ACGGAAAGGAAGCTCTCTTTCTCG -ACGGAAAGGAAGCTCTCTTAGACG -ACGGAAAGGAAGCTCTCTGTAACG -ACGGAAAGGAAGCTCTCTACTTCG -ACGGAAAGGAAGCTCTCTTACGCA -ACGGAAAGGAAGCTCTCTCTTGCA -ACGGAAAGGAAGCTCTCTCGAACA -ACGGAAAGGAAGCTCTCTCAGTCA -ACGGAAAGGAAGCTCTCTGATCCA -ACGGAAAGGAAGCTCTCTACGACA -ACGGAAAGGAAGCTCTCTAGCTCA -ACGGAAAGGAAGCTCTCTTCACGT -ACGGAAAGGAAGCTCTCTCGTAGT -ACGGAAAGGAAGCTCTCTGTCAGT -ACGGAAAGGAAGCTCTCTGAAGGT -ACGGAAAGGAAGCTCTCTAACCGT -ACGGAAAGGAAGCTCTCTTTGTGC -ACGGAAAGGAAGCTCTCTCTAAGC -ACGGAAAGGAAGCTCTCTACTAGC -ACGGAAAGGAAGCTCTCTAGATGC -ACGGAAAGGAAGCTCTCTTGAAGG -ACGGAAAGGAAGCTCTCTCAATGG -ACGGAAAGGAAGCTCTCTATGAGG -ACGGAAAGGAAGCTCTCTAATGGG -ACGGAAAGGAAGCTCTCTTCCTGA -ACGGAAAGGAAGCTCTCTTAGCGA -ACGGAAAGGAAGCTCTCTCACAGA -ACGGAAAGGAAGCTCTCTGCAAGA -ACGGAAAGGAAGCTCTCTGGTTGA -ACGGAAAGGAAGCTCTCTTCCGAT -ACGGAAAGGAAGCTCTCTTGGCAT -ACGGAAAGGAAGCTCTCTCGAGAT -ACGGAAAGGAAGCTCTCTTACCAC -ACGGAAAGGAAGCTCTCTCAGAAC -ACGGAAAGGAAGCTCTCTGTCTAC -ACGGAAAGGAAGCTCTCTACGTAC -ACGGAAAGGAAGCTCTCTAGTGAC -ACGGAAAGGAAGCTCTCTCTGTAG -ACGGAAAGGAAGCTCTCTCCTAAG -ACGGAAAGGAAGCTCTCTGTTCAG -ACGGAAAGGAAGCTCTCTGCATAG -ACGGAAAGGAAGCTCTCTGACAAG -ACGGAAAGGAAGCTCTCTAAGCAG -ACGGAAAGGAAGCTCTCTCGTCAA -ACGGAAAGGAAGCTCTCTGCTGAA -ACGGAAAGGAAGCTCTCTAGTACG -ACGGAAAGGAAGCTCTCTATCCGA -ACGGAAAGGAAGCTCTCTATGGGA -ACGGAAAGGAAGCTCTCTGTGCAA -ACGGAAAGGAAGCTCTCTGAGGAA -ACGGAAAGGAAGCTCTCTCAGGTA -ACGGAAAGGAAGCTCTCTGACTCT -ACGGAAAGGAAGCTCTCTAGTCCT -ACGGAAAGGAAGCTCTCTTAAGCC -ACGGAAAGGAAGCTCTCTATAGCC -ACGGAAAGGAAGCTCTCTTAACCG -ACGGAAAGGAAGCTCTCTATGCCA -ACGGAAAGGAAGATCTGGGGAAAC -ACGGAAAGGAAGATCTGGAACACC -ACGGAAAGGAAGATCTGGATCGAG -ACGGAAAGGAAGATCTGGCTCCTT -ACGGAAAGGAAGATCTGGCCTGTT -ACGGAAAGGAAGATCTGGCGGTTT -ACGGAAAGGAAGATCTGGGTGGTT -ACGGAAAGGAAGATCTGGGCCTTT -ACGGAAAGGAAGATCTGGGGTCTT -ACGGAAAGGAAGATCTGGACGCTT -ACGGAAAGGAAGATCTGGAGCGTT -ACGGAAAGGAAGATCTGGTTCGTC -ACGGAAAGGAAGATCTGGTCTCTC -ACGGAAAGGAAGATCTGGTGGATC -ACGGAAAGGAAGATCTGGCACTTC -ACGGAAAGGAAGATCTGGGTACTC -ACGGAAAGGAAGATCTGGGATGTC -ACGGAAAGGAAGATCTGGACAGTC -ACGGAAAGGAAGATCTGGTTGCTG -ACGGAAAGGAAGATCTGGTCCATG -ACGGAAAGGAAGATCTGGTGTGTG -ACGGAAAGGAAGATCTGGCTAGTG -ACGGAAAGGAAGATCTGGCATCTG -ACGGAAAGGAAGATCTGGGAGTTG -ACGGAAAGGAAGATCTGGAGACTG -ACGGAAAGGAAGATCTGGTCGGTA -ACGGAAAGGAAGATCTGGTGCCTA -ACGGAAAGGAAGATCTGGCCACTA -ACGGAAAGGAAGATCTGGGGAGTA -ACGGAAAGGAAGATCTGGTCGTCT -ACGGAAAGGAAGATCTGGTGCACT -ACGGAAAGGAAGATCTGGCTGACT -ACGGAAAGGAAGATCTGGCAACCT -ACGGAAAGGAAGATCTGGGCTACT -ACGGAAAGGAAGATCTGGGGATCT -ACGGAAAGGAAGATCTGGAAGGCT -ACGGAAAGGAAGATCTGGTCAACC -ACGGAAAGGAAGATCTGGTGTTCC -ACGGAAAGGAAGATCTGGATTCCC -ACGGAAAGGAAGATCTGGTTCTCG -ACGGAAAGGAAGATCTGGTAGACG -ACGGAAAGGAAGATCTGGGTAACG -ACGGAAAGGAAGATCTGGACTTCG -ACGGAAAGGAAGATCTGGTACGCA -ACGGAAAGGAAGATCTGGCTTGCA -ACGGAAAGGAAGATCTGGCGAACA -ACGGAAAGGAAGATCTGGCAGTCA -ACGGAAAGGAAGATCTGGGATCCA -ACGGAAAGGAAGATCTGGACGACA -ACGGAAAGGAAGATCTGGAGCTCA -ACGGAAAGGAAGATCTGGTCACGT -ACGGAAAGGAAGATCTGGCGTAGT -ACGGAAAGGAAGATCTGGGTCAGT -ACGGAAAGGAAGATCTGGGAAGGT -ACGGAAAGGAAGATCTGGAACCGT -ACGGAAAGGAAGATCTGGTTGTGC -ACGGAAAGGAAGATCTGGCTAAGC -ACGGAAAGGAAGATCTGGACTAGC -ACGGAAAGGAAGATCTGGAGATGC -ACGGAAAGGAAGATCTGGTGAAGG -ACGGAAAGGAAGATCTGGCAATGG -ACGGAAAGGAAGATCTGGATGAGG -ACGGAAAGGAAGATCTGGAATGGG -ACGGAAAGGAAGATCTGGTCCTGA -ACGGAAAGGAAGATCTGGTAGCGA -ACGGAAAGGAAGATCTGGCACAGA -ACGGAAAGGAAGATCTGGGCAAGA -ACGGAAAGGAAGATCTGGGGTTGA -ACGGAAAGGAAGATCTGGTCCGAT -ACGGAAAGGAAGATCTGGTGGCAT -ACGGAAAGGAAGATCTGGCGAGAT -ACGGAAAGGAAGATCTGGTACCAC -ACGGAAAGGAAGATCTGGCAGAAC -ACGGAAAGGAAGATCTGGGTCTAC -ACGGAAAGGAAGATCTGGACGTAC -ACGGAAAGGAAGATCTGGAGTGAC -ACGGAAAGGAAGATCTGGCTGTAG -ACGGAAAGGAAGATCTGGCCTAAG -ACGGAAAGGAAGATCTGGGTTCAG -ACGGAAAGGAAGATCTGGGCATAG -ACGGAAAGGAAGATCTGGGACAAG -ACGGAAAGGAAGATCTGGAAGCAG -ACGGAAAGGAAGATCTGGCGTCAA -ACGGAAAGGAAGATCTGGGCTGAA -ACGGAAAGGAAGATCTGGAGTACG -ACGGAAAGGAAGATCTGGATCCGA -ACGGAAAGGAAGATCTGGATGGGA -ACGGAAAGGAAGATCTGGGTGCAA -ACGGAAAGGAAGATCTGGGAGGAA -ACGGAAAGGAAGATCTGGCAGGTA -ACGGAAAGGAAGATCTGGGACTCT -ACGGAAAGGAAGATCTGGAGTCCT -ACGGAAAGGAAGATCTGGTAAGCC -ACGGAAAGGAAGATCTGGATAGCC -ACGGAAAGGAAGATCTGGTAACCG -ACGGAAAGGAAGATCTGGATGCCA -ACGGAAAGGAAGTTCCACGGAAAC -ACGGAAAGGAAGTTCCACAACACC -ACGGAAAGGAAGTTCCACATCGAG -ACGGAAAGGAAGTTCCACCTCCTT -ACGGAAAGGAAGTTCCACCCTGTT -ACGGAAAGGAAGTTCCACCGGTTT -ACGGAAAGGAAGTTCCACGTGGTT -ACGGAAAGGAAGTTCCACGCCTTT -ACGGAAAGGAAGTTCCACGGTCTT -ACGGAAAGGAAGTTCCACACGCTT -ACGGAAAGGAAGTTCCACAGCGTT -ACGGAAAGGAAGTTCCACTTCGTC -ACGGAAAGGAAGTTCCACTCTCTC -ACGGAAAGGAAGTTCCACTGGATC -ACGGAAAGGAAGTTCCACCACTTC -ACGGAAAGGAAGTTCCACGTACTC -ACGGAAAGGAAGTTCCACGATGTC -ACGGAAAGGAAGTTCCACACAGTC -ACGGAAAGGAAGTTCCACTTGCTG -ACGGAAAGGAAGTTCCACTCCATG -ACGGAAAGGAAGTTCCACTGTGTG -ACGGAAAGGAAGTTCCACCTAGTG -ACGGAAAGGAAGTTCCACCATCTG -ACGGAAAGGAAGTTCCACGAGTTG -ACGGAAAGGAAGTTCCACAGACTG -ACGGAAAGGAAGTTCCACTCGGTA -ACGGAAAGGAAGTTCCACTGCCTA -ACGGAAAGGAAGTTCCACCCACTA -ACGGAAAGGAAGTTCCACGGAGTA -ACGGAAAGGAAGTTCCACTCGTCT -ACGGAAAGGAAGTTCCACTGCACT -ACGGAAAGGAAGTTCCACCTGACT -ACGGAAAGGAAGTTCCACCAACCT -ACGGAAAGGAAGTTCCACGCTACT -ACGGAAAGGAAGTTCCACGGATCT -ACGGAAAGGAAGTTCCACAAGGCT -ACGGAAAGGAAGTTCCACTCAACC -ACGGAAAGGAAGTTCCACTGTTCC -ACGGAAAGGAAGTTCCACATTCCC -ACGGAAAGGAAGTTCCACTTCTCG -ACGGAAAGGAAGTTCCACTAGACG -ACGGAAAGGAAGTTCCACGTAACG -ACGGAAAGGAAGTTCCACACTTCG -ACGGAAAGGAAGTTCCACTACGCA -ACGGAAAGGAAGTTCCACCTTGCA -ACGGAAAGGAAGTTCCACCGAACA -ACGGAAAGGAAGTTCCACCAGTCA -ACGGAAAGGAAGTTCCACGATCCA -ACGGAAAGGAAGTTCCACACGACA -ACGGAAAGGAAGTTCCACAGCTCA -ACGGAAAGGAAGTTCCACTCACGT -ACGGAAAGGAAGTTCCACCGTAGT -ACGGAAAGGAAGTTCCACGTCAGT -ACGGAAAGGAAGTTCCACGAAGGT -ACGGAAAGGAAGTTCCACAACCGT -ACGGAAAGGAAGTTCCACTTGTGC -ACGGAAAGGAAGTTCCACCTAAGC -ACGGAAAGGAAGTTCCACACTAGC -ACGGAAAGGAAGTTCCACAGATGC -ACGGAAAGGAAGTTCCACTGAAGG -ACGGAAAGGAAGTTCCACCAATGG -ACGGAAAGGAAGTTCCACATGAGG -ACGGAAAGGAAGTTCCACAATGGG -ACGGAAAGGAAGTTCCACTCCTGA -ACGGAAAGGAAGTTCCACTAGCGA -ACGGAAAGGAAGTTCCACCACAGA -ACGGAAAGGAAGTTCCACGCAAGA -ACGGAAAGGAAGTTCCACGGTTGA -ACGGAAAGGAAGTTCCACTCCGAT -ACGGAAAGGAAGTTCCACTGGCAT -ACGGAAAGGAAGTTCCACCGAGAT -ACGGAAAGGAAGTTCCACTACCAC -ACGGAAAGGAAGTTCCACCAGAAC -ACGGAAAGGAAGTTCCACGTCTAC -ACGGAAAGGAAGTTCCACACGTAC -ACGGAAAGGAAGTTCCACAGTGAC -ACGGAAAGGAAGTTCCACCTGTAG -ACGGAAAGGAAGTTCCACCCTAAG -ACGGAAAGGAAGTTCCACGTTCAG -ACGGAAAGGAAGTTCCACGCATAG -ACGGAAAGGAAGTTCCACGACAAG -ACGGAAAGGAAGTTCCACAAGCAG -ACGGAAAGGAAGTTCCACCGTCAA -ACGGAAAGGAAGTTCCACGCTGAA -ACGGAAAGGAAGTTCCACAGTACG -ACGGAAAGGAAGTTCCACATCCGA -ACGGAAAGGAAGTTCCACATGGGA -ACGGAAAGGAAGTTCCACGTGCAA -ACGGAAAGGAAGTTCCACGAGGAA -ACGGAAAGGAAGTTCCACCAGGTA -ACGGAAAGGAAGTTCCACGACTCT -ACGGAAAGGAAGTTCCACAGTCCT -ACGGAAAGGAAGTTCCACTAAGCC -ACGGAAAGGAAGTTCCACATAGCC -ACGGAAAGGAAGTTCCACTAACCG -ACGGAAAGGAAGTTCCACATGCCA -ACGGAAAGGAAGCTCGTAGGAAAC -ACGGAAAGGAAGCTCGTAAACACC -ACGGAAAGGAAGCTCGTAATCGAG -ACGGAAAGGAAGCTCGTACTCCTT -ACGGAAAGGAAGCTCGTACCTGTT -ACGGAAAGGAAGCTCGTACGGTTT -ACGGAAAGGAAGCTCGTAGTGGTT -ACGGAAAGGAAGCTCGTAGCCTTT -ACGGAAAGGAAGCTCGTAGGTCTT -ACGGAAAGGAAGCTCGTAACGCTT -ACGGAAAGGAAGCTCGTAAGCGTT -ACGGAAAGGAAGCTCGTATTCGTC -ACGGAAAGGAAGCTCGTATCTCTC -ACGGAAAGGAAGCTCGTATGGATC -ACGGAAAGGAAGCTCGTACACTTC -ACGGAAAGGAAGCTCGTAGTACTC -ACGGAAAGGAAGCTCGTAGATGTC -ACGGAAAGGAAGCTCGTAACAGTC -ACGGAAAGGAAGCTCGTATTGCTG -ACGGAAAGGAAGCTCGTATCCATG -ACGGAAAGGAAGCTCGTATGTGTG -ACGGAAAGGAAGCTCGTACTAGTG -ACGGAAAGGAAGCTCGTACATCTG -ACGGAAAGGAAGCTCGTAGAGTTG -ACGGAAAGGAAGCTCGTAAGACTG -ACGGAAAGGAAGCTCGTATCGGTA -ACGGAAAGGAAGCTCGTATGCCTA -ACGGAAAGGAAGCTCGTACCACTA -ACGGAAAGGAAGCTCGTAGGAGTA -ACGGAAAGGAAGCTCGTATCGTCT -ACGGAAAGGAAGCTCGTATGCACT -ACGGAAAGGAAGCTCGTACTGACT -ACGGAAAGGAAGCTCGTACAACCT -ACGGAAAGGAAGCTCGTAGCTACT -ACGGAAAGGAAGCTCGTAGGATCT -ACGGAAAGGAAGCTCGTAAAGGCT -ACGGAAAGGAAGCTCGTATCAACC -ACGGAAAGGAAGCTCGTATGTTCC -ACGGAAAGGAAGCTCGTAATTCCC -ACGGAAAGGAAGCTCGTATTCTCG -ACGGAAAGGAAGCTCGTATAGACG -ACGGAAAGGAAGCTCGTAGTAACG -ACGGAAAGGAAGCTCGTAACTTCG -ACGGAAAGGAAGCTCGTATACGCA -ACGGAAAGGAAGCTCGTACTTGCA -ACGGAAAGGAAGCTCGTACGAACA -ACGGAAAGGAAGCTCGTACAGTCA -ACGGAAAGGAAGCTCGTAGATCCA -ACGGAAAGGAAGCTCGTAACGACA -ACGGAAAGGAAGCTCGTAAGCTCA -ACGGAAAGGAAGCTCGTATCACGT -ACGGAAAGGAAGCTCGTACGTAGT -ACGGAAAGGAAGCTCGTAGTCAGT -ACGGAAAGGAAGCTCGTAGAAGGT -ACGGAAAGGAAGCTCGTAAACCGT -ACGGAAAGGAAGCTCGTATTGTGC -ACGGAAAGGAAGCTCGTACTAAGC -ACGGAAAGGAAGCTCGTAACTAGC -ACGGAAAGGAAGCTCGTAAGATGC -ACGGAAAGGAAGCTCGTATGAAGG -ACGGAAAGGAAGCTCGTACAATGG -ACGGAAAGGAAGCTCGTAATGAGG -ACGGAAAGGAAGCTCGTAAATGGG -ACGGAAAGGAAGCTCGTATCCTGA -ACGGAAAGGAAGCTCGTATAGCGA -ACGGAAAGGAAGCTCGTACACAGA -ACGGAAAGGAAGCTCGTAGCAAGA -ACGGAAAGGAAGCTCGTAGGTTGA -ACGGAAAGGAAGCTCGTATCCGAT -ACGGAAAGGAAGCTCGTATGGCAT -ACGGAAAGGAAGCTCGTACGAGAT -ACGGAAAGGAAGCTCGTATACCAC -ACGGAAAGGAAGCTCGTACAGAAC -ACGGAAAGGAAGCTCGTAGTCTAC -ACGGAAAGGAAGCTCGTAACGTAC -ACGGAAAGGAAGCTCGTAAGTGAC -ACGGAAAGGAAGCTCGTACTGTAG -ACGGAAAGGAAGCTCGTACCTAAG -ACGGAAAGGAAGCTCGTAGTTCAG -ACGGAAAGGAAGCTCGTAGCATAG -ACGGAAAGGAAGCTCGTAGACAAG -ACGGAAAGGAAGCTCGTAAAGCAG -ACGGAAAGGAAGCTCGTACGTCAA -ACGGAAAGGAAGCTCGTAGCTGAA -ACGGAAAGGAAGCTCGTAAGTACG -ACGGAAAGGAAGCTCGTAATCCGA -ACGGAAAGGAAGCTCGTAATGGGA -ACGGAAAGGAAGCTCGTAGTGCAA -ACGGAAAGGAAGCTCGTAGAGGAA -ACGGAAAGGAAGCTCGTACAGGTA -ACGGAAAGGAAGCTCGTAGACTCT -ACGGAAAGGAAGCTCGTAAGTCCT -ACGGAAAGGAAGCTCGTATAAGCC -ACGGAAAGGAAGCTCGTAATAGCC -ACGGAAAGGAAGCTCGTATAACCG -ACGGAAAGGAAGCTCGTAATGCCA -ACGGAAAGGAAGGTCGATGGAAAC -ACGGAAAGGAAGGTCGATAACACC -ACGGAAAGGAAGGTCGATATCGAG -ACGGAAAGGAAGGTCGATCTCCTT -ACGGAAAGGAAGGTCGATCCTGTT -ACGGAAAGGAAGGTCGATCGGTTT -ACGGAAAGGAAGGTCGATGTGGTT -ACGGAAAGGAAGGTCGATGCCTTT -ACGGAAAGGAAGGTCGATGGTCTT -ACGGAAAGGAAGGTCGATACGCTT -ACGGAAAGGAAGGTCGATAGCGTT -ACGGAAAGGAAGGTCGATTTCGTC -ACGGAAAGGAAGGTCGATTCTCTC -ACGGAAAGGAAGGTCGATTGGATC -ACGGAAAGGAAGGTCGATCACTTC -ACGGAAAGGAAGGTCGATGTACTC -ACGGAAAGGAAGGTCGATGATGTC -ACGGAAAGGAAGGTCGATACAGTC -ACGGAAAGGAAGGTCGATTTGCTG -ACGGAAAGGAAGGTCGATTCCATG -ACGGAAAGGAAGGTCGATTGTGTG -ACGGAAAGGAAGGTCGATCTAGTG -ACGGAAAGGAAGGTCGATCATCTG -ACGGAAAGGAAGGTCGATGAGTTG -ACGGAAAGGAAGGTCGATAGACTG -ACGGAAAGGAAGGTCGATTCGGTA -ACGGAAAGGAAGGTCGATTGCCTA -ACGGAAAGGAAGGTCGATCCACTA -ACGGAAAGGAAGGTCGATGGAGTA -ACGGAAAGGAAGGTCGATTCGTCT -ACGGAAAGGAAGGTCGATTGCACT -ACGGAAAGGAAGGTCGATCTGACT -ACGGAAAGGAAGGTCGATCAACCT -ACGGAAAGGAAGGTCGATGCTACT -ACGGAAAGGAAGGTCGATGGATCT -ACGGAAAGGAAGGTCGATAAGGCT -ACGGAAAGGAAGGTCGATTCAACC -ACGGAAAGGAAGGTCGATTGTTCC -ACGGAAAGGAAGGTCGATATTCCC -ACGGAAAGGAAGGTCGATTTCTCG -ACGGAAAGGAAGGTCGATTAGACG -ACGGAAAGGAAGGTCGATGTAACG -ACGGAAAGGAAGGTCGATACTTCG -ACGGAAAGGAAGGTCGATTACGCA -ACGGAAAGGAAGGTCGATCTTGCA -ACGGAAAGGAAGGTCGATCGAACA -ACGGAAAGGAAGGTCGATCAGTCA -ACGGAAAGGAAGGTCGATGATCCA -ACGGAAAGGAAGGTCGATACGACA -ACGGAAAGGAAGGTCGATAGCTCA -ACGGAAAGGAAGGTCGATTCACGT -ACGGAAAGGAAGGTCGATCGTAGT -ACGGAAAGGAAGGTCGATGTCAGT -ACGGAAAGGAAGGTCGATGAAGGT -ACGGAAAGGAAGGTCGATAACCGT -ACGGAAAGGAAGGTCGATTTGTGC -ACGGAAAGGAAGGTCGATCTAAGC -ACGGAAAGGAAGGTCGATACTAGC -ACGGAAAGGAAGGTCGATAGATGC -ACGGAAAGGAAGGTCGATTGAAGG -ACGGAAAGGAAGGTCGATCAATGG -ACGGAAAGGAAGGTCGATATGAGG -ACGGAAAGGAAGGTCGATAATGGG -ACGGAAAGGAAGGTCGATTCCTGA -ACGGAAAGGAAGGTCGATTAGCGA -ACGGAAAGGAAGGTCGATCACAGA -ACGGAAAGGAAGGTCGATGCAAGA -ACGGAAAGGAAGGTCGATGGTTGA -ACGGAAAGGAAGGTCGATTCCGAT -ACGGAAAGGAAGGTCGATTGGCAT -ACGGAAAGGAAGGTCGATCGAGAT -ACGGAAAGGAAGGTCGATTACCAC -ACGGAAAGGAAGGTCGATCAGAAC -ACGGAAAGGAAGGTCGATGTCTAC -ACGGAAAGGAAGGTCGATACGTAC -ACGGAAAGGAAGGTCGATAGTGAC -ACGGAAAGGAAGGTCGATCTGTAG -ACGGAAAGGAAGGTCGATCCTAAG -ACGGAAAGGAAGGTCGATGTTCAG -ACGGAAAGGAAGGTCGATGCATAG -ACGGAAAGGAAGGTCGATGACAAG -ACGGAAAGGAAGGTCGATAAGCAG -ACGGAAAGGAAGGTCGATCGTCAA -ACGGAAAGGAAGGTCGATGCTGAA -ACGGAAAGGAAGGTCGATAGTACG -ACGGAAAGGAAGGTCGATATCCGA -ACGGAAAGGAAGGTCGATATGGGA -ACGGAAAGGAAGGTCGATGTGCAA -ACGGAAAGGAAGGTCGATGAGGAA -ACGGAAAGGAAGGTCGATCAGGTA -ACGGAAAGGAAGGTCGATGACTCT -ACGGAAAGGAAGGTCGATAGTCCT -ACGGAAAGGAAGGTCGATTAAGCC -ACGGAAAGGAAGGTCGATATAGCC -ACGGAAAGGAAGGTCGATTAACCG -ACGGAAAGGAAGGTCGATATGCCA -ACGGAAAGGAAGGTCACAGGAAAC -ACGGAAAGGAAGGTCACAAACACC -ACGGAAAGGAAGGTCACAATCGAG -ACGGAAAGGAAGGTCACACTCCTT -ACGGAAAGGAAGGTCACACCTGTT -ACGGAAAGGAAGGTCACACGGTTT -ACGGAAAGGAAGGTCACAGTGGTT -ACGGAAAGGAAGGTCACAGCCTTT -ACGGAAAGGAAGGTCACAGGTCTT -ACGGAAAGGAAGGTCACAACGCTT -ACGGAAAGGAAGGTCACAAGCGTT -ACGGAAAGGAAGGTCACATTCGTC -ACGGAAAGGAAGGTCACATCTCTC -ACGGAAAGGAAGGTCACATGGATC -ACGGAAAGGAAGGTCACACACTTC -ACGGAAAGGAAGGTCACAGTACTC -ACGGAAAGGAAGGTCACAGATGTC -ACGGAAAGGAAGGTCACAACAGTC -ACGGAAAGGAAGGTCACATTGCTG -ACGGAAAGGAAGGTCACATCCATG -ACGGAAAGGAAGGTCACATGTGTG -ACGGAAAGGAAGGTCACACTAGTG -ACGGAAAGGAAGGTCACACATCTG -ACGGAAAGGAAGGTCACAGAGTTG -ACGGAAAGGAAGGTCACAAGACTG -ACGGAAAGGAAGGTCACATCGGTA -ACGGAAAGGAAGGTCACATGCCTA -ACGGAAAGGAAGGTCACACCACTA -ACGGAAAGGAAGGTCACAGGAGTA -ACGGAAAGGAAGGTCACATCGTCT -ACGGAAAGGAAGGTCACATGCACT -ACGGAAAGGAAGGTCACACTGACT -ACGGAAAGGAAGGTCACACAACCT -ACGGAAAGGAAGGTCACAGCTACT -ACGGAAAGGAAGGTCACAGGATCT -ACGGAAAGGAAGGTCACAAAGGCT -ACGGAAAGGAAGGTCACATCAACC -ACGGAAAGGAAGGTCACATGTTCC -ACGGAAAGGAAGGTCACAATTCCC -ACGGAAAGGAAGGTCACATTCTCG -ACGGAAAGGAAGGTCACATAGACG -ACGGAAAGGAAGGTCACAGTAACG -ACGGAAAGGAAGGTCACAACTTCG -ACGGAAAGGAAGGTCACATACGCA -ACGGAAAGGAAGGTCACACTTGCA -ACGGAAAGGAAGGTCACACGAACA -ACGGAAAGGAAGGTCACACAGTCA -ACGGAAAGGAAGGTCACAGATCCA -ACGGAAAGGAAGGTCACAACGACA -ACGGAAAGGAAGGTCACAAGCTCA -ACGGAAAGGAAGGTCACATCACGT -ACGGAAAGGAAGGTCACACGTAGT -ACGGAAAGGAAGGTCACAGTCAGT -ACGGAAAGGAAGGTCACAGAAGGT -ACGGAAAGGAAGGTCACAAACCGT -ACGGAAAGGAAGGTCACATTGTGC -ACGGAAAGGAAGGTCACACTAAGC -ACGGAAAGGAAGGTCACAACTAGC -ACGGAAAGGAAGGTCACAAGATGC -ACGGAAAGGAAGGTCACATGAAGG -ACGGAAAGGAAGGTCACACAATGG -ACGGAAAGGAAGGTCACAATGAGG -ACGGAAAGGAAGGTCACAAATGGG -ACGGAAAGGAAGGTCACATCCTGA -ACGGAAAGGAAGGTCACATAGCGA -ACGGAAAGGAAGGTCACACACAGA -ACGGAAAGGAAGGTCACAGCAAGA -ACGGAAAGGAAGGTCACAGGTTGA -ACGGAAAGGAAGGTCACATCCGAT -ACGGAAAGGAAGGTCACATGGCAT -ACGGAAAGGAAGGTCACACGAGAT -ACGGAAAGGAAGGTCACATACCAC -ACGGAAAGGAAGGTCACACAGAAC -ACGGAAAGGAAGGTCACAGTCTAC -ACGGAAAGGAAGGTCACAACGTAC -ACGGAAAGGAAGGTCACAAGTGAC -ACGGAAAGGAAGGTCACACTGTAG -ACGGAAAGGAAGGTCACACCTAAG -ACGGAAAGGAAGGTCACAGTTCAG -ACGGAAAGGAAGGTCACAGCATAG -ACGGAAAGGAAGGTCACAGACAAG -ACGGAAAGGAAGGTCACAAAGCAG -ACGGAAAGGAAGGTCACACGTCAA -ACGGAAAGGAAGGTCACAGCTGAA -ACGGAAAGGAAGGTCACAAGTACG -ACGGAAAGGAAGGTCACAATCCGA -ACGGAAAGGAAGGTCACAATGGGA -ACGGAAAGGAAGGTCACAGTGCAA -ACGGAAAGGAAGGTCACAGAGGAA -ACGGAAAGGAAGGTCACACAGGTA -ACGGAAAGGAAGGTCACAGACTCT -ACGGAAAGGAAGGTCACAAGTCCT -ACGGAAAGGAAGGTCACATAAGCC -ACGGAAAGGAAGGTCACAATAGCC -ACGGAAAGGAAGGTCACATAACCG -ACGGAAAGGAAGGTCACAATGCCA -ACGGAAAGGAAGCTGTTGGGAAAC -ACGGAAAGGAAGCTGTTGAACACC -ACGGAAAGGAAGCTGTTGATCGAG -ACGGAAAGGAAGCTGTTGCTCCTT -ACGGAAAGGAAGCTGTTGCCTGTT -ACGGAAAGGAAGCTGTTGCGGTTT -ACGGAAAGGAAGCTGTTGGTGGTT -ACGGAAAGGAAGCTGTTGGCCTTT -ACGGAAAGGAAGCTGTTGGGTCTT -ACGGAAAGGAAGCTGTTGACGCTT -ACGGAAAGGAAGCTGTTGAGCGTT -ACGGAAAGGAAGCTGTTGTTCGTC -ACGGAAAGGAAGCTGTTGTCTCTC -ACGGAAAGGAAGCTGTTGTGGATC -ACGGAAAGGAAGCTGTTGCACTTC -ACGGAAAGGAAGCTGTTGGTACTC -ACGGAAAGGAAGCTGTTGGATGTC -ACGGAAAGGAAGCTGTTGACAGTC -ACGGAAAGGAAGCTGTTGTTGCTG -ACGGAAAGGAAGCTGTTGTCCATG -ACGGAAAGGAAGCTGTTGTGTGTG -ACGGAAAGGAAGCTGTTGCTAGTG -ACGGAAAGGAAGCTGTTGCATCTG -ACGGAAAGGAAGCTGTTGGAGTTG -ACGGAAAGGAAGCTGTTGAGACTG -ACGGAAAGGAAGCTGTTGTCGGTA -ACGGAAAGGAAGCTGTTGTGCCTA -ACGGAAAGGAAGCTGTTGCCACTA -ACGGAAAGGAAGCTGTTGGGAGTA -ACGGAAAGGAAGCTGTTGTCGTCT -ACGGAAAGGAAGCTGTTGTGCACT -ACGGAAAGGAAGCTGTTGCTGACT -ACGGAAAGGAAGCTGTTGCAACCT -ACGGAAAGGAAGCTGTTGGCTACT -ACGGAAAGGAAGCTGTTGGGATCT -ACGGAAAGGAAGCTGTTGAAGGCT -ACGGAAAGGAAGCTGTTGTCAACC -ACGGAAAGGAAGCTGTTGTGTTCC -ACGGAAAGGAAGCTGTTGATTCCC -ACGGAAAGGAAGCTGTTGTTCTCG -ACGGAAAGGAAGCTGTTGTAGACG -ACGGAAAGGAAGCTGTTGGTAACG -ACGGAAAGGAAGCTGTTGACTTCG -ACGGAAAGGAAGCTGTTGTACGCA -ACGGAAAGGAAGCTGTTGCTTGCA -ACGGAAAGGAAGCTGTTGCGAACA -ACGGAAAGGAAGCTGTTGCAGTCA -ACGGAAAGGAAGCTGTTGGATCCA -ACGGAAAGGAAGCTGTTGACGACA -ACGGAAAGGAAGCTGTTGAGCTCA -ACGGAAAGGAAGCTGTTGTCACGT -ACGGAAAGGAAGCTGTTGCGTAGT -ACGGAAAGGAAGCTGTTGGTCAGT -ACGGAAAGGAAGCTGTTGGAAGGT -ACGGAAAGGAAGCTGTTGAACCGT -ACGGAAAGGAAGCTGTTGTTGTGC -ACGGAAAGGAAGCTGTTGCTAAGC -ACGGAAAGGAAGCTGTTGACTAGC -ACGGAAAGGAAGCTGTTGAGATGC -ACGGAAAGGAAGCTGTTGTGAAGG -ACGGAAAGGAAGCTGTTGCAATGG -ACGGAAAGGAAGCTGTTGATGAGG -ACGGAAAGGAAGCTGTTGAATGGG -ACGGAAAGGAAGCTGTTGTCCTGA -ACGGAAAGGAAGCTGTTGTAGCGA -ACGGAAAGGAAGCTGTTGCACAGA -ACGGAAAGGAAGCTGTTGGCAAGA -ACGGAAAGGAAGCTGTTGGGTTGA -ACGGAAAGGAAGCTGTTGTCCGAT -ACGGAAAGGAAGCTGTTGTGGCAT -ACGGAAAGGAAGCTGTTGCGAGAT -ACGGAAAGGAAGCTGTTGTACCAC -ACGGAAAGGAAGCTGTTGCAGAAC -ACGGAAAGGAAGCTGTTGGTCTAC -ACGGAAAGGAAGCTGTTGACGTAC -ACGGAAAGGAAGCTGTTGAGTGAC -ACGGAAAGGAAGCTGTTGCTGTAG -ACGGAAAGGAAGCTGTTGCCTAAG -ACGGAAAGGAAGCTGTTGGTTCAG -ACGGAAAGGAAGCTGTTGGCATAG -ACGGAAAGGAAGCTGTTGGACAAG -ACGGAAAGGAAGCTGTTGAAGCAG -ACGGAAAGGAAGCTGTTGCGTCAA -ACGGAAAGGAAGCTGTTGGCTGAA -ACGGAAAGGAAGCTGTTGAGTACG -ACGGAAAGGAAGCTGTTGATCCGA -ACGGAAAGGAAGCTGTTGATGGGA -ACGGAAAGGAAGCTGTTGGTGCAA -ACGGAAAGGAAGCTGTTGGAGGAA -ACGGAAAGGAAGCTGTTGCAGGTA -ACGGAAAGGAAGCTGTTGGACTCT -ACGGAAAGGAAGCTGTTGAGTCCT -ACGGAAAGGAAGCTGTTGTAAGCC -ACGGAAAGGAAGCTGTTGATAGCC -ACGGAAAGGAAGCTGTTGTAACCG -ACGGAAAGGAAGCTGTTGATGCCA -ACGGAAAGGAAGATGTCCGGAAAC -ACGGAAAGGAAGATGTCCAACACC -ACGGAAAGGAAGATGTCCATCGAG -ACGGAAAGGAAGATGTCCCTCCTT -ACGGAAAGGAAGATGTCCCCTGTT -ACGGAAAGGAAGATGTCCCGGTTT -ACGGAAAGGAAGATGTCCGTGGTT -ACGGAAAGGAAGATGTCCGCCTTT -ACGGAAAGGAAGATGTCCGGTCTT -ACGGAAAGGAAGATGTCCACGCTT -ACGGAAAGGAAGATGTCCAGCGTT -ACGGAAAGGAAGATGTCCTTCGTC -ACGGAAAGGAAGATGTCCTCTCTC -ACGGAAAGGAAGATGTCCTGGATC -ACGGAAAGGAAGATGTCCCACTTC -ACGGAAAGGAAGATGTCCGTACTC -ACGGAAAGGAAGATGTCCGATGTC -ACGGAAAGGAAGATGTCCACAGTC -ACGGAAAGGAAGATGTCCTTGCTG -ACGGAAAGGAAGATGTCCTCCATG -ACGGAAAGGAAGATGTCCTGTGTG -ACGGAAAGGAAGATGTCCCTAGTG -ACGGAAAGGAAGATGTCCCATCTG -ACGGAAAGGAAGATGTCCGAGTTG -ACGGAAAGGAAGATGTCCAGACTG -ACGGAAAGGAAGATGTCCTCGGTA -ACGGAAAGGAAGATGTCCTGCCTA -ACGGAAAGGAAGATGTCCCCACTA -ACGGAAAGGAAGATGTCCGGAGTA -ACGGAAAGGAAGATGTCCTCGTCT -ACGGAAAGGAAGATGTCCTGCACT -ACGGAAAGGAAGATGTCCCTGACT -ACGGAAAGGAAGATGTCCCAACCT -ACGGAAAGGAAGATGTCCGCTACT -ACGGAAAGGAAGATGTCCGGATCT -ACGGAAAGGAAGATGTCCAAGGCT -ACGGAAAGGAAGATGTCCTCAACC -ACGGAAAGGAAGATGTCCTGTTCC -ACGGAAAGGAAGATGTCCATTCCC -ACGGAAAGGAAGATGTCCTTCTCG -ACGGAAAGGAAGATGTCCTAGACG -ACGGAAAGGAAGATGTCCGTAACG -ACGGAAAGGAAGATGTCCACTTCG -ACGGAAAGGAAGATGTCCTACGCA -ACGGAAAGGAAGATGTCCCTTGCA -ACGGAAAGGAAGATGTCCCGAACA -ACGGAAAGGAAGATGTCCCAGTCA -ACGGAAAGGAAGATGTCCGATCCA -ACGGAAAGGAAGATGTCCACGACA -ACGGAAAGGAAGATGTCCAGCTCA -ACGGAAAGGAAGATGTCCTCACGT -ACGGAAAGGAAGATGTCCCGTAGT -ACGGAAAGGAAGATGTCCGTCAGT -ACGGAAAGGAAGATGTCCGAAGGT -ACGGAAAGGAAGATGTCCAACCGT -ACGGAAAGGAAGATGTCCTTGTGC -ACGGAAAGGAAGATGTCCCTAAGC -ACGGAAAGGAAGATGTCCACTAGC -ACGGAAAGGAAGATGTCCAGATGC -ACGGAAAGGAAGATGTCCTGAAGG -ACGGAAAGGAAGATGTCCCAATGG -ACGGAAAGGAAGATGTCCATGAGG -ACGGAAAGGAAGATGTCCAATGGG -ACGGAAAGGAAGATGTCCTCCTGA -ACGGAAAGGAAGATGTCCTAGCGA -ACGGAAAGGAAGATGTCCCACAGA -ACGGAAAGGAAGATGTCCGCAAGA -ACGGAAAGGAAGATGTCCGGTTGA -ACGGAAAGGAAGATGTCCTCCGAT -ACGGAAAGGAAGATGTCCTGGCAT -ACGGAAAGGAAGATGTCCCGAGAT -ACGGAAAGGAAGATGTCCTACCAC -ACGGAAAGGAAGATGTCCCAGAAC -ACGGAAAGGAAGATGTCCGTCTAC -ACGGAAAGGAAGATGTCCACGTAC -ACGGAAAGGAAGATGTCCAGTGAC -ACGGAAAGGAAGATGTCCCTGTAG -ACGGAAAGGAAGATGTCCCCTAAG -ACGGAAAGGAAGATGTCCGTTCAG -ACGGAAAGGAAGATGTCCGCATAG -ACGGAAAGGAAGATGTCCGACAAG -ACGGAAAGGAAGATGTCCAAGCAG -ACGGAAAGGAAGATGTCCCGTCAA -ACGGAAAGGAAGATGTCCGCTGAA -ACGGAAAGGAAGATGTCCAGTACG -ACGGAAAGGAAGATGTCCATCCGA -ACGGAAAGGAAGATGTCCATGGGA -ACGGAAAGGAAGATGTCCGTGCAA -ACGGAAAGGAAGATGTCCGAGGAA -ACGGAAAGGAAGATGTCCCAGGTA -ACGGAAAGGAAGATGTCCGACTCT -ACGGAAAGGAAGATGTCCAGTCCT -ACGGAAAGGAAGATGTCCTAAGCC -ACGGAAAGGAAGATGTCCATAGCC -ACGGAAAGGAAGATGTCCTAACCG -ACGGAAAGGAAGATGTCCATGCCA -ACGGAAAGGAAGGTGTGTGGAAAC -ACGGAAAGGAAGGTGTGTAACACC -ACGGAAAGGAAGGTGTGTATCGAG -ACGGAAAGGAAGGTGTGTCTCCTT -ACGGAAAGGAAGGTGTGTCCTGTT -ACGGAAAGGAAGGTGTGTCGGTTT -ACGGAAAGGAAGGTGTGTGTGGTT -ACGGAAAGGAAGGTGTGTGCCTTT -ACGGAAAGGAAGGTGTGTGGTCTT -ACGGAAAGGAAGGTGTGTACGCTT -ACGGAAAGGAAGGTGTGTAGCGTT -ACGGAAAGGAAGGTGTGTTTCGTC -ACGGAAAGGAAGGTGTGTTCTCTC -ACGGAAAGGAAGGTGTGTTGGATC -ACGGAAAGGAAGGTGTGTCACTTC -ACGGAAAGGAAGGTGTGTGTACTC -ACGGAAAGGAAGGTGTGTGATGTC -ACGGAAAGGAAGGTGTGTACAGTC -ACGGAAAGGAAGGTGTGTTTGCTG -ACGGAAAGGAAGGTGTGTTCCATG -ACGGAAAGGAAGGTGTGTTGTGTG -ACGGAAAGGAAGGTGTGTCTAGTG -ACGGAAAGGAAGGTGTGTCATCTG -ACGGAAAGGAAGGTGTGTGAGTTG -ACGGAAAGGAAGGTGTGTAGACTG -ACGGAAAGGAAGGTGTGTTCGGTA -ACGGAAAGGAAGGTGTGTTGCCTA -ACGGAAAGGAAGGTGTGTCCACTA -ACGGAAAGGAAGGTGTGTGGAGTA -ACGGAAAGGAAGGTGTGTTCGTCT -ACGGAAAGGAAGGTGTGTTGCACT -ACGGAAAGGAAGGTGTGTCTGACT -ACGGAAAGGAAGGTGTGTCAACCT -ACGGAAAGGAAGGTGTGTGCTACT -ACGGAAAGGAAGGTGTGTGGATCT -ACGGAAAGGAAGGTGTGTAAGGCT -ACGGAAAGGAAGGTGTGTTCAACC -ACGGAAAGGAAGGTGTGTTGTTCC -ACGGAAAGGAAGGTGTGTATTCCC -ACGGAAAGGAAGGTGTGTTTCTCG -ACGGAAAGGAAGGTGTGTTAGACG -ACGGAAAGGAAGGTGTGTGTAACG -ACGGAAAGGAAGGTGTGTACTTCG -ACGGAAAGGAAGGTGTGTTACGCA -ACGGAAAGGAAGGTGTGTCTTGCA -ACGGAAAGGAAGGTGTGTCGAACA -ACGGAAAGGAAGGTGTGTCAGTCA -ACGGAAAGGAAGGTGTGTGATCCA -ACGGAAAGGAAGGTGTGTACGACA -ACGGAAAGGAAGGTGTGTAGCTCA -ACGGAAAGGAAGGTGTGTTCACGT -ACGGAAAGGAAGGTGTGTCGTAGT -ACGGAAAGGAAGGTGTGTGTCAGT -ACGGAAAGGAAGGTGTGTGAAGGT -ACGGAAAGGAAGGTGTGTAACCGT -ACGGAAAGGAAGGTGTGTTTGTGC -ACGGAAAGGAAGGTGTGTCTAAGC -ACGGAAAGGAAGGTGTGTACTAGC -ACGGAAAGGAAGGTGTGTAGATGC -ACGGAAAGGAAGGTGTGTTGAAGG -ACGGAAAGGAAGGTGTGTCAATGG -ACGGAAAGGAAGGTGTGTATGAGG -ACGGAAAGGAAGGTGTGTAATGGG -ACGGAAAGGAAGGTGTGTTCCTGA -ACGGAAAGGAAGGTGTGTTAGCGA -ACGGAAAGGAAGGTGTGTCACAGA -ACGGAAAGGAAGGTGTGTGCAAGA -ACGGAAAGGAAGGTGTGTGGTTGA -ACGGAAAGGAAGGTGTGTTCCGAT -ACGGAAAGGAAGGTGTGTTGGCAT -ACGGAAAGGAAGGTGTGTCGAGAT -ACGGAAAGGAAGGTGTGTTACCAC -ACGGAAAGGAAGGTGTGTCAGAAC -ACGGAAAGGAAGGTGTGTGTCTAC -ACGGAAAGGAAGGTGTGTACGTAC -ACGGAAAGGAAGGTGTGTAGTGAC -ACGGAAAGGAAGGTGTGTCTGTAG -ACGGAAAGGAAGGTGTGTCCTAAG -ACGGAAAGGAAGGTGTGTGTTCAG -ACGGAAAGGAAGGTGTGTGCATAG -ACGGAAAGGAAGGTGTGTGACAAG -ACGGAAAGGAAGGTGTGTAAGCAG -ACGGAAAGGAAGGTGTGTCGTCAA -ACGGAAAGGAAGGTGTGTGCTGAA -ACGGAAAGGAAGGTGTGTAGTACG -ACGGAAAGGAAGGTGTGTATCCGA -ACGGAAAGGAAGGTGTGTATGGGA -ACGGAAAGGAAGGTGTGTGTGCAA -ACGGAAAGGAAGGTGTGTGAGGAA -ACGGAAAGGAAGGTGTGTCAGGTA -ACGGAAAGGAAGGTGTGTGACTCT -ACGGAAAGGAAGGTGTGTAGTCCT -ACGGAAAGGAAGGTGTGTTAAGCC -ACGGAAAGGAAGGTGTGTATAGCC -ACGGAAAGGAAGGTGTGTTAACCG -ACGGAAAGGAAGGTGTGTATGCCA -ACGGAAAGGAAGGTGCTAGGAAAC -ACGGAAAGGAAGGTGCTAAACACC -ACGGAAAGGAAGGTGCTAATCGAG -ACGGAAAGGAAGGTGCTACTCCTT -ACGGAAAGGAAGGTGCTACCTGTT -ACGGAAAGGAAGGTGCTACGGTTT -ACGGAAAGGAAGGTGCTAGTGGTT -ACGGAAAGGAAGGTGCTAGCCTTT -ACGGAAAGGAAGGTGCTAGGTCTT -ACGGAAAGGAAGGTGCTAACGCTT -ACGGAAAGGAAGGTGCTAAGCGTT -ACGGAAAGGAAGGTGCTATTCGTC -ACGGAAAGGAAGGTGCTATCTCTC -ACGGAAAGGAAGGTGCTATGGATC -ACGGAAAGGAAGGTGCTACACTTC -ACGGAAAGGAAGGTGCTAGTACTC -ACGGAAAGGAAGGTGCTAGATGTC -ACGGAAAGGAAGGTGCTAACAGTC -ACGGAAAGGAAGGTGCTATTGCTG -ACGGAAAGGAAGGTGCTATCCATG -ACGGAAAGGAAGGTGCTATGTGTG -ACGGAAAGGAAGGTGCTACTAGTG -ACGGAAAGGAAGGTGCTACATCTG -ACGGAAAGGAAGGTGCTAGAGTTG -ACGGAAAGGAAGGTGCTAAGACTG -ACGGAAAGGAAGGTGCTATCGGTA -ACGGAAAGGAAGGTGCTATGCCTA -ACGGAAAGGAAGGTGCTACCACTA -ACGGAAAGGAAGGTGCTAGGAGTA -ACGGAAAGGAAGGTGCTATCGTCT -ACGGAAAGGAAGGTGCTATGCACT -ACGGAAAGGAAGGTGCTACTGACT -ACGGAAAGGAAGGTGCTACAACCT -ACGGAAAGGAAGGTGCTAGCTACT -ACGGAAAGGAAGGTGCTAGGATCT -ACGGAAAGGAAGGTGCTAAAGGCT -ACGGAAAGGAAGGTGCTATCAACC -ACGGAAAGGAAGGTGCTATGTTCC -ACGGAAAGGAAGGTGCTAATTCCC -ACGGAAAGGAAGGTGCTATTCTCG -ACGGAAAGGAAGGTGCTATAGACG -ACGGAAAGGAAGGTGCTAGTAACG -ACGGAAAGGAAGGTGCTAACTTCG -ACGGAAAGGAAGGTGCTATACGCA -ACGGAAAGGAAGGTGCTACTTGCA -ACGGAAAGGAAGGTGCTACGAACA -ACGGAAAGGAAGGTGCTACAGTCA -ACGGAAAGGAAGGTGCTAGATCCA -ACGGAAAGGAAGGTGCTAACGACA -ACGGAAAGGAAGGTGCTAAGCTCA -ACGGAAAGGAAGGTGCTATCACGT -ACGGAAAGGAAGGTGCTACGTAGT -ACGGAAAGGAAGGTGCTAGTCAGT -ACGGAAAGGAAGGTGCTAGAAGGT -ACGGAAAGGAAGGTGCTAAACCGT -ACGGAAAGGAAGGTGCTATTGTGC -ACGGAAAGGAAGGTGCTACTAAGC -ACGGAAAGGAAGGTGCTAACTAGC -ACGGAAAGGAAGGTGCTAAGATGC -ACGGAAAGGAAGGTGCTATGAAGG -ACGGAAAGGAAGGTGCTACAATGG -ACGGAAAGGAAGGTGCTAATGAGG -ACGGAAAGGAAGGTGCTAAATGGG -ACGGAAAGGAAGGTGCTATCCTGA -ACGGAAAGGAAGGTGCTATAGCGA -ACGGAAAGGAAGGTGCTACACAGA -ACGGAAAGGAAGGTGCTAGCAAGA -ACGGAAAGGAAGGTGCTAGGTTGA -ACGGAAAGGAAGGTGCTATCCGAT -ACGGAAAGGAAGGTGCTATGGCAT -ACGGAAAGGAAGGTGCTACGAGAT -ACGGAAAGGAAGGTGCTATACCAC -ACGGAAAGGAAGGTGCTACAGAAC -ACGGAAAGGAAGGTGCTAGTCTAC -ACGGAAAGGAAGGTGCTAACGTAC -ACGGAAAGGAAGGTGCTAAGTGAC -ACGGAAAGGAAGGTGCTACTGTAG -ACGGAAAGGAAGGTGCTACCTAAG -ACGGAAAGGAAGGTGCTAGTTCAG -ACGGAAAGGAAGGTGCTAGCATAG -ACGGAAAGGAAGGTGCTAGACAAG -ACGGAAAGGAAGGTGCTAAAGCAG -ACGGAAAGGAAGGTGCTACGTCAA -ACGGAAAGGAAGGTGCTAGCTGAA -ACGGAAAGGAAGGTGCTAAGTACG -ACGGAAAGGAAGGTGCTAATCCGA -ACGGAAAGGAAGGTGCTAATGGGA -ACGGAAAGGAAGGTGCTAGTGCAA -ACGGAAAGGAAGGTGCTAGAGGAA -ACGGAAAGGAAGGTGCTACAGGTA -ACGGAAAGGAAGGTGCTAGACTCT -ACGGAAAGGAAGGTGCTAAGTCCT -ACGGAAAGGAAGGTGCTATAAGCC -ACGGAAAGGAAGGTGCTAATAGCC -ACGGAAAGGAAGGTGCTATAACCG -ACGGAAAGGAAGGTGCTAATGCCA -ACGGAAAGGAAGCTGCATGGAAAC -ACGGAAAGGAAGCTGCATAACACC -ACGGAAAGGAAGCTGCATATCGAG -ACGGAAAGGAAGCTGCATCTCCTT -ACGGAAAGGAAGCTGCATCCTGTT -ACGGAAAGGAAGCTGCATCGGTTT -ACGGAAAGGAAGCTGCATGTGGTT -ACGGAAAGGAAGCTGCATGCCTTT -ACGGAAAGGAAGCTGCATGGTCTT -ACGGAAAGGAAGCTGCATACGCTT -ACGGAAAGGAAGCTGCATAGCGTT -ACGGAAAGGAAGCTGCATTTCGTC -ACGGAAAGGAAGCTGCATTCTCTC -ACGGAAAGGAAGCTGCATTGGATC -ACGGAAAGGAAGCTGCATCACTTC -ACGGAAAGGAAGCTGCATGTACTC -ACGGAAAGGAAGCTGCATGATGTC -ACGGAAAGGAAGCTGCATACAGTC -ACGGAAAGGAAGCTGCATTTGCTG -ACGGAAAGGAAGCTGCATTCCATG -ACGGAAAGGAAGCTGCATTGTGTG -ACGGAAAGGAAGCTGCATCTAGTG -ACGGAAAGGAAGCTGCATCATCTG -ACGGAAAGGAAGCTGCATGAGTTG -ACGGAAAGGAAGCTGCATAGACTG -ACGGAAAGGAAGCTGCATTCGGTA -ACGGAAAGGAAGCTGCATTGCCTA -ACGGAAAGGAAGCTGCATCCACTA -ACGGAAAGGAAGCTGCATGGAGTA -ACGGAAAGGAAGCTGCATTCGTCT -ACGGAAAGGAAGCTGCATTGCACT -ACGGAAAGGAAGCTGCATCTGACT -ACGGAAAGGAAGCTGCATCAACCT -ACGGAAAGGAAGCTGCATGCTACT -ACGGAAAGGAAGCTGCATGGATCT -ACGGAAAGGAAGCTGCATAAGGCT -ACGGAAAGGAAGCTGCATTCAACC -ACGGAAAGGAAGCTGCATTGTTCC -ACGGAAAGGAAGCTGCATATTCCC -ACGGAAAGGAAGCTGCATTTCTCG -ACGGAAAGGAAGCTGCATTAGACG -ACGGAAAGGAAGCTGCATGTAACG -ACGGAAAGGAAGCTGCATACTTCG -ACGGAAAGGAAGCTGCATTACGCA -ACGGAAAGGAAGCTGCATCTTGCA -ACGGAAAGGAAGCTGCATCGAACA -ACGGAAAGGAAGCTGCATCAGTCA -ACGGAAAGGAAGCTGCATGATCCA -ACGGAAAGGAAGCTGCATACGACA -ACGGAAAGGAAGCTGCATAGCTCA -ACGGAAAGGAAGCTGCATTCACGT -ACGGAAAGGAAGCTGCATCGTAGT -ACGGAAAGGAAGCTGCATGTCAGT -ACGGAAAGGAAGCTGCATGAAGGT -ACGGAAAGGAAGCTGCATAACCGT -ACGGAAAGGAAGCTGCATTTGTGC -ACGGAAAGGAAGCTGCATCTAAGC -ACGGAAAGGAAGCTGCATACTAGC -ACGGAAAGGAAGCTGCATAGATGC -ACGGAAAGGAAGCTGCATTGAAGG -ACGGAAAGGAAGCTGCATCAATGG -ACGGAAAGGAAGCTGCATATGAGG -ACGGAAAGGAAGCTGCATAATGGG -ACGGAAAGGAAGCTGCATTCCTGA -ACGGAAAGGAAGCTGCATTAGCGA -ACGGAAAGGAAGCTGCATCACAGA -ACGGAAAGGAAGCTGCATGCAAGA -ACGGAAAGGAAGCTGCATGGTTGA -ACGGAAAGGAAGCTGCATTCCGAT -ACGGAAAGGAAGCTGCATTGGCAT -ACGGAAAGGAAGCTGCATCGAGAT -ACGGAAAGGAAGCTGCATTACCAC -ACGGAAAGGAAGCTGCATCAGAAC -ACGGAAAGGAAGCTGCATGTCTAC -ACGGAAAGGAAGCTGCATACGTAC -ACGGAAAGGAAGCTGCATAGTGAC -ACGGAAAGGAAGCTGCATCTGTAG -ACGGAAAGGAAGCTGCATCCTAAG -ACGGAAAGGAAGCTGCATGTTCAG -ACGGAAAGGAAGCTGCATGCATAG -ACGGAAAGGAAGCTGCATGACAAG -ACGGAAAGGAAGCTGCATAAGCAG -ACGGAAAGGAAGCTGCATCGTCAA -ACGGAAAGGAAGCTGCATGCTGAA -ACGGAAAGGAAGCTGCATAGTACG -ACGGAAAGGAAGCTGCATATCCGA -ACGGAAAGGAAGCTGCATATGGGA -ACGGAAAGGAAGCTGCATGTGCAA -ACGGAAAGGAAGCTGCATGAGGAA -ACGGAAAGGAAGCTGCATCAGGTA -ACGGAAAGGAAGCTGCATGACTCT -ACGGAAAGGAAGCTGCATAGTCCT -ACGGAAAGGAAGCTGCATTAAGCC -ACGGAAAGGAAGCTGCATATAGCC -ACGGAAAGGAAGCTGCATTAACCG -ACGGAAAGGAAGCTGCATATGCCA -ACGGAAAGGAAGTTGGAGGGAAAC -ACGGAAAGGAAGTTGGAGAACACC -ACGGAAAGGAAGTTGGAGATCGAG -ACGGAAAGGAAGTTGGAGCTCCTT -ACGGAAAGGAAGTTGGAGCCTGTT -ACGGAAAGGAAGTTGGAGCGGTTT -ACGGAAAGGAAGTTGGAGGTGGTT -ACGGAAAGGAAGTTGGAGGCCTTT -ACGGAAAGGAAGTTGGAGGGTCTT -ACGGAAAGGAAGTTGGAGACGCTT -ACGGAAAGGAAGTTGGAGAGCGTT -ACGGAAAGGAAGTTGGAGTTCGTC -ACGGAAAGGAAGTTGGAGTCTCTC -ACGGAAAGGAAGTTGGAGTGGATC -ACGGAAAGGAAGTTGGAGCACTTC -ACGGAAAGGAAGTTGGAGGTACTC -ACGGAAAGGAAGTTGGAGGATGTC -ACGGAAAGGAAGTTGGAGACAGTC -ACGGAAAGGAAGTTGGAGTTGCTG -ACGGAAAGGAAGTTGGAGTCCATG -ACGGAAAGGAAGTTGGAGTGTGTG -ACGGAAAGGAAGTTGGAGCTAGTG -ACGGAAAGGAAGTTGGAGCATCTG -ACGGAAAGGAAGTTGGAGGAGTTG -ACGGAAAGGAAGTTGGAGAGACTG -ACGGAAAGGAAGTTGGAGTCGGTA -ACGGAAAGGAAGTTGGAGTGCCTA -ACGGAAAGGAAGTTGGAGCCACTA -ACGGAAAGGAAGTTGGAGGGAGTA -ACGGAAAGGAAGTTGGAGTCGTCT -ACGGAAAGGAAGTTGGAGTGCACT -ACGGAAAGGAAGTTGGAGCTGACT -ACGGAAAGGAAGTTGGAGCAACCT -ACGGAAAGGAAGTTGGAGGCTACT -ACGGAAAGGAAGTTGGAGGGATCT -ACGGAAAGGAAGTTGGAGAAGGCT -ACGGAAAGGAAGTTGGAGTCAACC -ACGGAAAGGAAGTTGGAGTGTTCC -ACGGAAAGGAAGTTGGAGATTCCC -ACGGAAAGGAAGTTGGAGTTCTCG -ACGGAAAGGAAGTTGGAGTAGACG -ACGGAAAGGAAGTTGGAGGTAACG -ACGGAAAGGAAGTTGGAGACTTCG -ACGGAAAGGAAGTTGGAGTACGCA -ACGGAAAGGAAGTTGGAGCTTGCA -ACGGAAAGGAAGTTGGAGCGAACA -ACGGAAAGGAAGTTGGAGCAGTCA -ACGGAAAGGAAGTTGGAGGATCCA -ACGGAAAGGAAGTTGGAGACGACA -ACGGAAAGGAAGTTGGAGAGCTCA -ACGGAAAGGAAGTTGGAGTCACGT -ACGGAAAGGAAGTTGGAGCGTAGT -ACGGAAAGGAAGTTGGAGGTCAGT -ACGGAAAGGAAGTTGGAGGAAGGT -ACGGAAAGGAAGTTGGAGAACCGT -ACGGAAAGGAAGTTGGAGTTGTGC -ACGGAAAGGAAGTTGGAGCTAAGC -ACGGAAAGGAAGTTGGAGACTAGC -ACGGAAAGGAAGTTGGAGAGATGC -ACGGAAAGGAAGTTGGAGTGAAGG -ACGGAAAGGAAGTTGGAGCAATGG -ACGGAAAGGAAGTTGGAGATGAGG -ACGGAAAGGAAGTTGGAGAATGGG -ACGGAAAGGAAGTTGGAGTCCTGA -ACGGAAAGGAAGTTGGAGTAGCGA -ACGGAAAGGAAGTTGGAGCACAGA -ACGGAAAGGAAGTTGGAGGCAAGA -ACGGAAAGGAAGTTGGAGGGTTGA -ACGGAAAGGAAGTTGGAGTCCGAT -ACGGAAAGGAAGTTGGAGTGGCAT -ACGGAAAGGAAGTTGGAGCGAGAT -ACGGAAAGGAAGTTGGAGTACCAC -ACGGAAAGGAAGTTGGAGCAGAAC -ACGGAAAGGAAGTTGGAGGTCTAC -ACGGAAAGGAAGTTGGAGACGTAC -ACGGAAAGGAAGTTGGAGAGTGAC -ACGGAAAGGAAGTTGGAGCTGTAG -ACGGAAAGGAAGTTGGAGCCTAAG -ACGGAAAGGAAGTTGGAGGTTCAG -ACGGAAAGGAAGTTGGAGGCATAG -ACGGAAAGGAAGTTGGAGGACAAG -ACGGAAAGGAAGTTGGAGAAGCAG -ACGGAAAGGAAGTTGGAGCGTCAA -ACGGAAAGGAAGTTGGAGGCTGAA -ACGGAAAGGAAGTTGGAGAGTACG -ACGGAAAGGAAGTTGGAGATCCGA -ACGGAAAGGAAGTTGGAGATGGGA -ACGGAAAGGAAGTTGGAGGTGCAA -ACGGAAAGGAAGTTGGAGGAGGAA -ACGGAAAGGAAGTTGGAGCAGGTA -ACGGAAAGGAAGTTGGAGGACTCT -ACGGAAAGGAAGTTGGAGAGTCCT -ACGGAAAGGAAGTTGGAGTAAGCC -ACGGAAAGGAAGTTGGAGATAGCC -ACGGAAAGGAAGTTGGAGTAACCG -ACGGAAAGGAAGTTGGAGATGCCA -ACGGAAAGGAAGCTGAGAGGAAAC -ACGGAAAGGAAGCTGAGAAACACC -ACGGAAAGGAAGCTGAGAATCGAG -ACGGAAAGGAAGCTGAGACTCCTT -ACGGAAAGGAAGCTGAGACCTGTT -ACGGAAAGGAAGCTGAGACGGTTT -ACGGAAAGGAAGCTGAGAGTGGTT -ACGGAAAGGAAGCTGAGAGCCTTT -ACGGAAAGGAAGCTGAGAGGTCTT -ACGGAAAGGAAGCTGAGAACGCTT -ACGGAAAGGAAGCTGAGAAGCGTT -ACGGAAAGGAAGCTGAGATTCGTC -ACGGAAAGGAAGCTGAGATCTCTC -ACGGAAAGGAAGCTGAGATGGATC -ACGGAAAGGAAGCTGAGACACTTC -ACGGAAAGGAAGCTGAGAGTACTC -ACGGAAAGGAAGCTGAGAGATGTC -ACGGAAAGGAAGCTGAGAACAGTC -ACGGAAAGGAAGCTGAGATTGCTG -ACGGAAAGGAAGCTGAGATCCATG -ACGGAAAGGAAGCTGAGATGTGTG -ACGGAAAGGAAGCTGAGACTAGTG -ACGGAAAGGAAGCTGAGACATCTG -ACGGAAAGGAAGCTGAGAGAGTTG -ACGGAAAGGAAGCTGAGAAGACTG -ACGGAAAGGAAGCTGAGATCGGTA -ACGGAAAGGAAGCTGAGATGCCTA -ACGGAAAGGAAGCTGAGACCACTA -ACGGAAAGGAAGCTGAGAGGAGTA -ACGGAAAGGAAGCTGAGATCGTCT -ACGGAAAGGAAGCTGAGATGCACT -ACGGAAAGGAAGCTGAGACTGACT -ACGGAAAGGAAGCTGAGACAACCT -ACGGAAAGGAAGCTGAGAGCTACT -ACGGAAAGGAAGCTGAGAGGATCT -ACGGAAAGGAAGCTGAGAAAGGCT -ACGGAAAGGAAGCTGAGATCAACC -ACGGAAAGGAAGCTGAGATGTTCC -ACGGAAAGGAAGCTGAGAATTCCC -ACGGAAAGGAAGCTGAGATTCTCG -ACGGAAAGGAAGCTGAGATAGACG -ACGGAAAGGAAGCTGAGAGTAACG -ACGGAAAGGAAGCTGAGAACTTCG -ACGGAAAGGAAGCTGAGATACGCA -ACGGAAAGGAAGCTGAGACTTGCA -ACGGAAAGGAAGCTGAGACGAACA -ACGGAAAGGAAGCTGAGACAGTCA -ACGGAAAGGAAGCTGAGAGATCCA -ACGGAAAGGAAGCTGAGAACGACA -ACGGAAAGGAAGCTGAGAAGCTCA -ACGGAAAGGAAGCTGAGATCACGT -ACGGAAAGGAAGCTGAGACGTAGT -ACGGAAAGGAAGCTGAGAGTCAGT -ACGGAAAGGAAGCTGAGAGAAGGT -ACGGAAAGGAAGCTGAGAAACCGT -ACGGAAAGGAAGCTGAGATTGTGC -ACGGAAAGGAAGCTGAGACTAAGC -ACGGAAAGGAAGCTGAGAACTAGC -ACGGAAAGGAAGCTGAGAAGATGC -ACGGAAAGGAAGCTGAGATGAAGG -ACGGAAAGGAAGCTGAGACAATGG -ACGGAAAGGAAGCTGAGAATGAGG -ACGGAAAGGAAGCTGAGAAATGGG -ACGGAAAGGAAGCTGAGATCCTGA -ACGGAAAGGAAGCTGAGATAGCGA -ACGGAAAGGAAGCTGAGACACAGA -ACGGAAAGGAAGCTGAGAGCAAGA -ACGGAAAGGAAGCTGAGAGGTTGA -ACGGAAAGGAAGCTGAGATCCGAT -ACGGAAAGGAAGCTGAGATGGCAT -ACGGAAAGGAAGCTGAGACGAGAT -ACGGAAAGGAAGCTGAGATACCAC -ACGGAAAGGAAGCTGAGACAGAAC -ACGGAAAGGAAGCTGAGAGTCTAC -ACGGAAAGGAAGCTGAGAACGTAC -ACGGAAAGGAAGCTGAGAAGTGAC -ACGGAAAGGAAGCTGAGACTGTAG -ACGGAAAGGAAGCTGAGACCTAAG -ACGGAAAGGAAGCTGAGAGTTCAG -ACGGAAAGGAAGCTGAGAGCATAG -ACGGAAAGGAAGCTGAGAGACAAG -ACGGAAAGGAAGCTGAGAAAGCAG -ACGGAAAGGAAGCTGAGACGTCAA -ACGGAAAGGAAGCTGAGAGCTGAA -ACGGAAAGGAAGCTGAGAAGTACG -ACGGAAAGGAAGCTGAGAATCCGA -ACGGAAAGGAAGCTGAGAATGGGA -ACGGAAAGGAAGCTGAGAGTGCAA -ACGGAAAGGAAGCTGAGAGAGGAA -ACGGAAAGGAAGCTGAGACAGGTA -ACGGAAAGGAAGCTGAGAGACTCT -ACGGAAAGGAAGCTGAGAAGTCCT -ACGGAAAGGAAGCTGAGATAAGCC -ACGGAAAGGAAGCTGAGAATAGCC -ACGGAAAGGAAGCTGAGATAACCG -ACGGAAAGGAAGCTGAGAATGCCA -ACGGAAAGGAAGGTATCGGGAAAC -ACGGAAAGGAAGGTATCGAACACC -ACGGAAAGGAAGGTATCGATCGAG -ACGGAAAGGAAGGTATCGCTCCTT -ACGGAAAGGAAGGTATCGCCTGTT -ACGGAAAGGAAGGTATCGCGGTTT -ACGGAAAGGAAGGTATCGGTGGTT -ACGGAAAGGAAGGTATCGGCCTTT -ACGGAAAGGAAGGTATCGGGTCTT -ACGGAAAGGAAGGTATCGACGCTT -ACGGAAAGGAAGGTATCGAGCGTT -ACGGAAAGGAAGGTATCGTTCGTC -ACGGAAAGGAAGGTATCGTCTCTC -ACGGAAAGGAAGGTATCGTGGATC -ACGGAAAGGAAGGTATCGCACTTC -ACGGAAAGGAAGGTATCGGTACTC -ACGGAAAGGAAGGTATCGGATGTC -ACGGAAAGGAAGGTATCGACAGTC -ACGGAAAGGAAGGTATCGTTGCTG -ACGGAAAGGAAGGTATCGTCCATG -ACGGAAAGGAAGGTATCGTGTGTG -ACGGAAAGGAAGGTATCGCTAGTG -ACGGAAAGGAAGGTATCGCATCTG -ACGGAAAGGAAGGTATCGGAGTTG -ACGGAAAGGAAGGTATCGAGACTG -ACGGAAAGGAAGGTATCGTCGGTA -ACGGAAAGGAAGGTATCGTGCCTA -ACGGAAAGGAAGGTATCGCCACTA -ACGGAAAGGAAGGTATCGGGAGTA -ACGGAAAGGAAGGTATCGTCGTCT -ACGGAAAGGAAGGTATCGTGCACT -ACGGAAAGGAAGGTATCGCTGACT -ACGGAAAGGAAGGTATCGCAACCT -ACGGAAAGGAAGGTATCGGCTACT -ACGGAAAGGAAGGTATCGGGATCT -ACGGAAAGGAAGGTATCGAAGGCT -ACGGAAAGGAAGGTATCGTCAACC -ACGGAAAGGAAGGTATCGTGTTCC -ACGGAAAGGAAGGTATCGATTCCC -ACGGAAAGGAAGGTATCGTTCTCG -ACGGAAAGGAAGGTATCGTAGACG -ACGGAAAGGAAGGTATCGGTAACG -ACGGAAAGGAAGGTATCGACTTCG -ACGGAAAGGAAGGTATCGTACGCA -ACGGAAAGGAAGGTATCGCTTGCA -ACGGAAAGGAAGGTATCGCGAACA -ACGGAAAGGAAGGTATCGCAGTCA -ACGGAAAGGAAGGTATCGGATCCA -ACGGAAAGGAAGGTATCGACGACA -ACGGAAAGGAAGGTATCGAGCTCA -ACGGAAAGGAAGGTATCGTCACGT -ACGGAAAGGAAGGTATCGCGTAGT -ACGGAAAGGAAGGTATCGGTCAGT -ACGGAAAGGAAGGTATCGGAAGGT -ACGGAAAGGAAGGTATCGAACCGT -ACGGAAAGGAAGGTATCGTTGTGC -ACGGAAAGGAAGGTATCGCTAAGC -ACGGAAAGGAAGGTATCGACTAGC -ACGGAAAGGAAGGTATCGAGATGC -ACGGAAAGGAAGGTATCGTGAAGG -ACGGAAAGGAAGGTATCGCAATGG -ACGGAAAGGAAGGTATCGATGAGG -ACGGAAAGGAAGGTATCGAATGGG -ACGGAAAGGAAGGTATCGTCCTGA -ACGGAAAGGAAGGTATCGTAGCGA -ACGGAAAGGAAGGTATCGCACAGA -ACGGAAAGGAAGGTATCGGCAAGA -ACGGAAAGGAAGGTATCGGGTTGA -ACGGAAAGGAAGGTATCGTCCGAT -ACGGAAAGGAAGGTATCGTGGCAT -ACGGAAAGGAAGGTATCGCGAGAT -ACGGAAAGGAAGGTATCGTACCAC -ACGGAAAGGAAGGTATCGCAGAAC -ACGGAAAGGAAGGTATCGGTCTAC -ACGGAAAGGAAGGTATCGACGTAC -ACGGAAAGGAAGGTATCGAGTGAC -ACGGAAAGGAAGGTATCGCTGTAG -ACGGAAAGGAAGGTATCGCCTAAG -ACGGAAAGGAAGGTATCGGTTCAG -ACGGAAAGGAAGGTATCGGCATAG -ACGGAAAGGAAGGTATCGGACAAG -ACGGAAAGGAAGGTATCGAAGCAG -ACGGAAAGGAAGGTATCGCGTCAA -ACGGAAAGGAAGGTATCGGCTGAA -ACGGAAAGGAAGGTATCGAGTACG -ACGGAAAGGAAGGTATCGATCCGA -ACGGAAAGGAAGGTATCGATGGGA -ACGGAAAGGAAGGTATCGGTGCAA -ACGGAAAGGAAGGTATCGGAGGAA -ACGGAAAGGAAGGTATCGCAGGTA -ACGGAAAGGAAGGTATCGGACTCT -ACGGAAAGGAAGGTATCGAGTCCT -ACGGAAAGGAAGGTATCGTAAGCC -ACGGAAAGGAAGGTATCGATAGCC -ACGGAAAGGAAGGTATCGTAACCG -ACGGAAAGGAAGGTATCGATGCCA -ACGGAAAGGAAGCTATGCGGAAAC -ACGGAAAGGAAGCTATGCAACACC -ACGGAAAGGAAGCTATGCATCGAG -ACGGAAAGGAAGCTATGCCTCCTT -ACGGAAAGGAAGCTATGCCCTGTT -ACGGAAAGGAAGCTATGCCGGTTT -ACGGAAAGGAAGCTATGCGTGGTT -ACGGAAAGGAAGCTATGCGCCTTT -ACGGAAAGGAAGCTATGCGGTCTT -ACGGAAAGGAAGCTATGCACGCTT -ACGGAAAGGAAGCTATGCAGCGTT -ACGGAAAGGAAGCTATGCTTCGTC -ACGGAAAGGAAGCTATGCTCTCTC -ACGGAAAGGAAGCTATGCTGGATC -ACGGAAAGGAAGCTATGCCACTTC -ACGGAAAGGAAGCTATGCGTACTC -ACGGAAAGGAAGCTATGCGATGTC -ACGGAAAGGAAGCTATGCACAGTC -ACGGAAAGGAAGCTATGCTTGCTG -ACGGAAAGGAAGCTATGCTCCATG -ACGGAAAGGAAGCTATGCTGTGTG -ACGGAAAGGAAGCTATGCCTAGTG -ACGGAAAGGAAGCTATGCCATCTG -ACGGAAAGGAAGCTATGCGAGTTG -ACGGAAAGGAAGCTATGCAGACTG -ACGGAAAGGAAGCTATGCTCGGTA -ACGGAAAGGAAGCTATGCTGCCTA -ACGGAAAGGAAGCTATGCCCACTA -ACGGAAAGGAAGCTATGCGGAGTA -ACGGAAAGGAAGCTATGCTCGTCT -ACGGAAAGGAAGCTATGCTGCACT -ACGGAAAGGAAGCTATGCCTGACT -ACGGAAAGGAAGCTATGCCAACCT -ACGGAAAGGAAGCTATGCGCTACT -ACGGAAAGGAAGCTATGCGGATCT -ACGGAAAGGAAGCTATGCAAGGCT -ACGGAAAGGAAGCTATGCTCAACC -ACGGAAAGGAAGCTATGCTGTTCC -ACGGAAAGGAAGCTATGCATTCCC -ACGGAAAGGAAGCTATGCTTCTCG -ACGGAAAGGAAGCTATGCTAGACG -ACGGAAAGGAAGCTATGCGTAACG -ACGGAAAGGAAGCTATGCACTTCG -ACGGAAAGGAAGCTATGCTACGCA -ACGGAAAGGAAGCTATGCCTTGCA -ACGGAAAGGAAGCTATGCCGAACA -ACGGAAAGGAAGCTATGCCAGTCA -ACGGAAAGGAAGCTATGCGATCCA -ACGGAAAGGAAGCTATGCACGACA -ACGGAAAGGAAGCTATGCAGCTCA -ACGGAAAGGAAGCTATGCTCACGT -ACGGAAAGGAAGCTATGCCGTAGT -ACGGAAAGGAAGCTATGCGTCAGT -ACGGAAAGGAAGCTATGCGAAGGT -ACGGAAAGGAAGCTATGCAACCGT -ACGGAAAGGAAGCTATGCTTGTGC -ACGGAAAGGAAGCTATGCCTAAGC -ACGGAAAGGAAGCTATGCACTAGC -ACGGAAAGGAAGCTATGCAGATGC -ACGGAAAGGAAGCTATGCTGAAGG -ACGGAAAGGAAGCTATGCCAATGG -ACGGAAAGGAAGCTATGCATGAGG -ACGGAAAGGAAGCTATGCAATGGG -ACGGAAAGGAAGCTATGCTCCTGA -ACGGAAAGGAAGCTATGCTAGCGA -ACGGAAAGGAAGCTATGCCACAGA -ACGGAAAGGAAGCTATGCGCAAGA -ACGGAAAGGAAGCTATGCGGTTGA -ACGGAAAGGAAGCTATGCTCCGAT -ACGGAAAGGAAGCTATGCTGGCAT -ACGGAAAGGAAGCTATGCCGAGAT -ACGGAAAGGAAGCTATGCTACCAC -ACGGAAAGGAAGCTATGCCAGAAC -ACGGAAAGGAAGCTATGCGTCTAC -ACGGAAAGGAAGCTATGCACGTAC -ACGGAAAGGAAGCTATGCAGTGAC -ACGGAAAGGAAGCTATGCCTGTAG -ACGGAAAGGAAGCTATGCCCTAAG -ACGGAAAGGAAGCTATGCGTTCAG -ACGGAAAGGAAGCTATGCGCATAG -ACGGAAAGGAAGCTATGCGACAAG -ACGGAAAGGAAGCTATGCAAGCAG -ACGGAAAGGAAGCTATGCCGTCAA -ACGGAAAGGAAGCTATGCGCTGAA -ACGGAAAGGAAGCTATGCAGTACG -ACGGAAAGGAAGCTATGCATCCGA -ACGGAAAGGAAGCTATGCATGGGA -ACGGAAAGGAAGCTATGCGTGCAA -ACGGAAAGGAAGCTATGCGAGGAA -ACGGAAAGGAAGCTATGCCAGGTA -ACGGAAAGGAAGCTATGCGACTCT -ACGGAAAGGAAGCTATGCAGTCCT -ACGGAAAGGAAGCTATGCTAAGCC -ACGGAAAGGAAGCTATGCATAGCC -ACGGAAAGGAAGCTATGCTAACCG -ACGGAAAGGAAGCTATGCATGCCA -ACGGAAAGGAAGCTACCAGGAAAC -ACGGAAAGGAAGCTACCAAACACC -ACGGAAAGGAAGCTACCAATCGAG -ACGGAAAGGAAGCTACCACTCCTT -ACGGAAAGGAAGCTACCACCTGTT -ACGGAAAGGAAGCTACCACGGTTT -ACGGAAAGGAAGCTACCAGTGGTT -ACGGAAAGGAAGCTACCAGCCTTT -ACGGAAAGGAAGCTACCAGGTCTT -ACGGAAAGGAAGCTACCAACGCTT -ACGGAAAGGAAGCTACCAAGCGTT -ACGGAAAGGAAGCTACCATTCGTC -ACGGAAAGGAAGCTACCATCTCTC -ACGGAAAGGAAGCTACCATGGATC -ACGGAAAGGAAGCTACCACACTTC -ACGGAAAGGAAGCTACCAGTACTC -ACGGAAAGGAAGCTACCAGATGTC -ACGGAAAGGAAGCTACCAACAGTC -ACGGAAAGGAAGCTACCATTGCTG -ACGGAAAGGAAGCTACCATCCATG -ACGGAAAGGAAGCTACCATGTGTG -ACGGAAAGGAAGCTACCACTAGTG -ACGGAAAGGAAGCTACCACATCTG -ACGGAAAGGAAGCTACCAGAGTTG -ACGGAAAGGAAGCTACCAAGACTG -ACGGAAAGGAAGCTACCATCGGTA -ACGGAAAGGAAGCTACCATGCCTA -ACGGAAAGGAAGCTACCACCACTA -ACGGAAAGGAAGCTACCAGGAGTA -ACGGAAAGGAAGCTACCATCGTCT -ACGGAAAGGAAGCTACCATGCACT -ACGGAAAGGAAGCTACCACTGACT -ACGGAAAGGAAGCTACCACAACCT -ACGGAAAGGAAGCTACCAGCTACT -ACGGAAAGGAAGCTACCAGGATCT -ACGGAAAGGAAGCTACCAAAGGCT -ACGGAAAGGAAGCTACCATCAACC -ACGGAAAGGAAGCTACCATGTTCC -ACGGAAAGGAAGCTACCAATTCCC -ACGGAAAGGAAGCTACCATTCTCG -ACGGAAAGGAAGCTACCATAGACG -ACGGAAAGGAAGCTACCAGTAACG -ACGGAAAGGAAGCTACCAACTTCG -ACGGAAAGGAAGCTACCATACGCA -ACGGAAAGGAAGCTACCACTTGCA -ACGGAAAGGAAGCTACCACGAACA -ACGGAAAGGAAGCTACCACAGTCA -ACGGAAAGGAAGCTACCAGATCCA -ACGGAAAGGAAGCTACCAACGACA -ACGGAAAGGAAGCTACCAAGCTCA -ACGGAAAGGAAGCTACCATCACGT -ACGGAAAGGAAGCTACCACGTAGT -ACGGAAAGGAAGCTACCAGTCAGT -ACGGAAAGGAAGCTACCAGAAGGT -ACGGAAAGGAAGCTACCAAACCGT -ACGGAAAGGAAGCTACCATTGTGC -ACGGAAAGGAAGCTACCACTAAGC -ACGGAAAGGAAGCTACCAACTAGC -ACGGAAAGGAAGCTACCAAGATGC -ACGGAAAGGAAGCTACCATGAAGG -ACGGAAAGGAAGCTACCACAATGG -ACGGAAAGGAAGCTACCAATGAGG -ACGGAAAGGAAGCTACCAAATGGG -ACGGAAAGGAAGCTACCATCCTGA -ACGGAAAGGAAGCTACCATAGCGA -ACGGAAAGGAAGCTACCACACAGA -ACGGAAAGGAAGCTACCAGCAAGA -ACGGAAAGGAAGCTACCAGGTTGA -ACGGAAAGGAAGCTACCATCCGAT -ACGGAAAGGAAGCTACCATGGCAT -ACGGAAAGGAAGCTACCACGAGAT -ACGGAAAGGAAGCTACCATACCAC -ACGGAAAGGAAGCTACCACAGAAC -ACGGAAAGGAAGCTACCAGTCTAC -ACGGAAAGGAAGCTACCAACGTAC -ACGGAAAGGAAGCTACCAAGTGAC -ACGGAAAGGAAGCTACCACTGTAG -ACGGAAAGGAAGCTACCACCTAAG -ACGGAAAGGAAGCTACCAGTTCAG -ACGGAAAGGAAGCTACCAGCATAG -ACGGAAAGGAAGCTACCAGACAAG -ACGGAAAGGAAGCTACCAAAGCAG -ACGGAAAGGAAGCTACCACGTCAA -ACGGAAAGGAAGCTACCAGCTGAA -ACGGAAAGGAAGCTACCAAGTACG -ACGGAAAGGAAGCTACCAATCCGA -ACGGAAAGGAAGCTACCAATGGGA -ACGGAAAGGAAGCTACCAGTGCAA -ACGGAAAGGAAGCTACCAGAGGAA -ACGGAAAGGAAGCTACCACAGGTA -ACGGAAAGGAAGCTACCAGACTCT -ACGGAAAGGAAGCTACCAAGTCCT -ACGGAAAGGAAGCTACCATAAGCC -ACGGAAAGGAAGCTACCAATAGCC -ACGGAAAGGAAGCTACCATAACCG -ACGGAAAGGAAGCTACCAATGCCA -ACGGAAAGGAAGGTAGGAGGAAAC -ACGGAAAGGAAGGTAGGAAACACC -ACGGAAAGGAAGGTAGGAATCGAG -ACGGAAAGGAAGGTAGGACTCCTT -ACGGAAAGGAAGGTAGGACCTGTT -ACGGAAAGGAAGGTAGGACGGTTT -ACGGAAAGGAAGGTAGGAGTGGTT -ACGGAAAGGAAGGTAGGAGCCTTT -ACGGAAAGGAAGGTAGGAGGTCTT -ACGGAAAGGAAGGTAGGAACGCTT -ACGGAAAGGAAGGTAGGAAGCGTT -ACGGAAAGGAAGGTAGGATTCGTC -ACGGAAAGGAAGGTAGGATCTCTC -ACGGAAAGGAAGGTAGGATGGATC -ACGGAAAGGAAGGTAGGACACTTC -ACGGAAAGGAAGGTAGGAGTACTC -ACGGAAAGGAAGGTAGGAGATGTC -ACGGAAAGGAAGGTAGGAACAGTC -ACGGAAAGGAAGGTAGGATTGCTG -ACGGAAAGGAAGGTAGGATCCATG -ACGGAAAGGAAGGTAGGATGTGTG -ACGGAAAGGAAGGTAGGACTAGTG -ACGGAAAGGAAGGTAGGACATCTG -ACGGAAAGGAAGGTAGGAGAGTTG -ACGGAAAGGAAGGTAGGAAGACTG -ACGGAAAGGAAGGTAGGATCGGTA -ACGGAAAGGAAGGTAGGATGCCTA -ACGGAAAGGAAGGTAGGACCACTA -ACGGAAAGGAAGGTAGGAGGAGTA -ACGGAAAGGAAGGTAGGATCGTCT -ACGGAAAGGAAGGTAGGATGCACT -ACGGAAAGGAAGGTAGGACTGACT -ACGGAAAGGAAGGTAGGACAACCT -ACGGAAAGGAAGGTAGGAGCTACT -ACGGAAAGGAAGGTAGGAGGATCT -ACGGAAAGGAAGGTAGGAAAGGCT -ACGGAAAGGAAGGTAGGATCAACC -ACGGAAAGGAAGGTAGGATGTTCC -ACGGAAAGGAAGGTAGGAATTCCC -ACGGAAAGGAAGGTAGGATTCTCG -ACGGAAAGGAAGGTAGGATAGACG -ACGGAAAGGAAGGTAGGAGTAACG -ACGGAAAGGAAGGTAGGAACTTCG -ACGGAAAGGAAGGTAGGATACGCA -ACGGAAAGGAAGGTAGGACTTGCA -ACGGAAAGGAAGGTAGGACGAACA -ACGGAAAGGAAGGTAGGACAGTCA -ACGGAAAGGAAGGTAGGAGATCCA -ACGGAAAGGAAGGTAGGAACGACA -ACGGAAAGGAAGGTAGGAAGCTCA -ACGGAAAGGAAGGTAGGATCACGT -ACGGAAAGGAAGGTAGGACGTAGT -ACGGAAAGGAAGGTAGGAGTCAGT -ACGGAAAGGAAGGTAGGAGAAGGT -ACGGAAAGGAAGGTAGGAAACCGT -ACGGAAAGGAAGGTAGGATTGTGC -ACGGAAAGGAAGGTAGGACTAAGC -ACGGAAAGGAAGGTAGGAACTAGC -ACGGAAAGGAAGGTAGGAAGATGC -ACGGAAAGGAAGGTAGGATGAAGG -ACGGAAAGGAAGGTAGGACAATGG -ACGGAAAGGAAGGTAGGAATGAGG -ACGGAAAGGAAGGTAGGAAATGGG -ACGGAAAGGAAGGTAGGATCCTGA -ACGGAAAGGAAGGTAGGATAGCGA -ACGGAAAGGAAGGTAGGACACAGA -ACGGAAAGGAAGGTAGGAGCAAGA -ACGGAAAGGAAGGTAGGAGGTTGA -ACGGAAAGGAAGGTAGGATCCGAT -ACGGAAAGGAAGGTAGGATGGCAT -ACGGAAAGGAAGGTAGGACGAGAT -ACGGAAAGGAAGGTAGGATACCAC -ACGGAAAGGAAGGTAGGACAGAAC -ACGGAAAGGAAGGTAGGAGTCTAC -ACGGAAAGGAAGGTAGGAACGTAC -ACGGAAAGGAAGGTAGGAAGTGAC -ACGGAAAGGAAGGTAGGACTGTAG -ACGGAAAGGAAGGTAGGACCTAAG -ACGGAAAGGAAGGTAGGAGTTCAG -ACGGAAAGGAAGGTAGGAGCATAG -ACGGAAAGGAAGGTAGGAGACAAG -ACGGAAAGGAAGGTAGGAAAGCAG -ACGGAAAGGAAGGTAGGACGTCAA -ACGGAAAGGAAGGTAGGAGCTGAA -ACGGAAAGGAAGGTAGGAAGTACG -ACGGAAAGGAAGGTAGGAATCCGA -ACGGAAAGGAAGGTAGGAATGGGA -ACGGAAAGGAAGGTAGGAGTGCAA -ACGGAAAGGAAGGTAGGAGAGGAA -ACGGAAAGGAAGGTAGGACAGGTA -ACGGAAAGGAAGGTAGGAGACTCT -ACGGAAAGGAAGGTAGGAAGTCCT -ACGGAAAGGAAGGTAGGATAAGCC -ACGGAAAGGAAGGTAGGAATAGCC -ACGGAAAGGAAGGTAGGATAACCG -ACGGAAAGGAAGGTAGGAATGCCA -ACGGAAAGGAAGTCTTCGGGAAAC -ACGGAAAGGAAGTCTTCGAACACC -ACGGAAAGGAAGTCTTCGATCGAG -ACGGAAAGGAAGTCTTCGCTCCTT -ACGGAAAGGAAGTCTTCGCCTGTT -ACGGAAAGGAAGTCTTCGCGGTTT -ACGGAAAGGAAGTCTTCGGTGGTT -ACGGAAAGGAAGTCTTCGGCCTTT -ACGGAAAGGAAGTCTTCGGGTCTT -ACGGAAAGGAAGTCTTCGACGCTT -ACGGAAAGGAAGTCTTCGAGCGTT -ACGGAAAGGAAGTCTTCGTTCGTC -ACGGAAAGGAAGTCTTCGTCTCTC -ACGGAAAGGAAGTCTTCGTGGATC -ACGGAAAGGAAGTCTTCGCACTTC -ACGGAAAGGAAGTCTTCGGTACTC -ACGGAAAGGAAGTCTTCGGATGTC -ACGGAAAGGAAGTCTTCGACAGTC -ACGGAAAGGAAGTCTTCGTTGCTG -ACGGAAAGGAAGTCTTCGTCCATG -ACGGAAAGGAAGTCTTCGTGTGTG -ACGGAAAGGAAGTCTTCGCTAGTG -ACGGAAAGGAAGTCTTCGCATCTG -ACGGAAAGGAAGTCTTCGGAGTTG -ACGGAAAGGAAGTCTTCGAGACTG -ACGGAAAGGAAGTCTTCGTCGGTA -ACGGAAAGGAAGTCTTCGTGCCTA -ACGGAAAGGAAGTCTTCGCCACTA -ACGGAAAGGAAGTCTTCGGGAGTA -ACGGAAAGGAAGTCTTCGTCGTCT -ACGGAAAGGAAGTCTTCGTGCACT -ACGGAAAGGAAGTCTTCGCTGACT -ACGGAAAGGAAGTCTTCGCAACCT -ACGGAAAGGAAGTCTTCGGCTACT -ACGGAAAGGAAGTCTTCGGGATCT -ACGGAAAGGAAGTCTTCGAAGGCT -ACGGAAAGGAAGTCTTCGTCAACC -ACGGAAAGGAAGTCTTCGTGTTCC -ACGGAAAGGAAGTCTTCGATTCCC -ACGGAAAGGAAGTCTTCGTTCTCG -ACGGAAAGGAAGTCTTCGTAGACG -ACGGAAAGGAAGTCTTCGGTAACG -ACGGAAAGGAAGTCTTCGACTTCG -ACGGAAAGGAAGTCTTCGTACGCA -ACGGAAAGGAAGTCTTCGCTTGCA -ACGGAAAGGAAGTCTTCGCGAACA -ACGGAAAGGAAGTCTTCGCAGTCA -ACGGAAAGGAAGTCTTCGGATCCA -ACGGAAAGGAAGTCTTCGACGACA -ACGGAAAGGAAGTCTTCGAGCTCA -ACGGAAAGGAAGTCTTCGTCACGT -ACGGAAAGGAAGTCTTCGCGTAGT -ACGGAAAGGAAGTCTTCGGTCAGT -ACGGAAAGGAAGTCTTCGGAAGGT -ACGGAAAGGAAGTCTTCGAACCGT -ACGGAAAGGAAGTCTTCGTTGTGC -ACGGAAAGGAAGTCTTCGCTAAGC -ACGGAAAGGAAGTCTTCGACTAGC -ACGGAAAGGAAGTCTTCGAGATGC -ACGGAAAGGAAGTCTTCGTGAAGG -ACGGAAAGGAAGTCTTCGCAATGG -ACGGAAAGGAAGTCTTCGATGAGG -ACGGAAAGGAAGTCTTCGAATGGG -ACGGAAAGGAAGTCTTCGTCCTGA -ACGGAAAGGAAGTCTTCGTAGCGA -ACGGAAAGGAAGTCTTCGCACAGA -ACGGAAAGGAAGTCTTCGGCAAGA -ACGGAAAGGAAGTCTTCGGGTTGA -ACGGAAAGGAAGTCTTCGTCCGAT -ACGGAAAGGAAGTCTTCGTGGCAT -ACGGAAAGGAAGTCTTCGCGAGAT -ACGGAAAGGAAGTCTTCGTACCAC -ACGGAAAGGAAGTCTTCGCAGAAC -ACGGAAAGGAAGTCTTCGGTCTAC -ACGGAAAGGAAGTCTTCGACGTAC -ACGGAAAGGAAGTCTTCGAGTGAC -ACGGAAAGGAAGTCTTCGCTGTAG -ACGGAAAGGAAGTCTTCGCCTAAG -ACGGAAAGGAAGTCTTCGGTTCAG -ACGGAAAGGAAGTCTTCGGCATAG -ACGGAAAGGAAGTCTTCGGACAAG -ACGGAAAGGAAGTCTTCGAAGCAG -ACGGAAAGGAAGTCTTCGCGTCAA -ACGGAAAGGAAGTCTTCGGCTGAA -ACGGAAAGGAAGTCTTCGAGTACG -ACGGAAAGGAAGTCTTCGATCCGA -ACGGAAAGGAAGTCTTCGATGGGA -ACGGAAAGGAAGTCTTCGGTGCAA -ACGGAAAGGAAGTCTTCGGAGGAA -ACGGAAAGGAAGTCTTCGCAGGTA -ACGGAAAGGAAGTCTTCGGACTCT -ACGGAAAGGAAGTCTTCGAGTCCT -ACGGAAAGGAAGTCTTCGTAAGCC -ACGGAAAGGAAGTCTTCGATAGCC -ACGGAAAGGAAGTCTTCGTAACCG -ACGGAAAGGAAGTCTTCGATGCCA -ACGGAAAGGAAGACTTGCGGAAAC -ACGGAAAGGAAGACTTGCAACACC -ACGGAAAGGAAGACTTGCATCGAG -ACGGAAAGGAAGACTTGCCTCCTT -ACGGAAAGGAAGACTTGCCCTGTT -ACGGAAAGGAAGACTTGCCGGTTT -ACGGAAAGGAAGACTTGCGTGGTT -ACGGAAAGGAAGACTTGCGCCTTT -ACGGAAAGGAAGACTTGCGGTCTT -ACGGAAAGGAAGACTTGCACGCTT -ACGGAAAGGAAGACTTGCAGCGTT -ACGGAAAGGAAGACTTGCTTCGTC -ACGGAAAGGAAGACTTGCTCTCTC -ACGGAAAGGAAGACTTGCTGGATC -ACGGAAAGGAAGACTTGCCACTTC -ACGGAAAGGAAGACTTGCGTACTC -ACGGAAAGGAAGACTTGCGATGTC -ACGGAAAGGAAGACTTGCACAGTC -ACGGAAAGGAAGACTTGCTTGCTG -ACGGAAAGGAAGACTTGCTCCATG -ACGGAAAGGAAGACTTGCTGTGTG -ACGGAAAGGAAGACTTGCCTAGTG -ACGGAAAGGAAGACTTGCCATCTG -ACGGAAAGGAAGACTTGCGAGTTG -ACGGAAAGGAAGACTTGCAGACTG -ACGGAAAGGAAGACTTGCTCGGTA -ACGGAAAGGAAGACTTGCTGCCTA -ACGGAAAGGAAGACTTGCCCACTA -ACGGAAAGGAAGACTTGCGGAGTA -ACGGAAAGGAAGACTTGCTCGTCT -ACGGAAAGGAAGACTTGCTGCACT -ACGGAAAGGAAGACTTGCCTGACT -ACGGAAAGGAAGACTTGCCAACCT -ACGGAAAGGAAGACTTGCGCTACT -ACGGAAAGGAAGACTTGCGGATCT -ACGGAAAGGAAGACTTGCAAGGCT -ACGGAAAGGAAGACTTGCTCAACC -ACGGAAAGGAAGACTTGCTGTTCC -ACGGAAAGGAAGACTTGCATTCCC -ACGGAAAGGAAGACTTGCTTCTCG -ACGGAAAGGAAGACTTGCTAGACG -ACGGAAAGGAAGACTTGCGTAACG -ACGGAAAGGAAGACTTGCACTTCG -ACGGAAAGGAAGACTTGCTACGCA -ACGGAAAGGAAGACTTGCCTTGCA -ACGGAAAGGAAGACTTGCCGAACA -ACGGAAAGGAAGACTTGCCAGTCA -ACGGAAAGGAAGACTTGCGATCCA -ACGGAAAGGAAGACTTGCACGACA -ACGGAAAGGAAGACTTGCAGCTCA -ACGGAAAGGAAGACTTGCTCACGT -ACGGAAAGGAAGACTTGCCGTAGT -ACGGAAAGGAAGACTTGCGTCAGT -ACGGAAAGGAAGACTTGCGAAGGT -ACGGAAAGGAAGACTTGCAACCGT -ACGGAAAGGAAGACTTGCTTGTGC -ACGGAAAGGAAGACTTGCCTAAGC -ACGGAAAGGAAGACTTGCACTAGC -ACGGAAAGGAAGACTTGCAGATGC -ACGGAAAGGAAGACTTGCTGAAGG -ACGGAAAGGAAGACTTGCCAATGG -ACGGAAAGGAAGACTTGCATGAGG -ACGGAAAGGAAGACTTGCAATGGG -ACGGAAAGGAAGACTTGCTCCTGA -ACGGAAAGGAAGACTTGCTAGCGA -ACGGAAAGGAAGACTTGCCACAGA -ACGGAAAGGAAGACTTGCGCAAGA -ACGGAAAGGAAGACTTGCGGTTGA -ACGGAAAGGAAGACTTGCTCCGAT -ACGGAAAGGAAGACTTGCTGGCAT -ACGGAAAGGAAGACTTGCCGAGAT -ACGGAAAGGAAGACTTGCTACCAC -ACGGAAAGGAAGACTTGCCAGAAC -ACGGAAAGGAAGACTTGCGTCTAC -ACGGAAAGGAAGACTTGCACGTAC -ACGGAAAGGAAGACTTGCAGTGAC -ACGGAAAGGAAGACTTGCCTGTAG -ACGGAAAGGAAGACTTGCCCTAAG -ACGGAAAGGAAGACTTGCGTTCAG -ACGGAAAGGAAGACTTGCGCATAG -ACGGAAAGGAAGACTTGCGACAAG -ACGGAAAGGAAGACTTGCAAGCAG -ACGGAAAGGAAGACTTGCCGTCAA -ACGGAAAGGAAGACTTGCGCTGAA -ACGGAAAGGAAGACTTGCAGTACG -ACGGAAAGGAAGACTTGCATCCGA -ACGGAAAGGAAGACTTGCATGGGA -ACGGAAAGGAAGACTTGCGTGCAA -ACGGAAAGGAAGACTTGCGAGGAA -ACGGAAAGGAAGACTTGCCAGGTA -ACGGAAAGGAAGACTTGCGACTCT -ACGGAAAGGAAGACTTGCAGTCCT -ACGGAAAGGAAGACTTGCTAAGCC -ACGGAAAGGAAGACTTGCATAGCC -ACGGAAAGGAAGACTTGCTAACCG -ACGGAAAGGAAGACTTGCATGCCA -ACGGAAAGGAAGACTCTGGGAAAC -ACGGAAAGGAAGACTCTGAACACC -ACGGAAAGGAAGACTCTGATCGAG -ACGGAAAGGAAGACTCTGCTCCTT -ACGGAAAGGAAGACTCTGCCTGTT -ACGGAAAGGAAGACTCTGCGGTTT -ACGGAAAGGAAGACTCTGGTGGTT -ACGGAAAGGAAGACTCTGGCCTTT -ACGGAAAGGAAGACTCTGGGTCTT -ACGGAAAGGAAGACTCTGACGCTT -ACGGAAAGGAAGACTCTGAGCGTT -ACGGAAAGGAAGACTCTGTTCGTC -ACGGAAAGGAAGACTCTGTCTCTC -ACGGAAAGGAAGACTCTGTGGATC -ACGGAAAGGAAGACTCTGCACTTC -ACGGAAAGGAAGACTCTGGTACTC -ACGGAAAGGAAGACTCTGGATGTC -ACGGAAAGGAAGACTCTGACAGTC -ACGGAAAGGAAGACTCTGTTGCTG -ACGGAAAGGAAGACTCTGTCCATG -ACGGAAAGGAAGACTCTGTGTGTG -ACGGAAAGGAAGACTCTGCTAGTG -ACGGAAAGGAAGACTCTGCATCTG -ACGGAAAGGAAGACTCTGGAGTTG -ACGGAAAGGAAGACTCTGAGACTG -ACGGAAAGGAAGACTCTGTCGGTA -ACGGAAAGGAAGACTCTGTGCCTA -ACGGAAAGGAAGACTCTGCCACTA -ACGGAAAGGAAGACTCTGGGAGTA -ACGGAAAGGAAGACTCTGTCGTCT -ACGGAAAGGAAGACTCTGTGCACT -ACGGAAAGGAAGACTCTGCTGACT -ACGGAAAGGAAGACTCTGCAACCT -ACGGAAAGGAAGACTCTGGCTACT -ACGGAAAGGAAGACTCTGGGATCT -ACGGAAAGGAAGACTCTGAAGGCT -ACGGAAAGGAAGACTCTGTCAACC -ACGGAAAGGAAGACTCTGTGTTCC -ACGGAAAGGAAGACTCTGATTCCC -ACGGAAAGGAAGACTCTGTTCTCG -ACGGAAAGGAAGACTCTGTAGACG -ACGGAAAGGAAGACTCTGGTAACG -ACGGAAAGGAAGACTCTGACTTCG -ACGGAAAGGAAGACTCTGTACGCA -ACGGAAAGGAAGACTCTGCTTGCA -ACGGAAAGGAAGACTCTGCGAACA -ACGGAAAGGAAGACTCTGCAGTCA -ACGGAAAGGAAGACTCTGGATCCA -ACGGAAAGGAAGACTCTGACGACA -ACGGAAAGGAAGACTCTGAGCTCA -ACGGAAAGGAAGACTCTGTCACGT -ACGGAAAGGAAGACTCTGCGTAGT -ACGGAAAGGAAGACTCTGGTCAGT -ACGGAAAGGAAGACTCTGGAAGGT -ACGGAAAGGAAGACTCTGAACCGT -ACGGAAAGGAAGACTCTGTTGTGC -ACGGAAAGGAAGACTCTGCTAAGC -ACGGAAAGGAAGACTCTGACTAGC -ACGGAAAGGAAGACTCTGAGATGC -ACGGAAAGGAAGACTCTGTGAAGG -ACGGAAAGGAAGACTCTGCAATGG -ACGGAAAGGAAGACTCTGATGAGG -ACGGAAAGGAAGACTCTGAATGGG -ACGGAAAGGAAGACTCTGTCCTGA -ACGGAAAGGAAGACTCTGTAGCGA -ACGGAAAGGAAGACTCTGCACAGA -ACGGAAAGGAAGACTCTGGCAAGA -ACGGAAAGGAAGACTCTGGGTTGA -ACGGAAAGGAAGACTCTGTCCGAT -ACGGAAAGGAAGACTCTGTGGCAT -ACGGAAAGGAAGACTCTGCGAGAT -ACGGAAAGGAAGACTCTGTACCAC -ACGGAAAGGAAGACTCTGCAGAAC -ACGGAAAGGAAGACTCTGGTCTAC -ACGGAAAGGAAGACTCTGACGTAC -ACGGAAAGGAAGACTCTGAGTGAC -ACGGAAAGGAAGACTCTGCTGTAG -ACGGAAAGGAAGACTCTGCCTAAG -ACGGAAAGGAAGACTCTGGTTCAG -ACGGAAAGGAAGACTCTGGCATAG -ACGGAAAGGAAGACTCTGGACAAG -ACGGAAAGGAAGACTCTGAAGCAG -ACGGAAAGGAAGACTCTGCGTCAA -ACGGAAAGGAAGACTCTGGCTGAA -ACGGAAAGGAAGACTCTGAGTACG -ACGGAAAGGAAGACTCTGATCCGA -ACGGAAAGGAAGACTCTGATGGGA -ACGGAAAGGAAGACTCTGGTGCAA -ACGGAAAGGAAGACTCTGGAGGAA -ACGGAAAGGAAGACTCTGCAGGTA -ACGGAAAGGAAGACTCTGGACTCT -ACGGAAAGGAAGACTCTGAGTCCT -ACGGAAAGGAAGACTCTGTAAGCC -ACGGAAAGGAAGACTCTGATAGCC -ACGGAAAGGAAGACTCTGTAACCG -ACGGAAAGGAAGACTCTGATGCCA -ACGGAAAGGAAGCCTCAAGGAAAC -ACGGAAAGGAAGCCTCAAAACACC -ACGGAAAGGAAGCCTCAAATCGAG -ACGGAAAGGAAGCCTCAACTCCTT -ACGGAAAGGAAGCCTCAACCTGTT -ACGGAAAGGAAGCCTCAACGGTTT -ACGGAAAGGAAGCCTCAAGTGGTT -ACGGAAAGGAAGCCTCAAGCCTTT -ACGGAAAGGAAGCCTCAAGGTCTT -ACGGAAAGGAAGCCTCAAACGCTT -ACGGAAAGGAAGCCTCAAAGCGTT -ACGGAAAGGAAGCCTCAATTCGTC -ACGGAAAGGAAGCCTCAATCTCTC -ACGGAAAGGAAGCCTCAATGGATC -ACGGAAAGGAAGCCTCAACACTTC -ACGGAAAGGAAGCCTCAAGTACTC -ACGGAAAGGAAGCCTCAAGATGTC -ACGGAAAGGAAGCCTCAAACAGTC -ACGGAAAGGAAGCCTCAATTGCTG -ACGGAAAGGAAGCCTCAATCCATG -ACGGAAAGGAAGCCTCAATGTGTG -ACGGAAAGGAAGCCTCAACTAGTG -ACGGAAAGGAAGCCTCAACATCTG -ACGGAAAGGAAGCCTCAAGAGTTG -ACGGAAAGGAAGCCTCAAAGACTG -ACGGAAAGGAAGCCTCAATCGGTA -ACGGAAAGGAAGCCTCAATGCCTA -ACGGAAAGGAAGCCTCAACCACTA -ACGGAAAGGAAGCCTCAAGGAGTA -ACGGAAAGGAAGCCTCAATCGTCT -ACGGAAAGGAAGCCTCAATGCACT -ACGGAAAGGAAGCCTCAACTGACT -ACGGAAAGGAAGCCTCAACAACCT -ACGGAAAGGAAGCCTCAAGCTACT -ACGGAAAGGAAGCCTCAAGGATCT -ACGGAAAGGAAGCCTCAAAAGGCT -ACGGAAAGGAAGCCTCAATCAACC -ACGGAAAGGAAGCCTCAATGTTCC -ACGGAAAGGAAGCCTCAAATTCCC -ACGGAAAGGAAGCCTCAATTCTCG -ACGGAAAGGAAGCCTCAATAGACG -ACGGAAAGGAAGCCTCAAGTAACG -ACGGAAAGGAAGCCTCAAACTTCG -ACGGAAAGGAAGCCTCAATACGCA -ACGGAAAGGAAGCCTCAACTTGCA -ACGGAAAGGAAGCCTCAACGAACA -ACGGAAAGGAAGCCTCAACAGTCA -ACGGAAAGGAAGCCTCAAGATCCA -ACGGAAAGGAAGCCTCAAACGACA -ACGGAAAGGAAGCCTCAAAGCTCA -ACGGAAAGGAAGCCTCAATCACGT -ACGGAAAGGAAGCCTCAACGTAGT -ACGGAAAGGAAGCCTCAAGTCAGT -ACGGAAAGGAAGCCTCAAGAAGGT -ACGGAAAGGAAGCCTCAAAACCGT -ACGGAAAGGAAGCCTCAATTGTGC -ACGGAAAGGAAGCCTCAACTAAGC -ACGGAAAGGAAGCCTCAAACTAGC -ACGGAAAGGAAGCCTCAAAGATGC -ACGGAAAGGAAGCCTCAATGAAGG -ACGGAAAGGAAGCCTCAACAATGG -ACGGAAAGGAAGCCTCAAATGAGG -ACGGAAAGGAAGCCTCAAAATGGG -ACGGAAAGGAAGCCTCAATCCTGA -ACGGAAAGGAAGCCTCAATAGCGA -ACGGAAAGGAAGCCTCAACACAGA -ACGGAAAGGAAGCCTCAAGCAAGA -ACGGAAAGGAAGCCTCAAGGTTGA -ACGGAAAGGAAGCCTCAATCCGAT -ACGGAAAGGAAGCCTCAATGGCAT -ACGGAAAGGAAGCCTCAACGAGAT -ACGGAAAGGAAGCCTCAATACCAC -ACGGAAAGGAAGCCTCAACAGAAC -ACGGAAAGGAAGCCTCAAGTCTAC -ACGGAAAGGAAGCCTCAAACGTAC -ACGGAAAGGAAGCCTCAAAGTGAC -ACGGAAAGGAAGCCTCAACTGTAG -ACGGAAAGGAAGCCTCAACCTAAG -ACGGAAAGGAAGCCTCAAGTTCAG -ACGGAAAGGAAGCCTCAAGCATAG -ACGGAAAGGAAGCCTCAAGACAAG -ACGGAAAGGAAGCCTCAAAAGCAG -ACGGAAAGGAAGCCTCAACGTCAA -ACGGAAAGGAAGCCTCAAGCTGAA -ACGGAAAGGAAGCCTCAAAGTACG -ACGGAAAGGAAGCCTCAAATCCGA -ACGGAAAGGAAGCCTCAAATGGGA -ACGGAAAGGAAGCCTCAAGTGCAA -ACGGAAAGGAAGCCTCAAGAGGAA -ACGGAAAGGAAGCCTCAACAGGTA -ACGGAAAGGAAGCCTCAAGACTCT -ACGGAAAGGAAGCCTCAAAGTCCT -ACGGAAAGGAAGCCTCAATAAGCC -ACGGAAAGGAAGCCTCAAATAGCC -ACGGAAAGGAAGCCTCAATAACCG -ACGGAAAGGAAGCCTCAAATGCCA -ACGGAAAGGAAGACTGCTGGAAAC -ACGGAAAGGAAGACTGCTAACACC -ACGGAAAGGAAGACTGCTATCGAG -ACGGAAAGGAAGACTGCTCTCCTT -ACGGAAAGGAAGACTGCTCCTGTT -ACGGAAAGGAAGACTGCTCGGTTT -ACGGAAAGGAAGACTGCTGTGGTT -ACGGAAAGGAAGACTGCTGCCTTT -ACGGAAAGGAAGACTGCTGGTCTT -ACGGAAAGGAAGACTGCTACGCTT -ACGGAAAGGAAGACTGCTAGCGTT -ACGGAAAGGAAGACTGCTTTCGTC -ACGGAAAGGAAGACTGCTTCTCTC -ACGGAAAGGAAGACTGCTTGGATC -ACGGAAAGGAAGACTGCTCACTTC -ACGGAAAGGAAGACTGCTGTACTC -ACGGAAAGGAAGACTGCTGATGTC -ACGGAAAGGAAGACTGCTACAGTC -ACGGAAAGGAAGACTGCTTTGCTG -ACGGAAAGGAAGACTGCTTCCATG -ACGGAAAGGAAGACTGCTTGTGTG -ACGGAAAGGAAGACTGCTCTAGTG -ACGGAAAGGAAGACTGCTCATCTG -ACGGAAAGGAAGACTGCTGAGTTG -ACGGAAAGGAAGACTGCTAGACTG -ACGGAAAGGAAGACTGCTTCGGTA -ACGGAAAGGAAGACTGCTTGCCTA -ACGGAAAGGAAGACTGCTCCACTA -ACGGAAAGGAAGACTGCTGGAGTA -ACGGAAAGGAAGACTGCTTCGTCT -ACGGAAAGGAAGACTGCTTGCACT -ACGGAAAGGAAGACTGCTCTGACT -ACGGAAAGGAAGACTGCTCAACCT -ACGGAAAGGAAGACTGCTGCTACT -ACGGAAAGGAAGACTGCTGGATCT -ACGGAAAGGAAGACTGCTAAGGCT -ACGGAAAGGAAGACTGCTTCAACC -ACGGAAAGGAAGACTGCTTGTTCC -ACGGAAAGGAAGACTGCTATTCCC -ACGGAAAGGAAGACTGCTTTCTCG -ACGGAAAGGAAGACTGCTTAGACG -ACGGAAAGGAAGACTGCTGTAACG -ACGGAAAGGAAGACTGCTACTTCG -ACGGAAAGGAAGACTGCTTACGCA -ACGGAAAGGAAGACTGCTCTTGCA -ACGGAAAGGAAGACTGCTCGAACA -ACGGAAAGGAAGACTGCTCAGTCA -ACGGAAAGGAAGACTGCTGATCCA -ACGGAAAGGAAGACTGCTACGACA -ACGGAAAGGAAGACTGCTAGCTCA -ACGGAAAGGAAGACTGCTTCACGT -ACGGAAAGGAAGACTGCTCGTAGT -ACGGAAAGGAAGACTGCTGTCAGT -ACGGAAAGGAAGACTGCTGAAGGT -ACGGAAAGGAAGACTGCTAACCGT -ACGGAAAGGAAGACTGCTTTGTGC -ACGGAAAGGAAGACTGCTCTAAGC -ACGGAAAGGAAGACTGCTACTAGC -ACGGAAAGGAAGACTGCTAGATGC -ACGGAAAGGAAGACTGCTTGAAGG -ACGGAAAGGAAGACTGCTCAATGG -ACGGAAAGGAAGACTGCTATGAGG -ACGGAAAGGAAGACTGCTAATGGG -ACGGAAAGGAAGACTGCTTCCTGA -ACGGAAAGGAAGACTGCTTAGCGA -ACGGAAAGGAAGACTGCTCACAGA -ACGGAAAGGAAGACTGCTGCAAGA -ACGGAAAGGAAGACTGCTGGTTGA -ACGGAAAGGAAGACTGCTTCCGAT -ACGGAAAGGAAGACTGCTTGGCAT -ACGGAAAGGAAGACTGCTCGAGAT -ACGGAAAGGAAGACTGCTTACCAC -ACGGAAAGGAAGACTGCTCAGAAC -ACGGAAAGGAAGACTGCTGTCTAC -ACGGAAAGGAAGACTGCTACGTAC -ACGGAAAGGAAGACTGCTAGTGAC -ACGGAAAGGAAGACTGCTCTGTAG -ACGGAAAGGAAGACTGCTCCTAAG -ACGGAAAGGAAGACTGCTGTTCAG -ACGGAAAGGAAGACTGCTGCATAG -ACGGAAAGGAAGACTGCTGACAAG -ACGGAAAGGAAGACTGCTAAGCAG -ACGGAAAGGAAGACTGCTCGTCAA -ACGGAAAGGAAGACTGCTGCTGAA -ACGGAAAGGAAGACTGCTAGTACG -ACGGAAAGGAAGACTGCTATCCGA -ACGGAAAGGAAGACTGCTATGGGA -ACGGAAAGGAAGACTGCTGTGCAA -ACGGAAAGGAAGACTGCTGAGGAA -ACGGAAAGGAAGACTGCTCAGGTA -ACGGAAAGGAAGACTGCTGACTCT -ACGGAAAGGAAGACTGCTAGTCCT -ACGGAAAGGAAGACTGCTTAAGCC -ACGGAAAGGAAGACTGCTATAGCC -ACGGAAAGGAAGACTGCTTAACCG -ACGGAAAGGAAGACTGCTATGCCA -ACGGAAAGGAAGTCTGGAGGAAAC -ACGGAAAGGAAGTCTGGAAACACC -ACGGAAAGGAAGTCTGGAATCGAG -ACGGAAAGGAAGTCTGGACTCCTT -ACGGAAAGGAAGTCTGGACCTGTT -ACGGAAAGGAAGTCTGGACGGTTT -ACGGAAAGGAAGTCTGGAGTGGTT -ACGGAAAGGAAGTCTGGAGCCTTT -ACGGAAAGGAAGTCTGGAGGTCTT -ACGGAAAGGAAGTCTGGAACGCTT -ACGGAAAGGAAGTCTGGAAGCGTT -ACGGAAAGGAAGTCTGGATTCGTC -ACGGAAAGGAAGTCTGGATCTCTC -ACGGAAAGGAAGTCTGGATGGATC -ACGGAAAGGAAGTCTGGACACTTC -ACGGAAAGGAAGTCTGGAGTACTC -ACGGAAAGGAAGTCTGGAGATGTC -ACGGAAAGGAAGTCTGGAACAGTC -ACGGAAAGGAAGTCTGGATTGCTG -ACGGAAAGGAAGTCTGGATCCATG -ACGGAAAGGAAGTCTGGATGTGTG -ACGGAAAGGAAGTCTGGACTAGTG -ACGGAAAGGAAGTCTGGACATCTG -ACGGAAAGGAAGTCTGGAGAGTTG -ACGGAAAGGAAGTCTGGAAGACTG -ACGGAAAGGAAGTCTGGATCGGTA -ACGGAAAGGAAGTCTGGATGCCTA -ACGGAAAGGAAGTCTGGACCACTA -ACGGAAAGGAAGTCTGGAGGAGTA -ACGGAAAGGAAGTCTGGATCGTCT -ACGGAAAGGAAGTCTGGATGCACT -ACGGAAAGGAAGTCTGGACTGACT -ACGGAAAGGAAGTCTGGACAACCT -ACGGAAAGGAAGTCTGGAGCTACT -ACGGAAAGGAAGTCTGGAGGATCT -ACGGAAAGGAAGTCTGGAAAGGCT -ACGGAAAGGAAGTCTGGATCAACC -ACGGAAAGGAAGTCTGGATGTTCC -ACGGAAAGGAAGTCTGGAATTCCC -ACGGAAAGGAAGTCTGGATTCTCG -ACGGAAAGGAAGTCTGGATAGACG -ACGGAAAGGAAGTCTGGAGTAACG -ACGGAAAGGAAGTCTGGAACTTCG -ACGGAAAGGAAGTCTGGATACGCA -ACGGAAAGGAAGTCTGGACTTGCA -ACGGAAAGGAAGTCTGGACGAACA -ACGGAAAGGAAGTCTGGACAGTCA -ACGGAAAGGAAGTCTGGAGATCCA -ACGGAAAGGAAGTCTGGAACGACA -ACGGAAAGGAAGTCTGGAAGCTCA -ACGGAAAGGAAGTCTGGATCACGT -ACGGAAAGGAAGTCTGGACGTAGT -ACGGAAAGGAAGTCTGGAGTCAGT -ACGGAAAGGAAGTCTGGAGAAGGT -ACGGAAAGGAAGTCTGGAAACCGT -ACGGAAAGGAAGTCTGGATTGTGC -ACGGAAAGGAAGTCTGGACTAAGC -ACGGAAAGGAAGTCTGGAACTAGC -ACGGAAAGGAAGTCTGGAAGATGC -ACGGAAAGGAAGTCTGGATGAAGG -ACGGAAAGGAAGTCTGGACAATGG -ACGGAAAGGAAGTCTGGAATGAGG -ACGGAAAGGAAGTCTGGAAATGGG -ACGGAAAGGAAGTCTGGATCCTGA -ACGGAAAGGAAGTCTGGATAGCGA -ACGGAAAGGAAGTCTGGACACAGA -ACGGAAAGGAAGTCTGGAGCAAGA -ACGGAAAGGAAGTCTGGAGGTTGA -ACGGAAAGGAAGTCTGGATCCGAT -ACGGAAAGGAAGTCTGGATGGCAT -ACGGAAAGGAAGTCTGGACGAGAT -ACGGAAAGGAAGTCTGGATACCAC -ACGGAAAGGAAGTCTGGACAGAAC -ACGGAAAGGAAGTCTGGAGTCTAC -ACGGAAAGGAAGTCTGGAACGTAC -ACGGAAAGGAAGTCTGGAAGTGAC -ACGGAAAGGAAGTCTGGACTGTAG -ACGGAAAGGAAGTCTGGACCTAAG -ACGGAAAGGAAGTCTGGAGTTCAG -ACGGAAAGGAAGTCTGGAGCATAG -ACGGAAAGGAAGTCTGGAGACAAG -ACGGAAAGGAAGTCTGGAAAGCAG -ACGGAAAGGAAGTCTGGACGTCAA -ACGGAAAGGAAGTCTGGAGCTGAA -ACGGAAAGGAAGTCTGGAAGTACG -ACGGAAAGGAAGTCTGGAATCCGA -ACGGAAAGGAAGTCTGGAATGGGA -ACGGAAAGGAAGTCTGGAGTGCAA -ACGGAAAGGAAGTCTGGAGAGGAA -ACGGAAAGGAAGTCTGGACAGGTA -ACGGAAAGGAAGTCTGGAGACTCT -ACGGAAAGGAAGTCTGGAAGTCCT -ACGGAAAGGAAGTCTGGATAAGCC -ACGGAAAGGAAGTCTGGAATAGCC -ACGGAAAGGAAGTCTGGATAACCG -ACGGAAAGGAAGTCTGGAATGCCA -ACGGAAAGGAAGGCTAAGGGAAAC -ACGGAAAGGAAGGCTAAGAACACC -ACGGAAAGGAAGGCTAAGATCGAG -ACGGAAAGGAAGGCTAAGCTCCTT -ACGGAAAGGAAGGCTAAGCCTGTT -ACGGAAAGGAAGGCTAAGCGGTTT -ACGGAAAGGAAGGCTAAGGTGGTT -ACGGAAAGGAAGGCTAAGGCCTTT -ACGGAAAGGAAGGCTAAGGGTCTT -ACGGAAAGGAAGGCTAAGACGCTT -ACGGAAAGGAAGGCTAAGAGCGTT -ACGGAAAGGAAGGCTAAGTTCGTC -ACGGAAAGGAAGGCTAAGTCTCTC -ACGGAAAGGAAGGCTAAGTGGATC -ACGGAAAGGAAGGCTAAGCACTTC -ACGGAAAGGAAGGCTAAGGTACTC -ACGGAAAGGAAGGCTAAGGATGTC -ACGGAAAGGAAGGCTAAGACAGTC -ACGGAAAGGAAGGCTAAGTTGCTG -ACGGAAAGGAAGGCTAAGTCCATG -ACGGAAAGGAAGGCTAAGTGTGTG -ACGGAAAGGAAGGCTAAGCTAGTG -ACGGAAAGGAAGGCTAAGCATCTG -ACGGAAAGGAAGGCTAAGGAGTTG -ACGGAAAGGAAGGCTAAGAGACTG -ACGGAAAGGAAGGCTAAGTCGGTA -ACGGAAAGGAAGGCTAAGTGCCTA -ACGGAAAGGAAGGCTAAGCCACTA -ACGGAAAGGAAGGCTAAGGGAGTA -ACGGAAAGGAAGGCTAAGTCGTCT -ACGGAAAGGAAGGCTAAGTGCACT -ACGGAAAGGAAGGCTAAGCTGACT -ACGGAAAGGAAGGCTAAGCAACCT -ACGGAAAGGAAGGCTAAGGCTACT -ACGGAAAGGAAGGCTAAGGGATCT -ACGGAAAGGAAGGCTAAGAAGGCT -ACGGAAAGGAAGGCTAAGTCAACC -ACGGAAAGGAAGGCTAAGTGTTCC -ACGGAAAGGAAGGCTAAGATTCCC -ACGGAAAGGAAGGCTAAGTTCTCG -ACGGAAAGGAAGGCTAAGTAGACG -ACGGAAAGGAAGGCTAAGGTAACG -ACGGAAAGGAAGGCTAAGACTTCG -ACGGAAAGGAAGGCTAAGTACGCA -ACGGAAAGGAAGGCTAAGCTTGCA -ACGGAAAGGAAGGCTAAGCGAACA -ACGGAAAGGAAGGCTAAGCAGTCA -ACGGAAAGGAAGGCTAAGGATCCA -ACGGAAAGGAAGGCTAAGACGACA -ACGGAAAGGAAGGCTAAGAGCTCA -ACGGAAAGGAAGGCTAAGTCACGT -ACGGAAAGGAAGGCTAAGCGTAGT -ACGGAAAGGAAGGCTAAGGTCAGT -ACGGAAAGGAAGGCTAAGGAAGGT -ACGGAAAGGAAGGCTAAGAACCGT -ACGGAAAGGAAGGCTAAGTTGTGC -ACGGAAAGGAAGGCTAAGCTAAGC -ACGGAAAGGAAGGCTAAGACTAGC -ACGGAAAGGAAGGCTAAGAGATGC -ACGGAAAGGAAGGCTAAGTGAAGG -ACGGAAAGGAAGGCTAAGCAATGG -ACGGAAAGGAAGGCTAAGATGAGG -ACGGAAAGGAAGGCTAAGAATGGG -ACGGAAAGGAAGGCTAAGTCCTGA -ACGGAAAGGAAGGCTAAGTAGCGA -ACGGAAAGGAAGGCTAAGCACAGA -ACGGAAAGGAAGGCTAAGGCAAGA -ACGGAAAGGAAGGCTAAGGGTTGA -ACGGAAAGGAAGGCTAAGTCCGAT -ACGGAAAGGAAGGCTAAGTGGCAT -ACGGAAAGGAAGGCTAAGCGAGAT -ACGGAAAGGAAGGCTAAGTACCAC -ACGGAAAGGAAGGCTAAGCAGAAC -ACGGAAAGGAAGGCTAAGGTCTAC -ACGGAAAGGAAGGCTAAGACGTAC -ACGGAAAGGAAGGCTAAGAGTGAC -ACGGAAAGGAAGGCTAAGCTGTAG -ACGGAAAGGAAGGCTAAGCCTAAG -ACGGAAAGGAAGGCTAAGGTTCAG -ACGGAAAGGAAGGCTAAGGCATAG -ACGGAAAGGAAGGCTAAGGACAAG -ACGGAAAGGAAGGCTAAGAAGCAG -ACGGAAAGGAAGGCTAAGCGTCAA -ACGGAAAGGAAGGCTAAGGCTGAA -ACGGAAAGGAAGGCTAAGAGTACG -ACGGAAAGGAAGGCTAAGATCCGA -ACGGAAAGGAAGGCTAAGATGGGA -ACGGAAAGGAAGGCTAAGGTGCAA -ACGGAAAGGAAGGCTAAGGAGGAA -ACGGAAAGGAAGGCTAAGCAGGTA -ACGGAAAGGAAGGCTAAGGACTCT -ACGGAAAGGAAGGCTAAGAGTCCT -ACGGAAAGGAAGGCTAAGTAAGCC -ACGGAAAGGAAGGCTAAGATAGCC -ACGGAAAGGAAGGCTAAGTAACCG -ACGGAAAGGAAGGCTAAGATGCCA -ACGGAAAGGAAGACCTCAGGAAAC -ACGGAAAGGAAGACCTCAAACACC -ACGGAAAGGAAGACCTCAATCGAG -ACGGAAAGGAAGACCTCACTCCTT -ACGGAAAGGAAGACCTCACCTGTT -ACGGAAAGGAAGACCTCACGGTTT -ACGGAAAGGAAGACCTCAGTGGTT -ACGGAAAGGAAGACCTCAGCCTTT -ACGGAAAGGAAGACCTCAGGTCTT -ACGGAAAGGAAGACCTCAACGCTT -ACGGAAAGGAAGACCTCAAGCGTT -ACGGAAAGGAAGACCTCATTCGTC -ACGGAAAGGAAGACCTCATCTCTC -ACGGAAAGGAAGACCTCATGGATC -ACGGAAAGGAAGACCTCACACTTC -ACGGAAAGGAAGACCTCAGTACTC -ACGGAAAGGAAGACCTCAGATGTC -ACGGAAAGGAAGACCTCAACAGTC -ACGGAAAGGAAGACCTCATTGCTG -ACGGAAAGGAAGACCTCATCCATG -ACGGAAAGGAAGACCTCATGTGTG -ACGGAAAGGAAGACCTCACTAGTG -ACGGAAAGGAAGACCTCACATCTG -ACGGAAAGGAAGACCTCAGAGTTG -ACGGAAAGGAAGACCTCAAGACTG -ACGGAAAGGAAGACCTCATCGGTA -ACGGAAAGGAAGACCTCATGCCTA -ACGGAAAGGAAGACCTCACCACTA -ACGGAAAGGAAGACCTCAGGAGTA -ACGGAAAGGAAGACCTCATCGTCT -ACGGAAAGGAAGACCTCATGCACT -ACGGAAAGGAAGACCTCACTGACT -ACGGAAAGGAAGACCTCACAACCT -ACGGAAAGGAAGACCTCAGCTACT -ACGGAAAGGAAGACCTCAGGATCT -ACGGAAAGGAAGACCTCAAAGGCT -ACGGAAAGGAAGACCTCATCAACC -ACGGAAAGGAAGACCTCATGTTCC -ACGGAAAGGAAGACCTCAATTCCC -ACGGAAAGGAAGACCTCATTCTCG -ACGGAAAGGAAGACCTCATAGACG -ACGGAAAGGAAGACCTCAGTAACG -ACGGAAAGGAAGACCTCAACTTCG -ACGGAAAGGAAGACCTCATACGCA -ACGGAAAGGAAGACCTCACTTGCA -ACGGAAAGGAAGACCTCACGAACA -ACGGAAAGGAAGACCTCACAGTCA -ACGGAAAGGAAGACCTCAGATCCA -ACGGAAAGGAAGACCTCAACGACA -ACGGAAAGGAAGACCTCAAGCTCA -ACGGAAAGGAAGACCTCATCACGT -ACGGAAAGGAAGACCTCACGTAGT -ACGGAAAGGAAGACCTCAGTCAGT -ACGGAAAGGAAGACCTCAGAAGGT -ACGGAAAGGAAGACCTCAAACCGT -ACGGAAAGGAAGACCTCATTGTGC -ACGGAAAGGAAGACCTCACTAAGC -ACGGAAAGGAAGACCTCAACTAGC -ACGGAAAGGAAGACCTCAAGATGC -ACGGAAAGGAAGACCTCATGAAGG -ACGGAAAGGAAGACCTCACAATGG -ACGGAAAGGAAGACCTCAATGAGG -ACGGAAAGGAAGACCTCAAATGGG -ACGGAAAGGAAGACCTCATCCTGA -ACGGAAAGGAAGACCTCATAGCGA -ACGGAAAGGAAGACCTCACACAGA -ACGGAAAGGAAGACCTCAGCAAGA -ACGGAAAGGAAGACCTCAGGTTGA -ACGGAAAGGAAGACCTCATCCGAT -ACGGAAAGGAAGACCTCATGGCAT -ACGGAAAGGAAGACCTCACGAGAT -ACGGAAAGGAAGACCTCATACCAC -ACGGAAAGGAAGACCTCACAGAAC -ACGGAAAGGAAGACCTCAGTCTAC -ACGGAAAGGAAGACCTCAACGTAC -ACGGAAAGGAAGACCTCAAGTGAC -ACGGAAAGGAAGACCTCACTGTAG -ACGGAAAGGAAGACCTCACCTAAG -ACGGAAAGGAAGACCTCAGTTCAG -ACGGAAAGGAAGACCTCAGCATAG -ACGGAAAGGAAGACCTCAGACAAG -ACGGAAAGGAAGACCTCAAAGCAG -ACGGAAAGGAAGACCTCACGTCAA -ACGGAAAGGAAGACCTCAGCTGAA -ACGGAAAGGAAGACCTCAAGTACG -ACGGAAAGGAAGACCTCAATCCGA -ACGGAAAGGAAGACCTCAATGGGA -ACGGAAAGGAAGACCTCAGTGCAA -ACGGAAAGGAAGACCTCAGAGGAA -ACGGAAAGGAAGACCTCACAGGTA -ACGGAAAGGAAGACCTCAGACTCT -ACGGAAAGGAAGACCTCAAGTCCT -ACGGAAAGGAAGACCTCATAAGCC -ACGGAAAGGAAGACCTCAATAGCC -ACGGAAAGGAAGACCTCATAACCG -ACGGAAAGGAAGACCTCAATGCCA -ACGGAAAGGAAGTCCTGTGGAAAC -ACGGAAAGGAAGTCCTGTAACACC -ACGGAAAGGAAGTCCTGTATCGAG -ACGGAAAGGAAGTCCTGTCTCCTT -ACGGAAAGGAAGTCCTGTCCTGTT -ACGGAAAGGAAGTCCTGTCGGTTT -ACGGAAAGGAAGTCCTGTGTGGTT -ACGGAAAGGAAGTCCTGTGCCTTT -ACGGAAAGGAAGTCCTGTGGTCTT -ACGGAAAGGAAGTCCTGTACGCTT -ACGGAAAGGAAGTCCTGTAGCGTT -ACGGAAAGGAAGTCCTGTTTCGTC -ACGGAAAGGAAGTCCTGTTCTCTC -ACGGAAAGGAAGTCCTGTTGGATC -ACGGAAAGGAAGTCCTGTCACTTC -ACGGAAAGGAAGTCCTGTGTACTC -ACGGAAAGGAAGTCCTGTGATGTC -ACGGAAAGGAAGTCCTGTACAGTC -ACGGAAAGGAAGTCCTGTTTGCTG -ACGGAAAGGAAGTCCTGTTCCATG -ACGGAAAGGAAGTCCTGTTGTGTG -ACGGAAAGGAAGTCCTGTCTAGTG -ACGGAAAGGAAGTCCTGTCATCTG -ACGGAAAGGAAGTCCTGTGAGTTG -ACGGAAAGGAAGTCCTGTAGACTG -ACGGAAAGGAAGTCCTGTTCGGTA -ACGGAAAGGAAGTCCTGTTGCCTA -ACGGAAAGGAAGTCCTGTCCACTA -ACGGAAAGGAAGTCCTGTGGAGTA -ACGGAAAGGAAGTCCTGTTCGTCT -ACGGAAAGGAAGTCCTGTTGCACT -ACGGAAAGGAAGTCCTGTCTGACT -ACGGAAAGGAAGTCCTGTCAACCT -ACGGAAAGGAAGTCCTGTGCTACT -ACGGAAAGGAAGTCCTGTGGATCT -ACGGAAAGGAAGTCCTGTAAGGCT -ACGGAAAGGAAGTCCTGTTCAACC -ACGGAAAGGAAGTCCTGTTGTTCC -ACGGAAAGGAAGTCCTGTATTCCC -ACGGAAAGGAAGTCCTGTTTCTCG -ACGGAAAGGAAGTCCTGTTAGACG -ACGGAAAGGAAGTCCTGTGTAACG -ACGGAAAGGAAGTCCTGTACTTCG -ACGGAAAGGAAGTCCTGTTACGCA -ACGGAAAGGAAGTCCTGTCTTGCA -ACGGAAAGGAAGTCCTGTCGAACA -ACGGAAAGGAAGTCCTGTCAGTCA -ACGGAAAGGAAGTCCTGTGATCCA -ACGGAAAGGAAGTCCTGTACGACA -ACGGAAAGGAAGTCCTGTAGCTCA -ACGGAAAGGAAGTCCTGTTCACGT -ACGGAAAGGAAGTCCTGTCGTAGT -ACGGAAAGGAAGTCCTGTGTCAGT -ACGGAAAGGAAGTCCTGTGAAGGT -ACGGAAAGGAAGTCCTGTAACCGT -ACGGAAAGGAAGTCCTGTTTGTGC -ACGGAAAGGAAGTCCTGTCTAAGC -ACGGAAAGGAAGTCCTGTACTAGC -ACGGAAAGGAAGTCCTGTAGATGC -ACGGAAAGGAAGTCCTGTTGAAGG -ACGGAAAGGAAGTCCTGTCAATGG -ACGGAAAGGAAGTCCTGTATGAGG -ACGGAAAGGAAGTCCTGTAATGGG -ACGGAAAGGAAGTCCTGTTCCTGA -ACGGAAAGGAAGTCCTGTTAGCGA -ACGGAAAGGAAGTCCTGTCACAGA -ACGGAAAGGAAGTCCTGTGCAAGA -ACGGAAAGGAAGTCCTGTGGTTGA -ACGGAAAGGAAGTCCTGTTCCGAT -ACGGAAAGGAAGTCCTGTTGGCAT -ACGGAAAGGAAGTCCTGTCGAGAT -ACGGAAAGGAAGTCCTGTTACCAC -ACGGAAAGGAAGTCCTGTCAGAAC -ACGGAAAGGAAGTCCTGTGTCTAC -ACGGAAAGGAAGTCCTGTACGTAC -ACGGAAAGGAAGTCCTGTAGTGAC -ACGGAAAGGAAGTCCTGTCTGTAG -ACGGAAAGGAAGTCCTGTCCTAAG -ACGGAAAGGAAGTCCTGTGTTCAG -ACGGAAAGGAAGTCCTGTGCATAG -ACGGAAAGGAAGTCCTGTGACAAG -ACGGAAAGGAAGTCCTGTAAGCAG -ACGGAAAGGAAGTCCTGTCGTCAA -ACGGAAAGGAAGTCCTGTGCTGAA -ACGGAAAGGAAGTCCTGTAGTACG -ACGGAAAGGAAGTCCTGTATCCGA -ACGGAAAGGAAGTCCTGTATGGGA -ACGGAAAGGAAGTCCTGTGTGCAA -ACGGAAAGGAAGTCCTGTGAGGAA -ACGGAAAGGAAGTCCTGTCAGGTA -ACGGAAAGGAAGTCCTGTGACTCT -ACGGAAAGGAAGTCCTGTAGTCCT -ACGGAAAGGAAGTCCTGTTAAGCC -ACGGAAAGGAAGTCCTGTATAGCC -ACGGAAAGGAAGTCCTGTTAACCG -ACGGAAAGGAAGTCCTGTATGCCA -ACGGAAAGGAAGCCCATTGGAAAC -ACGGAAAGGAAGCCCATTAACACC -ACGGAAAGGAAGCCCATTATCGAG -ACGGAAAGGAAGCCCATTCTCCTT -ACGGAAAGGAAGCCCATTCCTGTT -ACGGAAAGGAAGCCCATTCGGTTT -ACGGAAAGGAAGCCCATTGTGGTT -ACGGAAAGGAAGCCCATTGCCTTT -ACGGAAAGGAAGCCCATTGGTCTT -ACGGAAAGGAAGCCCATTACGCTT -ACGGAAAGGAAGCCCATTAGCGTT -ACGGAAAGGAAGCCCATTTTCGTC -ACGGAAAGGAAGCCCATTTCTCTC -ACGGAAAGGAAGCCCATTTGGATC -ACGGAAAGGAAGCCCATTCACTTC -ACGGAAAGGAAGCCCATTGTACTC -ACGGAAAGGAAGCCCATTGATGTC -ACGGAAAGGAAGCCCATTACAGTC -ACGGAAAGGAAGCCCATTTTGCTG -ACGGAAAGGAAGCCCATTTCCATG -ACGGAAAGGAAGCCCATTTGTGTG -ACGGAAAGGAAGCCCATTCTAGTG -ACGGAAAGGAAGCCCATTCATCTG -ACGGAAAGGAAGCCCATTGAGTTG -ACGGAAAGGAAGCCCATTAGACTG -ACGGAAAGGAAGCCCATTTCGGTA -ACGGAAAGGAAGCCCATTTGCCTA -ACGGAAAGGAAGCCCATTCCACTA -ACGGAAAGGAAGCCCATTGGAGTA -ACGGAAAGGAAGCCCATTTCGTCT -ACGGAAAGGAAGCCCATTTGCACT -ACGGAAAGGAAGCCCATTCTGACT -ACGGAAAGGAAGCCCATTCAACCT -ACGGAAAGGAAGCCCATTGCTACT -ACGGAAAGGAAGCCCATTGGATCT -ACGGAAAGGAAGCCCATTAAGGCT -ACGGAAAGGAAGCCCATTTCAACC -ACGGAAAGGAAGCCCATTTGTTCC -ACGGAAAGGAAGCCCATTATTCCC -ACGGAAAGGAAGCCCATTTTCTCG -ACGGAAAGGAAGCCCATTTAGACG -ACGGAAAGGAAGCCCATTGTAACG -ACGGAAAGGAAGCCCATTACTTCG -ACGGAAAGGAAGCCCATTTACGCA -ACGGAAAGGAAGCCCATTCTTGCA -ACGGAAAGGAAGCCCATTCGAACA -ACGGAAAGGAAGCCCATTCAGTCA -ACGGAAAGGAAGCCCATTGATCCA -ACGGAAAGGAAGCCCATTACGACA -ACGGAAAGGAAGCCCATTAGCTCA -ACGGAAAGGAAGCCCATTTCACGT -ACGGAAAGGAAGCCCATTCGTAGT -ACGGAAAGGAAGCCCATTGTCAGT -ACGGAAAGGAAGCCCATTGAAGGT -ACGGAAAGGAAGCCCATTAACCGT -ACGGAAAGGAAGCCCATTTTGTGC -ACGGAAAGGAAGCCCATTCTAAGC -ACGGAAAGGAAGCCCATTACTAGC -ACGGAAAGGAAGCCCATTAGATGC -ACGGAAAGGAAGCCCATTTGAAGG -ACGGAAAGGAAGCCCATTCAATGG -ACGGAAAGGAAGCCCATTATGAGG -ACGGAAAGGAAGCCCATTAATGGG -ACGGAAAGGAAGCCCATTTCCTGA -ACGGAAAGGAAGCCCATTTAGCGA -ACGGAAAGGAAGCCCATTCACAGA -ACGGAAAGGAAGCCCATTGCAAGA -ACGGAAAGGAAGCCCATTGGTTGA -ACGGAAAGGAAGCCCATTTCCGAT -ACGGAAAGGAAGCCCATTTGGCAT -ACGGAAAGGAAGCCCATTCGAGAT -ACGGAAAGGAAGCCCATTTACCAC -ACGGAAAGGAAGCCCATTCAGAAC -ACGGAAAGGAAGCCCATTGTCTAC -ACGGAAAGGAAGCCCATTACGTAC -ACGGAAAGGAAGCCCATTAGTGAC -ACGGAAAGGAAGCCCATTCTGTAG -ACGGAAAGGAAGCCCATTCCTAAG -ACGGAAAGGAAGCCCATTGTTCAG -ACGGAAAGGAAGCCCATTGCATAG -ACGGAAAGGAAGCCCATTGACAAG -ACGGAAAGGAAGCCCATTAAGCAG -ACGGAAAGGAAGCCCATTCGTCAA -ACGGAAAGGAAGCCCATTGCTGAA -ACGGAAAGGAAGCCCATTAGTACG -ACGGAAAGGAAGCCCATTATCCGA -ACGGAAAGGAAGCCCATTATGGGA -ACGGAAAGGAAGCCCATTGTGCAA -ACGGAAAGGAAGCCCATTGAGGAA -ACGGAAAGGAAGCCCATTCAGGTA -ACGGAAAGGAAGCCCATTGACTCT -ACGGAAAGGAAGCCCATTAGTCCT -ACGGAAAGGAAGCCCATTTAAGCC -ACGGAAAGGAAGCCCATTATAGCC -ACGGAAAGGAAGCCCATTTAACCG -ACGGAAAGGAAGCCCATTATGCCA -ACGGAAAGGAAGTCGTTCGGAAAC -ACGGAAAGGAAGTCGTTCAACACC -ACGGAAAGGAAGTCGTTCATCGAG -ACGGAAAGGAAGTCGTTCCTCCTT -ACGGAAAGGAAGTCGTTCCCTGTT -ACGGAAAGGAAGTCGTTCCGGTTT -ACGGAAAGGAAGTCGTTCGTGGTT -ACGGAAAGGAAGTCGTTCGCCTTT -ACGGAAAGGAAGTCGTTCGGTCTT -ACGGAAAGGAAGTCGTTCACGCTT -ACGGAAAGGAAGTCGTTCAGCGTT -ACGGAAAGGAAGTCGTTCTTCGTC -ACGGAAAGGAAGTCGTTCTCTCTC -ACGGAAAGGAAGTCGTTCTGGATC -ACGGAAAGGAAGTCGTTCCACTTC -ACGGAAAGGAAGTCGTTCGTACTC -ACGGAAAGGAAGTCGTTCGATGTC -ACGGAAAGGAAGTCGTTCACAGTC -ACGGAAAGGAAGTCGTTCTTGCTG -ACGGAAAGGAAGTCGTTCTCCATG -ACGGAAAGGAAGTCGTTCTGTGTG -ACGGAAAGGAAGTCGTTCCTAGTG -ACGGAAAGGAAGTCGTTCCATCTG -ACGGAAAGGAAGTCGTTCGAGTTG -ACGGAAAGGAAGTCGTTCAGACTG -ACGGAAAGGAAGTCGTTCTCGGTA -ACGGAAAGGAAGTCGTTCTGCCTA -ACGGAAAGGAAGTCGTTCCCACTA -ACGGAAAGGAAGTCGTTCGGAGTA -ACGGAAAGGAAGTCGTTCTCGTCT -ACGGAAAGGAAGTCGTTCTGCACT -ACGGAAAGGAAGTCGTTCCTGACT -ACGGAAAGGAAGTCGTTCCAACCT -ACGGAAAGGAAGTCGTTCGCTACT -ACGGAAAGGAAGTCGTTCGGATCT -ACGGAAAGGAAGTCGTTCAAGGCT -ACGGAAAGGAAGTCGTTCTCAACC -ACGGAAAGGAAGTCGTTCTGTTCC -ACGGAAAGGAAGTCGTTCATTCCC -ACGGAAAGGAAGTCGTTCTTCTCG -ACGGAAAGGAAGTCGTTCTAGACG -ACGGAAAGGAAGTCGTTCGTAACG -ACGGAAAGGAAGTCGTTCACTTCG -ACGGAAAGGAAGTCGTTCTACGCA -ACGGAAAGGAAGTCGTTCCTTGCA -ACGGAAAGGAAGTCGTTCCGAACA -ACGGAAAGGAAGTCGTTCCAGTCA -ACGGAAAGGAAGTCGTTCGATCCA -ACGGAAAGGAAGTCGTTCACGACA -ACGGAAAGGAAGTCGTTCAGCTCA -ACGGAAAGGAAGTCGTTCTCACGT -ACGGAAAGGAAGTCGTTCCGTAGT -ACGGAAAGGAAGTCGTTCGTCAGT -ACGGAAAGGAAGTCGTTCGAAGGT -ACGGAAAGGAAGTCGTTCAACCGT -ACGGAAAGGAAGTCGTTCTTGTGC -ACGGAAAGGAAGTCGTTCCTAAGC -ACGGAAAGGAAGTCGTTCACTAGC -ACGGAAAGGAAGTCGTTCAGATGC -ACGGAAAGGAAGTCGTTCTGAAGG -ACGGAAAGGAAGTCGTTCCAATGG -ACGGAAAGGAAGTCGTTCATGAGG -ACGGAAAGGAAGTCGTTCAATGGG -ACGGAAAGGAAGTCGTTCTCCTGA -ACGGAAAGGAAGTCGTTCTAGCGA -ACGGAAAGGAAGTCGTTCCACAGA -ACGGAAAGGAAGTCGTTCGCAAGA -ACGGAAAGGAAGTCGTTCGGTTGA -ACGGAAAGGAAGTCGTTCTCCGAT -ACGGAAAGGAAGTCGTTCTGGCAT -ACGGAAAGGAAGTCGTTCCGAGAT -ACGGAAAGGAAGTCGTTCTACCAC -ACGGAAAGGAAGTCGTTCCAGAAC -ACGGAAAGGAAGTCGTTCGTCTAC -ACGGAAAGGAAGTCGTTCACGTAC -ACGGAAAGGAAGTCGTTCAGTGAC -ACGGAAAGGAAGTCGTTCCTGTAG -ACGGAAAGGAAGTCGTTCCCTAAG -ACGGAAAGGAAGTCGTTCGTTCAG -ACGGAAAGGAAGTCGTTCGCATAG -ACGGAAAGGAAGTCGTTCGACAAG -ACGGAAAGGAAGTCGTTCAAGCAG -ACGGAAAGGAAGTCGTTCCGTCAA -ACGGAAAGGAAGTCGTTCGCTGAA -ACGGAAAGGAAGTCGTTCAGTACG -ACGGAAAGGAAGTCGTTCATCCGA -ACGGAAAGGAAGTCGTTCATGGGA -ACGGAAAGGAAGTCGTTCGTGCAA -ACGGAAAGGAAGTCGTTCGAGGAA -ACGGAAAGGAAGTCGTTCCAGGTA -ACGGAAAGGAAGTCGTTCGACTCT -ACGGAAAGGAAGTCGTTCAGTCCT -ACGGAAAGGAAGTCGTTCTAAGCC -ACGGAAAGGAAGTCGTTCATAGCC -ACGGAAAGGAAGTCGTTCTAACCG -ACGGAAAGGAAGTCGTTCATGCCA -ACGGAAAGGAAGACGTAGGGAAAC -ACGGAAAGGAAGACGTAGAACACC -ACGGAAAGGAAGACGTAGATCGAG -ACGGAAAGGAAGACGTAGCTCCTT -ACGGAAAGGAAGACGTAGCCTGTT -ACGGAAAGGAAGACGTAGCGGTTT -ACGGAAAGGAAGACGTAGGTGGTT -ACGGAAAGGAAGACGTAGGCCTTT -ACGGAAAGGAAGACGTAGGGTCTT -ACGGAAAGGAAGACGTAGACGCTT -ACGGAAAGGAAGACGTAGAGCGTT -ACGGAAAGGAAGACGTAGTTCGTC -ACGGAAAGGAAGACGTAGTCTCTC -ACGGAAAGGAAGACGTAGTGGATC -ACGGAAAGGAAGACGTAGCACTTC -ACGGAAAGGAAGACGTAGGTACTC -ACGGAAAGGAAGACGTAGGATGTC -ACGGAAAGGAAGACGTAGACAGTC -ACGGAAAGGAAGACGTAGTTGCTG -ACGGAAAGGAAGACGTAGTCCATG -ACGGAAAGGAAGACGTAGTGTGTG -ACGGAAAGGAAGACGTAGCTAGTG -ACGGAAAGGAAGACGTAGCATCTG -ACGGAAAGGAAGACGTAGGAGTTG -ACGGAAAGGAAGACGTAGAGACTG -ACGGAAAGGAAGACGTAGTCGGTA -ACGGAAAGGAAGACGTAGTGCCTA -ACGGAAAGGAAGACGTAGCCACTA -ACGGAAAGGAAGACGTAGGGAGTA -ACGGAAAGGAAGACGTAGTCGTCT -ACGGAAAGGAAGACGTAGTGCACT -ACGGAAAGGAAGACGTAGCTGACT -ACGGAAAGGAAGACGTAGCAACCT -ACGGAAAGGAAGACGTAGGCTACT -ACGGAAAGGAAGACGTAGGGATCT -ACGGAAAGGAAGACGTAGAAGGCT -ACGGAAAGGAAGACGTAGTCAACC -ACGGAAAGGAAGACGTAGTGTTCC -ACGGAAAGGAAGACGTAGATTCCC -ACGGAAAGGAAGACGTAGTTCTCG -ACGGAAAGGAAGACGTAGTAGACG -ACGGAAAGGAAGACGTAGGTAACG -ACGGAAAGGAAGACGTAGACTTCG -ACGGAAAGGAAGACGTAGTACGCA -ACGGAAAGGAAGACGTAGCTTGCA -ACGGAAAGGAAGACGTAGCGAACA -ACGGAAAGGAAGACGTAGCAGTCA -ACGGAAAGGAAGACGTAGGATCCA -ACGGAAAGGAAGACGTAGACGACA -ACGGAAAGGAAGACGTAGAGCTCA -ACGGAAAGGAAGACGTAGTCACGT -ACGGAAAGGAAGACGTAGCGTAGT -ACGGAAAGGAAGACGTAGGTCAGT -ACGGAAAGGAAGACGTAGGAAGGT -ACGGAAAGGAAGACGTAGAACCGT -ACGGAAAGGAAGACGTAGTTGTGC -ACGGAAAGGAAGACGTAGCTAAGC -ACGGAAAGGAAGACGTAGACTAGC -ACGGAAAGGAAGACGTAGAGATGC -ACGGAAAGGAAGACGTAGTGAAGG -ACGGAAAGGAAGACGTAGCAATGG -ACGGAAAGGAAGACGTAGATGAGG -ACGGAAAGGAAGACGTAGAATGGG -ACGGAAAGGAAGACGTAGTCCTGA -ACGGAAAGGAAGACGTAGTAGCGA -ACGGAAAGGAAGACGTAGCACAGA -ACGGAAAGGAAGACGTAGGCAAGA -ACGGAAAGGAAGACGTAGGGTTGA -ACGGAAAGGAAGACGTAGTCCGAT -ACGGAAAGGAAGACGTAGTGGCAT -ACGGAAAGGAAGACGTAGCGAGAT -ACGGAAAGGAAGACGTAGTACCAC -ACGGAAAGGAAGACGTAGCAGAAC -ACGGAAAGGAAGACGTAGGTCTAC -ACGGAAAGGAAGACGTAGACGTAC -ACGGAAAGGAAGACGTAGAGTGAC -ACGGAAAGGAAGACGTAGCTGTAG -ACGGAAAGGAAGACGTAGCCTAAG -ACGGAAAGGAAGACGTAGGTTCAG -ACGGAAAGGAAGACGTAGGCATAG -ACGGAAAGGAAGACGTAGGACAAG -ACGGAAAGGAAGACGTAGAAGCAG -ACGGAAAGGAAGACGTAGCGTCAA -ACGGAAAGGAAGACGTAGGCTGAA -ACGGAAAGGAAGACGTAGAGTACG -ACGGAAAGGAAGACGTAGATCCGA -ACGGAAAGGAAGACGTAGATGGGA -ACGGAAAGGAAGACGTAGGTGCAA -ACGGAAAGGAAGACGTAGGAGGAA -ACGGAAAGGAAGACGTAGCAGGTA -ACGGAAAGGAAGACGTAGGACTCT -ACGGAAAGGAAGACGTAGAGTCCT -ACGGAAAGGAAGACGTAGTAAGCC -ACGGAAAGGAAGACGTAGATAGCC -ACGGAAAGGAAGACGTAGTAACCG -ACGGAAAGGAAGACGTAGATGCCA -ACGGAAAGGAAGACGGTAGGAAAC -ACGGAAAGGAAGACGGTAAACACC -ACGGAAAGGAAGACGGTAATCGAG -ACGGAAAGGAAGACGGTACTCCTT -ACGGAAAGGAAGACGGTACCTGTT -ACGGAAAGGAAGACGGTACGGTTT -ACGGAAAGGAAGACGGTAGTGGTT -ACGGAAAGGAAGACGGTAGCCTTT -ACGGAAAGGAAGACGGTAGGTCTT -ACGGAAAGGAAGACGGTAACGCTT -ACGGAAAGGAAGACGGTAAGCGTT -ACGGAAAGGAAGACGGTATTCGTC -ACGGAAAGGAAGACGGTATCTCTC -ACGGAAAGGAAGACGGTATGGATC -ACGGAAAGGAAGACGGTACACTTC -ACGGAAAGGAAGACGGTAGTACTC -ACGGAAAGGAAGACGGTAGATGTC -ACGGAAAGGAAGACGGTAACAGTC -ACGGAAAGGAAGACGGTATTGCTG -ACGGAAAGGAAGACGGTATCCATG -ACGGAAAGGAAGACGGTATGTGTG -ACGGAAAGGAAGACGGTACTAGTG -ACGGAAAGGAAGACGGTACATCTG -ACGGAAAGGAAGACGGTAGAGTTG -ACGGAAAGGAAGACGGTAAGACTG -ACGGAAAGGAAGACGGTATCGGTA -ACGGAAAGGAAGACGGTATGCCTA -ACGGAAAGGAAGACGGTACCACTA -ACGGAAAGGAAGACGGTAGGAGTA -ACGGAAAGGAAGACGGTATCGTCT -ACGGAAAGGAAGACGGTATGCACT -ACGGAAAGGAAGACGGTACTGACT -ACGGAAAGGAAGACGGTACAACCT -ACGGAAAGGAAGACGGTAGCTACT -ACGGAAAGGAAGACGGTAGGATCT -ACGGAAAGGAAGACGGTAAAGGCT -ACGGAAAGGAAGACGGTATCAACC -ACGGAAAGGAAGACGGTATGTTCC -ACGGAAAGGAAGACGGTAATTCCC -ACGGAAAGGAAGACGGTATTCTCG -ACGGAAAGGAAGACGGTATAGACG -ACGGAAAGGAAGACGGTAGTAACG -ACGGAAAGGAAGACGGTAACTTCG -ACGGAAAGGAAGACGGTATACGCA -ACGGAAAGGAAGACGGTACTTGCA -ACGGAAAGGAAGACGGTACGAACA -ACGGAAAGGAAGACGGTACAGTCA -ACGGAAAGGAAGACGGTAGATCCA -ACGGAAAGGAAGACGGTAACGACA -ACGGAAAGGAAGACGGTAAGCTCA -ACGGAAAGGAAGACGGTATCACGT -ACGGAAAGGAAGACGGTACGTAGT -ACGGAAAGGAAGACGGTAGTCAGT -ACGGAAAGGAAGACGGTAGAAGGT -ACGGAAAGGAAGACGGTAAACCGT -ACGGAAAGGAAGACGGTATTGTGC -ACGGAAAGGAAGACGGTACTAAGC -ACGGAAAGGAAGACGGTAACTAGC -ACGGAAAGGAAGACGGTAAGATGC -ACGGAAAGGAAGACGGTATGAAGG -ACGGAAAGGAAGACGGTACAATGG -ACGGAAAGGAAGACGGTAATGAGG -ACGGAAAGGAAGACGGTAAATGGG -ACGGAAAGGAAGACGGTATCCTGA -ACGGAAAGGAAGACGGTATAGCGA -ACGGAAAGGAAGACGGTACACAGA -ACGGAAAGGAAGACGGTAGCAAGA -ACGGAAAGGAAGACGGTAGGTTGA -ACGGAAAGGAAGACGGTATCCGAT -ACGGAAAGGAAGACGGTATGGCAT -ACGGAAAGGAAGACGGTACGAGAT -ACGGAAAGGAAGACGGTATACCAC -ACGGAAAGGAAGACGGTACAGAAC -ACGGAAAGGAAGACGGTAGTCTAC -ACGGAAAGGAAGACGGTAACGTAC -ACGGAAAGGAAGACGGTAAGTGAC -ACGGAAAGGAAGACGGTACTGTAG -ACGGAAAGGAAGACGGTACCTAAG -ACGGAAAGGAAGACGGTAGTTCAG -ACGGAAAGGAAGACGGTAGCATAG -ACGGAAAGGAAGACGGTAGACAAG -ACGGAAAGGAAGACGGTAAAGCAG -ACGGAAAGGAAGACGGTACGTCAA -ACGGAAAGGAAGACGGTAGCTGAA -ACGGAAAGGAAGACGGTAAGTACG -ACGGAAAGGAAGACGGTAATCCGA -ACGGAAAGGAAGACGGTAATGGGA -ACGGAAAGGAAGACGGTAGTGCAA -ACGGAAAGGAAGACGGTAGAGGAA -ACGGAAAGGAAGACGGTACAGGTA -ACGGAAAGGAAGACGGTAGACTCT -ACGGAAAGGAAGACGGTAAGTCCT -ACGGAAAGGAAGACGGTATAAGCC -ACGGAAAGGAAGACGGTAATAGCC -ACGGAAAGGAAGACGGTATAACCG -ACGGAAAGGAAGACGGTAATGCCA -ACGGAAAGGAAGTCGACTGGAAAC -ACGGAAAGGAAGTCGACTAACACC -ACGGAAAGGAAGTCGACTATCGAG -ACGGAAAGGAAGTCGACTCTCCTT -ACGGAAAGGAAGTCGACTCCTGTT -ACGGAAAGGAAGTCGACTCGGTTT -ACGGAAAGGAAGTCGACTGTGGTT -ACGGAAAGGAAGTCGACTGCCTTT -ACGGAAAGGAAGTCGACTGGTCTT -ACGGAAAGGAAGTCGACTACGCTT -ACGGAAAGGAAGTCGACTAGCGTT -ACGGAAAGGAAGTCGACTTTCGTC -ACGGAAAGGAAGTCGACTTCTCTC -ACGGAAAGGAAGTCGACTTGGATC -ACGGAAAGGAAGTCGACTCACTTC -ACGGAAAGGAAGTCGACTGTACTC -ACGGAAAGGAAGTCGACTGATGTC -ACGGAAAGGAAGTCGACTACAGTC -ACGGAAAGGAAGTCGACTTTGCTG -ACGGAAAGGAAGTCGACTTCCATG -ACGGAAAGGAAGTCGACTTGTGTG -ACGGAAAGGAAGTCGACTCTAGTG -ACGGAAAGGAAGTCGACTCATCTG -ACGGAAAGGAAGTCGACTGAGTTG -ACGGAAAGGAAGTCGACTAGACTG -ACGGAAAGGAAGTCGACTTCGGTA -ACGGAAAGGAAGTCGACTTGCCTA -ACGGAAAGGAAGTCGACTCCACTA -ACGGAAAGGAAGTCGACTGGAGTA -ACGGAAAGGAAGTCGACTTCGTCT -ACGGAAAGGAAGTCGACTTGCACT -ACGGAAAGGAAGTCGACTCTGACT -ACGGAAAGGAAGTCGACTCAACCT -ACGGAAAGGAAGTCGACTGCTACT -ACGGAAAGGAAGTCGACTGGATCT -ACGGAAAGGAAGTCGACTAAGGCT -ACGGAAAGGAAGTCGACTTCAACC -ACGGAAAGGAAGTCGACTTGTTCC -ACGGAAAGGAAGTCGACTATTCCC -ACGGAAAGGAAGTCGACTTTCTCG -ACGGAAAGGAAGTCGACTTAGACG -ACGGAAAGGAAGTCGACTGTAACG -ACGGAAAGGAAGTCGACTACTTCG -ACGGAAAGGAAGTCGACTTACGCA -ACGGAAAGGAAGTCGACTCTTGCA -ACGGAAAGGAAGTCGACTCGAACA -ACGGAAAGGAAGTCGACTCAGTCA -ACGGAAAGGAAGTCGACTGATCCA -ACGGAAAGGAAGTCGACTACGACA -ACGGAAAGGAAGTCGACTAGCTCA -ACGGAAAGGAAGTCGACTTCACGT -ACGGAAAGGAAGTCGACTCGTAGT -ACGGAAAGGAAGTCGACTGTCAGT -ACGGAAAGGAAGTCGACTGAAGGT -ACGGAAAGGAAGTCGACTAACCGT -ACGGAAAGGAAGTCGACTTTGTGC -ACGGAAAGGAAGTCGACTCTAAGC -ACGGAAAGGAAGTCGACTACTAGC -ACGGAAAGGAAGTCGACTAGATGC -ACGGAAAGGAAGTCGACTTGAAGG -ACGGAAAGGAAGTCGACTCAATGG -ACGGAAAGGAAGTCGACTATGAGG -ACGGAAAGGAAGTCGACTAATGGG -ACGGAAAGGAAGTCGACTTCCTGA -ACGGAAAGGAAGTCGACTTAGCGA -ACGGAAAGGAAGTCGACTCACAGA -ACGGAAAGGAAGTCGACTGCAAGA -ACGGAAAGGAAGTCGACTGGTTGA -ACGGAAAGGAAGTCGACTTCCGAT -ACGGAAAGGAAGTCGACTTGGCAT -ACGGAAAGGAAGTCGACTCGAGAT -ACGGAAAGGAAGTCGACTTACCAC -ACGGAAAGGAAGTCGACTCAGAAC -ACGGAAAGGAAGTCGACTGTCTAC -ACGGAAAGGAAGTCGACTACGTAC -ACGGAAAGGAAGTCGACTAGTGAC -ACGGAAAGGAAGTCGACTCTGTAG -ACGGAAAGGAAGTCGACTCCTAAG -ACGGAAAGGAAGTCGACTGTTCAG -ACGGAAAGGAAGTCGACTGCATAG -ACGGAAAGGAAGTCGACTGACAAG -ACGGAAAGGAAGTCGACTAAGCAG -ACGGAAAGGAAGTCGACTCGTCAA -ACGGAAAGGAAGTCGACTGCTGAA -ACGGAAAGGAAGTCGACTAGTACG -ACGGAAAGGAAGTCGACTATCCGA -ACGGAAAGGAAGTCGACTATGGGA -ACGGAAAGGAAGTCGACTGTGCAA -ACGGAAAGGAAGTCGACTGAGGAA -ACGGAAAGGAAGTCGACTCAGGTA -ACGGAAAGGAAGTCGACTGACTCT -ACGGAAAGGAAGTCGACTAGTCCT -ACGGAAAGGAAGTCGACTTAAGCC -ACGGAAAGGAAGTCGACTATAGCC -ACGGAAAGGAAGTCGACTTAACCG -ACGGAAAGGAAGTCGACTATGCCA -ACGGAAAGGAAGGCATACGGAAAC -ACGGAAAGGAAGGCATACAACACC -ACGGAAAGGAAGGCATACATCGAG -ACGGAAAGGAAGGCATACCTCCTT -ACGGAAAGGAAGGCATACCCTGTT -ACGGAAAGGAAGGCATACCGGTTT -ACGGAAAGGAAGGCATACGTGGTT -ACGGAAAGGAAGGCATACGCCTTT -ACGGAAAGGAAGGCATACGGTCTT -ACGGAAAGGAAGGCATACACGCTT -ACGGAAAGGAAGGCATACAGCGTT -ACGGAAAGGAAGGCATACTTCGTC -ACGGAAAGGAAGGCATACTCTCTC -ACGGAAAGGAAGGCATACTGGATC -ACGGAAAGGAAGGCATACCACTTC -ACGGAAAGGAAGGCATACGTACTC -ACGGAAAGGAAGGCATACGATGTC -ACGGAAAGGAAGGCATACACAGTC -ACGGAAAGGAAGGCATACTTGCTG -ACGGAAAGGAAGGCATACTCCATG -ACGGAAAGGAAGGCATACTGTGTG -ACGGAAAGGAAGGCATACCTAGTG -ACGGAAAGGAAGGCATACCATCTG -ACGGAAAGGAAGGCATACGAGTTG -ACGGAAAGGAAGGCATACAGACTG -ACGGAAAGGAAGGCATACTCGGTA -ACGGAAAGGAAGGCATACTGCCTA -ACGGAAAGGAAGGCATACCCACTA -ACGGAAAGGAAGGCATACGGAGTA -ACGGAAAGGAAGGCATACTCGTCT -ACGGAAAGGAAGGCATACTGCACT -ACGGAAAGGAAGGCATACCTGACT -ACGGAAAGGAAGGCATACCAACCT -ACGGAAAGGAAGGCATACGCTACT -ACGGAAAGGAAGGCATACGGATCT -ACGGAAAGGAAGGCATACAAGGCT -ACGGAAAGGAAGGCATACTCAACC -ACGGAAAGGAAGGCATACTGTTCC -ACGGAAAGGAAGGCATACATTCCC -ACGGAAAGGAAGGCATACTTCTCG -ACGGAAAGGAAGGCATACTAGACG -ACGGAAAGGAAGGCATACGTAACG -ACGGAAAGGAAGGCATACACTTCG -ACGGAAAGGAAGGCATACTACGCA -ACGGAAAGGAAGGCATACCTTGCA -ACGGAAAGGAAGGCATACCGAACA -ACGGAAAGGAAGGCATACCAGTCA -ACGGAAAGGAAGGCATACGATCCA -ACGGAAAGGAAGGCATACACGACA -ACGGAAAGGAAGGCATACAGCTCA -ACGGAAAGGAAGGCATACTCACGT -ACGGAAAGGAAGGCATACCGTAGT -ACGGAAAGGAAGGCATACGTCAGT -ACGGAAAGGAAGGCATACGAAGGT -ACGGAAAGGAAGGCATACAACCGT -ACGGAAAGGAAGGCATACTTGTGC -ACGGAAAGGAAGGCATACCTAAGC -ACGGAAAGGAAGGCATACACTAGC -ACGGAAAGGAAGGCATACAGATGC -ACGGAAAGGAAGGCATACTGAAGG -ACGGAAAGGAAGGCATACCAATGG -ACGGAAAGGAAGGCATACATGAGG -ACGGAAAGGAAGGCATACAATGGG -ACGGAAAGGAAGGCATACTCCTGA -ACGGAAAGGAAGGCATACTAGCGA -ACGGAAAGGAAGGCATACCACAGA -ACGGAAAGGAAGGCATACGCAAGA -ACGGAAAGGAAGGCATACGGTTGA -ACGGAAAGGAAGGCATACTCCGAT -ACGGAAAGGAAGGCATACTGGCAT -ACGGAAAGGAAGGCATACCGAGAT -ACGGAAAGGAAGGCATACTACCAC -ACGGAAAGGAAGGCATACCAGAAC -ACGGAAAGGAAGGCATACGTCTAC -ACGGAAAGGAAGGCATACACGTAC -ACGGAAAGGAAGGCATACAGTGAC -ACGGAAAGGAAGGCATACCTGTAG -ACGGAAAGGAAGGCATACCCTAAG -ACGGAAAGGAAGGCATACGTTCAG -ACGGAAAGGAAGGCATACGCATAG -ACGGAAAGGAAGGCATACGACAAG -ACGGAAAGGAAGGCATACAAGCAG -ACGGAAAGGAAGGCATACCGTCAA -ACGGAAAGGAAGGCATACGCTGAA -ACGGAAAGGAAGGCATACAGTACG -ACGGAAAGGAAGGCATACATCCGA -ACGGAAAGGAAGGCATACATGGGA -ACGGAAAGGAAGGCATACGTGCAA -ACGGAAAGGAAGGCATACGAGGAA -ACGGAAAGGAAGGCATACCAGGTA -ACGGAAAGGAAGGCATACGACTCT -ACGGAAAGGAAGGCATACAGTCCT -ACGGAAAGGAAGGCATACTAAGCC -ACGGAAAGGAAGGCATACATAGCC -ACGGAAAGGAAGGCATACTAACCG -ACGGAAAGGAAGGCATACATGCCA -ACGGAAAGGAAGGCACTTGGAAAC -ACGGAAAGGAAGGCACTTAACACC -ACGGAAAGGAAGGCACTTATCGAG -ACGGAAAGGAAGGCACTTCTCCTT -ACGGAAAGGAAGGCACTTCCTGTT -ACGGAAAGGAAGGCACTTCGGTTT -ACGGAAAGGAAGGCACTTGTGGTT -ACGGAAAGGAAGGCACTTGCCTTT -ACGGAAAGGAAGGCACTTGGTCTT -ACGGAAAGGAAGGCACTTACGCTT -ACGGAAAGGAAGGCACTTAGCGTT -ACGGAAAGGAAGGCACTTTTCGTC -ACGGAAAGGAAGGCACTTTCTCTC -ACGGAAAGGAAGGCACTTTGGATC -ACGGAAAGGAAGGCACTTCACTTC -ACGGAAAGGAAGGCACTTGTACTC -ACGGAAAGGAAGGCACTTGATGTC -ACGGAAAGGAAGGCACTTACAGTC -ACGGAAAGGAAGGCACTTTTGCTG -ACGGAAAGGAAGGCACTTTCCATG -ACGGAAAGGAAGGCACTTTGTGTG -ACGGAAAGGAAGGCACTTCTAGTG -ACGGAAAGGAAGGCACTTCATCTG -ACGGAAAGGAAGGCACTTGAGTTG -ACGGAAAGGAAGGCACTTAGACTG -ACGGAAAGGAAGGCACTTTCGGTA -ACGGAAAGGAAGGCACTTTGCCTA -ACGGAAAGGAAGGCACTTCCACTA -ACGGAAAGGAAGGCACTTGGAGTA -ACGGAAAGGAAGGCACTTTCGTCT -ACGGAAAGGAAGGCACTTTGCACT -ACGGAAAGGAAGGCACTTCTGACT -ACGGAAAGGAAGGCACTTCAACCT -ACGGAAAGGAAGGCACTTGCTACT -ACGGAAAGGAAGGCACTTGGATCT -ACGGAAAGGAAGGCACTTAAGGCT -ACGGAAAGGAAGGCACTTTCAACC -ACGGAAAGGAAGGCACTTTGTTCC -ACGGAAAGGAAGGCACTTATTCCC -ACGGAAAGGAAGGCACTTTTCTCG -ACGGAAAGGAAGGCACTTTAGACG -ACGGAAAGGAAGGCACTTGTAACG -ACGGAAAGGAAGGCACTTACTTCG -ACGGAAAGGAAGGCACTTTACGCA -ACGGAAAGGAAGGCACTTCTTGCA -ACGGAAAGGAAGGCACTTCGAACA -ACGGAAAGGAAGGCACTTCAGTCA -ACGGAAAGGAAGGCACTTGATCCA -ACGGAAAGGAAGGCACTTACGACA -ACGGAAAGGAAGGCACTTAGCTCA -ACGGAAAGGAAGGCACTTTCACGT -ACGGAAAGGAAGGCACTTCGTAGT -ACGGAAAGGAAGGCACTTGTCAGT -ACGGAAAGGAAGGCACTTGAAGGT -ACGGAAAGGAAGGCACTTAACCGT -ACGGAAAGGAAGGCACTTTTGTGC -ACGGAAAGGAAGGCACTTCTAAGC -ACGGAAAGGAAGGCACTTACTAGC -ACGGAAAGGAAGGCACTTAGATGC -ACGGAAAGGAAGGCACTTTGAAGG -ACGGAAAGGAAGGCACTTCAATGG -ACGGAAAGGAAGGCACTTATGAGG -ACGGAAAGGAAGGCACTTAATGGG -ACGGAAAGGAAGGCACTTTCCTGA -ACGGAAAGGAAGGCACTTTAGCGA -ACGGAAAGGAAGGCACTTCACAGA -ACGGAAAGGAAGGCACTTGCAAGA -ACGGAAAGGAAGGCACTTGGTTGA -ACGGAAAGGAAGGCACTTTCCGAT -ACGGAAAGGAAGGCACTTTGGCAT -ACGGAAAGGAAGGCACTTCGAGAT -ACGGAAAGGAAGGCACTTTACCAC -ACGGAAAGGAAGGCACTTCAGAAC -ACGGAAAGGAAGGCACTTGTCTAC -ACGGAAAGGAAGGCACTTACGTAC -ACGGAAAGGAAGGCACTTAGTGAC -ACGGAAAGGAAGGCACTTCTGTAG -ACGGAAAGGAAGGCACTTCCTAAG -ACGGAAAGGAAGGCACTTGTTCAG -ACGGAAAGGAAGGCACTTGCATAG -ACGGAAAGGAAGGCACTTGACAAG -ACGGAAAGGAAGGCACTTAAGCAG -ACGGAAAGGAAGGCACTTCGTCAA -ACGGAAAGGAAGGCACTTGCTGAA -ACGGAAAGGAAGGCACTTAGTACG -ACGGAAAGGAAGGCACTTATCCGA -ACGGAAAGGAAGGCACTTATGGGA -ACGGAAAGGAAGGCACTTGTGCAA -ACGGAAAGGAAGGCACTTGAGGAA -ACGGAAAGGAAGGCACTTCAGGTA -ACGGAAAGGAAGGCACTTGACTCT -ACGGAAAGGAAGGCACTTAGTCCT -ACGGAAAGGAAGGCACTTTAAGCC -ACGGAAAGGAAGGCACTTATAGCC -ACGGAAAGGAAGGCACTTTAACCG -ACGGAAAGGAAGGCACTTATGCCA -ACGGAAAGGAAGACACGAGGAAAC -ACGGAAAGGAAGACACGAAACACC -ACGGAAAGGAAGACACGAATCGAG -ACGGAAAGGAAGACACGACTCCTT -ACGGAAAGGAAGACACGACCTGTT -ACGGAAAGGAAGACACGACGGTTT -ACGGAAAGGAAGACACGAGTGGTT -ACGGAAAGGAAGACACGAGCCTTT -ACGGAAAGGAAGACACGAGGTCTT -ACGGAAAGGAAGACACGAACGCTT -ACGGAAAGGAAGACACGAAGCGTT -ACGGAAAGGAAGACACGATTCGTC -ACGGAAAGGAAGACACGATCTCTC -ACGGAAAGGAAGACACGATGGATC -ACGGAAAGGAAGACACGACACTTC -ACGGAAAGGAAGACACGAGTACTC -ACGGAAAGGAAGACACGAGATGTC -ACGGAAAGGAAGACACGAACAGTC -ACGGAAAGGAAGACACGATTGCTG -ACGGAAAGGAAGACACGATCCATG -ACGGAAAGGAAGACACGATGTGTG -ACGGAAAGGAAGACACGACTAGTG -ACGGAAAGGAAGACACGACATCTG -ACGGAAAGGAAGACACGAGAGTTG -ACGGAAAGGAAGACACGAAGACTG -ACGGAAAGGAAGACACGATCGGTA -ACGGAAAGGAAGACACGATGCCTA -ACGGAAAGGAAGACACGACCACTA -ACGGAAAGGAAGACACGAGGAGTA -ACGGAAAGGAAGACACGATCGTCT -ACGGAAAGGAAGACACGATGCACT -ACGGAAAGGAAGACACGACTGACT -ACGGAAAGGAAGACACGACAACCT -ACGGAAAGGAAGACACGAGCTACT -ACGGAAAGGAAGACACGAGGATCT -ACGGAAAGGAAGACACGAAAGGCT -ACGGAAAGGAAGACACGATCAACC -ACGGAAAGGAAGACACGATGTTCC -ACGGAAAGGAAGACACGAATTCCC -ACGGAAAGGAAGACACGATTCTCG -ACGGAAAGGAAGACACGATAGACG -ACGGAAAGGAAGACACGAGTAACG -ACGGAAAGGAAGACACGAACTTCG -ACGGAAAGGAAGACACGATACGCA -ACGGAAAGGAAGACACGACTTGCA -ACGGAAAGGAAGACACGACGAACA -ACGGAAAGGAAGACACGACAGTCA -ACGGAAAGGAAGACACGAGATCCA -ACGGAAAGGAAGACACGAACGACA -ACGGAAAGGAAGACACGAAGCTCA -ACGGAAAGGAAGACACGATCACGT -ACGGAAAGGAAGACACGACGTAGT -ACGGAAAGGAAGACACGAGTCAGT -ACGGAAAGGAAGACACGAGAAGGT -ACGGAAAGGAAGACACGAAACCGT -ACGGAAAGGAAGACACGATTGTGC -ACGGAAAGGAAGACACGACTAAGC -ACGGAAAGGAAGACACGAACTAGC -ACGGAAAGGAAGACACGAAGATGC -ACGGAAAGGAAGACACGATGAAGG -ACGGAAAGGAAGACACGACAATGG -ACGGAAAGGAAGACACGAATGAGG -ACGGAAAGGAAGACACGAAATGGG -ACGGAAAGGAAGACACGATCCTGA -ACGGAAAGGAAGACACGATAGCGA -ACGGAAAGGAAGACACGACACAGA -ACGGAAAGGAAGACACGAGCAAGA -ACGGAAAGGAAGACACGAGGTTGA -ACGGAAAGGAAGACACGATCCGAT -ACGGAAAGGAAGACACGATGGCAT -ACGGAAAGGAAGACACGACGAGAT -ACGGAAAGGAAGACACGATACCAC -ACGGAAAGGAAGACACGACAGAAC -ACGGAAAGGAAGACACGAGTCTAC -ACGGAAAGGAAGACACGAACGTAC -ACGGAAAGGAAGACACGAAGTGAC -ACGGAAAGGAAGACACGACTGTAG -ACGGAAAGGAAGACACGACCTAAG -ACGGAAAGGAAGACACGAGTTCAG -ACGGAAAGGAAGACACGAGCATAG -ACGGAAAGGAAGACACGAGACAAG -ACGGAAAGGAAGACACGAAAGCAG -ACGGAAAGGAAGACACGACGTCAA -ACGGAAAGGAAGACACGAGCTGAA -ACGGAAAGGAAGACACGAAGTACG -ACGGAAAGGAAGACACGAATCCGA -ACGGAAAGGAAGACACGAATGGGA -ACGGAAAGGAAGACACGAGTGCAA -ACGGAAAGGAAGACACGAGAGGAA -ACGGAAAGGAAGACACGACAGGTA -ACGGAAAGGAAGACACGAGACTCT -ACGGAAAGGAAGACACGAAGTCCT -ACGGAAAGGAAGACACGATAAGCC -ACGGAAAGGAAGACACGAATAGCC -ACGGAAAGGAAGACACGATAACCG -ACGGAAAGGAAGACACGAATGCCA -ACGGAAAGGAAGTCACAGGGAAAC -ACGGAAAGGAAGTCACAGAACACC -ACGGAAAGGAAGTCACAGATCGAG -ACGGAAAGGAAGTCACAGCTCCTT -ACGGAAAGGAAGTCACAGCCTGTT -ACGGAAAGGAAGTCACAGCGGTTT -ACGGAAAGGAAGTCACAGGTGGTT -ACGGAAAGGAAGTCACAGGCCTTT -ACGGAAAGGAAGTCACAGGGTCTT -ACGGAAAGGAAGTCACAGACGCTT -ACGGAAAGGAAGTCACAGAGCGTT -ACGGAAAGGAAGTCACAGTTCGTC -ACGGAAAGGAAGTCACAGTCTCTC -ACGGAAAGGAAGTCACAGTGGATC -ACGGAAAGGAAGTCACAGCACTTC -ACGGAAAGGAAGTCACAGGTACTC -ACGGAAAGGAAGTCACAGGATGTC -ACGGAAAGGAAGTCACAGACAGTC -ACGGAAAGGAAGTCACAGTTGCTG -ACGGAAAGGAAGTCACAGTCCATG -ACGGAAAGGAAGTCACAGTGTGTG -ACGGAAAGGAAGTCACAGCTAGTG -ACGGAAAGGAAGTCACAGCATCTG -ACGGAAAGGAAGTCACAGGAGTTG -ACGGAAAGGAAGTCACAGAGACTG -ACGGAAAGGAAGTCACAGTCGGTA -ACGGAAAGGAAGTCACAGTGCCTA -ACGGAAAGGAAGTCACAGCCACTA -ACGGAAAGGAAGTCACAGGGAGTA -ACGGAAAGGAAGTCACAGTCGTCT -ACGGAAAGGAAGTCACAGTGCACT -ACGGAAAGGAAGTCACAGCTGACT -ACGGAAAGGAAGTCACAGCAACCT -ACGGAAAGGAAGTCACAGGCTACT -ACGGAAAGGAAGTCACAGGGATCT -ACGGAAAGGAAGTCACAGAAGGCT -ACGGAAAGGAAGTCACAGTCAACC -ACGGAAAGGAAGTCACAGTGTTCC -ACGGAAAGGAAGTCACAGATTCCC -ACGGAAAGGAAGTCACAGTTCTCG -ACGGAAAGGAAGTCACAGTAGACG -ACGGAAAGGAAGTCACAGGTAACG -ACGGAAAGGAAGTCACAGACTTCG -ACGGAAAGGAAGTCACAGTACGCA -ACGGAAAGGAAGTCACAGCTTGCA -ACGGAAAGGAAGTCACAGCGAACA -ACGGAAAGGAAGTCACAGCAGTCA -ACGGAAAGGAAGTCACAGGATCCA -ACGGAAAGGAAGTCACAGACGACA -ACGGAAAGGAAGTCACAGAGCTCA -ACGGAAAGGAAGTCACAGTCACGT -ACGGAAAGGAAGTCACAGCGTAGT -ACGGAAAGGAAGTCACAGGTCAGT -ACGGAAAGGAAGTCACAGGAAGGT -ACGGAAAGGAAGTCACAGAACCGT -ACGGAAAGGAAGTCACAGTTGTGC -ACGGAAAGGAAGTCACAGCTAAGC -ACGGAAAGGAAGTCACAGACTAGC -ACGGAAAGGAAGTCACAGAGATGC -ACGGAAAGGAAGTCACAGTGAAGG -ACGGAAAGGAAGTCACAGCAATGG -ACGGAAAGGAAGTCACAGATGAGG -ACGGAAAGGAAGTCACAGAATGGG -ACGGAAAGGAAGTCACAGTCCTGA -ACGGAAAGGAAGTCACAGTAGCGA -ACGGAAAGGAAGTCACAGCACAGA -ACGGAAAGGAAGTCACAGGCAAGA -ACGGAAAGGAAGTCACAGGGTTGA -ACGGAAAGGAAGTCACAGTCCGAT -ACGGAAAGGAAGTCACAGTGGCAT -ACGGAAAGGAAGTCACAGCGAGAT -ACGGAAAGGAAGTCACAGTACCAC -ACGGAAAGGAAGTCACAGCAGAAC -ACGGAAAGGAAGTCACAGGTCTAC -ACGGAAAGGAAGTCACAGACGTAC -ACGGAAAGGAAGTCACAGAGTGAC -ACGGAAAGGAAGTCACAGCTGTAG -ACGGAAAGGAAGTCACAGCCTAAG -ACGGAAAGGAAGTCACAGGTTCAG -ACGGAAAGGAAGTCACAGGCATAG -ACGGAAAGGAAGTCACAGGACAAG -ACGGAAAGGAAGTCACAGAAGCAG -ACGGAAAGGAAGTCACAGCGTCAA -ACGGAAAGGAAGTCACAGGCTGAA -ACGGAAAGGAAGTCACAGAGTACG -ACGGAAAGGAAGTCACAGATCCGA -ACGGAAAGGAAGTCACAGATGGGA -ACGGAAAGGAAGTCACAGGTGCAA -ACGGAAAGGAAGTCACAGGAGGAA -ACGGAAAGGAAGTCACAGCAGGTA -ACGGAAAGGAAGTCACAGGACTCT -ACGGAAAGGAAGTCACAGAGTCCT -ACGGAAAGGAAGTCACAGTAAGCC -ACGGAAAGGAAGTCACAGATAGCC -ACGGAAAGGAAGTCACAGTAACCG -ACGGAAAGGAAGTCACAGATGCCA -ACGGAAAGGAAGCCAGATGGAAAC -ACGGAAAGGAAGCCAGATAACACC -ACGGAAAGGAAGCCAGATATCGAG -ACGGAAAGGAAGCCAGATCTCCTT -ACGGAAAGGAAGCCAGATCCTGTT -ACGGAAAGGAAGCCAGATCGGTTT -ACGGAAAGGAAGCCAGATGTGGTT -ACGGAAAGGAAGCCAGATGCCTTT -ACGGAAAGGAAGCCAGATGGTCTT -ACGGAAAGGAAGCCAGATACGCTT -ACGGAAAGGAAGCCAGATAGCGTT -ACGGAAAGGAAGCCAGATTTCGTC -ACGGAAAGGAAGCCAGATTCTCTC -ACGGAAAGGAAGCCAGATTGGATC -ACGGAAAGGAAGCCAGATCACTTC -ACGGAAAGGAAGCCAGATGTACTC -ACGGAAAGGAAGCCAGATGATGTC -ACGGAAAGGAAGCCAGATACAGTC -ACGGAAAGGAAGCCAGATTTGCTG -ACGGAAAGGAAGCCAGATTCCATG -ACGGAAAGGAAGCCAGATTGTGTG -ACGGAAAGGAAGCCAGATCTAGTG -ACGGAAAGGAAGCCAGATCATCTG -ACGGAAAGGAAGCCAGATGAGTTG -ACGGAAAGGAAGCCAGATAGACTG -ACGGAAAGGAAGCCAGATTCGGTA -ACGGAAAGGAAGCCAGATTGCCTA -ACGGAAAGGAAGCCAGATCCACTA -ACGGAAAGGAAGCCAGATGGAGTA -ACGGAAAGGAAGCCAGATTCGTCT -ACGGAAAGGAAGCCAGATTGCACT -ACGGAAAGGAAGCCAGATCTGACT -ACGGAAAGGAAGCCAGATCAACCT -ACGGAAAGGAAGCCAGATGCTACT -ACGGAAAGGAAGCCAGATGGATCT -ACGGAAAGGAAGCCAGATAAGGCT -ACGGAAAGGAAGCCAGATTCAACC -ACGGAAAGGAAGCCAGATTGTTCC -ACGGAAAGGAAGCCAGATATTCCC -ACGGAAAGGAAGCCAGATTTCTCG -ACGGAAAGGAAGCCAGATTAGACG -ACGGAAAGGAAGCCAGATGTAACG -ACGGAAAGGAAGCCAGATACTTCG -ACGGAAAGGAAGCCAGATTACGCA -ACGGAAAGGAAGCCAGATCTTGCA -ACGGAAAGGAAGCCAGATCGAACA -ACGGAAAGGAAGCCAGATCAGTCA -ACGGAAAGGAAGCCAGATGATCCA -ACGGAAAGGAAGCCAGATACGACA -ACGGAAAGGAAGCCAGATAGCTCA -ACGGAAAGGAAGCCAGATTCACGT -ACGGAAAGGAAGCCAGATCGTAGT -ACGGAAAGGAAGCCAGATGTCAGT -ACGGAAAGGAAGCCAGATGAAGGT -ACGGAAAGGAAGCCAGATAACCGT -ACGGAAAGGAAGCCAGATTTGTGC -ACGGAAAGGAAGCCAGATCTAAGC -ACGGAAAGGAAGCCAGATACTAGC -ACGGAAAGGAAGCCAGATAGATGC -ACGGAAAGGAAGCCAGATTGAAGG -ACGGAAAGGAAGCCAGATCAATGG -ACGGAAAGGAAGCCAGATATGAGG -ACGGAAAGGAAGCCAGATAATGGG -ACGGAAAGGAAGCCAGATTCCTGA -ACGGAAAGGAAGCCAGATTAGCGA -ACGGAAAGGAAGCCAGATCACAGA -ACGGAAAGGAAGCCAGATGCAAGA -ACGGAAAGGAAGCCAGATGGTTGA -ACGGAAAGGAAGCCAGATTCCGAT -ACGGAAAGGAAGCCAGATTGGCAT -ACGGAAAGGAAGCCAGATCGAGAT -ACGGAAAGGAAGCCAGATTACCAC -ACGGAAAGGAAGCCAGATCAGAAC -ACGGAAAGGAAGCCAGATGTCTAC -ACGGAAAGGAAGCCAGATACGTAC -ACGGAAAGGAAGCCAGATAGTGAC -ACGGAAAGGAAGCCAGATCTGTAG -ACGGAAAGGAAGCCAGATCCTAAG -ACGGAAAGGAAGCCAGATGTTCAG -ACGGAAAGGAAGCCAGATGCATAG -ACGGAAAGGAAGCCAGATGACAAG -ACGGAAAGGAAGCCAGATAAGCAG -ACGGAAAGGAAGCCAGATCGTCAA -ACGGAAAGGAAGCCAGATGCTGAA -ACGGAAAGGAAGCCAGATAGTACG -ACGGAAAGGAAGCCAGATATCCGA -ACGGAAAGGAAGCCAGATATGGGA -ACGGAAAGGAAGCCAGATGTGCAA -ACGGAAAGGAAGCCAGATGAGGAA -ACGGAAAGGAAGCCAGATCAGGTA -ACGGAAAGGAAGCCAGATGACTCT -ACGGAAAGGAAGCCAGATAGTCCT -ACGGAAAGGAAGCCAGATTAAGCC -ACGGAAAGGAAGCCAGATATAGCC -ACGGAAAGGAAGCCAGATTAACCG -ACGGAAAGGAAGCCAGATATGCCA -ACGGAAAGGAAGACAACGGGAAAC -ACGGAAAGGAAGACAACGAACACC -ACGGAAAGGAAGACAACGATCGAG -ACGGAAAGGAAGACAACGCTCCTT -ACGGAAAGGAAGACAACGCCTGTT -ACGGAAAGGAAGACAACGCGGTTT -ACGGAAAGGAAGACAACGGTGGTT -ACGGAAAGGAAGACAACGGCCTTT -ACGGAAAGGAAGACAACGGGTCTT -ACGGAAAGGAAGACAACGACGCTT -ACGGAAAGGAAGACAACGAGCGTT -ACGGAAAGGAAGACAACGTTCGTC -ACGGAAAGGAAGACAACGTCTCTC -ACGGAAAGGAAGACAACGTGGATC -ACGGAAAGGAAGACAACGCACTTC -ACGGAAAGGAAGACAACGGTACTC -ACGGAAAGGAAGACAACGGATGTC -ACGGAAAGGAAGACAACGACAGTC -ACGGAAAGGAAGACAACGTTGCTG -ACGGAAAGGAAGACAACGTCCATG -ACGGAAAGGAAGACAACGTGTGTG -ACGGAAAGGAAGACAACGCTAGTG -ACGGAAAGGAAGACAACGCATCTG -ACGGAAAGGAAGACAACGGAGTTG -ACGGAAAGGAAGACAACGAGACTG -ACGGAAAGGAAGACAACGTCGGTA -ACGGAAAGGAAGACAACGTGCCTA -ACGGAAAGGAAGACAACGCCACTA -ACGGAAAGGAAGACAACGGGAGTA -ACGGAAAGGAAGACAACGTCGTCT -ACGGAAAGGAAGACAACGTGCACT -ACGGAAAGGAAGACAACGCTGACT -ACGGAAAGGAAGACAACGCAACCT -ACGGAAAGGAAGACAACGGCTACT -ACGGAAAGGAAGACAACGGGATCT -ACGGAAAGGAAGACAACGAAGGCT -ACGGAAAGGAAGACAACGTCAACC -ACGGAAAGGAAGACAACGTGTTCC -ACGGAAAGGAAGACAACGATTCCC -ACGGAAAGGAAGACAACGTTCTCG -ACGGAAAGGAAGACAACGTAGACG -ACGGAAAGGAAGACAACGGTAACG -ACGGAAAGGAAGACAACGACTTCG -ACGGAAAGGAAGACAACGTACGCA -ACGGAAAGGAAGACAACGCTTGCA -ACGGAAAGGAAGACAACGCGAACA -ACGGAAAGGAAGACAACGCAGTCA -ACGGAAAGGAAGACAACGGATCCA -ACGGAAAGGAAGACAACGACGACA -ACGGAAAGGAAGACAACGAGCTCA -ACGGAAAGGAAGACAACGTCACGT -ACGGAAAGGAAGACAACGCGTAGT -ACGGAAAGGAAGACAACGGTCAGT -ACGGAAAGGAAGACAACGGAAGGT -ACGGAAAGGAAGACAACGAACCGT -ACGGAAAGGAAGACAACGTTGTGC -ACGGAAAGGAAGACAACGCTAAGC -ACGGAAAGGAAGACAACGACTAGC -ACGGAAAGGAAGACAACGAGATGC -ACGGAAAGGAAGACAACGTGAAGG -ACGGAAAGGAAGACAACGCAATGG -ACGGAAAGGAAGACAACGATGAGG -ACGGAAAGGAAGACAACGAATGGG -ACGGAAAGGAAGACAACGTCCTGA -ACGGAAAGGAAGACAACGTAGCGA -ACGGAAAGGAAGACAACGCACAGA -ACGGAAAGGAAGACAACGGCAAGA -ACGGAAAGGAAGACAACGGGTTGA -ACGGAAAGGAAGACAACGTCCGAT -ACGGAAAGGAAGACAACGTGGCAT -ACGGAAAGGAAGACAACGCGAGAT -ACGGAAAGGAAGACAACGTACCAC -ACGGAAAGGAAGACAACGCAGAAC -ACGGAAAGGAAGACAACGGTCTAC -ACGGAAAGGAAGACAACGACGTAC -ACGGAAAGGAAGACAACGAGTGAC -ACGGAAAGGAAGACAACGCTGTAG -ACGGAAAGGAAGACAACGCCTAAG -ACGGAAAGGAAGACAACGGTTCAG -ACGGAAAGGAAGACAACGGCATAG -ACGGAAAGGAAGACAACGGACAAG -ACGGAAAGGAAGACAACGAAGCAG -ACGGAAAGGAAGACAACGCGTCAA -ACGGAAAGGAAGACAACGGCTGAA -ACGGAAAGGAAGACAACGAGTACG -ACGGAAAGGAAGACAACGATCCGA -ACGGAAAGGAAGACAACGATGGGA -ACGGAAAGGAAGACAACGGTGCAA -ACGGAAAGGAAGACAACGGAGGAA -ACGGAAAGGAAGACAACGCAGGTA -ACGGAAAGGAAGACAACGGACTCT -ACGGAAAGGAAGACAACGAGTCCT -ACGGAAAGGAAGACAACGTAAGCC -ACGGAAAGGAAGACAACGATAGCC -ACGGAAAGGAAGACAACGTAACCG -ACGGAAAGGAAGACAACGATGCCA -ACGGAAAGGAAGTCAAGCGGAAAC -ACGGAAAGGAAGTCAAGCAACACC -ACGGAAAGGAAGTCAAGCATCGAG -ACGGAAAGGAAGTCAAGCCTCCTT -ACGGAAAGGAAGTCAAGCCCTGTT -ACGGAAAGGAAGTCAAGCCGGTTT -ACGGAAAGGAAGTCAAGCGTGGTT -ACGGAAAGGAAGTCAAGCGCCTTT -ACGGAAAGGAAGTCAAGCGGTCTT -ACGGAAAGGAAGTCAAGCACGCTT -ACGGAAAGGAAGTCAAGCAGCGTT -ACGGAAAGGAAGTCAAGCTTCGTC -ACGGAAAGGAAGTCAAGCTCTCTC -ACGGAAAGGAAGTCAAGCTGGATC -ACGGAAAGGAAGTCAAGCCACTTC -ACGGAAAGGAAGTCAAGCGTACTC -ACGGAAAGGAAGTCAAGCGATGTC -ACGGAAAGGAAGTCAAGCACAGTC -ACGGAAAGGAAGTCAAGCTTGCTG -ACGGAAAGGAAGTCAAGCTCCATG -ACGGAAAGGAAGTCAAGCTGTGTG -ACGGAAAGGAAGTCAAGCCTAGTG -ACGGAAAGGAAGTCAAGCCATCTG -ACGGAAAGGAAGTCAAGCGAGTTG -ACGGAAAGGAAGTCAAGCAGACTG -ACGGAAAGGAAGTCAAGCTCGGTA -ACGGAAAGGAAGTCAAGCTGCCTA -ACGGAAAGGAAGTCAAGCCCACTA -ACGGAAAGGAAGTCAAGCGGAGTA -ACGGAAAGGAAGTCAAGCTCGTCT -ACGGAAAGGAAGTCAAGCTGCACT -ACGGAAAGGAAGTCAAGCCTGACT -ACGGAAAGGAAGTCAAGCCAACCT -ACGGAAAGGAAGTCAAGCGCTACT -ACGGAAAGGAAGTCAAGCGGATCT -ACGGAAAGGAAGTCAAGCAAGGCT -ACGGAAAGGAAGTCAAGCTCAACC -ACGGAAAGGAAGTCAAGCTGTTCC -ACGGAAAGGAAGTCAAGCATTCCC -ACGGAAAGGAAGTCAAGCTTCTCG -ACGGAAAGGAAGTCAAGCTAGACG -ACGGAAAGGAAGTCAAGCGTAACG -ACGGAAAGGAAGTCAAGCACTTCG -ACGGAAAGGAAGTCAAGCTACGCA -ACGGAAAGGAAGTCAAGCCTTGCA -ACGGAAAGGAAGTCAAGCCGAACA -ACGGAAAGGAAGTCAAGCCAGTCA -ACGGAAAGGAAGTCAAGCGATCCA -ACGGAAAGGAAGTCAAGCACGACA -ACGGAAAGGAAGTCAAGCAGCTCA -ACGGAAAGGAAGTCAAGCTCACGT -ACGGAAAGGAAGTCAAGCCGTAGT -ACGGAAAGGAAGTCAAGCGTCAGT -ACGGAAAGGAAGTCAAGCGAAGGT -ACGGAAAGGAAGTCAAGCAACCGT -ACGGAAAGGAAGTCAAGCTTGTGC -ACGGAAAGGAAGTCAAGCCTAAGC -ACGGAAAGGAAGTCAAGCACTAGC -ACGGAAAGGAAGTCAAGCAGATGC -ACGGAAAGGAAGTCAAGCTGAAGG -ACGGAAAGGAAGTCAAGCCAATGG -ACGGAAAGGAAGTCAAGCATGAGG -ACGGAAAGGAAGTCAAGCAATGGG -ACGGAAAGGAAGTCAAGCTCCTGA -ACGGAAAGGAAGTCAAGCTAGCGA -ACGGAAAGGAAGTCAAGCCACAGA -ACGGAAAGGAAGTCAAGCGCAAGA -ACGGAAAGGAAGTCAAGCGGTTGA -ACGGAAAGGAAGTCAAGCTCCGAT -ACGGAAAGGAAGTCAAGCTGGCAT -ACGGAAAGGAAGTCAAGCCGAGAT -ACGGAAAGGAAGTCAAGCTACCAC -ACGGAAAGGAAGTCAAGCCAGAAC -ACGGAAAGGAAGTCAAGCGTCTAC -ACGGAAAGGAAGTCAAGCACGTAC -ACGGAAAGGAAGTCAAGCAGTGAC -ACGGAAAGGAAGTCAAGCCTGTAG -ACGGAAAGGAAGTCAAGCCCTAAG -ACGGAAAGGAAGTCAAGCGTTCAG -ACGGAAAGGAAGTCAAGCGCATAG -ACGGAAAGGAAGTCAAGCGACAAG -ACGGAAAGGAAGTCAAGCAAGCAG -ACGGAAAGGAAGTCAAGCCGTCAA -ACGGAAAGGAAGTCAAGCGCTGAA -ACGGAAAGGAAGTCAAGCAGTACG -ACGGAAAGGAAGTCAAGCATCCGA -ACGGAAAGGAAGTCAAGCATGGGA -ACGGAAAGGAAGTCAAGCGTGCAA -ACGGAAAGGAAGTCAAGCGAGGAA -ACGGAAAGGAAGTCAAGCCAGGTA -ACGGAAAGGAAGTCAAGCGACTCT -ACGGAAAGGAAGTCAAGCAGTCCT -ACGGAAAGGAAGTCAAGCTAAGCC -ACGGAAAGGAAGTCAAGCATAGCC -ACGGAAAGGAAGTCAAGCTAACCG -ACGGAAAGGAAGTCAAGCATGCCA -ACGGAAAGGAAGCGTTCAGGAAAC -ACGGAAAGGAAGCGTTCAAACACC -ACGGAAAGGAAGCGTTCAATCGAG -ACGGAAAGGAAGCGTTCACTCCTT -ACGGAAAGGAAGCGTTCACCTGTT -ACGGAAAGGAAGCGTTCACGGTTT -ACGGAAAGGAAGCGTTCAGTGGTT -ACGGAAAGGAAGCGTTCAGCCTTT -ACGGAAAGGAAGCGTTCAGGTCTT -ACGGAAAGGAAGCGTTCAACGCTT -ACGGAAAGGAAGCGTTCAAGCGTT -ACGGAAAGGAAGCGTTCATTCGTC -ACGGAAAGGAAGCGTTCATCTCTC -ACGGAAAGGAAGCGTTCATGGATC -ACGGAAAGGAAGCGTTCACACTTC -ACGGAAAGGAAGCGTTCAGTACTC -ACGGAAAGGAAGCGTTCAGATGTC -ACGGAAAGGAAGCGTTCAACAGTC -ACGGAAAGGAAGCGTTCATTGCTG -ACGGAAAGGAAGCGTTCATCCATG -ACGGAAAGGAAGCGTTCATGTGTG -ACGGAAAGGAAGCGTTCACTAGTG -ACGGAAAGGAAGCGTTCACATCTG -ACGGAAAGGAAGCGTTCAGAGTTG -ACGGAAAGGAAGCGTTCAAGACTG -ACGGAAAGGAAGCGTTCATCGGTA -ACGGAAAGGAAGCGTTCATGCCTA -ACGGAAAGGAAGCGTTCACCACTA -ACGGAAAGGAAGCGTTCAGGAGTA -ACGGAAAGGAAGCGTTCATCGTCT -ACGGAAAGGAAGCGTTCATGCACT -ACGGAAAGGAAGCGTTCACTGACT -ACGGAAAGGAAGCGTTCACAACCT -ACGGAAAGGAAGCGTTCAGCTACT -ACGGAAAGGAAGCGTTCAGGATCT -ACGGAAAGGAAGCGTTCAAAGGCT -ACGGAAAGGAAGCGTTCATCAACC -ACGGAAAGGAAGCGTTCATGTTCC -ACGGAAAGGAAGCGTTCAATTCCC -ACGGAAAGGAAGCGTTCATTCTCG -ACGGAAAGGAAGCGTTCATAGACG -ACGGAAAGGAAGCGTTCAGTAACG -ACGGAAAGGAAGCGTTCAACTTCG -ACGGAAAGGAAGCGTTCATACGCA -ACGGAAAGGAAGCGTTCACTTGCA -ACGGAAAGGAAGCGTTCACGAACA -ACGGAAAGGAAGCGTTCACAGTCA -ACGGAAAGGAAGCGTTCAGATCCA -ACGGAAAGGAAGCGTTCAACGACA -ACGGAAAGGAAGCGTTCAAGCTCA -ACGGAAAGGAAGCGTTCATCACGT -ACGGAAAGGAAGCGTTCACGTAGT -ACGGAAAGGAAGCGTTCAGTCAGT -ACGGAAAGGAAGCGTTCAGAAGGT -ACGGAAAGGAAGCGTTCAAACCGT -ACGGAAAGGAAGCGTTCATTGTGC -ACGGAAAGGAAGCGTTCACTAAGC -ACGGAAAGGAAGCGTTCAACTAGC -ACGGAAAGGAAGCGTTCAAGATGC -ACGGAAAGGAAGCGTTCATGAAGG -ACGGAAAGGAAGCGTTCACAATGG -ACGGAAAGGAAGCGTTCAATGAGG -ACGGAAAGGAAGCGTTCAAATGGG -ACGGAAAGGAAGCGTTCATCCTGA -ACGGAAAGGAAGCGTTCATAGCGA -ACGGAAAGGAAGCGTTCACACAGA -ACGGAAAGGAAGCGTTCAGCAAGA -ACGGAAAGGAAGCGTTCAGGTTGA -ACGGAAAGGAAGCGTTCATCCGAT -ACGGAAAGGAAGCGTTCATGGCAT -ACGGAAAGGAAGCGTTCACGAGAT -ACGGAAAGGAAGCGTTCATACCAC -ACGGAAAGGAAGCGTTCACAGAAC -ACGGAAAGGAAGCGTTCAGTCTAC -ACGGAAAGGAAGCGTTCAACGTAC -ACGGAAAGGAAGCGTTCAAGTGAC -ACGGAAAGGAAGCGTTCACTGTAG -ACGGAAAGGAAGCGTTCACCTAAG -ACGGAAAGGAAGCGTTCAGTTCAG -ACGGAAAGGAAGCGTTCAGCATAG -ACGGAAAGGAAGCGTTCAGACAAG -ACGGAAAGGAAGCGTTCAAAGCAG -ACGGAAAGGAAGCGTTCACGTCAA -ACGGAAAGGAAGCGTTCAGCTGAA -ACGGAAAGGAAGCGTTCAAGTACG -ACGGAAAGGAAGCGTTCAATCCGA -ACGGAAAGGAAGCGTTCAATGGGA -ACGGAAAGGAAGCGTTCAGTGCAA -ACGGAAAGGAAGCGTTCAGAGGAA -ACGGAAAGGAAGCGTTCACAGGTA -ACGGAAAGGAAGCGTTCAGACTCT -ACGGAAAGGAAGCGTTCAAGTCCT -ACGGAAAGGAAGCGTTCATAAGCC -ACGGAAAGGAAGCGTTCAATAGCC -ACGGAAAGGAAGCGTTCATAACCG -ACGGAAAGGAAGCGTTCAATGCCA -ACGGAAAGGAAGAGTCGTGGAAAC -ACGGAAAGGAAGAGTCGTAACACC -ACGGAAAGGAAGAGTCGTATCGAG -ACGGAAAGGAAGAGTCGTCTCCTT -ACGGAAAGGAAGAGTCGTCCTGTT -ACGGAAAGGAAGAGTCGTCGGTTT -ACGGAAAGGAAGAGTCGTGTGGTT -ACGGAAAGGAAGAGTCGTGCCTTT -ACGGAAAGGAAGAGTCGTGGTCTT -ACGGAAAGGAAGAGTCGTACGCTT -ACGGAAAGGAAGAGTCGTAGCGTT -ACGGAAAGGAAGAGTCGTTTCGTC -ACGGAAAGGAAGAGTCGTTCTCTC -ACGGAAAGGAAGAGTCGTTGGATC -ACGGAAAGGAAGAGTCGTCACTTC -ACGGAAAGGAAGAGTCGTGTACTC -ACGGAAAGGAAGAGTCGTGATGTC -ACGGAAAGGAAGAGTCGTACAGTC -ACGGAAAGGAAGAGTCGTTTGCTG -ACGGAAAGGAAGAGTCGTTCCATG -ACGGAAAGGAAGAGTCGTTGTGTG -ACGGAAAGGAAGAGTCGTCTAGTG -ACGGAAAGGAAGAGTCGTCATCTG -ACGGAAAGGAAGAGTCGTGAGTTG -ACGGAAAGGAAGAGTCGTAGACTG -ACGGAAAGGAAGAGTCGTTCGGTA -ACGGAAAGGAAGAGTCGTTGCCTA -ACGGAAAGGAAGAGTCGTCCACTA -ACGGAAAGGAAGAGTCGTGGAGTA -ACGGAAAGGAAGAGTCGTTCGTCT -ACGGAAAGGAAGAGTCGTTGCACT -ACGGAAAGGAAGAGTCGTCTGACT -ACGGAAAGGAAGAGTCGTCAACCT -ACGGAAAGGAAGAGTCGTGCTACT -ACGGAAAGGAAGAGTCGTGGATCT -ACGGAAAGGAAGAGTCGTAAGGCT -ACGGAAAGGAAGAGTCGTTCAACC -ACGGAAAGGAAGAGTCGTTGTTCC -ACGGAAAGGAAGAGTCGTATTCCC -ACGGAAAGGAAGAGTCGTTTCTCG -ACGGAAAGGAAGAGTCGTTAGACG -ACGGAAAGGAAGAGTCGTGTAACG -ACGGAAAGGAAGAGTCGTACTTCG -ACGGAAAGGAAGAGTCGTTACGCA -ACGGAAAGGAAGAGTCGTCTTGCA -ACGGAAAGGAAGAGTCGTCGAACA -ACGGAAAGGAAGAGTCGTCAGTCA -ACGGAAAGGAAGAGTCGTGATCCA -ACGGAAAGGAAGAGTCGTACGACA -ACGGAAAGGAAGAGTCGTAGCTCA -ACGGAAAGGAAGAGTCGTTCACGT -ACGGAAAGGAAGAGTCGTCGTAGT -ACGGAAAGGAAGAGTCGTGTCAGT -ACGGAAAGGAAGAGTCGTGAAGGT -ACGGAAAGGAAGAGTCGTAACCGT -ACGGAAAGGAAGAGTCGTTTGTGC -ACGGAAAGGAAGAGTCGTCTAAGC -ACGGAAAGGAAGAGTCGTACTAGC -ACGGAAAGGAAGAGTCGTAGATGC -ACGGAAAGGAAGAGTCGTTGAAGG -ACGGAAAGGAAGAGTCGTCAATGG -ACGGAAAGGAAGAGTCGTATGAGG -ACGGAAAGGAAGAGTCGTAATGGG -ACGGAAAGGAAGAGTCGTTCCTGA -ACGGAAAGGAAGAGTCGTTAGCGA -ACGGAAAGGAAGAGTCGTCACAGA -ACGGAAAGGAAGAGTCGTGCAAGA -ACGGAAAGGAAGAGTCGTGGTTGA -ACGGAAAGGAAGAGTCGTTCCGAT -ACGGAAAGGAAGAGTCGTTGGCAT -ACGGAAAGGAAGAGTCGTCGAGAT -ACGGAAAGGAAGAGTCGTTACCAC -ACGGAAAGGAAGAGTCGTCAGAAC -ACGGAAAGGAAGAGTCGTGTCTAC -ACGGAAAGGAAGAGTCGTACGTAC -ACGGAAAGGAAGAGTCGTAGTGAC -ACGGAAAGGAAGAGTCGTCTGTAG -ACGGAAAGGAAGAGTCGTCCTAAG -ACGGAAAGGAAGAGTCGTGTTCAG -ACGGAAAGGAAGAGTCGTGCATAG -ACGGAAAGGAAGAGTCGTGACAAG -ACGGAAAGGAAGAGTCGTAAGCAG -ACGGAAAGGAAGAGTCGTCGTCAA -ACGGAAAGGAAGAGTCGTGCTGAA -ACGGAAAGGAAGAGTCGTAGTACG -ACGGAAAGGAAGAGTCGTATCCGA -ACGGAAAGGAAGAGTCGTATGGGA -ACGGAAAGGAAGAGTCGTGTGCAA -ACGGAAAGGAAGAGTCGTGAGGAA -ACGGAAAGGAAGAGTCGTCAGGTA -ACGGAAAGGAAGAGTCGTGACTCT -ACGGAAAGGAAGAGTCGTAGTCCT -ACGGAAAGGAAGAGTCGTTAAGCC -ACGGAAAGGAAGAGTCGTATAGCC -ACGGAAAGGAAGAGTCGTTAACCG -ACGGAAAGGAAGAGTCGTATGCCA -ACGGAAAGGAAGAGTGTCGGAAAC -ACGGAAAGGAAGAGTGTCAACACC -ACGGAAAGGAAGAGTGTCATCGAG -ACGGAAAGGAAGAGTGTCCTCCTT -ACGGAAAGGAAGAGTGTCCCTGTT -ACGGAAAGGAAGAGTGTCCGGTTT -ACGGAAAGGAAGAGTGTCGTGGTT -ACGGAAAGGAAGAGTGTCGCCTTT -ACGGAAAGGAAGAGTGTCGGTCTT -ACGGAAAGGAAGAGTGTCACGCTT -ACGGAAAGGAAGAGTGTCAGCGTT -ACGGAAAGGAAGAGTGTCTTCGTC -ACGGAAAGGAAGAGTGTCTCTCTC -ACGGAAAGGAAGAGTGTCTGGATC -ACGGAAAGGAAGAGTGTCCACTTC -ACGGAAAGGAAGAGTGTCGTACTC -ACGGAAAGGAAGAGTGTCGATGTC -ACGGAAAGGAAGAGTGTCACAGTC -ACGGAAAGGAAGAGTGTCTTGCTG -ACGGAAAGGAAGAGTGTCTCCATG -ACGGAAAGGAAGAGTGTCTGTGTG -ACGGAAAGGAAGAGTGTCCTAGTG -ACGGAAAGGAAGAGTGTCCATCTG -ACGGAAAGGAAGAGTGTCGAGTTG -ACGGAAAGGAAGAGTGTCAGACTG -ACGGAAAGGAAGAGTGTCTCGGTA -ACGGAAAGGAAGAGTGTCTGCCTA -ACGGAAAGGAAGAGTGTCCCACTA -ACGGAAAGGAAGAGTGTCGGAGTA -ACGGAAAGGAAGAGTGTCTCGTCT -ACGGAAAGGAAGAGTGTCTGCACT -ACGGAAAGGAAGAGTGTCCTGACT -ACGGAAAGGAAGAGTGTCCAACCT -ACGGAAAGGAAGAGTGTCGCTACT -ACGGAAAGGAAGAGTGTCGGATCT -ACGGAAAGGAAGAGTGTCAAGGCT -ACGGAAAGGAAGAGTGTCTCAACC -ACGGAAAGGAAGAGTGTCTGTTCC -ACGGAAAGGAAGAGTGTCATTCCC -ACGGAAAGGAAGAGTGTCTTCTCG -ACGGAAAGGAAGAGTGTCTAGACG -ACGGAAAGGAAGAGTGTCGTAACG -ACGGAAAGGAAGAGTGTCACTTCG -ACGGAAAGGAAGAGTGTCTACGCA -ACGGAAAGGAAGAGTGTCCTTGCA -ACGGAAAGGAAGAGTGTCCGAACA -ACGGAAAGGAAGAGTGTCCAGTCA -ACGGAAAGGAAGAGTGTCGATCCA -ACGGAAAGGAAGAGTGTCACGACA -ACGGAAAGGAAGAGTGTCAGCTCA -ACGGAAAGGAAGAGTGTCTCACGT -ACGGAAAGGAAGAGTGTCCGTAGT -ACGGAAAGGAAGAGTGTCGTCAGT -ACGGAAAGGAAGAGTGTCGAAGGT -ACGGAAAGGAAGAGTGTCAACCGT -ACGGAAAGGAAGAGTGTCTTGTGC -ACGGAAAGGAAGAGTGTCCTAAGC -ACGGAAAGGAAGAGTGTCACTAGC -ACGGAAAGGAAGAGTGTCAGATGC -ACGGAAAGGAAGAGTGTCTGAAGG -ACGGAAAGGAAGAGTGTCCAATGG -ACGGAAAGGAAGAGTGTCATGAGG -ACGGAAAGGAAGAGTGTCAATGGG -ACGGAAAGGAAGAGTGTCTCCTGA -ACGGAAAGGAAGAGTGTCTAGCGA -ACGGAAAGGAAGAGTGTCCACAGA -ACGGAAAGGAAGAGTGTCGCAAGA -ACGGAAAGGAAGAGTGTCGGTTGA -ACGGAAAGGAAGAGTGTCTCCGAT -ACGGAAAGGAAGAGTGTCTGGCAT -ACGGAAAGGAAGAGTGTCCGAGAT -ACGGAAAGGAAGAGTGTCTACCAC -ACGGAAAGGAAGAGTGTCCAGAAC -ACGGAAAGGAAGAGTGTCGTCTAC -ACGGAAAGGAAGAGTGTCACGTAC -ACGGAAAGGAAGAGTGTCAGTGAC -ACGGAAAGGAAGAGTGTCCTGTAG -ACGGAAAGGAAGAGTGTCCCTAAG -ACGGAAAGGAAGAGTGTCGTTCAG -ACGGAAAGGAAGAGTGTCGCATAG -ACGGAAAGGAAGAGTGTCGACAAG -ACGGAAAGGAAGAGTGTCAAGCAG -ACGGAAAGGAAGAGTGTCCGTCAA -ACGGAAAGGAAGAGTGTCGCTGAA -ACGGAAAGGAAGAGTGTCAGTACG -ACGGAAAGGAAGAGTGTCATCCGA -ACGGAAAGGAAGAGTGTCATGGGA -ACGGAAAGGAAGAGTGTCGTGCAA -ACGGAAAGGAAGAGTGTCGAGGAA -ACGGAAAGGAAGAGTGTCCAGGTA -ACGGAAAGGAAGAGTGTCGACTCT -ACGGAAAGGAAGAGTGTCAGTCCT -ACGGAAAGGAAGAGTGTCTAAGCC -ACGGAAAGGAAGAGTGTCATAGCC -ACGGAAAGGAAGAGTGTCTAACCG -ACGGAAAGGAAGAGTGTCATGCCA -ACGGAAAGGAAGGGTGAAGGAAAC -ACGGAAAGGAAGGGTGAAAACACC -ACGGAAAGGAAGGGTGAAATCGAG -ACGGAAAGGAAGGGTGAACTCCTT -ACGGAAAGGAAGGGTGAACCTGTT -ACGGAAAGGAAGGGTGAACGGTTT -ACGGAAAGGAAGGGTGAAGTGGTT -ACGGAAAGGAAGGGTGAAGCCTTT -ACGGAAAGGAAGGGTGAAGGTCTT -ACGGAAAGGAAGGGTGAAACGCTT -ACGGAAAGGAAGGGTGAAAGCGTT -ACGGAAAGGAAGGGTGAATTCGTC -ACGGAAAGGAAGGGTGAATCTCTC -ACGGAAAGGAAGGGTGAATGGATC -ACGGAAAGGAAGGGTGAACACTTC -ACGGAAAGGAAGGGTGAAGTACTC -ACGGAAAGGAAGGGTGAAGATGTC -ACGGAAAGGAAGGGTGAAACAGTC -ACGGAAAGGAAGGGTGAATTGCTG -ACGGAAAGGAAGGGTGAATCCATG -ACGGAAAGGAAGGGTGAATGTGTG -ACGGAAAGGAAGGGTGAACTAGTG -ACGGAAAGGAAGGGTGAACATCTG -ACGGAAAGGAAGGGTGAAGAGTTG -ACGGAAAGGAAGGGTGAAAGACTG -ACGGAAAGGAAGGGTGAATCGGTA -ACGGAAAGGAAGGGTGAATGCCTA -ACGGAAAGGAAGGGTGAACCACTA -ACGGAAAGGAAGGGTGAAGGAGTA -ACGGAAAGGAAGGGTGAATCGTCT -ACGGAAAGGAAGGGTGAATGCACT -ACGGAAAGGAAGGGTGAACTGACT -ACGGAAAGGAAGGGTGAACAACCT -ACGGAAAGGAAGGGTGAAGCTACT -ACGGAAAGGAAGGGTGAAGGATCT -ACGGAAAGGAAGGGTGAAAAGGCT -ACGGAAAGGAAGGGTGAATCAACC -ACGGAAAGGAAGGGTGAATGTTCC -ACGGAAAGGAAGGGTGAAATTCCC -ACGGAAAGGAAGGGTGAATTCTCG -ACGGAAAGGAAGGGTGAATAGACG -ACGGAAAGGAAGGGTGAAGTAACG -ACGGAAAGGAAGGGTGAAACTTCG -ACGGAAAGGAAGGGTGAATACGCA -ACGGAAAGGAAGGGTGAACTTGCA -ACGGAAAGGAAGGGTGAACGAACA -ACGGAAAGGAAGGGTGAACAGTCA -ACGGAAAGGAAGGGTGAAGATCCA -ACGGAAAGGAAGGGTGAAACGACA -ACGGAAAGGAAGGGTGAAAGCTCA -ACGGAAAGGAAGGGTGAATCACGT -ACGGAAAGGAAGGGTGAACGTAGT -ACGGAAAGGAAGGGTGAAGTCAGT -ACGGAAAGGAAGGGTGAAGAAGGT -ACGGAAAGGAAGGGTGAAAACCGT -ACGGAAAGGAAGGGTGAATTGTGC -ACGGAAAGGAAGGGTGAACTAAGC -ACGGAAAGGAAGGGTGAAACTAGC -ACGGAAAGGAAGGGTGAAAGATGC -ACGGAAAGGAAGGGTGAATGAAGG -ACGGAAAGGAAGGGTGAACAATGG -ACGGAAAGGAAGGGTGAAATGAGG -ACGGAAAGGAAGGGTGAAAATGGG -ACGGAAAGGAAGGGTGAATCCTGA -ACGGAAAGGAAGGGTGAATAGCGA -ACGGAAAGGAAGGGTGAACACAGA -ACGGAAAGGAAGGGTGAAGCAAGA -ACGGAAAGGAAGGGTGAAGGTTGA -ACGGAAAGGAAGGGTGAATCCGAT -ACGGAAAGGAAGGGTGAATGGCAT -ACGGAAAGGAAGGGTGAACGAGAT -ACGGAAAGGAAGGGTGAATACCAC -ACGGAAAGGAAGGGTGAACAGAAC -ACGGAAAGGAAGGGTGAAGTCTAC -ACGGAAAGGAAGGGTGAAACGTAC -ACGGAAAGGAAGGGTGAAAGTGAC -ACGGAAAGGAAGGGTGAACTGTAG -ACGGAAAGGAAGGGTGAACCTAAG -ACGGAAAGGAAGGGTGAAGTTCAG -ACGGAAAGGAAGGGTGAAGCATAG -ACGGAAAGGAAGGGTGAAGACAAG -ACGGAAAGGAAGGGTGAAAAGCAG -ACGGAAAGGAAGGGTGAACGTCAA -ACGGAAAGGAAGGGTGAAGCTGAA -ACGGAAAGGAAGGGTGAAAGTACG -ACGGAAAGGAAGGGTGAAATCCGA -ACGGAAAGGAAGGGTGAAATGGGA -ACGGAAAGGAAGGGTGAAGTGCAA -ACGGAAAGGAAGGGTGAAGAGGAA -ACGGAAAGGAAGGGTGAACAGGTA -ACGGAAAGGAAGGGTGAAGACTCT -ACGGAAAGGAAGGGTGAAAGTCCT -ACGGAAAGGAAGGGTGAATAAGCC -ACGGAAAGGAAGGGTGAAATAGCC -ACGGAAAGGAAGGGTGAATAACCG -ACGGAAAGGAAGGGTGAAATGCCA -ACGGAAAGGAAGCGTAACGGAAAC -ACGGAAAGGAAGCGTAACAACACC -ACGGAAAGGAAGCGTAACATCGAG -ACGGAAAGGAAGCGTAACCTCCTT -ACGGAAAGGAAGCGTAACCCTGTT -ACGGAAAGGAAGCGTAACCGGTTT -ACGGAAAGGAAGCGTAACGTGGTT -ACGGAAAGGAAGCGTAACGCCTTT -ACGGAAAGGAAGCGTAACGGTCTT -ACGGAAAGGAAGCGTAACACGCTT -ACGGAAAGGAAGCGTAACAGCGTT -ACGGAAAGGAAGCGTAACTTCGTC -ACGGAAAGGAAGCGTAACTCTCTC -ACGGAAAGGAAGCGTAACTGGATC -ACGGAAAGGAAGCGTAACCACTTC -ACGGAAAGGAAGCGTAACGTACTC -ACGGAAAGGAAGCGTAACGATGTC -ACGGAAAGGAAGCGTAACACAGTC -ACGGAAAGGAAGCGTAACTTGCTG -ACGGAAAGGAAGCGTAACTCCATG -ACGGAAAGGAAGCGTAACTGTGTG -ACGGAAAGGAAGCGTAACCTAGTG -ACGGAAAGGAAGCGTAACCATCTG -ACGGAAAGGAAGCGTAACGAGTTG -ACGGAAAGGAAGCGTAACAGACTG -ACGGAAAGGAAGCGTAACTCGGTA -ACGGAAAGGAAGCGTAACTGCCTA -ACGGAAAGGAAGCGTAACCCACTA -ACGGAAAGGAAGCGTAACGGAGTA -ACGGAAAGGAAGCGTAACTCGTCT -ACGGAAAGGAAGCGTAACTGCACT -ACGGAAAGGAAGCGTAACCTGACT -ACGGAAAGGAAGCGTAACCAACCT -ACGGAAAGGAAGCGTAACGCTACT -ACGGAAAGGAAGCGTAACGGATCT -ACGGAAAGGAAGCGTAACAAGGCT -ACGGAAAGGAAGCGTAACTCAACC -ACGGAAAGGAAGCGTAACTGTTCC -ACGGAAAGGAAGCGTAACATTCCC -ACGGAAAGGAAGCGTAACTTCTCG -ACGGAAAGGAAGCGTAACTAGACG -ACGGAAAGGAAGCGTAACGTAACG -ACGGAAAGGAAGCGTAACACTTCG -ACGGAAAGGAAGCGTAACTACGCA -ACGGAAAGGAAGCGTAACCTTGCA -ACGGAAAGGAAGCGTAACCGAACA -ACGGAAAGGAAGCGTAACCAGTCA -ACGGAAAGGAAGCGTAACGATCCA -ACGGAAAGGAAGCGTAACACGACA -ACGGAAAGGAAGCGTAACAGCTCA -ACGGAAAGGAAGCGTAACTCACGT -ACGGAAAGGAAGCGTAACCGTAGT -ACGGAAAGGAAGCGTAACGTCAGT -ACGGAAAGGAAGCGTAACGAAGGT -ACGGAAAGGAAGCGTAACAACCGT -ACGGAAAGGAAGCGTAACTTGTGC -ACGGAAAGGAAGCGTAACCTAAGC -ACGGAAAGGAAGCGTAACACTAGC -ACGGAAAGGAAGCGTAACAGATGC -ACGGAAAGGAAGCGTAACTGAAGG -ACGGAAAGGAAGCGTAACCAATGG -ACGGAAAGGAAGCGTAACATGAGG -ACGGAAAGGAAGCGTAACAATGGG -ACGGAAAGGAAGCGTAACTCCTGA -ACGGAAAGGAAGCGTAACTAGCGA -ACGGAAAGGAAGCGTAACCACAGA -ACGGAAAGGAAGCGTAACGCAAGA -ACGGAAAGGAAGCGTAACGGTTGA -ACGGAAAGGAAGCGTAACTCCGAT -ACGGAAAGGAAGCGTAACTGGCAT -ACGGAAAGGAAGCGTAACCGAGAT -ACGGAAAGGAAGCGTAACTACCAC -ACGGAAAGGAAGCGTAACCAGAAC -ACGGAAAGGAAGCGTAACGTCTAC -ACGGAAAGGAAGCGTAACACGTAC -ACGGAAAGGAAGCGTAACAGTGAC -ACGGAAAGGAAGCGTAACCTGTAG -ACGGAAAGGAAGCGTAACCCTAAG -ACGGAAAGGAAGCGTAACGTTCAG -ACGGAAAGGAAGCGTAACGCATAG -ACGGAAAGGAAGCGTAACGACAAG -ACGGAAAGGAAGCGTAACAAGCAG -ACGGAAAGGAAGCGTAACCGTCAA -ACGGAAAGGAAGCGTAACGCTGAA -ACGGAAAGGAAGCGTAACAGTACG -ACGGAAAGGAAGCGTAACATCCGA -ACGGAAAGGAAGCGTAACATGGGA -ACGGAAAGGAAGCGTAACGTGCAA -ACGGAAAGGAAGCGTAACGAGGAA -ACGGAAAGGAAGCGTAACCAGGTA -ACGGAAAGGAAGCGTAACGACTCT -ACGGAAAGGAAGCGTAACAGTCCT -ACGGAAAGGAAGCGTAACTAAGCC -ACGGAAAGGAAGCGTAACATAGCC -ACGGAAAGGAAGCGTAACTAACCG -ACGGAAAGGAAGCGTAACATGCCA -ACGGAAAGGAAGTGCTTGGGAAAC -ACGGAAAGGAAGTGCTTGAACACC -ACGGAAAGGAAGTGCTTGATCGAG -ACGGAAAGGAAGTGCTTGCTCCTT -ACGGAAAGGAAGTGCTTGCCTGTT -ACGGAAAGGAAGTGCTTGCGGTTT -ACGGAAAGGAAGTGCTTGGTGGTT -ACGGAAAGGAAGTGCTTGGCCTTT -ACGGAAAGGAAGTGCTTGGGTCTT -ACGGAAAGGAAGTGCTTGACGCTT -ACGGAAAGGAAGTGCTTGAGCGTT -ACGGAAAGGAAGTGCTTGTTCGTC -ACGGAAAGGAAGTGCTTGTCTCTC -ACGGAAAGGAAGTGCTTGTGGATC -ACGGAAAGGAAGTGCTTGCACTTC -ACGGAAAGGAAGTGCTTGGTACTC -ACGGAAAGGAAGTGCTTGGATGTC -ACGGAAAGGAAGTGCTTGACAGTC -ACGGAAAGGAAGTGCTTGTTGCTG -ACGGAAAGGAAGTGCTTGTCCATG -ACGGAAAGGAAGTGCTTGTGTGTG -ACGGAAAGGAAGTGCTTGCTAGTG -ACGGAAAGGAAGTGCTTGCATCTG -ACGGAAAGGAAGTGCTTGGAGTTG -ACGGAAAGGAAGTGCTTGAGACTG -ACGGAAAGGAAGTGCTTGTCGGTA -ACGGAAAGGAAGTGCTTGTGCCTA -ACGGAAAGGAAGTGCTTGCCACTA -ACGGAAAGGAAGTGCTTGGGAGTA -ACGGAAAGGAAGTGCTTGTCGTCT -ACGGAAAGGAAGTGCTTGTGCACT -ACGGAAAGGAAGTGCTTGCTGACT -ACGGAAAGGAAGTGCTTGCAACCT -ACGGAAAGGAAGTGCTTGGCTACT -ACGGAAAGGAAGTGCTTGGGATCT -ACGGAAAGGAAGTGCTTGAAGGCT -ACGGAAAGGAAGTGCTTGTCAACC -ACGGAAAGGAAGTGCTTGTGTTCC -ACGGAAAGGAAGTGCTTGATTCCC -ACGGAAAGGAAGTGCTTGTTCTCG -ACGGAAAGGAAGTGCTTGTAGACG -ACGGAAAGGAAGTGCTTGGTAACG -ACGGAAAGGAAGTGCTTGACTTCG -ACGGAAAGGAAGTGCTTGTACGCA -ACGGAAAGGAAGTGCTTGCTTGCA -ACGGAAAGGAAGTGCTTGCGAACA -ACGGAAAGGAAGTGCTTGCAGTCA -ACGGAAAGGAAGTGCTTGGATCCA -ACGGAAAGGAAGTGCTTGACGACA -ACGGAAAGGAAGTGCTTGAGCTCA -ACGGAAAGGAAGTGCTTGTCACGT -ACGGAAAGGAAGTGCTTGCGTAGT -ACGGAAAGGAAGTGCTTGGTCAGT -ACGGAAAGGAAGTGCTTGGAAGGT -ACGGAAAGGAAGTGCTTGAACCGT -ACGGAAAGGAAGTGCTTGTTGTGC -ACGGAAAGGAAGTGCTTGCTAAGC -ACGGAAAGGAAGTGCTTGACTAGC -ACGGAAAGGAAGTGCTTGAGATGC -ACGGAAAGGAAGTGCTTGTGAAGG -ACGGAAAGGAAGTGCTTGCAATGG -ACGGAAAGGAAGTGCTTGATGAGG -ACGGAAAGGAAGTGCTTGAATGGG -ACGGAAAGGAAGTGCTTGTCCTGA -ACGGAAAGGAAGTGCTTGTAGCGA -ACGGAAAGGAAGTGCTTGCACAGA -ACGGAAAGGAAGTGCTTGGCAAGA -ACGGAAAGGAAGTGCTTGGGTTGA -ACGGAAAGGAAGTGCTTGTCCGAT -ACGGAAAGGAAGTGCTTGTGGCAT -ACGGAAAGGAAGTGCTTGCGAGAT -ACGGAAAGGAAGTGCTTGTACCAC -ACGGAAAGGAAGTGCTTGCAGAAC -ACGGAAAGGAAGTGCTTGGTCTAC -ACGGAAAGGAAGTGCTTGACGTAC -ACGGAAAGGAAGTGCTTGAGTGAC -ACGGAAAGGAAGTGCTTGCTGTAG -ACGGAAAGGAAGTGCTTGCCTAAG -ACGGAAAGGAAGTGCTTGGTTCAG -ACGGAAAGGAAGTGCTTGGCATAG -ACGGAAAGGAAGTGCTTGGACAAG -ACGGAAAGGAAGTGCTTGAAGCAG -ACGGAAAGGAAGTGCTTGCGTCAA -ACGGAAAGGAAGTGCTTGGCTGAA -ACGGAAAGGAAGTGCTTGAGTACG -ACGGAAAGGAAGTGCTTGATCCGA -ACGGAAAGGAAGTGCTTGATGGGA -ACGGAAAGGAAGTGCTTGGTGCAA -ACGGAAAGGAAGTGCTTGGAGGAA -ACGGAAAGGAAGTGCTTGCAGGTA -ACGGAAAGGAAGTGCTTGGACTCT -ACGGAAAGGAAGTGCTTGAGTCCT -ACGGAAAGGAAGTGCTTGTAAGCC -ACGGAAAGGAAGTGCTTGATAGCC -ACGGAAAGGAAGTGCTTGTAACCG -ACGGAAAGGAAGTGCTTGATGCCA -ACGGAAAGGAAGAGCCTAGGAAAC -ACGGAAAGGAAGAGCCTAAACACC -ACGGAAAGGAAGAGCCTAATCGAG -ACGGAAAGGAAGAGCCTACTCCTT -ACGGAAAGGAAGAGCCTACCTGTT -ACGGAAAGGAAGAGCCTACGGTTT -ACGGAAAGGAAGAGCCTAGTGGTT -ACGGAAAGGAAGAGCCTAGCCTTT -ACGGAAAGGAAGAGCCTAGGTCTT -ACGGAAAGGAAGAGCCTAACGCTT -ACGGAAAGGAAGAGCCTAAGCGTT -ACGGAAAGGAAGAGCCTATTCGTC -ACGGAAAGGAAGAGCCTATCTCTC -ACGGAAAGGAAGAGCCTATGGATC -ACGGAAAGGAAGAGCCTACACTTC -ACGGAAAGGAAGAGCCTAGTACTC -ACGGAAAGGAAGAGCCTAGATGTC -ACGGAAAGGAAGAGCCTAACAGTC -ACGGAAAGGAAGAGCCTATTGCTG -ACGGAAAGGAAGAGCCTATCCATG -ACGGAAAGGAAGAGCCTATGTGTG -ACGGAAAGGAAGAGCCTACTAGTG -ACGGAAAGGAAGAGCCTACATCTG -ACGGAAAGGAAGAGCCTAGAGTTG -ACGGAAAGGAAGAGCCTAAGACTG -ACGGAAAGGAAGAGCCTATCGGTA -ACGGAAAGGAAGAGCCTATGCCTA -ACGGAAAGGAAGAGCCTACCACTA -ACGGAAAGGAAGAGCCTAGGAGTA -ACGGAAAGGAAGAGCCTATCGTCT -ACGGAAAGGAAGAGCCTATGCACT -ACGGAAAGGAAGAGCCTACTGACT -ACGGAAAGGAAGAGCCTACAACCT -ACGGAAAGGAAGAGCCTAGCTACT -ACGGAAAGGAAGAGCCTAGGATCT -ACGGAAAGGAAGAGCCTAAAGGCT -ACGGAAAGGAAGAGCCTATCAACC -ACGGAAAGGAAGAGCCTATGTTCC -ACGGAAAGGAAGAGCCTAATTCCC -ACGGAAAGGAAGAGCCTATTCTCG -ACGGAAAGGAAGAGCCTATAGACG -ACGGAAAGGAAGAGCCTAGTAACG -ACGGAAAGGAAGAGCCTAACTTCG -ACGGAAAGGAAGAGCCTATACGCA -ACGGAAAGGAAGAGCCTACTTGCA -ACGGAAAGGAAGAGCCTACGAACA -ACGGAAAGGAAGAGCCTACAGTCA -ACGGAAAGGAAGAGCCTAGATCCA -ACGGAAAGGAAGAGCCTAACGACA -ACGGAAAGGAAGAGCCTAAGCTCA -ACGGAAAGGAAGAGCCTATCACGT -ACGGAAAGGAAGAGCCTACGTAGT -ACGGAAAGGAAGAGCCTAGTCAGT -ACGGAAAGGAAGAGCCTAGAAGGT -ACGGAAAGGAAGAGCCTAAACCGT -ACGGAAAGGAAGAGCCTATTGTGC -ACGGAAAGGAAGAGCCTACTAAGC -ACGGAAAGGAAGAGCCTAACTAGC -ACGGAAAGGAAGAGCCTAAGATGC -ACGGAAAGGAAGAGCCTATGAAGG -ACGGAAAGGAAGAGCCTACAATGG -ACGGAAAGGAAGAGCCTAATGAGG -ACGGAAAGGAAGAGCCTAAATGGG -ACGGAAAGGAAGAGCCTATCCTGA -ACGGAAAGGAAGAGCCTATAGCGA -ACGGAAAGGAAGAGCCTACACAGA -ACGGAAAGGAAGAGCCTAGCAAGA -ACGGAAAGGAAGAGCCTAGGTTGA -ACGGAAAGGAAGAGCCTATCCGAT -ACGGAAAGGAAGAGCCTATGGCAT -ACGGAAAGGAAGAGCCTACGAGAT -ACGGAAAGGAAGAGCCTATACCAC -ACGGAAAGGAAGAGCCTACAGAAC -ACGGAAAGGAAGAGCCTAGTCTAC -ACGGAAAGGAAGAGCCTAACGTAC -ACGGAAAGGAAGAGCCTAAGTGAC -ACGGAAAGGAAGAGCCTACTGTAG -ACGGAAAGGAAGAGCCTACCTAAG -ACGGAAAGGAAGAGCCTAGTTCAG -ACGGAAAGGAAGAGCCTAGCATAG -ACGGAAAGGAAGAGCCTAGACAAG -ACGGAAAGGAAGAGCCTAAAGCAG -ACGGAAAGGAAGAGCCTACGTCAA -ACGGAAAGGAAGAGCCTAGCTGAA -ACGGAAAGGAAGAGCCTAAGTACG -ACGGAAAGGAAGAGCCTAATCCGA -ACGGAAAGGAAGAGCCTAATGGGA -ACGGAAAGGAAGAGCCTAGTGCAA -ACGGAAAGGAAGAGCCTAGAGGAA -ACGGAAAGGAAGAGCCTACAGGTA -ACGGAAAGGAAGAGCCTAGACTCT -ACGGAAAGGAAGAGCCTAAGTCCT -ACGGAAAGGAAGAGCCTATAAGCC -ACGGAAAGGAAGAGCCTAATAGCC -ACGGAAAGGAAGAGCCTATAACCG -ACGGAAAGGAAGAGCCTAATGCCA -ACGGAAAGGAAGAGCACTGGAAAC -ACGGAAAGGAAGAGCACTAACACC -ACGGAAAGGAAGAGCACTATCGAG -ACGGAAAGGAAGAGCACTCTCCTT -ACGGAAAGGAAGAGCACTCCTGTT -ACGGAAAGGAAGAGCACTCGGTTT -ACGGAAAGGAAGAGCACTGTGGTT -ACGGAAAGGAAGAGCACTGCCTTT -ACGGAAAGGAAGAGCACTGGTCTT -ACGGAAAGGAAGAGCACTACGCTT -ACGGAAAGGAAGAGCACTAGCGTT -ACGGAAAGGAAGAGCACTTTCGTC -ACGGAAAGGAAGAGCACTTCTCTC -ACGGAAAGGAAGAGCACTTGGATC -ACGGAAAGGAAGAGCACTCACTTC -ACGGAAAGGAAGAGCACTGTACTC -ACGGAAAGGAAGAGCACTGATGTC -ACGGAAAGGAAGAGCACTACAGTC -ACGGAAAGGAAGAGCACTTTGCTG -ACGGAAAGGAAGAGCACTTCCATG -ACGGAAAGGAAGAGCACTTGTGTG -ACGGAAAGGAAGAGCACTCTAGTG -ACGGAAAGGAAGAGCACTCATCTG -ACGGAAAGGAAGAGCACTGAGTTG -ACGGAAAGGAAGAGCACTAGACTG -ACGGAAAGGAAGAGCACTTCGGTA -ACGGAAAGGAAGAGCACTTGCCTA -ACGGAAAGGAAGAGCACTCCACTA -ACGGAAAGGAAGAGCACTGGAGTA -ACGGAAAGGAAGAGCACTTCGTCT -ACGGAAAGGAAGAGCACTTGCACT -ACGGAAAGGAAGAGCACTCTGACT -ACGGAAAGGAAGAGCACTCAACCT -ACGGAAAGGAAGAGCACTGCTACT -ACGGAAAGGAAGAGCACTGGATCT -ACGGAAAGGAAGAGCACTAAGGCT -ACGGAAAGGAAGAGCACTTCAACC -ACGGAAAGGAAGAGCACTTGTTCC -ACGGAAAGGAAGAGCACTATTCCC -ACGGAAAGGAAGAGCACTTTCTCG -ACGGAAAGGAAGAGCACTTAGACG -ACGGAAAGGAAGAGCACTGTAACG -ACGGAAAGGAAGAGCACTACTTCG -ACGGAAAGGAAGAGCACTTACGCA -ACGGAAAGGAAGAGCACTCTTGCA -ACGGAAAGGAAGAGCACTCGAACA -ACGGAAAGGAAGAGCACTCAGTCA -ACGGAAAGGAAGAGCACTGATCCA -ACGGAAAGGAAGAGCACTACGACA -ACGGAAAGGAAGAGCACTAGCTCA -ACGGAAAGGAAGAGCACTTCACGT -ACGGAAAGGAAGAGCACTCGTAGT -ACGGAAAGGAAGAGCACTGTCAGT -ACGGAAAGGAAGAGCACTGAAGGT -ACGGAAAGGAAGAGCACTAACCGT -ACGGAAAGGAAGAGCACTTTGTGC -ACGGAAAGGAAGAGCACTCTAAGC -ACGGAAAGGAAGAGCACTACTAGC -ACGGAAAGGAAGAGCACTAGATGC -ACGGAAAGGAAGAGCACTTGAAGG -ACGGAAAGGAAGAGCACTCAATGG -ACGGAAAGGAAGAGCACTATGAGG -ACGGAAAGGAAGAGCACTAATGGG -ACGGAAAGGAAGAGCACTTCCTGA -ACGGAAAGGAAGAGCACTTAGCGA -ACGGAAAGGAAGAGCACTCACAGA -ACGGAAAGGAAGAGCACTGCAAGA -ACGGAAAGGAAGAGCACTGGTTGA -ACGGAAAGGAAGAGCACTTCCGAT -ACGGAAAGGAAGAGCACTTGGCAT -ACGGAAAGGAAGAGCACTCGAGAT -ACGGAAAGGAAGAGCACTTACCAC -ACGGAAAGGAAGAGCACTCAGAAC -ACGGAAAGGAAGAGCACTGTCTAC -ACGGAAAGGAAGAGCACTACGTAC -ACGGAAAGGAAGAGCACTAGTGAC -ACGGAAAGGAAGAGCACTCTGTAG -ACGGAAAGGAAGAGCACTCCTAAG -ACGGAAAGGAAGAGCACTGTTCAG -ACGGAAAGGAAGAGCACTGCATAG -ACGGAAAGGAAGAGCACTGACAAG -ACGGAAAGGAAGAGCACTAAGCAG -ACGGAAAGGAAGAGCACTCGTCAA -ACGGAAAGGAAGAGCACTGCTGAA -ACGGAAAGGAAGAGCACTAGTACG -ACGGAAAGGAAGAGCACTATCCGA -ACGGAAAGGAAGAGCACTATGGGA -ACGGAAAGGAAGAGCACTGTGCAA -ACGGAAAGGAAGAGCACTGAGGAA -ACGGAAAGGAAGAGCACTCAGGTA -ACGGAAAGGAAGAGCACTGACTCT -ACGGAAAGGAAGAGCACTAGTCCT -ACGGAAAGGAAGAGCACTTAAGCC -ACGGAAAGGAAGAGCACTATAGCC -ACGGAAAGGAAGAGCACTTAACCG -ACGGAAAGGAAGAGCACTATGCCA -ACGGAAAGGAAGTGCAGAGGAAAC -ACGGAAAGGAAGTGCAGAAACACC -ACGGAAAGGAAGTGCAGAATCGAG -ACGGAAAGGAAGTGCAGACTCCTT -ACGGAAAGGAAGTGCAGACCTGTT -ACGGAAAGGAAGTGCAGACGGTTT -ACGGAAAGGAAGTGCAGAGTGGTT -ACGGAAAGGAAGTGCAGAGCCTTT -ACGGAAAGGAAGTGCAGAGGTCTT -ACGGAAAGGAAGTGCAGAACGCTT -ACGGAAAGGAAGTGCAGAAGCGTT -ACGGAAAGGAAGTGCAGATTCGTC -ACGGAAAGGAAGTGCAGATCTCTC -ACGGAAAGGAAGTGCAGATGGATC -ACGGAAAGGAAGTGCAGACACTTC -ACGGAAAGGAAGTGCAGAGTACTC -ACGGAAAGGAAGTGCAGAGATGTC -ACGGAAAGGAAGTGCAGAACAGTC -ACGGAAAGGAAGTGCAGATTGCTG -ACGGAAAGGAAGTGCAGATCCATG -ACGGAAAGGAAGTGCAGATGTGTG -ACGGAAAGGAAGTGCAGACTAGTG -ACGGAAAGGAAGTGCAGACATCTG -ACGGAAAGGAAGTGCAGAGAGTTG -ACGGAAAGGAAGTGCAGAAGACTG -ACGGAAAGGAAGTGCAGATCGGTA -ACGGAAAGGAAGTGCAGATGCCTA -ACGGAAAGGAAGTGCAGACCACTA -ACGGAAAGGAAGTGCAGAGGAGTA -ACGGAAAGGAAGTGCAGATCGTCT -ACGGAAAGGAAGTGCAGATGCACT -ACGGAAAGGAAGTGCAGACTGACT -ACGGAAAGGAAGTGCAGACAACCT -ACGGAAAGGAAGTGCAGAGCTACT -ACGGAAAGGAAGTGCAGAGGATCT -ACGGAAAGGAAGTGCAGAAAGGCT -ACGGAAAGGAAGTGCAGATCAACC -ACGGAAAGGAAGTGCAGATGTTCC -ACGGAAAGGAAGTGCAGAATTCCC -ACGGAAAGGAAGTGCAGATTCTCG -ACGGAAAGGAAGTGCAGATAGACG -ACGGAAAGGAAGTGCAGAGTAACG -ACGGAAAGGAAGTGCAGAACTTCG -ACGGAAAGGAAGTGCAGATACGCA -ACGGAAAGGAAGTGCAGACTTGCA -ACGGAAAGGAAGTGCAGACGAACA -ACGGAAAGGAAGTGCAGACAGTCA -ACGGAAAGGAAGTGCAGAGATCCA -ACGGAAAGGAAGTGCAGAACGACA -ACGGAAAGGAAGTGCAGAAGCTCA -ACGGAAAGGAAGTGCAGATCACGT -ACGGAAAGGAAGTGCAGACGTAGT -ACGGAAAGGAAGTGCAGAGTCAGT -ACGGAAAGGAAGTGCAGAGAAGGT -ACGGAAAGGAAGTGCAGAAACCGT -ACGGAAAGGAAGTGCAGATTGTGC -ACGGAAAGGAAGTGCAGACTAAGC -ACGGAAAGGAAGTGCAGAACTAGC -ACGGAAAGGAAGTGCAGAAGATGC -ACGGAAAGGAAGTGCAGATGAAGG -ACGGAAAGGAAGTGCAGACAATGG -ACGGAAAGGAAGTGCAGAATGAGG -ACGGAAAGGAAGTGCAGAAATGGG -ACGGAAAGGAAGTGCAGATCCTGA -ACGGAAAGGAAGTGCAGATAGCGA -ACGGAAAGGAAGTGCAGACACAGA -ACGGAAAGGAAGTGCAGAGCAAGA -ACGGAAAGGAAGTGCAGAGGTTGA -ACGGAAAGGAAGTGCAGATCCGAT -ACGGAAAGGAAGTGCAGATGGCAT -ACGGAAAGGAAGTGCAGACGAGAT -ACGGAAAGGAAGTGCAGATACCAC -ACGGAAAGGAAGTGCAGACAGAAC -ACGGAAAGGAAGTGCAGAGTCTAC -ACGGAAAGGAAGTGCAGAACGTAC -ACGGAAAGGAAGTGCAGAAGTGAC -ACGGAAAGGAAGTGCAGACTGTAG -ACGGAAAGGAAGTGCAGACCTAAG -ACGGAAAGGAAGTGCAGAGTTCAG -ACGGAAAGGAAGTGCAGAGCATAG -ACGGAAAGGAAGTGCAGAGACAAG -ACGGAAAGGAAGTGCAGAAAGCAG -ACGGAAAGGAAGTGCAGACGTCAA -ACGGAAAGGAAGTGCAGAGCTGAA -ACGGAAAGGAAGTGCAGAAGTACG -ACGGAAAGGAAGTGCAGAATCCGA -ACGGAAAGGAAGTGCAGAATGGGA -ACGGAAAGGAAGTGCAGAGTGCAA -ACGGAAAGGAAGTGCAGAGAGGAA -ACGGAAAGGAAGTGCAGACAGGTA -ACGGAAAGGAAGTGCAGAGACTCT -ACGGAAAGGAAGTGCAGAAGTCCT -ACGGAAAGGAAGTGCAGATAAGCC -ACGGAAAGGAAGTGCAGAATAGCC -ACGGAAAGGAAGTGCAGATAACCG -ACGGAAAGGAAGTGCAGAATGCCA -ACGGAAAGGAAGAGGTGAGGAAAC -ACGGAAAGGAAGAGGTGAAACACC -ACGGAAAGGAAGAGGTGAATCGAG -ACGGAAAGGAAGAGGTGACTCCTT -ACGGAAAGGAAGAGGTGACCTGTT -ACGGAAAGGAAGAGGTGACGGTTT -ACGGAAAGGAAGAGGTGAGTGGTT -ACGGAAAGGAAGAGGTGAGCCTTT -ACGGAAAGGAAGAGGTGAGGTCTT -ACGGAAAGGAAGAGGTGAACGCTT -ACGGAAAGGAAGAGGTGAAGCGTT -ACGGAAAGGAAGAGGTGATTCGTC -ACGGAAAGGAAGAGGTGATCTCTC -ACGGAAAGGAAGAGGTGATGGATC -ACGGAAAGGAAGAGGTGACACTTC -ACGGAAAGGAAGAGGTGAGTACTC -ACGGAAAGGAAGAGGTGAGATGTC -ACGGAAAGGAAGAGGTGAACAGTC -ACGGAAAGGAAGAGGTGATTGCTG -ACGGAAAGGAAGAGGTGATCCATG -ACGGAAAGGAAGAGGTGATGTGTG -ACGGAAAGGAAGAGGTGACTAGTG -ACGGAAAGGAAGAGGTGACATCTG -ACGGAAAGGAAGAGGTGAGAGTTG -ACGGAAAGGAAGAGGTGAAGACTG -ACGGAAAGGAAGAGGTGATCGGTA -ACGGAAAGGAAGAGGTGATGCCTA -ACGGAAAGGAAGAGGTGACCACTA -ACGGAAAGGAAGAGGTGAGGAGTA -ACGGAAAGGAAGAGGTGATCGTCT -ACGGAAAGGAAGAGGTGATGCACT -ACGGAAAGGAAGAGGTGACTGACT -ACGGAAAGGAAGAGGTGACAACCT -ACGGAAAGGAAGAGGTGAGCTACT -ACGGAAAGGAAGAGGTGAGGATCT -ACGGAAAGGAAGAGGTGAAAGGCT -ACGGAAAGGAAGAGGTGATCAACC -ACGGAAAGGAAGAGGTGATGTTCC -ACGGAAAGGAAGAGGTGAATTCCC -ACGGAAAGGAAGAGGTGATTCTCG -ACGGAAAGGAAGAGGTGATAGACG -ACGGAAAGGAAGAGGTGAGTAACG -ACGGAAAGGAAGAGGTGAACTTCG -ACGGAAAGGAAGAGGTGATACGCA -ACGGAAAGGAAGAGGTGACTTGCA -ACGGAAAGGAAGAGGTGACGAACA -ACGGAAAGGAAGAGGTGACAGTCA -ACGGAAAGGAAGAGGTGAGATCCA -ACGGAAAGGAAGAGGTGAACGACA -ACGGAAAGGAAGAGGTGAAGCTCA -ACGGAAAGGAAGAGGTGATCACGT -ACGGAAAGGAAGAGGTGACGTAGT -ACGGAAAGGAAGAGGTGAGTCAGT -ACGGAAAGGAAGAGGTGAGAAGGT -ACGGAAAGGAAGAGGTGAAACCGT -ACGGAAAGGAAGAGGTGATTGTGC -ACGGAAAGGAAGAGGTGACTAAGC -ACGGAAAGGAAGAGGTGAACTAGC -ACGGAAAGGAAGAGGTGAAGATGC -ACGGAAAGGAAGAGGTGATGAAGG -ACGGAAAGGAAGAGGTGACAATGG -ACGGAAAGGAAGAGGTGAATGAGG -ACGGAAAGGAAGAGGTGAAATGGG -ACGGAAAGGAAGAGGTGATCCTGA -ACGGAAAGGAAGAGGTGATAGCGA -ACGGAAAGGAAGAGGTGACACAGA -ACGGAAAGGAAGAGGTGAGCAAGA -ACGGAAAGGAAGAGGTGAGGTTGA -ACGGAAAGGAAGAGGTGATCCGAT -ACGGAAAGGAAGAGGTGATGGCAT -ACGGAAAGGAAGAGGTGACGAGAT -ACGGAAAGGAAGAGGTGATACCAC -ACGGAAAGGAAGAGGTGACAGAAC -ACGGAAAGGAAGAGGTGAGTCTAC -ACGGAAAGGAAGAGGTGAACGTAC -ACGGAAAGGAAGAGGTGAAGTGAC -ACGGAAAGGAAGAGGTGACTGTAG -ACGGAAAGGAAGAGGTGACCTAAG -ACGGAAAGGAAGAGGTGAGTTCAG -ACGGAAAGGAAGAGGTGAGCATAG -ACGGAAAGGAAGAGGTGAGACAAG -ACGGAAAGGAAGAGGTGAAAGCAG -ACGGAAAGGAAGAGGTGACGTCAA -ACGGAAAGGAAGAGGTGAGCTGAA -ACGGAAAGGAAGAGGTGAAGTACG -ACGGAAAGGAAGAGGTGAATCCGA -ACGGAAAGGAAGAGGTGAATGGGA -ACGGAAAGGAAGAGGTGAGTGCAA -ACGGAAAGGAAGAGGTGAGAGGAA -ACGGAAAGGAAGAGGTGACAGGTA -ACGGAAAGGAAGAGGTGAGACTCT -ACGGAAAGGAAGAGGTGAAGTCCT -ACGGAAAGGAAGAGGTGATAAGCC -ACGGAAAGGAAGAGGTGAATAGCC -ACGGAAAGGAAGAGGTGATAACCG -ACGGAAAGGAAGAGGTGAATGCCA -ACGGAAAGGAAGTGGCAAGGAAAC -ACGGAAAGGAAGTGGCAAAACACC -ACGGAAAGGAAGTGGCAAATCGAG -ACGGAAAGGAAGTGGCAACTCCTT -ACGGAAAGGAAGTGGCAACCTGTT -ACGGAAAGGAAGTGGCAACGGTTT -ACGGAAAGGAAGTGGCAAGTGGTT -ACGGAAAGGAAGTGGCAAGCCTTT -ACGGAAAGGAAGTGGCAAGGTCTT -ACGGAAAGGAAGTGGCAAACGCTT -ACGGAAAGGAAGTGGCAAAGCGTT -ACGGAAAGGAAGTGGCAATTCGTC -ACGGAAAGGAAGTGGCAATCTCTC -ACGGAAAGGAAGTGGCAATGGATC -ACGGAAAGGAAGTGGCAACACTTC -ACGGAAAGGAAGTGGCAAGTACTC -ACGGAAAGGAAGTGGCAAGATGTC -ACGGAAAGGAAGTGGCAAACAGTC -ACGGAAAGGAAGTGGCAATTGCTG -ACGGAAAGGAAGTGGCAATCCATG -ACGGAAAGGAAGTGGCAATGTGTG -ACGGAAAGGAAGTGGCAACTAGTG -ACGGAAAGGAAGTGGCAACATCTG -ACGGAAAGGAAGTGGCAAGAGTTG -ACGGAAAGGAAGTGGCAAAGACTG -ACGGAAAGGAAGTGGCAATCGGTA -ACGGAAAGGAAGTGGCAATGCCTA -ACGGAAAGGAAGTGGCAACCACTA -ACGGAAAGGAAGTGGCAAGGAGTA -ACGGAAAGGAAGTGGCAATCGTCT -ACGGAAAGGAAGTGGCAATGCACT -ACGGAAAGGAAGTGGCAACTGACT -ACGGAAAGGAAGTGGCAACAACCT -ACGGAAAGGAAGTGGCAAGCTACT -ACGGAAAGGAAGTGGCAAGGATCT -ACGGAAAGGAAGTGGCAAAAGGCT -ACGGAAAGGAAGTGGCAATCAACC -ACGGAAAGGAAGTGGCAATGTTCC -ACGGAAAGGAAGTGGCAAATTCCC -ACGGAAAGGAAGTGGCAATTCTCG -ACGGAAAGGAAGTGGCAATAGACG -ACGGAAAGGAAGTGGCAAGTAACG -ACGGAAAGGAAGTGGCAAACTTCG -ACGGAAAGGAAGTGGCAATACGCA -ACGGAAAGGAAGTGGCAACTTGCA -ACGGAAAGGAAGTGGCAACGAACA -ACGGAAAGGAAGTGGCAACAGTCA -ACGGAAAGGAAGTGGCAAGATCCA -ACGGAAAGGAAGTGGCAAACGACA -ACGGAAAGGAAGTGGCAAAGCTCA -ACGGAAAGGAAGTGGCAATCACGT -ACGGAAAGGAAGTGGCAACGTAGT -ACGGAAAGGAAGTGGCAAGTCAGT -ACGGAAAGGAAGTGGCAAGAAGGT -ACGGAAAGGAAGTGGCAAAACCGT -ACGGAAAGGAAGTGGCAATTGTGC -ACGGAAAGGAAGTGGCAACTAAGC -ACGGAAAGGAAGTGGCAAACTAGC -ACGGAAAGGAAGTGGCAAAGATGC -ACGGAAAGGAAGTGGCAATGAAGG -ACGGAAAGGAAGTGGCAACAATGG -ACGGAAAGGAAGTGGCAAATGAGG -ACGGAAAGGAAGTGGCAAAATGGG -ACGGAAAGGAAGTGGCAATCCTGA -ACGGAAAGGAAGTGGCAATAGCGA -ACGGAAAGGAAGTGGCAACACAGA -ACGGAAAGGAAGTGGCAAGCAAGA -ACGGAAAGGAAGTGGCAAGGTTGA -ACGGAAAGGAAGTGGCAATCCGAT -ACGGAAAGGAAGTGGCAATGGCAT -ACGGAAAGGAAGTGGCAACGAGAT -ACGGAAAGGAAGTGGCAATACCAC -ACGGAAAGGAAGTGGCAACAGAAC -ACGGAAAGGAAGTGGCAAGTCTAC -ACGGAAAGGAAGTGGCAAACGTAC -ACGGAAAGGAAGTGGCAAAGTGAC -ACGGAAAGGAAGTGGCAACTGTAG -ACGGAAAGGAAGTGGCAACCTAAG -ACGGAAAGGAAGTGGCAAGTTCAG -ACGGAAAGGAAGTGGCAAGCATAG -ACGGAAAGGAAGTGGCAAGACAAG -ACGGAAAGGAAGTGGCAAAAGCAG -ACGGAAAGGAAGTGGCAACGTCAA -ACGGAAAGGAAGTGGCAAGCTGAA -ACGGAAAGGAAGTGGCAAAGTACG -ACGGAAAGGAAGTGGCAAATCCGA -ACGGAAAGGAAGTGGCAAATGGGA -ACGGAAAGGAAGTGGCAAGTGCAA -ACGGAAAGGAAGTGGCAAGAGGAA -ACGGAAAGGAAGTGGCAACAGGTA -ACGGAAAGGAAGTGGCAAGACTCT -ACGGAAAGGAAGTGGCAAAGTCCT -ACGGAAAGGAAGTGGCAATAAGCC -ACGGAAAGGAAGTGGCAAATAGCC -ACGGAAAGGAAGTGGCAATAACCG -ACGGAAAGGAAGTGGCAAATGCCA -ACGGAAAGGAAGAGGATGGGAAAC -ACGGAAAGGAAGAGGATGAACACC -ACGGAAAGGAAGAGGATGATCGAG -ACGGAAAGGAAGAGGATGCTCCTT -ACGGAAAGGAAGAGGATGCCTGTT -ACGGAAAGGAAGAGGATGCGGTTT -ACGGAAAGGAAGAGGATGGTGGTT -ACGGAAAGGAAGAGGATGGCCTTT -ACGGAAAGGAAGAGGATGGGTCTT -ACGGAAAGGAAGAGGATGACGCTT -ACGGAAAGGAAGAGGATGAGCGTT -ACGGAAAGGAAGAGGATGTTCGTC -ACGGAAAGGAAGAGGATGTCTCTC -ACGGAAAGGAAGAGGATGTGGATC -ACGGAAAGGAAGAGGATGCACTTC -ACGGAAAGGAAGAGGATGGTACTC -ACGGAAAGGAAGAGGATGGATGTC -ACGGAAAGGAAGAGGATGACAGTC -ACGGAAAGGAAGAGGATGTTGCTG -ACGGAAAGGAAGAGGATGTCCATG -ACGGAAAGGAAGAGGATGTGTGTG -ACGGAAAGGAAGAGGATGCTAGTG -ACGGAAAGGAAGAGGATGCATCTG -ACGGAAAGGAAGAGGATGGAGTTG -ACGGAAAGGAAGAGGATGAGACTG -ACGGAAAGGAAGAGGATGTCGGTA -ACGGAAAGGAAGAGGATGTGCCTA -ACGGAAAGGAAGAGGATGCCACTA -ACGGAAAGGAAGAGGATGGGAGTA -ACGGAAAGGAAGAGGATGTCGTCT -ACGGAAAGGAAGAGGATGTGCACT -ACGGAAAGGAAGAGGATGCTGACT -ACGGAAAGGAAGAGGATGCAACCT -ACGGAAAGGAAGAGGATGGCTACT -ACGGAAAGGAAGAGGATGGGATCT -ACGGAAAGGAAGAGGATGAAGGCT -ACGGAAAGGAAGAGGATGTCAACC -ACGGAAAGGAAGAGGATGTGTTCC -ACGGAAAGGAAGAGGATGATTCCC -ACGGAAAGGAAGAGGATGTTCTCG -ACGGAAAGGAAGAGGATGTAGACG -ACGGAAAGGAAGAGGATGGTAACG -ACGGAAAGGAAGAGGATGACTTCG -ACGGAAAGGAAGAGGATGTACGCA -ACGGAAAGGAAGAGGATGCTTGCA -ACGGAAAGGAAGAGGATGCGAACA -ACGGAAAGGAAGAGGATGCAGTCA -ACGGAAAGGAAGAGGATGGATCCA -ACGGAAAGGAAGAGGATGACGACA -ACGGAAAGGAAGAGGATGAGCTCA -ACGGAAAGGAAGAGGATGTCACGT -ACGGAAAGGAAGAGGATGCGTAGT -ACGGAAAGGAAGAGGATGGTCAGT -ACGGAAAGGAAGAGGATGGAAGGT -ACGGAAAGGAAGAGGATGAACCGT -ACGGAAAGGAAGAGGATGTTGTGC -ACGGAAAGGAAGAGGATGCTAAGC -ACGGAAAGGAAGAGGATGACTAGC -ACGGAAAGGAAGAGGATGAGATGC -ACGGAAAGGAAGAGGATGTGAAGG -ACGGAAAGGAAGAGGATGCAATGG -ACGGAAAGGAAGAGGATGATGAGG -ACGGAAAGGAAGAGGATGAATGGG -ACGGAAAGGAAGAGGATGTCCTGA -ACGGAAAGGAAGAGGATGTAGCGA -ACGGAAAGGAAGAGGATGCACAGA -ACGGAAAGGAAGAGGATGGCAAGA -ACGGAAAGGAAGAGGATGGGTTGA -ACGGAAAGGAAGAGGATGTCCGAT -ACGGAAAGGAAGAGGATGTGGCAT -ACGGAAAGGAAGAGGATGCGAGAT -ACGGAAAGGAAGAGGATGTACCAC -ACGGAAAGGAAGAGGATGCAGAAC -ACGGAAAGGAAGAGGATGGTCTAC -ACGGAAAGGAAGAGGATGACGTAC -ACGGAAAGGAAGAGGATGAGTGAC -ACGGAAAGGAAGAGGATGCTGTAG -ACGGAAAGGAAGAGGATGCCTAAG -ACGGAAAGGAAGAGGATGGTTCAG -ACGGAAAGGAAGAGGATGGCATAG -ACGGAAAGGAAGAGGATGGACAAG -ACGGAAAGGAAGAGGATGAAGCAG -ACGGAAAGGAAGAGGATGCGTCAA -ACGGAAAGGAAGAGGATGGCTGAA -ACGGAAAGGAAGAGGATGAGTACG -ACGGAAAGGAAGAGGATGATCCGA -ACGGAAAGGAAGAGGATGATGGGA -ACGGAAAGGAAGAGGATGGTGCAA -ACGGAAAGGAAGAGGATGGAGGAA -ACGGAAAGGAAGAGGATGCAGGTA -ACGGAAAGGAAGAGGATGGACTCT -ACGGAAAGGAAGAGGATGAGTCCT -ACGGAAAGGAAGAGGATGTAAGCC -ACGGAAAGGAAGAGGATGATAGCC -ACGGAAAGGAAGAGGATGTAACCG -ACGGAAAGGAAGAGGATGATGCCA -ACGGAAAGGAAGGGGAATGGAAAC -ACGGAAAGGAAGGGGAATAACACC -ACGGAAAGGAAGGGGAATATCGAG -ACGGAAAGGAAGGGGAATCTCCTT -ACGGAAAGGAAGGGGAATCCTGTT -ACGGAAAGGAAGGGGAATCGGTTT -ACGGAAAGGAAGGGGAATGTGGTT -ACGGAAAGGAAGGGGAATGCCTTT -ACGGAAAGGAAGGGGAATGGTCTT -ACGGAAAGGAAGGGGAATACGCTT -ACGGAAAGGAAGGGGAATAGCGTT -ACGGAAAGGAAGGGGAATTTCGTC -ACGGAAAGGAAGGGGAATTCTCTC -ACGGAAAGGAAGGGGAATTGGATC -ACGGAAAGGAAGGGGAATCACTTC -ACGGAAAGGAAGGGGAATGTACTC -ACGGAAAGGAAGGGGAATGATGTC -ACGGAAAGGAAGGGGAATACAGTC -ACGGAAAGGAAGGGGAATTTGCTG -ACGGAAAGGAAGGGGAATTCCATG -ACGGAAAGGAAGGGGAATTGTGTG -ACGGAAAGGAAGGGGAATCTAGTG -ACGGAAAGGAAGGGGAATCATCTG -ACGGAAAGGAAGGGGAATGAGTTG -ACGGAAAGGAAGGGGAATAGACTG -ACGGAAAGGAAGGGGAATTCGGTA -ACGGAAAGGAAGGGGAATTGCCTA -ACGGAAAGGAAGGGGAATCCACTA -ACGGAAAGGAAGGGGAATGGAGTA -ACGGAAAGGAAGGGGAATTCGTCT -ACGGAAAGGAAGGGGAATTGCACT -ACGGAAAGGAAGGGGAATCTGACT -ACGGAAAGGAAGGGGAATCAACCT -ACGGAAAGGAAGGGGAATGCTACT -ACGGAAAGGAAGGGGAATGGATCT -ACGGAAAGGAAGGGGAATAAGGCT -ACGGAAAGGAAGGGGAATTCAACC -ACGGAAAGGAAGGGGAATTGTTCC -ACGGAAAGGAAGGGGAATATTCCC -ACGGAAAGGAAGGGGAATTTCTCG -ACGGAAAGGAAGGGGAATTAGACG -ACGGAAAGGAAGGGGAATGTAACG -ACGGAAAGGAAGGGGAATACTTCG -ACGGAAAGGAAGGGGAATTACGCA -ACGGAAAGGAAGGGGAATCTTGCA -ACGGAAAGGAAGGGGAATCGAACA -ACGGAAAGGAAGGGGAATCAGTCA -ACGGAAAGGAAGGGGAATGATCCA -ACGGAAAGGAAGGGGAATACGACA -ACGGAAAGGAAGGGGAATAGCTCA -ACGGAAAGGAAGGGGAATTCACGT -ACGGAAAGGAAGGGGAATCGTAGT -ACGGAAAGGAAGGGGAATGTCAGT -ACGGAAAGGAAGGGGAATGAAGGT -ACGGAAAGGAAGGGGAATAACCGT -ACGGAAAGGAAGGGGAATTTGTGC -ACGGAAAGGAAGGGGAATCTAAGC -ACGGAAAGGAAGGGGAATACTAGC -ACGGAAAGGAAGGGGAATAGATGC -ACGGAAAGGAAGGGGAATTGAAGG -ACGGAAAGGAAGGGGAATCAATGG -ACGGAAAGGAAGGGGAATATGAGG -ACGGAAAGGAAGGGGAATAATGGG -ACGGAAAGGAAGGGGAATTCCTGA -ACGGAAAGGAAGGGGAATTAGCGA -ACGGAAAGGAAGGGGAATCACAGA -ACGGAAAGGAAGGGGAATGCAAGA -ACGGAAAGGAAGGGGAATGGTTGA -ACGGAAAGGAAGGGGAATTCCGAT -ACGGAAAGGAAGGGGAATTGGCAT -ACGGAAAGGAAGGGGAATCGAGAT -ACGGAAAGGAAGGGGAATTACCAC -ACGGAAAGGAAGGGGAATCAGAAC -ACGGAAAGGAAGGGGAATGTCTAC -ACGGAAAGGAAGGGGAATACGTAC -ACGGAAAGGAAGGGGAATAGTGAC -ACGGAAAGGAAGGGGAATCTGTAG -ACGGAAAGGAAGGGGAATCCTAAG -ACGGAAAGGAAGGGGAATGTTCAG -ACGGAAAGGAAGGGGAATGCATAG -ACGGAAAGGAAGGGGAATGACAAG -ACGGAAAGGAAGGGGAATAAGCAG -ACGGAAAGGAAGGGGAATCGTCAA -ACGGAAAGGAAGGGGAATGCTGAA -ACGGAAAGGAAGGGGAATAGTACG -ACGGAAAGGAAGGGGAATATCCGA -ACGGAAAGGAAGGGGAATATGGGA -ACGGAAAGGAAGGGGAATGTGCAA -ACGGAAAGGAAGGGGAATGAGGAA -ACGGAAAGGAAGGGGAATCAGGTA -ACGGAAAGGAAGGGGAATGACTCT -ACGGAAAGGAAGGGGAATAGTCCT -ACGGAAAGGAAGGGGAATTAAGCC -ACGGAAAGGAAGGGGAATATAGCC -ACGGAAAGGAAGGGGAATTAACCG -ACGGAAAGGAAGGGGAATATGCCA -ACGGAAAGGAAGTGATCCGGAAAC -ACGGAAAGGAAGTGATCCAACACC -ACGGAAAGGAAGTGATCCATCGAG -ACGGAAAGGAAGTGATCCCTCCTT -ACGGAAAGGAAGTGATCCCCTGTT -ACGGAAAGGAAGTGATCCCGGTTT -ACGGAAAGGAAGTGATCCGTGGTT -ACGGAAAGGAAGTGATCCGCCTTT -ACGGAAAGGAAGTGATCCGGTCTT -ACGGAAAGGAAGTGATCCACGCTT -ACGGAAAGGAAGTGATCCAGCGTT -ACGGAAAGGAAGTGATCCTTCGTC -ACGGAAAGGAAGTGATCCTCTCTC -ACGGAAAGGAAGTGATCCTGGATC -ACGGAAAGGAAGTGATCCCACTTC -ACGGAAAGGAAGTGATCCGTACTC -ACGGAAAGGAAGTGATCCGATGTC -ACGGAAAGGAAGTGATCCACAGTC -ACGGAAAGGAAGTGATCCTTGCTG -ACGGAAAGGAAGTGATCCTCCATG -ACGGAAAGGAAGTGATCCTGTGTG -ACGGAAAGGAAGTGATCCCTAGTG -ACGGAAAGGAAGTGATCCCATCTG -ACGGAAAGGAAGTGATCCGAGTTG -ACGGAAAGGAAGTGATCCAGACTG -ACGGAAAGGAAGTGATCCTCGGTA -ACGGAAAGGAAGTGATCCTGCCTA -ACGGAAAGGAAGTGATCCCCACTA -ACGGAAAGGAAGTGATCCGGAGTA -ACGGAAAGGAAGTGATCCTCGTCT -ACGGAAAGGAAGTGATCCTGCACT -ACGGAAAGGAAGTGATCCCTGACT -ACGGAAAGGAAGTGATCCCAACCT -ACGGAAAGGAAGTGATCCGCTACT -ACGGAAAGGAAGTGATCCGGATCT -ACGGAAAGGAAGTGATCCAAGGCT -ACGGAAAGGAAGTGATCCTCAACC -ACGGAAAGGAAGTGATCCTGTTCC -ACGGAAAGGAAGTGATCCATTCCC -ACGGAAAGGAAGTGATCCTTCTCG -ACGGAAAGGAAGTGATCCTAGACG -ACGGAAAGGAAGTGATCCGTAACG -ACGGAAAGGAAGTGATCCACTTCG -ACGGAAAGGAAGTGATCCTACGCA -ACGGAAAGGAAGTGATCCCTTGCA -ACGGAAAGGAAGTGATCCCGAACA -ACGGAAAGGAAGTGATCCCAGTCA -ACGGAAAGGAAGTGATCCGATCCA -ACGGAAAGGAAGTGATCCACGACA -ACGGAAAGGAAGTGATCCAGCTCA -ACGGAAAGGAAGTGATCCTCACGT -ACGGAAAGGAAGTGATCCCGTAGT -ACGGAAAGGAAGTGATCCGTCAGT -ACGGAAAGGAAGTGATCCGAAGGT -ACGGAAAGGAAGTGATCCAACCGT -ACGGAAAGGAAGTGATCCTTGTGC -ACGGAAAGGAAGTGATCCCTAAGC -ACGGAAAGGAAGTGATCCACTAGC -ACGGAAAGGAAGTGATCCAGATGC -ACGGAAAGGAAGTGATCCTGAAGG -ACGGAAAGGAAGTGATCCCAATGG -ACGGAAAGGAAGTGATCCATGAGG -ACGGAAAGGAAGTGATCCAATGGG -ACGGAAAGGAAGTGATCCTCCTGA -ACGGAAAGGAAGTGATCCTAGCGA -ACGGAAAGGAAGTGATCCCACAGA -ACGGAAAGGAAGTGATCCGCAAGA -ACGGAAAGGAAGTGATCCGGTTGA -ACGGAAAGGAAGTGATCCTCCGAT -ACGGAAAGGAAGTGATCCTGGCAT -ACGGAAAGGAAGTGATCCCGAGAT -ACGGAAAGGAAGTGATCCTACCAC -ACGGAAAGGAAGTGATCCCAGAAC -ACGGAAAGGAAGTGATCCGTCTAC -ACGGAAAGGAAGTGATCCACGTAC -ACGGAAAGGAAGTGATCCAGTGAC -ACGGAAAGGAAGTGATCCCTGTAG -ACGGAAAGGAAGTGATCCCCTAAG -ACGGAAAGGAAGTGATCCGTTCAG -ACGGAAAGGAAGTGATCCGCATAG -ACGGAAAGGAAGTGATCCGACAAG -ACGGAAAGGAAGTGATCCAAGCAG -ACGGAAAGGAAGTGATCCCGTCAA -ACGGAAAGGAAGTGATCCGCTGAA -ACGGAAAGGAAGTGATCCAGTACG -ACGGAAAGGAAGTGATCCATCCGA -ACGGAAAGGAAGTGATCCATGGGA -ACGGAAAGGAAGTGATCCGTGCAA -ACGGAAAGGAAGTGATCCGAGGAA -ACGGAAAGGAAGTGATCCCAGGTA -ACGGAAAGGAAGTGATCCGACTCT -ACGGAAAGGAAGTGATCCAGTCCT -ACGGAAAGGAAGTGATCCTAAGCC -ACGGAAAGGAAGTGATCCATAGCC -ACGGAAAGGAAGTGATCCTAACCG -ACGGAAAGGAAGTGATCCATGCCA -ACGGAAAGGAAGCGATAGGGAAAC -ACGGAAAGGAAGCGATAGAACACC -ACGGAAAGGAAGCGATAGATCGAG -ACGGAAAGGAAGCGATAGCTCCTT -ACGGAAAGGAAGCGATAGCCTGTT -ACGGAAAGGAAGCGATAGCGGTTT -ACGGAAAGGAAGCGATAGGTGGTT -ACGGAAAGGAAGCGATAGGCCTTT -ACGGAAAGGAAGCGATAGGGTCTT -ACGGAAAGGAAGCGATAGACGCTT -ACGGAAAGGAAGCGATAGAGCGTT -ACGGAAAGGAAGCGATAGTTCGTC -ACGGAAAGGAAGCGATAGTCTCTC -ACGGAAAGGAAGCGATAGTGGATC -ACGGAAAGGAAGCGATAGCACTTC -ACGGAAAGGAAGCGATAGGTACTC -ACGGAAAGGAAGCGATAGGATGTC -ACGGAAAGGAAGCGATAGACAGTC -ACGGAAAGGAAGCGATAGTTGCTG -ACGGAAAGGAAGCGATAGTCCATG -ACGGAAAGGAAGCGATAGTGTGTG -ACGGAAAGGAAGCGATAGCTAGTG -ACGGAAAGGAAGCGATAGCATCTG -ACGGAAAGGAAGCGATAGGAGTTG -ACGGAAAGGAAGCGATAGAGACTG -ACGGAAAGGAAGCGATAGTCGGTA -ACGGAAAGGAAGCGATAGTGCCTA -ACGGAAAGGAAGCGATAGCCACTA -ACGGAAAGGAAGCGATAGGGAGTA -ACGGAAAGGAAGCGATAGTCGTCT -ACGGAAAGGAAGCGATAGTGCACT -ACGGAAAGGAAGCGATAGCTGACT -ACGGAAAGGAAGCGATAGCAACCT -ACGGAAAGGAAGCGATAGGCTACT -ACGGAAAGGAAGCGATAGGGATCT -ACGGAAAGGAAGCGATAGAAGGCT -ACGGAAAGGAAGCGATAGTCAACC -ACGGAAAGGAAGCGATAGTGTTCC -ACGGAAAGGAAGCGATAGATTCCC -ACGGAAAGGAAGCGATAGTTCTCG -ACGGAAAGGAAGCGATAGTAGACG -ACGGAAAGGAAGCGATAGGTAACG -ACGGAAAGGAAGCGATAGACTTCG -ACGGAAAGGAAGCGATAGTACGCA -ACGGAAAGGAAGCGATAGCTTGCA -ACGGAAAGGAAGCGATAGCGAACA -ACGGAAAGGAAGCGATAGCAGTCA -ACGGAAAGGAAGCGATAGGATCCA -ACGGAAAGGAAGCGATAGACGACA -ACGGAAAGGAAGCGATAGAGCTCA -ACGGAAAGGAAGCGATAGTCACGT -ACGGAAAGGAAGCGATAGCGTAGT -ACGGAAAGGAAGCGATAGGTCAGT -ACGGAAAGGAAGCGATAGGAAGGT -ACGGAAAGGAAGCGATAGAACCGT -ACGGAAAGGAAGCGATAGTTGTGC -ACGGAAAGGAAGCGATAGCTAAGC -ACGGAAAGGAAGCGATAGACTAGC -ACGGAAAGGAAGCGATAGAGATGC -ACGGAAAGGAAGCGATAGTGAAGG -ACGGAAAGGAAGCGATAGCAATGG -ACGGAAAGGAAGCGATAGATGAGG -ACGGAAAGGAAGCGATAGAATGGG -ACGGAAAGGAAGCGATAGTCCTGA -ACGGAAAGGAAGCGATAGTAGCGA -ACGGAAAGGAAGCGATAGCACAGA -ACGGAAAGGAAGCGATAGGCAAGA -ACGGAAAGGAAGCGATAGGGTTGA -ACGGAAAGGAAGCGATAGTCCGAT -ACGGAAAGGAAGCGATAGTGGCAT -ACGGAAAGGAAGCGATAGCGAGAT -ACGGAAAGGAAGCGATAGTACCAC -ACGGAAAGGAAGCGATAGCAGAAC -ACGGAAAGGAAGCGATAGGTCTAC -ACGGAAAGGAAGCGATAGACGTAC -ACGGAAAGGAAGCGATAGAGTGAC -ACGGAAAGGAAGCGATAGCTGTAG -ACGGAAAGGAAGCGATAGCCTAAG -ACGGAAAGGAAGCGATAGGTTCAG -ACGGAAAGGAAGCGATAGGCATAG -ACGGAAAGGAAGCGATAGGACAAG -ACGGAAAGGAAGCGATAGAAGCAG -ACGGAAAGGAAGCGATAGCGTCAA -ACGGAAAGGAAGCGATAGGCTGAA -ACGGAAAGGAAGCGATAGAGTACG -ACGGAAAGGAAGCGATAGATCCGA -ACGGAAAGGAAGCGATAGATGGGA -ACGGAAAGGAAGCGATAGGTGCAA -ACGGAAAGGAAGCGATAGGAGGAA -ACGGAAAGGAAGCGATAGCAGGTA -ACGGAAAGGAAGCGATAGGACTCT -ACGGAAAGGAAGCGATAGAGTCCT -ACGGAAAGGAAGCGATAGTAAGCC -ACGGAAAGGAAGCGATAGATAGCC -ACGGAAAGGAAGCGATAGTAACCG -ACGGAAAGGAAGCGATAGATGCCA -ACGGAAAGGAAGAGACACGGAAAC -ACGGAAAGGAAGAGACACAACACC -ACGGAAAGGAAGAGACACATCGAG -ACGGAAAGGAAGAGACACCTCCTT -ACGGAAAGGAAGAGACACCCTGTT -ACGGAAAGGAAGAGACACCGGTTT -ACGGAAAGGAAGAGACACGTGGTT -ACGGAAAGGAAGAGACACGCCTTT -ACGGAAAGGAAGAGACACGGTCTT -ACGGAAAGGAAGAGACACACGCTT -ACGGAAAGGAAGAGACACAGCGTT -ACGGAAAGGAAGAGACACTTCGTC -ACGGAAAGGAAGAGACACTCTCTC -ACGGAAAGGAAGAGACACTGGATC -ACGGAAAGGAAGAGACACCACTTC -ACGGAAAGGAAGAGACACGTACTC -ACGGAAAGGAAGAGACACGATGTC -ACGGAAAGGAAGAGACACACAGTC -ACGGAAAGGAAGAGACACTTGCTG -ACGGAAAGGAAGAGACACTCCATG -ACGGAAAGGAAGAGACACTGTGTG -ACGGAAAGGAAGAGACACCTAGTG -ACGGAAAGGAAGAGACACCATCTG -ACGGAAAGGAAGAGACACGAGTTG -ACGGAAAGGAAGAGACACAGACTG -ACGGAAAGGAAGAGACACTCGGTA -ACGGAAAGGAAGAGACACTGCCTA -ACGGAAAGGAAGAGACACCCACTA -ACGGAAAGGAAGAGACACGGAGTA -ACGGAAAGGAAGAGACACTCGTCT -ACGGAAAGGAAGAGACACTGCACT -ACGGAAAGGAAGAGACACCTGACT -ACGGAAAGGAAGAGACACCAACCT -ACGGAAAGGAAGAGACACGCTACT -ACGGAAAGGAAGAGACACGGATCT -ACGGAAAGGAAGAGACACAAGGCT -ACGGAAAGGAAGAGACACTCAACC -ACGGAAAGGAAGAGACACTGTTCC -ACGGAAAGGAAGAGACACATTCCC -ACGGAAAGGAAGAGACACTTCTCG -ACGGAAAGGAAGAGACACTAGACG -ACGGAAAGGAAGAGACACGTAACG -ACGGAAAGGAAGAGACACACTTCG -ACGGAAAGGAAGAGACACTACGCA -ACGGAAAGGAAGAGACACCTTGCA -ACGGAAAGGAAGAGACACCGAACA -ACGGAAAGGAAGAGACACCAGTCA -ACGGAAAGGAAGAGACACGATCCA -ACGGAAAGGAAGAGACACACGACA -ACGGAAAGGAAGAGACACAGCTCA -ACGGAAAGGAAGAGACACTCACGT -ACGGAAAGGAAGAGACACCGTAGT -ACGGAAAGGAAGAGACACGTCAGT -ACGGAAAGGAAGAGACACGAAGGT -ACGGAAAGGAAGAGACACAACCGT -ACGGAAAGGAAGAGACACTTGTGC -ACGGAAAGGAAGAGACACCTAAGC -ACGGAAAGGAAGAGACACACTAGC -ACGGAAAGGAAGAGACACAGATGC -ACGGAAAGGAAGAGACACTGAAGG -ACGGAAAGGAAGAGACACCAATGG -ACGGAAAGGAAGAGACACATGAGG -ACGGAAAGGAAGAGACACAATGGG -ACGGAAAGGAAGAGACACTCCTGA -ACGGAAAGGAAGAGACACTAGCGA -ACGGAAAGGAAGAGACACCACAGA -ACGGAAAGGAAGAGACACGCAAGA -ACGGAAAGGAAGAGACACGGTTGA -ACGGAAAGGAAGAGACACTCCGAT -ACGGAAAGGAAGAGACACTGGCAT -ACGGAAAGGAAGAGACACCGAGAT -ACGGAAAGGAAGAGACACTACCAC -ACGGAAAGGAAGAGACACCAGAAC -ACGGAAAGGAAGAGACACGTCTAC -ACGGAAAGGAAGAGACACACGTAC -ACGGAAAGGAAGAGACACAGTGAC -ACGGAAAGGAAGAGACACCTGTAG -ACGGAAAGGAAGAGACACCCTAAG -ACGGAAAGGAAGAGACACGTTCAG -ACGGAAAGGAAGAGACACGCATAG -ACGGAAAGGAAGAGACACGACAAG -ACGGAAAGGAAGAGACACAAGCAG -ACGGAAAGGAAGAGACACCGTCAA -ACGGAAAGGAAGAGACACGCTGAA -ACGGAAAGGAAGAGACACAGTACG -ACGGAAAGGAAGAGACACATCCGA -ACGGAAAGGAAGAGACACATGGGA -ACGGAAAGGAAGAGACACGTGCAA -ACGGAAAGGAAGAGACACGAGGAA -ACGGAAAGGAAGAGACACCAGGTA -ACGGAAAGGAAGAGACACGACTCT -ACGGAAAGGAAGAGACACAGTCCT -ACGGAAAGGAAGAGACACTAAGCC -ACGGAAAGGAAGAGACACATAGCC -ACGGAAAGGAAGAGACACTAACCG -ACGGAAAGGAAGAGACACATGCCA -ACGGAAAGGAAGAGAGCAGGAAAC -ACGGAAAGGAAGAGAGCAAACACC -ACGGAAAGGAAGAGAGCAATCGAG -ACGGAAAGGAAGAGAGCACTCCTT -ACGGAAAGGAAGAGAGCACCTGTT -ACGGAAAGGAAGAGAGCACGGTTT -ACGGAAAGGAAGAGAGCAGTGGTT -ACGGAAAGGAAGAGAGCAGCCTTT -ACGGAAAGGAAGAGAGCAGGTCTT -ACGGAAAGGAAGAGAGCAACGCTT -ACGGAAAGGAAGAGAGCAAGCGTT -ACGGAAAGGAAGAGAGCATTCGTC -ACGGAAAGGAAGAGAGCATCTCTC -ACGGAAAGGAAGAGAGCATGGATC -ACGGAAAGGAAGAGAGCACACTTC -ACGGAAAGGAAGAGAGCAGTACTC -ACGGAAAGGAAGAGAGCAGATGTC -ACGGAAAGGAAGAGAGCAACAGTC -ACGGAAAGGAAGAGAGCATTGCTG -ACGGAAAGGAAGAGAGCATCCATG -ACGGAAAGGAAGAGAGCATGTGTG -ACGGAAAGGAAGAGAGCACTAGTG -ACGGAAAGGAAGAGAGCACATCTG -ACGGAAAGGAAGAGAGCAGAGTTG -ACGGAAAGGAAGAGAGCAAGACTG -ACGGAAAGGAAGAGAGCATCGGTA -ACGGAAAGGAAGAGAGCATGCCTA -ACGGAAAGGAAGAGAGCACCACTA -ACGGAAAGGAAGAGAGCAGGAGTA -ACGGAAAGGAAGAGAGCATCGTCT -ACGGAAAGGAAGAGAGCATGCACT -ACGGAAAGGAAGAGAGCACTGACT -ACGGAAAGGAAGAGAGCACAACCT -ACGGAAAGGAAGAGAGCAGCTACT -ACGGAAAGGAAGAGAGCAGGATCT -ACGGAAAGGAAGAGAGCAAAGGCT -ACGGAAAGGAAGAGAGCATCAACC -ACGGAAAGGAAGAGAGCATGTTCC -ACGGAAAGGAAGAGAGCAATTCCC -ACGGAAAGGAAGAGAGCATTCTCG -ACGGAAAGGAAGAGAGCATAGACG -ACGGAAAGGAAGAGAGCAGTAACG -ACGGAAAGGAAGAGAGCAACTTCG -ACGGAAAGGAAGAGAGCATACGCA -ACGGAAAGGAAGAGAGCACTTGCA -ACGGAAAGGAAGAGAGCACGAACA -ACGGAAAGGAAGAGAGCACAGTCA -ACGGAAAGGAAGAGAGCAGATCCA -ACGGAAAGGAAGAGAGCAACGACA -ACGGAAAGGAAGAGAGCAAGCTCA -ACGGAAAGGAAGAGAGCATCACGT -ACGGAAAGGAAGAGAGCACGTAGT -ACGGAAAGGAAGAGAGCAGTCAGT -ACGGAAAGGAAGAGAGCAGAAGGT -ACGGAAAGGAAGAGAGCAAACCGT -ACGGAAAGGAAGAGAGCATTGTGC -ACGGAAAGGAAGAGAGCACTAAGC -ACGGAAAGGAAGAGAGCAACTAGC -ACGGAAAGGAAGAGAGCAAGATGC -ACGGAAAGGAAGAGAGCATGAAGG -ACGGAAAGGAAGAGAGCACAATGG -ACGGAAAGGAAGAGAGCAATGAGG -ACGGAAAGGAAGAGAGCAAATGGG -ACGGAAAGGAAGAGAGCATCCTGA -ACGGAAAGGAAGAGAGCATAGCGA -ACGGAAAGGAAGAGAGCACACAGA -ACGGAAAGGAAGAGAGCAGCAAGA -ACGGAAAGGAAGAGAGCAGGTTGA -ACGGAAAGGAAGAGAGCATCCGAT -ACGGAAAGGAAGAGAGCATGGCAT -ACGGAAAGGAAGAGAGCACGAGAT -ACGGAAAGGAAGAGAGCATACCAC -ACGGAAAGGAAGAGAGCACAGAAC -ACGGAAAGGAAGAGAGCAGTCTAC -ACGGAAAGGAAGAGAGCAACGTAC -ACGGAAAGGAAGAGAGCAAGTGAC -ACGGAAAGGAAGAGAGCACTGTAG -ACGGAAAGGAAGAGAGCACCTAAG -ACGGAAAGGAAGAGAGCAGTTCAG -ACGGAAAGGAAGAGAGCAGCATAG -ACGGAAAGGAAGAGAGCAGACAAG -ACGGAAAGGAAGAGAGCAAAGCAG -ACGGAAAGGAAGAGAGCACGTCAA -ACGGAAAGGAAGAGAGCAGCTGAA -ACGGAAAGGAAGAGAGCAAGTACG -ACGGAAAGGAAGAGAGCAATCCGA -ACGGAAAGGAAGAGAGCAATGGGA -ACGGAAAGGAAGAGAGCAGTGCAA -ACGGAAAGGAAGAGAGCAGAGGAA -ACGGAAAGGAAGAGAGCACAGGTA -ACGGAAAGGAAGAGAGCAGACTCT -ACGGAAAGGAAGAGAGCAAGTCCT -ACGGAAAGGAAGAGAGCATAAGCC -ACGGAAAGGAAGAGAGCAATAGCC -ACGGAAAGGAAGAGAGCATAACCG -ACGGAAAGGAAGAGAGCAATGCCA -ACGGAAAGGAAGTGAGGTGGAAAC -ACGGAAAGGAAGTGAGGTAACACC -ACGGAAAGGAAGTGAGGTATCGAG -ACGGAAAGGAAGTGAGGTCTCCTT -ACGGAAAGGAAGTGAGGTCCTGTT -ACGGAAAGGAAGTGAGGTCGGTTT -ACGGAAAGGAAGTGAGGTGTGGTT -ACGGAAAGGAAGTGAGGTGCCTTT -ACGGAAAGGAAGTGAGGTGGTCTT -ACGGAAAGGAAGTGAGGTACGCTT -ACGGAAAGGAAGTGAGGTAGCGTT -ACGGAAAGGAAGTGAGGTTTCGTC -ACGGAAAGGAAGTGAGGTTCTCTC -ACGGAAAGGAAGTGAGGTTGGATC -ACGGAAAGGAAGTGAGGTCACTTC -ACGGAAAGGAAGTGAGGTGTACTC -ACGGAAAGGAAGTGAGGTGATGTC -ACGGAAAGGAAGTGAGGTACAGTC -ACGGAAAGGAAGTGAGGTTTGCTG -ACGGAAAGGAAGTGAGGTTCCATG -ACGGAAAGGAAGTGAGGTTGTGTG -ACGGAAAGGAAGTGAGGTCTAGTG -ACGGAAAGGAAGTGAGGTCATCTG -ACGGAAAGGAAGTGAGGTGAGTTG -ACGGAAAGGAAGTGAGGTAGACTG -ACGGAAAGGAAGTGAGGTTCGGTA -ACGGAAAGGAAGTGAGGTTGCCTA -ACGGAAAGGAAGTGAGGTCCACTA -ACGGAAAGGAAGTGAGGTGGAGTA -ACGGAAAGGAAGTGAGGTTCGTCT -ACGGAAAGGAAGTGAGGTTGCACT -ACGGAAAGGAAGTGAGGTCTGACT -ACGGAAAGGAAGTGAGGTCAACCT -ACGGAAAGGAAGTGAGGTGCTACT -ACGGAAAGGAAGTGAGGTGGATCT -ACGGAAAGGAAGTGAGGTAAGGCT -ACGGAAAGGAAGTGAGGTTCAACC -ACGGAAAGGAAGTGAGGTTGTTCC -ACGGAAAGGAAGTGAGGTATTCCC -ACGGAAAGGAAGTGAGGTTTCTCG -ACGGAAAGGAAGTGAGGTTAGACG -ACGGAAAGGAAGTGAGGTGTAACG -ACGGAAAGGAAGTGAGGTACTTCG -ACGGAAAGGAAGTGAGGTTACGCA -ACGGAAAGGAAGTGAGGTCTTGCA -ACGGAAAGGAAGTGAGGTCGAACA -ACGGAAAGGAAGTGAGGTCAGTCA -ACGGAAAGGAAGTGAGGTGATCCA -ACGGAAAGGAAGTGAGGTACGACA -ACGGAAAGGAAGTGAGGTAGCTCA -ACGGAAAGGAAGTGAGGTTCACGT -ACGGAAAGGAAGTGAGGTCGTAGT -ACGGAAAGGAAGTGAGGTGTCAGT -ACGGAAAGGAAGTGAGGTGAAGGT -ACGGAAAGGAAGTGAGGTAACCGT -ACGGAAAGGAAGTGAGGTTTGTGC -ACGGAAAGGAAGTGAGGTCTAAGC -ACGGAAAGGAAGTGAGGTACTAGC -ACGGAAAGGAAGTGAGGTAGATGC -ACGGAAAGGAAGTGAGGTTGAAGG -ACGGAAAGGAAGTGAGGTCAATGG -ACGGAAAGGAAGTGAGGTATGAGG -ACGGAAAGGAAGTGAGGTAATGGG -ACGGAAAGGAAGTGAGGTTCCTGA -ACGGAAAGGAAGTGAGGTTAGCGA -ACGGAAAGGAAGTGAGGTCACAGA -ACGGAAAGGAAGTGAGGTGCAAGA -ACGGAAAGGAAGTGAGGTGGTTGA -ACGGAAAGGAAGTGAGGTTCCGAT -ACGGAAAGGAAGTGAGGTTGGCAT -ACGGAAAGGAAGTGAGGTCGAGAT -ACGGAAAGGAAGTGAGGTTACCAC -ACGGAAAGGAAGTGAGGTCAGAAC -ACGGAAAGGAAGTGAGGTGTCTAC -ACGGAAAGGAAGTGAGGTACGTAC -ACGGAAAGGAAGTGAGGTAGTGAC -ACGGAAAGGAAGTGAGGTCTGTAG -ACGGAAAGGAAGTGAGGTCCTAAG -ACGGAAAGGAAGTGAGGTGTTCAG -ACGGAAAGGAAGTGAGGTGCATAG -ACGGAAAGGAAGTGAGGTGACAAG -ACGGAAAGGAAGTGAGGTAAGCAG -ACGGAAAGGAAGTGAGGTCGTCAA -ACGGAAAGGAAGTGAGGTGCTGAA -ACGGAAAGGAAGTGAGGTAGTACG -ACGGAAAGGAAGTGAGGTATCCGA -ACGGAAAGGAAGTGAGGTATGGGA -ACGGAAAGGAAGTGAGGTGTGCAA -ACGGAAAGGAAGTGAGGTGAGGAA -ACGGAAAGGAAGTGAGGTCAGGTA -ACGGAAAGGAAGTGAGGTGACTCT -ACGGAAAGGAAGTGAGGTAGTCCT -ACGGAAAGGAAGTGAGGTTAAGCC -ACGGAAAGGAAGTGAGGTATAGCC -ACGGAAAGGAAGTGAGGTTAACCG -ACGGAAAGGAAGTGAGGTATGCCA -ACGGAAAGGAAGGATTCCGGAAAC -ACGGAAAGGAAGGATTCCAACACC -ACGGAAAGGAAGGATTCCATCGAG -ACGGAAAGGAAGGATTCCCTCCTT -ACGGAAAGGAAGGATTCCCCTGTT -ACGGAAAGGAAGGATTCCCGGTTT -ACGGAAAGGAAGGATTCCGTGGTT -ACGGAAAGGAAGGATTCCGCCTTT -ACGGAAAGGAAGGATTCCGGTCTT -ACGGAAAGGAAGGATTCCACGCTT -ACGGAAAGGAAGGATTCCAGCGTT -ACGGAAAGGAAGGATTCCTTCGTC -ACGGAAAGGAAGGATTCCTCTCTC -ACGGAAAGGAAGGATTCCTGGATC -ACGGAAAGGAAGGATTCCCACTTC -ACGGAAAGGAAGGATTCCGTACTC -ACGGAAAGGAAGGATTCCGATGTC -ACGGAAAGGAAGGATTCCACAGTC -ACGGAAAGGAAGGATTCCTTGCTG -ACGGAAAGGAAGGATTCCTCCATG -ACGGAAAGGAAGGATTCCTGTGTG -ACGGAAAGGAAGGATTCCCTAGTG -ACGGAAAGGAAGGATTCCCATCTG -ACGGAAAGGAAGGATTCCGAGTTG -ACGGAAAGGAAGGATTCCAGACTG -ACGGAAAGGAAGGATTCCTCGGTA -ACGGAAAGGAAGGATTCCTGCCTA -ACGGAAAGGAAGGATTCCCCACTA -ACGGAAAGGAAGGATTCCGGAGTA -ACGGAAAGGAAGGATTCCTCGTCT -ACGGAAAGGAAGGATTCCTGCACT -ACGGAAAGGAAGGATTCCCTGACT -ACGGAAAGGAAGGATTCCCAACCT -ACGGAAAGGAAGGATTCCGCTACT -ACGGAAAGGAAGGATTCCGGATCT -ACGGAAAGGAAGGATTCCAAGGCT -ACGGAAAGGAAGGATTCCTCAACC -ACGGAAAGGAAGGATTCCTGTTCC -ACGGAAAGGAAGGATTCCATTCCC -ACGGAAAGGAAGGATTCCTTCTCG -ACGGAAAGGAAGGATTCCTAGACG -ACGGAAAGGAAGGATTCCGTAACG -ACGGAAAGGAAGGATTCCACTTCG -ACGGAAAGGAAGGATTCCTACGCA -ACGGAAAGGAAGGATTCCCTTGCA -ACGGAAAGGAAGGATTCCCGAACA -ACGGAAAGGAAGGATTCCCAGTCA -ACGGAAAGGAAGGATTCCGATCCA -ACGGAAAGGAAGGATTCCACGACA -ACGGAAAGGAAGGATTCCAGCTCA -ACGGAAAGGAAGGATTCCTCACGT -ACGGAAAGGAAGGATTCCCGTAGT -ACGGAAAGGAAGGATTCCGTCAGT -ACGGAAAGGAAGGATTCCGAAGGT -ACGGAAAGGAAGGATTCCAACCGT -ACGGAAAGGAAGGATTCCTTGTGC -ACGGAAAGGAAGGATTCCCTAAGC -ACGGAAAGGAAGGATTCCACTAGC -ACGGAAAGGAAGGATTCCAGATGC -ACGGAAAGGAAGGATTCCTGAAGG -ACGGAAAGGAAGGATTCCCAATGG -ACGGAAAGGAAGGATTCCATGAGG -ACGGAAAGGAAGGATTCCAATGGG -ACGGAAAGGAAGGATTCCTCCTGA -ACGGAAAGGAAGGATTCCTAGCGA -ACGGAAAGGAAGGATTCCCACAGA -ACGGAAAGGAAGGATTCCGCAAGA -ACGGAAAGGAAGGATTCCGGTTGA -ACGGAAAGGAAGGATTCCTCCGAT -ACGGAAAGGAAGGATTCCTGGCAT -ACGGAAAGGAAGGATTCCCGAGAT -ACGGAAAGGAAGGATTCCTACCAC -ACGGAAAGGAAGGATTCCCAGAAC -ACGGAAAGGAAGGATTCCGTCTAC -ACGGAAAGGAAGGATTCCACGTAC -ACGGAAAGGAAGGATTCCAGTGAC -ACGGAAAGGAAGGATTCCCTGTAG -ACGGAAAGGAAGGATTCCCCTAAG -ACGGAAAGGAAGGATTCCGTTCAG -ACGGAAAGGAAGGATTCCGCATAG -ACGGAAAGGAAGGATTCCGACAAG -ACGGAAAGGAAGGATTCCAAGCAG -ACGGAAAGGAAGGATTCCCGTCAA -ACGGAAAGGAAGGATTCCGCTGAA -ACGGAAAGGAAGGATTCCAGTACG -ACGGAAAGGAAGGATTCCATCCGA -ACGGAAAGGAAGGATTCCATGGGA -ACGGAAAGGAAGGATTCCGTGCAA -ACGGAAAGGAAGGATTCCGAGGAA -ACGGAAAGGAAGGATTCCCAGGTA -ACGGAAAGGAAGGATTCCGACTCT -ACGGAAAGGAAGGATTCCAGTCCT -ACGGAAAGGAAGGATTCCTAAGCC -ACGGAAAGGAAGGATTCCATAGCC -ACGGAAAGGAAGGATTCCTAACCG -ACGGAAAGGAAGGATTCCATGCCA -ACGGAAAGGAAGCATTGGGGAAAC -ACGGAAAGGAAGCATTGGAACACC -ACGGAAAGGAAGCATTGGATCGAG -ACGGAAAGGAAGCATTGGCTCCTT -ACGGAAAGGAAGCATTGGCCTGTT -ACGGAAAGGAAGCATTGGCGGTTT -ACGGAAAGGAAGCATTGGGTGGTT -ACGGAAAGGAAGCATTGGGCCTTT -ACGGAAAGGAAGCATTGGGGTCTT -ACGGAAAGGAAGCATTGGACGCTT -ACGGAAAGGAAGCATTGGAGCGTT -ACGGAAAGGAAGCATTGGTTCGTC -ACGGAAAGGAAGCATTGGTCTCTC -ACGGAAAGGAAGCATTGGTGGATC -ACGGAAAGGAAGCATTGGCACTTC -ACGGAAAGGAAGCATTGGGTACTC -ACGGAAAGGAAGCATTGGGATGTC -ACGGAAAGGAAGCATTGGACAGTC -ACGGAAAGGAAGCATTGGTTGCTG -ACGGAAAGGAAGCATTGGTCCATG -ACGGAAAGGAAGCATTGGTGTGTG -ACGGAAAGGAAGCATTGGCTAGTG -ACGGAAAGGAAGCATTGGCATCTG -ACGGAAAGGAAGCATTGGGAGTTG -ACGGAAAGGAAGCATTGGAGACTG -ACGGAAAGGAAGCATTGGTCGGTA -ACGGAAAGGAAGCATTGGTGCCTA -ACGGAAAGGAAGCATTGGCCACTA -ACGGAAAGGAAGCATTGGGGAGTA -ACGGAAAGGAAGCATTGGTCGTCT -ACGGAAAGGAAGCATTGGTGCACT -ACGGAAAGGAAGCATTGGCTGACT -ACGGAAAGGAAGCATTGGCAACCT -ACGGAAAGGAAGCATTGGGCTACT -ACGGAAAGGAAGCATTGGGGATCT -ACGGAAAGGAAGCATTGGAAGGCT -ACGGAAAGGAAGCATTGGTCAACC -ACGGAAAGGAAGCATTGGTGTTCC -ACGGAAAGGAAGCATTGGATTCCC -ACGGAAAGGAAGCATTGGTTCTCG -ACGGAAAGGAAGCATTGGTAGACG -ACGGAAAGGAAGCATTGGGTAACG -ACGGAAAGGAAGCATTGGACTTCG -ACGGAAAGGAAGCATTGGTACGCA -ACGGAAAGGAAGCATTGGCTTGCA -ACGGAAAGGAAGCATTGGCGAACA -ACGGAAAGGAAGCATTGGCAGTCA -ACGGAAAGGAAGCATTGGGATCCA -ACGGAAAGGAAGCATTGGACGACA -ACGGAAAGGAAGCATTGGAGCTCA -ACGGAAAGGAAGCATTGGTCACGT -ACGGAAAGGAAGCATTGGCGTAGT -ACGGAAAGGAAGCATTGGGTCAGT -ACGGAAAGGAAGCATTGGGAAGGT -ACGGAAAGGAAGCATTGGAACCGT -ACGGAAAGGAAGCATTGGTTGTGC -ACGGAAAGGAAGCATTGGCTAAGC -ACGGAAAGGAAGCATTGGACTAGC -ACGGAAAGGAAGCATTGGAGATGC -ACGGAAAGGAAGCATTGGTGAAGG -ACGGAAAGGAAGCATTGGCAATGG -ACGGAAAGGAAGCATTGGATGAGG -ACGGAAAGGAAGCATTGGAATGGG -ACGGAAAGGAAGCATTGGTCCTGA -ACGGAAAGGAAGCATTGGTAGCGA -ACGGAAAGGAAGCATTGGCACAGA -ACGGAAAGGAAGCATTGGGCAAGA -ACGGAAAGGAAGCATTGGGGTTGA -ACGGAAAGGAAGCATTGGTCCGAT -ACGGAAAGGAAGCATTGGTGGCAT -ACGGAAAGGAAGCATTGGCGAGAT -ACGGAAAGGAAGCATTGGTACCAC -ACGGAAAGGAAGCATTGGCAGAAC -ACGGAAAGGAAGCATTGGGTCTAC -ACGGAAAGGAAGCATTGGACGTAC -ACGGAAAGGAAGCATTGGAGTGAC -ACGGAAAGGAAGCATTGGCTGTAG -ACGGAAAGGAAGCATTGGCCTAAG -ACGGAAAGGAAGCATTGGGTTCAG -ACGGAAAGGAAGCATTGGGCATAG -ACGGAAAGGAAGCATTGGGACAAG -ACGGAAAGGAAGCATTGGAAGCAG -ACGGAAAGGAAGCATTGGCGTCAA -ACGGAAAGGAAGCATTGGGCTGAA -ACGGAAAGGAAGCATTGGAGTACG -ACGGAAAGGAAGCATTGGATCCGA -ACGGAAAGGAAGCATTGGATGGGA -ACGGAAAGGAAGCATTGGGTGCAA -ACGGAAAGGAAGCATTGGGAGGAA -ACGGAAAGGAAGCATTGGCAGGTA -ACGGAAAGGAAGCATTGGGACTCT -ACGGAAAGGAAGCATTGGAGTCCT -ACGGAAAGGAAGCATTGGTAAGCC -ACGGAAAGGAAGCATTGGATAGCC -ACGGAAAGGAAGCATTGGTAACCG -ACGGAAAGGAAGCATTGGATGCCA -ACGGAAAGGAAGGATCGAGGAAAC -ACGGAAAGGAAGGATCGAAACACC -ACGGAAAGGAAGGATCGAATCGAG -ACGGAAAGGAAGGATCGACTCCTT -ACGGAAAGGAAGGATCGACCTGTT -ACGGAAAGGAAGGATCGACGGTTT -ACGGAAAGGAAGGATCGAGTGGTT -ACGGAAAGGAAGGATCGAGCCTTT -ACGGAAAGGAAGGATCGAGGTCTT -ACGGAAAGGAAGGATCGAACGCTT -ACGGAAAGGAAGGATCGAAGCGTT -ACGGAAAGGAAGGATCGATTCGTC -ACGGAAAGGAAGGATCGATCTCTC -ACGGAAAGGAAGGATCGATGGATC -ACGGAAAGGAAGGATCGACACTTC -ACGGAAAGGAAGGATCGAGTACTC -ACGGAAAGGAAGGATCGAGATGTC -ACGGAAAGGAAGGATCGAACAGTC -ACGGAAAGGAAGGATCGATTGCTG -ACGGAAAGGAAGGATCGATCCATG -ACGGAAAGGAAGGATCGATGTGTG -ACGGAAAGGAAGGATCGACTAGTG -ACGGAAAGGAAGGATCGACATCTG -ACGGAAAGGAAGGATCGAGAGTTG -ACGGAAAGGAAGGATCGAAGACTG -ACGGAAAGGAAGGATCGATCGGTA -ACGGAAAGGAAGGATCGATGCCTA -ACGGAAAGGAAGGATCGACCACTA -ACGGAAAGGAAGGATCGAGGAGTA -ACGGAAAGGAAGGATCGATCGTCT -ACGGAAAGGAAGGATCGATGCACT -ACGGAAAGGAAGGATCGACTGACT -ACGGAAAGGAAGGATCGACAACCT -ACGGAAAGGAAGGATCGAGCTACT -ACGGAAAGGAAGGATCGAGGATCT -ACGGAAAGGAAGGATCGAAAGGCT -ACGGAAAGGAAGGATCGATCAACC -ACGGAAAGGAAGGATCGATGTTCC -ACGGAAAGGAAGGATCGAATTCCC -ACGGAAAGGAAGGATCGATTCTCG -ACGGAAAGGAAGGATCGATAGACG -ACGGAAAGGAAGGATCGAGTAACG -ACGGAAAGGAAGGATCGAACTTCG -ACGGAAAGGAAGGATCGATACGCA -ACGGAAAGGAAGGATCGACTTGCA -ACGGAAAGGAAGGATCGACGAACA -ACGGAAAGGAAGGATCGACAGTCA -ACGGAAAGGAAGGATCGAGATCCA -ACGGAAAGGAAGGATCGAACGACA -ACGGAAAGGAAGGATCGAAGCTCA -ACGGAAAGGAAGGATCGATCACGT -ACGGAAAGGAAGGATCGACGTAGT -ACGGAAAGGAAGGATCGAGTCAGT -ACGGAAAGGAAGGATCGAGAAGGT -ACGGAAAGGAAGGATCGAAACCGT -ACGGAAAGGAAGGATCGATTGTGC -ACGGAAAGGAAGGATCGACTAAGC -ACGGAAAGGAAGGATCGAACTAGC -ACGGAAAGGAAGGATCGAAGATGC -ACGGAAAGGAAGGATCGATGAAGG -ACGGAAAGGAAGGATCGACAATGG -ACGGAAAGGAAGGATCGAATGAGG -ACGGAAAGGAAGGATCGAAATGGG -ACGGAAAGGAAGGATCGATCCTGA -ACGGAAAGGAAGGATCGATAGCGA -ACGGAAAGGAAGGATCGACACAGA -ACGGAAAGGAAGGATCGAGCAAGA -ACGGAAAGGAAGGATCGAGGTTGA -ACGGAAAGGAAGGATCGATCCGAT -ACGGAAAGGAAGGATCGATGGCAT -ACGGAAAGGAAGGATCGACGAGAT -ACGGAAAGGAAGGATCGATACCAC -ACGGAAAGGAAGGATCGACAGAAC -ACGGAAAGGAAGGATCGAGTCTAC -ACGGAAAGGAAGGATCGAACGTAC -ACGGAAAGGAAGGATCGAAGTGAC -ACGGAAAGGAAGGATCGACTGTAG -ACGGAAAGGAAGGATCGACCTAAG -ACGGAAAGGAAGGATCGAGTTCAG -ACGGAAAGGAAGGATCGAGCATAG -ACGGAAAGGAAGGATCGAGACAAG -ACGGAAAGGAAGGATCGAAAGCAG -ACGGAAAGGAAGGATCGACGTCAA -ACGGAAAGGAAGGATCGAGCTGAA -ACGGAAAGGAAGGATCGAAGTACG -ACGGAAAGGAAGGATCGAATCCGA -ACGGAAAGGAAGGATCGAATGGGA -ACGGAAAGGAAGGATCGAGTGCAA -ACGGAAAGGAAGGATCGAGAGGAA -ACGGAAAGGAAGGATCGACAGGTA -ACGGAAAGGAAGGATCGAGACTCT -ACGGAAAGGAAGGATCGAAGTCCT -ACGGAAAGGAAGGATCGATAAGCC -ACGGAAAGGAAGGATCGAATAGCC -ACGGAAAGGAAGGATCGATAACCG -ACGGAAAGGAAGGATCGAATGCCA -ACGGAAAGGAAGCACTACGGAAAC -ACGGAAAGGAAGCACTACAACACC -ACGGAAAGGAAGCACTACATCGAG -ACGGAAAGGAAGCACTACCTCCTT -ACGGAAAGGAAGCACTACCCTGTT -ACGGAAAGGAAGCACTACCGGTTT -ACGGAAAGGAAGCACTACGTGGTT -ACGGAAAGGAAGCACTACGCCTTT -ACGGAAAGGAAGCACTACGGTCTT -ACGGAAAGGAAGCACTACACGCTT -ACGGAAAGGAAGCACTACAGCGTT -ACGGAAAGGAAGCACTACTTCGTC -ACGGAAAGGAAGCACTACTCTCTC -ACGGAAAGGAAGCACTACTGGATC -ACGGAAAGGAAGCACTACCACTTC -ACGGAAAGGAAGCACTACGTACTC -ACGGAAAGGAAGCACTACGATGTC -ACGGAAAGGAAGCACTACACAGTC -ACGGAAAGGAAGCACTACTTGCTG -ACGGAAAGGAAGCACTACTCCATG -ACGGAAAGGAAGCACTACTGTGTG -ACGGAAAGGAAGCACTACCTAGTG -ACGGAAAGGAAGCACTACCATCTG -ACGGAAAGGAAGCACTACGAGTTG -ACGGAAAGGAAGCACTACAGACTG -ACGGAAAGGAAGCACTACTCGGTA -ACGGAAAGGAAGCACTACTGCCTA -ACGGAAAGGAAGCACTACCCACTA -ACGGAAAGGAAGCACTACGGAGTA -ACGGAAAGGAAGCACTACTCGTCT -ACGGAAAGGAAGCACTACTGCACT -ACGGAAAGGAAGCACTACCTGACT -ACGGAAAGGAAGCACTACCAACCT -ACGGAAAGGAAGCACTACGCTACT -ACGGAAAGGAAGCACTACGGATCT -ACGGAAAGGAAGCACTACAAGGCT -ACGGAAAGGAAGCACTACTCAACC -ACGGAAAGGAAGCACTACTGTTCC -ACGGAAAGGAAGCACTACATTCCC -ACGGAAAGGAAGCACTACTTCTCG -ACGGAAAGGAAGCACTACTAGACG -ACGGAAAGGAAGCACTACGTAACG -ACGGAAAGGAAGCACTACACTTCG -ACGGAAAGGAAGCACTACTACGCA -ACGGAAAGGAAGCACTACCTTGCA -ACGGAAAGGAAGCACTACCGAACA -ACGGAAAGGAAGCACTACCAGTCA -ACGGAAAGGAAGCACTACGATCCA -ACGGAAAGGAAGCACTACACGACA -ACGGAAAGGAAGCACTACAGCTCA -ACGGAAAGGAAGCACTACTCACGT -ACGGAAAGGAAGCACTACCGTAGT -ACGGAAAGGAAGCACTACGTCAGT -ACGGAAAGGAAGCACTACGAAGGT -ACGGAAAGGAAGCACTACAACCGT -ACGGAAAGGAAGCACTACTTGTGC -ACGGAAAGGAAGCACTACCTAAGC -ACGGAAAGGAAGCACTACACTAGC -ACGGAAAGGAAGCACTACAGATGC -ACGGAAAGGAAGCACTACTGAAGG -ACGGAAAGGAAGCACTACCAATGG -ACGGAAAGGAAGCACTACATGAGG -ACGGAAAGGAAGCACTACAATGGG -ACGGAAAGGAAGCACTACTCCTGA -ACGGAAAGGAAGCACTACTAGCGA -ACGGAAAGGAAGCACTACCACAGA -ACGGAAAGGAAGCACTACGCAAGA -ACGGAAAGGAAGCACTACGGTTGA -ACGGAAAGGAAGCACTACTCCGAT -ACGGAAAGGAAGCACTACTGGCAT -ACGGAAAGGAAGCACTACCGAGAT -ACGGAAAGGAAGCACTACTACCAC -ACGGAAAGGAAGCACTACCAGAAC -ACGGAAAGGAAGCACTACGTCTAC -ACGGAAAGGAAGCACTACACGTAC -ACGGAAAGGAAGCACTACAGTGAC -ACGGAAAGGAAGCACTACCTGTAG -ACGGAAAGGAAGCACTACCCTAAG -ACGGAAAGGAAGCACTACGTTCAG -ACGGAAAGGAAGCACTACGCATAG -ACGGAAAGGAAGCACTACGACAAG -ACGGAAAGGAAGCACTACAAGCAG -ACGGAAAGGAAGCACTACCGTCAA -ACGGAAAGGAAGCACTACGCTGAA -ACGGAAAGGAAGCACTACAGTACG -ACGGAAAGGAAGCACTACATCCGA -ACGGAAAGGAAGCACTACATGGGA -ACGGAAAGGAAGCACTACGTGCAA -ACGGAAAGGAAGCACTACGAGGAA -ACGGAAAGGAAGCACTACCAGGTA -ACGGAAAGGAAGCACTACGACTCT -ACGGAAAGGAAGCACTACAGTCCT -ACGGAAAGGAAGCACTACTAAGCC -ACGGAAAGGAAGCACTACATAGCC -ACGGAAAGGAAGCACTACTAACCG -ACGGAAAGGAAGCACTACATGCCA -ACGGAAAGGAAGAACCAGGGAAAC -ACGGAAAGGAAGAACCAGAACACC -ACGGAAAGGAAGAACCAGATCGAG -ACGGAAAGGAAGAACCAGCTCCTT -ACGGAAAGGAAGAACCAGCCTGTT -ACGGAAAGGAAGAACCAGCGGTTT -ACGGAAAGGAAGAACCAGGTGGTT -ACGGAAAGGAAGAACCAGGCCTTT -ACGGAAAGGAAGAACCAGGGTCTT -ACGGAAAGGAAGAACCAGACGCTT -ACGGAAAGGAAGAACCAGAGCGTT -ACGGAAAGGAAGAACCAGTTCGTC -ACGGAAAGGAAGAACCAGTCTCTC -ACGGAAAGGAAGAACCAGTGGATC -ACGGAAAGGAAGAACCAGCACTTC -ACGGAAAGGAAGAACCAGGTACTC -ACGGAAAGGAAGAACCAGGATGTC -ACGGAAAGGAAGAACCAGACAGTC -ACGGAAAGGAAGAACCAGTTGCTG -ACGGAAAGGAAGAACCAGTCCATG -ACGGAAAGGAAGAACCAGTGTGTG -ACGGAAAGGAAGAACCAGCTAGTG -ACGGAAAGGAAGAACCAGCATCTG -ACGGAAAGGAAGAACCAGGAGTTG -ACGGAAAGGAAGAACCAGAGACTG -ACGGAAAGGAAGAACCAGTCGGTA -ACGGAAAGGAAGAACCAGTGCCTA -ACGGAAAGGAAGAACCAGCCACTA -ACGGAAAGGAAGAACCAGGGAGTA -ACGGAAAGGAAGAACCAGTCGTCT -ACGGAAAGGAAGAACCAGTGCACT -ACGGAAAGGAAGAACCAGCTGACT -ACGGAAAGGAAGAACCAGCAACCT -ACGGAAAGGAAGAACCAGGCTACT -ACGGAAAGGAAGAACCAGGGATCT -ACGGAAAGGAAGAACCAGAAGGCT -ACGGAAAGGAAGAACCAGTCAACC -ACGGAAAGGAAGAACCAGTGTTCC -ACGGAAAGGAAGAACCAGATTCCC -ACGGAAAGGAAGAACCAGTTCTCG -ACGGAAAGGAAGAACCAGTAGACG -ACGGAAAGGAAGAACCAGGTAACG -ACGGAAAGGAAGAACCAGACTTCG -ACGGAAAGGAAGAACCAGTACGCA -ACGGAAAGGAAGAACCAGCTTGCA -ACGGAAAGGAAGAACCAGCGAACA -ACGGAAAGGAAGAACCAGCAGTCA -ACGGAAAGGAAGAACCAGGATCCA -ACGGAAAGGAAGAACCAGACGACA -ACGGAAAGGAAGAACCAGAGCTCA -ACGGAAAGGAAGAACCAGTCACGT -ACGGAAAGGAAGAACCAGCGTAGT -ACGGAAAGGAAGAACCAGGTCAGT -ACGGAAAGGAAGAACCAGGAAGGT -ACGGAAAGGAAGAACCAGAACCGT -ACGGAAAGGAAGAACCAGTTGTGC -ACGGAAAGGAAGAACCAGCTAAGC -ACGGAAAGGAAGAACCAGACTAGC -ACGGAAAGGAAGAACCAGAGATGC -ACGGAAAGGAAGAACCAGTGAAGG -ACGGAAAGGAAGAACCAGCAATGG -ACGGAAAGGAAGAACCAGATGAGG -ACGGAAAGGAAGAACCAGAATGGG -ACGGAAAGGAAGAACCAGTCCTGA -ACGGAAAGGAAGAACCAGTAGCGA -ACGGAAAGGAAGAACCAGCACAGA -ACGGAAAGGAAGAACCAGGCAAGA -ACGGAAAGGAAGAACCAGGGTTGA -ACGGAAAGGAAGAACCAGTCCGAT -ACGGAAAGGAAGAACCAGTGGCAT -ACGGAAAGGAAGAACCAGCGAGAT -ACGGAAAGGAAGAACCAGTACCAC -ACGGAAAGGAAGAACCAGCAGAAC -ACGGAAAGGAAGAACCAGGTCTAC -ACGGAAAGGAAGAACCAGACGTAC -ACGGAAAGGAAGAACCAGAGTGAC -ACGGAAAGGAAGAACCAGCTGTAG -ACGGAAAGGAAGAACCAGCCTAAG -ACGGAAAGGAAGAACCAGGTTCAG -ACGGAAAGGAAGAACCAGGCATAG -ACGGAAAGGAAGAACCAGGACAAG -ACGGAAAGGAAGAACCAGAAGCAG -ACGGAAAGGAAGAACCAGCGTCAA -ACGGAAAGGAAGAACCAGGCTGAA -ACGGAAAGGAAGAACCAGAGTACG -ACGGAAAGGAAGAACCAGATCCGA -ACGGAAAGGAAGAACCAGATGGGA -ACGGAAAGGAAGAACCAGGTGCAA -ACGGAAAGGAAGAACCAGGAGGAA -ACGGAAAGGAAGAACCAGCAGGTA -ACGGAAAGGAAGAACCAGGACTCT -ACGGAAAGGAAGAACCAGAGTCCT -ACGGAAAGGAAGAACCAGTAAGCC -ACGGAAAGGAAGAACCAGATAGCC -ACGGAAAGGAAGAACCAGTAACCG -ACGGAAAGGAAGAACCAGATGCCA -ACGGAAAGGAAGTACGTCGGAAAC -ACGGAAAGGAAGTACGTCAACACC -ACGGAAAGGAAGTACGTCATCGAG -ACGGAAAGGAAGTACGTCCTCCTT -ACGGAAAGGAAGTACGTCCCTGTT -ACGGAAAGGAAGTACGTCCGGTTT -ACGGAAAGGAAGTACGTCGTGGTT -ACGGAAAGGAAGTACGTCGCCTTT -ACGGAAAGGAAGTACGTCGGTCTT -ACGGAAAGGAAGTACGTCACGCTT -ACGGAAAGGAAGTACGTCAGCGTT -ACGGAAAGGAAGTACGTCTTCGTC -ACGGAAAGGAAGTACGTCTCTCTC -ACGGAAAGGAAGTACGTCTGGATC -ACGGAAAGGAAGTACGTCCACTTC -ACGGAAAGGAAGTACGTCGTACTC -ACGGAAAGGAAGTACGTCGATGTC -ACGGAAAGGAAGTACGTCACAGTC -ACGGAAAGGAAGTACGTCTTGCTG -ACGGAAAGGAAGTACGTCTCCATG -ACGGAAAGGAAGTACGTCTGTGTG -ACGGAAAGGAAGTACGTCCTAGTG -ACGGAAAGGAAGTACGTCCATCTG -ACGGAAAGGAAGTACGTCGAGTTG -ACGGAAAGGAAGTACGTCAGACTG -ACGGAAAGGAAGTACGTCTCGGTA -ACGGAAAGGAAGTACGTCTGCCTA -ACGGAAAGGAAGTACGTCCCACTA -ACGGAAAGGAAGTACGTCGGAGTA -ACGGAAAGGAAGTACGTCTCGTCT -ACGGAAAGGAAGTACGTCTGCACT -ACGGAAAGGAAGTACGTCCTGACT -ACGGAAAGGAAGTACGTCCAACCT -ACGGAAAGGAAGTACGTCGCTACT -ACGGAAAGGAAGTACGTCGGATCT -ACGGAAAGGAAGTACGTCAAGGCT -ACGGAAAGGAAGTACGTCTCAACC -ACGGAAAGGAAGTACGTCTGTTCC -ACGGAAAGGAAGTACGTCATTCCC -ACGGAAAGGAAGTACGTCTTCTCG -ACGGAAAGGAAGTACGTCTAGACG -ACGGAAAGGAAGTACGTCGTAACG -ACGGAAAGGAAGTACGTCACTTCG -ACGGAAAGGAAGTACGTCTACGCA -ACGGAAAGGAAGTACGTCCTTGCA -ACGGAAAGGAAGTACGTCCGAACA -ACGGAAAGGAAGTACGTCCAGTCA -ACGGAAAGGAAGTACGTCGATCCA -ACGGAAAGGAAGTACGTCACGACA -ACGGAAAGGAAGTACGTCAGCTCA -ACGGAAAGGAAGTACGTCTCACGT -ACGGAAAGGAAGTACGTCCGTAGT -ACGGAAAGGAAGTACGTCGTCAGT -ACGGAAAGGAAGTACGTCGAAGGT -ACGGAAAGGAAGTACGTCAACCGT -ACGGAAAGGAAGTACGTCTTGTGC -ACGGAAAGGAAGTACGTCCTAAGC -ACGGAAAGGAAGTACGTCACTAGC -ACGGAAAGGAAGTACGTCAGATGC -ACGGAAAGGAAGTACGTCTGAAGG -ACGGAAAGGAAGTACGTCCAATGG -ACGGAAAGGAAGTACGTCATGAGG -ACGGAAAGGAAGTACGTCAATGGG -ACGGAAAGGAAGTACGTCTCCTGA -ACGGAAAGGAAGTACGTCTAGCGA -ACGGAAAGGAAGTACGTCCACAGA -ACGGAAAGGAAGTACGTCGCAAGA -ACGGAAAGGAAGTACGTCGGTTGA -ACGGAAAGGAAGTACGTCTCCGAT -ACGGAAAGGAAGTACGTCTGGCAT -ACGGAAAGGAAGTACGTCCGAGAT -ACGGAAAGGAAGTACGTCTACCAC -ACGGAAAGGAAGTACGTCCAGAAC -ACGGAAAGGAAGTACGTCGTCTAC -ACGGAAAGGAAGTACGTCACGTAC -ACGGAAAGGAAGTACGTCAGTGAC -ACGGAAAGGAAGTACGTCCTGTAG -ACGGAAAGGAAGTACGTCCCTAAG -ACGGAAAGGAAGTACGTCGTTCAG -ACGGAAAGGAAGTACGTCGCATAG -ACGGAAAGGAAGTACGTCGACAAG -ACGGAAAGGAAGTACGTCAAGCAG -ACGGAAAGGAAGTACGTCCGTCAA -ACGGAAAGGAAGTACGTCGCTGAA -ACGGAAAGGAAGTACGTCAGTACG -ACGGAAAGGAAGTACGTCATCCGA -ACGGAAAGGAAGTACGTCATGGGA -ACGGAAAGGAAGTACGTCGTGCAA -ACGGAAAGGAAGTACGTCGAGGAA -ACGGAAAGGAAGTACGTCCAGGTA -ACGGAAAGGAAGTACGTCGACTCT -ACGGAAAGGAAGTACGTCAGTCCT -ACGGAAAGGAAGTACGTCTAAGCC -ACGGAAAGGAAGTACGTCATAGCC -ACGGAAAGGAAGTACGTCTAACCG -ACGGAAAGGAAGTACGTCATGCCA -ACGGAAAGGAAGTACACGGGAAAC -ACGGAAAGGAAGTACACGAACACC -ACGGAAAGGAAGTACACGATCGAG -ACGGAAAGGAAGTACACGCTCCTT -ACGGAAAGGAAGTACACGCCTGTT -ACGGAAAGGAAGTACACGCGGTTT -ACGGAAAGGAAGTACACGGTGGTT -ACGGAAAGGAAGTACACGGCCTTT -ACGGAAAGGAAGTACACGGGTCTT -ACGGAAAGGAAGTACACGACGCTT -ACGGAAAGGAAGTACACGAGCGTT -ACGGAAAGGAAGTACACGTTCGTC -ACGGAAAGGAAGTACACGTCTCTC -ACGGAAAGGAAGTACACGTGGATC -ACGGAAAGGAAGTACACGCACTTC -ACGGAAAGGAAGTACACGGTACTC -ACGGAAAGGAAGTACACGGATGTC -ACGGAAAGGAAGTACACGACAGTC -ACGGAAAGGAAGTACACGTTGCTG -ACGGAAAGGAAGTACACGTCCATG -ACGGAAAGGAAGTACACGTGTGTG -ACGGAAAGGAAGTACACGCTAGTG -ACGGAAAGGAAGTACACGCATCTG -ACGGAAAGGAAGTACACGGAGTTG -ACGGAAAGGAAGTACACGAGACTG -ACGGAAAGGAAGTACACGTCGGTA -ACGGAAAGGAAGTACACGTGCCTA -ACGGAAAGGAAGTACACGCCACTA -ACGGAAAGGAAGTACACGGGAGTA -ACGGAAAGGAAGTACACGTCGTCT -ACGGAAAGGAAGTACACGTGCACT -ACGGAAAGGAAGTACACGCTGACT -ACGGAAAGGAAGTACACGCAACCT -ACGGAAAGGAAGTACACGGCTACT -ACGGAAAGGAAGTACACGGGATCT -ACGGAAAGGAAGTACACGAAGGCT -ACGGAAAGGAAGTACACGTCAACC -ACGGAAAGGAAGTACACGTGTTCC -ACGGAAAGGAAGTACACGATTCCC -ACGGAAAGGAAGTACACGTTCTCG -ACGGAAAGGAAGTACACGTAGACG -ACGGAAAGGAAGTACACGGTAACG -ACGGAAAGGAAGTACACGACTTCG -ACGGAAAGGAAGTACACGTACGCA -ACGGAAAGGAAGTACACGCTTGCA -ACGGAAAGGAAGTACACGCGAACA -ACGGAAAGGAAGTACACGCAGTCA -ACGGAAAGGAAGTACACGGATCCA -ACGGAAAGGAAGTACACGACGACA -ACGGAAAGGAAGTACACGAGCTCA -ACGGAAAGGAAGTACACGTCACGT -ACGGAAAGGAAGTACACGCGTAGT -ACGGAAAGGAAGTACACGGTCAGT -ACGGAAAGGAAGTACACGGAAGGT -ACGGAAAGGAAGTACACGAACCGT -ACGGAAAGGAAGTACACGTTGTGC -ACGGAAAGGAAGTACACGCTAAGC -ACGGAAAGGAAGTACACGACTAGC -ACGGAAAGGAAGTACACGAGATGC -ACGGAAAGGAAGTACACGTGAAGG -ACGGAAAGGAAGTACACGCAATGG -ACGGAAAGGAAGTACACGATGAGG -ACGGAAAGGAAGTACACGAATGGG -ACGGAAAGGAAGTACACGTCCTGA -ACGGAAAGGAAGTACACGTAGCGA -ACGGAAAGGAAGTACACGCACAGA -ACGGAAAGGAAGTACACGGCAAGA -ACGGAAAGGAAGTACACGGGTTGA -ACGGAAAGGAAGTACACGTCCGAT -ACGGAAAGGAAGTACACGTGGCAT -ACGGAAAGGAAGTACACGCGAGAT -ACGGAAAGGAAGTACACGTACCAC -ACGGAAAGGAAGTACACGCAGAAC -ACGGAAAGGAAGTACACGGTCTAC -ACGGAAAGGAAGTACACGACGTAC -ACGGAAAGGAAGTACACGAGTGAC -ACGGAAAGGAAGTACACGCTGTAG -ACGGAAAGGAAGTACACGCCTAAG -ACGGAAAGGAAGTACACGGTTCAG -ACGGAAAGGAAGTACACGGCATAG -ACGGAAAGGAAGTACACGGACAAG -ACGGAAAGGAAGTACACGAAGCAG -ACGGAAAGGAAGTACACGCGTCAA -ACGGAAAGGAAGTACACGGCTGAA -ACGGAAAGGAAGTACACGAGTACG -ACGGAAAGGAAGTACACGATCCGA -ACGGAAAGGAAGTACACGATGGGA -ACGGAAAGGAAGTACACGGTGCAA -ACGGAAAGGAAGTACACGGAGGAA -ACGGAAAGGAAGTACACGCAGGTA -ACGGAAAGGAAGTACACGGACTCT -ACGGAAAGGAAGTACACGAGTCCT -ACGGAAAGGAAGTACACGTAAGCC -ACGGAAAGGAAGTACACGATAGCC -ACGGAAAGGAAGTACACGTAACCG -ACGGAAAGGAAGTACACGATGCCA -ACGGAAAGGAAGGACAGTGGAAAC -ACGGAAAGGAAGGACAGTAACACC -ACGGAAAGGAAGGACAGTATCGAG -ACGGAAAGGAAGGACAGTCTCCTT -ACGGAAAGGAAGGACAGTCCTGTT -ACGGAAAGGAAGGACAGTCGGTTT -ACGGAAAGGAAGGACAGTGTGGTT -ACGGAAAGGAAGGACAGTGCCTTT -ACGGAAAGGAAGGACAGTGGTCTT -ACGGAAAGGAAGGACAGTACGCTT -ACGGAAAGGAAGGACAGTAGCGTT -ACGGAAAGGAAGGACAGTTTCGTC -ACGGAAAGGAAGGACAGTTCTCTC -ACGGAAAGGAAGGACAGTTGGATC -ACGGAAAGGAAGGACAGTCACTTC -ACGGAAAGGAAGGACAGTGTACTC -ACGGAAAGGAAGGACAGTGATGTC -ACGGAAAGGAAGGACAGTACAGTC -ACGGAAAGGAAGGACAGTTTGCTG -ACGGAAAGGAAGGACAGTTCCATG -ACGGAAAGGAAGGACAGTTGTGTG -ACGGAAAGGAAGGACAGTCTAGTG -ACGGAAAGGAAGGACAGTCATCTG -ACGGAAAGGAAGGACAGTGAGTTG -ACGGAAAGGAAGGACAGTAGACTG -ACGGAAAGGAAGGACAGTTCGGTA -ACGGAAAGGAAGGACAGTTGCCTA -ACGGAAAGGAAGGACAGTCCACTA -ACGGAAAGGAAGGACAGTGGAGTA -ACGGAAAGGAAGGACAGTTCGTCT -ACGGAAAGGAAGGACAGTTGCACT -ACGGAAAGGAAGGACAGTCTGACT -ACGGAAAGGAAGGACAGTCAACCT -ACGGAAAGGAAGGACAGTGCTACT -ACGGAAAGGAAGGACAGTGGATCT -ACGGAAAGGAAGGACAGTAAGGCT -ACGGAAAGGAAGGACAGTTCAACC -ACGGAAAGGAAGGACAGTTGTTCC -ACGGAAAGGAAGGACAGTATTCCC -ACGGAAAGGAAGGACAGTTTCTCG -ACGGAAAGGAAGGACAGTTAGACG -ACGGAAAGGAAGGACAGTGTAACG -ACGGAAAGGAAGGACAGTACTTCG -ACGGAAAGGAAGGACAGTTACGCA -ACGGAAAGGAAGGACAGTCTTGCA -ACGGAAAGGAAGGACAGTCGAACA -ACGGAAAGGAAGGACAGTCAGTCA -ACGGAAAGGAAGGACAGTGATCCA -ACGGAAAGGAAGGACAGTACGACA -ACGGAAAGGAAGGACAGTAGCTCA -ACGGAAAGGAAGGACAGTTCACGT -ACGGAAAGGAAGGACAGTCGTAGT -ACGGAAAGGAAGGACAGTGTCAGT -ACGGAAAGGAAGGACAGTGAAGGT -ACGGAAAGGAAGGACAGTAACCGT -ACGGAAAGGAAGGACAGTTTGTGC -ACGGAAAGGAAGGACAGTCTAAGC -ACGGAAAGGAAGGACAGTACTAGC -ACGGAAAGGAAGGACAGTAGATGC -ACGGAAAGGAAGGACAGTTGAAGG -ACGGAAAGGAAGGACAGTCAATGG -ACGGAAAGGAAGGACAGTATGAGG -ACGGAAAGGAAGGACAGTAATGGG -ACGGAAAGGAAGGACAGTTCCTGA -ACGGAAAGGAAGGACAGTTAGCGA -ACGGAAAGGAAGGACAGTCACAGA -ACGGAAAGGAAGGACAGTGCAAGA -ACGGAAAGGAAGGACAGTGGTTGA -ACGGAAAGGAAGGACAGTTCCGAT -ACGGAAAGGAAGGACAGTTGGCAT -ACGGAAAGGAAGGACAGTCGAGAT -ACGGAAAGGAAGGACAGTTACCAC -ACGGAAAGGAAGGACAGTCAGAAC -ACGGAAAGGAAGGACAGTGTCTAC -ACGGAAAGGAAGGACAGTACGTAC -ACGGAAAGGAAGGACAGTAGTGAC -ACGGAAAGGAAGGACAGTCTGTAG -ACGGAAAGGAAGGACAGTCCTAAG -ACGGAAAGGAAGGACAGTGTTCAG -ACGGAAAGGAAGGACAGTGCATAG -ACGGAAAGGAAGGACAGTGACAAG -ACGGAAAGGAAGGACAGTAAGCAG -ACGGAAAGGAAGGACAGTCGTCAA -ACGGAAAGGAAGGACAGTGCTGAA -ACGGAAAGGAAGGACAGTAGTACG -ACGGAAAGGAAGGACAGTATCCGA -ACGGAAAGGAAGGACAGTATGGGA -ACGGAAAGGAAGGACAGTGTGCAA -ACGGAAAGGAAGGACAGTGAGGAA -ACGGAAAGGAAGGACAGTCAGGTA -ACGGAAAGGAAGGACAGTGACTCT -ACGGAAAGGAAGGACAGTAGTCCT -ACGGAAAGGAAGGACAGTTAAGCC -ACGGAAAGGAAGGACAGTATAGCC -ACGGAAAGGAAGGACAGTTAACCG -ACGGAAAGGAAGGACAGTATGCCA -ACGGAAAGGAAGTAGCTGGGAAAC -ACGGAAAGGAAGTAGCTGAACACC -ACGGAAAGGAAGTAGCTGATCGAG -ACGGAAAGGAAGTAGCTGCTCCTT -ACGGAAAGGAAGTAGCTGCCTGTT -ACGGAAAGGAAGTAGCTGCGGTTT -ACGGAAAGGAAGTAGCTGGTGGTT -ACGGAAAGGAAGTAGCTGGCCTTT -ACGGAAAGGAAGTAGCTGGGTCTT -ACGGAAAGGAAGTAGCTGACGCTT -ACGGAAAGGAAGTAGCTGAGCGTT -ACGGAAAGGAAGTAGCTGTTCGTC -ACGGAAAGGAAGTAGCTGTCTCTC -ACGGAAAGGAAGTAGCTGTGGATC -ACGGAAAGGAAGTAGCTGCACTTC -ACGGAAAGGAAGTAGCTGGTACTC -ACGGAAAGGAAGTAGCTGGATGTC -ACGGAAAGGAAGTAGCTGACAGTC -ACGGAAAGGAAGTAGCTGTTGCTG -ACGGAAAGGAAGTAGCTGTCCATG -ACGGAAAGGAAGTAGCTGTGTGTG -ACGGAAAGGAAGTAGCTGCTAGTG -ACGGAAAGGAAGTAGCTGCATCTG -ACGGAAAGGAAGTAGCTGGAGTTG -ACGGAAAGGAAGTAGCTGAGACTG -ACGGAAAGGAAGTAGCTGTCGGTA -ACGGAAAGGAAGTAGCTGTGCCTA -ACGGAAAGGAAGTAGCTGCCACTA -ACGGAAAGGAAGTAGCTGGGAGTA -ACGGAAAGGAAGTAGCTGTCGTCT -ACGGAAAGGAAGTAGCTGTGCACT -ACGGAAAGGAAGTAGCTGCTGACT -ACGGAAAGGAAGTAGCTGCAACCT -ACGGAAAGGAAGTAGCTGGCTACT -ACGGAAAGGAAGTAGCTGGGATCT -ACGGAAAGGAAGTAGCTGAAGGCT -ACGGAAAGGAAGTAGCTGTCAACC -ACGGAAAGGAAGTAGCTGTGTTCC -ACGGAAAGGAAGTAGCTGATTCCC -ACGGAAAGGAAGTAGCTGTTCTCG -ACGGAAAGGAAGTAGCTGTAGACG -ACGGAAAGGAAGTAGCTGGTAACG -ACGGAAAGGAAGTAGCTGACTTCG -ACGGAAAGGAAGTAGCTGTACGCA -ACGGAAAGGAAGTAGCTGCTTGCA -ACGGAAAGGAAGTAGCTGCGAACA -ACGGAAAGGAAGTAGCTGCAGTCA -ACGGAAAGGAAGTAGCTGGATCCA -ACGGAAAGGAAGTAGCTGACGACA -ACGGAAAGGAAGTAGCTGAGCTCA -ACGGAAAGGAAGTAGCTGTCACGT -ACGGAAAGGAAGTAGCTGCGTAGT -ACGGAAAGGAAGTAGCTGGTCAGT -ACGGAAAGGAAGTAGCTGGAAGGT -ACGGAAAGGAAGTAGCTGAACCGT -ACGGAAAGGAAGTAGCTGTTGTGC -ACGGAAAGGAAGTAGCTGCTAAGC -ACGGAAAGGAAGTAGCTGACTAGC -ACGGAAAGGAAGTAGCTGAGATGC -ACGGAAAGGAAGTAGCTGTGAAGG -ACGGAAAGGAAGTAGCTGCAATGG -ACGGAAAGGAAGTAGCTGATGAGG -ACGGAAAGGAAGTAGCTGAATGGG -ACGGAAAGGAAGTAGCTGTCCTGA -ACGGAAAGGAAGTAGCTGTAGCGA -ACGGAAAGGAAGTAGCTGCACAGA -ACGGAAAGGAAGTAGCTGGCAAGA -ACGGAAAGGAAGTAGCTGGGTTGA -ACGGAAAGGAAGTAGCTGTCCGAT -ACGGAAAGGAAGTAGCTGTGGCAT -ACGGAAAGGAAGTAGCTGCGAGAT -ACGGAAAGGAAGTAGCTGTACCAC -ACGGAAAGGAAGTAGCTGCAGAAC -ACGGAAAGGAAGTAGCTGGTCTAC -ACGGAAAGGAAGTAGCTGACGTAC -ACGGAAAGGAAGTAGCTGAGTGAC -ACGGAAAGGAAGTAGCTGCTGTAG -ACGGAAAGGAAGTAGCTGCCTAAG -ACGGAAAGGAAGTAGCTGGTTCAG -ACGGAAAGGAAGTAGCTGGCATAG -ACGGAAAGGAAGTAGCTGGACAAG -ACGGAAAGGAAGTAGCTGAAGCAG -ACGGAAAGGAAGTAGCTGCGTCAA -ACGGAAAGGAAGTAGCTGGCTGAA -ACGGAAAGGAAGTAGCTGAGTACG -ACGGAAAGGAAGTAGCTGATCCGA -ACGGAAAGGAAGTAGCTGATGGGA -ACGGAAAGGAAGTAGCTGGTGCAA -ACGGAAAGGAAGTAGCTGGAGGAA -ACGGAAAGGAAGTAGCTGCAGGTA -ACGGAAAGGAAGTAGCTGGACTCT -ACGGAAAGGAAGTAGCTGAGTCCT -ACGGAAAGGAAGTAGCTGTAAGCC -ACGGAAAGGAAGTAGCTGATAGCC -ACGGAAAGGAAGTAGCTGTAACCG -ACGGAAAGGAAGTAGCTGATGCCA -ACGGAAAGGAAGAAGCCTGGAAAC -ACGGAAAGGAAGAAGCCTAACACC -ACGGAAAGGAAGAAGCCTATCGAG -ACGGAAAGGAAGAAGCCTCTCCTT -ACGGAAAGGAAGAAGCCTCCTGTT -ACGGAAAGGAAGAAGCCTCGGTTT -ACGGAAAGGAAGAAGCCTGTGGTT -ACGGAAAGGAAGAAGCCTGCCTTT -ACGGAAAGGAAGAAGCCTGGTCTT -ACGGAAAGGAAGAAGCCTACGCTT -ACGGAAAGGAAGAAGCCTAGCGTT -ACGGAAAGGAAGAAGCCTTTCGTC -ACGGAAAGGAAGAAGCCTTCTCTC -ACGGAAAGGAAGAAGCCTTGGATC -ACGGAAAGGAAGAAGCCTCACTTC -ACGGAAAGGAAGAAGCCTGTACTC -ACGGAAAGGAAGAAGCCTGATGTC -ACGGAAAGGAAGAAGCCTACAGTC -ACGGAAAGGAAGAAGCCTTTGCTG -ACGGAAAGGAAGAAGCCTTCCATG -ACGGAAAGGAAGAAGCCTTGTGTG -ACGGAAAGGAAGAAGCCTCTAGTG -ACGGAAAGGAAGAAGCCTCATCTG -ACGGAAAGGAAGAAGCCTGAGTTG -ACGGAAAGGAAGAAGCCTAGACTG -ACGGAAAGGAAGAAGCCTTCGGTA -ACGGAAAGGAAGAAGCCTTGCCTA -ACGGAAAGGAAGAAGCCTCCACTA -ACGGAAAGGAAGAAGCCTGGAGTA -ACGGAAAGGAAGAAGCCTTCGTCT -ACGGAAAGGAAGAAGCCTTGCACT -ACGGAAAGGAAGAAGCCTCTGACT -ACGGAAAGGAAGAAGCCTCAACCT -ACGGAAAGGAAGAAGCCTGCTACT -ACGGAAAGGAAGAAGCCTGGATCT -ACGGAAAGGAAGAAGCCTAAGGCT -ACGGAAAGGAAGAAGCCTTCAACC -ACGGAAAGGAAGAAGCCTTGTTCC -ACGGAAAGGAAGAAGCCTATTCCC -ACGGAAAGGAAGAAGCCTTTCTCG -ACGGAAAGGAAGAAGCCTTAGACG -ACGGAAAGGAAGAAGCCTGTAACG -ACGGAAAGGAAGAAGCCTACTTCG -ACGGAAAGGAAGAAGCCTTACGCA -ACGGAAAGGAAGAAGCCTCTTGCA -ACGGAAAGGAAGAAGCCTCGAACA -ACGGAAAGGAAGAAGCCTCAGTCA -ACGGAAAGGAAGAAGCCTGATCCA -ACGGAAAGGAAGAAGCCTACGACA -ACGGAAAGGAAGAAGCCTAGCTCA -ACGGAAAGGAAGAAGCCTTCACGT -ACGGAAAGGAAGAAGCCTCGTAGT -ACGGAAAGGAAGAAGCCTGTCAGT -ACGGAAAGGAAGAAGCCTGAAGGT -ACGGAAAGGAAGAAGCCTAACCGT -ACGGAAAGGAAGAAGCCTTTGTGC -ACGGAAAGGAAGAAGCCTCTAAGC -ACGGAAAGGAAGAAGCCTACTAGC -ACGGAAAGGAAGAAGCCTAGATGC -ACGGAAAGGAAGAAGCCTTGAAGG -ACGGAAAGGAAGAAGCCTCAATGG -ACGGAAAGGAAGAAGCCTATGAGG -ACGGAAAGGAAGAAGCCTAATGGG -ACGGAAAGGAAGAAGCCTTCCTGA -ACGGAAAGGAAGAAGCCTTAGCGA -ACGGAAAGGAAGAAGCCTCACAGA -ACGGAAAGGAAGAAGCCTGCAAGA -ACGGAAAGGAAGAAGCCTGGTTGA -ACGGAAAGGAAGAAGCCTTCCGAT -ACGGAAAGGAAGAAGCCTTGGCAT -ACGGAAAGGAAGAAGCCTCGAGAT -ACGGAAAGGAAGAAGCCTTACCAC -ACGGAAAGGAAGAAGCCTCAGAAC -ACGGAAAGGAAGAAGCCTGTCTAC -ACGGAAAGGAAGAAGCCTACGTAC -ACGGAAAGGAAGAAGCCTAGTGAC -ACGGAAAGGAAGAAGCCTCTGTAG -ACGGAAAGGAAGAAGCCTCCTAAG -ACGGAAAGGAAGAAGCCTGTTCAG -ACGGAAAGGAAGAAGCCTGCATAG -ACGGAAAGGAAGAAGCCTGACAAG -ACGGAAAGGAAGAAGCCTAAGCAG -ACGGAAAGGAAGAAGCCTCGTCAA -ACGGAAAGGAAGAAGCCTGCTGAA -ACGGAAAGGAAGAAGCCTAGTACG -ACGGAAAGGAAGAAGCCTATCCGA -ACGGAAAGGAAGAAGCCTATGGGA -ACGGAAAGGAAGAAGCCTGTGCAA -ACGGAAAGGAAGAAGCCTGAGGAA -ACGGAAAGGAAGAAGCCTCAGGTA -ACGGAAAGGAAGAAGCCTGACTCT -ACGGAAAGGAAGAAGCCTAGTCCT -ACGGAAAGGAAGAAGCCTTAAGCC -ACGGAAAGGAAGAAGCCTATAGCC -ACGGAAAGGAAGAAGCCTTAACCG -ACGGAAAGGAAGAAGCCTATGCCA -ACGGAAAGGAAGCAGGTTGGAAAC -ACGGAAAGGAAGCAGGTTAACACC -ACGGAAAGGAAGCAGGTTATCGAG -ACGGAAAGGAAGCAGGTTCTCCTT -ACGGAAAGGAAGCAGGTTCCTGTT -ACGGAAAGGAAGCAGGTTCGGTTT -ACGGAAAGGAAGCAGGTTGTGGTT -ACGGAAAGGAAGCAGGTTGCCTTT -ACGGAAAGGAAGCAGGTTGGTCTT -ACGGAAAGGAAGCAGGTTACGCTT -ACGGAAAGGAAGCAGGTTAGCGTT -ACGGAAAGGAAGCAGGTTTTCGTC -ACGGAAAGGAAGCAGGTTTCTCTC -ACGGAAAGGAAGCAGGTTTGGATC -ACGGAAAGGAAGCAGGTTCACTTC -ACGGAAAGGAAGCAGGTTGTACTC -ACGGAAAGGAAGCAGGTTGATGTC -ACGGAAAGGAAGCAGGTTACAGTC -ACGGAAAGGAAGCAGGTTTTGCTG -ACGGAAAGGAAGCAGGTTTCCATG -ACGGAAAGGAAGCAGGTTTGTGTG -ACGGAAAGGAAGCAGGTTCTAGTG -ACGGAAAGGAAGCAGGTTCATCTG -ACGGAAAGGAAGCAGGTTGAGTTG -ACGGAAAGGAAGCAGGTTAGACTG -ACGGAAAGGAAGCAGGTTTCGGTA -ACGGAAAGGAAGCAGGTTTGCCTA -ACGGAAAGGAAGCAGGTTCCACTA -ACGGAAAGGAAGCAGGTTGGAGTA -ACGGAAAGGAAGCAGGTTTCGTCT -ACGGAAAGGAAGCAGGTTTGCACT -ACGGAAAGGAAGCAGGTTCTGACT -ACGGAAAGGAAGCAGGTTCAACCT -ACGGAAAGGAAGCAGGTTGCTACT -ACGGAAAGGAAGCAGGTTGGATCT -ACGGAAAGGAAGCAGGTTAAGGCT -ACGGAAAGGAAGCAGGTTTCAACC -ACGGAAAGGAAGCAGGTTTGTTCC -ACGGAAAGGAAGCAGGTTATTCCC -ACGGAAAGGAAGCAGGTTTTCTCG -ACGGAAAGGAAGCAGGTTTAGACG -ACGGAAAGGAAGCAGGTTGTAACG -ACGGAAAGGAAGCAGGTTACTTCG -ACGGAAAGGAAGCAGGTTTACGCA -ACGGAAAGGAAGCAGGTTCTTGCA -ACGGAAAGGAAGCAGGTTCGAACA -ACGGAAAGGAAGCAGGTTCAGTCA -ACGGAAAGGAAGCAGGTTGATCCA -ACGGAAAGGAAGCAGGTTACGACA -ACGGAAAGGAAGCAGGTTAGCTCA -ACGGAAAGGAAGCAGGTTTCACGT -ACGGAAAGGAAGCAGGTTCGTAGT -ACGGAAAGGAAGCAGGTTGTCAGT -ACGGAAAGGAAGCAGGTTGAAGGT -ACGGAAAGGAAGCAGGTTAACCGT -ACGGAAAGGAAGCAGGTTTTGTGC -ACGGAAAGGAAGCAGGTTCTAAGC -ACGGAAAGGAAGCAGGTTACTAGC -ACGGAAAGGAAGCAGGTTAGATGC -ACGGAAAGGAAGCAGGTTTGAAGG -ACGGAAAGGAAGCAGGTTCAATGG -ACGGAAAGGAAGCAGGTTATGAGG -ACGGAAAGGAAGCAGGTTAATGGG -ACGGAAAGGAAGCAGGTTTCCTGA -ACGGAAAGGAAGCAGGTTTAGCGA -ACGGAAAGGAAGCAGGTTCACAGA -ACGGAAAGGAAGCAGGTTGCAAGA -ACGGAAAGGAAGCAGGTTGGTTGA -ACGGAAAGGAAGCAGGTTTCCGAT -ACGGAAAGGAAGCAGGTTTGGCAT -ACGGAAAGGAAGCAGGTTCGAGAT -ACGGAAAGGAAGCAGGTTTACCAC -ACGGAAAGGAAGCAGGTTCAGAAC -ACGGAAAGGAAGCAGGTTGTCTAC -ACGGAAAGGAAGCAGGTTACGTAC -ACGGAAAGGAAGCAGGTTAGTGAC -ACGGAAAGGAAGCAGGTTCTGTAG -ACGGAAAGGAAGCAGGTTCCTAAG -ACGGAAAGGAAGCAGGTTGTTCAG -ACGGAAAGGAAGCAGGTTGCATAG -ACGGAAAGGAAGCAGGTTGACAAG -ACGGAAAGGAAGCAGGTTAAGCAG -ACGGAAAGGAAGCAGGTTCGTCAA -ACGGAAAGGAAGCAGGTTGCTGAA -ACGGAAAGGAAGCAGGTTAGTACG -ACGGAAAGGAAGCAGGTTATCCGA -ACGGAAAGGAAGCAGGTTATGGGA -ACGGAAAGGAAGCAGGTTGTGCAA -ACGGAAAGGAAGCAGGTTGAGGAA -ACGGAAAGGAAGCAGGTTCAGGTA -ACGGAAAGGAAGCAGGTTGACTCT -ACGGAAAGGAAGCAGGTTAGTCCT -ACGGAAAGGAAGCAGGTTTAAGCC -ACGGAAAGGAAGCAGGTTATAGCC -ACGGAAAGGAAGCAGGTTTAACCG -ACGGAAAGGAAGCAGGTTATGCCA -ACGGAAAGGAAGTAGGCAGGAAAC -ACGGAAAGGAAGTAGGCAAACACC -ACGGAAAGGAAGTAGGCAATCGAG -ACGGAAAGGAAGTAGGCACTCCTT -ACGGAAAGGAAGTAGGCACCTGTT -ACGGAAAGGAAGTAGGCACGGTTT -ACGGAAAGGAAGTAGGCAGTGGTT -ACGGAAAGGAAGTAGGCAGCCTTT -ACGGAAAGGAAGTAGGCAGGTCTT -ACGGAAAGGAAGTAGGCAACGCTT -ACGGAAAGGAAGTAGGCAAGCGTT -ACGGAAAGGAAGTAGGCATTCGTC -ACGGAAAGGAAGTAGGCATCTCTC -ACGGAAAGGAAGTAGGCATGGATC -ACGGAAAGGAAGTAGGCACACTTC -ACGGAAAGGAAGTAGGCAGTACTC -ACGGAAAGGAAGTAGGCAGATGTC -ACGGAAAGGAAGTAGGCAACAGTC -ACGGAAAGGAAGTAGGCATTGCTG -ACGGAAAGGAAGTAGGCATCCATG -ACGGAAAGGAAGTAGGCATGTGTG -ACGGAAAGGAAGTAGGCACTAGTG -ACGGAAAGGAAGTAGGCACATCTG -ACGGAAAGGAAGTAGGCAGAGTTG -ACGGAAAGGAAGTAGGCAAGACTG -ACGGAAAGGAAGTAGGCATCGGTA -ACGGAAAGGAAGTAGGCATGCCTA -ACGGAAAGGAAGTAGGCACCACTA -ACGGAAAGGAAGTAGGCAGGAGTA -ACGGAAAGGAAGTAGGCATCGTCT -ACGGAAAGGAAGTAGGCATGCACT -ACGGAAAGGAAGTAGGCACTGACT -ACGGAAAGGAAGTAGGCACAACCT -ACGGAAAGGAAGTAGGCAGCTACT -ACGGAAAGGAAGTAGGCAGGATCT -ACGGAAAGGAAGTAGGCAAAGGCT -ACGGAAAGGAAGTAGGCATCAACC -ACGGAAAGGAAGTAGGCATGTTCC -ACGGAAAGGAAGTAGGCAATTCCC -ACGGAAAGGAAGTAGGCATTCTCG -ACGGAAAGGAAGTAGGCATAGACG -ACGGAAAGGAAGTAGGCAGTAACG -ACGGAAAGGAAGTAGGCAACTTCG -ACGGAAAGGAAGTAGGCATACGCA -ACGGAAAGGAAGTAGGCACTTGCA -ACGGAAAGGAAGTAGGCACGAACA -ACGGAAAGGAAGTAGGCACAGTCA -ACGGAAAGGAAGTAGGCAGATCCA -ACGGAAAGGAAGTAGGCAACGACA -ACGGAAAGGAAGTAGGCAAGCTCA -ACGGAAAGGAAGTAGGCATCACGT -ACGGAAAGGAAGTAGGCACGTAGT -ACGGAAAGGAAGTAGGCAGTCAGT -ACGGAAAGGAAGTAGGCAGAAGGT -ACGGAAAGGAAGTAGGCAAACCGT -ACGGAAAGGAAGTAGGCATTGTGC -ACGGAAAGGAAGTAGGCACTAAGC -ACGGAAAGGAAGTAGGCAACTAGC -ACGGAAAGGAAGTAGGCAAGATGC -ACGGAAAGGAAGTAGGCATGAAGG -ACGGAAAGGAAGTAGGCACAATGG -ACGGAAAGGAAGTAGGCAATGAGG -ACGGAAAGGAAGTAGGCAAATGGG -ACGGAAAGGAAGTAGGCATCCTGA -ACGGAAAGGAAGTAGGCATAGCGA -ACGGAAAGGAAGTAGGCACACAGA -ACGGAAAGGAAGTAGGCAGCAAGA -ACGGAAAGGAAGTAGGCAGGTTGA -ACGGAAAGGAAGTAGGCATCCGAT -ACGGAAAGGAAGTAGGCATGGCAT -ACGGAAAGGAAGTAGGCACGAGAT -ACGGAAAGGAAGTAGGCATACCAC -ACGGAAAGGAAGTAGGCACAGAAC -ACGGAAAGGAAGTAGGCAGTCTAC -ACGGAAAGGAAGTAGGCAACGTAC -ACGGAAAGGAAGTAGGCAAGTGAC -ACGGAAAGGAAGTAGGCACTGTAG -ACGGAAAGGAAGTAGGCACCTAAG -ACGGAAAGGAAGTAGGCAGTTCAG -ACGGAAAGGAAGTAGGCAGCATAG -ACGGAAAGGAAGTAGGCAGACAAG -ACGGAAAGGAAGTAGGCAAAGCAG -ACGGAAAGGAAGTAGGCACGTCAA -ACGGAAAGGAAGTAGGCAGCTGAA -ACGGAAAGGAAGTAGGCAAGTACG -ACGGAAAGGAAGTAGGCAATCCGA -ACGGAAAGGAAGTAGGCAATGGGA -ACGGAAAGGAAGTAGGCAGTGCAA -ACGGAAAGGAAGTAGGCAGAGGAA -ACGGAAAGGAAGTAGGCACAGGTA -ACGGAAAGGAAGTAGGCAGACTCT -ACGGAAAGGAAGTAGGCAAGTCCT -ACGGAAAGGAAGTAGGCATAAGCC -ACGGAAAGGAAGTAGGCAATAGCC -ACGGAAAGGAAGTAGGCATAACCG -ACGGAAAGGAAGTAGGCAATGCCA -ACGGAAAGGAAGAAGGACGGAAAC -ACGGAAAGGAAGAAGGACAACACC -ACGGAAAGGAAGAAGGACATCGAG -ACGGAAAGGAAGAAGGACCTCCTT -ACGGAAAGGAAGAAGGACCCTGTT -ACGGAAAGGAAGAAGGACCGGTTT -ACGGAAAGGAAGAAGGACGTGGTT -ACGGAAAGGAAGAAGGACGCCTTT -ACGGAAAGGAAGAAGGACGGTCTT -ACGGAAAGGAAGAAGGACACGCTT -ACGGAAAGGAAGAAGGACAGCGTT -ACGGAAAGGAAGAAGGACTTCGTC -ACGGAAAGGAAGAAGGACTCTCTC -ACGGAAAGGAAGAAGGACTGGATC -ACGGAAAGGAAGAAGGACCACTTC -ACGGAAAGGAAGAAGGACGTACTC -ACGGAAAGGAAGAAGGACGATGTC -ACGGAAAGGAAGAAGGACACAGTC -ACGGAAAGGAAGAAGGACTTGCTG -ACGGAAAGGAAGAAGGACTCCATG -ACGGAAAGGAAGAAGGACTGTGTG -ACGGAAAGGAAGAAGGACCTAGTG -ACGGAAAGGAAGAAGGACCATCTG -ACGGAAAGGAAGAAGGACGAGTTG -ACGGAAAGGAAGAAGGACAGACTG -ACGGAAAGGAAGAAGGACTCGGTA -ACGGAAAGGAAGAAGGACTGCCTA -ACGGAAAGGAAGAAGGACCCACTA -ACGGAAAGGAAGAAGGACGGAGTA -ACGGAAAGGAAGAAGGACTCGTCT -ACGGAAAGGAAGAAGGACTGCACT -ACGGAAAGGAAGAAGGACCTGACT -ACGGAAAGGAAGAAGGACCAACCT -ACGGAAAGGAAGAAGGACGCTACT -ACGGAAAGGAAGAAGGACGGATCT -ACGGAAAGGAAGAAGGACAAGGCT -ACGGAAAGGAAGAAGGACTCAACC -ACGGAAAGGAAGAAGGACTGTTCC -ACGGAAAGGAAGAAGGACATTCCC -ACGGAAAGGAAGAAGGACTTCTCG -ACGGAAAGGAAGAAGGACTAGACG -ACGGAAAGGAAGAAGGACGTAACG -ACGGAAAGGAAGAAGGACACTTCG -ACGGAAAGGAAGAAGGACTACGCA -ACGGAAAGGAAGAAGGACCTTGCA -ACGGAAAGGAAGAAGGACCGAACA -ACGGAAAGGAAGAAGGACCAGTCA -ACGGAAAGGAAGAAGGACGATCCA -ACGGAAAGGAAGAAGGACACGACA -ACGGAAAGGAAGAAGGACAGCTCA -ACGGAAAGGAAGAAGGACTCACGT -ACGGAAAGGAAGAAGGACCGTAGT -ACGGAAAGGAAGAAGGACGTCAGT -ACGGAAAGGAAGAAGGACGAAGGT -ACGGAAAGGAAGAAGGACAACCGT -ACGGAAAGGAAGAAGGACTTGTGC -ACGGAAAGGAAGAAGGACCTAAGC -ACGGAAAGGAAGAAGGACACTAGC -ACGGAAAGGAAGAAGGACAGATGC -ACGGAAAGGAAGAAGGACTGAAGG -ACGGAAAGGAAGAAGGACCAATGG -ACGGAAAGGAAGAAGGACATGAGG -ACGGAAAGGAAGAAGGACAATGGG -ACGGAAAGGAAGAAGGACTCCTGA -ACGGAAAGGAAGAAGGACTAGCGA -ACGGAAAGGAAGAAGGACCACAGA -ACGGAAAGGAAGAAGGACGCAAGA -ACGGAAAGGAAGAAGGACGGTTGA -ACGGAAAGGAAGAAGGACTCCGAT -ACGGAAAGGAAGAAGGACTGGCAT -ACGGAAAGGAAGAAGGACCGAGAT -ACGGAAAGGAAGAAGGACTACCAC -ACGGAAAGGAAGAAGGACCAGAAC -ACGGAAAGGAAGAAGGACGTCTAC -ACGGAAAGGAAGAAGGACACGTAC -ACGGAAAGGAAGAAGGACAGTGAC -ACGGAAAGGAAGAAGGACCTGTAG -ACGGAAAGGAAGAAGGACCCTAAG -ACGGAAAGGAAGAAGGACGTTCAG -ACGGAAAGGAAGAAGGACGCATAG -ACGGAAAGGAAGAAGGACGACAAG -ACGGAAAGGAAGAAGGACAAGCAG -ACGGAAAGGAAGAAGGACCGTCAA -ACGGAAAGGAAGAAGGACGCTGAA -ACGGAAAGGAAGAAGGACAGTACG -ACGGAAAGGAAGAAGGACATCCGA -ACGGAAAGGAAGAAGGACATGGGA -ACGGAAAGGAAGAAGGACGTGCAA -ACGGAAAGGAAGAAGGACGAGGAA -ACGGAAAGGAAGAAGGACCAGGTA -ACGGAAAGGAAGAAGGACGACTCT -ACGGAAAGGAAGAAGGACAGTCCT -ACGGAAAGGAAGAAGGACTAAGCC -ACGGAAAGGAAGAAGGACATAGCC -ACGGAAAGGAAGAAGGACTAACCG -ACGGAAAGGAAGAAGGACATGCCA -ACGGAAAGGAAGCAGAAGGGAAAC -ACGGAAAGGAAGCAGAAGAACACC -ACGGAAAGGAAGCAGAAGATCGAG -ACGGAAAGGAAGCAGAAGCTCCTT -ACGGAAAGGAAGCAGAAGCCTGTT -ACGGAAAGGAAGCAGAAGCGGTTT -ACGGAAAGGAAGCAGAAGGTGGTT -ACGGAAAGGAAGCAGAAGGCCTTT -ACGGAAAGGAAGCAGAAGGGTCTT -ACGGAAAGGAAGCAGAAGACGCTT -ACGGAAAGGAAGCAGAAGAGCGTT -ACGGAAAGGAAGCAGAAGTTCGTC -ACGGAAAGGAAGCAGAAGTCTCTC -ACGGAAAGGAAGCAGAAGTGGATC -ACGGAAAGGAAGCAGAAGCACTTC -ACGGAAAGGAAGCAGAAGGTACTC -ACGGAAAGGAAGCAGAAGGATGTC -ACGGAAAGGAAGCAGAAGACAGTC -ACGGAAAGGAAGCAGAAGTTGCTG -ACGGAAAGGAAGCAGAAGTCCATG -ACGGAAAGGAAGCAGAAGTGTGTG -ACGGAAAGGAAGCAGAAGCTAGTG -ACGGAAAGGAAGCAGAAGCATCTG -ACGGAAAGGAAGCAGAAGGAGTTG -ACGGAAAGGAAGCAGAAGAGACTG -ACGGAAAGGAAGCAGAAGTCGGTA -ACGGAAAGGAAGCAGAAGTGCCTA -ACGGAAAGGAAGCAGAAGCCACTA -ACGGAAAGGAAGCAGAAGGGAGTA -ACGGAAAGGAAGCAGAAGTCGTCT -ACGGAAAGGAAGCAGAAGTGCACT -ACGGAAAGGAAGCAGAAGCTGACT -ACGGAAAGGAAGCAGAAGCAACCT -ACGGAAAGGAAGCAGAAGGCTACT -ACGGAAAGGAAGCAGAAGGGATCT -ACGGAAAGGAAGCAGAAGAAGGCT -ACGGAAAGGAAGCAGAAGTCAACC -ACGGAAAGGAAGCAGAAGTGTTCC -ACGGAAAGGAAGCAGAAGATTCCC -ACGGAAAGGAAGCAGAAGTTCTCG -ACGGAAAGGAAGCAGAAGTAGACG -ACGGAAAGGAAGCAGAAGGTAACG -ACGGAAAGGAAGCAGAAGACTTCG -ACGGAAAGGAAGCAGAAGTACGCA -ACGGAAAGGAAGCAGAAGCTTGCA -ACGGAAAGGAAGCAGAAGCGAACA -ACGGAAAGGAAGCAGAAGCAGTCA -ACGGAAAGGAAGCAGAAGGATCCA -ACGGAAAGGAAGCAGAAGACGACA -ACGGAAAGGAAGCAGAAGAGCTCA -ACGGAAAGGAAGCAGAAGTCACGT -ACGGAAAGGAAGCAGAAGCGTAGT -ACGGAAAGGAAGCAGAAGGTCAGT -ACGGAAAGGAAGCAGAAGGAAGGT -ACGGAAAGGAAGCAGAAGAACCGT -ACGGAAAGGAAGCAGAAGTTGTGC -ACGGAAAGGAAGCAGAAGCTAAGC -ACGGAAAGGAAGCAGAAGACTAGC -ACGGAAAGGAAGCAGAAGAGATGC -ACGGAAAGGAAGCAGAAGTGAAGG -ACGGAAAGGAAGCAGAAGCAATGG -ACGGAAAGGAAGCAGAAGATGAGG -ACGGAAAGGAAGCAGAAGAATGGG -ACGGAAAGGAAGCAGAAGTCCTGA -ACGGAAAGGAAGCAGAAGTAGCGA -ACGGAAAGGAAGCAGAAGCACAGA -ACGGAAAGGAAGCAGAAGGCAAGA -ACGGAAAGGAAGCAGAAGGGTTGA -ACGGAAAGGAAGCAGAAGTCCGAT -ACGGAAAGGAAGCAGAAGTGGCAT -ACGGAAAGGAAGCAGAAGCGAGAT -ACGGAAAGGAAGCAGAAGTACCAC -ACGGAAAGGAAGCAGAAGCAGAAC -ACGGAAAGGAAGCAGAAGGTCTAC -ACGGAAAGGAAGCAGAAGACGTAC -ACGGAAAGGAAGCAGAAGAGTGAC -ACGGAAAGGAAGCAGAAGCTGTAG -ACGGAAAGGAAGCAGAAGCCTAAG -ACGGAAAGGAAGCAGAAGGTTCAG -ACGGAAAGGAAGCAGAAGGCATAG -ACGGAAAGGAAGCAGAAGGACAAG -ACGGAAAGGAAGCAGAAGAAGCAG -ACGGAAAGGAAGCAGAAGCGTCAA -ACGGAAAGGAAGCAGAAGGCTGAA -ACGGAAAGGAAGCAGAAGAGTACG -ACGGAAAGGAAGCAGAAGATCCGA -ACGGAAAGGAAGCAGAAGATGGGA -ACGGAAAGGAAGCAGAAGGTGCAA -ACGGAAAGGAAGCAGAAGGAGGAA -ACGGAAAGGAAGCAGAAGCAGGTA -ACGGAAAGGAAGCAGAAGGACTCT -ACGGAAAGGAAGCAGAAGAGTCCT -ACGGAAAGGAAGCAGAAGTAAGCC -ACGGAAAGGAAGCAGAAGATAGCC -ACGGAAAGGAAGCAGAAGTAACCG -ACGGAAAGGAAGCAGAAGATGCCA -ACGGAAAGGAAGCAACGTGGAAAC -ACGGAAAGGAAGCAACGTAACACC -ACGGAAAGGAAGCAACGTATCGAG -ACGGAAAGGAAGCAACGTCTCCTT -ACGGAAAGGAAGCAACGTCCTGTT -ACGGAAAGGAAGCAACGTCGGTTT -ACGGAAAGGAAGCAACGTGTGGTT -ACGGAAAGGAAGCAACGTGCCTTT -ACGGAAAGGAAGCAACGTGGTCTT -ACGGAAAGGAAGCAACGTACGCTT -ACGGAAAGGAAGCAACGTAGCGTT -ACGGAAAGGAAGCAACGTTTCGTC -ACGGAAAGGAAGCAACGTTCTCTC -ACGGAAAGGAAGCAACGTTGGATC -ACGGAAAGGAAGCAACGTCACTTC -ACGGAAAGGAAGCAACGTGTACTC -ACGGAAAGGAAGCAACGTGATGTC -ACGGAAAGGAAGCAACGTACAGTC -ACGGAAAGGAAGCAACGTTTGCTG -ACGGAAAGGAAGCAACGTTCCATG -ACGGAAAGGAAGCAACGTTGTGTG -ACGGAAAGGAAGCAACGTCTAGTG -ACGGAAAGGAAGCAACGTCATCTG -ACGGAAAGGAAGCAACGTGAGTTG -ACGGAAAGGAAGCAACGTAGACTG -ACGGAAAGGAAGCAACGTTCGGTA -ACGGAAAGGAAGCAACGTTGCCTA -ACGGAAAGGAAGCAACGTCCACTA -ACGGAAAGGAAGCAACGTGGAGTA -ACGGAAAGGAAGCAACGTTCGTCT -ACGGAAAGGAAGCAACGTTGCACT -ACGGAAAGGAAGCAACGTCTGACT -ACGGAAAGGAAGCAACGTCAACCT -ACGGAAAGGAAGCAACGTGCTACT -ACGGAAAGGAAGCAACGTGGATCT -ACGGAAAGGAAGCAACGTAAGGCT -ACGGAAAGGAAGCAACGTTCAACC -ACGGAAAGGAAGCAACGTTGTTCC -ACGGAAAGGAAGCAACGTATTCCC -ACGGAAAGGAAGCAACGTTTCTCG -ACGGAAAGGAAGCAACGTTAGACG -ACGGAAAGGAAGCAACGTGTAACG -ACGGAAAGGAAGCAACGTACTTCG -ACGGAAAGGAAGCAACGTTACGCA -ACGGAAAGGAAGCAACGTCTTGCA -ACGGAAAGGAAGCAACGTCGAACA -ACGGAAAGGAAGCAACGTCAGTCA -ACGGAAAGGAAGCAACGTGATCCA -ACGGAAAGGAAGCAACGTACGACA -ACGGAAAGGAAGCAACGTAGCTCA -ACGGAAAGGAAGCAACGTTCACGT -ACGGAAAGGAAGCAACGTCGTAGT -ACGGAAAGGAAGCAACGTGTCAGT -ACGGAAAGGAAGCAACGTGAAGGT -ACGGAAAGGAAGCAACGTAACCGT -ACGGAAAGGAAGCAACGTTTGTGC -ACGGAAAGGAAGCAACGTCTAAGC -ACGGAAAGGAAGCAACGTACTAGC -ACGGAAAGGAAGCAACGTAGATGC -ACGGAAAGGAAGCAACGTTGAAGG -ACGGAAAGGAAGCAACGTCAATGG -ACGGAAAGGAAGCAACGTATGAGG -ACGGAAAGGAAGCAACGTAATGGG -ACGGAAAGGAAGCAACGTTCCTGA -ACGGAAAGGAAGCAACGTTAGCGA -ACGGAAAGGAAGCAACGTCACAGA -ACGGAAAGGAAGCAACGTGCAAGA -ACGGAAAGGAAGCAACGTGGTTGA -ACGGAAAGGAAGCAACGTTCCGAT -ACGGAAAGGAAGCAACGTTGGCAT -ACGGAAAGGAAGCAACGTCGAGAT -ACGGAAAGGAAGCAACGTTACCAC -ACGGAAAGGAAGCAACGTCAGAAC -ACGGAAAGGAAGCAACGTGTCTAC -ACGGAAAGGAAGCAACGTACGTAC -ACGGAAAGGAAGCAACGTAGTGAC -ACGGAAAGGAAGCAACGTCTGTAG -ACGGAAAGGAAGCAACGTCCTAAG -ACGGAAAGGAAGCAACGTGTTCAG -ACGGAAAGGAAGCAACGTGCATAG -ACGGAAAGGAAGCAACGTGACAAG -ACGGAAAGGAAGCAACGTAAGCAG -ACGGAAAGGAAGCAACGTCGTCAA -ACGGAAAGGAAGCAACGTGCTGAA -ACGGAAAGGAAGCAACGTAGTACG -ACGGAAAGGAAGCAACGTATCCGA -ACGGAAAGGAAGCAACGTATGGGA -ACGGAAAGGAAGCAACGTGTGCAA -ACGGAAAGGAAGCAACGTGAGGAA -ACGGAAAGGAAGCAACGTCAGGTA -ACGGAAAGGAAGCAACGTGACTCT -ACGGAAAGGAAGCAACGTAGTCCT -ACGGAAAGGAAGCAACGTTAAGCC -ACGGAAAGGAAGCAACGTATAGCC -ACGGAAAGGAAGCAACGTTAACCG -ACGGAAAGGAAGCAACGTATGCCA -ACGGAAAGGAAGGAAGCTGGAAAC -ACGGAAAGGAAGGAAGCTAACACC -ACGGAAAGGAAGGAAGCTATCGAG -ACGGAAAGGAAGGAAGCTCTCCTT -ACGGAAAGGAAGGAAGCTCCTGTT -ACGGAAAGGAAGGAAGCTCGGTTT -ACGGAAAGGAAGGAAGCTGTGGTT -ACGGAAAGGAAGGAAGCTGCCTTT -ACGGAAAGGAAGGAAGCTGGTCTT -ACGGAAAGGAAGGAAGCTACGCTT -ACGGAAAGGAAGGAAGCTAGCGTT -ACGGAAAGGAAGGAAGCTTTCGTC -ACGGAAAGGAAGGAAGCTTCTCTC -ACGGAAAGGAAGGAAGCTTGGATC -ACGGAAAGGAAGGAAGCTCACTTC -ACGGAAAGGAAGGAAGCTGTACTC -ACGGAAAGGAAGGAAGCTGATGTC -ACGGAAAGGAAGGAAGCTACAGTC -ACGGAAAGGAAGGAAGCTTTGCTG -ACGGAAAGGAAGGAAGCTTCCATG -ACGGAAAGGAAGGAAGCTTGTGTG -ACGGAAAGGAAGGAAGCTCTAGTG -ACGGAAAGGAAGGAAGCTCATCTG -ACGGAAAGGAAGGAAGCTGAGTTG -ACGGAAAGGAAGGAAGCTAGACTG -ACGGAAAGGAAGGAAGCTTCGGTA -ACGGAAAGGAAGGAAGCTTGCCTA -ACGGAAAGGAAGGAAGCTCCACTA -ACGGAAAGGAAGGAAGCTGGAGTA -ACGGAAAGGAAGGAAGCTTCGTCT -ACGGAAAGGAAGGAAGCTTGCACT -ACGGAAAGGAAGGAAGCTCTGACT -ACGGAAAGGAAGGAAGCTCAACCT -ACGGAAAGGAAGGAAGCTGCTACT -ACGGAAAGGAAGGAAGCTGGATCT -ACGGAAAGGAAGGAAGCTAAGGCT -ACGGAAAGGAAGGAAGCTTCAACC -ACGGAAAGGAAGGAAGCTTGTTCC -ACGGAAAGGAAGGAAGCTATTCCC -ACGGAAAGGAAGGAAGCTTTCTCG -ACGGAAAGGAAGGAAGCTTAGACG -ACGGAAAGGAAGGAAGCTGTAACG -ACGGAAAGGAAGGAAGCTACTTCG -ACGGAAAGGAAGGAAGCTTACGCA -ACGGAAAGGAAGGAAGCTCTTGCA -ACGGAAAGGAAGGAAGCTCGAACA -ACGGAAAGGAAGGAAGCTCAGTCA -ACGGAAAGGAAGGAAGCTGATCCA -ACGGAAAGGAAGGAAGCTACGACA -ACGGAAAGGAAGGAAGCTAGCTCA -ACGGAAAGGAAGGAAGCTTCACGT -ACGGAAAGGAAGGAAGCTCGTAGT -ACGGAAAGGAAGGAAGCTGTCAGT -ACGGAAAGGAAGGAAGCTGAAGGT -ACGGAAAGGAAGGAAGCTAACCGT -ACGGAAAGGAAGGAAGCTTTGTGC -ACGGAAAGGAAGGAAGCTCTAAGC -ACGGAAAGGAAGGAAGCTACTAGC -ACGGAAAGGAAGGAAGCTAGATGC -ACGGAAAGGAAGGAAGCTTGAAGG -ACGGAAAGGAAGGAAGCTCAATGG -ACGGAAAGGAAGGAAGCTATGAGG -ACGGAAAGGAAGGAAGCTAATGGG -ACGGAAAGGAAGGAAGCTTCCTGA -ACGGAAAGGAAGGAAGCTTAGCGA -ACGGAAAGGAAGGAAGCTCACAGA -ACGGAAAGGAAGGAAGCTGCAAGA -ACGGAAAGGAAGGAAGCTGGTTGA -ACGGAAAGGAAGGAAGCTTCCGAT -ACGGAAAGGAAGGAAGCTTGGCAT -ACGGAAAGGAAGGAAGCTCGAGAT -ACGGAAAGGAAGGAAGCTTACCAC -ACGGAAAGGAAGGAAGCTCAGAAC -ACGGAAAGGAAGGAAGCTGTCTAC -ACGGAAAGGAAGGAAGCTACGTAC -ACGGAAAGGAAGGAAGCTAGTGAC -ACGGAAAGGAAGGAAGCTCTGTAG -ACGGAAAGGAAGGAAGCTCCTAAG -ACGGAAAGGAAGGAAGCTGTTCAG -ACGGAAAGGAAGGAAGCTGCATAG -ACGGAAAGGAAGGAAGCTGACAAG -ACGGAAAGGAAGGAAGCTAAGCAG -ACGGAAAGGAAGGAAGCTCGTCAA -ACGGAAAGGAAGGAAGCTGCTGAA -ACGGAAAGGAAGGAAGCTAGTACG -ACGGAAAGGAAGGAAGCTATCCGA -ACGGAAAGGAAGGAAGCTATGGGA -ACGGAAAGGAAGGAAGCTGTGCAA -ACGGAAAGGAAGGAAGCTGAGGAA -ACGGAAAGGAAGGAAGCTCAGGTA -ACGGAAAGGAAGGAAGCTGACTCT -ACGGAAAGGAAGGAAGCTAGTCCT -ACGGAAAGGAAGGAAGCTTAAGCC -ACGGAAAGGAAGGAAGCTATAGCC -ACGGAAAGGAAGGAAGCTTAACCG -ACGGAAAGGAAGGAAGCTATGCCA -ACGGAAAGGAAGACGAGTGGAAAC -ACGGAAAGGAAGACGAGTAACACC -ACGGAAAGGAAGACGAGTATCGAG -ACGGAAAGGAAGACGAGTCTCCTT -ACGGAAAGGAAGACGAGTCCTGTT -ACGGAAAGGAAGACGAGTCGGTTT -ACGGAAAGGAAGACGAGTGTGGTT -ACGGAAAGGAAGACGAGTGCCTTT -ACGGAAAGGAAGACGAGTGGTCTT -ACGGAAAGGAAGACGAGTACGCTT -ACGGAAAGGAAGACGAGTAGCGTT -ACGGAAAGGAAGACGAGTTTCGTC -ACGGAAAGGAAGACGAGTTCTCTC -ACGGAAAGGAAGACGAGTTGGATC -ACGGAAAGGAAGACGAGTCACTTC -ACGGAAAGGAAGACGAGTGTACTC -ACGGAAAGGAAGACGAGTGATGTC -ACGGAAAGGAAGACGAGTACAGTC -ACGGAAAGGAAGACGAGTTTGCTG -ACGGAAAGGAAGACGAGTTCCATG -ACGGAAAGGAAGACGAGTTGTGTG -ACGGAAAGGAAGACGAGTCTAGTG -ACGGAAAGGAAGACGAGTCATCTG -ACGGAAAGGAAGACGAGTGAGTTG -ACGGAAAGGAAGACGAGTAGACTG -ACGGAAAGGAAGACGAGTTCGGTA -ACGGAAAGGAAGACGAGTTGCCTA -ACGGAAAGGAAGACGAGTCCACTA -ACGGAAAGGAAGACGAGTGGAGTA -ACGGAAAGGAAGACGAGTTCGTCT -ACGGAAAGGAAGACGAGTTGCACT -ACGGAAAGGAAGACGAGTCTGACT -ACGGAAAGGAAGACGAGTCAACCT -ACGGAAAGGAAGACGAGTGCTACT -ACGGAAAGGAAGACGAGTGGATCT -ACGGAAAGGAAGACGAGTAAGGCT -ACGGAAAGGAAGACGAGTTCAACC -ACGGAAAGGAAGACGAGTTGTTCC -ACGGAAAGGAAGACGAGTATTCCC -ACGGAAAGGAAGACGAGTTTCTCG -ACGGAAAGGAAGACGAGTTAGACG -ACGGAAAGGAAGACGAGTGTAACG -ACGGAAAGGAAGACGAGTACTTCG -ACGGAAAGGAAGACGAGTTACGCA -ACGGAAAGGAAGACGAGTCTTGCA -ACGGAAAGGAAGACGAGTCGAACA -ACGGAAAGGAAGACGAGTCAGTCA -ACGGAAAGGAAGACGAGTGATCCA -ACGGAAAGGAAGACGAGTACGACA -ACGGAAAGGAAGACGAGTAGCTCA -ACGGAAAGGAAGACGAGTTCACGT -ACGGAAAGGAAGACGAGTCGTAGT -ACGGAAAGGAAGACGAGTGTCAGT -ACGGAAAGGAAGACGAGTGAAGGT -ACGGAAAGGAAGACGAGTAACCGT -ACGGAAAGGAAGACGAGTTTGTGC -ACGGAAAGGAAGACGAGTCTAAGC -ACGGAAAGGAAGACGAGTACTAGC -ACGGAAAGGAAGACGAGTAGATGC -ACGGAAAGGAAGACGAGTTGAAGG -ACGGAAAGGAAGACGAGTCAATGG -ACGGAAAGGAAGACGAGTATGAGG -ACGGAAAGGAAGACGAGTAATGGG -ACGGAAAGGAAGACGAGTTCCTGA -ACGGAAAGGAAGACGAGTTAGCGA -ACGGAAAGGAAGACGAGTCACAGA -ACGGAAAGGAAGACGAGTGCAAGA -ACGGAAAGGAAGACGAGTGGTTGA -ACGGAAAGGAAGACGAGTTCCGAT -ACGGAAAGGAAGACGAGTTGGCAT -ACGGAAAGGAAGACGAGTCGAGAT -ACGGAAAGGAAGACGAGTTACCAC -ACGGAAAGGAAGACGAGTCAGAAC -ACGGAAAGGAAGACGAGTGTCTAC -ACGGAAAGGAAGACGAGTACGTAC -ACGGAAAGGAAGACGAGTAGTGAC -ACGGAAAGGAAGACGAGTCTGTAG -ACGGAAAGGAAGACGAGTCCTAAG -ACGGAAAGGAAGACGAGTGTTCAG -ACGGAAAGGAAGACGAGTGCATAG -ACGGAAAGGAAGACGAGTGACAAG -ACGGAAAGGAAGACGAGTAAGCAG -ACGGAAAGGAAGACGAGTCGTCAA -ACGGAAAGGAAGACGAGTGCTGAA -ACGGAAAGGAAGACGAGTAGTACG -ACGGAAAGGAAGACGAGTATCCGA -ACGGAAAGGAAGACGAGTATGGGA -ACGGAAAGGAAGACGAGTGTGCAA -ACGGAAAGGAAGACGAGTGAGGAA -ACGGAAAGGAAGACGAGTCAGGTA -ACGGAAAGGAAGACGAGTGACTCT -ACGGAAAGGAAGACGAGTAGTCCT -ACGGAAAGGAAGACGAGTTAAGCC -ACGGAAAGGAAGACGAGTATAGCC -ACGGAAAGGAAGACGAGTTAACCG -ACGGAAAGGAAGACGAGTATGCCA -ACGGAAAGGAAGCGAATCGGAAAC -ACGGAAAGGAAGCGAATCAACACC -ACGGAAAGGAAGCGAATCATCGAG -ACGGAAAGGAAGCGAATCCTCCTT -ACGGAAAGGAAGCGAATCCCTGTT -ACGGAAAGGAAGCGAATCCGGTTT -ACGGAAAGGAAGCGAATCGTGGTT -ACGGAAAGGAAGCGAATCGCCTTT -ACGGAAAGGAAGCGAATCGGTCTT -ACGGAAAGGAAGCGAATCACGCTT -ACGGAAAGGAAGCGAATCAGCGTT -ACGGAAAGGAAGCGAATCTTCGTC -ACGGAAAGGAAGCGAATCTCTCTC -ACGGAAAGGAAGCGAATCTGGATC -ACGGAAAGGAAGCGAATCCACTTC -ACGGAAAGGAAGCGAATCGTACTC -ACGGAAAGGAAGCGAATCGATGTC -ACGGAAAGGAAGCGAATCACAGTC -ACGGAAAGGAAGCGAATCTTGCTG -ACGGAAAGGAAGCGAATCTCCATG -ACGGAAAGGAAGCGAATCTGTGTG -ACGGAAAGGAAGCGAATCCTAGTG -ACGGAAAGGAAGCGAATCCATCTG -ACGGAAAGGAAGCGAATCGAGTTG -ACGGAAAGGAAGCGAATCAGACTG -ACGGAAAGGAAGCGAATCTCGGTA -ACGGAAAGGAAGCGAATCTGCCTA -ACGGAAAGGAAGCGAATCCCACTA -ACGGAAAGGAAGCGAATCGGAGTA -ACGGAAAGGAAGCGAATCTCGTCT -ACGGAAAGGAAGCGAATCTGCACT -ACGGAAAGGAAGCGAATCCTGACT -ACGGAAAGGAAGCGAATCCAACCT -ACGGAAAGGAAGCGAATCGCTACT -ACGGAAAGGAAGCGAATCGGATCT -ACGGAAAGGAAGCGAATCAAGGCT -ACGGAAAGGAAGCGAATCTCAACC -ACGGAAAGGAAGCGAATCTGTTCC -ACGGAAAGGAAGCGAATCATTCCC -ACGGAAAGGAAGCGAATCTTCTCG -ACGGAAAGGAAGCGAATCTAGACG -ACGGAAAGGAAGCGAATCGTAACG -ACGGAAAGGAAGCGAATCACTTCG -ACGGAAAGGAAGCGAATCTACGCA -ACGGAAAGGAAGCGAATCCTTGCA -ACGGAAAGGAAGCGAATCCGAACA -ACGGAAAGGAAGCGAATCCAGTCA -ACGGAAAGGAAGCGAATCGATCCA -ACGGAAAGGAAGCGAATCACGACA -ACGGAAAGGAAGCGAATCAGCTCA -ACGGAAAGGAAGCGAATCTCACGT -ACGGAAAGGAAGCGAATCCGTAGT -ACGGAAAGGAAGCGAATCGTCAGT -ACGGAAAGGAAGCGAATCGAAGGT -ACGGAAAGGAAGCGAATCAACCGT -ACGGAAAGGAAGCGAATCTTGTGC -ACGGAAAGGAAGCGAATCCTAAGC -ACGGAAAGGAAGCGAATCACTAGC -ACGGAAAGGAAGCGAATCAGATGC -ACGGAAAGGAAGCGAATCTGAAGG -ACGGAAAGGAAGCGAATCCAATGG -ACGGAAAGGAAGCGAATCATGAGG -ACGGAAAGGAAGCGAATCAATGGG -ACGGAAAGGAAGCGAATCTCCTGA -ACGGAAAGGAAGCGAATCTAGCGA -ACGGAAAGGAAGCGAATCCACAGA -ACGGAAAGGAAGCGAATCGCAAGA -ACGGAAAGGAAGCGAATCGGTTGA -ACGGAAAGGAAGCGAATCTCCGAT -ACGGAAAGGAAGCGAATCTGGCAT -ACGGAAAGGAAGCGAATCCGAGAT -ACGGAAAGGAAGCGAATCTACCAC -ACGGAAAGGAAGCGAATCCAGAAC -ACGGAAAGGAAGCGAATCGTCTAC -ACGGAAAGGAAGCGAATCACGTAC -ACGGAAAGGAAGCGAATCAGTGAC -ACGGAAAGGAAGCGAATCCTGTAG -ACGGAAAGGAAGCGAATCCCTAAG -ACGGAAAGGAAGCGAATCGTTCAG -ACGGAAAGGAAGCGAATCGCATAG -ACGGAAAGGAAGCGAATCGACAAG -ACGGAAAGGAAGCGAATCAAGCAG -ACGGAAAGGAAGCGAATCCGTCAA -ACGGAAAGGAAGCGAATCGCTGAA -ACGGAAAGGAAGCGAATCAGTACG -ACGGAAAGGAAGCGAATCATCCGA -ACGGAAAGGAAGCGAATCATGGGA -ACGGAAAGGAAGCGAATCGTGCAA -ACGGAAAGGAAGCGAATCGAGGAA -ACGGAAAGGAAGCGAATCCAGGTA -ACGGAAAGGAAGCGAATCGACTCT -ACGGAAAGGAAGCGAATCAGTCCT -ACGGAAAGGAAGCGAATCTAAGCC -ACGGAAAGGAAGCGAATCATAGCC -ACGGAAAGGAAGCGAATCTAACCG -ACGGAAAGGAAGCGAATCATGCCA -ACGGAAAGGAAGGGAATGGGAAAC -ACGGAAAGGAAGGGAATGAACACC -ACGGAAAGGAAGGGAATGATCGAG -ACGGAAAGGAAGGGAATGCTCCTT -ACGGAAAGGAAGGGAATGCCTGTT -ACGGAAAGGAAGGGAATGCGGTTT -ACGGAAAGGAAGGGAATGGTGGTT -ACGGAAAGGAAGGGAATGGCCTTT -ACGGAAAGGAAGGGAATGGGTCTT -ACGGAAAGGAAGGGAATGACGCTT -ACGGAAAGGAAGGGAATGAGCGTT -ACGGAAAGGAAGGGAATGTTCGTC -ACGGAAAGGAAGGGAATGTCTCTC -ACGGAAAGGAAGGGAATGTGGATC -ACGGAAAGGAAGGGAATGCACTTC -ACGGAAAGGAAGGGAATGGTACTC -ACGGAAAGGAAGGGAATGGATGTC -ACGGAAAGGAAGGGAATGACAGTC -ACGGAAAGGAAGGGAATGTTGCTG -ACGGAAAGGAAGGGAATGTCCATG -ACGGAAAGGAAGGGAATGTGTGTG -ACGGAAAGGAAGGGAATGCTAGTG -ACGGAAAGGAAGGGAATGCATCTG -ACGGAAAGGAAGGGAATGGAGTTG -ACGGAAAGGAAGGGAATGAGACTG -ACGGAAAGGAAGGGAATGTCGGTA -ACGGAAAGGAAGGGAATGTGCCTA -ACGGAAAGGAAGGGAATGCCACTA -ACGGAAAGGAAGGGAATGGGAGTA -ACGGAAAGGAAGGGAATGTCGTCT -ACGGAAAGGAAGGGAATGTGCACT -ACGGAAAGGAAGGGAATGCTGACT -ACGGAAAGGAAGGGAATGCAACCT -ACGGAAAGGAAGGGAATGGCTACT -ACGGAAAGGAAGGGAATGGGATCT -ACGGAAAGGAAGGGAATGAAGGCT -ACGGAAAGGAAGGGAATGTCAACC -ACGGAAAGGAAGGGAATGTGTTCC -ACGGAAAGGAAGGGAATGATTCCC -ACGGAAAGGAAGGGAATGTTCTCG -ACGGAAAGGAAGGGAATGTAGACG -ACGGAAAGGAAGGGAATGGTAACG -ACGGAAAGGAAGGGAATGACTTCG -ACGGAAAGGAAGGGAATGTACGCA -ACGGAAAGGAAGGGAATGCTTGCA -ACGGAAAGGAAGGGAATGCGAACA -ACGGAAAGGAAGGGAATGCAGTCA -ACGGAAAGGAAGGGAATGGATCCA -ACGGAAAGGAAGGGAATGACGACA -ACGGAAAGGAAGGGAATGAGCTCA -ACGGAAAGGAAGGGAATGTCACGT -ACGGAAAGGAAGGGAATGCGTAGT -ACGGAAAGGAAGGGAATGGTCAGT -ACGGAAAGGAAGGGAATGGAAGGT -ACGGAAAGGAAGGGAATGAACCGT -ACGGAAAGGAAGGGAATGTTGTGC -ACGGAAAGGAAGGGAATGCTAAGC -ACGGAAAGGAAGGGAATGACTAGC -ACGGAAAGGAAGGGAATGAGATGC -ACGGAAAGGAAGGGAATGTGAAGG -ACGGAAAGGAAGGGAATGCAATGG -ACGGAAAGGAAGGGAATGATGAGG -ACGGAAAGGAAGGGAATGAATGGG -ACGGAAAGGAAGGGAATGTCCTGA -ACGGAAAGGAAGGGAATGTAGCGA -ACGGAAAGGAAGGGAATGCACAGA -ACGGAAAGGAAGGGAATGGCAAGA -ACGGAAAGGAAGGGAATGGGTTGA -ACGGAAAGGAAGGGAATGTCCGAT -ACGGAAAGGAAGGGAATGTGGCAT -ACGGAAAGGAAGGGAATGCGAGAT -ACGGAAAGGAAGGGAATGTACCAC -ACGGAAAGGAAGGGAATGCAGAAC -ACGGAAAGGAAGGGAATGGTCTAC -ACGGAAAGGAAGGGAATGACGTAC -ACGGAAAGGAAGGGAATGAGTGAC -ACGGAAAGGAAGGGAATGCTGTAG -ACGGAAAGGAAGGGAATGCCTAAG -ACGGAAAGGAAGGGAATGGTTCAG -ACGGAAAGGAAGGGAATGGCATAG -ACGGAAAGGAAGGGAATGGACAAG -ACGGAAAGGAAGGGAATGAAGCAG -ACGGAAAGGAAGGGAATGCGTCAA -ACGGAAAGGAAGGGAATGGCTGAA -ACGGAAAGGAAGGGAATGAGTACG -ACGGAAAGGAAGGGAATGATCCGA -ACGGAAAGGAAGGGAATGATGGGA -ACGGAAAGGAAGGGAATGGTGCAA -ACGGAAAGGAAGGGAATGGAGGAA -ACGGAAAGGAAGGGAATGCAGGTA -ACGGAAAGGAAGGGAATGGACTCT -ACGGAAAGGAAGGGAATGAGTCCT -ACGGAAAGGAAGGGAATGTAAGCC -ACGGAAAGGAAGGGAATGATAGCC -ACGGAAAGGAAGGGAATGTAACCG -ACGGAAAGGAAGGGAATGATGCCA -ACGGAAAGGAAGCAAGTGGGAAAC -ACGGAAAGGAAGCAAGTGAACACC -ACGGAAAGGAAGCAAGTGATCGAG -ACGGAAAGGAAGCAAGTGCTCCTT -ACGGAAAGGAAGCAAGTGCCTGTT -ACGGAAAGGAAGCAAGTGCGGTTT -ACGGAAAGGAAGCAAGTGGTGGTT -ACGGAAAGGAAGCAAGTGGCCTTT -ACGGAAAGGAAGCAAGTGGGTCTT -ACGGAAAGGAAGCAAGTGACGCTT -ACGGAAAGGAAGCAAGTGAGCGTT -ACGGAAAGGAAGCAAGTGTTCGTC -ACGGAAAGGAAGCAAGTGTCTCTC -ACGGAAAGGAAGCAAGTGTGGATC -ACGGAAAGGAAGCAAGTGCACTTC -ACGGAAAGGAAGCAAGTGGTACTC -ACGGAAAGGAAGCAAGTGGATGTC -ACGGAAAGGAAGCAAGTGACAGTC -ACGGAAAGGAAGCAAGTGTTGCTG -ACGGAAAGGAAGCAAGTGTCCATG -ACGGAAAGGAAGCAAGTGTGTGTG -ACGGAAAGGAAGCAAGTGCTAGTG -ACGGAAAGGAAGCAAGTGCATCTG -ACGGAAAGGAAGCAAGTGGAGTTG -ACGGAAAGGAAGCAAGTGAGACTG -ACGGAAAGGAAGCAAGTGTCGGTA -ACGGAAAGGAAGCAAGTGTGCCTA -ACGGAAAGGAAGCAAGTGCCACTA -ACGGAAAGGAAGCAAGTGGGAGTA -ACGGAAAGGAAGCAAGTGTCGTCT -ACGGAAAGGAAGCAAGTGTGCACT -ACGGAAAGGAAGCAAGTGCTGACT -ACGGAAAGGAAGCAAGTGCAACCT -ACGGAAAGGAAGCAAGTGGCTACT -ACGGAAAGGAAGCAAGTGGGATCT -ACGGAAAGGAAGCAAGTGAAGGCT -ACGGAAAGGAAGCAAGTGTCAACC -ACGGAAAGGAAGCAAGTGTGTTCC -ACGGAAAGGAAGCAAGTGATTCCC -ACGGAAAGGAAGCAAGTGTTCTCG -ACGGAAAGGAAGCAAGTGTAGACG -ACGGAAAGGAAGCAAGTGGTAACG -ACGGAAAGGAAGCAAGTGACTTCG -ACGGAAAGGAAGCAAGTGTACGCA -ACGGAAAGGAAGCAAGTGCTTGCA -ACGGAAAGGAAGCAAGTGCGAACA -ACGGAAAGGAAGCAAGTGCAGTCA -ACGGAAAGGAAGCAAGTGGATCCA -ACGGAAAGGAAGCAAGTGACGACA -ACGGAAAGGAAGCAAGTGAGCTCA -ACGGAAAGGAAGCAAGTGTCACGT -ACGGAAAGGAAGCAAGTGCGTAGT -ACGGAAAGGAAGCAAGTGGTCAGT -ACGGAAAGGAAGCAAGTGGAAGGT -ACGGAAAGGAAGCAAGTGAACCGT -ACGGAAAGGAAGCAAGTGTTGTGC -ACGGAAAGGAAGCAAGTGCTAAGC -ACGGAAAGGAAGCAAGTGACTAGC -ACGGAAAGGAAGCAAGTGAGATGC -ACGGAAAGGAAGCAAGTGTGAAGG -ACGGAAAGGAAGCAAGTGCAATGG -ACGGAAAGGAAGCAAGTGATGAGG -ACGGAAAGGAAGCAAGTGAATGGG -ACGGAAAGGAAGCAAGTGTCCTGA -ACGGAAAGGAAGCAAGTGTAGCGA -ACGGAAAGGAAGCAAGTGCACAGA -ACGGAAAGGAAGCAAGTGGCAAGA -ACGGAAAGGAAGCAAGTGGGTTGA -ACGGAAAGGAAGCAAGTGTCCGAT -ACGGAAAGGAAGCAAGTGTGGCAT -ACGGAAAGGAAGCAAGTGCGAGAT -ACGGAAAGGAAGCAAGTGTACCAC -ACGGAAAGGAAGCAAGTGCAGAAC -ACGGAAAGGAAGCAAGTGGTCTAC -ACGGAAAGGAAGCAAGTGACGTAC -ACGGAAAGGAAGCAAGTGAGTGAC -ACGGAAAGGAAGCAAGTGCTGTAG -ACGGAAAGGAAGCAAGTGCCTAAG -ACGGAAAGGAAGCAAGTGGTTCAG -ACGGAAAGGAAGCAAGTGGCATAG -ACGGAAAGGAAGCAAGTGGACAAG -ACGGAAAGGAAGCAAGTGAAGCAG -ACGGAAAGGAAGCAAGTGCGTCAA -ACGGAAAGGAAGCAAGTGGCTGAA -ACGGAAAGGAAGCAAGTGAGTACG -ACGGAAAGGAAGCAAGTGATCCGA -ACGGAAAGGAAGCAAGTGATGGGA -ACGGAAAGGAAGCAAGTGGTGCAA -ACGGAAAGGAAGCAAGTGGAGGAA -ACGGAAAGGAAGCAAGTGCAGGTA -ACGGAAAGGAAGCAAGTGGACTCT -ACGGAAAGGAAGCAAGTGAGTCCT -ACGGAAAGGAAGCAAGTGTAAGCC -ACGGAAAGGAAGCAAGTGATAGCC -ACGGAAAGGAAGCAAGTGTAACCG -ACGGAAAGGAAGCAAGTGATGCCA -ACGGAAAGGAAGGAAGAGGGAAAC -ACGGAAAGGAAGGAAGAGAACACC -ACGGAAAGGAAGGAAGAGATCGAG -ACGGAAAGGAAGGAAGAGCTCCTT -ACGGAAAGGAAGGAAGAGCCTGTT -ACGGAAAGGAAGGAAGAGCGGTTT -ACGGAAAGGAAGGAAGAGGTGGTT -ACGGAAAGGAAGGAAGAGGCCTTT -ACGGAAAGGAAGGAAGAGGGTCTT -ACGGAAAGGAAGGAAGAGACGCTT -ACGGAAAGGAAGGAAGAGAGCGTT -ACGGAAAGGAAGGAAGAGTTCGTC -ACGGAAAGGAAGGAAGAGTCTCTC -ACGGAAAGGAAGGAAGAGTGGATC -ACGGAAAGGAAGGAAGAGCACTTC -ACGGAAAGGAAGGAAGAGGTACTC -ACGGAAAGGAAGGAAGAGGATGTC -ACGGAAAGGAAGGAAGAGACAGTC -ACGGAAAGGAAGGAAGAGTTGCTG -ACGGAAAGGAAGGAAGAGTCCATG -ACGGAAAGGAAGGAAGAGTGTGTG -ACGGAAAGGAAGGAAGAGCTAGTG -ACGGAAAGGAAGGAAGAGCATCTG -ACGGAAAGGAAGGAAGAGGAGTTG -ACGGAAAGGAAGGAAGAGAGACTG -ACGGAAAGGAAGGAAGAGTCGGTA -ACGGAAAGGAAGGAAGAGTGCCTA -ACGGAAAGGAAGGAAGAGCCACTA -ACGGAAAGGAAGGAAGAGGGAGTA -ACGGAAAGGAAGGAAGAGTCGTCT -ACGGAAAGGAAGGAAGAGTGCACT -ACGGAAAGGAAGGAAGAGCTGACT -ACGGAAAGGAAGGAAGAGCAACCT -ACGGAAAGGAAGGAAGAGGCTACT -ACGGAAAGGAAGGAAGAGGGATCT -ACGGAAAGGAAGGAAGAGAAGGCT -ACGGAAAGGAAGGAAGAGTCAACC -ACGGAAAGGAAGGAAGAGTGTTCC -ACGGAAAGGAAGGAAGAGATTCCC -ACGGAAAGGAAGGAAGAGTTCTCG -ACGGAAAGGAAGGAAGAGTAGACG -ACGGAAAGGAAGGAAGAGGTAACG -ACGGAAAGGAAGGAAGAGACTTCG -ACGGAAAGGAAGGAAGAGTACGCA -ACGGAAAGGAAGGAAGAGCTTGCA -ACGGAAAGGAAGGAAGAGCGAACA -ACGGAAAGGAAGGAAGAGCAGTCA -ACGGAAAGGAAGGAAGAGGATCCA -ACGGAAAGGAAGGAAGAGACGACA -ACGGAAAGGAAGGAAGAGAGCTCA -ACGGAAAGGAAGGAAGAGTCACGT -ACGGAAAGGAAGGAAGAGCGTAGT -ACGGAAAGGAAGGAAGAGGTCAGT -ACGGAAAGGAAGGAAGAGGAAGGT -ACGGAAAGGAAGGAAGAGAACCGT -ACGGAAAGGAAGGAAGAGTTGTGC -ACGGAAAGGAAGGAAGAGCTAAGC -ACGGAAAGGAAGGAAGAGACTAGC -ACGGAAAGGAAGGAAGAGAGATGC -ACGGAAAGGAAGGAAGAGTGAAGG -ACGGAAAGGAAGGAAGAGCAATGG -ACGGAAAGGAAGGAAGAGATGAGG -ACGGAAAGGAAGGAAGAGAATGGG -ACGGAAAGGAAGGAAGAGTCCTGA -ACGGAAAGGAAGGAAGAGTAGCGA -ACGGAAAGGAAGGAAGAGCACAGA -ACGGAAAGGAAGGAAGAGGCAAGA -ACGGAAAGGAAGGAAGAGGGTTGA -ACGGAAAGGAAGGAAGAGTCCGAT -ACGGAAAGGAAGGAAGAGTGGCAT -ACGGAAAGGAAGGAAGAGCGAGAT -ACGGAAAGGAAGGAAGAGTACCAC -ACGGAAAGGAAGGAAGAGCAGAAC -ACGGAAAGGAAGGAAGAGGTCTAC -ACGGAAAGGAAGGAAGAGACGTAC -ACGGAAAGGAAGGAAGAGAGTGAC -ACGGAAAGGAAGGAAGAGCTGTAG -ACGGAAAGGAAGGAAGAGCCTAAG -ACGGAAAGGAAGGAAGAGGTTCAG -ACGGAAAGGAAGGAAGAGGCATAG -ACGGAAAGGAAGGAAGAGGACAAG -ACGGAAAGGAAGGAAGAGAAGCAG -ACGGAAAGGAAGGAAGAGCGTCAA -ACGGAAAGGAAGGAAGAGGCTGAA -ACGGAAAGGAAGGAAGAGAGTACG -ACGGAAAGGAAGGAAGAGATCCGA -ACGGAAAGGAAGGAAGAGATGGGA -ACGGAAAGGAAGGAAGAGGTGCAA -ACGGAAAGGAAGGAAGAGGAGGAA -ACGGAAAGGAAGGAAGAGCAGGTA -ACGGAAAGGAAGGAAGAGGACTCT -ACGGAAAGGAAGGAAGAGAGTCCT -ACGGAAAGGAAGGAAGAGTAAGCC -ACGGAAAGGAAGGAAGAGATAGCC -ACGGAAAGGAAGGAAGAGTAACCG -ACGGAAAGGAAGGAAGAGATGCCA -ACGGAAAGGAAGGTACAGGGAAAC -ACGGAAAGGAAGGTACAGAACACC -ACGGAAAGGAAGGTACAGATCGAG -ACGGAAAGGAAGGTACAGCTCCTT -ACGGAAAGGAAGGTACAGCCTGTT -ACGGAAAGGAAGGTACAGCGGTTT -ACGGAAAGGAAGGTACAGGTGGTT -ACGGAAAGGAAGGTACAGGCCTTT -ACGGAAAGGAAGGTACAGGGTCTT -ACGGAAAGGAAGGTACAGACGCTT -ACGGAAAGGAAGGTACAGAGCGTT -ACGGAAAGGAAGGTACAGTTCGTC -ACGGAAAGGAAGGTACAGTCTCTC -ACGGAAAGGAAGGTACAGTGGATC -ACGGAAAGGAAGGTACAGCACTTC -ACGGAAAGGAAGGTACAGGTACTC -ACGGAAAGGAAGGTACAGGATGTC -ACGGAAAGGAAGGTACAGACAGTC -ACGGAAAGGAAGGTACAGTTGCTG -ACGGAAAGGAAGGTACAGTCCATG -ACGGAAAGGAAGGTACAGTGTGTG -ACGGAAAGGAAGGTACAGCTAGTG -ACGGAAAGGAAGGTACAGCATCTG -ACGGAAAGGAAGGTACAGGAGTTG -ACGGAAAGGAAGGTACAGAGACTG -ACGGAAAGGAAGGTACAGTCGGTA -ACGGAAAGGAAGGTACAGTGCCTA -ACGGAAAGGAAGGTACAGCCACTA -ACGGAAAGGAAGGTACAGGGAGTA -ACGGAAAGGAAGGTACAGTCGTCT -ACGGAAAGGAAGGTACAGTGCACT -ACGGAAAGGAAGGTACAGCTGACT -ACGGAAAGGAAGGTACAGCAACCT -ACGGAAAGGAAGGTACAGGCTACT -ACGGAAAGGAAGGTACAGGGATCT -ACGGAAAGGAAGGTACAGAAGGCT -ACGGAAAGGAAGGTACAGTCAACC -ACGGAAAGGAAGGTACAGTGTTCC -ACGGAAAGGAAGGTACAGATTCCC -ACGGAAAGGAAGGTACAGTTCTCG -ACGGAAAGGAAGGTACAGTAGACG -ACGGAAAGGAAGGTACAGGTAACG -ACGGAAAGGAAGGTACAGACTTCG -ACGGAAAGGAAGGTACAGTACGCA -ACGGAAAGGAAGGTACAGCTTGCA -ACGGAAAGGAAGGTACAGCGAACA -ACGGAAAGGAAGGTACAGCAGTCA -ACGGAAAGGAAGGTACAGGATCCA -ACGGAAAGGAAGGTACAGACGACA -ACGGAAAGGAAGGTACAGAGCTCA -ACGGAAAGGAAGGTACAGTCACGT -ACGGAAAGGAAGGTACAGCGTAGT -ACGGAAAGGAAGGTACAGGTCAGT -ACGGAAAGGAAGGTACAGGAAGGT -ACGGAAAGGAAGGTACAGAACCGT -ACGGAAAGGAAGGTACAGTTGTGC -ACGGAAAGGAAGGTACAGCTAAGC -ACGGAAAGGAAGGTACAGACTAGC -ACGGAAAGGAAGGTACAGAGATGC -ACGGAAAGGAAGGTACAGTGAAGG -ACGGAAAGGAAGGTACAGCAATGG -ACGGAAAGGAAGGTACAGATGAGG -ACGGAAAGGAAGGTACAGAATGGG -ACGGAAAGGAAGGTACAGTCCTGA -ACGGAAAGGAAGGTACAGTAGCGA -ACGGAAAGGAAGGTACAGCACAGA -ACGGAAAGGAAGGTACAGGCAAGA -ACGGAAAGGAAGGTACAGGGTTGA -ACGGAAAGGAAGGTACAGTCCGAT -ACGGAAAGGAAGGTACAGTGGCAT -ACGGAAAGGAAGGTACAGCGAGAT -ACGGAAAGGAAGGTACAGTACCAC -ACGGAAAGGAAGGTACAGCAGAAC -ACGGAAAGGAAGGTACAGGTCTAC -ACGGAAAGGAAGGTACAGACGTAC -ACGGAAAGGAAGGTACAGAGTGAC -ACGGAAAGGAAGGTACAGCTGTAG -ACGGAAAGGAAGGTACAGCCTAAG -ACGGAAAGGAAGGTACAGGTTCAG -ACGGAAAGGAAGGTACAGGCATAG -ACGGAAAGGAAGGTACAGGACAAG -ACGGAAAGGAAGGTACAGAAGCAG -ACGGAAAGGAAGGTACAGCGTCAA -ACGGAAAGGAAGGTACAGGCTGAA -ACGGAAAGGAAGGTACAGAGTACG -ACGGAAAGGAAGGTACAGATCCGA -ACGGAAAGGAAGGTACAGATGGGA -ACGGAAAGGAAGGTACAGGTGCAA -ACGGAAAGGAAGGTACAGGAGGAA -ACGGAAAGGAAGGTACAGCAGGTA -ACGGAAAGGAAGGTACAGGACTCT -ACGGAAAGGAAGGTACAGAGTCCT -ACGGAAAGGAAGGTACAGTAAGCC -ACGGAAAGGAAGGTACAGATAGCC -ACGGAAAGGAAGGTACAGTAACCG -ACGGAAAGGAAGGTACAGATGCCA -ACGGAAAGGAAGTCTGACGGAAAC -ACGGAAAGGAAGTCTGACAACACC -ACGGAAAGGAAGTCTGACATCGAG -ACGGAAAGGAAGTCTGACCTCCTT -ACGGAAAGGAAGTCTGACCCTGTT -ACGGAAAGGAAGTCTGACCGGTTT -ACGGAAAGGAAGTCTGACGTGGTT -ACGGAAAGGAAGTCTGACGCCTTT -ACGGAAAGGAAGTCTGACGGTCTT -ACGGAAAGGAAGTCTGACACGCTT -ACGGAAAGGAAGTCTGACAGCGTT -ACGGAAAGGAAGTCTGACTTCGTC -ACGGAAAGGAAGTCTGACTCTCTC -ACGGAAAGGAAGTCTGACTGGATC -ACGGAAAGGAAGTCTGACCACTTC -ACGGAAAGGAAGTCTGACGTACTC -ACGGAAAGGAAGTCTGACGATGTC -ACGGAAAGGAAGTCTGACACAGTC -ACGGAAAGGAAGTCTGACTTGCTG -ACGGAAAGGAAGTCTGACTCCATG -ACGGAAAGGAAGTCTGACTGTGTG -ACGGAAAGGAAGTCTGACCTAGTG -ACGGAAAGGAAGTCTGACCATCTG -ACGGAAAGGAAGTCTGACGAGTTG -ACGGAAAGGAAGTCTGACAGACTG -ACGGAAAGGAAGTCTGACTCGGTA -ACGGAAAGGAAGTCTGACTGCCTA -ACGGAAAGGAAGTCTGACCCACTA -ACGGAAAGGAAGTCTGACGGAGTA -ACGGAAAGGAAGTCTGACTCGTCT -ACGGAAAGGAAGTCTGACTGCACT -ACGGAAAGGAAGTCTGACCTGACT -ACGGAAAGGAAGTCTGACCAACCT -ACGGAAAGGAAGTCTGACGCTACT -ACGGAAAGGAAGTCTGACGGATCT -ACGGAAAGGAAGTCTGACAAGGCT -ACGGAAAGGAAGTCTGACTCAACC -ACGGAAAGGAAGTCTGACTGTTCC -ACGGAAAGGAAGTCTGACATTCCC -ACGGAAAGGAAGTCTGACTTCTCG -ACGGAAAGGAAGTCTGACTAGACG -ACGGAAAGGAAGTCTGACGTAACG -ACGGAAAGGAAGTCTGACACTTCG -ACGGAAAGGAAGTCTGACTACGCA -ACGGAAAGGAAGTCTGACCTTGCA -ACGGAAAGGAAGTCTGACCGAACA -ACGGAAAGGAAGTCTGACCAGTCA -ACGGAAAGGAAGTCTGACGATCCA -ACGGAAAGGAAGTCTGACACGACA -ACGGAAAGGAAGTCTGACAGCTCA -ACGGAAAGGAAGTCTGACTCACGT -ACGGAAAGGAAGTCTGACCGTAGT -ACGGAAAGGAAGTCTGACGTCAGT -ACGGAAAGGAAGTCTGACGAAGGT -ACGGAAAGGAAGTCTGACAACCGT -ACGGAAAGGAAGTCTGACTTGTGC -ACGGAAAGGAAGTCTGACCTAAGC -ACGGAAAGGAAGTCTGACACTAGC -ACGGAAAGGAAGTCTGACAGATGC -ACGGAAAGGAAGTCTGACTGAAGG -ACGGAAAGGAAGTCTGACCAATGG -ACGGAAAGGAAGTCTGACATGAGG -ACGGAAAGGAAGTCTGACAATGGG -ACGGAAAGGAAGTCTGACTCCTGA -ACGGAAAGGAAGTCTGACTAGCGA -ACGGAAAGGAAGTCTGACCACAGA -ACGGAAAGGAAGTCTGACGCAAGA -ACGGAAAGGAAGTCTGACGGTTGA -ACGGAAAGGAAGTCTGACTCCGAT -ACGGAAAGGAAGTCTGACTGGCAT -ACGGAAAGGAAGTCTGACCGAGAT -ACGGAAAGGAAGTCTGACTACCAC -ACGGAAAGGAAGTCTGACCAGAAC -ACGGAAAGGAAGTCTGACGTCTAC -ACGGAAAGGAAGTCTGACACGTAC -ACGGAAAGGAAGTCTGACAGTGAC -ACGGAAAGGAAGTCTGACCTGTAG -ACGGAAAGGAAGTCTGACCCTAAG -ACGGAAAGGAAGTCTGACGTTCAG -ACGGAAAGGAAGTCTGACGCATAG -ACGGAAAGGAAGTCTGACGACAAG -ACGGAAAGGAAGTCTGACAAGCAG -ACGGAAAGGAAGTCTGACCGTCAA -ACGGAAAGGAAGTCTGACGCTGAA -ACGGAAAGGAAGTCTGACAGTACG -ACGGAAAGGAAGTCTGACATCCGA -ACGGAAAGGAAGTCTGACATGGGA -ACGGAAAGGAAGTCTGACGTGCAA -ACGGAAAGGAAGTCTGACGAGGAA -ACGGAAAGGAAGTCTGACCAGGTA -ACGGAAAGGAAGTCTGACGACTCT -ACGGAAAGGAAGTCTGACAGTCCT -ACGGAAAGGAAGTCTGACTAAGCC -ACGGAAAGGAAGTCTGACATAGCC -ACGGAAAGGAAGTCTGACTAACCG -ACGGAAAGGAAGTCTGACATGCCA -ACGGAAAGGAAGCCTAGTGGAAAC -ACGGAAAGGAAGCCTAGTAACACC -ACGGAAAGGAAGCCTAGTATCGAG -ACGGAAAGGAAGCCTAGTCTCCTT -ACGGAAAGGAAGCCTAGTCCTGTT -ACGGAAAGGAAGCCTAGTCGGTTT -ACGGAAAGGAAGCCTAGTGTGGTT -ACGGAAAGGAAGCCTAGTGCCTTT -ACGGAAAGGAAGCCTAGTGGTCTT -ACGGAAAGGAAGCCTAGTACGCTT -ACGGAAAGGAAGCCTAGTAGCGTT -ACGGAAAGGAAGCCTAGTTTCGTC -ACGGAAAGGAAGCCTAGTTCTCTC -ACGGAAAGGAAGCCTAGTTGGATC -ACGGAAAGGAAGCCTAGTCACTTC -ACGGAAAGGAAGCCTAGTGTACTC -ACGGAAAGGAAGCCTAGTGATGTC -ACGGAAAGGAAGCCTAGTACAGTC -ACGGAAAGGAAGCCTAGTTTGCTG -ACGGAAAGGAAGCCTAGTTCCATG -ACGGAAAGGAAGCCTAGTTGTGTG -ACGGAAAGGAAGCCTAGTCTAGTG -ACGGAAAGGAAGCCTAGTCATCTG -ACGGAAAGGAAGCCTAGTGAGTTG -ACGGAAAGGAAGCCTAGTAGACTG -ACGGAAAGGAAGCCTAGTTCGGTA -ACGGAAAGGAAGCCTAGTTGCCTA -ACGGAAAGGAAGCCTAGTCCACTA -ACGGAAAGGAAGCCTAGTGGAGTA -ACGGAAAGGAAGCCTAGTTCGTCT -ACGGAAAGGAAGCCTAGTTGCACT -ACGGAAAGGAAGCCTAGTCTGACT -ACGGAAAGGAAGCCTAGTCAACCT -ACGGAAAGGAAGCCTAGTGCTACT -ACGGAAAGGAAGCCTAGTGGATCT -ACGGAAAGGAAGCCTAGTAAGGCT -ACGGAAAGGAAGCCTAGTTCAACC -ACGGAAAGGAAGCCTAGTTGTTCC -ACGGAAAGGAAGCCTAGTATTCCC -ACGGAAAGGAAGCCTAGTTTCTCG -ACGGAAAGGAAGCCTAGTTAGACG -ACGGAAAGGAAGCCTAGTGTAACG -ACGGAAAGGAAGCCTAGTACTTCG -ACGGAAAGGAAGCCTAGTTACGCA -ACGGAAAGGAAGCCTAGTCTTGCA -ACGGAAAGGAAGCCTAGTCGAACA -ACGGAAAGGAAGCCTAGTCAGTCA -ACGGAAAGGAAGCCTAGTGATCCA -ACGGAAAGGAAGCCTAGTACGACA -ACGGAAAGGAAGCCTAGTAGCTCA -ACGGAAAGGAAGCCTAGTTCACGT -ACGGAAAGGAAGCCTAGTCGTAGT -ACGGAAAGGAAGCCTAGTGTCAGT -ACGGAAAGGAAGCCTAGTGAAGGT -ACGGAAAGGAAGCCTAGTAACCGT -ACGGAAAGGAAGCCTAGTTTGTGC -ACGGAAAGGAAGCCTAGTCTAAGC -ACGGAAAGGAAGCCTAGTACTAGC -ACGGAAAGGAAGCCTAGTAGATGC -ACGGAAAGGAAGCCTAGTTGAAGG -ACGGAAAGGAAGCCTAGTCAATGG -ACGGAAAGGAAGCCTAGTATGAGG -ACGGAAAGGAAGCCTAGTAATGGG -ACGGAAAGGAAGCCTAGTTCCTGA -ACGGAAAGGAAGCCTAGTTAGCGA -ACGGAAAGGAAGCCTAGTCACAGA -ACGGAAAGGAAGCCTAGTGCAAGA -ACGGAAAGGAAGCCTAGTGGTTGA -ACGGAAAGGAAGCCTAGTTCCGAT -ACGGAAAGGAAGCCTAGTTGGCAT -ACGGAAAGGAAGCCTAGTCGAGAT -ACGGAAAGGAAGCCTAGTTACCAC -ACGGAAAGGAAGCCTAGTCAGAAC -ACGGAAAGGAAGCCTAGTGTCTAC -ACGGAAAGGAAGCCTAGTACGTAC -ACGGAAAGGAAGCCTAGTAGTGAC -ACGGAAAGGAAGCCTAGTCTGTAG -ACGGAAAGGAAGCCTAGTCCTAAG -ACGGAAAGGAAGCCTAGTGTTCAG -ACGGAAAGGAAGCCTAGTGCATAG -ACGGAAAGGAAGCCTAGTGACAAG -ACGGAAAGGAAGCCTAGTAAGCAG -ACGGAAAGGAAGCCTAGTCGTCAA -ACGGAAAGGAAGCCTAGTGCTGAA -ACGGAAAGGAAGCCTAGTAGTACG -ACGGAAAGGAAGCCTAGTATCCGA -ACGGAAAGGAAGCCTAGTATGGGA -ACGGAAAGGAAGCCTAGTGTGCAA -ACGGAAAGGAAGCCTAGTGAGGAA -ACGGAAAGGAAGCCTAGTCAGGTA -ACGGAAAGGAAGCCTAGTGACTCT -ACGGAAAGGAAGCCTAGTAGTCCT -ACGGAAAGGAAGCCTAGTTAAGCC -ACGGAAAGGAAGCCTAGTATAGCC -ACGGAAAGGAAGCCTAGTTAACCG -ACGGAAAGGAAGCCTAGTATGCCA -ACGGAAAGGAAGGCCTAAGGAAAC -ACGGAAAGGAAGGCCTAAAACACC -ACGGAAAGGAAGGCCTAAATCGAG -ACGGAAAGGAAGGCCTAACTCCTT -ACGGAAAGGAAGGCCTAACCTGTT -ACGGAAAGGAAGGCCTAACGGTTT -ACGGAAAGGAAGGCCTAAGTGGTT -ACGGAAAGGAAGGCCTAAGCCTTT -ACGGAAAGGAAGGCCTAAGGTCTT -ACGGAAAGGAAGGCCTAAACGCTT -ACGGAAAGGAAGGCCTAAAGCGTT -ACGGAAAGGAAGGCCTAATTCGTC -ACGGAAAGGAAGGCCTAATCTCTC -ACGGAAAGGAAGGCCTAATGGATC -ACGGAAAGGAAGGCCTAACACTTC -ACGGAAAGGAAGGCCTAAGTACTC -ACGGAAAGGAAGGCCTAAGATGTC -ACGGAAAGGAAGGCCTAAACAGTC -ACGGAAAGGAAGGCCTAATTGCTG -ACGGAAAGGAAGGCCTAATCCATG -ACGGAAAGGAAGGCCTAATGTGTG -ACGGAAAGGAAGGCCTAACTAGTG -ACGGAAAGGAAGGCCTAACATCTG -ACGGAAAGGAAGGCCTAAGAGTTG -ACGGAAAGGAAGGCCTAAAGACTG -ACGGAAAGGAAGGCCTAATCGGTA -ACGGAAAGGAAGGCCTAATGCCTA -ACGGAAAGGAAGGCCTAACCACTA -ACGGAAAGGAAGGCCTAAGGAGTA -ACGGAAAGGAAGGCCTAATCGTCT -ACGGAAAGGAAGGCCTAATGCACT -ACGGAAAGGAAGGCCTAACTGACT -ACGGAAAGGAAGGCCTAACAACCT -ACGGAAAGGAAGGCCTAAGCTACT -ACGGAAAGGAAGGCCTAAGGATCT -ACGGAAAGGAAGGCCTAAAAGGCT -ACGGAAAGGAAGGCCTAATCAACC -ACGGAAAGGAAGGCCTAATGTTCC -ACGGAAAGGAAGGCCTAAATTCCC -ACGGAAAGGAAGGCCTAATTCTCG -ACGGAAAGGAAGGCCTAATAGACG -ACGGAAAGGAAGGCCTAAGTAACG -ACGGAAAGGAAGGCCTAAACTTCG -ACGGAAAGGAAGGCCTAATACGCA -ACGGAAAGGAAGGCCTAACTTGCA -ACGGAAAGGAAGGCCTAACGAACA -ACGGAAAGGAAGGCCTAACAGTCA -ACGGAAAGGAAGGCCTAAGATCCA -ACGGAAAGGAAGGCCTAAACGACA -ACGGAAAGGAAGGCCTAAAGCTCA -ACGGAAAGGAAGGCCTAATCACGT -ACGGAAAGGAAGGCCTAACGTAGT -ACGGAAAGGAAGGCCTAAGTCAGT -ACGGAAAGGAAGGCCTAAGAAGGT -ACGGAAAGGAAGGCCTAAAACCGT -ACGGAAAGGAAGGCCTAATTGTGC -ACGGAAAGGAAGGCCTAACTAAGC -ACGGAAAGGAAGGCCTAAACTAGC -ACGGAAAGGAAGGCCTAAAGATGC -ACGGAAAGGAAGGCCTAATGAAGG -ACGGAAAGGAAGGCCTAACAATGG -ACGGAAAGGAAGGCCTAAATGAGG -ACGGAAAGGAAGGCCTAAAATGGG -ACGGAAAGGAAGGCCTAATCCTGA -ACGGAAAGGAAGGCCTAATAGCGA -ACGGAAAGGAAGGCCTAACACAGA -ACGGAAAGGAAGGCCTAAGCAAGA -ACGGAAAGGAAGGCCTAAGGTTGA -ACGGAAAGGAAGGCCTAATCCGAT -ACGGAAAGGAAGGCCTAATGGCAT -ACGGAAAGGAAGGCCTAACGAGAT -ACGGAAAGGAAGGCCTAATACCAC -ACGGAAAGGAAGGCCTAACAGAAC -ACGGAAAGGAAGGCCTAAGTCTAC -ACGGAAAGGAAGGCCTAAACGTAC -ACGGAAAGGAAGGCCTAAAGTGAC -ACGGAAAGGAAGGCCTAACTGTAG -ACGGAAAGGAAGGCCTAACCTAAG -ACGGAAAGGAAGGCCTAAGTTCAG -ACGGAAAGGAAGGCCTAAGCATAG -ACGGAAAGGAAGGCCTAAGACAAG -ACGGAAAGGAAGGCCTAAAAGCAG -ACGGAAAGGAAGGCCTAACGTCAA -ACGGAAAGGAAGGCCTAAGCTGAA -ACGGAAAGGAAGGCCTAAAGTACG -ACGGAAAGGAAGGCCTAAATCCGA -ACGGAAAGGAAGGCCTAAATGGGA -ACGGAAAGGAAGGCCTAAGTGCAA -ACGGAAAGGAAGGCCTAAGAGGAA -ACGGAAAGGAAGGCCTAACAGGTA -ACGGAAAGGAAGGCCTAAGACTCT -ACGGAAAGGAAGGCCTAAAGTCCT -ACGGAAAGGAAGGCCTAATAAGCC -ACGGAAAGGAAGGCCTAAATAGCC -ACGGAAAGGAAGGCCTAATAACCG -ACGGAAAGGAAGGCCTAAATGCCA -ACGGAAAGGAAGGCCATAGGAAAC -ACGGAAAGGAAGGCCATAAACACC -ACGGAAAGGAAGGCCATAATCGAG -ACGGAAAGGAAGGCCATACTCCTT -ACGGAAAGGAAGGCCATACCTGTT -ACGGAAAGGAAGGCCATACGGTTT -ACGGAAAGGAAGGCCATAGTGGTT -ACGGAAAGGAAGGCCATAGCCTTT -ACGGAAAGGAAGGCCATAGGTCTT -ACGGAAAGGAAGGCCATAACGCTT -ACGGAAAGGAAGGCCATAAGCGTT -ACGGAAAGGAAGGCCATATTCGTC -ACGGAAAGGAAGGCCATATCTCTC -ACGGAAAGGAAGGCCATATGGATC -ACGGAAAGGAAGGCCATACACTTC -ACGGAAAGGAAGGCCATAGTACTC -ACGGAAAGGAAGGCCATAGATGTC -ACGGAAAGGAAGGCCATAACAGTC -ACGGAAAGGAAGGCCATATTGCTG -ACGGAAAGGAAGGCCATATCCATG -ACGGAAAGGAAGGCCATATGTGTG -ACGGAAAGGAAGGCCATACTAGTG -ACGGAAAGGAAGGCCATACATCTG -ACGGAAAGGAAGGCCATAGAGTTG -ACGGAAAGGAAGGCCATAAGACTG -ACGGAAAGGAAGGCCATATCGGTA -ACGGAAAGGAAGGCCATATGCCTA -ACGGAAAGGAAGGCCATACCACTA -ACGGAAAGGAAGGCCATAGGAGTA -ACGGAAAGGAAGGCCATATCGTCT -ACGGAAAGGAAGGCCATATGCACT -ACGGAAAGGAAGGCCATACTGACT -ACGGAAAGGAAGGCCATACAACCT -ACGGAAAGGAAGGCCATAGCTACT -ACGGAAAGGAAGGCCATAGGATCT -ACGGAAAGGAAGGCCATAAAGGCT -ACGGAAAGGAAGGCCATATCAACC -ACGGAAAGGAAGGCCATATGTTCC -ACGGAAAGGAAGGCCATAATTCCC -ACGGAAAGGAAGGCCATATTCTCG -ACGGAAAGGAAGGCCATATAGACG -ACGGAAAGGAAGGCCATAGTAACG -ACGGAAAGGAAGGCCATAACTTCG -ACGGAAAGGAAGGCCATATACGCA -ACGGAAAGGAAGGCCATACTTGCA -ACGGAAAGGAAGGCCATACGAACA -ACGGAAAGGAAGGCCATACAGTCA -ACGGAAAGGAAGGCCATAGATCCA -ACGGAAAGGAAGGCCATAACGACA -ACGGAAAGGAAGGCCATAAGCTCA -ACGGAAAGGAAGGCCATATCACGT -ACGGAAAGGAAGGCCATACGTAGT -ACGGAAAGGAAGGCCATAGTCAGT -ACGGAAAGGAAGGCCATAGAAGGT -ACGGAAAGGAAGGCCATAAACCGT -ACGGAAAGGAAGGCCATATTGTGC -ACGGAAAGGAAGGCCATACTAAGC -ACGGAAAGGAAGGCCATAACTAGC -ACGGAAAGGAAGGCCATAAGATGC -ACGGAAAGGAAGGCCATATGAAGG -ACGGAAAGGAAGGCCATACAATGG -ACGGAAAGGAAGGCCATAATGAGG -ACGGAAAGGAAGGCCATAAATGGG -ACGGAAAGGAAGGCCATATCCTGA -ACGGAAAGGAAGGCCATATAGCGA -ACGGAAAGGAAGGCCATACACAGA -ACGGAAAGGAAGGCCATAGCAAGA -ACGGAAAGGAAGGCCATAGGTTGA -ACGGAAAGGAAGGCCATATCCGAT -ACGGAAAGGAAGGCCATATGGCAT -ACGGAAAGGAAGGCCATACGAGAT -ACGGAAAGGAAGGCCATATACCAC -ACGGAAAGGAAGGCCATACAGAAC -ACGGAAAGGAAGGCCATAGTCTAC -ACGGAAAGGAAGGCCATAACGTAC -ACGGAAAGGAAGGCCATAAGTGAC -ACGGAAAGGAAGGCCATACTGTAG -ACGGAAAGGAAGGCCATACCTAAG -ACGGAAAGGAAGGCCATAGTTCAG -ACGGAAAGGAAGGCCATAGCATAG -ACGGAAAGGAAGGCCATAGACAAG -ACGGAAAGGAAGGCCATAAAGCAG -ACGGAAAGGAAGGCCATACGTCAA -ACGGAAAGGAAGGCCATAGCTGAA -ACGGAAAGGAAGGCCATAAGTACG -ACGGAAAGGAAGGCCATAATCCGA -ACGGAAAGGAAGGCCATAATGGGA -ACGGAAAGGAAGGCCATAGTGCAA -ACGGAAAGGAAGGCCATAGAGGAA -ACGGAAAGGAAGGCCATACAGGTA -ACGGAAAGGAAGGCCATAGACTCT -ACGGAAAGGAAGGCCATAAGTCCT -ACGGAAAGGAAGGCCATATAAGCC -ACGGAAAGGAAGGCCATAATAGCC -ACGGAAAGGAAGGCCATATAACCG -ACGGAAAGGAAGGCCATAATGCCA -ACGGAAAGGAAGCCGTAAGGAAAC -ACGGAAAGGAAGCCGTAAAACACC -ACGGAAAGGAAGCCGTAAATCGAG -ACGGAAAGGAAGCCGTAACTCCTT -ACGGAAAGGAAGCCGTAACCTGTT -ACGGAAAGGAAGCCGTAACGGTTT -ACGGAAAGGAAGCCGTAAGTGGTT -ACGGAAAGGAAGCCGTAAGCCTTT -ACGGAAAGGAAGCCGTAAGGTCTT -ACGGAAAGGAAGCCGTAAACGCTT -ACGGAAAGGAAGCCGTAAAGCGTT -ACGGAAAGGAAGCCGTAATTCGTC -ACGGAAAGGAAGCCGTAATCTCTC -ACGGAAAGGAAGCCGTAATGGATC -ACGGAAAGGAAGCCGTAACACTTC -ACGGAAAGGAAGCCGTAAGTACTC -ACGGAAAGGAAGCCGTAAGATGTC -ACGGAAAGGAAGCCGTAAACAGTC -ACGGAAAGGAAGCCGTAATTGCTG -ACGGAAAGGAAGCCGTAATCCATG -ACGGAAAGGAAGCCGTAATGTGTG -ACGGAAAGGAAGCCGTAACTAGTG -ACGGAAAGGAAGCCGTAACATCTG -ACGGAAAGGAAGCCGTAAGAGTTG -ACGGAAAGGAAGCCGTAAAGACTG -ACGGAAAGGAAGCCGTAATCGGTA -ACGGAAAGGAAGCCGTAATGCCTA -ACGGAAAGGAAGCCGTAACCACTA -ACGGAAAGGAAGCCGTAAGGAGTA -ACGGAAAGGAAGCCGTAATCGTCT -ACGGAAAGGAAGCCGTAATGCACT -ACGGAAAGGAAGCCGTAACTGACT -ACGGAAAGGAAGCCGTAACAACCT -ACGGAAAGGAAGCCGTAAGCTACT -ACGGAAAGGAAGCCGTAAGGATCT -ACGGAAAGGAAGCCGTAAAAGGCT -ACGGAAAGGAAGCCGTAATCAACC -ACGGAAAGGAAGCCGTAATGTTCC -ACGGAAAGGAAGCCGTAAATTCCC -ACGGAAAGGAAGCCGTAATTCTCG -ACGGAAAGGAAGCCGTAATAGACG -ACGGAAAGGAAGCCGTAAGTAACG -ACGGAAAGGAAGCCGTAAACTTCG -ACGGAAAGGAAGCCGTAATACGCA -ACGGAAAGGAAGCCGTAACTTGCA -ACGGAAAGGAAGCCGTAACGAACA -ACGGAAAGGAAGCCGTAACAGTCA -ACGGAAAGGAAGCCGTAAGATCCA -ACGGAAAGGAAGCCGTAAACGACA -ACGGAAAGGAAGCCGTAAAGCTCA -ACGGAAAGGAAGCCGTAATCACGT -ACGGAAAGGAAGCCGTAACGTAGT -ACGGAAAGGAAGCCGTAAGTCAGT -ACGGAAAGGAAGCCGTAAGAAGGT -ACGGAAAGGAAGCCGTAAAACCGT -ACGGAAAGGAAGCCGTAATTGTGC -ACGGAAAGGAAGCCGTAACTAAGC -ACGGAAAGGAAGCCGTAAACTAGC -ACGGAAAGGAAGCCGTAAAGATGC -ACGGAAAGGAAGCCGTAATGAAGG -ACGGAAAGGAAGCCGTAACAATGG -ACGGAAAGGAAGCCGTAAATGAGG -ACGGAAAGGAAGCCGTAAAATGGG -ACGGAAAGGAAGCCGTAATCCTGA -ACGGAAAGGAAGCCGTAATAGCGA -ACGGAAAGGAAGCCGTAACACAGA -ACGGAAAGGAAGCCGTAAGCAAGA -ACGGAAAGGAAGCCGTAAGGTTGA -ACGGAAAGGAAGCCGTAATCCGAT -ACGGAAAGGAAGCCGTAATGGCAT -ACGGAAAGGAAGCCGTAACGAGAT -ACGGAAAGGAAGCCGTAATACCAC -ACGGAAAGGAAGCCGTAACAGAAC -ACGGAAAGGAAGCCGTAAGTCTAC -ACGGAAAGGAAGCCGTAAACGTAC -ACGGAAAGGAAGCCGTAAAGTGAC -ACGGAAAGGAAGCCGTAACTGTAG -ACGGAAAGGAAGCCGTAACCTAAG -ACGGAAAGGAAGCCGTAAGTTCAG -ACGGAAAGGAAGCCGTAAGCATAG -ACGGAAAGGAAGCCGTAAGACAAG -ACGGAAAGGAAGCCGTAAAAGCAG -ACGGAAAGGAAGCCGTAACGTCAA -ACGGAAAGGAAGCCGTAAGCTGAA -ACGGAAAGGAAGCCGTAAAGTACG -ACGGAAAGGAAGCCGTAAATCCGA -ACGGAAAGGAAGCCGTAAATGGGA -ACGGAAAGGAAGCCGTAAGTGCAA -ACGGAAAGGAAGCCGTAAGAGGAA -ACGGAAAGGAAGCCGTAACAGGTA -ACGGAAAGGAAGCCGTAAGACTCT -ACGGAAAGGAAGCCGTAAAGTCCT -ACGGAAAGGAAGCCGTAATAAGCC -ACGGAAAGGAAGCCGTAAATAGCC -ACGGAAAGGAAGCCGTAATAACCG -ACGGAAAGGAAGCCGTAAATGCCA -ACGGAAAGGAAGCCAATGGGAAAC -ACGGAAAGGAAGCCAATGAACACC -ACGGAAAGGAAGCCAATGATCGAG -ACGGAAAGGAAGCCAATGCTCCTT -ACGGAAAGGAAGCCAATGCCTGTT -ACGGAAAGGAAGCCAATGCGGTTT -ACGGAAAGGAAGCCAATGGTGGTT -ACGGAAAGGAAGCCAATGGCCTTT -ACGGAAAGGAAGCCAATGGGTCTT -ACGGAAAGGAAGCCAATGACGCTT -ACGGAAAGGAAGCCAATGAGCGTT -ACGGAAAGGAAGCCAATGTTCGTC -ACGGAAAGGAAGCCAATGTCTCTC -ACGGAAAGGAAGCCAATGTGGATC -ACGGAAAGGAAGCCAATGCACTTC -ACGGAAAGGAAGCCAATGGTACTC -ACGGAAAGGAAGCCAATGGATGTC -ACGGAAAGGAAGCCAATGACAGTC -ACGGAAAGGAAGCCAATGTTGCTG -ACGGAAAGGAAGCCAATGTCCATG -ACGGAAAGGAAGCCAATGTGTGTG -ACGGAAAGGAAGCCAATGCTAGTG -ACGGAAAGGAAGCCAATGCATCTG -ACGGAAAGGAAGCCAATGGAGTTG -ACGGAAAGGAAGCCAATGAGACTG -ACGGAAAGGAAGCCAATGTCGGTA -ACGGAAAGGAAGCCAATGTGCCTA -ACGGAAAGGAAGCCAATGCCACTA -ACGGAAAGGAAGCCAATGGGAGTA -ACGGAAAGGAAGCCAATGTCGTCT -ACGGAAAGGAAGCCAATGTGCACT -ACGGAAAGGAAGCCAATGCTGACT -ACGGAAAGGAAGCCAATGCAACCT -ACGGAAAGGAAGCCAATGGCTACT -ACGGAAAGGAAGCCAATGGGATCT -ACGGAAAGGAAGCCAATGAAGGCT -ACGGAAAGGAAGCCAATGTCAACC -ACGGAAAGGAAGCCAATGTGTTCC -ACGGAAAGGAAGCCAATGATTCCC -ACGGAAAGGAAGCCAATGTTCTCG -ACGGAAAGGAAGCCAATGTAGACG -ACGGAAAGGAAGCCAATGGTAACG -ACGGAAAGGAAGCCAATGACTTCG -ACGGAAAGGAAGCCAATGTACGCA -ACGGAAAGGAAGCCAATGCTTGCA -ACGGAAAGGAAGCCAATGCGAACA -ACGGAAAGGAAGCCAATGCAGTCA -ACGGAAAGGAAGCCAATGGATCCA -ACGGAAAGGAAGCCAATGACGACA -ACGGAAAGGAAGCCAATGAGCTCA -ACGGAAAGGAAGCCAATGTCACGT -ACGGAAAGGAAGCCAATGCGTAGT -ACGGAAAGGAAGCCAATGGTCAGT -ACGGAAAGGAAGCCAATGGAAGGT -ACGGAAAGGAAGCCAATGAACCGT -ACGGAAAGGAAGCCAATGTTGTGC -ACGGAAAGGAAGCCAATGCTAAGC -ACGGAAAGGAAGCCAATGACTAGC -ACGGAAAGGAAGCCAATGAGATGC -ACGGAAAGGAAGCCAATGTGAAGG -ACGGAAAGGAAGCCAATGCAATGG -ACGGAAAGGAAGCCAATGATGAGG -ACGGAAAGGAAGCCAATGAATGGG -ACGGAAAGGAAGCCAATGTCCTGA -ACGGAAAGGAAGCCAATGTAGCGA -ACGGAAAGGAAGCCAATGCACAGA -ACGGAAAGGAAGCCAATGGCAAGA -ACGGAAAGGAAGCCAATGGGTTGA -ACGGAAAGGAAGCCAATGTCCGAT -ACGGAAAGGAAGCCAATGTGGCAT -ACGGAAAGGAAGCCAATGCGAGAT -ACGGAAAGGAAGCCAATGTACCAC -ACGGAAAGGAAGCCAATGCAGAAC -ACGGAAAGGAAGCCAATGGTCTAC -ACGGAAAGGAAGCCAATGACGTAC -ACGGAAAGGAAGCCAATGAGTGAC -ACGGAAAGGAAGCCAATGCTGTAG -ACGGAAAGGAAGCCAATGCCTAAG -ACGGAAAGGAAGCCAATGGTTCAG -ACGGAAAGGAAGCCAATGGCATAG -ACGGAAAGGAAGCCAATGGACAAG -ACGGAAAGGAAGCCAATGAAGCAG -ACGGAAAGGAAGCCAATGCGTCAA -ACGGAAAGGAAGCCAATGGCTGAA -ACGGAAAGGAAGCCAATGAGTACG -ACGGAAAGGAAGCCAATGATCCGA -ACGGAAAGGAAGCCAATGATGGGA -ACGGAAAGGAAGCCAATGGTGCAA -ACGGAAAGGAAGCCAATGGAGGAA -ACGGAAAGGAAGCCAATGCAGGTA -ACGGAAAGGAAGCCAATGGACTCT -ACGGAAAGGAAGCCAATGAGTCCT -ACGGAAAGGAAGCCAATGTAAGCC -ACGGAAAGGAAGCCAATGATAGCC -ACGGAAAGGAAGCCAATGTAACCG -ACGGAAAGGAAGCCAATGATGCCA -ACGGAAAGGTACAACGGAGGAAAC -ACGGAAAGGTACAACGGAAACACC -ACGGAAAGGTACAACGGAATCGAG -ACGGAAAGGTACAACGGACTCCTT -ACGGAAAGGTACAACGGACCTGTT -ACGGAAAGGTACAACGGACGGTTT -ACGGAAAGGTACAACGGAGTGGTT -ACGGAAAGGTACAACGGAGCCTTT -ACGGAAAGGTACAACGGAGGTCTT -ACGGAAAGGTACAACGGAACGCTT -ACGGAAAGGTACAACGGAAGCGTT -ACGGAAAGGTACAACGGATTCGTC -ACGGAAAGGTACAACGGATCTCTC -ACGGAAAGGTACAACGGATGGATC -ACGGAAAGGTACAACGGACACTTC -ACGGAAAGGTACAACGGAGTACTC -ACGGAAAGGTACAACGGAGATGTC -ACGGAAAGGTACAACGGAACAGTC -ACGGAAAGGTACAACGGATTGCTG -ACGGAAAGGTACAACGGATCCATG -ACGGAAAGGTACAACGGATGTGTG -ACGGAAAGGTACAACGGACTAGTG -ACGGAAAGGTACAACGGACATCTG -ACGGAAAGGTACAACGGAGAGTTG -ACGGAAAGGTACAACGGAAGACTG -ACGGAAAGGTACAACGGATCGGTA -ACGGAAAGGTACAACGGATGCCTA -ACGGAAAGGTACAACGGACCACTA -ACGGAAAGGTACAACGGAGGAGTA -ACGGAAAGGTACAACGGATCGTCT -ACGGAAAGGTACAACGGATGCACT -ACGGAAAGGTACAACGGACTGACT -ACGGAAAGGTACAACGGACAACCT -ACGGAAAGGTACAACGGAGCTACT -ACGGAAAGGTACAACGGAGGATCT -ACGGAAAGGTACAACGGAAAGGCT -ACGGAAAGGTACAACGGATCAACC -ACGGAAAGGTACAACGGATGTTCC -ACGGAAAGGTACAACGGAATTCCC -ACGGAAAGGTACAACGGATTCTCG -ACGGAAAGGTACAACGGATAGACG -ACGGAAAGGTACAACGGAGTAACG -ACGGAAAGGTACAACGGAACTTCG -ACGGAAAGGTACAACGGATACGCA -ACGGAAAGGTACAACGGACTTGCA -ACGGAAAGGTACAACGGACGAACA -ACGGAAAGGTACAACGGACAGTCA -ACGGAAAGGTACAACGGAGATCCA -ACGGAAAGGTACAACGGAACGACA -ACGGAAAGGTACAACGGAAGCTCA -ACGGAAAGGTACAACGGATCACGT -ACGGAAAGGTACAACGGACGTAGT -ACGGAAAGGTACAACGGAGTCAGT -ACGGAAAGGTACAACGGAGAAGGT -ACGGAAAGGTACAACGGAAACCGT -ACGGAAAGGTACAACGGATTGTGC -ACGGAAAGGTACAACGGACTAAGC -ACGGAAAGGTACAACGGAACTAGC -ACGGAAAGGTACAACGGAAGATGC -ACGGAAAGGTACAACGGATGAAGG -ACGGAAAGGTACAACGGACAATGG -ACGGAAAGGTACAACGGAATGAGG -ACGGAAAGGTACAACGGAAATGGG -ACGGAAAGGTACAACGGATCCTGA -ACGGAAAGGTACAACGGATAGCGA -ACGGAAAGGTACAACGGACACAGA -ACGGAAAGGTACAACGGAGCAAGA -ACGGAAAGGTACAACGGAGGTTGA -ACGGAAAGGTACAACGGATCCGAT -ACGGAAAGGTACAACGGATGGCAT -ACGGAAAGGTACAACGGACGAGAT -ACGGAAAGGTACAACGGATACCAC -ACGGAAAGGTACAACGGACAGAAC -ACGGAAAGGTACAACGGAGTCTAC -ACGGAAAGGTACAACGGAACGTAC -ACGGAAAGGTACAACGGAAGTGAC -ACGGAAAGGTACAACGGACTGTAG -ACGGAAAGGTACAACGGACCTAAG -ACGGAAAGGTACAACGGAGTTCAG -ACGGAAAGGTACAACGGAGCATAG -ACGGAAAGGTACAACGGAGACAAG -ACGGAAAGGTACAACGGAAAGCAG -ACGGAAAGGTACAACGGACGTCAA -ACGGAAAGGTACAACGGAGCTGAA -ACGGAAAGGTACAACGGAAGTACG -ACGGAAAGGTACAACGGAATCCGA -ACGGAAAGGTACAACGGAATGGGA -ACGGAAAGGTACAACGGAGTGCAA -ACGGAAAGGTACAACGGAGAGGAA -ACGGAAAGGTACAACGGACAGGTA -ACGGAAAGGTACAACGGAGACTCT -ACGGAAAGGTACAACGGAAGTCCT -ACGGAAAGGTACAACGGATAAGCC -ACGGAAAGGTACAACGGAATAGCC -ACGGAAAGGTACAACGGATAACCG -ACGGAAAGGTACAACGGAATGCCA -ACGGAAAGGTACACCAACGGAAAC -ACGGAAAGGTACACCAACAACACC -ACGGAAAGGTACACCAACATCGAG -ACGGAAAGGTACACCAACCTCCTT -ACGGAAAGGTACACCAACCCTGTT -ACGGAAAGGTACACCAACCGGTTT -ACGGAAAGGTACACCAACGTGGTT -ACGGAAAGGTACACCAACGCCTTT -ACGGAAAGGTACACCAACGGTCTT -ACGGAAAGGTACACCAACACGCTT -ACGGAAAGGTACACCAACAGCGTT -ACGGAAAGGTACACCAACTTCGTC -ACGGAAAGGTACACCAACTCTCTC -ACGGAAAGGTACACCAACTGGATC -ACGGAAAGGTACACCAACCACTTC -ACGGAAAGGTACACCAACGTACTC -ACGGAAAGGTACACCAACGATGTC -ACGGAAAGGTACACCAACACAGTC -ACGGAAAGGTACACCAACTTGCTG -ACGGAAAGGTACACCAACTCCATG -ACGGAAAGGTACACCAACTGTGTG -ACGGAAAGGTACACCAACCTAGTG -ACGGAAAGGTACACCAACCATCTG -ACGGAAAGGTACACCAACGAGTTG -ACGGAAAGGTACACCAACAGACTG -ACGGAAAGGTACACCAACTCGGTA -ACGGAAAGGTACACCAACTGCCTA -ACGGAAAGGTACACCAACCCACTA -ACGGAAAGGTACACCAACGGAGTA -ACGGAAAGGTACACCAACTCGTCT -ACGGAAAGGTACACCAACTGCACT -ACGGAAAGGTACACCAACCTGACT -ACGGAAAGGTACACCAACCAACCT -ACGGAAAGGTACACCAACGCTACT -ACGGAAAGGTACACCAACGGATCT -ACGGAAAGGTACACCAACAAGGCT -ACGGAAAGGTACACCAACTCAACC -ACGGAAAGGTACACCAACTGTTCC -ACGGAAAGGTACACCAACATTCCC -ACGGAAAGGTACACCAACTTCTCG -ACGGAAAGGTACACCAACTAGACG -ACGGAAAGGTACACCAACGTAACG -ACGGAAAGGTACACCAACACTTCG -ACGGAAAGGTACACCAACTACGCA -ACGGAAAGGTACACCAACCTTGCA -ACGGAAAGGTACACCAACCGAACA -ACGGAAAGGTACACCAACCAGTCA -ACGGAAAGGTACACCAACGATCCA -ACGGAAAGGTACACCAACACGACA -ACGGAAAGGTACACCAACAGCTCA -ACGGAAAGGTACACCAACTCACGT -ACGGAAAGGTACACCAACCGTAGT -ACGGAAAGGTACACCAACGTCAGT -ACGGAAAGGTACACCAACGAAGGT -ACGGAAAGGTACACCAACAACCGT -ACGGAAAGGTACACCAACTTGTGC -ACGGAAAGGTACACCAACCTAAGC -ACGGAAAGGTACACCAACACTAGC -ACGGAAAGGTACACCAACAGATGC -ACGGAAAGGTACACCAACTGAAGG -ACGGAAAGGTACACCAACCAATGG -ACGGAAAGGTACACCAACATGAGG -ACGGAAAGGTACACCAACAATGGG -ACGGAAAGGTACACCAACTCCTGA -ACGGAAAGGTACACCAACTAGCGA -ACGGAAAGGTACACCAACCACAGA -ACGGAAAGGTACACCAACGCAAGA -ACGGAAAGGTACACCAACGGTTGA -ACGGAAAGGTACACCAACTCCGAT -ACGGAAAGGTACACCAACTGGCAT -ACGGAAAGGTACACCAACCGAGAT -ACGGAAAGGTACACCAACTACCAC -ACGGAAAGGTACACCAACCAGAAC -ACGGAAAGGTACACCAACGTCTAC -ACGGAAAGGTACACCAACACGTAC -ACGGAAAGGTACACCAACAGTGAC -ACGGAAAGGTACACCAACCTGTAG -ACGGAAAGGTACACCAACCCTAAG -ACGGAAAGGTACACCAACGTTCAG -ACGGAAAGGTACACCAACGCATAG -ACGGAAAGGTACACCAACGACAAG -ACGGAAAGGTACACCAACAAGCAG -ACGGAAAGGTACACCAACCGTCAA -ACGGAAAGGTACACCAACGCTGAA -ACGGAAAGGTACACCAACAGTACG -ACGGAAAGGTACACCAACATCCGA -ACGGAAAGGTACACCAACATGGGA -ACGGAAAGGTACACCAACGTGCAA -ACGGAAAGGTACACCAACGAGGAA -ACGGAAAGGTACACCAACCAGGTA -ACGGAAAGGTACACCAACGACTCT -ACGGAAAGGTACACCAACAGTCCT -ACGGAAAGGTACACCAACTAAGCC -ACGGAAAGGTACACCAACATAGCC -ACGGAAAGGTACACCAACTAACCG -ACGGAAAGGTACACCAACATGCCA -ACGGAAAGGTACGAGATCGGAAAC -ACGGAAAGGTACGAGATCAACACC -ACGGAAAGGTACGAGATCATCGAG -ACGGAAAGGTACGAGATCCTCCTT -ACGGAAAGGTACGAGATCCCTGTT -ACGGAAAGGTACGAGATCCGGTTT -ACGGAAAGGTACGAGATCGTGGTT -ACGGAAAGGTACGAGATCGCCTTT -ACGGAAAGGTACGAGATCGGTCTT -ACGGAAAGGTACGAGATCACGCTT -ACGGAAAGGTACGAGATCAGCGTT -ACGGAAAGGTACGAGATCTTCGTC -ACGGAAAGGTACGAGATCTCTCTC -ACGGAAAGGTACGAGATCTGGATC -ACGGAAAGGTACGAGATCCACTTC -ACGGAAAGGTACGAGATCGTACTC -ACGGAAAGGTACGAGATCGATGTC -ACGGAAAGGTACGAGATCACAGTC -ACGGAAAGGTACGAGATCTTGCTG -ACGGAAAGGTACGAGATCTCCATG -ACGGAAAGGTACGAGATCTGTGTG -ACGGAAAGGTACGAGATCCTAGTG -ACGGAAAGGTACGAGATCCATCTG -ACGGAAAGGTACGAGATCGAGTTG -ACGGAAAGGTACGAGATCAGACTG -ACGGAAAGGTACGAGATCTCGGTA -ACGGAAAGGTACGAGATCTGCCTA -ACGGAAAGGTACGAGATCCCACTA -ACGGAAAGGTACGAGATCGGAGTA -ACGGAAAGGTACGAGATCTCGTCT -ACGGAAAGGTACGAGATCTGCACT -ACGGAAAGGTACGAGATCCTGACT -ACGGAAAGGTACGAGATCCAACCT -ACGGAAAGGTACGAGATCGCTACT -ACGGAAAGGTACGAGATCGGATCT -ACGGAAAGGTACGAGATCAAGGCT -ACGGAAAGGTACGAGATCTCAACC -ACGGAAAGGTACGAGATCTGTTCC -ACGGAAAGGTACGAGATCATTCCC -ACGGAAAGGTACGAGATCTTCTCG -ACGGAAAGGTACGAGATCTAGACG -ACGGAAAGGTACGAGATCGTAACG -ACGGAAAGGTACGAGATCACTTCG -ACGGAAAGGTACGAGATCTACGCA -ACGGAAAGGTACGAGATCCTTGCA -ACGGAAAGGTACGAGATCCGAACA -ACGGAAAGGTACGAGATCCAGTCA -ACGGAAAGGTACGAGATCGATCCA -ACGGAAAGGTACGAGATCACGACA -ACGGAAAGGTACGAGATCAGCTCA -ACGGAAAGGTACGAGATCTCACGT -ACGGAAAGGTACGAGATCCGTAGT -ACGGAAAGGTACGAGATCGTCAGT -ACGGAAAGGTACGAGATCGAAGGT -ACGGAAAGGTACGAGATCAACCGT -ACGGAAAGGTACGAGATCTTGTGC -ACGGAAAGGTACGAGATCCTAAGC -ACGGAAAGGTACGAGATCACTAGC -ACGGAAAGGTACGAGATCAGATGC -ACGGAAAGGTACGAGATCTGAAGG -ACGGAAAGGTACGAGATCCAATGG -ACGGAAAGGTACGAGATCATGAGG -ACGGAAAGGTACGAGATCAATGGG -ACGGAAAGGTACGAGATCTCCTGA -ACGGAAAGGTACGAGATCTAGCGA -ACGGAAAGGTACGAGATCCACAGA -ACGGAAAGGTACGAGATCGCAAGA -ACGGAAAGGTACGAGATCGGTTGA -ACGGAAAGGTACGAGATCTCCGAT -ACGGAAAGGTACGAGATCTGGCAT -ACGGAAAGGTACGAGATCCGAGAT -ACGGAAAGGTACGAGATCTACCAC -ACGGAAAGGTACGAGATCCAGAAC -ACGGAAAGGTACGAGATCGTCTAC -ACGGAAAGGTACGAGATCACGTAC -ACGGAAAGGTACGAGATCAGTGAC -ACGGAAAGGTACGAGATCCTGTAG -ACGGAAAGGTACGAGATCCCTAAG -ACGGAAAGGTACGAGATCGTTCAG -ACGGAAAGGTACGAGATCGCATAG -ACGGAAAGGTACGAGATCGACAAG -ACGGAAAGGTACGAGATCAAGCAG -ACGGAAAGGTACGAGATCCGTCAA -ACGGAAAGGTACGAGATCGCTGAA -ACGGAAAGGTACGAGATCAGTACG -ACGGAAAGGTACGAGATCATCCGA -ACGGAAAGGTACGAGATCATGGGA -ACGGAAAGGTACGAGATCGTGCAA -ACGGAAAGGTACGAGATCGAGGAA -ACGGAAAGGTACGAGATCCAGGTA -ACGGAAAGGTACGAGATCGACTCT -ACGGAAAGGTACGAGATCAGTCCT -ACGGAAAGGTACGAGATCTAAGCC -ACGGAAAGGTACGAGATCATAGCC -ACGGAAAGGTACGAGATCTAACCG -ACGGAAAGGTACGAGATCATGCCA -ACGGAAAGGTACCTTCTCGGAAAC -ACGGAAAGGTACCTTCTCAACACC -ACGGAAAGGTACCTTCTCATCGAG -ACGGAAAGGTACCTTCTCCTCCTT -ACGGAAAGGTACCTTCTCCCTGTT -ACGGAAAGGTACCTTCTCCGGTTT -ACGGAAAGGTACCTTCTCGTGGTT -ACGGAAAGGTACCTTCTCGCCTTT -ACGGAAAGGTACCTTCTCGGTCTT -ACGGAAAGGTACCTTCTCACGCTT -ACGGAAAGGTACCTTCTCAGCGTT -ACGGAAAGGTACCTTCTCTTCGTC -ACGGAAAGGTACCTTCTCTCTCTC -ACGGAAAGGTACCTTCTCTGGATC -ACGGAAAGGTACCTTCTCCACTTC -ACGGAAAGGTACCTTCTCGTACTC -ACGGAAAGGTACCTTCTCGATGTC -ACGGAAAGGTACCTTCTCACAGTC -ACGGAAAGGTACCTTCTCTTGCTG -ACGGAAAGGTACCTTCTCTCCATG -ACGGAAAGGTACCTTCTCTGTGTG -ACGGAAAGGTACCTTCTCCTAGTG -ACGGAAAGGTACCTTCTCCATCTG -ACGGAAAGGTACCTTCTCGAGTTG -ACGGAAAGGTACCTTCTCAGACTG -ACGGAAAGGTACCTTCTCTCGGTA -ACGGAAAGGTACCTTCTCTGCCTA -ACGGAAAGGTACCTTCTCCCACTA -ACGGAAAGGTACCTTCTCGGAGTA -ACGGAAAGGTACCTTCTCTCGTCT -ACGGAAAGGTACCTTCTCTGCACT -ACGGAAAGGTACCTTCTCCTGACT -ACGGAAAGGTACCTTCTCCAACCT -ACGGAAAGGTACCTTCTCGCTACT -ACGGAAAGGTACCTTCTCGGATCT -ACGGAAAGGTACCTTCTCAAGGCT -ACGGAAAGGTACCTTCTCTCAACC -ACGGAAAGGTACCTTCTCTGTTCC -ACGGAAAGGTACCTTCTCATTCCC -ACGGAAAGGTACCTTCTCTTCTCG -ACGGAAAGGTACCTTCTCTAGACG -ACGGAAAGGTACCTTCTCGTAACG -ACGGAAAGGTACCTTCTCACTTCG -ACGGAAAGGTACCTTCTCTACGCA -ACGGAAAGGTACCTTCTCCTTGCA -ACGGAAAGGTACCTTCTCCGAACA -ACGGAAAGGTACCTTCTCCAGTCA -ACGGAAAGGTACCTTCTCGATCCA -ACGGAAAGGTACCTTCTCACGACA -ACGGAAAGGTACCTTCTCAGCTCA -ACGGAAAGGTACCTTCTCTCACGT -ACGGAAAGGTACCTTCTCCGTAGT -ACGGAAAGGTACCTTCTCGTCAGT -ACGGAAAGGTACCTTCTCGAAGGT -ACGGAAAGGTACCTTCTCAACCGT -ACGGAAAGGTACCTTCTCTTGTGC -ACGGAAAGGTACCTTCTCCTAAGC -ACGGAAAGGTACCTTCTCACTAGC -ACGGAAAGGTACCTTCTCAGATGC -ACGGAAAGGTACCTTCTCTGAAGG -ACGGAAAGGTACCTTCTCCAATGG -ACGGAAAGGTACCTTCTCATGAGG -ACGGAAAGGTACCTTCTCAATGGG -ACGGAAAGGTACCTTCTCTCCTGA -ACGGAAAGGTACCTTCTCTAGCGA -ACGGAAAGGTACCTTCTCCACAGA -ACGGAAAGGTACCTTCTCGCAAGA -ACGGAAAGGTACCTTCTCGGTTGA -ACGGAAAGGTACCTTCTCTCCGAT -ACGGAAAGGTACCTTCTCTGGCAT -ACGGAAAGGTACCTTCTCCGAGAT -ACGGAAAGGTACCTTCTCTACCAC -ACGGAAAGGTACCTTCTCCAGAAC -ACGGAAAGGTACCTTCTCGTCTAC -ACGGAAAGGTACCTTCTCACGTAC -ACGGAAAGGTACCTTCTCAGTGAC -ACGGAAAGGTACCTTCTCCTGTAG -ACGGAAAGGTACCTTCTCCCTAAG -ACGGAAAGGTACCTTCTCGTTCAG -ACGGAAAGGTACCTTCTCGCATAG -ACGGAAAGGTACCTTCTCGACAAG -ACGGAAAGGTACCTTCTCAAGCAG -ACGGAAAGGTACCTTCTCCGTCAA -ACGGAAAGGTACCTTCTCGCTGAA -ACGGAAAGGTACCTTCTCAGTACG -ACGGAAAGGTACCTTCTCATCCGA -ACGGAAAGGTACCTTCTCATGGGA -ACGGAAAGGTACCTTCTCGTGCAA -ACGGAAAGGTACCTTCTCGAGGAA -ACGGAAAGGTACCTTCTCCAGGTA -ACGGAAAGGTACCTTCTCGACTCT -ACGGAAAGGTACCTTCTCAGTCCT -ACGGAAAGGTACCTTCTCTAAGCC -ACGGAAAGGTACCTTCTCATAGCC -ACGGAAAGGTACCTTCTCTAACCG -ACGGAAAGGTACCTTCTCATGCCA -ACGGAAAGGTACGTTCCTGGAAAC -ACGGAAAGGTACGTTCCTAACACC -ACGGAAAGGTACGTTCCTATCGAG -ACGGAAAGGTACGTTCCTCTCCTT -ACGGAAAGGTACGTTCCTCCTGTT -ACGGAAAGGTACGTTCCTCGGTTT -ACGGAAAGGTACGTTCCTGTGGTT -ACGGAAAGGTACGTTCCTGCCTTT -ACGGAAAGGTACGTTCCTGGTCTT -ACGGAAAGGTACGTTCCTACGCTT -ACGGAAAGGTACGTTCCTAGCGTT -ACGGAAAGGTACGTTCCTTTCGTC -ACGGAAAGGTACGTTCCTTCTCTC -ACGGAAAGGTACGTTCCTTGGATC -ACGGAAAGGTACGTTCCTCACTTC -ACGGAAAGGTACGTTCCTGTACTC -ACGGAAAGGTACGTTCCTGATGTC -ACGGAAAGGTACGTTCCTACAGTC -ACGGAAAGGTACGTTCCTTTGCTG -ACGGAAAGGTACGTTCCTTCCATG -ACGGAAAGGTACGTTCCTTGTGTG -ACGGAAAGGTACGTTCCTCTAGTG -ACGGAAAGGTACGTTCCTCATCTG -ACGGAAAGGTACGTTCCTGAGTTG -ACGGAAAGGTACGTTCCTAGACTG -ACGGAAAGGTACGTTCCTTCGGTA -ACGGAAAGGTACGTTCCTTGCCTA -ACGGAAAGGTACGTTCCTCCACTA -ACGGAAAGGTACGTTCCTGGAGTA -ACGGAAAGGTACGTTCCTTCGTCT -ACGGAAAGGTACGTTCCTTGCACT -ACGGAAAGGTACGTTCCTCTGACT -ACGGAAAGGTACGTTCCTCAACCT -ACGGAAAGGTACGTTCCTGCTACT -ACGGAAAGGTACGTTCCTGGATCT -ACGGAAAGGTACGTTCCTAAGGCT -ACGGAAAGGTACGTTCCTTCAACC -ACGGAAAGGTACGTTCCTTGTTCC -ACGGAAAGGTACGTTCCTATTCCC -ACGGAAAGGTACGTTCCTTTCTCG -ACGGAAAGGTACGTTCCTTAGACG -ACGGAAAGGTACGTTCCTGTAACG -ACGGAAAGGTACGTTCCTACTTCG -ACGGAAAGGTACGTTCCTTACGCA -ACGGAAAGGTACGTTCCTCTTGCA -ACGGAAAGGTACGTTCCTCGAACA -ACGGAAAGGTACGTTCCTCAGTCA -ACGGAAAGGTACGTTCCTGATCCA -ACGGAAAGGTACGTTCCTACGACA -ACGGAAAGGTACGTTCCTAGCTCA -ACGGAAAGGTACGTTCCTTCACGT -ACGGAAAGGTACGTTCCTCGTAGT -ACGGAAAGGTACGTTCCTGTCAGT -ACGGAAAGGTACGTTCCTGAAGGT -ACGGAAAGGTACGTTCCTAACCGT -ACGGAAAGGTACGTTCCTTTGTGC -ACGGAAAGGTACGTTCCTCTAAGC -ACGGAAAGGTACGTTCCTACTAGC -ACGGAAAGGTACGTTCCTAGATGC -ACGGAAAGGTACGTTCCTTGAAGG -ACGGAAAGGTACGTTCCTCAATGG -ACGGAAAGGTACGTTCCTATGAGG -ACGGAAAGGTACGTTCCTAATGGG -ACGGAAAGGTACGTTCCTTCCTGA -ACGGAAAGGTACGTTCCTTAGCGA -ACGGAAAGGTACGTTCCTCACAGA -ACGGAAAGGTACGTTCCTGCAAGA -ACGGAAAGGTACGTTCCTGGTTGA -ACGGAAAGGTACGTTCCTTCCGAT -ACGGAAAGGTACGTTCCTTGGCAT -ACGGAAAGGTACGTTCCTCGAGAT -ACGGAAAGGTACGTTCCTTACCAC -ACGGAAAGGTACGTTCCTCAGAAC -ACGGAAAGGTACGTTCCTGTCTAC -ACGGAAAGGTACGTTCCTACGTAC -ACGGAAAGGTACGTTCCTAGTGAC -ACGGAAAGGTACGTTCCTCTGTAG -ACGGAAAGGTACGTTCCTCCTAAG -ACGGAAAGGTACGTTCCTGTTCAG -ACGGAAAGGTACGTTCCTGCATAG -ACGGAAAGGTACGTTCCTGACAAG -ACGGAAAGGTACGTTCCTAAGCAG -ACGGAAAGGTACGTTCCTCGTCAA -ACGGAAAGGTACGTTCCTGCTGAA -ACGGAAAGGTACGTTCCTAGTACG -ACGGAAAGGTACGTTCCTATCCGA -ACGGAAAGGTACGTTCCTATGGGA -ACGGAAAGGTACGTTCCTGTGCAA -ACGGAAAGGTACGTTCCTGAGGAA -ACGGAAAGGTACGTTCCTCAGGTA -ACGGAAAGGTACGTTCCTGACTCT -ACGGAAAGGTACGTTCCTAGTCCT -ACGGAAAGGTACGTTCCTTAAGCC -ACGGAAAGGTACGTTCCTATAGCC -ACGGAAAGGTACGTTCCTTAACCG -ACGGAAAGGTACGTTCCTATGCCA -ACGGAAAGGTACTTTCGGGGAAAC -ACGGAAAGGTACTTTCGGAACACC -ACGGAAAGGTACTTTCGGATCGAG -ACGGAAAGGTACTTTCGGCTCCTT -ACGGAAAGGTACTTTCGGCCTGTT -ACGGAAAGGTACTTTCGGCGGTTT -ACGGAAAGGTACTTTCGGGTGGTT -ACGGAAAGGTACTTTCGGGCCTTT -ACGGAAAGGTACTTTCGGGGTCTT -ACGGAAAGGTACTTTCGGACGCTT -ACGGAAAGGTACTTTCGGAGCGTT -ACGGAAAGGTACTTTCGGTTCGTC -ACGGAAAGGTACTTTCGGTCTCTC -ACGGAAAGGTACTTTCGGTGGATC -ACGGAAAGGTACTTTCGGCACTTC -ACGGAAAGGTACTTTCGGGTACTC -ACGGAAAGGTACTTTCGGGATGTC -ACGGAAAGGTACTTTCGGACAGTC -ACGGAAAGGTACTTTCGGTTGCTG -ACGGAAAGGTACTTTCGGTCCATG -ACGGAAAGGTACTTTCGGTGTGTG -ACGGAAAGGTACTTTCGGCTAGTG -ACGGAAAGGTACTTTCGGCATCTG -ACGGAAAGGTACTTTCGGGAGTTG -ACGGAAAGGTACTTTCGGAGACTG -ACGGAAAGGTACTTTCGGTCGGTA -ACGGAAAGGTACTTTCGGTGCCTA -ACGGAAAGGTACTTTCGGCCACTA -ACGGAAAGGTACTTTCGGGGAGTA -ACGGAAAGGTACTTTCGGTCGTCT -ACGGAAAGGTACTTTCGGTGCACT -ACGGAAAGGTACTTTCGGCTGACT -ACGGAAAGGTACTTTCGGCAACCT -ACGGAAAGGTACTTTCGGGCTACT -ACGGAAAGGTACTTTCGGGGATCT -ACGGAAAGGTACTTTCGGAAGGCT -ACGGAAAGGTACTTTCGGTCAACC -ACGGAAAGGTACTTTCGGTGTTCC -ACGGAAAGGTACTTTCGGATTCCC -ACGGAAAGGTACTTTCGGTTCTCG -ACGGAAAGGTACTTTCGGTAGACG -ACGGAAAGGTACTTTCGGGTAACG -ACGGAAAGGTACTTTCGGACTTCG -ACGGAAAGGTACTTTCGGTACGCA -ACGGAAAGGTACTTTCGGCTTGCA -ACGGAAAGGTACTTTCGGCGAACA -ACGGAAAGGTACTTTCGGCAGTCA -ACGGAAAGGTACTTTCGGGATCCA -ACGGAAAGGTACTTTCGGACGACA -ACGGAAAGGTACTTTCGGAGCTCA -ACGGAAAGGTACTTTCGGTCACGT -ACGGAAAGGTACTTTCGGCGTAGT -ACGGAAAGGTACTTTCGGGTCAGT -ACGGAAAGGTACTTTCGGGAAGGT -ACGGAAAGGTACTTTCGGAACCGT -ACGGAAAGGTACTTTCGGTTGTGC -ACGGAAAGGTACTTTCGGCTAAGC -ACGGAAAGGTACTTTCGGACTAGC -ACGGAAAGGTACTTTCGGAGATGC -ACGGAAAGGTACTTTCGGTGAAGG -ACGGAAAGGTACTTTCGGCAATGG -ACGGAAAGGTACTTTCGGATGAGG -ACGGAAAGGTACTTTCGGAATGGG -ACGGAAAGGTACTTTCGGTCCTGA -ACGGAAAGGTACTTTCGGTAGCGA -ACGGAAAGGTACTTTCGGCACAGA -ACGGAAAGGTACTTTCGGGCAAGA -ACGGAAAGGTACTTTCGGGGTTGA -ACGGAAAGGTACTTTCGGTCCGAT -ACGGAAAGGTACTTTCGGTGGCAT -ACGGAAAGGTACTTTCGGCGAGAT -ACGGAAAGGTACTTTCGGTACCAC -ACGGAAAGGTACTTTCGGCAGAAC -ACGGAAAGGTACTTTCGGGTCTAC -ACGGAAAGGTACTTTCGGACGTAC -ACGGAAAGGTACTTTCGGAGTGAC -ACGGAAAGGTACTTTCGGCTGTAG -ACGGAAAGGTACTTTCGGCCTAAG -ACGGAAAGGTACTTTCGGGTTCAG -ACGGAAAGGTACTTTCGGGCATAG -ACGGAAAGGTACTTTCGGGACAAG -ACGGAAAGGTACTTTCGGAAGCAG -ACGGAAAGGTACTTTCGGCGTCAA -ACGGAAAGGTACTTTCGGGCTGAA -ACGGAAAGGTACTTTCGGAGTACG -ACGGAAAGGTACTTTCGGATCCGA -ACGGAAAGGTACTTTCGGATGGGA -ACGGAAAGGTACTTTCGGGTGCAA -ACGGAAAGGTACTTTCGGGAGGAA -ACGGAAAGGTACTTTCGGCAGGTA -ACGGAAAGGTACTTTCGGGACTCT -ACGGAAAGGTACTTTCGGAGTCCT -ACGGAAAGGTACTTTCGGTAAGCC -ACGGAAAGGTACTTTCGGATAGCC -ACGGAAAGGTACTTTCGGTAACCG -ACGGAAAGGTACTTTCGGATGCCA -ACGGAAAGGTACGTTGTGGGAAAC -ACGGAAAGGTACGTTGTGAACACC -ACGGAAAGGTACGTTGTGATCGAG -ACGGAAAGGTACGTTGTGCTCCTT -ACGGAAAGGTACGTTGTGCCTGTT -ACGGAAAGGTACGTTGTGCGGTTT -ACGGAAAGGTACGTTGTGGTGGTT -ACGGAAAGGTACGTTGTGGCCTTT -ACGGAAAGGTACGTTGTGGGTCTT -ACGGAAAGGTACGTTGTGACGCTT -ACGGAAAGGTACGTTGTGAGCGTT -ACGGAAAGGTACGTTGTGTTCGTC -ACGGAAAGGTACGTTGTGTCTCTC -ACGGAAAGGTACGTTGTGTGGATC -ACGGAAAGGTACGTTGTGCACTTC -ACGGAAAGGTACGTTGTGGTACTC -ACGGAAAGGTACGTTGTGGATGTC -ACGGAAAGGTACGTTGTGACAGTC -ACGGAAAGGTACGTTGTGTTGCTG -ACGGAAAGGTACGTTGTGTCCATG -ACGGAAAGGTACGTTGTGTGTGTG -ACGGAAAGGTACGTTGTGCTAGTG -ACGGAAAGGTACGTTGTGCATCTG -ACGGAAAGGTACGTTGTGGAGTTG -ACGGAAAGGTACGTTGTGAGACTG -ACGGAAAGGTACGTTGTGTCGGTA -ACGGAAAGGTACGTTGTGTGCCTA -ACGGAAAGGTACGTTGTGCCACTA -ACGGAAAGGTACGTTGTGGGAGTA -ACGGAAAGGTACGTTGTGTCGTCT -ACGGAAAGGTACGTTGTGTGCACT -ACGGAAAGGTACGTTGTGCTGACT -ACGGAAAGGTACGTTGTGCAACCT -ACGGAAAGGTACGTTGTGGCTACT -ACGGAAAGGTACGTTGTGGGATCT -ACGGAAAGGTACGTTGTGAAGGCT -ACGGAAAGGTACGTTGTGTCAACC -ACGGAAAGGTACGTTGTGTGTTCC -ACGGAAAGGTACGTTGTGATTCCC -ACGGAAAGGTACGTTGTGTTCTCG -ACGGAAAGGTACGTTGTGTAGACG -ACGGAAAGGTACGTTGTGGTAACG -ACGGAAAGGTACGTTGTGACTTCG -ACGGAAAGGTACGTTGTGTACGCA -ACGGAAAGGTACGTTGTGCTTGCA -ACGGAAAGGTACGTTGTGCGAACA -ACGGAAAGGTACGTTGTGCAGTCA -ACGGAAAGGTACGTTGTGGATCCA -ACGGAAAGGTACGTTGTGACGACA -ACGGAAAGGTACGTTGTGAGCTCA -ACGGAAAGGTACGTTGTGTCACGT -ACGGAAAGGTACGTTGTGCGTAGT -ACGGAAAGGTACGTTGTGGTCAGT -ACGGAAAGGTACGTTGTGGAAGGT -ACGGAAAGGTACGTTGTGAACCGT -ACGGAAAGGTACGTTGTGTTGTGC -ACGGAAAGGTACGTTGTGCTAAGC -ACGGAAAGGTACGTTGTGACTAGC -ACGGAAAGGTACGTTGTGAGATGC -ACGGAAAGGTACGTTGTGTGAAGG -ACGGAAAGGTACGTTGTGCAATGG -ACGGAAAGGTACGTTGTGATGAGG -ACGGAAAGGTACGTTGTGAATGGG -ACGGAAAGGTACGTTGTGTCCTGA -ACGGAAAGGTACGTTGTGTAGCGA -ACGGAAAGGTACGTTGTGCACAGA -ACGGAAAGGTACGTTGTGGCAAGA -ACGGAAAGGTACGTTGTGGGTTGA -ACGGAAAGGTACGTTGTGTCCGAT -ACGGAAAGGTACGTTGTGTGGCAT -ACGGAAAGGTACGTTGTGCGAGAT -ACGGAAAGGTACGTTGTGTACCAC -ACGGAAAGGTACGTTGTGCAGAAC -ACGGAAAGGTACGTTGTGGTCTAC -ACGGAAAGGTACGTTGTGACGTAC -ACGGAAAGGTACGTTGTGAGTGAC -ACGGAAAGGTACGTTGTGCTGTAG -ACGGAAAGGTACGTTGTGCCTAAG -ACGGAAAGGTACGTTGTGGTTCAG -ACGGAAAGGTACGTTGTGGCATAG -ACGGAAAGGTACGTTGTGGACAAG -ACGGAAAGGTACGTTGTGAAGCAG -ACGGAAAGGTACGTTGTGCGTCAA -ACGGAAAGGTACGTTGTGGCTGAA -ACGGAAAGGTACGTTGTGAGTACG -ACGGAAAGGTACGTTGTGATCCGA -ACGGAAAGGTACGTTGTGATGGGA -ACGGAAAGGTACGTTGTGGTGCAA -ACGGAAAGGTACGTTGTGGAGGAA -ACGGAAAGGTACGTTGTGCAGGTA -ACGGAAAGGTACGTTGTGGACTCT -ACGGAAAGGTACGTTGTGAGTCCT -ACGGAAAGGTACGTTGTGTAAGCC -ACGGAAAGGTACGTTGTGATAGCC -ACGGAAAGGTACGTTGTGTAACCG -ACGGAAAGGTACGTTGTGATGCCA -ACGGAAAGGTACTTTGCCGGAAAC -ACGGAAAGGTACTTTGCCAACACC -ACGGAAAGGTACTTTGCCATCGAG -ACGGAAAGGTACTTTGCCCTCCTT -ACGGAAAGGTACTTTGCCCCTGTT -ACGGAAAGGTACTTTGCCCGGTTT -ACGGAAAGGTACTTTGCCGTGGTT -ACGGAAAGGTACTTTGCCGCCTTT -ACGGAAAGGTACTTTGCCGGTCTT -ACGGAAAGGTACTTTGCCACGCTT -ACGGAAAGGTACTTTGCCAGCGTT -ACGGAAAGGTACTTTGCCTTCGTC -ACGGAAAGGTACTTTGCCTCTCTC -ACGGAAAGGTACTTTGCCTGGATC -ACGGAAAGGTACTTTGCCCACTTC -ACGGAAAGGTACTTTGCCGTACTC -ACGGAAAGGTACTTTGCCGATGTC -ACGGAAAGGTACTTTGCCACAGTC -ACGGAAAGGTACTTTGCCTTGCTG -ACGGAAAGGTACTTTGCCTCCATG -ACGGAAAGGTACTTTGCCTGTGTG -ACGGAAAGGTACTTTGCCCTAGTG -ACGGAAAGGTACTTTGCCCATCTG -ACGGAAAGGTACTTTGCCGAGTTG -ACGGAAAGGTACTTTGCCAGACTG -ACGGAAAGGTACTTTGCCTCGGTA -ACGGAAAGGTACTTTGCCTGCCTA -ACGGAAAGGTACTTTGCCCCACTA -ACGGAAAGGTACTTTGCCGGAGTA -ACGGAAAGGTACTTTGCCTCGTCT -ACGGAAAGGTACTTTGCCTGCACT -ACGGAAAGGTACTTTGCCCTGACT -ACGGAAAGGTACTTTGCCCAACCT -ACGGAAAGGTACTTTGCCGCTACT -ACGGAAAGGTACTTTGCCGGATCT -ACGGAAAGGTACTTTGCCAAGGCT -ACGGAAAGGTACTTTGCCTCAACC -ACGGAAAGGTACTTTGCCTGTTCC -ACGGAAAGGTACTTTGCCATTCCC -ACGGAAAGGTACTTTGCCTTCTCG -ACGGAAAGGTACTTTGCCTAGACG -ACGGAAAGGTACTTTGCCGTAACG -ACGGAAAGGTACTTTGCCACTTCG -ACGGAAAGGTACTTTGCCTACGCA -ACGGAAAGGTACTTTGCCCTTGCA -ACGGAAAGGTACTTTGCCCGAACA -ACGGAAAGGTACTTTGCCCAGTCA -ACGGAAAGGTACTTTGCCGATCCA -ACGGAAAGGTACTTTGCCACGACA -ACGGAAAGGTACTTTGCCAGCTCA -ACGGAAAGGTACTTTGCCTCACGT -ACGGAAAGGTACTTTGCCCGTAGT -ACGGAAAGGTACTTTGCCGTCAGT -ACGGAAAGGTACTTTGCCGAAGGT -ACGGAAAGGTACTTTGCCAACCGT -ACGGAAAGGTACTTTGCCTTGTGC -ACGGAAAGGTACTTTGCCCTAAGC -ACGGAAAGGTACTTTGCCACTAGC -ACGGAAAGGTACTTTGCCAGATGC -ACGGAAAGGTACTTTGCCTGAAGG -ACGGAAAGGTACTTTGCCCAATGG -ACGGAAAGGTACTTTGCCATGAGG -ACGGAAAGGTACTTTGCCAATGGG -ACGGAAAGGTACTTTGCCTCCTGA -ACGGAAAGGTACTTTGCCTAGCGA -ACGGAAAGGTACTTTGCCCACAGA -ACGGAAAGGTACTTTGCCGCAAGA -ACGGAAAGGTACTTTGCCGGTTGA -ACGGAAAGGTACTTTGCCTCCGAT -ACGGAAAGGTACTTTGCCTGGCAT -ACGGAAAGGTACTTTGCCCGAGAT -ACGGAAAGGTACTTTGCCTACCAC -ACGGAAAGGTACTTTGCCCAGAAC -ACGGAAAGGTACTTTGCCGTCTAC -ACGGAAAGGTACTTTGCCACGTAC -ACGGAAAGGTACTTTGCCAGTGAC -ACGGAAAGGTACTTTGCCCTGTAG -ACGGAAAGGTACTTTGCCCCTAAG -ACGGAAAGGTACTTTGCCGTTCAG -ACGGAAAGGTACTTTGCCGCATAG -ACGGAAAGGTACTTTGCCGACAAG -ACGGAAAGGTACTTTGCCAAGCAG -ACGGAAAGGTACTTTGCCCGTCAA -ACGGAAAGGTACTTTGCCGCTGAA -ACGGAAAGGTACTTTGCCAGTACG -ACGGAAAGGTACTTTGCCATCCGA -ACGGAAAGGTACTTTGCCATGGGA -ACGGAAAGGTACTTTGCCGTGCAA -ACGGAAAGGTACTTTGCCGAGGAA -ACGGAAAGGTACTTTGCCCAGGTA -ACGGAAAGGTACTTTGCCGACTCT -ACGGAAAGGTACTTTGCCAGTCCT -ACGGAAAGGTACTTTGCCTAAGCC -ACGGAAAGGTACTTTGCCATAGCC -ACGGAAAGGTACTTTGCCTAACCG -ACGGAAAGGTACTTTGCCATGCCA -ACGGAAAGGTACCTTGGTGGAAAC -ACGGAAAGGTACCTTGGTAACACC -ACGGAAAGGTACCTTGGTATCGAG -ACGGAAAGGTACCTTGGTCTCCTT -ACGGAAAGGTACCTTGGTCCTGTT -ACGGAAAGGTACCTTGGTCGGTTT -ACGGAAAGGTACCTTGGTGTGGTT -ACGGAAAGGTACCTTGGTGCCTTT -ACGGAAAGGTACCTTGGTGGTCTT -ACGGAAAGGTACCTTGGTACGCTT -ACGGAAAGGTACCTTGGTAGCGTT -ACGGAAAGGTACCTTGGTTTCGTC -ACGGAAAGGTACCTTGGTTCTCTC -ACGGAAAGGTACCTTGGTTGGATC -ACGGAAAGGTACCTTGGTCACTTC -ACGGAAAGGTACCTTGGTGTACTC -ACGGAAAGGTACCTTGGTGATGTC -ACGGAAAGGTACCTTGGTACAGTC -ACGGAAAGGTACCTTGGTTTGCTG -ACGGAAAGGTACCTTGGTTCCATG -ACGGAAAGGTACCTTGGTTGTGTG -ACGGAAAGGTACCTTGGTCTAGTG -ACGGAAAGGTACCTTGGTCATCTG -ACGGAAAGGTACCTTGGTGAGTTG -ACGGAAAGGTACCTTGGTAGACTG -ACGGAAAGGTACCTTGGTTCGGTA -ACGGAAAGGTACCTTGGTTGCCTA -ACGGAAAGGTACCTTGGTCCACTA -ACGGAAAGGTACCTTGGTGGAGTA -ACGGAAAGGTACCTTGGTTCGTCT -ACGGAAAGGTACCTTGGTTGCACT -ACGGAAAGGTACCTTGGTCTGACT -ACGGAAAGGTACCTTGGTCAACCT -ACGGAAAGGTACCTTGGTGCTACT -ACGGAAAGGTACCTTGGTGGATCT -ACGGAAAGGTACCTTGGTAAGGCT -ACGGAAAGGTACCTTGGTTCAACC -ACGGAAAGGTACCTTGGTTGTTCC -ACGGAAAGGTACCTTGGTATTCCC -ACGGAAAGGTACCTTGGTTTCTCG -ACGGAAAGGTACCTTGGTTAGACG -ACGGAAAGGTACCTTGGTGTAACG -ACGGAAAGGTACCTTGGTACTTCG -ACGGAAAGGTACCTTGGTTACGCA -ACGGAAAGGTACCTTGGTCTTGCA -ACGGAAAGGTACCTTGGTCGAACA -ACGGAAAGGTACCTTGGTCAGTCA -ACGGAAAGGTACCTTGGTGATCCA -ACGGAAAGGTACCTTGGTACGACA -ACGGAAAGGTACCTTGGTAGCTCA -ACGGAAAGGTACCTTGGTTCACGT -ACGGAAAGGTACCTTGGTCGTAGT -ACGGAAAGGTACCTTGGTGTCAGT -ACGGAAAGGTACCTTGGTGAAGGT -ACGGAAAGGTACCTTGGTAACCGT -ACGGAAAGGTACCTTGGTTTGTGC -ACGGAAAGGTACCTTGGTCTAAGC -ACGGAAAGGTACCTTGGTACTAGC -ACGGAAAGGTACCTTGGTAGATGC -ACGGAAAGGTACCTTGGTTGAAGG -ACGGAAAGGTACCTTGGTCAATGG -ACGGAAAGGTACCTTGGTATGAGG -ACGGAAAGGTACCTTGGTAATGGG -ACGGAAAGGTACCTTGGTTCCTGA -ACGGAAAGGTACCTTGGTTAGCGA -ACGGAAAGGTACCTTGGTCACAGA -ACGGAAAGGTACCTTGGTGCAAGA -ACGGAAAGGTACCTTGGTGGTTGA -ACGGAAAGGTACCTTGGTTCCGAT -ACGGAAAGGTACCTTGGTTGGCAT -ACGGAAAGGTACCTTGGTCGAGAT -ACGGAAAGGTACCTTGGTTACCAC -ACGGAAAGGTACCTTGGTCAGAAC -ACGGAAAGGTACCTTGGTGTCTAC -ACGGAAAGGTACCTTGGTACGTAC -ACGGAAAGGTACCTTGGTAGTGAC -ACGGAAAGGTACCTTGGTCTGTAG -ACGGAAAGGTACCTTGGTCCTAAG -ACGGAAAGGTACCTTGGTGTTCAG -ACGGAAAGGTACCTTGGTGCATAG -ACGGAAAGGTACCTTGGTGACAAG -ACGGAAAGGTACCTTGGTAAGCAG -ACGGAAAGGTACCTTGGTCGTCAA -ACGGAAAGGTACCTTGGTGCTGAA -ACGGAAAGGTACCTTGGTAGTACG -ACGGAAAGGTACCTTGGTATCCGA -ACGGAAAGGTACCTTGGTATGGGA -ACGGAAAGGTACCTTGGTGTGCAA -ACGGAAAGGTACCTTGGTGAGGAA -ACGGAAAGGTACCTTGGTCAGGTA -ACGGAAAGGTACCTTGGTGACTCT -ACGGAAAGGTACCTTGGTAGTCCT -ACGGAAAGGTACCTTGGTTAAGCC -ACGGAAAGGTACCTTGGTATAGCC -ACGGAAAGGTACCTTGGTTAACCG -ACGGAAAGGTACCTTGGTATGCCA -ACGGAAAGGTACCTTACGGGAAAC -ACGGAAAGGTACCTTACGAACACC -ACGGAAAGGTACCTTACGATCGAG -ACGGAAAGGTACCTTACGCTCCTT -ACGGAAAGGTACCTTACGCCTGTT -ACGGAAAGGTACCTTACGCGGTTT -ACGGAAAGGTACCTTACGGTGGTT -ACGGAAAGGTACCTTACGGCCTTT -ACGGAAAGGTACCTTACGGGTCTT -ACGGAAAGGTACCTTACGACGCTT -ACGGAAAGGTACCTTACGAGCGTT -ACGGAAAGGTACCTTACGTTCGTC -ACGGAAAGGTACCTTACGTCTCTC -ACGGAAAGGTACCTTACGTGGATC -ACGGAAAGGTACCTTACGCACTTC -ACGGAAAGGTACCTTACGGTACTC -ACGGAAAGGTACCTTACGGATGTC -ACGGAAAGGTACCTTACGACAGTC -ACGGAAAGGTACCTTACGTTGCTG -ACGGAAAGGTACCTTACGTCCATG -ACGGAAAGGTACCTTACGTGTGTG -ACGGAAAGGTACCTTACGCTAGTG -ACGGAAAGGTACCTTACGCATCTG -ACGGAAAGGTACCTTACGGAGTTG -ACGGAAAGGTACCTTACGAGACTG -ACGGAAAGGTACCTTACGTCGGTA -ACGGAAAGGTACCTTACGTGCCTA -ACGGAAAGGTACCTTACGCCACTA -ACGGAAAGGTACCTTACGGGAGTA -ACGGAAAGGTACCTTACGTCGTCT -ACGGAAAGGTACCTTACGTGCACT -ACGGAAAGGTACCTTACGCTGACT -ACGGAAAGGTACCTTACGCAACCT -ACGGAAAGGTACCTTACGGCTACT -ACGGAAAGGTACCTTACGGGATCT -ACGGAAAGGTACCTTACGAAGGCT -ACGGAAAGGTACCTTACGTCAACC -ACGGAAAGGTACCTTACGTGTTCC -ACGGAAAGGTACCTTACGATTCCC -ACGGAAAGGTACCTTACGTTCTCG -ACGGAAAGGTACCTTACGTAGACG -ACGGAAAGGTACCTTACGGTAACG -ACGGAAAGGTACCTTACGACTTCG -ACGGAAAGGTACCTTACGTACGCA -ACGGAAAGGTACCTTACGCTTGCA -ACGGAAAGGTACCTTACGCGAACA -ACGGAAAGGTACCTTACGCAGTCA -ACGGAAAGGTACCTTACGGATCCA -ACGGAAAGGTACCTTACGACGACA -ACGGAAAGGTACCTTACGAGCTCA -ACGGAAAGGTACCTTACGTCACGT -ACGGAAAGGTACCTTACGCGTAGT -ACGGAAAGGTACCTTACGGTCAGT -ACGGAAAGGTACCTTACGGAAGGT -ACGGAAAGGTACCTTACGAACCGT -ACGGAAAGGTACCTTACGTTGTGC -ACGGAAAGGTACCTTACGCTAAGC -ACGGAAAGGTACCTTACGACTAGC -ACGGAAAGGTACCTTACGAGATGC -ACGGAAAGGTACCTTACGTGAAGG -ACGGAAAGGTACCTTACGCAATGG -ACGGAAAGGTACCTTACGATGAGG -ACGGAAAGGTACCTTACGAATGGG -ACGGAAAGGTACCTTACGTCCTGA -ACGGAAAGGTACCTTACGTAGCGA -ACGGAAAGGTACCTTACGCACAGA -ACGGAAAGGTACCTTACGGCAAGA -ACGGAAAGGTACCTTACGGGTTGA -ACGGAAAGGTACCTTACGTCCGAT -ACGGAAAGGTACCTTACGTGGCAT -ACGGAAAGGTACCTTACGCGAGAT -ACGGAAAGGTACCTTACGTACCAC -ACGGAAAGGTACCTTACGCAGAAC -ACGGAAAGGTACCTTACGGTCTAC -ACGGAAAGGTACCTTACGACGTAC -ACGGAAAGGTACCTTACGAGTGAC -ACGGAAAGGTACCTTACGCTGTAG -ACGGAAAGGTACCTTACGCCTAAG -ACGGAAAGGTACCTTACGGTTCAG -ACGGAAAGGTACCTTACGGCATAG -ACGGAAAGGTACCTTACGGACAAG -ACGGAAAGGTACCTTACGAAGCAG -ACGGAAAGGTACCTTACGCGTCAA -ACGGAAAGGTACCTTACGGCTGAA -ACGGAAAGGTACCTTACGAGTACG -ACGGAAAGGTACCTTACGATCCGA -ACGGAAAGGTACCTTACGATGGGA -ACGGAAAGGTACCTTACGGTGCAA -ACGGAAAGGTACCTTACGGAGGAA -ACGGAAAGGTACCTTACGCAGGTA -ACGGAAAGGTACCTTACGGACTCT -ACGGAAAGGTACCTTACGAGTCCT -ACGGAAAGGTACCTTACGTAAGCC -ACGGAAAGGTACCTTACGATAGCC -ACGGAAAGGTACCTTACGTAACCG -ACGGAAAGGTACCTTACGATGCCA -ACGGAAAGGTACGTTAGCGGAAAC -ACGGAAAGGTACGTTAGCAACACC -ACGGAAAGGTACGTTAGCATCGAG -ACGGAAAGGTACGTTAGCCTCCTT -ACGGAAAGGTACGTTAGCCCTGTT -ACGGAAAGGTACGTTAGCCGGTTT -ACGGAAAGGTACGTTAGCGTGGTT -ACGGAAAGGTACGTTAGCGCCTTT -ACGGAAAGGTACGTTAGCGGTCTT -ACGGAAAGGTACGTTAGCACGCTT -ACGGAAAGGTACGTTAGCAGCGTT -ACGGAAAGGTACGTTAGCTTCGTC -ACGGAAAGGTACGTTAGCTCTCTC -ACGGAAAGGTACGTTAGCTGGATC -ACGGAAAGGTACGTTAGCCACTTC -ACGGAAAGGTACGTTAGCGTACTC -ACGGAAAGGTACGTTAGCGATGTC -ACGGAAAGGTACGTTAGCACAGTC -ACGGAAAGGTACGTTAGCTTGCTG -ACGGAAAGGTACGTTAGCTCCATG -ACGGAAAGGTACGTTAGCTGTGTG -ACGGAAAGGTACGTTAGCCTAGTG -ACGGAAAGGTACGTTAGCCATCTG -ACGGAAAGGTACGTTAGCGAGTTG -ACGGAAAGGTACGTTAGCAGACTG -ACGGAAAGGTACGTTAGCTCGGTA -ACGGAAAGGTACGTTAGCTGCCTA -ACGGAAAGGTACGTTAGCCCACTA -ACGGAAAGGTACGTTAGCGGAGTA -ACGGAAAGGTACGTTAGCTCGTCT -ACGGAAAGGTACGTTAGCTGCACT -ACGGAAAGGTACGTTAGCCTGACT -ACGGAAAGGTACGTTAGCCAACCT -ACGGAAAGGTACGTTAGCGCTACT -ACGGAAAGGTACGTTAGCGGATCT -ACGGAAAGGTACGTTAGCAAGGCT -ACGGAAAGGTACGTTAGCTCAACC -ACGGAAAGGTACGTTAGCTGTTCC -ACGGAAAGGTACGTTAGCATTCCC -ACGGAAAGGTACGTTAGCTTCTCG -ACGGAAAGGTACGTTAGCTAGACG -ACGGAAAGGTACGTTAGCGTAACG -ACGGAAAGGTACGTTAGCACTTCG -ACGGAAAGGTACGTTAGCTACGCA -ACGGAAAGGTACGTTAGCCTTGCA -ACGGAAAGGTACGTTAGCCGAACA -ACGGAAAGGTACGTTAGCCAGTCA -ACGGAAAGGTACGTTAGCGATCCA -ACGGAAAGGTACGTTAGCACGACA -ACGGAAAGGTACGTTAGCAGCTCA -ACGGAAAGGTACGTTAGCTCACGT -ACGGAAAGGTACGTTAGCCGTAGT -ACGGAAAGGTACGTTAGCGTCAGT -ACGGAAAGGTACGTTAGCGAAGGT -ACGGAAAGGTACGTTAGCAACCGT -ACGGAAAGGTACGTTAGCTTGTGC -ACGGAAAGGTACGTTAGCCTAAGC -ACGGAAAGGTACGTTAGCACTAGC -ACGGAAAGGTACGTTAGCAGATGC -ACGGAAAGGTACGTTAGCTGAAGG -ACGGAAAGGTACGTTAGCCAATGG -ACGGAAAGGTACGTTAGCATGAGG -ACGGAAAGGTACGTTAGCAATGGG -ACGGAAAGGTACGTTAGCTCCTGA -ACGGAAAGGTACGTTAGCTAGCGA -ACGGAAAGGTACGTTAGCCACAGA -ACGGAAAGGTACGTTAGCGCAAGA -ACGGAAAGGTACGTTAGCGGTTGA -ACGGAAAGGTACGTTAGCTCCGAT -ACGGAAAGGTACGTTAGCTGGCAT -ACGGAAAGGTACGTTAGCCGAGAT -ACGGAAAGGTACGTTAGCTACCAC -ACGGAAAGGTACGTTAGCCAGAAC -ACGGAAAGGTACGTTAGCGTCTAC -ACGGAAAGGTACGTTAGCACGTAC -ACGGAAAGGTACGTTAGCAGTGAC -ACGGAAAGGTACGTTAGCCTGTAG -ACGGAAAGGTACGTTAGCCCTAAG -ACGGAAAGGTACGTTAGCGTTCAG -ACGGAAAGGTACGTTAGCGCATAG -ACGGAAAGGTACGTTAGCGACAAG -ACGGAAAGGTACGTTAGCAAGCAG -ACGGAAAGGTACGTTAGCCGTCAA -ACGGAAAGGTACGTTAGCGCTGAA -ACGGAAAGGTACGTTAGCAGTACG -ACGGAAAGGTACGTTAGCATCCGA -ACGGAAAGGTACGTTAGCATGGGA -ACGGAAAGGTACGTTAGCGTGCAA -ACGGAAAGGTACGTTAGCGAGGAA -ACGGAAAGGTACGTTAGCCAGGTA -ACGGAAAGGTACGTTAGCGACTCT -ACGGAAAGGTACGTTAGCAGTCCT -ACGGAAAGGTACGTTAGCTAAGCC -ACGGAAAGGTACGTTAGCATAGCC -ACGGAAAGGTACGTTAGCTAACCG -ACGGAAAGGTACGTTAGCATGCCA -ACGGAAAGGTACGTCTTCGGAAAC -ACGGAAAGGTACGTCTTCAACACC -ACGGAAAGGTACGTCTTCATCGAG -ACGGAAAGGTACGTCTTCCTCCTT -ACGGAAAGGTACGTCTTCCCTGTT -ACGGAAAGGTACGTCTTCCGGTTT -ACGGAAAGGTACGTCTTCGTGGTT -ACGGAAAGGTACGTCTTCGCCTTT -ACGGAAAGGTACGTCTTCGGTCTT -ACGGAAAGGTACGTCTTCACGCTT -ACGGAAAGGTACGTCTTCAGCGTT -ACGGAAAGGTACGTCTTCTTCGTC -ACGGAAAGGTACGTCTTCTCTCTC -ACGGAAAGGTACGTCTTCTGGATC -ACGGAAAGGTACGTCTTCCACTTC -ACGGAAAGGTACGTCTTCGTACTC -ACGGAAAGGTACGTCTTCGATGTC -ACGGAAAGGTACGTCTTCACAGTC -ACGGAAAGGTACGTCTTCTTGCTG -ACGGAAAGGTACGTCTTCTCCATG -ACGGAAAGGTACGTCTTCTGTGTG -ACGGAAAGGTACGTCTTCCTAGTG -ACGGAAAGGTACGTCTTCCATCTG -ACGGAAAGGTACGTCTTCGAGTTG -ACGGAAAGGTACGTCTTCAGACTG -ACGGAAAGGTACGTCTTCTCGGTA -ACGGAAAGGTACGTCTTCTGCCTA -ACGGAAAGGTACGTCTTCCCACTA -ACGGAAAGGTACGTCTTCGGAGTA -ACGGAAAGGTACGTCTTCTCGTCT -ACGGAAAGGTACGTCTTCTGCACT -ACGGAAAGGTACGTCTTCCTGACT -ACGGAAAGGTACGTCTTCCAACCT -ACGGAAAGGTACGTCTTCGCTACT -ACGGAAAGGTACGTCTTCGGATCT -ACGGAAAGGTACGTCTTCAAGGCT -ACGGAAAGGTACGTCTTCTCAACC -ACGGAAAGGTACGTCTTCTGTTCC -ACGGAAAGGTACGTCTTCATTCCC -ACGGAAAGGTACGTCTTCTTCTCG -ACGGAAAGGTACGTCTTCTAGACG -ACGGAAAGGTACGTCTTCGTAACG -ACGGAAAGGTACGTCTTCACTTCG -ACGGAAAGGTACGTCTTCTACGCA -ACGGAAAGGTACGTCTTCCTTGCA -ACGGAAAGGTACGTCTTCCGAACA -ACGGAAAGGTACGTCTTCCAGTCA -ACGGAAAGGTACGTCTTCGATCCA -ACGGAAAGGTACGTCTTCACGACA -ACGGAAAGGTACGTCTTCAGCTCA -ACGGAAAGGTACGTCTTCTCACGT -ACGGAAAGGTACGTCTTCCGTAGT -ACGGAAAGGTACGTCTTCGTCAGT -ACGGAAAGGTACGTCTTCGAAGGT -ACGGAAAGGTACGTCTTCAACCGT -ACGGAAAGGTACGTCTTCTTGTGC -ACGGAAAGGTACGTCTTCCTAAGC -ACGGAAAGGTACGTCTTCACTAGC -ACGGAAAGGTACGTCTTCAGATGC -ACGGAAAGGTACGTCTTCTGAAGG -ACGGAAAGGTACGTCTTCCAATGG -ACGGAAAGGTACGTCTTCATGAGG -ACGGAAAGGTACGTCTTCAATGGG -ACGGAAAGGTACGTCTTCTCCTGA -ACGGAAAGGTACGTCTTCTAGCGA -ACGGAAAGGTACGTCTTCCACAGA -ACGGAAAGGTACGTCTTCGCAAGA -ACGGAAAGGTACGTCTTCGGTTGA -ACGGAAAGGTACGTCTTCTCCGAT -ACGGAAAGGTACGTCTTCTGGCAT -ACGGAAAGGTACGTCTTCCGAGAT -ACGGAAAGGTACGTCTTCTACCAC -ACGGAAAGGTACGTCTTCCAGAAC -ACGGAAAGGTACGTCTTCGTCTAC -ACGGAAAGGTACGTCTTCACGTAC -ACGGAAAGGTACGTCTTCAGTGAC -ACGGAAAGGTACGTCTTCCTGTAG -ACGGAAAGGTACGTCTTCCCTAAG -ACGGAAAGGTACGTCTTCGTTCAG -ACGGAAAGGTACGTCTTCGCATAG -ACGGAAAGGTACGTCTTCGACAAG -ACGGAAAGGTACGTCTTCAAGCAG -ACGGAAAGGTACGTCTTCCGTCAA -ACGGAAAGGTACGTCTTCGCTGAA -ACGGAAAGGTACGTCTTCAGTACG -ACGGAAAGGTACGTCTTCATCCGA -ACGGAAAGGTACGTCTTCATGGGA -ACGGAAAGGTACGTCTTCGTGCAA -ACGGAAAGGTACGTCTTCGAGGAA -ACGGAAAGGTACGTCTTCCAGGTA -ACGGAAAGGTACGTCTTCGACTCT -ACGGAAAGGTACGTCTTCAGTCCT -ACGGAAAGGTACGTCTTCTAAGCC -ACGGAAAGGTACGTCTTCATAGCC -ACGGAAAGGTACGTCTTCTAACCG -ACGGAAAGGTACGTCTTCATGCCA -ACGGAAAGGTACCTCTCTGGAAAC -ACGGAAAGGTACCTCTCTAACACC -ACGGAAAGGTACCTCTCTATCGAG -ACGGAAAGGTACCTCTCTCTCCTT -ACGGAAAGGTACCTCTCTCCTGTT -ACGGAAAGGTACCTCTCTCGGTTT -ACGGAAAGGTACCTCTCTGTGGTT -ACGGAAAGGTACCTCTCTGCCTTT -ACGGAAAGGTACCTCTCTGGTCTT -ACGGAAAGGTACCTCTCTACGCTT -ACGGAAAGGTACCTCTCTAGCGTT -ACGGAAAGGTACCTCTCTTTCGTC -ACGGAAAGGTACCTCTCTTCTCTC -ACGGAAAGGTACCTCTCTTGGATC -ACGGAAAGGTACCTCTCTCACTTC -ACGGAAAGGTACCTCTCTGTACTC -ACGGAAAGGTACCTCTCTGATGTC -ACGGAAAGGTACCTCTCTACAGTC -ACGGAAAGGTACCTCTCTTTGCTG -ACGGAAAGGTACCTCTCTTCCATG -ACGGAAAGGTACCTCTCTTGTGTG -ACGGAAAGGTACCTCTCTCTAGTG -ACGGAAAGGTACCTCTCTCATCTG -ACGGAAAGGTACCTCTCTGAGTTG -ACGGAAAGGTACCTCTCTAGACTG -ACGGAAAGGTACCTCTCTTCGGTA -ACGGAAAGGTACCTCTCTTGCCTA -ACGGAAAGGTACCTCTCTCCACTA -ACGGAAAGGTACCTCTCTGGAGTA -ACGGAAAGGTACCTCTCTTCGTCT -ACGGAAAGGTACCTCTCTTGCACT -ACGGAAAGGTACCTCTCTCTGACT -ACGGAAAGGTACCTCTCTCAACCT -ACGGAAAGGTACCTCTCTGCTACT -ACGGAAAGGTACCTCTCTGGATCT -ACGGAAAGGTACCTCTCTAAGGCT -ACGGAAAGGTACCTCTCTTCAACC -ACGGAAAGGTACCTCTCTTGTTCC -ACGGAAAGGTACCTCTCTATTCCC -ACGGAAAGGTACCTCTCTTTCTCG -ACGGAAAGGTACCTCTCTTAGACG -ACGGAAAGGTACCTCTCTGTAACG -ACGGAAAGGTACCTCTCTACTTCG -ACGGAAAGGTACCTCTCTTACGCA -ACGGAAAGGTACCTCTCTCTTGCA -ACGGAAAGGTACCTCTCTCGAACA -ACGGAAAGGTACCTCTCTCAGTCA -ACGGAAAGGTACCTCTCTGATCCA -ACGGAAAGGTACCTCTCTACGACA -ACGGAAAGGTACCTCTCTAGCTCA -ACGGAAAGGTACCTCTCTTCACGT -ACGGAAAGGTACCTCTCTCGTAGT -ACGGAAAGGTACCTCTCTGTCAGT -ACGGAAAGGTACCTCTCTGAAGGT -ACGGAAAGGTACCTCTCTAACCGT -ACGGAAAGGTACCTCTCTTTGTGC -ACGGAAAGGTACCTCTCTCTAAGC -ACGGAAAGGTACCTCTCTACTAGC -ACGGAAAGGTACCTCTCTAGATGC -ACGGAAAGGTACCTCTCTTGAAGG -ACGGAAAGGTACCTCTCTCAATGG -ACGGAAAGGTACCTCTCTATGAGG -ACGGAAAGGTACCTCTCTAATGGG -ACGGAAAGGTACCTCTCTTCCTGA -ACGGAAAGGTACCTCTCTTAGCGA -ACGGAAAGGTACCTCTCTCACAGA -ACGGAAAGGTACCTCTCTGCAAGA -ACGGAAAGGTACCTCTCTGGTTGA -ACGGAAAGGTACCTCTCTTCCGAT -ACGGAAAGGTACCTCTCTTGGCAT -ACGGAAAGGTACCTCTCTCGAGAT -ACGGAAAGGTACCTCTCTTACCAC -ACGGAAAGGTACCTCTCTCAGAAC -ACGGAAAGGTACCTCTCTGTCTAC -ACGGAAAGGTACCTCTCTACGTAC -ACGGAAAGGTACCTCTCTAGTGAC -ACGGAAAGGTACCTCTCTCTGTAG -ACGGAAAGGTACCTCTCTCCTAAG -ACGGAAAGGTACCTCTCTGTTCAG -ACGGAAAGGTACCTCTCTGCATAG -ACGGAAAGGTACCTCTCTGACAAG -ACGGAAAGGTACCTCTCTAAGCAG -ACGGAAAGGTACCTCTCTCGTCAA -ACGGAAAGGTACCTCTCTGCTGAA -ACGGAAAGGTACCTCTCTAGTACG -ACGGAAAGGTACCTCTCTATCCGA -ACGGAAAGGTACCTCTCTATGGGA -ACGGAAAGGTACCTCTCTGTGCAA -ACGGAAAGGTACCTCTCTGAGGAA -ACGGAAAGGTACCTCTCTCAGGTA -ACGGAAAGGTACCTCTCTGACTCT -ACGGAAAGGTACCTCTCTAGTCCT -ACGGAAAGGTACCTCTCTTAAGCC -ACGGAAAGGTACCTCTCTATAGCC -ACGGAAAGGTACCTCTCTTAACCG -ACGGAAAGGTACCTCTCTATGCCA -ACGGAAAGGTACATCTGGGGAAAC -ACGGAAAGGTACATCTGGAACACC -ACGGAAAGGTACATCTGGATCGAG -ACGGAAAGGTACATCTGGCTCCTT -ACGGAAAGGTACATCTGGCCTGTT -ACGGAAAGGTACATCTGGCGGTTT -ACGGAAAGGTACATCTGGGTGGTT -ACGGAAAGGTACATCTGGGCCTTT -ACGGAAAGGTACATCTGGGGTCTT -ACGGAAAGGTACATCTGGACGCTT -ACGGAAAGGTACATCTGGAGCGTT -ACGGAAAGGTACATCTGGTTCGTC -ACGGAAAGGTACATCTGGTCTCTC -ACGGAAAGGTACATCTGGTGGATC -ACGGAAAGGTACATCTGGCACTTC -ACGGAAAGGTACATCTGGGTACTC -ACGGAAAGGTACATCTGGGATGTC -ACGGAAAGGTACATCTGGACAGTC -ACGGAAAGGTACATCTGGTTGCTG -ACGGAAAGGTACATCTGGTCCATG -ACGGAAAGGTACATCTGGTGTGTG -ACGGAAAGGTACATCTGGCTAGTG -ACGGAAAGGTACATCTGGCATCTG -ACGGAAAGGTACATCTGGGAGTTG -ACGGAAAGGTACATCTGGAGACTG -ACGGAAAGGTACATCTGGTCGGTA -ACGGAAAGGTACATCTGGTGCCTA -ACGGAAAGGTACATCTGGCCACTA -ACGGAAAGGTACATCTGGGGAGTA -ACGGAAAGGTACATCTGGTCGTCT -ACGGAAAGGTACATCTGGTGCACT -ACGGAAAGGTACATCTGGCTGACT -ACGGAAAGGTACATCTGGCAACCT -ACGGAAAGGTACATCTGGGCTACT -ACGGAAAGGTACATCTGGGGATCT -ACGGAAAGGTACATCTGGAAGGCT -ACGGAAAGGTACATCTGGTCAACC -ACGGAAAGGTACATCTGGTGTTCC -ACGGAAAGGTACATCTGGATTCCC -ACGGAAAGGTACATCTGGTTCTCG -ACGGAAAGGTACATCTGGTAGACG -ACGGAAAGGTACATCTGGGTAACG -ACGGAAAGGTACATCTGGACTTCG -ACGGAAAGGTACATCTGGTACGCA -ACGGAAAGGTACATCTGGCTTGCA -ACGGAAAGGTACATCTGGCGAACA -ACGGAAAGGTACATCTGGCAGTCA -ACGGAAAGGTACATCTGGGATCCA -ACGGAAAGGTACATCTGGACGACA -ACGGAAAGGTACATCTGGAGCTCA -ACGGAAAGGTACATCTGGTCACGT -ACGGAAAGGTACATCTGGCGTAGT -ACGGAAAGGTACATCTGGGTCAGT -ACGGAAAGGTACATCTGGGAAGGT -ACGGAAAGGTACATCTGGAACCGT -ACGGAAAGGTACATCTGGTTGTGC -ACGGAAAGGTACATCTGGCTAAGC -ACGGAAAGGTACATCTGGACTAGC -ACGGAAAGGTACATCTGGAGATGC -ACGGAAAGGTACATCTGGTGAAGG -ACGGAAAGGTACATCTGGCAATGG -ACGGAAAGGTACATCTGGATGAGG -ACGGAAAGGTACATCTGGAATGGG -ACGGAAAGGTACATCTGGTCCTGA -ACGGAAAGGTACATCTGGTAGCGA -ACGGAAAGGTACATCTGGCACAGA -ACGGAAAGGTACATCTGGGCAAGA -ACGGAAAGGTACATCTGGGGTTGA -ACGGAAAGGTACATCTGGTCCGAT -ACGGAAAGGTACATCTGGTGGCAT -ACGGAAAGGTACATCTGGCGAGAT -ACGGAAAGGTACATCTGGTACCAC -ACGGAAAGGTACATCTGGCAGAAC -ACGGAAAGGTACATCTGGGTCTAC -ACGGAAAGGTACATCTGGACGTAC -ACGGAAAGGTACATCTGGAGTGAC -ACGGAAAGGTACATCTGGCTGTAG -ACGGAAAGGTACATCTGGCCTAAG -ACGGAAAGGTACATCTGGGTTCAG -ACGGAAAGGTACATCTGGGCATAG -ACGGAAAGGTACATCTGGGACAAG -ACGGAAAGGTACATCTGGAAGCAG -ACGGAAAGGTACATCTGGCGTCAA -ACGGAAAGGTACATCTGGGCTGAA -ACGGAAAGGTACATCTGGAGTACG -ACGGAAAGGTACATCTGGATCCGA -ACGGAAAGGTACATCTGGATGGGA -ACGGAAAGGTACATCTGGGTGCAA -ACGGAAAGGTACATCTGGGAGGAA -ACGGAAAGGTACATCTGGCAGGTA -ACGGAAAGGTACATCTGGGACTCT -ACGGAAAGGTACATCTGGAGTCCT -ACGGAAAGGTACATCTGGTAAGCC -ACGGAAAGGTACATCTGGATAGCC -ACGGAAAGGTACATCTGGTAACCG -ACGGAAAGGTACATCTGGATGCCA -ACGGAAAGGTACTTCCACGGAAAC -ACGGAAAGGTACTTCCACAACACC -ACGGAAAGGTACTTCCACATCGAG -ACGGAAAGGTACTTCCACCTCCTT -ACGGAAAGGTACTTCCACCCTGTT -ACGGAAAGGTACTTCCACCGGTTT -ACGGAAAGGTACTTCCACGTGGTT -ACGGAAAGGTACTTCCACGCCTTT -ACGGAAAGGTACTTCCACGGTCTT -ACGGAAAGGTACTTCCACACGCTT -ACGGAAAGGTACTTCCACAGCGTT -ACGGAAAGGTACTTCCACTTCGTC -ACGGAAAGGTACTTCCACTCTCTC -ACGGAAAGGTACTTCCACTGGATC -ACGGAAAGGTACTTCCACCACTTC -ACGGAAAGGTACTTCCACGTACTC -ACGGAAAGGTACTTCCACGATGTC -ACGGAAAGGTACTTCCACACAGTC -ACGGAAAGGTACTTCCACTTGCTG -ACGGAAAGGTACTTCCACTCCATG -ACGGAAAGGTACTTCCACTGTGTG -ACGGAAAGGTACTTCCACCTAGTG -ACGGAAAGGTACTTCCACCATCTG -ACGGAAAGGTACTTCCACGAGTTG -ACGGAAAGGTACTTCCACAGACTG -ACGGAAAGGTACTTCCACTCGGTA -ACGGAAAGGTACTTCCACTGCCTA -ACGGAAAGGTACTTCCACCCACTA -ACGGAAAGGTACTTCCACGGAGTA -ACGGAAAGGTACTTCCACTCGTCT -ACGGAAAGGTACTTCCACTGCACT -ACGGAAAGGTACTTCCACCTGACT -ACGGAAAGGTACTTCCACCAACCT -ACGGAAAGGTACTTCCACGCTACT -ACGGAAAGGTACTTCCACGGATCT -ACGGAAAGGTACTTCCACAAGGCT -ACGGAAAGGTACTTCCACTCAACC -ACGGAAAGGTACTTCCACTGTTCC -ACGGAAAGGTACTTCCACATTCCC -ACGGAAAGGTACTTCCACTTCTCG -ACGGAAAGGTACTTCCACTAGACG -ACGGAAAGGTACTTCCACGTAACG -ACGGAAAGGTACTTCCACACTTCG -ACGGAAAGGTACTTCCACTACGCA -ACGGAAAGGTACTTCCACCTTGCA -ACGGAAAGGTACTTCCACCGAACA -ACGGAAAGGTACTTCCACCAGTCA -ACGGAAAGGTACTTCCACGATCCA -ACGGAAAGGTACTTCCACACGACA -ACGGAAAGGTACTTCCACAGCTCA -ACGGAAAGGTACTTCCACTCACGT -ACGGAAAGGTACTTCCACCGTAGT -ACGGAAAGGTACTTCCACGTCAGT -ACGGAAAGGTACTTCCACGAAGGT -ACGGAAAGGTACTTCCACAACCGT -ACGGAAAGGTACTTCCACTTGTGC -ACGGAAAGGTACTTCCACCTAAGC -ACGGAAAGGTACTTCCACACTAGC -ACGGAAAGGTACTTCCACAGATGC -ACGGAAAGGTACTTCCACTGAAGG -ACGGAAAGGTACTTCCACCAATGG -ACGGAAAGGTACTTCCACATGAGG -ACGGAAAGGTACTTCCACAATGGG -ACGGAAAGGTACTTCCACTCCTGA -ACGGAAAGGTACTTCCACTAGCGA -ACGGAAAGGTACTTCCACCACAGA -ACGGAAAGGTACTTCCACGCAAGA -ACGGAAAGGTACTTCCACGGTTGA -ACGGAAAGGTACTTCCACTCCGAT -ACGGAAAGGTACTTCCACTGGCAT -ACGGAAAGGTACTTCCACCGAGAT -ACGGAAAGGTACTTCCACTACCAC -ACGGAAAGGTACTTCCACCAGAAC -ACGGAAAGGTACTTCCACGTCTAC -ACGGAAAGGTACTTCCACACGTAC -ACGGAAAGGTACTTCCACAGTGAC -ACGGAAAGGTACTTCCACCTGTAG -ACGGAAAGGTACTTCCACCCTAAG -ACGGAAAGGTACTTCCACGTTCAG -ACGGAAAGGTACTTCCACGCATAG -ACGGAAAGGTACTTCCACGACAAG -ACGGAAAGGTACTTCCACAAGCAG -ACGGAAAGGTACTTCCACCGTCAA -ACGGAAAGGTACTTCCACGCTGAA -ACGGAAAGGTACTTCCACAGTACG -ACGGAAAGGTACTTCCACATCCGA -ACGGAAAGGTACTTCCACATGGGA -ACGGAAAGGTACTTCCACGTGCAA -ACGGAAAGGTACTTCCACGAGGAA -ACGGAAAGGTACTTCCACCAGGTA -ACGGAAAGGTACTTCCACGACTCT -ACGGAAAGGTACTTCCACAGTCCT -ACGGAAAGGTACTTCCACTAAGCC -ACGGAAAGGTACTTCCACATAGCC -ACGGAAAGGTACTTCCACTAACCG -ACGGAAAGGTACTTCCACATGCCA -ACGGAAAGGTACCTCGTAGGAAAC -ACGGAAAGGTACCTCGTAAACACC -ACGGAAAGGTACCTCGTAATCGAG -ACGGAAAGGTACCTCGTACTCCTT -ACGGAAAGGTACCTCGTACCTGTT -ACGGAAAGGTACCTCGTACGGTTT -ACGGAAAGGTACCTCGTAGTGGTT -ACGGAAAGGTACCTCGTAGCCTTT -ACGGAAAGGTACCTCGTAGGTCTT -ACGGAAAGGTACCTCGTAACGCTT -ACGGAAAGGTACCTCGTAAGCGTT -ACGGAAAGGTACCTCGTATTCGTC -ACGGAAAGGTACCTCGTATCTCTC -ACGGAAAGGTACCTCGTATGGATC -ACGGAAAGGTACCTCGTACACTTC -ACGGAAAGGTACCTCGTAGTACTC -ACGGAAAGGTACCTCGTAGATGTC -ACGGAAAGGTACCTCGTAACAGTC -ACGGAAAGGTACCTCGTATTGCTG -ACGGAAAGGTACCTCGTATCCATG -ACGGAAAGGTACCTCGTATGTGTG -ACGGAAAGGTACCTCGTACTAGTG -ACGGAAAGGTACCTCGTACATCTG -ACGGAAAGGTACCTCGTAGAGTTG -ACGGAAAGGTACCTCGTAAGACTG -ACGGAAAGGTACCTCGTATCGGTA -ACGGAAAGGTACCTCGTATGCCTA -ACGGAAAGGTACCTCGTACCACTA -ACGGAAAGGTACCTCGTAGGAGTA -ACGGAAAGGTACCTCGTATCGTCT -ACGGAAAGGTACCTCGTATGCACT -ACGGAAAGGTACCTCGTACTGACT -ACGGAAAGGTACCTCGTACAACCT -ACGGAAAGGTACCTCGTAGCTACT -ACGGAAAGGTACCTCGTAGGATCT -ACGGAAAGGTACCTCGTAAAGGCT -ACGGAAAGGTACCTCGTATCAACC -ACGGAAAGGTACCTCGTATGTTCC -ACGGAAAGGTACCTCGTAATTCCC -ACGGAAAGGTACCTCGTATTCTCG -ACGGAAAGGTACCTCGTATAGACG -ACGGAAAGGTACCTCGTAGTAACG -ACGGAAAGGTACCTCGTAACTTCG -ACGGAAAGGTACCTCGTATACGCA -ACGGAAAGGTACCTCGTACTTGCA -ACGGAAAGGTACCTCGTACGAACA -ACGGAAAGGTACCTCGTACAGTCA -ACGGAAAGGTACCTCGTAGATCCA -ACGGAAAGGTACCTCGTAACGACA -ACGGAAAGGTACCTCGTAAGCTCA -ACGGAAAGGTACCTCGTATCACGT -ACGGAAAGGTACCTCGTACGTAGT -ACGGAAAGGTACCTCGTAGTCAGT -ACGGAAAGGTACCTCGTAGAAGGT -ACGGAAAGGTACCTCGTAAACCGT -ACGGAAAGGTACCTCGTATTGTGC -ACGGAAAGGTACCTCGTACTAAGC -ACGGAAAGGTACCTCGTAACTAGC -ACGGAAAGGTACCTCGTAAGATGC -ACGGAAAGGTACCTCGTATGAAGG -ACGGAAAGGTACCTCGTACAATGG -ACGGAAAGGTACCTCGTAATGAGG -ACGGAAAGGTACCTCGTAAATGGG -ACGGAAAGGTACCTCGTATCCTGA -ACGGAAAGGTACCTCGTATAGCGA -ACGGAAAGGTACCTCGTACACAGA -ACGGAAAGGTACCTCGTAGCAAGA -ACGGAAAGGTACCTCGTAGGTTGA -ACGGAAAGGTACCTCGTATCCGAT -ACGGAAAGGTACCTCGTATGGCAT -ACGGAAAGGTACCTCGTACGAGAT -ACGGAAAGGTACCTCGTATACCAC -ACGGAAAGGTACCTCGTACAGAAC -ACGGAAAGGTACCTCGTAGTCTAC -ACGGAAAGGTACCTCGTAACGTAC -ACGGAAAGGTACCTCGTAAGTGAC -ACGGAAAGGTACCTCGTACTGTAG -ACGGAAAGGTACCTCGTACCTAAG -ACGGAAAGGTACCTCGTAGTTCAG -ACGGAAAGGTACCTCGTAGCATAG -ACGGAAAGGTACCTCGTAGACAAG -ACGGAAAGGTACCTCGTAAAGCAG -ACGGAAAGGTACCTCGTACGTCAA -ACGGAAAGGTACCTCGTAGCTGAA -ACGGAAAGGTACCTCGTAAGTACG -ACGGAAAGGTACCTCGTAATCCGA -ACGGAAAGGTACCTCGTAATGGGA -ACGGAAAGGTACCTCGTAGTGCAA -ACGGAAAGGTACCTCGTAGAGGAA -ACGGAAAGGTACCTCGTACAGGTA -ACGGAAAGGTACCTCGTAGACTCT -ACGGAAAGGTACCTCGTAAGTCCT -ACGGAAAGGTACCTCGTATAAGCC -ACGGAAAGGTACCTCGTAATAGCC -ACGGAAAGGTACCTCGTATAACCG -ACGGAAAGGTACCTCGTAATGCCA -ACGGAAAGGTACGTCGATGGAAAC -ACGGAAAGGTACGTCGATAACACC -ACGGAAAGGTACGTCGATATCGAG -ACGGAAAGGTACGTCGATCTCCTT -ACGGAAAGGTACGTCGATCCTGTT -ACGGAAAGGTACGTCGATCGGTTT -ACGGAAAGGTACGTCGATGTGGTT -ACGGAAAGGTACGTCGATGCCTTT -ACGGAAAGGTACGTCGATGGTCTT -ACGGAAAGGTACGTCGATACGCTT -ACGGAAAGGTACGTCGATAGCGTT -ACGGAAAGGTACGTCGATTTCGTC -ACGGAAAGGTACGTCGATTCTCTC -ACGGAAAGGTACGTCGATTGGATC -ACGGAAAGGTACGTCGATCACTTC -ACGGAAAGGTACGTCGATGTACTC -ACGGAAAGGTACGTCGATGATGTC -ACGGAAAGGTACGTCGATACAGTC -ACGGAAAGGTACGTCGATTTGCTG -ACGGAAAGGTACGTCGATTCCATG -ACGGAAAGGTACGTCGATTGTGTG -ACGGAAAGGTACGTCGATCTAGTG -ACGGAAAGGTACGTCGATCATCTG -ACGGAAAGGTACGTCGATGAGTTG -ACGGAAAGGTACGTCGATAGACTG -ACGGAAAGGTACGTCGATTCGGTA -ACGGAAAGGTACGTCGATTGCCTA -ACGGAAAGGTACGTCGATCCACTA -ACGGAAAGGTACGTCGATGGAGTA -ACGGAAAGGTACGTCGATTCGTCT -ACGGAAAGGTACGTCGATTGCACT -ACGGAAAGGTACGTCGATCTGACT -ACGGAAAGGTACGTCGATCAACCT -ACGGAAAGGTACGTCGATGCTACT -ACGGAAAGGTACGTCGATGGATCT -ACGGAAAGGTACGTCGATAAGGCT -ACGGAAAGGTACGTCGATTCAACC -ACGGAAAGGTACGTCGATTGTTCC -ACGGAAAGGTACGTCGATATTCCC -ACGGAAAGGTACGTCGATTTCTCG -ACGGAAAGGTACGTCGATTAGACG -ACGGAAAGGTACGTCGATGTAACG -ACGGAAAGGTACGTCGATACTTCG -ACGGAAAGGTACGTCGATTACGCA -ACGGAAAGGTACGTCGATCTTGCA -ACGGAAAGGTACGTCGATCGAACA -ACGGAAAGGTACGTCGATCAGTCA -ACGGAAAGGTACGTCGATGATCCA -ACGGAAAGGTACGTCGATACGACA -ACGGAAAGGTACGTCGATAGCTCA -ACGGAAAGGTACGTCGATTCACGT -ACGGAAAGGTACGTCGATCGTAGT -ACGGAAAGGTACGTCGATGTCAGT -ACGGAAAGGTACGTCGATGAAGGT -ACGGAAAGGTACGTCGATAACCGT -ACGGAAAGGTACGTCGATTTGTGC -ACGGAAAGGTACGTCGATCTAAGC -ACGGAAAGGTACGTCGATACTAGC -ACGGAAAGGTACGTCGATAGATGC -ACGGAAAGGTACGTCGATTGAAGG -ACGGAAAGGTACGTCGATCAATGG -ACGGAAAGGTACGTCGATATGAGG -ACGGAAAGGTACGTCGATAATGGG -ACGGAAAGGTACGTCGATTCCTGA -ACGGAAAGGTACGTCGATTAGCGA -ACGGAAAGGTACGTCGATCACAGA -ACGGAAAGGTACGTCGATGCAAGA -ACGGAAAGGTACGTCGATGGTTGA -ACGGAAAGGTACGTCGATTCCGAT -ACGGAAAGGTACGTCGATTGGCAT -ACGGAAAGGTACGTCGATCGAGAT -ACGGAAAGGTACGTCGATTACCAC -ACGGAAAGGTACGTCGATCAGAAC -ACGGAAAGGTACGTCGATGTCTAC -ACGGAAAGGTACGTCGATACGTAC -ACGGAAAGGTACGTCGATAGTGAC -ACGGAAAGGTACGTCGATCTGTAG -ACGGAAAGGTACGTCGATCCTAAG -ACGGAAAGGTACGTCGATGTTCAG -ACGGAAAGGTACGTCGATGCATAG -ACGGAAAGGTACGTCGATGACAAG -ACGGAAAGGTACGTCGATAAGCAG -ACGGAAAGGTACGTCGATCGTCAA -ACGGAAAGGTACGTCGATGCTGAA -ACGGAAAGGTACGTCGATAGTACG -ACGGAAAGGTACGTCGATATCCGA -ACGGAAAGGTACGTCGATATGGGA -ACGGAAAGGTACGTCGATGTGCAA -ACGGAAAGGTACGTCGATGAGGAA -ACGGAAAGGTACGTCGATCAGGTA -ACGGAAAGGTACGTCGATGACTCT -ACGGAAAGGTACGTCGATAGTCCT -ACGGAAAGGTACGTCGATTAAGCC -ACGGAAAGGTACGTCGATATAGCC -ACGGAAAGGTACGTCGATTAACCG -ACGGAAAGGTACGTCGATATGCCA -ACGGAAAGGTACGTCACAGGAAAC -ACGGAAAGGTACGTCACAAACACC -ACGGAAAGGTACGTCACAATCGAG -ACGGAAAGGTACGTCACACTCCTT -ACGGAAAGGTACGTCACACCTGTT -ACGGAAAGGTACGTCACACGGTTT -ACGGAAAGGTACGTCACAGTGGTT -ACGGAAAGGTACGTCACAGCCTTT -ACGGAAAGGTACGTCACAGGTCTT -ACGGAAAGGTACGTCACAACGCTT -ACGGAAAGGTACGTCACAAGCGTT -ACGGAAAGGTACGTCACATTCGTC -ACGGAAAGGTACGTCACATCTCTC -ACGGAAAGGTACGTCACATGGATC -ACGGAAAGGTACGTCACACACTTC -ACGGAAAGGTACGTCACAGTACTC -ACGGAAAGGTACGTCACAGATGTC -ACGGAAAGGTACGTCACAACAGTC -ACGGAAAGGTACGTCACATTGCTG -ACGGAAAGGTACGTCACATCCATG -ACGGAAAGGTACGTCACATGTGTG -ACGGAAAGGTACGTCACACTAGTG -ACGGAAAGGTACGTCACACATCTG -ACGGAAAGGTACGTCACAGAGTTG -ACGGAAAGGTACGTCACAAGACTG -ACGGAAAGGTACGTCACATCGGTA -ACGGAAAGGTACGTCACATGCCTA -ACGGAAAGGTACGTCACACCACTA -ACGGAAAGGTACGTCACAGGAGTA -ACGGAAAGGTACGTCACATCGTCT -ACGGAAAGGTACGTCACATGCACT -ACGGAAAGGTACGTCACACTGACT -ACGGAAAGGTACGTCACACAACCT -ACGGAAAGGTACGTCACAGCTACT -ACGGAAAGGTACGTCACAGGATCT -ACGGAAAGGTACGTCACAAAGGCT -ACGGAAAGGTACGTCACATCAACC -ACGGAAAGGTACGTCACATGTTCC -ACGGAAAGGTACGTCACAATTCCC -ACGGAAAGGTACGTCACATTCTCG -ACGGAAAGGTACGTCACATAGACG -ACGGAAAGGTACGTCACAGTAACG -ACGGAAAGGTACGTCACAACTTCG -ACGGAAAGGTACGTCACATACGCA -ACGGAAAGGTACGTCACACTTGCA -ACGGAAAGGTACGTCACACGAACA -ACGGAAAGGTACGTCACACAGTCA -ACGGAAAGGTACGTCACAGATCCA -ACGGAAAGGTACGTCACAACGACA -ACGGAAAGGTACGTCACAAGCTCA -ACGGAAAGGTACGTCACATCACGT -ACGGAAAGGTACGTCACACGTAGT -ACGGAAAGGTACGTCACAGTCAGT -ACGGAAAGGTACGTCACAGAAGGT -ACGGAAAGGTACGTCACAAACCGT -ACGGAAAGGTACGTCACATTGTGC -ACGGAAAGGTACGTCACACTAAGC -ACGGAAAGGTACGTCACAACTAGC -ACGGAAAGGTACGTCACAAGATGC -ACGGAAAGGTACGTCACATGAAGG -ACGGAAAGGTACGTCACACAATGG -ACGGAAAGGTACGTCACAATGAGG -ACGGAAAGGTACGTCACAAATGGG -ACGGAAAGGTACGTCACATCCTGA -ACGGAAAGGTACGTCACATAGCGA -ACGGAAAGGTACGTCACACACAGA -ACGGAAAGGTACGTCACAGCAAGA -ACGGAAAGGTACGTCACAGGTTGA -ACGGAAAGGTACGTCACATCCGAT -ACGGAAAGGTACGTCACATGGCAT -ACGGAAAGGTACGTCACACGAGAT -ACGGAAAGGTACGTCACATACCAC -ACGGAAAGGTACGTCACACAGAAC -ACGGAAAGGTACGTCACAGTCTAC -ACGGAAAGGTACGTCACAACGTAC -ACGGAAAGGTACGTCACAAGTGAC -ACGGAAAGGTACGTCACACTGTAG -ACGGAAAGGTACGTCACACCTAAG -ACGGAAAGGTACGTCACAGTTCAG -ACGGAAAGGTACGTCACAGCATAG -ACGGAAAGGTACGTCACAGACAAG -ACGGAAAGGTACGTCACAAAGCAG -ACGGAAAGGTACGTCACACGTCAA -ACGGAAAGGTACGTCACAGCTGAA -ACGGAAAGGTACGTCACAAGTACG -ACGGAAAGGTACGTCACAATCCGA -ACGGAAAGGTACGTCACAATGGGA -ACGGAAAGGTACGTCACAGTGCAA -ACGGAAAGGTACGTCACAGAGGAA -ACGGAAAGGTACGTCACACAGGTA -ACGGAAAGGTACGTCACAGACTCT -ACGGAAAGGTACGTCACAAGTCCT -ACGGAAAGGTACGTCACATAAGCC -ACGGAAAGGTACGTCACAATAGCC -ACGGAAAGGTACGTCACATAACCG -ACGGAAAGGTACGTCACAATGCCA -ACGGAAAGGTACCTGTTGGGAAAC -ACGGAAAGGTACCTGTTGAACACC -ACGGAAAGGTACCTGTTGATCGAG -ACGGAAAGGTACCTGTTGCTCCTT -ACGGAAAGGTACCTGTTGCCTGTT -ACGGAAAGGTACCTGTTGCGGTTT -ACGGAAAGGTACCTGTTGGTGGTT -ACGGAAAGGTACCTGTTGGCCTTT -ACGGAAAGGTACCTGTTGGGTCTT -ACGGAAAGGTACCTGTTGACGCTT -ACGGAAAGGTACCTGTTGAGCGTT -ACGGAAAGGTACCTGTTGTTCGTC -ACGGAAAGGTACCTGTTGTCTCTC -ACGGAAAGGTACCTGTTGTGGATC -ACGGAAAGGTACCTGTTGCACTTC -ACGGAAAGGTACCTGTTGGTACTC -ACGGAAAGGTACCTGTTGGATGTC -ACGGAAAGGTACCTGTTGACAGTC -ACGGAAAGGTACCTGTTGTTGCTG -ACGGAAAGGTACCTGTTGTCCATG -ACGGAAAGGTACCTGTTGTGTGTG -ACGGAAAGGTACCTGTTGCTAGTG -ACGGAAAGGTACCTGTTGCATCTG -ACGGAAAGGTACCTGTTGGAGTTG -ACGGAAAGGTACCTGTTGAGACTG -ACGGAAAGGTACCTGTTGTCGGTA -ACGGAAAGGTACCTGTTGTGCCTA -ACGGAAAGGTACCTGTTGCCACTA -ACGGAAAGGTACCTGTTGGGAGTA -ACGGAAAGGTACCTGTTGTCGTCT -ACGGAAAGGTACCTGTTGTGCACT -ACGGAAAGGTACCTGTTGCTGACT -ACGGAAAGGTACCTGTTGCAACCT -ACGGAAAGGTACCTGTTGGCTACT -ACGGAAAGGTACCTGTTGGGATCT -ACGGAAAGGTACCTGTTGAAGGCT -ACGGAAAGGTACCTGTTGTCAACC -ACGGAAAGGTACCTGTTGTGTTCC -ACGGAAAGGTACCTGTTGATTCCC -ACGGAAAGGTACCTGTTGTTCTCG -ACGGAAAGGTACCTGTTGTAGACG -ACGGAAAGGTACCTGTTGGTAACG -ACGGAAAGGTACCTGTTGACTTCG -ACGGAAAGGTACCTGTTGTACGCA -ACGGAAAGGTACCTGTTGCTTGCA -ACGGAAAGGTACCTGTTGCGAACA -ACGGAAAGGTACCTGTTGCAGTCA -ACGGAAAGGTACCTGTTGGATCCA -ACGGAAAGGTACCTGTTGACGACA -ACGGAAAGGTACCTGTTGAGCTCA -ACGGAAAGGTACCTGTTGTCACGT -ACGGAAAGGTACCTGTTGCGTAGT -ACGGAAAGGTACCTGTTGGTCAGT -ACGGAAAGGTACCTGTTGGAAGGT -ACGGAAAGGTACCTGTTGAACCGT -ACGGAAAGGTACCTGTTGTTGTGC -ACGGAAAGGTACCTGTTGCTAAGC -ACGGAAAGGTACCTGTTGACTAGC -ACGGAAAGGTACCTGTTGAGATGC -ACGGAAAGGTACCTGTTGTGAAGG -ACGGAAAGGTACCTGTTGCAATGG -ACGGAAAGGTACCTGTTGATGAGG -ACGGAAAGGTACCTGTTGAATGGG -ACGGAAAGGTACCTGTTGTCCTGA -ACGGAAAGGTACCTGTTGTAGCGA -ACGGAAAGGTACCTGTTGCACAGA -ACGGAAAGGTACCTGTTGGCAAGA -ACGGAAAGGTACCTGTTGGGTTGA -ACGGAAAGGTACCTGTTGTCCGAT -ACGGAAAGGTACCTGTTGTGGCAT -ACGGAAAGGTACCTGTTGCGAGAT -ACGGAAAGGTACCTGTTGTACCAC -ACGGAAAGGTACCTGTTGCAGAAC -ACGGAAAGGTACCTGTTGGTCTAC -ACGGAAAGGTACCTGTTGACGTAC -ACGGAAAGGTACCTGTTGAGTGAC -ACGGAAAGGTACCTGTTGCTGTAG -ACGGAAAGGTACCTGTTGCCTAAG -ACGGAAAGGTACCTGTTGGTTCAG -ACGGAAAGGTACCTGTTGGCATAG -ACGGAAAGGTACCTGTTGGACAAG -ACGGAAAGGTACCTGTTGAAGCAG -ACGGAAAGGTACCTGTTGCGTCAA -ACGGAAAGGTACCTGTTGGCTGAA -ACGGAAAGGTACCTGTTGAGTACG -ACGGAAAGGTACCTGTTGATCCGA -ACGGAAAGGTACCTGTTGATGGGA -ACGGAAAGGTACCTGTTGGTGCAA -ACGGAAAGGTACCTGTTGGAGGAA -ACGGAAAGGTACCTGTTGCAGGTA -ACGGAAAGGTACCTGTTGGACTCT -ACGGAAAGGTACCTGTTGAGTCCT -ACGGAAAGGTACCTGTTGTAAGCC -ACGGAAAGGTACCTGTTGATAGCC -ACGGAAAGGTACCTGTTGTAACCG -ACGGAAAGGTACCTGTTGATGCCA -ACGGAAAGGTACATGTCCGGAAAC -ACGGAAAGGTACATGTCCAACACC -ACGGAAAGGTACATGTCCATCGAG -ACGGAAAGGTACATGTCCCTCCTT -ACGGAAAGGTACATGTCCCCTGTT -ACGGAAAGGTACATGTCCCGGTTT -ACGGAAAGGTACATGTCCGTGGTT -ACGGAAAGGTACATGTCCGCCTTT -ACGGAAAGGTACATGTCCGGTCTT -ACGGAAAGGTACATGTCCACGCTT -ACGGAAAGGTACATGTCCAGCGTT -ACGGAAAGGTACATGTCCTTCGTC -ACGGAAAGGTACATGTCCTCTCTC -ACGGAAAGGTACATGTCCTGGATC -ACGGAAAGGTACATGTCCCACTTC -ACGGAAAGGTACATGTCCGTACTC -ACGGAAAGGTACATGTCCGATGTC -ACGGAAAGGTACATGTCCACAGTC -ACGGAAAGGTACATGTCCTTGCTG -ACGGAAAGGTACATGTCCTCCATG -ACGGAAAGGTACATGTCCTGTGTG -ACGGAAAGGTACATGTCCCTAGTG -ACGGAAAGGTACATGTCCCATCTG -ACGGAAAGGTACATGTCCGAGTTG -ACGGAAAGGTACATGTCCAGACTG -ACGGAAAGGTACATGTCCTCGGTA -ACGGAAAGGTACATGTCCTGCCTA -ACGGAAAGGTACATGTCCCCACTA -ACGGAAAGGTACATGTCCGGAGTA -ACGGAAAGGTACATGTCCTCGTCT -ACGGAAAGGTACATGTCCTGCACT -ACGGAAAGGTACATGTCCCTGACT -ACGGAAAGGTACATGTCCCAACCT -ACGGAAAGGTACATGTCCGCTACT -ACGGAAAGGTACATGTCCGGATCT -ACGGAAAGGTACATGTCCAAGGCT -ACGGAAAGGTACATGTCCTCAACC -ACGGAAAGGTACATGTCCTGTTCC -ACGGAAAGGTACATGTCCATTCCC -ACGGAAAGGTACATGTCCTTCTCG -ACGGAAAGGTACATGTCCTAGACG -ACGGAAAGGTACATGTCCGTAACG -ACGGAAAGGTACATGTCCACTTCG -ACGGAAAGGTACATGTCCTACGCA -ACGGAAAGGTACATGTCCCTTGCA -ACGGAAAGGTACATGTCCCGAACA -ACGGAAAGGTACATGTCCCAGTCA -ACGGAAAGGTACATGTCCGATCCA -ACGGAAAGGTACATGTCCACGACA -ACGGAAAGGTACATGTCCAGCTCA -ACGGAAAGGTACATGTCCTCACGT -ACGGAAAGGTACATGTCCCGTAGT -ACGGAAAGGTACATGTCCGTCAGT -ACGGAAAGGTACATGTCCGAAGGT -ACGGAAAGGTACATGTCCAACCGT -ACGGAAAGGTACATGTCCTTGTGC -ACGGAAAGGTACATGTCCCTAAGC -ACGGAAAGGTACATGTCCACTAGC -ACGGAAAGGTACATGTCCAGATGC -ACGGAAAGGTACATGTCCTGAAGG -ACGGAAAGGTACATGTCCCAATGG -ACGGAAAGGTACATGTCCATGAGG -ACGGAAAGGTACATGTCCAATGGG -ACGGAAAGGTACATGTCCTCCTGA -ACGGAAAGGTACATGTCCTAGCGA -ACGGAAAGGTACATGTCCCACAGA -ACGGAAAGGTACATGTCCGCAAGA -ACGGAAAGGTACATGTCCGGTTGA -ACGGAAAGGTACATGTCCTCCGAT -ACGGAAAGGTACATGTCCTGGCAT -ACGGAAAGGTACATGTCCCGAGAT -ACGGAAAGGTACATGTCCTACCAC -ACGGAAAGGTACATGTCCCAGAAC -ACGGAAAGGTACATGTCCGTCTAC -ACGGAAAGGTACATGTCCACGTAC -ACGGAAAGGTACATGTCCAGTGAC -ACGGAAAGGTACATGTCCCTGTAG -ACGGAAAGGTACATGTCCCCTAAG -ACGGAAAGGTACATGTCCGTTCAG -ACGGAAAGGTACATGTCCGCATAG -ACGGAAAGGTACATGTCCGACAAG -ACGGAAAGGTACATGTCCAAGCAG -ACGGAAAGGTACATGTCCCGTCAA -ACGGAAAGGTACATGTCCGCTGAA -ACGGAAAGGTACATGTCCAGTACG -ACGGAAAGGTACATGTCCATCCGA -ACGGAAAGGTACATGTCCATGGGA -ACGGAAAGGTACATGTCCGTGCAA -ACGGAAAGGTACATGTCCGAGGAA -ACGGAAAGGTACATGTCCCAGGTA -ACGGAAAGGTACATGTCCGACTCT -ACGGAAAGGTACATGTCCAGTCCT -ACGGAAAGGTACATGTCCTAAGCC -ACGGAAAGGTACATGTCCATAGCC -ACGGAAAGGTACATGTCCTAACCG -ACGGAAAGGTACATGTCCATGCCA -ACGGAAAGGTACGTGTGTGGAAAC -ACGGAAAGGTACGTGTGTAACACC -ACGGAAAGGTACGTGTGTATCGAG -ACGGAAAGGTACGTGTGTCTCCTT -ACGGAAAGGTACGTGTGTCCTGTT -ACGGAAAGGTACGTGTGTCGGTTT -ACGGAAAGGTACGTGTGTGTGGTT -ACGGAAAGGTACGTGTGTGCCTTT -ACGGAAAGGTACGTGTGTGGTCTT -ACGGAAAGGTACGTGTGTACGCTT -ACGGAAAGGTACGTGTGTAGCGTT -ACGGAAAGGTACGTGTGTTTCGTC -ACGGAAAGGTACGTGTGTTCTCTC -ACGGAAAGGTACGTGTGTTGGATC -ACGGAAAGGTACGTGTGTCACTTC -ACGGAAAGGTACGTGTGTGTACTC -ACGGAAAGGTACGTGTGTGATGTC -ACGGAAAGGTACGTGTGTACAGTC -ACGGAAAGGTACGTGTGTTTGCTG -ACGGAAAGGTACGTGTGTTCCATG -ACGGAAAGGTACGTGTGTTGTGTG -ACGGAAAGGTACGTGTGTCTAGTG -ACGGAAAGGTACGTGTGTCATCTG -ACGGAAAGGTACGTGTGTGAGTTG -ACGGAAAGGTACGTGTGTAGACTG -ACGGAAAGGTACGTGTGTTCGGTA -ACGGAAAGGTACGTGTGTTGCCTA -ACGGAAAGGTACGTGTGTCCACTA -ACGGAAAGGTACGTGTGTGGAGTA -ACGGAAAGGTACGTGTGTTCGTCT -ACGGAAAGGTACGTGTGTTGCACT -ACGGAAAGGTACGTGTGTCTGACT -ACGGAAAGGTACGTGTGTCAACCT -ACGGAAAGGTACGTGTGTGCTACT -ACGGAAAGGTACGTGTGTGGATCT -ACGGAAAGGTACGTGTGTAAGGCT -ACGGAAAGGTACGTGTGTTCAACC -ACGGAAAGGTACGTGTGTTGTTCC -ACGGAAAGGTACGTGTGTATTCCC -ACGGAAAGGTACGTGTGTTTCTCG -ACGGAAAGGTACGTGTGTTAGACG -ACGGAAAGGTACGTGTGTGTAACG -ACGGAAAGGTACGTGTGTACTTCG -ACGGAAAGGTACGTGTGTTACGCA -ACGGAAAGGTACGTGTGTCTTGCA -ACGGAAAGGTACGTGTGTCGAACA -ACGGAAAGGTACGTGTGTCAGTCA -ACGGAAAGGTACGTGTGTGATCCA -ACGGAAAGGTACGTGTGTACGACA -ACGGAAAGGTACGTGTGTAGCTCA -ACGGAAAGGTACGTGTGTTCACGT -ACGGAAAGGTACGTGTGTCGTAGT -ACGGAAAGGTACGTGTGTGTCAGT -ACGGAAAGGTACGTGTGTGAAGGT -ACGGAAAGGTACGTGTGTAACCGT -ACGGAAAGGTACGTGTGTTTGTGC -ACGGAAAGGTACGTGTGTCTAAGC -ACGGAAAGGTACGTGTGTACTAGC -ACGGAAAGGTACGTGTGTAGATGC -ACGGAAAGGTACGTGTGTTGAAGG -ACGGAAAGGTACGTGTGTCAATGG -ACGGAAAGGTACGTGTGTATGAGG -ACGGAAAGGTACGTGTGTAATGGG -ACGGAAAGGTACGTGTGTTCCTGA -ACGGAAAGGTACGTGTGTTAGCGA -ACGGAAAGGTACGTGTGTCACAGA -ACGGAAAGGTACGTGTGTGCAAGA -ACGGAAAGGTACGTGTGTGGTTGA -ACGGAAAGGTACGTGTGTTCCGAT -ACGGAAAGGTACGTGTGTTGGCAT -ACGGAAAGGTACGTGTGTCGAGAT -ACGGAAAGGTACGTGTGTTACCAC -ACGGAAAGGTACGTGTGTCAGAAC -ACGGAAAGGTACGTGTGTGTCTAC -ACGGAAAGGTACGTGTGTACGTAC -ACGGAAAGGTACGTGTGTAGTGAC -ACGGAAAGGTACGTGTGTCTGTAG -ACGGAAAGGTACGTGTGTCCTAAG -ACGGAAAGGTACGTGTGTGTTCAG -ACGGAAAGGTACGTGTGTGCATAG -ACGGAAAGGTACGTGTGTGACAAG -ACGGAAAGGTACGTGTGTAAGCAG -ACGGAAAGGTACGTGTGTCGTCAA -ACGGAAAGGTACGTGTGTGCTGAA -ACGGAAAGGTACGTGTGTAGTACG -ACGGAAAGGTACGTGTGTATCCGA -ACGGAAAGGTACGTGTGTATGGGA -ACGGAAAGGTACGTGTGTGTGCAA -ACGGAAAGGTACGTGTGTGAGGAA -ACGGAAAGGTACGTGTGTCAGGTA -ACGGAAAGGTACGTGTGTGACTCT -ACGGAAAGGTACGTGTGTAGTCCT -ACGGAAAGGTACGTGTGTTAAGCC -ACGGAAAGGTACGTGTGTATAGCC -ACGGAAAGGTACGTGTGTTAACCG -ACGGAAAGGTACGTGTGTATGCCA -ACGGAAAGGTACGTGCTAGGAAAC -ACGGAAAGGTACGTGCTAAACACC -ACGGAAAGGTACGTGCTAATCGAG -ACGGAAAGGTACGTGCTACTCCTT -ACGGAAAGGTACGTGCTACCTGTT -ACGGAAAGGTACGTGCTACGGTTT -ACGGAAAGGTACGTGCTAGTGGTT -ACGGAAAGGTACGTGCTAGCCTTT -ACGGAAAGGTACGTGCTAGGTCTT -ACGGAAAGGTACGTGCTAACGCTT -ACGGAAAGGTACGTGCTAAGCGTT -ACGGAAAGGTACGTGCTATTCGTC -ACGGAAAGGTACGTGCTATCTCTC -ACGGAAAGGTACGTGCTATGGATC -ACGGAAAGGTACGTGCTACACTTC -ACGGAAAGGTACGTGCTAGTACTC -ACGGAAAGGTACGTGCTAGATGTC -ACGGAAAGGTACGTGCTAACAGTC -ACGGAAAGGTACGTGCTATTGCTG -ACGGAAAGGTACGTGCTATCCATG -ACGGAAAGGTACGTGCTATGTGTG -ACGGAAAGGTACGTGCTACTAGTG -ACGGAAAGGTACGTGCTACATCTG -ACGGAAAGGTACGTGCTAGAGTTG -ACGGAAAGGTACGTGCTAAGACTG -ACGGAAAGGTACGTGCTATCGGTA -ACGGAAAGGTACGTGCTATGCCTA -ACGGAAAGGTACGTGCTACCACTA -ACGGAAAGGTACGTGCTAGGAGTA -ACGGAAAGGTACGTGCTATCGTCT -ACGGAAAGGTACGTGCTATGCACT -ACGGAAAGGTACGTGCTACTGACT -ACGGAAAGGTACGTGCTACAACCT -ACGGAAAGGTACGTGCTAGCTACT -ACGGAAAGGTACGTGCTAGGATCT -ACGGAAAGGTACGTGCTAAAGGCT -ACGGAAAGGTACGTGCTATCAACC -ACGGAAAGGTACGTGCTATGTTCC -ACGGAAAGGTACGTGCTAATTCCC -ACGGAAAGGTACGTGCTATTCTCG -ACGGAAAGGTACGTGCTATAGACG -ACGGAAAGGTACGTGCTAGTAACG -ACGGAAAGGTACGTGCTAACTTCG -ACGGAAAGGTACGTGCTATACGCA -ACGGAAAGGTACGTGCTACTTGCA -ACGGAAAGGTACGTGCTACGAACA -ACGGAAAGGTACGTGCTACAGTCA -ACGGAAAGGTACGTGCTAGATCCA -ACGGAAAGGTACGTGCTAACGACA -ACGGAAAGGTACGTGCTAAGCTCA -ACGGAAAGGTACGTGCTATCACGT -ACGGAAAGGTACGTGCTACGTAGT -ACGGAAAGGTACGTGCTAGTCAGT -ACGGAAAGGTACGTGCTAGAAGGT -ACGGAAAGGTACGTGCTAAACCGT -ACGGAAAGGTACGTGCTATTGTGC -ACGGAAAGGTACGTGCTACTAAGC -ACGGAAAGGTACGTGCTAACTAGC -ACGGAAAGGTACGTGCTAAGATGC -ACGGAAAGGTACGTGCTATGAAGG -ACGGAAAGGTACGTGCTACAATGG -ACGGAAAGGTACGTGCTAATGAGG -ACGGAAAGGTACGTGCTAAATGGG -ACGGAAAGGTACGTGCTATCCTGA -ACGGAAAGGTACGTGCTATAGCGA -ACGGAAAGGTACGTGCTACACAGA -ACGGAAAGGTACGTGCTAGCAAGA -ACGGAAAGGTACGTGCTAGGTTGA -ACGGAAAGGTACGTGCTATCCGAT -ACGGAAAGGTACGTGCTATGGCAT -ACGGAAAGGTACGTGCTACGAGAT -ACGGAAAGGTACGTGCTATACCAC -ACGGAAAGGTACGTGCTACAGAAC -ACGGAAAGGTACGTGCTAGTCTAC -ACGGAAAGGTACGTGCTAACGTAC -ACGGAAAGGTACGTGCTAAGTGAC -ACGGAAAGGTACGTGCTACTGTAG -ACGGAAAGGTACGTGCTACCTAAG -ACGGAAAGGTACGTGCTAGTTCAG -ACGGAAAGGTACGTGCTAGCATAG -ACGGAAAGGTACGTGCTAGACAAG -ACGGAAAGGTACGTGCTAAAGCAG -ACGGAAAGGTACGTGCTACGTCAA -ACGGAAAGGTACGTGCTAGCTGAA -ACGGAAAGGTACGTGCTAAGTACG -ACGGAAAGGTACGTGCTAATCCGA -ACGGAAAGGTACGTGCTAATGGGA -ACGGAAAGGTACGTGCTAGTGCAA -ACGGAAAGGTACGTGCTAGAGGAA -ACGGAAAGGTACGTGCTACAGGTA -ACGGAAAGGTACGTGCTAGACTCT -ACGGAAAGGTACGTGCTAAGTCCT -ACGGAAAGGTACGTGCTATAAGCC -ACGGAAAGGTACGTGCTAATAGCC -ACGGAAAGGTACGTGCTATAACCG -ACGGAAAGGTACGTGCTAATGCCA -ACGGAAAGGTACCTGCATGGAAAC -ACGGAAAGGTACCTGCATAACACC -ACGGAAAGGTACCTGCATATCGAG -ACGGAAAGGTACCTGCATCTCCTT -ACGGAAAGGTACCTGCATCCTGTT -ACGGAAAGGTACCTGCATCGGTTT -ACGGAAAGGTACCTGCATGTGGTT -ACGGAAAGGTACCTGCATGCCTTT -ACGGAAAGGTACCTGCATGGTCTT -ACGGAAAGGTACCTGCATACGCTT -ACGGAAAGGTACCTGCATAGCGTT -ACGGAAAGGTACCTGCATTTCGTC -ACGGAAAGGTACCTGCATTCTCTC -ACGGAAAGGTACCTGCATTGGATC -ACGGAAAGGTACCTGCATCACTTC -ACGGAAAGGTACCTGCATGTACTC -ACGGAAAGGTACCTGCATGATGTC -ACGGAAAGGTACCTGCATACAGTC -ACGGAAAGGTACCTGCATTTGCTG -ACGGAAAGGTACCTGCATTCCATG -ACGGAAAGGTACCTGCATTGTGTG -ACGGAAAGGTACCTGCATCTAGTG -ACGGAAAGGTACCTGCATCATCTG -ACGGAAAGGTACCTGCATGAGTTG -ACGGAAAGGTACCTGCATAGACTG -ACGGAAAGGTACCTGCATTCGGTA -ACGGAAAGGTACCTGCATTGCCTA -ACGGAAAGGTACCTGCATCCACTA -ACGGAAAGGTACCTGCATGGAGTA -ACGGAAAGGTACCTGCATTCGTCT -ACGGAAAGGTACCTGCATTGCACT -ACGGAAAGGTACCTGCATCTGACT -ACGGAAAGGTACCTGCATCAACCT -ACGGAAAGGTACCTGCATGCTACT -ACGGAAAGGTACCTGCATGGATCT -ACGGAAAGGTACCTGCATAAGGCT -ACGGAAAGGTACCTGCATTCAACC -ACGGAAAGGTACCTGCATTGTTCC -ACGGAAAGGTACCTGCATATTCCC -ACGGAAAGGTACCTGCATTTCTCG -ACGGAAAGGTACCTGCATTAGACG -ACGGAAAGGTACCTGCATGTAACG -ACGGAAAGGTACCTGCATACTTCG -ACGGAAAGGTACCTGCATTACGCA -ACGGAAAGGTACCTGCATCTTGCA -ACGGAAAGGTACCTGCATCGAACA -ACGGAAAGGTACCTGCATCAGTCA -ACGGAAAGGTACCTGCATGATCCA -ACGGAAAGGTACCTGCATACGACA -ACGGAAAGGTACCTGCATAGCTCA -ACGGAAAGGTACCTGCATTCACGT -ACGGAAAGGTACCTGCATCGTAGT -ACGGAAAGGTACCTGCATGTCAGT -ACGGAAAGGTACCTGCATGAAGGT -ACGGAAAGGTACCTGCATAACCGT -ACGGAAAGGTACCTGCATTTGTGC -ACGGAAAGGTACCTGCATCTAAGC -ACGGAAAGGTACCTGCATACTAGC -ACGGAAAGGTACCTGCATAGATGC -ACGGAAAGGTACCTGCATTGAAGG -ACGGAAAGGTACCTGCATCAATGG -ACGGAAAGGTACCTGCATATGAGG -ACGGAAAGGTACCTGCATAATGGG -ACGGAAAGGTACCTGCATTCCTGA -ACGGAAAGGTACCTGCATTAGCGA -ACGGAAAGGTACCTGCATCACAGA -ACGGAAAGGTACCTGCATGCAAGA -ACGGAAAGGTACCTGCATGGTTGA -ACGGAAAGGTACCTGCATTCCGAT -ACGGAAAGGTACCTGCATTGGCAT -ACGGAAAGGTACCTGCATCGAGAT -ACGGAAAGGTACCTGCATTACCAC -ACGGAAAGGTACCTGCATCAGAAC -ACGGAAAGGTACCTGCATGTCTAC -ACGGAAAGGTACCTGCATACGTAC -ACGGAAAGGTACCTGCATAGTGAC -ACGGAAAGGTACCTGCATCTGTAG -ACGGAAAGGTACCTGCATCCTAAG -ACGGAAAGGTACCTGCATGTTCAG -ACGGAAAGGTACCTGCATGCATAG -ACGGAAAGGTACCTGCATGACAAG -ACGGAAAGGTACCTGCATAAGCAG -ACGGAAAGGTACCTGCATCGTCAA -ACGGAAAGGTACCTGCATGCTGAA -ACGGAAAGGTACCTGCATAGTACG -ACGGAAAGGTACCTGCATATCCGA -ACGGAAAGGTACCTGCATATGGGA -ACGGAAAGGTACCTGCATGTGCAA -ACGGAAAGGTACCTGCATGAGGAA -ACGGAAAGGTACCTGCATCAGGTA -ACGGAAAGGTACCTGCATGACTCT -ACGGAAAGGTACCTGCATAGTCCT -ACGGAAAGGTACCTGCATTAAGCC -ACGGAAAGGTACCTGCATATAGCC -ACGGAAAGGTACCTGCATTAACCG -ACGGAAAGGTACCTGCATATGCCA -ACGGAAAGGTACTTGGAGGGAAAC -ACGGAAAGGTACTTGGAGAACACC -ACGGAAAGGTACTTGGAGATCGAG -ACGGAAAGGTACTTGGAGCTCCTT -ACGGAAAGGTACTTGGAGCCTGTT -ACGGAAAGGTACTTGGAGCGGTTT -ACGGAAAGGTACTTGGAGGTGGTT -ACGGAAAGGTACTTGGAGGCCTTT -ACGGAAAGGTACTTGGAGGGTCTT -ACGGAAAGGTACTTGGAGACGCTT -ACGGAAAGGTACTTGGAGAGCGTT -ACGGAAAGGTACTTGGAGTTCGTC -ACGGAAAGGTACTTGGAGTCTCTC -ACGGAAAGGTACTTGGAGTGGATC -ACGGAAAGGTACTTGGAGCACTTC -ACGGAAAGGTACTTGGAGGTACTC -ACGGAAAGGTACTTGGAGGATGTC -ACGGAAAGGTACTTGGAGACAGTC -ACGGAAAGGTACTTGGAGTTGCTG -ACGGAAAGGTACTTGGAGTCCATG -ACGGAAAGGTACTTGGAGTGTGTG -ACGGAAAGGTACTTGGAGCTAGTG -ACGGAAAGGTACTTGGAGCATCTG -ACGGAAAGGTACTTGGAGGAGTTG -ACGGAAAGGTACTTGGAGAGACTG -ACGGAAAGGTACTTGGAGTCGGTA -ACGGAAAGGTACTTGGAGTGCCTA -ACGGAAAGGTACTTGGAGCCACTA -ACGGAAAGGTACTTGGAGGGAGTA -ACGGAAAGGTACTTGGAGTCGTCT -ACGGAAAGGTACTTGGAGTGCACT -ACGGAAAGGTACTTGGAGCTGACT -ACGGAAAGGTACTTGGAGCAACCT -ACGGAAAGGTACTTGGAGGCTACT -ACGGAAAGGTACTTGGAGGGATCT -ACGGAAAGGTACTTGGAGAAGGCT -ACGGAAAGGTACTTGGAGTCAACC -ACGGAAAGGTACTTGGAGTGTTCC -ACGGAAAGGTACTTGGAGATTCCC -ACGGAAAGGTACTTGGAGTTCTCG -ACGGAAAGGTACTTGGAGTAGACG -ACGGAAAGGTACTTGGAGGTAACG -ACGGAAAGGTACTTGGAGACTTCG -ACGGAAAGGTACTTGGAGTACGCA -ACGGAAAGGTACTTGGAGCTTGCA -ACGGAAAGGTACTTGGAGCGAACA -ACGGAAAGGTACTTGGAGCAGTCA -ACGGAAAGGTACTTGGAGGATCCA -ACGGAAAGGTACTTGGAGACGACA -ACGGAAAGGTACTTGGAGAGCTCA -ACGGAAAGGTACTTGGAGTCACGT -ACGGAAAGGTACTTGGAGCGTAGT -ACGGAAAGGTACTTGGAGGTCAGT -ACGGAAAGGTACTTGGAGGAAGGT -ACGGAAAGGTACTTGGAGAACCGT -ACGGAAAGGTACTTGGAGTTGTGC -ACGGAAAGGTACTTGGAGCTAAGC -ACGGAAAGGTACTTGGAGACTAGC -ACGGAAAGGTACTTGGAGAGATGC -ACGGAAAGGTACTTGGAGTGAAGG -ACGGAAAGGTACTTGGAGCAATGG -ACGGAAAGGTACTTGGAGATGAGG -ACGGAAAGGTACTTGGAGAATGGG -ACGGAAAGGTACTTGGAGTCCTGA -ACGGAAAGGTACTTGGAGTAGCGA -ACGGAAAGGTACTTGGAGCACAGA -ACGGAAAGGTACTTGGAGGCAAGA -ACGGAAAGGTACTTGGAGGGTTGA -ACGGAAAGGTACTTGGAGTCCGAT -ACGGAAAGGTACTTGGAGTGGCAT -ACGGAAAGGTACTTGGAGCGAGAT -ACGGAAAGGTACTTGGAGTACCAC -ACGGAAAGGTACTTGGAGCAGAAC -ACGGAAAGGTACTTGGAGGTCTAC -ACGGAAAGGTACTTGGAGACGTAC -ACGGAAAGGTACTTGGAGAGTGAC -ACGGAAAGGTACTTGGAGCTGTAG -ACGGAAAGGTACTTGGAGCCTAAG -ACGGAAAGGTACTTGGAGGTTCAG -ACGGAAAGGTACTTGGAGGCATAG -ACGGAAAGGTACTTGGAGGACAAG -ACGGAAAGGTACTTGGAGAAGCAG -ACGGAAAGGTACTTGGAGCGTCAA -ACGGAAAGGTACTTGGAGGCTGAA -ACGGAAAGGTACTTGGAGAGTACG -ACGGAAAGGTACTTGGAGATCCGA -ACGGAAAGGTACTTGGAGATGGGA -ACGGAAAGGTACTTGGAGGTGCAA -ACGGAAAGGTACTTGGAGGAGGAA -ACGGAAAGGTACTTGGAGCAGGTA -ACGGAAAGGTACTTGGAGGACTCT -ACGGAAAGGTACTTGGAGAGTCCT -ACGGAAAGGTACTTGGAGTAAGCC -ACGGAAAGGTACTTGGAGATAGCC -ACGGAAAGGTACTTGGAGTAACCG -ACGGAAAGGTACTTGGAGATGCCA -ACGGAAAGGTACCTGAGAGGAAAC -ACGGAAAGGTACCTGAGAAACACC -ACGGAAAGGTACCTGAGAATCGAG -ACGGAAAGGTACCTGAGACTCCTT -ACGGAAAGGTACCTGAGACCTGTT -ACGGAAAGGTACCTGAGACGGTTT -ACGGAAAGGTACCTGAGAGTGGTT -ACGGAAAGGTACCTGAGAGCCTTT -ACGGAAAGGTACCTGAGAGGTCTT -ACGGAAAGGTACCTGAGAACGCTT -ACGGAAAGGTACCTGAGAAGCGTT -ACGGAAAGGTACCTGAGATTCGTC -ACGGAAAGGTACCTGAGATCTCTC -ACGGAAAGGTACCTGAGATGGATC -ACGGAAAGGTACCTGAGACACTTC -ACGGAAAGGTACCTGAGAGTACTC -ACGGAAAGGTACCTGAGAGATGTC -ACGGAAAGGTACCTGAGAACAGTC -ACGGAAAGGTACCTGAGATTGCTG -ACGGAAAGGTACCTGAGATCCATG -ACGGAAAGGTACCTGAGATGTGTG -ACGGAAAGGTACCTGAGACTAGTG -ACGGAAAGGTACCTGAGACATCTG -ACGGAAAGGTACCTGAGAGAGTTG -ACGGAAAGGTACCTGAGAAGACTG -ACGGAAAGGTACCTGAGATCGGTA -ACGGAAAGGTACCTGAGATGCCTA -ACGGAAAGGTACCTGAGACCACTA -ACGGAAAGGTACCTGAGAGGAGTA -ACGGAAAGGTACCTGAGATCGTCT -ACGGAAAGGTACCTGAGATGCACT -ACGGAAAGGTACCTGAGACTGACT -ACGGAAAGGTACCTGAGACAACCT -ACGGAAAGGTACCTGAGAGCTACT -ACGGAAAGGTACCTGAGAGGATCT -ACGGAAAGGTACCTGAGAAAGGCT -ACGGAAAGGTACCTGAGATCAACC -ACGGAAAGGTACCTGAGATGTTCC -ACGGAAAGGTACCTGAGAATTCCC -ACGGAAAGGTACCTGAGATTCTCG -ACGGAAAGGTACCTGAGATAGACG -ACGGAAAGGTACCTGAGAGTAACG -ACGGAAAGGTACCTGAGAACTTCG -ACGGAAAGGTACCTGAGATACGCA -ACGGAAAGGTACCTGAGACTTGCA -ACGGAAAGGTACCTGAGACGAACA -ACGGAAAGGTACCTGAGACAGTCA -ACGGAAAGGTACCTGAGAGATCCA -ACGGAAAGGTACCTGAGAACGACA -ACGGAAAGGTACCTGAGAAGCTCA -ACGGAAAGGTACCTGAGATCACGT -ACGGAAAGGTACCTGAGACGTAGT -ACGGAAAGGTACCTGAGAGTCAGT -ACGGAAAGGTACCTGAGAGAAGGT -ACGGAAAGGTACCTGAGAAACCGT -ACGGAAAGGTACCTGAGATTGTGC -ACGGAAAGGTACCTGAGACTAAGC -ACGGAAAGGTACCTGAGAACTAGC -ACGGAAAGGTACCTGAGAAGATGC -ACGGAAAGGTACCTGAGATGAAGG -ACGGAAAGGTACCTGAGACAATGG -ACGGAAAGGTACCTGAGAATGAGG -ACGGAAAGGTACCTGAGAAATGGG -ACGGAAAGGTACCTGAGATCCTGA -ACGGAAAGGTACCTGAGATAGCGA -ACGGAAAGGTACCTGAGACACAGA -ACGGAAAGGTACCTGAGAGCAAGA -ACGGAAAGGTACCTGAGAGGTTGA -ACGGAAAGGTACCTGAGATCCGAT -ACGGAAAGGTACCTGAGATGGCAT -ACGGAAAGGTACCTGAGACGAGAT -ACGGAAAGGTACCTGAGATACCAC -ACGGAAAGGTACCTGAGACAGAAC -ACGGAAAGGTACCTGAGAGTCTAC -ACGGAAAGGTACCTGAGAACGTAC -ACGGAAAGGTACCTGAGAAGTGAC -ACGGAAAGGTACCTGAGACTGTAG -ACGGAAAGGTACCTGAGACCTAAG -ACGGAAAGGTACCTGAGAGTTCAG -ACGGAAAGGTACCTGAGAGCATAG -ACGGAAAGGTACCTGAGAGACAAG -ACGGAAAGGTACCTGAGAAAGCAG -ACGGAAAGGTACCTGAGACGTCAA -ACGGAAAGGTACCTGAGAGCTGAA -ACGGAAAGGTACCTGAGAAGTACG -ACGGAAAGGTACCTGAGAATCCGA -ACGGAAAGGTACCTGAGAATGGGA -ACGGAAAGGTACCTGAGAGTGCAA -ACGGAAAGGTACCTGAGAGAGGAA -ACGGAAAGGTACCTGAGACAGGTA -ACGGAAAGGTACCTGAGAGACTCT -ACGGAAAGGTACCTGAGAAGTCCT -ACGGAAAGGTACCTGAGATAAGCC -ACGGAAAGGTACCTGAGAATAGCC -ACGGAAAGGTACCTGAGATAACCG -ACGGAAAGGTACCTGAGAATGCCA -ACGGAAAGGTACGTATCGGGAAAC -ACGGAAAGGTACGTATCGAACACC -ACGGAAAGGTACGTATCGATCGAG -ACGGAAAGGTACGTATCGCTCCTT -ACGGAAAGGTACGTATCGCCTGTT -ACGGAAAGGTACGTATCGCGGTTT -ACGGAAAGGTACGTATCGGTGGTT -ACGGAAAGGTACGTATCGGCCTTT -ACGGAAAGGTACGTATCGGGTCTT -ACGGAAAGGTACGTATCGACGCTT -ACGGAAAGGTACGTATCGAGCGTT -ACGGAAAGGTACGTATCGTTCGTC -ACGGAAAGGTACGTATCGTCTCTC -ACGGAAAGGTACGTATCGTGGATC -ACGGAAAGGTACGTATCGCACTTC -ACGGAAAGGTACGTATCGGTACTC -ACGGAAAGGTACGTATCGGATGTC -ACGGAAAGGTACGTATCGACAGTC -ACGGAAAGGTACGTATCGTTGCTG -ACGGAAAGGTACGTATCGTCCATG -ACGGAAAGGTACGTATCGTGTGTG -ACGGAAAGGTACGTATCGCTAGTG -ACGGAAAGGTACGTATCGCATCTG -ACGGAAAGGTACGTATCGGAGTTG -ACGGAAAGGTACGTATCGAGACTG -ACGGAAAGGTACGTATCGTCGGTA -ACGGAAAGGTACGTATCGTGCCTA -ACGGAAAGGTACGTATCGCCACTA -ACGGAAAGGTACGTATCGGGAGTA -ACGGAAAGGTACGTATCGTCGTCT -ACGGAAAGGTACGTATCGTGCACT -ACGGAAAGGTACGTATCGCTGACT -ACGGAAAGGTACGTATCGCAACCT -ACGGAAAGGTACGTATCGGCTACT -ACGGAAAGGTACGTATCGGGATCT -ACGGAAAGGTACGTATCGAAGGCT -ACGGAAAGGTACGTATCGTCAACC -ACGGAAAGGTACGTATCGTGTTCC -ACGGAAAGGTACGTATCGATTCCC -ACGGAAAGGTACGTATCGTTCTCG -ACGGAAAGGTACGTATCGTAGACG -ACGGAAAGGTACGTATCGGTAACG -ACGGAAAGGTACGTATCGACTTCG -ACGGAAAGGTACGTATCGTACGCA -ACGGAAAGGTACGTATCGCTTGCA -ACGGAAAGGTACGTATCGCGAACA -ACGGAAAGGTACGTATCGCAGTCA -ACGGAAAGGTACGTATCGGATCCA -ACGGAAAGGTACGTATCGACGACA -ACGGAAAGGTACGTATCGAGCTCA -ACGGAAAGGTACGTATCGTCACGT -ACGGAAAGGTACGTATCGCGTAGT -ACGGAAAGGTACGTATCGGTCAGT -ACGGAAAGGTACGTATCGGAAGGT -ACGGAAAGGTACGTATCGAACCGT -ACGGAAAGGTACGTATCGTTGTGC -ACGGAAAGGTACGTATCGCTAAGC -ACGGAAAGGTACGTATCGACTAGC -ACGGAAAGGTACGTATCGAGATGC -ACGGAAAGGTACGTATCGTGAAGG -ACGGAAAGGTACGTATCGCAATGG -ACGGAAAGGTACGTATCGATGAGG -ACGGAAAGGTACGTATCGAATGGG -ACGGAAAGGTACGTATCGTCCTGA -ACGGAAAGGTACGTATCGTAGCGA -ACGGAAAGGTACGTATCGCACAGA -ACGGAAAGGTACGTATCGGCAAGA -ACGGAAAGGTACGTATCGGGTTGA -ACGGAAAGGTACGTATCGTCCGAT -ACGGAAAGGTACGTATCGTGGCAT -ACGGAAAGGTACGTATCGCGAGAT -ACGGAAAGGTACGTATCGTACCAC -ACGGAAAGGTACGTATCGCAGAAC -ACGGAAAGGTACGTATCGGTCTAC -ACGGAAAGGTACGTATCGACGTAC -ACGGAAAGGTACGTATCGAGTGAC -ACGGAAAGGTACGTATCGCTGTAG -ACGGAAAGGTACGTATCGCCTAAG -ACGGAAAGGTACGTATCGGTTCAG -ACGGAAAGGTACGTATCGGCATAG -ACGGAAAGGTACGTATCGGACAAG -ACGGAAAGGTACGTATCGAAGCAG -ACGGAAAGGTACGTATCGCGTCAA -ACGGAAAGGTACGTATCGGCTGAA -ACGGAAAGGTACGTATCGAGTACG -ACGGAAAGGTACGTATCGATCCGA -ACGGAAAGGTACGTATCGATGGGA -ACGGAAAGGTACGTATCGGTGCAA -ACGGAAAGGTACGTATCGGAGGAA -ACGGAAAGGTACGTATCGCAGGTA -ACGGAAAGGTACGTATCGGACTCT -ACGGAAAGGTACGTATCGAGTCCT -ACGGAAAGGTACGTATCGTAAGCC -ACGGAAAGGTACGTATCGATAGCC -ACGGAAAGGTACGTATCGTAACCG -ACGGAAAGGTACGTATCGATGCCA -ACGGAAAGGTACCTATGCGGAAAC -ACGGAAAGGTACCTATGCAACACC -ACGGAAAGGTACCTATGCATCGAG -ACGGAAAGGTACCTATGCCTCCTT -ACGGAAAGGTACCTATGCCCTGTT -ACGGAAAGGTACCTATGCCGGTTT -ACGGAAAGGTACCTATGCGTGGTT -ACGGAAAGGTACCTATGCGCCTTT -ACGGAAAGGTACCTATGCGGTCTT -ACGGAAAGGTACCTATGCACGCTT -ACGGAAAGGTACCTATGCAGCGTT -ACGGAAAGGTACCTATGCTTCGTC -ACGGAAAGGTACCTATGCTCTCTC -ACGGAAAGGTACCTATGCTGGATC -ACGGAAAGGTACCTATGCCACTTC -ACGGAAAGGTACCTATGCGTACTC -ACGGAAAGGTACCTATGCGATGTC -ACGGAAAGGTACCTATGCACAGTC -ACGGAAAGGTACCTATGCTTGCTG -ACGGAAAGGTACCTATGCTCCATG -ACGGAAAGGTACCTATGCTGTGTG -ACGGAAAGGTACCTATGCCTAGTG -ACGGAAAGGTACCTATGCCATCTG -ACGGAAAGGTACCTATGCGAGTTG -ACGGAAAGGTACCTATGCAGACTG -ACGGAAAGGTACCTATGCTCGGTA -ACGGAAAGGTACCTATGCTGCCTA -ACGGAAAGGTACCTATGCCCACTA -ACGGAAAGGTACCTATGCGGAGTA -ACGGAAAGGTACCTATGCTCGTCT -ACGGAAAGGTACCTATGCTGCACT -ACGGAAAGGTACCTATGCCTGACT -ACGGAAAGGTACCTATGCCAACCT -ACGGAAAGGTACCTATGCGCTACT -ACGGAAAGGTACCTATGCGGATCT -ACGGAAAGGTACCTATGCAAGGCT -ACGGAAAGGTACCTATGCTCAACC -ACGGAAAGGTACCTATGCTGTTCC -ACGGAAAGGTACCTATGCATTCCC -ACGGAAAGGTACCTATGCTTCTCG -ACGGAAAGGTACCTATGCTAGACG -ACGGAAAGGTACCTATGCGTAACG -ACGGAAAGGTACCTATGCACTTCG -ACGGAAAGGTACCTATGCTACGCA -ACGGAAAGGTACCTATGCCTTGCA -ACGGAAAGGTACCTATGCCGAACA -ACGGAAAGGTACCTATGCCAGTCA -ACGGAAAGGTACCTATGCGATCCA -ACGGAAAGGTACCTATGCACGACA -ACGGAAAGGTACCTATGCAGCTCA -ACGGAAAGGTACCTATGCTCACGT -ACGGAAAGGTACCTATGCCGTAGT -ACGGAAAGGTACCTATGCGTCAGT -ACGGAAAGGTACCTATGCGAAGGT -ACGGAAAGGTACCTATGCAACCGT -ACGGAAAGGTACCTATGCTTGTGC -ACGGAAAGGTACCTATGCCTAAGC -ACGGAAAGGTACCTATGCACTAGC -ACGGAAAGGTACCTATGCAGATGC -ACGGAAAGGTACCTATGCTGAAGG -ACGGAAAGGTACCTATGCCAATGG -ACGGAAAGGTACCTATGCATGAGG -ACGGAAAGGTACCTATGCAATGGG -ACGGAAAGGTACCTATGCTCCTGA -ACGGAAAGGTACCTATGCTAGCGA -ACGGAAAGGTACCTATGCCACAGA -ACGGAAAGGTACCTATGCGCAAGA -ACGGAAAGGTACCTATGCGGTTGA -ACGGAAAGGTACCTATGCTCCGAT -ACGGAAAGGTACCTATGCTGGCAT -ACGGAAAGGTACCTATGCCGAGAT -ACGGAAAGGTACCTATGCTACCAC -ACGGAAAGGTACCTATGCCAGAAC -ACGGAAAGGTACCTATGCGTCTAC -ACGGAAAGGTACCTATGCACGTAC -ACGGAAAGGTACCTATGCAGTGAC -ACGGAAAGGTACCTATGCCTGTAG -ACGGAAAGGTACCTATGCCCTAAG -ACGGAAAGGTACCTATGCGTTCAG -ACGGAAAGGTACCTATGCGCATAG -ACGGAAAGGTACCTATGCGACAAG -ACGGAAAGGTACCTATGCAAGCAG -ACGGAAAGGTACCTATGCCGTCAA -ACGGAAAGGTACCTATGCGCTGAA -ACGGAAAGGTACCTATGCAGTACG -ACGGAAAGGTACCTATGCATCCGA -ACGGAAAGGTACCTATGCATGGGA -ACGGAAAGGTACCTATGCGTGCAA -ACGGAAAGGTACCTATGCGAGGAA -ACGGAAAGGTACCTATGCCAGGTA -ACGGAAAGGTACCTATGCGACTCT -ACGGAAAGGTACCTATGCAGTCCT -ACGGAAAGGTACCTATGCTAAGCC -ACGGAAAGGTACCTATGCATAGCC -ACGGAAAGGTACCTATGCTAACCG -ACGGAAAGGTACCTATGCATGCCA -ACGGAAAGGTACCTACCAGGAAAC -ACGGAAAGGTACCTACCAAACACC -ACGGAAAGGTACCTACCAATCGAG -ACGGAAAGGTACCTACCACTCCTT -ACGGAAAGGTACCTACCACCTGTT -ACGGAAAGGTACCTACCACGGTTT -ACGGAAAGGTACCTACCAGTGGTT -ACGGAAAGGTACCTACCAGCCTTT -ACGGAAAGGTACCTACCAGGTCTT -ACGGAAAGGTACCTACCAACGCTT -ACGGAAAGGTACCTACCAAGCGTT -ACGGAAAGGTACCTACCATTCGTC -ACGGAAAGGTACCTACCATCTCTC -ACGGAAAGGTACCTACCATGGATC -ACGGAAAGGTACCTACCACACTTC -ACGGAAAGGTACCTACCAGTACTC -ACGGAAAGGTACCTACCAGATGTC -ACGGAAAGGTACCTACCAACAGTC -ACGGAAAGGTACCTACCATTGCTG -ACGGAAAGGTACCTACCATCCATG -ACGGAAAGGTACCTACCATGTGTG -ACGGAAAGGTACCTACCACTAGTG -ACGGAAAGGTACCTACCACATCTG -ACGGAAAGGTACCTACCAGAGTTG -ACGGAAAGGTACCTACCAAGACTG -ACGGAAAGGTACCTACCATCGGTA -ACGGAAAGGTACCTACCATGCCTA -ACGGAAAGGTACCTACCACCACTA -ACGGAAAGGTACCTACCAGGAGTA -ACGGAAAGGTACCTACCATCGTCT -ACGGAAAGGTACCTACCATGCACT -ACGGAAAGGTACCTACCACTGACT -ACGGAAAGGTACCTACCACAACCT -ACGGAAAGGTACCTACCAGCTACT -ACGGAAAGGTACCTACCAGGATCT -ACGGAAAGGTACCTACCAAAGGCT -ACGGAAAGGTACCTACCATCAACC -ACGGAAAGGTACCTACCATGTTCC -ACGGAAAGGTACCTACCAATTCCC -ACGGAAAGGTACCTACCATTCTCG -ACGGAAAGGTACCTACCATAGACG -ACGGAAAGGTACCTACCAGTAACG -ACGGAAAGGTACCTACCAACTTCG -ACGGAAAGGTACCTACCATACGCA -ACGGAAAGGTACCTACCACTTGCA -ACGGAAAGGTACCTACCACGAACA -ACGGAAAGGTACCTACCACAGTCA -ACGGAAAGGTACCTACCAGATCCA -ACGGAAAGGTACCTACCAACGACA -ACGGAAAGGTACCTACCAAGCTCA -ACGGAAAGGTACCTACCATCACGT -ACGGAAAGGTACCTACCACGTAGT -ACGGAAAGGTACCTACCAGTCAGT -ACGGAAAGGTACCTACCAGAAGGT -ACGGAAAGGTACCTACCAAACCGT -ACGGAAAGGTACCTACCATTGTGC -ACGGAAAGGTACCTACCACTAAGC -ACGGAAAGGTACCTACCAACTAGC -ACGGAAAGGTACCTACCAAGATGC -ACGGAAAGGTACCTACCATGAAGG -ACGGAAAGGTACCTACCACAATGG -ACGGAAAGGTACCTACCAATGAGG -ACGGAAAGGTACCTACCAAATGGG -ACGGAAAGGTACCTACCATCCTGA -ACGGAAAGGTACCTACCATAGCGA -ACGGAAAGGTACCTACCACACAGA -ACGGAAAGGTACCTACCAGCAAGA -ACGGAAAGGTACCTACCAGGTTGA -ACGGAAAGGTACCTACCATCCGAT -ACGGAAAGGTACCTACCATGGCAT -ACGGAAAGGTACCTACCACGAGAT -ACGGAAAGGTACCTACCATACCAC -ACGGAAAGGTACCTACCACAGAAC -ACGGAAAGGTACCTACCAGTCTAC -ACGGAAAGGTACCTACCAACGTAC -ACGGAAAGGTACCTACCAAGTGAC -ACGGAAAGGTACCTACCACTGTAG -ACGGAAAGGTACCTACCACCTAAG -ACGGAAAGGTACCTACCAGTTCAG -ACGGAAAGGTACCTACCAGCATAG -ACGGAAAGGTACCTACCAGACAAG -ACGGAAAGGTACCTACCAAAGCAG -ACGGAAAGGTACCTACCACGTCAA -ACGGAAAGGTACCTACCAGCTGAA -ACGGAAAGGTACCTACCAAGTACG -ACGGAAAGGTACCTACCAATCCGA -ACGGAAAGGTACCTACCAATGGGA -ACGGAAAGGTACCTACCAGTGCAA -ACGGAAAGGTACCTACCAGAGGAA -ACGGAAAGGTACCTACCACAGGTA -ACGGAAAGGTACCTACCAGACTCT -ACGGAAAGGTACCTACCAAGTCCT -ACGGAAAGGTACCTACCATAAGCC -ACGGAAAGGTACCTACCAATAGCC -ACGGAAAGGTACCTACCATAACCG -ACGGAAAGGTACCTACCAATGCCA -ACGGAAAGGTACGTAGGAGGAAAC -ACGGAAAGGTACGTAGGAAACACC -ACGGAAAGGTACGTAGGAATCGAG -ACGGAAAGGTACGTAGGACTCCTT -ACGGAAAGGTACGTAGGACCTGTT -ACGGAAAGGTACGTAGGACGGTTT -ACGGAAAGGTACGTAGGAGTGGTT -ACGGAAAGGTACGTAGGAGCCTTT -ACGGAAAGGTACGTAGGAGGTCTT -ACGGAAAGGTACGTAGGAACGCTT -ACGGAAAGGTACGTAGGAAGCGTT -ACGGAAAGGTACGTAGGATTCGTC -ACGGAAAGGTACGTAGGATCTCTC -ACGGAAAGGTACGTAGGATGGATC -ACGGAAAGGTACGTAGGACACTTC -ACGGAAAGGTACGTAGGAGTACTC -ACGGAAAGGTACGTAGGAGATGTC -ACGGAAAGGTACGTAGGAACAGTC -ACGGAAAGGTACGTAGGATTGCTG -ACGGAAAGGTACGTAGGATCCATG -ACGGAAAGGTACGTAGGATGTGTG -ACGGAAAGGTACGTAGGACTAGTG -ACGGAAAGGTACGTAGGACATCTG -ACGGAAAGGTACGTAGGAGAGTTG -ACGGAAAGGTACGTAGGAAGACTG -ACGGAAAGGTACGTAGGATCGGTA -ACGGAAAGGTACGTAGGATGCCTA -ACGGAAAGGTACGTAGGACCACTA -ACGGAAAGGTACGTAGGAGGAGTA -ACGGAAAGGTACGTAGGATCGTCT -ACGGAAAGGTACGTAGGATGCACT -ACGGAAAGGTACGTAGGACTGACT -ACGGAAAGGTACGTAGGACAACCT -ACGGAAAGGTACGTAGGAGCTACT -ACGGAAAGGTACGTAGGAGGATCT -ACGGAAAGGTACGTAGGAAAGGCT -ACGGAAAGGTACGTAGGATCAACC -ACGGAAAGGTACGTAGGATGTTCC -ACGGAAAGGTACGTAGGAATTCCC -ACGGAAAGGTACGTAGGATTCTCG -ACGGAAAGGTACGTAGGATAGACG -ACGGAAAGGTACGTAGGAGTAACG -ACGGAAAGGTACGTAGGAACTTCG -ACGGAAAGGTACGTAGGATACGCA -ACGGAAAGGTACGTAGGACTTGCA -ACGGAAAGGTACGTAGGACGAACA -ACGGAAAGGTACGTAGGACAGTCA -ACGGAAAGGTACGTAGGAGATCCA -ACGGAAAGGTACGTAGGAACGACA -ACGGAAAGGTACGTAGGAAGCTCA -ACGGAAAGGTACGTAGGATCACGT -ACGGAAAGGTACGTAGGACGTAGT -ACGGAAAGGTACGTAGGAGTCAGT -ACGGAAAGGTACGTAGGAGAAGGT -ACGGAAAGGTACGTAGGAAACCGT -ACGGAAAGGTACGTAGGATTGTGC -ACGGAAAGGTACGTAGGACTAAGC -ACGGAAAGGTACGTAGGAACTAGC -ACGGAAAGGTACGTAGGAAGATGC -ACGGAAAGGTACGTAGGATGAAGG -ACGGAAAGGTACGTAGGACAATGG -ACGGAAAGGTACGTAGGAATGAGG -ACGGAAAGGTACGTAGGAAATGGG -ACGGAAAGGTACGTAGGATCCTGA -ACGGAAAGGTACGTAGGATAGCGA -ACGGAAAGGTACGTAGGACACAGA -ACGGAAAGGTACGTAGGAGCAAGA -ACGGAAAGGTACGTAGGAGGTTGA -ACGGAAAGGTACGTAGGATCCGAT -ACGGAAAGGTACGTAGGATGGCAT -ACGGAAAGGTACGTAGGACGAGAT -ACGGAAAGGTACGTAGGATACCAC -ACGGAAAGGTACGTAGGACAGAAC -ACGGAAAGGTACGTAGGAGTCTAC -ACGGAAAGGTACGTAGGAACGTAC -ACGGAAAGGTACGTAGGAAGTGAC -ACGGAAAGGTACGTAGGACTGTAG -ACGGAAAGGTACGTAGGACCTAAG -ACGGAAAGGTACGTAGGAGTTCAG -ACGGAAAGGTACGTAGGAGCATAG -ACGGAAAGGTACGTAGGAGACAAG -ACGGAAAGGTACGTAGGAAAGCAG -ACGGAAAGGTACGTAGGACGTCAA -ACGGAAAGGTACGTAGGAGCTGAA -ACGGAAAGGTACGTAGGAAGTACG -ACGGAAAGGTACGTAGGAATCCGA -ACGGAAAGGTACGTAGGAATGGGA -ACGGAAAGGTACGTAGGAGTGCAA -ACGGAAAGGTACGTAGGAGAGGAA -ACGGAAAGGTACGTAGGACAGGTA -ACGGAAAGGTACGTAGGAGACTCT -ACGGAAAGGTACGTAGGAAGTCCT -ACGGAAAGGTACGTAGGATAAGCC -ACGGAAAGGTACGTAGGAATAGCC -ACGGAAAGGTACGTAGGATAACCG -ACGGAAAGGTACGTAGGAATGCCA -ACGGAAAGGTACTCTTCGGGAAAC -ACGGAAAGGTACTCTTCGAACACC -ACGGAAAGGTACTCTTCGATCGAG -ACGGAAAGGTACTCTTCGCTCCTT -ACGGAAAGGTACTCTTCGCCTGTT -ACGGAAAGGTACTCTTCGCGGTTT -ACGGAAAGGTACTCTTCGGTGGTT -ACGGAAAGGTACTCTTCGGCCTTT -ACGGAAAGGTACTCTTCGGGTCTT -ACGGAAAGGTACTCTTCGACGCTT -ACGGAAAGGTACTCTTCGAGCGTT -ACGGAAAGGTACTCTTCGTTCGTC -ACGGAAAGGTACTCTTCGTCTCTC -ACGGAAAGGTACTCTTCGTGGATC -ACGGAAAGGTACTCTTCGCACTTC -ACGGAAAGGTACTCTTCGGTACTC -ACGGAAAGGTACTCTTCGGATGTC -ACGGAAAGGTACTCTTCGACAGTC -ACGGAAAGGTACTCTTCGTTGCTG -ACGGAAAGGTACTCTTCGTCCATG -ACGGAAAGGTACTCTTCGTGTGTG -ACGGAAAGGTACTCTTCGCTAGTG -ACGGAAAGGTACTCTTCGCATCTG -ACGGAAAGGTACTCTTCGGAGTTG -ACGGAAAGGTACTCTTCGAGACTG -ACGGAAAGGTACTCTTCGTCGGTA -ACGGAAAGGTACTCTTCGTGCCTA -ACGGAAAGGTACTCTTCGCCACTA -ACGGAAAGGTACTCTTCGGGAGTA -ACGGAAAGGTACTCTTCGTCGTCT -ACGGAAAGGTACTCTTCGTGCACT -ACGGAAAGGTACTCTTCGCTGACT -ACGGAAAGGTACTCTTCGCAACCT -ACGGAAAGGTACTCTTCGGCTACT -ACGGAAAGGTACTCTTCGGGATCT -ACGGAAAGGTACTCTTCGAAGGCT -ACGGAAAGGTACTCTTCGTCAACC -ACGGAAAGGTACTCTTCGTGTTCC -ACGGAAAGGTACTCTTCGATTCCC -ACGGAAAGGTACTCTTCGTTCTCG -ACGGAAAGGTACTCTTCGTAGACG -ACGGAAAGGTACTCTTCGGTAACG -ACGGAAAGGTACTCTTCGACTTCG -ACGGAAAGGTACTCTTCGTACGCA -ACGGAAAGGTACTCTTCGCTTGCA -ACGGAAAGGTACTCTTCGCGAACA -ACGGAAAGGTACTCTTCGCAGTCA -ACGGAAAGGTACTCTTCGGATCCA -ACGGAAAGGTACTCTTCGACGACA -ACGGAAAGGTACTCTTCGAGCTCA -ACGGAAAGGTACTCTTCGTCACGT -ACGGAAAGGTACTCTTCGCGTAGT -ACGGAAAGGTACTCTTCGGTCAGT -ACGGAAAGGTACTCTTCGGAAGGT -ACGGAAAGGTACTCTTCGAACCGT -ACGGAAAGGTACTCTTCGTTGTGC -ACGGAAAGGTACTCTTCGCTAAGC -ACGGAAAGGTACTCTTCGACTAGC -ACGGAAAGGTACTCTTCGAGATGC -ACGGAAAGGTACTCTTCGTGAAGG -ACGGAAAGGTACTCTTCGCAATGG -ACGGAAAGGTACTCTTCGATGAGG -ACGGAAAGGTACTCTTCGAATGGG -ACGGAAAGGTACTCTTCGTCCTGA -ACGGAAAGGTACTCTTCGTAGCGA -ACGGAAAGGTACTCTTCGCACAGA -ACGGAAAGGTACTCTTCGGCAAGA -ACGGAAAGGTACTCTTCGGGTTGA -ACGGAAAGGTACTCTTCGTCCGAT -ACGGAAAGGTACTCTTCGTGGCAT -ACGGAAAGGTACTCTTCGCGAGAT -ACGGAAAGGTACTCTTCGTACCAC -ACGGAAAGGTACTCTTCGCAGAAC -ACGGAAAGGTACTCTTCGGTCTAC -ACGGAAAGGTACTCTTCGACGTAC -ACGGAAAGGTACTCTTCGAGTGAC -ACGGAAAGGTACTCTTCGCTGTAG -ACGGAAAGGTACTCTTCGCCTAAG -ACGGAAAGGTACTCTTCGGTTCAG -ACGGAAAGGTACTCTTCGGCATAG -ACGGAAAGGTACTCTTCGGACAAG -ACGGAAAGGTACTCTTCGAAGCAG -ACGGAAAGGTACTCTTCGCGTCAA -ACGGAAAGGTACTCTTCGGCTGAA -ACGGAAAGGTACTCTTCGAGTACG -ACGGAAAGGTACTCTTCGATCCGA -ACGGAAAGGTACTCTTCGATGGGA -ACGGAAAGGTACTCTTCGGTGCAA -ACGGAAAGGTACTCTTCGGAGGAA -ACGGAAAGGTACTCTTCGCAGGTA -ACGGAAAGGTACTCTTCGGACTCT -ACGGAAAGGTACTCTTCGAGTCCT -ACGGAAAGGTACTCTTCGTAAGCC -ACGGAAAGGTACTCTTCGATAGCC -ACGGAAAGGTACTCTTCGTAACCG -ACGGAAAGGTACTCTTCGATGCCA -ACGGAAAGGTACACTTGCGGAAAC -ACGGAAAGGTACACTTGCAACACC -ACGGAAAGGTACACTTGCATCGAG -ACGGAAAGGTACACTTGCCTCCTT -ACGGAAAGGTACACTTGCCCTGTT -ACGGAAAGGTACACTTGCCGGTTT -ACGGAAAGGTACACTTGCGTGGTT -ACGGAAAGGTACACTTGCGCCTTT -ACGGAAAGGTACACTTGCGGTCTT -ACGGAAAGGTACACTTGCACGCTT -ACGGAAAGGTACACTTGCAGCGTT -ACGGAAAGGTACACTTGCTTCGTC -ACGGAAAGGTACACTTGCTCTCTC -ACGGAAAGGTACACTTGCTGGATC -ACGGAAAGGTACACTTGCCACTTC -ACGGAAAGGTACACTTGCGTACTC -ACGGAAAGGTACACTTGCGATGTC -ACGGAAAGGTACACTTGCACAGTC -ACGGAAAGGTACACTTGCTTGCTG -ACGGAAAGGTACACTTGCTCCATG -ACGGAAAGGTACACTTGCTGTGTG -ACGGAAAGGTACACTTGCCTAGTG -ACGGAAAGGTACACTTGCCATCTG -ACGGAAAGGTACACTTGCGAGTTG -ACGGAAAGGTACACTTGCAGACTG -ACGGAAAGGTACACTTGCTCGGTA -ACGGAAAGGTACACTTGCTGCCTA -ACGGAAAGGTACACTTGCCCACTA -ACGGAAAGGTACACTTGCGGAGTA -ACGGAAAGGTACACTTGCTCGTCT -ACGGAAAGGTACACTTGCTGCACT -ACGGAAAGGTACACTTGCCTGACT -ACGGAAAGGTACACTTGCCAACCT -ACGGAAAGGTACACTTGCGCTACT -ACGGAAAGGTACACTTGCGGATCT -ACGGAAAGGTACACTTGCAAGGCT -ACGGAAAGGTACACTTGCTCAACC -ACGGAAAGGTACACTTGCTGTTCC -ACGGAAAGGTACACTTGCATTCCC -ACGGAAAGGTACACTTGCTTCTCG -ACGGAAAGGTACACTTGCTAGACG -ACGGAAAGGTACACTTGCGTAACG -ACGGAAAGGTACACTTGCACTTCG -ACGGAAAGGTACACTTGCTACGCA -ACGGAAAGGTACACTTGCCTTGCA -ACGGAAAGGTACACTTGCCGAACA -ACGGAAAGGTACACTTGCCAGTCA -ACGGAAAGGTACACTTGCGATCCA -ACGGAAAGGTACACTTGCACGACA -ACGGAAAGGTACACTTGCAGCTCA -ACGGAAAGGTACACTTGCTCACGT -ACGGAAAGGTACACTTGCCGTAGT -ACGGAAAGGTACACTTGCGTCAGT -ACGGAAAGGTACACTTGCGAAGGT -ACGGAAAGGTACACTTGCAACCGT -ACGGAAAGGTACACTTGCTTGTGC -ACGGAAAGGTACACTTGCCTAAGC -ACGGAAAGGTACACTTGCACTAGC -ACGGAAAGGTACACTTGCAGATGC -ACGGAAAGGTACACTTGCTGAAGG -ACGGAAAGGTACACTTGCCAATGG -ACGGAAAGGTACACTTGCATGAGG -ACGGAAAGGTACACTTGCAATGGG -ACGGAAAGGTACACTTGCTCCTGA -ACGGAAAGGTACACTTGCTAGCGA -ACGGAAAGGTACACTTGCCACAGA -ACGGAAAGGTACACTTGCGCAAGA -ACGGAAAGGTACACTTGCGGTTGA -ACGGAAAGGTACACTTGCTCCGAT -ACGGAAAGGTACACTTGCTGGCAT -ACGGAAAGGTACACTTGCCGAGAT -ACGGAAAGGTACACTTGCTACCAC -ACGGAAAGGTACACTTGCCAGAAC -ACGGAAAGGTACACTTGCGTCTAC -ACGGAAAGGTACACTTGCACGTAC -ACGGAAAGGTACACTTGCAGTGAC -ACGGAAAGGTACACTTGCCTGTAG -ACGGAAAGGTACACTTGCCCTAAG -ACGGAAAGGTACACTTGCGTTCAG -ACGGAAAGGTACACTTGCGCATAG -ACGGAAAGGTACACTTGCGACAAG -ACGGAAAGGTACACTTGCAAGCAG -ACGGAAAGGTACACTTGCCGTCAA -ACGGAAAGGTACACTTGCGCTGAA -ACGGAAAGGTACACTTGCAGTACG -ACGGAAAGGTACACTTGCATCCGA -ACGGAAAGGTACACTTGCATGGGA -ACGGAAAGGTACACTTGCGTGCAA -ACGGAAAGGTACACTTGCGAGGAA -ACGGAAAGGTACACTTGCCAGGTA -ACGGAAAGGTACACTTGCGACTCT -ACGGAAAGGTACACTTGCAGTCCT -ACGGAAAGGTACACTTGCTAAGCC -ACGGAAAGGTACACTTGCATAGCC -ACGGAAAGGTACACTTGCTAACCG -ACGGAAAGGTACACTTGCATGCCA -ACGGAAAGGTACACTCTGGGAAAC -ACGGAAAGGTACACTCTGAACACC -ACGGAAAGGTACACTCTGATCGAG -ACGGAAAGGTACACTCTGCTCCTT -ACGGAAAGGTACACTCTGCCTGTT -ACGGAAAGGTACACTCTGCGGTTT -ACGGAAAGGTACACTCTGGTGGTT -ACGGAAAGGTACACTCTGGCCTTT -ACGGAAAGGTACACTCTGGGTCTT -ACGGAAAGGTACACTCTGACGCTT -ACGGAAAGGTACACTCTGAGCGTT -ACGGAAAGGTACACTCTGTTCGTC -ACGGAAAGGTACACTCTGTCTCTC -ACGGAAAGGTACACTCTGTGGATC -ACGGAAAGGTACACTCTGCACTTC -ACGGAAAGGTACACTCTGGTACTC -ACGGAAAGGTACACTCTGGATGTC -ACGGAAAGGTACACTCTGACAGTC -ACGGAAAGGTACACTCTGTTGCTG -ACGGAAAGGTACACTCTGTCCATG -ACGGAAAGGTACACTCTGTGTGTG -ACGGAAAGGTACACTCTGCTAGTG -ACGGAAAGGTACACTCTGCATCTG -ACGGAAAGGTACACTCTGGAGTTG -ACGGAAAGGTACACTCTGAGACTG -ACGGAAAGGTACACTCTGTCGGTA -ACGGAAAGGTACACTCTGTGCCTA -ACGGAAAGGTACACTCTGCCACTA -ACGGAAAGGTACACTCTGGGAGTA -ACGGAAAGGTACACTCTGTCGTCT -ACGGAAAGGTACACTCTGTGCACT -ACGGAAAGGTACACTCTGCTGACT -ACGGAAAGGTACACTCTGCAACCT -ACGGAAAGGTACACTCTGGCTACT -ACGGAAAGGTACACTCTGGGATCT -ACGGAAAGGTACACTCTGAAGGCT -ACGGAAAGGTACACTCTGTCAACC -ACGGAAAGGTACACTCTGTGTTCC -ACGGAAAGGTACACTCTGATTCCC -ACGGAAAGGTACACTCTGTTCTCG -ACGGAAAGGTACACTCTGTAGACG -ACGGAAAGGTACACTCTGGTAACG -ACGGAAAGGTACACTCTGACTTCG -ACGGAAAGGTACACTCTGTACGCA -ACGGAAAGGTACACTCTGCTTGCA -ACGGAAAGGTACACTCTGCGAACA -ACGGAAAGGTACACTCTGCAGTCA -ACGGAAAGGTACACTCTGGATCCA -ACGGAAAGGTACACTCTGACGACA -ACGGAAAGGTACACTCTGAGCTCA -ACGGAAAGGTACACTCTGTCACGT -ACGGAAAGGTACACTCTGCGTAGT -ACGGAAAGGTACACTCTGGTCAGT -ACGGAAAGGTACACTCTGGAAGGT -ACGGAAAGGTACACTCTGAACCGT -ACGGAAAGGTACACTCTGTTGTGC -ACGGAAAGGTACACTCTGCTAAGC -ACGGAAAGGTACACTCTGACTAGC -ACGGAAAGGTACACTCTGAGATGC -ACGGAAAGGTACACTCTGTGAAGG -ACGGAAAGGTACACTCTGCAATGG -ACGGAAAGGTACACTCTGATGAGG -ACGGAAAGGTACACTCTGAATGGG -ACGGAAAGGTACACTCTGTCCTGA -ACGGAAAGGTACACTCTGTAGCGA -ACGGAAAGGTACACTCTGCACAGA -ACGGAAAGGTACACTCTGGCAAGA -ACGGAAAGGTACACTCTGGGTTGA -ACGGAAAGGTACACTCTGTCCGAT -ACGGAAAGGTACACTCTGTGGCAT -ACGGAAAGGTACACTCTGCGAGAT -ACGGAAAGGTACACTCTGTACCAC -ACGGAAAGGTACACTCTGCAGAAC -ACGGAAAGGTACACTCTGGTCTAC -ACGGAAAGGTACACTCTGACGTAC -ACGGAAAGGTACACTCTGAGTGAC -ACGGAAAGGTACACTCTGCTGTAG -ACGGAAAGGTACACTCTGCCTAAG -ACGGAAAGGTACACTCTGGTTCAG -ACGGAAAGGTACACTCTGGCATAG -ACGGAAAGGTACACTCTGGACAAG -ACGGAAAGGTACACTCTGAAGCAG -ACGGAAAGGTACACTCTGCGTCAA -ACGGAAAGGTACACTCTGGCTGAA -ACGGAAAGGTACACTCTGAGTACG -ACGGAAAGGTACACTCTGATCCGA -ACGGAAAGGTACACTCTGATGGGA -ACGGAAAGGTACACTCTGGTGCAA -ACGGAAAGGTACACTCTGGAGGAA -ACGGAAAGGTACACTCTGCAGGTA -ACGGAAAGGTACACTCTGGACTCT -ACGGAAAGGTACACTCTGAGTCCT -ACGGAAAGGTACACTCTGTAAGCC -ACGGAAAGGTACACTCTGATAGCC -ACGGAAAGGTACACTCTGTAACCG -ACGGAAAGGTACACTCTGATGCCA -ACGGAAAGGTACCCTCAAGGAAAC -ACGGAAAGGTACCCTCAAAACACC -ACGGAAAGGTACCCTCAAATCGAG -ACGGAAAGGTACCCTCAACTCCTT -ACGGAAAGGTACCCTCAACCTGTT -ACGGAAAGGTACCCTCAACGGTTT -ACGGAAAGGTACCCTCAAGTGGTT -ACGGAAAGGTACCCTCAAGCCTTT -ACGGAAAGGTACCCTCAAGGTCTT -ACGGAAAGGTACCCTCAAACGCTT -ACGGAAAGGTACCCTCAAAGCGTT -ACGGAAAGGTACCCTCAATTCGTC -ACGGAAAGGTACCCTCAATCTCTC -ACGGAAAGGTACCCTCAATGGATC -ACGGAAAGGTACCCTCAACACTTC -ACGGAAAGGTACCCTCAAGTACTC -ACGGAAAGGTACCCTCAAGATGTC -ACGGAAAGGTACCCTCAAACAGTC -ACGGAAAGGTACCCTCAATTGCTG -ACGGAAAGGTACCCTCAATCCATG -ACGGAAAGGTACCCTCAATGTGTG -ACGGAAAGGTACCCTCAACTAGTG -ACGGAAAGGTACCCTCAACATCTG -ACGGAAAGGTACCCTCAAGAGTTG -ACGGAAAGGTACCCTCAAAGACTG -ACGGAAAGGTACCCTCAATCGGTA -ACGGAAAGGTACCCTCAATGCCTA -ACGGAAAGGTACCCTCAACCACTA -ACGGAAAGGTACCCTCAAGGAGTA -ACGGAAAGGTACCCTCAATCGTCT -ACGGAAAGGTACCCTCAATGCACT -ACGGAAAGGTACCCTCAACTGACT -ACGGAAAGGTACCCTCAACAACCT -ACGGAAAGGTACCCTCAAGCTACT -ACGGAAAGGTACCCTCAAGGATCT -ACGGAAAGGTACCCTCAAAAGGCT -ACGGAAAGGTACCCTCAATCAACC -ACGGAAAGGTACCCTCAATGTTCC -ACGGAAAGGTACCCTCAAATTCCC -ACGGAAAGGTACCCTCAATTCTCG -ACGGAAAGGTACCCTCAATAGACG -ACGGAAAGGTACCCTCAAGTAACG -ACGGAAAGGTACCCTCAAACTTCG -ACGGAAAGGTACCCTCAATACGCA -ACGGAAAGGTACCCTCAACTTGCA -ACGGAAAGGTACCCTCAACGAACA -ACGGAAAGGTACCCTCAACAGTCA -ACGGAAAGGTACCCTCAAGATCCA -ACGGAAAGGTACCCTCAAACGACA -ACGGAAAGGTACCCTCAAAGCTCA -ACGGAAAGGTACCCTCAATCACGT -ACGGAAAGGTACCCTCAACGTAGT -ACGGAAAGGTACCCTCAAGTCAGT -ACGGAAAGGTACCCTCAAGAAGGT -ACGGAAAGGTACCCTCAAAACCGT -ACGGAAAGGTACCCTCAATTGTGC -ACGGAAAGGTACCCTCAACTAAGC -ACGGAAAGGTACCCTCAAACTAGC -ACGGAAAGGTACCCTCAAAGATGC -ACGGAAAGGTACCCTCAATGAAGG -ACGGAAAGGTACCCTCAACAATGG -ACGGAAAGGTACCCTCAAATGAGG -ACGGAAAGGTACCCTCAAAATGGG -ACGGAAAGGTACCCTCAATCCTGA -ACGGAAAGGTACCCTCAATAGCGA -ACGGAAAGGTACCCTCAACACAGA -ACGGAAAGGTACCCTCAAGCAAGA -ACGGAAAGGTACCCTCAAGGTTGA -ACGGAAAGGTACCCTCAATCCGAT -ACGGAAAGGTACCCTCAATGGCAT -ACGGAAAGGTACCCTCAACGAGAT -ACGGAAAGGTACCCTCAATACCAC -ACGGAAAGGTACCCTCAACAGAAC -ACGGAAAGGTACCCTCAAGTCTAC -ACGGAAAGGTACCCTCAAACGTAC -ACGGAAAGGTACCCTCAAAGTGAC -ACGGAAAGGTACCCTCAACTGTAG -ACGGAAAGGTACCCTCAACCTAAG -ACGGAAAGGTACCCTCAAGTTCAG -ACGGAAAGGTACCCTCAAGCATAG -ACGGAAAGGTACCCTCAAGACAAG -ACGGAAAGGTACCCTCAAAAGCAG -ACGGAAAGGTACCCTCAACGTCAA -ACGGAAAGGTACCCTCAAGCTGAA -ACGGAAAGGTACCCTCAAAGTACG -ACGGAAAGGTACCCTCAAATCCGA -ACGGAAAGGTACCCTCAAATGGGA -ACGGAAAGGTACCCTCAAGTGCAA -ACGGAAAGGTACCCTCAAGAGGAA -ACGGAAAGGTACCCTCAACAGGTA -ACGGAAAGGTACCCTCAAGACTCT -ACGGAAAGGTACCCTCAAAGTCCT -ACGGAAAGGTACCCTCAATAAGCC -ACGGAAAGGTACCCTCAAATAGCC -ACGGAAAGGTACCCTCAATAACCG -ACGGAAAGGTACCCTCAAATGCCA -ACGGAAAGGTACACTGCTGGAAAC -ACGGAAAGGTACACTGCTAACACC -ACGGAAAGGTACACTGCTATCGAG -ACGGAAAGGTACACTGCTCTCCTT -ACGGAAAGGTACACTGCTCCTGTT -ACGGAAAGGTACACTGCTCGGTTT -ACGGAAAGGTACACTGCTGTGGTT -ACGGAAAGGTACACTGCTGCCTTT -ACGGAAAGGTACACTGCTGGTCTT -ACGGAAAGGTACACTGCTACGCTT -ACGGAAAGGTACACTGCTAGCGTT -ACGGAAAGGTACACTGCTTTCGTC -ACGGAAAGGTACACTGCTTCTCTC -ACGGAAAGGTACACTGCTTGGATC -ACGGAAAGGTACACTGCTCACTTC -ACGGAAAGGTACACTGCTGTACTC -ACGGAAAGGTACACTGCTGATGTC -ACGGAAAGGTACACTGCTACAGTC -ACGGAAAGGTACACTGCTTTGCTG -ACGGAAAGGTACACTGCTTCCATG -ACGGAAAGGTACACTGCTTGTGTG -ACGGAAAGGTACACTGCTCTAGTG -ACGGAAAGGTACACTGCTCATCTG -ACGGAAAGGTACACTGCTGAGTTG -ACGGAAAGGTACACTGCTAGACTG -ACGGAAAGGTACACTGCTTCGGTA -ACGGAAAGGTACACTGCTTGCCTA -ACGGAAAGGTACACTGCTCCACTA -ACGGAAAGGTACACTGCTGGAGTA -ACGGAAAGGTACACTGCTTCGTCT -ACGGAAAGGTACACTGCTTGCACT -ACGGAAAGGTACACTGCTCTGACT -ACGGAAAGGTACACTGCTCAACCT -ACGGAAAGGTACACTGCTGCTACT -ACGGAAAGGTACACTGCTGGATCT -ACGGAAAGGTACACTGCTAAGGCT -ACGGAAAGGTACACTGCTTCAACC -ACGGAAAGGTACACTGCTTGTTCC -ACGGAAAGGTACACTGCTATTCCC -ACGGAAAGGTACACTGCTTTCTCG -ACGGAAAGGTACACTGCTTAGACG -ACGGAAAGGTACACTGCTGTAACG -ACGGAAAGGTACACTGCTACTTCG -ACGGAAAGGTACACTGCTTACGCA -ACGGAAAGGTACACTGCTCTTGCA -ACGGAAAGGTACACTGCTCGAACA -ACGGAAAGGTACACTGCTCAGTCA -ACGGAAAGGTACACTGCTGATCCA -ACGGAAAGGTACACTGCTACGACA -ACGGAAAGGTACACTGCTAGCTCA -ACGGAAAGGTACACTGCTTCACGT -ACGGAAAGGTACACTGCTCGTAGT -ACGGAAAGGTACACTGCTGTCAGT -ACGGAAAGGTACACTGCTGAAGGT -ACGGAAAGGTACACTGCTAACCGT -ACGGAAAGGTACACTGCTTTGTGC -ACGGAAAGGTACACTGCTCTAAGC -ACGGAAAGGTACACTGCTACTAGC -ACGGAAAGGTACACTGCTAGATGC -ACGGAAAGGTACACTGCTTGAAGG -ACGGAAAGGTACACTGCTCAATGG -ACGGAAAGGTACACTGCTATGAGG -ACGGAAAGGTACACTGCTAATGGG -ACGGAAAGGTACACTGCTTCCTGA -ACGGAAAGGTACACTGCTTAGCGA -ACGGAAAGGTACACTGCTCACAGA -ACGGAAAGGTACACTGCTGCAAGA -ACGGAAAGGTACACTGCTGGTTGA -ACGGAAAGGTACACTGCTTCCGAT -ACGGAAAGGTACACTGCTTGGCAT -ACGGAAAGGTACACTGCTCGAGAT -ACGGAAAGGTACACTGCTTACCAC -ACGGAAAGGTACACTGCTCAGAAC -ACGGAAAGGTACACTGCTGTCTAC -ACGGAAAGGTACACTGCTACGTAC -ACGGAAAGGTACACTGCTAGTGAC -ACGGAAAGGTACACTGCTCTGTAG -ACGGAAAGGTACACTGCTCCTAAG -ACGGAAAGGTACACTGCTGTTCAG -ACGGAAAGGTACACTGCTGCATAG -ACGGAAAGGTACACTGCTGACAAG -ACGGAAAGGTACACTGCTAAGCAG -ACGGAAAGGTACACTGCTCGTCAA -ACGGAAAGGTACACTGCTGCTGAA -ACGGAAAGGTACACTGCTAGTACG -ACGGAAAGGTACACTGCTATCCGA -ACGGAAAGGTACACTGCTATGGGA -ACGGAAAGGTACACTGCTGTGCAA -ACGGAAAGGTACACTGCTGAGGAA -ACGGAAAGGTACACTGCTCAGGTA -ACGGAAAGGTACACTGCTGACTCT -ACGGAAAGGTACACTGCTAGTCCT -ACGGAAAGGTACACTGCTTAAGCC -ACGGAAAGGTACACTGCTATAGCC -ACGGAAAGGTACACTGCTTAACCG -ACGGAAAGGTACACTGCTATGCCA -ACGGAAAGGTACTCTGGAGGAAAC -ACGGAAAGGTACTCTGGAAACACC -ACGGAAAGGTACTCTGGAATCGAG -ACGGAAAGGTACTCTGGACTCCTT -ACGGAAAGGTACTCTGGACCTGTT -ACGGAAAGGTACTCTGGACGGTTT -ACGGAAAGGTACTCTGGAGTGGTT -ACGGAAAGGTACTCTGGAGCCTTT -ACGGAAAGGTACTCTGGAGGTCTT -ACGGAAAGGTACTCTGGAACGCTT -ACGGAAAGGTACTCTGGAAGCGTT -ACGGAAAGGTACTCTGGATTCGTC -ACGGAAAGGTACTCTGGATCTCTC -ACGGAAAGGTACTCTGGATGGATC -ACGGAAAGGTACTCTGGACACTTC -ACGGAAAGGTACTCTGGAGTACTC -ACGGAAAGGTACTCTGGAGATGTC -ACGGAAAGGTACTCTGGAACAGTC -ACGGAAAGGTACTCTGGATTGCTG -ACGGAAAGGTACTCTGGATCCATG -ACGGAAAGGTACTCTGGATGTGTG -ACGGAAAGGTACTCTGGACTAGTG -ACGGAAAGGTACTCTGGACATCTG -ACGGAAAGGTACTCTGGAGAGTTG -ACGGAAAGGTACTCTGGAAGACTG -ACGGAAAGGTACTCTGGATCGGTA -ACGGAAAGGTACTCTGGATGCCTA -ACGGAAAGGTACTCTGGACCACTA -ACGGAAAGGTACTCTGGAGGAGTA -ACGGAAAGGTACTCTGGATCGTCT -ACGGAAAGGTACTCTGGATGCACT -ACGGAAAGGTACTCTGGACTGACT -ACGGAAAGGTACTCTGGACAACCT -ACGGAAAGGTACTCTGGAGCTACT -ACGGAAAGGTACTCTGGAGGATCT -ACGGAAAGGTACTCTGGAAAGGCT -ACGGAAAGGTACTCTGGATCAACC -ACGGAAAGGTACTCTGGATGTTCC -ACGGAAAGGTACTCTGGAATTCCC -ACGGAAAGGTACTCTGGATTCTCG -ACGGAAAGGTACTCTGGATAGACG -ACGGAAAGGTACTCTGGAGTAACG -ACGGAAAGGTACTCTGGAACTTCG -ACGGAAAGGTACTCTGGATACGCA -ACGGAAAGGTACTCTGGACTTGCA -ACGGAAAGGTACTCTGGACGAACA -ACGGAAAGGTACTCTGGACAGTCA -ACGGAAAGGTACTCTGGAGATCCA -ACGGAAAGGTACTCTGGAACGACA -ACGGAAAGGTACTCTGGAAGCTCA -ACGGAAAGGTACTCTGGATCACGT -ACGGAAAGGTACTCTGGACGTAGT -ACGGAAAGGTACTCTGGAGTCAGT -ACGGAAAGGTACTCTGGAGAAGGT -ACGGAAAGGTACTCTGGAAACCGT -ACGGAAAGGTACTCTGGATTGTGC -ACGGAAAGGTACTCTGGACTAAGC -ACGGAAAGGTACTCTGGAACTAGC -ACGGAAAGGTACTCTGGAAGATGC -ACGGAAAGGTACTCTGGATGAAGG -ACGGAAAGGTACTCTGGACAATGG -ACGGAAAGGTACTCTGGAATGAGG -ACGGAAAGGTACTCTGGAAATGGG -ACGGAAAGGTACTCTGGATCCTGA -ACGGAAAGGTACTCTGGATAGCGA -ACGGAAAGGTACTCTGGACACAGA -ACGGAAAGGTACTCTGGAGCAAGA -ACGGAAAGGTACTCTGGAGGTTGA -ACGGAAAGGTACTCTGGATCCGAT -ACGGAAAGGTACTCTGGATGGCAT -ACGGAAAGGTACTCTGGACGAGAT -ACGGAAAGGTACTCTGGATACCAC -ACGGAAAGGTACTCTGGACAGAAC -ACGGAAAGGTACTCTGGAGTCTAC -ACGGAAAGGTACTCTGGAACGTAC -ACGGAAAGGTACTCTGGAAGTGAC -ACGGAAAGGTACTCTGGACTGTAG -ACGGAAAGGTACTCTGGACCTAAG -ACGGAAAGGTACTCTGGAGTTCAG -ACGGAAAGGTACTCTGGAGCATAG -ACGGAAAGGTACTCTGGAGACAAG -ACGGAAAGGTACTCTGGAAAGCAG -ACGGAAAGGTACTCTGGACGTCAA -ACGGAAAGGTACTCTGGAGCTGAA -ACGGAAAGGTACTCTGGAAGTACG -ACGGAAAGGTACTCTGGAATCCGA -ACGGAAAGGTACTCTGGAATGGGA -ACGGAAAGGTACTCTGGAGTGCAA -ACGGAAAGGTACTCTGGAGAGGAA -ACGGAAAGGTACTCTGGACAGGTA -ACGGAAAGGTACTCTGGAGACTCT -ACGGAAAGGTACTCTGGAAGTCCT -ACGGAAAGGTACTCTGGATAAGCC -ACGGAAAGGTACTCTGGAATAGCC -ACGGAAAGGTACTCTGGATAACCG -ACGGAAAGGTACTCTGGAATGCCA -ACGGAAAGGTACGCTAAGGGAAAC -ACGGAAAGGTACGCTAAGAACACC -ACGGAAAGGTACGCTAAGATCGAG -ACGGAAAGGTACGCTAAGCTCCTT -ACGGAAAGGTACGCTAAGCCTGTT -ACGGAAAGGTACGCTAAGCGGTTT -ACGGAAAGGTACGCTAAGGTGGTT -ACGGAAAGGTACGCTAAGGCCTTT -ACGGAAAGGTACGCTAAGGGTCTT -ACGGAAAGGTACGCTAAGACGCTT -ACGGAAAGGTACGCTAAGAGCGTT -ACGGAAAGGTACGCTAAGTTCGTC -ACGGAAAGGTACGCTAAGTCTCTC -ACGGAAAGGTACGCTAAGTGGATC -ACGGAAAGGTACGCTAAGCACTTC -ACGGAAAGGTACGCTAAGGTACTC -ACGGAAAGGTACGCTAAGGATGTC -ACGGAAAGGTACGCTAAGACAGTC -ACGGAAAGGTACGCTAAGTTGCTG -ACGGAAAGGTACGCTAAGTCCATG -ACGGAAAGGTACGCTAAGTGTGTG -ACGGAAAGGTACGCTAAGCTAGTG -ACGGAAAGGTACGCTAAGCATCTG -ACGGAAAGGTACGCTAAGGAGTTG -ACGGAAAGGTACGCTAAGAGACTG -ACGGAAAGGTACGCTAAGTCGGTA -ACGGAAAGGTACGCTAAGTGCCTA -ACGGAAAGGTACGCTAAGCCACTA -ACGGAAAGGTACGCTAAGGGAGTA -ACGGAAAGGTACGCTAAGTCGTCT -ACGGAAAGGTACGCTAAGTGCACT -ACGGAAAGGTACGCTAAGCTGACT -ACGGAAAGGTACGCTAAGCAACCT -ACGGAAAGGTACGCTAAGGCTACT -ACGGAAAGGTACGCTAAGGGATCT -ACGGAAAGGTACGCTAAGAAGGCT -ACGGAAAGGTACGCTAAGTCAACC -ACGGAAAGGTACGCTAAGTGTTCC -ACGGAAAGGTACGCTAAGATTCCC -ACGGAAAGGTACGCTAAGTTCTCG -ACGGAAAGGTACGCTAAGTAGACG -ACGGAAAGGTACGCTAAGGTAACG -ACGGAAAGGTACGCTAAGACTTCG -ACGGAAAGGTACGCTAAGTACGCA -ACGGAAAGGTACGCTAAGCTTGCA -ACGGAAAGGTACGCTAAGCGAACA -ACGGAAAGGTACGCTAAGCAGTCA -ACGGAAAGGTACGCTAAGGATCCA -ACGGAAAGGTACGCTAAGACGACA -ACGGAAAGGTACGCTAAGAGCTCA -ACGGAAAGGTACGCTAAGTCACGT -ACGGAAAGGTACGCTAAGCGTAGT -ACGGAAAGGTACGCTAAGGTCAGT -ACGGAAAGGTACGCTAAGGAAGGT -ACGGAAAGGTACGCTAAGAACCGT -ACGGAAAGGTACGCTAAGTTGTGC -ACGGAAAGGTACGCTAAGCTAAGC -ACGGAAAGGTACGCTAAGACTAGC -ACGGAAAGGTACGCTAAGAGATGC -ACGGAAAGGTACGCTAAGTGAAGG -ACGGAAAGGTACGCTAAGCAATGG -ACGGAAAGGTACGCTAAGATGAGG -ACGGAAAGGTACGCTAAGAATGGG -ACGGAAAGGTACGCTAAGTCCTGA -ACGGAAAGGTACGCTAAGTAGCGA -ACGGAAAGGTACGCTAAGCACAGA -ACGGAAAGGTACGCTAAGGCAAGA -ACGGAAAGGTACGCTAAGGGTTGA -ACGGAAAGGTACGCTAAGTCCGAT -ACGGAAAGGTACGCTAAGTGGCAT -ACGGAAAGGTACGCTAAGCGAGAT -ACGGAAAGGTACGCTAAGTACCAC -ACGGAAAGGTACGCTAAGCAGAAC -ACGGAAAGGTACGCTAAGGTCTAC -ACGGAAAGGTACGCTAAGACGTAC -ACGGAAAGGTACGCTAAGAGTGAC -ACGGAAAGGTACGCTAAGCTGTAG -ACGGAAAGGTACGCTAAGCCTAAG -ACGGAAAGGTACGCTAAGGTTCAG -ACGGAAAGGTACGCTAAGGCATAG -ACGGAAAGGTACGCTAAGGACAAG -ACGGAAAGGTACGCTAAGAAGCAG -ACGGAAAGGTACGCTAAGCGTCAA -ACGGAAAGGTACGCTAAGGCTGAA -ACGGAAAGGTACGCTAAGAGTACG -ACGGAAAGGTACGCTAAGATCCGA -ACGGAAAGGTACGCTAAGATGGGA -ACGGAAAGGTACGCTAAGGTGCAA -ACGGAAAGGTACGCTAAGGAGGAA -ACGGAAAGGTACGCTAAGCAGGTA -ACGGAAAGGTACGCTAAGGACTCT -ACGGAAAGGTACGCTAAGAGTCCT -ACGGAAAGGTACGCTAAGTAAGCC -ACGGAAAGGTACGCTAAGATAGCC -ACGGAAAGGTACGCTAAGTAACCG -ACGGAAAGGTACGCTAAGATGCCA -ACGGAAAGGTACACCTCAGGAAAC -ACGGAAAGGTACACCTCAAACACC -ACGGAAAGGTACACCTCAATCGAG -ACGGAAAGGTACACCTCACTCCTT -ACGGAAAGGTACACCTCACCTGTT -ACGGAAAGGTACACCTCACGGTTT -ACGGAAAGGTACACCTCAGTGGTT -ACGGAAAGGTACACCTCAGCCTTT -ACGGAAAGGTACACCTCAGGTCTT -ACGGAAAGGTACACCTCAACGCTT -ACGGAAAGGTACACCTCAAGCGTT -ACGGAAAGGTACACCTCATTCGTC -ACGGAAAGGTACACCTCATCTCTC -ACGGAAAGGTACACCTCATGGATC -ACGGAAAGGTACACCTCACACTTC -ACGGAAAGGTACACCTCAGTACTC -ACGGAAAGGTACACCTCAGATGTC -ACGGAAAGGTACACCTCAACAGTC -ACGGAAAGGTACACCTCATTGCTG -ACGGAAAGGTACACCTCATCCATG -ACGGAAAGGTACACCTCATGTGTG -ACGGAAAGGTACACCTCACTAGTG -ACGGAAAGGTACACCTCACATCTG -ACGGAAAGGTACACCTCAGAGTTG -ACGGAAAGGTACACCTCAAGACTG -ACGGAAAGGTACACCTCATCGGTA -ACGGAAAGGTACACCTCATGCCTA -ACGGAAAGGTACACCTCACCACTA -ACGGAAAGGTACACCTCAGGAGTA -ACGGAAAGGTACACCTCATCGTCT -ACGGAAAGGTACACCTCATGCACT -ACGGAAAGGTACACCTCACTGACT -ACGGAAAGGTACACCTCACAACCT -ACGGAAAGGTACACCTCAGCTACT -ACGGAAAGGTACACCTCAGGATCT -ACGGAAAGGTACACCTCAAAGGCT -ACGGAAAGGTACACCTCATCAACC -ACGGAAAGGTACACCTCATGTTCC -ACGGAAAGGTACACCTCAATTCCC -ACGGAAAGGTACACCTCATTCTCG -ACGGAAAGGTACACCTCATAGACG -ACGGAAAGGTACACCTCAGTAACG -ACGGAAAGGTACACCTCAACTTCG -ACGGAAAGGTACACCTCATACGCA -ACGGAAAGGTACACCTCACTTGCA -ACGGAAAGGTACACCTCACGAACA -ACGGAAAGGTACACCTCACAGTCA -ACGGAAAGGTACACCTCAGATCCA -ACGGAAAGGTACACCTCAACGACA -ACGGAAAGGTACACCTCAAGCTCA -ACGGAAAGGTACACCTCATCACGT -ACGGAAAGGTACACCTCACGTAGT -ACGGAAAGGTACACCTCAGTCAGT -ACGGAAAGGTACACCTCAGAAGGT -ACGGAAAGGTACACCTCAAACCGT -ACGGAAAGGTACACCTCATTGTGC -ACGGAAAGGTACACCTCACTAAGC -ACGGAAAGGTACACCTCAACTAGC -ACGGAAAGGTACACCTCAAGATGC -ACGGAAAGGTACACCTCATGAAGG -ACGGAAAGGTACACCTCACAATGG -ACGGAAAGGTACACCTCAATGAGG -ACGGAAAGGTACACCTCAAATGGG -ACGGAAAGGTACACCTCATCCTGA -ACGGAAAGGTACACCTCATAGCGA -ACGGAAAGGTACACCTCACACAGA -ACGGAAAGGTACACCTCAGCAAGA -ACGGAAAGGTACACCTCAGGTTGA -ACGGAAAGGTACACCTCATCCGAT -ACGGAAAGGTACACCTCATGGCAT -ACGGAAAGGTACACCTCACGAGAT -ACGGAAAGGTACACCTCATACCAC -ACGGAAAGGTACACCTCACAGAAC -ACGGAAAGGTACACCTCAGTCTAC -ACGGAAAGGTACACCTCAACGTAC -ACGGAAAGGTACACCTCAAGTGAC -ACGGAAAGGTACACCTCACTGTAG -ACGGAAAGGTACACCTCACCTAAG -ACGGAAAGGTACACCTCAGTTCAG -ACGGAAAGGTACACCTCAGCATAG -ACGGAAAGGTACACCTCAGACAAG -ACGGAAAGGTACACCTCAAAGCAG -ACGGAAAGGTACACCTCACGTCAA -ACGGAAAGGTACACCTCAGCTGAA -ACGGAAAGGTACACCTCAAGTACG -ACGGAAAGGTACACCTCAATCCGA -ACGGAAAGGTACACCTCAATGGGA -ACGGAAAGGTACACCTCAGTGCAA -ACGGAAAGGTACACCTCAGAGGAA -ACGGAAAGGTACACCTCACAGGTA -ACGGAAAGGTACACCTCAGACTCT -ACGGAAAGGTACACCTCAAGTCCT -ACGGAAAGGTACACCTCATAAGCC -ACGGAAAGGTACACCTCAATAGCC -ACGGAAAGGTACACCTCATAACCG -ACGGAAAGGTACACCTCAATGCCA -ACGGAAAGGTACTCCTGTGGAAAC -ACGGAAAGGTACTCCTGTAACACC -ACGGAAAGGTACTCCTGTATCGAG -ACGGAAAGGTACTCCTGTCTCCTT -ACGGAAAGGTACTCCTGTCCTGTT -ACGGAAAGGTACTCCTGTCGGTTT -ACGGAAAGGTACTCCTGTGTGGTT -ACGGAAAGGTACTCCTGTGCCTTT -ACGGAAAGGTACTCCTGTGGTCTT -ACGGAAAGGTACTCCTGTACGCTT -ACGGAAAGGTACTCCTGTAGCGTT -ACGGAAAGGTACTCCTGTTTCGTC -ACGGAAAGGTACTCCTGTTCTCTC -ACGGAAAGGTACTCCTGTTGGATC -ACGGAAAGGTACTCCTGTCACTTC -ACGGAAAGGTACTCCTGTGTACTC -ACGGAAAGGTACTCCTGTGATGTC -ACGGAAAGGTACTCCTGTACAGTC -ACGGAAAGGTACTCCTGTTTGCTG -ACGGAAAGGTACTCCTGTTCCATG -ACGGAAAGGTACTCCTGTTGTGTG -ACGGAAAGGTACTCCTGTCTAGTG -ACGGAAAGGTACTCCTGTCATCTG -ACGGAAAGGTACTCCTGTGAGTTG -ACGGAAAGGTACTCCTGTAGACTG -ACGGAAAGGTACTCCTGTTCGGTA -ACGGAAAGGTACTCCTGTTGCCTA -ACGGAAAGGTACTCCTGTCCACTA -ACGGAAAGGTACTCCTGTGGAGTA -ACGGAAAGGTACTCCTGTTCGTCT -ACGGAAAGGTACTCCTGTTGCACT -ACGGAAAGGTACTCCTGTCTGACT -ACGGAAAGGTACTCCTGTCAACCT -ACGGAAAGGTACTCCTGTGCTACT -ACGGAAAGGTACTCCTGTGGATCT -ACGGAAAGGTACTCCTGTAAGGCT -ACGGAAAGGTACTCCTGTTCAACC -ACGGAAAGGTACTCCTGTTGTTCC -ACGGAAAGGTACTCCTGTATTCCC -ACGGAAAGGTACTCCTGTTTCTCG -ACGGAAAGGTACTCCTGTTAGACG -ACGGAAAGGTACTCCTGTGTAACG -ACGGAAAGGTACTCCTGTACTTCG -ACGGAAAGGTACTCCTGTTACGCA -ACGGAAAGGTACTCCTGTCTTGCA -ACGGAAAGGTACTCCTGTCGAACA -ACGGAAAGGTACTCCTGTCAGTCA -ACGGAAAGGTACTCCTGTGATCCA -ACGGAAAGGTACTCCTGTACGACA -ACGGAAAGGTACTCCTGTAGCTCA -ACGGAAAGGTACTCCTGTTCACGT -ACGGAAAGGTACTCCTGTCGTAGT -ACGGAAAGGTACTCCTGTGTCAGT -ACGGAAAGGTACTCCTGTGAAGGT -ACGGAAAGGTACTCCTGTAACCGT -ACGGAAAGGTACTCCTGTTTGTGC -ACGGAAAGGTACTCCTGTCTAAGC -ACGGAAAGGTACTCCTGTACTAGC -ACGGAAAGGTACTCCTGTAGATGC -ACGGAAAGGTACTCCTGTTGAAGG -ACGGAAAGGTACTCCTGTCAATGG -ACGGAAAGGTACTCCTGTATGAGG -ACGGAAAGGTACTCCTGTAATGGG -ACGGAAAGGTACTCCTGTTCCTGA -ACGGAAAGGTACTCCTGTTAGCGA -ACGGAAAGGTACTCCTGTCACAGA -ACGGAAAGGTACTCCTGTGCAAGA -ACGGAAAGGTACTCCTGTGGTTGA -ACGGAAAGGTACTCCTGTTCCGAT -ACGGAAAGGTACTCCTGTTGGCAT -ACGGAAAGGTACTCCTGTCGAGAT -ACGGAAAGGTACTCCTGTTACCAC -ACGGAAAGGTACTCCTGTCAGAAC -ACGGAAAGGTACTCCTGTGTCTAC -ACGGAAAGGTACTCCTGTACGTAC -ACGGAAAGGTACTCCTGTAGTGAC -ACGGAAAGGTACTCCTGTCTGTAG -ACGGAAAGGTACTCCTGTCCTAAG -ACGGAAAGGTACTCCTGTGTTCAG -ACGGAAAGGTACTCCTGTGCATAG -ACGGAAAGGTACTCCTGTGACAAG -ACGGAAAGGTACTCCTGTAAGCAG -ACGGAAAGGTACTCCTGTCGTCAA -ACGGAAAGGTACTCCTGTGCTGAA -ACGGAAAGGTACTCCTGTAGTACG -ACGGAAAGGTACTCCTGTATCCGA -ACGGAAAGGTACTCCTGTATGGGA -ACGGAAAGGTACTCCTGTGTGCAA -ACGGAAAGGTACTCCTGTGAGGAA -ACGGAAAGGTACTCCTGTCAGGTA -ACGGAAAGGTACTCCTGTGACTCT -ACGGAAAGGTACTCCTGTAGTCCT -ACGGAAAGGTACTCCTGTTAAGCC -ACGGAAAGGTACTCCTGTATAGCC -ACGGAAAGGTACTCCTGTTAACCG -ACGGAAAGGTACTCCTGTATGCCA -ACGGAAAGGTACCCCATTGGAAAC -ACGGAAAGGTACCCCATTAACACC -ACGGAAAGGTACCCCATTATCGAG -ACGGAAAGGTACCCCATTCTCCTT -ACGGAAAGGTACCCCATTCCTGTT -ACGGAAAGGTACCCCATTCGGTTT -ACGGAAAGGTACCCCATTGTGGTT -ACGGAAAGGTACCCCATTGCCTTT -ACGGAAAGGTACCCCATTGGTCTT -ACGGAAAGGTACCCCATTACGCTT -ACGGAAAGGTACCCCATTAGCGTT -ACGGAAAGGTACCCCATTTTCGTC -ACGGAAAGGTACCCCATTTCTCTC -ACGGAAAGGTACCCCATTTGGATC -ACGGAAAGGTACCCCATTCACTTC -ACGGAAAGGTACCCCATTGTACTC -ACGGAAAGGTACCCCATTGATGTC -ACGGAAAGGTACCCCATTACAGTC -ACGGAAAGGTACCCCATTTTGCTG -ACGGAAAGGTACCCCATTTCCATG -ACGGAAAGGTACCCCATTTGTGTG -ACGGAAAGGTACCCCATTCTAGTG -ACGGAAAGGTACCCCATTCATCTG -ACGGAAAGGTACCCCATTGAGTTG -ACGGAAAGGTACCCCATTAGACTG -ACGGAAAGGTACCCCATTTCGGTA -ACGGAAAGGTACCCCATTTGCCTA -ACGGAAAGGTACCCCATTCCACTA -ACGGAAAGGTACCCCATTGGAGTA -ACGGAAAGGTACCCCATTTCGTCT -ACGGAAAGGTACCCCATTTGCACT -ACGGAAAGGTACCCCATTCTGACT -ACGGAAAGGTACCCCATTCAACCT -ACGGAAAGGTACCCCATTGCTACT -ACGGAAAGGTACCCCATTGGATCT -ACGGAAAGGTACCCCATTAAGGCT -ACGGAAAGGTACCCCATTTCAACC -ACGGAAAGGTACCCCATTTGTTCC -ACGGAAAGGTACCCCATTATTCCC -ACGGAAAGGTACCCCATTTTCTCG -ACGGAAAGGTACCCCATTTAGACG -ACGGAAAGGTACCCCATTGTAACG -ACGGAAAGGTACCCCATTACTTCG -ACGGAAAGGTACCCCATTTACGCA -ACGGAAAGGTACCCCATTCTTGCA -ACGGAAAGGTACCCCATTCGAACA -ACGGAAAGGTACCCCATTCAGTCA -ACGGAAAGGTACCCCATTGATCCA -ACGGAAAGGTACCCCATTACGACA -ACGGAAAGGTACCCCATTAGCTCA -ACGGAAAGGTACCCCATTTCACGT -ACGGAAAGGTACCCCATTCGTAGT -ACGGAAAGGTACCCCATTGTCAGT -ACGGAAAGGTACCCCATTGAAGGT -ACGGAAAGGTACCCCATTAACCGT -ACGGAAAGGTACCCCATTTTGTGC -ACGGAAAGGTACCCCATTCTAAGC -ACGGAAAGGTACCCCATTACTAGC -ACGGAAAGGTACCCCATTAGATGC -ACGGAAAGGTACCCCATTTGAAGG -ACGGAAAGGTACCCCATTCAATGG -ACGGAAAGGTACCCCATTATGAGG -ACGGAAAGGTACCCCATTAATGGG -ACGGAAAGGTACCCCATTTCCTGA -ACGGAAAGGTACCCCATTTAGCGA -ACGGAAAGGTACCCCATTCACAGA -ACGGAAAGGTACCCCATTGCAAGA -ACGGAAAGGTACCCCATTGGTTGA -ACGGAAAGGTACCCCATTTCCGAT -ACGGAAAGGTACCCCATTTGGCAT -ACGGAAAGGTACCCCATTCGAGAT -ACGGAAAGGTACCCCATTTACCAC -ACGGAAAGGTACCCCATTCAGAAC -ACGGAAAGGTACCCCATTGTCTAC -ACGGAAAGGTACCCCATTACGTAC -ACGGAAAGGTACCCCATTAGTGAC -ACGGAAAGGTACCCCATTCTGTAG -ACGGAAAGGTACCCCATTCCTAAG -ACGGAAAGGTACCCCATTGTTCAG -ACGGAAAGGTACCCCATTGCATAG -ACGGAAAGGTACCCCATTGACAAG -ACGGAAAGGTACCCCATTAAGCAG -ACGGAAAGGTACCCCATTCGTCAA -ACGGAAAGGTACCCCATTGCTGAA -ACGGAAAGGTACCCCATTAGTACG -ACGGAAAGGTACCCCATTATCCGA -ACGGAAAGGTACCCCATTATGGGA -ACGGAAAGGTACCCCATTGTGCAA -ACGGAAAGGTACCCCATTGAGGAA -ACGGAAAGGTACCCCATTCAGGTA -ACGGAAAGGTACCCCATTGACTCT -ACGGAAAGGTACCCCATTAGTCCT -ACGGAAAGGTACCCCATTTAAGCC -ACGGAAAGGTACCCCATTATAGCC -ACGGAAAGGTACCCCATTTAACCG -ACGGAAAGGTACCCCATTATGCCA -ACGGAAAGGTACTCGTTCGGAAAC -ACGGAAAGGTACTCGTTCAACACC -ACGGAAAGGTACTCGTTCATCGAG -ACGGAAAGGTACTCGTTCCTCCTT -ACGGAAAGGTACTCGTTCCCTGTT -ACGGAAAGGTACTCGTTCCGGTTT -ACGGAAAGGTACTCGTTCGTGGTT -ACGGAAAGGTACTCGTTCGCCTTT -ACGGAAAGGTACTCGTTCGGTCTT -ACGGAAAGGTACTCGTTCACGCTT -ACGGAAAGGTACTCGTTCAGCGTT -ACGGAAAGGTACTCGTTCTTCGTC -ACGGAAAGGTACTCGTTCTCTCTC -ACGGAAAGGTACTCGTTCTGGATC -ACGGAAAGGTACTCGTTCCACTTC -ACGGAAAGGTACTCGTTCGTACTC -ACGGAAAGGTACTCGTTCGATGTC -ACGGAAAGGTACTCGTTCACAGTC -ACGGAAAGGTACTCGTTCTTGCTG -ACGGAAAGGTACTCGTTCTCCATG -ACGGAAAGGTACTCGTTCTGTGTG -ACGGAAAGGTACTCGTTCCTAGTG -ACGGAAAGGTACTCGTTCCATCTG -ACGGAAAGGTACTCGTTCGAGTTG -ACGGAAAGGTACTCGTTCAGACTG -ACGGAAAGGTACTCGTTCTCGGTA -ACGGAAAGGTACTCGTTCTGCCTA -ACGGAAAGGTACTCGTTCCCACTA -ACGGAAAGGTACTCGTTCGGAGTA -ACGGAAAGGTACTCGTTCTCGTCT -ACGGAAAGGTACTCGTTCTGCACT -ACGGAAAGGTACTCGTTCCTGACT -ACGGAAAGGTACTCGTTCCAACCT -ACGGAAAGGTACTCGTTCGCTACT -ACGGAAAGGTACTCGTTCGGATCT -ACGGAAAGGTACTCGTTCAAGGCT -ACGGAAAGGTACTCGTTCTCAACC -ACGGAAAGGTACTCGTTCTGTTCC -ACGGAAAGGTACTCGTTCATTCCC -ACGGAAAGGTACTCGTTCTTCTCG -ACGGAAAGGTACTCGTTCTAGACG -ACGGAAAGGTACTCGTTCGTAACG -ACGGAAAGGTACTCGTTCACTTCG -ACGGAAAGGTACTCGTTCTACGCA -ACGGAAAGGTACTCGTTCCTTGCA -ACGGAAAGGTACTCGTTCCGAACA -ACGGAAAGGTACTCGTTCCAGTCA -ACGGAAAGGTACTCGTTCGATCCA -ACGGAAAGGTACTCGTTCACGACA -ACGGAAAGGTACTCGTTCAGCTCA -ACGGAAAGGTACTCGTTCTCACGT -ACGGAAAGGTACTCGTTCCGTAGT -ACGGAAAGGTACTCGTTCGTCAGT -ACGGAAAGGTACTCGTTCGAAGGT -ACGGAAAGGTACTCGTTCAACCGT -ACGGAAAGGTACTCGTTCTTGTGC -ACGGAAAGGTACTCGTTCCTAAGC -ACGGAAAGGTACTCGTTCACTAGC -ACGGAAAGGTACTCGTTCAGATGC -ACGGAAAGGTACTCGTTCTGAAGG -ACGGAAAGGTACTCGTTCCAATGG -ACGGAAAGGTACTCGTTCATGAGG -ACGGAAAGGTACTCGTTCAATGGG -ACGGAAAGGTACTCGTTCTCCTGA -ACGGAAAGGTACTCGTTCTAGCGA -ACGGAAAGGTACTCGTTCCACAGA -ACGGAAAGGTACTCGTTCGCAAGA -ACGGAAAGGTACTCGTTCGGTTGA -ACGGAAAGGTACTCGTTCTCCGAT -ACGGAAAGGTACTCGTTCTGGCAT -ACGGAAAGGTACTCGTTCCGAGAT -ACGGAAAGGTACTCGTTCTACCAC -ACGGAAAGGTACTCGTTCCAGAAC -ACGGAAAGGTACTCGTTCGTCTAC -ACGGAAAGGTACTCGTTCACGTAC -ACGGAAAGGTACTCGTTCAGTGAC -ACGGAAAGGTACTCGTTCCTGTAG -ACGGAAAGGTACTCGTTCCCTAAG -ACGGAAAGGTACTCGTTCGTTCAG -ACGGAAAGGTACTCGTTCGCATAG -ACGGAAAGGTACTCGTTCGACAAG -ACGGAAAGGTACTCGTTCAAGCAG -ACGGAAAGGTACTCGTTCCGTCAA -ACGGAAAGGTACTCGTTCGCTGAA -ACGGAAAGGTACTCGTTCAGTACG -ACGGAAAGGTACTCGTTCATCCGA -ACGGAAAGGTACTCGTTCATGGGA -ACGGAAAGGTACTCGTTCGTGCAA -ACGGAAAGGTACTCGTTCGAGGAA -ACGGAAAGGTACTCGTTCCAGGTA -ACGGAAAGGTACTCGTTCGACTCT -ACGGAAAGGTACTCGTTCAGTCCT -ACGGAAAGGTACTCGTTCTAAGCC -ACGGAAAGGTACTCGTTCATAGCC -ACGGAAAGGTACTCGTTCTAACCG -ACGGAAAGGTACTCGTTCATGCCA -ACGGAAAGGTACACGTAGGGAAAC -ACGGAAAGGTACACGTAGAACACC -ACGGAAAGGTACACGTAGATCGAG -ACGGAAAGGTACACGTAGCTCCTT -ACGGAAAGGTACACGTAGCCTGTT -ACGGAAAGGTACACGTAGCGGTTT -ACGGAAAGGTACACGTAGGTGGTT -ACGGAAAGGTACACGTAGGCCTTT -ACGGAAAGGTACACGTAGGGTCTT -ACGGAAAGGTACACGTAGACGCTT -ACGGAAAGGTACACGTAGAGCGTT -ACGGAAAGGTACACGTAGTTCGTC -ACGGAAAGGTACACGTAGTCTCTC -ACGGAAAGGTACACGTAGTGGATC -ACGGAAAGGTACACGTAGCACTTC -ACGGAAAGGTACACGTAGGTACTC -ACGGAAAGGTACACGTAGGATGTC -ACGGAAAGGTACACGTAGACAGTC -ACGGAAAGGTACACGTAGTTGCTG -ACGGAAAGGTACACGTAGTCCATG -ACGGAAAGGTACACGTAGTGTGTG -ACGGAAAGGTACACGTAGCTAGTG -ACGGAAAGGTACACGTAGCATCTG -ACGGAAAGGTACACGTAGGAGTTG -ACGGAAAGGTACACGTAGAGACTG -ACGGAAAGGTACACGTAGTCGGTA -ACGGAAAGGTACACGTAGTGCCTA -ACGGAAAGGTACACGTAGCCACTA -ACGGAAAGGTACACGTAGGGAGTA -ACGGAAAGGTACACGTAGTCGTCT -ACGGAAAGGTACACGTAGTGCACT -ACGGAAAGGTACACGTAGCTGACT -ACGGAAAGGTACACGTAGCAACCT -ACGGAAAGGTACACGTAGGCTACT -ACGGAAAGGTACACGTAGGGATCT -ACGGAAAGGTACACGTAGAAGGCT -ACGGAAAGGTACACGTAGTCAACC -ACGGAAAGGTACACGTAGTGTTCC -ACGGAAAGGTACACGTAGATTCCC -ACGGAAAGGTACACGTAGTTCTCG -ACGGAAAGGTACACGTAGTAGACG -ACGGAAAGGTACACGTAGGTAACG -ACGGAAAGGTACACGTAGACTTCG -ACGGAAAGGTACACGTAGTACGCA -ACGGAAAGGTACACGTAGCTTGCA -ACGGAAAGGTACACGTAGCGAACA -ACGGAAAGGTACACGTAGCAGTCA -ACGGAAAGGTACACGTAGGATCCA -ACGGAAAGGTACACGTAGACGACA -ACGGAAAGGTACACGTAGAGCTCA -ACGGAAAGGTACACGTAGTCACGT -ACGGAAAGGTACACGTAGCGTAGT -ACGGAAAGGTACACGTAGGTCAGT -ACGGAAAGGTACACGTAGGAAGGT -ACGGAAAGGTACACGTAGAACCGT -ACGGAAAGGTACACGTAGTTGTGC -ACGGAAAGGTACACGTAGCTAAGC -ACGGAAAGGTACACGTAGACTAGC -ACGGAAAGGTACACGTAGAGATGC -ACGGAAAGGTACACGTAGTGAAGG -ACGGAAAGGTACACGTAGCAATGG -ACGGAAAGGTACACGTAGATGAGG -ACGGAAAGGTACACGTAGAATGGG -ACGGAAAGGTACACGTAGTCCTGA -ACGGAAAGGTACACGTAGTAGCGA -ACGGAAAGGTACACGTAGCACAGA -ACGGAAAGGTACACGTAGGCAAGA -ACGGAAAGGTACACGTAGGGTTGA -ACGGAAAGGTACACGTAGTCCGAT -ACGGAAAGGTACACGTAGTGGCAT -ACGGAAAGGTACACGTAGCGAGAT -ACGGAAAGGTACACGTAGTACCAC -ACGGAAAGGTACACGTAGCAGAAC -ACGGAAAGGTACACGTAGGTCTAC -ACGGAAAGGTACACGTAGACGTAC -ACGGAAAGGTACACGTAGAGTGAC -ACGGAAAGGTACACGTAGCTGTAG -ACGGAAAGGTACACGTAGCCTAAG -ACGGAAAGGTACACGTAGGTTCAG -ACGGAAAGGTACACGTAGGCATAG -ACGGAAAGGTACACGTAGGACAAG -ACGGAAAGGTACACGTAGAAGCAG -ACGGAAAGGTACACGTAGCGTCAA -ACGGAAAGGTACACGTAGGCTGAA -ACGGAAAGGTACACGTAGAGTACG -ACGGAAAGGTACACGTAGATCCGA -ACGGAAAGGTACACGTAGATGGGA -ACGGAAAGGTACACGTAGGTGCAA -ACGGAAAGGTACACGTAGGAGGAA -ACGGAAAGGTACACGTAGCAGGTA -ACGGAAAGGTACACGTAGGACTCT -ACGGAAAGGTACACGTAGAGTCCT -ACGGAAAGGTACACGTAGTAAGCC -ACGGAAAGGTACACGTAGATAGCC -ACGGAAAGGTACACGTAGTAACCG -ACGGAAAGGTACACGTAGATGCCA -ACGGAAAGGTACACGGTAGGAAAC -ACGGAAAGGTACACGGTAAACACC -ACGGAAAGGTACACGGTAATCGAG -ACGGAAAGGTACACGGTACTCCTT -ACGGAAAGGTACACGGTACCTGTT -ACGGAAAGGTACACGGTACGGTTT -ACGGAAAGGTACACGGTAGTGGTT -ACGGAAAGGTACACGGTAGCCTTT -ACGGAAAGGTACACGGTAGGTCTT -ACGGAAAGGTACACGGTAACGCTT -ACGGAAAGGTACACGGTAAGCGTT -ACGGAAAGGTACACGGTATTCGTC -ACGGAAAGGTACACGGTATCTCTC -ACGGAAAGGTACACGGTATGGATC -ACGGAAAGGTACACGGTACACTTC -ACGGAAAGGTACACGGTAGTACTC -ACGGAAAGGTACACGGTAGATGTC -ACGGAAAGGTACACGGTAACAGTC -ACGGAAAGGTACACGGTATTGCTG -ACGGAAAGGTACACGGTATCCATG -ACGGAAAGGTACACGGTATGTGTG -ACGGAAAGGTACACGGTACTAGTG -ACGGAAAGGTACACGGTACATCTG -ACGGAAAGGTACACGGTAGAGTTG -ACGGAAAGGTACACGGTAAGACTG -ACGGAAAGGTACACGGTATCGGTA -ACGGAAAGGTACACGGTATGCCTA -ACGGAAAGGTACACGGTACCACTA -ACGGAAAGGTACACGGTAGGAGTA -ACGGAAAGGTACACGGTATCGTCT -ACGGAAAGGTACACGGTATGCACT -ACGGAAAGGTACACGGTACTGACT -ACGGAAAGGTACACGGTACAACCT -ACGGAAAGGTACACGGTAGCTACT -ACGGAAAGGTACACGGTAGGATCT -ACGGAAAGGTACACGGTAAAGGCT -ACGGAAAGGTACACGGTATCAACC -ACGGAAAGGTACACGGTATGTTCC -ACGGAAAGGTACACGGTAATTCCC -ACGGAAAGGTACACGGTATTCTCG -ACGGAAAGGTACACGGTATAGACG -ACGGAAAGGTACACGGTAGTAACG -ACGGAAAGGTACACGGTAACTTCG -ACGGAAAGGTACACGGTATACGCA -ACGGAAAGGTACACGGTACTTGCA -ACGGAAAGGTACACGGTACGAACA -ACGGAAAGGTACACGGTACAGTCA -ACGGAAAGGTACACGGTAGATCCA -ACGGAAAGGTACACGGTAACGACA -ACGGAAAGGTACACGGTAAGCTCA -ACGGAAAGGTACACGGTATCACGT -ACGGAAAGGTACACGGTACGTAGT -ACGGAAAGGTACACGGTAGTCAGT -ACGGAAAGGTACACGGTAGAAGGT -ACGGAAAGGTACACGGTAAACCGT -ACGGAAAGGTACACGGTATTGTGC -ACGGAAAGGTACACGGTACTAAGC -ACGGAAAGGTACACGGTAACTAGC -ACGGAAAGGTACACGGTAAGATGC -ACGGAAAGGTACACGGTATGAAGG -ACGGAAAGGTACACGGTACAATGG -ACGGAAAGGTACACGGTAATGAGG -ACGGAAAGGTACACGGTAAATGGG -ACGGAAAGGTACACGGTATCCTGA -ACGGAAAGGTACACGGTATAGCGA -ACGGAAAGGTACACGGTACACAGA -ACGGAAAGGTACACGGTAGCAAGA -ACGGAAAGGTACACGGTAGGTTGA -ACGGAAAGGTACACGGTATCCGAT -ACGGAAAGGTACACGGTATGGCAT -ACGGAAAGGTACACGGTACGAGAT -ACGGAAAGGTACACGGTATACCAC -ACGGAAAGGTACACGGTACAGAAC -ACGGAAAGGTACACGGTAGTCTAC -ACGGAAAGGTACACGGTAACGTAC -ACGGAAAGGTACACGGTAAGTGAC -ACGGAAAGGTACACGGTACTGTAG -ACGGAAAGGTACACGGTACCTAAG -ACGGAAAGGTACACGGTAGTTCAG -ACGGAAAGGTACACGGTAGCATAG -ACGGAAAGGTACACGGTAGACAAG -ACGGAAAGGTACACGGTAAAGCAG -ACGGAAAGGTACACGGTACGTCAA -ACGGAAAGGTACACGGTAGCTGAA -ACGGAAAGGTACACGGTAAGTACG -ACGGAAAGGTACACGGTAATCCGA -ACGGAAAGGTACACGGTAATGGGA -ACGGAAAGGTACACGGTAGTGCAA -ACGGAAAGGTACACGGTAGAGGAA -ACGGAAAGGTACACGGTACAGGTA -ACGGAAAGGTACACGGTAGACTCT -ACGGAAAGGTACACGGTAAGTCCT -ACGGAAAGGTACACGGTATAAGCC -ACGGAAAGGTACACGGTAATAGCC -ACGGAAAGGTACACGGTATAACCG -ACGGAAAGGTACACGGTAATGCCA -ACGGAAAGGTACTCGACTGGAAAC -ACGGAAAGGTACTCGACTAACACC -ACGGAAAGGTACTCGACTATCGAG -ACGGAAAGGTACTCGACTCTCCTT -ACGGAAAGGTACTCGACTCCTGTT -ACGGAAAGGTACTCGACTCGGTTT -ACGGAAAGGTACTCGACTGTGGTT -ACGGAAAGGTACTCGACTGCCTTT -ACGGAAAGGTACTCGACTGGTCTT -ACGGAAAGGTACTCGACTACGCTT -ACGGAAAGGTACTCGACTAGCGTT -ACGGAAAGGTACTCGACTTTCGTC -ACGGAAAGGTACTCGACTTCTCTC -ACGGAAAGGTACTCGACTTGGATC -ACGGAAAGGTACTCGACTCACTTC -ACGGAAAGGTACTCGACTGTACTC -ACGGAAAGGTACTCGACTGATGTC -ACGGAAAGGTACTCGACTACAGTC -ACGGAAAGGTACTCGACTTTGCTG -ACGGAAAGGTACTCGACTTCCATG -ACGGAAAGGTACTCGACTTGTGTG -ACGGAAAGGTACTCGACTCTAGTG -ACGGAAAGGTACTCGACTCATCTG -ACGGAAAGGTACTCGACTGAGTTG -ACGGAAAGGTACTCGACTAGACTG -ACGGAAAGGTACTCGACTTCGGTA -ACGGAAAGGTACTCGACTTGCCTA -ACGGAAAGGTACTCGACTCCACTA -ACGGAAAGGTACTCGACTGGAGTA -ACGGAAAGGTACTCGACTTCGTCT -ACGGAAAGGTACTCGACTTGCACT -ACGGAAAGGTACTCGACTCTGACT -ACGGAAAGGTACTCGACTCAACCT -ACGGAAAGGTACTCGACTGCTACT -ACGGAAAGGTACTCGACTGGATCT -ACGGAAAGGTACTCGACTAAGGCT -ACGGAAAGGTACTCGACTTCAACC -ACGGAAAGGTACTCGACTTGTTCC -ACGGAAAGGTACTCGACTATTCCC -ACGGAAAGGTACTCGACTTTCTCG -ACGGAAAGGTACTCGACTTAGACG -ACGGAAAGGTACTCGACTGTAACG -ACGGAAAGGTACTCGACTACTTCG -ACGGAAAGGTACTCGACTTACGCA -ACGGAAAGGTACTCGACTCTTGCA -ACGGAAAGGTACTCGACTCGAACA -ACGGAAAGGTACTCGACTCAGTCA -ACGGAAAGGTACTCGACTGATCCA -ACGGAAAGGTACTCGACTACGACA -ACGGAAAGGTACTCGACTAGCTCA -ACGGAAAGGTACTCGACTTCACGT -ACGGAAAGGTACTCGACTCGTAGT -ACGGAAAGGTACTCGACTGTCAGT -ACGGAAAGGTACTCGACTGAAGGT -ACGGAAAGGTACTCGACTAACCGT -ACGGAAAGGTACTCGACTTTGTGC -ACGGAAAGGTACTCGACTCTAAGC -ACGGAAAGGTACTCGACTACTAGC -ACGGAAAGGTACTCGACTAGATGC -ACGGAAAGGTACTCGACTTGAAGG -ACGGAAAGGTACTCGACTCAATGG -ACGGAAAGGTACTCGACTATGAGG -ACGGAAAGGTACTCGACTAATGGG -ACGGAAAGGTACTCGACTTCCTGA -ACGGAAAGGTACTCGACTTAGCGA -ACGGAAAGGTACTCGACTCACAGA -ACGGAAAGGTACTCGACTGCAAGA -ACGGAAAGGTACTCGACTGGTTGA -ACGGAAAGGTACTCGACTTCCGAT -ACGGAAAGGTACTCGACTTGGCAT -ACGGAAAGGTACTCGACTCGAGAT -ACGGAAAGGTACTCGACTTACCAC -ACGGAAAGGTACTCGACTCAGAAC -ACGGAAAGGTACTCGACTGTCTAC -ACGGAAAGGTACTCGACTACGTAC -ACGGAAAGGTACTCGACTAGTGAC -ACGGAAAGGTACTCGACTCTGTAG -ACGGAAAGGTACTCGACTCCTAAG -ACGGAAAGGTACTCGACTGTTCAG -ACGGAAAGGTACTCGACTGCATAG -ACGGAAAGGTACTCGACTGACAAG -ACGGAAAGGTACTCGACTAAGCAG -ACGGAAAGGTACTCGACTCGTCAA -ACGGAAAGGTACTCGACTGCTGAA -ACGGAAAGGTACTCGACTAGTACG -ACGGAAAGGTACTCGACTATCCGA -ACGGAAAGGTACTCGACTATGGGA -ACGGAAAGGTACTCGACTGTGCAA -ACGGAAAGGTACTCGACTGAGGAA -ACGGAAAGGTACTCGACTCAGGTA -ACGGAAAGGTACTCGACTGACTCT -ACGGAAAGGTACTCGACTAGTCCT -ACGGAAAGGTACTCGACTTAAGCC -ACGGAAAGGTACTCGACTATAGCC -ACGGAAAGGTACTCGACTTAACCG -ACGGAAAGGTACTCGACTATGCCA -ACGGAAAGGTACGCATACGGAAAC -ACGGAAAGGTACGCATACAACACC -ACGGAAAGGTACGCATACATCGAG -ACGGAAAGGTACGCATACCTCCTT -ACGGAAAGGTACGCATACCCTGTT -ACGGAAAGGTACGCATACCGGTTT -ACGGAAAGGTACGCATACGTGGTT -ACGGAAAGGTACGCATACGCCTTT -ACGGAAAGGTACGCATACGGTCTT -ACGGAAAGGTACGCATACACGCTT -ACGGAAAGGTACGCATACAGCGTT -ACGGAAAGGTACGCATACTTCGTC -ACGGAAAGGTACGCATACTCTCTC -ACGGAAAGGTACGCATACTGGATC -ACGGAAAGGTACGCATACCACTTC -ACGGAAAGGTACGCATACGTACTC -ACGGAAAGGTACGCATACGATGTC -ACGGAAAGGTACGCATACACAGTC -ACGGAAAGGTACGCATACTTGCTG -ACGGAAAGGTACGCATACTCCATG -ACGGAAAGGTACGCATACTGTGTG -ACGGAAAGGTACGCATACCTAGTG -ACGGAAAGGTACGCATACCATCTG -ACGGAAAGGTACGCATACGAGTTG -ACGGAAAGGTACGCATACAGACTG -ACGGAAAGGTACGCATACTCGGTA -ACGGAAAGGTACGCATACTGCCTA -ACGGAAAGGTACGCATACCCACTA -ACGGAAAGGTACGCATACGGAGTA -ACGGAAAGGTACGCATACTCGTCT -ACGGAAAGGTACGCATACTGCACT -ACGGAAAGGTACGCATACCTGACT -ACGGAAAGGTACGCATACCAACCT -ACGGAAAGGTACGCATACGCTACT -ACGGAAAGGTACGCATACGGATCT -ACGGAAAGGTACGCATACAAGGCT -ACGGAAAGGTACGCATACTCAACC -ACGGAAAGGTACGCATACTGTTCC -ACGGAAAGGTACGCATACATTCCC -ACGGAAAGGTACGCATACTTCTCG -ACGGAAAGGTACGCATACTAGACG -ACGGAAAGGTACGCATACGTAACG -ACGGAAAGGTACGCATACACTTCG -ACGGAAAGGTACGCATACTACGCA -ACGGAAAGGTACGCATACCTTGCA -ACGGAAAGGTACGCATACCGAACA -ACGGAAAGGTACGCATACCAGTCA -ACGGAAAGGTACGCATACGATCCA -ACGGAAAGGTACGCATACACGACA -ACGGAAAGGTACGCATACAGCTCA -ACGGAAAGGTACGCATACTCACGT -ACGGAAAGGTACGCATACCGTAGT -ACGGAAAGGTACGCATACGTCAGT -ACGGAAAGGTACGCATACGAAGGT -ACGGAAAGGTACGCATACAACCGT -ACGGAAAGGTACGCATACTTGTGC -ACGGAAAGGTACGCATACCTAAGC -ACGGAAAGGTACGCATACACTAGC -ACGGAAAGGTACGCATACAGATGC -ACGGAAAGGTACGCATACTGAAGG -ACGGAAAGGTACGCATACCAATGG -ACGGAAAGGTACGCATACATGAGG -ACGGAAAGGTACGCATACAATGGG -ACGGAAAGGTACGCATACTCCTGA -ACGGAAAGGTACGCATACTAGCGA -ACGGAAAGGTACGCATACCACAGA -ACGGAAAGGTACGCATACGCAAGA -ACGGAAAGGTACGCATACGGTTGA -ACGGAAAGGTACGCATACTCCGAT -ACGGAAAGGTACGCATACTGGCAT -ACGGAAAGGTACGCATACCGAGAT -ACGGAAAGGTACGCATACTACCAC -ACGGAAAGGTACGCATACCAGAAC -ACGGAAAGGTACGCATACGTCTAC -ACGGAAAGGTACGCATACACGTAC -ACGGAAAGGTACGCATACAGTGAC -ACGGAAAGGTACGCATACCTGTAG -ACGGAAAGGTACGCATACCCTAAG -ACGGAAAGGTACGCATACGTTCAG -ACGGAAAGGTACGCATACGCATAG -ACGGAAAGGTACGCATACGACAAG -ACGGAAAGGTACGCATACAAGCAG -ACGGAAAGGTACGCATACCGTCAA -ACGGAAAGGTACGCATACGCTGAA -ACGGAAAGGTACGCATACAGTACG -ACGGAAAGGTACGCATACATCCGA -ACGGAAAGGTACGCATACATGGGA -ACGGAAAGGTACGCATACGTGCAA -ACGGAAAGGTACGCATACGAGGAA -ACGGAAAGGTACGCATACCAGGTA -ACGGAAAGGTACGCATACGACTCT -ACGGAAAGGTACGCATACAGTCCT -ACGGAAAGGTACGCATACTAAGCC -ACGGAAAGGTACGCATACATAGCC -ACGGAAAGGTACGCATACTAACCG -ACGGAAAGGTACGCATACATGCCA -ACGGAAAGGTACGCACTTGGAAAC -ACGGAAAGGTACGCACTTAACACC -ACGGAAAGGTACGCACTTATCGAG -ACGGAAAGGTACGCACTTCTCCTT -ACGGAAAGGTACGCACTTCCTGTT -ACGGAAAGGTACGCACTTCGGTTT -ACGGAAAGGTACGCACTTGTGGTT -ACGGAAAGGTACGCACTTGCCTTT -ACGGAAAGGTACGCACTTGGTCTT -ACGGAAAGGTACGCACTTACGCTT -ACGGAAAGGTACGCACTTAGCGTT -ACGGAAAGGTACGCACTTTTCGTC -ACGGAAAGGTACGCACTTTCTCTC -ACGGAAAGGTACGCACTTTGGATC -ACGGAAAGGTACGCACTTCACTTC -ACGGAAAGGTACGCACTTGTACTC -ACGGAAAGGTACGCACTTGATGTC -ACGGAAAGGTACGCACTTACAGTC -ACGGAAAGGTACGCACTTTTGCTG -ACGGAAAGGTACGCACTTTCCATG -ACGGAAAGGTACGCACTTTGTGTG -ACGGAAAGGTACGCACTTCTAGTG -ACGGAAAGGTACGCACTTCATCTG -ACGGAAAGGTACGCACTTGAGTTG -ACGGAAAGGTACGCACTTAGACTG -ACGGAAAGGTACGCACTTTCGGTA -ACGGAAAGGTACGCACTTTGCCTA -ACGGAAAGGTACGCACTTCCACTA -ACGGAAAGGTACGCACTTGGAGTA -ACGGAAAGGTACGCACTTTCGTCT -ACGGAAAGGTACGCACTTTGCACT -ACGGAAAGGTACGCACTTCTGACT -ACGGAAAGGTACGCACTTCAACCT -ACGGAAAGGTACGCACTTGCTACT -ACGGAAAGGTACGCACTTGGATCT -ACGGAAAGGTACGCACTTAAGGCT -ACGGAAAGGTACGCACTTTCAACC -ACGGAAAGGTACGCACTTTGTTCC -ACGGAAAGGTACGCACTTATTCCC -ACGGAAAGGTACGCACTTTTCTCG -ACGGAAAGGTACGCACTTTAGACG -ACGGAAAGGTACGCACTTGTAACG -ACGGAAAGGTACGCACTTACTTCG -ACGGAAAGGTACGCACTTTACGCA -ACGGAAAGGTACGCACTTCTTGCA -ACGGAAAGGTACGCACTTCGAACA -ACGGAAAGGTACGCACTTCAGTCA -ACGGAAAGGTACGCACTTGATCCA -ACGGAAAGGTACGCACTTACGACA -ACGGAAAGGTACGCACTTAGCTCA -ACGGAAAGGTACGCACTTTCACGT -ACGGAAAGGTACGCACTTCGTAGT -ACGGAAAGGTACGCACTTGTCAGT -ACGGAAAGGTACGCACTTGAAGGT -ACGGAAAGGTACGCACTTAACCGT -ACGGAAAGGTACGCACTTTTGTGC -ACGGAAAGGTACGCACTTCTAAGC -ACGGAAAGGTACGCACTTACTAGC -ACGGAAAGGTACGCACTTAGATGC -ACGGAAAGGTACGCACTTTGAAGG -ACGGAAAGGTACGCACTTCAATGG -ACGGAAAGGTACGCACTTATGAGG -ACGGAAAGGTACGCACTTAATGGG -ACGGAAAGGTACGCACTTTCCTGA -ACGGAAAGGTACGCACTTTAGCGA -ACGGAAAGGTACGCACTTCACAGA -ACGGAAAGGTACGCACTTGCAAGA -ACGGAAAGGTACGCACTTGGTTGA -ACGGAAAGGTACGCACTTTCCGAT -ACGGAAAGGTACGCACTTTGGCAT -ACGGAAAGGTACGCACTTCGAGAT -ACGGAAAGGTACGCACTTTACCAC -ACGGAAAGGTACGCACTTCAGAAC -ACGGAAAGGTACGCACTTGTCTAC -ACGGAAAGGTACGCACTTACGTAC -ACGGAAAGGTACGCACTTAGTGAC -ACGGAAAGGTACGCACTTCTGTAG -ACGGAAAGGTACGCACTTCCTAAG -ACGGAAAGGTACGCACTTGTTCAG -ACGGAAAGGTACGCACTTGCATAG -ACGGAAAGGTACGCACTTGACAAG -ACGGAAAGGTACGCACTTAAGCAG -ACGGAAAGGTACGCACTTCGTCAA -ACGGAAAGGTACGCACTTGCTGAA -ACGGAAAGGTACGCACTTAGTACG -ACGGAAAGGTACGCACTTATCCGA -ACGGAAAGGTACGCACTTATGGGA -ACGGAAAGGTACGCACTTGTGCAA -ACGGAAAGGTACGCACTTGAGGAA -ACGGAAAGGTACGCACTTCAGGTA -ACGGAAAGGTACGCACTTGACTCT -ACGGAAAGGTACGCACTTAGTCCT -ACGGAAAGGTACGCACTTTAAGCC -ACGGAAAGGTACGCACTTATAGCC -ACGGAAAGGTACGCACTTTAACCG -ACGGAAAGGTACGCACTTATGCCA -ACGGAAAGGTACACACGAGGAAAC -ACGGAAAGGTACACACGAAACACC -ACGGAAAGGTACACACGAATCGAG -ACGGAAAGGTACACACGACTCCTT -ACGGAAAGGTACACACGACCTGTT -ACGGAAAGGTACACACGACGGTTT -ACGGAAAGGTACACACGAGTGGTT -ACGGAAAGGTACACACGAGCCTTT -ACGGAAAGGTACACACGAGGTCTT -ACGGAAAGGTACACACGAACGCTT -ACGGAAAGGTACACACGAAGCGTT -ACGGAAAGGTACACACGATTCGTC -ACGGAAAGGTACACACGATCTCTC -ACGGAAAGGTACACACGATGGATC -ACGGAAAGGTACACACGACACTTC -ACGGAAAGGTACACACGAGTACTC -ACGGAAAGGTACACACGAGATGTC -ACGGAAAGGTACACACGAACAGTC -ACGGAAAGGTACACACGATTGCTG -ACGGAAAGGTACACACGATCCATG -ACGGAAAGGTACACACGATGTGTG -ACGGAAAGGTACACACGACTAGTG -ACGGAAAGGTACACACGACATCTG -ACGGAAAGGTACACACGAGAGTTG -ACGGAAAGGTACACACGAAGACTG -ACGGAAAGGTACACACGATCGGTA -ACGGAAAGGTACACACGATGCCTA -ACGGAAAGGTACACACGACCACTA -ACGGAAAGGTACACACGAGGAGTA -ACGGAAAGGTACACACGATCGTCT -ACGGAAAGGTACACACGATGCACT -ACGGAAAGGTACACACGACTGACT -ACGGAAAGGTACACACGACAACCT -ACGGAAAGGTACACACGAGCTACT -ACGGAAAGGTACACACGAGGATCT -ACGGAAAGGTACACACGAAAGGCT -ACGGAAAGGTACACACGATCAACC -ACGGAAAGGTACACACGATGTTCC -ACGGAAAGGTACACACGAATTCCC -ACGGAAAGGTACACACGATTCTCG -ACGGAAAGGTACACACGATAGACG -ACGGAAAGGTACACACGAGTAACG -ACGGAAAGGTACACACGAACTTCG -ACGGAAAGGTACACACGATACGCA -ACGGAAAGGTACACACGACTTGCA -ACGGAAAGGTACACACGACGAACA -ACGGAAAGGTACACACGACAGTCA -ACGGAAAGGTACACACGAGATCCA -ACGGAAAGGTACACACGAACGACA -ACGGAAAGGTACACACGAAGCTCA -ACGGAAAGGTACACACGATCACGT -ACGGAAAGGTACACACGACGTAGT -ACGGAAAGGTACACACGAGTCAGT -ACGGAAAGGTACACACGAGAAGGT -ACGGAAAGGTACACACGAAACCGT -ACGGAAAGGTACACACGATTGTGC -ACGGAAAGGTACACACGACTAAGC -ACGGAAAGGTACACACGAACTAGC -ACGGAAAGGTACACACGAAGATGC -ACGGAAAGGTACACACGATGAAGG -ACGGAAAGGTACACACGACAATGG -ACGGAAAGGTACACACGAATGAGG -ACGGAAAGGTACACACGAAATGGG -ACGGAAAGGTACACACGATCCTGA -ACGGAAAGGTACACACGATAGCGA -ACGGAAAGGTACACACGACACAGA -ACGGAAAGGTACACACGAGCAAGA -ACGGAAAGGTACACACGAGGTTGA -ACGGAAAGGTACACACGATCCGAT -ACGGAAAGGTACACACGATGGCAT -ACGGAAAGGTACACACGACGAGAT -ACGGAAAGGTACACACGATACCAC -ACGGAAAGGTACACACGACAGAAC -ACGGAAAGGTACACACGAGTCTAC -ACGGAAAGGTACACACGAACGTAC -ACGGAAAGGTACACACGAAGTGAC -ACGGAAAGGTACACACGACTGTAG -ACGGAAAGGTACACACGACCTAAG -ACGGAAAGGTACACACGAGTTCAG -ACGGAAAGGTACACACGAGCATAG -ACGGAAAGGTACACACGAGACAAG -ACGGAAAGGTACACACGAAAGCAG -ACGGAAAGGTACACACGACGTCAA -ACGGAAAGGTACACACGAGCTGAA -ACGGAAAGGTACACACGAAGTACG -ACGGAAAGGTACACACGAATCCGA -ACGGAAAGGTACACACGAATGGGA -ACGGAAAGGTACACACGAGTGCAA -ACGGAAAGGTACACACGAGAGGAA -ACGGAAAGGTACACACGACAGGTA -ACGGAAAGGTACACACGAGACTCT -ACGGAAAGGTACACACGAAGTCCT -ACGGAAAGGTACACACGATAAGCC -ACGGAAAGGTACACACGAATAGCC -ACGGAAAGGTACACACGATAACCG -ACGGAAAGGTACACACGAATGCCA -ACGGAAAGGTACTCACAGGGAAAC -ACGGAAAGGTACTCACAGAACACC -ACGGAAAGGTACTCACAGATCGAG -ACGGAAAGGTACTCACAGCTCCTT -ACGGAAAGGTACTCACAGCCTGTT -ACGGAAAGGTACTCACAGCGGTTT -ACGGAAAGGTACTCACAGGTGGTT -ACGGAAAGGTACTCACAGGCCTTT -ACGGAAAGGTACTCACAGGGTCTT -ACGGAAAGGTACTCACAGACGCTT -ACGGAAAGGTACTCACAGAGCGTT -ACGGAAAGGTACTCACAGTTCGTC -ACGGAAAGGTACTCACAGTCTCTC -ACGGAAAGGTACTCACAGTGGATC -ACGGAAAGGTACTCACAGCACTTC -ACGGAAAGGTACTCACAGGTACTC -ACGGAAAGGTACTCACAGGATGTC -ACGGAAAGGTACTCACAGACAGTC -ACGGAAAGGTACTCACAGTTGCTG -ACGGAAAGGTACTCACAGTCCATG -ACGGAAAGGTACTCACAGTGTGTG -ACGGAAAGGTACTCACAGCTAGTG -ACGGAAAGGTACTCACAGCATCTG -ACGGAAAGGTACTCACAGGAGTTG -ACGGAAAGGTACTCACAGAGACTG -ACGGAAAGGTACTCACAGTCGGTA -ACGGAAAGGTACTCACAGTGCCTA -ACGGAAAGGTACTCACAGCCACTA -ACGGAAAGGTACTCACAGGGAGTA -ACGGAAAGGTACTCACAGTCGTCT -ACGGAAAGGTACTCACAGTGCACT -ACGGAAAGGTACTCACAGCTGACT -ACGGAAAGGTACTCACAGCAACCT -ACGGAAAGGTACTCACAGGCTACT -ACGGAAAGGTACTCACAGGGATCT -ACGGAAAGGTACTCACAGAAGGCT -ACGGAAAGGTACTCACAGTCAACC -ACGGAAAGGTACTCACAGTGTTCC -ACGGAAAGGTACTCACAGATTCCC -ACGGAAAGGTACTCACAGTTCTCG -ACGGAAAGGTACTCACAGTAGACG -ACGGAAAGGTACTCACAGGTAACG -ACGGAAAGGTACTCACAGACTTCG -ACGGAAAGGTACTCACAGTACGCA -ACGGAAAGGTACTCACAGCTTGCA -ACGGAAAGGTACTCACAGCGAACA -ACGGAAAGGTACTCACAGCAGTCA -ACGGAAAGGTACTCACAGGATCCA -ACGGAAAGGTACTCACAGACGACA -ACGGAAAGGTACTCACAGAGCTCA -ACGGAAAGGTACTCACAGTCACGT -ACGGAAAGGTACTCACAGCGTAGT -ACGGAAAGGTACTCACAGGTCAGT -ACGGAAAGGTACTCACAGGAAGGT -ACGGAAAGGTACTCACAGAACCGT -ACGGAAAGGTACTCACAGTTGTGC -ACGGAAAGGTACTCACAGCTAAGC -ACGGAAAGGTACTCACAGACTAGC -ACGGAAAGGTACTCACAGAGATGC -ACGGAAAGGTACTCACAGTGAAGG -ACGGAAAGGTACTCACAGCAATGG -ACGGAAAGGTACTCACAGATGAGG -ACGGAAAGGTACTCACAGAATGGG -ACGGAAAGGTACTCACAGTCCTGA -ACGGAAAGGTACTCACAGTAGCGA -ACGGAAAGGTACTCACAGCACAGA -ACGGAAAGGTACTCACAGGCAAGA -ACGGAAAGGTACTCACAGGGTTGA -ACGGAAAGGTACTCACAGTCCGAT -ACGGAAAGGTACTCACAGTGGCAT -ACGGAAAGGTACTCACAGCGAGAT -ACGGAAAGGTACTCACAGTACCAC -ACGGAAAGGTACTCACAGCAGAAC -ACGGAAAGGTACTCACAGGTCTAC -ACGGAAAGGTACTCACAGACGTAC -ACGGAAAGGTACTCACAGAGTGAC -ACGGAAAGGTACTCACAGCTGTAG -ACGGAAAGGTACTCACAGCCTAAG -ACGGAAAGGTACTCACAGGTTCAG -ACGGAAAGGTACTCACAGGCATAG -ACGGAAAGGTACTCACAGGACAAG -ACGGAAAGGTACTCACAGAAGCAG -ACGGAAAGGTACTCACAGCGTCAA -ACGGAAAGGTACTCACAGGCTGAA -ACGGAAAGGTACTCACAGAGTACG -ACGGAAAGGTACTCACAGATCCGA -ACGGAAAGGTACTCACAGATGGGA -ACGGAAAGGTACTCACAGGTGCAA -ACGGAAAGGTACTCACAGGAGGAA -ACGGAAAGGTACTCACAGCAGGTA -ACGGAAAGGTACTCACAGGACTCT -ACGGAAAGGTACTCACAGAGTCCT -ACGGAAAGGTACTCACAGTAAGCC -ACGGAAAGGTACTCACAGATAGCC -ACGGAAAGGTACTCACAGTAACCG -ACGGAAAGGTACTCACAGATGCCA -ACGGAAAGGTACCCAGATGGAAAC -ACGGAAAGGTACCCAGATAACACC -ACGGAAAGGTACCCAGATATCGAG -ACGGAAAGGTACCCAGATCTCCTT -ACGGAAAGGTACCCAGATCCTGTT -ACGGAAAGGTACCCAGATCGGTTT -ACGGAAAGGTACCCAGATGTGGTT -ACGGAAAGGTACCCAGATGCCTTT -ACGGAAAGGTACCCAGATGGTCTT -ACGGAAAGGTACCCAGATACGCTT -ACGGAAAGGTACCCAGATAGCGTT -ACGGAAAGGTACCCAGATTTCGTC -ACGGAAAGGTACCCAGATTCTCTC -ACGGAAAGGTACCCAGATTGGATC -ACGGAAAGGTACCCAGATCACTTC -ACGGAAAGGTACCCAGATGTACTC -ACGGAAAGGTACCCAGATGATGTC -ACGGAAAGGTACCCAGATACAGTC -ACGGAAAGGTACCCAGATTTGCTG -ACGGAAAGGTACCCAGATTCCATG -ACGGAAAGGTACCCAGATTGTGTG -ACGGAAAGGTACCCAGATCTAGTG -ACGGAAAGGTACCCAGATCATCTG -ACGGAAAGGTACCCAGATGAGTTG -ACGGAAAGGTACCCAGATAGACTG -ACGGAAAGGTACCCAGATTCGGTA -ACGGAAAGGTACCCAGATTGCCTA -ACGGAAAGGTACCCAGATCCACTA -ACGGAAAGGTACCCAGATGGAGTA -ACGGAAAGGTACCCAGATTCGTCT -ACGGAAAGGTACCCAGATTGCACT -ACGGAAAGGTACCCAGATCTGACT -ACGGAAAGGTACCCAGATCAACCT -ACGGAAAGGTACCCAGATGCTACT -ACGGAAAGGTACCCAGATGGATCT -ACGGAAAGGTACCCAGATAAGGCT -ACGGAAAGGTACCCAGATTCAACC -ACGGAAAGGTACCCAGATTGTTCC -ACGGAAAGGTACCCAGATATTCCC -ACGGAAAGGTACCCAGATTTCTCG -ACGGAAAGGTACCCAGATTAGACG -ACGGAAAGGTACCCAGATGTAACG -ACGGAAAGGTACCCAGATACTTCG -ACGGAAAGGTACCCAGATTACGCA -ACGGAAAGGTACCCAGATCTTGCA -ACGGAAAGGTACCCAGATCGAACA -ACGGAAAGGTACCCAGATCAGTCA -ACGGAAAGGTACCCAGATGATCCA -ACGGAAAGGTACCCAGATACGACA -ACGGAAAGGTACCCAGATAGCTCA -ACGGAAAGGTACCCAGATTCACGT -ACGGAAAGGTACCCAGATCGTAGT -ACGGAAAGGTACCCAGATGTCAGT -ACGGAAAGGTACCCAGATGAAGGT -ACGGAAAGGTACCCAGATAACCGT -ACGGAAAGGTACCCAGATTTGTGC -ACGGAAAGGTACCCAGATCTAAGC -ACGGAAAGGTACCCAGATACTAGC -ACGGAAAGGTACCCAGATAGATGC -ACGGAAAGGTACCCAGATTGAAGG -ACGGAAAGGTACCCAGATCAATGG -ACGGAAAGGTACCCAGATATGAGG -ACGGAAAGGTACCCAGATAATGGG -ACGGAAAGGTACCCAGATTCCTGA -ACGGAAAGGTACCCAGATTAGCGA -ACGGAAAGGTACCCAGATCACAGA -ACGGAAAGGTACCCAGATGCAAGA -ACGGAAAGGTACCCAGATGGTTGA -ACGGAAAGGTACCCAGATTCCGAT -ACGGAAAGGTACCCAGATTGGCAT -ACGGAAAGGTACCCAGATCGAGAT -ACGGAAAGGTACCCAGATTACCAC -ACGGAAAGGTACCCAGATCAGAAC -ACGGAAAGGTACCCAGATGTCTAC -ACGGAAAGGTACCCAGATACGTAC -ACGGAAAGGTACCCAGATAGTGAC -ACGGAAAGGTACCCAGATCTGTAG -ACGGAAAGGTACCCAGATCCTAAG -ACGGAAAGGTACCCAGATGTTCAG -ACGGAAAGGTACCCAGATGCATAG -ACGGAAAGGTACCCAGATGACAAG -ACGGAAAGGTACCCAGATAAGCAG -ACGGAAAGGTACCCAGATCGTCAA -ACGGAAAGGTACCCAGATGCTGAA -ACGGAAAGGTACCCAGATAGTACG -ACGGAAAGGTACCCAGATATCCGA -ACGGAAAGGTACCCAGATATGGGA -ACGGAAAGGTACCCAGATGTGCAA -ACGGAAAGGTACCCAGATGAGGAA -ACGGAAAGGTACCCAGATCAGGTA -ACGGAAAGGTACCCAGATGACTCT -ACGGAAAGGTACCCAGATAGTCCT -ACGGAAAGGTACCCAGATTAAGCC -ACGGAAAGGTACCCAGATATAGCC -ACGGAAAGGTACCCAGATTAACCG -ACGGAAAGGTACCCAGATATGCCA -ACGGAAAGGTACACAACGGGAAAC -ACGGAAAGGTACACAACGAACACC -ACGGAAAGGTACACAACGATCGAG -ACGGAAAGGTACACAACGCTCCTT -ACGGAAAGGTACACAACGCCTGTT -ACGGAAAGGTACACAACGCGGTTT -ACGGAAAGGTACACAACGGTGGTT -ACGGAAAGGTACACAACGGCCTTT -ACGGAAAGGTACACAACGGGTCTT -ACGGAAAGGTACACAACGACGCTT -ACGGAAAGGTACACAACGAGCGTT -ACGGAAAGGTACACAACGTTCGTC -ACGGAAAGGTACACAACGTCTCTC -ACGGAAAGGTACACAACGTGGATC -ACGGAAAGGTACACAACGCACTTC -ACGGAAAGGTACACAACGGTACTC -ACGGAAAGGTACACAACGGATGTC -ACGGAAAGGTACACAACGACAGTC -ACGGAAAGGTACACAACGTTGCTG -ACGGAAAGGTACACAACGTCCATG -ACGGAAAGGTACACAACGTGTGTG -ACGGAAAGGTACACAACGCTAGTG -ACGGAAAGGTACACAACGCATCTG -ACGGAAAGGTACACAACGGAGTTG -ACGGAAAGGTACACAACGAGACTG -ACGGAAAGGTACACAACGTCGGTA -ACGGAAAGGTACACAACGTGCCTA -ACGGAAAGGTACACAACGCCACTA -ACGGAAAGGTACACAACGGGAGTA -ACGGAAAGGTACACAACGTCGTCT -ACGGAAAGGTACACAACGTGCACT -ACGGAAAGGTACACAACGCTGACT -ACGGAAAGGTACACAACGCAACCT -ACGGAAAGGTACACAACGGCTACT -ACGGAAAGGTACACAACGGGATCT -ACGGAAAGGTACACAACGAAGGCT -ACGGAAAGGTACACAACGTCAACC -ACGGAAAGGTACACAACGTGTTCC -ACGGAAAGGTACACAACGATTCCC -ACGGAAAGGTACACAACGTTCTCG -ACGGAAAGGTACACAACGTAGACG -ACGGAAAGGTACACAACGGTAACG -ACGGAAAGGTACACAACGACTTCG -ACGGAAAGGTACACAACGTACGCA -ACGGAAAGGTACACAACGCTTGCA -ACGGAAAGGTACACAACGCGAACA -ACGGAAAGGTACACAACGCAGTCA -ACGGAAAGGTACACAACGGATCCA -ACGGAAAGGTACACAACGACGACA -ACGGAAAGGTACACAACGAGCTCA -ACGGAAAGGTACACAACGTCACGT -ACGGAAAGGTACACAACGCGTAGT -ACGGAAAGGTACACAACGGTCAGT -ACGGAAAGGTACACAACGGAAGGT -ACGGAAAGGTACACAACGAACCGT -ACGGAAAGGTACACAACGTTGTGC -ACGGAAAGGTACACAACGCTAAGC -ACGGAAAGGTACACAACGACTAGC -ACGGAAAGGTACACAACGAGATGC -ACGGAAAGGTACACAACGTGAAGG -ACGGAAAGGTACACAACGCAATGG -ACGGAAAGGTACACAACGATGAGG -ACGGAAAGGTACACAACGAATGGG -ACGGAAAGGTACACAACGTCCTGA -ACGGAAAGGTACACAACGTAGCGA -ACGGAAAGGTACACAACGCACAGA -ACGGAAAGGTACACAACGGCAAGA -ACGGAAAGGTACACAACGGGTTGA -ACGGAAAGGTACACAACGTCCGAT -ACGGAAAGGTACACAACGTGGCAT -ACGGAAAGGTACACAACGCGAGAT -ACGGAAAGGTACACAACGTACCAC -ACGGAAAGGTACACAACGCAGAAC -ACGGAAAGGTACACAACGGTCTAC -ACGGAAAGGTACACAACGACGTAC -ACGGAAAGGTACACAACGAGTGAC -ACGGAAAGGTACACAACGCTGTAG -ACGGAAAGGTACACAACGCCTAAG -ACGGAAAGGTACACAACGGTTCAG -ACGGAAAGGTACACAACGGCATAG -ACGGAAAGGTACACAACGGACAAG -ACGGAAAGGTACACAACGAAGCAG -ACGGAAAGGTACACAACGCGTCAA -ACGGAAAGGTACACAACGGCTGAA -ACGGAAAGGTACACAACGAGTACG -ACGGAAAGGTACACAACGATCCGA -ACGGAAAGGTACACAACGATGGGA -ACGGAAAGGTACACAACGGTGCAA -ACGGAAAGGTACACAACGGAGGAA -ACGGAAAGGTACACAACGCAGGTA -ACGGAAAGGTACACAACGGACTCT -ACGGAAAGGTACACAACGAGTCCT -ACGGAAAGGTACACAACGTAAGCC -ACGGAAAGGTACACAACGATAGCC -ACGGAAAGGTACACAACGTAACCG -ACGGAAAGGTACACAACGATGCCA -ACGGAAAGGTACTCAAGCGGAAAC -ACGGAAAGGTACTCAAGCAACACC -ACGGAAAGGTACTCAAGCATCGAG -ACGGAAAGGTACTCAAGCCTCCTT -ACGGAAAGGTACTCAAGCCCTGTT -ACGGAAAGGTACTCAAGCCGGTTT -ACGGAAAGGTACTCAAGCGTGGTT -ACGGAAAGGTACTCAAGCGCCTTT -ACGGAAAGGTACTCAAGCGGTCTT -ACGGAAAGGTACTCAAGCACGCTT -ACGGAAAGGTACTCAAGCAGCGTT -ACGGAAAGGTACTCAAGCTTCGTC -ACGGAAAGGTACTCAAGCTCTCTC -ACGGAAAGGTACTCAAGCTGGATC -ACGGAAAGGTACTCAAGCCACTTC -ACGGAAAGGTACTCAAGCGTACTC -ACGGAAAGGTACTCAAGCGATGTC -ACGGAAAGGTACTCAAGCACAGTC -ACGGAAAGGTACTCAAGCTTGCTG -ACGGAAAGGTACTCAAGCTCCATG -ACGGAAAGGTACTCAAGCTGTGTG -ACGGAAAGGTACTCAAGCCTAGTG -ACGGAAAGGTACTCAAGCCATCTG -ACGGAAAGGTACTCAAGCGAGTTG -ACGGAAAGGTACTCAAGCAGACTG -ACGGAAAGGTACTCAAGCTCGGTA -ACGGAAAGGTACTCAAGCTGCCTA -ACGGAAAGGTACTCAAGCCCACTA -ACGGAAAGGTACTCAAGCGGAGTA -ACGGAAAGGTACTCAAGCTCGTCT -ACGGAAAGGTACTCAAGCTGCACT -ACGGAAAGGTACTCAAGCCTGACT -ACGGAAAGGTACTCAAGCCAACCT -ACGGAAAGGTACTCAAGCGCTACT -ACGGAAAGGTACTCAAGCGGATCT -ACGGAAAGGTACTCAAGCAAGGCT -ACGGAAAGGTACTCAAGCTCAACC -ACGGAAAGGTACTCAAGCTGTTCC -ACGGAAAGGTACTCAAGCATTCCC -ACGGAAAGGTACTCAAGCTTCTCG -ACGGAAAGGTACTCAAGCTAGACG -ACGGAAAGGTACTCAAGCGTAACG -ACGGAAAGGTACTCAAGCACTTCG -ACGGAAAGGTACTCAAGCTACGCA -ACGGAAAGGTACTCAAGCCTTGCA -ACGGAAAGGTACTCAAGCCGAACA -ACGGAAAGGTACTCAAGCCAGTCA -ACGGAAAGGTACTCAAGCGATCCA -ACGGAAAGGTACTCAAGCACGACA -ACGGAAAGGTACTCAAGCAGCTCA -ACGGAAAGGTACTCAAGCTCACGT -ACGGAAAGGTACTCAAGCCGTAGT -ACGGAAAGGTACTCAAGCGTCAGT -ACGGAAAGGTACTCAAGCGAAGGT -ACGGAAAGGTACTCAAGCAACCGT -ACGGAAAGGTACTCAAGCTTGTGC -ACGGAAAGGTACTCAAGCCTAAGC -ACGGAAAGGTACTCAAGCACTAGC -ACGGAAAGGTACTCAAGCAGATGC -ACGGAAAGGTACTCAAGCTGAAGG -ACGGAAAGGTACTCAAGCCAATGG -ACGGAAAGGTACTCAAGCATGAGG -ACGGAAAGGTACTCAAGCAATGGG -ACGGAAAGGTACTCAAGCTCCTGA -ACGGAAAGGTACTCAAGCTAGCGA -ACGGAAAGGTACTCAAGCCACAGA -ACGGAAAGGTACTCAAGCGCAAGA -ACGGAAAGGTACTCAAGCGGTTGA -ACGGAAAGGTACTCAAGCTCCGAT -ACGGAAAGGTACTCAAGCTGGCAT -ACGGAAAGGTACTCAAGCCGAGAT -ACGGAAAGGTACTCAAGCTACCAC -ACGGAAAGGTACTCAAGCCAGAAC -ACGGAAAGGTACTCAAGCGTCTAC -ACGGAAAGGTACTCAAGCACGTAC -ACGGAAAGGTACTCAAGCAGTGAC -ACGGAAAGGTACTCAAGCCTGTAG -ACGGAAAGGTACTCAAGCCCTAAG -ACGGAAAGGTACTCAAGCGTTCAG -ACGGAAAGGTACTCAAGCGCATAG -ACGGAAAGGTACTCAAGCGACAAG -ACGGAAAGGTACTCAAGCAAGCAG -ACGGAAAGGTACTCAAGCCGTCAA -ACGGAAAGGTACTCAAGCGCTGAA -ACGGAAAGGTACTCAAGCAGTACG -ACGGAAAGGTACTCAAGCATCCGA -ACGGAAAGGTACTCAAGCATGGGA -ACGGAAAGGTACTCAAGCGTGCAA -ACGGAAAGGTACTCAAGCGAGGAA -ACGGAAAGGTACTCAAGCCAGGTA -ACGGAAAGGTACTCAAGCGACTCT -ACGGAAAGGTACTCAAGCAGTCCT -ACGGAAAGGTACTCAAGCTAAGCC -ACGGAAAGGTACTCAAGCATAGCC -ACGGAAAGGTACTCAAGCTAACCG -ACGGAAAGGTACTCAAGCATGCCA -ACGGAAAGGTACCGTTCAGGAAAC -ACGGAAAGGTACCGTTCAAACACC -ACGGAAAGGTACCGTTCAATCGAG -ACGGAAAGGTACCGTTCACTCCTT -ACGGAAAGGTACCGTTCACCTGTT -ACGGAAAGGTACCGTTCACGGTTT -ACGGAAAGGTACCGTTCAGTGGTT -ACGGAAAGGTACCGTTCAGCCTTT -ACGGAAAGGTACCGTTCAGGTCTT -ACGGAAAGGTACCGTTCAACGCTT -ACGGAAAGGTACCGTTCAAGCGTT -ACGGAAAGGTACCGTTCATTCGTC -ACGGAAAGGTACCGTTCATCTCTC -ACGGAAAGGTACCGTTCATGGATC -ACGGAAAGGTACCGTTCACACTTC -ACGGAAAGGTACCGTTCAGTACTC -ACGGAAAGGTACCGTTCAGATGTC -ACGGAAAGGTACCGTTCAACAGTC -ACGGAAAGGTACCGTTCATTGCTG -ACGGAAAGGTACCGTTCATCCATG -ACGGAAAGGTACCGTTCATGTGTG -ACGGAAAGGTACCGTTCACTAGTG -ACGGAAAGGTACCGTTCACATCTG -ACGGAAAGGTACCGTTCAGAGTTG -ACGGAAAGGTACCGTTCAAGACTG -ACGGAAAGGTACCGTTCATCGGTA -ACGGAAAGGTACCGTTCATGCCTA -ACGGAAAGGTACCGTTCACCACTA -ACGGAAAGGTACCGTTCAGGAGTA -ACGGAAAGGTACCGTTCATCGTCT -ACGGAAAGGTACCGTTCATGCACT -ACGGAAAGGTACCGTTCACTGACT -ACGGAAAGGTACCGTTCACAACCT -ACGGAAAGGTACCGTTCAGCTACT -ACGGAAAGGTACCGTTCAGGATCT -ACGGAAAGGTACCGTTCAAAGGCT -ACGGAAAGGTACCGTTCATCAACC -ACGGAAAGGTACCGTTCATGTTCC -ACGGAAAGGTACCGTTCAATTCCC -ACGGAAAGGTACCGTTCATTCTCG -ACGGAAAGGTACCGTTCATAGACG -ACGGAAAGGTACCGTTCAGTAACG -ACGGAAAGGTACCGTTCAACTTCG -ACGGAAAGGTACCGTTCATACGCA -ACGGAAAGGTACCGTTCACTTGCA -ACGGAAAGGTACCGTTCACGAACA -ACGGAAAGGTACCGTTCACAGTCA -ACGGAAAGGTACCGTTCAGATCCA -ACGGAAAGGTACCGTTCAACGACA -ACGGAAAGGTACCGTTCAAGCTCA -ACGGAAAGGTACCGTTCATCACGT -ACGGAAAGGTACCGTTCACGTAGT -ACGGAAAGGTACCGTTCAGTCAGT -ACGGAAAGGTACCGTTCAGAAGGT -ACGGAAAGGTACCGTTCAAACCGT -ACGGAAAGGTACCGTTCATTGTGC -ACGGAAAGGTACCGTTCACTAAGC -ACGGAAAGGTACCGTTCAACTAGC -ACGGAAAGGTACCGTTCAAGATGC -ACGGAAAGGTACCGTTCATGAAGG -ACGGAAAGGTACCGTTCACAATGG -ACGGAAAGGTACCGTTCAATGAGG -ACGGAAAGGTACCGTTCAAATGGG -ACGGAAAGGTACCGTTCATCCTGA -ACGGAAAGGTACCGTTCATAGCGA -ACGGAAAGGTACCGTTCACACAGA -ACGGAAAGGTACCGTTCAGCAAGA -ACGGAAAGGTACCGTTCAGGTTGA -ACGGAAAGGTACCGTTCATCCGAT -ACGGAAAGGTACCGTTCATGGCAT -ACGGAAAGGTACCGTTCACGAGAT -ACGGAAAGGTACCGTTCATACCAC -ACGGAAAGGTACCGTTCACAGAAC -ACGGAAAGGTACCGTTCAGTCTAC -ACGGAAAGGTACCGTTCAACGTAC -ACGGAAAGGTACCGTTCAAGTGAC -ACGGAAAGGTACCGTTCACTGTAG -ACGGAAAGGTACCGTTCACCTAAG -ACGGAAAGGTACCGTTCAGTTCAG -ACGGAAAGGTACCGTTCAGCATAG -ACGGAAAGGTACCGTTCAGACAAG -ACGGAAAGGTACCGTTCAAAGCAG -ACGGAAAGGTACCGTTCACGTCAA -ACGGAAAGGTACCGTTCAGCTGAA -ACGGAAAGGTACCGTTCAAGTACG -ACGGAAAGGTACCGTTCAATCCGA -ACGGAAAGGTACCGTTCAATGGGA -ACGGAAAGGTACCGTTCAGTGCAA -ACGGAAAGGTACCGTTCAGAGGAA -ACGGAAAGGTACCGTTCACAGGTA -ACGGAAAGGTACCGTTCAGACTCT -ACGGAAAGGTACCGTTCAAGTCCT -ACGGAAAGGTACCGTTCATAAGCC -ACGGAAAGGTACCGTTCAATAGCC -ACGGAAAGGTACCGTTCATAACCG -ACGGAAAGGTACCGTTCAATGCCA -ACGGAAAGGTACAGTCGTGGAAAC -ACGGAAAGGTACAGTCGTAACACC -ACGGAAAGGTACAGTCGTATCGAG -ACGGAAAGGTACAGTCGTCTCCTT -ACGGAAAGGTACAGTCGTCCTGTT -ACGGAAAGGTACAGTCGTCGGTTT -ACGGAAAGGTACAGTCGTGTGGTT -ACGGAAAGGTACAGTCGTGCCTTT -ACGGAAAGGTACAGTCGTGGTCTT -ACGGAAAGGTACAGTCGTACGCTT -ACGGAAAGGTACAGTCGTAGCGTT -ACGGAAAGGTACAGTCGTTTCGTC -ACGGAAAGGTACAGTCGTTCTCTC -ACGGAAAGGTACAGTCGTTGGATC -ACGGAAAGGTACAGTCGTCACTTC -ACGGAAAGGTACAGTCGTGTACTC -ACGGAAAGGTACAGTCGTGATGTC -ACGGAAAGGTACAGTCGTACAGTC -ACGGAAAGGTACAGTCGTTTGCTG -ACGGAAAGGTACAGTCGTTCCATG -ACGGAAAGGTACAGTCGTTGTGTG -ACGGAAAGGTACAGTCGTCTAGTG -ACGGAAAGGTACAGTCGTCATCTG -ACGGAAAGGTACAGTCGTGAGTTG -ACGGAAAGGTACAGTCGTAGACTG -ACGGAAAGGTACAGTCGTTCGGTA -ACGGAAAGGTACAGTCGTTGCCTA -ACGGAAAGGTACAGTCGTCCACTA -ACGGAAAGGTACAGTCGTGGAGTA -ACGGAAAGGTACAGTCGTTCGTCT -ACGGAAAGGTACAGTCGTTGCACT -ACGGAAAGGTACAGTCGTCTGACT -ACGGAAAGGTACAGTCGTCAACCT -ACGGAAAGGTACAGTCGTGCTACT -ACGGAAAGGTACAGTCGTGGATCT -ACGGAAAGGTACAGTCGTAAGGCT -ACGGAAAGGTACAGTCGTTCAACC -ACGGAAAGGTACAGTCGTTGTTCC -ACGGAAAGGTACAGTCGTATTCCC -ACGGAAAGGTACAGTCGTTTCTCG -ACGGAAAGGTACAGTCGTTAGACG -ACGGAAAGGTACAGTCGTGTAACG -ACGGAAAGGTACAGTCGTACTTCG -ACGGAAAGGTACAGTCGTTACGCA -ACGGAAAGGTACAGTCGTCTTGCA -ACGGAAAGGTACAGTCGTCGAACA -ACGGAAAGGTACAGTCGTCAGTCA -ACGGAAAGGTACAGTCGTGATCCA -ACGGAAAGGTACAGTCGTACGACA -ACGGAAAGGTACAGTCGTAGCTCA -ACGGAAAGGTACAGTCGTTCACGT -ACGGAAAGGTACAGTCGTCGTAGT -ACGGAAAGGTACAGTCGTGTCAGT -ACGGAAAGGTACAGTCGTGAAGGT -ACGGAAAGGTACAGTCGTAACCGT -ACGGAAAGGTACAGTCGTTTGTGC -ACGGAAAGGTACAGTCGTCTAAGC -ACGGAAAGGTACAGTCGTACTAGC -ACGGAAAGGTACAGTCGTAGATGC -ACGGAAAGGTACAGTCGTTGAAGG -ACGGAAAGGTACAGTCGTCAATGG -ACGGAAAGGTACAGTCGTATGAGG -ACGGAAAGGTACAGTCGTAATGGG -ACGGAAAGGTACAGTCGTTCCTGA -ACGGAAAGGTACAGTCGTTAGCGA -ACGGAAAGGTACAGTCGTCACAGA -ACGGAAAGGTACAGTCGTGCAAGA -ACGGAAAGGTACAGTCGTGGTTGA -ACGGAAAGGTACAGTCGTTCCGAT -ACGGAAAGGTACAGTCGTTGGCAT -ACGGAAAGGTACAGTCGTCGAGAT -ACGGAAAGGTACAGTCGTTACCAC -ACGGAAAGGTACAGTCGTCAGAAC -ACGGAAAGGTACAGTCGTGTCTAC -ACGGAAAGGTACAGTCGTACGTAC -ACGGAAAGGTACAGTCGTAGTGAC -ACGGAAAGGTACAGTCGTCTGTAG -ACGGAAAGGTACAGTCGTCCTAAG -ACGGAAAGGTACAGTCGTGTTCAG -ACGGAAAGGTACAGTCGTGCATAG -ACGGAAAGGTACAGTCGTGACAAG -ACGGAAAGGTACAGTCGTAAGCAG -ACGGAAAGGTACAGTCGTCGTCAA -ACGGAAAGGTACAGTCGTGCTGAA -ACGGAAAGGTACAGTCGTAGTACG -ACGGAAAGGTACAGTCGTATCCGA -ACGGAAAGGTACAGTCGTATGGGA -ACGGAAAGGTACAGTCGTGTGCAA -ACGGAAAGGTACAGTCGTGAGGAA -ACGGAAAGGTACAGTCGTCAGGTA -ACGGAAAGGTACAGTCGTGACTCT -ACGGAAAGGTACAGTCGTAGTCCT -ACGGAAAGGTACAGTCGTTAAGCC -ACGGAAAGGTACAGTCGTATAGCC -ACGGAAAGGTACAGTCGTTAACCG -ACGGAAAGGTACAGTCGTATGCCA -ACGGAAAGGTACAGTGTCGGAAAC -ACGGAAAGGTACAGTGTCAACACC -ACGGAAAGGTACAGTGTCATCGAG -ACGGAAAGGTACAGTGTCCTCCTT -ACGGAAAGGTACAGTGTCCCTGTT -ACGGAAAGGTACAGTGTCCGGTTT -ACGGAAAGGTACAGTGTCGTGGTT -ACGGAAAGGTACAGTGTCGCCTTT -ACGGAAAGGTACAGTGTCGGTCTT -ACGGAAAGGTACAGTGTCACGCTT -ACGGAAAGGTACAGTGTCAGCGTT -ACGGAAAGGTACAGTGTCTTCGTC -ACGGAAAGGTACAGTGTCTCTCTC -ACGGAAAGGTACAGTGTCTGGATC -ACGGAAAGGTACAGTGTCCACTTC -ACGGAAAGGTACAGTGTCGTACTC -ACGGAAAGGTACAGTGTCGATGTC -ACGGAAAGGTACAGTGTCACAGTC -ACGGAAAGGTACAGTGTCTTGCTG -ACGGAAAGGTACAGTGTCTCCATG -ACGGAAAGGTACAGTGTCTGTGTG -ACGGAAAGGTACAGTGTCCTAGTG -ACGGAAAGGTACAGTGTCCATCTG -ACGGAAAGGTACAGTGTCGAGTTG -ACGGAAAGGTACAGTGTCAGACTG -ACGGAAAGGTACAGTGTCTCGGTA -ACGGAAAGGTACAGTGTCTGCCTA -ACGGAAAGGTACAGTGTCCCACTA -ACGGAAAGGTACAGTGTCGGAGTA -ACGGAAAGGTACAGTGTCTCGTCT -ACGGAAAGGTACAGTGTCTGCACT -ACGGAAAGGTACAGTGTCCTGACT -ACGGAAAGGTACAGTGTCCAACCT -ACGGAAAGGTACAGTGTCGCTACT -ACGGAAAGGTACAGTGTCGGATCT -ACGGAAAGGTACAGTGTCAAGGCT -ACGGAAAGGTACAGTGTCTCAACC -ACGGAAAGGTACAGTGTCTGTTCC -ACGGAAAGGTACAGTGTCATTCCC -ACGGAAAGGTACAGTGTCTTCTCG -ACGGAAAGGTACAGTGTCTAGACG -ACGGAAAGGTACAGTGTCGTAACG -ACGGAAAGGTACAGTGTCACTTCG -ACGGAAAGGTACAGTGTCTACGCA -ACGGAAAGGTACAGTGTCCTTGCA -ACGGAAAGGTACAGTGTCCGAACA -ACGGAAAGGTACAGTGTCCAGTCA -ACGGAAAGGTACAGTGTCGATCCA -ACGGAAAGGTACAGTGTCACGACA -ACGGAAAGGTACAGTGTCAGCTCA -ACGGAAAGGTACAGTGTCTCACGT -ACGGAAAGGTACAGTGTCCGTAGT -ACGGAAAGGTACAGTGTCGTCAGT -ACGGAAAGGTACAGTGTCGAAGGT -ACGGAAAGGTACAGTGTCAACCGT -ACGGAAAGGTACAGTGTCTTGTGC -ACGGAAAGGTACAGTGTCCTAAGC -ACGGAAAGGTACAGTGTCACTAGC -ACGGAAAGGTACAGTGTCAGATGC -ACGGAAAGGTACAGTGTCTGAAGG -ACGGAAAGGTACAGTGTCCAATGG -ACGGAAAGGTACAGTGTCATGAGG -ACGGAAAGGTACAGTGTCAATGGG -ACGGAAAGGTACAGTGTCTCCTGA -ACGGAAAGGTACAGTGTCTAGCGA -ACGGAAAGGTACAGTGTCCACAGA -ACGGAAAGGTACAGTGTCGCAAGA -ACGGAAAGGTACAGTGTCGGTTGA -ACGGAAAGGTACAGTGTCTCCGAT -ACGGAAAGGTACAGTGTCTGGCAT -ACGGAAAGGTACAGTGTCCGAGAT -ACGGAAAGGTACAGTGTCTACCAC -ACGGAAAGGTACAGTGTCCAGAAC -ACGGAAAGGTACAGTGTCGTCTAC -ACGGAAAGGTACAGTGTCACGTAC -ACGGAAAGGTACAGTGTCAGTGAC -ACGGAAAGGTACAGTGTCCTGTAG -ACGGAAAGGTACAGTGTCCCTAAG -ACGGAAAGGTACAGTGTCGTTCAG -ACGGAAAGGTACAGTGTCGCATAG -ACGGAAAGGTACAGTGTCGACAAG -ACGGAAAGGTACAGTGTCAAGCAG -ACGGAAAGGTACAGTGTCCGTCAA -ACGGAAAGGTACAGTGTCGCTGAA -ACGGAAAGGTACAGTGTCAGTACG -ACGGAAAGGTACAGTGTCATCCGA -ACGGAAAGGTACAGTGTCATGGGA -ACGGAAAGGTACAGTGTCGTGCAA -ACGGAAAGGTACAGTGTCGAGGAA -ACGGAAAGGTACAGTGTCCAGGTA -ACGGAAAGGTACAGTGTCGACTCT -ACGGAAAGGTACAGTGTCAGTCCT -ACGGAAAGGTACAGTGTCTAAGCC -ACGGAAAGGTACAGTGTCATAGCC -ACGGAAAGGTACAGTGTCTAACCG -ACGGAAAGGTACAGTGTCATGCCA -ACGGAAAGGTACGGTGAAGGAAAC -ACGGAAAGGTACGGTGAAAACACC -ACGGAAAGGTACGGTGAAATCGAG -ACGGAAAGGTACGGTGAACTCCTT -ACGGAAAGGTACGGTGAACCTGTT -ACGGAAAGGTACGGTGAACGGTTT -ACGGAAAGGTACGGTGAAGTGGTT -ACGGAAAGGTACGGTGAAGCCTTT -ACGGAAAGGTACGGTGAAGGTCTT -ACGGAAAGGTACGGTGAAACGCTT -ACGGAAAGGTACGGTGAAAGCGTT -ACGGAAAGGTACGGTGAATTCGTC -ACGGAAAGGTACGGTGAATCTCTC -ACGGAAAGGTACGGTGAATGGATC -ACGGAAAGGTACGGTGAACACTTC -ACGGAAAGGTACGGTGAAGTACTC -ACGGAAAGGTACGGTGAAGATGTC -ACGGAAAGGTACGGTGAAACAGTC -ACGGAAAGGTACGGTGAATTGCTG -ACGGAAAGGTACGGTGAATCCATG -ACGGAAAGGTACGGTGAATGTGTG -ACGGAAAGGTACGGTGAACTAGTG -ACGGAAAGGTACGGTGAACATCTG -ACGGAAAGGTACGGTGAAGAGTTG -ACGGAAAGGTACGGTGAAAGACTG -ACGGAAAGGTACGGTGAATCGGTA -ACGGAAAGGTACGGTGAATGCCTA -ACGGAAAGGTACGGTGAACCACTA -ACGGAAAGGTACGGTGAAGGAGTA -ACGGAAAGGTACGGTGAATCGTCT -ACGGAAAGGTACGGTGAATGCACT -ACGGAAAGGTACGGTGAACTGACT -ACGGAAAGGTACGGTGAACAACCT -ACGGAAAGGTACGGTGAAGCTACT -ACGGAAAGGTACGGTGAAGGATCT -ACGGAAAGGTACGGTGAAAAGGCT -ACGGAAAGGTACGGTGAATCAACC -ACGGAAAGGTACGGTGAATGTTCC -ACGGAAAGGTACGGTGAAATTCCC -ACGGAAAGGTACGGTGAATTCTCG -ACGGAAAGGTACGGTGAATAGACG -ACGGAAAGGTACGGTGAAGTAACG -ACGGAAAGGTACGGTGAAACTTCG -ACGGAAAGGTACGGTGAATACGCA -ACGGAAAGGTACGGTGAACTTGCA -ACGGAAAGGTACGGTGAACGAACA -ACGGAAAGGTACGGTGAACAGTCA -ACGGAAAGGTACGGTGAAGATCCA -ACGGAAAGGTACGGTGAAACGACA -ACGGAAAGGTACGGTGAAAGCTCA -ACGGAAAGGTACGGTGAATCACGT -ACGGAAAGGTACGGTGAACGTAGT -ACGGAAAGGTACGGTGAAGTCAGT -ACGGAAAGGTACGGTGAAGAAGGT -ACGGAAAGGTACGGTGAAAACCGT -ACGGAAAGGTACGGTGAATTGTGC -ACGGAAAGGTACGGTGAACTAAGC -ACGGAAAGGTACGGTGAAACTAGC -ACGGAAAGGTACGGTGAAAGATGC -ACGGAAAGGTACGGTGAATGAAGG -ACGGAAAGGTACGGTGAACAATGG -ACGGAAAGGTACGGTGAAATGAGG -ACGGAAAGGTACGGTGAAAATGGG -ACGGAAAGGTACGGTGAATCCTGA -ACGGAAAGGTACGGTGAATAGCGA -ACGGAAAGGTACGGTGAACACAGA -ACGGAAAGGTACGGTGAAGCAAGA -ACGGAAAGGTACGGTGAAGGTTGA -ACGGAAAGGTACGGTGAATCCGAT -ACGGAAAGGTACGGTGAATGGCAT -ACGGAAAGGTACGGTGAACGAGAT -ACGGAAAGGTACGGTGAATACCAC -ACGGAAAGGTACGGTGAACAGAAC -ACGGAAAGGTACGGTGAAGTCTAC -ACGGAAAGGTACGGTGAAACGTAC -ACGGAAAGGTACGGTGAAAGTGAC -ACGGAAAGGTACGGTGAACTGTAG -ACGGAAAGGTACGGTGAACCTAAG -ACGGAAAGGTACGGTGAAGTTCAG -ACGGAAAGGTACGGTGAAGCATAG -ACGGAAAGGTACGGTGAAGACAAG -ACGGAAAGGTACGGTGAAAAGCAG -ACGGAAAGGTACGGTGAACGTCAA -ACGGAAAGGTACGGTGAAGCTGAA -ACGGAAAGGTACGGTGAAAGTACG -ACGGAAAGGTACGGTGAAATCCGA -ACGGAAAGGTACGGTGAAATGGGA -ACGGAAAGGTACGGTGAAGTGCAA -ACGGAAAGGTACGGTGAAGAGGAA -ACGGAAAGGTACGGTGAACAGGTA -ACGGAAAGGTACGGTGAAGACTCT -ACGGAAAGGTACGGTGAAAGTCCT -ACGGAAAGGTACGGTGAATAAGCC -ACGGAAAGGTACGGTGAAATAGCC -ACGGAAAGGTACGGTGAATAACCG -ACGGAAAGGTACGGTGAAATGCCA -ACGGAAAGGTACCGTAACGGAAAC -ACGGAAAGGTACCGTAACAACACC -ACGGAAAGGTACCGTAACATCGAG -ACGGAAAGGTACCGTAACCTCCTT -ACGGAAAGGTACCGTAACCCTGTT -ACGGAAAGGTACCGTAACCGGTTT -ACGGAAAGGTACCGTAACGTGGTT -ACGGAAAGGTACCGTAACGCCTTT -ACGGAAAGGTACCGTAACGGTCTT -ACGGAAAGGTACCGTAACACGCTT -ACGGAAAGGTACCGTAACAGCGTT -ACGGAAAGGTACCGTAACTTCGTC -ACGGAAAGGTACCGTAACTCTCTC -ACGGAAAGGTACCGTAACTGGATC -ACGGAAAGGTACCGTAACCACTTC -ACGGAAAGGTACCGTAACGTACTC -ACGGAAAGGTACCGTAACGATGTC -ACGGAAAGGTACCGTAACACAGTC -ACGGAAAGGTACCGTAACTTGCTG -ACGGAAAGGTACCGTAACTCCATG -ACGGAAAGGTACCGTAACTGTGTG -ACGGAAAGGTACCGTAACCTAGTG -ACGGAAAGGTACCGTAACCATCTG -ACGGAAAGGTACCGTAACGAGTTG -ACGGAAAGGTACCGTAACAGACTG -ACGGAAAGGTACCGTAACTCGGTA -ACGGAAAGGTACCGTAACTGCCTA -ACGGAAAGGTACCGTAACCCACTA -ACGGAAAGGTACCGTAACGGAGTA -ACGGAAAGGTACCGTAACTCGTCT -ACGGAAAGGTACCGTAACTGCACT -ACGGAAAGGTACCGTAACCTGACT -ACGGAAAGGTACCGTAACCAACCT -ACGGAAAGGTACCGTAACGCTACT -ACGGAAAGGTACCGTAACGGATCT -ACGGAAAGGTACCGTAACAAGGCT -ACGGAAAGGTACCGTAACTCAACC -ACGGAAAGGTACCGTAACTGTTCC -ACGGAAAGGTACCGTAACATTCCC -ACGGAAAGGTACCGTAACTTCTCG -ACGGAAAGGTACCGTAACTAGACG -ACGGAAAGGTACCGTAACGTAACG -ACGGAAAGGTACCGTAACACTTCG -ACGGAAAGGTACCGTAACTACGCA -ACGGAAAGGTACCGTAACCTTGCA -ACGGAAAGGTACCGTAACCGAACA -ACGGAAAGGTACCGTAACCAGTCA -ACGGAAAGGTACCGTAACGATCCA -ACGGAAAGGTACCGTAACACGACA -ACGGAAAGGTACCGTAACAGCTCA -ACGGAAAGGTACCGTAACTCACGT -ACGGAAAGGTACCGTAACCGTAGT -ACGGAAAGGTACCGTAACGTCAGT -ACGGAAAGGTACCGTAACGAAGGT -ACGGAAAGGTACCGTAACAACCGT -ACGGAAAGGTACCGTAACTTGTGC -ACGGAAAGGTACCGTAACCTAAGC -ACGGAAAGGTACCGTAACACTAGC -ACGGAAAGGTACCGTAACAGATGC -ACGGAAAGGTACCGTAACTGAAGG -ACGGAAAGGTACCGTAACCAATGG -ACGGAAAGGTACCGTAACATGAGG -ACGGAAAGGTACCGTAACAATGGG -ACGGAAAGGTACCGTAACTCCTGA -ACGGAAAGGTACCGTAACTAGCGA -ACGGAAAGGTACCGTAACCACAGA -ACGGAAAGGTACCGTAACGCAAGA -ACGGAAAGGTACCGTAACGGTTGA -ACGGAAAGGTACCGTAACTCCGAT -ACGGAAAGGTACCGTAACTGGCAT -ACGGAAAGGTACCGTAACCGAGAT -ACGGAAAGGTACCGTAACTACCAC -ACGGAAAGGTACCGTAACCAGAAC -ACGGAAAGGTACCGTAACGTCTAC -ACGGAAAGGTACCGTAACACGTAC -ACGGAAAGGTACCGTAACAGTGAC -ACGGAAAGGTACCGTAACCTGTAG -ACGGAAAGGTACCGTAACCCTAAG -ACGGAAAGGTACCGTAACGTTCAG -ACGGAAAGGTACCGTAACGCATAG -ACGGAAAGGTACCGTAACGACAAG -ACGGAAAGGTACCGTAACAAGCAG -ACGGAAAGGTACCGTAACCGTCAA -ACGGAAAGGTACCGTAACGCTGAA -ACGGAAAGGTACCGTAACAGTACG -ACGGAAAGGTACCGTAACATCCGA -ACGGAAAGGTACCGTAACATGGGA -ACGGAAAGGTACCGTAACGTGCAA -ACGGAAAGGTACCGTAACGAGGAA -ACGGAAAGGTACCGTAACCAGGTA -ACGGAAAGGTACCGTAACGACTCT -ACGGAAAGGTACCGTAACAGTCCT -ACGGAAAGGTACCGTAACTAAGCC -ACGGAAAGGTACCGTAACATAGCC -ACGGAAAGGTACCGTAACTAACCG -ACGGAAAGGTACCGTAACATGCCA -ACGGAAAGGTACTGCTTGGGAAAC -ACGGAAAGGTACTGCTTGAACACC -ACGGAAAGGTACTGCTTGATCGAG -ACGGAAAGGTACTGCTTGCTCCTT -ACGGAAAGGTACTGCTTGCCTGTT -ACGGAAAGGTACTGCTTGCGGTTT -ACGGAAAGGTACTGCTTGGTGGTT -ACGGAAAGGTACTGCTTGGCCTTT -ACGGAAAGGTACTGCTTGGGTCTT -ACGGAAAGGTACTGCTTGACGCTT -ACGGAAAGGTACTGCTTGAGCGTT -ACGGAAAGGTACTGCTTGTTCGTC -ACGGAAAGGTACTGCTTGTCTCTC -ACGGAAAGGTACTGCTTGTGGATC -ACGGAAAGGTACTGCTTGCACTTC -ACGGAAAGGTACTGCTTGGTACTC -ACGGAAAGGTACTGCTTGGATGTC -ACGGAAAGGTACTGCTTGACAGTC -ACGGAAAGGTACTGCTTGTTGCTG -ACGGAAAGGTACTGCTTGTCCATG -ACGGAAAGGTACTGCTTGTGTGTG -ACGGAAAGGTACTGCTTGCTAGTG -ACGGAAAGGTACTGCTTGCATCTG -ACGGAAAGGTACTGCTTGGAGTTG -ACGGAAAGGTACTGCTTGAGACTG -ACGGAAAGGTACTGCTTGTCGGTA -ACGGAAAGGTACTGCTTGTGCCTA -ACGGAAAGGTACTGCTTGCCACTA -ACGGAAAGGTACTGCTTGGGAGTA -ACGGAAAGGTACTGCTTGTCGTCT -ACGGAAAGGTACTGCTTGTGCACT -ACGGAAAGGTACTGCTTGCTGACT -ACGGAAAGGTACTGCTTGCAACCT -ACGGAAAGGTACTGCTTGGCTACT -ACGGAAAGGTACTGCTTGGGATCT -ACGGAAAGGTACTGCTTGAAGGCT -ACGGAAAGGTACTGCTTGTCAACC -ACGGAAAGGTACTGCTTGTGTTCC -ACGGAAAGGTACTGCTTGATTCCC -ACGGAAAGGTACTGCTTGTTCTCG -ACGGAAAGGTACTGCTTGTAGACG -ACGGAAAGGTACTGCTTGGTAACG -ACGGAAAGGTACTGCTTGACTTCG -ACGGAAAGGTACTGCTTGTACGCA -ACGGAAAGGTACTGCTTGCTTGCA -ACGGAAAGGTACTGCTTGCGAACA -ACGGAAAGGTACTGCTTGCAGTCA -ACGGAAAGGTACTGCTTGGATCCA -ACGGAAAGGTACTGCTTGACGACA -ACGGAAAGGTACTGCTTGAGCTCA -ACGGAAAGGTACTGCTTGTCACGT -ACGGAAAGGTACTGCTTGCGTAGT -ACGGAAAGGTACTGCTTGGTCAGT -ACGGAAAGGTACTGCTTGGAAGGT -ACGGAAAGGTACTGCTTGAACCGT -ACGGAAAGGTACTGCTTGTTGTGC -ACGGAAAGGTACTGCTTGCTAAGC -ACGGAAAGGTACTGCTTGACTAGC -ACGGAAAGGTACTGCTTGAGATGC -ACGGAAAGGTACTGCTTGTGAAGG -ACGGAAAGGTACTGCTTGCAATGG -ACGGAAAGGTACTGCTTGATGAGG -ACGGAAAGGTACTGCTTGAATGGG -ACGGAAAGGTACTGCTTGTCCTGA -ACGGAAAGGTACTGCTTGTAGCGA -ACGGAAAGGTACTGCTTGCACAGA -ACGGAAAGGTACTGCTTGGCAAGA -ACGGAAAGGTACTGCTTGGGTTGA -ACGGAAAGGTACTGCTTGTCCGAT -ACGGAAAGGTACTGCTTGTGGCAT -ACGGAAAGGTACTGCTTGCGAGAT -ACGGAAAGGTACTGCTTGTACCAC -ACGGAAAGGTACTGCTTGCAGAAC -ACGGAAAGGTACTGCTTGGTCTAC -ACGGAAAGGTACTGCTTGACGTAC -ACGGAAAGGTACTGCTTGAGTGAC -ACGGAAAGGTACTGCTTGCTGTAG -ACGGAAAGGTACTGCTTGCCTAAG -ACGGAAAGGTACTGCTTGGTTCAG -ACGGAAAGGTACTGCTTGGCATAG -ACGGAAAGGTACTGCTTGGACAAG -ACGGAAAGGTACTGCTTGAAGCAG -ACGGAAAGGTACTGCTTGCGTCAA -ACGGAAAGGTACTGCTTGGCTGAA -ACGGAAAGGTACTGCTTGAGTACG -ACGGAAAGGTACTGCTTGATCCGA -ACGGAAAGGTACTGCTTGATGGGA -ACGGAAAGGTACTGCTTGGTGCAA -ACGGAAAGGTACTGCTTGGAGGAA -ACGGAAAGGTACTGCTTGCAGGTA -ACGGAAAGGTACTGCTTGGACTCT -ACGGAAAGGTACTGCTTGAGTCCT -ACGGAAAGGTACTGCTTGTAAGCC -ACGGAAAGGTACTGCTTGATAGCC -ACGGAAAGGTACTGCTTGTAACCG -ACGGAAAGGTACTGCTTGATGCCA -ACGGAAAGGTACAGCCTAGGAAAC -ACGGAAAGGTACAGCCTAAACACC -ACGGAAAGGTACAGCCTAATCGAG -ACGGAAAGGTACAGCCTACTCCTT -ACGGAAAGGTACAGCCTACCTGTT -ACGGAAAGGTACAGCCTACGGTTT -ACGGAAAGGTACAGCCTAGTGGTT -ACGGAAAGGTACAGCCTAGCCTTT -ACGGAAAGGTACAGCCTAGGTCTT -ACGGAAAGGTACAGCCTAACGCTT -ACGGAAAGGTACAGCCTAAGCGTT -ACGGAAAGGTACAGCCTATTCGTC -ACGGAAAGGTACAGCCTATCTCTC -ACGGAAAGGTACAGCCTATGGATC -ACGGAAAGGTACAGCCTACACTTC -ACGGAAAGGTACAGCCTAGTACTC -ACGGAAAGGTACAGCCTAGATGTC -ACGGAAAGGTACAGCCTAACAGTC -ACGGAAAGGTACAGCCTATTGCTG -ACGGAAAGGTACAGCCTATCCATG -ACGGAAAGGTACAGCCTATGTGTG -ACGGAAAGGTACAGCCTACTAGTG -ACGGAAAGGTACAGCCTACATCTG -ACGGAAAGGTACAGCCTAGAGTTG -ACGGAAAGGTACAGCCTAAGACTG -ACGGAAAGGTACAGCCTATCGGTA -ACGGAAAGGTACAGCCTATGCCTA -ACGGAAAGGTACAGCCTACCACTA -ACGGAAAGGTACAGCCTAGGAGTA -ACGGAAAGGTACAGCCTATCGTCT -ACGGAAAGGTACAGCCTATGCACT -ACGGAAAGGTACAGCCTACTGACT -ACGGAAAGGTACAGCCTACAACCT -ACGGAAAGGTACAGCCTAGCTACT -ACGGAAAGGTACAGCCTAGGATCT -ACGGAAAGGTACAGCCTAAAGGCT -ACGGAAAGGTACAGCCTATCAACC -ACGGAAAGGTACAGCCTATGTTCC -ACGGAAAGGTACAGCCTAATTCCC -ACGGAAAGGTACAGCCTATTCTCG -ACGGAAAGGTACAGCCTATAGACG -ACGGAAAGGTACAGCCTAGTAACG -ACGGAAAGGTACAGCCTAACTTCG -ACGGAAAGGTACAGCCTATACGCA -ACGGAAAGGTACAGCCTACTTGCA -ACGGAAAGGTACAGCCTACGAACA -ACGGAAAGGTACAGCCTACAGTCA -ACGGAAAGGTACAGCCTAGATCCA -ACGGAAAGGTACAGCCTAACGACA -ACGGAAAGGTACAGCCTAAGCTCA -ACGGAAAGGTACAGCCTATCACGT -ACGGAAAGGTACAGCCTACGTAGT -ACGGAAAGGTACAGCCTAGTCAGT -ACGGAAAGGTACAGCCTAGAAGGT -ACGGAAAGGTACAGCCTAAACCGT -ACGGAAAGGTACAGCCTATTGTGC -ACGGAAAGGTACAGCCTACTAAGC -ACGGAAAGGTACAGCCTAACTAGC -ACGGAAAGGTACAGCCTAAGATGC -ACGGAAAGGTACAGCCTATGAAGG -ACGGAAAGGTACAGCCTACAATGG -ACGGAAAGGTACAGCCTAATGAGG -ACGGAAAGGTACAGCCTAAATGGG -ACGGAAAGGTACAGCCTATCCTGA -ACGGAAAGGTACAGCCTATAGCGA -ACGGAAAGGTACAGCCTACACAGA -ACGGAAAGGTACAGCCTAGCAAGA -ACGGAAAGGTACAGCCTAGGTTGA -ACGGAAAGGTACAGCCTATCCGAT -ACGGAAAGGTACAGCCTATGGCAT -ACGGAAAGGTACAGCCTACGAGAT -ACGGAAAGGTACAGCCTATACCAC -ACGGAAAGGTACAGCCTACAGAAC -ACGGAAAGGTACAGCCTAGTCTAC -ACGGAAAGGTACAGCCTAACGTAC -ACGGAAAGGTACAGCCTAAGTGAC -ACGGAAAGGTACAGCCTACTGTAG -ACGGAAAGGTACAGCCTACCTAAG -ACGGAAAGGTACAGCCTAGTTCAG -ACGGAAAGGTACAGCCTAGCATAG -ACGGAAAGGTACAGCCTAGACAAG -ACGGAAAGGTACAGCCTAAAGCAG -ACGGAAAGGTACAGCCTACGTCAA -ACGGAAAGGTACAGCCTAGCTGAA -ACGGAAAGGTACAGCCTAAGTACG -ACGGAAAGGTACAGCCTAATCCGA -ACGGAAAGGTACAGCCTAATGGGA -ACGGAAAGGTACAGCCTAGTGCAA -ACGGAAAGGTACAGCCTAGAGGAA -ACGGAAAGGTACAGCCTACAGGTA -ACGGAAAGGTACAGCCTAGACTCT -ACGGAAAGGTACAGCCTAAGTCCT -ACGGAAAGGTACAGCCTATAAGCC -ACGGAAAGGTACAGCCTAATAGCC -ACGGAAAGGTACAGCCTATAACCG -ACGGAAAGGTACAGCCTAATGCCA -ACGGAAAGGTACAGCACTGGAAAC -ACGGAAAGGTACAGCACTAACACC -ACGGAAAGGTACAGCACTATCGAG -ACGGAAAGGTACAGCACTCTCCTT -ACGGAAAGGTACAGCACTCCTGTT -ACGGAAAGGTACAGCACTCGGTTT -ACGGAAAGGTACAGCACTGTGGTT -ACGGAAAGGTACAGCACTGCCTTT -ACGGAAAGGTACAGCACTGGTCTT -ACGGAAAGGTACAGCACTACGCTT -ACGGAAAGGTACAGCACTAGCGTT -ACGGAAAGGTACAGCACTTTCGTC -ACGGAAAGGTACAGCACTTCTCTC -ACGGAAAGGTACAGCACTTGGATC -ACGGAAAGGTACAGCACTCACTTC -ACGGAAAGGTACAGCACTGTACTC -ACGGAAAGGTACAGCACTGATGTC -ACGGAAAGGTACAGCACTACAGTC -ACGGAAAGGTACAGCACTTTGCTG -ACGGAAAGGTACAGCACTTCCATG -ACGGAAAGGTACAGCACTTGTGTG -ACGGAAAGGTACAGCACTCTAGTG -ACGGAAAGGTACAGCACTCATCTG -ACGGAAAGGTACAGCACTGAGTTG -ACGGAAAGGTACAGCACTAGACTG -ACGGAAAGGTACAGCACTTCGGTA -ACGGAAAGGTACAGCACTTGCCTA -ACGGAAAGGTACAGCACTCCACTA -ACGGAAAGGTACAGCACTGGAGTA -ACGGAAAGGTACAGCACTTCGTCT -ACGGAAAGGTACAGCACTTGCACT -ACGGAAAGGTACAGCACTCTGACT -ACGGAAAGGTACAGCACTCAACCT -ACGGAAAGGTACAGCACTGCTACT -ACGGAAAGGTACAGCACTGGATCT -ACGGAAAGGTACAGCACTAAGGCT -ACGGAAAGGTACAGCACTTCAACC -ACGGAAAGGTACAGCACTTGTTCC -ACGGAAAGGTACAGCACTATTCCC -ACGGAAAGGTACAGCACTTTCTCG -ACGGAAAGGTACAGCACTTAGACG -ACGGAAAGGTACAGCACTGTAACG -ACGGAAAGGTACAGCACTACTTCG -ACGGAAAGGTACAGCACTTACGCA -ACGGAAAGGTACAGCACTCTTGCA -ACGGAAAGGTACAGCACTCGAACA -ACGGAAAGGTACAGCACTCAGTCA -ACGGAAAGGTACAGCACTGATCCA -ACGGAAAGGTACAGCACTACGACA -ACGGAAAGGTACAGCACTAGCTCA -ACGGAAAGGTACAGCACTTCACGT -ACGGAAAGGTACAGCACTCGTAGT -ACGGAAAGGTACAGCACTGTCAGT -ACGGAAAGGTACAGCACTGAAGGT -ACGGAAAGGTACAGCACTAACCGT -ACGGAAAGGTACAGCACTTTGTGC -ACGGAAAGGTACAGCACTCTAAGC -ACGGAAAGGTACAGCACTACTAGC -ACGGAAAGGTACAGCACTAGATGC -ACGGAAAGGTACAGCACTTGAAGG -ACGGAAAGGTACAGCACTCAATGG -ACGGAAAGGTACAGCACTATGAGG -ACGGAAAGGTACAGCACTAATGGG -ACGGAAAGGTACAGCACTTCCTGA -ACGGAAAGGTACAGCACTTAGCGA -ACGGAAAGGTACAGCACTCACAGA -ACGGAAAGGTACAGCACTGCAAGA -ACGGAAAGGTACAGCACTGGTTGA -ACGGAAAGGTACAGCACTTCCGAT -ACGGAAAGGTACAGCACTTGGCAT -ACGGAAAGGTACAGCACTCGAGAT -ACGGAAAGGTACAGCACTTACCAC -ACGGAAAGGTACAGCACTCAGAAC -ACGGAAAGGTACAGCACTGTCTAC -ACGGAAAGGTACAGCACTACGTAC -ACGGAAAGGTACAGCACTAGTGAC -ACGGAAAGGTACAGCACTCTGTAG -ACGGAAAGGTACAGCACTCCTAAG -ACGGAAAGGTACAGCACTGTTCAG -ACGGAAAGGTACAGCACTGCATAG -ACGGAAAGGTACAGCACTGACAAG -ACGGAAAGGTACAGCACTAAGCAG -ACGGAAAGGTACAGCACTCGTCAA -ACGGAAAGGTACAGCACTGCTGAA -ACGGAAAGGTACAGCACTAGTACG -ACGGAAAGGTACAGCACTATCCGA -ACGGAAAGGTACAGCACTATGGGA -ACGGAAAGGTACAGCACTGTGCAA -ACGGAAAGGTACAGCACTGAGGAA -ACGGAAAGGTACAGCACTCAGGTA -ACGGAAAGGTACAGCACTGACTCT -ACGGAAAGGTACAGCACTAGTCCT -ACGGAAAGGTACAGCACTTAAGCC -ACGGAAAGGTACAGCACTATAGCC -ACGGAAAGGTACAGCACTTAACCG -ACGGAAAGGTACAGCACTATGCCA -ACGGAAAGGTACTGCAGAGGAAAC -ACGGAAAGGTACTGCAGAAACACC -ACGGAAAGGTACTGCAGAATCGAG -ACGGAAAGGTACTGCAGACTCCTT -ACGGAAAGGTACTGCAGACCTGTT -ACGGAAAGGTACTGCAGACGGTTT -ACGGAAAGGTACTGCAGAGTGGTT -ACGGAAAGGTACTGCAGAGCCTTT -ACGGAAAGGTACTGCAGAGGTCTT -ACGGAAAGGTACTGCAGAACGCTT -ACGGAAAGGTACTGCAGAAGCGTT -ACGGAAAGGTACTGCAGATTCGTC -ACGGAAAGGTACTGCAGATCTCTC -ACGGAAAGGTACTGCAGATGGATC -ACGGAAAGGTACTGCAGACACTTC -ACGGAAAGGTACTGCAGAGTACTC -ACGGAAAGGTACTGCAGAGATGTC -ACGGAAAGGTACTGCAGAACAGTC -ACGGAAAGGTACTGCAGATTGCTG -ACGGAAAGGTACTGCAGATCCATG -ACGGAAAGGTACTGCAGATGTGTG -ACGGAAAGGTACTGCAGACTAGTG -ACGGAAAGGTACTGCAGACATCTG -ACGGAAAGGTACTGCAGAGAGTTG -ACGGAAAGGTACTGCAGAAGACTG -ACGGAAAGGTACTGCAGATCGGTA -ACGGAAAGGTACTGCAGATGCCTA -ACGGAAAGGTACTGCAGACCACTA -ACGGAAAGGTACTGCAGAGGAGTA -ACGGAAAGGTACTGCAGATCGTCT -ACGGAAAGGTACTGCAGATGCACT -ACGGAAAGGTACTGCAGACTGACT -ACGGAAAGGTACTGCAGACAACCT -ACGGAAAGGTACTGCAGAGCTACT -ACGGAAAGGTACTGCAGAGGATCT -ACGGAAAGGTACTGCAGAAAGGCT -ACGGAAAGGTACTGCAGATCAACC -ACGGAAAGGTACTGCAGATGTTCC -ACGGAAAGGTACTGCAGAATTCCC -ACGGAAAGGTACTGCAGATTCTCG -ACGGAAAGGTACTGCAGATAGACG -ACGGAAAGGTACTGCAGAGTAACG -ACGGAAAGGTACTGCAGAACTTCG -ACGGAAAGGTACTGCAGATACGCA -ACGGAAAGGTACTGCAGACTTGCA -ACGGAAAGGTACTGCAGACGAACA -ACGGAAAGGTACTGCAGACAGTCA -ACGGAAAGGTACTGCAGAGATCCA -ACGGAAAGGTACTGCAGAACGACA -ACGGAAAGGTACTGCAGAAGCTCA -ACGGAAAGGTACTGCAGATCACGT -ACGGAAAGGTACTGCAGACGTAGT -ACGGAAAGGTACTGCAGAGTCAGT -ACGGAAAGGTACTGCAGAGAAGGT -ACGGAAAGGTACTGCAGAAACCGT -ACGGAAAGGTACTGCAGATTGTGC -ACGGAAAGGTACTGCAGACTAAGC -ACGGAAAGGTACTGCAGAACTAGC -ACGGAAAGGTACTGCAGAAGATGC -ACGGAAAGGTACTGCAGATGAAGG -ACGGAAAGGTACTGCAGACAATGG -ACGGAAAGGTACTGCAGAATGAGG -ACGGAAAGGTACTGCAGAAATGGG -ACGGAAAGGTACTGCAGATCCTGA -ACGGAAAGGTACTGCAGATAGCGA -ACGGAAAGGTACTGCAGACACAGA -ACGGAAAGGTACTGCAGAGCAAGA -ACGGAAAGGTACTGCAGAGGTTGA -ACGGAAAGGTACTGCAGATCCGAT -ACGGAAAGGTACTGCAGATGGCAT -ACGGAAAGGTACTGCAGACGAGAT -ACGGAAAGGTACTGCAGATACCAC -ACGGAAAGGTACTGCAGACAGAAC -ACGGAAAGGTACTGCAGAGTCTAC -ACGGAAAGGTACTGCAGAACGTAC -ACGGAAAGGTACTGCAGAAGTGAC -ACGGAAAGGTACTGCAGACTGTAG -ACGGAAAGGTACTGCAGACCTAAG -ACGGAAAGGTACTGCAGAGTTCAG -ACGGAAAGGTACTGCAGAGCATAG -ACGGAAAGGTACTGCAGAGACAAG -ACGGAAAGGTACTGCAGAAAGCAG -ACGGAAAGGTACTGCAGACGTCAA -ACGGAAAGGTACTGCAGAGCTGAA -ACGGAAAGGTACTGCAGAAGTACG -ACGGAAAGGTACTGCAGAATCCGA -ACGGAAAGGTACTGCAGAATGGGA -ACGGAAAGGTACTGCAGAGTGCAA -ACGGAAAGGTACTGCAGAGAGGAA -ACGGAAAGGTACTGCAGACAGGTA -ACGGAAAGGTACTGCAGAGACTCT -ACGGAAAGGTACTGCAGAAGTCCT -ACGGAAAGGTACTGCAGATAAGCC -ACGGAAAGGTACTGCAGAATAGCC -ACGGAAAGGTACTGCAGATAACCG -ACGGAAAGGTACTGCAGAATGCCA -ACGGAAAGGTACAGGTGAGGAAAC -ACGGAAAGGTACAGGTGAAACACC -ACGGAAAGGTACAGGTGAATCGAG -ACGGAAAGGTACAGGTGACTCCTT -ACGGAAAGGTACAGGTGACCTGTT -ACGGAAAGGTACAGGTGACGGTTT -ACGGAAAGGTACAGGTGAGTGGTT -ACGGAAAGGTACAGGTGAGCCTTT -ACGGAAAGGTACAGGTGAGGTCTT -ACGGAAAGGTACAGGTGAACGCTT -ACGGAAAGGTACAGGTGAAGCGTT -ACGGAAAGGTACAGGTGATTCGTC -ACGGAAAGGTACAGGTGATCTCTC -ACGGAAAGGTACAGGTGATGGATC -ACGGAAAGGTACAGGTGACACTTC -ACGGAAAGGTACAGGTGAGTACTC -ACGGAAAGGTACAGGTGAGATGTC -ACGGAAAGGTACAGGTGAACAGTC -ACGGAAAGGTACAGGTGATTGCTG -ACGGAAAGGTACAGGTGATCCATG -ACGGAAAGGTACAGGTGATGTGTG -ACGGAAAGGTACAGGTGACTAGTG -ACGGAAAGGTACAGGTGACATCTG -ACGGAAAGGTACAGGTGAGAGTTG -ACGGAAAGGTACAGGTGAAGACTG -ACGGAAAGGTACAGGTGATCGGTA -ACGGAAAGGTACAGGTGATGCCTA -ACGGAAAGGTACAGGTGACCACTA -ACGGAAAGGTACAGGTGAGGAGTA -ACGGAAAGGTACAGGTGATCGTCT -ACGGAAAGGTACAGGTGATGCACT -ACGGAAAGGTACAGGTGACTGACT -ACGGAAAGGTACAGGTGACAACCT -ACGGAAAGGTACAGGTGAGCTACT -ACGGAAAGGTACAGGTGAGGATCT -ACGGAAAGGTACAGGTGAAAGGCT -ACGGAAAGGTACAGGTGATCAACC -ACGGAAAGGTACAGGTGATGTTCC -ACGGAAAGGTACAGGTGAATTCCC -ACGGAAAGGTACAGGTGATTCTCG -ACGGAAAGGTACAGGTGATAGACG -ACGGAAAGGTACAGGTGAGTAACG -ACGGAAAGGTACAGGTGAACTTCG -ACGGAAAGGTACAGGTGATACGCA -ACGGAAAGGTACAGGTGACTTGCA -ACGGAAAGGTACAGGTGACGAACA -ACGGAAAGGTACAGGTGACAGTCA -ACGGAAAGGTACAGGTGAGATCCA -ACGGAAAGGTACAGGTGAACGACA -ACGGAAAGGTACAGGTGAAGCTCA -ACGGAAAGGTACAGGTGATCACGT -ACGGAAAGGTACAGGTGACGTAGT -ACGGAAAGGTACAGGTGAGTCAGT -ACGGAAAGGTACAGGTGAGAAGGT -ACGGAAAGGTACAGGTGAAACCGT -ACGGAAAGGTACAGGTGATTGTGC -ACGGAAAGGTACAGGTGACTAAGC -ACGGAAAGGTACAGGTGAACTAGC -ACGGAAAGGTACAGGTGAAGATGC -ACGGAAAGGTACAGGTGATGAAGG -ACGGAAAGGTACAGGTGACAATGG -ACGGAAAGGTACAGGTGAATGAGG -ACGGAAAGGTACAGGTGAAATGGG -ACGGAAAGGTACAGGTGATCCTGA -ACGGAAAGGTACAGGTGATAGCGA -ACGGAAAGGTACAGGTGACACAGA -ACGGAAAGGTACAGGTGAGCAAGA -ACGGAAAGGTACAGGTGAGGTTGA -ACGGAAAGGTACAGGTGATCCGAT -ACGGAAAGGTACAGGTGATGGCAT -ACGGAAAGGTACAGGTGACGAGAT -ACGGAAAGGTACAGGTGATACCAC -ACGGAAAGGTACAGGTGACAGAAC -ACGGAAAGGTACAGGTGAGTCTAC -ACGGAAAGGTACAGGTGAACGTAC -ACGGAAAGGTACAGGTGAAGTGAC -ACGGAAAGGTACAGGTGACTGTAG -ACGGAAAGGTACAGGTGACCTAAG -ACGGAAAGGTACAGGTGAGTTCAG -ACGGAAAGGTACAGGTGAGCATAG -ACGGAAAGGTACAGGTGAGACAAG -ACGGAAAGGTACAGGTGAAAGCAG -ACGGAAAGGTACAGGTGACGTCAA -ACGGAAAGGTACAGGTGAGCTGAA -ACGGAAAGGTACAGGTGAAGTACG -ACGGAAAGGTACAGGTGAATCCGA -ACGGAAAGGTACAGGTGAATGGGA -ACGGAAAGGTACAGGTGAGTGCAA -ACGGAAAGGTACAGGTGAGAGGAA -ACGGAAAGGTACAGGTGACAGGTA -ACGGAAAGGTACAGGTGAGACTCT -ACGGAAAGGTACAGGTGAAGTCCT -ACGGAAAGGTACAGGTGATAAGCC -ACGGAAAGGTACAGGTGAATAGCC -ACGGAAAGGTACAGGTGATAACCG -ACGGAAAGGTACAGGTGAATGCCA -ACGGAAAGGTACTGGCAAGGAAAC -ACGGAAAGGTACTGGCAAAACACC -ACGGAAAGGTACTGGCAAATCGAG -ACGGAAAGGTACTGGCAACTCCTT -ACGGAAAGGTACTGGCAACCTGTT -ACGGAAAGGTACTGGCAACGGTTT -ACGGAAAGGTACTGGCAAGTGGTT -ACGGAAAGGTACTGGCAAGCCTTT -ACGGAAAGGTACTGGCAAGGTCTT -ACGGAAAGGTACTGGCAAACGCTT -ACGGAAAGGTACTGGCAAAGCGTT -ACGGAAAGGTACTGGCAATTCGTC -ACGGAAAGGTACTGGCAATCTCTC -ACGGAAAGGTACTGGCAATGGATC -ACGGAAAGGTACTGGCAACACTTC -ACGGAAAGGTACTGGCAAGTACTC -ACGGAAAGGTACTGGCAAGATGTC -ACGGAAAGGTACTGGCAAACAGTC -ACGGAAAGGTACTGGCAATTGCTG -ACGGAAAGGTACTGGCAATCCATG -ACGGAAAGGTACTGGCAATGTGTG -ACGGAAAGGTACTGGCAACTAGTG -ACGGAAAGGTACTGGCAACATCTG -ACGGAAAGGTACTGGCAAGAGTTG -ACGGAAAGGTACTGGCAAAGACTG -ACGGAAAGGTACTGGCAATCGGTA -ACGGAAAGGTACTGGCAATGCCTA -ACGGAAAGGTACTGGCAACCACTA -ACGGAAAGGTACTGGCAAGGAGTA -ACGGAAAGGTACTGGCAATCGTCT -ACGGAAAGGTACTGGCAATGCACT -ACGGAAAGGTACTGGCAACTGACT -ACGGAAAGGTACTGGCAACAACCT -ACGGAAAGGTACTGGCAAGCTACT -ACGGAAAGGTACTGGCAAGGATCT -ACGGAAAGGTACTGGCAAAAGGCT -ACGGAAAGGTACTGGCAATCAACC -ACGGAAAGGTACTGGCAATGTTCC -ACGGAAAGGTACTGGCAAATTCCC -ACGGAAAGGTACTGGCAATTCTCG -ACGGAAAGGTACTGGCAATAGACG -ACGGAAAGGTACTGGCAAGTAACG -ACGGAAAGGTACTGGCAAACTTCG -ACGGAAAGGTACTGGCAATACGCA -ACGGAAAGGTACTGGCAACTTGCA -ACGGAAAGGTACTGGCAACGAACA -ACGGAAAGGTACTGGCAACAGTCA -ACGGAAAGGTACTGGCAAGATCCA -ACGGAAAGGTACTGGCAAACGACA -ACGGAAAGGTACTGGCAAAGCTCA -ACGGAAAGGTACTGGCAATCACGT -ACGGAAAGGTACTGGCAACGTAGT -ACGGAAAGGTACTGGCAAGTCAGT -ACGGAAAGGTACTGGCAAGAAGGT -ACGGAAAGGTACTGGCAAAACCGT -ACGGAAAGGTACTGGCAATTGTGC -ACGGAAAGGTACTGGCAACTAAGC -ACGGAAAGGTACTGGCAAACTAGC -ACGGAAAGGTACTGGCAAAGATGC -ACGGAAAGGTACTGGCAATGAAGG -ACGGAAAGGTACTGGCAACAATGG -ACGGAAAGGTACTGGCAAATGAGG -ACGGAAAGGTACTGGCAAAATGGG -ACGGAAAGGTACTGGCAATCCTGA -ACGGAAAGGTACTGGCAATAGCGA -ACGGAAAGGTACTGGCAACACAGA -ACGGAAAGGTACTGGCAAGCAAGA -ACGGAAAGGTACTGGCAAGGTTGA -ACGGAAAGGTACTGGCAATCCGAT -ACGGAAAGGTACTGGCAATGGCAT -ACGGAAAGGTACTGGCAACGAGAT -ACGGAAAGGTACTGGCAATACCAC -ACGGAAAGGTACTGGCAACAGAAC -ACGGAAAGGTACTGGCAAGTCTAC -ACGGAAAGGTACTGGCAAACGTAC -ACGGAAAGGTACTGGCAAAGTGAC -ACGGAAAGGTACTGGCAACTGTAG -ACGGAAAGGTACTGGCAACCTAAG -ACGGAAAGGTACTGGCAAGTTCAG -ACGGAAAGGTACTGGCAAGCATAG -ACGGAAAGGTACTGGCAAGACAAG -ACGGAAAGGTACTGGCAAAAGCAG -ACGGAAAGGTACTGGCAACGTCAA -ACGGAAAGGTACTGGCAAGCTGAA -ACGGAAAGGTACTGGCAAAGTACG -ACGGAAAGGTACTGGCAAATCCGA -ACGGAAAGGTACTGGCAAATGGGA -ACGGAAAGGTACTGGCAAGTGCAA -ACGGAAAGGTACTGGCAAGAGGAA -ACGGAAAGGTACTGGCAACAGGTA -ACGGAAAGGTACTGGCAAGACTCT -ACGGAAAGGTACTGGCAAAGTCCT -ACGGAAAGGTACTGGCAATAAGCC -ACGGAAAGGTACTGGCAAATAGCC -ACGGAAAGGTACTGGCAATAACCG -ACGGAAAGGTACTGGCAAATGCCA -ACGGAAAGGTACAGGATGGGAAAC -ACGGAAAGGTACAGGATGAACACC -ACGGAAAGGTACAGGATGATCGAG -ACGGAAAGGTACAGGATGCTCCTT -ACGGAAAGGTACAGGATGCCTGTT -ACGGAAAGGTACAGGATGCGGTTT -ACGGAAAGGTACAGGATGGTGGTT -ACGGAAAGGTACAGGATGGCCTTT -ACGGAAAGGTACAGGATGGGTCTT -ACGGAAAGGTACAGGATGACGCTT -ACGGAAAGGTACAGGATGAGCGTT -ACGGAAAGGTACAGGATGTTCGTC -ACGGAAAGGTACAGGATGTCTCTC -ACGGAAAGGTACAGGATGTGGATC -ACGGAAAGGTACAGGATGCACTTC -ACGGAAAGGTACAGGATGGTACTC -ACGGAAAGGTACAGGATGGATGTC -ACGGAAAGGTACAGGATGACAGTC -ACGGAAAGGTACAGGATGTTGCTG -ACGGAAAGGTACAGGATGTCCATG -ACGGAAAGGTACAGGATGTGTGTG -ACGGAAAGGTACAGGATGCTAGTG -ACGGAAAGGTACAGGATGCATCTG -ACGGAAAGGTACAGGATGGAGTTG -ACGGAAAGGTACAGGATGAGACTG -ACGGAAAGGTACAGGATGTCGGTA -ACGGAAAGGTACAGGATGTGCCTA -ACGGAAAGGTACAGGATGCCACTA -ACGGAAAGGTACAGGATGGGAGTA -ACGGAAAGGTACAGGATGTCGTCT -ACGGAAAGGTACAGGATGTGCACT -ACGGAAAGGTACAGGATGCTGACT -ACGGAAAGGTACAGGATGCAACCT -ACGGAAAGGTACAGGATGGCTACT -ACGGAAAGGTACAGGATGGGATCT -ACGGAAAGGTACAGGATGAAGGCT -ACGGAAAGGTACAGGATGTCAACC -ACGGAAAGGTACAGGATGTGTTCC -ACGGAAAGGTACAGGATGATTCCC -ACGGAAAGGTACAGGATGTTCTCG -ACGGAAAGGTACAGGATGTAGACG -ACGGAAAGGTACAGGATGGTAACG -ACGGAAAGGTACAGGATGACTTCG -ACGGAAAGGTACAGGATGTACGCA -ACGGAAAGGTACAGGATGCTTGCA -ACGGAAAGGTACAGGATGCGAACA -ACGGAAAGGTACAGGATGCAGTCA -ACGGAAAGGTACAGGATGGATCCA -ACGGAAAGGTACAGGATGACGACA -ACGGAAAGGTACAGGATGAGCTCA -ACGGAAAGGTACAGGATGTCACGT -ACGGAAAGGTACAGGATGCGTAGT -ACGGAAAGGTACAGGATGGTCAGT -ACGGAAAGGTACAGGATGGAAGGT -ACGGAAAGGTACAGGATGAACCGT -ACGGAAAGGTACAGGATGTTGTGC -ACGGAAAGGTACAGGATGCTAAGC -ACGGAAAGGTACAGGATGACTAGC -ACGGAAAGGTACAGGATGAGATGC -ACGGAAAGGTACAGGATGTGAAGG -ACGGAAAGGTACAGGATGCAATGG -ACGGAAAGGTACAGGATGATGAGG -ACGGAAAGGTACAGGATGAATGGG -ACGGAAAGGTACAGGATGTCCTGA -ACGGAAAGGTACAGGATGTAGCGA -ACGGAAAGGTACAGGATGCACAGA -ACGGAAAGGTACAGGATGGCAAGA -ACGGAAAGGTACAGGATGGGTTGA -ACGGAAAGGTACAGGATGTCCGAT -ACGGAAAGGTACAGGATGTGGCAT -ACGGAAAGGTACAGGATGCGAGAT -ACGGAAAGGTACAGGATGTACCAC -ACGGAAAGGTACAGGATGCAGAAC -ACGGAAAGGTACAGGATGGTCTAC -ACGGAAAGGTACAGGATGACGTAC -ACGGAAAGGTACAGGATGAGTGAC -ACGGAAAGGTACAGGATGCTGTAG -ACGGAAAGGTACAGGATGCCTAAG -ACGGAAAGGTACAGGATGGTTCAG -ACGGAAAGGTACAGGATGGCATAG -ACGGAAAGGTACAGGATGGACAAG -ACGGAAAGGTACAGGATGAAGCAG -ACGGAAAGGTACAGGATGCGTCAA -ACGGAAAGGTACAGGATGGCTGAA -ACGGAAAGGTACAGGATGAGTACG -ACGGAAAGGTACAGGATGATCCGA -ACGGAAAGGTACAGGATGATGGGA -ACGGAAAGGTACAGGATGGTGCAA -ACGGAAAGGTACAGGATGGAGGAA -ACGGAAAGGTACAGGATGCAGGTA -ACGGAAAGGTACAGGATGGACTCT -ACGGAAAGGTACAGGATGAGTCCT -ACGGAAAGGTACAGGATGTAAGCC -ACGGAAAGGTACAGGATGATAGCC -ACGGAAAGGTACAGGATGTAACCG -ACGGAAAGGTACAGGATGATGCCA -ACGGAAAGGTACGGGAATGGAAAC -ACGGAAAGGTACGGGAATAACACC -ACGGAAAGGTACGGGAATATCGAG -ACGGAAAGGTACGGGAATCTCCTT -ACGGAAAGGTACGGGAATCCTGTT -ACGGAAAGGTACGGGAATCGGTTT -ACGGAAAGGTACGGGAATGTGGTT -ACGGAAAGGTACGGGAATGCCTTT -ACGGAAAGGTACGGGAATGGTCTT -ACGGAAAGGTACGGGAATACGCTT -ACGGAAAGGTACGGGAATAGCGTT -ACGGAAAGGTACGGGAATTTCGTC -ACGGAAAGGTACGGGAATTCTCTC -ACGGAAAGGTACGGGAATTGGATC -ACGGAAAGGTACGGGAATCACTTC -ACGGAAAGGTACGGGAATGTACTC -ACGGAAAGGTACGGGAATGATGTC -ACGGAAAGGTACGGGAATACAGTC -ACGGAAAGGTACGGGAATTTGCTG -ACGGAAAGGTACGGGAATTCCATG -ACGGAAAGGTACGGGAATTGTGTG -ACGGAAAGGTACGGGAATCTAGTG -ACGGAAAGGTACGGGAATCATCTG -ACGGAAAGGTACGGGAATGAGTTG -ACGGAAAGGTACGGGAATAGACTG -ACGGAAAGGTACGGGAATTCGGTA -ACGGAAAGGTACGGGAATTGCCTA -ACGGAAAGGTACGGGAATCCACTA -ACGGAAAGGTACGGGAATGGAGTA -ACGGAAAGGTACGGGAATTCGTCT -ACGGAAAGGTACGGGAATTGCACT -ACGGAAAGGTACGGGAATCTGACT -ACGGAAAGGTACGGGAATCAACCT -ACGGAAAGGTACGGGAATGCTACT -ACGGAAAGGTACGGGAATGGATCT -ACGGAAAGGTACGGGAATAAGGCT -ACGGAAAGGTACGGGAATTCAACC -ACGGAAAGGTACGGGAATTGTTCC -ACGGAAAGGTACGGGAATATTCCC -ACGGAAAGGTACGGGAATTTCTCG -ACGGAAAGGTACGGGAATTAGACG -ACGGAAAGGTACGGGAATGTAACG -ACGGAAAGGTACGGGAATACTTCG -ACGGAAAGGTACGGGAATTACGCA -ACGGAAAGGTACGGGAATCTTGCA -ACGGAAAGGTACGGGAATCGAACA -ACGGAAAGGTACGGGAATCAGTCA -ACGGAAAGGTACGGGAATGATCCA -ACGGAAAGGTACGGGAATACGACA -ACGGAAAGGTACGGGAATAGCTCA -ACGGAAAGGTACGGGAATTCACGT -ACGGAAAGGTACGGGAATCGTAGT -ACGGAAAGGTACGGGAATGTCAGT -ACGGAAAGGTACGGGAATGAAGGT -ACGGAAAGGTACGGGAATAACCGT -ACGGAAAGGTACGGGAATTTGTGC -ACGGAAAGGTACGGGAATCTAAGC -ACGGAAAGGTACGGGAATACTAGC -ACGGAAAGGTACGGGAATAGATGC -ACGGAAAGGTACGGGAATTGAAGG -ACGGAAAGGTACGGGAATCAATGG -ACGGAAAGGTACGGGAATATGAGG -ACGGAAAGGTACGGGAATAATGGG -ACGGAAAGGTACGGGAATTCCTGA -ACGGAAAGGTACGGGAATTAGCGA -ACGGAAAGGTACGGGAATCACAGA -ACGGAAAGGTACGGGAATGCAAGA -ACGGAAAGGTACGGGAATGGTTGA -ACGGAAAGGTACGGGAATTCCGAT -ACGGAAAGGTACGGGAATTGGCAT -ACGGAAAGGTACGGGAATCGAGAT -ACGGAAAGGTACGGGAATTACCAC -ACGGAAAGGTACGGGAATCAGAAC -ACGGAAAGGTACGGGAATGTCTAC -ACGGAAAGGTACGGGAATACGTAC -ACGGAAAGGTACGGGAATAGTGAC -ACGGAAAGGTACGGGAATCTGTAG -ACGGAAAGGTACGGGAATCCTAAG -ACGGAAAGGTACGGGAATGTTCAG -ACGGAAAGGTACGGGAATGCATAG -ACGGAAAGGTACGGGAATGACAAG -ACGGAAAGGTACGGGAATAAGCAG -ACGGAAAGGTACGGGAATCGTCAA -ACGGAAAGGTACGGGAATGCTGAA -ACGGAAAGGTACGGGAATAGTACG -ACGGAAAGGTACGGGAATATCCGA -ACGGAAAGGTACGGGAATATGGGA -ACGGAAAGGTACGGGAATGTGCAA -ACGGAAAGGTACGGGAATGAGGAA -ACGGAAAGGTACGGGAATCAGGTA -ACGGAAAGGTACGGGAATGACTCT -ACGGAAAGGTACGGGAATAGTCCT -ACGGAAAGGTACGGGAATTAAGCC -ACGGAAAGGTACGGGAATATAGCC -ACGGAAAGGTACGGGAATTAACCG -ACGGAAAGGTACGGGAATATGCCA -ACGGAAAGGTACTGATCCGGAAAC -ACGGAAAGGTACTGATCCAACACC -ACGGAAAGGTACTGATCCATCGAG -ACGGAAAGGTACTGATCCCTCCTT -ACGGAAAGGTACTGATCCCCTGTT -ACGGAAAGGTACTGATCCCGGTTT -ACGGAAAGGTACTGATCCGTGGTT -ACGGAAAGGTACTGATCCGCCTTT -ACGGAAAGGTACTGATCCGGTCTT -ACGGAAAGGTACTGATCCACGCTT -ACGGAAAGGTACTGATCCAGCGTT -ACGGAAAGGTACTGATCCTTCGTC -ACGGAAAGGTACTGATCCTCTCTC -ACGGAAAGGTACTGATCCTGGATC -ACGGAAAGGTACTGATCCCACTTC -ACGGAAAGGTACTGATCCGTACTC -ACGGAAAGGTACTGATCCGATGTC -ACGGAAAGGTACTGATCCACAGTC -ACGGAAAGGTACTGATCCTTGCTG -ACGGAAAGGTACTGATCCTCCATG -ACGGAAAGGTACTGATCCTGTGTG -ACGGAAAGGTACTGATCCCTAGTG -ACGGAAAGGTACTGATCCCATCTG -ACGGAAAGGTACTGATCCGAGTTG -ACGGAAAGGTACTGATCCAGACTG -ACGGAAAGGTACTGATCCTCGGTA -ACGGAAAGGTACTGATCCTGCCTA -ACGGAAAGGTACTGATCCCCACTA -ACGGAAAGGTACTGATCCGGAGTA -ACGGAAAGGTACTGATCCTCGTCT -ACGGAAAGGTACTGATCCTGCACT -ACGGAAAGGTACTGATCCCTGACT -ACGGAAAGGTACTGATCCCAACCT -ACGGAAAGGTACTGATCCGCTACT -ACGGAAAGGTACTGATCCGGATCT -ACGGAAAGGTACTGATCCAAGGCT -ACGGAAAGGTACTGATCCTCAACC -ACGGAAAGGTACTGATCCTGTTCC -ACGGAAAGGTACTGATCCATTCCC -ACGGAAAGGTACTGATCCTTCTCG -ACGGAAAGGTACTGATCCTAGACG -ACGGAAAGGTACTGATCCGTAACG -ACGGAAAGGTACTGATCCACTTCG -ACGGAAAGGTACTGATCCTACGCA -ACGGAAAGGTACTGATCCCTTGCA -ACGGAAAGGTACTGATCCCGAACA -ACGGAAAGGTACTGATCCCAGTCA -ACGGAAAGGTACTGATCCGATCCA -ACGGAAAGGTACTGATCCACGACA -ACGGAAAGGTACTGATCCAGCTCA -ACGGAAAGGTACTGATCCTCACGT -ACGGAAAGGTACTGATCCCGTAGT -ACGGAAAGGTACTGATCCGTCAGT -ACGGAAAGGTACTGATCCGAAGGT -ACGGAAAGGTACTGATCCAACCGT -ACGGAAAGGTACTGATCCTTGTGC -ACGGAAAGGTACTGATCCCTAAGC -ACGGAAAGGTACTGATCCACTAGC -ACGGAAAGGTACTGATCCAGATGC -ACGGAAAGGTACTGATCCTGAAGG -ACGGAAAGGTACTGATCCCAATGG -ACGGAAAGGTACTGATCCATGAGG -ACGGAAAGGTACTGATCCAATGGG -ACGGAAAGGTACTGATCCTCCTGA -ACGGAAAGGTACTGATCCTAGCGA -ACGGAAAGGTACTGATCCCACAGA -ACGGAAAGGTACTGATCCGCAAGA -ACGGAAAGGTACTGATCCGGTTGA -ACGGAAAGGTACTGATCCTCCGAT -ACGGAAAGGTACTGATCCTGGCAT -ACGGAAAGGTACTGATCCCGAGAT -ACGGAAAGGTACTGATCCTACCAC -ACGGAAAGGTACTGATCCCAGAAC -ACGGAAAGGTACTGATCCGTCTAC -ACGGAAAGGTACTGATCCACGTAC -ACGGAAAGGTACTGATCCAGTGAC -ACGGAAAGGTACTGATCCCTGTAG -ACGGAAAGGTACTGATCCCCTAAG -ACGGAAAGGTACTGATCCGTTCAG -ACGGAAAGGTACTGATCCGCATAG -ACGGAAAGGTACTGATCCGACAAG -ACGGAAAGGTACTGATCCAAGCAG -ACGGAAAGGTACTGATCCCGTCAA -ACGGAAAGGTACTGATCCGCTGAA -ACGGAAAGGTACTGATCCAGTACG -ACGGAAAGGTACTGATCCATCCGA -ACGGAAAGGTACTGATCCATGGGA -ACGGAAAGGTACTGATCCGTGCAA -ACGGAAAGGTACTGATCCGAGGAA -ACGGAAAGGTACTGATCCCAGGTA -ACGGAAAGGTACTGATCCGACTCT -ACGGAAAGGTACTGATCCAGTCCT -ACGGAAAGGTACTGATCCTAAGCC -ACGGAAAGGTACTGATCCATAGCC -ACGGAAAGGTACTGATCCTAACCG -ACGGAAAGGTACTGATCCATGCCA -ACGGAAAGGTACCGATAGGGAAAC -ACGGAAAGGTACCGATAGAACACC -ACGGAAAGGTACCGATAGATCGAG -ACGGAAAGGTACCGATAGCTCCTT -ACGGAAAGGTACCGATAGCCTGTT -ACGGAAAGGTACCGATAGCGGTTT -ACGGAAAGGTACCGATAGGTGGTT -ACGGAAAGGTACCGATAGGCCTTT -ACGGAAAGGTACCGATAGGGTCTT -ACGGAAAGGTACCGATAGACGCTT -ACGGAAAGGTACCGATAGAGCGTT -ACGGAAAGGTACCGATAGTTCGTC -ACGGAAAGGTACCGATAGTCTCTC -ACGGAAAGGTACCGATAGTGGATC -ACGGAAAGGTACCGATAGCACTTC -ACGGAAAGGTACCGATAGGTACTC -ACGGAAAGGTACCGATAGGATGTC -ACGGAAAGGTACCGATAGACAGTC -ACGGAAAGGTACCGATAGTTGCTG -ACGGAAAGGTACCGATAGTCCATG -ACGGAAAGGTACCGATAGTGTGTG -ACGGAAAGGTACCGATAGCTAGTG -ACGGAAAGGTACCGATAGCATCTG -ACGGAAAGGTACCGATAGGAGTTG -ACGGAAAGGTACCGATAGAGACTG -ACGGAAAGGTACCGATAGTCGGTA -ACGGAAAGGTACCGATAGTGCCTA -ACGGAAAGGTACCGATAGCCACTA -ACGGAAAGGTACCGATAGGGAGTA -ACGGAAAGGTACCGATAGTCGTCT -ACGGAAAGGTACCGATAGTGCACT -ACGGAAAGGTACCGATAGCTGACT -ACGGAAAGGTACCGATAGCAACCT -ACGGAAAGGTACCGATAGGCTACT -ACGGAAAGGTACCGATAGGGATCT -ACGGAAAGGTACCGATAGAAGGCT -ACGGAAAGGTACCGATAGTCAACC -ACGGAAAGGTACCGATAGTGTTCC -ACGGAAAGGTACCGATAGATTCCC -ACGGAAAGGTACCGATAGTTCTCG -ACGGAAAGGTACCGATAGTAGACG -ACGGAAAGGTACCGATAGGTAACG -ACGGAAAGGTACCGATAGACTTCG -ACGGAAAGGTACCGATAGTACGCA -ACGGAAAGGTACCGATAGCTTGCA -ACGGAAAGGTACCGATAGCGAACA -ACGGAAAGGTACCGATAGCAGTCA -ACGGAAAGGTACCGATAGGATCCA -ACGGAAAGGTACCGATAGACGACA -ACGGAAAGGTACCGATAGAGCTCA -ACGGAAAGGTACCGATAGTCACGT -ACGGAAAGGTACCGATAGCGTAGT -ACGGAAAGGTACCGATAGGTCAGT -ACGGAAAGGTACCGATAGGAAGGT -ACGGAAAGGTACCGATAGAACCGT -ACGGAAAGGTACCGATAGTTGTGC -ACGGAAAGGTACCGATAGCTAAGC -ACGGAAAGGTACCGATAGACTAGC -ACGGAAAGGTACCGATAGAGATGC -ACGGAAAGGTACCGATAGTGAAGG -ACGGAAAGGTACCGATAGCAATGG -ACGGAAAGGTACCGATAGATGAGG -ACGGAAAGGTACCGATAGAATGGG -ACGGAAAGGTACCGATAGTCCTGA -ACGGAAAGGTACCGATAGTAGCGA -ACGGAAAGGTACCGATAGCACAGA -ACGGAAAGGTACCGATAGGCAAGA -ACGGAAAGGTACCGATAGGGTTGA -ACGGAAAGGTACCGATAGTCCGAT -ACGGAAAGGTACCGATAGTGGCAT -ACGGAAAGGTACCGATAGCGAGAT -ACGGAAAGGTACCGATAGTACCAC -ACGGAAAGGTACCGATAGCAGAAC -ACGGAAAGGTACCGATAGGTCTAC -ACGGAAAGGTACCGATAGACGTAC -ACGGAAAGGTACCGATAGAGTGAC -ACGGAAAGGTACCGATAGCTGTAG -ACGGAAAGGTACCGATAGCCTAAG -ACGGAAAGGTACCGATAGGTTCAG -ACGGAAAGGTACCGATAGGCATAG -ACGGAAAGGTACCGATAGGACAAG -ACGGAAAGGTACCGATAGAAGCAG -ACGGAAAGGTACCGATAGCGTCAA -ACGGAAAGGTACCGATAGGCTGAA -ACGGAAAGGTACCGATAGAGTACG -ACGGAAAGGTACCGATAGATCCGA -ACGGAAAGGTACCGATAGATGGGA -ACGGAAAGGTACCGATAGGTGCAA -ACGGAAAGGTACCGATAGGAGGAA -ACGGAAAGGTACCGATAGCAGGTA -ACGGAAAGGTACCGATAGGACTCT -ACGGAAAGGTACCGATAGAGTCCT -ACGGAAAGGTACCGATAGTAAGCC -ACGGAAAGGTACCGATAGATAGCC -ACGGAAAGGTACCGATAGTAACCG -ACGGAAAGGTACCGATAGATGCCA -ACGGAAAGGTACAGACACGGAAAC -ACGGAAAGGTACAGACACAACACC -ACGGAAAGGTACAGACACATCGAG -ACGGAAAGGTACAGACACCTCCTT -ACGGAAAGGTACAGACACCCTGTT -ACGGAAAGGTACAGACACCGGTTT -ACGGAAAGGTACAGACACGTGGTT -ACGGAAAGGTACAGACACGCCTTT -ACGGAAAGGTACAGACACGGTCTT -ACGGAAAGGTACAGACACACGCTT -ACGGAAAGGTACAGACACAGCGTT -ACGGAAAGGTACAGACACTTCGTC -ACGGAAAGGTACAGACACTCTCTC -ACGGAAAGGTACAGACACTGGATC -ACGGAAAGGTACAGACACCACTTC -ACGGAAAGGTACAGACACGTACTC -ACGGAAAGGTACAGACACGATGTC -ACGGAAAGGTACAGACACACAGTC -ACGGAAAGGTACAGACACTTGCTG -ACGGAAAGGTACAGACACTCCATG -ACGGAAAGGTACAGACACTGTGTG -ACGGAAAGGTACAGACACCTAGTG -ACGGAAAGGTACAGACACCATCTG -ACGGAAAGGTACAGACACGAGTTG -ACGGAAAGGTACAGACACAGACTG -ACGGAAAGGTACAGACACTCGGTA -ACGGAAAGGTACAGACACTGCCTA -ACGGAAAGGTACAGACACCCACTA -ACGGAAAGGTACAGACACGGAGTA -ACGGAAAGGTACAGACACTCGTCT -ACGGAAAGGTACAGACACTGCACT -ACGGAAAGGTACAGACACCTGACT -ACGGAAAGGTACAGACACCAACCT -ACGGAAAGGTACAGACACGCTACT -ACGGAAAGGTACAGACACGGATCT -ACGGAAAGGTACAGACACAAGGCT -ACGGAAAGGTACAGACACTCAACC -ACGGAAAGGTACAGACACTGTTCC -ACGGAAAGGTACAGACACATTCCC -ACGGAAAGGTACAGACACTTCTCG -ACGGAAAGGTACAGACACTAGACG -ACGGAAAGGTACAGACACGTAACG -ACGGAAAGGTACAGACACACTTCG -ACGGAAAGGTACAGACACTACGCA -ACGGAAAGGTACAGACACCTTGCA -ACGGAAAGGTACAGACACCGAACA -ACGGAAAGGTACAGACACCAGTCA -ACGGAAAGGTACAGACACGATCCA -ACGGAAAGGTACAGACACACGACA -ACGGAAAGGTACAGACACAGCTCA -ACGGAAAGGTACAGACACTCACGT -ACGGAAAGGTACAGACACCGTAGT -ACGGAAAGGTACAGACACGTCAGT -ACGGAAAGGTACAGACACGAAGGT -ACGGAAAGGTACAGACACAACCGT -ACGGAAAGGTACAGACACTTGTGC -ACGGAAAGGTACAGACACCTAAGC -ACGGAAAGGTACAGACACACTAGC -ACGGAAAGGTACAGACACAGATGC -ACGGAAAGGTACAGACACTGAAGG -ACGGAAAGGTACAGACACCAATGG -ACGGAAAGGTACAGACACATGAGG -ACGGAAAGGTACAGACACAATGGG -ACGGAAAGGTACAGACACTCCTGA -ACGGAAAGGTACAGACACTAGCGA -ACGGAAAGGTACAGACACCACAGA -ACGGAAAGGTACAGACACGCAAGA -ACGGAAAGGTACAGACACGGTTGA -ACGGAAAGGTACAGACACTCCGAT -ACGGAAAGGTACAGACACTGGCAT -ACGGAAAGGTACAGACACCGAGAT -ACGGAAAGGTACAGACACTACCAC -ACGGAAAGGTACAGACACCAGAAC -ACGGAAAGGTACAGACACGTCTAC -ACGGAAAGGTACAGACACACGTAC -ACGGAAAGGTACAGACACAGTGAC -ACGGAAAGGTACAGACACCTGTAG -ACGGAAAGGTACAGACACCCTAAG -ACGGAAAGGTACAGACACGTTCAG -ACGGAAAGGTACAGACACGCATAG -ACGGAAAGGTACAGACACGACAAG -ACGGAAAGGTACAGACACAAGCAG -ACGGAAAGGTACAGACACCGTCAA -ACGGAAAGGTACAGACACGCTGAA -ACGGAAAGGTACAGACACAGTACG -ACGGAAAGGTACAGACACATCCGA -ACGGAAAGGTACAGACACATGGGA -ACGGAAAGGTACAGACACGTGCAA -ACGGAAAGGTACAGACACGAGGAA -ACGGAAAGGTACAGACACCAGGTA -ACGGAAAGGTACAGACACGACTCT -ACGGAAAGGTACAGACACAGTCCT -ACGGAAAGGTACAGACACTAAGCC -ACGGAAAGGTACAGACACATAGCC -ACGGAAAGGTACAGACACTAACCG -ACGGAAAGGTACAGACACATGCCA -ACGGAAAGGTACAGAGCAGGAAAC -ACGGAAAGGTACAGAGCAAACACC -ACGGAAAGGTACAGAGCAATCGAG -ACGGAAAGGTACAGAGCACTCCTT -ACGGAAAGGTACAGAGCACCTGTT -ACGGAAAGGTACAGAGCACGGTTT -ACGGAAAGGTACAGAGCAGTGGTT -ACGGAAAGGTACAGAGCAGCCTTT -ACGGAAAGGTACAGAGCAGGTCTT -ACGGAAAGGTACAGAGCAACGCTT -ACGGAAAGGTACAGAGCAAGCGTT -ACGGAAAGGTACAGAGCATTCGTC -ACGGAAAGGTACAGAGCATCTCTC -ACGGAAAGGTACAGAGCATGGATC -ACGGAAAGGTACAGAGCACACTTC -ACGGAAAGGTACAGAGCAGTACTC -ACGGAAAGGTACAGAGCAGATGTC -ACGGAAAGGTACAGAGCAACAGTC -ACGGAAAGGTACAGAGCATTGCTG -ACGGAAAGGTACAGAGCATCCATG -ACGGAAAGGTACAGAGCATGTGTG -ACGGAAAGGTACAGAGCACTAGTG -ACGGAAAGGTACAGAGCACATCTG -ACGGAAAGGTACAGAGCAGAGTTG -ACGGAAAGGTACAGAGCAAGACTG -ACGGAAAGGTACAGAGCATCGGTA -ACGGAAAGGTACAGAGCATGCCTA -ACGGAAAGGTACAGAGCACCACTA -ACGGAAAGGTACAGAGCAGGAGTA -ACGGAAAGGTACAGAGCATCGTCT -ACGGAAAGGTACAGAGCATGCACT -ACGGAAAGGTACAGAGCACTGACT -ACGGAAAGGTACAGAGCACAACCT -ACGGAAAGGTACAGAGCAGCTACT -ACGGAAAGGTACAGAGCAGGATCT -ACGGAAAGGTACAGAGCAAAGGCT -ACGGAAAGGTACAGAGCATCAACC -ACGGAAAGGTACAGAGCATGTTCC -ACGGAAAGGTACAGAGCAATTCCC -ACGGAAAGGTACAGAGCATTCTCG -ACGGAAAGGTACAGAGCATAGACG -ACGGAAAGGTACAGAGCAGTAACG -ACGGAAAGGTACAGAGCAACTTCG -ACGGAAAGGTACAGAGCATACGCA -ACGGAAAGGTACAGAGCACTTGCA -ACGGAAAGGTACAGAGCACGAACA -ACGGAAAGGTACAGAGCACAGTCA -ACGGAAAGGTACAGAGCAGATCCA -ACGGAAAGGTACAGAGCAACGACA -ACGGAAAGGTACAGAGCAAGCTCA -ACGGAAAGGTACAGAGCATCACGT -ACGGAAAGGTACAGAGCACGTAGT -ACGGAAAGGTACAGAGCAGTCAGT -ACGGAAAGGTACAGAGCAGAAGGT -ACGGAAAGGTACAGAGCAAACCGT -ACGGAAAGGTACAGAGCATTGTGC -ACGGAAAGGTACAGAGCACTAAGC -ACGGAAAGGTACAGAGCAACTAGC -ACGGAAAGGTACAGAGCAAGATGC -ACGGAAAGGTACAGAGCATGAAGG -ACGGAAAGGTACAGAGCACAATGG -ACGGAAAGGTACAGAGCAATGAGG -ACGGAAAGGTACAGAGCAAATGGG -ACGGAAAGGTACAGAGCATCCTGA -ACGGAAAGGTACAGAGCATAGCGA -ACGGAAAGGTACAGAGCACACAGA -ACGGAAAGGTACAGAGCAGCAAGA -ACGGAAAGGTACAGAGCAGGTTGA -ACGGAAAGGTACAGAGCATCCGAT -ACGGAAAGGTACAGAGCATGGCAT -ACGGAAAGGTACAGAGCACGAGAT -ACGGAAAGGTACAGAGCATACCAC -ACGGAAAGGTACAGAGCACAGAAC -ACGGAAAGGTACAGAGCAGTCTAC -ACGGAAAGGTACAGAGCAACGTAC -ACGGAAAGGTACAGAGCAAGTGAC -ACGGAAAGGTACAGAGCACTGTAG -ACGGAAAGGTACAGAGCACCTAAG -ACGGAAAGGTACAGAGCAGTTCAG -ACGGAAAGGTACAGAGCAGCATAG -ACGGAAAGGTACAGAGCAGACAAG -ACGGAAAGGTACAGAGCAAAGCAG -ACGGAAAGGTACAGAGCACGTCAA -ACGGAAAGGTACAGAGCAGCTGAA -ACGGAAAGGTACAGAGCAAGTACG -ACGGAAAGGTACAGAGCAATCCGA -ACGGAAAGGTACAGAGCAATGGGA -ACGGAAAGGTACAGAGCAGTGCAA -ACGGAAAGGTACAGAGCAGAGGAA -ACGGAAAGGTACAGAGCACAGGTA -ACGGAAAGGTACAGAGCAGACTCT -ACGGAAAGGTACAGAGCAAGTCCT -ACGGAAAGGTACAGAGCATAAGCC -ACGGAAAGGTACAGAGCAATAGCC -ACGGAAAGGTACAGAGCATAACCG -ACGGAAAGGTACAGAGCAATGCCA -ACGGAAAGGTACTGAGGTGGAAAC -ACGGAAAGGTACTGAGGTAACACC -ACGGAAAGGTACTGAGGTATCGAG -ACGGAAAGGTACTGAGGTCTCCTT -ACGGAAAGGTACTGAGGTCCTGTT -ACGGAAAGGTACTGAGGTCGGTTT -ACGGAAAGGTACTGAGGTGTGGTT -ACGGAAAGGTACTGAGGTGCCTTT -ACGGAAAGGTACTGAGGTGGTCTT -ACGGAAAGGTACTGAGGTACGCTT -ACGGAAAGGTACTGAGGTAGCGTT -ACGGAAAGGTACTGAGGTTTCGTC -ACGGAAAGGTACTGAGGTTCTCTC -ACGGAAAGGTACTGAGGTTGGATC -ACGGAAAGGTACTGAGGTCACTTC -ACGGAAAGGTACTGAGGTGTACTC -ACGGAAAGGTACTGAGGTGATGTC -ACGGAAAGGTACTGAGGTACAGTC -ACGGAAAGGTACTGAGGTTTGCTG -ACGGAAAGGTACTGAGGTTCCATG -ACGGAAAGGTACTGAGGTTGTGTG -ACGGAAAGGTACTGAGGTCTAGTG -ACGGAAAGGTACTGAGGTCATCTG -ACGGAAAGGTACTGAGGTGAGTTG -ACGGAAAGGTACTGAGGTAGACTG -ACGGAAAGGTACTGAGGTTCGGTA -ACGGAAAGGTACTGAGGTTGCCTA -ACGGAAAGGTACTGAGGTCCACTA -ACGGAAAGGTACTGAGGTGGAGTA -ACGGAAAGGTACTGAGGTTCGTCT -ACGGAAAGGTACTGAGGTTGCACT -ACGGAAAGGTACTGAGGTCTGACT -ACGGAAAGGTACTGAGGTCAACCT -ACGGAAAGGTACTGAGGTGCTACT -ACGGAAAGGTACTGAGGTGGATCT -ACGGAAAGGTACTGAGGTAAGGCT -ACGGAAAGGTACTGAGGTTCAACC -ACGGAAAGGTACTGAGGTTGTTCC -ACGGAAAGGTACTGAGGTATTCCC -ACGGAAAGGTACTGAGGTTTCTCG -ACGGAAAGGTACTGAGGTTAGACG -ACGGAAAGGTACTGAGGTGTAACG -ACGGAAAGGTACTGAGGTACTTCG -ACGGAAAGGTACTGAGGTTACGCA -ACGGAAAGGTACTGAGGTCTTGCA -ACGGAAAGGTACTGAGGTCGAACA -ACGGAAAGGTACTGAGGTCAGTCA -ACGGAAAGGTACTGAGGTGATCCA -ACGGAAAGGTACTGAGGTACGACA -ACGGAAAGGTACTGAGGTAGCTCA -ACGGAAAGGTACTGAGGTTCACGT -ACGGAAAGGTACTGAGGTCGTAGT -ACGGAAAGGTACTGAGGTGTCAGT -ACGGAAAGGTACTGAGGTGAAGGT -ACGGAAAGGTACTGAGGTAACCGT -ACGGAAAGGTACTGAGGTTTGTGC -ACGGAAAGGTACTGAGGTCTAAGC -ACGGAAAGGTACTGAGGTACTAGC -ACGGAAAGGTACTGAGGTAGATGC -ACGGAAAGGTACTGAGGTTGAAGG -ACGGAAAGGTACTGAGGTCAATGG -ACGGAAAGGTACTGAGGTATGAGG -ACGGAAAGGTACTGAGGTAATGGG -ACGGAAAGGTACTGAGGTTCCTGA -ACGGAAAGGTACTGAGGTTAGCGA -ACGGAAAGGTACTGAGGTCACAGA -ACGGAAAGGTACTGAGGTGCAAGA -ACGGAAAGGTACTGAGGTGGTTGA -ACGGAAAGGTACTGAGGTTCCGAT -ACGGAAAGGTACTGAGGTTGGCAT -ACGGAAAGGTACTGAGGTCGAGAT -ACGGAAAGGTACTGAGGTTACCAC -ACGGAAAGGTACTGAGGTCAGAAC -ACGGAAAGGTACTGAGGTGTCTAC -ACGGAAAGGTACTGAGGTACGTAC -ACGGAAAGGTACTGAGGTAGTGAC -ACGGAAAGGTACTGAGGTCTGTAG -ACGGAAAGGTACTGAGGTCCTAAG -ACGGAAAGGTACTGAGGTGTTCAG -ACGGAAAGGTACTGAGGTGCATAG -ACGGAAAGGTACTGAGGTGACAAG -ACGGAAAGGTACTGAGGTAAGCAG -ACGGAAAGGTACTGAGGTCGTCAA -ACGGAAAGGTACTGAGGTGCTGAA -ACGGAAAGGTACTGAGGTAGTACG -ACGGAAAGGTACTGAGGTATCCGA -ACGGAAAGGTACTGAGGTATGGGA -ACGGAAAGGTACTGAGGTGTGCAA -ACGGAAAGGTACTGAGGTGAGGAA -ACGGAAAGGTACTGAGGTCAGGTA -ACGGAAAGGTACTGAGGTGACTCT -ACGGAAAGGTACTGAGGTAGTCCT -ACGGAAAGGTACTGAGGTTAAGCC -ACGGAAAGGTACTGAGGTATAGCC -ACGGAAAGGTACTGAGGTTAACCG -ACGGAAAGGTACTGAGGTATGCCA -ACGGAAAGGTACGATTCCGGAAAC -ACGGAAAGGTACGATTCCAACACC -ACGGAAAGGTACGATTCCATCGAG -ACGGAAAGGTACGATTCCCTCCTT -ACGGAAAGGTACGATTCCCCTGTT -ACGGAAAGGTACGATTCCCGGTTT -ACGGAAAGGTACGATTCCGTGGTT -ACGGAAAGGTACGATTCCGCCTTT -ACGGAAAGGTACGATTCCGGTCTT -ACGGAAAGGTACGATTCCACGCTT -ACGGAAAGGTACGATTCCAGCGTT -ACGGAAAGGTACGATTCCTTCGTC -ACGGAAAGGTACGATTCCTCTCTC -ACGGAAAGGTACGATTCCTGGATC -ACGGAAAGGTACGATTCCCACTTC -ACGGAAAGGTACGATTCCGTACTC -ACGGAAAGGTACGATTCCGATGTC -ACGGAAAGGTACGATTCCACAGTC -ACGGAAAGGTACGATTCCTTGCTG -ACGGAAAGGTACGATTCCTCCATG -ACGGAAAGGTACGATTCCTGTGTG -ACGGAAAGGTACGATTCCCTAGTG -ACGGAAAGGTACGATTCCCATCTG -ACGGAAAGGTACGATTCCGAGTTG -ACGGAAAGGTACGATTCCAGACTG -ACGGAAAGGTACGATTCCTCGGTA -ACGGAAAGGTACGATTCCTGCCTA -ACGGAAAGGTACGATTCCCCACTA -ACGGAAAGGTACGATTCCGGAGTA -ACGGAAAGGTACGATTCCTCGTCT -ACGGAAAGGTACGATTCCTGCACT -ACGGAAAGGTACGATTCCCTGACT -ACGGAAAGGTACGATTCCCAACCT -ACGGAAAGGTACGATTCCGCTACT -ACGGAAAGGTACGATTCCGGATCT -ACGGAAAGGTACGATTCCAAGGCT -ACGGAAAGGTACGATTCCTCAACC -ACGGAAAGGTACGATTCCTGTTCC -ACGGAAAGGTACGATTCCATTCCC -ACGGAAAGGTACGATTCCTTCTCG -ACGGAAAGGTACGATTCCTAGACG -ACGGAAAGGTACGATTCCGTAACG -ACGGAAAGGTACGATTCCACTTCG -ACGGAAAGGTACGATTCCTACGCA -ACGGAAAGGTACGATTCCCTTGCA -ACGGAAAGGTACGATTCCCGAACA -ACGGAAAGGTACGATTCCCAGTCA -ACGGAAAGGTACGATTCCGATCCA -ACGGAAAGGTACGATTCCACGACA -ACGGAAAGGTACGATTCCAGCTCA -ACGGAAAGGTACGATTCCTCACGT -ACGGAAAGGTACGATTCCCGTAGT -ACGGAAAGGTACGATTCCGTCAGT -ACGGAAAGGTACGATTCCGAAGGT -ACGGAAAGGTACGATTCCAACCGT -ACGGAAAGGTACGATTCCTTGTGC -ACGGAAAGGTACGATTCCCTAAGC -ACGGAAAGGTACGATTCCACTAGC -ACGGAAAGGTACGATTCCAGATGC -ACGGAAAGGTACGATTCCTGAAGG -ACGGAAAGGTACGATTCCCAATGG -ACGGAAAGGTACGATTCCATGAGG -ACGGAAAGGTACGATTCCAATGGG -ACGGAAAGGTACGATTCCTCCTGA -ACGGAAAGGTACGATTCCTAGCGA -ACGGAAAGGTACGATTCCCACAGA -ACGGAAAGGTACGATTCCGCAAGA -ACGGAAAGGTACGATTCCGGTTGA -ACGGAAAGGTACGATTCCTCCGAT -ACGGAAAGGTACGATTCCTGGCAT -ACGGAAAGGTACGATTCCCGAGAT -ACGGAAAGGTACGATTCCTACCAC -ACGGAAAGGTACGATTCCCAGAAC -ACGGAAAGGTACGATTCCGTCTAC -ACGGAAAGGTACGATTCCACGTAC -ACGGAAAGGTACGATTCCAGTGAC -ACGGAAAGGTACGATTCCCTGTAG -ACGGAAAGGTACGATTCCCCTAAG -ACGGAAAGGTACGATTCCGTTCAG -ACGGAAAGGTACGATTCCGCATAG -ACGGAAAGGTACGATTCCGACAAG -ACGGAAAGGTACGATTCCAAGCAG -ACGGAAAGGTACGATTCCCGTCAA -ACGGAAAGGTACGATTCCGCTGAA -ACGGAAAGGTACGATTCCAGTACG -ACGGAAAGGTACGATTCCATCCGA -ACGGAAAGGTACGATTCCATGGGA -ACGGAAAGGTACGATTCCGTGCAA -ACGGAAAGGTACGATTCCGAGGAA -ACGGAAAGGTACGATTCCCAGGTA -ACGGAAAGGTACGATTCCGACTCT -ACGGAAAGGTACGATTCCAGTCCT -ACGGAAAGGTACGATTCCTAAGCC -ACGGAAAGGTACGATTCCATAGCC -ACGGAAAGGTACGATTCCTAACCG -ACGGAAAGGTACGATTCCATGCCA -ACGGAAAGGTACCATTGGGGAAAC -ACGGAAAGGTACCATTGGAACACC -ACGGAAAGGTACCATTGGATCGAG -ACGGAAAGGTACCATTGGCTCCTT -ACGGAAAGGTACCATTGGCCTGTT -ACGGAAAGGTACCATTGGCGGTTT -ACGGAAAGGTACCATTGGGTGGTT -ACGGAAAGGTACCATTGGGCCTTT -ACGGAAAGGTACCATTGGGGTCTT -ACGGAAAGGTACCATTGGACGCTT -ACGGAAAGGTACCATTGGAGCGTT -ACGGAAAGGTACCATTGGTTCGTC -ACGGAAAGGTACCATTGGTCTCTC -ACGGAAAGGTACCATTGGTGGATC -ACGGAAAGGTACCATTGGCACTTC -ACGGAAAGGTACCATTGGGTACTC -ACGGAAAGGTACCATTGGGATGTC -ACGGAAAGGTACCATTGGACAGTC -ACGGAAAGGTACCATTGGTTGCTG -ACGGAAAGGTACCATTGGTCCATG -ACGGAAAGGTACCATTGGTGTGTG -ACGGAAAGGTACCATTGGCTAGTG -ACGGAAAGGTACCATTGGCATCTG -ACGGAAAGGTACCATTGGGAGTTG -ACGGAAAGGTACCATTGGAGACTG -ACGGAAAGGTACCATTGGTCGGTA -ACGGAAAGGTACCATTGGTGCCTA -ACGGAAAGGTACCATTGGCCACTA -ACGGAAAGGTACCATTGGGGAGTA -ACGGAAAGGTACCATTGGTCGTCT -ACGGAAAGGTACCATTGGTGCACT -ACGGAAAGGTACCATTGGCTGACT -ACGGAAAGGTACCATTGGCAACCT -ACGGAAAGGTACCATTGGGCTACT -ACGGAAAGGTACCATTGGGGATCT -ACGGAAAGGTACCATTGGAAGGCT -ACGGAAAGGTACCATTGGTCAACC -ACGGAAAGGTACCATTGGTGTTCC -ACGGAAAGGTACCATTGGATTCCC -ACGGAAAGGTACCATTGGTTCTCG -ACGGAAAGGTACCATTGGTAGACG -ACGGAAAGGTACCATTGGGTAACG -ACGGAAAGGTACCATTGGACTTCG -ACGGAAAGGTACCATTGGTACGCA -ACGGAAAGGTACCATTGGCTTGCA -ACGGAAAGGTACCATTGGCGAACA -ACGGAAAGGTACCATTGGCAGTCA -ACGGAAAGGTACCATTGGGATCCA -ACGGAAAGGTACCATTGGACGACA -ACGGAAAGGTACCATTGGAGCTCA -ACGGAAAGGTACCATTGGTCACGT -ACGGAAAGGTACCATTGGCGTAGT -ACGGAAAGGTACCATTGGGTCAGT -ACGGAAAGGTACCATTGGGAAGGT -ACGGAAAGGTACCATTGGAACCGT -ACGGAAAGGTACCATTGGTTGTGC -ACGGAAAGGTACCATTGGCTAAGC -ACGGAAAGGTACCATTGGACTAGC -ACGGAAAGGTACCATTGGAGATGC -ACGGAAAGGTACCATTGGTGAAGG -ACGGAAAGGTACCATTGGCAATGG -ACGGAAAGGTACCATTGGATGAGG -ACGGAAAGGTACCATTGGAATGGG -ACGGAAAGGTACCATTGGTCCTGA -ACGGAAAGGTACCATTGGTAGCGA -ACGGAAAGGTACCATTGGCACAGA -ACGGAAAGGTACCATTGGGCAAGA -ACGGAAAGGTACCATTGGGGTTGA -ACGGAAAGGTACCATTGGTCCGAT -ACGGAAAGGTACCATTGGTGGCAT -ACGGAAAGGTACCATTGGCGAGAT -ACGGAAAGGTACCATTGGTACCAC -ACGGAAAGGTACCATTGGCAGAAC -ACGGAAAGGTACCATTGGGTCTAC -ACGGAAAGGTACCATTGGACGTAC -ACGGAAAGGTACCATTGGAGTGAC -ACGGAAAGGTACCATTGGCTGTAG -ACGGAAAGGTACCATTGGCCTAAG -ACGGAAAGGTACCATTGGGTTCAG -ACGGAAAGGTACCATTGGGCATAG -ACGGAAAGGTACCATTGGGACAAG -ACGGAAAGGTACCATTGGAAGCAG -ACGGAAAGGTACCATTGGCGTCAA -ACGGAAAGGTACCATTGGGCTGAA -ACGGAAAGGTACCATTGGAGTACG -ACGGAAAGGTACCATTGGATCCGA -ACGGAAAGGTACCATTGGATGGGA -ACGGAAAGGTACCATTGGGTGCAA -ACGGAAAGGTACCATTGGGAGGAA -ACGGAAAGGTACCATTGGCAGGTA -ACGGAAAGGTACCATTGGGACTCT -ACGGAAAGGTACCATTGGAGTCCT -ACGGAAAGGTACCATTGGTAAGCC -ACGGAAAGGTACCATTGGATAGCC -ACGGAAAGGTACCATTGGTAACCG -ACGGAAAGGTACCATTGGATGCCA -ACGGAAAGGTACGATCGAGGAAAC -ACGGAAAGGTACGATCGAAACACC -ACGGAAAGGTACGATCGAATCGAG -ACGGAAAGGTACGATCGACTCCTT -ACGGAAAGGTACGATCGACCTGTT -ACGGAAAGGTACGATCGACGGTTT -ACGGAAAGGTACGATCGAGTGGTT -ACGGAAAGGTACGATCGAGCCTTT -ACGGAAAGGTACGATCGAGGTCTT -ACGGAAAGGTACGATCGAACGCTT -ACGGAAAGGTACGATCGAAGCGTT -ACGGAAAGGTACGATCGATTCGTC -ACGGAAAGGTACGATCGATCTCTC -ACGGAAAGGTACGATCGATGGATC -ACGGAAAGGTACGATCGACACTTC -ACGGAAAGGTACGATCGAGTACTC -ACGGAAAGGTACGATCGAGATGTC -ACGGAAAGGTACGATCGAACAGTC -ACGGAAAGGTACGATCGATTGCTG -ACGGAAAGGTACGATCGATCCATG -ACGGAAAGGTACGATCGATGTGTG -ACGGAAAGGTACGATCGACTAGTG -ACGGAAAGGTACGATCGACATCTG -ACGGAAAGGTACGATCGAGAGTTG -ACGGAAAGGTACGATCGAAGACTG -ACGGAAAGGTACGATCGATCGGTA -ACGGAAAGGTACGATCGATGCCTA -ACGGAAAGGTACGATCGACCACTA -ACGGAAAGGTACGATCGAGGAGTA -ACGGAAAGGTACGATCGATCGTCT -ACGGAAAGGTACGATCGATGCACT -ACGGAAAGGTACGATCGACTGACT -ACGGAAAGGTACGATCGACAACCT -ACGGAAAGGTACGATCGAGCTACT -ACGGAAAGGTACGATCGAGGATCT -ACGGAAAGGTACGATCGAAAGGCT -ACGGAAAGGTACGATCGATCAACC -ACGGAAAGGTACGATCGATGTTCC -ACGGAAAGGTACGATCGAATTCCC -ACGGAAAGGTACGATCGATTCTCG -ACGGAAAGGTACGATCGATAGACG -ACGGAAAGGTACGATCGAGTAACG -ACGGAAAGGTACGATCGAACTTCG -ACGGAAAGGTACGATCGATACGCA -ACGGAAAGGTACGATCGACTTGCA -ACGGAAAGGTACGATCGACGAACA -ACGGAAAGGTACGATCGACAGTCA -ACGGAAAGGTACGATCGAGATCCA -ACGGAAAGGTACGATCGAACGACA -ACGGAAAGGTACGATCGAAGCTCA -ACGGAAAGGTACGATCGATCACGT -ACGGAAAGGTACGATCGACGTAGT -ACGGAAAGGTACGATCGAGTCAGT -ACGGAAAGGTACGATCGAGAAGGT -ACGGAAAGGTACGATCGAAACCGT -ACGGAAAGGTACGATCGATTGTGC -ACGGAAAGGTACGATCGACTAAGC -ACGGAAAGGTACGATCGAACTAGC -ACGGAAAGGTACGATCGAAGATGC -ACGGAAAGGTACGATCGATGAAGG -ACGGAAAGGTACGATCGACAATGG -ACGGAAAGGTACGATCGAATGAGG -ACGGAAAGGTACGATCGAAATGGG -ACGGAAAGGTACGATCGATCCTGA -ACGGAAAGGTACGATCGATAGCGA -ACGGAAAGGTACGATCGACACAGA -ACGGAAAGGTACGATCGAGCAAGA -ACGGAAAGGTACGATCGAGGTTGA -ACGGAAAGGTACGATCGATCCGAT -ACGGAAAGGTACGATCGATGGCAT -ACGGAAAGGTACGATCGACGAGAT -ACGGAAAGGTACGATCGATACCAC -ACGGAAAGGTACGATCGACAGAAC -ACGGAAAGGTACGATCGAGTCTAC -ACGGAAAGGTACGATCGAACGTAC -ACGGAAAGGTACGATCGAAGTGAC -ACGGAAAGGTACGATCGACTGTAG -ACGGAAAGGTACGATCGACCTAAG -ACGGAAAGGTACGATCGAGTTCAG -ACGGAAAGGTACGATCGAGCATAG -ACGGAAAGGTACGATCGAGACAAG -ACGGAAAGGTACGATCGAAAGCAG -ACGGAAAGGTACGATCGACGTCAA -ACGGAAAGGTACGATCGAGCTGAA -ACGGAAAGGTACGATCGAAGTACG -ACGGAAAGGTACGATCGAATCCGA -ACGGAAAGGTACGATCGAATGGGA -ACGGAAAGGTACGATCGAGTGCAA -ACGGAAAGGTACGATCGAGAGGAA -ACGGAAAGGTACGATCGACAGGTA -ACGGAAAGGTACGATCGAGACTCT -ACGGAAAGGTACGATCGAAGTCCT -ACGGAAAGGTACGATCGATAAGCC -ACGGAAAGGTACGATCGAATAGCC -ACGGAAAGGTACGATCGATAACCG -ACGGAAAGGTACGATCGAATGCCA -ACGGAAAGGTACCACTACGGAAAC -ACGGAAAGGTACCACTACAACACC -ACGGAAAGGTACCACTACATCGAG -ACGGAAAGGTACCACTACCTCCTT -ACGGAAAGGTACCACTACCCTGTT -ACGGAAAGGTACCACTACCGGTTT -ACGGAAAGGTACCACTACGTGGTT -ACGGAAAGGTACCACTACGCCTTT -ACGGAAAGGTACCACTACGGTCTT -ACGGAAAGGTACCACTACACGCTT -ACGGAAAGGTACCACTACAGCGTT -ACGGAAAGGTACCACTACTTCGTC -ACGGAAAGGTACCACTACTCTCTC -ACGGAAAGGTACCACTACTGGATC -ACGGAAAGGTACCACTACCACTTC -ACGGAAAGGTACCACTACGTACTC -ACGGAAAGGTACCACTACGATGTC -ACGGAAAGGTACCACTACACAGTC -ACGGAAAGGTACCACTACTTGCTG -ACGGAAAGGTACCACTACTCCATG -ACGGAAAGGTACCACTACTGTGTG -ACGGAAAGGTACCACTACCTAGTG -ACGGAAAGGTACCACTACCATCTG -ACGGAAAGGTACCACTACGAGTTG -ACGGAAAGGTACCACTACAGACTG -ACGGAAAGGTACCACTACTCGGTA -ACGGAAAGGTACCACTACTGCCTA -ACGGAAAGGTACCACTACCCACTA -ACGGAAAGGTACCACTACGGAGTA -ACGGAAAGGTACCACTACTCGTCT -ACGGAAAGGTACCACTACTGCACT -ACGGAAAGGTACCACTACCTGACT -ACGGAAAGGTACCACTACCAACCT -ACGGAAAGGTACCACTACGCTACT -ACGGAAAGGTACCACTACGGATCT -ACGGAAAGGTACCACTACAAGGCT -ACGGAAAGGTACCACTACTCAACC -ACGGAAAGGTACCACTACTGTTCC -ACGGAAAGGTACCACTACATTCCC -ACGGAAAGGTACCACTACTTCTCG -ACGGAAAGGTACCACTACTAGACG -ACGGAAAGGTACCACTACGTAACG -ACGGAAAGGTACCACTACACTTCG -ACGGAAAGGTACCACTACTACGCA -ACGGAAAGGTACCACTACCTTGCA -ACGGAAAGGTACCACTACCGAACA -ACGGAAAGGTACCACTACCAGTCA -ACGGAAAGGTACCACTACGATCCA -ACGGAAAGGTACCACTACACGACA -ACGGAAAGGTACCACTACAGCTCA -ACGGAAAGGTACCACTACTCACGT -ACGGAAAGGTACCACTACCGTAGT -ACGGAAAGGTACCACTACGTCAGT -ACGGAAAGGTACCACTACGAAGGT -ACGGAAAGGTACCACTACAACCGT -ACGGAAAGGTACCACTACTTGTGC -ACGGAAAGGTACCACTACCTAAGC -ACGGAAAGGTACCACTACACTAGC -ACGGAAAGGTACCACTACAGATGC -ACGGAAAGGTACCACTACTGAAGG -ACGGAAAGGTACCACTACCAATGG -ACGGAAAGGTACCACTACATGAGG -ACGGAAAGGTACCACTACAATGGG -ACGGAAAGGTACCACTACTCCTGA -ACGGAAAGGTACCACTACTAGCGA -ACGGAAAGGTACCACTACCACAGA -ACGGAAAGGTACCACTACGCAAGA -ACGGAAAGGTACCACTACGGTTGA -ACGGAAAGGTACCACTACTCCGAT -ACGGAAAGGTACCACTACTGGCAT -ACGGAAAGGTACCACTACCGAGAT -ACGGAAAGGTACCACTACTACCAC -ACGGAAAGGTACCACTACCAGAAC -ACGGAAAGGTACCACTACGTCTAC -ACGGAAAGGTACCACTACACGTAC -ACGGAAAGGTACCACTACAGTGAC -ACGGAAAGGTACCACTACCTGTAG -ACGGAAAGGTACCACTACCCTAAG -ACGGAAAGGTACCACTACGTTCAG -ACGGAAAGGTACCACTACGCATAG -ACGGAAAGGTACCACTACGACAAG -ACGGAAAGGTACCACTACAAGCAG -ACGGAAAGGTACCACTACCGTCAA -ACGGAAAGGTACCACTACGCTGAA -ACGGAAAGGTACCACTACAGTACG -ACGGAAAGGTACCACTACATCCGA -ACGGAAAGGTACCACTACATGGGA -ACGGAAAGGTACCACTACGTGCAA -ACGGAAAGGTACCACTACGAGGAA -ACGGAAAGGTACCACTACCAGGTA -ACGGAAAGGTACCACTACGACTCT -ACGGAAAGGTACCACTACAGTCCT -ACGGAAAGGTACCACTACTAAGCC -ACGGAAAGGTACCACTACATAGCC -ACGGAAAGGTACCACTACTAACCG -ACGGAAAGGTACCACTACATGCCA -ACGGAAAGGTACAACCAGGGAAAC -ACGGAAAGGTACAACCAGAACACC -ACGGAAAGGTACAACCAGATCGAG -ACGGAAAGGTACAACCAGCTCCTT -ACGGAAAGGTACAACCAGCCTGTT -ACGGAAAGGTACAACCAGCGGTTT -ACGGAAAGGTACAACCAGGTGGTT -ACGGAAAGGTACAACCAGGCCTTT -ACGGAAAGGTACAACCAGGGTCTT -ACGGAAAGGTACAACCAGACGCTT -ACGGAAAGGTACAACCAGAGCGTT -ACGGAAAGGTACAACCAGTTCGTC -ACGGAAAGGTACAACCAGTCTCTC -ACGGAAAGGTACAACCAGTGGATC -ACGGAAAGGTACAACCAGCACTTC -ACGGAAAGGTACAACCAGGTACTC -ACGGAAAGGTACAACCAGGATGTC -ACGGAAAGGTACAACCAGACAGTC -ACGGAAAGGTACAACCAGTTGCTG -ACGGAAAGGTACAACCAGTCCATG -ACGGAAAGGTACAACCAGTGTGTG -ACGGAAAGGTACAACCAGCTAGTG -ACGGAAAGGTACAACCAGCATCTG -ACGGAAAGGTACAACCAGGAGTTG -ACGGAAAGGTACAACCAGAGACTG -ACGGAAAGGTACAACCAGTCGGTA -ACGGAAAGGTACAACCAGTGCCTA -ACGGAAAGGTACAACCAGCCACTA -ACGGAAAGGTACAACCAGGGAGTA -ACGGAAAGGTACAACCAGTCGTCT -ACGGAAAGGTACAACCAGTGCACT -ACGGAAAGGTACAACCAGCTGACT -ACGGAAAGGTACAACCAGCAACCT -ACGGAAAGGTACAACCAGGCTACT -ACGGAAAGGTACAACCAGGGATCT -ACGGAAAGGTACAACCAGAAGGCT -ACGGAAAGGTACAACCAGTCAACC -ACGGAAAGGTACAACCAGTGTTCC -ACGGAAAGGTACAACCAGATTCCC -ACGGAAAGGTACAACCAGTTCTCG -ACGGAAAGGTACAACCAGTAGACG -ACGGAAAGGTACAACCAGGTAACG -ACGGAAAGGTACAACCAGACTTCG -ACGGAAAGGTACAACCAGTACGCA -ACGGAAAGGTACAACCAGCTTGCA -ACGGAAAGGTACAACCAGCGAACA -ACGGAAAGGTACAACCAGCAGTCA -ACGGAAAGGTACAACCAGGATCCA -ACGGAAAGGTACAACCAGACGACA -ACGGAAAGGTACAACCAGAGCTCA -ACGGAAAGGTACAACCAGTCACGT -ACGGAAAGGTACAACCAGCGTAGT -ACGGAAAGGTACAACCAGGTCAGT -ACGGAAAGGTACAACCAGGAAGGT -ACGGAAAGGTACAACCAGAACCGT -ACGGAAAGGTACAACCAGTTGTGC -ACGGAAAGGTACAACCAGCTAAGC -ACGGAAAGGTACAACCAGACTAGC -ACGGAAAGGTACAACCAGAGATGC -ACGGAAAGGTACAACCAGTGAAGG -ACGGAAAGGTACAACCAGCAATGG -ACGGAAAGGTACAACCAGATGAGG -ACGGAAAGGTACAACCAGAATGGG -ACGGAAAGGTACAACCAGTCCTGA -ACGGAAAGGTACAACCAGTAGCGA -ACGGAAAGGTACAACCAGCACAGA -ACGGAAAGGTACAACCAGGCAAGA -ACGGAAAGGTACAACCAGGGTTGA -ACGGAAAGGTACAACCAGTCCGAT -ACGGAAAGGTACAACCAGTGGCAT -ACGGAAAGGTACAACCAGCGAGAT -ACGGAAAGGTACAACCAGTACCAC -ACGGAAAGGTACAACCAGCAGAAC -ACGGAAAGGTACAACCAGGTCTAC -ACGGAAAGGTACAACCAGACGTAC -ACGGAAAGGTACAACCAGAGTGAC -ACGGAAAGGTACAACCAGCTGTAG -ACGGAAAGGTACAACCAGCCTAAG -ACGGAAAGGTACAACCAGGTTCAG -ACGGAAAGGTACAACCAGGCATAG -ACGGAAAGGTACAACCAGGACAAG -ACGGAAAGGTACAACCAGAAGCAG -ACGGAAAGGTACAACCAGCGTCAA -ACGGAAAGGTACAACCAGGCTGAA -ACGGAAAGGTACAACCAGAGTACG -ACGGAAAGGTACAACCAGATCCGA -ACGGAAAGGTACAACCAGATGGGA -ACGGAAAGGTACAACCAGGTGCAA -ACGGAAAGGTACAACCAGGAGGAA -ACGGAAAGGTACAACCAGCAGGTA -ACGGAAAGGTACAACCAGGACTCT -ACGGAAAGGTACAACCAGAGTCCT -ACGGAAAGGTACAACCAGTAAGCC -ACGGAAAGGTACAACCAGATAGCC -ACGGAAAGGTACAACCAGTAACCG -ACGGAAAGGTACAACCAGATGCCA -ACGGAAAGGTACTACGTCGGAAAC -ACGGAAAGGTACTACGTCAACACC -ACGGAAAGGTACTACGTCATCGAG -ACGGAAAGGTACTACGTCCTCCTT -ACGGAAAGGTACTACGTCCCTGTT -ACGGAAAGGTACTACGTCCGGTTT -ACGGAAAGGTACTACGTCGTGGTT -ACGGAAAGGTACTACGTCGCCTTT -ACGGAAAGGTACTACGTCGGTCTT -ACGGAAAGGTACTACGTCACGCTT -ACGGAAAGGTACTACGTCAGCGTT -ACGGAAAGGTACTACGTCTTCGTC -ACGGAAAGGTACTACGTCTCTCTC -ACGGAAAGGTACTACGTCTGGATC -ACGGAAAGGTACTACGTCCACTTC -ACGGAAAGGTACTACGTCGTACTC -ACGGAAAGGTACTACGTCGATGTC -ACGGAAAGGTACTACGTCACAGTC -ACGGAAAGGTACTACGTCTTGCTG -ACGGAAAGGTACTACGTCTCCATG -ACGGAAAGGTACTACGTCTGTGTG -ACGGAAAGGTACTACGTCCTAGTG -ACGGAAAGGTACTACGTCCATCTG -ACGGAAAGGTACTACGTCGAGTTG -ACGGAAAGGTACTACGTCAGACTG -ACGGAAAGGTACTACGTCTCGGTA -ACGGAAAGGTACTACGTCTGCCTA -ACGGAAAGGTACTACGTCCCACTA -ACGGAAAGGTACTACGTCGGAGTA -ACGGAAAGGTACTACGTCTCGTCT -ACGGAAAGGTACTACGTCTGCACT -ACGGAAAGGTACTACGTCCTGACT -ACGGAAAGGTACTACGTCCAACCT -ACGGAAAGGTACTACGTCGCTACT -ACGGAAAGGTACTACGTCGGATCT -ACGGAAAGGTACTACGTCAAGGCT -ACGGAAAGGTACTACGTCTCAACC -ACGGAAAGGTACTACGTCTGTTCC -ACGGAAAGGTACTACGTCATTCCC -ACGGAAAGGTACTACGTCTTCTCG -ACGGAAAGGTACTACGTCTAGACG -ACGGAAAGGTACTACGTCGTAACG -ACGGAAAGGTACTACGTCACTTCG -ACGGAAAGGTACTACGTCTACGCA -ACGGAAAGGTACTACGTCCTTGCA -ACGGAAAGGTACTACGTCCGAACA -ACGGAAAGGTACTACGTCCAGTCA -ACGGAAAGGTACTACGTCGATCCA -ACGGAAAGGTACTACGTCACGACA -ACGGAAAGGTACTACGTCAGCTCA -ACGGAAAGGTACTACGTCTCACGT -ACGGAAAGGTACTACGTCCGTAGT -ACGGAAAGGTACTACGTCGTCAGT -ACGGAAAGGTACTACGTCGAAGGT -ACGGAAAGGTACTACGTCAACCGT -ACGGAAAGGTACTACGTCTTGTGC -ACGGAAAGGTACTACGTCCTAAGC -ACGGAAAGGTACTACGTCACTAGC -ACGGAAAGGTACTACGTCAGATGC -ACGGAAAGGTACTACGTCTGAAGG -ACGGAAAGGTACTACGTCCAATGG -ACGGAAAGGTACTACGTCATGAGG -ACGGAAAGGTACTACGTCAATGGG -ACGGAAAGGTACTACGTCTCCTGA -ACGGAAAGGTACTACGTCTAGCGA -ACGGAAAGGTACTACGTCCACAGA -ACGGAAAGGTACTACGTCGCAAGA -ACGGAAAGGTACTACGTCGGTTGA -ACGGAAAGGTACTACGTCTCCGAT -ACGGAAAGGTACTACGTCTGGCAT -ACGGAAAGGTACTACGTCCGAGAT -ACGGAAAGGTACTACGTCTACCAC -ACGGAAAGGTACTACGTCCAGAAC -ACGGAAAGGTACTACGTCGTCTAC -ACGGAAAGGTACTACGTCACGTAC -ACGGAAAGGTACTACGTCAGTGAC -ACGGAAAGGTACTACGTCCTGTAG -ACGGAAAGGTACTACGTCCCTAAG -ACGGAAAGGTACTACGTCGTTCAG -ACGGAAAGGTACTACGTCGCATAG -ACGGAAAGGTACTACGTCGACAAG -ACGGAAAGGTACTACGTCAAGCAG -ACGGAAAGGTACTACGTCCGTCAA -ACGGAAAGGTACTACGTCGCTGAA -ACGGAAAGGTACTACGTCAGTACG -ACGGAAAGGTACTACGTCATCCGA -ACGGAAAGGTACTACGTCATGGGA -ACGGAAAGGTACTACGTCGTGCAA -ACGGAAAGGTACTACGTCGAGGAA -ACGGAAAGGTACTACGTCCAGGTA -ACGGAAAGGTACTACGTCGACTCT -ACGGAAAGGTACTACGTCAGTCCT -ACGGAAAGGTACTACGTCTAAGCC -ACGGAAAGGTACTACGTCATAGCC -ACGGAAAGGTACTACGTCTAACCG -ACGGAAAGGTACTACGTCATGCCA -ACGGAAAGGTACTACACGGGAAAC -ACGGAAAGGTACTACACGAACACC -ACGGAAAGGTACTACACGATCGAG -ACGGAAAGGTACTACACGCTCCTT -ACGGAAAGGTACTACACGCCTGTT -ACGGAAAGGTACTACACGCGGTTT -ACGGAAAGGTACTACACGGTGGTT -ACGGAAAGGTACTACACGGCCTTT -ACGGAAAGGTACTACACGGGTCTT -ACGGAAAGGTACTACACGACGCTT -ACGGAAAGGTACTACACGAGCGTT -ACGGAAAGGTACTACACGTTCGTC -ACGGAAAGGTACTACACGTCTCTC -ACGGAAAGGTACTACACGTGGATC -ACGGAAAGGTACTACACGCACTTC -ACGGAAAGGTACTACACGGTACTC -ACGGAAAGGTACTACACGGATGTC -ACGGAAAGGTACTACACGACAGTC -ACGGAAAGGTACTACACGTTGCTG -ACGGAAAGGTACTACACGTCCATG -ACGGAAAGGTACTACACGTGTGTG -ACGGAAAGGTACTACACGCTAGTG -ACGGAAAGGTACTACACGCATCTG -ACGGAAAGGTACTACACGGAGTTG -ACGGAAAGGTACTACACGAGACTG -ACGGAAAGGTACTACACGTCGGTA -ACGGAAAGGTACTACACGTGCCTA -ACGGAAAGGTACTACACGCCACTA -ACGGAAAGGTACTACACGGGAGTA -ACGGAAAGGTACTACACGTCGTCT -ACGGAAAGGTACTACACGTGCACT -ACGGAAAGGTACTACACGCTGACT -ACGGAAAGGTACTACACGCAACCT -ACGGAAAGGTACTACACGGCTACT -ACGGAAAGGTACTACACGGGATCT -ACGGAAAGGTACTACACGAAGGCT -ACGGAAAGGTACTACACGTCAACC -ACGGAAAGGTACTACACGTGTTCC -ACGGAAAGGTACTACACGATTCCC -ACGGAAAGGTACTACACGTTCTCG -ACGGAAAGGTACTACACGTAGACG -ACGGAAAGGTACTACACGGTAACG -ACGGAAAGGTACTACACGACTTCG -ACGGAAAGGTACTACACGTACGCA -ACGGAAAGGTACTACACGCTTGCA -ACGGAAAGGTACTACACGCGAACA -ACGGAAAGGTACTACACGCAGTCA -ACGGAAAGGTACTACACGGATCCA -ACGGAAAGGTACTACACGACGACA -ACGGAAAGGTACTACACGAGCTCA -ACGGAAAGGTACTACACGTCACGT -ACGGAAAGGTACTACACGCGTAGT -ACGGAAAGGTACTACACGGTCAGT -ACGGAAAGGTACTACACGGAAGGT -ACGGAAAGGTACTACACGAACCGT -ACGGAAAGGTACTACACGTTGTGC -ACGGAAAGGTACTACACGCTAAGC -ACGGAAAGGTACTACACGACTAGC -ACGGAAAGGTACTACACGAGATGC -ACGGAAAGGTACTACACGTGAAGG -ACGGAAAGGTACTACACGCAATGG -ACGGAAAGGTACTACACGATGAGG -ACGGAAAGGTACTACACGAATGGG -ACGGAAAGGTACTACACGTCCTGA -ACGGAAAGGTACTACACGTAGCGA -ACGGAAAGGTACTACACGCACAGA -ACGGAAAGGTACTACACGGCAAGA -ACGGAAAGGTACTACACGGGTTGA -ACGGAAAGGTACTACACGTCCGAT -ACGGAAAGGTACTACACGTGGCAT -ACGGAAAGGTACTACACGCGAGAT -ACGGAAAGGTACTACACGTACCAC -ACGGAAAGGTACTACACGCAGAAC -ACGGAAAGGTACTACACGGTCTAC -ACGGAAAGGTACTACACGACGTAC -ACGGAAAGGTACTACACGAGTGAC -ACGGAAAGGTACTACACGCTGTAG -ACGGAAAGGTACTACACGCCTAAG -ACGGAAAGGTACTACACGGTTCAG -ACGGAAAGGTACTACACGGCATAG -ACGGAAAGGTACTACACGGACAAG -ACGGAAAGGTACTACACGAAGCAG -ACGGAAAGGTACTACACGCGTCAA -ACGGAAAGGTACTACACGGCTGAA -ACGGAAAGGTACTACACGAGTACG -ACGGAAAGGTACTACACGATCCGA -ACGGAAAGGTACTACACGATGGGA -ACGGAAAGGTACTACACGGTGCAA -ACGGAAAGGTACTACACGGAGGAA -ACGGAAAGGTACTACACGCAGGTA -ACGGAAAGGTACTACACGGACTCT -ACGGAAAGGTACTACACGAGTCCT -ACGGAAAGGTACTACACGTAAGCC -ACGGAAAGGTACTACACGATAGCC -ACGGAAAGGTACTACACGTAACCG -ACGGAAAGGTACTACACGATGCCA -ACGGAAAGGTACGACAGTGGAAAC -ACGGAAAGGTACGACAGTAACACC -ACGGAAAGGTACGACAGTATCGAG -ACGGAAAGGTACGACAGTCTCCTT -ACGGAAAGGTACGACAGTCCTGTT -ACGGAAAGGTACGACAGTCGGTTT -ACGGAAAGGTACGACAGTGTGGTT -ACGGAAAGGTACGACAGTGCCTTT -ACGGAAAGGTACGACAGTGGTCTT -ACGGAAAGGTACGACAGTACGCTT -ACGGAAAGGTACGACAGTAGCGTT -ACGGAAAGGTACGACAGTTTCGTC -ACGGAAAGGTACGACAGTTCTCTC -ACGGAAAGGTACGACAGTTGGATC -ACGGAAAGGTACGACAGTCACTTC -ACGGAAAGGTACGACAGTGTACTC -ACGGAAAGGTACGACAGTGATGTC -ACGGAAAGGTACGACAGTACAGTC -ACGGAAAGGTACGACAGTTTGCTG -ACGGAAAGGTACGACAGTTCCATG -ACGGAAAGGTACGACAGTTGTGTG -ACGGAAAGGTACGACAGTCTAGTG -ACGGAAAGGTACGACAGTCATCTG -ACGGAAAGGTACGACAGTGAGTTG -ACGGAAAGGTACGACAGTAGACTG -ACGGAAAGGTACGACAGTTCGGTA -ACGGAAAGGTACGACAGTTGCCTA -ACGGAAAGGTACGACAGTCCACTA -ACGGAAAGGTACGACAGTGGAGTA -ACGGAAAGGTACGACAGTTCGTCT -ACGGAAAGGTACGACAGTTGCACT -ACGGAAAGGTACGACAGTCTGACT -ACGGAAAGGTACGACAGTCAACCT -ACGGAAAGGTACGACAGTGCTACT -ACGGAAAGGTACGACAGTGGATCT -ACGGAAAGGTACGACAGTAAGGCT -ACGGAAAGGTACGACAGTTCAACC -ACGGAAAGGTACGACAGTTGTTCC -ACGGAAAGGTACGACAGTATTCCC -ACGGAAAGGTACGACAGTTTCTCG -ACGGAAAGGTACGACAGTTAGACG -ACGGAAAGGTACGACAGTGTAACG -ACGGAAAGGTACGACAGTACTTCG -ACGGAAAGGTACGACAGTTACGCA -ACGGAAAGGTACGACAGTCTTGCA -ACGGAAAGGTACGACAGTCGAACA -ACGGAAAGGTACGACAGTCAGTCA -ACGGAAAGGTACGACAGTGATCCA -ACGGAAAGGTACGACAGTACGACA -ACGGAAAGGTACGACAGTAGCTCA -ACGGAAAGGTACGACAGTTCACGT -ACGGAAAGGTACGACAGTCGTAGT -ACGGAAAGGTACGACAGTGTCAGT -ACGGAAAGGTACGACAGTGAAGGT -ACGGAAAGGTACGACAGTAACCGT -ACGGAAAGGTACGACAGTTTGTGC -ACGGAAAGGTACGACAGTCTAAGC -ACGGAAAGGTACGACAGTACTAGC -ACGGAAAGGTACGACAGTAGATGC -ACGGAAAGGTACGACAGTTGAAGG -ACGGAAAGGTACGACAGTCAATGG -ACGGAAAGGTACGACAGTATGAGG -ACGGAAAGGTACGACAGTAATGGG -ACGGAAAGGTACGACAGTTCCTGA -ACGGAAAGGTACGACAGTTAGCGA -ACGGAAAGGTACGACAGTCACAGA -ACGGAAAGGTACGACAGTGCAAGA -ACGGAAAGGTACGACAGTGGTTGA -ACGGAAAGGTACGACAGTTCCGAT -ACGGAAAGGTACGACAGTTGGCAT -ACGGAAAGGTACGACAGTCGAGAT -ACGGAAAGGTACGACAGTTACCAC -ACGGAAAGGTACGACAGTCAGAAC -ACGGAAAGGTACGACAGTGTCTAC -ACGGAAAGGTACGACAGTACGTAC -ACGGAAAGGTACGACAGTAGTGAC -ACGGAAAGGTACGACAGTCTGTAG -ACGGAAAGGTACGACAGTCCTAAG -ACGGAAAGGTACGACAGTGTTCAG -ACGGAAAGGTACGACAGTGCATAG -ACGGAAAGGTACGACAGTGACAAG -ACGGAAAGGTACGACAGTAAGCAG -ACGGAAAGGTACGACAGTCGTCAA -ACGGAAAGGTACGACAGTGCTGAA -ACGGAAAGGTACGACAGTAGTACG -ACGGAAAGGTACGACAGTATCCGA -ACGGAAAGGTACGACAGTATGGGA -ACGGAAAGGTACGACAGTGTGCAA -ACGGAAAGGTACGACAGTGAGGAA -ACGGAAAGGTACGACAGTCAGGTA -ACGGAAAGGTACGACAGTGACTCT -ACGGAAAGGTACGACAGTAGTCCT -ACGGAAAGGTACGACAGTTAAGCC -ACGGAAAGGTACGACAGTATAGCC -ACGGAAAGGTACGACAGTTAACCG -ACGGAAAGGTACGACAGTATGCCA -ACGGAAAGGTACTAGCTGGGAAAC -ACGGAAAGGTACTAGCTGAACACC -ACGGAAAGGTACTAGCTGATCGAG -ACGGAAAGGTACTAGCTGCTCCTT -ACGGAAAGGTACTAGCTGCCTGTT -ACGGAAAGGTACTAGCTGCGGTTT -ACGGAAAGGTACTAGCTGGTGGTT -ACGGAAAGGTACTAGCTGGCCTTT -ACGGAAAGGTACTAGCTGGGTCTT -ACGGAAAGGTACTAGCTGACGCTT -ACGGAAAGGTACTAGCTGAGCGTT -ACGGAAAGGTACTAGCTGTTCGTC -ACGGAAAGGTACTAGCTGTCTCTC -ACGGAAAGGTACTAGCTGTGGATC -ACGGAAAGGTACTAGCTGCACTTC -ACGGAAAGGTACTAGCTGGTACTC -ACGGAAAGGTACTAGCTGGATGTC -ACGGAAAGGTACTAGCTGACAGTC -ACGGAAAGGTACTAGCTGTTGCTG -ACGGAAAGGTACTAGCTGTCCATG -ACGGAAAGGTACTAGCTGTGTGTG -ACGGAAAGGTACTAGCTGCTAGTG -ACGGAAAGGTACTAGCTGCATCTG -ACGGAAAGGTACTAGCTGGAGTTG -ACGGAAAGGTACTAGCTGAGACTG -ACGGAAAGGTACTAGCTGTCGGTA -ACGGAAAGGTACTAGCTGTGCCTA -ACGGAAAGGTACTAGCTGCCACTA -ACGGAAAGGTACTAGCTGGGAGTA -ACGGAAAGGTACTAGCTGTCGTCT -ACGGAAAGGTACTAGCTGTGCACT -ACGGAAAGGTACTAGCTGCTGACT -ACGGAAAGGTACTAGCTGCAACCT -ACGGAAAGGTACTAGCTGGCTACT -ACGGAAAGGTACTAGCTGGGATCT -ACGGAAAGGTACTAGCTGAAGGCT -ACGGAAAGGTACTAGCTGTCAACC -ACGGAAAGGTACTAGCTGTGTTCC -ACGGAAAGGTACTAGCTGATTCCC -ACGGAAAGGTACTAGCTGTTCTCG -ACGGAAAGGTACTAGCTGTAGACG -ACGGAAAGGTACTAGCTGGTAACG -ACGGAAAGGTACTAGCTGACTTCG -ACGGAAAGGTACTAGCTGTACGCA -ACGGAAAGGTACTAGCTGCTTGCA -ACGGAAAGGTACTAGCTGCGAACA -ACGGAAAGGTACTAGCTGCAGTCA -ACGGAAAGGTACTAGCTGGATCCA -ACGGAAAGGTACTAGCTGACGACA -ACGGAAAGGTACTAGCTGAGCTCA -ACGGAAAGGTACTAGCTGTCACGT -ACGGAAAGGTACTAGCTGCGTAGT -ACGGAAAGGTACTAGCTGGTCAGT -ACGGAAAGGTACTAGCTGGAAGGT -ACGGAAAGGTACTAGCTGAACCGT -ACGGAAAGGTACTAGCTGTTGTGC -ACGGAAAGGTACTAGCTGCTAAGC -ACGGAAAGGTACTAGCTGACTAGC -ACGGAAAGGTACTAGCTGAGATGC -ACGGAAAGGTACTAGCTGTGAAGG -ACGGAAAGGTACTAGCTGCAATGG -ACGGAAAGGTACTAGCTGATGAGG -ACGGAAAGGTACTAGCTGAATGGG -ACGGAAAGGTACTAGCTGTCCTGA -ACGGAAAGGTACTAGCTGTAGCGA -ACGGAAAGGTACTAGCTGCACAGA -ACGGAAAGGTACTAGCTGGCAAGA -ACGGAAAGGTACTAGCTGGGTTGA -ACGGAAAGGTACTAGCTGTCCGAT -ACGGAAAGGTACTAGCTGTGGCAT -ACGGAAAGGTACTAGCTGCGAGAT -ACGGAAAGGTACTAGCTGTACCAC -ACGGAAAGGTACTAGCTGCAGAAC -ACGGAAAGGTACTAGCTGGTCTAC -ACGGAAAGGTACTAGCTGACGTAC -ACGGAAAGGTACTAGCTGAGTGAC -ACGGAAAGGTACTAGCTGCTGTAG -ACGGAAAGGTACTAGCTGCCTAAG -ACGGAAAGGTACTAGCTGGTTCAG -ACGGAAAGGTACTAGCTGGCATAG -ACGGAAAGGTACTAGCTGGACAAG -ACGGAAAGGTACTAGCTGAAGCAG -ACGGAAAGGTACTAGCTGCGTCAA -ACGGAAAGGTACTAGCTGGCTGAA -ACGGAAAGGTACTAGCTGAGTACG -ACGGAAAGGTACTAGCTGATCCGA -ACGGAAAGGTACTAGCTGATGGGA -ACGGAAAGGTACTAGCTGGTGCAA -ACGGAAAGGTACTAGCTGGAGGAA -ACGGAAAGGTACTAGCTGCAGGTA -ACGGAAAGGTACTAGCTGGACTCT -ACGGAAAGGTACTAGCTGAGTCCT -ACGGAAAGGTACTAGCTGTAAGCC -ACGGAAAGGTACTAGCTGATAGCC -ACGGAAAGGTACTAGCTGTAACCG -ACGGAAAGGTACTAGCTGATGCCA -ACGGAAAGGTACAAGCCTGGAAAC -ACGGAAAGGTACAAGCCTAACACC -ACGGAAAGGTACAAGCCTATCGAG -ACGGAAAGGTACAAGCCTCTCCTT -ACGGAAAGGTACAAGCCTCCTGTT -ACGGAAAGGTACAAGCCTCGGTTT -ACGGAAAGGTACAAGCCTGTGGTT -ACGGAAAGGTACAAGCCTGCCTTT -ACGGAAAGGTACAAGCCTGGTCTT -ACGGAAAGGTACAAGCCTACGCTT -ACGGAAAGGTACAAGCCTAGCGTT -ACGGAAAGGTACAAGCCTTTCGTC -ACGGAAAGGTACAAGCCTTCTCTC -ACGGAAAGGTACAAGCCTTGGATC -ACGGAAAGGTACAAGCCTCACTTC -ACGGAAAGGTACAAGCCTGTACTC -ACGGAAAGGTACAAGCCTGATGTC -ACGGAAAGGTACAAGCCTACAGTC -ACGGAAAGGTACAAGCCTTTGCTG -ACGGAAAGGTACAAGCCTTCCATG -ACGGAAAGGTACAAGCCTTGTGTG -ACGGAAAGGTACAAGCCTCTAGTG -ACGGAAAGGTACAAGCCTCATCTG -ACGGAAAGGTACAAGCCTGAGTTG -ACGGAAAGGTACAAGCCTAGACTG -ACGGAAAGGTACAAGCCTTCGGTA -ACGGAAAGGTACAAGCCTTGCCTA -ACGGAAAGGTACAAGCCTCCACTA -ACGGAAAGGTACAAGCCTGGAGTA -ACGGAAAGGTACAAGCCTTCGTCT -ACGGAAAGGTACAAGCCTTGCACT -ACGGAAAGGTACAAGCCTCTGACT -ACGGAAAGGTACAAGCCTCAACCT -ACGGAAAGGTACAAGCCTGCTACT -ACGGAAAGGTACAAGCCTGGATCT -ACGGAAAGGTACAAGCCTAAGGCT -ACGGAAAGGTACAAGCCTTCAACC -ACGGAAAGGTACAAGCCTTGTTCC -ACGGAAAGGTACAAGCCTATTCCC -ACGGAAAGGTACAAGCCTTTCTCG -ACGGAAAGGTACAAGCCTTAGACG -ACGGAAAGGTACAAGCCTGTAACG -ACGGAAAGGTACAAGCCTACTTCG -ACGGAAAGGTACAAGCCTTACGCA -ACGGAAAGGTACAAGCCTCTTGCA -ACGGAAAGGTACAAGCCTCGAACA -ACGGAAAGGTACAAGCCTCAGTCA -ACGGAAAGGTACAAGCCTGATCCA -ACGGAAAGGTACAAGCCTACGACA -ACGGAAAGGTACAAGCCTAGCTCA -ACGGAAAGGTACAAGCCTTCACGT -ACGGAAAGGTACAAGCCTCGTAGT -ACGGAAAGGTACAAGCCTGTCAGT -ACGGAAAGGTACAAGCCTGAAGGT -ACGGAAAGGTACAAGCCTAACCGT -ACGGAAAGGTACAAGCCTTTGTGC -ACGGAAAGGTACAAGCCTCTAAGC -ACGGAAAGGTACAAGCCTACTAGC -ACGGAAAGGTACAAGCCTAGATGC -ACGGAAAGGTACAAGCCTTGAAGG -ACGGAAAGGTACAAGCCTCAATGG -ACGGAAAGGTACAAGCCTATGAGG -ACGGAAAGGTACAAGCCTAATGGG -ACGGAAAGGTACAAGCCTTCCTGA -ACGGAAAGGTACAAGCCTTAGCGA -ACGGAAAGGTACAAGCCTCACAGA -ACGGAAAGGTACAAGCCTGCAAGA -ACGGAAAGGTACAAGCCTGGTTGA -ACGGAAAGGTACAAGCCTTCCGAT -ACGGAAAGGTACAAGCCTTGGCAT -ACGGAAAGGTACAAGCCTCGAGAT -ACGGAAAGGTACAAGCCTTACCAC -ACGGAAAGGTACAAGCCTCAGAAC -ACGGAAAGGTACAAGCCTGTCTAC -ACGGAAAGGTACAAGCCTACGTAC -ACGGAAAGGTACAAGCCTAGTGAC -ACGGAAAGGTACAAGCCTCTGTAG -ACGGAAAGGTACAAGCCTCCTAAG -ACGGAAAGGTACAAGCCTGTTCAG -ACGGAAAGGTACAAGCCTGCATAG -ACGGAAAGGTACAAGCCTGACAAG -ACGGAAAGGTACAAGCCTAAGCAG -ACGGAAAGGTACAAGCCTCGTCAA -ACGGAAAGGTACAAGCCTGCTGAA -ACGGAAAGGTACAAGCCTAGTACG -ACGGAAAGGTACAAGCCTATCCGA -ACGGAAAGGTACAAGCCTATGGGA -ACGGAAAGGTACAAGCCTGTGCAA -ACGGAAAGGTACAAGCCTGAGGAA -ACGGAAAGGTACAAGCCTCAGGTA -ACGGAAAGGTACAAGCCTGACTCT -ACGGAAAGGTACAAGCCTAGTCCT -ACGGAAAGGTACAAGCCTTAAGCC -ACGGAAAGGTACAAGCCTATAGCC -ACGGAAAGGTACAAGCCTTAACCG -ACGGAAAGGTACAAGCCTATGCCA -ACGGAAAGGTACCAGGTTGGAAAC -ACGGAAAGGTACCAGGTTAACACC -ACGGAAAGGTACCAGGTTATCGAG -ACGGAAAGGTACCAGGTTCTCCTT -ACGGAAAGGTACCAGGTTCCTGTT -ACGGAAAGGTACCAGGTTCGGTTT -ACGGAAAGGTACCAGGTTGTGGTT -ACGGAAAGGTACCAGGTTGCCTTT -ACGGAAAGGTACCAGGTTGGTCTT -ACGGAAAGGTACCAGGTTACGCTT -ACGGAAAGGTACCAGGTTAGCGTT -ACGGAAAGGTACCAGGTTTTCGTC -ACGGAAAGGTACCAGGTTTCTCTC -ACGGAAAGGTACCAGGTTTGGATC -ACGGAAAGGTACCAGGTTCACTTC -ACGGAAAGGTACCAGGTTGTACTC -ACGGAAAGGTACCAGGTTGATGTC -ACGGAAAGGTACCAGGTTACAGTC -ACGGAAAGGTACCAGGTTTTGCTG -ACGGAAAGGTACCAGGTTTCCATG -ACGGAAAGGTACCAGGTTTGTGTG -ACGGAAAGGTACCAGGTTCTAGTG -ACGGAAAGGTACCAGGTTCATCTG -ACGGAAAGGTACCAGGTTGAGTTG -ACGGAAAGGTACCAGGTTAGACTG -ACGGAAAGGTACCAGGTTTCGGTA -ACGGAAAGGTACCAGGTTTGCCTA -ACGGAAAGGTACCAGGTTCCACTA -ACGGAAAGGTACCAGGTTGGAGTA -ACGGAAAGGTACCAGGTTTCGTCT -ACGGAAAGGTACCAGGTTTGCACT -ACGGAAAGGTACCAGGTTCTGACT -ACGGAAAGGTACCAGGTTCAACCT -ACGGAAAGGTACCAGGTTGCTACT -ACGGAAAGGTACCAGGTTGGATCT -ACGGAAAGGTACCAGGTTAAGGCT -ACGGAAAGGTACCAGGTTTCAACC -ACGGAAAGGTACCAGGTTTGTTCC -ACGGAAAGGTACCAGGTTATTCCC -ACGGAAAGGTACCAGGTTTTCTCG -ACGGAAAGGTACCAGGTTTAGACG -ACGGAAAGGTACCAGGTTGTAACG -ACGGAAAGGTACCAGGTTACTTCG -ACGGAAAGGTACCAGGTTTACGCA -ACGGAAAGGTACCAGGTTCTTGCA -ACGGAAAGGTACCAGGTTCGAACA -ACGGAAAGGTACCAGGTTCAGTCA -ACGGAAAGGTACCAGGTTGATCCA -ACGGAAAGGTACCAGGTTACGACA -ACGGAAAGGTACCAGGTTAGCTCA -ACGGAAAGGTACCAGGTTTCACGT -ACGGAAAGGTACCAGGTTCGTAGT -ACGGAAAGGTACCAGGTTGTCAGT -ACGGAAAGGTACCAGGTTGAAGGT -ACGGAAAGGTACCAGGTTAACCGT -ACGGAAAGGTACCAGGTTTTGTGC -ACGGAAAGGTACCAGGTTCTAAGC -ACGGAAAGGTACCAGGTTACTAGC -ACGGAAAGGTACCAGGTTAGATGC -ACGGAAAGGTACCAGGTTTGAAGG -ACGGAAAGGTACCAGGTTCAATGG -ACGGAAAGGTACCAGGTTATGAGG -ACGGAAAGGTACCAGGTTAATGGG -ACGGAAAGGTACCAGGTTTCCTGA -ACGGAAAGGTACCAGGTTTAGCGA -ACGGAAAGGTACCAGGTTCACAGA -ACGGAAAGGTACCAGGTTGCAAGA -ACGGAAAGGTACCAGGTTGGTTGA -ACGGAAAGGTACCAGGTTTCCGAT -ACGGAAAGGTACCAGGTTTGGCAT -ACGGAAAGGTACCAGGTTCGAGAT -ACGGAAAGGTACCAGGTTTACCAC -ACGGAAAGGTACCAGGTTCAGAAC -ACGGAAAGGTACCAGGTTGTCTAC -ACGGAAAGGTACCAGGTTACGTAC -ACGGAAAGGTACCAGGTTAGTGAC -ACGGAAAGGTACCAGGTTCTGTAG -ACGGAAAGGTACCAGGTTCCTAAG -ACGGAAAGGTACCAGGTTGTTCAG -ACGGAAAGGTACCAGGTTGCATAG -ACGGAAAGGTACCAGGTTGACAAG -ACGGAAAGGTACCAGGTTAAGCAG -ACGGAAAGGTACCAGGTTCGTCAA -ACGGAAAGGTACCAGGTTGCTGAA -ACGGAAAGGTACCAGGTTAGTACG -ACGGAAAGGTACCAGGTTATCCGA -ACGGAAAGGTACCAGGTTATGGGA -ACGGAAAGGTACCAGGTTGTGCAA -ACGGAAAGGTACCAGGTTGAGGAA -ACGGAAAGGTACCAGGTTCAGGTA -ACGGAAAGGTACCAGGTTGACTCT -ACGGAAAGGTACCAGGTTAGTCCT -ACGGAAAGGTACCAGGTTTAAGCC -ACGGAAAGGTACCAGGTTATAGCC -ACGGAAAGGTACCAGGTTTAACCG -ACGGAAAGGTACCAGGTTATGCCA -ACGGAAAGGTACTAGGCAGGAAAC -ACGGAAAGGTACTAGGCAAACACC -ACGGAAAGGTACTAGGCAATCGAG -ACGGAAAGGTACTAGGCACTCCTT -ACGGAAAGGTACTAGGCACCTGTT -ACGGAAAGGTACTAGGCACGGTTT -ACGGAAAGGTACTAGGCAGTGGTT -ACGGAAAGGTACTAGGCAGCCTTT -ACGGAAAGGTACTAGGCAGGTCTT -ACGGAAAGGTACTAGGCAACGCTT -ACGGAAAGGTACTAGGCAAGCGTT -ACGGAAAGGTACTAGGCATTCGTC -ACGGAAAGGTACTAGGCATCTCTC -ACGGAAAGGTACTAGGCATGGATC -ACGGAAAGGTACTAGGCACACTTC -ACGGAAAGGTACTAGGCAGTACTC -ACGGAAAGGTACTAGGCAGATGTC -ACGGAAAGGTACTAGGCAACAGTC -ACGGAAAGGTACTAGGCATTGCTG -ACGGAAAGGTACTAGGCATCCATG -ACGGAAAGGTACTAGGCATGTGTG -ACGGAAAGGTACTAGGCACTAGTG -ACGGAAAGGTACTAGGCACATCTG -ACGGAAAGGTACTAGGCAGAGTTG -ACGGAAAGGTACTAGGCAAGACTG -ACGGAAAGGTACTAGGCATCGGTA -ACGGAAAGGTACTAGGCATGCCTA -ACGGAAAGGTACTAGGCACCACTA -ACGGAAAGGTACTAGGCAGGAGTA -ACGGAAAGGTACTAGGCATCGTCT -ACGGAAAGGTACTAGGCATGCACT -ACGGAAAGGTACTAGGCACTGACT -ACGGAAAGGTACTAGGCACAACCT -ACGGAAAGGTACTAGGCAGCTACT -ACGGAAAGGTACTAGGCAGGATCT -ACGGAAAGGTACTAGGCAAAGGCT -ACGGAAAGGTACTAGGCATCAACC -ACGGAAAGGTACTAGGCATGTTCC -ACGGAAAGGTACTAGGCAATTCCC -ACGGAAAGGTACTAGGCATTCTCG -ACGGAAAGGTACTAGGCATAGACG -ACGGAAAGGTACTAGGCAGTAACG -ACGGAAAGGTACTAGGCAACTTCG -ACGGAAAGGTACTAGGCATACGCA -ACGGAAAGGTACTAGGCACTTGCA -ACGGAAAGGTACTAGGCACGAACA -ACGGAAAGGTACTAGGCACAGTCA -ACGGAAAGGTACTAGGCAGATCCA -ACGGAAAGGTACTAGGCAACGACA -ACGGAAAGGTACTAGGCAAGCTCA -ACGGAAAGGTACTAGGCATCACGT -ACGGAAAGGTACTAGGCACGTAGT -ACGGAAAGGTACTAGGCAGTCAGT -ACGGAAAGGTACTAGGCAGAAGGT -ACGGAAAGGTACTAGGCAAACCGT -ACGGAAAGGTACTAGGCATTGTGC -ACGGAAAGGTACTAGGCACTAAGC -ACGGAAAGGTACTAGGCAACTAGC -ACGGAAAGGTACTAGGCAAGATGC -ACGGAAAGGTACTAGGCATGAAGG -ACGGAAAGGTACTAGGCACAATGG -ACGGAAAGGTACTAGGCAATGAGG -ACGGAAAGGTACTAGGCAAATGGG -ACGGAAAGGTACTAGGCATCCTGA -ACGGAAAGGTACTAGGCATAGCGA -ACGGAAAGGTACTAGGCACACAGA -ACGGAAAGGTACTAGGCAGCAAGA -ACGGAAAGGTACTAGGCAGGTTGA -ACGGAAAGGTACTAGGCATCCGAT -ACGGAAAGGTACTAGGCATGGCAT -ACGGAAAGGTACTAGGCACGAGAT -ACGGAAAGGTACTAGGCATACCAC -ACGGAAAGGTACTAGGCACAGAAC -ACGGAAAGGTACTAGGCAGTCTAC -ACGGAAAGGTACTAGGCAACGTAC -ACGGAAAGGTACTAGGCAAGTGAC -ACGGAAAGGTACTAGGCACTGTAG -ACGGAAAGGTACTAGGCACCTAAG -ACGGAAAGGTACTAGGCAGTTCAG -ACGGAAAGGTACTAGGCAGCATAG -ACGGAAAGGTACTAGGCAGACAAG -ACGGAAAGGTACTAGGCAAAGCAG -ACGGAAAGGTACTAGGCACGTCAA -ACGGAAAGGTACTAGGCAGCTGAA -ACGGAAAGGTACTAGGCAAGTACG -ACGGAAAGGTACTAGGCAATCCGA -ACGGAAAGGTACTAGGCAATGGGA -ACGGAAAGGTACTAGGCAGTGCAA -ACGGAAAGGTACTAGGCAGAGGAA -ACGGAAAGGTACTAGGCACAGGTA -ACGGAAAGGTACTAGGCAGACTCT -ACGGAAAGGTACTAGGCAAGTCCT -ACGGAAAGGTACTAGGCATAAGCC -ACGGAAAGGTACTAGGCAATAGCC -ACGGAAAGGTACTAGGCATAACCG -ACGGAAAGGTACTAGGCAATGCCA -ACGGAAAGGTACAAGGACGGAAAC -ACGGAAAGGTACAAGGACAACACC -ACGGAAAGGTACAAGGACATCGAG -ACGGAAAGGTACAAGGACCTCCTT -ACGGAAAGGTACAAGGACCCTGTT -ACGGAAAGGTACAAGGACCGGTTT -ACGGAAAGGTACAAGGACGTGGTT -ACGGAAAGGTACAAGGACGCCTTT -ACGGAAAGGTACAAGGACGGTCTT -ACGGAAAGGTACAAGGACACGCTT -ACGGAAAGGTACAAGGACAGCGTT -ACGGAAAGGTACAAGGACTTCGTC -ACGGAAAGGTACAAGGACTCTCTC -ACGGAAAGGTACAAGGACTGGATC -ACGGAAAGGTACAAGGACCACTTC -ACGGAAAGGTACAAGGACGTACTC -ACGGAAAGGTACAAGGACGATGTC -ACGGAAAGGTACAAGGACACAGTC -ACGGAAAGGTACAAGGACTTGCTG -ACGGAAAGGTACAAGGACTCCATG -ACGGAAAGGTACAAGGACTGTGTG -ACGGAAAGGTACAAGGACCTAGTG -ACGGAAAGGTACAAGGACCATCTG -ACGGAAAGGTACAAGGACGAGTTG -ACGGAAAGGTACAAGGACAGACTG -ACGGAAAGGTACAAGGACTCGGTA -ACGGAAAGGTACAAGGACTGCCTA -ACGGAAAGGTACAAGGACCCACTA -ACGGAAAGGTACAAGGACGGAGTA -ACGGAAAGGTACAAGGACTCGTCT -ACGGAAAGGTACAAGGACTGCACT -ACGGAAAGGTACAAGGACCTGACT -ACGGAAAGGTACAAGGACCAACCT -ACGGAAAGGTACAAGGACGCTACT -ACGGAAAGGTACAAGGACGGATCT -ACGGAAAGGTACAAGGACAAGGCT -ACGGAAAGGTACAAGGACTCAACC -ACGGAAAGGTACAAGGACTGTTCC -ACGGAAAGGTACAAGGACATTCCC -ACGGAAAGGTACAAGGACTTCTCG -ACGGAAAGGTACAAGGACTAGACG -ACGGAAAGGTACAAGGACGTAACG -ACGGAAAGGTACAAGGACACTTCG -ACGGAAAGGTACAAGGACTACGCA -ACGGAAAGGTACAAGGACCTTGCA -ACGGAAAGGTACAAGGACCGAACA -ACGGAAAGGTACAAGGACCAGTCA -ACGGAAAGGTACAAGGACGATCCA -ACGGAAAGGTACAAGGACACGACA -ACGGAAAGGTACAAGGACAGCTCA -ACGGAAAGGTACAAGGACTCACGT -ACGGAAAGGTACAAGGACCGTAGT -ACGGAAAGGTACAAGGACGTCAGT -ACGGAAAGGTACAAGGACGAAGGT -ACGGAAAGGTACAAGGACAACCGT -ACGGAAAGGTACAAGGACTTGTGC -ACGGAAAGGTACAAGGACCTAAGC -ACGGAAAGGTACAAGGACACTAGC -ACGGAAAGGTACAAGGACAGATGC -ACGGAAAGGTACAAGGACTGAAGG -ACGGAAAGGTACAAGGACCAATGG -ACGGAAAGGTACAAGGACATGAGG -ACGGAAAGGTACAAGGACAATGGG -ACGGAAAGGTACAAGGACTCCTGA -ACGGAAAGGTACAAGGACTAGCGA -ACGGAAAGGTACAAGGACCACAGA -ACGGAAAGGTACAAGGACGCAAGA -ACGGAAAGGTACAAGGACGGTTGA -ACGGAAAGGTACAAGGACTCCGAT -ACGGAAAGGTACAAGGACTGGCAT -ACGGAAAGGTACAAGGACCGAGAT -ACGGAAAGGTACAAGGACTACCAC -ACGGAAAGGTACAAGGACCAGAAC -ACGGAAAGGTACAAGGACGTCTAC -ACGGAAAGGTACAAGGACACGTAC -ACGGAAAGGTACAAGGACAGTGAC -ACGGAAAGGTACAAGGACCTGTAG -ACGGAAAGGTACAAGGACCCTAAG -ACGGAAAGGTACAAGGACGTTCAG -ACGGAAAGGTACAAGGACGCATAG -ACGGAAAGGTACAAGGACGACAAG -ACGGAAAGGTACAAGGACAAGCAG -ACGGAAAGGTACAAGGACCGTCAA -ACGGAAAGGTACAAGGACGCTGAA -ACGGAAAGGTACAAGGACAGTACG -ACGGAAAGGTACAAGGACATCCGA -ACGGAAAGGTACAAGGACATGGGA -ACGGAAAGGTACAAGGACGTGCAA -ACGGAAAGGTACAAGGACGAGGAA -ACGGAAAGGTACAAGGACCAGGTA -ACGGAAAGGTACAAGGACGACTCT -ACGGAAAGGTACAAGGACAGTCCT -ACGGAAAGGTACAAGGACTAAGCC -ACGGAAAGGTACAAGGACATAGCC -ACGGAAAGGTACAAGGACTAACCG -ACGGAAAGGTACAAGGACATGCCA -ACGGAAAGGTACCAGAAGGGAAAC -ACGGAAAGGTACCAGAAGAACACC -ACGGAAAGGTACCAGAAGATCGAG -ACGGAAAGGTACCAGAAGCTCCTT -ACGGAAAGGTACCAGAAGCCTGTT -ACGGAAAGGTACCAGAAGCGGTTT -ACGGAAAGGTACCAGAAGGTGGTT -ACGGAAAGGTACCAGAAGGCCTTT -ACGGAAAGGTACCAGAAGGGTCTT -ACGGAAAGGTACCAGAAGACGCTT -ACGGAAAGGTACCAGAAGAGCGTT -ACGGAAAGGTACCAGAAGTTCGTC -ACGGAAAGGTACCAGAAGTCTCTC -ACGGAAAGGTACCAGAAGTGGATC -ACGGAAAGGTACCAGAAGCACTTC -ACGGAAAGGTACCAGAAGGTACTC -ACGGAAAGGTACCAGAAGGATGTC -ACGGAAAGGTACCAGAAGACAGTC -ACGGAAAGGTACCAGAAGTTGCTG -ACGGAAAGGTACCAGAAGTCCATG -ACGGAAAGGTACCAGAAGTGTGTG -ACGGAAAGGTACCAGAAGCTAGTG -ACGGAAAGGTACCAGAAGCATCTG -ACGGAAAGGTACCAGAAGGAGTTG -ACGGAAAGGTACCAGAAGAGACTG -ACGGAAAGGTACCAGAAGTCGGTA -ACGGAAAGGTACCAGAAGTGCCTA -ACGGAAAGGTACCAGAAGCCACTA -ACGGAAAGGTACCAGAAGGGAGTA -ACGGAAAGGTACCAGAAGTCGTCT -ACGGAAAGGTACCAGAAGTGCACT -ACGGAAAGGTACCAGAAGCTGACT -ACGGAAAGGTACCAGAAGCAACCT -ACGGAAAGGTACCAGAAGGCTACT -ACGGAAAGGTACCAGAAGGGATCT -ACGGAAAGGTACCAGAAGAAGGCT -ACGGAAAGGTACCAGAAGTCAACC -ACGGAAAGGTACCAGAAGTGTTCC -ACGGAAAGGTACCAGAAGATTCCC -ACGGAAAGGTACCAGAAGTTCTCG -ACGGAAAGGTACCAGAAGTAGACG -ACGGAAAGGTACCAGAAGGTAACG -ACGGAAAGGTACCAGAAGACTTCG -ACGGAAAGGTACCAGAAGTACGCA -ACGGAAAGGTACCAGAAGCTTGCA -ACGGAAAGGTACCAGAAGCGAACA -ACGGAAAGGTACCAGAAGCAGTCA -ACGGAAAGGTACCAGAAGGATCCA -ACGGAAAGGTACCAGAAGACGACA -ACGGAAAGGTACCAGAAGAGCTCA -ACGGAAAGGTACCAGAAGTCACGT -ACGGAAAGGTACCAGAAGCGTAGT -ACGGAAAGGTACCAGAAGGTCAGT -ACGGAAAGGTACCAGAAGGAAGGT -ACGGAAAGGTACCAGAAGAACCGT -ACGGAAAGGTACCAGAAGTTGTGC -ACGGAAAGGTACCAGAAGCTAAGC -ACGGAAAGGTACCAGAAGACTAGC -ACGGAAAGGTACCAGAAGAGATGC -ACGGAAAGGTACCAGAAGTGAAGG -ACGGAAAGGTACCAGAAGCAATGG -ACGGAAAGGTACCAGAAGATGAGG -ACGGAAAGGTACCAGAAGAATGGG -ACGGAAAGGTACCAGAAGTCCTGA -ACGGAAAGGTACCAGAAGTAGCGA -ACGGAAAGGTACCAGAAGCACAGA -ACGGAAAGGTACCAGAAGGCAAGA -ACGGAAAGGTACCAGAAGGGTTGA -ACGGAAAGGTACCAGAAGTCCGAT -ACGGAAAGGTACCAGAAGTGGCAT -ACGGAAAGGTACCAGAAGCGAGAT -ACGGAAAGGTACCAGAAGTACCAC -ACGGAAAGGTACCAGAAGCAGAAC -ACGGAAAGGTACCAGAAGGTCTAC -ACGGAAAGGTACCAGAAGACGTAC -ACGGAAAGGTACCAGAAGAGTGAC -ACGGAAAGGTACCAGAAGCTGTAG -ACGGAAAGGTACCAGAAGCCTAAG -ACGGAAAGGTACCAGAAGGTTCAG -ACGGAAAGGTACCAGAAGGCATAG -ACGGAAAGGTACCAGAAGGACAAG -ACGGAAAGGTACCAGAAGAAGCAG -ACGGAAAGGTACCAGAAGCGTCAA -ACGGAAAGGTACCAGAAGGCTGAA -ACGGAAAGGTACCAGAAGAGTACG -ACGGAAAGGTACCAGAAGATCCGA -ACGGAAAGGTACCAGAAGATGGGA -ACGGAAAGGTACCAGAAGGTGCAA -ACGGAAAGGTACCAGAAGGAGGAA -ACGGAAAGGTACCAGAAGCAGGTA -ACGGAAAGGTACCAGAAGGACTCT -ACGGAAAGGTACCAGAAGAGTCCT -ACGGAAAGGTACCAGAAGTAAGCC -ACGGAAAGGTACCAGAAGATAGCC -ACGGAAAGGTACCAGAAGTAACCG -ACGGAAAGGTACCAGAAGATGCCA -ACGGAAAGGTACCAACGTGGAAAC -ACGGAAAGGTACCAACGTAACACC -ACGGAAAGGTACCAACGTATCGAG -ACGGAAAGGTACCAACGTCTCCTT -ACGGAAAGGTACCAACGTCCTGTT -ACGGAAAGGTACCAACGTCGGTTT -ACGGAAAGGTACCAACGTGTGGTT -ACGGAAAGGTACCAACGTGCCTTT -ACGGAAAGGTACCAACGTGGTCTT -ACGGAAAGGTACCAACGTACGCTT -ACGGAAAGGTACCAACGTAGCGTT -ACGGAAAGGTACCAACGTTTCGTC -ACGGAAAGGTACCAACGTTCTCTC -ACGGAAAGGTACCAACGTTGGATC -ACGGAAAGGTACCAACGTCACTTC -ACGGAAAGGTACCAACGTGTACTC -ACGGAAAGGTACCAACGTGATGTC -ACGGAAAGGTACCAACGTACAGTC -ACGGAAAGGTACCAACGTTTGCTG -ACGGAAAGGTACCAACGTTCCATG -ACGGAAAGGTACCAACGTTGTGTG -ACGGAAAGGTACCAACGTCTAGTG -ACGGAAAGGTACCAACGTCATCTG -ACGGAAAGGTACCAACGTGAGTTG -ACGGAAAGGTACCAACGTAGACTG -ACGGAAAGGTACCAACGTTCGGTA -ACGGAAAGGTACCAACGTTGCCTA -ACGGAAAGGTACCAACGTCCACTA -ACGGAAAGGTACCAACGTGGAGTA -ACGGAAAGGTACCAACGTTCGTCT -ACGGAAAGGTACCAACGTTGCACT -ACGGAAAGGTACCAACGTCTGACT -ACGGAAAGGTACCAACGTCAACCT -ACGGAAAGGTACCAACGTGCTACT -ACGGAAAGGTACCAACGTGGATCT -ACGGAAAGGTACCAACGTAAGGCT -ACGGAAAGGTACCAACGTTCAACC -ACGGAAAGGTACCAACGTTGTTCC -ACGGAAAGGTACCAACGTATTCCC -ACGGAAAGGTACCAACGTTTCTCG -ACGGAAAGGTACCAACGTTAGACG -ACGGAAAGGTACCAACGTGTAACG -ACGGAAAGGTACCAACGTACTTCG -ACGGAAAGGTACCAACGTTACGCA -ACGGAAAGGTACCAACGTCTTGCA -ACGGAAAGGTACCAACGTCGAACA -ACGGAAAGGTACCAACGTCAGTCA -ACGGAAAGGTACCAACGTGATCCA -ACGGAAAGGTACCAACGTACGACA -ACGGAAAGGTACCAACGTAGCTCA -ACGGAAAGGTACCAACGTTCACGT -ACGGAAAGGTACCAACGTCGTAGT -ACGGAAAGGTACCAACGTGTCAGT -ACGGAAAGGTACCAACGTGAAGGT -ACGGAAAGGTACCAACGTAACCGT -ACGGAAAGGTACCAACGTTTGTGC -ACGGAAAGGTACCAACGTCTAAGC -ACGGAAAGGTACCAACGTACTAGC -ACGGAAAGGTACCAACGTAGATGC -ACGGAAAGGTACCAACGTTGAAGG -ACGGAAAGGTACCAACGTCAATGG -ACGGAAAGGTACCAACGTATGAGG -ACGGAAAGGTACCAACGTAATGGG -ACGGAAAGGTACCAACGTTCCTGA -ACGGAAAGGTACCAACGTTAGCGA -ACGGAAAGGTACCAACGTCACAGA -ACGGAAAGGTACCAACGTGCAAGA -ACGGAAAGGTACCAACGTGGTTGA -ACGGAAAGGTACCAACGTTCCGAT -ACGGAAAGGTACCAACGTTGGCAT -ACGGAAAGGTACCAACGTCGAGAT -ACGGAAAGGTACCAACGTTACCAC -ACGGAAAGGTACCAACGTCAGAAC -ACGGAAAGGTACCAACGTGTCTAC -ACGGAAAGGTACCAACGTACGTAC -ACGGAAAGGTACCAACGTAGTGAC -ACGGAAAGGTACCAACGTCTGTAG -ACGGAAAGGTACCAACGTCCTAAG -ACGGAAAGGTACCAACGTGTTCAG -ACGGAAAGGTACCAACGTGCATAG -ACGGAAAGGTACCAACGTGACAAG -ACGGAAAGGTACCAACGTAAGCAG -ACGGAAAGGTACCAACGTCGTCAA -ACGGAAAGGTACCAACGTGCTGAA -ACGGAAAGGTACCAACGTAGTACG -ACGGAAAGGTACCAACGTATCCGA -ACGGAAAGGTACCAACGTATGGGA -ACGGAAAGGTACCAACGTGTGCAA -ACGGAAAGGTACCAACGTGAGGAA -ACGGAAAGGTACCAACGTCAGGTA -ACGGAAAGGTACCAACGTGACTCT -ACGGAAAGGTACCAACGTAGTCCT -ACGGAAAGGTACCAACGTTAAGCC -ACGGAAAGGTACCAACGTATAGCC -ACGGAAAGGTACCAACGTTAACCG -ACGGAAAGGTACCAACGTATGCCA -ACGGAAAGGTACGAAGCTGGAAAC -ACGGAAAGGTACGAAGCTAACACC -ACGGAAAGGTACGAAGCTATCGAG -ACGGAAAGGTACGAAGCTCTCCTT -ACGGAAAGGTACGAAGCTCCTGTT -ACGGAAAGGTACGAAGCTCGGTTT -ACGGAAAGGTACGAAGCTGTGGTT -ACGGAAAGGTACGAAGCTGCCTTT -ACGGAAAGGTACGAAGCTGGTCTT -ACGGAAAGGTACGAAGCTACGCTT -ACGGAAAGGTACGAAGCTAGCGTT -ACGGAAAGGTACGAAGCTTTCGTC -ACGGAAAGGTACGAAGCTTCTCTC -ACGGAAAGGTACGAAGCTTGGATC -ACGGAAAGGTACGAAGCTCACTTC -ACGGAAAGGTACGAAGCTGTACTC -ACGGAAAGGTACGAAGCTGATGTC -ACGGAAAGGTACGAAGCTACAGTC -ACGGAAAGGTACGAAGCTTTGCTG -ACGGAAAGGTACGAAGCTTCCATG -ACGGAAAGGTACGAAGCTTGTGTG -ACGGAAAGGTACGAAGCTCTAGTG -ACGGAAAGGTACGAAGCTCATCTG -ACGGAAAGGTACGAAGCTGAGTTG -ACGGAAAGGTACGAAGCTAGACTG -ACGGAAAGGTACGAAGCTTCGGTA -ACGGAAAGGTACGAAGCTTGCCTA -ACGGAAAGGTACGAAGCTCCACTA -ACGGAAAGGTACGAAGCTGGAGTA -ACGGAAAGGTACGAAGCTTCGTCT -ACGGAAAGGTACGAAGCTTGCACT -ACGGAAAGGTACGAAGCTCTGACT -ACGGAAAGGTACGAAGCTCAACCT -ACGGAAAGGTACGAAGCTGCTACT -ACGGAAAGGTACGAAGCTGGATCT -ACGGAAAGGTACGAAGCTAAGGCT -ACGGAAAGGTACGAAGCTTCAACC -ACGGAAAGGTACGAAGCTTGTTCC -ACGGAAAGGTACGAAGCTATTCCC -ACGGAAAGGTACGAAGCTTTCTCG -ACGGAAAGGTACGAAGCTTAGACG -ACGGAAAGGTACGAAGCTGTAACG -ACGGAAAGGTACGAAGCTACTTCG -ACGGAAAGGTACGAAGCTTACGCA -ACGGAAAGGTACGAAGCTCTTGCA -ACGGAAAGGTACGAAGCTCGAACA -ACGGAAAGGTACGAAGCTCAGTCA -ACGGAAAGGTACGAAGCTGATCCA -ACGGAAAGGTACGAAGCTACGACA -ACGGAAAGGTACGAAGCTAGCTCA -ACGGAAAGGTACGAAGCTTCACGT -ACGGAAAGGTACGAAGCTCGTAGT -ACGGAAAGGTACGAAGCTGTCAGT -ACGGAAAGGTACGAAGCTGAAGGT -ACGGAAAGGTACGAAGCTAACCGT -ACGGAAAGGTACGAAGCTTTGTGC -ACGGAAAGGTACGAAGCTCTAAGC -ACGGAAAGGTACGAAGCTACTAGC -ACGGAAAGGTACGAAGCTAGATGC -ACGGAAAGGTACGAAGCTTGAAGG -ACGGAAAGGTACGAAGCTCAATGG -ACGGAAAGGTACGAAGCTATGAGG -ACGGAAAGGTACGAAGCTAATGGG -ACGGAAAGGTACGAAGCTTCCTGA -ACGGAAAGGTACGAAGCTTAGCGA -ACGGAAAGGTACGAAGCTCACAGA -ACGGAAAGGTACGAAGCTGCAAGA -ACGGAAAGGTACGAAGCTGGTTGA -ACGGAAAGGTACGAAGCTTCCGAT -ACGGAAAGGTACGAAGCTTGGCAT -ACGGAAAGGTACGAAGCTCGAGAT -ACGGAAAGGTACGAAGCTTACCAC -ACGGAAAGGTACGAAGCTCAGAAC -ACGGAAAGGTACGAAGCTGTCTAC -ACGGAAAGGTACGAAGCTACGTAC -ACGGAAAGGTACGAAGCTAGTGAC -ACGGAAAGGTACGAAGCTCTGTAG -ACGGAAAGGTACGAAGCTCCTAAG -ACGGAAAGGTACGAAGCTGTTCAG -ACGGAAAGGTACGAAGCTGCATAG -ACGGAAAGGTACGAAGCTGACAAG -ACGGAAAGGTACGAAGCTAAGCAG -ACGGAAAGGTACGAAGCTCGTCAA -ACGGAAAGGTACGAAGCTGCTGAA -ACGGAAAGGTACGAAGCTAGTACG -ACGGAAAGGTACGAAGCTATCCGA -ACGGAAAGGTACGAAGCTATGGGA -ACGGAAAGGTACGAAGCTGTGCAA -ACGGAAAGGTACGAAGCTGAGGAA -ACGGAAAGGTACGAAGCTCAGGTA -ACGGAAAGGTACGAAGCTGACTCT -ACGGAAAGGTACGAAGCTAGTCCT -ACGGAAAGGTACGAAGCTTAAGCC -ACGGAAAGGTACGAAGCTATAGCC -ACGGAAAGGTACGAAGCTTAACCG -ACGGAAAGGTACGAAGCTATGCCA -ACGGAAAGGTACACGAGTGGAAAC -ACGGAAAGGTACACGAGTAACACC -ACGGAAAGGTACACGAGTATCGAG -ACGGAAAGGTACACGAGTCTCCTT -ACGGAAAGGTACACGAGTCCTGTT -ACGGAAAGGTACACGAGTCGGTTT -ACGGAAAGGTACACGAGTGTGGTT -ACGGAAAGGTACACGAGTGCCTTT -ACGGAAAGGTACACGAGTGGTCTT -ACGGAAAGGTACACGAGTACGCTT -ACGGAAAGGTACACGAGTAGCGTT -ACGGAAAGGTACACGAGTTTCGTC -ACGGAAAGGTACACGAGTTCTCTC -ACGGAAAGGTACACGAGTTGGATC -ACGGAAAGGTACACGAGTCACTTC -ACGGAAAGGTACACGAGTGTACTC -ACGGAAAGGTACACGAGTGATGTC -ACGGAAAGGTACACGAGTACAGTC -ACGGAAAGGTACACGAGTTTGCTG -ACGGAAAGGTACACGAGTTCCATG -ACGGAAAGGTACACGAGTTGTGTG -ACGGAAAGGTACACGAGTCTAGTG -ACGGAAAGGTACACGAGTCATCTG -ACGGAAAGGTACACGAGTGAGTTG -ACGGAAAGGTACACGAGTAGACTG -ACGGAAAGGTACACGAGTTCGGTA -ACGGAAAGGTACACGAGTTGCCTA -ACGGAAAGGTACACGAGTCCACTA -ACGGAAAGGTACACGAGTGGAGTA -ACGGAAAGGTACACGAGTTCGTCT -ACGGAAAGGTACACGAGTTGCACT -ACGGAAAGGTACACGAGTCTGACT -ACGGAAAGGTACACGAGTCAACCT -ACGGAAAGGTACACGAGTGCTACT -ACGGAAAGGTACACGAGTGGATCT -ACGGAAAGGTACACGAGTAAGGCT -ACGGAAAGGTACACGAGTTCAACC -ACGGAAAGGTACACGAGTTGTTCC -ACGGAAAGGTACACGAGTATTCCC -ACGGAAAGGTACACGAGTTTCTCG -ACGGAAAGGTACACGAGTTAGACG -ACGGAAAGGTACACGAGTGTAACG -ACGGAAAGGTACACGAGTACTTCG -ACGGAAAGGTACACGAGTTACGCA -ACGGAAAGGTACACGAGTCTTGCA -ACGGAAAGGTACACGAGTCGAACA -ACGGAAAGGTACACGAGTCAGTCA -ACGGAAAGGTACACGAGTGATCCA -ACGGAAAGGTACACGAGTACGACA -ACGGAAAGGTACACGAGTAGCTCA -ACGGAAAGGTACACGAGTTCACGT -ACGGAAAGGTACACGAGTCGTAGT -ACGGAAAGGTACACGAGTGTCAGT -ACGGAAAGGTACACGAGTGAAGGT -ACGGAAAGGTACACGAGTAACCGT -ACGGAAAGGTACACGAGTTTGTGC -ACGGAAAGGTACACGAGTCTAAGC -ACGGAAAGGTACACGAGTACTAGC -ACGGAAAGGTACACGAGTAGATGC -ACGGAAAGGTACACGAGTTGAAGG -ACGGAAAGGTACACGAGTCAATGG -ACGGAAAGGTACACGAGTATGAGG -ACGGAAAGGTACACGAGTAATGGG -ACGGAAAGGTACACGAGTTCCTGA -ACGGAAAGGTACACGAGTTAGCGA -ACGGAAAGGTACACGAGTCACAGA -ACGGAAAGGTACACGAGTGCAAGA -ACGGAAAGGTACACGAGTGGTTGA -ACGGAAAGGTACACGAGTTCCGAT -ACGGAAAGGTACACGAGTTGGCAT -ACGGAAAGGTACACGAGTCGAGAT -ACGGAAAGGTACACGAGTTACCAC -ACGGAAAGGTACACGAGTCAGAAC -ACGGAAAGGTACACGAGTGTCTAC -ACGGAAAGGTACACGAGTACGTAC -ACGGAAAGGTACACGAGTAGTGAC -ACGGAAAGGTACACGAGTCTGTAG -ACGGAAAGGTACACGAGTCCTAAG -ACGGAAAGGTACACGAGTGTTCAG -ACGGAAAGGTACACGAGTGCATAG -ACGGAAAGGTACACGAGTGACAAG -ACGGAAAGGTACACGAGTAAGCAG -ACGGAAAGGTACACGAGTCGTCAA -ACGGAAAGGTACACGAGTGCTGAA -ACGGAAAGGTACACGAGTAGTACG -ACGGAAAGGTACACGAGTATCCGA -ACGGAAAGGTACACGAGTATGGGA -ACGGAAAGGTACACGAGTGTGCAA -ACGGAAAGGTACACGAGTGAGGAA -ACGGAAAGGTACACGAGTCAGGTA -ACGGAAAGGTACACGAGTGACTCT -ACGGAAAGGTACACGAGTAGTCCT -ACGGAAAGGTACACGAGTTAAGCC -ACGGAAAGGTACACGAGTATAGCC -ACGGAAAGGTACACGAGTTAACCG -ACGGAAAGGTACACGAGTATGCCA -ACGGAAAGGTACCGAATCGGAAAC -ACGGAAAGGTACCGAATCAACACC -ACGGAAAGGTACCGAATCATCGAG -ACGGAAAGGTACCGAATCCTCCTT -ACGGAAAGGTACCGAATCCCTGTT -ACGGAAAGGTACCGAATCCGGTTT -ACGGAAAGGTACCGAATCGTGGTT -ACGGAAAGGTACCGAATCGCCTTT -ACGGAAAGGTACCGAATCGGTCTT -ACGGAAAGGTACCGAATCACGCTT -ACGGAAAGGTACCGAATCAGCGTT -ACGGAAAGGTACCGAATCTTCGTC -ACGGAAAGGTACCGAATCTCTCTC -ACGGAAAGGTACCGAATCTGGATC -ACGGAAAGGTACCGAATCCACTTC -ACGGAAAGGTACCGAATCGTACTC -ACGGAAAGGTACCGAATCGATGTC -ACGGAAAGGTACCGAATCACAGTC -ACGGAAAGGTACCGAATCTTGCTG -ACGGAAAGGTACCGAATCTCCATG -ACGGAAAGGTACCGAATCTGTGTG -ACGGAAAGGTACCGAATCCTAGTG -ACGGAAAGGTACCGAATCCATCTG -ACGGAAAGGTACCGAATCGAGTTG -ACGGAAAGGTACCGAATCAGACTG -ACGGAAAGGTACCGAATCTCGGTA -ACGGAAAGGTACCGAATCTGCCTA -ACGGAAAGGTACCGAATCCCACTA -ACGGAAAGGTACCGAATCGGAGTA -ACGGAAAGGTACCGAATCTCGTCT -ACGGAAAGGTACCGAATCTGCACT -ACGGAAAGGTACCGAATCCTGACT -ACGGAAAGGTACCGAATCCAACCT -ACGGAAAGGTACCGAATCGCTACT -ACGGAAAGGTACCGAATCGGATCT -ACGGAAAGGTACCGAATCAAGGCT -ACGGAAAGGTACCGAATCTCAACC -ACGGAAAGGTACCGAATCTGTTCC -ACGGAAAGGTACCGAATCATTCCC -ACGGAAAGGTACCGAATCTTCTCG -ACGGAAAGGTACCGAATCTAGACG -ACGGAAAGGTACCGAATCGTAACG -ACGGAAAGGTACCGAATCACTTCG -ACGGAAAGGTACCGAATCTACGCA -ACGGAAAGGTACCGAATCCTTGCA -ACGGAAAGGTACCGAATCCGAACA -ACGGAAAGGTACCGAATCCAGTCA -ACGGAAAGGTACCGAATCGATCCA -ACGGAAAGGTACCGAATCACGACA -ACGGAAAGGTACCGAATCAGCTCA -ACGGAAAGGTACCGAATCTCACGT -ACGGAAAGGTACCGAATCCGTAGT -ACGGAAAGGTACCGAATCGTCAGT -ACGGAAAGGTACCGAATCGAAGGT -ACGGAAAGGTACCGAATCAACCGT -ACGGAAAGGTACCGAATCTTGTGC -ACGGAAAGGTACCGAATCCTAAGC -ACGGAAAGGTACCGAATCACTAGC -ACGGAAAGGTACCGAATCAGATGC -ACGGAAAGGTACCGAATCTGAAGG -ACGGAAAGGTACCGAATCCAATGG -ACGGAAAGGTACCGAATCATGAGG -ACGGAAAGGTACCGAATCAATGGG -ACGGAAAGGTACCGAATCTCCTGA -ACGGAAAGGTACCGAATCTAGCGA -ACGGAAAGGTACCGAATCCACAGA -ACGGAAAGGTACCGAATCGCAAGA -ACGGAAAGGTACCGAATCGGTTGA -ACGGAAAGGTACCGAATCTCCGAT -ACGGAAAGGTACCGAATCTGGCAT -ACGGAAAGGTACCGAATCCGAGAT -ACGGAAAGGTACCGAATCTACCAC -ACGGAAAGGTACCGAATCCAGAAC -ACGGAAAGGTACCGAATCGTCTAC -ACGGAAAGGTACCGAATCACGTAC -ACGGAAAGGTACCGAATCAGTGAC -ACGGAAAGGTACCGAATCCTGTAG -ACGGAAAGGTACCGAATCCCTAAG -ACGGAAAGGTACCGAATCGTTCAG -ACGGAAAGGTACCGAATCGCATAG -ACGGAAAGGTACCGAATCGACAAG -ACGGAAAGGTACCGAATCAAGCAG -ACGGAAAGGTACCGAATCCGTCAA -ACGGAAAGGTACCGAATCGCTGAA -ACGGAAAGGTACCGAATCAGTACG -ACGGAAAGGTACCGAATCATCCGA -ACGGAAAGGTACCGAATCATGGGA -ACGGAAAGGTACCGAATCGTGCAA -ACGGAAAGGTACCGAATCGAGGAA -ACGGAAAGGTACCGAATCCAGGTA -ACGGAAAGGTACCGAATCGACTCT -ACGGAAAGGTACCGAATCAGTCCT -ACGGAAAGGTACCGAATCTAAGCC -ACGGAAAGGTACCGAATCATAGCC -ACGGAAAGGTACCGAATCTAACCG -ACGGAAAGGTACCGAATCATGCCA -ACGGAAAGGTACGGAATGGGAAAC -ACGGAAAGGTACGGAATGAACACC -ACGGAAAGGTACGGAATGATCGAG -ACGGAAAGGTACGGAATGCTCCTT -ACGGAAAGGTACGGAATGCCTGTT -ACGGAAAGGTACGGAATGCGGTTT -ACGGAAAGGTACGGAATGGTGGTT -ACGGAAAGGTACGGAATGGCCTTT -ACGGAAAGGTACGGAATGGGTCTT -ACGGAAAGGTACGGAATGACGCTT -ACGGAAAGGTACGGAATGAGCGTT -ACGGAAAGGTACGGAATGTTCGTC -ACGGAAAGGTACGGAATGTCTCTC -ACGGAAAGGTACGGAATGTGGATC -ACGGAAAGGTACGGAATGCACTTC -ACGGAAAGGTACGGAATGGTACTC -ACGGAAAGGTACGGAATGGATGTC -ACGGAAAGGTACGGAATGACAGTC -ACGGAAAGGTACGGAATGTTGCTG -ACGGAAAGGTACGGAATGTCCATG -ACGGAAAGGTACGGAATGTGTGTG -ACGGAAAGGTACGGAATGCTAGTG -ACGGAAAGGTACGGAATGCATCTG -ACGGAAAGGTACGGAATGGAGTTG -ACGGAAAGGTACGGAATGAGACTG -ACGGAAAGGTACGGAATGTCGGTA -ACGGAAAGGTACGGAATGTGCCTA -ACGGAAAGGTACGGAATGCCACTA -ACGGAAAGGTACGGAATGGGAGTA -ACGGAAAGGTACGGAATGTCGTCT -ACGGAAAGGTACGGAATGTGCACT -ACGGAAAGGTACGGAATGCTGACT -ACGGAAAGGTACGGAATGCAACCT -ACGGAAAGGTACGGAATGGCTACT -ACGGAAAGGTACGGAATGGGATCT -ACGGAAAGGTACGGAATGAAGGCT -ACGGAAAGGTACGGAATGTCAACC -ACGGAAAGGTACGGAATGTGTTCC -ACGGAAAGGTACGGAATGATTCCC -ACGGAAAGGTACGGAATGTTCTCG -ACGGAAAGGTACGGAATGTAGACG -ACGGAAAGGTACGGAATGGTAACG -ACGGAAAGGTACGGAATGACTTCG -ACGGAAAGGTACGGAATGTACGCA -ACGGAAAGGTACGGAATGCTTGCA -ACGGAAAGGTACGGAATGCGAACA -ACGGAAAGGTACGGAATGCAGTCA -ACGGAAAGGTACGGAATGGATCCA -ACGGAAAGGTACGGAATGACGACA -ACGGAAAGGTACGGAATGAGCTCA -ACGGAAAGGTACGGAATGTCACGT -ACGGAAAGGTACGGAATGCGTAGT -ACGGAAAGGTACGGAATGGTCAGT -ACGGAAAGGTACGGAATGGAAGGT -ACGGAAAGGTACGGAATGAACCGT -ACGGAAAGGTACGGAATGTTGTGC -ACGGAAAGGTACGGAATGCTAAGC -ACGGAAAGGTACGGAATGACTAGC -ACGGAAAGGTACGGAATGAGATGC -ACGGAAAGGTACGGAATGTGAAGG -ACGGAAAGGTACGGAATGCAATGG -ACGGAAAGGTACGGAATGATGAGG -ACGGAAAGGTACGGAATGAATGGG -ACGGAAAGGTACGGAATGTCCTGA -ACGGAAAGGTACGGAATGTAGCGA -ACGGAAAGGTACGGAATGCACAGA -ACGGAAAGGTACGGAATGGCAAGA -ACGGAAAGGTACGGAATGGGTTGA -ACGGAAAGGTACGGAATGTCCGAT -ACGGAAAGGTACGGAATGTGGCAT -ACGGAAAGGTACGGAATGCGAGAT -ACGGAAAGGTACGGAATGTACCAC -ACGGAAAGGTACGGAATGCAGAAC -ACGGAAAGGTACGGAATGGTCTAC -ACGGAAAGGTACGGAATGACGTAC -ACGGAAAGGTACGGAATGAGTGAC -ACGGAAAGGTACGGAATGCTGTAG -ACGGAAAGGTACGGAATGCCTAAG -ACGGAAAGGTACGGAATGGTTCAG -ACGGAAAGGTACGGAATGGCATAG -ACGGAAAGGTACGGAATGGACAAG -ACGGAAAGGTACGGAATGAAGCAG -ACGGAAAGGTACGGAATGCGTCAA -ACGGAAAGGTACGGAATGGCTGAA -ACGGAAAGGTACGGAATGAGTACG -ACGGAAAGGTACGGAATGATCCGA -ACGGAAAGGTACGGAATGATGGGA -ACGGAAAGGTACGGAATGGTGCAA -ACGGAAAGGTACGGAATGGAGGAA -ACGGAAAGGTACGGAATGCAGGTA -ACGGAAAGGTACGGAATGGACTCT -ACGGAAAGGTACGGAATGAGTCCT -ACGGAAAGGTACGGAATGTAAGCC -ACGGAAAGGTACGGAATGATAGCC -ACGGAAAGGTACGGAATGTAACCG -ACGGAAAGGTACGGAATGATGCCA -ACGGAAAGGTACCAAGTGGGAAAC -ACGGAAAGGTACCAAGTGAACACC -ACGGAAAGGTACCAAGTGATCGAG -ACGGAAAGGTACCAAGTGCTCCTT -ACGGAAAGGTACCAAGTGCCTGTT -ACGGAAAGGTACCAAGTGCGGTTT -ACGGAAAGGTACCAAGTGGTGGTT -ACGGAAAGGTACCAAGTGGCCTTT -ACGGAAAGGTACCAAGTGGGTCTT -ACGGAAAGGTACCAAGTGACGCTT -ACGGAAAGGTACCAAGTGAGCGTT -ACGGAAAGGTACCAAGTGTTCGTC -ACGGAAAGGTACCAAGTGTCTCTC -ACGGAAAGGTACCAAGTGTGGATC -ACGGAAAGGTACCAAGTGCACTTC -ACGGAAAGGTACCAAGTGGTACTC -ACGGAAAGGTACCAAGTGGATGTC -ACGGAAAGGTACCAAGTGACAGTC -ACGGAAAGGTACCAAGTGTTGCTG -ACGGAAAGGTACCAAGTGTCCATG -ACGGAAAGGTACCAAGTGTGTGTG -ACGGAAAGGTACCAAGTGCTAGTG -ACGGAAAGGTACCAAGTGCATCTG -ACGGAAAGGTACCAAGTGGAGTTG -ACGGAAAGGTACCAAGTGAGACTG -ACGGAAAGGTACCAAGTGTCGGTA -ACGGAAAGGTACCAAGTGTGCCTA -ACGGAAAGGTACCAAGTGCCACTA -ACGGAAAGGTACCAAGTGGGAGTA -ACGGAAAGGTACCAAGTGTCGTCT -ACGGAAAGGTACCAAGTGTGCACT -ACGGAAAGGTACCAAGTGCTGACT -ACGGAAAGGTACCAAGTGCAACCT -ACGGAAAGGTACCAAGTGGCTACT -ACGGAAAGGTACCAAGTGGGATCT -ACGGAAAGGTACCAAGTGAAGGCT -ACGGAAAGGTACCAAGTGTCAACC -ACGGAAAGGTACCAAGTGTGTTCC -ACGGAAAGGTACCAAGTGATTCCC -ACGGAAAGGTACCAAGTGTTCTCG -ACGGAAAGGTACCAAGTGTAGACG -ACGGAAAGGTACCAAGTGGTAACG -ACGGAAAGGTACCAAGTGACTTCG -ACGGAAAGGTACCAAGTGTACGCA -ACGGAAAGGTACCAAGTGCTTGCA -ACGGAAAGGTACCAAGTGCGAACA -ACGGAAAGGTACCAAGTGCAGTCA -ACGGAAAGGTACCAAGTGGATCCA -ACGGAAAGGTACCAAGTGACGACA -ACGGAAAGGTACCAAGTGAGCTCA -ACGGAAAGGTACCAAGTGTCACGT -ACGGAAAGGTACCAAGTGCGTAGT -ACGGAAAGGTACCAAGTGGTCAGT -ACGGAAAGGTACCAAGTGGAAGGT -ACGGAAAGGTACCAAGTGAACCGT -ACGGAAAGGTACCAAGTGTTGTGC -ACGGAAAGGTACCAAGTGCTAAGC -ACGGAAAGGTACCAAGTGACTAGC -ACGGAAAGGTACCAAGTGAGATGC -ACGGAAAGGTACCAAGTGTGAAGG -ACGGAAAGGTACCAAGTGCAATGG -ACGGAAAGGTACCAAGTGATGAGG -ACGGAAAGGTACCAAGTGAATGGG -ACGGAAAGGTACCAAGTGTCCTGA -ACGGAAAGGTACCAAGTGTAGCGA -ACGGAAAGGTACCAAGTGCACAGA -ACGGAAAGGTACCAAGTGGCAAGA -ACGGAAAGGTACCAAGTGGGTTGA -ACGGAAAGGTACCAAGTGTCCGAT -ACGGAAAGGTACCAAGTGTGGCAT -ACGGAAAGGTACCAAGTGCGAGAT -ACGGAAAGGTACCAAGTGTACCAC -ACGGAAAGGTACCAAGTGCAGAAC -ACGGAAAGGTACCAAGTGGTCTAC -ACGGAAAGGTACCAAGTGACGTAC -ACGGAAAGGTACCAAGTGAGTGAC -ACGGAAAGGTACCAAGTGCTGTAG -ACGGAAAGGTACCAAGTGCCTAAG -ACGGAAAGGTACCAAGTGGTTCAG -ACGGAAAGGTACCAAGTGGCATAG -ACGGAAAGGTACCAAGTGGACAAG -ACGGAAAGGTACCAAGTGAAGCAG -ACGGAAAGGTACCAAGTGCGTCAA -ACGGAAAGGTACCAAGTGGCTGAA -ACGGAAAGGTACCAAGTGAGTACG -ACGGAAAGGTACCAAGTGATCCGA -ACGGAAAGGTACCAAGTGATGGGA -ACGGAAAGGTACCAAGTGGTGCAA -ACGGAAAGGTACCAAGTGGAGGAA -ACGGAAAGGTACCAAGTGCAGGTA -ACGGAAAGGTACCAAGTGGACTCT -ACGGAAAGGTACCAAGTGAGTCCT -ACGGAAAGGTACCAAGTGTAAGCC -ACGGAAAGGTACCAAGTGATAGCC -ACGGAAAGGTACCAAGTGTAACCG -ACGGAAAGGTACCAAGTGATGCCA -ACGGAAAGGTACGAAGAGGGAAAC -ACGGAAAGGTACGAAGAGAACACC -ACGGAAAGGTACGAAGAGATCGAG -ACGGAAAGGTACGAAGAGCTCCTT -ACGGAAAGGTACGAAGAGCCTGTT -ACGGAAAGGTACGAAGAGCGGTTT -ACGGAAAGGTACGAAGAGGTGGTT -ACGGAAAGGTACGAAGAGGCCTTT -ACGGAAAGGTACGAAGAGGGTCTT -ACGGAAAGGTACGAAGAGACGCTT -ACGGAAAGGTACGAAGAGAGCGTT -ACGGAAAGGTACGAAGAGTTCGTC -ACGGAAAGGTACGAAGAGTCTCTC -ACGGAAAGGTACGAAGAGTGGATC -ACGGAAAGGTACGAAGAGCACTTC -ACGGAAAGGTACGAAGAGGTACTC -ACGGAAAGGTACGAAGAGGATGTC -ACGGAAAGGTACGAAGAGACAGTC -ACGGAAAGGTACGAAGAGTTGCTG -ACGGAAAGGTACGAAGAGTCCATG -ACGGAAAGGTACGAAGAGTGTGTG -ACGGAAAGGTACGAAGAGCTAGTG -ACGGAAAGGTACGAAGAGCATCTG -ACGGAAAGGTACGAAGAGGAGTTG -ACGGAAAGGTACGAAGAGAGACTG -ACGGAAAGGTACGAAGAGTCGGTA -ACGGAAAGGTACGAAGAGTGCCTA -ACGGAAAGGTACGAAGAGCCACTA -ACGGAAAGGTACGAAGAGGGAGTA -ACGGAAAGGTACGAAGAGTCGTCT -ACGGAAAGGTACGAAGAGTGCACT -ACGGAAAGGTACGAAGAGCTGACT -ACGGAAAGGTACGAAGAGCAACCT -ACGGAAAGGTACGAAGAGGCTACT -ACGGAAAGGTACGAAGAGGGATCT -ACGGAAAGGTACGAAGAGAAGGCT -ACGGAAAGGTACGAAGAGTCAACC -ACGGAAAGGTACGAAGAGTGTTCC -ACGGAAAGGTACGAAGAGATTCCC -ACGGAAAGGTACGAAGAGTTCTCG -ACGGAAAGGTACGAAGAGTAGACG -ACGGAAAGGTACGAAGAGGTAACG -ACGGAAAGGTACGAAGAGACTTCG -ACGGAAAGGTACGAAGAGTACGCA -ACGGAAAGGTACGAAGAGCTTGCA -ACGGAAAGGTACGAAGAGCGAACA -ACGGAAAGGTACGAAGAGCAGTCA -ACGGAAAGGTACGAAGAGGATCCA -ACGGAAAGGTACGAAGAGACGACA -ACGGAAAGGTACGAAGAGAGCTCA -ACGGAAAGGTACGAAGAGTCACGT -ACGGAAAGGTACGAAGAGCGTAGT -ACGGAAAGGTACGAAGAGGTCAGT -ACGGAAAGGTACGAAGAGGAAGGT -ACGGAAAGGTACGAAGAGAACCGT -ACGGAAAGGTACGAAGAGTTGTGC -ACGGAAAGGTACGAAGAGCTAAGC -ACGGAAAGGTACGAAGAGACTAGC -ACGGAAAGGTACGAAGAGAGATGC -ACGGAAAGGTACGAAGAGTGAAGG -ACGGAAAGGTACGAAGAGCAATGG -ACGGAAAGGTACGAAGAGATGAGG -ACGGAAAGGTACGAAGAGAATGGG -ACGGAAAGGTACGAAGAGTCCTGA -ACGGAAAGGTACGAAGAGTAGCGA -ACGGAAAGGTACGAAGAGCACAGA -ACGGAAAGGTACGAAGAGGCAAGA -ACGGAAAGGTACGAAGAGGGTTGA -ACGGAAAGGTACGAAGAGTCCGAT -ACGGAAAGGTACGAAGAGTGGCAT -ACGGAAAGGTACGAAGAGCGAGAT -ACGGAAAGGTACGAAGAGTACCAC -ACGGAAAGGTACGAAGAGCAGAAC -ACGGAAAGGTACGAAGAGGTCTAC -ACGGAAAGGTACGAAGAGACGTAC -ACGGAAAGGTACGAAGAGAGTGAC -ACGGAAAGGTACGAAGAGCTGTAG -ACGGAAAGGTACGAAGAGCCTAAG -ACGGAAAGGTACGAAGAGGTTCAG -ACGGAAAGGTACGAAGAGGCATAG -ACGGAAAGGTACGAAGAGGACAAG -ACGGAAAGGTACGAAGAGAAGCAG -ACGGAAAGGTACGAAGAGCGTCAA -ACGGAAAGGTACGAAGAGGCTGAA -ACGGAAAGGTACGAAGAGAGTACG -ACGGAAAGGTACGAAGAGATCCGA -ACGGAAAGGTACGAAGAGATGGGA -ACGGAAAGGTACGAAGAGGTGCAA -ACGGAAAGGTACGAAGAGGAGGAA -ACGGAAAGGTACGAAGAGCAGGTA -ACGGAAAGGTACGAAGAGGACTCT -ACGGAAAGGTACGAAGAGAGTCCT -ACGGAAAGGTACGAAGAGTAAGCC -ACGGAAAGGTACGAAGAGATAGCC -ACGGAAAGGTACGAAGAGTAACCG -ACGGAAAGGTACGAAGAGATGCCA -ACGGAAAGGTACGTACAGGGAAAC -ACGGAAAGGTACGTACAGAACACC -ACGGAAAGGTACGTACAGATCGAG -ACGGAAAGGTACGTACAGCTCCTT -ACGGAAAGGTACGTACAGCCTGTT -ACGGAAAGGTACGTACAGCGGTTT -ACGGAAAGGTACGTACAGGTGGTT -ACGGAAAGGTACGTACAGGCCTTT -ACGGAAAGGTACGTACAGGGTCTT -ACGGAAAGGTACGTACAGACGCTT -ACGGAAAGGTACGTACAGAGCGTT -ACGGAAAGGTACGTACAGTTCGTC -ACGGAAAGGTACGTACAGTCTCTC -ACGGAAAGGTACGTACAGTGGATC -ACGGAAAGGTACGTACAGCACTTC -ACGGAAAGGTACGTACAGGTACTC -ACGGAAAGGTACGTACAGGATGTC -ACGGAAAGGTACGTACAGACAGTC -ACGGAAAGGTACGTACAGTTGCTG -ACGGAAAGGTACGTACAGTCCATG -ACGGAAAGGTACGTACAGTGTGTG -ACGGAAAGGTACGTACAGCTAGTG -ACGGAAAGGTACGTACAGCATCTG -ACGGAAAGGTACGTACAGGAGTTG -ACGGAAAGGTACGTACAGAGACTG -ACGGAAAGGTACGTACAGTCGGTA -ACGGAAAGGTACGTACAGTGCCTA -ACGGAAAGGTACGTACAGCCACTA -ACGGAAAGGTACGTACAGGGAGTA -ACGGAAAGGTACGTACAGTCGTCT -ACGGAAAGGTACGTACAGTGCACT -ACGGAAAGGTACGTACAGCTGACT -ACGGAAAGGTACGTACAGCAACCT -ACGGAAAGGTACGTACAGGCTACT -ACGGAAAGGTACGTACAGGGATCT -ACGGAAAGGTACGTACAGAAGGCT -ACGGAAAGGTACGTACAGTCAACC -ACGGAAAGGTACGTACAGTGTTCC -ACGGAAAGGTACGTACAGATTCCC -ACGGAAAGGTACGTACAGTTCTCG -ACGGAAAGGTACGTACAGTAGACG -ACGGAAAGGTACGTACAGGTAACG -ACGGAAAGGTACGTACAGACTTCG -ACGGAAAGGTACGTACAGTACGCA -ACGGAAAGGTACGTACAGCTTGCA -ACGGAAAGGTACGTACAGCGAACA -ACGGAAAGGTACGTACAGCAGTCA -ACGGAAAGGTACGTACAGGATCCA -ACGGAAAGGTACGTACAGACGACA -ACGGAAAGGTACGTACAGAGCTCA -ACGGAAAGGTACGTACAGTCACGT -ACGGAAAGGTACGTACAGCGTAGT -ACGGAAAGGTACGTACAGGTCAGT -ACGGAAAGGTACGTACAGGAAGGT -ACGGAAAGGTACGTACAGAACCGT -ACGGAAAGGTACGTACAGTTGTGC -ACGGAAAGGTACGTACAGCTAAGC -ACGGAAAGGTACGTACAGACTAGC -ACGGAAAGGTACGTACAGAGATGC -ACGGAAAGGTACGTACAGTGAAGG -ACGGAAAGGTACGTACAGCAATGG -ACGGAAAGGTACGTACAGATGAGG -ACGGAAAGGTACGTACAGAATGGG -ACGGAAAGGTACGTACAGTCCTGA -ACGGAAAGGTACGTACAGTAGCGA -ACGGAAAGGTACGTACAGCACAGA -ACGGAAAGGTACGTACAGGCAAGA -ACGGAAAGGTACGTACAGGGTTGA -ACGGAAAGGTACGTACAGTCCGAT -ACGGAAAGGTACGTACAGTGGCAT -ACGGAAAGGTACGTACAGCGAGAT -ACGGAAAGGTACGTACAGTACCAC -ACGGAAAGGTACGTACAGCAGAAC -ACGGAAAGGTACGTACAGGTCTAC -ACGGAAAGGTACGTACAGACGTAC -ACGGAAAGGTACGTACAGAGTGAC -ACGGAAAGGTACGTACAGCTGTAG -ACGGAAAGGTACGTACAGCCTAAG -ACGGAAAGGTACGTACAGGTTCAG -ACGGAAAGGTACGTACAGGCATAG -ACGGAAAGGTACGTACAGGACAAG -ACGGAAAGGTACGTACAGAAGCAG -ACGGAAAGGTACGTACAGCGTCAA -ACGGAAAGGTACGTACAGGCTGAA -ACGGAAAGGTACGTACAGAGTACG -ACGGAAAGGTACGTACAGATCCGA -ACGGAAAGGTACGTACAGATGGGA -ACGGAAAGGTACGTACAGGTGCAA -ACGGAAAGGTACGTACAGGAGGAA -ACGGAAAGGTACGTACAGCAGGTA -ACGGAAAGGTACGTACAGGACTCT -ACGGAAAGGTACGTACAGAGTCCT -ACGGAAAGGTACGTACAGTAAGCC -ACGGAAAGGTACGTACAGATAGCC -ACGGAAAGGTACGTACAGTAACCG -ACGGAAAGGTACGTACAGATGCCA -ACGGAAAGGTACTCTGACGGAAAC -ACGGAAAGGTACTCTGACAACACC -ACGGAAAGGTACTCTGACATCGAG -ACGGAAAGGTACTCTGACCTCCTT -ACGGAAAGGTACTCTGACCCTGTT -ACGGAAAGGTACTCTGACCGGTTT -ACGGAAAGGTACTCTGACGTGGTT -ACGGAAAGGTACTCTGACGCCTTT -ACGGAAAGGTACTCTGACGGTCTT -ACGGAAAGGTACTCTGACACGCTT -ACGGAAAGGTACTCTGACAGCGTT -ACGGAAAGGTACTCTGACTTCGTC -ACGGAAAGGTACTCTGACTCTCTC -ACGGAAAGGTACTCTGACTGGATC -ACGGAAAGGTACTCTGACCACTTC -ACGGAAAGGTACTCTGACGTACTC -ACGGAAAGGTACTCTGACGATGTC -ACGGAAAGGTACTCTGACACAGTC -ACGGAAAGGTACTCTGACTTGCTG -ACGGAAAGGTACTCTGACTCCATG -ACGGAAAGGTACTCTGACTGTGTG -ACGGAAAGGTACTCTGACCTAGTG -ACGGAAAGGTACTCTGACCATCTG -ACGGAAAGGTACTCTGACGAGTTG -ACGGAAAGGTACTCTGACAGACTG -ACGGAAAGGTACTCTGACTCGGTA -ACGGAAAGGTACTCTGACTGCCTA -ACGGAAAGGTACTCTGACCCACTA -ACGGAAAGGTACTCTGACGGAGTA -ACGGAAAGGTACTCTGACTCGTCT -ACGGAAAGGTACTCTGACTGCACT -ACGGAAAGGTACTCTGACCTGACT -ACGGAAAGGTACTCTGACCAACCT -ACGGAAAGGTACTCTGACGCTACT -ACGGAAAGGTACTCTGACGGATCT -ACGGAAAGGTACTCTGACAAGGCT -ACGGAAAGGTACTCTGACTCAACC -ACGGAAAGGTACTCTGACTGTTCC -ACGGAAAGGTACTCTGACATTCCC -ACGGAAAGGTACTCTGACTTCTCG -ACGGAAAGGTACTCTGACTAGACG -ACGGAAAGGTACTCTGACGTAACG -ACGGAAAGGTACTCTGACACTTCG -ACGGAAAGGTACTCTGACTACGCA -ACGGAAAGGTACTCTGACCTTGCA -ACGGAAAGGTACTCTGACCGAACA -ACGGAAAGGTACTCTGACCAGTCA -ACGGAAAGGTACTCTGACGATCCA -ACGGAAAGGTACTCTGACACGACA -ACGGAAAGGTACTCTGACAGCTCA -ACGGAAAGGTACTCTGACTCACGT -ACGGAAAGGTACTCTGACCGTAGT -ACGGAAAGGTACTCTGACGTCAGT -ACGGAAAGGTACTCTGACGAAGGT -ACGGAAAGGTACTCTGACAACCGT -ACGGAAAGGTACTCTGACTTGTGC -ACGGAAAGGTACTCTGACCTAAGC -ACGGAAAGGTACTCTGACACTAGC -ACGGAAAGGTACTCTGACAGATGC -ACGGAAAGGTACTCTGACTGAAGG -ACGGAAAGGTACTCTGACCAATGG -ACGGAAAGGTACTCTGACATGAGG -ACGGAAAGGTACTCTGACAATGGG -ACGGAAAGGTACTCTGACTCCTGA -ACGGAAAGGTACTCTGACTAGCGA -ACGGAAAGGTACTCTGACCACAGA -ACGGAAAGGTACTCTGACGCAAGA -ACGGAAAGGTACTCTGACGGTTGA -ACGGAAAGGTACTCTGACTCCGAT -ACGGAAAGGTACTCTGACTGGCAT -ACGGAAAGGTACTCTGACCGAGAT -ACGGAAAGGTACTCTGACTACCAC -ACGGAAAGGTACTCTGACCAGAAC -ACGGAAAGGTACTCTGACGTCTAC -ACGGAAAGGTACTCTGACACGTAC -ACGGAAAGGTACTCTGACAGTGAC -ACGGAAAGGTACTCTGACCTGTAG -ACGGAAAGGTACTCTGACCCTAAG -ACGGAAAGGTACTCTGACGTTCAG -ACGGAAAGGTACTCTGACGCATAG -ACGGAAAGGTACTCTGACGACAAG -ACGGAAAGGTACTCTGACAAGCAG -ACGGAAAGGTACTCTGACCGTCAA -ACGGAAAGGTACTCTGACGCTGAA -ACGGAAAGGTACTCTGACAGTACG -ACGGAAAGGTACTCTGACATCCGA -ACGGAAAGGTACTCTGACATGGGA -ACGGAAAGGTACTCTGACGTGCAA -ACGGAAAGGTACTCTGACGAGGAA -ACGGAAAGGTACTCTGACCAGGTA -ACGGAAAGGTACTCTGACGACTCT -ACGGAAAGGTACTCTGACAGTCCT -ACGGAAAGGTACTCTGACTAAGCC -ACGGAAAGGTACTCTGACATAGCC -ACGGAAAGGTACTCTGACTAACCG -ACGGAAAGGTACTCTGACATGCCA -ACGGAAAGGTACCCTAGTGGAAAC -ACGGAAAGGTACCCTAGTAACACC -ACGGAAAGGTACCCTAGTATCGAG -ACGGAAAGGTACCCTAGTCTCCTT -ACGGAAAGGTACCCTAGTCCTGTT -ACGGAAAGGTACCCTAGTCGGTTT -ACGGAAAGGTACCCTAGTGTGGTT -ACGGAAAGGTACCCTAGTGCCTTT -ACGGAAAGGTACCCTAGTGGTCTT -ACGGAAAGGTACCCTAGTACGCTT -ACGGAAAGGTACCCTAGTAGCGTT -ACGGAAAGGTACCCTAGTTTCGTC -ACGGAAAGGTACCCTAGTTCTCTC -ACGGAAAGGTACCCTAGTTGGATC -ACGGAAAGGTACCCTAGTCACTTC -ACGGAAAGGTACCCTAGTGTACTC -ACGGAAAGGTACCCTAGTGATGTC -ACGGAAAGGTACCCTAGTACAGTC -ACGGAAAGGTACCCTAGTTTGCTG -ACGGAAAGGTACCCTAGTTCCATG -ACGGAAAGGTACCCTAGTTGTGTG -ACGGAAAGGTACCCTAGTCTAGTG -ACGGAAAGGTACCCTAGTCATCTG -ACGGAAAGGTACCCTAGTGAGTTG -ACGGAAAGGTACCCTAGTAGACTG -ACGGAAAGGTACCCTAGTTCGGTA -ACGGAAAGGTACCCTAGTTGCCTA -ACGGAAAGGTACCCTAGTCCACTA -ACGGAAAGGTACCCTAGTGGAGTA -ACGGAAAGGTACCCTAGTTCGTCT -ACGGAAAGGTACCCTAGTTGCACT -ACGGAAAGGTACCCTAGTCTGACT -ACGGAAAGGTACCCTAGTCAACCT -ACGGAAAGGTACCCTAGTGCTACT -ACGGAAAGGTACCCTAGTGGATCT -ACGGAAAGGTACCCTAGTAAGGCT -ACGGAAAGGTACCCTAGTTCAACC -ACGGAAAGGTACCCTAGTTGTTCC -ACGGAAAGGTACCCTAGTATTCCC -ACGGAAAGGTACCCTAGTTTCTCG -ACGGAAAGGTACCCTAGTTAGACG -ACGGAAAGGTACCCTAGTGTAACG -ACGGAAAGGTACCCTAGTACTTCG -ACGGAAAGGTACCCTAGTTACGCA -ACGGAAAGGTACCCTAGTCTTGCA -ACGGAAAGGTACCCTAGTCGAACA -ACGGAAAGGTACCCTAGTCAGTCA -ACGGAAAGGTACCCTAGTGATCCA -ACGGAAAGGTACCCTAGTACGACA -ACGGAAAGGTACCCTAGTAGCTCA -ACGGAAAGGTACCCTAGTTCACGT -ACGGAAAGGTACCCTAGTCGTAGT -ACGGAAAGGTACCCTAGTGTCAGT -ACGGAAAGGTACCCTAGTGAAGGT -ACGGAAAGGTACCCTAGTAACCGT -ACGGAAAGGTACCCTAGTTTGTGC -ACGGAAAGGTACCCTAGTCTAAGC -ACGGAAAGGTACCCTAGTACTAGC -ACGGAAAGGTACCCTAGTAGATGC -ACGGAAAGGTACCCTAGTTGAAGG -ACGGAAAGGTACCCTAGTCAATGG -ACGGAAAGGTACCCTAGTATGAGG -ACGGAAAGGTACCCTAGTAATGGG -ACGGAAAGGTACCCTAGTTCCTGA -ACGGAAAGGTACCCTAGTTAGCGA -ACGGAAAGGTACCCTAGTCACAGA -ACGGAAAGGTACCCTAGTGCAAGA -ACGGAAAGGTACCCTAGTGGTTGA -ACGGAAAGGTACCCTAGTTCCGAT -ACGGAAAGGTACCCTAGTTGGCAT -ACGGAAAGGTACCCTAGTCGAGAT -ACGGAAAGGTACCCTAGTTACCAC -ACGGAAAGGTACCCTAGTCAGAAC -ACGGAAAGGTACCCTAGTGTCTAC -ACGGAAAGGTACCCTAGTACGTAC -ACGGAAAGGTACCCTAGTAGTGAC -ACGGAAAGGTACCCTAGTCTGTAG -ACGGAAAGGTACCCTAGTCCTAAG -ACGGAAAGGTACCCTAGTGTTCAG -ACGGAAAGGTACCCTAGTGCATAG -ACGGAAAGGTACCCTAGTGACAAG -ACGGAAAGGTACCCTAGTAAGCAG -ACGGAAAGGTACCCTAGTCGTCAA -ACGGAAAGGTACCCTAGTGCTGAA -ACGGAAAGGTACCCTAGTAGTACG -ACGGAAAGGTACCCTAGTATCCGA -ACGGAAAGGTACCCTAGTATGGGA -ACGGAAAGGTACCCTAGTGTGCAA -ACGGAAAGGTACCCTAGTGAGGAA -ACGGAAAGGTACCCTAGTCAGGTA -ACGGAAAGGTACCCTAGTGACTCT -ACGGAAAGGTACCCTAGTAGTCCT -ACGGAAAGGTACCCTAGTTAAGCC -ACGGAAAGGTACCCTAGTATAGCC -ACGGAAAGGTACCCTAGTTAACCG -ACGGAAAGGTACCCTAGTATGCCA -ACGGAAAGGTACGCCTAAGGAAAC -ACGGAAAGGTACGCCTAAAACACC -ACGGAAAGGTACGCCTAAATCGAG -ACGGAAAGGTACGCCTAACTCCTT -ACGGAAAGGTACGCCTAACCTGTT -ACGGAAAGGTACGCCTAACGGTTT -ACGGAAAGGTACGCCTAAGTGGTT -ACGGAAAGGTACGCCTAAGCCTTT -ACGGAAAGGTACGCCTAAGGTCTT -ACGGAAAGGTACGCCTAAACGCTT -ACGGAAAGGTACGCCTAAAGCGTT -ACGGAAAGGTACGCCTAATTCGTC -ACGGAAAGGTACGCCTAATCTCTC -ACGGAAAGGTACGCCTAATGGATC -ACGGAAAGGTACGCCTAACACTTC -ACGGAAAGGTACGCCTAAGTACTC -ACGGAAAGGTACGCCTAAGATGTC -ACGGAAAGGTACGCCTAAACAGTC -ACGGAAAGGTACGCCTAATTGCTG -ACGGAAAGGTACGCCTAATCCATG -ACGGAAAGGTACGCCTAATGTGTG -ACGGAAAGGTACGCCTAACTAGTG -ACGGAAAGGTACGCCTAACATCTG -ACGGAAAGGTACGCCTAAGAGTTG -ACGGAAAGGTACGCCTAAAGACTG -ACGGAAAGGTACGCCTAATCGGTA -ACGGAAAGGTACGCCTAATGCCTA -ACGGAAAGGTACGCCTAACCACTA -ACGGAAAGGTACGCCTAAGGAGTA -ACGGAAAGGTACGCCTAATCGTCT -ACGGAAAGGTACGCCTAATGCACT -ACGGAAAGGTACGCCTAACTGACT -ACGGAAAGGTACGCCTAACAACCT -ACGGAAAGGTACGCCTAAGCTACT -ACGGAAAGGTACGCCTAAGGATCT -ACGGAAAGGTACGCCTAAAAGGCT -ACGGAAAGGTACGCCTAATCAACC -ACGGAAAGGTACGCCTAATGTTCC -ACGGAAAGGTACGCCTAAATTCCC -ACGGAAAGGTACGCCTAATTCTCG -ACGGAAAGGTACGCCTAATAGACG -ACGGAAAGGTACGCCTAAGTAACG -ACGGAAAGGTACGCCTAAACTTCG -ACGGAAAGGTACGCCTAATACGCA -ACGGAAAGGTACGCCTAACTTGCA -ACGGAAAGGTACGCCTAACGAACA -ACGGAAAGGTACGCCTAACAGTCA -ACGGAAAGGTACGCCTAAGATCCA -ACGGAAAGGTACGCCTAAACGACA -ACGGAAAGGTACGCCTAAAGCTCA -ACGGAAAGGTACGCCTAATCACGT -ACGGAAAGGTACGCCTAACGTAGT -ACGGAAAGGTACGCCTAAGTCAGT -ACGGAAAGGTACGCCTAAGAAGGT -ACGGAAAGGTACGCCTAAAACCGT -ACGGAAAGGTACGCCTAATTGTGC -ACGGAAAGGTACGCCTAACTAAGC -ACGGAAAGGTACGCCTAAACTAGC -ACGGAAAGGTACGCCTAAAGATGC -ACGGAAAGGTACGCCTAATGAAGG -ACGGAAAGGTACGCCTAACAATGG -ACGGAAAGGTACGCCTAAATGAGG -ACGGAAAGGTACGCCTAAAATGGG -ACGGAAAGGTACGCCTAATCCTGA -ACGGAAAGGTACGCCTAATAGCGA -ACGGAAAGGTACGCCTAACACAGA -ACGGAAAGGTACGCCTAAGCAAGA -ACGGAAAGGTACGCCTAAGGTTGA -ACGGAAAGGTACGCCTAATCCGAT -ACGGAAAGGTACGCCTAATGGCAT -ACGGAAAGGTACGCCTAACGAGAT -ACGGAAAGGTACGCCTAATACCAC -ACGGAAAGGTACGCCTAACAGAAC -ACGGAAAGGTACGCCTAAGTCTAC -ACGGAAAGGTACGCCTAAACGTAC -ACGGAAAGGTACGCCTAAAGTGAC -ACGGAAAGGTACGCCTAACTGTAG -ACGGAAAGGTACGCCTAACCTAAG -ACGGAAAGGTACGCCTAAGTTCAG -ACGGAAAGGTACGCCTAAGCATAG -ACGGAAAGGTACGCCTAAGACAAG -ACGGAAAGGTACGCCTAAAAGCAG -ACGGAAAGGTACGCCTAACGTCAA -ACGGAAAGGTACGCCTAAGCTGAA -ACGGAAAGGTACGCCTAAAGTACG -ACGGAAAGGTACGCCTAAATCCGA -ACGGAAAGGTACGCCTAAATGGGA -ACGGAAAGGTACGCCTAAGTGCAA -ACGGAAAGGTACGCCTAAGAGGAA -ACGGAAAGGTACGCCTAACAGGTA -ACGGAAAGGTACGCCTAAGACTCT -ACGGAAAGGTACGCCTAAAGTCCT -ACGGAAAGGTACGCCTAATAAGCC -ACGGAAAGGTACGCCTAAATAGCC -ACGGAAAGGTACGCCTAATAACCG -ACGGAAAGGTACGCCTAAATGCCA -ACGGAAAGGTACGCCATAGGAAAC -ACGGAAAGGTACGCCATAAACACC -ACGGAAAGGTACGCCATAATCGAG -ACGGAAAGGTACGCCATACTCCTT -ACGGAAAGGTACGCCATACCTGTT -ACGGAAAGGTACGCCATACGGTTT -ACGGAAAGGTACGCCATAGTGGTT -ACGGAAAGGTACGCCATAGCCTTT -ACGGAAAGGTACGCCATAGGTCTT -ACGGAAAGGTACGCCATAACGCTT -ACGGAAAGGTACGCCATAAGCGTT -ACGGAAAGGTACGCCATATTCGTC -ACGGAAAGGTACGCCATATCTCTC -ACGGAAAGGTACGCCATATGGATC -ACGGAAAGGTACGCCATACACTTC -ACGGAAAGGTACGCCATAGTACTC -ACGGAAAGGTACGCCATAGATGTC -ACGGAAAGGTACGCCATAACAGTC -ACGGAAAGGTACGCCATATTGCTG -ACGGAAAGGTACGCCATATCCATG -ACGGAAAGGTACGCCATATGTGTG -ACGGAAAGGTACGCCATACTAGTG -ACGGAAAGGTACGCCATACATCTG -ACGGAAAGGTACGCCATAGAGTTG -ACGGAAAGGTACGCCATAAGACTG -ACGGAAAGGTACGCCATATCGGTA -ACGGAAAGGTACGCCATATGCCTA -ACGGAAAGGTACGCCATACCACTA -ACGGAAAGGTACGCCATAGGAGTA -ACGGAAAGGTACGCCATATCGTCT -ACGGAAAGGTACGCCATATGCACT -ACGGAAAGGTACGCCATACTGACT -ACGGAAAGGTACGCCATACAACCT -ACGGAAAGGTACGCCATAGCTACT -ACGGAAAGGTACGCCATAGGATCT -ACGGAAAGGTACGCCATAAAGGCT -ACGGAAAGGTACGCCATATCAACC -ACGGAAAGGTACGCCATATGTTCC -ACGGAAAGGTACGCCATAATTCCC -ACGGAAAGGTACGCCATATTCTCG -ACGGAAAGGTACGCCATATAGACG -ACGGAAAGGTACGCCATAGTAACG -ACGGAAAGGTACGCCATAACTTCG -ACGGAAAGGTACGCCATATACGCA -ACGGAAAGGTACGCCATACTTGCA -ACGGAAAGGTACGCCATACGAACA -ACGGAAAGGTACGCCATACAGTCA -ACGGAAAGGTACGCCATAGATCCA -ACGGAAAGGTACGCCATAACGACA -ACGGAAAGGTACGCCATAAGCTCA -ACGGAAAGGTACGCCATATCACGT -ACGGAAAGGTACGCCATACGTAGT -ACGGAAAGGTACGCCATAGTCAGT -ACGGAAAGGTACGCCATAGAAGGT -ACGGAAAGGTACGCCATAAACCGT -ACGGAAAGGTACGCCATATTGTGC -ACGGAAAGGTACGCCATACTAAGC -ACGGAAAGGTACGCCATAACTAGC -ACGGAAAGGTACGCCATAAGATGC -ACGGAAAGGTACGCCATATGAAGG -ACGGAAAGGTACGCCATACAATGG -ACGGAAAGGTACGCCATAATGAGG -ACGGAAAGGTACGCCATAAATGGG -ACGGAAAGGTACGCCATATCCTGA -ACGGAAAGGTACGCCATATAGCGA -ACGGAAAGGTACGCCATACACAGA -ACGGAAAGGTACGCCATAGCAAGA -ACGGAAAGGTACGCCATAGGTTGA -ACGGAAAGGTACGCCATATCCGAT -ACGGAAAGGTACGCCATATGGCAT -ACGGAAAGGTACGCCATACGAGAT -ACGGAAAGGTACGCCATATACCAC -ACGGAAAGGTACGCCATACAGAAC -ACGGAAAGGTACGCCATAGTCTAC -ACGGAAAGGTACGCCATAACGTAC -ACGGAAAGGTACGCCATAAGTGAC -ACGGAAAGGTACGCCATACTGTAG -ACGGAAAGGTACGCCATACCTAAG -ACGGAAAGGTACGCCATAGTTCAG -ACGGAAAGGTACGCCATAGCATAG -ACGGAAAGGTACGCCATAGACAAG -ACGGAAAGGTACGCCATAAAGCAG -ACGGAAAGGTACGCCATACGTCAA -ACGGAAAGGTACGCCATAGCTGAA -ACGGAAAGGTACGCCATAAGTACG -ACGGAAAGGTACGCCATAATCCGA -ACGGAAAGGTACGCCATAATGGGA -ACGGAAAGGTACGCCATAGTGCAA -ACGGAAAGGTACGCCATAGAGGAA -ACGGAAAGGTACGCCATACAGGTA -ACGGAAAGGTACGCCATAGACTCT -ACGGAAAGGTACGCCATAAGTCCT -ACGGAAAGGTACGCCATATAAGCC -ACGGAAAGGTACGCCATAATAGCC -ACGGAAAGGTACGCCATATAACCG -ACGGAAAGGTACGCCATAATGCCA -ACGGAAAGGTACCCGTAAGGAAAC -ACGGAAAGGTACCCGTAAAACACC -ACGGAAAGGTACCCGTAAATCGAG -ACGGAAAGGTACCCGTAACTCCTT -ACGGAAAGGTACCCGTAACCTGTT -ACGGAAAGGTACCCGTAACGGTTT -ACGGAAAGGTACCCGTAAGTGGTT -ACGGAAAGGTACCCGTAAGCCTTT -ACGGAAAGGTACCCGTAAGGTCTT -ACGGAAAGGTACCCGTAAACGCTT -ACGGAAAGGTACCCGTAAAGCGTT -ACGGAAAGGTACCCGTAATTCGTC -ACGGAAAGGTACCCGTAATCTCTC -ACGGAAAGGTACCCGTAATGGATC -ACGGAAAGGTACCCGTAACACTTC -ACGGAAAGGTACCCGTAAGTACTC -ACGGAAAGGTACCCGTAAGATGTC -ACGGAAAGGTACCCGTAAACAGTC -ACGGAAAGGTACCCGTAATTGCTG -ACGGAAAGGTACCCGTAATCCATG -ACGGAAAGGTACCCGTAATGTGTG -ACGGAAAGGTACCCGTAACTAGTG -ACGGAAAGGTACCCGTAACATCTG -ACGGAAAGGTACCCGTAAGAGTTG -ACGGAAAGGTACCCGTAAAGACTG -ACGGAAAGGTACCCGTAATCGGTA -ACGGAAAGGTACCCGTAATGCCTA -ACGGAAAGGTACCCGTAACCACTA -ACGGAAAGGTACCCGTAAGGAGTA -ACGGAAAGGTACCCGTAATCGTCT -ACGGAAAGGTACCCGTAATGCACT -ACGGAAAGGTACCCGTAACTGACT -ACGGAAAGGTACCCGTAACAACCT -ACGGAAAGGTACCCGTAAGCTACT -ACGGAAAGGTACCCGTAAGGATCT -ACGGAAAGGTACCCGTAAAAGGCT -ACGGAAAGGTACCCGTAATCAACC -ACGGAAAGGTACCCGTAATGTTCC -ACGGAAAGGTACCCGTAAATTCCC -ACGGAAAGGTACCCGTAATTCTCG -ACGGAAAGGTACCCGTAATAGACG -ACGGAAAGGTACCCGTAAGTAACG -ACGGAAAGGTACCCGTAAACTTCG -ACGGAAAGGTACCCGTAATACGCA -ACGGAAAGGTACCCGTAACTTGCA -ACGGAAAGGTACCCGTAACGAACA -ACGGAAAGGTACCCGTAACAGTCA -ACGGAAAGGTACCCGTAAGATCCA -ACGGAAAGGTACCCGTAAACGACA -ACGGAAAGGTACCCGTAAAGCTCA -ACGGAAAGGTACCCGTAATCACGT -ACGGAAAGGTACCCGTAACGTAGT -ACGGAAAGGTACCCGTAAGTCAGT -ACGGAAAGGTACCCGTAAGAAGGT -ACGGAAAGGTACCCGTAAAACCGT -ACGGAAAGGTACCCGTAATTGTGC -ACGGAAAGGTACCCGTAACTAAGC -ACGGAAAGGTACCCGTAAACTAGC -ACGGAAAGGTACCCGTAAAGATGC -ACGGAAAGGTACCCGTAATGAAGG -ACGGAAAGGTACCCGTAACAATGG -ACGGAAAGGTACCCGTAAATGAGG -ACGGAAAGGTACCCGTAAAATGGG -ACGGAAAGGTACCCGTAATCCTGA -ACGGAAAGGTACCCGTAATAGCGA -ACGGAAAGGTACCCGTAACACAGA -ACGGAAAGGTACCCGTAAGCAAGA -ACGGAAAGGTACCCGTAAGGTTGA -ACGGAAAGGTACCCGTAATCCGAT -ACGGAAAGGTACCCGTAATGGCAT -ACGGAAAGGTACCCGTAACGAGAT -ACGGAAAGGTACCCGTAATACCAC -ACGGAAAGGTACCCGTAACAGAAC -ACGGAAAGGTACCCGTAAGTCTAC -ACGGAAAGGTACCCGTAAACGTAC -ACGGAAAGGTACCCGTAAAGTGAC -ACGGAAAGGTACCCGTAACTGTAG -ACGGAAAGGTACCCGTAACCTAAG -ACGGAAAGGTACCCGTAAGTTCAG -ACGGAAAGGTACCCGTAAGCATAG -ACGGAAAGGTACCCGTAAGACAAG -ACGGAAAGGTACCCGTAAAAGCAG -ACGGAAAGGTACCCGTAACGTCAA -ACGGAAAGGTACCCGTAAGCTGAA -ACGGAAAGGTACCCGTAAAGTACG -ACGGAAAGGTACCCGTAAATCCGA -ACGGAAAGGTACCCGTAAATGGGA -ACGGAAAGGTACCCGTAAGTGCAA -ACGGAAAGGTACCCGTAAGAGGAA -ACGGAAAGGTACCCGTAACAGGTA -ACGGAAAGGTACCCGTAAGACTCT -ACGGAAAGGTACCCGTAAAGTCCT -ACGGAAAGGTACCCGTAATAAGCC -ACGGAAAGGTACCCGTAAATAGCC -ACGGAAAGGTACCCGTAATAACCG -ACGGAAAGGTACCCGTAAATGCCA -ACGGAAAGGTACCCAATGGGAAAC -ACGGAAAGGTACCCAATGAACACC -ACGGAAAGGTACCCAATGATCGAG -ACGGAAAGGTACCCAATGCTCCTT -ACGGAAAGGTACCCAATGCCTGTT -ACGGAAAGGTACCCAATGCGGTTT -ACGGAAAGGTACCCAATGGTGGTT -ACGGAAAGGTACCCAATGGCCTTT -ACGGAAAGGTACCCAATGGGTCTT -ACGGAAAGGTACCCAATGACGCTT -ACGGAAAGGTACCCAATGAGCGTT -ACGGAAAGGTACCCAATGTTCGTC -ACGGAAAGGTACCCAATGTCTCTC -ACGGAAAGGTACCCAATGTGGATC -ACGGAAAGGTACCCAATGCACTTC -ACGGAAAGGTACCCAATGGTACTC -ACGGAAAGGTACCCAATGGATGTC -ACGGAAAGGTACCCAATGACAGTC -ACGGAAAGGTACCCAATGTTGCTG -ACGGAAAGGTACCCAATGTCCATG -ACGGAAAGGTACCCAATGTGTGTG -ACGGAAAGGTACCCAATGCTAGTG -ACGGAAAGGTACCCAATGCATCTG -ACGGAAAGGTACCCAATGGAGTTG -ACGGAAAGGTACCCAATGAGACTG -ACGGAAAGGTACCCAATGTCGGTA -ACGGAAAGGTACCCAATGTGCCTA -ACGGAAAGGTACCCAATGCCACTA -ACGGAAAGGTACCCAATGGGAGTA -ACGGAAAGGTACCCAATGTCGTCT -ACGGAAAGGTACCCAATGTGCACT -ACGGAAAGGTACCCAATGCTGACT -ACGGAAAGGTACCCAATGCAACCT -ACGGAAAGGTACCCAATGGCTACT -ACGGAAAGGTACCCAATGGGATCT -ACGGAAAGGTACCCAATGAAGGCT -ACGGAAAGGTACCCAATGTCAACC -ACGGAAAGGTACCCAATGTGTTCC -ACGGAAAGGTACCCAATGATTCCC -ACGGAAAGGTACCCAATGTTCTCG -ACGGAAAGGTACCCAATGTAGACG -ACGGAAAGGTACCCAATGGTAACG -ACGGAAAGGTACCCAATGACTTCG -ACGGAAAGGTACCCAATGTACGCA -ACGGAAAGGTACCCAATGCTTGCA -ACGGAAAGGTACCCAATGCGAACA -ACGGAAAGGTACCCAATGCAGTCA -ACGGAAAGGTACCCAATGGATCCA -ACGGAAAGGTACCCAATGACGACA -ACGGAAAGGTACCCAATGAGCTCA -ACGGAAAGGTACCCAATGTCACGT -ACGGAAAGGTACCCAATGCGTAGT -ACGGAAAGGTACCCAATGGTCAGT -ACGGAAAGGTACCCAATGGAAGGT -ACGGAAAGGTACCCAATGAACCGT -ACGGAAAGGTACCCAATGTTGTGC -ACGGAAAGGTACCCAATGCTAAGC -ACGGAAAGGTACCCAATGACTAGC -ACGGAAAGGTACCCAATGAGATGC -ACGGAAAGGTACCCAATGTGAAGG -ACGGAAAGGTACCCAATGCAATGG -ACGGAAAGGTACCCAATGATGAGG -ACGGAAAGGTACCCAATGAATGGG -ACGGAAAGGTACCCAATGTCCTGA -ACGGAAAGGTACCCAATGTAGCGA -ACGGAAAGGTACCCAATGCACAGA -ACGGAAAGGTACCCAATGGCAAGA -ACGGAAAGGTACCCAATGGGTTGA -ACGGAAAGGTACCCAATGTCCGAT -ACGGAAAGGTACCCAATGTGGCAT -ACGGAAAGGTACCCAATGCGAGAT -ACGGAAAGGTACCCAATGTACCAC -ACGGAAAGGTACCCAATGCAGAAC -ACGGAAAGGTACCCAATGGTCTAC -ACGGAAAGGTACCCAATGACGTAC -ACGGAAAGGTACCCAATGAGTGAC -ACGGAAAGGTACCCAATGCTGTAG -ACGGAAAGGTACCCAATGCCTAAG -ACGGAAAGGTACCCAATGGTTCAG -ACGGAAAGGTACCCAATGGCATAG -ACGGAAAGGTACCCAATGGACAAG -ACGGAAAGGTACCCAATGAAGCAG -ACGGAAAGGTACCCAATGCGTCAA -ACGGAAAGGTACCCAATGGCTGAA -ACGGAAAGGTACCCAATGAGTACG -ACGGAAAGGTACCCAATGATCCGA -ACGGAAAGGTACCCAATGATGGGA -ACGGAAAGGTACCCAATGGTGCAA -ACGGAAAGGTACCCAATGGAGGAA -ACGGAAAGGTACCCAATGCAGGTA -ACGGAAAGGTACCCAATGGACTCT -ACGGAAAGGTACCCAATGAGTCCT -ACGGAAAGGTACCCAATGTAAGCC -ACGGAAAGGTACCCAATGATAGCC -ACGGAAAGGTACCCAATGTAACCG -ACGGAAAGGTACCCAATGATGCCA -ACGGAAACTCTGAACGGAGGAAAC -ACGGAAACTCTGAACGGAAACACC -ACGGAAACTCTGAACGGAATCGAG -ACGGAAACTCTGAACGGACTCCTT -ACGGAAACTCTGAACGGACCTGTT -ACGGAAACTCTGAACGGACGGTTT -ACGGAAACTCTGAACGGAGTGGTT -ACGGAAACTCTGAACGGAGCCTTT -ACGGAAACTCTGAACGGAGGTCTT -ACGGAAACTCTGAACGGAACGCTT -ACGGAAACTCTGAACGGAAGCGTT -ACGGAAACTCTGAACGGATTCGTC -ACGGAAACTCTGAACGGATCTCTC -ACGGAAACTCTGAACGGATGGATC -ACGGAAACTCTGAACGGACACTTC -ACGGAAACTCTGAACGGAGTACTC -ACGGAAACTCTGAACGGAGATGTC -ACGGAAACTCTGAACGGAACAGTC -ACGGAAACTCTGAACGGATTGCTG -ACGGAAACTCTGAACGGATCCATG -ACGGAAACTCTGAACGGATGTGTG -ACGGAAACTCTGAACGGACTAGTG -ACGGAAACTCTGAACGGACATCTG -ACGGAAACTCTGAACGGAGAGTTG -ACGGAAACTCTGAACGGAAGACTG -ACGGAAACTCTGAACGGATCGGTA -ACGGAAACTCTGAACGGATGCCTA -ACGGAAACTCTGAACGGACCACTA -ACGGAAACTCTGAACGGAGGAGTA -ACGGAAACTCTGAACGGATCGTCT -ACGGAAACTCTGAACGGATGCACT -ACGGAAACTCTGAACGGACTGACT -ACGGAAACTCTGAACGGACAACCT -ACGGAAACTCTGAACGGAGCTACT -ACGGAAACTCTGAACGGAGGATCT -ACGGAAACTCTGAACGGAAAGGCT -ACGGAAACTCTGAACGGATCAACC -ACGGAAACTCTGAACGGATGTTCC -ACGGAAACTCTGAACGGAATTCCC -ACGGAAACTCTGAACGGATTCTCG -ACGGAAACTCTGAACGGATAGACG -ACGGAAACTCTGAACGGAGTAACG -ACGGAAACTCTGAACGGAACTTCG -ACGGAAACTCTGAACGGATACGCA -ACGGAAACTCTGAACGGACTTGCA -ACGGAAACTCTGAACGGACGAACA -ACGGAAACTCTGAACGGACAGTCA -ACGGAAACTCTGAACGGAGATCCA -ACGGAAACTCTGAACGGAACGACA -ACGGAAACTCTGAACGGAAGCTCA -ACGGAAACTCTGAACGGATCACGT -ACGGAAACTCTGAACGGACGTAGT -ACGGAAACTCTGAACGGAGTCAGT -ACGGAAACTCTGAACGGAGAAGGT -ACGGAAACTCTGAACGGAAACCGT -ACGGAAACTCTGAACGGATTGTGC -ACGGAAACTCTGAACGGACTAAGC -ACGGAAACTCTGAACGGAACTAGC -ACGGAAACTCTGAACGGAAGATGC -ACGGAAACTCTGAACGGATGAAGG -ACGGAAACTCTGAACGGACAATGG -ACGGAAACTCTGAACGGAATGAGG -ACGGAAACTCTGAACGGAAATGGG -ACGGAAACTCTGAACGGATCCTGA -ACGGAAACTCTGAACGGATAGCGA -ACGGAAACTCTGAACGGACACAGA -ACGGAAACTCTGAACGGAGCAAGA -ACGGAAACTCTGAACGGAGGTTGA -ACGGAAACTCTGAACGGATCCGAT -ACGGAAACTCTGAACGGATGGCAT -ACGGAAACTCTGAACGGACGAGAT -ACGGAAACTCTGAACGGATACCAC -ACGGAAACTCTGAACGGACAGAAC -ACGGAAACTCTGAACGGAGTCTAC -ACGGAAACTCTGAACGGAACGTAC -ACGGAAACTCTGAACGGAAGTGAC -ACGGAAACTCTGAACGGACTGTAG -ACGGAAACTCTGAACGGACCTAAG -ACGGAAACTCTGAACGGAGTTCAG -ACGGAAACTCTGAACGGAGCATAG -ACGGAAACTCTGAACGGAGACAAG -ACGGAAACTCTGAACGGAAAGCAG -ACGGAAACTCTGAACGGACGTCAA -ACGGAAACTCTGAACGGAGCTGAA -ACGGAAACTCTGAACGGAAGTACG -ACGGAAACTCTGAACGGAATCCGA -ACGGAAACTCTGAACGGAATGGGA -ACGGAAACTCTGAACGGAGTGCAA -ACGGAAACTCTGAACGGAGAGGAA -ACGGAAACTCTGAACGGACAGGTA -ACGGAAACTCTGAACGGAGACTCT -ACGGAAACTCTGAACGGAAGTCCT -ACGGAAACTCTGAACGGATAAGCC -ACGGAAACTCTGAACGGAATAGCC -ACGGAAACTCTGAACGGATAACCG -ACGGAAACTCTGAACGGAATGCCA -ACGGAAACTCTGACCAACGGAAAC -ACGGAAACTCTGACCAACAACACC -ACGGAAACTCTGACCAACATCGAG -ACGGAAACTCTGACCAACCTCCTT -ACGGAAACTCTGACCAACCCTGTT -ACGGAAACTCTGACCAACCGGTTT -ACGGAAACTCTGACCAACGTGGTT -ACGGAAACTCTGACCAACGCCTTT -ACGGAAACTCTGACCAACGGTCTT -ACGGAAACTCTGACCAACACGCTT -ACGGAAACTCTGACCAACAGCGTT -ACGGAAACTCTGACCAACTTCGTC -ACGGAAACTCTGACCAACTCTCTC -ACGGAAACTCTGACCAACTGGATC -ACGGAAACTCTGACCAACCACTTC -ACGGAAACTCTGACCAACGTACTC -ACGGAAACTCTGACCAACGATGTC -ACGGAAACTCTGACCAACACAGTC -ACGGAAACTCTGACCAACTTGCTG -ACGGAAACTCTGACCAACTCCATG -ACGGAAACTCTGACCAACTGTGTG -ACGGAAACTCTGACCAACCTAGTG -ACGGAAACTCTGACCAACCATCTG -ACGGAAACTCTGACCAACGAGTTG -ACGGAAACTCTGACCAACAGACTG -ACGGAAACTCTGACCAACTCGGTA -ACGGAAACTCTGACCAACTGCCTA -ACGGAAACTCTGACCAACCCACTA -ACGGAAACTCTGACCAACGGAGTA -ACGGAAACTCTGACCAACTCGTCT -ACGGAAACTCTGACCAACTGCACT -ACGGAAACTCTGACCAACCTGACT -ACGGAAACTCTGACCAACCAACCT -ACGGAAACTCTGACCAACGCTACT -ACGGAAACTCTGACCAACGGATCT -ACGGAAACTCTGACCAACAAGGCT -ACGGAAACTCTGACCAACTCAACC -ACGGAAACTCTGACCAACTGTTCC -ACGGAAACTCTGACCAACATTCCC -ACGGAAACTCTGACCAACTTCTCG -ACGGAAACTCTGACCAACTAGACG -ACGGAAACTCTGACCAACGTAACG -ACGGAAACTCTGACCAACACTTCG -ACGGAAACTCTGACCAACTACGCA -ACGGAAACTCTGACCAACCTTGCA -ACGGAAACTCTGACCAACCGAACA -ACGGAAACTCTGACCAACCAGTCA -ACGGAAACTCTGACCAACGATCCA -ACGGAAACTCTGACCAACACGACA -ACGGAAACTCTGACCAACAGCTCA -ACGGAAACTCTGACCAACTCACGT -ACGGAAACTCTGACCAACCGTAGT -ACGGAAACTCTGACCAACGTCAGT -ACGGAAACTCTGACCAACGAAGGT -ACGGAAACTCTGACCAACAACCGT -ACGGAAACTCTGACCAACTTGTGC -ACGGAAACTCTGACCAACCTAAGC -ACGGAAACTCTGACCAACACTAGC -ACGGAAACTCTGACCAACAGATGC -ACGGAAACTCTGACCAACTGAAGG -ACGGAAACTCTGACCAACCAATGG -ACGGAAACTCTGACCAACATGAGG -ACGGAAACTCTGACCAACAATGGG -ACGGAAACTCTGACCAACTCCTGA -ACGGAAACTCTGACCAACTAGCGA -ACGGAAACTCTGACCAACCACAGA -ACGGAAACTCTGACCAACGCAAGA -ACGGAAACTCTGACCAACGGTTGA -ACGGAAACTCTGACCAACTCCGAT -ACGGAAACTCTGACCAACTGGCAT -ACGGAAACTCTGACCAACCGAGAT -ACGGAAACTCTGACCAACTACCAC -ACGGAAACTCTGACCAACCAGAAC -ACGGAAACTCTGACCAACGTCTAC -ACGGAAACTCTGACCAACACGTAC -ACGGAAACTCTGACCAACAGTGAC -ACGGAAACTCTGACCAACCTGTAG -ACGGAAACTCTGACCAACCCTAAG -ACGGAAACTCTGACCAACGTTCAG -ACGGAAACTCTGACCAACGCATAG -ACGGAAACTCTGACCAACGACAAG -ACGGAAACTCTGACCAACAAGCAG -ACGGAAACTCTGACCAACCGTCAA -ACGGAAACTCTGACCAACGCTGAA -ACGGAAACTCTGACCAACAGTACG -ACGGAAACTCTGACCAACATCCGA -ACGGAAACTCTGACCAACATGGGA -ACGGAAACTCTGACCAACGTGCAA -ACGGAAACTCTGACCAACGAGGAA -ACGGAAACTCTGACCAACCAGGTA -ACGGAAACTCTGACCAACGACTCT -ACGGAAACTCTGACCAACAGTCCT -ACGGAAACTCTGACCAACTAAGCC -ACGGAAACTCTGACCAACATAGCC -ACGGAAACTCTGACCAACTAACCG -ACGGAAACTCTGACCAACATGCCA -ACGGAAACTCTGGAGATCGGAAAC -ACGGAAACTCTGGAGATCAACACC -ACGGAAACTCTGGAGATCATCGAG -ACGGAAACTCTGGAGATCCTCCTT -ACGGAAACTCTGGAGATCCCTGTT -ACGGAAACTCTGGAGATCCGGTTT -ACGGAAACTCTGGAGATCGTGGTT -ACGGAAACTCTGGAGATCGCCTTT -ACGGAAACTCTGGAGATCGGTCTT -ACGGAAACTCTGGAGATCACGCTT -ACGGAAACTCTGGAGATCAGCGTT -ACGGAAACTCTGGAGATCTTCGTC -ACGGAAACTCTGGAGATCTCTCTC -ACGGAAACTCTGGAGATCTGGATC -ACGGAAACTCTGGAGATCCACTTC -ACGGAAACTCTGGAGATCGTACTC -ACGGAAACTCTGGAGATCGATGTC -ACGGAAACTCTGGAGATCACAGTC -ACGGAAACTCTGGAGATCTTGCTG -ACGGAAACTCTGGAGATCTCCATG -ACGGAAACTCTGGAGATCTGTGTG -ACGGAAACTCTGGAGATCCTAGTG -ACGGAAACTCTGGAGATCCATCTG -ACGGAAACTCTGGAGATCGAGTTG -ACGGAAACTCTGGAGATCAGACTG -ACGGAAACTCTGGAGATCTCGGTA -ACGGAAACTCTGGAGATCTGCCTA -ACGGAAACTCTGGAGATCCCACTA -ACGGAAACTCTGGAGATCGGAGTA -ACGGAAACTCTGGAGATCTCGTCT -ACGGAAACTCTGGAGATCTGCACT -ACGGAAACTCTGGAGATCCTGACT -ACGGAAACTCTGGAGATCCAACCT -ACGGAAACTCTGGAGATCGCTACT -ACGGAAACTCTGGAGATCGGATCT -ACGGAAACTCTGGAGATCAAGGCT -ACGGAAACTCTGGAGATCTCAACC -ACGGAAACTCTGGAGATCTGTTCC -ACGGAAACTCTGGAGATCATTCCC -ACGGAAACTCTGGAGATCTTCTCG -ACGGAAACTCTGGAGATCTAGACG -ACGGAAACTCTGGAGATCGTAACG -ACGGAAACTCTGGAGATCACTTCG -ACGGAAACTCTGGAGATCTACGCA -ACGGAAACTCTGGAGATCCTTGCA -ACGGAAACTCTGGAGATCCGAACA -ACGGAAACTCTGGAGATCCAGTCA -ACGGAAACTCTGGAGATCGATCCA -ACGGAAACTCTGGAGATCACGACA -ACGGAAACTCTGGAGATCAGCTCA -ACGGAAACTCTGGAGATCTCACGT -ACGGAAACTCTGGAGATCCGTAGT -ACGGAAACTCTGGAGATCGTCAGT -ACGGAAACTCTGGAGATCGAAGGT -ACGGAAACTCTGGAGATCAACCGT -ACGGAAACTCTGGAGATCTTGTGC -ACGGAAACTCTGGAGATCCTAAGC -ACGGAAACTCTGGAGATCACTAGC -ACGGAAACTCTGGAGATCAGATGC -ACGGAAACTCTGGAGATCTGAAGG -ACGGAAACTCTGGAGATCCAATGG -ACGGAAACTCTGGAGATCATGAGG -ACGGAAACTCTGGAGATCAATGGG -ACGGAAACTCTGGAGATCTCCTGA -ACGGAAACTCTGGAGATCTAGCGA -ACGGAAACTCTGGAGATCCACAGA -ACGGAAACTCTGGAGATCGCAAGA -ACGGAAACTCTGGAGATCGGTTGA -ACGGAAACTCTGGAGATCTCCGAT -ACGGAAACTCTGGAGATCTGGCAT -ACGGAAACTCTGGAGATCCGAGAT -ACGGAAACTCTGGAGATCTACCAC -ACGGAAACTCTGGAGATCCAGAAC -ACGGAAACTCTGGAGATCGTCTAC -ACGGAAACTCTGGAGATCACGTAC -ACGGAAACTCTGGAGATCAGTGAC -ACGGAAACTCTGGAGATCCTGTAG -ACGGAAACTCTGGAGATCCCTAAG -ACGGAAACTCTGGAGATCGTTCAG -ACGGAAACTCTGGAGATCGCATAG -ACGGAAACTCTGGAGATCGACAAG -ACGGAAACTCTGGAGATCAAGCAG -ACGGAAACTCTGGAGATCCGTCAA -ACGGAAACTCTGGAGATCGCTGAA -ACGGAAACTCTGGAGATCAGTACG -ACGGAAACTCTGGAGATCATCCGA -ACGGAAACTCTGGAGATCATGGGA -ACGGAAACTCTGGAGATCGTGCAA -ACGGAAACTCTGGAGATCGAGGAA -ACGGAAACTCTGGAGATCCAGGTA -ACGGAAACTCTGGAGATCGACTCT -ACGGAAACTCTGGAGATCAGTCCT -ACGGAAACTCTGGAGATCTAAGCC -ACGGAAACTCTGGAGATCATAGCC -ACGGAAACTCTGGAGATCTAACCG -ACGGAAACTCTGGAGATCATGCCA -ACGGAAACTCTGCTTCTCGGAAAC -ACGGAAACTCTGCTTCTCAACACC -ACGGAAACTCTGCTTCTCATCGAG -ACGGAAACTCTGCTTCTCCTCCTT -ACGGAAACTCTGCTTCTCCCTGTT -ACGGAAACTCTGCTTCTCCGGTTT -ACGGAAACTCTGCTTCTCGTGGTT -ACGGAAACTCTGCTTCTCGCCTTT -ACGGAAACTCTGCTTCTCGGTCTT -ACGGAAACTCTGCTTCTCACGCTT -ACGGAAACTCTGCTTCTCAGCGTT -ACGGAAACTCTGCTTCTCTTCGTC -ACGGAAACTCTGCTTCTCTCTCTC -ACGGAAACTCTGCTTCTCTGGATC -ACGGAAACTCTGCTTCTCCACTTC -ACGGAAACTCTGCTTCTCGTACTC -ACGGAAACTCTGCTTCTCGATGTC -ACGGAAACTCTGCTTCTCACAGTC -ACGGAAACTCTGCTTCTCTTGCTG -ACGGAAACTCTGCTTCTCTCCATG -ACGGAAACTCTGCTTCTCTGTGTG -ACGGAAACTCTGCTTCTCCTAGTG -ACGGAAACTCTGCTTCTCCATCTG -ACGGAAACTCTGCTTCTCGAGTTG -ACGGAAACTCTGCTTCTCAGACTG -ACGGAAACTCTGCTTCTCTCGGTA -ACGGAAACTCTGCTTCTCTGCCTA -ACGGAAACTCTGCTTCTCCCACTA -ACGGAAACTCTGCTTCTCGGAGTA -ACGGAAACTCTGCTTCTCTCGTCT -ACGGAAACTCTGCTTCTCTGCACT -ACGGAAACTCTGCTTCTCCTGACT -ACGGAAACTCTGCTTCTCCAACCT -ACGGAAACTCTGCTTCTCGCTACT -ACGGAAACTCTGCTTCTCGGATCT -ACGGAAACTCTGCTTCTCAAGGCT -ACGGAAACTCTGCTTCTCTCAACC -ACGGAAACTCTGCTTCTCTGTTCC -ACGGAAACTCTGCTTCTCATTCCC -ACGGAAACTCTGCTTCTCTTCTCG -ACGGAAACTCTGCTTCTCTAGACG -ACGGAAACTCTGCTTCTCGTAACG -ACGGAAACTCTGCTTCTCACTTCG -ACGGAAACTCTGCTTCTCTACGCA -ACGGAAACTCTGCTTCTCCTTGCA -ACGGAAACTCTGCTTCTCCGAACA -ACGGAAACTCTGCTTCTCCAGTCA -ACGGAAACTCTGCTTCTCGATCCA -ACGGAAACTCTGCTTCTCACGACA -ACGGAAACTCTGCTTCTCAGCTCA -ACGGAAACTCTGCTTCTCTCACGT -ACGGAAACTCTGCTTCTCCGTAGT -ACGGAAACTCTGCTTCTCGTCAGT -ACGGAAACTCTGCTTCTCGAAGGT -ACGGAAACTCTGCTTCTCAACCGT -ACGGAAACTCTGCTTCTCTTGTGC -ACGGAAACTCTGCTTCTCCTAAGC -ACGGAAACTCTGCTTCTCACTAGC -ACGGAAACTCTGCTTCTCAGATGC -ACGGAAACTCTGCTTCTCTGAAGG -ACGGAAACTCTGCTTCTCCAATGG -ACGGAAACTCTGCTTCTCATGAGG -ACGGAAACTCTGCTTCTCAATGGG -ACGGAAACTCTGCTTCTCTCCTGA -ACGGAAACTCTGCTTCTCTAGCGA -ACGGAAACTCTGCTTCTCCACAGA -ACGGAAACTCTGCTTCTCGCAAGA -ACGGAAACTCTGCTTCTCGGTTGA -ACGGAAACTCTGCTTCTCTCCGAT -ACGGAAACTCTGCTTCTCTGGCAT -ACGGAAACTCTGCTTCTCCGAGAT -ACGGAAACTCTGCTTCTCTACCAC -ACGGAAACTCTGCTTCTCCAGAAC -ACGGAAACTCTGCTTCTCGTCTAC -ACGGAAACTCTGCTTCTCACGTAC -ACGGAAACTCTGCTTCTCAGTGAC -ACGGAAACTCTGCTTCTCCTGTAG -ACGGAAACTCTGCTTCTCCCTAAG -ACGGAAACTCTGCTTCTCGTTCAG -ACGGAAACTCTGCTTCTCGCATAG -ACGGAAACTCTGCTTCTCGACAAG -ACGGAAACTCTGCTTCTCAAGCAG -ACGGAAACTCTGCTTCTCCGTCAA -ACGGAAACTCTGCTTCTCGCTGAA -ACGGAAACTCTGCTTCTCAGTACG -ACGGAAACTCTGCTTCTCATCCGA -ACGGAAACTCTGCTTCTCATGGGA -ACGGAAACTCTGCTTCTCGTGCAA -ACGGAAACTCTGCTTCTCGAGGAA -ACGGAAACTCTGCTTCTCCAGGTA -ACGGAAACTCTGCTTCTCGACTCT -ACGGAAACTCTGCTTCTCAGTCCT -ACGGAAACTCTGCTTCTCTAAGCC -ACGGAAACTCTGCTTCTCATAGCC -ACGGAAACTCTGCTTCTCTAACCG -ACGGAAACTCTGCTTCTCATGCCA -ACGGAAACTCTGGTTCCTGGAAAC -ACGGAAACTCTGGTTCCTAACACC -ACGGAAACTCTGGTTCCTATCGAG -ACGGAAACTCTGGTTCCTCTCCTT -ACGGAAACTCTGGTTCCTCCTGTT -ACGGAAACTCTGGTTCCTCGGTTT -ACGGAAACTCTGGTTCCTGTGGTT -ACGGAAACTCTGGTTCCTGCCTTT -ACGGAAACTCTGGTTCCTGGTCTT -ACGGAAACTCTGGTTCCTACGCTT -ACGGAAACTCTGGTTCCTAGCGTT -ACGGAAACTCTGGTTCCTTTCGTC -ACGGAAACTCTGGTTCCTTCTCTC -ACGGAAACTCTGGTTCCTTGGATC -ACGGAAACTCTGGTTCCTCACTTC -ACGGAAACTCTGGTTCCTGTACTC -ACGGAAACTCTGGTTCCTGATGTC -ACGGAAACTCTGGTTCCTACAGTC -ACGGAAACTCTGGTTCCTTTGCTG -ACGGAAACTCTGGTTCCTTCCATG -ACGGAAACTCTGGTTCCTTGTGTG -ACGGAAACTCTGGTTCCTCTAGTG -ACGGAAACTCTGGTTCCTCATCTG -ACGGAAACTCTGGTTCCTGAGTTG -ACGGAAACTCTGGTTCCTAGACTG -ACGGAAACTCTGGTTCCTTCGGTA -ACGGAAACTCTGGTTCCTTGCCTA -ACGGAAACTCTGGTTCCTCCACTA -ACGGAAACTCTGGTTCCTGGAGTA -ACGGAAACTCTGGTTCCTTCGTCT -ACGGAAACTCTGGTTCCTTGCACT -ACGGAAACTCTGGTTCCTCTGACT -ACGGAAACTCTGGTTCCTCAACCT -ACGGAAACTCTGGTTCCTGCTACT -ACGGAAACTCTGGTTCCTGGATCT -ACGGAAACTCTGGTTCCTAAGGCT -ACGGAAACTCTGGTTCCTTCAACC -ACGGAAACTCTGGTTCCTTGTTCC -ACGGAAACTCTGGTTCCTATTCCC -ACGGAAACTCTGGTTCCTTTCTCG -ACGGAAACTCTGGTTCCTTAGACG -ACGGAAACTCTGGTTCCTGTAACG -ACGGAAACTCTGGTTCCTACTTCG -ACGGAAACTCTGGTTCCTTACGCA -ACGGAAACTCTGGTTCCTCTTGCA -ACGGAAACTCTGGTTCCTCGAACA -ACGGAAACTCTGGTTCCTCAGTCA -ACGGAAACTCTGGTTCCTGATCCA -ACGGAAACTCTGGTTCCTACGACA -ACGGAAACTCTGGTTCCTAGCTCA -ACGGAAACTCTGGTTCCTTCACGT -ACGGAAACTCTGGTTCCTCGTAGT -ACGGAAACTCTGGTTCCTGTCAGT -ACGGAAACTCTGGTTCCTGAAGGT -ACGGAAACTCTGGTTCCTAACCGT -ACGGAAACTCTGGTTCCTTTGTGC -ACGGAAACTCTGGTTCCTCTAAGC -ACGGAAACTCTGGTTCCTACTAGC -ACGGAAACTCTGGTTCCTAGATGC -ACGGAAACTCTGGTTCCTTGAAGG -ACGGAAACTCTGGTTCCTCAATGG -ACGGAAACTCTGGTTCCTATGAGG -ACGGAAACTCTGGTTCCTAATGGG -ACGGAAACTCTGGTTCCTTCCTGA -ACGGAAACTCTGGTTCCTTAGCGA -ACGGAAACTCTGGTTCCTCACAGA -ACGGAAACTCTGGTTCCTGCAAGA -ACGGAAACTCTGGTTCCTGGTTGA -ACGGAAACTCTGGTTCCTTCCGAT -ACGGAAACTCTGGTTCCTTGGCAT -ACGGAAACTCTGGTTCCTCGAGAT -ACGGAAACTCTGGTTCCTTACCAC -ACGGAAACTCTGGTTCCTCAGAAC -ACGGAAACTCTGGTTCCTGTCTAC -ACGGAAACTCTGGTTCCTACGTAC -ACGGAAACTCTGGTTCCTAGTGAC -ACGGAAACTCTGGTTCCTCTGTAG -ACGGAAACTCTGGTTCCTCCTAAG -ACGGAAACTCTGGTTCCTGTTCAG -ACGGAAACTCTGGTTCCTGCATAG -ACGGAAACTCTGGTTCCTGACAAG -ACGGAAACTCTGGTTCCTAAGCAG -ACGGAAACTCTGGTTCCTCGTCAA -ACGGAAACTCTGGTTCCTGCTGAA -ACGGAAACTCTGGTTCCTAGTACG -ACGGAAACTCTGGTTCCTATCCGA -ACGGAAACTCTGGTTCCTATGGGA -ACGGAAACTCTGGTTCCTGTGCAA -ACGGAAACTCTGGTTCCTGAGGAA -ACGGAAACTCTGGTTCCTCAGGTA -ACGGAAACTCTGGTTCCTGACTCT -ACGGAAACTCTGGTTCCTAGTCCT -ACGGAAACTCTGGTTCCTTAAGCC -ACGGAAACTCTGGTTCCTATAGCC -ACGGAAACTCTGGTTCCTTAACCG -ACGGAAACTCTGGTTCCTATGCCA -ACGGAAACTCTGTTTCGGGGAAAC -ACGGAAACTCTGTTTCGGAACACC -ACGGAAACTCTGTTTCGGATCGAG -ACGGAAACTCTGTTTCGGCTCCTT -ACGGAAACTCTGTTTCGGCCTGTT -ACGGAAACTCTGTTTCGGCGGTTT -ACGGAAACTCTGTTTCGGGTGGTT -ACGGAAACTCTGTTTCGGGCCTTT -ACGGAAACTCTGTTTCGGGGTCTT -ACGGAAACTCTGTTTCGGACGCTT -ACGGAAACTCTGTTTCGGAGCGTT -ACGGAAACTCTGTTTCGGTTCGTC -ACGGAAACTCTGTTTCGGTCTCTC -ACGGAAACTCTGTTTCGGTGGATC -ACGGAAACTCTGTTTCGGCACTTC -ACGGAAACTCTGTTTCGGGTACTC -ACGGAAACTCTGTTTCGGGATGTC -ACGGAAACTCTGTTTCGGACAGTC -ACGGAAACTCTGTTTCGGTTGCTG -ACGGAAACTCTGTTTCGGTCCATG -ACGGAAACTCTGTTTCGGTGTGTG -ACGGAAACTCTGTTTCGGCTAGTG -ACGGAAACTCTGTTTCGGCATCTG -ACGGAAACTCTGTTTCGGGAGTTG -ACGGAAACTCTGTTTCGGAGACTG -ACGGAAACTCTGTTTCGGTCGGTA -ACGGAAACTCTGTTTCGGTGCCTA -ACGGAAACTCTGTTTCGGCCACTA -ACGGAAACTCTGTTTCGGGGAGTA -ACGGAAACTCTGTTTCGGTCGTCT -ACGGAAACTCTGTTTCGGTGCACT -ACGGAAACTCTGTTTCGGCTGACT -ACGGAAACTCTGTTTCGGCAACCT -ACGGAAACTCTGTTTCGGGCTACT -ACGGAAACTCTGTTTCGGGGATCT -ACGGAAACTCTGTTTCGGAAGGCT -ACGGAAACTCTGTTTCGGTCAACC -ACGGAAACTCTGTTTCGGTGTTCC -ACGGAAACTCTGTTTCGGATTCCC -ACGGAAACTCTGTTTCGGTTCTCG -ACGGAAACTCTGTTTCGGTAGACG -ACGGAAACTCTGTTTCGGGTAACG -ACGGAAACTCTGTTTCGGACTTCG -ACGGAAACTCTGTTTCGGTACGCA -ACGGAAACTCTGTTTCGGCTTGCA -ACGGAAACTCTGTTTCGGCGAACA -ACGGAAACTCTGTTTCGGCAGTCA -ACGGAAACTCTGTTTCGGGATCCA -ACGGAAACTCTGTTTCGGACGACA -ACGGAAACTCTGTTTCGGAGCTCA -ACGGAAACTCTGTTTCGGTCACGT -ACGGAAACTCTGTTTCGGCGTAGT -ACGGAAACTCTGTTTCGGGTCAGT -ACGGAAACTCTGTTTCGGGAAGGT -ACGGAAACTCTGTTTCGGAACCGT -ACGGAAACTCTGTTTCGGTTGTGC -ACGGAAACTCTGTTTCGGCTAAGC -ACGGAAACTCTGTTTCGGACTAGC -ACGGAAACTCTGTTTCGGAGATGC -ACGGAAACTCTGTTTCGGTGAAGG -ACGGAAACTCTGTTTCGGCAATGG -ACGGAAACTCTGTTTCGGATGAGG -ACGGAAACTCTGTTTCGGAATGGG -ACGGAAACTCTGTTTCGGTCCTGA -ACGGAAACTCTGTTTCGGTAGCGA -ACGGAAACTCTGTTTCGGCACAGA -ACGGAAACTCTGTTTCGGGCAAGA -ACGGAAACTCTGTTTCGGGGTTGA -ACGGAAACTCTGTTTCGGTCCGAT -ACGGAAACTCTGTTTCGGTGGCAT -ACGGAAACTCTGTTTCGGCGAGAT -ACGGAAACTCTGTTTCGGTACCAC -ACGGAAACTCTGTTTCGGCAGAAC -ACGGAAACTCTGTTTCGGGTCTAC -ACGGAAACTCTGTTTCGGACGTAC -ACGGAAACTCTGTTTCGGAGTGAC -ACGGAAACTCTGTTTCGGCTGTAG -ACGGAAACTCTGTTTCGGCCTAAG -ACGGAAACTCTGTTTCGGGTTCAG -ACGGAAACTCTGTTTCGGGCATAG -ACGGAAACTCTGTTTCGGGACAAG -ACGGAAACTCTGTTTCGGAAGCAG -ACGGAAACTCTGTTTCGGCGTCAA -ACGGAAACTCTGTTTCGGGCTGAA -ACGGAAACTCTGTTTCGGAGTACG -ACGGAAACTCTGTTTCGGATCCGA -ACGGAAACTCTGTTTCGGATGGGA -ACGGAAACTCTGTTTCGGGTGCAA -ACGGAAACTCTGTTTCGGGAGGAA -ACGGAAACTCTGTTTCGGCAGGTA -ACGGAAACTCTGTTTCGGGACTCT -ACGGAAACTCTGTTTCGGAGTCCT -ACGGAAACTCTGTTTCGGTAAGCC -ACGGAAACTCTGTTTCGGATAGCC -ACGGAAACTCTGTTTCGGTAACCG -ACGGAAACTCTGTTTCGGATGCCA -ACGGAAACTCTGGTTGTGGGAAAC -ACGGAAACTCTGGTTGTGAACACC -ACGGAAACTCTGGTTGTGATCGAG -ACGGAAACTCTGGTTGTGCTCCTT -ACGGAAACTCTGGTTGTGCCTGTT -ACGGAAACTCTGGTTGTGCGGTTT -ACGGAAACTCTGGTTGTGGTGGTT -ACGGAAACTCTGGTTGTGGCCTTT -ACGGAAACTCTGGTTGTGGGTCTT -ACGGAAACTCTGGTTGTGACGCTT -ACGGAAACTCTGGTTGTGAGCGTT -ACGGAAACTCTGGTTGTGTTCGTC -ACGGAAACTCTGGTTGTGTCTCTC -ACGGAAACTCTGGTTGTGTGGATC -ACGGAAACTCTGGTTGTGCACTTC -ACGGAAACTCTGGTTGTGGTACTC -ACGGAAACTCTGGTTGTGGATGTC -ACGGAAACTCTGGTTGTGACAGTC -ACGGAAACTCTGGTTGTGTTGCTG -ACGGAAACTCTGGTTGTGTCCATG -ACGGAAACTCTGGTTGTGTGTGTG -ACGGAAACTCTGGTTGTGCTAGTG -ACGGAAACTCTGGTTGTGCATCTG -ACGGAAACTCTGGTTGTGGAGTTG -ACGGAAACTCTGGTTGTGAGACTG -ACGGAAACTCTGGTTGTGTCGGTA -ACGGAAACTCTGGTTGTGTGCCTA -ACGGAAACTCTGGTTGTGCCACTA -ACGGAAACTCTGGTTGTGGGAGTA -ACGGAAACTCTGGTTGTGTCGTCT -ACGGAAACTCTGGTTGTGTGCACT -ACGGAAACTCTGGTTGTGCTGACT -ACGGAAACTCTGGTTGTGCAACCT -ACGGAAACTCTGGTTGTGGCTACT -ACGGAAACTCTGGTTGTGGGATCT -ACGGAAACTCTGGTTGTGAAGGCT -ACGGAAACTCTGGTTGTGTCAACC -ACGGAAACTCTGGTTGTGTGTTCC -ACGGAAACTCTGGTTGTGATTCCC -ACGGAAACTCTGGTTGTGTTCTCG -ACGGAAACTCTGGTTGTGTAGACG -ACGGAAACTCTGGTTGTGGTAACG -ACGGAAACTCTGGTTGTGACTTCG -ACGGAAACTCTGGTTGTGTACGCA -ACGGAAACTCTGGTTGTGCTTGCA -ACGGAAACTCTGGTTGTGCGAACA -ACGGAAACTCTGGTTGTGCAGTCA -ACGGAAACTCTGGTTGTGGATCCA -ACGGAAACTCTGGTTGTGACGACA -ACGGAAACTCTGGTTGTGAGCTCA -ACGGAAACTCTGGTTGTGTCACGT -ACGGAAACTCTGGTTGTGCGTAGT -ACGGAAACTCTGGTTGTGGTCAGT -ACGGAAACTCTGGTTGTGGAAGGT -ACGGAAACTCTGGTTGTGAACCGT -ACGGAAACTCTGGTTGTGTTGTGC -ACGGAAACTCTGGTTGTGCTAAGC -ACGGAAACTCTGGTTGTGACTAGC -ACGGAAACTCTGGTTGTGAGATGC -ACGGAAACTCTGGTTGTGTGAAGG -ACGGAAACTCTGGTTGTGCAATGG -ACGGAAACTCTGGTTGTGATGAGG -ACGGAAACTCTGGTTGTGAATGGG -ACGGAAACTCTGGTTGTGTCCTGA -ACGGAAACTCTGGTTGTGTAGCGA -ACGGAAACTCTGGTTGTGCACAGA -ACGGAAACTCTGGTTGTGGCAAGA -ACGGAAACTCTGGTTGTGGGTTGA -ACGGAAACTCTGGTTGTGTCCGAT -ACGGAAACTCTGGTTGTGTGGCAT -ACGGAAACTCTGGTTGTGCGAGAT -ACGGAAACTCTGGTTGTGTACCAC -ACGGAAACTCTGGTTGTGCAGAAC -ACGGAAACTCTGGTTGTGGTCTAC -ACGGAAACTCTGGTTGTGACGTAC -ACGGAAACTCTGGTTGTGAGTGAC -ACGGAAACTCTGGTTGTGCTGTAG -ACGGAAACTCTGGTTGTGCCTAAG -ACGGAAACTCTGGTTGTGGTTCAG -ACGGAAACTCTGGTTGTGGCATAG -ACGGAAACTCTGGTTGTGGACAAG -ACGGAAACTCTGGTTGTGAAGCAG -ACGGAAACTCTGGTTGTGCGTCAA -ACGGAAACTCTGGTTGTGGCTGAA -ACGGAAACTCTGGTTGTGAGTACG -ACGGAAACTCTGGTTGTGATCCGA -ACGGAAACTCTGGTTGTGATGGGA -ACGGAAACTCTGGTTGTGGTGCAA -ACGGAAACTCTGGTTGTGGAGGAA -ACGGAAACTCTGGTTGTGCAGGTA -ACGGAAACTCTGGTTGTGGACTCT -ACGGAAACTCTGGTTGTGAGTCCT -ACGGAAACTCTGGTTGTGTAAGCC -ACGGAAACTCTGGTTGTGATAGCC -ACGGAAACTCTGGTTGTGTAACCG -ACGGAAACTCTGGTTGTGATGCCA -ACGGAAACTCTGTTTGCCGGAAAC -ACGGAAACTCTGTTTGCCAACACC -ACGGAAACTCTGTTTGCCATCGAG -ACGGAAACTCTGTTTGCCCTCCTT -ACGGAAACTCTGTTTGCCCCTGTT -ACGGAAACTCTGTTTGCCCGGTTT -ACGGAAACTCTGTTTGCCGTGGTT -ACGGAAACTCTGTTTGCCGCCTTT -ACGGAAACTCTGTTTGCCGGTCTT -ACGGAAACTCTGTTTGCCACGCTT -ACGGAAACTCTGTTTGCCAGCGTT -ACGGAAACTCTGTTTGCCTTCGTC -ACGGAAACTCTGTTTGCCTCTCTC -ACGGAAACTCTGTTTGCCTGGATC -ACGGAAACTCTGTTTGCCCACTTC -ACGGAAACTCTGTTTGCCGTACTC -ACGGAAACTCTGTTTGCCGATGTC -ACGGAAACTCTGTTTGCCACAGTC -ACGGAAACTCTGTTTGCCTTGCTG -ACGGAAACTCTGTTTGCCTCCATG -ACGGAAACTCTGTTTGCCTGTGTG -ACGGAAACTCTGTTTGCCCTAGTG -ACGGAAACTCTGTTTGCCCATCTG -ACGGAAACTCTGTTTGCCGAGTTG -ACGGAAACTCTGTTTGCCAGACTG -ACGGAAACTCTGTTTGCCTCGGTA -ACGGAAACTCTGTTTGCCTGCCTA -ACGGAAACTCTGTTTGCCCCACTA -ACGGAAACTCTGTTTGCCGGAGTA -ACGGAAACTCTGTTTGCCTCGTCT -ACGGAAACTCTGTTTGCCTGCACT -ACGGAAACTCTGTTTGCCCTGACT -ACGGAAACTCTGTTTGCCCAACCT -ACGGAAACTCTGTTTGCCGCTACT -ACGGAAACTCTGTTTGCCGGATCT -ACGGAAACTCTGTTTGCCAAGGCT -ACGGAAACTCTGTTTGCCTCAACC -ACGGAAACTCTGTTTGCCTGTTCC -ACGGAAACTCTGTTTGCCATTCCC -ACGGAAACTCTGTTTGCCTTCTCG -ACGGAAACTCTGTTTGCCTAGACG -ACGGAAACTCTGTTTGCCGTAACG -ACGGAAACTCTGTTTGCCACTTCG -ACGGAAACTCTGTTTGCCTACGCA -ACGGAAACTCTGTTTGCCCTTGCA -ACGGAAACTCTGTTTGCCCGAACA -ACGGAAACTCTGTTTGCCCAGTCA -ACGGAAACTCTGTTTGCCGATCCA -ACGGAAACTCTGTTTGCCACGACA -ACGGAAACTCTGTTTGCCAGCTCA -ACGGAAACTCTGTTTGCCTCACGT -ACGGAAACTCTGTTTGCCCGTAGT -ACGGAAACTCTGTTTGCCGTCAGT -ACGGAAACTCTGTTTGCCGAAGGT -ACGGAAACTCTGTTTGCCAACCGT -ACGGAAACTCTGTTTGCCTTGTGC -ACGGAAACTCTGTTTGCCCTAAGC -ACGGAAACTCTGTTTGCCACTAGC -ACGGAAACTCTGTTTGCCAGATGC -ACGGAAACTCTGTTTGCCTGAAGG -ACGGAAACTCTGTTTGCCCAATGG -ACGGAAACTCTGTTTGCCATGAGG -ACGGAAACTCTGTTTGCCAATGGG -ACGGAAACTCTGTTTGCCTCCTGA -ACGGAAACTCTGTTTGCCTAGCGA -ACGGAAACTCTGTTTGCCCACAGA -ACGGAAACTCTGTTTGCCGCAAGA -ACGGAAACTCTGTTTGCCGGTTGA -ACGGAAACTCTGTTTGCCTCCGAT -ACGGAAACTCTGTTTGCCTGGCAT -ACGGAAACTCTGTTTGCCCGAGAT -ACGGAAACTCTGTTTGCCTACCAC -ACGGAAACTCTGTTTGCCCAGAAC -ACGGAAACTCTGTTTGCCGTCTAC -ACGGAAACTCTGTTTGCCACGTAC -ACGGAAACTCTGTTTGCCAGTGAC -ACGGAAACTCTGTTTGCCCTGTAG -ACGGAAACTCTGTTTGCCCCTAAG -ACGGAAACTCTGTTTGCCGTTCAG -ACGGAAACTCTGTTTGCCGCATAG -ACGGAAACTCTGTTTGCCGACAAG -ACGGAAACTCTGTTTGCCAAGCAG -ACGGAAACTCTGTTTGCCCGTCAA -ACGGAAACTCTGTTTGCCGCTGAA -ACGGAAACTCTGTTTGCCAGTACG -ACGGAAACTCTGTTTGCCATCCGA -ACGGAAACTCTGTTTGCCATGGGA -ACGGAAACTCTGTTTGCCGTGCAA -ACGGAAACTCTGTTTGCCGAGGAA -ACGGAAACTCTGTTTGCCCAGGTA -ACGGAAACTCTGTTTGCCGACTCT -ACGGAAACTCTGTTTGCCAGTCCT -ACGGAAACTCTGTTTGCCTAAGCC -ACGGAAACTCTGTTTGCCATAGCC -ACGGAAACTCTGTTTGCCTAACCG -ACGGAAACTCTGTTTGCCATGCCA -ACGGAAACTCTGCTTGGTGGAAAC -ACGGAAACTCTGCTTGGTAACACC -ACGGAAACTCTGCTTGGTATCGAG -ACGGAAACTCTGCTTGGTCTCCTT -ACGGAAACTCTGCTTGGTCCTGTT -ACGGAAACTCTGCTTGGTCGGTTT -ACGGAAACTCTGCTTGGTGTGGTT -ACGGAAACTCTGCTTGGTGCCTTT -ACGGAAACTCTGCTTGGTGGTCTT -ACGGAAACTCTGCTTGGTACGCTT -ACGGAAACTCTGCTTGGTAGCGTT -ACGGAAACTCTGCTTGGTTTCGTC -ACGGAAACTCTGCTTGGTTCTCTC -ACGGAAACTCTGCTTGGTTGGATC -ACGGAAACTCTGCTTGGTCACTTC -ACGGAAACTCTGCTTGGTGTACTC -ACGGAAACTCTGCTTGGTGATGTC -ACGGAAACTCTGCTTGGTACAGTC -ACGGAAACTCTGCTTGGTTTGCTG -ACGGAAACTCTGCTTGGTTCCATG -ACGGAAACTCTGCTTGGTTGTGTG -ACGGAAACTCTGCTTGGTCTAGTG -ACGGAAACTCTGCTTGGTCATCTG -ACGGAAACTCTGCTTGGTGAGTTG -ACGGAAACTCTGCTTGGTAGACTG -ACGGAAACTCTGCTTGGTTCGGTA -ACGGAAACTCTGCTTGGTTGCCTA -ACGGAAACTCTGCTTGGTCCACTA -ACGGAAACTCTGCTTGGTGGAGTA -ACGGAAACTCTGCTTGGTTCGTCT -ACGGAAACTCTGCTTGGTTGCACT -ACGGAAACTCTGCTTGGTCTGACT -ACGGAAACTCTGCTTGGTCAACCT -ACGGAAACTCTGCTTGGTGCTACT -ACGGAAACTCTGCTTGGTGGATCT -ACGGAAACTCTGCTTGGTAAGGCT -ACGGAAACTCTGCTTGGTTCAACC -ACGGAAACTCTGCTTGGTTGTTCC -ACGGAAACTCTGCTTGGTATTCCC -ACGGAAACTCTGCTTGGTTTCTCG -ACGGAAACTCTGCTTGGTTAGACG -ACGGAAACTCTGCTTGGTGTAACG -ACGGAAACTCTGCTTGGTACTTCG -ACGGAAACTCTGCTTGGTTACGCA -ACGGAAACTCTGCTTGGTCTTGCA -ACGGAAACTCTGCTTGGTCGAACA -ACGGAAACTCTGCTTGGTCAGTCA -ACGGAAACTCTGCTTGGTGATCCA -ACGGAAACTCTGCTTGGTACGACA -ACGGAAACTCTGCTTGGTAGCTCA -ACGGAAACTCTGCTTGGTTCACGT -ACGGAAACTCTGCTTGGTCGTAGT -ACGGAAACTCTGCTTGGTGTCAGT -ACGGAAACTCTGCTTGGTGAAGGT -ACGGAAACTCTGCTTGGTAACCGT -ACGGAAACTCTGCTTGGTTTGTGC -ACGGAAACTCTGCTTGGTCTAAGC -ACGGAAACTCTGCTTGGTACTAGC -ACGGAAACTCTGCTTGGTAGATGC -ACGGAAACTCTGCTTGGTTGAAGG -ACGGAAACTCTGCTTGGTCAATGG -ACGGAAACTCTGCTTGGTATGAGG -ACGGAAACTCTGCTTGGTAATGGG -ACGGAAACTCTGCTTGGTTCCTGA -ACGGAAACTCTGCTTGGTTAGCGA -ACGGAAACTCTGCTTGGTCACAGA -ACGGAAACTCTGCTTGGTGCAAGA -ACGGAAACTCTGCTTGGTGGTTGA -ACGGAAACTCTGCTTGGTTCCGAT -ACGGAAACTCTGCTTGGTTGGCAT -ACGGAAACTCTGCTTGGTCGAGAT -ACGGAAACTCTGCTTGGTTACCAC -ACGGAAACTCTGCTTGGTCAGAAC -ACGGAAACTCTGCTTGGTGTCTAC -ACGGAAACTCTGCTTGGTACGTAC -ACGGAAACTCTGCTTGGTAGTGAC -ACGGAAACTCTGCTTGGTCTGTAG -ACGGAAACTCTGCTTGGTCCTAAG -ACGGAAACTCTGCTTGGTGTTCAG -ACGGAAACTCTGCTTGGTGCATAG -ACGGAAACTCTGCTTGGTGACAAG -ACGGAAACTCTGCTTGGTAAGCAG -ACGGAAACTCTGCTTGGTCGTCAA -ACGGAAACTCTGCTTGGTGCTGAA -ACGGAAACTCTGCTTGGTAGTACG -ACGGAAACTCTGCTTGGTATCCGA -ACGGAAACTCTGCTTGGTATGGGA -ACGGAAACTCTGCTTGGTGTGCAA -ACGGAAACTCTGCTTGGTGAGGAA -ACGGAAACTCTGCTTGGTCAGGTA -ACGGAAACTCTGCTTGGTGACTCT -ACGGAAACTCTGCTTGGTAGTCCT -ACGGAAACTCTGCTTGGTTAAGCC -ACGGAAACTCTGCTTGGTATAGCC -ACGGAAACTCTGCTTGGTTAACCG -ACGGAAACTCTGCTTGGTATGCCA -ACGGAAACTCTGCTTACGGGAAAC -ACGGAAACTCTGCTTACGAACACC -ACGGAAACTCTGCTTACGATCGAG -ACGGAAACTCTGCTTACGCTCCTT -ACGGAAACTCTGCTTACGCCTGTT -ACGGAAACTCTGCTTACGCGGTTT -ACGGAAACTCTGCTTACGGTGGTT -ACGGAAACTCTGCTTACGGCCTTT -ACGGAAACTCTGCTTACGGGTCTT -ACGGAAACTCTGCTTACGACGCTT -ACGGAAACTCTGCTTACGAGCGTT -ACGGAAACTCTGCTTACGTTCGTC -ACGGAAACTCTGCTTACGTCTCTC -ACGGAAACTCTGCTTACGTGGATC -ACGGAAACTCTGCTTACGCACTTC -ACGGAAACTCTGCTTACGGTACTC -ACGGAAACTCTGCTTACGGATGTC -ACGGAAACTCTGCTTACGACAGTC -ACGGAAACTCTGCTTACGTTGCTG -ACGGAAACTCTGCTTACGTCCATG -ACGGAAACTCTGCTTACGTGTGTG -ACGGAAACTCTGCTTACGCTAGTG -ACGGAAACTCTGCTTACGCATCTG -ACGGAAACTCTGCTTACGGAGTTG -ACGGAAACTCTGCTTACGAGACTG -ACGGAAACTCTGCTTACGTCGGTA -ACGGAAACTCTGCTTACGTGCCTA -ACGGAAACTCTGCTTACGCCACTA -ACGGAAACTCTGCTTACGGGAGTA -ACGGAAACTCTGCTTACGTCGTCT -ACGGAAACTCTGCTTACGTGCACT -ACGGAAACTCTGCTTACGCTGACT -ACGGAAACTCTGCTTACGCAACCT -ACGGAAACTCTGCTTACGGCTACT -ACGGAAACTCTGCTTACGGGATCT -ACGGAAACTCTGCTTACGAAGGCT -ACGGAAACTCTGCTTACGTCAACC -ACGGAAACTCTGCTTACGTGTTCC -ACGGAAACTCTGCTTACGATTCCC -ACGGAAACTCTGCTTACGTTCTCG -ACGGAAACTCTGCTTACGTAGACG -ACGGAAACTCTGCTTACGGTAACG -ACGGAAACTCTGCTTACGACTTCG -ACGGAAACTCTGCTTACGTACGCA -ACGGAAACTCTGCTTACGCTTGCA -ACGGAAACTCTGCTTACGCGAACA -ACGGAAACTCTGCTTACGCAGTCA -ACGGAAACTCTGCTTACGGATCCA -ACGGAAACTCTGCTTACGACGACA -ACGGAAACTCTGCTTACGAGCTCA -ACGGAAACTCTGCTTACGTCACGT -ACGGAAACTCTGCTTACGCGTAGT -ACGGAAACTCTGCTTACGGTCAGT -ACGGAAACTCTGCTTACGGAAGGT -ACGGAAACTCTGCTTACGAACCGT -ACGGAAACTCTGCTTACGTTGTGC -ACGGAAACTCTGCTTACGCTAAGC -ACGGAAACTCTGCTTACGACTAGC -ACGGAAACTCTGCTTACGAGATGC -ACGGAAACTCTGCTTACGTGAAGG -ACGGAAACTCTGCTTACGCAATGG -ACGGAAACTCTGCTTACGATGAGG -ACGGAAACTCTGCTTACGAATGGG -ACGGAAACTCTGCTTACGTCCTGA -ACGGAAACTCTGCTTACGTAGCGA -ACGGAAACTCTGCTTACGCACAGA -ACGGAAACTCTGCTTACGGCAAGA -ACGGAAACTCTGCTTACGGGTTGA -ACGGAAACTCTGCTTACGTCCGAT -ACGGAAACTCTGCTTACGTGGCAT -ACGGAAACTCTGCTTACGCGAGAT -ACGGAAACTCTGCTTACGTACCAC -ACGGAAACTCTGCTTACGCAGAAC -ACGGAAACTCTGCTTACGGTCTAC -ACGGAAACTCTGCTTACGACGTAC -ACGGAAACTCTGCTTACGAGTGAC -ACGGAAACTCTGCTTACGCTGTAG -ACGGAAACTCTGCTTACGCCTAAG -ACGGAAACTCTGCTTACGGTTCAG -ACGGAAACTCTGCTTACGGCATAG -ACGGAAACTCTGCTTACGGACAAG -ACGGAAACTCTGCTTACGAAGCAG -ACGGAAACTCTGCTTACGCGTCAA -ACGGAAACTCTGCTTACGGCTGAA -ACGGAAACTCTGCTTACGAGTACG -ACGGAAACTCTGCTTACGATCCGA -ACGGAAACTCTGCTTACGATGGGA -ACGGAAACTCTGCTTACGGTGCAA -ACGGAAACTCTGCTTACGGAGGAA -ACGGAAACTCTGCTTACGCAGGTA -ACGGAAACTCTGCTTACGGACTCT -ACGGAAACTCTGCTTACGAGTCCT -ACGGAAACTCTGCTTACGTAAGCC -ACGGAAACTCTGCTTACGATAGCC -ACGGAAACTCTGCTTACGTAACCG -ACGGAAACTCTGCTTACGATGCCA -ACGGAAACTCTGGTTAGCGGAAAC -ACGGAAACTCTGGTTAGCAACACC -ACGGAAACTCTGGTTAGCATCGAG -ACGGAAACTCTGGTTAGCCTCCTT -ACGGAAACTCTGGTTAGCCCTGTT -ACGGAAACTCTGGTTAGCCGGTTT -ACGGAAACTCTGGTTAGCGTGGTT -ACGGAAACTCTGGTTAGCGCCTTT -ACGGAAACTCTGGTTAGCGGTCTT -ACGGAAACTCTGGTTAGCACGCTT -ACGGAAACTCTGGTTAGCAGCGTT -ACGGAAACTCTGGTTAGCTTCGTC -ACGGAAACTCTGGTTAGCTCTCTC -ACGGAAACTCTGGTTAGCTGGATC -ACGGAAACTCTGGTTAGCCACTTC -ACGGAAACTCTGGTTAGCGTACTC -ACGGAAACTCTGGTTAGCGATGTC -ACGGAAACTCTGGTTAGCACAGTC -ACGGAAACTCTGGTTAGCTTGCTG -ACGGAAACTCTGGTTAGCTCCATG -ACGGAAACTCTGGTTAGCTGTGTG -ACGGAAACTCTGGTTAGCCTAGTG -ACGGAAACTCTGGTTAGCCATCTG -ACGGAAACTCTGGTTAGCGAGTTG -ACGGAAACTCTGGTTAGCAGACTG -ACGGAAACTCTGGTTAGCTCGGTA -ACGGAAACTCTGGTTAGCTGCCTA -ACGGAAACTCTGGTTAGCCCACTA -ACGGAAACTCTGGTTAGCGGAGTA -ACGGAAACTCTGGTTAGCTCGTCT -ACGGAAACTCTGGTTAGCTGCACT -ACGGAAACTCTGGTTAGCCTGACT -ACGGAAACTCTGGTTAGCCAACCT -ACGGAAACTCTGGTTAGCGCTACT -ACGGAAACTCTGGTTAGCGGATCT -ACGGAAACTCTGGTTAGCAAGGCT -ACGGAAACTCTGGTTAGCTCAACC -ACGGAAACTCTGGTTAGCTGTTCC -ACGGAAACTCTGGTTAGCATTCCC -ACGGAAACTCTGGTTAGCTTCTCG -ACGGAAACTCTGGTTAGCTAGACG -ACGGAAACTCTGGTTAGCGTAACG -ACGGAAACTCTGGTTAGCACTTCG -ACGGAAACTCTGGTTAGCTACGCA -ACGGAAACTCTGGTTAGCCTTGCA -ACGGAAACTCTGGTTAGCCGAACA -ACGGAAACTCTGGTTAGCCAGTCA -ACGGAAACTCTGGTTAGCGATCCA -ACGGAAACTCTGGTTAGCACGACA -ACGGAAACTCTGGTTAGCAGCTCA -ACGGAAACTCTGGTTAGCTCACGT -ACGGAAACTCTGGTTAGCCGTAGT -ACGGAAACTCTGGTTAGCGTCAGT -ACGGAAACTCTGGTTAGCGAAGGT -ACGGAAACTCTGGTTAGCAACCGT -ACGGAAACTCTGGTTAGCTTGTGC -ACGGAAACTCTGGTTAGCCTAAGC -ACGGAAACTCTGGTTAGCACTAGC -ACGGAAACTCTGGTTAGCAGATGC -ACGGAAACTCTGGTTAGCTGAAGG -ACGGAAACTCTGGTTAGCCAATGG -ACGGAAACTCTGGTTAGCATGAGG -ACGGAAACTCTGGTTAGCAATGGG -ACGGAAACTCTGGTTAGCTCCTGA -ACGGAAACTCTGGTTAGCTAGCGA -ACGGAAACTCTGGTTAGCCACAGA -ACGGAAACTCTGGTTAGCGCAAGA -ACGGAAACTCTGGTTAGCGGTTGA -ACGGAAACTCTGGTTAGCTCCGAT -ACGGAAACTCTGGTTAGCTGGCAT -ACGGAAACTCTGGTTAGCCGAGAT -ACGGAAACTCTGGTTAGCTACCAC -ACGGAAACTCTGGTTAGCCAGAAC -ACGGAAACTCTGGTTAGCGTCTAC -ACGGAAACTCTGGTTAGCACGTAC -ACGGAAACTCTGGTTAGCAGTGAC -ACGGAAACTCTGGTTAGCCTGTAG -ACGGAAACTCTGGTTAGCCCTAAG -ACGGAAACTCTGGTTAGCGTTCAG -ACGGAAACTCTGGTTAGCGCATAG -ACGGAAACTCTGGTTAGCGACAAG -ACGGAAACTCTGGTTAGCAAGCAG -ACGGAAACTCTGGTTAGCCGTCAA -ACGGAAACTCTGGTTAGCGCTGAA -ACGGAAACTCTGGTTAGCAGTACG -ACGGAAACTCTGGTTAGCATCCGA -ACGGAAACTCTGGTTAGCATGGGA -ACGGAAACTCTGGTTAGCGTGCAA -ACGGAAACTCTGGTTAGCGAGGAA -ACGGAAACTCTGGTTAGCCAGGTA -ACGGAAACTCTGGTTAGCGACTCT -ACGGAAACTCTGGTTAGCAGTCCT -ACGGAAACTCTGGTTAGCTAAGCC -ACGGAAACTCTGGTTAGCATAGCC -ACGGAAACTCTGGTTAGCTAACCG -ACGGAAACTCTGGTTAGCATGCCA -ACGGAAACTCTGGTCTTCGGAAAC -ACGGAAACTCTGGTCTTCAACACC -ACGGAAACTCTGGTCTTCATCGAG -ACGGAAACTCTGGTCTTCCTCCTT -ACGGAAACTCTGGTCTTCCCTGTT -ACGGAAACTCTGGTCTTCCGGTTT -ACGGAAACTCTGGTCTTCGTGGTT -ACGGAAACTCTGGTCTTCGCCTTT -ACGGAAACTCTGGTCTTCGGTCTT -ACGGAAACTCTGGTCTTCACGCTT -ACGGAAACTCTGGTCTTCAGCGTT -ACGGAAACTCTGGTCTTCTTCGTC -ACGGAAACTCTGGTCTTCTCTCTC -ACGGAAACTCTGGTCTTCTGGATC -ACGGAAACTCTGGTCTTCCACTTC -ACGGAAACTCTGGTCTTCGTACTC -ACGGAAACTCTGGTCTTCGATGTC -ACGGAAACTCTGGTCTTCACAGTC -ACGGAAACTCTGGTCTTCTTGCTG -ACGGAAACTCTGGTCTTCTCCATG -ACGGAAACTCTGGTCTTCTGTGTG -ACGGAAACTCTGGTCTTCCTAGTG -ACGGAAACTCTGGTCTTCCATCTG -ACGGAAACTCTGGTCTTCGAGTTG -ACGGAAACTCTGGTCTTCAGACTG -ACGGAAACTCTGGTCTTCTCGGTA -ACGGAAACTCTGGTCTTCTGCCTA -ACGGAAACTCTGGTCTTCCCACTA -ACGGAAACTCTGGTCTTCGGAGTA -ACGGAAACTCTGGTCTTCTCGTCT -ACGGAAACTCTGGTCTTCTGCACT -ACGGAAACTCTGGTCTTCCTGACT -ACGGAAACTCTGGTCTTCCAACCT -ACGGAAACTCTGGTCTTCGCTACT -ACGGAAACTCTGGTCTTCGGATCT -ACGGAAACTCTGGTCTTCAAGGCT -ACGGAAACTCTGGTCTTCTCAACC -ACGGAAACTCTGGTCTTCTGTTCC -ACGGAAACTCTGGTCTTCATTCCC -ACGGAAACTCTGGTCTTCTTCTCG -ACGGAAACTCTGGTCTTCTAGACG -ACGGAAACTCTGGTCTTCGTAACG -ACGGAAACTCTGGTCTTCACTTCG -ACGGAAACTCTGGTCTTCTACGCA -ACGGAAACTCTGGTCTTCCTTGCA -ACGGAAACTCTGGTCTTCCGAACA -ACGGAAACTCTGGTCTTCCAGTCA -ACGGAAACTCTGGTCTTCGATCCA -ACGGAAACTCTGGTCTTCACGACA -ACGGAAACTCTGGTCTTCAGCTCA -ACGGAAACTCTGGTCTTCTCACGT -ACGGAAACTCTGGTCTTCCGTAGT -ACGGAAACTCTGGTCTTCGTCAGT -ACGGAAACTCTGGTCTTCGAAGGT -ACGGAAACTCTGGTCTTCAACCGT -ACGGAAACTCTGGTCTTCTTGTGC -ACGGAAACTCTGGTCTTCCTAAGC -ACGGAAACTCTGGTCTTCACTAGC -ACGGAAACTCTGGTCTTCAGATGC -ACGGAAACTCTGGTCTTCTGAAGG -ACGGAAACTCTGGTCTTCCAATGG -ACGGAAACTCTGGTCTTCATGAGG -ACGGAAACTCTGGTCTTCAATGGG -ACGGAAACTCTGGTCTTCTCCTGA -ACGGAAACTCTGGTCTTCTAGCGA -ACGGAAACTCTGGTCTTCCACAGA -ACGGAAACTCTGGTCTTCGCAAGA -ACGGAAACTCTGGTCTTCGGTTGA -ACGGAAACTCTGGTCTTCTCCGAT -ACGGAAACTCTGGTCTTCTGGCAT -ACGGAAACTCTGGTCTTCCGAGAT -ACGGAAACTCTGGTCTTCTACCAC -ACGGAAACTCTGGTCTTCCAGAAC -ACGGAAACTCTGGTCTTCGTCTAC -ACGGAAACTCTGGTCTTCACGTAC -ACGGAAACTCTGGTCTTCAGTGAC -ACGGAAACTCTGGTCTTCCTGTAG -ACGGAAACTCTGGTCTTCCCTAAG -ACGGAAACTCTGGTCTTCGTTCAG -ACGGAAACTCTGGTCTTCGCATAG -ACGGAAACTCTGGTCTTCGACAAG -ACGGAAACTCTGGTCTTCAAGCAG -ACGGAAACTCTGGTCTTCCGTCAA -ACGGAAACTCTGGTCTTCGCTGAA -ACGGAAACTCTGGTCTTCAGTACG -ACGGAAACTCTGGTCTTCATCCGA -ACGGAAACTCTGGTCTTCATGGGA -ACGGAAACTCTGGTCTTCGTGCAA -ACGGAAACTCTGGTCTTCGAGGAA -ACGGAAACTCTGGTCTTCCAGGTA -ACGGAAACTCTGGTCTTCGACTCT -ACGGAAACTCTGGTCTTCAGTCCT -ACGGAAACTCTGGTCTTCTAAGCC -ACGGAAACTCTGGTCTTCATAGCC -ACGGAAACTCTGGTCTTCTAACCG -ACGGAAACTCTGGTCTTCATGCCA -ACGGAAACTCTGCTCTCTGGAAAC -ACGGAAACTCTGCTCTCTAACACC -ACGGAAACTCTGCTCTCTATCGAG -ACGGAAACTCTGCTCTCTCTCCTT -ACGGAAACTCTGCTCTCTCCTGTT -ACGGAAACTCTGCTCTCTCGGTTT -ACGGAAACTCTGCTCTCTGTGGTT -ACGGAAACTCTGCTCTCTGCCTTT -ACGGAAACTCTGCTCTCTGGTCTT -ACGGAAACTCTGCTCTCTACGCTT -ACGGAAACTCTGCTCTCTAGCGTT -ACGGAAACTCTGCTCTCTTTCGTC -ACGGAAACTCTGCTCTCTTCTCTC -ACGGAAACTCTGCTCTCTTGGATC -ACGGAAACTCTGCTCTCTCACTTC -ACGGAAACTCTGCTCTCTGTACTC -ACGGAAACTCTGCTCTCTGATGTC -ACGGAAACTCTGCTCTCTACAGTC -ACGGAAACTCTGCTCTCTTTGCTG -ACGGAAACTCTGCTCTCTTCCATG -ACGGAAACTCTGCTCTCTTGTGTG -ACGGAAACTCTGCTCTCTCTAGTG -ACGGAAACTCTGCTCTCTCATCTG -ACGGAAACTCTGCTCTCTGAGTTG -ACGGAAACTCTGCTCTCTAGACTG -ACGGAAACTCTGCTCTCTTCGGTA -ACGGAAACTCTGCTCTCTTGCCTA -ACGGAAACTCTGCTCTCTCCACTA -ACGGAAACTCTGCTCTCTGGAGTA -ACGGAAACTCTGCTCTCTTCGTCT -ACGGAAACTCTGCTCTCTTGCACT -ACGGAAACTCTGCTCTCTCTGACT -ACGGAAACTCTGCTCTCTCAACCT -ACGGAAACTCTGCTCTCTGCTACT -ACGGAAACTCTGCTCTCTGGATCT -ACGGAAACTCTGCTCTCTAAGGCT -ACGGAAACTCTGCTCTCTTCAACC -ACGGAAACTCTGCTCTCTTGTTCC -ACGGAAACTCTGCTCTCTATTCCC -ACGGAAACTCTGCTCTCTTTCTCG -ACGGAAACTCTGCTCTCTTAGACG -ACGGAAACTCTGCTCTCTGTAACG -ACGGAAACTCTGCTCTCTACTTCG -ACGGAAACTCTGCTCTCTTACGCA -ACGGAAACTCTGCTCTCTCTTGCA -ACGGAAACTCTGCTCTCTCGAACA -ACGGAAACTCTGCTCTCTCAGTCA -ACGGAAACTCTGCTCTCTGATCCA -ACGGAAACTCTGCTCTCTACGACA -ACGGAAACTCTGCTCTCTAGCTCA -ACGGAAACTCTGCTCTCTTCACGT -ACGGAAACTCTGCTCTCTCGTAGT -ACGGAAACTCTGCTCTCTGTCAGT -ACGGAAACTCTGCTCTCTGAAGGT -ACGGAAACTCTGCTCTCTAACCGT -ACGGAAACTCTGCTCTCTTTGTGC -ACGGAAACTCTGCTCTCTCTAAGC -ACGGAAACTCTGCTCTCTACTAGC -ACGGAAACTCTGCTCTCTAGATGC -ACGGAAACTCTGCTCTCTTGAAGG -ACGGAAACTCTGCTCTCTCAATGG -ACGGAAACTCTGCTCTCTATGAGG -ACGGAAACTCTGCTCTCTAATGGG -ACGGAAACTCTGCTCTCTTCCTGA -ACGGAAACTCTGCTCTCTTAGCGA -ACGGAAACTCTGCTCTCTCACAGA -ACGGAAACTCTGCTCTCTGCAAGA -ACGGAAACTCTGCTCTCTGGTTGA -ACGGAAACTCTGCTCTCTTCCGAT -ACGGAAACTCTGCTCTCTTGGCAT -ACGGAAACTCTGCTCTCTCGAGAT -ACGGAAACTCTGCTCTCTTACCAC -ACGGAAACTCTGCTCTCTCAGAAC -ACGGAAACTCTGCTCTCTGTCTAC -ACGGAAACTCTGCTCTCTACGTAC -ACGGAAACTCTGCTCTCTAGTGAC -ACGGAAACTCTGCTCTCTCTGTAG -ACGGAAACTCTGCTCTCTCCTAAG -ACGGAAACTCTGCTCTCTGTTCAG -ACGGAAACTCTGCTCTCTGCATAG -ACGGAAACTCTGCTCTCTGACAAG -ACGGAAACTCTGCTCTCTAAGCAG -ACGGAAACTCTGCTCTCTCGTCAA -ACGGAAACTCTGCTCTCTGCTGAA -ACGGAAACTCTGCTCTCTAGTACG -ACGGAAACTCTGCTCTCTATCCGA -ACGGAAACTCTGCTCTCTATGGGA -ACGGAAACTCTGCTCTCTGTGCAA -ACGGAAACTCTGCTCTCTGAGGAA -ACGGAAACTCTGCTCTCTCAGGTA -ACGGAAACTCTGCTCTCTGACTCT -ACGGAAACTCTGCTCTCTAGTCCT -ACGGAAACTCTGCTCTCTTAAGCC -ACGGAAACTCTGCTCTCTATAGCC -ACGGAAACTCTGCTCTCTTAACCG -ACGGAAACTCTGCTCTCTATGCCA -ACGGAAACTCTGATCTGGGGAAAC -ACGGAAACTCTGATCTGGAACACC -ACGGAAACTCTGATCTGGATCGAG -ACGGAAACTCTGATCTGGCTCCTT -ACGGAAACTCTGATCTGGCCTGTT -ACGGAAACTCTGATCTGGCGGTTT -ACGGAAACTCTGATCTGGGTGGTT -ACGGAAACTCTGATCTGGGCCTTT -ACGGAAACTCTGATCTGGGGTCTT -ACGGAAACTCTGATCTGGACGCTT -ACGGAAACTCTGATCTGGAGCGTT -ACGGAAACTCTGATCTGGTTCGTC -ACGGAAACTCTGATCTGGTCTCTC -ACGGAAACTCTGATCTGGTGGATC -ACGGAAACTCTGATCTGGCACTTC -ACGGAAACTCTGATCTGGGTACTC -ACGGAAACTCTGATCTGGGATGTC -ACGGAAACTCTGATCTGGACAGTC -ACGGAAACTCTGATCTGGTTGCTG -ACGGAAACTCTGATCTGGTCCATG -ACGGAAACTCTGATCTGGTGTGTG -ACGGAAACTCTGATCTGGCTAGTG -ACGGAAACTCTGATCTGGCATCTG -ACGGAAACTCTGATCTGGGAGTTG -ACGGAAACTCTGATCTGGAGACTG -ACGGAAACTCTGATCTGGTCGGTA -ACGGAAACTCTGATCTGGTGCCTA -ACGGAAACTCTGATCTGGCCACTA -ACGGAAACTCTGATCTGGGGAGTA -ACGGAAACTCTGATCTGGTCGTCT -ACGGAAACTCTGATCTGGTGCACT -ACGGAAACTCTGATCTGGCTGACT -ACGGAAACTCTGATCTGGCAACCT -ACGGAAACTCTGATCTGGGCTACT -ACGGAAACTCTGATCTGGGGATCT -ACGGAAACTCTGATCTGGAAGGCT -ACGGAAACTCTGATCTGGTCAACC -ACGGAAACTCTGATCTGGTGTTCC -ACGGAAACTCTGATCTGGATTCCC -ACGGAAACTCTGATCTGGTTCTCG -ACGGAAACTCTGATCTGGTAGACG -ACGGAAACTCTGATCTGGGTAACG -ACGGAAACTCTGATCTGGACTTCG -ACGGAAACTCTGATCTGGTACGCA -ACGGAAACTCTGATCTGGCTTGCA -ACGGAAACTCTGATCTGGCGAACA -ACGGAAACTCTGATCTGGCAGTCA -ACGGAAACTCTGATCTGGGATCCA -ACGGAAACTCTGATCTGGACGACA -ACGGAAACTCTGATCTGGAGCTCA -ACGGAAACTCTGATCTGGTCACGT -ACGGAAACTCTGATCTGGCGTAGT -ACGGAAACTCTGATCTGGGTCAGT -ACGGAAACTCTGATCTGGGAAGGT -ACGGAAACTCTGATCTGGAACCGT -ACGGAAACTCTGATCTGGTTGTGC -ACGGAAACTCTGATCTGGCTAAGC -ACGGAAACTCTGATCTGGACTAGC -ACGGAAACTCTGATCTGGAGATGC -ACGGAAACTCTGATCTGGTGAAGG -ACGGAAACTCTGATCTGGCAATGG -ACGGAAACTCTGATCTGGATGAGG -ACGGAAACTCTGATCTGGAATGGG -ACGGAAACTCTGATCTGGTCCTGA -ACGGAAACTCTGATCTGGTAGCGA -ACGGAAACTCTGATCTGGCACAGA -ACGGAAACTCTGATCTGGGCAAGA -ACGGAAACTCTGATCTGGGGTTGA -ACGGAAACTCTGATCTGGTCCGAT -ACGGAAACTCTGATCTGGTGGCAT -ACGGAAACTCTGATCTGGCGAGAT -ACGGAAACTCTGATCTGGTACCAC -ACGGAAACTCTGATCTGGCAGAAC -ACGGAAACTCTGATCTGGGTCTAC -ACGGAAACTCTGATCTGGACGTAC -ACGGAAACTCTGATCTGGAGTGAC -ACGGAAACTCTGATCTGGCTGTAG -ACGGAAACTCTGATCTGGCCTAAG -ACGGAAACTCTGATCTGGGTTCAG -ACGGAAACTCTGATCTGGGCATAG -ACGGAAACTCTGATCTGGGACAAG -ACGGAAACTCTGATCTGGAAGCAG -ACGGAAACTCTGATCTGGCGTCAA -ACGGAAACTCTGATCTGGGCTGAA -ACGGAAACTCTGATCTGGAGTACG -ACGGAAACTCTGATCTGGATCCGA -ACGGAAACTCTGATCTGGATGGGA -ACGGAAACTCTGATCTGGGTGCAA -ACGGAAACTCTGATCTGGGAGGAA -ACGGAAACTCTGATCTGGCAGGTA -ACGGAAACTCTGATCTGGGACTCT -ACGGAAACTCTGATCTGGAGTCCT -ACGGAAACTCTGATCTGGTAAGCC -ACGGAAACTCTGATCTGGATAGCC -ACGGAAACTCTGATCTGGTAACCG -ACGGAAACTCTGATCTGGATGCCA -ACGGAAACTCTGTTCCACGGAAAC -ACGGAAACTCTGTTCCACAACACC -ACGGAAACTCTGTTCCACATCGAG -ACGGAAACTCTGTTCCACCTCCTT -ACGGAAACTCTGTTCCACCCTGTT -ACGGAAACTCTGTTCCACCGGTTT -ACGGAAACTCTGTTCCACGTGGTT -ACGGAAACTCTGTTCCACGCCTTT -ACGGAAACTCTGTTCCACGGTCTT -ACGGAAACTCTGTTCCACACGCTT -ACGGAAACTCTGTTCCACAGCGTT -ACGGAAACTCTGTTCCACTTCGTC -ACGGAAACTCTGTTCCACTCTCTC -ACGGAAACTCTGTTCCACTGGATC -ACGGAAACTCTGTTCCACCACTTC -ACGGAAACTCTGTTCCACGTACTC -ACGGAAACTCTGTTCCACGATGTC -ACGGAAACTCTGTTCCACACAGTC -ACGGAAACTCTGTTCCACTTGCTG -ACGGAAACTCTGTTCCACTCCATG -ACGGAAACTCTGTTCCACTGTGTG -ACGGAAACTCTGTTCCACCTAGTG -ACGGAAACTCTGTTCCACCATCTG -ACGGAAACTCTGTTCCACGAGTTG -ACGGAAACTCTGTTCCACAGACTG -ACGGAAACTCTGTTCCACTCGGTA -ACGGAAACTCTGTTCCACTGCCTA -ACGGAAACTCTGTTCCACCCACTA -ACGGAAACTCTGTTCCACGGAGTA -ACGGAAACTCTGTTCCACTCGTCT -ACGGAAACTCTGTTCCACTGCACT -ACGGAAACTCTGTTCCACCTGACT -ACGGAAACTCTGTTCCACCAACCT -ACGGAAACTCTGTTCCACGCTACT -ACGGAAACTCTGTTCCACGGATCT -ACGGAAACTCTGTTCCACAAGGCT -ACGGAAACTCTGTTCCACTCAACC -ACGGAAACTCTGTTCCACTGTTCC -ACGGAAACTCTGTTCCACATTCCC -ACGGAAACTCTGTTCCACTTCTCG -ACGGAAACTCTGTTCCACTAGACG -ACGGAAACTCTGTTCCACGTAACG -ACGGAAACTCTGTTCCACACTTCG -ACGGAAACTCTGTTCCACTACGCA -ACGGAAACTCTGTTCCACCTTGCA -ACGGAAACTCTGTTCCACCGAACA -ACGGAAACTCTGTTCCACCAGTCA -ACGGAAACTCTGTTCCACGATCCA -ACGGAAACTCTGTTCCACACGACA -ACGGAAACTCTGTTCCACAGCTCA -ACGGAAACTCTGTTCCACTCACGT -ACGGAAACTCTGTTCCACCGTAGT -ACGGAAACTCTGTTCCACGTCAGT -ACGGAAACTCTGTTCCACGAAGGT -ACGGAAACTCTGTTCCACAACCGT -ACGGAAACTCTGTTCCACTTGTGC -ACGGAAACTCTGTTCCACCTAAGC -ACGGAAACTCTGTTCCACACTAGC -ACGGAAACTCTGTTCCACAGATGC -ACGGAAACTCTGTTCCACTGAAGG -ACGGAAACTCTGTTCCACCAATGG -ACGGAAACTCTGTTCCACATGAGG -ACGGAAACTCTGTTCCACAATGGG -ACGGAAACTCTGTTCCACTCCTGA -ACGGAAACTCTGTTCCACTAGCGA -ACGGAAACTCTGTTCCACCACAGA -ACGGAAACTCTGTTCCACGCAAGA -ACGGAAACTCTGTTCCACGGTTGA -ACGGAAACTCTGTTCCACTCCGAT -ACGGAAACTCTGTTCCACTGGCAT -ACGGAAACTCTGTTCCACCGAGAT -ACGGAAACTCTGTTCCACTACCAC -ACGGAAACTCTGTTCCACCAGAAC -ACGGAAACTCTGTTCCACGTCTAC -ACGGAAACTCTGTTCCACACGTAC -ACGGAAACTCTGTTCCACAGTGAC -ACGGAAACTCTGTTCCACCTGTAG -ACGGAAACTCTGTTCCACCCTAAG -ACGGAAACTCTGTTCCACGTTCAG -ACGGAAACTCTGTTCCACGCATAG -ACGGAAACTCTGTTCCACGACAAG -ACGGAAACTCTGTTCCACAAGCAG -ACGGAAACTCTGTTCCACCGTCAA -ACGGAAACTCTGTTCCACGCTGAA -ACGGAAACTCTGTTCCACAGTACG -ACGGAAACTCTGTTCCACATCCGA -ACGGAAACTCTGTTCCACATGGGA -ACGGAAACTCTGTTCCACGTGCAA -ACGGAAACTCTGTTCCACGAGGAA -ACGGAAACTCTGTTCCACCAGGTA -ACGGAAACTCTGTTCCACGACTCT -ACGGAAACTCTGTTCCACAGTCCT -ACGGAAACTCTGTTCCACTAAGCC -ACGGAAACTCTGTTCCACATAGCC -ACGGAAACTCTGTTCCACTAACCG -ACGGAAACTCTGTTCCACATGCCA -ACGGAAACTCTGCTCGTAGGAAAC -ACGGAAACTCTGCTCGTAAACACC -ACGGAAACTCTGCTCGTAATCGAG -ACGGAAACTCTGCTCGTACTCCTT -ACGGAAACTCTGCTCGTACCTGTT -ACGGAAACTCTGCTCGTACGGTTT -ACGGAAACTCTGCTCGTAGTGGTT -ACGGAAACTCTGCTCGTAGCCTTT -ACGGAAACTCTGCTCGTAGGTCTT -ACGGAAACTCTGCTCGTAACGCTT -ACGGAAACTCTGCTCGTAAGCGTT -ACGGAAACTCTGCTCGTATTCGTC -ACGGAAACTCTGCTCGTATCTCTC -ACGGAAACTCTGCTCGTATGGATC -ACGGAAACTCTGCTCGTACACTTC -ACGGAAACTCTGCTCGTAGTACTC -ACGGAAACTCTGCTCGTAGATGTC -ACGGAAACTCTGCTCGTAACAGTC -ACGGAAACTCTGCTCGTATTGCTG -ACGGAAACTCTGCTCGTATCCATG -ACGGAAACTCTGCTCGTATGTGTG -ACGGAAACTCTGCTCGTACTAGTG -ACGGAAACTCTGCTCGTACATCTG -ACGGAAACTCTGCTCGTAGAGTTG -ACGGAAACTCTGCTCGTAAGACTG -ACGGAAACTCTGCTCGTATCGGTA -ACGGAAACTCTGCTCGTATGCCTA -ACGGAAACTCTGCTCGTACCACTA -ACGGAAACTCTGCTCGTAGGAGTA -ACGGAAACTCTGCTCGTATCGTCT -ACGGAAACTCTGCTCGTATGCACT -ACGGAAACTCTGCTCGTACTGACT -ACGGAAACTCTGCTCGTACAACCT -ACGGAAACTCTGCTCGTAGCTACT -ACGGAAACTCTGCTCGTAGGATCT -ACGGAAACTCTGCTCGTAAAGGCT -ACGGAAACTCTGCTCGTATCAACC -ACGGAAACTCTGCTCGTATGTTCC -ACGGAAACTCTGCTCGTAATTCCC -ACGGAAACTCTGCTCGTATTCTCG -ACGGAAACTCTGCTCGTATAGACG -ACGGAAACTCTGCTCGTAGTAACG -ACGGAAACTCTGCTCGTAACTTCG -ACGGAAACTCTGCTCGTATACGCA -ACGGAAACTCTGCTCGTACTTGCA -ACGGAAACTCTGCTCGTACGAACA -ACGGAAACTCTGCTCGTACAGTCA -ACGGAAACTCTGCTCGTAGATCCA -ACGGAAACTCTGCTCGTAACGACA -ACGGAAACTCTGCTCGTAAGCTCA -ACGGAAACTCTGCTCGTATCACGT -ACGGAAACTCTGCTCGTACGTAGT -ACGGAAACTCTGCTCGTAGTCAGT -ACGGAAACTCTGCTCGTAGAAGGT -ACGGAAACTCTGCTCGTAAACCGT -ACGGAAACTCTGCTCGTATTGTGC -ACGGAAACTCTGCTCGTACTAAGC -ACGGAAACTCTGCTCGTAACTAGC -ACGGAAACTCTGCTCGTAAGATGC -ACGGAAACTCTGCTCGTATGAAGG -ACGGAAACTCTGCTCGTACAATGG -ACGGAAACTCTGCTCGTAATGAGG -ACGGAAACTCTGCTCGTAAATGGG -ACGGAAACTCTGCTCGTATCCTGA -ACGGAAACTCTGCTCGTATAGCGA -ACGGAAACTCTGCTCGTACACAGA -ACGGAAACTCTGCTCGTAGCAAGA -ACGGAAACTCTGCTCGTAGGTTGA -ACGGAAACTCTGCTCGTATCCGAT -ACGGAAACTCTGCTCGTATGGCAT -ACGGAAACTCTGCTCGTACGAGAT -ACGGAAACTCTGCTCGTATACCAC -ACGGAAACTCTGCTCGTACAGAAC -ACGGAAACTCTGCTCGTAGTCTAC -ACGGAAACTCTGCTCGTAACGTAC -ACGGAAACTCTGCTCGTAAGTGAC -ACGGAAACTCTGCTCGTACTGTAG -ACGGAAACTCTGCTCGTACCTAAG -ACGGAAACTCTGCTCGTAGTTCAG -ACGGAAACTCTGCTCGTAGCATAG -ACGGAAACTCTGCTCGTAGACAAG -ACGGAAACTCTGCTCGTAAAGCAG -ACGGAAACTCTGCTCGTACGTCAA -ACGGAAACTCTGCTCGTAGCTGAA -ACGGAAACTCTGCTCGTAAGTACG -ACGGAAACTCTGCTCGTAATCCGA -ACGGAAACTCTGCTCGTAATGGGA -ACGGAAACTCTGCTCGTAGTGCAA -ACGGAAACTCTGCTCGTAGAGGAA -ACGGAAACTCTGCTCGTACAGGTA -ACGGAAACTCTGCTCGTAGACTCT -ACGGAAACTCTGCTCGTAAGTCCT -ACGGAAACTCTGCTCGTATAAGCC -ACGGAAACTCTGCTCGTAATAGCC -ACGGAAACTCTGCTCGTATAACCG -ACGGAAACTCTGCTCGTAATGCCA -ACGGAAACTCTGGTCGATGGAAAC -ACGGAAACTCTGGTCGATAACACC -ACGGAAACTCTGGTCGATATCGAG -ACGGAAACTCTGGTCGATCTCCTT -ACGGAAACTCTGGTCGATCCTGTT -ACGGAAACTCTGGTCGATCGGTTT -ACGGAAACTCTGGTCGATGTGGTT -ACGGAAACTCTGGTCGATGCCTTT -ACGGAAACTCTGGTCGATGGTCTT -ACGGAAACTCTGGTCGATACGCTT -ACGGAAACTCTGGTCGATAGCGTT -ACGGAAACTCTGGTCGATTTCGTC -ACGGAAACTCTGGTCGATTCTCTC -ACGGAAACTCTGGTCGATTGGATC -ACGGAAACTCTGGTCGATCACTTC -ACGGAAACTCTGGTCGATGTACTC -ACGGAAACTCTGGTCGATGATGTC -ACGGAAACTCTGGTCGATACAGTC -ACGGAAACTCTGGTCGATTTGCTG -ACGGAAACTCTGGTCGATTCCATG -ACGGAAACTCTGGTCGATTGTGTG -ACGGAAACTCTGGTCGATCTAGTG -ACGGAAACTCTGGTCGATCATCTG -ACGGAAACTCTGGTCGATGAGTTG -ACGGAAACTCTGGTCGATAGACTG -ACGGAAACTCTGGTCGATTCGGTA -ACGGAAACTCTGGTCGATTGCCTA -ACGGAAACTCTGGTCGATCCACTA -ACGGAAACTCTGGTCGATGGAGTA -ACGGAAACTCTGGTCGATTCGTCT -ACGGAAACTCTGGTCGATTGCACT -ACGGAAACTCTGGTCGATCTGACT -ACGGAAACTCTGGTCGATCAACCT -ACGGAAACTCTGGTCGATGCTACT -ACGGAAACTCTGGTCGATGGATCT -ACGGAAACTCTGGTCGATAAGGCT -ACGGAAACTCTGGTCGATTCAACC -ACGGAAACTCTGGTCGATTGTTCC -ACGGAAACTCTGGTCGATATTCCC -ACGGAAACTCTGGTCGATTTCTCG -ACGGAAACTCTGGTCGATTAGACG -ACGGAAACTCTGGTCGATGTAACG -ACGGAAACTCTGGTCGATACTTCG -ACGGAAACTCTGGTCGATTACGCA -ACGGAAACTCTGGTCGATCTTGCA -ACGGAAACTCTGGTCGATCGAACA -ACGGAAACTCTGGTCGATCAGTCA -ACGGAAACTCTGGTCGATGATCCA -ACGGAAACTCTGGTCGATACGACA -ACGGAAACTCTGGTCGATAGCTCA -ACGGAAACTCTGGTCGATTCACGT -ACGGAAACTCTGGTCGATCGTAGT -ACGGAAACTCTGGTCGATGTCAGT -ACGGAAACTCTGGTCGATGAAGGT -ACGGAAACTCTGGTCGATAACCGT -ACGGAAACTCTGGTCGATTTGTGC -ACGGAAACTCTGGTCGATCTAAGC -ACGGAAACTCTGGTCGATACTAGC -ACGGAAACTCTGGTCGATAGATGC -ACGGAAACTCTGGTCGATTGAAGG -ACGGAAACTCTGGTCGATCAATGG -ACGGAAACTCTGGTCGATATGAGG -ACGGAAACTCTGGTCGATAATGGG -ACGGAAACTCTGGTCGATTCCTGA -ACGGAAACTCTGGTCGATTAGCGA -ACGGAAACTCTGGTCGATCACAGA -ACGGAAACTCTGGTCGATGCAAGA -ACGGAAACTCTGGTCGATGGTTGA -ACGGAAACTCTGGTCGATTCCGAT -ACGGAAACTCTGGTCGATTGGCAT -ACGGAAACTCTGGTCGATCGAGAT -ACGGAAACTCTGGTCGATTACCAC -ACGGAAACTCTGGTCGATCAGAAC -ACGGAAACTCTGGTCGATGTCTAC -ACGGAAACTCTGGTCGATACGTAC -ACGGAAACTCTGGTCGATAGTGAC -ACGGAAACTCTGGTCGATCTGTAG -ACGGAAACTCTGGTCGATCCTAAG -ACGGAAACTCTGGTCGATGTTCAG -ACGGAAACTCTGGTCGATGCATAG -ACGGAAACTCTGGTCGATGACAAG -ACGGAAACTCTGGTCGATAAGCAG -ACGGAAACTCTGGTCGATCGTCAA -ACGGAAACTCTGGTCGATGCTGAA -ACGGAAACTCTGGTCGATAGTACG -ACGGAAACTCTGGTCGATATCCGA -ACGGAAACTCTGGTCGATATGGGA -ACGGAAACTCTGGTCGATGTGCAA -ACGGAAACTCTGGTCGATGAGGAA -ACGGAAACTCTGGTCGATCAGGTA -ACGGAAACTCTGGTCGATGACTCT -ACGGAAACTCTGGTCGATAGTCCT -ACGGAAACTCTGGTCGATTAAGCC -ACGGAAACTCTGGTCGATATAGCC -ACGGAAACTCTGGTCGATTAACCG -ACGGAAACTCTGGTCGATATGCCA -ACGGAAACTCTGGTCACAGGAAAC -ACGGAAACTCTGGTCACAAACACC -ACGGAAACTCTGGTCACAATCGAG -ACGGAAACTCTGGTCACACTCCTT -ACGGAAACTCTGGTCACACCTGTT -ACGGAAACTCTGGTCACACGGTTT -ACGGAAACTCTGGTCACAGTGGTT -ACGGAAACTCTGGTCACAGCCTTT -ACGGAAACTCTGGTCACAGGTCTT -ACGGAAACTCTGGTCACAACGCTT -ACGGAAACTCTGGTCACAAGCGTT -ACGGAAACTCTGGTCACATTCGTC -ACGGAAACTCTGGTCACATCTCTC -ACGGAAACTCTGGTCACATGGATC -ACGGAAACTCTGGTCACACACTTC -ACGGAAACTCTGGTCACAGTACTC -ACGGAAACTCTGGTCACAGATGTC -ACGGAAACTCTGGTCACAACAGTC -ACGGAAACTCTGGTCACATTGCTG -ACGGAAACTCTGGTCACATCCATG -ACGGAAACTCTGGTCACATGTGTG -ACGGAAACTCTGGTCACACTAGTG -ACGGAAACTCTGGTCACACATCTG -ACGGAAACTCTGGTCACAGAGTTG -ACGGAAACTCTGGTCACAAGACTG -ACGGAAACTCTGGTCACATCGGTA -ACGGAAACTCTGGTCACATGCCTA -ACGGAAACTCTGGTCACACCACTA -ACGGAAACTCTGGTCACAGGAGTA -ACGGAAACTCTGGTCACATCGTCT -ACGGAAACTCTGGTCACATGCACT -ACGGAAACTCTGGTCACACTGACT -ACGGAAACTCTGGTCACACAACCT -ACGGAAACTCTGGTCACAGCTACT -ACGGAAACTCTGGTCACAGGATCT -ACGGAAACTCTGGTCACAAAGGCT -ACGGAAACTCTGGTCACATCAACC -ACGGAAACTCTGGTCACATGTTCC -ACGGAAACTCTGGTCACAATTCCC -ACGGAAACTCTGGTCACATTCTCG -ACGGAAACTCTGGTCACATAGACG -ACGGAAACTCTGGTCACAGTAACG -ACGGAAACTCTGGTCACAACTTCG -ACGGAAACTCTGGTCACATACGCA -ACGGAAACTCTGGTCACACTTGCA -ACGGAAACTCTGGTCACACGAACA -ACGGAAACTCTGGTCACACAGTCA -ACGGAAACTCTGGTCACAGATCCA -ACGGAAACTCTGGTCACAACGACA -ACGGAAACTCTGGTCACAAGCTCA -ACGGAAACTCTGGTCACATCACGT -ACGGAAACTCTGGTCACACGTAGT -ACGGAAACTCTGGTCACAGTCAGT -ACGGAAACTCTGGTCACAGAAGGT -ACGGAAACTCTGGTCACAAACCGT -ACGGAAACTCTGGTCACATTGTGC -ACGGAAACTCTGGTCACACTAAGC -ACGGAAACTCTGGTCACAACTAGC -ACGGAAACTCTGGTCACAAGATGC -ACGGAAACTCTGGTCACATGAAGG -ACGGAAACTCTGGTCACACAATGG -ACGGAAACTCTGGTCACAATGAGG -ACGGAAACTCTGGTCACAAATGGG -ACGGAAACTCTGGTCACATCCTGA -ACGGAAACTCTGGTCACATAGCGA -ACGGAAACTCTGGTCACACACAGA -ACGGAAACTCTGGTCACAGCAAGA -ACGGAAACTCTGGTCACAGGTTGA -ACGGAAACTCTGGTCACATCCGAT -ACGGAAACTCTGGTCACATGGCAT -ACGGAAACTCTGGTCACACGAGAT -ACGGAAACTCTGGTCACATACCAC -ACGGAAACTCTGGTCACACAGAAC -ACGGAAACTCTGGTCACAGTCTAC -ACGGAAACTCTGGTCACAACGTAC -ACGGAAACTCTGGTCACAAGTGAC -ACGGAAACTCTGGTCACACTGTAG -ACGGAAACTCTGGTCACACCTAAG -ACGGAAACTCTGGTCACAGTTCAG -ACGGAAACTCTGGTCACAGCATAG -ACGGAAACTCTGGTCACAGACAAG -ACGGAAACTCTGGTCACAAAGCAG -ACGGAAACTCTGGTCACACGTCAA -ACGGAAACTCTGGTCACAGCTGAA -ACGGAAACTCTGGTCACAAGTACG -ACGGAAACTCTGGTCACAATCCGA -ACGGAAACTCTGGTCACAATGGGA -ACGGAAACTCTGGTCACAGTGCAA -ACGGAAACTCTGGTCACAGAGGAA -ACGGAAACTCTGGTCACACAGGTA -ACGGAAACTCTGGTCACAGACTCT -ACGGAAACTCTGGTCACAAGTCCT -ACGGAAACTCTGGTCACATAAGCC -ACGGAAACTCTGGTCACAATAGCC -ACGGAAACTCTGGTCACATAACCG -ACGGAAACTCTGGTCACAATGCCA -ACGGAAACTCTGCTGTTGGGAAAC -ACGGAAACTCTGCTGTTGAACACC -ACGGAAACTCTGCTGTTGATCGAG -ACGGAAACTCTGCTGTTGCTCCTT -ACGGAAACTCTGCTGTTGCCTGTT -ACGGAAACTCTGCTGTTGCGGTTT -ACGGAAACTCTGCTGTTGGTGGTT -ACGGAAACTCTGCTGTTGGCCTTT -ACGGAAACTCTGCTGTTGGGTCTT -ACGGAAACTCTGCTGTTGACGCTT -ACGGAAACTCTGCTGTTGAGCGTT -ACGGAAACTCTGCTGTTGTTCGTC -ACGGAAACTCTGCTGTTGTCTCTC -ACGGAAACTCTGCTGTTGTGGATC -ACGGAAACTCTGCTGTTGCACTTC -ACGGAAACTCTGCTGTTGGTACTC -ACGGAAACTCTGCTGTTGGATGTC -ACGGAAACTCTGCTGTTGACAGTC -ACGGAAACTCTGCTGTTGTTGCTG -ACGGAAACTCTGCTGTTGTCCATG -ACGGAAACTCTGCTGTTGTGTGTG -ACGGAAACTCTGCTGTTGCTAGTG -ACGGAAACTCTGCTGTTGCATCTG -ACGGAAACTCTGCTGTTGGAGTTG -ACGGAAACTCTGCTGTTGAGACTG -ACGGAAACTCTGCTGTTGTCGGTA -ACGGAAACTCTGCTGTTGTGCCTA -ACGGAAACTCTGCTGTTGCCACTA -ACGGAAACTCTGCTGTTGGGAGTA -ACGGAAACTCTGCTGTTGTCGTCT -ACGGAAACTCTGCTGTTGTGCACT -ACGGAAACTCTGCTGTTGCTGACT -ACGGAAACTCTGCTGTTGCAACCT -ACGGAAACTCTGCTGTTGGCTACT -ACGGAAACTCTGCTGTTGGGATCT -ACGGAAACTCTGCTGTTGAAGGCT -ACGGAAACTCTGCTGTTGTCAACC -ACGGAAACTCTGCTGTTGTGTTCC -ACGGAAACTCTGCTGTTGATTCCC -ACGGAAACTCTGCTGTTGTTCTCG -ACGGAAACTCTGCTGTTGTAGACG -ACGGAAACTCTGCTGTTGGTAACG -ACGGAAACTCTGCTGTTGACTTCG -ACGGAAACTCTGCTGTTGTACGCA -ACGGAAACTCTGCTGTTGCTTGCA -ACGGAAACTCTGCTGTTGCGAACA -ACGGAAACTCTGCTGTTGCAGTCA -ACGGAAACTCTGCTGTTGGATCCA -ACGGAAACTCTGCTGTTGACGACA -ACGGAAACTCTGCTGTTGAGCTCA -ACGGAAACTCTGCTGTTGTCACGT -ACGGAAACTCTGCTGTTGCGTAGT -ACGGAAACTCTGCTGTTGGTCAGT -ACGGAAACTCTGCTGTTGGAAGGT -ACGGAAACTCTGCTGTTGAACCGT -ACGGAAACTCTGCTGTTGTTGTGC -ACGGAAACTCTGCTGTTGCTAAGC -ACGGAAACTCTGCTGTTGACTAGC -ACGGAAACTCTGCTGTTGAGATGC -ACGGAAACTCTGCTGTTGTGAAGG -ACGGAAACTCTGCTGTTGCAATGG -ACGGAAACTCTGCTGTTGATGAGG -ACGGAAACTCTGCTGTTGAATGGG -ACGGAAACTCTGCTGTTGTCCTGA -ACGGAAACTCTGCTGTTGTAGCGA -ACGGAAACTCTGCTGTTGCACAGA -ACGGAAACTCTGCTGTTGGCAAGA -ACGGAAACTCTGCTGTTGGGTTGA -ACGGAAACTCTGCTGTTGTCCGAT -ACGGAAACTCTGCTGTTGTGGCAT -ACGGAAACTCTGCTGTTGCGAGAT -ACGGAAACTCTGCTGTTGTACCAC -ACGGAAACTCTGCTGTTGCAGAAC -ACGGAAACTCTGCTGTTGGTCTAC -ACGGAAACTCTGCTGTTGACGTAC -ACGGAAACTCTGCTGTTGAGTGAC -ACGGAAACTCTGCTGTTGCTGTAG -ACGGAAACTCTGCTGTTGCCTAAG -ACGGAAACTCTGCTGTTGGTTCAG -ACGGAAACTCTGCTGTTGGCATAG -ACGGAAACTCTGCTGTTGGACAAG -ACGGAAACTCTGCTGTTGAAGCAG -ACGGAAACTCTGCTGTTGCGTCAA -ACGGAAACTCTGCTGTTGGCTGAA -ACGGAAACTCTGCTGTTGAGTACG -ACGGAAACTCTGCTGTTGATCCGA -ACGGAAACTCTGCTGTTGATGGGA -ACGGAAACTCTGCTGTTGGTGCAA -ACGGAAACTCTGCTGTTGGAGGAA -ACGGAAACTCTGCTGTTGCAGGTA -ACGGAAACTCTGCTGTTGGACTCT -ACGGAAACTCTGCTGTTGAGTCCT -ACGGAAACTCTGCTGTTGTAAGCC -ACGGAAACTCTGCTGTTGATAGCC -ACGGAAACTCTGCTGTTGTAACCG -ACGGAAACTCTGCTGTTGATGCCA -ACGGAAACTCTGATGTCCGGAAAC -ACGGAAACTCTGATGTCCAACACC -ACGGAAACTCTGATGTCCATCGAG -ACGGAAACTCTGATGTCCCTCCTT -ACGGAAACTCTGATGTCCCCTGTT -ACGGAAACTCTGATGTCCCGGTTT -ACGGAAACTCTGATGTCCGTGGTT -ACGGAAACTCTGATGTCCGCCTTT -ACGGAAACTCTGATGTCCGGTCTT -ACGGAAACTCTGATGTCCACGCTT -ACGGAAACTCTGATGTCCAGCGTT -ACGGAAACTCTGATGTCCTTCGTC -ACGGAAACTCTGATGTCCTCTCTC -ACGGAAACTCTGATGTCCTGGATC -ACGGAAACTCTGATGTCCCACTTC -ACGGAAACTCTGATGTCCGTACTC -ACGGAAACTCTGATGTCCGATGTC -ACGGAAACTCTGATGTCCACAGTC -ACGGAAACTCTGATGTCCTTGCTG -ACGGAAACTCTGATGTCCTCCATG -ACGGAAACTCTGATGTCCTGTGTG -ACGGAAACTCTGATGTCCCTAGTG -ACGGAAACTCTGATGTCCCATCTG -ACGGAAACTCTGATGTCCGAGTTG -ACGGAAACTCTGATGTCCAGACTG -ACGGAAACTCTGATGTCCTCGGTA -ACGGAAACTCTGATGTCCTGCCTA -ACGGAAACTCTGATGTCCCCACTA -ACGGAAACTCTGATGTCCGGAGTA -ACGGAAACTCTGATGTCCTCGTCT -ACGGAAACTCTGATGTCCTGCACT -ACGGAAACTCTGATGTCCCTGACT -ACGGAAACTCTGATGTCCCAACCT -ACGGAAACTCTGATGTCCGCTACT -ACGGAAACTCTGATGTCCGGATCT -ACGGAAACTCTGATGTCCAAGGCT -ACGGAAACTCTGATGTCCTCAACC -ACGGAAACTCTGATGTCCTGTTCC -ACGGAAACTCTGATGTCCATTCCC -ACGGAAACTCTGATGTCCTTCTCG -ACGGAAACTCTGATGTCCTAGACG -ACGGAAACTCTGATGTCCGTAACG -ACGGAAACTCTGATGTCCACTTCG -ACGGAAACTCTGATGTCCTACGCA -ACGGAAACTCTGATGTCCCTTGCA -ACGGAAACTCTGATGTCCCGAACA -ACGGAAACTCTGATGTCCCAGTCA -ACGGAAACTCTGATGTCCGATCCA -ACGGAAACTCTGATGTCCACGACA -ACGGAAACTCTGATGTCCAGCTCA -ACGGAAACTCTGATGTCCTCACGT -ACGGAAACTCTGATGTCCCGTAGT -ACGGAAACTCTGATGTCCGTCAGT -ACGGAAACTCTGATGTCCGAAGGT -ACGGAAACTCTGATGTCCAACCGT -ACGGAAACTCTGATGTCCTTGTGC -ACGGAAACTCTGATGTCCCTAAGC -ACGGAAACTCTGATGTCCACTAGC -ACGGAAACTCTGATGTCCAGATGC -ACGGAAACTCTGATGTCCTGAAGG -ACGGAAACTCTGATGTCCCAATGG -ACGGAAACTCTGATGTCCATGAGG -ACGGAAACTCTGATGTCCAATGGG -ACGGAAACTCTGATGTCCTCCTGA -ACGGAAACTCTGATGTCCTAGCGA -ACGGAAACTCTGATGTCCCACAGA -ACGGAAACTCTGATGTCCGCAAGA -ACGGAAACTCTGATGTCCGGTTGA -ACGGAAACTCTGATGTCCTCCGAT -ACGGAAACTCTGATGTCCTGGCAT -ACGGAAACTCTGATGTCCCGAGAT -ACGGAAACTCTGATGTCCTACCAC -ACGGAAACTCTGATGTCCCAGAAC -ACGGAAACTCTGATGTCCGTCTAC -ACGGAAACTCTGATGTCCACGTAC -ACGGAAACTCTGATGTCCAGTGAC -ACGGAAACTCTGATGTCCCTGTAG -ACGGAAACTCTGATGTCCCCTAAG -ACGGAAACTCTGATGTCCGTTCAG -ACGGAAACTCTGATGTCCGCATAG -ACGGAAACTCTGATGTCCGACAAG -ACGGAAACTCTGATGTCCAAGCAG -ACGGAAACTCTGATGTCCCGTCAA -ACGGAAACTCTGATGTCCGCTGAA -ACGGAAACTCTGATGTCCAGTACG -ACGGAAACTCTGATGTCCATCCGA -ACGGAAACTCTGATGTCCATGGGA -ACGGAAACTCTGATGTCCGTGCAA -ACGGAAACTCTGATGTCCGAGGAA -ACGGAAACTCTGATGTCCCAGGTA -ACGGAAACTCTGATGTCCGACTCT -ACGGAAACTCTGATGTCCAGTCCT -ACGGAAACTCTGATGTCCTAAGCC -ACGGAAACTCTGATGTCCATAGCC -ACGGAAACTCTGATGTCCTAACCG -ACGGAAACTCTGATGTCCATGCCA -ACGGAAACTCTGGTGTGTGGAAAC -ACGGAAACTCTGGTGTGTAACACC -ACGGAAACTCTGGTGTGTATCGAG -ACGGAAACTCTGGTGTGTCTCCTT -ACGGAAACTCTGGTGTGTCCTGTT -ACGGAAACTCTGGTGTGTCGGTTT -ACGGAAACTCTGGTGTGTGTGGTT -ACGGAAACTCTGGTGTGTGCCTTT -ACGGAAACTCTGGTGTGTGGTCTT -ACGGAAACTCTGGTGTGTACGCTT -ACGGAAACTCTGGTGTGTAGCGTT -ACGGAAACTCTGGTGTGTTTCGTC -ACGGAAACTCTGGTGTGTTCTCTC -ACGGAAACTCTGGTGTGTTGGATC -ACGGAAACTCTGGTGTGTCACTTC -ACGGAAACTCTGGTGTGTGTACTC -ACGGAAACTCTGGTGTGTGATGTC -ACGGAAACTCTGGTGTGTACAGTC -ACGGAAACTCTGGTGTGTTTGCTG -ACGGAAACTCTGGTGTGTTCCATG -ACGGAAACTCTGGTGTGTTGTGTG -ACGGAAACTCTGGTGTGTCTAGTG -ACGGAAACTCTGGTGTGTCATCTG -ACGGAAACTCTGGTGTGTGAGTTG -ACGGAAACTCTGGTGTGTAGACTG -ACGGAAACTCTGGTGTGTTCGGTA -ACGGAAACTCTGGTGTGTTGCCTA -ACGGAAACTCTGGTGTGTCCACTA -ACGGAAACTCTGGTGTGTGGAGTA -ACGGAAACTCTGGTGTGTTCGTCT -ACGGAAACTCTGGTGTGTTGCACT -ACGGAAACTCTGGTGTGTCTGACT -ACGGAAACTCTGGTGTGTCAACCT -ACGGAAACTCTGGTGTGTGCTACT -ACGGAAACTCTGGTGTGTGGATCT -ACGGAAACTCTGGTGTGTAAGGCT -ACGGAAACTCTGGTGTGTTCAACC -ACGGAAACTCTGGTGTGTTGTTCC -ACGGAAACTCTGGTGTGTATTCCC -ACGGAAACTCTGGTGTGTTTCTCG -ACGGAAACTCTGGTGTGTTAGACG -ACGGAAACTCTGGTGTGTGTAACG -ACGGAAACTCTGGTGTGTACTTCG -ACGGAAACTCTGGTGTGTTACGCA -ACGGAAACTCTGGTGTGTCTTGCA -ACGGAAACTCTGGTGTGTCGAACA -ACGGAAACTCTGGTGTGTCAGTCA -ACGGAAACTCTGGTGTGTGATCCA -ACGGAAACTCTGGTGTGTACGACA -ACGGAAACTCTGGTGTGTAGCTCA -ACGGAAACTCTGGTGTGTTCACGT -ACGGAAACTCTGGTGTGTCGTAGT -ACGGAAACTCTGGTGTGTGTCAGT -ACGGAAACTCTGGTGTGTGAAGGT -ACGGAAACTCTGGTGTGTAACCGT -ACGGAAACTCTGGTGTGTTTGTGC -ACGGAAACTCTGGTGTGTCTAAGC -ACGGAAACTCTGGTGTGTACTAGC -ACGGAAACTCTGGTGTGTAGATGC -ACGGAAACTCTGGTGTGTTGAAGG -ACGGAAACTCTGGTGTGTCAATGG -ACGGAAACTCTGGTGTGTATGAGG -ACGGAAACTCTGGTGTGTAATGGG -ACGGAAACTCTGGTGTGTTCCTGA -ACGGAAACTCTGGTGTGTTAGCGA -ACGGAAACTCTGGTGTGTCACAGA -ACGGAAACTCTGGTGTGTGCAAGA -ACGGAAACTCTGGTGTGTGGTTGA -ACGGAAACTCTGGTGTGTTCCGAT -ACGGAAACTCTGGTGTGTTGGCAT -ACGGAAACTCTGGTGTGTCGAGAT -ACGGAAACTCTGGTGTGTTACCAC -ACGGAAACTCTGGTGTGTCAGAAC -ACGGAAACTCTGGTGTGTGTCTAC -ACGGAAACTCTGGTGTGTACGTAC -ACGGAAACTCTGGTGTGTAGTGAC -ACGGAAACTCTGGTGTGTCTGTAG -ACGGAAACTCTGGTGTGTCCTAAG -ACGGAAACTCTGGTGTGTGTTCAG -ACGGAAACTCTGGTGTGTGCATAG -ACGGAAACTCTGGTGTGTGACAAG -ACGGAAACTCTGGTGTGTAAGCAG -ACGGAAACTCTGGTGTGTCGTCAA -ACGGAAACTCTGGTGTGTGCTGAA -ACGGAAACTCTGGTGTGTAGTACG -ACGGAAACTCTGGTGTGTATCCGA -ACGGAAACTCTGGTGTGTATGGGA -ACGGAAACTCTGGTGTGTGTGCAA -ACGGAAACTCTGGTGTGTGAGGAA -ACGGAAACTCTGGTGTGTCAGGTA -ACGGAAACTCTGGTGTGTGACTCT -ACGGAAACTCTGGTGTGTAGTCCT -ACGGAAACTCTGGTGTGTTAAGCC -ACGGAAACTCTGGTGTGTATAGCC -ACGGAAACTCTGGTGTGTTAACCG -ACGGAAACTCTGGTGTGTATGCCA -ACGGAAACTCTGGTGCTAGGAAAC -ACGGAAACTCTGGTGCTAAACACC -ACGGAAACTCTGGTGCTAATCGAG -ACGGAAACTCTGGTGCTACTCCTT -ACGGAAACTCTGGTGCTACCTGTT -ACGGAAACTCTGGTGCTACGGTTT -ACGGAAACTCTGGTGCTAGTGGTT -ACGGAAACTCTGGTGCTAGCCTTT -ACGGAAACTCTGGTGCTAGGTCTT -ACGGAAACTCTGGTGCTAACGCTT -ACGGAAACTCTGGTGCTAAGCGTT -ACGGAAACTCTGGTGCTATTCGTC -ACGGAAACTCTGGTGCTATCTCTC -ACGGAAACTCTGGTGCTATGGATC -ACGGAAACTCTGGTGCTACACTTC -ACGGAAACTCTGGTGCTAGTACTC -ACGGAAACTCTGGTGCTAGATGTC -ACGGAAACTCTGGTGCTAACAGTC -ACGGAAACTCTGGTGCTATTGCTG -ACGGAAACTCTGGTGCTATCCATG -ACGGAAACTCTGGTGCTATGTGTG -ACGGAAACTCTGGTGCTACTAGTG -ACGGAAACTCTGGTGCTACATCTG -ACGGAAACTCTGGTGCTAGAGTTG -ACGGAAACTCTGGTGCTAAGACTG -ACGGAAACTCTGGTGCTATCGGTA -ACGGAAACTCTGGTGCTATGCCTA -ACGGAAACTCTGGTGCTACCACTA -ACGGAAACTCTGGTGCTAGGAGTA -ACGGAAACTCTGGTGCTATCGTCT -ACGGAAACTCTGGTGCTATGCACT -ACGGAAACTCTGGTGCTACTGACT -ACGGAAACTCTGGTGCTACAACCT -ACGGAAACTCTGGTGCTAGCTACT -ACGGAAACTCTGGTGCTAGGATCT -ACGGAAACTCTGGTGCTAAAGGCT -ACGGAAACTCTGGTGCTATCAACC -ACGGAAACTCTGGTGCTATGTTCC -ACGGAAACTCTGGTGCTAATTCCC -ACGGAAACTCTGGTGCTATTCTCG -ACGGAAACTCTGGTGCTATAGACG -ACGGAAACTCTGGTGCTAGTAACG -ACGGAAACTCTGGTGCTAACTTCG -ACGGAAACTCTGGTGCTATACGCA -ACGGAAACTCTGGTGCTACTTGCA -ACGGAAACTCTGGTGCTACGAACA -ACGGAAACTCTGGTGCTACAGTCA -ACGGAAACTCTGGTGCTAGATCCA -ACGGAAACTCTGGTGCTAACGACA -ACGGAAACTCTGGTGCTAAGCTCA -ACGGAAACTCTGGTGCTATCACGT -ACGGAAACTCTGGTGCTACGTAGT -ACGGAAACTCTGGTGCTAGTCAGT -ACGGAAACTCTGGTGCTAGAAGGT -ACGGAAACTCTGGTGCTAAACCGT -ACGGAAACTCTGGTGCTATTGTGC -ACGGAAACTCTGGTGCTACTAAGC -ACGGAAACTCTGGTGCTAACTAGC -ACGGAAACTCTGGTGCTAAGATGC -ACGGAAACTCTGGTGCTATGAAGG -ACGGAAACTCTGGTGCTACAATGG -ACGGAAACTCTGGTGCTAATGAGG -ACGGAAACTCTGGTGCTAAATGGG -ACGGAAACTCTGGTGCTATCCTGA -ACGGAAACTCTGGTGCTATAGCGA -ACGGAAACTCTGGTGCTACACAGA -ACGGAAACTCTGGTGCTAGCAAGA -ACGGAAACTCTGGTGCTAGGTTGA -ACGGAAACTCTGGTGCTATCCGAT -ACGGAAACTCTGGTGCTATGGCAT -ACGGAAACTCTGGTGCTACGAGAT -ACGGAAACTCTGGTGCTATACCAC -ACGGAAACTCTGGTGCTACAGAAC -ACGGAAACTCTGGTGCTAGTCTAC -ACGGAAACTCTGGTGCTAACGTAC -ACGGAAACTCTGGTGCTAAGTGAC -ACGGAAACTCTGGTGCTACTGTAG -ACGGAAACTCTGGTGCTACCTAAG -ACGGAAACTCTGGTGCTAGTTCAG -ACGGAAACTCTGGTGCTAGCATAG -ACGGAAACTCTGGTGCTAGACAAG -ACGGAAACTCTGGTGCTAAAGCAG -ACGGAAACTCTGGTGCTACGTCAA -ACGGAAACTCTGGTGCTAGCTGAA -ACGGAAACTCTGGTGCTAAGTACG -ACGGAAACTCTGGTGCTAATCCGA -ACGGAAACTCTGGTGCTAATGGGA -ACGGAAACTCTGGTGCTAGTGCAA -ACGGAAACTCTGGTGCTAGAGGAA -ACGGAAACTCTGGTGCTACAGGTA -ACGGAAACTCTGGTGCTAGACTCT -ACGGAAACTCTGGTGCTAAGTCCT -ACGGAAACTCTGGTGCTATAAGCC -ACGGAAACTCTGGTGCTAATAGCC -ACGGAAACTCTGGTGCTATAACCG -ACGGAAACTCTGGTGCTAATGCCA -ACGGAAACTCTGCTGCATGGAAAC -ACGGAAACTCTGCTGCATAACACC -ACGGAAACTCTGCTGCATATCGAG -ACGGAAACTCTGCTGCATCTCCTT -ACGGAAACTCTGCTGCATCCTGTT -ACGGAAACTCTGCTGCATCGGTTT -ACGGAAACTCTGCTGCATGTGGTT -ACGGAAACTCTGCTGCATGCCTTT -ACGGAAACTCTGCTGCATGGTCTT -ACGGAAACTCTGCTGCATACGCTT -ACGGAAACTCTGCTGCATAGCGTT -ACGGAAACTCTGCTGCATTTCGTC -ACGGAAACTCTGCTGCATTCTCTC -ACGGAAACTCTGCTGCATTGGATC -ACGGAAACTCTGCTGCATCACTTC -ACGGAAACTCTGCTGCATGTACTC -ACGGAAACTCTGCTGCATGATGTC -ACGGAAACTCTGCTGCATACAGTC -ACGGAAACTCTGCTGCATTTGCTG -ACGGAAACTCTGCTGCATTCCATG -ACGGAAACTCTGCTGCATTGTGTG -ACGGAAACTCTGCTGCATCTAGTG -ACGGAAACTCTGCTGCATCATCTG -ACGGAAACTCTGCTGCATGAGTTG -ACGGAAACTCTGCTGCATAGACTG -ACGGAAACTCTGCTGCATTCGGTA -ACGGAAACTCTGCTGCATTGCCTA -ACGGAAACTCTGCTGCATCCACTA -ACGGAAACTCTGCTGCATGGAGTA -ACGGAAACTCTGCTGCATTCGTCT -ACGGAAACTCTGCTGCATTGCACT -ACGGAAACTCTGCTGCATCTGACT -ACGGAAACTCTGCTGCATCAACCT -ACGGAAACTCTGCTGCATGCTACT -ACGGAAACTCTGCTGCATGGATCT -ACGGAAACTCTGCTGCATAAGGCT -ACGGAAACTCTGCTGCATTCAACC -ACGGAAACTCTGCTGCATTGTTCC -ACGGAAACTCTGCTGCATATTCCC -ACGGAAACTCTGCTGCATTTCTCG -ACGGAAACTCTGCTGCATTAGACG -ACGGAAACTCTGCTGCATGTAACG -ACGGAAACTCTGCTGCATACTTCG -ACGGAAACTCTGCTGCATTACGCA -ACGGAAACTCTGCTGCATCTTGCA -ACGGAAACTCTGCTGCATCGAACA -ACGGAAACTCTGCTGCATCAGTCA -ACGGAAACTCTGCTGCATGATCCA -ACGGAAACTCTGCTGCATACGACA -ACGGAAACTCTGCTGCATAGCTCA -ACGGAAACTCTGCTGCATTCACGT -ACGGAAACTCTGCTGCATCGTAGT -ACGGAAACTCTGCTGCATGTCAGT -ACGGAAACTCTGCTGCATGAAGGT -ACGGAAACTCTGCTGCATAACCGT -ACGGAAACTCTGCTGCATTTGTGC -ACGGAAACTCTGCTGCATCTAAGC -ACGGAAACTCTGCTGCATACTAGC -ACGGAAACTCTGCTGCATAGATGC -ACGGAAACTCTGCTGCATTGAAGG -ACGGAAACTCTGCTGCATCAATGG -ACGGAAACTCTGCTGCATATGAGG -ACGGAAACTCTGCTGCATAATGGG -ACGGAAACTCTGCTGCATTCCTGA -ACGGAAACTCTGCTGCATTAGCGA -ACGGAAACTCTGCTGCATCACAGA -ACGGAAACTCTGCTGCATGCAAGA -ACGGAAACTCTGCTGCATGGTTGA -ACGGAAACTCTGCTGCATTCCGAT -ACGGAAACTCTGCTGCATTGGCAT -ACGGAAACTCTGCTGCATCGAGAT -ACGGAAACTCTGCTGCATTACCAC -ACGGAAACTCTGCTGCATCAGAAC -ACGGAAACTCTGCTGCATGTCTAC -ACGGAAACTCTGCTGCATACGTAC -ACGGAAACTCTGCTGCATAGTGAC -ACGGAAACTCTGCTGCATCTGTAG -ACGGAAACTCTGCTGCATCCTAAG -ACGGAAACTCTGCTGCATGTTCAG -ACGGAAACTCTGCTGCATGCATAG -ACGGAAACTCTGCTGCATGACAAG -ACGGAAACTCTGCTGCATAAGCAG -ACGGAAACTCTGCTGCATCGTCAA -ACGGAAACTCTGCTGCATGCTGAA -ACGGAAACTCTGCTGCATAGTACG -ACGGAAACTCTGCTGCATATCCGA -ACGGAAACTCTGCTGCATATGGGA -ACGGAAACTCTGCTGCATGTGCAA -ACGGAAACTCTGCTGCATGAGGAA -ACGGAAACTCTGCTGCATCAGGTA -ACGGAAACTCTGCTGCATGACTCT -ACGGAAACTCTGCTGCATAGTCCT -ACGGAAACTCTGCTGCATTAAGCC -ACGGAAACTCTGCTGCATATAGCC -ACGGAAACTCTGCTGCATTAACCG -ACGGAAACTCTGCTGCATATGCCA -ACGGAAACTCTGTTGGAGGGAAAC -ACGGAAACTCTGTTGGAGAACACC -ACGGAAACTCTGTTGGAGATCGAG -ACGGAAACTCTGTTGGAGCTCCTT -ACGGAAACTCTGTTGGAGCCTGTT -ACGGAAACTCTGTTGGAGCGGTTT -ACGGAAACTCTGTTGGAGGTGGTT -ACGGAAACTCTGTTGGAGGCCTTT -ACGGAAACTCTGTTGGAGGGTCTT -ACGGAAACTCTGTTGGAGACGCTT -ACGGAAACTCTGTTGGAGAGCGTT -ACGGAAACTCTGTTGGAGTTCGTC -ACGGAAACTCTGTTGGAGTCTCTC -ACGGAAACTCTGTTGGAGTGGATC -ACGGAAACTCTGTTGGAGCACTTC -ACGGAAACTCTGTTGGAGGTACTC -ACGGAAACTCTGTTGGAGGATGTC -ACGGAAACTCTGTTGGAGACAGTC -ACGGAAACTCTGTTGGAGTTGCTG -ACGGAAACTCTGTTGGAGTCCATG -ACGGAAACTCTGTTGGAGTGTGTG -ACGGAAACTCTGTTGGAGCTAGTG -ACGGAAACTCTGTTGGAGCATCTG -ACGGAAACTCTGTTGGAGGAGTTG -ACGGAAACTCTGTTGGAGAGACTG -ACGGAAACTCTGTTGGAGTCGGTA -ACGGAAACTCTGTTGGAGTGCCTA -ACGGAAACTCTGTTGGAGCCACTA -ACGGAAACTCTGTTGGAGGGAGTA -ACGGAAACTCTGTTGGAGTCGTCT -ACGGAAACTCTGTTGGAGTGCACT -ACGGAAACTCTGTTGGAGCTGACT -ACGGAAACTCTGTTGGAGCAACCT -ACGGAAACTCTGTTGGAGGCTACT -ACGGAAACTCTGTTGGAGGGATCT -ACGGAAACTCTGTTGGAGAAGGCT -ACGGAAACTCTGTTGGAGTCAACC -ACGGAAACTCTGTTGGAGTGTTCC -ACGGAAACTCTGTTGGAGATTCCC -ACGGAAACTCTGTTGGAGTTCTCG -ACGGAAACTCTGTTGGAGTAGACG -ACGGAAACTCTGTTGGAGGTAACG -ACGGAAACTCTGTTGGAGACTTCG -ACGGAAACTCTGTTGGAGTACGCA -ACGGAAACTCTGTTGGAGCTTGCA -ACGGAAACTCTGTTGGAGCGAACA -ACGGAAACTCTGTTGGAGCAGTCA -ACGGAAACTCTGTTGGAGGATCCA -ACGGAAACTCTGTTGGAGACGACA -ACGGAAACTCTGTTGGAGAGCTCA -ACGGAAACTCTGTTGGAGTCACGT -ACGGAAACTCTGTTGGAGCGTAGT -ACGGAAACTCTGTTGGAGGTCAGT -ACGGAAACTCTGTTGGAGGAAGGT -ACGGAAACTCTGTTGGAGAACCGT -ACGGAAACTCTGTTGGAGTTGTGC -ACGGAAACTCTGTTGGAGCTAAGC -ACGGAAACTCTGTTGGAGACTAGC -ACGGAAACTCTGTTGGAGAGATGC -ACGGAAACTCTGTTGGAGTGAAGG -ACGGAAACTCTGTTGGAGCAATGG -ACGGAAACTCTGTTGGAGATGAGG -ACGGAAACTCTGTTGGAGAATGGG -ACGGAAACTCTGTTGGAGTCCTGA -ACGGAAACTCTGTTGGAGTAGCGA -ACGGAAACTCTGTTGGAGCACAGA -ACGGAAACTCTGTTGGAGGCAAGA -ACGGAAACTCTGTTGGAGGGTTGA -ACGGAAACTCTGTTGGAGTCCGAT -ACGGAAACTCTGTTGGAGTGGCAT -ACGGAAACTCTGTTGGAGCGAGAT -ACGGAAACTCTGTTGGAGTACCAC -ACGGAAACTCTGTTGGAGCAGAAC -ACGGAAACTCTGTTGGAGGTCTAC -ACGGAAACTCTGTTGGAGACGTAC -ACGGAAACTCTGTTGGAGAGTGAC -ACGGAAACTCTGTTGGAGCTGTAG -ACGGAAACTCTGTTGGAGCCTAAG -ACGGAAACTCTGTTGGAGGTTCAG -ACGGAAACTCTGTTGGAGGCATAG -ACGGAAACTCTGTTGGAGGACAAG -ACGGAAACTCTGTTGGAGAAGCAG -ACGGAAACTCTGTTGGAGCGTCAA -ACGGAAACTCTGTTGGAGGCTGAA -ACGGAAACTCTGTTGGAGAGTACG -ACGGAAACTCTGTTGGAGATCCGA -ACGGAAACTCTGTTGGAGATGGGA -ACGGAAACTCTGTTGGAGGTGCAA -ACGGAAACTCTGTTGGAGGAGGAA -ACGGAAACTCTGTTGGAGCAGGTA -ACGGAAACTCTGTTGGAGGACTCT -ACGGAAACTCTGTTGGAGAGTCCT -ACGGAAACTCTGTTGGAGTAAGCC -ACGGAAACTCTGTTGGAGATAGCC -ACGGAAACTCTGTTGGAGTAACCG -ACGGAAACTCTGTTGGAGATGCCA -ACGGAAACTCTGCTGAGAGGAAAC -ACGGAAACTCTGCTGAGAAACACC -ACGGAAACTCTGCTGAGAATCGAG -ACGGAAACTCTGCTGAGACTCCTT -ACGGAAACTCTGCTGAGACCTGTT -ACGGAAACTCTGCTGAGACGGTTT -ACGGAAACTCTGCTGAGAGTGGTT -ACGGAAACTCTGCTGAGAGCCTTT -ACGGAAACTCTGCTGAGAGGTCTT -ACGGAAACTCTGCTGAGAACGCTT -ACGGAAACTCTGCTGAGAAGCGTT -ACGGAAACTCTGCTGAGATTCGTC -ACGGAAACTCTGCTGAGATCTCTC -ACGGAAACTCTGCTGAGATGGATC -ACGGAAACTCTGCTGAGACACTTC -ACGGAAACTCTGCTGAGAGTACTC -ACGGAAACTCTGCTGAGAGATGTC -ACGGAAACTCTGCTGAGAACAGTC -ACGGAAACTCTGCTGAGATTGCTG -ACGGAAACTCTGCTGAGATCCATG -ACGGAAACTCTGCTGAGATGTGTG -ACGGAAACTCTGCTGAGACTAGTG -ACGGAAACTCTGCTGAGACATCTG -ACGGAAACTCTGCTGAGAGAGTTG -ACGGAAACTCTGCTGAGAAGACTG -ACGGAAACTCTGCTGAGATCGGTA -ACGGAAACTCTGCTGAGATGCCTA -ACGGAAACTCTGCTGAGACCACTA -ACGGAAACTCTGCTGAGAGGAGTA -ACGGAAACTCTGCTGAGATCGTCT -ACGGAAACTCTGCTGAGATGCACT -ACGGAAACTCTGCTGAGACTGACT -ACGGAAACTCTGCTGAGACAACCT -ACGGAAACTCTGCTGAGAGCTACT -ACGGAAACTCTGCTGAGAGGATCT -ACGGAAACTCTGCTGAGAAAGGCT -ACGGAAACTCTGCTGAGATCAACC -ACGGAAACTCTGCTGAGATGTTCC -ACGGAAACTCTGCTGAGAATTCCC -ACGGAAACTCTGCTGAGATTCTCG -ACGGAAACTCTGCTGAGATAGACG -ACGGAAACTCTGCTGAGAGTAACG -ACGGAAACTCTGCTGAGAACTTCG -ACGGAAACTCTGCTGAGATACGCA -ACGGAAACTCTGCTGAGACTTGCA -ACGGAAACTCTGCTGAGACGAACA -ACGGAAACTCTGCTGAGACAGTCA -ACGGAAACTCTGCTGAGAGATCCA -ACGGAAACTCTGCTGAGAACGACA -ACGGAAACTCTGCTGAGAAGCTCA -ACGGAAACTCTGCTGAGATCACGT -ACGGAAACTCTGCTGAGACGTAGT -ACGGAAACTCTGCTGAGAGTCAGT -ACGGAAACTCTGCTGAGAGAAGGT -ACGGAAACTCTGCTGAGAAACCGT -ACGGAAACTCTGCTGAGATTGTGC -ACGGAAACTCTGCTGAGACTAAGC -ACGGAAACTCTGCTGAGAACTAGC -ACGGAAACTCTGCTGAGAAGATGC -ACGGAAACTCTGCTGAGATGAAGG -ACGGAAACTCTGCTGAGACAATGG -ACGGAAACTCTGCTGAGAATGAGG -ACGGAAACTCTGCTGAGAAATGGG -ACGGAAACTCTGCTGAGATCCTGA -ACGGAAACTCTGCTGAGATAGCGA -ACGGAAACTCTGCTGAGACACAGA -ACGGAAACTCTGCTGAGAGCAAGA -ACGGAAACTCTGCTGAGAGGTTGA -ACGGAAACTCTGCTGAGATCCGAT -ACGGAAACTCTGCTGAGATGGCAT -ACGGAAACTCTGCTGAGACGAGAT -ACGGAAACTCTGCTGAGATACCAC -ACGGAAACTCTGCTGAGACAGAAC -ACGGAAACTCTGCTGAGAGTCTAC -ACGGAAACTCTGCTGAGAACGTAC -ACGGAAACTCTGCTGAGAAGTGAC -ACGGAAACTCTGCTGAGACTGTAG -ACGGAAACTCTGCTGAGACCTAAG -ACGGAAACTCTGCTGAGAGTTCAG -ACGGAAACTCTGCTGAGAGCATAG -ACGGAAACTCTGCTGAGAGACAAG -ACGGAAACTCTGCTGAGAAAGCAG -ACGGAAACTCTGCTGAGACGTCAA -ACGGAAACTCTGCTGAGAGCTGAA -ACGGAAACTCTGCTGAGAAGTACG -ACGGAAACTCTGCTGAGAATCCGA -ACGGAAACTCTGCTGAGAATGGGA -ACGGAAACTCTGCTGAGAGTGCAA -ACGGAAACTCTGCTGAGAGAGGAA -ACGGAAACTCTGCTGAGACAGGTA -ACGGAAACTCTGCTGAGAGACTCT -ACGGAAACTCTGCTGAGAAGTCCT -ACGGAAACTCTGCTGAGATAAGCC -ACGGAAACTCTGCTGAGAATAGCC -ACGGAAACTCTGCTGAGATAACCG -ACGGAAACTCTGCTGAGAATGCCA -ACGGAAACTCTGGTATCGGGAAAC -ACGGAAACTCTGGTATCGAACACC -ACGGAAACTCTGGTATCGATCGAG -ACGGAAACTCTGGTATCGCTCCTT -ACGGAAACTCTGGTATCGCCTGTT -ACGGAAACTCTGGTATCGCGGTTT -ACGGAAACTCTGGTATCGGTGGTT -ACGGAAACTCTGGTATCGGCCTTT -ACGGAAACTCTGGTATCGGGTCTT -ACGGAAACTCTGGTATCGACGCTT -ACGGAAACTCTGGTATCGAGCGTT -ACGGAAACTCTGGTATCGTTCGTC -ACGGAAACTCTGGTATCGTCTCTC -ACGGAAACTCTGGTATCGTGGATC -ACGGAAACTCTGGTATCGCACTTC -ACGGAAACTCTGGTATCGGTACTC -ACGGAAACTCTGGTATCGGATGTC -ACGGAAACTCTGGTATCGACAGTC -ACGGAAACTCTGGTATCGTTGCTG -ACGGAAACTCTGGTATCGTCCATG -ACGGAAACTCTGGTATCGTGTGTG -ACGGAAACTCTGGTATCGCTAGTG -ACGGAAACTCTGGTATCGCATCTG -ACGGAAACTCTGGTATCGGAGTTG -ACGGAAACTCTGGTATCGAGACTG -ACGGAAACTCTGGTATCGTCGGTA -ACGGAAACTCTGGTATCGTGCCTA -ACGGAAACTCTGGTATCGCCACTA -ACGGAAACTCTGGTATCGGGAGTA -ACGGAAACTCTGGTATCGTCGTCT -ACGGAAACTCTGGTATCGTGCACT -ACGGAAACTCTGGTATCGCTGACT -ACGGAAACTCTGGTATCGCAACCT -ACGGAAACTCTGGTATCGGCTACT -ACGGAAACTCTGGTATCGGGATCT -ACGGAAACTCTGGTATCGAAGGCT -ACGGAAACTCTGGTATCGTCAACC -ACGGAAACTCTGGTATCGTGTTCC -ACGGAAACTCTGGTATCGATTCCC -ACGGAAACTCTGGTATCGTTCTCG -ACGGAAACTCTGGTATCGTAGACG -ACGGAAACTCTGGTATCGGTAACG -ACGGAAACTCTGGTATCGACTTCG -ACGGAAACTCTGGTATCGTACGCA -ACGGAAACTCTGGTATCGCTTGCA -ACGGAAACTCTGGTATCGCGAACA -ACGGAAACTCTGGTATCGCAGTCA -ACGGAAACTCTGGTATCGGATCCA -ACGGAAACTCTGGTATCGACGACA -ACGGAAACTCTGGTATCGAGCTCA -ACGGAAACTCTGGTATCGTCACGT -ACGGAAACTCTGGTATCGCGTAGT -ACGGAAACTCTGGTATCGGTCAGT -ACGGAAACTCTGGTATCGGAAGGT -ACGGAAACTCTGGTATCGAACCGT -ACGGAAACTCTGGTATCGTTGTGC -ACGGAAACTCTGGTATCGCTAAGC -ACGGAAACTCTGGTATCGACTAGC -ACGGAAACTCTGGTATCGAGATGC -ACGGAAACTCTGGTATCGTGAAGG -ACGGAAACTCTGGTATCGCAATGG -ACGGAAACTCTGGTATCGATGAGG -ACGGAAACTCTGGTATCGAATGGG -ACGGAAACTCTGGTATCGTCCTGA -ACGGAAACTCTGGTATCGTAGCGA -ACGGAAACTCTGGTATCGCACAGA -ACGGAAACTCTGGTATCGGCAAGA -ACGGAAACTCTGGTATCGGGTTGA -ACGGAAACTCTGGTATCGTCCGAT -ACGGAAACTCTGGTATCGTGGCAT -ACGGAAACTCTGGTATCGCGAGAT -ACGGAAACTCTGGTATCGTACCAC -ACGGAAACTCTGGTATCGCAGAAC -ACGGAAACTCTGGTATCGGTCTAC -ACGGAAACTCTGGTATCGACGTAC -ACGGAAACTCTGGTATCGAGTGAC -ACGGAAACTCTGGTATCGCTGTAG -ACGGAAACTCTGGTATCGCCTAAG -ACGGAAACTCTGGTATCGGTTCAG -ACGGAAACTCTGGTATCGGCATAG -ACGGAAACTCTGGTATCGGACAAG -ACGGAAACTCTGGTATCGAAGCAG -ACGGAAACTCTGGTATCGCGTCAA -ACGGAAACTCTGGTATCGGCTGAA -ACGGAAACTCTGGTATCGAGTACG -ACGGAAACTCTGGTATCGATCCGA -ACGGAAACTCTGGTATCGATGGGA -ACGGAAACTCTGGTATCGGTGCAA -ACGGAAACTCTGGTATCGGAGGAA -ACGGAAACTCTGGTATCGCAGGTA -ACGGAAACTCTGGTATCGGACTCT -ACGGAAACTCTGGTATCGAGTCCT -ACGGAAACTCTGGTATCGTAAGCC -ACGGAAACTCTGGTATCGATAGCC -ACGGAAACTCTGGTATCGTAACCG -ACGGAAACTCTGGTATCGATGCCA -ACGGAAACTCTGCTATGCGGAAAC -ACGGAAACTCTGCTATGCAACACC -ACGGAAACTCTGCTATGCATCGAG -ACGGAAACTCTGCTATGCCTCCTT -ACGGAAACTCTGCTATGCCCTGTT -ACGGAAACTCTGCTATGCCGGTTT -ACGGAAACTCTGCTATGCGTGGTT -ACGGAAACTCTGCTATGCGCCTTT -ACGGAAACTCTGCTATGCGGTCTT -ACGGAAACTCTGCTATGCACGCTT -ACGGAAACTCTGCTATGCAGCGTT -ACGGAAACTCTGCTATGCTTCGTC -ACGGAAACTCTGCTATGCTCTCTC -ACGGAAACTCTGCTATGCTGGATC -ACGGAAACTCTGCTATGCCACTTC -ACGGAAACTCTGCTATGCGTACTC -ACGGAAACTCTGCTATGCGATGTC -ACGGAAACTCTGCTATGCACAGTC -ACGGAAACTCTGCTATGCTTGCTG -ACGGAAACTCTGCTATGCTCCATG -ACGGAAACTCTGCTATGCTGTGTG -ACGGAAACTCTGCTATGCCTAGTG -ACGGAAACTCTGCTATGCCATCTG -ACGGAAACTCTGCTATGCGAGTTG -ACGGAAACTCTGCTATGCAGACTG -ACGGAAACTCTGCTATGCTCGGTA -ACGGAAACTCTGCTATGCTGCCTA -ACGGAAACTCTGCTATGCCCACTA -ACGGAAACTCTGCTATGCGGAGTA -ACGGAAACTCTGCTATGCTCGTCT -ACGGAAACTCTGCTATGCTGCACT -ACGGAAACTCTGCTATGCCTGACT -ACGGAAACTCTGCTATGCCAACCT -ACGGAAACTCTGCTATGCGCTACT -ACGGAAACTCTGCTATGCGGATCT -ACGGAAACTCTGCTATGCAAGGCT -ACGGAAACTCTGCTATGCTCAACC -ACGGAAACTCTGCTATGCTGTTCC -ACGGAAACTCTGCTATGCATTCCC -ACGGAAACTCTGCTATGCTTCTCG -ACGGAAACTCTGCTATGCTAGACG -ACGGAAACTCTGCTATGCGTAACG -ACGGAAACTCTGCTATGCACTTCG -ACGGAAACTCTGCTATGCTACGCA -ACGGAAACTCTGCTATGCCTTGCA -ACGGAAACTCTGCTATGCCGAACA -ACGGAAACTCTGCTATGCCAGTCA -ACGGAAACTCTGCTATGCGATCCA -ACGGAAACTCTGCTATGCACGACA -ACGGAAACTCTGCTATGCAGCTCA -ACGGAAACTCTGCTATGCTCACGT -ACGGAAACTCTGCTATGCCGTAGT -ACGGAAACTCTGCTATGCGTCAGT -ACGGAAACTCTGCTATGCGAAGGT -ACGGAAACTCTGCTATGCAACCGT -ACGGAAACTCTGCTATGCTTGTGC -ACGGAAACTCTGCTATGCCTAAGC -ACGGAAACTCTGCTATGCACTAGC -ACGGAAACTCTGCTATGCAGATGC -ACGGAAACTCTGCTATGCTGAAGG -ACGGAAACTCTGCTATGCCAATGG -ACGGAAACTCTGCTATGCATGAGG -ACGGAAACTCTGCTATGCAATGGG -ACGGAAACTCTGCTATGCTCCTGA -ACGGAAACTCTGCTATGCTAGCGA -ACGGAAACTCTGCTATGCCACAGA -ACGGAAACTCTGCTATGCGCAAGA -ACGGAAACTCTGCTATGCGGTTGA -ACGGAAACTCTGCTATGCTCCGAT -ACGGAAACTCTGCTATGCTGGCAT -ACGGAAACTCTGCTATGCCGAGAT -ACGGAAACTCTGCTATGCTACCAC -ACGGAAACTCTGCTATGCCAGAAC -ACGGAAACTCTGCTATGCGTCTAC -ACGGAAACTCTGCTATGCACGTAC -ACGGAAACTCTGCTATGCAGTGAC -ACGGAAACTCTGCTATGCCTGTAG -ACGGAAACTCTGCTATGCCCTAAG -ACGGAAACTCTGCTATGCGTTCAG -ACGGAAACTCTGCTATGCGCATAG -ACGGAAACTCTGCTATGCGACAAG -ACGGAAACTCTGCTATGCAAGCAG -ACGGAAACTCTGCTATGCCGTCAA -ACGGAAACTCTGCTATGCGCTGAA -ACGGAAACTCTGCTATGCAGTACG -ACGGAAACTCTGCTATGCATCCGA -ACGGAAACTCTGCTATGCATGGGA -ACGGAAACTCTGCTATGCGTGCAA -ACGGAAACTCTGCTATGCGAGGAA -ACGGAAACTCTGCTATGCCAGGTA -ACGGAAACTCTGCTATGCGACTCT -ACGGAAACTCTGCTATGCAGTCCT -ACGGAAACTCTGCTATGCTAAGCC -ACGGAAACTCTGCTATGCATAGCC -ACGGAAACTCTGCTATGCTAACCG -ACGGAAACTCTGCTATGCATGCCA -ACGGAAACTCTGCTACCAGGAAAC -ACGGAAACTCTGCTACCAAACACC -ACGGAAACTCTGCTACCAATCGAG -ACGGAAACTCTGCTACCACTCCTT -ACGGAAACTCTGCTACCACCTGTT -ACGGAAACTCTGCTACCACGGTTT -ACGGAAACTCTGCTACCAGTGGTT -ACGGAAACTCTGCTACCAGCCTTT -ACGGAAACTCTGCTACCAGGTCTT -ACGGAAACTCTGCTACCAACGCTT -ACGGAAACTCTGCTACCAAGCGTT -ACGGAAACTCTGCTACCATTCGTC -ACGGAAACTCTGCTACCATCTCTC -ACGGAAACTCTGCTACCATGGATC -ACGGAAACTCTGCTACCACACTTC -ACGGAAACTCTGCTACCAGTACTC -ACGGAAACTCTGCTACCAGATGTC -ACGGAAACTCTGCTACCAACAGTC -ACGGAAACTCTGCTACCATTGCTG -ACGGAAACTCTGCTACCATCCATG -ACGGAAACTCTGCTACCATGTGTG -ACGGAAACTCTGCTACCACTAGTG -ACGGAAACTCTGCTACCACATCTG -ACGGAAACTCTGCTACCAGAGTTG -ACGGAAACTCTGCTACCAAGACTG -ACGGAAACTCTGCTACCATCGGTA -ACGGAAACTCTGCTACCATGCCTA -ACGGAAACTCTGCTACCACCACTA -ACGGAAACTCTGCTACCAGGAGTA -ACGGAAACTCTGCTACCATCGTCT -ACGGAAACTCTGCTACCATGCACT -ACGGAAACTCTGCTACCACTGACT -ACGGAAACTCTGCTACCACAACCT -ACGGAAACTCTGCTACCAGCTACT -ACGGAAACTCTGCTACCAGGATCT -ACGGAAACTCTGCTACCAAAGGCT -ACGGAAACTCTGCTACCATCAACC -ACGGAAACTCTGCTACCATGTTCC -ACGGAAACTCTGCTACCAATTCCC -ACGGAAACTCTGCTACCATTCTCG -ACGGAAACTCTGCTACCATAGACG -ACGGAAACTCTGCTACCAGTAACG -ACGGAAACTCTGCTACCAACTTCG -ACGGAAACTCTGCTACCATACGCA -ACGGAAACTCTGCTACCACTTGCA -ACGGAAACTCTGCTACCACGAACA -ACGGAAACTCTGCTACCACAGTCA -ACGGAAACTCTGCTACCAGATCCA -ACGGAAACTCTGCTACCAACGACA -ACGGAAACTCTGCTACCAAGCTCA -ACGGAAACTCTGCTACCATCACGT -ACGGAAACTCTGCTACCACGTAGT -ACGGAAACTCTGCTACCAGTCAGT -ACGGAAACTCTGCTACCAGAAGGT -ACGGAAACTCTGCTACCAAACCGT -ACGGAAACTCTGCTACCATTGTGC -ACGGAAACTCTGCTACCACTAAGC -ACGGAAACTCTGCTACCAACTAGC -ACGGAAACTCTGCTACCAAGATGC -ACGGAAACTCTGCTACCATGAAGG -ACGGAAACTCTGCTACCACAATGG -ACGGAAACTCTGCTACCAATGAGG -ACGGAAACTCTGCTACCAAATGGG -ACGGAAACTCTGCTACCATCCTGA -ACGGAAACTCTGCTACCATAGCGA -ACGGAAACTCTGCTACCACACAGA -ACGGAAACTCTGCTACCAGCAAGA -ACGGAAACTCTGCTACCAGGTTGA -ACGGAAACTCTGCTACCATCCGAT -ACGGAAACTCTGCTACCATGGCAT -ACGGAAACTCTGCTACCACGAGAT -ACGGAAACTCTGCTACCATACCAC -ACGGAAACTCTGCTACCACAGAAC -ACGGAAACTCTGCTACCAGTCTAC -ACGGAAACTCTGCTACCAACGTAC -ACGGAAACTCTGCTACCAAGTGAC -ACGGAAACTCTGCTACCACTGTAG -ACGGAAACTCTGCTACCACCTAAG -ACGGAAACTCTGCTACCAGTTCAG -ACGGAAACTCTGCTACCAGCATAG -ACGGAAACTCTGCTACCAGACAAG -ACGGAAACTCTGCTACCAAAGCAG -ACGGAAACTCTGCTACCACGTCAA -ACGGAAACTCTGCTACCAGCTGAA -ACGGAAACTCTGCTACCAAGTACG -ACGGAAACTCTGCTACCAATCCGA -ACGGAAACTCTGCTACCAATGGGA -ACGGAAACTCTGCTACCAGTGCAA -ACGGAAACTCTGCTACCAGAGGAA -ACGGAAACTCTGCTACCACAGGTA -ACGGAAACTCTGCTACCAGACTCT -ACGGAAACTCTGCTACCAAGTCCT -ACGGAAACTCTGCTACCATAAGCC -ACGGAAACTCTGCTACCAATAGCC -ACGGAAACTCTGCTACCATAACCG -ACGGAAACTCTGCTACCAATGCCA -ACGGAAACTCTGGTAGGAGGAAAC -ACGGAAACTCTGGTAGGAAACACC -ACGGAAACTCTGGTAGGAATCGAG -ACGGAAACTCTGGTAGGACTCCTT -ACGGAAACTCTGGTAGGACCTGTT -ACGGAAACTCTGGTAGGACGGTTT -ACGGAAACTCTGGTAGGAGTGGTT -ACGGAAACTCTGGTAGGAGCCTTT -ACGGAAACTCTGGTAGGAGGTCTT -ACGGAAACTCTGGTAGGAACGCTT -ACGGAAACTCTGGTAGGAAGCGTT -ACGGAAACTCTGGTAGGATTCGTC -ACGGAAACTCTGGTAGGATCTCTC -ACGGAAACTCTGGTAGGATGGATC -ACGGAAACTCTGGTAGGACACTTC -ACGGAAACTCTGGTAGGAGTACTC -ACGGAAACTCTGGTAGGAGATGTC -ACGGAAACTCTGGTAGGAACAGTC -ACGGAAACTCTGGTAGGATTGCTG -ACGGAAACTCTGGTAGGATCCATG -ACGGAAACTCTGGTAGGATGTGTG -ACGGAAACTCTGGTAGGACTAGTG -ACGGAAACTCTGGTAGGACATCTG -ACGGAAACTCTGGTAGGAGAGTTG -ACGGAAACTCTGGTAGGAAGACTG -ACGGAAACTCTGGTAGGATCGGTA -ACGGAAACTCTGGTAGGATGCCTA -ACGGAAACTCTGGTAGGACCACTA -ACGGAAACTCTGGTAGGAGGAGTA -ACGGAAACTCTGGTAGGATCGTCT -ACGGAAACTCTGGTAGGATGCACT -ACGGAAACTCTGGTAGGACTGACT -ACGGAAACTCTGGTAGGACAACCT -ACGGAAACTCTGGTAGGAGCTACT -ACGGAAACTCTGGTAGGAGGATCT -ACGGAAACTCTGGTAGGAAAGGCT -ACGGAAACTCTGGTAGGATCAACC -ACGGAAACTCTGGTAGGATGTTCC -ACGGAAACTCTGGTAGGAATTCCC -ACGGAAACTCTGGTAGGATTCTCG -ACGGAAACTCTGGTAGGATAGACG -ACGGAAACTCTGGTAGGAGTAACG -ACGGAAACTCTGGTAGGAACTTCG -ACGGAAACTCTGGTAGGATACGCA -ACGGAAACTCTGGTAGGACTTGCA -ACGGAAACTCTGGTAGGACGAACA -ACGGAAACTCTGGTAGGACAGTCA -ACGGAAACTCTGGTAGGAGATCCA -ACGGAAACTCTGGTAGGAACGACA -ACGGAAACTCTGGTAGGAAGCTCA -ACGGAAACTCTGGTAGGATCACGT -ACGGAAACTCTGGTAGGACGTAGT -ACGGAAACTCTGGTAGGAGTCAGT -ACGGAAACTCTGGTAGGAGAAGGT -ACGGAAACTCTGGTAGGAAACCGT -ACGGAAACTCTGGTAGGATTGTGC -ACGGAAACTCTGGTAGGACTAAGC -ACGGAAACTCTGGTAGGAACTAGC -ACGGAAACTCTGGTAGGAAGATGC -ACGGAAACTCTGGTAGGATGAAGG -ACGGAAACTCTGGTAGGACAATGG -ACGGAAACTCTGGTAGGAATGAGG -ACGGAAACTCTGGTAGGAAATGGG -ACGGAAACTCTGGTAGGATCCTGA -ACGGAAACTCTGGTAGGATAGCGA -ACGGAAACTCTGGTAGGACACAGA -ACGGAAACTCTGGTAGGAGCAAGA -ACGGAAACTCTGGTAGGAGGTTGA -ACGGAAACTCTGGTAGGATCCGAT -ACGGAAACTCTGGTAGGATGGCAT -ACGGAAACTCTGGTAGGACGAGAT -ACGGAAACTCTGGTAGGATACCAC -ACGGAAACTCTGGTAGGACAGAAC -ACGGAAACTCTGGTAGGAGTCTAC -ACGGAAACTCTGGTAGGAACGTAC -ACGGAAACTCTGGTAGGAAGTGAC -ACGGAAACTCTGGTAGGACTGTAG -ACGGAAACTCTGGTAGGACCTAAG -ACGGAAACTCTGGTAGGAGTTCAG -ACGGAAACTCTGGTAGGAGCATAG -ACGGAAACTCTGGTAGGAGACAAG -ACGGAAACTCTGGTAGGAAAGCAG -ACGGAAACTCTGGTAGGACGTCAA -ACGGAAACTCTGGTAGGAGCTGAA -ACGGAAACTCTGGTAGGAAGTACG -ACGGAAACTCTGGTAGGAATCCGA -ACGGAAACTCTGGTAGGAATGGGA -ACGGAAACTCTGGTAGGAGTGCAA -ACGGAAACTCTGGTAGGAGAGGAA -ACGGAAACTCTGGTAGGACAGGTA -ACGGAAACTCTGGTAGGAGACTCT -ACGGAAACTCTGGTAGGAAGTCCT -ACGGAAACTCTGGTAGGATAAGCC -ACGGAAACTCTGGTAGGAATAGCC -ACGGAAACTCTGGTAGGATAACCG -ACGGAAACTCTGGTAGGAATGCCA -ACGGAAACTCTGTCTTCGGGAAAC -ACGGAAACTCTGTCTTCGAACACC -ACGGAAACTCTGTCTTCGATCGAG -ACGGAAACTCTGTCTTCGCTCCTT -ACGGAAACTCTGTCTTCGCCTGTT -ACGGAAACTCTGTCTTCGCGGTTT -ACGGAAACTCTGTCTTCGGTGGTT -ACGGAAACTCTGTCTTCGGCCTTT -ACGGAAACTCTGTCTTCGGGTCTT -ACGGAAACTCTGTCTTCGACGCTT -ACGGAAACTCTGTCTTCGAGCGTT -ACGGAAACTCTGTCTTCGTTCGTC -ACGGAAACTCTGTCTTCGTCTCTC -ACGGAAACTCTGTCTTCGTGGATC -ACGGAAACTCTGTCTTCGCACTTC -ACGGAAACTCTGTCTTCGGTACTC -ACGGAAACTCTGTCTTCGGATGTC -ACGGAAACTCTGTCTTCGACAGTC -ACGGAAACTCTGTCTTCGTTGCTG -ACGGAAACTCTGTCTTCGTCCATG -ACGGAAACTCTGTCTTCGTGTGTG -ACGGAAACTCTGTCTTCGCTAGTG -ACGGAAACTCTGTCTTCGCATCTG -ACGGAAACTCTGTCTTCGGAGTTG -ACGGAAACTCTGTCTTCGAGACTG -ACGGAAACTCTGTCTTCGTCGGTA -ACGGAAACTCTGTCTTCGTGCCTA -ACGGAAACTCTGTCTTCGCCACTA -ACGGAAACTCTGTCTTCGGGAGTA -ACGGAAACTCTGTCTTCGTCGTCT -ACGGAAACTCTGTCTTCGTGCACT -ACGGAAACTCTGTCTTCGCTGACT -ACGGAAACTCTGTCTTCGCAACCT -ACGGAAACTCTGTCTTCGGCTACT -ACGGAAACTCTGTCTTCGGGATCT -ACGGAAACTCTGTCTTCGAAGGCT -ACGGAAACTCTGTCTTCGTCAACC -ACGGAAACTCTGTCTTCGTGTTCC -ACGGAAACTCTGTCTTCGATTCCC -ACGGAAACTCTGTCTTCGTTCTCG -ACGGAAACTCTGTCTTCGTAGACG -ACGGAAACTCTGTCTTCGGTAACG -ACGGAAACTCTGTCTTCGACTTCG -ACGGAAACTCTGTCTTCGTACGCA -ACGGAAACTCTGTCTTCGCTTGCA -ACGGAAACTCTGTCTTCGCGAACA -ACGGAAACTCTGTCTTCGCAGTCA -ACGGAAACTCTGTCTTCGGATCCA -ACGGAAACTCTGTCTTCGACGACA -ACGGAAACTCTGTCTTCGAGCTCA -ACGGAAACTCTGTCTTCGTCACGT -ACGGAAACTCTGTCTTCGCGTAGT -ACGGAAACTCTGTCTTCGGTCAGT -ACGGAAACTCTGTCTTCGGAAGGT -ACGGAAACTCTGTCTTCGAACCGT -ACGGAAACTCTGTCTTCGTTGTGC -ACGGAAACTCTGTCTTCGCTAAGC -ACGGAAACTCTGTCTTCGACTAGC -ACGGAAACTCTGTCTTCGAGATGC -ACGGAAACTCTGTCTTCGTGAAGG -ACGGAAACTCTGTCTTCGCAATGG -ACGGAAACTCTGTCTTCGATGAGG -ACGGAAACTCTGTCTTCGAATGGG -ACGGAAACTCTGTCTTCGTCCTGA -ACGGAAACTCTGTCTTCGTAGCGA -ACGGAAACTCTGTCTTCGCACAGA -ACGGAAACTCTGTCTTCGGCAAGA -ACGGAAACTCTGTCTTCGGGTTGA -ACGGAAACTCTGTCTTCGTCCGAT -ACGGAAACTCTGTCTTCGTGGCAT -ACGGAAACTCTGTCTTCGCGAGAT -ACGGAAACTCTGTCTTCGTACCAC -ACGGAAACTCTGTCTTCGCAGAAC -ACGGAAACTCTGTCTTCGGTCTAC -ACGGAAACTCTGTCTTCGACGTAC -ACGGAAACTCTGTCTTCGAGTGAC -ACGGAAACTCTGTCTTCGCTGTAG -ACGGAAACTCTGTCTTCGCCTAAG -ACGGAAACTCTGTCTTCGGTTCAG -ACGGAAACTCTGTCTTCGGCATAG -ACGGAAACTCTGTCTTCGGACAAG -ACGGAAACTCTGTCTTCGAAGCAG -ACGGAAACTCTGTCTTCGCGTCAA -ACGGAAACTCTGTCTTCGGCTGAA -ACGGAAACTCTGTCTTCGAGTACG -ACGGAAACTCTGTCTTCGATCCGA -ACGGAAACTCTGTCTTCGATGGGA -ACGGAAACTCTGTCTTCGGTGCAA -ACGGAAACTCTGTCTTCGGAGGAA -ACGGAAACTCTGTCTTCGCAGGTA -ACGGAAACTCTGTCTTCGGACTCT -ACGGAAACTCTGTCTTCGAGTCCT -ACGGAAACTCTGTCTTCGTAAGCC -ACGGAAACTCTGTCTTCGATAGCC -ACGGAAACTCTGTCTTCGTAACCG -ACGGAAACTCTGTCTTCGATGCCA -ACGGAAACTCTGACTTGCGGAAAC -ACGGAAACTCTGACTTGCAACACC -ACGGAAACTCTGACTTGCATCGAG -ACGGAAACTCTGACTTGCCTCCTT -ACGGAAACTCTGACTTGCCCTGTT -ACGGAAACTCTGACTTGCCGGTTT -ACGGAAACTCTGACTTGCGTGGTT -ACGGAAACTCTGACTTGCGCCTTT -ACGGAAACTCTGACTTGCGGTCTT -ACGGAAACTCTGACTTGCACGCTT -ACGGAAACTCTGACTTGCAGCGTT -ACGGAAACTCTGACTTGCTTCGTC -ACGGAAACTCTGACTTGCTCTCTC -ACGGAAACTCTGACTTGCTGGATC -ACGGAAACTCTGACTTGCCACTTC -ACGGAAACTCTGACTTGCGTACTC -ACGGAAACTCTGACTTGCGATGTC -ACGGAAACTCTGACTTGCACAGTC -ACGGAAACTCTGACTTGCTTGCTG -ACGGAAACTCTGACTTGCTCCATG -ACGGAAACTCTGACTTGCTGTGTG -ACGGAAACTCTGACTTGCCTAGTG -ACGGAAACTCTGACTTGCCATCTG -ACGGAAACTCTGACTTGCGAGTTG -ACGGAAACTCTGACTTGCAGACTG -ACGGAAACTCTGACTTGCTCGGTA -ACGGAAACTCTGACTTGCTGCCTA -ACGGAAACTCTGACTTGCCCACTA -ACGGAAACTCTGACTTGCGGAGTA -ACGGAAACTCTGACTTGCTCGTCT -ACGGAAACTCTGACTTGCTGCACT -ACGGAAACTCTGACTTGCCTGACT -ACGGAAACTCTGACTTGCCAACCT -ACGGAAACTCTGACTTGCGCTACT -ACGGAAACTCTGACTTGCGGATCT -ACGGAAACTCTGACTTGCAAGGCT -ACGGAAACTCTGACTTGCTCAACC -ACGGAAACTCTGACTTGCTGTTCC -ACGGAAACTCTGACTTGCATTCCC -ACGGAAACTCTGACTTGCTTCTCG -ACGGAAACTCTGACTTGCTAGACG -ACGGAAACTCTGACTTGCGTAACG -ACGGAAACTCTGACTTGCACTTCG -ACGGAAACTCTGACTTGCTACGCA -ACGGAAACTCTGACTTGCCTTGCA -ACGGAAACTCTGACTTGCCGAACA -ACGGAAACTCTGACTTGCCAGTCA -ACGGAAACTCTGACTTGCGATCCA -ACGGAAACTCTGACTTGCACGACA -ACGGAAACTCTGACTTGCAGCTCA -ACGGAAACTCTGACTTGCTCACGT -ACGGAAACTCTGACTTGCCGTAGT -ACGGAAACTCTGACTTGCGTCAGT -ACGGAAACTCTGACTTGCGAAGGT -ACGGAAACTCTGACTTGCAACCGT -ACGGAAACTCTGACTTGCTTGTGC -ACGGAAACTCTGACTTGCCTAAGC -ACGGAAACTCTGACTTGCACTAGC -ACGGAAACTCTGACTTGCAGATGC -ACGGAAACTCTGACTTGCTGAAGG -ACGGAAACTCTGACTTGCCAATGG -ACGGAAACTCTGACTTGCATGAGG -ACGGAAACTCTGACTTGCAATGGG -ACGGAAACTCTGACTTGCTCCTGA -ACGGAAACTCTGACTTGCTAGCGA -ACGGAAACTCTGACTTGCCACAGA -ACGGAAACTCTGACTTGCGCAAGA -ACGGAAACTCTGACTTGCGGTTGA -ACGGAAACTCTGACTTGCTCCGAT -ACGGAAACTCTGACTTGCTGGCAT -ACGGAAACTCTGACTTGCCGAGAT -ACGGAAACTCTGACTTGCTACCAC -ACGGAAACTCTGACTTGCCAGAAC -ACGGAAACTCTGACTTGCGTCTAC -ACGGAAACTCTGACTTGCACGTAC -ACGGAAACTCTGACTTGCAGTGAC -ACGGAAACTCTGACTTGCCTGTAG -ACGGAAACTCTGACTTGCCCTAAG -ACGGAAACTCTGACTTGCGTTCAG -ACGGAAACTCTGACTTGCGCATAG -ACGGAAACTCTGACTTGCGACAAG -ACGGAAACTCTGACTTGCAAGCAG -ACGGAAACTCTGACTTGCCGTCAA -ACGGAAACTCTGACTTGCGCTGAA -ACGGAAACTCTGACTTGCAGTACG -ACGGAAACTCTGACTTGCATCCGA -ACGGAAACTCTGACTTGCATGGGA -ACGGAAACTCTGACTTGCGTGCAA -ACGGAAACTCTGACTTGCGAGGAA -ACGGAAACTCTGACTTGCCAGGTA -ACGGAAACTCTGACTTGCGACTCT -ACGGAAACTCTGACTTGCAGTCCT -ACGGAAACTCTGACTTGCTAAGCC -ACGGAAACTCTGACTTGCATAGCC -ACGGAAACTCTGACTTGCTAACCG -ACGGAAACTCTGACTTGCATGCCA -ACGGAAACTCTGACTCTGGGAAAC -ACGGAAACTCTGACTCTGAACACC -ACGGAAACTCTGACTCTGATCGAG -ACGGAAACTCTGACTCTGCTCCTT -ACGGAAACTCTGACTCTGCCTGTT -ACGGAAACTCTGACTCTGCGGTTT -ACGGAAACTCTGACTCTGGTGGTT -ACGGAAACTCTGACTCTGGCCTTT -ACGGAAACTCTGACTCTGGGTCTT -ACGGAAACTCTGACTCTGACGCTT -ACGGAAACTCTGACTCTGAGCGTT -ACGGAAACTCTGACTCTGTTCGTC -ACGGAAACTCTGACTCTGTCTCTC -ACGGAAACTCTGACTCTGTGGATC -ACGGAAACTCTGACTCTGCACTTC -ACGGAAACTCTGACTCTGGTACTC -ACGGAAACTCTGACTCTGGATGTC -ACGGAAACTCTGACTCTGACAGTC -ACGGAAACTCTGACTCTGTTGCTG -ACGGAAACTCTGACTCTGTCCATG -ACGGAAACTCTGACTCTGTGTGTG -ACGGAAACTCTGACTCTGCTAGTG -ACGGAAACTCTGACTCTGCATCTG -ACGGAAACTCTGACTCTGGAGTTG -ACGGAAACTCTGACTCTGAGACTG -ACGGAAACTCTGACTCTGTCGGTA -ACGGAAACTCTGACTCTGTGCCTA -ACGGAAACTCTGACTCTGCCACTA -ACGGAAACTCTGACTCTGGGAGTA -ACGGAAACTCTGACTCTGTCGTCT -ACGGAAACTCTGACTCTGTGCACT -ACGGAAACTCTGACTCTGCTGACT -ACGGAAACTCTGACTCTGCAACCT -ACGGAAACTCTGACTCTGGCTACT -ACGGAAACTCTGACTCTGGGATCT -ACGGAAACTCTGACTCTGAAGGCT -ACGGAAACTCTGACTCTGTCAACC -ACGGAAACTCTGACTCTGTGTTCC -ACGGAAACTCTGACTCTGATTCCC -ACGGAAACTCTGACTCTGTTCTCG -ACGGAAACTCTGACTCTGTAGACG -ACGGAAACTCTGACTCTGGTAACG -ACGGAAACTCTGACTCTGACTTCG -ACGGAAACTCTGACTCTGTACGCA -ACGGAAACTCTGACTCTGCTTGCA -ACGGAAACTCTGACTCTGCGAACA -ACGGAAACTCTGACTCTGCAGTCA -ACGGAAACTCTGACTCTGGATCCA -ACGGAAACTCTGACTCTGACGACA -ACGGAAACTCTGACTCTGAGCTCA -ACGGAAACTCTGACTCTGTCACGT -ACGGAAACTCTGACTCTGCGTAGT -ACGGAAACTCTGACTCTGGTCAGT -ACGGAAACTCTGACTCTGGAAGGT -ACGGAAACTCTGACTCTGAACCGT -ACGGAAACTCTGACTCTGTTGTGC -ACGGAAACTCTGACTCTGCTAAGC -ACGGAAACTCTGACTCTGACTAGC -ACGGAAACTCTGACTCTGAGATGC -ACGGAAACTCTGACTCTGTGAAGG -ACGGAAACTCTGACTCTGCAATGG -ACGGAAACTCTGACTCTGATGAGG -ACGGAAACTCTGACTCTGAATGGG -ACGGAAACTCTGACTCTGTCCTGA -ACGGAAACTCTGACTCTGTAGCGA -ACGGAAACTCTGACTCTGCACAGA -ACGGAAACTCTGACTCTGGCAAGA -ACGGAAACTCTGACTCTGGGTTGA -ACGGAAACTCTGACTCTGTCCGAT -ACGGAAACTCTGACTCTGTGGCAT -ACGGAAACTCTGACTCTGCGAGAT -ACGGAAACTCTGACTCTGTACCAC -ACGGAAACTCTGACTCTGCAGAAC -ACGGAAACTCTGACTCTGGTCTAC -ACGGAAACTCTGACTCTGACGTAC -ACGGAAACTCTGACTCTGAGTGAC -ACGGAAACTCTGACTCTGCTGTAG -ACGGAAACTCTGACTCTGCCTAAG -ACGGAAACTCTGACTCTGGTTCAG -ACGGAAACTCTGACTCTGGCATAG -ACGGAAACTCTGACTCTGGACAAG -ACGGAAACTCTGACTCTGAAGCAG -ACGGAAACTCTGACTCTGCGTCAA -ACGGAAACTCTGACTCTGGCTGAA -ACGGAAACTCTGACTCTGAGTACG -ACGGAAACTCTGACTCTGATCCGA -ACGGAAACTCTGACTCTGATGGGA -ACGGAAACTCTGACTCTGGTGCAA -ACGGAAACTCTGACTCTGGAGGAA -ACGGAAACTCTGACTCTGCAGGTA -ACGGAAACTCTGACTCTGGACTCT -ACGGAAACTCTGACTCTGAGTCCT -ACGGAAACTCTGACTCTGTAAGCC -ACGGAAACTCTGACTCTGATAGCC -ACGGAAACTCTGACTCTGTAACCG -ACGGAAACTCTGACTCTGATGCCA -ACGGAAACTCTGCCTCAAGGAAAC -ACGGAAACTCTGCCTCAAAACACC -ACGGAAACTCTGCCTCAAATCGAG -ACGGAAACTCTGCCTCAACTCCTT -ACGGAAACTCTGCCTCAACCTGTT -ACGGAAACTCTGCCTCAACGGTTT -ACGGAAACTCTGCCTCAAGTGGTT -ACGGAAACTCTGCCTCAAGCCTTT -ACGGAAACTCTGCCTCAAGGTCTT -ACGGAAACTCTGCCTCAAACGCTT -ACGGAAACTCTGCCTCAAAGCGTT -ACGGAAACTCTGCCTCAATTCGTC -ACGGAAACTCTGCCTCAATCTCTC -ACGGAAACTCTGCCTCAATGGATC -ACGGAAACTCTGCCTCAACACTTC -ACGGAAACTCTGCCTCAAGTACTC -ACGGAAACTCTGCCTCAAGATGTC -ACGGAAACTCTGCCTCAAACAGTC -ACGGAAACTCTGCCTCAATTGCTG -ACGGAAACTCTGCCTCAATCCATG -ACGGAAACTCTGCCTCAATGTGTG -ACGGAAACTCTGCCTCAACTAGTG -ACGGAAACTCTGCCTCAACATCTG -ACGGAAACTCTGCCTCAAGAGTTG -ACGGAAACTCTGCCTCAAAGACTG -ACGGAAACTCTGCCTCAATCGGTA -ACGGAAACTCTGCCTCAATGCCTA -ACGGAAACTCTGCCTCAACCACTA -ACGGAAACTCTGCCTCAAGGAGTA -ACGGAAACTCTGCCTCAATCGTCT -ACGGAAACTCTGCCTCAATGCACT -ACGGAAACTCTGCCTCAACTGACT -ACGGAAACTCTGCCTCAACAACCT -ACGGAAACTCTGCCTCAAGCTACT -ACGGAAACTCTGCCTCAAGGATCT -ACGGAAACTCTGCCTCAAAAGGCT -ACGGAAACTCTGCCTCAATCAACC -ACGGAAACTCTGCCTCAATGTTCC -ACGGAAACTCTGCCTCAAATTCCC -ACGGAAACTCTGCCTCAATTCTCG -ACGGAAACTCTGCCTCAATAGACG -ACGGAAACTCTGCCTCAAGTAACG -ACGGAAACTCTGCCTCAAACTTCG -ACGGAAACTCTGCCTCAATACGCA -ACGGAAACTCTGCCTCAACTTGCA -ACGGAAACTCTGCCTCAACGAACA -ACGGAAACTCTGCCTCAACAGTCA -ACGGAAACTCTGCCTCAAGATCCA -ACGGAAACTCTGCCTCAAACGACA -ACGGAAACTCTGCCTCAAAGCTCA -ACGGAAACTCTGCCTCAATCACGT -ACGGAAACTCTGCCTCAACGTAGT -ACGGAAACTCTGCCTCAAGTCAGT -ACGGAAACTCTGCCTCAAGAAGGT -ACGGAAACTCTGCCTCAAAACCGT -ACGGAAACTCTGCCTCAATTGTGC -ACGGAAACTCTGCCTCAACTAAGC -ACGGAAACTCTGCCTCAAACTAGC -ACGGAAACTCTGCCTCAAAGATGC -ACGGAAACTCTGCCTCAATGAAGG -ACGGAAACTCTGCCTCAACAATGG -ACGGAAACTCTGCCTCAAATGAGG -ACGGAAACTCTGCCTCAAAATGGG -ACGGAAACTCTGCCTCAATCCTGA -ACGGAAACTCTGCCTCAATAGCGA -ACGGAAACTCTGCCTCAACACAGA -ACGGAAACTCTGCCTCAAGCAAGA -ACGGAAACTCTGCCTCAAGGTTGA -ACGGAAACTCTGCCTCAATCCGAT -ACGGAAACTCTGCCTCAATGGCAT -ACGGAAACTCTGCCTCAACGAGAT -ACGGAAACTCTGCCTCAATACCAC -ACGGAAACTCTGCCTCAACAGAAC -ACGGAAACTCTGCCTCAAGTCTAC -ACGGAAACTCTGCCTCAAACGTAC -ACGGAAACTCTGCCTCAAAGTGAC -ACGGAAACTCTGCCTCAACTGTAG -ACGGAAACTCTGCCTCAACCTAAG -ACGGAAACTCTGCCTCAAGTTCAG -ACGGAAACTCTGCCTCAAGCATAG -ACGGAAACTCTGCCTCAAGACAAG -ACGGAAACTCTGCCTCAAAAGCAG -ACGGAAACTCTGCCTCAACGTCAA -ACGGAAACTCTGCCTCAAGCTGAA -ACGGAAACTCTGCCTCAAAGTACG -ACGGAAACTCTGCCTCAAATCCGA -ACGGAAACTCTGCCTCAAATGGGA -ACGGAAACTCTGCCTCAAGTGCAA -ACGGAAACTCTGCCTCAAGAGGAA -ACGGAAACTCTGCCTCAACAGGTA -ACGGAAACTCTGCCTCAAGACTCT -ACGGAAACTCTGCCTCAAAGTCCT -ACGGAAACTCTGCCTCAATAAGCC -ACGGAAACTCTGCCTCAAATAGCC -ACGGAAACTCTGCCTCAATAACCG -ACGGAAACTCTGCCTCAAATGCCA -ACGGAAACTCTGACTGCTGGAAAC -ACGGAAACTCTGACTGCTAACACC -ACGGAAACTCTGACTGCTATCGAG -ACGGAAACTCTGACTGCTCTCCTT -ACGGAAACTCTGACTGCTCCTGTT -ACGGAAACTCTGACTGCTCGGTTT -ACGGAAACTCTGACTGCTGTGGTT -ACGGAAACTCTGACTGCTGCCTTT -ACGGAAACTCTGACTGCTGGTCTT -ACGGAAACTCTGACTGCTACGCTT -ACGGAAACTCTGACTGCTAGCGTT -ACGGAAACTCTGACTGCTTTCGTC -ACGGAAACTCTGACTGCTTCTCTC -ACGGAAACTCTGACTGCTTGGATC -ACGGAAACTCTGACTGCTCACTTC -ACGGAAACTCTGACTGCTGTACTC -ACGGAAACTCTGACTGCTGATGTC -ACGGAAACTCTGACTGCTACAGTC -ACGGAAACTCTGACTGCTTTGCTG -ACGGAAACTCTGACTGCTTCCATG -ACGGAAACTCTGACTGCTTGTGTG -ACGGAAACTCTGACTGCTCTAGTG -ACGGAAACTCTGACTGCTCATCTG -ACGGAAACTCTGACTGCTGAGTTG -ACGGAAACTCTGACTGCTAGACTG -ACGGAAACTCTGACTGCTTCGGTA -ACGGAAACTCTGACTGCTTGCCTA -ACGGAAACTCTGACTGCTCCACTA -ACGGAAACTCTGACTGCTGGAGTA -ACGGAAACTCTGACTGCTTCGTCT -ACGGAAACTCTGACTGCTTGCACT -ACGGAAACTCTGACTGCTCTGACT -ACGGAAACTCTGACTGCTCAACCT -ACGGAAACTCTGACTGCTGCTACT -ACGGAAACTCTGACTGCTGGATCT -ACGGAAACTCTGACTGCTAAGGCT -ACGGAAACTCTGACTGCTTCAACC -ACGGAAACTCTGACTGCTTGTTCC -ACGGAAACTCTGACTGCTATTCCC -ACGGAAACTCTGACTGCTTTCTCG -ACGGAAACTCTGACTGCTTAGACG -ACGGAAACTCTGACTGCTGTAACG -ACGGAAACTCTGACTGCTACTTCG -ACGGAAACTCTGACTGCTTACGCA -ACGGAAACTCTGACTGCTCTTGCA -ACGGAAACTCTGACTGCTCGAACA -ACGGAAACTCTGACTGCTCAGTCA -ACGGAAACTCTGACTGCTGATCCA -ACGGAAACTCTGACTGCTACGACA -ACGGAAACTCTGACTGCTAGCTCA -ACGGAAACTCTGACTGCTTCACGT -ACGGAAACTCTGACTGCTCGTAGT -ACGGAAACTCTGACTGCTGTCAGT -ACGGAAACTCTGACTGCTGAAGGT -ACGGAAACTCTGACTGCTAACCGT -ACGGAAACTCTGACTGCTTTGTGC -ACGGAAACTCTGACTGCTCTAAGC -ACGGAAACTCTGACTGCTACTAGC -ACGGAAACTCTGACTGCTAGATGC -ACGGAAACTCTGACTGCTTGAAGG -ACGGAAACTCTGACTGCTCAATGG -ACGGAAACTCTGACTGCTATGAGG -ACGGAAACTCTGACTGCTAATGGG -ACGGAAACTCTGACTGCTTCCTGA -ACGGAAACTCTGACTGCTTAGCGA -ACGGAAACTCTGACTGCTCACAGA -ACGGAAACTCTGACTGCTGCAAGA -ACGGAAACTCTGACTGCTGGTTGA -ACGGAAACTCTGACTGCTTCCGAT -ACGGAAACTCTGACTGCTTGGCAT -ACGGAAACTCTGACTGCTCGAGAT -ACGGAAACTCTGACTGCTTACCAC -ACGGAAACTCTGACTGCTCAGAAC -ACGGAAACTCTGACTGCTGTCTAC -ACGGAAACTCTGACTGCTACGTAC -ACGGAAACTCTGACTGCTAGTGAC -ACGGAAACTCTGACTGCTCTGTAG -ACGGAAACTCTGACTGCTCCTAAG -ACGGAAACTCTGACTGCTGTTCAG -ACGGAAACTCTGACTGCTGCATAG -ACGGAAACTCTGACTGCTGACAAG -ACGGAAACTCTGACTGCTAAGCAG -ACGGAAACTCTGACTGCTCGTCAA -ACGGAAACTCTGACTGCTGCTGAA -ACGGAAACTCTGACTGCTAGTACG -ACGGAAACTCTGACTGCTATCCGA -ACGGAAACTCTGACTGCTATGGGA -ACGGAAACTCTGACTGCTGTGCAA -ACGGAAACTCTGACTGCTGAGGAA -ACGGAAACTCTGACTGCTCAGGTA -ACGGAAACTCTGACTGCTGACTCT -ACGGAAACTCTGACTGCTAGTCCT -ACGGAAACTCTGACTGCTTAAGCC -ACGGAAACTCTGACTGCTATAGCC -ACGGAAACTCTGACTGCTTAACCG -ACGGAAACTCTGACTGCTATGCCA -ACGGAAACTCTGTCTGGAGGAAAC -ACGGAAACTCTGTCTGGAAACACC -ACGGAAACTCTGTCTGGAATCGAG -ACGGAAACTCTGTCTGGACTCCTT -ACGGAAACTCTGTCTGGACCTGTT -ACGGAAACTCTGTCTGGACGGTTT -ACGGAAACTCTGTCTGGAGTGGTT -ACGGAAACTCTGTCTGGAGCCTTT -ACGGAAACTCTGTCTGGAGGTCTT -ACGGAAACTCTGTCTGGAACGCTT -ACGGAAACTCTGTCTGGAAGCGTT -ACGGAAACTCTGTCTGGATTCGTC -ACGGAAACTCTGTCTGGATCTCTC -ACGGAAACTCTGTCTGGATGGATC -ACGGAAACTCTGTCTGGACACTTC -ACGGAAACTCTGTCTGGAGTACTC -ACGGAAACTCTGTCTGGAGATGTC -ACGGAAACTCTGTCTGGAACAGTC -ACGGAAACTCTGTCTGGATTGCTG -ACGGAAACTCTGTCTGGATCCATG -ACGGAAACTCTGTCTGGATGTGTG -ACGGAAACTCTGTCTGGACTAGTG -ACGGAAACTCTGTCTGGACATCTG -ACGGAAACTCTGTCTGGAGAGTTG -ACGGAAACTCTGTCTGGAAGACTG -ACGGAAACTCTGTCTGGATCGGTA -ACGGAAACTCTGTCTGGATGCCTA -ACGGAAACTCTGTCTGGACCACTA -ACGGAAACTCTGTCTGGAGGAGTA -ACGGAAACTCTGTCTGGATCGTCT -ACGGAAACTCTGTCTGGATGCACT -ACGGAAACTCTGTCTGGACTGACT -ACGGAAACTCTGTCTGGACAACCT -ACGGAAACTCTGTCTGGAGCTACT -ACGGAAACTCTGTCTGGAGGATCT -ACGGAAACTCTGTCTGGAAAGGCT -ACGGAAACTCTGTCTGGATCAACC -ACGGAAACTCTGTCTGGATGTTCC -ACGGAAACTCTGTCTGGAATTCCC -ACGGAAACTCTGTCTGGATTCTCG -ACGGAAACTCTGTCTGGATAGACG -ACGGAAACTCTGTCTGGAGTAACG -ACGGAAACTCTGTCTGGAACTTCG -ACGGAAACTCTGTCTGGATACGCA -ACGGAAACTCTGTCTGGACTTGCA -ACGGAAACTCTGTCTGGACGAACA -ACGGAAACTCTGTCTGGACAGTCA -ACGGAAACTCTGTCTGGAGATCCA -ACGGAAACTCTGTCTGGAACGACA -ACGGAAACTCTGTCTGGAAGCTCA -ACGGAAACTCTGTCTGGATCACGT -ACGGAAACTCTGTCTGGACGTAGT -ACGGAAACTCTGTCTGGAGTCAGT -ACGGAAACTCTGTCTGGAGAAGGT -ACGGAAACTCTGTCTGGAAACCGT -ACGGAAACTCTGTCTGGATTGTGC -ACGGAAACTCTGTCTGGACTAAGC -ACGGAAACTCTGTCTGGAACTAGC -ACGGAAACTCTGTCTGGAAGATGC -ACGGAAACTCTGTCTGGATGAAGG -ACGGAAACTCTGTCTGGACAATGG -ACGGAAACTCTGTCTGGAATGAGG -ACGGAAACTCTGTCTGGAAATGGG -ACGGAAACTCTGTCTGGATCCTGA -ACGGAAACTCTGTCTGGATAGCGA -ACGGAAACTCTGTCTGGACACAGA -ACGGAAACTCTGTCTGGAGCAAGA -ACGGAAACTCTGTCTGGAGGTTGA -ACGGAAACTCTGTCTGGATCCGAT -ACGGAAACTCTGTCTGGATGGCAT -ACGGAAACTCTGTCTGGACGAGAT -ACGGAAACTCTGTCTGGATACCAC -ACGGAAACTCTGTCTGGACAGAAC -ACGGAAACTCTGTCTGGAGTCTAC -ACGGAAACTCTGTCTGGAACGTAC -ACGGAAACTCTGTCTGGAAGTGAC -ACGGAAACTCTGTCTGGACTGTAG -ACGGAAACTCTGTCTGGACCTAAG -ACGGAAACTCTGTCTGGAGTTCAG -ACGGAAACTCTGTCTGGAGCATAG -ACGGAAACTCTGTCTGGAGACAAG -ACGGAAACTCTGTCTGGAAAGCAG -ACGGAAACTCTGTCTGGACGTCAA -ACGGAAACTCTGTCTGGAGCTGAA -ACGGAAACTCTGTCTGGAAGTACG -ACGGAAACTCTGTCTGGAATCCGA -ACGGAAACTCTGTCTGGAATGGGA -ACGGAAACTCTGTCTGGAGTGCAA -ACGGAAACTCTGTCTGGAGAGGAA -ACGGAAACTCTGTCTGGACAGGTA -ACGGAAACTCTGTCTGGAGACTCT -ACGGAAACTCTGTCTGGAAGTCCT -ACGGAAACTCTGTCTGGATAAGCC -ACGGAAACTCTGTCTGGAATAGCC -ACGGAAACTCTGTCTGGATAACCG -ACGGAAACTCTGTCTGGAATGCCA -ACGGAAACTCTGGCTAAGGGAAAC -ACGGAAACTCTGGCTAAGAACACC -ACGGAAACTCTGGCTAAGATCGAG -ACGGAAACTCTGGCTAAGCTCCTT -ACGGAAACTCTGGCTAAGCCTGTT -ACGGAAACTCTGGCTAAGCGGTTT -ACGGAAACTCTGGCTAAGGTGGTT -ACGGAAACTCTGGCTAAGGCCTTT -ACGGAAACTCTGGCTAAGGGTCTT -ACGGAAACTCTGGCTAAGACGCTT -ACGGAAACTCTGGCTAAGAGCGTT -ACGGAAACTCTGGCTAAGTTCGTC -ACGGAAACTCTGGCTAAGTCTCTC -ACGGAAACTCTGGCTAAGTGGATC -ACGGAAACTCTGGCTAAGCACTTC -ACGGAAACTCTGGCTAAGGTACTC -ACGGAAACTCTGGCTAAGGATGTC -ACGGAAACTCTGGCTAAGACAGTC -ACGGAAACTCTGGCTAAGTTGCTG -ACGGAAACTCTGGCTAAGTCCATG -ACGGAAACTCTGGCTAAGTGTGTG -ACGGAAACTCTGGCTAAGCTAGTG -ACGGAAACTCTGGCTAAGCATCTG -ACGGAAACTCTGGCTAAGGAGTTG -ACGGAAACTCTGGCTAAGAGACTG -ACGGAAACTCTGGCTAAGTCGGTA -ACGGAAACTCTGGCTAAGTGCCTA -ACGGAAACTCTGGCTAAGCCACTA -ACGGAAACTCTGGCTAAGGGAGTA -ACGGAAACTCTGGCTAAGTCGTCT -ACGGAAACTCTGGCTAAGTGCACT -ACGGAAACTCTGGCTAAGCTGACT -ACGGAAACTCTGGCTAAGCAACCT -ACGGAAACTCTGGCTAAGGCTACT -ACGGAAACTCTGGCTAAGGGATCT -ACGGAAACTCTGGCTAAGAAGGCT -ACGGAAACTCTGGCTAAGTCAACC -ACGGAAACTCTGGCTAAGTGTTCC -ACGGAAACTCTGGCTAAGATTCCC -ACGGAAACTCTGGCTAAGTTCTCG -ACGGAAACTCTGGCTAAGTAGACG -ACGGAAACTCTGGCTAAGGTAACG -ACGGAAACTCTGGCTAAGACTTCG -ACGGAAACTCTGGCTAAGTACGCA -ACGGAAACTCTGGCTAAGCTTGCA -ACGGAAACTCTGGCTAAGCGAACA -ACGGAAACTCTGGCTAAGCAGTCA -ACGGAAACTCTGGCTAAGGATCCA -ACGGAAACTCTGGCTAAGACGACA -ACGGAAACTCTGGCTAAGAGCTCA -ACGGAAACTCTGGCTAAGTCACGT -ACGGAAACTCTGGCTAAGCGTAGT -ACGGAAACTCTGGCTAAGGTCAGT -ACGGAAACTCTGGCTAAGGAAGGT -ACGGAAACTCTGGCTAAGAACCGT -ACGGAAACTCTGGCTAAGTTGTGC -ACGGAAACTCTGGCTAAGCTAAGC -ACGGAAACTCTGGCTAAGACTAGC -ACGGAAACTCTGGCTAAGAGATGC -ACGGAAACTCTGGCTAAGTGAAGG -ACGGAAACTCTGGCTAAGCAATGG -ACGGAAACTCTGGCTAAGATGAGG -ACGGAAACTCTGGCTAAGAATGGG -ACGGAAACTCTGGCTAAGTCCTGA -ACGGAAACTCTGGCTAAGTAGCGA -ACGGAAACTCTGGCTAAGCACAGA -ACGGAAACTCTGGCTAAGGCAAGA -ACGGAAACTCTGGCTAAGGGTTGA -ACGGAAACTCTGGCTAAGTCCGAT -ACGGAAACTCTGGCTAAGTGGCAT -ACGGAAACTCTGGCTAAGCGAGAT -ACGGAAACTCTGGCTAAGTACCAC -ACGGAAACTCTGGCTAAGCAGAAC -ACGGAAACTCTGGCTAAGGTCTAC -ACGGAAACTCTGGCTAAGACGTAC -ACGGAAACTCTGGCTAAGAGTGAC -ACGGAAACTCTGGCTAAGCTGTAG -ACGGAAACTCTGGCTAAGCCTAAG -ACGGAAACTCTGGCTAAGGTTCAG -ACGGAAACTCTGGCTAAGGCATAG -ACGGAAACTCTGGCTAAGGACAAG -ACGGAAACTCTGGCTAAGAAGCAG -ACGGAAACTCTGGCTAAGCGTCAA -ACGGAAACTCTGGCTAAGGCTGAA -ACGGAAACTCTGGCTAAGAGTACG -ACGGAAACTCTGGCTAAGATCCGA -ACGGAAACTCTGGCTAAGATGGGA -ACGGAAACTCTGGCTAAGGTGCAA -ACGGAAACTCTGGCTAAGGAGGAA -ACGGAAACTCTGGCTAAGCAGGTA -ACGGAAACTCTGGCTAAGGACTCT -ACGGAAACTCTGGCTAAGAGTCCT -ACGGAAACTCTGGCTAAGTAAGCC -ACGGAAACTCTGGCTAAGATAGCC -ACGGAAACTCTGGCTAAGTAACCG -ACGGAAACTCTGGCTAAGATGCCA -ACGGAAACTCTGACCTCAGGAAAC -ACGGAAACTCTGACCTCAAACACC -ACGGAAACTCTGACCTCAATCGAG -ACGGAAACTCTGACCTCACTCCTT -ACGGAAACTCTGACCTCACCTGTT -ACGGAAACTCTGACCTCACGGTTT -ACGGAAACTCTGACCTCAGTGGTT -ACGGAAACTCTGACCTCAGCCTTT -ACGGAAACTCTGACCTCAGGTCTT -ACGGAAACTCTGACCTCAACGCTT -ACGGAAACTCTGACCTCAAGCGTT -ACGGAAACTCTGACCTCATTCGTC -ACGGAAACTCTGACCTCATCTCTC -ACGGAAACTCTGACCTCATGGATC -ACGGAAACTCTGACCTCACACTTC -ACGGAAACTCTGACCTCAGTACTC -ACGGAAACTCTGACCTCAGATGTC -ACGGAAACTCTGACCTCAACAGTC -ACGGAAACTCTGACCTCATTGCTG -ACGGAAACTCTGACCTCATCCATG -ACGGAAACTCTGACCTCATGTGTG -ACGGAAACTCTGACCTCACTAGTG -ACGGAAACTCTGACCTCACATCTG -ACGGAAACTCTGACCTCAGAGTTG -ACGGAAACTCTGACCTCAAGACTG -ACGGAAACTCTGACCTCATCGGTA -ACGGAAACTCTGACCTCATGCCTA -ACGGAAACTCTGACCTCACCACTA -ACGGAAACTCTGACCTCAGGAGTA -ACGGAAACTCTGACCTCATCGTCT -ACGGAAACTCTGACCTCATGCACT -ACGGAAACTCTGACCTCACTGACT -ACGGAAACTCTGACCTCACAACCT -ACGGAAACTCTGACCTCAGCTACT -ACGGAAACTCTGACCTCAGGATCT -ACGGAAACTCTGACCTCAAAGGCT -ACGGAAACTCTGACCTCATCAACC -ACGGAAACTCTGACCTCATGTTCC -ACGGAAACTCTGACCTCAATTCCC -ACGGAAACTCTGACCTCATTCTCG -ACGGAAACTCTGACCTCATAGACG -ACGGAAACTCTGACCTCAGTAACG -ACGGAAACTCTGACCTCAACTTCG -ACGGAAACTCTGACCTCATACGCA -ACGGAAACTCTGACCTCACTTGCA -ACGGAAACTCTGACCTCACGAACA -ACGGAAACTCTGACCTCACAGTCA -ACGGAAACTCTGACCTCAGATCCA -ACGGAAACTCTGACCTCAACGACA -ACGGAAACTCTGACCTCAAGCTCA -ACGGAAACTCTGACCTCATCACGT -ACGGAAACTCTGACCTCACGTAGT -ACGGAAACTCTGACCTCAGTCAGT -ACGGAAACTCTGACCTCAGAAGGT -ACGGAAACTCTGACCTCAAACCGT -ACGGAAACTCTGACCTCATTGTGC -ACGGAAACTCTGACCTCACTAAGC -ACGGAAACTCTGACCTCAACTAGC -ACGGAAACTCTGACCTCAAGATGC -ACGGAAACTCTGACCTCATGAAGG -ACGGAAACTCTGACCTCACAATGG -ACGGAAACTCTGACCTCAATGAGG -ACGGAAACTCTGACCTCAAATGGG -ACGGAAACTCTGACCTCATCCTGA -ACGGAAACTCTGACCTCATAGCGA -ACGGAAACTCTGACCTCACACAGA -ACGGAAACTCTGACCTCAGCAAGA -ACGGAAACTCTGACCTCAGGTTGA -ACGGAAACTCTGACCTCATCCGAT -ACGGAAACTCTGACCTCATGGCAT -ACGGAAACTCTGACCTCACGAGAT -ACGGAAACTCTGACCTCATACCAC -ACGGAAACTCTGACCTCACAGAAC -ACGGAAACTCTGACCTCAGTCTAC -ACGGAAACTCTGACCTCAACGTAC -ACGGAAACTCTGACCTCAAGTGAC -ACGGAAACTCTGACCTCACTGTAG -ACGGAAACTCTGACCTCACCTAAG -ACGGAAACTCTGACCTCAGTTCAG -ACGGAAACTCTGACCTCAGCATAG -ACGGAAACTCTGACCTCAGACAAG -ACGGAAACTCTGACCTCAAAGCAG -ACGGAAACTCTGACCTCACGTCAA -ACGGAAACTCTGACCTCAGCTGAA -ACGGAAACTCTGACCTCAAGTACG -ACGGAAACTCTGACCTCAATCCGA -ACGGAAACTCTGACCTCAATGGGA -ACGGAAACTCTGACCTCAGTGCAA -ACGGAAACTCTGACCTCAGAGGAA -ACGGAAACTCTGACCTCACAGGTA -ACGGAAACTCTGACCTCAGACTCT -ACGGAAACTCTGACCTCAAGTCCT -ACGGAAACTCTGACCTCATAAGCC -ACGGAAACTCTGACCTCAATAGCC -ACGGAAACTCTGACCTCATAACCG -ACGGAAACTCTGACCTCAATGCCA -ACGGAAACTCTGTCCTGTGGAAAC -ACGGAAACTCTGTCCTGTAACACC -ACGGAAACTCTGTCCTGTATCGAG -ACGGAAACTCTGTCCTGTCTCCTT -ACGGAAACTCTGTCCTGTCCTGTT -ACGGAAACTCTGTCCTGTCGGTTT -ACGGAAACTCTGTCCTGTGTGGTT -ACGGAAACTCTGTCCTGTGCCTTT -ACGGAAACTCTGTCCTGTGGTCTT -ACGGAAACTCTGTCCTGTACGCTT -ACGGAAACTCTGTCCTGTAGCGTT -ACGGAAACTCTGTCCTGTTTCGTC -ACGGAAACTCTGTCCTGTTCTCTC -ACGGAAACTCTGTCCTGTTGGATC -ACGGAAACTCTGTCCTGTCACTTC -ACGGAAACTCTGTCCTGTGTACTC -ACGGAAACTCTGTCCTGTGATGTC -ACGGAAACTCTGTCCTGTACAGTC -ACGGAAACTCTGTCCTGTTTGCTG -ACGGAAACTCTGTCCTGTTCCATG -ACGGAAACTCTGTCCTGTTGTGTG -ACGGAAACTCTGTCCTGTCTAGTG -ACGGAAACTCTGTCCTGTCATCTG -ACGGAAACTCTGTCCTGTGAGTTG -ACGGAAACTCTGTCCTGTAGACTG -ACGGAAACTCTGTCCTGTTCGGTA -ACGGAAACTCTGTCCTGTTGCCTA -ACGGAAACTCTGTCCTGTCCACTA -ACGGAAACTCTGTCCTGTGGAGTA -ACGGAAACTCTGTCCTGTTCGTCT -ACGGAAACTCTGTCCTGTTGCACT -ACGGAAACTCTGTCCTGTCTGACT -ACGGAAACTCTGTCCTGTCAACCT -ACGGAAACTCTGTCCTGTGCTACT -ACGGAAACTCTGTCCTGTGGATCT -ACGGAAACTCTGTCCTGTAAGGCT -ACGGAAACTCTGTCCTGTTCAACC -ACGGAAACTCTGTCCTGTTGTTCC -ACGGAAACTCTGTCCTGTATTCCC -ACGGAAACTCTGTCCTGTTTCTCG -ACGGAAACTCTGTCCTGTTAGACG -ACGGAAACTCTGTCCTGTGTAACG -ACGGAAACTCTGTCCTGTACTTCG -ACGGAAACTCTGTCCTGTTACGCA -ACGGAAACTCTGTCCTGTCTTGCA -ACGGAAACTCTGTCCTGTCGAACA -ACGGAAACTCTGTCCTGTCAGTCA -ACGGAAACTCTGTCCTGTGATCCA -ACGGAAACTCTGTCCTGTACGACA -ACGGAAACTCTGTCCTGTAGCTCA -ACGGAAACTCTGTCCTGTTCACGT -ACGGAAACTCTGTCCTGTCGTAGT -ACGGAAACTCTGTCCTGTGTCAGT -ACGGAAACTCTGTCCTGTGAAGGT -ACGGAAACTCTGTCCTGTAACCGT -ACGGAAACTCTGTCCTGTTTGTGC -ACGGAAACTCTGTCCTGTCTAAGC -ACGGAAACTCTGTCCTGTACTAGC -ACGGAAACTCTGTCCTGTAGATGC -ACGGAAACTCTGTCCTGTTGAAGG -ACGGAAACTCTGTCCTGTCAATGG -ACGGAAACTCTGTCCTGTATGAGG -ACGGAAACTCTGTCCTGTAATGGG -ACGGAAACTCTGTCCTGTTCCTGA -ACGGAAACTCTGTCCTGTTAGCGA -ACGGAAACTCTGTCCTGTCACAGA -ACGGAAACTCTGTCCTGTGCAAGA -ACGGAAACTCTGTCCTGTGGTTGA -ACGGAAACTCTGTCCTGTTCCGAT -ACGGAAACTCTGTCCTGTTGGCAT -ACGGAAACTCTGTCCTGTCGAGAT -ACGGAAACTCTGTCCTGTTACCAC -ACGGAAACTCTGTCCTGTCAGAAC -ACGGAAACTCTGTCCTGTGTCTAC -ACGGAAACTCTGTCCTGTACGTAC -ACGGAAACTCTGTCCTGTAGTGAC -ACGGAAACTCTGTCCTGTCTGTAG -ACGGAAACTCTGTCCTGTCCTAAG -ACGGAAACTCTGTCCTGTGTTCAG -ACGGAAACTCTGTCCTGTGCATAG -ACGGAAACTCTGTCCTGTGACAAG -ACGGAAACTCTGTCCTGTAAGCAG -ACGGAAACTCTGTCCTGTCGTCAA -ACGGAAACTCTGTCCTGTGCTGAA -ACGGAAACTCTGTCCTGTAGTACG -ACGGAAACTCTGTCCTGTATCCGA -ACGGAAACTCTGTCCTGTATGGGA -ACGGAAACTCTGTCCTGTGTGCAA -ACGGAAACTCTGTCCTGTGAGGAA -ACGGAAACTCTGTCCTGTCAGGTA -ACGGAAACTCTGTCCTGTGACTCT -ACGGAAACTCTGTCCTGTAGTCCT -ACGGAAACTCTGTCCTGTTAAGCC -ACGGAAACTCTGTCCTGTATAGCC -ACGGAAACTCTGTCCTGTTAACCG -ACGGAAACTCTGTCCTGTATGCCA -ACGGAAACTCTGCCCATTGGAAAC -ACGGAAACTCTGCCCATTAACACC -ACGGAAACTCTGCCCATTATCGAG -ACGGAAACTCTGCCCATTCTCCTT -ACGGAAACTCTGCCCATTCCTGTT -ACGGAAACTCTGCCCATTCGGTTT -ACGGAAACTCTGCCCATTGTGGTT -ACGGAAACTCTGCCCATTGCCTTT -ACGGAAACTCTGCCCATTGGTCTT -ACGGAAACTCTGCCCATTACGCTT -ACGGAAACTCTGCCCATTAGCGTT -ACGGAAACTCTGCCCATTTTCGTC -ACGGAAACTCTGCCCATTTCTCTC -ACGGAAACTCTGCCCATTTGGATC -ACGGAAACTCTGCCCATTCACTTC -ACGGAAACTCTGCCCATTGTACTC -ACGGAAACTCTGCCCATTGATGTC -ACGGAAACTCTGCCCATTACAGTC -ACGGAAACTCTGCCCATTTTGCTG -ACGGAAACTCTGCCCATTTCCATG -ACGGAAACTCTGCCCATTTGTGTG -ACGGAAACTCTGCCCATTCTAGTG -ACGGAAACTCTGCCCATTCATCTG -ACGGAAACTCTGCCCATTGAGTTG -ACGGAAACTCTGCCCATTAGACTG -ACGGAAACTCTGCCCATTTCGGTA -ACGGAAACTCTGCCCATTTGCCTA -ACGGAAACTCTGCCCATTCCACTA -ACGGAAACTCTGCCCATTGGAGTA -ACGGAAACTCTGCCCATTTCGTCT -ACGGAAACTCTGCCCATTTGCACT -ACGGAAACTCTGCCCATTCTGACT -ACGGAAACTCTGCCCATTCAACCT -ACGGAAACTCTGCCCATTGCTACT -ACGGAAACTCTGCCCATTGGATCT -ACGGAAACTCTGCCCATTAAGGCT -ACGGAAACTCTGCCCATTTCAACC -ACGGAAACTCTGCCCATTTGTTCC -ACGGAAACTCTGCCCATTATTCCC -ACGGAAACTCTGCCCATTTTCTCG -ACGGAAACTCTGCCCATTTAGACG -ACGGAAACTCTGCCCATTGTAACG -ACGGAAACTCTGCCCATTACTTCG -ACGGAAACTCTGCCCATTTACGCA -ACGGAAACTCTGCCCATTCTTGCA -ACGGAAACTCTGCCCATTCGAACA -ACGGAAACTCTGCCCATTCAGTCA -ACGGAAACTCTGCCCATTGATCCA -ACGGAAACTCTGCCCATTACGACA -ACGGAAACTCTGCCCATTAGCTCA -ACGGAAACTCTGCCCATTTCACGT -ACGGAAACTCTGCCCATTCGTAGT -ACGGAAACTCTGCCCATTGTCAGT -ACGGAAACTCTGCCCATTGAAGGT -ACGGAAACTCTGCCCATTAACCGT -ACGGAAACTCTGCCCATTTTGTGC -ACGGAAACTCTGCCCATTCTAAGC -ACGGAAACTCTGCCCATTACTAGC -ACGGAAACTCTGCCCATTAGATGC -ACGGAAACTCTGCCCATTTGAAGG -ACGGAAACTCTGCCCATTCAATGG -ACGGAAACTCTGCCCATTATGAGG -ACGGAAACTCTGCCCATTAATGGG -ACGGAAACTCTGCCCATTTCCTGA -ACGGAAACTCTGCCCATTTAGCGA -ACGGAAACTCTGCCCATTCACAGA -ACGGAAACTCTGCCCATTGCAAGA -ACGGAAACTCTGCCCATTGGTTGA -ACGGAAACTCTGCCCATTTCCGAT -ACGGAAACTCTGCCCATTTGGCAT -ACGGAAACTCTGCCCATTCGAGAT -ACGGAAACTCTGCCCATTTACCAC -ACGGAAACTCTGCCCATTCAGAAC -ACGGAAACTCTGCCCATTGTCTAC -ACGGAAACTCTGCCCATTACGTAC -ACGGAAACTCTGCCCATTAGTGAC -ACGGAAACTCTGCCCATTCTGTAG -ACGGAAACTCTGCCCATTCCTAAG -ACGGAAACTCTGCCCATTGTTCAG -ACGGAAACTCTGCCCATTGCATAG -ACGGAAACTCTGCCCATTGACAAG -ACGGAAACTCTGCCCATTAAGCAG -ACGGAAACTCTGCCCATTCGTCAA -ACGGAAACTCTGCCCATTGCTGAA -ACGGAAACTCTGCCCATTAGTACG -ACGGAAACTCTGCCCATTATCCGA -ACGGAAACTCTGCCCATTATGGGA -ACGGAAACTCTGCCCATTGTGCAA -ACGGAAACTCTGCCCATTGAGGAA -ACGGAAACTCTGCCCATTCAGGTA -ACGGAAACTCTGCCCATTGACTCT -ACGGAAACTCTGCCCATTAGTCCT -ACGGAAACTCTGCCCATTTAAGCC -ACGGAAACTCTGCCCATTATAGCC -ACGGAAACTCTGCCCATTTAACCG -ACGGAAACTCTGCCCATTATGCCA -ACGGAAACTCTGTCGTTCGGAAAC -ACGGAAACTCTGTCGTTCAACACC -ACGGAAACTCTGTCGTTCATCGAG -ACGGAAACTCTGTCGTTCCTCCTT -ACGGAAACTCTGTCGTTCCCTGTT -ACGGAAACTCTGTCGTTCCGGTTT -ACGGAAACTCTGTCGTTCGTGGTT -ACGGAAACTCTGTCGTTCGCCTTT -ACGGAAACTCTGTCGTTCGGTCTT -ACGGAAACTCTGTCGTTCACGCTT -ACGGAAACTCTGTCGTTCAGCGTT -ACGGAAACTCTGTCGTTCTTCGTC -ACGGAAACTCTGTCGTTCTCTCTC -ACGGAAACTCTGTCGTTCTGGATC -ACGGAAACTCTGTCGTTCCACTTC -ACGGAAACTCTGTCGTTCGTACTC -ACGGAAACTCTGTCGTTCGATGTC -ACGGAAACTCTGTCGTTCACAGTC -ACGGAAACTCTGTCGTTCTTGCTG -ACGGAAACTCTGTCGTTCTCCATG -ACGGAAACTCTGTCGTTCTGTGTG -ACGGAAACTCTGTCGTTCCTAGTG -ACGGAAACTCTGTCGTTCCATCTG -ACGGAAACTCTGTCGTTCGAGTTG -ACGGAAACTCTGTCGTTCAGACTG -ACGGAAACTCTGTCGTTCTCGGTA -ACGGAAACTCTGTCGTTCTGCCTA -ACGGAAACTCTGTCGTTCCCACTA -ACGGAAACTCTGTCGTTCGGAGTA -ACGGAAACTCTGTCGTTCTCGTCT -ACGGAAACTCTGTCGTTCTGCACT -ACGGAAACTCTGTCGTTCCTGACT -ACGGAAACTCTGTCGTTCCAACCT -ACGGAAACTCTGTCGTTCGCTACT -ACGGAAACTCTGTCGTTCGGATCT -ACGGAAACTCTGTCGTTCAAGGCT -ACGGAAACTCTGTCGTTCTCAACC -ACGGAAACTCTGTCGTTCTGTTCC -ACGGAAACTCTGTCGTTCATTCCC -ACGGAAACTCTGTCGTTCTTCTCG -ACGGAAACTCTGTCGTTCTAGACG -ACGGAAACTCTGTCGTTCGTAACG -ACGGAAACTCTGTCGTTCACTTCG -ACGGAAACTCTGTCGTTCTACGCA -ACGGAAACTCTGTCGTTCCTTGCA -ACGGAAACTCTGTCGTTCCGAACA -ACGGAAACTCTGTCGTTCCAGTCA -ACGGAAACTCTGTCGTTCGATCCA -ACGGAAACTCTGTCGTTCACGACA -ACGGAAACTCTGTCGTTCAGCTCA -ACGGAAACTCTGTCGTTCTCACGT -ACGGAAACTCTGTCGTTCCGTAGT -ACGGAAACTCTGTCGTTCGTCAGT -ACGGAAACTCTGTCGTTCGAAGGT -ACGGAAACTCTGTCGTTCAACCGT -ACGGAAACTCTGTCGTTCTTGTGC -ACGGAAACTCTGTCGTTCCTAAGC -ACGGAAACTCTGTCGTTCACTAGC -ACGGAAACTCTGTCGTTCAGATGC -ACGGAAACTCTGTCGTTCTGAAGG -ACGGAAACTCTGTCGTTCCAATGG -ACGGAAACTCTGTCGTTCATGAGG -ACGGAAACTCTGTCGTTCAATGGG -ACGGAAACTCTGTCGTTCTCCTGA -ACGGAAACTCTGTCGTTCTAGCGA -ACGGAAACTCTGTCGTTCCACAGA -ACGGAAACTCTGTCGTTCGCAAGA -ACGGAAACTCTGTCGTTCGGTTGA -ACGGAAACTCTGTCGTTCTCCGAT -ACGGAAACTCTGTCGTTCTGGCAT -ACGGAAACTCTGTCGTTCCGAGAT -ACGGAAACTCTGTCGTTCTACCAC -ACGGAAACTCTGTCGTTCCAGAAC -ACGGAAACTCTGTCGTTCGTCTAC -ACGGAAACTCTGTCGTTCACGTAC -ACGGAAACTCTGTCGTTCAGTGAC -ACGGAAACTCTGTCGTTCCTGTAG -ACGGAAACTCTGTCGTTCCCTAAG -ACGGAAACTCTGTCGTTCGTTCAG -ACGGAAACTCTGTCGTTCGCATAG -ACGGAAACTCTGTCGTTCGACAAG -ACGGAAACTCTGTCGTTCAAGCAG -ACGGAAACTCTGTCGTTCCGTCAA -ACGGAAACTCTGTCGTTCGCTGAA -ACGGAAACTCTGTCGTTCAGTACG -ACGGAAACTCTGTCGTTCATCCGA -ACGGAAACTCTGTCGTTCATGGGA -ACGGAAACTCTGTCGTTCGTGCAA -ACGGAAACTCTGTCGTTCGAGGAA -ACGGAAACTCTGTCGTTCCAGGTA -ACGGAAACTCTGTCGTTCGACTCT -ACGGAAACTCTGTCGTTCAGTCCT -ACGGAAACTCTGTCGTTCTAAGCC -ACGGAAACTCTGTCGTTCATAGCC -ACGGAAACTCTGTCGTTCTAACCG -ACGGAAACTCTGTCGTTCATGCCA -ACGGAAACTCTGACGTAGGGAAAC -ACGGAAACTCTGACGTAGAACACC -ACGGAAACTCTGACGTAGATCGAG -ACGGAAACTCTGACGTAGCTCCTT -ACGGAAACTCTGACGTAGCCTGTT -ACGGAAACTCTGACGTAGCGGTTT -ACGGAAACTCTGACGTAGGTGGTT -ACGGAAACTCTGACGTAGGCCTTT -ACGGAAACTCTGACGTAGGGTCTT -ACGGAAACTCTGACGTAGACGCTT -ACGGAAACTCTGACGTAGAGCGTT -ACGGAAACTCTGACGTAGTTCGTC -ACGGAAACTCTGACGTAGTCTCTC -ACGGAAACTCTGACGTAGTGGATC -ACGGAAACTCTGACGTAGCACTTC -ACGGAAACTCTGACGTAGGTACTC -ACGGAAACTCTGACGTAGGATGTC -ACGGAAACTCTGACGTAGACAGTC -ACGGAAACTCTGACGTAGTTGCTG -ACGGAAACTCTGACGTAGTCCATG -ACGGAAACTCTGACGTAGTGTGTG -ACGGAAACTCTGACGTAGCTAGTG -ACGGAAACTCTGACGTAGCATCTG -ACGGAAACTCTGACGTAGGAGTTG -ACGGAAACTCTGACGTAGAGACTG -ACGGAAACTCTGACGTAGTCGGTA -ACGGAAACTCTGACGTAGTGCCTA -ACGGAAACTCTGACGTAGCCACTA -ACGGAAACTCTGACGTAGGGAGTA -ACGGAAACTCTGACGTAGTCGTCT -ACGGAAACTCTGACGTAGTGCACT -ACGGAAACTCTGACGTAGCTGACT -ACGGAAACTCTGACGTAGCAACCT -ACGGAAACTCTGACGTAGGCTACT -ACGGAAACTCTGACGTAGGGATCT -ACGGAAACTCTGACGTAGAAGGCT -ACGGAAACTCTGACGTAGTCAACC -ACGGAAACTCTGACGTAGTGTTCC -ACGGAAACTCTGACGTAGATTCCC -ACGGAAACTCTGACGTAGTTCTCG -ACGGAAACTCTGACGTAGTAGACG -ACGGAAACTCTGACGTAGGTAACG -ACGGAAACTCTGACGTAGACTTCG -ACGGAAACTCTGACGTAGTACGCA -ACGGAAACTCTGACGTAGCTTGCA -ACGGAAACTCTGACGTAGCGAACA -ACGGAAACTCTGACGTAGCAGTCA -ACGGAAACTCTGACGTAGGATCCA -ACGGAAACTCTGACGTAGACGACA -ACGGAAACTCTGACGTAGAGCTCA -ACGGAAACTCTGACGTAGTCACGT -ACGGAAACTCTGACGTAGCGTAGT -ACGGAAACTCTGACGTAGGTCAGT -ACGGAAACTCTGACGTAGGAAGGT -ACGGAAACTCTGACGTAGAACCGT -ACGGAAACTCTGACGTAGTTGTGC -ACGGAAACTCTGACGTAGCTAAGC -ACGGAAACTCTGACGTAGACTAGC -ACGGAAACTCTGACGTAGAGATGC -ACGGAAACTCTGACGTAGTGAAGG -ACGGAAACTCTGACGTAGCAATGG -ACGGAAACTCTGACGTAGATGAGG -ACGGAAACTCTGACGTAGAATGGG -ACGGAAACTCTGACGTAGTCCTGA -ACGGAAACTCTGACGTAGTAGCGA -ACGGAAACTCTGACGTAGCACAGA -ACGGAAACTCTGACGTAGGCAAGA -ACGGAAACTCTGACGTAGGGTTGA -ACGGAAACTCTGACGTAGTCCGAT -ACGGAAACTCTGACGTAGTGGCAT -ACGGAAACTCTGACGTAGCGAGAT -ACGGAAACTCTGACGTAGTACCAC -ACGGAAACTCTGACGTAGCAGAAC -ACGGAAACTCTGACGTAGGTCTAC -ACGGAAACTCTGACGTAGACGTAC -ACGGAAACTCTGACGTAGAGTGAC -ACGGAAACTCTGACGTAGCTGTAG -ACGGAAACTCTGACGTAGCCTAAG -ACGGAAACTCTGACGTAGGTTCAG -ACGGAAACTCTGACGTAGGCATAG -ACGGAAACTCTGACGTAGGACAAG -ACGGAAACTCTGACGTAGAAGCAG -ACGGAAACTCTGACGTAGCGTCAA -ACGGAAACTCTGACGTAGGCTGAA -ACGGAAACTCTGACGTAGAGTACG -ACGGAAACTCTGACGTAGATCCGA -ACGGAAACTCTGACGTAGATGGGA -ACGGAAACTCTGACGTAGGTGCAA -ACGGAAACTCTGACGTAGGAGGAA -ACGGAAACTCTGACGTAGCAGGTA -ACGGAAACTCTGACGTAGGACTCT -ACGGAAACTCTGACGTAGAGTCCT -ACGGAAACTCTGACGTAGTAAGCC -ACGGAAACTCTGACGTAGATAGCC -ACGGAAACTCTGACGTAGTAACCG -ACGGAAACTCTGACGTAGATGCCA -ACGGAAACTCTGACGGTAGGAAAC -ACGGAAACTCTGACGGTAAACACC -ACGGAAACTCTGACGGTAATCGAG -ACGGAAACTCTGACGGTACTCCTT -ACGGAAACTCTGACGGTACCTGTT -ACGGAAACTCTGACGGTACGGTTT -ACGGAAACTCTGACGGTAGTGGTT -ACGGAAACTCTGACGGTAGCCTTT -ACGGAAACTCTGACGGTAGGTCTT -ACGGAAACTCTGACGGTAACGCTT -ACGGAAACTCTGACGGTAAGCGTT -ACGGAAACTCTGACGGTATTCGTC -ACGGAAACTCTGACGGTATCTCTC -ACGGAAACTCTGACGGTATGGATC -ACGGAAACTCTGACGGTACACTTC -ACGGAAACTCTGACGGTAGTACTC -ACGGAAACTCTGACGGTAGATGTC -ACGGAAACTCTGACGGTAACAGTC -ACGGAAACTCTGACGGTATTGCTG -ACGGAAACTCTGACGGTATCCATG -ACGGAAACTCTGACGGTATGTGTG -ACGGAAACTCTGACGGTACTAGTG -ACGGAAACTCTGACGGTACATCTG -ACGGAAACTCTGACGGTAGAGTTG -ACGGAAACTCTGACGGTAAGACTG -ACGGAAACTCTGACGGTATCGGTA -ACGGAAACTCTGACGGTATGCCTA -ACGGAAACTCTGACGGTACCACTA -ACGGAAACTCTGACGGTAGGAGTA -ACGGAAACTCTGACGGTATCGTCT -ACGGAAACTCTGACGGTATGCACT -ACGGAAACTCTGACGGTACTGACT -ACGGAAACTCTGACGGTACAACCT -ACGGAAACTCTGACGGTAGCTACT -ACGGAAACTCTGACGGTAGGATCT -ACGGAAACTCTGACGGTAAAGGCT -ACGGAAACTCTGACGGTATCAACC -ACGGAAACTCTGACGGTATGTTCC -ACGGAAACTCTGACGGTAATTCCC -ACGGAAACTCTGACGGTATTCTCG -ACGGAAACTCTGACGGTATAGACG -ACGGAAACTCTGACGGTAGTAACG -ACGGAAACTCTGACGGTAACTTCG -ACGGAAACTCTGACGGTATACGCA -ACGGAAACTCTGACGGTACTTGCA -ACGGAAACTCTGACGGTACGAACA -ACGGAAACTCTGACGGTACAGTCA -ACGGAAACTCTGACGGTAGATCCA -ACGGAAACTCTGACGGTAACGACA -ACGGAAACTCTGACGGTAAGCTCA -ACGGAAACTCTGACGGTATCACGT -ACGGAAACTCTGACGGTACGTAGT -ACGGAAACTCTGACGGTAGTCAGT -ACGGAAACTCTGACGGTAGAAGGT -ACGGAAACTCTGACGGTAAACCGT -ACGGAAACTCTGACGGTATTGTGC -ACGGAAACTCTGACGGTACTAAGC -ACGGAAACTCTGACGGTAACTAGC -ACGGAAACTCTGACGGTAAGATGC -ACGGAAACTCTGACGGTATGAAGG -ACGGAAACTCTGACGGTACAATGG -ACGGAAACTCTGACGGTAATGAGG -ACGGAAACTCTGACGGTAAATGGG -ACGGAAACTCTGACGGTATCCTGA -ACGGAAACTCTGACGGTATAGCGA -ACGGAAACTCTGACGGTACACAGA -ACGGAAACTCTGACGGTAGCAAGA -ACGGAAACTCTGACGGTAGGTTGA -ACGGAAACTCTGACGGTATCCGAT -ACGGAAACTCTGACGGTATGGCAT -ACGGAAACTCTGACGGTACGAGAT -ACGGAAACTCTGACGGTATACCAC -ACGGAAACTCTGACGGTACAGAAC -ACGGAAACTCTGACGGTAGTCTAC -ACGGAAACTCTGACGGTAACGTAC -ACGGAAACTCTGACGGTAAGTGAC -ACGGAAACTCTGACGGTACTGTAG -ACGGAAACTCTGACGGTACCTAAG -ACGGAAACTCTGACGGTAGTTCAG -ACGGAAACTCTGACGGTAGCATAG -ACGGAAACTCTGACGGTAGACAAG -ACGGAAACTCTGACGGTAAAGCAG -ACGGAAACTCTGACGGTACGTCAA -ACGGAAACTCTGACGGTAGCTGAA -ACGGAAACTCTGACGGTAAGTACG -ACGGAAACTCTGACGGTAATCCGA -ACGGAAACTCTGACGGTAATGGGA -ACGGAAACTCTGACGGTAGTGCAA -ACGGAAACTCTGACGGTAGAGGAA -ACGGAAACTCTGACGGTACAGGTA -ACGGAAACTCTGACGGTAGACTCT -ACGGAAACTCTGACGGTAAGTCCT -ACGGAAACTCTGACGGTATAAGCC -ACGGAAACTCTGACGGTAATAGCC -ACGGAAACTCTGACGGTATAACCG -ACGGAAACTCTGACGGTAATGCCA -ACGGAAACTCTGTCGACTGGAAAC -ACGGAAACTCTGTCGACTAACACC -ACGGAAACTCTGTCGACTATCGAG -ACGGAAACTCTGTCGACTCTCCTT -ACGGAAACTCTGTCGACTCCTGTT -ACGGAAACTCTGTCGACTCGGTTT -ACGGAAACTCTGTCGACTGTGGTT -ACGGAAACTCTGTCGACTGCCTTT -ACGGAAACTCTGTCGACTGGTCTT -ACGGAAACTCTGTCGACTACGCTT -ACGGAAACTCTGTCGACTAGCGTT -ACGGAAACTCTGTCGACTTTCGTC -ACGGAAACTCTGTCGACTTCTCTC -ACGGAAACTCTGTCGACTTGGATC -ACGGAAACTCTGTCGACTCACTTC -ACGGAAACTCTGTCGACTGTACTC -ACGGAAACTCTGTCGACTGATGTC -ACGGAAACTCTGTCGACTACAGTC -ACGGAAACTCTGTCGACTTTGCTG -ACGGAAACTCTGTCGACTTCCATG -ACGGAAACTCTGTCGACTTGTGTG -ACGGAAACTCTGTCGACTCTAGTG -ACGGAAACTCTGTCGACTCATCTG -ACGGAAACTCTGTCGACTGAGTTG -ACGGAAACTCTGTCGACTAGACTG -ACGGAAACTCTGTCGACTTCGGTA -ACGGAAACTCTGTCGACTTGCCTA -ACGGAAACTCTGTCGACTCCACTA -ACGGAAACTCTGTCGACTGGAGTA -ACGGAAACTCTGTCGACTTCGTCT -ACGGAAACTCTGTCGACTTGCACT -ACGGAAACTCTGTCGACTCTGACT -ACGGAAACTCTGTCGACTCAACCT -ACGGAAACTCTGTCGACTGCTACT -ACGGAAACTCTGTCGACTGGATCT -ACGGAAACTCTGTCGACTAAGGCT -ACGGAAACTCTGTCGACTTCAACC -ACGGAAACTCTGTCGACTTGTTCC -ACGGAAACTCTGTCGACTATTCCC -ACGGAAACTCTGTCGACTTTCTCG -ACGGAAACTCTGTCGACTTAGACG -ACGGAAACTCTGTCGACTGTAACG -ACGGAAACTCTGTCGACTACTTCG -ACGGAAACTCTGTCGACTTACGCA -ACGGAAACTCTGTCGACTCTTGCA -ACGGAAACTCTGTCGACTCGAACA -ACGGAAACTCTGTCGACTCAGTCA -ACGGAAACTCTGTCGACTGATCCA -ACGGAAACTCTGTCGACTACGACA -ACGGAAACTCTGTCGACTAGCTCA -ACGGAAACTCTGTCGACTTCACGT -ACGGAAACTCTGTCGACTCGTAGT -ACGGAAACTCTGTCGACTGTCAGT -ACGGAAACTCTGTCGACTGAAGGT -ACGGAAACTCTGTCGACTAACCGT -ACGGAAACTCTGTCGACTTTGTGC -ACGGAAACTCTGTCGACTCTAAGC -ACGGAAACTCTGTCGACTACTAGC -ACGGAAACTCTGTCGACTAGATGC -ACGGAAACTCTGTCGACTTGAAGG -ACGGAAACTCTGTCGACTCAATGG -ACGGAAACTCTGTCGACTATGAGG -ACGGAAACTCTGTCGACTAATGGG -ACGGAAACTCTGTCGACTTCCTGA -ACGGAAACTCTGTCGACTTAGCGA -ACGGAAACTCTGTCGACTCACAGA -ACGGAAACTCTGTCGACTGCAAGA -ACGGAAACTCTGTCGACTGGTTGA -ACGGAAACTCTGTCGACTTCCGAT -ACGGAAACTCTGTCGACTTGGCAT -ACGGAAACTCTGTCGACTCGAGAT -ACGGAAACTCTGTCGACTTACCAC -ACGGAAACTCTGTCGACTCAGAAC -ACGGAAACTCTGTCGACTGTCTAC -ACGGAAACTCTGTCGACTACGTAC -ACGGAAACTCTGTCGACTAGTGAC -ACGGAAACTCTGTCGACTCTGTAG -ACGGAAACTCTGTCGACTCCTAAG -ACGGAAACTCTGTCGACTGTTCAG -ACGGAAACTCTGTCGACTGCATAG -ACGGAAACTCTGTCGACTGACAAG -ACGGAAACTCTGTCGACTAAGCAG -ACGGAAACTCTGTCGACTCGTCAA -ACGGAAACTCTGTCGACTGCTGAA -ACGGAAACTCTGTCGACTAGTACG -ACGGAAACTCTGTCGACTATCCGA -ACGGAAACTCTGTCGACTATGGGA -ACGGAAACTCTGTCGACTGTGCAA -ACGGAAACTCTGTCGACTGAGGAA -ACGGAAACTCTGTCGACTCAGGTA -ACGGAAACTCTGTCGACTGACTCT -ACGGAAACTCTGTCGACTAGTCCT -ACGGAAACTCTGTCGACTTAAGCC -ACGGAAACTCTGTCGACTATAGCC -ACGGAAACTCTGTCGACTTAACCG -ACGGAAACTCTGTCGACTATGCCA -ACGGAAACTCTGGCATACGGAAAC -ACGGAAACTCTGGCATACAACACC -ACGGAAACTCTGGCATACATCGAG -ACGGAAACTCTGGCATACCTCCTT -ACGGAAACTCTGGCATACCCTGTT -ACGGAAACTCTGGCATACCGGTTT -ACGGAAACTCTGGCATACGTGGTT -ACGGAAACTCTGGCATACGCCTTT -ACGGAAACTCTGGCATACGGTCTT -ACGGAAACTCTGGCATACACGCTT -ACGGAAACTCTGGCATACAGCGTT -ACGGAAACTCTGGCATACTTCGTC -ACGGAAACTCTGGCATACTCTCTC -ACGGAAACTCTGGCATACTGGATC -ACGGAAACTCTGGCATACCACTTC -ACGGAAACTCTGGCATACGTACTC -ACGGAAACTCTGGCATACGATGTC -ACGGAAACTCTGGCATACACAGTC -ACGGAAACTCTGGCATACTTGCTG -ACGGAAACTCTGGCATACTCCATG -ACGGAAACTCTGGCATACTGTGTG -ACGGAAACTCTGGCATACCTAGTG -ACGGAAACTCTGGCATACCATCTG -ACGGAAACTCTGGCATACGAGTTG -ACGGAAACTCTGGCATACAGACTG -ACGGAAACTCTGGCATACTCGGTA -ACGGAAACTCTGGCATACTGCCTA -ACGGAAACTCTGGCATACCCACTA -ACGGAAACTCTGGCATACGGAGTA -ACGGAAACTCTGGCATACTCGTCT -ACGGAAACTCTGGCATACTGCACT -ACGGAAACTCTGGCATACCTGACT -ACGGAAACTCTGGCATACCAACCT -ACGGAAACTCTGGCATACGCTACT -ACGGAAACTCTGGCATACGGATCT -ACGGAAACTCTGGCATACAAGGCT -ACGGAAACTCTGGCATACTCAACC -ACGGAAACTCTGGCATACTGTTCC -ACGGAAACTCTGGCATACATTCCC -ACGGAAACTCTGGCATACTTCTCG -ACGGAAACTCTGGCATACTAGACG -ACGGAAACTCTGGCATACGTAACG -ACGGAAACTCTGGCATACACTTCG -ACGGAAACTCTGGCATACTACGCA -ACGGAAACTCTGGCATACCTTGCA -ACGGAAACTCTGGCATACCGAACA -ACGGAAACTCTGGCATACCAGTCA -ACGGAAACTCTGGCATACGATCCA -ACGGAAACTCTGGCATACACGACA -ACGGAAACTCTGGCATACAGCTCA -ACGGAAACTCTGGCATACTCACGT -ACGGAAACTCTGGCATACCGTAGT -ACGGAAACTCTGGCATACGTCAGT -ACGGAAACTCTGGCATACGAAGGT -ACGGAAACTCTGGCATACAACCGT -ACGGAAACTCTGGCATACTTGTGC -ACGGAAACTCTGGCATACCTAAGC -ACGGAAACTCTGGCATACACTAGC -ACGGAAACTCTGGCATACAGATGC -ACGGAAACTCTGGCATACTGAAGG -ACGGAAACTCTGGCATACCAATGG -ACGGAAACTCTGGCATACATGAGG -ACGGAAACTCTGGCATACAATGGG -ACGGAAACTCTGGCATACTCCTGA -ACGGAAACTCTGGCATACTAGCGA -ACGGAAACTCTGGCATACCACAGA -ACGGAAACTCTGGCATACGCAAGA -ACGGAAACTCTGGCATACGGTTGA -ACGGAAACTCTGGCATACTCCGAT -ACGGAAACTCTGGCATACTGGCAT -ACGGAAACTCTGGCATACCGAGAT -ACGGAAACTCTGGCATACTACCAC -ACGGAAACTCTGGCATACCAGAAC -ACGGAAACTCTGGCATACGTCTAC -ACGGAAACTCTGGCATACACGTAC -ACGGAAACTCTGGCATACAGTGAC -ACGGAAACTCTGGCATACCTGTAG -ACGGAAACTCTGGCATACCCTAAG -ACGGAAACTCTGGCATACGTTCAG -ACGGAAACTCTGGCATACGCATAG -ACGGAAACTCTGGCATACGACAAG -ACGGAAACTCTGGCATACAAGCAG -ACGGAAACTCTGGCATACCGTCAA -ACGGAAACTCTGGCATACGCTGAA -ACGGAAACTCTGGCATACAGTACG -ACGGAAACTCTGGCATACATCCGA -ACGGAAACTCTGGCATACATGGGA -ACGGAAACTCTGGCATACGTGCAA -ACGGAAACTCTGGCATACGAGGAA -ACGGAAACTCTGGCATACCAGGTA -ACGGAAACTCTGGCATACGACTCT -ACGGAAACTCTGGCATACAGTCCT -ACGGAAACTCTGGCATACTAAGCC -ACGGAAACTCTGGCATACATAGCC -ACGGAAACTCTGGCATACTAACCG -ACGGAAACTCTGGCATACATGCCA -ACGGAAACTCTGGCACTTGGAAAC -ACGGAAACTCTGGCACTTAACACC -ACGGAAACTCTGGCACTTATCGAG -ACGGAAACTCTGGCACTTCTCCTT -ACGGAAACTCTGGCACTTCCTGTT -ACGGAAACTCTGGCACTTCGGTTT -ACGGAAACTCTGGCACTTGTGGTT -ACGGAAACTCTGGCACTTGCCTTT -ACGGAAACTCTGGCACTTGGTCTT -ACGGAAACTCTGGCACTTACGCTT -ACGGAAACTCTGGCACTTAGCGTT -ACGGAAACTCTGGCACTTTTCGTC -ACGGAAACTCTGGCACTTTCTCTC -ACGGAAACTCTGGCACTTTGGATC -ACGGAAACTCTGGCACTTCACTTC -ACGGAAACTCTGGCACTTGTACTC -ACGGAAACTCTGGCACTTGATGTC -ACGGAAACTCTGGCACTTACAGTC -ACGGAAACTCTGGCACTTTTGCTG -ACGGAAACTCTGGCACTTTCCATG -ACGGAAACTCTGGCACTTTGTGTG -ACGGAAACTCTGGCACTTCTAGTG -ACGGAAACTCTGGCACTTCATCTG -ACGGAAACTCTGGCACTTGAGTTG -ACGGAAACTCTGGCACTTAGACTG -ACGGAAACTCTGGCACTTTCGGTA -ACGGAAACTCTGGCACTTTGCCTA -ACGGAAACTCTGGCACTTCCACTA -ACGGAAACTCTGGCACTTGGAGTA -ACGGAAACTCTGGCACTTTCGTCT -ACGGAAACTCTGGCACTTTGCACT -ACGGAAACTCTGGCACTTCTGACT -ACGGAAACTCTGGCACTTCAACCT -ACGGAAACTCTGGCACTTGCTACT -ACGGAAACTCTGGCACTTGGATCT -ACGGAAACTCTGGCACTTAAGGCT -ACGGAAACTCTGGCACTTTCAACC -ACGGAAACTCTGGCACTTTGTTCC -ACGGAAACTCTGGCACTTATTCCC -ACGGAAACTCTGGCACTTTTCTCG -ACGGAAACTCTGGCACTTTAGACG -ACGGAAACTCTGGCACTTGTAACG -ACGGAAACTCTGGCACTTACTTCG -ACGGAAACTCTGGCACTTTACGCA -ACGGAAACTCTGGCACTTCTTGCA -ACGGAAACTCTGGCACTTCGAACA -ACGGAAACTCTGGCACTTCAGTCA -ACGGAAACTCTGGCACTTGATCCA -ACGGAAACTCTGGCACTTACGACA -ACGGAAACTCTGGCACTTAGCTCA -ACGGAAACTCTGGCACTTTCACGT -ACGGAAACTCTGGCACTTCGTAGT -ACGGAAACTCTGGCACTTGTCAGT -ACGGAAACTCTGGCACTTGAAGGT -ACGGAAACTCTGGCACTTAACCGT -ACGGAAACTCTGGCACTTTTGTGC -ACGGAAACTCTGGCACTTCTAAGC -ACGGAAACTCTGGCACTTACTAGC -ACGGAAACTCTGGCACTTAGATGC -ACGGAAACTCTGGCACTTTGAAGG -ACGGAAACTCTGGCACTTCAATGG -ACGGAAACTCTGGCACTTATGAGG -ACGGAAACTCTGGCACTTAATGGG -ACGGAAACTCTGGCACTTTCCTGA -ACGGAAACTCTGGCACTTTAGCGA -ACGGAAACTCTGGCACTTCACAGA -ACGGAAACTCTGGCACTTGCAAGA -ACGGAAACTCTGGCACTTGGTTGA -ACGGAAACTCTGGCACTTTCCGAT -ACGGAAACTCTGGCACTTTGGCAT -ACGGAAACTCTGGCACTTCGAGAT -ACGGAAACTCTGGCACTTTACCAC -ACGGAAACTCTGGCACTTCAGAAC -ACGGAAACTCTGGCACTTGTCTAC -ACGGAAACTCTGGCACTTACGTAC -ACGGAAACTCTGGCACTTAGTGAC -ACGGAAACTCTGGCACTTCTGTAG -ACGGAAACTCTGGCACTTCCTAAG -ACGGAAACTCTGGCACTTGTTCAG -ACGGAAACTCTGGCACTTGCATAG -ACGGAAACTCTGGCACTTGACAAG -ACGGAAACTCTGGCACTTAAGCAG -ACGGAAACTCTGGCACTTCGTCAA -ACGGAAACTCTGGCACTTGCTGAA -ACGGAAACTCTGGCACTTAGTACG -ACGGAAACTCTGGCACTTATCCGA -ACGGAAACTCTGGCACTTATGGGA -ACGGAAACTCTGGCACTTGTGCAA -ACGGAAACTCTGGCACTTGAGGAA -ACGGAAACTCTGGCACTTCAGGTA -ACGGAAACTCTGGCACTTGACTCT -ACGGAAACTCTGGCACTTAGTCCT -ACGGAAACTCTGGCACTTTAAGCC -ACGGAAACTCTGGCACTTATAGCC -ACGGAAACTCTGGCACTTTAACCG -ACGGAAACTCTGGCACTTATGCCA -ACGGAAACTCTGACACGAGGAAAC -ACGGAAACTCTGACACGAAACACC -ACGGAAACTCTGACACGAATCGAG -ACGGAAACTCTGACACGACTCCTT -ACGGAAACTCTGACACGACCTGTT -ACGGAAACTCTGACACGACGGTTT -ACGGAAACTCTGACACGAGTGGTT -ACGGAAACTCTGACACGAGCCTTT -ACGGAAACTCTGACACGAGGTCTT -ACGGAAACTCTGACACGAACGCTT -ACGGAAACTCTGACACGAAGCGTT -ACGGAAACTCTGACACGATTCGTC -ACGGAAACTCTGACACGATCTCTC -ACGGAAACTCTGACACGATGGATC -ACGGAAACTCTGACACGACACTTC -ACGGAAACTCTGACACGAGTACTC -ACGGAAACTCTGACACGAGATGTC -ACGGAAACTCTGACACGAACAGTC -ACGGAAACTCTGACACGATTGCTG -ACGGAAACTCTGACACGATCCATG -ACGGAAACTCTGACACGATGTGTG -ACGGAAACTCTGACACGACTAGTG -ACGGAAACTCTGACACGACATCTG -ACGGAAACTCTGACACGAGAGTTG -ACGGAAACTCTGACACGAAGACTG -ACGGAAACTCTGACACGATCGGTA -ACGGAAACTCTGACACGATGCCTA -ACGGAAACTCTGACACGACCACTA -ACGGAAACTCTGACACGAGGAGTA -ACGGAAACTCTGACACGATCGTCT -ACGGAAACTCTGACACGATGCACT -ACGGAAACTCTGACACGACTGACT -ACGGAAACTCTGACACGACAACCT -ACGGAAACTCTGACACGAGCTACT -ACGGAAACTCTGACACGAGGATCT -ACGGAAACTCTGACACGAAAGGCT -ACGGAAACTCTGACACGATCAACC -ACGGAAACTCTGACACGATGTTCC -ACGGAAACTCTGACACGAATTCCC -ACGGAAACTCTGACACGATTCTCG -ACGGAAACTCTGACACGATAGACG -ACGGAAACTCTGACACGAGTAACG -ACGGAAACTCTGACACGAACTTCG -ACGGAAACTCTGACACGATACGCA -ACGGAAACTCTGACACGACTTGCA -ACGGAAACTCTGACACGACGAACA -ACGGAAACTCTGACACGACAGTCA -ACGGAAACTCTGACACGAGATCCA -ACGGAAACTCTGACACGAACGACA -ACGGAAACTCTGACACGAAGCTCA -ACGGAAACTCTGACACGATCACGT -ACGGAAACTCTGACACGACGTAGT -ACGGAAACTCTGACACGAGTCAGT -ACGGAAACTCTGACACGAGAAGGT -ACGGAAACTCTGACACGAAACCGT -ACGGAAACTCTGACACGATTGTGC -ACGGAAACTCTGACACGACTAAGC -ACGGAAACTCTGACACGAACTAGC -ACGGAAACTCTGACACGAAGATGC -ACGGAAACTCTGACACGATGAAGG -ACGGAAACTCTGACACGACAATGG -ACGGAAACTCTGACACGAATGAGG -ACGGAAACTCTGACACGAAATGGG -ACGGAAACTCTGACACGATCCTGA -ACGGAAACTCTGACACGATAGCGA -ACGGAAACTCTGACACGACACAGA -ACGGAAACTCTGACACGAGCAAGA -ACGGAAACTCTGACACGAGGTTGA -ACGGAAACTCTGACACGATCCGAT -ACGGAAACTCTGACACGATGGCAT -ACGGAAACTCTGACACGACGAGAT -ACGGAAACTCTGACACGATACCAC -ACGGAAACTCTGACACGACAGAAC -ACGGAAACTCTGACACGAGTCTAC -ACGGAAACTCTGACACGAACGTAC -ACGGAAACTCTGACACGAAGTGAC -ACGGAAACTCTGACACGACTGTAG -ACGGAAACTCTGACACGACCTAAG -ACGGAAACTCTGACACGAGTTCAG -ACGGAAACTCTGACACGAGCATAG -ACGGAAACTCTGACACGAGACAAG -ACGGAAACTCTGACACGAAAGCAG -ACGGAAACTCTGACACGACGTCAA -ACGGAAACTCTGACACGAGCTGAA -ACGGAAACTCTGACACGAAGTACG -ACGGAAACTCTGACACGAATCCGA -ACGGAAACTCTGACACGAATGGGA -ACGGAAACTCTGACACGAGTGCAA -ACGGAAACTCTGACACGAGAGGAA -ACGGAAACTCTGACACGACAGGTA -ACGGAAACTCTGACACGAGACTCT -ACGGAAACTCTGACACGAAGTCCT -ACGGAAACTCTGACACGATAAGCC -ACGGAAACTCTGACACGAATAGCC -ACGGAAACTCTGACACGATAACCG -ACGGAAACTCTGACACGAATGCCA -ACGGAAACTCTGTCACAGGGAAAC -ACGGAAACTCTGTCACAGAACACC -ACGGAAACTCTGTCACAGATCGAG -ACGGAAACTCTGTCACAGCTCCTT -ACGGAAACTCTGTCACAGCCTGTT -ACGGAAACTCTGTCACAGCGGTTT -ACGGAAACTCTGTCACAGGTGGTT -ACGGAAACTCTGTCACAGGCCTTT -ACGGAAACTCTGTCACAGGGTCTT -ACGGAAACTCTGTCACAGACGCTT -ACGGAAACTCTGTCACAGAGCGTT -ACGGAAACTCTGTCACAGTTCGTC -ACGGAAACTCTGTCACAGTCTCTC -ACGGAAACTCTGTCACAGTGGATC -ACGGAAACTCTGTCACAGCACTTC -ACGGAAACTCTGTCACAGGTACTC -ACGGAAACTCTGTCACAGGATGTC -ACGGAAACTCTGTCACAGACAGTC -ACGGAAACTCTGTCACAGTTGCTG -ACGGAAACTCTGTCACAGTCCATG -ACGGAAACTCTGTCACAGTGTGTG -ACGGAAACTCTGTCACAGCTAGTG -ACGGAAACTCTGTCACAGCATCTG -ACGGAAACTCTGTCACAGGAGTTG -ACGGAAACTCTGTCACAGAGACTG -ACGGAAACTCTGTCACAGTCGGTA -ACGGAAACTCTGTCACAGTGCCTA -ACGGAAACTCTGTCACAGCCACTA -ACGGAAACTCTGTCACAGGGAGTA -ACGGAAACTCTGTCACAGTCGTCT -ACGGAAACTCTGTCACAGTGCACT -ACGGAAACTCTGTCACAGCTGACT -ACGGAAACTCTGTCACAGCAACCT -ACGGAAACTCTGTCACAGGCTACT -ACGGAAACTCTGTCACAGGGATCT -ACGGAAACTCTGTCACAGAAGGCT -ACGGAAACTCTGTCACAGTCAACC -ACGGAAACTCTGTCACAGTGTTCC -ACGGAAACTCTGTCACAGATTCCC -ACGGAAACTCTGTCACAGTTCTCG -ACGGAAACTCTGTCACAGTAGACG -ACGGAAACTCTGTCACAGGTAACG -ACGGAAACTCTGTCACAGACTTCG -ACGGAAACTCTGTCACAGTACGCA -ACGGAAACTCTGTCACAGCTTGCA -ACGGAAACTCTGTCACAGCGAACA -ACGGAAACTCTGTCACAGCAGTCA -ACGGAAACTCTGTCACAGGATCCA -ACGGAAACTCTGTCACAGACGACA -ACGGAAACTCTGTCACAGAGCTCA -ACGGAAACTCTGTCACAGTCACGT -ACGGAAACTCTGTCACAGCGTAGT -ACGGAAACTCTGTCACAGGTCAGT -ACGGAAACTCTGTCACAGGAAGGT -ACGGAAACTCTGTCACAGAACCGT -ACGGAAACTCTGTCACAGTTGTGC -ACGGAAACTCTGTCACAGCTAAGC -ACGGAAACTCTGTCACAGACTAGC -ACGGAAACTCTGTCACAGAGATGC -ACGGAAACTCTGTCACAGTGAAGG -ACGGAAACTCTGTCACAGCAATGG -ACGGAAACTCTGTCACAGATGAGG -ACGGAAACTCTGTCACAGAATGGG -ACGGAAACTCTGTCACAGTCCTGA -ACGGAAACTCTGTCACAGTAGCGA -ACGGAAACTCTGTCACAGCACAGA -ACGGAAACTCTGTCACAGGCAAGA -ACGGAAACTCTGTCACAGGGTTGA -ACGGAAACTCTGTCACAGTCCGAT -ACGGAAACTCTGTCACAGTGGCAT -ACGGAAACTCTGTCACAGCGAGAT -ACGGAAACTCTGTCACAGTACCAC -ACGGAAACTCTGTCACAGCAGAAC -ACGGAAACTCTGTCACAGGTCTAC -ACGGAAACTCTGTCACAGACGTAC -ACGGAAACTCTGTCACAGAGTGAC -ACGGAAACTCTGTCACAGCTGTAG -ACGGAAACTCTGTCACAGCCTAAG -ACGGAAACTCTGTCACAGGTTCAG -ACGGAAACTCTGTCACAGGCATAG -ACGGAAACTCTGTCACAGGACAAG -ACGGAAACTCTGTCACAGAAGCAG -ACGGAAACTCTGTCACAGCGTCAA -ACGGAAACTCTGTCACAGGCTGAA -ACGGAAACTCTGTCACAGAGTACG -ACGGAAACTCTGTCACAGATCCGA -ACGGAAACTCTGTCACAGATGGGA -ACGGAAACTCTGTCACAGGTGCAA -ACGGAAACTCTGTCACAGGAGGAA -ACGGAAACTCTGTCACAGCAGGTA -ACGGAAACTCTGTCACAGGACTCT -ACGGAAACTCTGTCACAGAGTCCT -ACGGAAACTCTGTCACAGTAAGCC -ACGGAAACTCTGTCACAGATAGCC -ACGGAAACTCTGTCACAGTAACCG -ACGGAAACTCTGTCACAGATGCCA -ACGGAAACTCTGCCAGATGGAAAC -ACGGAAACTCTGCCAGATAACACC -ACGGAAACTCTGCCAGATATCGAG -ACGGAAACTCTGCCAGATCTCCTT -ACGGAAACTCTGCCAGATCCTGTT -ACGGAAACTCTGCCAGATCGGTTT -ACGGAAACTCTGCCAGATGTGGTT -ACGGAAACTCTGCCAGATGCCTTT -ACGGAAACTCTGCCAGATGGTCTT -ACGGAAACTCTGCCAGATACGCTT -ACGGAAACTCTGCCAGATAGCGTT -ACGGAAACTCTGCCAGATTTCGTC -ACGGAAACTCTGCCAGATTCTCTC -ACGGAAACTCTGCCAGATTGGATC -ACGGAAACTCTGCCAGATCACTTC -ACGGAAACTCTGCCAGATGTACTC -ACGGAAACTCTGCCAGATGATGTC -ACGGAAACTCTGCCAGATACAGTC -ACGGAAACTCTGCCAGATTTGCTG -ACGGAAACTCTGCCAGATTCCATG -ACGGAAACTCTGCCAGATTGTGTG -ACGGAAACTCTGCCAGATCTAGTG -ACGGAAACTCTGCCAGATCATCTG -ACGGAAACTCTGCCAGATGAGTTG -ACGGAAACTCTGCCAGATAGACTG -ACGGAAACTCTGCCAGATTCGGTA -ACGGAAACTCTGCCAGATTGCCTA -ACGGAAACTCTGCCAGATCCACTA -ACGGAAACTCTGCCAGATGGAGTA -ACGGAAACTCTGCCAGATTCGTCT -ACGGAAACTCTGCCAGATTGCACT -ACGGAAACTCTGCCAGATCTGACT -ACGGAAACTCTGCCAGATCAACCT -ACGGAAACTCTGCCAGATGCTACT -ACGGAAACTCTGCCAGATGGATCT -ACGGAAACTCTGCCAGATAAGGCT -ACGGAAACTCTGCCAGATTCAACC -ACGGAAACTCTGCCAGATTGTTCC -ACGGAAACTCTGCCAGATATTCCC -ACGGAAACTCTGCCAGATTTCTCG -ACGGAAACTCTGCCAGATTAGACG -ACGGAAACTCTGCCAGATGTAACG -ACGGAAACTCTGCCAGATACTTCG -ACGGAAACTCTGCCAGATTACGCA -ACGGAAACTCTGCCAGATCTTGCA -ACGGAAACTCTGCCAGATCGAACA -ACGGAAACTCTGCCAGATCAGTCA -ACGGAAACTCTGCCAGATGATCCA -ACGGAAACTCTGCCAGATACGACA -ACGGAAACTCTGCCAGATAGCTCA -ACGGAAACTCTGCCAGATTCACGT -ACGGAAACTCTGCCAGATCGTAGT -ACGGAAACTCTGCCAGATGTCAGT -ACGGAAACTCTGCCAGATGAAGGT -ACGGAAACTCTGCCAGATAACCGT -ACGGAAACTCTGCCAGATTTGTGC -ACGGAAACTCTGCCAGATCTAAGC -ACGGAAACTCTGCCAGATACTAGC -ACGGAAACTCTGCCAGATAGATGC -ACGGAAACTCTGCCAGATTGAAGG -ACGGAAACTCTGCCAGATCAATGG -ACGGAAACTCTGCCAGATATGAGG -ACGGAAACTCTGCCAGATAATGGG -ACGGAAACTCTGCCAGATTCCTGA -ACGGAAACTCTGCCAGATTAGCGA -ACGGAAACTCTGCCAGATCACAGA -ACGGAAACTCTGCCAGATGCAAGA -ACGGAAACTCTGCCAGATGGTTGA -ACGGAAACTCTGCCAGATTCCGAT -ACGGAAACTCTGCCAGATTGGCAT -ACGGAAACTCTGCCAGATCGAGAT -ACGGAAACTCTGCCAGATTACCAC -ACGGAAACTCTGCCAGATCAGAAC -ACGGAAACTCTGCCAGATGTCTAC -ACGGAAACTCTGCCAGATACGTAC -ACGGAAACTCTGCCAGATAGTGAC -ACGGAAACTCTGCCAGATCTGTAG -ACGGAAACTCTGCCAGATCCTAAG -ACGGAAACTCTGCCAGATGTTCAG -ACGGAAACTCTGCCAGATGCATAG -ACGGAAACTCTGCCAGATGACAAG -ACGGAAACTCTGCCAGATAAGCAG -ACGGAAACTCTGCCAGATCGTCAA -ACGGAAACTCTGCCAGATGCTGAA -ACGGAAACTCTGCCAGATAGTACG -ACGGAAACTCTGCCAGATATCCGA -ACGGAAACTCTGCCAGATATGGGA -ACGGAAACTCTGCCAGATGTGCAA -ACGGAAACTCTGCCAGATGAGGAA -ACGGAAACTCTGCCAGATCAGGTA -ACGGAAACTCTGCCAGATGACTCT -ACGGAAACTCTGCCAGATAGTCCT -ACGGAAACTCTGCCAGATTAAGCC -ACGGAAACTCTGCCAGATATAGCC -ACGGAAACTCTGCCAGATTAACCG -ACGGAAACTCTGCCAGATATGCCA -ACGGAAACTCTGACAACGGGAAAC -ACGGAAACTCTGACAACGAACACC -ACGGAAACTCTGACAACGATCGAG -ACGGAAACTCTGACAACGCTCCTT -ACGGAAACTCTGACAACGCCTGTT -ACGGAAACTCTGACAACGCGGTTT -ACGGAAACTCTGACAACGGTGGTT -ACGGAAACTCTGACAACGGCCTTT -ACGGAAACTCTGACAACGGGTCTT -ACGGAAACTCTGACAACGACGCTT -ACGGAAACTCTGACAACGAGCGTT -ACGGAAACTCTGACAACGTTCGTC -ACGGAAACTCTGACAACGTCTCTC -ACGGAAACTCTGACAACGTGGATC -ACGGAAACTCTGACAACGCACTTC -ACGGAAACTCTGACAACGGTACTC -ACGGAAACTCTGACAACGGATGTC -ACGGAAACTCTGACAACGACAGTC -ACGGAAACTCTGACAACGTTGCTG -ACGGAAACTCTGACAACGTCCATG -ACGGAAACTCTGACAACGTGTGTG -ACGGAAACTCTGACAACGCTAGTG -ACGGAAACTCTGACAACGCATCTG -ACGGAAACTCTGACAACGGAGTTG -ACGGAAACTCTGACAACGAGACTG -ACGGAAACTCTGACAACGTCGGTA -ACGGAAACTCTGACAACGTGCCTA -ACGGAAACTCTGACAACGCCACTA -ACGGAAACTCTGACAACGGGAGTA -ACGGAAACTCTGACAACGTCGTCT -ACGGAAACTCTGACAACGTGCACT -ACGGAAACTCTGACAACGCTGACT -ACGGAAACTCTGACAACGCAACCT -ACGGAAACTCTGACAACGGCTACT -ACGGAAACTCTGACAACGGGATCT -ACGGAAACTCTGACAACGAAGGCT -ACGGAAACTCTGACAACGTCAACC -ACGGAAACTCTGACAACGTGTTCC -ACGGAAACTCTGACAACGATTCCC -ACGGAAACTCTGACAACGTTCTCG -ACGGAAACTCTGACAACGTAGACG -ACGGAAACTCTGACAACGGTAACG -ACGGAAACTCTGACAACGACTTCG -ACGGAAACTCTGACAACGTACGCA -ACGGAAACTCTGACAACGCTTGCA -ACGGAAACTCTGACAACGCGAACA -ACGGAAACTCTGACAACGCAGTCA -ACGGAAACTCTGACAACGGATCCA -ACGGAAACTCTGACAACGACGACA -ACGGAAACTCTGACAACGAGCTCA -ACGGAAACTCTGACAACGTCACGT -ACGGAAACTCTGACAACGCGTAGT -ACGGAAACTCTGACAACGGTCAGT -ACGGAAACTCTGACAACGGAAGGT -ACGGAAACTCTGACAACGAACCGT -ACGGAAACTCTGACAACGTTGTGC -ACGGAAACTCTGACAACGCTAAGC -ACGGAAACTCTGACAACGACTAGC -ACGGAAACTCTGACAACGAGATGC -ACGGAAACTCTGACAACGTGAAGG -ACGGAAACTCTGACAACGCAATGG -ACGGAAACTCTGACAACGATGAGG -ACGGAAACTCTGACAACGAATGGG -ACGGAAACTCTGACAACGTCCTGA -ACGGAAACTCTGACAACGTAGCGA -ACGGAAACTCTGACAACGCACAGA -ACGGAAACTCTGACAACGGCAAGA -ACGGAAACTCTGACAACGGGTTGA -ACGGAAACTCTGACAACGTCCGAT -ACGGAAACTCTGACAACGTGGCAT -ACGGAAACTCTGACAACGCGAGAT -ACGGAAACTCTGACAACGTACCAC -ACGGAAACTCTGACAACGCAGAAC -ACGGAAACTCTGACAACGGTCTAC -ACGGAAACTCTGACAACGACGTAC -ACGGAAACTCTGACAACGAGTGAC -ACGGAAACTCTGACAACGCTGTAG -ACGGAAACTCTGACAACGCCTAAG -ACGGAAACTCTGACAACGGTTCAG -ACGGAAACTCTGACAACGGCATAG -ACGGAAACTCTGACAACGGACAAG -ACGGAAACTCTGACAACGAAGCAG -ACGGAAACTCTGACAACGCGTCAA -ACGGAAACTCTGACAACGGCTGAA -ACGGAAACTCTGACAACGAGTACG -ACGGAAACTCTGACAACGATCCGA -ACGGAAACTCTGACAACGATGGGA -ACGGAAACTCTGACAACGGTGCAA -ACGGAAACTCTGACAACGGAGGAA -ACGGAAACTCTGACAACGCAGGTA -ACGGAAACTCTGACAACGGACTCT -ACGGAAACTCTGACAACGAGTCCT -ACGGAAACTCTGACAACGTAAGCC -ACGGAAACTCTGACAACGATAGCC -ACGGAAACTCTGACAACGTAACCG -ACGGAAACTCTGACAACGATGCCA -ACGGAAACTCTGTCAAGCGGAAAC -ACGGAAACTCTGTCAAGCAACACC -ACGGAAACTCTGTCAAGCATCGAG -ACGGAAACTCTGTCAAGCCTCCTT -ACGGAAACTCTGTCAAGCCCTGTT -ACGGAAACTCTGTCAAGCCGGTTT -ACGGAAACTCTGTCAAGCGTGGTT -ACGGAAACTCTGTCAAGCGCCTTT -ACGGAAACTCTGTCAAGCGGTCTT -ACGGAAACTCTGTCAAGCACGCTT -ACGGAAACTCTGTCAAGCAGCGTT -ACGGAAACTCTGTCAAGCTTCGTC -ACGGAAACTCTGTCAAGCTCTCTC -ACGGAAACTCTGTCAAGCTGGATC -ACGGAAACTCTGTCAAGCCACTTC -ACGGAAACTCTGTCAAGCGTACTC -ACGGAAACTCTGTCAAGCGATGTC -ACGGAAACTCTGTCAAGCACAGTC -ACGGAAACTCTGTCAAGCTTGCTG -ACGGAAACTCTGTCAAGCTCCATG -ACGGAAACTCTGTCAAGCTGTGTG -ACGGAAACTCTGTCAAGCCTAGTG -ACGGAAACTCTGTCAAGCCATCTG -ACGGAAACTCTGTCAAGCGAGTTG -ACGGAAACTCTGTCAAGCAGACTG -ACGGAAACTCTGTCAAGCTCGGTA -ACGGAAACTCTGTCAAGCTGCCTA -ACGGAAACTCTGTCAAGCCCACTA -ACGGAAACTCTGTCAAGCGGAGTA -ACGGAAACTCTGTCAAGCTCGTCT -ACGGAAACTCTGTCAAGCTGCACT -ACGGAAACTCTGTCAAGCCTGACT -ACGGAAACTCTGTCAAGCCAACCT -ACGGAAACTCTGTCAAGCGCTACT -ACGGAAACTCTGTCAAGCGGATCT -ACGGAAACTCTGTCAAGCAAGGCT -ACGGAAACTCTGTCAAGCTCAACC -ACGGAAACTCTGTCAAGCTGTTCC -ACGGAAACTCTGTCAAGCATTCCC -ACGGAAACTCTGTCAAGCTTCTCG -ACGGAAACTCTGTCAAGCTAGACG -ACGGAAACTCTGTCAAGCGTAACG -ACGGAAACTCTGTCAAGCACTTCG -ACGGAAACTCTGTCAAGCTACGCA -ACGGAAACTCTGTCAAGCCTTGCA -ACGGAAACTCTGTCAAGCCGAACA -ACGGAAACTCTGTCAAGCCAGTCA -ACGGAAACTCTGTCAAGCGATCCA -ACGGAAACTCTGTCAAGCACGACA -ACGGAAACTCTGTCAAGCAGCTCA -ACGGAAACTCTGTCAAGCTCACGT -ACGGAAACTCTGTCAAGCCGTAGT -ACGGAAACTCTGTCAAGCGTCAGT -ACGGAAACTCTGTCAAGCGAAGGT -ACGGAAACTCTGTCAAGCAACCGT -ACGGAAACTCTGTCAAGCTTGTGC -ACGGAAACTCTGTCAAGCCTAAGC -ACGGAAACTCTGTCAAGCACTAGC -ACGGAAACTCTGTCAAGCAGATGC -ACGGAAACTCTGTCAAGCTGAAGG -ACGGAAACTCTGTCAAGCCAATGG -ACGGAAACTCTGTCAAGCATGAGG -ACGGAAACTCTGTCAAGCAATGGG -ACGGAAACTCTGTCAAGCTCCTGA -ACGGAAACTCTGTCAAGCTAGCGA -ACGGAAACTCTGTCAAGCCACAGA -ACGGAAACTCTGTCAAGCGCAAGA -ACGGAAACTCTGTCAAGCGGTTGA -ACGGAAACTCTGTCAAGCTCCGAT -ACGGAAACTCTGTCAAGCTGGCAT -ACGGAAACTCTGTCAAGCCGAGAT -ACGGAAACTCTGTCAAGCTACCAC -ACGGAAACTCTGTCAAGCCAGAAC -ACGGAAACTCTGTCAAGCGTCTAC -ACGGAAACTCTGTCAAGCACGTAC -ACGGAAACTCTGTCAAGCAGTGAC -ACGGAAACTCTGTCAAGCCTGTAG -ACGGAAACTCTGTCAAGCCCTAAG -ACGGAAACTCTGTCAAGCGTTCAG -ACGGAAACTCTGTCAAGCGCATAG -ACGGAAACTCTGTCAAGCGACAAG -ACGGAAACTCTGTCAAGCAAGCAG -ACGGAAACTCTGTCAAGCCGTCAA -ACGGAAACTCTGTCAAGCGCTGAA -ACGGAAACTCTGTCAAGCAGTACG -ACGGAAACTCTGTCAAGCATCCGA -ACGGAAACTCTGTCAAGCATGGGA -ACGGAAACTCTGTCAAGCGTGCAA -ACGGAAACTCTGTCAAGCGAGGAA -ACGGAAACTCTGTCAAGCCAGGTA -ACGGAAACTCTGTCAAGCGACTCT -ACGGAAACTCTGTCAAGCAGTCCT -ACGGAAACTCTGTCAAGCTAAGCC -ACGGAAACTCTGTCAAGCATAGCC -ACGGAAACTCTGTCAAGCTAACCG -ACGGAAACTCTGTCAAGCATGCCA -ACGGAAACTCTGCGTTCAGGAAAC -ACGGAAACTCTGCGTTCAAACACC -ACGGAAACTCTGCGTTCAATCGAG -ACGGAAACTCTGCGTTCACTCCTT -ACGGAAACTCTGCGTTCACCTGTT -ACGGAAACTCTGCGTTCACGGTTT -ACGGAAACTCTGCGTTCAGTGGTT -ACGGAAACTCTGCGTTCAGCCTTT -ACGGAAACTCTGCGTTCAGGTCTT -ACGGAAACTCTGCGTTCAACGCTT -ACGGAAACTCTGCGTTCAAGCGTT -ACGGAAACTCTGCGTTCATTCGTC -ACGGAAACTCTGCGTTCATCTCTC -ACGGAAACTCTGCGTTCATGGATC -ACGGAAACTCTGCGTTCACACTTC -ACGGAAACTCTGCGTTCAGTACTC -ACGGAAACTCTGCGTTCAGATGTC -ACGGAAACTCTGCGTTCAACAGTC -ACGGAAACTCTGCGTTCATTGCTG -ACGGAAACTCTGCGTTCATCCATG -ACGGAAACTCTGCGTTCATGTGTG -ACGGAAACTCTGCGTTCACTAGTG -ACGGAAACTCTGCGTTCACATCTG -ACGGAAACTCTGCGTTCAGAGTTG -ACGGAAACTCTGCGTTCAAGACTG -ACGGAAACTCTGCGTTCATCGGTA -ACGGAAACTCTGCGTTCATGCCTA -ACGGAAACTCTGCGTTCACCACTA -ACGGAAACTCTGCGTTCAGGAGTA -ACGGAAACTCTGCGTTCATCGTCT -ACGGAAACTCTGCGTTCATGCACT -ACGGAAACTCTGCGTTCACTGACT -ACGGAAACTCTGCGTTCACAACCT -ACGGAAACTCTGCGTTCAGCTACT -ACGGAAACTCTGCGTTCAGGATCT -ACGGAAACTCTGCGTTCAAAGGCT -ACGGAAACTCTGCGTTCATCAACC -ACGGAAACTCTGCGTTCATGTTCC -ACGGAAACTCTGCGTTCAATTCCC -ACGGAAACTCTGCGTTCATTCTCG -ACGGAAACTCTGCGTTCATAGACG -ACGGAAACTCTGCGTTCAGTAACG -ACGGAAACTCTGCGTTCAACTTCG -ACGGAAACTCTGCGTTCATACGCA -ACGGAAACTCTGCGTTCACTTGCA -ACGGAAACTCTGCGTTCACGAACA -ACGGAAACTCTGCGTTCACAGTCA -ACGGAAACTCTGCGTTCAGATCCA -ACGGAAACTCTGCGTTCAACGACA -ACGGAAACTCTGCGTTCAAGCTCA -ACGGAAACTCTGCGTTCATCACGT -ACGGAAACTCTGCGTTCACGTAGT -ACGGAAACTCTGCGTTCAGTCAGT -ACGGAAACTCTGCGTTCAGAAGGT -ACGGAAACTCTGCGTTCAAACCGT -ACGGAAACTCTGCGTTCATTGTGC -ACGGAAACTCTGCGTTCACTAAGC -ACGGAAACTCTGCGTTCAACTAGC -ACGGAAACTCTGCGTTCAAGATGC -ACGGAAACTCTGCGTTCATGAAGG -ACGGAAACTCTGCGTTCACAATGG -ACGGAAACTCTGCGTTCAATGAGG -ACGGAAACTCTGCGTTCAAATGGG -ACGGAAACTCTGCGTTCATCCTGA -ACGGAAACTCTGCGTTCATAGCGA -ACGGAAACTCTGCGTTCACACAGA -ACGGAAACTCTGCGTTCAGCAAGA -ACGGAAACTCTGCGTTCAGGTTGA -ACGGAAACTCTGCGTTCATCCGAT -ACGGAAACTCTGCGTTCATGGCAT -ACGGAAACTCTGCGTTCACGAGAT -ACGGAAACTCTGCGTTCATACCAC -ACGGAAACTCTGCGTTCACAGAAC -ACGGAAACTCTGCGTTCAGTCTAC -ACGGAAACTCTGCGTTCAACGTAC -ACGGAAACTCTGCGTTCAAGTGAC -ACGGAAACTCTGCGTTCACTGTAG -ACGGAAACTCTGCGTTCACCTAAG -ACGGAAACTCTGCGTTCAGTTCAG -ACGGAAACTCTGCGTTCAGCATAG -ACGGAAACTCTGCGTTCAGACAAG -ACGGAAACTCTGCGTTCAAAGCAG -ACGGAAACTCTGCGTTCACGTCAA -ACGGAAACTCTGCGTTCAGCTGAA -ACGGAAACTCTGCGTTCAAGTACG -ACGGAAACTCTGCGTTCAATCCGA -ACGGAAACTCTGCGTTCAATGGGA -ACGGAAACTCTGCGTTCAGTGCAA -ACGGAAACTCTGCGTTCAGAGGAA -ACGGAAACTCTGCGTTCACAGGTA -ACGGAAACTCTGCGTTCAGACTCT -ACGGAAACTCTGCGTTCAAGTCCT -ACGGAAACTCTGCGTTCATAAGCC -ACGGAAACTCTGCGTTCAATAGCC -ACGGAAACTCTGCGTTCATAACCG -ACGGAAACTCTGCGTTCAATGCCA -ACGGAAACTCTGAGTCGTGGAAAC -ACGGAAACTCTGAGTCGTAACACC -ACGGAAACTCTGAGTCGTATCGAG -ACGGAAACTCTGAGTCGTCTCCTT -ACGGAAACTCTGAGTCGTCCTGTT -ACGGAAACTCTGAGTCGTCGGTTT -ACGGAAACTCTGAGTCGTGTGGTT -ACGGAAACTCTGAGTCGTGCCTTT -ACGGAAACTCTGAGTCGTGGTCTT -ACGGAAACTCTGAGTCGTACGCTT -ACGGAAACTCTGAGTCGTAGCGTT -ACGGAAACTCTGAGTCGTTTCGTC -ACGGAAACTCTGAGTCGTTCTCTC -ACGGAAACTCTGAGTCGTTGGATC -ACGGAAACTCTGAGTCGTCACTTC -ACGGAAACTCTGAGTCGTGTACTC -ACGGAAACTCTGAGTCGTGATGTC -ACGGAAACTCTGAGTCGTACAGTC -ACGGAAACTCTGAGTCGTTTGCTG -ACGGAAACTCTGAGTCGTTCCATG -ACGGAAACTCTGAGTCGTTGTGTG -ACGGAAACTCTGAGTCGTCTAGTG -ACGGAAACTCTGAGTCGTCATCTG -ACGGAAACTCTGAGTCGTGAGTTG -ACGGAAACTCTGAGTCGTAGACTG -ACGGAAACTCTGAGTCGTTCGGTA -ACGGAAACTCTGAGTCGTTGCCTA -ACGGAAACTCTGAGTCGTCCACTA -ACGGAAACTCTGAGTCGTGGAGTA -ACGGAAACTCTGAGTCGTTCGTCT -ACGGAAACTCTGAGTCGTTGCACT -ACGGAAACTCTGAGTCGTCTGACT -ACGGAAACTCTGAGTCGTCAACCT -ACGGAAACTCTGAGTCGTGCTACT -ACGGAAACTCTGAGTCGTGGATCT -ACGGAAACTCTGAGTCGTAAGGCT -ACGGAAACTCTGAGTCGTTCAACC -ACGGAAACTCTGAGTCGTTGTTCC -ACGGAAACTCTGAGTCGTATTCCC -ACGGAAACTCTGAGTCGTTTCTCG -ACGGAAACTCTGAGTCGTTAGACG -ACGGAAACTCTGAGTCGTGTAACG -ACGGAAACTCTGAGTCGTACTTCG -ACGGAAACTCTGAGTCGTTACGCA -ACGGAAACTCTGAGTCGTCTTGCA -ACGGAAACTCTGAGTCGTCGAACA -ACGGAAACTCTGAGTCGTCAGTCA -ACGGAAACTCTGAGTCGTGATCCA -ACGGAAACTCTGAGTCGTACGACA -ACGGAAACTCTGAGTCGTAGCTCA -ACGGAAACTCTGAGTCGTTCACGT -ACGGAAACTCTGAGTCGTCGTAGT -ACGGAAACTCTGAGTCGTGTCAGT -ACGGAAACTCTGAGTCGTGAAGGT -ACGGAAACTCTGAGTCGTAACCGT -ACGGAAACTCTGAGTCGTTTGTGC -ACGGAAACTCTGAGTCGTCTAAGC -ACGGAAACTCTGAGTCGTACTAGC -ACGGAAACTCTGAGTCGTAGATGC -ACGGAAACTCTGAGTCGTTGAAGG -ACGGAAACTCTGAGTCGTCAATGG -ACGGAAACTCTGAGTCGTATGAGG -ACGGAAACTCTGAGTCGTAATGGG -ACGGAAACTCTGAGTCGTTCCTGA -ACGGAAACTCTGAGTCGTTAGCGA -ACGGAAACTCTGAGTCGTCACAGA -ACGGAAACTCTGAGTCGTGCAAGA -ACGGAAACTCTGAGTCGTGGTTGA -ACGGAAACTCTGAGTCGTTCCGAT -ACGGAAACTCTGAGTCGTTGGCAT -ACGGAAACTCTGAGTCGTCGAGAT -ACGGAAACTCTGAGTCGTTACCAC -ACGGAAACTCTGAGTCGTCAGAAC -ACGGAAACTCTGAGTCGTGTCTAC -ACGGAAACTCTGAGTCGTACGTAC -ACGGAAACTCTGAGTCGTAGTGAC -ACGGAAACTCTGAGTCGTCTGTAG -ACGGAAACTCTGAGTCGTCCTAAG -ACGGAAACTCTGAGTCGTGTTCAG -ACGGAAACTCTGAGTCGTGCATAG -ACGGAAACTCTGAGTCGTGACAAG -ACGGAAACTCTGAGTCGTAAGCAG -ACGGAAACTCTGAGTCGTCGTCAA -ACGGAAACTCTGAGTCGTGCTGAA -ACGGAAACTCTGAGTCGTAGTACG -ACGGAAACTCTGAGTCGTATCCGA -ACGGAAACTCTGAGTCGTATGGGA -ACGGAAACTCTGAGTCGTGTGCAA -ACGGAAACTCTGAGTCGTGAGGAA -ACGGAAACTCTGAGTCGTCAGGTA -ACGGAAACTCTGAGTCGTGACTCT -ACGGAAACTCTGAGTCGTAGTCCT -ACGGAAACTCTGAGTCGTTAAGCC -ACGGAAACTCTGAGTCGTATAGCC -ACGGAAACTCTGAGTCGTTAACCG -ACGGAAACTCTGAGTCGTATGCCA -ACGGAAACTCTGAGTGTCGGAAAC -ACGGAAACTCTGAGTGTCAACACC -ACGGAAACTCTGAGTGTCATCGAG -ACGGAAACTCTGAGTGTCCTCCTT -ACGGAAACTCTGAGTGTCCCTGTT -ACGGAAACTCTGAGTGTCCGGTTT -ACGGAAACTCTGAGTGTCGTGGTT -ACGGAAACTCTGAGTGTCGCCTTT -ACGGAAACTCTGAGTGTCGGTCTT -ACGGAAACTCTGAGTGTCACGCTT -ACGGAAACTCTGAGTGTCAGCGTT -ACGGAAACTCTGAGTGTCTTCGTC -ACGGAAACTCTGAGTGTCTCTCTC -ACGGAAACTCTGAGTGTCTGGATC -ACGGAAACTCTGAGTGTCCACTTC -ACGGAAACTCTGAGTGTCGTACTC -ACGGAAACTCTGAGTGTCGATGTC -ACGGAAACTCTGAGTGTCACAGTC -ACGGAAACTCTGAGTGTCTTGCTG -ACGGAAACTCTGAGTGTCTCCATG -ACGGAAACTCTGAGTGTCTGTGTG -ACGGAAACTCTGAGTGTCCTAGTG -ACGGAAACTCTGAGTGTCCATCTG -ACGGAAACTCTGAGTGTCGAGTTG -ACGGAAACTCTGAGTGTCAGACTG -ACGGAAACTCTGAGTGTCTCGGTA -ACGGAAACTCTGAGTGTCTGCCTA -ACGGAAACTCTGAGTGTCCCACTA -ACGGAAACTCTGAGTGTCGGAGTA -ACGGAAACTCTGAGTGTCTCGTCT -ACGGAAACTCTGAGTGTCTGCACT -ACGGAAACTCTGAGTGTCCTGACT -ACGGAAACTCTGAGTGTCCAACCT -ACGGAAACTCTGAGTGTCGCTACT -ACGGAAACTCTGAGTGTCGGATCT -ACGGAAACTCTGAGTGTCAAGGCT -ACGGAAACTCTGAGTGTCTCAACC -ACGGAAACTCTGAGTGTCTGTTCC -ACGGAAACTCTGAGTGTCATTCCC -ACGGAAACTCTGAGTGTCTTCTCG -ACGGAAACTCTGAGTGTCTAGACG -ACGGAAACTCTGAGTGTCGTAACG -ACGGAAACTCTGAGTGTCACTTCG -ACGGAAACTCTGAGTGTCTACGCA -ACGGAAACTCTGAGTGTCCTTGCA -ACGGAAACTCTGAGTGTCCGAACA -ACGGAAACTCTGAGTGTCCAGTCA -ACGGAAACTCTGAGTGTCGATCCA -ACGGAAACTCTGAGTGTCACGACA -ACGGAAACTCTGAGTGTCAGCTCA -ACGGAAACTCTGAGTGTCTCACGT -ACGGAAACTCTGAGTGTCCGTAGT -ACGGAAACTCTGAGTGTCGTCAGT -ACGGAAACTCTGAGTGTCGAAGGT -ACGGAAACTCTGAGTGTCAACCGT -ACGGAAACTCTGAGTGTCTTGTGC -ACGGAAACTCTGAGTGTCCTAAGC -ACGGAAACTCTGAGTGTCACTAGC -ACGGAAACTCTGAGTGTCAGATGC -ACGGAAACTCTGAGTGTCTGAAGG -ACGGAAACTCTGAGTGTCCAATGG -ACGGAAACTCTGAGTGTCATGAGG -ACGGAAACTCTGAGTGTCAATGGG -ACGGAAACTCTGAGTGTCTCCTGA -ACGGAAACTCTGAGTGTCTAGCGA -ACGGAAACTCTGAGTGTCCACAGA -ACGGAAACTCTGAGTGTCGCAAGA -ACGGAAACTCTGAGTGTCGGTTGA -ACGGAAACTCTGAGTGTCTCCGAT -ACGGAAACTCTGAGTGTCTGGCAT -ACGGAAACTCTGAGTGTCCGAGAT -ACGGAAACTCTGAGTGTCTACCAC -ACGGAAACTCTGAGTGTCCAGAAC -ACGGAAACTCTGAGTGTCGTCTAC -ACGGAAACTCTGAGTGTCACGTAC -ACGGAAACTCTGAGTGTCAGTGAC -ACGGAAACTCTGAGTGTCCTGTAG -ACGGAAACTCTGAGTGTCCCTAAG -ACGGAAACTCTGAGTGTCGTTCAG -ACGGAAACTCTGAGTGTCGCATAG -ACGGAAACTCTGAGTGTCGACAAG -ACGGAAACTCTGAGTGTCAAGCAG -ACGGAAACTCTGAGTGTCCGTCAA -ACGGAAACTCTGAGTGTCGCTGAA -ACGGAAACTCTGAGTGTCAGTACG -ACGGAAACTCTGAGTGTCATCCGA -ACGGAAACTCTGAGTGTCATGGGA -ACGGAAACTCTGAGTGTCGTGCAA -ACGGAAACTCTGAGTGTCGAGGAA -ACGGAAACTCTGAGTGTCCAGGTA -ACGGAAACTCTGAGTGTCGACTCT -ACGGAAACTCTGAGTGTCAGTCCT -ACGGAAACTCTGAGTGTCTAAGCC -ACGGAAACTCTGAGTGTCATAGCC -ACGGAAACTCTGAGTGTCTAACCG -ACGGAAACTCTGAGTGTCATGCCA -ACGGAAACTCTGGGTGAAGGAAAC -ACGGAAACTCTGGGTGAAAACACC -ACGGAAACTCTGGGTGAAATCGAG -ACGGAAACTCTGGGTGAACTCCTT -ACGGAAACTCTGGGTGAACCTGTT -ACGGAAACTCTGGGTGAACGGTTT -ACGGAAACTCTGGGTGAAGTGGTT -ACGGAAACTCTGGGTGAAGCCTTT -ACGGAAACTCTGGGTGAAGGTCTT -ACGGAAACTCTGGGTGAAACGCTT -ACGGAAACTCTGGGTGAAAGCGTT -ACGGAAACTCTGGGTGAATTCGTC -ACGGAAACTCTGGGTGAATCTCTC -ACGGAAACTCTGGGTGAATGGATC -ACGGAAACTCTGGGTGAACACTTC -ACGGAAACTCTGGGTGAAGTACTC -ACGGAAACTCTGGGTGAAGATGTC -ACGGAAACTCTGGGTGAAACAGTC -ACGGAAACTCTGGGTGAATTGCTG -ACGGAAACTCTGGGTGAATCCATG -ACGGAAACTCTGGGTGAATGTGTG -ACGGAAACTCTGGGTGAACTAGTG -ACGGAAACTCTGGGTGAACATCTG -ACGGAAACTCTGGGTGAAGAGTTG -ACGGAAACTCTGGGTGAAAGACTG -ACGGAAACTCTGGGTGAATCGGTA -ACGGAAACTCTGGGTGAATGCCTA -ACGGAAACTCTGGGTGAACCACTA -ACGGAAACTCTGGGTGAAGGAGTA -ACGGAAACTCTGGGTGAATCGTCT -ACGGAAACTCTGGGTGAATGCACT -ACGGAAACTCTGGGTGAACTGACT -ACGGAAACTCTGGGTGAACAACCT -ACGGAAACTCTGGGTGAAGCTACT -ACGGAAACTCTGGGTGAAGGATCT -ACGGAAACTCTGGGTGAAAAGGCT -ACGGAAACTCTGGGTGAATCAACC -ACGGAAACTCTGGGTGAATGTTCC -ACGGAAACTCTGGGTGAAATTCCC -ACGGAAACTCTGGGTGAATTCTCG -ACGGAAACTCTGGGTGAATAGACG -ACGGAAACTCTGGGTGAAGTAACG -ACGGAAACTCTGGGTGAAACTTCG -ACGGAAACTCTGGGTGAATACGCA -ACGGAAACTCTGGGTGAACTTGCA -ACGGAAACTCTGGGTGAACGAACA -ACGGAAACTCTGGGTGAACAGTCA -ACGGAAACTCTGGGTGAAGATCCA -ACGGAAACTCTGGGTGAAACGACA -ACGGAAACTCTGGGTGAAAGCTCA -ACGGAAACTCTGGGTGAATCACGT -ACGGAAACTCTGGGTGAACGTAGT -ACGGAAACTCTGGGTGAAGTCAGT -ACGGAAACTCTGGGTGAAGAAGGT -ACGGAAACTCTGGGTGAAAACCGT -ACGGAAACTCTGGGTGAATTGTGC -ACGGAAACTCTGGGTGAACTAAGC -ACGGAAACTCTGGGTGAAACTAGC -ACGGAAACTCTGGGTGAAAGATGC -ACGGAAACTCTGGGTGAATGAAGG -ACGGAAACTCTGGGTGAACAATGG -ACGGAAACTCTGGGTGAAATGAGG -ACGGAAACTCTGGGTGAAAATGGG -ACGGAAACTCTGGGTGAATCCTGA -ACGGAAACTCTGGGTGAATAGCGA -ACGGAAACTCTGGGTGAACACAGA -ACGGAAACTCTGGGTGAAGCAAGA -ACGGAAACTCTGGGTGAAGGTTGA -ACGGAAACTCTGGGTGAATCCGAT -ACGGAAACTCTGGGTGAATGGCAT -ACGGAAACTCTGGGTGAACGAGAT -ACGGAAACTCTGGGTGAATACCAC -ACGGAAACTCTGGGTGAACAGAAC -ACGGAAACTCTGGGTGAAGTCTAC -ACGGAAACTCTGGGTGAAACGTAC -ACGGAAACTCTGGGTGAAAGTGAC -ACGGAAACTCTGGGTGAACTGTAG -ACGGAAACTCTGGGTGAACCTAAG -ACGGAAACTCTGGGTGAAGTTCAG -ACGGAAACTCTGGGTGAAGCATAG -ACGGAAACTCTGGGTGAAGACAAG -ACGGAAACTCTGGGTGAAAAGCAG -ACGGAAACTCTGGGTGAACGTCAA -ACGGAAACTCTGGGTGAAGCTGAA -ACGGAAACTCTGGGTGAAAGTACG -ACGGAAACTCTGGGTGAAATCCGA -ACGGAAACTCTGGGTGAAATGGGA -ACGGAAACTCTGGGTGAAGTGCAA -ACGGAAACTCTGGGTGAAGAGGAA -ACGGAAACTCTGGGTGAACAGGTA -ACGGAAACTCTGGGTGAAGACTCT -ACGGAAACTCTGGGTGAAAGTCCT -ACGGAAACTCTGGGTGAATAAGCC -ACGGAAACTCTGGGTGAAATAGCC -ACGGAAACTCTGGGTGAATAACCG -ACGGAAACTCTGGGTGAAATGCCA -ACGGAAACTCTGCGTAACGGAAAC -ACGGAAACTCTGCGTAACAACACC -ACGGAAACTCTGCGTAACATCGAG -ACGGAAACTCTGCGTAACCTCCTT -ACGGAAACTCTGCGTAACCCTGTT -ACGGAAACTCTGCGTAACCGGTTT -ACGGAAACTCTGCGTAACGTGGTT -ACGGAAACTCTGCGTAACGCCTTT -ACGGAAACTCTGCGTAACGGTCTT -ACGGAAACTCTGCGTAACACGCTT -ACGGAAACTCTGCGTAACAGCGTT -ACGGAAACTCTGCGTAACTTCGTC -ACGGAAACTCTGCGTAACTCTCTC -ACGGAAACTCTGCGTAACTGGATC -ACGGAAACTCTGCGTAACCACTTC -ACGGAAACTCTGCGTAACGTACTC -ACGGAAACTCTGCGTAACGATGTC -ACGGAAACTCTGCGTAACACAGTC -ACGGAAACTCTGCGTAACTTGCTG -ACGGAAACTCTGCGTAACTCCATG -ACGGAAACTCTGCGTAACTGTGTG -ACGGAAACTCTGCGTAACCTAGTG -ACGGAAACTCTGCGTAACCATCTG -ACGGAAACTCTGCGTAACGAGTTG -ACGGAAACTCTGCGTAACAGACTG -ACGGAAACTCTGCGTAACTCGGTA -ACGGAAACTCTGCGTAACTGCCTA -ACGGAAACTCTGCGTAACCCACTA -ACGGAAACTCTGCGTAACGGAGTA -ACGGAAACTCTGCGTAACTCGTCT -ACGGAAACTCTGCGTAACTGCACT -ACGGAAACTCTGCGTAACCTGACT -ACGGAAACTCTGCGTAACCAACCT -ACGGAAACTCTGCGTAACGCTACT -ACGGAAACTCTGCGTAACGGATCT -ACGGAAACTCTGCGTAACAAGGCT -ACGGAAACTCTGCGTAACTCAACC -ACGGAAACTCTGCGTAACTGTTCC -ACGGAAACTCTGCGTAACATTCCC -ACGGAAACTCTGCGTAACTTCTCG -ACGGAAACTCTGCGTAACTAGACG -ACGGAAACTCTGCGTAACGTAACG -ACGGAAACTCTGCGTAACACTTCG -ACGGAAACTCTGCGTAACTACGCA -ACGGAAACTCTGCGTAACCTTGCA -ACGGAAACTCTGCGTAACCGAACA -ACGGAAACTCTGCGTAACCAGTCA -ACGGAAACTCTGCGTAACGATCCA -ACGGAAACTCTGCGTAACACGACA -ACGGAAACTCTGCGTAACAGCTCA -ACGGAAACTCTGCGTAACTCACGT -ACGGAAACTCTGCGTAACCGTAGT -ACGGAAACTCTGCGTAACGTCAGT -ACGGAAACTCTGCGTAACGAAGGT -ACGGAAACTCTGCGTAACAACCGT -ACGGAAACTCTGCGTAACTTGTGC -ACGGAAACTCTGCGTAACCTAAGC -ACGGAAACTCTGCGTAACACTAGC -ACGGAAACTCTGCGTAACAGATGC -ACGGAAACTCTGCGTAACTGAAGG -ACGGAAACTCTGCGTAACCAATGG -ACGGAAACTCTGCGTAACATGAGG -ACGGAAACTCTGCGTAACAATGGG -ACGGAAACTCTGCGTAACTCCTGA -ACGGAAACTCTGCGTAACTAGCGA -ACGGAAACTCTGCGTAACCACAGA -ACGGAAACTCTGCGTAACGCAAGA -ACGGAAACTCTGCGTAACGGTTGA -ACGGAAACTCTGCGTAACTCCGAT -ACGGAAACTCTGCGTAACTGGCAT -ACGGAAACTCTGCGTAACCGAGAT -ACGGAAACTCTGCGTAACTACCAC -ACGGAAACTCTGCGTAACCAGAAC -ACGGAAACTCTGCGTAACGTCTAC -ACGGAAACTCTGCGTAACACGTAC -ACGGAAACTCTGCGTAACAGTGAC -ACGGAAACTCTGCGTAACCTGTAG -ACGGAAACTCTGCGTAACCCTAAG -ACGGAAACTCTGCGTAACGTTCAG -ACGGAAACTCTGCGTAACGCATAG -ACGGAAACTCTGCGTAACGACAAG -ACGGAAACTCTGCGTAACAAGCAG -ACGGAAACTCTGCGTAACCGTCAA -ACGGAAACTCTGCGTAACGCTGAA -ACGGAAACTCTGCGTAACAGTACG -ACGGAAACTCTGCGTAACATCCGA -ACGGAAACTCTGCGTAACATGGGA -ACGGAAACTCTGCGTAACGTGCAA -ACGGAAACTCTGCGTAACGAGGAA -ACGGAAACTCTGCGTAACCAGGTA -ACGGAAACTCTGCGTAACGACTCT -ACGGAAACTCTGCGTAACAGTCCT -ACGGAAACTCTGCGTAACTAAGCC -ACGGAAACTCTGCGTAACATAGCC -ACGGAAACTCTGCGTAACTAACCG -ACGGAAACTCTGCGTAACATGCCA -ACGGAAACTCTGTGCTTGGGAAAC -ACGGAAACTCTGTGCTTGAACACC -ACGGAAACTCTGTGCTTGATCGAG -ACGGAAACTCTGTGCTTGCTCCTT -ACGGAAACTCTGTGCTTGCCTGTT -ACGGAAACTCTGTGCTTGCGGTTT -ACGGAAACTCTGTGCTTGGTGGTT -ACGGAAACTCTGTGCTTGGCCTTT -ACGGAAACTCTGTGCTTGGGTCTT -ACGGAAACTCTGTGCTTGACGCTT -ACGGAAACTCTGTGCTTGAGCGTT -ACGGAAACTCTGTGCTTGTTCGTC -ACGGAAACTCTGTGCTTGTCTCTC -ACGGAAACTCTGTGCTTGTGGATC -ACGGAAACTCTGTGCTTGCACTTC -ACGGAAACTCTGTGCTTGGTACTC -ACGGAAACTCTGTGCTTGGATGTC -ACGGAAACTCTGTGCTTGACAGTC -ACGGAAACTCTGTGCTTGTTGCTG -ACGGAAACTCTGTGCTTGTCCATG -ACGGAAACTCTGTGCTTGTGTGTG -ACGGAAACTCTGTGCTTGCTAGTG -ACGGAAACTCTGTGCTTGCATCTG -ACGGAAACTCTGTGCTTGGAGTTG -ACGGAAACTCTGTGCTTGAGACTG -ACGGAAACTCTGTGCTTGTCGGTA -ACGGAAACTCTGTGCTTGTGCCTA -ACGGAAACTCTGTGCTTGCCACTA -ACGGAAACTCTGTGCTTGGGAGTA -ACGGAAACTCTGTGCTTGTCGTCT -ACGGAAACTCTGTGCTTGTGCACT -ACGGAAACTCTGTGCTTGCTGACT -ACGGAAACTCTGTGCTTGCAACCT -ACGGAAACTCTGTGCTTGGCTACT -ACGGAAACTCTGTGCTTGGGATCT -ACGGAAACTCTGTGCTTGAAGGCT -ACGGAAACTCTGTGCTTGTCAACC -ACGGAAACTCTGTGCTTGTGTTCC -ACGGAAACTCTGTGCTTGATTCCC -ACGGAAACTCTGTGCTTGTTCTCG -ACGGAAACTCTGTGCTTGTAGACG -ACGGAAACTCTGTGCTTGGTAACG -ACGGAAACTCTGTGCTTGACTTCG -ACGGAAACTCTGTGCTTGTACGCA -ACGGAAACTCTGTGCTTGCTTGCA -ACGGAAACTCTGTGCTTGCGAACA -ACGGAAACTCTGTGCTTGCAGTCA -ACGGAAACTCTGTGCTTGGATCCA -ACGGAAACTCTGTGCTTGACGACA -ACGGAAACTCTGTGCTTGAGCTCA -ACGGAAACTCTGTGCTTGTCACGT -ACGGAAACTCTGTGCTTGCGTAGT -ACGGAAACTCTGTGCTTGGTCAGT -ACGGAAACTCTGTGCTTGGAAGGT -ACGGAAACTCTGTGCTTGAACCGT -ACGGAAACTCTGTGCTTGTTGTGC -ACGGAAACTCTGTGCTTGCTAAGC -ACGGAAACTCTGTGCTTGACTAGC -ACGGAAACTCTGTGCTTGAGATGC -ACGGAAACTCTGTGCTTGTGAAGG -ACGGAAACTCTGTGCTTGCAATGG -ACGGAAACTCTGTGCTTGATGAGG -ACGGAAACTCTGTGCTTGAATGGG -ACGGAAACTCTGTGCTTGTCCTGA -ACGGAAACTCTGTGCTTGTAGCGA -ACGGAAACTCTGTGCTTGCACAGA -ACGGAAACTCTGTGCTTGGCAAGA -ACGGAAACTCTGTGCTTGGGTTGA -ACGGAAACTCTGTGCTTGTCCGAT -ACGGAAACTCTGTGCTTGTGGCAT -ACGGAAACTCTGTGCTTGCGAGAT -ACGGAAACTCTGTGCTTGTACCAC -ACGGAAACTCTGTGCTTGCAGAAC -ACGGAAACTCTGTGCTTGGTCTAC -ACGGAAACTCTGTGCTTGACGTAC -ACGGAAACTCTGTGCTTGAGTGAC -ACGGAAACTCTGTGCTTGCTGTAG -ACGGAAACTCTGTGCTTGCCTAAG -ACGGAAACTCTGTGCTTGGTTCAG -ACGGAAACTCTGTGCTTGGCATAG -ACGGAAACTCTGTGCTTGGACAAG -ACGGAAACTCTGTGCTTGAAGCAG -ACGGAAACTCTGTGCTTGCGTCAA -ACGGAAACTCTGTGCTTGGCTGAA -ACGGAAACTCTGTGCTTGAGTACG -ACGGAAACTCTGTGCTTGATCCGA -ACGGAAACTCTGTGCTTGATGGGA -ACGGAAACTCTGTGCTTGGTGCAA -ACGGAAACTCTGTGCTTGGAGGAA -ACGGAAACTCTGTGCTTGCAGGTA -ACGGAAACTCTGTGCTTGGACTCT -ACGGAAACTCTGTGCTTGAGTCCT -ACGGAAACTCTGTGCTTGTAAGCC -ACGGAAACTCTGTGCTTGATAGCC -ACGGAAACTCTGTGCTTGTAACCG -ACGGAAACTCTGTGCTTGATGCCA -ACGGAAACTCTGAGCCTAGGAAAC -ACGGAAACTCTGAGCCTAAACACC -ACGGAAACTCTGAGCCTAATCGAG -ACGGAAACTCTGAGCCTACTCCTT -ACGGAAACTCTGAGCCTACCTGTT -ACGGAAACTCTGAGCCTACGGTTT -ACGGAAACTCTGAGCCTAGTGGTT -ACGGAAACTCTGAGCCTAGCCTTT -ACGGAAACTCTGAGCCTAGGTCTT -ACGGAAACTCTGAGCCTAACGCTT -ACGGAAACTCTGAGCCTAAGCGTT -ACGGAAACTCTGAGCCTATTCGTC -ACGGAAACTCTGAGCCTATCTCTC -ACGGAAACTCTGAGCCTATGGATC -ACGGAAACTCTGAGCCTACACTTC -ACGGAAACTCTGAGCCTAGTACTC -ACGGAAACTCTGAGCCTAGATGTC -ACGGAAACTCTGAGCCTAACAGTC -ACGGAAACTCTGAGCCTATTGCTG -ACGGAAACTCTGAGCCTATCCATG -ACGGAAACTCTGAGCCTATGTGTG -ACGGAAACTCTGAGCCTACTAGTG -ACGGAAACTCTGAGCCTACATCTG -ACGGAAACTCTGAGCCTAGAGTTG -ACGGAAACTCTGAGCCTAAGACTG -ACGGAAACTCTGAGCCTATCGGTA -ACGGAAACTCTGAGCCTATGCCTA -ACGGAAACTCTGAGCCTACCACTA -ACGGAAACTCTGAGCCTAGGAGTA -ACGGAAACTCTGAGCCTATCGTCT -ACGGAAACTCTGAGCCTATGCACT -ACGGAAACTCTGAGCCTACTGACT -ACGGAAACTCTGAGCCTACAACCT -ACGGAAACTCTGAGCCTAGCTACT -ACGGAAACTCTGAGCCTAGGATCT -ACGGAAACTCTGAGCCTAAAGGCT -ACGGAAACTCTGAGCCTATCAACC -ACGGAAACTCTGAGCCTATGTTCC -ACGGAAACTCTGAGCCTAATTCCC -ACGGAAACTCTGAGCCTATTCTCG -ACGGAAACTCTGAGCCTATAGACG -ACGGAAACTCTGAGCCTAGTAACG -ACGGAAACTCTGAGCCTAACTTCG -ACGGAAACTCTGAGCCTATACGCA -ACGGAAACTCTGAGCCTACTTGCA -ACGGAAACTCTGAGCCTACGAACA -ACGGAAACTCTGAGCCTACAGTCA -ACGGAAACTCTGAGCCTAGATCCA -ACGGAAACTCTGAGCCTAACGACA -ACGGAAACTCTGAGCCTAAGCTCA -ACGGAAACTCTGAGCCTATCACGT -ACGGAAACTCTGAGCCTACGTAGT -ACGGAAACTCTGAGCCTAGTCAGT -ACGGAAACTCTGAGCCTAGAAGGT -ACGGAAACTCTGAGCCTAAACCGT -ACGGAAACTCTGAGCCTATTGTGC -ACGGAAACTCTGAGCCTACTAAGC -ACGGAAACTCTGAGCCTAACTAGC -ACGGAAACTCTGAGCCTAAGATGC -ACGGAAACTCTGAGCCTATGAAGG -ACGGAAACTCTGAGCCTACAATGG -ACGGAAACTCTGAGCCTAATGAGG -ACGGAAACTCTGAGCCTAAATGGG -ACGGAAACTCTGAGCCTATCCTGA -ACGGAAACTCTGAGCCTATAGCGA -ACGGAAACTCTGAGCCTACACAGA -ACGGAAACTCTGAGCCTAGCAAGA -ACGGAAACTCTGAGCCTAGGTTGA -ACGGAAACTCTGAGCCTATCCGAT -ACGGAAACTCTGAGCCTATGGCAT -ACGGAAACTCTGAGCCTACGAGAT -ACGGAAACTCTGAGCCTATACCAC -ACGGAAACTCTGAGCCTACAGAAC -ACGGAAACTCTGAGCCTAGTCTAC -ACGGAAACTCTGAGCCTAACGTAC -ACGGAAACTCTGAGCCTAAGTGAC -ACGGAAACTCTGAGCCTACTGTAG -ACGGAAACTCTGAGCCTACCTAAG -ACGGAAACTCTGAGCCTAGTTCAG -ACGGAAACTCTGAGCCTAGCATAG -ACGGAAACTCTGAGCCTAGACAAG -ACGGAAACTCTGAGCCTAAAGCAG -ACGGAAACTCTGAGCCTACGTCAA -ACGGAAACTCTGAGCCTAGCTGAA -ACGGAAACTCTGAGCCTAAGTACG -ACGGAAACTCTGAGCCTAATCCGA -ACGGAAACTCTGAGCCTAATGGGA -ACGGAAACTCTGAGCCTAGTGCAA -ACGGAAACTCTGAGCCTAGAGGAA -ACGGAAACTCTGAGCCTACAGGTA -ACGGAAACTCTGAGCCTAGACTCT -ACGGAAACTCTGAGCCTAAGTCCT -ACGGAAACTCTGAGCCTATAAGCC -ACGGAAACTCTGAGCCTAATAGCC -ACGGAAACTCTGAGCCTATAACCG -ACGGAAACTCTGAGCCTAATGCCA -ACGGAAACTCTGAGCACTGGAAAC -ACGGAAACTCTGAGCACTAACACC -ACGGAAACTCTGAGCACTATCGAG -ACGGAAACTCTGAGCACTCTCCTT -ACGGAAACTCTGAGCACTCCTGTT -ACGGAAACTCTGAGCACTCGGTTT -ACGGAAACTCTGAGCACTGTGGTT -ACGGAAACTCTGAGCACTGCCTTT -ACGGAAACTCTGAGCACTGGTCTT -ACGGAAACTCTGAGCACTACGCTT -ACGGAAACTCTGAGCACTAGCGTT -ACGGAAACTCTGAGCACTTTCGTC -ACGGAAACTCTGAGCACTTCTCTC -ACGGAAACTCTGAGCACTTGGATC -ACGGAAACTCTGAGCACTCACTTC -ACGGAAACTCTGAGCACTGTACTC -ACGGAAACTCTGAGCACTGATGTC -ACGGAAACTCTGAGCACTACAGTC -ACGGAAACTCTGAGCACTTTGCTG -ACGGAAACTCTGAGCACTTCCATG -ACGGAAACTCTGAGCACTTGTGTG -ACGGAAACTCTGAGCACTCTAGTG -ACGGAAACTCTGAGCACTCATCTG -ACGGAAACTCTGAGCACTGAGTTG -ACGGAAACTCTGAGCACTAGACTG -ACGGAAACTCTGAGCACTTCGGTA -ACGGAAACTCTGAGCACTTGCCTA -ACGGAAACTCTGAGCACTCCACTA -ACGGAAACTCTGAGCACTGGAGTA -ACGGAAACTCTGAGCACTTCGTCT -ACGGAAACTCTGAGCACTTGCACT -ACGGAAACTCTGAGCACTCTGACT -ACGGAAACTCTGAGCACTCAACCT -ACGGAAACTCTGAGCACTGCTACT -ACGGAAACTCTGAGCACTGGATCT -ACGGAAACTCTGAGCACTAAGGCT -ACGGAAACTCTGAGCACTTCAACC -ACGGAAACTCTGAGCACTTGTTCC -ACGGAAACTCTGAGCACTATTCCC -ACGGAAACTCTGAGCACTTTCTCG -ACGGAAACTCTGAGCACTTAGACG -ACGGAAACTCTGAGCACTGTAACG -ACGGAAACTCTGAGCACTACTTCG -ACGGAAACTCTGAGCACTTACGCA -ACGGAAACTCTGAGCACTCTTGCA -ACGGAAACTCTGAGCACTCGAACA -ACGGAAACTCTGAGCACTCAGTCA -ACGGAAACTCTGAGCACTGATCCA -ACGGAAACTCTGAGCACTACGACA -ACGGAAACTCTGAGCACTAGCTCA -ACGGAAACTCTGAGCACTTCACGT -ACGGAAACTCTGAGCACTCGTAGT -ACGGAAACTCTGAGCACTGTCAGT -ACGGAAACTCTGAGCACTGAAGGT -ACGGAAACTCTGAGCACTAACCGT -ACGGAAACTCTGAGCACTTTGTGC -ACGGAAACTCTGAGCACTCTAAGC -ACGGAAACTCTGAGCACTACTAGC -ACGGAAACTCTGAGCACTAGATGC -ACGGAAACTCTGAGCACTTGAAGG -ACGGAAACTCTGAGCACTCAATGG -ACGGAAACTCTGAGCACTATGAGG -ACGGAAACTCTGAGCACTAATGGG -ACGGAAACTCTGAGCACTTCCTGA -ACGGAAACTCTGAGCACTTAGCGA -ACGGAAACTCTGAGCACTCACAGA -ACGGAAACTCTGAGCACTGCAAGA -ACGGAAACTCTGAGCACTGGTTGA -ACGGAAACTCTGAGCACTTCCGAT -ACGGAAACTCTGAGCACTTGGCAT -ACGGAAACTCTGAGCACTCGAGAT -ACGGAAACTCTGAGCACTTACCAC -ACGGAAACTCTGAGCACTCAGAAC -ACGGAAACTCTGAGCACTGTCTAC -ACGGAAACTCTGAGCACTACGTAC -ACGGAAACTCTGAGCACTAGTGAC -ACGGAAACTCTGAGCACTCTGTAG -ACGGAAACTCTGAGCACTCCTAAG -ACGGAAACTCTGAGCACTGTTCAG -ACGGAAACTCTGAGCACTGCATAG -ACGGAAACTCTGAGCACTGACAAG -ACGGAAACTCTGAGCACTAAGCAG -ACGGAAACTCTGAGCACTCGTCAA -ACGGAAACTCTGAGCACTGCTGAA -ACGGAAACTCTGAGCACTAGTACG -ACGGAAACTCTGAGCACTATCCGA -ACGGAAACTCTGAGCACTATGGGA -ACGGAAACTCTGAGCACTGTGCAA -ACGGAAACTCTGAGCACTGAGGAA -ACGGAAACTCTGAGCACTCAGGTA -ACGGAAACTCTGAGCACTGACTCT -ACGGAAACTCTGAGCACTAGTCCT -ACGGAAACTCTGAGCACTTAAGCC -ACGGAAACTCTGAGCACTATAGCC -ACGGAAACTCTGAGCACTTAACCG -ACGGAAACTCTGAGCACTATGCCA -ACGGAAACTCTGTGCAGAGGAAAC -ACGGAAACTCTGTGCAGAAACACC -ACGGAAACTCTGTGCAGAATCGAG -ACGGAAACTCTGTGCAGACTCCTT -ACGGAAACTCTGTGCAGACCTGTT -ACGGAAACTCTGTGCAGACGGTTT -ACGGAAACTCTGTGCAGAGTGGTT -ACGGAAACTCTGTGCAGAGCCTTT -ACGGAAACTCTGTGCAGAGGTCTT -ACGGAAACTCTGTGCAGAACGCTT -ACGGAAACTCTGTGCAGAAGCGTT -ACGGAAACTCTGTGCAGATTCGTC -ACGGAAACTCTGTGCAGATCTCTC -ACGGAAACTCTGTGCAGATGGATC -ACGGAAACTCTGTGCAGACACTTC -ACGGAAACTCTGTGCAGAGTACTC -ACGGAAACTCTGTGCAGAGATGTC -ACGGAAACTCTGTGCAGAACAGTC -ACGGAAACTCTGTGCAGATTGCTG -ACGGAAACTCTGTGCAGATCCATG -ACGGAAACTCTGTGCAGATGTGTG -ACGGAAACTCTGTGCAGACTAGTG -ACGGAAACTCTGTGCAGACATCTG -ACGGAAACTCTGTGCAGAGAGTTG -ACGGAAACTCTGTGCAGAAGACTG -ACGGAAACTCTGTGCAGATCGGTA -ACGGAAACTCTGTGCAGATGCCTA -ACGGAAACTCTGTGCAGACCACTA -ACGGAAACTCTGTGCAGAGGAGTA -ACGGAAACTCTGTGCAGATCGTCT -ACGGAAACTCTGTGCAGATGCACT -ACGGAAACTCTGTGCAGACTGACT -ACGGAAACTCTGTGCAGACAACCT -ACGGAAACTCTGTGCAGAGCTACT -ACGGAAACTCTGTGCAGAGGATCT -ACGGAAACTCTGTGCAGAAAGGCT -ACGGAAACTCTGTGCAGATCAACC -ACGGAAACTCTGTGCAGATGTTCC -ACGGAAACTCTGTGCAGAATTCCC -ACGGAAACTCTGTGCAGATTCTCG -ACGGAAACTCTGTGCAGATAGACG -ACGGAAACTCTGTGCAGAGTAACG -ACGGAAACTCTGTGCAGAACTTCG -ACGGAAACTCTGTGCAGATACGCA -ACGGAAACTCTGTGCAGACTTGCA -ACGGAAACTCTGTGCAGACGAACA -ACGGAAACTCTGTGCAGACAGTCA -ACGGAAACTCTGTGCAGAGATCCA -ACGGAAACTCTGTGCAGAACGACA -ACGGAAACTCTGTGCAGAAGCTCA -ACGGAAACTCTGTGCAGATCACGT -ACGGAAACTCTGTGCAGACGTAGT -ACGGAAACTCTGTGCAGAGTCAGT -ACGGAAACTCTGTGCAGAGAAGGT -ACGGAAACTCTGTGCAGAAACCGT -ACGGAAACTCTGTGCAGATTGTGC -ACGGAAACTCTGTGCAGACTAAGC -ACGGAAACTCTGTGCAGAACTAGC -ACGGAAACTCTGTGCAGAAGATGC -ACGGAAACTCTGTGCAGATGAAGG -ACGGAAACTCTGTGCAGACAATGG -ACGGAAACTCTGTGCAGAATGAGG -ACGGAAACTCTGTGCAGAAATGGG -ACGGAAACTCTGTGCAGATCCTGA -ACGGAAACTCTGTGCAGATAGCGA -ACGGAAACTCTGTGCAGACACAGA -ACGGAAACTCTGTGCAGAGCAAGA -ACGGAAACTCTGTGCAGAGGTTGA -ACGGAAACTCTGTGCAGATCCGAT -ACGGAAACTCTGTGCAGATGGCAT -ACGGAAACTCTGTGCAGACGAGAT -ACGGAAACTCTGTGCAGATACCAC -ACGGAAACTCTGTGCAGACAGAAC -ACGGAAACTCTGTGCAGAGTCTAC -ACGGAAACTCTGTGCAGAACGTAC -ACGGAAACTCTGTGCAGAAGTGAC -ACGGAAACTCTGTGCAGACTGTAG -ACGGAAACTCTGTGCAGACCTAAG -ACGGAAACTCTGTGCAGAGTTCAG -ACGGAAACTCTGTGCAGAGCATAG -ACGGAAACTCTGTGCAGAGACAAG -ACGGAAACTCTGTGCAGAAAGCAG -ACGGAAACTCTGTGCAGACGTCAA -ACGGAAACTCTGTGCAGAGCTGAA -ACGGAAACTCTGTGCAGAAGTACG -ACGGAAACTCTGTGCAGAATCCGA -ACGGAAACTCTGTGCAGAATGGGA -ACGGAAACTCTGTGCAGAGTGCAA -ACGGAAACTCTGTGCAGAGAGGAA -ACGGAAACTCTGTGCAGACAGGTA -ACGGAAACTCTGTGCAGAGACTCT -ACGGAAACTCTGTGCAGAAGTCCT -ACGGAAACTCTGTGCAGATAAGCC -ACGGAAACTCTGTGCAGAATAGCC -ACGGAAACTCTGTGCAGATAACCG -ACGGAAACTCTGTGCAGAATGCCA -ACGGAAACTCTGAGGTGAGGAAAC -ACGGAAACTCTGAGGTGAAACACC -ACGGAAACTCTGAGGTGAATCGAG -ACGGAAACTCTGAGGTGACTCCTT -ACGGAAACTCTGAGGTGACCTGTT -ACGGAAACTCTGAGGTGACGGTTT -ACGGAAACTCTGAGGTGAGTGGTT -ACGGAAACTCTGAGGTGAGCCTTT -ACGGAAACTCTGAGGTGAGGTCTT -ACGGAAACTCTGAGGTGAACGCTT -ACGGAAACTCTGAGGTGAAGCGTT -ACGGAAACTCTGAGGTGATTCGTC -ACGGAAACTCTGAGGTGATCTCTC -ACGGAAACTCTGAGGTGATGGATC -ACGGAAACTCTGAGGTGACACTTC -ACGGAAACTCTGAGGTGAGTACTC -ACGGAAACTCTGAGGTGAGATGTC -ACGGAAACTCTGAGGTGAACAGTC -ACGGAAACTCTGAGGTGATTGCTG -ACGGAAACTCTGAGGTGATCCATG -ACGGAAACTCTGAGGTGATGTGTG -ACGGAAACTCTGAGGTGACTAGTG -ACGGAAACTCTGAGGTGACATCTG -ACGGAAACTCTGAGGTGAGAGTTG -ACGGAAACTCTGAGGTGAAGACTG -ACGGAAACTCTGAGGTGATCGGTA -ACGGAAACTCTGAGGTGATGCCTA -ACGGAAACTCTGAGGTGACCACTA -ACGGAAACTCTGAGGTGAGGAGTA -ACGGAAACTCTGAGGTGATCGTCT -ACGGAAACTCTGAGGTGATGCACT -ACGGAAACTCTGAGGTGACTGACT -ACGGAAACTCTGAGGTGACAACCT -ACGGAAACTCTGAGGTGAGCTACT -ACGGAAACTCTGAGGTGAGGATCT -ACGGAAACTCTGAGGTGAAAGGCT -ACGGAAACTCTGAGGTGATCAACC -ACGGAAACTCTGAGGTGATGTTCC -ACGGAAACTCTGAGGTGAATTCCC -ACGGAAACTCTGAGGTGATTCTCG -ACGGAAACTCTGAGGTGATAGACG -ACGGAAACTCTGAGGTGAGTAACG -ACGGAAACTCTGAGGTGAACTTCG -ACGGAAACTCTGAGGTGATACGCA -ACGGAAACTCTGAGGTGACTTGCA -ACGGAAACTCTGAGGTGACGAACA -ACGGAAACTCTGAGGTGACAGTCA -ACGGAAACTCTGAGGTGAGATCCA -ACGGAAACTCTGAGGTGAACGACA -ACGGAAACTCTGAGGTGAAGCTCA -ACGGAAACTCTGAGGTGATCACGT -ACGGAAACTCTGAGGTGACGTAGT -ACGGAAACTCTGAGGTGAGTCAGT -ACGGAAACTCTGAGGTGAGAAGGT -ACGGAAACTCTGAGGTGAAACCGT -ACGGAAACTCTGAGGTGATTGTGC -ACGGAAACTCTGAGGTGACTAAGC -ACGGAAACTCTGAGGTGAACTAGC -ACGGAAACTCTGAGGTGAAGATGC -ACGGAAACTCTGAGGTGATGAAGG -ACGGAAACTCTGAGGTGACAATGG -ACGGAAACTCTGAGGTGAATGAGG -ACGGAAACTCTGAGGTGAAATGGG -ACGGAAACTCTGAGGTGATCCTGA -ACGGAAACTCTGAGGTGATAGCGA -ACGGAAACTCTGAGGTGACACAGA -ACGGAAACTCTGAGGTGAGCAAGA -ACGGAAACTCTGAGGTGAGGTTGA -ACGGAAACTCTGAGGTGATCCGAT -ACGGAAACTCTGAGGTGATGGCAT -ACGGAAACTCTGAGGTGACGAGAT -ACGGAAACTCTGAGGTGATACCAC -ACGGAAACTCTGAGGTGACAGAAC -ACGGAAACTCTGAGGTGAGTCTAC -ACGGAAACTCTGAGGTGAACGTAC -ACGGAAACTCTGAGGTGAAGTGAC -ACGGAAACTCTGAGGTGACTGTAG -ACGGAAACTCTGAGGTGACCTAAG -ACGGAAACTCTGAGGTGAGTTCAG -ACGGAAACTCTGAGGTGAGCATAG -ACGGAAACTCTGAGGTGAGACAAG -ACGGAAACTCTGAGGTGAAAGCAG -ACGGAAACTCTGAGGTGACGTCAA -ACGGAAACTCTGAGGTGAGCTGAA -ACGGAAACTCTGAGGTGAAGTACG -ACGGAAACTCTGAGGTGAATCCGA -ACGGAAACTCTGAGGTGAATGGGA -ACGGAAACTCTGAGGTGAGTGCAA -ACGGAAACTCTGAGGTGAGAGGAA -ACGGAAACTCTGAGGTGACAGGTA -ACGGAAACTCTGAGGTGAGACTCT -ACGGAAACTCTGAGGTGAAGTCCT -ACGGAAACTCTGAGGTGATAAGCC -ACGGAAACTCTGAGGTGAATAGCC -ACGGAAACTCTGAGGTGATAACCG -ACGGAAACTCTGAGGTGAATGCCA -ACGGAAACTCTGTGGCAAGGAAAC -ACGGAAACTCTGTGGCAAAACACC -ACGGAAACTCTGTGGCAAATCGAG -ACGGAAACTCTGTGGCAACTCCTT -ACGGAAACTCTGTGGCAACCTGTT -ACGGAAACTCTGTGGCAACGGTTT -ACGGAAACTCTGTGGCAAGTGGTT -ACGGAAACTCTGTGGCAAGCCTTT -ACGGAAACTCTGTGGCAAGGTCTT -ACGGAAACTCTGTGGCAAACGCTT -ACGGAAACTCTGTGGCAAAGCGTT -ACGGAAACTCTGTGGCAATTCGTC -ACGGAAACTCTGTGGCAATCTCTC -ACGGAAACTCTGTGGCAATGGATC -ACGGAAACTCTGTGGCAACACTTC -ACGGAAACTCTGTGGCAAGTACTC -ACGGAAACTCTGTGGCAAGATGTC -ACGGAAACTCTGTGGCAAACAGTC -ACGGAAACTCTGTGGCAATTGCTG -ACGGAAACTCTGTGGCAATCCATG -ACGGAAACTCTGTGGCAATGTGTG -ACGGAAACTCTGTGGCAACTAGTG -ACGGAAACTCTGTGGCAACATCTG -ACGGAAACTCTGTGGCAAGAGTTG -ACGGAAACTCTGTGGCAAAGACTG -ACGGAAACTCTGTGGCAATCGGTA -ACGGAAACTCTGTGGCAATGCCTA -ACGGAAACTCTGTGGCAACCACTA -ACGGAAACTCTGTGGCAAGGAGTA -ACGGAAACTCTGTGGCAATCGTCT -ACGGAAACTCTGTGGCAATGCACT -ACGGAAACTCTGTGGCAACTGACT -ACGGAAACTCTGTGGCAACAACCT -ACGGAAACTCTGTGGCAAGCTACT -ACGGAAACTCTGTGGCAAGGATCT -ACGGAAACTCTGTGGCAAAAGGCT -ACGGAAACTCTGTGGCAATCAACC -ACGGAAACTCTGTGGCAATGTTCC -ACGGAAACTCTGTGGCAAATTCCC -ACGGAAACTCTGTGGCAATTCTCG -ACGGAAACTCTGTGGCAATAGACG -ACGGAAACTCTGTGGCAAGTAACG -ACGGAAACTCTGTGGCAAACTTCG -ACGGAAACTCTGTGGCAATACGCA -ACGGAAACTCTGTGGCAACTTGCA -ACGGAAACTCTGTGGCAACGAACA -ACGGAAACTCTGTGGCAACAGTCA -ACGGAAACTCTGTGGCAAGATCCA -ACGGAAACTCTGTGGCAAACGACA -ACGGAAACTCTGTGGCAAAGCTCA -ACGGAAACTCTGTGGCAATCACGT -ACGGAAACTCTGTGGCAACGTAGT -ACGGAAACTCTGTGGCAAGTCAGT -ACGGAAACTCTGTGGCAAGAAGGT -ACGGAAACTCTGTGGCAAAACCGT -ACGGAAACTCTGTGGCAATTGTGC -ACGGAAACTCTGTGGCAACTAAGC -ACGGAAACTCTGTGGCAAACTAGC -ACGGAAACTCTGTGGCAAAGATGC -ACGGAAACTCTGTGGCAATGAAGG -ACGGAAACTCTGTGGCAACAATGG -ACGGAAACTCTGTGGCAAATGAGG -ACGGAAACTCTGTGGCAAAATGGG -ACGGAAACTCTGTGGCAATCCTGA -ACGGAAACTCTGTGGCAATAGCGA -ACGGAAACTCTGTGGCAACACAGA -ACGGAAACTCTGTGGCAAGCAAGA -ACGGAAACTCTGTGGCAAGGTTGA -ACGGAAACTCTGTGGCAATCCGAT -ACGGAAACTCTGTGGCAATGGCAT -ACGGAAACTCTGTGGCAACGAGAT -ACGGAAACTCTGTGGCAATACCAC -ACGGAAACTCTGTGGCAACAGAAC -ACGGAAACTCTGTGGCAAGTCTAC -ACGGAAACTCTGTGGCAAACGTAC -ACGGAAACTCTGTGGCAAAGTGAC -ACGGAAACTCTGTGGCAACTGTAG -ACGGAAACTCTGTGGCAACCTAAG -ACGGAAACTCTGTGGCAAGTTCAG -ACGGAAACTCTGTGGCAAGCATAG -ACGGAAACTCTGTGGCAAGACAAG -ACGGAAACTCTGTGGCAAAAGCAG -ACGGAAACTCTGTGGCAACGTCAA -ACGGAAACTCTGTGGCAAGCTGAA -ACGGAAACTCTGTGGCAAAGTACG -ACGGAAACTCTGTGGCAAATCCGA -ACGGAAACTCTGTGGCAAATGGGA -ACGGAAACTCTGTGGCAAGTGCAA -ACGGAAACTCTGTGGCAAGAGGAA -ACGGAAACTCTGTGGCAACAGGTA -ACGGAAACTCTGTGGCAAGACTCT -ACGGAAACTCTGTGGCAAAGTCCT -ACGGAAACTCTGTGGCAATAAGCC -ACGGAAACTCTGTGGCAAATAGCC -ACGGAAACTCTGTGGCAATAACCG -ACGGAAACTCTGTGGCAAATGCCA -ACGGAAACTCTGAGGATGGGAAAC -ACGGAAACTCTGAGGATGAACACC -ACGGAAACTCTGAGGATGATCGAG -ACGGAAACTCTGAGGATGCTCCTT -ACGGAAACTCTGAGGATGCCTGTT -ACGGAAACTCTGAGGATGCGGTTT -ACGGAAACTCTGAGGATGGTGGTT -ACGGAAACTCTGAGGATGGCCTTT -ACGGAAACTCTGAGGATGGGTCTT -ACGGAAACTCTGAGGATGACGCTT -ACGGAAACTCTGAGGATGAGCGTT -ACGGAAACTCTGAGGATGTTCGTC -ACGGAAACTCTGAGGATGTCTCTC -ACGGAAACTCTGAGGATGTGGATC -ACGGAAACTCTGAGGATGCACTTC -ACGGAAACTCTGAGGATGGTACTC -ACGGAAACTCTGAGGATGGATGTC -ACGGAAACTCTGAGGATGACAGTC -ACGGAAACTCTGAGGATGTTGCTG -ACGGAAACTCTGAGGATGTCCATG -ACGGAAACTCTGAGGATGTGTGTG -ACGGAAACTCTGAGGATGCTAGTG -ACGGAAACTCTGAGGATGCATCTG -ACGGAAACTCTGAGGATGGAGTTG -ACGGAAACTCTGAGGATGAGACTG -ACGGAAACTCTGAGGATGTCGGTA -ACGGAAACTCTGAGGATGTGCCTA -ACGGAAACTCTGAGGATGCCACTA -ACGGAAACTCTGAGGATGGGAGTA -ACGGAAACTCTGAGGATGTCGTCT -ACGGAAACTCTGAGGATGTGCACT -ACGGAAACTCTGAGGATGCTGACT -ACGGAAACTCTGAGGATGCAACCT -ACGGAAACTCTGAGGATGGCTACT -ACGGAAACTCTGAGGATGGGATCT -ACGGAAACTCTGAGGATGAAGGCT -ACGGAAACTCTGAGGATGTCAACC -ACGGAAACTCTGAGGATGTGTTCC -ACGGAAACTCTGAGGATGATTCCC -ACGGAAACTCTGAGGATGTTCTCG -ACGGAAACTCTGAGGATGTAGACG -ACGGAAACTCTGAGGATGGTAACG -ACGGAAACTCTGAGGATGACTTCG -ACGGAAACTCTGAGGATGTACGCA -ACGGAAACTCTGAGGATGCTTGCA -ACGGAAACTCTGAGGATGCGAACA -ACGGAAACTCTGAGGATGCAGTCA -ACGGAAACTCTGAGGATGGATCCA -ACGGAAACTCTGAGGATGACGACA -ACGGAAACTCTGAGGATGAGCTCA -ACGGAAACTCTGAGGATGTCACGT -ACGGAAACTCTGAGGATGCGTAGT -ACGGAAACTCTGAGGATGGTCAGT -ACGGAAACTCTGAGGATGGAAGGT -ACGGAAACTCTGAGGATGAACCGT -ACGGAAACTCTGAGGATGTTGTGC -ACGGAAACTCTGAGGATGCTAAGC -ACGGAAACTCTGAGGATGACTAGC -ACGGAAACTCTGAGGATGAGATGC -ACGGAAACTCTGAGGATGTGAAGG -ACGGAAACTCTGAGGATGCAATGG -ACGGAAACTCTGAGGATGATGAGG -ACGGAAACTCTGAGGATGAATGGG -ACGGAAACTCTGAGGATGTCCTGA -ACGGAAACTCTGAGGATGTAGCGA -ACGGAAACTCTGAGGATGCACAGA -ACGGAAACTCTGAGGATGGCAAGA -ACGGAAACTCTGAGGATGGGTTGA -ACGGAAACTCTGAGGATGTCCGAT -ACGGAAACTCTGAGGATGTGGCAT -ACGGAAACTCTGAGGATGCGAGAT -ACGGAAACTCTGAGGATGTACCAC -ACGGAAACTCTGAGGATGCAGAAC -ACGGAAACTCTGAGGATGGTCTAC -ACGGAAACTCTGAGGATGACGTAC -ACGGAAACTCTGAGGATGAGTGAC -ACGGAAACTCTGAGGATGCTGTAG -ACGGAAACTCTGAGGATGCCTAAG -ACGGAAACTCTGAGGATGGTTCAG -ACGGAAACTCTGAGGATGGCATAG -ACGGAAACTCTGAGGATGGACAAG -ACGGAAACTCTGAGGATGAAGCAG -ACGGAAACTCTGAGGATGCGTCAA -ACGGAAACTCTGAGGATGGCTGAA -ACGGAAACTCTGAGGATGAGTACG -ACGGAAACTCTGAGGATGATCCGA -ACGGAAACTCTGAGGATGATGGGA -ACGGAAACTCTGAGGATGGTGCAA -ACGGAAACTCTGAGGATGGAGGAA -ACGGAAACTCTGAGGATGCAGGTA -ACGGAAACTCTGAGGATGGACTCT -ACGGAAACTCTGAGGATGAGTCCT -ACGGAAACTCTGAGGATGTAAGCC -ACGGAAACTCTGAGGATGATAGCC -ACGGAAACTCTGAGGATGTAACCG -ACGGAAACTCTGAGGATGATGCCA -ACGGAAACTCTGGGGAATGGAAAC -ACGGAAACTCTGGGGAATAACACC -ACGGAAACTCTGGGGAATATCGAG -ACGGAAACTCTGGGGAATCTCCTT -ACGGAAACTCTGGGGAATCCTGTT -ACGGAAACTCTGGGGAATCGGTTT -ACGGAAACTCTGGGGAATGTGGTT -ACGGAAACTCTGGGGAATGCCTTT -ACGGAAACTCTGGGGAATGGTCTT -ACGGAAACTCTGGGGAATACGCTT -ACGGAAACTCTGGGGAATAGCGTT -ACGGAAACTCTGGGGAATTTCGTC -ACGGAAACTCTGGGGAATTCTCTC -ACGGAAACTCTGGGGAATTGGATC -ACGGAAACTCTGGGGAATCACTTC -ACGGAAACTCTGGGGAATGTACTC -ACGGAAACTCTGGGGAATGATGTC -ACGGAAACTCTGGGGAATACAGTC -ACGGAAACTCTGGGGAATTTGCTG -ACGGAAACTCTGGGGAATTCCATG -ACGGAAACTCTGGGGAATTGTGTG -ACGGAAACTCTGGGGAATCTAGTG -ACGGAAACTCTGGGGAATCATCTG -ACGGAAACTCTGGGGAATGAGTTG -ACGGAAACTCTGGGGAATAGACTG -ACGGAAACTCTGGGGAATTCGGTA -ACGGAAACTCTGGGGAATTGCCTA -ACGGAAACTCTGGGGAATCCACTA -ACGGAAACTCTGGGGAATGGAGTA -ACGGAAACTCTGGGGAATTCGTCT -ACGGAAACTCTGGGGAATTGCACT -ACGGAAACTCTGGGGAATCTGACT -ACGGAAACTCTGGGGAATCAACCT -ACGGAAACTCTGGGGAATGCTACT -ACGGAAACTCTGGGGAATGGATCT -ACGGAAACTCTGGGGAATAAGGCT -ACGGAAACTCTGGGGAATTCAACC -ACGGAAACTCTGGGGAATTGTTCC -ACGGAAACTCTGGGGAATATTCCC -ACGGAAACTCTGGGGAATTTCTCG -ACGGAAACTCTGGGGAATTAGACG -ACGGAAACTCTGGGGAATGTAACG -ACGGAAACTCTGGGGAATACTTCG -ACGGAAACTCTGGGGAATTACGCA -ACGGAAACTCTGGGGAATCTTGCA -ACGGAAACTCTGGGGAATCGAACA -ACGGAAACTCTGGGGAATCAGTCA -ACGGAAACTCTGGGGAATGATCCA -ACGGAAACTCTGGGGAATACGACA -ACGGAAACTCTGGGGAATAGCTCA -ACGGAAACTCTGGGGAATTCACGT -ACGGAAACTCTGGGGAATCGTAGT -ACGGAAACTCTGGGGAATGTCAGT -ACGGAAACTCTGGGGAATGAAGGT -ACGGAAACTCTGGGGAATAACCGT -ACGGAAACTCTGGGGAATTTGTGC -ACGGAAACTCTGGGGAATCTAAGC -ACGGAAACTCTGGGGAATACTAGC -ACGGAAACTCTGGGGAATAGATGC -ACGGAAACTCTGGGGAATTGAAGG -ACGGAAACTCTGGGGAATCAATGG -ACGGAAACTCTGGGGAATATGAGG -ACGGAAACTCTGGGGAATAATGGG -ACGGAAACTCTGGGGAATTCCTGA -ACGGAAACTCTGGGGAATTAGCGA -ACGGAAACTCTGGGGAATCACAGA -ACGGAAACTCTGGGGAATGCAAGA -ACGGAAACTCTGGGGAATGGTTGA -ACGGAAACTCTGGGGAATTCCGAT -ACGGAAACTCTGGGGAATTGGCAT -ACGGAAACTCTGGGGAATCGAGAT -ACGGAAACTCTGGGGAATTACCAC -ACGGAAACTCTGGGGAATCAGAAC -ACGGAAACTCTGGGGAATGTCTAC -ACGGAAACTCTGGGGAATACGTAC -ACGGAAACTCTGGGGAATAGTGAC -ACGGAAACTCTGGGGAATCTGTAG -ACGGAAACTCTGGGGAATCCTAAG -ACGGAAACTCTGGGGAATGTTCAG -ACGGAAACTCTGGGGAATGCATAG -ACGGAAACTCTGGGGAATGACAAG -ACGGAAACTCTGGGGAATAAGCAG -ACGGAAACTCTGGGGAATCGTCAA -ACGGAAACTCTGGGGAATGCTGAA -ACGGAAACTCTGGGGAATAGTACG -ACGGAAACTCTGGGGAATATCCGA -ACGGAAACTCTGGGGAATATGGGA -ACGGAAACTCTGGGGAATGTGCAA -ACGGAAACTCTGGGGAATGAGGAA -ACGGAAACTCTGGGGAATCAGGTA -ACGGAAACTCTGGGGAATGACTCT -ACGGAAACTCTGGGGAATAGTCCT -ACGGAAACTCTGGGGAATTAAGCC -ACGGAAACTCTGGGGAATATAGCC -ACGGAAACTCTGGGGAATTAACCG -ACGGAAACTCTGGGGAATATGCCA -ACGGAAACTCTGTGATCCGGAAAC -ACGGAAACTCTGTGATCCAACACC -ACGGAAACTCTGTGATCCATCGAG -ACGGAAACTCTGTGATCCCTCCTT -ACGGAAACTCTGTGATCCCCTGTT -ACGGAAACTCTGTGATCCCGGTTT -ACGGAAACTCTGTGATCCGTGGTT -ACGGAAACTCTGTGATCCGCCTTT -ACGGAAACTCTGTGATCCGGTCTT -ACGGAAACTCTGTGATCCACGCTT -ACGGAAACTCTGTGATCCAGCGTT -ACGGAAACTCTGTGATCCTTCGTC -ACGGAAACTCTGTGATCCTCTCTC -ACGGAAACTCTGTGATCCTGGATC -ACGGAAACTCTGTGATCCCACTTC -ACGGAAACTCTGTGATCCGTACTC -ACGGAAACTCTGTGATCCGATGTC -ACGGAAACTCTGTGATCCACAGTC -ACGGAAACTCTGTGATCCTTGCTG -ACGGAAACTCTGTGATCCTCCATG -ACGGAAACTCTGTGATCCTGTGTG -ACGGAAACTCTGTGATCCCTAGTG -ACGGAAACTCTGTGATCCCATCTG -ACGGAAACTCTGTGATCCGAGTTG -ACGGAAACTCTGTGATCCAGACTG -ACGGAAACTCTGTGATCCTCGGTA -ACGGAAACTCTGTGATCCTGCCTA -ACGGAAACTCTGTGATCCCCACTA -ACGGAAACTCTGTGATCCGGAGTA -ACGGAAACTCTGTGATCCTCGTCT -ACGGAAACTCTGTGATCCTGCACT -ACGGAAACTCTGTGATCCCTGACT -ACGGAAACTCTGTGATCCCAACCT -ACGGAAACTCTGTGATCCGCTACT -ACGGAAACTCTGTGATCCGGATCT -ACGGAAACTCTGTGATCCAAGGCT -ACGGAAACTCTGTGATCCTCAACC -ACGGAAACTCTGTGATCCTGTTCC -ACGGAAACTCTGTGATCCATTCCC -ACGGAAACTCTGTGATCCTTCTCG -ACGGAAACTCTGTGATCCTAGACG -ACGGAAACTCTGTGATCCGTAACG -ACGGAAACTCTGTGATCCACTTCG -ACGGAAACTCTGTGATCCTACGCA -ACGGAAACTCTGTGATCCCTTGCA -ACGGAAACTCTGTGATCCCGAACA -ACGGAAACTCTGTGATCCCAGTCA -ACGGAAACTCTGTGATCCGATCCA -ACGGAAACTCTGTGATCCACGACA -ACGGAAACTCTGTGATCCAGCTCA -ACGGAAACTCTGTGATCCTCACGT -ACGGAAACTCTGTGATCCCGTAGT -ACGGAAACTCTGTGATCCGTCAGT -ACGGAAACTCTGTGATCCGAAGGT -ACGGAAACTCTGTGATCCAACCGT -ACGGAAACTCTGTGATCCTTGTGC -ACGGAAACTCTGTGATCCCTAAGC -ACGGAAACTCTGTGATCCACTAGC -ACGGAAACTCTGTGATCCAGATGC -ACGGAAACTCTGTGATCCTGAAGG -ACGGAAACTCTGTGATCCCAATGG -ACGGAAACTCTGTGATCCATGAGG -ACGGAAACTCTGTGATCCAATGGG -ACGGAAACTCTGTGATCCTCCTGA -ACGGAAACTCTGTGATCCTAGCGA -ACGGAAACTCTGTGATCCCACAGA -ACGGAAACTCTGTGATCCGCAAGA -ACGGAAACTCTGTGATCCGGTTGA -ACGGAAACTCTGTGATCCTCCGAT -ACGGAAACTCTGTGATCCTGGCAT -ACGGAAACTCTGTGATCCCGAGAT -ACGGAAACTCTGTGATCCTACCAC -ACGGAAACTCTGTGATCCCAGAAC -ACGGAAACTCTGTGATCCGTCTAC -ACGGAAACTCTGTGATCCACGTAC -ACGGAAACTCTGTGATCCAGTGAC -ACGGAAACTCTGTGATCCCTGTAG -ACGGAAACTCTGTGATCCCCTAAG -ACGGAAACTCTGTGATCCGTTCAG -ACGGAAACTCTGTGATCCGCATAG -ACGGAAACTCTGTGATCCGACAAG -ACGGAAACTCTGTGATCCAAGCAG -ACGGAAACTCTGTGATCCCGTCAA -ACGGAAACTCTGTGATCCGCTGAA -ACGGAAACTCTGTGATCCAGTACG -ACGGAAACTCTGTGATCCATCCGA -ACGGAAACTCTGTGATCCATGGGA -ACGGAAACTCTGTGATCCGTGCAA -ACGGAAACTCTGTGATCCGAGGAA -ACGGAAACTCTGTGATCCCAGGTA -ACGGAAACTCTGTGATCCGACTCT -ACGGAAACTCTGTGATCCAGTCCT -ACGGAAACTCTGTGATCCTAAGCC -ACGGAAACTCTGTGATCCATAGCC -ACGGAAACTCTGTGATCCTAACCG -ACGGAAACTCTGTGATCCATGCCA -ACGGAAACTCTGCGATAGGGAAAC -ACGGAAACTCTGCGATAGAACACC -ACGGAAACTCTGCGATAGATCGAG -ACGGAAACTCTGCGATAGCTCCTT -ACGGAAACTCTGCGATAGCCTGTT -ACGGAAACTCTGCGATAGCGGTTT -ACGGAAACTCTGCGATAGGTGGTT -ACGGAAACTCTGCGATAGGCCTTT -ACGGAAACTCTGCGATAGGGTCTT -ACGGAAACTCTGCGATAGACGCTT -ACGGAAACTCTGCGATAGAGCGTT -ACGGAAACTCTGCGATAGTTCGTC -ACGGAAACTCTGCGATAGTCTCTC -ACGGAAACTCTGCGATAGTGGATC -ACGGAAACTCTGCGATAGCACTTC -ACGGAAACTCTGCGATAGGTACTC -ACGGAAACTCTGCGATAGGATGTC -ACGGAAACTCTGCGATAGACAGTC -ACGGAAACTCTGCGATAGTTGCTG -ACGGAAACTCTGCGATAGTCCATG -ACGGAAACTCTGCGATAGTGTGTG -ACGGAAACTCTGCGATAGCTAGTG -ACGGAAACTCTGCGATAGCATCTG -ACGGAAACTCTGCGATAGGAGTTG -ACGGAAACTCTGCGATAGAGACTG -ACGGAAACTCTGCGATAGTCGGTA -ACGGAAACTCTGCGATAGTGCCTA -ACGGAAACTCTGCGATAGCCACTA -ACGGAAACTCTGCGATAGGGAGTA -ACGGAAACTCTGCGATAGTCGTCT -ACGGAAACTCTGCGATAGTGCACT -ACGGAAACTCTGCGATAGCTGACT -ACGGAAACTCTGCGATAGCAACCT -ACGGAAACTCTGCGATAGGCTACT -ACGGAAACTCTGCGATAGGGATCT -ACGGAAACTCTGCGATAGAAGGCT -ACGGAAACTCTGCGATAGTCAACC -ACGGAAACTCTGCGATAGTGTTCC -ACGGAAACTCTGCGATAGATTCCC -ACGGAAACTCTGCGATAGTTCTCG -ACGGAAACTCTGCGATAGTAGACG -ACGGAAACTCTGCGATAGGTAACG -ACGGAAACTCTGCGATAGACTTCG -ACGGAAACTCTGCGATAGTACGCA -ACGGAAACTCTGCGATAGCTTGCA -ACGGAAACTCTGCGATAGCGAACA -ACGGAAACTCTGCGATAGCAGTCA -ACGGAAACTCTGCGATAGGATCCA -ACGGAAACTCTGCGATAGACGACA -ACGGAAACTCTGCGATAGAGCTCA -ACGGAAACTCTGCGATAGTCACGT -ACGGAAACTCTGCGATAGCGTAGT -ACGGAAACTCTGCGATAGGTCAGT -ACGGAAACTCTGCGATAGGAAGGT -ACGGAAACTCTGCGATAGAACCGT -ACGGAAACTCTGCGATAGTTGTGC -ACGGAAACTCTGCGATAGCTAAGC -ACGGAAACTCTGCGATAGACTAGC -ACGGAAACTCTGCGATAGAGATGC -ACGGAAACTCTGCGATAGTGAAGG -ACGGAAACTCTGCGATAGCAATGG -ACGGAAACTCTGCGATAGATGAGG -ACGGAAACTCTGCGATAGAATGGG -ACGGAAACTCTGCGATAGTCCTGA -ACGGAAACTCTGCGATAGTAGCGA -ACGGAAACTCTGCGATAGCACAGA -ACGGAAACTCTGCGATAGGCAAGA -ACGGAAACTCTGCGATAGGGTTGA -ACGGAAACTCTGCGATAGTCCGAT -ACGGAAACTCTGCGATAGTGGCAT -ACGGAAACTCTGCGATAGCGAGAT -ACGGAAACTCTGCGATAGTACCAC -ACGGAAACTCTGCGATAGCAGAAC -ACGGAAACTCTGCGATAGGTCTAC -ACGGAAACTCTGCGATAGACGTAC -ACGGAAACTCTGCGATAGAGTGAC -ACGGAAACTCTGCGATAGCTGTAG -ACGGAAACTCTGCGATAGCCTAAG -ACGGAAACTCTGCGATAGGTTCAG -ACGGAAACTCTGCGATAGGCATAG -ACGGAAACTCTGCGATAGGACAAG -ACGGAAACTCTGCGATAGAAGCAG -ACGGAAACTCTGCGATAGCGTCAA -ACGGAAACTCTGCGATAGGCTGAA -ACGGAAACTCTGCGATAGAGTACG -ACGGAAACTCTGCGATAGATCCGA -ACGGAAACTCTGCGATAGATGGGA -ACGGAAACTCTGCGATAGGTGCAA -ACGGAAACTCTGCGATAGGAGGAA -ACGGAAACTCTGCGATAGCAGGTA -ACGGAAACTCTGCGATAGGACTCT -ACGGAAACTCTGCGATAGAGTCCT -ACGGAAACTCTGCGATAGTAAGCC -ACGGAAACTCTGCGATAGATAGCC -ACGGAAACTCTGCGATAGTAACCG -ACGGAAACTCTGCGATAGATGCCA -ACGGAAACTCTGAGACACGGAAAC -ACGGAAACTCTGAGACACAACACC -ACGGAAACTCTGAGACACATCGAG -ACGGAAACTCTGAGACACCTCCTT -ACGGAAACTCTGAGACACCCTGTT -ACGGAAACTCTGAGACACCGGTTT -ACGGAAACTCTGAGACACGTGGTT -ACGGAAACTCTGAGACACGCCTTT -ACGGAAACTCTGAGACACGGTCTT -ACGGAAACTCTGAGACACACGCTT -ACGGAAACTCTGAGACACAGCGTT -ACGGAAACTCTGAGACACTTCGTC -ACGGAAACTCTGAGACACTCTCTC -ACGGAAACTCTGAGACACTGGATC -ACGGAAACTCTGAGACACCACTTC -ACGGAAACTCTGAGACACGTACTC -ACGGAAACTCTGAGACACGATGTC -ACGGAAACTCTGAGACACACAGTC -ACGGAAACTCTGAGACACTTGCTG -ACGGAAACTCTGAGACACTCCATG -ACGGAAACTCTGAGACACTGTGTG -ACGGAAACTCTGAGACACCTAGTG -ACGGAAACTCTGAGACACCATCTG -ACGGAAACTCTGAGACACGAGTTG -ACGGAAACTCTGAGACACAGACTG -ACGGAAACTCTGAGACACTCGGTA -ACGGAAACTCTGAGACACTGCCTA -ACGGAAACTCTGAGACACCCACTA -ACGGAAACTCTGAGACACGGAGTA -ACGGAAACTCTGAGACACTCGTCT -ACGGAAACTCTGAGACACTGCACT -ACGGAAACTCTGAGACACCTGACT -ACGGAAACTCTGAGACACCAACCT -ACGGAAACTCTGAGACACGCTACT -ACGGAAACTCTGAGACACGGATCT -ACGGAAACTCTGAGACACAAGGCT -ACGGAAACTCTGAGACACTCAACC -ACGGAAACTCTGAGACACTGTTCC -ACGGAAACTCTGAGACACATTCCC -ACGGAAACTCTGAGACACTTCTCG -ACGGAAACTCTGAGACACTAGACG -ACGGAAACTCTGAGACACGTAACG -ACGGAAACTCTGAGACACACTTCG -ACGGAAACTCTGAGACACTACGCA -ACGGAAACTCTGAGACACCTTGCA -ACGGAAACTCTGAGACACCGAACA -ACGGAAACTCTGAGACACCAGTCA -ACGGAAACTCTGAGACACGATCCA -ACGGAAACTCTGAGACACACGACA -ACGGAAACTCTGAGACACAGCTCA -ACGGAAACTCTGAGACACTCACGT -ACGGAAACTCTGAGACACCGTAGT -ACGGAAACTCTGAGACACGTCAGT -ACGGAAACTCTGAGACACGAAGGT -ACGGAAACTCTGAGACACAACCGT -ACGGAAACTCTGAGACACTTGTGC -ACGGAAACTCTGAGACACCTAAGC -ACGGAAACTCTGAGACACACTAGC -ACGGAAACTCTGAGACACAGATGC -ACGGAAACTCTGAGACACTGAAGG -ACGGAAACTCTGAGACACCAATGG -ACGGAAACTCTGAGACACATGAGG -ACGGAAACTCTGAGACACAATGGG -ACGGAAACTCTGAGACACTCCTGA -ACGGAAACTCTGAGACACTAGCGA -ACGGAAACTCTGAGACACCACAGA -ACGGAAACTCTGAGACACGCAAGA -ACGGAAACTCTGAGACACGGTTGA -ACGGAAACTCTGAGACACTCCGAT -ACGGAAACTCTGAGACACTGGCAT -ACGGAAACTCTGAGACACCGAGAT -ACGGAAACTCTGAGACACTACCAC -ACGGAAACTCTGAGACACCAGAAC -ACGGAAACTCTGAGACACGTCTAC -ACGGAAACTCTGAGACACACGTAC -ACGGAAACTCTGAGACACAGTGAC -ACGGAAACTCTGAGACACCTGTAG -ACGGAAACTCTGAGACACCCTAAG -ACGGAAACTCTGAGACACGTTCAG -ACGGAAACTCTGAGACACGCATAG -ACGGAAACTCTGAGACACGACAAG -ACGGAAACTCTGAGACACAAGCAG -ACGGAAACTCTGAGACACCGTCAA -ACGGAAACTCTGAGACACGCTGAA -ACGGAAACTCTGAGACACAGTACG -ACGGAAACTCTGAGACACATCCGA -ACGGAAACTCTGAGACACATGGGA -ACGGAAACTCTGAGACACGTGCAA -ACGGAAACTCTGAGACACGAGGAA -ACGGAAACTCTGAGACACCAGGTA -ACGGAAACTCTGAGACACGACTCT -ACGGAAACTCTGAGACACAGTCCT -ACGGAAACTCTGAGACACTAAGCC -ACGGAAACTCTGAGACACATAGCC -ACGGAAACTCTGAGACACTAACCG -ACGGAAACTCTGAGACACATGCCA -ACGGAAACTCTGAGAGCAGGAAAC -ACGGAAACTCTGAGAGCAAACACC -ACGGAAACTCTGAGAGCAATCGAG -ACGGAAACTCTGAGAGCACTCCTT -ACGGAAACTCTGAGAGCACCTGTT -ACGGAAACTCTGAGAGCACGGTTT -ACGGAAACTCTGAGAGCAGTGGTT -ACGGAAACTCTGAGAGCAGCCTTT -ACGGAAACTCTGAGAGCAGGTCTT -ACGGAAACTCTGAGAGCAACGCTT -ACGGAAACTCTGAGAGCAAGCGTT -ACGGAAACTCTGAGAGCATTCGTC -ACGGAAACTCTGAGAGCATCTCTC -ACGGAAACTCTGAGAGCATGGATC -ACGGAAACTCTGAGAGCACACTTC -ACGGAAACTCTGAGAGCAGTACTC -ACGGAAACTCTGAGAGCAGATGTC -ACGGAAACTCTGAGAGCAACAGTC -ACGGAAACTCTGAGAGCATTGCTG -ACGGAAACTCTGAGAGCATCCATG -ACGGAAACTCTGAGAGCATGTGTG -ACGGAAACTCTGAGAGCACTAGTG -ACGGAAACTCTGAGAGCACATCTG -ACGGAAACTCTGAGAGCAGAGTTG -ACGGAAACTCTGAGAGCAAGACTG -ACGGAAACTCTGAGAGCATCGGTA -ACGGAAACTCTGAGAGCATGCCTA -ACGGAAACTCTGAGAGCACCACTA -ACGGAAACTCTGAGAGCAGGAGTA -ACGGAAACTCTGAGAGCATCGTCT -ACGGAAACTCTGAGAGCATGCACT -ACGGAAACTCTGAGAGCACTGACT -ACGGAAACTCTGAGAGCACAACCT -ACGGAAACTCTGAGAGCAGCTACT -ACGGAAACTCTGAGAGCAGGATCT -ACGGAAACTCTGAGAGCAAAGGCT -ACGGAAACTCTGAGAGCATCAACC -ACGGAAACTCTGAGAGCATGTTCC -ACGGAAACTCTGAGAGCAATTCCC -ACGGAAACTCTGAGAGCATTCTCG -ACGGAAACTCTGAGAGCATAGACG -ACGGAAACTCTGAGAGCAGTAACG -ACGGAAACTCTGAGAGCAACTTCG -ACGGAAACTCTGAGAGCATACGCA -ACGGAAACTCTGAGAGCACTTGCA -ACGGAAACTCTGAGAGCACGAACA -ACGGAAACTCTGAGAGCACAGTCA -ACGGAAACTCTGAGAGCAGATCCA -ACGGAAACTCTGAGAGCAACGACA -ACGGAAACTCTGAGAGCAAGCTCA -ACGGAAACTCTGAGAGCATCACGT -ACGGAAACTCTGAGAGCACGTAGT -ACGGAAACTCTGAGAGCAGTCAGT -ACGGAAACTCTGAGAGCAGAAGGT -ACGGAAACTCTGAGAGCAAACCGT -ACGGAAACTCTGAGAGCATTGTGC -ACGGAAACTCTGAGAGCACTAAGC -ACGGAAACTCTGAGAGCAACTAGC -ACGGAAACTCTGAGAGCAAGATGC -ACGGAAACTCTGAGAGCATGAAGG -ACGGAAACTCTGAGAGCACAATGG -ACGGAAACTCTGAGAGCAATGAGG -ACGGAAACTCTGAGAGCAAATGGG -ACGGAAACTCTGAGAGCATCCTGA -ACGGAAACTCTGAGAGCATAGCGA -ACGGAAACTCTGAGAGCACACAGA -ACGGAAACTCTGAGAGCAGCAAGA -ACGGAAACTCTGAGAGCAGGTTGA -ACGGAAACTCTGAGAGCATCCGAT -ACGGAAACTCTGAGAGCATGGCAT -ACGGAAACTCTGAGAGCACGAGAT -ACGGAAACTCTGAGAGCATACCAC -ACGGAAACTCTGAGAGCACAGAAC -ACGGAAACTCTGAGAGCAGTCTAC -ACGGAAACTCTGAGAGCAACGTAC -ACGGAAACTCTGAGAGCAAGTGAC -ACGGAAACTCTGAGAGCACTGTAG -ACGGAAACTCTGAGAGCACCTAAG -ACGGAAACTCTGAGAGCAGTTCAG -ACGGAAACTCTGAGAGCAGCATAG -ACGGAAACTCTGAGAGCAGACAAG -ACGGAAACTCTGAGAGCAAAGCAG -ACGGAAACTCTGAGAGCACGTCAA -ACGGAAACTCTGAGAGCAGCTGAA -ACGGAAACTCTGAGAGCAAGTACG -ACGGAAACTCTGAGAGCAATCCGA -ACGGAAACTCTGAGAGCAATGGGA -ACGGAAACTCTGAGAGCAGTGCAA -ACGGAAACTCTGAGAGCAGAGGAA -ACGGAAACTCTGAGAGCACAGGTA -ACGGAAACTCTGAGAGCAGACTCT -ACGGAAACTCTGAGAGCAAGTCCT -ACGGAAACTCTGAGAGCATAAGCC -ACGGAAACTCTGAGAGCAATAGCC -ACGGAAACTCTGAGAGCATAACCG -ACGGAAACTCTGAGAGCAATGCCA -ACGGAAACTCTGTGAGGTGGAAAC -ACGGAAACTCTGTGAGGTAACACC -ACGGAAACTCTGTGAGGTATCGAG -ACGGAAACTCTGTGAGGTCTCCTT -ACGGAAACTCTGTGAGGTCCTGTT -ACGGAAACTCTGTGAGGTCGGTTT -ACGGAAACTCTGTGAGGTGTGGTT -ACGGAAACTCTGTGAGGTGCCTTT -ACGGAAACTCTGTGAGGTGGTCTT -ACGGAAACTCTGTGAGGTACGCTT -ACGGAAACTCTGTGAGGTAGCGTT -ACGGAAACTCTGTGAGGTTTCGTC -ACGGAAACTCTGTGAGGTTCTCTC -ACGGAAACTCTGTGAGGTTGGATC -ACGGAAACTCTGTGAGGTCACTTC -ACGGAAACTCTGTGAGGTGTACTC -ACGGAAACTCTGTGAGGTGATGTC -ACGGAAACTCTGTGAGGTACAGTC -ACGGAAACTCTGTGAGGTTTGCTG -ACGGAAACTCTGTGAGGTTCCATG -ACGGAAACTCTGTGAGGTTGTGTG -ACGGAAACTCTGTGAGGTCTAGTG -ACGGAAACTCTGTGAGGTCATCTG -ACGGAAACTCTGTGAGGTGAGTTG -ACGGAAACTCTGTGAGGTAGACTG -ACGGAAACTCTGTGAGGTTCGGTA -ACGGAAACTCTGTGAGGTTGCCTA -ACGGAAACTCTGTGAGGTCCACTA -ACGGAAACTCTGTGAGGTGGAGTA -ACGGAAACTCTGTGAGGTTCGTCT -ACGGAAACTCTGTGAGGTTGCACT -ACGGAAACTCTGTGAGGTCTGACT -ACGGAAACTCTGTGAGGTCAACCT -ACGGAAACTCTGTGAGGTGCTACT -ACGGAAACTCTGTGAGGTGGATCT -ACGGAAACTCTGTGAGGTAAGGCT -ACGGAAACTCTGTGAGGTTCAACC -ACGGAAACTCTGTGAGGTTGTTCC -ACGGAAACTCTGTGAGGTATTCCC -ACGGAAACTCTGTGAGGTTTCTCG -ACGGAAACTCTGTGAGGTTAGACG -ACGGAAACTCTGTGAGGTGTAACG -ACGGAAACTCTGTGAGGTACTTCG -ACGGAAACTCTGTGAGGTTACGCA -ACGGAAACTCTGTGAGGTCTTGCA -ACGGAAACTCTGTGAGGTCGAACA -ACGGAAACTCTGTGAGGTCAGTCA -ACGGAAACTCTGTGAGGTGATCCA -ACGGAAACTCTGTGAGGTACGACA -ACGGAAACTCTGTGAGGTAGCTCA -ACGGAAACTCTGTGAGGTTCACGT -ACGGAAACTCTGTGAGGTCGTAGT -ACGGAAACTCTGTGAGGTGTCAGT -ACGGAAACTCTGTGAGGTGAAGGT -ACGGAAACTCTGTGAGGTAACCGT -ACGGAAACTCTGTGAGGTTTGTGC -ACGGAAACTCTGTGAGGTCTAAGC -ACGGAAACTCTGTGAGGTACTAGC -ACGGAAACTCTGTGAGGTAGATGC -ACGGAAACTCTGTGAGGTTGAAGG -ACGGAAACTCTGTGAGGTCAATGG -ACGGAAACTCTGTGAGGTATGAGG -ACGGAAACTCTGTGAGGTAATGGG -ACGGAAACTCTGTGAGGTTCCTGA -ACGGAAACTCTGTGAGGTTAGCGA -ACGGAAACTCTGTGAGGTCACAGA -ACGGAAACTCTGTGAGGTGCAAGA -ACGGAAACTCTGTGAGGTGGTTGA -ACGGAAACTCTGTGAGGTTCCGAT -ACGGAAACTCTGTGAGGTTGGCAT -ACGGAAACTCTGTGAGGTCGAGAT -ACGGAAACTCTGTGAGGTTACCAC -ACGGAAACTCTGTGAGGTCAGAAC -ACGGAAACTCTGTGAGGTGTCTAC -ACGGAAACTCTGTGAGGTACGTAC -ACGGAAACTCTGTGAGGTAGTGAC -ACGGAAACTCTGTGAGGTCTGTAG -ACGGAAACTCTGTGAGGTCCTAAG -ACGGAAACTCTGTGAGGTGTTCAG -ACGGAAACTCTGTGAGGTGCATAG -ACGGAAACTCTGTGAGGTGACAAG -ACGGAAACTCTGTGAGGTAAGCAG -ACGGAAACTCTGTGAGGTCGTCAA -ACGGAAACTCTGTGAGGTGCTGAA -ACGGAAACTCTGTGAGGTAGTACG -ACGGAAACTCTGTGAGGTATCCGA -ACGGAAACTCTGTGAGGTATGGGA -ACGGAAACTCTGTGAGGTGTGCAA -ACGGAAACTCTGTGAGGTGAGGAA -ACGGAAACTCTGTGAGGTCAGGTA -ACGGAAACTCTGTGAGGTGACTCT -ACGGAAACTCTGTGAGGTAGTCCT -ACGGAAACTCTGTGAGGTTAAGCC -ACGGAAACTCTGTGAGGTATAGCC -ACGGAAACTCTGTGAGGTTAACCG -ACGGAAACTCTGTGAGGTATGCCA -ACGGAAACTCTGGATTCCGGAAAC -ACGGAAACTCTGGATTCCAACACC -ACGGAAACTCTGGATTCCATCGAG -ACGGAAACTCTGGATTCCCTCCTT -ACGGAAACTCTGGATTCCCCTGTT -ACGGAAACTCTGGATTCCCGGTTT -ACGGAAACTCTGGATTCCGTGGTT -ACGGAAACTCTGGATTCCGCCTTT -ACGGAAACTCTGGATTCCGGTCTT -ACGGAAACTCTGGATTCCACGCTT -ACGGAAACTCTGGATTCCAGCGTT -ACGGAAACTCTGGATTCCTTCGTC -ACGGAAACTCTGGATTCCTCTCTC -ACGGAAACTCTGGATTCCTGGATC -ACGGAAACTCTGGATTCCCACTTC -ACGGAAACTCTGGATTCCGTACTC -ACGGAAACTCTGGATTCCGATGTC -ACGGAAACTCTGGATTCCACAGTC -ACGGAAACTCTGGATTCCTTGCTG -ACGGAAACTCTGGATTCCTCCATG -ACGGAAACTCTGGATTCCTGTGTG -ACGGAAACTCTGGATTCCCTAGTG -ACGGAAACTCTGGATTCCCATCTG -ACGGAAACTCTGGATTCCGAGTTG -ACGGAAACTCTGGATTCCAGACTG -ACGGAAACTCTGGATTCCTCGGTA -ACGGAAACTCTGGATTCCTGCCTA -ACGGAAACTCTGGATTCCCCACTA -ACGGAAACTCTGGATTCCGGAGTA -ACGGAAACTCTGGATTCCTCGTCT -ACGGAAACTCTGGATTCCTGCACT -ACGGAAACTCTGGATTCCCTGACT -ACGGAAACTCTGGATTCCCAACCT -ACGGAAACTCTGGATTCCGCTACT -ACGGAAACTCTGGATTCCGGATCT -ACGGAAACTCTGGATTCCAAGGCT -ACGGAAACTCTGGATTCCTCAACC -ACGGAAACTCTGGATTCCTGTTCC -ACGGAAACTCTGGATTCCATTCCC -ACGGAAACTCTGGATTCCTTCTCG -ACGGAAACTCTGGATTCCTAGACG -ACGGAAACTCTGGATTCCGTAACG -ACGGAAACTCTGGATTCCACTTCG -ACGGAAACTCTGGATTCCTACGCA -ACGGAAACTCTGGATTCCCTTGCA -ACGGAAACTCTGGATTCCCGAACA -ACGGAAACTCTGGATTCCCAGTCA -ACGGAAACTCTGGATTCCGATCCA -ACGGAAACTCTGGATTCCACGACA -ACGGAAACTCTGGATTCCAGCTCA -ACGGAAACTCTGGATTCCTCACGT -ACGGAAACTCTGGATTCCCGTAGT -ACGGAAACTCTGGATTCCGTCAGT -ACGGAAACTCTGGATTCCGAAGGT -ACGGAAACTCTGGATTCCAACCGT -ACGGAAACTCTGGATTCCTTGTGC -ACGGAAACTCTGGATTCCCTAAGC -ACGGAAACTCTGGATTCCACTAGC -ACGGAAACTCTGGATTCCAGATGC -ACGGAAACTCTGGATTCCTGAAGG -ACGGAAACTCTGGATTCCCAATGG -ACGGAAACTCTGGATTCCATGAGG -ACGGAAACTCTGGATTCCAATGGG -ACGGAAACTCTGGATTCCTCCTGA -ACGGAAACTCTGGATTCCTAGCGA -ACGGAAACTCTGGATTCCCACAGA -ACGGAAACTCTGGATTCCGCAAGA -ACGGAAACTCTGGATTCCGGTTGA -ACGGAAACTCTGGATTCCTCCGAT -ACGGAAACTCTGGATTCCTGGCAT -ACGGAAACTCTGGATTCCCGAGAT -ACGGAAACTCTGGATTCCTACCAC -ACGGAAACTCTGGATTCCCAGAAC -ACGGAAACTCTGGATTCCGTCTAC -ACGGAAACTCTGGATTCCACGTAC -ACGGAAACTCTGGATTCCAGTGAC -ACGGAAACTCTGGATTCCCTGTAG -ACGGAAACTCTGGATTCCCCTAAG -ACGGAAACTCTGGATTCCGTTCAG -ACGGAAACTCTGGATTCCGCATAG -ACGGAAACTCTGGATTCCGACAAG -ACGGAAACTCTGGATTCCAAGCAG -ACGGAAACTCTGGATTCCCGTCAA -ACGGAAACTCTGGATTCCGCTGAA -ACGGAAACTCTGGATTCCAGTACG -ACGGAAACTCTGGATTCCATCCGA -ACGGAAACTCTGGATTCCATGGGA -ACGGAAACTCTGGATTCCGTGCAA -ACGGAAACTCTGGATTCCGAGGAA -ACGGAAACTCTGGATTCCCAGGTA -ACGGAAACTCTGGATTCCGACTCT -ACGGAAACTCTGGATTCCAGTCCT -ACGGAAACTCTGGATTCCTAAGCC -ACGGAAACTCTGGATTCCATAGCC -ACGGAAACTCTGGATTCCTAACCG -ACGGAAACTCTGGATTCCATGCCA -ACGGAAACTCTGCATTGGGGAAAC -ACGGAAACTCTGCATTGGAACACC -ACGGAAACTCTGCATTGGATCGAG -ACGGAAACTCTGCATTGGCTCCTT -ACGGAAACTCTGCATTGGCCTGTT -ACGGAAACTCTGCATTGGCGGTTT -ACGGAAACTCTGCATTGGGTGGTT -ACGGAAACTCTGCATTGGGCCTTT -ACGGAAACTCTGCATTGGGGTCTT -ACGGAAACTCTGCATTGGACGCTT -ACGGAAACTCTGCATTGGAGCGTT -ACGGAAACTCTGCATTGGTTCGTC -ACGGAAACTCTGCATTGGTCTCTC -ACGGAAACTCTGCATTGGTGGATC -ACGGAAACTCTGCATTGGCACTTC -ACGGAAACTCTGCATTGGGTACTC -ACGGAAACTCTGCATTGGGATGTC -ACGGAAACTCTGCATTGGACAGTC -ACGGAAACTCTGCATTGGTTGCTG -ACGGAAACTCTGCATTGGTCCATG -ACGGAAACTCTGCATTGGTGTGTG -ACGGAAACTCTGCATTGGCTAGTG -ACGGAAACTCTGCATTGGCATCTG -ACGGAAACTCTGCATTGGGAGTTG -ACGGAAACTCTGCATTGGAGACTG -ACGGAAACTCTGCATTGGTCGGTA -ACGGAAACTCTGCATTGGTGCCTA -ACGGAAACTCTGCATTGGCCACTA -ACGGAAACTCTGCATTGGGGAGTA -ACGGAAACTCTGCATTGGTCGTCT -ACGGAAACTCTGCATTGGTGCACT -ACGGAAACTCTGCATTGGCTGACT -ACGGAAACTCTGCATTGGCAACCT -ACGGAAACTCTGCATTGGGCTACT -ACGGAAACTCTGCATTGGGGATCT -ACGGAAACTCTGCATTGGAAGGCT -ACGGAAACTCTGCATTGGTCAACC -ACGGAAACTCTGCATTGGTGTTCC -ACGGAAACTCTGCATTGGATTCCC -ACGGAAACTCTGCATTGGTTCTCG -ACGGAAACTCTGCATTGGTAGACG -ACGGAAACTCTGCATTGGGTAACG -ACGGAAACTCTGCATTGGACTTCG -ACGGAAACTCTGCATTGGTACGCA -ACGGAAACTCTGCATTGGCTTGCA -ACGGAAACTCTGCATTGGCGAACA -ACGGAAACTCTGCATTGGCAGTCA -ACGGAAACTCTGCATTGGGATCCA -ACGGAAACTCTGCATTGGACGACA -ACGGAAACTCTGCATTGGAGCTCA -ACGGAAACTCTGCATTGGTCACGT -ACGGAAACTCTGCATTGGCGTAGT -ACGGAAACTCTGCATTGGGTCAGT -ACGGAAACTCTGCATTGGGAAGGT -ACGGAAACTCTGCATTGGAACCGT -ACGGAAACTCTGCATTGGTTGTGC -ACGGAAACTCTGCATTGGCTAAGC -ACGGAAACTCTGCATTGGACTAGC -ACGGAAACTCTGCATTGGAGATGC -ACGGAAACTCTGCATTGGTGAAGG -ACGGAAACTCTGCATTGGCAATGG -ACGGAAACTCTGCATTGGATGAGG -ACGGAAACTCTGCATTGGAATGGG -ACGGAAACTCTGCATTGGTCCTGA -ACGGAAACTCTGCATTGGTAGCGA -ACGGAAACTCTGCATTGGCACAGA -ACGGAAACTCTGCATTGGGCAAGA -ACGGAAACTCTGCATTGGGGTTGA -ACGGAAACTCTGCATTGGTCCGAT -ACGGAAACTCTGCATTGGTGGCAT -ACGGAAACTCTGCATTGGCGAGAT -ACGGAAACTCTGCATTGGTACCAC -ACGGAAACTCTGCATTGGCAGAAC -ACGGAAACTCTGCATTGGGTCTAC -ACGGAAACTCTGCATTGGACGTAC -ACGGAAACTCTGCATTGGAGTGAC -ACGGAAACTCTGCATTGGCTGTAG -ACGGAAACTCTGCATTGGCCTAAG -ACGGAAACTCTGCATTGGGTTCAG -ACGGAAACTCTGCATTGGGCATAG -ACGGAAACTCTGCATTGGGACAAG -ACGGAAACTCTGCATTGGAAGCAG -ACGGAAACTCTGCATTGGCGTCAA -ACGGAAACTCTGCATTGGGCTGAA -ACGGAAACTCTGCATTGGAGTACG -ACGGAAACTCTGCATTGGATCCGA -ACGGAAACTCTGCATTGGATGGGA -ACGGAAACTCTGCATTGGGTGCAA -ACGGAAACTCTGCATTGGGAGGAA -ACGGAAACTCTGCATTGGCAGGTA -ACGGAAACTCTGCATTGGGACTCT -ACGGAAACTCTGCATTGGAGTCCT -ACGGAAACTCTGCATTGGTAAGCC -ACGGAAACTCTGCATTGGATAGCC -ACGGAAACTCTGCATTGGTAACCG -ACGGAAACTCTGCATTGGATGCCA -ACGGAAACTCTGGATCGAGGAAAC -ACGGAAACTCTGGATCGAAACACC -ACGGAAACTCTGGATCGAATCGAG -ACGGAAACTCTGGATCGACTCCTT -ACGGAAACTCTGGATCGACCTGTT -ACGGAAACTCTGGATCGACGGTTT -ACGGAAACTCTGGATCGAGTGGTT -ACGGAAACTCTGGATCGAGCCTTT -ACGGAAACTCTGGATCGAGGTCTT -ACGGAAACTCTGGATCGAACGCTT -ACGGAAACTCTGGATCGAAGCGTT -ACGGAAACTCTGGATCGATTCGTC -ACGGAAACTCTGGATCGATCTCTC -ACGGAAACTCTGGATCGATGGATC -ACGGAAACTCTGGATCGACACTTC -ACGGAAACTCTGGATCGAGTACTC -ACGGAAACTCTGGATCGAGATGTC -ACGGAAACTCTGGATCGAACAGTC -ACGGAAACTCTGGATCGATTGCTG -ACGGAAACTCTGGATCGATCCATG -ACGGAAACTCTGGATCGATGTGTG -ACGGAAACTCTGGATCGACTAGTG -ACGGAAACTCTGGATCGACATCTG -ACGGAAACTCTGGATCGAGAGTTG -ACGGAAACTCTGGATCGAAGACTG -ACGGAAACTCTGGATCGATCGGTA -ACGGAAACTCTGGATCGATGCCTA -ACGGAAACTCTGGATCGACCACTA -ACGGAAACTCTGGATCGAGGAGTA -ACGGAAACTCTGGATCGATCGTCT -ACGGAAACTCTGGATCGATGCACT -ACGGAAACTCTGGATCGACTGACT -ACGGAAACTCTGGATCGACAACCT -ACGGAAACTCTGGATCGAGCTACT -ACGGAAACTCTGGATCGAGGATCT -ACGGAAACTCTGGATCGAAAGGCT -ACGGAAACTCTGGATCGATCAACC -ACGGAAACTCTGGATCGATGTTCC -ACGGAAACTCTGGATCGAATTCCC -ACGGAAACTCTGGATCGATTCTCG -ACGGAAACTCTGGATCGATAGACG -ACGGAAACTCTGGATCGAGTAACG -ACGGAAACTCTGGATCGAACTTCG -ACGGAAACTCTGGATCGATACGCA -ACGGAAACTCTGGATCGACTTGCA -ACGGAAACTCTGGATCGACGAACA -ACGGAAACTCTGGATCGACAGTCA -ACGGAAACTCTGGATCGAGATCCA -ACGGAAACTCTGGATCGAACGACA -ACGGAAACTCTGGATCGAAGCTCA -ACGGAAACTCTGGATCGATCACGT -ACGGAAACTCTGGATCGACGTAGT -ACGGAAACTCTGGATCGAGTCAGT -ACGGAAACTCTGGATCGAGAAGGT -ACGGAAACTCTGGATCGAAACCGT -ACGGAAACTCTGGATCGATTGTGC -ACGGAAACTCTGGATCGACTAAGC -ACGGAAACTCTGGATCGAACTAGC -ACGGAAACTCTGGATCGAAGATGC -ACGGAAACTCTGGATCGATGAAGG -ACGGAAACTCTGGATCGACAATGG -ACGGAAACTCTGGATCGAATGAGG -ACGGAAACTCTGGATCGAAATGGG -ACGGAAACTCTGGATCGATCCTGA -ACGGAAACTCTGGATCGATAGCGA -ACGGAAACTCTGGATCGACACAGA -ACGGAAACTCTGGATCGAGCAAGA -ACGGAAACTCTGGATCGAGGTTGA -ACGGAAACTCTGGATCGATCCGAT -ACGGAAACTCTGGATCGATGGCAT -ACGGAAACTCTGGATCGACGAGAT -ACGGAAACTCTGGATCGATACCAC -ACGGAAACTCTGGATCGACAGAAC -ACGGAAACTCTGGATCGAGTCTAC -ACGGAAACTCTGGATCGAACGTAC -ACGGAAACTCTGGATCGAAGTGAC -ACGGAAACTCTGGATCGACTGTAG -ACGGAAACTCTGGATCGACCTAAG -ACGGAAACTCTGGATCGAGTTCAG -ACGGAAACTCTGGATCGAGCATAG -ACGGAAACTCTGGATCGAGACAAG -ACGGAAACTCTGGATCGAAAGCAG -ACGGAAACTCTGGATCGACGTCAA -ACGGAAACTCTGGATCGAGCTGAA -ACGGAAACTCTGGATCGAAGTACG -ACGGAAACTCTGGATCGAATCCGA -ACGGAAACTCTGGATCGAATGGGA -ACGGAAACTCTGGATCGAGTGCAA -ACGGAAACTCTGGATCGAGAGGAA -ACGGAAACTCTGGATCGACAGGTA -ACGGAAACTCTGGATCGAGACTCT -ACGGAAACTCTGGATCGAAGTCCT -ACGGAAACTCTGGATCGATAAGCC -ACGGAAACTCTGGATCGAATAGCC -ACGGAAACTCTGGATCGATAACCG -ACGGAAACTCTGGATCGAATGCCA -ACGGAAACTCTGCACTACGGAAAC -ACGGAAACTCTGCACTACAACACC -ACGGAAACTCTGCACTACATCGAG -ACGGAAACTCTGCACTACCTCCTT -ACGGAAACTCTGCACTACCCTGTT -ACGGAAACTCTGCACTACCGGTTT -ACGGAAACTCTGCACTACGTGGTT -ACGGAAACTCTGCACTACGCCTTT -ACGGAAACTCTGCACTACGGTCTT -ACGGAAACTCTGCACTACACGCTT -ACGGAAACTCTGCACTACAGCGTT -ACGGAAACTCTGCACTACTTCGTC -ACGGAAACTCTGCACTACTCTCTC -ACGGAAACTCTGCACTACTGGATC -ACGGAAACTCTGCACTACCACTTC -ACGGAAACTCTGCACTACGTACTC -ACGGAAACTCTGCACTACGATGTC -ACGGAAACTCTGCACTACACAGTC -ACGGAAACTCTGCACTACTTGCTG -ACGGAAACTCTGCACTACTCCATG -ACGGAAACTCTGCACTACTGTGTG -ACGGAAACTCTGCACTACCTAGTG -ACGGAAACTCTGCACTACCATCTG -ACGGAAACTCTGCACTACGAGTTG -ACGGAAACTCTGCACTACAGACTG -ACGGAAACTCTGCACTACTCGGTA -ACGGAAACTCTGCACTACTGCCTA -ACGGAAACTCTGCACTACCCACTA -ACGGAAACTCTGCACTACGGAGTA -ACGGAAACTCTGCACTACTCGTCT -ACGGAAACTCTGCACTACTGCACT -ACGGAAACTCTGCACTACCTGACT -ACGGAAACTCTGCACTACCAACCT -ACGGAAACTCTGCACTACGCTACT -ACGGAAACTCTGCACTACGGATCT -ACGGAAACTCTGCACTACAAGGCT -ACGGAAACTCTGCACTACTCAACC -ACGGAAACTCTGCACTACTGTTCC -ACGGAAACTCTGCACTACATTCCC -ACGGAAACTCTGCACTACTTCTCG -ACGGAAACTCTGCACTACTAGACG -ACGGAAACTCTGCACTACGTAACG -ACGGAAACTCTGCACTACACTTCG -ACGGAAACTCTGCACTACTACGCA -ACGGAAACTCTGCACTACCTTGCA -ACGGAAACTCTGCACTACCGAACA -ACGGAAACTCTGCACTACCAGTCA -ACGGAAACTCTGCACTACGATCCA -ACGGAAACTCTGCACTACACGACA -ACGGAAACTCTGCACTACAGCTCA -ACGGAAACTCTGCACTACTCACGT -ACGGAAACTCTGCACTACCGTAGT -ACGGAAACTCTGCACTACGTCAGT -ACGGAAACTCTGCACTACGAAGGT -ACGGAAACTCTGCACTACAACCGT -ACGGAAACTCTGCACTACTTGTGC -ACGGAAACTCTGCACTACCTAAGC -ACGGAAACTCTGCACTACACTAGC -ACGGAAACTCTGCACTACAGATGC -ACGGAAACTCTGCACTACTGAAGG -ACGGAAACTCTGCACTACCAATGG -ACGGAAACTCTGCACTACATGAGG -ACGGAAACTCTGCACTACAATGGG -ACGGAAACTCTGCACTACTCCTGA -ACGGAAACTCTGCACTACTAGCGA -ACGGAAACTCTGCACTACCACAGA -ACGGAAACTCTGCACTACGCAAGA -ACGGAAACTCTGCACTACGGTTGA -ACGGAAACTCTGCACTACTCCGAT -ACGGAAACTCTGCACTACTGGCAT -ACGGAAACTCTGCACTACCGAGAT -ACGGAAACTCTGCACTACTACCAC -ACGGAAACTCTGCACTACCAGAAC -ACGGAAACTCTGCACTACGTCTAC -ACGGAAACTCTGCACTACACGTAC -ACGGAAACTCTGCACTACAGTGAC -ACGGAAACTCTGCACTACCTGTAG -ACGGAAACTCTGCACTACCCTAAG -ACGGAAACTCTGCACTACGTTCAG -ACGGAAACTCTGCACTACGCATAG -ACGGAAACTCTGCACTACGACAAG -ACGGAAACTCTGCACTACAAGCAG -ACGGAAACTCTGCACTACCGTCAA -ACGGAAACTCTGCACTACGCTGAA -ACGGAAACTCTGCACTACAGTACG -ACGGAAACTCTGCACTACATCCGA -ACGGAAACTCTGCACTACATGGGA -ACGGAAACTCTGCACTACGTGCAA -ACGGAAACTCTGCACTACGAGGAA -ACGGAAACTCTGCACTACCAGGTA -ACGGAAACTCTGCACTACGACTCT -ACGGAAACTCTGCACTACAGTCCT -ACGGAAACTCTGCACTACTAAGCC -ACGGAAACTCTGCACTACATAGCC -ACGGAAACTCTGCACTACTAACCG -ACGGAAACTCTGCACTACATGCCA -ACGGAAACTCTGAACCAGGGAAAC -ACGGAAACTCTGAACCAGAACACC -ACGGAAACTCTGAACCAGATCGAG -ACGGAAACTCTGAACCAGCTCCTT -ACGGAAACTCTGAACCAGCCTGTT -ACGGAAACTCTGAACCAGCGGTTT -ACGGAAACTCTGAACCAGGTGGTT -ACGGAAACTCTGAACCAGGCCTTT -ACGGAAACTCTGAACCAGGGTCTT -ACGGAAACTCTGAACCAGACGCTT -ACGGAAACTCTGAACCAGAGCGTT -ACGGAAACTCTGAACCAGTTCGTC -ACGGAAACTCTGAACCAGTCTCTC -ACGGAAACTCTGAACCAGTGGATC -ACGGAAACTCTGAACCAGCACTTC -ACGGAAACTCTGAACCAGGTACTC -ACGGAAACTCTGAACCAGGATGTC -ACGGAAACTCTGAACCAGACAGTC -ACGGAAACTCTGAACCAGTTGCTG -ACGGAAACTCTGAACCAGTCCATG -ACGGAAACTCTGAACCAGTGTGTG -ACGGAAACTCTGAACCAGCTAGTG -ACGGAAACTCTGAACCAGCATCTG -ACGGAAACTCTGAACCAGGAGTTG -ACGGAAACTCTGAACCAGAGACTG -ACGGAAACTCTGAACCAGTCGGTA -ACGGAAACTCTGAACCAGTGCCTA -ACGGAAACTCTGAACCAGCCACTA -ACGGAAACTCTGAACCAGGGAGTA -ACGGAAACTCTGAACCAGTCGTCT -ACGGAAACTCTGAACCAGTGCACT -ACGGAAACTCTGAACCAGCTGACT -ACGGAAACTCTGAACCAGCAACCT -ACGGAAACTCTGAACCAGGCTACT -ACGGAAACTCTGAACCAGGGATCT -ACGGAAACTCTGAACCAGAAGGCT -ACGGAAACTCTGAACCAGTCAACC -ACGGAAACTCTGAACCAGTGTTCC -ACGGAAACTCTGAACCAGATTCCC -ACGGAAACTCTGAACCAGTTCTCG -ACGGAAACTCTGAACCAGTAGACG -ACGGAAACTCTGAACCAGGTAACG -ACGGAAACTCTGAACCAGACTTCG -ACGGAAACTCTGAACCAGTACGCA -ACGGAAACTCTGAACCAGCTTGCA -ACGGAAACTCTGAACCAGCGAACA -ACGGAAACTCTGAACCAGCAGTCA -ACGGAAACTCTGAACCAGGATCCA -ACGGAAACTCTGAACCAGACGACA -ACGGAAACTCTGAACCAGAGCTCA -ACGGAAACTCTGAACCAGTCACGT -ACGGAAACTCTGAACCAGCGTAGT -ACGGAAACTCTGAACCAGGTCAGT -ACGGAAACTCTGAACCAGGAAGGT -ACGGAAACTCTGAACCAGAACCGT -ACGGAAACTCTGAACCAGTTGTGC -ACGGAAACTCTGAACCAGCTAAGC -ACGGAAACTCTGAACCAGACTAGC -ACGGAAACTCTGAACCAGAGATGC -ACGGAAACTCTGAACCAGTGAAGG -ACGGAAACTCTGAACCAGCAATGG -ACGGAAACTCTGAACCAGATGAGG -ACGGAAACTCTGAACCAGAATGGG -ACGGAAACTCTGAACCAGTCCTGA -ACGGAAACTCTGAACCAGTAGCGA -ACGGAAACTCTGAACCAGCACAGA -ACGGAAACTCTGAACCAGGCAAGA -ACGGAAACTCTGAACCAGGGTTGA -ACGGAAACTCTGAACCAGTCCGAT -ACGGAAACTCTGAACCAGTGGCAT -ACGGAAACTCTGAACCAGCGAGAT -ACGGAAACTCTGAACCAGTACCAC -ACGGAAACTCTGAACCAGCAGAAC -ACGGAAACTCTGAACCAGGTCTAC -ACGGAAACTCTGAACCAGACGTAC -ACGGAAACTCTGAACCAGAGTGAC -ACGGAAACTCTGAACCAGCTGTAG -ACGGAAACTCTGAACCAGCCTAAG -ACGGAAACTCTGAACCAGGTTCAG -ACGGAAACTCTGAACCAGGCATAG -ACGGAAACTCTGAACCAGGACAAG -ACGGAAACTCTGAACCAGAAGCAG -ACGGAAACTCTGAACCAGCGTCAA -ACGGAAACTCTGAACCAGGCTGAA -ACGGAAACTCTGAACCAGAGTACG -ACGGAAACTCTGAACCAGATCCGA -ACGGAAACTCTGAACCAGATGGGA -ACGGAAACTCTGAACCAGGTGCAA -ACGGAAACTCTGAACCAGGAGGAA -ACGGAAACTCTGAACCAGCAGGTA -ACGGAAACTCTGAACCAGGACTCT -ACGGAAACTCTGAACCAGAGTCCT -ACGGAAACTCTGAACCAGTAAGCC -ACGGAAACTCTGAACCAGATAGCC -ACGGAAACTCTGAACCAGTAACCG -ACGGAAACTCTGAACCAGATGCCA -ACGGAAACTCTGTACGTCGGAAAC -ACGGAAACTCTGTACGTCAACACC -ACGGAAACTCTGTACGTCATCGAG -ACGGAAACTCTGTACGTCCTCCTT -ACGGAAACTCTGTACGTCCCTGTT -ACGGAAACTCTGTACGTCCGGTTT -ACGGAAACTCTGTACGTCGTGGTT -ACGGAAACTCTGTACGTCGCCTTT -ACGGAAACTCTGTACGTCGGTCTT -ACGGAAACTCTGTACGTCACGCTT -ACGGAAACTCTGTACGTCAGCGTT -ACGGAAACTCTGTACGTCTTCGTC -ACGGAAACTCTGTACGTCTCTCTC -ACGGAAACTCTGTACGTCTGGATC -ACGGAAACTCTGTACGTCCACTTC -ACGGAAACTCTGTACGTCGTACTC -ACGGAAACTCTGTACGTCGATGTC -ACGGAAACTCTGTACGTCACAGTC -ACGGAAACTCTGTACGTCTTGCTG -ACGGAAACTCTGTACGTCTCCATG -ACGGAAACTCTGTACGTCTGTGTG -ACGGAAACTCTGTACGTCCTAGTG -ACGGAAACTCTGTACGTCCATCTG -ACGGAAACTCTGTACGTCGAGTTG -ACGGAAACTCTGTACGTCAGACTG -ACGGAAACTCTGTACGTCTCGGTA -ACGGAAACTCTGTACGTCTGCCTA -ACGGAAACTCTGTACGTCCCACTA -ACGGAAACTCTGTACGTCGGAGTA -ACGGAAACTCTGTACGTCTCGTCT -ACGGAAACTCTGTACGTCTGCACT -ACGGAAACTCTGTACGTCCTGACT -ACGGAAACTCTGTACGTCCAACCT -ACGGAAACTCTGTACGTCGCTACT -ACGGAAACTCTGTACGTCGGATCT -ACGGAAACTCTGTACGTCAAGGCT -ACGGAAACTCTGTACGTCTCAACC -ACGGAAACTCTGTACGTCTGTTCC -ACGGAAACTCTGTACGTCATTCCC -ACGGAAACTCTGTACGTCTTCTCG -ACGGAAACTCTGTACGTCTAGACG -ACGGAAACTCTGTACGTCGTAACG -ACGGAAACTCTGTACGTCACTTCG -ACGGAAACTCTGTACGTCTACGCA -ACGGAAACTCTGTACGTCCTTGCA -ACGGAAACTCTGTACGTCCGAACA -ACGGAAACTCTGTACGTCCAGTCA -ACGGAAACTCTGTACGTCGATCCA -ACGGAAACTCTGTACGTCACGACA -ACGGAAACTCTGTACGTCAGCTCA -ACGGAAACTCTGTACGTCTCACGT -ACGGAAACTCTGTACGTCCGTAGT -ACGGAAACTCTGTACGTCGTCAGT -ACGGAAACTCTGTACGTCGAAGGT -ACGGAAACTCTGTACGTCAACCGT -ACGGAAACTCTGTACGTCTTGTGC -ACGGAAACTCTGTACGTCCTAAGC -ACGGAAACTCTGTACGTCACTAGC -ACGGAAACTCTGTACGTCAGATGC -ACGGAAACTCTGTACGTCTGAAGG -ACGGAAACTCTGTACGTCCAATGG -ACGGAAACTCTGTACGTCATGAGG -ACGGAAACTCTGTACGTCAATGGG -ACGGAAACTCTGTACGTCTCCTGA -ACGGAAACTCTGTACGTCTAGCGA -ACGGAAACTCTGTACGTCCACAGA -ACGGAAACTCTGTACGTCGCAAGA -ACGGAAACTCTGTACGTCGGTTGA -ACGGAAACTCTGTACGTCTCCGAT -ACGGAAACTCTGTACGTCTGGCAT -ACGGAAACTCTGTACGTCCGAGAT -ACGGAAACTCTGTACGTCTACCAC -ACGGAAACTCTGTACGTCCAGAAC -ACGGAAACTCTGTACGTCGTCTAC -ACGGAAACTCTGTACGTCACGTAC -ACGGAAACTCTGTACGTCAGTGAC -ACGGAAACTCTGTACGTCCTGTAG -ACGGAAACTCTGTACGTCCCTAAG -ACGGAAACTCTGTACGTCGTTCAG -ACGGAAACTCTGTACGTCGCATAG -ACGGAAACTCTGTACGTCGACAAG -ACGGAAACTCTGTACGTCAAGCAG -ACGGAAACTCTGTACGTCCGTCAA -ACGGAAACTCTGTACGTCGCTGAA -ACGGAAACTCTGTACGTCAGTACG -ACGGAAACTCTGTACGTCATCCGA -ACGGAAACTCTGTACGTCATGGGA -ACGGAAACTCTGTACGTCGTGCAA -ACGGAAACTCTGTACGTCGAGGAA -ACGGAAACTCTGTACGTCCAGGTA -ACGGAAACTCTGTACGTCGACTCT -ACGGAAACTCTGTACGTCAGTCCT -ACGGAAACTCTGTACGTCTAAGCC -ACGGAAACTCTGTACGTCATAGCC -ACGGAAACTCTGTACGTCTAACCG -ACGGAAACTCTGTACGTCATGCCA -ACGGAAACTCTGTACACGGGAAAC -ACGGAAACTCTGTACACGAACACC -ACGGAAACTCTGTACACGATCGAG -ACGGAAACTCTGTACACGCTCCTT -ACGGAAACTCTGTACACGCCTGTT -ACGGAAACTCTGTACACGCGGTTT -ACGGAAACTCTGTACACGGTGGTT -ACGGAAACTCTGTACACGGCCTTT -ACGGAAACTCTGTACACGGGTCTT -ACGGAAACTCTGTACACGACGCTT -ACGGAAACTCTGTACACGAGCGTT -ACGGAAACTCTGTACACGTTCGTC -ACGGAAACTCTGTACACGTCTCTC -ACGGAAACTCTGTACACGTGGATC -ACGGAAACTCTGTACACGCACTTC -ACGGAAACTCTGTACACGGTACTC -ACGGAAACTCTGTACACGGATGTC -ACGGAAACTCTGTACACGACAGTC -ACGGAAACTCTGTACACGTTGCTG -ACGGAAACTCTGTACACGTCCATG -ACGGAAACTCTGTACACGTGTGTG -ACGGAAACTCTGTACACGCTAGTG -ACGGAAACTCTGTACACGCATCTG -ACGGAAACTCTGTACACGGAGTTG -ACGGAAACTCTGTACACGAGACTG -ACGGAAACTCTGTACACGTCGGTA -ACGGAAACTCTGTACACGTGCCTA -ACGGAAACTCTGTACACGCCACTA -ACGGAAACTCTGTACACGGGAGTA -ACGGAAACTCTGTACACGTCGTCT -ACGGAAACTCTGTACACGTGCACT -ACGGAAACTCTGTACACGCTGACT -ACGGAAACTCTGTACACGCAACCT -ACGGAAACTCTGTACACGGCTACT -ACGGAAACTCTGTACACGGGATCT -ACGGAAACTCTGTACACGAAGGCT -ACGGAAACTCTGTACACGTCAACC -ACGGAAACTCTGTACACGTGTTCC -ACGGAAACTCTGTACACGATTCCC -ACGGAAACTCTGTACACGTTCTCG -ACGGAAACTCTGTACACGTAGACG -ACGGAAACTCTGTACACGGTAACG -ACGGAAACTCTGTACACGACTTCG -ACGGAAACTCTGTACACGTACGCA -ACGGAAACTCTGTACACGCTTGCA -ACGGAAACTCTGTACACGCGAACA -ACGGAAACTCTGTACACGCAGTCA -ACGGAAACTCTGTACACGGATCCA -ACGGAAACTCTGTACACGACGACA -ACGGAAACTCTGTACACGAGCTCA -ACGGAAACTCTGTACACGTCACGT -ACGGAAACTCTGTACACGCGTAGT -ACGGAAACTCTGTACACGGTCAGT -ACGGAAACTCTGTACACGGAAGGT -ACGGAAACTCTGTACACGAACCGT -ACGGAAACTCTGTACACGTTGTGC -ACGGAAACTCTGTACACGCTAAGC -ACGGAAACTCTGTACACGACTAGC -ACGGAAACTCTGTACACGAGATGC -ACGGAAACTCTGTACACGTGAAGG -ACGGAAACTCTGTACACGCAATGG -ACGGAAACTCTGTACACGATGAGG -ACGGAAACTCTGTACACGAATGGG -ACGGAAACTCTGTACACGTCCTGA -ACGGAAACTCTGTACACGTAGCGA -ACGGAAACTCTGTACACGCACAGA -ACGGAAACTCTGTACACGGCAAGA -ACGGAAACTCTGTACACGGGTTGA -ACGGAAACTCTGTACACGTCCGAT -ACGGAAACTCTGTACACGTGGCAT -ACGGAAACTCTGTACACGCGAGAT -ACGGAAACTCTGTACACGTACCAC -ACGGAAACTCTGTACACGCAGAAC -ACGGAAACTCTGTACACGGTCTAC -ACGGAAACTCTGTACACGACGTAC -ACGGAAACTCTGTACACGAGTGAC -ACGGAAACTCTGTACACGCTGTAG -ACGGAAACTCTGTACACGCCTAAG -ACGGAAACTCTGTACACGGTTCAG -ACGGAAACTCTGTACACGGCATAG -ACGGAAACTCTGTACACGGACAAG -ACGGAAACTCTGTACACGAAGCAG -ACGGAAACTCTGTACACGCGTCAA -ACGGAAACTCTGTACACGGCTGAA -ACGGAAACTCTGTACACGAGTACG -ACGGAAACTCTGTACACGATCCGA -ACGGAAACTCTGTACACGATGGGA -ACGGAAACTCTGTACACGGTGCAA -ACGGAAACTCTGTACACGGAGGAA -ACGGAAACTCTGTACACGCAGGTA -ACGGAAACTCTGTACACGGACTCT -ACGGAAACTCTGTACACGAGTCCT -ACGGAAACTCTGTACACGTAAGCC -ACGGAAACTCTGTACACGATAGCC -ACGGAAACTCTGTACACGTAACCG -ACGGAAACTCTGTACACGATGCCA -ACGGAAACTCTGGACAGTGGAAAC -ACGGAAACTCTGGACAGTAACACC -ACGGAAACTCTGGACAGTATCGAG -ACGGAAACTCTGGACAGTCTCCTT -ACGGAAACTCTGGACAGTCCTGTT -ACGGAAACTCTGGACAGTCGGTTT -ACGGAAACTCTGGACAGTGTGGTT -ACGGAAACTCTGGACAGTGCCTTT -ACGGAAACTCTGGACAGTGGTCTT -ACGGAAACTCTGGACAGTACGCTT -ACGGAAACTCTGGACAGTAGCGTT -ACGGAAACTCTGGACAGTTTCGTC -ACGGAAACTCTGGACAGTTCTCTC -ACGGAAACTCTGGACAGTTGGATC -ACGGAAACTCTGGACAGTCACTTC -ACGGAAACTCTGGACAGTGTACTC -ACGGAAACTCTGGACAGTGATGTC -ACGGAAACTCTGGACAGTACAGTC -ACGGAAACTCTGGACAGTTTGCTG -ACGGAAACTCTGGACAGTTCCATG -ACGGAAACTCTGGACAGTTGTGTG -ACGGAAACTCTGGACAGTCTAGTG -ACGGAAACTCTGGACAGTCATCTG -ACGGAAACTCTGGACAGTGAGTTG -ACGGAAACTCTGGACAGTAGACTG -ACGGAAACTCTGGACAGTTCGGTA -ACGGAAACTCTGGACAGTTGCCTA -ACGGAAACTCTGGACAGTCCACTA -ACGGAAACTCTGGACAGTGGAGTA -ACGGAAACTCTGGACAGTTCGTCT -ACGGAAACTCTGGACAGTTGCACT -ACGGAAACTCTGGACAGTCTGACT -ACGGAAACTCTGGACAGTCAACCT -ACGGAAACTCTGGACAGTGCTACT -ACGGAAACTCTGGACAGTGGATCT -ACGGAAACTCTGGACAGTAAGGCT -ACGGAAACTCTGGACAGTTCAACC -ACGGAAACTCTGGACAGTTGTTCC -ACGGAAACTCTGGACAGTATTCCC -ACGGAAACTCTGGACAGTTTCTCG -ACGGAAACTCTGGACAGTTAGACG -ACGGAAACTCTGGACAGTGTAACG -ACGGAAACTCTGGACAGTACTTCG -ACGGAAACTCTGGACAGTTACGCA -ACGGAAACTCTGGACAGTCTTGCA -ACGGAAACTCTGGACAGTCGAACA -ACGGAAACTCTGGACAGTCAGTCA -ACGGAAACTCTGGACAGTGATCCA -ACGGAAACTCTGGACAGTACGACA -ACGGAAACTCTGGACAGTAGCTCA -ACGGAAACTCTGGACAGTTCACGT -ACGGAAACTCTGGACAGTCGTAGT -ACGGAAACTCTGGACAGTGTCAGT -ACGGAAACTCTGGACAGTGAAGGT -ACGGAAACTCTGGACAGTAACCGT -ACGGAAACTCTGGACAGTTTGTGC -ACGGAAACTCTGGACAGTCTAAGC -ACGGAAACTCTGGACAGTACTAGC -ACGGAAACTCTGGACAGTAGATGC -ACGGAAACTCTGGACAGTTGAAGG -ACGGAAACTCTGGACAGTCAATGG -ACGGAAACTCTGGACAGTATGAGG -ACGGAAACTCTGGACAGTAATGGG -ACGGAAACTCTGGACAGTTCCTGA -ACGGAAACTCTGGACAGTTAGCGA -ACGGAAACTCTGGACAGTCACAGA -ACGGAAACTCTGGACAGTGCAAGA -ACGGAAACTCTGGACAGTGGTTGA -ACGGAAACTCTGGACAGTTCCGAT -ACGGAAACTCTGGACAGTTGGCAT -ACGGAAACTCTGGACAGTCGAGAT -ACGGAAACTCTGGACAGTTACCAC -ACGGAAACTCTGGACAGTCAGAAC -ACGGAAACTCTGGACAGTGTCTAC -ACGGAAACTCTGGACAGTACGTAC -ACGGAAACTCTGGACAGTAGTGAC -ACGGAAACTCTGGACAGTCTGTAG -ACGGAAACTCTGGACAGTCCTAAG -ACGGAAACTCTGGACAGTGTTCAG -ACGGAAACTCTGGACAGTGCATAG -ACGGAAACTCTGGACAGTGACAAG -ACGGAAACTCTGGACAGTAAGCAG -ACGGAAACTCTGGACAGTCGTCAA -ACGGAAACTCTGGACAGTGCTGAA -ACGGAAACTCTGGACAGTAGTACG -ACGGAAACTCTGGACAGTATCCGA -ACGGAAACTCTGGACAGTATGGGA -ACGGAAACTCTGGACAGTGTGCAA -ACGGAAACTCTGGACAGTGAGGAA -ACGGAAACTCTGGACAGTCAGGTA -ACGGAAACTCTGGACAGTGACTCT -ACGGAAACTCTGGACAGTAGTCCT -ACGGAAACTCTGGACAGTTAAGCC -ACGGAAACTCTGGACAGTATAGCC -ACGGAAACTCTGGACAGTTAACCG -ACGGAAACTCTGGACAGTATGCCA -ACGGAAACTCTGTAGCTGGGAAAC -ACGGAAACTCTGTAGCTGAACACC -ACGGAAACTCTGTAGCTGATCGAG -ACGGAAACTCTGTAGCTGCTCCTT -ACGGAAACTCTGTAGCTGCCTGTT -ACGGAAACTCTGTAGCTGCGGTTT -ACGGAAACTCTGTAGCTGGTGGTT -ACGGAAACTCTGTAGCTGGCCTTT -ACGGAAACTCTGTAGCTGGGTCTT -ACGGAAACTCTGTAGCTGACGCTT -ACGGAAACTCTGTAGCTGAGCGTT -ACGGAAACTCTGTAGCTGTTCGTC -ACGGAAACTCTGTAGCTGTCTCTC -ACGGAAACTCTGTAGCTGTGGATC -ACGGAAACTCTGTAGCTGCACTTC -ACGGAAACTCTGTAGCTGGTACTC -ACGGAAACTCTGTAGCTGGATGTC -ACGGAAACTCTGTAGCTGACAGTC -ACGGAAACTCTGTAGCTGTTGCTG -ACGGAAACTCTGTAGCTGTCCATG -ACGGAAACTCTGTAGCTGTGTGTG -ACGGAAACTCTGTAGCTGCTAGTG -ACGGAAACTCTGTAGCTGCATCTG -ACGGAAACTCTGTAGCTGGAGTTG -ACGGAAACTCTGTAGCTGAGACTG -ACGGAAACTCTGTAGCTGTCGGTA -ACGGAAACTCTGTAGCTGTGCCTA -ACGGAAACTCTGTAGCTGCCACTA -ACGGAAACTCTGTAGCTGGGAGTA -ACGGAAACTCTGTAGCTGTCGTCT -ACGGAAACTCTGTAGCTGTGCACT -ACGGAAACTCTGTAGCTGCTGACT -ACGGAAACTCTGTAGCTGCAACCT -ACGGAAACTCTGTAGCTGGCTACT -ACGGAAACTCTGTAGCTGGGATCT -ACGGAAACTCTGTAGCTGAAGGCT -ACGGAAACTCTGTAGCTGTCAACC -ACGGAAACTCTGTAGCTGTGTTCC -ACGGAAACTCTGTAGCTGATTCCC -ACGGAAACTCTGTAGCTGTTCTCG -ACGGAAACTCTGTAGCTGTAGACG -ACGGAAACTCTGTAGCTGGTAACG -ACGGAAACTCTGTAGCTGACTTCG -ACGGAAACTCTGTAGCTGTACGCA -ACGGAAACTCTGTAGCTGCTTGCA -ACGGAAACTCTGTAGCTGCGAACA -ACGGAAACTCTGTAGCTGCAGTCA -ACGGAAACTCTGTAGCTGGATCCA -ACGGAAACTCTGTAGCTGACGACA -ACGGAAACTCTGTAGCTGAGCTCA -ACGGAAACTCTGTAGCTGTCACGT -ACGGAAACTCTGTAGCTGCGTAGT -ACGGAAACTCTGTAGCTGGTCAGT -ACGGAAACTCTGTAGCTGGAAGGT -ACGGAAACTCTGTAGCTGAACCGT -ACGGAAACTCTGTAGCTGTTGTGC -ACGGAAACTCTGTAGCTGCTAAGC -ACGGAAACTCTGTAGCTGACTAGC -ACGGAAACTCTGTAGCTGAGATGC -ACGGAAACTCTGTAGCTGTGAAGG -ACGGAAACTCTGTAGCTGCAATGG -ACGGAAACTCTGTAGCTGATGAGG -ACGGAAACTCTGTAGCTGAATGGG -ACGGAAACTCTGTAGCTGTCCTGA -ACGGAAACTCTGTAGCTGTAGCGA -ACGGAAACTCTGTAGCTGCACAGA -ACGGAAACTCTGTAGCTGGCAAGA -ACGGAAACTCTGTAGCTGGGTTGA -ACGGAAACTCTGTAGCTGTCCGAT -ACGGAAACTCTGTAGCTGTGGCAT -ACGGAAACTCTGTAGCTGCGAGAT -ACGGAAACTCTGTAGCTGTACCAC -ACGGAAACTCTGTAGCTGCAGAAC -ACGGAAACTCTGTAGCTGGTCTAC -ACGGAAACTCTGTAGCTGACGTAC -ACGGAAACTCTGTAGCTGAGTGAC -ACGGAAACTCTGTAGCTGCTGTAG -ACGGAAACTCTGTAGCTGCCTAAG -ACGGAAACTCTGTAGCTGGTTCAG -ACGGAAACTCTGTAGCTGGCATAG -ACGGAAACTCTGTAGCTGGACAAG -ACGGAAACTCTGTAGCTGAAGCAG -ACGGAAACTCTGTAGCTGCGTCAA -ACGGAAACTCTGTAGCTGGCTGAA -ACGGAAACTCTGTAGCTGAGTACG -ACGGAAACTCTGTAGCTGATCCGA -ACGGAAACTCTGTAGCTGATGGGA -ACGGAAACTCTGTAGCTGGTGCAA -ACGGAAACTCTGTAGCTGGAGGAA -ACGGAAACTCTGTAGCTGCAGGTA -ACGGAAACTCTGTAGCTGGACTCT -ACGGAAACTCTGTAGCTGAGTCCT -ACGGAAACTCTGTAGCTGTAAGCC -ACGGAAACTCTGTAGCTGATAGCC -ACGGAAACTCTGTAGCTGTAACCG -ACGGAAACTCTGTAGCTGATGCCA -ACGGAAACTCTGAAGCCTGGAAAC -ACGGAAACTCTGAAGCCTAACACC -ACGGAAACTCTGAAGCCTATCGAG -ACGGAAACTCTGAAGCCTCTCCTT -ACGGAAACTCTGAAGCCTCCTGTT -ACGGAAACTCTGAAGCCTCGGTTT -ACGGAAACTCTGAAGCCTGTGGTT -ACGGAAACTCTGAAGCCTGCCTTT -ACGGAAACTCTGAAGCCTGGTCTT -ACGGAAACTCTGAAGCCTACGCTT -ACGGAAACTCTGAAGCCTAGCGTT -ACGGAAACTCTGAAGCCTTTCGTC -ACGGAAACTCTGAAGCCTTCTCTC -ACGGAAACTCTGAAGCCTTGGATC -ACGGAAACTCTGAAGCCTCACTTC -ACGGAAACTCTGAAGCCTGTACTC -ACGGAAACTCTGAAGCCTGATGTC -ACGGAAACTCTGAAGCCTACAGTC -ACGGAAACTCTGAAGCCTTTGCTG -ACGGAAACTCTGAAGCCTTCCATG -ACGGAAACTCTGAAGCCTTGTGTG -ACGGAAACTCTGAAGCCTCTAGTG -ACGGAAACTCTGAAGCCTCATCTG -ACGGAAACTCTGAAGCCTGAGTTG -ACGGAAACTCTGAAGCCTAGACTG -ACGGAAACTCTGAAGCCTTCGGTA -ACGGAAACTCTGAAGCCTTGCCTA -ACGGAAACTCTGAAGCCTCCACTA -ACGGAAACTCTGAAGCCTGGAGTA -ACGGAAACTCTGAAGCCTTCGTCT -ACGGAAACTCTGAAGCCTTGCACT -ACGGAAACTCTGAAGCCTCTGACT -ACGGAAACTCTGAAGCCTCAACCT -ACGGAAACTCTGAAGCCTGCTACT -ACGGAAACTCTGAAGCCTGGATCT -ACGGAAACTCTGAAGCCTAAGGCT -ACGGAAACTCTGAAGCCTTCAACC -ACGGAAACTCTGAAGCCTTGTTCC -ACGGAAACTCTGAAGCCTATTCCC -ACGGAAACTCTGAAGCCTTTCTCG -ACGGAAACTCTGAAGCCTTAGACG -ACGGAAACTCTGAAGCCTGTAACG -ACGGAAACTCTGAAGCCTACTTCG -ACGGAAACTCTGAAGCCTTACGCA -ACGGAAACTCTGAAGCCTCTTGCA -ACGGAAACTCTGAAGCCTCGAACA -ACGGAAACTCTGAAGCCTCAGTCA -ACGGAAACTCTGAAGCCTGATCCA -ACGGAAACTCTGAAGCCTACGACA -ACGGAAACTCTGAAGCCTAGCTCA -ACGGAAACTCTGAAGCCTTCACGT -ACGGAAACTCTGAAGCCTCGTAGT -ACGGAAACTCTGAAGCCTGTCAGT -ACGGAAACTCTGAAGCCTGAAGGT -ACGGAAACTCTGAAGCCTAACCGT -ACGGAAACTCTGAAGCCTTTGTGC -ACGGAAACTCTGAAGCCTCTAAGC -ACGGAAACTCTGAAGCCTACTAGC -ACGGAAACTCTGAAGCCTAGATGC -ACGGAAACTCTGAAGCCTTGAAGG -ACGGAAACTCTGAAGCCTCAATGG -ACGGAAACTCTGAAGCCTATGAGG -ACGGAAACTCTGAAGCCTAATGGG -ACGGAAACTCTGAAGCCTTCCTGA -ACGGAAACTCTGAAGCCTTAGCGA -ACGGAAACTCTGAAGCCTCACAGA -ACGGAAACTCTGAAGCCTGCAAGA -ACGGAAACTCTGAAGCCTGGTTGA -ACGGAAACTCTGAAGCCTTCCGAT -ACGGAAACTCTGAAGCCTTGGCAT -ACGGAAACTCTGAAGCCTCGAGAT -ACGGAAACTCTGAAGCCTTACCAC -ACGGAAACTCTGAAGCCTCAGAAC -ACGGAAACTCTGAAGCCTGTCTAC -ACGGAAACTCTGAAGCCTACGTAC -ACGGAAACTCTGAAGCCTAGTGAC -ACGGAAACTCTGAAGCCTCTGTAG -ACGGAAACTCTGAAGCCTCCTAAG -ACGGAAACTCTGAAGCCTGTTCAG -ACGGAAACTCTGAAGCCTGCATAG -ACGGAAACTCTGAAGCCTGACAAG -ACGGAAACTCTGAAGCCTAAGCAG -ACGGAAACTCTGAAGCCTCGTCAA -ACGGAAACTCTGAAGCCTGCTGAA -ACGGAAACTCTGAAGCCTAGTACG -ACGGAAACTCTGAAGCCTATCCGA -ACGGAAACTCTGAAGCCTATGGGA -ACGGAAACTCTGAAGCCTGTGCAA -ACGGAAACTCTGAAGCCTGAGGAA -ACGGAAACTCTGAAGCCTCAGGTA -ACGGAAACTCTGAAGCCTGACTCT -ACGGAAACTCTGAAGCCTAGTCCT -ACGGAAACTCTGAAGCCTTAAGCC -ACGGAAACTCTGAAGCCTATAGCC -ACGGAAACTCTGAAGCCTTAACCG -ACGGAAACTCTGAAGCCTATGCCA -ACGGAAACTCTGCAGGTTGGAAAC -ACGGAAACTCTGCAGGTTAACACC -ACGGAAACTCTGCAGGTTATCGAG -ACGGAAACTCTGCAGGTTCTCCTT -ACGGAAACTCTGCAGGTTCCTGTT -ACGGAAACTCTGCAGGTTCGGTTT -ACGGAAACTCTGCAGGTTGTGGTT -ACGGAAACTCTGCAGGTTGCCTTT -ACGGAAACTCTGCAGGTTGGTCTT -ACGGAAACTCTGCAGGTTACGCTT -ACGGAAACTCTGCAGGTTAGCGTT -ACGGAAACTCTGCAGGTTTTCGTC -ACGGAAACTCTGCAGGTTTCTCTC -ACGGAAACTCTGCAGGTTTGGATC -ACGGAAACTCTGCAGGTTCACTTC -ACGGAAACTCTGCAGGTTGTACTC -ACGGAAACTCTGCAGGTTGATGTC -ACGGAAACTCTGCAGGTTACAGTC -ACGGAAACTCTGCAGGTTTTGCTG -ACGGAAACTCTGCAGGTTTCCATG -ACGGAAACTCTGCAGGTTTGTGTG -ACGGAAACTCTGCAGGTTCTAGTG -ACGGAAACTCTGCAGGTTCATCTG -ACGGAAACTCTGCAGGTTGAGTTG -ACGGAAACTCTGCAGGTTAGACTG -ACGGAAACTCTGCAGGTTTCGGTA -ACGGAAACTCTGCAGGTTTGCCTA -ACGGAAACTCTGCAGGTTCCACTA -ACGGAAACTCTGCAGGTTGGAGTA -ACGGAAACTCTGCAGGTTTCGTCT -ACGGAAACTCTGCAGGTTTGCACT -ACGGAAACTCTGCAGGTTCTGACT -ACGGAAACTCTGCAGGTTCAACCT -ACGGAAACTCTGCAGGTTGCTACT -ACGGAAACTCTGCAGGTTGGATCT -ACGGAAACTCTGCAGGTTAAGGCT -ACGGAAACTCTGCAGGTTTCAACC -ACGGAAACTCTGCAGGTTTGTTCC -ACGGAAACTCTGCAGGTTATTCCC -ACGGAAACTCTGCAGGTTTTCTCG -ACGGAAACTCTGCAGGTTTAGACG -ACGGAAACTCTGCAGGTTGTAACG -ACGGAAACTCTGCAGGTTACTTCG -ACGGAAACTCTGCAGGTTTACGCA -ACGGAAACTCTGCAGGTTCTTGCA -ACGGAAACTCTGCAGGTTCGAACA -ACGGAAACTCTGCAGGTTCAGTCA -ACGGAAACTCTGCAGGTTGATCCA -ACGGAAACTCTGCAGGTTACGACA -ACGGAAACTCTGCAGGTTAGCTCA -ACGGAAACTCTGCAGGTTTCACGT -ACGGAAACTCTGCAGGTTCGTAGT -ACGGAAACTCTGCAGGTTGTCAGT -ACGGAAACTCTGCAGGTTGAAGGT -ACGGAAACTCTGCAGGTTAACCGT -ACGGAAACTCTGCAGGTTTTGTGC -ACGGAAACTCTGCAGGTTCTAAGC -ACGGAAACTCTGCAGGTTACTAGC -ACGGAAACTCTGCAGGTTAGATGC -ACGGAAACTCTGCAGGTTTGAAGG -ACGGAAACTCTGCAGGTTCAATGG -ACGGAAACTCTGCAGGTTATGAGG -ACGGAAACTCTGCAGGTTAATGGG -ACGGAAACTCTGCAGGTTTCCTGA -ACGGAAACTCTGCAGGTTTAGCGA -ACGGAAACTCTGCAGGTTCACAGA -ACGGAAACTCTGCAGGTTGCAAGA -ACGGAAACTCTGCAGGTTGGTTGA -ACGGAAACTCTGCAGGTTTCCGAT -ACGGAAACTCTGCAGGTTTGGCAT -ACGGAAACTCTGCAGGTTCGAGAT -ACGGAAACTCTGCAGGTTTACCAC -ACGGAAACTCTGCAGGTTCAGAAC -ACGGAAACTCTGCAGGTTGTCTAC -ACGGAAACTCTGCAGGTTACGTAC -ACGGAAACTCTGCAGGTTAGTGAC -ACGGAAACTCTGCAGGTTCTGTAG -ACGGAAACTCTGCAGGTTCCTAAG -ACGGAAACTCTGCAGGTTGTTCAG -ACGGAAACTCTGCAGGTTGCATAG -ACGGAAACTCTGCAGGTTGACAAG -ACGGAAACTCTGCAGGTTAAGCAG -ACGGAAACTCTGCAGGTTCGTCAA -ACGGAAACTCTGCAGGTTGCTGAA -ACGGAAACTCTGCAGGTTAGTACG -ACGGAAACTCTGCAGGTTATCCGA -ACGGAAACTCTGCAGGTTATGGGA -ACGGAAACTCTGCAGGTTGTGCAA -ACGGAAACTCTGCAGGTTGAGGAA -ACGGAAACTCTGCAGGTTCAGGTA -ACGGAAACTCTGCAGGTTGACTCT -ACGGAAACTCTGCAGGTTAGTCCT -ACGGAAACTCTGCAGGTTTAAGCC -ACGGAAACTCTGCAGGTTATAGCC -ACGGAAACTCTGCAGGTTTAACCG -ACGGAAACTCTGCAGGTTATGCCA -ACGGAAACTCTGTAGGCAGGAAAC -ACGGAAACTCTGTAGGCAAACACC -ACGGAAACTCTGTAGGCAATCGAG -ACGGAAACTCTGTAGGCACTCCTT -ACGGAAACTCTGTAGGCACCTGTT -ACGGAAACTCTGTAGGCACGGTTT -ACGGAAACTCTGTAGGCAGTGGTT -ACGGAAACTCTGTAGGCAGCCTTT -ACGGAAACTCTGTAGGCAGGTCTT -ACGGAAACTCTGTAGGCAACGCTT -ACGGAAACTCTGTAGGCAAGCGTT -ACGGAAACTCTGTAGGCATTCGTC -ACGGAAACTCTGTAGGCATCTCTC -ACGGAAACTCTGTAGGCATGGATC -ACGGAAACTCTGTAGGCACACTTC -ACGGAAACTCTGTAGGCAGTACTC -ACGGAAACTCTGTAGGCAGATGTC -ACGGAAACTCTGTAGGCAACAGTC -ACGGAAACTCTGTAGGCATTGCTG -ACGGAAACTCTGTAGGCATCCATG -ACGGAAACTCTGTAGGCATGTGTG -ACGGAAACTCTGTAGGCACTAGTG -ACGGAAACTCTGTAGGCACATCTG -ACGGAAACTCTGTAGGCAGAGTTG -ACGGAAACTCTGTAGGCAAGACTG -ACGGAAACTCTGTAGGCATCGGTA -ACGGAAACTCTGTAGGCATGCCTA -ACGGAAACTCTGTAGGCACCACTA -ACGGAAACTCTGTAGGCAGGAGTA -ACGGAAACTCTGTAGGCATCGTCT -ACGGAAACTCTGTAGGCATGCACT -ACGGAAACTCTGTAGGCACTGACT -ACGGAAACTCTGTAGGCACAACCT -ACGGAAACTCTGTAGGCAGCTACT -ACGGAAACTCTGTAGGCAGGATCT -ACGGAAACTCTGTAGGCAAAGGCT -ACGGAAACTCTGTAGGCATCAACC -ACGGAAACTCTGTAGGCATGTTCC -ACGGAAACTCTGTAGGCAATTCCC -ACGGAAACTCTGTAGGCATTCTCG -ACGGAAACTCTGTAGGCATAGACG -ACGGAAACTCTGTAGGCAGTAACG -ACGGAAACTCTGTAGGCAACTTCG -ACGGAAACTCTGTAGGCATACGCA -ACGGAAACTCTGTAGGCACTTGCA -ACGGAAACTCTGTAGGCACGAACA -ACGGAAACTCTGTAGGCACAGTCA -ACGGAAACTCTGTAGGCAGATCCA -ACGGAAACTCTGTAGGCAACGACA -ACGGAAACTCTGTAGGCAAGCTCA -ACGGAAACTCTGTAGGCATCACGT -ACGGAAACTCTGTAGGCACGTAGT -ACGGAAACTCTGTAGGCAGTCAGT -ACGGAAACTCTGTAGGCAGAAGGT -ACGGAAACTCTGTAGGCAAACCGT -ACGGAAACTCTGTAGGCATTGTGC -ACGGAAACTCTGTAGGCACTAAGC -ACGGAAACTCTGTAGGCAACTAGC -ACGGAAACTCTGTAGGCAAGATGC -ACGGAAACTCTGTAGGCATGAAGG -ACGGAAACTCTGTAGGCACAATGG -ACGGAAACTCTGTAGGCAATGAGG -ACGGAAACTCTGTAGGCAAATGGG -ACGGAAACTCTGTAGGCATCCTGA -ACGGAAACTCTGTAGGCATAGCGA -ACGGAAACTCTGTAGGCACACAGA -ACGGAAACTCTGTAGGCAGCAAGA -ACGGAAACTCTGTAGGCAGGTTGA -ACGGAAACTCTGTAGGCATCCGAT -ACGGAAACTCTGTAGGCATGGCAT -ACGGAAACTCTGTAGGCACGAGAT -ACGGAAACTCTGTAGGCATACCAC -ACGGAAACTCTGTAGGCACAGAAC -ACGGAAACTCTGTAGGCAGTCTAC -ACGGAAACTCTGTAGGCAACGTAC -ACGGAAACTCTGTAGGCAAGTGAC -ACGGAAACTCTGTAGGCACTGTAG -ACGGAAACTCTGTAGGCACCTAAG -ACGGAAACTCTGTAGGCAGTTCAG -ACGGAAACTCTGTAGGCAGCATAG -ACGGAAACTCTGTAGGCAGACAAG -ACGGAAACTCTGTAGGCAAAGCAG -ACGGAAACTCTGTAGGCACGTCAA -ACGGAAACTCTGTAGGCAGCTGAA -ACGGAAACTCTGTAGGCAAGTACG -ACGGAAACTCTGTAGGCAATCCGA -ACGGAAACTCTGTAGGCAATGGGA -ACGGAAACTCTGTAGGCAGTGCAA -ACGGAAACTCTGTAGGCAGAGGAA -ACGGAAACTCTGTAGGCACAGGTA -ACGGAAACTCTGTAGGCAGACTCT -ACGGAAACTCTGTAGGCAAGTCCT -ACGGAAACTCTGTAGGCATAAGCC -ACGGAAACTCTGTAGGCAATAGCC -ACGGAAACTCTGTAGGCATAACCG -ACGGAAACTCTGTAGGCAATGCCA -ACGGAAACTCTGAAGGACGGAAAC -ACGGAAACTCTGAAGGACAACACC -ACGGAAACTCTGAAGGACATCGAG -ACGGAAACTCTGAAGGACCTCCTT -ACGGAAACTCTGAAGGACCCTGTT -ACGGAAACTCTGAAGGACCGGTTT -ACGGAAACTCTGAAGGACGTGGTT -ACGGAAACTCTGAAGGACGCCTTT -ACGGAAACTCTGAAGGACGGTCTT -ACGGAAACTCTGAAGGACACGCTT -ACGGAAACTCTGAAGGACAGCGTT -ACGGAAACTCTGAAGGACTTCGTC -ACGGAAACTCTGAAGGACTCTCTC -ACGGAAACTCTGAAGGACTGGATC -ACGGAAACTCTGAAGGACCACTTC -ACGGAAACTCTGAAGGACGTACTC -ACGGAAACTCTGAAGGACGATGTC -ACGGAAACTCTGAAGGACACAGTC -ACGGAAACTCTGAAGGACTTGCTG -ACGGAAACTCTGAAGGACTCCATG -ACGGAAACTCTGAAGGACTGTGTG -ACGGAAACTCTGAAGGACCTAGTG -ACGGAAACTCTGAAGGACCATCTG -ACGGAAACTCTGAAGGACGAGTTG -ACGGAAACTCTGAAGGACAGACTG -ACGGAAACTCTGAAGGACTCGGTA -ACGGAAACTCTGAAGGACTGCCTA -ACGGAAACTCTGAAGGACCCACTA -ACGGAAACTCTGAAGGACGGAGTA -ACGGAAACTCTGAAGGACTCGTCT -ACGGAAACTCTGAAGGACTGCACT -ACGGAAACTCTGAAGGACCTGACT -ACGGAAACTCTGAAGGACCAACCT -ACGGAAACTCTGAAGGACGCTACT -ACGGAAACTCTGAAGGACGGATCT -ACGGAAACTCTGAAGGACAAGGCT -ACGGAAACTCTGAAGGACTCAACC -ACGGAAACTCTGAAGGACTGTTCC -ACGGAAACTCTGAAGGACATTCCC -ACGGAAACTCTGAAGGACTTCTCG -ACGGAAACTCTGAAGGACTAGACG -ACGGAAACTCTGAAGGACGTAACG -ACGGAAACTCTGAAGGACACTTCG -ACGGAAACTCTGAAGGACTACGCA -ACGGAAACTCTGAAGGACCTTGCA -ACGGAAACTCTGAAGGACCGAACA -ACGGAAACTCTGAAGGACCAGTCA -ACGGAAACTCTGAAGGACGATCCA -ACGGAAACTCTGAAGGACACGACA -ACGGAAACTCTGAAGGACAGCTCA -ACGGAAACTCTGAAGGACTCACGT -ACGGAAACTCTGAAGGACCGTAGT -ACGGAAACTCTGAAGGACGTCAGT -ACGGAAACTCTGAAGGACGAAGGT -ACGGAAACTCTGAAGGACAACCGT -ACGGAAACTCTGAAGGACTTGTGC -ACGGAAACTCTGAAGGACCTAAGC -ACGGAAACTCTGAAGGACACTAGC -ACGGAAACTCTGAAGGACAGATGC -ACGGAAACTCTGAAGGACTGAAGG -ACGGAAACTCTGAAGGACCAATGG -ACGGAAACTCTGAAGGACATGAGG -ACGGAAACTCTGAAGGACAATGGG -ACGGAAACTCTGAAGGACTCCTGA -ACGGAAACTCTGAAGGACTAGCGA -ACGGAAACTCTGAAGGACCACAGA -ACGGAAACTCTGAAGGACGCAAGA -ACGGAAACTCTGAAGGACGGTTGA -ACGGAAACTCTGAAGGACTCCGAT -ACGGAAACTCTGAAGGACTGGCAT -ACGGAAACTCTGAAGGACCGAGAT -ACGGAAACTCTGAAGGACTACCAC -ACGGAAACTCTGAAGGACCAGAAC -ACGGAAACTCTGAAGGACGTCTAC -ACGGAAACTCTGAAGGACACGTAC -ACGGAAACTCTGAAGGACAGTGAC -ACGGAAACTCTGAAGGACCTGTAG -ACGGAAACTCTGAAGGACCCTAAG -ACGGAAACTCTGAAGGACGTTCAG -ACGGAAACTCTGAAGGACGCATAG -ACGGAAACTCTGAAGGACGACAAG -ACGGAAACTCTGAAGGACAAGCAG -ACGGAAACTCTGAAGGACCGTCAA -ACGGAAACTCTGAAGGACGCTGAA -ACGGAAACTCTGAAGGACAGTACG -ACGGAAACTCTGAAGGACATCCGA -ACGGAAACTCTGAAGGACATGGGA -ACGGAAACTCTGAAGGACGTGCAA -ACGGAAACTCTGAAGGACGAGGAA -ACGGAAACTCTGAAGGACCAGGTA -ACGGAAACTCTGAAGGACGACTCT -ACGGAAACTCTGAAGGACAGTCCT -ACGGAAACTCTGAAGGACTAAGCC -ACGGAAACTCTGAAGGACATAGCC -ACGGAAACTCTGAAGGACTAACCG -ACGGAAACTCTGAAGGACATGCCA -ACGGAAACTCTGCAGAAGGGAAAC -ACGGAAACTCTGCAGAAGAACACC -ACGGAAACTCTGCAGAAGATCGAG -ACGGAAACTCTGCAGAAGCTCCTT -ACGGAAACTCTGCAGAAGCCTGTT -ACGGAAACTCTGCAGAAGCGGTTT -ACGGAAACTCTGCAGAAGGTGGTT -ACGGAAACTCTGCAGAAGGCCTTT -ACGGAAACTCTGCAGAAGGGTCTT -ACGGAAACTCTGCAGAAGACGCTT -ACGGAAACTCTGCAGAAGAGCGTT -ACGGAAACTCTGCAGAAGTTCGTC -ACGGAAACTCTGCAGAAGTCTCTC -ACGGAAACTCTGCAGAAGTGGATC -ACGGAAACTCTGCAGAAGCACTTC -ACGGAAACTCTGCAGAAGGTACTC -ACGGAAACTCTGCAGAAGGATGTC -ACGGAAACTCTGCAGAAGACAGTC -ACGGAAACTCTGCAGAAGTTGCTG -ACGGAAACTCTGCAGAAGTCCATG -ACGGAAACTCTGCAGAAGTGTGTG -ACGGAAACTCTGCAGAAGCTAGTG -ACGGAAACTCTGCAGAAGCATCTG -ACGGAAACTCTGCAGAAGGAGTTG -ACGGAAACTCTGCAGAAGAGACTG -ACGGAAACTCTGCAGAAGTCGGTA -ACGGAAACTCTGCAGAAGTGCCTA -ACGGAAACTCTGCAGAAGCCACTA -ACGGAAACTCTGCAGAAGGGAGTA -ACGGAAACTCTGCAGAAGTCGTCT -ACGGAAACTCTGCAGAAGTGCACT -ACGGAAACTCTGCAGAAGCTGACT -ACGGAAACTCTGCAGAAGCAACCT -ACGGAAACTCTGCAGAAGGCTACT -ACGGAAACTCTGCAGAAGGGATCT -ACGGAAACTCTGCAGAAGAAGGCT -ACGGAAACTCTGCAGAAGTCAACC -ACGGAAACTCTGCAGAAGTGTTCC -ACGGAAACTCTGCAGAAGATTCCC -ACGGAAACTCTGCAGAAGTTCTCG -ACGGAAACTCTGCAGAAGTAGACG -ACGGAAACTCTGCAGAAGGTAACG -ACGGAAACTCTGCAGAAGACTTCG -ACGGAAACTCTGCAGAAGTACGCA -ACGGAAACTCTGCAGAAGCTTGCA -ACGGAAACTCTGCAGAAGCGAACA -ACGGAAACTCTGCAGAAGCAGTCA -ACGGAAACTCTGCAGAAGGATCCA -ACGGAAACTCTGCAGAAGACGACA -ACGGAAACTCTGCAGAAGAGCTCA -ACGGAAACTCTGCAGAAGTCACGT -ACGGAAACTCTGCAGAAGCGTAGT -ACGGAAACTCTGCAGAAGGTCAGT -ACGGAAACTCTGCAGAAGGAAGGT -ACGGAAACTCTGCAGAAGAACCGT -ACGGAAACTCTGCAGAAGTTGTGC -ACGGAAACTCTGCAGAAGCTAAGC -ACGGAAACTCTGCAGAAGACTAGC -ACGGAAACTCTGCAGAAGAGATGC -ACGGAAACTCTGCAGAAGTGAAGG -ACGGAAACTCTGCAGAAGCAATGG -ACGGAAACTCTGCAGAAGATGAGG -ACGGAAACTCTGCAGAAGAATGGG -ACGGAAACTCTGCAGAAGTCCTGA -ACGGAAACTCTGCAGAAGTAGCGA -ACGGAAACTCTGCAGAAGCACAGA -ACGGAAACTCTGCAGAAGGCAAGA -ACGGAAACTCTGCAGAAGGGTTGA -ACGGAAACTCTGCAGAAGTCCGAT -ACGGAAACTCTGCAGAAGTGGCAT -ACGGAAACTCTGCAGAAGCGAGAT -ACGGAAACTCTGCAGAAGTACCAC -ACGGAAACTCTGCAGAAGCAGAAC -ACGGAAACTCTGCAGAAGGTCTAC -ACGGAAACTCTGCAGAAGACGTAC -ACGGAAACTCTGCAGAAGAGTGAC -ACGGAAACTCTGCAGAAGCTGTAG -ACGGAAACTCTGCAGAAGCCTAAG -ACGGAAACTCTGCAGAAGGTTCAG -ACGGAAACTCTGCAGAAGGCATAG -ACGGAAACTCTGCAGAAGGACAAG -ACGGAAACTCTGCAGAAGAAGCAG -ACGGAAACTCTGCAGAAGCGTCAA -ACGGAAACTCTGCAGAAGGCTGAA -ACGGAAACTCTGCAGAAGAGTACG -ACGGAAACTCTGCAGAAGATCCGA -ACGGAAACTCTGCAGAAGATGGGA -ACGGAAACTCTGCAGAAGGTGCAA -ACGGAAACTCTGCAGAAGGAGGAA -ACGGAAACTCTGCAGAAGCAGGTA -ACGGAAACTCTGCAGAAGGACTCT -ACGGAAACTCTGCAGAAGAGTCCT -ACGGAAACTCTGCAGAAGTAAGCC -ACGGAAACTCTGCAGAAGATAGCC -ACGGAAACTCTGCAGAAGTAACCG -ACGGAAACTCTGCAGAAGATGCCA -ACGGAAACTCTGCAACGTGGAAAC -ACGGAAACTCTGCAACGTAACACC -ACGGAAACTCTGCAACGTATCGAG -ACGGAAACTCTGCAACGTCTCCTT -ACGGAAACTCTGCAACGTCCTGTT -ACGGAAACTCTGCAACGTCGGTTT -ACGGAAACTCTGCAACGTGTGGTT -ACGGAAACTCTGCAACGTGCCTTT -ACGGAAACTCTGCAACGTGGTCTT -ACGGAAACTCTGCAACGTACGCTT -ACGGAAACTCTGCAACGTAGCGTT -ACGGAAACTCTGCAACGTTTCGTC -ACGGAAACTCTGCAACGTTCTCTC -ACGGAAACTCTGCAACGTTGGATC -ACGGAAACTCTGCAACGTCACTTC -ACGGAAACTCTGCAACGTGTACTC -ACGGAAACTCTGCAACGTGATGTC -ACGGAAACTCTGCAACGTACAGTC -ACGGAAACTCTGCAACGTTTGCTG -ACGGAAACTCTGCAACGTTCCATG -ACGGAAACTCTGCAACGTTGTGTG -ACGGAAACTCTGCAACGTCTAGTG -ACGGAAACTCTGCAACGTCATCTG -ACGGAAACTCTGCAACGTGAGTTG -ACGGAAACTCTGCAACGTAGACTG -ACGGAAACTCTGCAACGTTCGGTA -ACGGAAACTCTGCAACGTTGCCTA -ACGGAAACTCTGCAACGTCCACTA -ACGGAAACTCTGCAACGTGGAGTA -ACGGAAACTCTGCAACGTTCGTCT -ACGGAAACTCTGCAACGTTGCACT -ACGGAAACTCTGCAACGTCTGACT -ACGGAAACTCTGCAACGTCAACCT -ACGGAAACTCTGCAACGTGCTACT -ACGGAAACTCTGCAACGTGGATCT -ACGGAAACTCTGCAACGTAAGGCT -ACGGAAACTCTGCAACGTTCAACC -ACGGAAACTCTGCAACGTTGTTCC -ACGGAAACTCTGCAACGTATTCCC -ACGGAAACTCTGCAACGTTTCTCG -ACGGAAACTCTGCAACGTTAGACG -ACGGAAACTCTGCAACGTGTAACG -ACGGAAACTCTGCAACGTACTTCG -ACGGAAACTCTGCAACGTTACGCA -ACGGAAACTCTGCAACGTCTTGCA -ACGGAAACTCTGCAACGTCGAACA -ACGGAAACTCTGCAACGTCAGTCA -ACGGAAACTCTGCAACGTGATCCA -ACGGAAACTCTGCAACGTACGACA -ACGGAAACTCTGCAACGTAGCTCA -ACGGAAACTCTGCAACGTTCACGT -ACGGAAACTCTGCAACGTCGTAGT -ACGGAAACTCTGCAACGTGTCAGT -ACGGAAACTCTGCAACGTGAAGGT -ACGGAAACTCTGCAACGTAACCGT -ACGGAAACTCTGCAACGTTTGTGC -ACGGAAACTCTGCAACGTCTAAGC -ACGGAAACTCTGCAACGTACTAGC -ACGGAAACTCTGCAACGTAGATGC -ACGGAAACTCTGCAACGTTGAAGG -ACGGAAACTCTGCAACGTCAATGG -ACGGAAACTCTGCAACGTATGAGG -ACGGAAACTCTGCAACGTAATGGG -ACGGAAACTCTGCAACGTTCCTGA -ACGGAAACTCTGCAACGTTAGCGA -ACGGAAACTCTGCAACGTCACAGA -ACGGAAACTCTGCAACGTGCAAGA -ACGGAAACTCTGCAACGTGGTTGA -ACGGAAACTCTGCAACGTTCCGAT -ACGGAAACTCTGCAACGTTGGCAT -ACGGAAACTCTGCAACGTCGAGAT -ACGGAAACTCTGCAACGTTACCAC -ACGGAAACTCTGCAACGTCAGAAC -ACGGAAACTCTGCAACGTGTCTAC -ACGGAAACTCTGCAACGTACGTAC -ACGGAAACTCTGCAACGTAGTGAC -ACGGAAACTCTGCAACGTCTGTAG -ACGGAAACTCTGCAACGTCCTAAG -ACGGAAACTCTGCAACGTGTTCAG -ACGGAAACTCTGCAACGTGCATAG -ACGGAAACTCTGCAACGTGACAAG -ACGGAAACTCTGCAACGTAAGCAG -ACGGAAACTCTGCAACGTCGTCAA -ACGGAAACTCTGCAACGTGCTGAA -ACGGAAACTCTGCAACGTAGTACG -ACGGAAACTCTGCAACGTATCCGA -ACGGAAACTCTGCAACGTATGGGA -ACGGAAACTCTGCAACGTGTGCAA -ACGGAAACTCTGCAACGTGAGGAA -ACGGAAACTCTGCAACGTCAGGTA -ACGGAAACTCTGCAACGTGACTCT -ACGGAAACTCTGCAACGTAGTCCT -ACGGAAACTCTGCAACGTTAAGCC -ACGGAAACTCTGCAACGTATAGCC -ACGGAAACTCTGCAACGTTAACCG -ACGGAAACTCTGCAACGTATGCCA -ACGGAAACTCTGGAAGCTGGAAAC -ACGGAAACTCTGGAAGCTAACACC -ACGGAAACTCTGGAAGCTATCGAG -ACGGAAACTCTGGAAGCTCTCCTT -ACGGAAACTCTGGAAGCTCCTGTT -ACGGAAACTCTGGAAGCTCGGTTT -ACGGAAACTCTGGAAGCTGTGGTT -ACGGAAACTCTGGAAGCTGCCTTT -ACGGAAACTCTGGAAGCTGGTCTT -ACGGAAACTCTGGAAGCTACGCTT -ACGGAAACTCTGGAAGCTAGCGTT -ACGGAAACTCTGGAAGCTTTCGTC -ACGGAAACTCTGGAAGCTTCTCTC -ACGGAAACTCTGGAAGCTTGGATC -ACGGAAACTCTGGAAGCTCACTTC -ACGGAAACTCTGGAAGCTGTACTC -ACGGAAACTCTGGAAGCTGATGTC -ACGGAAACTCTGGAAGCTACAGTC -ACGGAAACTCTGGAAGCTTTGCTG -ACGGAAACTCTGGAAGCTTCCATG -ACGGAAACTCTGGAAGCTTGTGTG -ACGGAAACTCTGGAAGCTCTAGTG -ACGGAAACTCTGGAAGCTCATCTG -ACGGAAACTCTGGAAGCTGAGTTG -ACGGAAACTCTGGAAGCTAGACTG -ACGGAAACTCTGGAAGCTTCGGTA -ACGGAAACTCTGGAAGCTTGCCTA -ACGGAAACTCTGGAAGCTCCACTA -ACGGAAACTCTGGAAGCTGGAGTA -ACGGAAACTCTGGAAGCTTCGTCT -ACGGAAACTCTGGAAGCTTGCACT -ACGGAAACTCTGGAAGCTCTGACT -ACGGAAACTCTGGAAGCTCAACCT -ACGGAAACTCTGGAAGCTGCTACT -ACGGAAACTCTGGAAGCTGGATCT -ACGGAAACTCTGGAAGCTAAGGCT -ACGGAAACTCTGGAAGCTTCAACC -ACGGAAACTCTGGAAGCTTGTTCC -ACGGAAACTCTGGAAGCTATTCCC -ACGGAAACTCTGGAAGCTTTCTCG -ACGGAAACTCTGGAAGCTTAGACG -ACGGAAACTCTGGAAGCTGTAACG -ACGGAAACTCTGGAAGCTACTTCG -ACGGAAACTCTGGAAGCTTACGCA -ACGGAAACTCTGGAAGCTCTTGCA -ACGGAAACTCTGGAAGCTCGAACA -ACGGAAACTCTGGAAGCTCAGTCA -ACGGAAACTCTGGAAGCTGATCCA -ACGGAAACTCTGGAAGCTACGACA -ACGGAAACTCTGGAAGCTAGCTCA -ACGGAAACTCTGGAAGCTTCACGT -ACGGAAACTCTGGAAGCTCGTAGT -ACGGAAACTCTGGAAGCTGTCAGT -ACGGAAACTCTGGAAGCTGAAGGT -ACGGAAACTCTGGAAGCTAACCGT -ACGGAAACTCTGGAAGCTTTGTGC -ACGGAAACTCTGGAAGCTCTAAGC -ACGGAAACTCTGGAAGCTACTAGC -ACGGAAACTCTGGAAGCTAGATGC -ACGGAAACTCTGGAAGCTTGAAGG -ACGGAAACTCTGGAAGCTCAATGG -ACGGAAACTCTGGAAGCTATGAGG -ACGGAAACTCTGGAAGCTAATGGG -ACGGAAACTCTGGAAGCTTCCTGA -ACGGAAACTCTGGAAGCTTAGCGA -ACGGAAACTCTGGAAGCTCACAGA -ACGGAAACTCTGGAAGCTGCAAGA -ACGGAAACTCTGGAAGCTGGTTGA -ACGGAAACTCTGGAAGCTTCCGAT -ACGGAAACTCTGGAAGCTTGGCAT -ACGGAAACTCTGGAAGCTCGAGAT -ACGGAAACTCTGGAAGCTTACCAC -ACGGAAACTCTGGAAGCTCAGAAC -ACGGAAACTCTGGAAGCTGTCTAC -ACGGAAACTCTGGAAGCTACGTAC -ACGGAAACTCTGGAAGCTAGTGAC -ACGGAAACTCTGGAAGCTCTGTAG -ACGGAAACTCTGGAAGCTCCTAAG -ACGGAAACTCTGGAAGCTGTTCAG -ACGGAAACTCTGGAAGCTGCATAG -ACGGAAACTCTGGAAGCTGACAAG -ACGGAAACTCTGGAAGCTAAGCAG -ACGGAAACTCTGGAAGCTCGTCAA -ACGGAAACTCTGGAAGCTGCTGAA -ACGGAAACTCTGGAAGCTAGTACG -ACGGAAACTCTGGAAGCTATCCGA -ACGGAAACTCTGGAAGCTATGGGA -ACGGAAACTCTGGAAGCTGTGCAA -ACGGAAACTCTGGAAGCTGAGGAA -ACGGAAACTCTGGAAGCTCAGGTA -ACGGAAACTCTGGAAGCTGACTCT -ACGGAAACTCTGGAAGCTAGTCCT -ACGGAAACTCTGGAAGCTTAAGCC -ACGGAAACTCTGGAAGCTATAGCC -ACGGAAACTCTGGAAGCTTAACCG -ACGGAAACTCTGGAAGCTATGCCA -ACGGAAACTCTGACGAGTGGAAAC -ACGGAAACTCTGACGAGTAACACC -ACGGAAACTCTGACGAGTATCGAG -ACGGAAACTCTGACGAGTCTCCTT -ACGGAAACTCTGACGAGTCCTGTT -ACGGAAACTCTGACGAGTCGGTTT -ACGGAAACTCTGACGAGTGTGGTT -ACGGAAACTCTGACGAGTGCCTTT -ACGGAAACTCTGACGAGTGGTCTT -ACGGAAACTCTGACGAGTACGCTT -ACGGAAACTCTGACGAGTAGCGTT -ACGGAAACTCTGACGAGTTTCGTC -ACGGAAACTCTGACGAGTTCTCTC -ACGGAAACTCTGACGAGTTGGATC -ACGGAAACTCTGACGAGTCACTTC -ACGGAAACTCTGACGAGTGTACTC -ACGGAAACTCTGACGAGTGATGTC -ACGGAAACTCTGACGAGTACAGTC -ACGGAAACTCTGACGAGTTTGCTG -ACGGAAACTCTGACGAGTTCCATG -ACGGAAACTCTGACGAGTTGTGTG -ACGGAAACTCTGACGAGTCTAGTG -ACGGAAACTCTGACGAGTCATCTG -ACGGAAACTCTGACGAGTGAGTTG -ACGGAAACTCTGACGAGTAGACTG -ACGGAAACTCTGACGAGTTCGGTA -ACGGAAACTCTGACGAGTTGCCTA -ACGGAAACTCTGACGAGTCCACTA -ACGGAAACTCTGACGAGTGGAGTA -ACGGAAACTCTGACGAGTTCGTCT -ACGGAAACTCTGACGAGTTGCACT -ACGGAAACTCTGACGAGTCTGACT -ACGGAAACTCTGACGAGTCAACCT -ACGGAAACTCTGACGAGTGCTACT -ACGGAAACTCTGACGAGTGGATCT -ACGGAAACTCTGACGAGTAAGGCT -ACGGAAACTCTGACGAGTTCAACC -ACGGAAACTCTGACGAGTTGTTCC -ACGGAAACTCTGACGAGTATTCCC -ACGGAAACTCTGACGAGTTTCTCG -ACGGAAACTCTGACGAGTTAGACG -ACGGAAACTCTGACGAGTGTAACG -ACGGAAACTCTGACGAGTACTTCG -ACGGAAACTCTGACGAGTTACGCA -ACGGAAACTCTGACGAGTCTTGCA -ACGGAAACTCTGACGAGTCGAACA -ACGGAAACTCTGACGAGTCAGTCA -ACGGAAACTCTGACGAGTGATCCA -ACGGAAACTCTGACGAGTACGACA -ACGGAAACTCTGACGAGTAGCTCA -ACGGAAACTCTGACGAGTTCACGT -ACGGAAACTCTGACGAGTCGTAGT -ACGGAAACTCTGACGAGTGTCAGT -ACGGAAACTCTGACGAGTGAAGGT -ACGGAAACTCTGACGAGTAACCGT -ACGGAAACTCTGACGAGTTTGTGC -ACGGAAACTCTGACGAGTCTAAGC -ACGGAAACTCTGACGAGTACTAGC -ACGGAAACTCTGACGAGTAGATGC -ACGGAAACTCTGACGAGTTGAAGG -ACGGAAACTCTGACGAGTCAATGG -ACGGAAACTCTGACGAGTATGAGG -ACGGAAACTCTGACGAGTAATGGG -ACGGAAACTCTGACGAGTTCCTGA -ACGGAAACTCTGACGAGTTAGCGA -ACGGAAACTCTGACGAGTCACAGA -ACGGAAACTCTGACGAGTGCAAGA -ACGGAAACTCTGACGAGTGGTTGA -ACGGAAACTCTGACGAGTTCCGAT -ACGGAAACTCTGACGAGTTGGCAT -ACGGAAACTCTGACGAGTCGAGAT -ACGGAAACTCTGACGAGTTACCAC -ACGGAAACTCTGACGAGTCAGAAC -ACGGAAACTCTGACGAGTGTCTAC -ACGGAAACTCTGACGAGTACGTAC -ACGGAAACTCTGACGAGTAGTGAC -ACGGAAACTCTGACGAGTCTGTAG -ACGGAAACTCTGACGAGTCCTAAG -ACGGAAACTCTGACGAGTGTTCAG -ACGGAAACTCTGACGAGTGCATAG -ACGGAAACTCTGACGAGTGACAAG -ACGGAAACTCTGACGAGTAAGCAG -ACGGAAACTCTGACGAGTCGTCAA -ACGGAAACTCTGACGAGTGCTGAA -ACGGAAACTCTGACGAGTAGTACG -ACGGAAACTCTGACGAGTATCCGA -ACGGAAACTCTGACGAGTATGGGA -ACGGAAACTCTGACGAGTGTGCAA -ACGGAAACTCTGACGAGTGAGGAA -ACGGAAACTCTGACGAGTCAGGTA -ACGGAAACTCTGACGAGTGACTCT -ACGGAAACTCTGACGAGTAGTCCT -ACGGAAACTCTGACGAGTTAAGCC -ACGGAAACTCTGACGAGTATAGCC -ACGGAAACTCTGACGAGTTAACCG -ACGGAAACTCTGACGAGTATGCCA -ACGGAAACTCTGCGAATCGGAAAC -ACGGAAACTCTGCGAATCAACACC -ACGGAAACTCTGCGAATCATCGAG -ACGGAAACTCTGCGAATCCTCCTT -ACGGAAACTCTGCGAATCCCTGTT -ACGGAAACTCTGCGAATCCGGTTT -ACGGAAACTCTGCGAATCGTGGTT -ACGGAAACTCTGCGAATCGCCTTT -ACGGAAACTCTGCGAATCGGTCTT -ACGGAAACTCTGCGAATCACGCTT -ACGGAAACTCTGCGAATCAGCGTT -ACGGAAACTCTGCGAATCTTCGTC -ACGGAAACTCTGCGAATCTCTCTC -ACGGAAACTCTGCGAATCTGGATC -ACGGAAACTCTGCGAATCCACTTC -ACGGAAACTCTGCGAATCGTACTC -ACGGAAACTCTGCGAATCGATGTC -ACGGAAACTCTGCGAATCACAGTC -ACGGAAACTCTGCGAATCTTGCTG -ACGGAAACTCTGCGAATCTCCATG -ACGGAAACTCTGCGAATCTGTGTG -ACGGAAACTCTGCGAATCCTAGTG -ACGGAAACTCTGCGAATCCATCTG -ACGGAAACTCTGCGAATCGAGTTG -ACGGAAACTCTGCGAATCAGACTG -ACGGAAACTCTGCGAATCTCGGTA -ACGGAAACTCTGCGAATCTGCCTA -ACGGAAACTCTGCGAATCCCACTA -ACGGAAACTCTGCGAATCGGAGTA -ACGGAAACTCTGCGAATCTCGTCT -ACGGAAACTCTGCGAATCTGCACT -ACGGAAACTCTGCGAATCCTGACT -ACGGAAACTCTGCGAATCCAACCT -ACGGAAACTCTGCGAATCGCTACT -ACGGAAACTCTGCGAATCGGATCT -ACGGAAACTCTGCGAATCAAGGCT -ACGGAAACTCTGCGAATCTCAACC -ACGGAAACTCTGCGAATCTGTTCC -ACGGAAACTCTGCGAATCATTCCC -ACGGAAACTCTGCGAATCTTCTCG -ACGGAAACTCTGCGAATCTAGACG -ACGGAAACTCTGCGAATCGTAACG -ACGGAAACTCTGCGAATCACTTCG -ACGGAAACTCTGCGAATCTACGCA -ACGGAAACTCTGCGAATCCTTGCA -ACGGAAACTCTGCGAATCCGAACA -ACGGAAACTCTGCGAATCCAGTCA -ACGGAAACTCTGCGAATCGATCCA -ACGGAAACTCTGCGAATCACGACA -ACGGAAACTCTGCGAATCAGCTCA -ACGGAAACTCTGCGAATCTCACGT -ACGGAAACTCTGCGAATCCGTAGT -ACGGAAACTCTGCGAATCGTCAGT -ACGGAAACTCTGCGAATCGAAGGT -ACGGAAACTCTGCGAATCAACCGT -ACGGAAACTCTGCGAATCTTGTGC -ACGGAAACTCTGCGAATCCTAAGC -ACGGAAACTCTGCGAATCACTAGC -ACGGAAACTCTGCGAATCAGATGC -ACGGAAACTCTGCGAATCTGAAGG -ACGGAAACTCTGCGAATCCAATGG -ACGGAAACTCTGCGAATCATGAGG -ACGGAAACTCTGCGAATCAATGGG -ACGGAAACTCTGCGAATCTCCTGA -ACGGAAACTCTGCGAATCTAGCGA -ACGGAAACTCTGCGAATCCACAGA -ACGGAAACTCTGCGAATCGCAAGA -ACGGAAACTCTGCGAATCGGTTGA -ACGGAAACTCTGCGAATCTCCGAT -ACGGAAACTCTGCGAATCTGGCAT -ACGGAAACTCTGCGAATCCGAGAT -ACGGAAACTCTGCGAATCTACCAC -ACGGAAACTCTGCGAATCCAGAAC -ACGGAAACTCTGCGAATCGTCTAC -ACGGAAACTCTGCGAATCACGTAC -ACGGAAACTCTGCGAATCAGTGAC -ACGGAAACTCTGCGAATCCTGTAG -ACGGAAACTCTGCGAATCCCTAAG -ACGGAAACTCTGCGAATCGTTCAG -ACGGAAACTCTGCGAATCGCATAG -ACGGAAACTCTGCGAATCGACAAG -ACGGAAACTCTGCGAATCAAGCAG -ACGGAAACTCTGCGAATCCGTCAA -ACGGAAACTCTGCGAATCGCTGAA -ACGGAAACTCTGCGAATCAGTACG -ACGGAAACTCTGCGAATCATCCGA -ACGGAAACTCTGCGAATCATGGGA -ACGGAAACTCTGCGAATCGTGCAA -ACGGAAACTCTGCGAATCGAGGAA -ACGGAAACTCTGCGAATCCAGGTA -ACGGAAACTCTGCGAATCGACTCT -ACGGAAACTCTGCGAATCAGTCCT -ACGGAAACTCTGCGAATCTAAGCC -ACGGAAACTCTGCGAATCATAGCC -ACGGAAACTCTGCGAATCTAACCG -ACGGAAACTCTGCGAATCATGCCA -ACGGAAACTCTGGGAATGGGAAAC -ACGGAAACTCTGGGAATGAACACC -ACGGAAACTCTGGGAATGATCGAG -ACGGAAACTCTGGGAATGCTCCTT -ACGGAAACTCTGGGAATGCCTGTT -ACGGAAACTCTGGGAATGCGGTTT -ACGGAAACTCTGGGAATGGTGGTT -ACGGAAACTCTGGGAATGGCCTTT -ACGGAAACTCTGGGAATGGGTCTT -ACGGAAACTCTGGGAATGACGCTT -ACGGAAACTCTGGGAATGAGCGTT -ACGGAAACTCTGGGAATGTTCGTC -ACGGAAACTCTGGGAATGTCTCTC -ACGGAAACTCTGGGAATGTGGATC -ACGGAAACTCTGGGAATGCACTTC -ACGGAAACTCTGGGAATGGTACTC -ACGGAAACTCTGGGAATGGATGTC -ACGGAAACTCTGGGAATGACAGTC -ACGGAAACTCTGGGAATGTTGCTG -ACGGAAACTCTGGGAATGTCCATG -ACGGAAACTCTGGGAATGTGTGTG -ACGGAAACTCTGGGAATGCTAGTG -ACGGAAACTCTGGGAATGCATCTG -ACGGAAACTCTGGGAATGGAGTTG -ACGGAAACTCTGGGAATGAGACTG -ACGGAAACTCTGGGAATGTCGGTA -ACGGAAACTCTGGGAATGTGCCTA -ACGGAAACTCTGGGAATGCCACTA -ACGGAAACTCTGGGAATGGGAGTA -ACGGAAACTCTGGGAATGTCGTCT -ACGGAAACTCTGGGAATGTGCACT -ACGGAAACTCTGGGAATGCTGACT -ACGGAAACTCTGGGAATGCAACCT -ACGGAAACTCTGGGAATGGCTACT -ACGGAAACTCTGGGAATGGGATCT -ACGGAAACTCTGGGAATGAAGGCT -ACGGAAACTCTGGGAATGTCAACC -ACGGAAACTCTGGGAATGTGTTCC -ACGGAAACTCTGGGAATGATTCCC -ACGGAAACTCTGGGAATGTTCTCG -ACGGAAACTCTGGGAATGTAGACG -ACGGAAACTCTGGGAATGGTAACG -ACGGAAACTCTGGGAATGACTTCG -ACGGAAACTCTGGGAATGTACGCA -ACGGAAACTCTGGGAATGCTTGCA -ACGGAAACTCTGGGAATGCGAACA -ACGGAAACTCTGGGAATGCAGTCA -ACGGAAACTCTGGGAATGGATCCA -ACGGAAACTCTGGGAATGACGACA -ACGGAAACTCTGGGAATGAGCTCA -ACGGAAACTCTGGGAATGTCACGT -ACGGAAACTCTGGGAATGCGTAGT -ACGGAAACTCTGGGAATGGTCAGT -ACGGAAACTCTGGGAATGGAAGGT -ACGGAAACTCTGGGAATGAACCGT -ACGGAAACTCTGGGAATGTTGTGC -ACGGAAACTCTGGGAATGCTAAGC -ACGGAAACTCTGGGAATGACTAGC -ACGGAAACTCTGGGAATGAGATGC -ACGGAAACTCTGGGAATGTGAAGG -ACGGAAACTCTGGGAATGCAATGG -ACGGAAACTCTGGGAATGATGAGG -ACGGAAACTCTGGGAATGAATGGG -ACGGAAACTCTGGGAATGTCCTGA -ACGGAAACTCTGGGAATGTAGCGA -ACGGAAACTCTGGGAATGCACAGA -ACGGAAACTCTGGGAATGGCAAGA -ACGGAAACTCTGGGAATGGGTTGA -ACGGAAACTCTGGGAATGTCCGAT -ACGGAAACTCTGGGAATGTGGCAT -ACGGAAACTCTGGGAATGCGAGAT -ACGGAAACTCTGGGAATGTACCAC -ACGGAAACTCTGGGAATGCAGAAC -ACGGAAACTCTGGGAATGGTCTAC -ACGGAAACTCTGGGAATGACGTAC -ACGGAAACTCTGGGAATGAGTGAC -ACGGAAACTCTGGGAATGCTGTAG -ACGGAAACTCTGGGAATGCCTAAG -ACGGAAACTCTGGGAATGGTTCAG -ACGGAAACTCTGGGAATGGCATAG -ACGGAAACTCTGGGAATGGACAAG -ACGGAAACTCTGGGAATGAAGCAG -ACGGAAACTCTGGGAATGCGTCAA -ACGGAAACTCTGGGAATGGCTGAA -ACGGAAACTCTGGGAATGAGTACG -ACGGAAACTCTGGGAATGATCCGA -ACGGAAACTCTGGGAATGATGGGA -ACGGAAACTCTGGGAATGGTGCAA -ACGGAAACTCTGGGAATGGAGGAA -ACGGAAACTCTGGGAATGCAGGTA -ACGGAAACTCTGGGAATGGACTCT -ACGGAAACTCTGGGAATGAGTCCT -ACGGAAACTCTGGGAATGTAAGCC -ACGGAAACTCTGGGAATGATAGCC -ACGGAAACTCTGGGAATGTAACCG -ACGGAAACTCTGGGAATGATGCCA -ACGGAAACTCTGCAAGTGGGAAAC -ACGGAAACTCTGCAAGTGAACACC -ACGGAAACTCTGCAAGTGATCGAG -ACGGAAACTCTGCAAGTGCTCCTT -ACGGAAACTCTGCAAGTGCCTGTT -ACGGAAACTCTGCAAGTGCGGTTT -ACGGAAACTCTGCAAGTGGTGGTT -ACGGAAACTCTGCAAGTGGCCTTT -ACGGAAACTCTGCAAGTGGGTCTT -ACGGAAACTCTGCAAGTGACGCTT -ACGGAAACTCTGCAAGTGAGCGTT -ACGGAAACTCTGCAAGTGTTCGTC -ACGGAAACTCTGCAAGTGTCTCTC -ACGGAAACTCTGCAAGTGTGGATC -ACGGAAACTCTGCAAGTGCACTTC -ACGGAAACTCTGCAAGTGGTACTC -ACGGAAACTCTGCAAGTGGATGTC -ACGGAAACTCTGCAAGTGACAGTC -ACGGAAACTCTGCAAGTGTTGCTG -ACGGAAACTCTGCAAGTGTCCATG -ACGGAAACTCTGCAAGTGTGTGTG -ACGGAAACTCTGCAAGTGCTAGTG -ACGGAAACTCTGCAAGTGCATCTG -ACGGAAACTCTGCAAGTGGAGTTG -ACGGAAACTCTGCAAGTGAGACTG -ACGGAAACTCTGCAAGTGTCGGTA -ACGGAAACTCTGCAAGTGTGCCTA -ACGGAAACTCTGCAAGTGCCACTA -ACGGAAACTCTGCAAGTGGGAGTA -ACGGAAACTCTGCAAGTGTCGTCT -ACGGAAACTCTGCAAGTGTGCACT -ACGGAAACTCTGCAAGTGCTGACT -ACGGAAACTCTGCAAGTGCAACCT -ACGGAAACTCTGCAAGTGGCTACT -ACGGAAACTCTGCAAGTGGGATCT -ACGGAAACTCTGCAAGTGAAGGCT -ACGGAAACTCTGCAAGTGTCAACC -ACGGAAACTCTGCAAGTGTGTTCC -ACGGAAACTCTGCAAGTGATTCCC -ACGGAAACTCTGCAAGTGTTCTCG -ACGGAAACTCTGCAAGTGTAGACG -ACGGAAACTCTGCAAGTGGTAACG -ACGGAAACTCTGCAAGTGACTTCG -ACGGAAACTCTGCAAGTGTACGCA -ACGGAAACTCTGCAAGTGCTTGCA -ACGGAAACTCTGCAAGTGCGAACA -ACGGAAACTCTGCAAGTGCAGTCA -ACGGAAACTCTGCAAGTGGATCCA -ACGGAAACTCTGCAAGTGACGACA -ACGGAAACTCTGCAAGTGAGCTCA -ACGGAAACTCTGCAAGTGTCACGT -ACGGAAACTCTGCAAGTGCGTAGT -ACGGAAACTCTGCAAGTGGTCAGT -ACGGAAACTCTGCAAGTGGAAGGT -ACGGAAACTCTGCAAGTGAACCGT -ACGGAAACTCTGCAAGTGTTGTGC -ACGGAAACTCTGCAAGTGCTAAGC -ACGGAAACTCTGCAAGTGACTAGC -ACGGAAACTCTGCAAGTGAGATGC -ACGGAAACTCTGCAAGTGTGAAGG -ACGGAAACTCTGCAAGTGCAATGG -ACGGAAACTCTGCAAGTGATGAGG -ACGGAAACTCTGCAAGTGAATGGG -ACGGAAACTCTGCAAGTGTCCTGA -ACGGAAACTCTGCAAGTGTAGCGA -ACGGAAACTCTGCAAGTGCACAGA -ACGGAAACTCTGCAAGTGGCAAGA -ACGGAAACTCTGCAAGTGGGTTGA -ACGGAAACTCTGCAAGTGTCCGAT -ACGGAAACTCTGCAAGTGTGGCAT -ACGGAAACTCTGCAAGTGCGAGAT -ACGGAAACTCTGCAAGTGTACCAC -ACGGAAACTCTGCAAGTGCAGAAC -ACGGAAACTCTGCAAGTGGTCTAC -ACGGAAACTCTGCAAGTGACGTAC -ACGGAAACTCTGCAAGTGAGTGAC -ACGGAAACTCTGCAAGTGCTGTAG -ACGGAAACTCTGCAAGTGCCTAAG -ACGGAAACTCTGCAAGTGGTTCAG -ACGGAAACTCTGCAAGTGGCATAG -ACGGAAACTCTGCAAGTGGACAAG -ACGGAAACTCTGCAAGTGAAGCAG -ACGGAAACTCTGCAAGTGCGTCAA -ACGGAAACTCTGCAAGTGGCTGAA -ACGGAAACTCTGCAAGTGAGTACG -ACGGAAACTCTGCAAGTGATCCGA -ACGGAAACTCTGCAAGTGATGGGA -ACGGAAACTCTGCAAGTGGTGCAA -ACGGAAACTCTGCAAGTGGAGGAA -ACGGAAACTCTGCAAGTGCAGGTA -ACGGAAACTCTGCAAGTGGACTCT -ACGGAAACTCTGCAAGTGAGTCCT -ACGGAAACTCTGCAAGTGTAAGCC -ACGGAAACTCTGCAAGTGATAGCC -ACGGAAACTCTGCAAGTGTAACCG -ACGGAAACTCTGCAAGTGATGCCA -ACGGAAACTCTGGAAGAGGGAAAC -ACGGAAACTCTGGAAGAGAACACC -ACGGAAACTCTGGAAGAGATCGAG -ACGGAAACTCTGGAAGAGCTCCTT -ACGGAAACTCTGGAAGAGCCTGTT -ACGGAAACTCTGGAAGAGCGGTTT -ACGGAAACTCTGGAAGAGGTGGTT -ACGGAAACTCTGGAAGAGGCCTTT -ACGGAAACTCTGGAAGAGGGTCTT -ACGGAAACTCTGGAAGAGACGCTT -ACGGAAACTCTGGAAGAGAGCGTT -ACGGAAACTCTGGAAGAGTTCGTC -ACGGAAACTCTGGAAGAGTCTCTC -ACGGAAACTCTGGAAGAGTGGATC -ACGGAAACTCTGGAAGAGCACTTC -ACGGAAACTCTGGAAGAGGTACTC -ACGGAAACTCTGGAAGAGGATGTC -ACGGAAACTCTGGAAGAGACAGTC -ACGGAAACTCTGGAAGAGTTGCTG -ACGGAAACTCTGGAAGAGTCCATG -ACGGAAACTCTGGAAGAGTGTGTG -ACGGAAACTCTGGAAGAGCTAGTG -ACGGAAACTCTGGAAGAGCATCTG -ACGGAAACTCTGGAAGAGGAGTTG -ACGGAAACTCTGGAAGAGAGACTG -ACGGAAACTCTGGAAGAGTCGGTA -ACGGAAACTCTGGAAGAGTGCCTA -ACGGAAACTCTGGAAGAGCCACTA -ACGGAAACTCTGGAAGAGGGAGTA -ACGGAAACTCTGGAAGAGTCGTCT -ACGGAAACTCTGGAAGAGTGCACT -ACGGAAACTCTGGAAGAGCTGACT -ACGGAAACTCTGGAAGAGCAACCT -ACGGAAACTCTGGAAGAGGCTACT -ACGGAAACTCTGGAAGAGGGATCT -ACGGAAACTCTGGAAGAGAAGGCT -ACGGAAACTCTGGAAGAGTCAACC -ACGGAAACTCTGGAAGAGTGTTCC -ACGGAAACTCTGGAAGAGATTCCC -ACGGAAACTCTGGAAGAGTTCTCG -ACGGAAACTCTGGAAGAGTAGACG -ACGGAAACTCTGGAAGAGGTAACG -ACGGAAACTCTGGAAGAGACTTCG -ACGGAAACTCTGGAAGAGTACGCA -ACGGAAACTCTGGAAGAGCTTGCA -ACGGAAACTCTGGAAGAGCGAACA -ACGGAAACTCTGGAAGAGCAGTCA -ACGGAAACTCTGGAAGAGGATCCA -ACGGAAACTCTGGAAGAGACGACA -ACGGAAACTCTGGAAGAGAGCTCA -ACGGAAACTCTGGAAGAGTCACGT -ACGGAAACTCTGGAAGAGCGTAGT -ACGGAAACTCTGGAAGAGGTCAGT -ACGGAAACTCTGGAAGAGGAAGGT -ACGGAAACTCTGGAAGAGAACCGT -ACGGAAACTCTGGAAGAGTTGTGC -ACGGAAACTCTGGAAGAGCTAAGC -ACGGAAACTCTGGAAGAGACTAGC -ACGGAAACTCTGGAAGAGAGATGC -ACGGAAACTCTGGAAGAGTGAAGG -ACGGAAACTCTGGAAGAGCAATGG -ACGGAAACTCTGGAAGAGATGAGG -ACGGAAACTCTGGAAGAGAATGGG -ACGGAAACTCTGGAAGAGTCCTGA -ACGGAAACTCTGGAAGAGTAGCGA -ACGGAAACTCTGGAAGAGCACAGA -ACGGAAACTCTGGAAGAGGCAAGA -ACGGAAACTCTGGAAGAGGGTTGA -ACGGAAACTCTGGAAGAGTCCGAT -ACGGAAACTCTGGAAGAGTGGCAT -ACGGAAACTCTGGAAGAGCGAGAT -ACGGAAACTCTGGAAGAGTACCAC -ACGGAAACTCTGGAAGAGCAGAAC -ACGGAAACTCTGGAAGAGGTCTAC -ACGGAAACTCTGGAAGAGACGTAC -ACGGAAACTCTGGAAGAGAGTGAC -ACGGAAACTCTGGAAGAGCTGTAG -ACGGAAACTCTGGAAGAGCCTAAG -ACGGAAACTCTGGAAGAGGTTCAG -ACGGAAACTCTGGAAGAGGCATAG -ACGGAAACTCTGGAAGAGGACAAG -ACGGAAACTCTGGAAGAGAAGCAG -ACGGAAACTCTGGAAGAGCGTCAA -ACGGAAACTCTGGAAGAGGCTGAA -ACGGAAACTCTGGAAGAGAGTACG -ACGGAAACTCTGGAAGAGATCCGA -ACGGAAACTCTGGAAGAGATGGGA -ACGGAAACTCTGGAAGAGGTGCAA -ACGGAAACTCTGGAAGAGGAGGAA -ACGGAAACTCTGGAAGAGCAGGTA -ACGGAAACTCTGGAAGAGGACTCT -ACGGAAACTCTGGAAGAGAGTCCT -ACGGAAACTCTGGAAGAGTAAGCC -ACGGAAACTCTGGAAGAGATAGCC -ACGGAAACTCTGGAAGAGTAACCG -ACGGAAACTCTGGAAGAGATGCCA -ACGGAAACTCTGGTACAGGGAAAC -ACGGAAACTCTGGTACAGAACACC -ACGGAAACTCTGGTACAGATCGAG -ACGGAAACTCTGGTACAGCTCCTT -ACGGAAACTCTGGTACAGCCTGTT -ACGGAAACTCTGGTACAGCGGTTT -ACGGAAACTCTGGTACAGGTGGTT -ACGGAAACTCTGGTACAGGCCTTT -ACGGAAACTCTGGTACAGGGTCTT -ACGGAAACTCTGGTACAGACGCTT -ACGGAAACTCTGGTACAGAGCGTT -ACGGAAACTCTGGTACAGTTCGTC -ACGGAAACTCTGGTACAGTCTCTC -ACGGAAACTCTGGTACAGTGGATC -ACGGAAACTCTGGTACAGCACTTC -ACGGAAACTCTGGTACAGGTACTC -ACGGAAACTCTGGTACAGGATGTC -ACGGAAACTCTGGTACAGACAGTC -ACGGAAACTCTGGTACAGTTGCTG -ACGGAAACTCTGGTACAGTCCATG -ACGGAAACTCTGGTACAGTGTGTG -ACGGAAACTCTGGTACAGCTAGTG -ACGGAAACTCTGGTACAGCATCTG -ACGGAAACTCTGGTACAGGAGTTG -ACGGAAACTCTGGTACAGAGACTG -ACGGAAACTCTGGTACAGTCGGTA -ACGGAAACTCTGGTACAGTGCCTA -ACGGAAACTCTGGTACAGCCACTA -ACGGAAACTCTGGTACAGGGAGTA -ACGGAAACTCTGGTACAGTCGTCT -ACGGAAACTCTGGTACAGTGCACT -ACGGAAACTCTGGTACAGCTGACT -ACGGAAACTCTGGTACAGCAACCT -ACGGAAACTCTGGTACAGGCTACT -ACGGAAACTCTGGTACAGGGATCT -ACGGAAACTCTGGTACAGAAGGCT -ACGGAAACTCTGGTACAGTCAACC -ACGGAAACTCTGGTACAGTGTTCC -ACGGAAACTCTGGTACAGATTCCC -ACGGAAACTCTGGTACAGTTCTCG -ACGGAAACTCTGGTACAGTAGACG -ACGGAAACTCTGGTACAGGTAACG -ACGGAAACTCTGGTACAGACTTCG -ACGGAAACTCTGGTACAGTACGCA -ACGGAAACTCTGGTACAGCTTGCA -ACGGAAACTCTGGTACAGCGAACA -ACGGAAACTCTGGTACAGCAGTCA -ACGGAAACTCTGGTACAGGATCCA -ACGGAAACTCTGGTACAGACGACA -ACGGAAACTCTGGTACAGAGCTCA -ACGGAAACTCTGGTACAGTCACGT -ACGGAAACTCTGGTACAGCGTAGT -ACGGAAACTCTGGTACAGGTCAGT -ACGGAAACTCTGGTACAGGAAGGT -ACGGAAACTCTGGTACAGAACCGT -ACGGAAACTCTGGTACAGTTGTGC -ACGGAAACTCTGGTACAGCTAAGC -ACGGAAACTCTGGTACAGACTAGC -ACGGAAACTCTGGTACAGAGATGC -ACGGAAACTCTGGTACAGTGAAGG -ACGGAAACTCTGGTACAGCAATGG -ACGGAAACTCTGGTACAGATGAGG -ACGGAAACTCTGGTACAGAATGGG -ACGGAAACTCTGGTACAGTCCTGA -ACGGAAACTCTGGTACAGTAGCGA -ACGGAAACTCTGGTACAGCACAGA -ACGGAAACTCTGGTACAGGCAAGA -ACGGAAACTCTGGTACAGGGTTGA -ACGGAAACTCTGGTACAGTCCGAT -ACGGAAACTCTGGTACAGTGGCAT -ACGGAAACTCTGGTACAGCGAGAT -ACGGAAACTCTGGTACAGTACCAC -ACGGAAACTCTGGTACAGCAGAAC -ACGGAAACTCTGGTACAGGTCTAC -ACGGAAACTCTGGTACAGACGTAC -ACGGAAACTCTGGTACAGAGTGAC -ACGGAAACTCTGGTACAGCTGTAG -ACGGAAACTCTGGTACAGCCTAAG -ACGGAAACTCTGGTACAGGTTCAG -ACGGAAACTCTGGTACAGGCATAG -ACGGAAACTCTGGTACAGGACAAG -ACGGAAACTCTGGTACAGAAGCAG -ACGGAAACTCTGGTACAGCGTCAA -ACGGAAACTCTGGTACAGGCTGAA -ACGGAAACTCTGGTACAGAGTACG -ACGGAAACTCTGGTACAGATCCGA -ACGGAAACTCTGGTACAGATGGGA -ACGGAAACTCTGGTACAGGTGCAA -ACGGAAACTCTGGTACAGGAGGAA -ACGGAAACTCTGGTACAGCAGGTA -ACGGAAACTCTGGTACAGGACTCT -ACGGAAACTCTGGTACAGAGTCCT -ACGGAAACTCTGGTACAGTAAGCC -ACGGAAACTCTGGTACAGATAGCC -ACGGAAACTCTGGTACAGTAACCG -ACGGAAACTCTGGTACAGATGCCA -ACGGAAACTCTGTCTGACGGAAAC -ACGGAAACTCTGTCTGACAACACC -ACGGAAACTCTGTCTGACATCGAG -ACGGAAACTCTGTCTGACCTCCTT -ACGGAAACTCTGTCTGACCCTGTT -ACGGAAACTCTGTCTGACCGGTTT -ACGGAAACTCTGTCTGACGTGGTT -ACGGAAACTCTGTCTGACGCCTTT -ACGGAAACTCTGTCTGACGGTCTT -ACGGAAACTCTGTCTGACACGCTT -ACGGAAACTCTGTCTGACAGCGTT -ACGGAAACTCTGTCTGACTTCGTC -ACGGAAACTCTGTCTGACTCTCTC -ACGGAAACTCTGTCTGACTGGATC -ACGGAAACTCTGTCTGACCACTTC -ACGGAAACTCTGTCTGACGTACTC -ACGGAAACTCTGTCTGACGATGTC -ACGGAAACTCTGTCTGACACAGTC -ACGGAAACTCTGTCTGACTTGCTG -ACGGAAACTCTGTCTGACTCCATG -ACGGAAACTCTGTCTGACTGTGTG -ACGGAAACTCTGTCTGACCTAGTG -ACGGAAACTCTGTCTGACCATCTG -ACGGAAACTCTGTCTGACGAGTTG -ACGGAAACTCTGTCTGACAGACTG -ACGGAAACTCTGTCTGACTCGGTA -ACGGAAACTCTGTCTGACTGCCTA -ACGGAAACTCTGTCTGACCCACTA -ACGGAAACTCTGTCTGACGGAGTA -ACGGAAACTCTGTCTGACTCGTCT -ACGGAAACTCTGTCTGACTGCACT -ACGGAAACTCTGTCTGACCTGACT -ACGGAAACTCTGTCTGACCAACCT -ACGGAAACTCTGTCTGACGCTACT -ACGGAAACTCTGTCTGACGGATCT -ACGGAAACTCTGTCTGACAAGGCT -ACGGAAACTCTGTCTGACTCAACC -ACGGAAACTCTGTCTGACTGTTCC -ACGGAAACTCTGTCTGACATTCCC -ACGGAAACTCTGTCTGACTTCTCG -ACGGAAACTCTGTCTGACTAGACG -ACGGAAACTCTGTCTGACGTAACG -ACGGAAACTCTGTCTGACACTTCG -ACGGAAACTCTGTCTGACTACGCA -ACGGAAACTCTGTCTGACCTTGCA -ACGGAAACTCTGTCTGACCGAACA -ACGGAAACTCTGTCTGACCAGTCA -ACGGAAACTCTGTCTGACGATCCA -ACGGAAACTCTGTCTGACACGACA -ACGGAAACTCTGTCTGACAGCTCA -ACGGAAACTCTGTCTGACTCACGT -ACGGAAACTCTGTCTGACCGTAGT -ACGGAAACTCTGTCTGACGTCAGT -ACGGAAACTCTGTCTGACGAAGGT -ACGGAAACTCTGTCTGACAACCGT -ACGGAAACTCTGTCTGACTTGTGC -ACGGAAACTCTGTCTGACCTAAGC -ACGGAAACTCTGTCTGACACTAGC -ACGGAAACTCTGTCTGACAGATGC -ACGGAAACTCTGTCTGACTGAAGG -ACGGAAACTCTGTCTGACCAATGG -ACGGAAACTCTGTCTGACATGAGG -ACGGAAACTCTGTCTGACAATGGG -ACGGAAACTCTGTCTGACTCCTGA -ACGGAAACTCTGTCTGACTAGCGA -ACGGAAACTCTGTCTGACCACAGA -ACGGAAACTCTGTCTGACGCAAGA -ACGGAAACTCTGTCTGACGGTTGA -ACGGAAACTCTGTCTGACTCCGAT -ACGGAAACTCTGTCTGACTGGCAT -ACGGAAACTCTGTCTGACCGAGAT -ACGGAAACTCTGTCTGACTACCAC -ACGGAAACTCTGTCTGACCAGAAC -ACGGAAACTCTGTCTGACGTCTAC -ACGGAAACTCTGTCTGACACGTAC -ACGGAAACTCTGTCTGACAGTGAC -ACGGAAACTCTGTCTGACCTGTAG -ACGGAAACTCTGTCTGACCCTAAG -ACGGAAACTCTGTCTGACGTTCAG -ACGGAAACTCTGTCTGACGCATAG -ACGGAAACTCTGTCTGACGACAAG -ACGGAAACTCTGTCTGACAAGCAG -ACGGAAACTCTGTCTGACCGTCAA -ACGGAAACTCTGTCTGACGCTGAA -ACGGAAACTCTGTCTGACAGTACG -ACGGAAACTCTGTCTGACATCCGA -ACGGAAACTCTGTCTGACATGGGA -ACGGAAACTCTGTCTGACGTGCAA -ACGGAAACTCTGTCTGACGAGGAA -ACGGAAACTCTGTCTGACCAGGTA -ACGGAAACTCTGTCTGACGACTCT -ACGGAAACTCTGTCTGACAGTCCT -ACGGAAACTCTGTCTGACTAAGCC -ACGGAAACTCTGTCTGACATAGCC -ACGGAAACTCTGTCTGACTAACCG -ACGGAAACTCTGTCTGACATGCCA -ACGGAAACTCTGCCTAGTGGAAAC -ACGGAAACTCTGCCTAGTAACACC -ACGGAAACTCTGCCTAGTATCGAG -ACGGAAACTCTGCCTAGTCTCCTT -ACGGAAACTCTGCCTAGTCCTGTT -ACGGAAACTCTGCCTAGTCGGTTT -ACGGAAACTCTGCCTAGTGTGGTT -ACGGAAACTCTGCCTAGTGCCTTT -ACGGAAACTCTGCCTAGTGGTCTT -ACGGAAACTCTGCCTAGTACGCTT -ACGGAAACTCTGCCTAGTAGCGTT -ACGGAAACTCTGCCTAGTTTCGTC -ACGGAAACTCTGCCTAGTTCTCTC -ACGGAAACTCTGCCTAGTTGGATC -ACGGAAACTCTGCCTAGTCACTTC -ACGGAAACTCTGCCTAGTGTACTC -ACGGAAACTCTGCCTAGTGATGTC -ACGGAAACTCTGCCTAGTACAGTC -ACGGAAACTCTGCCTAGTTTGCTG -ACGGAAACTCTGCCTAGTTCCATG -ACGGAAACTCTGCCTAGTTGTGTG -ACGGAAACTCTGCCTAGTCTAGTG -ACGGAAACTCTGCCTAGTCATCTG -ACGGAAACTCTGCCTAGTGAGTTG -ACGGAAACTCTGCCTAGTAGACTG -ACGGAAACTCTGCCTAGTTCGGTA -ACGGAAACTCTGCCTAGTTGCCTA -ACGGAAACTCTGCCTAGTCCACTA -ACGGAAACTCTGCCTAGTGGAGTA -ACGGAAACTCTGCCTAGTTCGTCT -ACGGAAACTCTGCCTAGTTGCACT -ACGGAAACTCTGCCTAGTCTGACT -ACGGAAACTCTGCCTAGTCAACCT -ACGGAAACTCTGCCTAGTGCTACT -ACGGAAACTCTGCCTAGTGGATCT -ACGGAAACTCTGCCTAGTAAGGCT -ACGGAAACTCTGCCTAGTTCAACC -ACGGAAACTCTGCCTAGTTGTTCC -ACGGAAACTCTGCCTAGTATTCCC -ACGGAAACTCTGCCTAGTTTCTCG -ACGGAAACTCTGCCTAGTTAGACG -ACGGAAACTCTGCCTAGTGTAACG -ACGGAAACTCTGCCTAGTACTTCG -ACGGAAACTCTGCCTAGTTACGCA -ACGGAAACTCTGCCTAGTCTTGCA -ACGGAAACTCTGCCTAGTCGAACA -ACGGAAACTCTGCCTAGTCAGTCA -ACGGAAACTCTGCCTAGTGATCCA -ACGGAAACTCTGCCTAGTACGACA -ACGGAAACTCTGCCTAGTAGCTCA -ACGGAAACTCTGCCTAGTTCACGT -ACGGAAACTCTGCCTAGTCGTAGT -ACGGAAACTCTGCCTAGTGTCAGT -ACGGAAACTCTGCCTAGTGAAGGT -ACGGAAACTCTGCCTAGTAACCGT -ACGGAAACTCTGCCTAGTTTGTGC -ACGGAAACTCTGCCTAGTCTAAGC -ACGGAAACTCTGCCTAGTACTAGC -ACGGAAACTCTGCCTAGTAGATGC -ACGGAAACTCTGCCTAGTTGAAGG -ACGGAAACTCTGCCTAGTCAATGG -ACGGAAACTCTGCCTAGTATGAGG -ACGGAAACTCTGCCTAGTAATGGG -ACGGAAACTCTGCCTAGTTCCTGA -ACGGAAACTCTGCCTAGTTAGCGA -ACGGAAACTCTGCCTAGTCACAGA -ACGGAAACTCTGCCTAGTGCAAGA -ACGGAAACTCTGCCTAGTGGTTGA -ACGGAAACTCTGCCTAGTTCCGAT -ACGGAAACTCTGCCTAGTTGGCAT -ACGGAAACTCTGCCTAGTCGAGAT -ACGGAAACTCTGCCTAGTTACCAC -ACGGAAACTCTGCCTAGTCAGAAC -ACGGAAACTCTGCCTAGTGTCTAC -ACGGAAACTCTGCCTAGTACGTAC -ACGGAAACTCTGCCTAGTAGTGAC -ACGGAAACTCTGCCTAGTCTGTAG -ACGGAAACTCTGCCTAGTCCTAAG -ACGGAAACTCTGCCTAGTGTTCAG -ACGGAAACTCTGCCTAGTGCATAG -ACGGAAACTCTGCCTAGTGACAAG -ACGGAAACTCTGCCTAGTAAGCAG -ACGGAAACTCTGCCTAGTCGTCAA -ACGGAAACTCTGCCTAGTGCTGAA -ACGGAAACTCTGCCTAGTAGTACG -ACGGAAACTCTGCCTAGTATCCGA -ACGGAAACTCTGCCTAGTATGGGA -ACGGAAACTCTGCCTAGTGTGCAA -ACGGAAACTCTGCCTAGTGAGGAA -ACGGAAACTCTGCCTAGTCAGGTA -ACGGAAACTCTGCCTAGTGACTCT -ACGGAAACTCTGCCTAGTAGTCCT -ACGGAAACTCTGCCTAGTTAAGCC -ACGGAAACTCTGCCTAGTATAGCC -ACGGAAACTCTGCCTAGTTAACCG -ACGGAAACTCTGCCTAGTATGCCA -ACGGAAACTCTGGCCTAAGGAAAC -ACGGAAACTCTGGCCTAAAACACC -ACGGAAACTCTGGCCTAAATCGAG -ACGGAAACTCTGGCCTAACTCCTT -ACGGAAACTCTGGCCTAACCTGTT -ACGGAAACTCTGGCCTAACGGTTT -ACGGAAACTCTGGCCTAAGTGGTT -ACGGAAACTCTGGCCTAAGCCTTT -ACGGAAACTCTGGCCTAAGGTCTT -ACGGAAACTCTGGCCTAAACGCTT -ACGGAAACTCTGGCCTAAAGCGTT -ACGGAAACTCTGGCCTAATTCGTC -ACGGAAACTCTGGCCTAATCTCTC -ACGGAAACTCTGGCCTAATGGATC -ACGGAAACTCTGGCCTAACACTTC -ACGGAAACTCTGGCCTAAGTACTC -ACGGAAACTCTGGCCTAAGATGTC -ACGGAAACTCTGGCCTAAACAGTC -ACGGAAACTCTGGCCTAATTGCTG -ACGGAAACTCTGGCCTAATCCATG -ACGGAAACTCTGGCCTAATGTGTG -ACGGAAACTCTGGCCTAACTAGTG -ACGGAAACTCTGGCCTAACATCTG -ACGGAAACTCTGGCCTAAGAGTTG -ACGGAAACTCTGGCCTAAAGACTG -ACGGAAACTCTGGCCTAATCGGTA -ACGGAAACTCTGGCCTAATGCCTA -ACGGAAACTCTGGCCTAACCACTA -ACGGAAACTCTGGCCTAAGGAGTA -ACGGAAACTCTGGCCTAATCGTCT -ACGGAAACTCTGGCCTAATGCACT -ACGGAAACTCTGGCCTAACTGACT -ACGGAAACTCTGGCCTAACAACCT -ACGGAAACTCTGGCCTAAGCTACT -ACGGAAACTCTGGCCTAAGGATCT -ACGGAAACTCTGGCCTAAAAGGCT -ACGGAAACTCTGGCCTAATCAACC -ACGGAAACTCTGGCCTAATGTTCC -ACGGAAACTCTGGCCTAAATTCCC -ACGGAAACTCTGGCCTAATTCTCG -ACGGAAACTCTGGCCTAATAGACG -ACGGAAACTCTGGCCTAAGTAACG -ACGGAAACTCTGGCCTAAACTTCG -ACGGAAACTCTGGCCTAATACGCA -ACGGAAACTCTGGCCTAACTTGCA -ACGGAAACTCTGGCCTAACGAACA -ACGGAAACTCTGGCCTAACAGTCA -ACGGAAACTCTGGCCTAAGATCCA -ACGGAAACTCTGGCCTAAACGACA -ACGGAAACTCTGGCCTAAAGCTCA -ACGGAAACTCTGGCCTAATCACGT -ACGGAAACTCTGGCCTAACGTAGT -ACGGAAACTCTGGCCTAAGTCAGT -ACGGAAACTCTGGCCTAAGAAGGT -ACGGAAACTCTGGCCTAAAACCGT -ACGGAAACTCTGGCCTAATTGTGC -ACGGAAACTCTGGCCTAACTAAGC -ACGGAAACTCTGGCCTAAACTAGC -ACGGAAACTCTGGCCTAAAGATGC -ACGGAAACTCTGGCCTAATGAAGG -ACGGAAACTCTGGCCTAACAATGG -ACGGAAACTCTGGCCTAAATGAGG -ACGGAAACTCTGGCCTAAAATGGG -ACGGAAACTCTGGCCTAATCCTGA -ACGGAAACTCTGGCCTAATAGCGA -ACGGAAACTCTGGCCTAACACAGA -ACGGAAACTCTGGCCTAAGCAAGA -ACGGAAACTCTGGCCTAAGGTTGA -ACGGAAACTCTGGCCTAATCCGAT -ACGGAAACTCTGGCCTAATGGCAT -ACGGAAACTCTGGCCTAACGAGAT -ACGGAAACTCTGGCCTAATACCAC -ACGGAAACTCTGGCCTAACAGAAC -ACGGAAACTCTGGCCTAAGTCTAC -ACGGAAACTCTGGCCTAAACGTAC -ACGGAAACTCTGGCCTAAAGTGAC -ACGGAAACTCTGGCCTAACTGTAG -ACGGAAACTCTGGCCTAACCTAAG -ACGGAAACTCTGGCCTAAGTTCAG -ACGGAAACTCTGGCCTAAGCATAG -ACGGAAACTCTGGCCTAAGACAAG -ACGGAAACTCTGGCCTAAAAGCAG -ACGGAAACTCTGGCCTAACGTCAA -ACGGAAACTCTGGCCTAAGCTGAA -ACGGAAACTCTGGCCTAAAGTACG -ACGGAAACTCTGGCCTAAATCCGA -ACGGAAACTCTGGCCTAAATGGGA -ACGGAAACTCTGGCCTAAGTGCAA -ACGGAAACTCTGGCCTAAGAGGAA -ACGGAAACTCTGGCCTAACAGGTA -ACGGAAACTCTGGCCTAAGACTCT -ACGGAAACTCTGGCCTAAAGTCCT -ACGGAAACTCTGGCCTAATAAGCC -ACGGAAACTCTGGCCTAAATAGCC -ACGGAAACTCTGGCCTAATAACCG -ACGGAAACTCTGGCCTAAATGCCA -ACGGAAACTCTGGCCATAGGAAAC -ACGGAAACTCTGGCCATAAACACC -ACGGAAACTCTGGCCATAATCGAG -ACGGAAACTCTGGCCATACTCCTT -ACGGAAACTCTGGCCATACCTGTT -ACGGAAACTCTGGCCATACGGTTT -ACGGAAACTCTGGCCATAGTGGTT -ACGGAAACTCTGGCCATAGCCTTT -ACGGAAACTCTGGCCATAGGTCTT -ACGGAAACTCTGGCCATAACGCTT -ACGGAAACTCTGGCCATAAGCGTT -ACGGAAACTCTGGCCATATTCGTC -ACGGAAACTCTGGCCATATCTCTC -ACGGAAACTCTGGCCATATGGATC -ACGGAAACTCTGGCCATACACTTC -ACGGAAACTCTGGCCATAGTACTC -ACGGAAACTCTGGCCATAGATGTC -ACGGAAACTCTGGCCATAACAGTC -ACGGAAACTCTGGCCATATTGCTG -ACGGAAACTCTGGCCATATCCATG -ACGGAAACTCTGGCCATATGTGTG -ACGGAAACTCTGGCCATACTAGTG -ACGGAAACTCTGGCCATACATCTG -ACGGAAACTCTGGCCATAGAGTTG -ACGGAAACTCTGGCCATAAGACTG -ACGGAAACTCTGGCCATATCGGTA -ACGGAAACTCTGGCCATATGCCTA -ACGGAAACTCTGGCCATACCACTA -ACGGAAACTCTGGCCATAGGAGTA -ACGGAAACTCTGGCCATATCGTCT -ACGGAAACTCTGGCCATATGCACT -ACGGAAACTCTGGCCATACTGACT -ACGGAAACTCTGGCCATACAACCT -ACGGAAACTCTGGCCATAGCTACT -ACGGAAACTCTGGCCATAGGATCT -ACGGAAACTCTGGCCATAAAGGCT -ACGGAAACTCTGGCCATATCAACC -ACGGAAACTCTGGCCATATGTTCC -ACGGAAACTCTGGCCATAATTCCC -ACGGAAACTCTGGCCATATTCTCG -ACGGAAACTCTGGCCATATAGACG -ACGGAAACTCTGGCCATAGTAACG -ACGGAAACTCTGGCCATAACTTCG -ACGGAAACTCTGGCCATATACGCA -ACGGAAACTCTGGCCATACTTGCA -ACGGAAACTCTGGCCATACGAACA -ACGGAAACTCTGGCCATACAGTCA -ACGGAAACTCTGGCCATAGATCCA -ACGGAAACTCTGGCCATAACGACA -ACGGAAACTCTGGCCATAAGCTCA -ACGGAAACTCTGGCCATATCACGT -ACGGAAACTCTGGCCATACGTAGT -ACGGAAACTCTGGCCATAGTCAGT -ACGGAAACTCTGGCCATAGAAGGT -ACGGAAACTCTGGCCATAAACCGT -ACGGAAACTCTGGCCATATTGTGC -ACGGAAACTCTGGCCATACTAAGC -ACGGAAACTCTGGCCATAACTAGC -ACGGAAACTCTGGCCATAAGATGC -ACGGAAACTCTGGCCATATGAAGG -ACGGAAACTCTGGCCATACAATGG -ACGGAAACTCTGGCCATAATGAGG -ACGGAAACTCTGGCCATAAATGGG -ACGGAAACTCTGGCCATATCCTGA -ACGGAAACTCTGGCCATATAGCGA -ACGGAAACTCTGGCCATACACAGA -ACGGAAACTCTGGCCATAGCAAGA -ACGGAAACTCTGGCCATAGGTTGA -ACGGAAACTCTGGCCATATCCGAT -ACGGAAACTCTGGCCATATGGCAT -ACGGAAACTCTGGCCATACGAGAT -ACGGAAACTCTGGCCATATACCAC -ACGGAAACTCTGGCCATACAGAAC -ACGGAAACTCTGGCCATAGTCTAC -ACGGAAACTCTGGCCATAACGTAC -ACGGAAACTCTGGCCATAAGTGAC -ACGGAAACTCTGGCCATACTGTAG -ACGGAAACTCTGGCCATACCTAAG -ACGGAAACTCTGGCCATAGTTCAG -ACGGAAACTCTGGCCATAGCATAG -ACGGAAACTCTGGCCATAGACAAG -ACGGAAACTCTGGCCATAAAGCAG -ACGGAAACTCTGGCCATACGTCAA -ACGGAAACTCTGGCCATAGCTGAA -ACGGAAACTCTGGCCATAAGTACG -ACGGAAACTCTGGCCATAATCCGA -ACGGAAACTCTGGCCATAATGGGA -ACGGAAACTCTGGCCATAGTGCAA -ACGGAAACTCTGGCCATAGAGGAA -ACGGAAACTCTGGCCATACAGGTA -ACGGAAACTCTGGCCATAGACTCT -ACGGAAACTCTGGCCATAAGTCCT -ACGGAAACTCTGGCCATATAAGCC -ACGGAAACTCTGGCCATAATAGCC -ACGGAAACTCTGGCCATATAACCG -ACGGAAACTCTGGCCATAATGCCA -ACGGAAACTCTGCCGTAAGGAAAC -ACGGAAACTCTGCCGTAAAACACC -ACGGAAACTCTGCCGTAAATCGAG -ACGGAAACTCTGCCGTAACTCCTT -ACGGAAACTCTGCCGTAACCTGTT -ACGGAAACTCTGCCGTAACGGTTT -ACGGAAACTCTGCCGTAAGTGGTT -ACGGAAACTCTGCCGTAAGCCTTT -ACGGAAACTCTGCCGTAAGGTCTT -ACGGAAACTCTGCCGTAAACGCTT -ACGGAAACTCTGCCGTAAAGCGTT -ACGGAAACTCTGCCGTAATTCGTC -ACGGAAACTCTGCCGTAATCTCTC -ACGGAAACTCTGCCGTAATGGATC -ACGGAAACTCTGCCGTAACACTTC -ACGGAAACTCTGCCGTAAGTACTC -ACGGAAACTCTGCCGTAAGATGTC -ACGGAAACTCTGCCGTAAACAGTC -ACGGAAACTCTGCCGTAATTGCTG -ACGGAAACTCTGCCGTAATCCATG -ACGGAAACTCTGCCGTAATGTGTG -ACGGAAACTCTGCCGTAACTAGTG -ACGGAAACTCTGCCGTAACATCTG -ACGGAAACTCTGCCGTAAGAGTTG -ACGGAAACTCTGCCGTAAAGACTG -ACGGAAACTCTGCCGTAATCGGTA -ACGGAAACTCTGCCGTAATGCCTA -ACGGAAACTCTGCCGTAACCACTA -ACGGAAACTCTGCCGTAAGGAGTA -ACGGAAACTCTGCCGTAATCGTCT -ACGGAAACTCTGCCGTAATGCACT -ACGGAAACTCTGCCGTAACTGACT -ACGGAAACTCTGCCGTAACAACCT -ACGGAAACTCTGCCGTAAGCTACT -ACGGAAACTCTGCCGTAAGGATCT -ACGGAAACTCTGCCGTAAAAGGCT -ACGGAAACTCTGCCGTAATCAACC -ACGGAAACTCTGCCGTAATGTTCC -ACGGAAACTCTGCCGTAAATTCCC -ACGGAAACTCTGCCGTAATTCTCG -ACGGAAACTCTGCCGTAATAGACG -ACGGAAACTCTGCCGTAAGTAACG -ACGGAAACTCTGCCGTAAACTTCG -ACGGAAACTCTGCCGTAATACGCA -ACGGAAACTCTGCCGTAACTTGCA -ACGGAAACTCTGCCGTAACGAACA -ACGGAAACTCTGCCGTAACAGTCA -ACGGAAACTCTGCCGTAAGATCCA -ACGGAAACTCTGCCGTAAACGACA -ACGGAAACTCTGCCGTAAAGCTCA -ACGGAAACTCTGCCGTAATCACGT -ACGGAAACTCTGCCGTAACGTAGT -ACGGAAACTCTGCCGTAAGTCAGT -ACGGAAACTCTGCCGTAAGAAGGT -ACGGAAACTCTGCCGTAAAACCGT -ACGGAAACTCTGCCGTAATTGTGC -ACGGAAACTCTGCCGTAACTAAGC -ACGGAAACTCTGCCGTAAACTAGC -ACGGAAACTCTGCCGTAAAGATGC -ACGGAAACTCTGCCGTAATGAAGG -ACGGAAACTCTGCCGTAACAATGG -ACGGAAACTCTGCCGTAAATGAGG -ACGGAAACTCTGCCGTAAAATGGG -ACGGAAACTCTGCCGTAATCCTGA -ACGGAAACTCTGCCGTAATAGCGA -ACGGAAACTCTGCCGTAACACAGA -ACGGAAACTCTGCCGTAAGCAAGA -ACGGAAACTCTGCCGTAAGGTTGA -ACGGAAACTCTGCCGTAATCCGAT -ACGGAAACTCTGCCGTAATGGCAT -ACGGAAACTCTGCCGTAACGAGAT -ACGGAAACTCTGCCGTAATACCAC -ACGGAAACTCTGCCGTAACAGAAC -ACGGAAACTCTGCCGTAAGTCTAC -ACGGAAACTCTGCCGTAAACGTAC -ACGGAAACTCTGCCGTAAAGTGAC -ACGGAAACTCTGCCGTAACTGTAG -ACGGAAACTCTGCCGTAACCTAAG -ACGGAAACTCTGCCGTAAGTTCAG -ACGGAAACTCTGCCGTAAGCATAG -ACGGAAACTCTGCCGTAAGACAAG -ACGGAAACTCTGCCGTAAAAGCAG -ACGGAAACTCTGCCGTAACGTCAA -ACGGAAACTCTGCCGTAAGCTGAA -ACGGAAACTCTGCCGTAAAGTACG -ACGGAAACTCTGCCGTAAATCCGA -ACGGAAACTCTGCCGTAAATGGGA -ACGGAAACTCTGCCGTAAGTGCAA -ACGGAAACTCTGCCGTAAGAGGAA -ACGGAAACTCTGCCGTAACAGGTA -ACGGAAACTCTGCCGTAAGACTCT -ACGGAAACTCTGCCGTAAAGTCCT -ACGGAAACTCTGCCGTAATAAGCC -ACGGAAACTCTGCCGTAAATAGCC -ACGGAAACTCTGCCGTAATAACCG -ACGGAAACTCTGCCGTAAATGCCA -ACGGAAACTCTGCCAATGGGAAAC -ACGGAAACTCTGCCAATGAACACC -ACGGAAACTCTGCCAATGATCGAG -ACGGAAACTCTGCCAATGCTCCTT -ACGGAAACTCTGCCAATGCCTGTT -ACGGAAACTCTGCCAATGCGGTTT -ACGGAAACTCTGCCAATGGTGGTT -ACGGAAACTCTGCCAATGGCCTTT -ACGGAAACTCTGCCAATGGGTCTT -ACGGAAACTCTGCCAATGACGCTT -ACGGAAACTCTGCCAATGAGCGTT -ACGGAAACTCTGCCAATGTTCGTC -ACGGAAACTCTGCCAATGTCTCTC -ACGGAAACTCTGCCAATGTGGATC -ACGGAAACTCTGCCAATGCACTTC -ACGGAAACTCTGCCAATGGTACTC -ACGGAAACTCTGCCAATGGATGTC -ACGGAAACTCTGCCAATGACAGTC -ACGGAAACTCTGCCAATGTTGCTG -ACGGAAACTCTGCCAATGTCCATG -ACGGAAACTCTGCCAATGTGTGTG -ACGGAAACTCTGCCAATGCTAGTG -ACGGAAACTCTGCCAATGCATCTG -ACGGAAACTCTGCCAATGGAGTTG -ACGGAAACTCTGCCAATGAGACTG -ACGGAAACTCTGCCAATGTCGGTA -ACGGAAACTCTGCCAATGTGCCTA -ACGGAAACTCTGCCAATGCCACTA -ACGGAAACTCTGCCAATGGGAGTA -ACGGAAACTCTGCCAATGTCGTCT -ACGGAAACTCTGCCAATGTGCACT -ACGGAAACTCTGCCAATGCTGACT -ACGGAAACTCTGCCAATGCAACCT -ACGGAAACTCTGCCAATGGCTACT -ACGGAAACTCTGCCAATGGGATCT -ACGGAAACTCTGCCAATGAAGGCT -ACGGAAACTCTGCCAATGTCAACC -ACGGAAACTCTGCCAATGTGTTCC -ACGGAAACTCTGCCAATGATTCCC -ACGGAAACTCTGCCAATGTTCTCG -ACGGAAACTCTGCCAATGTAGACG -ACGGAAACTCTGCCAATGGTAACG -ACGGAAACTCTGCCAATGACTTCG -ACGGAAACTCTGCCAATGTACGCA -ACGGAAACTCTGCCAATGCTTGCA -ACGGAAACTCTGCCAATGCGAACA -ACGGAAACTCTGCCAATGCAGTCA -ACGGAAACTCTGCCAATGGATCCA -ACGGAAACTCTGCCAATGACGACA -ACGGAAACTCTGCCAATGAGCTCA -ACGGAAACTCTGCCAATGTCACGT -ACGGAAACTCTGCCAATGCGTAGT -ACGGAAACTCTGCCAATGGTCAGT -ACGGAAACTCTGCCAATGGAAGGT -ACGGAAACTCTGCCAATGAACCGT -ACGGAAACTCTGCCAATGTTGTGC -ACGGAAACTCTGCCAATGCTAAGC -ACGGAAACTCTGCCAATGACTAGC -ACGGAAACTCTGCCAATGAGATGC -ACGGAAACTCTGCCAATGTGAAGG -ACGGAAACTCTGCCAATGCAATGG -ACGGAAACTCTGCCAATGATGAGG -ACGGAAACTCTGCCAATGAATGGG -ACGGAAACTCTGCCAATGTCCTGA -ACGGAAACTCTGCCAATGTAGCGA -ACGGAAACTCTGCCAATGCACAGA -ACGGAAACTCTGCCAATGGCAAGA -ACGGAAACTCTGCCAATGGGTTGA -ACGGAAACTCTGCCAATGTCCGAT -ACGGAAACTCTGCCAATGTGGCAT -ACGGAAACTCTGCCAATGCGAGAT -ACGGAAACTCTGCCAATGTACCAC -ACGGAAACTCTGCCAATGCAGAAC -ACGGAAACTCTGCCAATGGTCTAC -ACGGAAACTCTGCCAATGACGTAC -ACGGAAACTCTGCCAATGAGTGAC -ACGGAAACTCTGCCAATGCTGTAG -ACGGAAACTCTGCCAATGCCTAAG -ACGGAAACTCTGCCAATGGTTCAG -ACGGAAACTCTGCCAATGGCATAG -ACGGAAACTCTGCCAATGGACAAG -ACGGAAACTCTGCCAATGAAGCAG -ACGGAAACTCTGCCAATGCGTCAA -ACGGAAACTCTGCCAATGGCTGAA -ACGGAAACTCTGCCAATGAGTACG -ACGGAAACTCTGCCAATGATCCGA -ACGGAAACTCTGCCAATGATGGGA -ACGGAAACTCTGCCAATGGTGCAA -ACGGAAACTCTGCCAATGGAGGAA -ACGGAAACTCTGCCAATGCAGGTA -ACGGAAACTCTGCCAATGGACTCT -ACGGAAACTCTGCCAATGAGTCCT -ACGGAAACTCTGCCAATGTAAGCC -ACGGAAACTCTGCCAATGATAGCC -ACGGAAACTCTGCCAATGTAACCG -ACGGAAACTCTGCCAATGATGCCA -ACGGAAGTCCTAAACGGAGGAAAC -ACGGAAGTCCTAAACGGAAACACC -ACGGAAGTCCTAAACGGAATCGAG -ACGGAAGTCCTAAACGGACTCCTT -ACGGAAGTCCTAAACGGACCTGTT -ACGGAAGTCCTAAACGGACGGTTT -ACGGAAGTCCTAAACGGAGTGGTT -ACGGAAGTCCTAAACGGAGCCTTT -ACGGAAGTCCTAAACGGAGGTCTT -ACGGAAGTCCTAAACGGAACGCTT -ACGGAAGTCCTAAACGGAAGCGTT -ACGGAAGTCCTAAACGGATTCGTC -ACGGAAGTCCTAAACGGATCTCTC -ACGGAAGTCCTAAACGGATGGATC -ACGGAAGTCCTAAACGGACACTTC -ACGGAAGTCCTAAACGGAGTACTC -ACGGAAGTCCTAAACGGAGATGTC -ACGGAAGTCCTAAACGGAACAGTC -ACGGAAGTCCTAAACGGATTGCTG -ACGGAAGTCCTAAACGGATCCATG -ACGGAAGTCCTAAACGGATGTGTG -ACGGAAGTCCTAAACGGACTAGTG -ACGGAAGTCCTAAACGGACATCTG -ACGGAAGTCCTAAACGGAGAGTTG -ACGGAAGTCCTAAACGGAAGACTG -ACGGAAGTCCTAAACGGATCGGTA -ACGGAAGTCCTAAACGGATGCCTA -ACGGAAGTCCTAAACGGACCACTA -ACGGAAGTCCTAAACGGAGGAGTA -ACGGAAGTCCTAAACGGATCGTCT -ACGGAAGTCCTAAACGGATGCACT -ACGGAAGTCCTAAACGGACTGACT -ACGGAAGTCCTAAACGGACAACCT -ACGGAAGTCCTAAACGGAGCTACT -ACGGAAGTCCTAAACGGAGGATCT -ACGGAAGTCCTAAACGGAAAGGCT -ACGGAAGTCCTAAACGGATCAACC -ACGGAAGTCCTAAACGGATGTTCC -ACGGAAGTCCTAAACGGAATTCCC -ACGGAAGTCCTAAACGGATTCTCG -ACGGAAGTCCTAAACGGATAGACG -ACGGAAGTCCTAAACGGAGTAACG -ACGGAAGTCCTAAACGGAACTTCG -ACGGAAGTCCTAAACGGATACGCA -ACGGAAGTCCTAAACGGACTTGCA -ACGGAAGTCCTAAACGGACGAACA -ACGGAAGTCCTAAACGGACAGTCA -ACGGAAGTCCTAAACGGAGATCCA -ACGGAAGTCCTAAACGGAACGACA -ACGGAAGTCCTAAACGGAAGCTCA -ACGGAAGTCCTAAACGGATCACGT -ACGGAAGTCCTAAACGGACGTAGT -ACGGAAGTCCTAAACGGAGTCAGT -ACGGAAGTCCTAAACGGAGAAGGT -ACGGAAGTCCTAAACGGAAACCGT -ACGGAAGTCCTAAACGGATTGTGC -ACGGAAGTCCTAAACGGACTAAGC -ACGGAAGTCCTAAACGGAACTAGC -ACGGAAGTCCTAAACGGAAGATGC -ACGGAAGTCCTAAACGGATGAAGG -ACGGAAGTCCTAAACGGACAATGG -ACGGAAGTCCTAAACGGAATGAGG -ACGGAAGTCCTAAACGGAAATGGG -ACGGAAGTCCTAAACGGATCCTGA -ACGGAAGTCCTAAACGGATAGCGA -ACGGAAGTCCTAAACGGACACAGA -ACGGAAGTCCTAAACGGAGCAAGA -ACGGAAGTCCTAAACGGAGGTTGA -ACGGAAGTCCTAAACGGATCCGAT -ACGGAAGTCCTAAACGGATGGCAT -ACGGAAGTCCTAAACGGACGAGAT -ACGGAAGTCCTAAACGGATACCAC -ACGGAAGTCCTAAACGGACAGAAC -ACGGAAGTCCTAAACGGAGTCTAC -ACGGAAGTCCTAAACGGAACGTAC -ACGGAAGTCCTAAACGGAAGTGAC -ACGGAAGTCCTAAACGGACTGTAG -ACGGAAGTCCTAAACGGACCTAAG -ACGGAAGTCCTAAACGGAGTTCAG -ACGGAAGTCCTAAACGGAGCATAG -ACGGAAGTCCTAAACGGAGACAAG -ACGGAAGTCCTAAACGGAAAGCAG -ACGGAAGTCCTAAACGGACGTCAA -ACGGAAGTCCTAAACGGAGCTGAA -ACGGAAGTCCTAAACGGAAGTACG -ACGGAAGTCCTAAACGGAATCCGA -ACGGAAGTCCTAAACGGAATGGGA -ACGGAAGTCCTAAACGGAGTGCAA -ACGGAAGTCCTAAACGGAGAGGAA -ACGGAAGTCCTAAACGGACAGGTA -ACGGAAGTCCTAAACGGAGACTCT -ACGGAAGTCCTAAACGGAAGTCCT -ACGGAAGTCCTAAACGGATAAGCC -ACGGAAGTCCTAAACGGAATAGCC -ACGGAAGTCCTAAACGGATAACCG -ACGGAAGTCCTAAACGGAATGCCA -ACGGAAGTCCTAACCAACGGAAAC -ACGGAAGTCCTAACCAACAACACC -ACGGAAGTCCTAACCAACATCGAG -ACGGAAGTCCTAACCAACCTCCTT -ACGGAAGTCCTAACCAACCCTGTT -ACGGAAGTCCTAACCAACCGGTTT -ACGGAAGTCCTAACCAACGTGGTT -ACGGAAGTCCTAACCAACGCCTTT -ACGGAAGTCCTAACCAACGGTCTT -ACGGAAGTCCTAACCAACACGCTT -ACGGAAGTCCTAACCAACAGCGTT -ACGGAAGTCCTAACCAACTTCGTC -ACGGAAGTCCTAACCAACTCTCTC -ACGGAAGTCCTAACCAACTGGATC -ACGGAAGTCCTAACCAACCACTTC -ACGGAAGTCCTAACCAACGTACTC -ACGGAAGTCCTAACCAACGATGTC -ACGGAAGTCCTAACCAACACAGTC -ACGGAAGTCCTAACCAACTTGCTG -ACGGAAGTCCTAACCAACTCCATG -ACGGAAGTCCTAACCAACTGTGTG -ACGGAAGTCCTAACCAACCTAGTG -ACGGAAGTCCTAACCAACCATCTG -ACGGAAGTCCTAACCAACGAGTTG -ACGGAAGTCCTAACCAACAGACTG -ACGGAAGTCCTAACCAACTCGGTA -ACGGAAGTCCTAACCAACTGCCTA -ACGGAAGTCCTAACCAACCCACTA -ACGGAAGTCCTAACCAACGGAGTA -ACGGAAGTCCTAACCAACTCGTCT -ACGGAAGTCCTAACCAACTGCACT -ACGGAAGTCCTAACCAACCTGACT -ACGGAAGTCCTAACCAACCAACCT -ACGGAAGTCCTAACCAACGCTACT -ACGGAAGTCCTAACCAACGGATCT -ACGGAAGTCCTAACCAACAAGGCT -ACGGAAGTCCTAACCAACTCAACC -ACGGAAGTCCTAACCAACTGTTCC -ACGGAAGTCCTAACCAACATTCCC -ACGGAAGTCCTAACCAACTTCTCG -ACGGAAGTCCTAACCAACTAGACG -ACGGAAGTCCTAACCAACGTAACG -ACGGAAGTCCTAACCAACACTTCG -ACGGAAGTCCTAACCAACTACGCA -ACGGAAGTCCTAACCAACCTTGCA -ACGGAAGTCCTAACCAACCGAACA -ACGGAAGTCCTAACCAACCAGTCA -ACGGAAGTCCTAACCAACGATCCA -ACGGAAGTCCTAACCAACACGACA -ACGGAAGTCCTAACCAACAGCTCA -ACGGAAGTCCTAACCAACTCACGT -ACGGAAGTCCTAACCAACCGTAGT -ACGGAAGTCCTAACCAACGTCAGT -ACGGAAGTCCTAACCAACGAAGGT -ACGGAAGTCCTAACCAACAACCGT -ACGGAAGTCCTAACCAACTTGTGC -ACGGAAGTCCTAACCAACCTAAGC -ACGGAAGTCCTAACCAACACTAGC -ACGGAAGTCCTAACCAACAGATGC -ACGGAAGTCCTAACCAACTGAAGG -ACGGAAGTCCTAACCAACCAATGG -ACGGAAGTCCTAACCAACATGAGG -ACGGAAGTCCTAACCAACAATGGG -ACGGAAGTCCTAACCAACTCCTGA -ACGGAAGTCCTAACCAACTAGCGA -ACGGAAGTCCTAACCAACCACAGA -ACGGAAGTCCTAACCAACGCAAGA -ACGGAAGTCCTAACCAACGGTTGA -ACGGAAGTCCTAACCAACTCCGAT -ACGGAAGTCCTAACCAACTGGCAT -ACGGAAGTCCTAACCAACCGAGAT -ACGGAAGTCCTAACCAACTACCAC -ACGGAAGTCCTAACCAACCAGAAC -ACGGAAGTCCTAACCAACGTCTAC -ACGGAAGTCCTAACCAACACGTAC -ACGGAAGTCCTAACCAACAGTGAC -ACGGAAGTCCTAACCAACCTGTAG -ACGGAAGTCCTAACCAACCCTAAG -ACGGAAGTCCTAACCAACGTTCAG -ACGGAAGTCCTAACCAACGCATAG -ACGGAAGTCCTAACCAACGACAAG -ACGGAAGTCCTAACCAACAAGCAG -ACGGAAGTCCTAACCAACCGTCAA -ACGGAAGTCCTAACCAACGCTGAA -ACGGAAGTCCTAACCAACAGTACG -ACGGAAGTCCTAACCAACATCCGA -ACGGAAGTCCTAACCAACATGGGA -ACGGAAGTCCTAACCAACGTGCAA -ACGGAAGTCCTAACCAACGAGGAA -ACGGAAGTCCTAACCAACCAGGTA -ACGGAAGTCCTAACCAACGACTCT -ACGGAAGTCCTAACCAACAGTCCT -ACGGAAGTCCTAACCAACTAAGCC -ACGGAAGTCCTAACCAACATAGCC -ACGGAAGTCCTAACCAACTAACCG -ACGGAAGTCCTAACCAACATGCCA -ACGGAAGTCCTAGAGATCGGAAAC -ACGGAAGTCCTAGAGATCAACACC -ACGGAAGTCCTAGAGATCATCGAG -ACGGAAGTCCTAGAGATCCTCCTT -ACGGAAGTCCTAGAGATCCCTGTT -ACGGAAGTCCTAGAGATCCGGTTT -ACGGAAGTCCTAGAGATCGTGGTT -ACGGAAGTCCTAGAGATCGCCTTT -ACGGAAGTCCTAGAGATCGGTCTT -ACGGAAGTCCTAGAGATCACGCTT -ACGGAAGTCCTAGAGATCAGCGTT -ACGGAAGTCCTAGAGATCTTCGTC -ACGGAAGTCCTAGAGATCTCTCTC -ACGGAAGTCCTAGAGATCTGGATC -ACGGAAGTCCTAGAGATCCACTTC -ACGGAAGTCCTAGAGATCGTACTC -ACGGAAGTCCTAGAGATCGATGTC -ACGGAAGTCCTAGAGATCACAGTC -ACGGAAGTCCTAGAGATCTTGCTG -ACGGAAGTCCTAGAGATCTCCATG -ACGGAAGTCCTAGAGATCTGTGTG -ACGGAAGTCCTAGAGATCCTAGTG -ACGGAAGTCCTAGAGATCCATCTG -ACGGAAGTCCTAGAGATCGAGTTG -ACGGAAGTCCTAGAGATCAGACTG -ACGGAAGTCCTAGAGATCTCGGTA -ACGGAAGTCCTAGAGATCTGCCTA -ACGGAAGTCCTAGAGATCCCACTA -ACGGAAGTCCTAGAGATCGGAGTA -ACGGAAGTCCTAGAGATCTCGTCT -ACGGAAGTCCTAGAGATCTGCACT -ACGGAAGTCCTAGAGATCCTGACT -ACGGAAGTCCTAGAGATCCAACCT -ACGGAAGTCCTAGAGATCGCTACT -ACGGAAGTCCTAGAGATCGGATCT -ACGGAAGTCCTAGAGATCAAGGCT -ACGGAAGTCCTAGAGATCTCAACC -ACGGAAGTCCTAGAGATCTGTTCC -ACGGAAGTCCTAGAGATCATTCCC -ACGGAAGTCCTAGAGATCTTCTCG -ACGGAAGTCCTAGAGATCTAGACG -ACGGAAGTCCTAGAGATCGTAACG -ACGGAAGTCCTAGAGATCACTTCG -ACGGAAGTCCTAGAGATCTACGCA -ACGGAAGTCCTAGAGATCCTTGCA -ACGGAAGTCCTAGAGATCCGAACA -ACGGAAGTCCTAGAGATCCAGTCA -ACGGAAGTCCTAGAGATCGATCCA -ACGGAAGTCCTAGAGATCACGACA -ACGGAAGTCCTAGAGATCAGCTCA -ACGGAAGTCCTAGAGATCTCACGT -ACGGAAGTCCTAGAGATCCGTAGT -ACGGAAGTCCTAGAGATCGTCAGT -ACGGAAGTCCTAGAGATCGAAGGT -ACGGAAGTCCTAGAGATCAACCGT -ACGGAAGTCCTAGAGATCTTGTGC -ACGGAAGTCCTAGAGATCCTAAGC -ACGGAAGTCCTAGAGATCACTAGC -ACGGAAGTCCTAGAGATCAGATGC -ACGGAAGTCCTAGAGATCTGAAGG -ACGGAAGTCCTAGAGATCCAATGG -ACGGAAGTCCTAGAGATCATGAGG -ACGGAAGTCCTAGAGATCAATGGG -ACGGAAGTCCTAGAGATCTCCTGA -ACGGAAGTCCTAGAGATCTAGCGA -ACGGAAGTCCTAGAGATCCACAGA -ACGGAAGTCCTAGAGATCGCAAGA -ACGGAAGTCCTAGAGATCGGTTGA -ACGGAAGTCCTAGAGATCTCCGAT -ACGGAAGTCCTAGAGATCTGGCAT -ACGGAAGTCCTAGAGATCCGAGAT -ACGGAAGTCCTAGAGATCTACCAC -ACGGAAGTCCTAGAGATCCAGAAC -ACGGAAGTCCTAGAGATCGTCTAC -ACGGAAGTCCTAGAGATCACGTAC -ACGGAAGTCCTAGAGATCAGTGAC -ACGGAAGTCCTAGAGATCCTGTAG -ACGGAAGTCCTAGAGATCCCTAAG -ACGGAAGTCCTAGAGATCGTTCAG -ACGGAAGTCCTAGAGATCGCATAG -ACGGAAGTCCTAGAGATCGACAAG -ACGGAAGTCCTAGAGATCAAGCAG -ACGGAAGTCCTAGAGATCCGTCAA -ACGGAAGTCCTAGAGATCGCTGAA -ACGGAAGTCCTAGAGATCAGTACG -ACGGAAGTCCTAGAGATCATCCGA -ACGGAAGTCCTAGAGATCATGGGA -ACGGAAGTCCTAGAGATCGTGCAA -ACGGAAGTCCTAGAGATCGAGGAA -ACGGAAGTCCTAGAGATCCAGGTA -ACGGAAGTCCTAGAGATCGACTCT -ACGGAAGTCCTAGAGATCAGTCCT -ACGGAAGTCCTAGAGATCTAAGCC -ACGGAAGTCCTAGAGATCATAGCC -ACGGAAGTCCTAGAGATCTAACCG -ACGGAAGTCCTAGAGATCATGCCA -ACGGAAGTCCTACTTCTCGGAAAC -ACGGAAGTCCTACTTCTCAACACC -ACGGAAGTCCTACTTCTCATCGAG -ACGGAAGTCCTACTTCTCCTCCTT -ACGGAAGTCCTACTTCTCCCTGTT -ACGGAAGTCCTACTTCTCCGGTTT -ACGGAAGTCCTACTTCTCGTGGTT -ACGGAAGTCCTACTTCTCGCCTTT -ACGGAAGTCCTACTTCTCGGTCTT -ACGGAAGTCCTACTTCTCACGCTT -ACGGAAGTCCTACTTCTCAGCGTT -ACGGAAGTCCTACTTCTCTTCGTC -ACGGAAGTCCTACTTCTCTCTCTC -ACGGAAGTCCTACTTCTCTGGATC -ACGGAAGTCCTACTTCTCCACTTC -ACGGAAGTCCTACTTCTCGTACTC -ACGGAAGTCCTACTTCTCGATGTC -ACGGAAGTCCTACTTCTCACAGTC -ACGGAAGTCCTACTTCTCTTGCTG -ACGGAAGTCCTACTTCTCTCCATG -ACGGAAGTCCTACTTCTCTGTGTG -ACGGAAGTCCTACTTCTCCTAGTG -ACGGAAGTCCTACTTCTCCATCTG -ACGGAAGTCCTACTTCTCGAGTTG -ACGGAAGTCCTACTTCTCAGACTG -ACGGAAGTCCTACTTCTCTCGGTA -ACGGAAGTCCTACTTCTCTGCCTA -ACGGAAGTCCTACTTCTCCCACTA -ACGGAAGTCCTACTTCTCGGAGTA -ACGGAAGTCCTACTTCTCTCGTCT -ACGGAAGTCCTACTTCTCTGCACT -ACGGAAGTCCTACTTCTCCTGACT -ACGGAAGTCCTACTTCTCCAACCT -ACGGAAGTCCTACTTCTCGCTACT -ACGGAAGTCCTACTTCTCGGATCT -ACGGAAGTCCTACTTCTCAAGGCT -ACGGAAGTCCTACTTCTCTCAACC -ACGGAAGTCCTACTTCTCTGTTCC -ACGGAAGTCCTACTTCTCATTCCC -ACGGAAGTCCTACTTCTCTTCTCG -ACGGAAGTCCTACTTCTCTAGACG -ACGGAAGTCCTACTTCTCGTAACG -ACGGAAGTCCTACTTCTCACTTCG -ACGGAAGTCCTACTTCTCTACGCA -ACGGAAGTCCTACTTCTCCTTGCA -ACGGAAGTCCTACTTCTCCGAACA -ACGGAAGTCCTACTTCTCCAGTCA -ACGGAAGTCCTACTTCTCGATCCA -ACGGAAGTCCTACTTCTCACGACA -ACGGAAGTCCTACTTCTCAGCTCA -ACGGAAGTCCTACTTCTCTCACGT -ACGGAAGTCCTACTTCTCCGTAGT -ACGGAAGTCCTACTTCTCGTCAGT -ACGGAAGTCCTACTTCTCGAAGGT -ACGGAAGTCCTACTTCTCAACCGT -ACGGAAGTCCTACTTCTCTTGTGC -ACGGAAGTCCTACTTCTCCTAAGC -ACGGAAGTCCTACTTCTCACTAGC -ACGGAAGTCCTACTTCTCAGATGC -ACGGAAGTCCTACTTCTCTGAAGG -ACGGAAGTCCTACTTCTCCAATGG -ACGGAAGTCCTACTTCTCATGAGG -ACGGAAGTCCTACTTCTCAATGGG -ACGGAAGTCCTACTTCTCTCCTGA -ACGGAAGTCCTACTTCTCTAGCGA -ACGGAAGTCCTACTTCTCCACAGA -ACGGAAGTCCTACTTCTCGCAAGA -ACGGAAGTCCTACTTCTCGGTTGA -ACGGAAGTCCTACTTCTCTCCGAT -ACGGAAGTCCTACTTCTCTGGCAT -ACGGAAGTCCTACTTCTCCGAGAT -ACGGAAGTCCTACTTCTCTACCAC -ACGGAAGTCCTACTTCTCCAGAAC -ACGGAAGTCCTACTTCTCGTCTAC -ACGGAAGTCCTACTTCTCACGTAC -ACGGAAGTCCTACTTCTCAGTGAC -ACGGAAGTCCTACTTCTCCTGTAG -ACGGAAGTCCTACTTCTCCCTAAG -ACGGAAGTCCTACTTCTCGTTCAG -ACGGAAGTCCTACTTCTCGCATAG -ACGGAAGTCCTACTTCTCGACAAG -ACGGAAGTCCTACTTCTCAAGCAG -ACGGAAGTCCTACTTCTCCGTCAA -ACGGAAGTCCTACTTCTCGCTGAA -ACGGAAGTCCTACTTCTCAGTACG -ACGGAAGTCCTACTTCTCATCCGA -ACGGAAGTCCTACTTCTCATGGGA -ACGGAAGTCCTACTTCTCGTGCAA -ACGGAAGTCCTACTTCTCGAGGAA -ACGGAAGTCCTACTTCTCCAGGTA -ACGGAAGTCCTACTTCTCGACTCT -ACGGAAGTCCTACTTCTCAGTCCT -ACGGAAGTCCTACTTCTCTAAGCC -ACGGAAGTCCTACTTCTCATAGCC -ACGGAAGTCCTACTTCTCTAACCG -ACGGAAGTCCTACTTCTCATGCCA -ACGGAAGTCCTAGTTCCTGGAAAC -ACGGAAGTCCTAGTTCCTAACACC -ACGGAAGTCCTAGTTCCTATCGAG -ACGGAAGTCCTAGTTCCTCTCCTT -ACGGAAGTCCTAGTTCCTCCTGTT -ACGGAAGTCCTAGTTCCTCGGTTT -ACGGAAGTCCTAGTTCCTGTGGTT -ACGGAAGTCCTAGTTCCTGCCTTT -ACGGAAGTCCTAGTTCCTGGTCTT -ACGGAAGTCCTAGTTCCTACGCTT -ACGGAAGTCCTAGTTCCTAGCGTT -ACGGAAGTCCTAGTTCCTTTCGTC -ACGGAAGTCCTAGTTCCTTCTCTC -ACGGAAGTCCTAGTTCCTTGGATC -ACGGAAGTCCTAGTTCCTCACTTC -ACGGAAGTCCTAGTTCCTGTACTC -ACGGAAGTCCTAGTTCCTGATGTC -ACGGAAGTCCTAGTTCCTACAGTC -ACGGAAGTCCTAGTTCCTTTGCTG -ACGGAAGTCCTAGTTCCTTCCATG -ACGGAAGTCCTAGTTCCTTGTGTG -ACGGAAGTCCTAGTTCCTCTAGTG -ACGGAAGTCCTAGTTCCTCATCTG -ACGGAAGTCCTAGTTCCTGAGTTG -ACGGAAGTCCTAGTTCCTAGACTG -ACGGAAGTCCTAGTTCCTTCGGTA -ACGGAAGTCCTAGTTCCTTGCCTA -ACGGAAGTCCTAGTTCCTCCACTA -ACGGAAGTCCTAGTTCCTGGAGTA -ACGGAAGTCCTAGTTCCTTCGTCT -ACGGAAGTCCTAGTTCCTTGCACT -ACGGAAGTCCTAGTTCCTCTGACT -ACGGAAGTCCTAGTTCCTCAACCT -ACGGAAGTCCTAGTTCCTGCTACT -ACGGAAGTCCTAGTTCCTGGATCT -ACGGAAGTCCTAGTTCCTAAGGCT -ACGGAAGTCCTAGTTCCTTCAACC -ACGGAAGTCCTAGTTCCTTGTTCC -ACGGAAGTCCTAGTTCCTATTCCC -ACGGAAGTCCTAGTTCCTTTCTCG -ACGGAAGTCCTAGTTCCTTAGACG -ACGGAAGTCCTAGTTCCTGTAACG -ACGGAAGTCCTAGTTCCTACTTCG -ACGGAAGTCCTAGTTCCTTACGCA -ACGGAAGTCCTAGTTCCTCTTGCA -ACGGAAGTCCTAGTTCCTCGAACA -ACGGAAGTCCTAGTTCCTCAGTCA -ACGGAAGTCCTAGTTCCTGATCCA -ACGGAAGTCCTAGTTCCTACGACA -ACGGAAGTCCTAGTTCCTAGCTCA -ACGGAAGTCCTAGTTCCTTCACGT -ACGGAAGTCCTAGTTCCTCGTAGT -ACGGAAGTCCTAGTTCCTGTCAGT -ACGGAAGTCCTAGTTCCTGAAGGT -ACGGAAGTCCTAGTTCCTAACCGT -ACGGAAGTCCTAGTTCCTTTGTGC -ACGGAAGTCCTAGTTCCTCTAAGC -ACGGAAGTCCTAGTTCCTACTAGC -ACGGAAGTCCTAGTTCCTAGATGC -ACGGAAGTCCTAGTTCCTTGAAGG -ACGGAAGTCCTAGTTCCTCAATGG -ACGGAAGTCCTAGTTCCTATGAGG -ACGGAAGTCCTAGTTCCTAATGGG -ACGGAAGTCCTAGTTCCTTCCTGA -ACGGAAGTCCTAGTTCCTTAGCGA -ACGGAAGTCCTAGTTCCTCACAGA -ACGGAAGTCCTAGTTCCTGCAAGA -ACGGAAGTCCTAGTTCCTGGTTGA -ACGGAAGTCCTAGTTCCTTCCGAT -ACGGAAGTCCTAGTTCCTTGGCAT -ACGGAAGTCCTAGTTCCTCGAGAT -ACGGAAGTCCTAGTTCCTTACCAC -ACGGAAGTCCTAGTTCCTCAGAAC -ACGGAAGTCCTAGTTCCTGTCTAC -ACGGAAGTCCTAGTTCCTACGTAC -ACGGAAGTCCTAGTTCCTAGTGAC -ACGGAAGTCCTAGTTCCTCTGTAG -ACGGAAGTCCTAGTTCCTCCTAAG -ACGGAAGTCCTAGTTCCTGTTCAG -ACGGAAGTCCTAGTTCCTGCATAG -ACGGAAGTCCTAGTTCCTGACAAG -ACGGAAGTCCTAGTTCCTAAGCAG -ACGGAAGTCCTAGTTCCTCGTCAA -ACGGAAGTCCTAGTTCCTGCTGAA -ACGGAAGTCCTAGTTCCTAGTACG -ACGGAAGTCCTAGTTCCTATCCGA -ACGGAAGTCCTAGTTCCTATGGGA -ACGGAAGTCCTAGTTCCTGTGCAA -ACGGAAGTCCTAGTTCCTGAGGAA -ACGGAAGTCCTAGTTCCTCAGGTA -ACGGAAGTCCTAGTTCCTGACTCT -ACGGAAGTCCTAGTTCCTAGTCCT -ACGGAAGTCCTAGTTCCTTAAGCC -ACGGAAGTCCTAGTTCCTATAGCC -ACGGAAGTCCTAGTTCCTTAACCG -ACGGAAGTCCTAGTTCCTATGCCA -ACGGAAGTCCTATTTCGGGGAAAC -ACGGAAGTCCTATTTCGGAACACC -ACGGAAGTCCTATTTCGGATCGAG -ACGGAAGTCCTATTTCGGCTCCTT -ACGGAAGTCCTATTTCGGCCTGTT -ACGGAAGTCCTATTTCGGCGGTTT -ACGGAAGTCCTATTTCGGGTGGTT -ACGGAAGTCCTATTTCGGGCCTTT -ACGGAAGTCCTATTTCGGGGTCTT -ACGGAAGTCCTATTTCGGACGCTT -ACGGAAGTCCTATTTCGGAGCGTT -ACGGAAGTCCTATTTCGGTTCGTC -ACGGAAGTCCTATTTCGGTCTCTC -ACGGAAGTCCTATTTCGGTGGATC -ACGGAAGTCCTATTTCGGCACTTC -ACGGAAGTCCTATTTCGGGTACTC -ACGGAAGTCCTATTTCGGGATGTC -ACGGAAGTCCTATTTCGGACAGTC -ACGGAAGTCCTATTTCGGTTGCTG -ACGGAAGTCCTATTTCGGTCCATG -ACGGAAGTCCTATTTCGGTGTGTG -ACGGAAGTCCTATTTCGGCTAGTG -ACGGAAGTCCTATTTCGGCATCTG -ACGGAAGTCCTATTTCGGGAGTTG -ACGGAAGTCCTATTTCGGAGACTG -ACGGAAGTCCTATTTCGGTCGGTA -ACGGAAGTCCTATTTCGGTGCCTA -ACGGAAGTCCTATTTCGGCCACTA -ACGGAAGTCCTATTTCGGGGAGTA -ACGGAAGTCCTATTTCGGTCGTCT -ACGGAAGTCCTATTTCGGTGCACT -ACGGAAGTCCTATTTCGGCTGACT -ACGGAAGTCCTATTTCGGCAACCT -ACGGAAGTCCTATTTCGGGCTACT -ACGGAAGTCCTATTTCGGGGATCT -ACGGAAGTCCTATTTCGGAAGGCT -ACGGAAGTCCTATTTCGGTCAACC -ACGGAAGTCCTATTTCGGTGTTCC -ACGGAAGTCCTATTTCGGATTCCC -ACGGAAGTCCTATTTCGGTTCTCG -ACGGAAGTCCTATTTCGGTAGACG -ACGGAAGTCCTATTTCGGGTAACG -ACGGAAGTCCTATTTCGGACTTCG -ACGGAAGTCCTATTTCGGTACGCA -ACGGAAGTCCTATTTCGGCTTGCA -ACGGAAGTCCTATTTCGGCGAACA -ACGGAAGTCCTATTTCGGCAGTCA -ACGGAAGTCCTATTTCGGGATCCA -ACGGAAGTCCTATTTCGGACGACA -ACGGAAGTCCTATTTCGGAGCTCA -ACGGAAGTCCTATTTCGGTCACGT -ACGGAAGTCCTATTTCGGCGTAGT -ACGGAAGTCCTATTTCGGGTCAGT -ACGGAAGTCCTATTTCGGGAAGGT -ACGGAAGTCCTATTTCGGAACCGT -ACGGAAGTCCTATTTCGGTTGTGC -ACGGAAGTCCTATTTCGGCTAAGC -ACGGAAGTCCTATTTCGGACTAGC -ACGGAAGTCCTATTTCGGAGATGC -ACGGAAGTCCTATTTCGGTGAAGG -ACGGAAGTCCTATTTCGGCAATGG -ACGGAAGTCCTATTTCGGATGAGG -ACGGAAGTCCTATTTCGGAATGGG -ACGGAAGTCCTATTTCGGTCCTGA -ACGGAAGTCCTATTTCGGTAGCGA -ACGGAAGTCCTATTTCGGCACAGA -ACGGAAGTCCTATTTCGGGCAAGA -ACGGAAGTCCTATTTCGGGGTTGA -ACGGAAGTCCTATTTCGGTCCGAT -ACGGAAGTCCTATTTCGGTGGCAT -ACGGAAGTCCTATTTCGGCGAGAT -ACGGAAGTCCTATTTCGGTACCAC -ACGGAAGTCCTATTTCGGCAGAAC -ACGGAAGTCCTATTTCGGGTCTAC -ACGGAAGTCCTATTTCGGACGTAC -ACGGAAGTCCTATTTCGGAGTGAC -ACGGAAGTCCTATTTCGGCTGTAG -ACGGAAGTCCTATTTCGGCCTAAG -ACGGAAGTCCTATTTCGGGTTCAG -ACGGAAGTCCTATTTCGGGCATAG -ACGGAAGTCCTATTTCGGGACAAG -ACGGAAGTCCTATTTCGGAAGCAG -ACGGAAGTCCTATTTCGGCGTCAA -ACGGAAGTCCTATTTCGGGCTGAA -ACGGAAGTCCTATTTCGGAGTACG -ACGGAAGTCCTATTTCGGATCCGA -ACGGAAGTCCTATTTCGGATGGGA -ACGGAAGTCCTATTTCGGGTGCAA -ACGGAAGTCCTATTTCGGGAGGAA -ACGGAAGTCCTATTTCGGCAGGTA -ACGGAAGTCCTATTTCGGGACTCT -ACGGAAGTCCTATTTCGGAGTCCT -ACGGAAGTCCTATTTCGGTAAGCC -ACGGAAGTCCTATTTCGGATAGCC -ACGGAAGTCCTATTTCGGTAACCG -ACGGAAGTCCTATTTCGGATGCCA -ACGGAAGTCCTAGTTGTGGGAAAC -ACGGAAGTCCTAGTTGTGAACACC -ACGGAAGTCCTAGTTGTGATCGAG -ACGGAAGTCCTAGTTGTGCTCCTT -ACGGAAGTCCTAGTTGTGCCTGTT -ACGGAAGTCCTAGTTGTGCGGTTT -ACGGAAGTCCTAGTTGTGGTGGTT -ACGGAAGTCCTAGTTGTGGCCTTT -ACGGAAGTCCTAGTTGTGGGTCTT -ACGGAAGTCCTAGTTGTGACGCTT -ACGGAAGTCCTAGTTGTGAGCGTT -ACGGAAGTCCTAGTTGTGTTCGTC -ACGGAAGTCCTAGTTGTGTCTCTC -ACGGAAGTCCTAGTTGTGTGGATC -ACGGAAGTCCTAGTTGTGCACTTC -ACGGAAGTCCTAGTTGTGGTACTC -ACGGAAGTCCTAGTTGTGGATGTC -ACGGAAGTCCTAGTTGTGACAGTC -ACGGAAGTCCTAGTTGTGTTGCTG -ACGGAAGTCCTAGTTGTGTCCATG -ACGGAAGTCCTAGTTGTGTGTGTG -ACGGAAGTCCTAGTTGTGCTAGTG -ACGGAAGTCCTAGTTGTGCATCTG -ACGGAAGTCCTAGTTGTGGAGTTG -ACGGAAGTCCTAGTTGTGAGACTG -ACGGAAGTCCTAGTTGTGTCGGTA -ACGGAAGTCCTAGTTGTGTGCCTA -ACGGAAGTCCTAGTTGTGCCACTA -ACGGAAGTCCTAGTTGTGGGAGTA -ACGGAAGTCCTAGTTGTGTCGTCT -ACGGAAGTCCTAGTTGTGTGCACT -ACGGAAGTCCTAGTTGTGCTGACT -ACGGAAGTCCTAGTTGTGCAACCT -ACGGAAGTCCTAGTTGTGGCTACT -ACGGAAGTCCTAGTTGTGGGATCT -ACGGAAGTCCTAGTTGTGAAGGCT -ACGGAAGTCCTAGTTGTGTCAACC -ACGGAAGTCCTAGTTGTGTGTTCC -ACGGAAGTCCTAGTTGTGATTCCC -ACGGAAGTCCTAGTTGTGTTCTCG -ACGGAAGTCCTAGTTGTGTAGACG -ACGGAAGTCCTAGTTGTGGTAACG -ACGGAAGTCCTAGTTGTGACTTCG -ACGGAAGTCCTAGTTGTGTACGCA -ACGGAAGTCCTAGTTGTGCTTGCA -ACGGAAGTCCTAGTTGTGCGAACA -ACGGAAGTCCTAGTTGTGCAGTCA -ACGGAAGTCCTAGTTGTGGATCCA -ACGGAAGTCCTAGTTGTGACGACA -ACGGAAGTCCTAGTTGTGAGCTCA -ACGGAAGTCCTAGTTGTGTCACGT -ACGGAAGTCCTAGTTGTGCGTAGT -ACGGAAGTCCTAGTTGTGGTCAGT -ACGGAAGTCCTAGTTGTGGAAGGT -ACGGAAGTCCTAGTTGTGAACCGT -ACGGAAGTCCTAGTTGTGTTGTGC -ACGGAAGTCCTAGTTGTGCTAAGC -ACGGAAGTCCTAGTTGTGACTAGC -ACGGAAGTCCTAGTTGTGAGATGC -ACGGAAGTCCTAGTTGTGTGAAGG -ACGGAAGTCCTAGTTGTGCAATGG -ACGGAAGTCCTAGTTGTGATGAGG -ACGGAAGTCCTAGTTGTGAATGGG -ACGGAAGTCCTAGTTGTGTCCTGA -ACGGAAGTCCTAGTTGTGTAGCGA -ACGGAAGTCCTAGTTGTGCACAGA -ACGGAAGTCCTAGTTGTGGCAAGA -ACGGAAGTCCTAGTTGTGGGTTGA -ACGGAAGTCCTAGTTGTGTCCGAT -ACGGAAGTCCTAGTTGTGTGGCAT -ACGGAAGTCCTAGTTGTGCGAGAT -ACGGAAGTCCTAGTTGTGTACCAC -ACGGAAGTCCTAGTTGTGCAGAAC -ACGGAAGTCCTAGTTGTGGTCTAC -ACGGAAGTCCTAGTTGTGACGTAC -ACGGAAGTCCTAGTTGTGAGTGAC -ACGGAAGTCCTAGTTGTGCTGTAG -ACGGAAGTCCTAGTTGTGCCTAAG -ACGGAAGTCCTAGTTGTGGTTCAG -ACGGAAGTCCTAGTTGTGGCATAG -ACGGAAGTCCTAGTTGTGGACAAG -ACGGAAGTCCTAGTTGTGAAGCAG -ACGGAAGTCCTAGTTGTGCGTCAA -ACGGAAGTCCTAGTTGTGGCTGAA -ACGGAAGTCCTAGTTGTGAGTACG -ACGGAAGTCCTAGTTGTGATCCGA -ACGGAAGTCCTAGTTGTGATGGGA -ACGGAAGTCCTAGTTGTGGTGCAA -ACGGAAGTCCTAGTTGTGGAGGAA -ACGGAAGTCCTAGTTGTGCAGGTA -ACGGAAGTCCTAGTTGTGGACTCT -ACGGAAGTCCTAGTTGTGAGTCCT -ACGGAAGTCCTAGTTGTGTAAGCC -ACGGAAGTCCTAGTTGTGATAGCC -ACGGAAGTCCTAGTTGTGTAACCG -ACGGAAGTCCTAGTTGTGATGCCA -ACGGAAGTCCTATTTGCCGGAAAC -ACGGAAGTCCTATTTGCCAACACC -ACGGAAGTCCTATTTGCCATCGAG -ACGGAAGTCCTATTTGCCCTCCTT -ACGGAAGTCCTATTTGCCCCTGTT -ACGGAAGTCCTATTTGCCCGGTTT -ACGGAAGTCCTATTTGCCGTGGTT -ACGGAAGTCCTATTTGCCGCCTTT -ACGGAAGTCCTATTTGCCGGTCTT -ACGGAAGTCCTATTTGCCACGCTT -ACGGAAGTCCTATTTGCCAGCGTT -ACGGAAGTCCTATTTGCCTTCGTC -ACGGAAGTCCTATTTGCCTCTCTC -ACGGAAGTCCTATTTGCCTGGATC -ACGGAAGTCCTATTTGCCCACTTC -ACGGAAGTCCTATTTGCCGTACTC -ACGGAAGTCCTATTTGCCGATGTC -ACGGAAGTCCTATTTGCCACAGTC -ACGGAAGTCCTATTTGCCTTGCTG -ACGGAAGTCCTATTTGCCTCCATG -ACGGAAGTCCTATTTGCCTGTGTG -ACGGAAGTCCTATTTGCCCTAGTG -ACGGAAGTCCTATTTGCCCATCTG -ACGGAAGTCCTATTTGCCGAGTTG -ACGGAAGTCCTATTTGCCAGACTG -ACGGAAGTCCTATTTGCCTCGGTA -ACGGAAGTCCTATTTGCCTGCCTA -ACGGAAGTCCTATTTGCCCCACTA -ACGGAAGTCCTATTTGCCGGAGTA -ACGGAAGTCCTATTTGCCTCGTCT -ACGGAAGTCCTATTTGCCTGCACT -ACGGAAGTCCTATTTGCCCTGACT -ACGGAAGTCCTATTTGCCCAACCT -ACGGAAGTCCTATTTGCCGCTACT -ACGGAAGTCCTATTTGCCGGATCT -ACGGAAGTCCTATTTGCCAAGGCT -ACGGAAGTCCTATTTGCCTCAACC -ACGGAAGTCCTATTTGCCTGTTCC -ACGGAAGTCCTATTTGCCATTCCC -ACGGAAGTCCTATTTGCCTTCTCG -ACGGAAGTCCTATTTGCCTAGACG -ACGGAAGTCCTATTTGCCGTAACG -ACGGAAGTCCTATTTGCCACTTCG -ACGGAAGTCCTATTTGCCTACGCA -ACGGAAGTCCTATTTGCCCTTGCA -ACGGAAGTCCTATTTGCCCGAACA -ACGGAAGTCCTATTTGCCCAGTCA -ACGGAAGTCCTATTTGCCGATCCA -ACGGAAGTCCTATTTGCCACGACA -ACGGAAGTCCTATTTGCCAGCTCA -ACGGAAGTCCTATTTGCCTCACGT -ACGGAAGTCCTATTTGCCCGTAGT -ACGGAAGTCCTATTTGCCGTCAGT -ACGGAAGTCCTATTTGCCGAAGGT -ACGGAAGTCCTATTTGCCAACCGT -ACGGAAGTCCTATTTGCCTTGTGC -ACGGAAGTCCTATTTGCCCTAAGC -ACGGAAGTCCTATTTGCCACTAGC -ACGGAAGTCCTATTTGCCAGATGC -ACGGAAGTCCTATTTGCCTGAAGG -ACGGAAGTCCTATTTGCCCAATGG -ACGGAAGTCCTATTTGCCATGAGG -ACGGAAGTCCTATTTGCCAATGGG -ACGGAAGTCCTATTTGCCTCCTGA -ACGGAAGTCCTATTTGCCTAGCGA -ACGGAAGTCCTATTTGCCCACAGA -ACGGAAGTCCTATTTGCCGCAAGA -ACGGAAGTCCTATTTGCCGGTTGA -ACGGAAGTCCTATTTGCCTCCGAT -ACGGAAGTCCTATTTGCCTGGCAT -ACGGAAGTCCTATTTGCCCGAGAT -ACGGAAGTCCTATTTGCCTACCAC -ACGGAAGTCCTATTTGCCCAGAAC -ACGGAAGTCCTATTTGCCGTCTAC -ACGGAAGTCCTATTTGCCACGTAC -ACGGAAGTCCTATTTGCCAGTGAC -ACGGAAGTCCTATTTGCCCTGTAG -ACGGAAGTCCTATTTGCCCCTAAG -ACGGAAGTCCTATTTGCCGTTCAG -ACGGAAGTCCTATTTGCCGCATAG -ACGGAAGTCCTATTTGCCGACAAG -ACGGAAGTCCTATTTGCCAAGCAG -ACGGAAGTCCTATTTGCCCGTCAA -ACGGAAGTCCTATTTGCCGCTGAA -ACGGAAGTCCTATTTGCCAGTACG -ACGGAAGTCCTATTTGCCATCCGA -ACGGAAGTCCTATTTGCCATGGGA -ACGGAAGTCCTATTTGCCGTGCAA -ACGGAAGTCCTATTTGCCGAGGAA -ACGGAAGTCCTATTTGCCCAGGTA -ACGGAAGTCCTATTTGCCGACTCT -ACGGAAGTCCTATTTGCCAGTCCT -ACGGAAGTCCTATTTGCCTAAGCC -ACGGAAGTCCTATTTGCCATAGCC -ACGGAAGTCCTATTTGCCTAACCG -ACGGAAGTCCTATTTGCCATGCCA -ACGGAAGTCCTACTTGGTGGAAAC -ACGGAAGTCCTACTTGGTAACACC -ACGGAAGTCCTACTTGGTATCGAG -ACGGAAGTCCTACTTGGTCTCCTT -ACGGAAGTCCTACTTGGTCCTGTT -ACGGAAGTCCTACTTGGTCGGTTT -ACGGAAGTCCTACTTGGTGTGGTT -ACGGAAGTCCTACTTGGTGCCTTT -ACGGAAGTCCTACTTGGTGGTCTT -ACGGAAGTCCTACTTGGTACGCTT -ACGGAAGTCCTACTTGGTAGCGTT -ACGGAAGTCCTACTTGGTTTCGTC -ACGGAAGTCCTACTTGGTTCTCTC -ACGGAAGTCCTACTTGGTTGGATC -ACGGAAGTCCTACTTGGTCACTTC -ACGGAAGTCCTACTTGGTGTACTC -ACGGAAGTCCTACTTGGTGATGTC -ACGGAAGTCCTACTTGGTACAGTC -ACGGAAGTCCTACTTGGTTTGCTG -ACGGAAGTCCTACTTGGTTCCATG -ACGGAAGTCCTACTTGGTTGTGTG -ACGGAAGTCCTACTTGGTCTAGTG -ACGGAAGTCCTACTTGGTCATCTG -ACGGAAGTCCTACTTGGTGAGTTG -ACGGAAGTCCTACTTGGTAGACTG -ACGGAAGTCCTACTTGGTTCGGTA -ACGGAAGTCCTACTTGGTTGCCTA -ACGGAAGTCCTACTTGGTCCACTA -ACGGAAGTCCTACTTGGTGGAGTA -ACGGAAGTCCTACTTGGTTCGTCT -ACGGAAGTCCTACTTGGTTGCACT -ACGGAAGTCCTACTTGGTCTGACT -ACGGAAGTCCTACTTGGTCAACCT -ACGGAAGTCCTACTTGGTGCTACT -ACGGAAGTCCTACTTGGTGGATCT -ACGGAAGTCCTACTTGGTAAGGCT -ACGGAAGTCCTACTTGGTTCAACC -ACGGAAGTCCTACTTGGTTGTTCC -ACGGAAGTCCTACTTGGTATTCCC -ACGGAAGTCCTACTTGGTTTCTCG -ACGGAAGTCCTACTTGGTTAGACG -ACGGAAGTCCTACTTGGTGTAACG -ACGGAAGTCCTACTTGGTACTTCG -ACGGAAGTCCTACTTGGTTACGCA -ACGGAAGTCCTACTTGGTCTTGCA -ACGGAAGTCCTACTTGGTCGAACA -ACGGAAGTCCTACTTGGTCAGTCA -ACGGAAGTCCTACTTGGTGATCCA -ACGGAAGTCCTACTTGGTACGACA -ACGGAAGTCCTACTTGGTAGCTCA -ACGGAAGTCCTACTTGGTTCACGT -ACGGAAGTCCTACTTGGTCGTAGT -ACGGAAGTCCTACTTGGTGTCAGT -ACGGAAGTCCTACTTGGTGAAGGT -ACGGAAGTCCTACTTGGTAACCGT -ACGGAAGTCCTACTTGGTTTGTGC -ACGGAAGTCCTACTTGGTCTAAGC -ACGGAAGTCCTACTTGGTACTAGC -ACGGAAGTCCTACTTGGTAGATGC -ACGGAAGTCCTACTTGGTTGAAGG -ACGGAAGTCCTACTTGGTCAATGG -ACGGAAGTCCTACTTGGTATGAGG -ACGGAAGTCCTACTTGGTAATGGG -ACGGAAGTCCTACTTGGTTCCTGA -ACGGAAGTCCTACTTGGTTAGCGA -ACGGAAGTCCTACTTGGTCACAGA -ACGGAAGTCCTACTTGGTGCAAGA -ACGGAAGTCCTACTTGGTGGTTGA -ACGGAAGTCCTACTTGGTTCCGAT -ACGGAAGTCCTACTTGGTTGGCAT -ACGGAAGTCCTACTTGGTCGAGAT -ACGGAAGTCCTACTTGGTTACCAC -ACGGAAGTCCTACTTGGTCAGAAC -ACGGAAGTCCTACTTGGTGTCTAC -ACGGAAGTCCTACTTGGTACGTAC -ACGGAAGTCCTACTTGGTAGTGAC -ACGGAAGTCCTACTTGGTCTGTAG -ACGGAAGTCCTACTTGGTCCTAAG -ACGGAAGTCCTACTTGGTGTTCAG -ACGGAAGTCCTACTTGGTGCATAG -ACGGAAGTCCTACTTGGTGACAAG -ACGGAAGTCCTACTTGGTAAGCAG -ACGGAAGTCCTACTTGGTCGTCAA -ACGGAAGTCCTACTTGGTGCTGAA -ACGGAAGTCCTACTTGGTAGTACG -ACGGAAGTCCTACTTGGTATCCGA -ACGGAAGTCCTACTTGGTATGGGA -ACGGAAGTCCTACTTGGTGTGCAA -ACGGAAGTCCTACTTGGTGAGGAA -ACGGAAGTCCTACTTGGTCAGGTA -ACGGAAGTCCTACTTGGTGACTCT -ACGGAAGTCCTACTTGGTAGTCCT -ACGGAAGTCCTACTTGGTTAAGCC -ACGGAAGTCCTACTTGGTATAGCC -ACGGAAGTCCTACTTGGTTAACCG -ACGGAAGTCCTACTTGGTATGCCA -ACGGAAGTCCTACTTACGGGAAAC -ACGGAAGTCCTACTTACGAACACC -ACGGAAGTCCTACTTACGATCGAG -ACGGAAGTCCTACTTACGCTCCTT -ACGGAAGTCCTACTTACGCCTGTT -ACGGAAGTCCTACTTACGCGGTTT -ACGGAAGTCCTACTTACGGTGGTT -ACGGAAGTCCTACTTACGGCCTTT -ACGGAAGTCCTACTTACGGGTCTT -ACGGAAGTCCTACTTACGACGCTT -ACGGAAGTCCTACTTACGAGCGTT -ACGGAAGTCCTACTTACGTTCGTC -ACGGAAGTCCTACTTACGTCTCTC -ACGGAAGTCCTACTTACGTGGATC -ACGGAAGTCCTACTTACGCACTTC -ACGGAAGTCCTACTTACGGTACTC -ACGGAAGTCCTACTTACGGATGTC -ACGGAAGTCCTACTTACGACAGTC -ACGGAAGTCCTACTTACGTTGCTG -ACGGAAGTCCTACTTACGTCCATG -ACGGAAGTCCTACTTACGTGTGTG -ACGGAAGTCCTACTTACGCTAGTG -ACGGAAGTCCTACTTACGCATCTG -ACGGAAGTCCTACTTACGGAGTTG -ACGGAAGTCCTACTTACGAGACTG -ACGGAAGTCCTACTTACGTCGGTA -ACGGAAGTCCTACTTACGTGCCTA -ACGGAAGTCCTACTTACGCCACTA -ACGGAAGTCCTACTTACGGGAGTA -ACGGAAGTCCTACTTACGTCGTCT -ACGGAAGTCCTACTTACGTGCACT -ACGGAAGTCCTACTTACGCTGACT -ACGGAAGTCCTACTTACGCAACCT -ACGGAAGTCCTACTTACGGCTACT -ACGGAAGTCCTACTTACGGGATCT -ACGGAAGTCCTACTTACGAAGGCT -ACGGAAGTCCTACTTACGTCAACC -ACGGAAGTCCTACTTACGTGTTCC -ACGGAAGTCCTACTTACGATTCCC -ACGGAAGTCCTACTTACGTTCTCG -ACGGAAGTCCTACTTACGTAGACG -ACGGAAGTCCTACTTACGGTAACG -ACGGAAGTCCTACTTACGACTTCG -ACGGAAGTCCTACTTACGTACGCA -ACGGAAGTCCTACTTACGCTTGCA -ACGGAAGTCCTACTTACGCGAACA -ACGGAAGTCCTACTTACGCAGTCA -ACGGAAGTCCTACTTACGGATCCA -ACGGAAGTCCTACTTACGACGACA -ACGGAAGTCCTACTTACGAGCTCA -ACGGAAGTCCTACTTACGTCACGT -ACGGAAGTCCTACTTACGCGTAGT -ACGGAAGTCCTACTTACGGTCAGT -ACGGAAGTCCTACTTACGGAAGGT -ACGGAAGTCCTACTTACGAACCGT -ACGGAAGTCCTACTTACGTTGTGC -ACGGAAGTCCTACTTACGCTAAGC -ACGGAAGTCCTACTTACGACTAGC -ACGGAAGTCCTACTTACGAGATGC -ACGGAAGTCCTACTTACGTGAAGG -ACGGAAGTCCTACTTACGCAATGG -ACGGAAGTCCTACTTACGATGAGG -ACGGAAGTCCTACTTACGAATGGG -ACGGAAGTCCTACTTACGTCCTGA -ACGGAAGTCCTACTTACGTAGCGA -ACGGAAGTCCTACTTACGCACAGA -ACGGAAGTCCTACTTACGGCAAGA -ACGGAAGTCCTACTTACGGGTTGA -ACGGAAGTCCTACTTACGTCCGAT -ACGGAAGTCCTACTTACGTGGCAT -ACGGAAGTCCTACTTACGCGAGAT -ACGGAAGTCCTACTTACGTACCAC -ACGGAAGTCCTACTTACGCAGAAC -ACGGAAGTCCTACTTACGGTCTAC -ACGGAAGTCCTACTTACGACGTAC -ACGGAAGTCCTACTTACGAGTGAC -ACGGAAGTCCTACTTACGCTGTAG -ACGGAAGTCCTACTTACGCCTAAG -ACGGAAGTCCTACTTACGGTTCAG -ACGGAAGTCCTACTTACGGCATAG -ACGGAAGTCCTACTTACGGACAAG -ACGGAAGTCCTACTTACGAAGCAG -ACGGAAGTCCTACTTACGCGTCAA -ACGGAAGTCCTACTTACGGCTGAA -ACGGAAGTCCTACTTACGAGTACG -ACGGAAGTCCTACTTACGATCCGA -ACGGAAGTCCTACTTACGATGGGA -ACGGAAGTCCTACTTACGGTGCAA -ACGGAAGTCCTACTTACGGAGGAA -ACGGAAGTCCTACTTACGCAGGTA -ACGGAAGTCCTACTTACGGACTCT -ACGGAAGTCCTACTTACGAGTCCT -ACGGAAGTCCTACTTACGTAAGCC -ACGGAAGTCCTACTTACGATAGCC -ACGGAAGTCCTACTTACGTAACCG -ACGGAAGTCCTACTTACGATGCCA -ACGGAAGTCCTAGTTAGCGGAAAC -ACGGAAGTCCTAGTTAGCAACACC -ACGGAAGTCCTAGTTAGCATCGAG -ACGGAAGTCCTAGTTAGCCTCCTT -ACGGAAGTCCTAGTTAGCCCTGTT -ACGGAAGTCCTAGTTAGCCGGTTT -ACGGAAGTCCTAGTTAGCGTGGTT -ACGGAAGTCCTAGTTAGCGCCTTT -ACGGAAGTCCTAGTTAGCGGTCTT -ACGGAAGTCCTAGTTAGCACGCTT -ACGGAAGTCCTAGTTAGCAGCGTT -ACGGAAGTCCTAGTTAGCTTCGTC -ACGGAAGTCCTAGTTAGCTCTCTC -ACGGAAGTCCTAGTTAGCTGGATC -ACGGAAGTCCTAGTTAGCCACTTC -ACGGAAGTCCTAGTTAGCGTACTC -ACGGAAGTCCTAGTTAGCGATGTC -ACGGAAGTCCTAGTTAGCACAGTC -ACGGAAGTCCTAGTTAGCTTGCTG -ACGGAAGTCCTAGTTAGCTCCATG -ACGGAAGTCCTAGTTAGCTGTGTG -ACGGAAGTCCTAGTTAGCCTAGTG -ACGGAAGTCCTAGTTAGCCATCTG -ACGGAAGTCCTAGTTAGCGAGTTG -ACGGAAGTCCTAGTTAGCAGACTG -ACGGAAGTCCTAGTTAGCTCGGTA -ACGGAAGTCCTAGTTAGCTGCCTA -ACGGAAGTCCTAGTTAGCCCACTA -ACGGAAGTCCTAGTTAGCGGAGTA -ACGGAAGTCCTAGTTAGCTCGTCT -ACGGAAGTCCTAGTTAGCTGCACT -ACGGAAGTCCTAGTTAGCCTGACT -ACGGAAGTCCTAGTTAGCCAACCT -ACGGAAGTCCTAGTTAGCGCTACT -ACGGAAGTCCTAGTTAGCGGATCT -ACGGAAGTCCTAGTTAGCAAGGCT -ACGGAAGTCCTAGTTAGCTCAACC -ACGGAAGTCCTAGTTAGCTGTTCC -ACGGAAGTCCTAGTTAGCATTCCC -ACGGAAGTCCTAGTTAGCTTCTCG -ACGGAAGTCCTAGTTAGCTAGACG -ACGGAAGTCCTAGTTAGCGTAACG -ACGGAAGTCCTAGTTAGCACTTCG -ACGGAAGTCCTAGTTAGCTACGCA -ACGGAAGTCCTAGTTAGCCTTGCA -ACGGAAGTCCTAGTTAGCCGAACA -ACGGAAGTCCTAGTTAGCCAGTCA -ACGGAAGTCCTAGTTAGCGATCCA -ACGGAAGTCCTAGTTAGCACGACA -ACGGAAGTCCTAGTTAGCAGCTCA -ACGGAAGTCCTAGTTAGCTCACGT -ACGGAAGTCCTAGTTAGCCGTAGT -ACGGAAGTCCTAGTTAGCGTCAGT -ACGGAAGTCCTAGTTAGCGAAGGT -ACGGAAGTCCTAGTTAGCAACCGT -ACGGAAGTCCTAGTTAGCTTGTGC -ACGGAAGTCCTAGTTAGCCTAAGC -ACGGAAGTCCTAGTTAGCACTAGC -ACGGAAGTCCTAGTTAGCAGATGC -ACGGAAGTCCTAGTTAGCTGAAGG -ACGGAAGTCCTAGTTAGCCAATGG -ACGGAAGTCCTAGTTAGCATGAGG -ACGGAAGTCCTAGTTAGCAATGGG -ACGGAAGTCCTAGTTAGCTCCTGA -ACGGAAGTCCTAGTTAGCTAGCGA -ACGGAAGTCCTAGTTAGCCACAGA -ACGGAAGTCCTAGTTAGCGCAAGA -ACGGAAGTCCTAGTTAGCGGTTGA -ACGGAAGTCCTAGTTAGCTCCGAT -ACGGAAGTCCTAGTTAGCTGGCAT -ACGGAAGTCCTAGTTAGCCGAGAT -ACGGAAGTCCTAGTTAGCTACCAC -ACGGAAGTCCTAGTTAGCCAGAAC -ACGGAAGTCCTAGTTAGCGTCTAC -ACGGAAGTCCTAGTTAGCACGTAC -ACGGAAGTCCTAGTTAGCAGTGAC -ACGGAAGTCCTAGTTAGCCTGTAG -ACGGAAGTCCTAGTTAGCCCTAAG -ACGGAAGTCCTAGTTAGCGTTCAG -ACGGAAGTCCTAGTTAGCGCATAG -ACGGAAGTCCTAGTTAGCGACAAG -ACGGAAGTCCTAGTTAGCAAGCAG -ACGGAAGTCCTAGTTAGCCGTCAA -ACGGAAGTCCTAGTTAGCGCTGAA -ACGGAAGTCCTAGTTAGCAGTACG -ACGGAAGTCCTAGTTAGCATCCGA -ACGGAAGTCCTAGTTAGCATGGGA -ACGGAAGTCCTAGTTAGCGTGCAA -ACGGAAGTCCTAGTTAGCGAGGAA -ACGGAAGTCCTAGTTAGCCAGGTA -ACGGAAGTCCTAGTTAGCGACTCT -ACGGAAGTCCTAGTTAGCAGTCCT -ACGGAAGTCCTAGTTAGCTAAGCC -ACGGAAGTCCTAGTTAGCATAGCC -ACGGAAGTCCTAGTTAGCTAACCG -ACGGAAGTCCTAGTTAGCATGCCA -ACGGAAGTCCTAGTCTTCGGAAAC -ACGGAAGTCCTAGTCTTCAACACC -ACGGAAGTCCTAGTCTTCATCGAG -ACGGAAGTCCTAGTCTTCCTCCTT -ACGGAAGTCCTAGTCTTCCCTGTT -ACGGAAGTCCTAGTCTTCCGGTTT -ACGGAAGTCCTAGTCTTCGTGGTT -ACGGAAGTCCTAGTCTTCGCCTTT -ACGGAAGTCCTAGTCTTCGGTCTT -ACGGAAGTCCTAGTCTTCACGCTT -ACGGAAGTCCTAGTCTTCAGCGTT -ACGGAAGTCCTAGTCTTCTTCGTC -ACGGAAGTCCTAGTCTTCTCTCTC -ACGGAAGTCCTAGTCTTCTGGATC -ACGGAAGTCCTAGTCTTCCACTTC -ACGGAAGTCCTAGTCTTCGTACTC -ACGGAAGTCCTAGTCTTCGATGTC -ACGGAAGTCCTAGTCTTCACAGTC -ACGGAAGTCCTAGTCTTCTTGCTG -ACGGAAGTCCTAGTCTTCTCCATG -ACGGAAGTCCTAGTCTTCTGTGTG -ACGGAAGTCCTAGTCTTCCTAGTG -ACGGAAGTCCTAGTCTTCCATCTG -ACGGAAGTCCTAGTCTTCGAGTTG -ACGGAAGTCCTAGTCTTCAGACTG -ACGGAAGTCCTAGTCTTCTCGGTA -ACGGAAGTCCTAGTCTTCTGCCTA -ACGGAAGTCCTAGTCTTCCCACTA -ACGGAAGTCCTAGTCTTCGGAGTA -ACGGAAGTCCTAGTCTTCTCGTCT -ACGGAAGTCCTAGTCTTCTGCACT -ACGGAAGTCCTAGTCTTCCTGACT -ACGGAAGTCCTAGTCTTCCAACCT -ACGGAAGTCCTAGTCTTCGCTACT -ACGGAAGTCCTAGTCTTCGGATCT -ACGGAAGTCCTAGTCTTCAAGGCT -ACGGAAGTCCTAGTCTTCTCAACC -ACGGAAGTCCTAGTCTTCTGTTCC -ACGGAAGTCCTAGTCTTCATTCCC -ACGGAAGTCCTAGTCTTCTTCTCG -ACGGAAGTCCTAGTCTTCTAGACG -ACGGAAGTCCTAGTCTTCGTAACG -ACGGAAGTCCTAGTCTTCACTTCG -ACGGAAGTCCTAGTCTTCTACGCA -ACGGAAGTCCTAGTCTTCCTTGCA -ACGGAAGTCCTAGTCTTCCGAACA -ACGGAAGTCCTAGTCTTCCAGTCA -ACGGAAGTCCTAGTCTTCGATCCA -ACGGAAGTCCTAGTCTTCACGACA -ACGGAAGTCCTAGTCTTCAGCTCA -ACGGAAGTCCTAGTCTTCTCACGT -ACGGAAGTCCTAGTCTTCCGTAGT -ACGGAAGTCCTAGTCTTCGTCAGT -ACGGAAGTCCTAGTCTTCGAAGGT -ACGGAAGTCCTAGTCTTCAACCGT -ACGGAAGTCCTAGTCTTCTTGTGC -ACGGAAGTCCTAGTCTTCCTAAGC -ACGGAAGTCCTAGTCTTCACTAGC -ACGGAAGTCCTAGTCTTCAGATGC -ACGGAAGTCCTAGTCTTCTGAAGG -ACGGAAGTCCTAGTCTTCCAATGG -ACGGAAGTCCTAGTCTTCATGAGG -ACGGAAGTCCTAGTCTTCAATGGG -ACGGAAGTCCTAGTCTTCTCCTGA -ACGGAAGTCCTAGTCTTCTAGCGA -ACGGAAGTCCTAGTCTTCCACAGA -ACGGAAGTCCTAGTCTTCGCAAGA -ACGGAAGTCCTAGTCTTCGGTTGA -ACGGAAGTCCTAGTCTTCTCCGAT -ACGGAAGTCCTAGTCTTCTGGCAT -ACGGAAGTCCTAGTCTTCCGAGAT -ACGGAAGTCCTAGTCTTCTACCAC -ACGGAAGTCCTAGTCTTCCAGAAC -ACGGAAGTCCTAGTCTTCGTCTAC -ACGGAAGTCCTAGTCTTCACGTAC -ACGGAAGTCCTAGTCTTCAGTGAC -ACGGAAGTCCTAGTCTTCCTGTAG -ACGGAAGTCCTAGTCTTCCCTAAG -ACGGAAGTCCTAGTCTTCGTTCAG -ACGGAAGTCCTAGTCTTCGCATAG -ACGGAAGTCCTAGTCTTCGACAAG -ACGGAAGTCCTAGTCTTCAAGCAG -ACGGAAGTCCTAGTCTTCCGTCAA -ACGGAAGTCCTAGTCTTCGCTGAA -ACGGAAGTCCTAGTCTTCAGTACG -ACGGAAGTCCTAGTCTTCATCCGA -ACGGAAGTCCTAGTCTTCATGGGA -ACGGAAGTCCTAGTCTTCGTGCAA -ACGGAAGTCCTAGTCTTCGAGGAA -ACGGAAGTCCTAGTCTTCCAGGTA -ACGGAAGTCCTAGTCTTCGACTCT -ACGGAAGTCCTAGTCTTCAGTCCT -ACGGAAGTCCTAGTCTTCTAAGCC -ACGGAAGTCCTAGTCTTCATAGCC -ACGGAAGTCCTAGTCTTCTAACCG -ACGGAAGTCCTAGTCTTCATGCCA -ACGGAAGTCCTACTCTCTGGAAAC -ACGGAAGTCCTACTCTCTAACACC -ACGGAAGTCCTACTCTCTATCGAG -ACGGAAGTCCTACTCTCTCTCCTT -ACGGAAGTCCTACTCTCTCCTGTT -ACGGAAGTCCTACTCTCTCGGTTT -ACGGAAGTCCTACTCTCTGTGGTT -ACGGAAGTCCTACTCTCTGCCTTT -ACGGAAGTCCTACTCTCTGGTCTT -ACGGAAGTCCTACTCTCTACGCTT -ACGGAAGTCCTACTCTCTAGCGTT -ACGGAAGTCCTACTCTCTTTCGTC -ACGGAAGTCCTACTCTCTTCTCTC -ACGGAAGTCCTACTCTCTTGGATC -ACGGAAGTCCTACTCTCTCACTTC -ACGGAAGTCCTACTCTCTGTACTC -ACGGAAGTCCTACTCTCTGATGTC -ACGGAAGTCCTACTCTCTACAGTC -ACGGAAGTCCTACTCTCTTTGCTG -ACGGAAGTCCTACTCTCTTCCATG -ACGGAAGTCCTACTCTCTTGTGTG -ACGGAAGTCCTACTCTCTCTAGTG -ACGGAAGTCCTACTCTCTCATCTG -ACGGAAGTCCTACTCTCTGAGTTG -ACGGAAGTCCTACTCTCTAGACTG -ACGGAAGTCCTACTCTCTTCGGTA -ACGGAAGTCCTACTCTCTTGCCTA -ACGGAAGTCCTACTCTCTCCACTA -ACGGAAGTCCTACTCTCTGGAGTA -ACGGAAGTCCTACTCTCTTCGTCT -ACGGAAGTCCTACTCTCTTGCACT -ACGGAAGTCCTACTCTCTCTGACT -ACGGAAGTCCTACTCTCTCAACCT -ACGGAAGTCCTACTCTCTGCTACT -ACGGAAGTCCTACTCTCTGGATCT -ACGGAAGTCCTACTCTCTAAGGCT -ACGGAAGTCCTACTCTCTTCAACC -ACGGAAGTCCTACTCTCTTGTTCC -ACGGAAGTCCTACTCTCTATTCCC -ACGGAAGTCCTACTCTCTTTCTCG -ACGGAAGTCCTACTCTCTTAGACG -ACGGAAGTCCTACTCTCTGTAACG -ACGGAAGTCCTACTCTCTACTTCG -ACGGAAGTCCTACTCTCTTACGCA -ACGGAAGTCCTACTCTCTCTTGCA -ACGGAAGTCCTACTCTCTCGAACA -ACGGAAGTCCTACTCTCTCAGTCA -ACGGAAGTCCTACTCTCTGATCCA -ACGGAAGTCCTACTCTCTACGACA -ACGGAAGTCCTACTCTCTAGCTCA -ACGGAAGTCCTACTCTCTTCACGT -ACGGAAGTCCTACTCTCTCGTAGT -ACGGAAGTCCTACTCTCTGTCAGT -ACGGAAGTCCTACTCTCTGAAGGT -ACGGAAGTCCTACTCTCTAACCGT -ACGGAAGTCCTACTCTCTTTGTGC -ACGGAAGTCCTACTCTCTCTAAGC -ACGGAAGTCCTACTCTCTACTAGC -ACGGAAGTCCTACTCTCTAGATGC -ACGGAAGTCCTACTCTCTTGAAGG -ACGGAAGTCCTACTCTCTCAATGG -ACGGAAGTCCTACTCTCTATGAGG -ACGGAAGTCCTACTCTCTAATGGG -ACGGAAGTCCTACTCTCTTCCTGA -ACGGAAGTCCTACTCTCTTAGCGA -ACGGAAGTCCTACTCTCTCACAGA -ACGGAAGTCCTACTCTCTGCAAGA -ACGGAAGTCCTACTCTCTGGTTGA -ACGGAAGTCCTACTCTCTTCCGAT -ACGGAAGTCCTACTCTCTTGGCAT -ACGGAAGTCCTACTCTCTCGAGAT -ACGGAAGTCCTACTCTCTTACCAC -ACGGAAGTCCTACTCTCTCAGAAC -ACGGAAGTCCTACTCTCTGTCTAC -ACGGAAGTCCTACTCTCTACGTAC -ACGGAAGTCCTACTCTCTAGTGAC -ACGGAAGTCCTACTCTCTCTGTAG -ACGGAAGTCCTACTCTCTCCTAAG -ACGGAAGTCCTACTCTCTGTTCAG -ACGGAAGTCCTACTCTCTGCATAG -ACGGAAGTCCTACTCTCTGACAAG -ACGGAAGTCCTACTCTCTAAGCAG -ACGGAAGTCCTACTCTCTCGTCAA -ACGGAAGTCCTACTCTCTGCTGAA -ACGGAAGTCCTACTCTCTAGTACG -ACGGAAGTCCTACTCTCTATCCGA -ACGGAAGTCCTACTCTCTATGGGA -ACGGAAGTCCTACTCTCTGTGCAA -ACGGAAGTCCTACTCTCTGAGGAA -ACGGAAGTCCTACTCTCTCAGGTA -ACGGAAGTCCTACTCTCTGACTCT -ACGGAAGTCCTACTCTCTAGTCCT -ACGGAAGTCCTACTCTCTTAAGCC -ACGGAAGTCCTACTCTCTATAGCC -ACGGAAGTCCTACTCTCTTAACCG -ACGGAAGTCCTACTCTCTATGCCA -ACGGAAGTCCTAATCTGGGGAAAC -ACGGAAGTCCTAATCTGGAACACC -ACGGAAGTCCTAATCTGGATCGAG -ACGGAAGTCCTAATCTGGCTCCTT -ACGGAAGTCCTAATCTGGCCTGTT -ACGGAAGTCCTAATCTGGCGGTTT -ACGGAAGTCCTAATCTGGGTGGTT -ACGGAAGTCCTAATCTGGGCCTTT -ACGGAAGTCCTAATCTGGGGTCTT -ACGGAAGTCCTAATCTGGACGCTT -ACGGAAGTCCTAATCTGGAGCGTT -ACGGAAGTCCTAATCTGGTTCGTC -ACGGAAGTCCTAATCTGGTCTCTC -ACGGAAGTCCTAATCTGGTGGATC -ACGGAAGTCCTAATCTGGCACTTC -ACGGAAGTCCTAATCTGGGTACTC -ACGGAAGTCCTAATCTGGGATGTC -ACGGAAGTCCTAATCTGGACAGTC -ACGGAAGTCCTAATCTGGTTGCTG -ACGGAAGTCCTAATCTGGTCCATG -ACGGAAGTCCTAATCTGGTGTGTG -ACGGAAGTCCTAATCTGGCTAGTG -ACGGAAGTCCTAATCTGGCATCTG -ACGGAAGTCCTAATCTGGGAGTTG -ACGGAAGTCCTAATCTGGAGACTG -ACGGAAGTCCTAATCTGGTCGGTA -ACGGAAGTCCTAATCTGGTGCCTA -ACGGAAGTCCTAATCTGGCCACTA -ACGGAAGTCCTAATCTGGGGAGTA -ACGGAAGTCCTAATCTGGTCGTCT -ACGGAAGTCCTAATCTGGTGCACT -ACGGAAGTCCTAATCTGGCTGACT -ACGGAAGTCCTAATCTGGCAACCT -ACGGAAGTCCTAATCTGGGCTACT -ACGGAAGTCCTAATCTGGGGATCT -ACGGAAGTCCTAATCTGGAAGGCT -ACGGAAGTCCTAATCTGGTCAACC -ACGGAAGTCCTAATCTGGTGTTCC -ACGGAAGTCCTAATCTGGATTCCC -ACGGAAGTCCTAATCTGGTTCTCG -ACGGAAGTCCTAATCTGGTAGACG -ACGGAAGTCCTAATCTGGGTAACG -ACGGAAGTCCTAATCTGGACTTCG -ACGGAAGTCCTAATCTGGTACGCA -ACGGAAGTCCTAATCTGGCTTGCA -ACGGAAGTCCTAATCTGGCGAACA -ACGGAAGTCCTAATCTGGCAGTCA -ACGGAAGTCCTAATCTGGGATCCA -ACGGAAGTCCTAATCTGGACGACA -ACGGAAGTCCTAATCTGGAGCTCA -ACGGAAGTCCTAATCTGGTCACGT -ACGGAAGTCCTAATCTGGCGTAGT -ACGGAAGTCCTAATCTGGGTCAGT -ACGGAAGTCCTAATCTGGGAAGGT -ACGGAAGTCCTAATCTGGAACCGT -ACGGAAGTCCTAATCTGGTTGTGC -ACGGAAGTCCTAATCTGGCTAAGC -ACGGAAGTCCTAATCTGGACTAGC -ACGGAAGTCCTAATCTGGAGATGC -ACGGAAGTCCTAATCTGGTGAAGG -ACGGAAGTCCTAATCTGGCAATGG -ACGGAAGTCCTAATCTGGATGAGG -ACGGAAGTCCTAATCTGGAATGGG -ACGGAAGTCCTAATCTGGTCCTGA -ACGGAAGTCCTAATCTGGTAGCGA -ACGGAAGTCCTAATCTGGCACAGA -ACGGAAGTCCTAATCTGGGCAAGA -ACGGAAGTCCTAATCTGGGGTTGA -ACGGAAGTCCTAATCTGGTCCGAT -ACGGAAGTCCTAATCTGGTGGCAT -ACGGAAGTCCTAATCTGGCGAGAT -ACGGAAGTCCTAATCTGGTACCAC -ACGGAAGTCCTAATCTGGCAGAAC -ACGGAAGTCCTAATCTGGGTCTAC -ACGGAAGTCCTAATCTGGACGTAC -ACGGAAGTCCTAATCTGGAGTGAC -ACGGAAGTCCTAATCTGGCTGTAG -ACGGAAGTCCTAATCTGGCCTAAG -ACGGAAGTCCTAATCTGGGTTCAG -ACGGAAGTCCTAATCTGGGCATAG -ACGGAAGTCCTAATCTGGGACAAG -ACGGAAGTCCTAATCTGGAAGCAG -ACGGAAGTCCTAATCTGGCGTCAA -ACGGAAGTCCTAATCTGGGCTGAA -ACGGAAGTCCTAATCTGGAGTACG -ACGGAAGTCCTAATCTGGATCCGA -ACGGAAGTCCTAATCTGGATGGGA -ACGGAAGTCCTAATCTGGGTGCAA -ACGGAAGTCCTAATCTGGGAGGAA -ACGGAAGTCCTAATCTGGCAGGTA -ACGGAAGTCCTAATCTGGGACTCT -ACGGAAGTCCTAATCTGGAGTCCT -ACGGAAGTCCTAATCTGGTAAGCC -ACGGAAGTCCTAATCTGGATAGCC -ACGGAAGTCCTAATCTGGTAACCG -ACGGAAGTCCTAATCTGGATGCCA -ACGGAAGTCCTATTCCACGGAAAC -ACGGAAGTCCTATTCCACAACACC -ACGGAAGTCCTATTCCACATCGAG -ACGGAAGTCCTATTCCACCTCCTT -ACGGAAGTCCTATTCCACCCTGTT -ACGGAAGTCCTATTCCACCGGTTT -ACGGAAGTCCTATTCCACGTGGTT -ACGGAAGTCCTATTCCACGCCTTT -ACGGAAGTCCTATTCCACGGTCTT -ACGGAAGTCCTATTCCACACGCTT -ACGGAAGTCCTATTCCACAGCGTT -ACGGAAGTCCTATTCCACTTCGTC -ACGGAAGTCCTATTCCACTCTCTC -ACGGAAGTCCTATTCCACTGGATC -ACGGAAGTCCTATTCCACCACTTC -ACGGAAGTCCTATTCCACGTACTC -ACGGAAGTCCTATTCCACGATGTC -ACGGAAGTCCTATTCCACACAGTC -ACGGAAGTCCTATTCCACTTGCTG -ACGGAAGTCCTATTCCACTCCATG -ACGGAAGTCCTATTCCACTGTGTG -ACGGAAGTCCTATTCCACCTAGTG -ACGGAAGTCCTATTCCACCATCTG -ACGGAAGTCCTATTCCACGAGTTG -ACGGAAGTCCTATTCCACAGACTG -ACGGAAGTCCTATTCCACTCGGTA -ACGGAAGTCCTATTCCACTGCCTA -ACGGAAGTCCTATTCCACCCACTA -ACGGAAGTCCTATTCCACGGAGTA -ACGGAAGTCCTATTCCACTCGTCT -ACGGAAGTCCTATTCCACTGCACT -ACGGAAGTCCTATTCCACCTGACT -ACGGAAGTCCTATTCCACCAACCT -ACGGAAGTCCTATTCCACGCTACT -ACGGAAGTCCTATTCCACGGATCT -ACGGAAGTCCTATTCCACAAGGCT -ACGGAAGTCCTATTCCACTCAACC -ACGGAAGTCCTATTCCACTGTTCC -ACGGAAGTCCTATTCCACATTCCC -ACGGAAGTCCTATTCCACTTCTCG -ACGGAAGTCCTATTCCACTAGACG -ACGGAAGTCCTATTCCACGTAACG -ACGGAAGTCCTATTCCACACTTCG -ACGGAAGTCCTATTCCACTACGCA -ACGGAAGTCCTATTCCACCTTGCA -ACGGAAGTCCTATTCCACCGAACA -ACGGAAGTCCTATTCCACCAGTCA -ACGGAAGTCCTATTCCACGATCCA -ACGGAAGTCCTATTCCACACGACA -ACGGAAGTCCTATTCCACAGCTCA -ACGGAAGTCCTATTCCACTCACGT -ACGGAAGTCCTATTCCACCGTAGT -ACGGAAGTCCTATTCCACGTCAGT -ACGGAAGTCCTATTCCACGAAGGT -ACGGAAGTCCTATTCCACAACCGT -ACGGAAGTCCTATTCCACTTGTGC -ACGGAAGTCCTATTCCACCTAAGC -ACGGAAGTCCTATTCCACACTAGC -ACGGAAGTCCTATTCCACAGATGC -ACGGAAGTCCTATTCCACTGAAGG -ACGGAAGTCCTATTCCACCAATGG -ACGGAAGTCCTATTCCACATGAGG -ACGGAAGTCCTATTCCACAATGGG -ACGGAAGTCCTATTCCACTCCTGA -ACGGAAGTCCTATTCCACTAGCGA -ACGGAAGTCCTATTCCACCACAGA -ACGGAAGTCCTATTCCACGCAAGA -ACGGAAGTCCTATTCCACGGTTGA -ACGGAAGTCCTATTCCACTCCGAT -ACGGAAGTCCTATTCCACTGGCAT -ACGGAAGTCCTATTCCACCGAGAT -ACGGAAGTCCTATTCCACTACCAC -ACGGAAGTCCTATTCCACCAGAAC -ACGGAAGTCCTATTCCACGTCTAC -ACGGAAGTCCTATTCCACACGTAC -ACGGAAGTCCTATTCCACAGTGAC -ACGGAAGTCCTATTCCACCTGTAG -ACGGAAGTCCTATTCCACCCTAAG -ACGGAAGTCCTATTCCACGTTCAG -ACGGAAGTCCTATTCCACGCATAG -ACGGAAGTCCTATTCCACGACAAG -ACGGAAGTCCTATTCCACAAGCAG -ACGGAAGTCCTATTCCACCGTCAA -ACGGAAGTCCTATTCCACGCTGAA -ACGGAAGTCCTATTCCACAGTACG -ACGGAAGTCCTATTCCACATCCGA -ACGGAAGTCCTATTCCACATGGGA -ACGGAAGTCCTATTCCACGTGCAA -ACGGAAGTCCTATTCCACGAGGAA -ACGGAAGTCCTATTCCACCAGGTA -ACGGAAGTCCTATTCCACGACTCT -ACGGAAGTCCTATTCCACAGTCCT -ACGGAAGTCCTATTCCACTAAGCC -ACGGAAGTCCTATTCCACATAGCC -ACGGAAGTCCTATTCCACTAACCG -ACGGAAGTCCTATTCCACATGCCA -ACGGAAGTCCTACTCGTAGGAAAC -ACGGAAGTCCTACTCGTAAACACC -ACGGAAGTCCTACTCGTAATCGAG -ACGGAAGTCCTACTCGTACTCCTT -ACGGAAGTCCTACTCGTACCTGTT -ACGGAAGTCCTACTCGTACGGTTT -ACGGAAGTCCTACTCGTAGTGGTT -ACGGAAGTCCTACTCGTAGCCTTT -ACGGAAGTCCTACTCGTAGGTCTT -ACGGAAGTCCTACTCGTAACGCTT -ACGGAAGTCCTACTCGTAAGCGTT -ACGGAAGTCCTACTCGTATTCGTC -ACGGAAGTCCTACTCGTATCTCTC -ACGGAAGTCCTACTCGTATGGATC -ACGGAAGTCCTACTCGTACACTTC -ACGGAAGTCCTACTCGTAGTACTC -ACGGAAGTCCTACTCGTAGATGTC -ACGGAAGTCCTACTCGTAACAGTC -ACGGAAGTCCTACTCGTATTGCTG -ACGGAAGTCCTACTCGTATCCATG -ACGGAAGTCCTACTCGTATGTGTG -ACGGAAGTCCTACTCGTACTAGTG -ACGGAAGTCCTACTCGTACATCTG -ACGGAAGTCCTACTCGTAGAGTTG -ACGGAAGTCCTACTCGTAAGACTG -ACGGAAGTCCTACTCGTATCGGTA -ACGGAAGTCCTACTCGTATGCCTA -ACGGAAGTCCTACTCGTACCACTA -ACGGAAGTCCTACTCGTAGGAGTA -ACGGAAGTCCTACTCGTATCGTCT -ACGGAAGTCCTACTCGTATGCACT -ACGGAAGTCCTACTCGTACTGACT -ACGGAAGTCCTACTCGTACAACCT -ACGGAAGTCCTACTCGTAGCTACT -ACGGAAGTCCTACTCGTAGGATCT -ACGGAAGTCCTACTCGTAAAGGCT -ACGGAAGTCCTACTCGTATCAACC -ACGGAAGTCCTACTCGTATGTTCC -ACGGAAGTCCTACTCGTAATTCCC -ACGGAAGTCCTACTCGTATTCTCG -ACGGAAGTCCTACTCGTATAGACG -ACGGAAGTCCTACTCGTAGTAACG -ACGGAAGTCCTACTCGTAACTTCG -ACGGAAGTCCTACTCGTATACGCA -ACGGAAGTCCTACTCGTACTTGCA -ACGGAAGTCCTACTCGTACGAACA -ACGGAAGTCCTACTCGTACAGTCA -ACGGAAGTCCTACTCGTAGATCCA -ACGGAAGTCCTACTCGTAACGACA -ACGGAAGTCCTACTCGTAAGCTCA -ACGGAAGTCCTACTCGTATCACGT -ACGGAAGTCCTACTCGTACGTAGT -ACGGAAGTCCTACTCGTAGTCAGT -ACGGAAGTCCTACTCGTAGAAGGT -ACGGAAGTCCTACTCGTAAACCGT -ACGGAAGTCCTACTCGTATTGTGC -ACGGAAGTCCTACTCGTACTAAGC -ACGGAAGTCCTACTCGTAACTAGC -ACGGAAGTCCTACTCGTAAGATGC -ACGGAAGTCCTACTCGTATGAAGG -ACGGAAGTCCTACTCGTACAATGG -ACGGAAGTCCTACTCGTAATGAGG -ACGGAAGTCCTACTCGTAAATGGG -ACGGAAGTCCTACTCGTATCCTGA -ACGGAAGTCCTACTCGTATAGCGA -ACGGAAGTCCTACTCGTACACAGA -ACGGAAGTCCTACTCGTAGCAAGA -ACGGAAGTCCTACTCGTAGGTTGA -ACGGAAGTCCTACTCGTATCCGAT -ACGGAAGTCCTACTCGTATGGCAT -ACGGAAGTCCTACTCGTACGAGAT -ACGGAAGTCCTACTCGTATACCAC -ACGGAAGTCCTACTCGTACAGAAC -ACGGAAGTCCTACTCGTAGTCTAC -ACGGAAGTCCTACTCGTAACGTAC -ACGGAAGTCCTACTCGTAAGTGAC -ACGGAAGTCCTACTCGTACTGTAG -ACGGAAGTCCTACTCGTACCTAAG -ACGGAAGTCCTACTCGTAGTTCAG -ACGGAAGTCCTACTCGTAGCATAG -ACGGAAGTCCTACTCGTAGACAAG -ACGGAAGTCCTACTCGTAAAGCAG -ACGGAAGTCCTACTCGTACGTCAA -ACGGAAGTCCTACTCGTAGCTGAA -ACGGAAGTCCTACTCGTAAGTACG -ACGGAAGTCCTACTCGTAATCCGA -ACGGAAGTCCTACTCGTAATGGGA -ACGGAAGTCCTACTCGTAGTGCAA -ACGGAAGTCCTACTCGTAGAGGAA -ACGGAAGTCCTACTCGTACAGGTA -ACGGAAGTCCTACTCGTAGACTCT -ACGGAAGTCCTACTCGTAAGTCCT -ACGGAAGTCCTACTCGTATAAGCC -ACGGAAGTCCTACTCGTAATAGCC -ACGGAAGTCCTACTCGTATAACCG -ACGGAAGTCCTACTCGTAATGCCA -ACGGAAGTCCTAGTCGATGGAAAC -ACGGAAGTCCTAGTCGATAACACC -ACGGAAGTCCTAGTCGATATCGAG -ACGGAAGTCCTAGTCGATCTCCTT -ACGGAAGTCCTAGTCGATCCTGTT -ACGGAAGTCCTAGTCGATCGGTTT -ACGGAAGTCCTAGTCGATGTGGTT -ACGGAAGTCCTAGTCGATGCCTTT -ACGGAAGTCCTAGTCGATGGTCTT -ACGGAAGTCCTAGTCGATACGCTT -ACGGAAGTCCTAGTCGATAGCGTT -ACGGAAGTCCTAGTCGATTTCGTC -ACGGAAGTCCTAGTCGATTCTCTC -ACGGAAGTCCTAGTCGATTGGATC -ACGGAAGTCCTAGTCGATCACTTC -ACGGAAGTCCTAGTCGATGTACTC -ACGGAAGTCCTAGTCGATGATGTC -ACGGAAGTCCTAGTCGATACAGTC -ACGGAAGTCCTAGTCGATTTGCTG -ACGGAAGTCCTAGTCGATTCCATG -ACGGAAGTCCTAGTCGATTGTGTG -ACGGAAGTCCTAGTCGATCTAGTG -ACGGAAGTCCTAGTCGATCATCTG -ACGGAAGTCCTAGTCGATGAGTTG -ACGGAAGTCCTAGTCGATAGACTG -ACGGAAGTCCTAGTCGATTCGGTA -ACGGAAGTCCTAGTCGATTGCCTA -ACGGAAGTCCTAGTCGATCCACTA -ACGGAAGTCCTAGTCGATGGAGTA -ACGGAAGTCCTAGTCGATTCGTCT -ACGGAAGTCCTAGTCGATTGCACT -ACGGAAGTCCTAGTCGATCTGACT -ACGGAAGTCCTAGTCGATCAACCT -ACGGAAGTCCTAGTCGATGCTACT -ACGGAAGTCCTAGTCGATGGATCT -ACGGAAGTCCTAGTCGATAAGGCT -ACGGAAGTCCTAGTCGATTCAACC -ACGGAAGTCCTAGTCGATTGTTCC -ACGGAAGTCCTAGTCGATATTCCC -ACGGAAGTCCTAGTCGATTTCTCG -ACGGAAGTCCTAGTCGATTAGACG -ACGGAAGTCCTAGTCGATGTAACG -ACGGAAGTCCTAGTCGATACTTCG -ACGGAAGTCCTAGTCGATTACGCA -ACGGAAGTCCTAGTCGATCTTGCA -ACGGAAGTCCTAGTCGATCGAACA -ACGGAAGTCCTAGTCGATCAGTCA -ACGGAAGTCCTAGTCGATGATCCA -ACGGAAGTCCTAGTCGATACGACA -ACGGAAGTCCTAGTCGATAGCTCA -ACGGAAGTCCTAGTCGATTCACGT -ACGGAAGTCCTAGTCGATCGTAGT -ACGGAAGTCCTAGTCGATGTCAGT -ACGGAAGTCCTAGTCGATGAAGGT -ACGGAAGTCCTAGTCGATAACCGT -ACGGAAGTCCTAGTCGATTTGTGC -ACGGAAGTCCTAGTCGATCTAAGC -ACGGAAGTCCTAGTCGATACTAGC -ACGGAAGTCCTAGTCGATAGATGC -ACGGAAGTCCTAGTCGATTGAAGG -ACGGAAGTCCTAGTCGATCAATGG -ACGGAAGTCCTAGTCGATATGAGG -ACGGAAGTCCTAGTCGATAATGGG -ACGGAAGTCCTAGTCGATTCCTGA -ACGGAAGTCCTAGTCGATTAGCGA -ACGGAAGTCCTAGTCGATCACAGA -ACGGAAGTCCTAGTCGATGCAAGA -ACGGAAGTCCTAGTCGATGGTTGA -ACGGAAGTCCTAGTCGATTCCGAT -ACGGAAGTCCTAGTCGATTGGCAT -ACGGAAGTCCTAGTCGATCGAGAT -ACGGAAGTCCTAGTCGATTACCAC -ACGGAAGTCCTAGTCGATCAGAAC -ACGGAAGTCCTAGTCGATGTCTAC -ACGGAAGTCCTAGTCGATACGTAC -ACGGAAGTCCTAGTCGATAGTGAC -ACGGAAGTCCTAGTCGATCTGTAG -ACGGAAGTCCTAGTCGATCCTAAG -ACGGAAGTCCTAGTCGATGTTCAG -ACGGAAGTCCTAGTCGATGCATAG -ACGGAAGTCCTAGTCGATGACAAG -ACGGAAGTCCTAGTCGATAAGCAG -ACGGAAGTCCTAGTCGATCGTCAA -ACGGAAGTCCTAGTCGATGCTGAA -ACGGAAGTCCTAGTCGATAGTACG -ACGGAAGTCCTAGTCGATATCCGA -ACGGAAGTCCTAGTCGATATGGGA -ACGGAAGTCCTAGTCGATGTGCAA -ACGGAAGTCCTAGTCGATGAGGAA -ACGGAAGTCCTAGTCGATCAGGTA -ACGGAAGTCCTAGTCGATGACTCT -ACGGAAGTCCTAGTCGATAGTCCT -ACGGAAGTCCTAGTCGATTAAGCC -ACGGAAGTCCTAGTCGATATAGCC -ACGGAAGTCCTAGTCGATTAACCG -ACGGAAGTCCTAGTCGATATGCCA -ACGGAAGTCCTAGTCACAGGAAAC -ACGGAAGTCCTAGTCACAAACACC -ACGGAAGTCCTAGTCACAATCGAG -ACGGAAGTCCTAGTCACACTCCTT -ACGGAAGTCCTAGTCACACCTGTT -ACGGAAGTCCTAGTCACACGGTTT -ACGGAAGTCCTAGTCACAGTGGTT -ACGGAAGTCCTAGTCACAGCCTTT -ACGGAAGTCCTAGTCACAGGTCTT -ACGGAAGTCCTAGTCACAACGCTT -ACGGAAGTCCTAGTCACAAGCGTT -ACGGAAGTCCTAGTCACATTCGTC -ACGGAAGTCCTAGTCACATCTCTC -ACGGAAGTCCTAGTCACATGGATC -ACGGAAGTCCTAGTCACACACTTC -ACGGAAGTCCTAGTCACAGTACTC -ACGGAAGTCCTAGTCACAGATGTC -ACGGAAGTCCTAGTCACAACAGTC -ACGGAAGTCCTAGTCACATTGCTG -ACGGAAGTCCTAGTCACATCCATG -ACGGAAGTCCTAGTCACATGTGTG -ACGGAAGTCCTAGTCACACTAGTG -ACGGAAGTCCTAGTCACACATCTG -ACGGAAGTCCTAGTCACAGAGTTG -ACGGAAGTCCTAGTCACAAGACTG -ACGGAAGTCCTAGTCACATCGGTA -ACGGAAGTCCTAGTCACATGCCTA -ACGGAAGTCCTAGTCACACCACTA -ACGGAAGTCCTAGTCACAGGAGTA -ACGGAAGTCCTAGTCACATCGTCT -ACGGAAGTCCTAGTCACATGCACT -ACGGAAGTCCTAGTCACACTGACT -ACGGAAGTCCTAGTCACACAACCT -ACGGAAGTCCTAGTCACAGCTACT -ACGGAAGTCCTAGTCACAGGATCT -ACGGAAGTCCTAGTCACAAAGGCT -ACGGAAGTCCTAGTCACATCAACC -ACGGAAGTCCTAGTCACATGTTCC -ACGGAAGTCCTAGTCACAATTCCC -ACGGAAGTCCTAGTCACATTCTCG -ACGGAAGTCCTAGTCACATAGACG -ACGGAAGTCCTAGTCACAGTAACG -ACGGAAGTCCTAGTCACAACTTCG -ACGGAAGTCCTAGTCACATACGCA -ACGGAAGTCCTAGTCACACTTGCA -ACGGAAGTCCTAGTCACACGAACA -ACGGAAGTCCTAGTCACACAGTCA -ACGGAAGTCCTAGTCACAGATCCA -ACGGAAGTCCTAGTCACAACGACA -ACGGAAGTCCTAGTCACAAGCTCA -ACGGAAGTCCTAGTCACATCACGT -ACGGAAGTCCTAGTCACACGTAGT -ACGGAAGTCCTAGTCACAGTCAGT -ACGGAAGTCCTAGTCACAGAAGGT -ACGGAAGTCCTAGTCACAAACCGT -ACGGAAGTCCTAGTCACATTGTGC -ACGGAAGTCCTAGTCACACTAAGC -ACGGAAGTCCTAGTCACAACTAGC -ACGGAAGTCCTAGTCACAAGATGC -ACGGAAGTCCTAGTCACATGAAGG -ACGGAAGTCCTAGTCACACAATGG -ACGGAAGTCCTAGTCACAATGAGG -ACGGAAGTCCTAGTCACAAATGGG -ACGGAAGTCCTAGTCACATCCTGA -ACGGAAGTCCTAGTCACATAGCGA -ACGGAAGTCCTAGTCACACACAGA -ACGGAAGTCCTAGTCACAGCAAGA -ACGGAAGTCCTAGTCACAGGTTGA -ACGGAAGTCCTAGTCACATCCGAT -ACGGAAGTCCTAGTCACATGGCAT -ACGGAAGTCCTAGTCACACGAGAT -ACGGAAGTCCTAGTCACATACCAC -ACGGAAGTCCTAGTCACACAGAAC -ACGGAAGTCCTAGTCACAGTCTAC -ACGGAAGTCCTAGTCACAACGTAC -ACGGAAGTCCTAGTCACAAGTGAC -ACGGAAGTCCTAGTCACACTGTAG -ACGGAAGTCCTAGTCACACCTAAG -ACGGAAGTCCTAGTCACAGTTCAG -ACGGAAGTCCTAGTCACAGCATAG -ACGGAAGTCCTAGTCACAGACAAG -ACGGAAGTCCTAGTCACAAAGCAG -ACGGAAGTCCTAGTCACACGTCAA -ACGGAAGTCCTAGTCACAGCTGAA -ACGGAAGTCCTAGTCACAAGTACG -ACGGAAGTCCTAGTCACAATCCGA -ACGGAAGTCCTAGTCACAATGGGA -ACGGAAGTCCTAGTCACAGTGCAA -ACGGAAGTCCTAGTCACAGAGGAA -ACGGAAGTCCTAGTCACACAGGTA -ACGGAAGTCCTAGTCACAGACTCT -ACGGAAGTCCTAGTCACAAGTCCT -ACGGAAGTCCTAGTCACATAAGCC -ACGGAAGTCCTAGTCACAATAGCC -ACGGAAGTCCTAGTCACATAACCG -ACGGAAGTCCTAGTCACAATGCCA -ACGGAAGTCCTACTGTTGGGAAAC -ACGGAAGTCCTACTGTTGAACACC -ACGGAAGTCCTACTGTTGATCGAG -ACGGAAGTCCTACTGTTGCTCCTT -ACGGAAGTCCTACTGTTGCCTGTT -ACGGAAGTCCTACTGTTGCGGTTT -ACGGAAGTCCTACTGTTGGTGGTT -ACGGAAGTCCTACTGTTGGCCTTT -ACGGAAGTCCTACTGTTGGGTCTT -ACGGAAGTCCTACTGTTGACGCTT -ACGGAAGTCCTACTGTTGAGCGTT -ACGGAAGTCCTACTGTTGTTCGTC -ACGGAAGTCCTACTGTTGTCTCTC -ACGGAAGTCCTACTGTTGTGGATC -ACGGAAGTCCTACTGTTGCACTTC -ACGGAAGTCCTACTGTTGGTACTC -ACGGAAGTCCTACTGTTGGATGTC -ACGGAAGTCCTACTGTTGACAGTC -ACGGAAGTCCTACTGTTGTTGCTG -ACGGAAGTCCTACTGTTGTCCATG -ACGGAAGTCCTACTGTTGTGTGTG -ACGGAAGTCCTACTGTTGCTAGTG -ACGGAAGTCCTACTGTTGCATCTG -ACGGAAGTCCTACTGTTGGAGTTG -ACGGAAGTCCTACTGTTGAGACTG -ACGGAAGTCCTACTGTTGTCGGTA -ACGGAAGTCCTACTGTTGTGCCTA -ACGGAAGTCCTACTGTTGCCACTA -ACGGAAGTCCTACTGTTGGGAGTA -ACGGAAGTCCTACTGTTGTCGTCT -ACGGAAGTCCTACTGTTGTGCACT -ACGGAAGTCCTACTGTTGCTGACT -ACGGAAGTCCTACTGTTGCAACCT -ACGGAAGTCCTACTGTTGGCTACT -ACGGAAGTCCTACTGTTGGGATCT -ACGGAAGTCCTACTGTTGAAGGCT -ACGGAAGTCCTACTGTTGTCAACC -ACGGAAGTCCTACTGTTGTGTTCC -ACGGAAGTCCTACTGTTGATTCCC -ACGGAAGTCCTACTGTTGTTCTCG -ACGGAAGTCCTACTGTTGTAGACG -ACGGAAGTCCTACTGTTGGTAACG -ACGGAAGTCCTACTGTTGACTTCG -ACGGAAGTCCTACTGTTGTACGCA -ACGGAAGTCCTACTGTTGCTTGCA -ACGGAAGTCCTACTGTTGCGAACA -ACGGAAGTCCTACTGTTGCAGTCA -ACGGAAGTCCTACTGTTGGATCCA -ACGGAAGTCCTACTGTTGACGACA -ACGGAAGTCCTACTGTTGAGCTCA -ACGGAAGTCCTACTGTTGTCACGT -ACGGAAGTCCTACTGTTGCGTAGT -ACGGAAGTCCTACTGTTGGTCAGT -ACGGAAGTCCTACTGTTGGAAGGT -ACGGAAGTCCTACTGTTGAACCGT -ACGGAAGTCCTACTGTTGTTGTGC -ACGGAAGTCCTACTGTTGCTAAGC -ACGGAAGTCCTACTGTTGACTAGC -ACGGAAGTCCTACTGTTGAGATGC -ACGGAAGTCCTACTGTTGTGAAGG -ACGGAAGTCCTACTGTTGCAATGG -ACGGAAGTCCTACTGTTGATGAGG -ACGGAAGTCCTACTGTTGAATGGG -ACGGAAGTCCTACTGTTGTCCTGA -ACGGAAGTCCTACTGTTGTAGCGA -ACGGAAGTCCTACTGTTGCACAGA -ACGGAAGTCCTACTGTTGGCAAGA -ACGGAAGTCCTACTGTTGGGTTGA -ACGGAAGTCCTACTGTTGTCCGAT -ACGGAAGTCCTACTGTTGTGGCAT -ACGGAAGTCCTACTGTTGCGAGAT -ACGGAAGTCCTACTGTTGTACCAC -ACGGAAGTCCTACTGTTGCAGAAC -ACGGAAGTCCTACTGTTGGTCTAC -ACGGAAGTCCTACTGTTGACGTAC -ACGGAAGTCCTACTGTTGAGTGAC -ACGGAAGTCCTACTGTTGCTGTAG -ACGGAAGTCCTACTGTTGCCTAAG -ACGGAAGTCCTACTGTTGGTTCAG -ACGGAAGTCCTACTGTTGGCATAG -ACGGAAGTCCTACTGTTGGACAAG -ACGGAAGTCCTACTGTTGAAGCAG -ACGGAAGTCCTACTGTTGCGTCAA -ACGGAAGTCCTACTGTTGGCTGAA -ACGGAAGTCCTACTGTTGAGTACG -ACGGAAGTCCTACTGTTGATCCGA -ACGGAAGTCCTACTGTTGATGGGA -ACGGAAGTCCTACTGTTGGTGCAA -ACGGAAGTCCTACTGTTGGAGGAA -ACGGAAGTCCTACTGTTGCAGGTA -ACGGAAGTCCTACTGTTGGACTCT -ACGGAAGTCCTACTGTTGAGTCCT -ACGGAAGTCCTACTGTTGTAAGCC -ACGGAAGTCCTACTGTTGATAGCC -ACGGAAGTCCTACTGTTGTAACCG -ACGGAAGTCCTACTGTTGATGCCA -ACGGAAGTCCTAATGTCCGGAAAC -ACGGAAGTCCTAATGTCCAACACC -ACGGAAGTCCTAATGTCCATCGAG -ACGGAAGTCCTAATGTCCCTCCTT -ACGGAAGTCCTAATGTCCCCTGTT -ACGGAAGTCCTAATGTCCCGGTTT -ACGGAAGTCCTAATGTCCGTGGTT -ACGGAAGTCCTAATGTCCGCCTTT -ACGGAAGTCCTAATGTCCGGTCTT -ACGGAAGTCCTAATGTCCACGCTT -ACGGAAGTCCTAATGTCCAGCGTT -ACGGAAGTCCTAATGTCCTTCGTC -ACGGAAGTCCTAATGTCCTCTCTC -ACGGAAGTCCTAATGTCCTGGATC -ACGGAAGTCCTAATGTCCCACTTC -ACGGAAGTCCTAATGTCCGTACTC -ACGGAAGTCCTAATGTCCGATGTC -ACGGAAGTCCTAATGTCCACAGTC -ACGGAAGTCCTAATGTCCTTGCTG -ACGGAAGTCCTAATGTCCTCCATG -ACGGAAGTCCTAATGTCCTGTGTG -ACGGAAGTCCTAATGTCCCTAGTG -ACGGAAGTCCTAATGTCCCATCTG -ACGGAAGTCCTAATGTCCGAGTTG -ACGGAAGTCCTAATGTCCAGACTG -ACGGAAGTCCTAATGTCCTCGGTA -ACGGAAGTCCTAATGTCCTGCCTA -ACGGAAGTCCTAATGTCCCCACTA -ACGGAAGTCCTAATGTCCGGAGTA -ACGGAAGTCCTAATGTCCTCGTCT -ACGGAAGTCCTAATGTCCTGCACT -ACGGAAGTCCTAATGTCCCTGACT -ACGGAAGTCCTAATGTCCCAACCT -ACGGAAGTCCTAATGTCCGCTACT -ACGGAAGTCCTAATGTCCGGATCT -ACGGAAGTCCTAATGTCCAAGGCT -ACGGAAGTCCTAATGTCCTCAACC -ACGGAAGTCCTAATGTCCTGTTCC -ACGGAAGTCCTAATGTCCATTCCC -ACGGAAGTCCTAATGTCCTTCTCG -ACGGAAGTCCTAATGTCCTAGACG -ACGGAAGTCCTAATGTCCGTAACG -ACGGAAGTCCTAATGTCCACTTCG -ACGGAAGTCCTAATGTCCTACGCA -ACGGAAGTCCTAATGTCCCTTGCA -ACGGAAGTCCTAATGTCCCGAACA -ACGGAAGTCCTAATGTCCCAGTCA -ACGGAAGTCCTAATGTCCGATCCA -ACGGAAGTCCTAATGTCCACGACA -ACGGAAGTCCTAATGTCCAGCTCA -ACGGAAGTCCTAATGTCCTCACGT -ACGGAAGTCCTAATGTCCCGTAGT -ACGGAAGTCCTAATGTCCGTCAGT -ACGGAAGTCCTAATGTCCGAAGGT -ACGGAAGTCCTAATGTCCAACCGT -ACGGAAGTCCTAATGTCCTTGTGC -ACGGAAGTCCTAATGTCCCTAAGC -ACGGAAGTCCTAATGTCCACTAGC -ACGGAAGTCCTAATGTCCAGATGC -ACGGAAGTCCTAATGTCCTGAAGG -ACGGAAGTCCTAATGTCCCAATGG -ACGGAAGTCCTAATGTCCATGAGG -ACGGAAGTCCTAATGTCCAATGGG -ACGGAAGTCCTAATGTCCTCCTGA -ACGGAAGTCCTAATGTCCTAGCGA -ACGGAAGTCCTAATGTCCCACAGA -ACGGAAGTCCTAATGTCCGCAAGA -ACGGAAGTCCTAATGTCCGGTTGA -ACGGAAGTCCTAATGTCCTCCGAT -ACGGAAGTCCTAATGTCCTGGCAT -ACGGAAGTCCTAATGTCCCGAGAT -ACGGAAGTCCTAATGTCCTACCAC -ACGGAAGTCCTAATGTCCCAGAAC -ACGGAAGTCCTAATGTCCGTCTAC -ACGGAAGTCCTAATGTCCACGTAC -ACGGAAGTCCTAATGTCCAGTGAC -ACGGAAGTCCTAATGTCCCTGTAG -ACGGAAGTCCTAATGTCCCCTAAG -ACGGAAGTCCTAATGTCCGTTCAG -ACGGAAGTCCTAATGTCCGCATAG -ACGGAAGTCCTAATGTCCGACAAG -ACGGAAGTCCTAATGTCCAAGCAG -ACGGAAGTCCTAATGTCCCGTCAA -ACGGAAGTCCTAATGTCCGCTGAA -ACGGAAGTCCTAATGTCCAGTACG -ACGGAAGTCCTAATGTCCATCCGA -ACGGAAGTCCTAATGTCCATGGGA -ACGGAAGTCCTAATGTCCGTGCAA -ACGGAAGTCCTAATGTCCGAGGAA -ACGGAAGTCCTAATGTCCCAGGTA -ACGGAAGTCCTAATGTCCGACTCT -ACGGAAGTCCTAATGTCCAGTCCT -ACGGAAGTCCTAATGTCCTAAGCC -ACGGAAGTCCTAATGTCCATAGCC -ACGGAAGTCCTAATGTCCTAACCG -ACGGAAGTCCTAATGTCCATGCCA -ACGGAAGTCCTAGTGTGTGGAAAC -ACGGAAGTCCTAGTGTGTAACACC -ACGGAAGTCCTAGTGTGTATCGAG -ACGGAAGTCCTAGTGTGTCTCCTT -ACGGAAGTCCTAGTGTGTCCTGTT -ACGGAAGTCCTAGTGTGTCGGTTT -ACGGAAGTCCTAGTGTGTGTGGTT -ACGGAAGTCCTAGTGTGTGCCTTT -ACGGAAGTCCTAGTGTGTGGTCTT -ACGGAAGTCCTAGTGTGTACGCTT -ACGGAAGTCCTAGTGTGTAGCGTT -ACGGAAGTCCTAGTGTGTTTCGTC -ACGGAAGTCCTAGTGTGTTCTCTC -ACGGAAGTCCTAGTGTGTTGGATC -ACGGAAGTCCTAGTGTGTCACTTC -ACGGAAGTCCTAGTGTGTGTACTC -ACGGAAGTCCTAGTGTGTGATGTC -ACGGAAGTCCTAGTGTGTACAGTC -ACGGAAGTCCTAGTGTGTTTGCTG -ACGGAAGTCCTAGTGTGTTCCATG -ACGGAAGTCCTAGTGTGTTGTGTG -ACGGAAGTCCTAGTGTGTCTAGTG -ACGGAAGTCCTAGTGTGTCATCTG -ACGGAAGTCCTAGTGTGTGAGTTG -ACGGAAGTCCTAGTGTGTAGACTG -ACGGAAGTCCTAGTGTGTTCGGTA -ACGGAAGTCCTAGTGTGTTGCCTA -ACGGAAGTCCTAGTGTGTCCACTA -ACGGAAGTCCTAGTGTGTGGAGTA -ACGGAAGTCCTAGTGTGTTCGTCT -ACGGAAGTCCTAGTGTGTTGCACT -ACGGAAGTCCTAGTGTGTCTGACT -ACGGAAGTCCTAGTGTGTCAACCT -ACGGAAGTCCTAGTGTGTGCTACT -ACGGAAGTCCTAGTGTGTGGATCT -ACGGAAGTCCTAGTGTGTAAGGCT -ACGGAAGTCCTAGTGTGTTCAACC -ACGGAAGTCCTAGTGTGTTGTTCC -ACGGAAGTCCTAGTGTGTATTCCC -ACGGAAGTCCTAGTGTGTTTCTCG -ACGGAAGTCCTAGTGTGTTAGACG -ACGGAAGTCCTAGTGTGTGTAACG -ACGGAAGTCCTAGTGTGTACTTCG -ACGGAAGTCCTAGTGTGTTACGCA -ACGGAAGTCCTAGTGTGTCTTGCA -ACGGAAGTCCTAGTGTGTCGAACA -ACGGAAGTCCTAGTGTGTCAGTCA -ACGGAAGTCCTAGTGTGTGATCCA -ACGGAAGTCCTAGTGTGTACGACA -ACGGAAGTCCTAGTGTGTAGCTCA -ACGGAAGTCCTAGTGTGTTCACGT -ACGGAAGTCCTAGTGTGTCGTAGT -ACGGAAGTCCTAGTGTGTGTCAGT -ACGGAAGTCCTAGTGTGTGAAGGT -ACGGAAGTCCTAGTGTGTAACCGT -ACGGAAGTCCTAGTGTGTTTGTGC -ACGGAAGTCCTAGTGTGTCTAAGC -ACGGAAGTCCTAGTGTGTACTAGC -ACGGAAGTCCTAGTGTGTAGATGC -ACGGAAGTCCTAGTGTGTTGAAGG -ACGGAAGTCCTAGTGTGTCAATGG -ACGGAAGTCCTAGTGTGTATGAGG -ACGGAAGTCCTAGTGTGTAATGGG -ACGGAAGTCCTAGTGTGTTCCTGA -ACGGAAGTCCTAGTGTGTTAGCGA -ACGGAAGTCCTAGTGTGTCACAGA -ACGGAAGTCCTAGTGTGTGCAAGA -ACGGAAGTCCTAGTGTGTGGTTGA -ACGGAAGTCCTAGTGTGTTCCGAT -ACGGAAGTCCTAGTGTGTTGGCAT -ACGGAAGTCCTAGTGTGTCGAGAT -ACGGAAGTCCTAGTGTGTTACCAC -ACGGAAGTCCTAGTGTGTCAGAAC -ACGGAAGTCCTAGTGTGTGTCTAC -ACGGAAGTCCTAGTGTGTACGTAC -ACGGAAGTCCTAGTGTGTAGTGAC -ACGGAAGTCCTAGTGTGTCTGTAG -ACGGAAGTCCTAGTGTGTCCTAAG -ACGGAAGTCCTAGTGTGTGTTCAG -ACGGAAGTCCTAGTGTGTGCATAG -ACGGAAGTCCTAGTGTGTGACAAG -ACGGAAGTCCTAGTGTGTAAGCAG -ACGGAAGTCCTAGTGTGTCGTCAA -ACGGAAGTCCTAGTGTGTGCTGAA -ACGGAAGTCCTAGTGTGTAGTACG -ACGGAAGTCCTAGTGTGTATCCGA -ACGGAAGTCCTAGTGTGTATGGGA -ACGGAAGTCCTAGTGTGTGTGCAA -ACGGAAGTCCTAGTGTGTGAGGAA -ACGGAAGTCCTAGTGTGTCAGGTA -ACGGAAGTCCTAGTGTGTGACTCT -ACGGAAGTCCTAGTGTGTAGTCCT -ACGGAAGTCCTAGTGTGTTAAGCC -ACGGAAGTCCTAGTGTGTATAGCC -ACGGAAGTCCTAGTGTGTTAACCG -ACGGAAGTCCTAGTGTGTATGCCA -ACGGAAGTCCTAGTGCTAGGAAAC -ACGGAAGTCCTAGTGCTAAACACC -ACGGAAGTCCTAGTGCTAATCGAG -ACGGAAGTCCTAGTGCTACTCCTT -ACGGAAGTCCTAGTGCTACCTGTT -ACGGAAGTCCTAGTGCTACGGTTT -ACGGAAGTCCTAGTGCTAGTGGTT -ACGGAAGTCCTAGTGCTAGCCTTT -ACGGAAGTCCTAGTGCTAGGTCTT -ACGGAAGTCCTAGTGCTAACGCTT -ACGGAAGTCCTAGTGCTAAGCGTT -ACGGAAGTCCTAGTGCTATTCGTC -ACGGAAGTCCTAGTGCTATCTCTC -ACGGAAGTCCTAGTGCTATGGATC -ACGGAAGTCCTAGTGCTACACTTC -ACGGAAGTCCTAGTGCTAGTACTC -ACGGAAGTCCTAGTGCTAGATGTC -ACGGAAGTCCTAGTGCTAACAGTC -ACGGAAGTCCTAGTGCTATTGCTG -ACGGAAGTCCTAGTGCTATCCATG -ACGGAAGTCCTAGTGCTATGTGTG -ACGGAAGTCCTAGTGCTACTAGTG -ACGGAAGTCCTAGTGCTACATCTG -ACGGAAGTCCTAGTGCTAGAGTTG -ACGGAAGTCCTAGTGCTAAGACTG -ACGGAAGTCCTAGTGCTATCGGTA -ACGGAAGTCCTAGTGCTATGCCTA -ACGGAAGTCCTAGTGCTACCACTA -ACGGAAGTCCTAGTGCTAGGAGTA -ACGGAAGTCCTAGTGCTATCGTCT -ACGGAAGTCCTAGTGCTATGCACT -ACGGAAGTCCTAGTGCTACTGACT -ACGGAAGTCCTAGTGCTACAACCT -ACGGAAGTCCTAGTGCTAGCTACT -ACGGAAGTCCTAGTGCTAGGATCT -ACGGAAGTCCTAGTGCTAAAGGCT -ACGGAAGTCCTAGTGCTATCAACC -ACGGAAGTCCTAGTGCTATGTTCC -ACGGAAGTCCTAGTGCTAATTCCC -ACGGAAGTCCTAGTGCTATTCTCG -ACGGAAGTCCTAGTGCTATAGACG -ACGGAAGTCCTAGTGCTAGTAACG -ACGGAAGTCCTAGTGCTAACTTCG -ACGGAAGTCCTAGTGCTATACGCA -ACGGAAGTCCTAGTGCTACTTGCA -ACGGAAGTCCTAGTGCTACGAACA -ACGGAAGTCCTAGTGCTACAGTCA -ACGGAAGTCCTAGTGCTAGATCCA -ACGGAAGTCCTAGTGCTAACGACA -ACGGAAGTCCTAGTGCTAAGCTCA -ACGGAAGTCCTAGTGCTATCACGT -ACGGAAGTCCTAGTGCTACGTAGT -ACGGAAGTCCTAGTGCTAGTCAGT -ACGGAAGTCCTAGTGCTAGAAGGT -ACGGAAGTCCTAGTGCTAAACCGT -ACGGAAGTCCTAGTGCTATTGTGC -ACGGAAGTCCTAGTGCTACTAAGC -ACGGAAGTCCTAGTGCTAACTAGC -ACGGAAGTCCTAGTGCTAAGATGC -ACGGAAGTCCTAGTGCTATGAAGG -ACGGAAGTCCTAGTGCTACAATGG -ACGGAAGTCCTAGTGCTAATGAGG -ACGGAAGTCCTAGTGCTAAATGGG -ACGGAAGTCCTAGTGCTATCCTGA -ACGGAAGTCCTAGTGCTATAGCGA -ACGGAAGTCCTAGTGCTACACAGA -ACGGAAGTCCTAGTGCTAGCAAGA -ACGGAAGTCCTAGTGCTAGGTTGA -ACGGAAGTCCTAGTGCTATCCGAT -ACGGAAGTCCTAGTGCTATGGCAT -ACGGAAGTCCTAGTGCTACGAGAT -ACGGAAGTCCTAGTGCTATACCAC -ACGGAAGTCCTAGTGCTACAGAAC -ACGGAAGTCCTAGTGCTAGTCTAC -ACGGAAGTCCTAGTGCTAACGTAC -ACGGAAGTCCTAGTGCTAAGTGAC -ACGGAAGTCCTAGTGCTACTGTAG -ACGGAAGTCCTAGTGCTACCTAAG -ACGGAAGTCCTAGTGCTAGTTCAG -ACGGAAGTCCTAGTGCTAGCATAG -ACGGAAGTCCTAGTGCTAGACAAG -ACGGAAGTCCTAGTGCTAAAGCAG -ACGGAAGTCCTAGTGCTACGTCAA -ACGGAAGTCCTAGTGCTAGCTGAA -ACGGAAGTCCTAGTGCTAAGTACG -ACGGAAGTCCTAGTGCTAATCCGA -ACGGAAGTCCTAGTGCTAATGGGA -ACGGAAGTCCTAGTGCTAGTGCAA -ACGGAAGTCCTAGTGCTAGAGGAA -ACGGAAGTCCTAGTGCTACAGGTA -ACGGAAGTCCTAGTGCTAGACTCT -ACGGAAGTCCTAGTGCTAAGTCCT -ACGGAAGTCCTAGTGCTATAAGCC -ACGGAAGTCCTAGTGCTAATAGCC -ACGGAAGTCCTAGTGCTATAACCG -ACGGAAGTCCTAGTGCTAATGCCA -ACGGAAGTCCTACTGCATGGAAAC -ACGGAAGTCCTACTGCATAACACC -ACGGAAGTCCTACTGCATATCGAG -ACGGAAGTCCTACTGCATCTCCTT -ACGGAAGTCCTACTGCATCCTGTT -ACGGAAGTCCTACTGCATCGGTTT -ACGGAAGTCCTACTGCATGTGGTT -ACGGAAGTCCTACTGCATGCCTTT -ACGGAAGTCCTACTGCATGGTCTT -ACGGAAGTCCTACTGCATACGCTT -ACGGAAGTCCTACTGCATAGCGTT -ACGGAAGTCCTACTGCATTTCGTC -ACGGAAGTCCTACTGCATTCTCTC -ACGGAAGTCCTACTGCATTGGATC -ACGGAAGTCCTACTGCATCACTTC -ACGGAAGTCCTACTGCATGTACTC -ACGGAAGTCCTACTGCATGATGTC -ACGGAAGTCCTACTGCATACAGTC -ACGGAAGTCCTACTGCATTTGCTG -ACGGAAGTCCTACTGCATTCCATG -ACGGAAGTCCTACTGCATTGTGTG -ACGGAAGTCCTACTGCATCTAGTG -ACGGAAGTCCTACTGCATCATCTG -ACGGAAGTCCTACTGCATGAGTTG -ACGGAAGTCCTACTGCATAGACTG -ACGGAAGTCCTACTGCATTCGGTA -ACGGAAGTCCTACTGCATTGCCTA -ACGGAAGTCCTACTGCATCCACTA -ACGGAAGTCCTACTGCATGGAGTA -ACGGAAGTCCTACTGCATTCGTCT -ACGGAAGTCCTACTGCATTGCACT -ACGGAAGTCCTACTGCATCTGACT -ACGGAAGTCCTACTGCATCAACCT -ACGGAAGTCCTACTGCATGCTACT -ACGGAAGTCCTACTGCATGGATCT -ACGGAAGTCCTACTGCATAAGGCT -ACGGAAGTCCTACTGCATTCAACC -ACGGAAGTCCTACTGCATTGTTCC -ACGGAAGTCCTACTGCATATTCCC -ACGGAAGTCCTACTGCATTTCTCG -ACGGAAGTCCTACTGCATTAGACG -ACGGAAGTCCTACTGCATGTAACG -ACGGAAGTCCTACTGCATACTTCG -ACGGAAGTCCTACTGCATTACGCA -ACGGAAGTCCTACTGCATCTTGCA -ACGGAAGTCCTACTGCATCGAACA -ACGGAAGTCCTACTGCATCAGTCA -ACGGAAGTCCTACTGCATGATCCA -ACGGAAGTCCTACTGCATACGACA -ACGGAAGTCCTACTGCATAGCTCA -ACGGAAGTCCTACTGCATTCACGT -ACGGAAGTCCTACTGCATCGTAGT -ACGGAAGTCCTACTGCATGTCAGT -ACGGAAGTCCTACTGCATGAAGGT -ACGGAAGTCCTACTGCATAACCGT -ACGGAAGTCCTACTGCATTTGTGC -ACGGAAGTCCTACTGCATCTAAGC -ACGGAAGTCCTACTGCATACTAGC -ACGGAAGTCCTACTGCATAGATGC -ACGGAAGTCCTACTGCATTGAAGG -ACGGAAGTCCTACTGCATCAATGG -ACGGAAGTCCTACTGCATATGAGG -ACGGAAGTCCTACTGCATAATGGG -ACGGAAGTCCTACTGCATTCCTGA -ACGGAAGTCCTACTGCATTAGCGA -ACGGAAGTCCTACTGCATCACAGA -ACGGAAGTCCTACTGCATGCAAGA -ACGGAAGTCCTACTGCATGGTTGA -ACGGAAGTCCTACTGCATTCCGAT -ACGGAAGTCCTACTGCATTGGCAT -ACGGAAGTCCTACTGCATCGAGAT -ACGGAAGTCCTACTGCATTACCAC -ACGGAAGTCCTACTGCATCAGAAC -ACGGAAGTCCTACTGCATGTCTAC -ACGGAAGTCCTACTGCATACGTAC -ACGGAAGTCCTACTGCATAGTGAC -ACGGAAGTCCTACTGCATCTGTAG -ACGGAAGTCCTACTGCATCCTAAG -ACGGAAGTCCTACTGCATGTTCAG -ACGGAAGTCCTACTGCATGCATAG -ACGGAAGTCCTACTGCATGACAAG -ACGGAAGTCCTACTGCATAAGCAG -ACGGAAGTCCTACTGCATCGTCAA -ACGGAAGTCCTACTGCATGCTGAA -ACGGAAGTCCTACTGCATAGTACG -ACGGAAGTCCTACTGCATATCCGA -ACGGAAGTCCTACTGCATATGGGA -ACGGAAGTCCTACTGCATGTGCAA -ACGGAAGTCCTACTGCATGAGGAA -ACGGAAGTCCTACTGCATCAGGTA -ACGGAAGTCCTACTGCATGACTCT -ACGGAAGTCCTACTGCATAGTCCT -ACGGAAGTCCTACTGCATTAAGCC -ACGGAAGTCCTACTGCATATAGCC -ACGGAAGTCCTACTGCATTAACCG -ACGGAAGTCCTACTGCATATGCCA -ACGGAAGTCCTATTGGAGGGAAAC -ACGGAAGTCCTATTGGAGAACACC -ACGGAAGTCCTATTGGAGATCGAG -ACGGAAGTCCTATTGGAGCTCCTT -ACGGAAGTCCTATTGGAGCCTGTT -ACGGAAGTCCTATTGGAGCGGTTT -ACGGAAGTCCTATTGGAGGTGGTT -ACGGAAGTCCTATTGGAGGCCTTT -ACGGAAGTCCTATTGGAGGGTCTT -ACGGAAGTCCTATTGGAGACGCTT -ACGGAAGTCCTATTGGAGAGCGTT -ACGGAAGTCCTATTGGAGTTCGTC -ACGGAAGTCCTATTGGAGTCTCTC -ACGGAAGTCCTATTGGAGTGGATC -ACGGAAGTCCTATTGGAGCACTTC -ACGGAAGTCCTATTGGAGGTACTC -ACGGAAGTCCTATTGGAGGATGTC -ACGGAAGTCCTATTGGAGACAGTC -ACGGAAGTCCTATTGGAGTTGCTG -ACGGAAGTCCTATTGGAGTCCATG -ACGGAAGTCCTATTGGAGTGTGTG -ACGGAAGTCCTATTGGAGCTAGTG -ACGGAAGTCCTATTGGAGCATCTG -ACGGAAGTCCTATTGGAGGAGTTG -ACGGAAGTCCTATTGGAGAGACTG -ACGGAAGTCCTATTGGAGTCGGTA -ACGGAAGTCCTATTGGAGTGCCTA -ACGGAAGTCCTATTGGAGCCACTA -ACGGAAGTCCTATTGGAGGGAGTA -ACGGAAGTCCTATTGGAGTCGTCT -ACGGAAGTCCTATTGGAGTGCACT -ACGGAAGTCCTATTGGAGCTGACT -ACGGAAGTCCTATTGGAGCAACCT -ACGGAAGTCCTATTGGAGGCTACT -ACGGAAGTCCTATTGGAGGGATCT -ACGGAAGTCCTATTGGAGAAGGCT -ACGGAAGTCCTATTGGAGTCAACC -ACGGAAGTCCTATTGGAGTGTTCC -ACGGAAGTCCTATTGGAGATTCCC -ACGGAAGTCCTATTGGAGTTCTCG -ACGGAAGTCCTATTGGAGTAGACG -ACGGAAGTCCTATTGGAGGTAACG -ACGGAAGTCCTATTGGAGACTTCG -ACGGAAGTCCTATTGGAGTACGCA -ACGGAAGTCCTATTGGAGCTTGCA -ACGGAAGTCCTATTGGAGCGAACA -ACGGAAGTCCTATTGGAGCAGTCA -ACGGAAGTCCTATTGGAGGATCCA -ACGGAAGTCCTATTGGAGACGACA -ACGGAAGTCCTATTGGAGAGCTCA -ACGGAAGTCCTATTGGAGTCACGT -ACGGAAGTCCTATTGGAGCGTAGT -ACGGAAGTCCTATTGGAGGTCAGT -ACGGAAGTCCTATTGGAGGAAGGT -ACGGAAGTCCTATTGGAGAACCGT -ACGGAAGTCCTATTGGAGTTGTGC -ACGGAAGTCCTATTGGAGCTAAGC -ACGGAAGTCCTATTGGAGACTAGC -ACGGAAGTCCTATTGGAGAGATGC -ACGGAAGTCCTATTGGAGTGAAGG -ACGGAAGTCCTATTGGAGCAATGG -ACGGAAGTCCTATTGGAGATGAGG -ACGGAAGTCCTATTGGAGAATGGG -ACGGAAGTCCTATTGGAGTCCTGA -ACGGAAGTCCTATTGGAGTAGCGA -ACGGAAGTCCTATTGGAGCACAGA -ACGGAAGTCCTATTGGAGGCAAGA -ACGGAAGTCCTATTGGAGGGTTGA -ACGGAAGTCCTATTGGAGTCCGAT -ACGGAAGTCCTATTGGAGTGGCAT -ACGGAAGTCCTATTGGAGCGAGAT -ACGGAAGTCCTATTGGAGTACCAC -ACGGAAGTCCTATTGGAGCAGAAC -ACGGAAGTCCTATTGGAGGTCTAC -ACGGAAGTCCTATTGGAGACGTAC -ACGGAAGTCCTATTGGAGAGTGAC -ACGGAAGTCCTATTGGAGCTGTAG -ACGGAAGTCCTATTGGAGCCTAAG -ACGGAAGTCCTATTGGAGGTTCAG -ACGGAAGTCCTATTGGAGGCATAG -ACGGAAGTCCTATTGGAGGACAAG -ACGGAAGTCCTATTGGAGAAGCAG -ACGGAAGTCCTATTGGAGCGTCAA -ACGGAAGTCCTATTGGAGGCTGAA -ACGGAAGTCCTATTGGAGAGTACG -ACGGAAGTCCTATTGGAGATCCGA -ACGGAAGTCCTATTGGAGATGGGA -ACGGAAGTCCTATTGGAGGTGCAA -ACGGAAGTCCTATTGGAGGAGGAA -ACGGAAGTCCTATTGGAGCAGGTA -ACGGAAGTCCTATTGGAGGACTCT -ACGGAAGTCCTATTGGAGAGTCCT -ACGGAAGTCCTATTGGAGTAAGCC -ACGGAAGTCCTATTGGAGATAGCC -ACGGAAGTCCTATTGGAGTAACCG -ACGGAAGTCCTATTGGAGATGCCA -ACGGAAGTCCTACTGAGAGGAAAC -ACGGAAGTCCTACTGAGAAACACC -ACGGAAGTCCTACTGAGAATCGAG -ACGGAAGTCCTACTGAGACTCCTT -ACGGAAGTCCTACTGAGACCTGTT -ACGGAAGTCCTACTGAGACGGTTT -ACGGAAGTCCTACTGAGAGTGGTT -ACGGAAGTCCTACTGAGAGCCTTT -ACGGAAGTCCTACTGAGAGGTCTT -ACGGAAGTCCTACTGAGAACGCTT -ACGGAAGTCCTACTGAGAAGCGTT -ACGGAAGTCCTACTGAGATTCGTC -ACGGAAGTCCTACTGAGATCTCTC -ACGGAAGTCCTACTGAGATGGATC -ACGGAAGTCCTACTGAGACACTTC -ACGGAAGTCCTACTGAGAGTACTC -ACGGAAGTCCTACTGAGAGATGTC -ACGGAAGTCCTACTGAGAACAGTC -ACGGAAGTCCTACTGAGATTGCTG -ACGGAAGTCCTACTGAGATCCATG -ACGGAAGTCCTACTGAGATGTGTG -ACGGAAGTCCTACTGAGACTAGTG -ACGGAAGTCCTACTGAGACATCTG -ACGGAAGTCCTACTGAGAGAGTTG -ACGGAAGTCCTACTGAGAAGACTG -ACGGAAGTCCTACTGAGATCGGTA -ACGGAAGTCCTACTGAGATGCCTA -ACGGAAGTCCTACTGAGACCACTA -ACGGAAGTCCTACTGAGAGGAGTA -ACGGAAGTCCTACTGAGATCGTCT -ACGGAAGTCCTACTGAGATGCACT -ACGGAAGTCCTACTGAGACTGACT -ACGGAAGTCCTACTGAGACAACCT -ACGGAAGTCCTACTGAGAGCTACT -ACGGAAGTCCTACTGAGAGGATCT -ACGGAAGTCCTACTGAGAAAGGCT -ACGGAAGTCCTACTGAGATCAACC -ACGGAAGTCCTACTGAGATGTTCC -ACGGAAGTCCTACTGAGAATTCCC -ACGGAAGTCCTACTGAGATTCTCG -ACGGAAGTCCTACTGAGATAGACG -ACGGAAGTCCTACTGAGAGTAACG -ACGGAAGTCCTACTGAGAACTTCG -ACGGAAGTCCTACTGAGATACGCA -ACGGAAGTCCTACTGAGACTTGCA -ACGGAAGTCCTACTGAGACGAACA -ACGGAAGTCCTACTGAGACAGTCA -ACGGAAGTCCTACTGAGAGATCCA -ACGGAAGTCCTACTGAGAACGACA -ACGGAAGTCCTACTGAGAAGCTCA -ACGGAAGTCCTACTGAGATCACGT -ACGGAAGTCCTACTGAGACGTAGT -ACGGAAGTCCTACTGAGAGTCAGT -ACGGAAGTCCTACTGAGAGAAGGT -ACGGAAGTCCTACTGAGAAACCGT -ACGGAAGTCCTACTGAGATTGTGC -ACGGAAGTCCTACTGAGACTAAGC -ACGGAAGTCCTACTGAGAACTAGC -ACGGAAGTCCTACTGAGAAGATGC -ACGGAAGTCCTACTGAGATGAAGG -ACGGAAGTCCTACTGAGACAATGG -ACGGAAGTCCTACTGAGAATGAGG -ACGGAAGTCCTACTGAGAAATGGG -ACGGAAGTCCTACTGAGATCCTGA -ACGGAAGTCCTACTGAGATAGCGA -ACGGAAGTCCTACTGAGACACAGA -ACGGAAGTCCTACTGAGAGCAAGA -ACGGAAGTCCTACTGAGAGGTTGA -ACGGAAGTCCTACTGAGATCCGAT -ACGGAAGTCCTACTGAGATGGCAT -ACGGAAGTCCTACTGAGACGAGAT -ACGGAAGTCCTACTGAGATACCAC -ACGGAAGTCCTACTGAGACAGAAC -ACGGAAGTCCTACTGAGAGTCTAC -ACGGAAGTCCTACTGAGAACGTAC -ACGGAAGTCCTACTGAGAAGTGAC -ACGGAAGTCCTACTGAGACTGTAG -ACGGAAGTCCTACTGAGACCTAAG -ACGGAAGTCCTACTGAGAGTTCAG -ACGGAAGTCCTACTGAGAGCATAG -ACGGAAGTCCTACTGAGAGACAAG -ACGGAAGTCCTACTGAGAAAGCAG -ACGGAAGTCCTACTGAGACGTCAA -ACGGAAGTCCTACTGAGAGCTGAA -ACGGAAGTCCTACTGAGAAGTACG -ACGGAAGTCCTACTGAGAATCCGA -ACGGAAGTCCTACTGAGAATGGGA -ACGGAAGTCCTACTGAGAGTGCAA -ACGGAAGTCCTACTGAGAGAGGAA -ACGGAAGTCCTACTGAGACAGGTA -ACGGAAGTCCTACTGAGAGACTCT -ACGGAAGTCCTACTGAGAAGTCCT -ACGGAAGTCCTACTGAGATAAGCC -ACGGAAGTCCTACTGAGAATAGCC -ACGGAAGTCCTACTGAGATAACCG -ACGGAAGTCCTACTGAGAATGCCA -ACGGAAGTCCTAGTATCGGGAAAC -ACGGAAGTCCTAGTATCGAACACC -ACGGAAGTCCTAGTATCGATCGAG -ACGGAAGTCCTAGTATCGCTCCTT -ACGGAAGTCCTAGTATCGCCTGTT -ACGGAAGTCCTAGTATCGCGGTTT -ACGGAAGTCCTAGTATCGGTGGTT -ACGGAAGTCCTAGTATCGGCCTTT -ACGGAAGTCCTAGTATCGGGTCTT -ACGGAAGTCCTAGTATCGACGCTT -ACGGAAGTCCTAGTATCGAGCGTT -ACGGAAGTCCTAGTATCGTTCGTC -ACGGAAGTCCTAGTATCGTCTCTC -ACGGAAGTCCTAGTATCGTGGATC -ACGGAAGTCCTAGTATCGCACTTC -ACGGAAGTCCTAGTATCGGTACTC -ACGGAAGTCCTAGTATCGGATGTC -ACGGAAGTCCTAGTATCGACAGTC -ACGGAAGTCCTAGTATCGTTGCTG -ACGGAAGTCCTAGTATCGTCCATG -ACGGAAGTCCTAGTATCGTGTGTG -ACGGAAGTCCTAGTATCGCTAGTG -ACGGAAGTCCTAGTATCGCATCTG -ACGGAAGTCCTAGTATCGGAGTTG -ACGGAAGTCCTAGTATCGAGACTG -ACGGAAGTCCTAGTATCGTCGGTA -ACGGAAGTCCTAGTATCGTGCCTA -ACGGAAGTCCTAGTATCGCCACTA -ACGGAAGTCCTAGTATCGGGAGTA -ACGGAAGTCCTAGTATCGTCGTCT -ACGGAAGTCCTAGTATCGTGCACT -ACGGAAGTCCTAGTATCGCTGACT -ACGGAAGTCCTAGTATCGCAACCT -ACGGAAGTCCTAGTATCGGCTACT -ACGGAAGTCCTAGTATCGGGATCT -ACGGAAGTCCTAGTATCGAAGGCT -ACGGAAGTCCTAGTATCGTCAACC -ACGGAAGTCCTAGTATCGTGTTCC -ACGGAAGTCCTAGTATCGATTCCC -ACGGAAGTCCTAGTATCGTTCTCG -ACGGAAGTCCTAGTATCGTAGACG -ACGGAAGTCCTAGTATCGGTAACG -ACGGAAGTCCTAGTATCGACTTCG -ACGGAAGTCCTAGTATCGTACGCA -ACGGAAGTCCTAGTATCGCTTGCA -ACGGAAGTCCTAGTATCGCGAACA -ACGGAAGTCCTAGTATCGCAGTCA -ACGGAAGTCCTAGTATCGGATCCA -ACGGAAGTCCTAGTATCGACGACA -ACGGAAGTCCTAGTATCGAGCTCA -ACGGAAGTCCTAGTATCGTCACGT -ACGGAAGTCCTAGTATCGCGTAGT -ACGGAAGTCCTAGTATCGGTCAGT -ACGGAAGTCCTAGTATCGGAAGGT -ACGGAAGTCCTAGTATCGAACCGT -ACGGAAGTCCTAGTATCGTTGTGC -ACGGAAGTCCTAGTATCGCTAAGC -ACGGAAGTCCTAGTATCGACTAGC -ACGGAAGTCCTAGTATCGAGATGC -ACGGAAGTCCTAGTATCGTGAAGG -ACGGAAGTCCTAGTATCGCAATGG -ACGGAAGTCCTAGTATCGATGAGG -ACGGAAGTCCTAGTATCGAATGGG -ACGGAAGTCCTAGTATCGTCCTGA -ACGGAAGTCCTAGTATCGTAGCGA -ACGGAAGTCCTAGTATCGCACAGA -ACGGAAGTCCTAGTATCGGCAAGA -ACGGAAGTCCTAGTATCGGGTTGA -ACGGAAGTCCTAGTATCGTCCGAT -ACGGAAGTCCTAGTATCGTGGCAT -ACGGAAGTCCTAGTATCGCGAGAT -ACGGAAGTCCTAGTATCGTACCAC -ACGGAAGTCCTAGTATCGCAGAAC -ACGGAAGTCCTAGTATCGGTCTAC -ACGGAAGTCCTAGTATCGACGTAC -ACGGAAGTCCTAGTATCGAGTGAC -ACGGAAGTCCTAGTATCGCTGTAG -ACGGAAGTCCTAGTATCGCCTAAG -ACGGAAGTCCTAGTATCGGTTCAG -ACGGAAGTCCTAGTATCGGCATAG -ACGGAAGTCCTAGTATCGGACAAG -ACGGAAGTCCTAGTATCGAAGCAG -ACGGAAGTCCTAGTATCGCGTCAA -ACGGAAGTCCTAGTATCGGCTGAA -ACGGAAGTCCTAGTATCGAGTACG -ACGGAAGTCCTAGTATCGATCCGA -ACGGAAGTCCTAGTATCGATGGGA -ACGGAAGTCCTAGTATCGGTGCAA -ACGGAAGTCCTAGTATCGGAGGAA -ACGGAAGTCCTAGTATCGCAGGTA -ACGGAAGTCCTAGTATCGGACTCT -ACGGAAGTCCTAGTATCGAGTCCT -ACGGAAGTCCTAGTATCGTAAGCC -ACGGAAGTCCTAGTATCGATAGCC -ACGGAAGTCCTAGTATCGTAACCG -ACGGAAGTCCTAGTATCGATGCCA -ACGGAAGTCCTACTATGCGGAAAC -ACGGAAGTCCTACTATGCAACACC -ACGGAAGTCCTACTATGCATCGAG -ACGGAAGTCCTACTATGCCTCCTT -ACGGAAGTCCTACTATGCCCTGTT -ACGGAAGTCCTACTATGCCGGTTT -ACGGAAGTCCTACTATGCGTGGTT -ACGGAAGTCCTACTATGCGCCTTT -ACGGAAGTCCTACTATGCGGTCTT -ACGGAAGTCCTACTATGCACGCTT -ACGGAAGTCCTACTATGCAGCGTT -ACGGAAGTCCTACTATGCTTCGTC -ACGGAAGTCCTACTATGCTCTCTC -ACGGAAGTCCTACTATGCTGGATC -ACGGAAGTCCTACTATGCCACTTC -ACGGAAGTCCTACTATGCGTACTC -ACGGAAGTCCTACTATGCGATGTC -ACGGAAGTCCTACTATGCACAGTC -ACGGAAGTCCTACTATGCTTGCTG -ACGGAAGTCCTACTATGCTCCATG -ACGGAAGTCCTACTATGCTGTGTG -ACGGAAGTCCTACTATGCCTAGTG -ACGGAAGTCCTACTATGCCATCTG -ACGGAAGTCCTACTATGCGAGTTG -ACGGAAGTCCTACTATGCAGACTG -ACGGAAGTCCTACTATGCTCGGTA -ACGGAAGTCCTACTATGCTGCCTA -ACGGAAGTCCTACTATGCCCACTA -ACGGAAGTCCTACTATGCGGAGTA -ACGGAAGTCCTACTATGCTCGTCT -ACGGAAGTCCTACTATGCTGCACT -ACGGAAGTCCTACTATGCCTGACT -ACGGAAGTCCTACTATGCCAACCT -ACGGAAGTCCTACTATGCGCTACT -ACGGAAGTCCTACTATGCGGATCT -ACGGAAGTCCTACTATGCAAGGCT -ACGGAAGTCCTACTATGCTCAACC -ACGGAAGTCCTACTATGCTGTTCC -ACGGAAGTCCTACTATGCATTCCC -ACGGAAGTCCTACTATGCTTCTCG -ACGGAAGTCCTACTATGCTAGACG -ACGGAAGTCCTACTATGCGTAACG -ACGGAAGTCCTACTATGCACTTCG -ACGGAAGTCCTACTATGCTACGCA -ACGGAAGTCCTACTATGCCTTGCA -ACGGAAGTCCTACTATGCCGAACA -ACGGAAGTCCTACTATGCCAGTCA -ACGGAAGTCCTACTATGCGATCCA -ACGGAAGTCCTACTATGCACGACA -ACGGAAGTCCTACTATGCAGCTCA -ACGGAAGTCCTACTATGCTCACGT -ACGGAAGTCCTACTATGCCGTAGT -ACGGAAGTCCTACTATGCGTCAGT -ACGGAAGTCCTACTATGCGAAGGT -ACGGAAGTCCTACTATGCAACCGT -ACGGAAGTCCTACTATGCTTGTGC -ACGGAAGTCCTACTATGCCTAAGC -ACGGAAGTCCTACTATGCACTAGC -ACGGAAGTCCTACTATGCAGATGC -ACGGAAGTCCTACTATGCTGAAGG -ACGGAAGTCCTACTATGCCAATGG -ACGGAAGTCCTACTATGCATGAGG -ACGGAAGTCCTACTATGCAATGGG -ACGGAAGTCCTACTATGCTCCTGA -ACGGAAGTCCTACTATGCTAGCGA -ACGGAAGTCCTACTATGCCACAGA -ACGGAAGTCCTACTATGCGCAAGA -ACGGAAGTCCTACTATGCGGTTGA -ACGGAAGTCCTACTATGCTCCGAT -ACGGAAGTCCTACTATGCTGGCAT -ACGGAAGTCCTACTATGCCGAGAT -ACGGAAGTCCTACTATGCTACCAC -ACGGAAGTCCTACTATGCCAGAAC -ACGGAAGTCCTACTATGCGTCTAC -ACGGAAGTCCTACTATGCACGTAC -ACGGAAGTCCTACTATGCAGTGAC -ACGGAAGTCCTACTATGCCTGTAG -ACGGAAGTCCTACTATGCCCTAAG -ACGGAAGTCCTACTATGCGTTCAG -ACGGAAGTCCTACTATGCGCATAG -ACGGAAGTCCTACTATGCGACAAG -ACGGAAGTCCTACTATGCAAGCAG -ACGGAAGTCCTACTATGCCGTCAA -ACGGAAGTCCTACTATGCGCTGAA -ACGGAAGTCCTACTATGCAGTACG -ACGGAAGTCCTACTATGCATCCGA -ACGGAAGTCCTACTATGCATGGGA -ACGGAAGTCCTACTATGCGTGCAA -ACGGAAGTCCTACTATGCGAGGAA -ACGGAAGTCCTACTATGCCAGGTA -ACGGAAGTCCTACTATGCGACTCT -ACGGAAGTCCTACTATGCAGTCCT -ACGGAAGTCCTACTATGCTAAGCC -ACGGAAGTCCTACTATGCATAGCC -ACGGAAGTCCTACTATGCTAACCG -ACGGAAGTCCTACTATGCATGCCA -ACGGAAGTCCTACTACCAGGAAAC -ACGGAAGTCCTACTACCAAACACC -ACGGAAGTCCTACTACCAATCGAG -ACGGAAGTCCTACTACCACTCCTT -ACGGAAGTCCTACTACCACCTGTT -ACGGAAGTCCTACTACCACGGTTT -ACGGAAGTCCTACTACCAGTGGTT -ACGGAAGTCCTACTACCAGCCTTT -ACGGAAGTCCTACTACCAGGTCTT -ACGGAAGTCCTACTACCAACGCTT -ACGGAAGTCCTACTACCAAGCGTT -ACGGAAGTCCTACTACCATTCGTC -ACGGAAGTCCTACTACCATCTCTC -ACGGAAGTCCTACTACCATGGATC -ACGGAAGTCCTACTACCACACTTC -ACGGAAGTCCTACTACCAGTACTC -ACGGAAGTCCTACTACCAGATGTC -ACGGAAGTCCTACTACCAACAGTC -ACGGAAGTCCTACTACCATTGCTG -ACGGAAGTCCTACTACCATCCATG -ACGGAAGTCCTACTACCATGTGTG -ACGGAAGTCCTACTACCACTAGTG -ACGGAAGTCCTACTACCACATCTG -ACGGAAGTCCTACTACCAGAGTTG -ACGGAAGTCCTACTACCAAGACTG -ACGGAAGTCCTACTACCATCGGTA -ACGGAAGTCCTACTACCATGCCTA -ACGGAAGTCCTACTACCACCACTA -ACGGAAGTCCTACTACCAGGAGTA -ACGGAAGTCCTACTACCATCGTCT -ACGGAAGTCCTACTACCATGCACT -ACGGAAGTCCTACTACCACTGACT -ACGGAAGTCCTACTACCACAACCT -ACGGAAGTCCTACTACCAGCTACT -ACGGAAGTCCTACTACCAGGATCT -ACGGAAGTCCTACTACCAAAGGCT -ACGGAAGTCCTACTACCATCAACC -ACGGAAGTCCTACTACCATGTTCC -ACGGAAGTCCTACTACCAATTCCC -ACGGAAGTCCTACTACCATTCTCG -ACGGAAGTCCTACTACCATAGACG -ACGGAAGTCCTACTACCAGTAACG -ACGGAAGTCCTACTACCAACTTCG -ACGGAAGTCCTACTACCATACGCA -ACGGAAGTCCTACTACCACTTGCA -ACGGAAGTCCTACTACCACGAACA -ACGGAAGTCCTACTACCACAGTCA -ACGGAAGTCCTACTACCAGATCCA -ACGGAAGTCCTACTACCAACGACA -ACGGAAGTCCTACTACCAAGCTCA -ACGGAAGTCCTACTACCATCACGT -ACGGAAGTCCTACTACCACGTAGT -ACGGAAGTCCTACTACCAGTCAGT -ACGGAAGTCCTACTACCAGAAGGT -ACGGAAGTCCTACTACCAAACCGT -ACGGAAGTCCTACTACCATTGTGC -ACGGAAGTCCTACTACCACTAAGC -ACGGAAGTCCTACTACCAACTAGC -ACGGAAGTCCTACTACCAAGATGC -ACGGAAGTCCTACTACCATGAAGG -ACGGAAGTCCTACTACCACAATGG -ACGGAAGTCCTACTACCAATGAGG -ACGGAAGTCCTACTACCAAATGGG -ACGGAAGTCCTACTACCATCCTGA -ACGGAAGTCCTACTACCATAGCGA -ACGGAAGTCCTACTACCACACAGA -ACGGAAGTCCTACTACCAGCAAGA -ACGGAAGTCCTACTACCAGGTTGA -ACGGAAGTCCTACTACCATCCGAT -ACGGAAGTCCTACTACCATGGCAT -ACGGAAGTCCTACTACCACGAGAT -ACGGAAGTCCTACTACCATACCAC -ACGGAAGTCCTACTACCACAGAAC -ACGGAAGTCCTACTACCAGTCTAC -ACGGAAGTCCTACTACCAACGTAC -ACGGAAGTCCTACTACCAAGTGAC -ACGGAAGTCCTACTACCACTGTAG -ACGGAAGTCCTACTACCACCTAAG -ACGGAAGTCCTACTACCAGTTCAG -ACGGAAGTCCTACTACCAGCATAG -ACGGAAGTCCTACTACCAGACAAG -ACGGAAGTCCTACTACCAAAGCAG -ACGGAAGTCCTACTACCACGTCAA -ACGGAAGTCCTACTACCAGCTGAA -ACGGAAGTCCTACTACCAAGTACG -ACGGAAGTCCTACTACCAATCCGA -ACGGAAGTCCTACTACCAATGGGA -ACGGAAGTCCTACTACCAGTGCAA -ACGGAAGTCCTACTACCAGAGGAA -ACGGAAGTCCTACTACCACAGGTA -ACGGAAGTCCTACTACCAGACTCT -ACGGAAGTCCTACTACCAAGTCCT -ACGGAAGTCCTACTACCATAAGCC -ACGGAAGTCCTACTACCAATAGCC -ACGGAAGTCCTACTACCATAACCG -ACGGAAGTCCTACTACCAATGCCA -ACGGAAGTCCTAGTAGGAGGAAAC -ACGGAAGTCCTAGTAGGAAACACC -ACGGAAGTCCTAGTAGGAATCGAG -ACGGAAGTCCTAGTAGGACTCCTT -ACGGAAGTCCTAGTAGGACCTGTT -ACGGAAGTCCTAGTAGGACGGTTT -ACGGAAGTCCTAGTAGGAGTGGTT -ACGGAAGTCCTAGTAGGAGCCTTT -ACGGAAGTCCTAGTAGGAGGTCTT -ACGGAAGTCCTAGTAGGAACGCTT -ACGGAAGTCCTAGTAGGAAGCGTT -ACGGAAGTCCTAGTAGGATTCGTC -ACGGAAGTCCTAGTAGGATCTCTC -ACGGAAGTCCTAGTAGGATGGATC -ACGGAAGTCCTAGTAGGACACTTC -ACGGAAGTCCTAGTAGGAGTACTC -ACGGAAGTCCTAGTAGGAGATGTC -ACGGAAGTCCTAGTAGGAACAGTC -ACGGAAGTCCTAGTAGGATTGCTG -ACGGAAGTCCTAGTAGGATCCATG -ACGGAAGTCCTAGTAGGATGTGTG -ACGGAAGTCCTAGTAGGACTAGTG -ACGGAAGTCCTAGTAGGACATCTG -ACGGAAGTCCTAGTAGGAGAGTTG -ACGGAAGTCCTAGTAGGAAGACTG -ACGGAAGTCCTAGTAGGATCGGTA -ACGGAAGTCCTAGTAGGATGCCTA -ACGGAAGTCCTAGTAGGACCACTA -ACGGAAGTCCTAGTAGGAGGAGTA -ACGGAAGTCCTAGTAGGATCGTCT -ACGGAAGTCCTAGTAGGATGCACT -ACGGAAGTCCTAGTAGGACTGACT -ACGGAAGTCCTAGTAGGACAACCT -ACGGAAGTCCTAGTAGGAGCTACT -ACGGAAGTCCTAGTAGGAGGATCT -ACGGAAGTCCTAGTAGGAAAGGCT -ACGGAAGTCCTAGTAGGATCAACC -ACGGAAGTCCTAGTAGGATGTTCC -ACGGAAGTCCTAGTAGGAATTCCC -ACGGAAGTCCTAGTAGGATTCTCG -ACGGAAGTCCTAGTAGGATAGACG -ACGGAAGTCCTAGTAGGAGTAACG -ACGGAAGTCCTAGTAGGAACTTCG -ACGGAAGTCCTAGTAGGATACGCA -ACGGAAGTCCTAGTAGGACTTGCA -ACGGAAGTCCTAGTAGGACGAACA -ACGGAAGTCCTAGTAGGACAGTCA -ACGGAAGTCCTAGTAGGAGATCCA -ACGGAAGTCCTAGTAGGAACGACA -ACGGAAGTCCTAGTAGGAAGCTCA -ACGGAAGTCCTAGTAGGATCACGT -ACGGAAGTCCTAGTAGGACGTAGT -ACGGAAGTCCTAGTAGGAGTCAGT -ACGGAAGTCCTAGTAGGAGAAGGT -ACGGAAGTCCTAGTAGGAAACCGT -ACGGAAGTCCTAGTAGGATTGTGC -ACGGAAGTCCTAGTAGGACTAAGC -ACGGAAGTCCTAGTAGGAACTAGC -ACGGAAGTCCTAGTAGGAAGATGC -ACGGAAGTCCTAGTAGGATGAAGG -ACGGAAGTCCTAGTAGGACAATGG -ACGGAAGTCCTAGTAGGAATGAGG -ACGGAAGTCCTAGTAGGAAATGGG -ACGGAAGTCCTAGTAGGATCCTGA -ACGGAAGTCCTAGTAGGATAGCGA -ACGGAAGTCCTAGTAGGACACAGA -ACGGAAGTCCTAGTAGGAGCAAGA -ACGGAAGTCCTAGTAGGAGGTTGA -ACGGAAGTCCTAGTAGGATCCGAT -ACGGAAGTCCTAGTAGGATGGCAT -ACGGAAGTCCTAGTAGGACGAGAT -ACGGAAGTCCTAGTAGGATACCAC -ACGGAAGTCCTAGTAGGACAGAAC -ACGGAAGTCCTAGTAGGAGTCTAC -ACGGAAGTCCTAGTAGGAACGTAC -ACGGAAGTCCTAGTAGGAAGTGAC -ACGGAAGTCCTAGTAGGACTGTAG -ACGGAAGTCCTAGTAGGACCTAAG -ACGGAAGTCCTAGTAGGAGTTCAG -ACGGAAGTCCTAGTAGGAGCATAG -ACGGAAGTCCTAGTAGGAGACAAG -ACGGAAGTCCTAGTAGGAAAGCAG -ACGGAAGTCCTAGTAGGACGTCAA -ACGGAAGTCCTAGTAGGAGCTGAA -ACGGAAGTCCTAGTAGGAAGTACG -ACGGAAGTCCTAGTAGGAATCCGA -ACGGAAGTCCTAGTAGGAATGGGA -ACGGAAGTCCTAGTAGGAGTGCAA -ACGGAAGTCCTAGTAGGAGAGGAA -ACGGAAGTCCTAGTAGGACAGGTA -ACGGAAGTCCTAGTAGGAGACTCT -ACGGAAGTCCTAGTAGGAAGTCCT -ACGGAAGTCCTAGTAGGATAAGCC -ACGGAAGTCCTAGTAGGAATAGCC -ACGGAAGTCCTAGTAGGATAACCG -ACGGAAGTCCTAGTAGGAATGCCA -ACGGAAGTCCTATCTTCGGGAAAC -ACGGAAGTCCTATCTTCGAACACC -ACGGAAGTCCTATCTTCGATCGAG -ACGGAAGTCCTATCTTCGCTCCTT -ACGGAAGTCCTATCTTCGCCTGTT -ACGGAAGTCCTATCTTCGCGGTTT -ACGGAAGTCCTATCTTCGGTGGTT -ACGGAAGTCCTATCTTCGGCCTTT -ACGGAAGTCCTATCTTCGGGTCTT -ACGGAAGTCCTATCTTCGACGCTT -ACGGAAGTCCTATCTTCGAGCGTT -ACGGAAGTCCTATCTTCGTTCGTC -ACGGAAGTCCTATCTTCGTCTCTC -ACGGAAGTCCTATCTTCGTGGATC -ACGGAAGTCCTATCTTCGCACTTC -ACGGAAGTCCTATCTTCGGTACTC -ACGGAAGTCCTATCTTCGGATGTC -ACGGAAGTCCTATCTTCGACAGTC -ACGGAAGTCCTATCTTCGTTGCTG -ACGGAAGTCCTATCTTCGTCCATG -ACGGAAGTCCTATCTTCGTGTGTG -ACGGAAGTCCTATCTTCGCTAGTG -ACGGAAGTCCTATCTTCGCATCTG -ACGGAAGTCCTATCTTCGGAGTTG -ACGGAAGTCCTATCTTCGAGACTG -ACGGAAGTCCTATCTTCGTCGGTA -ACGGAAGTCCTATCTTCGTGCCTA -ACGGAAGTCCTATCTTCGCCACTA -ACGGAAGTCCTATCTTCGGGAGTA -ACGGAAGTCCTATCTTCGTCGTCT -ACGGAAGTCCTATCTTCGTGCACT -ACGGAAGTCCTATCTTCGCTGACT -ACGGAAGTCCTATCTTCGCAACCT -ACGGAAGTCCTATCTTCGGCTACT -ACGGAAGTCCTATCTTCGGGATCT -ACGGAAGTCCTATCTTCGAAGGCT -ACGGAAGTCCTATCTTCGTCAACC -ACGGAAGTCCTATCTTCGTGTTCC -ACGGAAGTCCTATCTTCGATTCCC -ACGGAAGTCCTATCTTCGTTCTCG -ACGGAAGTCCTATCTTCGTAGACG -ACGGAAGTCCTATCTTCGGTAACG -ACGGAAGTCCTATCTTCGACTTCG -ACGGAAGTCCTATCTTCGTACGCA -ACGGAAGTCCTATCTTCGCTTGCA -ACGGAAGTCCTATCTTCGCGAACA -ACGGAAGTCCTATCTTCGCAGTCA -ACGGAAGTCCTATCTTCGGATCCA -ACGGAAGTCCTATCTTCGACGACA -ACGGAAGTCCTATCTTCGAGCTCA -ACGGAAGTCCTATCTTCGTCACGT -ACGGAAGTCCTATCTTCGCGTAGT -ACGGAAGTCCTATCTTCGGTCAGT -ACGGAAGTCCTATCTTCGGAAGGT -ACGGAAGTCCTATCTTCGAACCGT -ACGGAAGTCCTATCTTCGTTGTGC -ACGGAAGTCCTATCTTCGCTAAGC -ACGGAAGTCCTATCTTCGACTAGC -ACGGAAGTCCTATCTTCGAGATGC -ACGGAAGTCCTATCTTCGTGAAGG -ACGGAAGTCCTATCTTCGCAATGG -ACGGAAGTCCTATCTTCGATGAGG -ACGGAAGTCCTATCTTCGAATGGG -ACGGAAGTCCTATCTTCGTCCTGA -ACGGAAGTCCTATCTTCGTAGCGA -ACGGAAGTCCTATCTTCGCACAGA -ACGGAAGTCCTATCTTCGGCAAGA -ACGGAAGTCCTATCTTCGGGTTGA -ACGGAAGTCCTATCTTCGTCCGAT -ACGGAAGTCCTATCTTCGTGGCAT -ACGGAAGTCCTATCTTCGCGAGAT -ACGGAAGTCCTATCTTCGTACCAC -ACGGAAGTCCTATCTTCGCAGAAC -ACGGAAGTCCTATCTTCGGTCTAC -ACGGAAGTCCTATCTTCGACGTAC -ACGGAAGTCCTATCTTCGAGTGAC -ACGGAAGTCCTATCTTCGCTGTAG -ACGGAAGTCCTATCTTCGCCTAAG -ACGGAAGTCCTATCTTCGGTTCAG -ACGGAAGTCCTATCTTCGGCATAG -ACGGAAGTCCTATCTTCGGACAAG -ACGGAAGTCCTATCTTCGAAGCAG -ACGGAAGTCCTATCTTCGCGTCAA -ACGGAAGTCCTATCTTCGGCTGAA -ACGGAAGTCCTATCTTCGAGTACG -ACGGAAGTCCTATCTTCGATCCGA -ACGGAAGTCCTATCTTCGATGGGA -ACGGAAGTCCTATCTTCGGTGCAA -ACGGAAGTCCTATCTTCGGAGGAA -ACGGAAGTCCTATCTTCGCAGGTA -ACGGAAGTCCTATCTTCGGACTCT -ACGGAAGTCCTATCTTCGAGTCCT -ACGGAAGTCCTATCTTCGTAAGCC -ACGGAAGTCCTATCTTCGATAGCC -ACGGAAGTCCTATCTTCGTAACCG -ACGGAAGTCCTATCTTCGATGCCA -ACGGAAGTCCTAACTTGCGGAAAC -ACGGAAGTCCTAACTTGCAACACC -ACGGAAGTCCTAACTTGCATCGAG -ACGGAAGTCCTAACTTGCCTCCTT -ACGGAAGTCCTAACTTGCCCTGTT -ACGGAAGTCCTAACTTGCCGGTTT -ACGGAAGTCCTAACTTGCGTGGTT -ACGGAAGTCCTAACTTGCGCCTTT -ACGGAAGTCCTAACTTGCGGTCTT -ACGGAAGTCCTAACTTGCACGCTT -ACGGAAGTCCTAACTTGCAGCGTT -ACGGAAGTCCTAACTTGCTTCGTC -ACGGAAGTCCTAACTTGCTCTCTC -ACGGAAGTCCTAACTTGCTGGATC -ACGGAAGTCCTAACTTGCCACTTC -ACGGAAGTCCTAACTTGCGTACTC -ACGGAAGTCCTAACTTGCGATGTC -ACGGAAGTCCTAACTTGCACAGTC -ACGGAAGTCCTAACTTGCTTGCTG -ACGGAAGTCCTAACTTGCTCCATG -ACGGAAGTCCTAACTTGCTGTGTG -ACGGAAGTCCTAACTTGCCTAGTG -ACGGAAGTCCTAACTTGCCATCTG -ACGGAAGTCCTAACTTGCGAGTTG -ACGGAAGTCCTAACTTGCAGACTG -ACGGAAGTCCTAACTTGCTCGGTA -ACGGAAGTCCTAACTTGCTGCCTA -ACGGAAGTCCTAACTTGCCCACTA -ACGGAAGTCCTAACTTGCGGAGTA -ACGGAAGTCCTAACTTGCTCGTCT -ACGGAAGTCCTAACTTGCTGCACT -ACGGAAGTCCTAACTTGCCTGACT -ACGGAAGTCCTAACTTGCCAACCT -ACGGAAGTCCTAACTTGCGCTACT -ACGGAAGTCCTAACTTGCGGATCT -ACGGAAGTCCTAACTTGCAAGGCT -ACGGAAGTCCTAACTTGCTCAACC -ACGGAAGTCCTAACTTGCTGTTCC -ACGGAAGTCCTAACTTGCATTCCC -ACGGAAGTCCTAACTTGCTTCTCG -ACGGAAGTCCTAACTTGCTAGACG -ACGGAAGTCCTAACTTGCGTAACG -ACGGAAGTCCTAACTTGCACTTCG -ACGGAAGTCCTAACTTGCTACGCA -ACGGAAGTCCTAACTTGCCTTGCA -ACGGAAGTCCTAACTTGCCGAACA -ACGGAAGTCCTAACTTGCCAGTCA -ACGGAAGTCCTAACTTGCGATCCA -ACGGAAGTCCTAACTTGCACGACA -ACGGAAGTCCTAACTTGCAGCTCA -ACGGAAGTCCTAACTTGCTCACGT -ACGGAAGTCCTAACTTGCCGTAGT -ACGGAAGTCCTAACTTGCGTCAGT -ACGGAAGTCCTAACTTGCGAAGGT -ACGGAAGTCCTAACTTGCAACCGT -ACGGAAGTCCTAACTTGCTTGTGC -ACGGAAGTCCTAACTTGCCTAAGC -ACGGAAGTCCTAACTTGCACTAGC -ACGGAAGTCCTAACTTGCAGATGC -ACGGAAGTCCTAACTTGCTGAAGG -ACGGAAGTCCTAACTTGCCAATGG -ACGGAAGTCCTAACTTGCATGAGG -ACGGAAGTCCTAACTTGCAATGGG -ACGGAAGTCCTAACTTGCTCCTGA -ACGGAAGTCCTAACTTGCTAGCGA -ACGGAAGTCCTAACTTGCCACAGA -ACGGAAGTCCTAACTTGCGCAAGA -ACGGAAGTCCTAACTTGCGGTTGA -ACGGAAGTCCTAACTTGCTCCGAT -ACGGAAGTCCTAACTTGCTGGCAT -ACGGAAGTCCTAACTTGCCGAGAT -ACGGAAGTCCTAACTTGCTACCAC -ACGGAAGTCCTAACTTGCCAGAAC -ACGGAAGTCCTAACTTGCGTCTAC -ACGGAAGTCCTAACTTGCACGTAC -ACGGAAGTCCTAACTTGCAGTGAC -ACGGAAGTCCTAACTTGCCTGTAG -ACGGAAGTCCTAACTTGCCCTAAG -ACGGAAGTCCTAACTTGCGTTCAG -ACGGAAGTCCTAACTTGCGCATAG -ACGGAAGTCCTAACTTGCGACAAG -ACGGAAGTCCTAACTTGCAAGCAG -ACGGAAGTCCTAACTTGCCGTCAA -ACGGAAGTCCTAACTTGCGCTGAA -ACGGAAGTCCTAACTTGCAGTACG -ACGGAAGTCCTAACTTGCATCCGA -ACGGAAGTCCTAACTTGCATGGGA -ACGGAAGTCCTAACTTGCGTGCAA -ACGGAAGTCCTAACTTGCGAGGAA -ACGGAAGTCCTAACTTGCCAGGTA -ACGGAAGTCCTAACTTGCGACTCT -ACGGAAGTCCTAACTTGCAGTCCT -ACGGAAGTCCTAACTTGCTAAGCC -ACGGAAGTCCTAACTTGCATAGCC -ACGGAAGTCCTAACTTGCTAACCG -ACGGAAGTCCTAACTTGCATGCCA -ACGGAAGTCCTAACTCTGGGAAAC -ACGGAAGTCCTAACTCTGAACACC -ACGGAAGTCCTAACTCTGATCGAG -ACGGAAGTCCTAACTCTGCTCCTT -ACGGAAGTCCTAACTCTGCCTGTT -ACGGAAGTCCTAACTCTGCGGTTT -ACGGAAGTCCTAACTCTGGTGGTT -ACGGAAGTCCTAACTCTGGCCTTT -ACGGAAGTCCTAACTCTGGGTCTT -ACGGAAGTCCTAACTCTGACGCTT -ACGGAAGTCCTAACTCTGAGCGTT -ACGGAAGTCCTAACTCTGTTCGTC -ACGGAAGTCCTAACTCTGTCTCTC -ACGGAAGTCCTAACTCTGTGGATC -ACGGAAGTCCTAACTCTGCACTTC -ACGGAAGTCCTAACTCTGGTACTC -ACGGAAGTCCTAACTCTGGATGTC -ACGGAAGTCCTAACTCTGACAGTC -ACGGAAGTCCTAACTCTGTTGCTG -ACGGAAGTCCTAACTCTGTCCATG -ACGGAAGTCCTAACTCTGTGTGTG -ACGGAAGTCCTAACTCTGCTAGTG -ACGGAAGTCCTAACTCTGCATCTG -ACGGAAGTCCTAACTCTGGAGTTG -ACGGAAGTCCTAACTCTGAGACTG -ACGGAAGTCCTAACTCTGTCGGTA -ACGGAAGTCCTAACTCTGTGCCTA -ACGGAAGTCCTAACTCTGCCACTA -ACGGAAGTCCTAACTCTGGGAGTA -ACGGAAGTCCTAACTCTGTCGTCT -ACGGAAGTCCTAACTCTGTGCACT -ACGGAAGTCCTAACTCTGCTGACT -ACGGAAGTCCTAACTCTGCAACCT -ACGGAAGTCCTAACTCTGGCTACT -ACGGAAGTCCTAACTCTGGGATCT -ACGGAAGTCCTAACTCTGAAGGCT -ACGGAAGTCCTAACTCTGTCAACC -ACGGAAGTCCTAACTCTGTGTTCC -ACGGAAGTCCTAACTCTGATTCCC -ACGGAAGTCCTAACTCTGTTCTCG -ACGGAAGTCCTAACTCTGTAGACG -ACGGAAGTCCTAACTCTGGTAACG -ACGGAAGTCCTAACTCTGACTTCG -ACGGAAGTCCTAACTCTGTACGCA -ACGGAAGTCCTAACTCTGCTTGCA -ACGGAAGTCCTAACTCTGCGAACA -ACGGAAGTCCTAACTCTGCAGTCA -ACGGAAGTCCTAACTCTGGATCCA -ACGGAAGTCCTAACTCTGACGACA -ACGGAAGTCCTAACTCTGAGCTCA -ACGGAAGTCCTAACTCTGTCACGT -ACGGAAGTCCTAACTCTGCGTAGT -ACGGAAGTCCTAACTCTGGTCAGT -ACGGAAGTCCTAACTCTGGAAGGT -ACGGAAGTCCTAACTCTGAACCGT -ACGGAAGTCCTAACTCTGTTGTGC -ACGGAAGTCCTAACTCTGCTAAGC -ACGGAAGTCCTAACTCTGACTAGC -ACGGAAGTCCTAACTCTGAGATGC -ACGGAAGTCCTAACTCTGTGAAGG -ACGGAAGTCCTAACTCTGCAATGG -ACGGAAGTCCTAACTCTGATGAGG -ACGGAAGTCCTAACTCTGAATGGG -ACGGAAGTCCTAACTCTGTCCTGA -ACGGAAGTCCTAACTCTGTAGCGA -ACGGAAGTCCTAACTCTGCACAGA -ACGGAAGTCCTAACTCTGGCAAGA -ACGGAAGTCCTAACTCTGGGTTGA -ACGGAAGTCCTAACTCTGTCCGAT -ACGGAAGTCCTAACTCTGTGGCAT -ACGGAAGTCCTAACTCTGCGAGAT -ACGGAAGTCCTAACTCTGTACCAC -ACGGAAGTCCTAACTCTGCAGAAC -ACGGAAGTCCTAACTCTGGTCTAC -ACGGAAGTCCTAACTCTGACGTAC -ACGGAAGTCCTAACTCTGAGTGAC -ACGGAAGTCCTAACTCTGCTGTAG -ACGGAAGTCCTAACTCTGCCTAAG -ACGGAAGTCCTAACTCTGGTTCAG -ACGGAAGTCCTAACTCTGGCATAG -ACGGAAGTCCTAACTCTGGACAAG -ACGGAAGTCCTAACTCTGAAGCAG -ACGGAAGTCCTAACTCTGCGTCAA -ACGGAAGTCCTAACTCTGGCTGAA -ACGGAAGTCCTAACTCTGAGTACG -ACGGAAGTCCTAACTCTGATCCGA -ACGGAAGTCCTAACTCTGATGGGA -ACGGAAGTCCTAACTCTGGTGCAA -ACGGAAGTCCTAACTCTGGAGGAA -ACGGAAGTCCTAACTCTGCAGGTA -ACGGAAGTCCTAACTCTGGACTCT -ACGGAAGTCCTAACTCTGAGTCCT -ACGGAAGTCCTAACTCTGTAAGCC -ACGGAAGTCCTAACTCTGATAGCC -ACGGAAGTCCTAACTCTGTAACCG -ACGGAAGTCCTAACTCTGATGCCA -ACGGAAGTCCTACCTCAAGGAAAC -ACGGAAGTCCTACCTCAAAACACC -ACGGAAGTCCTACCTCAAATCGAG -ACGGAAGTCCTACCTCAACTCCTT -ACGGAAGTCCTACCTCAACCTGTT -ACGGAAGTCCTACCTCAACGGTTT -ACGGAAGTCCTACCTCAAGTGGTT -ACGGAAGTCCTACCTCAAGCCTTT -ACGGAAGTCCTACCTCAAGGTCTT -ACGGAAGTCCTACCTCAAACGCTT -ACGGAAGTCCTACCTCAAAGCGTT -ACGGAAGTCCTACCTCAATTCGTC -ACGGAAGTCCTACCTCAATCTCTC -ACGGAAGTCCTACCTCAATGGATC -ACGGAAGTCCTACCTCAACACTTC -ACGGAAGTCCTACCTCAAGTACTC -ACGGAAGTCCTACCTCAAGATGTC -ACGGAAGTCCTACCTCAAACAGTC -ACGGAAGTCCTACCTCAATTGCTG -ACGGAAGTCCTACCTCAATCCATG -ACGGAAGTCCTACCTCAATGTGTG -ACGGAAGTCCTACCTCAACTAGTG -ACGGAAGTCCTACCTCAACATCTG -ACGGAAGTCCTACCTCAAGAGTTG -ACGGAAGTCCTACCTCAAAGACTG -ACGGAAGTCCTACCTCAATCGGTA -ACGGAAGTCCTACCTCAATGCCTA -ACGGAAGTCCTACCTCAACCACTA -ACGGAAGTCCTACCTCAAGGAGTA -ACGGAAGTCCTACCTCAATCGTCT -ACGGAAGTCCTACCTCAATGCACT -ACGGAAGTCCTACCTCAACTGACT -ACGGAAGTCCTACCTCAACAACCT -ACGGAAGTCCTACCTCAAGCTACT -ACGGAAGTCCTACCTCAAGGATCT -ACGGAAGTCCTACCTCAAAAGGCT -ACGGAAGTCCTACCTCAATCAACC -ACGGAAGTCCTACCTCAATGTTCC -ACGGAAGTCCTACCTCAAATTCCC -ACGGAAGTCCTACCTCAATTCTCG -ACGGAAGTCCTACCTCAATAGACG -ACGGAAGTCCTACCTCAAGTAACG -ACGGAAGTCCTACCTCAAACTTCG -ACGGAAGTCCTACCTCAATACGCA -ACGGAAGTCCTACCTCAACTTGCA -ACGGAAGTCCTACCTCAACGAACA -ACGGAAGTCCTACCTCAACAGTCA -ACGGAAGTCCTACCTCAAGATCCA -ACGGAAGTCCTACCTCAAACGACA -ACGGAAGTCCTACCTCAAAGCTCA -ACGGAAGTCCTACCTCAATCACGT -ACGGAAGTCCTACCTCAACGTAGT -ACGGAAGTCCTACCTCAAGTCAGT -ACGGAAGTCCTACCTCAAGAAGGT -ACGGAAGTCCTACCTCAAAACCGT -ACGGAAGTCCTACCTCAATTGTGC -ACGGAAGTCCTACCTCAACTAAGC -ACGGAAGTCCTACCTCAAACTAGC -ACGGAAGTCCTACCTCAAAGATGC -ACGGAAGTCCTACCTCAATGAAGG -ACGGAAGTCCTACCTCAACAATGG -ACGGAAGTCCTACCTCAAATGAGG -ACGGAAGTCCTACCTCAAAATGGG -ACGGAAGTCCTACCTCAATCCTGA -ACGGAAGTCCTACCTCAATAGCGA -ACGGAAGTCCTACCTCAACACAGA -ACGGAAGTCCTACCTCAAGCAAGA -ACGGAAGTCCTACCTCAAGGTTGA -ACGGAAGTCCTACCTCAATCCGAT -ACGGAAGTCCTACCTCAATGGCAT -ACGGAAGTCCTACCTCAACGAGAT -ACGGAAGTCCTACCTCAATACCAC -ACGGAAGTCCTACCTCAACAGAAC -ACGGAAGTCCTACCTCAAGTCTAC -ACGGAAGTCCTACCTCAAACGTAC -ACGGAAGTCCTACCTCAAAGTGAC -ACGGAAGTCCTACCTCAACTGTAG -ACGGAAGTCCTACCTCAACCTAAG -ACGGAAGTCCTACCTCAAGTTCAG -ACGGAAGTCCTACCTCAAGCATAG -ACGGAAGTCCTACCTCAAGACAAG -ACGGAAGTCCTACCTCAAAAGCAG -ACGGAAGTCCTACCTCAACGTCAA -ACGGAAGTCCTACCTCAAGCTGAA -ACGGAAGTCCTACCTCAAAGTACG -ACGGAAGTCCTACCTCAAATCCGA -ACGGAAGTCCTACCTCAAATGGGA -ACGGAAGTCCTACCTCAAGTGCAA -ACGGAAGTCCTACCTCAAGAGGAA -ACGGAAGTCCTACCTCAACAGGTA -ACGGAAGTCCTACCTCAAGACTCT -ACGGAAGTCCTACCTCAAAGTCCT -ACGGAAGTCCTACCTCAATAAGCC -ACGGAAGTCCTACCTCAAATAGCC -ACGGAAGTCCTACCTCAATAACCG -ACGGAAGTCCTACCTCAAATGCCA -ACGGAAGTCCTAACTGCTGGAAAC -ACGGAAGTCCTAACTGCTAACACC -ACGGAAGTCCTAACTGCTATCGAG -ACGGAAGTCCTAACTGCTCTCCTT -ACGGAAGTCCTAACTGCTCCTGTT -ACGGAAGTCCTAACTGCTCGGTTT -ACGGAAGTCCTAACTGCTGTGGTT -ACGGAAGTCCTAACTGCTGCCTTT -ACGGAAGTCCTAACTGCTGGTCTT -ACGGAAGTCCTAACTGCTACGCTT -ACGGAAGTCCTAACTGCTAGCGTT -ACGGAAGTCCTAACTGCTTTCGTC -ACGGAAGTCCTAACTGCTTCTCTC -ACGGAAGTCCTAACTGCTTGGATC -ACGGAAGTCCTAACTGCTCACTTC -ACGGAAGTCCTAACTGCTGTACTC -ACGGAAGTCCTAACTGCTGATGTC -ACGGAAGTCCTAACTGCTACAGTC -ACGGAAGTCCTAACTGCTTTGCTG -ACGGAAGTCCTAACTGCTTCCATG -ACGGAAGTCCTAACTGCTTGTGTG -ACGGAAGTCCTAACTGCTCTAGTG -ACGGAAGTCCTAACTGCTCATCTG -ACGGAAGTCCTAACTGCTGAGTTG -ACGGAAGTCCTAACTGCTAGACTG -ACGGAAGTCCTAACTGCTTCGGTA -ACGGAAGTCCTAACTGCTTGCCTA -ACGGAAGTCCTAACTGCTCCACTA -ACGGAAGTCCTAACTGCTGGAGTA -ACGGAAGTCCTAACTGCTTCGTCT -ACGGAAGTCCTAACTGCTTGCACT -ACGGAAGTCCTAACTGCTCTGACT -ACGGAAGTCCTAACTGCTCAACCT -ACGGAAGTCCTAACTGCTGCTACT -ACGGAAGTCCTAACTGCTGGATCT -ACGGAAGTCCTAACTGCTAAGGCT -ACGGAAGTCCTAACTGCTTCAACC -ACGGAAGTCCTAACTGCTTGTTCC -ACGGAAGTCCTAACTGCTATTCCC -ACGGAAGTCCTAACTGCTTTCTCG -ACGGAAGTCCTAACTGCTTAGACG -ACGGAAGTCCTAACTGCTGTAACG -ACGGAAGTCCTAACTGCTACTTCG -ACGGAAGTCCTAACTGCTTACGCA -ACGGAAGTCCTAACTGCTCTTGCA -ACGGAAGTCCTAACTGCTCGAACA -ACGGAAGTCCTAACTGCTCAGTCA -ACGGAAGTCCTAACTGCTGATCCA -ACGGAAGTCCTAACTGCTACGACA -ACGGAAGTCCTAACTGCTAGCTCA -ACGGAAGTCCTAACTGCTTCACGT -ACGGAAGTCCTAACTGCTCGTAGT -ACGGAAGTCCTAACTGCTGTCAGT -ACGGAAGTCCTAACTGCTGAAGGT -ACGGAAGTCCTAACTGCTAACCGT -ACGGAAGTCCTAACTGCTTTGTGC -ACGGAAGTCCTAACTGCTCTAAGC -ACGGAAGTCCTAACTGCTACTAGC -ACGGAAGTCCTAACTGCTAGATGC -ACGGAAGTCCTAACTGCTTGAAGG -ACGGAAGTCCTAACTGCTCAATGG -ACGGAAGTCCTAACTGCTATGAGG -ACGGAAGTCCTAACTGCTAATGGG -ACGGAAGTCCTAACTGCTTCCTGA -ACGGAAGTCCTAACTGCTTAGCGA -ACGGAAGTCCTAACTGCTCACAGA -ACGGAAGTCCTAACTGCTGCAAGA -ACGGAAGTCCTAACTGCTGGTTGA -ACGGAAGTCCTAACTGCTTCCGAT -ACGGAAGTCCTAACTGCTTGGCAT -ACGGAAGTCCTAACTGCTCGAGAT -ACGGAAGTCCTAACTGCTTACCAC -ACGGAAGTCCTAACTGCTCAGAAC -ACGGAAGTCCTAACTGCTGTCTAC -ACGGAAGTCCTAACTGCTACGTAC -ACGGAAGTCCTAACTGCTAGTGAC -ACGGAAGTCCTAACTGCTCTGTAG -ACGGAAGTCCTAACTGCTCCTAAG -ACGGAAGTCCTAACTGCTGTTCAG -ACGGAAGTCCTAACTGCTGCATAG -ACGGAAGTCCTAACTGCTGACAAG -ACGGAAGTCCTAACTGCTAAGCAG -ACGGAAGTCCTAACTGCTCGTCAA -ACGGAAGTCCTAACTGCTGCTGAA -ACGGAAGTCCTAACTGCTAGTACG -ACGGAAGTCCTAACTGCTATCCGA -ACGGAAGTCCTAACTGCTATGGGA -ACGGAAGTCCTAACTGCTGTGCAA -ACGGAAGTCCTAACTGCTGAGGAA -ACGGAAGTCCTAACTGCTCAGGTA -ACGGAAGTCCTAACTGCTGACTCT -ACGGAAGTCCTAACTGCTAGTCCT -ACGGAAGTCCTAACTGCTTAAGCC -ACGGAAGTCCTAACTGCTATAGCC -ACGGAAGTCCTAACTGCTTAACCG -ACGGAAGTCCTAACTGCTATGCCA -ACGGAAGTCCTATCTGGAGGAAAC -ACGGAAGTCCTATCTGGAAACACC -ACGGAAGTCCTATCTGGAATCGAG -ACGGAAGTCCTATCTGGACTCCTT -ACGGAAGTCCTATCTGGACCTGTT -ACGGAAGTCCTATCTGGACGGTTT -ACGGAAGTCCTATCTGGAGTGGTT -ACGGAAGTCCTATCTGGAGCCTTT -ACGGAAGTCCTATCTGGAGGTCTT -ACGGAAGTCCTATCTGGAACGCTT -ACGGAAGTCCTATCTGGAAGCGTT -ACGGAAGTCCTATCTGGATTCGTC -ACGGAAGTCCTATCTGGATCTCTC -ACGGAAGTCCTATCTGGATGGATC -ACGGAAGTCCTATCTGGACACTTC -ACGGAAGTCCTATCTGGAGTACTC -ACGGAAGTCCTATCTGGAGATGTC -ACGGAAGTCCTATCTGGAACAGTC -ACGGAAGTCCTATCTGGATTGCTG -ACGGAAGTCCTATCTGGATCCATG -ACGGAAGTCCTATCTGGATGTGTG -ACGGAAGTCCTATCTGGACTAGTG -ACGGAAGTCCTATCTGGACATCTG -ACGGAAGTCCTATCTGGAGAGTTG -ACGGAAGTCCTATCTGGAAGACTG -ACGGAAGTCCTATCTGGATCGGTA -ACGGAAGTCCTATCTGGATGCCTA -ACGGAAGTCCTATCTGGACCACTA -ACGGAAGTCCTATCTGGAGGAGTA -ACGGAAGTCCTATCTGGATCGTCT -ACGGAAGTCCTATCTGGATGCACT -ACGGAAGTCCTATCTGGACTGACT -ACGGAAGTCCTATCTGGACAACCT -ACGGAAGTCCTATCTGGAGCTACT -ACGGAAGTCCTATCTGGAGGATCT -ACGGAAGTCCTATCTGGAAAGGCT -ACGGAAGTCCTATCTGGATCAACC -ACGGAAGTCCTATCTGGATGTTCC -ACGGAAGTCCTATCTGGAATTCCC -ACGGAAGTCCTATCTGGATTCTCG -ACGGAAGTCCTATCTGGATAGACG -ACGGAAGTCCTATCTGGAGTAACG -ACGGAAGTCCTATCTGGAACTTCG -ACGGAAGTCCTATCTGGATACGCA -ACGGAAGTCCTATCTGGACTTGCA -ACGGAAGTCCTATCTGGACGAACA -ACGGAAGTCCTATCTGGACAGTCA -ACGGAAGTCCTATCTGGAGATCCA -ACGGAAGTCCTATCTGGAACGACA -ACGGAAGTCCTATCTGGAAGCTCA -ACGGAAGTCCTATCTGGATCACGT -ACGGAAGTCCTATCTGGACGTAGT -ACGGAAGTCCTATCTGGAGTCAGT -ACGGAAGTCCTATCTGGAGAAGGT -ACGGAAGTCCTATCTGGAAACCGT -ACGGAAGTCCTATCTGGATTGTGC -ACGGAAGTCCTATCTGGACTAAGC -ACGGAAGTCCTATCTGGAACTAGC -ACGGAAGTCCTATCTGGAAGATGC -ACGGAAGTCCTATCTGGATGAAGG -ACGGAAGTCCTATCTGGACAATGG -ACGGAAGTCCTATCTGGAATGAGG -ACGGAAGTCCTATCTGGAAATGGG -ACGGAAGTCCTATCTGGATCCTGA -ACGGAAGTCCTATCTGGATAGCGA -ACGGAAGTCCTATCTGGACACAGA -ACGGAAGTCCTATCTGGAGCAAGA -ACGGAAGTCCTATCTGGAGGTTGA -ACGGAAGTCCTATCTGGATCCGAT -ACGGAAGTCCTATCTGGATGGCAT -ACGGAAGTCCTATCTGGACGAGAT -ACGGAAGTCCTATCTGGATACCAC -ACGGAAGTCCTATCTGGACAGAAC -ACGGAAGTCCTATCTGGAGTCTAC -ACGGAAGTCCTATCTGGAACGTAC -ACGGAAGTCCTATCTGGAAGTGAC -ACGGAAGTCCTATCTGGACTGTAG -ACGGAAGTCCTATCTGGACCTAAG -ACGGAAGTCCTATCTGGAGTTCAG -ACGGAAGTCCTATCTGGAGCATAG -ACGGAAGTCCTATCTGGAGACAAG -ACGGAAGTCCTATCTGGAAAGCAG -ACGGAAGTCCTATCTGGACGTCAA -ACGGAAGTCCTATCTGGAGCTGAA -ACGGAAGTCCTATCTGGAAGTACG -ACGGAAGTCCTATCTGGAATCCGA -ACGGAAGTCCTATCTGGAATGGGA -ACGGAAGTCCTATCTGGAGTGCAA -ACGGAAGTCCTATCTGGAGAGGAA -ACGGAAGTCCTATCTGGACAGGTA -ACGGAAGTCCTATCTGGAGACTCT -ACGGAAGTCCTATCTGGAAGTCCT -ACGGAAGTCCTATCTGGATAAGCC -ACGGAAGTCCTATCTGGAATAGCC -ACGGAAGTCCTATCTGGATAACCG -ACGGAAGTCCTATCTGGAATGCCA -ACGGAAGTCCTAGCTAAGGGAAAC -ACGGAAGTCCTAGCTAAGAACACC -ACGGAAGTCCTAGCTAAGATCGAG -ACGGAAGTCCTAGCTAAGCTCCTT -ACGGAAGTCCTAGCTAAGCCTGTT -ACGGAAGTCCTAGCTAAGCGGTTT -ACGGAAGTCCTAGCTAAGGTGGTT -ACGGAAGTCCTAGCTAAGGCCTTT -ACGGAAGTCCTAGCTAAGGGTCTT -ACGGAAGTCCTAGCTAAGACGCTT -ACGGAAGTCCTAGCTAAGAGCGTT -ACGGAAGTCCTAGCTAAGTTCGTC -ACGGAAGTCCTAGCTAAGTCTCTC -ACGGAAGTCCTAGCTAAGTGGATC -ACGGAAGTCCTAGCTAAGCACTTC -ACGGAAGTCCTAGCTAAGGTACTC -ACGGAAGTCCTAGCTAAGGATGTC -ACGGAAGTCCTAGCTAAGACAGTC -ACGGAAGTCCTAGCTAAGTTGCTG -ACGGAAGTCCTAGCTAAGTCCATG -ACGGAAGTCCTAGCTAAGTGTGTG -ACGGAAGTCCTAGCTAAGCTAGTG -ACGGAAGTCCTAGCTAAGCATCTG -ACGGAAGTCCTAGCTAAGGAGTTG -ACGGAAGTCCTAGCTAAGAGACTG -ACGGAAGTCCTAGCTAAGTCGGTA -ACGGAAGTCCTAGCTAAGTGCCTA -ACGGAAGTCCTAGCTAAGCCACTA -ACGGAAGTCCTAGCTAAGGGAGTA -ACGGAAGTCCTAGCTAAGTCGTCT -ACGGAAGTCCTAGCTAAGTGCACT -ACGGAAGTCCTAGCTAAGCTGACT -ACGGAAGTCCTAGCTAAGCAACCT -ACGGAAGTCCTAGCTAAGGCTACT -ACGGAAGTCCTAGCTAAGGGATCT -ACGGAAGTCCTAGCTAAGAAGGCT -ACGGAAGTCCTAGCTAAGTCAACC -ACGGAAGTCCTAGCTAAGTGTTCC -ACGGAAGTCCTAGCTAAGATTCCC -ACGGAAGTCCTAGCTAAGTTCTCG -ACGGAAGTCCTAGCTAAGTAGACG -ACGGAAGTCCTAGCTAAGGTAACG -ACGGAAGTCCTAGCTAAGACTTCG -ACGGAAGTCCTAGCTAAGTACGCA -ACGGAAGTCCTAGCTAAGCTTGCA -ACGGAAGTCCTAGCTAAGCGAACA -ACGGAAGTCCTAGCTAAGCAGTCA -ACGGAAGTCCTAGCTAAGGATCCA -ACGGAAGTCCTAGCTAAGACGACA -ACGGAAGTCCTAGCTAAGAGCTCA -ACGGAAGTCCTAGCTAAGTCACGT -ACGGAAGTCCTAGCTAAGCGTAGT -ACGGAAGTCCTAGCTAAGGTCAGT -ACGGAAGTCCTAGCTAAGGAAGGT -ACGGAAGTCCTAGCTAAGAACCGT -ACGGAAGTCCTAGCTAAGTTGTGC -ACGGAAGTCCTAGCTAAGCTAAGC -ACGGAAGTCCTAGCTAAGACTAGC -ACGGAAGTCCTAGCTAAGAGATGC -ACGGAAGTCCTAGCTAAGTGAAGG -ACGGAAGTCCTAGCTAAGCAATGG -ACGGAAGTCCTAGCTAAGATGAGG -ACGGAAGTCCTAGCTAAGAATGGG -ACGGAAGTCCTAGCTAAGTCCTGA -ACGGAAGTCCTAGCTAAGTAGCGA -ACGGAAGTCCTAGCTAAGCACAGA -ACGGAAGTCCTAGCTAAGGCAAGA -ACGGAAGTCCTAGCTAAGGGTTGA -ACGGAAGTCCTAGCTAAGTCCGAT -ACGGAAGTCCTAGCTAAGTGGCAT -ACGGAAGTCCTAGCTAAGCGAGAT -ACGGAAGTCCTAGCTAAGTACCAC -ACGGAAGTCCTAGCTAAGCAGAAC -ACGGAAGTCCTAGCTAAGGTCTAC -ACGGAAGTCCTAGCTAAGACGTAC -ACGGAAGTCCTAGCTAAGAGTGAC -ACGGAAGTCCTAGCTAAGCTGTAG -ACGGAAGTCCTAGCTAAGCCTAAG -ACGGAAGTCCTAGCTAAGGTTCAG -ACGGAAGTCCTAGCTAAGGCATAG -ACGGAAGTCCTAGCTAAGGACAAG -ACGGAAGTCCTAGCTAAGAAGCAG -ACGGAAGTCCTAGCTAAGCGTCAA -ACGGAAGTCCTAGCTAAGGCTGAA -ACGGAAGTCCTAGCTAAGAGTACG -ACGGAAGTCCTAGCTAAGATCCGA -ACGGAAGTCCTAGCTAAGATGGGA -ACGGAAGTCCTAGCTAAGGTGCAA -ACGGAAGTCCTAGCTAAGGAGGAA -ACGGAAGTCCTAGCTAAGCAGGTA -ACGGAAGTCCTAGCTAAGGACTCT -ACGGAAGTCCTAGCTAAGAGTCCT -ACGGAAGTCCTAGCTAAGTAAGCC -ACGGAAGTCCTAGCTAAGATAGCC -ACGGAAGTCCTAGCTAAGTAACCG -ACGGAAGTCCTAGCTAAGATGCCA -ACGGAAGTCCTAACCTCAGGAAAC -ACGGAAGTCCTAACCTCAAACACC -ACGGAAGTCCTAACCTCAATCGAG -ACGGAAGTCCTAACCTCACTCCTT -ACGGAAGTCCTAACCTCACCTGTT -ACGGAAGTCCTAACCTCACGGTTT -ACGGAAGTCCTAACCTCAGTGGTT -ACGGAAGTCCTAACCTCAGCCTTT -ACGGAAGTCCTAACCTCAGGTCTT -ACGGAAGTCCTAACCTCAACGCTT -ACGGAAGTCCTAACCTCAAGCGTT -ACGGAAGTCCTAACCTCATTCGTC -ACGGAAGTCCTAACCTCATCTCTC -ACGGAAGTCCTAACCTCATGGATC -ACGGAAGTCCTAACCTCACACTTC -ACGGAAGTCCTAACCTCAGTACTC -ACGGAAGTCCTAACCTCAGATGTC -ACGGAAGTCCTAACCTCAACAGTC -ACGGAAGTCCTAACCTCATTGCTG -ACGGAAGTCCTAACCTCATCCATG -ACGGAAGTCCTAACCTCATGTGTG -ACGGAAGTCCTAACCTCACTAGTG -ACGGAAGTCCTAACCTCACATCTG -ACGGAAGTCCTAACCTCAGAGTTG -ACGGAAGTCCTAACCTCAAGACTG -ACGGAAGTCCTAACCTCATCGGTA -ACGGAAGTCCTAACCTCATGCCTA -ACGGAAGTCCTAACCTCACCACTA -ACGGAAGTCCTAACCTCAGGAGTA -ACGGAAGTCCTAACCTCATCGTCT -ACGGAAGTCCTAACCTCATGCACT -ACGGAAGTCCTAACCTCACTGACT -ACGGAAGTCCTAACCTCACAACCT -ACGGAAGTCCTAACCTCAGCTACT -ACGGAAGTCCTAACCTCAGGATCT -ACGGAAGTCCTAACCTCAAAGGCT -ACGGAAGTCCTAACCTCATCAACC -ACGGAAGTCCTAACCTCATGTTCC -ACGGAAGTCCTAACCTCAATTCCC -ACGGAAGTCCTAACCTCATTCTCG -ACGGAAGTCCTAACCTCATAGACG -ACGGAAGTCCTAACCTCAGTAACG -ACGGAAGTCCTAACCTCAACTTCG -ACGGAAGTCCTAACCTCATACGCA -ACGGAAGTCCTAACCTCACTTGCA -ACGGAAGTCCTAACCTCACGAACA -ACGGAAGTCCTAACCTCACAGTCA -ACGGAAGTCCTAACCTCAGATCCA -ACGGAAGTCCTAACCTCAACGACA -ACGGAAGTCCTAACCTCAAGCTCA -ACGGAAGTCCTAACCTCATCACGT -ACGGAAGTCCTAACCTCACGTAGT -ACGGAAGTCCTAACCTCAGTCAGT -ACGGAAGTCCTAACCTCAGAAGGT -ACGGAAGTCCTAACCTCAAACCGT -ACGGAAGTCCTAACCTCATTGTGC -ACGGAAGTCCTAACCTCACTAAGC -ACGGAAGTCCTAACCTCAACTAGC -ACGGAAGTCCTAACCTCAAGATGC -ACGGAAGTCCTAACCTCATGAAGG -ACGGAAGTCCTAACCTCACAATGG -ACGGAAGTCCTAACCTCAATGAGG -ACGGAAGTCCTAACCTCAAATGGG -ACGGAAGTCCTAACCTCATCCTGA -ACGGAAGTCCTAACCTCATAGCGA -ACGGAAGTCCTAACCTCACACAGA -ACGGAAGTCCTAACCTCAGCAAGA -ACGGAAGTCCTAACCTCAGGTTGA -ACGGAAGTCCTAACCTCATCCGAT -ACGGAAGTCCTAACCTCATGGCAT -ACGGAAGTCCTAACCTCACGAGAT -ACGGAAGTCCTAACCTCATACCAC -ACGGAAGTCCTAACCTCACAGAAC -ACGGAAGTCCTAACCTCAGTCTAC -ACGGAAGTCCTAACCTCAACGTAC -ACGGAAGTCCTAACCTCAAGTGAC -ACGGAAGTCCTAACCTCACTGTAG -ACGGAAGTCCTAACCTCACCTAAG -ACGGAAGTCCTAACCTCAGTTCAG -ACGGAAGTCCTAACCTCAGCATAG -ACGGAAGTCCTAACCTCAGACAAG -ACGGAAGTCCTAACCTCAAAGCAG -ACGGAAGTCCTAACCTCACGTCAA -ACGGAAGTCCTAACCTCAGCTGAA -ACGGAAGTCCTAACCTCAAGTACG -ACGGAAGTCCTAACCTCAATCCGA -ACGGAAGTCCTAACCTCAATGGGA -ACGGAAGTCCTAACCTCAGTGCAA -ACGGAAGTCCTAACCTCAGAGGAA -ACGGAAGTCCTAACCTCACAGGTA -ACGGAAGTCCTAACCTCAGACTCT -ACGGAAGTCCTAACCTCAAGTCCT -ACGGAAGTCCTAACCTCATAAGCC -ACGGAAGTCCTAACCTCAATAGCC -ACGGAAGTCCTAACCTCATAACCG -ACGGAAGTCCTAACCTCAATGCCA -ACGGAAGTCCTATCCTGTGGAAAC -ACGGAAGTCCTATCCTGTAACACC -ACGGAAGTCCTATCCTGTATCGAG -ACGGAAGTCCTATCCTGTCTCCTT -ACGGAAGTCCTATCCTGTCCTGTT -ACGGAAGTCCTATCCTGTCGGTTT -ACGGAAGTCCTATCCTGTGTGGTT -ACGGAAGTCCTATCCTGTGCCTTT -ACGGAAGTCCTATCCTGTGGTCTT -ACGGAAGTCCTATCCTGTACGCTT -ACGGAAGTCCTATCCTGTAGCGTT -ACGGAAGTCCTATCCTGTTTCGTC -ACGGAAGTCCTATCCTGTTCTCTC -ACGGAAGTCCTATCCTGTTGGATC -ACGGAAGTCCTATCCTGTCACTTC -ACGGAAGTCCTATCCTGTGTACTC -ACGGAAGTCCTATCCTGTGATGTC -ACGGAAGTCCTATCCTGTACAGTC -ACGGAAGTCCTATCCTGTTTGCTG -ACGGAAGTCCTATCCTGTTCCATG -ACGGAAGTCCTATCCTGTTGTGTG -ACGGAAGTCCTATCCTGTCTAGTG -ACGGAAGTCCTATCCTGTCATCTG -ACGGAAGTCCTATCCTGTGAGTTG -ACGGAAGTCCTATCCTGTAGACTG -ACGGAAGTCCTATCCTGTTCGGTA -ACGGAAGTCCTATCCTGTTGCCTA -ACGGAAGTCCTATCCTGTCCACTA -ACGGAAGTCCTATCCTGTGGAGTA -ACGGAAGTCCTATCCTGTTCGTCT -ACGGAAGTCCTATCCTGTTGCACT -ACGGAAGTCCTATCCTGTCTGACT -ACGGAAGTCCTATCCTGTCAACCT -ACGGAAGTCCTATCCTGTGCTACT -ACGGAAGTCCTATCCTGTGGATCT -ACGGAAGTCCTATCCTGTAAGGCT -ACGGAAGTCCTATCCTGTTCAACC -ACGGAAGTCCTATCCTGTTGTTCC -ACGGAAGTCCTATCCTGTATTCCC -ACGGAAGTCCTATCCTGTTTCTCG -ACGGAAGTCCTATCCTGTTAGACG -ACGGAAGTCCTATCCTGTGTAACG -ACGGAAGTCCTATCCTGTACTTCG -ACGGAAGTCCTATCCTGTTACGCA -ACGGAAGTCCTATCCTGTCTTGCA -ACGGAAGTCCTATCCTGTCGAACA -ACGGAAGTCCTATCCTGTCAGTCA -ACGGAAGTCCTATCCTGTGATCCA -ACGGAAGTCCTATCCTGTACGACA -ACGGAAGTCCTATCCTGTAGCTCA -ACGGAAGTCCTATCCTGTTCACGT -ACGGAAGTCCTATCCTGTCGTAGT -ACGGAAGTCCTATCCTGTGTCAGT -ACGGAAGTCCTATCCTGTGAAGGT -ACGGAAGTCCTATCCTGTAACCGT -ACGGAAGTCCTATCCTGTTTGTGC -ACGGAAGTCCTATCCTGTCTAAGC -ACGGAAGTCCTATCCTGTACTAGC -ACGGAAGTCCTATCCTGTAGATGC -ACGGAAGTCCTATCCTGTTGAAGG -ACGGAAGTCCTATCCTGTCAATGG -ACGGAAGTCCTATCCTGTATGAGG -ACGGAAGTCCTATCCTGTAATGGG -ACGGAAGTCCTATCCTGTTCCTGA -ACGGAAGTCCTATCCTGTTAGCGA -ACGGAAGTCCTATCCTGTCACAGA -ACGGAAGTCCTATCCTGTGCAAGA -ACGGAAGTCCTATCCTGTGGTTGA -ACGGAAGTCCTATCCTGTTCCGAT -ACGGAAGTCCTATCCTGTTGGCAT -ACGGAAGTCCTATCCTGTCGAGAT -ACGGAAGTCCTATCCTGTTACCAC -ACGGAAGTCCTATCCTGTCAGAAC -ACGGAAGTCCTATCCTGTGTCTAC -ACGGAAGTCCTATCCTGTACGTAC -ACGGAAGTCCTATCCTGTAGTGAC -ACGGAAGTCCTATCCTGTCTGTAG -ACGGAAGTCCTATCCTGTCCTAAG -ACGGAAGTCCTATCCTGTGTTCAG -ACGGAAGTCCTATCCTGTGCATAG -ACGGAAGTCCTATCCTGTGACAAG -ACGGAAGTCCTATCCTGTAAGCAG -ACGGAAGTCCTATCCTGTCGTCAA -ACGGAAGTCCTATCCTGTGCTGAA -ACGGAAGTCCTATCCTGTAGTACG -ACGGAAGTCCTATCCTGTATCCGA -ACGGAAGTCCTATCCTGTATGGGA -ACGGAAGTCCTATCCTGTGTGCAA -ACGGAAGTCCTATCCTGTGAGGAA -ACGGAAGTCCTATCCTGTCAGGTA -ACGGAAGTCCTATCCTGTGACTCT -ACGGAAGTCCTATCCTGTAGTCCT -ACGGAAGTCCTATCCTGTTAAGCC -ACGGAAGTCCTATCCTGTATAGCC -ACGGAAGTCCTATCCTGTTAACCG -ACGGAAGTCCTATCCTGTATGCCA -ACGGAAGTCCTACCCATTGGAAAC -ACGGAAGTCCTACCCATTAACACC -ACGGAAGTCCTACCCATTATCGAG -ACGGAAGTCCTACCCATTCTCCTT -ACGGAAGTCCTACCCATTCCTGTT -ACGGAAGTCCTACCCATTCGGTTT -ACGGAAGTCCTACCCATTGTGGTT -ACGGAAGTCCTACCCATTGCCTTT -ACGGAAGTCCTACCCATTGGTCTT -ACGGAAGTCCTACCCATTACGCTT -ACGGAAGTCCTACCCATTAGCGTT -ACGGAAGTCCTACCCATTTTCGTC -ACGGAAGTCCTACCCATTTCTCTC -ACGGAAGTCCTACCCATTTGGATC -ACGGAAGTCCTACCCATTCACTTC -ACGGAAGTCCTACCCATTGTACTC -ACGGAAGTCCTACCCATTGATGTC -ACGGAAGTCCTACCCATTACAGTC -ACGGAAGTCCTACCCATTTTGCTG -ACGGAAGTCCTACCCATTTCCATG -ACGGAAGTCCTACCCATTTGTGTG -ACGGAAGTCCTACCCATTCTAGTG -ACGGAAGTCCTACCCATTCATCTG -ACGGAAGTCCTACCCATTGAGTTG -ACGGAAGTCCTACCCATTAGACTG -ACGGAAGTCCTACCCATTTCGGTA -ACGGAAGTCCTACCCATTTGCCTA -ACGGAAGTCCTACCCATTCCACTA -ACGGAAGTCCTACCCATTGGAGTA -ACGGAAGTCCTACCCATTTCGTCT -ACGGAAGTCCTACCCATTTGCACT -ACGGAAGTCCTACCCATTCTGACT -ACGGAAGTCCTACCCATTCAACCT -ACGGAAGTCCTACCCATTGCTACT -ACGGAAGTCCTACCCATTGGATCT -ACGGAAGTCCTACCCATTAAGGCT -ACGGAAGTCCTACCCATTTCAACC -ACGGAAGTCCTACCCATTTGTTCC -ACGGAAGTCCTACCCATTATTCCC -ACGGAAGTCCTACCCATTTTCTCG -ACGGAAGTCCTACCCATTTAGACG -ACGGAAGTCCTACCCATTGTAACG -ACGGAAGTCCTACCCATTACTTCG -ACGGAAGTCCTACCCATTTACGCA -ACGGAAGTCCTACCCATTCTTGCA -ACGGAAGTCCTACCCATTCGAACA -ACGGAAGTCCTACCCATTCAGTCA -ACGGAAGTCCTACCCATTGATCCA -ACGGAAGTCCTACCCATTACGACA -ACGGAAGTCCTACCCATTAGCTCA -ACGGAAGTCCTACCCATTTCACGT -ACGGAAGTCCTACCCATTCGTAGT -ACGGAAGTCCTACCCATTGTCAGT -ACGGAAGTCCTACCCATTGAAGGT -ACGGAAGTCCTACCCATTAACCGT -ACGGAAGTCCTACCCATTTTGTGC -ACGGAAGTCCTACCCATTCTAAGC -ACGGAAGTCCTACCCATTACTAGC -ACGGAAGTCCTACCCATTAGATGC -ACGGAAGTCCTACCCATTTGAAGG -ACGGAAGTCCTACCCATTCAATGG -ACGGAAGTCCTACCCATTATGAGG -ACGGAAGTCCTACCCATTAATGGG -ACGGAAGTCCTACCCATTTCCTGA -ACGGAAGTCCTACCCATTTAGCGA -ACGGAAGTCCTACCCATTCACAGA -ACGGAAGTCCTACCCATTGCAAGA -ACGGAAGTCCTACCCATTGGTTGA -ACGGAAGTCCTACCCATTTCCGAT -ACGGAAGTCCTACCCATTTGGCAT -ACGGAAGTCCTACCCATTCGAGAT -ACGGAAGTCCTACCCATTTACCAC -ACGGAAGTCCTACCCATTCAGAAC -ACGGAAGTCCTACCCATTGTCTAC -ACGGAAGTCCTACCCATTACGTAC -ACGGAAGTCCTACCCATTAGTGAC -ACGGAAGTCCTACCCATTCTGTAG -ACGGAAGTCCTACCCATTCCTAAG -ACGGAAGTCCTACCCATTGTTCAG -ACGGAAGTCCTACCCATTGCATAG -ACGGAAGTCCTACCCATTGACAAG -ACGGAAGTCCTACCCATTAAGCAG -ACGGAAGTCCTACCCATTCGTCAA -ACGGAAGTCCTACCCATTGCTGAA -ACGGAAGTCCTACCCATTAGTACG -ACGGAAGTCCTACCCATTATCCGA -ACGGAAGTCCTACCCATTATGGGA -ACGGAAGTCCTACCCATTGTGCAA -ACGGAAGTCCTACCCATTGAGGAA -ACGGAAGTCCTACCCATTCAGGTA -ACGGAAGTCCTACCCATTGACTCT -ACGGAAGTCCTACCCATTAGTCCT -ACGGAAGTCCTACCCATTTAAGCC -ACGGAAGTCCTACCCATTATAGCC -ACGGAAGTCCTACCCATTTAACCG -ACGGAAGTCCTACCCATTATGCCA -ACGGAAGTCCTATCGTTCGGAAAC -ACGGAAGTCCTATCGTTCAACACC -ACGGAAGTCCTATCGTTCATCGAG -ACGGAAGTCCTATCGTTCCTCCTT -ACGGAAGTCCTATCGTTCCCTGTT -ACGGAAGTCCTATCGTTCCGGTTT -ACGGAAGTCCTATCGTTCGTGGTT -ACGGAAGTCCTATCGTTCGCCTTT -ACGGAAGTCCTATCGTTCGGTCTT -ACGGAAGTCCTATCGTTCACGCTT -ACGGAAGTCCTATCGTTCAGCGTT -ACGGAAGTCCTATCGTTCTTCGTC -ACGGAAGTCCTATCGTTCTCTCTC -ACGGAAGTCCTATCGTTCTGGATC -ACGGAAGTCCTATCGTTCCACTTC -ACGGAAGTCCTATCGTTCGTACTC -ACGGAAGTCCTATCGTTCGATGTC -ACGGAAGTCCTATCGTTCACAGTC -ACGGAAGTCCTATCGTTCTTGCTG -ACGGAAGTCCTATCGTTCTCCATG -ACGGAAGTCCTATCGTTCTGTGTG -ACGGAAGTCCTATCGTTCCTAGTG -ACGGAAGTCCTATCGTTCCATCTG -ACGGAAGTCCTATCGTTCGAGTTG -ACGGAAGTCCTATCGTTCAGACTG -ACGGAAGTCCTATCGTTCTCGGTA -ACGGAAGTCCTATCGTTCTGCCTA -ACGGAAGTCCTATCGTTCCCACTA -ACGGAAGTCCTATCGTTCGGAGTA -ACGGAAGTCCTATCGTTCTCGTCT -ACGGAAGTCCTATCGTTCTGCACT -ACGGAAGTCCTATCGTTCCTGACT -ACGGAAGTCCTATCGTTCCAACCT -ACGGAAGTCCTATCGTTCGCTACT -ACGGAAGTCCTATCGTTCGGATCT -ACGGAAGTCCTATCGTTCAAGGCT -ACGGAAGTCCTATCGTTCTCAACC -ACGGAAGTCCTATCGTTCTGTTCC -ACGGAAGTCCTATCGTTCATTCCC -ACGGAAGTCCTATCGTTCTTCTCG -ACGGAAGTCCTATCGTTCTAGACG -ACGGAAGTCCTATCGTTCGTAACG -ACGGAAGTCCTATCGTTCACTTCG -ACGGAAGTCCTATCGTTCTACGCA -ACGGAAGTCCTATCGTTCCTTGCA -ACGGAAGTCCTATCGTTCCGAACA -ACGGAAGTCCTATCGTTCCAGTCA -ACGGAAGTCCTATCGTTCGATCCA -ACGGAAGTCCTATCGTTCACGACA -ACGGAAGTCCTATCGTTCAGCTCA -ACGGAAGTCCTATCGTTCTCACGT -ACGGAAGTCCTATCGTTCCGTAGT -ACGGAAGTCCTATCGTTCGTCAGT -ACGGAAGTCCTATCGTTCGAAGGT -ACGGAAGTCCTATCGTTCAACCGT -ACGGAAGTCCTATCGTTCTTGTGC -ACGGAAGTCCTATCGTTCCTAAGC -ACGGAAGTCCTATCGTTCACTAGC -ACGGAAGTCCTATCGTTCAGATGC -ACGGAAGTCCTATCGTTCTGAAGG -ACGGAAGTCCTATCGTTCCAATGG -ACGGAAGTCCTATCGTTCATGAGG -ACGGAAGTCCTATCGTTCAATGGG -ACGGAAGTCCTATCGTTCTCCTGA -ACGGAAGTCCTATCGTTCTAGCGA -ACGGAAGTCCTATCGTTCCACAGA -ACGGAAGTCCTATCGTTCGCAAGA -ACGGAAGTCCTATCGTTCGGTTGA -ACGGAAGTCCTATCGTTCTCCGAT -ACGGAAGTCCTATCGTTCTGGCAT -ACGGAAGTCCTATCGTTCCGAGAT -ACGGAAGTCCTATCGTTCTACCAC -ACGGAAGTCCTATCGTTCCAGAAC -ACGGAAGTCCTATCGTTCGTCTAC -ACGGAAGTCCTATCGTTCACGTAC -ACGGAAGTCCTATCGTTCAGTGAC -ACGGAAGTCCTATCGTTCCTGTAG -ACGGAAGTCCTATCGTTCCCTAAG -ACGGAAGTCCTATCGTTCGTTCAG -ACGGAAGTCCTATCGTTCGCATAG -ACGGAAGTCCTATCGTTCGACAAG -ACGGAAGTCCTATCGTTCAAGCAG -ACGGAAGTCCTATCGTTCCGTCAA -ACGGAAGTCCTATCGTTCGCTGAA -ACGGAAGTCCTATCGTTCAGTACG -ACGGAAGTCCTATCGTTCATCCGA -ACGGAAGTCCTATCGTTCATGGGA -ACGGAAGTCCTATCGTTCGTGCAA -ACGGAAGTCCTATCGTTCGAGGAA -ACGGAAGTCCTATCGTTCCAGGTA -ACGGAAGTCCTATCGTTCGACTCT -ACGGAAGTCCTATCGTTCAGTCCT -ACGGAAGTCCTATCGTTCTAAGCC -ACGGAAGTCCTATCGTTCATAGCC -ACGGAAGTCCTATCGTTCTAACCG -ACGGAAGTCCTATCGTTCATGCCA -ACGGAAGTCCTAACGTAGGGAAAC -ACGGAAGTCCTAACGTAGAACACC -ACGGAAGTCCTAACGTAGATCGAG -ACGGAAGTCCTAACGTAGCTCCTT -ACGGAAGTCCTAACGTAGCCTGTT -ACGGAAGTCCTAACGTAGCGGTTT -ACGGAAGTCCTAACGTAGGTGGTT -ACGGAAGTCCTAACGTAGGCCTTT -ACGGAAGTCCTAACGTAGGGTCTT -ACGGAAGTCCTAACGTAGACGCTT -ACGGAAGTCCTAACGTAGAGCGTT -ACGGAAGTCCTAACGTAGTTCGTC -ACGGAAGTCCTAACGTAGTCTCTC -ACGGAAGTCCTAACGTAGTGGATC -ACGGAAGTCCTAACGTAGCACTTC -ACGGAAGTCCTAACGTAGGTACTC -ACGGAAGTCCTAACGTAGGATGTC -ACGGAAGTCCTAACGTAGACAGTC -ACGGAAGTCCTAACGTAGTTGCTG -ACGGAAGTCCTAACGTAGTCCATG -ACGGAAGTCCTAACGTAGTGTGTG -ACGGAAGTCCTAACGTAGCTAGTG -ACGGAAGTCCTAACGTAGCATCTG -ACGGAAGTCCTAACGTAGGAGTTG -ACGGAAGTCCTAACGTAGAGACTG -ACGGAAGTCCTAACGTAGTCGGTA -ACGGAAGTCCTAACGTAGTGCCTA -ACGGAAGTCCTAACGTAGCCACTA -ACGGAAGTCCTAACGTAGGGAGTA -ACGGAAGTCCTAACGTAGTCGTCT -ACGGAAGTCCTAACGTAGTGCACT -ACGGAAGTCCTAACGTAGCTGACT -ACGGAAGTCCTAACGTAGCAACCT -ACGGAAGTCCTAACGTAGGCTACT -ACGGAAGTCCTAACGTAGGGATCT -ACGGAAGTCCTAACGTAGAAGGCT -ACGGAAGTCCTAACGTAGTCAACC -ACGGAAGTCCTAACGTAGTGTTCC -ACGGAAGTCCTAACGTAGATTCCC -ACGGAAGTCCTAACGTAGTTCTCG -ACGGAAGTCCTAACGTAGTAGACG -ACGGAAGTCCTAACGTAGGTAACG -ACGGAAGTCCTAACGTAGACTTCG -ACGGAAGTCCTAACGTAGTACGCA -ACGGAAGTCCTAACGTAGCTTGCA -ACGGAAGTCCTAACGTAGCGAACA -ACGGAAGTCCTAACGTAGCAGTCA -ACGGAAGTCCTAACGTAGGATCCA -ACGGAAGTCCTAACGTAGACGACA -ACGGAAGTCCTAACGTAGAGCTCA -ACGGAAGTCCTAACGTAGTCACGT -ACGGAAGTCCTAACGTAGCGTAGT -ACGGAAGTCCTAACGTAGGTCAGT -ACGGAAGTCCTAACGTAGGAAGGT -ACGGAAGTCCTAACGTAGAACCGT -ACGGAAGTCCTAACGTAGTTGTGC -ACGGAAGTCCTAACGTAGCTAAGC -ACGGAAGTCCTAACGTAGACTAGC -ACGGAAGTCCTAACGTAGAGATGC -ACGGAAGTCCTAACGTAGTGAAGG -ACGGAAGTCCTAACGTAGCAATGG -ACGGAAGTCCTAACGTAGATGAGG -ACGGAAGTCCTAACGTAGAATGGG -ACGGAAGTCCTAACGTAGTCCTGA -ACGGAAGTCCTAACGTAGTAGCGA -ACGGAAGTCCTAACGTAGCACAGA -ACGGAAGTCCTAACGTAGGCAAGA -ACGGAAGTCCTAACGTAGGGTTGA -ACGGAAGTCCTAACGTAGTCCGAT -ACGGAAGTCCTAACGTAGTGGCAT -ACGGAAGTCCTAACGTAGCGAGAT -ACGGAAGTCCTAACGTAGTACCAC -ACGGAAGTCCTAACGTAGCAGAAC -ACGGAAGTCCTAACGTAGGTCTAC -ACGGAAGTCCTAACGTAGACGTAC -ACGGAAGTCCTAACGTAGAGTGAC -ACGGAAGTCCTAACGTAGCTGTAG -ACGGAAGTCCTAACGTAGCCTAAG -ACGGAAGTCCTAACGTAGGTTCAG -ACGGAAGTCCTAACGTAGGCATAG -ACGGAAGTCCTAACGTAGGACAAG -ACGGAAGTCCTAACGTAGAAGCAG -ACGGAAGTCCTAACGTAGCGTCAA -ACGGAAGTCCTAACGTAGGCTGAA -ACGGAAGTCCTAACGTAGAGTACG -ACGGAAGTCCTAACGTAGATCCGA -ACGGAAGTCCTAACGTAGATGGGA -ACGGAAGTCCTAACGTAGGTGCAA -ACGGAAGTCCTAACGTAGGAGGAA -ACGGAAGTCCTAACGTAGCAGGTA -ACGGAAGTCCTAACGTAGGACTCT -ACGGAAGTCCTAACGTAGAGTCCT -ACGGAAGTCCTAACGTAGTAAGCC -ACGGAAGTCCTAACGTAGATAGCC -ACGGAAGTCCTAACGTAGTAACCG -ACGGAAGTCCTAACGTAGATGCCA -ACGGAAGTCCTAACGGTAGGAAAC -ACGGAAGTCCTAACGGTAAACACC -ACGGAAGTCCTAACGGTAATCGAG -ACGGAAGTCCTAACGGTACTCCTT -ACGGAAGTCCTAACGGTACCTGTT -ACGGAAGTCCTAACGGTACGGTTT -ACGGAAGTCCTAACGGTAGTGGTT -ACGGAAGTCCTAACGGTAGCCTTT -ACGGAAGTCCTAACGGTAGGTCTT -ACGGAAGTCCTAACGGTAACGCTT -ACGGAAGTCCTAACGGTAAGCGTT -ACGGAAGTCCTAACGGTATTCGTC -ACGGAAGTCCTAACGGTATCTCTC -ACGGAAGTCCTAACGGTATGGATC -ACGGAAGTCCTAACGGTACACTTC -ACGGAAGTCCTAACGGTAGTACTC -ACGGAAGTCCTAACGGTAGATGTC -ACGGAAGTCCTAACGGTAACAGTC -ACGGAAGTCCTAACGGTATTGCTG -ACGGAAGTCCTAACGGTATCCATG -ACGGAAGTCCTAACGGTATGTGTG -ACGGAAGTCCTAACGGTACTAGTG -ACGGAAGTCCTAACGGTACATCTG -ACGGAAGTCCTAACGGTAGAGTTG -ACGGAAGTCCTAACGGTAAGACTG -ACGGAAGTCCTAACGGTATCGGTA -ACGGAAGTCCTAACGGTATGCCTA -ACGGAAGTCCTAACGGTACCACTA -ACGGAAGTCCTAACGGTAGGAGTA -ACGGAAGTCCTAACGGTATCGTCT -ACGGAAGTCCTAACGGTATGCACT -ACGGAAGTCCTAACGGTACTGACT -ACGGAAGTCCTAACGGTACAACCT -ACGGAAGTCCTAACGGTAGCTACT -ACGGAAGTCCTAACGGTAGGATCT -ACGGAAGTCCTAACGGTAAAGGCT -ACGGAAGTCCTAACGGTATCAACC -ACGGAAGTCCTAACGGTATGTTCC -ACGGAAGTCCTAACGGTAATTCCC -ACGGAAGTCCTAACGGTATTCTCG -ACGGAAGTCCTAACGGTATAGACG -ACGGAAGTCCTAACGGTAGTAACG -ACGGAAGTCCTAACGGTAACTTCG -ACGGAAGTCCTAACGGTATACGCA -ACGGAAGTCCTAACGGTACTTGCA -ACGGAAGTCCTAACGGTACGAACA -ACGGAAGTCCTAACGGTACAGTCA -ACGGAAGTCCTAACGGTAGATCCA -ACGGAAGTCCTAACGGTAACGACA -ACGGAAGTCCTAACGGTAAGCTCA -ACGGAAGTCCTAACGGTATCACGT -ACGGAAGTCCTAACGGTACGTAGT -ACGGAAGTCCTAACGGTAGTCAGT -ACGGAAGTCCTAACGGTAGAAGGT -ACGGAAGTCCTAACGGTAAACCGT -ACGGAAGTCCTAACGGTATTGTGC -ACGGAAGTCCTAACGGTACTAAGC -ACGGAAGTCCTAACGGTAACTAGC -ACGGAAGTCCTAACGGTAAGATGC -ACGGAAGTCCTAACGGTATGAAGG -ACGGAAGTCCTAACGGTACAATGG -ACGGAAGTCCTAACGGTAATGAGG -ACGGAAGTCCTAACGGTAAATGGG -ACGGAAGTCCTAACGGTATCCTGA -ACGGAAGTCCTAACGGTATAGCGA -ACGGAAGTCCTAACGGTACACAGA -ACGGAAGTCCTAACGGTAGCAAGA -ACGGAAGTCCTAACGGTAGGTTGA -ACGGAAGTCCTAACGGTATCCGAT -ACGGAAGTCCTAACGGTATGGCAT -ACGGAAGTCCTAACGGTACGAGAT -ACGGAAGTCCTAACGGTATACCAC -ACGGAAGTCCTAACGGTACAGAAC -ACGGAAGTCCTAACGGTAGTCTAC -ACGGAAGTCCTAACGGTAACGTAC -ACGGAAGTCCTAACGGTAAGTGAC -ACGGAAGTCCTAACGGTACTGTAG -ACGGAAGTCCTAACGGTACCTAAG -ACGGAAGTCCTAACGGTAGTTCAG -ACGGAAGTCCTAACGGTAGCATAG -ACGGAAGTCCTAACGGTAGACAAG -ACGGAAGTCCTAACGGTAAAGCAG -ACGGAAGTCCTAACGGTACGTCAA -ACGGAAGTCCTAACGGTAGCTGAA -ACGGAAGTCCTAACGGTAAGTACG -ACGGAAGTCCTAACGGTAATCCGA -ACGGAAGTCCTAACGGTAATGGGA -ACGGAAGTCCTAACGGTAGTGCAA -ACGGAAGTCCTAACGGTAGAGGAA -ACGGAAGTCCTAACGGTACAGGTA -ACGGAAGTCCTAACGGTAGACTCT -ACGGAAGTCCTAACGGTAAGTCCT -ACGGAAGTCCTAACGGTATAAGCC -ACGGAAGTCCTAACGGTAATAGCC -ACGGAAGTCCTAACGGTATAACCG -ACGGAAGTCCTAACGGTAATGCCA -ACGGAAGTCCTATCGACTGGAAAC -ACGGAAGTCCTATCGACTAACACC -ACGGAAGTCCTATCGACTATCGAG -ACGGAAGTCCTATCGACTCTCCTT -ACGGAAGTCCTATCGACTCCTGTT -ACGGAAGTCCTATCGACTCGGTTT -ACGGAAGTCCTATCGACTGTGGTT -ACGGAAGTCCTATCGACTGCCTTT -ACGGAAGTCCTATCGACTGGTCTT -ACGGAAGTCCTATCGACTACGCTT -ACGGAAGTCCTATCGACTAGCGTT -ACGGAAGTCCTATCGACTTTCGTC -ACGGAAGTCCTATCGACTTCTCTC -ACGGAAGTCCTATCGACTTGGATC -ACGGAAGTCCTATCGACTCACTTC -ACGGAAGTCCTATCGACTGTACTC -ACGGAAGTCCTATCGACTGATGTC -ACGGAAGTCCTATCGACTACAGTC -ACGGAAGTCCTATCGACTTTGCTG -ACGGAAGTCCTATCGACTTCCATG -ACGGAAGTCCTATCGACTTGTGTG -ACGGAAGTCCTATCGACTCTAGTG -ACGGAAGTCCTATCGACTCATCTG -ACGGAAGTCCTATCGACTGAGTTG -ACGGAAGTCCTATCGACTAGACTG -ACGGAAGTCCTATCGACTTCGGTA -ACGGAAGTCCTATCGACTTGCCTA -ACGGAAGTCCTATCGACTCCACTA -ACGGAAGTCCTATCGACTGGAGTA -ACGGAAGTCCTATCGACTTCGTCT -ACGGAAGTCCTATCGACTTGCACT -ACGGAAGTCCTATCGACTCTGACT -ACGGAAGTCCTATCGACTCAACCT -ACGGAAGTCCTATCGACTGCTACT -ACGGAAGTCCTATCGACTGGATCT -ACGGAAGTCCTATCGACTAAGGCT -ACGGAAGTCCTATCGACTTCAACC -ACGGAAGTCCTATCGACTTGTTCC -ACGGAAGTCCTATCGACTATTCCC -ACGGAAGTCCTATCGACTTTCTCG -ACGGAAGTCCTATCGACTTAGACG -ACGGAAGTCCTATCGACTGTAACG -ACGGAAGTCCTATCGACTACTTCG -ACGGAAGTCCTATCGACTTACGCA -ACGGAAGTCCTATCGACTCTTGCA -ACGGAAGTCCTATCGACTCGAACA -ACGGAAGTCCTATCGACTCAGTCA -ACGGAAGTCCTATCGACTGATCCA -ACGGAAGTCCTATCGACTACGACA -ACGGAAGTCCTATCGACTAGCTCA -ACGGAAGTCCTATCGACTTCACGT -ACGGAAGTCCTATCGACTCGTAGT -ACGGAAGTCCTATCGACTGTCAGT -ACGGAAGTCCTATCGACTGAAGGT -ACGGAAGTCCTATCGACTAACCGT -ACGGAAGTCCTATCGACTTTGTGC -ACGGAAGTCCTATCGACTCTAAGC -ACGGAAGTCCTATCGACTACTAGC -ACGGAAGTCCTATCGACTAGATGC -ACGGAAGTCCTATCGACTTGAAGG -ACGGAAGTCCTATCGACTCAATGG -ACGGAAGTCCTATCGACTATGAGG -ACGGAAGTCCTATCGACTAATGGG -ACGGAAGTCCTATCGACTTCCTGA -ACGGAAGTCCTATCGACTTAGCGA -ACGGAAGTCCTATCGACTCACAGA -ACGGAAGTCCTATCGACTGCAAGA -ACGGAAGTCCTATCGACTGGTTGA -ACGGAAGTCCTATCGACTTCCGAT -ACGGAAGTCCTATCGACTTGGCAT -ACGGAAGTCCTATCGACTCGAGAT -ACGGAAGTCCTATCGACTTACCAC -ACGGAAGTCCTATCGACTCAGAAC -ACGGAAGTCCTATCGACTGTCTAC -ACGGAAGTCCTATCGACTACGTAC -ACGGAAGTCCTATCGACTAGTGAC -ACGGAAGTCCTATCGACTCTGTAG -ACGGAAGTCCTATCGACTCCTAAG -ACGGAAGTCCTATCGACTGTTCAG -ACGGAAGTCCTATCGACTGCATAG -ACGGAAGTCCTATCGACTGACAAG -ACGGAAGTCCTATCGACTAAGCAG -ACGGAAGTCCTATCGACTCGTCAA -ACGGAAGTCCTATCGACTGCTGAA -ACGGAAGTCCTATCGACTAGTACG -ACGGAAGTCCTATCGACTATCCGA -ACGGAAGTCCTATCGACTATGGGA -ACGGAAGTCCTATCGACTGTGCAA -ACGGAAGTCCTATCGACTGAGGAA -ACGGAAGTCCTATCGACTCAGGTA -ACGGAAGTCCTATCGACTGACTCT -ACGGAAGTCCTATCGACTAGTCCT -ACGGAAGTCCTATCGACTTAAGCC -ACGGAAGTCCTATCGACTATAGCC -ACGGAAGTCCTATCGACTTAACCG -ACGGAAGTCCTATCGACTATGCCA -ACGGAAGTCCTAGCATACGGAAAC -ACGGAAGTCCTAGCATACAACACC -ACGGAAGTCCTAGCATACATCGAG -ACGGAAGTCCTAGCATACCTCCTT -ACGGAAGTCCTAGCATACCCTGTT -ACGGAAGTCCTAGCATACCGGTTT -ACGGAAGTCCTAGCATACGTGGTT -ACGGAAGTCCTAGCATACGCCTTT -ACGGAAGTCCTAGCATACGGTCTT -ACGGAAGTCCTAGCATACACGCTT -ACGGAAGTCCTAGCATACAGCGTT -ACGGAAGTCCTAGCATACTTCGTC -ACGGAAGTCCTAGCATACTCTCTC -ACGGAAGTCCTAGCATACTGGATC -ACGGAAGTCCTAGCATACCACTTC -ACGGAAGTCCTAGCATACGTACTC -ACGGAAGTCCTAGCATACGATGTC -ACGGAAGTCCTAGCATACACAGTC -ACGGAAGTCCTAGCATACTTGCTG -ACGGAAGTCCTAGCATACTCCATG -ACGGAAGTCCTAGCATACTGTGTG -ACGGAAGTCCTAGCATACCTAGTG -ACGGAAGTCCTAGCATACCATCTG -ACGGAAGTCCTAGCATACGAGTTG -ACGGAAGTCCTAGCATACAGACTG -ACGGAAGTCCTAGCATACTCGGTA -ACGGAAGTCCTAGCATACTGCCTA -ACGGAAGTCCTAGCATACCCACTA -ACGGAAGTCCTAGCATACGGAGTA -ACGGAAGTCCTAGCATACTCGTCT -ACGGAAGTCCTAGCATACTGCACT -ACGGAAGTCCTAGCATACCTGACT -ACGGAAGTCCTAGCATACCAACCT -ACGGAAGTCCTAGCATACGCTACT -ACGGAAGTCCTAGCATACGGATCT -ACGGAAGTCCTAGCATACAAGGCT -ACGGAAGTCCTAGCATACTCAACC -ACGGAAGTCCTAGCATACTGTTCC -ACGGAAGTCCTAGCATACATTCCC -ACGGAAGTCCTAGCATACTTCTCG -ACGGAAGTCCTAGCATACTAGACG -ACGGAAGTCCTAGCATACGTAACG -ACGGAAGTCCTAGCATACACTTCG -ACGGAAGTCCTAGCATACTACGCA -ACGGAAGTCCTAGCATACCTTGCA -ACGGAAGTCCTAGCATACCGAACA -ACGGAAGTCCTAGCATACCAGTCA -ACGGAAGTCCTAGCATACGATCCA -ACGGAAGTCCTAGCATACACGACA -ACGGAAGTCCTAGCATACAGCTCA -ACGGAAGTCCTAGCATACTCACGT -ACGGAAGTCCTAGCATACCGTAGT -ACGGAAGTCCTAGCATACGTCAGT -ACGGAAGTCCTAGCATACGAAGGT -ACGGAAGTCCTAGCATACAACCGT -ACGGAAGTCCTAGCATACTTGTGC -ACGGAAGTCCTAGCATACCTAAGC -ACGGAAGTCCTAGCATACACTAGC -ACGGAAGTCCTAGCATACAGATGC -ACGGAAGTCCTAGCATACTGAAGG -ACGGAAGTCCTAGCATACCAATGG -ACGGAAGTCCTAGCATACATGAGG -ACGGAAGTCCTAGCATACAATGGG -ACGGAAGTCCTAGCATACTCCTGA -ACGGAAGTCCTAGCATACTAGCGA -ACGGAAGTCCTAGCATACCACAGA -ACGGAAGTCCTAGCATACGCAAGA -ACGGAAGTCCTAGCATACGGTTGA -ACGGAAGTCCTAGCATACTCCGAT -ACGGAAGTCCTAGCATACTGGCAT -ACGGAAGTCCTAGCATACCGAGAT -ACGGAAGTCCTAGCATACTACCAC -ACGGAAGTCCTAGCATACCAGAAC -ACGGAAGTCCTAGCATACGTCTAC -ACGGAAGTCCTAGCATACACGTAC -ACGGAAGTCCTAGCATACAGTGAC -ACGGAAGTCCTAGCATACCTGTAG -ACGGAAGTCCTAGCATACCCTAAG -ACGGAAGTCCTAGCATACGTTCAG -ACGGAAGTCCTAGCATACGCATAG -ACGGAAGTCCTAGCATACGACAAG -ACGGAAGTCCTAGCATACAAGCAG -ACGGAAGTCCTAGCATACCGTCAA -ACGGAAGTCCTAGCATACGCTGAA -ACGGAAGTCCTAGCATACAGTACG -ACGGAAGTCCTAGCATACATCCGA -ACGGAAGTCCTAGCATACATGGGA -ACGGAAGTCCTAGCATACGTGCAA -ACGGAAGTCCTAGCATACGAGGAA -ACGGAAGTCCTAGCATACCAGGTA -ACGGAAGTCCTAGCATACGACTCT -ACGGAAGTCCTAGCATACAGTCCT -ACGGAAGTCCTAGCATACTAAGCC -ACGGAAGTCCTAGCATACATAGCC -ACGGAAGTCCTAGCATACTAACCG -ACGGAAGTCCTAGCATACATGCCA -ACGGAAGTCCTAGCACTTGGAAAC -ACGGAAGTCCTAGCACTTAACACC -ACGGAAGTCCTAGCACTTATCGAG -ACGGAAGTCCTAGCACTTCTCCTT -ACGGAAGTCCTAGCACTTCCTGTT -ACGGAAGTCCTAGCACTTCGGTTT -ACGGAAGTCCTAGCACTTGTGGTT -ACGGAAGTCCTAGCACTTGCCTTT -ACGGAAGTCCTAGCACTTGGTCTT -ACGGAAGTCCTAGCACTTACGCTT -ACGGAAGTCCTAGCACTTAGCGTT -ACGGAAGTCCTAGCACTTTTCGTC -ACGGAAGTCCTAGCACTTTCTCTC -ACGGAAGTCCTAGCACTTTGGATC -ACGGAAGTCCTAGCACTTCACTTC -ACGGAAGTCCTAGCACTTGTACTC -ACGGAAGTCCTAGCACTTGATGTC -ACGGAAGTCCTAGCACTTACAGTC -ACGGAAGTCCTAGCACTTTTGCTG -ACGGAAGTCCTAGCACTTTCCATG -ACGGAAGTCCTAGCACTTTGTGTG -ACGGAAGTCCTAGCACTTCTAGTG -ACGGAAGTCCTAGCACTTCATCTG -ACGGAAGTCCTAGCACTTGAGTTG -ACGGAAGTCCTAGCACTTAGACTG -ACGGAAGTCCTAGCACTTTCGGTA -ACGGAAGTCCTAGCACTTTGCCTA -ACGGAAGTCCTAGCACTTCCACTA -ACGGAAGTCCTAGCACTTGGAGTA -ACGGAAGTCCTAGCACTTTCGTCT -ACGGAAGTCCTAGCACTTTGCACT -ACGGAAGTCCTAGCACTTCTGACT -ACGGAAGTCCTAGCACTTCAACCT -ACGGAAGTCCTAGCACTTGCTACT -ACGGAAGTCCTAGCACTTGGATCT -ACGGAAGTCCTAGCACTTAAGGCT -ACGGAAGTCCTAGCACTTTCAACC -ACGGAAGTCCTAGCACTTTGTTCC -ACGGAAGTCCTAGCACTTATTCCC -ACGGAAGTCCTAGCACTTTTCTCG -ACGGAAGTCCTAGCACTTTAGACG -ACGGAAGTCCTAGCACTTGTAACG -ACGGAAGTCCTAGCACTTACTTCG -ACGGAAGTCCTAGCACTTTACGCA -ACGGAAGTCCTAGCACTTCTTGCA -ACGGAAGTCCTAGCACTTCGAACA -ACGGAAGTCCTAGCACTTCAGTCA -ACGGAAGTCCTAGCACTTGATCCA -ACGGAAGTCCTAGCACTTACGACA -ACGGAAGTCCTAGCACTTAGCTCA -ACGGAAGTCCTAGCACTTTCACGT -ACGGAAGTCCTAGCACTTCGTAGT -ACGGAAGTCCTAGCACTTGTCAGT -ACGGAAGTCCTAGCACTTGAAGGT -ACGGAAGTCCTAGCACTTAACCGT -ACGGAAGTCCTAGCACTTTTGTGC -ACGGAAGTCCTAGCACTTCTAAGC -ACGGAAGTCCTAGCACTTACTAGC -ACGGAAGTCCTAGCACTTAGATGC -ACGGAAGTCCTAGCACTTTGAAGG -ACGGAAGTCCTAGCACTTCAATGG -ACGGAAGTCCTAGCACTTATGAGG -ACGGAAGTCCTAGCACTTAATGGG -ACGGAAGTCCTAGCACTTTCCTGA -ACGGAAGTCCTAGCACTTTAGCGA -ACGGAAGTCCTAGCACTTCACAGA -ACGGAAGTCCTAGCACTTGCAAGA -ACGGAAGTCCTAGCACTTGGTTGA -ACGGAAGTCCTAGCACTTTCCGAT -ACGGAAGTCCTAGCACTTTGGCAT -ACGGAAGTCCTAGCACTTCGAGAT -ACGGAAGTCCTAGCACTTTACCAC -ACGGAAGTCCTAGCACTTCAGAAC -ACGGAAGTCCTAGCACTTGTCTAC -ACGGAAGTCCTAGCACTTACGTAC -ACGGAAGTCCTAGCACTTAGTGAC -ACGGAAGTCCTAGCACTTCTGTAG -ACGGAAGTCCTAGCACTTCCTAAG -ACGGAAGTCCTAGCACTTGTTCAG -ACGGAAGTCCTAGCACTTGCATAG -ACGGAAGTCCTAGCACTTGACAAG -ACGGAAGTCCTAGCACTTAAGCAG -ACGGAAGTCCTAGCACTTCGTCAA -ACGGAAGTCCTAGCACTTGCTGAA -ACGGAAGTCCTAGCACTTAGTACG -ACGGAAGTCCTAGCACTTATCCGA -ACGGAAGTCCTAGCACTTATGGGA -ACGGAAGTCCTAGCACTTGTGCAA -ACGGAAGTCCTAGCACTTGAGGAA -ACGGAAGTCCTAGCACTTCAGGTA -ACGGAAGTCCTAGCACTTGACTCT -ACGGAAGTCCTAGCACTTAGTCCT -ACGGAAGTCCTAGCACTTTAAGCC -ACGGAAGTCCTAGCACTTATAGCC -ACGGAAGTCCTAGCACTTTAACCG -ACGGAAGTCCTAGCACTTATGCCA -ACGGAAGTCCTAACACGAGGAAAC -ACGGAAGTCCTAACACGAAACACC -ACGGAAGTCCTAACACGAATCGAG -ACGGAAGTCCTAACACGACTCCTT -ACGGAAGTCCTAACACGACCTGTT -ACGGAAGTCCTAACACGACGGTTT -ACGGAAGTCCTAACACGAGTGGTT -ACGGAAGTCCTAACACGAGCCTTT -ACGGAAGTCCTAACACGAGGTCTT -ACGGAAGTCCTAACACGAACGCTT -ACGGAAGTCCTAACACGAAGCGTT -ACGGAAGTCCTAACACGATTCGTC -ACGGAAGTCCTAACACGATCTCTC -ACGGAAGTCCTAACACGATGGATC -ACGGAAGTCCTAACACGACACTTC -ACGGAAGTCCTAACACGAGTACTC -ACGGAAGTCCTAACACGAGATGTC -ACGGAAGTCCTAACACGAACAGTC -ACGGAAGTCCTAACACGATTGCTG -ACGGAAGTCCTAACACGATCCATG -ACGGAAGTCCTAACACGATGTGTG -ACGGAAGTCCTAACACGACTAGTG -ACGGAAGTCCTAACACGACATCTG -ACGGAAGTCCTAACACGAGAGTTG -ACGGAAGTCCTAACACGAAGACTG -ACGGAAGTCCTAACACGATCGGTA -ACGGAAGTCCTAACACGATGCCTA -ACGGAAGTCCTAACACGACCACTA -ACGGAAGTCCTAACACGAGGAGTA -ACGGAAGTCCTAACACGATCGTCT -ACGGAAGTCCTAACACGATGCACT -ACGGAAGTCCTAACACGACTGACT -ACGGAAGTCCTAACACGACAACCT -ACGGAAGTCCTAACACGAGCTACT -ACGGAAGTCCTAACACGAGGATCT -ACGGAAGTCCTAACACGAAAGGCT -ACGGAAGTCCTAACACGATCAACC -ACGGAAGTCCTAACACGATGTTCC -ACGGAAGTCCTAACACGAATTCCC -ACGGAAGTCCTAACACGATTCTCG -ACGGAAGTCCTAACACGATAGACG -ACGGAAGTCCTAACACGAGTAACG -ACGGAAGTCCTAACACGAACTTCG -ACGGAAGTCCTAACACGATACGCA -ACGGAAGTCCTAACACGACTTGCA -ACGGAAGTCCTAACACGACGAACA -ACGGAAGTCCTAACACGACAGTCA -ACGGAAGTCCTAACACGAGATCCA -ACGGAAGTCCTAACACGAACGACA -ACGGAAGTCCTAACACGAAGCTCA -ACGGAAGTCCTAACACGATCACGT -ACGGAAGTCCTAACACGACGTAGT -ACGGAAGTCCTAACACGAGTCAGT -ACGGAAGTCCTAACACGAGAAGGT -ACGGAAGTCCTAACACGAAACCGT -ACGGAAGTCCTAACACGATTGTGC -ACGGAAGTCCTAACACGACTAAGC -ACGGAAGTCCTAACACGAACTAGC -ACGGAAGTCCTAACACGAAGATGC -ACGGAAGTCCTAACACGATGAAGG -ACGGAAGTCCTAACACGACAATGG -ACGGAAGTCCTAACACGAATGAGG -ACGGAAGTCCTAACACGAAATGGG -ACGGAAGTCCTAACACGATCCTGA -ACGGAAGTCCTAACACGATAGCGA -ACGGAAGTCCTAACACGACACAGA -ACGGAAGTCCTAACACGAGCAAGA -ACGGAAGTCCTAACACGAGGTTGA -ACGGAAGTCCTAACACGATCCGAT -ACGGAAGTCCTAACACGATGGCAT -ACGGAAGTCCTAACACGACGAGAT -ACGGAAGTCCTAACACGATACCAC -ACGGAAGTCCTAACACGACAGAAC -ACGGAAGTCCTAACACGAGTCTAC -ACGGAAGTCCTAACACGAACGTAC -ACGGAAGTCCTAACACGAAGTGAC -ACGGAAGTCCTAACACGACTGTAG -ACGGAAGTCCTAACACGACCTAAG -ACGGAAGTCCTAACACGAGTTCAG -ACGGAAGTCCTAACACGAGCATAG -ACGGAAGTCCTAACACGAGACAAG -ACGGAAGTCCTAACACGAAAGCAG -ACGGAAGTCCTAACACGACGTCAA -ACGGAAGTCCTAACACGAGCTGAA -ACGGAAGTCCTAACACGAAGTACG -ACGGAAGTCCTAACACGAATCCGA -ACGGAAGTCCTAACACGAATGGGA -ACGGAAGTCCTAACACGAGTGCAA -ACGGAAGTCCTAACACGAGAGGAA -ACGGAAGTCCTAACACGACAGGTA -ACGGAAGTCCTAACACGAGACTCT -ACGGAAGTCCTAACACGAAGTCCT -ACGGAAGTCCTAACACGATAAGCC -ACGGAAGTCCTAACACGAATAGCC -ACGGAAGTCCTAACACGATAACCG -ACGGAAGTCCTAACACGAATGCCA -ACGGAAGTCCTATCACAGGGAAAC -ACGGAAGTCCTATCACAGAACACC -ACGGAAGTCCTATCACAGATCGAG -ACGGAAGTCCTATCACAGCTCCTT -ACGGAAGTCCTATCACAGCCTGTT -ACGGAAGTCCTATCACAGCGGTTT -ACGGAAGTCCTATCACAGGTGGTT -ACGGAAGTCCTATCACAGGCCTTT -ACGGAAGTCCTATCACAGGGTCTT -ACGGAAGTCCTATCACAGACGCTT -ACGGAAGTCCTATCACAGAGCGTT -ACGGAAGTCCTATCACAGTTCGTC -ACGGAAGTCCTATCACAGTCTCTC -ACGGAAGTCCTATCACAGTGGATC -ACGGAAGTCCTATCACAGCACTTC -ACGGAAGTCCTATCACAGGTACTC -ACGGAAGTCCTATCACAGGATGTC -ACGGAAGTCCTATCACAGACAGTC -ACGGAAGTCCTATCACAGTTGCTG -ACGGAAGTCCTATCACAGTCCATG -ACGGAAGTCCTATCACAGTGTGTG -ACGGAAGTCCTATCACAGCTAGTG -ACGGAAGTCCTATCACAGCATCTG -ACGGAAGTCCTATCACAGGAGTTG -ACGGAAGTCCTATCACAGAGACTG -ACGGAAGTCCTATCACAGTCGGTA -ACGGAAGTCCTATCACAGTGCCTA -ACGGAAGTCCTATCACAGCCACTA -ACGGAAGTCCTATCACAGGGAGTA -ACGGAAGTCCTATCACAGTCGTCT -ACGGAAGTCCTATCACAGTGCACT -ACGGAAGTCCTATCACAGCTGACT -ACGGAAGTCCTATCACAGCAACCT -ACGGAAGTCCTATCACAGGCTACT -ACGGAAGTCCTATCACAGGGATCT -ACGGAAGTCCTATCACAGAAGGCT -ACGGAAGTCCTATCACAGTCAACC -ACGGAAGTCCTATCACAGTGTTCC -ACGGAAGTCCTATCACAGATTCCC -ACGGAAGTCCTATCACAGTTCTCG -ACGGAAGTCCTATCACAGTAGACG -ACGGAAGTCCTATCACAGGTAACG -ACGGAAGTCCTATCACAGACTTCG -ACGGAAGTCCTATCACAGTACGCA -ACGGAAGTCCTATCACAGCTTGCA -ACGGAAGTCCTATCACAGCGAACA -ACGGAAGTCCTATCACAGCAGTCA -ACGGAAGTCCTATCACAGGATCCA -ACGGAAGTCCTATCACAGACGACA -ACGGAAGTCCTATCACAGAGCTCA -ACGGAAGTCCTATCACAGTCACGT -ACGGAAGTCCTATCACAGCGTAGT -ACGGAAGTCCTATCACAGGTCAGT -ACGGAAGTCCTATCACAGGAAGGT -ACGGAAGTCCTATCACAGAACCGT -ACGGAAGTCCTATCACAGTTGTGC -ACGGAAGTCCTATCACAGCTAAGC -ACGGAAGTCCTATCACAGACTAGC -ACGGAAGTCCTATCACAGAGATGC -ACGGAAGTCCTATCACAGTGAAGG -ACGGAAGTCCTATCACAGCAATGG -ACGGAAGTCCTATCACAGATGAGG -ACGGAAGTCCTATCACAGAATGGG -ACGGAAGTCCTATCACAGTCCTGA -ACGGAAGTCCTATCACAGTAGCGA -ACGGAAGTCCTATCACAGCACAGA -ACGGAAGTCCTATCACAGGCAAGA -ACGGAAGTCCTATCACAGGGTTGA -ACGGAAGTCCTATCACAGTCCGAT -ACGGAAGTCCTATCACAGTGGCAT -ACGGAAGTCCTATCACAGCGAGAT -ACGGAAGTCCTATCACAGTACCAC -ACGGAAGTCCTATCACAGCAGAAC -ACGGAAGTCCTATCACAGGTCTAC -ACGGAAGTCCTATCACAGACGTAC -ACGGAAGTCCTATCACAGAGTGAC -ACGGAAGTCCTATCACAGCTGTAG -ACGGAAGTCCTATCACAGCCTAAG -ACGGAAGTCCTATCACAGGTTCAG -ACGGAAGTCCTATCACAGGCATAG -ACGGAAGTCCTATCACAGGACAAG -ACGGAAGTCCTATCACAGAAGCAG -ACGGAAGTCCTATCACAGCGTCAA -ACGGAAGTCCTATCACAGGCTGAA -ACGGAAGTCCTATCACAGAGTACG -ACGGAAGTCCTATCACAGATCCGA -ACGGAAGTCCTATCACAGATGGGA -ACGGAAGTCCTATCACAGGTGCAA -ACGGAAGTCCTATCACAGGAGGAA -ACGGAAGTCCTATCACAGCAGGTA -ACGGAAGTCCTATCACAGGACTCT -ACGGAAGTCCTATCACAGAGTCCT -ACGGAAGTCCTATCACAGTAAGCC -ACGGAAGTCCTATCACAGATAGCC -ACGGAAGTCCTATCACAGTAACCG -ACGGAAGTCCTATCACAGATGCCA -ACGGAAGTCCTACCAGATGGAAAC -ACGGAAGTCCTACCAGATAACACC -ACGGAAGTCCTACCAGATATCGAG -ACGGAAGTCCTACCAGATCTCCTT -ACGGAAGTCCTACCAGATCCTGTT -ACGGAAGTCCTACCAGATCGGTTT -ACGGAAGTCCTACCAGATGTGGTT -ACGGAAGTCCTACCAGATGCCTTT -ACGGAAGTCCTACCAGATGGTCTT -ACGGAAGTCCTACCAGATACGCTT -ACGGAAGTCCTACCAGATAGCGTT -ACGGAAGTCCTACCAGATTTCGTC -ACGGAAGTCCTACCAGATTCTCTC -ACGGAAGTCCTACCAGATTGGATC -ACGGAAGTCCTACCAGATCACTTC -ACGGAAGTCCTACCAGATGTACTC -ACGGAAGTCCTACCAGATGATGTC -ACGGAAGTCCTACCAGATACAGTC -ACGGAAGTCCTACCAGATTTGCTG -ACGGAAGTCCTACCAGATTCCATG -ACGGAAGTCCTACCAGATTGTGTG -ACGGAAGTCCTACCAGATCTAGTG -ACGGAAGTCCTACCAGATCATCTG -ACGGAAGTCCTACCAGATGAGTTG -ACGGAAGTCCTACCAGATAGACTG -ACGGAAGTCCTACCAGATTCGGTA -ACGGAAGTCCTACCAGATTGCCTA -ACGGAAGTCCTACCAGATCCACTA -ACGGAAGTCCTACCAGATGGAGTA -ACGGAAGTCCTACCAGATTCGTCT -ACGGAAGTCCTACCAGATTGCACT -ACGGAAGTCCTACCAGATCTGACT -ACGGAAGTCCTACCAGATCAACCT -ACGGAAGTCCTACCAGATGCTACT -ACGGAAGTCCTACCAGATGGATCT -ACGGAAGTCCTACCAGATAAGGCT -ACGGAAGTCCTACCAGATTCAACC -ACGGAAGTCCTACCAGATTGTTCC -ACGGAAGTCCTACCAGATATTCCC -ACGGAAGTCCTACCAGATTTCTCG -ACGGAAGTCCTACCAGATTAGACG -ACGGAAGTCCTACCAGATGTAACG -ACGGAAGTCCTACCAGATACTTCG -ACGGAAGTCCTACCAGATTACGCA -ACGGAAGTCCTACCAGATCTTGCA -ACGGAAGTCCTACCAGATCGAACA -ACGGAAGTCCTACCAGATCAGTCA -ACGGAAGTCCTACCAGATGATCCA -ACGGAAGTCCTACCAGATACGACA -ACGGAAGTCCTACCAGATAGCTCA -ACGGAAGTCCTACCAGATTCACGT -ACGGAAGTCCTACCAGATCGTAGT -ACGGAAGTCCTACCAGATGTCAGT -ACGGAAGTCCTACCAGATGAAGGT -ACGGAAGTCCTACCAGATAACCGT -ACGGAAGTCCTACCAGATTTGTGC -ACGGAAGTCCTACCAGATCTAAGC -ACGGAAGTCCTACCAGATACTAGC -ACGGAAGTCCTACCAGATAGATGC -ACGGAAGTCCTACCAGATTGAAGG -ACGGAAGTCCTACCAGATCAATGG -ACGGAAGTCCTACCAGATATGAGG -ACGGAAGTCCTACCAGATAATGGG -ACGGAAGTCCTACCAGATTCCTGA -ACGGAAGTCCTACCAGATTAGCGA -ACGGAAGTCCTACCAGATCACAGA -ACGGAAGTCCTACCAGATGCAAGA -ACGGAAGTCCTACCAGATGGTTGA -ACGGAAGTCCTACCAGATTCCGAT -ACGGAAGTCCTACCAGATTGGCAT -ACGGAAGTCCTACCAGATCGAGAT -ACGGAAGTCCTACCAGATTACCAC -ACGGAAGTCCTACCAGATCAGAAC -ACGGAAGTCCTACCAGATGTCTAC -ACGGAAGTCCTACCAGATACGTAC -ACGGAAGTCCTACCAGATAGTGAC -ACGGAAGTCCTACCAGATCTGTAG -ACGGAAGTCCTACCAGATCCTAAG -ACGGAAGTCCTACCAGATGTTCAG -ACGGAAGTCCTACCAGATGCATAG -ACGGAAGTCCTACCAGATGACAAG -ACGGAAGTCCTACCAGATAAGCAG -ACGGAAGTCCTACCAGATCGTCAA -ACGGAAGTCCTACCAGATGCTGAA -ACGGAAGTCCTACCAGATAGTACG -ACGGAAGTCCTACCAGATATCCGA -ACGGAAGTCCTACCAGATATGGGA -ACGGAAGTCCTACCAGATGTGCAA -ACGGAAGTCCTACCAGATGAGGAA -ACGGAAGTCCTACCAGATCAGGTA -ACGGAAGTCCTACCAGATGACTCT -ACGGAAGTCCTACCAGATAGTCCT -ACGGAAGTCCTACCAGATTAAGCC -ACGGAAGTCCTACCAGATATAGCC -ACGGAAGTCCTACCAGATTAACCG -ACGGAAGTCCTACCAGATATGCCA -ACGGAAGTCCTAACAACGGGAAAC -ACGGAAGTCCTAACAACGAACACC -ACGGAAGTCCTAACAACGATCGAG -ACGGAAGTCCTAACAACGCTCCTT -ACGGAAGTCCTAACAACGCCTGTT -ACGGAAGTCCTAACAACGCGGTTT -ACGGAAGTCCTAACAACGGTGGTT -ACGGAAGTCCTAACAACGGCCTTT -ACGGAAGTCCTAACAACGGGTCTT -ACGGAAGTCCTAACAACGACGCTT -ACGGAAGTCCTAACAACGAGCGTT -ACGGAAGTCCTAACAACGTTCGTC -ACGGAAGTCCTAACAACGTCTCTC -ACGGAAGTCCTAACAACGTGGATC -ACGGAAGTCCTAACAACGCACTTC -ACGGAAGTCCTAACAACGGTACTC -ACGGAAGTCCTAACAACGGATGTC -ACGGAAGTCCTAACAACGACAGTC -ACGGAAGTCCTAACAACGTTGCTG -ACGGAAGTCCTAACAACGTCCATG -ACGGAAGTCCTAACAACGTGTGTG -ACGGAAGTCCTAACAACGCTAGTG -ACGGAAGTCCTAACAACGCATCTG -ACGGAAGTCCTAACAACGGAGTTG -ACGGAAGTCCTAACAACGAGACTG -ACGGAAGTCCTAACAACGTCGGTA -ACGGAAGTCCTAACAACGTGCCTA -ACGGAAGTCCTAACAACGCCACTA -ACGGAAGTCCTAACAACGGGAGTA -ACGGAAGTCCTAACAACGTCGTCT -ACGGAAGTCCTAACAACGTGCACT -ACGGAAGTCCTAACAACGCTGACT -ACGGAAGTCCTAACAACGCAACCT -ACGGAAGTCCTAACAACGGCTACT -ACGGAAGTCCTAACAACGGGATCT -ACGGAAGTCCTAACAACGAAGGCT -ACGGAAGTCCTAACAACGTCAACC -ACGGAAGTCCTAACAACGTGTTCC -ACGGAAGTCCTAACAACGATTCCC -ACGGAAGTCCTAACAACGTTCTCG -ACGGAAGTCCTAACAACGTAGACG -ACGGAAGTCCTAACAACGGTAACG -ACGGAAGTCCTAACAACGACTTCG -ACGGAAGTCCTAACAACGTACGCA -ACGGAAGTCCTAACAACGCTTGCA -ACGGAAGTCCTAACAACGCGAACA -ACGGAAGTCCTAACAACGCAGTCA -ACGGAAGTCCTAACAACGGATCCA -ACGGAAGTCCTAACAACGACGACA -ACGGAAGTCCTAACAACGAGCTCA -ACGGAAGTCCTAACAACGTCACGT -ACGGAAGTCCTAACAACGCGTAGT -ACGGAAGTCCTAACAACGGTCAGT -ACGGAAGTCCTAACAACGGAAGGT -ACGGAAGTCCTAACAACGAACCGT -ACGGAAGTCCTAACAACGTTGTGC -ACGGAAGTCCTAACAACGCTAAGC -ACGGAAGTCCTAACAACGACTAGC -ACGGAAGTCCTAACAACGAGATGC -ACGGAAGTCCTAACAACGTGAAGG -ACGGAAGTCCTAACAACGCAATGG -ACGGAAGTCCTAACAACGATGAGG -ACGGAAGTCCTAACAACGAATGGG -ACGGAAGTCCTAACAACGTCCTGA -ACGGAAGTCCTAACAACGTAGCGA -ACGGAAGTCCTAACAACGCACAGA -ACGGAAGTCCTAACAACGGCAAGA -ACGGAAGTCCTAACAACGGGTTGA -ACGGAAGTCCTAACAACGTCCGAT -ACGGAAGTCCTAACAACGTGGCAT -ACGGAAGTCCTAACAACGCGAGAT -ACGGAAGTCCTAACAACGTACCAC -ACGGAAGTCCTAACAACGCAGAAC -ACGGAAGTCCTAACAACGGTCTAC -ACGGAAGTCCTAACAACGACGTAC -ACGGAAGTCCTAACAACGAGTGAC -ACGGAAGTCCTAACAACGCTGTAG -ACGGAAGTCCTAACAACGCCTAAG -ACGGAAGTCCTAACAACGGTTCAG -ACGGAAGTCCTAACAACGGCATAG -ACGGAAGTCCTAACAACGGACAAG -ACGGAAGTCCTAACAACGAAGCAG -ACGGAAGTCCTAACAACGCGTCAA -ACGGAAGTCCTAACAACGGCTGAA -ACGGAAGTCCTAACAACGAGTACG -ACGGAAGTCCTAACAACGATCCGA -ACGGAAGTCCTAACAACGATGGGA -ACGGAAGTCCTAACAACGGTGCAA -ACGGAAGTCCTAACAACGGAGGAA -ACGGAAGTCCTAACAACGCAGGTA -ACGGAAGTCCTAACAACGGACTCT -ACGGAAGTCCTAACAACGAGTCCT -ACGGAAGTCCTAACAACGTAAGCC -ACGGAAGTCCTAACAACGATAGCC -ACGGAAGTCCTAACAACGTAACCG -ACGGAAGTCCTAACAACGATGCCA -ACGGAAGTCCTATCAAGCGGAAAC -ACGGAAGTCCTATCAAGCAACACC -ACGGAAGTCCTATCAAGCATCGAG -ACGGAAGTCCTATCAAGCCTCCTT -ACGGAAGTCCTATCAAGCCCTGTT -ACGGAAGTCCTATCAAGCCGGTTT -ACGGAAGTCCTATCAAGCGTGGTT -ACGGAAGTCCTATCAAGCGCCTTT -ACGGAAGTCCTATCAAGCGGTCTT -ACGGAAGTCCTATCAAGCACGCTT -ACGGAAGTCCTATCAAGCAGCGTT -ACGGAAGTCCTATCAAGCTTCGTC -ACGGAAGTCCTATCAAGCTCTCTC -ACGGAAGTCCTATCAAGCTGGATC -ACGGAAGTCCTATCAAGCCACTTC -ACGGAAGTCCTATCAAGCGTACTC -ACGGAAGTCCTATCAAGCGATGTC -ACGGAAGTCCTATCAAGCACAGTC -ACGGAAGTCCTATCAAGCTTGCTG -ACGGAAGTCCTATCAAGCTCCATG -ACGGAAGTCCTATCAAGCTGTGTG -ACGGAAGTCCTATCAAGCCTAGTG -ACGGAAGTCCTATCAAGCCATCTG -ACGGAAGTCCTATCAAGCGAGTTG -ACGGAAGTCCTATCAAGCAGACTG -ACGGAAGTCCTATCAAGCTCGGTA -ACGGAAGTCCTATCAAGCTGCCTA -ACGGAAGTCCTATCAAGCCCACTA -ACGGAAGTCCTATCAAGCGGAGTA -ACGGAAGTCCTATCAAGCTCGTCT -ACGGAAGTCCTATCAAGCTGCACT -ACGGAAGTCCTATCAAGCCTGACT -ACGGAAGTCCTATCAAGCCAACCT -ACGGAAGTCCTATCAAGCGCTACT -ACGGAAGTCCTATCAAGCGGATCT -ACGGAAGTCCTATCAAGCAAGGCT -ACGGAAGTCCTATCAAGCTCAACC -ACGGAAGTCCTATCAAGCTGTTCC -ACGGAAGTCCTATCAAGCATTCCC -ACGGAAGTCCTATCAAGCTTCTCG -ACGGAAGTCCTATCAAGCTAGACG -ACGGAAGTCCTATCAAGCGTAACG -ACGGAAGTCCTATCAAGCACTTCG -ACGGAAGTCCTATCAAGCTACGCA -ACGGAAGTCCTATCAAGCCTTGCA -ACGGAAGTCCTATCAAGCCGAACA -ACGGAAGTCCTATCAAGCCAGTCA -ACGGAAGTCCTATCAAGCGATCCA -ACGGAAGTCCTATCAAGCACGACA -ACGGAAGTCCTATCAAGCAGCTCA -ACGGAAGTCCTATCAAGCTCACGT -ACGGAAGTCCTATCAAGCCGTAGT -ACGGAAGTCCTATCAAGCGTCAGT -ACGGAAGTCCTATCAAGCGAAGGT -ACGGAAGTCCTATCAAGCAACCGT -ACGGAAGTCCTATCAAGCTTGTGC -ACGGAAGTCCTATCAAGCCTAAGC -ACGGAAGTCCTATCAAGCACTAGC -ACGGAAGTCCTATCAAGCAGATGC -ACGGAAGTCCTATCAAGCTGAAGG -ACGGAAGTCCTATCAAGCCAATGG -ACGGAAGTCCTATCAAGCATGAGG -ACGGAAGTCCTATCAAGCAATGGG -ACGGAAGTCCTATCAAGCTCCTGA -ACGGAAGTCCTATCAAGCTAGCGA -ACGGAAGTCCTATCAAGCCACAGA -ACGGAAGTCCTATCAAGCGCAAGA -ACGGAAGTCCTATCAAGCGGTTGA -ACGGAAGTCCTATCAAGCTCCGAT -ACGGAAGTCCTATCAAGCTGGCAT -ACGGAAGTCCTATCAAGCCGAGAT -ACGGAAGTCCTATCAAGCTACCAC -ACGGAAGTCCTATCAAGCCAGAAC -ACGGAAGTCCTATCAAGCGTCTAC -ACGGAAGTCCTATCAAGCACGTAC -ACGGAAGTCCTATCAAGCAGTGAC -ACGGAAGTCCTATCAAGCCTGTAG -ACGGAAGTCCTATCAAGCCCTAAG -ACGGAAGTCCTATCAAGCGTTCAG -ACGGAAGTCCTATCAAGCGCATAG -ACGGAAGTCCTATCAAGCGACAAG -ACGGAAGTCCTATCAAGCAAGCAG -ACGGAAGTCCTATCAAGCCGTCAA -ACGGAAGTCCTATCAAGCGCTGAA -ACGGAAGTCCTATCAAGCAGTACG -ACGGAAGTCCTATCAAGCATCCGA -ACGGAAGTCCTATCAAGCATGGGA -ACGGAAGTCCTATCAAGCGTGCAA -ACGGAAGTCCTATCAAGCGAGGAA -ACGGAAGTCCTATCAAGCCAGGTA -ACGGAAGTCCTATCAAGCGACTCT -ACGGAAGTCCTATCAAGCAGTCCT -ACGGAAGTCCTATCAAGCTAAGCC -ACGGAAGTCCTATCAAGCATAGCC -ACGGAAGTCCTATCAAGCTAACCG -ACGGAAGTCCTATCAAGCATGCCA -ACGGAAGTCCTACGTTCAGGAAAC -ACGGAAGTCCTACGTTCAAACACC -ACGGAAGTCCTACGTTCAATCGAG -ACGGAAGTCCTACGTTCACTCCTT -ACGGAAGTCCTACGTTCACCTGTT -ACGGAAGTCCTACGTTCACGGTTT -ACGGAAGTCCTACGTTCAGTGGTT -ACGGAAGTCCTACGTTCAGCCTTT -ACGGAAGTCCTACGTTCAGGTCTT -ACGGAAGTCCTACGTTCAACGCTT -ACGGAAGTCCTACGTTCAAGCGTT -ACGGAAGTCCTACGTTCATTCGTC -ACGGAAGTCCTACGTTCATCTCTC -ACGGAAGTCCTACGTTCATGGATC -ACGGAAGTCCTACGTTCACACTTC -ACGGAAGTCCTACGTTCAGTACTC -ACGGAAGTCCTACGTTCAGATGTC -ACGGAAGTCCTACGTTCAACAGTC -ACGGAAGTCCTACGTTCATTGCTG -ACGGAAGTCCTACGTTCATCCATG -ACGGAAGTCCTACGTTCATGTGTG -ACGGAAGTCCTACGTTCACTAGTG -ACGGAAGTCCTACGTTCACATCTG -ACGGAAGTCCTACGTTCAGAGTTG -ACGGAAGTCCTACGTTCAAGACTG -ACGGAAGTCCTACGTTCATCGGTA -ACGGAAGTCCTACGTTCATGCCTA -ACGGAAGTCCTACGTTCACCACTA -ACGGAAGTCCTACGTTCAGGAGTA -ACGGAAGTCCTACGTTCATCGTCT -ACGGAAGTCCTACGTTCATGCACT -ACGGAAGTCCTACGTTCACTGACT -ACGGAAGTCCTACGTTCACAACCT -ACGGAAGTCCTACGTTCAGCTACT -ACGGAAGTCCTACGTTCAGGATCT -ACGGAAGTCCTACGTTCAAAGGCT -ACGGAAGTCCTACGTTCATCAACC -ACGGAAGTCCTACGTTCATGTTCC -ACGGAAGTCCTACGTTCAATTCCC -ACGGAAGTCCTACGTTCATTCTCG -ACGGAAGTCCTACGTTCATAGACG -ACGGAAGTCCTACGTTCAGTAACG -ACGGAAGTCCTACGTTCAACTTCG -ACGGAAGTCCTACGTTCATACGCA -ACGGAAGTCCTACGTTCACTTGCA -ACGGAAGTCCTACGTTCACGAACA -ACGGAAGTCCTACGTTCACAGTCA -ACGGAAGTCCTACGTTCAGATCCA -ACGGAAGTCCTACGTTCAACGACA -ACGGAAGTCCTACGTTCAAGCTCA -ACGGAAGTCCTACGTTCATCACGT -ACGGAAGTCCTACGTTCACGTAGT -ACGGAAGTCCTACGTTCAGTCAGT -ACGGAAGTCCTACGTTCAGAAGGT -ACGGAAGTCCTACGTTCAAACCGT -ACGGAAGTCCTACGTTCATTGTGC -ACGGAAGTCCTACGTTCACTAAGC -ACGGAAGTCCTACGTTCAACTAGC -ACGGAAGTCCTACGTTCAAGATGC -ACGGAAGTCCTACGTTCATGAAGG -ACGGAAGTCCTACGTTCACAATGG -ACGGAAGTCCTACGTTCAATGAGG -ACGGAAGTCCTACGTTCAAATGGG -ACGGAAGTCCTACGTTCATCCTGA -ACGGAAGTCCTACGTTCATAGCGA -ACGGAAGTCCTACGTTCACACAGA -ACGGAAGTCCTACGTTCAGCAAGA -ACGGAAGTCCTACGTTCAGGTTGA -ACGGAAGTCCTACGTTCATCCGAT -ACGGAAGTCCTACGTTCATGGCAT -ACGGAAGTCCTACGTTCACGAGAT -ACGGAAGTCCTACGTTCATACCAC -ACGGAAGTCCTACGTTCACAGAAC -ACGGAAGTCCTACGTTCAGTCTAC -ACGGAAGTCCTACGTTCAACGTAC -ACGGAAGTCCTACGTTCAAGTGAC -ACGGAAGTCCTACGTTCACTGTAG -ACGGAAGTCCTACGTTCACCTAAG -ACGGAAGTCCTACGTTCAGTTCAG -ACGGAAGTCCTACGTTCAGCATAG -ACGGAAGTCCTACGTTCAGACAAG -ACGGAAGTCCTACGTTCAAAGCAG -ACGGAAGTCCTACGTTCACGTCAA -ACGGAAGTCCTACGTTCAGCTGAA -ACGGAAGTCCTACGTTCAAGTACG -ACGGAAGTCCTACGTTCAATCCGA -ACGGAAGTCCTACGTTCAATGGGA -ACGGAAGTCCTACGTTCAGTGCAA -ACGGAAGTCCTACGTTCAGAGGAA -ACGGAAGTCCTACGTTCACAGGTA -ACGGAAGTCCTACGTTCAGACTCT -ACGGAAGTCCTACGTTCAAGTCCT -ACGGAAGTCCTACGTTCATAAGCC -ACGGAAGTCCTACGTTCAATAGCC -ACGGAAGTCCTACGTTCATAACCG -ACGGAAGTCCTACGTTCAATGCCA -ACGGAAGTCCTAAGTCGTGGAAAC -ACGGAAGTCCTAAGTCGTAACACC -ACGGAAGTCCTAAGTCGTATCGAG -ACGGAAGTCCTAAGTCGTCTCCTT -ACGGAAGTCCTAAGTCGTCCTGTT -ACGGAAGTCCTAAGTCGTCGGTTT -ACGGAAGTCCTAAGTCGTGTGGTT -ACGGAAGTCCTAAGTCGTGCCTTT -ACGGAAGTCCTAAGTCGTGGTCTT -ACGGAAGTCCTAAGTCGTACGCTT -ACGGAAGTCCTAAGTCGTAGCGTT -ACGGAAGTCCTAAGTCGTTTCGTC -ACGGAAGTCCTAAGTCGTTCTCTC -ACGGAAGTCCTAAGTCGTTGGATC -ACGGAAGTCCTAAGTCGTCACTTC -ACGGAAGTCCTAAGTCGTGTACTC -ACGGAAGTCCTAAGTCGTGATGTC -ACGGAAGTCCTAAGTCGTACAGTC -ACGGAAGTCCTAAGTCGTTTGCTG -ACGGAAGTCCTAAGTCGTTCCATG -ACGGAAGTCCTAAGTCGTTGTGTG -ACGGAAGTCCTAAGTCGTCTAGTG -ACGGAAGTCCTAAGTCGTCATCTG -ACGGAAGTCCTAAGTCGTGAGTTG -ACGGAAGTCCTAAGTCGTAGACTG -ACGGAAGTCCTAAGTCGTTCGGTA -ACGGAAGTCCTAAGTCGTTGCCTA -ACGGAAGTCCTAAGTCGTCCACTA -ACGGAAGTCCTAAGTCGTGGAGTA -ACGGAAGTCCTAAGTCGTTCGTCT -ACGGAAGTCCTAAGTCGTTGCACT -ACGGAAGTCCTAAGTCGTCTGACT -ACGGAAGTCCTAAGTCGTCAACCT -ACGGAAGTCCTAAGTCGTGCTACT -ACGGAAGTCCTAAGTCGTGGATCT -ACGGAAGTCCTAAGTCGTAAGGCT -ACGGAAGTCCTAAGTCGTTCAACC -ACGGAAGTCCTAAGTCGTTGTTCC -ACGGAAGTCCTAAGTCGTATTCCC -ACGGAAGTCCTAAGTCGTTTCTCG -ACGGAAGTCCTAAGTCGTTAGACG -ACGGAAGTCCTAAGTCGTGTAACG -ACGGAAGTCCTAAGTCGTACTTCG -ACGGAAGTCCTAAGTCGTTACGCA -ACGGAAGTCCTAAGTCGTCTTGCA -ACGGAAGTCCTAAGTCGTCGAACA -ACGGAAGTCCTAAGTCGTCAGTCA -ACGGAAGTCCTAAGTCGTGATCCA -ACGGAAGTCCTAAGTCGTACGACA -ACGGAAGTCCTAAGTCGTAGCTCA -ACGGAAGTCCTAAGTCGTTCACGT -ACGGAAGTCCTAAGTCGTCGTAGT -ACGGAAGTCCTAAGTCGTGTCAGT -ACGGAAGTCCTAAGTCGTGAAGGT -ACGGAAGTCCTAAGTCGTAACCGT -ACGGAAGTCCTAAGTCGTTTGTGC -ACGGAAGTCCTAAGTCGTCTAAGC -ACGGAAGTCCTAAGTCGTACTAGC -ACGGAAGTCCTAAGTCGTAGATGC -ACGGAAGTCCTAAGTCGTTGAAGG -ACGGAAGTCCTAAGTCGTCAATGG -ACGGAAGTCCTAAGTCGTATGAGG -ACGGAAGTCCTAAGTCGTAATGGG -ACGGAAGTCCTAAGTCGTTCCTGA -ACGGAAGTCCTAAGTCGTTAGCGA -ACGGAAGTCCTAAGTCGTCACAGA -ACGGAAGTCCTAAGTCGTGCAAGA -ACGGAAGTCCTAAGTCGTGGTTGA -ACGGAAGTCCTAAGTCGTTCCGAT -ACGGAAGTCCTAAGTCGTTGGCAT -ACGGAAGTCCTAAGTCGTCGAGAT -ACGGAAGTCCTAAGTCGTTACCAC -ACGGAAGTCCTAAGTCGTCAGAAC -ACGGAAGTCCTAAGTCGTGTCTAC -ACGGAAGTCCTAAGTCGTACGTAC -ACGGAAGTCCTAAGTCGTAGTGAC -ACGGAAGTCCTAAGTCGTCTGTAG -ACGGAAGTCCTAAGTCGTCCTAAG -ACGGAAGTCCTAAGTCGTGTTCAG -ACGGAAGTCCTAAGTCGTGCATAG -ACGGAAGTCCTAAGTCGTGACAAG -ACGGAAGTCCTAAGTCGTAAGCAG -ACGGAAGTCCTAAGTCGTCGTCAA -ACGGAAGTCCTAAGTCGTGCTGAA -ACGGAAGTCCTAAGTCGTAGTACG -ACGGAAGTCCTAAGTCGTATCCGA -ACGGAAGTCCTAAGTCGTATGGGA -ACGGAAGTCCTAAGTCGTGTGCAA -ACGGAAGTCCTAAGTCGTGAGGAA -ACGGAAGTCCTAAGTCGTCAGGTA -ACGGAAGTCCTAAGTCGTGACTCT -ACGGAAGTCCTAAGTCGTAGTCCT -ACGGAAGTCCTAAGTCGTTAAGCC -ACGGAAGTCCTAAGTCGTATAGCC -ACGGAAGTCCTAAGTCGTTAACCG -ACGGAAGTCCTAAGTCGTATGCCA -ACGGAAGTCCTAAGTGTCGGAAAC -ACGGAAGTCCTAAGTGTCAACACC -ACGGAAGTCCTAAGTGTCATCGAG -ACGGAAGTCCTAAGTGTCCTCCTT -ACGGAAGTCCTAAGTGTCCCTGTT -ACGGAAGTCCTAAGTGTCCGGTTT -ACGGAAGTCCTAAGTGTCGTGGTT -ACGGAAGTCCTAAGTGTCGCCTTT -ACGGAAGTCCTAAGTGTCGGTCTT -ACGGAAGTCCTAAGTGTCACGCTT -ACGGAAGTCCTAAGTGTCAGCGTT -ACGGAAGTCCTAAGTGTCTTCGTC -ACGGAAGTCCTAAGTGTCTCTCTC -ACGGAAGTCCTAAGTGTCTGGATC -ACGGAAGTCCTAAGTGTCCACTTC -ACGGAAGTCCTAAGTGTCGTACTC -ACGGAAGTCCTAAGTGTCGATGTC -ACGGAAGTCCTAAGTGTCACAGTC -ACGGAAGTCCTAAGTGTCTTGCTG -ACGGAAGTCCTAAGTGTCTCCATG -ACGGAAGTCCTAAGTGTCTGTGTG -ACGGAAGTCCTAAGTGTCCTAGTG -ACGGAAGTCCTAAGTGTCCATCTG -ACGGAAGTCCTAAGTGTCGAGTTG -ACGGAAGTCCTAAGTGTCAGACTG -ACGGAAGTCCTAAGTGTCTCGGTA -ACGGAAGTCCTAAGTGTCTGCCTA -ACGGAAGTCCTAAGTGTCCCACTA -ACGGAAGTCCTAAGTGTCGGAGTA -ACGGAAGTCCTAAGTGTCTCGTCT -ACGGAAGTCCTAAGTGTCTGCACT -ACGGAAGTCCTAAGTGTCCTGACT -ACGGAAGTCCTAAGTGTCCAACCT -ACGGAAGTCCTAAGTGTCGCTACT -ACGGAAGTCCTAAGTGTCGGATCT -ACGGAAGTCCTAAGTGTCAAGGCT -ACGGAAGTCCTAAGTGTCTCAACC -ACGGAAGTCCTAAGTGTCTGTTCC -ACGGAAGTCCTAAGTGTCATTCCC -ACGGAAGTCCTAAGTGTCTTCTCG -ACGGAAGTCCTAAGTGTCTAGACG -ACGGAAGTCCTAAGTGTCGTAACG -ACGGAAGTCCTAAGTGTCACTTCG -ACGGAAGTCCTAAGTGTCTACGCA -ACGGAAGTCCTAAGTGTCCTTGCA -ACGGAAGTCCTAAGTGTCCGAACA -ACGGAAGTCCTAAGTGTCCAGTCA -ACGGAAGTCCTAAGTGTCGATCCA -ACGGAAGTCCTAAGTGTCACGACA -ACGGAAGTCCTAAGTGTCAGCTCA -ACGGAAGTCCTAAGTGTCTCACGT -ACGGAAGTCCTAAGTGTCCGTAGT -ACGGAAGTCCTAAGTGTCGTCAGT -ACGGAAGTCCTAAGTGTCGAAGGT -ACGGAAGTCCTAAGTGTCAACCGT -ACGGAAGTCCTAAGTGTCTTGTGC -ACGGAAGTCCTAAGTGTCCTAAGC -ACGGAAGTCCTAAGTGTCACTAGC -ACGGAAGTCCTAAGTGTCAGATGC -ACGGAAGTCCTAAGTGTCTGAAGG -ACGGAAGTCCTAAGTGTCCAATGG -ACGGAAGTCCTAAGTGTCATGAGG -ACGGAAGTCCTAAGTGTCAATGGG -ACGGAAGTCCTAAGTGTCTCCTGA -ACGGAAGTCCTAAGTGTCTAGCGA -ACGGAAGTCCTAAGTGTCCACAGA -ACGGAAGTCCTAAGTGTCGCAAGA -ACGGAAGTCCTAAGTGTCGGTTGA -ACGGAAGTCCTAAGTGTCTCCGAT -ACGGAAGTCCTAAGTGTCTGGCAT -ACGGAAGTCCTAAGTGTCCGAGAT -ACGGAAGTCCTAAGTGTCTACCAC -ACGGAAGTCCTAAGTGTCCAGAAC -ACGGAAGTCCTAAGTGTCGTCTAC -ACGGAAGTCCTAAGTGTCACGTAC -ACGGAAGTCCTAAGTGTCAGTGAC -ACGGAAGTCCTAAGTGTCCTGTAG -ACGGAAGTCCTAAGTGTCCCTAAG -ACGGAAGTCCTAAGTGTCGTTCAG -ACGGAAGTCCTAAGTGTCGCATAG -ACGGAAGTCCTAAGTGTCGACAAG -ACGGAAGTCCTAAGTGTCAAGCAG -ACGGAAGTCCTAAGTGTCCGTCAA -ACGGAAGTCCTAAGTGTCGCTGAA -ACGGAAGTCCTAAGTGTCAGTACG -ACGGAAGTCCTAAGTGTCATCCGA -ACGGAAGTCCTAAGTGTCATGGGA -ACGGAAGTCCTAAGTGTCGTGCAA -ACGGAAGTCCTAAGTGTCGAGGAA -ACGGAAGTCCTAAGTGTCCAGGTA -ACGGAAGTCCTAAGTGTCGACTCT -ACGGAAGTCCTAAGTGTCAGTCCT -ACGGAAGTCCTAAGTGTCTAAGCC -ACGGAAGTCCTAAGTGTCATAGCC -ACGGAAGTCCTAAGTGTCTAACCG -ACGGAAGTCCTAAGTGTCATGCCA -ACGGAAGTCCTAGGTGAAGGAAAC -ACGGAAGTCCTAGGTGAAAACACC -ACGGAAGTCCTAGGTGAAATCGAG -ACGGAAGTCCTAGGTGAACTCCTT -ACGGAAGTCCTAGGTGAACCTGTT -ACGGAAGTCCTAGGTGAACGGTTT -ACGGAAGTCCTAGGTGAAGTGGTT -ACGGAAGTCCTAGGTGAAGCCTTT -ACGGAAGTCCTAGGTGAAGGTCTT -ACGGAAGTCCTAGGTGAAACGCTT -ACGGAAGTCCTAGGTGAAAGCGTT -ACGGAAGTCCTAGGTGAATTCGTC -ACGGAAGTCCTAGGTGAATCTCTC -ACGGAAGTCCTAGGTGAATGGATC -ACGGAAGTCCTAGGTGAACACTTC -ACGGAAGTCCTAGGTGAAGTACTC -ACGGAAGTCCTAGGTGAAGATGTC -ACGGAAGTCCTAGGTGAAACAGTC -ACGGAAGTCCTAGGTGAATTGCTG -ACGGAAGTCCTAGGTGAATCCATG -ACGGAAGTCCTAGGTGAATGTGTG -ACGGAAGTCCTAGGTGAACTAGTG -ACGGAAGTCCTAGGTGAACATCTG -ACGGAAGTCCTAGGTGAAGAGTTG -ACGGAAGTCCTAGGTGAAAGACTG -ACGGAAGTCCTAGGTGAATCGGTA -ACGGAAGTCCTAGGTGAATGCCTA -ACGGAAGTCCTAGGTGAACCACTA -ACGGAAGTCCTAGGTGAAGGAGTA -ACGGAAGTCCTAGGTGAATCGTCT -ACGGAAGTCCTAGGTGAATGCACT -ACGGAAGTCCTAGGTGAACTGACT -ACGGAAGTCCTAGGTGAACAACCT -ACGGAAGTCCTAGGTGAAGCTACT -ACGGAAGTCCTAGGTGAAGGATCT -ACGGAAGTCCTAGGTGAAAAGGCT -ACGGAAGTCCTAGGTGAATCAACC -ACGGAAGTCCTAGGTGAATGTTCC -ACGGAAGTCCTAGGTGAAATTCCC -ACGGAAGTCCTAGGTGAATTCTCG -ACGGAAGTCCTAGGTGAATAGACG -ACGGAAGTCCTAGGTGAAGTAACG -ACGGAAGTCCTAGGTGAAACTTCG -ACGGAAGTCCTAGGTGAATACGCA -ACGGAAGTCCTAGGTGAACTTGCA -ACGGAAGTCCTAGGTGAACGAACA -ACGGAAGTCCTAGGTGAACAGTCA -ACGGAAGTCCTAGGTGAAGATCCA -ACGGAAGTCCTAGGTGAAACGACA -ACGGAAGTCCTAGGTGAAAGCTCA -ACGGAAGTCCTAGGTGAATCACGT -ACGGAAGTCCTAGGTGAACGTAGT -ACGGAAGTCCTAGGTGAAGTCAGT -ACGGAAGTCCTAGGTGAAGAAGGT -ACGGAAGTCCTAGGTGAAAACCGT -ACGGAAGTCCTAGGTGAATTGTGC -ACGGAAGTCCTAGGTGAACTAAGC -ACGGAAGTCCTAGGTGAAACTAGC -ACGGAAGTCCTAGGTGAAAGATGC -ACGGAAGTCCTAGGTGAATGAAGG -ACGGAAGTCCTAGGTGAACAATGG -ACGGAAGTCCTAGGTGAAATGAGG -ACGGAAGTCCTAGGTGAAAATGGG -ACGGAAGTCCTAGGTGAATCCTGA -ACGGAAGTCCTAGGTGAATAGCGA -ACGGAAGTCCTAGGTGAACACAGA -ACGGAAGTCCTAGGTGAAGCAAGA -ACGGAAGTCCTAGGTGAAGGTTGA -ACGGAAGTCCTAGGTGAATCCGAT -ACGGAAGTCCTAGGTGAATGGCAT -ACGGAAGTCCTAGGTGAACGAGAT -ACGGAAGTCCTAGGTGAATACCAC -ACGGAAGTCCTAGGTGAACAGAAC -ACGGAAGTCCTAGGTGAAGTCTAC -ACGGAAGTCCTAGGTGAAACGTAC -ACGGAAGTCCTAGGTGAAAGTGAC -ACGGAAGTCCTAGGTGAACTGTAG -ACGGAAGTCCTAGGTGAACCTAAG -ACGGAAGTCCTAGGTGAAGTTCAG -ACGGAAGTCCTAGGTGAAGCATAG -ACGGAAGTCCTAGGTGAAGACAAG -ACGGAAGTCCTAGGTGAAAAGCAG -ACGGAAGTCCTAGGTGAACGTCAA -ACGGAAGTCCTAGGTGAAGCTGAA -ACGGAAGTCCTAGGTGAAAGTACG -ACGGAAGTCCTAGGTGAAATCCGA -ACGGAAGTCCTAGGTGAAATGGGA -ACGGAAGTCCTAGGTGAAGTGCAA -ACGGAAGTCCTAGGTGAAGAGGAA -ACGGAAGTCCTAGGTGAACAGGTA -ACGGAAGTCCTAGGTGAAGACTCT -ACGGAAGTCCTAGGTGAAAGTCCT -ACGGAAGTCCTAGGTGAATAAGCC -ACGGAAGTCCTAGGTGAAATAGCC -ACGGAAGTCCTAGGTGAATAACCG -ACGGAAGTCCTAGGTGAAATGCCA -ACGGAAGTCCTACGTAACGGAAAC -ACGGAAGTCCTACGTAACAACACC -ACGGAAGTCCTACGTAACATCGAG -ACGGAAGTCCTACGTAACCTCCTT -ACGGAAGTCCTACGTAACCCTGTT -ACGGAAGTCCTACGTAACCGGTTT -ACGGAAGTCCTACGTAACGTGGTT -ACGGAAGTCCTACGTAACGCCTTT -ACGGAAGTCCTACGTAACGGTCTT -ACGGAAGTCCTACGTAACACGCTT -ACGGAAGTCCTACGTAACAGCGTT -ACGGAAGTCCTACGTAACTTCGTC -ACGGAAGTCCTACGTAACTCTCTC -ACGGAAGTCCTACGTAACTGGATC -ACGGAAGTCCTACGTAACCACTTC -ACGGAAGTCCTACGTAACGTACTC -ACGGAAGTCCTACGTAACGATGTC -ACGGAAGTCCTACGTAACACAGTC -ACGGAAGTCCTACGTAACTTGCTG -ACGGAAGTCCTACGTAACTCCATG -ACGGAAGTCCTACGTAACTGTGTG -ACGGAAGTCCTACGTAACCTAGTG -ACGGAAGTCCTACGTAACCATCTG -ACGGAAGTCCTACGTAACGAGTTG -ACGGAAGTCCTACGTAACAGACTG -ACGGAAGTCCTACGTAACTCGGTA -ACGGAAGTCCTACGTAACTGCCTA -ACGGAAGTCCTACGTAACCCACTA -ACGGAAGTCCTACGTAACGGAGTA -ACGGAAGTCCTACGTAACTCGTCT -ACGGAAGTCCTACGTAACTGCACT -ACGGAAGTCCTACGTAACCTGACT -ACGGAAGTCCTACGTAACCAACCT -ACGGAAGTCCTACGTAACGCTACT -ACGGAAGTCCTACGTAACGGATCT -ACGGAAGTCCTACGTAACAAGGCT -ACGGAAGTCCTACGTAACTCAACC -ACGGAAGTCCTACGTAACTGTTCC -ACGGAAGTCCTACGTAACATTCCC -ACGGAAGTCCTACGTAACTTCTCG -ACGGAAGTCCTACGTAACTAGACG -ACGGAAGTCCTACGTAACGTAACG -ACGGAAGTCCTACGTAACACTTCG -ACGGAAGTCCTACGTAACTACGCA -ACGGAAGTCCTACGTAACCTTGCA -ACGGAAGTCCTACGTAACCGAACA -ACGGAAGTCCTACGTAACCAGTCA -ACGGAAGTCCTACGTAACGATCCA -ACGGAAGTCCTACGTAACACGACA -ACGGAAGTCCTACGTAACAGCTCA -ACGGAAGTCCTACGTAACTCACGT -ACGGAAGTCCTACGTAACCGTAGT -ACGGAAGTCCTACGTAACGTCAGT -ACGGAAGTCCTACGTAACGAAGGT -ACGGAAGTCCTACGTAACAACCGT -ACGGAAGTCCTACGTAACTTGTGC -ACGGAAGTCCTACGTAACCTAAGC -ACGGAAGTCCTACGTAACACTAGC -ACGGAAGTCCTACGTAACAGATGC -ACGGAAGTCCTACGTAACTGAAGG -ACGGAAGTCCTACGTAACCAATGG -ACGGAAGTCCTACGTAACATGAGG -ACGGAAGTCCTACGTAACAATGGG -ACGGAAGTCCTACGTAACTCCTGA -ACGGAAGTCCTACGTAACTAGCGA -ACGGAAGTCCTACGTAACCACAGA -ACGGAAGTCCTACGTAACGCAAGA -ACGGAAGTCCTACGTAACGGTTGA -ACGGAAGTCCTACGTAACTCCGAT -ACGGAAGTCCTACGTAACTGGCAT -ACGGAAGTCCTACGTAACCGAGAT -ACGGAAGTCCTACGTAACTACCAC -ACGGAAGTCCTACGTAACCAGAAC -ACGGAAGTCCTACGTAACGTCTAC -ACGGAAGTCCTACGTAACACGTAC -ACGGAAGTCCTACGTAACAGTGAC -ACGGAAGTCCTACGTAACCTGTAG -ACGGAAGTCCTACGTAACCCTAAG -ACGGAAGTCCTACGTAACGTTCAG -ACGGAAGTCCTACGTAACGCATAG -ACGGAAGTCCTACGTAACGACAAG -ACGGAAGTCCTACGTAACAAGCAG -ACGGAAGTCCTACGTAACCGTCAA -ACGGAAGTCCTACGTAACGCTGAA -ACGGAAGTCCTACGTAACAGTACG -ACGGAAGTCCTACGTAACATCCGA -ACGGAAGTCCTACGTAACATGGGA -ACGGAAGTCCTACGTAACGTGCAA -ACGGAAGTCCTACGTAACGAGGAA -ACGGAAGTCCTACGTAACCAGGTA -ACGGAAGTCCTACGTAACGACTCT -ACGGAAGTCCTACGTAACAGTCCT -ACGGAAGTCCTACGTAACTAAGCC -ACGGAAGTCCTACGTAACATAGCC -ACGGAAGTCCTACGTAACTAACCG -ACGGAAGTCCTACGTAACATGCCA -ACGGAAGTCCTATGCTTGGGAAAC -ACGGAAGTCCTATGCTTGAACACC -ACGGAAGTCCTATGCTTGATCGAG -ACGGAAGTCCTATGCTTGCTCCTT -ACGGAAGTCCTATGCTTGCCTGTT -ACGGAAGTCCTATGCTTGCGGTTT -ACGGAAGTCCTATGCTTGGTGGTT -ACGGAAGTCCTATGCTTGGCCTTT -ACGGAAGTCCTATGCTTGGGTCTT -ACGGAAGTCCTATGCTTGACGCTT -ACGGAAGTCCTATGCTTGAGCGTT -ACGGAAGTCCTATGCTTGTTCGTC -ACGGAAGTCCTATGCTTGTCTCTC -ACGGAAGTCCTATGCTTGTGGATC -ACGGAAGTCCTATGCTTGCACTTC -ACGGAAGTCCTATGCTTGGTACTC -ACGGAAGTCCTATGCTTGGATGTC -ACGGAAGTCCTATGCTTGACAGTC -ACGGAAGTCCTATGCTTGTTGCTG -ACGGAAGTCCTATGCTTGTCCATG -ACGGAAGTCCTATGCTTGTGTGTG -ACGGAAGTCCTATGCTTGCTAGTG -ACGGAAGTCCTATGCTTGCATCTG -ACGGAAGTCCTATGCTTGGAGTTG -ACGGAAGTCCTATGCTTGAGACTG -ACGGAAGTCCTATGCTTGTCGGTA -ACGGAAGTCCTATGCTTGTGCCTA -ACGGAAGTCCTATGCTTGCCACTA -ACGGAAGTCCTATGCTTGGGAGTA -ACGGAAGTCCTATGCTTGTCGTCT -ACGGAAGTCCTATGCTTGTGCACT -ACGGAAGTCCTATGCTTGCTGACT -ACGGAAGTCCTATGCTTGCAACCT -ACGGAAGTCCTATGCTTGGCTACT -ACGGAAGTCCTATGCTTGGGATCT -ACGGAAGTCCTATGCTTGAAGGCT -ACGGAAGTCCTATGCTTGTCAACC -ACGGAAGTCCTATGCTTGTGTTCC -ACGGAAGTCCTATGCTTGATTCCC -ACGGAAGTCCTATGCTTGTTCTCG -ACGGAAGTCCTATGCTTGTAGACG -ACGGAAGTCCTATGCTTGGTAACG -ACGGAAGTCCTATGCTTGACTTCG -ACGGAAGTCCTATGCTTGTACGCA -ACGGAAGTCCTATGCTTGCTTGCA -ACGGAAGTCCTATGCTTGCGAACA -ACGGAAGTCCTATGCTTGCAGTCA -ACGGAAGTCCTATGCTTGGATCCA -ACGGAAGTCCTATGCTTGACGACA -ACGGAAGTCCTATGCTTGAGCTCA -ACGGAAGTCCTATGCTTGTCACGT -ACGGAAGTCCTATGCTTGCGTAGT -ACGGAAGTCCTATGCTTGGTCAGT -ACGGAAGTCCTATGCTTGGAAGGT -ACGGAAGTCCTATGCTTGAACCGT -ACGGAAGTCCTATGCTTGTTGTGC -ACGGAAGTCCTATGCTTGCTAAGC -ACGGAAGTCCTATGCTTGACTAGC -ACGGAAGTCCTATGCTTGAGATGC -ACGGAAGTCCTATGCTTGTGAAGG -ACGGAAGTCCTATGCTTGCAATGG -ACGGAAGTCCTATGCTTGATGAGG -ACGGAAGTCCTATGCTTGAATGGG -ACGGAAGTCCTATGCTTGTCCTGA -ACGGAAGTCCTATGCTTGTAGCGA -ACGGAAGTCCTATGCTTGCACAGA -ACGGAAGTCCTATGCTTGGCAAGA -ACGGAAGTCCTATGCTTGGGTTGA -ACGGAAGTCCTATGCTTGTCCGAT -ACGGAAGTCCTATGCTTGTGGCAT -ACGGAAGTCCTATGCTTGCGAGAT -ACGGAAGTCCTATGCTTGTACCAC -ACGGAAGTCCTATGCTTGCAGAAC -ACGGAAGTCCTATGCTTGGTCTAC -ACGGAAGTCCTATGCTTGACGTAC -ACGGAAGTCCTATGCTTGAGTGAC -ACGGAAGTCCTATGCTTGCTGTAG -ACGGAAGTCCTATGCTTGCCTAAG -ACGGAAGTCCTATGCTTGGTTCAG -ACGGAAGTCCTATGCTTGGCATAG -ACGGAAGTCCTATGCTTGGACAAG -ACGGAAGTCCTATGCTTGAAGCAG -ACGGAAGTCCTATGCTTGCGTCAA -ACGGAAGTCCTATGCTTGGCTGAA -ACGGAAGTCCTATGCTTGAGTACG -ACGGAAGTCCTATGCTTGATCCGA -ACGGAAGTCCTATGCTTGATGGGA -ACGGAAGTCCTATGCTTGGTGCAA -ACGGAAGTCCTATGCTTGGAGGAA -ACGGAAGTCCTATGCTTGCAGGTA -ACGGAAGTCCTATGCTTGGACTCT -ACGGAAGTCCTATGCTTGAGTCCT -ACGGAAGTCCTATGCTTGTAAGCC -ACGGAAGTCCTATGCTTGATAGCC -ACGGAAGTCCTATGCTTGTAACCG -ACGGAAGTCCTATGCTTGATGCCA -ACGGAAGTCCTAAGCCTAGGAAAC -ACGGAAGTCCTAAGCCTAAACACC -ACGGAAGTCCTAAGCCTAATCGAG -ACGGAAGTCCTAAGCCTACTCCTT -ACGGAAGTCCTAAGCCTACCTGTT -ACGGAAGTCCTAAGCCTACGGTTT -ACGGAAGTCCTAAGCCTAGTGGTT -ACGGAAGTCCTAAGCCTAGCCTTT -ACGGAAGTCCTAAGCCTAGGTCTT -ACGGAAGTCCTAAGCCTAACGCTT -ACGGAAGTCCTAAGCCTAAGCGTT -ACGGAAGTCCTAAGCCTATTCGTC -ACGGAAGTCCTAAGCCTATCTCTC -ACGGAAGTCCTAAGCCTATGGATC -ACGGAAGTCCTAAGCCTACACTTC -ACGGAAGTCCTAAGCCTAGTACTC -ACGGAAGTCCTAAGCCTAGATGTC -ACGGAAGTCCTAAGCCTAACAGTC -ACGGAAGTCCTAAGCCTATTGCTG -ACGGAAGTCCTAAGCCTATCCATG -ACGGAAGTCCTAAGCCTATGTGTG -ACGGAAGTCCTAAGCCTACTAGTG -ACGGAAGTCCTAAGCCTACATCTG -ACGGAAGTCCTAAGCCTAGAGTTG -ACGGAAGTCCTAAGCCTAAGACTG -ACGGAAGTCCTAAGCCTATCGGTA -ACGGAAGTCCTAAGCCTATGCCTA -ACGGAAGTCCTAAGCCTACCACTA -ACGGAAGTCCTAAGCCTAGGAGTA -ACGGAAGTCCTAAGCCTATCGTCT -ACGGAAGTCCTAAGCCTATGCACT -ACGGAAGTCCTAAGCCTACTGACT -ACGGAAGTCCTAAGCCTACAACCT -ACGGAAGTCCTAAGCCTAGCTACT -ACGGAAGTCCTAAGCCTAGGATCT -ACGGAAGTCCTAAGCCTAAAGGCT -ACGGAAGTCCTAAGCCTATCAACC -ACGGAAGTCCTAAGCCTATGTTCC -ACGGAAGTCCTAAGCCTAATTCCC -ACGGAAGTCCTAAGCCTATTCTCG -ACGGAAGTCCTAAGCCTATAGACG -ACGGAAGTCCTAAGCCTAGTAACG -ACGGAAGTCCTAAGCCTAACTTCG -ACGGAAGTCCTAAGCCTATACGCA -ACGGAAGTCCTAAGCCTACTTGCA -ACGGAAGTCCTAAGCCTACGAACA -ACGGAAGTCCTAAGCCTACAGTCA -ACGGAAGTCCTAAGCCTAGATCCA -ACGGAAGTCCTAAGCCTAACGACA -ACGGAAGTCCTAAGCCTAAGCTCA -ACGGAAGTCCTAAGCCTATCACGT -ACGGAAGTCCTAAGCCTACGTAGT -ACGGAAGTCCTAAGCCTAGTCAGT -ACGGAAGTCCTAAGCCTAGAAGGT -ACGGAAGTCCTAAGCCTAAACCGT -ACGGAAGTCCTAAGCCTATTGTGC -ACGGAAGTCCTAAGCCTACTAAGC -ACGGAAGTCCTAAGCCTAACTAGC -ACGGAAGTCCTAAGCCTAAGATGC -ACGGAAGTCCTAAGCCTATGAAGG -ACGGAAGTCCTAAGCCTACAATGG -ACGGAAGTCCTAAGCCTAATGAGG -ACGGAAGTCCTAAGCCTAAATGGG -ACGGAAGTCCTAAGCCTATCCTGA -ACGGAAGTCCTAAGCCTATAGCGA -ACGGAAGTCCTAAGCCTACACAGA -ACGGAAGTCCTAAGCCTAGCAAGA -ACGGAAGTCCTAAGCCTAGGTTGA -ACGGAAGTCCTAAGCCTATCCGAT -ACGGAAGTCCTAAGCCTATGGCAT -ACGGAAGTCCTAAGCCTACGAGAT -ACGGAAGTCCTAAGCCTATACCAC -ACGGAAGTCCTAAGCCTACAGAAC -ACGGAAGTCCTAAGCCTAGTCTAC -ACGGAAGTCCTAAGCCTAACGTAC -ACGGAAGTCCTAAGCCTAAGTGAC -ACGGAAGTCCTAAGCCTACTGTAG -ACGGAAGTCCTAAGCCTACCTAAG -ACGGAAGTCCTAAGCCTAGTTCAG -ACGGAAGTCCTAAGCCTAGCATAG -ACGGAAGTCCTAAGCCTAGACAAG -ACGGAAGTCCTAAGCCTAAAGCAG -ACGGAAGTCCTAAGCCTACGTCAA -ACGGAAGTCCTAAGCCTAGCTGAA -ACGGAAGTCCTAAGCCTAAGTACG -ACGGAAGTCCTAAGCCTAATCCGA -ACGGAAGTCCTAAGCCTAATGGGA -ACGGAAGTCCTAAGCCTAGTGCAA -ACGGAAGTCCTAAGCCTAGAGGAA -ACGGAAGTCCTAAGCCTACAGGTA -ACGGAAGTCCTAAGCCTAGACTCT -ACGGAAGTCCTAAGCCTAAGTCCT -ACGGAAGTCCTAAGCCTATAAGCC -ACGGAAGTCCTAAGCCTAATAGCC -ACGGAAGTCCTAAGCCTATAACCG -ACGGAAGTCCTAAGCCTAATGCCA -ACGGAAGTCCTAAGCACTGGAAAC -ACGGAAGTCCTAAGCACTAACACC -ACGGAAGTCCTAAGCACTATCGAG -ACGGAAGTCCTAAGCACTCTCCTT -ACGGAAGTCCTAAGCACTCCTGTT -ACGGAAGTCCTAAGCACTCGGTTT -ACGGAAGTCCTAAGCACTGTGGTT -ACGGAAGTCCTAAGCACTGCCTTT -ACGGAAGTCCTAAGCACTGGTCTT -ACGGAAGTCCTAAGCACTACGCTT -ACGGAAGTCCTAAGCACTAGCGTT -ACGGAAGTCCTAAGCACTTTCGTC -ACGGAAGTCCTAAGCACTTCTCTC -ACGGAAGTCCTAAGCACTTGGATC -ACGGAAGTCCTAAGCACTCACTTC -ACGGAAGTCCTAAGCACTGTACTC -ACGGAAGTCCTAAGCACTGATGTC -ACGGAAGTCCTAAGCACTACAGTC -ACGGAAGTCCTAAGCACTTTGCTG -ACGGAAGTCCTAAGCACTTCCATG -ACGGAAGTCCTAAGCACTTGTGTG -ACGGAAGTCCTAAGCACTCTAGTG -ACGGAAGTCCTAAGCACTCATCTG -ACGGAAGTCCTAAGCACTGAGTTG -ACGGAAGTCCTAAGCACTAGACTG -ACGGAAGTCCTAAGCACTTCGGTA -ACGGAAGTCCTAAGCACTTGCCTA -ACGGAAGTCCTAAGCACTCCACTA -ACGGAAGTCCTAAGCACTGGAGTA -ACGGAAGTCCTAAGCACTTCGTCT -ACGGAAGTCCTAAGCACTTGCACT -ACGGAAGTCCTAAGCACTCTGACT -ACGGAAGTCCTAAGCACTCAACCT -ACGGAAGTCCTAAGCACTGCTACT -ACGGAAGTCCTAAGCACTGGATCT -ACGGAAGTCCTAAGCACTAAGGCT -ACGGAAGTCCTAAGCACTTCAACC -ACGGAAGTCCTAAGCACTTGTTCC -ACGGAAGTCCTAAGCACTATTCCC -ACGGAAGTCCTAAGCACTTTCTCG -ACGGAAGTCCTAAGCACTTAGACG -ACGGAAGTCCTAAGCACTGTAACG -ACGGAAGTCCTAAGCACTACTTCG -ACGGAAGTCCTAAGCACTTACGCA -ACGGAAGTCCTAAGCACTCTTGCA -ACGGAAGTCCTAAGCACTCGAACA -ACGGAAGTCCTAAGCACTCAGTCA -ACGGAAGTCCTAAGCACTGATCCA -ACGGAAGTCCTAAGCACTACGACA -ACGGAAGTCCTAAGCACTAGCTCA -ACGGAAGTCCTAAGCACTTCACGT -ACGGAAGTCCTAAGCACTCGTAGT -ACGGAAGTCCTAAGCACTGTCAGT -ACGGAAGTCCTAAGCACTGAAGGT -ACGGAAGTCCTAAGCACTAACCGT -ACGGAAGTCCTAAGCACTTTGTGC -ACGGAAGTCCTAAGCACTCTAAGC -ACGGAAGTCCTAAGCACTACTAGC -ACGGAAGTCCTAAGCACTAGATGC -ACGGAAGTCCTAAGCACTTGAAGG -ACGGAAGTCCTAAGCACTCAATGG -ACGGAAGTCCTAAGCACTATGAGG -ACGGAAGTCCTAAGCACTAATGGG -ACGGAAGTCCTAAGCACTTCCTGA -ACGGAAGTCCTAAGCACTTAGCGA -ACGGAAGTCCTAAGCACTCACAGA -ACGGAAGTCCTAAGCACTGCAAGA -ACGGAAGTCCTAAGCACTGGTTGA -ACGGAAGTCCTAAGCACTTCCGAT -ACGGAAGTCCTAAGCACTTGGCAT -ACGGAAGTCCTAAGCACTCGAGAT -ACGGAAGTCCTAAGCACTTACCAC -ACGGAAGTCCTAAGCACTCAGAAC -ACGGAAGTCCTAAGCACTGTCTAC -ACGGAAGTCCTAAGCACTACGTAC -ACGGAAGTCCTAAGCACTAGTGAC -ACGGAAGTCCTAAGCACTCTGTAG -ACGGAAGTCCTAAGCACTCCTAAG -ACGGAAGTCCTAAGCACTGTTCAG -ACGGAAGTCCTAAGCACTGCATAG -ACGGAAGTCCTAAGCACTGACAAG -ACGGAAGTCCTAAGCACTAAGCAG -ACGGAAGTCCTAAGCACTCGTCAA -ACGGAAGTCCTAAGCACTGCTGAA -ACGGAAGTCCTAAGCACTAGTACG -ACGGAAGTCCTAAGCACTATCCGA -ACGGAAGTCCTAAGCACTATGGGA -ACGGAAGTCCTAAGCACTGTGCAA -ACGGAAGTCCTAAGCACTGAGGAA -ACGGAAGTCCTAAGCACTCAGGTA -ACGGAAGTCCTAAGCACTGACTCT -ACGGAAGTCCTAAGCACTAGTCCT -ACGGAAGTCCTAAGCACTTAAGCC -ACGGAAGTCCTAAGCACTATAGCC -ACGGAAGTCCTAAGCACTTAACCG -ACGGAAGTCCTAAGCACTATGCCA -ACGGAAGTCCTATGCAGAGGAAAC -ACGGAAGTCCTATGCAGAAACACC -ACGGAAGTCCTATGCAGAATCGAG -ACGGAAGTCCTATGCAGACTCCTT -ACGGAAGTCCTATGCAGACCTGTT -ACGGAAGTCCTATGCAGACGGTTT -ACGGAAGTCCTATGCAGAGTGGTT -ACGGAAGTCCTATGCAGAGCCTTT -ACGGAAGTCCTATGCAGAGGTCTT -ACGGAAGTCCTATGCAGAACGCTT -ACGGAAGTCCTATGCAGAAGCGTT -ACGGAAGTCCTATGCAGATTCGTC -ACGGAAGTCCTATGCAGATCTCTC -ACGGAAGTCCTATGCAGATGGATC -ACGGAAGTCCTATGCAGACACTTC -ACGGAAGTCCTATGCAGAGTACTC -ACGGAAGTCCTATGCAGAGATGTC -ACGGAAGTCCTATGCAGAACAGTC -ACGGAAGTCCTATGCAGATTGCTG -ACGGAAGTCCTATGCAGATCCATG -ACGGAAGTCCTATGCAGATGTGTG -ACGGAAGTCCTATGCAGACTAGTG -ACGGAAGTCCTATGCAGACATCTG -ACGGAAGTCCTATGCAGAGAGTTG -ACGGAAGTCCTATGCAGAAGACTG -ACGGAAGTCCTATGCAGATCGGTA -ACGGAAGTCCTATGCAGATGCCTA -ACGGAAGTCCTATGCAGACCACTA -ACGGAAGTCCTATGCAGAGGAGTA -ACGGAAGTCCTATGCAGATCGTCT -ACGGAAGTCCTATGCAGATGCACT -ACGGAAGTCCTATGCAGACTGACT -ACGGAAGTCCTATGCAGACAACCT -ACGGAAGTCCTATGCAGAGCTACT -ACGGAAGTCCTATGCAGAGGATCT -ACGGAAGTCCTATGCAGAAAGGCT -ACGGAAGTCCTATGCAGATCAACC -ACGGAAGTCCTATGCAGATGTTCC -ACGGAAGTCCTATGCAGAATTCCC -ACGGAAGTCCTATGCAGATTCTCG -ACGGAAGTCCTATGCAGATAGACG -ACGGAAGTCCTATGCAGAGTAACG -ACGGAAGTCCTATGCAGAACTTCG -ACGGAAGTCCTATGCAGATACGCA -ACGGAAGTCCTATGCAGACTTGCA -ACGGAAGTCCTATGCAGACGAACA -ACGGAAGTCCTATGCAGACAGTCA -ACGGAAGTCCTATGCAGAGATCCA -ACGGAAGTCCTATGCAGAACGACA -ACGGAAGTCCTATGCAGAAGCTCA -ACGGAAGTCCTATGCAGATCACGT -ACGGAAGTCCTATGCAGACGTAGT -ACGGAAGTCCTATGCAGAGTCAGT -ACGGAAGTCCTATGCAGAGAAGGT -ACGGAAGTCCTATGCAGAAACCGT -ACGGAAGTCCTATGCAGATTGTGC -ACGGAAGTCCTATGCAGACTAAGC -ACGGAAGTCCTATGCAGAACTAGC -ACGGAAGTCCTATGCAGAAGATGC -ACGGAAGTCCTATGCAGATGAAGG -ACGGAAGTCCTATGCAGACAATGG -ACGGAAGTCCTATGCAGAATGAGG -ACGGAAGTCCTATGCAGAAATGGG -ACGGAAGTCCTATGCAGATCCTGA -ACGGAAGTCCTATGCAGATAGCGA -ACGGAAGTCCTATGCAGACACAGA -ACGGAAGTCCTATGCAGAGCAAGA -ACGGAAGTCCTATGCAGAGGTTGA -ACGGAAGTCCTATGCAGATCCGAT -ACGGAAGTCCTATGCAGATGGCAT -ACGGAAGTCCTATGCAGACGAGAT -ACGGAAGTCCTATGCAGATACCAC -ACGGAAGTCCTATGCAGACAGAAC -ACGGAAGTCCTATGCAGAGTCTAC -ACGGAAGTCCTATGCAGAACGTAC -ACGGAAGTCCTATGCAGAAGTGAC -ACGGAAGTCCTATGCAGACTGTAG -ACGGAAGTCCTATGCAGACCTAAG -ACGGAAGTCCTATGCAGAGTTCAG -ACGGAAGTCCTATGCAGAGCATAG -ACGGAAGTCCTATGCAGAGACAAG -ACGGAAGTCCTATGCAGAAAGCAG -ACGGAAGTCCTATGCAGACGTCAA -ACGGAAGTCCTATGCAGAGCTGAA -ACGGAAGTCCTATGCAGAAGTACG -ACGGAAGTCCTATGCAGAATCCGA -ACGGAAGTCCTATGCAGAATGGGA -ACGGAAGTCCTATGCAGAGTGCAA -ACGGAAGTCCTATGCAGAGAGGAA -ACGGAAGTCCTATGCAGACAGGTA -ACGGAAGTCCTATGCAGAGACTCT -ACGGAAGTCCTATGCAGAAGTCCT -ACGGAAGTCCTATGCAGATAAGCC -ACGGAAGTCCTATGCAGAATAGCC -ACGGAAGTCCTATGCAGATAACCG -ACGGAAGTCCTATGCAGAATGCCA -ACGGAAGTCCTAAGGTGAGGAAAC -ACGGAAGTCCTAAGGTGAAACACC -ACGGAAGTCCTAAGGTGAATCGAG -ACGGAAGTCCTAAGGTGACTCCTT -ACGGAAGTCCTAAGGTGACCTGTT -ACGGAAGTCCTAAGGTGACGGTTT -ACGGAAGTCCTAAGGTGAGTGGTT -ACGGAAGTCCTAAGGTGAGCCTTT -ACGGAAGTCCTAAGGTGAGGTCTT -ACGGAAGTCCTAAGGTGAACGCTT -ACGGAAGTCCTAAGGTGAAGCGTT -ACGGAAGTCCTAAGGTGATTCGTC -ACGGAAGTCCTAAGGTGATCTCTC -ACGGAAGTCCTAAGGTGATGGATC -ACGGAAGTCCTAAGGTGACACTTC -ACGGAAGTCCTAAGGTGAGTACTC -ACGGAAGTCCTAAGGTGAGATGTC -ACGGAAGTCCTAAGGTGAACAGTC -ACGGAAGTCCTAAGGTGATTGCTG -ACGGAAGTCCTAAGGTGATCCATG -ACGGAAGTCCTAAGGTGATGTGTG -ACGGAAGTCCTAAGGTGACTAGTG -ACGGAAGTCCTAAGGTGACATCTG -ACGGAAGTCCTAAGGTGAGAGTTG -ACGGAAGTCCTAAGGTGAAGACTG -ACGGAAGTCCTAAGGTGATCGGTA -ACGGAAGTCCTAAGGTGATGCCTA -ACGGAAGTCCTAAGGTGACCACTA -ACGGAAGTCCTAAGGTGAGGAGTA -ACGGAAGTCCTAAGGTGATCGTCT -ACGGAAGTCCTAAGGTGATGCACT -ACGGAAGTCCTAAGGTGACTGACT -ACGGAAGTCCTAAGGTGACAACCT -ACGGAAGTCCTAAGGTGAGCTACT -ACGGAAGTCCTAAGGTGAGGATCT -ACGGAAGTCCTAAGGTGAAAGGCT -ACGGAAGTCCTAAGGTGATCAACC -ACGGAAGTCCTAAGGTGATGTTCC -ACGGAAGTCCTAAGGTGAATTCCC -ACGGAAGTCCTAAGGTGATTCTCG -ACGGAAGTCCTAAGGTGATAGACG -ACGGAAGTCCTAAGGTGAGTAACG -ACGGAAGTCCTAAGGTGAACTTCG -ACGGAAGTCCTAAGGTGATACGCA -ACGGAAGTCCTAAGGTGACTTGCA -ACGGAAGTCCTAAGGTGACGAACA -ACGGAAGTCCTAAGGTGACAGTCA -ACGGAAGTCCTAAGGTGAGATCCA -ACGGAAGTCCTAAGGTGAACGACA -ACGGAAGTCCTAAGGTGAAGCTCA -ACGGAAGTCCTAAGGTGATCACGT -ACGGAAGTCCTAAGGTGACGTAGT -ACGGAAGTCCTAAGGTGAGTCAGT -ACGGAAGTCCTAAGGTGAGAAGGT -ACGGAAGTCCTAAGGTGAAACCGT -ACGGAAGTCCTAAGGTGATTGTGC -ACGGAAGTCCTAAGGTGACTAAGC -ACGGAAGTCCTAAGGTGAACTAGC -ACGGAAGTCCTAAGGTGAAGATGC -ACGGAAGTCCTAAGGTGATGAAGG -ACGGAAGTCCTAAGGTGACAATGG -ACGGAAGTCCTAAGGTGAATGAGG -ACGGAAGTCCTAAGGTGAAATGGG -ACGGAAGTCCTAAGGTGATCCTGA -ACGGAAGTCCTAAGGTGATAGCGA -ACGGAAGTCCTAAGGTGACACAGA -ACGGAAGTCCTAAGGTGAGCAAGA -ACGGAAGTCCTAAGGTGAGGTTGA -ACGGAAGTCCTAAGGTGATCCGAT -ACGGAAGTCCTAAGGTGATGGCAT -ACGGAAGTCCTAAGGTGACGAGAT -ACGGAAGTCCTAAGGTGATACCAC -ACGGAAGTCCTAAGGTGACAGAAC -ACGGAAGTCCTAAGGTGAGTCTAC -ACGGAAGTCCTAAGGTGAACGTAC -ACGGAAGTCCTAAGGTGAAGTGAC -ACGGAAGTCCTAAGGTGACTGTAG -ACGGAAGTCCTAAGGTGACCTAAG -ACGGAAGTCCTAAGGTGAGTTCAG -ACGGAAGTCCTAAGGTGAGCATAG -ACGGAAGTCCTAAGGTGAGACAAG -ACGGAAGTCCTAAGGTGAAAGCAG -ACGGAAGTCCTAAGGTGACGTCAA -ACGGAAGTCCTAAGGTGAGCTGAA -ACGGAAGTCCTAAGGTGAAGTACG -ACGGAAGTCCTAAGGTGAATCCGA -ACGGAAGTCCTAAGGTGAATGGGA -ACGGAAGTCCTAAGGTGAGTGCAA -ACGGAAGTCCTAAGGTGAGAGGAA -ACGGAAGTCCTAAGGTGACAGGTA -ACGGAAGTCCTAAGGTGAGACTCT -ACGGAAGTCCTAAGGTGAAGTCCT -ACGGAAGTCCTAAGGTGATAAGCC -ACGGAAGTCCTAAGGTGAATAGCC -ACGGAAGTCCTAAGGTGATAACCG -ACGGAAGTCCTAAGGTGAATGCCA -ACGGAAGTCCTATGGCAAGGAAAC -ACGGAAGTCCTATGGCAAAACACC -ACGGAAGTCCTATGGCAAATCGAG -ACGGAAGTCCTATGGCAACTCCTT -ACGGAAGTCCTATGGCAACCTGTT -ACGGAAGTCCTATGGCAACGGTTT -ACGGAAGTCCTATGGCAAGTGGTT -ACGGAAGTCCTATGGCAAGCCTTT -ACGGAAGTCCTATGGCAAGGTCTT -ACGGAAGTCCTATGGCAAACGCTT -ACGGAAGTCCTATGGCAAAGCGTT -ACGGAAGTCCTATGGCAATTCGTC -ACGGAAGTCCTATGGCAATCTCTC -ACGGAAGTCCTATGGCAATGGATC -ACGGAAGTCCTATGGCAACACTTC -ACGGAAGTCCTATGGCAAGTACTC -ACGGAAGTCCTATGGCAAGATGTC -ACGGAAGTCCTATGGCAAACAGTC -ACGGAAGTCCTATGGCAATTGCTG -ACGGAAGTCCTATGGCAATCCATG -ACGGAAGTCCTATGGCAATGTGTG -ACGGAAGTCCTATGGCAACTAGTG -ACGGAAGTCCTATGGCAACATCTG -ACGGAAGTCCTATGGCAAGAGTTG -ACGGAAGTCCTATGGCAAAGACTG -ACGGAAGTCCTATGGCAATCGGTA -ACGGAAGTCCTATGGCAATGCCTA -ACGGAAGTCCTATGGCAACCACTA -ACGGAAGTCCTATGGCAAGGAGTA -ACGGAAGTCCTATGGCAATCGTCT -ACGGAAGTCCTATGGCAATGCACT -ACGGAAGTCCTATGGCAACTGACT -ACGGAAGTCCTATGGCAACAACCT -ACGGAAGTCCTATGGCAAGCTACT -ACGGAAGTCCTATGGCAAGGATCT -ACGGAAGTCCTATGGCAAAAGGCT -ACGGAAGTCCTATGGCAATCAACC -ACGGAAGTCCTATGGCAATGTTCC -ACGGAAGTCCTATGGCAAATTCCC -ACGGAAGTCCTATGGCAATTCTCG -ACGGAAGTCCTATGGCAATAGACG -ACGGAAGTCCTATGGCAAGTAACG -ACGGAAGTCCTATGGCAAACTTCG -ACGGAAGTCCTATGGCAATACGCA -ACGGAAGTCCTATGGCAACTTGCA -ACGGAAGTCCTATGGCAACGAACA -ACGGAAGTCCTATGGCAACAGTCA -ACGGAAGTCCTATGGCAAGATCCA -ACGGAAGTCCTATGGCAAACGACA -ACGGAAGTCCTATGGCAAAGCTCA -ACGGAAGTCCTATGGCAATCACGT -ACGGAAGTCCTATGGCAACGTAGT -ACGGAAGTCCTATGGCAAGTCAGT -ACGGAAGTCCTATGGCAAGAAGGT -ACGGAAGTCCTATGGCAAAACCGT -ACGGAAGTCCTATGGCAATTGTGC -ACGGAAGTCCTATGGCAACTAAGC -ACGGAAGTCCTATGGCAAACTAGC -ACGGAAGTCCTATGGCAAAGATGC -ACGGAAGTCCTATGGCAATGAAGG -ACGGAAGTCCTATGGCAACAATGG -ACGGAAGTCCTATGGCAAATGAGG -ACGGAAGTCCTATGGCAAAATGGG -ACGGAAGTCCTATGGCAATCCTGA -ACGGAAGTCCTATGGCAATAGCGA -ACGGAAGTCCTATGGCAACACAGA -ACGGAAGTCCTATGGCAAGCAAGA -ACGGAAGTCCTATGGCAAGGTTGA -ACGGAAGTCCTATGGCAATCCGAT -ACGGAAGTCCTATGGCAATGGCAT -ACGGAAGTCCTATGGCAACGAGAT -ACGGAAGTCCTATGGCAATACCAC -ACGGAAGTCCTATGGCAACAGAAC -ACGGAAGTCCTATGGCAAGTCTAC -ACGGAAGTCCTATGGCAAACGTAC -ACGGAAGTCCTATGGCAAAGTGAC -ACGGAAGTCCTATGGCAACTGTAG -ACGGAAGTCCTATGGCAACCTAAG -ACGGAAGTCCTATGGCAAGTTCAG -ACGGAAGTCCTATGGCAAGCATAG -ACGGAAGTCCTATGGCAAGACAAG -ACGGAAGTCCTATGGCAAAAGCAG -ACGGAAGTCCTATGGCAACGTCAA -ACGGAAGTCCTATGGCAAGCTGAA -ACGGAAGTCCTATGGCAAAGTACG -ACGGAAGTCCTATGGCAAATCCGA -ACGGAAGTCCTATGGCAAATGGGA -ACGGAAGTCCTATGGCAAGTGCAA -ACGGAAGTCCTATGGCAAGAGGAA -ACGGAAGTCCTATGGCAACAGGTA -ACGGAAGTCCTATGGCAAGACTCT -ACGGAAGTCCTATGGCAAAGTCCT -ACGGAAGTCCTATGGCAATAAGCC -ACGGAAGTCCTATGGCAAATAGCC -ACGGAAGTCCTATGGCAATAACCG -ACGGAAGTCCTATGGCAAATGCCA -ACGGAAGTCCTAAGGATGGGAAAC -ACGGAAGTCCTAAGGATGAACACC -ACGGAAGTCCTAAGGATGATCGAG -ACGGAAGTCCTAAGGATGCTCCTT -ACGGAAGTCCTAAGGATGCCTGTT -ACGGAAGTCCTAAGGATGCGGTTT -ACGGAAGTCCTAAGGATGGTGGTT -ACGGAAGTCCTAAGGATGGCCTTT -ACGGAAGTCCTAAGGATGGGTCTT -ACGGAAGTCCTAAGGATGACGCTT -ACGGAAGTCCTAAGGATGAGCGTT -ACGGAAGTCCTAAGGATGTTCGTC -ACGGAAGTCCTAAGGATGTCTCTC -ACGGAAGTCCTAAGGATGTGGATC -ACGGAAGTCCTAAGGATGCACTTC -ACGGAAGTCCTAAGGATGGTACTC -ACGGAAGTCCTAAGGATGGATGTC -ACGGAAGTCCTAAGGATGACAGTC -ACGGAAGTCCTAAGGATGTTGCTG -ACGGAAGTCCTAAGGATGTCCATG -ACGGAAGTCCTAAGGATGTGTGTG -ACGGAAGTCCTAAGGATGCTAGTG -ACGGAAGTCCTAAGGATGCATCTG -ACGGAAGTCCTAAGGATGGAGTTG -ACGGAAGTCCTAAGGATGAGACTG -ACGGAAGTCCTAAGGATGTCGGTA -ACGGAAGTCCTAAGGATGTGCCTA -ACGGAAGTCCTAAGGATGCCACTA -ACGGAAGTCCTAAGGATGGGAGTA -ACGGAAGTCCTAAGGATGTCGTCT -ACGGAAGTCCTAAGGATGTGCACT -ACGGAAGTCCTAAGGATGCTGACT -ACGGAAGTCCTAAGGATGCAACCT -ACGGAAGTCCTAAGGATGGCTACT -ACGGAAGTCCTAAGGATGGGATCT -ACGGAAGTCCTAAGGATGAAGGCT -ACGGAAGTCCTAAGGATGTCAACC -ACGGAAGTCCTAAGGATGTGTTCC -ACGGAAGTCCTAAGGATGATTCCC -ACGGAAGTCCTAAGGATGTTCTCG -ACGGAAGTCCTAAGGATGTAGACG -ACGGAAGTCCTAAGGATGGTAACG -ACGGAAGTCCTAAGGATGACTTCG -ACGGAAGTCCTAAGGATGTACGCA -ACGGAAGTCCTAAGGATGCTTGCA -ACGGAAGTCCTAAGGATGCGAACA -ACGGAAGTCCTAAGGATGCAGTCA -ACGGAAGTCCTAAGGATGGATCCA -ACGGAAGTCCTAAGGATGACGACA -ACGGAAGTCCTAAGGATGAGCTCA -ACGGAAGTCCTAAGGATGTCACGT -ACGGAAGTCCTAAGGATGCGTAGT -ACGGAAGTCCTAAGGATGGTCAGT -ACGGAAGTCCTAAGGATGGAAGGT -ACGGAAGTCCTAAGGATGAACCGT -ACGGAAGTCCTAAGGATGTTGTGC -ACGGAAGTCCTAAGGATGCTAAGC -ACGGAAGTCCTAAGGATGACTAGC -ACGGAAGTCCTAAGGATGAGATGC -ACGGAAGTCCTAAGGATGTGAAGG -ACGGAAGTCCTAAGGATGCAATGG -ACGGAAGTCCTAAGGATGATGAGG -ACGGAAGTCCTAAGGATGAATGGG -ACGGAAGTCCTAAGGATGTCCTGA -ACGGAAGTCCTAAGGATGTAGCGA -ACGGAAGTCCTAAGGATGCACAGA -ACGGAAGTCCTAAGGATGGCAAGA -ACGGAAGTCCTAAGGATGGGTTGA -ACGGAAGTCCTAAGGATGTCCGAT -ACGGAAGTCCTAAGGATGTGGCAT -ACGGAAGTCCTAAGGATGCGAGAT -ACGGAAGTCCTAAGGATGTACCAC -ACGGAAGTCCTAAGGATGCAGAAC -ACGGAAGTCCTAAGGATGGTCTAC -ACGGAAGTCCTAAGGATGACGTAC -ACGGAAGTCCTAAGGATGAGTGAC -ACGGAAGTCCTAAGGATGCTGTAG -ACGGAAGTCCTAAGGATGCCTAAG -ACGGAAGTCCTAAGGATGGTTCAG -ACGGAAGTCCTAAGGATGGCATAG -ACGGAAGTCCTAAGGATGGACAAG -ACGGAAGTCCTAAGGATGAAGCAG -ACGGAAGTCCTAAGGATGCGTCAA -ACGGAAGTCCTAAGGATGGCTGAA -ACGGAAGTCCTAAGGATGAGTACG -ACGGAAGTCCTAAGGATGATCCGA -ACGGAAGTCCTAAGGATGATGGGA -ACGGAAGTCCTAAGGATGGTGCAA -ACGGAAGTCCTAAGGATGGAGGAA -ACGGAAGTCCTAAGGATGCAGGTA -ACGGAAGTCCTAAGGATGGACTCT -ACGGAAGTCCTAAGGATGAGTCCT -ACGGAAGTCCTAAGGATGTAAGCC -ACGGAAGTCCTAAGGATGATAGCC -ACGGAAGTCCTAAGGATGTAACCG -ACGGAAGTCCTAAGGATGATGCCA -ACGGAAGTCCTAGGGAATGGAAAC -ACGGAAGTCCTAGGGAATAACACC -ACGGAAGTCCTAGGGAATATCGAG -ACGGAAGTCCTAGGGAATCTCCTT -ACGGAAGTCCTAGGGAATCCTGTT -ACGGAAGTCCTAGGGAATCGGTTT -ACGGAAGTCCTAGGGAATGTGGTT -ACGGAAGTCCTAGGGAATGCCTTT -ACGGAAGTCCTAGGGAATGGTCTT -ACGGAAGTCCTAGGGAATACGCTT -ACGGAAGTCCTAGGGAATAGCGTT -ACGGAAGTCCTAGGGAATTTCGTC -ACGGAAGTCCTAGGGAATTCTCTC -ACGGAAGTCCTAGGGAATTGGATC -ACGGAAGTCCTAGGGAATCACTTC -ACGGAAGTCCTAGGGAATGTACTC -ACGGAAGTCCTAGGGAATGATGTC -ACGGAAGTCCTAGGGAATACAGTC -ACGGAAGTCCTAGGGAATTTGCTG -ACGGAAGTCCTAGGGAATTCCATG -ACGGAAGTCCTAGGGAATTGTGTG -ACGGAAGTCCTAGGGAATCTAGTG -ACGGAAGTCCTAGGGAATCATCTG -ACGGAAGTCCTAGGGAATGAGTTG -ACGGAAGTCCTAGGGAATAGACTG -ACGGAAGTCCTAGGGAATTCGGTA -ACGGAAGTCCTAGGGAATTGCCTA -ACGGAAGTCCTAGGGAATCCACTA -ACGGAAGTCCTAGGGAATGGAGTA -ACGGAAGTCCTAGGGAATTCGTCT -ACGGAAGTCCTAGGGAATTGCACT -ACGGAAGTCCTAGGGAATCTGACT -ACGGAAGTCCTAGGGAATCAACCT -ACGGAAGTCCTAGGGAATGCTACT -ACGGAAGTCCTAGGGAATGGATCT -ACGGAAGTCCTAGGGAATAAGGCT -ACGGAAGTCCTAGGGAATTCAACC -ACGGAAGTCCTAGGGAATTGTTCC -ACGGAAGTCCTAGGGAATATTCCC -ACGGAAGTCCTAGGGAATTTCTCG -ACGGAAGTCCTAGGGAATTAGACG -ACGGAAGTCCTAGGGAATGTAACG -ACGGAAGTCCTAGGGAATACTTCG -ACGGAAGTCCTAGGGAATTACGCA -ACGGAAGTCCTAGGGAATCTTGCA -ACGGAAGTCCTAGGGAATCGAACA -ACGGAAGTCCTAGGGAATCAGTCA -ACGGAAGTCCTAGGGAATGATCCA -ACGGAAGTCCTAGGGAATACGACA -ACGGAAGTCCTAGGGAATAGCTCA -ACGGAAGTCCTAGGGAATTCACGT -ACGGAAGTCCTAGGGAATCGTAGT -ACGGAAGTCCTAGGGAATGTCAGT -ACGGAAGTCCTAGGGAATGAAGGT -ACGGAAGTCCTAGGGAATAACCGT -ACGGAAGTCCTAGGGAATTTGTGC -ACGGAAGTCCTAGGGAATCTAAGC -ACGGAAGTCCTAGGGAATACTAGC -ACGGAAGTCCTAGGGAATAGATGC -ACGGAAGTCCTAGGGAATTGAAGG -ACGGAAGTCCTAGGGAATCAATGG -ACGGAAGTCCTAGGGAATATGAGG -ACGGAAGTCCTAGGGAATAATGGG -ACGGAAGTCCTAGGGAATTCCTGA -ACGGAAGTCCTAGGGAATTAGCGA -ACGGAAGTCCTAGGGAATCACAGA -ACGGAAGTCCTAGGGAATGCAAGA -ACGGAAGTCCTAGGGAATGGTTGA -ACGGAAGTCCTAGGGAATTCCGAT -ACGGAAGTCCTAGGGAATTGGCAT -ACGGAAGTCCTAGGGAATCGAGAT -ACGGAAGTCCTAGGGAATTACCAC -ACGGAAGTCCTAGGGAATCAGAAC -ACGGAAGTCCTAGGGAATGTCTAC -ACGGAAGTCCTAGGGAATACGTAC -ACGGAAGTCCTAGGGAATAGTGAC -ACGGAAGTCCTAGGGAATCTGTAG -ACGGAAGTCCTAGGGAATCCTAAG -ACGGAAGTCCTAGGGAATGTTCAG -ACGGAAGTCCTAGGGAATGCATAG -ACGGAAGTCCTAGGGAATGACAAG -ACGGAAGTCCTAGGGAATAAGCAG -ACGGAAGTCCTAGGGAATCGTCAA -ACGGAAGTCCTAGGGAATGCTGAA -ACGGAAGTCCTAGGGAATAGTACG -ACGGAAGTCCTAGGGAATATCCGA -ACGGAAGTCCTAGGGAATATGGGA -ACGGAAGTCCTAGGGAATGTGCAA -ACGGAAGTCCTAGGGAATGAGGAA -ACGGAAGTCCTAGGGAATCAGGTA -ACGGAAGTCCTAGGGAATGACTCT -ACGGAAGTCCTAGGGAATAGTCCT -ACGGAAGTCCTAGGGAATTAAGCC -ACGGAAGTCCTAGGGAATATAGCC -ACGGAAGTCCTAGGGAATTAACCG -ACGGAAGTCCTAGGGAATATGCCA -ACGGAAGTCCTATGATCCGGAAAC -ACGGAAGTCCTATGATCCAACACC -ACGGAAGTCCTATGATCCATCGAG -ACGGAAGTCCTATGATCCCTCCTT -ACGGAAGTCCTATGATCCCCTGTT -ACGGAAGTCCTATGATCCCGGTTT -ACGGAAGTCCTATGATCCGTGGTT -ACGGAAGTCCTATGATCCGCCTTT -ACGGAAGTCCTATGATCCGGTCTT -ACGGAAGTCCTATGATCCACGCTT -ACGGAAGTCCTATGATCCAGCGTT -ACGGAAGTCCTATGATCCTTCGTC -ACGGAAGTCCTATGATCCTCTCTC -ACGGAAGTCCTATGATCCTGGATC -ACGGAAGTCCTATGATCCCACTTC -ACGGAAGTCCTATGATCCGTACTC -ACGGAAGTCCTATGATCCGATGTC -ACGGAAGTCCTATGATCCACAGTC -ACGGAAGTCCTATGATCCTTGCTG -ACGGAAGTCCTATGATCCTCCATG -ACGGAAGTCCTATGATCCTGTGTG -ACGGAAGTCCTATGATCCCTAGTG -ACGGAAGTCCTATGATCCCATCTG -ACGGAAGTCCTATGATCCGAGTTG -ACGGAAGTCCTATGATCCAGACTG -ACGGAAGTCCTATGATCCTCGGTA -ACGGAAGTCCTATGATCCTGCCTA -ACGGAAGTCCTATGATCCCCACTA -ACGGAAGTCCTATGATCCGGAGTA -ACGGAAGTCCTATGATCCTCGTCT -ACGGAAGTCCTATGATCCTGCACT -ACGGAAGTCCTATGATCCCTGACT -ACGGAAGTCCTATGATCCCAACCT -ACGGAAGTCCTATGATCCGCTACT -ACGGAAGTCCTATGATCCGGATCT -ACGGAAGTCCTATGATCCAAGGCT -ACGGAAGTCCTATGATCCTCAACC -ACGGAAGTCCTATGATCCTGTTCC -ACGGAAGTCCTATGATCCATTCCC -ACGGAAGTCCTATGATCCTTCTCG -ACGGAAGTCCTATGATCCTAGACG -ACGGAAGTCCTATGATCCGTAACG -ACGGAAGTCCTATGATCCACTTCG -ACGGAAGTCCTATGATCCTACGCA -ACGGAAGTCCTATGATCCCTTGCA -ACGGAAGTCCTATGATCCCGAACA -ACGGAAGTCCTATGATCCCAGTCA -ACGGAAGTCCTATGATCCGATCCA -ACGGAAGTCCTATGATCCACGACA -ACGGAAGTCCTATGATCCAGCTCA -ACGGAAGTCCTATGATCCTCACGT -ACGGAAGTCCTATGATCCCGTAGT -ACGGAAGTCCTATGATCCGTCAGT -ACGGAAGTCCTATGATCCGAAGGT -ACGGAAGTCCTATGATCCAACCGT -ACGGAAGTCCTATGATCCTTGTGC -ACGGAAGTCCTATGATCCCTAAGC -ACGGAAGTCCTATGATCCACTAGC -ACGGAAGTCCTATGATCCAGATGC -ACGGAAGTCCTATGATCCTGAAGG -ACGGAAGTCCTATGATCCCAATGG -ACGGAAGTCCTATGATCCATGAGG -ACGGAAGTCCTATGATCCAATGGG -ACGGAAGTCCTATGATCCTCCTGA -ACGGAAGTCCTATGATCCTAGCGA -ACGGAAGTCCTATGATCCCACAGA -ACGGAAGTCCTATGATCCGCAAGA -ACGGAAGTCCTATGATCCGGTTGA -ACGGAAGTCCTATGATCCTCCGAT -ACGGAAGTCCTATGATCCTGGCAT -ACGGAAGTCCTATGATCCCGAGAT -ACGGAAGTCCTATGATCCTACCAC -ACGGAAGTCCTATGATCCCAGAAC -ACGGAAGTCCTATGATCCGTCTAC -ACGGAAGTCCTATGATCCACGTAC -ACGGAAGTCCTATGATCCAGTGAC -ACGGAAGTCCTATGATCCCTGTAG -ACGGAAGTCCTATGATCCCCTAAG -ACGGAAGTCCTATGATCCGTTCAG -ACGGAAGTCCTATGATCCGCATAG -ACGGAAGTCCTATGATCCGACAAG -ACGGAAGTCCTATGATCCAAGCAG -ACGGAAGTCCTATGATCCCGTCAA -ACGGAAGTCCTATGATCCGCTGAA -ACGGAAGTCCTATGATCCAGTACG -ACGGAAGTCCTATGATCCATCCGA -ACGGAAGTCCTATGATCCATGGGA -ACGGAAGTCCTATGATCCGTGCAA -ACGGAAGTCCTATGATCCGAGGAA -ACGGAAGTCCTATGATCCCAGGTA -ACGGAAGTCCTATGATCCGACTCT -ACGGAAGTCCTATGATCCAGTCCT -ACGGAAGTCCTATGATCCTAAGCC -ACGGAAGTCCTATGATCCATAGCC -ACGGAAGTCCTATGATCCTAACCG -ACGGAAGTCCTATGATCCATGCCA -ACGGAAGTCCTACGATAGGGAAAC -ACGGAAGTCCTACGATAGAACACC -ACGGAAGTCCTACGATAGATCGAG -ACGGAAGTCCTACGATAGCTCCTT -ACGGAAGTCCTACGATAGCCTGTT -ACGGAAGTCCTACGATAGCGGTTT -ACGGAAGTCCTACGATAGGTGGTT -ACGGAAGTCCTACGATAGGCCTTT -ACGGAAGTCCTACGATAGGGTCTT -ACGGAAGTCCTACGATAGACGCTT -ACGGAAGTCCTACGATAGAGCGTT -ACGGAAGTCCTACGATAGTTCGTC -ACGGAAGTCCTACGATAGTCTCTC -ACGGAAGTCCTACGATAGTGGATC -ACGGAAGTCCTACGATAGCACTTC -ACGGAAGTCCTACGATAGGTACTC -ACGGAAGTCCTACGATAGGATGTC -ACGGAAGTCCTACGATAGACAGTC -ACGGAAGTCCTACGATAGTTGCTG -ACGGAAGTCCTACGATAGTCCATG -ACGGAAGTCCTACGATAGTGTGTG -ACGGAAGTCCTACGATAGCTAGTG -ACGGAAGTCCTACGATAGCATCTG -ACGGAAGTCCTACGATAGGAGTTG -ACGGAAGTCCTACGATAGAGACTG -ACGGAAGTCCTACGATAGTCGGTA -ACGGAAGTCCTACGATAGTGCCTA -ACGGAAGTCCTACGATAGCCACTA -ACGGAAGTCCTACGATAGGGAGTA -ACGGAAGTCCTACGATAGTCGTCT -ACGGAAGTCCTACGATAGTGCACT -ACGGAAGTCCTACGATAGCTGACT -ACGGAAGTCCTACGATAGCAACCT -ACGGAAGTCCTACGATAGGCTACT -ACGGAAGTCCTACGATAGGGATCT -ACGGAAGTCCTACGATAGAAGGCT -ACGGAAGTCCTACGATAGTCAACC -ACGGAAGTCCTACGATAGTGTTCC -ACGGAAGTCCTACGATAGATTCCC -ACGGAAGTCCTACGATAGTTCTCG -ACGGAAGTCCTACGATAGTAGACG -ACGGAAGTCCTACGATAGGTAACG -ACGGAAGTCCTACGATAGACTTCG -ACGGAAGTCCTACGATAGTACGCA -ACGGAAGTCCTACGATAGCTTGCA -ACGGAAGTCCTACGATAGCGAACA -ACGGAAGTCCTACGATAGCAGTCA -ACGGAAGTCCTACGATAGGATCCA -ACGGAAGTCCTACGATAGACGACA -ACGGAAGTCCTACGATAGAGCTCA -ACGGAAGTCCTACGATAGTCACGT -ACGGAAGTCCTACGATAGCGTAGT -ACGGAAGTCCTACGATAGGTCAGT -ACGGAAGTCCTACGATAGGAAGGT -ACGGAAGTCCTACGATAGAACCGT -ACGGAAGTCCTACGATAGTTGTGC -ACGGAAGTCCTACGATAGCTAAGC -ACGGAAGTCCTACGATAGACTAGC -ACGGAAGTCCTACGATAGAGATGC -ACGGAAGTCCTACGATAGTGAAGG -ACGGAAGTCCTACGATAGCAATGG -ACGGAAGTCCTACGATAGATGAGG -ACGGAAGTCCTACGATAGAATGGG -ACGGAAGTCCTACGATAGTCCTGA -ACGGAAGTCCTACGATAGTAGCGA -ACGGAAGTCCTACGATAGCACAGA -ACGGAAGTCCTACGATAGGCAAGA -ACGGAAGTCCTACGATAGGGTTGA -ACGGAAGTCCTACGATAGTCCGAT -ACGGAAGTCCTACGATAGTGGCAT -ACGGAAGTCCTACGATAGCGAGAT -ACGGAAGTCCTACGATAGTACCAC -ACGGAAGTCCTACGATAGCAGAAC -ACGGAAGTCCTACGATAGGTCTAC -ACGGAAGTCCTACGATAGACGTAC -ACGGAAGTCCTACGATAGAGTGAC -ACGGAAGTCCTACGATAGCTGTAG -ACGGAAGTCCTACGATAGCCTAAG -ACGGAAGTCCTACGATAGGTTCAG -ACGGAAGTCCTACGATAGGCATAG -ACGGAAGTCCTACGATAGGACAAG -ACGGAAGTCCTACGATAGAAGCAG -ACGGAAGTCCTACGATAGCGTCAA -ACGGAAGTCCTACGATAGGCTGAA -ACGGAAGTCCTACGATAGAGTACG -ACGGAAGTCCTACGATAGATCCGA -ACGGAAGTCCTACGATAGATGGGA -ACGGAAGTCCTACGATAGGTGCAA -ACGGAAGTCCTACGATAGGAGGAA -ACGGAAGTCCTACGATAGCAGGTA -ACGGAAGTCCTACGATAGGACTCT -ACGGAAGTCCTACGATAGAGTCCT -ACGGAAGTCCTACGATAGTAAGCC -ACGGAAGTCCTACGATAGATAGCC -ACGGAAGTCCTACGATAGTAACCG -ACGGAAGTCCTACGATAGATGCCA -ACGGAAGTCCTAAGACACGGAAAC -ACGGAAGTCCTAAGACACAACACC -ACGGAAGTCCTAAGACACATCGAG -ACGGAAGTCCTAAGACACCTCCTT -ACGGAAGTCCTAAGACACCCTGTT -ACGGAAGTCCTAAGACACCGGTTT -ACGGAAGTCCTAAGACACGTGGTT -ACGGAAGTCCTAAGACACGCCTTT -ACGGAAGTCCTAAGACACGGTCTT -ACGGAAGTCCTAAGACACACGCTT -ACGGAAGTCCTAAGACACAGCGTT -ACGGAAGTCCTAAGACACTTCGTC -ACGGAAGTCCTAAGACACTCTCTC -ACGGAAGTCCTAAGACACTGGATC -ACGGAAGTCCTAAGACACCACTTC -ACGGAAGTCCTAAGACACGTACTC -ACGGAAGTCCTAAGACACGATGTC -ACGGAAGTCCTAAGACACACAGTC -ACGGAAGTCCTAAGACACTTGCTG -ACGGAAGTCCTAAGACACTCCATG -ACGGAAGTCCTAAGACACTGTGTG -ACGGAAGTCCTAAGACACCTAGTG -ACGGAAGTCCTAAGACACCATCTG -ACGGAAGTCCTAAGACACGAGTTG -ACGGAAGTCCTAAGACACAGACTG -ACGGAAGTCCTAAGACACTCGGTA -ACGGAAGTCCTAAGACACTGCCTA -ACGGAAGTCCTAAGACACCCACTA -ACGGAAGTCCTAAGACACGGAGTA -ACGGAAGTCCTAAGACACTCGTCT -ACGGAAGTCCTAAGACACTGCACT -ACGGAAGTCCTAAGACACCTGACT -ACGGAAGTCCTAAGACACCAACCT -ACGGAAGTCCTAAGACACGCTACT -ACGGAAGTCCTAAGACACGGATCT -ACGGAAGTCCTAAGACACAAGGCT -ACGGAAGTCCTAAGACACTCAACC -ACGGAAGTCCTAAGACACTGTTCC -ACGGAAGTCCTAAGACACATTCCC -ACGGAAGTCCTAAGACACTTCTCG -ACGGAAGTCCTAAGACACTAGACG -ACGGAAGTCCTAAGACACGTAACG -ACGGAAGTCCTAAGACACACTTCG -ACGGAAGTCCTAAGACACTACGCA -ACGGAAGTCCTAAGACACCTTGCA -ACGGAAGTCCTAAGACACCGAACA -ACGGAAGTCCTAAGACACCAGTCA -ACGGAAGTCCTAAGACACGATCCA -ACGGAAGTCCTAAGACACACGACA -ACGGAAGTCCTAAGACACAGCTCA -ACGGAAGTCCTAAGACACTCACGT -ACGGAAGTCCTAAGACACCGTAGT -ACGGAAGTCCTAAGACACGTCAGT -ACGGAAGTCCTAAGACACGAAGGT -ACGGAAGTCCTAAGACACAACCGT -ACGGAAGTCCTAAGACACTTGTGC -ACGGAAGTCCTAAGACACCTAAGC -ACGGAAGTCCTAAGACACACTAGC -ACGGAAGTCCTAAGACACAGATGC -ACGGAAGTCCTAAGACACTGAAGG -ACGGAAGTCCTAAGACACCAATGG -ACGGAAGTCCTAAGACACATGAGG -ACGGAAGTCCTAAGACACAATGGG -ACGGAAGTCCTAAGACACTCCTGA -ACGGAAGTCCTAAGACACTAGCGA -ACGGAAGTCCTAAGACACCACAGA -ACGGAAGTCCTAAGACACGCAAGA -ACGGAAGTCCTAAGACACGGTTGA -ACGGAAGTCCTAAGACACTCCGAT -ACGGAAGTCCTAAGACACTGGCAT -ACGGAAGTCCTAAGACACCGAGAT -ACGGAAGTCCTAAGACACTACCAC -ACGGAAGTCCTAAGACACCAGAAC -ACGGAAGTCCTAAGACACGTCTAC -ACGGAAGTCCTAAGACACACGTAC -ACGGAAGTCCTAAGACACAGTGAC -ACGGAAGTCCTAAGACACCTGTAG -ACGGAAGTCCTAAGACACCCTAAG -ACGGAAGTCCTAAGACACGTTCAG -ACGGAAGTCCTAAGACACGCATAG -ACGGAAGTCCTAAGACACGACAAG -ACGGAAGTCCTAAGACACAAGCAG -ACGGAAGTCCTAAGACACCGTCAA -ACGGAAGTCCTAAGACACGCTGAA -ACGGAAGTCCTAAGACACAGTACG -ACGGAAGTCCTAAGACACATCCGA -ACGGAAGTCCTAAGACACATGGGA -ACGGAAGTCCTAAGACACGTGCAA -ACGGAAGTCCTAAGACACGAGGAA -ACGGAAGTCCTAAGACACCAGGTA -ACGGAAGTCCTAAGACACGACTCT -ACGGAAGTCCTAAGACACAGTCCT -ACGGAAGTCCTAAGACACTAAGCC -ACGGAAGTCCTAAGACACATAGCC -ACGGAAGTCCTAAGACACTAACCG -ACGGAAGTCCTAAGACACATGCCA -ACGGAAGTCCTAAGAGCAGGAAAC -ACGGAAGTCCTAAGAGCAAACACC -ACGGAAGTCCTAAGAGCAATCGAG -ACGGAAGTCCTAAGAGCACTCCTT -ACGGAAGTCCTAAGAGCACCTGTT -ACGGAAGTCCTAAGAGCACGGTTT -ACGGAAGTCCTAAGAGCAGTGGTT -ACGGAAGTCCTAAGAGCAGCCTTT -ACGGAAGTCCTAAGAGCAGGTCTT -ACGGAAGTCCTAAGAGCAACGCTT -ACGGAAGTCCTAAGAGCAAGCGTT -ACGGAAGTCCTAAGAGCATTCGTC -ACGGAAGTCCTAAGAGCATCTCTC -ACGGAAGTCCTAAGAGCATGGATC -ACGGAAGTCCTAAGAGCACACTTC -ACGGAAGTCCTAAGAGCAGTACTC -ACGGAAGTCCTAAGAGCAGATGTC -ACGGAAGTCCTAAGAGCAACAGTC -ACGGAAGTCCTAAGAGCATTGCTG -ACGGAAGTCCTAAGAGCATCCATG -ACGGAAGTCCTAAGAGCATGTGTG -ACGGAAGTCCTAAGAGCACTAGTG -ACGGAAGTCCTAAGAGCACATCTG -ACGGAAGTCCTAAGAGCAGAGTTG -ACGGAAGTCCTAAGAGCAAGACTG -ACGGAAGTCCTAAGAGCATCGGTA -ACGGAAGTCCTAAGAGCATGCCTA -ACGGAAGTCCTAAGAGCACCACTA -ACGGAAGTCCTAAGAGCAGGAGTA -ACGGAAGTCCTAAGAGCATCGTCT -ACGGAAGTCCTAAGAGCATGCACT -ACGGAAGTCCTAAGAGCACTGACT -ACGGAAGTCCTAAGAGCACAACCT -ACGGAAGTCCTAAGAGCAGCTACT -ACGGAAGTCCTAAGAGCAGGATCT -ACGGAAGTCCTAAGAGCAAAGGCT -ACGGAAGTCCTAAGAGCATCAACC -ACGGAAGTCCTAAGAGCATGTTCC -ACGGAAGTCCTAAGAGCAATTCCC -ACGGAAGTCCTAAGAGCATTCTCG -ACGGAAGTCCTAAGAGCATAGACG -ACGGAAGTCCTAAGAGCAGTAACG -ACGGAAGTCCTAAGAGCAACTTCG -ACGGAAGTCCTAAGAGCATACGCA -ACGGAAGTCCTAAGAGCACTTGCA -ACGGAAGTCCTAAGAGCACGAACA -ACGGAAGTCCTAAGAGCACAGTCA -ACGGAAGTCCTAAGAGCAGATCCA -ACGGAAGTCCTAAGAGCAACGACA -ACGGAAGTCCTAAGAGCAAGCTCA -ACGGAAGTCCTAAGAGCATCACGT -ACGGAAGTCCTAAGAGCACGTAGT -ACGGAAGTCCTAAGAGCAGTCAGT -ACGGAAGTCCTAAGAGCAGAAGGT -ACGGAAGTCCTAAGAGCAAACCGT -ACGGAAGTCCTAAGAGCATTGTGC -ACGGAAGTCCTAAGAGCACTAAGC -ACGGAAGTCCTAAGAGCAACTAGC -ACGGAAGTCCTAAGAGCAAGATGC -ACGGAAGTCCTAAGAGCATGAAGG -ACGGAAGTCCTAAGAGCACAATGG -ACGGAAGTCCTAAGAGCAATGAGG -ACGGAAGTCCTAAGAGCAAATGGG -ACGGAAGTCCTAAGAGCATCCTGA -ACGGAAGTCCTAAGAGCATAGCGA -ACGGAAGTCCTAAGAGCACACAGA -ACGGAAGTCCTAAGAGCAGCAAGA -ACGGAAGTCCTAAGAGCAGGTTGA -ACGGAAGTCCTAAGAGCATCCGAT -ACGGAAGTCCTAAGAGCATGGCAT -ACGGAAGTCCTAAGAGCACGAGAT -ACGGAAGTCCTAAGAGCATACCAC -ACGGAAGTCCTAAGAGCACAGAAC -ACGGAAGTCCTAAGAGCAGTCTAC -ACGGAAGTCCTAAGAGCAACGTAC -ACGGAAGTCCTAAGAGCAAGTGAC -ACGGAAGTCCTAAGAGCACTGTAG -ACGGAAGTCCTAAGAGCACCTAAG -ACGGAAGTCCTAAGAGCAGTTCAG -ACGGAAGTCCTAAGAGCAGCATAG -ACGGAAGTCCTAAGAGCAGACAAG -ACGGAAGTCCTAAGAGCAAAGCAG -ACGGAAGTCCTAAGAGCACGTCAA -ACGGAAGTCCTAAGAGCAGCTGAA -ACGGAAGTCCTAAGAGCAAGTACG -ACGGAAGTCCTAAGAGCAATCCGA -ACGGAAGTCCTAAGAGCAATGGGA -ACGGAAGTCCTAAGAGCAGTGCAA -ACGGAAGTCCTAAGAGCAGAGGAA -ACGGAAGTCCTAAGAGCACAGGTA -ACGGAAGTCCTAAGAGCAGACTCT -ACGGAAGTCCTAAGAGCAAGTCCT -ACGGAAGTCCTAAGAGCATAAGCC -ACGGAAGTCCTAAGAGCAATAGCC -ACGGAAGTCCTAAGAGCATAACCG -ACGGAAGTCCTAAGAGCAATGCCA -ACGGAAGTCCTATGAGGTGGAAAC -ACGGAAGTCCTATGAGGTAACACC -ACGGAAGTCCTATGAGGTATCGAG -ACGGAAGTCCTATGAGGTCTCCTT -ACGGAAGTCCTATGAGGTCCTGTT -ACGGAAGTCCTATGAGGTCGGTTT -ACGGAAGTCCTATGAGGTGTGGTT -ACGGAAGTCCTATGAGGTGCCTTT -ACGGAAGTCCTATGAGGTGGTCTT -ACGGAAGTCCTATGAGGTACGCTT -ACGGAAGTCCTATGAGGTAGCGTT -ACGGAAGTCCTATGAGGTTTCGTC -ACGGAAGTCCTATGAGGTTCTCTC -ACGGAAGTCCTATGAGGTTGGATC -ACGGAAGTCCTATGAGGTCACTTC -ACGGAAGTCCTATGAGGTGTACTC -ACGGAAGTCCTATGAGGTGATGTC -ACGGAAGTCCTATGAGGTACAGTC -ACGGAAGTCCTATGAGGTTTGCTG -ACGGAAGTCCTATGAGGTTCCATG -ACGGAAGTCCTATGAGGTTGTGTG -ACGGAAGTCCTATGAGGTCTAGTG -ACGGAAGTCCTATGAGGTCATCTG -ACGGAAGTCCTATGAGGTGAGTTG -ACGGAAGTCCTATGAGGTAGACTG -ACGGAAGTCCTATGAGGTTCGGTA -ACGGAAGTCCTATGAGGTTGCCTA -ACGGAAGTCCTATGAGGTCCACTA -ACGGAAGTCCTATGAGGTGGAGTA -ACGGAAGTCCTATGAGGTTCGTCT -ACGGAAGTCCTATGAGGTTGCACT -ACGGAAGTCCTATGAGGTCTGACT -ACGGAAGTCCTATGAGGTCAACCT -ACGGAAGTCCTATGAGGTGCTACT -ACGGAAGTCCTATGAGGTGGATCT -ACGGAAGTCCTATGAGGTAAGGCT -ACGGAAGTCCTATGAGGTTCAACC -ACGGAAGTCCTATGAGGTTGTTCC -ACGGAAGTCCTATGAGGTATTCCC -ACGGAAGTCCTATGAGGTTTCTCG -ACGGAAGTCCTATGAGGTTAGACG -ACGGAAGTCCTATGAGGTGTAACG -ACGGAAGTCCTATGAGGTACTTCG -ACGGAAGTCCTATGAGGTTACGCA -ACGGAAGTCCTATGAGGTCTTGCA -ACGGAAGTCCTATGAGGTCGAACA -ACGGAAGTCCTATGAGGTCAGTCA -ACGGAAGTCCTATGAGGTGATCCA -ACGGAAGTCCTATGAGGTACGACA -ACGGAAGTCCTATGAGGTAGCTCA -ACGGAAGTCCTATGAGGTTCACGT -ACGGAAGTCCTATGAGGTCGTAGT -ACGGAAGTCCTATGAGGTGTCAGT -ACGGAAGTCCTATGAGGTGAAGGT -ACGGAAGTCCTATGAGGTAACCGT -ACGGAAGTCCTATGAGGTTTGTGC -ACGGAAGTCCTATGAGGTCTAAGC -ACGGAAGTCCTATGAGGTACTAGC -ACGGAAGTCCTATGAGGTAGATGC -ACGGAAGTCCTATGAGGTTGAAGG -ACGGAAGTCCTATGAGGTCAATGG -ACGGAAGTCCTATGAGGTATGAGG -ACGGAAGTCCTATGAGGTAATGGG -ACGGAAGTCCTATGAGGTTCCTGA -ACGGAAGTCCTATGAGGTTAGCGA -ACGGAAGTCCTATGAGGTCACAGA -ACGGAAGTCCTATGAGGTGCAAGA -ACGGAAGTCCTATGAGGTGGTTGA -ACGGAAGTCCTATGAGGTTCCGAT -ACGGAAGTCCTATGAGGTTGGCAT -ACGGAAGTCCTATGAGGTCGAGAT -ACGGAAGTCCTATGAGGTTACCAC -ACGGAAGTCCTATGAGGTCAGAAC -ACGGAAGTCCTATGAGGTGTCTAC -ACGGAAGTCCTATGAGGTACGTAC -ACGGAAGTCCTATGAGGTAGTGAC -ACGGAAGTCCTATGAGGTCTGTAG -ACGGAAGTCCTATGAGGTCCTAAG -ACGGAAGTCCTATGAGGTGTTCAG -ACGGAAGTCCTATGAGGTGCATAG -ACGGAAGTCCTATGAGGTGACAAG -ACGGAAGTCCTATGAGGTAAGCAG -ACGGAAGTCCTATGAGGTCGTCAA -ACGGAAGTCCTATGAGGTGCTGAA -ACGGAAGTCCTATGAGGTAGTACG -ACGGAAGTCCTATGAGGTATCCGA -ACGGAAGTCCTATGAGGTATGGGA -ACGGAAGTCCTATGAGGTGTGCAA -ACGGAAGTCCTATGAGGTGAGGAA -ACGGAAGTCCTATGAGGTCAGGTA -ACGGAAGTCCTATGAGGTGACTCT -ACGGAAGTCCTATGAGGTAGTCCT -ACGGAAGTCCTATGAGGTTAAGCC -ACGGAAGTCCTATGAGGTATAGCC -ACGGAAGTCCTATGAGGTTAACCG -ACGGAAGTCCTATGAGGTATGCCA -ACGGAAGTCCTAGATTCCGGAAAC -ACGGAAGTCCTAGATTCCAACACC -ACGGAAGTCCTAGATTCCATCGAG -ACGGAAGTCCTAGATTCCCTCCTT -ACGGAAGTCCTAGATTCCCCTGTT -ACGGAAGTCCTAGATTCCCGGTTT -ACGGAAGTCCTAGATTCCGTGGTT -ACGGAAGTCCTAGATTCCGCCTTT -ACGGAAGTCCTAGATTCCGGTCTT -ACGGAAGTCCTAGATTCCACGCTT -ACGGAAGTCCTAGATTCCAGCGTT -ACGGAAGTCCTAGATTCCTTCGTC -ACGGAAGTCCTAGATTCCTCTCTC -ACGGAAGTCCTAGATTCCTGGATC -ACGGAAGTCCTAGATTCCCACTTC -ACGGAAGTCCTAGATTCCGTACTC -ACGGAAGTCCTAGATTCCGATGTC -ACGGAAGTCCTAGATTCCACAGTC -ACGGAAGTCCTAGATTCCTTGCTG -ACGGAAGTCCTAGATTCCTCCATG -ACGGAAGTCCTAGATTCCTGTGTG -ACGGAAGTCCTAGATTCCCTAGTG -ACGGAAGTCCTAGATTCCCATCTG -ACGGAAGTCCTAGATTCCGAGTTG -ACGGAAGTCCTAGATTCCAGACTG -ACGGAAGTCCTAGATTCCTCGGTA -ACGGAAGTCCTAGATTCCTGCCTA -ACGGAAGTCCTAGATTCCCCACTA -ACGGAAGTCCTAGATTCCGGAGTA -ACGGAAGTCCTAGATTCCTCGTCT -ACGGAAGTCCTAGATTCCTGCACT -ACGGAAGTCCTAGATTCCCTGACT -ACGGAAGTCCTAGATTCCCAACCT -ACGGAAGTCCTAGATTCCGCTACT -ACGGAAGTCCTAGATTCCGGATCT -ACGGAAGTCCTAGATTCCAAGGCT -ACGGAAGTCCTAGATTCCTCAACC -ACGGAAGTCCTAGATTCCTGTTCC -ACGGAAGTCCTAGATTCCATTCCC -ACGGAAGTCCTAGATTCCTTCTCG -ACGGAAGTCCTAGATTCCTAGACG -ACGGAAGTCCTAGATTCCGTAACG -ACGGAAGTCCTAGATTCCACTTCG -ACGGAAGTCCTAGATTCCTACGCA -ACGGAAGTCCTAGATTCCCTTGCA -ACGGAAGTCCTAGATTCCCGAACA -ACGGAAGTCCTAGATTCCCAGTCA -ACGGAAGTCCTAGATTCCGATCCA -ACGGAAGTCCTAGATTCCACGACA -ACGGAAGTCCTAGATTCCAGCTCA -ACGGAAGTCCTAGATTCCTCACGT -ACGGAAGTCCTAGATTCCCGTAGT -ACGGAAGTCCTAGATTCCGTCAGT -ACGGAAGTCCTAGATTCCGAAGGT -ACGGAAGTCCTAGATTCCAACCGT -ACGGAAGTCCTAGATTCCTTGTGC -ACGGAAGTCCTAGATTCCCTAAGC -ACGGAAGTCCTAGATTCCACTAGC -ACGGAAGTCCTAGATTCCAGATGC -ACGGAAGTCCTAGATTCCTGAAGG -ACGGAAGTCCTAGATTCCCAATGG -ACGGAAGTCCTAGATTCCATGAGG -ACGGAAGTCCTAGATTCCAATGGG -ACGGAAGTCCTAGATTCCTCCTGA -ACGGAAGTCCTAGATTCCTAGCGA -ACGGAAGTCCTAGATTCCCACAGA -ACGGAAGTCCTAGATTCCGCAAGA -ACGGAAGTCCTAGATTCCGGTTGA -ACGGAAGTCCTAGATTCCTCCGAT -ACGGAAGTCCTAGATTCCTGGCAT -ACGGAAGTCCTAGATTCCCGAGAT -ACGGAAGTCCTAGATTCCTACCAC -ACGGAAGTCCTAGATTCCCAGAAC -ACGGAAGTCCTAGATTCCGTCTAC -ACGGAAGTCCTAGATTCCACGTAC -ACGGAAGTCCTAGATTCCAGTGAC -ACGGAAGTCCTAGATTCCCTGTAG -ACGGAAGTCCTAGATTCCCCTAAG -ACGGAAGTCCTAGATTCCGTTCAG -ACGGAAGTCCTAGATTCCGCATAG -ACGGAAGTCCTAGATTCCGACAAG -ACGGAAGTCCTAGATTCCAAGCAG -ACGGAAGTCCTAGATTCCCGTCAA -ACGGAAGTCCTAGATTCCGCTGAA -ACGGAAGTCCTAGATTCCAGTACG -ACGGAAGTCCTAGATTCCATCCGA -ACGGAAGTCCTAGATTCCATGGGA -ACGGAAGTCCTAGATTCCGTGCAA -ACGGAAGTCCTAGATTCCGAGGAA -ACGGAAGTCCTAGATTCCCAGGTA -ACGGAAGTCCTAGATTCCGACTCT -ACGGAAGTCCTAGATTCCAGTCCT -ACGGAAGTCCTAGATTCCTAAGCC -ACGGAAGTCCTAGATTCCATAGCC -ACGGAAGTCCTAGATTCCTAACCG -ACGGAAGTCCTAGATTCCATGCCA -ACGGAAGTCCTACATTGGGGAAAC -ACGGAAGTCCTACATTGGAACACC -ACGGAAGTCCTACATTGGATCGAG -ACGGAAGTCCTACATTGGCTCCTT -ACGGAAGTCCTACATTGGCCTGTT -ACGGAAGTCCTACATTGGCGGTTT -ACGGAAGTCCTACATTGGGTGGTT -ACGGAAGTCCTACATTGGGCCTTT -ACGGAAGTCCTACATTGGGGTCTT -ACGGAAGTCCTACATTGGACGCTT -ACGGAAGTCCTACATTGGAGCGTT -ACGGAAGTCCTACATTGGTTCGTC -ACGGAAGTCCTACATTGGTCTCTC -ACGGAAGTCCTACATTGGTGGATC -ACGGAAGTCCTACATTGGCACTTC -ACGGAAGTCCTACATTGGGTACTC -ACGGAAGTCCTACATTGGGATGTC -ACGGAAGTCCTACATTGGACAGTC -ACGGAAGTCCTACATTGGTTGCTG -ACGGAAGTCCTACATTGGTCCATG -ACGGAAGTCCTACATTGGTGTGTG -ACGGAAGTCCTACATTGGCTAGTG -ACGGAAGTCCTACATTGGCATCTG -ACGGAAGTCCTACATTGGGAGTTG -ACGGAAGTCCTACATTGGAGACTG -ACGGAAGTCCTACATTGGTCGGTA -ACGGAAGTCCTACATTGGTGCCTA -ACGGAAGTCCTACATTGGCCACTA -ACGGAAGTCCTACATTGGGGAGTA -ACGGAAGTCCTACATTGGTCGTCT -ACGGAAGTCCTACATTGGTGCACT -ACGGAAGTCCTACATTGGCTGACT -ACGGAAGTCCTACATTGGCAACCT -ACGGAAGTCCTACATTGGGCTACT -ACGGAAGTCCTACATTGGGGATCT -ACGGAAGTCCTACATTGGAAGGCT -ACGGAAGTCCTACATTGGTCAACC -ACGGAAGTCCTACATTGGTGTTCC -ACGGAAGTCCTACATTGGATTCCC -ACGGAAGTCCTACATTGGTTCTCG -ACGGAAGTCCTACATTGGTAGACG -ACGGAAGTCCTACATTGGGTAACG -ACGGAAGTCCTACATTGGACTTCG -ACGGAAGTCCTACATTGGTACGCA -ACGGAAGTCCTACATTGGCTTGCA -ACGGAAGTCCTACATTGGCGAACA -ACGGAAGTCCTACATTGGCAGTCA -ACGGAAGTCCTACATTGGGATCCA -ACGGAAGTCCTACATTGGACGACA -ACGGAAGTCCTACATTGGAGCTCA -ACGGAAGTCCTACATTGGTCACGT -ACGGAAGTCCTACATTGGCGTAGT -ACGGAAGTCCTACATTGGGTCAGT -ACGGAAGTCCTACATTGGGAAGGT -ACGGAAGTCCTACATTGGAACCGT -ACGGAAGTCCTACATTGGTTGTGC -ACGGAAGTCCTACATTGGCTAAGC -ACGGAAGTCCTACATTGGACTAGC -ACGGAAGTCCTACATTGGAGATGC -ACGGAAGTCCTACATTGGTGAAGG -ACGGAAGTCCTACATTGGCAATGG -ACGGAAGTCCTACATTGGATGAGG -ACGGAAGTCCTACATTGGAATGGG -ACGGAAGTCCTACATTGGTCCTGA -ACGGAAGTCCTACATTGGTAGCGA -ACGGAAGTCCTACATTGGCACAGA -ACGGAAGTCCTACATTGGGCAAGA -ACGGAAGTCCTACATTGGGGTTGA -ACGGAAGTCCTACATTGGTCCGAT -ACGGAAGTCCTACATTGGTGGCAT -ACGGAAGTCCTACATTGGCGAGAT -ACGGAAGTCCTACATTGGTACCAC -ACGGAAGTCCTACATTGGCAGAAC -ACGGAAGTCCTACATTGGGTCTAC -ACGGAAGTCCTACATTGGACGTAC -ACGGAAGTCCTACATTGGAGTGAC -ACGGAAGTCCTACATTGGCTGTAG -ACGGAAGTCCTACATTGGCCTAAG -ACGGAAGTCCTACATTGGGTTCAG -ACGGAAGTCCTACATTGGGCATAG -ACGGAAGTCCTACATTGGGACAAG -ACGGAAGTCCTACATTGGAAGCAG -ACGGAAGTCCTACATTGGCGTCAA -ACGGAAGTCCTACATTGGGCTGAA -ACGGAAGTCCTACATTGGAGTACG -ACGGAAGTCCTACATTGGATCCGA -ACGGAAGTCCTACATTGGATGGGA -ACGGAAGTCCTACATTGGGTGCAA -ACGGAAGTCCTACATTGGGAGGAA -ACGGAAGTCCTACATTGGCAGGTA -ACGGAAGTCCTACATTGGGACTCT -ACGGAAGTCCTACATTGGAGTCCT -ACGGAAGTCCTACATTGGTAAGCC -ACGGAAGTCCTACATTGGATAGCC -ACGGAAGTCCTACATTGGTAACCG -ACGGAAGTCCTACATTGGATGCCA -ACGGAAGTCCTAGATCGAGGAAAC -ACGGAAGTCCTAGATCGAAACACC -ACGGAAGTCCTAGATCGAATCGAG -ACGGAAGTCCTAGATCGACTCCTT -ACGGAAGTCCTAGATCGACCTGTT -ACGGAAGTCCTAGATCGACGGTTT -ACGGAAGTCCTAGATCGAGTGGTT -ACGGAAGTCCTAGATCGAGCCTTT -ACGGAAGTCCTAGATCGAGGTCTT -ACGGAAGTCCTAGATCGAACGCTT -ACGGAAGTCCTAGATCGAAGCGTT -ACGGAAGTCCTAGATCGATTCGTC -ACGGAAGTCCTAGATCGATCTCTC -ACGGAAGTCCTAGATCGATGGATC -ACGGAAGTCCTAGATCGACACTTC -ACGGAAGTCCTAGATCGAGTACTC -ACGGAAGTCCTAGATCGAGATGTC -ACGGAAGTCCTAGATCGAACAGTC -ACGGAAGTCCTAGATCGATTGCTG -ACGGAAGTCCTAGATCGATCCATG -ACGGAAGTCCTAGATCGATGTGTG -ACGGAAGTCCTAGATCGACTAGTG -ACGGAAGTCCTAGATCGACATCTG -ACGGAAGTCCTAGATCGAGAGTTG -ACGGAAGTCCTAGATCGAAGACTG -ACGGAAGTCCTAGATCGATCGGTA -ACGGAAGTCCTAGATCGATGCCTA -ACGGAAGTCCTAGATCGACCACTA -ACGGAAGTCCTAGATCGAGGAGTA -ACGGAAGTCCTAGATCGATCGTCT -ACGGAAGTCCTAGATCGATGCACT -ACGGAAGTCCTAGATCGACTGACT -ACGGAAGTCCTAGATCGACAACCT -ACGGAAGTCCTAGATCGAGCTACT -ACGGAAGTCCTAGATCGAGGATCT -ACGGAAGTCCTAGATCGAAAGGCT -ACGGAAGTCCTAGATCGATCAACC -ACGGAAGTCCTAGATCGATGTTCC -ACGGAAGTCCTAGATCGAATTCCC -ACGGAAGTCCTAGATCGATTCTCG -ACGGAAGTCCTAGATCGATAGACG -ACGGAAGTCCTAGATCGAGTAACG -ACGGAAGTCCTAGATCGAACTTCG -ACGGAAGTCCTAGATCGATACGCA -ACGGAAGTCCTAGATCGACTTGCA -ACGGAAGTCCTAGATCGACGAACA -ACGGAAGTCCTAGATCGACAGTCA -ACGGAAGTCCTAGATCGAGATCCA -ACGGAAGTCCTAGATCGAACGACA -ACGGAAGTCCTAGATCGAAGCTCA -ACGGAAGTCCTAGATCGATCACGT -ACGGAAGTCCTAGATCGACGTAGT -ACGGAAGTCCTAGATCGAGTCAGT -ACGGAAGTCCTAGATCGAGAAGGT -ACGGAAGTCCTAGATCGAAACCGT -ACGGAAGTCCTAGATCGATTGTGC -ACGGAAGTCCTAGATCGACTAAGC -ACGGAAGTCCTAGATCGAACTAGC -ACGGAAGTCCTAGATCGAAGATGC -ACGGAAGTCCTAGATCGATGAAGG -ACGGAAGTCCTAGATCGACAATGG -ACGGAAGTCCTAGATCGAATGAGG -ACGGAAGTCCTAGATCGAAATGGG -ACGGAAGTCCTAGATCGATCCTGA -ACGGAAGTCCTAGATCGATAGCGA -ACGGAAGTCCTAGATCGACACAGA -ACGGAAGTCCTAGATCGAGCAAGA -ACGGAAGTCCTAGATCGAGGTTGA -ACGGAAGTCCTAGATCGATCCGAT -ACGGAAGTCCTAGATCGATGGCAT -ACGGAAGTCCTAGATCGACGAGAT -ACGGAAGTCCTAGATCGATACCAC -ACGGAAGTCCTAGATCGACAGAAC -ACGGAAGTCCTAGATCGAGTCTAC -ACGGAAGTCCTAGATCGAACGTAC -ACGGAAGTCCTAGATCGAAGTGAC -ACGGAAGTCCTAGATCGACTGTAG -ACGGAAGTCCTAGATCGACCTAAG -ACGGAAGTCCTAGATCGAGTTCAG -ACGGAAGTCCTAGATCGAGCATAG -ACGGAAGTCCTAGATCGAGACAAG -ACGGAAGTCCTAGATCGAAAGCAG -ACGGAAGTCCTAGATCGACGTCAA -ACGGAAGTCCTAGATCGAGCTGAA -ACGGAAGTCCTAGATCGAAGTACG -ACGGAAGTCCTAGATCGAATCCGA -ACGGAAGTCCTAGATCGAATGGGA -ACGGAAGTCCTAGATCGAGTGCAA -ACGGAAGTCCTAGATCGAGAGGAA -ACGGAAGTCCTAGATCGACAGGTA -ACGGAAGTCCTAGATCGAGACTCT -ACGGAAGTCCTAGATCGAAGTCCT -ACGGAAGTCCTAGATCGATAAGCC -ACGGAAGTCCTAGATCGAATAGCC -ACGGAAGTCCTAGATCGATAACCG -ACGGAAGTCCTAGATCGAATGCCA -ACGGAAGTCCTACACTACGGAAAC -ACGGAAGTCCTACACTACAACACC -ACGGAAGTCCTACACTACATCGAG -ACGGAAGTCCTACACTACCTCCTT -ACGGAAGTCCTACACTACCCTGTT -ACGGAAGTCCTACACTACCGGTTT -ACGGAAGTCCTACACTACGTGGTT -ACGGAAGTCCTACACTACGCCTTT -ACGGAAGTCCTACACTACGGTCTT -ACGGAAGTCCTACACTACACGCTT -ACGGAAGTCCTACACTACAGCGTT -ACGGAAGTCCTACACTACTTCGTC -ACGGAAGTCCTACACTACTCTCTC -ACGGAAGTCCTACACTACTGGATC -ACGGAAGTCCTACACTACCACTTC -ACGGAAGTCCTACACTACGTACTC -ACGGAAGTCCTACACTACGATGTC -ACGGAAGTCCTACACTACACAGTC -ACGGAAGTCCTACACTACTTGCTG -ACGGAAGTCCTACACTACTCCATG -ACGGAAGTCCTACACTACTGTGTG -ACGGAAGTCCTACACTACCTAGTG -ACGGAAGTCCTACACTACCATCTG -ACGGAAGTCCTACACTACGAGTTG -ACGGAAGTCCTACACTACAGACTG -ACGGAAGTCCTACACTACTCGGTA -ACGGAAGTCCTACACTACTGCCTA -ACGGAAGTCCTACACTACCCACTA -ACGGAAGTCCTACACTACGGAGTA -ACGGAAGTCCTACACTACTCGTCT -ACGGAAGTCCTACACTACTGCACT -ACGGAAGTCCTACACTACCTGACT -ACGGAAGTCCTACACTACCAACCT -ACGGAAGTCCTACACTACGCTACT -ACGGAAGTCCTACACTACGGATCT -ACGGAAGTCCTACACTACAAGGCT -ACGGAAGTCCTACACTACTCAACC -ACGGAAGTCCTACACTACTGTTCC -ACGGAAGTCCTACACTACATTCCC -ACGGAAGTCCTACACTACTTCTCG -ACGGAAGTCCTACACTACTAGACG -ACGGAAGTCCTACACTACGTAACG -ACGGAAGTCCTACACTACACTTCG -ACGGAAGTCCTACACTACTACGCA -ACGGAAGTCCTACACTACCTTGCA -ACGGAAGTCCTACACTACCGAACA -ACGGAAGTCCTACACTACCAGTCA -ACGGAAGTCCTACACTACGATCCA -ACGGAAGTCCTACACTACACGACA -ACGGAAGTCCTACACTACAGCTCA -ACGGAAGTCCTACACTACTCACGT -ACGGAAGTCCTACACTACCGTAGT -ACGGAAGTCCTACACTACGTCAGT -ACGGAAGTCCTACACTACGAAGGT -ACGGAAGTCCTACACTACAACCGT -ACGGAAGTCCTACACTACTTGTGC -ACGGAAGTCCTACACTACCTAAGC -ACGGAAGTCCTACACTACACTAGC -ACGGAAGTCCTACACTACAGATGC -ACGGAAGTCCTACACTACTGAAGG -ACGGAAGTCCTACACTACCAATGG -ACGGAAGTCCTACACTACATGAGG -ACGGAAGTCCTACACTACAATGGG -ACGGAAGTCCTACACTACTCCTGA -ACGGAAGTCCTACACTACTAGCGA -ACGGAAGTCCTACACTACCACAGA -ACGGAAGTCCTACACTACGCAAGA -ACGGAAGTCCTACACTACGGTTGA -ACGGAAGTCCTACACTACTCCGAT -ACGGAAGTCCTACACTACTGGCAT -ACGGAAGTCCTACACTACCGAGAT -ACGGAAGTCCTACACTACTACCAC -ACGGAAGTCCTACACTACCAGAAC -ACGGAAGTCCTACACTACGTCTAC -ACGGAAGTCCTACACTACACGTAC -ACGGAAGTCCTACACTACAGTGAC -ACGGAAGTCCTACACTACCTGTAG -ACGGAAGTCCTACACTACCCTAAG -ACGGAAGTCCTACACTACGTTCAG -ACGGAAGTCCTACACTACGCATAG -ACGGAAGTCCTACACTACGACAAG -ACGGAAGTCCTACACTACAAGCAG -ACGGAAGTCCTACACTACCGTCAA -ACGGAAGTCCTACACTACGCTGAA -ACGGAAGTCCTACACTACAGTACG -ACGGAAGTCCTACACTACATCCGA -ACGGAAGTCCTACACTACATGGGA -ACGGAAGTCCTACACTACGTGCAA -ACGGAAGTCCTACACTACGAGGAA -ACGGAAGTCCTACACTACCAGGTA -ACGGAAGTCCTACACTACGACTCT -ACGGAAGTCCTACACTACAGTCCT -ACGGAAGTCCTACACTACTAAGCC -ACGGAAGTCCTACACTACATAGCC -ACGGAAGTCCTACACTACTAACCG -ACGGAAGTCCTACACTACATGCCA -ACGGAAGTCCTAAACCAGGGAAAC -ACGGAAGTCCTAAACCAGAACACC -ACGGAAGTCCTAAACCAGATCGAG -ACGGAAGTCCTAAACCAGCTCCTT -ACGGAAGTCCTAAACCAGCCTGTT -ACGGAAGTCCTAAACCAGCGGTTT -ACGGAAGTCCTAAACCAGGTGGTT -ACGGAAGTCCTAAACCAGGCCTTT -ACGGAAGTCCTAAACCAGGGTCTT -ACGGAAGTCCTAAACCAGACGCTT -ACGGAAGTCCTAAACCAGAGCGTT -ACGGAAGTCCTAAACCAGTTCGTC -ACGGAAGTCCTAAACCAGTCTCTC -ACGGAAGTCCTAAACCAGTGGATC -ACGGAAGTCCTAAACCAGCACTTC -ACGGAAGTCCTAAACCAGGTACTC -ACGGAAGTCCTAAACCAGGATGTC -ACGGAAGTCCTAAACCAGACAGTC -ACGGAAGTCCTAAACCAGTTGCTG -ACGGAAGTCCTAAACCAGTCCATG -ACGGAAGTCCTAAACCAGTGTGTG -ACGGAAGTCCTAAACCAGCTAGTG -ACGGAAGTCCTAAACCAGCATCTG -ACGGAAGTCCTAAACCAGGAGTTG -ACGGAAGTCCTAAACCAGAGACTG -ACGGAAGTCCTAAACCAGTCGGTA -ACGGAAGTCCTAAACCAGTGCCTA -ACGGAAGTCCTAAACCAGCCACTA -ACGGAAGTCCTAAACCAGGGAGTA -ACGGAAGTCCTAAACCAGTCGTCT -ACGGAAGTCCTAAACCAGTGCACT -ACGGAAGTCCTAAACCAGCTGACT -ACGGAAGTCCTAAACCAGCAACCT -ACGGAAGTCCTAAACCAGGCTACT -ACGGAAGTCCTAAACCAGGGATCT -ACGGAAGTCCTAAACCAGAAGGCT -ACGGAAGTCCTAAACCAGTCAACC -ACGGAAGTCCTAAACCAGTGTTCC -ACGGAAGTCCTAAACCAGATTCCC -ACGGAAGTCCTAAACCAGTTCTCG -ACGGAAGTCCTAAACCAGTAGACG -ACGGAAGTCCTAAACCAGGTAACG -ACGGAAGTCCTAAACCAGACTTCG -ACGGAAGTCCTAAACCAGTACGCA -ACGGAAGTCCTAAACCAGCTTGCA -ACGGAAGTCCTAAACCAGCGAACA -ACGGAAGTCCTAAACCAGCAGTCA -ACGGAAGTCCTAAACCAGGATCCA -ACGGAAGTCCTAAACCAGACGACA -ACGGAAGTCCTAAACCAGAGCTCA -ACGGAAGTCCTAAACCAGTCACGT -ACGGAAGTCCTAAACCAGCGTAGT -ACGGAAGTCCTAAACCAGGTCAGT -ACGGAAGTCCTAAACCAGGAAGGT -ACGGAAGTCCTAAACCAGAACCGT -ACGGAAGTCCTAAACCAGTTGTGC -ACGGAAGTCCTAAACCAGCTAAGC -ACGGAAGTCCTAAACCAGACTAGC -ACGGAAGTCCTAAACCAGAGATGC -ACGGAAGTCCTAAACCAGTGAAGG -ACGGAAGTCCTAAACCAGCAATGG -ACGGAAGTCCTAAACCAGATGAGG -ACGGAAGTCCTAAACCAGAATGGG -ACGGAAGTCCTAAACCAGTCCTGA -ACGGAAGTCCTAAACCAGTAGCGA -ACGGAAGTCCTAAACCAGCACAGA -ACGGAAGTCCTAAACCAGGCAAGA -ACGGAAGTCCTAAACCAGGGTTGA -ACGGAAGTCCTAAACCAGTCCGAT -ACGGAAGTCCTAAACCAGTGGCAT -ACGGAAGTCCTAAACCAGCGAGAT -ACGGAAGTCCTAAACCAGTACCAC -ACGGAAGTCCTAAACCAGCAGAAC -ACGGAAGTCCTAAACCAGGTCTAC -ACGGAAGTCCTAAACCAGACGTAC -ACGGAAGTCCTAAACCAGAGTGAC -ACGGAAGTCCTAAACCAGCTGTAG -ACGGAAGTCCTAAACCAGCCTAAG -ACGGAAGTCCTAAACCAGGTTCAG -ACGGAAGTCCTAAACCAGGCATAG -ACGGAAGTCCTAAACCAGGACAAG -ACGGAAGTCCTAAACCAGAAGCAG -ACGGAAGTCCTAAACCAGCGTCAA -ACGGAAGTCCTAAACCAGGCTGAA -ACGGAAGTCCTAAACCAGAGTACG -ACGGAAGTCCTAAACCAGATCCGA -ACGGAAGTCCTAAACCAGATGGGA -ACGGAAGTCCTAAACCAGGTGCAA -ACGGAAGTCCTAAACCAGGAGGAA -ACGGAAGTCCTAAACCAGCAGGTA -ACGGAAGTCCTAAACCAGGACTCT -ACGGAAGTCCTAAACCAGAGTCCT -ACGGAAGTCCTAAACCAGTAAGCC -ACGGAAGTCCTAAACCAGATAGCC -ACGGAAGTCCTAAACCAGTAACCG -ACGGAAGTCCTAAACCAGATGCCA -ACGGAAGTCCTATACGTCGGAAAC -ACGGAAGTCCTATACGTCAACACC -ACGGAAGTCCTATACGTCATCGAG -ACGGAAGTCCTATACGTCCTCCTT -ACGGAAGTCCTATACGTCCCTGTT -ACGGAAGTCCTATACGTCCGGTTT -ACGGAAGTCCTATACGTCGTGGTT -ACGGAAGTCCTATACGTCGCCTTT -ACGGAAGTCCTATACGTCGGTCTT -ACGGAAGTCCTATACGTCACGCTT -ACGGAAGTCCTATACGTCAGCGTT -ACGGAAGTCCTATACGTCTTCGTC -ACGGAAGTCCTATACGTCTCTCTC -ACGGAAGTCCTATACGTCTGGATC -ACGGAAGTCCTATACGTCCACTTC -ACGGAAGTCCTATACGTCGTACTC -ACGGAAGTCCTATACGTCGATGTC -ACGGAAGTCCTATACGTCACAGTC -ACGGAAGTCCTATACGTCTTGCTG -ACGGAAGTCCTATACGTCTCCATG -ACGGAAGTCCTATACGTCTGTGTG -ACGGAAGTCCTATACGTCCTAGTG -ACGGAAGTCCTATACGTCCATCTG -ACGGAAGTCCTATACGTCGAGTTG -ACGGAAGTCCTATACGTCAGACTG -ACGGAAGTCCTATACGTCTCGGTA -ACGGAAGTCCTATACGTCTGCCTA -ACGGAAGTCCTATACGTCCCACTA -ACGGAAGTCCTATACGTCGGAGTA -ACGGAAGTCCTATACGTCTCGTCT -ACGGAAGTCCTATACGTCTGCACT -ACGGAAGTCCTATACGTCCTGACT -ACGGAAGTCCTATACGTCCAACCT -ACGGAAGTCCTATACGTCGCTACT -ACGGAAGTCCTATACGTCGGATCT -ACGGAAGTCCTATACGTCAAGGCT -ACGGAAGTCCTATACGTCTCAACC -ACGGAAGTCCTATACGTCTGTTCC -ACGGAAGTCCTATACGTCATTCCC -ACGGAAGTCCTATACGTCTTCTCG -ACGGAAGTCCTATACGTCTAGACG -ACGGAAGTCCTATACGTCGTAACG -ACGGAAGTCCTATACGTCACTTCG -ACGGAAGTCCTATACGTCTACGCA -ACGGAAGTCCTATACGTCCTTGCA -ACGGAAGTCCTATACGTCCGAACA -ACGGAAGTCCTATACGTCCAGTCA -ACGGAAGTCCTATACGTCGATCCA -ACGGAAGTCCTATACGTCACGACA -ACGGAAGTCCTATACGTCAGCTCA -ACGGAAGTCCTATACGTCTCACGT -ACGGAAGTCCTATACGTCCGTAGT -ACGGAAGTCCTATACGTCGTCAGT -ACGGAAGTCCTATACGTCGAAGGT -ACGGAAGTCCTATACGTCAACCGT -ACGGAAGTCCTATACGTCTTGTGC -ACGGAAGTCCTATACGTCCTAAGC -ACGGAAGTCCTATACGTCACTAGC -ACGGAAGTCCTATACGTCAGATGC -ACGGAAGTCCTATACGTCTGAAGG -ACGGAAGTCCTATACGTCCAATGG -ACGGAAGTCCTATACGTCATGAGG -ACGGAAGTCCTATACGTCAATGGG -ACGGAAGTCCTATACGTCTCCTGA -ACGGAAGTCCTATACGTCTAGCGA -ACGGAAGTCCTATACGTCCACAGA -ACGGAAGTCCTATACGTCGCAAGA -ACGGAAGTCCTATACGTCGGTTGA -ACGGAAGTCCTATACGTCTCCGAT -ACGGAAGTCCTATACGTCTGGCAT -ACGGAAGTCCTATACGTCCGAGAT -ACGGAAGTCCTATACGTCTACCAC -ACGGAAGTCCTATACGTCCAGAAC -ACGGAAGTCCTATACGTCGTCTAC -ACGGAAGTCCTATACGTCACGTAC -ACGGAAGTCCTATACGTCAGTGAC -ACGGAAGTCCTATACGTCCTGTAG -ACGGAAGTCCTATACGTCCCTAAG -ACGGAAGTCCTATACGTCGTTCAG -ACGGAAGTCCTATACGTCGCATAG -ACGGAAGTCCTATACGTCGACAAG -ACGGAAGTCCTATACGTCAAGCAG -ACGGAAGTCCTATACGTCCGTCAA -ACGGAAGTCCTATACGTCGCTGAA -ACGGAAGTCCTATACGTCAGTACG -ACGGAAGTCCTATACGTCATCCGA -ACGGAAGTCCTATACGTCATGGGA -ACGGAAGTCCTATACGTCGTGCAA -ACGGAAGTCCTATACGTCGAGGAA -ACGGAAGTCCTATACGTCCAGGTA -ACGGAAGTCCTATACGTCGACTCT -ACGGAAGTCCTATACGTCAGTCCT -ACGGAAGTCCTATACGTCTAAGCC -ACGGAAGTCCTATACGTCATAGCC -ACGGAAGTCCTATACGTCTAACCG -ACGGAAGTCCTATACGTCATGCCA -ACGGAAGTCCTATACACGGGAAAC -ACGGAAGTCCTATACACGAACACC -ACGGAAGTCCTATACACGATCGAG -ACGGAAGTCCTATACACGCTCCTT -ACGGAAGTCCTATACACGCCTGTT -ACGGAAGTCCTATACACGCGGTTT -ACGGAAGTCCTATACACGGTGGTT -ACGGAAGTCCTATACACGGCCTTT -ACGGAAGTCCTATACACGGGTCTT -ACGGAAGTCCTATACACGACGCTT -ACGGAAGTCCTATACACGAGCGTT -ACGGAAGTCCTATACACGTTCGTC -ACGGAAGTCCTATACACGTCTCTC -ACGGAAGTCCTATACACGTGGATC -ACGGAAGTCCTATACACGCACTTC -ACGGAAGTCCTATACACGGTACTC -ACGGAAGTCCTATACACGGATGTC -ACGGAAGTCCTATACACGACAGTC -ACGGAAGTCCTATACACGTTGCTG -ACGGAAGTCCTATACACGTCCATG -ACGGAAGTCCTATACACGTGTGTG -ACGGAAGTCCTATACACGCTAGTG -ACGGAAGTCCTATACACGCATCTG -ACGGAAGTCCTATACACGGAGTTG -ACGGAAGTCCTATACACGAGACTG -ACGGAAGTCCTATACACGTCGGTA -ACGGAAGTCCTATACACGTGCCTA -ACGGAAGTCCTATACACGCCACTA -ACGGAAGTCCTATACACGGGAGTA -ACGGAAGTCCTATACACGTCGTCT -ACGGAAGTCCTATACACGTGCACT -ACGGAAGTCCTATACACGCTGACT -ACGGAAGTCCTATACACGCAACCT -ACGGAAGTCCTATACACGGCTACT -ACGGAAGTCCTATACACGGGATCT -ACGGAAGTCCTATACACGAAGGCT -ACGGAAGTCCTATACACGTCAACC -ACGGAAGTCCTATACACGTGTTCC -ACGGAAGTCCTATACACGATTCCC -ACGGAAGTCCTATACACGTTCTCG -ACGGAAGTCCTATACACGTAGACG -ACGGAAGTCCTATACACGGTAACG -ACGGAAGTCCTATACACGACTTCG -ACGGAAGTCCTATACACGTACGCA -ACGGAAGTCCTATACACGCTTGCA -ACGGAAGTCCTATACACGCGAACA -ACGGAAGTCCTATACACGCAGTCA -ACGGAAGTCCTATACACGGATCCA -ACGGAAGTCCTATACACGACGACA -ACGGAAGTCCTATACACGAGCTCA -ACGGAAGTCCTATACACGTCACGT -ACGGAAGTCCTATACACGCGTAGT -ACGGAAGTCCTATACACGGTCAGT -ACGGAAGTCCTATACACGGAAGGT -ACGGAAGTCCTATACACGAACCGT -ACGGAAGTCCTATACACGTTGTGC -ACGGAAGTCCTATACACGCTAAGC -ACGGAAGTCCTATACACGACTAGC -ACGGAAGTCCTATACACGAGATGC -ACGGAAGTCCTATACACGTGAAGG -ACGGAAGTCCTATACACGCAATGG -ACGGAAGTCCTATACACGATGAGG -ACGGAAGTCCTATACACGAATGGG -ACGGAAGTCCTATACACGTCCTGA -ACGGAAGTCCTATACACGTAGCGA -ACGGAAGTCCTATACACGCACAGA -ACGGAAGTCCTATACACGGCAAGA -ACGGAAGTCCTATACACGGGTTGA -ACGGAAGTCCTATACACGTCCGAT -ACGGAAGTCCTATACACGTGGCAT -ACGGAAGTCCTATACACGCGAGAT -ACGGAAGTCCTATACACGTACCAC -ACGGAAGTCCTATACACGCAGAAC -ACGGAAGTCCTATACACGGTCTAC -ACGGAAGTCCTATACACGACGTAC -ACGGAAGTCCTATACACGAGTGAC -ACGGAAGTCCTATACACGCTGTAG -ACGGAAGTCCTATACACGCCTAAG -ACGGAAGTCCTATACACGGTTCAG -ACGGAAGTCCTATACACGGCATAG -ACGGAAGTCCTATACACGGACAAG -ACGGAAGTCCTATACACGAAGCAG -ACGGAAGTCCTATACACGCGTCAA -ACGGAAGTCCTATACACGGCTGAA -ACGGAAGTCCTATACACGAGTACG -ACGGAAGTCCTATACACGATCCGA -ACGGAAGTCCTATACACGATGGGA -ACGGAAGTCCTATACACGGTGCAA -ACGGAAGTCCTATACACGGAGGAA -ACGGAAGTCCTATACACGCAGGTA -ACGGAAGTCCTATACACGGACTCT -ACGGAAGTCCTATACACGAGTCCT -ACGGAAGTCCTATACACGTAAGCC -ACGGAAGTCCTATACACGATAGCC -ACGGAAGTCCTATACACGTAACCG -ACGGAAGTCCTATACACGATGCCA -ACGGAAGTCCTAGACAGTGGAAAC -ACGGAAGTCCTAGACAGTAACACC -ACGGAAGTCCTAGACAGTATCGAG -ACGGAAGTCCTAGACAGTCTCCTT -ACGGAAGTCCTAGACAGTCCTGTT -ACGGAAGTCCTAGACAGTCGGTTT -ACGGAAGTCCTAGACAGTGTGGTT -ACGGAAGTCCTAGACAGTGCCTTT -ACGGAAGTCCTAGACAGTGGTCTT -ACGGAAGTCCTAGACAGTACGCTT -ACGGAAGTCCTAGACAGTAGCGTT -ACGGAAGTCCTAGACAGTTTCGTC -ACGGAAGTCCTAGACAGTTCTCTC -ACGGAAGTCCTAGACAGTTGGATC -ACGGAAGTCCTAGACAGTCACTTC -ACGGAAGTCCTAGACAGTGTACTC -ACGGAAGTCCTAGACAGTGATGTC -ACGGAAGTCCTAGACAGTACAGTC -ACGGAAGTCCTAGACAGTTTGCTG -ACGGAAGTCCTAGACAGTTCCATG -ACGGAAGTCCTAGACAGTTGTGTG -ACGGAAGTCCTAGACAGTCTAGTG -ACGGAAGTCCTAGACAGTCATCTG -ACGGAAGTCCTAGACAGTGAGTTG -ACGGAAGTCCTAGACAGTAGACTG -ACGGAAGTCCTAGACAGTTCGGTA -ACGGAAGTCCTAGACAGTTGCCTA -ACGGAAGTCCTAGACAGTCCACTA -ACGGAAGTCCTAGACAGTGGAGTA -ACGGAAGTCCTAGACAGTTCGTCT -ACGGAAGTCCTAGACAGTTGCACT -ACGGAAGTCCTAGACAGTCTGACT -ACGGAAGTCCTAGACAGTCAACCT -ACGGAAGTCCTAGACAGTGCTACT -ACGGAAGTCCTAGACAGTGGATCT -ACGGAAGTCCTAGACAGTAAGGCT -ACGGAAGTCCTAGACAGTTCAACC -ACGGAAGTCCTAGACAGTTGTTCC -ACGGAAGTCCTAGACAGTATTCCC -ACGGAAGTCCTAGACAGTTTCTCG -ACGGAAGTCCTAGACAGTTAGACG -ACGGAAGTCCTAGACAGTGTAACG -ACGGAAGTCCTAGACAGTACTTCG -ACGGAAGTCCTAGACAGTTACGCA -ACGGAAGTCCTAGACAGTCTTGCA -ACGGAAGTCCTAGACAGTCGAACA -ACGGAAGTCCTAGACAGTCAGTCA -ACGGAAGTCCTAGACAGTGATCCA -ACGGAAGTCCTAGACAGTACGACA -ACGGAAGTCCTAGACAGTAGCTCA -ACGGAAGTCCTAGACAGTTCACGT -ACGGAAGTCCTAGACAGTCGTAGT -ACGGAAGTCCTAGACAGTGTCAGT -ACGGAAGTCCTAGACAGTGAAGGT -ACGGAAGTCCTAGACAGTAACCGT -ACGGAAGTCCTAGACAGTTTGTGC -ACGGAAGTCCTAGACAGTCTAAGC -ACGGAAGTCCTAGACAGTACTAGC -ACGGAAGTCCTAGACAGTAGATGC -ACGGAAGTCCTAGACAGTTGAAGG -ACGGAAGTCCTAGACAGTCAATGG -ACGGAAGTCCTAGACAGTATGAGG -ACGGAAGTCCTAGACAGTAATGGG -ACGGAAGTCCTAGACAGTTCCTGA -ACGGAAGTCCTAGACAGTTAGCGA -ACGGAAGTCCTAGACAGTCACAGA -ACGGAAGTCCTAGACAGTGCAAGA -ACGGAAGTCCTAGACAGTGGTTGA -ACGGAAGTCCTAGACAGTTCCGAT -ACGGAAGTCCTAGACAGTTGGCAT -ACGGAAGTCCTAGACAGTCGAGAT -ACGGAAGTCCTAGACAGTTACCAC -ACGGAAGTCCTAGACAGTCAGAAC -ACGGAAGTCCTAGACAGTGTCTAC -ACGGAAGTCCTAGACAGTACGTAC -ACGGAAGTCCTAGACAGTAGTGAC -ACGGAAGTCCTAGACAGTCTGTAG -ACGGAAGTCCTAGACAGTCCTAAG -ACGGAAGTCCTAGACAGTGTTCAG -ACGGAAGTCCTAGACAGTGCATAG -ACGGAAGTCCTAGACAGTGACAAG -ACGGAAGTCCTAGACAGTAAGCAG -ACGGAAGTCCTAGACAGTCGTCAA -ACGGAAGTCCTAGACAGTGCTGAA -ACGGAAGTCCTAGACAGTAGTACG -ACGGAAGTCCTAGACAGTATCCGA -ACGGAAGTCCTAGACAGTATGGGA -ACGGAAGTCCTAGACAGTGTGCAA -ACGGAAGTCCTAGACAGTGAGGAA -ACGGAAGTCCTAGACAGTCAGGTA -ACGGAAGTCCTAGACAGTGACTCT -ACGGAAGTCCTAGACAGTAGTCCT -ACGGAAGTCCTAGACAGTTAAGCC -ACGGAAGTCCTAGACAGTATAGCC -ACGGAAGTCCTAGACAGTTAACCG -ACGGAAGTCCTAGACAGTATGCCA -ACGGAAGTCCTATAGCTGGGAAAC -ACGGAAGTCCTATAGCTGAACACC -ACGGAAGTCCTATAGCTGATCGAG -ACGGAAGTCCTATAGCTGCTCCTT -ACGGAAGTCCTATAGCTGCCTGTT -ACGGAAGTCCTATAGCTGCGGTTT -ACGGAAGTCCTATAGCTGGTGGTT -ACGGAAGTCCTATAGCTGGCCTTT -ACGGAAGTCCTATAGCTGGGTCTT -ACGGAAGTCCTATAGCTGACGCTT -ACGGAAGTCCTATAGCTGAGCGTT -ACGGAAGTCCTATAGCTGTTCGTC -ACGGAAGTCCTATAGCTGTCTCTC -ACGGAAGTCCTATAGCTGTGGATC -ACGGAAGTCCTATAGCTGCACTTC -ACGGAAGTCCTATAGCTGGTACTC -ACGGAAGTCCTATAGCTGGATGTC -ACGGAAGTCCTATAGCTGACAGTC -ACGGAAGTCCTATAGCTGTTGCTG -ACGGAAGTCCTATAGCTGTCCATG -ACGGAAGTCCTATAGCTGTGTGTG -ACGGAAGTCCTATAGCTGCTAGTG -ACGGAAGTCCTATAGCTGCATCTG -ACGGAAGTCCTATAGCTGGAGTTG -ACGGAAGTCCTATAGCTGAGACTG -ACGGAAGTCCTATAGCTGTCGGTA -ACGGAAGTCCTATAGCTGTGCCTA -ACGGAAGTCCTATAGCTGCCACTA -ACGGAAGTCCTATAGCTGGGAGTA -ACGGAAGTCCTATAGCTGTCGTCT -ACGGAAGTCCTATAGCTGTGCACT -ACGGAAGTCCTATAGCTGCTGACT -ACGGAAGTCCTATAGCTGCAACCT -ACGGAAGTCCTATAGCTGGCTACT -ACGGAAGTCCTATAGCTGGGATCT -ACGGAAGTCCTATAGCTGAAGGCT -ACGGAAGTCCTATAGCTGTCAACC -ACGGAAGTCCTATAGCTGTGTTCC -ACGGAAGTCCTATAGCTGATTCCC -ACGGAAGTCCTATAGCTGTTCTCG -ACGGAAGTCCTATAGCTGTAGACG -ACGGAAGTCCTATAGCTGGTAACG -ACGGAAGTCCTATAGCTGACTTCG -ACGGAAGTCCTATAGCTGTACGCA -ACGGAAGTCCTATAGCTGCTTGCA -ACGGAAGTCCTATAGCTGCGAACA -ACGGAAGTCCTATAGCTGCAGTCA -ACGGAAGTCCTATAGCTGGATCCA -ACGGAAGTCCTATAGCTGACGACA -ACGGAAGTCCTATAGCTGAGCTCA -ACGGAAGTCCTATAGCTGTCACGT -ACGGAAGTCCTATAGCTGCGTAGT -ACGGAAGTCCTATAGCTGGTCAGT -ACGGAAGTCCTATAGCTGGAAGGT -ACGGAAGTCCTATAGCTGAACCGT -ACGGAAGTCCTATAGCTGTTGTGC -ACGGAAGTCCTATAGCTGCTAAGC -ACGGAAGTCCTATAGCTGACTAGC -ACGGAAGTCCTATAGCTGAGATGC -ACGGAAGTCCTATAGCTGTGAAGG -ACGGAAGTCCTATAGCTGCAATGG -ACGGAAGTCCTATAGCTGATGAGG -ACGGAAGTCCTATAGCTGAATGGG -ACGGAAGTCCTATAGCTGTCCTGA -ACGGAAGTCCTATAGCTGTAGCGA -ACGGAAGTCCTATAGCTGCACAGA -ACGGAAGTCCTATAGCTGGCAAGA -ACGGAAGTCCTATAGCTGGGTTGA -ACGGAAGTCCTATAGCTGTCCGAT -ACGGAAGTCCTATAGCTGTGGCAT -ACGGAAGTCCTATAGCTGCGAGAT -ACGGAAGTCCTATAGCTGTACCAC -ACGGAAGTCCTATAGCTGCAGAAC -ACGGAAGTCCTATAGCTGGTCTAC -ACGGAAGTCCTATAGCTGACGTAC -ACGGAAGTCCTATAGCTGAGTGAC -ACGGAAGTCCTATAGCTGCTGTAG -ACGGAAGTCCTATAGCTGCCTAAG -ACGGAAGTCCTATAGCTGGTTCAG -ACGGAAGTCCTATAGCTGGCATAG -ACGGAAGTCCTATAGCTGGACAAG -ACGGAAGTCCTATAGCTGAAGCAG -ACGGAAGTCCTATAGCTGCGTCAA -ACGGAAGTCCTATAGCTGGCTGAA -ACGGAAGTCCTATAGCTGAGTACG -ACGGAAGTCCTATAGCTGATCCGA -ACGGAAGTCCTATAGCTGATGGGA -ACGGAAGTCCTATAGCTGGTGCAA -ACGGAAGTCCTATAGCTGGAGGAA -ACGGAAGTCCTATAGCTGCAGGTA -ACGGAAGTCCTATAGCTGGACTCT -ACGGAAGTCCTATAGCTGAGTCCT -ACGGAAGTCCTATAGCTGTAAGCC -ACGGAAGTCCTATAGCTGATAGCC -ACGGAAGTCCTATAGCTGTAACCG -ACGGAAGTCCTATAGCTGATGCCA -ACGGAAGTCCTAAAGCCTGGAAAC -ACGGAAGTCCTAAAGCCTAACACC -ACGGAAGTCCTAAAGCCTATCGAG -ACGGAAGTCCTAAAGCCTCTCCTT -ACGGAAGTCCTAAAGCCTCCTGTT -ACGGAAGTCCTAAAGCCTCGGTTT -ACGGAAGTCCTAAAGCCTGTGGTT -ACGGAAGTCCTAAAGCCTGCCTTT -ACGGAAGTCCTAAAGCCTGGTCTT -ACGGAAGTCCTAAAGCCTACGCTT -ACGGAAGTCCTAAAGCCTAGCGTT -ACGGAAGTCCTAAAGCCTTTCGTC -ACGGAAGTCCTAAAGCCTTCTCTC -ACGGAAGTCCTAAAGCCTTGGATC -ACGGAAGTCCTAAAGCCTCACTTC -ACGGAAGTCCTAAAGCCTGTACTC -ACGGAAGTCCTAAAGCCTGATGTC -ACGGAAGTCCTAAAGCCTACAGTC -ACGGAAGTCCTAAAGCCTTTGCTG -ACGGAAGTCCTAAAGCCTTCCATG -ACGGAAGTCCTAAAGCCTTGTGTG -ACGGAAGTCCTAAAGCCTCTAGTG -ACGGAAGTCCTAAAGCCTCATCTG -ACGGAAGTCCTAAAGCCTGAGTTG -ACGGAAGTCCTAAAGCCTAGACTG -ACGGAAGTCCTAAAGCCTTCGGTA -ACGGAAGTCCTAAAGCCTTGCCTA -ACGGAAGTCCTAAAGCCTCCACTA -ACGGAAGTCCTAAAGCCTGGAGTA -ACGGAAGTCCTAAAGCCTTCGTCT -ACGGAAGTCCTAAAGCCTTGCACT -ACGGAAGTCCTAAAGCCTCTGACT -ACGGAAGTCCTAAAGCCTCAACCT -ACGGAAGTCCTAAAGCCTGCTACT -ACGGAAGTCCTAAAGCCTGGATCT -ACGGAAGTCCTAAAGCCTAAGGCT -ACGGAAGTCCTAAAGCCTTCAACC -ACGGAAGTCCTAAAGCCTTGTTCC -ACGGAAGTCCTAAAGCCTATTCCC -ACGGAAGTCCTAAAGCCTTTCTCG -ACGGAAGTCCTAAAGCCTTAGACG -ACGGAAGTCCTAAAGCCTGTAACG -ACGGAAGTCCTAAAGCCTACTTCG -ACGGAAGTCCTAAAGCCTTACGCA -ACGGAAGTCCTAAAGCCTCTTGCA -ACGGAAGTCCTAAAGCCTCGAACA -ACGGAAGTCCTAAAGCCTCAGTCA -ACGGAAGTCCTAAAGCCTGATCCA -ACGGAAGTCCTAAAGCCTACGACA -ACGGAAGTCCTAAAGCCTAGCTCA -ACGGAAGTCCTAAAGCCTTCACGT -ACGGAAGTCCTAAAGCCTCGTAGT -ACGGAAGTCCTAAAGCCTGTCAGT -ACGGAAGTCCTAAAGCCTGAAGGT -ACGGAAGTCCTAAAGCCTAACCGT -ACGGAAGTCCTAAAGCCTTTGTGC -ACGGAAGTCCTAAAGCCTCTAAGC -ACGGAAGTCCTAAAGCCTACTAGC -ACGGAAGTCCTAAAGCCTAGATGC -ACGGAAGTCCTAAAGCCTTGAAGG -ACGGAAGTCCTAAAGCCTCAATGG -ACGGAAGTCCTAAAGCCTATGAGG -ACGGAAGTCCTAAAGCCTAATGGG -ACGGAAGTCCTAAAGCCTTCCTGA -ACGGAAGTCCTAAAGCCTTAGCGA -ACGGAAGTCCTAAAGCCTCACAGA -ACGGAAGTCCTAAAGCCTGCAAGA -ACGGAAGTCCTAAAGCCTGGTTGA -ACGGAAGTCCTAAAGCCTTCCGAT -ACGGAAGTCCTAAAGCCTTGGCAT -ACGGAAGTCCTAAAGCCTCGAGAT -ACGGAAGTCCTAAAGCCTTACCAC -ACGGAAGTCCTAAAGCCTCAGAAC -ACGGAAGTCCTAAAGCCTGTCTAC -ACGGAAGTCCTAAAGCCTACGTAC -ACGGAAGTCCTAAAGCCTAGTGAC -ACGGAAGTCCTAAAGCCTCTGTAG -ACGGAAGTCCTAAAGCCTCCTAAG -ACGGAAGTCCTAAAGCCTGTTCAG -ACGGAAGTCCTAAAGCCTGCATAG -ACGGAAGTCCTAAAGCCTGACAAG -ACGGAAGTCCTAAAGCCTAAGCAG -ACGGAAGTCCTAAAGCCTCGTCAA -ACGGAAGTCCTAAAGCCTGCTGAA -ACGGAAGTCCTAAAGCCTAGTACG -ACGGAAGTCCTAAAGCCTATCCGA -ACGGAAGTCCTAAAGCCTATGGGA -ACGGAAGTCCTAAAGCCTGTGCAA -ACGGAAGTCCTAAAGCCTGAGGAA -ACGGAAGTCCTAAAGCCTCAGGTA -ACGGAAGTCCTAAAGCCTGACTCT -ACGGAAGTCCTAAAGCCTAGTCCT -ACGGAAGTCCTAAAGCCTTAAGCC -ACGGAAGTCCTAAAGCCTATAGCC -ACGGAAGTCCTAAAGCCTTAACCG -ACGGAAGTCCTAAAGCCTATGCCA -ACGGAAGTCCTACAGGTTGGAAAC -ACGGAAGTCCTACAGGTTAACACC -ACGGAAGTCCTACAGGTTATCGAG -ACGGAAGTCCTACAGGTTCTCCTT -ACGGAAGTCCTACAGGTTCCTGTT -ACGGAAGTCCTACAGGTTCGGTTT -ACGGAAGTCCTACAGGTTGTGGTT -ACGGAAGTCCTACAGGTTGCCTTT -ACGGAAGTCCTACAGGTTGGTCTT -ACGGAAGTCCTACAGGTTACGCTT -ACGGAAGTCCTACAGGTTAGCGTT -ACGGAAGTCCTACAGGTTTTCGTC -ACGGAAGTCCTACAGGTTTCTCTC -ACGGAAGTCCTACAGGTTTGGATC -ACGGAAGTCCTACAGGTTCACTTC -ACGGAAGTCCTACAGGTTGTACTC -ACGGAAGTCCTACAGGTTGATGTC -ACGGAAGTCCTACAGGTTACAGTC -ACGGAAGTCCTACAGGTTTTGCTG -ACGGAAGTCCTACAGGTTTCCATG -ACGGAAGTCCTACAGGTTTGTGTG -ACGGAAGTCCTACAGGTTCTAGTG -ACGGAAGTCCTACAGGTTCATCTG -ACGGAAGTCCTACAGGTTGAGTTG -ACGGAAGTCCTACAGGTTAGACTG -ACGGAAGTCCTACAGGTTTCGGTA -ACGGAAGTCCTACAGGTTTGCCTA -ACGGAAGTCCTACAGGTTCCACTA -ACGGAAGTCCTACAGGTTGGAGTA -ACGGAAGTCCTACAGGTTTCGTCT -ACGGAAGTCCTACAGGTTTGCACT -ACGGAAGTCCTACAGGTTCTGACT -ACGGAAGTCCTACAGGTTCAACCT -ACGGAAGTCCTACAGGTTGCTACT -ACGGAAGTCCTACAGGTTGGATCT -ACGGAAGTCCTACAGGTTAAGGCT -ACGGAAGTCCTACAGGTTTCAACC -ACGGAAGTCCTACAGGTTTGTTCC -ACGGAAGTCCTACAGGTTATTCCC -ACGGAAGTCCTACAGGTTTTCTCG -ACGGAAGTCCTACAGGTTTAGACG -ACGGAAGTCCTACAGGTTGTAACG -ACGGAAGTCCTACAGGTTACTTCG -ACGGAAGTCCTACAGGTTTACGCA -ACGGAAGTCCTACAGGTTCTTGCA -ACGGAAGTCCTACAGGTTCGAACA -ACGGAAGTCCTACAGGTTCAGTCA -ACGGAAGTCCTACAGGTTGATCCA -ACGGAAGTCCTACAGGTTACGACA -ACGGAAGTCCTACAGGTTAGCTCA -ACGGAAGTCCTACAGGTTTCACGT -ACGGAAGTCCTACAGGTTCGTAGT -ACGGAAGTCCTACAGGTTGTCAGT -ACGGAAGTCCTACAGGTTGAAGGT -ACGGAAGTCCTACAGGTTAACCGT -ACGGAAGTCCTACAGGTTTTGTGC -ACGGAAGTCCTACAGGTTCTAAGC -ACGGAAGTCCTACAGGTTACTAGC -ACGGAAGTCCTACAGGTTAGATGC -ACGGAAGTCCTACAGGTTTGAAGG -ACGGAAGTCCTACAGGTTCAATGG -ACGGAAGTCCTACAGGTTATGAGG -ACGGAAGTCCTACAGGTTAATGGG -ACGGAAGTCCTACAGGTTTCCTGA -ACGGAAGTCCTACAGGTTTAGCGA -ACGGAAGTCCTACAGGTTCACAGA -ACGGAAGTCCTACAGGTTGCAAGA -ACGGAAGTCCTACAGGTTGGTTGA -ACGGAAGTCCTACAGGTTTCCGAT -ACGGAAGTCCTACAGGTTTGGCAT -ACGGAAGTCCTACAGGTTCGAGAT -ACGGAAGTCCTACAGGTTTACCAC -ACGGAAGTCCTACAGGTTCAGAAC -ACGGAAGTCCTACAGGTTGTCTAC -ACGGAAGTCCTACAGGTTACGTAC -ACGGAAGTCCTACAGGTTAGTGAC -ACGGAAGTCCTACAGGTTCTGTAG -ACGGAAGTCCTACAGGTTCCTAAG -ACGGAAGTCCTACAGGTTGTTCAG -ACGGAAGTCCTACAGGTTGCATAG -ACGGAAGTCCTACAGGTTGACAAG -ACGGAAGTCCTACAGGTTAAGCAG -ACGGAAGTCCTACAGGTTCGTCAA -ACGGAAGTCCTACAGGTTGCTGAA -ACGGAAGTCCTACAGGTTAGTACG -ACGGAAGTCCTACAGGTTATCCGA -ACGGAAGTCCTACAGGTTATGGGA -ACGGAAGTCCTACAGGTTGTGCAA -ACGGAAGTCCTACAGGTTGAGGAA -ACGGAAGTCCTACAGGTTCAGGTA -ACGGAAGTCCTACAGGTTGACTCT -ACGGAAGTCCTACAGGTTAGTCCT -ACGGAAGTCCTACAGGTTTAAGCC -ACGGAAGTCCTACAGGTTATAGCC -ACGGAAGTCCTACAGGTTTAACCG -ACGGAAGTCCTACAGGTTATGCCA -ACGGAAGTCCTATAGGCAGGAAAC -ACGGAAGTCCTATAGGCAAACACC -ACGGAAGTCCTATAGGCAATCGAG -ACGGAAGTCCTATAGGCACTCCTT -ACGGAAGTCCTATAGGCACCTGTT -ACGGAAGTCCTATAGGCACGGTTT -ACGGAAGTCCTATAGGCAGTGGTT -ACGGAAGTCCTATAGGCAGCCTTT -ACGGAAGTCCTATAGGCAGGTCTT -ACGGAAGTCCTATAGGCAACGCTT -ACGGAAGTCCTATAGGCAAGCGTT -ACGGAAGTCCTATAGGCATTCGTC -ACGGAAGTCCTATAGGCATCTCTC -ACGGAAGTCCTATAGGCATGGATC -ACGGAAGTCCTATAGGCACACTTC -ACGGAAGTCCTATAGGCAGTACTC -ACGGAAGTCCTATAGGCAGATGTC -ACGGAAGTCCTATAGGCAACAGTC -ACGGAAGTCCTATAGGCATTGCTG -ACGGAAGTCCTATAGGCATCCATG -ACGGAAGTCCTATAGGCATGTGTG -ACGGAAGTCCTATAGGCACTAGTG -ACGGAAGTCCTATAGGCACATCTG -ACGGAAGTCCTATAGGCAGAGTTG -ACGGAAGTCCTATAGGCAAGACTG -ACGGAAGTCCTATAGGCATCGGTA -ACGGAAGTCCTATAGGCATGCCTA -ACGGAAGTCCTATAGGCACCACTA -ACGGAAGTCCTATAGGCAGGAGTA -ACGGAAGTCCTATAGGCATCGTCT -ACGGAAGTCCTATAGGCATGCACT -ACGGAAGTCCTATAGGCACTGACT -ACGGAAGTCCTATAGGCACAACCT -ACGGAAGTCCTATAGGCAGCTACT -ACGGAAGTCCTATAGGCAGGATCT -ACGGAAGTCCTATAGGCAAAGGCT -ACGGAAGTCCTATAGGCATCAACC -ACGGAAGTCCTATAGGCATGTTCC -ACGGAAGTCCTATAGGCAATTCCC -ACGGAAGTCCTATAGGCATTCTCG -ACGGAAGTCCTATAGGCATAGACG -ACGGAAGTCCTATAGGCAGTAACG -ACGGAAGTCCTATAGGCAACTTCG -ACGGAAGTCCTATAGGCATACGCA -ACGGAAGTCCTATAGGCACTTGCA -ACGGAAGTCCTATAGGCACGAACA -ACGGAAGTCCTATAGGCACAGTCA -ACGGAAGTCCTATAGGCAGATCCA -ACGGAAGTCCTATAGGCAACGACA -ACGGAAGTCCTATAGGCAAGCTCA -ACGGAAGTCCTATAGGCATCACGT -ACGGAAGTCCTATAGGCACGTAGT -ACGGAAGTCCTATAGGCAGTCAGT -ACGGAAGTCCTATAGGCAGAAGGT -ACGGAAGTCCTATAGGCAAACCGT -ACGGAAGTCCTATAGGCATTGTGC -ACGGAAGTCCTATAGGCACTAAGC -ACGGAAGTCCTATAGGCAACTAGC -ACGGAAGTCCTATAGGCAAGATGC -ACGGAAGTCCTATAGGCATGAAGG -ACGGAAGTCCTATAGGCACAATGG -ACGGAAGTCCTATAGGCAATGAGG -ACGGAAGTCCTATAGGCAAATGGG -ACGGAAGTCCTATAGGCATCCTGA -ACGGAAGTCCTATAGGCATAGCGA -ACGGAAGTCCTATAGGCACACAGA -ACGGAAGTCCTATAGGCAGCAAGA -ACGGAAGTCCTATAGGCAGGTTGA -ACGGAAGTCCTATAGGCATCCGAT -ACGGAAGTCCTATAGGCATGGCAT -ACGGAAGTCCTATAGGCACGAGAT -ACGGAAGTCCTATAGGCATACCAC -ACGGAAGTCCTATAGGCACAGAAC -ACGGAAGTCCTATAGGCAGTCTAC -ACGGAAGTCCTATAGGCAACGTAC -ACGGAAGTCCTATAGGCAAGTGAC -ACGGAAGTCCTATAGGCACTGTAG -ACGGAAGTCCTATAGGCACCTAAG -ACGGAAGTCCTATAGGCAGTTCAG -ACGGAAGTCCTATAGGCAGCATAG -ACGGAAGTCCTATAGGCAGACAAG -ACGGAAGTCCTATAGGCAAAGCAG -ACGGAAGTCCTATAGGCACGTCAA -ACGGAAGTCCTATAGGCAGCTGAA -ACGGAAGTCCTATAGGCAAGTACG -ACGGAAGTCCTATAGGCAATCCGA -ACGGAAGTCCTATAGGCAATGGGA -ACGGAAGTCCTATAGGCAGTGCAA -ACGGAAGTCCTATAGGCAGAGGAA -ACGGAAGTCCTATAGGCACAGGTA -ACGGAAGTCCTATAGGCAGACTCT -ACGGAAGTCCTATAGGCAAGTCCT -ACGGAAGTCCTATAGGCATAAGCC -ACGGAAGTCCTATAGGCAATAGCC -ACGGAAGTCCTATAGGCATAACCG -ACGGAAGTCCTATAGGCAATGCCA -ACGGAAGTCCTAAAGGACGGAAAC -ACGGAAGTCCTAAAGGACAACACC -ACGGAAGTCCTAAAGGACATCGAG -ACGGAAGTCCTAAAGGACCTCCTT -ACGGAAGTCCTAAAGGACCCTGTT -ACGGAAGTCCTAAAGGACCGGTTT -ACGGAAGTCCTAAAGGACGTGGTT -ACGGAAGTCCTAAAGGACGCCTTT -ACGGAAGTCCTAAAGGACGGTCTT -ACGGAAGTCCTAAAGGACACGCTT -ACGGAAGTCCTAAAGGACAGCGTT -ACGGAAGTCCTAAAGGACTTCGTC -ACGGAAGTCCTAAAGGACTCTCTC -ACGGAAGTCCTAAAGGACTGGATC -ACGGAAGTCCTAAAGGACCACTTC -ACGGAAGTCCTAAAGGACGTACTC -ACGGAAGTCCTAAAGGACGATGTC -ACGGAAGTCCTAAAGGACACAGTC -ACGGAAGTCCTAAAGGACTTGCTG -ACGGAAGTCCTAAAGGACTCCATG -ACGGAAGTCCTAAAGGACTGTGTG -ACGGAAGTCCTAAAGGACCTAGTG -ACGGAAGTCCTAAAGGACCATCTG -ACGGAAGTCCTAAAGGACGAGTTG -ACGGAAGTCCTAAAGGACAGACTG -ACGGAAGTCCTAAAGGACTCGGTA -ACGGAAGTCCTAAAGGACTGCCTA -ACGGAAGTCCTAAAGGACCCACTA -ACGGAAGTCCTAAAGGACGGAGTA -ACGGAAGTCCTAAAGGACTCGTCT -ACGGAAGTCCTAAAGGACTGCACT -ACGGAAGTCCTAAAGGACCTGACT -ACGGAAGTCCTAAAGGACCAACCT -ACGGAAGTCCTAAAGGACGCTACT -ACGGAAGTCCTAAAGGACGGATCT -ACGGAAGTCCTAAAGGACAAGGCT -ACGGAAGTCCTAAAGGACTCAACC -ACGGAAGTCCTAAAGGACTGTTCC -ACGGAAGTCCTAAAGGACATTCCC -ACGGAAGTCCTAAAGGACTTCTCG -ACGGAAGTCCTAAAGGACTAGACG -ACGGAAGTCCTAAAGGACGTAACG -ACGGAAGTCCTAAAGGACACTTCG -ACGGAAGTCCTAAAGGACTACGCA -ACGGAAGTCCTAAAGGACCTTGCA -ACGGAAGTCCTAAAGGACCGAACA -ACGGAAGTCCTAAAGGACCAGTCA -ACGGAAGTCCTAAAGGACGATCCA -ACGGAAGTCCTAAAGGACACGACA -ACGGAAGTCCTAAAGGACAGCTCA -ACGGAAGTCCTAAAGGACTCACGT -ACGGAAGTCCTAAAGGACCGTAGT -ACGGAAGTCCTAAAGGACGTCAGT -ACGGAAGTCCTAAAGGACGAAGGT -ACGGAAGTCCTAAAGGACAACCGT -ACGGAAGTCCTAAAGGACTTGTGC -ACGGAAGTCCTAAAGGACCTAAGC -ACGGAAGTCCTAAAGGACACTAGC -ACGGAAGTCCTAAAGGACAGATGC -ACGGAAGTCCTAAAGGACTGAAGG -ACGGAAGTCCTAAAGGACCAATGG -ACGGAAGTCCTAAAGGACATGAGG -ACGGAAGTCCTAAAGGACAATGGG -ACGGAAGTCCTAAAGGACTCCTGA -ACGGAAGTCCTAAAGGACTAGCGA -ACGGAAGTCCTAAAGGACCACAGA -ACGGAAGTCCTAAAGGACGCAAGA -ACGGAAGTCCTAAAGGACGGTTGA -ACGGAAGTCCTAAAGGACTCCGAT -ACGGAAGTCCTAAAGGACTGGCAT -ACGGAAGTCCTAAAGGACCGAGAT -ACGGAAGTCCTAAAGGACTACCAC -ACGGAAGTCCTAAAGGACCAGAAC -ACGGAAGTCCTAAAGGACGTCTAC -ACGGAAGTCCTAAAGGACACGTAC -ACGGAAGTCCTAAAGGACAGTGAC -ACGGAAGTCCTAAAGGACCTGTAG -ACGGAAGTCCTAAAGGACCCTAAG -ACGGAAGTCCTAAAGGACGTTCAG -ACGGAAGTCCTAAAGGACGCATAG -ACGGAAGTCCTAAAGGACGACAAG -ACGGAAGTCCTAAAGGACAAGCAG -ACGGAAGTCCTAAAGGACCGTCAA -ACGGAAGTCCTAAAGGACGCTGAA -ACGGAAGTCCTAAAGGACAGTACG -ACGGAAGTCCTAAAGGACATCCGA -ACGGAAGTCCTAAAGGACATGGGA -ACGGAAGTCCTAAAGGACGTGCAA -ACGGAAGTCCTAAAGGACGAGGAA -ACGGAAGTCCTAAAGGACCAGGTA -ACGGAAGTCCTAAAGGACGACTCT -ACGGAAGTCCTAAAGGACAGTCCT -ACGGAAGTCCTAAAGGACTAAGCC -ACGGAAGTCCTAAAGGACATAGCC -ACGGAAGTCCTAAAGGACTAACCG -ACGGAAGTCCTAAAGGACATGCCA -ACGGAAGTCCTACAGAAGGGAAAC -ACGGAAGTCCTACAGAAGAACACC -ACGGAAGTCCTACAGAAGATCGAG -ACGGAAGTCCTACAGAAGCTCCTT -ACGGAAGTCCTACAGAAGCCTGTT -ACGGAAGTCCTACAGAAGCGGTTT -ACGGAAGTCCTACAGAAGGTGGTT -ACGGAAGTCCTACAGAAGGCCTTT -ACGGAAGTCCTACAGAAGGGTCTT -ACGGAAGTCCTACAGAAGACGCTT -ACGGAAGTCCTACAGAAGAGCGTT -ACGGAAGTCCTACAGAAGTTCGTC -ACGGAAGTCCTACAGAAGTCTCTC -ACGGAAGTCCTACAGAAGTGGATC -ACGGAAGTCCTACAGAAGCACTTC -ACGGAAGTCCTACAGAAGGTACTC -ACGGAAGTCCTACAGAAGGATGTC -ACGGAAGTCCTACAGAAGACAGTC -ACGGAAGTCCTACAGAAGTTGCTG -ACGGAAGTCCTACAGAAGTCCATG -ACGGAAGTCCTACAGAAGTGTGTG -ACGGAAGTCCTACAGAAGCTAGTG -ACGGAAGTCCTACAGAAGCATCTG -ACGGAAGTCCTACAGAAGGAGTTG -ACGGAAGTCCTACAGAAGAGACTG -ACGGAAGTCCTACAGAAGTCGGTA -ACGGAAGTCCTACAGAAGTGCCTA -ACGGAAGTCCTACAGAAGCCACTA -ACGGAAGTCCTACAGAAGGGAGTA -ACGGAAGTCCTACAGAAGTCGTCT -ACGGAAGTCCTACAGAAGTGCACT -ACGGAAGTCCTACAGAAGCTGACT -ACGGAAGTCCTACAGAAGCAACCT -ACGGAAGTCCTACAGAAGGCTACT -ACGGAAGTCCTACAGAAGGGATCT -ACGGAAGTCCTACAGAAGAAGGCT -ACGGAAGTCCTACAGAAGTCAACC -ACGGAAGTCCTACAGAAGTGTTCC -ACGGAAGTCCTACAGAAGATTCCC -ACGGAAGTCCTACAGAAGTTCTCG -ACGGAAGTCCTACAGAAGTAGACG -ACGGAAGTCCTACAGAAGGTAACG -ACGGAAGTCCTACAGAAGACTTCG -ACGGAAGTCCTACAGAAGTACGCA -ACGGAAGTCCTACAGAAGCTTGCA -ACGGAAGTCCTACAGAAGCGAACA -ACGGAAGTCCTACAGAAGCAGTCA -ACGGAAGTCCTACAGAAGGATCCA -ACGGAAGTCCTACAGAAGACGACA -ACGGAAGTCCTACAGAAGAGCTCA -ACGGAAGTCCTACAGAAGTCACGT -ACGGAAGTCCTACAGAAGCGTAGT -ACGGAAGTCCTACAGAAGGTCAGT -ACGGAAGTCCTACAGAAGGAAGGT -ACGGAAGTCCTACAGAAGAACCGT -ACGGAAGTCCTACAGAAGTTGTGC -ACGGAAGTCCTACAGAAGCTAAGC -ACGGAAGTCCTACAGAAGACTAGC -ACGGAAGTCCTACAGAAGAGATGC -ACGGAAGTCCTACAGAAGTGAAGG -ACGGAAGTCCTACAGAAGCAATGG -ACGGAAGTCCTACAGAAGATGAGG -ACGGAAGTCCTACAGAAGAATGGG -ACGGAAGTCCTACAGAAGTCCTGA -ACGGAAGTCCTACAGAAGTAGCGA -ACGGAAGTCCTACAGAAGCACAGA -ACGGAAGTCCTACAGAAGGCAAGA -ACGGAAGTCCTACAGAAGGGTTGA -ACGGAAGTCCTACAGAAGTCCGAT -ACGGAAGTCCTACAGAAGTGGCAT -ACGGAAGTCCTACAGAAGCGAGAT -ACGGAAGTCCTACAGAAGTACCAC -ACGGAAGTCCTACAGAAGCAGAAC -ACGGAAGTCCTACAGAAGGTCTAC -ACGGAAGTCCTACAGAAGACGTAC -ACGGAAGTCCTACAGAAGAGTGAC -ACGGAAGTCCTACAGAAGCTGTAG -ACGGAAGTCCTACAGAAGCCTAAG -ACGGAAGTCCTACAGAAGGTTCAG -ACGGAAGTCCTACAGAAGGCATAG -ACGGAAGTCCTACAGAAGGACAAG -ACGGAAGTCCTACAGAAGAAGCAG -ACGGAAGTCCTACAGAAGCGTCAA -ACGGAAGTCCTACAGAAGGCTGAA -ACGGAAGTCCTACAGAAGAGTACG -ACGGAAGTCCTACAGAAGATCCGA -ACGGAAGTCCTACAGAAGATGGGA -ACGGAAGTCCTACAGAAGGTGCAA -ACGGAAGTCCTACAGAAGGAGGAA -ACGGAAGTCCTACAGAAGCAGGTA -ACGGAAGTCCTACAGAAGGACTCT -ACGGAAGTCCTACAGAAGAGTCCT -ACGGAAGTCCTACAGAAGTAAGCC -ACGGAAGTCCTACAGAAGATAGCC -ACGGAAGTCCTACAGAAGTAACCG -ACGGAAGTCCTACAGAAGATGCCA -ACGGAAGTCCTACAACGTGGAAAC -ACGGAAGTCCTACAACGTAACACC -ACGGAAGTCCTACAACGTATCGAG -ACGGAAGTCCTACAACGTCTCCTT -ACGGAAGTCCTACAACGTCCTGTT -ACGGAAGTCCTACAACGTCGGTTT -ACGGAAGTCCTACAACGTGTGGTT -ACGGAAGTCCTACAACGTGCCTTT -ACGGAAGTCCTACAACGTGGTCTT -ACGGAAGTCCTACAACGTACGCTT -ACGGAAGTCCTACAACGTAGCGTT -ACGGAAGTCCTACAACGTTTCGTC -ACGGAAGTCCTACAACGTTCTCTC -ACGGAAGTCCTACAACGTTGGATC -ACGGAAGTCCTACAACGTCACTTC -ACGGAAGTCCTACAACGTGTACTC -ACGGAAGTCCTACAACGTGATGTC -ACGGAAGTCCTACAACGTACAGTC -ACGGAAGTCCTACAACGTTTGCTG -ACGGAAGTCCTACAACGTTCCATG -ACGGAAGTCCTACAACGTTGTGTG -ACGGAAGTCCTACAACGTCTAGTG -ACGGAAGTCCTACAACGTCATCTG -ACGGAAGTCCTACAACGTGAGTTG -ACGGAAGTCCTACAACGTAGACTG -ACGGAAGTCCTACAACGTTCGGTA -ACGGAAGTCCTACAACGTTGCCTA -ACGGAAGTCCTACAACGTCCACTA -ACGGAAGTCCTACAACGTGGAGTA -ACGGAAGTCCTACAACGTTCGTCT -ACGGAAGTCCTACAACGTTGCACT -ACGGAAGTCCTACAACGTCTGACT -ACGGAAGTCCTACAACGTCAACCT -ACGGAAGTCCTACAACGTGCTACT -ACGGAAGTCCTACAACGTGGATCT -ACGGAAGTCCTACAACGTAAGGCT -ACGGAAGTCCTACAACGTTCAACC -ACGGAAGTCCTACAACGTTGTTCC -ACGGAAGTCCTACAACGTATTCCC -ACGGAAGTCCTACAACGTTTCTCG -ACGGAAGTCCTACAACGTTAGACG -ACGGAAGTCCTACAACGTGTAACG -ACGGAAGTCCTACAACGTACTTCG -ACGGAAGTCCTACAACGTTACGCA -ACGGAAGTCCTACAACGTCTTGCA -ACGGAAGTCCTACAACGTCGAACA -ACGGAAGTCCTACAACGTCAGTCA -ACGGAAGTCCTACAACGTGATCCA -ACGGAAGTCCTACAACGTACGACA -ACGGAAGTCCTACAACGTAGCTCA -ACGGAAGTCCTACAACGTTCACGT -ACGGAAGTCCTACAACGTCGTAGT -ACGGAAGTCCTACAACGTGTCAGT -ACGGAAGTCCTACAACGTGAAGGT -ACGGAAGTCCTACAACGTAACCGT -ACGGAAGTCCTACAACGTTTGTGC -ACGGAAGTCCTACAACGTCTAAGC -ACGGAAGTCCTACAACGTACTAGC -ACGGAAGTCCTACAACGTAGATGC -ACGGAAGTCCTACAACGTTGAAGG -ACGGAAGTCCTACAACGTCAATGG -ACGGAAGTCCTACAACGTATGAGG -ACGGAAGTCCTACAACGTAATGGG -ACGGAAGTCCTACAACGTTCCTGA -ACGGAAGTCCTACAACGTTAGCGA -ACGGAAGTCCTACAACGTCACAGA -ACGGAAGTCCTACAACGTGCAAGA -ACGGAAGTCCTACAACGTGGTTGA -ACGGAAGTCCTACAACGTTCCGAT -ACGGAAGTCCTACAACGTTGGCAT -ACGGAAGTCCTACAACGTCGAGAT -ACGGAAGTCCTACAACGTTACCAC -ACGGAAGTCCTACAACGTCAGAAC -ACGGAAGTCCTACAACGTGTCTAC -ACGGAAGTCCTACAACGTACGTAC -ACGGAAGTCCTACAACGTAGTGAC -ACGGAAGTCCTACAACGTCTGTAG -ACGGAAGTCCTACAACGTCCTAAG -ACGGAAGTCCTACAACGTGTTCAG -ACGGAAGTCCTACAACGTGCATAG -ACGGAAGTCCTACAACGTGACAAG -ACGGAAGTCCTACAACGTAAGCAG -ACGGAAGTCCTACAACGTCGTCAA -ACGGAAGTCCTACAACGTGCTGAA -ACGGAAGTCCTACAACGTAGTACG -ACGGAAGTCCTACAACGTATCCGA -ACGGAAGTCCTACAACGTATGGGA -ACGGAAGTCCTACAACGTGTGCAA -ACGGAAGTCCTACAACGTGAGGAA -ACGGAAGTCCTACAACGTCAGGTA -ACGGAAGTCCTACAACGTGACTCT -ACGGAAGTCCTACAACGTAGTCCT -ACGGAAGTCCTACAACGTTAAGCC -ACGGAAGTCCTACAACGTATAGCC -ACGGAAGTCCTACAACGTTAACCG -ACGGAAGTCCTACAACGTATGCCA -ACGGAAGTCCTAGAAGCTGGAAAC -ACGGAAGTCCTAGAAGCTAACACC -ACGGAAGTCCTAGAAGCTATCGAG -ACGGAAGTCCTAGAAGCTCTCCTT -ACGGAAGTCCTAGAAGCTCCTGTT -ACGGAAGTCCTAGAAGCTCGGTTT -ACGGAAGTCCTAGAAGCTGTGGTT -ACGGAAGTCCTAGAAGCTGCCTTT -ACGGAAGTCCTAGAAGCTGGTCTT -ACGGAAGTCCTAGAAGCTACGCTT -ACGGAAGTCCTAGAAGCTAGCGTT -ACGGAAGTCCTAGAAGCTTTCGTC -ACGGAAGTCCTAGAAGCTTCTCTC -ACGGAAGTCCTAGAAGCTTGGATC -ACGGAAGTCCTAGAAGCTCACTTC -ACGGAAGTCCTAGAAGCTGTACTC -ACGGAAGTCCTAGAAGCTGATGTC -ACGGAAGTCCTAGAAGCTACAGTC -ACGGAAGTCCTAGAAGCTTTGCTG -ACGGAAGTCCTAGAAGCTTCCATG -ACGGAAGTCCTAGAAGCTTGTGTG -ACGGAAGTCCTAGAAGCTCTAGTG -ACGGAAGTCCTAGAAGCTCATCTG -ACGGAAGTCCTAGAAGCTGAGTTG -ACGGAAGTCCTAGAAGCTAGACTG -ACGGAAGTCCTAGAAGCTTCGGTA -ACGGAAGTCCTAGAAGCTTGCCTA -ACGGAAGTCCTAGAAGCTCCACTA -ACGGAAGTCCTAGAAGCTGGAGTA -ACGGAAGTCCTAGAAGCTTCGTCT -ACGGAAGTCCTAGAAGCTTGCACT -ACGGAAGTCCTAGAAGCTCTGACT -ACGGAAGTCCTAGAAGCTCAACCT -ACGGAAGTCCTAGAAGCTGCTACT -ACGGAAGTCCTAGAAGCTGGATCT -ACGGAAGTCCTAGAAGCTAAGGCT -ACGGAAGTCCTAGAAGCTTCAACC -ACGGAAGTCCTAGAAGCTTGTTCC -ACGGAAGTCCTAGAAGCTATTCCC -ACGGAAGTCCTAGAAGCTTTCTCG -ACGGAAGTCCTAGAAGCTTAGACG -ACGGAAGTCCTAGAAGCTGTAACG -ACGGAAGTCCTAGAAGCTACTTCG -ACGGAAGTCCTAGAAGCTTACGCA -ACGGAAGTCCTAGAAGCTCTTGCA -ACGGAAGTCCTAGAAGCTCGAACA -ACGGAAGTCCTAGAAGCTCAGTCA -ACGGAAGTCCTAGAAGCTGATCCA -ACGGAAGTCCTAGAAGCTACGACA -ACGGAAGTCCTAGAAGCTAGCTCA -ACGGAAGTCCTAGAAGCTTCACGT -ACGGAAGTCCTAGAAGCTCGTAGT -ACGGAAGTCCTAGAAGCTGTCAGT -ACGGAAGTCCTAGAAGCTGAAGGT -ACGGAAGTCCTAGAAGCTAACCGT -ACGGAAGTCCTAGAAGCTTTGTGC -ACGGAAGTCCTAGAAGCTCTAAGC -ACGGAAGTCCTAGAAGCTACTAGC -ACGGAAGTCCTAGAAGCTAGATGC -ACGGAAGTCCTAGAAGCTTGAAGG -ACGGAAGTCCTAGAAGCTCAATGG -ACGGAAGTCCTAGAAGCTATGAGG -ACGGAAGTCCTAGAAGCTAATGGG -ACGGAAGTCCTAGAAGCTTCCTGA -ACGGAAGTCCTAGAAGCTTAGCGA -ACGGAAGTCCTAGAAGCTCACAGA -ACGGAAGTCCTAGAAGCTGCAAGA -ACGGAAGTCCTAGAAGCTGGTTGA -ACGGAAGTCCTAGAAGCTTCCGAT -ACGGAAGTCCTAGAAGCTTGGCAT -ACGGAAGTCCTAGAAGCTCGAGAT -ACGGAAGTCCTAGAAGCTTACCAC -ACGGAAGTCCTAGAAGCTCAGAAC -ACGGAAGTCCTAGAAGCTGTCTAC -ACGGAAGTCCTAGAAGCTACGTAC -ACGGAAGTCCTAGAAGCTAGTGAC -ACGGAAGTCCTAGAAGCTCTGTAG -ACGGAAGTCCTAGAAGCTCCTAAG -ACGGAAGTCCTAGAAGCTGTTCAG -ACGGAAGTCCTAGAAGCTGCATAG -ACGGAAGTCCTAGAAGCTGACAAG -ACGGAAGTCCTAGAAGCTAAGCAG -ACGGAAGTCCTAGAAGCTCGTCAA -ACGGAAGTCCTAGAAGCTGCTGAA -ACGGAAGTCCTAGAAGCTAGTACG -ACGGAAGTCCTAGAAGCTATCCGA -ACGGAAGTCCTAGAAGCTATGGGA -ACGGAAGTCCTAGAAGCTGTGCAA -ACGGAAGTCCTAGAAGCTGAGGAA -ACGGAAGTCCTAGAAGCTCAGGTA -ACGGAAGTCCTAGAAGCTGACTCT -ACGGAAGTCCTAGAAGCTAGTCCT -ACGGAAGTCCTAGAAGCTTAAGCC -ACGGAAGTCCTAGAAGCTATAGCC -ACGGAAGTCCTAGAAGCTTAACCG -ACGGAAGTCCTAGAAGCTATGCCA -ACGGAAGTCCTAACGAGTGGAAAC -ACGGAAGTCCTAACGAGTAACACC -ACGGAAGTCCTAACGAGTATCGAG -ACGGAAGTCCTAACGAGTCTCCTT -ACGGAAGTCCTAACGAGTCCTGTT -ACGGAAGTCCTAACGAGTCGGTTT -ACGGAAGTCCTAACGAGTGTGGTT -ACGGAAGTCCTAACGAGTGCCTTT -ACGGAAGTCCTAACGAGTGGTCTT -ACGGAAGTCCTAACGAGTACGCTT -ACGGAAGTCCTAACGAGTAGCGTT -ACGGAAGTCCTAACGAGTTTCGTC -ACGGAAGTCCTAACGAGTTCTCTC -ACGGAAGTCCTAACGAGTTGGATC -ACGGAAGTCCTAACGAGTCACTTC -ACGGAAGTCCTAACGAGTGTACTC -ACGGAAGTCCTAACGAGTGATGTC -ACGGAAGTCCTAACGAGTACAGTC -ACGGAAGTCCTAACGAGTTTGCTG -ACGGAAGTCCTAACGAGTTCCATG -ACGGAAGTCCTAACGAGTTGTGTG -ACGGAAGTCCTAACGAGTCTAGTG -ACGGAAGTCCTAACGAGTCATCTG -ACGGAAGTCCTAACGAGTGAGTTG -ACGGAAGTCCTAACGAGTAGACTG -ACGGAAGTCCTAACGAGTTCGGTA -ACGGAAGTCCTAACGAGTTGCCTA -ACGGAAGTCCTAACGAGTCCACTA -ACGGAAGTCCTAACGAGTGGAGTA -ACGGAAGTCCTAACGAGTTCGTCT -ACGGAAGTCCTAACGAGTTGCACT -ACGGAAGTCCTAACGAGTCTGACT -ACGGAAGTCCTAACGAGTCAACCT -ACGGAAGTCCTAACGAGTGCTACT -ACGGAAGTCCTAACGAGTGGATCT -ACGGAAGTCCTAACGAGTAAGGCT -ACGGAAGTCCTAACGAGTTCAACC -ACGGAAGTCCTAACGAGTTGTTCC -ACGGAAGTCCTAACGAGTATTCCC -ACGGAAGTCCTAACGAGTTTCTCG -ACGGAAGTCCTAACGAGTTAGACG -ACGGAAGTCCTAACGAGTGTAACG -ACGGAAGTCCTAACGAGTACTTCG -ACGGAAGTCCTAACGAGTTACGCA -ACGGAAGTCCTAACGAGTCTTGCA -ACGGAAGTCCTAACGAGTCGAACA -ACGGAAGTCCTAACGAGTCAGTCA -ACGGAAGTCCTAACGAGTGATCCA -ACGGAAGTCCTAACGAGTACGACA -ACGGAAGTCCTAACGAGTAGCTCA -ACGGAAGTCCTAACGAGTTCACGT -ACGGAAGTCCTAACGAGTCGTAGT -ACGGAAGTCCTAACGAGTGTCAGT -ACGGAAGTCCTAACGAGTGAAGGT -ACGGAAGTCCTAACGAGTAACCGT -ACGGAAGTCCTAACGAGTTTGTGC -ACGGAAGTCCTAACGAGTCTAAGC -ACGGAAGTCCTAACGAGTACTAGC -ACGGAAGTCCTAACGAGTAGATGC -ACGGAAGTCCTAACGAGTTGAAGG -ACGGAAGTCCTAACGAGTCAATGG -ACGGAAGTCCTAACGAGTATGAGG -ACGGAAGTCCTAACGAGTAATGGG -ACGGAAGTCCTAACGAGTTCCTGA -ACGGAAGTCCTAACGAGTTAGCGA -ACGGAAGTCCTAACGAGTCACAGA -ACGGAAGTCCTAACGAGTGCAAGA -ACGGAAGTCCTAACGAGTGGTTGA -ACGGAAGTCCTAACGAGTTCCGAT -ACGGAAGTCCTAACGAGTTGGCAT -ACGGAAGTCCTAACGAGTCGAGAT -ACGGAAGTCCTAACGAGTTACCAC -ACGGAAGTCCTAACGAGTCAGAAC -ACGGAAGTCCTAACGAGTGTCTAC -ACGGAAGTCCTAACGAGTACGTAC -ACGGAAGTCCTAACGAGTAGTGAC -ACGGAAGTCCTAACGAGTCTGTAG -ACGGAAGTCCTAACGAGTCCTAAG -ACGGAAGTCCTAACGAGTGTTCAG -ACGGAAGTCCTAACGAGTGCATAG -ACGGAAGTCCTAACGAGTGACAAG -ACGGAAGTCCTAACGAGTAAGCAG -ACGGAAGTCCTAACGAGTCGTCAA -ACGGAAGTCCTAACGAGTGCTGAA -ACGGAAGTCCTAACGAGTAGTACG -ACGGAAGTCCTAACGAGTATCCGA -ACGGAAGTCCTAACGAGTATGGGA -ACGGAAGTCCTAACGAGTGTGCAA -ACGGAAGTCCTAACGAGTGAGGAA -ACGGAAGTCCTAACGAGTCAGGTA -ACGGAAGTCCTAACGAGTGACTCT -ACGGAAGTCCTAACGAGTAGTCCT -ACGGAAGTCCTAACGAGTTAAGCC -ACGGAAGTCCTAACGAGTATAGCC -ACGGAAGTCCTAACGAGTTAACCG -ACGGAAGTCCTAACGAGTATGCCA -ACGGAAGTCCTACGAATCGGAAAC -ACGGAAGTCCTACGAATCAACACC -ACGGAAGTCCTACGAATCATCGAG -ACGGAAGTCCTACGAATCCTCCTT -ACGGAAGTCCTACGAATCCCTGTT -ACGGAAGTCCTACGAATCCGGTTT -ACGGAAGTCCTACGAATCGTGGTT -ACGGAAGTCCTACGAATCGCCTTT -ACGGAAGTCCTACGAATCGGTCTT -ACGGAAGTCCTACGAATCACGCTT -ACGGAAGTCCTACGAATCAGCGTT -ACGGAAGTCCTACGAATCTTCGTC -ACGGAAGTCCTACGAATCTCTCTC -ACGGAAGTCCTACGAATCTGGATC -ACGGAAGTCCTACGAATCCACTTC -ACGGAAGTCCTACGAATCGTACTC -ACGGAAGTCCTACGAATCGATGTC -ACGGAAGTCCTACGAATCACAGTC -ACGGAAGTCCTACGAATCTTGCTG -ACGGAAGTCCTACGAATCTCCATG -ACGGAAGTCCTACGAATCTGTGTG -ACGGAAGTCCTACGAATCCTAGTG -ACGGAAGTCCTACGAATCCATCTG -ACGGAAGTCCTACGAATCGAGTTG -ACGGAAGTCCTACGAATCAGACTG -ACGGAAGTCCTACGAATCTCGGTA -ACGGAAGTCCTACGAATCTGCCTA -ACGGAAGTCCTACGAATCCCACTA -ACGGAAGTCCTACGAATCGGAGTA -ACGGAAGTCCTACGAATCTCGTCT -ACGGAAGTCCTACGAATCTGCACT -ACGGAAGTCCTACGAATCCTGACT -ACGGAAGTCCTACGAATCCAACCT -ACGGAAGTCCTACGAATCGCTACT -ACGGAAGTCCTACGAATCGGATCT -ACGGAAGTCCTACGAATCAAGGCT -ACGGAAGTCCTACGAATCTCAACC -ACGGAAGTCCTACGAATCTGTTCC -ACGGAAGTCCTACGAATCATTCCC -ACGGAAGTCCTACGAATCTTCTCG -ACGGAAGTCCTACGAATCTAGACG -ACGGAAGTCCTACGAATCGTAACG -ACGGAAGTCCTACGAATCACTTCG -ACGGAAGTCCTACGAATCTACGCA -ACGGAAGTCCTACGAATCCTTGCA -ACGGAAGTCCTACGAATCCGAACA -ACGGAAGTCCTACGAATCCAGTCA -ACGGAAGTCCTACGAATCGATCCA -ACGGAAGTCCTACGAATCACGACA -ACGGAAGTCCTACGAATCAGCTCA -ACGGAAGTCCTACGAATCTCACGT -ACGGAAGTCCTACGAATCCGTAGT -ACGGAAGTCCTACGAATCGTCAGT -ACGGAAGTCCTACGAATCGAAGGT -ACGGAAGTCCTACGAATCAACCGT -ACGGAAGTCCTACGAATCTTGTGC -ACGGAAGTCCTACGAATCCTAAGC -ACGGAAGTCCTACGAATCACTAGC -ACGGAAGTCCTACGAATCAGATGC -ACGGAAGTCCTACGAATCTGAAGG -ACGGAAGTCCTACGAATCCAATGG -ACGGAAGTCCTACGAATCATGAGG -ACGGAAGTCCTACGAATCAATGGG -ACGGAAGTCCTACGAATCTCCTGA -ACGGAAGTCCTACGAATCTAGCGA -ACGGAAGTCCTACGAATCCACAGA -ACGGAAGTCCTACGAATCGCAAGA -ACGGAAGTCCTACGAATCGGTTGA -ACGGAAGTCCTACGAATCTCCGAT -ACGGAAGTCCTACGAATCTGGCAT -ACGGAAGTCCTACGAATCCGAGAT -ACGGAAGTCCTACGAATCTACCAC -ACGGAAGTCCTACGAATCCAGAAC -ACGGAAGTCCTACGAATCGTCTAC -ACGGAAGTCCTACGAATCACGTAC -ACGGAAGTCCTACGAATCAGTGAC -ACGGAAGTCCTACGAATCCTGTAG -ACGGAAGTCCTACGAATCCCTAAG -ACGGAAGTCCTACGAATCGTTCAG -ACGGAAGTCCTACGAATCGCATAG -ACGGAAGTCCTACGAATCGACAAG -ACGGAAGTCCTACGAATCAAGCAG -ACGGAAGTCCTACGAATCCGTCAA -ACGGAAGTCCTACGAATCGCTGAA -ACGGAAGTCCTACGAATCAGTACG -ACGGAAGTCCTACGAATCATCCGA -ACGGAAGTCCTACGAATCATGGGA -ACGGAAGTCCTACGAATCGTGCAA -ACGGAAGTCCTACGAATCGAGGAA -ACGGAAGTCCTACGAATCCAGGTA -ACGGAAGTCCTACGAATCGACTCT -ACGGAAGTCCTACGAATCAGTCCT -ACGGAAGTCCTACGAATCTAAGCC -ACGGAAGTCCTACGAATCATAGCC -ACGGAAGTCCTACGAATCTAACCG -ACGGAAGTCCTACGAATCATGCCA -ACGGAAGTCCTAGGAATGGGAAAC -ACGGAAGTCCTAGGAATGAACACC -ACGGAAGTCCTAGGAATGATCGAG -ACGGAAGTCCTAGGAATGCTCCTT -ACGGAAGTCCTAGGAATGCCTGTT -ACGGAAGTCCTAGGAATGCGGTTT -ACGGAAGTCCTAGGAATGGTGGTT -ACGGAAGTCCTAGGAATGGCCTTT -ACGGAAGTCCTAGGAATGGGTCTT -ACGGAAGTCCTAGGAATGACGCTT -ACGGAAGTCCTAGGAATGAGCGTT -ACGGAAGTCCTAGGAATGTTCGTC -ACGGAAGTCCTAGGAATGTCTCTC -ACGGAAGTCCTAGGAATGTGGATC -ACGGAAGTCCTAGGAATGCACTTC -ACGGAAGTCCTAGGAATGGTACTC -ACGGAAGTCCTAGGAATGGATGTC -ACGGAAGTCCTAGGAATGACAGTC -ACGGAAGTCCTAGGAATGTTGCTG -ACGGAAGTCCTAGGAATGTCCATG -ACGGAAGTCCTAGGAATGTGTGTG -ACGGAAGTCCTAGGAATGCTAGTG -ACGGAAGTCCTAGGAATGCATCTG -ACGGAAGTCCTAGGAATGGAGTTG -ACGGAAGTCCTAGGAATGAGACTG -ACGGAAGTCCTAGGAATGTCGGTA -ACGGAAGTCCTAGGAATGTGCCTA -ACGGAAGTCCTAGGAATGCCACTA -ACGGAAGTCCTAGGAATGGGAGTA -ACGGAAGTCCTAGGAATGTCGTCT -ACGGAAGTCCTAGGAATGTGCACT -ACGGAAGTCCTAGGAATGCTGACT -ACGGAAGTCCTAGGAATGCAACCT -ACGGAAGTCCTAGGAATGGCTACT -ACGGAAGTCCTAGGAATGGGATCT -ACGGAAGTCCTAGGAATGAAGGCT -ACGGAAGTCCTAGGAATGTCAACC -ACGGAAGTCCTAGGAATGTGTTCC -ACGGAAGTCCTAGGAATGATTCCC -ACGGAAGTCCTAGGAATGTTCTCG -ACGGAAGTCCTAGGAATGTAGACG -ACGGAAGTCCTAGGAATGGTAACG -ACGGAAGTCCTAGGAATGACTTCG -ACGGAAGTCCTAGGAATGTACGCA -ACGGAAGTCCTAGGAATGCTTGCA -ACGGAAGTCCTAGGAATGCGAACA -ACGGAAGTCCTAGGAATGCAGTCA -ACGGAAGTCCTAGGAATGGATCCA -ACGGAAGTCCTAGGAATGACGACA -ACGGAAGTCCTAGGAATGAGCTCA -ACGGAAGTCCTAGGAATGTCACGT -ACGGAAGTCCTAGGAATGCGTAGT -ACGGAAGTCCTAGGAATGGTCAGT -ACGGAAGTCCTAGGAATGGAAGGT -ACGGAAGTCCTAGGAATGAACCGT -ACGGAAGTCCTAGGAATGTTGTGC -ACGGAAGTCCTAGGAATGCTAAGC -ACGGAAGTCCTAGGAATGACTAGC -ACGGAAGTCCTAGGAATGAGATGC -ACGGAAGTCCTAGGAATGTGAAGG -ACGGAAGTCCTAGGAATGCAATGG -ACGGAAGTCCTAGGAATGATGAGG -ACGGAAGTCCTAGGAATGAATGGG -ACGGAAGTCCTAGGAATGTCCTGA -ACGGAAGTCCTAGGAATGTAGCGA -ACGGAAGTCCTAGGAATGCACAGA -ACGGAAGTCCTAGGAATGGCAAGA -ACGGAAGTCCTAGGAATGGGTTGA -ACGGAAGTCCTAGGAATGTCCGAT -ACGGAAGTCCTAGGAATGTGGCAT -ACGGAAGTCCTAGGAATGCGAGAT -ACGGAAGTCCTAGGAATGTACCAC -ACGGAAGTCCTAGGAATGCAGAAC -ACGGAAGTCCTAGGAATGGTCTAC -ACGGAAGTCCTAGGAATGACGTAC -ACGGAAGTCCTAGGAATGAGTGAC -ACGGAAGTCCTAGGAATGCTGTAG -ACGGAAGTCCTAGGAATGCCTAAG -ACGGAAGTCCTAGGAATGGTTCAG -ACGGAAGTCCTAGGAATGGCATAG -ACGGAAGTCCTAGGAATGGACAAG -ACGGAAGTCCTAGGAATGAAGCAG -ACGGAAGTCCTAGGAATGCGTCAA -ACGGAAGTCCTAGGAATGGCTGAA -ACGGAAGTCCTAGGAATGAGTACG -ACGGAAGTCCTAGGAATGATCCGA -ACGGAAGTCCTAGGAATGATGGGA -ACGGAAGTCCTAGGAATGGTGCAA -ACGGAAGTCCTAGGAATGGAGGAA -ACGGAAGTCCTAGGAATGCAGGTA -ACGGAAGTCCTAGGAATGGACTCT -ACGGAAGTCCTAGGAATGAGTCCT -ACGGAAGTCCTAGGAATGTAAGCC -ACGGAAGTCCTAGGAATGATAGCC -ACGGAAGTCCTAGGAATGTAACCG -ACGGAAGTCCTAGGAATGATGCCA -ACGGAAGTCCTACAAGTGGGAAAC -ACGGAAGTCCTACAAGTGAACACC -ACGGAAGTCCTACAAGTGATCGAG -ACGGAAGTCCTACAAGTGCTCCTT -ACGGAAGTCCTACAAGTGCCTGTT -ACGGAAGTCCTACAAGTGCGGTTT -ACGGAAGTCCTACAAGTGGTGGTT -ACGGAAGTCCTACAAGTGGCCTTT -ACGGAAGTCCTACAAGTGGGTCTT -ACGGAAGTCCTACAAGTGACGCTT -ACGGAAGTCCTACAAGTGAGCGTT -ACGGAAGTCCTACAAGTGTTCGTC -ACGGAAGTCCTACAAGTGTCTCTC -ACGGAAGTCCTACAAGTGTGGATC -ACGGAAGTCCTACAAGTGCACTTC -ACGGAAGTCCTACAAGTGGTACTC -ACGGAAGTCCTACAAGTGGATGTC -ACGGAAGTCCTACAAGTGACAGTC -ACGGAAGTCCTACAAGTGTTGCTG -ACGGAAGTCCTACAAGTGTCCATG -ACGGAAGTCCTACAAGTGTGTGTG -ACGGAAGTCCTACAAGTGCTAGTG -ACGGAAGTCCTACAAGTGCATCTG -ACGGAAGTCCTACAAGTGGAGTTG -ACGGAAGTCCTACAAGTGAGACTG -ACGGAAGTCCTACAAGTGTCGGTA -ACGGAAGTCCTACAAGTGTGCCTA -ACGGAAGTCCTACAAGTGCCACTA -ACGGAAGTCCTACAAGTGGGAGTA -ACGGAAGTCCTACAAGTGTCGTCT -ACGGAAGTCCTACAAGTGTGCACT -ACGGAAGTCCTACAAGTGCTGACT -ACGGAAGTCCTACAAGTGCAACCT -ACGGAAGTCCTACAAGTGGCTACT -ACGGAAGTCCTACAAGTGGGATCT -ACGGAAGTCCTACAAGTGAAGGCT -ACGGAAGTCCTACAAGTGTCAACC -ACGGAAGTCCTACAAGTGTGTTCC -ACGGAAGTCCTACAAGTGATTCCC -ACGGAAGTCCTACAAGTGTTCTCG -ACGGAAGTCCTACAAGTGTAGACG -ACGGAAGTCCTACAAGTGGTAACG -ACGGAAGTCCTACAAGTGACTTCG -ACGGAAGTCCTACAAGTGTACGCA -ACGGAAGTCCTACAAGTGCTTGCA -ACGGAAGTCCTACAAGTGCGAACA -ACGGAAGTCCTACAAGTGCAGTCA -ACGGAAGTCCTACAAGTGGATCCA -ACGGAAGTCCTACAAGTGACGACA -ACGGAAGTCCTACAAGTGAGCTCA -ACGGAAGTCCTACAAGTGTCACGT -ACGGAAGTCCTACAAGTGCGTAGT -ACGGAAGTCCTACAAGTGGTCAGT -ACGGAAGTCCTACAAGTGGAAGGT -ACGGAAGTCCTACAAGTGAACCGT -ACGGAAGTCCTACAAGTGTTGTGC -ACGGAAGTCCTACAAGTGCTAAGC -ACGGAAGTCCTACAAGTGACTAGC -ACGGAAGTCCTACAAGTGAGATGC -ACGGAAGTCCTACAAGTGTGAAGG -ACGGAAGTCCTACAAGTGCAATGG -ACGGAAGTCCTACAAGTGATGAGG -ACGGAAGTCCTACAAGTGAATGGG -ACGGAAGTCCTACAAGTGTCCTGA -ACGGAAGTCCTACAAGTGTAGCGA -ACGGAAGTCCTACAAGTGCACAGA -ACGGAAGTCCTACAAGTGGCAAGA -ACGGAAGTCCTACAAGTGGGTTGA -ACGGAAGTCCTACAAGTGTCCGAT -ACGGAAGTCCTACAAGTGTGGCAT -ACGGAAGTCCTACAAGTGCGAGAT -ACGGAAGTCCTACAAGTGTACCAC -ACGGAAGTCCTACAAGTGCAGAAC -ACGGAAGTCCTACAAGTGGTCTAC -ACGGAAGTCCTACAAGTGACGTAC -ACGGAAGTCCTACAAGTGAGTGAC -ACGGAAGTCCTACAAGTGCTGTAG -ACGGAAGTCCTACAAGTGCCTAAG -ACGGAAGTCCTACAAGTGGTTCAG -ACGGAAGTCCTACAAGTGGCATAG -ACGGAAGTCCTACAAGTGGACAAG -ACGGAAGTCCTACAAGTGAAGCAG -ACGGAAGTCCTACAAGTGCGTCAA -ACGGAAGTCCTACAAGTGGCTGAA -ACGGAAGTCCTACAAGTGAGTACG -ACGGAAGTCCTACAAGTGATCCGA -ACGGAAGTCCTACAAGTGATGGGA -ACGGAAGTCCTACAAGTGGTGCAA -ACGGAAGTCCTACAAGTGGAGGAA -ACGGAAGTCCTACAAGTGCAGGTA -ACGGAAGTCCTACAAGTGGACTCT -ACGGAAGTCCTACAAGTGAGTCCT -ACGGAAGTCCTACAAGTGTAAGCC -ACGGAAGTCCTACAAGTGATAGCC -ACGGAAGTCCTACAAGTGTAACCG -ACGGAAGTCCTACAAGTGATGCCA -ACGGAAGTCCTAGAAGAGGGAAAC -ACGGAAGTCCTAGAAGAGAACACC -ACGGAAGTCCTAGAAGAGATCGAG -ACGGAAGTCCTAGAAGAGCTCCTT -ACGGAAGTCCTAGAAGAGCCTGTT -ACGGAAGTCCTAGAAGAGCGGTTT -ACGGAAGTCCTAGAAGAGGTGGTT -ACGGAAGTCCTAGAAGAGGCCTTT -ACGGAAGTCCTAGAAGAGGGTCTT -ACGGAAGTCCTAGAAGAGACGCTT -ACGGAAGTCCTAGAAGAGAGCGTT -ACGGAAGTCCTAGAAGAGTTCGTC -ACGGAAGTCCTAGAAGAGTCTCTC -ACGGAAGTCCTAGAAGAGTGGATC -ACGGAAGTCCTAGAAGAGCACTTC -ACGGAAGTCCTAGAAGAGGTACTC -ACGGAAGTCCTAGAAGAGGATGTC -ACGGAAGTCCTAGAAGAGACAGTC -ACGGAAGTCCTAGAAGAGTTGCTG -ACGGAAGTCCTAGAAGAGTCCATG -ACGGAAGTCCTAGAAGAGTGTGTG -ACGGAAGTCCTAGAAGAGCTAGTG -ACGGAAGTCCTAGAAGAGCATCTG -ACGGAAGTCCTAGAAGAGGAGTTG -ACGGAAGTCCTAGAAGAGAGACTG -ACGGAAGTCCTAGAAGAGTCGGTA -ACGGAAGTCCTAGAAGAGTGCCTA -ACGGAAGTCCTAGAAGAGCCACTA -ACGGAAGTCCTAGAAGAGGGAGTA -ACGGAAGTCCTAGAAGAGTCGTCT -ACGGAAGTCCTAGAAGAGTGCACT -ACGGAAGTCCTAGAAGAGCTGACT -ACGGAAGTCCTAGAAGAGCAACCT -ACGGAAGTCCTAGAAGAGGCTACT -ACGGAAGTCCTAGAAGAGGGATCT -ACGGAAGTCCTAGAAGAGAAGGCT -ACGGAAGTCCTAGAAGAGTCAACC -ACGGAAGTCCTAGAAGAGTGTTCC -ACGGAAGTCCTAGAAGAGATTCCC -ACGGAAGTCCTAGAAGAGTTCTCG -ACGGAAGTCCTAGAAGAGTAGACG -ACGGAAGTCCTAGAAGAGGTAACG -ACGGAAGTCCTAGAAGAGACTTCG -ACGGAAGTCCTAGAAGAGTACGCA -ACGGAAGTCCTAGAAGAGCTTGCA -ACGGAAGTCCTAGAAGAGCGAACA -ACGGAAGTCCTAGAAGAGCAGTCA -ACGGAAGTCCTAGAAGAGGATCCA -ACGGAAGTCCTAGAAGAGACGACA -ACGGAAGTCCTAGAAGAGAGCTCA -ACGGAAGTCCTAGAAGAGTCACGT -ACGGAAGTCCTAGAAGAGCGTAGT -ACGGAAGTCCTAGAAGAGGTCAGT -ACGGAAGTCCTAGAAGAGGAAGGT -ACGGAAGTCCTAGAAGAGAACCGT -ACGGAAGTCCTAGAAGAGTTGTGC -ACGGAAGTCCTAGAAGAGCTAAGC -ACGGAAGTCCTAGAAGAGACTAGC -ACGGAAGTCCTAGAAGAGAGATGC -ACGGAAGTCCTAGAAGAGTGAAGG -ACGGAAGTCCTAGAAGAGCAATGG -ACGGAAGTCCTAGAAGAGATGAGG -ACGGAAGTCCTAGAAGAGAATGGG -ACGGAAGTCCTAGAAGAGTCCTGA -ACGGAAGTCCTAGAAGAGTAGCGA -ACGGAAGTCCTAGAAGAGCACAGA -ACGGAAGTCCTAGAAGAGGCAAGA -ACGGAAGTCCTAGAAGAGGGTTGA -ACGGAAGTCCTAGAAGAGTCCGAT -ACGGAAGTCCTAGAAGAGTGGCAT -ACGGAAGTCCTAGAAGAGCGAGAT -ACGGAAGTCCTAGAAGAGTACCAC -ACGGAAGTCCTAGAAGAGCAGAAC -ACGGAAGTCCTAGAAGAGGTCTAC -ACGGAAGTCCTAGAAGAGACGTAC -ACGGAAGTCCTAGAAGAGAGTGAC -ACGGAAGTCCTAGAAGAGCTGTAG -ACGGAAGTCCTAGAAGAGCCTAAG -ACGGAAGTCCTAGAAGAGGTTCAG -ACGGAAGTCCTAGAAGAGGCATAG -ACGGAAGTCCTAGAAGAGGACAAG -ACGGAAGTCCTAGAAGAGAAGCAG -ACGGAAGTCCTAGAAGAGCGTCAA -ACGGAAGTCCTAGAAGAGGCTGAA -ACGGAAGTCCTAGAAGAGAGTACG -ACGGAAGTCCTAGAAGAGATCCGA -ACGGAAGTCCTAGAAGAGATGGGA -ACGGAAGTCCTAGAAGAGGTGCAA -ACGGAAGTCCTAGAAGAGGAGGAA -ACGGAAGTCCTAGAAGAGCAGGTA -ACGGAAGTCCTAGAAGAGGACTCT -ACGGAAGTCCTAGAAGAGAGTCCT -ACGGAAGTCCTAGAAGAGTAAGCC -ACGGAAGTCCTAGAAGAGATAGCC -ACGGAAGTCCTAGAAGAGTAACCG -ACGGAAGTCCTAGAAGAGATGCCA -ACGGAAGTCCTAGTACAGGGAAAC -ACGGAAGTCCTAGTACAGAACACC -ACGGAAGTCCTAGTACAGATCGAG -ACGGAAGTCCTAGTACAGCTCCTT -ACGGAAGTCCTAGTACAGCCTGTT -ACGGAAGTCCTAGTACAGCGGTTT -ACGGAAGTCCTAGTACAGGTGGTT -ACGGAAGTCCTAGTACAGGCCTTT -ACGGAAGTCCTAGTACAGGGTCTT -ACGGAAGTCCTAGTACAGACGCTT -ACGGAAGTCCTAGTACAGAGCGTT -ACGGAAGTCCTAGTACAGTTCGTC -ACGGAAGTCCTAGTACAGTCTCTC -ACGGAAGTCCTAGTACAGTGGATC -ACGGAAGTCCTAGTACAGCACTTC -ACGGAAGTCCTAGTACAGGTACTC -ACGGAAGTCCTAGTACAGGATGTC -ACGGAAGTCCTAGTACAGACAGTC -ACGGAAGTCCTAGTACAGTTGCTG -ACGGAAGTCCTAGTACAGTCCATG -ACGGAAGTCCTAGTACAGTGTGTG -ACGGAAGTCCTAGTACAGCTAGTG -ACGGAAGTCCTAGTACAGCATCTG -ACGGAAGTCCTAGTACAGGAGTTG -ACGGAAGTCCTAGTACAGAGACTG -ACGGAAGTCCTAGTACAGTCGGTA -ACGGAAGTCCTAGTACAGTGCCTA -ACGGAAGTCCTAGTACAGCCACTA -ACGGAAGTCCTAGTACAGGGAGTA -ACGGAAGTCCTAGTACAGTCGTCT -ACGGAAGTCCTAGTACAGTGCACT -ACGGAAGTCCTAGTACAGCTGACT -ACGGAAGTCCTAGTACAGCAACCT -ACGGAAGTCCTAGTACAGGCTACT -ACGGAAGTCCTAGTACAGGGATCT -ACGGAAGTCCTAGTACAGAAGGCT -ACGGAAGTCCTAGTACAGTCAACC -ACGGAAGTCCTAGTACAGTGTTCC -ACGGAAGTCCTAGTACAGATTCCC -ACGGAAGTCCTAGTACAGTTCTCG -ACGGAAGTCCTAGTACAGTAGACG -ACGGAAGTCCTAGTACAGGTAACG -ACGGAAGTCCTAGTACAGACTTCG -ACGGAAGTCCTAGTACAGTACGCA -ACGGAAGTCCTAGTACAGCTTGCA -ACGGAAGTCCTAGTACAGCGAACA -ACGGAAGTCCTAGTACAGCAGTCA -ACGGAAGTCCTAGTACAGGATCCA -ACGGAAGTCCTAGTACAGACGACA -ACGGAAGTCCTAGTACAGAGCTCA -ACGGAAGTCCTAGTACAGTCACGT -ACGGAAGTCCTAGTACAGCGTAGT -ACGGAAGTCCTAGTACAGGTCAGT -ACGGAAGTCCTAGTACAGGAAGGT -ACGGAAGTCCTAGTACAGAACCGT -ACGGAAGTCCTAGTACAGTTGTGC -ACGGAAGTCCTAGTACAGCTAAGC -ACGGAAGTCCTAGTACAGACTAGC -ACGGAAGTCCTAGTACAGAGATGC -ACGGAAGTCCTAGTACAGTGAAGG -ACGGAAGTCCTAGTACAGCAATGG -ACGGAAGTCCTAGTACAGATGAGG -ACGGAAGTCCTAGTACAGAATGGG -ACGGAAGTCCTAGTACAGTCCTGA -ACGGAAGTCCTAGTACAGTAGCGA -ACGGAAGTCCTAGTACAGCACAGA -ACGGAAGTCCTAGTACAGGCAAGA -ACGGAAGTCCTAGTACAGGGTTGA -ACGGAAGTCCTAGTACAGTCCGAT -ACGGAAGTCCTAGTACAGTGGCAT -ACGGAAGTCCTAGTACAGCGAGAT -ACGGAAGTCCTAGTACAGTACCAC -ACGGAAGTCCTAGTACAGCAGAAC -ACGGAAGTCCTAGTACAGGTCTAC -ACGGAAGTCCTAGTACAGACGTAC -ACGGAAGTCCTAGTACAGAGTGAC -ACGGAAGTCCTAGTACAGCTGTAG -ACGGAAGTCCTAGTACAGCCTAAG -ACGGAAGTCCTAGTACAGGTTCAG -ACGGAAGTCCTAGTACAGGCATAG -ACGGAAGTCCTAGTACAGGACAAG -ACGGAAGTCCTAGTACAGAAGCAG -ACGGAAGTCCTAGTACAGCGTCAA -ACGGAAGTCCTAGTACAGGCTGAA -ACGGAAGTCCTAGTACAGAGTACG -ACGGAAGTCCTAGTACAGATCCGA -ACGGAAGTCCTAGTACAGATGGGA -ACGGAAGTCCTAGTACAGGTGCAA -ACGGAAGTCCTAGTACAGGAGGAA -ACGGAAGTCCTAGTACAGCAGGTA -ACGGAAGTCCTAGTACAGGACTCT -ACGGAAGTCCTAGTACAGAGTCCT -ACGGAAGTCCTAGTACAGTAAGCC -ACGGAAGTCCTAGTACAGATAGCC -ACGGAAGTCCTAGTACAGTAACCG -ACGGAAGTCCTAGTACAGATGCCA -ACGGAAGTCCTATCTGACGGAAAC -ACGGAAGTCCTATCTGACAACACC -ACGGAAGTCCTATCTGACATCGAG -ACGGAAGTCCTATCTGACCTCCTT -ACGGAAGTCCTATCTGACCCTGTT -ACGGAAGTCCTATCTGACCGGTTT -ACGGAAGTCCTATCTGACGTGGTT -ACGGAAGTCCTATCTGACGCCTTT -ACGGAAGTCCTATCTGACGGTCTT -ACGGAAGTCCTATCTGACACGCTT -ACGGAAGTCCTATCTGACAGCGTT -ACGGAAGTCCTATCTGACTTCGTC -ACGGAAGTCCTATCTGACTCTCTC -ACGGAAGTCCTATCTGACTGGATC -ACGGAAGTCCTATCTGACCACTTC -ACGGAAGTCCTATCTGACGTACTC -ACGGAAGTCCTATCTGACGATGTC -ACGGAAGTCCTATCTGACACAGTC -ACGGAAGTCCTATCTGACTTGCTG -ACGGAAGTCCTATCTGACTCCATG -ACGGAAGTCCTATCTGACTGTGTG -ACGGAAGTCCTATCTGACCTAGTG -ACGGAAGTCCTATCTGACCATCTG -ACGGAAGTCCTATCTGACGAGTTG -ACGGAAGTCCTATCTGACAGACTG -ACGGAAGTCCTATCTGACTCGGTA -ACGGAAGTCCTATCTGACTGCCTA -ACGGAAGTCCTATCTGACCCACTA -ACGGAAGTCCTATCTGACGGAGTA -ACGGAAGTCCTATCTGACTCGTCT -ACGGAAGTCCTATCTGACTGCACT -ACGGAAGTCCTATCTGACCTGACT -ACGGAAGTCCTATCTGACCAACCT -ACGGAAGTCCTATCTGACGCTACT -ACGGAAGTCCTATCTGACGGATCT -ACGGAAGTCCTATCTGACAAGGCT -ACGGAAGTCCTATCTGACTCAACC -ACGGAAGTCCTATCTGACTGTTCC -ACGGAAGTCCTATCTGACATTCCC -ACGGAAGTCCTATCTGACTTCTCG -ACGGAAGTCCTATCTGACTAGACG -ACGGAAGTCCTATCTGACGTAACG -ACGGAAGTCCTATCTGACACTTCG -ACGGAAGTCCTATCTGACTACGCA -ACGGAAGTCCTATCTGACCTTGCA -ACGGAAGTCCTATCTGACCGAACA -ACGGAAGTCCTATCTGACCAGTCA -ACGGAAGTCCTATCTGACGATCCA -ACGGAAGTCCTATCTGACACGACA -ACGGAAGTCCTATCTGACAGCTCA -ACGGAAGTCCTATCTGACTCACGT -ACGGAAGTCCTATCTGACCGTAGT -ACGGAAGTCCTATCTGACGTCAGT -ACGGAAGTCCTATCTGACGAAGGT -ACGGAAGTCCTATCTGACAACCGT -ACGGAAGTCCTATCTGACTTGTGC -ACGGAAGTCCTATCTGACCTAAGC -ACGGAAGTCCTATCTGACACTAGC -ACGGAAGTCCTATCTGACAGATGC -ACGGAAGTCCTATCTGACTGAAGG -ACGGAAGTCCTATCTGACCAATGG -ACGGAAGTCCTATCTGACATGAGG -ACGGAAGTCCTATCTGACAATGGG -ACGGAAGTCCTATCTGACTCCTGA -ACGGAAGTCCTATCTGACTAGCGA -ACGGAAGTCCTATCTGACCACAGA -ACGGAAGTCCTATCTGACGCAAGA -ACGGAAGTCCTATCTGACGGTTGA -ACGGAAGTCCTATCTGACTCCGAT -ACGGAAGTCCTATCTGACTGGCAT -ACGGAAGTCCTATCTGACCGAGAT -ACGGAAGTCCTATCTGACTACCAC -ACGGAAGTCCTATCTGACCAGAAC -ACGGAAGTCCTATCTGACGTCTAC -ACGGAAGTCCTATCTGACACGTAC -ACGGAAGTCCTATCTGACAGTGAC -ACGGAAGTCCTATCTGACCTGTAG -ACGGAAGTCCTATCTGACCCTAAG -ACGGAAGTCCTATCTGACGTTCAG -ACGGAAGTCCTATCTGACGCATAG -ACGGAAGTCCTATCTGACGACAAG -ACGGAAGTCCTATCTGACAAGCAG -ACGGAAGTCCTATCTGACCGTCAA -ACGGAAGTCCTATCTGACGCTGAA -ACGGAAGTCCTATCTGACAGTACG -ACGGAAGTCCTATCTGACATCCGA -ACGGAAGTCCTATCTGACATGGGA -ACGGAAGTCCTATCTGACGTGCAA -ACGGAAGTCCTATCTGACGAGGAA -ACGGAAGTCCTATCTGACCAGGTA -ACGGAAGTCCTATCTGACGACTCT -ACGGAAGTCCTATCTGACAGTCCT -ACGGAAGTCCTATCTGACTAAGCC -ACGGAAGTCCTATCTGACATAGCC -ACGGAAGTCCTATCTGACTAACCG -ACGGAAGTCCTATCTGACATGCCA -ACGGAAGTCCTACCTAGTGGAAAC -ACGGAAGTCCTACCTAGTAACACC -ACGGAAGTCCTACCTAGTATCGAG -ACGGAAGTCCTACCTAGTCTCCTT -ACGGAAGTCCTACCTAGTCCTGTT -ACGGAAGTCCTACCTAGTCGGTTT -ACGGAAGTCCTACCTAGTGTGGTT -ACGGAAGTCCTACCTAGTGCCTTT -ACGGAAGTCCTACCTAGTGGTCTT -ACGGAAGTCCTACCTAGTACGCTT -ACGGAAGTCCTACCTAGTAGCGTT -ACGGAAGTCCTACCTAGTTTCGTC -ACGGAAGTCCTACCTAGTTCTCTC -ACGGAAGTCCTACCTAGTTGGATC -ACGGAAGTCCTACCTAGTCACTTC -ACGGAAGTCCTACCTAGTGTACTC -ACGGAAGTCCTACCTAGTGATGTC -ACGGAAGTCCTACCTAGTACAGTC -ACGGAAGTCCTACCTAGTTTGCTG -ACGGAAGTCCTACCTAGTTCCATG -ACGGAAGTCCTACCTAGTTGTGTG -ACGGAAGTCCTACCTAGTCTAGTG -ACGGAAGTCCTACCTAGTCATCTG -ACGGAAGTCCTACCTAGTGAGTTG -ACGGAAGTCCTACCTAGTAGACTG -ACGGAAGTCCTACCTAGTTCGGTA -ACGGAAGTCCTACCTAGTTGCCTA -ACGGAAGTCCTACCTAGTCCACTA -ACGGAAGTCCTACCTAGTGGAGTA -ACGGAAGTCCTACCTAGTTCGTCT -ACGGAAGTCCTACCTAGTTGCACT -ACGGAAGTCCTACCTAGTCTGACT -ACGGAAGTCCTACCTAGTCAACCT -ACGGAAGTCCTACCTAGTGCTACT -ACGGAAGTCCTACCTAGTGGATCT -ACGGAAGTCCTACCTAGTAAGGCT -ACGGAAGTCCTACCTAGTTCAACC -ACGGAAGTCCTACCTAGTTGTTCC -ACGGAAGTCCTACCTAGTATTCCC -ACGGAAGTCCTACCTAGTTTCTCG -ACGGAAGTCCTACCTAGTTAGACG -ACGGAAGTCCTACCTAGTGTAACG -ACGGAAGTCCTACCTAGTACTTCG -ACGGAAGTCCTACCTAGTTACGCA -ACGGAAGTCCTACCTAGTCTTGCA -ACGGAAGTCCTACCTAGTCGAACA -ACGGAAGTCCTACCTAGTCAGTCA -ACGGAAGTCCTACCTAGTGATCCA -ACGGAAGTCCTACCTAGTACGACA -ACGGAAGTCCTACCTAGTAGCTCA -ACGGAAGTCCTACCTAGTTCACGT -ACGGAAGTCCTACCTAGTCGTAGT -ACGGAAGTCCTACCTAGTGTCAGT -ACGGAAGTCCTACCTAGTGAAGGT -ACGGAAGTCCTACCTAGTAACCGT -ACGGAAGTCCTACCTAGTTTGTGC -ACGGAAGTCCTACCTAGTCTAAGC -ACGGAAGTCCTACCTAGTACTAGC -ACGGAAGTCCTACCTAGTAGATGC -ACGGAAGTCCTACCTAGTTGAAGG -ACGGAAGTCCTACCTAGTCAATGG -ACGGAAGTCCTACCTAGTATGAGG -ACGGAAGTCCTACCTAGTAATGGG -ACGGAAGTCCTACCTAGTTCCTGA -ACGGAAGTCCTACCTAGTTAGCGA -ACGGAAGTCCTACCTAGTCACAGA -ACGGAAGTCCTACCTAGTGCAAGA -ACGGAAGTCCTACCTAGTGGTTGA -ACGGAAGTCCTACCTAGTTCCGAT -ACGGAAGTCCTACCTAGTTGGCAT -ACGGAAGTCCTACCTAGTCGAGAT -ACGGAAGTCCTACCTAGTTACCAC -ACGGAAGTCCTACCTAGTCAGAAC -ACGGAAGTCCTACCTAGTGTCTAC -ACGGAAGTCCTACCTAGTACGTAC -ACGGAAGTCCTACCTAGTAGTGAC -ACGGAAGTCCTACCTAGTCTGTAG -ACGGAAGTCCTACCTAGTCCTAAG -ACGGAAGTCCTACCTAGTGTTCAG -ACGGAAGTCCTACCTAGTGCATAG -ACGGAAGTCCTACCTAGTGACAAG -ACGGAAGTCCTACCTAGTAAGCAG -ACGGAAGTCCTACCTAGTCGTCAA -ACGGAAGTCCTACCTAGTGCTGAA -ACGGAAGTCCTACCTAGTAGTACG -ACGGAAGTCCTACCTAGTATCCGA -ACGGAAGTCCTACCTAGTATGGGA -ACGGAAGTCCTACCTAGTGTGCAA -ACGGAAGTCCTACCTAGTGAGGAA -ACGGAAGTCCTACCTAGTCAGGTA -ACGGAAGTCCTACCTAGTGACTCT -ACGGAAGTCCTACCTAGTAGTCCT -ACGGAAGTCCTACCTAGTTAAGCC -ACGGAAGTCCTACCTAGTATAGCC -ACGGAAGTCCTACCTAGTTAACCG -ACGGAAGTCCTACCTAGTATGCCA -ACGGAAGTCCTAGCCTAAGGAAAC -ACGGAAGTCCTAGCCTAAAACACC -ACGGAAGTCCTAGCCTAAATCGAG -ACGGAAGTCCTAGCCTAACTCCTT -ACGGAAGTCCTAGCCTAACCTGTT -ACGGAAGTCCTAGCCTAACGGTTT -ACGGAAGTCCTAGCCTAAGTGGTT -ACGGAAGTCCTAGCCTAAGCCTTT -ACGGAAGTCCTAGCCTAAGGTCTT -ACGGAAGTCCTAGCCTAAACGCTT -ACGGAAGTCCTAGCCTAAAGCGTT -ACGGAAGTCCTAGCCTAATTCGTC -ACGGAAGTCCTAGCCTAATCTCTC -ACGGAAGTCCTAGCCTAATGGATC -ACGGAAGTCCTAGCCTAACACTTC -ACGGAAGTCCTAGCCTAAGTACTC -ACGGAAGTCCTAGCCTAAGATGTC -ACGGAAGTCCTAGCCTAAACAGTC -ACGGAAGTCCTAGCCTAATTGCTG -ACGGAAGTCCTAGCCTAATCCATG -ACGGAAGTCCTAGCCTAATGTGTG -ACGGAAGTCCTAGCCTAACTAGTG -ACGGAAGTCCTAGCCTAACATCTG -ACGGAAGTCCTAGCCTAAGAGTTG -ACGGAAGTCCTAGCCTAAAGACTG -ACGGAAGTCCTAGCCTAATCGGTA -ACGGAAGTCCTAGCCTAATGCCTA -ACGGAAGTCCTAGCCTAACCACTA -ACGGAAGTCCTAGCCTAAGGAGTA -ACGGAAGTCCTAGCCTAATCGTCT -ACGGAAGTCCTAGCCTAATGCACT -ACGGAAGTCCTAGCCTAACTGACT -ACGGAAGTCCTAGCCTAACAACCT -ACGGAAGTCCTAGCCTAAGCTACT -ACGGAAGTCCTAGCCTAAGGATCT -ACGGAAGTCCTAGCCTAAAAGGCT -ACGGAAGTCCTAGCCTAATCAACC -ACGGAAGTCCTAGCCTAATGTTCC -ACGGAAGTCCTAGCCTAAATTCCC -ACGGAAGTCCTAGCCTAATTCTCG -ACGGAAGTCCTAGCCTAATAGACG -ACGGAAGTCCTAGCCTAAGTAACG -ACGGAAGTCCTAGCCTAAACTTCG -ACGGAAGTCCTAGCCTAATACGCA -ACGGAAGTCCTAGCCTAACTTGCA -ACGGAAGTCCTAGCCTAACGAACA -ACGGAAGTCCTAGCCTAACAGTCA -ACGGAAGTCCTAGCCTAAGATCCA -ACGGAAGTCCTAGCCTAAACGACA -ACGGAAGTCCTAGCCTAAAGCTCA -ACGGAAGTCCTAGCCTAATCACGT -ACGGAAGTCCTAGCCTAACGTAGT -ACGGAAGTCCTAGCCTAAGTCAGT -ACGGAAGTCCTAGCCTAAGAAGGT -ACGGAAGTCCTAGCCTAAAACCGT -ACGGAAGTCCTAGCCTAATTGTGC -ACGGAAGTCCTAGCCTAACTAAGC -ACGGAAGTCCTAGCCTAAACTAGC -ACGGAAGTCCTAGCCTAAAGATGC -ACGGAAGTCCTAGCCTAATGAAGG -ACGGAAGTCCTAGCCTAACAATGG -ACGGAAGTCCTAGCCTAAATGAGG -ACGGAAGTCCTAGCCTAAAATGGG -ACGGAAGTCCTAGCCTAATCCTGA -ACGGAAGTCCTAGCCTAATAGCGA -ACGGAAGTCCTAGCCTAACACAGA -ACGGAAGTCCTAGCCTAAGCAAGA -ACGGAAGTCCTAGCCTAAGGTTGA -ACGGAAGTCCTAGCCTAATCCGAT -ACGGAAGTCCTAGCCTAATGGCAT -ACGGAAGTCCTAGCCTAACGAGAT -ACGGAAGTCCTAGCCTAATACCAC -ACGGAAGTCCTAGCCTAACAGAAC -ACGGAAGTCCTAGCCTAAGTCTAC -ACGGAAGTCCTAGCCTAAACGTAC -ACGGAAGTCCTAGCCTAAAGTGAC -ACGGAAGTCCTAGCCTAACTGTAG -ACGGAAGTCCTAGCCTAACCTAAG -ACGGAAGTCCTAGCCTAAGTTCAG -ACGGAAGTCCTAGCCTAAGCATAG -ACGGAAGTCCTAGCCTAAGACAAG -ACGGAAGTCCTAGCCTAAAAGCAG -ACGGAAGTCCTAGCCTAACGTCAA -ACGGAAGTCCTAGCCTAAGCTGAA -ACGGAAGTCCTAGCCTAAAGTACG -ACGGAAGTCCTAGCCTAAATCCGA -ACGGAAGTCCTAGCCTAAATGGGA -ACGGAAGTCCTAGCCTAAGTGCAA -ACGGAAGTCCTAGCCTAAGAGGAA -ACGGAAGTCCTAGCCTAACAGGTA -ACGGAAGTCCTAGCCTAAGACTCT -ACGGAAGTCCTAGCCTAAAGTCCT -ACGGAAGTCCTAGCCTAATAAGCC -ACGGAAGTCCTAGCCTAAATAGCC -ACGGAAGTCCTAGCCTAATAACCG -ACGGAAGTCCTAGCCTAAATGCCA -ACGGAAGTCCTAGCCATAGGAAAC -ACGGAAGTCCTAGCCATAAACACC -ACGGAAGTCCTAGCCATAATCGAG -ACGGAAGTCCTAGCCATACTCCTT -ACGGAAGTCCTAGCCATACCTGTT -ACGGAAGTCCTAGCCATACGGTTT -ACGGAAGTCCTAGCCATAGTGGTT -ACGGAAGTCCTAGCCATAGCCTTT -ACGGAAGTCCTAGCCATAGGTCTT -ACGGAAGTCCTAGCCATAACGCTT -ACGGAAGTCCTAGCCATAAGCGTT -ACGGAAGTCCTAGCCATATTCGTC -ACGGAAGTCCTAGCCATATCTCTC -ACGGAAGTCCTAGCCATATGGATC -ACGGAAGTCCTAGCCATACACTTC -ACGGAAGTCCTAGCCATAGTACTC -ACGGAAGTCCTAGCCATAGATGTC -ACGGAAGTCCTAGCCATAACAGTC -ACGGAAGTCCTAGCCATATTGCTG -ACGGAAGTCCTAGCCATATCCATG -ACGGAAGTCCTAGCCATATGTGTG -ACGGAAGTCCTAGCCATACTAGTG -ACGGAAGTCCTAGCCATACATCTG -ACGGAAGTCCTAGCCATAGAGTTG -ACGGAAGTCCTAGCCATAAGACTG -ACGGAAGTCCTAGCCATATCGGTA -ACGGAAGTCCTAGCCATATGCCTA -ACGGAAGTCCTAGCCATACCACTA -ACGGAAGTCCTAGCCATAGGAGTA -ACGGAAGTCCTAGCCATATCGTCT -ACGGAAGTCCTAGCCATATGCACT -ACGGAAGTCCTAGCCATACTGACT -ACGGAAGTCCTAGCCATACAACCT -ACGGAAGTCCTAGCCATAGCTACT -ACGGAAGTCCTAGCCATAGGATCT -ACGGAAGTCCTAGCCATAAAGGCT -ACGGAAGTCCTAGCCATATCAACC -ACGGAAGTCCTAGCCATATGTTCC -ACGGAAGTCCTAGCCATAATTCCC -ACGGAAGTCCTAGCCATATTCTCG -ACGGAAGTCCTAGCCATATAGACG -ACGGAAGTCCTAGCCATAGTAACG -ACGGAAGTCCTAGCCATAACTTCG -ACGGAAGTCCTAGCCATATACGCA -ACGGAAGTCCTAGCCATACTTGCA -ACGGAAGTCCTAGCCATACGAACA -ACGGAAGTCCTAGCCATACAGTCA -ACGGAAGTCCTAGCCATAGATCCA -ACGGAAGTCCTAGCCATAACGACA -ACGGAAGTCCTAGCCATAAGCTCA -ACGGAAGTCCTAGCCATATCACGT -ACGGAAGTCCTAGCCATACGTAGT -ACGGAAGTCCTAGCCATAGTCAGT -ACGGAAGTCCTAGCCATAGAAGGT -ACGGAAGTCCTAGCCATAAACCGT -ACGGAAGTCCTAGCCATATTGTGC -ACGGAAGTCCTAGCCATACTAAGC -ACGGAAGTCCTAGCCATAACTAGC -ACGGAAGTCCTAGCCATAAGATGC -ACGGAAGTCCTAGCCATATGAAGG -ACGGAAGTCCTAGCCATACAATGG -ACGGAAGTCCTAGCCATAATGAGG -ACGGAAGTCCTAGCCATAAATGGG -ACGGAAGTCCTAGCCATATCCTGA -ACGGAAGTCCTAGCCATATAGCGA -ACGGAAGTCCTAGCCATACACAGA -ACGGAAGTCCTAGCCATAGCAAGA -ACGGAAGTCCTAGCCATAGGTTGA -ACGGAAGTCCTAGCCATATCCGAT -ACGGAAGTCCTAGCCATATGGCAT -ACGGAAGTCCTAGCCATACGAGAT -ACGGAAGTCCTAGCCATATACCAC -ACGGAAGTCCTAGCCATACAGAAC -ACGGAAGTCCTAGCCATAGTCTAC -ACGGAAGTCCTAGCCATAACGTAC -ACGGAAGTCCTAGCCATAAGTGAC -ACGGAAGTCCTAGCCATACTGTAG -ACGGAAGTCCTAGCCATACCTAAG -ACGGAAGTCCTAGCCATAGTTCAG -ACGGAAGTCCTAGCCATAGCATAG -ACGGAAGTCCTAGCCATAGACAAG -ACGGAAGTCCTAGCCATAAAGCAG -ACGGAAGTCCTAGCCATACGTCAA -ACGGAAGTCCTAGCCATAGCTGAA -ACGGAAGTCCTAGCCATAAGTACG -ACGGAAGTCCTAGCCATAATCCGA -ACGGAAGTCCTAGCCATAATGGGA -ACGGAAGTCCTAGCCATAGTGCAA -ACGGAAGTCCTAGCCATAGAGGAA -ACGGAAGTCCTAGCCATACAGGTA -ACGGAAGTCCTAGCCATAGACTCT -ACGGAAGTCCTAGCCATAAGTCCT -ACGGAAGTCCTAGCCATATAAGCC -ACGGAAGTCCTAGCCATAATAGCC -ACGGAAGTCCTAGCCATATAACCG -ACGGAAGTCCTAGCCATAATGCCA -ACGGAAGTCCTACCGTAAGGAAAC -ACGGAAGTCCTACCGTAAAACACC -ACGGAAGTCCTACCGTAAATCGAG -ACGGAAGTCCTACCGTAACTCCTT -ACGGAAGTCCTACCGTAACCTGTT -ACGGAAGTCCTACCGTAACGGTTT -ACGGAAGTCCTACCGTAAGTGGTT -ACGGAAGTCCTACCGTAAGCCTTT -ACGGAAGTCCTACCGTAAGGTCTT -ACGGAAGTCCTACCGTAAACGCTT -ACGGAAGTCCTACCGTAAAGCGTT -ACGGAAGTCCTACCGTAATTCGTC -ACGGAAGTCCTACCGTAATCTCTC -ACGGAAGTCCTACCGTAATGGATC -ACGGAAGTCCTACCGTAACACTTC -ACGGAAGTCCTACCGTAAGTACTC -ACGGAAGTCCTACCGTAAGATGTC -ACGGAAGTCCTACCGTAAACAGTC -ACGGAAGTCCTACCGTAATTGCTG -ACGGAAGTCCTACCGTAATCCATG -ACGGAAGTCCTACCGTAATGTGTG -ACGGAAGTCCTACCGTAACTAGTG -ACGGAAGTCCTACCGTAACATCTG -ACGGAAGTCCTACCGTAAGAGTTG -ACGGAAGTCCTACCGTAAAGACTG -ACGGAAGTCCTACCGTAATCGGTA -ACGGAAGTCCTACCGTAATGCCTA -ACGGAAGTCCTACCGTAACCACTA -ACGGAAGTCCTACCGTAAGGAGTA -ACGGAAGTCCTACCGTAATCGTCT -ACGGAAGTCCTACCGTAATGCACT -ACGGAAGTCCTACCGTAACTGACT -ACGGAAGTCCTACCGTAACAACCT -ACGGAAGTCCTACCGTAAGCTACT -ACGGAAGTCCTACCGTAAGGATCT -ACGGAAGTCCTACCGTAAAAGGCT -ACGGAAGTCCTACCGTAATCAACC -ACGGAAGTCCTACCGTAATGTTCC -ACGGAAGTCCTACCGTAAATTCCC -ACGGAAGTCCTACCGTAATTCTCG -ACGGAAGTCCTACCGTAATAGACG -ACGGAAGTCCTACCGTAAGTAACG -ACGGAAGTCCTACCGTAAACTTCG -ACGGAAGTCCTACCGTAATACGCA -ACGGAAGTCCTACCGTAACTTGCA -ACGGAAGTCCTACCGTAACGAACA -ACGGAAGTCCTACCGTAACAGTCA -ACGGAAGTCCTACCGTAAGATCCA -ACGGAAGTCCTACCGTAAACGACA -ACGGAAGTCCTACCGTAAAGCTCA -ACGGAAGTCCTACCGTAATCACGT -ACGGAAGTCCTACCGTAACGTAGT -ACGGAAGTCCTACCGTAAGTCAGT -ACGGAAGTCCTACCGTAAGAAGGT -ACGGAAGTCCTACCGTAAAACCGT -ACGGAAGTCCTACCGTAATTGTGC -ACGGAAGTCCTACCGTAACTAAGC -ACGGAAGTCCTACCGTAAACTAGC -ACGGAAGTCCTACCGTAAAGATGC -ACGGAAGTCCTACCGTAATGAAGG -ACGGAAGTCCTACCGTAACAATGG -ACGGAAGTCCTACCGTAAATGAGG -ACGGAAGTCCTACCGTAAAATGGG -ACGGAAGTCCTACCGTAATCCTGA -ACGGAAGTCCTACCGTAATAGCGA -ACGGAAGTCCTACCGTAACACAGA -ACGGAAGTCCTACCGTAAGCAAGA -ACGGAAGTCCTACCGTAAGGTTGA -ACGGAAGTCCTACCGTAATCCGAT -ACGGAAGTCCTACCGTAATGGCAT -ACGGAAGTCCTACCGTAACGAGAT -ACGGAAGTCCTACCGTAATACCAC -ACGGAAGTCCTACCGTAACAGAAC -ACGGAAGTCCTACCGTAAGTCTAC -ACGGAAGTCCTACCGTAAACGTAC -ACGGAAGTCCTACCGTAAAGTGAC -ACGGAAGTCCTACCGTAACTGTAG -ACGGAAGTCCTACCGTAACCTAAG -ACGGAAGTCCTACCGTAAGTTCAG -ACGGAAGTCCTACCGTAAGCATAG -ACGGAAGTCCTACCGTAAGACAAG -ACGGAAGTCCTACCGTAAAAGCAG -ACGGAAGTCCTACCGTAACGTCAA -ACGGAAGTCCTACCGTAAGCTGAA -ACGGAAGTCCTACCGTAAAGTACG -ACGGAAGTCCTACCGTAAATCCGA -ACGGAAGTCCTACCGTAAATGGGA -ACGGAAGTCCTACCGTAAGTGCAA -ACGGAAGTCCTACCGTAAGAGGAA -ACGGAAGTCCTACCGTAACAGGTA -ACGGAAGTCCTACCGTAAGACTCT -ACGGAAGTCCTACCGTAAAGTCCT -ACGGAAGTCCTACCGTAATAAGCC -ACGGAAGTCCTACCGTAAATAGCC -ACGGAAGTCCTACCGTAATAACCG -ACGGAAGTCCTACCGTAAATGCCA -ACGGAAGTCCTACCAATGGGAAAC -ACGGAAGTCCTACCAATGAACACC -ACGGAAGTCCTACCAATGATCGAG -ACGGAAGTCCTACCAATGCTCCTT -ACGGAAGTCCTACCAATGCCTGTT -ACGGAAGTCCTACCAATGCGGTTT -ACGGAAGTCCTACCAATGGTGGTT -ACGGAAGTCCTACCAATGGCCTTT -ACGGAAGTCCTACCAATGGGTCTT -ACGGAAGTCCTACCAATGACGCTT -ACGGAAGTCCTACCAATGAGCGTT -ACGGAAGTCCTACCAATGTTCGTC -ACGGAAGTCCTACCAATGTCTCTC -ACGGAAGTCCTACCAATGTGGATC -ACGGAAGTCCTACCAATGCACTTC -ACGGAAGTCCTACCAATGGTACTC -ACGGAAGTCCTACCAATGGATGTC -ACGGAAGTCCTACCAATGACAGTC -ACGGAAGTCCTACCAATGTTGCTG -ACGGAAGTCCTACCAATGTCCATG -ACGGAAGTCCTACCAATGTGTGTG -ACGGAAGTCCTACCAATGCTAGTG -ACGGAAGTCCTACCAATGCATCTG -ACGGAAGTCCTACCAATGGAGTTG -ACGGAAGTCCTACCAATGAGACTG -ACGGAAGTCCTACCAATGTCGGTA -ACGGAAGTCCTACCAATGTGCCTA -ACGGAAGTCCTACCAATGCCACTA -ACGGAAGTCCTACCAATGGGAGTA -ACGGAAGTCCTACCAATGTCGTCT -ACGGAAGTCCTACCAATGTGCACT -ACGGAAGTCCTACCAATGCTGACT -ACGGAAGTCCTACCAATGCAACCT -ACGGAAGTCCTACCAATGGCTACT -ACGGAAGTCCTACCAATGGGATCT -ACGGAAGTCCTACCAATGAAGGCT -ACGGAAGTCCTACCAATGTCAACC -ACGGAAGTCCTACCAATGTGTTCC -ACGGAAGTCCTACCAATGATTCCC -ACGGAAGTCCTACCAATGTTCTCG -ACGGAAGTCCTACCAATGTAGACG -ACGGAAGTCCTACCAATGGTAACG -ACGGAAGTCCTACCAATGACTTCG -ACGGAAGTCCTACCAATGTACGCA -ACGGAAGTCCTACCAATGCTTGCA -ACGGAAGTCCTACCAATGCGAACA -ACGGAAGTCCTACCAATGCAGTCA -ACGGAAGTCCTACCAATGGATCCA -ACGGAAGTCCTACCAATGACGACA -ACGGAAGTCCTACCAATGAGCTCA -ACGGAAGTCCTACCAATGTCACGT -ACGGAAGTCCTACCAATGCGTAGT -ACGGAAGTCCTACCAATGGTCAGT -ACGGAAGTCCTACCAATGGAAGGT -ACGGAAGTCCTACCAATGAACCGT -ACGGAAGTCCTACCAATGTTGTGC -ACGGAAGTCCTACCAATGCTAAGC -ACGGAAGTCCTACCAATGACTAGC -ACGGAAGTCCTACCAATGAGATGC -ACGGAAGTCCTACCAATGTGAAGG -ACGGAAGTCCTACCAATGCAATGG -ACGGAAGTCCTACCAATGATGAGG -ACGGAAGTCCTACCAATGAATGGG -ACGGAAGTCCTACCAATGTCCTGA -ACGGAAGTCCTACCAATGTAGCGA -ACGGAAGTCCTACCAATGCACAGA -ACGGAAGTCCTACCAATGGCAAGA -ACGGAAGTCCTACCAATGGGTTGA -ACGGAAGTCCTACCAATGTCCGAT -ACGGAAGTCCTACCAATGTGGCAT -ACGGAAGTCCTACCAATGCGAGAT -ACGGAAGTCCTACCAATGTACCAC -ACGGAAGTCCTACCAATGCAGAAC -ACGGAAGTCCTACCAATGGTCTAC -ACGGAAGTCCTACCAATGACGTAC -ACGGAAGTCCTACCAATGAGTGAC -ACGGAAGTCCTACCAATGCTGTAG -ACGGAAGTCCTACCAATGCCTAAG -ACGGAAGTCCTACCAATGGTTCAG -ACGGAAGTCCTACCAATGGCATAG -ACGGAAGTCCTACCAATGGACAAG -ACGGAAGTCCTACCAATGAAGCAG -ACGGAAGTCCTACCAATGCGTCAA -ACGGAAGTCCTACCAATGGCTGAA -ACGGAAGTCCTACCAATGAGTACG -ACGGAAGTCCTACCAATGATCCGA -ACGGAAGTCCTACCAATGATGGGA -ACGGAAGTCCTACCAATGGTGCAA -ACGGAAGTCCTACCAATGGAGGAA -ACGGAAGTCCTACCAATGCAGGTA -ACGGAAGTCCTACCAATGGACTCT -ACGGAAGTCCTACCAATGAGTCCT -ACGGAAGTCCTACCAATGTAAGCC -ACGGAAGTCCTACCAATGATAGCC -ACGGAAGTCCTACCAATGTAACCG -ACGGAAGTCCTACCAATGATGCCA -ACGGAAAAGCCTAACGGAGGAAAC -ACGGAAAAGCCTAACGGAAACACC -ACGGAAAAGCCTAACGGAATCGAG -ACGGAAAAGCCTAACGGACTCCTT -ACGGAAAAGCCTAACGGACCTGTT -ACGGAAAAGCCTAACGGACGGTTT -ACGGAAAAGCCTAACGGAGTGGTT -ACGGAAAAGCCTAACGGAGCCTTT -ACGGAAAAGCCTAACGGAGGTCTT -ACGGAAAAGCCTAACGGAACGCTT -ACGGAAAAGCCTAACGGAAGCGTT -ACGGAAAAGCCTAACGGATTCGTC -ACGGAAAAGCCTAACGGATCTCTC -ACGGAAAAGCCTAACGGATGGATC -ACGGAAAAGCCTAACGGACACTTC -ACGGAAAAGCCTAACGGAGTACTC -ACGGAAAAGCCTAACGGAGATGTC -ACGGAAAAGCCTAACGGAACAGTC -ACGGAAAAGCCTAACGGATTGCTG -ACGGAAAAGCCTAACGGATCCATG -ACGGAAAAGCCTAACGGATGTGTG -ACGGAAAAGCCTAACGGACTAGTG -ACGGAAAAGCCTAACGGACATCTG -ACGGAAAAGCCTAACGGAGAGTTG -ACGGAAAAGCCTAACGGAAGACTG -ACGGAAAAGCCTAACGGATCGGTA -ACGGAAAAGCCTAACGGATGCCTA -ACGGAAAAGCCTAACGGACCACTA -ACGGAAAAGCCTAACGGAGGAGTA -ACGGAAAAGCCTAACGGATCGTCT -ACGGAAAAGCCTAACGGATGCACT -ACGGAAAAGCCTAACGGACTGACT -ACGGAAAAGCCTAACGGACAACCT -ACGGAAAAGCCTAACGGAGCTACT -ACGGAAAAGCCTAACGGAGGATCT -ACGGAAAAGCCTAACGGAAAGGCT -ACGGAAAAGCCTAACGGATCAACC -ACGGAAAAGCCTAACGGATGTTCC -ACGGAAAAGCCTAACGGAATTCCC -ACGGAAAAGCCTAACGGATTCTCG -ACGGAAAAGCCTAACGGATAGACG -ACGGAAAAGCCTAACGGAGTAACG -ACGGAAAAGCCTAACGGAACTTCG -ACGGAAAAGCCTAACGGATACGCA -ACGGAAAAGCCTAACGGACTTGCA -ACGGAAAAGCCTAACGGACGAACA -ACGGAAAAGCCTAACGGACAGTCA -ACGGAAAAGCCTAACGGAGATCCA -ACGGAAAAGCCTAACGGAACGACA -ACGGAAAAGCCTAACGGAAGCTCA -ACGGAAAAGCCTAACGGATCACGT -ACGGAAAAGCCTAACGGACGTAGT -ACGGAAAAGCCTAACGGAGTCAGT -ACGGAAAAGCCTAACGGAGAAGGT -ACGGAAAAGCCTAACGGAAACCGT -ACGGAAAAGCCTAACGGATTGTGC -ACGGAAAAGCCTAACGGACTAAGC -ACGGAAAAGCCTAACGGAACTAGC -ACGGAAAAGCCTAACGGAAGATGC -ACGGAAAAGCCTAACGGATGAAGG -ACGGAAAAGCCTAACGGACAATGG -ACGGAAAAGCCTAACGGAATGAGG -ACGGAAAAGCCTAACGGAAATGGG -ACGGAAAAGCCTAACGGATCCTGA -ACGGAAAAGCCTAACGGATAGCGA -ACGGAAAAGCCTAACGGACACAGA -ACGGAAAAGCCTAACGGAGCAAGA -ACGGAAAAGCCTAACGGAGGTTGA -ACGGAAAAGCCTAACGGATCCGAT -ACGGAAAAGCCTAACGGATGGCAT -ACGGAAAAGCCTAACGGACGAGAT -ACGGAAAAGCCTAACGGATACCAC -ACGGAAAAGCCTAACGGACAGAAC -ACGGAAAAGCCTAACGGAGTCTAC -ACGGAAAAGCCTAACGGAACGTAC -ACGGAAAAGCCTAACGGAAGTGAC -ACGGAAAAGCCTAACGGACTGTAG -ACGGAAAAGCCTAACGGACCTAAG -ACGGAAAAGCCTAACGGAGTTCAG -ACGGAAAAGCCTAACGGAGCATAG -ACGGAAAAGCCTAACGGAGACAAG -ACGGAAAAGCCTAACGGAAAGCAG -ACGGAAAAGCCTAACGGACGTCAA -ACGGAAAAGCCTAACGGAGCTGAA -ACGGAAAAGCCTAACGGAAGTACG -ACGGAAAAGCCTAACGGAATCCGA -ACGGAAAAGCCTAACGGAATGGGA -ACGGAAAAGCCTAACGGAGTGCAA -ACGGAAAAGCCTAACGGAGAGGAA -ACGGAAAAGCCTAACGGACAGGTA -ACGGAAAAGCCTAACGGAGACTCT -ACGGAAAAGCCTAACGGAAGTCCT -ACGGAAAAGCCTAACGGATAAGCC -ACGGAAAAGCCTAACGGAATAGCC -ACGGAAAAGCCTAACGGATAACCG -ACGGAAAAGCCTAACGGAATGCCA -ACGGAAAAGCCTACCAACGGAAAC -ACGGAAAAGCCTACCAACAACACC -ACGGAAAAGCCTACCAACATCGAG -ACGGAAAAGCCTACCAACCTCCTT -ACGGAAAAGCCTACCAACCCTGTT -ACGGAAAAGCCTACCAACCGGTTT -ACGGAAAAGCCTACCAACGTGGTT -ACGGAAAAGCCTACCAACGCCTTT -ACGGAAAAGCCTACCAACGGTCTT -ACGGAAAAGCCTACCAACACGCTT -ACGGAAAAGCCTACCAACAGCGTT -ACGGAAAAGCCTACCAACTTCGTC -ACGGAAAAGCCTACCAACTCTCTC -ACGGAAAAGCCTACCAACTGGATC -ACGGAAAAGCCTACCAACCACTTC -ACGGAAAAGCCTACCAACGTACTC -ACGGAAAAGCCTACCAACGATGTC -ACGGAAAAGCCTACCAACACAGTC -ACGGAAAAGCCTACCAACTTGCTG -ACGGAAAAGCCTACCAACTCCATG -ACGGAAAAGCCTACCAACTGTGTG -ACGGAAAAGCCTACCAACCTAGTG -ACGGAAAAGCCTACCAACCATCTG -ACGGAAAAGCCTACCAACGAGTTG -ACGGAAAAGCCTACCAACAGACTG -ACGGAAAAGCCTACCAACTCGGTA -ACGGAAAAGCCTACCAACTGCCTA -ACGGAAAAGCCTACCAACCCACTA -ACGGAAAAGCCTACCAACGGAGTA -ACGGAAAAGCCTACCAACTCGTCT -ACGGAAAAGCCTACCAACTGCACT -ACGGAAAAGCCTACCAACCTGACT -ACGGAAAAGCCTACCAACCAACCT -ACGGAAAAGCCTACCAACGCTACT -ACGGAAAAGCCTACCAACGGATCT -ACGGAAAAGCCTACCAACAAGGCT -ACGGAAAAGCCTACCAACTCAACC -ACGGAAAAGCCTACCAACTGTTCC -ACGGAAAAGCCTACCAACATTCCC -ACGGAAAAGCCTACCAACTTCTCG -ACGGAAAAGCCTACCAACTAGACG -ACGGAAAAGCCTACCAACGTAACG -ACGGAAAAGCCTACCAACACTTCG -ACGGAAAAGCCTACCAACTACGCA -ACGGAAAAGCCTACCAACCTTGCA -ACGGAAAAGCCTACCAACCGAACA -ACGGAAAAGCCTACCAACCAGTCA -ACGGAAAAGCCTACCAACGATCCA -ACGGAAAAGCCTACCAACACGACA -ACGGAAAAGCCTACCAACAGCTCA -ACGGAAAAGCCTACCAACTCACGT -ACGGAAAAGCCTACCAACCGTAGT -ACGGAAAAGCCTACCAACGTCAGT -ACGGAAAAGCCTACCAACGAAGGT -ACGGAAAAGCCTACCAACAACCGT -ACGGAAAAGCCTACCAACTTGTGC -ACGGAAAAGCCTACCAACCTAAGC -ACGGAAAAGCCTACCAACACTAGC -ACGGAAAAGCCTACCAACAGATGC -ACGGAAAAGCCTACCAACTGAAGG -ACGGAAAAGCCTACCAACCAATGG -ACGGAAAAGCCTACCAACATGAGG -ACGGAAAAGCCTACCAACAATGGG -ACGGAAAAGCCTACCAACTCCTGA -ACGGAAAAGCCTACCAACTAGCGA -ACGGAAAAGCCTACCAACCACAGA -ACGGAAAAGCCTACCAACGCAAGA -ACGGAAAAGCCTACCAACGGTTGA -ACGGAAAAGCCTACCAACTCCGAT -ACGGAAAAGCCTACCAACTGGCAT -ACGGAAAAGCCTACCAACCGAGAT -ACGGAAAAGCCTACCAACTACCAC -ACGGAAAAGCCTACCAACCAGAAC -ACGGAAAAGCCTACCAACGTCTAC -ACGGAAAAGCCTACCAACACGTAC -ACGGAAAAGCCTACCAACAGTGAC -ACGGAAAAGCCTACCAACCTGTAG -ACGGAAAAGCCTACCAACCCTAAG -ACGGAAAAGCCTACCAACGTTCAG -ACGGAAAAGCCTACCAACGCATAG -ACGGAAAAGCCTACCAACGACAAG -ACGGAAAAGCCTACCAACAAGCAG -ACGGAAAAGCCTACCAACCGTCAA -ACGGAAAAGCCTACCAACGCTGAA -ACGGAAAAGCCTACCAACAGTACG -ACGGAAAAGCCTACCAACATCCGA -ACGGAAAAGCCTACCAACATGGGA -ACGGAAAAGCCTACCAACGTGCAA -ACGGAAAAGCCTACCAACGAGGAA -ACGGAAAAGCCTACCAACCAGGTA -ACGGAAAAGCCTACCAACGACTCT -ACGGAAAAGCCTACCAACAGTCCT -ACGGAAAAGCCTACCAACTAAGCC -ACGGAAAAGCCTACCAACATAGCC -ACGGAAAAGCCTACCAACTAACCG -ACGGAAAAGCCTACCAACATGCCA -ACGGAAAAGCCTGAGATCGGAAAC -ACGGAAAAGCCTGAGATCAACACC -ACGGAAAAGCCTGAGATCATCGAG -ACGGAAAAGCCTGAGATCCTCCTT -ACGGAAAAGCCTGAGATCCCTGTT -ACGGAAAAGCCTGAGATCCGGTTT -ACGGAAAAGCCTGAGATCGTGGTT -ACGGAAAAGCCTGAGATCGCCTTT -ACGGAAAAGCCTGAGATCGGTCTT -ACGGAAAAGCCTGAGATCACGCTT -ACGGAAAAGCCTGAGATCAGCGTT -ACGGAAAAGCCTGAGATCTTCGTC -ACGGAAAAGCCTGAGATCTCTCTC -ACGGAAAAGCCTGAGATCTGGATC -ACGGAAAAGCCTGAGATCCACTTC -ACGGAAAAGCCTGAGATCGTACTC -ACGGAAAAGCCTGAGATCGATGTC -ACGGAAAAGCCTGAGATCACAGTC -ACGGAAAAGCCTGAGATCTTGCTG -ACGGAAAAGCCTGAGATCTCCATG -ACGGAAAAGCCTGAGATCTGTGTG -ACGGAAAAGCCTGAGATCCTAGTG -ACGGAAAAGCCTGAGATCCATCTG -ACGGAAAAGCCTGAGATCGAGTTG -ACGGAAAAGCCTGAGATCAGACTG -ACGGAAAAGCCTGAGATCTCGGTA -ACGGAAAAGCCTGAGATCTGCCTA -ACGGAAAAGCCTGAGATCCCACTA -ACGGAAAAGCCTGAGATCGGAGTA -ACGGAAAAGCCTGAGATCTCGTCT -ACGGAAAAGCCTGAGATCTGCACT -ACGGAAAAGCCTGAGATCCTGACT -ACGGAAAAGCCTGAGATCCAACCT -ACGGAAAAGCCTGAGATCGCTACT -ACGGAAAAGCCTGAGATCGGATCT -ACGGAAAAGCCTGAGATCAAGGCT -ACGGAAAAGCCTGAGATCTCAACC -ACGGAAAAGCCTGAGATCTGTTCC -ACGGAAAAGCCTGAGATCATTCCC -ACGGAAAAGCCTGAGATCTTCTCG -ACGGAAAAGCCTGAGATCTAGACG -ACGGAAAAGCCTGAGATCGTAACG -ACGGAAAAGCCTGAGATCACTTCG -ACGGAAAAGCCTGAGATCTACGCA -ACGGAAAAGCCTGAGATCCTTGCA -ACGGAAAAGCCTGAGATCCGAACA -ACGGAAAAGCCTGAGATCCAGTCA -ACGGAAAAGCCTGAGATCGATCCA -ACGGAAAAGCCTGAGATCACGACA -ACGGAAAAGCCTGAGATCAGCTCA -ACGGAAAAGCCTGAGATCTCACGT -ACGGAAAAGCCTGAGATCCGTAGT -ACGGAAAAGCCTGAGATCGTCAGT -ACGGAAAAGCCTGAGATCGAAGGT -ACGGAAAAGCCTGAGATCAACCGT -ACGGAAAAGCCTGAGATCTTGTGC -ACGGAAAAGCCTGAGATCCTAAGC -ACGGAAAAGCCTGAGATCACTAGC -ACGGAAAAGCCTGAGATCAGATGC -ACGGAAAAGCCTGAGATCTGAAGG -ACGGAAAAGCCTGAGATCCAATGG -ACGGAAAAGCCTGAGATCATGAGG -ACGGAAAAGCCTGAGATCAATGGG -ACGGAAAAGCCTGAGATCTCCTGA -ACGGAAAAGCCTGAGATCTAGCGA -ACGGAAAAGCCTGAGATCCACAGA -ACGGAAAAGCCTGAGATCGCAAGA -ACGGAAAAGCCTGAGATCGGTTGA -ACGGAAAAGCCTGAGATCTCCGAT -ACGGAAAAGCCTGAGATCTGGCAT -ACGGAAAAGCCTGAGATCCGAGAT -ACGGAAAAGCCTGAGATCTACCAC -ACGGAAAAGCCTGAGATCCAGAAC -ACGGAAAAGCCTGAGATCGTCTAC -ACGGAAAAGCCTGAGATCACGTAC -ACGGAAAAGCCTGAGATCAGTGAC -ACGGAAAAGCCTGAGATCCTGTAG -ACGGAAAAGCCTGAGATCCCTAAG -ACGGAAAAGCCTGAGATCGTTCAG -ACGGAAAAGCCTGAGATCGCATAG -ACGGAAAAGCCTGAGATCGACAAG -ACGGAAAAGCCTGAGATCAAGCAG -ACGGAAAAGCCTGAGATCCGTCAA -ACGGAAAAGCCTGAGATCGCTGAA -ACGGAAAAGCCTGAGATCAGTACG -ACGGAAAAGCCTGAGATCATCCGA -ACGGAAAAGCCTGAGATCATGGGA -ACGGAAAAGCCTGAGATCGTGCAA -ACGGAAAAGCCTGAGATCGAGGAA -ACGGAAAAGCCTGAGATCCAGGTA -ACGGAAAAGCCTGAGATCGACTCT -ACGGAAAAGCCTGAGATCAGTCCT -ACGGAAAAGCCTGAGATCTAAGCC -ACGGAAAAGCCTGAGATCATAGCC -ACGGAAAAGCCTGAGATCTAACCG -ACGGAAAAGCCTGAGATCATGCCA -ACGGAAAAGCCTCTTCTCGGAAAC -ACGGAAAAGCCTCTTCTCAACACC -ACGGAAAAGCCTCTTCTCATCGAG -ACGGAAAAGCCTCTTCTCCTCCTT -ACGGAAAAGCCTCTTCTCCCTGTT -ACGGAAAAGCCTCTTCTCCGGTTT -ACGGAAAAGCCTCTTCTCGTGGTT -ACGGAAAAGCCTCTTCTCGCCTTT -ACGGAAAAGCCTCTTCTCGGTCTT -ACGGAAAAGCCTCTTCTCACGCTT -ACGGAAAAGCCTCTTCTCAGCGTT -ACGGAAAAGCCTCTTCTCTTCGTC -ACGGAAAAGCCTCTTCTCTCTCTC -ACGGAAAAGCCTCTTCTCTGGATC -ACGGAAAAGCCTCTTCTCCACTTC -ACGGAAAAGCCTCTTCTCGTACTC -ACGGAAAAGCCTCTTCTCGATGTC -ACGGAAAAGCCTCTTCTCACAGTC -ACGGAAAAGCCTCTTCTCTTGCTG -ACGGAAAAGCCTCTTCTCTCCATG -ACGGAAAAGCCTCTTCTCTGTGTG -ACGGAAAAGCCTCTTCTCCTAGTG -ACGGAAAAGCCTCTTCTCCATCTG -ACGGAAAAGCCTCTTCTCGAGTTG -ACGGAAAAGCCTCTTCTCAGACTG -ACGGAAAAGCCTCTTCTCTCGGTA -ACGGAAAAGCCTCTTCTCTGCCTA -ACGGAAAAGCCTCTTCTCCCACTA -ACGGAAAAGCCTCTTCTCGGAGTA -ACGGAAAAGCCTCTTCTCTCGTCT -ACGGAAAAGCCTCTTCTCTGCACT -ACGGAAAAGCCTCTTCTCCTGACT -ACGGAAAAGCCTCTTCTCCAACCT -ACGGAAAAGCCTCTTCTCGCTACT -ACGGAAAAGCCTCTTCTCGGATCT -ACGGAAAAGCCTCTTCTCAAGGCT -ACGGAAAAGCCTCTTCTCTCAACC -ACGGAAAAGCCTCTTCTCTGTTCC -ACGGAAAAGCCTCTTCTCATTCCC -ACGGAAAAGCCTCTTCTCTTCTCG -ACGGAAAAGCCTCTTCTCTAGACG -ACGGAAAAGCCTCTTCTCGTAACG -ACGGAAAAGCCTCTTCTCACTTCG -ACGGAAAAGCCTCTTCTCTACGCA -ACGGAAAAGCCTCTTCTCCTTGCA -ACGGAAAAGCCTCTTCTCCGAACA -ACGGAAAAGCCTCTTCTCCAGTCA -ACGGAAAAGCCTCTTCTCGATCCA -ACGGAAAAGCCTCTTCTCACGACA -ACGGAAAAGCCTCTTCTCAGCTCA -ACGGAAAAGCCTCTTCTCTCACGT -ACGGAAAAGCCTCTTCTCCGTAGT -ACGGAAAAGCCTCTTCTCGTCAGT -ACGGAAAAGCCTCTTCTCGAAGGT -ACGGAAAAGCCTCTTCTCAACCGT -ACGGAAAAGCCTCTTCTCTTGTGC -ACGGAAAAGCCTCTTCTCCTAAGC -ACGGAAAAGCCTCTTCTCACTAGC -ACGGAAAAGCCTCTTCTCAGATGC -ACGGAAAAGCCTCTTCTCTGAAGG -ACGGAAAAGCCTCTTCTCCAATGG -ACGGAAAAGCCTCTTCTCATGAGG -ACGGAAAAGCCTCTTCTCAATGGG -ACGGAAAAGCCTCTTCTCTCCTGA -ACGGAAAAGCCTCTTCTCTAGCGA -ACGGAAAAGCCTCTTCTCCACAGA -ACGGAAAAGCCTCTTCTCGCAAGA -ACGGAAAAGCCTCTTCTCGGTTGA -ACGGAAAAGCCTCTTCTCTCCGAT -ACGGAAAAGCCTCTTCTCTGGCAT -ACGGAAAAGCCTCTTCTCCGAGAT -ACGGAAAAGCCTCTTCTCTACCAC -ACGGAAAAGCCTCTTCTCCAGAAC -ACGGAAAAGCCTCTTCTCGTCTAC -ACGGAAAAGCCTCTTCTCACGTAC -ACGGAAAAGCCTCTTCTCAGTGAC -ACGGAAAAGCCTCTTCTCCTGTAG -ACGGAAAAGCCTCTTCTCCCTAAG -ACGGAAAAGCCTCTTCTCGTTCAG -ACGGAAAAGCCTCTTCTCGCATAG -ACGGAAAAGCCTCTTCTCGACAAG -ACGGAAAAGCCTCTTCTCAAGCAG -ACGGAAAAGCCTCTTCTCCGTCAA -ACGGAAAAGCCTCTTCTCGCTGAA -ACGGAAAAGCCTCTTCTCAGTACG -ACGGAAAAGCCTCTTCTCATCCGA -ACGGAAAAGCCTCTTCTCATGGGA -ACGGAAAAGCCTCTTCTCGTGCAA -ACGGAAAAGCCTCTTCTCGAGGAA -ACGGAAAAGCCTCTTCTCCAGGTA -ACGGAAAAGCCTCTTCTCGACTCT -ACGGAAAAGCCTCTTCTCAGTCCT -ACGGAAAAGCCTCTTCTCTAAGCC -ACGGAAAAGCCTCTTCTCATAGCC -ACGGAAAAGCCTCTTCTCTAACCG -ACGGAAAAGCCTCTTCTCATGCCA -ACGGAAAAGCCTGTTCCTGGAAAC -ACGGAAAAGCCTGTTCCTAACACC -ACGGAAAAGCCTGTTCCTATCGAG -ACGGAAAAGCCTGTTCCTCTCCTT -ACGGAAAAGCCTGTTCCTCCTGTT -ACGGAAAAGCCTGTTCCTCGGTTT -ACGGAAAAGCCTGTTCCTGTGGTT -ACGGAAAAGCCTGTTCCTGCCTTT -ACGGAAAAGCCTGTTCCTGGTCTT -ACGGAAAAGCCTGTTCCTACGCTT -ACGGAAAAGCCTGTTCCTAGCGTT -ACGGAAAAGCCTGTTCCTTTCGTC -ACGGAAAAGCCTGTTCCTTCTCTC -ACGGAAAAGCCTGTTCCTTGGATC -ACGGAAAAGCCTGTTCCTCACTTC -ACGGAAAAGCCTGTTCCTGTACTC -ACGGAAAAGCCTGTTCCTGATGTC -ACGGAAAAGCCTGTTCCTACAGTC -ACGGAAAAGCCTGTTCCTTTGCTG -ACGGAAAAGCCTGTTCCTTCCATG -ACGGAAAAGCCTGTTCCTTGTGTG -ACGGAAAAGCCTGTTCCTCTAGTG -ACGGAAAAGCCTGTTCCTCATCTG -ACGGAAAAGCCTGTTCCTGAGTTG -ACGGAAAAGCCTGTTCCTAGACTG -ACGGAAAAGCCTGTTCCTTCGGTA -ACGGAAAAGCCTGTTCCTTGCCTA -ACGGAAAAGCCTGTTCCTCCACTA -ACGGAAAAGCCTGTTCCTGGAGTA -ACGGAAAAGCCTGTTCCTTCGTCT -ACGGAAAAGCCTGTTCCTTGCACT -ACGGAAAAGCCTGTTCCTCTGACT -ACGGAAAAGCCTGTTCCTCAACCT -ACGGAAAAGCCTGTTCCTGCTACT -ACGGAAAAGCCTGTTCCTGGATCT -ACGGAAAAGCCTGTTCCTAAGGCT -ACGGAAAAGCCTGTTCCTTCAACC -ACGGAAAAGCCTGTTCCTTGTTCC -ACGGAAAAGCCTGTTCCTATTCCC -ACGGAAAAGCCTGTTCCTTTCTCG -ACGGAAAAGCCTGTTCCTTAGACG -ACGGAAAAGCCTGTTCCTGTAACG -ACGGAAAAGCCTGTTCCTACTTCG -ACGGAAAAGCCTGTTCCTTACGCA -ACGGAAAAGCCTGTTCCTCTTGCA -ACGGAAAAGCCTGTTCCTCGAACA -ACGGAAAAGCCTGTTCCTCAGTCA -ACGGAAAAGCCTGTTCCTGATCCA -ACGGAAAAGCCTGTTCCTACGACA -ACGGAAAAGCCTGTTCCTAGCTCA -ACGGAAAAGCCTGTTCCTTCACGT -ACGGAAAAGCCTGTTCCTCGTAGT -ACGGAAAAGCCTGTTCCTGTCAGT -ACGGAAAAGCCTGTTCCTGAAGGT -ACGGAAAAGCCTGTTCCTAACCGT -ACGGAAAAGCCTGTTCCTTTGTGC -ACGGAAAAGCCTGTTCCTCTAAGC -ACGGAAAAGCCTGTTCCTACTAGC -ACGGAAAAGCCTGTTCCTAGATGC -ACGGAAAAGCCTGTTCCTTGAAGG -ACGGAAAAGCCTGTTCCTCAATGG -ACGGAAAAGCCTGTTCCTATGAGG -ACGGAAAAGCCTGTTCCTAATGGG -ACGGAAAAGCCTGTTCCTTCCTGA -ACGGAAAAGCCTGTTCCTTAGCGA -ACGGAAAAGCCTGTTCCTCACAGA -ACGGAAAAGCCTGTTCCTGCAAGA -ACGGAAAAGCCTGTTCCTGGTTGA -ACGGAAAAGCCTGTTCCTTCCGAT -ACGGAAAAGCCTGTTCCTTGGCAT -ACGGAAAAGCCTGTTCCTCGAGAT -ACGGAAAAGCCTGTTCCTTACCAC -ACGGAAAAGCCTGTTCCTCAGAAC -ACGGAAAAGCCTGTTCCTGTCTAC -ACGGAAAAGCCTGTTCCTACGTAC -ACGGAAAAGCCTGTTCCTAGTGAC -ACGGAAAAGCCTGTTCCTCTGTAG -ACGGAAAAGCCTGTTCCTCCTAAG -ACGGAAAAGCCTGTTCCTGTTCAG -ACGGAAAAGCCTGTTCCTGCATAG -ACGGAAAAGCCTGTTCCTGACAAG -ACGGAAAAGCCTGTTCCTAAGCAG -ACGGAAAAGCCTGTTCCTCGTCAA -ACGGAAAAGCCTGTTCCTGCTGAA -ACGGAAAAGCCTGTTCCTAGTACG -ACGGAAAAGCCTGTTCCTATCCGA -ACGGAAAAGCCTGTTCCTATGGGA -ACGGAAAAGCCTGTTCCTGTGCAA -ACGGAAAAGCCTGTTCCTGAGGAA -ACGGAAAAGCCTGTTCCTCAGGTA -ACGGAAAAGCCTGTTCCTGACTCT -ACGGAAAAGCCTGTTCCTAGTCCT -ACGGAAAAGCCTGTTCCTTAAGCC -ACGGAAAAGCCTGTTCCTATAGCC -ACGGAAAAGCCTGTTCCTTAACCG -ACGGAAAAGCCTGTTCCTATGCCA -ACGGAAAAGCCTTTTCGGGGAAAC -ACGGAAAAGCCTTTTCGGAACACC -ACGGAAAAGCCTTTTCGGATCGAG -ACGGAAAAGCCTTTTCGGCTCCTT -ACGGAAAAGCCTTTTCGGCCTGTT -ACGGAAAAGCCTTTTCGGCGGTTT -ACGGAAAAGCCTTTTCGGGTGGTT -ACGGAAAAGCCTTTTCGGGCCTTT -ACGGAAAAGCCTTTTCGGGGTCTT -ACGGAAAAGCCTTTTCGGACGCTT -ACGGAAAAGCCTTTTCGGAGCGTT -ACGGAAAAGCCTTTTCGGTTCGTC -ACGGAAAAGCCTTTTCGGTCTCTC -ACGGAAAAGCCTTTTCGGTGGATC -ACGGAAAAGCCTTTTCGGCACTTC -ACGGAAAAGCCTTTTCGGGTACTC -ACGGAAAAGCCTTTTCGGGATGTC -ACGGAAAAGCCTTTTCGGACAGTC -ACGGAAAAGCCTTTTCGGTTGCTG -ACGGAAAAGCCTTTTCGGTCCATG -ACGGAAAAGCCTTTTCGGTGTGTG -ACGGAAAAGCCTTTTCGGCTAGTG -ACGGAAAAGCCTTTTCGGCATCTG -ACGGAAAAGCCTTTTCGGGAGTTG -ACGGAAAAGCCTTTTCGGAGACTG -ACGGAAAAGCCTTTTCGGTCGGTA -ACGGAAAAGCCTTTTCGGTGCCTA -ACGGAAAAGCCTTTTCGGCCACTA -ACGGAAAAGCCTTTTCGGGGAGTA -ACGGAAAAGCCTTTTCGGTCGTCT -ACGGAAAAGCCTTTTCGGTGCACT -ACGGAAAAGCCTTTTCGGCTGACT -ACGGAAAAGCCTTTTCGGCAACCT -ACGGAAAAGCCTTTTCGGGCTACT -ACGGAAAAGCCTTTTCGGGGATCT -ACGGAAAAGCCTTTTCGGAAGGCT -ACGGAAAAGCCTTTTCGGTCAACC -ACGGAAAAGCCTTTTCGGTGTTCC -ACGGAAAAGCCTTTTCGGATTCCC -ACGGAAAAGCCTTTTCGGTTCTCG -ACGGAAAAGCCTTTTCGGTAGACG -ACGGAAAAGCCTTTTCGGGTAACG -ACGGAAAAGCCTTTTCGGACTTCG -ACGGAAAAGCCTTTTCGGTACGCA -ACGGAAAAGCCTTTTCGGCTTGCA -ACGGAAAAGCCTTTTCGGCGAACA -ACGGAAAAGCCTTTTCGGCAGTCA -ACGGAAAAGCCTTTTCGGGATCCA -ACGGAAAAGCCTTTTCGGACGACA -ACGGAAAAGCCTTTTCGGAGCTCA -ACGGAAAAGCCTTTTCGGTCACGT -ACGGAAAAGCCTTTTCGGCGTAGT -ACGGAAAAGCCTTTTCGGGTCAGT -ACGGAAAAGCCTTTTCGGGAAGGT -ACGGAAAAGCCTTTTCGGAACCGT -ACGGAAAAGCCTTTTCGGTTGTGC -ACGGAAAAGCCTTTTCGGCTAAGC -ACGGAAAAGCCTTTTCGGACTAGC -ACGGAAAAGCCTTTTCGGAGATGC -ACGGAAAAGCCTTTTCGGTGAAGG -ACGGAAAAGCCTTTTCGGCAATGG -ACGGAAAAGCCTTTTCGGATGAGG -ACGGAAAAGCCTTTTCGGAATGGG -ACGGAAAAGCCTTTTCGGTCCTGA -ACGGAAAAGCCTTTTCGGTAGCGA -ACGGAAAAGCCTTTTCGGCACAGA -ACGGAAAAGCCTTTTCGGGCAAGA -ACGGAAAAGCCTTTTCGGGGTTGA -ACGGAAAAGCCTTTTCGGTCCGAT -ACGGAAAAGCCTTTTCGGTGGCAT -ACGGAAAAGCCTTTTCGGCGAGAT -ACGGAAAAGCCTTTTCGGTACCAC -ACGGAAAAGCCTTTTCGGCAGAAC -ACGGAAAAGCCTTTTCGGGTCTAC -ACGGAAAAGCCTTTTCGGACGTAC -ACGGAAAAGCCTTTTCGGAGTGAC -ACGGAAAAGCCTTTTCGGCTGTAG -ACGGAAAAGCCTTTTCGGCCTAAG -ACGGAAAAGCCTTTTCGGGTTCAG -ACGGAAAAGCCTTTTCGGGCATAG -ACGGAAAAGCCTTTTCGGGACAAG -ACGGAAAAGCCTTTTCGGAAGCAG -ACGGAAAAGCCTTTTCGGCGTCAA -ACGGAAAAGCCTTTTCGGGCTGAA -ACGGAAAAGCCTTTTCGGAGTACG -ACGGAAAAGCCTTTTCGGATCCGA -ACGGAAAAGCCTTTTCGGATGGGA -ACGGAAAAGCCTTTTCGGGTGCAA -ACGGAAAAGCCTTTTCGGGAGGAA -ACGGAAAAGCCTTTTCGGCAGGTA -ACGGAAAAGCCTTTTCGGGACTCT -ACGGAAAAGCCTTTTCGGAGTCCT -ACGGAAAAGCCTTTTCGGTAAGCC -ACGGAAAAGCCTTTTCGGATAGCC -ACGGAAAAGCCTTTTCGGTAACCG -ACGGAAAAGCCTTTTCGGATGCCA -ACGGAAAAGCCTGTTGTGGGAAAC -ACGGAAAAGCCTGTTGTGAACACC -ACGGAAAAGCCTGTTGTGATCGAG -ACGGAAAAGCCTGTTGTGCTCCTT -ACGGAAAAGCCTGTTGTGCCTGTT -ACGGAAAAGCCTGTTGTGCGGTTT -ACGGAAAAGCCTGTTGTGGTGGTT -ACGGAAAAGCCTGTTGTGGCCTTT -ACGGAAAAGCCTGTTGTGGGTCTT -ACGGAAAAGCCTGTTGTGACGCTT -ACGGAAAAGCCTGTTGTGAGCGTT -ACGGAAAAGCCTGTTGTGTTCGTC -ACGGAAAAGCCTGTTGTGTCTCTC -ACGGAAAAGCCTGTTGTGTGGATC -ACGGAAAAGCCTGTTGTGCACTTC -ACGGAAAAGCCTGTTGTGGTACTC -ACGGAAAAGCCTGTTGTGGATGTC -ACGGAAAAGCCTGTTGTGACAGTC -ACGGAAAAGCCTGTTGTGTTGCTG -ACGGAAAAGCCTGTTGTGTCCATG -ACGGAAAAGCCTGTTGTGTGTGTG -ACGGAAAAGCCTGTTGTGCTAGTG -ACGGAAAAGCCTGTTGTGCATCTG -ACGGAAAAGCCTGTTGTGGAGTTG -ACGGAAAAGCCTGTTGTGAGACTG -ACGGAAAAGCCTGTTGTGTCGGTA -ACGGAAAAGCCTGTTGTGTGCCTA -ACGGAAAAGCCTGTTGTGCCACTA -ACGGAAAAGCCTGTTGTGGGAGTA -ACGGAAAAGCCTGTTGTGTCGTCT -ACGGAAAAGCCTGTTGTGTGCACT -ACGGAAAAGCCTGTTGTGCTGACT -ACGGAAAAGCCTGTTGTGCAACCT -ACGGAAAAGCCTGTTGTGGCTACT -ACGGAAAAGCCTGTTGTGGGATCT -ACGGAAAAGCCTGTTGTGAAGGCT -ACGGAAAAGCCTGTTGTGTCAACC -ACGGAAAAGCCTGTTGTGTGTTCC -ACGGAAAAGCCTGTTGTGATTCCC -ACGGAAAAGCCTGTTGTGTTCTCG -ACGGAAAAGCCTGTTGTGTAGACG -ACGGAAAAGCCTGTTGTGGTAACG -ACGGAAAAGCCTGTTGTGACTTCG -ACGGAAAAGCCTGTTGTGTACGCA -ACGGAAAAGCCTGTTGTGCTTGCA -ACGGAAAAGCCTGTTGTGCGAACA -ACGGAAAAGCCTGTTGTGCAGTCA -ACGGAAAAGCCTGTTGTGGATCCA -ACGGAAAAGCCTGTTGTGACGACA -ACGGAAAAGCCTGTTGTGAGCTCA -ACGGAAAAGCCTGTTGTGTCACGT -ACGGAAAAGCCTGTTGTGCGTAGT -ACGGAAAAGCCTGTTGTGGTCAGT -ACGGAAAAGCCTGTTGTGGAAGGT -ACGGAAAAGCCTGTTGTGAACCGT -ACGGAAAAGCCTGTTGTGTTGTGC -ACGGAAAAGCCTGTTGTGCTAAGC -ACGGAAAAGCCTGTTGTGACTAGC -ACGGAAAAGCCTGTTGTGAGATGC -ACGGAAAAGCCTGTTGTGTGAAGG -ACGGAAAAGCCTGTTGTGCAATGG -ACGGAAAAGCCTGTTGTGATGAGG -ACGGAAAAGCCTGTTGTGAATGGG -ACGGAAAAGCCTGTTGTGTCCTGA -ACGGAAAAGCCTGTTGTGTAGCGA -ACGGAAAAGCCTGTTGTGCACAGA -ACGGAAAAGCCTGTTGTGGCAAGA -ACGGAAAAGCCTGTTGTGGGTTGA -ACGGAAAAGCCTGTTGTGTCCGAT -ACGGAAAAGCCTGTTGTGTGGCAT -ACGGAAAAGCCTGTTGTGCGAGAT -ACGGAAAAGCCTGTTGTGTACCAC -ACGGAAAAGCCTGTTGTGCAGAAC -ACGGAAAAGCCTGTTGTGGTCTAC -ACGGAAAAGCCTGTTGTGACGTAC -ACGGAAAAGCCTGTTGTGAGTGAC -ACGGAAAAGCCTGTTGTGCTGTAG -ACGGAAAAGCCTGTTGTGCCTAAG -ACGGAAAAGCCTGTTGTGGTTCAG -ACGGAAAAGCCTGTTGTGGCATAG -ACGGAAAAGCCTGTTGTGGACAAG -ACGGAAAAGCCTGTTGTGAAGCAG -ACGGAAAAGCCTGTTGTGCGTCAA -ACGGAAAAGCCTGTTGTGGCTGAA -ACGGAAAAGCCTGTTGTGAGTACG -ACGGAAAAGCCTGTTGTGATCCGA -ACGGAAAAGCCTGTTGTGATGGGA -ACGGAAAAGCCTGTTGTGGTGCAA -ACGGAAAAGCCTGTTGTGGAGGAA -ACGGAAAAGCCTGTTGTGCAGGTA -ACGGAAAAGCCTGTTGTGGACTCT -ACGGAAAAGCCTGTTGTGAGTCCT -ACGGAAAAGCCTGTTGTGTAAGCC -ACGGAAAAGCCTGTTGTGATAGCC -ACGGAAAAGCCTGTTGTGTAACCG -ACGGAAAAGCCTGTTGTGATGCCA -ACGGAAAAGCCTTTTGCCGGAAAC -ACGGAAAAGCCTTTTGCCAACACC -ACGGAAAAGCCTTTTGCCATCGAG -ACGGAAAAGCCTTTTGCCCTCCTT -ACGGAAAAGCCTTTTGCCCCTGTT -ACGGAAAAGCCTTTTGCCCGGTTT -ACGGAAAAGCCTTTTGCCGTGGTT -ACGGAAAAGCCTTTTGCCGCCTTT -ACGGAAAAGCCTTTTGCCGGTCTT -ACGGAAAAGCCTTTTGCCACGCTT -ACGGAAAAGCCTTTTGCCAGCGTT -ACGGAAAAGCCTTTTGCCTTCGTC -ACGGAAAAGCCTTTTGCCTCTCTC -ACGGAAAAGCCTTTTGCCTGGATC -ACGGAAAAGCCTTTTGCCCACTTC -ACGGAAAAGCCTTTTGCCGTACTC -ACGGAAAAGCCTTTTGCCGATGTC -ACGGAAAAGCCTTTTGCCACAGTC -ACGGAAAAGCCTTTTGCCTTGCTG -ACGGAAAAGCCTTTTGCCTCCATG -ACGGAAAAGCCTTTTGCCTGTGTG -ACGGAAAAGCCTTTTGCCCTAGTG -ACGGAAAAGCCTTTTGCCCATCTG -ACGGAAAAGCCTTTTGCCGAGTTG -ACGGAAAAGCCTTTTGCCAGACTG -ACGGAAAAGCCTTTTGCCTCGGTA -ACGGAAAAGCCTTTTGCCTGCCTA -ACGGAAAAGCCTTTTGCCCCACTA -ACGGAAAAGCCTTTTGCCGGAGTA -ACGGAAAAGCCTTTTGCCTCGTCT -ACGGAAAAGCCTTTTGCCTGCACT -ACGGAAAAGCCTTTTGCCCTGACT -ACGGAAAAGCCTTTTGCCCAACCT -ACGGAAAAGCCTTTTGCCGCTACT -ACGGAAAAGCCTTTTGCCGGATCT -ACGGAAAAGCCTTTTGCCAAGGCT -ACGGAAAAGCCTTTTGCCTCAACC -ACGGAAAAGCCTTTTGCCTGTTCC -ACGGAAAAGCCTTTTGCCATTCCC -ACGGAAAAGCCTTTTGCCTTCTCG -ACGGAAAAGCCTTTTGCCTAGACG -ACGGAAAAGCCTTTTGCCGTAACG -ACGGAAAAGCCTTTTGCCACTTCG -ACGGAAAAGCCTTTTGCCTACGCA -ACGGAAAAGCCTTTTGCCCTTGCA -ACGGAAAAGCCTTTTGCCCGAACA -ACGGAAAAGCCTTTTGCCCAGTCA -ACGGAAAAGCCTTTTGCCGATCCA -ACGGAAAAGCCTTTTGCCACGACA -ACGGAAAAGCCTTTTGCCAGCTCA -ACGGAAAAGCCTTTTGCCTCACGT -ACGGAAAAGCCTTTTGCCCGTAGT -ACGGAAAAGCCTTTTGCCGTCAGT -ACGGAAAAGCCTTTTGCCGAAGGT -ACGGAAAAGCCTTTTGCCAACCGT -ACGGAAAAGCCTTTTGCCTTGTGC -ACGGAAAAGCCTTTTGCCCTAAGC -ACGGAAAAGCCTTTTGCCACTAGC -ACGGAAAAGCCTTTTGCCAGATGC -ACGGAAAAGCCTTTTGCCTGAAGG -ACGGAAAAGCCTTTTGCCCAATGG -ACGGAAAAGCCTTTTGCCATGAGG -ACGGAAAAGCCTTTTGCCAATGGG -ACGGAAAAGCCTTTTGCCTCCTGA -ACGGAAAAGCCTTTTGCCTAGCGA -ACGGAAAAGCCTTTTGCCCACAGA -ACGGAAAAGCCTTTTGCCGCAAGA -ACGGAAAAGCCTTTTGCCGGTTGA -ACGGAAAAGCCTTTTGCCTCCGAT -ACGGAAAAGCCTTTTGCCTGGCAT -ACGGAAAAGCCTTTTGCCCGAGAT -ACGGAAAAGCCTTTTGCCTACCAC -ACGGAAAAGCCTTTTGCCCAGAAC -ACGGAAAAGCCTTTTGCCGTCTAC -ACGGAAAAGCCTTTTGCCACGTAC -ACGGAAAAGCCTTTTGCCAGTGAC -ACGGAAAAGCCTTTTGCCCTGTAG -ACGGAAAAGCCTTTTGCCCCTAAG -ACGGAAAAGCCTTTTGCCGTTCAG -ACGGAAAAGCCTTTTGCCGCATAG -ACGGAAAAGCCTTTTGCCGACAAG -ACGGAAAAGCCTTTTGCCAAGCAG -ACGGAAAAGCCTTTTGCCCGTCAA -ACGGAAAAGCCTTTTGCCGCTGAA -ACGGAAAAGCCTTTTGCCAGTACG -ACGGAAAAGCCTTTTGCCATCCGA -ACGGAAAAGCCTTTTGCCATGGGA -ACGGAAAAGCCTTTTGCCGTGCAA -ACGGAAAAGCCTTTTGCCGAGGAA -ACGGAAAAGCCTTTTGCCCAGGTA -ACGGAAAAGCCTTTTGCCGACTCT -ACGGAAAAGCCTTTTGCCAGTCCT -ACGGAAAAGCCTTTTGCCTAAGCC -ACGGAAAAGCCTTTTGCCATAGCC -ACGGAAAAGCCTTTTGCCTAACCG -ACGGAAAAGCCTTTTGCCATGCCA -ACGGAAAAGCCTCTTGGTGGAAAC -ACGGAAAAGCCTCTTGGTAACACC -ACGGAAAAGCCTCTTGGTATCGAG -ACGGAAAAGCCTCTTGGTCTCCTT -ACGGAAAAGCCTCTTGGTCCTGTT -ACGGAAAAGCCTCTTGGTCGGTTT -ACGGAAAAGCCTCTTGGTGTGGTT -ACGGAAAAGCCTCTTGGTGCCTTT -ACGGAAAAGCCTCTTGGTGGTCTT -ACGGAAAAGCCTCTTGGTACGCTT -ACGGAAAAGCCTCTTGGTAGCGTT -ACGGAAAAGCCTCTTGGTTTCGTC -ACGGAAAAGCCTCTTGGTTCTCTC -ACGGAAAAGCCTCTTGGTTGGATC -ACGGAAAAGCCTCTTGGTCACTTC -ACGGAAAAGCCTCTTGGTGTACTC -ACGGAAAAGCCTCTTGGTGATGTC -ACGGAAAAGCCTCTTGGTACAGTC -ACGGAAAAGCCTCTTGGTTTGCTG -ACGGAAAAGCCTCTTGGTTCCATG -ACGGAAAAGCCTCTTGGTTGTGTG -ACGGAAAAGCCTCTTGGTCTAGTG -ACGGAAAAGCCTCTTGGTCATCTG -ACGGAAAAGCCTCTTGGTGAGTTG -ACGGAAAAGCCTCTTGGTAGACTG -ACGGAAAAGCCTCTTGGTTCGGTA -ACGGAAAAGCCTCTTGGTTGCCTA -ACGGAAAAGCCTCTTGGTCCACTA -ACGGAAAAGCCTCTTGGTGGAGTA -ACGGAAAAGCCTCTTGGTTCGTCT -ACGGAAAAGCCTCTTGGTTGCACT -ACGGAAAAGCCTCTTGGTCTGACT -ACGGAAAAGCCTCTTGGTCAACCT -ACGGAAAAGCCTCTTGGTGCTACT -ACGGAAAAGCCTCTTGGTGGATCT -ACGGAAAAGCCTCTTGGTAAGGCT -ACGGAAAAGCCTCTTGGTTCAACC -ACGGAAAAGCCTCTTGGTTGTTCC -ACGGAAAAGCCTCTTGGTATTCCC -ACGGAAAAGCCTCTTGGTTTCTCG -ACGGAAAAGCCTCTTGGTTAGACG -ACGGAAAAGCCTCTTGGTGTAACG -ACGGAAAAGCCTCTTGGTACTTCG -ACGGAAAAGCCTCTTGGTTACGCA -ACGGAAAAGCCTCTTGGTCTTGCA -ACGGAAAAGCCTCTTGGTCGAACA -ACGGAAAAGCCTCTTGGTCAGTCA -ACGGAAAAGCCTCTTGGTGATCCA -ACGGAAAAGCCTCTTGGTACGACA -ACGGAAAAGCCTCTTGGTAGCTCA -ACGGAAAAGCCTCTTGGTTCACGT -ACGGAAAAGCCTCTTGGTCGTAGT -ACGGAAAAGCCTCTTGGTGTCAGT -ACGGAAAAGCCTCTTGGTGAAGGT -ACGGAAAAGCCTCTTGGTAACCGT -ACGGAAAAGCCTCTTGGTTTGTGC -ACGGAAAAGCCTCTTGGTCTAAGC -ACGGAAAAGCCTCTTGGTACTAGC -ACGGAAAAGCCTCTTGGTAGATGC -ACGGAAAAGCCTCTTGGTTGAAGG -ACGGAAAAGCCTCTTGGTCAATGG -ACGGAAAAGCCTCTTGGTATGAGG -ACGGAAAAGCCTCTTGGTAATGGG -ACGGAAAAGCCTCTTGGTTCCTGA -ACGGAAAAGCCTCTTGGTTAGCGA -ACGGAAAAGCCTCTTGGTCACAGA -ACGGAAAAGCCTCTTGGTGCAAGA -ACGGAAAAGCCTCTTGGTGGTTGA -ACGGAAAAGCCTCTTGGTTCCGAT -ACGGAAAAGCCTCTTGGTTGGCAT -ACGGAAAAGCCTCTTGGTCGAGAT -ACGGAAAAGCCTCTTGGTTACCAC -ACGGAAAAGCCTCTTGGTCAGAAC -ACGGAAAAGCCTCTTGGTGTCTAC -ACGGAAAAGCCTCTTGGTACGTAC -ACGGAAAAGCCTCTTGGTAGTGAC -ACGGAAAAGCCTCTTGGTCTGTAG -ACGGAAAAGCCTCTTGGTCCTAAG -ACGGAAAAGCCTCTTGGTGTTCAG -ACGGAAAAGCCTCTTGGTGCATAG -ACGGAAAAGCCTCTTGGTGACAAG -ACGGAAAAGCCTCTTGGTAAGCAG -ACGGAAAAGCCTCTTGGTCGTCAA -ACGGAAAAGCCTCTTGGTGCTGAA -ACGGAAAAGCCTCTTGGTAGTACG -ACGGAAAAGCCTCTTGGTATCCGA -ACGGAAAAGCCTCTTGGTATGGGA -ACGGAAAAGCCTCTTGGTGTGCAA -ACGGAAAAGCCTCTTGGTGAGGAA -ACGGAAAAGCCTCTTGGTCAGGTA -ACGGAAAAGCCTCTTGGTGACTCT -ACGGAAAAGCCTCTTGGTAGTCCT -ACGGAAAAGCCTCTTGGTTAAGCC -ACGGAAAAGCCTCTTGGTATAGCC -ACGGAAAAGCCTCTTGGTTAACCG -ACGGAAAAGCCTCTTGGTATGCCA -ACGGAAAAGCCTCTTACGGGAAAC -ACGGAAAAGCCTCTTACGAACACC -ACGGAAAAGCCTCTTACGATCGAG -ACGGAAAAGCCTCTTACGCTCCTT -ACGGAAAAGCCTCTTACGCCTGTT -ACGGAAAAGCCTCTTACGCGGTTT -ACGGAAAAGCCTCTTACGGTGGTT -ACGGAAAAGCCTCTTACGGCCTTT -ACGGAAAAGCCTCTTACGGGTCTT -ACGGAAAAGCCTCTTACGACGCTT -ACGGAAAAGCCTCTTACGAGCGTT -ACGGAAAAGCCTCTTACGTTCGTC -ACGGAAAAGCCTCTTACGTCTCTC -ACGGAAAAGCCTCTTACGTGGATC -ACGGAAAAGCCTCTTACGCACTTC -ACGGAAAAGCCTCTTACGGTACTC -ACGGAAAAGCCTCTTACGGATGTC -ACGGAAAAGCCTCTTACGACAGTC -ACGGAAAAGCCTCTTACGTTGCTG -ACGGAAAAGCCTCTTACGTCCATG -ACGGAAAAGCCTCTTACGTGTGTG -ACGGAAAAGCCTCTTACGCTAGTG -ACGGAAAAGCCTCTTACGCATCTG -ACGGAAAAGCCTCTTACGGAGTTG -ACGGAAAAGCCTCTTACGAGACTG -ACGGAAAAGCCTCTTACGTCGGTA -ACGGAAAAGCCTCTTACGTGCCTA -ACGGAAAAGCCTCTTACGCCACTA -ACGGAAAAGCCTCTTACGGGAGTA -ACGGAAAAGCCTCTTACGTCGTCT -ACGGAAAAGCCTCTTACGTGCACT -ACGGAAAAGCCTCTTACGCTGACT -ACGGAAAAGCCTCTTACGCAACCT -ACGGAAAAGCCTCTTACGGCTACT -ACGGAAAAGCCTCTTACGGGATCT -ACGGAAAAGCCTCTTACGAAGGCT -ACGGAAAAGCCTCTTACGTCAACC -ACGGAAAAGCCTCTTACGTGTTCC -ACGGAAAAGCCTCTTACGATTCCC -ACGGAAAAGCCTCTTACGTTCTCG -ACGGAAAAGCCTCTTACGTAGACG -ACGGAAAAGCCTCTTACGGTAACG -ACGGAAAAGCCTCTTACGACTTCG -ACGGAAAAGCCTCTTACGTACGCA -ACGGAAAAGCCTCTTACGCTTGCA -ACGGAAAAGCCTCTTACGCGAACA -ACGGAAAAGCCTCTTACGCAGTCA -ACGGAAAAGCCTCTTACGGATCCA -ACGGAAAAGCCTCTTACGACGACA -ACGGAAAAGCCTCTTACGAGCTCA -ACGGAAAAGCCTCTTACGTCACGT -ACGGAAAAGCCTCTTACGCGTAGT -ACGGAAAAGCCTCTTACGGTCAGT -ACGGAAAAGCCTCTTACGGAAGGT -ACGGAAAAGCCTCTTACGAACCGT -ACGGAAAAGCCTCTTACGTTGTGC -ACGGAAAAGCCTCTTACGCTAAGC -ACGGAAAAGCCTCTTACGACTAGC -ACGGAAAAGCCTCTTACGAGATGC -ACGGAAAAGCCTCTTACGTGAAGG -ACGGAAAAGCCTCTTACGCAATGG -ACGGAAAAGCCTCTTACGATGAGG -ACGGAAAAGCCTCTTACGAATGGG -ACGGAAAAGCCTCTTACGTCCTGA -ACGGAAAAGCCTCTTACGTAGCGA -ACGGAAAAGCCTCTTACGCACAGA -ACGGAAAAGCCTCTTACGGCAAGA -ACGGAAAAGCCTCTTACGGGTTGA -ACGGAAAAGCCTCTTACGTCCGAT -ACGGAAAAGCCTCTTACGTGGCAT -ACGGAAAAGCCTCTTACGCGAGAT -ACGGAAAAGCCTCTTACGTACCAC -ACGGAAAAGCCTCTTACGCAGAAC -ACGGAAAAGCCTCTTACGGTCTAC -ACGGAAAAGCCTCTTACGACGTAC -ACGGAAAAGCCTCTTACGAGTGAC -ACGGAAAAGCCTCTTACGCTGTAG -ACGGAAAAGCCTCTTACGCCTAAG -ACGGAAAAGCCTCTTACGGTTCAG -ACGGAAAAGCCTCTTACGGCATAG -ACGGAAAAGCCTCTTACGGACAAG -ACGGAAAAGCCTCTTACGAAGCAG -ACGGAAAAGCCTCTTACGCGTCAA -ACGGAAAAGCCTCTTACGGCTGAA -ACGGAAAAGCCTCTTACGAGTACG -ACGGAAAAGCCTCTTACGATCCGA -ACGGAAAAGCCTCTTACGATGGGA -ACGGAAAAGCCTCTTACGGTGCAA -ACGGAAAAGCCTCTTACGGAGGAA -ACGGAAAAGCCTCTTACGCAGGTA -ACGGAAAAGCCTCTTACGGACTCT -ACGGAAAAGCCTCTTACGAGTCCT -ACGGAAAAGCCTCTTACGTAAGCC -ACGGAAAAGCCTCTTACGATAGCC -ACGGAAAAGCCTCTTACGTAACCG -ACGGAAAAGCCTCTTACGATGCCA -ACGGAAAAGCCTGTTAGCGGAAAC -ACGGAAAAGCCTGTTAGCAACACC -ACGGAAAAGCCTGTTAGCATCGAG -ACGGAAAAGCCTGTTAGCCTCCTT -ACGGAAAAGCCTGTTAGCCCTGTT -ACGGAAAAGCCTGTTAGCCGGTTT -ACGGAAAAGCCTGTTAGCGTGGTT -ACGGAAAAGCCTGTTAGCGCCTTT -ACGGAAAAGCCTGTTAGCGGTCTT -ACGGAAAAGCCTGTTAGCACGCTT -ACGGAAAAGCCTGTTAGCAGCGTT -ACGGAAAAGCCTGTTAGCTTCGTC -ACGGAAAAGCCTGTTAGCTCTCTC -ACGGAAAAGCCTGTTAGCTGGATC -ACGGAAAAGCCTGTTAGCCACTTC -ACGGAAAAGCCTGTTAGCGTACTC -ACGGAAAAGCCTGTTAGCGATGTC -ACGGAAAAGCCTGTTAGCACAGTC -ACGGAAAAGCCTGTTAGCTTGCTG -ACGGAAAAGCCTGTTAGCTCCATG -ACGGAAAAGCCTGTTAGCTGTGTG -ACGGAAAAGCCTGTTAGCCTAGTG -ACGGAAAAGCCTGTTAGCCATCTG -ACGGAAAAGCCTGTTAGCGAGTTG -ACGGAAAAGCCTGTTAGCAGACTG -ACGGAAAAGCCTGTTAGCTCGGTA -ACGGAAAAGCCTGTTAGCTGCCTA -ACGGAAAAGCCTGTTAGCCCACTA -ACGGAAAAGCCTGTTAGCGGAGTA -ACGGAAAAGCCTGTTAGCTCGTCT -ACGGAAAAGCCTGTTAGCTGCACT -ACGGAAAAGCCTGTTAGCCTGACT -ACGGAAAAGCCTGTTAGCCAACCT -ACGGAAAAGCCTGTTAGCGCTACT -ACGGAAAAGCCTGTTAGCGGATCT -ACGGAAAAGCCTGTTAGCAAGGCT -ACGGAAAAGCCTGTTAGCTCAACC -ACGGAAAAGCCTGTTAGCTGTTCC -ACGGAAAAGCCTGTTAGCATTCCC -ACGGAAAAGCCTGTTAGCTTCTCG -ACGGAAAAGCCTGTTAGCTAGACG -ACGGAAAAGCCTGTTAGCGTAACG -ACGGAAAAGCCTGTTAGCACTTCG -ACGGAAAAGCCTGTTAGCTACGCA -ACGGAAAAGCCTGTTAGCCTTGCA -ACGGAAAAGCCTGTTAGCCGAACA -ACGGAAAAGCCTGTTAGCCAGTCA -ACGGAAAAGCCTGTTAGCGATCCA -ACGGAAAAGCCTGTTAGCACGACA -ACGGAAAAGCCTGTTAGCAGCTCA -ACGGAAAAGCCTGTTAGCTCACGT -ACGGAAAAGCCTGTTAGCCGTAGT -ACGGAAAAGCCTGTTAGCGTCAGT -ACGGAAAAGCCTGTTAGCGAAGGT -ACGGAAAAGCCTGTTAGCAACCGT -ACGGAAAAGCCTGTTAGCTTGTGC -ACGGAAAAGCCTGTTAGCCTAAGC -ACGGAAAAGCCTGTTAGCACTAGC -ACGGAAAAGCCTGTTAGCAGATGC -ACGGAAAAGCCTGTTAGCTGAAGG -ACGGAAAAGCCTGTTAGCCAATGG -ACGGAAAAGCCTGTTAGCATGAGG -ACGGAAAAGCCTGTTAGCAATGGG -ACGGAAAAGCCTGTTAGCTCCTGA -ACGGAAAAGCCTGTTAGCTAGCGA -ACGGAAAAGCCTGTTAGCCACAGA -ACGGAAAAGCCTGTTAGCGCAAGA -ACGGAAAAGCCTGTTAGCGGTTGA -ACGGAAAAGCCTGTTAGCTCCGAT -ACGGAAAAGCCTGTTAGCTGGCAT -ACGGAAAAGCCTGTTAGCCGAGAT -ACGGAAAAGCCTGTTAGCTACCAC -ACGGAAAAGCCTGTTAGCCAGAAC -ACGGAAAAGCCTGTTAGCGTCTAC -ACGGAAAAGCCTGTTAGCACGTAC -ACGGAAAAGCCTGTTAGCAGTGAC -ACGGAAAAGCCTGTTAGCCTGTAG -ACGGAAAAGCCTGTTAGCCCTAAG -ACGGAAAAGCCTGTTAGCGTTCAG -ACGGAAAAGCCTGTTAGCGCATAG -ACGGAAAAGCCTGTTAGCGACAAG -ACGGAAAAGCCTGTTAGCAAGCAG -ACGGAAAAGCCTGTTAGCCGTCAA -ACGGAAAAGCCTGTTAGCGCTGAA -ACGGAAAAGCCTGTTAGCAGTACG -ACGGAAAAGCCTGTTAGCATCCGA -ACGGAAAAGCCTGTTAGCATGGGA -ACGGAAAAGCCTGTTAGCGTGCAA -ACGGAAAAGCCTGTTAGCGAGGAA -ACGGAAAAGCCTGTTAGCCAGGTA -ACGGAAAAGCCTGTTAGCGACTCT -ACGGAAAAGCCTGTTAGCAGTCCT -ACGGAAAAGCCTGTTAGCTAAGCC -ACGGAAAAGCCTGTTAGCATAGCC -ACGGAAAAGCCTGTTAGCTAACCG -ACGGAAAAGCCTGTTAGCATGCCA -ACGGAAAAGCCTGTCTTCGGAAAC -ACGGAAAAGCCTGTCTTCAACACC -ACGGAAAAGCCTGTCTTCATCGAG -ACGGAAAAGCCTGTCTTCCTCCTT -ACGGAAAAGCCTGTCTTCCCTGTT -ACGGAAAAGCCTGTCTTCCGGTTT -ACGGAAAAGCCTGTCTTCGTGGTT -ACGGAAAAGCCTGTCTTCGCCTTT -ACGGAAAAGCCTGTCTTCGGTCTT -ACGGAAAAGCCTGTCTTCACGCTT -ACGGAAAAGCCTGTCTTCAGCGTT -ACGGAAAAGCCTGTCTTCTTCGTC -ACGGAAAAGCCTGTCTTCTCTCTC -ACGGAAAAGCCTGTCTTCTGGATC -ACGGAAAAGCCTGTCTTCCACTTC -ACGGAAAAGCCTGTCTTCGTACTC -ACGGAAAAGCCTGTCTTCGATGTC -ACGGAAAAGCCTGTCTTCACAGTC -ACGGAAAAGCCTGTCTTCTTGCTG -ACGGAAAAGCCTGTCTTCTCCATG -ACGGAAAAGCCTGTCTTCTGTGTG -ACGGAAAAGCCTGTCTTCCTAGTG -ACGGAAAAGCCTGTCTTCCATCTG -ACGGAAAAGCCTGTCTTCGAGTTG -ACGGAAAAGCCTGTCTTCAGACTG -ACGGAAAAGCCTGTCTTCTCGGTA -ACGGAAAAGCCTGTCTTCTGCCTA -ACGGAAAAGCCTGTCTTCCCACTA -ACGGAAAAGCCTGTCTTCGGAGTA -ACGGAAAAGCCTGTCTTCTCGTCT -ACGGAAAAGCCTGTCTTCTGCACT -ACGGAAAAGCCTGTCTTCCTGACT -ACGGAAAAGCCTGTCTTCCAACCT -ACGGAAAAGCCTGTCTTCGCTACT -ACGGAAAAGCCTGTCTTCGGATCT -ACGGAAAAGCCTGTCTTCAAGGCT -ACGGAAAAGCCTGTCTTCTCAACC -ACGGAAAAGCCTGTCTTCTGTTCC -ACGGAAAAGCCTGTCTTCATTCCC -ACGGAAAAGCCTGTCTTCTTCTCG -ACGGAAAAGCCTGTCTTCTAGACG -ACGGAAAAGCCTGTCTTCGTAACG -ACGGAAAAGCCTGTCTTCACTTCG -ACGGAAAAGCCTGTCTTCTACGCA -ACGGAAAAGCCTGTCTTCCTTGCA -ACGGAAAAGCCTGTCTTCCGAACA -ACGGAAAAGCCTGTCTTCCAGTCA -ACGGAAAAGCCTGTCTTCGATCCA -ACGGAAAAGCCTGTCTTCACGACA -ACGGAAAAGCCTGTCTTCAGCTCA -ACGGAAAAGCCTGTCTTCTCACGT -ACGGAAAAGCCTGTCTTCCGTAGT -ACGGAAAAGCCTGTCTTCGTCAGT -ACGGAAAAGCCTGTCTTCGAAGGT -ACGGAAAAGCCTGTCTTCAACCGT -ACGGAAAAGCCTGTCTTCTTGTGC -ACGGAAAAGCCTGTCTTCCTAAGC -ACGGAAAAGCCTGTCTTCACTAGC -ACGGAAAAGCCTGTCTTCAGATGC -ACGGAAAAGCCTGTCTTCTGAAGG -ACGGAAAAGCCTGTCTTCCAATGG -ACGGAAAAGCCTGTCTTCATGAGG -ACGGAAAAGCCTGTCTTCAATGGG -ACGGAAAAGCCTGTCTTCTCCTGA -ACGGAAAAGCCTGTCTTCTAGCGA -ACGGAAAAGCCTGTCTTCCACAGA -ACGGAAAAGCCTGTCTTCGCAAGA -ACGGAAAAGCCTGTCTTCGGTTGA -ACGGAAAAGCCTGTCTTCTCCGAT -ACGGAAAAGCCTGTCTTCTGGCAT -ACGGAAAAGCCTGTCTTCCGAGAT -ACGGAAAAGCCTGTCTTCTACCAC -ACGGAAAAGCCTGTCTTCCAGAAC -ACGGAAAAGCCTGTCTTCGTCTAC -ACGGAAAAGCCTGTCTTCACGTAC -ACGGAAAAGCCTGTCTTCAGTGAC -ACGGAAAAGCCTGTCTTCCTGTAG -ACGGAAAAGCCTGTCTTCCCTAAG -ACGGAAAAGCCTGTCTTCGTTCAG -ACGGAAAAGCCTGTCTTCGCATAG -ACGGAAAAGCCTGTCTTCGACAAG -ACGGAAAAGCCTGTCTTCAAGCAG -ACGGAAAAGCCTGTCTTCCGTCAA -ACGGAAAAGCCTGTCTTCGCTGAA -ACGGAAAAGCCTGTCTTCAGTACG -ACGGAAAAGCCTGTCTTCATCCGA -ACGGAAAAGCCTGTCTTCATGGGA -ACGGAAAAGCCTGTCTTCGTGCAA -ACGGAAAAGCCTGTCTTCGAGGAA -ACGGAAAAGCCTGTCTTCCAGGTA -ACGGAAAAGCCTGTCTTCGACTCT -ACGGAAAAGCCTGTCTTCAGTCCT -ACGGAAAAGCCTGTCTTCTAAGCC -ACGGAAAAGCCTGTCTTCATAGCC -ACGGAAAAGCCTGTCTTCTAACCG -ACGGAAAAGCCTGTCTTCATGCCA -ACGGAAAAGCCTCTCTCTGGAAAC -ACGGAAAAGCCTCTCTCTAACACC -ACGGAAAAGCCTCTCTCTATCGAG -ACGGAAAAGCCTCTCTCTCTCCTT -ACGGAAAAGCCTCTCTCTCCTGTT -ACGGAAAAGCCTCTCTCTCGGTTT -ACGGAAAAGCCTCTCTCTGTGGTT -ACGGAAAAGCCTCTCTCTGCCTTT -ACGGAAAAGCCTCTCTCTGGTCTT -ACGGAAAAGCCTCTCTCTACGCTT -ACGGAAAAGCCTCTCTCTAGCGTT -ACGGAAAAGCCTCTCTCTTTCGTC -ACGGAAAAGCCTCTCTCTTCTCTC -ACGGAAAAGCCTCTCTCTTGGATC -ACGGAAAAGCCTCTCTCTCACTTC -ACGGAAAAGCCTCTCTCTGTACTC -ACGGAAAAGCCTCTCTCTGATGTC -ACGGAAAAGCCTCTCTCTACAGTC -ACGGAAAAGCCTCTCTCTTTGCTG -ACGGAAAAGCCTCTCTCTTCCATG -ACGGAAAAGCCTCTCTCTTGTGTG -ACGGAAAAGCCTCTCTCTCTAGTG -ACGGAAAAGCCTCTCTCTCATCTG -ACGGAAAAGCCTCTCTCTGAGTTG -ACGGAAAAGCCTCTCTCTAGACTG -ACGGAAAAGCCTCTCTCTTCGGTA -ACGGAAAAGCCTCTCTCTTGCCTA -ACGGAAAAGCCTCTCTCTCCACTA -ACGGAAAAGCCTCTCTCTGGAGTA -ACGGAAAAGCCTCTCTCTTCGTCT -ACGGAAAAGCCTCTCTCTTGCACT -ACGGAAAAGCCTCTCTCTCTGACT -ACGGAAAAGCCTCTCTCTCAACCT -ACGGAAAAGCCTCTCTCTGCTACT -ACGGAAAAGCCTCTCTCTGGATCT -ACGGAAAAGCCTCTCTCTAAGGCT -ACGGAAAAGCCTCTCTCTTCAACC -ACGGAAAAGCCTCTCTCTTGTTCC -ACGGAAAAGCCTCTCTCTATTCCC -ACGGAAAAGCCTCTCTCTTTCTCG -ACGGAAAAGCCTCTCTCTTAGACG -ACGGAAAAGCCTCTCTCTGTAACG -ACGGAAAAGCCTCTCTCTACTTCG -ACGGAAAAGCCTCTCTCTTACGCA -ACGGAAAAGCCTCTCTCTCTTGCA -ACGGAAAAGCCTCTCTCTCGAACA -ACGGAAAAGCCTCTCTCTCAGTCA -ACGGAAAAGCCTCTCTCTGATCCA -ACGGAAAAGCCTCTCTCTACGACA -ACGGAAAAGCCTCTCTCTAGCTCA -ACGGAAAAGCCTCTCTCTTCACGT -ACGGAAAAGCCTCTCTCTCGTAGT -ACGGAAAAGCCTCTCTCTGTCAGT -ACGGAAAAGCCTCTCTCTGAAGGT -ACGGAAAAGCCTCTCTCTAACCGT -ACGGAAAAGCCTCTCTCTTTGTGC -ACGGAAAAGCCTCTCTCTCTAAGC -ACGGAAAAGCCTCTCTCTACTAGC -ACGGAAAAGCCTCTCTCTAGATGC -ACGGAAAAGCCTCTCTCTTGAAGG -ACGGAAAAGCCTCTCTCTCAATGG -ACGGAAAAGCCTCTCTCTATGAGG -ACGGAAAAGCCTCTCTCTAATGGG -ACGGAAAAGCCTCTCTCTTCCTGA -ACGGAAAAGCCTCTCTCTTAGCGA -ACGGAAAAGCCTCTCTCTCACAGA -ACGGAAAAGCCTCTCTCTGCAAGA -ACGGAAAAGCCTCTCTCTGGTTGA -ACGGAAAAGCCTCTCTCTTCCGAT -ACGGAAAAGCCTCTCTCTTGGCAT -ACGGAAAAGCCTCTCTCTCGAGAT -ACGGAAAAGCCTCTCTCTTACCAC -ACGGAAAAGCCTCTCTCTCAGAAC -ACGGAAAAGCCTCTCTCTGTCTAC -ACGGAAAAGCCTCTCTCTACGTAC -ACGGAAAAGCCTCTCTCTAGTGAC -ACGGAAAAGCCTCTCTCTCTGTAG -ACGGAAAAGCCTCTCTCTCCTAAG -ACGGAAAAGCCTCTCTCTGTTCAG -ACGGAAAAGCCTCTCTCTGCATAG -ACGGAAAAGCCTCTCTCTGACAAG -ACGGAAAAGCCTCTCTCTAAGCAG -ACGGAAAAGCCTCTCTCTCGTCAA -ACGGAAAAGCCTCTCTCTGCTGAA -ACGGAAAAGCCTCTCTCTAGTACG -ACGGAAAAGCCTCTCTCTATCCGA -ACGGAAAAGCCTCTCTCTATGGGA -ACGGAAAAGCCTCTCTCTGTGCAA -ACGGAAAAGCCTCTCTCTGAGGAA -ACGGAAAAGCCTCTCTCTCAGGTA -ACGGAAAAGCCTCTCTCTGACTCT -ACGGAAAAGCCTCTCTCTAGTCCT -ACGGAAAAGCCTCTCTCTTAAGCC -ACGGAAAAGCCTCTCTCTATAGCC -ACGGAAAAGCCTCTCTCTTAACCG -ACGGAAAAGCCTCTCTCTATGCCA -ACGGAAAAGCCTATCTGGGGAAAC -ACGGAAAAGCCTATCTGGAACACC -ACGGAAAAGCCTATCTGGATCGAG -ACGGAAAAGCCTATCTGGCTCCTT -ACGGAAAAGCCTATCTGGCCTGTT -ACGGAAAAGCCTATCTGGCGGTTT -ACGGAAAAGCCTATCTGGGTGGTT -ACGGAAAAGCCTATCTGGGCCTTT -ACGGAAAAGCCTATCTGGGGTCTT -ACGGAAAAGCCTATCTGGACGCTT -ACGGAAAAGCCTATCTGGAGCGTT -ACGGAAAAGCCTATCTGGTTCGTC -ACGGAAAAGCCTATCTGGTCTCTC -ACGGAAAAGCCTATCTGGTGGATC -ACGGAAAAGCCTATCTGGCACTTC -ACGGAAAAGCCTATCTGGGTACTC -ACGGAAAAGCCTATCTGGGATGTC -ACGGAAAAGCCTATCTGGACAGTC -ACGGAAAAGCCTATCTGGTTGCTG -ACGGAAAAGCCTATCTGGTCCATG -ACGGAAAAGCCTATCTGGTGTGTG -ACGGAAAAGCCTATCTGGCTAGTG -ACGGAAAAGCCTATCTGGCATCTG -ACGGAAAAGCCTATCTGGGAGTTG -ACGGAAAAGCCTATCTGGAGACTG -ACGGAAAAGCCTATCTGGTCGGTA -ACGGAAAAGCCTATCTGGTGCCTA -ACGGAAAAGCCTATCTGGCCACTA -ACGGAAAAGCCTATCTGGGGAGTA -ACGGAAAAGCCTATCTGGTCGTCT -ACGGAAAAGCCTATCTGGTGCACT -ACGGAAAAGCCTATCTGGCTGACT -ACGGAAAAGCCTATCTGGCAACCT -ACGGAAAAGCCTATCTGGGCTACT -ACGGAAAAGCCTATCTGGGGATCT -ACGGAAAAGCCTATCTGGAAGGCT -ACGGAAAAGCCTATCTGGTCAACC -ACGGAAAAGCCTATCTGGTGTTCC -ACGGAAAAGCCTATCTGGATTCCC -ACGGAAAAGCCTATCTGGTTCTCG -ACGGAAAAGCCTATCTGGTAGACG -ACGGAAAAGCCTATCTGGGTAACG -ACGGAAAAGCCTATCTGGACTTCG -ACGGAAAAGCCTATCTGGTACGCA -ACGGAAAAGCCTATCTGGCTTGCA -ACGGAAAAGCCTATCTGGCGAACA -ACGGAAAAGCCTATCTGGCAGTCA -ACGGAAAAGCCTATCTGGGATCCA -ACGGAAAAGCCTATCTGGACGACA -ACGGAAAAGCCTATCTGGAGCTCA -ACGGAAAAGCCTATCTGGTCACGT -ACGGAAAAGCCTATCTGGCGTAGT -ACGGAAAAGCCTATCTGGGTCAGT -ACGGAAAAGCCTATCTGGGAAGGT -ACGGAAAAGCCTATCTGGAACCGT -ACGGAAAAGCCTATCTGGTTGTGC -ACGGAAAAGCCTATCTGGCTAAGC -ACGGAAAAGCCTATCTGGACTAGC -ACGGAAAAGCCTATCTGGAGATGC -ACGGAAAAGCCTATCTGGTGAAGG -ACGGAAAAGCCTATCTGGCAATGG -ACGGAAAAGCCTATCTGGATGAGG -ACGGAAAAGCCTATCTGGAATGGG -ACGGAAAAGCCTATCTGGTCCTGA -ACGGAAAAGCCTATCTGGTAGCGA -ACGGAAAAGCCTATCTGGCACAGA -ACGGAAAAGCCTATCTGGGCAAGA -ACGGAAAAGCCTATCTGGGGTTGA -ACGGAAAAGCCTATCTGGTCCGAT -ACGGAAAAGCCTATCTGGTGGCAT -ACGGAAAAGCCTATCTGGCGAGAT -ACGGAAAAGCCTATCTGGTACCAC -ACGGAAAAGCCTATCTGGCAGAAC -ACGGAAAAGCCTATCTGGGTCTAC -ACGGAAAAGCCTATCTGGACGTAC -ACGGAAAAGCCTATCTGGAGTGAC -ACGGAAAAGCCTATCTGGCTGTAG -ACGGAAAAGCCTATCTGGCCTAAG -ACGGAAAAGCCTATCTGGGTTCAG -ACGGAAAAGCCTATCTGGGCATAG -ACGGAAAAGCCTATCTGGGACAAG -ACGGAAAAGCCTATCTGGAAGCAG -ACGGAAAAGCCTATCTGGCGTCAA -ACGGAAAAGCCTATCTGGGCTGAA -ACGGAAAAGCCTATCTGGAGTACG -ACGGAAAAGCCTATCTGGATCCGA -ACGGAAAAGCCTATCTGGATGGGA -ACGGAAAAGCCTATCTGGGTGCAA -ACGGAAAAGCCTATCTGGGAGGAA -ACGGAAAAGCCTATCTGGCAGGTA -ACGGAAAAGCCTATCTGGGACTCT -ACGGAAAAGCCTATCTGGAGTCCT -ACGGAAAAGCCTATCTGGTAAGCC -ACGGAAAAGCCTATCTGGATAGCC -ACGGAAAAGCCTATCTGGTAACCG -ACGGAAAAGCCTATCTGGATGCCA -ACGGAAAAGCCTTTCCACGGAAAC -ACGGAAAAGCCTTTCCACAACACC -ACGGAAAAGCCTTTCCACATCGAG -ACGGAAAAGCCTTTCCACCTCCTT -ACGGAAAAGCCTTTCCACCCTGTT -ACGGAAAAGCCTTTCCACCGGTTT -ACGGAAAAGCCTTTCCACGTGGTT -ACGGAAAAGCCTTTCCACGCCTTT -ACGGAAAAGCCTTTCCACGGTCTT -ACGGAAAAGCCTTTCCACACGCTT -ACGGAAAAGCCTTTCCACAGCGTT -ACGGAAAAGCCTTTCCACTTCGTC -ACGGAAAAGCCTTTCCACTCTCTC -ACGGAAAAGCCTTTCCACTGGATC -ACGGAAAAGCCTTTCCACCACTTC -ACGGAAAAGCCTTTCCACGTACTC -ACGGAAAAGCCTTTCCACGATGTC -ACGGAAAAGCCTTTCCACACAGTC -ACGGAAAAGCCTTTCCACTTGCTG -ACGGAAAAGCCTTTCCACTCCATG -ACGGAAAAGCCTTTCCACTGTGTG -ACGGAAAAGCCTTTCCACCTAGTG -ACGGAAAAGCCTTTCCACCATCTG -ACGGAAAAGCCTTTCCACGAGTTG -ACGGAAAAGCCTTTCCACAGACTG -ACGGAAAAGCCTTTCCACTCGGTA -ACGGAAAAGCCTTTCCACTGCCTA -ACGGAAAAGCCTTTCCACCCACTA -ACGGAAAAGCCTTTCCACGGAGTA -ACGGAAAAGCCTTTCCACTCGTCT -ACGGAAAAGCCTTTCCACTGCACT -ACGGAAAAGCCTTTCCACCTGACT -ACGGAAAAGCCTTTCCACCAACCT -ACGGAAAAGCCTTTCCACGCTACT -ACGGAAAAGCCTTTCCACGGATCT -ACGGAAAAGCCTTTCCACAAGGCT -ACGGAAAAGCCTTTCCACTCAACC -ACGGAAAAGCCTTTCCACTGTTCC -ACGGAAAAGCCTTTCCACATTCCC -ACGGAAAAGCCTTTCCACTTCTCG -ACGGAAAAGCCTTTCCACTAGACG -ACGGAAAAGCCTTTCCACGTAACG -ACGGAAAAGCCTTTCCACACTTCG -ACGGAAAAGCCTTTCCACTACGCA -ACGGAAAAGCCTTTCCACCTTGCA -ACGGAAAAGCCTTTCCACCGAACA -ACGGAAAAGCCTTTCCACCAGTCA -ACGGAAAAGCCTTTCCACGATCCA -ACGGAAAAGCCTTTCCACACGACA -ACGGAAAAGCCTTTCCACAGCTCA -ACGGAAAAGCCTTTCCACTCACGT -ACGGAAAAGCCTTTCCACCGTAGT -ACGGAAAAGCCTTTCCACGTCAGT -ACGGAAAAGCCTTTCCACGAAGGT -ACGGAAAAGCCTTTCCACAACCGT -ACGGAAAAGCCTTTCCACTTGTGC -ACGGAAAAGCCTTTCCACCTAAGC -ACGGAAAAGCCTTTCCACACTAGC -ACGGAAAAGCCTTTCCACAGATGC -ACGGAAAAGCCTTTCCACTGAAGG -ACGGAAAAGCCTTTCCACCAATGG -ACGGAAAAGCCTTTCCACATGAGG -ACGGAAAAGCCTTTCCACAATGGG -ACGGAAAAGCCTTTCCACTCCTGA -ACGGAAAAGCCTTTCCACTAGCGA -ACGGAAAAGCCTTTCCACCACAGA -ACGGAAAAGCCTTTCCACGCAAGA -ACGGAAAAGCCTTTCCACGGTTGA -ACGGAAAAGCCTTTCCACTCCGAT -ACGGAAAAGCCTTTCCACTGGCAT -ACGGAAAAGCCTTTCCACCGAGAT -ACGGAAAAGCCTTTCCACTACCAC -ACGGAAAAGCCTTTCCACCAGAAC -ACGGAAAAGCCTTTCCACGTCTAC -ACGGAAAAGCCTTTCCACACGTAC -ACGGAAAAGCCTTTCCACAGTGAC -ACGGAAAAGCCTTTCCACCTGTAG -ACGGAAAAGCCTTTCCACCCTAAG -ACGGAAAAGCCTTTCCACGTTCAG -ACGGAAAAGCCTTTCCACGCATAG -ACGGAAAAGCCTTTCCACGACAAG -ACGGAAAAGCCTTTCCACAAGCAG -ACGGAAAAGCCTTTCCACCGTCAA -ACGGAAAAGCCTTTCCACGCTGAA -ACGGAAAAGCCTTTCCACAGTACG -ACGGAAAAGCCTTTCCACATCCGA -ACGGAAAAGCCTTTCCACATGGGA -ACGGAAAAGCCTTTCCACGTGCAA -ACGGAAAAGCCTTTCCACGAGGAA -ACGGAAAAGCCTTTCCACCAGGTA -ACGGAAAAGCCTTTCCACGACTCT -ACGGAAAAGCCTTTCCACAGTCCT -ACGGAAAAGCCTTTCCACTAAGCC -ACGGAAAAGCCTTTCCACATAGCC -ACGGAAAAGCCTTTCCACTAACCG -ACGGAAAAGCCTTTCCACATGCCA -ACGGAAAAGCCTCTCGTAGGAAAC -ACGGAAAAGCCTCTCGTAAACACC -ACGGAAAAGCCTCTCGTAATCGAG -ACGGAAAAGCCTCTCGTACTCCTT -ACGGAAAAGCCTCTCGTACCTGTT -ACGGAAAAGCCTCTCGTACGGTTT -ACGGAAAAGCCTCTCGTAGTGGTT -ACGGAAAAGCCTCTCGTAGCCTTT -ACGGAAAAGCCTCTCGTAGGTCTT -ACGGAAAAGCCTCTCGTAACGCTT -ACGGAAAAGCCTCTCGTAAGCGTT -ACGGAAAAGCCTCTCGTATTCGTC -ACGGAAAAGCCTCTCGTATCTCTC -ACGGAAAAGCCTCTCGTATGGATC -ACGGAAAAGCCTCTCGTACACTTC -ACGGAAAAGCCTCTCGTAGTACTC -ACGGAAAAGCCTCTCGTAGATGTC -ACGGAAAAGCCTCTCGTAACAGTC -ACGGAAAAGCCTCTCGTATTGCTG -ACGGAAAAGCCTCTCGTATCCATG -ACGGAAAAGCCTCTCGTATGTGTG -ACGGAAAAGCCTCTCGTACTAGTG -ACGGAAAAGCCTCTCGTACATCTG -ACGGAAAAGCCTCTCGTAGAGTTG -ACGGAAAAGCCTCTCGTAAGACTG -ACGGAAAAGCCTCTCGTATCGGTA -ACGGAAAAGCCTCTCGTATGCCTA -ACGGAAAAGCCTCTCGTACCACTA -ACGGAAAAGCCTCTCGTAGGAGTA -ACGGAAAAGCCTCTCGTATCGTCT -ACGGAAAAGCCTCTCGTATGCACT -ACGGAAAAGCCTCTCGTACTGACT -ACGGAAAAGCCTCTCGTACAACCT -ACGGAAAAGCCTCTCGTAGCTACT -ACGGAAAAGCCTCTCGTAGGATCT -ACGGAAAAGCCTCTCGTAAAGGCT -ACGGAAAAGCCTCTCGTATCAACC -ACGGAAAAGCCTCTCGTATGTTCC -ACGGAAAAGCCTCTCGTAATTCCC -ACGGAAAAGCCTCTCGTATTCTCG -ACGGAAAAGCCTCTCGTATAGACG -ACGGAAAAGCCTCTCGTAGTAACG -ACGGAAAAGCCTCTCGTAACTTCG -ACGGAAAAGCCTCTCGTATACGCA -ACGGAAAAGCCTCTCGTACTTGCA -ACGGAAAAGCCTCTCGTACGAACA -ACGGAAAAGCCTCTCGTACAGTCA -ACGGAAAAGCCTCTCGTAGATCCA -ACGGAAAAGCCTCTCGTAACGACA -ACGGAAAAGCCTCTCGTAAGCTCA -ACGGAAAAGCCTCTCGTATCACGT -ACGGAAAAGCCTCTCGTACGTAGT -ACGGAAAAGCCTCTCGTAGTCAGT -ACGGAAAAGCCTCTCGTAGAAGGT -ACGGAAAAGCCTCTCGTAAACCGT -ACGGAAAAGCCTCTCGTATTGTGC -ACGGAAAAGCCTCTCGTACTAAGC -ACGGAAAAGCCTCTCGTAACTAGC -ACGGAAAAGCCTCTCGTAAGATGC -ACGGAAAAGCCTCTCGTATGAAGG -ACGGAAAAGCCTCTCGTACAATGG -ACGGAAAAGCCTCTCGTAATGAGG -ACGGAAAAGCCTCTCGTAAATGGG -ACGGAAAAGCCTCTCGTATCCTGA -ACGGAAAAGCCTCTCGTATAGCGA -ACGGAAAAGCCTCTCGTACACAGA -ACGGAAAAGCCTCTCGTAGCAAGA -ACGGAAAAGCCTCTCGTAGGTTGA -ACGGAAAAGCCTCTCGTATCCGAT -ACGGAAAAGCCTCTCGTATGGCAT -ACGGAAAAGCCTCTCGTACGAGAT -ACGGAAAAGCCTCTCGTATACCAC -ACGGAAAAGCCTCTCGTACAGAAC -ACGGAAAAGCCTCTCGTAGTCTAC -ACGGAAAAGCCTCTCGTAACGTAC -ACGGAAAAGCCTCTCGTAAGTGAC -ACGGAAAAGCCTCTCGTACTGTAG -ACGGAAAAGCCTCTCGTACCTAAG -ACGGAAAAGCCTCTCGTAGTTCAG -ACGGAAAAGCCTCTCGTAGCATAG -ACGGAAAAGCCTCTCGTAGACAAG -ACGGAAAAGCCTCTCGTAAAGCAG -ACGGAAAAGCCTCTCGTACGTCAA -ACGGAAAAGCCTCTCGTAGCTGAA -ACGGAAAAGCCTCTCGTAAGTACG -ACGGAAAAGCCTCTCGTAATCCGA -ACGGAAAAGCCTCTCGTAATGGGA -ACGGAAAAGCCTCTCGTAGTGCAA -ACGGAAAAGCCTCTCGTAGAGGAA -ACGGAAAAGCCTCTCGTACAGGTA -ACGGAAAAGCCTCTCGTAGACTCT -ACGGAAAAGCCTCTCGTAAGTCCT -ACGGAAAAGCCTCTCGTATAAGCC -ACGGAAAAGCCTCTCGTAATAGCC -ACGGAAAAGCCTCTCGTATAACCG -ACGGAAAAGCCTCTCGTAATGCCA -ACGGAAAAGCCTGTCGATGGAAAC -ACGGAAAAGCCTGTCGATAACACC -ACGGAAAAGCCTGTCGATATCGAG -ACGGAAAAGCCTGTCGATCTCCTT -ACGGAAAAGCCTGTCGATCCTGTT -ACGGAAAAGCCTGTCGATCGGTTT -ACGGAAAAGCCTGTCGATGTGGTT -ACGGAAAAGCCTGTCGATGCCTTT -ACGGAAAAGCCTGTCGATGGTCTT -ACGGAAAAGCCTGTCGATACGCTT -ACGGAAAAGCCTGTCGATAGCGTT -ACGGAAAAGCCTGTCGATTTCGTC -ACGGAAAAGCCTGTCGATTCTCTC -ACGGAAAAGCCTGTCGATTGGATC -ACGGAAAAGCCTGTCGATCACTTC -ACGGAAAAGCCTGTCGATGTACTC -ACGGAAAAGCCTGTCGATGATGTC -ACGGAAAAGCCTGTCGATACAGTC -ACGGAAAAGCCTGTCGATTTGCTG -ACGGAAAAGCCTGTCGATTCCATG -ACGGAAAAGCCTGTCGATTGTGTG -ACGGAAAAGCCTGTCGATCTAGTG -ACGGAAAAGCCTGTCGATCATCTG -ACGGAAAAGCCTGTCGATGAGTTG -ACGGAAAAGCCTGTCGATAGACTG -ACGGAAAAGCCTGTCGATTCGGTA -ACGGAAAAGCCTGTCGATTGCCTA -ACGGAAAAGCCTGTCGATCCACTA -ACGGAAAAGCCTGTCGATGGAGTA -ACGGAAAAGCCTGTCGATTCGTCT -ACGGAAAAGCCTGTCGATTGCACT -ACGGAAAAGCCTGTCGATCTGACT -ACGGAAAAGCCTGTCGATCAACCT -ACGGAAAAGCCTGTCGATGCTACT -ACGGAAAAGCCTGTCGATGGATCT -ACGGAAAAGCCTGTCGATAAGGCT -ACGGAAAAGCCTGTCGATTCAACC -ACGGAAAAGCCTGTCGATTGTTCC -ACGGAAAAGCCTGTCGATATTCCC -ACGGAAAAGCCTGTCGATTTCTCG -ACGGAAAAGCCTGTCGATTAGACG -ACGGAAAAGCCTGTCGATGTAACG -ACGGAAAAGCCTGTCGATACTTCG -ACGGAAAAGCCTGTCGATTACGCA -ACGGAAAAGCCTGTCGATCTTGCA -ACGGAAAAGCCTGTCGATCGAACA -ACGGAAAAGCCTGTCGATCAGTCA -ACGGAAAAGCCTGTCGATGATCCA -ACGGAAAAGCCTGTCGATACGACA -ACGGAAAAGCCTGTCGATAGCTCA -ACGGAAAAGCCTGTCGATTCACGT -ACGGAAAAGCCTGTCGATCGTAGT -ACGGAAAAGCCTGTCGATGTCAGT -ACGGAAAAGCCTGTCGATGAAGGT -ACGGAAAAGCCTGTCGATAACCGT -ACGGAAAAGCCTGTCGATTTGTGC -ACGGAAAAGCCTGTCGATCTAAGC -ACGGAAAAGCCTGTCGATACTAGC -ACGGAAAAGCCTGTCGATAGATGC -ACGGAAAAGCCTGTCGATTGAAGG -ACGGAAAAGCCTGTCGATCAATGG -ACGGAAAAGCCTGTCGATATGAGG -ACGGAAAAGCCTGTCGATAATGGG -ACGGAAAAGCCTGTCGATTCCTGA -ACGGAAAAGCCTGTCGATTAGCGA -ACGGAAAAGCCTGTCGATCACAGA -ACGGAAAAGCCTGTCGATGCAAGA -ACGGAAAAGCCTGTCGATGGTTGA -ACGGAAAAGCCTGTCGATTCCGAT -ACGGAAAAGCCTGTCGATTGGCAT -ACGGAAAAGCCTGTCGATCGAGAT -ACGGAAAAGCCTGTCGATTACCAC -ACGGAAAAGCCTGTCGATCAGAAC -ACGGAAAAGCCTGTCGATGTCTAC -ACGGAAAAGCCTGTCGATACGTAC -ACGGAAAAGCCTGTCGATAGTGAC -ACGGAAAAGCCTGTCGATCTGTAG -ACGGAAAAGCCTGTCGATCCTAAG -ACGGAAAAGCCTGTCGATGTTCAG -ACGGAAAAGCCTGTCGATGCATAG -ACGGAAAAGCCTGTCGATGACAAG -ACGGAAAAGCCTGTCGATAAGCAG -ACGGAAAAGCCTGTCGATCGTCAA -ACGGAAAAGCCTGTCGATGCTGAA -ACGGAAAAGCCTGTCGATAGTACG -ACGGAAAAGCCTGTCGATATCCGA -ACGGAAAAGCCTGTCGATATGGGA -ACGGAAAAGCCTGTCGATGTGCAA -ACGGAAAAGCCTGTCGATGAGGAA -ACGGAAAAGCCTGTCGATCAGGTA -ACGGAAAAGCCTGTCGATGACTCT -ACGGAAAAGCCTGTCGATAGTCCT -ACGGAAAAGCCTGTCGATTAAGCC -ACGGAAAAGCCTGTCGATATAGCC -ACGGAAAAGCCTGTCGATTAACCG -ACGGAAAAGCCTGTCGATATGCCA -ACGGAAAAGCCTGTCACAGGAAAC -ACGGAAAAGCCTGTCACAAACACC -ACGGAAAAGCCTGTCACAATCGAG -ACGGAAAAGCCTGTCACACTCCTT -ACGGAAAAGCCTGTCACACCTGTT -ACGGAAAAGCCTGTCACACGGTTT -ACGGAAAAGCCTGTCACAGTGGTT -ACGGAAAAGCCTGTCACAGCCTTT -ACGGAAAAGCCTGTCACAGGTCTT -ACGGAAAAGCCTGTCACAACGCTT -ACGGAAAAGCCTGTCACAAGCGTT -ACGGAAAAGCCTGTCACATTCGTC -ACGGAAAAGCCTGTCACATCTCTC -ACGGAAAAGCCTGTCACATGGATC -ACGGAAAAGCCTGTCACACACTTC -ACGGAAAAGCCTGTCACAGTACTC -ACGGAAAAGCCTGTCACAGATGTC -ACGGAAAAGCCTGTCACAACAGTC -ACGGAAAAGCCTGTCACATTGCTG -ACGGAAAAGCCTGTCACATCCATG -ACGGAAAAGCCTGTCACATGTGTG -ACGGAAAAGCCTGTCACACTAGTG -ACGGAAAAGCCTGTCACACATCTG -ACGGAAAAGCCTGTCACAGAGTTG -ACGGAAAAGCCTGTCACAAGACTG -ACGGAAAAGCCTGTCACATCGGTA -ACGGAAAAGCCTGTCACATGCCTA -ACGGAAAAGCCTGTCACACCACTA -ACGGAAAAGCCTGTCACAGGAGTA -ACGGAAAAGCCTGTCACATCGTCT -ACGGAAAAGCCTGTCACATGCACT -ACGGAAAAGCCTGTCACACTGACT -ACGGAAAAGCCTGTCACACAACCT -ACGGAAAAGCCTGTCACAGCTACT -ACGGAAAAGCCTGTCACAGGATCT -ACGGAAAAGCCTGTCACAAAGGCT -ACGGAAAAGCCTGTCACATCAACC -ACGGAAAAGCCTGTCACATGTTCC -ACGGAAAAGCCTGTCACAATTCCC -ACGGAAAAGCCTGTCACATTCTCG -ACGGAAAAGCCTGTCACATAGACG -ACGGAAAAGCCTGTCACAGTAACG -ACGGAAAAGCCTGTCACAACTTCG -ACGGAAAAGCCTGTCACATACGCA -ACGGAAAAGCCTGTCACACTTGCA -ACGGAAAAGCCTGTCACACGAACA -ACGGAAAAGCCTGTCACACAGTCA -ACGGAAAAGCCTGTCACAGATCCA -ACGGAAAAGCCTGTCACAACGACA -ACGGAAAAGCCTGTCACAAGCTCA -ACGGAAAAGCCTGTCACATCACGT -ACGGAAAAGCCTGTCACACGTAGT -ACGGAAAAGCCTGTCACAGTCAGT -ACGGAAAAGCCTGTCACAGAAGGT -ACGGAAAAGCCTGTCACAAACCGT -ACGGAAAAGCCTGTCACATTGTGC -ACGGAAAAGCCTGTCACACTAAGC -ACGGAAAAGCCTGTCACAACTAGC -ACGGAAAAGCCTGTCACAAGATGC -ACGGAAAAGCCTGTCACATGAAGG -ACGGAAAAGCCTGTCACACAATGG -ACGGAAAAGCCTGTCACAATGAGG -ACGGAAAAGCCTGTCACAAATGGG -ACGGAAAAGCCTGTCACATCCTGA -ACGGAAAAGCCTGTCACATAGCGA -ACGGAAAAGCCTGTCACACACAGA -ACGGAAAAGCCTGTCACAGCAAGA -ACGGAAAAGCCTGTCACAGGTTGA -ACGGAAAAGCCTGTCACATCCGAT -ACGGAAAAGCCTGTCACATGGCAT -ACGGAAAAGCCTGTCACACGAGAT -ACGGAAAAGCCTGTCACATACCAC -ACGGAAAAGCCTGTCACACAGAAC -ACGGAAAAGCCTGTCACAGTCTAC -ACGGAAAAGCCTGTCACAACGTAC -ACGGAAAAGCCTGTCACAAGTGAC -ACGGAAAAGCCTGTCACACTGTAG -ACGGAAAAGCCTGTCACACCTAAG -ACGGAAAAGCCTGTCACAGTTCAG -ACGGAAAAGCCTGTCACAGCATAG -ACGGAAAAGCCTGTCACAGACAAG -ACGGAAAAGCCTGTCACAAAGCAG -ACGGAAAAGCCTGTCACACGTCAA -ACGGAAAAGCCTGTCACAGCTGAA -ACGGAAAAGCCTGTCACAAGTACG -ACGGAAAAGCCTGTCACAATCCGA -ACGGAAAAGCCTGTCACAATGGGA -ACGGAAAAGCCTGTCACAGTGCAA -ACGGAAAAGCCTGTCACAGAGGAA -ACGGAAAAGCCTGTCACACAGGTA -ACGGAAAAGCCTGTCACAGACTCT -ACGGAAAAGCCTGTCACAAGTCCT -ACGGAAAAGCCTGTCACATAAGCC -ACGGAAAAGCCTGTCACAATAGCC -ACGGAAAAGCCTGTCACATAACCG -ACGGAAAAGCCTGTCACAATGCCA -ACGGAAAAGCCTCTGTTGGGAAAC -ACGGAAAAGCCTCTGTTGAACACC -ACGGAAAAGCCTCTGTTGATCGAG -ACGGAAAAGCCTCTGTTGCTCCTT -ACGGAAAAGCCTCTGTTGCCTGTT -ACGGAAAAGCCTCTGTTGCGGTTT -ACGGAAAAGCCTCTGTTGGTGGTT -ACGGAAAAGCCTCTGTTGGCCTTT -ACGGAAAAGCCTCTGTTGGGTCTT -ACGGAAAAGCCTCTGTTGACGCTT -ACGGAAAAGCCTCTGTTGAGCGTT -ACGGAAAAGCCTCTGTTGTTCGTC -ACGGAAAAGCCTCTGTTGTCTCTC -ACGGAAAAGCCTCTGTTGTGGATC -ACGGAAAAGCCTCTGTTGCACTTC -ACGGAAAAGCCTCTGTTGGTACTC -ACGGAAAAGCCTCTGTTGGATGTC -ACGGAAAAGCCTCTGTTGACAGTC -ACGGAAAAGCCTCTGTTGTTGCTG -ACGGAAAAGCCTCTGTTGTCCATG -ACGGAAAAGCCTCTGTTGTGTGTG -ACGGAAAAGCCTCTGTTGCTAGTG -ACGGAAAAGCCTCTGTTGCATCTG -ACGGAAAAGCCTCTGTTGGAGTTG -ACGGAAAAGCCTCTGTTGAGACTG -ACGGAAAAGCCTCTGTTGTCGGTA -ACGGAAAAGCCTCTGTTGTGCCTA -ACGGAAAAGCCTCTGTTGCCACTA -ACGGAAAAGCCTCTGTTGGGAGTA -ACGGAAAAGCCTCTGTTGTCGTCT -ACGGAAAAGCCTCTGTTGTGCACT -ACGGAAAAGCCTCTGTTGCTGACT -ACGGAAAAGCCTCTGTTGCAACCT -ACGGAAAAGCCTCTGTTGGCTACT -ACGGAAAAGCCTCTGTTGGGATCT -ACGGAAAAGCCTCTGTTGAAGGCT -ACGGAAAAGCCTCTGTTGTCAACC -ACGGAAAAGCCTCTGTTGTGTTCC -ACGGAAAAGCCTCTGTTGATTCCC -ACGGAAAAGCCTCTGTTGTTCTCG -ACGGAAAAGCCTCTGTTGTAGACG -ACGGAAAAGCCTCTGTTGGTAACG -ACGGAAAAGCCTCTGTTGACTTCG -ACGGAAAAGCCTCTGTTGTACGCA -ACGGAAAAGCCTCTGTTGCTTGCA -ACGGAAAAGCCTCTGTTGCGAACA -ACGGAAAAGCCTCTGTTGCAGTCA -ACGGAAAAGCCTCTGTTGGATCCA -ACGGAAAAGCCTCTGTTGACGACA -ACGGAAAAGCCTCTGTTGAGCTCA -ACGGAAAAGCCTCTGTTGTCACGT -ACGGAAAAGCCTCTGTTGCGTAGT -ACGGAAAAGCCTCTGTTGGTCAGT -ACGGAAAAGCCTCTGTTGGAAGGT -ACGGAAAAGCCTCTGTTGAACCGT -ACGGAAAAGCCTCTGTTGTTGTGC -ACGGAAAAGCCTCTGTTGCTAAGC -ACGGAAAAGCCTCTGTTGACTAGC -ACGGAAAAGCCTCTGTTGAGATGC -ACGGAAAAGCCTCTGTTGTGAAGG -ACGGAAAAGCCTCTGTTGCAATGG -ACGGAAAAGCCTCTGTTGATGAGG -ACGGAAAAGCCTCTGTTGAATGGG -ACGGAAAAGCCTCTGTTGTCCTGA -ACGGAAAAGCCTCTGTTGTAGCGA -ACGGAAAAGCCTCTGTTGCACAGA -ACGGAAAAGCCTCTGTTGGCAAGA -ACGGAAAAGCCTCTGTTGGGTTGA -ACGGAAAAGCCTCTGTTGTCCGAT -ACGGAAAAGCCTCTGTTGTGGCAT -ACGGAAAAGCCTCTGTTGCGAGAT -ACGGAAAAGCCTCTGTTGTACCAC -ACGGAAAAGCCTCTGTTGCAGAAC -ACGGAAAAGCCTCTGTTGGTCTAC -ACGGAAAAGCCTCTGTTGACGTAC -ACGGAAAAGCCTCTGTTGAGTGAC -ACGGAAAAGCCTCTGTTGCTGTAG -ACGGAAAAGCCTCTGTTGCCTAAG -ACGGAAAAGCCTCTGTTGGTTCAG -ACGGAAAAGCCTCTGTTGGCATAG -ACGGAAAAGCCTCTGTTGGACAAG -ACGGAAAAGCCTCTGTTGAAGCAG -ACGGAAAAGCCTCTGTTGCGTCAA -ACGGAAAAGCCTCTGTTGGCTGAA -ACGGAAAAGCCTCTGTTGAGTACG -ACGGAAAAGCCTCTGTTGATCCGA -ACGGAAAAGCCTCTGTTGATGGGA -ACGGAAAAGCCTCTGTTGGTGCAA -ACGGAAAAGCCTCTGTTGGAGGAA -ACGGAAAAGCCTCTGTTGCAGGTA -ACGGAAAAGCCTCTGTTGGACTCT -ACGGAAAAGCCTCTGTTGAGTCCT -ACGGAAAAGCCTCTGTTGTAAGCC -ACGGAAAAGCCTCTGTTGATAGCC -ACGGAAAAGCCTCTGTTGTAACCG -ACGGAAAAGCCTCTGTTGATGCCA -ACGGAAAAGCCTATGTCCGGAAAC -ACGGAAAAGCCTATGTCCAACACC -ACGGAAAAGCCTATGTCCATCGAG -ACGGAAAAGCCTATGTCCCTCCTT -ACGGAAAAGCCTATGTCCCCTGTT -ACGGAAAAGCCTATGTCCCGGTTT -ACGGAAAAGCCTATGTCCGTGGTT -ACGGAAAAGCCTATGTCCGCCTTT -ACGGAAAAGCCTATGTCCGGTCTT -ACGGAAAAGCCTATGTCCACGCTT -ACGGAAAAGCCTATGTCCAGCGTT -ACGGAAAAGCCTATGTCCTTCGTC -ACGGAAAAGCCTATGTCCTCTCTC -ACGGAAAAGCCTATGTCCTGGATC -ACGGAAAAGCCTATGTCCCACTTC -ACGGAAAAGCCTATGTCCGTACTC -ACGGAAAAGCCTATGTCCGATGTC -ACGGAAAAGCCTATGTCCACAGTC -ACGGAAAAGCCTATGTCCTTGCTG -ACGGAAAAGCCTATGTCCTCCATG -ACGGAAAAGCCTATGTCCTGTGTG -ACGGAAAAGCCTATGTCCCTAGTG -ACGGAAAAGCCTATGTCCCATCTG -ACGGAAAAGCCTATGTCCGAGTTG -ACGGAAAAGCCTATGTCCAGACTG -ACGGAAAAGCCTATGTCCTCGGTA -ACGGAAAAGCCTATGTCCTGCCTA -ACGGAAAAGCCTATGTCCCCACTA -ACGGAAAAGCCTATGTCCGGAGTA -ACGGAAAAGCCTATGTCCTCGTCT -ACGGAAAAGCCTATGTCCTGCACT -ACGGAAAAGCCTATGTCCCTGACT -ACGGAAAAGCCTATGTCCCAACCT -ACGGAAAAGCCTATGTCCGCTACT -ACGGAAAAGCCTATGTCCGGATCT -ACGGAAAAGCCTATGTCCAAGGCT -ACGGAAAAGCCTATGTCCTCAACC -ACGGAAAAGCCTATGTCCTGTTCC -ACGGAAAAGCCTATGTCCATTCCC -ACGGAAAAGCCTATGTCCTTCTCG -ACGGAAAAGCCTATGTCCTAGACG -ACGGAAAAGCCTATGTCCGTAACG -ACGGAAAAGCCTATGTCCACTTCG -ACGGAAAAGCCTATGTCCTACGCA -ACGGAAAAGCCTATGTCCCTTGCA -ACGGAAAAGCCTATGTCCCGAACA -ACGGAAAAGCCTATGTCCCAGTCA -ACGGAAAAGCCTATGTCCGATCCA -ACGGAAAAGCCTATGTCCACGACA -ACGGAAAAGCCTATGTCCAGCTCA -ACGGAAAAGCCTATGTCCTCACGT -ACGGAAAAGCCTATGTCCCGTAGT -ACGGAAAAGCCTATGTCCGTCAGT -ACGGAAAAGCCTATGTCCGAAGGT -ACGGAAAAGCCTATGTCCAACCGT -ACGGAAAAGCCTATGTCCTTGTGC -ACGGAAAAGCCTATGTCCCTAAGC -ACGGAAAAGCCTATGTCCACTAGC -ACGGAAAAGCCTATGTCCAGATGC -ACGGAAAAGCCTATGTCCTGAAGG -ACGGAAAAGCCTATGTCCCAATGG -ACGGAAAAGCCTATGTCCATGAGG -ACGGAAAAGCCTATGTCCAATGGG -ACGGAAAAGCCTATGTCCTCCTGA -ACGGAAAAGCCTATGTCCTAGCGA -ACGGAAAAGCCTATGTCCCACAGA -ACGGAAAAGCCTATGTCCGCAAGA -ACGGAAAAGCCTATGTCCGGTTGA -ACGGAAAAGCCTATGTCCTCCGAT -ACGGAAAAGCCTATGTCCTGGCAT -ACGGAAAAGCCTATGTCCCGAGAT -ACGGAAAAGCCTATGTCCTACCAC -ACGGAAAAGCCTATGTCCCAGAAC -ACGGAAAAGCCTATGTCCGTCTAC -ACGGAAAAGCCTATGTCCACGTAC -ACGGAAAAGCCTATGTCCAGTGAC -ACGGAAAAGCCTATGTCCCTGTAG -ACGGAAAAGCCTATGTCCCCTAAG -ACGGAAAAGCCTATGTCCGTTCAG -ACGGAAAAGCCTATGTCCGCATAG -ACGGAAAAGCCTATGTCCGACAAG -ACGGAAAAGCCTATGTCCAAGCAG -ACGGAAAAGCCTATGTCCCGTCAA -ACGGAAAAGCCTATGTCCGCTGAA -ACGGAAAAGCCTATGTCCAGTACG -ACGGAAAAGCCTATGTCCATCCGA -ACGGAAAAGCCTATGTCCATGGGA -ACGGAAAAGCCTATGTCCGTGCAA -ACGGAAAAGCCTATGTCCGAGGAA -ACGGAAAAGCCTATGTCCCAGGTA -ACGGAAAAGCCTATGTCCGACTCT -ACGGAAAAGCCTATGTCCAGTCCT -ACGGAAAAGCCTATGTCCTAAGCC -ACGGAAAAGCCTATGTCCATAGCC -ACGGAAAAGCCTATGTCCTAACCG -ACGGAAAAGCCTATGTCCATGCCA -ACGGAAAAGCCTGTGTGTGGAAAC -ACGGAAAAGCCTGTGTGTAACACC -ACGGAAAAGCCTGTGTGTATCGAG -ACGGAAAAGCCTGTGTGTCTCCTT -ACGGAAAAGCCTGTGTGTCCTGTT -ACGGAAAAGCCTGTGTGTCGGTTT -ACGGAAAAGCCTGTGTGTGTGGTT -ACGGAAAAGCCTGTGTGTGCCTTT -ACGGAAAAGCCTGTGTGTGGTCTT -ACGGAAAAGCCTGTGTGTACGCTT -ACGGAAAAGCCTGTGTGTAGCGTT -ACGGAAAAGCCTGTGTGTTTCGTC -ACGGAAAAGCCTGTGTGTTCTCTC -ACGGAAAAGCCTGTGTGTTGGATC -ACGGAAAAGCCTGTGTGTCACTTC -ACGGAAAAGCCTGTGTGTGTACTC -ACGGAAAAGCCTGTGTGTGATGTC -ACGGAAAAGCCTGTGTGTACAGTC -ACGGAAAAGCCTGTGTGTTTGCTG -ACGGAAAAGCCTGTGTGTTCCATG -ACGGAAAAGCCTGTGTGTTGTGTG -ACGGAAAAGCCTGTGTGTCTAGTG -ACGGAAAAGCCTGTGTGTCATCTG -ACGGAAAAGCCTGTGTGTGAGTTG -ACGGAAAAGCCTGTGTGTAGACTG -ACGGAAAAGCCTGTGTGTTCGGTA -ACGGAAAAGCCTGTGTGTTGCCTA -ACGGAAAAGCCTGTGTGTCCACTA -ACGGAAAAGCCTGTGTGTGGAGTA -ACGGAAAAGCCTGTGTGTTCGTCT -ACGGAAAAGCCTGTGTGTTGCACT -ACGGAAAAGCCTGTGTGTCTGACT -ACGGAAAAGCCTGTGTGTCAACCT -ACGGAAAAGCCTGTGTGTGCTACT -ACGGAAAAGCCTGTGTGTGGATCT -ACGGAAAAGCCTGTGTGTAAGGCT -ACGGAAAAGCCTGTGTGTTCAACC -ACGGAAAAGCCTGTGTGTTGTTCC -ACGGAAAAGCCTGTGTGTATTCCC -ACGGAAAAGCCTGTGTGTTTCTCG -ACGGAAAAGCCTGTGTGTTAGACG -ACGGAAAAGCCTGTGTGTGTAACG -ACGGAAAAGCCTGTGTGTACTTCG -ACGGAAAAGCCTGTGTGTTACGCA -ACGGAAAAGCCTGTGTGTCTTGCA -ACGGAAAAGCCTGTGTGTCGAACA -ACGGAAAAGCCTGTGTGTCAGTCA -ACGGAAAAGCCTGTGTGTGATCCA -ACGGAAAAGCCTGTGTGTACGACA -ACGGAAAAGCCTGTGTGTAGCTCA -ACGGAAAAGCCTGTGTGTTCACGT -ACGGAAAAGCCTGTGTGTCGTAGT -ACGGAAAAGCCTGTGTGTGTCAGT -ACGGAAAAGCCTGTGTGTGAAGGT -ACGGAAAAGCCTGTGTGTAACCGT -ACGGAAAAGCCTGTGTGTTTGTGC -ACGGAAAAGCCTGTGTGTCTAAGC -ACGGAAAAGCCTGTGTGTACTAGC -ACGGAAAAGCCTGTGTGTAGATGC -ACGGAAAAGCCTGTGTGTTGAAGG -ACGGAAAAGCCTGTGTGTCAATGG -ACGGAAAAGCCTGTGTGTATGAGG -ACGGAAAAGCCTGTGTGTAATGGG -ACGGAAAAGCCTGTGTGTTCCTGA -ACGGAAAAGCCTGTGTGTTAGCGA -ACGGAAAAGCCTGTGTGTCACAGA -ACGGAAAAGCCTGTGTGTGCAAGA -ACGGAAAAGCCTGTGTGTGGTTGA -ACGGAAAAGCCTGTGTGTTCCGAT -ACGGAAAAGCCTGTGTGTTGGCAT -ACGGAAAAGCCTGTGTGTCGAGAT -ACGGAAAAGCCTGTGTGTTACCAC -ACGGAAAAGCCTGTGTGTCAGAAC -ACGGAAAAGCCTGTGTGTGTCTAC -ACGGAAAAGCCTGTGTGTACGTAC -ACGGAAAAGCCTGTGTGTAGTGAC -ACGGAAAAGCCTGTGTGTCTGTAG -ACGGAAAAGCCTGTGTGTCCTAAG -ACGGAAAAGCCTGTGTGTGTTCAG -ACGGAAAAGCCTGTGTGTGCATAG -ACGGAAAAGCCTGTGTGTGACAAG -ACGGAAAAGCCTGTGTGTAAGCAG -ACGGAAAAGCCTGTGTGTCGTCAA -ACGGAAAAGCCTGTGTGTGCTGAA -ACGGAAAAGCCTGTGTGTAGTACG -ACGGAAAAGCCTGTGTGTATCCGA -ACGGAAAAGCCTGTGTGTATGGGA -ACGGAAAAGCCTGTGTGTGTGCAA -ACGGAAAAGCCTGTGTGTGAGGAA -ACGGAAAAGCCTGTGTGTCAGGTA -ACGGAAAAGCCTGTGTGTGACTCT -ACGGAAAAGCCTGTGTGTAGTCCT -ACGGAAAAGCCTGTGTGTTAAGCC -ACGGAAAAGCCTGTGTGTATAGCC -ACGGAAAAGCCTGTGTGTTAACCG -ACGGAAAAGCCTGTGTGTATGCCA -ACGGAAAAGCCTGTGCTAGGAAAC -ACGGAAAAGCCTGTGCTAAACACC -ACGGAAAAGCCTGTGCTAATCGAG -ACGGAAAAGCCTGTGCTACTCCTT -ACGGAAAAGCCTGTGCTACCTGTT -ACGGAAAAGCCTGTGCTACGGTTT -ACGGAAAAGCCTGTGCTAGTGGTT -ACGGAAAAGCCTGTGCTAGCCTTT -ACGGAAAAGCCTGTGCTAGGTCTT -ACGGAAAAGCCTGTGCTAACGCTT -ACGGAAAAGCCTGTGCTAAGCGTT -ACGGAAAAGCCTGTGCTATTCGTC -ACGGAAAAGCCTGTGCTATCTCTC -ACGGAAAAGCCTGTGCTATGGATC -ACGGAAAAGCCTGTGCTACACTTC -ACGGAAAAGCCTGTGCTAGTACTC -ACGGAAAAGCCTGTGCTAGATGTC -ACGGAAAAGCCTGTGCTAACAGTC -ACGGAAAAGCCTGTGCTATTGCTG -ACGGAAAAGCCTGTGCTATCCATG -ACGGAAAAGCCTGTGCTATGTGTG -ACGGAAAAGCCTGTGCTACTAGTG -ACGGAAAAGCCTGTGCTACATCTG -ACGGAAAAGCCTGTGCTAGAGTTG -ACGGAAAAGCCTGTGCTAAGACTG -ACGGAAAAGCCTGTGCTATCGGTA -ACGGAAAAGCCTGTGCTATGCCTA -ACGGAAAAGCCTGTGCTACCACTA -ACGGAAAAGCCTGTGCTAGGAGTA -ACGGAAAAGCCTGTGCTATCGTCT -ACGGAAAAGCCTGTGCTATGCACT -ACGGAAAAGCCTGTGCTACTGACT -ACGGAAAAGCCTGTGCTACAACCT -ACGGAAAAGCCTGTGCTAGCTACT -ACGGAAAAGCCTGTGCTAGGATCT -ACGGAAAAGCCTGTGCTAAAGGCT -ACGGAAAAGCCTGTGCTATCAACC -ACGGAAAAGCCTGTGCTATGTTCC -ACGGAAAAGCCTGTGCTAATTCCC -ACGGAAAAGCCTGTGCTATTCTCG -ACGGAAAAGCCTGTGCTATAGACG -ACGGAAAAGCCTGTGCTAGTAACG -ACGGAAAAGCCTGTGCTAACTTCG -ACGGAAAAGCCTGTGCTATACGCA -ACGGAAAAGCCTGTGCTACTTGCA -ACGGAAAAGCCTGTGCTACGAACA -ACGGAAAAGCCTGTGCTACAGTCA -ACGGAAAAGCCTGTGCTAGATCCA -ACGGAAAAGCCTGTGCTAACGACA -ACGGAAAAGCCTGTGCTAAGCTCA -ACGGAAAAGCCTGTGCTATCACGT -ACGGAAAAGCCTGTGCTACGTAGT -ACGGAAAAGCCTGTGCTAGTCAGT -ACGGAAAAGCCTGTGCTAGAAGGT -ACGGAAAAGCCTGTGCTAAACCGT -ACGGAAAAGCCTGTGCTATTGTGC -ACGGAAAAGCCTGTGCTACTAAGC -ACGGAAAAGCCTGTGCTAACTAGC -ACGGAAAAGCCTGTGCTAAGATGC -ACGGAAAAGCCTGTGCTATGAAGG -ACGGAAAAGCCTGTGCTACAATGG -ACGGAAAAGCCTGTGCTAATGAGG -ACGGAAAAGCCTGTGCTAAATGGG -ACGGAAAAGCCTGTGCTATCCTGA -ACGGAAAAGCCTGTGCTATAGCGA -ACGGAAAAGCCTGTGCTACACAGA -ACGGAAAAGCCTGTGCTAGCAAGA -ACGGAAAAGCCTGTGCTAGGTTGA -ACGGAAAAGCCTGTGCTATCCGAT -ACGGAAAAGCCTGTGCTATGGCAT -ACGGAAAAGCCTGTGCTACGAGAT -ACGGAAAAGCCTGTGCTATACCAC -ACGGAAAAGCCTGTGCTACAGAAC -ACGGAAAAGCCTGTGCTAGTCTAC -ACGGAAAAGCCTGTGCTAACGTAC -ACGGAAAAGCCTGTGCTAAGTGAC -ACGGAAAAGCCTGTGCTACTGTAG -ACGGAAAAGCCTGTGCTACCTAAG -ACGGAAAAGCCTGTGCTAGTTCAG -ACGGAAAAGCCTGTGCTAGCATAG -ACGGAAAAGCCTGTGCTAGACAAG -ACGGAAAAGCCTGTGCTAAAGCAG -ACGGAAAAGCCTGTGCTACGTCAA -ACGGAAAAGCCTGTGCTAGCTGAA -ACGGAAAAGCCTGTGCTAAGTACG -ACGGAAAAGCCTGTGCTAATCCGA -ACGGAAAAGCCTGTGCTAATGGGA -ACGGAAAAGCCTGTGCTAGTGCAA -ACGGAAAAGCCTGTGCTAGAGGAA -ACGGAAAAGCCTGTGCTACAGGTA -ACGGAAAAGCCTGTGCTAGACTCT -ACGGAAAAGCCTGTGCTAAGTCCT -ACGGAAAAGCCTGTGCTATAAGCC -ACGGAAAAGCCTGTGCTAATAGCC -ACGGAAAAGCCTGTGCTATAACCG -ACGGAAAAGCCTGTGCTAATGCCA -ACGGAAAAGCCTCTGCATGGAAAC -ACGGAAAAGCCTCTGCATAACACC -ACGGAAAAGCCTCTGCATATCGAG -ACGGAAAAGCCTCTGCATCTCCTT -ACGGAAAAGCCTCTGCATCCTGTT -ACGGAAAAGCCTCTGCATCGGTTT -ACGGAAAAGCCTCTGCATGTGGTT -ACGGAAAAGCCTCTGCATGCCTTT -ACGGAAAAGCCTCTGCATGGTCTT -ACGGAAAAGCCTCTGCATACGCTT -ACGGAAAAGCCTCTGCATAGCGTT -ACGGAAAAGCCTCTGCATTTCGTC -ACGGAAAAGCCTCTGCATTCTCTC -ACGGAAAAGCCTCTGCATTGGATC -ACGGAAAAGCCTCTGCATCACTTC -ACGGAAAAGCCTCTGCATGTACTC -ACGGAAAAGCCTCTGCATGATGTC -ACGGAAAAGCCTCTGCATACAGTC -ACGGAAAAGCCTCTGCATTTGCTG -ACGGAAAAGCCTCTGCATTCCATG -ACGGAAAAGCCTCTGCATTGTGTG -ACGGAAAAGCCTCTGCATCTAGTG -ACGGAAAAGCCTCTGCATCATCTG -ACGGAAAAGCCTCTGCATGAGTTG -ACGGAAAAGCCTCTGCATAGACTG -ACGGAAAAGCCTCTGCATTCGGTA -ACGGAAAAGCCTCTGCATTGCCTA -ACGGAAAAGCCTCTGCATCCACTA -ACGGAAAAGCCTCTGCATGGAGTA -ACGGAAAAGCCTCTGCATTCGTCT -ACGGAAAAGCCTCTGCATTGCACT -ACGGAAAAGCCTCTGCATCTGACT -ACGGAAAAGCCTCTGCATCAACCT -ACGGAAAAGCCTCTGCATGCTACT -ACGGAAAAGCCTCTGCATGGATCT -ACGGAAAAGCCTCTGCATAAGGCT -ACGGAAAAGCCTCTGCATTCAACC -ACGGAAAAGCCTCTGCATTGTTCC -ACGGAAAAGCCTCTGCATATTCCC -ACGGAAAAGCCTCTGCATTTCTCG -ACGGAAAAGCCTCTGCATTAGACG -ACGGAAAAGCCTCTGCATGTAACG -ACGGAAAAGCCTCTGCATACTTCG -ACGGAAAAGCCTCTGCATTACGCA -ACGGAAAAGCCTCTGCATCTTGCA -ACGGAAAAGCCTCTGCATCGAACA -ACGGAAAAGCCTCTGCATCAGTCA -ACGGAAAAGCCTCTGCATGATCCA -ACGGAAAAGCCTCTGCATACGACA -ACGGAAAAGCCTCTGCATAGCTCA -ACGGAAAAGCCTCTGCATTCACGT -ACGGAAAAGCCTCTGCATCGTAGT -ACGGAAAAGCCTCTGCATGTCAGT -ACGGAAAAGCCTCTGCATGAAGGT -ACGGAAAAGCCTCTGCATAACCGT -ACGGAAAAGCCTCTGCATTTGTGC -ACGGAAAAGCCTCTGCATCTAAGC -ACGGAAAAGCCTCTGCATACTAGC -ACGGAAAAGCCTCTGCATAGATGC -ACGGAAAAGCCTCTGCATTGAAGG -ACGGAAAAGCCTCTGCATCAATGG -ACGGAAAAGCCTCTGCATATGAGG -ACGGAAAAGCCTCTGCATAATGGG -ACGGAAAAGCCTCTGCATTCCTGA -ACGGAAAAGCCTCTGCATTAGCGA -ACGGAAAAGCCTCTGCATCACAGA -ACGGAAAAGCCTCTGCATGCAAGA -ACGGAAAAGCCTCTGCATGGTTGA -ACGGAAAAGCCTCTGCATTCCGAT -ACGGAAAAGCCTCTGCATTGGCAT -ACGGAAAAGCCTCTGCATCGAGAT -ACGGAAAAGCCTCTGCATTACCAC -ACGGAAAAGCCTCTGCATCAGAAC -ACGGAAAAGCCTCTGCATGTCTAC -ACGGAAAAGCCTCTGCATACGTAC -ACGGAAAAGCCTCTGCATAGTGAC -ACGGAAAAGCCTCTGCATCTGTAG -ACGGAAAAGCCTCTGCATCCTAAG -ACGGAAAAGCCTCTGCATGTTCAG -ACGGAAAAGCCTCTGCATGCATAG -ACGGAAAAGCCTCTGCATGACAAG -ACGGAAAAGCCTCTGCATAAGCAG -ACGGAAAAGCCTCTGCATCGTCAA -ACGGAAAAGCCTCTGCATGCTGAA -ACGGAAAAGCCTCTGCATAGTACG -ACGGAAAAGCCTCTGCATATCCGA -ACGGAAAAGCCTCTGCATATGGGA -ACGGAAAAGCCTCTGCATGTGCAA -ACGGAAAAGCCTCTGCATGAGGAA -ACGGAAAAGCCTCTGCATCAGGTA -ACGGAAAAGCCTCTGCATGACTCT -ACGGAAAAGCCTCTGCATAGTCCT -ACGGAAAAGCCTCTGCATTAAGCC -ACGGAAAAGCCTCTGCATATAGCC -ACGGAAAAGCCTCTGCATTAACCG -ACGGAAAAGCCTCTGCATATGCCA -ACGGAAAAGCCTTTGGAGGGAAAC -ACGGAAAAGCCTTTGGAGAACACC -ACGGAAAAGCCTTTGGAGATCGAG -ACGGAAAAGCCTTTGGAGCTCCTT -ACGGAAAAGCCTTTGGAGCCTGTT -ACGGAAAAGCCTTTGGAGCGGTTT -ACGGAAAAGCCTTTGGAGGTGGTT -ACGGAAAAGCCTTTGGAGGCCTTT -ACGGAAAAGCCTTTGGAGGGTCTT -ACGGAAAAGCCTTTGGAGACGCTT -ACGGAAAAGCCTTTGGAGAGCGTT -ACGGAAAAGCCTTTGGAGTTCGTC -ACGGAAAAGCCTTTGGAGTCTCTC -ACGGAAAAGCCTTTGGAGTGGATC -ACGGAAAAGCCTTTGGAGCACTTC -ACGGAAAAGCCTTTGGAGGTACTC -ACGGAAAAGCCTTTGGAGGATGTC -ACGGAAAAGCCTTTGGAGACAGTC -ACGGAAAAGCCTTTGGAGTTGCTG -ACGGAAAAGCCTTTGGAGTCCATG -ACGGAAAAGCCTTTGGAGTGTGTG -ACGGAAAAGCCTTTGGAGCTAGTG -ACGGAAAAGCCTTTGGAGCATCTG -ACGGAAAAGCCTTTGGAGGAGTTG -ACGGAAAAGCCTTTGGAGAGACTG -ACGGAAAAGCCTTTGGAGTCGGTA -ACGGAAAAGCCTTTGGAGTGCCTA -ACGGAAAAGCCTTTGGAGCCACTA -ACGGAAAAGCCTTTGGAGGGAGTA -ACGGAAAAGCCTTTGGAGTCGTCT -ACGGAAAAGCCTTTGGAGTGCACT -ACGGAAAAGCCTTTGGAGCTGACT -ACGGAAAAGCCTTTGGAGCAACCT -ACGGAAAAGCCTTTGGAGGCTACT -ACGGAAAAGCCTTTGGAGGGATCT -ACGGAAAAGCCTTTGGAGAAGGCT -ACGGAAAAGCCTTTGGAGTCAACC -ACGGAAAAGCCTTTGGAGTGTTCC -ACGGAAAAGCCTTTGGAGATTCCC -ACGGAAAAGCCTTTGGAGTTCTCG -ACGGAAAAGCCTTTGGAGTAGACG -ACGGAAAAGCCTTTGGAGGTAACG -ACGGAAAAGCCTTTGGAGACTTCG -ACGGAAAAGCCTTTGGAGTACGCA -ACGGAAAAGCCTTTGGAGCTTGCA -ACGGAAAAGCCTTTGGAGCGAACA -ACGGAAAAGCCTTTGGAGCAGTCA -ACGGAAAAGCCTTTGGAGGATCCA -ACGGAAAAGCCTTTGGAGACGACA -ACGGAAAAGCCTTTGGAGAGCTCA -ACGGAAAAGCCTTTGGAGTCACGT -ACGGAAAAGCCTTTGGAGCGTAGT -ACGGAAAAGCCTTTGGAGGTCAGT -ACGGAAAAGCCTTTGGAGGAAGGT -ACGGAAAAGCCTTTGGAGAACCGT -ACGGAAAAGCCTTTGGAGTTGTGC -ACGGAAAAGCCTTTGGAGCTAAGC -ACGGAAAAGCCTTTGGAGACTAGC -ACGGAAAAGCCTTTGGAGAGATGC -ACGGAAAAGCCTTTGGAGTGAAGG -ACGGAAAAGCCTTTGGAGCAATGG -ACGGAAAAGCCTTTGGAGATGAGG -ACGGAAAAGCCTTTGGAGAATGGG -ACGGAAAAGCCTTTGGAGTCCTGA -ACGGAAAAGCCTTTGGAGTAGCGA -ACGGAAAAGCCTTTGGAGCACAGA -ACGGAAAAGCCTTTGGAGGCAAGA -ACGGAAAAGCCTTTGGAGGGTTGA -ACGGAAAAGCCTTTGGAGTCCGAT -ACGGAAAAGCCTTTGGAGTGGCAT -ACGGAAAAGCCTTTGGAGCGAGAT -ACGGAAAAGCCTTTGGAGTACCAC -ACGGAAAAGCCTTTGGAGCAGAAC -ACGGAAAAGCCTTTGGAGGTCTAC -ACGGAAAAGCCTTTGGAGACGTAC -ACGGAAAAGCCTTTGGAGAGTGAC -ACGGAAAAGCCTTTGGAGCTGTAG -ACGGAAAAGCCTTTGGAGCCTAAG -ACGGAAAAGCCTTTGGAGGTTCAG -ACGGAAAAGCCTTTGGAGGCATAG -ACGGAAAAGCCTTTGGAGGACAAG -ACGGAAAAGCCTTTGGAGAAGCAG -ACGGAAAAGCCTTTGGAGCGTCAA -ACGGAAAAGCCTTTGGAGGCTGAA -ACGGAAAAGCCTTTGGAGAGTACG -ACGGAAAAGCCTTTGGAGATCCGA -ACGGAAAAGCCTTTGGAGATGGGA -ACGGAAAAGCCTTTGGAGGTGCAA -ACGGAAAAGCCTTTGGAGGAGGAA -ACGGAAAAGCCTTTGGAGCAGGTA -ACGGAAAAGCCTTTGGAGGACTCT -ACGGAAAAGCCTTTGGAGAGTCCT -ACGGAAAAGCCTTTGGAGTAAGCC -ACGGAAAAGCCTTTGGAGATAGCC -ACGGAAAAGCCTTTGGAGTAACCG -ACGGAAAAGCCTTTGGAGATGCCA -ACGGAAAAGCCTCTGAGAGGAAAC -ACGGAAAAGCCTCTGAGAAACACC -ACGGAAAAGCCTCTGAGAATCGAG -ACGGAAAAGCCTCTGAGACTCCTT -ACGGAAAAGCCTCTGAGACCTGTT -ACGGAAAAGCCTCTGAGACGGTTT -ACGGAAAAGCCTCTGAGAGTGGTT -ACGGAAAAGCCTCTGAGAGCCTTT -ACGGAAAAGCCTCTGAGAGGTCTT -ACGGAAAAGCCTCTGAGAACGCTT -ACGGAAAAGCCTCTGAGAAGCGTT -ACGGAAAAGCCTCTGAGATTCGTC -ACGGAAAAGCCTCTGAGATCTCTC -ACGGAAAAGCCTCTGAGATGGATC -ACGGAAAAGCCTCTGAGACACTTC -ACGGAAAAGCCTCTGAGAGTACTC -ACGGAAAAGCCTCTGAGAGATGTC -ACGGAAAAGCCTCTGAGAACAGTC -ACGGAAAAGCCTCTGAGATTGCTG -ACGGAAAAGCCTCTGAGATCCATG -ACGGAAAAGCCTCTGAGATGTGTG -ACGGAAAAGCCTCTGAGACTAGTG -ACGGAAAAGCCTCTGAGACATCTG -ACGGAAAAGCCTCTGAGAGAGTTG -ACGGAAAAGCCTCTGAGAAGACTG -ACGGAAAAGCCTCTGAGATCGGTA -ACGGAAAAGCCTCTGAGATGCCTA -ACGGAAAAGCCTCTGAGACCACTA -ACGGAAAAGCCTCTGAGAGGAGTA -ACGGAAAAGCCTCTGAGATCGTCT -ACGGAAAAGCCTCTGAGATGCACT -ACGGAAAAGCCTCTGAGACTGACT -ACGGAAAAGCCTCTGAGACAACCT -ACGGAAAAGCCTCTGAGAGCTACT -ACGGAAAAGCCTCTGAGAGGATCT -ACGGAAAAGCCTCTGAGAAAGGCT -ACGGAAAAGCCTCTGAGATCAACC -ACGGAAAAGCCTCTGAGATGTTCC -ACGGAAAAGCCTCTGAGAATTCCC -ACGGAAAAGCCTCTGAGATTCTCG -ACGGAAAAGCCTCTGAGATAGACG -ACGGAAAAGCCTCTGAGAGTAACG -ACGGAAAAGCCTCTGAGAACTTCG -ACGGAAAAGCCTCTGAGATACGCA -ACGGAAAAGCCTCTGAGACTTGCA -ACGGAAAAGCCTCTGAGACGAACA -ACGGAAAAGCCTCTGAGACAGTCA -ACGGAAAAGCCTCTGAGAGATCCA -ACGGAAAAGCCTCTGAGAACGACA -ACGGAAAAGCCTCTGAGAAGCTCA -ACGGAAAAGCCTCTGAGATCACGT -ACGGAAAAGCCTCTGAGACGTAGT -ACGGAAAAGCCTCTGAGAGTCAGT -ACGGAAAAGCCTCTGAGAGAAGGT -ACGGAAAAGCCTCTGAGAAACCGT -ACGGAAAAGCCTCTGAGATTGTGC -ACGGAAAAGCCTCTGAGACTAAGC -ACGGAAAAGCCTCTGAGAACTAGC -ACGGAAAAGCCTCTGAGAAGATGC -ACGGAAAAGCCTCTGAGATGAAGG -ACGGAAAAGCCTCTGAGACAATGG -ACGGAAAAGCCTCTGAGAATGAGG -ACGGAAAAGCCTCTGAGAAATGGG -ACGGAAAAGCCTCTGAGATCCTGA -ACGGAAAAGCCTCTGAGATAGCGA -ACGGAAAAGCCTCTGAGACACAGA -ACGGAAAAGCCTCTGAGAGCAAGA -ACGGAAAAGCCTCTGAGAGGTTGA -ACGGAAAAGCCTCTGAGATCCGAT -ACGGAAAAGCCTCTGAGATGGCAT -ACGGAAAAGCCTCTGAGACGAGAT -ACGGAAAAGCCTCTGAGATACCAC -ACGGAAAAGCCTCTGAGACAGAAC -ACGGAAAAGCCTCTGAGAGTCTAC -ACGGAAAAGCCTCTGAGAACGTAC -ACGGAAAAGCCTCTGAGAAGTGAC -ACGGAAAAGCCTCTGAGACTGTAG -ACGGAAAAGCCTCTGAGACCTAAG -ACGGAAAAGCCTCTGAGAGTTCAG -ACGGAAAAGCCTCTGAGAGCATAG -ACGGAAAAGCCTCTGAGAGACAAG -ACGGAAAAGCCTCTGAGAAAGCAG -ACGGAAAAGCCTCTGAGACGTCAA -ACGGAAAAGCCTCTGAGAGCTGAA -ACGGAAAAGCCTCTGAGAAGTACG -ACGGAAAAGCCTCTGAGAATCCGA -ACGGAAAAGCCTCTGAGAATGGGA -ACGGAAAAGCCTCTGAGAGTGCAA -ACGGAAAAGCCTCTGAGAGAGGAA -ACGGAAAAGCCTCTGAGACAGGTA -ACGGAAAAGCCTCTGAGAGACTCT -ACGGAAAAGCCTCTGAGAAGTCCT -ACGGAAAAGCCTCTGAGATAAGCC -ACGGAAAAGCCTCTGAGAATAGCC -ACGGAAAAGCCTCTGAGATAACCG -ACGGAAAAGCCTCTGAGAATGCCA -ACGGAAAAGCCTGTATCGGGAAAC -ACGGAAAAGCCTGTATCGAACACC -ACGGAAAAGCCTGTATCGATCGAG -ACGGAAAAGCCTGTATCGCTCCTT -ACGGAAAAGCCTGTATCGCCTGTT -ACGGAAAAGCCTGTATCGCGGTTT -ACGGAAAAGCCTGTATCGGTGGTT -ACGGAAAAGCCTGTATCGGCCTTT -ACGGAAAAGCCTGTATCGGGTCTT -ACGGAAAAGCCTGTATCGACGCTT -ACGGAAAAGCCTGTATCGAGCGTT -ACGGAAAAGCCTGTATCGTTCGTC -ACGGAAAAGCCTGTATCGTCTCTC -ACGGAAAAGCCTGTATCGTGGATC -ACGGAAAAGCCTGTATCGCACTTC -ACGGAAAAGCCTGTATCGGTACTC -ACGGAAAAGCCTGTATCGGATGTC -ACGGAAAAGCCTGTATCGACAGTC -ACGGAAAAGCCTGTATCGTTGCTG -ACGGAAAAGCCTGTATCGTCCATG -ACGGAAAAGCCTGTATCGTGTGTG -ACGGAAAAGCCTGTATCGCTAGTG -ACGGAAAAGCCTGTATCGCATCTG -ACGGAAAAGCCTGTATCGGAGTTG -ACGGAAAAGCCTGTATCGAGACTG -ACGGAAAAGCCTGTATCGTCGGTA -ACGGAAAAGCCTGTATCGTGCCTA -ACGGAAAAGCCTGTATCGCCACTA -ACGGAAAAGCCTGTATCGGGAGTA -ACGGAAAAGCCTGTATCGTCGTCT -ACGGAAAAGCCTGTATCGTGCACT -ACGGAAAAGCCTGTATCGCTGACT -ACGGAAAAGCCTGTATCGCAACCT -ACGGAAAAGCCTGTATCGGCTACT -ACGGAAAAGCCTGTATCGGGATCT -ACGGAAAAGCCTGTATCGAAGGCT -ACGGAAAAGCCTGTATCGTCAACC -ACGGAAAAGCCTGTATCGTGTTCC -ACGGAAAAGCCTGTATCGATTCCC -ACGGAAAAGCCTGTATCGTTCTCG -ACGGAAAAGCCTGTATCGTAGACG -ACGGAAAAGCCTGTATCGGTAACG -ACGGAAAAGCCTGTATCGACTTCG -ACGGAAAAGCCTGTATCGTACGCA -ACGGAAAAGCCTGTATCGCTTGCA -ACGGAAAAGCCTGTATCGCGAACA -ACGGAAAAGCCTGTATCGCAGTCA -ACGGAAAAGCCTGTATCGGATCCA -ACGGAAAAGCCTGTATCGACGACA -ACGGAAAAGCCTGTATCGAGCTCA -ACGGAAAAGCCTGTATCGTCACGT -ACGGAAAAGCCTGTATCGCGTAGT -ACGGAAAAGCCTGTATCGGTCAGT -ACGGAAAAGCCTGTATCGGAAGGT -ACGGAAAAGCCTGTATCGAACCGT -ACGGAAAAGCCTGTATCGTTGTGC -ACGGAAAAGCCTGTATCGCTAAGC -ACGGAAAAGCCTGTATCGACTAGC -ACGGAAAAGCCTGTATCGAGATGC -ACGGAAAAGCCTGTATCGTGAAGG -ACGGAAAAGCCTGTATCGCAATGG -ACGGAAAAGCCTGTATCGATGAGG -ACGGAAAAGCCTGTATCGAATGGG -ACGGAAAAGCCTGTATCGTCCTGA -ACGGAAAAGCCTGTATCGTAGCGA -ACGGAAAAGCCTGTATCGCACAGA -ACGGAAAAGCCTGTATCGGCAAGA -ACGGAAAAGCCTGTATCGGGTTGA -ACGGAAAAGCCTGTATCGTCCGAT -ACGGAAAAGCCTGTATCGTGGCAT -ACGGAAAAGCCTGTATCGCGAGAT -ACGGAAAAGCCTGTATCGTACCAC -ACGGAAAAGCCTGTATCGCAGAAC -ACGGAAAAGCCTGTATCGGTCTAC -ACGGAAAAGCCTGTATCGACGTAC -ACGGAAAAGCCTGTATCGAGTGAC -ACGGAAAAGCCTGTATCGCTGTAG -ACGGAAAAGCCTGTATCGCCTAAG -ACGGAAAAGCCTGTATCGGTTCAG -ACGGAAAAGCCTGTATCGGCATAG -ACGGAAAAGCCTGTATCGGACAAG -ACGGAAAAGCCTGTATCGAAGCAG -ACGGAAAAGCCTGTATCGCGTCAA -ACGGAAAAGCCTGTATCGGCTGAA -ACGGAAAAGCCTGTATCGAGTACG -ACGGAAAAGCCTGTATCGATCCGA -ACGGAAAAGCCTGTATCGATGGGA -ACGGAAAAGCCTGTATCGGTGCAA -ACGGAAAAGCCTGTATCGGAGGAA -ACGGAAAAGCCTGTATCGCAGGTA -ACGGAAAAGCCTGTATCGGACTCT -ACGGAAAAGCCTGTATCGAGTCCT -ACGGAAAAGCCTGTATCGTAAGCC -ACGGAAAAGCCTGTATCGATAGCC -ACGGAAAAGCCTGTATCGTAACCG -ACGGAAAAGCCTGTATCGATGCCA -ACGGAAAAGCCTCTATGCGGAAAC -ACGGAAAAGCCTCTATGCAACACC -ACGGAAAAGCCTCTATGCATCGAG -ACGGAAAAGCCTCTATGCCTCCTT -ACGGAAAAGCCTCTATGCCCTGTT -ACGGAAAAGCCTCTATGCCGGTTT -ACGGAAAAGCCTCTATGCGTGGTT -ACGGAAAAGCCTCTATGCGCCTTT -ACGGAAAAGCCTCTATGCGGTCTT -ACGGAAAAGCCTCTATGCACGCTT -ACGGAAAAGCCTCTATGCAGCGTT -ACGGAAAAGCCTCTATGCTTCGTC -ACGGAAAAGCCTCTATGCTCTCTC -ACGGAAAAGCCTCTATGCTGGATC -ACGGAAAAGCCTCTATGCCACTTC -ACGGAAAAGCCTCTATGCGTACTC -ACGGAAAAGCCTCTATGCGATGTC -ACGGAAAAGCCTCTATGCACAGTC -ACGGAAAAGCCTCTATGCTTGCTG -ACGGAAAAGCCTCTATGCTCCATG -ACGGAAAAGCCTCTATGCTGTGTG -ACGGAAAAGCCTCTATGCCTAGTG -ACGGAAAAGCCTCTATGCCATCTG -ACGGAAAAGCCTCTATGCGAGTTG -ACGGAAAAGCCTCTATGCAGACTG -ACGGAAAAGCCTCTATGCTCGGTA -ACGGAAAAGCCTCTATGCTGCCTA -ACGGAAAAGCCTCTATGCCCACTA -ACGGAAAAGCCTCTATGCGGAGTA -ACGGAAAAGCCTCTATGCTCGTCT -ACGGAAAAGCCTCTATGCTGCACT -ACGGAAAAGCCTCTATGCCTGACT -ACGGAAAAGCCTCTATGCCAACCT -ACGGAAAAGCCTCTATGCGCTACT -ACGGAAAAGCCTCTATGCGGATCT -ACGGAAAAGCCTCTATGCAAGGCT -ACGGAAAAGCCTCTATGCTCAACC -ACGGAAAAGCCTCTATGCTGTTCC -ACGGAAAAGCCTCTATGCATTCCC -ACGGAAAAGCCTCTATGCTTCTCG -ACGGAAAAGCCTCTATGCTAGACG -ACGGAAAAGCCTCTATGCGTAACG -ACGGAAAAGCCTCTATGCACTTCG -ACGGAAAAGCCTCTATGCTACGCA -ACGGAAAAGCCTCTATGCCTTGCA -ACGGAAAAGCCTCTATGCCGAACA -ACGGAAAAGCCTCTATGCCAGTCA -ACGGAAAAGCCTCTATGCGATCCA -ACGGAAAAGCCTCTATGCACGACA -ACGGAAAAGCCTCTATGCAGCTCA -ACGGAAAAGCCTCTATGCTCACGT -ACGGAAAAGCCTCTATGCCGTAGT -ACGGAAAAGCCTCTATGCGTCAGT -ACGGAAAAGCCTCTATGCGAAGGT -ACGGAAAAGCCTCTATGCAACCGT -ACGGAAAAGCCTCTATGCTTGTGC -ACGGAAAAGCCTCTATGCCTAAGC -ACGGAAAAGCCTCTATGCACTAGC -ACGGAAAAGCCTCTATGCAGATGC -ACGGAAAAGCCTCTATGCTGAAGG -ACGGAAAAGCCTCTATGCCAATGG -ACGGAAAAGCCTCTATGCATGAGG -ACGGAAAAGCCTCTATGCAATGGG -ACGGAAAAGCCTCTATGCTCCTGA -ACGGAAAAGCCTCTATGCTAGCGA -ACGGAAAAGCCTCTATGCCACAGA -ACGGAAAAGCCTCTATGCGCAAGA -ACGGAAAAGCCTCTATGCGGTTGA -ACGGAAAAGCCTCTATGCTCCGAT -ACGGAAAAGCCTCTATGCTGGCAT -ACGGAAAAGCCTCTATGCCGAGAT -ACGGAAAAGCCTCTATGCTACCAC -ACGGAAAAGCCTCTATGCCAGAAC -ACGGAAAAGCCTCTATGCGTCTAC -ACGGAAAAGCCTCTATGCACGTAC -ACGGAAAAGCCTCTATGCAGTGAC -ACGGAAAAGCCTCTATGCCTGTAG -ACGGAAAAGCCTCTATGCCCTAAG -ACGGAAAAGCCTCTATGCGTTCAG -ACGGAAAAGCCTCTATGCGCATAG -ACGGAAAAGCCTCTATGCGACAAG -ACGGAAAAGCCTCTATGCAAGCAG -ACGGAAAAGCCTCTATGCCGTCAA -ACGGAAAAGCCTCTATGCGCTGAA -ACGGAAAAGCCTCTATGCAGTACG -ACGGAAAAGCCTCTATGCATCCGA -ACGGAAAAGCCTCTATGCATGGGA -ACGGAAAAGCCTCTATGCGTGCAA -ACGGAAAAGCCTCTATGCGAGGAA -ACGGAAAAGCCTCTATGCCAGGTA -ACGGAAAAGCCTCTATGCGACTCT -ACGGAAAAGCCTCTATGCAGTCCT -ACGGAAAAGCCTCTATGCTAAGCC -ACGGAAAAGCCTCTATGCATAGCC -ACGGAAAAGCCTCTATGCTAACCG -ACGGAAAAGCCTCTATGCATGCCA -ACGGAAAAGCCTCTACCAGGAAAC -ACGGAAAAGCCTCTACCAAACACC -ACGGAAAAGCCTCTACCAATCGAG -ACGGAAAAGCCTCTACCACTCCTT -ACGGAAAAGCCTCTACCACCTGTT -ACGGAAAAGCCTCTACCACGGTTT -ACGGAAAAGCCTCTACCAGTGGTT -ACGGAAAAGCCTCTACCAGCCTTT -ACGGAAAAGCCTCTACCAGGTCTT -ACGGAAAAGCCTCTACCAACGCTT -ACGGAAAAGCCTCTACCAAGCGTT -ACGGAAAAGCCTCTACCATTCGTC -ACGGAAAAGCCTCTACCATCTCTC -ACGGAAAAGCCTCTACCATGGATC -ACGGAAAAGCCTCTACCACACTTC -ACGGAAAAGCCTCTACCAGTACTC -ACGGAAAAGCCTCTACCAGATGTC -ACGGAAAAGCCTCTACCAACAGTC -ACGGAAAAGCCTCTACCATTGCTG -ACGGAAAAGCCTCTACCATCCATG -ACGGAAAAGCCTCTACCATGTGTG -ACGGAAAAGCCTCTACCACTAGTG -ACGGAAAAGCCTCTACCACATCTG -ACGGAAAAGCCTCTACCAGAGTTG -ACGGAAAAGCCTCTACCAAGACTG -ACGGAAAAGCCTCTACCATCGGTA -ACGGAAAAGCCTCTACCATGCCTA -ACGGAAAAGCCTCTACCACCACTA -ACGGAAAAGCCTCTACCAGGAGTA -ACGGAAAAGCCTCTACCATCGTCT -ACGGAAAAGCCTCTACCATGCACT -ACGGAAAAGCCTCTACCACTGACT -ACGGAAAAGCCTCTACCACAACCT -ACGGAAAAGCCTCTACCAGCTACT -ACGGAAAAGCCTCTACCAGGATCT -ACGGAAAAGCCTCTACCAAAGGCT -ACGGAAAAGCCTCTACCATCAACC -ACGGAAAAGCCTCTACCATGTTCC -ACGGAAAAGCCTCTACCAATTCCC -ACGGAAAAGCCTCTACCATTCTCG -ACGGAAAAGCCTCTACCATAGACG -ACGGAAAAGCCTCTACCAGTAACG -ACGGAAAAGCCTCTACCAACTTCG -ACGGAAAAGCCTCTACCATACGCA -ACGGAAAAGCCTCTACCACTTGCA -ACGGAAAAGCCTCTACCACGAACA -ACGGAAAAGCCTCTACCACAGTCA -ACGGAAAAGCCTCTACCAGATCCA -ACGGAAAAGCCTCTACCAACGACA -ACGGAAAAGCCTCTACCAAGCTCA -ACGGAAAAGCCTCTACCATCACGT -ACGGAAAAGCCTCTACCACGTAGT -ACGGAAAAGCCTCTACCAGTCAGT -ACGGAAAAGCCTCTACCAGAAGGT -ACGGAAAAGCCTCTACCAAACCGT -ACGGAAAAGCCTCTACCATTGTGC -ACGGAAAAGCCTCTACCACTAAGC -ACGGAAAAGCCTCTACCAACTAGC -ACGGAAAAGCCTCTACCAAGATGC -ACGGAAAAGCCTCTACCATGAAGG -ACGGAAAAGCCTCTACCACAATGG -ACGGAAAAGCCTCTACCAATGAGG -ACGGAAAAGCCTCTACCAAATGGG -ACGGAAAAGCCTCTACCATCCTGA -ACGGAAAAGCCTCTACCATAGCGA -ACGGAAAAGCCTCTACCACACAGA -ACGGAAAAGCCTCTACCAGCAAGA -ACGGAAAAGCCTCTACCAGGTTGA -ACGGAAAAGCCTCTACCATCCGAT -ACGGAAAAGCCTCTACCATGGCAT -ACGGAAAAGCCTCTACCACGAGAT -ACGGAAAAGCCTCTACCATACCAC -ACGGAAAAGCCTCTACCACAGAAC -ACGGAAAAGCCTCTACCAGTCTAC -ACGGAAAAGCCTCTACCAACGTAC -ACGGAAAAGCCTCTACCAAGTGAC -ACGGAAAAGCCTCTACCACTGTAG -ACGGAAAAGCCTCTACCACCTAAG -ACGGAAAAGCCTCTACCAGTTCAG -ACGGAAAAGCCTCTACCAGCATAG -ACGGAAAAGCCTCTACCAGACAAG -ACGGAAAAGCCTCTACCAAAGCAG -ACGGAAAAGCCTCTACCACGTCAA -ACGGAAAAGCCTCTACCAGCTGAA -ACGGAAAAGCCTCTACCAAGTACG -ACGGAAAAGCCTCTACCAATCCGA -ACGGAAAAGCCTCTACCAATGGGA -ACGGAAAAGCCTCTACCAGTGCAA -ACGGAAAAGCCTCTACCAGAGGAA -ACGGAAAAGCCTCTACCACAGGTA -ACGGAAAAGCCTCTACCAGACTCT -ACGGAAAAGCCTCTACCAAGTCCT -ACGGAAAAGCCTCTACCATAAGCC -ACGGAAAAGCCTCTACCAATAGCC -ACGGAAAAGCCTCTACCATAACCG -ACGGAAAAGCCTCTACCAATGCCA -ACGGAAAAGCCTGTAGGAGGAAAC -ACGGAAAAGCCTGTAGGAAACACC -ACGGAAAAGCCTGTAGGAATCGAG -ACGGAAAAGCCTGTAGGACTCCTT -ACGGAAAAGCCTGTAGGACCTGTT -ACGGAAAAGCCTGTAGGACGGTTT -ACGGAAAAGCCTGTAGGAGTGGTT -ACGGAAAAGCCTGTAGGAGCCTTT -ACGGAAAAGCCTGTAGGAGGTCTT -ACGGAAAAGCCTGTAGGAACGCTT -ACGGAAAAGCCTGTAGGAAGCGTT -ACGGAAAAGCCTGTAGGATTCGTC -ACGGAAAAGCCTGTAGGATCTCTC -ACGGAAAAGCCTGTAGGATGGATC -ACGGAAAAGCCTGTAGGACACTTC -ACGGAAAAGCCTGTAGGAGTACTC -ACGGAAAAGCCTGTAGGAGATGTC -ACGGAAAAGCCTGTAGGAACAGTC -ACGGAAAAGCCTGTAGGATTGCTG -ACGGAAAAGCCTGTAGGATCCATG -ACGGAAAAGCCTGTAGGATGTGTG -ACGGAAAAGCCTGTAGGACTAGTG -ACGGAAAAGCCTGTAGGACATCTG -ACGGAAAAGCCTGTAGGAGAGTTG -ACGGAAAAGCCTGTAGGAAGACTG -ACGGAAAAGCCTGTAGGATCGGTA -ACGGAAAAGCCTGTAGGATGCCTA -ACGGAAAAGCCTGTAGGACCACTA -ACGGAAAAGCCTGTAGGAGGAGTA -ACGGAAAAGCCTGTAGGATCGTCT -ACGGAAAAGCCTGTAGGATGCACT -ACGGAAAAGCCTGTAGGACTGACT -ACGGAAAAGCCTGTAGGACAACCT -ACGGAAAAGCCTGTAGGAGCTACT -ACGGAAAAGCCTGTAGGAGGATCT -ACGGAAAAGCCTGTAGGAAAGGCT -ACGGAAAAGCCTGTAGGATCAACC -ACGGAAAAGCCTGTAGGATGTTCC -ACGGAAAAGCCTGTAGGAATTCCC -ACGGAAAAGCCTGTAGGATTCTCG -ACGGAAAAGCCTGTAGGATAGACG -ACGGAAAAGCCTGTAGGAGTAACG -ACGGAAAAGCCTGTAGGAACTTCG -ACGGAAAAGCCTGTAGGATACGCA -ACGGAAAAGCCTGTAGGACTTGCA -ACGGAAAAGCCTGTAGGACGAACA -ACGGAAAAGCCTGTAGGACAGTCA -ACGGAAAAGCCTGTAGGAGATCCA -ACGGAAAAGCCTGTAGGAACGACA -ACGGAAAAGCCTGTAGGAAGCTCA -ACGGAAAAGCCTGTAGGATCACGT -ACGGAAAAGCCTGTAGGACGTAGT -ACGGAAAAGCCTGTAGGAGTCAGT -ACGGAAAAGCCTGTAGGAGAAGGT -ACGGAAAAGCCTGTAGGAAACCGT -ACGGAAAAGCCTGTAGGATTGTGC -ACGGAAAAGCCTGTAGGACTAAGC -ACGGAAAAGCCTGTAGGAACTAGC -ACGGAAAAGCCTGTAGGAAGATGC -ACGGAAAAGCCTGTAGGATGAAGG -ACGGAAAAGCCTGTAGGACAATGG -ACGGAAAAGCCTGTAGGAATGAGG -ACGGAAAAGCCTGTAGGAAATGGG -ACGGAAAAGCCTGTAGGATCCTGA -ACGGAAAAGCCTGTAGGATAGCGA -ACGGAAAAGCCTGTAGGACACAGA -ACGGAAAAGCCTGTAGGAGCAAGA -ACGGAAAAGCCTGTAGGAGGTTGA -ACGGAAAAGCCTGTAGGATCCGAT -ACGGAAAAGCCTGTAGGATGGCAT -ACGGAAAAGCCTGTAGGACGAGAT -ACGGAAAAGCCTGTAGGATACCAC -ACGGAAAAGCCTGTAGGACAGAAC -ACGGAAAAGCCTGTAGGAGTCTAC -ACGGAAAAGCCTGTAGGAACGTAC -ACGGAAAAGCCTGTAGGAAGTGAC -ACGGAAAAGCCTGTAGGACTGTAG -ACGGAAAAGCCTGTAGGACCTAAG -ACGGAAAAGCCTGTAGGAGTTCAG -ACGGAAAAGCCTGTAGGAGCATAG -ACGGAAAAGCCTGTAGGAGACAAG -ACGGAAAAGCCTGTAGGAAAGCAG -ACGGAAAAGCCTGTAGGACGTCAA -ACGGAAAAGCCTGTAGGAGCTGAA -ACGGAAAAGCCTGTAGGAAGTACG -ACGGAAAAGCCTGTAGGAATCCGA -ACGGAAAAGCCTGTAGGAATGGGA -ACGGAAAAGCCTGTAGGAGTGCAA -ACGGAAAAGCCTGTAGGAGAGGAA -ACGGAAAAGCCTGTAGGACAGGTA -ACGGAAAAGCCTGTAGGAGACTCT -ACGGAAAAGCCTGTAGGAAGTCCT -ACGGAAAAGCCTGTAGGATAAGCC -ACGGAAAAGCCTGTAGGAATAGCC -ACGGAAAAGCCTGTAGGATAACCG -ACGGAAAAGCCTGTAGGAATGCCA -ACGGAAAAGCCTTCTTCGGGAAAC -ACGGAAAAGCCTTCTTCGAACACC -ACGGAAAAGCCTTCTTCGATCGAG -ACGGAAAAGCCTTCTTCGCTCCTT -ACGGAAAAGCCTTCTTCGCCTGTT -ACGGAAAAGCCTTCTTCGCGGTTT -ACGGAAAAGCCTTCTTCGGTGGTT -ACGGAAAAGCCTTCTTCGGCCTTT -ACGGAAAAGCCTTCTTCGGGTCTT -ACGGAAAAGCCTTCTTCGACGCTT -ACGGAAAAGCCTTCTTCGAGCGTT -ACGGAAAAGCCTTCTTCGTTCGTC -ACGGAAAAGCCTTCTTCGTCTCTC -ACGGAAAAGCCTTCTTCGTGGATC -ACGGAAAAGCCTTCTTCGCACTTC -ACGGAAAAGCCTTCTTCGGTACTC -ACGGAAAAGCCTTCTTCGGATGTC -ACGGAAAAGCCTTCTTCGACAGTC -ACGGAAAAGCCTTCTTCGTTGCTG -ACGGAAAAGCCTTCTTCGTCCATG -ACGGAAAAGCCTTCTTCGTGTGTG -ACGGAAAAGCCTTCTTCGCTAGTG -ACGGAAAAGCCTTCTTCGCATCTG -ACGGAAAAGCCTTCTTCGGAGTTG -ACGGAAAAGCCTTCTTCGAGACTG -ACGGAAAAGCCTTCTTCGTCGGTA -ACGGAAAAGCCTTCTTCGTGCCTA -ACGGAAAAGCCTTCTTCGCCACTA -ACGGAAAAGCCTTCTTCGGGAGTA -ACGGAAAAGCCTTCTTCGTCGTCT -ACGGAAAAGCCTTCTTCGTGCACT -ACGGAAAAGCCTTCTTCGCTGACT -ACGGAAAAGCCTTCTTCGCAACCT -ACGGAAAAGCCTTCTTCGGCTACT -ACGGAAAAGCCTTCTTCGGGATCT -ACGGAAAAGCCTTCTTCGAAGGCT -ACGGAAAAGCCTTCTTCGTCAACC -ACGGAAAAGCCTTCTTCGTGTTCC -ACGGAAAAGCCTTCTTCGATTCCC -ACGGAAAAGCCTTCTTCGTTCTCG -ACGGAAAAGCCTTCTTCGTAGACG -ACGGAAAAGCCTTCTTCGGTAACG -ACGGAAAAGCCTTCTTCGACTTCG -ACGGAAAAGCCTTCTTCGTACGCA -ACGGAAAAGCCTTCTTCGCTTGCA -ACGGAAAAGCCTTCTTCGCGAACA -ACGGAAAAGCCTTCTTCGCAGTCA -ACGGAAAAGCCTTCTTCGGATCCA -ACGGAAAAGCCTTCTTCGACGACA -ACGGAAAAGCCTTCTTCGAGCTCA -ACGGAAAAGCCTTCTTCGTCACGT -ACGGAAAAGCCTTCTTCGCGTAGT -ACGGAAAAGCCTTCTTCGGTCAGT -ACGGAAAAGCCTTCTTCGGAAGGT -ACGGAAAAGCCTTCTTCGAACCGT -ACGGAAAAGCCTTCTTCGTTGTGC -ACGGAAAAGCCTTCTTCGCTAAGC -ACGGAAAAGCCTTCTTCGACTAGC -ACGGAAAAGCCTTCTTCGAGATGC -ACGGAAAAGCCTTCTTCGTGAAGG -ACGGAAAAGCCTTCTTCGCAATGG -ACGGAAAAGCCTTCTTCGATGAGG -ACGGAAAAGCCTTCTTCGAATGGG -ACGGAAAAGCCTTCTTCGTCCTGA -ACGGAAAAGCCTTCTTCGTAGCGA -ACGGAAAAGCCTTCTTCGCACAGA -ACGGAAAAGCCTTCTTCGGCAAGA -ACGGAAAAGCCTTCTTCGGGTTGA -ACGGAAAAGCCTTCTTCGTCCGAT -ACGGAAAAGCCTTCTTCGTGGCAT -ACGGAAAAGCCTTCTTCGCGAGAT -ACGGAAAAGCCTTCTTCGTACCAC -ACGGAAAAGCCTTCTTCGCAGAAC -ACGGAAAAGCCTTCTTCGGTCTAC -ACGGAAAAGCCTTCTTCGACGTAC -ACGGAAAAGCCTTCTTCGAGTGAC -ACGGAAAAGCCTTCTTCGCTGTAG -ACGGAAAAGCCTTCTTCGCCTAAG -ACGGAAAAGCCTTCTTCGGTTCAG -ACGGAAAAGCCTTCTTCGGCATAG -ACGGAAAAGCCTTCTTCGGACAAG -ACGGAAAAGCCTTCTTCGAAGCAG -ACGGAAAAGCCTTCTTCGCGTCAA -ACGGAAAAGCCTTCTTCGGCTGAA -ACGGAAAAGCCTTCTTCGAGTACG -ACGGAAAAGCCTTCTTCGATCCGA -ACGGAAAAGCCTTCTTCGATGGGA -ACGGAAAAGCCTTCTTCGGTGCAA -ACGGAAAAGCCTTCTTCGGAGGAA -ACGGAAAAGCCTTCTTCGCAGGTA -ACGGAAAAGCCTTCTTCGGACTCT -ACGGAAAAGCCTTCTTCGAGTCCT -ACGGAAAAGCCTTCTTCGTAAGCC -ACGGAAAAGCCTTCTTCGATAGCC -ACGGAAAAGCCTTCTTCGTAACCG -ACGGAAAAGCCTTCTTCGATGCCA -ACGGAAAAGCCTACTTGCGGAAAC -ACGGAAAAGCCTACTTGCAACACC -ACGGAAAAGCCTACTTGCATCGAG -ACGGAAAAGCCTACTTGCCTCCTT -ACGGAAAAGCCTACTTGCCCTGTT -ACGGAAAAGCCTACTTGCCGGTTT -ACGGAAAAGCCTACTTGCGTGGTT -ACGGAAAAGCCTACTTGCGCCTTT -ACGGAAAAGCCTACTTGCGGTCTT -ACGGAAAAGCCTACTTGCACGCTT -ACGGAAAAGCCTACTTGCAGCGTT -ACGGAAAAGCCTACTTGCTTCGTC -ACGGAAAAGCCTACTTGCTCTCTC -ACGGAAAAGCCTACTTGCTGGATC -ACGGAAAAGCCTACTTGCCACTTC -ACGGAAAAGCCTACTTGCGTACTC -ACGGAAAAGCCTACTTGCGATGTC -ACGGAAAAGCCTACTTGCACAGTC -ACGGAAAAGCCTACTTGCTTGCTG -ACGGAAAAGCCTACTTGCTCCATG -ACGGAAAAGCCTACTTGCTGTGTG -ACGGAAAAGCCTACTTGCCTAGTG -ACGGAAAAGCCTACTTGCCATCTG -ACGGAAAAGCCTACTTGCGAGTTG -ACGGAAAAGCCTACTTGCAGACTG -ACGGAAAAGCCTACTTGCTCGGTA -ACGGAAAAGCCTACTTGCTGCCTA -ACGGAAAAGCCTACTTGCCCACTA -ACGGAAAAGCCTACTTGCGGAGTA -ACGGAAAAGCCTACTTGCTCGTCT -ACGGAAAAGCCTACTTGCTGCACT -ACGGAAAAGCCTACTTGCCTGACT -ACGGAAAAGCCTACTTGCCAACCT -ACGGAAAAGCCTACTTGCGCTACT -ACGGAAAAGCCTACTTGCGGATCT -ACGGAAAAGCCTACTTGCAAGGCT -ACGGAAAAGCCTACTTGCTCAACC -ACGGAAAAGCCTACTTGCTGTTCC -ACGGAAAAGCCTACTTGCATTCCC -ACGGAAAAGCCTACTTGCTTCTCG -ACGGAAAAGCCTACTTGCTAGACG -ACGGAAAAGCCTACTTGCGTAACG -ACGGAAAAGCCTACTTGCACTTCG -ACGGAAAAGCCTACTTGCTACGCA -ACGGAAAAGCCTACTTGCCTTGCA -ACGGAAAAGCCTACTTGCCGAACA -ACGGAAAAGCCTACTTGCCAGTCA -ACGGAAAAGCCTACTTGCGATCCA -ACGGAAAAGCCTACTTGCACGACA -ACGGAAAAGCCTACTTGCAGCTCA -ACGGAAAAGCCTACTTGCTCACGT -ACGGAAAAGCCTACTTGCCGTAGT -ACGGAAAAGCCTACTTGCGTCAGT -ACGGAAAAGCCTACTTGCGAAGGT -ACGGAAAAGCCTACTTGCAACCGT -ACGGAAAAGCCTACTTGCTTGTGC -ACGGAAAAGCCTACTTGCCTAAGC -ACGGAAAAGCCTACTTGCACTAGC -ACGGAAAAGCCTACTTGCAGATGC -ACGGAAAAGCCTACTTGCTGAAGG -ACGGAAAAGCCTACTTGCCAATGG -ACGGAAAAGCCTACTTGCATGAGG -ACGGAAAAGCCTACTTGCAATGGG -ACGGAAAAGCCTACTTGCTCCTGA -ACGGAAAAGCCTACTTGCTAGCGA -ACGGAAAAGCCTACTTGCCACAGA -ACGGAAAAGCCTACTTGCGCAAGA -ACGGAAAAGCCTACTTGCGGTTGA -ACGGAAAAGCCTACTTGCTCCGAT -ACGGAAAAGCCTACTTGCTGGCAT -ACGGAAAAGCCTACTTGCCGAGAT -ACGGAAAAGCCTACTTGCTACCAC -ACGGAAAAGCCTACTTGCCAGAAC -ACGGAAAAGCCTACTTGCGTCTAC -ACGGAAAAGCCTACTTGCACGTAC -ACGGAAAAGCCTACTTGCAGTGAC -ACGGAAAAGCCTACTTGCCTGTAG -ACGGAAAAGCCTACTTGCCCTAAG -ACGGAAAAGCCTACTTGCGTTCAG -ACGGAAAAGCCTACTTGCGCATAG -ACGGAAAAGCCTACTTGCGACAAG -ACGGAAAAGCCTACTTGCAAGCAG -ACGGAAAAGCCTACTTGCCGTCAA -ACGGAAAAGCCTACTTGCGCTGAA -ACGGAAAAGCCTACTTGCAGTACG -ACGGAAAAGCCTACTTGCATCCGA -ACGGAAAAGCCTACTTGCATGGGA -ACGGAAAAGCCTACTTGCGTGCAA -ACGGAAAAGCCTACTTGCGAGGAA -ACGGAAAAGCCTACTTGCCAGGTA -ACGGAAAAGCCTACTTGCGACTCT -ACGGAAAAGCCTACTTGCAGTCCT -ACGGAAAAGCCTACTTGCTAAGCC -ACGGAAAAGCCTACTTGCATAGCC -ACGGAAAAGCCTACTTGCTAACCG -ACGGAAAAGCCTACTTGCATGCCA -ACGGAAAAGCCTACTCTGGGAAAC -ACGGAAAAGCCTACTCTGAACACC -ACGGAAAAGCCTACTCTGATCGAG -ACGGAAAAGCCTACTCTGCTCCTT -ACGGAAAAGCCTACTCTGCCTGTT -ACGGAAAAGCCTACTCTGCGGTTT -ACGGAAAAGCCTACTCTGGTGGTT -ACGGAAAAGCCTACTCTGGCCTTT -ACGGAAAAGCCTACTCTGGGTCTT -ACGGAAAAGCCTACTCTGACGCTT -ACGGAAAAGCCTACTCTGAGCGTT -ACGGAAAAGCCTACTCTGTTCGTC -ACGGAAAAGCCTACTCTGTCTCTC -ACGGAAAAGCCTACTCTGTGGATC -ACGGAAAAGCCTACTCTGCACTTC -ACGGAAAAGCCTACTCTGGTACTC -ACGGAAAAGCCTACTCTGGATGTC -ACGGAAAAGCCTACTCTGACAGTC -ACGGAAAAGCCTACTCTGTTGCTG -ACGGAAAAGCCTACTCTGTCCATG -ACGGAAAAGCCTACTCTGTGTGTG -ACGGAAAAGCCTACTCTGCTAGTG -ACGGAAAAGCCTACTCTGCATCTG -ACGGAAAAGCCTACTCTGGAGTTG -ACGGAAAAGCCTACTCTGAGACTG -ACGGAAAAGCCTACTCTGTCGGTA -ACGGAAAAGCCTACTCTGTGCCTA -ACGGAAAAGCCTACTCTGCCACTA -ACGGAAAAGCCTACTCTGGGAGTA -ACGGAAAAGCCTACTCTGTCGTCT -ACGGAAAAGCCTACTCTGTGCACT -ACGGAAAAGCCTACTCTGCTGACT -ACGGAAAAGCCTACTCTGCAACCT -ACGGAAAAGCCTACTCTGGCTACT -ACGGAAAAGCCTACTCTGGGATCT -ACGGAAAAGCCTACTCTGAAGGCT -ACGGAAAAGCCTACTCTGTCAACC -ACGGAAAAGCCTACTCTGTGTTCC -ACGGAAAAGCCTACTCTGATTCCC -ACGGAAAAGCCTACTCTGTTCTCG -ACGGAAAAGCCTACTCTGTAGACG -ACGGAAAAGCCTACTCTGGTAACG -ACGGAAAAGCCTACTCTGACTTCG -ACGGAAAAGCCTACTCTGTACGCA -ACGGAAAAGCCTACTCTGCTTGCA -ACGGAAAAGCCTACTCTGCGAACA -ACGGAAAAGCCTACTCTGCAGTCA -ACGGAAAAGCCTACTCTGGATCCA -ACGGAAAAGCCTACTCTGACGACA -ACGGAAAAGCCTACTCTGAGCTCA -ACGGAAAAGCCTACTCTGTCACGT -ACGGAAAAGCCTACTCTGCGTAGT -ACGGAAAAGCCTACTCTGGTCAGT -ACGGAAAAGCCTACTCTGGAAGGT -ACGGAAAAGCCTACTCTGAACCGT -ACGGAAAAGCCTACTCTGTTGTGC -ACGGAAAAGCCTACTCTGCTAAGC -ACGGAAAAGCCTACTCTGACTAGC -ACGGAAAAGCCTACTCTGAGATGC -ACGGAAAAGCCTACTCTGTGAAGG -ACGGAAAAGCCTACTCTGCAATGG -ACGGAAAAGCCTACTCTGATGAGG -ACGGAAAAGCCTACTCTGAATGGG -ACGGAAAAGCCTACTCTGTCCTGA -ACGGAAAAGCCTACTCTGTAGCGA -ACGGAAAAGCCTACTCTGCACAGA -ACGGAAAAGCCTACTCTGGCAAGA -ACGGAAAAGCCTACTCTGGGTTGA -ACGGAAAAGCCTACTCTGTCCGAT -ACGGAAAAGCCTACTCTGTGGCAT -ACGGAAAAGCCTACTCTGCGAGAT -ACGGAAAAGCCTACTCTGTACCAC -ACGGAAAAGCCTACTCTGCAGAAC -ACGGAAAAGCCTACTCTGGTCTAC -ACGGAAAAGCCTACTCTGACGTAC -ACGGAAAAGCCTACTCTGAGTGAC -ACGGAAAAGCCTACTCTGCTGTAG -ACGGAAAAGCCTACTCTGCCTAAG -ACGGAAAAGCCTACTCTGGTTCAG -ACGGAAAAGCCTACTCTGGCATAG -ACGGAAAAGCCTACTCTGGACAAG -ACGGAAAAGCCTACTCTGAAGCAG -ACGGAAAAGCCTACTCTGCGTCAA -ACGGAAAAGCCTACTCTGGCTGAA -ACGGAAAAGCCTACTCTGAGTACG -ACGGAAAAGCCTACTCTGATCCGA -ACGGAAAAGCCTACTCTGATGGGA -ACGGAAAAGCCTACTCTGGTGCAA -ACGGAAAAGCCTACTCTGGAGGAA -ACGGAAAAGCCTACTCTGCAGGTA -ACGGAAAAGCCTACTCTGGACTCT -ACGGAAAAGCCTACTCTGAGTCCT -ACGGAAAAGCCTACTCTGTAAGCC -ACGGAAAAGCCTACTCTGATAGCC -ACGGAAAAGCCTACTCTGTAACCG -ACGGAAAAGCCTACTCTGATGCCA -ACGGAAAAGCCTCCTCAAGGAAAC -ACGGAAAAGCCTCCTCAAAACACC -ACGGAAAAGCCTCCTCAAATCGAG -ACGGAAAAGCCTCCTCAACTCCTT -ACGGAAAAGCCTCCTCAACCTGTT -ACGGAAAAGCCTCCTCAACGGTTT -ACGGAAAAGCCTCCTCAAGTGGTT -ACGGAAAAGCCTCCTCAAGCCTTT -ACGGAAAAGCCTCCTCAAGGTCTT -ACGGAAAAGCCTCCTCAAACGCTT -ACGGAAAAGCCTCCTCAAAGCGTT -ACGGAAAAGCCTCCTCAATTCGTC -ACGGAAAAGCCTCCTCAATCTCTC -ACGGAAAAGCCTCCTCAATGGATC -ACGGAAAAGCCTCCTCAACACTTC -ACGGAAAAGCCTCCTCAAGTACTC -ACGGAAAAGCCTCCTCAAGATGTC -ACGGAAAAGCCTCCTCAAACAGTC -ACGGAAAAGCCTCCTCAATTGCTG -ACGGAAAAGCCTCCTCAATCCATG -ACGGAAAAGCCTCCTCAATGTGTG -ACGGAAAAGCCTCCTCAACTAGTG -ACGGAAAAGCCTCCTCAACATCTG -ACGGAAAAGCCTCCTCAAGAGTTG -ACGGAAAAGCCTCCTCAAAGACTG -ACGGAAAAGCCTCCTCAATCGGTA -ACGGAAAAGCCTCCTCAATGCCTA -ACGGAAAAGCCTCCTCAACCACTA -ACGGAAAAGCCTCCTCAAGGAGTA -ACGGAAAAGCCTCCTCAATCGTCT -ACGGAAAAGCCTCCTCAATGCACT -ACGGAAAAGCCTCCTCAACTGACT -ACGGAAAAGCCTCCTCAACAACCT -ACGGAAAAGCCTCCTCAAGCTACT -ACGGAAAAGCCTCCTCAAGGATCT -ACGGAAAAGCCTCCTCAAAAGGCT -ACGGAAAAGCCTCCTCAATCAACC -ACGGAAAAGCCTCCTCAATGTTCC -ACGGAAAAGCCTCCTCAAATTCCC -ACGGAAAAGCCTCCTCAATTCTCG -ACGGAAAAGCCTCCTCAATAGACG -ACGGAAAAGCCTCCTCAAGTAACG -ACGGAAAAGCCTCCTCAAACTTCG -ACGGAAAAGCCTCCTCAATACGCA -ACGGAAAAGCCTCCTCAACTTGCA -ACGGAAAAGCCTCCTCAACGAACA -ACGGAAAAGCCTCCTCAACAGTCA -ACGGAAAAGCCTCCTCAAGATCCA -ACGGAAAAGCCTCCTCAAACGACA -ACGGAAAAGCCTCCTCAAAGCTCA -ACGGAAAAGCCTCCTCAATCACGT -ACGGAAAAGCCTCCTCAACGTAGT -ACGGAAAAGCCTCCTCAAGTCAGT -ACGGAAAAGCCTCCTCAAGAAGGT -ACGGAAAAGCCTCCTCAAAACCGT -ACGGAAAAGCCTCCTCAATTGTGC -ACGGAAAAGCCTCCTCAACTAAGC -ACGGAAAAGCCTCCTCAAACTAGC -ACGGAAAAGCCTCCTCAAAGATGC -ACGGAAAAGCCTCCTCAATGAAGG -ACGGAAAAGCCTCCTCAACAATGG -ACGGAAAAGCCTCCTCAAATGAGG -ACGGAAAAGCCTCCTCAAAATGGG -ACGGAAAAGCCTCCTCAATCCTGA -ACGGAAAAGCCTCCTCAATAGCGA -ACGGAAAAGCCTCCTCAACACAGA -ACGGAAAAGCCTCCTCAAGCAAGA -ACGGAAAAGCCTCCTCAAGGTTGA -ACGGAAAAGCCTCCTCAATCCGAT -ACGGAAAAGCCTCCTCAATGGCAT -ACGGAAAAGCCTCCTCAACGAGAT -ACGGAAAAGCCTCCTCAATACCAC -ACGGAAAAGCCTCCTCAACAGAAC -ACGGAAAAGCCTCCTCAAGTCTAC -ACGGAAAAGCCTCCTCAAACGTAC -ACGGAAAAGCCTCCTCAAAGTGAC -ACGGAAAAGCCTCCTCAACTGTAG -ACGGAAAAGCCTCCTCAACCTAAG -ACGGAAAAGCCTCCTCAAGTTCAG -ACGGAAAAGCCTCCTCAAGCATAG -ACGGAAAAGCCTCCTCAAGACAAG -ACGGAAAAGCCTCCTCAAAAGCAG -ACGGAAAAGCCTCCTCAACGTCAA -ACGGAAAAGCCTCCTCAAGCTGAA -ACGGAAAAGCCTCCTCAAAGTACG -ACGGAAAAGCCTCCTCAAATCCGA -ACGGAAAAGCCTCCTCAAATGGGA -ACGGAAAAGCCTCCTCAAGTGCAA -ACGGAAAAGCCTCCTCAAGAGGAA -ACGGAAAAGCCTCCTCAACAGGTA -ACGGAAAAGCCTCCTCAAGACTCT -ACGGAAAAGCCTCCTCAAAGTCCT -ACGGAAAAGCCTCCTCAATAAGCC -ACGGAAAAGCCTCCTCAAATAGCC -ACGGAAAAGCCTCCTCAATAACCG -ACGGAAAAGCCTCCTCAAATGCCA -ACGGAAAAGCCTACTGCTGGAAAC -ACGGAAAAGCCTACTGCTAACACC -ACGGAAAAGCCTACTGCTATCGAG -ACGGAAAAGCCTACTGCTCTCCTT -ACGGAAAAGCCTACTGCTCCTGTT -ACGGAAAAGCCTACTGCTCGGTTT -ACGGAAAAGCCTACTGCTGTGGTT -ACGGAAAAGCCTACTGCTGCCTTT -ACGGAAAAGCCTACTGCTGGTCTT -ACGGAAAAGCCTACTGCTACGCTT -ACGGAAAAGCCTACTGCTAGCGTT -ACGGAAAAGCCTACTGCTTTCGTC -ACGGAAAAGCCTACTGCTTCTCTC -ACGGAAAAGCCTACTGCTTGGATC -ACGGAAAAGCCTACTGCTCACTTC -ACGGAAAAGCCTACTGCTGTACTC -ACGGAAAAGCCTACTGCTGATGTC -ACGGAAAAGCCTACTGCTACAGTC -ACGGAAAAGCCTACTGCTTTGCTG -ACGGAAAAGCCTACTGCTTCCATG -ACGGAAAAGCCTACTGCTTGTGTG -ACGGAAAAGCCTACTGCTCTAGTG -ACGGAAAAGCCTACTGCTCATCTG -ACGGAAAAGCCTACTGCTGAGTTG -ACGGAAAAGCCTACTGCTAGACTG -ACGGAAAAGCCTACTGCTTCGGTA -ACGGAAAAGCCTACTGCTTGCCTA -ACGGAAAAGCCTACTGCTCCACTA -ACGGAAAAGCCTACTGCTGGAGTA -ACGGAAAAGCCTACTGCTTCGTCT -ACGGAAAAGCCTACTGCTTGCACT -ACGGAAAAGCCTACTGCTCTGACT -ACGGAAAAGCCTACTGCTCAACCT -ACGGAAAAGCCTACTGCTGCTACT -ACGGAAAAGCCTACTGCTGGATCT -ACGGAAAAGCCTACTGCTAAGGCT -ACGGAAAAGCCTACTGCTTCAACC -ACGGAAAAGCCTACTGCTTGTTCC -ACGGAAAAGCCTACTGCTATTCCC -ACGGAAAAGCCTACTGCTTTCTCG -ACGGAAAAGCCTACTGCTTAGACG -ACGGAAAAGCCTACTGCTGTAACG -ACGGAAAAGCCTACTGCTACTTCG -ACGGAAAAGCCTACTGCTTACGCA -ACGGAAAAGCCTACTGCTCTTGCA -ACGGAAAAGCCTACTGCTCGAACA -ACGGAAAAGCCTACTGCTCAGTCA -ACGGAAAAGCCTACTGCTGATCCA -ACGGAAAAGCCTACTGCTACGACA -ACGGAAAAGCCTACTGCTAGCTCA -ACGGAAAAGCCTACTGCTTCACGT -ACGGAAAAGCCTACTGCTCGTAGT -ACGGAAAAGCCTACTGCTGTCAGT -ACGGAAAAGCCTACTGCTGAAGGT -ACGGAAAAGCCTACTGCTAACCGT -ACGGAAAAGCCTACTGCTTTGTGC -ACGGAAAAGCCTACTGCTCTAAGC -ACGGAAAAGCCTACTGCTACTAGC -ACGGAAAAGCCTACTGCTAGATGC -ACGGAAAAGCCTACTGCTTGAAGG -ACGGAAAAGCCTACTGCTCAATGG -ACGGAAAAGCCTACTGCTATGAGG -ACGGAAAAGCCTACTGCTAATGGG -ACGGAAAAGCCTACTGCTTCCTGA -ACGGAAAAGCCTACTGCTTAGCGA -ACGGAAAAGCCTACTGCTCACAGA -ACGGAAAAGCCTACTGCTGCAAGA -ACGGAAAAGCCTACTGCTGGTTGA -ACGGAAAAGCCTACTGCTTCCGAT -ACGGAAAAGCCTACTGCTTGGCAT -ACGGAAAAGCCTACTGCTCGAGAT -ACGGAAAAGCCTACTGCTTACCAC -ACGGAAAAGCCTACTGCTCAGAAC -ACGGAAAAGCCTACTGCTGTCTAC -ACGGAAAAGCCTACTGCTACGTAC -ACGGAAAAGCCTACTGCTAGTGAC -ACGGAAAAGCCTACTGCTCTGTAG -ACGGAAAAGCCTACTGCTCCTAAG -ACGGAAAAGCCTACTGCTGTTCAG -ACGGAAAAGCCTACTGCTGCATAG -ACGGAAAAGCCTACTGCTGACAAG -ACGGAAAAGCCTACTGCTAAGCAG -ACGGAAAAGCCTACTGCTCGTCAA -ACGGAAAAGCCTACTGCTGCTGAA -ACGGAAAAGCCTACTGCTAGTACG -ACGGAAAAGCCTACTGCTATCCGA -ACGGAAAAGCCTACTGCTATGGGA -ACGGAAAAGCCTACTGCTGTGCAA -ACGGAAAAGCCTACTGCTGAGGAA -ACGGAAAAGCCTACTGCTCAGGTA -ACGGAAAAGCCTACTGCTGACTCT -ACGGAAAAGCCTACTGCTAGTCCT -ACGGAAAAGCCTACTGCTTAAGCC -ACGGAAAAGCCTACTGCTATAGCC -ACGGAAAAGCCTACTGCTTAACCG -ACGGAAAAGCCTACTGCTATGCCA -ACGGAAAAGCCTTCTGGAGGAAAC -ACGGAAAAGCCTTCTGGAAACACC -ACGGAAAAGCCTTCTGGAATCGAG -ACGGAAAAGCCTTCTGGACTCCTT -ACGGAAAAGCCTTCTGGACCTGTT -ACGGAAAAGCCTTCTGGACGGTTT -ACGGAAAAGCCTTCTGGAGTGGTT -ACGGAAAAGCCTTCTGGAGCCTTT -ACGGAAAAGCCTTCTGGAGGTCTT -ACGGAAAAGCCTTCTGGAACGCTT -ACGGAAAAGCCTTCTGGAAGCGTT -ACGGAAAAGCCTTCTGGATTCGTC -ACGGAAAAGCCTTCTGGATCTCTC -ACGGAAAAGCCTTCTGGATGGATC -ACGGAAAAGCCTTCTGGACACTTC -ACGGAAAAGCCTTCTGGAGTACTC -ACGGAAAAGCCTTCTGGAGATGTC -ACGGAAAAGCCTTCTGGAACAGTC -ACGGAAAAGCCTTCTGGATTGCTG -ACGGAAAAGCCTTCTGGATCCATG -ACGGAAAAGCCTTCTGGATGTGTG -ACGGAAAAGCCTTCTGGACTAGTG -ACGGAAAAGCCTTCTGGACATCTG -ACGGAAAAGCCTTCTGGAGAGTTG -ACGGAAAAGCCTTCTGGAAGACTG -ACGGAAAAGCCTTCTGGATCGGTA -ACGGAAAAGCCTTCTGGATGCCTA -ACGGAAAAGCCTTCTGGACCACTA -ACGGAAAAGCCTTCTGGAGGAGTA -ACGGAAAAGCCTTCTGGATCGTCT -ACGGAAAAGCCTTCTGGATGCACT -ACGGAAAAGCCTTCTGGACTGACT -ACGGAAAAGCCTTCTGGACAACCT -ACGGAAAAGCCTTCTGGAGCTACT -ACGGAAAAGCCTTCTGGAGGATCT -ACGGAAAAGCCTTCTGGAAAGGCT -ACGGAAAAGCCTTCTGGATCAACC -ACGGAAAAGCCTTCTGGATGTTCC -ACGGAAAAGCCTTCTGGAATTCCC -ACGGAAAAGCCTTCTGGATTCTCG -ACGGAAAAGCCTTCTGGATAGACG -ACGGAAAAGCCTTCTGGAGTAACG -ACGGAAAAGCCTTCTGGAACTTCG -ACGGAAAAGCCTTCTGGATACGCA -ACGGAAAAGCCTTCTGGACTTGCA -ACGGAAAAGCCTTCTGGACGAACA -ACGGAAAAGCCTTCTGGACAGTCA -ACGGAAAAGCCTTCTGGAGATCCA -ACGGAAAAGCCTTCTGGAACGACA -ACGGAAAAGCCTTCTGGAAGCTCA -ACGGAAAAGCCTTCTGGATCACGT -ACGGAAAAGCCTTCTGGACGTAGT -ACGGAAAAGCCTTCTGGAGTCAGT -ACGGAAAAGCCTTCTGGAGAAGGT -ACGGAAAAGCCTTCTGGAAACCGT -ACGGAAAAGCCTTCTGGATTGTGC -ACGGAAAAGCCTTCTGGACTAAGC -ACGGAAAAGCCTTCTGGAACTAGC -ACGGAAAAGCCTTCTGGAAGATGC -ACGGAAAAGCCTTCTGGATGAAGG -ACGGAAAAGCCTTCTGGACAATGG -ACGGAAAAGCCTTCTGGAATGAGG -ACGGAAAAGCCTTCTGGAAATGGG -ACGGAAAAGCCTTCTGGATCCTGA -ACGGAAAAGCCTTCTGGATAGCGA -ACGGAAAAGCCTTCTGGACACAGA -ACGGAAAAGCCTTCTGGAGCAAGA -ACGGAAAAGCCTTCTGGAGGTTGA -ACGGAAAAGCCTTCTGGATCCGAT -ACGGAAAAGCCTTCTGGATGGCAT -ACGGAAAAGCCTTCTGGACGAGAT -ACGGAAAAGCCTTCTGGATACCAC -ACGGAAAAGCCTTCTGGACAGAAC -ACGGAAAAGCCTTCTGGAGTCTAC -ACGGAAAAGCCTTCTGGAACGTAC -ACGGAAAAGCCTTCTGGAAGTGAC -ACGGAAAAGCCTTCTGGACTGTAG -ACGGAAAAGCCTTCTGGACCTAAG -ACGGAAAAGCCTTCTGGAGTTCAG -ACGGAAAAGCCTTCTGGAGCATAG -ACGGAAAAGCCTTCTGGAGACAAG -ACGGAAAAGCCTTCTGGAAAGCAG -ACGGAAAAGCCTTCTGGACGTCAA -ACGGAAAAGCCTTCTGGAGCTGAA -ACGGAAAAGCCTTCTGGAAGTACG -ACGGAAAAGCCTTCTGGAATCCGA -ACGGAAAAGCCTTCTGGAATGGGA -ACGGAAAAGCCTTCTGGAGTGCAA -ACGGAAAAGCCTTCTGGAGAGGAA -ACGGAAAAGCCTTCTGGACAGGTA -ACGGAAAAGCCTTCTGGAGACTCT -ACGGAAAAGCCTTCTGGAAGTCCT -ACGGAAAAGCCTTCTGGATAAGCC -ACGGAAAAGCCTTCTGGAATAGCC -ACGGAAAAGCCTTCTGGATAACCG -ACGGAAAAGCCTTCTGGAATGCCA -ACGGAAAAGCCTGCTAAGGGAAAC -ACGGAAAAGCCTGCTAAGAACACC -ACGGAAAAGCCTGCTAAGATCGAG -ACGGAAAAGCCTGCTAAGCTCCTT -ACGGAAAAGCCTGCTAAGCCTGTT -ACGGAAAAGCCTGCTAAGCGGTTT -ACGGAAAAGCCTGCTAAGGTGGTT -ACGGAAAAGCCTGCTAAGGCCTTT -ACGGAAAAGCCTGCTAAGGGTCTT -ACGGAAAAGCCTGCTAAGACGCTT -ACGGAAAAGCCTGCTAAGAGCGTT -ACGGAAAAGCCTGCTAAGTTCGTC -ACGGAAAAGCCTGCTAAGTCTCTC -ACGGAAAAGCCTGCTAAGTGGATC -ACGGAAAAGCCTGCTAAGCACTTC -ACGGAAAAGCCTGCTAAGGTACTC -ACGGAAAAGCCTGCTAAGGATGTC -ACGGAAAAGCCTGCTAAGACAGTC -ACGGAAAAGCCTGCTAAGTTGCTG -ACGGAAAAGCCTGCTAAGTCCATG -ACGGAAAAGCCTGCTAAGTGTGTG -ACGGAAAAGCCTGCTAAGCTAGTG -ACGGAAAAGCCTGCTAAGCATCTG -ACGGAAAAGCCTGCTAAGGAGTTG -ACGGAAAAGCCTGCTAAGAGACTG -ACGGAAAAGCCTGCTAAGTCGGTA -ACGGAAAAGCCTGCTAAGTGCCTA -ACGGAAAAGCCTGCTAAGCCACTA -ACGGAAAAGCCTGCTAAGGGAGTA -ACGGAAAAGCCTGCTAAGTCGTCT -ACGGAAAAGCCTGCTAAGTGCACT -ACGGAAAAGCCTGCTAAGCTGACT -ACGGAAAAGCCTGCTAAGCAACCT -ACGGAAAAGCCTGCTAAGGCTACT -ACGGAAAAGCCTGCTAAGGGATCT -ACGGAAAAGCCTGCTAAGAAGGCT -ACGGAAAAGCCTGCTAAGTCAACC -ACGGAAAAGCCTGCTAAGTGTTCC -ACGGAAAAGCCTGCTAAGATTCCC -ACGGAAAAGCCTGCTAAGTTCTCG -ACGGAAAAGCCTGCTAAGTAGACG -ACGGAAAAGCCTGCTAAGGTAACG -ACGGAAAAGCCTGCTAAGACTTCG -ACGGAAAAGCCTGCTAAGTACGCA -ACGGAAAAGCCTGCTAAGCTTGCA -ACGGAAAAGCCTGCTAAGCGAACA -ACGGAAAAGCCTGCTAAGCAGTCA -ACGGAAAAGCCTGCTAAGGATCCA -ACGGAAAAGCCTGCTAAGACGACA -ACGGAAAAGCCTGCTAAGAGCTCA -ACGGAAAAGCCTGCTAAGTCACGT -ACGGAAAAGCCTGCTAAGCGTAGT -ACGGAAAAGCCTGCTAAGGTCAGT -ACGGAAAAGCCTGCTAAGGAAGGT -ACGGAAAAGCCTGCTAAGAACCGT -ACGGAAAAGCCTGCTAAGTTGTGC -ACGGAAAAGCCTGCTAAGCTAAGC -ACGGAAAAGCCTGCTAAGACTAGC -ACGGAAAAGCCTGCTAAGAGATGC -ACGGAAAAGCCTGCTAAGTGAAGG -ACGGAAAAGCCTGCTAAGCAATGG -ACGGAAAAGCCTGCTAAGATGAGG -ACGGAAAAGCCTGCTAAGAATGGG -ACGGAAAAGCCTGCTAAGTCCTGA -ACGGAAAAGCCTGCTAAGTAGCGA -ACGGAAAAGCCTGCTAAGCACAGA -ACGGAAAAGCCTGCTAAGGCAAGA -ACGGAAAAGCCTGCTAAGGGTTGA -ACGGAAAAGCCTGCTAAGTCCGAT -ACGGAAAAGCCTGCTAAGTGGCAT -ACGGAAAAGCCTGCTAAGCGAGAT -ACGGAAAAGCCTGCTAAGTACCAC -ACGGAAAAGCCTGCTAAGCAGAAC -ACGGAAAAGCCTGCTAAGGTCTAC -ACGGAAAAGCCTGCTAAGACGTAC -ACGGAAAAGCCTGCTAAGAGTGAC -ACGGAAAAGCCTGCTAAGCTGTAG -ACGGAAAAGCCTGCTAAGCCTAAG -ACGGAAAAGCCTGCTAAGGTTCAG -ACGGAAAAGCCTGCTAAGGCATAG -ACGGAAAAGCCTGCTAAGGACAAG -ACGGAAAAGCCTGCTAAGAAGCAG -ACGGAAAAGCCTGCTAAGCGTCAA -ACGGAAAAGCCTGCTAAGGCTGAA -ACGGAAAAGCCTGCTAAGAGTACG -ACGGAAAAGCCTGCTAAGATCCGA -ACGGAAAAGCCTGCTAAGATGGGA -ACGGAAAAGCCTGCTAAGGTGCAA -ACGGAAAAGCCTGCTAAGGAGGAA -ACGGAAAAGCCTGCTAAGCAGGTA -ACGGAAAAGCCTGCTAAGGACTCT -ACGGAAAAGCCTGCTAAGAGTCCT -ACGGAAAAGCCTGCTAAGTAAGCC -ACGGAAAAGCCTGCTAAGATAGCC -ACGGAAAAGCCTGCTAAGTAACCG -ACGGAAAAGCCTGCTAAGATGCCA -ACGGAAAAGCCTACCTCAGGAAAC -ACGGAAAAGCCTACCTCAAACACC -ACGGAAAAGCCTACCTCAATCGAG -ACGGAAAAGCCTACCTCACTCCTT -ACGGAAAAGCCTACCTCACCTGTT -ACGGAAAAGCCTACCTCACGGTTT -ACGGAAAAGCCTACCTCAGTGGTT -ACGGAAAAGCCTACCTCAGCCTTT -ACGGAAAAGCCTACCTCAGGTCTT -ACGGAAAAGCCTACCTCAACGCTT -ACGGAAAAGCCTACCTCAAGCGTT -ACGGAAAAGCCTACCTCATTCGTC -ACGGAAAAGCCTACCTCATCTCTC -ACGGAAAAGCCTACCTCATGGATC -ACGGAAAAGCCTACCTCACACTTC -ACGGAAAAGCCTACCTCAGTACTC -ACGGAAAAGCCTACCTCAGATGTC -ACGGAAAAGCCTACCTCAACAGTC -ACGGAAAAGCCTACCTCATTGCTG -ACGGAAAAGCCTACCTCATCCATG -ACGGAAAAGCCTACCTCATGTGTG -ACGGAAAAGCCTACCTCACTAGTG -ACGGAAAAGCCTACCTCACATCTG -ACGGAAAAGCCTACCTCAGAGTTG -ACGGAAAAGCCTACCTCAAGACTG -ACGGAAAAGCCTACCTCATCGGTA -ACGGAAAAGCCTACCTCATGCCTA -ACGGAAAAGCCTACCTCACCACTA -ACGGAAAAGCCTACCTCAGGAGTA -ACGGAAAAGCCTACCTCATCGTCT -ACGGAAAAGCCTACCTCATGCACT -ACGGAAAAGCCTACCTCACTGACT -ACGGAAAAGCCTACCTCACAACCT -ACGGAAAAGCCTACCTCAGCTACT -ACGGAAAAGCCTACCTCAGGATCT -ACGGAAAAGCCTACCTCAAAGGCT -ACGGAAAAGCCTACCTCATCAACC -ACGGAAAAGCCTACCTCATGTTCC -ACGGAAAAGCCTACCTCAATTCCC -ACGGAAAAGCCTACCTCATTCTCG -ACGGAAAAGCCTACCTCATAGACG -ACGGAAAAGCCTACCTCAGTAACG -ACGGAAAAGCCTACCTCAACTTCG -ACGGAAAAGCCTACCTCATACGCA -ACGGAAAAGCCTACCTCACTTGCA -ACGGAAAAGCCTACCTCACGAACA -ACGGAAAAGCCTACCTCACAGTCA -ACGGAAAAGCCTACCTCAGATCCA -ACGGAAAAGCCTACCTCAACGACA -ACGGAAAAGCCTACCTCAAGCTCA -ACGGAAAAGCCTACCTCATCACGT -ACGGAAAAGCCTACCTCACGTAGT -ACGGAAAAGCCTACCTCAGTCAGT -ACGGAAAAGCCTACCTCAGAAGGT -ACGGAAAAGCCTACCTCAAACCGT -ACGGAAAAGCCTACCTCATTGTGC -ACGGAAAAGCCTACCTCACTAAGC -ACGGAAAAGCCTACCTCAACTAGC -ACGGAAAAGCCTACCTCAAGATGC -ACGGAAAAGCCTACCTCATGAAGG -ACGGAAAAGCCTACCTCACAATGG -ACGGAAAAGCCTACCTCAATGAGG -ACGGAAAAGCCTACCTCAAATGGG -ACGGAAAAGCCTACCTCATCCTGA -ACGGAAAAGCCTACCTCATAGCGA -ACGGAAAAGCCTACCTCACACAGA -ACGGAAAAGCCTACCTCAGCAAGA -ACGGAAAAGCCTACCTCAGGTTGA -ACGGAAAAGCCTACCTCATCCGAT -ACGGAAAAGCCTACCTCATGGCAT -ACGGAAAAGCCTACCTCACGAGAT -ACGGAAAAGCCTACCTCATACCAC -ACGGAAAAGCCTACCTCACAGAAC -ACGGAAAAGCCTACCTCAGTCTAC -ACGGAAAAGCCTACCTCAACGTAC -ACGGAAAAGCCTACCTCAAGTGAC -ACGGAAAAGCCTACCTCACTGTAG -ACGGAAAAGCCTACCTCACCTAAG -ACGGAAAAGCCTACCTCAGTTCAG -ACGGAAAAGCCTACCTCAGCATAG -ACGGAAAAGCCTACCTCAGACAAG -ACGGAAAAGCCTACCTCAAAGCAG -ACGGAAAAGCCTACCTCACGTCAA -ACGGAAAAGCCTACCTCAGCTGAA -ACGGAAAAGCCTACCTCAAGTACG -ACGGAAAAGCCTACCTCAATCCGA -ACGGAAAAGCCTACCTCAATGGGA -ACGGAAAAGCCTACCTCAGTGCAA -ACGGAAAAGCCTACCTCAGAGGAA -ACGGAAAAGCCTACCTCACAGGTA -ACGGAAAAGCCTACCTCAGACTCT -ACGGAAAAGCCTACCTCAAGTCCT -ACGGAAAAGCCTACCTCATAAGCC -ACGGAAAAGCCTACCTCAATAGCC -ACGGAAAAGCCTACCTCATAACCG -ACGGAAAAGCCTACCTCAATGCCA -ACGGAAAAGCCTTCCTGTGGAAAC -ACGGAAAAGCCTTCCTGTAACACC -ACGGAAAAGCCTTCCTGTATCGAG -ACGGAAAAGCCTTCCTGTCTCCTT -ACGGAAAAGCCTTCCTGTCCTGTT -ACGGAAAAGCCTTCCTGTCGGTTT -ACGGAAAAGCCTTCCTGTGTGGTT -ACGGAAAAGCCTTCCTGTGCCTTT -ACGGAAAAGCCTTCCTGTGGTCTT -ACGGAAAAGCCTTCCTGTACGCTT -ACGGAAAAGCCTTCCTGTAGCGTT -ACGGAAAAGCCTTCCTGTTTCGTC -ACGGAAAAGCCTTCCTGTTCTCTC -ACGGAAAAGCCTTCCTGTTGGATC -ACGGAAAAGCCTTCCTGTCACTTC -ACGGAAAAGCCTTCCTGTGTACTC -ACGGAAAAGCCTTCCTGTGATGTC -ACGGAAAAGCCTTCCTGTACAGTC -ACGGAAAAGCCTTCCTGTTTGCTG -ACGGAAAAGCCTTCCTGTTCCATG -ACGGAAAAGCCTTCCTGTTGTGTG -ACGGAAAAGCCTTCCTGTCTAGTG -ACGGAAAAGCCTTCCTGTCATCTG -ACGGAAAAGCCTTCCTGTGAGTTG -ACGGAAAAGCCTTCCTGTAGACTG -ACGGAAAAGCCTTCCTGTTCGGTA -ACGGAAAAGCCTTCCTGTTGCCTA -ACGGAAAAGCCTTCCTGTCCACTA -ACGGAAAAGCCTTCCTGTGGAGTA -ACGGAAAAGCCTTCCTGTTCGTCT -ACGGAAAAGCCTTCCTGTTGCACT -ACGGAAAAGCCTTCCTGTCTGACT -ACGGAAAAGCCTTCCTGTCAACCT -ACGGAAAAGCCTTCCTGTGCTACT -ACGGAAAAGCCTTCCTGTGGATCT -ACGGAAAAGCCTTCCTGTAAGGCT -ACGGAAAAGCCTTCCTGTTCAACC -ACGGAAAAGCCTTCCTGTTGTTCC -ACGGAAAAGCCTTCCTGTATTCCC -ACGGAAAAGCCTTCCTGTTTCTCG -ACGGAAAAGCCTTCCTGTTAGACG -ACGGAAAAGCCTTCCTGTGTAACG -ACGGAAAAGCCTTCCTGTACTTCG -ACGGAAAAGCCTTCCTGTTACGCA -ACGGAAAAGCCTTCCTGTCTTGCA -ACGGAAAAGCCTTCCTGTCGAACA -ACGGAAAAGCCTTCCTGTCAGTCA -ACGGAAAAGCCTTCCTGTGATCCA -ACGGAAAAGCCTTCCTGTACGACA -ACGGAAAAGCCTTCCTGTAGCTCA -ACGGAAAAGCCTTCCTGTTCACGT -ACGGAAAAGCCTTCCTGTCGTAGT -ACGGAAAAGCCTTCCTGTGTCAGT -ACGGAAAAGCCTTCCTGTGAAGGT -ACGGAAAAGCCTTCCTGTAACCGT -ACGGAAAAGCCTTCCTGTTTGTGC -ACGGAAAAGCCTTCCTGTCTAAGC -ACGGAAAAGCCTTCCTGTACTAGC -ACGGAAAAGCCTTCCTGTAGATGC -ACGGAAAAGCCTTCCTGTTGAAGG -ACGGAAAAGCCTTCCTGTCAATGG -ACGGAAAAGCCTTCCTGTATGAGG -ACGGAAAAGCCTTCCTGTAATGGG -ACGGAAAAGCCTTCCTGTTCCTGA -ACGGAAAAGCCTTCCTGTTAGCGA -ACGGAAAAGCCTTCCTGTCACAGA -ACGGAAAAGCCTTCCTGTGCAAGA -ACGGAAAAGCCTTCCTGTGGTTGA -ACGGAAAAGCCTTCCTGTTCCGAT -ACGGAAAAGCCTTCCTGTTGGCAT -ACGGAAAAGCCTTCCTGTCGAGAT -ACGGAAAAGCCTTCCTGTTACCAC -ACGGAAAAGCCTTCCTGTCAGAAC -ACGGAAAAGCCTTCCTGTGTCTAC -ACGGAAAAGCCTTCCTGTACGTAC -ACGGAAAAGCCTTCCTGTAGTGAC -ACGGAAAAGCCTTCCTGTCTGTAG -ACGGAAAAGCCTTCCTGTCCTAAG -ACGGAAAAGCCTTCCTGTGTTCAG -ACGGAAAAGCCTTCCTGTGCATAG -ACGGAAAAGCCTTCCTGTGACAAG -ACGGAAAAGCCTTCCTGTAAGCAG -ACGGAAAAGCCTTCCTGTCGTCAA -ACGGAAAAGCCTTCCTGTGCTGAA -ACGGAAAAGCCTTCCTGTAGTACG -ACGGAAAAGCCTTCCTGTATCCGA -ACGGAAAAGCCTTCCTGTATGGGA -ACGGAAAAGCCTTCCTGTGTGCAA -ACGGAAAAGCCTTCCTGTGAGGAA -ACGGAAAAGCCTTCCTGTCAGGTA -ACGGAAAAGCCTTCCTGTGACTCT -ACGGAAAAGCCTTCCTGTAGTCCT -ACGGAAAAGCCTTCCTGTTAAGCC -ACGGAAAAGCCTTCCTGTATAGCC -ACGGAAAAGCCTTCCTGTTAACCG -ACGGAAAAGCCTTCCTGTATGCCA -ACGGAAAAGCCTCCCATTGGAAAC -ACGGAAAAGCCTCCCATTAACACC -ACGGAAAAGCCTCCCATTATCGAG -ACGGAAAAGCCTCCCATTCTCCTT -ACGGAAAAGCCTCCCATTCCTGTT -ACGGAAAAGCCTCCCATTCGGTTT -ACGGAAAAGCCTCCCATTGTGGTT -ACGGAAAAGCCTCCCATTGCCTTT -ACGGAAAAGCCTCCCATTGGTCTT -ACGGAAAAGCCTCCCATTACGCTT -ACGGAAAAGCCTCCCATTAGCGTT -ACGGAAAAGCCTCCCATTTTCGTC -ACGGAAAAGCCTCCCATTTCTCTC -ACGGAAAAGCCTCCCATTTGGATC -ACGGAAAAGCCTCCCATTCACTTC -ACGGAAAAGCCTCCCATTGTACTC -ACGGAAAAGCCTCCCATTGATGTC -ACGGAAAAGCCTCCCATTACAGTC -ACGGAAAAGCCTCCCATTTTGCTG -ACGGAAAAGCCTCCCATTTCCATG -ACGGAAAAGCCTCCCATTTGTGTG -ACGGAAAAGCCTCCCATTCTAGTG -ACGGAAAAGCCTCCCATTCATCTG -ACGGAAAAGCCTCCCATTGAGTTG -ACGGAAAAGCCTCCCATTAGACTG -ACGGAAAAGCCTCCCATTTCGGTA -ACGGAAAAGCCTCCCATTTGCCTA -ACGGAAAAGCCTCCCATTCCACTA -ACGGAAAAGCCTCCCATTGGAGTA -ACGGAAAAGCCTCCCATTTCGTCT -ACGGAAAAGCCTCCCATTTGCACT -ACGGAAAAGCCTCCCATTCTGACT -ACGGAAAAGCCTCCCATTCAACCT -ACGGAAAAGCCTCCCATTGCTACT -ACGGAAAAGCCTCCCATTGGATCT -ACGGAAAAGCCTCCCATTAAGGCT -ACGGAAAAGCCTCCCATTTCAACC -ACGGAAAAGCCTCCCATTTGTTCC -ACGGAAAAGCCTCCCATTATTCCC -ACGGAAAAGCCTCCCATTTTCTCG -ACGGAAAAGCCTCCCATTTAGACG -ACGGAAAAGCCTCCCATTGTAACG -ACGGAAAAGCCTCCCATTACTTCG -ACGGAAAAGCCTCCCATTTACGCA -ACGGAAAAGCCTCCCATTCTTGCA -ACGGAAAAGCCTCCCATTCGAACA -ACGGAAAAGCCTCCCATTCAGTCA -ACGGAAAAGCCTCCCATTGATCCA -ACGGAAAAGCCTCCCATTACGACA -ACGGAAAAGCCTCCCATTAGCTCA -ACGGAAAAGCCTCCCATTTCACGT -ACGGAAAAGCCTCCCATTCGTAGT -ACGGAAAAGCCTCCCATTGTCAGT -ACGGAAAAGCCTCCCATTGAAGGT -ACGGAAAAGCCTCCCATTAACCGT -ACGGAAAAGCCTCCCATTTTGTGC -ACGGAAAAGCCTCCCATTCTAAGC -ACGGAAAAGCCTCCCATTACTAGC -ACGGAAAAGCCTCCCATTAGATGC -ACGGAAAAGCCTCCCATTTGAAGG -ACGGAAAAGCCTCCCATTCAATGG -ACGGAAAAGCCTCCCATTATGAGG -ACGGAAAAGCCTCCCATTAATGGG -ACGGAAAAGCCTCCCATTTCCTGA -ACGGAAAAGCCTCCCATTTAGCGA -ACGGAAAAGCCTCCCATTCACAGA -ACGGAAAAGCCTCCCATTGCAAGA -ACGGAAAAGCCTCCCATTGGTTGA -ACGGAAAAGCCTCCCATTTCCGAT -ACGGAAAAGCCTCCCATTTGGCAT -ACGGAAAAGCCTCCCATTCGAGAT -ACGGAAAAGCCTCCCATTTACCAC -ACGGAAAAGCCTCCCATTCAGAAC -ACGGAAAAGCCTCCCATTGTCTAC -ACGGAAAAGCCTCCCATTACGTAC -ACGGAAAAGCCTCCCATTAGTGAC -ACGGAAAAGCCTCCCATTCTGTAG -ACGGAAAAGCCTCCCATTCCTAAG -ACGGAAAAGCCTCCCATTGTTCAG -ACGGAAAAGCCTCCCATTGCATAG -ACGGAAAAGCCTCCCATTGACAAG -ACGGAAAAGCCTCCCATTAAGCAG -ACGGAAAAGCCTCCCATTCGTCAA -ACGGAAAAGCCTCCCATTGCTGAA -ACGGAAAAGCCTCCCATTAGTACG -ACGGAAAAGCCTCCCATTATCCGA -ACGGAAAAGCCTCCCATTATGGGA -ACGGAAAAGCCTCCCATTGTGCAA -ACGGAAAAGCCTCCCATTGAGGAA -ACGGAAAAGCCTCCCATTCAGGTA -ACGGAAAAGCCTCCCATTGACTCT -ACGGAAAAGCCTCCCATTAGTCCT -ACGGAAAAGCCTCCCATTTAAGCC -ACGGAAAAGCCTCCCATTATAGCC -ACGGAAAAGCCTCCCATTTAACCG -ACGGAAAAGCCTCCCATTATGCCA -ACGGAAAAGCCTTCGTTCGGAAAC -ACGGAAAAGCCTTCGTTCAACACC -ACGGAAAAGCCTTCGTTCATCGAG -ACGGAAAAGCCTTCGTTCCTCCTT -ACGGAAAAGCCTTCGTTCCCTGTT -ACGGAAAAGCCTTCGTTCCGGTTT -ACGGAAAAGCCTTCGTTCGTGGTT -ACGGAAAAGCCTTCGTTCGCCTTT -ACGGAAAAGCCTTCGTTCGGTCTT -ACGGAAAAGCCTTCGTTCACGCTT -ACGGAAAAGCCTTCGTTCAGCGTT -ACGGAAAAGCCTTCGTTCTTCGTC -ACGGAAAAGCCTTCGTTCTCTCTC -ACGGAAAAGCCTTCGTTCTGGATC -ACGGAAAAGCCTTCGTTCCACTTC -ACGGAAAAGCCTTCGTTCGTACTC -ACGGAAAAGCCTTCGTTCGATGTC -ACGGAAAAGCCTTCGTTCACAGTC -ACGGAAAAGCCTTCGTTCTTGCTG -ACGGAAAAGCCTTCGTTCTCCATG -ACGGAAAAGCCTTCGTTCTGTGTG -ACGGAAAAGCCTTCGTTCCTAGTG -ACGGAAAAGCCTTCGTTCCATCTG -ACGGAAAAGCCTTCGTTCGAGTTG -ACGGAAAAGCCTTCGTTCAGACTG -ACGGAAAAGCCTTCGTTCTCGGTA -ACGGAAAAGCCTTCGTTCTGCCTA -ACGGAAAAGCCTTCGTTCCCACTA -ACGGAAAAGCCTTCGTTCGGAGTA -ACGGAAAAGCCTTCGTTCTCGTCT -ACGGAAAAGCCTTCGTTCTGCACT -ACGGAAAAGCCTTCGTTCCTGACT -ACGGAAAAGCCTTCGTTCCAACCT -ACGGAAAAGCCTTCGTTCGCTACT -ACGGAAAAGCCTTCGTTCGGATCT -ACGGAAAAGCCTTCGTTCAAGGCT -ACGGAAAAGCCTTCGTTCTCAACC -ACGGAAAAGCCTTCGTTCTGTTCC -ACGGAAAAGCCTTCGTTCATTCCC -ACGGAAAAGCCTTCGTTCTTCTCG -ACGGAAAAGCCTTCGTTCTAGACG -ACGGAAAAGCCTTCGTTCGTAACG -ACGGAAAAGCCTTCGTTCACTTCG -ACGGAAAAGCCTTCGTTCTACGCA -ACGGAAAAGCCTTCGTTCCTTGCA -ACGGAAAAGCCTTCGTTCCGAACA -ACGGAAAAGCCTTCGTTCCAGTCA -ACGGAAAAGCCTTCGTTCGATCCA -ACGGAAAAGCCTTCGTTCACGACA -ACGGAAAAGCCTTCGTTCAGCTCA -ACGGAAAAGCCTTCGTTCTCACGT -ACGGAAAAGCCTTCGTTCCGTAGT -ACGGAAAAGCCTTCGTTCGTCAGT -ACGGAAAAGCCTTCGTTCGAAGGT -ACGGAAAAGCCTTCGTTCAACCGT -ACGGAAAAGCCTTCGTTCTTGTGC -ACGGAAAAGCCTTCGTTCCTAAGC -ACGGAAAAGCCTTCGTTCACTAGC -ACGGAAAAGCCTTCGTTCAGATGC -ACGGAAAAGCCTTCGTTCTGAAGG -ACGGAAAAGCCTTCGTTCCAATGG -ACGGAAAAGCCTTCGTTCATGAGG -ACGGAAAAGCCTTCGTTCAATGGG -ACGGAAAAGCCTTCGTTCTCCTGA -ACGGAAAAGCCTTCGTTCTAGCGA -ACGGAAAAGCCTTCGTTCCACAGA -ACGGAAAAGCCTTCGTTCGCAAGA -ACGGAAAAGCCTTCGTTCGGTTGA -ACGGAAAAGCCTTCGTTCTCCGAT -ACGGAAAAGCCTTCGTTCTGGCAT -ACGGAAAAGCCTTCGTTCCGAGAT -ACGGAAAAGCCTTCGTTCTACCAC -ACGGAAAAGCCTTCGTTCCAGAAC -ACGGAAAAGCCTTCGTTCGTCTAC -ACGGAAAAGCCTTCGTTCACGTAC -ACGGAAAAGCCTTCGTTCAGTGAC -ACGGAAAAGCCTTCGTTCCTGTAG -ACGGAAAAGCCTTCGTTCCCTAAG -ACGGAAAAGCCTTCGTTCGTTCAG -ACGGAAAAGCCTTCGTTCGCATAG -ACGGAAAAGCCTTCGTTCGACAAG -ACGGAAAAGCCTTCGTTCAAGCAG -ACGGAAAAGCCTTCGTTCCGTCAA -ACGGAAAAGCCTTCGTTCGCTGAA -ACGGAAAAGCCTTCGTTCAGTACG -ACGGAAAAGCCTTCGTTCATCCGA -ACGGAAAAGCCTTCGTTCATGGGA -ACGGAAAAGCCTTCGTTCGTGCAA -ACGGAAAAGCCTTCGTTCGAGGAA -ACGGAAAAGCCTTCGTTCCAGGTA -ACGGAAAAGCCTTCGTTCGACTCT -ACGGAAAAGCCTTCGTTCAGTCCT -ACGGAAAAGCCTTCGTTCTAAGCC -ACGGAAAAGCCTTCGTTCATAGCC -ACGGAAAAGCCTTCGTTCTAACCG -ACGGAAAAGCCTTCGTTCATGCCA -ACGGAAAAGCCTACGTAGGGAAAC -ACGGAAAAGCCTACGTAGAACACC -ACGGAAAAGCCTACGTAGATCGAG -ACGGAAAAGCCTACGTAGCTCCTT -ACGGAAAAGCCTACGTAGCCTGTT -ACGGAAAAGCCTACGTAGCGGTTT -ACGGAAAAGCCTACGTAGGTGGTT -ACGGAAAAGCCTACGTAGGCCTTT -ACGGAAAAGCCTACGTAGGGTCTT -ACGGAAAAGCCTACGTAGACGCTT -ACGGAAAAGCCTACGTAGAGCGTT -ACGGAAAAGCCTACGTAGTTCGTC -ACGGAAAAGCCTACGTAGTCTCTC -ACGGAAAAGCCTACGTAGTGGATC -ACGGAAAAGCCTACGTAGCACTTC -ACGGAAAAGCCTACGTAGGTACTC -ACGGAAAAGCCTACGTAGGATGTC -ACGGAAAAGCCTACGTAGACAGTC -ACGGAAAAGCCTACGTAGTTGCTG -ACGGAAAAGCCTACGTAGTCCATG -ACGGAAAAGCCTACGTAGTGTGTG -ACGGAAAAGCCTACGTAGCTAGTG -ACGGAAAAGCCTACGTAGCATCTG -ACGGAAAAGCCTACGTAGGAGTTG -ACGGAAAAGCCTACGTAGAGACTG -ACGGAAAAGCCTACGTAGTCGGTA -ACGGAAAAGCCTACGTAGTGCCTA -ACGGAAAAGCCTACGTAGCCACTA -ACGGAAAAGCCTACGTAGGGAGTA -ACGGAAAAGCCTACGTAGTCGTCT -ACGGAAAAGCCTACGTAGTGCACT -ACGGAAAAGCCTACGTAGCTGACT -ACGGAAAAGCCTACGTAGCAACCT -ACGGAAAAGCCTACGTAGGCTACT -ACGGAAAAGCCTACGTAGGGATCT -ACGGAAAAGCCTACGTAGAAGGCT -ACGGAAAAGCCTACGTAGTCAACC -ACGGAAAAGCCTACGTAGTGTTCC -ACGGAAAAGCCTACGTAGATTCCC -ACGGAAAAGCCTACGTAGTTCTCG -ACGGAAAAGCCTACGTAGTAGACG -ACGGAAAAGCCTACGTAGGTAACG -ACGGAAAAGCCTACGTAGACTTCG -ACGGAAAAGCCTACGTAGTACGCA -ACGGAAAAGCCTACGTAGCTTGCA -ACGGAAAAGCCTACGTAGCGAACA -ACGGAAAAGCCTACGTAGCAGTCA -ACGGAAAAGCCTACGTAGGATCCA -ACGGAAAAGCCTACGTAGACGACA -ACGGAAAAGCCTACGTAGAGCTCA -ACGGAAAAGCCTACGTAGTCACGT -ACGGAAAAGCCTACGTAGCGTAGT -ACGGAAAAGCCTACGTAGGTCAGT -ACGGAAAAGCCTACGTAGGAAGGT -ACGGAAAAGCCTACGTAGAACCGT -ACGGAAAAGCCTACGTAGTTGTGC -ACGGAAAAGCCTACGTAGCTAAGC -ACGGAAAAGCCTACGTAGACTAGC -ACGGAAAAGCCTACGTAGAGATGC -ACGGAAAAGCCTACGTAGTGAAGG -ACGGAAAAGCCTACGTAGCAATGG -ACGGAAAAGCCTACGTAGATGAGG -ACGGAAAAGCCTACGTAGAATGGG -ACGGAAAAGCCTACGTAGTCCTGA -ACGGAAAAGCCTACGTAGTAGCGA -ACGGAAAAGCCTACGTAGCACAGA -ACGGAAAAGCCTACGTAGGCAAGA -ACGGAAAAGCCTACGTAGGGTTGA -ACGGAAAAGCCTACGTAGTCCGAT -ACGGAAAAGCCTACGTAGTGGCAT -ACGGAAAAGCCTACGTAGCGAGAT -ACGGAAAAGCCTACGTAGTACCAC -ACGGAAAAGCCTACGTAGCAGAAC -ACGGAAAAGCCTACGTAGGTCTAC -ACGGAAAAGCCTACGTAGACGTAC -ACGGAAAAGCCTACGTAGAGTGAC -ACGGAAAAGCCTACGTAGCTGTAG -ACGGAAAAGCCTACGTAGCCTAAG -ACGGAAAAGCCTACGTAGGTTCAG -ACGGAAAAGCCTACGTAGGCATAG -ACGGAAAAGCCTACGTAGGACAAG -ACGGAAAAGCCTACGTAGAAGCAG -ACGGAAAAGCCTACGTAGCGTCAA -ACGGAAAAGCCTACGTAGGCTGAA -ACGGAAAAGCCTACGTAGAGTACG -ACGGAAAAGCCTACGTAGATCCGA -ACGGAAAAGCCTACGTAGATGGGA -ACGGAAAAGCCTACGTAGGTGCAA -ACGGAAAAGCCTACGTAGGAGGAA -ACGGAAAAGCCTACGTAGCAGGTA -ACGGAAAAGCCTACGTAGGACTCT -ACGGAAAAGCCTACGTAGAGTCCT -ACGGAAAAGCCTACGTAGTAAGCC -ACGGAAAAGCCTACGTAGATAGCC -ACGGAAAAGCCTACGTAGTAACCG -ACGGAAAAGCCTACGTAGATGCCA -ACGGAAAAGCCTACGGTAGGAAAC -ACGGAAAAGCCTACGGTAAACACC -ACGGAAAAGCCTACGGTAATCGAG -ACGGAAAAGCCTACGGTACTCCTT -ACGGAAAAGCCTACGGTACCTGTT -ACGGAAAAGCCTACGGTACGGTTT -ACGGAAAAGCCTACGGTAGTGGTT -ACGGAAAAGCCTACGGTAGCCTTT -ACGGAAAAGCCTACGGTAGGTCTT -ACGGAAAAGCCTACGGTAACGCTT -ACGGAAAAGCCTACGGTAAGCGTT -ACGGAAAAGCCTACGGTATTCGTC -ACGGAAAAGCCTACGGTATCTCTC -ACGGAAAAGCCTACGGTATGGATC -ACGGAAAAGCCTACGGTACACTTC -ACGGAAAAGCCTACGGTAGTACTC -ACGGAAAAGCCTACGGTAGATGTC -ACGGAAAAGCCTACGGTAACAGTC -ACGGAAAAGCCTACGGTATTGCTG -ACGGAAAAGCCTACGGTATCCATG -ACGGAAAAGCCTACGGTATGTGTG -ACGGAAAAGCCTACGGTACTAGTG -ACGGAAAAGCCTACGGTACATCTG -ACGGAAAAGCCTACGGTAGAGTTG -ACGGAAAAGCCTACGGTAAGACTG -ACGGAAAAGCCTACGGTATCGGTA -ACGGAAAAGCCTACGGTATGCCTA -ACGGAAAAGCCTACGGTACCACTA -ACGGAAAAGCCTACGGTAGGAGTA -ACGGAAAAGCCTACGGTATCGTCT -ACGGAAAAGCCTACGGTATGCACT -ACGGAAAAGCCTACGGTACTGACT -ACGGAAAAGCCTACGGTACAACCT -ACGGAAAAGCCTACGGTAGCTACT -ACGGAAAAGCCTACGGTAGGATCT -ACGGAAAAGCCTACGGTAAAGGCT -ACGGAAAAGCCTACGGTATCAACC -ACGGAAAAGCCTACGGTATGTTCC -ACGGAAAAGCCTACGGTAATTCCC -ACGGAAAAGCCTACGGTATTCTCG -ACGGAAAAGCCTACGGTATAGACG -ACGGAAAAGCCTACGGTAGTAACG -ACGGAAAAGCCTACGGTAACTTCG -ACGGAAAAGCCTACGGTATACGCA -ACGGAAAAGCCTACGGTACTTGCA -ACGGAAAAGCCTACGGTACGAACA -ACGGAAAAGCCTACGGTACAGTCA -ACGGAAAAGCCTACGGTAGATCCA -ACGGAAAAGCCTACGGTAACGACA -ACGGAAAAGCCTACGGTAAGCTCA -ACGGAAAAGCCTACGGTATCACGT -ACGGAAAAGCCTACGGTACGTAGT -ACGGAAAAGCCTACGGTAGTCAGT -ACGGAAAAGCCTACGGTAGAAGGT -ACGGAAAAGCCTACGGTAAACCGT -ACGGAAAAGCCTACGGTATTGTGC -ACGGAAAAGCCTACGGTACTAAGC -ACGGAAAAGCCTACGGTAACTAGC -ACGGAAAAGCCTACGGTAAGATGC -ACGGAAAAGCCTACGGTATGAAGG -ACGGAAAAGCCTACGGTACAATGG -ACGGAAAAGCCTACGGTAATGAGG -ACGGAAAAGCCTACGGTAAATGGG -ACGGAAAAGCCTACGGTATCCTGA -ACGGAAAAGCCTACGGTATAGCGA -ACGGAAAAGCCTACGGTACACAGA -ACGGAAAAGCCTACGGTAGCAAGA -ACGGAAAAGCCTACGGTAGGTTGA -ACGGAAAAGCCTACGGTATCCGAT -ACGGAAAAGCCTACGGTATGGCAT -ACGGAAAAGCCTACGGTACGAGAT -ACGGAAAAGCCTACGGTATACCAC -ACGGAAAAGCCTACGGTACAGAAC -ACGGAAAAGCCTACGGTAGTCTAC -ACGGAAAAGCCTACGGTAACGTAC -ACGGAAAAGCCTACGGTAAGTGAC -ACGGAAAAGCCTACGGTACTGTAG -ACGGAAAAGCCTACGGTACCTAAG -ACGGAAAAGCCTACGGTAGTTCAG -ACGGAAAAGCCTACGGTAGCATAG -ACGGAAAAGCCTACGGTAGACAAG -ACGGAAAAGCCTACGGTAAAGCAG -ACGGAAAAGCCTACGGTACGTCAA -ACGGAAAAGCCTACGGTAGCTGAA -ACGGAAAAGCCTACGGTAAGTACG -ACGGAAAAGCCTACGGTAATCCGA -ACGGAAAAGCCTACGGTAATGGGA -ACGGAAAAGCCTACGGTAGTGCAA -ACGGAAAAGCCTACGGTAGAGGAA -ACGGAAAAGCCTACGGTACAGGTA -ACGGAAAAGCCTACGGTAGACTCT -ACGGAAAAGCCTACGGTAAGTCCT -ACGGAAAAGCCTACGGTATAAGCC -ACGGAAAAGCCTACGGTAATAGCC -ACGGAAAAGCCTACGGTATAACCG -ACGGAAAAGCCTACGGTAATGCCA -ACGGAAAAGCCTTCGACTGGAAAC -ACGGAAAAGCCTTCGACTAACACC -ACGGAAAAGCCTTCGACTATCGAG -ACGGAAAAGCCTTCGACTCTCCTT -ACGGAAAAGCCTTCGACTCCTGTT -ACGGAAAAGCCTTCGACTCGGTTT -ACGGAAAAGCCTTCGACTGTGGTT -ACGGAAAAGCCTTCGACTGCCTTT -ACGGAAAAGCCTTCGACTGGTCTT -ACGGAAAAGCCTTCGACTACGCTT -ACGGAAAAGCCTTCGACTAGCGTT -ACGGAAAAGCCTTCGACTTTCGTC -ACGGAAAAGCCTTCGACTTCTCTC -ACGGAAAAGCCTTCGACTTGGATC -ACGGAAAAGCCTTCGACTCACTTC -ACGGAAAAGCCTTCGACTGTACTC -ACGGAAAAGCCTTCGACTGATGTC -ACGGAAAAGCCTTCGACTACAGTC -ACGGAAAAGCCTTCGACTTTGCTG -ACGGAAAAGCCTTCGACTTCCATG -ACGGAAAAGCCTTCGACTTGTGTG -ACGGAAAAGCCTTCGACTCTAGTG -ACGGAAAAGCCTTCGACTCATCTG -ACGGAAAAGCCTTCGACTGAGTTG -ACGGAAAAGCCTTCGACTAGACTG -ACGGAAAAGCCTTCGACTTCGGTA -ACGGAAAAGCCTTCGACTTGCCTA -ACGGAAAAGCCTTCGACTCCACTA -ACGGAAAAGCCTTCGACTGGAGTA -ACGGAAAAGCCTTCGACTTCGTCT -ACGGAAAAGCCTTCGACTTGCACT -ACGGAAAAGCCTTCGACTCTGACT -ACGGAAAAGCCTTCGACTCAACCT -ACGGAAAAGCCTTCGACTGCTACT -ACGGAAAAGCCTTCGACTGGATCT -ACGGAAAAGCCTTCGACTAAGGCT -ACGGAAAAGCCTTCGACTTCAACC -ACGGAAAAGCCTTCGACTTGTTCC -ACGGAAAAGCCTTCGACTATTCCC -ACGGAAAAGCCTTCGACTTTCTCG -ACGGAAAAGCCTTCGACTTAGACG -ACGGAAAAGCCTTCGACTGTAACG -ACGGAAAAGCCTTCGACTACTTCG -ACGGAAAAGCCTTCGACTTACGCA -ACGGAAAAGCCTTCGACTCTTGCA -ACGGAAAAGCCTTCGACTCGAACA -ACGGAAAAGCCTTCGACTCAGTCA -ACGGAAAAGCCTTCGACTGATCCA -ACGGAAAAGCCTTCGACTACGACA -ACGGAAAAGCCTTCGACTAGCTCA -ACGGAAAAGCCTTCGACTTCACGT -ACGGAAAAGCCTTCGACTCGTAGT -ACGGAAAAGCCTTCGACTGTCAGT -ACGGAAAAGCCTTCGACTGAAGGT -ACGGAAAAGCCTTCGACTAACCGT -ACGGAAAAGCCTTCGACTTTGTGC -ACGGAAAAGCCTTCGACTCTAAGC -ACGGAAAAGCCTTCGACTACTAGC -ACGGAAAAGCCTTCGACTAGATGC -ACGGAAAAGCCTTCGACTTGAAGG -ACGGAAAAGCCTTCGACTCAATGG -ACGGAAAAGCCTTCGACTATGAGG -ACGGAAAAGCCTTCGACTAATGGG -ACGGAAAAGCCTTCGACTTCCTGA -ACGGAAAAGCCTTCGACTTAGCGA -ACGGAAAAGCCTTCGACTCACAGA -ACGGAAAAGCCTTCGACTGCAAGA -ACGGAAAAGCCTTCGACTGGTTGA -ACGGAAAAGCCTTCGACTTCCGAT -ACGGAAAAGCCTTCGACTTGGCAT -ACGGAAAAGCCTTCGACTCGAGAT -ACGGAAAAGCCTTCGACTTACCAC -ACGGAAAAGCCTTCGACTCAGAAC -ACGGAAAAGCCTTCGACTGTCTAC -ACGGAAAAGCCTTCGACTACGTAC -ACGGAAAAGCCTTCGACTAGTGAC -ACGGAAAAGCCTTCGACTCTGTAG -ACGGAAAAGCCTTCGACTCCTAAG -ACGGAAAAGCCTTCGACTGTTCAG -ACGGAAAAGCCTTCGACTGCATAG -ACGGAAAAGCCTTCGACTGACAAG -ACGGAAAAGCCTTCGACTAAGCAG -ACGGAAAAGCCTTCGACTCGTCAA -ACGGAAAAGCCTTCGACTGCTGAA -ACGGAAAAGCCTTCGACTAGTACG -ACGGAAAAGCCTTCGACTATCCGA -ACGGAAAAGCCTTCGACTATGGGA -ACGGAAAAGCCTTCGACTGTGCAA -ACGGAAAAGCCTTCGACTGAGGAA -ACGGAAAAGCCTTCGACTCAGGTA -ACGGAAAAGCCTTCGACTGACTCT -ACGGAAAAGCCTTCGACTAGTCCT -ACGGAAAAGCCTTCGACTTAAGCC -ACGGAAAAGCCTTCGACTATAGCC -ACGGAAAAGCCTTCGACTTAACCG -ACGGAAAAGCCTTCGACTATGCCA -ACGGAAAAGCCTGCATACGGAAAC -ACGGAAAAGCCTGCATACAACACC -ACGGAAAAGCCTGCATACATCGAG -ACGGAAAAGCCTGCATACCTCCTT -ACGGAAAAGCCTGCATACCCTGTT -ACGGAAAAGCCTGCATACCGGTTT -ACGGAAAAGCCTGCATACGTGGTT -ACGGAAAAGCCTGCATACGCCTTT -ACGGAAAAGCCTGCATACGGTCTT -ACGGAAAAGCCTGCATACACGCTT -ACGGAAAAGCCTGCATACAGCGTT -ACGGAAAAGCCTGCATACTTCGTC -ACGGAAAAGCCTGCATACTCTCTC -ACGGAAAAGCCTGCATACTGGATC -ACGGAAAAGCCTGCATACCACTTC -ACGGAAAAGCCTGCATACGTACTC -ACGGAAAAGCCTGCATACGATGTC -ACGGAAAAGCCTGCATACACAGTC -ACGGAAAAGCCTGCATACTTGCTG -ACGGAAAAGCCTGCATACTCCATG -ACGGAAAAGCCTGCATACTGTGTG -ACGGAAAAGCCTGCATACCTAGTG -ACGGAAAAGCCTGCATACCATCTG -ACGGAAAAGCCTGCATACGAGTTG -ACGGAAAAGCCTGCATACAGACTG -ACGGAAAAGCCTGCATACTCGGTA -ACGGAAAAGCCTGCATACTGCCTA -ACGGAAAAGCCTGCATACCCACTA -ACGGAAAAGCCTGCATACGGAGTA -ACGGAAAAGCCTGCATACTCGTCT -ACGGAAAAGCCTGCATACTGCACT -ACGGAAAAGCCTGCATACCTGACT -ACGGAAAAGCCTGCATACCAACCT -ACGGAAAAGCCTGCATACGCTACT -ACGGAAAAGCCTGCATACGGATCT -ACGGAAAAGCCTGCATACAAGGCT -ACGGAAAAGCCTGCATACTCAACC -ACGGAAAAGCCTGCATACTGTTCC -ACGGAAAAGCCTGCATACATTCCC -ACGGAAAAGCCTGCATACTTCTCG -ACGGAAAAGCCTGCATACTAGACG -ACGGAAAAGCCTGCATACGTAACG -ACGGAAAAGCCTGCATACACTTCG -ACGGAAAAGCCTGCATACTACGCA -ACGGAAAAGCCTGCATACCTTGCA -ACGGAAAAGCCTGCATACCGAACA -ACGGAAAAGCCTGCATACCAGTCA -ACGGAAAAGCCTGCATACGATCCA -ACGGAAAAGCCTGCATACACGACA -ACGGAAAAGCCTGCATACAGCTCA -ACGGAAAAGCCTGCATACTCACGT -ACGGAAAAGCCTGCATACCGTAGT -ACGGAAAAGCCTGCATACGTCAGT -ACGGAAAAGCCTGCATACGAAGGT -ACGGAAAAGCCTGCATACAACCGT -ACGGAAAAGCCTGCATACTTGTGC -ACGGAAAAGCCTGCATACCTAAGC -ACGGAAAAGCCTGCATACACTAGC -ACGGAAAAGCCTGCATACAGATGC -ACGGAAAAGCCTGCATACTGAAGG -ACGGAAAAGCCTGCATACCAATGG -ACGGAAAAGCCTGCATACATGAGG -ACGGAAAAGCCTGCATACAATGGG -ACGGAAAAGCCTGCATACTCCTGA -ACGGAAAAGCCTGCATACTAGCGA -ACGGAAAAGCCTGCATACCACAGA -ACGGAAAAGCCTGCATACGCAAGA -ACGGAAAAGCCTGCATACGGTTGA -ACGGAAAAGCCTGCATACTCCGAT -ACGGAAAAGCCTGCATACTGGCAT -ACGGAAAAGCCTGCATACCGAGAT -ACGGAAAAGCCTGCATACTACCAC -ACGGAAAAGCCTGCATACCAGAAC -ACGGAAAAGCCTGCATACGTCTAC -ACGGAAAAGCCTGCATACACGTAC -ACGGAAAAGCCTGCATACAGTGAC -ACGGAAAAGCCTGCATACCTGTAG -ACGGAAAAGCCTGCATACCCTAAG -ACGGAAAAGCCTGCATACGTTCAG -ACGGAAAAGCCTGCATACGCATAG -ACGGAAAAGCCTGCATACGACAAG -ACGGAAAAGCCTGCATACAAGCAG -ACGGAAAAGCCTGCATACCGTCAA -ACGGAAAAGCCTGCATACGCTGAA -ACGGAAAAGCCTGCATACAGTACG -ACGGAAAAGCCTGCATACATCCGA -ACGGAAAAGCCTGCATACATGGGA -ACGGAAAAGCCTGCATACGTGCAA -ACGGAAAAGCCTGCATACGAGGAA -ACGGAAAAGCCTGCATACCAGGTA -ACGGAAAAGCCTGCATACGACTCT -ACGGAAAAGCCTGCATACAGTCCT -ACGGAAAAGCCTGCATACTAAGCC -ACGGAAAAGCCTGCATACATAGCC -ACGGAAAAGCCTGCATACTAACCG -ACGGAAAAGCCTGCATACATGCCA -ACGGAAAAGCCTGCACTTGGAAAC -ACGGAAAAGCCTGCACTTAACACC -ACGGAAAAGCCTGCACTTATCGAG -ACGGAAAAGCCTGCACTTCTCCTT -ACGGAAAAGCCTGCACTTCCTGTT -ACGGAAAAGCCTGCACTTCGGTTT -ACGGAAAAGCCTGCACTTGTGGTT -ACGGAAAAGCCTGCACTTGCCTTT -ACGGAAAAGCCTGCACTTGGTCTT -ACGGAAAAGCCTGCACTTACGCTT -ACGGAAAAGCCTGCACTTAGCGTT -ACGGAAAAGCCTGCACTTTTCGTC -ACGGAAAAGCCTGCACTTTCTCTC -ACGGAAAAGCCTGCACTTTGGATC -ACGGAAAAGCCTGCACTTCACTTC -ACGGAAAAGCCTGCACTTGTACTC -ACGGAAAAGCCTGCACTTGATGTC -ACGGAAAAGCCTGCACTTACAGTC -ACGGAAAAGCCTGCACTTTTGCTG -ACGGAAAAGCCTGCACTTTCCATG -ACGGAAAAGCCTGCACTTTGTGTG -ACGGAAAAGCCTGCACTTCTAGTG -ACGGAAAAGCCTGCACTTCATCTG -ACGGAAAAGCCTGCACTTGAGTTG -ACGGAAAAGCCTGCACTTAGACTG -ACGGAAAAGCCTGCACTTTCGGTA -ACGGAAAAGCCTGCACTTTGCCTA -ACGGAAAAGCCTGCACTTCCACTA -ACGGAAAAGCCTGCACTTGGAGTA -ACGGAAAAGCCTGCACTTTCGTCT -ACGGAAAAGCCTGCACTTTGCACT -ACGGAAAAGCCTGCACTTCTGACT -ACGGAAAAGCCTGCACTTCAACCT -ACGGAAAAGCCTGCACTTGCTACT -ACGGAAAAGCCTGCACTTGGATCT -ACGGAAAAGCCTGCACTTAAGGCT -ACGGAAAAGCCTGCACTTTCAACC -ACGGAAAAGCCTGCACTTTGTTCC -ACGGAAAAGCCTGCACTTATTCCC -ACGGAAAAGCCTGCACTTTTCTCG -ACGGAAAAGCCTGCACTTTAGACG -ACGGAAAAGCCTGCACTTGTAACG -ACGGAAAAGCCTGCACTTACTTCG -ACGGAAAAGCCTGCACTTTACGCA -ACGGAAAAGCCTGCACTTCTTGCA -ACGGAAAAGCCTGCACTTCGAACA -ACGGAAAAGCCTGCACTTCAGTCA -ACGGAAAAGCCTGCACTTGATCCA -ACGGAAAAGCCTGCACTTACGACA -ACGGAAAAGCCTGCACTTAGCTCA -ACGGAAAAGCCTGCACTTTCACGT -ACGGAAAAGCCTGCACTTCGTAGT -ACGGAAAAGCCTGCACTTGTCAGT -ACGGAAAAGCCTGCACTTGAAGGT -ACGGAAAAGCCTGCACTTAACCGT -ACGGAAAAGCCTGCACTTTTGTGC -ACGGAAAAGCCTGCACTTCTAAGC -ACGGAAAAGCCTGCACTTACTAGC -ACGGAAAAGCCTGCACTTAGATGC -ACGGAAAAGCCTGCACTTTGAAGG -ACGGAAAAGCCTGCACTTCAATGG -ACGGAAAAGCCTGCACTTATGAGG -ACGGAAAAGCCTGCACTTAATGGG -ACGGAAAAGCCTGCACTTTCCTGA -ACGGAAAAGCCTGCACTTTAGCGA -ACGGAAAAGCCTGCACTTCACAGA -ACGGAAAAGCCTGCACTTGCAAGA -ACGGAAAAGCCTGCACTTGGTTGA -ACGGAAAAGCCTGCACTTTCCGAT -ACGGAAAAGCCTGCACTTTGGCAT -ACGGAAAAGCCTGCACTTCGAGAT -ACGGAAAAGCCTGCACTTTACCAC -ACGGAAAAGCCTGCACTTCAGAAC -ACGGAAAAGCCTGCACTTGTCTAC -ACGGAAAAGCCTGCACTTACGTAC -ACGGAAAAGCCTGCACTTAGTGAC -ACGGAAAAGCCTGCACTTCTGTAG -ACGGAAAAGCCTGCACTTCCTAAG -ACGGAAAAGCCTGCACTTGTTCAG -ACGGAAAAGCCTGCACTTGCATAG -ACGGAAAAGCCTGCACTTGACAAG -ACGGAAAAGCCTGCACTTAAGCAG -ACGGAAAAGCCTGCACTTCGTCAA -ACGGAAAAGCCTGCACTTGCTGAA -ACGGAAAAGCCTGCACTTAGTACG -ACGGAAAAGCCTGCACTTATCCGA -ACGGAAAAGCCTGCACTTATGGGA -ACGGAAAAGCCTGCACTTGTGCAA -ACGGAAAAGCCTGCACTTGAGGAA -ACGGAAAAGCCTGCACTTCAGGTA -ACGGAAAAGCCTGCACTTGACTCT -ACGGAAAAGCCTGCACTTAGTCCT -ACGGAAAAGCCTGCACTTTAAGCC -ACGGAAAAGCCTGCACTTATAGCC -ACGGAAAAGCCTGCACTTTAACCG -ACGGAAAAGCCTGCACTTATGCCA -ACGGAAAAGCCTACACGAGGAAAC -ACGGAAAAGCCTACACGAAACACC -ACGGAAAAGCCTACACGAATCGAG -ACGGAAAAGCCTACACGACTCCTT -ACGGAAAAGCCTACACGACCTGTT -ACGGAAAAGCCTACACGACGGTTT -ACGGAAAAGCCTACACGAGTGGTT -ACGGAAAAGCCTACACGAGCCTTT -ACGGAAAAGCCTACACGAGGTCTT -ACGGAAAAGCCTACACGAACGCTT -ACGGAAAAGCCTACACGAAGCGTT -ACGGAAAAGCCTACACGATTCGTC -ACGGAAAAGCCTACACGATCTCTC -ACGGAAAAGCCTACACGATGGATC -ACGGAAAAGCCTACACGACACTTC -ACGGAAAAGCCTACACGAGTACTC -ACGGAAAAGCCTACACGAGATGTC -ACGGAAAAGCCTACACGAACAGTC -ACGGAAAAGCCTACACGATTGCTG -ACGGAAAAGCCTACACGATCCATG -ACGGAAAAGCCTACACGATGTGTG -ACGGAAAAGCCTACACGACTAGTG -ACGGAAAAGCCTACACGACATCTG -ACGGAAAAGCCTACACGAGAGTTG -ACGGAAAAGCCTACACGAAGACTG -ACGGAAAAGCCTACACGATCGGTA -ACGGAAAAGCCTACACGATGCCTA -ACGGAAAAGCCTACACGACCACTA -ACGGAAAAGCCTACACGAGGAGTA -ACGGAAAAGCCTACACGATCGTCT -ACGGAAAAGCCTACACGATGCACT -ACGGAAAAGCCTACACGACTGACT -ACGGAAAAGCCTACACGACAACCT -ACGGAAAAGCCTACACGAGCTACT -ACGGAAAAGCCTACACGAGGATCT -ACGGAAAAGCCTACACGAAAGGCT -ACGGAAAAGCCTACACGATCAACC -ACGGAAAAGCCTACACGATGTTCC -ACGGAAAAGCCTACACGAATTCCC -ACGGAAAAGCCTACACGATTCTCG -ACGGAAAAGCCTACACGATAGACG -ACGGAAAAGCCTACACGAGTAACG -ACGGAAAAGCCTACACGAACTTCG -ACGGAAAAGCCTACACGATACGCA -ACGGAAAAGCCTACACGACTTGCA -ACGGAAAAGCCTACACGACGAACA -ACGGAAAAGCCTACACGACAGTCA -ACGGAAAAGCCTACACGAGATCCA -ACGGAAAAGCCTACACGAACGACA -ACGGAAAAGCCTACACGAAGCTCA -ACGGAAAAGCCTACACGATCACGT -ACGGAAAAGCCTACACGACGTAGT -ACGGAAAAGCCTACACGAGTCAGT -ACGGAAAAGCCTACACGAGAAGGT -ACGGAAAAGCCTACACGAAACCGT -ACGGAAAAGCCTACACGATTGTGC -ACGGAAAAGCCTACACGACTAAGC -ACGGAAAAGCCTACACGAACTAGC -ACGGAAAAGCCTACACGAAGATGC -ACGGAAAAGCCTACACGATGAAGG -ACGGAAAAGCCTACACGACAATGG -ACGGAAAAGCCTACACGAATGAGG -ACGGAAAAGCCTACACGAAATGGG -ACGGAAAAGCCTACACGATCCTGA -ACGGAAAAGCCTACACGATAGCGA -ACGGAAAAGCCTACACGACACAGA -ACGGAAAAGCCTACACGAGCAAGA -ACGGAAAAGCCTACACGAGGTTGA -ACGGAAAAGCCTACACGATCCGAT -ACGGAAAAGCCTACACGATGGCAT -ACGGAAAAGCCTACACGACGAGAT -ACGGAAAAGCCTACACGATACCAC -ACGGAAAAGCCTACACGACAGAAC -ACGGAAAAGCCTACACGAGTCTAC -ACGGAAAAGCCTACACGAACGTAC -ACGGAAAAGCCTACACGAAGTGAC -ACGGAAAAGCCTACACGACTGTAG -ACGGAAAAGCCTACACGACCTAAG -ACGGAAAAGCCTACACGAGTTCAG -ACGGAAAAGCCTACACGAGCATAG -ACGGAAAAGCCTACACGAGACAAG -ACGGAAAAGCCTACACGAAAGCAG -ACGGAAAAGCCTACACGACGTCAA -ACGGAAAAGCCTACACGAGCTGAA -ACGGAAAAGCCTACACGAAGTACG -ACGGAAAAGCCTACACGAATCCGA -ACGGAAAAGCCTACACGAATGGGA -ACGGAAAAGCCTACACGAGTGCAA -ACGGAAAAGCCTACACGAGAGGAA -ACGGAAAAGCCTACACGACAGGTA -ACGGAAAAGCCTACACGAGACTCT -ACGGAAAAGCCTACACGAAGTCCT -ACGGAAAAGCCTACACGATAAGCC -ACGGAAAAGCCTACACGAATAGCC -ACGGAAAAGCCTACACGATAACCG -ACGGAAAAGCCTACACGAATGCCA -ACGGAAAAGCCTTCACAGGGAAAC -ACGGAAAAGCCTTCACAGAACACC -ACGGAAAAGCCTTCACAGATCGAG -ACGGAAAAGCCTTCACAGCTCCTT -ACGGAAAAGCCTTCACAGCCTGTT -ACGGAAAAGCCTTCACAGCGGTTT -ACGGAAAAGCCTTCACAGGTGGTT -ACGGAAAAGCCTTCACAGGCCTTT -ACGGAAAAGCCTTCACAGGGTCTT -ACGGAAAAGCCTTCACAGACGCTT -ACGGAAAAGCCTTCACAGAGCGTT -ACGGAAAAGCCTTCACAGTTCGTC -ACGGAAAAGCCTTCACAGTCTCTC -ACGGAAAAGCCTTCACAGTGGATC -ACGGAAAAGCCTTCACAGCACTTC -ACGGAAAAGCCTTCACAGGTACTC -ACGGAAAAGCCTTCACAGGATGTC -ACGGAAAAGCCTTCACAGACAGTC -ACGGAAAAGCCTTCACAGTTGCTG -ACGGAAAAGCCTTCACAGTCCATG -ACGGAAAAGCCTTCACAGTGTGTG -ACGGAAAAGCCTTCACAGCTAGTG -ACGGAAAAGCCTTCACAGCATCTG -ACGGAAAAGCCTTCACAGGAGTTG -ACGGAAAAGCCTTCACAGAGACTG -ACGGAAAAGCCTTCACAGTCGGTA -ACGGAAAAGCCTTCACAGTGCCTA -ACGGAAAAGCCTTCACAGCCACTA -ACGGAAAAGCCTTCACAGGGAGTA -ACGGAAAAGCCTTCACAGTCGTCT -ACGGAAAAGCCTTCACAGTGCACT -ACGGAAAAGCCTTCACAGCTGACT -ACGGAAAAGCCTTCACAGCAACCT -ACGGAAAAGCCTTCACAGGCTACT -ACGGAAAAGCCTTCACAGGGATCT -ACGGAAAAGCCTTCACAGAAGGCT -ACGGAAAAGCCTTCACAGTCAACC -ACGGAAAAGCCTTCACAGTGTTCC -ACGGAAAAGCCTTCACAGATTCCC -ACGGAAAAGCCTTCACAGTTCTCG -ACGGAAAAGCCTTCACAGTAGACG -ACGGAAAAGCCTTCACAGGTAACG -ACGGAAAAGCCTTCACAGACTTCG -ACGGAAAAGCCTTCACAGTACGCA -ACGGAAAAGCCTTCACAGCTTGCA -ACGGAAAAGCCTTCACAGCGAACA -ACGGAAAAGCCTTCACAGCAGTCA -ACGGAAAAGCCTTCACAGGATCCA -ACGGAAAAGCCTTCACAGACGACA -ACGGAAAAGCCTTCACAGAGCTCA -ACGGAAAAGCCTTCACAGTCACGT -ACGGAAAAGCCTTCACAGCGTAGT -ACGGAAAAGCCTTCACAGGTCAGT -ACGGAAAAGCCTTCACAGGAAGGT -ACGGAAAAGCCTTCACAGAACCGT -ACGGAAAAGCCTTCACAGTTGTGC -ACGGAAAAGCCTTCACAGCTAAGC -ACGGAAAAGCCTTCACAGACTAGC -ACGGAAAAGCCTTCACAGAGATGC -ACGGAAAAGCCTTCACAGTGAAGG -ACGGAAAAGCCTTCACAGCAATGG -ACGGAAAAGCCTTCACAGATGAGG -ACGGAAAAGCCTTCACAGAATGGG -ACGGAAAAGCCTTCACAGTCCTGA -ACGGAAAAGCCTTCACAGTAGCGA -ACGGAAAAGCCTTCACAGCACAGA -ACGGAAAAGCCTTCACAGGCAAGA -ACGGAAAAGCCTTCACAGGGTTGA -ACGGAAAAGCCTTCACAGTCCGAT -ACGGAAAAGCCTTCACAGTGGCAT -ACGGAAAAGCCTTCACAGCGAGAT -ACGGAAAAGCCTTCACAGTACCAC -ACGGAAAAGCCTTCACAGCAGAAC -ACGGAAAAGCCTTCACAGGTCTAC -ACGGAAAAGCCTTCACAGACGTAC -ACGGAAAAGCCTTCACAGAGTGAC -ACGGAAAAGCCTTCACAGCTGTAG -ACGGAAAAGCCTTCACAGCCTAAG -ACGGAAAAGCCTTCACAGGTTCAG -ACGGAAAAGCCTTCACAGGCATAG -ACGGAAAAGCCTTCACAGGACAAG -ACGGAAAAGCCTTCACAGAAGCAG -ACGGAAAAGCCTTCACAGCGTCAA -ACGGAAAAGCCTTCACAGGCTGAA -ACGGAAAAGCCTTCACAGAGTACG -ACGGAAAAGCCTTCACAGATCCGA -ACGGAAAAGCCTTCACAGATGGGA -ACGGAAAAGCCTTCACAGGTGCAA -ACGGAAAAGCCTTCACAGGAGGAA -ACGGAAAAGCCTTCACAGCAGGTA -ACGGAAAAGCCTTCACAGGACTCT -ACGGAAAAGCCTTCACAGAGTCCT -ACGGAAAAGCCTTCACAGTAAGCC -ACGGAAAAGCCTTCACAGATAGCC -ACGGAAAAGCCTTCACAGTAACCG -ACGGAAAAGCCTTCACAGATGCCA -ACGGAAAAGCCTCCAGATGGAAAC -ACGGAAAAGCCTCCAGATAACACC -ACGGAAAAGCCTCCAGATATCGAG -ACGGAAAAGCCTCCAGATCTCCTT -ACGGAAAAGCCTCCAGATCCTGTT -ACGGAAAAGCCTCCAGATCGGTTT -ACGGAAAAGCCTCCAGATGTGGTT -ACGGAAAAGCCTCCAGATGCCTTT -ACGGAAAAGCCTCCAGATGGTCTT -ACGGAAAAGCCTCCAGATACGCTT -ACGGAAAAGCCTCCAGATAGCGTT -ACGGAAAAGCCTCCAGATTTCGTC -ACGGAAAAGCCTCCAGATTCTCTC -ACGGAAAAGCCTCCAGATTGGATC -ACGGAAAAGCCTCCAGATCACTTC -ACGGAAAAGCCTCCAGATGTACTC -ACGGAAAAGCCTCCAGATGATGTC -ACGGAAAAGCCTCCAGATACAGTC -ACGGAAAAGCCTCCAGATTTGCTG -ACGGAAAAGCCTCCAGATTCCATG -ACGGAAAAGCCTCCAGATTGTGTG -ACGGAAAAGCCTCCAGATCTAGTG -ACGGAAAAGCCTCCAGATCATCTG -ACGGAAAAGCCTCCAGATGAGTTG -ACGGAAAAGCCTCCAGATAGACTG -ACGGAAAAGCCTCCAGATTCGGTA -ACGGAAAAGCCTCCAGATTGCCTA -ACGGAAAAGCCTCCAGATCCACTA -ACGGAAAAGCCTCCAGATGGAGTA -ACGGAAAAGCCTCCAGATTCGTCT -ACGGAAAAGCCTCCAGATTGCACT -ACGGAAAAGCCTCCAGATCTGACT -ACGGAAAAGCCTCCAGATCAACCT -ACGGAAAAGCCTCCAGATGCTACT -ACGGAAAAGCCTCCAGATGGATCT -ACGGAAAAGCCTCCAGATAAGGCT -ACGGAAAAGCCTCCAGATTCAACC -ACGGAAAAGCCTCCAGATTGTTCC -ACGGAAAAGCCTCCAGATATTCCC -ACGGAAAAGCCTCCAGATTTCTCG -ACGGAAAAGCCTCCAGATTAGACG -ACGGAAAAGCCTCCAGATGTAACG -ACGGAAAAGCCTCCAGATACTTCG -ACGGAAAAGCCTCCAGATTACGCA -ACGGAAAAGCCTCCAGATCTTGCA -ACGGAAAAGCCTCCAGATCGAACA -ACGGAAAAGCCTCCAGATCAGTCA -ACGGAAAAGCCTCCAGATGATCCA -ACGGAAAAGCCTCCAGATACGACA -ACGGAAAAGCCTCCAGATAGCTCA -ACGGAAAAGCCTCCAGATTCACGT -ACGGAAAAGCCTCCAGATCGTAGT -ACGGAAAAGCCTCCAGATGTCAGT -ACGGAAAAGCCTCCAGATGAAGGT -ACGGAAAAGCCTCCAGATAACCGT -ACGGAAAAGCCTCCAGATTTGTGC -ACGGAAAAGCCTCCAGATCTAAGC -ACGGAAAAGCCTCCAGATACTAGC -ACGGAAAAGCCTCCAGATAGATGC -ACGGAAAAGCCTCCAGATTGAAGG -ACGGAAAAGCCTCCAGATCAATGG -ACGGAAAAGCCTCCAGATATGAGG -ACGGAAAAGCCTCCAGATAATGGG -ACGGAAAAGCCTCCAGATTCCTGA -ACGGAAAAGCCTCCAGATTAGCGA -ACGGAAAAGCCTCCAGATCACAGA -ACGGAAAAGCCTCCAGATGCAAGA -ACGGAAAAGCCTCCAGATGGTTGA -ACGGAAAAGCCTCCAGATTCCGAT -ACGGAAAAGCCTCCAGATTGGCAT -ACGGAAAAGCCTCCAGATCGAGAT -ACGGAAAAGCCTCCAGATTACCAC -ACGGAAAAGCCTCCAGATCAGAAC -ACGGAAAAGCCTCCAGATGTCTAC -ACGGAAAAGCCTCCAGATACGTAC -ACGGAAAAGCCTCCAGATAGTGAC -ACGGAAAAGCCTCCAGATCTGTAG -ACGGAAAAGCCTCCAGATCCTAAG -ACGGAAAAGCCTCCAGATGTTCAG -ACGGAAAAGCCTCCAGATGCATAG -ACGGAAAAGCCTCCAGATGACAAG -ACGGAAAAGCCTCCAGATAAGCAG -ACGGAAAAGCCTCCAGATCGTCAA -ACGGAAAAGCCTCCAGATGCTGAA -ACGGAAAAGCCTCCAGATAGTACG -ACGGAAAAGCCTCCAGATATCCGA -ACGGAAAAGCCTCCAGATATGGGA -ACGGAAAAGCCTCCAGATGTGCAA -ACGGAAAAGCCTCCAGATGAGGAA -ACGGAAAAGCCTCCAGATCAGGTA -ACGGAAAAGCCTCCAGATGACTCT -ACGGAAAAGCCTCCAGATAGTCCT -ACGGAAAAGCCTCCAGATTAAGCC -ACGGAAAAGCCTCCAGATATAGCC -ACGGAAAAGCCTCCAGATTAACCG -ACGGAAAAGCCTCCAGATATGCCA -ACGGAAAAGCCTACAACGGGAAAC -ACGGAAAAGCCTACAACGAACACC -ACGGAAAAGCCTACAACGATCGAG -ACGGAAAAGCCTACAACGCTCCTT -ACGGAAAAGCCTACAACGCCTGTT -ACGGAAAAGCCTACAACGCGGTTT -ACGGAAAAGCCTACAACGGTGGTT -ACGGAAAAGCCTACAACGGCCTTT -ACGGAAAAGCCTACAACGGGTCTT -ACGGAAAAGCCTACAACGACGCTT -ACGGAAAAGCCTACAACGAGCGTT -ACGGAAAAGCCTACAACGTTCGTC -ACGGAAAAGCCTACAACGTCTCTC -ACGGAAAAGCCTACAACGTGGATC -ACGGAAAAGCCTACAACGCACTTC -ACGGAAAAGCCTACAACGGTACTC -ACGGAAAAGCCTACAACGGATGTC -ACGGAAAAGCCTACAACGACAGTC -ACGGAAAAGCCTACAACGTTGCTG -ACGGAAAAGCCTACAACGTCCATG -ACGGAAAAGCCTACAACGTGTGTG -ACGGAAAAGCCTACAACGCTAGTG -ACGGAAAAGCCTACAACGCATCTG -ACGGAAAAGCCTACAACGGAGTTG -ACGGAAAAGCCTACAACGAGACTG -ACGGAAAAGCCTACAACGTCGGTA -ACGGAAAAGCCTACAACGTGCCTA -ACGGAAAAGCCTACAACGCCACTA -ACGGAAAAGCCTACAACGGGAGTA -ACGGAAAAGCCTACAACGTCGTCT -ACGGAAAAGCCTACAACGTGCACT -ACGGAAAAGCCTACAACGCTGACT -ACGGAAAAGCCTACAACGCAACCT -ACGGAAAAGCCTACAACGGCTACT -ACGGAAAAGCCTACAACGGGATCT -ACGGAAAAGCCTACAACGAAGGCT -ACGGAAAAGCCTACAACGTCAACC -ACGGAAAAGCCTACAACGTGTTCC -ACGGAAAAGCCTACAACGATTCCC -ACGGAAAAGCCTACAACGTTCTCG -ACGGAAAAGCCTACAACGTAGACG -ACGGAAAAGCCTACAACGGTAACG -ACGGAAAAGCCTACAACGACTTCG -ACGGAAAAGCCTACAACGTACGCA -ACGGAAAAGCCTACAACGCTTGCA -ACGGAAAAGCCTACAACGCGAACA -ACGGAAAAGCCTACAACGCAGTCA -ACGGAAAAGCCTACAACGGATCCA -ACGGAAAAGCCTACAACGACGACA -ACGGAAAAGCCTACAACGAGCTCA -ACGGAAAAGCCTACAACGTCACGT -ACGGAAAAGCCTACAACGCGTAGT -ACGGAAAAGCCTACAACGGTCAGT -ACGGAAAAGCCTACAACGGAAGGT -ACGGAAAAGCCTACAACGAACCGT -ACGGAAAAGCCTACAACGTTGTGC -ACGGAAAAGCCTACAACGCTAAGC -ACGGAAAAGCCTACAACGACTAGC -ACGGAAAAGCCTACAACGAGATGC -ACGGAAAAGCCTACAACGTGAAGG -ACGGAAAAGCCTACAACGCAATGG -ACGGAAAAGCCTACAACGATGAGG -ACGGAAAAGCCTACAACGAATGGG -ACGGAAAAGCCTACAACGTCCTGA -ACGGAAAAGCCTACAACGTAGCGA -ACGGAAAAGCCTACAACGCACAGA -ACGGAAAAGCCTACAACGGCAAGA -ACGGAAAAGCCTACAACGGGTTGA -ACGGAAAAGCCTACAACGTCCGAT -ACGGAAAAGCCTACAACGTGGCAT -ACGGAAAAGCCTACAACGCGAGAT -ACGGAAAAGCCTACAACGTACCAC -ACGGAAAAGCCTACAACGCAGAAC -ACGGAAAAGCCTACAACGGTCTAC -ACGGAAAAGCCTACAACGACGTAC -ACGGAAAAGCCTACAACGAGTGAC -ACGGAAAAGCCTACAACGCTGTAG -ACGGAAAAGCCTACAACGCCTAAG -ACGGAAAAGCCTACAACGGTTCAG -ACGGAAAAGCCTACAACGGCATAG -ACGGAAAAGCCTACAACGGACAAG -ACGGAAAAGCCTACAACGAAGCAG -ACGGAAAAGCCTACAACGCGTCAA -ACGGAAAAGCCTACAACGGCTGAA -ACGGAAAAGCCTACAACGAGTACG -ACGGAAAAGCCTACAACGATCCGA -ACGGAAAAGCCTACAACGATGGGA -ACGGAAAAGCCTACAACGGTGCAA -ACGGAAAAGCCTACAACGGAGGAA -ACGGAAAAGCCTACAACGCAGGTA -ACGGAAAAGCCTACAACGGACTCT -ACGGAAAAGCCTACAACGAGTCCT -ACGGAAAAGCCTACAACGTAAGCC -ACGGAAAAGCCTACAACGATAGCC -ACGGAAAAGCCTACAACGTAACCG -ACGGAAAAGCCTACAACGATGCCA -ACGGAAAAGCCTTCAAGCGGAAAC -ACGGAAAAGCCTTCAAGCAACACC -ACGGAAAAGCCTTCAAGCATCGAG -ACGGAAAAGCCTTCAAGCCTCCTT -ACGGAAAAGCCTTCAAGCCCTGTT -ACGGAAAAGCCTTCAAGCCGGTTT -ACGGAAAAGCCTTCAAGCGTGGTT -ACGGAAAAGCCTTCAAGCGCCTTT -ACGGAAAAGCCTTCAAGCGGTCTT -ACGGAAAAGCCTTCAAGCACGCTT -ACGGAAAAGCCTTCAAGCAGCGTT -ACGGAAAAGCCTTCAAGCTTCGTC -ACGGAAAAGCCTTCAAGCTCTCTC -ACGGAAAAGCCTTCAAGCTGGATC -ACGGAAAAGCCTTCAAGCCACTTC -ACGGAAAAGCCTTCAAGCGTACTC -ACGGAAAAGCCTTCAAGCGATGTC -ACGGAAAAGCCTTCAAGCACAGTC -ACGGAAAAGCCTTCAAGCTTGCTG -ACGGAAAAGCCTTCAAGCTCCATG -ACGGAAAAGCCTTCAAGCTGTGTG -ACGGAAAAGCCTTCAAGCCTAGTG -ACGGAAAAGCCTTCAAGCCATCTG -ACGGAAAAGCCTTCAAGCGAGTTG -ACGGAAAAGCCTTCAAGCAGACTG -ACGGAAAAGCCTTCAAGCTCGGTA -ACGGAAAAGCCTTCAAGCTGCCTA -ACGGAAAAGCCTTCAAGCCCACTA -ACGGAAAAGCCTTCAAGCGGAGTA -ACGGAAAAGCCTTCAAGCTCGTCT -ACGGAAAAGCCTTCAAGCTGCACT -ACGGAAAAGCCTTCAAGCCTGACT -ACGGAAAAGCCTTCAAGCCAACCT -ACGGAAAAGCCTTCAAGCGCTACT -ACGGAAAAGCCTTCAAGCGGATCT -ACGGAAAAGCCTTCAAGCAAGGCT -ACGGAAAAGCCTTCAAGCTCAACC -ACGGAAAAGCCTTCAAGCTGTTCC -ACGGAAAAGCCTTCAAGCATTCCC -ACGGAAAAGCCTTCAAGCTTCTCG -ACGGAAAAGCCTTCAAGCTAGACG -ACGGAAAAGCCTTCAAGCGTAACG -ACGGAAAAGCCTTCAAGCACTTCG -ACGGAAAAGCCTTCAAGCTACGCA -ACGGAAAAGCCTTCAAGCCTTGCA -ACGGAAAAGCCTTCAAGCCGAACA -ACGGAAAAGCCTTCAAGCCAGTCA -ACGGAAAAGCCTTCAAGCGATCCA -ACGGAAAAGCCTTCAAGCACGACA -ACGGAAAAGCCTTCAAGCAGCTCA -ACGGAAAAGCCTTCAAGCTCACGT -ACGGAAAAGCCTTCAAGCCGTAGT -ACGGAAAAGCCTTCAAGCGTCAGT -ACGGAAAAGCCTTCAAGCGAAGGT -ACGGAAAAGCCTTCAAGCAACCGT -ACGGAAAAGCCTTCAAGCTTGTGC -ACGGAAAAGCCTTCAAGCCTAAGC -ACGGAAAAGCCTTCAAGCACTAGC -ACGGAAAAGCCTTCAAGCAGATGC -ACGGAAAAGCCTTCAAGCTGAAGG -ACGGAAAAGCCTTCAAGCCAATGG -ACGGAAAAGCCTTCAAGCATGAGG -ACGGAAAAGCCTTCAAGCAATGGG -ACGGAAAAGCCTTCAAGCTCCTGA -ACGGAAAAGCCTTCAAGCTAGCGA -ACGGAAAAGCCTTCAAGCCACAGA -ACGGAAAAGCCTTCAAGCGCAAGA -ACGGAAAAGCCTTCAAGCGGTTGA -ACGGAAAAGCCTTCAAGCTCCGAT -ACGGAAAAGCCTTCAAGCTGGCAT -ACGGAAAAGCCTTCAAGCCGAGAT -ACGGAAAAGCCTTCAAGCTACCAC -ACGGAAAAGCCTTCAAGCCAGAAC -ACGGAAAAGCCTTCAAGCGTCTAC -ACGGAAAAGCCTTCAAGCACGTAC -ACGGAAAAGCCTTCAAGCAGTGAC -ACGGAAAAGCCTTCAAGCCTGTAG -ACGGAAAAGCCTTCAAGCCCTAAG -ACGGAAAAGCCTTCAAGCGTTCAG -ACGGAAAAGCCTTCAAGCGCATAG -ACGGAAAAGCCTTCAAGCGACAAG -ACGGAAAAGCCTTCAAGCAAGCAG -ACGGAAAAGCCTTCAAGCCGTCAA -ACGGAAAAGCCTTCAAGCGCTGAA -ACGGAAAAGCCTTCAAGCAGTACG -ACGGAAAAGCCTTCAAGCATCCGA -ACGGAAAAGCCTTCAAGCATGGGA -ACGGAAAAGCCTTCAAGCGTGCAA -ACGGAAAAGCCTTCAAGCGAGGAA -ACGGAAAAGCCTTCAAGCCAGGTA -ACGGAAAAGCCTTCAAGCGACTCT -ACGGAAAAGCCTTCAAGCAGTCCT -ACGGAAAAGCCTTCAAGCTAAGCC -ACGGAAAAGCCTTCAAGCATAGCC -ACGGAAAAGCCTTCAAGCTAACCG -ACGGAAAAGCCTTCAAGCATGCCA -ACGGAAAAGCCTCGTTCAGGAAAC -ACGGAAAAGCCTCGTTCAAACACC -ACGGAAAAGCCTCGTTCAATCGAG -ACGGAAAAGCCTCGTTCACTCCTT -ACGGAAAAGCCTCGTTCACCTGTT -ACGGAAAAGCCTCGTTCACGGTTT -ACGGAAAAGCCTCGTTCAGTGGTT -ACGGAAAAGCCTCGTTCAGCCTTT -ACGGAAAAGCCTCGTTCAGGTCTT -ACGGAAAAGCCTCGTTCAACGCTT -ACGGAAAAGCCTCGTTCAAGCGTT -ACGGAAAAGCCTCGTTCATTCGTC -ACGGAAAAGCCTCGTTCATCTCTC -ACGGAAAAGCCTCGTTCATGGATC -ACGGAAAAGCCTCGTTCACACTTC -ACGGAAAAGCCTCGTTCAGTACTC -ACGGAAAAGCCTCGTTCAGATGTC -ACGGAAAAGCCTCGTTCAACAGTC -ACGGAAAAGCCTCGTTCATTGCTG -ACGGAAAAGCCTCGTTCATCCATG -ACGGAAAAGCCTCGTTCATGTGTG -ACGGAAAAGCCTCGTTCACTAGTG -ACGGAAAAGCCTCGTTCACATCTG -ACGGAAAAGCCTCGTTCAGAGTTG -ACGGAAAAGCCTCGTTCAAGACTG -ACGGAAAAGCCTCGTTCATCGGTA -ACGGAAAAGCCTCGTTCATGCCTA -ACGGAAAAGCCTCGTTCACCACTA -ACGGAAAAGCCTCGTTCAGGAGTA -ACGGAAAAGCCTCGTTCATCGTCT -ACGGAAAAGCCTCGTTCATGCACT -ACGGAAAAGCCTCGTTCACTGACT -ACGGAAAAGCCTCGTTCACAACCT -ACGGAAAAGCCTCGTTCAGCTACT -ACGGAAAAGCCTCGTTCAGGATCT -ACGGAAAAGCCTCGTTCAAAGGCT -ACGGAAAAGCCTCGTTCATCAACC -ACGGAAAAGCCTCGTTCATGTTCC -ACGGAAAAGCCTCGTTCAATTCCC -ACGGAAAAGCCTCGTTCATTCTCG -ACGGAAAAGCCTCGTTCATAGACG -ACGGAAAAGCCTCGTTCAGTAACG -ACGGAAAAGCCTCGTTCAACTTCG -ACGGAAAAGCCTCGTTCATACGCA -ACGGAAAAGCCTCGTTCACTTGCA -ACGGAAAAGCCTCGTTCACGAACA -ACGGAAAAGCCTCGTTCACAGTCA -ACGGAAAAGCCTCGTTCAGATCCA -ACGGAAAAGCCTCGTTCAACGACA -ACGGAAAAGCCTCGTTCAAGCTCA -ACGGAAAAGCCTCGTTCATCACGT -ACGGAAAAGCCTCGTTCACGTAGT -ACGGAAAAGCCTCGTTCAGTCAGT -ACGGAAAAGCCTCGTTCAGAAGGT -ACGGAAAAGCCTCGTTCAAACCGT -ACGGAAAAGCCTCGTTCATTGTGC -ACGGAAAAGCCTCGTTCACTAAGC -ACGGAAAAGCCTCGTTCAACTAGC -ACGGAAAAGCCTCGTTCAAGATGC -ACGGAAAAGCCTCGTTCATGAAGG -ACGGAAAAGCCTCGTTCACAATGG -ACGGAAAAGCCTCGTTCAATGAGG -ACGGAAAAGCCTCGTTCAAATGGG -ACGGAAAAGCCTCGTTCATCCTGA -ACGGAAAAGCCTCGTTCATAGCGA -ACGGAAAAGCCTCGTTCACACAGA -ACGGAAAAGCCTCGTTCAGCAAGA -ACGGAAAAGCCTCGTTCAGGTTGA -ACGGAAAAGCCTCGTTCATCCGAT -ACGGAAAAGCCTCGTTCATGGCAT -ACGGAAAAGCCTCGTTCACGAGAT -ACGGAAAAGCCTCGTTCATACCAC -ACGGAAAAGCCTCGTTCACAGAAC -ACGGAAAAGCCTCGTTCAGTCTAC -ACGGAAAAGCCTCGTTCAACGTAC -ACGGAAAAGCCTCGTTCAAGTGAC -ACGGAAAAGCCTCGTTCACTGTAG -ACGGAAAAGCCTCGTTCACCTAAG -ACGGAAAAGCCTCGTTCAGTTCAG -ACGGAAAAGCCTCGTTCAGCATAG -ACGGAAAAGCCTCGTTCAGACAAG -ACGGAAAAGCCTCGTTCAAAGCAG -ACGGAAAAGCCTCGTTCACGTCAA -ACGGAAAAGCCTCGTTCAGCTGAA -ACGGAAAAGCCTCGTTCAAGTACG -ACGGAAAAGCCTCGTTCAATCCGA -ACGGAAAAGCCTCGTTCAATGGGA -ACGGAAAAGCCTCGTTCAGTGCAA -ACGGAAAAGCCTCGTTCAGAGGAA -ACGGAAAAGCCTCGTTCACAGGTA -ACGGAAAAGCCTCGTTCAGACTCT -ACGGAAAAGCCTCGTTCAAGTCCT -ACGGAAAAGCCTCGTTCATAAGCC -ACGGAAAAGCCTCGTTCAATAGCC -ACGGAAAAGCCTCGTTCATAACCG -ACGGAAAAGCCTCGTTCAATGCCA -ACGGAAAAGCCTAGTCGTGGAAAC -ACGGAAAAGCCTAGTCGTAACACC -ACGGAAAAGCCTAGTCGTATCGAG -ACGGAAAAGCCTAGTCGTCTCCTT -ACGGAAAAGCCTAGTCGTCCTGTT -ACGGAAAAGCCTAGTCGTCGGTTT -ACGGAAAAGCCTAGTCGTGTGGTT -ACGGAAAAGCCTAGTCGTGCCTTT -ACGGAAAAGCCTAGTCGTGGTCTT -ACGGAAAAGCCTAGTCGTACGCTT -ACGGAAAAGCCTAGTCGTAGCGTT -ACGGAAAAGCCTAGTCGTTTCGTC -ACGGAAAAGCCTAGTCGTTCTCTC -ACGGAAAAGCCTAGTCGTTGGATC -ACGGAAAAGCCTAGTCGTCACTTC -ACGGAAAAGCCTAGTCGTGTACTC -ACGGAAAAGCCTAGTCGTGATGTC -ACGGAAAAGCCTAGTCGTACAGTC -ACGGAAAAGCCTAGTCGTTTGCTG -ACGGAAAAGCCTAGTCGTTCCATG -ACGGAAAAGCCTAGTCGTTGTGTG -ACGGAAAAGCCTAGTCGTCTAGTG -ACGGAAAAGCCTAGTCGTCATCTG -ACGGAAAAGCCTAGTCGTGAGTTG -ACGGAAAAGCCTAGTCGTAGACTG -ACGGAAAAGCCTAGTCGTTCGGTA -ACGGAAAAGCCTAGTCGTTGCCTA -ACGGAAAAGCCTAGTCGTCCACTA -ACGGAAAAGCCTAGTCGTGGAGTA -ACGGAAAAGCCTAGTCGTTCGTCT -ACGGAAAAGCCTAGTCGTTGCACT -ACGGAAAAGCCTAGTCGTCTGACT -ACGGAAAAGCCTAGTCGTCAACCT -ACGGAAAAGCCTAGTCGTGCTACT -ACGGAAAAGCCTAGTCGTGGATCT -ACGGAAAAGCCTAGTCGTAAGGCT -ACGGAAAAGCCTAGTCGTTCAACC -ACGGAAAAGCCTAGTCGTTGTTCC -ACGGAAAAGCCTAGTCGTATTCCC -ACGGAAAAGCCTAGTCGTTTCTCG -ACGGAAAAGCCTAGTCGTTAGACG -ACGGAAAAGCCTAGTCGTGTAACG -ACGGAAAAGCCTAGTCGTACTTCG -ACGGAAAAGCCTAGTCGTTACGCA -ACGGAAAAGCCTAGTCGTCTTGCA -ACGGAAAAGCCTAGTCGTCGAACA -ACGGAAAAGCCTAGTCGTCAGTCA -ACGGAAAAGCCTAGTCGTGATCCA -ACGGAAAAGCCTAGTCGTACGACA -ACGGAAAAGCCTAGTCGTAGCTCA -ACGGAAAAGCCTAGTCGTTCACGT -ACGGAAAAGCCTAGTCGTCGTAGT -ACGGAAAAGCCTAGTCGTGTCAGT -ACGGAAAAGCCTAGTCGTGAAGGT -ACGGAAAAGCCTAGTCGTAACCGT -ACGGAAAAGCCTAGTCGTTTGTGC -ACGGAAAAGCCTAGTCGTCTAAGC -ACGGAAAAGCCTAGTCGTACTAGC -ACGGAAAAGCCTAGTCGTAGATGC -ACGGAAAAGCCTAGTCGTTGAAGG -ACGGAAAAGCCTAGTCGTCAATGG -ACGGAAAAGCCTAGTCGTATGAGG -ACGGAAAAGCCTAGTCGTAATGGG -ACGGAAAAGCCTAGTCGTTCCTGA -ACGGAAAAGCCTAGTCGTTAGCGA -ACGGAAAAGCCTAGTCGTCACAGA -ACGGAAAAGCCTAGTCGTGCAAGA -ACGGAAAAGCCTAGTCGTGGTTGA -ACGGAAAAGCCTAGTCGTTCCGAT -ACGGAAAAGCCTAGTCGTTGGCAT -ACGGAAAAGCCTAGTCGTCGAGAT -ACGGAAAAGCCTAGTCGTTACCAC -ACGGAAAAGCCTAGTCGTCAGAAC -ACGGAAAAGCCTAGTCGTGTCTAC -ACGGAAAAGCCTAGTCGTACGTAC -ACGGAAAAGCCTAGTCGTAGTGAC -ACGGAAAAGCCTAGTCGTCTGTAG -ACGGAAAAGCCTAGTCGTCCTAAG -ACGGAAAAGCCTAGTCGTGTTCAG -ACGGAAAAGCCTAGTCGTGCATAG -ACGGAAAAGCCTAGTCGTGACAAG -ACGGAAAAGCCTAGTCGTAAGCAG -ACGGAAAAGCCTAGTCGTCGTCAA -ACGGAAAAGCCTAGTCGTGCTGAA -ACGGAAAAGCCTAGTCGTAGTACG -ACGGAAAAGCCTAGTCGTATCCGA -ACGGAAAAGCCTAGTCGTATGGGA -ACGGAAAAGCCTAGTCGTGTGCAA -ACGGAAAAGCCTAGTCGTGAGGAA -ACGGAAAAGCCTAGTCGTCAGGTA -ACGGAAAAGCCTAGTCGTGACTCT -ACGGAAAAGCCTAGTCGTAGTCCT -ACGGAAAAGCCTAGTCGTTAAGCC -ACGGAAAAGCCTAGTCGTATAGCC -ACGGAAAAGCCTAGTCGTTAACCG -ACGGAAAAGCCTAGTCGTATGCCA -ACGGAAAAGCCTAGTGTCGGAAAC -ACGGAAAAGCCTAGTGTCAACACC -ACGGAAAAGCCTAGTGTCATCGAG -ACGGAAAAGCCTAGTGTCCTCCTT -ACGGAAAAGCCTAGTGTCCCTGTT -ACGGAAAAGCCTAGTGTCCGGTTT -ACGGAAAAGCCTAGTGTCGTGGTT -ACGGAAAAGCCTAGTGTCGCCTTT -ACGGAAAAGCCTAGTGTCGGTCTT -ACGGAAAAGCCTAGTGTCACGCTT -ACGGAAAAGCCTAGTGTCAGCGTT -ACGGAAAAGCCTAGTGTCTTCGTC -ACGGAAAAGCCTAGTGTCTCTCTC -ACGGAAAAGCCTAGTGTCTGGATC -ACGGAAAAGCCTAGTGTCCACTTC -ACGGAAAAGCCTAGTGTCGTACTC -ACGGAAAAGCCTAGTGTCGATGTC -ACGGAAAAGCCTAGTGTCACAGTC -ACGGAAAAGCCTAGTGTCTTGCTG -ACGGAAAAGCCTAGTGTCTCCATG -ACGGAAAAGCCTAGTGTCTGTGTG -ACGGAAAAGCCTAGTGTCCTAGTG -ACGGAAAAGCCTAGTGTCCATCTG -ACGGAAAAGCCTAGTGTCGAGTTG -ACGGAAAAGCCTAGTGTCAGACTG -ACGGAAAAGCCTAGTGTCTCGGTA -ACGGAAAAGCCTAGTGTCTGCCTA -ACGGAAAAGCCTAGTGTCCCACTA -ACGGAAAAGCCTAGTGTCGGAGTA -ACGGAAAAGCCTAGTGTCTCGTCT -ACGGAAAAGCCTAGTGTCTGCACT -ACGGAAAAGCCTAGTGTCCTGACT -ACGGAAAAGCCTAGTGTCCAACCT -ACGGAAAAGCCTAGTGTCGCTACT -ACGGAAAAGCCTAGTGTCGGATCT -ACGGAAAAGCCTAGTGTCAAGGCT -ACGGAAAAGCCTAGTGTCTCAACC -ACGGAAAAGCCTAGTGTCTGTTCC -ACGGAAAAGCCTAGTGTCATTCCC -ACGGAAAAGCCTAGTGTCTTCTCG -ACGGAAAAGCCTAGTGTCTAGACG -ACGGAAAAGCCTAGTGTCGTAACG -ACGGAAAAGCCTAGTGTCACTTCG -ACGGAAAAGCCTAGTGTCTACGCA -ACGGAAAAGCCTAGTGTCCTTGCA -ACGGAAAAGCCTAGTGTCCGAACA -ACGGAAAAGCCTAGTGTCCAGTCA -ACGGAAAAGCCTAGTGTCGATCCA -ACGGAAAAGCCTAGTGTCACGACA -ACGGAAAAGCCTAGTGTCAGCTCA -ACGGAAAAGCCTAGTGTCTCACGT -ACGGAAAAGCCTAGTGTCCGTAGT -ACGGAAAAGCCTAGTGTCGTCAGT -ACGGAAAAGCCTAGTGTCGAAGGT -ACGGAAAAGCCTAGTGTCAACCGT -ACGGAAAAGCCTAGTGTCTTGTGC -ACGGAAAAGCCTAGTGTCCTAAGC -ACGGAAAAGCCTAGTGTCACTAGC -ACGGAAAAGCCTAGTGTCAGATGC -ACGGAAAAGCCTAGTGTCTGAAGG -ACGGAAAAGCCTAGTGTCCAATGG -ACGGAAAAGCCTAGTGTCATGAGG -ACGGAAAAGCCTAGTGTCAATGGG -ACGGAAAAGCCTAGTGTCTCCTGA -ACGGAAAAGCCTAGTGTCTAGCGA -ACGGAAAAGCCTAGTGTCCACAGA -ACGGAAAAGCCTAGTGTCGCAAGA -ACGGAAAAGCCTAGTGTCGGTTGA -ACGGAAAAGCCTAGTGTCTCCGAT -ACGGAAAAGCCTAGTGTCTGGCAT -ACGGAAAAGCCTAGTGTCCGAGAT -ACGGAAAAGCCTAGTGTCTACCAC -ACGGAAAAGCCTAGTGTCCAGAAC -ACGGAAAAGCCTAGTGTCGTCTAC -ACGGAAAAGCCTAGTGTCACGTAC -ACGGAAAAGCCTAGTGTCAGTGAC -ACGGAAAAGCCTAGTGTCCTGTAG -ACGGAAAAGCCTAGTGTCCCTAAG -ACGGAAAAGCCTAGTGTCGTTCAG -ACGGAAAAGCCTAGTGTCGCATAG -ACGGAAAAGCCTAGTGTCGACAAG -ACGGAAAAGCCTAGTGTCAAGCAG -ACGGAAAAGCCTAGTGTCCGTCAA -ACGGAAAAGCCTAGTGTCGCTGAA -ACGGAAAAGCCTAGTGTCAGTACG -ACGGAAAAGCCTAGTGTCATCCGA -ACGGAAAAGCCTAGTGTCATGGGA -ACGGAAAAGCCTAGTGTCGTGCAA -ACGGAAAAGCCTAGTGTCGAGGAA -ACGGAAAAGCCTAGTGTCCAGGTA -ACGGAAAAGCCTAGTGTCGACTCT -ACGGAAAAGCCTAGTGTCAGTCCT -ACGGAAAAGCCTAGTGTCTAAGCC -ACGGAAAAGCCTAGTGTCATAGCC -ACGGAAAAGCCTAGTGTCTAACCG -ACGGAAAAGCCTAGTGTCATGCCA -ACGGAAAAGCCTGGTGAAGGAAAC -ACGGAAAAGCCTGGTGAAAACACC -ACGGAAAAGCCTGGTGAAATCGAG -ACGGAAAAGCCTGGTGAACTCCTT -ACGGAAAAGCCTGGTGAACCTGTT -ACGGAAAAGCCTGGTGAACGGTTT -ACGGAAAAGCCTGGTGAAGTGGTT -ACGGAAAAGCCTGGTGAAGCCTTT -ACGGAAAAGCCTGGTGAAGGTCTT -ACGGAAAAGCCTGGTGAAACGCTT -ACGGAAAAGCCTGGTGAAAGCGTT -ACGGAAAAGCCTGGTGAATTCGTC -ACGGAAAAGCCTGGTGAATCTCTC -ACGGAAAAGCCTGGTGAATGGATC -ACGGAAAAGCCTGGTGAACACTTC -ACGGAAAAGCCTGGTGAAGTACTC -ACGGAAAAGCCTGGTGAAGATGTC -ACGGAAAAGCCTGGTGAAACAGTC -ACGGAAAAGCCTGGTGAATTGCTG -ACGGAAAAGCCTGGTGAATCCATG -ACGGAAAAGCCTGGTGAATGTGTG -ACGGAAAAGCCTGGTGAACTAGTG -ACGGAAAAGCCTGGTGAACATCTG -ACGGAAAAGCCTGGTGAAGAGTTG -ACGGAAAAGCCTGGTGAAAGACTG -ACGGAAAAGCCTGGTGAATCGGTA -ACGGAAAAGCCTGGTGAATGCCTA -ACGGAAAAGCCTGGTGAACCACTA -ACGGAAAAGCCTGGTGAAGGAGTA -ACGGAAAAGCCTGGTGAATCGTCT -ACGGAAAAGCCTGGTGAATGCACT -ACGGAAAAGCCTGGTGAACTGACT -ACGGAAAAGCCTGGTGAACAACCT -ACGGAAAAGCCTGGTGAAGCTACT -ACGGAAAAGCCTGGTGAAGGATCT -ACGGAAAAGCCTGGTGAAAAGGCT -ACGGAAAAGCCTGGTGAATCAACC -ACGGAAAAGCCTGGTGAATGTTCC -ACGGAAAAGCCTGGTGAAATTCCC -ACGGAAAAGCCTGGTGAATTCTCG -ACGGAAAAGCCTGGTGAATAGACG -ACGGAAAAGCCTGGTGAAGTAACG -ACGGAAAAGCCTGGTGAAACTTCG -ACGGAAAAGCCTGGTGAATACGCA -ACGGAAAAGCCTGGTGAACTTGCA -ACGGAAAAGCCTGGTGAACGAACA -ACGGAAAAGCCTGGTGAACAGTCA -ACGGAAAAGCCTGGTGAAGATCCA -ACGGAAAAGCCTGGTGAAACGACA -ACGGAAAAGCCTGGTGAAAGCTCA -ACGGAAAAGCCTGGTGAATCACGT -ACGGAAAAGCCTGGTGAACGTAGT -ACGGAAAAGCCTGGTGAAGTCAGT -ACGGAAAAGCCTGGTGAAGAAGGT -ACGGAAAAGCCTGGTGAAAACCGT -ACGGAAAAGCCTGGTGAATTGTGC -ACGGAAAAGCCTGGTGAACTAAGC -ACGGAAAAGCCTGGTGAAACTAGC -ACGGAAAAGCCTGGTGAAAGATGC -ACGGAAAAGCCTGGTGAATGAAGG -ACGGAAAAGCCTGGTGAACAATGG -ACGGAAAAGCCTGGTGAAATGAGG -ACGGAAAAGCCTGGTGAAAATGGG -ACGGAAAAGCCTGGTGAATCCTGA -ACGGAAAAGCCTGGTGAATAGCGA -ACGGAAAAGCCTGGTGAACACAGA -ACGGAAAAGCCTGGTGAAGCAAGA -ACGGAAAAGCCTGGTGAAGGTTGA -ACGGAAAAGCCTGGTGAATCCGAT -ACGGAAAAGCCTGGTGAATGGCAT -ACGGAAAAGCCTGGTGAACGAGAT -ACGGAAAAGCCTGGTGAATACCAC -ACGGAAAAGCCTGGTGAACAGAAC -ACGGAAAAGCCTGGTGAAGTCTAC -ACGGAAAAGCCTGGTGAAACGTAC -ACGGAAAAGCCTGGTGAAAGTGAC -ACGGAAAAGCCTGGTGAACTGTAG -ACGGAAAAGCCTGGTGAACCTAAG -ACGGAAAAGCCTGGTGAAGTTCAG -ACGGAAAAGCCTGGTGAAGCATAG -ACGGAAAAGCCTGGTGAAGACAAG -ACGGAAAAGCCTGGTGAAAAGCAG -ACGGAAAAGCCTGGTGAACGTCAA -ACGGAAAAGCCTGGTGAAGCTGAA -ACGGAAAAGCCTGGTGAAAGTACG -ACGGAAAAGCCTGGTGAAATCCGA -ACGGAAAAGCCTGGTGAAATGGGA -ACGGAAAAGCCTGGTGAAGTGCAA -ACGGAAAAGCCTGGTGAAGAGGAA -ACGGAAAAGCCTGGTGAACAGGTA -ACGGAAAAGCCTGGTGAAGACTCT -ACGGAAAAGCCTGGTGAAAGTCCT -ACGGAAAAGCCTGGTGAATAAGCC -ACGGAAAAGCCTGGTGAAATAGCC -ACGGAAAAGCCTGGTGAATAACCG -ACGGAAAAGCCTGGTGAAATGCCA -ACGGAAAAGCCTCGTAACGGAAAC -ACGGAAAAGCCTCGTAACAACACC -ACGGAAAAGCCTCGTAACATCGAG -ACGGAAAAGCCTCGTAACCTCCTT -ACGGAAAAGCCTCGTAACCCTGTT -ACGGAAAAGCCTCGTAACCGGTTT -ACGGAAAAGCCTCGTAACGTGGTT -ACGGAAAAGCCTCGTAACGCCTTT -ACGGAAAAGCCTCGTAACGGTCTT -ACGGAAAAGCCTCGTAACACGCTT -ACGGAAAAGCCTCGTAACAGCGTT -ACGGAAAAGCCTCGTAACTTCGTC -ACGGAAAAGCCTCGTAACTCTCTC -ACGGAAAAGCCTCGTAACTGGATC -ACGGAAAAGCCTCGTAACCACTTC -ACGGAAAAGCCTCGTAACGTACTC -ACGGAAAAGCCTCGTAACGATGTC -ACGGAAAAGCCTCGTAACACAGTC -ACGGAAAAGCCTCGTAACTTGCTG -ACGGAAAAGCCTCGTAACTCCATG -ACGGAAAAGCCTCGTAACTGTGTG -ACGGAAAAGCCTCGTAACCTAGTG -ACGGAAAAGCCTCGTAACCATCTG -ACGGAAAAGCCTCGTAACGAGTTG -ACGGAAAAGCCTCGTAACAGACTG -ACGGAAAAGCCTCGTAACTCGGTA -ACGGAAAAGCCTCGTAACTGCCTA -ACGGAAAAGCCTCGTAACCCACTA -ACGGAAAAGCCTCGTAACGGAGTA -ACGGAAAAGCCTCGTAACTCGTCT -ACGGAAAAGCCTCGTAACTGCACT -ACGGAAAAGCCTCGTAACCTGACT -ACGGAAAAGCCTCGTAACCAACCT -ACGGAAAAGCCTCGTAACGCTACT -ACGGAAAAGCCTCGTAACGGATCT -ACGGAAAAGCCTCGTAACAAGGCT -ACGGAAAAGCCTCGTAACTCAACC -ACGGAAAAGCCTCGTAACTGTTCC -ACGGAAAAGCCTCGTAACATTCCC -ACGGAAAAGCCTCGTAACTTCTCG -ACGGAAAAGCCTCGTAACTAGACG -ACGGAAAAGCCTCGTAACGTAACG -ACGGAAAAGCCTCGTAACACTTCG -ACGGAAAAGCCTCGTAACTACGCA -ACGGAAAAGCCTCGTAACCTTGCA -ACGGAAAAGCCTCGTAACCGAACA -ACGGAAAAGCCTCGTAACCAGTCA -ACGGAAAAGCCTCGTAACGATCCA -ACGGAAAAGCCTCGTAACACGACA -ACGGAAAAGCCTCGTAACAGCTCA -ACGGAAAAGCCTCGTAACTCACGT -ACGGAAAAGCCTCGTAACCGTAGT -ACGGAAAAGCCTCGTAACGTCAGT -ACGGAAAAGCCTCGTAACGAAGGT -ACGGAAAAGCCTCGTAACAACCGT -ACGGAAAAGCCTCGTAACTTGTGC -ACGGAAAAGCCTCGTAACCTAAGC -ACGGAAAAGCCTCGTAACACTAGC -ACGGAAAAGCCTCGTAACAGATGC -ACGGAAAAGCCTCGTAACTGAAGG -ACGGAAAAGCCTCGTAACCAATGG -ACGGAAAAGCCTCGTAACATGAGG -ACGGAAAAGCCTCGTAACAATGGG -ACGGAAAAGCCTCGTAACTCCTGA -ACGGAAAAGCCTCGTAACTAGCGA -ACGGAAAAGCCTCGTAACCACAGA -ACGGAAAAGCCTCGTAACGCAAGA -ACGGAAAAGCCTCGTAACGGTTGA -ACGGAAAAGCCTCGTAACTCCGAT -ACGGAAAAGCCTCGTAACTGGCAT -ACGGAAAAGCCTCGTAACCGAGAT -ACGGAAAAGCCTCGTAACTACCAC -ACGGAAAAGCCTCGTAACCAGAAC -ACGGAAAAGCCTCGTAACGTCTAC -ACGGAAAAGCCTCGTAACACGTAC -ACGGAAAAGCCTCGTAACAGTGAC -ACGGAAAAGCCTCGTAACCTGTAG -ACGGAAAAGCCTCGTAACCCTAAG -ACGGAAAAGCCTCGTAACGTTCAG -ACGGAAAAGCCTCGTAACGCATAG -ACGGAAAAGCCTCGTAACGACAAG -ACGGAAAAGCCTCGTAACAAGCAG -ACGGAAAAGCCTCGTAACCGTCAA -ACGGAAAAGCCTCGTAACGCTGAA -ACGGAAAAGCCTCGTAACAGTACG -ACGGAAAAGCCTCGTAACATCCGA -ACGGAAAAGCCTCGTAACATGGGA -ACGGAAAAGCCTCGTAACGTGCAA -ACGGAAAAGCCTCGTAACGAGGAA -ACGGAAAAGCCTCGTAACCAGGTA -ACGGAAAAGCCTCGTAACGACTCT -ACGGAAAAGCCTCGTAACAGTCCT -ACGGAAAAGCCTCGTAACTAAGCC -ACGGAAAAGCCTCGTAACATAGCC -ACGGAAAAGCCTCGTAACTAACCG -ACGGAAAAGCCTCGTAACATGCCA -ACGGAAAAGCCTTGCTTGGGAAAC -ACGGAAAAGCCTTGCTTGAACACC -ACGGAAAAGCCTTGCTTGATCGAG -ACGGAAAAGCCTTGCTTGCTCCTT -ACGGAAAAGCCTTGCTTGCCTGTT -ACGGAAAAGCCTTGCTTGCGGTTT -ACGGAAAAGCCTTGCTTGGTGGTT -ACGGAAAAGCCTTGCTTGGCCTTT -ACGGAAAAGCCTTGCTTGGGTCTT -ACGGAAAAGCCTTGCTTGACGCTT -ACGGAAAAGCCTTGCTTGAGCGTT -ACGGAAAAGCCTTGCTTGTTCGTC -ACGGAAAAGCCTTGCTTGTCTCTC -ACGGAAAAGCCTTGCTTGTGGATC -ACGGAAAAGCCTTGCTTGCACTTC -ACGGAAAAGCCTTGCTTGGTACTC -ACGGAAAAGCCTTGCTTGGATGTC -ACGGAAAAGCCTTGCTTGACAGTC -ACGGAAAAGCCTTGCTTGTTGCTG -ACGGAAAAGCCTTGCTTGTCCATG -ACGGAAAAGCCTTGCTTGTGTGTG -ACGGAAAAGCCTTGCTTGCTAGTG -ACGGAAAAGCCTTGCTTGCATCTG -ACGGAAAAGCCTTGCTTGGAGTTG -ACGGAAAAGCCTTGCTTGAGACTG -ACGGAAAAGCCTTGCTTGTCGGTA -ACGGAAAAGCCTTGCTTGTGCCTA -ACGGAAAAGCCTTGCTTGCCACTA -ACGGAAAAGCCTTGCTTGGGAGTA -ACGGAAAAGCCTTGCTTGTCGTCT -ACGGAAAAGCCTTGCTTGTGCACT -ACGGAAAAGCCTTGCTTGCTGACT -ACGGAAAAGCCTTGCTTGCAACCT -ACGGAAAAGCCTTGCTTGGCTACT -ACGGAAAAGCCTTGCTTGGGATCT -ACGGAAAAGCCTTGCTTGAAGGCT -ACGGAAAAGCCTTGCTTGTCAACC -ACGGAAAAGCCTTGCTTGTGTTCC -ACGGAAAAGCCTTGCTTGATTCCC -ACGGAAAAGCCTTGCTTGTTCTCG -ACGGAAAAGCCTTGCTTGTAGACG -ACGGAAAAGCCTTGCTTGGTAACG -ACGGAAAAGCCTTGCTTGACTTCG -ACGGAAAAGCCTTGCTTGTACGCA -ACGGAAAAGCCTTGCTTGCTTGCA -ACGGAAAAGCCTTGCTTGCGAACA -ACGGAAAAGCCTTGCTTGCAGTCA -ACGGAAAAGCCTTGCTTGGATCCA -ACGGAAAAGCCTTGCTTGACGACA -ACGGAAAAGCCTTGCTTGAGCTCA -ACGGAAAAGCCTTGCTTGTCACGT -ACGGAAAAGCCTTGCTTGCGTAGT -ACGGAAAAGCCTTGCTTGGTCAGT -ACGGAAAAGCCTTGCTTGGAAGGT -ACGGAAAAGCCTTGCTTGAACCGT -ACGGAAAAGCCTTGCTTGTTGTGC -ACGGAAAAGCCTTGCTTGCTAAGC -ACGGAAAAGCCTTGCTTGACTAGC -ACGGAAAAGCCTTGCTTGAGATGC -ACGGAAAAGCCTTGCTTGTGAAGG -ACGGAAAAGCCTTGCTTGCAATGG -ACGGAAAAGCCTTGCTTGATGAGG -ACGGAAAAGCCTTGCTTGAATGGG -ACGGAAAAGCCTTGCTTGTCCTGA -ACGGAAAAGCCTTGCTTGTAGCGA -ACGGAAAAGCCTTGCTTGCACAGA -ACGGAAAAGCCTTGCTTGGCAAGA -ACGGAAAAGCCTTGCTTGGGTTGA -ACGGAAAAGCCTTGCTTGTCCGAT -ACGGAAAAGCCTTGCTTGTGGCAT -ACGGAAAAGCCTTGCTTGCGAGAT -ACGGAAAAGCCTTGCTTGTACCAC -ACGGAAAAGCCTTGCTTGCAGAAC -ACGGAAAAGCCTTGCTTGGTCTAC -ACGGAAAAGCCTTGCTTGACGTAC -ACGGAAAAGCCTTGCTTGAGTGAC -ACGGAAAAGCCTTGCTTGCTGTAG -ACGGAAAAGCCTTGCTTGCCTAAG -ACGGAAAAGCCTTGCTTGGTTCAG -ACGGAAAAGCCTTGCTTGGCATAG -ACGGAAAAGCCTTGCTTGGACAAG -ACGGAAAAGCCTTGCTTGAAGCAG -ACGGAAAAGCCTTGCTTGCGTCAA -ACGGAAAAGCCTTGCTTGGCTGAA -ACGGAAAAGCCTTGCTTGAGTACG -ACGGAAAAGCCTTGCTTGATCCGA -ACGGAAAAGCCTTGCTTGATGGGA -ACGGAAAAGCCTTGCTTGGTGCAA -ACGGAAAAGCCTTGCTTGGAGGAA -ACGGAAAAGCCTTGCTTGCAGGTA -ACGGAAAAGCCTTGCTTGGACTCT -ACGGAAAAGCCTTGCTTGAGTCCT -ACGGAAAAGCCTTGCTTGTAAGCC -ACGGAAAAGCCTTGCTTGATAGCC -ACGGAAAAGCCTTGCTTGTAACCG -ACGGAAAAGCCTTGCTTGATGCCA -ACGGAAAAGCCTAGCCTAGGAAAC -ACGGAAAAGCCTAGCCTAAACACC -ACGGAAAAGCCTAGCCTAATCGAG -ACGGAAAAGCCTAGCCTACTCCTT -ACGGAAAAGCCTAGCCTACCTGTT -ACGGAAAAGCCTAGCCTACGGTTT -ACGGAAAAGCCTAGCCTAGTGGTT -ACGGAAAAGCCTAGCCTAGCCTTT -ACGGAAAAGCCTAGCCTAGGTCTT -ACGGAAAAGCCTAGCCTAACGCTT -ACGGAAAAGCCTAGCCTAAGCGTT -ACGGAAAAGCCTAGCCTATTCGTC -ACGGAAAAGCCTAGCCTATCTCTC -ACGGAAAAGCCTAGCCTATGGATC -ACGGAAAAGCCTAGCCTACACTTC -ACGGAAAAGCCTAGCCTAGTACTC -ACGGAAAAGCCTAGCCTAGATGTC -ACGGAAAAGCCTAGCCTAACAGTC -ACGGAAAAGCCTAGCCTATTGCTG -ACGGAAAAGCCTAGCCTATCCATG -ACGGAAAAGCCTAGCCTATGTGTG -ACGGAAAAGCCTAGCCTACTAGTG -ACGGAAAAGCCTAGCCTACATCTG -ACGGAAAAGCCTAGCCTAGAGTTG -ACGGAAAAGCCTAGCCTAAGACTG -ACGGAAAAGCCTAGCCTATCGGTA -ACGGAAAAGCCTAGCCTATGCCTA -ACGGAAAAGCCTAGCCTACCACTA -ACGGAAAAGCCTAGCCTAGGAGTA -ACGGAAAAGCCTAGCCTATCGTCT -ACGGAAAAGCCTAGCCTATGCACT -ACGGAAAAGCCTAGCCTACTGACT -ACGGAAAAGCCTAGCCTACAACCT -ACGGAAAAGCCTAGCCTAGCTACT -ACGGAAAAGCCTAGCCTAGGATCT -ACGGAAAAGCCTAGCCTAAAGGCT -ACGGAAAAGCCTAGCCTATCAACC -ACGGAAAAGCCTAGCCTATGTTCC -ACGGAAAAGCCTAGCCTAATTCCC -ACGGAAAAGCCTAGCCTATTCTCG -ACGGAAAAGCCTAGCCTATAGACG -ACGGAAAAGCCTAGCCTAGTAACG -ACGGAAAAGCCTAGCCTAACTTCG -ACGGAAAAGCCTAGCCTATACGCA -ACGGAAAAGCCTAGCCTACTTGCA -ACGGAAAAGCCTAGCCTACGAACA -ACGGAAAAGCCTAGCCTACAGTCA -ACGGAAAAGCCTAGCCTAGATCCA -ACGGAAAAGCCTAGCCTAACGACA -ACGGAAAAGCCTAGCCTAAGCTCA -ACGGAAAAGCCTAGCCTATCACGT -ACGGAAAAGCCTAGCCTACGTAGT -ACGGAAAAGCCTAGCCTAGTCAGT -ACGGAAAAGCCTAGCCTAGAAGGT -ACGGAAAAGCCTAGCCTAAACCGT -ACGGAAAAGCCTAGCCTATTGTGC -ACGGAAAAGCCTAGCCTACTAAGC -ACGGAAAAGCCTAGCCTAACTAGC -ACGGAAAAGCCTAGCCTAAGATGC -ACGGAAAAGCCTAGCCTATGAAGG -ACGGAAAAGCCTAGCCTACAATGG -ACGGAAAAGCCTAGCCTAATGAGG -ACGGAAAAGCCTAGCCTAAATGGG -ACGGAAAAGCCTAGCCTATCCTGA -ACGGAAAAGCCTAGCCTATAGCGA -ACGGAAAAGCCTAGCCTACACAGA -ACGGAAAAGCCTAGCCTAGCAAGA -ACGGAAAAGCCTAGCCTAGGTTGA -ACGGAAAAGCCTAGCCTATCCGAT -ACGGAAAAGCCTAGCCTATGGCAT -ACGGAAAAGCCTAGCCTACGAGAT -ACGGAAAAGCCTAGCCTATACCAC -ACGGAAAAGCCTAGCCTACAGAAC -ACGGAAAAGCCTAGCCTAGTCTAC -ACGGAAAAGCCTAGCCTAACGTAC -ACGGAAAAGCCTAGCCTAAGTGAC -ACGGAAAAGCCTAGCCTACTGTAG -ACGGAAAAGCCTAGCCTACCTAAG -ACGGAAAAGCCTAGCCTAGTTCAG -ACGGAAAAGCCTAGCCTAGCATAG -ACGGAAAAGCCTAGCCTAGACAAG -ACGGAAAAGCCTAGCCTAAAGCAG -ACGGAAAAGCCTAGCCTACGTCAA -ACGGAAAAGCCTAGCCTAGCTGAA -ACGGAAAAGCCTAGCCTAAGTACG -ACGGAAAAGCCTAGCCTAATCCGA -ACGGAAAAGCCTAGCCTAATGGGA -ACGGAAAAGCCTAGCCTAGTGCAA -ACGGAAAAGCCTAGCCTAGAGGAA -ACGGAAAAGCCTAGCCTACAGGTA -ACGGAAAAGCCTAGCCTAGACTCT -ACGGAAAAGCCTAGCCTAAGTCCT -ACGGAAAAGCCTAGCCTATAAGCC -ACGGAAAAGCCTAGCCTAATAGCC -ACGGAAAAGCCTAGCCTATAACCG -ACGGAAAAGCCTAGCCTAATGCCA -ACGGAAAAGCCTAGCACTGGAAAC -ACGGAAAAGCCTAGCACTAACACC -ACGGAAAAGCCTAGCACTATCGAG -ACGGAAAAGCCTAGCACTCTCCTT -ACGGAAAAGCCTAGCACTCCTGTT -ACGGAAAAGCCTAGCACTCGGTTT -ACGGAAAAGCCTAGCACTGTGGTT -ACGGAAAAGCCTAGCACTGCCTTT -ACGGAAAAGCCTAGCACTGGTCTT -ACGGAAAAGCCTAGCACTACGCTT -ACGGAAAAGCCTAGCACTAGCGTT -ACGGAAAAGCCTAGCACTTTCGTC -ACGGAAAAGCCTAGCACTTCTCTC -ACGGAAAAGCCTAGCACTTGGATC -ACGGAAAAGCCTAGCACTCACTTC -ACGGAAAAGCCTAGCACTGTACTC -ACGGAAAAGCCTAGCACTGATGTC -ACGGAAAAGCCTAGCACTACAGTC -ACGGAAAAGCCTAGCACTTTGCTG -ACGGAAAAGCCTAGCACTTCCATG -ACGGAAAAGCCTAGCACTTGTGTG -ACGGAAAAGCCTAGCACTCTAGTG -ACGGAAAAGCCTAGCACTCATCTG -ACGGAAAAGCCTAGCACTGAGTTG -ACGGAAAAGCCTAGCACTAGACTG -ACGGAAAAGCCTAGCACTTCGGTA -ACGGAAAAGCCTAGCACTTGCCTA -ACGGAAAAGCCTAGCACTCCACTA -ACGGAAAAGCCTAGCACTGGAGTA -ACGGAAAAGCCTAGCACTTCGTCT -ACGGAAAAGCCTAGCACTTGCACT -ACGGAAAAGCCTAGCACTCTGACT -ACGGAAAAGCCTAGCACTCAACCT -ACGGAAAAGCCTAGCACTGCTACT -ACGGAAAAGCCTAGCACTGGATCT -ACGGAAAAGCCTAGCACTAAGGCT -ACGGAAAAGCCTAGCACTTCAACC -ACGGAAAAGCCTAGCACTTGTTCC -ACGGAAAAGCCTAGCACTATTCCC -ACGGAAAAGCCTAGCACTTTCTCG -ACGGAAAAGCCTAGCACTTAGACG -ACGGAAAAGCCTAGCACTGTAACG -ACGGAAAAGCCTAGCACTACTTCG -ACGGAAAAGCCTAGCACTTACGCA -ACGGAAAAGCCTAGCACTCTTGCA -ACGGAAAAGCCTAGCACTCGAACA -ACGGAAAAGCCTAGCACTCAGTCA -ACGGAAAAGCCTAGCACTGATCCA -ACGGAAAAGCCTAGCACTACGACA -ACGGAAAAGCCTAGCACTAGCTCA -ACGGAAAAGCCTAGCACTTCACGT -ACGGAAAAGCCTAGCACTCGTAGT -ACGGAAAAGCCTAGCACTGTCAGT -ACGGAAAAGCCTAGCACTGAAGGT -ACGGAAAAGCCTAGCACTAACCGT -ACGGAAAAGCCTAGCACTTTGTGC -ACGGAAAAGCCTAGCACTCTAAGC -ACGGAAAAGCCTAGCACTACTAGC -ACGGAAAAGCCTAGCACTAGATGC -ACGGAAAAGCCTAGCACTTGAAGG -ACGGAAAAGCCTAGCACTCAATGG -ACGGAAAAGCCTAGCACTATGAGG -ACGGAAAAGCCTAGCACTAATGGG -ACGGAAAAGCCTAGCACTTCCTGA -ACGGAAAAGCCTAGCACTTAGCGA -ACGGAAAAGCCTAGCACTCACAGA -ACGGAAAAGCCTAGCACTGCAAGA -ACGGAAAAGCCTAGCACTGGTTGA -ACGGAAAAGCCTAGCACTTCCGAT -ACGGAAAAGCCTAGCACTTGGCAT -ACGGAAAAGCCTAGCACTCGAGAT -ACGGAAAAGCCTAGCACTTACCAC -ACGGAAAAGCCTAGCACTCAGAAC -ACGGAAAAGCCTAGCACTGTCTAC -ACGGAAAAGCCTAGCACTACGTAC -ACGGAAAAGCCTAGCACTAGTGAC -ACGGAAAAGCCTAGCACTCTGTAG -ACGGAAAAGCCTAGCACTCCTAAG -ACGGAAAAGCCTAGCACTGTTCAG -ACGGAAAAGCCTAGCACTGCATAG -ACGGAAAAGCCTAGCACTGACAAG -ACGGAAAAGCCTAGCACTAAGCAG -ACGGAAAAGCCTAGCACTCGTCAA -ACGGAAAAGCCTAGCACTGCTGAA -ACGGAAAAGCCTAGCACTAGTACG -ACGGAAAAGCCTAGCACTATCCGA -ACGGAAAAGCCTAGCACTATGGGA -ACGGAAAAGCCTAGCACTGTGCAA -ACGGAAAAGCCTAGCACTGAGGAA -ACGGAAAAGCCTAGCACTCAGGTA -ACGGAAAAGCCTAGCACTGACTCT -ACGGAAAAGCCTAGCACTAGTCCT -ACGGAAAAGCCTAGCACTTAAGCC -ACGGAAAAGCCTAGCACTATAGCC -ACGGAAAAGCCTAGCACTTAACCG -ACGGAAAAGCCTAGCACTATGCCA -ACGGAAAAGCCTTGCAGAGGAAAC -ACGGAAAAGCCTTGCAGAAACACC -ACGGAAAAGCCTTGCAGAATCGAG -ACGGAAAAGCCTTGCAGACTCCTT -ACGGAAAAGCCTTGCAGACCTGTT -ACGGAAAAGCCTTGCAGACGGTTT -ACGGAAAAGCCTTGCAGAGTGGTT -ACGGAAAAGCCTTGCAGAGCCTTT -ACGGAAAAGCCTTGCAGAGGTCTT -ACGGAAAAGCCTTGCAGAACGCTT -ACGGAAAAGCCTTGCAGAAGCGTT -ACGGAAAAGCCTTGCAGATTCGTC -ACGGAAAAGCCTTGCAGATCTCTC -ACGGAAAAGCCTTGCAGATGGATC -ACGGAAAAGCCTTGCAGACACTTC -ACGGAAAAGCCTTGCAGAGTACTC -ACGGAAAAGCCTTGCAGAGATGTC -ACGGAAAAGCCTTGCAGAACAGTC -ACGGAAAAGCCTTGCAGATTGCTG -ACGGAAAAGCCTTGCAGATCCATG -ACGGAAAAGCCTTGCAGATGTGTG -ACGGAAAAGCCTTGCAGACTAGTG -ACGGAAAAGCCTTGCAGACATCTG -ACGGAAAAGCCTTGCAGAGAGTTG -ACGGAAAAGCCTTGCAGAAGACTG -ACGGAAAAGCCTTGCAGATCGGTA -ACGGAAAAGCCTTGCAGATGCCTA -ACGGAAAAGCCTTGCAGACCACTA -ACGGAAAAGCCTTGCAGAGGAGTA -ACGGAAAAGCCTTGCAGATCGTCT -ACGGAAAAGCCTTGCAGATGCACT -ACGGAAAAGCCTTGCAGACTGACT -ACGGAAAAGCCTTGCAGACAACCT -ACGGAAAAGCCTTGCAGAGCTACT -ACGGAAAAGCCTTGCAGAGGATCT -ACGGAAAAGCCTTGCAGAAAGGCT -ACGGAAAAGCCTTGCAGATCAACC -ACGGAAAAGCCTTGCAGATGTTCC -ACGGAAAAGCCTTGCAGAATTCCC -ACGGAAAAGCCTTGCAGATTCTCG -ACGGAAAAGCCTTGCAGATAGACG -ACGGAAAAGCCTTGCAGAGTAACG -ACGGAAAAGCCTTGCAGAACTTCG -ACGGAAAAGCCTTGCAGATACGCA -ACGGAAAAGCCTTGCAGACTTGCA -ACGGAAAAGCCTTGCAGACGAACA -ACGGAAAAGCCTTGCAGACAGTCA -ACGGAAAAGCCTTGCAGAGATCCA -ACGGAAAAGCCTTGCAGAACGACA -ACGGAAAAGCCTTGCAGAAGCTCA -ACGGAAAAGCCTTGCAGATCACGT -ACGGAAAAGCCTTGCAGACGTAGT -ACGGAAAAGCCTTGCAGAGTCAGT -ACGGAAAAGCCTTGCAGAGAAGGT -ACGGAAAAGCCTTGCAGAAACCGT -ACGGAAAAGCCTTGCAGATTGTGC -ACGGAAAAGCCTTGCAGACTAAGC -ACGGAAAAGCCTTGCAGAACTAGC -ACGGAAAAGCCTTGCAGAAGATGC -ACGGAAAAGCCTTGCAGATGAAGG -ACGGAAAAGCCTTGCAGACAATGG -ACGGAAAAGCCTTGCAGAATGAGG -ACGGAAAAGCCTTGCAGAAATGGG -ACGGAAAAGCCTTGCAGATCCTGA -ACGGAAAAGCCTTGCAGATAGCGA -ACGGAAAAGCCTTGCAGACACAGA -ACGGAAAAGCCTTGCAGAGCAAGA -ACGGAAAAGCCTTGCAGAGGTTGA -ACGGAAAAGCCTTGCAGATCCGAT -ACGGAAAAGCCTTGCAGATGGCAT -ACGGAAAAGCCTTGCAGACGAGAT -ACGGAAAAGCCTTGCAGATACCAC -ACGGAAAAGCCTTGCAGACAGAAC -ACGGAAAAGCCTTGCAGAGTCTAC -ACGGAAAAGCCTTGCAGAACGTAC -ACGGAAAAGCCTTGCAGAAGTGAC -ACGGAAAAGCCTTGCAGACTGTAG -ACGGAAAAGCCTTGCAGACCTAAG -ACGGAAAAGCCTTGCAGAGTTCAG -ACGGAAAAGCCTTGCAGAGCATAG -ACGGAAAAGCCTTGCAGAGACAAG -ACGGAAAAGCCTTGCAGAAAGCAG -ACGGAAAAGCCTTGCAGACGTCAA -ACGGAAAAGCCTTGCAGAGCTGAA -ACGGAAAAGCCTTGCAGAAGTACG -ACGGAAAAGCCTTGCAGAATCCGA -ACGGAAAAGCCTTGCAGAATGGGA -ACGGAAAAGCCTTGCAGAGTGCAA -ACGGAAAAGCCTTGCAGAGAGGAA -ACGGAAAAGCCTTGCAGACAGGTA -ACGGAAAAGCCTTGCAGAGACTCT -ACGGAAAAGCCTTGCAGAAGTCCT -ACGGAAAAGCCTTGCAGATAAGCC -ACGGAAAAGCCTTGCAGAATAGCC -ACGGAAAAGCCTTGCAGATAACCG -ACGGAAAAGCCTTGCAGAATGCCA -ACGGAAAAGCCTAGGTGAGGAAAC -ACGGAAAAGCCTAGGTGAAACACC -ACGGAAAAGCCTAGGTGAATCGAG -ACGGAAAAGCCTAGGTGACTCCTT -ACGGAAAAGCCTAGGTGACCTGTT -ACGGAAAAGCCTAGGTGACGGTTT -ACGGAAAAGCCTAGGTGAGTGGTT -ACGGAAAAGCCTAGGTGAGCCTTT -ACGGAAAAGCCTAGGTGAGGTCTT -ACGGAAAAGCCTAGGTGAACGCTT -ACGGAAAAGCCTAGGTGAAGCGTT -ACGGAAAAGCCTAGGTGATTCGTC -ACGGAAAAGCCTAGGTGATCTCTC -ACGGAAAAGCCTAGGTGATGGATC -ACGGAAAAGCCTAGGTGACACTTC -ACGGAAAAGCCTAGGTGAGTACTC -ACGGAAAAGCCTAGGTGAGATGTC -ACGGAAAAGCCTAGGTGAACAGTC -ACGGAAAAGCCTAGGTGATTGCTG -ACGGAAAAGCCTAGGTGATCCATG -ACGGAAAAGCCTAGGTGATGTGTG -ACGGAAAAGCCTAGGTGACTAGTG -ACGGAAAAGCCTAGGTGACATCTG -ACGGAAAAGCCTAGGTGAGAGTTG -ACGGAAAAGCCTAGGTGAAGACTG -ACGGAAAAGCCTAGGTGATCGGTA -ACGGAAAAGCCTAGGTGATGCCTA -ACGGAAAAGCCTAGGTGACCACTA -ACGGAAAAGCCTAGGTGAGGAGTA -ACGGAAAAGCCTAGGTGATCGTCT -ACGGAAAAGCCTAGGTGATGCACT -ACGGAAAAGCCTAGGTGACTGACT -ACGGAAAAGCCTAGGTGACAACCT -ACGGAAAAGCCTAGGTGAGCTACT -ACGGAAAAGCCTAGGTGAGGATCT -ACGGAAAAGCCTAGGTGAAAGGCT -ACGGAAAAGCCTAGGTGATCAACC -ACGGAAAAGCCTAGGTGATGTTCC -ACGGAAAAGCCTAGGTGAATTCCC -ACGGAAAAGCCTAGGTGATTCTCG -ACGGAAAAGCCTAGGTGATAGACG -ACGGAAAAGCCTAGGTGAGTAACG -ACGGAAAAGCCTAGGTGAACTTCG -ACGGAAAAGCCTAGGTGATACGCA -ACGGAAAAGCCTAGGTGACTTGCA -ACGGAAAAGCCTAGGTGACGAACA -ACGGAAAAGCCTAGGTGACAGTCA -ACGGAAAAGCCTAGGTGAGATCCA -ACGGAAAAGCCTAGGTGAACGACA -ACGGAAAAGCCTAGGTGAAGCTCA -ACGGAAAAGCCTAGGTGATCACGT -ACGGAAAAGCCTAGGTGACGTAGT -ACGGAAAAGCCTAGGTGAGTCAGT -ACGGAAAAGCCTAGGTGAGAAGGT -ACGGAAAAGCCTAGGTGAAACCGT -ACGGAAAAGCCTAGGTGATTGTGC -ACGGAAAAGCCTAGGTGACTAAGC -ACGGAAAAGCCTAGGTGAACTAGC -ACGGAAAAGCCTAGGTGAAGATGC -ACGGAAAAGCCTAGGTGATGAAGG -ACGGAAAAGCCTAGGTGACAATGG -ACGGAAAAGCCTAGGTGAATGAGG -ACGGAAAAGCCTAGGTGAAATGGG -ACGGAAAAGCCTAGGTGATCCTGA -ACGGAAAAGCCTAGGTGATAGCGA -ACGGAAAAGCCTAGGTGACACAGA -ACGGAAAAGCCTAGGTGAGCAAGA -ACGGAAAAGCCTAGGTGAGGTTGA -ACGGAAAAGCCTAGGTGATCCGAT -ACGGAAAAGCCTAGGTGATGGCAT -ACGGAAAAGCCTAGGTGACGAGAT -ACGGAAAAGCCTAGGTGATACCAC -ACGGAAAAGCCTAGGTGACAGAAC -ACGGAAAAGCCTAGGTGAGTCTAC -ACGGAAAAGCCTAGGTGAACGTAC -ACGGAAAAGCCTAGGTGAAGTGAC -ACGGAAAAGCCTAGGTGACTGTAG -ACGGAAAAGCCTAGGTGACCTAAG -ACGGAAAAGCCTAGGTGAGTTCAG -ACGGAAAAGCCTAGGTGAGCATAG -ACGGAAAAGCCTAGGTGAGACAAG -ACGGAAAAGCCTAGGTGAAAGCAG -ACGGAAAAGCCTAGGTGACGTCAA -ACGGAAAAGCCTAGGTGAGCTGAA -ACGGAAAAGCCTAGGTGAAGTACG -ACGGAAAAGCCTAGGTGAATCCGA -ACGGAAAAGCCTAGGTGAATGGGA -ACGGAAAAGCCTAGGTGAGTGCAA -ACGGAAAAGCCTAGGTGAGAGGAA -ACGGAAAAGCCTAGGTGACAGGTA -ACGGAAAAGCCTAGGTGAGACTCT -ACGGAAAAGCCTAGGTGAAGTCCT -ACGGAAAAGCCTAGGTGATAAGCC -ACGGAAAAGCCTAGGTGAATAGCC -ACGGAAAAGCCTAGGTGATAACCG -ACGGAAAAGCCTAGGTGAATGCCA -ACGGAAAAGCCTTGGCAAGGAAAC -ACGGAAAAGCCTTGGCAAAACACC -ACGGAAAAGCCTTGGCAAATCGAG -ACGGAAAAGCCTTGGCAACTCCTT -ACGGAAAAGCCTTGGCAACCTGTT -ACGGAAAAGCCTTGGCAACGGTTT -ACGGAAAAGCCTTGGCAAGTGGTT -ACGGAAAAGCCTTGGCAAGCCTTT -ACGGAAAAGCCTTGGCAAGGTCTT -ACGGAAAAGCCTTGGCAAACGCTT -ACGGAAAAGCCTTGGCAAAGCGTT -ACGGAAAAGCCTTGGCAATTCGTC -ACGGAAAAGCCTTGGCAATCTCTC -ACGGAAAAGCCTTGGCAATGGATC -ACGGAAAAGCCTTGGCAACACTTC -ACGGAAAAGCCTTGGCAAGTACTC -ACGGAAAAGCCTTGGCAAGATGTC -ACGGAAAAGCCTTGGCAAACAGTC -ACGGAAAAGCCTTGGCAATTGCTG -ACGGAAAAGCCTTGGCAATCCATG -ACGGAAAAGCCTTGGCAATGTGTG -ACGGAAAAGCCTTGGCAACTAGTG -ACGGAAAAGCCTTGGCAACATCTG -ACGGAAAAGCCTTGGCAAGAGTTG -ACGGAAAAGCCTTGGCAAAGACTG -ACGGAAAAGCCTTGGCAATCGGTA -ACGGAAAAGCCTTGGCAATGCCTA -ACGGAAAAGCCTTGGCAACCACTA -ACGGAAAAGCCTTGGCAAGGAGTA -ACGGAAAAGCCTTGGCAATCGTCT -ACGGAAAAGCCTTGGCAATGCACT -ACGGAAAAGCCTTGGCAACTGACT -ACGGAAAAGCCTTGGCAACAACCT -ACGGAAAAGCCTTGGCAAGCTACT -ACGGAAAAGCCTTGGCAAGGATCT -ACGGAAAAGCCTTGGCAAAAGGCT -ACGGAAAAGCCTTGGCAATCAACC -ACGGAAAAGCCTTGGCAATGTTCC -ACGGAAAAGCCTTGGCAAATTCCC -ACGGAAAAGCCTTGGCAATTCTCG -ACGGAAAAGCCTTGGCAATAGACG -ACGGAAAAGCCTTGGCAAGTAACG -ACGGAAAAGCCTTGGCAAACTTCG -ACGGAAAAGCCTTGGCAATACGCA -ACGGAAAAGCCTTGGCAACTTGCA -ACGGAAAAGCCTTGGCAACGAACA -ACGGAAAAGCCTTGGCAACAGTCA -ACGGAAAAGCCTTGGCAAGATCCA -ACGGAAAAGCCTTGGCAAACGACA -ACGGAAAAGCCTTGGCAAAGCTCA -ACGGAAAAGCCTTGGCAATCACGT -ACGGAAAAGCCTTGGCAACGTAGT -ACGGAAAAGCCTTGGCAAGTCAGT -ACGGAAAAGCCTTGGCAAGAAGGT -ACGGAAAAGCCTTGGCAAAACCGT -ACGGAAAAGCCTTGGCAATTGTGC -ACGGAAAAGCCTTGGCAACTAAGC -ACGGAAAAGCCTTGGCAAACTAGC -ACGGAAAAGCCTTGGCAAAGATGC -ACGGAAAAGCCTTGGCAATGAAGG -ACGGAAAAGCCTTGGCAACAATGG -ACGGAAAAGCCTTGGCAAATGAGG -ACGGAAAAGCCTTGGCAAAATGGG -ACGGAAAAGCCTTGGCAATCCTGA -ACGGAAAAGCCTTGGCAATAGCGA -ACGGAAAAGCCTTGGCAACACAGA -ACGGAAAAGCCTTGGCAAGCAAGA -ACGGAAAAGCCTTGGCAAGGTTGA -ACGGAAAAGCCTTGGCAATCCGAT -ACGGAAAAGCCTTGGCAATGGCAT -ACGGAAAAGCCTTGGCAACGAGAT -ACGGAAAAGCCTTGGCAATACCAC -ACGGAAAAGCCTTGGCAACAGAAC -ACGGAAAAGCCTTGGCAAGTCTAC -ACGGAAAAGCCTTGGCAAACGTAC -ACGGAAAAGCCTTGGCAAAGTGAC -ACGGAAAAGCCTTGGCAACTGTAG -ACGGAAAAGCCTTGGCAACCTAAG -ACGGAAAAGCCTTGGCAAGTTCAG -ACGGAAAAGCCTTGGCAAGCATAG -ACGGAAAAGCCTTGGCAAGACAAG -ACGGAAAAGCCTTGGCAAAAGCAG -ACGGAAAAGCCTTGGCAACGTCAA -ACGGAAAAGCCTTGGCAAGCTGAA -ACGGAAAAGCCTTGGCAAAGTACG -ACGGAAAAGCCTTGGCAAATCCGA -ACGGAAAAGCCTTGGCAAATGGGA -ACGGAAAAGCCTTGGCAAGTGCAA -ACGGAAAAGCCTTGGCAAGAGGAA -ACGGAAAAGCCTTGGCAACAGGTA -ACGGAAAAGCCTTGGCAAGACTCT -ACGGAAAAGCCTTGGCAAAGTCCT -ACGGAAAAGCCTTGGCAATAAGCC -ACGGAAAAGCCTTGGCAAATAGCC -ACGGAAAAGCCTTGGCAATAACCG -ACGGAAAAGCCTTGGCAAATGCCA -ACGGAAAAGCCTAGGATGGGAAAC -ACGGAAAAGCCTAGGATGAACACC -ACGGAAAAGCCTAGGATGATCGAG -ACGGAAAAGCCTAGGATGCTCCTT -ACGGAAAAGCCTAGGATGCCTGTT -ACGGAAAAGCCTAGGATGCGGTTT -ACGGAAAAGCCTAGGATGGTGGTT -ACGGAAAAGCCTAGGATGGCCTTT -ACGGAAAAGCCTAGGATGGGTCTT -ACGGAAAAGCCTAGGATGACGCTT -ACGGAAAAGCCTAGGATGAGCGTT -ACGGAAAAGCCTAGGATGTTCGTC -ACGGAAAAGCCTAGGATGTCTCTC -ACGGAAAAGCCTAGGATGTGGATC -ACGGAAAAGCCTAGGATGCACTTC -ACGGAAAAGCCTAGGATGGTACTC -ACGGAAAAGCCTAGGATGGATGTC -ACGGAAAAGCCTAGGATGACAGTC -ACGGAAAAGCCTAGGATGTTGCTG -ACGGAAAAGCCTAGGATGTCCATG -ACGGAAAAGCCTAGGATGTGTGTG -ACGGAAAAGCCTAGGATGCTAGTG -ACGGAAAAGCCTAGGATGCATCTG -ACGGAAAAGCCTAGGATGGAGTTG -ACGGAAAAGCCTAGGATGAGACTG -ACGGAAAAGCCTAGGATGTCGGTA -ACGGAAAAGCCTAGGATGTGCCTA -ACGGAAAAGCCTAGGATGCCACTA -ACGGAAAAGCCTAGGATGGGAGTA -ACGGAAAAGCCTAGGATGTCGTCT -ACGGAAAAGCCTAGGATGTGCACT -ACGGAAAAGCCTAGGATGCTGACT -ACGGAAAAGCCTAGGATGCAACCT -ACGGAAAAGCCTAGGATGGCTACT -ACGGAAAAGCCTAGGATGGGATCT -ACGGAAAAGCCTAGGATGAAGGCT -ACGGAAAAGCCTAGGATGTCAACC -ACGGAAAAGCCTAGGATGTGTTCC -ACGGAAAAGCCTAGGATGATTCCC -ACGGAAAAGCCTAGGATGTTCTCG -ACGGAAAAGCCTAGGATGTAGACG -ACGGAAAAGCCTAGGATGGTAACG -ACGGAAAAGCCTAGGATGACTTCG -ACGGAAAAGCCTAGGATGTACGCA -ACGGAAAAGCCTAGGATGCTTGCA -ACGGAAAAGCCTAGGATGCGAACA -ACGGAAAAGCCTAGGATGCAGTCA -ACGGAAAAGCCTAGGATGGATCCA -ACGGAAAAGCCTAGGATGACGACA -ACGGAAAAGCCTAGGATGAGCTCA -ACGGAAAAGCCTAGGATGTCACGT -ACGGAAAAGCCTAGGATGCGTAGT -ACGGAAAAGCCTAGGATGGTCAGT -ACGGAAAAGCCTAGGATGGAAGGT -ACGGAAAAGCCTAGGATGAACCGT -ACGGAAAAGCCTAGGATGTTGTGC -ACGGAAAAGCCTAGGATGCTAAGC -ACGGAAAAGCCTAGGATGACTAGC -ACGGAAAAGCCTAGGATGAGATGC -ACGGAAAAGCCTAGGATGTGAAGG -ACGGAAAAGCCTAGGATGCAATGG -ACGGAAAAGCCTAGGATGATGAGG -ACGGAAAAGCCTAGGATGAATGGG -ACGGAAAAGCCTAGGATGTCCTGA -ACGGAAAAGCCTAGGATGTAGCGA -ACGGAAAAGCCTAGGATGCACAGA -ACGGAAAAGCCTAGGATGGCAAGA -ACGGAAAAGCCTAGGATGGGTTGA -ACGGAAAAGCCTAGGATGTCCGAT -ACGGAAAAGCCTAGGATGTGGCAT -ACGGAAAAGCCTAGGATGCGAGAT -ACGGAAAAGCCTAGGATGTACCAC -ACGGAAAAGCCTAGGATGCAGAAC -ACGGAAAAGCCTAGGATGGTCTAC -ACGGAAAAGCCTAGGATGACGTAC -ACGGAAAAGCCTAGGATGAGTGAC -ACGGAAAAGCCTAGGATGCTGTAG -ACGGAAAAGCCTAGGATGCCTAAG -ACGGAAAAGCCTAGGATGGTTCAG -ACGGAAAAGCCTAGGATGGCATAG -ACGGAAAAGCCTAGGATGGACAAG -ACGGAAAAGCCTAGGATGAAGCAG -ACGGAAAAGCCTAGGATGCGTCAA -ACGGAAAAGCCTAGGATGGCTGAA -ACGGAAAAGCCTAGGATGAGTACG -ACGGAAAAGCCTAGGATGATCCGA -ACGGAAAAGCCTAGGATGATGGGA -ACGGAAAAGCCTAGGATGGTGCAA -ACGGAAAAGCCTAGGATGGAGGAA -ACGGAAAAGCCTAGGATGCAGGTA -ACGGAAAAGCCTAGGATGGACTCT -ACGGAAAAGCCTAGGATGAGTCCT -ACGGAAAAGCCTAGGATGTAAGCC -ACGGAAAAGCCTAGGATGATAGCC -ACGGAAAAGCCTAGGATGTAACCG -ACGGAAAAGCCTAGGATGATGCCA -ACGGAAAAGCCTGGGAATGGAAAC -ACGGAAAAGCCTGGGAATAACACC -ACGGAAAAGCCTGGGAATATCGAG -ACGGAAAAGCCTGGGAATCTCCTT -ACGGAAAAGCCTGGGAATCCTGTT -ACGGAAAAGCCTGGGAATCGGTTT -ACGGAAAAGCCTGGGAATGTGGTT -ACGGAAAAGCCTGGGAATGCCTTT -ACGGAAAAGCCTGGGAATGGTCTT -ACGGAAAAGCCTGGGAATACGCTT -ACGGAAAAGCCTGGGAATAGCGTT -ACGGAAAAGCCTGGGAATTTCGTC -ACGGAAAAGCCTGGGAATTCTCTC -ACGGAAAAGCCTGGGAATTGGATC -ACGGAAAAGCCTGGGAATCACTTC -ACGGAAAAGCCTGGGAATGTACTC -ACGGAAAAGCCTGGGAATGATGTC -ACGGAAAAGCCTGGGAATACAGTC -ACGGAAAAGCCTGGGAATTTGCTG -ACGGAAAAGCCTGGGAATTCCATG -ACGGAAAAGCCTGGGAATTGTGTG -ACGGAAAAGCCTGGGAATCTAGTG -ACGGAAAAGCCTGGGAATCATCTG -ACGGAAAAGCCTGGGAATGAGTTG -ACGGAAAAGCCTGGGAATAGACTG -ACGGAAAAGCCTGGGAATTCGGTA -ACGGAAAAGCCTGGGAATTGCCTA -ACGGAAAAGCCTGGGAATCCACTA -ACGGAAAAGCCTGGGAATGGAGTA -ACGGAAAAGCCTGGGAATTCGTCT -ACGGAAAAGCCTGGGAATTGCACT -ACGGAAAAGCCTGGGAATCTGACT -ACGGAAAAGCCTGGGAATCAACCT -ACGGAAAAGCCTGGGAATGCTACT -ACGGAAAAGCCTGGGAATGGATCT -ACGGAAAAGCCTGGGAATAAGGCT -ACGGAAAAGCCTGGGAATTCAACC -ACGGAAAAGCCTGGGAATTGTTCC -ACGGAAAAGCCTGGGAATATTCCC -ACGGAAAAGCCTGGGAATTTCTCG -ACGGAAAAGCCTGGGAATTAGACG -ACGGAAAAGCCTGGGAATGTAACG -ACGGAAAAGCCTGGGAATACTTCG -ACGGAAAAGCCTGGGAATTACGCA -ACGGAAAAGCCTGGGAATCTTGCA -ACGGAAAAGCCTGGGAATCGAACA -ACGGAAAAGCCTGGGAATCAGTCA -ACGGAAAAGCCTGGGAATGATCCA -ACGGAAAAGCCTGGGAATACGACA -ACGGAAAAGCCTGGGAATAGCTCA -ACGGAAAAGCCTGGGAATTCACGT -ACGGAAAAGCCTGGGAATCGTAGT -ACGGAAAAGCCTGGGAATGTCAGT -ACGGAAAAGCCTGGGAATGAAGGT -ACGGAAAAGCCTGGGAATAACCGT -ACGGAAAAGCCTGGGAATTTGTGC -ACGGAAAAGCCTGGGAATCTAAGC -ACGGAAAAGCCTGGGAATACTAGC -ACGGAAAAGCCTGGGAATAGATGC -ACGGAAAAGCCTGGGAATTGAAGG -ACGGAAAAGCCTGGGAATCAATGG -ACGGAAAAGCCTGGGAATATGAGG -ACGGAAAAGCCTGGGAATAATGGG -ACGGAAAAGCCTGGGAATTCCTGA -ACGGAAAAGCCTGGGAATTAGCGA -ACGGAAAAGCCTGGGAATCACAGA -ACGGAAAAGCCTGGGAATGCAAGA -ACGGAAAAGCCTGGGAATGGTTGA -ACGGAAAAGCCTGGGAATTCCGAT -ACGGAAAAGCCTGGGAATTGGCAT -ACGGAAAAGCCTGGGAATCGAGAT -ACGGAAAAGCCTGGGAATTACCAC -ACGGAAAAGCCTGGGAATCAGAAC -ACGGAAAAGCCTGGGAATGTCTAC -ACGGAAAAGCCTGGGAATACGTAC -ACGGAAAAGCCTGGGAATAGTGAC -ACGGAAAAGCCTGGGAATCTGTAG -ACGGAAAAGCCTGGGAATCCTAAG -ACGGAAAAGCCTGGGAATGTTCAG -ACGGAAAAGCCTGGGAATGCATAG -ACGGAAAAGCCTGGGAATGACAAG -ACGGAAAAGCCTGGGAATAAGCAG -ACGGAAAAGCCTGGGAATCGTCAA -ACGGAAAAGCCTGGGAATGCTGAA -ACGGAAAAGCCTGGGAATAGTACG -ACGGAAAAGCCTGGGAATATCCGA -ACGGAAAAGCCTGGGAATATGGGA -ACGGAAAAGCCTGGGAATGTGCAA -ACGGAAAAGCCTGGGAATGAGGAA -ACGGAAAAGCCTGGGAATCAGGTA -ACGGAAAAGCCTGGGAATGACTCT -ACGGAAAAGCCTGGGAATAGTCCT -ACGGAAAAGCCTGGGAATTAAGCC -ACGGAAAAGCCTGGGAATATAGCC -ACGGAAAAGCCTGGGAATTAACCG -ACGGAAAAGCCTGGGAATATGCCA -ACGGAAAAGCCTTGATCCGGAAAC -ACGGAAAAGCCTTGATCCAACACC -ACGGAAAAGCCTTGATCCATCGAG -ACGGAAAAGCCTTGATCCCTCCTT -ACGGAAAAGCCTTGATCCCCTGTT -ACGGAAAAGCCTTGATCCCGGTTT -ACGGAAAAGCCTTGATCCGTGGTT -ACGGAAAAGCCTTGATCCGCCTTT -ACGGAAAAGCCTTGATCCGGTCTT -ACGGAAAAGCCTTGATCCACGCTT -ACGGAAAAGCCTTGATCCAGCGTT -ACGGAAAAGCCTTGATCCTTCGTC -ACGGAAAAGCCTTGATCCTCTCTC -ACGGAAAAGCCTTGATCCTGGATC -ACGGAAAAGCCTTGATCCCACTTC -ACGGAAAAGCCTTGATCCGTACTC -ACGGAAAAGCCTTGATCCGATGTC -ACGGAAAAGCCTTGATCCACAGTC -ACGGAAAAGCCTTGATCCTTGCTG -ACGGAAAAGCCTTGATCCTCCATG -ACGGAAAAGCCTTGATCCTGTGTG -ACGGAAAAGCCTTGATCCCTAGTG -ACGGAAAAGCCTTGATCCCATCTG -ACGGAAAAGCCTTGATCCGAGTTG -ACGGAAAAGCCTTGATCCAGACTG -ACGGAAAAGCCTTGATCCTCGGTA -ACGGAAAAGCCTTGATCCTGCCTA -ACGGAAAAGCCTTGATCCCCACTA -ACGGAAAAGCCTTGATCCGGAGTA -ACGGAAAAGCCTTGATCCTCGTCT -ACGGAAAAGCCTTGATCCTGCACT -ACGGAAAAGCCTTGATCCCTGACT -ACGGAAAAGCCTTGATCCCAACCT -ACGGAAAAGCCTTGATCCGCTACT -ACGGAAAAGCCTTGATCCGGATCT -ACGGAAAAGCCTTGATCCAAGGCT -ACGGAAAAGCCTTGATCCTCAACC -ACGGAAAAGCCTTGATCCTGTTCC -ACGGAAAAGCCTTGATCCATTCCC -ACGGAAAAGCCTTGATCCTTCTCG -ACGGAAAAGCCTTGATCCTAGACG -ACGGAAAAGCCTTGATCCGTAACG -ACGGAAAAGCCTTGATCCACTTCG -ACGGAAAAGCCTTGATCCTACGCA -ACGGAAAAGCCTTGATCCCTTGCA -ACGGAAAAGCCTTGATCCCGAACA -ACGGAAAAGCCTTGATCCCAGTCA -ACGGAAAAGCCTTGATCCGATCCA -ACGGAAAAGCCTTGATCCACGACA -ACGGAAAAGCCTTGATCCAGCTCA -ACGGAAAAGCCTTGATCCTCACGT -ACGGAAAAGCCTTGATCCCGTAGT -ACGGAAAAGCCTTGATCCGTCAGT -ACGGAAAAGCCTTGATCCGAAGGT -ACGGAAAAGCCTTGATCCAACCGT -ACGGAAAAGCCTTGATCCTTGTGC -ACGGAAAAGCCTTGATCCCTAAGC -ACGGAAAAGCCTTGATCCACTAGC -ACGGAAAAGCCTTGATCCAGATGC -ACGGAAAAGCCTTGATCCTGAAGG -ACGGAAAAGCCTTGATCCCAATGG -ACGGAAAAGCCTTGATCCATGAGG -ACGGAAAAGCCTTGATCCAATGGG -ACGGAAAAGCCTTGATCCTCCTGA -ACGGAAAAGCCTTGATCCTAGCGA -ACGGAAAAGCCTTGATCCCACAGA -ACGGAAAAGCCTTGATCCGCAAGA -ACGGAAAAGCCTTGATCCGGTTGA -ACGGAAAAGCCTTGATCCTCCGAT -ACGGAAAAGCCTTGATCCTGGCAT -ACGGAAAAGCCTTGATCCCGAGAT -ACGGAAAAGCCTTGATCCTACCAC -ACGGAAAAGCCTTGATCCCAGAAC -ACGGAAAAGCCTTGATCCGTCTAC -ACGGAAAAGCCTTGATCCACGTAC -ACGGAAAAGCCTTGATCCAGTGAC -ACGGAAAAGCCTTGATCCCTGTAG -ACGGAAAAGCCTTGATCCCCTAAG -ACGGAAAAGCCTTGATCCGTTCAG -ACGGAAAAGCCTTGATCCGCATAG -ACGGAAAAGCCTTGATCCGACAAG -ACGGAAAAGCCTTGATCCAAGCAG -ACGGAAAAGCCTTGATCCCGTCAA -ACGGAAAAGCCTTGATCCGCTGAA -ACGGAAAAGCCTTGATCCAGTACG -ACGGAAAAGCCTTGATCCATCCGA -ACGGAAAAGCCTTGATCCATGGGA -ACGGAAAAGCCTTGATCCGTGCAA -ACGGAAAAGCCTTGATCCGAGGAA -ACGGAAAAGCCTTGATCCCAGGTA -ACGGAAAAGCCTTGATCCGACTCT -ACGGAAAAGCCTTGATCCAGTCCT -ACGGAAAAGCCTTGATCCTAAGCC -ACGGAAAAGCCTTGATCCATAGCC -ACGGAAAAGCCTTGATCCTAACCG -ACGGAAAAGCCTTGATCCATGCCA -ACGGAAAAGCCTCGATAGGGAAAC -ACGGAAAAGCCTCGATAGAACACC -ACGGAAAAGCCTCGATAGATCGAG -ACGGAAAAGCCTCGATAGCTCCTT -ACGGAAAAGCCTCGATAGCCTGTT -ACGGAAAAGCCTCGATAGCGGTTT -ACGGAAAAGCCTCGATAGGTGGTT -ACGGAAAAGCCTCGATAGGCCTTT -ACGGAAAAGCCTCGATAGGGTCTT -ACGGAAAAGCCTCGATAGACGCTT -ACGGAAAAGCCTCGATAGAGCGTT -ACGGAAAAGCCTCGATAGTTCGTC -ACGGAAAAGCCTCGATAGTCTCTC -ACGGAAAAGCCTCGATAGTGGATC -ACGGAAAAGCCTCGATAGCACTTC -ACGGAAAAGCCTCGATAGGTACTC -ACGGAAAAGCCTCGATAGGATGTC -ACGGAAAAGCCTCGATAGACAGTC -ACGGAAAAGCCTCGATAGTTGCTG -ACGGAAAAGCCTCGATAGTCCATG -ACGGAAAAGCCTCGATAGTGTGTG -ACGGAAAAGCCTCGATAGCTAGTG -ACGGAAAAGCCTCGATAGCATCTG -ACGGAAAAGCCTCGATAGGAGTTG -ACGGAAAAGCCTCGATAGAGACTG -ACGGAAAAGCCTCGATAGTCGGTA -ACGGAAAAGCCTCGATAGTGCCTA -ACGGAAAAGCCTCGATAGCCACTA -ACGGAAAAGCCTCGATAGGGAGTA -ACGGAAAAGCCTCGATAGTCGTCT -ACGGAAAAGCCTCGATAGTGCACT -ACGGAAAAGCCTCGATAGCTGACT -ACGGAAAAGCCTCGATAGCAACCT -ACGGAAAAGCCTCGATAGGCTACT -ACGGAAAAGCCTCGATAGGGATCT -ACGGAAAAGCCTCGATAGAAGGCT -ACGGAAAAGCCTCGATAGTCAACC -ACGGAAAAGCCTCGATAGTGTTCC -ACGGAAAAGCCTCGATAGATTCCC -ACGGAAAAGCCTCGATAGTTCTCG -ACGGAAAAGCCTCGATAGTAGACG -ACGGAAAAGCCTCGATAGGTAACG -ACGGAAAAGCCTCGATAGACTTCG -ACGGAAAAGCCTCGATAGTACGCA -ACGGAAAAGCCTCGATAGCTTGCA -ACGGAAAAGCCTCGATAGCGAACA -ACGGAAAAGCCTCGATAGCAGTCA -ACGGAAAAGCCTCGATAGGATCCA -ACGGAAAAGCCTCGATAGACGACA -ACGGAAAAGCCTCGATAGAGCTCA -ACGGAAAAGCCTCGATAGTCACGT -ACGGAAAAGCCTCGATAGCGTAGT -ACGGAAAAGCCTCGATAGGTCAGT -ACGGAAAAGCCTCGATAGGAAGGT -ACGGAAAAGCCTCGATAGAACCGT -ACGGAAAAGCCTCGATAGTTGTGC -ACGGAAAAGCCTCGATAGCTAAGC -ACGGAAAAGCCTCGATAGACTAGC -ACGGAAAAGCCTCGATAGAGATGC -ACGGAAAAGCCTCGATAGTGAAGG -ACGGAAAAGCCTCGATAGCAATGG -ACGGAAAAGCCTCGATAGATGAGG -ACGGAAAAGCCTCGATAGAATGGG -ACGGAAAAGCCTCGATAGTCCTGA -ACGGAAAAGCCTCGATAGTAGCGA -ACGGAAAAGCCTCGATAGCACAGA -ACGGAAAAGCCTCGATAGGCAAGA -ACGGAAAAGCCTCGATAGGGTTGA -ACGGAAAAGCCTCGATAGTCCGAT -ACGGAAAAGCCTCGATAGTGGCAT -ACGGAAAAGCCTCGATAGCGAGAT -ACGGAAAAGCCTCGATAGTACCAC -ACGGAAAAGCCTCGATAGCAGAAC -ACGGAAAAGCCTCGATAGGTCTAC -ACGGAAAAGCCTCGATAGACGTAC -ACGGAAAAGCCTCGATAGAGTGAC -ACGGAAAAGCCTCGATAGCTGTAG -ACGGAAAAGCCTCGATAGCCTAAG -ACGGAAAAGCCTCGATAGGTTCAG -ACGGAAAAGCCTCGATAGGCATAG -ACGGAAAAGCCTCGATAGGACAAG -ACGGAAAAGCCTCGATAGAAGCAG -ACGGAAAAGCCTCGATAGCGTCAA -ACGGAAAAGCCTCGATAGGCTGAA -ACGGAAAAGCCTCGATAGAGTACG -ACGGAAAAGCCTCGATAGATCCGA -ACGGAAAAGCCTCGATAGATGGGA -ACGGAAAAGCCTCGATAGGTGCAA -ACGGAAAAGCCTCGATAGGAGGAA -ACGGAAAAGCCTCGATAGCAGGTA -ACGGAAAAGCCTCGATAGGACTCT -ACGGAAAAGCCTCGATAGAGTCCT -ACGGAAAAGCCTCGATAGTAAGCC -ACGGAAAAGCCTCGATAGATAGCC -ACGGAAAAGCCTCGATAGTAACCG -ACGGAAAAGCCTCGATAGATGCCA -ACGGAAAAGCCTAGACACGGAAAC -ACGGAAAAGCCTAGACACAACACC -ACGGAAAAGCCTAGACACATCGAG -ACGGAAAAGCCTAGACACCTCCTT -ACGGAAAAGCCTAGACACCCTGTT -ACGGAAAAGCCTAGACACCGGTTT -ACGGAAAAGCCTAGACACGTGGTT -ACGGAAAAGCCTAGACACGCCTTT -ACGGAAAAGCCTAGACACGGTCTT -ACGGAAAAGCCTAGACACACGCTT -ACGGAAAAGCCTAGACACAGCGTT -ACGGAAAAGCCTAGACACTTCGTC -ACGGAAAAGCCTAGACACTCTCTC -ACGGAAAAGCCTAGACACTGGATC -ACGGAAAAGCCTAGACACCACTTC -ACGGAAAAGCCTAGACACGTACTC -ACGGAAAAGCCTAGACACGATGTC -ACGGAAAAGCCTAGACACACAGTC -ACGGAAAAGCCTAGACACTTGCTG -ACGGAAAAGCCTAGACACTCCATG -ACGGAAAAGCCTAGACACTGTGTG -ACGGAAAAGCCTAGACACCTAGTG -ACGGAAAAGCCTAGACACCATCTG -ACGGAAAAGCCTAGACACGAGTTG -ACGGAAAAGCCTAGACACAGACTG -ACGGAAAAGCCTAGACACTCGGTA -ACGGAAAAGCCTAGACACTGCCTA -ACGGAAAAGCCTAGACACCCACTA -ACGGAAAAGCCTAGACACGGAGTA -ACGGAAAAGCCTAGACACTCGTCT -ACGGAAAAGCCTAGACACTGCACT -ACGGAAAAGCCTAGACACCTGACT -ACGGAAAAGCCTAGACACCAACCT -ACGGAAAAGCCTAGACACGCTACT -ACGGAAAAGCCTAGACACGGATCT -ACGGAAAAGCCTAGACACAAGGCT -ACGGAAAAGCCTAGACACTCAACC -ACGGAAAAGCCTAGACACTGTTCC -ACGGAAAAGCCTAGACACATTCCC -ACGGAAAAGCCTAGACACTTCTCG -ACGGAAAAGCCTAGACACTAGACG -ACGGAAAAGCCTAGACACGTAACG -ACGGAAAAGCCTAGACACACTTCG -ACGGAAAAGCCTAGACACTACGCA -ACGGAAAAGCCTAGACACCTTGCA -ACGGAAAAGCCTAGACACCGAACA -ACGGAAAAGCCTAGACACCAGTCA -ACGGAAAAGCCTAGACACGATCCA -ACGGAAAAGCCTAGACACACGACA -ACGGAAAAGCCTAGACACAGCTCA -ACGGAAAAGCCTAGACACTCACGT -ACGGAAAAGCCTAGACACCGTAGT -ACGGAAAAGCCTAGACACGTCAGT -ACGGAAAAGCCTAGACACGAAGGT -ACGGAAAAGCCTAGACACAACCGT -ACGGAAAAGCCTAGACACTTGTGC -ACGGAAAAGCCTAGACACCTAAGC -ACGGAAAAGCCTAGACACACTAGC -ACGGAAAAGCCTAGACACAGATGC -ACGGAAAAGCCTAGACACTGAAGG -ACGGAAAAGCCTAGACACCAATGG -ACGGAAAAGCCTAGACACATGAGG -ACGGAAAAGCCTAGACACAATGGG -ACGGAAAAGCCTAGACACTCCTGA -ACGGAAAAGCCTAGACACTAGCGA -ACGGAAAAGCCTAGACACCACAGA -ACGGAAAAGCCTAGACACGCAAGA -ACGGAAAAGCCTAGACACGGTTGA -ACGGAAAAGCCTAGACACTCCGAT -ACGGAAAAGCCTAGACACTGGCAT -ACGGAAAAGCCTAGACACCGAGAT -ACGGAAAAGCCTAGACACTACCAC -ACGGAAAAGCCTAGACACCAGAAC -ACGGAAAAGCCTAGACACGTCTAC -ACGGAAAAGCCTAGACACACGTAC -ACGGAAAAGCCTAGACACAGTGAC -ACGGAAAAGCCTAGACACCTGTAG -ACGGAAAAGCCTAGACACCCTAAG -ACGGAAAAGCCTAGACACGTTCAG -ACGGAAAAGCCTAGACACGCATAG -ACGGAAAAGCCTAGACACGACAAG -ACGGAAAAGCCTAGACACAAGCAG -ACGGAAAAGCCTAGACACCGTCAA -ACGGAAAAGCCTAGACACGCTGAA -ACGGAAAAGCCTAGACACAGTACG -ACGGAAAAGCCTAGACACATCCGA -ACGGAAAAGCCTAGACACATGGGA -ACGGAAAAGCCTAGACACGTGCAA -ACGGAAAAGCCTAGACACGAGGAA -ACGGAAAAGCCTAGACACCAGGTA -ACGGAAAAGCCTAGACACGACTCT -ACGGAAAAGCCTAGACACAGTCCT -ACGGAAAAGCCTAGACACTAAGCC -ACGGAAAAGCCTAGACACATAGCC -ACGGAAAAGCCTAGACACTAACCG -ACGGAAAAGCCTAGACACATGCCA -ACGGAAAAGCCTAGAGCAGGAAAC -ACGGAAAAGCCTAGAGCAAACACC -ACGGAAAAGCCTAGAGCAATCGAG -ACGGAAAAGCCTAGAGCACTCCTT -ACGGAAAAGCCTAGAGCACCTGTT -ACGGAAAAGCCTAGAGCACGGTTT -ACGGAAAAGCCTAGAGCAGTGGTT -ACGGAAAAGCCTAGAGCAGCCTTT -ACGGAAAAGCCTAGAGCAGGTCTT -ACGGAAAAGCCTAGAGCAACGCTT -ACGGAAAAGCCTAGAGCAAGCGTT -ACGGAAAAGCCTAGAGCATTCGTC -ACGGAAAAGCCTAGAGCATCTCTC -ACGGAAAAGCCTAGAGCATGGATC -ACGGAAAAGCCTAGAGCACACTTC -ACGGAAAAGCCTAGAGCAGTACTC -ACGGAAAAGCCTAGAGCAGATGTC -ACGGAAAAGCCTAGAGCAACAGTC -ACGGAAAAGCCTAGAGCATTGCTG -ACGGAAAAGCCTAGAGCATCCATG -ACGGAAAAGCCTAGAGCATGTGTG -ACGGAAAAGCCTAGAGCACTAGTG -ACGGAAAAGCCTAGAGCACATCTG -ACGGAAAAGCCTAGAGCAGAGTTG -ACGGAAAAGCCTAGAGCAAGACTG -ACGGAAAAGCCTAGAGCATCGGTA -ACGGAAAAGCCTAGAGCATGCCTA -ACGGAAAAGCCTAGAGCACCACTA -ACGGAAAAGCCTAGAGCAGGAGTA -ACGGAAAAGCCTAGAGCATCGTCT -ACGGAAAAGCCTAGAGCATGCACT -ACGGAAAAGCCTAGAGCACTGACT -ACGGAAAAGCCTAGAGCACAACCT -ACGGAAAAGCCTAGAGCAGCTACT -ACGGAAAAGCCTAGAGCAGGATCT -ACGGAAAAGCCTAGAGCAAAGGCT -ACGGAAAAGCCTAGAGCATCAACC -ACGGAAAAGCCTAGAGCATGTTCC -ACGGAAAAGCCTAGAGCAATTCCC -ACGGAAAAGCCTAGAGCATTCTCG -ACGGAAAAGCCTAGAGCATAGACG -ACGGAAAAGCCTAGAGCAGTAACG -ACGGAAAAGCCTAGAGCAACTTCG -ACGGAAAAGCCTAGAGCATACGCA -ACGGAAAAGCCTAGAGCACTTGCA -ACGGAAAAGCCTAGAGCACGAACA -ACGGAAAAGCCTAGAGCACAGTCA -ACGGAAAAGCCTAGAGCAGATCCA -ACGGAAAAGCCTAGAGCAACGACA -ACGGAAAAGCCTAGAGCAAGCTCA -ACGGAAAAGCCTAGAGCATCACGT -ACGGAAAAGCCTAGAGCACGTAGT -ACGGAAAAGCCTAGAGCAGTCAGT -ACGGAAAAGCCTAGAGCAGAAGGT -ACGGAAAAGCCTAGAGCAAACCGT -ACGGAAAAGCCTAGAGCATTGTGC -ACGGAAAAGCCTAGAGCACTAAGC -ACGGAAAAGCCTAGAGCAACTAGC -ACGGAAAAGCCTAGAGCAAGATGC -ACGGAAAAGCCTAGAGCATGAAGG -ACGGAAAAGCCTAGAGCACAATGG -ACGGAAAAGCCTAGAGCAATGAGG -ACGGAAAAGCCTAGAGCAAATGGG -ACGGAAAAGCCTAGAGCATCCTGA -ACGGAAAAGCCTAGAGCATAGCGA -ACGGAAAAGCCTAGAGCACACAGA -ACGGAAAAGCCTAGAGCAGCAAGA -ACGGAAAAGCCTAGAGCAGGTTGA -ACGGAAAAGCCTAGAGCATCCGAT -ACGGAAAAGCCTAGAGCATGGCAT -ACGGAAAAGCCTAGAGCACGAGAT -ACGGAAAAGCCTAGAGCATACCAC -ACGGAAAAGCCTAGAGCACAGAAC -ACGGAAAAGCCTAGAGCAGTCTAC -ACGGAAAAGCCTAGAGCAACGTAC -ACGGAAAAGCCTAGAGCAAGTGAC -ACGGAAAAGCCTAGAGCACTGTAG -ACGGAAAAGCCTAGAGCACCTAAG -ACGGAAAAGCCTAGAGCAGTTCAG -ACGGAAAAGCCTAGAGCAGCATAG -ACGGAAAAGCCTAGAGCAGACAAG -ACGGAAAAGCCTAGAGCAAAGCAG -ACGGAAAAGCCTAGAGCACGTCAA -ACGGAAAAGCCTAGAGCAGCTGAA -ACGGAAAAGCCTAGAGCAAGTACG -ACGGAAAAGCCTAGAGCAATCCGA -ACGGAAAAGCCTAGAGCAATGGGA -ACGGAAAAGCCTAGAGCAGTGCAA -ACGGAAAAGCCTAGAGCAGAGGAA -ACGGAAAAGCCTAGAGCACAGGTA -ACGGAAAAGCCTAGAGCAGACTCT -ACGGAAAAGCCTAGAGCAAGTCCT -ACGGAAAAGCCTAGAGCATAAGCC -ACGGAAAAGCCTAGAGCAATAGCC -ACGGAAAAGCCTAGAGCATAACCG -ACGGAAAAGCCTAGAGCAATGCCA -ACGGAAAAGCCTTGAGGTGGAAAC -ACGGAAAAGCCTTGAGGTAACACC -ACGGAAAAGCCTTGAGGTATCGAG -ACGGAAAAGCCTTGAGGTCTCCTT -ACGGAAAAGCCTTGAGGTCCTGTT -ACGGAAAAGCCTTGAGGTCGGTTT -ACGGAAAAGCCTTGAGGTGTGGTT -ACGGAAAAGCCTTGAGGTGCCTTT -ACGGAAAAGCCTTGAGGTGGTCTT -ACGGAAAAGCCTTGAGGTACGCTT -ACGGAAAAGCCTTGAGGTAGCGTT -ACGGAAAAGCCTTGAGGTTTCGTC -ACGGAAAAGCCTTGAGGTTCTCTC -ACGGAAAAGCCTTGAGGTTGGATC -ACGGAAAAGCCTTGAGGTCACTTC -ACGGAAAAGCCTTGAGGTGTACTC -ACGGAAAAGCCTTGAGGTGATGTC -ACGGAAAAGCCTTGAGGTACAGTC -ACGGAAAAGCCTTGAGGTTTGCTG -ACGGAAAAGCCTTGAGGTTCCATG -ACGGAAAAGCCTTGAGGTTGTGTG -ACGGAAAAGCCTTGAGGTCTAGTG -ACGGAAAAGCCTTGAGGTCATCTG -ACGGAAAAGCCTTGAGGTGAGTTG -ACGGAAAAGCCTTGAGGTAGACTG -ACGGAAAAGCCTTGAGGTTCGGTA -ACGGAAAAGCCTTGAGGTTGCCTA -ACGGAAAAGCCTTGAGGTCCACTA -ACGGAAAAGCCTTGAGGTGGAGTA -ACGGAAAAGCCTTGAGGTTCGTCT -ACGGAAAAGCCTTGAGGTTGCACT -ACGGAAAAGCCTTGAGGTCTGACT -ACGGAAAAGCCTTGAGGTCAACCT -ACGGAAAAGCCTTGAGGTGCTACT -ACGGAAAAGCCTTGAGGTGGATCT -ACGGAAAAGCCTTGAGGTAAGGCT -ACGGAAAAGCCTTGAGGTTCAACC -ACGGAAAAGCCTTGAGGTTGTTCC -ACGGAAAAGCCTTGAGGTATTCCC -ACGGAAAAGCCTTGAGGTTTCTCG -ACGGAAAAGCCTTGAGGTTAGACG -ACGGAAAAGCCTTGAGGTGTAACG -ACGGAAAAGCCTTGAGGTACTTCG -ACGGAAAAGCCTTGAGGTTACGCA -ACGGAAAAGCCTTGAGGTCTTGCA -ACGGAAAAGCCTTGAGGTCGAACA -ACGGAAAAGCCTTGAGGTCAGTCA -ACGGAAAAGCCTTGAGGTGATCCA -ACGGAAAAGCCTTGAGGTACGACA -ACGGAAAAGCCTTGAGGTAGCTCA -ACGGAAAAGCCTTGAGGTTCACGT -ACGGAAAAGCCTTGAGGTCGTAGT -ACGGAAAAGCCTTGAGGTGTCAGT -ACGGAAAAGCCTTGAGGTGAAGGT -ACGGAAAAGCCTTGAGGTAACCGT -ACGGAAAAGCCTTGAGGTTTGTGC -ACGGAAAAGCCTTGAGGTCTAAGC -ACGGAAAAGCCTTGAGGTACTAGC -ACGGAAAAGCCTTGAGGTAGATGC -ACGGAAAAGCCTTGAGGTTGAAGG -ACGGAAAAGCCTTGAGGTCAATGG -ACGGAAAAGCCTTGAGGTATGAGG -ACGGAAAAGCCTTGAGGTAATGGG -ACGGAAAAGCCTTGAGGTTCCTGA -ACGGAAAAGCCTTGAGGTTAGCGA -ACGGAAAAGCCTTGAGGTCACAGA -ACGGAAAAGCCTTGAGGTGCAAGA -ACGGAAAAGCCTTGAGGTGGTTGA -ACGGAAAAGCCTTGAGGTTCCGAT -ACGGAAAAGCCTTGAGGTTGGCAT -ACGGAAAAGCCTTGAGGTCGAGAT -ACGGAAAAGCCTTGAGGTTACCAC -ACGGAAAAGCCTTGAGGTCAGAAC -ACGGAAAAGCCTTGAGGTGTCTAC -ACGGAAAAGCCTTGAGGTACGTAC -ACGGAAAAGCCTTGAGGTAGTGAC -ACGGAAAAGCCTTGAGGTCTGTAG -ACGGAAAAGCCTTGAGGTCCTAAG -ACGGAAAAGCCTTGAGGTGTTCAG -ACGGAAAAGCCTTGAGGTGCATAG -ACGGAAAAGCCTTGAGGTGACAAG -ACGGAAAAGCCTTGAGGTAAGCAG -ACGGAAAAGCCTTGAGGTCGTCAA -ACGGAAAAGCCTTGAGGTGCTGAA -ACGGAAAAGCCTTGAGGTAGTACG -ACGGAAAAGCCTTGAGGTATCCGA -ACGGAAAAGCCTTGAGGTATGGGA -ACGGAAAAGCCTTGAGGTGTGCAA -ACGGAAAAGCCTTGAGGTGAGGAA -ACGGAAAAGCCTTGAGGTCAGGTA -ACGGAAAAGCCTTGAGGTGACTCT -ACGGAAAAGCCTTGAGGTAGTCCT -ACGGAAAAGCCTTGAGGTTAAGCC -ACGGAAAAGCCTTGAGGTATAGCC -ACGGAAAAGCCTTGAGGTTAACCG -ACGGAAAAGCCTTGAGGTATGCCA -ACGGAAAAGCCTGATTCCGGAAAC -ACGGAAAAGCCTGATTCCAACACC -ACGGAAAAGCCTGATTCCATCGAG -ACGGAAAAGCCTGATTCCCTCCTT -ACGGAAAAGCCTGATTCCCCTGTT -ACGGAAAAGCCTGATTCCCGGTTT -ACGGAAAAGCCTGATTCCGTGGTT -ACGGAAAAGCCTGATTCCGCCTTT -ACGGAAAAGCCTGATTCCGGTCTT -ACGGAAAAGCCTGATTCCACGCTT -ACGGAAAAGCCTGATTCCAGCGTT -ACGGAAAAGCCTGATTCCTTCGTC -ACGGAAAAGCCTGATTCCTCTCTC -ACGGAAAAGCCTGATTCCTGGATC -ACGGAAAAGCCTGATTCCCACTTC -ACGGAAAAGCCTGATTCCGTACTC -ACGGAAAAGCCTGATTCCGATGTC -ACGGAAAAGCCTGATTCCACAGTC -ACGGAAAAGCCTGATTCCTTGCTG -ACGGAAAAGCCTGATTCCTCCATG -ACGGAAAAGCCTGATTCCTGTGTG -ACGGAAAAGCCTGATTCCCTAGTG -ACGGAAAAGCCTGATTCCCATCTG -ACGGAAAAGCCTGATTCCGAGTTG -ACGGAAAAGCCTGATTCCAGACTG -ACGGAAAAGCCTGATTCCTCGGTA -ACGGAAAAGCCTGATTCCTGCCTA -ACGGAAAAGCCTGATTCCCCACTA -ACGGAAAAGCCTGATTCCGGAGTA -ACGGAAAAGCCTGATTCCTCGTCT -ACGGAAAAGCCTGATTCCTGCACT -ACGGAAAAGCCTGATTCCCTGACT -ACGGAAAAGCCTGATTCCCAACCT -ACGGAAAAGCCTGATTCCGCTACT -ACGGAAAAGCCTGATTCCGGATCT -ACGGAAAAGCCTGATTCCAAGGCT -ACGGAAAAGCCTGATTCCTCAACC -ACGGAAAAGCCTGATTCCTGTTCC -ACGGAAAAGCCTGATTCCATTCCC -ACGGAAAAGCCTGATTCCTTCTCG -ACGGAAAAGCCTGATTCCTAGACG -ACGGAAAAGCCTGATTCCGTAACG -ACGGAAAAGCCTGATTCCACTTCG -ACGGAAAAGCCTGATTCCTACGCA -ACGGAAAAGCCTGATTCCCTTGCA -ACGGAAAAGCCTGATTCCCGAACA -ACGGAAAAGCCTGATTCCCAGTCA -ACGGAAAAGCCTGATTCCGATCCA -ACGGAAAAGCCTGATTCCACGACA -ACGGAAAAGCCTGATTCCAGCTCA -ACGGAAAAGCCTGATTCCTCACGT -ACGGAAAAGCCTGATTCCCGTAGT -ACGGAAAAGCCTGATTCCGTCAGT -ACGGAAAAGCCTGATTCCGAAGGT -ACGGAAAAGCCTGATTCCAACCGT -ACGGAAAAGCCTGATTCCTTGTGC -ACGGAAAAGCCTGATTCCCTAAGC -ACGGAAAAGCCTGATTCCACTAGC -ACGGAAAAGCCTGATTCCAGATGC -ACGGAAAAGCCTGATTCCTGAAGG -ACGGAAAAGCCTGATTCCCAATGG -ACGGAAAAGCCTGATTCCATGAGG -ACGGAAAAGCCTGATTCCAATGGG -ACGGAAAAGCCTGATTCCTCCTGA -ACGGAAAAGCCTGATTCCTAGCGA -ACGGAAAAGCCTGATTCCCACAGA -ACGGAAAAGCCTGATTCCGCAAGA -ACGGAAAAGCCTGATTCCGGTTGA -ACGGAAAAGCCTGATTCCTCCGAT -ACGGAAAAGCCTGATTCCTGGCAT -ACGGAAAAGCCTGATTCCCGAGAT -ACGGAAAAGCCTGATTCCTACCAC -ACGGAAAAGCCTGATTCCCAGAAC -ACGGAAAAGCCTGATTCCGTCTAC -ACGGAAAAGCCTGATTCCACGTAC -ACGGAAAAGCCTGATTCCAGTGAC -ACGGAAAAGCCTGATTCCCTGTAG -ACGGAAAAGCCTGATTCCCCTAAG -ACGGAAAAGCCTGATTCCGTTCAG -ACGGAAAAGCCTGATTCCGCATAG -ACGGAAAAGCCTGATTCCGACAAG -ACGGAAAAGCCTGATTCCAAGCAG -ACGGAAAAGCCTGATTCCCGTCAA -ACGGAAAAGCCTGATTCCGCTGAA -ACGGAAAAGCCTGATTCCAGTACG -ACGGAAAAGCCTGATTCCATCCGA -ACGGAAAAGCCTGATTCCATGGGA -ACGGAAAAGCCTGATTCCGTGCAA -ACGGAAAAGCCTGATTCCGAGGAA -ACGGAAAAGCCTGATTCCCAGGTA -ACGGAAAAGCCTGATTCCGACTCT -ACGGAAAAGCCTGATTCCAGTCCT -ACGGAAAAGCCTGATTCCTAAGCC -ACGGAAAAGCCTGATTCCATAGCC -ACGGAAAAGCCTGATTCCTAACCG -ACGGAAAAGCCTGATTCCATGCCA -ACGGAAAAGCCTCATTGGGGAAAC -ACGGAAAAGCCTCATTGGAACACC -ACGGAAAAGCCTCATTGGATCGAG -ACGGAAAAGCCTCATTGGCTCCTT -ACGGAAAAGCCTCATTGGCCTGTT -ACGGAAAAGCCTCATTGGCGGTTT -ACGGAAAAGCCTCATTGGGTGGTT -ACGGAAAAGCCTCATTGGGCCTTT -ACGGAAAAGCCTCATTGGGGTCTT -ACGGAAAAGCCTCATTGGACGCTT -ACGGAAAAGCCTCATTGGAGCGTT -ACGGAAAAGCCTCATTGGTTCGTC -ACGGAAAAGCCTCATTGGTCTCTC -ACGGAAAAGCCTCATTGGTGGATC -ACGGAAAAGCCTCATTGGCACTTC -ACGGAAAAGCCTCATTGGGTACTC -ACGGAAAAGCCTCATTGGGATGTC -ACGGAAAAGCCTCATTGGACAGTC -ACGGAAAAGCCTCATTGGTTGCTG -ACGGAAAAGCCTCATTGGTCCATG -ACGGAAAAGCCTCATTGGTGTGTG -ACGGAAAAGCCTCATTGGCTAGTG -ACGGAAAAGCCTCATTGGCATCTG -ACGGAAAAGCCTCATTGGGAGTTG -ACGGAAAAGCCTCATTGGAGACTG -ACGGAAAAGCCTCATTGGTCGGTA -ACGGAAAAGCCTCATTGGTGCCTA -ACGGAAAAGCCTCATTGGCCACTA -ACGGAAAAGCCTCATTGGGGAGTA -ACGGAAAAGCCTCATTGGTCGTCT -ACGGAAAAGCCTCATTGGTGCACT -ACGGAAAAGCCTCATTGGCTGACT -ACGGAAAAGCCTCATTGGCAACCT -ACGGAAAAGCCTCATTGGGCTACT -ACGGAAAAGCCTCATTGGGGATCT -ACGGAAAAGCCTCATTGGAAGGCT -ACGGAAAAGCCTCATTGGTCAACC -ACGGAAAAGCCTCATTGGTGTTCC -ACGGAAAAGCCTCATTGGATTCCC -ACGGAAAAGCCTCATTGGTTCTCG -ACGGAAAAGCCTCATTGGTAGACG -ACGGAAAAGCCTCATTGGGTAACG -ACGGAAAAGCCTCATTGGACTTCG -ACGGAAAAGCCTCATTGGTACGCA -ACGGAAAAGCCTCATTGGCTTGCA -ACGGAAAAGCCTCATTGGCGAACA -ACGGAAAAGCCTCATTGGCAGTCA -ACGGAAAAGCCTCATTGGGATCCA -ACGGAAAAGCCTCATTGGACGACA -ACGGAAAAGCCTCATTGGAGCTCA -ACGGAAAAGCCTCATTGGTCACGT -ACGGAAAAGCCTCATTGGCGTAGT -ACGGAAAAGCCTCATTGGGTCAGT -ACGGAAAAGCCTCATTGGGAAGGT -ACGGAAAAGCCTCATTGGAACCGT -ACGGAAAAGCCTCATTGGTTGTGC -ACGGAAAAGCCTCATTGGCTAAGC -ACGGAAAAGCCTCATTGGACTAGC -ACGGAAAAGCCTCATTGGAGATGC -ACGGAAAAGCCTCATTGGTGAAGG -ACGGAAAAGCCTCATTGGCAATGG -ACGGAAAAGCCTCATTGGATGAGG -ACGGAAAAGCCTCATTGGAATGGG -ACGGAAAAGCCTCATTGGTCCTGA -ACGGAAAAGCCTCATTGGTAGCGA -ACGGAAAAGCCTCATTGGCACAGA -ACGGAAAAGCCTCATTGGGCAAGA -ACGGAAAAGCCTCATTGGGGTTGA -ACGGAAAAGCCTCATTGGTCCGAT -ACGGAAAAGCCTCATTGGTGGCAT -ACGGAAAAGCCTCATTGGCGAGAT -ACGGAAAAGCCTCATTGGTACCAC -ACGGAAAAGCCTCATTGGCAGAAC -ACGGAAAAGCCTCATTGGGTCTAC -ACGGAAAAGCCTCATTGGACGTAC -ACGGAAAAGCCTCATTGGAGTGAC -ACGGAAAAGCCTCATTGGCTGTAG -ACGGAAAAGCCTCATTGGCCTAAG -ACGGAAAAGCCTCATTGGGTTCAG -ACGGAAAAGCCTCATTGGGCATAG -ACGGAAAAGCCTCATTGGGACAAG -ACGGAAAAGCCTCATTGGAAGCAG -ACGGAAAAGCCTCATTGGCGTCAA -ACGGAAAAGCCTCATTGGGCTGAA -ACGGAAAAGCCTCATTGGAGTACG -ACGGAAAAGCCTCATTGGATCCGA -ACGGAAAAGCCTCATTGGATGGGA -ACGGAAAAGCCTCATTGGGTGCAA -ACGGAAAAGCCTCATTGGGAGGAA -ACGGAAAAGCCTCATTGGCAGGTA -ACGGAAAAGCCTCATTGGGACTCT -ACGGAAAAGCCTCATTGGAGTCCT -ACGGAAAAGCCTCATTGGTAAGCC -ACGGAAAAGCCTCATTGGATAGCC -ACGGAAAAGCCTCATTGGTAACCG -ACGGAAAAGCCTCATTGGATGCCA -ACGGAAAAGCCTGATCGAGGAAAC -ACGGAAAAGCCTGATCGAAACACC -ACGGAAAAGCCTGATCGAATCGAG -ACGGAAAAGCCTGATCGACTCCTT -ACGGAAAAGCCTGATCGACCTGTT -ACGGAAAAGCCTGATCGACGGTTT -ACGGAAAAGCCTGATCGAGTGGTT -ACGGAAAAGCCTGATCGAGCCTTT -ACGGAAAAGCCTGATCGAGGTCTT -ACGGAAAAGCCTGATCGAACGCTT -ACGGAAAAGCCTGATCGAAGCGTT -ACGGAAAAGCCTGATCGATTCGTC -ACGGAAAAGCCTGATCGATCTCTC -ACGGAAAAGCCTGATCGATGGATC -ACGGAAAAGCCTGATCGACACTTC -ACGGAAAAGCCTGATCGAGTACTC -ACGGAAAAGCCTGATCGAGATGTC -ACGGAAAAGCCTGATCGAACAGTC -ACGGAAAAGCCTGATCGATTGCTG -ACGGAAAAGCCTGATCGATCCATG -ACGGAAAAGCCTGATCGATGTGTG -ACGGAAAAGCCTGATCGACTAGTG -ACGGAAAAGCCTGATCGACATCTG -ACGGAAAAGCCTGATCGAGAGTTG -ACGGAAAAGCCTGATCGAAGACTG -ACGGAAAAGCCTGATCGATCGGTA -ACGGAAAAGCCTGATCGATGCCTA -ACGGAAAAGCCTGATCGACCACTA -ACGGAAAAGCCTGATCGAGGAGTA -ACGGAAAAGCCTGATCGATCGTCT -ACGGAAAAGCCTGATCGATGCACT -ACGGAAAAGCCTGATCGACTGACT -ACGGAAAAGCCTGATCGACAACCT -ACGGAAAAGCCTGATCGAGCTACT -ACGGAAAAGCCTGATCGAGGATCT -ACGGAAAAGCCTGATCGAAAGGCT -ACGGAAAAGCCTGATCGATCAACC -ACGGAAAAGCCTGATCGATGTTCC -ACGGAAAAGCCTGATCGAATTCCC -ACGGAAAAGCCTGATCGATTCTCG -ACGGAAAAGCCTGATCGATAGACG -ACGGAAAAGCCTGATCGAGTAACG -ACGGAAAAGCCTGATCGAACTTCG -ACGGAAAAGCCTGATCGATACGCA -ACGGAAAAGCCTGATCGACTTGCA -ACGGAAAAGCCTGATCGACGAACA -ACGGAAAAGCCTGATCGACAGTCA -ACGGAAAAGCCTGATCGAGATCCA -ACGGAAAAGCCTGATCGAACGACA -ACGGAAAAGCCTGATCGAAGCTCA -ACGGAAAAGCCTGATCGATCACGT -ACGGAAAAGCCTGATCGACGTAGT -ACGGAAAAGCCTGATCGAGTCAGT -ACGGAAAAGCCTGATCGAGAAGGT -ACGGAAAAGCCTGATCGAAACCGT -ACGGAAAAGCCTGATCGATTGTGC -ACGGAAAAGCCTGATCGACTAAGC -ACGGAAAAGCCTGATCGAACTAGC -ACGGAAAAGCCTGATCGAAGATGC -ACGGAAAAGCCTGATCGATGAAGG -ACGGAAAAGCCTGATCGACAATGG -ACGGAAAAGCCTGATCGAATGAGG -ACGGAAAAGCCTGATCGAAATGGG -ACGGAAAAGCCTGATCGATCCTGA -ACGGAAAAGCCTGATCGATAGCGA -ACGGAAAAGCCTGATCGACACAGA -ACGGAAAAGCCTGATCGAGCAAGA -ACGGAAAAGCCTGATCGAGGTTGA -ACGGAAAAGCCTGATCGATCCGAT -ACGGAAAAGCCTGATCGATGGCAT -ACGGAAAAGCCTGATCGACGAGAT -ACGGAAAAGCCTGATCGATACCAC -ACGGAAAAGCCTGATCGACAGAAC -ACGGAAAAGCCTGATCGAGTCTAC -ACGGAAAAGCCTGATCGAACGTAC -ACGGAAAAGCCTGATCGAAGTGAC -ACGGAAAAGCCTGATCGACTGTAG -ACGGAAAAGCCTGATCGACCTAAG -ACGGAAAAGCCTGATCGAGTTCAG -ACGGAAAAGCCTGATCGAGCATAG -ACGGAAAAGCCTGATCGAGACAAG -ACGGAAAAGCCTGATCGAAAGCAG -ACGGAAAAGCCTGATCGACGTCAA -ACGGAAAAGCCTGATCGAGCTGAA -ACGGAAAAGCCTGATCGAAGTACG -ACGGAAAAGCCTGATCGAATCCGA -ACGGAAAAGCCTGATCGAATGGGA -ACGGAAAAGCCTGATCGAGTGCAA -ACGGAAAAGCCTGATCGAGAGGAA -ACGGAAAAGCCTGATCGACAGGTA -ACGGAAAAGCCTGATCGAGACTCT -ACGGAAAAGCCTGATCGAAGTCCT -ACGGAAAAGCCTGATCGATAAGCC -ACGGAAAAGCCTGATCGAATAGCC -ACGGAAAAGCCTGATCGATAACCG -ACGGAAAAGCCTGATCGAATGCCA -ACGGAAAAGCCTCACTACGGAAAC -ACGGAAAAGCCTCACTACAACACC -ACGGAAAAGCCTCACTACATCGAG -ACGGAAAAGCCTCACTACCTCCTT -ACGGAAAAGCCTCACTACCCTGTT -ACGGAAAAGCCTCACTACCGGTTT -ACGGAAAAGCCTCACTACGTGGTT -ACGGAAAAGCCTCACTACGCCTTT -ACGGAAAAGCCTCACTACGGTCTT -ACGGAAAAGCCTCACTACACGCTT -ACGGAAAAGCCTCACTACAGCGTT -ACGGAAAAGCCTCACTACTTCGTC -ACGGAAAAGCCTCACTACTCTCTC -ACGGAAAAGCCTCACTACTGGATC -ACGGAAAAGCCTCACTACCACTTC -ACGGAAAAGCCTCACTACGTACTC -ACGGAAAAGCCTCACTACGATGTC -ACGGAAAAGCCTCACTACACAGTC -ACGGAAAAGCCTCACTACTTGCTG -ACGGAAAAGCCTCACTACTCCATG -ACGGAAAAGCCTCACTACTGTGTG -ACGGAAAAGCCTCACTACCTAGTG -ACGGAAAAGCCTCACTACCATCTG -ACGGAAAAGCCTCACTACGAGTTG -ACGGAAAAGCCTCACTACAGACTG -ACGGAAAAGCCTCACTACTCGGTA -ACGGAAAAGCCTCACTACTGCCTA -ACGGAAAAGCCTCACTACCCACTA -ACGGAAAAGCCTCACTACGGAGTA -ACGGAAAAGCCTCACTACTCGTCT -ACGGAAAAGCCTCACTACTGCACT -ACGGAAAAGCCTCACTACCTGACT -ACGGAAAAGCCTCACTACCAACCT -ACGGAAAAGCCTCACTACGCTACT -ACGGAAAAGCCTCACTACGGATCT -ACGGAAAAGCCTCACTACAAGGCT -ACGGAAAAGCCTCACTACTCAACC -ACGGAAAAGCCTCACTACTGTTCC -ACGGAAAAGCCTCACTACATTCCC -ACGGAAAAGCCTCACTACTTCTCG -ACGGAAAAGCCTCACTACTAGACG -ACGGAAAAGCCTCACTACGTAACG -ACGGAAAAGCCTCACTACACTTCG -ACGGAAAAGCCTCACTACTACGCA -ACGGAAAAGCCTCACTACCTTGCA -ACGGAAAAGCCTCACTACCGAACA -ACGGAAAAGCCTCACTACCAGTCA -ACGGAAAAGCCTCACTACGATCCA -ACGGAAAAGCCTCACTACACGACA -ACGGAAAAGCCTCACTACAGCTCA -ACGGAAAAGCCTCACTACTCACGT -ACGGAAAAGCCTCACTACCGTAGT -ACGGAAAAGCCTCACTACGTCAGT -ACGGAAAAGCCTCACTACGAAGGT -ACGGAAAAGCCTCACTACAACCGT -ACGGAAAAGCCTCACTACTTGTGC -ACGGAAAAGCCTCACTACCTAAGC -ACGGAAAAGCCTCACTACACTAGC -ACGGAAAAGCCTCACTACAGATGC -ACGGAAAAGCCTCACTACTGAAGG -ACGGAAAAGCCTCACTACCAATGG -ACGGAAAAGCCTCACTACATGAGG -ACGGAAAAGCCTCACTACAATGGG -ACGGAAAAGCCTCACTACTCCTGA -ACGGAAAAGCCTCACTACTAGCGA -ACGGAAAAGCCTCACTACCACAGA -ACGGAAAAGCCTCACTACGCAAGA -ACGGAAAAGCCTCACTACGGTTGA -ACGGAAAAGCCTCACTACTCCGAT -ACGGAAAAGCCTCACTACTGGCAT -ACGGAAAAGCCTCACTACCGAGAT -ACGGAAAAGCCTCACTACTACCAC -ACGGAAAAGCCTCACTACCAGAAC -ACGGAAAAGCCTCACTACGTCTAC -ACGGAAAAGCCTCACTACACGTAC -ACGGAAAAGCCTCACTACAGTGAC -ACGGAAAAGCCTCACTACCTGTAG -ACGGAAAAGCCTCACTACCCTAAG -ACGGAAAAGCCTCACTACGTTCAG -ACGGAAAAGCCTCACTACGCATAG -ACGGAAAAGCCTCACTACGACAAG -ACGGAAAAGCCTCACTACAAGCAG -ACGGAAAAGCCTCACTACCGTCAA -ACGGAAAAGCCTCACTACGCTGAA -ACGGAAAAGCCTCACTACAGTACG -ACGGAAAAGCCTCACTACATCCGA -ACGGAAAAGCCTCACTACATGGGA -ACGGAAAAGCCTCACTACGTGCAA -ACGGAAAAGCCTCACTACGAGGAA -ACGGAAAAGCCTCACTACCAGGTA -ACGGAAAAGCCTCACTACGACTCT -ACGGAAAAGCCTCACTACAGTCCT -ACGGAAAAGCCTCACTACTAAGCC -ACGGAAAAGCCTCACTACATAGCC -ACGGAAAAGCCTCACTACTAACCG -ACGGAAAAGCCTCACTACATGCCA -ACGGAAAAGCCTAACCAGGGAAAC -ACGGAAAAGCCTAACCAGAACACC -ACGGAAAAGCCTAACCAGATCGAG -ACGGAAAAGCCTAACCAGCTCCTT -ACGGAAAAGCCTAACCAGCCTGTT -ACGGAAAAGCCTAACCAGCGGTTT -ACGGAAAAGCCTAACCAGGTGGTT -ACGGAAAAGCCTAACCAGGCCTTT -ACGGAAAAGCCTAACCAGGGTCTT -ACGGAAAAGCCTAACCAGACGCTT -ACGGAAAAGCCTAACCAGAGCGTT -ACGGAAAAGCCTAACCAGTTCGTC -ACGGAAAAGCCTAACCAGTCTCTC -ACGGAAAAGCCTAACCAGTGGATC -ACGGAAAAGCCTAACCAGCACTTC -ACGGAAAAGCCTAACCAGGTACTC -ACGGAAAAGCCTAACCAGGATGTC -ACGGAAAAGCCTAACCAGACAGTC -ACGGAAAAGCCTAACCAGTTGCTG -ACGGAAAAGCCTAACCAGTCCATG -ACGGAAAAGCCTAACCAGTGTGTG -ACGGAAAAGCCTAACCAGCTAGTG -ACGGAAAAGCCTAACCAGCATCTG -ACGGAAAAGCCTAACCAGGAGTTG -ACGGAAAAGCCTAACCAGAGACTG -ACGGAAAAGCCTAACCAGTCGGTA -ACGGAAAAGCCTAACCAGTGCCTA -ACGGAAAAGCCTAACCAGCCACTA -ACGGAAAAGCCTAACCAGGGAGTA -ACGGAAAAGCCTAACCAGTCGTCT -ACGGAAAAGCCTAACCAGTGCACT -ACGGAAAAGCCTAACCAGCTGACT -ACGGAAAAGCCTAACCAGCAACCT -ACGGAAAAGCCTAACCAGGCTACT -ACGGAAAAGCCTAACCAGGGATCT -ACGGAAAAGCCTAACCAGAAGGCT -ACGGAAAAGCCTAACCAGTCAACC -ACGGAAAAGCCTAACCAGTGTTCC -ACGGAAAAGCCTAACCAGATTCCC -ACGGAAAAGCCTAACCAGTTCTCG -ACGGAAAAGCCTAACCAGTAGACG -ACGGAAAAGCCTAACCAGGTAACG -ACGGAAAAGCCTAACCAGACTTCG -ACGGAAAAGCCTAACCAGTACGCA -ACGGAAAAGCCTAACCAGCTTGCA -ACGGAAAAGCCTAACCAGCGAACA -ACGGAAAAGCCTAACCAGCAGTCA -ACGGAAAAGCCTAACCAGGATCCA -ACGGAAAAGCCTAACCAGACGACA -ACGGAAAAGCCTAACCAGAGCTCA -ACGGAAAAGCCTAACCAGTCACGT -ACGGAAAAGCCTAACCAGCGTAGT -ACGGAAAAGCCTAACCAGGTCAGT -ACGGAAAAGCCTAACCAGGAAGGT -ACGGAAAAGCCTAACCAGAACCGT -ACGGAAAAGCCTAACCAGTTGTGC -ACGGAAAAGCCTAACCAGCTAAGC -ACGGAAAAGCCTAACCAGACTAGC -ACGGAAAAGCCTAACCAGAGATGC -ACGGAAAAGCCTAACCAGTGAAGG -ACGGAAAAGCCTAACCAGCAATGG -ACGGAAAAGCCTAACCAGATGAGG -ACGGAAAAGCCTAACCAGAATGGG -ACGGAAAAGCCTAACCAGTCCTGA -ACGGAAAAGCCTAACCAGTAGCGA -ACGGAAAAGCCTAACCAGCACAGA -ACGGAAAAGCCTAACCAGGCAAGA -ACGGAAAAGCCTAACCAGGGTTGA -ACGGAAAAGCCTAACCAGTCCGAT -ACGGAAAAGCCTAACCAGTGGCAT -ACGGAAAAGCCTAACCAGCGAGAT -ACGGAAAAGCCTAACCAGTACCAC -ACGGAAAAGCCTAACCAGCAGAAC -ACGGAAAAGCCTAACCAGGTCTAC -ACGGAAAAGCCTAACCAGACGTAC -ACGGAAAAGCCTAACCAGAGTGAC -ACGGAAAAGCCTAACCAGCTGTAG -ACGGAAAAGCCTAACCAGCCTAAG -ACGGAAAAGCCTAACCAGGTTCAG -ACGGAAAAGCCTAACCAGGCATAG -ACGGAAAAGCCTAACCAGGACAAG -ACGGAAAAGCCTAACCAGAAGCAG -ACGGAAAAGCCTAACCAGCGTCAA -ACGGAAAAGCCTAACCAGGCTGAA -ACGGAAAAGCCTAACCAGAGTACG -ACGGAAAAGCCTAACCAGATCCGA -ACGGAAAAGCCTAACCAGATGGGA -ACGGAAAAGCCTAACCAGGTGCAA -ACGGAAAAGCCTAACCAGGAGGAA -ACGGAAAAGCCTAACCAGCAGGTA -ACGGAAAAGCCTAACCAGGACTCT -ACGGAAAAGCCTAACCAGAGTCCT -ACGGAAAAGCCTAACCAGTAAGCC -ACGGAAAAGCCTAACCAGATAGCC -ACGGAAAAGCCTAACCAGTAACCG -ACGGAAAAGCCTAACCAGATGCCA -ACGGAAAAGCCTTACGTCGGAAAC -ACGGAAAAGCCTTACGTCAACACC -ACGGAAAAGCCTTACGTCATCGAG -ACGGAAAAGCCTTACGTCCTCCTT -ACGGAAAAGCCTTACGTCCCTGTT -ACGGAAAAGCCTTACGTCCGGTTT -ACGGAAAAGCCTTACGTCGTGGTT -ACGGAAAAGCCTTACGTCGCCTTT -ACGGAAAAGCCTTACGTCGGTCTT -ACGGAAAAGCCTTACGTCACGCTT -ACGGAAAAGCCTTACGTCAGCGTT -ACGGAAAAGCCTTACGTCTTCGTC -ACGGAAAAGCCTTACGTCTCTCTC -ACGGAAAAGCCTTACGTCTGGATC -ACGGAAAAGCCTTACGTCCACTTC -ACGGAAAAGCCTTACGTCGTACTC -ACGGAAAAGCCTTACGTCGATGTC -ACGGAAAAGCCTTACGTCACAGTC -ACGGAAAAGCCTTACGTCTTGCTG -ACGGAAAAGCCTTACGTCTCCATG -ACGGAAAAGCCTTACGTCTGTGTG -ACGGAAAAGCCTTACGTCCTAGTG -ACGGAAAAGCCTTACGTCCATCTG -ACGGAAAAGCCTTACGTCGAGTTG -ACGGAAAAGCCTTACGTCAGACTG -ACGGAAAAGCCTTACGTCTCGGTA -ACGGAAAAGCCTTACGTCTGCCTA -ACGGAAAAGCCTTACGTCCCACTA -ACGGAAAAGCCTTACGTCGGAGTA -ACGGAAAAGCCTTACGTCTCGTCT -ACGGAAAAGCCTTACGTCTGCACT -ACGGAAAAGCCTTACGTCCTGACT -ACGGAAAAGCCTTACGTCCAACCT -ACGGAAAAGCCTTACGTCGCTACT -ACGGAAAAGCCTTACGTCGGATCT -ACGGAAAAGCCTTACGTCAAGGCT -ACGGAAAAGCCTTACGTCTCAACC -ACGGAAAAGCCTTACGTCTGTTCC -ACGGAAAAGCCTTACGTCATTCCC -ACGGAAAAGCCTTACGTCTTCTCG -ACGGAAAAGCCTTACGTCTAGACG -ACGGAAAAGCCTTACGTCGTAACG -ACGGAAAAGCCTTACGTCACTTCG -ACGGAAAAGCCTTACGTCTACGCA -ACGGAAAAGCCTTACGTCCTTGCA -ACGGAAAAGCCTTACGTCCGAACA -ACGGAAAAGCCTTACGTCCAGTCA -ACGGAAAAGCCTTACGTCGATCCA -ACGGAAAAGCCTTACGTCACGACA -ACGGAAAAGCCTTACGTCAGCTCA -ACGGAAAAGCCTTACGTCTCACGT -ACGGAAAAGCCTTACGTCCGTAGT -ACGGAAAAGCCTTACGTCGTCAGT -ACGGAAAAGCCTTACGTCGAAGGT -ACGGAAAAGCCTTACGTCAACCGT -ACGGAAAAGCCTTACGTCTTGTGC -ACGGAAAAGCCTTACGTCCTAAGC -ACGGAAAAGCCTTACGTCACTAGC -ACGGAAAAGCCTTACGTCAGATGC -ACGGAAAAGCCTTACGTCTGAAGG -ACGGAAAAGCCTTACGTCCAATGG -ACGGAAAAGCCTTACGTCATGAGG -ACGGAAAAGCCTTACGTCAATGGG -ACGGAAAAGCCTTACGTCTCCTGA -ACGGAAAAGCCTTACGTCTAGCGA -ACGGAAAAGCCTTACGTCCACAGA -ACGGAAAAGCCTTACGTCGCAAGA -ACGGAAAAGCCTTACGTCGGTTGA -ACGGAAAAGCCTTACGTCTCCGAT -ACGGAAAAGCCTTACGTCTGGCAT -ACGGAAAAGCCTTACGTCCGAGAT -ACGGAAAAGCCTTACGTCTACCAC -ACGGAAAAGCCTTACGTCCAGAAC -ACGGAAAAGCCTTACGTCGTCTAC -ACGGAAAAGCCTTACGTCACGTAC -ACGGAAAAGCCTTACGTCAGTGAC -ACGGAAAAGCCTTACGTCCTGTAG -ACGGAAAAGCCTTACGTCCCTAAG -ACGGAAAAGCCTTACGTCGTTCAG -ACGGAAAAGCCTTACGTCGCATAG -ACGGAAAAGCCTTACGTCGACAAG -ACGGAAAAGCCTTACGTCAAGCAG -ACGGAAAAGCCTTACGTCCGTCAA -ACGGAAAAGCCTTACGTCGCTGAA -ACGGAAAAGCCTTACGTCAGTACG -ACGGAAAAGCCTTACGTCATCCGA -ACGGAAAAGCCTTACGTCATGGGA -ACGGAAAAGCCTTACGTCGTGCAA -ACGGAAAAGCCTTACGTCGAGGAA -ACGGAAAAGCCTTACGTCCAGGTA -ACGGAAAAGCCTTACGTCGACTCT -ACGGAAAAGCCTTACGTCAGTCCT -ACGGAAAAGCCTTACGTCTAAGCC -ACGGAAAAGCCTTACGTCATAGCC -ACGGAAAAGCCTTACGTCTAACCG -ACGGAAAAGCCTTACGTCATGCCA -ACGGAAAAGCCTTACACGGGAAAC -ACGGAAAAGCCTTACACGAACACC -ACGGAAAAGCCTTACACGATCGAG -ACGGAAAAGCCTTACACGCTCCTT -ACGGAAAAGCCTTACACGCCTGTT -ACGGAAAAGCCTTACACGCGGTTT -ACGGAAAAGCCTTACACGGTGGTT -ACGGAAAAGCCTTACACGGCCTTT -ACGGAAAAGCCTTACACGGGTCTT -ACGGAAAAGCCTTACACGACGCTT -ACGGAAAAGCCTTACACGAGCGTT -ACGGAAAAGCCTTACACGTTCGTC -ACGGAAAAGCCTTACACGTCTCTC -ACGGAAAAGCCTTACACGTGGATC -ACGGAAAAGCCTTACACGCACTTC -ACGGAAAAGCCTTACACGGTACTC -ACGGAAAAGCCTTACACGGATGTC -ACGGAAAAGCCTTACACGACAGTC -ACGGAAAAGCCTTACACGTTGCTG -ACGGAAAAGCCTTACACGTCCATG -ACGGAAAAGCCTTACACGTGTGTG -ACGGAAAAGCCTTACACGCTAGTG -ACGGAAAAGCCTTACACGCATCTG -ACGGAAAAGCCTTACACGGAGTTG -ACGGAAAAGCCTTACACGAGACTG -ACGGAAAAGCCTTACACGTCGGTA -ACGGAAAAGCCTTACACGTGCCTA -ACGGAAAAGCCTTACACGCCACTA -ACGGAAAAGCCTTACACGGGAGTA -ACGGAAAAGCCTTACACGTCGTCT -ACGGAAAAGCCTTACACGTGCACT -ACGGAAAAGCCTTACACGCTGACT -ACGGAAAAGCCTTACACGCAACCT -ACGGAAAAGCCTTACACGGCTACT -ACGGAAAAGCCTTACACGGGATCT -ACGGAAAAGCCTTACACGAAGGCT -ACGGAAAAGCCTTACACGTCAACC -ACGGAAAAGCCTTACACGTGTTCC -ACGGAAAAGCCTTACACGATTCCC -ACGGAAAAGCCTTACACGTTCTCG -ACGGAAAAGCCTTACACGTAGACG -ACGGAAAAGCCTTACACGGTAACG -ACGGAAAAGCCTTACACGACTTCG -ACGGAAAAGCCTTACACGTACGCA -ACGGAAAAGCCTTACACGCTTGCA -ACGGAAAAGCCTTACACGCGAACA -ACGGAAAAGCCTTACACGCAGTCA -ACGGAAAAGCCTTACACGGATCCA -ACGGAAAAGCCTTACACGACGACA -ACGGAAAAGCCTTACACGAGCTCA -ACGGAAAAGCCTTACACGTCACGT -ACGGAAAAGCCTTACACGCGTAGT -ACGGAAAAGCCTTACACGGTCAGT -ACGGAAAAGCCTTACACGGAAGGT -ACGGAAAAGCCTTACACGAACCGT -ACGGAAAAGCCTTACACGTTGTGC -ACGGAAAAGCCTTACACGCTAAGC -ACGGAAAAGCCTTACACGACTAGC -ACGGAAAAGCCTTACACGAGATGC -ACGGAAAAGCCTTACACGTGAAGG -ACGGAAAAGCCTTACACGCAATGG -ACGGAAAAGCCTTACACGATGAGG -ACGGAAAAGCCTTACACGAATGGG -ACGGAAAAGCCTTACACGTCCTGA -ACGGAAAAGCCTTACACGTAGCGA -ACGGAAAAGCCTTACACGCACAGA -ACGGAAAAGCCTTACACGGCAAGA -ACGGAAAAGCCTTACACGGGTTGA -ACGGAAAAGCCTTACACGTCCGAT -ACGGAAAAGCCTTACACGTGGCAT -ACGGAAAAGCCTTACACGCGAGAT -ACGGAAAAGCCTTACACGTACCAC -ACGGAAAAGCCTTACACGCAGAAC -ACGGAAAAGCCTTACACGGTCTAC -ACGGAAAAGCCTTACACGACGTAC -ACGGAAAAGCCTTACACGAGTGAC -ACGGAAAAGCCTTACACGCTGTAG -ACGGAAAAGCCTTACACGCCTAAG -ACGGAAAAGCCTTACACGGTTCAG -ACGGAAAAGCCTTACACGGCATAG -ACGGAAAAGCCTTACACGGACAAG -ACGGAAAAGCCTTACACGAAGCAG -ACGGAAAAGCCTTACACGCGTCAA -ACGGAAAAGCCTTACACGGCTGAA -ACGGAAAAGCCTTACACGAGTACG -ACGGAAAAGCCTTACACGATCCGA -ACGGAAAAGCCTTACACGATGGGA -ACGGAAAAGCCTTACACGGTGCAA -ACGGAAAAGCCTTACACGGAGGAA -ACGGAAAAGCCTTACACGCAGGTA -ACGGAAAAGCCTTACACGGACTCT -ACGGAAAAGCCTTACACGAGTCCT -ACGGAAAAGCCTTACACGTAAGCC -ACGGAAAAGCCTTACACGATAGCC -ACGGAAAAGCCTTACACGTAACCG -ACGGAAAAGCCTTACACGATGCCA -ACGGAAAAGCCTGACAGTGGAAAC -ACGGAAAAGCCTGACAGTAACACC -ACGGAAAAGCCTGACAGTATCGAG -ACGGAAAAGCCTGACAGTCTCCTT -ACGGAAAAGCCTGACAGTCCTGTT -ACGGAAAAGCCTGACAGTCGGTTT -ACGGAAAAGCCTGACAGTGTGGTT -ACGGAAAAGCCTGACAGTGCCTTT -ACGGAAAAGCCTGACAGTGGTCTT -ACGGAAAAGCCTGACAGTACGCTT -ACGGAAAAGCCTGACAGTAGCGTT -ACGGAAAAGCCTGACAGTTTCGTC -ACGGAAAAGCCTGACAGTTCTCTC -ACGGAAAAGCCTGACAGTTGGATC -ACGGAAAAGCCTGACAGTCACTTC -ACGGAAAAGCCTGACAGTGTACTC -ACGGAAAAGCCTGACAGTGATGTC -ACGGAAAAGCCTGACAGTACAGTC -ACGGAAAAGCCTGACAGTTTGCTG -ACGGAAAAGCCTGACAGTTCCATG -ACGGAAAAGCCTGACAGTTGTGTG -ACGGAAAAGCCTGACAGTCTAGTG -ACGGAAAAGCCTGACAGTCATCTG -ACGGAAAAGCCTGACAGTGAGTTG -ACGGAAAAGCCTGACAGTAGACTG -ACGGAAAAGCCTGACAGTTCGGTA -ACGGAAAAGCCTGACAGTTGCCTA -ACGGAAAAGCCTGACAGTCCACTA -ACGGAAAAGCCTGACAGTGGAGTA -ACGGAAAAGCCTGACAGTTCGTCT -ACGGAAAAGCCTGACAGTTGCACT -ACGGAAAAGCCTGACAGTCTGACT -ACGGAAAAGCCTGACAGTCAACCT -ACGGAAAAGCCTGACAGTGCTACT -ACGGAAAAGCCTGACAGTGGATCT -ACGGAAAAGCCTGACAGTAAGGCT -ACGGAAAAGCCTGACAGTTCAACC -ACGGAAAAGCCTGACAGTTGTTCC -ACGGAAAAGCCTGACAGTATTCCC -ACGGAAAAGCCTGACAGTTTCTCG -ACGGAAAAGCCTGACAGTTAGACG -ACGGAAAAGCCTGACAGTGTAACG -ACGGAAAAGCCTGACAGTACTTCG -ACGGAAAAGCCTGACAGTTACGCA -ACGGAAAAGCCTGACAGTCTTGCA -ACGGAAAAGCCTGACAGTCGAACA -ACGGAAAAGCCTGACAGTCAGTCA -ACGGAAAAGCCTGACAGTGATCCA -ACGGAAAAGCCTGACAGTACGACA -ACGGAAAAGCCTGACAGTAGCTCA -ACGGAAAAGCCTGACAGTTCACGT -ACGGAAAAGCCTGACAGTCGTAGT -ACGGAAAAGCCTGACAGTGTCAGT -ACGGAAAAGCCTGACAGTGAAGGT -ACGGAAAAGCCTGACAGTAACCGT -ACGGAAAAGCCTGACAGTTTGTGC -ACGGAAAAGCCTGACAGTCTAAGC -ACGGAAAAGCCTGACAGTACTAGC -ACGGAAAAGCCTGACAGTAGATGC -ACGGAAAAGCCTGACAGTTGAAGG -ACGGAAAAGCCTGACAGTCAATGG -ACGGAAAAGCCTGACAGTATGAGG -ACGGAAAAGCCTGACAGTAATGGG -ACGGAAAAGCCTGACAGTTCCTGA -ACGGAAAAGCCTGACAGTTAGCGA -ACGGAAAAGCCTGACAGTCACAGA -ACGGAAAAGCCTGACAGTGCAAGA -ACGGAAAAGCCTGACAGTGGTTGA -ACGGAAAAGCCTGACAGTTCCGAT -ACGGAAAAGCCTGACAGTTGGCAT -ACGGAAAAGCCTGACAGTCGAGAT -ACGGAAAAGCCTGACAGTTACCAC -ACGGAAAAGCCTGACAGTCAGAAC -ACGGAAAAGCCTGACAGTGTCTAC -ACGGAAAAGCCTGACAGTACGTAC -ACGGAAAAGCCTGACAGTAGTGAC -ACGGAAAAGCCTGACAGTCTGTAG -ACGGAAAAGCCTGACAGTCCTAAG -ACGGAAAAGCCTGACAGTGTTCAG -ACGGAAAAGCCTGACAGTGCATAG -ACGGAAAAGCCTGACAGTGACAAG -ACGGAAAAGCCTGACAGTAAGCAG -ACGGAAAAGCCTGACAGTCGTCAA -ACGGAAAAGCCTGACAGTGCTGAA -ACGGAAAAGCCTGACAGTAGTACG -ACGGAAAAGCCTGACAGTATCCGA -ACGGAAAAGCCTGACAGTATGGGA -ACGGAAAAGCCTGACAGTGTGCAA -ACGGAAAAGCCTGACAGTGAGGAA -ACGGAAAAGCCTGACAGTCAGGTA -ACGGAAAAGCCTGACAGTGACTCT -ACGGAAAAGCCTGACAGTAGTCCT -ACGGAAAAGCCTGACAGTTAAGCC -ACGGAAAAGCCTGACAGTATAGCC -ACGGAAAAGCCTGACAGTTAACCG -ACGGAAAAGCCTGACAGTATGCCA -ACGGAAAAGCCTTAGCTGGGAAAC -ACGGAAAAGCCTTAGCTGAACACC -ACGGAAAAGCCTTAGCTGATCGAG -ACGGAAAAGCCTTAGCTGCTCCTT -ACGGAAAAGCCTTAGCTGCCTGTT -ACGGAAAAGCCTTAGCTGCGGTTT -ACGGAAAAGCCTTAGCTGGTGGTT -ACGGAAAAGCCTTAGCTGGCCTTT -ACGGAAAAGCCTTAGCTGGGTCTT -ACGGAAAAGCCTTAGCTGACGCTT -ACGGAAAAGCCTTAGCTGAGCGTT -ACGGAAAAGCCTTAGCTGTTCGTC -ACGGAAAAGCCTTAGCTGTCTCTC -ACGGAAAAGCCTTAGCTGTGGATC -ACGGAAAAGCCTTAGCTGCACTTC -ACGGAAAAGCCTTAGCTGGTACTC -ACGGAAAAGCCTTAGCTGGATGTC -ACGGAAAAGCCTTAGCTGACAGTC -ACGGAAAAGCCTTAGCTGTTGCTG -ACGGAAAAGCCTTAGCTGTCCATG -ACGGAAAAGCCTTAGCTGTGTGTG -ACGGAAAAGCCTTAGCTGCTAGTG -ACGGAAAAGCCTTAGCTGCATCTG -ACGGAAAAGCCTTAGCTGGAGTTG -ACGGAAAAGCCTTAGCTGAGACTG -ACGGAAAAGCCTTAGCTGTCGGTA -ACGGAAAAGCCTTAGCTGTGCCTA -ACGGAAAAGCCTTAGCTGCCACTA -ACGGAAAAGCCTTAGCTGGGAGTA -ACGGAAAAGCCTTAGCTGTCGTCT -ACGGAAAAGCCTTAGCTGTGCACT -ACGGAAAAGCCTTAGCTGCTGACT -ACGGAAAAGCCTTAGCTGCAACCT -ACGGAAAAGCCTTAGCTGGCTACT -ACGGAAAAGCCTTAGCTGGGATCT -ACGGAAAAGCCTTAGCTGAAGGCT -ACGGAAAAGCCTTAGCTGTCAACC -ACGGAAAAGCCTTAGCTGTGTTCC -ACGGAAAAGCCTTAGCTGATTCCC -ACGGAAAAGCCTTAGCTGTTCTCG -ACGGAAAAGCCTTAGCTGTAGACG -ACGGAAAAGCCTTAGCTGGTAACG -ACGGAAAAGCCTTAGCTGACTTCG -ACGGAAAAGCCTTAGCTGTACGCA -ACGGAAAAGCCTTAGCTGCTTGCA -ACGGAAAAGCCTTAGCTGCGAACA -ACGGAAAAGCCTTAGCTGCAGTCA -ACGGAAAAGCCTTAGCTGGATCCA -ACGGAAAAGCCTTAGCTGACGACA -ACGGAAAAGCCTTAGCTGAGCTCA -ACGGAAAAGCCTTAGCTGTCACGT -ACGGAAAAGCCTTAGCTGCGTAGT -ACGGAAAAGCCTTAGCTGGTCAGT -ACGGAAAAGCCTTAGCTGGAAGGT -ACGGAAAAGCCTTAGCTGAACCGT -ACGGAAAAGCCTTAGCTGTTGTGC -ACGGAAAAGCCTTAGCTGCTAAGC -ACGGAAAAGCCTTAGCTGACTAGC -ACGGAAAAGCCTTAGCTGAGATGC -ACGGAAAAGCCTTAGCTGTGAAGG -ACGGAAAAGCCTTAGCTGCAATGG -ACGGAAAAGCCTTAGCTGATGAGG -ACGGAAAAGCCTTAGCTGAATGGG -ACGGAAAAGCCTTAGCTGTCCTGA -ACGGAAAAGCCTTAGCTGTAGCGA -ACGGAAAAGCCTTAGCTGCACAGA -ACGGAAAAGCCTTAGCTGGCAAGA -ACGGAAAAGCCTTAGCTGGGTTGA -ACGGAAAAGCCTTAGCTGTCCGAT -ACGGAAAAGCCTTAGCTGTGGCAT -ACGGAAAAGCCTTAGCTGCGAGAT -ACGGAAAAGCCTTAGCTGTACCAC -ACGGAAAAGCCTTAGCTGCAGAAC -ACGGAAAAGCCTTAGCTGGTCTAC -ACGGAAAAGCCTTAGCTGACGTAC -ACGGAAAAGCCTTAGCTGAGTGAC -ACGGAAAAGCCTTAGCTGCTGTAG -ACGGAAAAGCCTTAGCTGCCTAAG -ACGGAAAAGCCTTAGCTGGTTCAG -ACGGAAAAGCCTTAGCTGGCATAG -ACGGAAAAGCCTTAGCTGGACAAG -ACGGAAAAGCCTTAGCTGAAGCAG -ACGGAAAAGCCTTAGCTGCGTCAA -ACGGAAAAGCCTTAGCTGGCTGAA -ACGGAAAAGCCTTAGCTGAGTACG -ACGGAAAAGCCTTAGCTGATCCGA -ACGGAAAAGCCTTAGCTGATGGGA -ACGGAAAAGCCTTAGCTGGTGCAA -ACGGAAAAGCCTTAGCTGGAGGAA -ACGGAAAAGCCTTAGCTGCAGGTA -ACGGAAAAGCCTTAGCTGGACTCT -ACGGAAAAGCCTTAGCTGAGTCCT -ACGGAAAAGCCTTAGCTGTAAGCC -ACGGAAAAGCCTTAGCTGATAGCC -ACGGAAAAGCCTTAGCTGTAACCG -ACGGAAAAGCCTTAGCTGATGCCA -ACGGAAAAGCCTAAGCCTGGAAAC -ACGGAAAAGCCTAAGCCTAACACC -ACGGAAAAGCCTAAGCCTATCGAG -ACGGAAAAGCCTAAGCCTCTCCTT -ACGGAAAAGCCTAAGCCTCCTGTT -ACGGAAAAGCCTAAGCCTCGGTTT -ACGGAAAAGCCTAAGCCTGTGGTT -ACGGAAAAGCCTAAGCCTGCCTTT -ACGGAAAAGCCTAAGCCTGGTCTT -ACGGAAAAGCCTAAGCCTACGCTT -ACGGAAAAGCCTAAGCCTAGCGTT -ACGGAAAAGCCTAAGCCTTTCGTC -ACGGAAAAGCCTAAGCCTTCTCTC -ACGGAAAAGCCTAAGCCTTGGATC -ACGGAAAAGCCTAAGCCTCACTTC -ACGGAAAAGCCTAAGCCTGTACTC -ACGGAAAAGCCTAAGCCTGATGTC -ACGGAAAAGCCTAAGCCTACAGTC -ACGGAAAAGCCTAAGCCTTTGCTG -ACGGAAAAGCCTAAGCCTTCCATG -ACGGAAAAGCCTAAGCCTTGTGTG -ACGGAAAAGCCTAAGCCTCTAGTG -ACGGAAAAGCCTAAGCCTCATCTG -ACGGAAAAGCCTAAGCCTGAGTTG -ACGGAAAAGCCTAAGCCTAGACTG -ACGGAAAAGCCTAAGCCTTCGGTA -ACGGAAAAGCCTAAGCCTTGCCTA -ACGGAAAAGCCTAAGCCTCCACTA -ACGGAAAAGCCTAAGCCTGGAGTA -ACGGAAAAGCCTAAGCCTTCGTCT -ACGGAAAAGCCTAAGCCTTGCACT -ACGGAAAAGCCTAAGCCTCTGACT -ACGGAAAAGCCTAAGCCTCAACCT -ACGGAAAAGCCTAAGCCTGCTACT -ACGGAAAAGCCTAAGCCTGGATCT -ACGGAAAAGCCTAAGCCTAAGGCT -ACGGAAAAGCCTAAGCCTTCAACC -ACGGAAAAGCCTAAGCCTTGTTCC -ACGGAAAAGCCTAAGCCTATTCCC -ACGGAAAAGCCTAAGCCTTTCTCG -ACGGAAAAGCCTAAGCCTTAGACG -ACGGAAAAGCCTAAGCCTGTAACG -ACGGAAAAGCCTAAGCCTACTTCG -ACGGAAAAGCCTAAGCCTTACGCA -ACGGAAAAGCCTAAGCCTCTTGCA -ACGGAAAAGCCTAAGCCTCGAACA -ACGGAAAAGCCTAAGCCTCAGTCA -ACGGAAAAGCCTAAGCCTGATCCA -ACGGAAAAGCCTAAGCCTACGACA -ACGGAAAAGCCTAAGCCTAGCTCA -ACGGAAAAGCCTAAGCCTTCACGT -ACGGAAAAGCCTAAGCCTCGTAGT -ACGGAAAAGCCTAAGCCTGTCAGT -ACGGAAAAGCCTAAGCCTGAAGGT -ACGGAAAAGCCTAAGCCTAACCGT -ACGGAAAAGCCTAAGCCTTTGTGC -ACGGAAAAGCCTAAGCCTCTAAGC -ACGGAAAAGCCTAAGCCTACTAGC -ACGGAAAAGCCTAAGCCTAGATGC -ACGGAAAAGCCTAAGCCTTGAAGG -ACGGAAAAGCCTAAGCCTCAATGG -ACGGAAAAGCCTAAGCCTATGAGG -ACGGAAAAGCCTAAGCCTAATGGG -ACGGAAAAGCCTAAGCCTTCCTGA -ACGGAAAAGCCTAAGCCTTAGCGA -ACGGAAAAGCCTAAGCCTCACAGA -ACGGAAAAGCCTAAGCCTGCAAGA -ACGGAAAAGCCTAAGCCTGGTTGA -ACGGAAAAGCCTAAGCCTTCCGAT -ACGGAAAAGCCTAAGCCTTGGCAT -ACGGAAAAGCCTAAGCCTCGAGAT -ACGGAAAAGCCTAAGCCTTACCAC -ACGGAAAAGCCTAAGCCTCAGAAC -ACGGAAAAGCCTAAGCCTGTCTAC -ACGGAAAAGCCTAAGCCTACGTAC -ACGGAAAAGCCTAAGCCTAGTGAC -ACGGAAAAGCCTAAGCCTCTGTAG -ACGGAAAAGCCTAAGCCTCCTAAG -ACGGAAAAGCCTAAGCCTGTTCAG -ACGGAAAAGCCTAAGCCTGCATAG -ACGGAAAAGCCTAAGCCTGACAAG -ACGGAAAAGCCTAAGCCTAAGCAG -ACGGAAAAGCCTAAGCCTCGTCAA -ACGGAAAAGCCTAAGCCTGCTGAA -ACGGAAAAGCCTAAGCCTAGTACG -ACGGAAAAGCCTAAGCCTATCCGA -ACGGAAAAGCCTAAGCCTATGGGA -ACGGAAAAGCCTAAGCCTGTGCAA -ACGGAAAAGCCTAAGCCTGAGGAA -ACGGAAAAGCCTAAGCCTCAGGTA -ACGGAAAAGCCTAAGCCTGACTCT -ACGGAAAAGCCTAAGCCTAGTCCT -ACGGAAAAGCCTAAGCCTTAAGCC -ACGGAAAAGCCTAAGCCTATAGCC -ACGGAAAAGCCTAAGCCTTAACCG -ACGGAAAAGCCTAAGCCTATGCCA -ACGGAAAAGCCTCAGGTTGGAAAC -ACGGAAAAGCCTCAGGTTAACACC -ACGGAAAAGCCTCAGGTTATCGAG -ACGGAAAAGCCTCAGGTTCTCCTT -ACGGAAAAGCCTCAGGTTCCTGTT -ACGGAAAAGCCTCAGGTTCGGTTT -ACGGAAAAGCCTCAGGTTGTGGTT -ACGGAAAAGCCTCAGGTTGCCTTT -ACGGAAAAGCCTCAGGTTGGTCTT -ACGGAAAAGCCTCAGGTTACGCTT -ACGGAAAAGCCTCAGGTTAGCGTT -ACGGAAAAGCCTCAGGTTTTCGTC -ACGGAAAAGCCTCAGGTTTCTCTC -ACGGAAAAGCCTCAGGTTTGGATC -ACGGAAAAGCCTCAGGTTCACTTC -ACGGAAAAGCCTCAGGTTGTACTC -ACGGAAAAGCCTCAGGTTGATGTC -ACGGAAAAGCCTCAGGTTACAGTC -ACGGAAAAGCCTCAGGTTTTGCTG -ACGGAAAAGCCTCAGGTTTCCATG -ACGGAAAAGCCTCAGGTTTGTGTG -ACGGAAAAGCCTCAGGTTCTAGTG -ACGGAAAAGCCTCAGGTTCATCTG -ACGGAAAAGCCTCAGGTTGAGTTG -ACGGAAAAGCCTCAGGTTAGACTG -ACGGAAAAGCCTCAGGTTTCGGTA -ACGGAAAAGCCTCAGGTTTGCCTA -ACGGAAAAGCCTCAGGTTCCACTA -ACGGAAAAGCCTCAGGTTGGAGTA -ACGGAAAAGCCTCAGGTTTCGTCT -ACGGAAAAGCCTCAGGTTTGCACT -ACGGAAAAGCCTCAGGTTCTGACT -ACGGAAAAGCCTCAGGTTCAACCT -ACGGAAAAGCCTCAGGTTGCTACT -ACGGAAAAGCCTCAGGTTGGATCT -ACGGAAAAGCCTCAGGTTAAGGCT -ACGGAAAAGCCTCAGGTTTCAACC -ACGGAAAAGCCTCAGGTTTGTTCC -ACGGAAAAGCCTCAGGTTATTCCC -ACGGAAAAGCCTCAGGTTTTCTCG -ACGGAAAAGCCTCAGGTTTAGACG -ACGGAAAAGCCTCAGGTTGTAACG -ACGGAAAAGCCTCAGGTTACTTCG -ACGGAAAAGCCTCAGGTTTACGCA -ACGGAAAAGCCTCAGGTTCTTGCA -ACGGAAAAGCCTCAGGTTCGAACA -ACGGAAAAGCCTCAGGTTCAGTCA -ACGGAAAAGCCTCAGGTTGATCCA -ACGGAAAAGCCTCAGGTTACGACA -ACGGAAAAGCCTCAGGTTAGCTCA -ACGGAAAAGCCTCAGGTTTCACGT -ACGGAAAAGCCTCAGGTTCGTAGT -ACGGAAAAGCCTCAGGTTGTCAGT -ACGGAAAAGCCTCAGGTTGAAGGT -ACGGAAAAGCCTCAGGTTAACCGT -ACGGAAAAGCCTCAGGTTTTGTGC -ACGGAAAAGCCTCAGGTTCTAAGC -ACGGAAAAGCCTCAGGTTACTAGC -ACGGAAAAGCCTCAGGTTAGATGC -ACGGAAAAGCCTCAGGTTTGAAGG -ACGGAAAAGCCTCAGGTTCAATGG -ACGGAAAAGCCTCAGGTTATGAGG -ACGGAAAAGCCTCAGGTTAATGGG -ACGGAAAAGCCTCAGGTTTCCTGA -ACGGAAAAGCCTCAGGTTTAGCGA -ACGGAAAAGCCTCAGGTTCACAGA -ACGGAAAAGCCTCAGGTTGCAAGA -ACGGAAAAGCCTCAGGTTGGTTGA -ACGGAAAAGCCTCAGGTTTCCGAT -ACGGAAAAGCCTCAGGTTTGGCAT -ACGGAAAAGCCTCAGGTTCGAGAT -ACGGAAAAGCCTCAGGTTTACCAC -ACGGAAAAGCCTCAGGTTCAGAAC -ACGGAAAAGCCTCAGGTTGTCTAC -ACGGAAAAGCCTCAGGTTACGTAC -ACGGAAAAGCCTCAGGTTAGTGAC -ACGGAAAAGCCTCAGGTTCTGTAG -ACGGAAAAGCCTCAGGTTCCTAAG -ACGGAAAAGCCTCAGGTTGTTCAG -ACGGAAAAGCCTCAGGTTGCATAG -ACGGAAAAGCCTCAGGTTGACAAG -ACGGAAAAGCCTCAGGTTAAGCAG -ACGGAAAAGCCTCAGGTTCGTCAA -ACGGAAAAGCCTCAGGTTGCTGAA -ACGGAAAAGCCTCAGGTTAGTACG -ACGGAAAAGCCTCAGGTTATCCGA -ACGGAAAAGCCTCAGGTTATGGGA -ACGGAAAAGCCTCAGGTTGTGCAA -ACGGAAAAGCCTCAGGTTGAGGAA -ACGGAAAAGCCTCAGGTTCAGGTA -ACGGAAAAGCCTCAGGTTGACTCT -ACGGAAAAGCCTCAGGTTAGTCCT -ACGGAAAAGCCTCAGGTTTAAGCC -ACGGAAAAGCCTCAGGTTATAGCC -ACGGAAAAGCCTCAGGTTTAACCG -ACGGAAAAGCCTCAGGTTATGCCA -ACGGAAAAGCCTTAGGCAGGAAAC -ACGGAAAAGCCTTAGGCAAACACC -ACGGAAAAGCCTTAGGCAATCGAG -ACGGAAAAGCCTTAGGCACTCCTT -ACGGAAAAGCCTTAGGCACCTGTT -ACGGAAAAGCCTTAGGCACGGTTT -ACGGAAAAGCCTTAGGCAGTGGTT -ACGGAAAAGCCTTAGGCAGCCTTT -ACGGAAAAGCCTTAGGCAGGTCTT -ACGGAAAAGCCTTAGGCAACGCTT -ACGGAAAAGCCTTAGGCAAGCGTT -ACGGAAAAGCCTTAGGCATTCGTC -ACGGAAAAGCCTTAGGCATCTCTC -ACGGAAAAGCCTTAGGCATGGATC -ACGGAAAAGCCTTAGGCACACTTC -ACGGAAAAGCCTTAGGCAGTACTC -ACGGAAAAGCCTTAGGCAGATGTC -ACGGAAAAGCCTTAGGCAACAGTC -ACGGAAAAGCCTTAGGCATTGCTG -ACGGAAAAGCCTTAGGCATCCATG -ACGGAAAAGCCTTAGGCATGTGTG -ACGGAAAAGCCTTAGGCACTAGTG -ACGGAAAAGCCTTAGGCACATCTG -ACGGAAAAGCCTTAGGCAGAGTTG -ACGGAAAAGCCTTAGGCAAGACTG -ACGGAAAAGCCTTAGGCATCGGTA -ACGGAAAAGCCTTAGGCATGCCTA -ACGGAAAAGCCTTAGGCACCACTA -ACGGAAAAGCCTTAGGCAGGAGTA -ACGGAAAAGCCTTAGGCATCGTCT -ACGGAAAAGCCTTAGGCATGCACT -ACGGAAAAGCCTTAGGCACTGACT -ACGGAAAAGCCTTAGGCACAACCT -ACGGAAAAGCCTTAGGCAGCTACT -ACGGAAAAGCCTTAGGCAGGATCT -ACGGAAAAGCCTTAGGCAAAGGCT -ACGGAAAAGCCTTAGGCATCAACC -ACGGAAAAGCCTTAGGCATGTTCC -ACGGAAAAGCCTTAGGCAATTCCC -ACGGAAAAGCCTTAGGCATTCTCG -ACGGAAAAGCCTTAGGCATAGACG -ACGGAAAAGCCTTAGGCAGTAACG -ACGGAAAAGCCTTAGGCAACTTCG -ACGGAAAAGCCTTAGGCATACGCA -ACGGAAAAGCCTTAGGCACTTGCA -ACGGAAAAGCCTTAGGCACGAACA -ACGGAAAAGCCTTAGGCACAGTCA -ACGGAAAAGCCTTAGGCAGATCCA -ACGGAAAAGCCTTAGGCAACGACA -ACGGAAAAGCCTTAGGCAAGCTCA -ACGGAAAAGCCTTAGGCATCACGT -ACGGAAAAGCCTTAGGCACGTAGT -ACGGAAAAGCCTTAGGCAGTCAGT -ACGGAAAAGCCTTAGGCAGAAGGT -ACGGAAAAGCCTTAGGCAAACCGT -ACGGAAAAGCCTTAGGCATTGTGC -ACGGAAAAGCCTTAGGCACTAAGC -ACGGAAAAGCCTTAGGCAACTAGC -ACGGAAAAGCCTTAGGCAAGATGC -ACGGAAAAGCCTTAGGCATGAAGG -ACGGAAAAGCCTTAGGCACAATGG -ACGGAAAAGCCTTAGGCAATGAGG -ACGGAAAAGCCTTAGGCAAATGGG -ACGGAAAAGCCTTAGGCATCCTGA -ACGGAAAAGCCTTAGGCATAGCGA -ACGGAAAAGCCTTAGGCACACAGA -ACGGAAAAGCCTTAGGCAGCAAGA -ACGGAAAAGCCTTAGGCAGGTTGA -ACGGAAAAGCCTTAGGCATCCGAT -ACGGAAAAGCCTTAGGCATGGCAT -ACGGAAAAGCCTTAGGCACGAGAT -ACGGAAAAGCCTTAGGCATACCAC -ACGGAAAAGCCTTAGGCACAGAAC -ACGGAAAAGCCTTAGGCAGTCTAC -ACGGAAAAGCCTTAGGCAACGTAC -ACGGAAAAGCCTTAGGCAAGTGAC -ACGGAAAAGCCTTAGGCACTGTAG -ACGGAAAAGCCTTAGGCACCTAAG -ACGGAAAAGCCTTAGGCAGTTCAG -ACGGAAAAGCCTTAGGCAGCATAG -ACGGAAAAGCCTTAGGCAGACAAG -ACGGAAAAGCCTTAGGCAAAGCAG -ACGGAAAAGCCTTAGGCACGTCAA -ACGGAAAAGCCTTAGGCAGCTGAA -ACGGAAAAGCCTTAGGCAAGTACG -ACGGAAAAGCCTTAGGCAATCCGA -ACGGAAAAGCCTTAGGCAATGGGA -ACGGAAAAGCCTTAGGCAGTGCAA -ACGGAAAAGCCTTAGGCAGAGGAA -ACGGAAAAGCCTTAGGCACAGGTA -ACGGAAAAGCCTTAGGCAGACTCT -ACGGAAAAGCCTTAGGCAAGTCCT -ACGGAAAAGCCTTAGGCATAAGCC -ACGGAAAAGCCTTAGGCAATAGCC -ACGGAAAAGCCTTAGGCATAACCG -ACGGAAAAGCCTTAGGCAATGCCA -ACGGAAAAGCCTAAGGACGGAAAC -ACGGAAAAGCCTAAGGACAACACC -ACGGAAAAGCCTAAGGACATCGAG -ACGGAAAAGCCTAAGGACCTCCTT -ACGGAAAAGCCTAAGGACCCTGTT -ACGGAAAAGCCTAAGGACCGGTTT -ACGGAAAAGCCTAAGGACGTGGTT -ACGGAAAAGCCTAAGGACGCCTTT -ACGGAAAAGCCTAAGGACGGTCTT -ACGGAAAAGCCTAAGGACACGCTT -ACGGAAAAGCCTAAGGACAGCGTT -ACGGAAAAGCCTAAGGACTTCGTC -ACGGAAAAGCCTAAGGACTCTCTC -ACGGAAAAGCCTAAGGACTGGATC -ACGGAAAAGCCTAAGGACCACTTC -ACGGAAAAGCCTAAGGACGTACTC -ACGGAAAAGCCTAAGGACGATGTC -ACGGAAAAGCCTAAGGACACAGTC -ACGGAAAAGCCTAAGGACTTGCTG -ACGGAAAAGCCTAAGGACTCCATG -ACGGAAAAGCCTAAGGACTGTGTG -ACGGAAAAGCCTAAGGACCTAGTG -ACGGAAAAGCCTAAGGACCATCTG -ACGGAAAAGCCTAAGGACGAGTTG -ACGGAAAAGCCTAAGGACAGACTG -ACGGAAAAGCCTAAGGACTCGGTA -ACGGAAAAGCCTAAGGACTGCCTA -ACGGAAAAGCCTAAGGACCCACTA -ACGGAAAAGCCTAAGGACGGAGTA -ACGGAAAAGCCTAAGGACTCGTCT -ACGGAAAAGCCTAAGGACTGCACT -ACGGAAAAGCCTAAGGACCTGACT -ACGGAAAAGCCTAAGGACCAACCT -ACGGAAAAGCCTAAGGACGCTACT -ACGGAAAAGCCTAAGGACGGATCT -ACGGAAAAGCCTAAGGACAAGGCT -ACGGAAAAGCCTAAGGACTCAACC -ACGGAAAAGCCTAAGGACTGTTCC -ACGGAAAAGCCTAAGGACATTCCC -ACGGAAAAGCCTAAGGACTTCTCG -ACGGAAAAGCCTAAGGACTAGACG -ACGGAAAAGCCTAAGGACGTAACG -ACGGAAAAGCCTAAGGACACTTCG -ACGGAAAAGCCTAAGGACTACGCA -ACGGAAAAGCCTAAGGACCTTGCA -ACGGAAAAGCCTAAGGACCGAACA -ACGGAAAAGCCTAAGGACCAGTCA -ACGGAAAAGCCTAAGGACGATCCA -ACGGAAAAGCCTAAGGACACGACA -ACGGAAAAGCCTAAGGACAGCTCA -ACGGAAAAGCCTAAGGACTCACGT -ACGGAAAAGCCTAAGGACCGTAGT -ACGGAAAAGCCTAAGGACGTCAGT -ACGGAAAAGCCTAAGGACGAAGGT -ACGGAAAAGCCTAAGGACAACCGT -ACGGAAAAGCCTAAGGACTTGTGC -ACGGAAAAGCCTAAGGACCTAAGC -ACGGAAAAGCCTAAGGACACTAGC -ACGGAAAAGCCTAAGGACAGATGC -ACGGAAAAGCCTAAGGACTGAAGG -ACGGAAAAGCCTAAGGACCAATGG -ACGGAAAAGCCTAAGGACATGAGG -ACGGAAAAGCCTAAGGACAATGGG -ACGGAAAAGCCTAAGGACTCCTGA -ACGGAAAAGCCTAAGGACTAGCGA -ACGGAAAAGCCTAAGGACCACAGA -ACGGAAAAGCCTAAGGACGCAAGA -ACGGAAAAGCCTAAGGACGGTTGA -ACGGAAAAGCCTAAGGACTCCGAT -ACGGAAAAGCCTAAGGACTGGCAT -ACGGAAAAGCCTAAGGACCGAGAT -ACGGAAAAGCCTAAGGACTACCAC -ACGGAAAAGCCTAAGGACCAGAAC -ACGGAAAAGCCTAAGGACGTCTAC -ACGGAAAAGCCTAAGGACACGTAC -ACGGAAAAGCCTAAGGACAGTGAC -ACGGAAAAGCCTAAGGACCTGTAG -ACGGAAAAGCCTAAGGACCCTAAG -ACGGAAAAGCCTAAGGACGTTCAG -ACGGAAAAGCCTAAGGACGCATAG -ACGGAAAAGCCTAAGGACGACAAG -ACGGAAAAGCCTAAGGACAAGCAG -ACGGAAAAGCCTAAGGACCGTCAA -ACGGAAAAGCCTAAGGACGCTGAA -ACGGAAAAGCCTAAGGACAGTACG -ACGGAAAAGCCTAAGGACATCCGA -ACGGAAAAGCCTAAGGACATGGGA -ACGGAAAAGCCTAAGGACGTGCAA -ACGGAAAAGCCTAAGGACGAGGAA -ACGGAAAAGCCTAAGGACCAGGTA -ACGGAAAAGCCTAAGGACGACTCT -ACGGAAAAGCCTAAGGACAGTCCT -ACGGAAAAGCCTAAGGACTAAGCC -ACGGAAAAGCCTAAGGACATAGCC -ACGGAAAAGCCTAAGGACTAACCG -ACGGAAAAGCCTAAGGACATGCCA -ACGGAAAAGCCTCAGAAGGGAAAC -ACGGAAAAGCCTCAGAAGAACACC -ACGGAAAAGCCTCAGAAGATCGAG -ACGGAAAAGCCTCAGAAGCTCCTT -ACGGAAAAGCCTCAGAAGCCTGTT -ACGGAAAAGCCTCAGAAGCGGTTT -ACGGAAAAGCCTCAGAAGGTGGTT -ACGGAAAAGCCTCAGAAGGCCTTT -ACGGAAAAGCCTCAGAAGGGTCTT -ACGGAAAAGCCTCAGAAGACGCTT -ACGGAAAAGCCTCAGAAGAGCGTT -ACGGAAAAGCCTCAGAAGTTCGTC -ACGGAAAAGCCTCAGAAGTCTCTC -ACGGAAAAGCCTCAGAAGTGGATC -ACGGAAAAGCCTCAGAAGCACTTC -ACGGAAAAGCCTCAGAAGGTACTC -ACGGAAAAGCCTCAGAAGGATGTC -ACGGAAAAGCCTCAGAAGACAGTC -ACGGAAAAGCCTCAGAAGTTGCTG -ACGGAAAAGCCTCAGAAGTCCATG -ACGGAAAAGCCTCAGAAGTGTGTG -ACGGAAAAGCCTCAGAAGCTAGTG -ACGGAAAAGCCTCAGAAGCATCTG -ACGGAAAAGCCTCAGAAGGAGTTG -ACGGAAAAGCCTCAGAAGAGACTG -ACGGAAAAGCCTCAGAAGTCGGTA -ACGGAAAAGCCTCAGAAGTGCCTA -ACGGAAAAGCCTCAGAAGCCACTA -ACGGAAAAGCCTCAGAAGGGAGTA -ACGGAAAAGCCTCAGAAGTCGTCT -ACGGAAAAGCCTCAGAAGTGCACT -ACGGAAAAGCCTCAGAAGCTGACT -ACGGAAAAGCCTCAGAAGCAACCT -ACGGAAAAGCCTCAGAAGGCTACT -ACGGAAAAGCCTCAGAAGGGATCT -ACGGAAAAGCCTCAGAAGAAGGCT -ACGGAAAAGCCTCAGAAGTCAACC -ACGGAAAAGCCTCAGAAGTGTTCC -ACGGAAAAGCCTCAGAAGATTCCC -ACGGAAAAGCCTCAGAAGTTCTCG -ACGGAAAAGCCTCAGAAGTAGACG -ACGGAAAAGCCTCAGAAGGTAACG -ACGGAAAAGCCTCAGAAGACTTCG -ACGGAAAAGCCTCAGAAGTACGCA -ACGGAAAAGCCTCAGAAGCTTGCA -ACGGAAAAGCCTCAGAAGCGAACA -ACGGAAAAGCCTCAGAAGCAGTCA -ACGGAAAAGCCTCAGAAGGATCCA -ACGGAAAAGCCTCAGAAGACGACA -ACGGAAAAGCCTCAGAAGAGCTCA -ACGGAAAAGCCTCAGAAGTCACGT -ACGGAAAAGCCTCAGAAGCGTAGT -ACGGAAAAGCCTCAGAAGGTCAGT -ACGGAAAAGCCTCAGAAGGAAGGT -ACGGAAAAGCCTCAGAAGAACCGT -ACGGAAAAGCCTCAGAAGTTGTGC -ACGGAAAAGCCTCAGAAGCTAAGC -ACGGAAAAGCCTCAGAAGACTAGC -ACGGAAAAGCCTCAGAAGAGATGC -ACGGAAAAGCCTCAGAAGTGAAGG -ACGGAAAAGCCTCAGAAGCAATGG -ACGGAAAAGCCTCAGAAGATGAGG -ACGGAAAAGCCTCAGAAGAATGGG -ACGGAAAAGCCTCAGAAGTCCTGA -ACGGAAAAGCCTCAGAAGTAGCGA -ACGGAAAAGCCTCAGAAGCACAGA -ACGGAAAAGCCTCAGAAGGCAAGA -ACGGAAAAGCCTCAGAAGGGTTGA -ACGGAAAAGCCTCAGAAGTCCGAT -ACGGAAAAGCCTCAGAAGTGGCAT -ACGGAAAAGCCTCAGAAGCGAGAT -ACGGAAAAGCCTCAGAAGTACCAC -ACGGAAAAGCCTCAGAAGCAGAAC -ACGGAAAAGCCTCAGAAGGTCTAC -ACGGAAAAGCCTCAGAAGACGTAC -ACGGAAAAGCCTCAGAAGAGTGAC -ACGGAAAAGCCTCAGAAGCTGTAG -ACGGAAAAGCCTCAGAAGCCTAAG -ACGGAAAAGCCTCAGAAGGTTCAG -ACGGAAAAGCCTCAGAAGGCATAG -ACGGAAAAGCCTCAGAAGGACAAG -ACGGAAAAGCCTCAGAAGAAGCAG -ACGGAAAAGCCTCAGAAGCGTCAA -ACGGAAAAGCCTCAGAAGGCTGAA -ACGGAAAAGCCTCAGAAGAGTACG -ACGGAAAAGCCTCAGAAGATCCGA -ACGGAAAAGCCTCAGAAGATGGGA -ACGGAAAAGCCTCAGAAGGTGCAA -ACGGAAAAGCCTCAGAAGGAGGAA -ACGGAAAAGCCTCAGAAGCAGGTA -ACGGAAAAGCCTCAGAAGGACTCT -ACGGAAAAGCCTCAGAAGAGTCCT -ACGGAAAAGCCTCAGAAGTAAGCC -ACGGAAAAGCCTCAGAAGATAGCC -ACGGAAAAGCCTCAGAAGTAACCG -ACGGAAAAGCCTCAGAAGATGCCA -ACGGAAAAGCCTCAACGTGGAAAC -ACGGAAAAGCCTCAACGTAACACC -ACGGAAAAGCCTCAACGTATCGAG -ACGGAAAAGCCTCAACGTCTCCTT -ACGGAAAAGCCTCAACGTCCTGTT -ACGGAAAAGCCTCAACGTCGGTTT -ACGGAAAAGCCTCAACGTGTGGTT -ACGGAAAAGCCTCAACGTGCCTTT -ACGGAAAAGCCTCAACGTGGTCTT -ACGGAAAAGCCTCAACGTACGCTT -ACGGAAAAGCCTCAACGTAGCGTT -ACGGAAAAGCCTCAACGTTTCGTC -ACGGAAAAGCCTCAACGTTCTCTC -ACGGAAAAGCCTCAACGTTGGATC -ACGGAAAAGCCTCAACGTCACTTC -ACGGAAAAGCCTCAACGTGTACTC -ACGGAAAAGCCTCAACGTGATGTC -ACGGAAAAGCCTCAACGTACAGTC -ACGGAAAAGCCTCAACGTTTGCTG -ACGGAAAAGCCTCAACGTTCCATG -ACGGAAAAGCCTCAACGTTGTGTG -ACGGAAAAGCCTCAACGTCTAGTG -ACGGAAAAGCCTCAACGTCATCTG -ACGGAAAAGCCTCAACGTGAGTTG -ACGGAAAAGCCTCAACGTAGACTG -ACGGAAAAGCCTCAACGTTCGGTA -ACGGAAAAGCCTCAACGTTGCCTA -ACGGAAAAGCCTCAACGTCCACTA -ACGGAAAAGCCTCAACGTGGAGTA -ACGGAAAAGCCTCAACGTTCGTCT -ACGGAAAAGCCTCAACGTTGCACT -ACGGAAAAGCCTCAACGTCTGACT -ACGGAAAAGCCTCAACGTCAACCT -ACGGAAAAGCCTCAACGTGCTACT -ACGGAAAAGCCTCAACGTGGATCT -ACGGAAAAGCCTCAACGTAAGGCT -ACGGAAAAGCCTCAACGTTCAACC -ACGGAAAAGCCTCAACGTTGTTCC -ACGGAAAAGCCTCAACGTATTCCC -ACGGAAAAGCCTCAACGTTTCTCG -ACGGAAAAGCCTCAACGTTAGACG -ACGGAAAAGCCTCAACGTGTAACG -ACGGAAAAGCCTCAACGTACTTCG -ACGGAAAAGCCTCAACGTTACGCA -ACGGAAAAGCCTCAACGTCTTGCA -ACGGAAAAGCCTCAACGTCGAACA -ACGGAAAAGCCTCAACGTCAGTCA -ACGGAAAAGCCTCAACGTGATCCA -ACGGAAAAGCCTCAACGTACGACA -ACGGAAAAGCCTCAACGTAGCTCA -ACGGAAAAGCCTCAACGTTCACGT -ACGGAAAAGCCTCAACGTCGTAGT -ACGGAAAAGCCTCAACGTGTCAGT -ACGGAAAAGCCTCAACGTGAAGGT -ACGGAAAAGCCTCAACGTAACCGT -ACGGAAAAGCCTCAACGTTTGTGC -ACGGAAAAGCCTCAACGTCTAAGC -ACGGAAAAGCCTCAACGTACTAGC -ACGGAAAAGCCTCAACGTAGATGC -ACGGAAAAGCCTCAACGTTGAAGG -ACGGAAAAGCCTCAACGTCAATGG -ACGGAAAAGCCTCAACGTATGAGG -ACGGAAAAGCCTCAACGTAATGGG -ACGGAAAAGCCTCAACGTTCCTGA -ACGGAAAAGCCTCAACGTTAGCGA -ACGGAAAAGCCTCAACGTCACAGA -ACGGAAAAGCCTCAACGTGCAAGA -ACGGAAAAGCCTCAACGTGGTTGA -ACGGAAAAGCCTCAACGTTCCGAT -ACGGAAAAGCCTCAACGTTGGCAT -ACGGAAAAGCCTCAACGTCGAGAT -ACGGAAAAGCCTCAACGTTACCAC -ACGGAAAAGCCTCAACGTCAGAAC -ACGGAAAAGCCTCAACGTGTCTAC -ACGGAAAAGCCTCAACGTACGTAC -ACGGAAAAGCCTCAACGTAGTGAC -ACGGAAAAGCCTCAACGTCTGTAG -ACGGAAAAGCCTCAACGTCCTAAG -ACGGAAAAGCCTCAACGTGTTCAG -ACGGAAAAGCCTCAACGTGCATAG -ACGGAAAAGCCTCAACGTGACAAG -ACGGAAAAGCCTCAACGTAAGCAG -ACGGAAAAGCCTCAACGTCGTCAA -ACGGAAAAGCCTCAACGTGCTGAA -ACGGAAAAGCCTCAACGTAGTACG -ACGGAAAAGCCTCAACGTATCCGA -ACGGAAAAGCCTCAACGTATGGGA -ACGGAAAAGCCTCAACGTGTGCAA -ACGGAAAAGCCTCAACGTGAGGAA -ACGGAAAAGCCTCAACGTCAGGTA -ACGGAAAAGCCTCAACGTGACTCT -ACGGAAAAGCCTCAACGTAGTCCT -ACGGAAAAGCCTCAACGTTAAGCC -ACGGAAAAGCCTCAACGTATAGCC -ACGGAAAAGCCTCAACGTTAACCG -ACGGAAAAGCCTCAACGTATGCCA -ACGGAAAAGCCTGAAGCTGGAAAC -ACGGAAAAGCCTGAAGCTAACACC -ACGGAAAAGCCTGAAGCTATCGAG -ACGGAAAAGCCTGAAGCTCTCCTT -ACGGAAAAGCCTGAAGCTCCTGTT -ACGGAAAAGCCTGAAGCTCGGTTT -ACGGAAAAGCCTGAAGCTGTGGTT -ACGGAAAAGCCTGAAGCTGCCTTT -ACGGAAAAGCCTGAAGCTGGTCTT -ACGGAAAAGCCTGAAGCTACGCTT -ACGGAAAAGCCTGAAGCTAGCGTT -ACGGAAAAGCCTGAAGCTTTCGTC -ACGGAAAAGCCTGAAGCTTCTCTC -ACGGAAAAGCCTGAAGCTTGGATC -ACGGAAAAGCCTGAAGCTCACTTC -ACGGAAAAGCCTGAAGCTGTACTC -ACGGAAAAGCCTGAAGCTGATGTC -ACGGAAAAGCCTGAAGCTACAGTC -ACGGAAAAGCCTGAAGCTTTGCTG -ACGGAAAAGCCTGAAGCTTCCATG -ACGGAAAAGCCTGAAGCTTGTGTG -ACGGAAAAGCCTGAAGCTCTAGTG -ACGGAAAAGCCTGAAGCTCATCTG -ACGGAAAAGCCTGAAGCTGAGTTG -ACGGAAAAGCCTGAAGCTAGACTG -ACGGAAAAGCCTGAAGCTTCGGTA -ACGGAAAAGCCTGAAGCTTGCCTA -ACGGAAAAGCCTGAAGCTCCACTA -ACGGAAAAGCCTGAAGCTGGAGTA -ACGGAAAAGCCTGAAGCTTCGTCT -ACGGAAAAGCCTGAAGCTTGCACT -ACGGAAAAGCCTGAAGCTCTGACT -ACGGAAAAGCCTGAAGCTCAACCT -ACGGAAAAGCCTGAAGCTGCTACT -ACGGAAAAGCCTGAAGCTGGATCT -ACGGAAAAGCCTGAAGCTAAGGCT -ACGGAAAAGCCTGAAGCTTCAACC -ACGGAAAAGCCTGAAGCTTGTTCC -ACGGAAAAGCCTGAAGCTATTCCC -ACGGAAAAGCCTGAAGCTTTCTCG -ACGGAAAAGCCTGAAGCTTAGACG -ACGGAAAAGCCTGAAGCTGTAACG -ACGGAAAAGCCTGAAGCTACTTCG -ACGGAAAAGCCTGAAGCTTACGCA -ACGGAAAAGCCTGAAGCTCTTGCA -ACGGAAAAGCCTGAAGCTCGAACA -ACGGAAAAGCCTGAAGCTCAGTCA -ACGGAAAAGCCTGAAGCTGATCCA -ACGGAAAAGCCTGAAGCTACGACA -ACGGAAAAGCCTGAAGCTAGCTCA -ACGGAAAAGCCTGAAGCTTCACGT -ACGGAAAAGCCTGAAGCTCGTAGT -ACGGAAAAGCCTGAAGCTGTCAGT -ACGGAAAAGCCTGAAGCTGAAGGT -ACGGAAAAGCCTGAAGCTAACCGT -ACGGAAAAGCCTGAAGCTTTGTGC -ACGGAAAAGCCTGAAGCTCTAAGC -ACGGAAAAGCCTGAAGCTACTAGC -ACGGAAAAGCCTGAAGCTAGATGC -ACGGAAAAGCCTGAAGCTTGAAGG -ACGGAAAAGCCTGAAGCTCAATGG -ACGGAAAAGCCTGAAGCTATGAGG -ACGGAAAAGCCTGAAGCTAATGGG -ACGGAAAAGCCTGAAGCTTCCTGA -ACGGAAAAGCCTGAAGCTTAGCGA -ACGGAAAAGCCTGAAGCTCACAGA -ACGGAAAAGCCTGAAGCTGCAAGA -ACGGAAAAGCCTGAAGCTGGTTGA -ACGGAAAAGCCTGAAGCTTCCGAT -ACGGAAAAGCCTGAAGCTTGGCAT -ACGGAAAAGCCTGAAGCTCGAGAT -ACGGAAAAGCCTGAAGCTTACCAC -ACGGAAAAGCCTGAAGCTCAGAAC -ACGGAAAAGCCTGAAGCTGTCTAC -ACGGAAAAGCCTGAAGCTACGTAC -ACGGAAAAGCCTGAAGCTAGTGAC -ACGGAAAAGCCTGAAGCTCTGTAG -ACGGAAAAGCCTGAAGCTCCTAAG -ACGGAAAAGCCTGAAGCTGTTCAG -ACGGAAAAGCCTGAAGCTGCATAG -ACGGAAAAGCCTGAAGCTGACAAG -ACGGAAAAGCCTGAAGCTAAGCAG -ACGGAAAAGCCTGAAGCTCGTCAA -ACGGAAAAGCCTGAAGCTGCTGAA -ACGGAAAAGCCTGAAGCTAGTACG -ACGGAAAAGCCTGAAGCTATCCGA -ACGGAAAAGCCTGAAGCTATGGGA -ACGGAAAAGCCTGAAGCTGTGCAA -ACGGAAAAGCCTGAAGCTGAGGAA -ACGGAAAAGCCTGAAGCTCAGGTA -ACGGAAAAGCCTGAAGCTGACTCT -ACGGAAAAGCCTGAAGCTAGTCCT -ACGGAAAAGCCTGAAGCTTAAGCC -ACGGAAAAGCCTGAAGCTATAGCC -ACGGAAAAGCCTGAAGCTTAACCG -ACGGAAAAGCCTGAAGCTATGCCA -ACGGAAAAGCCTACGAGTGGAAAC -ACGGAAAAGCCTACGAGTAACACC -ACGGAAAAGCCTACGAGTATCGAG -ACGGAAAAGCCTACGAGTCTCCTT -ACGGAAAAGCCTACGAGTCCTGTT -ACGGAAAAGCCTACGAGTCGGTTT -ACGGAAAAGCCTACGAGTGTGGTT -ACGGAAAAGCCTACGAGTGCCTTT -ACGGAAAAGCCTACGAGTGGTCTT -ACGGAAAAGCCTACGAGTACGCTT -ACGGAAAAGCCTACGAGTAGCGTT -ACGGAAAAGCCTACGAGTTTCGTC -ACGGAAAAGCCTACGAGTTCTCTC -ACGGAAAAGCCTACGAGTTGGATC -ACGGAAAAGCCTACGAGTCACTTC -ACGGAAAAGCCTACGAGTGTACTC -ACGGAAAAGCCTACGAGTGATGTC -ACGGAAAAGCCTACGAGTACAGTC -ACGGAAAAGCCTACGAGTTTGCTG -ACGGAAAAGCCTACGAGTTCCATG -ACGGAAAAGCCTACGAGTTGTGTG -ACGGAAAAGCCTACGAGTCTAGTG -ACGGAAAAGCCTACGAGTCATCTG -ACGGAAAAGCCTACGAGTGAGTTG -ACGGAAAAGCCTACGAGTAGACTG -ACGGAAAAGCCTACGAGTTCGGTA -ACGGAAAAGCCTACGAGTTGCCTA -ACGGAAAAGCCTACGAGTCCACTA -ACGGAAAAGCCTACGAGTGGAGTA -ACGGAAAAGCCTACGAGTTCGTCT -ACGGAAAAGCCTACGAGTTGCACT -ACGGAAAAGCCTACGAGTCTGACT -ACGGAAAAGCCTACGAGTCAACCT -ACGGAAAAGCCTACGAGTGCTACT -ACGGAAAAGCCTACGAGTGGATCT -ACGGAAAAGCCTACGAGTAAGGCT -ACGGAAAAGCCTACGAGTTCAACC -ACGGAAAAGCCTACGAGTTGTTCC -ACGGAAAAGCCTACGAGTATTCCC -ACGGAAAAGCCTACGAGTTTCTCG -ACGGAAAAGCCTACGAGTTAGACG -ACGGAAAAGCCTACGAGTGTAACG -ACGGAAAAGCCTACGAGTACTTCG -ACGGAAAAGCCTACGAGTTACGCA -ACGGAAAAGCCTACGAGTCTTGCA -ACGGAAAAGCCTACGAGTCGAACA -ACGGAAAAGCCTACGAGTCAGTCA -ACGGAAAAGCCTACGAGTGATCCA -ACGGAAAAGCCTACGAGTACGACA -ACGGAAAAGCCTACGAGTAGCTCA -ACGGAAAAGCCTACGAGTTCACGT -ACGGAAAAGCCTACGAGTCGTAGT -ACGGAAAAGCCTACGAGTGTCAGT -ACGGAAAAGCCTACGAGTGAAGGT -ACGGAAAAGCCTACGAGTAACCGT -ACGGAAAAGCCTACGAGTTTGTGC -ACGGAAAAGCCTACGAGTCTAAGC -ACGGAAAAGCCTACGAGTACTAGC -ACGGAAAAGCCTACGAGTAGATGC -ACGGAAAAGCCTACGAGTTGAAGG -ACGGAAAAGCCTACGAGTCAATGG -ACGGAAAAGCCTACGAGTATGAGG -ACGGAAAAGCCTACGAGTAATGGG -ACGGAAAAGCCTACGAGTTCCTGA -ACGGAAAAGCCTACGAGTTAGCGA -ACGGAAAAGCCTACGAGTCACAGA -ACGGAAAAGCCTACGAGTGCAAGA -ACGGAAAAGCCTACGAGTGGTTGA -ACGGAAAAGCCTACGAGTTCCGAT -ACGGAAAAGCCTACGAGTTGGCAT -ACGGAAAAGCCTACGAGTCGAGAT -ACGGAAAAGCCTACGAGTTACCAC -ACGGAAAAGCCTACGAGTCAGAAC -ACGGAAAAGCCTACGAGTGTCTAC -ACGGAAAAGCCTACGAGTACGTAC -ACGGAAAAGCCTACGAGTAGTGAC -ACGGAAAAGCCTACGAGTCTGTAG -ACGGAAAAGCCTACGAGTCCTAAG -ACGGAAAAGCCTACGAGTGTTCAG -ACGGAAAAGCCTACGAGTGCATAG -ACGGAAAAGCCTACGAGTGACAAG -ACGGAAAAGCCTACGAGTAAGCAG -ACGGAAAAGCCTACGAGTCGTCAA -ACGGAAAAGCCTACGAGTGCTGAA -ACGGAAAAGCCTACGAGTAGTACG -ACGGAAAAGCCTACGAGTATCCGA -ACGGAAAAGCCTACGAGTATGGGA -ACGGAAAAGCCTACGAGTGTGCAA -ACGGAAAAGCCTACGAGTGAGGAA -ACGGAAAAGCCTACGAGTCAGGTA -ACGGAAAAGCCTACGAGTGACTCT -ACGGAAAAGCCTACGAGTAGTCCT -ACGGAAAAGCCTACGAGTTAAGCC -ACGGAAAAGCCTACGAGTATAGCC -ACGGAAAAGCCTACGAGTTAACCG -ACGGAAAAGCCTACGAGTATGCCA -ACGGAAAAGCCTCGAATCGGAAAC -ACGGAAAAGCCTCGAATCAACACC -ACGGAAAAGCCTCGAATCATCGAG -ACGGAAAAGCCTCGAATCCTCCTT -ACGGAAAAGCCTCGAATCCCTGTT -ACGGAAAAGCCTCGAATCCGGTTT -ACGGAAAAGCCTCGAATCGTGGTT -ACGGAAAAGCCTCGAATCGCCTTT -ACGGAAAAGCCTCGAATCGGTCTT -ACGGAAAAGCCTCGAATCACGCTT -ACGGAAAAGCCTCGAATCAGCGTT -ACGGAAAAGCCTCGAATCTTCGTC -ACGGAAAAGCCTCGAATCTCTCTC -ACGGAAAAGCCTCGAATCTGGATC -ACGGAAAAGCCTCGAATCCACTTC -ACGGAAAAGCCTCGAATCGTACTC -ACGGAAAAGCCTCGAATCGATGTC -ACGGAAAAGCCTCGAATCACAGTC -ACGGAAAAGCCTCGAATCTTGCTG -ACGGAAAAGCCTCGAATCTCCATG -ACGGAAAAGCCTCGAATCTGTGTG -ACGGAAAAGCCTCGAATCCTAGTG -ACGGAAAAGCCTCGAATCCATCTG -ACGGAAAAGCCTCGAATCGAGTTG -ACGGAAAAGCCTCGAATCAGACTG -ACGGAAAAGCCTCGAATCTCGGTA -ACGGAAAAGCCTCGAATCTGCCTA -ACGGAAAAGCCTCGAATCCCACTA -ACGGAAAAGCCTCGAATCGGAGTA -ACGGAAAAGCCTCGAATCTCGTCT -ACGGAAAAGCCTCGAATCTGCACT -ACGGAAAAGCCTCGAATCCTGACT -ACGGAAAAGCCTCGAATCCAACCT -ACGGAAAAGCCTCGAATCGCTACT -ACGGAAAAGCCTCGAATCGGATCT -ACGGAAAAGCCTCGAATCAAGGCT -ACGGAAAAGCCTCGAATCTCAACC -ACGGAAAAGCCTCGAATCTGTTCC -ACGGAAAAGCCTCGAATCATTCCC -ACGGAAAAGCCTCGAATCTTCTCG -ACGGAAAAGCCTCGAATCTAGACG -ACGGAAAAGCCTCGAATCGTAACG -ACGGAAAAGCCTCGAATCACTTCG -ACGGAAAAGCCTCGAATCTACGCA -ACGGAAAAGCCTCGAATCCTTGCA -ACGGAAAAGCCTCGAATCCGAACA -ACGGAAAAGCCTCGAATCCAGTCA -ACGGAAAAGCCTCGAATCGATCCA -ACGGAAAAGCCTCGAATCACGACA -ACGGAAAAGCCTCGAATCAGCTCA -ACGGAAAAGCCTCGAATCTCACGT -ACGGAAAAGCCTCGAATCCGTAGT -ACGGAAAAGCCTCGAATCGTCAGT -ACGGAAAAGCCTCGAATCGAAGGT -ACGGAAAAGCCTCGAATCAACCGT -ACGGAAAAGCCTCGAATCTTGTGC -ACGGAAAAGCCTCGAATCCTAAGC -ACGGAAAAGCCTCGAATCACTAGC -ACGGAAAAGCCTCGAATCAGATGC -ACGGAAAAGCCTCGAATCTGAAGG -ACGGAAAAGCCTCGAATCCAATGG -ACGGAAAAGCCTCGAATCATGAGG -ACGGAAAAGCCTCGAATCAATGGG -ACGGAAAAGCCTCGAATCTCCTGA -ACGGAAAAGCCTCGAATCTAGCGA -ACGGAAAAGCCTCGAATCCACAGA -ACGGAAAAGCCTCGAATCGCAAGA -ACGGAAAAGCCTCGAATCGGTTGA -ACGGAAAAGCCTCGAATCTCCGAT -ACGGAAAAGCCTCGAATCTGGCAT -ACGGAAAAGCCTCGAATCCGAGAT -ACGGAAAAGCCTCGAATCTACCAC -ACGGAAAAGCCTCGAATCCAGAAC -ACGGAAAAGCCTCGAATCGTCTAC -ACGGAAAAGCCTCGAATCACGTAC -ACGGAAAAGCCTCGAATCAGTGAC -ACGGAAAAGCCTCGAATCCTGTAG -ACGGAAAAGCCTCGAATCCCTAAG -ACGGAAAAGCCTCGAATCGTTCAG -ACGGAAAAGCCTCGAATCGCATAG -ACGGAAAAGCCTCGAATCGACAAG -ACGGAAAAGCCTCGAATCAAGCAG -ACGGAAAAGCCTCGAATCCGTCAA -ACGGAAAAGCCTCGAATCGCTGAA -ACGGAAAAGCCTCGAATCAGTACG -ACGGAAAAGCCTCGAATCATCCGA -ACGGAAAAGCCTCGAATCATGGGA -ACGGAAAAGCCTCGAATCGTGCAA -ACGGAAAAGCCTCGAATCGAGGAA -ACGGAAAAGCCTCGAATCCAGGTA -ACGGAAAAGCCTCGAATCGACTCT -ACGGAAAAGCCTCGAATCAGTCCT -ACGGAAAAGCCTCGAATCTAAGCC -ACGGAAAAGCCTCGAATCATAGCC -ACGGAAAAGCCTCGAATCTAACCG -ACGGAAAAGCCTCGAATCATGCCA -ACGGAAAAGCCTGGAATGGGAAAC -ACGGAAAAGCCTGGAATGAACACC -ACGGAAAAGCCTGGAATGATCGAG -ACGGAAAAGCCTGGAATGCTCCTT -ACGGAAAAGCCTGGAATGCCTGTT -ACGGAAAAGCCTGGAATGCGGTTT -ACGGAAAAGCCTGGAATGGTGGTT -ACGGAAAAGCCTGGAATGGCCTTT -ACGGAAAAGCCTGGAATGGGTCTT -ACGGAAAAGCCTGGAATGACGCTT -ACGGAAAAGCCTGGAATGAGCGTT -ACGGAAAAGCCTGGAATGTTCGTC -ACGGAAAAGCCTGGAATGTCTCTC -ACGGAAAAGCCTGGAATGTGGATC -ACGGAAAAGCCTGGAATGCACTTC -ACGGAAAAGCCTGGAATGGTACTC -ACGGAAAAGCCTGGAATGGATGTC -ACGGAAAAGCCTGGAATGACAGTC -ACGGAAAAGCCTGGAATGTTGCTG -ACGGAAAAGCCTGGAATGTCCATG -ACGGAAAAGCCTGGAATGTGTGTG -ACGGAAAAGCCTGGAATGCTAGTG -ACGGAAAAGCCTGGAATGCATCTG -ACGGAAAAGCCTGGAATGGAGTTG -ACGGAAAAGCCTGGAATGAGACTG -ACGGAAAAGCCTGGAATGTCGGTA -ACGGAAAAGCCTGGAATGTGCCTA -ACGGAAAAGCCTGGAATGCCACTA -ACGGAAAAGCCTGGAATGGGAGTA -ACGGAAAAGCCTGGAATGTCGTCT -ACGGAAAAGCCTGGAATGTGCACT -ACGGAAAAGCCTGGAATGCTGACT -ACGGAAAAGCCTGGAATGCAACCT -ACGGAAAAGCCTGGAATGGCTACT -ACGGAAAAGCCTGGAATGGGATCT -ACGGAAAAGCCTGGAATGAAGGCT -ACGGAAAAGCCTGGAATGTCAACC -ACGGAAAAGCCTGGAATGTGTTCC -ACGGAAAAGCCTGGAATGATTCCC -ACGGAAAAGCCTGGAATGTTCTCG -ACGGAAAAGCCTGGAATGTAGACG -ACGGAAAAGCCTGGAATGGTAACG -ACGGAAAAGCCTGGAATGACTTCG -ACGGAAAAGCCTGGAATGTACGCA -ACGGAAAAGCCTGGAATGCTTGCA -ACGGAAAAGCCTGGAATGCGAACA -ACGGAAAAGCCTGGAATGCAGTCA -ACGGAAAAGCCTGGAATGGATCCA -ACGGAAAAGCCTGGAATGACGACA -ACGGAAAAGCCTGGAATGAGCTCA -ACGGAAAAGCCTGGAATGTCACGT -ACGGAAAAGCCTGGAATGCGTAGT -ACGGAAAAGCCTGGAATGGTCAGT -ACGGAAAAGCCTGGAATGGAAGGT -ACGGAAAAGCCTGGAATGAACCGT -ACGGAAAAGCCTGGAATGTTGTGC -ACGGAAAAGCCTGGAATGCTAAGC -ACGGAAAAGCCTGGAATGACTAGC -ACGGAAAAGCCTGGAATGAGATGC -ACGGAAAAGCCTGGAATGTGAAGG -ACGGAAAAGCCTGGAATGCAATGG -ACGGAAAAGCCTGGAATGATGAGG -ACGGAAAAGCCTGGAATGAATGGG -ACGGAAAAGCCTGGAATGTCCTGA -ACGGAAAAGCCTGGAATGTAGCGA -ACGGAAAAGCCTGGAATGCACAGA -ACGGAAAAGCCTGGAATGGCAAGA -ACGGAAAAGCCTGGAATGGGTTGA -ACGGAAAAGCCTGGAATGTCCGAT -ACGGAAAAGCCTGGAATGTGGCAT -ACGGAAAAGCCTGGAATGCGAGAT -ACGGAAAAGCCTGGAATGTACCAC -ACGGAAAAGCCTGGAATGCAGAAC -ACGGAAAAGCCTGGAATGGTCTAC -ACGGAAAAGCCTGGAATGACGTAC -ACGGAAAAGCCTGGAATGAGTGAC -ACGGAAAAGCCTGGAATGCTGTAG -ACGGAAAAGCCTGGAATGCCTAAG -ACGGAAAAGCCTGGAATGGTTCAG -ACGGAAAAGCCTGGAATGGCATAG -ACGGAAAAGCCTGGAATGGACAAG -ACGGAAAAGCCTGGAATGAAGCAG -ACGGAAAAGCCTGGAATGCGTCAA -ACGGAAAAGCCTGGAATGGCTGAA -ACGGAAAAGCCTGGAATGAGTACG -ACGGAAAAGCCTGGAATGATCCGA -ACGGAAAAGCCTGGAATGATGGGA -ACGGAAAAGCCTGGAATGGTGCAA -ACGGAAAAGCCTGGAATGGAGGAA -ACGGAAAAGCCTGGAATGCAGGTA -ACGGAAAAGCCTGGAATGGACTCT -ACGGAAAAGCCTGGAATGAGTCCT -ACGGAAAAGCCTGGAATGTAAGCC -ACGGAAAAGCCTGGAATGATAGCC -ACGGAAAAGCCTGGAATGTAACCG -ACGGAAAAGCCTGGAATGATGCCA -ACGGAAAAGCCTCAAGTGGGAAAC -ACGGAAAAGCCTCAAGTGAACACC -ACGGAAAAGCCTCAAGTGATCGAG -ACGGAAAAGCCTCAAGTGCTCCTT -ACGGAAAAGCCTCAAGTGCCTGTT -ACGGAAAAGCCTCAAGTGCGGTTT -ACGGAAAAGCCTCAAGTGGTGGTT -ACGGAAAAGCCTCAAGTGGCCTTT -ACGGAAAAGCCTCAAGTGGGTCTT -ACGGAAAAGCCTCAAGTGACGCTT -ACGGAAAAGCCTCAAGTGAGCGTT -ACGGAAAAGCCTCAAGTGTTCGTC -ACGGAAAAGCCTCAAGTGTCTCTC -ACGGAAAAGCCTCAAGTGTGGATC -ACGGAAAAGCCTCAAGTGCACTTC -ACGGAAAAGCCTCAAGTGGTACTC -ACGGAAAAGCCTCAAGTGGATGTC -ACGGAAAAGCCTCAAGTGACAGTC -ACGGAAAAGCCTCAAGTGTTGCTG -ACGGAAAAGCCTCAAGTGTCCATG -ACGGAAAAGCCTCAAGTGTGTGTG -ACGGAAAAGCCTCAAGTGCTAGTG -ACGGAAAAGCCTCAAGTGCATCTG -ACGGAAAAGCCTCAAGTGGAGTTG -ACGGAAAAGCCTCAAGTGAGACTG -ACGGAAAAGCCTCAAGTGTCGGTA -ACGGAAAAGCCTCAAGTGTGCCTA -ACGGAAAAGCCTCAAGTGCCACTA -ACGGAAAAGCCTCAAGTGGGAGTA -ACGGAAAAGCCTCAAGTGTCGTCT -ACGGAAAAGCCTCAAGTGTGCACT -ACGGAAAAGCCTCAAGTGCTGACT -ACGGAAAAGCCTCAAGTGCAACCT -ACGGAAAAGCCTCAAGTGGCTACT -ACGGAAAAGCCTCAAGTGGGATCT -ACGGAAAAGCCTCAAGTGAAGGCT -ACGGAAAAGCCTCAAGTGTCAACC -ACGGAAAAGCCTCAAGTGTGTTCC -ACGGAAAAGCCTCAAGTGATTCCC -ACGGAAAAGCCTCAAGTGTTCTCG -ACGGAAAAGCCTCAAGTGTAGACG -ACGGAAAAGCCTCAAGTGGTAACG -ACGGAAAAGCCTCAAGTGACTTCG -ACGGAAAAGCCTCAAGTGTACGCA -ACGGAAAAGCCTCAAGTGCTTGCA -ACGGAAAAGCCTCAAGTGCGAACA -ACGGAAAAGCCTCAAGTGCAGTCA -ACGGAAAAGCCTCAAGTGGATCCA -ACGGAAAAGCCTCAAGTGACGACA -ACGGAAAAGCCTCAAGTGAGCTCA -ACGGAAAAGCCTCAAGTGTCACGT -ACGGAAAAGCCTCAAGTGCGTAGT -ACGGAAAAGCCTCAAGTGGTCAGT -ACGGAAAAGCCTCAAGTGGAAGGT -ACGGAAAAGCCTCAAGTGAACCGT -ACGGAAAAGCCTCAAGTGTTGTGC -ACGGAAAAGCCTCAAGTGCTAAGC -ACGGAAAAGCCTCAAGTGACTAGC -ACGGAAAAGCCTCAAGTGAGATGC -ACGGAAAAGCCTCAAGTGTGAAGG -ACGGAAAAGCCTCAAGTGCAATGG -ACGGAAAAGCCTCAAGTGATGAGG -ACGGAAAAGCCTCAAGTGAATGGG -ACGGAAAAGCCTCAAGTGTCCTGA -ACGGAAAAGCCTCAAGTGTAGCGA -ACGGAAAAGCCTCAAGTGCACAGA -ACGGAAAAGCCTCAAGTGGCAAGA -ACGGAAAAGCCTCAAGTGGGTTGA -ACGGAAAAGCCTCAAGTGTCCGAT -ACGGAAAAGCCTCAAGTGTGGCAT -ACGGAAAAGCCTCAAGTGCGAGAT -ACGGAAAAGCCTCAAGTGTACCAC -ACGGAAAAGCCTCAAGTGCAGAAC -ACGGAAAAGCCTCAAGTGGTCTAC -ACGGAAAAGCCTCAAGTGACGTAC -ACGGAAAAGCCTCAAGTGAGTGAC -ACGGAAAAGCCTCAAGTGCTGTAG -ACGGAAAAGCCTCAAGTGCCTAAG -ACGGAAAAGCCTCAAGTGGTTCAG -ACGGAAAAGCCTCAAGTGGCATAG -ACGGAAAAGCCTCAAGTGGACAAG -ACGGAAAAGCCTCAAGTGAAGCAG -ACGGAAAAGCCTCAAGTGCGTCAA -ACGGAAAAGCCTCAAGTGGCTGAA -ACGGAAAAGCCTCAAGTGAGTACG -ACGGAAAAGCCTCAAGTGATCCGA -ACGGAAAAGCCTCAAGTGATGGGA -ACGGAAAAGCCTCAAGTGGTGCAA -ACGGAAAAGCCTCAAGTGGAGGAA -ACGGAAAAGCCTCAAGTGCAGGTA -ACGGAAAAGCCTCAAGTGGACTCT -ACGGAAAAGCCTCAAGTGAGTCCT -ACGGAAAAGCCTCAAGTGTAAGCC -ACGGAAAAGCCTCAAGTGATAGCC -ACGGAAAAGCCTCAAGTGTAACCG -ACGGAAAAGCCTCAAGTGATGCCA -ACGGAAAAGCCTGAAGAGGGAAAC -ACGGAAAAGCCTGAAGAGAACACC -ACGGAAAAGCCTGAAGAGATCGAG -ACGGAAAAGCCTGAAGAGCTCCTT -ACGGAAAAGCCTGAAGAGCCTGTT -ACGGAAAAGCCTGAAGAGCGGTTT -ACGGAAAAGCCTGAAGAGGTGGTT -ACGGAAAAGCCTGAAGAGGCCTTT -ACGGAAAAGCCTGAAGAGGGTCTT -ACGGAAAAGCCTGAAGAGACGCTT -ACGGAAAAGCCTGAAGAGAGCGTT -ACGGAAAAGCCTGAAGAGTTCGTC -ACGGAAAAGCCTGAAGAGTCTCTC -ACGGAAAAGCCTGAAGAGTGGATC -ACGGAAAAGCCTGAAGAGCACTTC -ACGGAAAAGCCTGAAGAGGTACTC -ACGGAAAAGCCTGAAGAGGATGTC -ACGGAAAAGCCTGAAGAGACAGTC -ACGGAAAAGCCTGAAGAGTTGCTG -ACGGAAAAGCCTGAAGAGTCCATG -ACGGAAAAGCCTGAAGAGTGTGTG -ACGGAAAAGCCTGAAGAGCTAGTG -ACGGAAAAGCCTGAAGAGCATCTG -ACGGAAAAGCCTGAAGAGGAGTTG -ACGGAAAAGCCTGAAGAGAGACTG -ACGGAAAAGCCTGAAGAGTCGGTA -ACGGAAAAGCCTGAAGAGTGCCTA -ACGGAAAAGCCTGAAGAGCCACTA -ACGGAAAAGCCTGAAGAGGGAGTA -ACGGAAAAGCCTGAAGAGTCGTCT -ACGGAAAAGCCTGAAGAGTGCACT -ACGGAAAAGCCTGAAGAGCTGACT -ACGGAAAAGCCTGAAGAGCAACCT -ACGGAAAAGCCTGAAGAGGCTACT -ACGGAAAAGCCTGAAGAGGGATCT -ACGGAAAAGCCTGAAGAGAAGGCT -ACGGAAAAGCCTGAAGAGTCAACC -ACGGAAAAGCCTGAAGAGTGTTCC -ACGGAAAAGCCTGAAGAGATTCCC -ACGGAAAAGCCTGAAGAGTTCTCG -ACGGAAAAGCCTGAAGAGTAGACG -ACGGAAAAGCCTGAAGAGGTAACG -ACGGAAAAGCCTGAAGAGACTTCG -ACGGAAAAGCCTGAAGAGTACGCA -ACGGAAAAGCCTGAAGAGCTTGCA -ACGGAAAAGCCTGAAGAGCGAACA -ACGGAAAAGCCTGAAGAGCAGTCA -ACGGAAAAGCCTGAAGAGGATCCA -ACGGAAAAGCCTGAAGAGACGACA -ACGGAAAAGCCTGAAGAGAGCTCA -ACGGAAAAGCCTGAAGAGTCACGT -ACGGAAAAGCCTGAAGAGCGTAGT -ACGGAAAAGCCTGAAGAGGTCAGT -ACGGAAAAGCCTGAAGAGGAAGGT -ACGGAAAAGCCTGAAGAGAACCGT -ACGGAAAAGCCTGAAGAGTTGTGC -ACGGAAAAGCCTGAAGAGCTAAGC -ACGGAAAAGCCTGAAGAGACTAGC -ACGGAAAAGCCTGAAGAGAGATGC -ACGGAAAAGCCTGAAGAGTGAAGG -ACGGAAAAGCCTGAAGAGCAATGG -ACGGAAAAGCCTGAAGAGATGAGG -ACGGAAAAGCCTGAAGAGAATGGG -ACGGAAAAGCCTGAAGAGTCCTGA -ACGGAAAAGCCTGAAGAGTAGCGA -ACGGAAAAGCCTGAAGAGCACAGA -ACGGAAAAGCCTGAAGAGGCAAGA -ACGGAAAAGCCTGAAGAGGGTTGA -ACGGAAAAGCCTGAAGAGTCCGAT -ACGGAAAAGCCTGAAGAGTGGCAT -ACGGAAAAGCCTGAAGAGCGAGAT -ACGGAAAAGCCTGAAGAGTACCAC -ACGGAAAAGCCTGAAGAGCAGAAC -ACGGAAAAGCCTGAAGAGGTCTAC -ACGGAAAAGCCTGAAGAGACGTAC -ACGGAAAAGCCTGAAGAGAGTGAC -ACGGAAAAGCCTGAAGAGCTGTAG -ACGGAAAAGCCTGAAGAGCCTAAG -ACGGAAAAGCCTGAAGAGGTTCAG -ACGGAAAAGCCTGAAGAGGCATAG -ACGGAAAAGCCTGAAGAGGACAAG -ACGGAAAAGCCTGAAGAGAAGCAG -ACGGAAAAGCCTGAAGAGCGTCAA -ACGGAAAAGCCTGAAGAGGCTGAA -ACGGAAAAGCCTGAAGAGAGTACG -ACGGAAAAGCCTGAAGAGATCCGA -ACGGAAAAGCCTGAAGAGATGGGA -ACGGAAAAGCCTGAAGAGGTGCAA -ACGGAAAAGCCTGAAGAGGAGGAA -ACGGAAAAGCCTGAAGAGCAGGTA -ACGGAAAAGCCTGAAGAGGACTCT -ACGGAAAAGCCTGAAGAGAGTCCT -ACGGAAAAGCCTGAAGAGTAAGCC -ACGGAAAAGCCTGAAGAGATAGCC -ACGGAAAAGCCTGAAGAGTAACCG -ACGGAAAAGCCTGAAGAGATGCCA -ACGGAAAAGCCTGTACAGGGAAAC -ACGGAAAAGCCTGTACAGAACACC -ACGGAAAAGCCTGTACAGATCGAG -ACGGAAAAGCCTGTACAGCTCCTT -ACGGAAAAGCCTGTACAGCCTGTT -ACGGAAAAGCCTGTACAGCGGTTT -ACGGAAAAGCCTGTACAGGTGGTT -ACGGAAAAGCCTGTACAGGCCTTT -ACGGAAAAGCCTGTACAGGGTCTT -ACGGAAAAGCCTGTACAGACGCTT -ACGGAAAAGCCTGTACAGAGCGTT -ACGGAAAAGCCTGTACAGTTCGTC -ACGGAAAAGCCTGTACAGTCTCTC -ACGGAAAAGCCTGTACAGTGGATC -ACGGAAAAGCCTGTACAGCACTTC -ACGGAAAAGCCTGTACAGGTACTC -ACGGAAAAGCCTGTACAGGATGTC -ACGGAAAAGCCTGTACAGACAGTC -ACGGAAAAGCCTGTACAGTTGCTG -ACGGAAAAGCCTGTACAGTCCATG -ACGGAAAAGCCTGTACAGTGTGTG -ACGGAAAAGCCTGTACAGCTAGTG -ACGGAAAAGCCTGTACAGCATCTG -ACGGAAAAGCCTGTACAGGAGTTG -ACGGAAAAGCCTGTACAGAGACTG -ACGGAAAAGCCTGTACAGTCGGTA -ACGGAAAAGCCTGTACAGTGCCTA -ACGGAAAAGCCTGTACAGCCACTA -ACGGAAAAGCCTGTACAGGGAGTA -ACGGAAAAGCCTGTACAGTCGTCT -ACGGAAAAGCCTGTACAGTGCACT -ACGGAAAAGCCTGTACAGCTGACT -ACGGAAAAGCCTGTACAGCAACCT -ACGGAAAAGCCTGTACAGGCTACT -ACGGAAAAGCCTGTACAGGGATCT -ACGGAAAAGCCTGTACAGAAGGCT -ACGGAAAAGCCTGTACAGTCAACC -ACGGAAAAGCCTGTACAGTGTTCC -ACGGAAAAGCCTGTACAGATTCCC -ACGGAAAAGCCTGTACAGTTCTCG -ACGGAAAAGCCTGTACAGTAGACG -ACGGAAAAGCCTGTACAGGTAACG -ACGGAAAAGCCTGTACAGACTTCG -ACGGAAAAGCCTGTACAGTACGCA -ACGGAAAAGCCTGTACAGCTTGCA -ACGGAAAAGCCTGTACAGCGAACA -ACGGAAAAGCCTGTACAGCAGTCA -ACGGAAAAGCCTGTACAGGATCCA -ACGGAAAAGCCTGTACAGACGACA -ACGGAAAAGCCTGTACAGAGCTCA -ACGGAAAAGCCTGTACAGTCACGT -ACGGAAAAGCCTGTACAGCGTAGT -ACGGAAAAGCCTGTACAGGTCAGT -ACGGAAAAGCCTGTACAGGAAGGT -ACGGAAAAGCCTGTACAGAACCGT -ACGGAAAAGCCTGTACAGTTGTGC -ACGGAAAAGCCTGTACAGCTAAGC -ACGGAAAAGCCTGTACAGACTAGC -ACGGAAAAGCCTGTACAGAGATGC -ACGGAAAAGCCTGTACAGTGAAGG -ACGGAAAAGCCTGTACAGCAATGG -ACGGAAAAGCCTGTACAGATGAGG -ACGGAAAAGCCTGTACAGAATGGG -ACGGAAAAGCCTGTACAGTCCTGA -ACGGAAAAGCCTGTACAGTAGCGA -ACGGAAAAGCCTGTACAGCACAGA -ACGGAAAAGCCTGTACAGGCAAGA -ACGGAAAAGCCTGTACAGGGTTGA -ACGGAAAAGCCTGTACAGTCCGAT -ACGGAAAAGCCTGTACAGTGGCAT -ACGGAAAAGCCTGTACAGCGAGAT -ACGGAAAAGCCTGTACAGTACCAC -ACGGAAAAGCCTGTACAGCAGAAC -ACGGAAAAGCCTGTACAGGTCTAC -ACGGAAAAGCCTGTACAGACGTAC -ACGGAAAAGCCTGTACAGAGTGAC -ACGGAAAAGCCTGTACAGCTGTAG -ACGGAAAAGCCTGTACAGCCTAAG -ACGGAAAAGCCTGTACAGGTTCAG -ACGGAAAAGCCTGTACAGGCATAG -ACGGAAAAGCCTGTACAGGACAAG -ACGGAAAAGCCTGTACAGAAGCAG -ACGGAAAAGCCTGTACAGCGTCAA -ACGGAAAAGCCTGTACAGGCTGAA -ACGGAAAAGCCTGTACAGAGTACG -ACGGAAAAGCCTGTACAGATCCGA -ACGGAAAAGCCTGTACAGATGGGA -ACGGAAAAGCCTGTACAGGTGCAA -ACGGAAAAGCCTGTACAGGAGGAA -ACGGAAAAGCCTGTACAGCAGGTA -ACGGAAAAGCCTGTACAGGACTCT -ACGGAAAAGCCTGTACAGAGTCCT -ACGGAAAAGCCTGTACAGTAAGCC -ACGGAAAAGCCTGTACAGATAGCC -ACGGAAAAGCCTGTACAGTAACCG -ACGGAAAAGCCTGTACAGATGCCA -ACGGAAAAGCCTTCTGACGGAAAC -ACGGAAAAGCCTTCTGACAACACC -ACGGAAAAGCCTTCTGACATCGAG -ACGGAAAAGCCTTCTGACCTCCTT -ACGGAAAAGCCTTCTGACCCTGTT -ACGGAAAAGCCTTCTGACCGGTTT -ACGGAAAAGCCTTCTGACGTGGTT -ACGGAAAAGCCTTCTGACGCCTTT -ACGGAAAAGCCTTCTGACGGTCTT -ACGGAAAAGCCTTCTGACACGCTT -ACGGAAAAGCCTTCTGACAGCGTT -ACGGAAAAGCCTTCTGACTTCGTC -ACGGAAAAGCCTTCTGACTCTCTC -ACGGAAAAGCCTTCTGACTGGATC -ACGGAAAAGCCTTCTGACCACTTC -ACGGAAAAGCCTTCTGACGTACTC -ACGGAAAAGCCTTCTGACGATGTC -ACGGAAAAGCCTTCTGACACAGTC -ACGGAAAAGCCTTCTGACTTGCTG -ACGGAAAAGCCTTCTGACTCCATG -ACGGAAAAGCCTTCTGACTGTGTG -ACGGAAAAGCCTTCTGACCTAGTG -ACGGAAAAGCCTTCTGACCATCTG -ACGGAAAAGCCTTCTGACGAGTTG -ACGGAAAAGCCTTCTGACAGACTG -ACGGAAAAGCCTTCTGACTCGGTA -ACGGAAAAGCCTTCTGACTGCCTA -ACGGAAAAGCCTTCTGACCCACTA -ACGGAAAAGCCTTCTGACGGAGTA -ACGGAAAAGCCTTCTGACTCGTCT -ACGGAAAAGCCTTCTGACTGCACT -ACGGAAAAGCCTTCTGACCTGACT -ACGGAAAAGCCTTCTGACCAACCT -ACGGAAAAGCCTTCTGACGCTACT -ACGGAAAAGCCTTCTGACGGATCT -ACGGAAAAGCCTTCTGACAAGGCT -ACGGAAAAGCCTTCTGACTCAACC -ACGGAAAAGCCTTCTGACTGTTCC -ACGGAAAAGCCTTCTGACATTCCC -ACGGAAAAGCCTTCTGACTTCTCG -ACGGAAAAGCCTTCTGACTAGACG -ACGGAAAAGCCTTCTGACGTAACG -ACGGAAAAGCCTTCTGACACTTCG -ACGGAAAAGCCTTCTGACTACGCA -ACGGAAAAGCCTTCTGACCTTGCA -ACGGAAAAGCCTTCTGACCGAACA -ACGGAAAAGCCTTCTGACCAGTCA -ACGGAAAAGCCTTCTGACGATCCA -ACGGAAAAGCCTTCTGACACGACA -ACGGAAAAGCCTTCTGACAGCTCA -ACGGAAAAGCCTTCTGACTCACGT -ACGGAAAAGCCTTCTGACCGTAGT -ACGGAAAAGCCTTCTGACGTCAGT -ACGGAAAAGCCTTCTGACGAAGGT -ACGGAAAAGCCTTCTGACAACCGT -ACGGAAAAGCCTTCTGACTTGTGC -ACGGAAAAGCCTTCTGACCTAAGC -ACGGAAAAGCCTTCTGACACTAGC -ACGGAAAAGCCTTCTGACAGATGC -ACGGAAAAGCCTTCTGACTGAAGG -ACGGAAAAGCCTTCTGACCAATGG -ACGGAAAAGCCTTCTGACATGAGG -ACGGAAAAGCCTTCTGACAATGGG -ACGGAAAAGCCTTCTGACTCCTGA -ACGGAAAAGCCTTCTGACTAGCGA -ACGGAAAAGCCTTCTGACCACAGA -ACGGAAAAGCCTTCTGACGCAAGA -ACGGAAAAGCCTTCTGACGGTTGA -ACGGAAAAGCCTTCTGACTCCGAT -ACGGAAAAGCCTTCTGACTGGCAT -ACGGAAAAGCCTTCTGACCGAGAT -ACGGAAAAGCCTTCTGACTACCAC -ACGGAAAAGCCTTCTGACCAGAAC -ACGGAAAAGCCTTCTGACGTCTAC -ACGGAAAAGCCTTCTGACACGTAC -ACGGAAAAGCCTTCTGACAGTGAC -ACGGAAAAGCCTTCTGACCTGTAG -ACGGAAAAGCCTTCTGACCCTAAG -ACGGAAAAGCCTTCTGACGTTCAG -ACGGAAAAGCCTTCTGACGCATAG -ACGGAAAAGCCTTCTGACGACAAG -ACGGAAAAGCCTTCTGACAAGCAG -ACGGAAAAGCCTTCTGACCGTCAA -ACGGAAAAGCCTTCTGACGCTGAA -ACGGAAAAGCCTTCTGACAGTACG -ACGGAAAAGCCTTCTGACATCCGA -ACGGAAAAGCCTTCTGACATGGGA -ACGGAAAAGCCTTCTGACGTGCAA -ACGGAAAAGCCTTCTGACGAGGAA -ACGGAAAAGCCTTCTGACCAGGTA -ACGGAAAAGCCTTCTGACGACTCT -ACGGAAAAGCCTTCTGACAGTCCT -ACGGAAAAGCCTTCTGACTAAGCC -ACGGAAAAGCCTTCTGACATAGCC -ACGGAAAAGCCTTCTGACTAACCG -ACGGAAAAGCCTTCTGACATGCCA -ACGGAAAAGCCTCCTAGTGGAAAC -ACGGAAAAGCCTCCTAGTAACACC -ACGGAAAAGCCTCCTAGTATCGAG -ACGGAAAAGCCTCCTAGTCTCCTT -ACGGAAAAGCCTCCTAGTCCTGTT -ACGGAAAAGCCTCCTAGTCGGTTT -ACGGAAAAGCCTCCTAGTGTGGTT -ACGGAAAAGCCTCCTAGTGCCTTT -ACGGAAAAGCCTCCTAGTGGTCTT -ACGGAAAAGCCTCCTAGTACGCTT -ACGGAAAAGCCTCCTAGTAGCGTT -ACGGAAAAGCCTCCTAGTTTCGTC -ACGGAAAAGCCTCCTAGTTCTCTC -ACGGAAAAGCCTCCTAGTTGGATC -ACGGAAAAGCCTCCTAGTCACTTC -ACGGAAAAGCCTCCTAGTGTACTC -ACGGAAAAGCCTCCTAGTGATGTC -ACGGAAAAGCCTCCTAGTACAGTC -ACGGAAAAGCCTCCTAGTTTGCTG -ACGGAAAAGCCTCCTAGTTCCATG -ACGGAAAAGCCTCCTAGTTGTGTG -ACGGAAAAGCCTCCTAGTCTAGTG -ACGGAAAAGCCTCCTAGTCATCTG -ACGGAAAAGCCTCCTAGTGAGTTG -ACGGAAAAGCCTCCTAGTAGACTG -ACGGAAAAGCCTCCTAGTTCGGTA -ACGGAAAAGCCTCCTAGTTGCCTA -ACGGAAAAGCCTCCTAGTCCACTA -ACGGAAAAGCCTCCTAGTGGAGTA -ACGGAAAAGCCTCCTAGTTCGTCT -ACGGAAAAGCCTCCTAGTTGCACT -ACGGAAAAGCCTCCTAGTCTGACT -ACGGAAAAGCCTCCTAGTCAACCT -ACGGAAAAGCCTCCTAGTGCTACT -ACGGAAAAGCCTCCTAGTGGATCT -ACGGAAAAGCCTCCTAGTAAGGCT -ACGGAAAAGCCTCCTAGTTCAACC -ACGGAAAAGCCTCCTAGTTGTTCC -ACGGAAAAGCCTCCTAGTATTCCC -ACGGAAAAGCCTCCTAGTTTCTCG -ACGGAAAAGCCTCCTAGTTAGACG -ACGGAAAAGCCTCCTAGTGTAACG -ACGGAAAAGCCTCCTAGTACTTCG -ACGGAAAAGCCTCCTAGTTACGCA -ACGGAAAAGCCTCCTAGTCTTGCA -ACGGAAAAGCCTCCTAGTCGAACA -ACGGAAAAGCCTCCTAGTCAGTCA -ACGGAAAAGCCTCCTAGTGATCCA -ACGGAAAAGCCTCCTAGTACGACA -ACGGAAAAGCCTCCTAGTAGCTCA -ACGGAAAAGCCTCCTAGTTCACGT -ACGGAAAAGCCTCCTAGTCGTAGT -ACGGAAAAGCCTCCTAGTGTCAGT -ACGGAAAAGCCTCCTAGTGAAGGT -ACGGAAAAGCCTCCTAGTAACCGT -ACGGAAAAGCCTCCTAGTTTGTGC -ACGGAAAAGCCTCCTAGTCTAAGC -ACGGAAAAGCCTCCTAGTACTAGC -ACGGAAAAGCCTCCTAGTAGATGC -ACGGAAAAGCCTCCTAGTTGAAGG -ACGGAAAAGCCTCCTAGTCAATGG -ACGGAAAAGCCTCCTAGTATGAGG -ACGGAAAAGCCTCCTAGTAATGGG -ACGGAAAAGCCTCCTAGTTCCTGA -ACGGAAAAGCCTCCTAGTTAGCGA -ACGGAAAAGCCTCCTAGTCACAGA -ACGGAAAAGCCTCCTAGTGCAAGA -ACGGAAAAGCCTCCTAGTGGTTGA -ACGGAAAAGCCTCCTAGTTCCGAT -ACGGAAAAGCCTCCTAGTTGGCAT -ACGGAAAAGCCTCCTAGTCGAGAT -ACGGAAAAGCCTCCTAGTTACCAC -ACGGAAAAGCCTCCTAGTCAGAAC -ACGGAAAAGCCTCCTAGTGTCTAC -ACGGAAAAGCCTCCTAGTACGTAC -ACGGAAAAGCCTCCTAGTAGTGAC -ACGGAAAAGCCTCCTAGTCTGTAG -ACGGAAAAGCCTCCTAGTCCTAAG -ACGGAAAAGCCTCCTAGTGTTCAG -ACGGAAAAGCCTCCTAGTGCATAG -ACGGAAAAGCCTCCTAGTGACAAG -ACGGAAAAGCCTCCTAGTAAGCAG -ACGGAAAAGCCTCCTAGTCGTCAA -ACGGAAAAGCCTCCTAGTGCTGAA -ACGGAAAAGCCTCCTAGTAGTACG -ACGGAAAAGCCTCCTAGTATCCGA -ACGGAAAAGCCTCCTAGTATGGGA -ACGGAAAAGCCTCCTAGTGTGCAA -ACGGAAAAGCCTCCTAGTGAGGAA -ACGGAAAAGCCTCCTAGTCAGGTA -ACGGAAAAGCCTCCTAGTGACTCT -ACGGAAAAGCCTCCTAGTAGTCCT -ACGGAAAAGCCTCCTAGTTAAGCC -ACGGAAAAGCCTCCTAGTATAGCC -ACGGAAAAGCCTCCTAGTTAACCG -ACGGAAAAGCCTCCTAGTATGCCA -ACGGAAAAGCCTGCCTAAGGAAAC -ACGGAAAAGCCTGCCTAAAACACC -ACGGAAAAGCCTGCCTAAATCGAG -ACGGAAAAGCCTGCCTAACTCCTT -ACGGAAAAGCCTGCCTAACCTGTT -ACGGAAAAGCCTGCCTAACGGTTT -ACGGAAAAGCCTGCCTAAGTGGTT -ACGGAAAAGCCTGCCTAAGCCTTT -ACGGAAAAGCCTGCCTAAGGTCTT -ACGGAAAAGCCTGCCTAAACGCTT -ACGGAAAAGCCTGCCTAAAGCGTT -ACGGAAAAGCCTGCCTAATTCGTC -ACGGAAAAGCCTGCCTAATCTCTC -ACGGAAAAGCCTGCCTAATGGATC -ACGGAAAAGCCTGCCTAACACTTC -ACGGAAAAGCCTGCCTAAGTACTC -ACGGAAAAGCCTGCCTAAGATGTC -ACGGAAAAGCCTGCCTAAACAGTC -ACGGAAAAGCCTGCCTAATTGCTG -ACGGAAAAGCCTGCCTAATCCATG -ACGGAAAAGCCTGCCTAATGTGTG -ACGGAAAAGCCTGCCTAACTAGTG -ACGGAAAAGCCTGCCTAACATCTG -ACGGAAAAGCCTGCCTAAGAGTTG -ACGGAAAAGCCTGCCTAAAGACTG -ACGGAAAAGCCTGCCTAATCGGTA -ACGGAAAAGCCTGCCTAATGCCTA -ACGGAAAAGCCTGCCTAACCACTA -ACGGAAAAGCCTGCCTAAGGAGTA -ACGGAAAAGCCTGCCTAATCGTCT -ACGGAAAAGCCTGCCTAATGCACT -ACGGAAAAGCCTGCCTAACTGACT -ACGGAAAAGCCTGCCTAACAACCT -ACGGAAAAGCCTGCCTAAGCTACT -ACGGAAAAGCCTGCCTAAGGATCT -ACGGAAAAGCCTGCCTAAAAGGCT -ACGGAAAAGCCTGCCTAATCAACC -ACGGAAAAGCCTGCCTAATGTTCC -ACGGAAAAGCCTGCCTAAATTCCC -ACGGAAAAGCCTGCCTAATTCTCG -ACGGAAAAGCCTGCCTAATAGACG -ACGGAAAAGCCTGCCTAAGTAACG -ACGGAAAAGCCTGCCTAAACTTCG -ACGGAAAAGCCTGCCTAATACGCA -ACGGAAAAGCCTGCCTAACTTGCA -ACGGAAAAGCCTGCCTAACGAACA -ACGGAAAAGCCTGCCTAACAGTCA -ACGGAAAAGCCTGCCTAAGATCCA -ACGGAAAAGCCTGCCTAAACGACA -ACGGAAAAGCCTGCCTAAAGCTCA -ACGGAAAAGCCTGCCTAATCACGT -ACGGAAAAGCCTGCCTAACGTAGT -ACGGAAAAGCCTGCCTAAGTCAGT -ACGGAAAAGCCTGCCTAAGAAGGT -ACGGAAAAGCCTGCCTAAAACCGT -ACGGAAAAGCCTGCCTAATTGTGC -ACGGAAAAGCCTGCCTAACTAAGC -ACGGAAAAGCCTGCCTAAACTAGC -ACGGAAAAGCCTGCCTAAAGATGC -ACGGAAAAGCCTGCCTAATGAAGG -ACGGAAAAGCCTGCCTAACAATGG -ACGGAAAAGCCTGCCTAAATGAGG -ACGGAAAAGCCTGCCTAAAATGGG -ACGGAAAAGCCTGCCTAATCCTGA -ACGGAAAAGCCTGCCTAATAGCGA -ACGGAAAAGCCTGCCTAACACAGA -ACGGAAAAGCCTGCCTAAGCAAGA -ACGGAAAAGCCTGCCTAAGGTTGA -ACGGAAAAGCCTGCCTAATCCGAT -ACGGAAAAGCCTGCCTAATGGCAT -ACGGAAAAGCCTGCCTAACGAGAT -ACGGAAAAGCCTGCCTAATACCAC -ACGGAAAAGCCTGCCTAACAGAAC -ACGGAAAAGCCTGCCTAAGTCTAC -ACGGAAAAGCCTGCCTAAACGTAC -ACGGAAAAGCCTGCCTAAAGTGAC -ACGGAAAAGCCTGCCTAACTGTAG -ACGGAAAAGCCTGCCTAACCTAAG -ACGGAAAAGCCTGCCTAAGTTCAG -ACGGAAAAGCCTGCCTAAGCATAG -ACGGAAAAGCCTGCCTAAGACAAG -ACGGAAAAGCCTGCCTAAAAGCAG -ACGGAAAAGCCTGCCTAACGTCAA -ACGGAAAAGCCTGCCTAAGCTGAA -ACGGAAAAGCCTGCCTAAAGTACG -ACGGAAAAGCCTGCCTAAATCCGA -ACGGAAAAGCCTGCCTAAATGGGA -ACGGAAAAGCCTGCCTAAGTGCAA -ACGGAAAAGCCTGCCTAAGAGGAA -ACGGAAAAGCCTGCCTAACAGGTA -ACGGAAAAGCCTGCCTAAGACTCT -ACGGAAAAGCCTGCCTAAAGTCCT -ACGGAAAAGCCTGCCTAATAAGCC -ACGGAAAAGCCTGCCTAAATAGCC -ACGGAAAAGCCTGCCTAATAACCG -ACGGAAAAGCCTGCCTAAATGCCA -ACGGAAAAGCCTGCCATAGGAAAC -ACGGAAAAGCCTGCCATAAACACC -ACGGAAAAGCCTGCCATAATCGAG -ACGGAAAAGCCTGCCATACTCCTT -ACGGAAAAGCCTGCCATACCTGTT -ACGGAAAAGCCTGCCATACGGTTT -ACGGAAAAGCCTGCCATAGTGGTT -ACGGAAAAGCCTGCCATAGCCTTT -ACGGAAAAGCCTGCCATAGGTCTT -ACGGAAAAGCCTGCCATAACGCTT -ACGGAAAAGCCTGCCATAAGCGTT -ACGGAAAAGCCTGCCATATTCGTC -ACGGAAAAGCCTGCCATATCTCTC -ACGGAAAAGCCTGCCATATGGATC -ACGGAAAAGCCTGCCATACACTTC -ACGGAAAAGCCTGCCATAGTACTC -ACGGAAAAGCCTGCCATAGATGTC -ACGGAAAAGCCTGCCATAACAGTC -ACGGAAAAGCCTGCCATATTGCTG -ACGGAAAAGCCTGCCATATCCATG -ACGGAAAAGCCTGCCATATGTGTG -ACGGAAAAGCCTGCCATACTAGTG -ACGGAAAAGCCTGCCATACATCTG -ACGGAAAAGCCTGCCATAGAGTTG -ACGGAAAAGCCTGCCATAAGACTG -ACGGAAAAGCCTGCCATATCGGTA -ACGGAAAAGCCTGCCATATGCCTA -ACGGAAAAGCCTGCCATACCACTA -ACGGAAAAGCCTGCCATAGGAGTA -ACGGAAAAGCCTGCCATATCGTCT -ACGGAAAAGCCTGCCATATGCACT -ACGGAAAAGCCTGCCATACTGACT -ACGGAAAAGCCTGCCATACAACCT -ACGGAAAAGCCTGCCATAGCTACT -ACGGAAAAGCCTGCCATAGGATCT -ACGGAAAAGCCTGCCATAAAGGCT -ACGGAAAAGCCTGCCATATCAACC -ACGGAAAAGCCTGCCATATGTTCC -ACGGAAAAGCCTGCCATAATTCCC -ACGGAAAAGCCTGCCATATTCTCG -ACGGAAAAGCCTGCCATATAGACG -ACGGAAAAGCCTGCCATAGTAACG -ACGGAAAAGCCTGCCATAACTTCG -ACGGAAAAGCCTGCCATATACGCA -ACGGAAAAGCCTGCCATACTTGCA -ACGGAAAAGCCTGCCATACGAACA -ACGGAAAAGCCTGCCATACAGTCA -ACGGAAAAGCCTGCCATAGATCCA -ACGGAAAAGCCTGCCATAACGACA -ACGGAAAAGCCTGCCATAAGCTCA -ACGGAAAAGCCTGCCATATCACGT -ACGGAAAAGCCTGCCATACGTAGT -ACGGAAAAGCCTGCCATAGTCAGT -ACGGAAAAGCCTGCCATAGAAGGT -ACGGAAAAGCCTGCCATAAACCGT -ACGGAAAAGCCTGCCATATTGTGC -ACGGAAAAGCCTGCCATACTAAGC -ACGGAAAAGCCTGCCATAACTAGC -ACGGAAAAGCCTGCCATAAGATGC -ACGGAAAAGCCTGCCATATGAAGG -ACGGAAAAGCCTGCCATACAATGG -ACGGAAAAGCCTGCCATAATGAGG -ACGGAAAAGCCTGCCATAAATGGG -ACGGAAAAGCCTGCCATATCCTGA -ACGGAAAAGCCTGCCATATAGCGA -ACGGAAAAGCCTGCCATACACAGA -ACGGAAAAGCCTGCCATAGCAAGA -ACGGAAAAGCCTGCCATAGGTTGA -ACGGAAAAGCCTGCCATATCCGAT -ACGGAAAAGCCTGCCATATGGCAT -ACGGAAAAGCCTGCCATACGAGAT -ACGGAAAAGCCTGCCATATACCAC -ACGGAAAAGCCTGCCATACAGAAC -ACGGAAAAGCCTGCCATAGTCTAC -ACGGAAAAGCCTGCCATAACGTAC -ACGGAAAAGCCTGCCATAAGTGAC -ACGGAAAAGCCTGCCATACTGTAG -ACGGAAAAGCCTGCCATACCTAAG -ACGGAAAAGCCTGCCATAGTTCAG -ACGGAAAAGCCTGCCATAGCATAG -ACGGAAAAGCCTGCCATAGACAAG -ACGGAAAAGCCTGCCATAAAGCAG -ACGGAAAAGCCTGCCATACGTCAA -ACGGAAAAGCCTGCCATAGCTGAA -ACGGAAAAGCCTGCCATAAGTACG -ACGGAAAAGCCTGCCATAATCCGA -ACGGAAAAGCCTGCCATAATGGGA -ACGGAAAAGCCTGCCATAGTGCAA -ACGGAAAAGCCTGCCATAGAGGAA -ACGGAAAAGCCTGCCATACAGGTA -ACGGAAAAGCCTGCCATAGACTCT -ACGGAAAAGCCTGCCATAAGTCCT -ACGGAAAAGCCTGCCATATAAGCC -ACGGAAAAGCCTGCCATAATAGCC -ACGGAAAAGCCTGCCATATAACCG -ACGGAAAAGCCTGCCATAATGCCA -ACGGAAAAGCCTCCGTAAGGAAAC -ACGGAAAAGCCTCCGTAAAACACC -ACGGAAAAGCCTCCGTAAATCGAG -ACGGAAAAGCCTCCGTAACTCCTT -ACGGAAAAGCCTCCGTAACCTGTT -ACGGAAAAGCCTCCGTAACGGTTT -ACGGAAAAGCCTCCGTAAGTGGTT -ACGGAAAAGCCTCCGTAAGCCTTT -ACGGAAAAGCCTCCGTAAGGTCTT -ACGGAAAAGCCTCCGTAAACGCTT -ACGGAAAAGCCTCCGTAAAGCGTT -ACGGAAAAGCCTCCGTAATTCGTC -ACGGAAAAGCCTCCGTAATCTCTC -ACGGAAAAGCCTCCGTAATGGATC -ACGGAAAAGCCTCCGTAACACTTC -ACGGAAAAGCCTCCGTAAGTACTC -ACGGAAAAGCCTCCGTAAGATGTC -ACGGAAAAGCCTCCGTAAACAGTC -ACGGAAAAGCCTCCGTAATTGCTG -ACGGAAAAGCCTCCGTAATCCATG -ACGGAAAAGCCTCCGTAATGTGTG -ACGGAAAAGCCTCCGTAACTAGTG -ACGGAAAAGCCTCCGTAACATCTG -ACGGAAAAGCCTCCGTAAGAGTTG -ACGGAAAAGCCTCCGTAAAGACTG -ACGGAAAAGCCTCCGTAATCGGTA -ACGGAAAAGCCTCCGTAATGCCTA -ACGGAAAAGCCTCCGTAACCACTA -ACGGAAAAGCCTCCGTAAGGAGTA -ACGGAAAAGCCTCCGTAATCGTCT -ACGGAAAAGCCTCCGTAATGCACT -ACGGAAAAGCCTCCGTAACTGACT -ACGGAAAAGCCTCCGTAACAACCT -ACGGAAAAGCCTCCGTAAGCTACT -ACGGAAAAGCCTCCGTAAGGATCT -ACGGAAAAGCCTCCGTAAAAGGCT -ACGGAAAAGCCTCCGTAATCAACC -ACGGAAAAGCCTCCGTAATGTTCC -ACGGAAAAGCCTCCGTAAATTCCC -ACGGAAAAGCCTCCGTAATTCTCG -ACGGAAAAGCCTCCGTAATAGACG -ACGGAAAAGCCTCCGTAAGTAACG -ACGGAAAAGCCTCCGTAAACTTCG -ACGGAAAAGCCTCCGTAATACGCA -ACGGAAAAGCCTCCGTAACTTGCA -ACGGAAAAGCCTCCGTAACGAACA -ACGGAAAAGCCTCCGTAACAGTCA -ACGGAAAAGCCTCCGTAAGATCCA -ACGGAAAAGCCTCCGTAAACGACA -ACGGAAAAGCCTCCGTAAAGCTCA -ACGGAAAAGCCTCCGTAATCACGT -ACGGAAAAGCCTCCGTAACGTAGT -ACGGAAAAGCCTCCGTAAGTCAGT -ACGGAAAAGCCTCCGTAAGAAGGT -ACGGAAAAGCCTCCGTAAAACCGT -ACGGAAAAGCCTCCGTAATTGTGC -ACGGAAAAGCCTCCGTAACTAAGC -ACGGAAAAGCCTCCGTAAACTAGC -ACGGAAAAGCCTCCGTAAAGATGC -ACGGAAAAGCCTCCGTAATGAAGG -ACGGAAAAGCCTCCGTAACAATGG -ACGGAAAAGCCTCCGTAAATGAGG -ACGGAAAAGCCTCCGTAAAATGGG -ACGGAAAAGCCTCCGTAATCCTGA -ACGGAAAAGCCTCCGTAATAGCGA -ACGGAAAAGCCTCCGTAACACAGA -ACGGAAAAGCCTCCGTAAGCAAGA -ACGGAAAAGCCTCCGTAAGGTTGA -ACGGAAAAGCCTCCGTAATCCGAT -ACGGAAAAGCCTCCGTAATGGCAT -ACGGAAAAGCCTCCGTAACGAGAT -ACGGAAAAGCCTCCGTAATACCAC -ACGGAAAAGCCTCCGTAACAGAAC -ACGGAAAAGCCTCCGTAAGTCTAC -ACGGAAAAGCCTCCGTAAACGTAC -ACGGAAAAGCCTCCGTAAAGTGAC -ACGGAAAAGCCTCCGTAACTGTAG -ACGGAAAAGCCTCCGTAACCTAAG -ACGGAAAAGCCTCCGTAAGTTCAG -ACGGAAAAGCCTCCGTAAGCATAG -ACGGAAAAGCCTCCGTAAGACAAG -ACGGAAAAGCCTCCGTAAAAGCAG -ACGGAAAAGCCTCCGTAACGTCAA -ACGGAAAAGCCTCCGTAAGCTGAA -ACGGAAAAGCCTCCGTAAAGTACG -ACGGAAAAGCCTCCGTAAATCCGA -ACGGAAAAGCCTCCGTAAATGGGA -ACGGAAAAGCCTCCGTAAGTGCAA -ACGGAAAAGCCTCCGTAAGAGGAA -ACGGAAAAGCCTCCGTAACAGGTA -ACGGAAAAGCCTCCGTAAGACTCT -ACGGAAAAGCCTCCGTAAAGTCCT -ACGGAAAAGCCTCCGTAATAAGCC -ACGGAAAAGCCTCCGTAAATAGCC -ACGGAAAAGCCTCCGTAATAACCG -ACGGAAAAGCCTCCGTAAATGCCA -ACGGAAAAGCCTCCAATGGGAAAC -ACGGAAAAGCCTCCAATGAACACC -ACGGAAAAGCCTCCAATGATCGAG -ACGGAAAAGCCTCCAATGCTCCTT -ACGGAAAAGCCTCCAATGCCTGTT -ACGGAAAAGCCTCCAATGCGGTTT -ACGGAAAAGCCTCCAATGGTGGTT -ACGGAAAAGCCTCCAATGGCCTTT -ACGGAAAAGCCTCCAATGGGTCTT -ACGGAAAAGCCTCCAATGACGCTT -ACGGAAAAGCCTCCAATGAGCGTT -ACGGAAAAGCCTCCAATGTTCGTC -ACGGAAAAGCCTCCAATGTCTCTC -ACGGAAAAGCCTCCAATGTGGATC -ACGGAAAAGCCTCCAATGCACTTC -ACGGAAAAGCCTCCAATGGTACTC -ACGGAAAAGCCTCCAATGGATGTC -ACGGAAAAGCCTCCAATGACAGTC -ACGGAAAAGCCTCCAATGTTGCTG -ACGGAAAAGCCTCCAATGTCCATG -ACGGAAAAGCCTCCAATGTGTGTG -ACGGAAAAGCCTCCAATGCTAGTG -ACGGAAAAGCCTCCAATGCATCTG -ACGGAAAAGCCTCCAATGGAGTTG -ACGGAAAAGCCTCCAATGAGACTG -ACGGAAAAGCCTCCAATGTCGGTA -ACGGAAAAGCCTCCAATGTGCCTA -ACGGAAAAGCCTCCAATGCCACTA -ACGGAAAAGCCTCCAATGGGAGTA -ACGGAAAAGCCTCCAATGTCGTCT -ACGGAAAAGCCTCCAATGTGCACT -ACGGAAAAGCCTCCAATGCTGACT -ACGGAAAAGCCTCCAATGCAACCT -ACGGAAAAGCCTCCAATGGCTACT -ACGGAAAAGCCTCCAATGGGATCT -ACGGAAAAGCCTCCAATGAAGGCT -ACGGAAAAGCCTCCAATGTCAACC -ACGGAAAAGCCTCCAATGTGTTCC -ACGGAAAAGCCTCCAATGATTCCC -ACGGAAAAGCCTCCAATGTTCTCG -ACGGAAAAGCCTCCAATGTAGACG -ACGGAAAAGCCTCCAATGGTAACG -ACGGAAAAGCCTCCAATGACTTCG -ACGGAAAAGCCTCCAATGTACGCA -ACGGAAAAGCCTCCAATGCTTGCA -ACGGAAAAGCCTCCAATGCGAACA -ACGGAAAAGCCTCCAATGCAGTCA -ACGGAAAAGCCTCCAATGGATCCA -ACGGAAAAGCCTCCAATGACGACA -ACGGAAAAGCCTCCAATGAGCTCA -ACGGAAAAGCCTCCAATGTCACGT -ACGGAAAAGCCTCCAATGCGTAGT -ACGGAAAAGCCTCCAATGGTCAGT -ACGGAAAAGCCTCCAATGGAAGGT -ACGGAAAAGCCTCCAATGAACCGT -ACGGAAAAGCCTCCAATGTTGTGC -ACGGAAAAGCCTCCAATGCTAAGC -ACGGAAAAGCCTCCAATGACTAGC -ACGGAAAAGCCTCCAATGAGATGC -ACGGAAAAGCCTCCAATGTGAAGG -ACGGAAAAGCCTCCAATGCAATGG -ACGGAAAAGCCTCCAATGATGAGG -ACGGAAAAGCCTCCAATGAATGGG -ACGGAAAAGCCTCCAATGTCCTGA -ACGGAAAAGCCTCCAATGTAGCGA -ACGGAAAAGCCTCCAATGCACAGA -ACGGAAAAGCCTCCAATGGCAAGA -ACGGAAAAGCCTCCAATGGGTTGA -ACGGAAAAGCCTCCAATGTCCGAT -ACGGAAAAGCCTCCAATGTGGCAT -ACGGAAAAGCCTCCAATGCGAGAT -ACGGAAAAGCCTCCAATGTACCAC -ACGGAAAAGCCTCCAATGCAGAAC -ACGGAAAAGCCTCCAATGGTCTAC -ACGGAAAAGCCTCCAATGACGTAC -ACGGAAAAGCCTCCAATGAGTGAC -ACGGAAAAGCCTCCAATGCTGTAG -ACGGAAAAGCCTCCAATGCCTAAG -ACGGAAAAGCCTCCAATGGTTCAG -ACGGAAAAGCCTCCAATGGCATAG -ACGGAAAAGCCTCCAATGGACAAG -ACGGAAAAGCCTCCAATGAAGCAG -ACGGAAAAGCCTCCAATGCGTCAA -ACGGAAAAGCCTCCAATGGCTGAA -ACGGAAAAGCCTCCAATGAGTACG -ACGGAAAAGCCTCCAATGATCCGA -ACGGAAAAGCCTCCAATGATGGGA -ACGGAAAAGCCTCCAATGGTGCAA -ACGGAAAAGCCTCCAATGGAGGAA -ACGGAAAAGCCTCCAATGCAGGTA -ACGGAAAAGCCTCCAATGGACTCT -ACGGAAAAGCCTCCAATGAGTCCT -ACGGAAAAGCCTCCAATGTAAGCC -ACGGAAAAGCCTCCAATGATAGCC -ACGGAAAAGCCTCCAATGTAACCG -ACGGAAAAGCCTCCAATGATGCCA -ACGGAATAGCCAAACGGAGGAAAC -ACGGAATAGCCAAACGGAAACACC -ACGGAATAGCCAAACGGAATCGAG -ACGGAATAGCCAAACGGACTCCTT -ACGGAATAGCCAAACGGACCTGTT -ACGGAATAGCCAAACGGACGGTTT -ACGGAATAGCCAAACGGAGTGGTT -ACGGAATAGCCAAACGGAGCCTTT -ACGGAATAGCCAAACGGAGGTCTT -ACGGAATAGCCAAACGGAACGCTT -ACGGAATAGCCAAACGGAAGCGTT -ACGGAATAGCCAAACGGATTCGTC -ACGGAATAGCCAAACGGATCTCTC -ACGGAATAGCCAAACGGATGGATC -ACGGAATAGCCAAACGGACACTTC -ACGGAATAGCCAAACGGAGTACTC -ACGGAATAGCCAAACGGAGATGTC -ACGGAATAGCCAAACGGAACAGTC -ACGGAATAGCCAAACGGATTGCTG -ACGGAATAGCCAAACGGATCCATG -ACGGAATAGCCAAACGGATGTGTG -ACGGAATAGCCAAACGGACTAGTG -ACGGAATAGCCAAACGGACATCTG -ACGGAATAGCCAAACGGAGAGTTG -ACGGAATAGCCAAACGGAAGACTG -ACGGAATAGCCAAACGGATCGGTA -ACGGAATAGCCAAACGGATGCCTA -ACGGAATAGCCAAACGGACCACTA -ACGGAATAGCCAAACGGAGGAGTA -ACGGAATAGCCAAACGGATCGTCT -ACGGAATAGCCAAACGGATGCACT -ACGGAATAGCCAAACGGACTGACT -ACGGAATAGCCAAACGGACAACCT -ACGGAATAGCCAAACGGAGCTACT -ACGGAATAGCCAAACGGAGGATCT -ACGGAATAGCCAAACGGAAAGGCT -ACGGAATAGCCAAACGGATCAACC -ACGGAATAGCCAAACGGATGTTCC -ACGGAATAGCCAAACGGAATTCCC -ACGGAATAGCCAAACGGATTCTCG -ACGGAATAGCCAAACGGATAGACG -ACGGAATAGCCAAACGGAGTAACG -ACGGAATAGCCAAACGGAACTTCG -ACGGAATAGCCAAACGGATACGCA -ACGGAATAGCCAAACGGACTTGCA -ACGGAATAGCCAAACGGACGAACA -ACGGAATAGCCAAACGGACAGTCA -ACGGAATAGCCAAACGGAGATCCA -ACGGAATAGCCAAACGGAACGACA -ACGGAATAGCCAAACGGAAGCTCA -ACGGAATAGCCAAACGGATCACGT -ACGGAATAGCCAAACGGACGTAGT -ACGGAATAGCCAAACGGAGTCAGT -ACGGAATAGCCAAACGGAGAAGGT -ACGGAATAGCCAAACGGAAACCGT -ACGGAATAGCCAAACGGATTGTGC -ACGGAATAGCCAAACGGACTAAGC -ACGGAATAGCCAAACGGAACTAGC -ACGGAATAGCCAAACGGAAGATGC -ACGGAATAGCCAAACGGATGAAGG -ACGGAATAGCCAAACGGACAATGG -ACGGAATAGCCAAACGGAATGAGG -ACGGAATAGCCAAACGGAAATGGG -ACGGAATAGCCAAACGGATCCTGA -ACGGAATAGCCAAACGGATAGCGA -ACGGAATAGCCAAACGGACACAGA -ACGGAATAGCCAAACGGAGCAAGA -ACGGAATAGCCAAACGGAGGTTGA -ACGGAATAGCCAAACGGATCCGAT -ACGGAATAGCCAAACGGATGGCAT -ACGGAATAGCCAAACGGACGAGAT -ACGGAATAGCCAAACGGATACCAC -ACGGAATAGCCAAACGGACAGAAC -ACGGAATAGCCAAACGGAGTCTAC -ACGGAATAGCCAAACGGAACGTAC -ACGGAATAGCCAAACGGAAGTGAC -ACGGAATAGCCAAACGGACTGTAG -ACGGAATAGCCAAACGGACCTAAG -ACGGAATAGCCAAACGGAGTTCAG -ACGGAATAGCCAAACGGAGCATAG -ACGGAATAGCCAAACGGAGACAAG -ACGGAATAGCCAAACGGAAAGCAG -ACGGAATAGCCAAACGGACGTCAA -ACGGAATAGCCAAACGGAGCTGAA -ACGGAATAGCCAAACGGAAGTACG -ACGGAATAGCCAAACGGAATCCGA -ACGGAATAGCCAAACGGAATGGGA -ACGGAATAGCCAAACGGAGTGCAA -ACGGAATAGCCAAACGGAGAGGAA -ACGGAATAGCCAAACGGACAGGTA -ACGGAATAGCCAAACGGAGACTCT -ACGGAATAGCCAAACGGAAGTCCT -ACGGAATAGCCAAACGGATAAGCC -ACGGAATAGCCAAACGGAATAGCC -ACGGAATAGCCAAACGGATAACCG -ACGGAATAGCCAAACGGAATGCCA -ACGGAATAGCCAACCAACGGAAAC -ACGGAATAGCCAACCAACAACACC -ACGGAATAGCCAACCAACATCGAG -ACGGAATAGCCAACCAACCTCCTT -ACGGAATAGCCAACCAACCCTGTT -ACGGAATAGCCAACCAACCGGTTT -ACGGAATAGCCAACCAACGTGGTT -ACGGAATAGCCAACCAACGCCTTT -ACGGAATAGCCAACCAACGGTCTT -ACGGAATAGCCAACCAACACGCTT -ACGGAATAGCCAACCAACAGCGTT -ACGGAATAGCCAACCAACTTCGTC -ACGGAATAGCCAACCAACTCTCTC -ACGGAATAGCCAACCAACTGGATC -ACGGAATAGCCAACCAACCACTTC -ACGGAATAGCCAACCAACGTACTC -ACGGAATAGCCAACCAACGATGTC -ACGGAATAGCCAACCAACACAGTC -ACGGAATAGCCAACCAACTTGCTG -ACGGAATAGCCAACCAACTCCATG -ACGGAATAGCCAACCAACTGTGTG -ACGGAATAGCCAACCAACCTAGTG -ACGGAATAGCCAACCAACCATCTG -ACGGAATAGCCAACCAACGAGTTG -ACGGAATAGCCAACCAACAGACTG -ACGGAATAGCCAACCAACTCGGTA -ACGGAATAGCCAACCAACTGCCTA -ACGGAATAGCCAACCAACCCACTA -ACGGAATAGCCAACCAACGGAGTA -ACGGAATAGCCAACCAACTCGTCT -ACGGAATAGCCAACCAACTGCACT -ACGGAATAGCCAACCAACCTGACT -ACGGAATAGCCAACCAACCAACCT -ACGGAATAGCCAACCAACGCTACT -ACGGAATAGCCAACCAACGGATCT -ACGGAATAGCCAACCAACAAGGCT -ACGGAATAGCCAACCAACTCAACC -ACGGAATAGCCAACCAACTGTTCC -ACGGAATAGCCAACCAACATTCCC -ACGGAATAGCCAACCAACTTCTCG -ACGGAATAGCCAACCAACTAGACG -ACGGAATAGCCAACCAACGTAACG -ACGGAATAGCCAACCAACACTTCG -ACGGAATAGCCAACCAACTACGCA -ACGGAATAGCCAACCAACCTTGCA -ACGGAATAGCCAACCAACCGAACA -ACGGAATAGCCAACCAACCAGTCA -ACGGAATAGCCAACCAACGATCCA -ACGGAATAGCCAACCAACACGACA -ACGGAATAGCCAACCAACAGCTCA -ACGGAATAGCCAACCAACTCACGT -ACGGAATAGCCAACCAACCGTAGT -ACGGAATAGCCAACCAACGTCAGT -ACGGAATAGCCAACCAACGAAGGT -ACGGAATAGCCAACCAACAACCGT -ACGGAATAGCCAACCAACTTGTGC -ACGGAATAGCCAACCAACCTAAGC -ACGGAATAGCCAACCAACACTAGC -ACGGAATAGCCAACCAACAGATGC -ACGGAATAGCCAACCAACTGAAGG -ACGGAATAGCCAACCAACCAATGG -ACGGAATAGCCAACCAACATGAGG -ACGGAATAGCCAACCAACAATGGG -ACGGAATAGCCAACCAACTCCTGA -ACGGAATAGCCAACCAACTAGCGA -ACGGAATAGCCAACCAACCACAGA -ACGGAATAGCCAACCAACGCAAGA -ACGGAATAGCCAACCAACGGTTGA -ACGGAATAGCCAACCAACTCCGAT -ACGGAATAGCCAACCAACTGGCAT -ACGGAATAGCCAACCAACCGAGAT -ACGGAATAGCCAACCAACTACCAC -ACGGAATAGCCAACCAACCAGAAC -ACGGAATAGCCAACCAACGTCTAC -ACGGAATAGCCAACCAACACGTAC -ACGGAATAGCCAACCAACAGTGAC -ACGGAATAGCCAACCAACCTGTAG -ACGGAATAGCCAACCAACCCTAAG -ACGGAATAGCCAACCAACGTTCAG -ACGGAATAGCCAACCAACGCATAG -ACGGAATAGCCAACCAACGACAAG -ACGGAATAGCCAACCAACAAGCAG -ACGGAATAGCCAACCAACCGTCAA -ACGGAATAGCCAACCAACGCTGAA -ACGGAATAGCCAACCAACAGTACG -ACGGAATAGCCAACCAACATCCGA -ACGGAATAGCCAACCAACATGGGA -ACGGAATAGCCAACCAACGTGCAA -ACGGAATAGCCAACCAACGAGGAA -ACGGAATAGCCAACCAACCAGGTA -ACGGAATAGCCAACCAACGACTCT -ACGGAATAGCCAACCAACAGTCCT -ACGGAATAGCCAACCAACTAAGCC -ACGGAATAGCCAACCAACATAGCC -ACGGAATAGCCAACCAACTAACCG -ACGGAATAGCCAACCAACATGCCA -ACGGAATAGCCAGAGATCGGAAAC -ACGGAATAGCCAGAGATCAACACC -ACGGAATAGCCAGAGATCATCGAG -ACGGAATAGCCAGAGATCCTCCTT -ACGGAATAGCCAGAGATCCCTGTT -ACGGAATAGCCAGAGATCCGGTTT -ACGGAATAGCCAGAGATCGTGGTT -ACGGAATAGCCAGAGATCGCCTTT -ACGGAATAGCCAGAGATCGGTCTT -ACGGAATAGCCAGAGATCACGCTT -ACGGAATAGCCAGAGATCAGCGTT -ACGGAATAGCCAGAGATCTTCGTC -ACGGAATAGCCAGAGATCTCTCTC -ACGGAATAGCCAGAGATCTGGATC -ACGGAATAGCCAGAGATCCACTTC -ACGGAATAGCCAGAGATCGTACTC -ACGGAATAGCCAGAGATCGATGTC -ACGGAATAGCCAGAGATCACAGTC -ACGGAATAGCCAGAGATCTTGCTG -ACGGAATAGCCAGAGATCTCCATG -ACGGAATAGCCAGAGATCTGTGTG -ACGGAATAGCCAGAGATCCTAGTG -ACGGAATAGCCAGAGATCCATCTG -ACGGAATAGCCAGAGATCGAGTTG -ACGGAATAGCCAGAGATCAGACTG -ACGGAATAGCCAGAGATCTCGGTA -ACGGAATAGCCAGAGATCTGCCTA -ACGGAATAGCCAGAGATCCCACTA -ACGGAATAGCCAGAGATCGGAGTA -ACGGAATAGCCAGAGATCTCGTCT -ACGGAATAGCCAGAGATCTGCACT -ACGGAATAGCCAGAGATCCTGACT -ACGGAATAGCCAGAGATCCAACCT -ACGGAATAGCCAGAGATCGCTACT -ACGGAATAGCCAGAGATCGGATCT -ACGGAATAGCCAGAGATCAAGGCT -ACGGAATAGCCAGAGATCTCAACC -ACGGAATAGCCAGAGATCTGTTCC -ACGGAATAGCCAGAGATCATTCCC -ACGGAATAGCCAGAGATCTTCTCG -ACGGAATAGCCAGAGATCTAGACG -ACGGAATAGCCAGAGATCGTAACG -ACGGAATAGCCAGAGATCACTTCG -ACGGAATAGCCAGAGATCTACGCA -ACGGAATAGCCAGAGATCCTTGCA -ACGGAATAGCCAGAGATCCGAACA -ACGGAATAGCCAGAGATCCAGTCA -ACGGAATAGCCAGAGATCGATCCA -ACGGAATAGCCAGAGATCACGACA -ACGGAATAGCCAGAGATCAGCTCA -ACGGAATAGCCAGAGATCTCACGT -ACGGAATAGCCAGAGATCCGTAGT -ACGGAATAGCCAGAGATCGTCAGT -ACGGAATAGCCAGAGATCGAAGGT -ACGGAATAGCCAGAGATCAACCGT -ACGGAATAGCCAGAGATCTTGTGC -ACGGAATAGCCAGAGATCCTAAGC -ACGGAATAGCCAGAGATCACTAGC -ACGGAATAGCCAGAGATCAGATGC -ACGGAATAGCCAGAGATCTGAAGG -ACGGAATAGCCAGAGATCCAATGG -ACGGAATAGCCAGAGATCATGAGG -ACGGAATAGCCAGAGATCAATGGG -ACGGAATAGCCAGAGATCTCCTGA -ACGGAATAGCCAGAGATCTAGCGA -ACGGAATAGCCAGAGATCCACAGA -ACGGAATAGCCAGAGATCGCAAGA -ACGGAATAGCCAGAGATCGGTTGA -ACGGAATAGCCAGAGATCTCCGAT -ACGGAATAGCCAGAGATCTGGCAT -ACGGAATAGCCAGAGATCCGAGAT -ACGGAATAGCCAGAGATCTACCAC -ACGGAATAGCCAGAGATCCAGAAC -ACGGAATAGCCAGAGATCGTCTAC -ACGGAATAGCCAGAGATCACGTAC -ACGGAATAGCCAGAGATCAGTGAC -ACGGAATAGCCAGAGATCCTGTAG -ACGGAATAGCCAGAGATCCCTAAG -ACGGAATAGCCAGAGATCGTTCAG -ACGGAATAGCCAGAGATCGCATAG -ACGGAATAGCCAGAGATCGACAAG -ACGGAATAGCCAGAGATCAAGCAG -ACGGAATAGCCAGAGATCCGTCAA -ACGGAATAGCCAGAGATCGCTGAA -ACGGAATAGCCAGAGATCAGTACG -ACGGAATAGCCAGAGATCATCCGA -ACGGAATAGCCAGAGATCATGGGA -ACGGAATAGCCAGAGATCGTGCAA -ACGGAATAGCCAGAGATCGAGGAA -ACGGAATAGCCAGAGATCCAGGTA -ACGGAATAGCCAGAGATCGACTCT -ACGGAATAGCCAGAGATCAGTCCT -ACGGAATAGCCAGAGATCTAAGCC -ACGGAATAGCCAGAGATCATAGCC -ACGGAATAGCCAGAGATCTAACCG -ACGGAATAGCCAGAGATCATGCCA -ACGGAATAGCCACTTCTCGGAAAC -ACGGAATAGCCACTTCTCAACACC -ACGGAATAGCCACTTCTCATCGAG -ACGGAATAGCCACTTCTCCTCCTT -ACGGAATAGCCACTTCTCCCTGTT -ACGGAATAGCCACTTCTCCGGTTT -ACGGAATAGCCACTTCTCGTGGTT -ACGGAATAGCCACTTCTCGCCTTT -ACGGAATAGCCACTTCTCGGTCTT -ACGGAATAGCCACTTCTCACGCTT -ACGGAATAGCCACTTCTCAGCGTT -ACGGAATAGCCACTTCTCTTCGTC -ACGGAATAGCCACTTCTCTCTCTC -ACGGAATAGCCACTTCTCTGGATC -ACGGAATAGCCACTTCTCCACTTC -ACGGAATAGCCACTTCTCGTACTC -ACGGAATAGCCACTTCTCGATGTC -ACGGAATAGCCACTTCTCACAGTC -ACGGAATAGCCACTTCTCTTGCTG -ACGGAATAGCCACTTCTCTCCATG -ACGGAATAGCCACTTCTCTGTGTG -ACGGAATAGCCACTTCTCCTAGTG -ACGGAATAGCCACTTCTCCATCTG -ACGGAATAGCCACTTCTCGAGTTG -ACGGAATAGCCACTTCTCAGACTG -ACGGAATAGCCACTTCTCTCGGTA -ACGGAATAGCCACTTCTCTGCCTA -ACGGAATAGCCACTTCTCCCACTA -ACGGAATAGCCACTTCTCGGAGTA -ACGGAATAGCCACTTCTCTCGTCT -ACGGAATAGCCACTTCTCTGCACT -ACGGAATAGCCACTTCTCCTGACT -ACGGAATAGCCACTTCTCCAACCT -ACGGAATAGCCACTTCTCGCTACT -ACGGAATAGCCACTTCTCGGATCT -ACGGAATAGCCACTTCTCAAGGCT -ACGGAATAGCCACTTCTCTCAACC -ACGGAATAGCCACTTCTCTGTTCC -ACGGAATAGCCACTTCTCATTCCC -ACGGAATAGCCACTTCTCTTCTCG -ACGGAATAGCCACTTCTCTAGACG -ACGGAATAGCCACTTCTCGTAACG -ACGGAATAGCCACTTCTCACTTCG -ACGGAATAGCCACTTCTCTACGCA -ACGGAATAGCCACTTCTCCTTGCA -ACGGAATAGCCACTTCTCCGAACA -ACGGAATAGCCACTTCTCCAGTCA -ACGGAATAGCCACTTCTCGATCCA -ACGGAATAGCCACTTCTCACGACA -ACGGAATAGCCACTTCTCAGCTCA -ACGGAATAGCCACTTCTCTCACGT -ACGGAATAGCCACTTCTCCGTAGT -ACGGAATAGCCACTTCTCGTCAGT -ACGGAATAGCCACTTCTCGAAGGT -ACGGAATAGCCACTTCTCAACCGT -ACGGAATAGCCACTTCTCTTGTGC -ACGGAATAGCCACTTCTCCTAAGC -ACGGAATAGCCACTTCTCACTAGC -ACGGAATAGCCACTTCTCAGATGC -ACGGAATAGCCACTTCTCTGAAGG -ACGGAATAGCCACTTCTCCAATGG -ACGGAATAGCCACTTCTCATGAGG -ACGGAATAGCCACTTCTCAATGGG -ACGGAATAGCCACTTCTCTCCTGA -ACGGAATAGCCACTTCTCTAGCGA -ACGGAATAGCCACTTCTCCACAGA -ACGGAATAGCCACTTCTCGCAAGA -ACGGAATAGCCACTTCTCGGTTGA -ACGGAATAGCCACTTCTCTCCGAT -ACGGAATAGCCACTTCTCTGGCAT -ACGGAATAGCCACTTCTCCGAGAT -ACGGAATAGCCACTTCTCTACCAC -ACGGAATAGCCACTTCTCCAGAAC -ACGGAATAGCCACTTCTCGTCTAC -ACGGAATAGCCACTTCTCACGTAC -ACGGAATAGCCACTTCTCAGTGAC -ACGGAATAGCCACTTCTCCTGTAG -ACGGAATAGCCACTTCTCCCTAAG -ACGGAATAGCCACTTCTCGTTCAG -ACGGAATAGCCACTTCTCGCATAG -ACGGAATAGCCACTTCTCGACAAG -ACGGAATAGCCACTTCTCAAGCAG -ACGGAATAGCCACTTCTCCGTCAA -ACGGAATAGCCACTTCTCGCTGAA -ACGGAATAGCCACTTCTCAGTACG -ACGGAATAGCCACTTCTCATCCGA -ACGGAATAGCCACTTCTCATGGGA -ACGGAATAGCCACTTCTCGTGCAA -ACGGAATAGCCACTTCTCGAGGAA -ACGGAATAGCCACTTCTCCAGGTA -ACGGAATAGCCACTTCTCGACTCT -ACGGAATAGCCACTTCTCAGTCCT -ACGGAATAGCCACTTCTCTAAGCC -ACGGAATAGCCACTTCTCATAGCC -ACGGAATAGCCACTTCTCTAACCG -ACGGAATAGCCACTTCTCATGCCA -ACGGAATAGCCAGTTCCTGGAAAC -ACGGAATAGCCAGTTCCTAACACC -ACGGAATAGCCAGTTCCTATCGAG -ACGGAATAGCCAGTTCCTCTCCTT -ACGGAATAGCCAGTTCCTCCTGTT -ACGGAATAGCCAGTTCCTCGGTTT -ACGGAATAGCCAGTTCCTGTGGTT -ACGGAATAGCCAGTTCCTGCCTTT -ACGGAATAGCCAGTTCCTGGTCTT -ACGGAATAGCCAGTTCCTACGCTT -ACGGAATAGCCAGTTCCTAGCGTT -ACGGAATAGCCAGTTCCTTTCGTC -ACGGAATAGCCAGTTCCTTCTCTC -ACGGAATAGCCAGTTCCTTGGATC -ACGGAATAGCCAGTTCCTCACTTC -ACGGAATAGCCAGTTCCTGTACTC -ACGGAATAGCCAGTTCCTGATGTC -ACGGAATAGCCAGTTCCTACAGTC -ACGGAATAGCCAGTTCCTTTGCTG -ACGGAATAGCCAGTTCCTTCCATG -ACGGAATAGCCAGTTCCTTGTGTG -ACGGAATAGCCAGTTCCTCTAGTG -ACGGAATAGCCAGTTCCTCATCTG -ACGGAATAGCCAGTTCCTGAGTTG -ACGGAATAGCCAGTTCCTAGACTG -ACGGAATAGCCAGTTCCTTCGGTA -ACGGAATAGCCAGTTCCTTGCCTA -ACGGAATAGCCAGTTCCTCCACTA -ACGGAATAGCCAGTTCCTGGAGTA -ACGGAATAGCCAGTTCCTTCGTCT -ACGGAATAGCCAGTTCCTTGCACT -ACGGAATAGCCAGTTCCTCTGACT -ACGGAATAGCCAGTTCCTCAACCT -ACGGAATAGCCAGTTCCTGCTACT -ACGGAATAGCCAGTTCCTGGATCT -ACGGAATAGCCAGTTCCTAAGGCT -ACGGAATAGCCAGTTCCTTCAACC -ACGGAATAGCCAGTTCCTTGTTCC -ACGGAATAGCCAGTTCCTATTCCC -ACGGAATAGCCAGTTCCTTTCTCG -ACGGAATAGCCAGTTCCTTAGACG -ACGGAATAGCCAGTTCCTGTAACG -ACGGAATAGCCAGTTCCTACTTCG -ACGGAATAGCCAGTTCCTTACGCA -ACGGAATAGCCAGTTCCTCTTGCA -ACGGAATAGCCAGTTCCTCGAACA -ACGGAATAGCCAGTTCCTCAGTCA -ACGGAATAGCCAGTTCCTGATCCA -ACGGAATAGCCAGTTCCTACGACA -ACGGAATAGCCAGTTCCTAGCTCA -ACGGAATAGCCAGTTCCTTCACGT -ACGGAATAGCCAGTTCCTCGTAGT -ACGGAATAGCCAGTTCCTGTCAGT -ACGGAATAGCCAGTTCCTGAAGGT -ACGGAATAGCCAGTTCCTAACCGT -ACGGAATAGCCAGTTCCTTTGTGC -ACGGAATAGCCAGTTCCTCTAAGC -ACGGAATAGCCAGTTCCTACTAGC -ACGGAATAGCCAGTTCCTAGATGC -ACGGAATAGCCAGTTCCTTGAAGG -ACGGAATAGCCAGTTCCTCAATGG -ACGGAATAGCCAGTTCCTATGAGG -ACGGAATAGCCAGTTCCTAATGGG -ACGGAATAGCCAGTTCCTTCCTGA -ACGGAATAGCCAGTTCCTTAGCGA -ACGGAATAGCCAGTTCCTCACAGA -ACGGAATAGCCAGTTCCTGCAAGA -ACGGAATAGCCAGTTCCTGGTTGA -ACGGAATAGCCAGTTCCTTCCGAT -ACGGAATAGCCAGTTCCTTGGCAT -ACGGAATAGCCAGTTCCTCGAGAT -ACGGAATAGCCAGTTCCTTACCAC -ACGGAATAGCCAGTTCCTCAGAAC -ACGGAATAGCCAGTTCCTGTCTAC -ACGGAATAGCCAGTTCCTACGTAC -ACGGAATAGCCAGTTCCTAGTGAC -ACGGAATAGCCAGTTCCTCTGTAG -ACGGAATAGCCAGTTCCTCCTAAG -ACGGAATAGCCAGTTCCTGTTCAG -ACGGAATAGCCAGTTCCTGCATAG -ACGGAATAGCCAGTTCCTGACAAG -ACGGAATAGCCAGTTCCTAAGCAG -ACGGAATAGCCAGTTCCTCGTCAA -ACGGAATAGCCAGTTCCTGCTGAA -ACGGAATAGCCAGTTCCTAGTACG -ACGGAATAGCCAGTTCCTATCCGA -ACGGAATAGCCAGTTCCTATGGGA -ACGGAATAGCCAGTTCCTGTGCAA -ACGGAATAGCCAGTTCCTGAGGAA -ACGGAATAGCCAGTTCCTCAGGTA -ACGGAATAGCCAGTTCCTGACTCT -ACGGAATAGCCAGTTCCTAGTCCT -ACGGAATAGCCAGTTCCTTAAGCC -ACGGAATAGCCAGTTCCTATAGCC -ACGGAATAGCCAGTTCCTTAACCG -ACGGAATAGCCAGTTCCTATGCCA -ACGGAATAGCCATTTCGGGGAAAC -ACGGAATAGCCATTTCGGAACACC -ACGGAATAGCCATTTCGGATCGAG -ACGGAATAGCCATTTCGGCTCCTT -ACGGAATAGCCATTTCGGCCTGTT -ACGGAATAGCCATTTCGGCGGTTT -ACGGAATAGCCATTTCGGGTGGTT -ACGGAATAGCCATTTCGGGCCTTT -ACGGAATAGCCATTTCGGGGTCTT -ACGGAATAGCCATTTCGGACGCTT -ACGGAATAGCCATTTCGGAGCGTT -ACGGAATAGCCATTTCGGTTCGTC -ACGGAATAGCCATTTCGGTCTCTC -ACGGAATAGCCATTTCGGTGGATC -ACGGAATAGCCATTTCGGCACTTC -ACGGAATAGCCATTTCGGGTACTC -ACGGAATAGCCATTTCGGGATGTC -ACGGAATAGCCATTTCGGACAGTC -ACGGAATAGCCATTTCGGTTGCTG -ACGGAATAGCCATTTCGGTCCATG -ACGGAATAGCCATTTCGGTGTGTG -ACGGAATAGCCATTTCGGCTAGTG -ACGGAATAGCCATTTCGGCATCTG -ACGGAATAGCCATTTCGGGAGTTG -ACGGAATAGCCATTTCGGAGACTG -ACGGAATAGCCATTTCGGTCGGTA -ACGGAATAGCCATTTCGGTGCCTA -ACGGAATAGCCATTTCGGCCACTA -ACGGAATAGCCATTTCGGGGAGTA -ACGGAATAGCCATTTCGGTCGTCT -ACGGAATAGCCATTTCGGTGCACT -ACGGAATAGCCATTTCGGCTGACT -ACGGAATAGCCATTTCGGCAACCT -ACGGAATAGCCATTTCGGGCTACT -ACGGAATAGCCATTTCGGGGATCT -ACGGAATAGCCATTTCGGAAGGCT -ACGGAATAGCCATTTCGGTCAACC -ACGGAATAGCCATTTCGGTGTTCC -ACGGAATAGCCATTTCGGATTCCC -ACGGAATAGCCATTTCGGTTCTCG -ACGGAATAGCCATTTCGGTAGACG -ACGGAATAGCCATTTCGGGTAACG -ACGGAATAGCCATTTCGGACTTCG -ACGGAATAGCCATTTCGGTACGCA -ACGGAATAGCCATTTCGGCTTGCA -ACGGAATAGCCATTTCGGCGAACA -ACGGAATAGCCATTTCGGCAGTCA -ACGGAATAGCCATTTCGGGATCCA -ACGGAATAGCCATTTCGGACGACA -ACGGAATAGCCATTTCGGAGCTCA -ACGGAATAGCCATTTCGGTCACGT -ACGGAATAGCCATTTCGGCGTAGT -ACGGAATAGCCATTTCGGGTCAGT -ACGGAATAGCCATTTCGGGAAGGT -ACGGAATAGCCATTTCGGAACCGT -ACGGAATAGCCATTTCGGTTGTGC -ACGGAATAGCCATTTCGGCTAAGC -ACGGAATAGCCATTTCGGACTAGC -ACGGAATAGCCATTTCGGAGATGC -ACGGAATAGCCATTTCGGTGAAGG -ACGGAATAGCCATTTCGGCAATGG -ACGGAATAGCCATTTCGGATGAGG -ACGGAATAGCCATTTCGGAATGGG -ACGGAATAGCCATTTCGGTCCTGA -ACGGAATAGCCATTTCGGTAGCGA -ACGGAATAGCCATTTCGGCACAGA -ACGGAATAGCCATTTCGGGCAAGA -ACGGAATAGCCATTTCGGGGTTGA -ACGGAATAGCCATTTCGGTCCGAT -ACGGAATAGCCATTTCGGTGGCAT -ACGGAATAGCCATTTCGGCGAGAT -ACGGAATAGCCATTTCGGTACCAC -ACGGAATAGCCATTTCGGCAGAAC -ACGGAATAGCCATTTCGGGTCTAC -ACGGAATAGCCATTTCGGACGTAC -ACGGAATAGCCATTTCGGAGTGAC -ACGGAATAGCCATTTCGGCTGTAG -ACGGAATAGCCATTTCGGCCTAAG -ACGGAATAGCCATTTCGGGTTCAG -ACGGAATAGCCATTTCGGGCATAG -ACGGAATAGCCATTTCGGGACAAG -ACGGAATAGCCATTTCGGAAGCAG -ACGGAATAGCCATTTCGGCGTCAA -ACGGAATAGCCATTTCGGGCTGAA -ACGGAATAGCCATTTCGGAGTACG -ACGGAATAGCCATTTCGGATCCGA -ACGGAATAGCCATTTCGGATGGGA -ACGGAATAGCCATTTCGGGTGCAA -ACGGAATAGCCATTTCGGGAGGAA -ACGGAATAGCCATTTCGGCAGGTA -ACGGAATAGCCATTTCGGGACTCT -ACGGAATAGCCATTTCGGAGTCCT -ACGGAATAGCCATTTCGGTAAGCC -ACGGAATAGCCATTTCGGATAGCC -ACGGAATAGCCATTTCGGTAACCG -ACGGAATAGCCATTTCGGATGCCA -ACGGAATAGCCAGTTGTGGGAAAC -ACGGAATAGCCAGTTGTGAACACC -ACGGAATAGCCAGTTGTGATCGAG -ACGGAATAGCCAGTTGTGCTCCTT -ACGGAATAGCCAGTTGTGCCTGTT -ACGGAATAGCCAGTTGTGCGGTTT -ACGGAATAGCCAGTTGTGGTGGTT -ACGGAATAGCCAGTTGTGGCCTTT -ACGGAATAGCCAGTTGTGGGTCTT -ACGGAATAGCCAGTTGTGACGCTT -ACGGAATAGCCAGTTGTGAGCGTT -ACGGAATAGCCAGTTGTGTTCGTC -ACGGAATAGCCAGTTGTGTCTCTC -ACGGAATAGCCAGTTGTGTGGATC -ACGGAATAGCCAGTTGTGCACTTC -ACGGAATAGCCAGTTGTGGTACTC -ACGGAATAGCCAGTTGTGGATGTC -ACGGAATAGCCAGTTGTGACAGTC -ACGGAATAGCCAGTTGTGTTGCTG -ACGGAATAGCCAGTTGTGTCCATG -ACGGAATAGCCAGTTGTGTGTGTG -ACGGAATAGCCAGTTGTGCTAGTG -ACGGAATAGCCAGTTGTGCATCTG -ACGGAATAGCCAGTTGTGGAGTTG -ACGGAATAGCCAGTTGTGAGACTG -ACGGAATAGCCAGTTGTGTCGGTA -ACGGAATAGCCAGTTGTGTGCCTA -ACGGAATAGCCAGTTGTGCCACTA -ACGGAATAGCCAGTTGTGGGAGTA -ACGGAATAGCCAGTTGTGTCGTCT -ACGGAATAGCCAGTTGTGTGCACT -ACGGAATAGCCAGTTGTGCTGACT -ACGGAATAGCCAGTTGTGCAACCT -ACGGAATAGCCAGTTGTGGCTACT -ACGGAATAGCCAGTTGTGGGATCT -ACGGAATAGCCAGTTGTGAAGGCT -ACGGAATAGCCAGTTGTGTCAACC -ACGGAATAGCCAGTTGTGTGTTCC -ACGGAATAGCCAGTTGTGATTCCC -ACGGAATAGCCAGTTGTGTTCTCG -ACGGAATAGCCAGTTGTGTAGACG -ACGGAATAGCCAGTTGTGGTAACG -ACGGAATAGCCAGTTGTGACTTCG -ACGGAATAGCCAGTTGTGTACGCA -ACGGAATAGCCAGTTGTGCTTGCA -ACGGAATAGCCAGTTGTGCGAACA -ACGGAATAGCCAGTTGTGCAGTCA -ACGGAATAGCCAGTTGTGGATCCA -ACGGAATAGCCAGTTGTGACGACA -ACGGAATAGCCAGTTGTGAGCTCA -ACGGAATAGCCAGTTGTGTCACGT -ACGGAATAGCCAGTTGTGCGTAGT -ACGGAATAGCCAGTTGTGGTCAGT -ACGGAATAGCCAGTTGTGGAAGGT -ACGGAATAGCCAGTTGTGAACCGT -ACGGAATAGCCAGTTGTGTTGTGC -ACGGAATAGCCAGTTGTGCTAAGC -ACGGAATAGCCAGTTGTGACTAGC -ACGGAATAGCCAGTTGTGAGATGC -ACGGAATAGCCAGTTGTGTGAAGG -ACGGAATAGCCAGTTGTGCAATGG -ACGGAATAGCCAGTTGTGATGAGG -ACGGAATAGCCAGTTGTGAATGGG -ACGGAATAGCCAGTTGTGTCCTGA -ACGGAATAGCCAGTTGTGTAGCGA -ACGGAATAGCCAGTTGTGCACAGA -ACGGAATAGCCAGTTGTGGCAAGA -ACGGAATAGCCAGTTGTGGGTTGA -ACGGAATAGCCAGTTGTGTCCGAT -ACGGAATAGCCAGTTGTGTGGCAT -ACGGAATAGCCAGTTGTGCGAGAT -ACGGAATAGCCAGTTGTGTACCAC -ACGGAATAGCCAGTTGTGCAGAAC -ACGGAATAGCCAGTTGTGGTCTAC -ACGGAATAGCCAGTTGTGACGTAC -ACGGAATAGCCAGTTGTGAGTGAC -ACGGAATAGCCAGTTGTGCTGTAG -ACGGAATAGCCAGTTGTGCCTAAG -ACGGAATAGCCAGTTGTGGTTCAG -ACGGAATAGCCAGTTGTGGCATAG -ACGGAATAGCCAGTTGTGGACAAG -ACGGAATAGCCAGTTGTGAAGCAG -ACGGAATAGCCAGTTGTGCGTCAA -ACGGAATAGCCAGTTGTGGCTGAA -ACGGAATAGCCAGTTGTGAGTACG -ACGGAATAGCCAGTTGTGATCCGA -ACGGAATAGCCAGTTGTGATGGGA -ACGGAATAGCCAGTTGTGGTGCAA -ACGGAATAGCCAGTTGTGGAGGAA -ACGGAATAGCCAGTTGTGCAGGTA -ACGGAATAGCCAGTTGTGGACTCT -ACGGAATAGCCAGTTGTGAGTCCT -ACGGAATAGCCAGTTGTGTAAGCC -ACGGAATAGCCAGTTGTGATAGCC -ACGGAATAGCCAGTTGTGTAACCG -ACGGAATAGCCAGTTGTGATGCCA -ACGGAATAGCCATTTGCCGGAAAC -ACGGAATAGCCATTTGCCAACACC -ACGGAATAGCCATTTGCCATCGAG -ACGGAATAGCCATTTGCCCTCCTT -ACGGAATAGCCATTTGCCCCTGTT -ACGGAATAGCCATTTGCCCGGTTT -ACGGAATAGCCATTTGCCGTGGTT -ACGGAATAGCCATTTGCCGCCTTT -ACGGAATAGCCATTTGCCGGTCTT -ACGGAATAGCCATTTGCCACGCTT -ACGGAATAGCCATTTGCCAGCGTT -ACGGAATAGCCATTTGCCTTCGTC -ACGGAATAGCCATTTGCCTCTCTC -ACGGAATAGCCATTTGCCTGGATC -ACGGAATAGCCATTTGCCCACTTC -ACGGAATAGCCATTTGCCGTACTC -ACGGAATAGCCATTTGCCGATGTC -ACGGAATAGCCATTTGCCACAGTC -ACGGAATAGCCATTTGCCTTGCTG -ACGGAATAGCCATTTGCCTCCATG -ACGGAATAGCCATTTGCCTGTGTG -ACGGAATAGCCATTTGCCCTAGTG -ACGGAATAGCCATTTGCCCATCTG -ACGGAATAGCCATTTGCCGAGTTG -ACGGAATAGCCATTTGCCAGACTG -ACGGAATAGCCATTTGCCTCGGTA -ACGGAATAGCCATTTGCCTGCCTA -ACGGAATAGCCATTTGCCCCACTA -ACGGAATAGCCATTTGCCGGAGTA -ACGGAATAGCCATTTGCCTCGTCT -ACGGAATAGCCATTTGCCTGCACT -ACGGAATAGCCATTTGCCCTGACT -ACGGAATAGCCATTTGCCCAACCT -ACGGAATAGCCATTTGCCGCTACT -ACGGAATAGCCATTTGCCGGATCT -ACGGAATAGCCATTTGCCAAGGCT -ACGGAATAGCCATTTGCCTCAACC -ACGGAATAGCCATTTGCCTGTTCC -ACGGAATAGCCATTTGCCATTCCC -ACGGAATAGCCATTTGCCTTCTCG -ACGGAATAGCCATTTGCCTAGACG -ACGGAATAGCCATTTGCCGTAACG -ACGGAATAGCCATTTGCCACTTCG -ACGGAATAGCCATTTGCCTACGCA -ACGGAATAGCCATTTGCCCTTGCA -ACGGAATAGCCATTTGCCCGAACA -ACGGAATAGCCATTTGCCCAGTCA -ACGGAATAGCCATTTGCCGATCCA -ACGGAATAGCCATTTGCCACGACA -ACGGAATAGCCATTTGCCAGCTCA -ACGGAATAGCCATTTGCCTCACGT -ACGGAATAGCCATTTGCCCGTAGT -ACGGAATAGCCATTTGCCGTCAGT -ACGGAATAGCCATTTGCCGAAGGT -ACGGAATAGCCATTTGCCAACCGT -ACGGAATAGCCATTTGCCTTGTGC -ACGGAATAGCCATTTGCCCTAAGC -ACGGAATAGCCATTTGCCACTAGC -ACGGAATAGCCATTTGCCAGATGC -ACGGAATAGCCATTTGCCTGAAGG -ACGGAATAGCCATTTGCCCAATGG -ACGGAATAGCCATTTGCCATGAGG -ACGGAATAGCCATTTGCCAATGGG -ACGGAATAGCCATTTGCCTCCTGA -ACGGAATAGCCATTTGCCTAGCGA -ACGGAATAGCCATTTGCCCACAGA -ACGGAATAGCCATTTGCCGCAAGA -ACGGAATAGCCATTTGCCGGTTGA -ACGGAATAGCCATTTGCCTCCGAT -ACGGAATAGCCATTTGCCTGGCAT -ACGGAATAGCCATTTGCCCGAGAT -ACGGAATAGCCATTTGCCTACCAC -ACGGAATAGCCATTTGCCCAGAAC -ACGGAATAGCCATTTGCCGTCTAC -ACGGAATAGCCATTTGCCACGTAC -ACGGAATAGCCATTTGCCAGTGAC -ACGGAATAGCCATTTGCCCTGTAG -ACGGAATAGCCATTTGCCCCTAAG -ACGGAATAGCCATTTGCCGTTCAG -ACGGAATAGCCATTTGCCGCATAG -ACGGAATAGCCATTTGCCGACAAG -ACGGAATAGCCATTTGCCAAGCAG -ACGGAATAGCCATTTGCCCGTCAA -ACGGAATAGCCATTTGCCGCTGAA -ACGGAATAGCCATTTGCCAGTACG -ACGGAATAGCCATTTGCCATCCGA -ACGGAATAGCCATTTGCCATGGGA -ACGGAATAGCCATTTGCCGTGCAA -ACGGAATAGCCATTTGCCGAGGAA -ACGGAATAGCCATTTGCCCAGGTA -ACGGAATAGCCATTTGCCGACTCT -ACGGAATAGCCATTTGCCAGTCCT -ACGGAATAGCCATTTGCCTAAGCC -ACGGAATAGCCATTTGCCATAGCC -ACGGAATAGCCATTTGCCTAACCG -ACGGAATAGCCATTTGCCATGCCA -ACGGAATAGCCACTTGGTGGAAAC -ACGGAATAGCCACTTGGTAACACC -ACGGAATAGCCACTTGGTATCGAG -ACGGAATAGCCACTTGGTCTCCTT -ACGGAATAGCCACTTGGTCCTGTT -ACGGAATAGCCACTTGGTCGGTTT -ACGGAATAGCCACTTGGTGTGGTT -ACGGAATAGCCACTTGGTGCCTTT -ACGGAATAGCCACTTGGTGGTCTT -ACGGAATAGCCACTTGGTACGCTT -ACGGAATAGCCACTTGGTAGCGTT -ACGGAATAGCCACTTGGTTTCGTC -ACGGAATAGCCACTTGGTTCTCTC -ACGGAATAGCCACTTGGTTGGATC -ACGGAATAGCCACTTGGTCACTTC -ACGGAATAGCCACTTGGTGTACTC -ACGGAATAGCCACTTGGTGATGTC -ACGGAATAGCCACTTGGTACAGTC -ACGGAATAGCCACTTGGTTTGCTG -ACGGAATAGCCACTTGGTTCCATG -ACGGAATAGCCACTTGGTTGTGTG -ACGGAATAGCCACTTGGTCTAGTG -ACGGAATAGCCACTTGGTCATCTG -ACGGAATAGCCACTTGGTGAGTTG -ACGGAATAGCCACTTGGTAGACTG -ACGGAATAGCCACTTGGTTCGGTA -ACGGAATAGCCACTTGGTTGCCTA -ACGGAATAGCCACTTGGTCCACTA -ACGGAATAGCCACTTGGTGGAGTA -ACGGAATAGCCACTTGGTTCGTCT -ACGGAATAGCCACTTGGTTGCACT -ACGGAATAGCCACTTGGTCTGACT -ACGGAATAGCCACTTGGTCAACCT -ACGGAATAGCCACTTGGTGCTACT -ACGGAATAGCCACTTGGTGGATCT -ACGGAATAGCCACTTGGTAAGGCT -ACGGAATAGCCACTTGGTTCAACC -ACGGAATAGCCACTTGGTTGTTCC -ACGGAATAGCCACTTGGTATTCCC -ACGGAATAGCCACTTGGTTTCTCG -ACGGAATAGCCACTTGGTTAGACG -ACGGAATAGCCACTTGGTGTAACG -ACGGAATAGCCACTTGGTACTTCG -ACGGAATAGCCACTTGGTTACGCA -ACGGAATAGCCACTTGGTCTTGCA -ACGGAATAGCCACTTGGTCGAACA -ACGGAATAGCCACTTGGTCAGTCA -ACGGAATAGCCACTTGGTGATCCA -ACGGAATAGCCACTTGGTACGACA -ACGGAATAGCCACTTGGTAGCTCA -ACGGAATAGCCACTTGGTTCACGT -ACGGAATAGCCACTTGGTCGTAGT -ACGGAATAGCCACTTGGTGTCAGT -ACGGAATAGCCACTTGGTGAAGGT -ACGGAATAGCCACTTGGTAACCGT -ACGGAATAGCCACTTGGTTTGTGC -ACGGAATAGCCACTTGGTCTAAGC -ACGGAATAGCCACTTGGTACTAGC -ACGGAATAGCCACTTGGTAGATGC -ACGGAATAGCCACTTGGTTGAAGG -ACGGAATAGCCACTTGGTCAATGG -ACGGAATAGCCACTTGGTATGAGG -ACGGAATAGCCACTTGGTAATGGG -ACGGAATAGCCACTTGGTTCCTGA -ACGGAATAGCCACTTGGTTAGCGA -ACGGAATAGCCACTTGGTCACAGA -ACGGAATAGCCACTTGGTGCAAGA -ACGGAATAGCCACTTGGTGGTTGA -ACGGAATAGCCACTTGGTTCCGAT -ACGGAATAGCCACTTGGTTGGCAT -ACGGAATAGCCACTTGGTCGAGAT -ACGGAATAGCCACTTGGTTACCAC -ACGGAATAGCCACTTGGTCAGAAC -ACGGAATAGCCACTTGGTGTCTAC -ACGGAATAGCCACTTGGTACGTAC -ACGGAATAGCCACTTGGTAGTGAC -ACGGAATAGCCACTTGGTCTGTAG -ACGGAATAGCCACTTGGTCCTAAG -ACGGAATAGCCACTTGGTGTTCAG -ACGGAATAGCCACTTGGTGCATAG -ACGGAATAGCCACTTGGTGACAAG -ACGGAATAGCCACTTGGTAAGCAG -ACGGAATAGCCACTTGGTCGTCAA -ACGGAATAGCCACTTGGTGCTGAA -ACGGAATAGCCACTTGGTAGTACG -ACGGAATAGCCACTTGGTATCCGA -ACGGAATAGCCACTTGGTATGGGA -ACGGAATAGCCACTTGGTGTGCAA -ACGGAATAGCCACTTGGTGAGGAA -ACGGAATAGCCACTTGGTCAGGTA -ACGGAATAGCCACTTGGTGACTCT -ACGGAATAGCCACTTGGTAGTCCT -ACGGAATAGCCACTTGGTTAAGCC -ACGGAATAGCCACTTGGTATAGCC -ACGGAATAGCCACTTGGTTAACCG -ACGGAATAGCCACTTGGTATGCCA -ACGGAATAGCCACTTACGGGAAAC -ACGGAATAGCCACTTACGAACACC -ACGGAATAGCCACTTACGATCGAG -ACGGAATAGCCACTTACGCTCCTT -ACGGAATAGCCACTTACGCCTGTT -ACGGAATAGCCACTTACGCGGTTT -ACGGAATAGCCACTTACGGTGGTT -ACGGAATAGCCACTTACGGCCTTT -ACGGAATAGCCACTTACGGGTCTT -ACGGAATAGCCACTTACGACGCTT -ACGGAATAGCCACTTACGAGCGTT -ACGGAATAGCCACTTACGTTCGTC -ACGGAATAGCCACTTACGTCTCTC -ACGGAATAGCCACTTACGTGGATC -ACGGAATAGCCACTTACGCACTTC -ACGGAATAGCCACTTACGGTACTC -ACGGAATAGCCACTTACGGATGTC -ACGGAATAGCCACTTACGACAGTC -ACGGAATAGCCACTTACGTTGCTG -ACGGAATAGCCACTTACGTCCATG -ACGGAATAGCCACTTACGTGTGTG -ACGGAATAGCCACTTACGCTAGTG -ACGGAATAGCCACTTACGCATCTG -ACGGAATAGCCACTTACGGAGTTG -ACGGAATAGCCACTTACGAGACTG -ACGGAATAGCCACTTACGTCGGTA -ACGGAATAGCCACTTACGTGCCTA -ACGGAATAGCCACTTACGCCACTA -ACGGAATAGCCACTTACGGGAGTA -ACGGAATAGCCACTTACGTCGTCT -ACGGAATAGCCACTTACGTGCACT -ACGGAATAGCCACTTACGCTGACT -ACGGAATAGCCACTTACGCAACCT -ACGGAATAGCCACTTACGGCTACT -ACGGAATAGCCACTTACGGGATCT -ACGGAATAGCCACTTACGAAGGCT -ACGGAATAGCCACTTACGTCAACC -ACGGAATAGCCACTTACGTGTTCC -ACGGAATAGCCACTTACGATTCCC -ACGGAATAGCCACTTACGTTCTCG -ACGGAATAGCCACTTACGTAGACG -ACGGAATAGCCACTTACGGTAACG -ACGGAATAGCCACTTACGACTTCG -ACGGAATAGCCACTTACGTACGCA -ACGGAATAGCCACTTACGCTTGCA -ACGGAATAGCCACTTACGCGAACA -ACGGAATAGCCACTTACGCAGTCA -ACGGAATAGCCACTTACGGATCCA -ACGGAATAGCCACTTACGACGACA -ACGGAATAGCCACTTACGAGCTCA -ACGGAATAGCCACTTACGTCACGT -ACGGAATAGCCACTTACGCGTAGT -ACGGAATAGCCACTTACGGTCAGT -ACGGAATAGCCACTTACGGAAGGT -ACGGAATAGCCACTTACGAACCGT -ACGGAATAGCCACTTACGTTGTGC -ACGGAATAGCCACTTACGCTAAGC -ACGGAATAGCCACTTACGACTAGC -ACGGAATAGCCACTTACGAGATGC -ACGGAATAGCCACTTACGTGAAGG -ACGGAATAGCCACTTACGCAATGG -ACGGAATAGCCACTTACGATGAGG -ACGGAATAGCCACTTACGAATGGG -ACGGAATAGCCACTTACGTCCTGA -ACGGAATAGCCACTTACGTAGCGA -ACGGAATAGCCACTTACGCACAGA -ACGGAATAGCCACTTACGGCAAGA -ACGGAATAGCCACTTACGGGTTGA -ACGGAATAGCCACTTACGTCCGAT -ACGGAATAGCCACTTACGTGGCAT -ACGGAATAGCCACTTACGCGAGAT -ACGGAATAGCCACTTACGTACCAC -ACGGAATAGCCACTTACGCAGAAC -ACGGAATAGCCACTTACGGTCTAC -ACGGAATAGCCACTTACGACGTAC -ACGGAATAGCCACTTACGAGTGAC -ACGGAATAGCCACTTACGCTGTAG -ACGGAATAGCCACTTACGCCTAAG -ACGGAATAGCCACTTACGGTTCAG -ACGGAATAGCCACTTACGGCATAG -ACGGAATAGCCACTTACGGACAAG -ACGGAATAGCCACTTACGAAGCAG -ACGGAATAGCCACTTACGCGTCAA -ACGGAATAGCCACTTACGGCTGAA -ACGGAATAGCCACTTACGAGTACG -ACGGAATAGCCACTTACGATCCGA -ACGGAATAGCCACTTACGATGGGA -ACGGAATAGCCACTTACGGTGCAA -ACGGAATAGCCACTTACGGAGGAA -ACGGAATAGCCACTTACGCAGGTA -ACGGAATAGCCACTTACGGACTCT -ACGGAATAGCCACTTACGAGTCCT -ACGGAATAGCCACTTACGTAAGCC -ACGGAATAGCCACTTACGATAGCC -ACGGAATAGCCACTTACGTAACCG -ACGGAATAGCCACTTACGATGCCA -ACGGAATAGCCAGTTAGCGGAAAC -ACGGAATAGCCAGTTAGCAACACC -ACGGAATAGCCAGTTAGCATCGAG -ACGGAATAGCCAGTTAGCCTCCTT -ACGGAATAGCCAGTTAGCCCTGTT -ACGGAATAGCCAGTTAGCCGGTTT -ACGGAATAGCCAGTTAGCGTGGTT -ACGGAATAGCCAGTTAGCGCCTTT -ACGGAATAGCCAGTTAGCGGTCTT -ACGGAATAGCCAGTTAGCACGCTT -ACGGAATAGCCAGTTAGCAGCGTT -ACGGAATAGCCAGTTAGCTTCGTC -ACGGAATAGCCAGTTAGCTCTCTC -ACGGAATAGCCAGTTAGCTGGATC -ACGGAATAGCCAGTTAGCCACTTC -ACGGAATAGCCAGTTAGCGTACTC -ACGGAATAGCCAGTTAGCGATGTC -ACGGAATAGCCAGTTAGCACAGTC -ACGGAATAGCCAGTTAGCTTGCTG -ACGGAATAGCCAGTTAGCTCCATG -ACGGAATAGCCAGTTAGCTGTGTG -ACGGAATAGCCAGTTAGCCTAGTG -ACGGAATAGCCAGTTAGCCATCTG -ACGGAATAGCCAGTTAGCGAGTTG -ACGGAATAGCCAGTTAGCAGACTG -ACGGAATAGCCAGTTAGCTCGGTA -ACGGAATAGCCAGTTAGCTGCCTA -ACGGAATAGCCAGTTAGCCCACTA -ACGGAATAGCCAGTTAGCGGAGTA -ACGGAATAGCCAGTTAGCTCGTCT -ACGGAATAGCCAGTTAGCTGCACT -ACGGAATAGCCAGTTAGCCTGACT -ACGGAATAGCCAGTTAGCCAACCT -ACGGAATAGCCAGTTAGCGCTACT -ACGGAATAGCCAGTTAGCGGATCT -ACGGAATAGCCAGTTAGCAAGGCT -ACGGAATAGCCAGTTAGCTCAACC -ACGGAATAGCCAGTTAGCTGTTCC -ACGGAATAGCCAGTTAGCATTCCC -ACGGAATAGCCAGTTAGCTTCTCG -ACGGAATAGCCAGTTAGCTAGACG -ACGGAATAGCCAGTTAGCGTAACG -ACGGAATAGCCAGTTAGCACTTCG -ACGGAATAGCCAGTTAGCTACGCA -ACGGAATAGCCAGTTAGCCTTGCA -ACGGAATAGCCAGTTAGCCGAACA -ACGGAATAGCCAGTTAGCCAGTCA -ACGGAATAGCCAGTTAGCGATCCA -ACGGAATAGCCAGTTAGCACGACA -ACGGAATAGCCAGTTAGCAGCTCA -ACGGAATAGCCAGTTAGCTCACGT -ACGGAATAGCCAGTTAGCCGTAGT -ACGGAATAGCCAGTTAGCGTCAGT -ACGGAATAGCCAGTTAGCGAAGGT -ACGGAATAGCCAGTTAGCAACCGT -ACGGAATAGCCAGTTAGCTTGTGC -ACGGAATAGCCAGTTAGCCTAAGC -ACGGAATAGCCAGTTAGCACTAGC -ACGGAATAGCCAGTTAGCAGATGC -ACGGAATAGCCAGTTAGCTGAAGG -ACGGAATAGCCAGTTAGCCAATGG -ACGGAATAGCCAGTTAGCATGAGG -ACGGAATAGCCAGTTAGCAATGGG -ACGGAATAGCCAGTTAGCTCCTGA -ACGGAATAGCCAGTTAGCTAGCGA -ACGGAATAGCCAGTTAGCCACAGA -ACGGAATAGCCAGTTAGCGCAAGA -ACGGAATAGCCAGTTAGCGGTTGA -ACGGAATAGCCAGTTAGCTCCGAT -ACGGAATAGCCAGTTAGCTGGCAT -ACGGAATAGCCAGTTAGCCGAGAT -ACGGAATAGCCAGTTAGCTACCAC -ACGGAATAGCCAGTTAGCCAGAAC -ACGGAATAGCCAGTTAGCGTCTAC -ACGGAATAGCCAGTTAGCACGTAC -ACGGAATAGCCAGTTAGCAGTGAC -ACGGAATAGCCAGTTAGCCTGTAG -ACGGAATAGCCAGTTAGCCCTAAG -ACGGAATAGCCAGTTAGCGTTCAG -ACGGAATAGCCAGTTAGCGCATAG -ACGGAATAGCCAGTTAGCGACAAG -ACGGAATAGCCAGTTAGCAAGCAG -ACGGAATAGCCAGTTAGCCGTCAA -ACGGAATAGCCAGTTAGCGCTGAA -ACGGAATAGCCAGTTAGCAGTACG -ACGGAATAGCCAGTTAGCATCCGA -ACGGAATAGCCAGTTAGCATGGGA -ACGGAATAGCCAGTTAGCGTGCAA -ACGGAATAGCCAGTTAGCGAGGAA -ACGGAATAGCCAGTTAGCCAGGTA -ACGGAATAGCCAGTTAGCGACTCT -ACGGAATAGCCAGTTAGCAGTCCT -ACGGAATAGCCAGTTAGCTAAGCC -ACGGAATAGCCAGTTAGCATAGCC -ACGGAATAGCCAGTTAGCTAACCG -ACGGAATAGCCAGTTAGCATGCCA -ACGGAATAGCCAGTCTTCGGAAAC -ACGGAATAGCCAGTCTTCAACACC -ACGGAATAGCCAGTCTTCATCGAG -ACGGAATAGCCAGTCTTCCTCCTT -ACGGAATAGCCAGTCTTCCCTGTT -ACGGAATAGCCAGTCTTCCGGTTT -ACGGAATAGCCAGTCTTCGTGGTT -ACGGAATAGCCAGTCTTCGCCTTT -ACGGAATAGCCAGTCTTCGGTCTT -ACGGAATAGCCAGTCTTCACGCTT -ACGGAATAGCCAGTCTTCAGCGTT -ACGGAATAGCCAGTCTTCTTCGTC -ACGGAATAGCCAGTCTTCTCTCTC -ACGGAATAGCCAGTCTTCTGGATC -ACGGAATAGCCAGTCTTCCACTTC -ACGGAATAGCCAGTCTTCGTACTC -ACGGAATAGCCAGTCTTCGATGTC -ACGGAATAGCCAGTCTTCACAGTC -ACGGAATAGCCAGTCTTCTTGCTG -ACGGAATAGCCAGTCTTCTCCATG -ACGGAATAGCCAGTCTTCTGTGTG -ACGGAATAGCCAGTCTTCCTAGTG -ACGGAATAGCCAGTCTTCCATCTG -ACGGAATAGCCAGTCTTCGAGTTG -ACGGAATAGCCAGTCTTCAGACTG -ACGGAATAGCCAGTCTTCTCGGTA -ACGGAATAGCCAGTCTTCTGCCTA -ACGGAATAGCCAGTCTTCCCACTA -ACGGAATAGCCAGTCTTCGGAGTA -ACGGAATAGCCAGTCTTCTCGTCT -ACGGAATAGCCAGTCTTCTGCACT -ACGGAATAGCCAGTCTTCCTGACT -ACGGAATAGCCAGTCTTCCAACCT -ACGGAATAGCCAGTCTTCGCTACT -ACGGAATAGCCAGTCTTCGGATCT -ACGGAATAGCCAGTCTTCAAGGCT -ACGGAATAGCCAGTCTTCTCAACC -ACGGAATAGCCAGTCTTCTGTTCC -ACGGAATAGCCAGTCTTCATTCCC -ACGGAATAGCCAGTCTTCTTCTCG -ACGGAATAGCCAGTCTTCTAGACG -ACGGAATAGCCAGTCTTCGTAACG -ACGGAATAGCCAGTCTTCACTTCG -ACGGAATAGCCAGTCTTCTACGCA -ACGGAATAGCCAGTCTTCCTTGCA -ACGGAATAGCCAGTCTTCCGAACA -ACGGAATAGCCAGTCTTCCAGTCA -ACGGAATAGCCAGTCTTCGATCCA -ACGGAATAGCCAGTCTTCACGACA -ACGGAATAGCCAGTCTTCAGCTCA -ACGGAATAGCCAGTCTTCTCACGT -ACGGAATAGCCAGTCTTCCGTAGT -ACGGAATAGCCAGTCTTCGTCAGT -ACGGAATAGCCAGTCTTCGAAGGT -ACGGAATAGCCAGTCTTCAACCGT -ACGGAATAGCCAGTCTTCTTGTGC -ACGGAATAGCCAGTCTTCCTAAGC -ACGGAATAGCCAGTCTTCACTAGC -ACGGAATAGCCAGTCTTCAGATGC -ACGGAATAGCCAGTCTTCTGAAGG -ACGGAATAGCCAGTCTTCCAATGG -ACGGAATAGCCAGTCTTCATGAGG -ACGGAATAGCCAGTCTTCAATGGG -ACGGAATAGCCAGTCTTCTCCTGA -ACGGAATAGCCAGTCTTCTAGCGA -ACGGAATAGCCAGTCTTCCACAGA -ACGGAATAGCCAGTCTTCGCAAGA -ACGGAATAGCCAGTCTTCGGTTGA -ACGGAATAGCCAGTCTTCTCCGAT -ACGGAATAGCCAGTCTTCTGGCAT -ACGGAATAGCCAGTCTTCCGAGAT -ACGGAATAGCCAGTCTTCTACCAC -ACGGAATAGCCAGTCTTCCAGAAC -ACGGAATAGCCAGTCTTCGTCTAC -ACGGAATAGCCAGTCTTCACGTAC -ACGGAATAGCCAGTCTTCAGTGAC -ACGGAATAGCCAGTCTTCCTGTAG -ACGGAATAGCCAGTCTTCCCTAAG -ACGGAATAGCCAGTCTTCGTTCAG -ACGGAATAGCCAGTCTTCGCATAG -ACGGAATAGCCAGTCTTCGACAAG -ACGGAATAGCCAGTCTTCAAGCAG -ACGGAATAGCCAGTCTTCCGTCAA -ACGGAATAGCCAGTCTTCGCTGAA -ACGGAATAGCCAGTCTTCAGTACG -ACGGAATAGCCAGTCTTCATCCGA -ACGGAATAGCCAGTCTTCATGGGA -ACGGAATAGCCAGTCTTCGTGCAA -ACGGAATAGCCAGTCTTCGAGGAA -ACGGAATAGCCAGTCTTCCAGGTA -ACGGAATAGCCAGTCTTCGACTCT -ACGGAATAGCCAGTCTTCAGTCCT -ACGGAATAGCCAGTCTTCTAAGCC -ACGGAATAGCCAGTCTTCATAGCC -ACGGAATAGCCAGTCTTCTAACCG -ACGGAATAGCCAGTCTTCATGCCA -ACGGAATAGCCACTCTCTGGAAAC -ACGGAATAGCCACTCTCTAACACC -ACGGAATAGCCACTCTCTATCGAG -ACGGAATAGCCACTCTCTCTCCTT -ACGGAATAGCCACTCTCTCCTGTT -ACGGAATAGCCACTCTCTCGGTTT -ACGGAATAGCCACTCTCTGTGGTT -ACGGAATAGCCACTCTCTGCCTTT -ACGGAATAGCCACTCTCTGGTCTT -ACGGAATAGCCACTCTCTACGCTT -ACGGAATAGCCACTCTCTAGCGTT -ACGGAATAGCCACTCTCTTTCGTC -ACGGAATAGCCACTCTCTTCTCTC -ACGGAATAGCCACTCTCTTGGATC -ACGGAATAGCCACTCTCTCACTTC -ACGGAATAGCCACTCTCTGTACTC -ACGGAATAGCCACTCTCTGATGTC -ACGGAATAGCCACTCTCTACAGTC -ACGGAATAGCCACTCTCTTTGCTG -ACGGAATAGCCACTCTCTTCCATG -ACGGAATAGCCACTCTCTTGTGTG -ACGGAATAGCCACTCTCTCTAGTG -ACGGAATAGCCACTCTCTCATCTG -ACGGAATAGCCACTCTCTGAGTTG -ACGGAATAGCCACTCTCTAGACTG -ACGGAATAGCCACTCTCTTCGGTA -ACGGAATAGCCACTCTCTTGCCTA -ACGGAATAGCCACTCTCTCCACTA -ACGGAATAGCCACTCTCTGGAGTA -ACGGAATAGCCACTCTCTTCGTCT -ACGGAATAGCCACTCTCTTGCACT -ACGGAATAGCCACTCTCTCTGACT -ACGGAATAGCCACTCTCTCAACCT -ACGGAATAGCCACTCTCTGCTACT -ACGGAATAGCCACTCTCTGGATCT -ACGGAATAGCCACTCTCTAAGGCT -ACGGAATAGCCACTCTCTTCAACC -ACGGAATAGCCACTCTCTTGTTCC -ACGGAATAGCCACTCTCTATTCCC -ACGGAATAGCCACTCTCTTTCTCG -ACGGAATAGCCACTCTCTTAGACG -ACGGAATAGCCACTCTCTGTAACG -ACGGAATAGCCACTCTCTACTTCG -ACGGAATAGCCACTCTCTTACGCA -ACGGAATAGCCACTCTCTCTTGCA -ACGGAATAGCCACTCTCTCGAACA -ACGGAATAGCCACTCTCTCAGTCA -ACGGAATAGCCACTCTCTGATCCA -ACGGAATAGCCACTCTCTACGACA -ACGGAATAGCCACTCTCTAGCTCA -ACGGAATAGCCACTCTCTTCACGT -ACGGAATAGCCACTCTCTCGTAGT -ACGGAATAGCCACTCTCTGTCAGT -ACGGAATAGCCACTCTCTGAAGGT -ACGGAATAGCCACTCTCTAACCGT -ACGGAATAGCCACTCTCTTTGTGC -ACGGAATAGCCACTCTCTCTAAGC -ACGGAATAGCCACTCTCTACTAGC -ACGGAATAGCCACTCTCTAGATGC -ACGGAATAGCCACTCTCTTGAAGG -ACGGAATAGCCACTCTCTCAATGG -ACGGAATAGCCACTCTCTATGAGG -ACGGAATAGCCACTCTCTAATGGG -ACGGAATAGCCACTCTCTTCCTGA -ACGGAATAGCCACTCTCTTAGCGA -ACGGAATAGCCACTCTCTCACAGA -ACGGAATAGCCACTCTCTGCAAGA -ACGGAATAGCCACTCTCTGGTTGA -ACGGAATAGCCACTCTCTTCCGAT -ACGGAATAGCCACTCTCTTGGCAT -ACGGAATAGCCACTCTCTCGAGAT -ACGGAATAGCCACTCTCTTACCAC -ACGGAATAGCCACTCTCTCAGAAC -ACGGAATAGCCACTCTCTGTCTAC -ACGGAATAGCCACTCTCTACGTAC -ACGGAATAGCCACTCTCTAGTGAC -ACGGAATAGCCACTCTCTCTGTAG -ACGGAATAGCCACTCTCTCCTAAG -ACGGAATAGCCACTCTCTGTTCAG -ACGGAATAGCCACTCTCTGCATAG -ACGGAATAGCCACTCTCTGACAAG -ACGGAATAGCCACTCTCTAAGCAG -ACGGAATAGCCACTCTCTCGTCAA -ACGGAATAGCCACTCTCTGCTGAA -ACGGAATAGCCACTCTCTAGTACG -ACGGAATAGCCACTCTCTATCCGA -ACGGAATAGCCACTCTCTATGGGA -ACGGAATAGCCACTCTCTGTGCAA -ACGGAATAGCCACTCTCTGAGGAA -ACGGAATAGCCACTCTCTCAGGTA -ACGGAATAGCCACTCTCTGACTCT -ACGGAATAGCCACTCTCTAGTCCT -ACGGAATAGCCACTCTCTTAAGCC -ACGGAATAGCCACTCTCTATAGCC -ACGGAATAGCCACTCTCTTAACCG -ACGGAATAGCCACTCTCTATGCCA -ACGGAATAGCCAATCTGGGGAAAC -ACGGAATAGCCAATCTGGAACACC -ACGGAATAGCCAATCTGGATCGAG -ACGGAATAGCCAATCTGGCTCCTT -ACGGAATAGCCAATCTGGCCTGTT -ACGGAATAGCCAATCTGGCGGTTT -ACGGAATAGCCAATCTGGGTGGTT -ACGGAATAGCCAATCTGGGCCTTT -ACGGAATAGCCAATCTGGGGTCTT -ACGGAATAGCCAATCTGGACGCTT -ACGGAATAGCCAATCTGGAGCGTT -ACGGAATAGCCAATCTGGTTCGTC -ACGGAATAGCCAATCTGGTCTCTC -ACGGAATAGCCAATCTGGTGGATC -ACGGAATAGCCAATCTGGCACTTC -ACGGAATAGCCAATCTGGGTACTC -ACGGAATAGCCAATCTGGGATGTC -ACGGAATAGCCAATCTGGACAGTC -ACGGAATAGCCAATCTGGTTGCTG -ACGGAATAGCCAATCTGGTCCATG -ACGGAATAGCCAATCTGGTGTGTG -ACGGAATAGCCAATCTGGCTAGTG -ACGGAATAGCCAATCTGGCATCTG -ACGGAATAGCCAATCTGGGAGTTG -ACGGAATAGCCAATCTGGAGACTG -ACGGAATAGCCAATCTGGTCGGTA -ACGGAATAGCCAATCTGGTGCCTA -ACGGAATAGCCAATCTGGCCACTA -ACGGAATAGCCAATCTGGGGAGTA -ACGGAATAGCCAATCTGGTCGTCT -ACGGAATAGCCAATCTGGTGCACT -ACGGAATAGCCAATCTGGCTGACT -ACGGAATAGCCAATCTGGCAACCT -ACGGAATAGCCAATCTGGGCTACT -ACGGAATAGCCAATCTGGGGATCT -ACGGAATAGCCAATCTGGAAGGCT -ACGGAATAGCCAATCTGGTCAACC -ACGGAATAGCCAATCTGGTGTTCC -ACGGAATAGCCAATCTGGATTCCC -ACGGAATAGCCAATCTGGTTCTCG -ACGGAATAGCCAATCTGGTAGACG -ACGGAATAGCCAATCTGGGTAACG -ACGGAATAGCCAATCTGGACTTCG -ACGGAATAGCCAATCTGGTACGCA -ACGGAATAGCCAATCTGGCTTGCA -ACGGAATAGCCAATCTGGCGAACA -ACGGAATAGCCAATCTGGCAGTCA -ACGGAATAGCCAATCTGGGATCCA -ACGGAATAGCCAATCTGGACGACA -ACGGAATAGCCAATCTGGAGCTCA -ACGGAATAGCCAATCTGGTCACGT -ACGGAATAGCCAATCTGGCGTAGT -ACGGAATAGCCAATCTGGGTCAGT -ACGGAATAGCCAATCTGGGAAGGT -ACGGAATAGCCAATCTGGAACCGT -ACGGAATAGCCAATCTGGTTGTGC -ACGGAATAGCCAATCTGGCTAAGC -ACGGAATAGCCAATCTGGACTAGC -ACGGAATAGCCAATCTGGAGATGC -ACGGAATAGCCAATCTGGTGAAGG -ACGGAATAGCCAATCTGGCAATGG -ACGGAATAGCCAATCTGGATGAGG -ACGGAATAGCCAATCTGGAATGGG -ACGGAATAGCCAATCTGGTCCTGA -ACGGAATAGCCAATCTGGTAGCGA -ACGGAATAGCCAATCTGGCACAGA -ACGGAATAGCCAATCTGGGCAAGA -ACGGAATAGCCAATCTGGGGTTGA -ACGGAATAGCCAATCTGGTCCGAT -ACGGAATAGCCAATCTGGTGGCAT -ACGGAATAGCCAATCTGGCGAGAT -ACGGAATAGCCAATCTGGTACCAC -ACGGAATAGCCAATCTGGCAGAAC -ACGGAATAGCCAATCTGGGTCTAC -ACGGAATAGCCAATCTGGACGTAC -ACGGAATAGCCAATCTGGAGTGAC -ACGGAATAGCCAATCTGGCTGTAG -ACGGAATAGCCAATCTGGCCTAAG -ACGGAATAGCCAATCTGGGTTCAG -ACGGAATAGCCAATCTGGGCATAG -ACGGAATAGCCAATCTGGGACAAG -ACGGAATAGCCAATCTGGAAGCAG -ACGGAATAGCCAATCTGGCGTCAA -ACGGAATAGCCAATCTGGGCTGAA -ACGGAATAGCCAATCTGGAGTACG -ACGGAATAGCCAATCTGGATCCGA -ACGGAATAGCCAATCTGGATGGGA -ACGGAATAGCCAATCTGGGTGCAA -ACGGAATAGCCAATCTGGGAGGAA -ACGGAATAGCCAATCTGGCAGGTA -ACGGAATAGCCAATCTGGGACTCT -ACGGAATAGCCAATCTGGAGTCCT -ACGGAATAGCCAATCTGGTAAGCC -ACGGAATAGCCAATCTGGATAGCC -ACGGAATAGCCAATCTGGTAACCG -ACGGAATAGCCAATCTGGATGCCA -ACGGAATAGCCATTCCACGGAAAC -ACGGAATAGCCATTCCACAACACC -ACGGAATAGCCATTCCACATCGAG -ACGGAATAGCCATTCCACCTCCTT -ACGGAATAGCCATTCCACCCTGTT -ACGGAATAGCCATTCCACCGGTTT -ACGGAATAGCCATTCCACGTGGTT -ACGGAATAGCCATTCCACGCCTTT -ACGGAATAGCCATTCCACGGTCTT -ACGGAATAGCCATTCCACACGCTT -ACGGAATAGCCATTCCACAGCGTT -ACGGAATAGCCATTCCACTTCGTC -ACGGAATAGCCATTCCACTCTCTC -ACGGAATAGCCATTCCACTGGATC -ACGGAATAGCCATTCCACCACTTC -ACGGAATAGCCATTCCACGTACTC -ACGGAATAGCCATTCCACGATGTC -ACGGAATAGCCATTCCACACAGTC -ACGGAATAGCCATTCCACTTGCTG -ACGGAATAGCCATTCCACTCCATG -ACGGAATAGCCATTCCACTGTGTG -ACGGAATAGCCATTCCACCTAGTG -ACGGAATAGCCATTCCACCATCTG -ACGGAATAGCCATTCCACGAGTTG -ACGGAATAGCCATTCCACAGACTG -ACGGAATAGCCATTCCACTCGGTA -ACGGAATAGCCATTCCACTGCCTA -ACGGAATAGCCATTCCACCCACTA -ACGGAATAGCCATTCCACGGAGTA -ACGGAATAGCCATTCCACTCGTCT -ACGGAATAGCCATTCCACTGCACT -ACGGAATAGCCATTCCACCTGACT -ACGGAATAGCCATTCCACCAACCT -ACGGAATAGCCATTCCACGCTACT -ACGGAATAGCCATTCCACGGATCT -ACGGAATAGCCATTCCACAAGGCT -ACGGAATAGCCATTCCACTCAACC -ACGGAATAGCCATTCCACTGTTCC -ACGGAATAGCCATTCCACATTCCC -ACGGAATAGCCATTCCACTTCTCG -ACGGAATAGCCATTCCACTAGACG -ACGGAATAGCCATTCCACGTAACG -ACGGAATAGCCATTCCACACTTCG -ACGGAATAGCCATTCCACTACGCA -ACGGAATAGCCATTCCACCTTGCA -ACGGAATAGCCATTCCACCGAACA -ACGGAATAGCCATTCCACCAGTCA -ACGGAATAGCCATTCCACGATCCA -ACGGAATAGCCATTCCACACGACA -ACGGAATAGCCATTCCACAGCTCA -ACGGAATAGCCATTCCACTCACGT -ACGGAATAGCCATTCCACCGTAGT -ACGGAATAGCCATTCCACGTCAGT -ACGGAATAGCCATTCCACGAAGGT -ACGGAATAGCCATTCCACAACCGT -ACGGAATAGCCATTCCACTTGTGC -ACGGAATAGCCATTCCACCTAAGC -ACGGAATAGCCATTCCACACTAGC -ACGGAATAGCCATTCCACAGATGC -ACGGAATAGCCATTCCACTGAAGG -ACGGAATAGCCATTCCACCAATGG -ACGGAATAGCCATTCCACATGAGG -ACGGAATAGCCATTCCACAATGGG -ACGGAATAGCCATTCCACTCCTGA -ACGGAATAGCCATTCCACTAGCGA -ACGGAATAGCCATTCCACCACAGA -ACGGAATAGCCATTCCACGCAAGA -ACGGAATAGCCATTCCACGGTTGA -ACGGAATAGCCATTCCACTCCGAT -ACGGAATAGCCATTCCACTGGCAT -ACGGAATAGCCATTCCACCGAGAT -ACGGAATAGCCATTCCACTACCAC -ACGGAATAGCCATTCCACCAGAAC -ACGGAATAGCCATTCCACGTCTAC -ACGGAATAGCCATTCCACACGTAC -ACGGAATAGCCATTCCACAGTGAC -ACGGAATAGCCATTCCACCTGTAG -ACGGAATAGCCATTCCACCCTAAG -ACGGAATAGCCATTCCACGTTCAG -ACGGAATAGCCATTCCACGCATAG -ACGGAATAGCCATTCCACGACAAG -ACGGAATAGCCATTCCACAAGCAG -ACGGAATAGCCATTCCACCGTCAA -ACGGAATAGCCATTCCACGCTGAA -ACGGAATAGCCATTCCACAGTACG -ACGGAATAGCCATTCCACATCCGA -ACGGAATAGCCATTCCACATGGGA -ACGGAATAGCCATTCCACGTGCAA -ACGGAATAGCCATTCCACGAGGAA -ACGGAATAGCCATTCCACCAGGTA -ACGGAATAGCCATTCCACGACTCT -ACGGAATAGCCATTCCACAGTCCT -ACGGAATAGCCATTCCACTAAGCC -ACGGAATAGCCATTCCACATAGCC -ACGGAATAGCCATTCCACTAACCG -ACGGAATAGCCATTCCACATGCCA -ACGGAATAGCCACTCGTAGGAAAC -ACGGAATAGCCACTCGTAAACACC -ACGGAATAGCCACTCGTAATCGAG -ACGGAATAGCCACTCGTACTCCTT -ACGGAATAGCCACTCGTACCTGTT -ACGGAATAGCCACTCGTACGGTTT -ACGGAATAGCCACTCGTAGTGGTT -ACGGAATAGCCACTCGTAGCCTTT -ACGGAATAGCCACTCGTAGGTCTT -ACGGAATAGCCACTCGTAACGCTT -ACGGAATAGCCACTCGTAAGCGTT -ACGGAATAGCCACTCGTATTCGTC -ACGGAATAGCCACTCGTATCTCTC -ACGGAATAGCCACTCGTATGGATC -ACGGAATAGCCACTCGTACACTTC -ACGGAATAGCCACTCGTAGTACTC -ACGGAATAGCCACTCGTAGATGTC -ACGGAATAGCCACTCGTAACAGTC -ACGGAATAGCCACTCGTATTGCTG -ACGGAATAGCCACTCGTATCCATG -ACGGAATAGCCACTCGTATGTGTG -ACGGAATAGCCACTCGTACTAGTG -ACGGAATAGCCACTCGTACATCTG -ACGGAATAGCCACTCGTAGAGTTG -ACGGAATAGCCACTCGTAAGACTG -ACGGAATAGCCACTCGTATCGGTA -ACGGAATAGCCACTCGTATGCCTA -ACGGAATAGCCACTCGTACCACTA -ACGGAATAGCCACTCGTAGGAGTA -ACGGAATAGCCACTCGTATCGTCT -ACGGAATAGCCACTCGTATGCACT -ACGGAATAGCCACTCGTACTGACT -ACGGAATAGCCACTCGTACAACCT -ACGGAATAGCCACTCGTAGCTACT -ACGGAATAGCCACTCGTAGGATCT -ACGGAATAGCCACTCGTAAAGGCT -ACGGAATAGCCACTCGTATCAACC -ACGGAATAGCCACTCGTATGTTCC -ACGGAATAGCCACTCGTAATTCCC -ACGGAATAGCCACTCGTATTCTCG -ACGGAATAGCCACTCGTATAGACG -ACGGAATAGCCACTCGTAGTAACG -ACGGAATAGCCACTCGTAACTTCG -ACGGAATAGCCACTCGTATACGCA -ACGGAATAGCCACTCGTACTTGCA -ACGGAATAGCCACTCGTACGAACA -ACGGAATAGCCACTCGTACAGTCA -ACGGAATAGCCACTCGTAGATCCA -ACGGAATAGCCACTCGTAACGACA -ACGGAATAGCCACTCGTAAGCTCA -ACGGAATAGCCACTCGTATCACGT -ACGGAATAGCCACTCGTACGTAGT -ACGGAATAGCCACTCGTAGTCAGT -ACGGAATAGCCACTCGTAGAAGGT -ACGGAATAGCCACTCGTAAACCGT -ACGGAATAGCCACTCGTATTGTGC -ACGGAATAGCCACTCGTACTAAGC -ACGGAATAGCCACTCGTAACTAGC -ACGGAATAGCCACTCGTAAGATGC -ACGGAATAGCCACTCGTATGAAGG -ACGGAATAGCCACTCGTACAATGG -ACGGAATAGCCACTCGTAATGAGG -ACGGAATAGCCACTCGTAAATGGG -ACGGAATAGCCACTCGTATCCTGA -ACGGAATAGCCACTCGTATAGCGA -ACGGAATAGCCACTCGTACACAGA -ACGGAATAGCCACTCGTAGCAAGA -ACGGAATAGCCACTCGTAGGTTGA -ACGGAATAGCCACTCGTATCCGAT -ACGGAATAGCCACTCGTATGGCAT -ACGGAATAGCCACTCGTACGAGAT -ACGGAATAGCCACTCGTATACCAC -ACGGAATAGCCACTCGTACAGAAC -ACGGAATAGCCACTCGTAGTCTAC -ACGGAATAGCCACTCGTAACGTAC -ACGGAATAGCCACTCGTAAGTGAC -ACGGAATAGCCACTCGTACTGTAG -ACGGAATAGCCACTCGTACCTAAG -ACGGAATAGCCACTCGTAGTTCAG -ACGGAATAGCCACTCGTAGCATAG -ACGGAATAGCCACTCGTAGACAAG -ACGGAATAGCCACTCGTAAAGCAG -ACGGAATAGCCACTCGTACGTCAA -ACGGAATAGCCACTCGTAGCTGAA -ACGGAATAGCCACTCGTAAGTACG -ACGGAATAGCCACTCGTAATCCGA -ACGGAATAGCCACTCGTAATGGGA -ACGGAATAGCCACTCGTAGTGCAA -ACGGAATAGCCACTCGTAGAGGAA -ACGGAATAGCCACTCGTACAGGTA -ACGGAATAGCCACTCGTAGACTCT -ACGGAATAGCCACTCGTAAGTCCT -ACGGAATAGCCACTCGTATAAGCC -ACGGAATAGCCACTCGTAATAGCC -ACGGAATAGCCACTCGTATAACCG -ACGGAATAGCCACTCGTAATGCCA -ACGGAATAGCCAGTCGATGGAAAC -ACGGAATAGCCAGTCGATAACACC -ACGGAATAGCCAGTCGATATCGAG -ACGGAATAGCCAGTCGATCTCCTT -ACGGAATAGCCAGTCGATCCTGTT -ACGGAATAGCCAGTCGATCGGTTT -ACGGAATAGCCAGTCGATGTGGTT -ACGGAATAGCCAGTCGATGCCTTT -ACGGAATAGCCAGTCGATGGTCTT -ACGGAATAGCCAGTCGATACGCTT -ACGGAATAGCCAGTCGATAGCGTT -ACGGAATAGCCAGTCGATTTCGTC -ACGGAATAGCCAGTCGATTCTCTC -ACGGAATAGCCAGTCGATTGGATC -ACGGAATAGCCAGTCGATCACTTC -ACGGAATAGCCAGTCGATGTACTC -ACGGAATAGCCAGTCGATGATGTC -ACGGAATAGCCAGTCGATACAGTC -ACGGAATAGCCAGTCGATTTGCTG -ACGGAATAGCCAGTCGATTCCATG -ACGGAATAGCCAGTCGATTGTGTG -ACGGAATAGCCAGTCGATCTAGTG -ACGGAATAGCCAGTCGATCATCTG -ACGGAATAGCCAGTCGATGAGTTG -ACGGAATAGCCAGTCGATAGACTG -ACGGAATAGCCAGTCGATTCGGTA -ACGGAATAGCCAGTCGATTGCCTA -ACGGAATAGCCAGTCGATCCACTA -ACGGAATAGCCAGTCGATGGAGTA -ACGGAATAGCCAGTCGATTCGTCT -ACGGAATAGCCAGTCGATTGCACT -ACGGAATAGCCAGTCGATCTGACT -ACGGAATAGCCAGTCGATCAACCT -ACGGAATAGCCAGTCGATGCTACT -ACGGAATAGCCAGTCGATGGATCT -ACGGAATAGCCAGTCGATAAGGCT -ACGGAATAGCCAGTCGATTCAACC -ACGGAATAGCCAGTCGATTGTTCC -ACGGAATAGCCAGTCGATATTCCC -ACGGAATAGCCAGTCGATTTCTCG -ACGGAATAGCCAGTCGATTAGACG -ACGGAATAGCCAGTCGATGTAACG -ACGGAATAGCCAGTCGATACTTCG -ACGGAATAGCCAGTCGATTACGCA -ACGGAATAGCCAGTCGATCTTGCA -ACGGAATAGCCAGTCGATCGAACA -ACGGAATAGCCAGTCGATCAGTCA -ACGGAATAGCCAGTCGATGATCCA -ACGGAATAGCCAGTCGATACGACA -ACGGAATAGCCAGTCGATAGCTCA -ACGGAATAGCCAGTCGATTCACGT -ACGGAATAGCCAGTCGATCGTAGT -ACGGAATAGCCAGTCGATGTCAGT -ACGGAATAGCCAGTCGATGAAGGT -ACGGAATAGCCAGTCGATAACCGT -ACGGAATAGCCAGTCGATTTGTGC -ACGGAATAGCCAGTCGATCTAAGC -ACGGAATAGCCAGTCGATACTAGC -ACGGAATAGCCAGTCGATAGATGC -ACGGAATAGCCAGTCGATTGAAGG -ACGGAATAGCCAGTCGATCAATGG -ACGGAATAGCCAGTCGATATGAGG -ACGGAATAGCCAGTCGATAATGGG -ACGGAATAGCCAGTCGATTCCTGA -ACGGAATAGCCAGTCGATTAGCGA -ACGGAATAGCCAGTCGATCACAGA -ACGGAATAGCCAGTCGATGCAAGA -ACGGAATAGCCAGTCGATGGTTGA -ACGGAATAGCCAGTCGATTCCGAT -ACGGAATAGCCAGTCGATTGGCAT -ACGGAATAGCCAGTCGATCGAGAT -ACGGAATAGCCAGTCGATTACCAC -ACGGAATAGCCAGTCGATCAGAAC -ACGGAATAGCCAGTCGATGTCTAC -ACGGAATAGCCAGTCGATACGTAC -ACGGAATAGCCAGTCGATAGTGAC -ACGGAATAGCCAGTCGATCTGTAG -ACGGAATAGCCAGTCGATCCTAAG -ACGGAATAGCCAGTCGATGTTCAG -ACGGAATAGCCAGTCGATGCATAG -ACGGAATAGCCAGTCGATGACAAG -ACGGAATAGCCAGTCGATAAGCAG -ACGGAATAGCCAGTCGATCGTCAA -ACGGAATAGCCAGTCGATGCTGAA -ACGGAATAGCCAGTCGATAGTACG -ACGGAATAGCCAGTCGATATCCGA -ACGGAATAGCCAGTCGATATGGGA -ACGGAATAGCCAGTCGATGTGCAA -ACGGAATAGCCAGTCGATGAGGAA -ACGGAATAGCCAGTCGATCAGGTA -ACGGAATAGCCAGTCGATGACTCT -ACGGAATAGCCAGTCGATAGTCCT -ACGGAATAGCCAGTCGATTAAGCC -ACGGAATAGCCAGTCGATATAGCC -ACGGAATAGCCAGTCGATTAACCG -ACGGAATAGCCAGTCGATATGCCA -ACGGAATAGCCAGTCACAGGAAAC -ACGGAATAGCCAGTCACAAACACC -ACGGAATAGCCAGTCACAATCGAG -ACGGAATAGCCAGTCACACTCCTT -ACGGAATAGCCAGTCACACCTGTT -ACGGAATAGCCAGTCACACGGTTT -ACGGAATAGCCAGTCACAGTGGTT -ACGGAATAGCCAGTCACAGCCTTT -ACGGAATAGCCAGTCACAGGTCTT -ACGGAATAGCCAGTCACAACGCTT -ACGGAATAGCCAGTCACAAGCGTT -ACGGAATAGCCAGTCACATTCGTC -ACGGAATAGCCAGTCACATCTCTC -ACGGAATAGCCAGTCACATGGATC -ACGGAATAGCCAGTCACACACTTC -ACGGAATAGCCAGTCACAGTACTC -ACGGAATAGCCAGTCACAGATGTC -ACGGAATAGCCAGTCACAACAGTC -ACGGAATAGCCAGTCACATTGCTG -ACGGAATAGCCAGTCACATCCATG -ACGGAATAGCCAGTCACATGTGTG -ACGGAATAGCCAGTCACACTAGTG -ACGGAATAGCCAGTCACACATCTG -ACGGAATAGCCAGTCACAGAGTTG -ACGGAATAGCCAGTCACAAGACTG -ACGGAATAGCCAGTCACATCGGTA -ACGGAATAGCCAGTCACATGCCTA -ACGGAATAGCCAGTCACACCACTA -ACGGAATAGCCAGTCACAGGAGTA -ACGGAATAGCCAGTCACATCGTCT -ACGGAATAGCCAGTCACATGCACT -ACGGAATAGCCAGTCACACTGACT -ACGGAATAGCCAGTCACACAACCT -ACGGAATAGCCAGTCACAGCTACT -ACGGAATAGCCAGTCACAGGATCT -ACGGAATAGCCAGTCACAAAGGCT -ACGGAATAGCCAGTCACATCAACC -ACGGAATAGCCAGTCACATGTTCC -ACGGAATAGCCAGTCACAATTCCC -ACGGAATAGCCAGTCACATTCTCG -ACGGAATAGCCAGTCACATAGACG -ACGGAATAGCCAGTCACAGTAACG -ACGGAATAGCCAGTCACAACTTCG -ACGGAATAGCCAGTCACATACGCA -ACGGAATAGCCAGTCACACTTGCA -ACGGAATAGCCAGTCACACGAACA -ACGGAATAGCCAGTCACACAGTCA -ACGGAATAGCCAGTCACAGATCCA -ACGGAATAGCCAGTCACAACGACA -ACGGAATAGCCAGTCACAAGCTCA -ACGGAATAGCCAGTCACATCACGT -ACGGAATAGCCAGTCACACGTAGT -ACGGAATAGCCAGTCACAGTCAGT -ACGGAATAGCCAGTCACAGAAGGT -ACGGAATAGCCAGTCACAAACCGT -ACGGAATAGCCAGTCACATTGTGC -ACGGAATAGCCAGTCACACTAAGC -ACGGAATAGCCAGTCACAACTAGC -ACGGAATAGCCAGTCACAAGATGC -ACGGAATAGCCAGTCACATGAAGG -ACGGAATAGCCAGTCACACAATGG -ACGGAATAGCCAGTCACAATGAGG -ACGGAATAGCCAGTCACAAATGGG -ACGGAATAGCCAGTCACATCCTGA -ACGGAATAGCCAGTCACATAGCGA -ACGGAATAGCCAGTCACACACAGA -ACGGAATAGCCAGTCACAGCAAGA -ACGGAATAGCCAGTCACAGGTTGA -ACGGAATAGCCAGTCACATCCGAT -ACGGAATAGCCAGTCACATGGCAT -ACGGAATAGCCAGTCACACGAGAT -ACGGAATAGCCAGTCACATACCAC -ACGGAATAGCCAGTCACACAGAAC -ACGGAATAGCCAGTCACAGTCTAC -ACGGAATAGCCAGTCACAACGTAC -ACGGAATAGCCAGTCACAAGTGAC -ACGGAATAGCCAGTCACACTGTAG -ACGGAATAGCCAGTCACACCTAAG -ACGGAATAGCCAGTCACAGTTCAG -ACGGAATAGCCAGTCACAGCATAG -ACGGAATAGCCAGTCACAGACAAG -ACGGAATAGCCAGTCACAAAGCAG -ACGGAATAGCCAGTCACACGTCAA -ACGGAATAGCCAGTCACAGCTGAA -ACGGAATAGCCAGTCACAAGTACG -ACGGAATAGCCAGTCACAATCCGA -ACGGAATAGCCAGTCACAATGGGA -ACGGAATAGCCAGTCACAGTGCAA -ACGGAATAGCCAGTCACAGAGGAA -ACGGAATAGCCAGTCACACAGGTA -ACGGAATAGCCAGTCACAGACTCT -ACGGAATAGCCAGTCACAAGTCCT -ACGGAATAGCCAGTCACATAAGCC -ACGGAATAGCCAGTCACAATAGCC -ACGGAATAGCCAGTCACATAACCG -ACGGAATAGCCAGTCACAATGCCA -ACGGAATAGCCACTGTTGGGAAAC -ACGGAATAGCCACTGTTGAACACC -ACGGAATAGCCACTGTTGATCGAG -ACGGAATAGCCACTGTTGCTCCTT -ACGGAATAGCCACTGTTGCCTGTT -ACGGAATAGCCACTGTTGCGGTTT -ACGGAATAGCCACTGTTGGTGGTT -ACGGAATAGCCACTGTTGGCCTTT -ACGGAATAGCCACTGTTGGGTCTT -ACGGAATAGCCACTGTTGACGCTT -ACGGAATAGCCACTGTTGAGCGTT -ACGGAATAGCCACTGTTGTTCGTC -ACGGAATAGCCACTGTTGTCTCTC -ACGGAATAGCCACTGTTGTGGATC -ACGGAATAGCCACTGTTGCACTTC -ACGGAATAGCCACTGTTGGTACTC -ACGGAATAGCCACTGTTGGATGTC -ACGGAATAGCCACTGTTGACAGTC -ACGGAATAGCCACTGTTGTTGCTG -ACGGAATAGCCACTGTTGTCCATG -ACGGAATAGCCACTGTTGTGTGTG -ACGGAATAGCCACTGTTGCTAGTG -ACGGAATAGCCACTGTTGCATCTG -ACGGAATAGCCACTGTTGGAGTTG -ACGGAATAGCCACTGTTGAGACTG -ACGGAATAGCCACTGTTGTCGGTA -ACGGAATAGCCACTGTTGTGCCTA -ACGGAATAGCCACTGTTGCCACTA -ACGGAATAGCCACTGTTGGGAGTA -ACGGAATAGCCACTGTTGTCGTCT -ACGGAATAGCCACTGTTGTGCACT -ACGGAATAGCCACTGTTGCTGACT -ACGGAATAGCCACTGTTGCAACCT -ACGGAATAGCCACTGTTGGCTACT -ACGGAATAGCCACTGTTGGGATCT -ACGGAATAGCCACTGTTGAAGGCT -ACGGAATAGCCACTGTTGTCAACC -ACGGAATAGCCACTGTTGTGTTCC -ACGGAATAGCCACTGTTGATTCCC -ACGGAATAGCCACTGTTGTTCTCG -ACGGAATAGCCACTGTTGTAGACG -ACGGAATAGCCACTGTTGGTAACG -ACGGAATAGCCACTGTTGACTTCG -ACGGAATAGCCACTGTTGTACGCA -ACGGAATAGCCACTGTTGCTTGCA -ACGGAATAGCCACTGTTGCGAACA -ACGGAATAGCCACTGTTGCAGTCA -ACGGAATAGCCACTGTTGGATCCA -ACGGAATAGCCACTGTTGACGACA -ACGGAATAGCCACTGTTGAGCTCA -ACGGAATAGCCACTGTTGTCACGT -ACGGAATAGCCACTGTTGCGTAGT -ACGGAATAGCCACTGTTGGTCAGT -ACGGAATAGCCACTGTTGGAAGGT -ACGGAATAGCCACTGTTGAACCGT -ACGGAATAGCCACTGTTGTTGTGC -ACGGAATAGCCACTGTTGCTAAGC -ACGGAATAGCCACTGTTGACTAGC -ACGGAATAGCCACTGTTGAGATGC -ACGGAATAGCCACTGTTGTGAAGG -ACGGAATAGCCACTGTTGCAATGG -ACGGAATAGCCACTGTTGATGAGG -ACGGAATAGCCACTGTTGAATGGG -ACGGAATAGCCACTGTTGTCCTGA -ACGGAATAGCCACTGTTGTAGCGA -ACGGAATAGCCACTGTTGCACAGA -ACGGAATAGCCACTGTTGGCAAGA -ACGGAATAGCCACTGTTGGGTTGA -ACGGAATAGCCACTGTTGTCCGAT -ACGGAATAGCCACTGTTGTGGCAT -ACGGAATAGCCACTGTTGCGAGAT -ACGGAATAGCCACTGTTGTACCAC -ACGGAATAGCCACTGTTGCAGAAC -ACGGAATAGCCACTGTTGGTCTAC -ACGGAATAGCCACTGTTGACGTAC -ACGGAATAGCCACTGTTGAGTGAC -ACGGAATAGCCACTGTTGCTGTAG -ACGGAATAGCCACTGTTGCCTAAG -ACGGAATAGCCACTGTTGGTTCAG -ACGGAATAGCCACTGTTGGCATAG -ACGGAATAGCCACTGTTGGACAAG -ACGGAATAGCCACTGTTGAAGCAG -ACGGAATAGCCACTGTTGCGTCAA -ACGGAATAGCCACTGTTGGCTGAA -ACGGAATAGCCACTGTTGAGTACG -ACGGAATAGCCACTGTTGATCCGA -ACGGAATAGCCACTGTTGATGGGA -ACGGAATAGCCACTGTTGGTGCAA -ACGGAATAGCCACTGTTGGAGGAA -ACGGAATAGCCACTGTTGCAGGTA -ACGGAATAGCCACTGTTGGACTCT -ACGGAATAGCCACTGTTGAGTCCT -ACGGAATAGCCACTGTTGTAAGCC -ACGGAATAGCCACTGTTGATAGCC -ACGGAATAGCCACTGTTGTAACCG -ACGGAATAGCCACTGTTGATGCCA -ACGGAATAGCCAATGTCCGGAAAC -ACGGAATAGCCAATGTCCAACACC -ACGGAATAGCCAATGTCCATCGAG -ACGGAATAGCCAATGTCCCTCCTT -ACGGAATAGCCAATGTCCCCTGTT -ACGGAATAGCCAATGTCCCGGTTT -ACGGAATAGCCAATGTCCGTGGTT -ACGGAATAGCCAATGTCCGCCTTT -ACGGAATAGCCAATGTCCGGTCTT -ACGGAATAGCCAATGTCCACGCTT -ACGGAATAGCCAATGTCCAGCGTT -ACGGAATAGCCAATGTCCTTCGTC -ACGGAATAGCCAATGTCCTCTCTC -ACGGAATAGCCAATGTCCTGGATC -ACGGAATAGCCAATGTCCCACTTC -ACGGAATAGCCAATGTCCGTACTC -ACGGAATAGCCAATGTCCGATGTC -ACGGAATAGCCAATGTCCACAGTC -ACGGAATAGCCAATGTCCTTGCTG -ACGGAATAGCCAATGTCCTCCATG -ACGGAATAGCCAATGTCCTGTGTG -ACGGAATAGCCAATGTCCCTAGTG -ACGGAATAGCCAATGTCCCATCTG -ACGGAATAGCCAATGTCCGAGTTG -ACGGAATAGCCAATGTCCAGACTG -ACGGAATAGCCAATGTCCTCGGTA -ACGGAATAGCCAATGTCCTGCCTA -ACGGAATAGCCAATGTCCCCACTA -ACGGAATAGCCAATGTCCGGAGTA -ACGGAATAGCCAATGTCCTCGTCT -ACGGAATAGCCAATGTCCTGCACT -ACGGAATAGCCAATGTCCCTGACT -ACGGAATAGCCAATGTCCCAACCT -ACGGAATAGCCAATGTCCGCTACT -ACGGAATAGCCAATGTCCGGATCT -ACGGAATAGCCAATGTCCAAGGCT -ACGGAATAGCCAATGTCCTCAACC -ACGGAATAGCCAATGTCCTGTTCC -ACGGAATAGCCAATGTCCATTCCC -ACGGAATAGCCAATGTCCTTCTCG -ACGGAATAGCCAATGTCCTAGACG -ACGGAATAGCCAATGTCCGTAACG -ACGGAATAGCCAATGTCCACTTCG -ACGGAATAGCCAATGTCCTACGCA -ACGGAATAGCCAATGTCCCTTGCA -ACGGAATAGCCAATGTCCCGAACA -ACGGAATAGCCAATGTCCCAGTCA -ACGGAATAGCCAATGTCCGATCCA -ACGGAATAGCCAATGTCCACGACA -ACGGAATAGCCAATGTCCAGCTCA -ACGGAATAGCCAATGTCCTCACGT -ACGGAATAGCCAATGTCCCGTAGT -ACGGAATAGCCAATGTCCGTCAGT -ACGGAATAGCCAATGTCCGAAGGT -ACGGAATAGCCAATGTCCAACCGT -ACGGAATAGCCAATGTCCTTGTGC -ACGGAATAGCCAATGTCCCTAAGC -ACGGAATAGCCAATGTCCACTAGC -ACGGAATAGCCAATGTCCAGATGC -ACGGAATAGCCAATGTCCTGAAGG -ACGGAATAGCCAATGTCCCAATGG -ACGGAATAGCCAATGTCCATGAGG -ACGGAATAGCCAATGTCCAATGGG -ACGGAATAGCCAATGTCCTCCTGA -ACGGAATAGCCAATGTCCTAGCGA -ACGGAATAGCCAATGTCCCACAGA -ACGGAATAGCCAATGTCCGCAAGA -ACGGAATAGCCAATGTCCGGTTGA -ACGGAATAGCCAATGTCCTCCGAT -ACGGAATAGCCAATGTCCTGGCAT -ACGGAATAGCCAATGTCCCGAGAT -ACGGAATAGCCAATGTCCTACCAC -ACGGAATAGCCAATGTCCCAGAAC -ACGGAATAGCCAATGTCCGTCTAC -ACGGAATAGCCAATGTCCACGTAC -ACGGAATAGCCAATGTCCAGTGAC -ACGGAATAGCCAATGTCCCTGTAG -ACGGAATAGCCAATGTCCCCTAAG -ACGGAATAGCCAATGTCCGTTCAG -ACGGAATAGCCAATGTCCGCATAG -ACGGAATAGCCAATGTCCGACAAG -ACGGAATAGCCAATGTCCAAGCAG -ACGGAATAGCCAATGTCCCGTCAA -ACGGAATAGCCAATGTCCGCTGAA -ACGGAATAGCCAATGTCCAGTACG -ACGGAATAGCCAATGTCCATCCGA -ACGGAATAGCCAATGTCCATGGGA -ACGGAATAGCCAATGTCCGTGCAA -ACGGAATAGCCAATGTCCGAGGAA -ACGGAATAGCCAATGTCCCAGGTA -ACGGAATAGCCAATGTCCGACTCT -ACGGAATAGCCAATGTCCAGTCCT -ACGGAATAGCCAATGTCCTAAGCC -ACGGAATAGCCAATGTCCATAGCC -ACGGAATAGCCAATGTCCTAACCG -ACGGAATAGCCAATGTCCATGCCA -ACGGAATAGCCAGTGTGTGGAAAC -ACGGAATAGCCAGTGTGTAACACC -ACGGAATAGCCAGTGTGTATCGAG -ACGGAATAGCCAGTGTGTCTCCTT -ACGGAATAGCCAGTGTGTCCTGTT -ACGGAATAGCCAGTGTGTCGGTTT -ACGGAATAGCCAGTGTGTGTGGTT -ACGGAATAGCCAGTGTGTGCCTTT -ACGGAATAGCCAGTGTGTGGTCTT -ACGGAATAGCCAGTGTGTACGCTT -ACGGAATAGCCAGTGTGTAGCGTT -ACGGAATAGCCAGTGTGTTTCGTC -ACGGAATAGCCAGTGTGTTCTCTC -ACGGAATAGCCAGTGTGTTGGATC -ACGGAATAGCCAGTGTGTCACTTC -ACGGAATAGCCAGTGTGTGTACTC -ACGGAATAGCCAGTGTGTGATGTC -ACGGAATAGCCAGTGTGTACAGTC -ACGGAATAGCCAGTGTGTTTGCTG -ACGGAATAGCCAGTGTGTTCCATG -ACGGAATAGCCAGTGTGTTGTGTG -ACGGAATAGCCAGTGTGTCTAGTG -ACGGAATAGCCAGTGTGTCATCTG -ACGGAATAGCCAGTGTGTGAGTTG -ACGGAATAGCCAGTGTGTAGACTG -ACGGAATAGCCAGTGTGTTCGGTA -ACGGAATAGCCAGTGTGTTGCCTA -ACGGAATAGCCAGTGTGTCCACTA -ACGGAATAGCCAGTGTGTGGAGTA -ACGGAATAGCCAGTGTGTTCGTCT -ACGGAATAGCCAGTGTGTTGCACT -ACGGAATAGCCAGTGTGTCTGACT -ACGGAATAGCCAGTGTGTCAACCT -ACGGAATAGCCAGTGTGTGCTACT -ACGGAATAGCCAGTGTGTGGATCT -ACGGAATAGCCAGTGTGTAAGGCT -ACGGAATAGCCAGTGTGTTCAACC -ACGGAATAGCCAGTGTGTTGTTCC -ACGGAATAGCCAGTGTGTATTCCC -ACGGAATAGCCAGTGTGTTTCTCG -ACGGAATAGCCAGTGTGTTAGACG -ACGGAATAGCCAGTGTGTGTAACG -ACGGAATAGCCAGTGTGTACTTCG -ACGGAATAGCCAGTGTGTTACGCA -ACGGAATAGCCAGTGTGTCTTGCA -ACGGAATAGCCAGTGTGTCGAACA -ACGGAATAGCCAGTGTGTCAGTCA -ACGGAATAGCCAGTGTGTGATCCA -ACGGAATAGCCAGTGTGTACGACA -ACGGAATAGCCAGTGTGTAGCTCA -ACGGAATAGCCAGTGTGTTCACGT -ACGGAATAGCCAGTGTGTCGTAGT -ACGGAATAGCCAGTGTGTGTCAGT -ACGGAATAGCCAGTGTGTGAAGGT -ACGGAATAGCCAGTGTGTAACCGT -ACGGAATAGCCAGTGTGTTTGTGC -ACGGAATAGCCAGTGTGTCTAAGC -ACGGAATAGCCAGTGTGTACTAGC -ACGGAATAGCCAGTGTGTAGATGC -ACGGAATAGCCAGTGTGTTGAAGG -ACGGAATAGCCAGTGTGTCAATGG -ACGGAATAGCCAGTGTGTATGAGG -ACGGAATAGCCAGTGTGTAATGGG -ACGGAATAGCCAGTGTGTTCCTGA -ACGGAATAGCCAGTGTGTTAGCGA -ACGGAATAGCCAGTGTGTCACAGA -ACGGAATAGCCAGTGTGTGCAAGA -ACGGAATAGCCAGTGTGTGGTTGA -ACGGAATAGCCAGTGTGTTCCGAT -ACGGAATAGCCAGTGTGTTGGCAT -ACGGAATAGCCAGTGTGTCGAGAT -ACGGAATAGCCAGTGTGTTACCAC -ACGGAATAGCCAGTGTGTCAGAAC -ACGGAATAGCCAGTGTGTGTCTAC -ACGGAATAGCCAGTGTGTACGTAC -ACGGAATAGCCAGTGTGTAGTGAC -ACGGAATAGCCAGTGTGTCTGTAG -ACGGAATAGCCAGTGTGTCCTAAG -ACGGAATAGCCAGTGTGTGTTCAG -ACGGAATAGCCAGTGTGTGCATAG -ACGGAATAGCCAGTGTGTGACAAG -ACGGAATAGCCAGTGTGTAAGCAG -ACGGAATAGCCAGTGTGTCGTCAA -ACGGAATAGCCAGTGTGTGCTGAA -ACGGAATAGCCAGTGTGTAGTACG -ACGGAATAGCCAGTGTGTATCCGA -ACGGAATAGCCAGTGTGTATGGGA -ACGGAATAGCCAGTGTGTGTGCAA -ACGGAATAGCCAGTGTGTGAGGAA -ACGGAATAGCCAGTGTGTCAGGTA -ACGGAATAGCCAGTGTGTGACTCT -ACGGAATAGCCAGTGTGTAGTCCT -ACGGAATAGCCAGTGTGTTAAGCC -ACGGAATAGCCAGTGTGTATAGCC -ACGGAATAGCCAGTGTGTTAACCG -ACGGAATAGCCAGTGTGTATGCCA -ACGGAATAGCCAGTGCTAGGAAAC -ACGGAATAGCCAGTGCTAAACACC -ACGGAATAGCCAGTGCTAATCGAG -ACGGAATAGCCAGTGCTACTCCTT -ACGGAATAGCCAGTGCTACCTGTT -ACGGAATAGCCAGTGCTACGGTTT -ACGGAATAGCCAGTGCTAGTGGTT -ACGGAATAGCCAGTGCTAGCCTTT -ACGGAATAGCCAGTGCTAGGTCTT -ACGGAATAGCCAGTGCTAACGCTT -ACGGAATAGCCAGTGCTAAGCGTT -ACGGAATAGCCAGTGCTATTCGTC -ACGGAATAGCCAGTGCTATCTCTC -ACGGAATAGCCAGTGCTATGGATC -ACGGAATAGCCAGTGCTACACTTC -ACGGAATAGCCAGTGCTAGTACTC -ACGGAATAGCCAGTGCTAGATGTC -ACGGAATAGCCAGTGCTAACAGTC -ACGGAATAGCCAGTGCTATTGCTG -ACGGAATAGCCAGTGCTATCCATG -ACGGAATAGCCAGTGCTATGTGTG -ACGGAATAGCCAGTGCTACTAGTG -ACGGAATAGCCAGTGCTACATCTG -ACGGAATAGCCAGTGCTAGAGTTG -ACGGAATAGCCAGTGCTAAGACTG -ACGGAATAGCCAGTGCTATCGGTA -ACGGAATAGCCAGTGCTATGCCTA -ACGGAATAGCCAGTGCTACCACTA -ACGGAATAGCCAGTGCTAGGAGTA -ACGGAATAGCCAGTGCTATCGTCT -ACGGAATAGCCAGTGCTATGCACT -ACGGAATAGCCAGTGCTACTGACT -ACGGAATAGCCAGTGCTACAACCT -ACGGAATAGCCAGTGCTAGCTACT -ACGGAATAGCCAGTGCTAGGATCT -ACGGAATAGCCAGTGCTAAAGGCT -ACGGAATAGCCAGTGCTATCAACC -ACGGAATAGCCAGTGCTATGTTCC -ACGGAATAGCCAGTGCTAATTCCC -ACGGAATAGCCAGTGCTATTCTCG -ACGGAATAGCCAGTGCTATAGACG -ACGGAATAGCCAGTGCTAGTAACG -ACGGAATAGCCAGTGCTAACTTCG -ACGGAATAGCCAGTGCTATACGCA -ACGGAATAGCCAGTGCTACTTGCA -ACGGAATAGCCAGTGCTACGAACA -ACGGAATAGCCAGTGCTACAGTCA -ACGGAATAGCCAGTGCTAGATCCA -ACGGAATAGCCAGTGCTAACGACA -ACGGAATAGCCAGTGCTAAGCTCA -ACGGAATAGCCAGTGCTATCACGT -ACGGAATAGCCAGTGCTACGTAGT -ACGGAATAGCCAGTGCTAGTCAGT -ACGGAATAGCCAGTGCTAGAAGGT -ACGGAATAGCCAGTGCTAAACCGT -ACGGAATAGCCAGTGCTATTGTGC -ACGGAATAGCCAGTGCTACTAAGC -ACGGAATAGCCAGTGCTAACTAGC -ACGGAATAGCCAGTGCTAAGATGC -ACGGAATAGCCAGTGCTATGAAGG -ACGGAATAGCCAGTGCTACAATGG -ACGGAATAGCCAGTGCTAATGAGG -ACGGAATAGCCAGTGCTAAATGGG -ACGGAATAGCCAGTGCTATCCTGA -ACGGAATAGCCAGTGCTATAGCGA -ACGGAATAGCCAGTGCTACACAGA -ACGGAATAGCCAGTGCTAGCAAGA -ACGGAATAGCCAGTGCTAGGTTGA -ACGGAATAGCCAGTGCTATCCGAT -ACGGAATAGCCAGTGCTATGGCAT -ACGGAATAGCCAGTGCTACGAGAT -ACGGAATAGCCAGTGCTATACCAC -ACGGAATAGCCAGTGCTACAGAAC -ACGGAATAGCCAGTGCTAGTCTAC -ACGGAATAGCCAGTGCTAACGTAC -ACGGAATAGCCAGTGCTAAGTGAC -ACGGAATAGCCAGTGCTACTGTAG -ACGGAATAGCCAGTGCTACCTAAG -ACGGAATAGCCAGTGCTAGTTCAG -ACGGAATAGCCAGTGCTAGCATAG -ACGGAATAGCCAGTGCTAGACAAG -ACGGAATAGCCAGTGCTAAAGCAG -ACGGAATAGCCAGTGCTACGTCAA -ACGGAATAGCCAGTGCTAGCTGAA -ACGGAATAGCCAGTGCTAAGTACG -ACGGAATAGCCAGTGCTAATCCGA -ACGGAATAGCCAGTGCTAATGGGA -ACGGAATAGCCAGTGCTAGTGCAA -ACGGAATAGCCAGTGCTAGAGGAA -ACGGAATAGCCAGTGCTACAGGTA -ACGGAATAGCCAGTGCTAGACTCT -ACGGAATAGCCAGTGCTAAGTCCT -ACGGAATAGCCAGTGCTATAAGCC -ACGGAATAGCCAGTGCTAATAGCC -ACGGAATAGCCAGTGCTATAACCG -ACGGAATAGCCAGTGCTAATGCCA -ACGGAATAGCCACTGCATGGAAAC -ACGGAATAGCCACTGCATAACACC -ACGGAATAGCCACTGCATATCGAG -ACGGAATAGCCACTGCATCTCCTT -ACGGAATAGCCACTGCATCCTGTT -ACGGAATAGCCACTGCATCGGTTT -ACGGAATAGCCACTGCATGTGGTT -ACGGAATAGCCACTGCATGCCTTT -ACGGAATAGCCACTGCATGGTCTT -ACGGAATAGCCACTGCATACGCTT -ACGGAATAGCCACTGCATAGCGTT -ACGGAATAGCCACTGCATTTCGTC -ACGGAATAGCCACTGCATTCTCTC -ACGGAATAGCCACTGCATTGGATC -ACGGAATAGCCACTGCATCACTTC -ACGGAATAGCCACTGCATGTACTC -ACGGAATAGCCACTGCATGATGTC -ACGGAATAGCCACTGCATACAGTC -ACGGAATAGCCACTGCATTTGCTG -ACGGAATAGCCACTGCATTCCATG -ACGGAATAGCCACTGCATTGTGTG -ACGGAATAGCCACTGCATCTAGTG -ACGGAATAGCCACTGCATCATCTG -ACGGAATAGCCACTGCATGAGTTG -ACGGAATAGCCACTGCATAGACTG -ACGGAATAGCCACTGCATTCGGTA -ACGGAATAGCCACTGCATTGCCTA -ACGGAATAGCCACTGCATCCACTA -ACGGAATAGCCACTGCATGGAGTA -ACGGAATAGCCACTGCATTCGTCT -ACGGAATAGCCACTGCATTGCACT -ACGGAATAGCCACTGCATCTGACT -ACGGAATAGCCACTGCATCAACCT -ACGGAATAGCCACTGCATGCTACT -ACGGAATAGCCACTGCATGGATCT -ACGGAATAGCCACTGCATAAGGCT -ACGGAATAGCCACTGCATTCAACC -ACGGAATAGCCACTGCATTGTTCC -ACGGAATAGCCACTGCATATTCCC -ACGGAATAGCCACTGCATTTCTCG -ACGGAATAGCCACTGCATTAGACG -ACGGAATAGCCACTGCATGTAACG -ACGGAATAGCCACTGCATACTTCG -ACGGAATAGCCACTGCATTACGCA -ACGGAATAGCCACTGCATCTTGCA -ACGGAATAGCCACTGCATCGAACA -ACGGAATAGCCACTGCATCAGTCA -ACGGAATAGCCACTGCATGATCCA -ACGGAATAGCCACTGCATACGACA -ACGGAATAGCCACTGCATAGCTCA -ACGGAATAGCCACTGCATTCACGT -ACGGAATAGCCACTGCATCGTAGT -ACGGAATAGCCACTGCATGTCAGT -ACGGAATAGCCACTGCATGAAGGT -ACGGAATAGCCACTGCATAACCGT -ACGGAATAGCCACTGCATTTGTGC -ACGGAATAGCCACTGCATCTAAGC -ACGGAATAGCCACTGCATACTAGC -ACGGAATAGCCACTGCATAGATGC -ACGGAATAGCCACTGCATTGAAGG -ACGGAATAGCCACTGCATCAATGG -ACGGAATAGCCACTGCATATGAGG -ACGGAATAGCCACTGCATAATGGG -ACGGAATAGCCACTGCATTCCTGA -ACGGAATAGCCACTGCATTAGCGA -ACGGAATAGCCACTGCATCACAGA -ACGGAATAGCCACTGCATGCAAGA -ACGGAATAGCCACTGCATGGTTGA -ACGGAATAGCCACTGCATTCCGAT -ACGGAATAGCCACTGCATTGGCAT -ACGGAATAGCCACTGCATCGAGAT -ACGGAATAGCCACTGCATTACCAC -ACGGAATAGCCACTGCATCAGAAC -ACGGAATAGCCACTGCATGTCTAC -ACGGAATAGCCACTGCATACGTAC -ACGGAATAGCCACTGCATAGTGAC -ACGGAATAGCCACTGCATCTGTAG -ACGGAATAGCCACTGCATCCTAAG -ACGGAATAGCCACTGCATGTTCAG -ACGGAATAGCCACTGCATGCATAG -ACGGAATAGCCACTGCATGACAAG -ACGGAATAGCCACTGCATAAGCAG -ACGGAATAGCCACTGCATCGTCAA -ACGGAATAGCCACTGCATGCTGAA -ACGGAATAGCCACTGCATAGTACG -ACGGAATAGCCACTGCATATCCGA -ACGGAATAGCCACTGCATATGGGA -ACGGAATAGCCACTGCATGTGCAA -ACGGAATAGCCACTGCATGAGGAA -ACGGAATAGCCACTGCATCAGGTA -ACGGAATAGCCACTGCATGACTCT -ACGGAATAGCCACTGCATAGTCCT -ACGGAATAGCCACTGCATTAAGCC -ACGGAATAGCCACTGCATATAGCC -ACGGAATAGCCACTGCATTAACCG -ACGGAATAGCCACTGCATATGCCA -ACGGAATAGCCATTGGAGGGAAAC -ACGGAATAGCCATTGGAGAACACC -ACGGAATAGCCATTGGAGATCGAG -ACGGAATAGCCATTGGAGCTCCTT -ACGGAATAGCCATTGGAGCCTGTT -ACGGAATAGCCATTGGAGCGGTTT -ACGGAATAGCCATTGGAGGTGGTT -ACGGAATAGCCATTGGAGGCCTTT -ACGGAATAGCCATTGGAGGGTCTT -ACGGAATAGCCATTGGAGACGCTT -ACGGAATAGCCATTGGAGAGCGTT -ACGGAATAGCCATTGGAGTTCGTC -ACGGAATAGCCATTGGAGTCTCTC -ACGGAATAGCCATTGGAGTGGATC -ACGGAATAGCCATTGGAGCACTTC -ACGGAATAGCCATTGGAGGTACTC -ACGGAATAGCCATTGGAGGATGTC -ACGGAATAGCCATTGGAGACAGTC -ACGGAATAGCCATTGGAGTTGCTG -ACGGAATAGCCATTGGAGTCCATG -ACGGAATAGCCATTGGAGTGTGTG -ACGGAATAGCCATTGGAGCTAGTG -ACGGAATAGCCATTGGAGCATCTG -ACGGAATAGCCATTGGAGGAGTTG -ACGGAATAGCCATTGGAGAGACTG -ACGGAATAGCCATTGGAGTCGGTA -ACGGAATAGCCATTGGAGTGCCTA -ACGGAATAGCCATTGGAGCCACTA -ACGGAATAGCCATTGGAGGGAGTA -ACGGAATAGCCATTGGAGTCGTCT -ACGGAATAGCCATTGGAGTGCACT -ACGGAATAGCCATTGGAGCTGACT -ACGGAATAGCCATTGGAGCAACCT -ACGGAATAGCCATTGGAGGCTACT -ACGGAATAGCCATTGGAGGGATCT -ACGGAATAGCCATTGGAGAAGGCT -ACGGAATAGCCATTGGAGTCAACC -ACGGAATAGCCATTGGAGTGTTCC -ACGGAATAGCCATTGGAGATTCCC -ACGGAATAGCCATTGGAGTTCTCG -ACGGAATAGCCATTGGAGTAGACG -ACGGAATAGCCATTGGAGGTAACG -ACGGAATAGCCATTGGAGACTTCG -ACGGAATAGCCATTGGAGTACGCA -ACGGAATAGCCATTGGAGCTTGCA -ACGGAATAGCCATTGGAGCGAACA -ACGGAATAGCCATTGGAGCAGTCA -ACGGAATAGCCATTGGAGGATCCA -ACGGAATAGCCATTGGAGACGACA -ACGGAATAGCCATTGGAGAGCTCA -ACGGAATAGCCATTGGAGTCACGT -ACGGAATAGCCATTGGAGCGTAGT -ACGGAATAGCCATTGGAGGTCAGT -ACGGAATAGCCATTGGAGGAAGGT -ACGGAATAGCCATTGGAGAACCGT -ACGGAATAGCCATTGGAGTTGTGC -ACGGAATAGCCATTGGAGCTAAGC -ACGGAATAGCCATTGGAGACTAGC -ACGGAATAGCCATTGGAGAGATGC -ACGGAATAGCCATTGGAGTGAAGG -ACGGAATAGCCATTGGAGCAATGG -ACGGAATAGCCATTGGAGATGAGG -ACGGAATAGCCATTGGAGAATGGG -ACGGAATAGCCATTGGAGTCCTGA -ACGGAATAGCCATTGGAGTAGCGA -ACGGAATAGCCATTGGAGCACAGA -ACGGAATAGCCATTGGAGGCAAGA -ACGGAATAGCCATTGGAGGGTTGA -ACGGAATAGCCATTGGAGTCCGAT -ACGGAATAGCCATTGGAGTGGCAT -ACGGAATAGCCATTGGAGCGAGAT -ACGGAATAGCCATTGGAGTACCAC -ACGGAATAGCCATTGGAGCAGAAC -ACGGAATAGCCATTGGAGGTCTAC -ACGGAATAGCCATTGGAGACGTAC -ACGGAATAGCCATTGGAGAGTGAC -ACGGAATAGCCATTGGAGCTGTAG -ACGGAATAGCCATTGGAGCCTAAG -ACGGAATAGCCATTGGAGGTTCAG -ACGGAATAGCCATTGGAGGCATAG -ACGGAATAGCCATTGGAGGACAAG -ACGGAATAGCCATTGGAGAAGCAG -ACGGAATAGCCATTGGAGCGTCAA -ACGGAATAGCCATTGGAGGCTGAA -ACGGAATAGCCATTGGAGAGTACG -ACGGAATAGCCATTGGAGATCCGA -ACGGAATAGCCATTGGAGATGGGA -ACGGAATAGCCATTGGAGGTGCAA -ACGGAATAGCCATTGGAGGAGGAA -ACGGAATAGCCATTGGAGCAGGTA -ACGGAATAGCCATTGGAGGACTCT -ACGGAATAGCCATTGGAGAGTCCT -ACGGAATAGCCATTGGAGTAAGCC -ACGGAATAGCCATTGGAGATAGCC -ACGGAATAGCCATTGGAGTAACCG -ACGGAATAGCCATTGGAGATGCCA -ACGGAATAGCCACTGAGAGGAAAC -ACGGAATAGCCACTGAGAAACACC -ACGGAATAGCCACTGAGAATCGAG -ACGGAATAGCCACTGAGACTCCTT -ACGGAATAGCCACTGAGACCTGTT -ACGGAATAGCCACTGAGACGGTTT -ACGGAATAGCCACTGAGAGTGGTT -ACGGAATAGCCACTGAGAGCCTTT -ACGGAATAGCCACTGAGAGGTCTT -ACGGAATAGCCACTGAGAACGCTT -ACGGAATAGCCACTGAGAAGCGTT -ACGGAATAGCCACTGAGATTCGTC -ACGGAATAGCCACTGAGATCTCTC -ACGGAATAGCCACTGAGATGGATC -ACGGAATAGCCACTGAGACACTTC -ACGGAATAGCCACTGAGAGTACTC -ACGGAATAGCCACTGAGAGATGTC -ACGGAATAGCCACTGAGAACAGTC -ACGGAATAGCCACTGAGATTGCTG -ACGGAATAGCCACTGAGATCCATG -ACGGAATAGCCACTGAGATGTGTG -ACGGAATAGCCACTGAGACTAGTG -ACGGAATAGCCACTGAGACATCTG -ACGGAATAGCCACTGAGAGAGTTG -ACGGAATAGCCACTGAGAAGACTG -ACGGAATAGCCACTGAGATCGGTA -ACGGAATAGCCACTGAGATGCCTA -ACGGAATAGCCACTGAGACCACTA -ACGGAATAGCCACTGAGAGGAGTA -ACGGAATAGCCACTGAGATCGTCT -ACGGAATAGCCACTGAGATGCACT -ACGGAATAGCCACTGAGACTGACT -ACGGAATAGCCACTGAGACAACCT -ACGGAATAGCCACTGAGAGCTACT -ACGGAATAGCCACTGAGAGGATCT -ACGGAATAGCCACTGAGAAAGGCT -ACGGAATAGCCACTGAGATCAACC -ACGGAATAGCCACTGAGATGTTCC -ACGGAATAGCCACTGAGAATTCCC -ACGGAATAGCCACTGAGATTCTCG -ACGGAATAGCCACTGAGATAGACG -ACGGAATAGCCACTGAGAGTAACG -ACGGAATAGCCACTGAGAACTTCG -ACGGAATAGCCACTGAGATACGCA -ACGGAATAGCCACTGAGACTTGCA -ACGGAATAGCCACTGAGACGAACA -ACGGAATAGCCACTGAGACAGTCA -ACGGAATAGCCACTGAGAGATCCA -ACGGAATAGCCACTGAGAACGACA -ACGGAATAGCCACTGAGAAGCTCA -ACGGAATAGCCACTGAGATCACGT -ACGGAATAGCCACTGAGACGTAGT -ACGGAATAGCCACTGAGAGTCAGT -ACGGAATAGCCACTGAGAGAAGGT -ACGGAATAGCCACTGAGAAACCGT -ACGGAATAGCCACTGAGATTGTGC -ACGGAATAGCCACTGAGACTAAGC -ACGGAATAGCCACTGAGAACTAGC -ACGGAATAGCCACTGAGAAGATGC -ACGGAATAGCCACTGAGATGAAGG -ACGGAATAGCCACTGAGACAATGG -ACGGAATAGCCACTGAGAATGAGG -ACGGAATAGCCACTGAGAAATGGG -ACGGAATAGCCACTGAGATCCTGA -ACGGAATAGCCACTGAGATAGCGA -ACGGAATAGCCACTGAGACACAGA -ACGGAATAGCCACTGAGAGCAAGA -ACGGAATAGCCACTGAGAGGTTGA -ACGGAATAGCCACTGAGATCCGAT -ACGGAATAGCCACTGAGATGGCAT -ACGGAATAGCCACTGAGACGAGAT -ACGGAATAGCCACTGAGATACCAC -ACGGAATAGCCACTGAGACAGAAC -ACGGAATAGCCACTGAGAGTCTAC -ACGGAATAGCCACTGAGAACGTAC -ACGGAATAGCCACTGAGAAGTGAC -ACGGAATAGCCACTGAGACTGTAG -ACGGAATAGCCACTGAGACCTAAG -ACGGAATAGCCACTGAGAGTTCAG -ACGGAATAGCCACTGAGAGCATAG -ACGGAATAGCCACTGAGAGACAAG -ACGGAATAGCCACTGAGAAAGCAG -ACGGAATAGCCACTGAGACGTCAA -ACGGAATAGCCACTGAGAGCTGAA -ACGGAATAGCCACTGAGAAGTACG -ACGGAATAGCCACTGAGAATCCGA -ACGGAATAGCCACTGAGAATGGGA -ACGGAATAGCCACTGAGAGTGCAA -ACGGAATAGCCACTGAGAGAGGAA -ACGGAATAGCCACTGAGACAGGTA -ACGGAATAGCCACTGAGAGACTCT -ACGGAATAGCCACTGAGAAGTCCT -ACGGAATAGCCACTGAGATAAGCC -ACGGAATAGCCACTGAGAATAGCC -ACGGAATAGCCACTGAGATAACCG -ACGGAATAGCCACTGAGAATGCCA -ACGGAATAGCCAGTATCGGGAAAC -ACGGAATAGCCAGTATCGAACACC -ACGGAATAGCCAGTATCGATCGAG -ACGGAATAGCCAGTATCGCTCCTT -ACGGAATAGCCAGTATCGCCTGTT -ACGGAATAGCCAGTATCGCGGTTT -ACGGAATAGCCAGTATCGGTGGTT -ACGGAATAGCCAGTATCGGCCTTT -ACGGAATAGCCAGTATCGGGTCTT -ACGGAATAGCCAGTATCGACGCTT -ACGGAATAGCCAGTATCGAGCGTT -ACGGAATAGCCAGTATCGTTCGTC -ACGGAATAGCCAGTATCGTCTCTC -ACGGAATAGCCAGTATCGTGGATC -ACGGAATAGCCAGTATCGCACTTC -ACGGAATAGCCAGTATCGGTACTC -ACGGAATAGCCAGTATCGGATGTC -ACGGAATAGCCAGTATCGACAGTC -ACGGAATAGCCAGTATCGTTGCTG -ACGGAATAGCCAGTATCGTCCATG -ACGGAATAGCCAGTATCGTGTGTG -ACGGAATAGCCAGTATCGCTAGTG -ACGGAATAGCCAGTATCGCATCTG -ACGGAATAGCCAGTATCGGAGTTG -ACGGAATAGCCAGTATCGAGACTG -ACGGAATAGCCAGTATCGTCGGTA -ACGGAATAGCCAGTATCGTGCCTA -ACGGAATAGCCAGTATCGCCACTA -ACGGAATAGCCAGTATCGGGAGTA -ACGGAATAGCCAGTATCGTCGTCT -ACGGAATAGCCAGTATCGTGCACT -ACGGAATAGCCAGTATCGCTGACT -ACGGAATAGCCAGTATCGCAACCT -ACGGAATAGCCAGTATCGGCTACT -ACGGAATAGCCAGTATCGGGATCT -ACGGAATAGCCAGTATCGAAGGCT -ACGGAATAGCCAGTATCGTCAACC -ACGGAATAGCCAGTATCGTGTTCC -ACGGAATAGCCAGTATCGATTCCC -ACGGAATAGCCAGTATCGTTCTCG -ACGGAATAGCCAGTATCGTAGACG -ACGGAATAGCCAGTATCGGTAACG -ACGGAATAGCCAGTATCGACTTCG -ACGGAATAGCCAGTATCGTACGCA -ACGGAATAGCCAGTATCGCTTGCA -ACGGAATAGCCAGTATCGCGAACA -ACGGAATAGCCAGTATCGCAGTCA -ACGGAATAGCCAGTATCGGATCCA -ACGGAATAGCCAGTATCGACGACA -ACGGAATAGCCAGTATCGAGCTCA -ACGGAATAGCCAGTATCGTCACGT -ACGGAATAGCCAGTATCGCGTAGT -ACGGAATAGCCAGTATCGGTCAGT -ACGGAATAGCCAGTATCGGAAGGT -ACGGAATAGCCAGTATCGAACCGT -ACGGAATAGCCAGTATCGTTGTGC -ACGGAATAGCCAGTATCGCTAAGC -ACGGAATAGCCAGTATCGACTAGC -ACGGAATAGCCAGTATCGAGATGC -ACGGAATAGCCAGTATCGTGAAGG -ACGGAATAGCCAGTATCGCAATGG -ACGGAATAGCCAGTATCGATGAGG -ACGGAATAGCCAGTATCGAATGGG -ACGGAATAGCCAGTATCGTCCTGA -ACGGAATAGCCAGTATCGTAGCGA -ACGGAATAGCCAGTATCGCACAGA -ACGGAATAGCCAGTATCGGCAAGA -ACGGAATAGCCAGTATCGGGTTGA -ACGGAATAGCCAGTATCGTCCGAT -ACGGAATAGCCAGTATCGTGGCAT -ACGGAATAGCCAGTATCGCGAGAT -ACGGAATAGCCAGTATCGTACCAC -ACGGAATAGCCAGTATCGCAGAAC -ACGGAATAGCCAGTATCGGTCTAC -ACGGAATAGCCAGTATCGACGTAC -ACGGAATAGCCAGTATCGAGTGAC -ACGGAATAGCCAGTATCGCTGTAG -ACGGAATAGCCAGTATCGCCTAAG -ACGGAATAGCCAGTATCGGTTCAG -ACGGAATAGCCAGTATCGGCATAG -ACGGAATAGCCAGTATCGGACAAG -ACGGAATAGCCAGTATCGAAGCAG -ACGGAATAGCCAGTATCGCGTCAA -ACGGAATAGCCAGTATCGGCTGAA -ACGGAATAGCCAGTATCGAGTACG -ACGGAATAGCCAGTATCGATCCGA -ACGGAATAGCCAGTATCGATGGGA -ACGGAATAGCCAGTATCGGTGCAA -ACGGAATAGCCAGTATCGGAGGAA -ACGGAATAGCCAGTATCGCAGGTA -ACGGAATAGCCAGTATCGGACTCT -ACGGAATAGCCAGTATCGAGTCCT -ACGGAATAGCCAGTATCGTAAGCC -ACGGAATAGCCAGTATCGATAGCC -ACGGAATAGCCAGTATCGTAACCG -ACGGAATAGCCAGTATCGATGCCA -ACGGAATAGCCACTATGCGGAAAC -ACGGAATAGCCACTATGCAACACC -ACGGAATAGCCACTATGCATCGAG -ACGGAATAGCCACTATGCCTCCTT -ACGGAATAGCCACTATGCCCTGTT -ACGGAATAGCCACTATGCCGGTTT -ACGGAATAGCCACTATGCGTGGTT -ACGGAATAGCCACTATGCGCCTTT -ACGGAATAGCCACTATGCGGTCTT -ACGGAATAGCCACTATGCACGCTT -ACGGAATAGCCACTATGCAGCGTT -ACGGAATAGCCACTATGCTTCGTC -ACGGAATAGCCACTATGCTCTCTC -ACGGAATAGCCACTATGCTGGATC -ACGGAATAGCCACTATGCCACTTC -ACGGAATAGCCACTATGCGTACTC -ACGGAATAGCCACTATGCGATGTC -ACGGAATAGCCACTATGCACAGTC -ACGGAATAGCCACTATGCTTGCTG -ACGGAATAGCCACTATGCTCCATG -ACGGAATAGCCACTATGCTGTGTG -ACGGAATAGCCACTATGCCTAGTG -ACGGAATAGCCACTATGCCATCTG -ACGGAATAGCCACTATGCGAGTTG -ACGGAATAGCCACTATGCAGACTG -ACGGAATAGCCACTATGCTCGGTA -ACGGAATAGCCACTATGCTGCCTA -ACGGAATAGCCACTATGCCCACTA -ACGGAATAGCCACTATGCGGAGTA -ACGGAATAGCCACTATGCTCGTCT -ACGGAATAGCCACTATGCTGCACT -ACGGAATAGCCACTATGCCTGACT -ACGGAATAGCCACTATGCCAACCT -ACGGAATAGCCACTATGCGCTACT -ACGGAATAGCCACTATGCGGATCT -ACGGAATAGCCACTATGCAAGGCT -ACGGAATAGCCACTATGCTCAACC -ACGGAATAGCCACTATGCTGTTCC -ACGGAATAGCCACTATGCATTCCC -ACGGAATAGCCACTATGCTTCTCG -ACGGAATAGCCACTATGCTAGACG -ACGGAATAGCCACTATGCGTAACG -ACGGAATAGCCACTATGCACTTCG -ACGGAATAGCCACTATGCTACGCA -ACGGAATAGCCACTATGCCTTGCA -ACGGAATAGCCACTATGCCGAACA -ACGGAATAGCCACTATGCCAGTCA -ACGGAATAGCCACTATGCGATCCA -ACGGAATAGCCACTATGCACGACA -ACGGAATAGCCACTATGCAGCTCA -ACGGAATAGCCACTATGCTCACGT -ACGGAATAGCCACTATGCCGTAGT -ACGGAATAGCCACTATGCGTCAGT -ACGGAATAGCCACTATGCGAAGGT -ACGGAATAGCCACTATGCAACCGT -ACGGAATAGCCACTATGCTTGTGC -ACGGAATAGCCACTATGCCTAAGC -ACGGAATAGCCACTATGCACTAGC -ACGGAATAGCCACTATGCAGATGC -ACGGAATAGCCACTATGCTGAAGG -ACGGAATAGCCACTATGCCAATGG -ACGGAATAGCCACTATGCATGAGG -ACGGAATAGCCACTATGCAATGGG -ACGGAATAGCCACTATGCTCCTGA -ACGGAATAGCCACTATGCTAGCGA -ACGGAATAGCCACTATGCCACAGA -ACGGAATAGCCACTATGCGCAAGA -ACGGAATAGCCACTATGCGGTTGA -ACGGAATAGCCACTATGCTCCGAT -ACGGAATAGCCACTATGCTGGCAT -ACGGAATAGCCACTATGCCGAGAT -ACGGAATAGCCACTATGCTACCAC -ACGGAATAGCCACTATGCCAGAAC -ACGGAATAGCCACTATGCGTCTAC -ACGGAATAGCCACTATGCACGTAC -ACGGAATAGCCACTATGCAGTGAC -ACGGAATAGCCACTATGCCTGTAG -ACGGAATAGCCACTATGCCCTAAG -ACGGAATAGCCACTATGCGTTCAG -ACGGAATAGCCACTATGCGCATAG -ACGGAATAGCCACTATGCGACAAG -ACGGAATAGCCACTATGCAAGCAG -ACGGAATAGCCACTATGCCGTCAA -ACGGAATAGCCACTATGCGCTGAA -ACGGAATAGCCACTATGCAGTACG -ACGGAATAGCCACTATGCATCCGA -ACGGAATAGCCACTATGCATGGGA -ACGGAATAGCCACTATGCGTGCAA -ACGGAATAGCCACTATGCGAGGAA -ACGGAATAGCCACTATGCCAGGTA -ACGGAATAGCCACTATGCGACTCT -ACGGAATAGCCACTATGCAGTCCT -ACGGAATAGCCACTATGCTAAGCC -ACGGAATAGCCACTATGCATAGCC -ACGGAATAGCCACTATGCTAACCG -ACGGAATAGCCACTATGCATGCCA -ACGGAATAGCCACTACCAGGAAAC -ACGGAATAGCCACTACCAAACACC -ACGGAATAGCCACTACCAATCGAG -ACGGAATAGCCACTACCACTCCTT -ACGGAATAGCCACTACCACCTGTT -ACGGAATAGCCACTACCACGGTTT -ACGGAATAGCCACTACCAGTGGTT -ACGGAATAGCCACTACCAGCCTTT -ACGGAATAGCCACTACCAGGTCTT -ACGGAATAGCCACTACCAACGCTT -ACGGAATAGCCACTACCAAGCGTT -ACGGAATAGCCACTACCATTCGTC -ACGGAATAGCCACTACCATCTCTC -ACGGAATAGCCACTACCATGGATC -ACGGAATAGCCACTACCACACTTC -ACGGAATAGCCACTACCAGTACTC -ACGGAATAGCCACTACCAGATGTC -ACGGAATAGCCACTACCAACAGTC -ACGGAATAGCCACTACCATTGCTG -ACGGAATAGCCACTACCATCCATG -ACGGAATAGCCACTACCATGTGTG -ACGGAATAGCCACTACCACTAGTG -ACGGAATAGCCACTACCACATCTG -ACGGAATAGCCACTACCAGAGTTG -ACGGAATAGCCACTACCAAGACTG -ACGGAATAGCCACTACCATCGGTA -ACGGAATAGCCACTACCATGCCTA -ACGGAATAGCCACTACCACCACTA -ACGGAATAGCCACTACCAGGAGTA -ACGGAATAGCCACTACCATCGTCT -ACGGAATAGCCACTACCATGCACT -ACGGAATAGCCACTACCACTGACT -ACGGAATAGCCACTACCACAACCT -ACGGAATAGCCACTACCAGCTACT -ACGGAATAGCCACTACCAGGATCT -ACGGAATAGCCACTACCAAAGGCT -ACGGAATAGCCACTACCATCAACC -ACGGAATAGCCACTACCATGTTCC -ACGGAATAGCCACTACCAATTCCC -ACGGAATAGCCACTACCATTCTCG -ACGGAATAGCCACTACCATAGACG -ACGGAATAGCCACTACCAGTAACG -ACGGAATAGCCACTACCAACTTCG -ACGGAATAGCCACTACCATACGCA -ACGGAATAGCCACTACCACTTGCA -ACGGAATAGCCACTACCACGAACA -ACGGAATAGCCACTACCACAGTCA -ACGGAATAGCCACTACCAGATCCA -ACGGAATAGCCACTACCAACGACA -ACGGAATAGCCACTACCAAGCTCA -ACGGAATAGCCACTACCATCACGT -ACGGAATAGCCACTACCACGTAGT -ACGGAATAGCCACTACCAGTCAGT -ACGGAATAGCCACTACCAGAAGGT -ACGGAATAGCCACTACCAAACCGT -ACGGAATAGCCACTACCATTGTGC -ACGGAATAGCCACTACCACTAAGC -ACGGAATAGCCACTACCAACTAGC -ACGGAATAGCCACTACCAAGATGC -ACGGAATAGCCACTACCATGAAGG -ACGGAATAGCCACTACCACAATGG -ACGGAATAGCCACTACCAATGAGG -ACGGAATAGCCACTACCAAATGGG -ACGGAATAGCCACTACCATCCTGA -ACGGAATAGCCACTACCATAGCGA -ACGGAATAGCCACTACCACACAGA -ACGGAATAGCCACTACCAGCAAGA -ACGGAATAGCCACTACCAGGTTGA -ACGGAATAGCCACTACCATCCGAT -ACGGAATAGCCACTACCATGGCAT -ACGGAATAGCCACTACCACGAGAT -ACGGAATAGCCACTACCATACCAC -ACGGAATAGCCACTACCACAGAAC -ACGGAATAGCCACTACCAGTCTAC -ACGGAATAGCCACTACCAACGTAC -ACGGAATAGCCACTACCAAGTGAC -ACGGAATAGCCACTACCACTGTAG -ACGGAATAGCCACTACCACCTAAG -ACGGAATAGCCACTACCAGTTCAG -ACGGAATAGCCACTACCAGCATAG -ACGGAATAGCCACTACCAGACAAG -ACGGAATAGCCACTACCAAAGCAG -ACGGAATAGCCACTACCACGTCAA -ACGGAATAGCCACTACCAGCTGAA -ACGGAATAGCCACTACCAAGTACG -ACGGAATAGCCACTACCAATCCGA -ACGGAATAGCCACTACCAATGGGA -ACGGAATAGCCACTACCAGTGCAA -ACGGAATAGCCACTACCAGAGGAA -ACGGAATAGCCACTACCACAGGTA -ACGGAATAGCCACTACCAGACTCT -ACGGAATAGCCACTACCAAGTCCT -ACGGAATAGCCACTACCATAAGCC -ACGGAATAGCCACTACCAATAGCC -ACGGAATAGCCACTACCATAACCG -ACGGAATAGCCACTACCAATGCCA -ACGGAATAGCCAGTAGGAGGAAAC -ACGGAATAGCCAGTAGGAAACACC -ACGGAATAGCCAGTAGGAATCGAG -ACGGAATAGCCAGTAGGACTCCTT -ACGGAATAGCCAGTAGGACCTGTT -ACGGAATAGCCAGTAGGACGGTTT -ACGGAATAGCCAGTAGGAGTGGTT -ACGGAATAGCCAGTAGGAGCCTTT -ACGGAATAGCCAGTAGGAGGTCTT -ACGGAATAGCCAGTAGGAACGCTT -ACGGAATAGCCAGTAGGAAGCGTT -ACGGAATAGCCAGTAGGATTCGTC -ACGGAATAGCCAGTAGGATCTCTC -ACGGAATAGCCAGTAGGATGGATC -ACGGAATAGCCAGTAGGACACTTC -ACGGAATAGCCAGTAGGAGTACTC -ACGGAATAGCCAGTAGGAGATGTC -ACGGAATAGCCAGTAGGAACAGTC -ACGGAATAGCCAGTAGGATTGCTG -ACGGAATAGCCAGTAGGATCCATG -ACGGAATAGCCAGTAGGATGTGTG -ACGGAATAGCCAGTAGGACTAGTG -ACGGAATAGCCAGTAGGACATCTG -ACGGAATAGCCAGTAGGAGAGTTG -ACGGAATAGCCAGTAGGAAGACTG -ACGGAATAGCCAGTAGGATCGGTA -ACGGAATAGCCAGTAGGATGCCTA -ACGGAATAGCCAGTAGGACCACTA -ACGGAATAGCCAGTAGGAGGAGTA -ACGGAATAGCCAGTAGGATCGTCT -ACGGAATAGCCAGTAGGATGCACT -ACGGAATAGCCAGTAGGACTGACT -ACGGAATAGCCAGTAGGACAACCT -ACGGAATAGCCAGTAGGAGCTACT -ACGGAATAGCCAGTAGGAGGATCT -ACGGAATAGCCAGTAGGAAAGGCT -ACGGAATAGCCAGTAGGATCAACC -ACGGAATAGCCAGTAGGATGTTCC -ACGGAATAGCCAGTAGGAATTCCC -ACGGAATAGCCAGTAGGATTCTCG -ACGGAATAGCCAGTAGGATAGACG -ACGGAATAGCCAGTAGGAGTAACG -ACGGAATAGCCAGTAGGAACTTCG -ACGGAATAGCCAGTAGGATACGCA -ACGGAATAGCCAGTAGGACTTGCA -ACGGAATAGCCAGTAGGACGAACA -ACGGAATAGCCAGTAGGACAGTCA -ACGGAATAGCCAGTAGGAGATCCA -ACGGAATAGCCAGTAGGAACGACA -ACGGAATAGCCAGTAGGAAGCTCA -ACGGAATAGCCAGTAGGATCACGT -ACGGAATAGCCAGTAGGACGTAGT -ACGGAATAGCCAGTAGGAGTCAGT -ACGGAATAGCCAGTAGGAGAAGGT -ACGGAATAGCCAGTAGGAAACCGT -ACGGAATAGCCAGTAGGATTGTGC -ACGGAATAGCCAGTAGGACTAAGC -ACGGAATAGCCAGTAGGAACTAGC -ACGGAATAGCCAGTAGGAAGATGC -ACGGAATAGCCAGTAGGATGAAGG -ACGGAATAGCCAGTAGGACAATGG -ACGGAATAGCCAGTAGGAATGAGG -ACGGAATAGCCAGTAGGAAATGGG -ACGGAATAGCCAGTAGGATCCTGA -ACGGAATAGCCAGTAGGATAGCGA -ACGGAATAGCCAGTAGGACACAGA -ACGGAATAGCCAGTAGGAGCAAGA -ACGGAATAGCCAGTAGGAGGTTGA -ACGGAATAGCCAGTAGGATCCGAT -ACGGAATAGCCAGTAGGATGGCAT -ACGGAATAGCCAGTAGGACGAGAT -ACGGAATAGCCAGTAGGATACCAC -ACGGAATAGCCAGTAGGACAGAAC -ACGGAATAGCCAGTAGGAGTCTAC -ACGGAATAGCCAGTAGGAACGTAC -ACGGAATAGCCAGTAGGAAGTGAC -ACGGAATAGCCAGTAGGACTGTAG -ACGGAATAGCCAGTAGGACCTAAG -ACGGAATAGCCAGTAGGAGTTCAG -ACGGAATAGCCAGTAGGAGCATAG -ACGGAATAGCCAGTAGGAGACAAG -ACGGAATAGCCAGTAGGAAAGCAG -ACGGAATAGCCAGTAGGACGTCAA -ACGGAATAGCCAGTAGGAGCTGAA -ACGGAATAGCCAGTAGGAAGTACG -ACGGAATAGCCAGTAGGAATCCGA -ACGGAATAGCCAGTAGGAATGGGA -ACGGAATAGCCAGTAGGAGTGCAA -ACGGAATAGCCAGTAGGAGAGGAA -ACGGAATAGCCAGTAGGACAGGTA -ACGGAATAGCCAGTAGGAGACTCT -ACGGAATAGCCAGTAGGAAGTCCT -ACGGAATAGCCAGTAGGATAAGCC -ACGGAATAGCCAGTAGGAATAGCC -ACGGAATAGCCAGTAGGATAACCG -ACGGAATAGCCAGTAGGAATGCCA -ACGGAATAGCCATCTTCGGGAAAC -ACGGAATAGCCATCTTCGAACACC -ACGGAATAGCCATCTTCGATCGAG -ACGGAATAGCCATCTTCGCTCCTT -ACGGAATAGCCATCTTCGCCTGTT -ACGGAATAGCCATCTTCGCGGTTT -ACGGAATAGCCATCTTCGGTGGTT -ACGGAATAGCCATCTTCGGCCTTT -ACGGAATAGCCATCTTCGGGTCTT -ACGGAATAGCCATCTTCGACGCTT -ACGGAATAGCCATCTTCGAGCGTT -ACGGAATAGCCATCTTCGTTCGTC -ACGGAATAGCCATCTTCGTCTCTC -ACGGAATAGCCATCTTCGTGGATC -ACGGAATAGCCATCTTCGCACTTC -ACGGAATAGCCATCTTCGGTACTC -ACGGAATAGCCATCTTCGGATGTC -ACGGAATAGCCATCTTCGACAGTC -ACGGAATAGCCATCTTCGTTGCTG -ACGGAATAGCCATCTTCGTCCATG -ACGGAATAGCCATCTTCGTGTGTG -ACGGAATAGCCATCTTCGCTAGTG -ACGGAATAGCCATCTTCGCATCTG -ACGGAATAGCCATCTTCGGAGTTG -ACGGAATAGCCATCTTCGAGACTG -ACGGAATAGCCATCTTCGTCGGTA -ACGGAATAGCCATCTTCGTGCCTA -ACGGAATAGCCATCTTCGCCACTA -ACGGAATAGCCATCTTCGGGAGTA -ACGGAATAGCCATCTTCGTCGTCT -ACGGAATAGCCATCTTCGTGCACT -ACGGAATAGCCATCTTCGCTGACT -ACGGAATAGCCATCTTCGCAACCT -ACGGAATAGCCATCTTCGGCTACT -ACGGAATAGCCATCTTCGGGATCT -ACGGAATAGCCATCTTCGAAGGCT -ACGGAATAGCCATCTTCGTCAACC -ACGGAATAGCCATCTTCGTGTTCC -ACGGAATAGCCATCTTCGATTCCC -ACGGAATAGCCATCTTCGTTCTCG -ACGGAATAGCCATCTTCGTAGACG -ACGGAATAGCCATCTTCGGTAACG -ACGGAATAGCCATCTTCGACTTCG -ACGGAATAGCCATCTTCGTACGCA -ACGGAATAGCCATCTTCGCTTGCA -ACGGAATAGCCATCTTCGCGAACA -ACGGAATAGCCATCTTCGCAGTCA -ACGGAATAGCCATCTTCGGATCCA -ACGGAATAGCCATCTTCGACGACA -ACGGAATAGCCATCTTCGAGCTCA -ACGGAATAGCCATCTTCGTCACGT -ACGGAATAGCCATCTTCGCGTAGT -ACGGAATAGCCATCTTCGGTCAGT -ACGGAATAGCCATCTTCGGAAGGT -ACGGAATAGCCATCTTCGAACCGT -ACGGAATAGCCATCTTCGTTGTGC -ACGGAATAGCCATCTTCGCTAAGC -ACGGAATAGCCATCTTCGACTAGC -ACGGAATAGCCATCTTCGAGATGC -ACGGAATAGCCATCTTCGTGAAGG -ACGGAATAGCCATCTTCGCAATGG -ACGGAATAGCCATCTTCGATGAGG -ACGGAATAGCCATCTTCGAATGGG -ACGGAATAGCCATCTTCGTCCTGA -ACGGAATAGCCATCTTCGTAGCGA -ACGGAATAGCCATCTTCGCACAGA -ACGGAATAGCCATCTTCGGCAAGA -ACGGAATAGCCATCTTCGGGTTGA -ACGGAATAGCCATCTTCGTCCGAT -ACGGAATAGCCATCTTCGTGGCAT -ACGGAATAGCCATCTTCGCGAGAT -ACGGAATAGCCATCTTCGTACCAC -ACGGAATAGCCATCTTCGCAGAAC -ACGGAATAGCCATCTTCGGTCTAC -ACGGAATAGCCATCTTCGACGTAC -ACGGAATAGCCATCTTCGAGTGAC -ACGGAATAGCCATCTTCGCTGTAG -ACGGAATAGCCATCTTCGCCTAAG -ACGGAATAGCCATCTTCGGTTCAG -ACGGAATAGCCATCTTCGGCATAG -ACGGAATAGCCATCTTCGGACAAG -ACGGAATAGCCATCTTCGAAGCAG -ACGGAATAGCCATCTTCGCGTCAA -ACGGAATAGCCATCTTCGGCTGAA -ACGGAATAGCCATCTTCGAGTACG -ACGGAATAGCCATCTTCGATCCGA -ACGGAATAGCCATCTTCGATGGGA -ACGGAATAGCCATCTTCGGTGCAA -ACGGAATAGCCATCTTCGGAGGAA -ACGGAATAGCCATCTTCGCAGGTA -ACGGAATAGCCATCTTCGGACTCT -ACGGAATAGCCATCTTCGAGTCCT -ACGGAATAGCCATCTTCGTAAGCC -ACGGAATAGCCATCTTCGATAGCC -ACGGAATAGCCATCTTCGTAACCG -ACGGAATAGCCATCTTCGATGCCA -ACGGAATAGCCAACTTGCGGAAAC -ACGGAATAGCCAACTTGCAACACC -ACGGAATAGCCAACTTGCATCGAG -ACGGAATAGCCAACTTGCCTCCTT -ACGGAATAGCCAACTTGCCCTGTT -ACGGAATAGCCAACTTGCCGGTTT -ACGGAATAGCCAACTTGCGTGGTT -ACGGAATAGCCAACTTGCGCCTTT -ACGGAATAGCCAACTTGCGGTCTT -ACGGAATAGCCAACTTGCACGCTT -ACGGAATAGCCAACTTGCAGCGTT -ACGGAATAGCCAACTTGCTTCGTC -ACGGAATAGCCAACTTGCTCTCTC -ACGGAATAGCCAACTTGCTGGATC -ACGGAATAGCCAACTTGCCACTTC -ACGGAATAGCCAACTTGCGTACTC -ACGGAATAGCCAACTTGCGATGTC -ACGGAATAGCCAACTTGCACAGTC -ACGGAATAGCCAACTTGCTTGCTG -ACGGAATAGCCAACTTGCTCCATG -ACGGAATAGCCAACTTGCTGTGTG -ACGGAATAGCCAACTTGCCTAGTG -ACGGAATAGCCAACTTGCCATCTG -ACGGAATAGCCAACTTGCGAGTTG -ACGGAATAGCCAACTTGCAGACTG -ACGGAATAGCCAACTTGCTCGGTA -ACGGAATAGCCAACTTGCTGCCTA -ACGGAATAGCCAACTTGCCCACTA -ACGGAATAGCCAACTTGCGGAGTA -ACGGAATAGCCAACTTGCTCGTCT -ACGGAATAGCCAACTTGCTGCACT -ACGGAATAGCCAACTTGCCTGACT -ACGGAATAGCCAACTTGCCAACCT -ACGGAATAGCCAACTTGCGCTACT -ACGGAATAGCCAACTTGCGGATCT -ACGGAATAGCCAACTTGCAAGGCT -ACGGAATAGCCAACTTGCTCAACC -ACGGAATAGCCAACTTGCTGTTCC -ACGGAATAGCCAACTTGCATTCCC -ACGGAATAGCCAACTTGCTTCTCG -ACGGAATAGCCAACTTGCTAGACG -ACGGAATAGCCAACTTGCGTAACG -ACGGAATAGCCAACTTGCACTTCG -ACGGAATAGCCAACTTGCTACGCA -ACGGAATAGCCAACTTGCCTTGCA -ACGGAATAGCCAACTTGCCGAACA -ACGGAATAGCCAACTTGCCAGTCA -ACGGAATAGCCAACTTGCGATCCA -ACGGAATAGCCAACTTGCACGACA -ACGGAATAGCCAACTTGCAGCTCA -ACGGAATAGCCAACTTGCTCACGT -ACGGAATAGCCAACTTGCCGTAGT -ACGGAATAGCCAACTTGCGTCAGT -ACGGAATAGCCAACTTGCGAAGGT -ACGGAATAGCCAACTTGCAACCGT -ACGGAATAGCCAACTTGCTTGTGC -ACGGAATAGCCAACTTGCCTAAGC -ACGGAATAGCCAACTTGCACTAGC -ACGGAATAGCCAACTTGCAGATGC -ACGGAATAGCCAACTTGCTGAAGG -ACGGAATAGCCAACTTGCCAATGG -ACGGAATAGCCAACTTGCATGAGG -ACGGAATAGCCAACTTGCAATGGG -ACGGAATAGCCAACTTGCTCCTGA -ACGGAATAGCCAACTTGCTAGCGA -ACGGAATAGCCAACTTGCCACAGA -ACGGAATAGCCAACTTGCGCAAGA -ACGGAATAGCCAACTTGCGGTTGA -ACGGAATAGCCAACTTGCTCCGAT -ACGGAATAGCCAACTTGCTGGCAT -ACGGAATAGCCAACTTGCCGAGAT -ACGGAATAGCCAACTTGCTACCAC -ACGGAATAGCCAACTTGCCAGAAC -ACGGAATAGCCAACTTGCGTCTAC -ACGGAATAGCCAACTTGCACGTAC -ACGGAATAGCCAACTTGCAGTGAC -ACGGAATAGCCAACTTGCCTGTAG -ACGGAATAGCCAACTTGCCCTAAG -ACGGAATAGCCAACTTGCGTTCAG -ACGGAATAGCCAACTTGCGCATAG -ACGGAATAGCCAACTTGCGACAAG -ACGGAATAGCCAACTTGCAAGCAG -ACGGAATAGCCAACTTGCCGTCAA -ACGGAATAGCCAACTTGCGCTGAA -ACGGAATAGCCAACTTGCAGTACG -ACGGAATAGCCAACTTGCATCCGA -ACGGAATAGCCAACTTGCATGGGA -ACGGAATAGCCAACTTGCGTGCAA -ACGGAATAGCCAACTTGCGAGGAA -ACGGAATAGCCAACTTGCCAGGTA -ACGGAATAGCCAACTTGCGACTCT -ACGGAATAGCCAACTTGCAGTCCT -ACGGAATAGCCAACTTGCTAAGCC -ACGGAATAGCCAACTTGCATAGCC -ACGGAATAGCCAACTTGCTAACCG -ACGGAATAGCCAACTTGCATGCCA -ACGGAATAGCCAACTCTGGGAAAC -ACGGAATAGCCAACTCTGAACACC -ACGGAATAGCCAACTCTGATCGAG -ACGGAATAGCCAACTCTGCTCCTT -ACGGAATAGCCAACTCTGCCTGTT -ACGGAATAGCCAACTCTGCGGTTT -ACGGAATAGCCAACTCTGGTGGTT -ACGGAATAGCCAACTCTGGCCTTT -ACGGAATAGCCAACTCTGGGTCTT -ACGGAATAGCCAACTCTGACGCTT -ACGGAATAGCCAACTCTGAGCGTT -ACGGAATAGCCAACTCTGTTCGTC -ACGGAATAGCCAACTCTGTCTCTC -ACGGAATAGCCAACTCTGTGGATC -ACGGAATAGCCAACTCTGCACTTC -ACGGAATAGCCAACTCTGGTACTC -ACGGAATAGCCAACTCTGGATGTC -ACGGAATAGCCAACTCTGACAGTC -ACGGAATAGCCAACTCTGTTGCTG -ACGGAATAGCCAACTCTGTCCATG -ACGGAATAGCCAACTCTGTGTGTG -ACGGAATAGCCAACTCTGCTAGTG -ACGGAATAGCCAACTCTGCATCTG -ACGGAATAGCCAACTCTGGAGTTG -ACGGAATAGCCAACTCTGAGACTG -ACGGAATAGCCAACTCTGTCGGTA -ACGGAATAGCCAACTCTGTGCCTA -ACGGAATAGCCAACTCTGCCACTA -ACGGAATAGCCAACTCTGGGAGTA -ACGGAATAGCCAACTCTGTCGTCT -ACGGAATAGCCAACTCTGTGCACT -ACGGAATAGCCAACTCTGCTGACT -ACGGAATAGCCAACTCTGCAACCT -ACGGAATAGCCAACTCTGGCTACT -ACGGAATAGCCAACTCTGGGATCT -ACGGAATAGCCAACTCTGAAGGCT -ACGGAATAGCCAACTCTGTCAACC -ACGGAATAGCCAACTCTGTGTTCC -ACGGAATAGCCAACTCTGATTCCC -ACGGAATAGCCAACTCTGTTCTCG -ACGGAATAGCCAACTCTGTAGACG -ACGGAATAGCCAACTCTGGTAACG -ACGGAATAGCCAACTCTGACTTCG -ACGGAATAGCCAACTCTGTACGCA -ACGGAATAGCCAACTCTGCTTGCA -ACGGAATAGCCAACTCTGCGAACA -ACGGAATAGCCAACTCTGCAGTCA -ACGGAATAGCCAACTCTGGATCCA -ACGGAATAGCCAACTCTGACGACA -ACGGAATAGCCAACTCTGAGCTCA -ACGGAATAGCCAACTCTGTCACGT -ACGGAATAGCCAACTCTGCGTAGT -ACGGAATAGCCAACTCTGGTCAGT -ACGGAATAGCCAACTCTGGAAGGT -ACGGAATAGCCAACTCTGAACCGT -ACGGAATAGCCAACTCTGTTGTGC -ACGGAATAGCCAACTCTGCTAAGC -ACGGAATAGCCAACTCTGACTAGC -ACGGAATAGCCAACTCTGAGATGC -ACGGAATAGCCAACTCTGTGAAGG -ACGGAATAGCCAACTCTGCAATGG -ACGGAATAGCCAACTCTGATGAGG -ACGGAATAGCCAACTCTGAATGGG -ACGGAATAGCCAACTCTGTCCTGA -ACGGAATAGCCAACTCTGTAGCGA -ACGGAATAGCCAACTCTGCACAGA -ACGGAATAGCCAACTCTGGCAAGA -ACGGAATAGCCAACTCTGGGTTGA -ACGGAATAGCCAACTCTGTCCGAT -ACGGAATAGCCAACTCTGTGGCAT -ACGGAATAGCCAACTCTGCGAGAT -ACGGAATAGCCAACTCTGTACCAC -ACGGAATAGCCAACTCTGCAGAAC -ACGGAATAGCCAACTCTGGTCTAC -ACGGAATAGCCAACTCTGACGTAC -ACGGAATAGCCAACTCTGAGTGAC -ACGGAATAGCCAACTCTGCTGTAG -ACGGAATAGCCAACTCTGCCTAAG -ACGGAATAGCCAACTCTGGTTCAG -ACGGAATAGCCAACTCTGGCATAG -ACGGAATAGCCAACTCTGGACAAG -ACGGAATAGCCAACTCTGAAGCAG -ACGGAATAGCCAACTCTGCGTCAA -ACGGAATAGCCAACTCTGGCTGAA -ACGGAATAGCCAACTCTGAGTACG -ACGGAATAGCCAACTCTGATCCGA -ACGGAATAGCCAACTCTGATGGGA -ACGGAATAGCCAACTCTGGTGCAA -ACGGAATAGCCAACTCTGGAGGAA -ACGGAATAGCCAACTCTGCAGGTA -ACGGAATAGCCAACTCTGGACTCT -ACGGAATAGCCAACTCTGAGTCCT -ACGGAATAGCCAACTCTGTAAGCC -ACGGAATAGCCAACTCTGATAGCC -ACGGAATAGCCAACTCTGTAACCG -ACGGAATAGCCAACTCTGATGCCA -ACGGAATAGCCACCTCAAGGAAAC -ACGGAATAGCCACCTCAAAACACC -ACGGAATAGCCACCTCAAATCGAG -ACGGAATAGCCACCTCAACTCCTT -ACGGAATAGCCACCTCAACCTGTT -ACGGAATAGCCACCTCAACGGTTT -ACGGAATAGCCACCTCAAGTGGTT -ACGGAATAGCCACCTCAAGCCTTT -ACGGAATAGCCACCTCAAGGTCTT -ACGGAATAGCCACCTCAAACGCTT -ACGGAATAGCCACCTCAAAGCGTT -ACGGAATAGCCACCTCAATTCGTC -ACGGAATAGCCACCTCAATCTCTC -ACGGAATAGCCACCTCAATGGATC -ACGGAATAGCCACCTCAACACTTC -ACGGAATAGCCACCTCAAGTACTC -ACGGAATAGCCACCTCAAGATGTC -ACGGAATAGCCACCTCAAACAGTC -ACGGAATAGCCACCTCAATTGCTG -ACGGAATAGCCACCTCAATCCATG -ACGGAATAGCCACCTCAATGTGTG -ACGGAATAGCCACCTCAACTAGTG -ACGGAATAGCCACCTCAACATCTG -ACGGAATAGCCACCTCAAGAGTTG -ACGGAATAGCCACCTCAAAGACTG -ACGGAATAGCCACCTCAATCGGTA -ACGGAATAGCCACCTCAATGCCTA -ACGGAATAGCCACCTCAACCACTA -ACGGAATAGCCACCTCAAGGAGTA -ACGGAATAGCCACCTCAATCGTCT -ACGGAATAGCCACCTCAATGCACT -ACGGAATAGCCACCTCAACTGACT -ACGGAATAGCCACCTCAACAACCT -ACGGAATAGCCACCTCAAGCTACT -ACGGAATAGCCACCTCAAGGATCT -ACGGAATAGCCACCTCAAAAGGCT -ACGGAATAGCCACCTCAATCAACC -ACGGAATAGCCACCTCAATGTTCC -ACGGAATAGCCACCTCAAATTCCC -ACGGAATAGCCACCTCAATTCTCG -ACGGAATAGCCACCTCAATAGACG -ACGGAATAGCCACCTCAAGTAACG -ACGGAATAGCCACCTCAAACTTCG -ACGGAATAGCCACCTCAATACGCA -ACGGAATAGCCACCTCAACTTGCA -ACGGAATAGCCACCTCAACGAACA -ACGGAATAGCCACCTCAACAGTCA -ACGGAATAGCCACCTCAAGATCCA -ACGGAATAGCCACCTCAAACGACA -ACGGAATAGCCACCTCAAAGCTCA -ACGGAATAGCCACCTCAATCACGT -ACGGAATAGCCACCTCAACGTAGT -ACGGAATAGCCACCTCAAGTCAGT -ACGGAATAGCCACCTCAAGAAGGT -ACGGAATAGCCACCTCAAAACCGT -ACGGAATAGCCACCTCAATTGTGC -ACGGAATAGCCACCTCAACTAAGC -ACGGAATAGCCACCTCAAACTAGC -ACGGAATAGCCACCTCAAAGATGC -ACGGAATAGCCACCTCAATGAAGG -ACGGAATAGCCACCTCAACAATGG -ACGGAATAGCCACCTCAAATGAGG -ACGGAATAGCCACCTCAAAATGGG -ACGGAATAGCCACCTCAATCCTGA -ACGGAATAGCCACCTCAATAGCGA -ACGGAATAGCCACCTCAACACAGA -ACGGAATAGCCACCTCAAGCAAGA -ACGGAATAGCCACCTCAAGGTTGA -ACGGAATAGCCACCTCAATCCGAT -ACGGAATAGCCACCTCAATGGCAT -ACGGAATAGCCACCTCAACGAGAT -ACGGAATAGCCACCTCAATACCAC -ACGGAATAGCCACCTCAACAGAAC -ACGGAATAGCCACCTCAAGTCTAC -ACGGAATAGCCACCTCAAACGTAC -ACGGAATAGCCACCTCAAAGTGAC -ACGGAATAGCCACCTCAACTGTAG -ACGGAATAGCCACCTCAACCTAAG -ACGGAATAGCCACCTCAAGTTCAG -ACGGAATAGCCACCTCAAGCATAG -ACGGAATAGCCACCTCAAGACAAG -ACGGAATAGCCACCTCAAAAGCAG -ACGGAATAGCCACCTCAACGTCAA -ACGGAATAGCCACCTCAAGCTGAA -ACGGAATAGCCACCTCAAAGTACG -ACGGAATAGCCACCTCAAATCCGA -ACGGAATAGCCACCTCAAATGGGA -ACGGAATAGCCACCTCAAGTGCAA -ACGGAATAGCCACCTCAAGAGGAA -ACGGAATAGCCACCTCAACAGGTA -ACGGAATAGCCACCTCAAGACTCT -ACGGAATAGCCACCTCAAAGTCCT -ACGGAATAGCCACCTCAATAAGCC -ACGGAATAGCCACCTCAAATAGCC -ACGGAATAGCCACCTCAATAACCG -ACGGAATAGCCACCTCAAATGCCA -ACGGAATAGCCAACTGCTGGAAAC -ACGGAATAGCCAACTGCTAACACC -ACGGAATAGCCAACTGCTATCGAG -ACGGAATAGCCAACTGCTCTCCTT -ACGGAATAGCCAACTGCTCCTGTT -ACGGAATAGCCAACTGCTCGGTTT -ACGGAATAGCCAACTGCTGTGGTT -ACGGAATAGCCAACTGCTGCCTTT -ACGGAATAGCCAACTGCTGGTCTT -ACGGAATAGCCAACTGCTACGCTT -ACGGAATAGCCAACTGCTAGCGTT -ACGGAATAGCCAACTGCTTTCGTC -ACGGAATAGCCAACTGCTTCTCTC -ACGGAATAGCCAACTGCTTGGATC -ACGGAATAGCCAACTGCTCACTTC -ACGGAATAGCCAACTGCTGTACTC -ACGGAATAGCCAACTGCTGATGTC -ACGGAATAGCCAACTGCTACAGTC -ACGGAATAGCCAACTGCTTTGCTG -ACGGAATAGCCAACTGCTTCCATG -ACGGAATAGCCAACTGCTTGTGTG -ACGGAATAGCCAACTGCTCTAGTG -ACGGAATAGCCAACTGCTCATCTG -ACGGAATAGCCAACTGCTGAGTTG -ACGGAATAGCCAACTGCTAGACTG -ACGGAATAGCCAACTGCTTCGGTA -ACGGAATAGCCAACTGCTTGCCTA -ACGGAATAGCCAACTGCTCCACTA -ACGGAATAGCCAACTGCTGGAGTA -ACGGAATAGCCAACTGCTTCGTCT -ACGGAATAGCCAACTGCTTGCACT -ACGGAATAGCCAACTGCTCTGACT -ACGGAATAGCCAACTGCTCAACCT -ACGGAATAGCCAACTGCTGCTACT -ACGGAATAGCCAACTGCTGGATCT -ACGGAATAGCCAACTGCTAAGGCT -ACGGAATAGCCAACTGCTTCAACC -ACGGAATAGCCAACTGCTTGTTCC -ACGGAATAGCCAACTGCTATTCCC -ACGGAATAGCCAACTGCTTTCTCG -ACGGAATAGCCAACTGCTTAGACG -ACGGAATAGCCAACTGCTGTAACG -ACGGAATAGCCAACTGCTACTTCG -ACGGAATAGCCAACTGCTTACGCA -ACGGAATAGCCAACTGCTCTTGCA -ACGGAATAGCCAACTGCTCGAACA -ACGGAATAGCCAACTGCTCAGTCA -ACGGAATAGCCAACTGCTGATCCA -ACGGAATAGCCAACTGCTACGACA -ACGGAATAGCCAACTGCTAGCTCA -ACGGAATAGCCAACTGCTTCACGT -ACGGAATAGCCAACTGCTCGTAGT -ACGGAATAGCCAACTGCTGTCAGT -ACGGAATAGCCAACTGCTGAAGGT -ACGGAATAGCCAACTGCTAACCGT -ACGGAATAGCCAACTGCTTTGTGC -ACGGAATAGCCAACTGCTCTAAGC -ACGGAATAGCCAACTGCTACTAGC -ACGGAATAGCCAACTGCTAGATGC -ACGGAATAGCCAACTGCTTGAAGG -ACGGAATAGCCAACTGCTCAATGG -ACGGAATAGCCAACTGCTATGAGG -ACGGAATAGCCAACTGCTAATGGG -ACGGAATAGCCAACTGCTTCCTGA -ACGGAATAGCCAACTGCTTAGCGA -ACGGAATAGCCAACTGCTCACAGA -ACGGAATAGCCAACTGCTGCAAGA -ACGGAATAGCCAACTGCTGGTTGA -ACGGAATAGCCAACTGCTTCCGAT -ACGGAATAGCCAACTGCTTGGCAT -ACGGAATAGCCAACTGCTCGAGAT -ACGGAATAGCCAACTGCTTACCAC -ACGGAATAGCCAACTGCTCAGAAC -ACGGAATAGCCAACTGCTGTCTAC -ACGGAATAGCCAACTGCTACGTAC -ACGGAATAGCCAACTGCTAGTGAC -ACGGAATAGCCAACTGCTCTGTAG -ACGGAATAGCCAACTGCTCCTAAG -ACGGAATAGCCAACTGCTGTTCAG -ACGGAATAGCCAACTGCTGCATAG -ACGGAATAGCCAACTGCTGACAAG -ACGGAATAGCCAACTGCTAAGCAG -ACGGAATAGCCAACTGCTCGTCAA -ACGGAATAGCCAACTGCTGCTGAA -ACGGAATAGCCAACTGCTAGTACG -ACGGAATAGCCAACTGCTATCCGA -ACGGAATAGCCAACTGCTATGGGA -ACGGAATAGCCAACTGCTGTGCAA -ACGGAATAGCCAACTGCTGAGGAA -ACGGAATAGCCAACTGCTCAGGTA -ACGGAATAGCCAACTGCTGACTCT -ACGGAATAGCCAACTGCTAGTCCT -ACGGAATAGCCAACTGCTTAAGCC -ACGGAATAGCCAACTGCTATAGCC -ACGGAATAGCCAACTGCTTAACCG -ACGGAATAGCCAACTGCTATGCCA -ACGGAATAGCCATCTGGAGGAAAC -ACGGAATAGCCATCTGGAAACACC -ACGGAATAGCCATCTGGAATCGAG -ACGGAATAGCCATCTGGACTCCTT -ACGGAATAGCCATCTGGACCTGTT -ACGGAATAGCCATCTGGACGGTTT -ACGGAATAGCCATCTGGAGTGGTT -ACGGAATAGCCATCTGGAGCCTTT -ACGGAATAGCCATCTGGAGGTCTT -ACGGAATAGCCATCTGGAACGCTT -ACGGAATAGCCATCTGGAAGCGTT -ACGGAATAGCCATCTGGATTCGTC -ACGGAATAGCCATCTGGATCTCTC -ACGGAATAGCCATCTGGATGGATC -ACGGAATAGCCATCTGGACACTTC -ACGGAATAGCCATCTGGAGTACTC -ACGGAATAGCCATCTGGAGATGTC -ACGGAATAGCCATCTGGAACAGTC -ACGGAATAGCCATCTGGATTGCTG -ACGGAATAGCCATCTGGATCCATG -ACGGAATAGCCATCTGGATGTGTG -ACGGAATAGCCATCTGGACTAGTG -ACGGAATAGCCATCTGGACATCTG -ACGGAATAGCCATCTGGAGAGTTG -ACGGAATAGCCATCTGGAAGACTG -ACGGAATAGCCATCTGGATCGGTA -ACGGAATAGCCATCTGGATGCCTA -ACGGAATAGCCATCTGGACCACTA -ACGGAATAGCCATCTGGAGGAGTA -ACGGAATAGCCATCTGGATCGTCT -ACGGAATAGCCATCTGGATGCACT -ACGGAATAGCCATCTGGACTGACT -ACGGAATAGCCATCTGGACAACCT -ACGGAATAGCCATCTGGAGCTACT -ACGGAATAGCCATCTGGAGGATCT -ACGGAATAGCCATCTGGAAAGGCT -ACGGAATAGCCATCTGGATCAACC -ACGGAATAGCCATCTGGATGTTCC -ACGGAATAGCCATCTGGAATTCCC -ACGGAATAGCCATCTGGATTCTCG -ACGGAATAGCCATCTGGATAGACG -ACGGAATAGCCATCTGGAGTAACG -ACGGAATAGCCATCTGGAACTTCG -ACGGAATAGCCATCTGGATACGCA -ACGGAATAGCCATCTGGACTTGCA -ACGGAATAGCCATCTGGACGAACA -ACGGAATAGCCATCTGGACAGTCA -ACGGAATAGCCATCTGGAGATCCA -ACGGAATAGCCATCTGGAACGACA -ACGGAATAGCCATCTGGAAGCTCA -ACGGAATAGCCATCTGGATCACGT -ACGGAATAGCCATCTGGACGTAGT -ACGGAATAGCCATCTGGAGTCAGT -ACGGAATAGCCATCTGGAGAAGGT -ACGGAATAGCCATCTGGAAACCGT -ACGGAATAGCCATCTGGATTGTGC -ACGGAATAGCCATCTGGACTAAGC -ACGGAATAGCCATCTGGAACTAGC -ACGGAATAGCCATCTGGAAGATGC -ACGGAATAGCCATCTGGATGAAGG -ACGGAATAGCCATCTGGACAATGG -ACGGAATAGCCATCTGGAATGAGG -ACGGAATAGCCATCTGGAAATGGG -ACGGAATAGCCATCTGGATCCTGA -ACGGAATAGCCATCTGGATAGCGA -ACGGAATAGCCATCTGGACACAGA -ACGGAATAGCCATCTGGAGCAAGA -ACGGAATAGCCATCTGGAGGTTGA -ACGGAATAGCCATCTGGATCCGAT -ACGGAATAGCCATCTGGATGGCAT -ACGGAATAGCCATCTGGACGAGAT -ACGGAATAGCCATCTGGATACCAC -ACGGAATAGCCATCTGGACAGAAC -ACGGAATAGCCATCTGGAGTCTAC -ACGGAATAGCCATCTGGAACGTAC -ACGGAATAGCCATCTGGAAGTGAC -ACGGAATAGCCATCTGGACTGTAG -ACGGAATAGCCATCTGGACCTAAG -ACGGAATAGCCATCTGGAGTTCAG -ACGGAATAGCCATCTGGAGCATAG -ACGGAATAGCCATCTGGAGACAAG -ACGGAATAGCCATCTGGAAAGCAG -ACGGAATAGCCATCTGGACGTCAA -ACGGAATAGCCATCTGGAGCTGAA -ACGGAATAGCCATCTGGAAGTACG -ACGGAATAGCCATCTGGAATCCGA -ACGGAATAGCCATCTGGAATGGGA -ACGGAATAGCCATCTGGAGTGCAA -ACGGAATAGCCATCTGGAGAGGAA -ACGGAATAGCCATCTGGACAGGTA -ACGGAATAGCCATCTGGAGACTCT -ACGGAATAGCCATCTGGAAGTCCT -ACGGAATAGCCATCTGGATAAGCC -ACGGAATAGCCATCTGGAATAGCC -ACGGAATAGCCATCTGGATAACCG -ACGGAATAGCCATCTGGAATGCCA -ACGGAATAGCCAGCTAAGGGAAAC -ACGGAATAGCCAGCTAAGAACACC -ACGGAATAGCCAGCTAAGATCGAG -ACGGAATAGCCAGCTAAGCTCCTT -ACGGAATAGCCAGCTAAGCCTGTT -ACGGAATAGCCAGCTAAGCGGTTT -ACGGAATAGCCAGCTAAGGTGGTT -ACGGAATAGCCAGCTAAGGCCTTT -ACGGAATAGCCAGCTAAGGGTCTT -ACGGAATAGCCAGCTAAGACGCTT -ACGGAATAGCCAGCTAAGAGCGTT -ACGGAATAGCCAGCTAAGTTCGTC -ACGGAATAGCCAGCTAAGTCTCTC -ACGGAATAGCCAGCTAAGTGGATC -ACGGAATAGCCAGCTAAGCACTTC -ACGGAATAGCCAGCTAAGGTACTC -ACGGAATAGCCAGCTAAGGATGTC -ACGGAATAGCCAGCTAAGACAGTC -ACGGAATAGCCAGCTAAGTTGCTG -ACGGAATAGCCAGCTAAGTCCATG -ACGGAATAGCCAGCTAAGTGTGTG -ACGGAATAGCCAGCTAAGCTAGTG -ACGGAATAGCCAGCTAAGCATCTG -ACGGAATAGCCAGCTAAGGAGTTG -ACGGAATAGCCAGCTAAGAGACTG -ACGGAATAGCCAGCTAAGTCGGTA -ACGGAATAGCCAGCTAAGTGCCTA -ACGGAATAGCCAGCTAAGCCACTA -ACGGAATAGCCAGCTAAGGGAGTA -ACGGAATAGCCAGCTAAGTCGTCT -ACGGAATAGCCAGCTAAGTGCACT -ACGGAATAGCCAGCTAAGCTGACT -ACGGAATAGCCAGCTAAGCAACCT -ACGGAATAGCCAGCTAAGGCTACT -ACGGAATAGCCAGCTAAGGGATCT -ACGGAATAGCCAGCTAAGAAGGCT -ACGGAATAGCCAGCTAAGTCAACC -ACGGAATAGCCAGCTAAGTGTTCC -ACGGAATAGCCAGCTAAGATTCCC -ACGGAATAGCCAGCTAAGTTCTCG -ACGGAATAGCCAGCTAAGTAGACG -ACGGAATAGCCAGCTAAGGTAACG -ACGGAATAGCCAGCTAAGACTTCG -ACGGAATAGCCAGCTAAGTACGCA -ACGGAATAGCCAGCTAAGCTTGCA -ACGGAATAGCCAGCTAAGCGAACA -ACGGAATAGCCAGCTAAGCAGTCA -ACGGAATAGCCAGCTAAGGATCCA -ACGGAATAGCCAGCTAAGACGACA -ACGGAATAGCCAGCTAAGAGCTCA -ACGGAATAGCCAGCTAAGTCACGT -ACGGAATAGCCAGCTAAGCGTAGT -ACGGAATAGCCAGCTAAGGTCAGT -ACGGAATAGCCAGCTAAGGAAGGT -ACGGAATAGCCAGCTAAGAACCGT -ACGGAATAGCCAGCTAAGTTGTGC -ACGGAATAGCCAGCTAAGCTAAGC -ACGGAATAGCCAGCTAAGACTAGC -ACGGAATAGCCAGCTAAGAGATGC -ACGGAATAGCCAGCTAAGTGAAGG -ACGGAATAGCCAGCTAAGCAATGG -ACGGAATAGCCAGCTAAGATGAGG -ACGGAATAGCCAGCTAAGAATGGG -ACGGAATAGCCAGCTAAGTCCTGA -ACGGAATAGCCAGCTAAGTAGCGA -ACGGAATAGCCAGCTAAGCACAGA -ACGGAATAGCCAGCTAAGGCAAGA -ACGGAATAGCCAGCTAAGGGTTGA -ACGGAATAGCCAGCTAAGTCCGAT -ACGGAATAGCCAGCTAAGTGGCAT -ACGGAATAGCCAGCTAAGCGAGAT -ACGGAATAGCCAGCTAAGTACCAC -ACGGAATAGCCAGCTAAGCAGAAC -ACGGAATAGCCAGCTAAGGTCTAC -ACGGAATAGCCAGCTAAGACGTAC -ACGGAATAGCCAGCTAAGAGTGAC -ACGGAATAGCCAGCTAAGCTGTAG -ACGGAATAGCCAGCTAAGCCTAAG -ACGGAATAGCCAGCTAAGGTTCAG -ACGGAATAGCCAGCTAAGGCATAG -ACGGAATAGCCAGCTAAGGACAAG -ACGGAATAGCCAGCTAAGAAGCAG -ACGGAATAGCCAGCTAAGCGTCAA -ACGGAATAGCCAGCTAAGGCTGAA -ACGGAATAGCCAGCTAAGAGTACG -ACGGAATAGCCAGCTAAGATCCGA -ACGGAATAGCCAGCTAAGATGGGA -ACGGAATAGCCAGCTAAGGTGCAA -ACGGAATAGCCAGCTAAGGAGGAA -ACGGAATAGCCAGCTAAGCAGGTA -ACGGAATAGCCAGCTAAGGACTCT -ACGGAATAGCCAGCTAAGAGTCCT -ACGGAATAGCCAGCTAAGTAAGCC -ACGGAATAGCCAGCTAAGATAGCC -ACGGAATAGCCAGCTAAGTAACCG -ACGGAATAGCCAGCTAAGATGCCA -ACGGAATAGCCAACCTCAGGAAAC -ACGGAATAGCCAACCTCAAACACC -ACGGAATAGCCAACCTCAATCGAG -ACGGAATAGCCAACCTCACTCCTT -ACGGAATAGCCAACCTCACCTGTT -ACGGAATAGCCAACCTCACGGTTT -ACGGAATAGCCAACCTCAGTGGTT -ACGGAATAGCCAACCTCAGCCTTT -ACGGAATAGCCAACCTCAGGTCTT -ACGGAATAGCCAACCTCAACGCTT -ACGGAATAGCCAACCTCAAGCGTT -ACGGAATAGCCAACCTCATTCGTC -ACGGAATAGCCAACCTCATCTCTC -ACGGAATAGCCAACCTCATGGATC -ACGGAATAGCCAACCTCACACTTC -ACGGAATAGCCAACCTCAGTACTC -ACGGAATAGCCAACCTCAGATGTC -ACGGAATAGCCAACCTCAACAGTC -ACGGAATAGCCAACCTCATTGCTG -ACGGAATAGCCAACCTCATCCATG -ACGGAATAGCCAACCTCATGTGTG -ACGGAATAGCCAACCTCACTAGTG -ACGGAATAGCCAACCTCACATCTG -ACGGAATAGCCAACCTCAGAGTTG -ACGGAATAGCCAACCTCAAGACTG -ACGGAATAGCCAACCTCATCGGTA -ACGGAATAGCCAACCTCATGCCTA -ACGGAATAGCCAACCTCACCACTA -ACGGAATAGCCAACCTCAGGAGTA -ACGGAATAGCCAACCTCATCGTCT -ACGGAATAGCCAACCTCATGCACT -ACGGAATAGCCAACCTCACTGACT -ACGGAATAGCCAACCTCACAACCT -ACGGAATAGCCAACCTCAGCTACT -ACGGAATAGCCAACCTCAGGATCT -ACGGAATAGCCAACCTCAAAGGCT -ACGGAATAGCCAACCTCATCAACC -ACGGAATAGCCAACCTCATGTTCC -ACGGAATAGCCAACCTCAATTCCC -ACGGAATAGCCAACCTCATTCTCG -ACGGAATAGCCAACCTCATAGACG -ACGGAATAGCCAACCTCAGTAACG -ACGGAATAGCCAACCTCAACTTCG -ACGGAATAGCCAACCTCATACGCA -ACGGAATAGCCAACCTCACTTGCA -ACGGAATAGCCAACCTCACGAACA -ACGGAATAGCCAACCTCACAGTCA -ACGGAATAGCCAACCTCAGATCCA -ACGGAATAGCCAACCTCAACGACA -ACGGAATAGCCAACCTCAAGCTCA -ACGGAATAGCCAACCTCATCACGT -ACGGAATAGCCAACCTCACGTAGT -ACGGAATAGCCAACCTCAGTCAGT -ACGGAATAGCCAACCTCAGAAGGT -ACGGAATAGCCAACCTCAAACCGT -ACGGAATAGCCAACCTCATTGTGC -ACGGAATAGCCAACCTCACTAAGC -ACGGAATAGCCAACCTCAACTAGC -ACGGAATAGCCAACCTCAAGATGC -ACGGAATAGCCAACCTCATGAAGG -ACGGAATAGCCAACCTCACAATGG -ACGGAATAGCCAACCTCAATGAGG -ACGGAATAGCCAACCTCAAATGGG -ACGGAATAGCCAACCTCATCCTGA -ACGGAATAGCCAACCTCATAGCGA -ACGGAATAGCCAACCTCACACAGA -ACGGAATAGCCAACCTCAGCAAGA -ACGGAATAGCCAACCTCAGGTTGA -ACGGAATAGCCAACCTCATCCGAT -ACGGAATAGCCAACCTCATGGCAT -ACGGAATAGCCAACCTCACGAGAT -ACGGAATAGCCAACCTCATACCAC -ACGGAATAGCCAACCTCACAGAAC -ACGGAATAGCCAACCTCAGTCTAC -ACGGAATAGCCAACCTCAACGTAC -ACGGAATAGCCAACCTCAAGTGAC -ACGGAATAGCCAACCTCACTGTAG -ACGGAATAGCCAACCTCACCTAAG -ACGGAATAGCCAACCTCAGTTCAG -ACGGAATAGCCAACCTCAGCATAG -ACGGAATAGCCAACCTCAGACAAG -ACGGAATAGCCAACCTCAAAGCAG -ACGGAATAGCCAACCTCACGTCAA -ACGGAATAGCCAACCTCAGCTGAA -ACGGAATAGCCAACCTCAAGTACG -ACGGAATAGCCAACCTCAATCCGA -ACGGAATAGCCAACCTCAATGGGA -ACGGAATAGCCAACCTCAGTGCAA -ACGGAATAGCCAACCTCAGAGGAA -ACGGAATAGCCAACCTCACAGGTA -ACGGAATAGCCAACCTCAGACTCT -ACGGAATAGCCAACCTCAAGTCCT -ACGGAATAGCCAACCTCATAAGCC -ACGGAATAGCCAACCTCAATAGCC -ACGGAATAGCCAACCTCATAACCG -ACGGAATAGCCAACCTCAATGCCA -ACGGAATAGCCATCCTGTGGAAAC -ACGGAATAGCCATCCTGTAACACC -ACGGAATAGCCATCCTGTATCGAG -ACGGAATAGCCATCCTGTCTCCTT -ACGGAATAGCCATCCTGTCCTGTT -ACGGAATAGCCATCCTGTCGGTTT -ACGGAATAGCCATCCTGTGTGGTT -ACGGAATAGCCATCCTGTGCCTTT -ACGGAATAGCCATCCTGTGGTCTT -ACGGAATAGCCATCCTGTACGCTT -ACGGAATAGCCATCCTGTAGCGTT -ACGGAATAGCCATCCTGTTTCGTC -ACGGAATAGCCATCCTGTTCTCTC -ACGGAATAGCCATCCTGTTGGATC -ACGGAATAGCCATCCTGTCACTTC -ACGGAATAGCCATCCTGTGTACTC -ACGGAATAGCCATCCTGTGATGTC -ACGGAATAGCCATCCTGTACAGTC -ACGGAATAGCCATCCTGTTTGCTG -ACGGAATAGCCATCCTGTTCCATG -ACGGAATAGCCATCCTGTTGTGTG -ACGGAATAGCCATCCTGTCTAGTG -ACGGAATAGCCATCCTGTCATCTG -ACGGAATAGCCATCCTGTGAGTTG -ACGGAATAGCCATCCTGTAGACTG -ACGGAATAGCCATCCTGTTCGGTA -ACGGAATAGCCATCCTGTTGCCTA -ACGGAATAGCCATCCTGTCCACTA -ACGGAATAGCCATCCTGTGGAGTA -ACGGAATAGCCATCCTGTTCGTCT -ACGGAATAGCCATCCTGTTGCACT -ACGGAATAGCCATCCTGTCTGACT -ACGGAATAGCCATCCTGTCAACCT -ACGGAATAGCCATCCTGTGCTACT -ACGGAATAGCCATCCTGTGGATCT -ACGGAATAGCCATCCTGTAAGGCT -ACGGAATAGCCATCCTGTTCAACC -ACGGAATAGCCATCCTGTTGTTCC -ACGGAATAGCCATCCTGTATTCCC -ACGGAATAGCCATCCTGTTTCTCG -ACGGAATAGCCATCCTGTTAGACG -ACGGAATAGCCATCCTGTGTAACG -ACGGAATAGCCATCCTGTACTTCG -ACGGAATAGCCATCCTGTTACGCA -ACGGAATAGCCATCCTGTCTTGCA -ACGGAATAGCCATCCTGTCGAACA -ACGGAATAGCCATCCTGTCAGTCA -ACGGAATAGCCATCCTGTGATCCA -ACGGAATAGCCATCCTGTACGACA -ACGGAATAGCCATCCTGTAGCTCA -ACGGAATAGCCATCCTGTTCACGT -ACGGAATAGCCATCCTGTCGTAGT -ACGGAATAGCCATCCTGTGTCAGT -ACGGAATAGCCATCCTGTGAAGGT -ACGGAATAGCCATCCTGTAACCGT -ACGGAATAGCCATCCTGTTTGTGC -ACGGAATAGCCATCCTGTCTAAGC -ACGGAATAGCCATCCTGTACTAGC -ACGGAATAGCCATCCTGTAGATGC -ACGGAATAGCCATCCTGTTGAAGG -ACGGAATAGCCATCCTGTCAATGG -ACGGAATAGCCATCCTGTATGAGG -ACGGAATAGCCATCCTGTAATGGG -ACGGAATAGCCATCCTGTTCCTGA -ACGGAATAGCCATCCTGTTAGCGA -ACGGAATAGCCATCCTGTCACAGA -ACGGAATAGCCATCCTGTGCAAGA -ACGGAATAGCCATCCTGTGGTTGA -ACGGAATAGCCATCCTGTTCCGAT -ACGGAATAGCCATCCTGTTGGCAT -ACGGAATAGCCATCCTGTCGAGAT -ACGGAATAGCCATCCTGTTACCAC -ACGGAATAGCCATCCTGTCAGAAC -ACGGAATAGCCATCCTGTGTCTAC -ACGGAATAGCCATCCTGTACGTAC -ACGGAATAGCCATCCTGTAGTGAC -ACGGAATAGCCATCCTGTCTGTAG -ACGGAATAGCCATCCTGTCCTAAG -ACGGAATAGCCATCCTGTGTTCAG -ACGGAATAGCCATCCTGTGCATAG -ACGGAATAGCCATCCTGTGACAAG -ACGGAATAGCCATCCTGTAAGCAG -ACGGAATAGCCATCCTGTCGTCAA -ACGGAATAGCCATCCTGTGCTGAA -ACGGAATAGCCATCCTGTAGTACG -ACGGAATAGCCATCCTGTATCCGA -ACGGAATAGCCATCCTGTATGGGA -ACGGAATAGCCATCCTGTGTGCAA -ACGGAATAGCCATCCTGTGAGGAA -ACGGAATAGCCATCCTGTCAGGTA -ACGGAATAGCCATCCTGTGACTCT -ACGGAATAGCCATCCTGTAGTCCT -ACGGAATAGCCATCCTGTTAAGCC -ACGGAATAGCCATCCTGTATAGCC -ACGGAATAGCCATCCTGTTAACCG -ACGGAATAGCCATCCTGTATGCCA -ACGGAATAGCCACCCATTGGAAAC -ACGGAATAGCCACCCATTAACACC -ACGGAATAGCCACCCATTATCGAG -ACGGAATAGCCACCCATTCTCCTT -ACGGAATAGCCACCCATTCCTGTT -ACGGAATAGCCACCCATTCGGTTT -ACGGAATAGCCACCCATTGTGGTT -ACGGAATAGCCACCCATTGCCTTT -ACGGAATAGCCACCCATTGGTCTT -ACGGAATAGCCACCCATTACGCTT -ACGGAATAGCCACCCATTAGCGTT -ACGGAATAGCCACCCATTTTCGTC -ACGGAATAGCCACCCATTTCTCTC -ACGGAATAGCCACCCATTTGGATC -ACGGAATAGCCACCCATTCACTTC -ACGGAATAGCCACCCATTGTACTC -ACGGAATAGCCACCCATTGATGTC -ACGGAATAGCCACCCATTACAGTC -ACGGAATAGCCACCCATTTTGCTG -ACGGAATAGCCACCCATTTCCATG -ACGGAATAGCCACCCATTTGTGTG -ACGGAATAGCCACCCATTCTAGTG -ACGGAATAGCCACCCATTCATCTG -ACGGAATAGCCACCCATTGAGTTG -ACGGAATAGCCACCCATTAGACTG -ACGGAATAGCCACCCATTTCGGTA -ACGGAATAGCCACCCATTTGCCTA -ACGGAATAGCCACCCATTCCACTA -ACGGAATAGCCACCCATTGGAGTA -ACGGAATAGCCACCCATTTCGTCT -ACGGAATAGCCACCCATTTGCACT -ACGGAATAGCCACCCATTCTGACT -ACGGAATAGCCACCCATTCAACCT -ACGGAATAGCCACCCATTGCTACT -ACGGAATAGCCACCCATTGGATCT -ACGGAATAGCCACCCATTAAGGCT -ACGGAATAGCCACCCATTTCAACC -ACGGAATAGCCACCCATTTGTTCC -ACGGAATAGCCACCCATTATTCCC -ACGGAATAGCCACCCATTTTCTCG -ACGGAATAGCCACCCATTTAGACG -ACGGAATAGCCACCCATTGTAACG -ACGGAATAGCCACCCATTACTTCG -ACGGAATAGCCACCCATTTACGCA -ACGGAATAGCCACCCATTCTTGCA -ACGGAATAGCCACCCATTCGAACA -ACGGAATAGCCACCCATTCAGTCA -ACGGAATAGCCACCCATTGATCCA -ACGGAATAGCCACCCATTACGACA -ACGGAATAGCCACCCATTAGCTCA -ACGGAATAGCCACCCATTTCACGT -ACGGAATAGCCACCCATTCGTAGT -ACGGAATAGCCACCCATTGTCAGT -ACGGAATAGCCACCCATTGAAGGT -ACGGAATAGCCACCCATTAACCGT -ACGGAATAGCCACCCATTTTGTGC -ACGGAATAGCCACCCATTCTAAGC -ACGGAATAGCCACCCATTACTAGC -ACGGAATAGCCACCCATTAGATGC -ACGGAATAGCCACCCATTTGAAGG -ACGGAATAGCCACCCATTCAATGG -ACGGAATAGCCACCCATTATGAGG -ACGGAATAGCCACCCATTAATGGG -ACGGAATAGCCACCCATTTCCTGA -ACGGAATAGCCACCCATTTAGCGA -ACGGAATAGCCACCCATTCACAGA -ACGGAATAGCCACCCATTGCAAGA -ACGGAATAGCCACCCATTGGTTGA -ACGGAATAGCCACCCATTTCCGAT -ACGGAATAGCCACCCATTTGGCAT -ACGGAATAGCCACCCATTCGAGAT -ACGGAATAGCCACCCATTTACCAC -ACGGAATAGCCACCCATTCAGAAC -ACGGAATAGCCACCCATTGTCTAC -ACGGAATAGCCACCCATTACGTAC -ACGGAATAGCCACCCATTAGTGAC -ACGGAATAGCCACCCATTCTGTAG -ACGGAATAGCCACCCATTCCTAAG -ACGGAATAGCCACCCATTGTTCAG -ACGGAATAGCCACCCATTGCATAG -ACGGAATAGCCACCCATTGACAAG -ACGGAATAGCCACCCATTAAGCAG -ACGGAATAGCCACCCATTCGTCAA -ACGGAATAGCCACCCATTGCTGAA -ACGGAATAGCCACCCATTAGTACG -ACGGAATAGCCACCCATTATCCGA -ACGGAATAGCCACCCATTATGGGA -ACGGAATAGCCACCCATTGTGCAA -ACGGAATAGCCACCCATTGAGGAA -ACGGAATAGCCACCCATTCAGGTA -ACGGAATAGCCACCCATTGACTCT -ACGGAATAGCCACCCATTAGTCCT -ACGGAATAGCCACCCATTTAAGCC -ACGGAATAGCCACCCATTATAGCC -ACGGAATAGCCACCCATTTAACCG -ACGGAATAGCCACCCATTATGCCA -ACGGAATAGCCATCGTTCGGAAAC -ACGGAATAGCCATCGTTCAACACC -ACGGAATAGCCATCGTTCATCGAG -ACGGAATAGCCATCGTTCCTCCTT -ACGGAATAGCCATCGTTCCCTGTT -ACGGAATAGCCATCGTTCCGGTTT -ACGGAATAGCCATCGTTCGTGGTT -ACGGAATAGCCATCGTTCGCCTTT -ACGGAATAGCCATCGTTCGGTCTT -ACGGAATAGCCATCGTTCACGCTT -ACGGAATAGCCATCGTTCAGCGTT -ACGGAATAGCCATCGTTCTTCGTC -ACGGAATAGCCATCGTTCTCTCTC -ACGGAATAGCCATCGTTCTGGATC -ACGGAATAGCCATCGTTCCACTTC -ACGGAATAGCCATCGTTCGTACTC -ACGGAATAGCCATCGTTCGATGTC -ACGGAATAGCCATCGTTCACAGTC -ACGGAATAGCCATCGTTCTTGCTG -ACGGAATAGCCATCGTTCTCCATG -ACGGAATAGCCATCGTTCTGTGTG -ACGGAATAGCCATCGTTCCTAGTG -ACGGAATAGCCATCGTTCCATCTG -ACGGAATAGCCATCGTTCGAGTTG -ACGGAATAGCCATCGTTCAGACTG -ACGGAATAGCCATCGTTCTCGGTA -ACGGAATAGCCATCGTTCTGCCTA -ACGGAATAGCCATCGTTCCCACTA -ACGGAATAGCCATCGTTCGGAGTA -ACGGAATAGCCATCGTTCTCGTCT -ACGGAATAGCCATCGTTCTGCACT -ACGGAATAGCCATCGTTCCTGACT -ACGGAATAGCCATCGTTCCAACCT -ACGGAATAGCCATCGTTCGCTACT -ACGGAATAGCCATCGTTCGGATCT -ACGGAATAGCCATCGTTCAAGGCT -ACGGAATAGCCATCGTTCTCAACC -ACGGAATAGCCATCGTTCTGTTCC -ACGGAATAGCCATCGTTCATTCCC -ACGGAATAGCCATCGTTCTTCTCG -ACGGAATAGCCATCGTTCTAGACG -ACGGAATAGCCATCGTTCGTAACG -ACGGAATAGCCATCGTTCACTTCG -ACGGAATAGCCATCGTTCTACGCA -ACGGAATAGCCATCGTTCCTTGCA -ACGGAATAGCCATCGTTCCGAACA -ACGGAATAGCCATCGTTCCAGTCA -ACGGAATAGCCATCGTTCGATCCA -ACGGAATAGCCATCGTTCACGACA -ACGGAATAGCCATCGTTCAGCTCA -ACGGAATAGCCATCGTTCTCACGT -ACGGAATAGCCATCGTTCCGTAGT -ACGGAATAGCCATCGTTCGTCAGT -ACGGAATAGCCATCGTTCGAAGGT -ACGGAATAGCCATCGTTCAACCGT -ACGGAATAGCCATCGTTCTTGTGC -ACGGAATAGCCATCGTTCCTAAGC -ACGGAATAGCCATCGTTCACTAGC -ACGGAATAGCCATCGTTCAGATGC -ACGGAATAGCCATCGTTCTGAAGG -ACGGAATAGCCATCGTTCCAATGG -ACGGAATAGCCATCGTTCATGAGG -ACGGAATAGCCATCGTTCAATGGG -ACGGAATAGCCATCGTTCTCCTGA -ACGGAATAGCCATCGTTCTAGCGA -ACGGAATAGCCATCGTTCCACAGA -ACGGAATAGCCATCGTTCGCAAGA -ACGGAATAGCCATCGTTCGGTTGA -ACGGAATAGCCATCGTTCTCCGAT -ACGGAATAGCCATCGTTCTGGCAT -ACGGAATAGCCATCGTTCCGAGAT -ACGGAATAGCCATCGTTCTACCAC -ACGGAATAGCCATCGTTCCAGAAC -ACGGAATAGCCATCGTTCGTCTAC -ACGGAATAGCCATCGTTCACGTAC -ACGGAATAGCCATCGTTCAGTGAC -ACGGAATAGCCATCGTTCCTGTAG -ACGGAATAGCCATCGTTCCCTAAG -ACGGAATAGCCATCGTTCGTTCAG -ACGGAATAGCCATCGTTCGCATAG -ACGGAATAGCCATCGTTCGACAAG -ACGGAATAGCCATCGTTCAAGCAG -ACGGAATAGCCATCGTTCCGTCAA -ACGGAATAGCCATCGTTCGCTGAA -ACGGAATAGCCATCGTTCAGTACG -ACGGAATAGCCATCGTTCATCCGA -ACGGAATAGCCATCGTTCATGGGA -ACGGAATAGCCATCGTTCGTGCAA -ACGGAATAGCCATCGTTCGAGGAA -ACGGAATAGCCATCGTTCCAGGTA -ACGGAATAGCCATCGTTCGACTCT -ACGGAATAGCCATCGTTCAGTCCT -ACGGAATAGCCATCGTTCTAAGCC -ACGGAATAGCCATCGTTCATAGCC -ACGGAATAGCCATCGTTCTAACCG -ACGGAATAGCCATCGTTCATGCCA -ACGGAATAGCCAACGTAGGGAAAC -ACGGAATAGCCAACGTAGAACACC -ACGGAATAGCCAACGTAGATCGAG -ACGGAATAGCCAACGTAGCTCCTT -ACGGAATAGCCAACGTAGCCTGTT -ACGGAATAGCCAACGTAGCGGTTT -ACGGAATAGCCAACGTAGGTGGTT -ACGGAATAGCCAACGTAGGCCTTT -ACGGAATAGCCAACGTAGGGTCTT -ACGGAATAGCCAACGTAGACGCTT -ACGGAATAGCCAACGTAGAGCGTT -ACGGAATAGCCAACGTAGTTCGTC -ACGGAATAGCCAACGTAGTCTCTC -ACGGAATAGCCAACGTAGTGGATC -ACGGAATAGCCAACGTAGCACTTC -ACGGAATAGCCAACGTAGGTACTC -ACGGAATAGCCAACGTAGGATGTC -ACGGAATAGCCAACGTAGACAGTC -ACGGAATAGCCAACGTAGTTGCTG -ACGGAATAGCCAACGTAGTCCATG -ACGGAATAGCCAACGTAGTGTGTG -ACGGAATAGCCAACGTAGCTAGTG -ACGGAATAGCCAACGTAGCATCTG -ACGGAATAGCCAACGTAGGAGTTG -ACGGAATAGCCAACGTAGAGACTG -ACGGAATAGCCAACGTAGTCGGTA -ACGGAATAGCCAACGTAGTGCCTA -ACGGAATAGCCAACGTAGCCACTA -ACGGAATAGCCAACGTAGGGAGTA -ACGGAATAGCCAACGTAGTCGTCT -ACGGAATAGCCAACGTAGTGCACT -ACGGAATAGCCAACGTAGCTGACT -ACGGAATAGCCAACGTAGCAACCT -ACGGAATAGCCAACGTAGGCTACT -ACGGAATAGCCAACGTAGGGATCT -ACGGAATAGCCAACGTAGAAGGCT -ACGGAATAGCCAACGTAGTCAACC -ACGGAATAGCCAACGTAGTGTTCC -ACGGAATAGCCAACGTAGATTCCC -ACGGAATAGCCAACGTAGTTCTCG -ACGGAATAGCCAACGTAGTAGACG -ACGGAATAGCCAACGTAGGTAACG -ACGGAATAGCCAACGTAGACTTCG -ACGGAATAGCCAACGTAGTACGCA -ACGGAATAGCCAACGTAGCTTGCA -ACGGAATAGCCAACGTAGCGAACA -ACGGAATAGCCAACGTAGCAGTCA -ACGGAATAGCCAACGTAGGATCCA -ACGGAATAGCCAACGTAGACGACA -ACGGAATAGCCAACGTAGAGCTCA -ACGGAATAGCCAACGTAGTCACGT -ACGGAATAGCCAACGTAGCGTAGT -ACGGAATAGCCAACGTAGGTCAGT -ACGGAATAGCCAACGTAGGAAGGT -ACGGAATAGCCAACGTAGAACCGT -ACGGAATAGCCAACGTAGTTGTGC -ACGGAATAGCCAACGTAGCTAAGC -ACGGAATAGCCAACGTAGACTAGC -ACGGAATAGCCAACGTAGAGATGC -ACGGAATAGCCAACGTAGTGAAGG -ACGGAATAGCCAACGTAGCAATGG -ACGGAATAGCCAACGTAGATGAGG -ACGGAATAGCCAACGTAGAATGGG -ACGGAATAGCCAACGTAGTCCTGA -ACGGAATAGCCAACGTAGTAGCGA -ACGGAATAGCCAACGTAGCACAGA -ACGGAATAGCCAACGTAGGCAAGA -ACGGAATAGCCAACGTAGGGTTGA -ACGGAATAGCCAACGTAGTCCGAT -ACGGAATAGCCAACGTAGTGGCAT -ACGGAATAGCCAACGTAGCGAGAT -ACGGAATAGCCAACGTAGTACCAC -ACGGAATAGCCAACGTAGCAGAAC -ACGGAATAGCCAACGTAGGTCTAC -ACGGAATAGCCAACGTAGACGTAC -ACGGAATAGCCAACGTAGAGTGAC -ACGGAATAGCCAACGTAGCTGTAG -ACGGAATAGCCAACGTAGCCTAAG -ACGGAATAGCCAACGTAGGTTCAG -ACGGAATAGCCAACGTAGGCATAG -ACGGAATAGCCAACGTAGGACAAG -ACGGAATAGCCAACGTAGAAGCAG -ACGGAATAGCCAACGTAGCGTCAA -ACGGAATAGCCAACGTAGGCTGAA -ACGGAATAGCCAACGTAGAGTACG -ACGGAATAGCCAACGTAGATCCGA -ACGGAATAGCCAACGTAGATGGGA -ACGGAATAGCCAACGTAGGTGCAA -ACGGAATAGCCAACGTAGGAGGAA -ACGGAATAGCCAACGTAGCAGGTA -ACGGAATAGCCAACGTAGGACTCT -ACGGAATAGCCAACGTAGAGTCCT -ACGGAATAGCCAACGTAGTAAGCC -ACGGAATAGCCAACGTAGATAGCC -ACGGAATAGCCAACGTAGTAACCG -ACGGAATAGCCAACGTAGATGCCA -ACGGAATAGCCAACGGTAGGAAAC -ACGGAATAGCCAACGGTAAACACC -ACGGAATAGCCAACGGTAATCGAG -ACGGAATAGCCAACGGTACTCCTT -ACGGAATAGCCAACGGTACCTGTT -ACGGAATAGCCAACGGTACGGTTT -ACGGAATAGCCAACGGTAGTGGTT -ACGGAATAGCCAACGGTAGCCTTT -ACGGAATAGCCAACGGTAGGTCTT -ACGGAATAGCCAACGGTAACGCTT -ACGGAATAGCCAACGGTAAGCGTT -ACGGAATAGCCAACGGTATTCGTC -ACGGAATAGCCAACGGTATCTCTC -ACGGAATAGCCAACGGTATGGATC -ACGGAATAGCCAACGGTACACTTC -ACGGAATAGCCAACGGTAGTACTC -ACGGAATAGCCAACGGTAGATGTC -ACGGAATAGCCAACGGTAACAGTC -ACGGAATAGCCAACGGTATTGCTG -ACGGAATAGCCAACGGTATCCATG -ACGGAATAGCCAACGGTATGTGTG -ACGGAATAGCCAACGGTACTAGTG -ACGGAATAGCCAACGGTACATCTG -ACGGAATAGCCAACGGTAGAGTTG -ACGGAATAGCCAACGGTAAGACTG -ACGGAATAGCCAACGGTATCGGTA -ACGGAATAGCCAACGGTATGCCTA -ACGGAATAGCCAACGGTACCACTA -ACGGAATAGCCAACGGTAGGAGTA -ACGGAATAGCCAACGGTATCGTCT -ACGGAATAGCCAACGGTATGCACT -ACGGAATAGCCAACGGTACTGACT -ACGGAATAGCCAACGGTACAACCT -ACGGAATAGCCAACGGTAGCTACT -ACGGAATAGCCAACGGTAGGATCT -ACGGAATAGCCAACGGTAAAGGCT -ACGGAATAGCCAACGGTATCAACC -ACGGAATAGCCAACGGTATGTTCC -ACGGAATAGCCAACGGTAATTCCC -ACGGAATAGCCAACGGTATTCTCG -ACGGAATAGCCAACGGTATAGACG -ACGGAATAGCCAACGGTAGTAACG -ACGGAATAGCCAACGGTAACTTCG -ACGGAATAGCCAACGGTATACGCA -ACGGAATAGCCAACGGTACTTGCA -ACGGAATAGCCAACGGTACGAACA -ACGGAATAGCCAACGGTACAGTCA -ACGGAATAGCCAACGGTAGATCCA -ACGGAATAGCCAACGGTAACGACA -ACGGAATAGCCAACGGTAAGCTCA -ACGGAATAGCCAACGGTATCACGT -ACGGAATAGCCAACGGTACGTAGT -ACGGAATAGCCAACGGTAGTCAGT -ACGGAATAGCCAACGGTAGAAGGT -ACGGAATAGCCAACGGTAAACCGT -ACGGAATAGCCAACGGTATTGTGC -ACGGAATAGCCAACGGTACTAAGC -ACGGAATAGCCAACGGTAACTAGC -ACGGAATAGCCAACGGTAAGATGC -ACGGAATAGCCAACGGTATGAAGG -ACGGAATAGCCAACGGTACAATGG -ACGGAATAGCCAACGGTAATGAGG -ACGGAATAGCCAACGGTAAATGGG -ACGGAATAGCCAACGGTATCCTGA -ACGGAATAGCCAACGGTATAGCGA -ACGGAATAGCCAACGGTACACAGA -ACGGAATAGCCAACGGTAGCAAGA -ACGGAATAGCCAACGGTAGGTTGA -ACGGAATAGCCAACGGTATCCGAT -ACGGAATAGCCAACGGTATGGCAT -ACGGAATAGCCAACGGTACGAGAT -ACGGAATAGCCAACGGTATACCAC -ACGGAATAGCCAACGGTACAGAAC -ACGGAATAGCCAACGGTAGTCTAC -ACGGAATAGCCAACGGTAACGTAC -ACGGAATAGCCAACGGTAAGTGAC -ACGGAATAGCCAACGGTACTGTAG -ACGGAATAGCCAACGGTACCTAAG -ACGGAATAGCCAACGGTAGTTCAG -ACGGAATAGCCAACGGTAGCATAG -ACGGAATAGCCAACGGTAGACAAG -ACGGAATAGCCAACGGTAAAGCAG -ACGGAATAGCCAACGGTACGTCAA -ACGGAATAGCCAACGGTAGCTGAA -ACGGAATAGCCAACGGTAAGTACG -ACGGAATAGCCAACGGTAATCCGA -ACGGAATAGCCAACGGTAATGGGA -ACGGAATAGCCAACGGTAGTGCAA -ACGGAATAGCCAACGGTAGAGGAA -ACGGAATAGCCAACGGTACAGGTA -ACGGAATAGCCAACGGTAGACTCT -ACGGAATAGCCAACGGTAAGTCCT -ACGGAATAGCCAACGGTATAAGCC -ACGGAATAGCCAACGGTAATAGCC -ACGGAATAGCCAACGGTATAACCG -ACGGAATAGCCAACGGTAATGCCA -ACGGAATAGCCATCGACTGGAAAC -ACGGAATAGCCATCGACTAACACC -ACGGAATAGCCATCGACTATCGAG -ACGGAATAGCCATCGACTCTCCTT -ACGGAATAGCCATCGACTCCTGTT -ACGGAATAGCCATCGACTCGGTTT -ACGGAATAGCCATCGACTGTGGTT -ACGGAATAGCCATCGACTGCCTTT -ACGGAATAGCCATCGACTGGTCTT -ACGGAATAGCCATCGACTACGCTT -ACGGAATAGCCATCGACTAGCGTT -ACGGAATAGCCATCGACTTTCGTC -ACGGAATAGCCATCGACTTCTCTC -ACGGAATAGCCATCGACTTGGATC -ACGGAATAGCCATCGACTCACTTC -ACGGAATAGCCATCGACTGTACTC -ACGGAATAGCCATCGACTGATGTC -ACGGAATAGCCATCGACTACAGTC -ACGGAATAGCCATCGACTTTGCTG -ACGGAATAGCCATCGACTTCCATG -ACGGAATAGCCATCGACTTGTGTG -ACGGAATAGCCATCGACTCTAGTG -ACGGAATAGCCATCGACTCATCTG -ACGGAATAGCCATCGACTGAGTTG -ACGGAATAGCCATCGACTAGACTG -ACGGAATAGCCATCGACTTCGGTA -ACGGAATAGCCATCGACTTGCCTA -ACGGAATAGCCATCGACTCCACTA -ACGGAATAGCCATCGACTGGAGTA -ACGGAATAGCCATCGACTTCGTCT -ACGGAATAGCCATCGACTTGCACT -ACGGAATAGCCATCGACTCTGACT -ACGGAATAGCCATCGACTCAACCT -ACGGAATAGCCATCGACTGCTACT -ACGGAATAGCCATCGACTGGATCT -ACGGAATAGCCATCGACTAAGGCT -ACGGAATAGCCATCGACTTCAACC -ACGGAATAGCCATCGACTTGTTCC -ACGGAATAGCCATCGACTATTCCC -ACGGAATAGCCATCGACTTTCTCG -ACGGAATAGCCATCGACTTAGACG -ACGGAATAGCCATCGACTGTAACG -ACGGAATAGCCATCGACTACTTCG -ACGGAATAGCCATCGACTTACGCA -ACGGAATAGCCATCGACTCTTGCA -ACGGAATAGCCATCGACTCGAACA -ACGGAATAGCCATCGACTCAGTCA -ACGGAATAGCCATCGACTGATCCA -ACGGAATAGCCATCGACTACGACA -ACGGAATAGCCATCGACTAGCTCA -ACGGAATAGCCATCGACTTCACGT -ACGGAATAGCCATCGACTCGTAGT -ACGGAATAGCCATCGACTGTCAGT -ACGGAATAGCCATCGACTGAAGGT -ACGGAATAGCCATCGACTAACCGT -ACGGAATAGCCATCGACTTTGTGC -ACGGAATAGCCATCGACTCTAAGC -ACGGAATAGCCATCGACTACTAGC -ACGGAATAGCCATCGACTAGATGC -ACGGAATAGCCATCGACTTGAAGG -ACGGAATAGCCATCGACTCAATGG -ACGGAATAGCCATCGACTATGAGG -ACGGAATAGCCATCGACTAATGGG -ACGGAATAGCCATCGACTTCCTGA -ACGGAATAGCCATCGACTTAGCGA -ACGGAATAGCCATCGACTCACAGA -ACGGAATAGCCATCGACTGCAAGA -ACGGAATAGCCATCGACTGGTTGA -ACGGAATAGCCATCGACTTCCGAT -ACGGAATAGCCATCGACTTGGCAT -ACGGAATAGCCATCGACTCGAGAT -ACGGAATAGCCATCGACTTACCAC -ACGGAATAGCCATCGACTCAGAAC -ACGGAATAGCCATCGACTGTCTAC -ACGGAATAGCCATCGACTACGTAC -ACGGAATAGCCATCGACTAGTGAC -ACGGAATAGCCATCGACTCTGTAG -ACGGAATAGCCATCGACTCCTAAG -ACGGAATAGCCATCGACTGTTCAG -ACGGAATAGCCATCGACTGCATAG -ACGGAATAGCCATCGACTGACAAG -ACGGAATAGCCATCGACTAAGCAG -ACGGAATAGCCATCGACTCGTCAA -ACGGAATAGCCATCGACTGCTGAA -ACGGAATAGCCATCGACTAGTACG -ACGGAATAGCCATCGACTATCCGA -ACGGAATAGCCATCGACTATGGGA -ACGGAATAGCCATCGACTGTGCAA -ACGGAATAGCCATCGACTGAGGAA -ACGGAATAGCCATCGACTCAGGTA -ACGGAATAGCCATCGACTGACTCT -ACGGAATAGCCATCGACTAGTCCT -ACGGAATAGCCATCGACTTAAGCC -ACGGAATAGCCATCGACTATAGCC -ACGGAATAGCCATCGACTTAACCG -ACGGAATAGCCATCGACTATGCCA -ACGGAATAGCCAGCATACGGAAAC -ACGGAATAGCCAGCATACAACACC -ACGGAATAGCCAGCATACATCGAG -ACGGAATAGCCAGCATACCTCCTT -ACGGAATAGCCAGCATACCCTGTT -ACGGAATAGCCAGCATACCGGTTT -ACGGAATAGCCAGCATACGTGGTT -ACGGAATAGCCAGCATACGCCTTT -ACGGAATAGCCAGCATACGGTCTT -ACGGAATAGCCAGCATACACGCTT -ACGGAATAGCCAGCATACAGCGTT -ACGGAATAGCCAGCATACTTCGTC -ACGGAATAGCCAGCATACTCTCTC -ACGGAATAGCCAGCATACTGGATC -ACGGAATAGCCAGCATACCACTTC -ACGGAATAGCCAGCATACGTACTC -ACGGAATAGCCAGCATACGATGTC -ACGGAATAGCCAGCATACACAGTC -ACGGAATAGCCAGCATACTTGCTG -ACGGAATAGCCAGCATACTCCATG -ACGGAATAGCCAGCATACTGTGTG -ACGGAATAGCCAGCATACCTAGTG -ACGGAATAGCCAGCATACCATCTG -ACGGAATAGCCAGCATACGAGTTG -ACGGAATAGCCAGCATACAGACTG -ACGGAATAGCCAGCATACTCGGTA -ACGGAATAGCCAGCATACTGCCTA -ACGGAATAGCCAGCATACCCACTA -ACGGAATAGCCAGCATACGGAGTA -ACGGAATAGCCAGCATACTCGTCT -ACGGAATAGCCAGCATACTGCACT -ACGGAATAGCCAGCATACCTGACT -ACGGAATAGCCAGCATACCAACCT -ACGGAATAGCCAGCATACGCTACT -ACGGAATAGCCAGCATACGGATCT -ACGGAATAGCCAGCATACAAGGCT -ACGGAATAGCCAGCATACTCAACC -ACGGAATAGCCAGCATACTGTTCC -ACGGAATAGCCAGCATACATTCCC -ACGGAATAGCCAGCATACTTCTCG -ACGGAATAGCCAGCATACTAGACG -ACGGAATAGCCAGCATACGTAACG -ACGGAATAGCCAGCATACACTTCG -ACGGAATAGCCAGCATACTACGCA -ACGGAATAGCCAGCATACCTTGCA -ACGGAATAGCCAGCATACCGAACA -ACGGAATAGCCAGCATACCAGTCA -ACGGAATAGCCAGCATACGATCCA -ACGGAATAGCCAGCATACACGACA -ACGGAATAGCCAGCATACAGCTCA -ACGGAATAGCCAGCATACTCACGT -ACGGAATAGCCAGCATACCGTAGT -ACGGAATAGCCAGCATACGTCAGT -ACGGAATAGCCAGCATACGAAGGT -ACGGAATAGCCAGCATACAACCGT -ACGGAATAGCCAGCATACTTGTGC -ACGGAATAGCCAGCATACCTAAGC -ACGGAATAGCCAGCATACACTAGC -ACGGAATAGCCAGCATACAGATGC -ACGGAATAGCCAGCATACTGAAGG -ACGGAATAGCCAGCATACCAATGG -ACGGAATAGCCAGCATACATGAGG -ACGGAATAGCCAGCATACAATGGG -ACGGAATAGCCAGCATACTCCTGA -ACGGAATAGCCAGCATACTAGCGA -ACGGAATAGCCAGCATACCACAGA -ACGGAATAGCCAGCATACGCAAGA -ACGGAATAGCCAGCATACGGTTGA -ACGGAATAGCCAGCATACTCCGAT -ACGGAATAGCCAGCATACTGGCAT -ACGGAATAGCCAGCATACCGAGAT -ACGGAATAGCCAGCATACTACCAC -ACGGAATAGCCAGCATACCAGAAC -ACGGAATAGCCAGCATACGTCTAC -ACGGAATAGCCAGCATACACGTAC -ACGGAATAGCCAGCATACAGTGAC -ACGGAATAGCCAGCATACCTGTAG -ACGGAATAGCCAGCATACCCTAAG -ACGGAATAGCCAGCATACGTTCAG -ACGGAATAGCCAGCATACGCATAG -ACGGAATAGCCAGCATACGACAAG -ACGGAATAGCCAGCATACAAGCAG -ACGGAATAGCCAGCATACCGTCAA -ACGGAATAGCCAGCATACGCTGAA -ACGGAATAGCCAGCATACAGTACG -ACGGAATAGCCAGCATACATCCGA -ACGGAATAGCCAGCATACATGGGA -ACGGAATAGCCAGCATACGTGCAA -ACGGAATAGCCAGCATACGAGGAA -ACGGAATAGCCAGCATACCAGGTA -ACGGAATAGCCAGCATACGACTCT -ACGGAATAGCCAGCATACAGTCCT -ACGGAATAGCCAGCATACTAAGCC -ACGGAATAGCCAGCATACATAGCC -ACGGAATAGCCAGCATACTAACCG -ACGGAATAGCCAGCATACATGCCA -ACGGAATAGCCAGCACTTGGAAAC -ACGGAATAGCCAGCACTTAACACC -ACGGAATAGCCAGCACTTATCGAG -ACGGAATAGCCAGCACTTCTCCTT -ACGGAATAGCCAGCACTTCCTGTT -ACGGAATAGCCAGCACTTCGGTTT -ACGGAATAGCCAGCACTTGTGGTT -ACGGAATAGCCAGCACTTGCCTTT -ACGGAATAGCCAGCACTTGGTCTT -ACGGAATAGCCAGCACTTACGCTT -ACGGAATAGCCAGCACTTAGCGTT -ACGGAATAGCCAGCACTTTTCGTC -ACGGAATAGCCAGCACTTTCTCTC -ACGGAATAGCCAGCACTTTGGATC -ACGGAATAGCCAGCACTTCACTTC -ACGGAATAGCCAGCACTTGTACTC -ACGGAATAGCCAGCACTTGATGTC -ACGGAATAGCCAGCACTTACAGTC -ACGGAATAGCCAGCACTTTTGCTG -ACGGAATAGCCAGCACTTTCCATG -ACGGAATAGCCAGCACTTTGTGTG -ACGGAATAGCCAGCACTTCTAGTG -ACGGAATAGCCAGCACTTCATCTG -ACGGAATAGCCAGCACTTGAGTTG -ACGGAATAGCCAGCACTTAGACTG -ACGGAATAGCCAGCACTTTCGGTA -ACGGAATAGCCAGCACTTTGCCTA -ACGGAATAGCCAGCACTTCCACTA -ACGGAATAGCCAGCACTTGGAGTA -ACGGAATAGCCAGCACTTTCGTCT -ACGGAATAGCCAGCACTTTGCACT -ACGGAATAGCCAGCACTTCTGACT -ACGGAATAGCCAGCACTTCAACCT -ACGGAATAGCCAGCACTTGCTACT -ACGGAATAGCCAGCACTTGGATCT -ACGGAATAGCCAGCACTTAAGGCT -ACGGAATAGCCAGCACTTTCAACC -ACGGAATAGCCAGCACTTTGTTCC -ACGGAATAGCCAGCACTTATTCCC -ACGGAATAGCCAGCACTTTTCTCG -ACGGAATAGCCAGCACTTTAGACG -ACGGAATAGCCAGCACTTGTAACG -ACGGAATAGCCAGCACTTACTTCG -ACGGAATAGCCAGCACTTTACGCA -ACGGAATAGCCAGCACTTCTTGCA -ACGGAATAGCCAGCACTTCGAACA -ACGGAATAGCCAGCACTTCAGTCA -ACGGAATAGCCAGCACTTGATCCA -ACGGAATAGCCAGCACTTACGACA -ACGGAATAGCCAGCACTTAGCTCA -ACGGAATAGCCAGCACTTTCACGT -ACGGAATAGCCAGCACTTCGTAGT -ACGGAATAGCCAGCACTTGTCAGT -ACGGAATAGCCAGCACTTGAAGGT -ACGGAATAGCCAGCACTTAACCGT -ACGGAATAGCCAGCACTTTTGTGC -ACGGAATAGCCAGCACTTCTAAGC -ACGGAATAGCCAGCACTTACTAGC -ACGGAATAGCCAGCACTTAGATGC -ACGGAATAGCCAGCACTTTGAAGG -ACGGAATAGCCAGCACTTCAATGG -ACGGAATAGCCAGCACTTATGAGG -ACGGAATAGCCAGCACTTAATGGG -ACGGAATAGCCAGCACTTTCCTGA -ACGGAATAGCCAGCACTTTAGCGA -ACGGAATAGCCAGCACTTCACAGA -ACGGAATAGCCAGCACTTGCAAGA -ACGGAATAGCCAGCACTTGGTTGA -ACGGAATAGCCAGCACTTTCCGAT -ACGGAATAGCCAGCACTTTGGCAT -ACGGAATAGCCAGCACTTCGAGAT -ACGGAATAGCCAGCACTTTACCAC -ACGGAATAGCCAGCACTTCAGAAC -ACGGAATAGCCAGCACTTGTCTAC -ACGGAATAGCCAGCACTTACGTAC -ACGGAATAGCCAGCACTTAGTGAC -ACGGAATAGCCAGCACTTCTGTAG -ACGGAATAGCCAGCACTTCCTAAG -ACGGAATAGCCAGCACTTGTTCAG -ACGGAATAGCCAGCACTTGCATAG -ACGGAATAGCCAGCACTTGACAAG -ACGGAATAGCCAGCACTTAAGCAG -ACGGAATAGCCAGCACTTCGTCAA -ACGGAATAGCCAGCACTTGCTGAA -ACGGAATAGCCAGCACTTAGTACG -ACGGAATAGCCAGCACTTATCCGA -ACGGAATAGCCAGCACTTATGGGA -ACGGAATAGCCAGCACTTGTGCAA -ACGGAATAGCCAGCACTTGAGGAA -ACGGAATAGCCAGCACTTCAGGTA -ACGGAATAGCCAGCACTTGACTCT -ACGGAATAGCCAGCACTTAGTCCT -ACGGAATAGCCAGCACTTTAAGCC -ACGGAATAGCCAGCACTTATAGCC -ACGGAATAGCCAGCACTTTAACCG -ACGGAATAGCCAGCACTTATGCCA -ACGGAATAGCCAACACGAGGAAAC -ACGGAATAGCCAACACGAAACACC -ACGGAATAGCCAACACGAATCGAG -ACGGAATAGCCAACACGACTCCTT -ACGGAATAGCCAACACGACCTGTT -ACGGAATAGCCAACACGACGGTTT -ACGGAATAGCCAACACGAGTGGTT -ACGGAATAGCCAACACGAGCCTTT -ACGGAATAGCCAACACGAGGTCTT -ACGGAATAGCCAACACGAACGCTT -ACGGAATAGCCAACACGAAGCGTT -ACGGAATAGCCAACACGATTCGTC -ACGGAATAGCCAACACGATCTCTC -ACGGAATAGCCAACACGATGGATC -ACGGAATAGCCAACACGACACTTC -ACGGAATAGCCAACACGAGTACTC -ACGGAATAGCCAACACGAGATGTC -ACGGAATAGCCAACACGAACAGTC -ACGGAATAGCCAACACGATTGCTG -ACGGAATAGCCAACACGATCCATG -ACGGAATAGCCAACACGATGTGTG -ACGGAATAGCCAACACGACTAGTG -ACGGAATAGCCAACACGACATCTG -ACGGAATAGCCAACACGAGAGTTG -ACGGAATAGCCAACACGAAGACTG -ACGGAATAGCCAACACGATCGGTA -ACGGAATAGCCAACACGATGCCTA -ACGGAATAGCCAACACGACCACTA -ACGGAATAGCCAACACGAGGAGTA -ACGGAATAGCCAACACGATCGTCT -ACGGAATAGCCAACACGATGCACT -ACGGAATAGCCAACACGACTGACT -ACGGAATAGCCAACACGACAACCT -ACGGAATAGCCAACACGAGCTACT -ACGGAATAGCCAACACGAGGATCT -ACGGAATAGCCAACACGAAAGGCT -ACGGAATAGCCAACACGATCAACC -ACGGAATAGCCAACACGATGTTCC -ACGGAATAGCCAACACGAATTCCC -ACGGAATAGCCAACACGATTCTCG -ACGGAATAGCCAACACGATAGACG -ACGGAATAGCCAACACGAGTAACG -ACGGAATAGCCAACACGAACTTCG -ACGGAATAGCCAACACGATACGCA -ACGGAATAGCCAACACGACTTGCA -ACGGAATAGCCAACACGACGAACA -ACGGAATAGCCAACACGACAGTCA -ACGGAATAGCCAACACGAGATCCA -ACGGAATAGCCAACACGAACGACA -ACGGAATAGCCAACACGAAGCTCA -ACGGAATAGCCAACACGATCACGT -ACGGAATAGCCAACACGACGTAGT -ACGGAATAGCCAACACGAGTCAGT -ACGGAATAGCCAACACGAGAAGGT -ACGGAATAGCCAACACGAAACCGT -ACGGAATAGCCAACACGATTGTGC -ACGGAATAGCCAACACGACTAAGC -ACGGAATAGCCAACACGAACTAGC -ACGGAATAGCCAACACGAAGATGC -ACGGAATAGCCAACACGATGAAGG -ACGGAATAGCCAACACGACAATGG -ACGGAATAGCCAACACGAATGAGG -ACGGAATAGCCAACACGAAATGGG -ACGGAATAGCCAACACGATCCTGA -ACGGAATAGCCAACACGATAGCGA -ACGGAATAGCCAACACGACACAGA -ACGGAATAGCCAACACGAGCAAGA -ACGGAATAGCCAACACGAGGTTGA -ACGGAATAGCCAACACGATCCGAT -ACGGAATAGCCAACACGATGGCAT -ACGGAATAGCCAACACGACGAGAT -ACGGAATAGCCAACACGATACCAC -ACGGAATAGCCAACACGACAGAAC -ACGGAATAGCCAACACGAGTCTAC -ACGGAATAGCCAACACGAACGTAC -ACGGAATAGCCAACACGAAGTGAC -ACGGAATAGCCAACACGACTGTAG -ACGGAATAGCCAACACGACCTAAG -ACGGAATAGCCAACACGAGTTCAG -ACGGAATAGCCAACACGAGCATAG -ACGGAATAGCCAACACGAGACAAG -ACGGAATAGCCAACACGAAAGCAG -ACGGAATAGCCAACACGACGTCAA -ACGGAATAGCCAACACGAGCTGAA -ACGGAATAGCCAACACGAAGTACG -ACGGAATAGCCAACACGAATCCGA -ACGGAATAGCCAACACGAATGGGA -ACGGAATAGCCAACACGAGTGCAA -ACGGAATAGCCAACACGAGAGGAA -ACGGAATAGCCAACACGACAGGTA -ACGGAATAGCCAACACGAGACTCT -ACGGAATAGCCAACACGAAGTCCT -ACGGAATAGCCAACACGATAAGCC -ACGGAATAGCCAACACGAATAGCC -ACGGAATAGCCAACACGATAACCG -ACGGAATAGCCAACACGAATGCCA -ACGGAATAGCCATCACAGGGAAAC -ACGGAATAGCCATCACAGAACACC -ACGGAATAGCCATCACAGATCGAG -ACGGAATAGCCATCACAGCTCCTT -ACGGAATAGCCATCACAGCCTGTT -ACGGAATAGCCATCACAGCGGTTT -ACGGAATAGCCATCACAGGTGGTT -ACGGAATAGCCATCACAGGCCTTT -ACGGAATAGCCATCACAGGGTCTT -ACGGAATAGCCATCACAGACGCTT -ACGGAATAGCCATCACAGAGCGTT -ACGGAATAGCCATCACAGTTCGTC -ACGGAATAGCCATCACAGTCTCTC -ACGGAATAGCCATCACAGTGGATC -ACGGAATAGCCATCACAGCACTTC -ACGGAATAGCCATCACAGGTACTC -ACGGAATAGCCATCACAGGATGTC -ACGGAATAGCCATCACAGACAGTC -ACGGAATAGCCATCACAGTTGCTG -ACGGAATAGCCATCACAGTCCATG -ACGGAATAGCCATCACAGTGTGTG -ACGGAATAGCCATCACAGCTAGTG -ACGGAATAGCCATCACAGCATCTG -ACGGAATAGCCATCACAGGAGTTG -ACGGAATAGCCATCACAGAGACTG -ACGGAATAGCCATCACAGTCGGTA -ACGGAATAGCCATCACAGTGCCTA -ACGGAATAGCCATCACAGCCACTA -ACGGAATAGCCATCACAGGGAGTA -ACGGAATAGCCATCACAGTCGTCT -ACGGAATAGCCATCACAGTGCACT -ACGGAATAGCCATCACAGCTGACT -ACGGAATAGCCATCACAGCAACCT -ACGGAATAGCCATCACAGGCTACT -ACGGAATAGCCATCACAGGGATCT -ACGGAATAGCCATCACAGAAGGCT -ACGGAATAGCCATCACAGTCAACC -ACGGAATAGCCATCACAGTGTTCC -ACGGAATAGCCATCACAGATTCCC -ACGGAATAGCCATCACAGTTCTCG -ACGGAATAGCCATCACAGTAGACG -ACGGAATAGCCATCACAGGTAACG -ACGGAATAGCCATCACAGACTTCG -ACGGAATAGCCATCACAGTACGCA -ACGGAATAGCCATCACAGCTTGCA -ACGGAATAGCCATCACAGCGAACA -ACGGAATAGCCATCACAGCAGTCA -ACGGAATAGCCATCACAGGATCCA -ACGGAATAGCCATCACAGACGACA -ACGGAATAGCCATCACAGAGCTCA -ACGGAATAGCCATCACAGTCACGT -ACGGAATAGCCATCACAGCGTAGT -ACGGAATAGCCATCACAGGTCAGT -ACGGAATAGCCATCACAGGAAGGT -ACGGAATAGCCATCACAGAACCGT -ACGGAATAGCCATCACAGTTGTGC -ACGGAATAGCCATCACAGCTAAGC -ACGGAATAGCCATCACAGACTAGC -ACGGAATAGCCATCACAGAGATGC -ACGGAATAGCCATCACAGTGAAGG -ACGGAATAGCCATCACAGCAATGG -ACGGAATAGCCATCACAGATGAGG -ACGGAATAGCCATCACAGAATGGG -ACGGAATAGCCATCACAGTCCTGA -ACGGAATAGCCATCACAGTAGCGA -ACGGAATAGCCATCACAGCACAGA -ACGGAATAGCCATCACAGGCAAGA -ACGGAATAGCCATCACAGGGTTGA -ACGGAATAGCCATCACAGTCCGAT -ACGGAATAGCCATCACAGTGGCAT -ACGGAATAGCCATCACAGCGAGAT -ACGGAATAGCCATCACAGTACCAC -ACGGAATAGCCATCACAGCAGAAC -ACGGAATAGCCATCACAGGTCTAC -ACGGAATAGCCATCACAGACGTAC -ACGGAATAGCCATCACAGAGTGAC -ACGGAATAGCCATCACAGCTGTAG -ACGGAATAGCCATCACAGCCTAAG -ACGGAATAGCCATCACAGGTTCAG -ACGGAATAGCCATCACAGGCATAG -ACGGAATAGCCATCACAGGACAAG -ACGGAATAGCCATCACAGAAGCAG -ACGGAATAGCCATCACAGCGTCAA -ACGGAATAGCCATCACAGGCTGAA -ACGGAATAGCCATCACAGAGTACG -ACGGAATAGCCATCACAGATCCGA -ACGGAATAGCCATCACAGATGGGA -ACGGAATAGCCATCACAGGTGCAA -ACGGAATAGCCATCACAGGAGGAA -ACGGAATAGCCATCACAGCAGGTA -ACGGAATAGCCATCACAGGACTCT -ACGGAATAGCCATCACAGAGTCCT -ACGGAATAGCCATCACAGTAAGCC -ACGGAATAGCCATCACAGATAGCC -ACGGAATAGCCATCACAGTAACCG -ACGGAATAGCCATCACAGATGCCA -ACGGAATAGCCACCAGATGGAAAC -ACGGAATAGCCACCAGATAACACC -ACGGAATAGCCACCAGATATCGAG -ACGGAATAGCCACCAGATCTCCTT -ACGGAATAGCCACCAGATCCTGTT -ACGGAATAGCCACCAGATCGGTTT -ACGGAATAGCCACCAGATGTGGTT -ACGGAATAGCCACCAGATGCCTTT -ACGGAATAGCCACCAGATGGTCTT -ACGGAATAGCCACCAGATACGCTT -ACGGAATAGCCACCAGATAGCGTT -ACGGAATAGCCACCAGATTTCGTC -ACGGAATAGCCACCAGATTCTCTC -ACGGAATAGCCACCAGATTGGATC -ACGGAATAGCCACCAGATCACTTC -ACGGAATAGCCACCAGATGTACTC -ACGGAATAGCCACCAGATGATGTC -ACGGAATAGCCACCAGATACAGTC -ACGGAATAGCCACCAGATTTGCTG -ACGGAATAGCCACCAGATTCCATG -ACGGAATAGCCACCAGATTGTGTG -ACGGAATAGCCACCAGATCTAGTG -ACGGAATAGCCACCAGATCATCTG -ACGGAATAGCCACCAGATGAGTTG -ACGGAATAGCCACCAGATAGACTG -ACGGAATAGCCACCAGATTCGGTA -ACGGAATAGCCACCAGATTGCCTA -ACGGAATAGCCACCAGATCCACTA -ACGGAATAGCCACCAGATGGAGTA -ACGGAATAGCCACCAGATTCGTCT -ACGGAATAGCCACCAGATTGCACT -ACGGAATAGCCACCAGATCTGACT -ACGGAATAGCCACCAGATCAACCT -ACGGAATAGCCACCAGATGCTACT -ACGGAATAGCCACCAGATGGATCT -ACGGAATAGCCACCAGATAAGGCT -ACGGAATAGCCACCAGATTCAACC -ACGGAATAGCCACCAGATTGTTCC -ACGGAATAGCCACCAGATATTCCC -ACGGAATAGCCACCAGATTTCTCG -ACGGAATAGCCACCAGATTAGACG -ACGGAATAGCCACCAGATGTAACG -ACGGAATAGCCACCAGATACTTCG -ACGGAATAGCCACCAGATTACGCA -ACGGAATAGCCACCAGATCTTGCA -ACGGAATAGCCACCAGATCGAACA -ACGGAATAGCCACCAGATCAGTCA -ACGGAATAGCCACCAGATGATCCA -ACGGAATAGCCACCAGATACGACA -ACGGAATAGCCACCAGATAGCTCA -ACGGAATAGCCACCAGATTCACGT -ACGGAATAGCCACCAGATCGTAGT -ACGGAATAGCCACCAGATGTCAGT -ACGGAATAGCCACCAGATGAAGGT -ACGGAATAGCCACCAGATAACCGT -ACGGAATAGCCACCAGATTTGTGC -ACGGAATAGCCACCAGATCTAAGC -ACGGAATAGCCACCAGATACTAGC -ACGGAATAGCCACCAGATAGATGC -ACGGAATAGCCACCAGATTGAAGG -ACGGAATAGCCACCAGATCAATGG -ACGGAATAGCCACCAGATATGAGG -ACGGAATAGCCACCAGATAATGGG -ACGGAATAGCCACCAGATTCCTGA -ACGGAATAGCCACCAGATTAGCGA -ACGGAATAGCCACCAGATCACAGA -ACGGAATAGCCACCAGATGCAAGA -ACGGAATAGCCACCAGATGGTTGA -ACGGAATAGCCACCAGATTCCGAT -ACGGAATAGCCACCAGATTGGCAT -ACGGAATAGCCACCAGATCGAGAT -ACGGAATAGCCACCAGATTACCAC -ACGGAATAGCCACCAGATCAGAAC -ACGGAATAGCCACCAGATGTCTAC -ACGGAATAGCCACCAGATACGTAC -ACGGAATAGCCACCAGATAGTGAC -ACGGAATAGCCACCAGATCTGTAG -ACGGAATAGCCACCAGATCCTAAG -ACGGAATAGCCACCAGATGTTCAG -ACGGAATAGCCACCAGATGCATAG -ACGGAATAGCCACCAGATGACAAG -ACGGAATAGCCACCAGATAAGCAG -ACGGAATAGCCACCAGATCGTCAA -ACGGAATAGCCACCAGATGCTGAA -ACGGAATAGCCACCAGATAGTACG -ACGGAATAGCCACCAGATATCCGA -ACGGAATAGCCACCAGATATGGGA -ACGGAATAGCCACCAGATGTGCAA -ACGGAATAGCCACCAGATGAGGAA -ACGGAATAGCCACCAGATCAGGTA -ACGGAATAGCCACCAGATGACTCT -ACGGAATAGCCACCAGATAGTCCT -ACGGAATAGCCACCAGATTAAGCC -ACGGAATAGCCACCAGATATAGCC -ACGGAATAGCCACCAGATTAACCG -ACGGAATAGCCACCAGATATGCCA -ACGGAATAGCCAACAACGGGAAAC -ACGGAATAGCCAACAACGAACACC -ACGGAATAGCCAACAACGATCGAG -ACGGAATAGCCAACAACGCTCCTT -ACGGAATAGCCAACAACGCCTGTT -ACGGAATAGCCAACAACGCGGTTT -ACGGAATAGCCAACAACGGTGGTT -ACGGAATAGCCAACAACGGCCTTT -ACGGAATAGCCAACAACGGGTCTT -ACGGAATAGCCAACAACGACGCTT -ACGGAATAGCCAACAACGAGCGTT -ACGGAATAGCCAACAACGTTCGTC -ACGGAATAGCCAACAACGTCTCTC -ACGGAATAGCCAACAACGTGGATC -ACGGAATAGCCAACAACGCACTTC -ACGGAATAGCCAACAACGGTACTC -ACGGAATAGCCAACAACGGATGTC -ACGGAATAGCCAACAACGACAGTC -ACGGAATAGCCAACAACGTTGCTG -ACGGAATAGCCAACAACGTCCATG -ACGGAATAGCCAACAACGTGTGTG -ACGGAATAGCCAACAACGCTAGTG -ACGGAATAGCCAACAACGCATCTG -ACGGAATAGCCAACAACGGAGTTG -ACGGAATAGCCAACAACGAGACTG -ACGGAATAGCCAACAACGTCGGTA -ACGGAATAGCCAACAACGTGCCTA -ACGGAATAGCCAACAACGCCACTA -ACGGAATAGCCAACAACGGGAGTA -ACGGAATAGCCAACAACGTCGTCT -ACGGAATAGCCAACAACGTGCACT -ACGGAATAGCCAACAACGCTGACT -ACGGAATAGCCAACAACGCAACCT -ACGGAATAGCCAACAACGGCTACT -ACGGAATAGCCAACAACGGGATCT -ACGGAATAGCCAACAACGAAGGCT -ACGGAATAGCCAACAACGTCAACC -ACGGAATAGCCAACAACGTGTTCC -ACGGAATAGCCAACAACGATTCCC -ACGGAATAGCCAACAACGTTCTCG -ACGGAATAGCCAACAACGTAGACG -ACGGAATAGCCAACAACGGTAACG -ACGGAATAGCCAACAACGACTTCG -ACGGAATAGCCAACAACGTACGCA -ACGGAATAGCCAACAACGCTTGCA -ACGGAATAGCCAACAACGCGAACA -ACGGAATAGCCAACAACGCAGTCA -ACGGAATAGCCAACAACGGATCCA -ACGGAATAGCCAACAACGACGACA -ACGGAATAGCCAACAACGAGCTCA -ACGGAATAGCCAACAACGTCACGT -ACGGAATAGCCAACAACGCGTAGT -ACGGAATAGCCAACAACGGTCAGT -ACGGAATAGCCAACAACGGAAGGT -ACGGAATAGCCAACAACGAACCGT -ACGGAATAGCCAACAACGTTGTGC -ACGGAATAGCCAACAACGCTAAGC -ACGGAATAGCCAACAACGACTAGC -ACGGAATAGCCAACAACGAGATGC -ACGGAATAGCCAACAACGTGAAGG -ACGGAATAGCCAACAACGCAATGG -ACGGAATAGCCAACAACGATGAGG -ACGGAATAGCCAACAACGAATGGG -ACGGAATAGCCAACAACGTCCTGA -ACGGAATAGCCAACAACGTAGCGA -ACGGAATAGCCAACAACGCACAGA -ACGGAATAGCCAACAACGGCAAGA -ACGGAATAGCCAACAACGGGTTGA -ACGGAATAGCCAACAACGTCCGAT -ACGGAATAGCCAACAACGTGGCAT -ACGGAATAGCCAACAACGCGAGAT -ACGGAATAGCCAACAACGTACCAC -ACGGAATAGCCAACAACGCAGAAC -ACGGAATAGCCAACAACGGTCTAC -ACGGAATAGCCAACAACGACGTAC -ACGGAATAGCCAACAACGAGTGAC -ACGGAATAGCCAACAACGCTGTAG -ACGGAATAGCCAACAACGCCTAAG -ACGGAATAGCCAACAACGGTTCAG -ACGGAATAGCCAACAACGGCATAG -ACGGAATAGCCAACAACGGACAAG -ACGGAATAGCCAACAACGAAGCAG -ACGGAATAGCCAACAACGCGTCAA -ACGGAATAGCCAACAACGGCTGAA -ACGGAATAGCCAACAACGAGTACG -ACGGAATAGCCAACAACGATCCGA -ACGGAATAGCCAACAACGATGGGA -ACGGAATAGCCAACAACGGTGCAA -ACGGAATAGCCAACAACGGAGGAA -ACGGAATAGCCAACAACGCAGGTA -ACGGAATAGCCAACAACGGACTCT -ACGGAATAGCCAACAACGAGTCCT -ACGGAATAGCCAACAACGTAAGCC -ACGGAATAGCCAACAACGATAGCC -ACGGAATAGCCAACAACGTAACCG -ACGGAATAGCCAACAACGATGCCA -ACGGAATAGCCATCAAGCGGAAAC -ACGGAATAGCCATCAAGCAACACC -ACGGAATAGCCATCAAGCATCGAG -ACGGAATAGCCATCAAGCCTCCTT -ACGGAATAGCCATCAAGCCCTGTT -ACGGAATAGCCATCAAGCCGGTTT -ACGGAATAGCCATCAAGCGTGGTT -ACGGAATAGCCATCAAGCGCCTTT -ACGGAATAGCCATCAAGCGGTCTT -ACGGAATAGCCATCAAGCACGCTT -ACGGAATAGCCATCAAGCAGCGTT -ACGGAATAGCCATCAAGCTTCGTC -ACGGAATAGCCATCAAGCTCTCTC -ACGGAATAGCCATCAAGCTGGATC -ACGGAATAGCCATCAAGCCACTTC -ACGGAATAGCCATCAAGCGTACTC -ACGGAATAGCCATCAAGCGATGTC -ACGGAATAGCCATCAAGCACAGTC -ACGGAATAGCCATCAAGCTTGCTG -ACGGAATAGCCATCAAGCTCCATG -ACGGAATAGCCATCAAGCTGTGTG -ACGGAATAGCCATCAAGCCTAGTG -ACGGAATAGCCATCAAGCCATCTG -ACGGAATAGCCATCAAGCGAGTTG -ACGGAATAGCCATCAAGCAGACTG -ACGGAATAGCCATCAAGCTCGGTA -ACGGAATAGCCATCAAGCTGCCTA -ACGGAATAGCCATCAAGCCCACTA -ACGGAATAGCCATCAAGCGGAGTA -ACGGAATAGCCATCAAGCTCGTCT -ACGGAATAGCCATCAAGCTGCACT -ACGGAATAGCCATCAAGCCTGACT -ACGGAATAGCCATCAAGCCAACCT -ACGGAATAGCCATCAAGCGCTACT -ACGGAATAGCCATCAAGCGGATCT -ACGGAATAGCCATCAAGCAAGGCT -ACGGAATAGCCATCAAGCTCAACC -ACGGAATAGCCATCAAGCTGTTCC -ACGGAATAGCCATCAAGCATTCCC -ACGGAATAGCCATCAAGCTTCTCG -ACGGAATAGCCATCAAGCTAGACG -ACGGAATAGCCATCAAGCGTAACG -ACGGAATAGCCATCAAGCACTTCG -ACGGAATAGCCATCAAGCTACGCA -ACGGAATAGCCATCAAGCCTTGCA -ACGGAATAGCCATCAAGCCGAACA -ACGGAATAGCCATCAAGCCAGTCA -ACGGAATAGCCATCAAGCGATCCA -ACGGAATAGCCATCAAGCACGACA -ACGGAATAGCCATCAAGCAGCTCA -ACGGAATAGCCATCAAGCTCACGT -ACGGAATAGCCATCAAGCCGTAGT -ACGGAATAGCCATCAAGCGTCAGT -ACGGAATAGCCATCAAGCGAAGGT -ACGGAATAGCCATCAAGCAACCGT -ACGGAATAGCCATCAAGCTTGTGC -ACGGAATAGCCATCAAGCCTAAGC -ACGGAATAGCCATCAAGCACTAGC -ACGGAATAGCCATCAAGCAGATGC -ACGGAATAGCCATCAAGCTGAAGG -ACGGAATAGCCATCAAGCCAATGG -ACGGAATAGCCATCAAGCATGAGG -ACGGAATAGCCATCAAGCAATGGG -ACGGAATAGCCATCAAGCTCCTGA -ACGGAATAGCCATCAAGCTAGCGA -ACGGAATAGCCATCAAGCCACAGA -ACGGAATAGCCATCAAGCGCAAGA -ACGGAATAGCCATCAAGCGGTTGA -ACGGAATAGCCATCAAGCTCCGAT -ACGGAATAGCCATCAAGCTGGCAT -ACGGAATAGCCATCAAGCCGAGAT -ACGGAATAGCCATCAAGCTACCAC -ACGGAATAGCCATCAAGCCAGAAC -ACGGAATAGCCATCAAGCGTCTAC -ACGGAATAGCCATCAAGCACGTAC -ACGGAATAGCCATCAAGCAGTGAC -ACGGAATAGCCATCAAGCCTGTAG -ACGGAATAGCCATCAAGCCCTAAG -ACGGAATAGCCATCAAGCGTTCAG -ACGGAATAGCCATCAAGCGCATAG -ACGGAATAGCCATCAAGCGACAAG -ACGGAATAGCCATCAAGCAAGCAG -ACGGAATAGCCATCAAGCCGTCAA -ACGGAATAGCCATCAAGCGCTGAA -ACGGAATAGCCATCAAGCAGTACG -ACGGAATAGCCATCAAGCATCCGA -ACGGAATAGCCATCAAGCATGGGA -ACGGAATAGCCATCAAGCGTGCAA -ACGGAATAGCCATCAAGCGAGGAA -ACGGAATAGCCATCAAGCCAGGTA -ACGGAATAGCCATCAAGCGACTCT -ACGGAATAGCCATCAAGCAGTCCT -ACGGAATAGCCATCAAGCTAAGCC -ACGGAATAGCCATCAAGCATAGCC -ACGGAATAGCCATCAAGCTAACCG -ACGGAATAGCCATCAAGCATGCCA -ACGGAATAGCCACGTTCAGGAAAC -ACGGAATAGCCACGTTCAAACACC -ACGGAATAGCCACGTTCAATCGAG -ACGGAATAGCCACGTTCACTCCTT -ACGGAATAGCCACGTTCACCTGTT -ACGGAATAGCCACGTTCACGGTTT -ACGGAATAGCCACGTTCAGTGGTT -ACGGAATAGCCACGTTCAGCCTTT -ACGGAATAGCCACGTTCAGGTCTT -ACGGAATAGCCACGTTCAACGCTT -ACGGAATAGCCACGTTCAAGCGTT -ACGGAATAGCCACGTTCATTCGTC -ACGGAATAGCCACGTTCATCTCTC -ACGGAATAGCCACGTTCATGGATC -ACGGAATAGCCACGTTCACACTTC -ACGGAATAGCCACGTTCAGTACTC -ACGGAATAGCCACGTTCAGATGTC -ACGGAATAGCCACGTTCAACAGTC -ACGGAATAGCCACGTTCATTGCTG -ACGGAATAGCCACGTTCATCCATG -ACGGAATAGCCACGTTCATGTGTG -ACGGAATAGCCACGTTCACTAGTG -ACGGAATAGCCACGTTCACATCTG -ACGGAATAGCCACGTTCAGAGTTG -ACGGAATAGCCACGTTCAAGACTG -ACGGAATAGCCACGTTCATCGGTA -ACGGAATAGCCACGTTCATGCCTA -ACGGAATAGCCACGTTCACCACTA -ACGGAATAGCCACGTTCAGGAGTA -ACGGAATAGCCACGTTCATCGTCT -ACGGAATAGCCACGTTCATGCACT -ACGGAATAGCCACGTTCACTGACT -ACGGAATAGCCACGTTCACAACCT -ACGGAATAGCCACGTTCAGCTACT -ACGGAATAGCCACGTTCAGGATCT -ACGGAATAGCCACGTTCAAAGGCT -ACGGAATAGCCACGTTCATCAACC -ACGGAATAGCCACGTTCATGTTCC -ACGGAATAGCCACGTTCAATTCCC -ACGGAATAGCCACGTTCATTCTCG -ACGGAATAGCCACGTTCATAGACG -ACGGAATAGCCACGTTCAGTAACG -ACGGAATAGCCACGTTCAACTTCG -ACGGAATAGCCACGTTCATACGCA -ACGGAATAGCCACGTTCACTTGCA -ACGGAATAGCCACGTTCACGAACA -ACGGAATAGCCACGTTCACAGTCA -ACGGAATAGCCACGTTCAGATCCA -ACGGAATAGCCACGTTCAACGACA -ACGGAATAGCCACGTTCAAGCTCA -ACGGAATAGCCACGTTCATCACGT -ACGGAATAGCCACGTTCACGTAGT -ACGGAATAGCCACGTTCAGTCAGT -ACGGAATAGCCACGTTCAGAAGGT -ACGGAATAGCCACGTTCAAACCGT -ACGGAATAGCCACGTTCATTGTGC -ACGGAATAGCCACGTTCACTAAGC -ACGGAATAGCCACGTTCAACTAGC -ACGGAATAGCCACGTTCAAGATGC -ACGGAATAGCCACGTTCATGAAGG -ACGGAATAGCCACGTTCACAATGG -ACGGAATAGCCACGTTCAATGAGG -ACGGAATAGCCACGTTCAAATGGG -ACGGAATAGCCACGTTCATCCTGA -ACGGAATAGCCACGTTCATAGCGA -ACGGAATAGCCACGTTCACACAGA -ACGGAATAGCCACGTTCAGCAAGA -ACGGAATAGCCACGTTCAGGTTGA -ACGGAATAGCCACGTTCATCCGAT -ACGGAATAGCCACGTTCATGGCAT -ACGGAATAGCCACGTTCACGAGAT -ACGGAATAGCCACGTTCATACCAC -ACGGAATAGCCACGTTCACAGAAC -ACGGAATAGCCACGTTCAGTCTAC -ACGGAATAGCCACGTTCAACGTAC -ACGGAATAGCCACGTTCAAGTGAC -ACGGAATAGCCACGTTCACTGTAG -ACGGAATAGCCACGTTCACCTAAG -ACGGAATAGCCACGTTCAGTTCAG -ACGGAATAGCCACGTTCAGCATAG -ACGGAATAGCCACGTTCAGACAAG -ACGGAATAGCCACGTTCAAAGCAG -ACGGAATAGCCACGTTCACGTCAA -ACGGAATAGCCACGTTCAGCTGAA -ACGGAATAGCCACGTTCAAGTACG -ACGGAATAGCCACGTTCAATCCGA -ACGGAATAGCCACGTTCAATGGGA -ACGGAATAGCCACGTTCAGTGCAA -ACGGAATAGCCACGTTCAGAGGAA -ACGGAATAGCCACGTTCACAGGTA -ACGGAATAGCCACGTTCAGACTCT -ACGGAATAGCCACGTTCAAGTCCT -ACGGAATAGCCACGTTCATAAGCC -ACGGAATAGCCACGTTCAATAGCC -ACGGAATAGCCACGTTCATAACCG -ACGGAATAGCCACGTTCAATGCCA -ACGGAATAGCCAAGTCGTGGAAAC -ACGGAATAGCCAAGTCGTAACACC -ACGGAATAGCCAAGTCGTATCGAG -ACGGAATAGCCAAGTCGTCTCCTT -ACGGAATAGCCAAGTCGTCCTGTT -ACGGAATAGCCAAGTCGTCGGTTT -ACGGAATAGCCAAGTCGTGTGGTT -ACGGAATAGCCAAGTCGTGCCTTT -ACGGAATAGCCAAGTCGTGGTCTT -ACGGAATAGCCAAGTCGTACGCTT -ACGGAATAGCCAAGTCGTAGCGTT -ACGGAATAGCCAAGTCGTTTCGTC -ACGGAATAGCCAAGTCGTTCTCTC -ACGGAATAGCCAAGTCGTTGGATC -ACGGAATAGCCAAGTCGTCACTTC -ACGGAATAGCCAAGTCGTGTACTC -ACGGAATAGCCAAGTCGTGATGTC -ACGGAATAGCCAAGTCGTACAGTC -ACGGAATAGCCAAGTCGTTTGCTG -ACGGAATAGCCAAGTCGTTCCATG -ACGGAATAGCCAAGTCGTTGTGTG -ACGGAATAGCCAAGTCGTCTAGTG -ACGGAATAGCCAAGTCGTCATCTG -ACGGAATAGCCAAGTCGTGAGTTG -ACGGAATAGCCAAGTCGTAGACTG -ACGGAATAGCCAAGTCGTTCGGTA -ACGGAATAGCCAAGTCGTTGCCTA -ACGGAATAGCCAAGTCGTCCACTA -ACGGAATAGCCAAGTCGTGGAGTA -ACGGAATAGCCAAGTCGTTCGTCT -ACGGAATAGCCAAGTCGTTGCACT -ACGGAATAGCCAAGTCGTCTGACT -ACGGAATAGCCAAGTCGTCAACCT -ACGGAATAGCCAAGTCGTGCTACT -ACGGAATAGCCAAGTCGTGGATCT -ACGGAATAGCCAAGTCGTAAGGCT -ACGGAATAGCCAAGTCGTTCAACC -ACGGAATAGCCAAGTCGTTGTTCC -ACGGAATAGCCAAGTCGTATTCCC -ACGGAATAGCCAAGTCGTTTCTCG -ACGGAATAGCCAAGTCGTTAGACG -ACGGAATAGCCAAGTCGTGTAACG -ACGGAATAGCCAAGTCGTACTTCG -ACGGAATAGCCAAGTCGTTACGCA -ACGGAATAGCCAAGTCGTCTTGCA -ACGGAATAGCCAAGTCGTCGAACA -ACGGAATAGCCAAGTCGTCAGTCA -ACGGAATAGCCAAGTCGTGATCCA -ACGGAATAGCCAAGTCGTACGACA -ACGGAATAGCCAAGTCGTAGCTCA -ACGGAATAGCCAAGTCGTTCACGT -ACGGAATAGCCAAGTCGTCGTAGT -ACGGAATAGCCAAGTCGTGTCAGT -ACGGAATAGCCAAGTCGTGAAGGT -ACGGAATAGCCAAGTCGTAACCGT -ACGGAATAGCCAAGTCGTTTGTGC -ACGGAATAGCCAAGTCGTCTAAGC -ACGGAATAGCCAAGTCGTACTAGC -ACGGAATAGCCAAGTCGTAGATGC -ACGGAATAGCCAAGTCGTTGAAGG -ACGGAATAGCCAAGTCGTCAATGG -ACGGAATAGCCAAGTCGTATGAGG -ACGGAATAGCCAAGTCGTAATGGG -ACGGAATAGCCAAGTCGTTCCTGA -ACGGAATAGCCAAGTCGTTAGCGA -ACGGAATAGCCAAGTCGTCACAGA -ACGGAATAGCCAAGTCGTGCAAGA -ACGGAATAGCCAAGTCGTGGTTGA -ACGGAATAGCCAAGTCGTTCCGAT -ACGGAATAGCCAAGTCGTTGGCAT -ACGGAATAGCCAAGTCGTCGAGAT -ACGGAATAGCCAAGTCGTTACCAC -ACGGAATAGCCAAGTCGTCAGAAC -ACGGAATAGCCAAGTCGTGTCTAC -ACGGAATAGCCAAGTCGTACGTAC -ACGGAATAGCCAAGTCGTAGTGAC -ACGGAATAGCCAAGTCGTCTGTAG -ACGGAATAGCCAAGTCGTCCTAAG -ACGGAATAGCCAAGTCGTGTTCAG -ACGGAATAGCCAAGTCGTGCATAG -ACGGAATAGCCAAGTCGTGACAAG -ACGGAATAGCCAAGTCGTAAGCAG -ACGGAATAGCCAAGTCGTCGTCAA -ACGGAATAGCCAAGTCGTGCTGAA -ACGGAATAGCCAAGTCGTAGTACG -ACGGAATAGCCAAGTCGTATCCGA -ACGGAATAGCCAAGTCGTATGGGA -ACGGAATAGCCAAGTCGTGTGCAA -ACGGAATAGCCAAGTCGTGAGGAA -ACGGAATAGCCAAGTCGTCAGGTA -ACGGAATAGCCAAGTCGTGACTCT -ACGGAATAGCCAAGTCGTAGTCCT -ACGGAATAGCCAAGTCGTTAAGCC -ACGGAATAGCCAAGTCGTATAGCC -ACGGAATAGCCAAGTCGTTAACCG -ACGGAATAGCCAAGTCGTATGCCA -ACGGAATAGCCAAGTGTCGGAAAC -ACGGAATAGCCAAGTGTCAACACC -ACGGAATAGCCAAGTGTCATCGAG -ACGGAATAGCCAAGTGTCCTCCTT -ACGGAATAGCCAAGTGTCCCTGTT -ACGGAATAGCCAAGTGTCCGGTTT -ACGGAATAGCCAAGTGTCGTGGTT -ACGGAATAGCCAAGTGTCGCCTTT -ACGGAATAGCCAAGTGTCGGTCTT -ACGGAATAGCCAAGTGTCACGCTT -ACGGAATAGCCAAGTGTCAGCGTT -ACGGAATAGCCAAGTGTCTTCGTC -ACGGAATAGCCAAGTGTCTCTCTC -ACGGAATAGCCAAGTGTCTGGATC -ACGGAATAGCCAAGTGTCCACTTC -ACGGAATAGCCAAGTGTCGTACTC -ACGGAATAGCCAAGTGTCGATGTC -ACGGAATAGCCAAGTGTCACAGTC -ACGGAATAGCCAAGTGTCTTGCTG -ACGGAATAGCCAAGTGTCTCCATG -ACGGAATAGCCAAGTGTCTGTGTG -ACGGAATAGCCAAGTGTCCTAGTG -ACGGAATAGCCAAGTGTCCATCTG -ACGGAATAGCCAAGTGTCGAGTTG -ACGGAATAGCCAAGTGTCAGACTG -ACGGAATAGCCAAGTGTCTCGGTA -ACGGAATAGCCAAGTGTCTGCCTA -ACGGAATAGCCAAGTGTCCCACTA -ACGGAATAGCCAAGTGTCGGAGTA -ACGGAATAGCCAAGTGTCTCGTCT -ACGGAATAGCCAAGTGTCTGCACT -ACGGAATAGCCAAGTGTCCTGACT -ACGGAATAGCCAAGTGTCCAACCT -ACGGAATAGCCAAGTGTCGCTACT -ACGGAATAGCCAAGTGTCGGATCT -ACGGAATAGCCAAGTGTCAAGGCT -ACGGAATAGCCAAGTGTCTCAACC -ACGGAATAGCCAAGTGTCTGTTCC -ACGGAATAGCCAAGTGTCATTCCC -ACGGAATAGCCAAGTGTCTTCTCG -ACGGAATAGCCAAGTGTCTAGACG -ACGGAATAGCCAAGTGTCGTAACG -ACGGAATAGCCAAGTGTCACTTCG -ACGGAATAGCCAAGTGTCTACGCA -ACGGAATAGCCAAGTGTCCTTGCA -ACGGAATAGCCAAGTGTCCGAACA -ACGGAATAGCCAAGTGTCCAGTCA -ACGGAATAGCCAAGTGTCGATCCA -ACGGAATAGCCAAGTGTCACGACA -ACGGAATAGCCAAGTGTCAGCTCA -ACGGAATAGCCAAGTGTCTCACGT -ACGGAATAGCCAAGTGTCCGTAGT -ACGGAATAGCCAAGTGTCGTCAGT -ACGGAATAGCCAAGTGTCGAAGGT -ACGGAATAGCCAAGTGTCAACCGT -ACGGAATAGCCAAGTGTCTTGTGC -ACGGAATAGCCAAGTGTCCTAAGC -ACGGAATAGCCAAGTGTCACTAGC -ACGGAATAGCCAAGTGTCAGATGC -ACGGAATAGCCAAGTGTCTGAAGG -ACGGAATAGCCAAGTGTCCAATGG -ACGGAATAGCCAAGTGTCATGAGG -ACGGAATAGCCAAGTGTCAATGGG -ACGGAATAGCCAAGTGTCTCCTGA -ACGGAATAGCCAAGTGTCTAGCGA -ACGGAATAGCCAAGTGTCCACAGA -ACGGAATAGCCAAGTGTCGCAAGA -ACGGAATAGCCAAGTGTCGGTTGA -ACGGAATAGCCAAGTGTCTCCGAT -ACGGAATAGCCAAGTGTCTGGCAT -ACGGAATAGCCAAGTGTCCGAGAT -ACGGAATAGCCAAGTGTCTACCAC -ACGGAATAGCCAAGTGTCCAGAAC -ACGGAATAGCCAAGTGTCGTCTAC -ACGGAATAGCCAAGTGTCACGTAC -ACGGAATAGCCAAGTGTCAGTGAC -ACGGAATAGCCAAGTGTCCTGTAG -ACGGAATAGCCAAGTGTCCCTAAG -ACGGAATAGCCAAGTGTCGTTCAG -ACGGAATAGCCAAGTGTCGCATAG -ACGGAATAGCCAAGTGTCGACAAG -ACGGAATAGCCAAGTGTCAAGCAG -ACGGAATAGCCAAGTGTCCGTCAA -ACGGAATAGCCAAGTGTCGCTGAA -ACGGAATAGCCAAGTGTCAGTACG -ACGGAATAGCCAAGTGTCATCCGA -ACGGAATAGCCAAGTGTCATGGGA -ACGGAATAGCCAAGTGTCGTGCAA -ACGGAATAGCCAAGTGTCGAGGAA -ACGGAATAGCCAAGTGTCCAGGTA -ACGGAATAGCCAAGTGTCGACTCT -ACGGAATAGCCAAGTGTCAGTCCT -ACGGAATAGCCAAGTGTCTAAGCC -ACGGAATAGCCAAGTGTCATAGCC -ACGGAATAGCCAAGTGTCTAACCG -ACGGAATAGCCAAGTGTCATGCCA -ACGGAATAGCCAGGTGAAGGAAAC -ACGGAATAGCCAGGTGAAAACACC -ACGGAATAGCCAGGTGAAATCGAG -ACGGAATAGCCAGGTGAACTCCTT -ACGGAATAGCCAGGTGAACCTGTT -ACGGAATAGCCAGGTGAACGGTTT -ACGGAATAGCCAGGTGAAGTGGTT -ACGGAATAGCCAGGTGAAGCCTTT -ACGGAATAGCCAGGTGAAGGTCTT -ACGGAATAGCCAGGTGAAACGCTT -ACGGAATAGCCAGGTGAAAGCGTT -ACGGAATAGCCAGGTGAATTCGTC -ACGGAATAGCCAGGTGAATCTCTC -ACGGAATAGCCAGGTGAATGGATC -ACGGAATAGCCAGGTGAACACTTC -ACGGAATAGCCAGGTGAAGTACTC -ACGGAATAGCCAGGTGAAGATGTC -ACGGAATAGCCAGGTGAAACAGTC -ACGGAATAGCCAGGTGAATTGCTG -ACGGAATAGCCAGGTGAATCCATG -ACGGAATAGCCAGGTGAATGTGTG -ACGGAATAGCCAGGTGAACTAGTG -ACGGAATAGCCAGGTGAACATCTG -ACGGAATAGCCAGGTGAAGAGTTG -ACGGAATAGCCAGGTGAAAGACTG -ACGGAATAGCCAGGTGAATCGGTA -ACGGAATAGCCAGGTGAATGCCTA -ACGGAATAGCCAGGTGAACCACTA -ACGGAATAGCCAGGTGAAGGAGTA -ACGGAATAGCCAGGTGAATCGTCT -ACGGAATAGCCAGGTGAATGCACT -ACGGAATAGCCAGGTGAACTGACT -ACGGAATAGCCAGGTGAACAACCT -ACGGAATAGCCAGGTGAAGCTACT -ACGGAATAGCCAGGTGAAGGATCT -ACGGAATAGCCAGGTGAAAAGGCT -ACGGAATAGCCAGGTGAATCAACC -ACGGAATAGCCAGGTGAATGTTCC -ACGGAATAGCCAGGTGAAATTCCC -ACGGAATAGCCAGGTGAATTCTCG -ACGGAATAGCCAGGTGAATAGACG -ACGGAATAGCCAGGTGAAGTAACG -ACGGAATAGCCAGGTGAAACTTCG -ACGGAATAGCCAGGTGAATACGCA -ACGGAATAGCCAGGTGAACTTGCA -ACGGAATAGCCAGGTGAACGAACA -ACGGAATAGCCAGGTGAACAGTCA -ACGGAATAGCCAGGTGAAGATCCA -ACGGAATAGCCAGGTGAAACGACA -ACGGAATAGCCAGGTGAAAGCTCA -ACGGAATAGCCAGGTGAATCACGT -ACGGAATAGCCAGGTGAACGTAGT -ACGGAATAGCCAGGTGAAGTCAGT -ACGGAATAGCCAGGTGAAGAAGGT -ACGGAATAGCCAGGTGAAAACCGT -ACGGAATAGCCAGGTGAATTGTGC -ACGGAATAGCCAGGTGAACTAAGC -ACGGAATAGCCAGGTGAAACTAGC -ACGGAATAGCCAGGTGAAAGATGC -ACGGAATAGCCAGGTGAATGAAGG -ACGGAATAGCCAGGTGAACAATGG -ACGGAATAGCCAGGTGAAATGAGG -ACGGAATAGCCAGGTGAAAATGGG -ACGGAATAGCCAGGTGAATCCTGA -ACGGAATAGCCAGGTGAATAGCGA -ACGGAATAGCCAGGTGAACACAGA -ACGGAATAGCCAGGTGAAGCAAGA -ACGGAATAGCCAGGTGAAGGTTGA -ACGGAATAGCCAGGTGAATCCGAT -ACGGAATAGCCAGGTGAATGGCAT -ACGGAATAGCCAGGTGAACGAGAT -ACGGAATAGCCAGGTGAATACCAC -ACGGAATAGCCAGGTGAACAGAAC -ACGGAATAGCCAGGTGAAGTCTAC -ACGGAATAGCCAGGTGAAACGTAC -ACGGAATAGCCAGGTGAAAGTGAC -ACGGAATAGCCAGGTGAACTGTAG -ACGGAATAGCCAGGTGAACCTAAG -ACGGAATAGCCAGGTGAAGTTCAG -ACGGAATAGCCAGGTGAAGCATAG -ACGGAATAGCCAGGTGAAGACAAG -ACGGAATAGCCAGGTGAAAAGCAG -ACGGAATAGCCAGGTGAACGTCAA -ACGGAATAGCCAGGTGAAGCTGAA -ACGGAATAGCCAGGTGAAAGTACG -ACGGAATAGCCAGGTGAAATCCGA -ACGGAATAGCCAGGTGAAATGGGA -ACGGAATAGCCAGGTGAAGTGCAA -ACGGAATAGCCAGGTGAAGAGGAA -ACGGAATAGCCAGGTGAACAGGTA -ACGGAATAGCCAGGTGAAGACTCT -ACGGAATAGCCAGGTGAAAGTCCT -ACGGAATAGCCAGGTGAATAAGCC -ACGGAATAGCCAGGTGAAATAGCC -ACGGAATAGCCAGGTGAATAACCG -ACGGAATAGCCAGGTGAAATGCCA -ACGGAATAGCCACGTAACGGAAAC -ACGGAATAGCCACGTAACAACACC -ACGGAATAGCCACGTAACATCGAG -ACGGAATAGCCACGTAACCTCCTT -ACGGAATAGCCACGTAACCCTGTT -ACGGAATAGCCACGTAACCGGTTT -ACGGAATAGCCACGTAACGTGGTT -ACGGAATAGCCACGTAACGCCTTT -ACGGAATAGCCACGTAACGGTCTT -ACGGAATAGCCACGTAACACGCTT -ACGGAATAGCCACGTAACAGCGTT -ACGGAATAGCCACGTAACTTCGTC -ACGGAATAGCCACGTAACTCTCTC -ACGGAATAGCCACGTAACTGGATC -ACGGAATAGCCACGTAACCACTTC -ACGGAATAGCCACGTAACGTACTC -ACGGAATAGCCACGTAACGATGTC -ACGGAATAGCCACGTAACACAGTC -ACGGAATAGCCACGTAACTTGCTG -ACGGAATAGCCACGTAACTCCATG -ACGGAATAGCCACGTAACTGTGTG -ACGGAATAGCCACGTAACCTAGTG -ACGGAATAGCCACGTAACCATCTG -ACGGAATAGCCACGTAACGAGTTG -ACGGAATAGCCACGTAACAGACTG -ACGGAATAGCCACGTAACTCGGTA -ACGGAATAGCCACGTAACTGCCTA -ACGGAATAGCCACGTAACCCACTA -ACGGAATAGCCACGTAACGGAGTA -ACGGAATAGCCACGTAACTCGTCT -ACGGAATAGCCACGTAACTGCACT -ACGGAATAGCCACGTAACCTGACT -ACGGAATAGCCACGTAACCAACCT -ACGGAATAGCCACGTAACGCTACT -ACGGAATAGCCACGTAACGGATCT -ACGGAATAGCCACGTAACAAGGCT -ACGGAATAGCCACGTAACTCAACC -ACGGAATAGCCACGTAACTGTTCC -ACGGAATAGCCACGTAACATTCCC -ACGGAATAGCCACGTAACTTCTCG -ACGGAATAGCCACGTAACTAGACG -ACGGAATAGCCACGTAACGTAACG -ACGGAATAGCCACGTAACACTTCG -ACGGAATAGCCACGTAACTACGCA -ACGGAATAGCCACGTAACCTTGCA -ACGGAATAGCCACGTAACCGAACA -ACGGAATAGCCACGTAACCAGTCA -ACGGAATAGCCACGTAACGATCCA -ACGGAATAGCCACGTAACACGACA -ACGGAATAGCCACGTAACAGCTCA -ACGGAATAGCCACGTAACTCACGT -ACGGAATAGCCACGTAACCGTAGT -ACGGAATAGCCACGTAACGTCAGT -ACGGAATAGCCACGTAACGAAGGT -ACGGAATAGCCACGTAACAACCGT -ACGGAATAGCCACGTAACTTGTGC -ACGGAATAGCCACGTAACCTAAGC -ACGGAATAGCCACGTAACACTAGC -ACGGAATAGCCACGTAACAGATGC -ACGGAATAGCCACGTAACTGAAGG -ACGGAATAGCCACGTAACCAATGG -ACGGAATAGCCACGTAACATGAGG -ACGGAATAGCCACGTAACAATGGG -ACGGAATAGCCACGTAACTCCTGA -ACGGAATAGCCACGTAACTAGCGA -ACGGAATAGCCACGTAACCACAGA -ACGGAATAGCCACGTAACGCAAGA -ACGGAATAGCCACGTAACGGTTGA -ACGGAATAGCCACGTAACTCCGAT -ACGGAATAGCCACGTAACTGGCAT -ACGGAATAGCCACGTAACCGAGAT -ACGGAATAGCCACGTAACTACCAC -ACGGAATAGCCACGTAACCAGAAC -ACGGAATAGCCACGTAACGTCTAC -ACGGAATAGCCACGTAACACGTAC -ACGGAATAGCCACGTAACAGTGAC -ACGGAATAGCCACGTAACCTGTAG -ACGGAATAGCCACGTAACCCTAAG -ACGGAATAGCCACGTAACGTTCAG -ACGGAATAGCCACGTAACGCATAG -ACGGAATAGCCACGTAACGACAAG -ACGGAATAGCCACGTAACAAGCAG -ACGGAATAGCCACGTAACCGTCAA -ACGGAATAGCCACGTAACGCTGAA -ACGGAATAGCCACGTAACAGTACG -ACGGAATAGCCACGTAACATCCGA -ACGGAATAGCCACGTAACATGGGA -ACGGAATAGCCACGTAACGTGCAA -ACGGAATAGCCACGTAACGAGGAA -ACGGAATAGCCACGTAACCAGGTA -ACGGAATAGCCACGTAACGACTCT -ACGGAATAGCCACGTAACAGTCCT -ACGGAATAGCCACGTAACTAAGCC -ACGGAATAGCCACGTAACATAGCC -ACGGAATAGCCACGTAACTAACCG -ACGGAATAGCCACGTAACATGCCA -ACGGAATAGCCATGCTTGGGAAAC -ACGGAATAGCCATGCTTGAACACC -ACGGAATAGCCATGCTTGATCGAG -ACGGAATAGCCATGCTTGCTCCTT -ACGGAATAGCCATGCTTGCCTGTT -ACGGAATAGCCATGCTTGCGGTTT -ACGGAATAGCCATGCTTGGTGGTT -ACGGAATAGCCATGCTTGGCCTTT -ACGGAATAGCCATGCTTGGGTCTT -ACGGAATAGCCATGCTTGACGCTT -ACGGAATAGCCATGCTTGAGCGTT -ACGGAATAGCCATGCTTGTTCGTC -ACGGAATAGCCATGCTTGTCTCTC -ACGGAATAGCCATGCTTGTGGATC -ACGGAATAGCCATGCTTGCACTTC -ACGGAATAGCCATGCTTGGTACTC -ACGGAATAGCCATGCTTGGATGTC -ACGGAATAGCCATGCTTGACAGTC -ACGGAATAGCCATGCTTGTTGCTG -ACGGAATAGCCATGCTTGTCCATG -ACGGAATAGCCATGCTTGTGTGTG -ACGGAATAGCCATGCTTGCTAGTG -ACGGAATAGCCATGCTTGCATCTG -ACGGAATAGCCATGCTTGGAGTTG -ACGGAATAGCCATGCTTGAGACTG -ACGGAATAGCCATGCTTGTCGGTA -ACGGAATAGCCATGCTTGTGCCTA -ACGGAATAGCCATGCTTGCCACTA -ACGGAATAGCCATGCTTGGGAGTA -ACGGAATAGCCATGCTTGTCGTCT -ACGGAATAGCCATGCTTGTGCACT -ACGGAATAGCCATGCTTGCTGACT -ACGGAATAGCCATGCTTGCAACCT -ACGGAATAGCCATGCTTGGCTACT -ACGGAATAGCCATGCTTGGGATCT -ACGGAATAGCCATGCTTGAAGGCT -ACGGAATAGCCATGCTTGTCAACC -ACGGAATAGCCATGCTTGTGTTCC -ACGGAATAGCCATGCTTGATTCCC -ACGGAATAGCCATGCTTGTTCTCG -ACGGAATAGCCATGCTTGTAGACG -ACGGAATAGCCATGCTTGGTAACG -ACGGAATAGCCATGCTTGACTTCG -ACGGAATAGCCATGCTTGTACGCA -ACGGAATAGCCATGCTTGCTTGCA -ACGGAATAGCCATGCTTGCGAACA -ACGGAATAGCCATGCTTGCAGTCA -ACGGAATAGCCATGCTTGGATCCA -ACGGAATAGCCATGCTTGACGACA -ACGGAATAGCCATGCTTGAGCTCA -ACGGAATAGCCATGCTTGTCACGT -ACGGAATAGCCATGCTTGCGTAGT -ACGGAATAGCCATGCTTGGTCAGT -ACGGAATAGCCATGCTTGGAAGGT -ACGGAATAGCCATGCTTGAACCGT -ACGGAATAGCCATGCTTGTTGTGC -ACGGAATAGCCATGCTTGCTAAGC -ACGGAATAGCCATGCTTGACTAGC -ACGGAATAGCCATGCTTGAGATGC -ACGGAATAGCCATGCTTGTGAAGG -ACGGAATAGCCATGCTTGCAATGG -ACGGAATAGCCATGCTTGATGAGG -ACGGAATAGCCATGCTTGAATGGG -ACGGAATAGCCATGCTTGTCCTGA -ACGGAATAGCCATGCTTGTAGCGA -ACGGAATAGCCATGCTTGCACAGA -ACGGAATAGCCATGCTTGGCAAGA -ACGGAATAGCCATGCTTGGGTTGA -ACGGAATAGCCATGCTTGTCCGAT -ACGGAATAGCCATGCTTGTGGCAT -ACGGAATAGCCATGCTTGCGAGAT -ACGGAATAGCCATGCTTGTACCAC -ACGGAATAGCCATGCTTGCAGAAC -ACGGAATAGCCATGCTTGGTCTAC -ACGGAATAGCCATGCTTGACGTAC -ACGGAATAGCCATGCTTGAGTGAC -ACGGAATAGCCATGCTTGCTGTAG -ACGGAATAGCCATGCTTGCCTAAG -ACGGAATAGCCATGCTTGGTTCAG -ACGGAATAGCCATGCTTGGCATAG -ACGGAATAGCCATGCTTGGACAAG -ACGGAATAGCCATGCTTGAAGCAG -ACGGAATAGCCATGCTTGCGTCAA -ACGGAATAGCCATGCTTGGCTGAA -ACGGAATAGCCATGCTTGAGTACG -ACGGAATAGCCATGCTTGATCCGA -ACGGAATAGCCATGCTTGATGGGA -ACGGAATAGCCATGCTTGGTGCAA -ACGGAATAGCCATGCTTGGAGGAA -ACGGAATAGCCATGCTTGCAGGTA -ACGGAATAGCCATGCTTGGACTCT -ACGGAATAGCCATGCTTGAGTCCT -ACGGAATAGCCATGCTTGTAAGCC -ACGGAATAGCCATGCTTGATAGCC -ACGGAATAGCCATGCTTGTAACCG -ACGGAATAGCCATGCTTGATGCCA -ACGGAATAGCCAAGCCTAGGAAAC -ACGGAATAGCCAAGCCTAAACACC -ACGGAATAGCCAAGCCTAATCGAG -ACGGAATAGCCAAGCCTACTCCTT -ACGGAATAGCCAAGCCTACCTGTT -ACGGAATAGCCAAGCCTACGGTTT -ACGGAATAGCCAAGCCTAGTGGTT -ACGGAATAGCCAAGCCTAGCCTTT -ACGGAATAGCCAAGCCTAGGTCTT -ACGGAATAGCCAAGCCTAACGCTT -ACGGAATAGCCAAGCCTAAGCGTT -ACGGAATAGCCAAGCCTATTCGTC -ACGGAATAGCCAAGCCTATCTCTC -ACGGAATAGCCAAGCCTATGGATC -ACGGAATAGCCAAGCCTACACTTC -ACGGAATAGCCAAGCCTAGTACTC -ACGGAATAGCCAAGCCTAGATGTC -ACGGAATAGCCAAGCCTAACAGTC -ACGGAATAGCCAAGCCTATTGCTG -ACGGAATAGCCAAGCCTATCCATG -ACGGAATAGCCAAGCCTATGTGTG -ACGGAATAGCCAAGCCTACTAGTG -ACGGAATAGCCAAGCCTACATCTG -ACGGAATAGCCAAGCCTAGAGTTG -ACGGAATAGCCAAGCCTAAGACTG -ACGGAATAGCCAAGCCTATCGGTA -ACGGAATAGCCAAGCCTATGCCTA -ACGGAATAGCCAAGCCTACCACTA -ACGGAATAGCCAAGCCTAGGAGTA -ACGGAATAGCCAAGCCTATCGTCT -ACGGAATAGCCAAGCCTATGCACT -ACGGAATAGCCAAGCCTACTGACT -ACGGAATAGCCAAGCCTACAACCT -ACGGAATAGCCAAGCCTAGCTACT -ACGGAATAGCCAAGCCTAGGATCT -ACGGAATAGCCAAGCCTAAAGGCT -ACGGAATAGCCAAGCCTATCAACC -ACGGAATAGCCAAGCCTATGTTCC -ACGGAATAGCCAAGCCTAATTCCC -ACGGAATAGCCAAGCCTATTCTCG -ACGGAATAGCCAAGCCTATAGACG -ACGGAATAGCCAAGCCTAGTAACG -ACGGAATAGCCAAGCCTAACTTCG -ACGGAATAGCCAAGCCTATACGCA -ACGGAATAGCCAAGCCTACTTGCA -ACGGAATAGCCAAGCCTACGAACA -ACGGAATAGCCAAGCCTACAGTCA -ACGGAATAGCCAAGCCTAGATCCA -ACGGAATAGCCAAGCCTAACGACA -ACGGAATAGCCAAGCCTAAGCTCA -ACGGAATAGCCAAGCCTATCACGT -ACGGAATAGCCAAGCCTACGTAGT -ACGGAATAGCCAAGCCTAGTCAGT -ACGGAATAGCCAAGCCTAGAAGGT -ACGGAATAGCCAAGCCTAAACCGT -ACGGAATAGCCAAGCCTATTGTGC -ACGGAATAGCCAAGCCTACTAAGC -ACGGAATAGCCAAGCCTAACTAGC -ACGGAATAGCCAAGCCTAAGATGC -ACGGAATAGCCAAGCCTATGAAGG -ACGGAATAGCCAAGCCTACAATGG -ACGGAATAGCCAAGCCTAATGAGG -ACGGAATAGCCAAGCCTAAATGGG -ACGGAATAGCCAAGCCTATCCTGA -ACGGAATAGCCAAGCCTATAGCGA -ACGGAATAGCCAAGCCTACACAGA -ACGGAATAGCCAAGCCTAGCAAGA -ACGGAATAGCCAAGCCTAGGTTGA -ACGGAATAGCCAAGCCTATCCGAT -ACGGAATAGCCAAGCCTATGGCAT -ACGGAATAGCCAAGCCTACGAGAT -ACGGAATAGCCAAGCCTATACCAC -ACGGAATAGCCAAGCCTACAGAAC -ACGGAATAGCCAAGCCTAGTCTAC -ACGGAATAGCCAAGCCTAACGTAC -ACGGAATAGCCAAGCCTAAGTGAC -ACGGAATAGCCAAGCCTACTGTAG -ACGGAATAGCCAAGCCTACCTAAG -ACGGAATAGCCAAGCCTAGTTCAG -ACGGAATAGCCAAGCCTAGCATAG -ACGGAATAGCCAAGCCTAGACAAG -ACGGAATAGCCAAGCCTAAAGCAG -ACGGAATAGCCAAGCCTACGTCAA -ACGGAATAGCCAAGCCTAGCTGAA -ACGGAATAGCCAAGCCTAAGTACG -ACGGAATAGCCAAGCCTAATCCGA -ACGGAATAGCCAAGCCTAATGGGA -ACGGAATAGCCAAGCCTAGTGCAA -ACGGAATAGCCAAGCCTAGAGGAA -ACGGAATAGCCAAGCCTACAGGTA -ACGGAATAGCCAAGCCTAGACTCT -ACGGAATAGCCAAGCCTAAGTCCT -ACGGAATAGCCAAGCCTATAAGCC -ACGGAATAGCCAAGCCTAATAGCC -ACGGAATAGCCAAGCCTATAACCG -ACGGAATAGCCAAGCCTAATGCCA -ACGGAATAGCCAAGCACTGGAAAC -ACGGAATAGCCAAGCACTAACACC -ACGGAATAGCCAAGCACTATCGAG -ACGGAATAGCCAAGCACTCTCCTT -ACGGAATAGCCAAGCACTCCTGTT -ACGGAATAGCCAAGCACTCGGTTT -ACGGAATAGCCAAGCACTGTGGTT -ACGGAATAGCCAAGCACTGCCTTT -ACGGAATAGCCAAGCACTGGTCTT -ACGGAATAGCCAAGCACTACGCTT -ACGGAATAGCCAAGCACTAGCGTT -ACGGAATAGCCAAGCACTTTCGTC -ACGGAATAGCCAAGCACTTCTCTC -ACGGAATAGCCAAGCACTTGGATC -ACGGAATAGCCAAGCACTCACTTC -ACGGAATAGCCAAGCACTGTACTC -ACGGAATAGCCAAGCACTGATGTC -ACGGAATAGCCAAGCACTACAGTC -ACGGAATAGCCAAGCACTTTGCTG -ACGGAATAGCCAAGCACTTCCATG -ACGGAATAGCCAAGCACTTGTGTG -ACGGAATAGCCAAGCACTCTAGTG -ACGGAATAGCCAAGCACTCATCTG -ACGGAATAGCCAAGCACTGAGTTG -ACGGAATAGCCAAGCACTAGACTG -ACGGAATAGCCAAGCACTTCGGTA -ACGGAATAGCCAAGCACTTGCCTA -ACGGAATAGCCAAGCACTCCACTA -ACGGAATAGCCAAGCACTGGAGTA -ACGGAATAGCCAAGCACTTCGTCT -ACGGAATAGCCAAGCACTTGCACT -ACGGAATAGCCAAGCACTCTGACT -ACGGAATAGCCAAGCACTCAACCT -ACGGAATAGCCAAGCACTGCTACT -ACGGAATAGCCAAGCACTGGATCT -ACGGAATAGCCAAGCACTAAGGCT -ACGGAATAGCCAAGCACTTCAACC -ACGGAATAGCCAAGCACTTGTTCC -ACGGAATAGCCAAGCACTATTCCC -ACGGAATAGCCAAGCACTTTCTCG -ACGGAATAGCCAAGCACTTAGACG -ACGGAATAGCCAAGCACTGTAACG -ACGGAATAGCCAAGCACTACTTCG -ACGGAATAGCCAAGCACTTACGCA -ACGGAATAGCCAAGCACTCTTGCA -ACGGAATAGCCAAGCACTCGAACA -ACGGAATAGCCAAGCACTCAGTCA -ACGGAATAGCCAAGCACTGATCCA -ACGGAATAGCCAAGCACTACGACA -ACGGAATAGCCAAGCACTAGCTCA -ACGGAATAGCCAAGCACTTCACGT -ACGGAATAGCCAAGCACTCGTAGT -ACGGAATAGCCAAGCACTGTCAGT -ACGGAATAGCCAAGCACTGAAGGT -ACGGAATAGCCAAGCACTAACCGT -ACGGAATAGCCAAGCACTTTGTGC -ACGGAATAGCCAAGCACTCTAAGC -ACGGAATAGCCAAGCACTACTAGC -ACGGAATAGCCAAGCACTAGATGC -ACGGAATAGCCAAGCACTTGAAGG -ACGGAATAGCCAAGCACTCAATGG -ACGGAATAGCCAAGCACTATGAGG -ACGGAATAGCCAAGCACTAATGGG -ACGGAATAGCCAAGCACTTCCTGA -ACGGAATAGCCAAGCACTTAGCGA -ACGGAATAGCCAAGCACTCACAGA -ACGGAATAGCCAAGCACTGCAAGA -ACGGAATAGCCAAGCACTGGTTGA -ACGGAATAGCCAAGCACTTCCGAT -ACGGAATAGCCAAGCACTTGGCAT -ACGGAATAGCCAAGCACTCGAGAT -ACGGAATAGCCAAGCACTTACCAC -ACGGAATAGCCAAGCACTCAGAAC -ACGGAATAGCCAAGCACTGTCTAC -ACGGAATAGCCAAGCACTACGTAC -ACGGAATAGCCAAGCACTAGTGAC -ACGGAATAGCCAAGCACTCTGTAG -ACGGAATAGCCAAGCACTCCTAAG -ACGGAATAGCCAAGCACTGTTCAG -ACGGAATAGCCAAGCACTGCATAG -ACGGAATAGCCAAGCACTGACAAG -ACGGAATAGCCAAGCACTAAGCAG -ACGGAATAGCCAAGCACTCGTCAA -ACGGAATAGCCAAGCACTGCTGAA -ACGGAATAGCCAAGCACTAGTACG -ACGGAATAGCCAAGCACTATCCGA -ACGGAATAGCCAAGCACTATGGGA -ACGGAATAGCCAAGCACTGTGCAA -ACGGAATAGCCAAGCACTGAGGAA -ACGGAATAGCCAAGCACTCAGGTA -ACGGAATAGCCAAGCACTGACTCT -ACGGAATAGCCAAGCACTAGTCCT -ACGGAATAGCCAAGCACTTAAGCC -ACGGAATAGCCAAGCACTATAGCC -ACGGAATAGCCAAGCACTTAACCG -ACGGAATAGCCAAGCACTATGCCA -ACGGAATAGCCATGCAGAGGAAAC -ACGGAATAGCCATGCAGAAACACC -ACGGAATAGCCATGCAGAATCGAG -ACGGAATAGCCATGCAGACTCCTT -ACGGAATAGCCATGCAGACCTGTT -ACGGAATAGCCATGCAGACGGTTT -ACGGAATAGCCATGCAGAGTGGTT -ACGGAATAGCCATGCAGAGCCTTT -ACGGAATAGCCATGCAGAGGTCTT -ACGGAATAGCCATGCAGAACGCTT -ACGGAATAGCCATGCAGAAGCGTT -ACGGAATAGCCATGCAGATTCGTC -ACGGAATAGCCATGCAGATCTCTC -ACGGAATAGCCATGCAGATGGATC -ACGGAATAGCCATGCAGACACTTC -ACGGAATAGCCATGCAGAGTACTC -ACGGAATAGCCATGCAGAGATGTC -ACGGAATAGCCATGCAGAACAGTC -ACGGAATAGCCATGCAGATTGCTG -ACGGAATAGCCATGCAGATCCATG -ACGGAATAGCCATGCAGATGTGTG -ACGGAATAGCCATGCAGACTAGTG -ACGGAATAGCCATGCAGACATCTG -ACGGAATAGCCATGCAGAGAGTTG -ACGGAATAGCCATGCAGAAGACTG -ACGGAATAGCCATGCAGATCGGTA -ACGGAATAGCCATGCAGATGCCTA -ACGGAATAGCCATGCAGACCACTA -ACGGAATAGCCATGCAGAGGAGTA -ACGGAATAGCCATGCAGATCGTCT -ACGGAATAGCCATGCAGATGCACT -ACGGAATAGCCATGCAGACTGACT -ACGGAATAGCCATGCAGACAACCT -ACGGAATAGCCATGCAGAGCTACT -ACGGAATAGCCATGCAGAGGATCT -ACGGAATAGCCATGCAGAAAGGCT -ACGGAATAGCCATGCAGATCAACC -ACGGAATAGCCATGCAGATGTTCC -ACGGAATAGCCATGCAGAATTCCC -ACGGAATAGCCATGCAGATTCTCG -ACGGAATAGCCATGCAGATAGACG -ACGGAATAGCCATGCAGAGTAACG -ACGGAATAGCCATGCAGAACTTCG -ACGGAATAGCCATGCAGATACGCA -ACGGAATAGCCATGCAGACTTGCA -ACGGAATAGCCATGCAGACGAACA -ACGGAATAGCCATGCAGACAGTCA -ACGGAATAGCCATGCAGAGATCCA -ACGGAATAGCCATGCAGAACGACA -ACGGAATAGCCATGCAGAAGCTCA -ACGGAATAGCCATGCAGATCACGT -ACGGAATAGCCATGCAGACGTAGT -ACGGAATAGCCATGCAGAGTCAGT -ACGGAATAGCCATGCAGAGAAGGT -ACGGAATAGCCATGCAGAAACCGT -ACGGAATAGCCATGCAGATTGTGC -ACGGAATAGCCATGCAGACTAAGC -ACGGAATAGCCATGCAGAACTAGC -ACGGAATAGCCATGCAGAAGATGC -ACGGAATAGCCATGCAGATGAAGG -ACGGAATAGCCATGCAGACAATGG -ACGGAATAGCCATGCAGAATGAGG -ACGGAATAGCCATGCAGAAATGGG -ACGGAATAGCCATGCAGATCCTGA -ACGGAATAGCCATGCAGATAGCGA -ACGGAATAGCCATGCAGACACAGA -ACGGAATAGCCATGCAGAGCAAGA -ACGGAATAGCCATGCAGAGGTTGA -ACGGAATAGCCATGCAGATCCGAT -ACGGAATAGCCATGCAGATGGCAT -ACGGAATAGCCATGCAGACGAGAT -ACGGAATAGCCATGCAGATACCAC -ACGGAATAGCCATGCAGACAGAAC -ACGGAATAGCCATGCAGAGTCTAC -ACGGAATAGCCATGCAGAACGTAC -ACGGAATAGCCATGCAGAAGTGAC -ACGGAATAGCCATGCAGACTGTAG -ACGGAATAGCCATGCAGACCTAAG -ACGGAATAGCCATGCAGAGTTCAG -ACGGAATAGCCATGCAGAGCATAG -ACGGAATAGCCATGCAGAGACAAG -ACGGAATAGCCATGCAGAAAGCAG -ACGGAATAGCCATGCAGACGTCAA -ACGGAATAGCCATGCAGAGCTGAA -ACGGAATAGCCATGCAGAAGTACG -ACGGAATAGCCATGCAGAATCCGA -ACGGAATAGCCATGCAGAATGGGA -ACGGAATAGCCATGCAGAGTGCAA -ACGGAATAGCCATGCAGAGAGGAA -ACGGAATAGCCATGCAGACAGGTA -ACGGAATAGCCATGCAGAGACTCT -ACGGAATAGCCATGCAGAAGTCCT -ACGGAATAGCCATGCAGATAAGCC -ACGGAATAGCCATGCAGAATAGCC -ACGGAATAGCCATGCAGATAACCG -ACGGAATAGCCATGCAGAATGCCA -ACGGAATAGCCAAGGTGAGGAAAC -ACGGAATAGCCAAGGTGAAACACC -ACGGAATAGCCAAGGTGAATCGAG -ACGGAATAGCCAAGGTGACTCCTT -ACGGAATAGCCAAGGTGACCTGTT -ACGGAATAGCCAAGGTGACGGTTT -ACGGAATAGCCAAGGTGAGTGGTT -ACGGAATAGCCAAGGTGAGCCTTT -ACGGAATAGCCAAGGTGAGGTCTT -ACGGAATAGCCAAGGTGAACGCTT -ACGGAATAGCCAAGGTGAAGCGTT -ACGGAATAGCCAAGGTGATTCGTC -ACGGAATAGCCAAGGTGATCTCTC -ACGGAATAGCCAAGGTGATGGATC -ACGGAATAGCCAAGGTGACACTTC -ACGGAATAGCCAAGGTGAGTACTC -ACGGAATAGCCAAGGTGAGATGTC -ACGGAATAGCCAAGGTGAACAGTC -ACGGAATAGCCAAGGTGATTGCTG -ACGGAATAGCCAAGGTGATCCATG -ACGGAATAGCCAAGGTGATGTGTG -ACGGAATAGCCAAGGTGACTAGTG -ACGGAATAGCCAAGGTGACATCTG -ACGGAATAGCCAAGGTGAGAGTTG -ACGGAATAGCCAAGGTGAAGACTG -ACGGAATAGCCAAGGTGATCGGTA -ACGGAATAGCCAAGGTGATGCCTA -ACGGAATAGCCAAGGTGACCACTA -ACGGAATAGCCAAGGTGAGGAGTA -ACGGAATAGCCAAGGTGATCGTCT -ACGGAATAGCCAAGGTGATGCACT -ACGGAATAGCCAAGGTGACTGACT -ACGGAATAGCCAAGGTGACAACCT -ACGGAATAGCCAAGGTGAGCTACT -ACGGAATAGCCAAGGTGAGGATCT -ACGGAATAGCCAAGGTGAAAGGCT -ACGGAATAGCCAAGGTGATCAACC -ACGGAATAGCCAAGGTGATGTTCC -ACGGAATAGCCAAGGTGAATTCCC -ACGGAATAGCCAAGGTGATTCTCG -ACGGAATAGCCAAGGTGATAGACG -ACGGAATAGCCAAGGTGAGTAACG -ACGGAATAGCCAAGGTGAACTTCG -ACGGAATAGCCAAGGTGATACGCA -ACGGAATAGCCAAGGTGACTTGCA -ACGGAATAGCCAAGGTGACGAACA -ACGGAATAGCCAAGGTGACAGTCA -ACGGAATAGCCAAGGTGAGATCCA -ACGGAATAGCCAAGGTGAACGACA -ACGGAATAGCCAAGGTGAAGCTCA -ACGGAATAGCCAAGGTGATCACGT -ACGGAATAGCCAAGGTGACGTAGT -ACGGAATAGCCAAGGTGAGTCAGT -ACGGAATAGCCAAGGTGAGAAGGT -ACGGAATAGCCAAGGTGAAACCGT -ACGGAATAGCCAAGGTGATTGTGC -ACGGAATAGCCAAGGTGACTAAGC -ACGGAATAGCCAAGGTGAACTAGC -ACGGAATAGCCAAGGTGAAGATGC -ACGGAATAGCCAAGGTGATGAAGG -ACGGAATAGCCAAGGTGACAATGG -ACGGAATAGCCAAGGTGAATGAGG -ACGGAATAGCCAAGGTGAAATGGG -ACGGAATAGCCAAGGTGATCCTGA -ACGGAATAGCCAAGGTGATAGCGA -ACGGAATAGCCAAGGTGACACAGA -ACGGAATAGCCAAGGTGAGCAAGA -ACGGAATAGCCAAGGTGAGGTTGA -ACGGAATAGCCAAGGTGATCCGAT -ACGGAATAGCCAAGGTGATGGCAT -ACGGAATAGCCAAGGTGACGAGAT -ACGGAATAGCCAAGGTGATACCAC -ACGGAATAGCCAAGGTGACAGAAC -ACGGAATAGCCAAGGTGAGTCTAC -ACGGAATAGCCAAGGTGAACGTAC -ACGGAATAGCCAAGGTGAAGTGAC -ACGGAATAGCCAAGGTGACTGTAG -ACGGAATAGCCAAGGTGACCTAAG -ACGGAATAGCCAAGGTGAGTTCAG -ACGGAATAGCCAAGGTGAGCATAG -ACGGAATAGCCAAGGTGAGACAAG -ACGGAATAGCCAAGGTGAAAGCAG -ACGGAATAGCCAAGGTGACGTCAA -ACGGAATAGCCAAGGTGAGCTGAA -ACGGAATAGCCAAGGTGAAGTACG -ACGGAATAGCCAAGGTGAATCCGA -ACGGAATAGCCAAGGTGAATGGGA -ACGGAATAGCCAAGGTGAGTGCAA -ACGGAATAGCCAAGGTGAGAGGAA -ACGGAATAGCCAAGGTGACAGGTA -ACGGAATAGCCAAGGTGAGACTCT -ACGGAATAGCCAAGGTGAAGTCCT -ACGGAATAGCCAAGGTGATAAGCC -ACGGAATAGCCAAGGTGAATAGCC -ACGGAATAGCCAAGGTGATAACCG -ACGGAATAGCCAAGGTGAATGCCA -ACGGAATAGCCATGGCAAGGAAAC -ACGGAATAGCCATGGCAAAACACC -ACGGAATAGCCATGGCAAATCGAG -ACGGAATAGCCATGGCAACTCCTT -ACGGAATAGCCATGGCAACCTGTT -ACGGAATAGCCATGGCAACGGTTT -ACGGAATAGCCATGGCAAGTGGTT -ACGGAATAGCCATGGCAAGCCTTT -ACGGAATAGCCATGGCAAGGTCTT -ACGGAATAGCCATGGCAAACGCTT -ACGGAATAGCCATGGCAAAGCGTT -ACGGAATAGCCATGGCAATTCGTC -ACGGAATAGCCATGGCAATCTCTC -ACGGAATAGCCATGGCAATGGATC -ACGGAATAGCCATGGCAACACTTC -ACGGAATAGCCATGGCAAGTACTC -ACGGAATAGCCATGGCAAGATGTC -ACGGAATAGCCATGGCAAACAGTC -ACGGAATAGCCATGGCAATTGCTG -ACGGAATAGCCATGGCAATCCATG -ACGGAATAGCCATGGCAATGTGTG -ACGGAATAGCCATGGCAACTAGTG -ACGGAATAGCCATGGCAACATCTG -ACGGAATAGCCATGGCAAGAGTTG -ACGGAATAGCCATGGCAAAGACTG -ACGGAATAGCCATGGCAATCGGTA -ACGGAATAGCCATGGCAATGCCTA -ACGGAATAGCCATGGCAACCACTA -ACGGAATAGCCATGGCAAGGAGTA -ACGGAATAGCCATGGCAATCGTCT -ACGGAATAGCCATGGCAATGCACT -ACGGAATAGCCATGGCAACTGACT -ACGGAATAGCCATGGCAACAACCT -ACGGAATAGCCATGGCAAGCTACT -ACGGAATAGCCATGGCAAGGATCT -ACGGAATAGCCATGGCAAAAGGCT -ACGGAATAGCCATGGCAATCAACC -ACGGAATAGCCATGGCAATGTTCC -ACGGAATAGCCATGGCAAATTCCC -ACGGAATAGCCATGGCAATTCTCG -ACGGAATAGCCATGGCAATAGACG -ACGGAATAGCCATGGCAAGTAACG -ACGGAATAGCCATGGCAAACTTCG -ACGGAATAGCCATGGCAATACGCA -ACGGAATAGCCATGGCAACTTGCA -ACGGAATAGCCATGGCAACGAACA -ACGGAATAGCCATGGCAACAGTCA -ACGGAATAGCCATGGCAAGATCCA -ACGGAATAGCCATGGCAAACGACA -ACGGAATAGCCATGGCAAAGCTCA -ACGGAATAGCCATGGCAATCACGT -ACGGAATAGCCATGGCAACGTAGT -ACGGAATAGCCATGGCAAGTCAGT -ACGGAATAGCCATGGCAAGAAGGT -ACGGAATAGCCATGGCAAAACCGT -ACGGAATAGCCATGGCAATTGTGC -ACGGAATAGCCATGGCAACTAAGC -ACGGAATAGCCATGGCAAACTAGC -ACGGAATAGCCATGGCAAAGATGC -ACGGAATAGCCATGGCAATGAAGG -ACGGAATAGCCATGGCAACAATGG -ACGGAATAGCCATGGCAAATGAGG -ACGGAATAGCCATGGCAAAATGGG -ACGGAATAGCCATGGCAATCCTGA -ACGGAATAGCCATGGCAATAGCGA -ACGGAATAGCCATGGCAACACAGA -ACGGAATAGCCATGGCAAGCAAGA -ACGGAATAGCCATGGCAAGGTTGA -ACGGAATAGCCATGGCAATCCGAT -ACGGAATAGCCATGGCAATGGCAT -ACGGAATAGCCATGGCAACGAGAT -ACGGAATAGCCATGGCAATACCAC -ACGGAATAGCCATGGCAACAGAAC -ACGGAATAGCCATGGCAAGTCTAC -ACGGAATAGCCATGGCAAACGTAC -ACGGAATAGCCATGGCAAAGTGAC -ACGGAATAGCCATGGCAACTGTAG -ACGGAATAGCCATGGCAACCTAAG -ACGGAATAGCCATGGCAAGTTCAG -ACGGAATAGCCATGGCAAGCATAG -ACGGAATAGCCATGGCAAGACAAG -ACGGAATAGCCATGGCAAAAGCAG -ACGGAATAGCCATGGCAACGTCAA -ACGGAATAGCCATGGCAAGCTGAA -ACGGAATAGCCATGGCAAAGTACG -ACGGAATAGCCATGGCAAATCCGA -ACGGAATAGCCATGGCAAATGGGA -ACGGAATAGCCATGGCAAGTGCAA -ACGGAATAGCCATGGCAAGAGGAA -ACGGAATAGCCATGGCAACAGGTA -ACGGAATAGCCATGGCAAGACTCT -ACGGAATAGCCATGGCAAAGTCCT -ACGGAATAGCCATGGCAATAAGCC -ACGGAATAGCCATGGCAAATAGCC -ACGGAATAGCCATGGCAATAACCG -ACGGAATAGCCATGGCAAATGCCA -ACGGAATAGCCAAGGATGGGAAAC -ACGGAATAGCCAAGGATGAACACC -ACGGAATAGCCAAGGATGATCGAG -ACGGAATAGCCAAGGATGCTCCTT -ACGGAATAGCCAAGGATGCCTGTT -ACGGAATAGCCAAGGATGCGGTTT -ACGGAATAGCCAAGGATGGTGGTT -ACGGAATAGCCAAGGATGGCCTTT -ACGGAATAGCCAAGGATGGGTCTT -ACGGAATAGCCAAGGATGACGCTT -ACGGAATAGCCAAGGATGAGCGTT -ACGGAATAGCCAAGGATGTTCGTC -ACGGAATAGCCAAGGATGTCTCTC -ACGGAATAGCCAAGGATGTGGATC -ACGGAATAGCCAAGGATGCACTTC -ACGGAATAGCCAAGGATGGTACTC -ACGGAATAGCCAAGGATGGATGTC -ACGGAATAGCCAAGGATGACAGTC -ACGGAATAGCCAAGGATGTTGCTG -ACGGAATAGCCAAGGATGTCCATG -ACGGAATAGCCAAGGATGTGTGTG -ACGGAATAGCCAAGGATGCTAGTG -ACGGAATAGCCAAGGATGCATCTG -ACGGAATAGCCAAGGATGGAGTTG -ACGGAATAGCCAAGGATGAGACTG -ACGGAATAGCCAAGGATGTCGGTA -ACGGAATAGCCAAGGATGTGCCTA -ACGGAATAGCCAAGGATGCCACTA -ACGGAATAGCCAAGGATGGGAGTA -ACGGAATAGCCAAGGATGTCGTCT -ACGGAATAGCCAAGGATGTGCACT -ACGGAATAGCCAAGGATGCTGACT -ACGGAATAGCCAAGGATGCAACCT -ACGGAATAGCCAAGGATGGCTACT -ACGGAATAGCCAAGGATGGGATCT -ACGGAATAGCCAAGGATGAAGGCT -ACGGAATAGCCAAGGATGTCAACC -ACGGAATAGCCAAGGATGTGTTCC -ACGGAATAGCCAAGGATGATTCCC -ACGGAATAGCCAAGGATGTTCTCG -ACGGAATAGCCAAGGATGTAGACG -ACGGAATAGCCAAGGATGGTAACG -ACGGAATAGCCAAGGATGACTTCG -ACGGAATAGCCAAGGATGTACGCA -ACGGAATAGCCAAGGATGCTTGCA -ACGGAATAGCCAAGGATGCGAACA -ACGGAATAGCCAAGGATGCAGTCA -ACGGAATAGCCAAGGATGGATCCA -ACGGAATAGCCAAGGATGACGACA -ACGGAATAGCCAAGGATGAGCTCA -ACGGAATAGCCAAGGATGTCACGT -ACGGAATAGCCAAGGATGCGTAGT -ACGGAATAGCCAAGGATGGTCAGT -ACGGAATAGCCAAGGATGGAAGGT -ACGGAATAGCCAAGGATGAACCGT -ACGGAATAGCCAAGGATGTTGTGC -ACGGAATAGCCAAGGATGCTAAGC -ACGGAATAGCCAAGGATGACTAGC -ACGGAATAGCCAAGGATGAGATGC -ACGGAATAGCCAAGGATGTGAAGG -ACGGAATAGCCAAGGATGCAATGG -ACGGAATAGCCAAGGATGATGAGG -ACGGAATAGCCAAGGATGAATGGG -ACGGAATAGCCAAGGATGTCCTGA -ACGGAATAGCCAAGGATGTAGCGA -ACGGAATAGCCAAGGATGCACAGA -ACGGAATAGCCAAGGATGGCAAGA -ACGGAATAGCCAAGGATGGGTTGA -ACGGAATAGCCAAGGATGTCCGAT -ACGGAATAGCCAAGGATGTGGCAT -ACGGAATAGCCAAGGATGCGAGAT -ACGGAATAGCCAAGGATGTACCAC -ACGGAATAGCCAAGGATGCAGAAC -ACGGAATAGCCAAGGATGGTCTAC -ACGGAATAGCCAAGGATGACGTAC -ACGGAATAGCCAAGGATGAGTGAC -ACGGAATAGCCAAGGATGCTGTAG -ACGGAATAGCCAAGGATGCCTAAG -ACGGAATAGCCAAGGATGGTTCAG -ACGGAATAGCCAAGGATGGCATAG -ACGGAATAGCCAAGGATGGACAAG -ACGGAATAGCCAAGGATGAAGCAG -ACGGAATAGCCAAGGATGCGTCAA -ACGGAATAGCCAAGGATGGCTGAA -ACGGAATAGCCAAGGATGAGTACG -ACGGAATAGCCAAGGATGATCCGA -ACGGAATAGCCAAGGATGATGGGA -ACGGAATAGCCAAGGATGGTGCAA -ACGGAATAGCCAAGGATGGAGGAA -ACGGAATAGCCAAGGATGCAGGTA -ACGGAATAGCCAAGGATGGACTCT -ACGGAATAGCCAAGGATGAGTCCT -ACGGAATAGCCAAGGATGTAAGCC -ACGGAATAGCCAAGGATGATAGCC -ACGGAATAGCCAAGGATGTAACCG -ACGGAATAGCCAAGGATGATGCCA -ACGGAATAGCCAGGGAATGGAAAC -ACGGAATAGCCAGGGAATAACACC -ACGGAATAGCCAGGGAATATCGAG -ACGGAATAGCCAGGGAATCTCCTT -ACGGAATAGCCAGGGAATCCTGTT -ACGGAATAGCCAGGGAATCGGTTT -ACGGAATAGCCAGGGAATGTGGTT -ACGGAATAGCCAGGGAATGCCTTT -ACGGAATAGCCAGGGAATGGTCTT -ACGGAATAGCCAGGGAATACGCTT -ACGGAATAGCCAGGGAATAGCGTT -ACGGAATAGCCAGGGAATTTCGTC -ACGGAATAGCCAGGGAATTCTCTC -ACGGAATAGCCAGGGAATTGGATC -ACGGAATAGCCAGGGAATCACTTC -ACGGAATAGCCAGGGAATGTACTC -ACGGAATAGCCAGGGAATGATGTC -ACGGAATAGCCAGGGAATACAGTC -ACGGAATAGCCAGGGAATTTGCTG -ACGGAATAGCCAGGGAATTCCATG -ACGGAATAGCCAGGGAATTGTGTG -ACGGAATAGCCAGGGAATCTAGTG -ACGGAATAGCCAGGGAATCATCTG -ACGGAATAGCCAGGGAATGAGTTG -ACGGAATAGCCAGGGAATAGACTG -ACGGAATAGCCAGGGAATTCGGTA -ACGGAATAGCCAGGGAATTGCCTA -ACGGAATAGCCAGGGAATCCACTA -ACGGAATAGCCAGGGAATGGAGTA -ACGGAATAGCCAGGGAATTCGTCT -ACGGAATAGCCAGGGAATTGCACT -ACGGAATAGCCAGGGAATCTGACT -ACGGAATAGCCAGGGAATCAACCT -ACGGAATAGCCAGGGAATGCTACT -ACGGAATAGCCAGGGAATGGATCT -ACGGAATAGCCAGGGAATAAGGCT -ACGGAATAGCCAGGGAATTCAACC -ACGGAATAGCCAGGGAATTGTTCC -ACGGAATAGCCAGGGAATATTCCC -ACGGAATAGCCAGGGAATTTCTCG -ACGGAATAGCCAGGGAATTAGACG -ACGGAATAGCCAGGGAATGTAACG -ACGGAATAGCCAGGGAATACTTCG -ACGGAATAGCCAGGGAATTACGCA -ACGGAATAGCCAGGGAATCTTGCA -ACGGAATAGCCAGGGAATCGAACA -ACGGAATAGCCAGGGAATCAGTCA -ACGGAATAGCCAGGGAATGATCCA -ACGGAATAGCCAGGGAATACGACA -ACGGAATAGCCAGGGAATAGCTCA -ACGGAATAGCCAGGGAATTCACGT -ACGGAATAGCCAGGGAATCGTAGT -ACGGAATAGCCAGGGAATGTCAGT -ACGGAATAGCCAGGGAATGAAGGT -ACGGAATAGCCAGGGAATAACCGT -ACGGAATAGCCAGGGAATTTGTGC -ACGGAATAGCCAGGGAATCTAAGC -ACGGAATAGCCAGGGAATACTAGC -ACGGAATAGCCAGGGAATAGATGC -ACGGAATAGCCAGGGAATTGAAGG -ACGGAATAGCCAGGGAATCAATGG -ACGGAATAGCCAGGGAATATGAGG -ACGGAATAGCCAGGGAATAATGGG -ACGGAATAGCCAGGGAATTCCTGA -ACGGAATAGCCAGGGAATTAGCGA -ACGGAATAGCCAGGGAATCACAGA -ACGGAATAGCCAGGGAATGCAAGA -ACGGAATAGCCAGGGAATGGTTGA -ACGGAATAGCCAGGGAATTCCGAT -ACGGAATAGCCAGGGAATTGGCAT -ACGGAATAGCCAGGGAATCGAGAT -ACGGAATAGCCAGGGAATTACCAC -ACGGAATAGCCAGGGAATCAGAAC -ACGGAATAGCCAGGGAATGTCTAC -ACGGAATAGCCAGGGAATACGTAC -ACGGAATAGCCAGGGAATAGTGAC -ACGGAATAGCCAGGGAATCTGTAG -ACGGAATAGCCAGGGAATCCTAAG -ACGGAATAGCCAGGGAATGTTCAG -ACGGAATAGCCAGGGAATGCATAG -ACGGAATAGCCAGGGAATGACAAG -ACGGAATAGCCAGGGAATAAGCAG -ACGGAATAGCCAGGGAATCGTCAA -ACGGAATAGCCAGGGAATGCTGAA -ACGGAATAGCCAGGGAATAGTACG -ACGGAATAGCCAGGGAATATCCGA -ACGGAATAGCCAGGGAATATGGGA -ACGGAATAGCCAGGGAATGTGCAA -ACGGAATAGCCAGGGAATGAGGAA -ACGGAATAGCCAGGGAATCAGGTA -ACGGAATAGCCAGGGAATGACTCT -ACGGAATAGCCAGGGAATAGTCCT -ACGGAATAGCCAGGGAATTAAGCC -ACGGAATAGCCAGGGAATATAGCC -ACGGAATAGCCAGGGAATTAACCG -ACGGAATAGCCAGGGAATATGCCA -ACGGAATAGCCATGATCCGGAAAC -ACGGAATAGCCATGATCCAACACC -ACGGAATAGCCATGATCCATCGAG -ACGGAATAGCCATGATCCCTCCTT -ACGGAATAGCCATGATCCCCTGTT -ACGGAATAGCCATGATCCCGGTTT -ACGGAATAGCCATGATCCGTGGTT -ACGGAATAGCCATGATCCGCCTTT -ACGGAATAGCCATGATCCGGTCTT -ACGGAATAGCCATGATCCACGCTT -ACGGAATAGCCATGATCCAGCGTT -ACGGAATAGCCATGATCCTTCGTC -ACGGAATAGCCATGATCCTCTCTC -ACGGAATAGCCATGATCCTGGATC -ACGGAATAGCCATGATCCCACTTC -ACGGAATAGCCATGATCCGTACTC -ACGGAATAGCCATGATCCGATGTC -ACGGAATAGCCATGATCCACAGTC -ACGGAATAGCCATGATCCTTGCTG -ACGGAATAGCCATGATCCTCCATG -ACGGAATAGCCATGATCCTGTGTG -ACGGAATAGCCATGATCCCTAGTG -ACGGAATAGCCATGATCCCATCTG -ACGGAATAGCCATGATCCGAGTTG -ACGGAATAGCCATGATCCAGACTG -ACGGAATAGCCATGATCCTCGGTA -ACGGAATAGCCATGATCCTGCCTA -ACGGAATAGCCATGATCCCCACTA -ACGGAATAGCCATGATCCGGAGTA -ACGGAATAGCCATGATCCTCGTCT -ACGGAATAGCCATGATCCTGCACT -ACGGAATAGCCATGATCCCTGACT -ACGGAATAGCCATGATCCCAACCT -ACGGAATAGCCATGATCCGCTACT -ACGGAATAGCCATGATCCGGATCT -ACGGAATAGCCATGATCCAAGGCT -ACGGAATAGCCATGATCCTCAACC -ACGGAATAGCCATGATCCTGTTCC -ACGGAATAGCCATGATCCATTCCC -ACGGAATAGCCATGATCCTTCTCG -ACGGAATAGCCATGATCCTAGACG -ACGGAATAGCCATGATCCGTAACG -ACGGAATAGCCATGATCCACTTCG -ACGGAATAGCCATGATCCTACGCA -ACGGAATAGCCATGATCCCTTGCA -ACGGAATAGCCATGATCCCGAACA -ACGGAATAGCCATGATCCCAGTCA -ACGGAATAGCCATGATCCGATCCA -ACGGAATAGCCATGATCCACGACA -ACGGAATAGCCATGATCCAGCTCA -ACGGAATAGCCATGATCCTCACGT -ACGGAATAGCCATGATCCCGTAGT -ACGGAATAGCCATGATCCGTCAGT -ACGGAATAGCCATGATCCGAAGGT -ACGGAATAGCCATGATCCAACCGT -ACGGAATAGCCATGATCCTTGTGC -ACGGAATAGCCATGATCCCTAAGC -ACGGAATAGCCATGATCCACTAGC -ACGGAATAGCCATGATCCAGATGC -ACGGAATAGCCATGATCCTGAAGG -ACGGAATAGCCATGATCCCAATGG -ACGGAATAGCCATGATCCATGAGG -ACGGAATAGCCATGATCCAATGGG -ACGGAATAGCCATGATCCTCCTGA -ACGGAATAGCCATGATCCTAGCGA -ACGGAATAGCCATGATCCCACAGA -ACGGAATAGCCATGATCCGCAAGA -ACGGAATAGCCATGATCCGGTTGA -ACGGAATAGCCATGATCCTCCGAT -ACGGAATAGCCATGATCCTGGCAT -ACGGAATAGCCATGATCCCGAGAT -ACGGAATAGCCATGATCCTACCAC -ACGGAATAGCCATGATCCCAGAAC -ACGGAATAGCCATGATCCGTCTAC -ACGGAATAGCCATGATCCACGTAC -ACGGAATAGCCATGATCCAGTGAC -ACGGAATAGCCATGATCCCTGTAG -ACGGAATAGCCATGATCCCCTAAG -ACGGAATAGCCATGATCCGTTCAG -ACGGAATAGCCATGATCCGCATAG -ACGGAATAGCCATGATCCGACAAG -ACGGAATAGCCATGATCCAAGCAG -ACGGAATAGCCATGATCCCGTCAA -ACGGAATAGCCATGATCCGCTGAA -ACGGAATAGCCATGATCCAGTACG -ACGGAATAGCCATGATCCATCCGA -ACGGAATAGCCATGATCCATGGGA -ACGGAATAGCCATGATCCGTGCAA -ACGGAATAGCCATGATCCGAGGAA -ACGGAATAGCCATGATCCCAGGTA -ACGGAATAGCCATGATCCGACTCT -ACGGAATAGCCATGATCCAGTCCT -ACGGAATAGCCATGATCCTAAGCC -ACGGAATAGCCATGATCCATAGCC -ACGGAATAGCCATGATCCTAACCG -ACGGAATAGCCATGATCCATGCCA -ACGGAATAGCCACGATAGGGAAAC -ACGGAATAGCCACGATAGAACACC -ACGGAATAGCCACGATAGATCGAG -ACGGAATAGCCACGATAGCTCCTT -ACGGAATAGCCACGATAGCCTGTT -ACGGAATAGCCACGATAGCGGTTT -ACGGAATAGCCACGATAGGTGGTT -ACGGAATAGCCACGATAGGCCTTT -ACGGAATAGCCACGATAGGGTCTT -ACGGAATAGCCACGATAGACGCTT -ACGGAATAGCCACGATAGAGCGTT -ACGGAATAGCCACGATAGTTCGTC -ACGGAATAGCCACGATAGTCTCTC -ACGGAATAGCCACGATAGTGGATC -ACGGAATAGCCACGATAGCACTTC -ACGGAATAGCCACGATAGGTACTC -ACGGAATAGCCACGATAGGATGTC -ACGGAATAGCCACGATAGACAGTC -ACGGAATAGCCACGATAGTTGCTG -ACGGAATAGCCACGATAGTCCATG -ACGGAATAGCCACGATAGTGTGTG -ACGGAATAGCCACGATAGCTAGTG -ACGGAATAGCCACGATAGCATCTG -ACGGAATAGCCACGATAGGAGTTG -ACGGAATAGCCACGATAGAGACTG -ACGGAATAGCCACGATAGTCGGTA -ACGGAATAGCCACGATAGTGCCTA -ACGGAATAGCCACGATAGCCACTA -ACGGAATAGCCACGATAGGGAGTA -ACGGAATAGCCACGATAGTCGTCT -ACGGAATAGCCACGATAGTGCACT -ACGGAATAGCCACGATAGCTGACT -ACGGAATAGCCACGATAGCAACCT -ACGGAATAGCCACGATAGGCTACT -ACGGAATAGCCACGATAGGGATCT -ACGGAATAGCCACGATAGAAGGCT -ACGGAATAGCCACGATAGTCAACC -ACGGAATAGCCACGATAGTGTTCC -ACGGAATAGCCACGATAGATTCCC -ACGGAATAGCCACGATAGTTCTCG -ACGGAATAGCCACGATAGTAGACG -ACGGAATAGCCACGATAGGTAACG -ACGGAATAGCCACGATAGACTTCG -ACGGAATAGCCACGATAGTACGCA -ACGGAATAGCCACGATAGCTTGCA -ACGGAATAGCCACGATAGCGAACA -ACGGAATAGCCACGATAGCAGTCA -ACGGAATAGCCACGATAGGATCCA -ACGGAATAGCCACGATAGACGACA -ACGGAATAGCCACGATAGAGCTCA -ACGGAATAGCCACGATAGTCACGT -ACGGAATAGCCACGATAGCGTAGT -ACGGAATAGCCACGATAGGTCAGT -ACGGAATAGCCACGATAGGAAGGT -ACGGAATAGCCACGATAGAACCGT -ACGGAATAGCCACGATAGTTGTGC -ACGGAATAGCCACGATAGCTAAGC -ACGGAATAGCCACGATAGACTAGC -ACGGAATAGCCACGATAGAGATGC -ACGGAATAGCCACGATAGTGAAGG -ACGGAATAGCCACGATAGCAATGG -ACGGAATAGCCACGATAGATGAGG -ACGGAATAGCCACGATAGAATGGG -ACGGAATAGCCACGATAGTCCTGA -ACGGAATAGCCACGATAGTAGCGA -ACGGAATAGCCACGATAGCACAGA -ACGGAATAGCCACGATAGGCAAGA -ACGGAATAGCCACGATAGGGTTGA -ACGGAATAGCCACGATAGTCCGAT -ACGGAATAGCCACGATAGTGGCAT -ACGGAATAGCCACGATAGCGAGAT -ACGGAATAGCCACGATAGTACCAC -ACGGAATAGCCACGATAGCAGAAC -ACGGAATAGCCACGATAGGTCTAC -ACGGAATAGCCACGATAGACGTAC -ACGGAATAGCCACGATAGAGTGAC -ACGGAATAGCCACGATAGCTGTAG -ACGGAATAGCCACGATAGCCTAAG -ACGGAATAGCCACGATAGGTTCAG -ACGGAATAGCCACGATAGGCATAG -ACGGAATAGCCACGATAGGACAAG -ACGGAATAGCCACGATAGAAGCAG -ACGGAATAGCCACGATAGCGTCAA -ACGGAATAGCCACGATAGGCTGAA -ACGGAATAGCCACGATAGAGTACG -ACGGAATAGCCACGATAGATCCGA -ACGGAATAGCCACGATAGATGGGA -ACGGAATAGCCACGATAGGTGCAA -ACGGAATAGCCACGATAGGAGGAA -ACGGAATAGCCACGATAGCAGGTA -ACGGAATAGCCACGATAGGACTCT -ACGGAATAGCCACGATAGAGTCCT -ACGGAATAGCCACGATAGTAAGCC -ACGGAATAGCCACGATAGATAGCC -ACGGAATAGCCACGATAGTAACCG -ACGGAATAGCCACGATAGATGCCA -ACGGAATAGCCAAGACACGGAAAC -ACGGAATAGCCAAGACACAACACC -ACGGAATAGCCAAGACACATCGAG -ACGGAATAGCCAAGACACCTCCTT -ACGGAATAGCCAAGACACCCTGTT -ACGGAATAGCCAAGACACCGGTTT -ACGGAATAGCCAAGACACGTGGTT -ACGGAATAGCCAAGACACGCCTTT -ACGGAATAGCCAAGACACGGTCTT -ACGGAATAGCCAAGACACACGCTT -ACGGAATAGCCAAGACACAGCGTT -ACGGAATAGCCAAGACACTTCGTC -ACGGAATAGCCAAGACACTCTCTC -ACGGAATAGCCAAGACACTGGATC -ACGGAATAGCCAAGACACCACTTC -ACGGAATAGCCAAGACACGTACTC -ACGGAATAGCCAAGACACGATGTC -ACGGAATAGCCAAGACACACAGTC -ACGGAATAGCCAAGACACTTGCTG -ACGGAATAGCCAAGACACTCCATG -ACGGAATAGCCAAGACACTGTGTG -ACGGAATAGCCAAGACACCTAGTG -ACGGAATAGCCAAGACACCATCTG -ACGGAATAGCCAAGACACGAGTTG -ACGGAATAGCCAAGACACAGACTG -ACGGAATAGCCAAGACACTCGGTA -ACGGAATAGCCAAGACACTGCCTA -ACGGAATAGCCAAGACACCCACTA -ACGGAATAGCCAAGACACGGAGTA -ACGGAATAGCCAAGACACTCGTCT -ACGGAATAGCCAAGACACTGCACT -ACGGAATAGCCAAGACACCTGACT -ACGGAATAGCCAAGACACCAACCT -ACGGAATAGCCAAGACACGCTACT -ACGGAATAGCCAAGACACGGATCT -ACGGAATAGCCAAGACACAAGGCT -ACGGAATAGCCAAGACACTCAACC -ACGGAATAGCCAAGACACTGTTCC -ACGGAATAGCCAAGACACATTCCC -ACGGAATAGCCAAGACACTTCTCG -ACGGAATAGCCAAGACACTAGACG -ACGGAATAGCCAAGACACGTAACG -ACGGAATAGCCAAGACACACTTCG -ACGGAATAGCCAAGACACTACGCA -ACGGAATAGCCAAGACACCTTGCA -ACGGAATAGCCAAGACACCGAACA -ACGGAATAGCCAAGACACCAGTCA -ACGGAATAGCCAAGACACGATCCA -ACGGAATAGCCAAGACACACGACA -ACGGAATAGCCAAGACACAGCTCA -ACGGAATAGCCAAGACACTCACGT -ACGGAATAGCCAAGACACCGTAGT -ACGGAATAGCCAAGACACGTCAGT -ACGGAATAGCCAAGACACGAAGGT -ACGGAATAGCCAAGACACAACCGT -ACGGAATAGCCAAGACACTTGTGC -ACGGAATAGCCAAGACACCTAAGC -ACGGAATAGCCAAGACACACTAGC -ACGGAATAGCCAAGACACAGATGC -ACGGAATAGCCAAGACACTGAAGG -ACGGAATAGCCAAGACACCAATGG -ACGGAATAGCCAAGACACATGAGG -ACGGAATAGCCAAGACACAATGGG -ACGGAATAGCCAAGACACTCCTGA -ACGGAATAGCCAAGACACTAGCGA -ACGGAATAGCCAAGACACCACAGA -ACGGAATAGCCAAGACACGCAAGA -ACGGAATAGCCAAGACACGGTTGA -ACGGAATAGCCAAGACACTCCGAT -ACGGAATAGCCAAGACACTGGCAT -ACGGAATAGCCAAGACACCGAGAT -ACGGAATAGCCAAGACACTACCAC -ACGGAATAGCCAAGACACCAGAAC -ACGGAATAGCCAAGACACGTCTAC -ACGGAATAGCCAAGACACACGTAC -ACGGAATAGCCAAGACACAGTGAC -ACGGAATAGCCAAGACACCTGTAG -ACGGAATAGCCAAGACACCCTAAG -ACGGAATAGCCAAGACACGTTCAG -ACGGAATAGCCAAGACACGCATAG -ACGGAATAGCCAAGACACGACAAG -ACGGAATAGCCAAGACACAAGCAG -ACGGAATAGCCAAGACACCGTCAA -ACGGAATAGCCAAGACACGCTGAA -ACGGAATAGCCAAGACACAGTACG -ACGGAATAGCCAAGACACATCCGA -ACGGAATAGCCAAGACACATGGGA -ACGGAATAGCCAAGACACGTGCAA -ACGGAATAGCCAAGACACGAGGAA -ACGGAATAGCCAAGACACCAGGTA -ACGGAATAGCCAAGACACGACTCT -ACGGAATAGCCAAGACACAGTCCT -ACGGAATAGCCAAGACACTAAGCC -ACGGAATAGCCAAGACACATAGCC -ACGGAATAGCCAAGACACTAACCG -ACGGAATAGCCAAGACACATGCCA -ACGGAATAGCCAAGAGCAGGAAAC -ACGGAATAGCCAAGAGCAAACACC -ACGGAATAGCCAAGAGCAATCGAG -ACGGAATAGCCAAGAGCACTCCTT -ACGGAATAGCCAAGAGCACCTGTT -ACGGAATAGCCAAGAGCACGGTTT -ACGGAATAGCCAAGAGCAGTGGTT -ACGGAATAGCCAAGAGCAGCCTTT -ACGGAATAGCCAAGAGCAGGTCTT -ACGGAATAGCCAAGAGCAACGCTT -ACGGAATAGCCAAGAGCAAGCGTT -ACGGAATAGCCAAGAGCATTCGTC -ACGGAATAGCCAAGAGCATCTCTC -ACGGAATAGCCAAGAGCATGGATC -ACGGAATAGCCAAGAGCACACTTC -ACGGAATAGCCAAGAGCAGTACTC -ACGGAATAGCCAAGAGCAGATGTC -ACGGAATAGCCAAGAGCAACAGTC -ACGGAATAGCCAAGAGCATTGCTG -ACGGAATAGCCAAGAGCATCCATG -ACGGAATAGCCAAGAGCATGTGTG -ACGGAATAGCCAAGAGCACTAGTG -ACGGAATAGCCAAGAGCACATCTG -ACGGAATAGCCAAGAGCAGAGTTG -ACGGAATAGCCAAGAGCAAGACTG -ACGGAATAGCCAAGAGCATCGGTA -ACGGAATAGCCAAGAGCATGCCTA -ACGGAATAGCCAAGAGCACCACTA -ACGGAATAGCCAAGAGCAGGAGTA -ACGGAATAGCCAAGAGCATCGTCT -ACGGAATAGCCAAGAGCATGCACT -ACGGAATAGCCAAGAGCACTGACT -ACGGAATAGCCAAGAGCACAACCT -ACGGAATAGCCAAGAGCAGCTACT -ACGGAATAGCCAAGAGCAGGATCT -ACGGAATAGCCAAGAGCAAAGGCT -ACGGAATAGCCAAGAGCATCAACC -ACGGAATAGCCAAGAGCATGTTCC -ACGGAATAGCCAAGAGCAATTCCC -ACGGAATAGCCAAGAGCATTCTCG -ACGGAATAGCCAAGAGCATAGACG -ACGGAATAGCCAAGAGCAGTAACG -ACGGAATAGCCAAGAGCAACTTCG -ACGGAATAGCCAAGAGCATACGCA -ACGGAATAGCCAAGAGCACTTGCA -ACGGAATAGCCAAGAGCACGAACA -ACGGAATAGCCAAGAGCACAGTCA -ACGGAATAGCCAAGAGCAGATCCA -ACGGAATAGCCAAGAGCAACGACA -ACGGAATAGCCAAGAGCAAGCTCA -ACGGAATAGCCAAGAGCATCACGT -ACGGAATAGCCAAGAGCACGTAGT -ACGGAATAGCCAAGAGCAGTCAGT -ACGGAATAGCCAAGAGCAGAAGGT -ACGGAATAGCCAAGAGCAAACCGT -ACGGAATAGCCAAGAGCATTGTGC -ACGGAATAGCCAAGAGCACTAAGC -ACGGAATAGCCAAGAGCAACTAGC -ACGGAATAGCCAAGAGCAAGATGC -ACGGAATAGCCAAGAGCATGAAGG -ACGGAATAGCCAAGAGCACAATGG -ACGGAATAGCCAAGAGCAATGAGG -ACGGAATAGCCAAGAGCAAATGGG -ACGGAATAGCCAAGAGCATCCTGA -ACGGAATAGCCAAGAGCATAGCGA -ACGGAATAGCCAAGAGCACACAGA -ACGGAATAGCCAAGAGCAGCAAGA -ACGGAATAGCCAAGAGCAGGTTGA -ACGGAATAGCCAAGAGCATCCGAT -ACGGAATAGCCAAGAGCATGGCAT -ACGGAATAGCCAAGAGCACGAGAT -ACGGAATAGCCAAGAGCATACCAC -ACGGAATAGCCAAGAGCACAGAAC -ACGGAATAGCCAAGAGCAGTCTAC -ACGGAATAGCCAAGAGCAACGTAC -ACGGAATAGCCAAGAGCAAGTGAC -ACGGAATAGCCAAGAGCACTGTAG -ACGGAATAGCCAAGAGCACCTAAG -ACGGAATAGCCAAGAGCAGTTCAG -ACGGAATAGCCAAGAGCAGCATAG -ACGGAATAGCCAAGAGCAGACAAG -ACGGAATAGCCAAGAGCAAAGCAG -ACGGAATAGCCAAGAGCACGTCAA -ACGGAATAGCCAAGAGCAGCTGAA -ACGGAATAGCCAAGAGCAAGTACG -ACGGAATAGCCAAGAGCAATCCGA -ACGGAATAGCCAAGAGCAATGGGA -ACGGAATAGCCAAGAGCAGTGCAA -ACGGAATAGCCAAGAGCAGAGGAA -ACGGAATAGCCAAGAGCACAGGTA -ACGGAATAGCCAAGAGCAGACTCT -ACGGAATAGCCAAGAGCAAGTCCT -ACGGAATAGCCAAGAGCATAAGCC -ACGGAATAGCCAAGAGCAATAGCC -ACGGAATAGCCAAGAGCATAACCG -ACGGAATAGCCAAGAGCAATGCCA -ACGGAATAGCCATGAGGTGGAAAC -ACGGAATAGCCATGAGGTAACACC -ACGGAATAGCCATGAGGTATCGAG -ACGGAATAGCCATGAGGTCTCCTT -ACGGAATAGCCATGAGGTCCTGTT -ACGGAATAGCCATGAGGTCGGTTT -ACGGAATAGCCATGAGGTGTGGTT -ACGGAATAGCCATGAGGTGCCTTT -ACGGAATAGCCATGAGGTGGTCTT -ACGGAATAGCCATGAGGTACGCTT -ACGGAATAGCCATGAGGTAGCGTT -ACGGAATAGCCATGAGGTTTCGTC -ACGGAATAGCCATGAGGTTCTCTC -ACGGAATAGCCATGAGGTTGGATC -ACGGAATAGCCATGAGGTCACTTC -ACGGAATAGCCATGAGGTGTACTC -ACGGAATAGCCATGAGGTGATGTC -ACGGAATAGCCATGAGGTACAGTC -ACGGAATAGCCATGAGGTTTGCTG -ACGGAATAGCCATGAGGTTCCATG -ACGGAATAGCCATGAGGTTGTGTG -ACGGAATAGCCATGAGGTCTAGTG -ACGGAATAGCCATGAGGTCATCTG -ACGGAATAGCCATGAGGTGAGTTG -ACGGAATAGCCATGAGGTAGACTG -ACGGAATAGCCATGAGGTTCGGTA -ACGGAATAGCCATGAGGTTGCCTA -ACGGAATAGCCATGAGGTCCACTA -ACGGAATAGCCATGAGGTGGAGTA -ACGGAATAGCCATGAGGTTCGTCT -ACGGAATAGCCATGAGGTTGCACT -ACGGAATAGCCATGAGGTCTGACT -ACGGAATAGCCATGAGGTCAACCT -ACGGAATAGCCATGAGGTGCTACT -ACGGAATAGCCATGAGGTGGATCT -ACGGAATAGCCATGAGGTAAGGCT -ACGGAATAGCCATGAGGTTCAACC -ACGGAATAGCCATGAGGTTGTTCC -ACGGAATAGCCATGAGGTATTCCC -ACGGAATAGCCATGAGGTTTCTCG -ACGGAATAGCCATGAGGTTAGACG -ACGGAATAGCCATGAGGTGTAACG -ACGGAATAGCCATGAGGTACTTCG -ACGGAATAGCCATGAGGTTACGCA -ACGGAATAGCCATGAGGTCTTGCA -ACGGAATAGCCATGAGGTCGAACA -ACGGAATAGCCATGAGGTCAGTCA -ACGGAATAGCCATGAGGTGATCCA -ACGGAATAGCCATGAGGTACGACA -ACGGAATAGCCATGAGGTAGCTCA -ACGGAATAGCCATGAGGTTCACGT -ACGGAATAGCCATGAGGTCGTAGT -ACGGAATAGCCATGAGGTGTCAGT -ACGGAATAGCCATGAGGTGAAGGT -ACGGAATAGCCATGAGGTAACCGT -ACGGAATAGCCATGAGGTTTGTGC -ACGGAATAGCCATGAGGTCTAAGC -ACGGAATAGCCATGAGGTACTAGC -ACGGAATAGCCATGAGGTAGATGC -ACGGAATAGCCATGAGGTTGAAGG -ACGGAATAGCCATGAGGTCAATGG -ACGGAATAGCCATGAGGTATGAGG -ACGGAATAGCCATGAGGTAATGGG -ACGGAATAGCCATGAGGTTCCTGA -ACGGAATAGCCATGAGGTTAGCGA -ACGGAATAGCCATGAGGTCACAGA -ACGGAATAGCCATGAGGTGCAAGA -ACGGAATAGCCATGAGGTGGTTGA -ACGGAATAGCCATGAGGTTCCGAT -ACGGAATAGCCATGAGGTTGGCAT -ACGGAATAGCCATGAGGTCGAGAT -ACGGAATAGCCATGAGGTTACCAC -ACGGAATAGCCATGAGGTCAGAAC -ACGGAATAGCCATGAGGTGTCTAC -ACGGAATAGCCATGAGGTACGTAC -ACGGAATAGCCATGAGGTAGTGAC -ACGGAATAGCCATGAGGTCTGTAG -ACGGAATAGCCATGAGGTCCTAAG -ACGGAATAGCCATGAGGTGTTCAG -ACGGAATAGCCATGAGGTGCATAG -ACGGAATAGCCATGAGGTGACAAG -ACGGAATAGCCATGAGGTAAGCAG -ACGGAATAGCCATGAGGTCGTCAA -ACGGAATAGCCATGAGGTGCTGAA -ACGGAATAGCCATGAGGTAGTACG -ACGGAATAGCCATGAGGTATCCGA -ACGGAATAGCCATGAGGTATGGGA -ACGGAATAGCCATGAGGTGTGCAA -ACGGAATAGCCATGAGGTGAGGAA -ACGGAATAGCCATGAGGTCAGGTA -ACGGAATAGCCATGAGGTGACTCT -ACGGAATAGCCATGAGGTAGTCCT -ACGGAATAGCCATGAGGTTAAGCC -ACGGAATAGCCATGAGGTATAGCC -ACGGAATAGCCATGAGGTTAACCG -ACGGAATAGCCATGAGGTATGCCA -ACGGAATAGCCAGATTCCGGAAAC -ACGGAATAGCCAGATTCCAACACC -ACGGAATAGCCAGATTCCATCGAG -ACGGAATAGCCAGATTCCCTCCTT -ACGGAATAGCCAGATTCCCCTGTT -ACGGAATAGCCAGATTCCCGGTTT -ACGGAATAGCCAGATTCCGTGGTT -ACGGAATAGCCAGATTCCGCCTTT -ACGGAATAGCCAGATTCCGGTCTT -ACGGAATAGCCAGATTCCACGCTT -ACGGAATAGCCAGATTCCAGCGTT -ACGGAATAGCCAGATTCCTTCGTC -ACGGAATAGCCAGATTCCTCTCTC -ACGGAATAGCCAGATTCCTGGATC -ACGGAATAGCCAGATTCCCACTTC -ACGGAATAGCCAGATTCCGTACTC -ACGGAATAGCCAGATTCCGATGTC -ACGGAATAGCCAGATTCCACAGTC -ACGGAATAGCCAGATTCCTTGCTG -ACGGAATAGCCAGATTCCTCCATG -ACGGAATAGCCAGATTCCTGTGTG -ACGGAATAGCCAGATTCCCTAGTG -ACGGAATAGCCAGATTCCCATCTG -ACGGAATAGCCAGATTCCGAGTTG -ACGGAATAGCCAGATTCCAGACTG -ACGGAATAGCCAGATTCCTCGGTA -ACGGAATAGCCAGATTCCTGCCTA -ACGGAATAGCCAGATTCCCCACTA -ACGGAATAGCCAGATTCCGGAGTA -ACGGAATAGCCAGATTCCTCGTCT -ACGGAATAGCCAGATTCCTGCACT -ACGGAATAGCCAGATTCCCTGACT -ACGGAATAGCCAGATTCCCAACCT -ACGGAATAGCCAGATTCCGCTACT -ACGGAATAGCCAGATTCCGGATCT -ACGGAATAGCCAGATTCCAAGGCT -ACGGAATAGCCAGATTCCTCAACC -ACGGAATAGCCAGATTCCTGTTCC -ACGGAATAGCCAGATTCCATTCCC -ACGGAATAGCCAGATTCCTTCTCG -ACGGAATAGCCAGATTCCTAGACG -ACGGAATAGCCAGATTCCGTAACG -ACGGAATAGCCAGATTCCACTTCG -ACGGAATAGCCAGATTCCTACGCA -ACGGAATAGCCAGATTCCCTTGCA -ACGGAATAGCCAGATTCCCGAACA -ACGGAATAGCCAGATTCCCAGTCA -ACGGAATAGCCAGATTCCGATCCA -ACGGAATAGCCAGATTCCACGACA -ACGGAATAGCCAGATTCCAGCTCA -ACGGAATAGCCAGATTCCTCACGT -ACGGAATAGCCAGATTCCCGTAGT -ACGGAATAGCCAGATTCCGTCAGT -ACGGAATAGCCAGATTCCGAAGGT -ACGGAATAGCCAGATTCCAACCGT -ACGGAATAGCCAGATTCCTTGTGC -ACGGAATAGCCAGATTCCCTAAGC -ACGGAATAGCCAGATTCCACTAGC -ACGGAATAGCCAGATTCCAGATGC -ACGGAATAGCCAGATTCCTGAAGG -ACGGAATAGCCAGATTCCCAATGG -ACGGAATAGCCAGATTCCATGAGG -ACGGAATAGCCAGATTCCAATGGG -ACGGAATAGCCAGATTCCTCCTGA -ACGGAATAGCCAGATTCCTAGCGA -ACGGAATAGCCAGATTCCCACAGA -ACGGAATAGCCAGATTCCGCAAGA -ACGGAATAGCCAGATTCCGGTTGA -ACGGAATAGCCAGATTCCTCCGAT -ACGGAATAGCCAGATTCCTGGCAT -ACGGAATAGCCAGATTCCCGAGAT -ACGGAATAGCCAGATTCCTACCAC -ACGGAATAGCCAGATTCCCAGAAC -ACGGAATAGCCAGATTCCGTCTAC -ACGGAATAGCCAGATTCCACGTAC -ACGGAATAGCCAGATTCCAGTGAC -ACGGAATAGCCAGATTCCCTGTAG -ACGGAATAGCCAGATTCCCCTAAG -ACGGAATAGCCAGATTCCGTTCAG -ACGGAATAGCCAGATTCCGCATAG -ACGGAATAGCCAGATTCCGACAAG -ACGGAATAGCCAGATTCCAAGCAG -ACGGAATAGCCAGATTCCCGTCAA -ACGGAATAGCCAGATTCCGCTGAA -ACGGAATAGCCAGATTCCAGTACG -ACGGAATAGCCAGATTCCATCCGA -ACGGAATAGCCAGATTCCATGGGA -ACGGAATAGCCAGATTCCGTGCAA -ACGGAATAGCCAGATTCCGAGGAA -ACGGAATAGCCAGATTCCCAGGTA -ACGGAATAGCCAGATTCCGACTCT -ACGGAATAGCCAGATTCCAGTCCT -ACGGAATAGCCAGATTCCTAAGCC -ACGGAATAGCCAGATTCCATAGCC -ACGGAATAGCCAGATTCCTAACCG -ACGGAATAGCCAGATTCCATGCCA -ACGGAATAGCCACATTGGGGAAAC -ACGGAATAGCCACATTGGAACACC -ACGGAATAGCCACATTGGATCGAG -ACGGAATAGCCACATTGGCTCCTT -ACGGAATAGCCACATTGGCCTGTT -ACGGAATAGCCACATTGGCGGTTT -ACGGAATAGCCACATTGGGTGGTT -ACGGAATAGCCACATTGGGCCTTT -ACGGAATAGCCACATTGGGGTCTT -ACGGAATAGCCACATTGGACGCTT -ACGGAATAGCCACATTGGAGCGTT -ACGGAATAGCCACATTGGTTCGTC -ACGGAATAGCCACATTGGTCTCTC -ACGGAATAGCCACATTGGTGGATC -ACGGAATAGCCACATTGGCACTTC -ACGGAATAGCCACATTGGGTACTC -ACGGAATAGCCACATTGGGATGTC -ACGGAATAGCCACATTGGACAGTC -ACGGAATAGCCACATTGGTTGCTG -ACGGAATAGCCACATTGGTCCATG -ACGGAATAGCCACATTGGTGTGTG -ACGGAATAGCCACATTGGCTAGTG -ACGGAATAGCCACATTGGCATCTG -ACGGAATAGCCACATTGGGAGTTG -ACGGAATAGCCACATTGGAGACTG -ACGGAATAGCCACATTGGTCGGTA -ACGGAATAGCCACATTGGTGCCTA -ACGGAATAGCCACATTGGCCACTA -ACGGAATAGCCACATTGGGGAGTA -ACGGAATAGCCACATTGGTCGTCT -ACGGAATAGCCACATTGGTGCACT -ACGGAATAGCCACATTGGCTGACT -ACGGAATAGCCACATTGGCAACCT -ACGGAATAGCCACATTGGGCTACT -ACGGAATAGCCACATTGGGGATCT -ACGGAATAGCCACATTGGAAGGCT -ACGGAATAGCCACATTGGTCAACC -ACGGAATAGCCACATTGGTGTTCC -ACGGAATAGCCACATTGGATTCCC -ACGGAATAGCCACATTGGTTCTCG -ACGGAATAGCCACATTGGTAGACG -ACGGAATAGCCACATTGGGTAACG -ACGGAATAGCCACATTGGACTTCG -ACGGAATAGCCACATTGGTACGCA -ACGGAATAGCCACATTGGCTTGCA -ACGGAATAGCCACATTGGCGAACA -ACGGAATAGCCACATTGGCAGTCA -ACGGAATAGCCACATTGGGATCCA -ACGGAATAGCCACATTGGACGACA -ACGGAATAGCCACATTGGAGCTCA -ACGGAATAGCCACATTGGTCACGT -ACGGAATAGCCACATTGGCGTAGT -ACGGAATAGCCACATTGGGTCAGT -ACGGAATAGCCACATTGGGAAGGT -ACGGAATAGCCACATTGGAACCGT -ACGGAATAGCCACATTGGTTGTGC -ACGGAATAGCCACATTGGCTAAGC -ACGGAATAGCCACATTGGACTAGC -ACGGAATAGCCACATTGGAGATGC -ACGGAATAGCCACATTGGTGAAGG -ACGGAATAGCCACATTGGCAATGG -ACGGAATAGCCACATTGGATGAGG -ACGGAATAGCCACATTGGAATGGG -ACGGAATAGCCACATTGGTCCTGA -ACGGAATAGCCACATTGGTAGCGA -ACGGAATAGCCACATTGGCACAGA -ACGGAATAGCCACATTGGGCAAGA -ACGGAATAGCCACATTGGGGTTGA -ACGGAATAGCCACATTGGTCCGAT -ACGGAATAGCCACATTGGTGGCAT -ACGGAATAGCCACATTGGCGAGAT -ACGGAATAGCCACATTGGTACCAC -ACGGAATAGCCACATTGGCAGAAC -ACGGAATAGCCACATTGGGTCTAC -ACGGAATAGCCACATTGGACGTAC -ACGGAATAGCCACATTGGAGTGAC -ACGGAATAGCCACATTGGCTGTAG -ACGGAATAGCCACATTGGCCTAAG -ACGGAATAGCCACATTGGGTTCAG -ACGGAATAGCCACATTGGGCATAG -ACGGAATAGCCACATTGGGACAAG -ACGGAATAGCCACATTGGAAGCAG -ACGGAATAGCCACATTGGCGTCAA -ACGGAATAGCCACATTGGGCTGAA -ACGGAATAGCCACATTGGAGTACG -ACGGAATAGCCACATTGGATCCGA -ACGGAATAGCCACATTGGATGGGA -ACGGAATAGCCACATTGGGTGCAA -ACGGAATAGCCACATTGGGAGGAA -ACGGAATAGCCACATTGGCAGGTA -ACGGAATAGCCACATTGGGACTCT -ACGGAATAGCCACATTGGAGTCCT -ACGGAATAGCCACATTGGTAAGCC -ACGGAATAGCCACATTGGATAGCC -ACGGAATAGCCACATTGGTAACCG -ACGGAATAGCCACATTGGATGCCA -ACGGAATAGCCAGATCGAGGAAAC -ACGGAATAGCCAGATCGAAACACC -ACGGAATAGCCAGATCGAATCGAG -ACGGAATAGCCAGATCGACTCCTT -ACGGAATAGCCAGATCGACCTGTT -ACGGAATAGCCAGATCGACGGTTT -ACGGAATAGCCAGATCGAGTGGTT -ACGGAATAGCCAGATCGAGCCTTT -ACGGAATAGCCAGATCGAGGTCTT -ACGGAATAGCCAGATCGAACGCTT -ACGGAATAGCCAGATCGAAGCGTT -ACGGAATAGCCAGATCGATTCGTC -ACGGAATAGCCAGATCGATCTCTC -ACGGAATAGCCAGATCGATGGATC -ACGGAATAGCCAGATCGACACTTC -ACGGAATAGCCAGATCGAGTACTC -ACGGAATAGCCAGATCGAGATGTC -ACGGAATAGCCAGATCGAACAGTC -ACGGAATAGCCAGATCGATTGCTG -ACGGAATAGCCAGATCGATCCATG -ACGGAATAGCCAGATCGATGTGTG -ACGGAATAGCCAGATCGACTAGTG -ACGGAATAGCCAGATCGACATCTG -ACGGAATAGCCAGATCGAGAGTTG -ACGGAATAGCCAGATCGAAGACTG -ACGGAATAGCCAGATCGATCGGTA -ACGGAATAGCCAGATCGATGCCTA -ACGGAATAGCCAGATCGACCACTA -ACGGAATAGCCAGATCGAGGAGTA -ACGGAATAGCCAGATCGATCGTCT -ACGGAATAGCCAGATCGATGCACT -ACGGAATAGCCAGATCGACTGACT -ACGGAATAGCCAGATCGACAACCT -ACGGAATAGCCAGATCGAGCTACT -ACGGAATAGCCAGATCGAGGATCT -ACGGAATAGCCAGATCGAAAGGCT -ACGGAATAGCCAGATCGATCAACC -ACGGAATAGCCAGATCGATGTTCC -ACGGAATAGCCAGATCGAATTCCC -ACGGAATAGCCAGATCGATTCTCG -ACGGAATAGCCAGATCGATAGACG -ACGGAATAGCCAGATCGAGTAACG -ACGGAATAGCCAGATCGAACTTCG -ACGGAATAGCCAGATCGATACGCA -ACGGAATAGCCAGATCGACTTGCA -ACGGAATAGCCAGATCGACGAACA -ACGGAATAGCCAGATCGACAGTCA -ACGGAATAGCCAGATCGAGATCCA -ACGGAATAGCCAGATCGAACGACA -ACGGAATAGCCAGATCGAAGCTCA -ACGGAATAGCCAGATCGATCACGT -ACGGAATAGCCAGATCGACGTAGT -ACGGAATAGCCAGATCGAGTCAGT -ACGGAATAGCCAGATCGAGAAGGT -ACGGAATAGCCAGATCGAAACCGT -ACGGAATAGCCAGATCGATTGTGC -ACGGAATAGCCAGATCGACTAAGC -ACGGAATAGCCAGATCGAACTAGC -ACGGAATAGCCAGATCGAAGATGC -ACGGAATAGCCAGATCGATGAAGG -ACGGAATAGCCAGATCGACAATGG -ACGGAATAGCCAGATCGAATGAGG -ACGGAATAGCCAGATCGAAATGGG -ACGGAATAGCCAGATCGATCCTGA -ACGGAATAGCCAGATCGATAGCGA -ACGGAATAGCCAGATCGACACAGA -ACGGAATAGCCAGATCGAGCAAGA -ACGGAATAGCCAGATCGAGGTTGA -ACGGAATAGCCAGATCGATCCGAT -ACGGAATAGCCAGATCGATGGCAT -ACGGAATAGCCAGATCGACGAGAT -ACGGAATAGCCAGATCGATACCAC -ACGGAATAGCCAGATCGACAGAAC -ACGGAATAGCCAGATCGAGTCTAC -ACGGAATAGCCAGATCGAACGTAC -ACGGAATAGCCAGATCGAAGTGAC -ACGGAATAGCCAGATCGACTGTAG -ACGGAATAGCCAGATCGACCTAAG -ACGGAATAGCCAGATCGAGTTCAG -ACGGAATAGCCAGATCGAGCATAG -ACGGAATAGCCAGATCGAGACAAG -ACGGAATAGCCAGATCGAAAGCAG -ACGGAATAGCCAGATCGACGTCAA -ACGGAATAGCCAGATCGAGCTGAA -ACGGAATAGCCAGATCGAAGTACG -ACGGAATAGCCAGATCGAATCCGA -ACGGAATAGCCAGATCGAATGGGA -ACGGAATAGCCAGATCGAGTGCAA -ACGGAATAGCCAGATCGAGAGGAA -ACGGAATAGCCAGATCGACAGGTA -ACGGAATAGCCAGATCGAGACTCT -ACGGAATAGCCAGATCGAAGTCCT -ACGGAATAGCCAGATCGATAAGCC -ACGGAATAGCCAGATCGAATAGCC -ACGGAATAGCCAGATCGATAACCG -ACGGAATAGCCAGATCGAATGCCA -ACGGAATAGCCACACTACGGAAAC -ACGGAATAGCCACACTACAACACC -ACGGAATAGCCACACTACATCGAG -ACGGAATAGCCACACTACCTCCTT -ACGGAATAGCCACACTACCCTGTT -ACGGAATAGCCACACTACCGGTTT -ACGGAATAGCCACACTACGTGGTT -ACGGAATAGCCACACTACGCCTTT -ACGGAATAGCCACACTACGGTCTT -ACGGAATAGCCACACTACACGCTT -ACGGAATAGCCACACTACAGCGTT -ACGGAATAGCCACACTACTTCGTC -ACGGAATAGCCACACTACTCTCTC -ACGGAATAGCCACACTACTGGATC -ACGGAATAGCCACACTACCACTTC -ACGGAATAGCCACACTACGTACTC -ACGGAATAGCCACACTACGATGTC -ACGGAATAGCCACACTACACAGTC -ACGGAATAGCCACACTACTTGCTG -ACGGAATAGCCACACTACTCCATG -ACGGAATAGCCACACTACTGTGTG -ACGGAATAGCCACACTACCTAGTG -ACGGAATAGCCACACTACCATCTG -ACGGAATAGCCACACTACGAGTTG -ACGGAATAGCCACACTACAGACTG -ACGGAATAGCCACACTACTCGGTA -ACGGAATAGCCACACTACTGCCTA -ACGGAATAGCCACACTACCCACTA -ACGGAATAGCCACACTACGGAGTA -ACGGAATAGCCACACTACTCGTCT -ACGGAATAGCCACACTACTGCACT -ACGGAATAGCCACACTACCTGACT -ACGGAATAGCCACACTACCAACCT -ACGGAATAGCCACACTACGCTACT -ACGGAATAGCCACACTACGGATCT -ACGGAATAGCCACACTACAAGGCT -ACGGAATAGCCACACTACTCAACC -ACGGAATAGCCACACTACTGTTCC -ACGGAATAGCCACACTACATTCCC -ACGGAATAGCCACACTACTTCTCG -ACGGAATAGCCACACTACTAGACG -ACGGAATAGCCACACTACGTAACG -ACGGAATAGCCACACTACACTTCG -ACGGAATAGCCACACTACTACGCA -ACGGAATAGCCACACTACCTTGCA -ACGGAATAGCCACACTACCGAACA -ACGGAATAGCCACACTACCAGTCA -ACGGAATAGCCACACTACGATCCA -ACGGAATAGCCACACTACACGACA -ACGGAATAGCCACACTACAGCTCA -ACGGAATAGCCACACTACTCACGT -ACGGAATAGCCACACTACCGTAGT -ACGGAATAGCCACACTACGTCAGT -ACGGAATAGCCACACTACGAAGGT -ACGGAATAGCCACACTACAACCGT -ACGGAATAGCCACACTACTTGTGC -ACGGAATAGCCACACTACCTAAGC -ACGGAATAGCCACACTACACTAGC -ACGGAATAGCCACACTACAGATGC -ACGGAATAGCCACACTACTGAAGG -ACGGAATAGCCACACTACCAATGG -ACGGAATAGCCACACTACATGAGG -ACGGAATAGCCACACTACAATGGG -ACGGAATAGCCACACTACTCCTGA -ACGGAATAGCCACACTACTAGCGA -ACGGAATAGCCACACTACCACAGA -ACGGAATAGCCACACTACGCAAGA -ACGGAATAGCCACACTACGGTTGA -ACGGAATAGCCACACTACTCCGAT -ACGGAATAGCCACACTACTGGCAT -ACGGAATAGCCACACTACCGAGAT -ACGGAATAGCCACACTACTACCAC -ACGGAATAGCCACACTACCAGAAC -ACGGAATAGCCACACTACGTCTAC -ACGGAATAGCCACACTACACGTAC -ACGGAATAGCCACACTACAGTGAC -ACGGAATAGCCACACTACCTGTAG -ACGGAATAGCCACACTACCCTAAG -ACGGAATAGCCACACTACGTTCAG -ACGGAATAGCCACACTACGCATAG -ACGGAATAGCCACACTACGACAAG -ACGGAATAGCCACACTACAAGCAG -ACGGAATAGCCACACTACCGTCAA -ACGGAATAGCCACACTACGCTGAA -ACGGAATAGCCACACTACAGTACG -ACGGAATAGCCACACTACATCCGA -ACGGAATAGCCACACTACATGGGA -ACGGAATAGCCACACTACGTGCAA -ACGGAATAGCCACACTACGAGGAA -ACGGAATAGCCACACTACCAGGTA -ACGGAATAGCCACACTACGACTCT -ACGGAATAGCCACACTACAGTCCT -ACGGAATAGCCACACTACTAAGCC -ACGGAATAGCCACACTACATAGCC -ACGGAATAGCCACACTACTAACCG -ACGGAATAGCCACACTACATGCCA -ACGGAATAGCCAAACCAGGGAAAC -ACGGAATAGCCAAACCAGAACACC -ACGGAATAGCCAAACCAGATCGAG -ACGGAATAGCCAAACCAGCTCCTT -ACGGAATAGCCAAACCAGCCTGTT -ACGGAATAGCCAAACCAGCGGTTT -ACGGAATAGCCAAACCAGGTGGTT -ACGGAATAGCCAAACCAGGCCTTT -ACGGAATAGCCAAACCAGGGTCTT -ACGGAATAGCCAAACCAGACGCTT -ACGGAATAGCCAAACCAGAGCGTT -ACGGAATAGCCAAACCAGTTCGTC -ACGGAATAGCCAAACCAGTCTCTC -ACGGAATAGCCAAACCAGTGGATC -ACGGAATAGCCAAACCAGCACTTC -ACGGAATAGCCAAACCAGGTACTC -ACGGAATAGCCAAACCAGGATGTC -ACGGAATAGCCAAACCAGACAGTC -ACGGAATAGCCAAACCAGTTGCTG -ACGGAATAGCCAAACCAGTCCATG -ACGGAATAGCCAAACCAGTGTGTG -ACGGAATAGCCAAACCAGCTAGTG -ACGGAATAGCCAAACCAGCATCTG -ACGGAATAGCCAAACCAGGAGTTG -ACGGAATAGCCAAACCAGAGACTG -ACGGAATAGCCAAACCAGTCGGTA -ACGGAATAGCCAAACCAGTGCCTA -ACGGAATAGCCAAACCAGCCACTA -ACGGAATAGCCAAACCAGGGAGTA -ACGGAATAGCCAAACCAGTCGTCT -ACGGAATAGCCAAACCAGTGCACT -ACGGAATAGCCAAACCAGCTGACT -ACGGAATAGCCAAACCAGCAACCT -ACGGAATAGCCAAACCAGGCTACT -ACGGAATAGCCAAACCAGGGATCT -ACGGAATAGCCAAACCAGAAGGCT -ACGGAATAGCCAAACCAGTCAACC -ACGGAATAGCCAAACCAGTGTTCC -ACGGAATAGCCAAACCAGATTCCC -ACGGAATAGCCAAACCAGTTCTCG -ACGGAATAGCCAAACCAGTAGACG -ACGGAATAGCCAAACCAGGTAACG -ACGGAATAGCCAAACCAGACTTCG -ACGGAATAGCCAAACCAGTACGCA -ACGGAATAGCCAAACCAGCTTGCA -ACGGAATAGCCAAACCAGCGAACA -ACGGAATAGCCAAACCAGCAGTCA -ACGGAATAGCCAAACCAGGATCCA -ACGGAATAGCCAAACCAGACGACA -ACGGAATAGCCAAACCAGAGCTCA -ACGGAATAGCCAAACCAGTCACGT -ACGGAATAGCCAAACCAGCGTAGT -ACGGAATAGCCAAACCAGGTCAGT -ACGGAATAGCCAAACCAGGAAGGT -ACGGAATAGCCAAACCAGAACCGT -ACGGAATAGCCAAACCAGTTGTGC -ACGGAATAGCCAAACCAGCTAAGC -ACGGAATAGCCAAACCAGACTAGC -ACGGAATAGCCAAACCAGAGATGC -ACGGAATAGCCAAACCAGTGAAGG -ACGGAATAGCCAAACCAGCAATGG -ACGGAATAGCCAAACCAGATGAGG -ACGGAATAGCCAAACCAGAATGGG -ACGGAATAGCCAAACCAGTCCTGA -ACGGAATAGCCAAACCAGTAGCGA -ACGGAATAGCCAAACCAGCACAGA -ACGGAATAGCCAAACCAGGCAAGA -ACGGAATAGCCAAACCAGGGTTGA -ACGGAATAGCCAAACCAGTCCGAT -ACGGAATAGCCAAACCAGTGGCAT -ACGGAATAGCCAAACCAGCGAGAT -ACGGAATAGCCAAACCAGTACCAC -ACGGAATAGCCAAACCAGCAGAAC -ACGGAATAGCCAAACCAGGTCTAC -ACGGAATAGCCAAACCAGACGTAC -ACGGAATAGCCAAACCAGAGTGAC -ACGGAATAGCCAAACCAGCTGTAG -ACGGAATAGCCAAACCAGCCTAAG -ACGGAATAGCCAAACCAGGTTCAG -ACGGAATAGCCAAACCAGGCATAG -ACGGAATAGCCAAACCAGGACAAG -ACGGAATAGCCAAACCAGAAGCAG -ACGGAATAGCCAAACCAGCGTCAA -ACGGAATAGCCAAACCAGGCTGAA -ACGGAATAGCCAAACCAGAGTACG -ACGGAATAGCCAAACCAGATCCGA -ACGGAATAGCCAAACCAGATGGGA -ACGGAATAGCCAAACCAGGTGCAA -ACGGAATAGCCAAACCAGGAGGAA -ACGGAATAGCCAAACCAGCAGGTA -ACGGAATAGCCAAACCAGGACTCT -ACGGAATAGCCAAACCAGAGTCCT -ACGGAATAGCCAAACCAGTAAGCC -ACGGAATAGCCAAACCAGATAGCC -ACGGAATAGCCAAACCAGTAACCG -ACGGAATAGCCAAACCAGATGCCA -ACGGAATAGCCATACGTCGGAAAC -ACGGAATAGCCATACGTCAACACC -ACGGAATAGCCATACGTCATCGAG -ACGGAATAGCCATACGTCCTCCTT -ACGGAATAGCCATACGTCCCTGTT -ACGGAATAGCCATACGTCCGGTTT -ACGGAATAGCCATACGTCGTGGTT -ACGGAATAGCCATACGTCGCCTTT -ACGGAATAGCCATACGTCGGTCTT -ACGGAATAGCCATACGTCACGCTT -ACGGAATAGCCATACGTCAGCGTT -ACGGAATAGCCATACGTCTTCGTC -ACGGAATAGCCATACGTCTCTCTC -ACGGAATAGCCATACGTCTGGATC -ACGGAATAGCCATACGTCCACTTC -ACGGAATAGCCATACGTCGTACTC -ACGGAATAGCCATACGTCGATGTC -ACGGAATAGCCATACGTCACAGTC -ACGGAATAGCCATACGTCTTGCTG -ACGGAATAGCCATACGTCTCCATG -ACGGAATAGCCATACGTCTGTGTG -ACGGAATAGCCATACGTCCTAGTG -ACGGAATAGCCATACGTCCATCTG -ACGGAATAGCCATACGTCGAGTTG -ACGGAATAGCCATACGTCAGACTG -ACGGAATAGCCATACGTCTCGGTA -ACGGAATAGCCATACGTCTGCCTA -ACGGAATAGCCATACGTCCCACTA -ACGGAATAGCCATACGTCGGAGTA -ACGGAATAGCCATACGTCTCGTCT -ACGGAATAGCCATACGTCTGCACT -ACGGAATAGCCATACGTCCTGACT -ACGGAATAGCCATACGTCCAACCT -ACGGAATAGCCATACGTCGCTACT -ACGGAATAGCCATACGTCGGATCT -ACGGAATAGCCATACGTCAAGGCT -ACGGAATAGCCATACGTCTCAACC -ACGGAATAGCCATACGTCTGTTCC -ACGGAATAGCCATACGTCATTCCC -ACGGAATAGCCATACGTCTTCTCG -ACGGAATAGCCATACGTCTAGACG -ACGGAATAGCCATACGTCGTAACG -ACGGAATAGCCATACGTCACTTCG -ACGGAATAGCCATACGTCTACGCA -ACGGAATAGCCATACGTCCTTGCA -ACGGAATAGCCATACGTCCGAACA -ACGGAATAGCCATACGTCCAGTCA -ACGGAATAGCCATACGTCGATCCA -ACGGAATAGCCATACGTCACGACA -ACGGAATAGCCATACGTCAGCTCA -ACGGAATAGCCATACGTCTCACGT -ACGGAATAGCCATACGTCCGTAGT -ACGGAATAGCCATACGTCGTCAGT -ACGGAATAGCCATACGTCGAAGGT -ACGGAATAGCCATACGTCAACCGT -ACGGAATAGCCATACGTCTTGTGC -ACGGAATAGCCATACGTCCTAAGC -ACGGAATAGCCATACGTCACTAGC -ACGGAATAGCCATACGTCAGATGC -ACGGAATAGCCATACGTCTGAAGG -ACGGAATAGCCATACGTCCAATGG -ACGGAATAGCCATACGTCATGAGG -ACGGAATAGCCATACGTCAATGGG -ACGGAATAGCCATACGTCTCCTGA -ACGGAATAGCCATACGTCTAGCGA -ACGGAATAGCCATACGTCCACAGA -ACGGAATAGCCATACGTCGCAAGA -ACGGAATAGCCATACGTCGGTTGA -ACGGAATAGCCATACGTCTCCGAT -ACGGAATAGCCATACGTCTGGCAT -ACGGAATAGCCATACGTCCGAGAT -ACGGAATAGCCATACGTCTACCAC -ACGGAATAGCCATACGTCCAGAAC -ACGGAATAGCCATACGTCGTCTAC -ACGGAATAGCCATACGTCACGTAC -ACGGAATAGCCATACGTCAGTGAC -ACGGAATAGCCATACGTCCTGTAG -ACGGAATAGCCATACGTCCCTAAG -ACGGAATAGCCATACGTCGTTCAG -ACGGAATAGCCATACGTCGCATAG -ACGGAATAGCCATACGTCGACAAG -ACGGAATAGCCATACGTCAAGCAG -ACGGAATAGCCATACGTCCGTCAA -ACGGAATAGCCATACGTCGCTGAA -ACGGAATAGCCATACGTCAGTACG -ACGGAATAGCCATACGTCATCCGA -ACGGAATAGCCATACGTCATGGGA -ACGGAATAGCCATACGTCGTGCAA -ACGGAATAGCCATACGTCGAGGAA -ACGGAATAGCCATACGTCCAGGTA -ACGGAATAGCCATACGTCGACTCT -ACGGAATAGCCATACGTCAGTCCT -ACGGAATAGCCATACGTCTAAGCC -ACGGAATAGCCATACGTCATAGCC -ACGGAATAGCCATACGTCTAACCG -ACGGAATAGCCATACGTCATGCCA -ACGGAATAGCCATACACGGGAAAC -ACGGAATAGCCATACACGAACACC -ACGGAATAGCCATACACGATCGAG -ACGGAATAGCCATACACGCTCCTT -ACGGAATAGCCATACACGCCTGTT -ACGGAATAGCCATACACGCGGTTT -ACGGAATAGCCATACACGGTGGTT -ACGGAATAGCCATACACGGCCTTT -ACGGAATAGCCATACACGGGTCTT -ACGGAATAGCCATACACGACGCTT -ACGGAATAGCCATACACGAGCGTT -ACGGAATAGCCATACACGTTCGTC -ACGGAATAGCCATACACGTCTCTC -ACGGAATAGCCATACACGTGGATC -ACGGAATAGCCATACACGCACTTC -ACGGAATAGCCATACACGGTACTC -ACGGAATAGCCATACACGGATGTC -ACGGAATAGCCATACACGACAGTC -ACGGAATAGCCATACACGTTGCTG -ACGGAATAGCCATACACGTCCATG -ACGGAATAGCCATACACGTGTGTG -ACGGAATAGCCATACACGCTAGTG -ACGGAATAGCCATACACGCATCTG -ACGGAATAGCCATACACGGAGTTG -ACGGAATAGCCATACACGAGACTG -ACGGAATAGCCATACACGTCGGTA -ACGGAATAGCCATACACGTGCCTA -ACGGAATAGCCATACACGCCACTA -ACGGAATAGCCATACACGGGAGTA -ACGGAATAGCCATACACGTCGTCT -ACGGAATAGCCATACACGTGCACT -ACGGAATAGCCATACACGCTGACT -ACGGAATAGCCATACACGCAACCT -ACGGAATAGCCATACACGGCTACT -ACGGAATAGCCATACACGGGATCT -ACGGAATAGCCATACACGAAGGCT -ACGGAATAGCCATACACGTCAACC -ACGGAATAGCCATACACGTGTTCC -ACGGAATAGCCATACACGATTCCC -ACGGAATAGCCATACACGTTCTCG -ACGGAATAGCCATACACGTAGACG -ACGGAATAGCCATACACGGTAACG -ACGGAATAGCCATACACGACTTCG -ACGGAATAGCCATACACGTACGCA -ACGGAATAGCCATACACGCTTGCA -ACGGAATAGCCATACACGCGAACA -ACGGAATAGCCATACACGCAGTCA -ACGGAATAGCCATACACGGATCCA -ACGGAATAGCCATACACGACGACA -ACGGAATAGCCATACACGAGCTCA -ACGGAATAGCCATACACGTCACGT -ACGGAATAGCCATACACGCGTAGT -ACGGAATAGCCATACACGGTCAGT -ACGGAATAGCCATACACGGAAGGT -ACGGAATAGCCATACACGAACCGT -ACGGAATAGCCATACACGTTGTGC -ACGGAATAGCCATACACGCTAAGC -ACGGAATAGCCATACACGACTAGC -ACGGAATAGCCATACACGAGATGC -ACGGAATAGCCATACACGTGAAGG -ACGGAATAGCCATACACGCAATGG -ACGGAATAGCCATACACGATGAGG -ACGGAATAGCCATACACGAATGGG -ACGGAATAGCCATACACGTCCTGA -ACGGAATAGCCATACACGTAGCGA -ACGGAATAGCCATACACGCACAGA -ACGGAATAGCCATACACGGCAAGA -ACGGAATAGCCATACACGGGTTGA -ACGGAATAGCCATACACGTCCGAT -ACGGAATAGCCATACACGTGGCAT -ACGGAATAGCCATACACGCGAGAT -ACGGAATAGCCATACACGTACCAC -ACGGAATAGCCATACACGCAGAAC -ACGGAATAGCCATACACGGTCTAC -ACGGAATAGCCATACACGACGTAC -ACGGAATAGCCATACACGAGTGAC -ACGGAATAGCCATACACGCTGTAG -ACGGAATAGCCATACACGCCTAAG -ACGGAATAGCCATACACGGTTCAG -ACGGAATAGCCATACACGGCATAG -ACGGAATAGCCATACACGGACAAG -ACGGAATAGCCATACACGAAGCAG -ACGGAATAGCCATACACGCGTCAA -ACGGAATAGCCATACACGGCTGAA -ACGGAATAGCCATACACGAGTACG -ACGGAATAGCCATACACGATCCGA -ACGGAATAGCCATACACGATGGGA -ACGGAATAGCCATACACGGTGCAA -ACGGAATAGCCATACACGGAGGAA -ACGGAATAGCCATACACGCAGGTA -ACGGAATAGCCATACACGGACTCT -ACGGAATAGCCATACACGAGTCCT -ACGGAATAGCCATACACGTAAGCC -ACGGAATAGCCATACACGATAGCC -ACGGAATAGCCATACACGTAACCG -ACGGAATAGCCATACACGATGCCA -ACGGAATAGCCAGACAGTGGAAAC -ACGGAATAGCCAGACAGTAACACC -ACGGAATAGCCAGACAGTATCGAG -ACGGAATAGCCAGACAGTCTCCTT -ACGGAATAGCCAGACAGTCCTGTT -ACGGAATAGCCAGACAGTCGGTTT -ACGGAATAGCCAGACAGTGTGGTT -ACGGAATAGCCAGACAGTGCCTTT -ACGGAATAGCCAGACAGTGGTCTT -ACGGAATAGCCAGACAGTACGCTT -ACGGAATAGCCAGACAGTAGCGTT -ACGGAATAGCCAGACAGTTTCGTC -ACGGAATAGCCAGACAGTTCTCTC -ACGGAATAGCCAGACAGTTGGATC -ACGGAATAGCCAGACAGTCACTTC -ACGGAATAGCCAGACAGTGTACTC -ACGGAATAGCCAGACAGTGATGTC -ACGGAATAGCCAGACAGTACAGTC -ACGGAATAGCCAGACAGTTTGCTG -ACGGAATAGCCAGACAGTTCCATG -ACGGAATAGCCAGACAGTTGTGTG -ACGGAATAGCCAGACAGTCTAGTG -ACGGAATAGCCAGACAGTCATCTG -ACGGAATAGCCAGACAGTGAGTTG -ACGGAATAGCCAGACAGTAGACTG -ACGGAATAGCCAGACAGTTCGGTA -ACGGAATAGCCAGACAGTTGCCTA -ACGGAATAGCCAGACAGTCCACTA -ACGGAATAGCCAGACAGTGGAGTA -ACGGAATAGCCAGACAGTTCGTCT -ACGGAATAGCCAGACAGTTGCACT -ACGGAATAGCCAGACAGTCTGACT -ACGGAATAGCCAGACAGTCAACCT -ACGGAATAGCCAGACAGTGCTACT -ACGGAATAGCCAGACAGTGGATCT -ACGGAATAGCCAGACAGTAAGGCT -ACGGAATAGCCAGACAGTTCAACC -ACGGAATAGCCAGACAGTTGTTCC -ACGGAATAGCCAGACAGTATTCCC -ACGGAATAGCCAGACAGTTTCTCG -ACGGAATAGCCAGACAGTTAGACG -ACGGAATAGCCAGACAGTGTAACG -ACGGAATAGCCAGACAGTACTTCG -ACGGAATAGCCAGACAGTTACGCA -ACGGAATAGCCAGACAGTCTTGCA -ACGGAATAGCCAGACAGTCGAACA -ACGGAATAGCCAGACAGTCAGTCA -ACGGAATAGCCAGACAGTGATCCA -ACGGAATAGCCAGACAGTACGACA -ACGGAATAGCCAGACAGTAGCTCA -ACGGAATAGCCAGACAGTTCACGT -ACGGAATAGCCAGACAGTCGTAGT -ACGGAATAGCCAGACAGTGTCAGT -ACGGAATAGCCAGACAGTGAAGGT -ACGGAATAGCCAGACAGTAACCGT -ACGGAATAGCCAGACAGTTTGTGC -ACGGAATAGCCAGACAGTCTAAGC -ACGGAATAGCCAGACAGTACTAGC -ACGGAATAGCCAGACAGTAGATGC -ACGGAATAGCCAGACAGTTGAAGG -ACGGAATAGCCAGACAGTCAATGG -ACGGAATAGCCAGACAGTATGAGG -ACGGAATAGCCAGACAGTAATGGG -ACGGAATAGCCAGACAGTTCCTGA -ACGGAATAGCCAGACAGTTAGCGA -ACGGAATAGCCAGACAGTCACAGA -ACGGAATAGCCAGACAGTGCAAGA -ACGGAATAGCCAGACAGTGGTTGA -ACGGAATAGCCAGACAGTTCCGAT -ACGGAATAGCCAGACAGTTGGCAT -ACGGAATAGCCAGACAGTCGAGAT -ACGGAATAGCCAGACAGTTACCAC -ACGGAATAGCCAGACAGTCAGAAC -ACGGAATAGCCAGACAGTGTCTAC -ACGGAATAGCCAGACAGTACGTAC -ACGGAATAGCCAGACAGTAGTGAC -ACGGAATAGCCAGACAGTCTGTAG -ACGGAATAGCCAGACAGTCCTAAG -ACGGAATAGCCAGACAGTGTTCAG -ACGGAATAGCCAGACAGTGCATAG -ACGGAATAGCCAGACAGTGACAAG -ACGGAATAGCCAGACAGTAAGCAG -ACGGAATAGCCAGACAGTCGTCAA -ACGGAATAGCCAGACAGTGCTGAA -ACGGAATAGCCAGACAGTAGTACG -ACGGAATAGCCAGACAGTATCCGA -ACGGAATAGCCAGACAGTATGGGA -ACGGAATAGCCAGACAGTGTGCAA -ACGGAATAGCCAGACAGTGAGGAA -ACGGAATAGCCAGACAGTCAGGTA -ACGGAATAGCCAGACAGTGACTCT -ACGGAATAGCCAGACAGTAGTCCT -ACGGAATAGCCAGACAGTTAAGCC -ACGGAATAGCCAGACAGTATAGCC -ACGGAATAGCCAGACAGTTAACCG -ACGGAATAGCCAGACAGTATGCCA -ACGGAATAGCCATAGCTGGGAAAC -ACGGAATAGCCATAGCTGAACACC -ACGGAATAGCCATAGCTGATCGAG -ACGGAATAGCCATAGCTGCTCCTT -ACGGAATAGCCATAGCTGCCTGTT -ACGGAATAGCCATAGCTGCGGTTT -ACGGAATAGCCATAGCTGGTGGTT -ACGGAATAGCCATAGCTGGCCTTT -ACGGAATAGCCATAGCTGGGTCTT -ACGGAATAGCCATAGCTGACGCTT -ACGGAATAGCCATAGCTGAGCGTT -ACGGAATAGCCATAGCTGTTCGTC -ACGGAATAGCCATAGCTGTCTCTC -ACGGAATAGCCATAGCTGTGGATC -ACGGAATAGCCATAGCTGCACTTC -ACGGAATAGCCATAGCTGGTACTC -ACGGAATAGCCATAGCTGGATGTC -ACGGAATAGCCATAGCTGACAGTC -ACGGAATAGCCATAGCTGTTGCTG -ACGGAATAGCCATAGCTGTCCATG -ACGGAATAGCCATAGCTGTGTGTG -ACGGAATAGCCATAGCTGCTAGTG -ACGGAATAGCCATAGCTGCATCTG -ACGGAATAGCCATAGCTGGAGTTG -ACGGAATAGCCATAGCTGAGACTG -ACGGAATAGCCATAGCTGTCGGTA -ACGGAATAGCCATAGCTGTGCCTA -ACGGAATAGCCATAGCTGCCACTA -ACGGAATAGCCATAGCTGGGAGTA -ACGGAATAGCCATAGCTGTCGTCT -ACGGAATAGCCATAGCTGTGCACT -ACGGAATAGCCATAGCTGCTGACT -ACGGAATAGCCATAGCTGCAACCT -ACGGAATAGCCATAGCTGGCTACT -ACGGAATAGCCATAGCTGGGATCT -ACGGAATAGCCATAGCTGAAGGCT -ACGGAATAGCCATAGCTGTCAACC -ACGGAATAGCCATAGCTGTGTTCC -ACGGAATAGCCATAGCTGATTCCC -ACGGAATAGCCATAGCTGTTCTCG -ACGGAATAGCCATAGCTGTAGACG -ACGGAATAGCCATAGCTGGTAACG -ACGGAATAGCCATAGCTGACTTCG -ACGGAATAGCCATAGCTGTACGCA -ACGGAATAGCCATAGCTGCTTGCA -ACGGAATAGCCATAGCTGCGAACA -ACGGAATAGCCATAGCTGCAGTCA -ACGGAATAGCCATAGCTGGATCCA -ACGGAATAGCCATAGCTGACGACA -ACGGAATAGCCATAGCTGAGCTCA -ACGGAATAGCCATAGCTGTCACGT -ACGGAATAGCCATAGCTGCGTAGT -ACGGAATAGCCATAGCTGGTCAGT -ACGGAATAGCCATAGCTGGAAGGT -ACGGAATAGCCATAGCTGAACCGT -ACGGAATAGCCATAGCTGTTGTGC -ACGGAATAGCCATAGCTGCTAAGC -ACGGAATAGCCATAGCTGACTAGC -ACGGAATAGCCATAGCTGAGATGC -ACGGAATAGCCATAGCTGTGAAGG -ACGGAATAGCCATAGCTGCAATGG -ACGGAATAGCCATAGCTGATGAGG -ACGGAATAGCCATAGCTGAATGGG -ACGGAATAGCCATAGCTGTCCTGA -ACGGAATAGCCATAGCTGTAGCGA -ACGGAATAGCCATAGCTGCACAGA -ACGGAATAGCCATAGCTGGCAAGA -ACGGAATAGCCATAGCTGGGTTGA -ACGGAATAGCCATAGCTGTCCGAT -ACGGAATAGCCATAGCTGTGGCAT -ACGGAATAGCCATAGCTGCGAGAT -ACGGAATAGCCATAGCTGTACCAC -ACGGAATAGCCATAGCTGCAGAAC -ACGGAATAGCCATAGCTGGTCTAC -ACGGAATAGCCATAGCTGACGTAC -ACGGAATAGCCATAGCTGAGTGAC -ACGGAATAGCCATAGCTGCTGTAG -ACGGAATAGCCATAGCTGCCTAAG -ACGGAATAGCCATAGCTGGTTCAG -ACGGAATAGCCATAGCTGGCATAG -ACGGAATAGCCATAGCTGGACAAG -ACGGAATAGCCATAGCTGAAGCAG -ACGGAATAGCCATAGCTGCGTCAA -ACGGAATAGCCATAGCTGGCTGAA -ACGGAATAGCCATAGCTGAGTACG -ACGGAATAGCCATAGCTGATCCGA -ACGGAATAGCCATAGCTGATGGGA -ACGGAATAGCCATAGCTGGTGCAA -ACGGAATAGCCATAGCTGGAGGAA -ACGGAATAGCCATAGCTGCAGGTA -ACGGAATAGCCATAGCTGGACTCT -ACGGAATAGCCATAGCTGAGTCCT -ACGGAATAGCCATAGCTGTAAGCC -ACGGAATAGCCATAGCTGATAGCC -ACGGAATAGCCATAGCTGTAACCG -ACGGAATAGCCATAGCTGATGCCA -ACGGAATAGCCAAAGCCTGGAAAC -ACGGAATAGCCAAAGCCTAACACC -ACGGAATAGCCAAAGCCTATCGAG -ACGGAATAGCCAAAGCCTCTCCTT -ACGGAATAGCCAAAGCCTCCTGTT -ACGGAATAGCCAAAGCCTCGGTTT -ACGGAATAGCCAAAGCCTGTGGTT -ACGGAATAGCCAAAGCCTGCCTTT -ACGGAATAGCCAAAGCCTGGTCTT -ACGGAATAGCCAAAGCCTACGCTT -ACGGAATAGCCAAAGCCTAGCGTT -ACGGAATAGCCAAAGCCTTTCGTC -ACGGAATAGCCAAAGCCTTCTCTC -ACGGAATAGCCAAAGCCTTGGATC -ACGGAATAGCCAAAGCCTCACTTC -ACGGAATAGCCAAAGCCTGTACTC -ACGGAATAGCCAAAGCCTGATGTC -ACGGAATAGCCAAAGCCTACAGTC -ACGGAATAGCCAAAGCCTTTGCTG -ACGGAATAGCCAAAGCCTTCCATG -ACGGAATAGCCAAAGCCTTGTGTG -ACGGAATAGCCAAAGCCTCTAGTG -ACGGAATAGCCAAAGCCTCATCTG -ACGGAATAGCCAAAGCCTGAGTTG -ACGGAATAGCCAAAGCCTAGACTG -ACGGAATAGCCAAAGCCTTCGGTA -ACGGAATAGCCAAAGCCTTGCCTA -ACGGAATAGCCAAAGCCTCCACTA -ACGGAATAGCCAAAGCCTGGAGTA -ACGGAATAGCCAAAGCCTTCGTCT -ACGGAATAGCCAAAGCCTTGCACT -ACGGAATAGCCAAAGCCTCTGACT -ACGGAATAGCCAAAGCCTCAACCT -ACGGAATAGCCAAAGCCTGCTACT -ACGGAATAGCCAAAGCCTGGATCT -ACGGAATAGCCAAAGCCTAAGGCT -ACGGAATAGCCAAAGCCTTCAACC -ACGGAATAGCCAAAGCCTTGTTCC -ACGGAATAGCCAAAGCCTATTCCC -ACGGAATAGCCAAAGCCTTTCTCG -ACGGAATAGCCAAAGCCTTAGACG -ACGGAATAGCCAAAGCCTGTAACG -ACGGAATAGCCAAAGCCTACTTCG -ACGGAATAGCCAAAGCCTTACGCA -ACGGAATAGCCAAAGCCTCTTGCA -ACGGAATAGCCAAAGCCTCGAACA -ACGGAATAGCCAAAGCCTCAGTCA -ACGGAATAGCCAAAGCCTGATCCA -ACGGAATAGCCAAAGCCTACGACA -ACGGAATAGCCAAAGCCTAGCTCA -ACGGAATAGCCAAAGCCTTCACGT -ACGGAATAGCCAAAGCCTCGTAGT -ACGGAATAGCCAAAGCCTGTCAGT -ACGGAATAGCCAAAGCCTGAAGGT -ACGGAATAGCCAAAGCCTAACCGT -ACGGAATAGCCAAAGCCTTTGTGC -ACGGAATAGCCAAAGCCTCTAAGC -ACGGAATAGCCAAAGCCTACTAGC -ACGGAATAGCCAAAGCCTAGATGC -ACGGAATAGCCAAAGCCTTGAAGG -ACGGAATAGCCAAAGCCTCAATGG -ACGGAATAGCCAAAGCCTATGAGG -ACGGAATAGCCAAAGCCTAATGGG -ACGGAATAGCCAAAGCCTTCCTGA -ACGGAATAGCCAAAGCCTTAGCGA -ACGGAATAGCCAAAGCCTCACAGA -ACGGAATAGCCAAAGCCTGCAAGA -ACGGAATAGCCAAAGCCTGGTTGA -ACGGAATAGCCAAAGCCTTCCGAT -ACGGAATAGCCAAAGCCTTGGCAT -ACGGAATAGCCAAAGCCTCGAGAT -ACGGAATAGCCAAAGCCTTACCAC -ACGGAATAGCCAAAGCCTCAGAAC -ACGGAATAGCCAAAGCCTGTCTAC -ACGGAATAGCCAAAGCCTACGTAC -ACGGAATAGCCAAAGCCTAGTGAC -ACGGAATAGCCAAAGCCTCTGTAG -ACGGAATAGCCAAAGCCTCCTAAG -ACGGAATAGCCAAAGCCTGTTCAG -ACGGAATAGCCAAAGCCTGCATAG -ACGGAATAGCCAAAGCCTGACAAG -ACGGAATAGCCAAAGCCTAAGCAG -ACGGAATAGCCAAAGCCTCGTCAA -ACGGAATAGCCAAAGCCTGCTGAA -ACGGAATAGCCAAAGCCTAGTACG -ACGGAATAGCCAAAGCCTATCCGA -ACGGAATAGCCAAAGCCTATGGGA -ACGGAATAGCCAAAGCCTGTGCAA -ACGGAATAGCCAAAGCCTGAGGAA -ACGGAATAGCCAAAGCCTCAGGTA -ACGGAATAGCCAAAGCCTGACTCT -ACGGAATAGCCAAAGCCTAGTCCT -ACGGAATAGCCAAAGCCTTAAGCC -ACGGAATAGCCAAAGCCTATAGCC -ACGGAATAGCCAAAGCCTTAACCG -ACGGAATAGCCAAAGCCTATGCCA -ACGGAATAGCCACAGGTTGGAAAC -ACGGAATAGCCACAGGTTAACACC -ACGGAATAGCCACAGGTTATCGAG -ACGGAATAGCCACAGGTTCTCCTT -ACGGAATAGCCACAGGTTCCTGTT -ACGGAATAGCCACAGGTTCGGTTT -ACGGAATAGCCACAGGTTGTGGTT -ACGGAATAGCCACAGGTTGCCTTT -ACGGAATAGCCACAGGTTGGTCTT -ACGGAATAGCCACAGGTTACGCTT -ACGGAATAGCCACAGGTTAGCGTT -ACGGAATAGCCACAGGTTTTCGTC -ACGGAATAGCCACAGGTTTCTCTC -ACGGAATAGCCACAGGTTTGGATC -ACGGAATAGCCACAGGTTCACTTC -ACGGAATAGCCACAGGTTGTACTC -ACGGAATAGCCACAGGTTGATGTC -ACGGAATAGCCACAGGTTACAGTC -ACGGAATAGCCACAGGTTTTGCTG -ACGGAATAGCCACAGGTTTCCATG -ACGGAATAGCCACAGGTTTGTGTG -ACGGAATAGCCACAGGTTCTAGTG -ACGGAATAGCCACAGGTTCATCTG -ACGGAATAGCCACAGGTTGAGTTG -ACGGAATAGCCACAGGTTAGACTG -ACGGAATAGCCACAGGTTTCGGTA -ACGGAATAGCCACAGGTTTGCCTA -ACGGAATAGCCACAGGTTCCACTA -ACGGAATAGCCACAGGTTGGAGTA -ACGGAATAGCCACAGGTTTCGTCT -ACGGAATAGCCACAGGTTTGCACT -ACGGAATAGCCACAGGTTCTGACT -ACGGAATAGCCACAGGTTCAACCT -ACGGAATAGCCACAGGTTGCTACT -ACGGAATAGCCACAGGTTGGATCT -ACGGAATAGCCACAGGTTAAGGCT -ACGGAATAGCCACAGGTTTCAACC -ACGGAATAGCCACAGGTTTGTTCC -ACGGAATAGCCACAGGTTATTCCC -ACGGAATAGCCACAGGTTTTCTCG -ACGGAATAGCCACAGGTTTAGACG -ACGGAATAGCCACAGGTTGTAACG -ACGGAATAGCCACAGGTTACTTCG -ACGGAATAGCCACAGGTTTACGCA -ACGGAATAGCCACAGGTTCTTGCA -ACGGAATAGCCACAGGTTCGAACA -ACGGAATAGCCACAGGTTCAGTCA -ACGGAATAGCCACAGGTTGATCCA -ACGGAATAGCCACAGGTTACGACA -ACGGAATAGCCACAGGTTAGCTCA -ACGGAATAGCCACAGGTTTCACGT -ACGGAATAGCCACAGGTTCGTAGT -ACGGAATAGCCACAGGTTGTCAGT -ACGGAATAGCCACAGGTTGAAGGT -ACGGAATAGCCACAGGTTAACCGT -ACGGAATAGCCACAGGTTTTGTGC -ACGGAATAGCCACAGGTTCTAAGC -ACGGAATAGCCACAGGTTACTAGC -ACGGAATAGCCACAGGTTAGATGC -ACGGAATAGCCACAGGTTTGAAGG -ACGGAATAGCCACAGGTTCAATGG -ACGGAATAGCCACAGGTTATGAGG -ACGGAATAGCCACAGGTTAATGGG -ACGGAATAGCCACAGGTTTCCTGA -ACGGAATAGCCACAGGTTTAGCGA -ACGGAATAGCCACAGGTTCACAGA -ACGGAATAGCCACAGGTTGCAAGA -ACGGAATAGCCACAGGTTGGTTGA -ACGGAATAGCCACAGGTTTCCGAT -ACGGAATAGCCACAGGTTTGGCAT -ACGGAATAGCCACAGGTTCGAGAT -ACGGAATAGCCACAGGTTTACCAC -ACGGAATAGCCACAGGTTCAGAAC -ACGGAATAGCCACAGGTTGTCTAC -ACGGAATAGCCACAGGTTACGTAC -ACGGAATAGCCACAGGTTAGTGAC -ACGGAATAGCCACAGGTTCTGTAG -ACGGAATAGCCACAGGTTCCTAAG -ACGGAATAGCCACAGGTTGTTCAG -ACGGAATAGCCACAGGTTGCATAG -ACGGAATAGCCACAGGTTGACAAG -ACGGAATAGCCACAGGTTAAGCAG -ACGGAATAGCCACAGGTTCGTCAA -ACGGAATAGCCACAGGTTGCTGAA -ACGGAATAGCCACAGGTTAGTACG -ACGGAATAGCCACAGGTTATCCGA -ACGGAATAGCCACAGGTTATGGGA -ACGGAATAGCCACAGGTTGTGCAA -ACGGAATAGCCACAGGTTGAGGAA -ACGGAATAGCCACAGGTTCAGGTA -ACGGAATAGCCACAGGTTGACTCT -ACGGAATAGCCACAGGTTAGTCCT -ACGGAATAGCCACAGGTTTAAGCC -ACGGAATAGCCACAGGTTATAGCC -ACGGAATAGCCACAGGTTTAACCG -ACGGAATAGCCACAGGTTATGCCA -ACGGAATAGCCATAGGCAGGAAAC -ACGGAATAGCCATAGGCAAACACC -ACGGAATAGCCATAGGCAATCGAG -ACGGAATAGCCATAGGCACTCCTT -ACGGAATAGCCATAGGCACCTGTT -ACGGAATAGCCATAGGCACGGTTT -ACGGAATAGCCATAGGCAGTGGTT -ACGGAATAGCCATAGGCAGCCTTT -ACGGAATAGCCATAGGCAGGTCTT -ACGGAATAGCCATAGGCAACGCTT -ACGGAATAGCCATAGGCAAGCGTT -ACGGAATAGCCATAGGCATTCGTC -ACGGAATAGCCATAGGCATCTCTC -ACGGAATAGCCATAGGCATGGATC -ACGGAATAGCCATAGGCACACTTC -ACGGAATAGCCATAGGCAGTACTC -ACGGAATAGCCATAGGCAGATGTC -ACGGAATAGCCATAGGCAACAGTC -ACGGAATAGCCATAGGCATTGCTG -ACGGAATAGCCATAGGCATCCATG -ACGGAATAGCCATAGGCATGTGTG -ACGGAATAGCCATAGGCACTAGTG -ACGGAATAGCCATAGGCACATCTG -ACGGAATAGCCATAGGCAGAGTTG -ACGGAATAGCCATAGGCAAGACTG -ACGGAATAGCCATAGGCATCGGTA -ACGGAATAGCCATAGGCATGCCTA -ACGGAATAGCCATAGGCACCACTA -ACGGAATAGCCATAGGCAGGAGTA -ACGGAATAGCCATAGGCATCGTCT -ACGGAATAGCCATAGGCATGCACT -ACGGAATAGCCATAGGCACTGACT -ACGGAATAGCCATAGGCACAACCT -ACGGAATAGCCATAGGCAGCTACT -ACGGAATAGCCATAGGCAGGATCT -ACGGAATAGCCATAGGCAAAGGCT -ACGGAATAGCCATAGGCATCAACC -ACGGAATAGCCATAGGCATGTTCC -ACGGAATAGCCATAGGCAATTCCC -ACGGAATAGCCATAGGCATTCTCG -ACGGAATAGCCATAGGCATAGACG -ACGGAATAGCCATAGGCAGTAACG -ACGGAATAGCCATAGGCAACTTCG -ACGGAATAGCCATAGGCATACGCA -ACGGAATAGCCATAGGCACTTGCA -ACGGAATAGCCATAGGCACGAACA -ACGGAATAGCCATAGGCACAGTCA -ACGGAATAGCCATAGGCAGATCCA -ACGGAATAGCCATAGGCAACGACA -ACGGAATAGCCATAGGCAAGCTCA -ACGGAATAGCCATAGGCATCACGT -ACGGAATAGCCATAGGCACGTAGT -ACGGAATAGCCATAGGCAGTCAGT -ACGGAATAGCCATAGGCAGAAGGT -ACGGAATAGCCATAGGCAAACCGT -ACGGAATAGCCATAGGCATTGTGC -ACGGAATAGCCATAGGCACTAAGC -ACGGAATAGCCATAGGCAACTAGC -ACGGAATAGCCATAGGCAAGATGC -ACGGAATAGCCATAGGCATGAAGG -ACGGAATAGCCATAGGCACAATGG -ACGGAATAGCCATAGGCAATGAGG -ACGGAATAGCCATAGGCAAATGGG -ACGGAATAGCCATAGGCATCCTGA -ACGGAATAGCCATAGGCATAGCGA -ACGGAATAGCCATAGGCACACAGA -ACGGAATAGCCATAGGCAGCAAGA -ACGGAATAGCCATAGGCAGGTTGA -ACGGAATAGCCATAGGCATCCGAT -ACGGAATAGCCATAGGCATGGCAT -ACGGAATAGCCATAGGCACGAGAT -ACGGAATAGCCATAGGCATACCAC -ACGGAATAGCCATAGGCACAGAAC -ACGGAATAGCCATAGGCAGTCTAC -ACGGAATAGCCATAGGCAACGTAC -ACGGAATAGCCATAGGCAAGTGAC -ACGGAATAGCCATAGGCACTGTAG -ACGGAATAGCCATAGGCACCTAAG -ACGGAATAGCCATAGGCAGTTCAG -ACGGAATAGCCATAGGCAGCATAG -ACGGAATAGCCATAGGCAGACAAG -ACGGAATAGCCATAGGCAAAGCAG -ACGGAATAGCCATAGGCACGTCAA -ACGGAATAGCCATAGGCAGCTGAA -ACGGAATAGCCATAGGCAAGTACG -ACGGAATAGCCATAGGCAATCCGA -ACGGAATAGCCATAGGCAATGGGA -ACGGAATAGCCATAGGCAGTGCAA -ACGGAATAGCCATAGGCAGAGGAA -ACGGAATAGCCATAGGCACAGGTA -ACGGAATAGCCATAGGCAGACTCT -ACGGAATAGCCATAGGCAAGTCCT -ACGGAATAGCCATAGGCATAAGCC -ACGGAATAGCCATAGGCAATAGCC -ACGGAATAGCCATAGGCATAACCG -ACGGAATAGCCATAGGCAATGCCA -ACGGAATAGCCAAAGGACGGAAAC -ACGGAATAGCCAAAGGACAACACC -ACGGAATAGCCAAAGGACATCGAG -ACGGAATAGCCAAAGGACCTCCTT -ACGGAATAGCCAAAGGACCCTGTT -ACGGAATAGCCAAAGGACCGGTTT -ACGGAATAGCCAAAGGACGTGGTT -ACGGAATAGCCAAAGGACGCCTTT -ACGGAATAGCCAAAGGACGGTCTT -ACGGAATAGCCAAAGGACACGCTT -ACGGAATAGCCAAAGGACAGCGTT -ACGGAATAGCCAAAGGACTTCGTC -ACGGAATAGCCAAAGGACTCTCTC -ACGGAATAGCCAAAGGACTGGATC -ACGGAATAGCCAAAGGACCACTTC -ACGGAATAGCCAAAGGACGTACTC -ACGGAATAGCCAAAGGACGATGTC -ACGGAATAGCCAAAGGACACAGTC -ACGGAATAGCCAAAGGACTTGCTG -ACGGAATAGCCAAAGGACTCCATG -ACGGAATAGCCAAAGGACTGTGTG -ACGGAATAGCCAAAGGACCTAGTG -ACGGAATAGCCAAAGGACCATCTG -ACGGAATAGCCAAAGGACGAGTTG -ACGGAATAGCCAAAGGACAGACTG -ACGGAATAGCCAAAGGACTCGGTA -ACGGAATAGCCAAAGGACTGCCTA -ACGGAATAGCCAAAGGACCCACTA -ACGGAATAGCCAAAGGACGGAGTA -ACGGAATAGCCAAAGGACTCGTCT -ACGGAATAGCCAAAGGACTGCACT -ACGGAATAGCCAAAGGACCTGACT -ACGGAATAGCCAAAGGACCAACCT -ACGGAATAGCCAAAGGACGCTACT -ACGGAATAGCCAAAGGACGGATCT -ACGGAATAGCCAAAGGACAAGGCT -ACGGAATAGCCAAAGGACTCAACC -ACGGAATAGCCAAAGGACTGTTCC -ACGGAATAGCCAAAGGACATTCCC -ACGGAATAGCCAAAGGACTTCTCG -ACGGAATAGCCAAAGGACTAGACG -ACGGAATAGCCAAAGGACGTAACG -ACGGAATAGCCAAAGGACACTTCG -ACGGAATAGCCAAAGGACTACGCA -ACGGAATAGCCAAAGGACCTTGCA -ACGGAATAGCCAAAGGACCGAACA -ACGGAATAGCCAAAGGACCAGTCA -ACGGAATAGCCAAAGGACGATCCA -ACGGAATAGCCAAAGGACACGACA -ACGGAATAGCCAAAGGACAGCTCA -ACGGAATAGCCAAAGGACTCACGT -ACGGAATAGCCAAAGGACCGTAGT -ACGGAATAGCCAAAGGACGTCAGT -ACGGAATAGCCAAAGGACGAAGGT -ACGGAATAGCCAAAGGACAACCGT -ACGGAATAGCCAAAGGACTTGTGC -ACGGAATAGCCAAAGGACCTAAGC -ACGGAATAGCCAAAGGACACTAGC -ACGGAATAGCCAAAGGACAGATGC -ACGGAATAGCCAAAGGACTGAAGG -ACGGAATAGCCAAAGGACCAATGG -ACGGAATAGCCAAAGGACATGAGG -ACGGAATAGCCAAAGGACAATGGG -ACGGAATAGCCAAAGGACTCCTGA -ACGGAATAGCCAAAGGACTAGCGA -ACGGAATAGCCAAAGGACCACAGA -ACGGAATAGCCAAAGGACGCAAGA -ACGGAATAGCCAAAGGACGGTTGA -ACGGAATAGCCAAAGGACTCCGAT -ACGGAATAGCCAAAGGACTGGCAT -ACGGAATAGCCAAAGGACCGAGAT -ACGGAATAGCCAAAGGACTACCAC -ACGGAATAGCCAAAGGACCAGAAC -ACGGAATAGCCAAAGGACGTCTAC -ACGGAATAGCCAAAGGACACGTAC -ACGGAATAGCCAAAGGACAGTGAC -ACGGAATAGCCAAAGGACCTGTAG -ACGGAATAGCCAAAGGACCCTAAG -ACGGAATAGCCAAAGGACGTTCAG -ACGGAATAGCCAAAGGACGCATAG -ACGGAATAGCCAAAGGACGACAAG -ACGGAATAGCCAAAGGACAAGCAG -ACGGAATAGCCAAAGGACCGTCAA -ACGGAATAGCCAAAGGACGCTGAA -ACGGAATAGCCAAAGGACAGTACG -ACGGAATAGCCAAAGGACATCCGA -ACGGAATAGCCAAAGGACATGGGA -ACGGAATAGCCAAAGGACGTGCAA -ACGGAATAGCCAAAGGACGAGGAA -ACGGAATAGCCAAAGGACCAGGTA -ACGGAATAGCCAAAGGACGACTCT -ACGGAATAGCCAAAGGACAGTCCT -ACGGAATAGCCAAAGGACTAAGCC -ACGGAATAGCCAAAGGACATAGCC -ACGGAATAGCCAAAGGACTAACCG -ACGGAATAGCCAAAGGACATGCCA -ACGGAATAGCCACAGAAGGGAAAC -ACGGAATAGCCACAGAAGAACACC -ACGGAATAGCCACAGAAGATCGAG -ACGGAATAGCCACAGAAGCTCCTT -ACGGAATAGCCACAGAAGCCTGTT -ACGGAATAGCCACAGAAGCGGTTT -ACGGAATAGCCACAGAAGGTGGTT -ACGGAATAGCCACAGAAGGCCTTT -ACGGAATAGCCACAGAAGGGTCTT -ACGGAATAGCCACAGAAGACGCTT -ACGGAATAGCCACAGAAGAGCGTT -ACGGAATAGCCACAGAAGTTCGTC -ACGGAATAGCCACAGAAGTCTCTC -ACGGAATAGCCACAGAAGTGGATC -ACGGAATAGCCACAGAAGCACTTC -ACGGAATAGCCACAGAAGGTACTC -ACGGAATAGCCACAGAAGGATGTC -ACGGAATAGCCACAGAAGACAGTC -ACGGAATAGCCACAGAAGTTGCTG -ACGGAATAGCCACAGAAGTCCATG -ACGGAATAGCCACAGAAGTGTGTG -ACGGAATAGCCACAGAAGCTAGTG -ACGGAATAGCCACAGAAGCATCTG -ACGGAATAGCCACAGAAGGAGTTG -ACGGAATAGCCACAGAAGAGACTG -ACGGAATAGCCACAGAAGTCGGTA -ACGGAATAGCCACAGAAGTGCCTA -ACGGAATAGCCACAGAAGCCACTA -ACGGAATAGCCACAGAAGGGAGTA -ACGGAATAGCCACAGAAGTCGTCT -ACGGAATAGCCACAGAAGTGCACT -ACGGAATAGCCACAGAAGCTGACT -ACGGAATAGCCACAGAAGCAACCT -ACGGAATAGCCACAGAAGGCTACT -ACGGAATAGCCACAGAAGGGATCT -ACGGAATAGCCACAGAAGAAGGCT -ACGGAATAGCCACAGAAGTCAACC -ACGGAATAGCCACAGAAGTGTTCC -ACGGAATAGCCACAGAAGATTCCC -ACGGAATAGCCACAGAAGTTCTCG -ACGGAATAGCCACAGAAGTAGACG -ACGGAATAGCCACAGAAGGTAACG -ACGGAATAGCCACAGAAGACTTCG -ACGGAATAGCCACAGAAGTACGCA -ACGGAATAGCCACAGAAGCTTGCA -ACGGAATAGCCACAGAAGCGAACA -ACGGAATAGCCACAGAAGCAGTCA -ACGGAATAGCCACAGAAGGATCCA -ACGGAATAGCCACAGAAGACGACA -ACGGAATAGCCACAGAAGAGCTCA -ACGGAATAGCCACAGAAGTCACGT -ACGGAATAGCCACAGAAGCGTAGT -ACGGAATAGCCACAGAAGGTCAGT -ACGGAATAGCCACAGAAGGAAGGT -ACGGAATAGCCACAGAAGAACCGT -ACGGAATAGCCACAGAAGTTGTGC -ACGGAATAGCCACAGAAGCTAAGC -ACGGAATAGCCACAGAAGACTAGC -ACGGAATAGCCACAGAAGAGATGC -ACGGAATAGCCACAGAAGTGAAGG -ACGGAATAGCCACAGAAGCAATGG -ACGGAATAGCCACAGAAGATGAGG -ACGGAATAGCCACAGAAGAATGGG -ACGGAATAGCCACAGAAGTCCTGA -ACGGAATAGCCACAGAAGTAGCGA -ACGGAATAGCCACAGAAGCACAGA -ACGGAATAGCCACAGAAGGCAAGA -ACGGAATAGCCACAGAAGGGTTGA -ACGGAATAGCCACAGAAGTCCGAT -ACGGAATAGCCACAGAAGTGGCAT -ACGGAATAGCCACAGAAGCGAGAT -ACGGAATAGCCACAGAAGTACCAC -ACGGAATAGCCACAGAAGCAGAAC -ACGGAATAGCCACAGAAGGTCTAC -ACGGAATAGCCACAGAAGACGTAC -ACGGAATAGCCACAGAAGAGTGAC -ACGGAATAGCCACAGAAGCTGTAG -ACGGAATAGCCACAGAAGCCTAAG -ACGGAATAGCCACAGAAGGTTCAG -ACGGAATAGCCACAGAAGGCATAG -ACGGAATAGCCACAGAAGGACAAG -ACGGAATAGCCACAGAAGAAGCAG -ACGGAATAGCCACAGAAGCGTCAA -ACGGAATAGCCACAGAAGGCTGAA -ACGGAATAGCCACAGAAGAGTACG -ACGGAATAGCCACAGAAGATCCGA -ACGGAATAGCCACAGAAGATGGGA -ACGGAATAGCCACAGAAGGTGCAA -ACGGAATAGCCACAGAAGGAGGAA -ACGGAATAGCCACAGAAGCAGGTA -ACGGAATAGCCACAGAAGGACTCT -ACGGAATAGCCACAGAAGAGTCCT -ACGGAATAGCCACAGAAGTAAGCC -ACGGAATAGCCACAGAAGATAGCC -ACGGAATAGCCACAGAAGTAACCG -ACGGAATAGCCACAGAAGATGCCA -ACGGAATAGCCACAACGTGGAAAC -ACGGAATAGCCACAACGTAACACC -ACGGAATAGCCACAACGTATCGAG -ACGGAATAGCCACAACGTCTCCTT -ACGGAATAGCCACAACGTCCTGTT -ACGGAATAGCCACAACGTCGGTTT -ACGGAATAGCCACAACGTGTGGTT -ACGGAATAGCCACAACGTGCCTTT -ACGGAATAGCCACAACGTGGTCTT -ACGGAATAGCCACAACGTACGCTT -ACGGAATAGCCACAACGTAGCGTT -ACGGAATAGCCACAACGTTTCGTC -ACGGAATAGCCACAACGTTCTCTC -ACGGAATAGCCACAACGTTGGATC -ACGGAATAGCCACAACGTCACTTC -ACGGAATAGCCACAACGTGTACTC -ACGGAATAGCCACAACGTGATGTC -ACGGAATAGCCACAACGTACAGTC -ACGGAATAGCCACAACGTTTGCTG -ACGGAATAGCCACAACGTTCCATG -ACGGAATAGCCACAACGTTGTGTG -ACGGAATAGCCACAACGTCTAGTG -ACGGAATAGCCACAACGTCATCTG -ACGGAATAGCCACAACGTGAGTTG -ACGGAATAGCCACAACGTAGACTG -ACGGAATAGCCACAACGTTCGGTA -ACGGAATAGCCACAACGTTGCCTA -ACGGAATAGCCACAACGTCCACTA -ACGGAATAGCCACAACGTGGAGTA -ACGGAATAGCCACAACGTTCGTCT -ACGGAATAGCCACAACGTTGCACT -ACGGAATAGCCACAACGTCTGACT -ACGGAATAGCCACAACGTCAACCT -ACGGAATAGCCACAACGTGCTACT -ACGGAATAGCCACAACGTGGATCT -ACGGAATAGCCACAACGTAAGGCT -ACGGAATAGCCACAACGTTCAACC -ACGGAATAGCCACAACGTTGTTCC -ACGGAATAGCCACAACGTATTCCC -ACGGAATAGCCACAACGTTTCTCG -ACGGAATAGCCACAACGTTAGACG -ACGGAATAGCCACAACGTGTAACG -ACGGAATAGCCACAACGTACTTCG -ACGGAATAGCCACAACGTTACGCA -ACGGAATAGCCACAACGTCTTGCA -ACGGAATAGCCACAACGTCGAACA -ACGGAATAGCCACAACGTCAGTCA -ACGGAATAGCCACAACGTGATCCA -ACGGAATAGCCACAACGTACGACA -ACGGAATAGCCACAACGTAGCTCA -ACGGAATAGCCACAACGTTCACGT -ACGGAATAGCCACAACGTCGTAGT -ACGGAATAGCCACAACGTGTCAGT -ACGGAATAGCCACAACGTGAAGGT -ACGGAATAGCCACAACGTAACCGT -ACGGAATAGCCACAACGTTTGTGC -ACGGAATAGCCACAACGTCTAAGC -ACGGAATAGCCACAACGTACTAGC -ACGGAATAGCCACAACGTAGATGC -ACGGAATAGCCACAACGTTGAAGG -ACGGAATAGCCACAACGTCAATGG -ACGGAATAGCCACAACGTATGAGG -ACGGAATAGCCACAACGTAATGGG -ACGGAATAGCCACAACGTTCCTGA -ACGGAATAGCCACAACGTTAGCGA -ACGGAATAGCCACAACGTCACAGA -ACGGAATAGCCACAACGTGCAAGA -ACGGAATAGCCACAACGTGGTTGA -ACGGAATAGCCACAACGTTCCGAT -ACGGAATAGCCACAACGTTGGCAT -ACGGAATAGCCACAACGTCGAGAT -ACGGAATAGCCACAACGTTACCAC -ACGGAATAGCCACAACGTCAGAAC -ACGGAATAGCCACAACGTGTCTAC -ACGGAATAGCCACAACGTACGTAC -ACGGAATAGCCACAACGTAGTGAC -ACGGAATAGCCACAACGTCTGTAG -ACGGAATAGCCACAACGTCCTAAG -ACGGAATAGCCACAACGTGTTCAG -ACGGAATAGCCACAACGTGCATAG -ACGGAATAGCCACAACGTGACAAG -ACGGAATAGCCACAACGTAAGCAG -ACGGAATAGCCACAACGTCGTCAA -ACGGAATAGCCACAACGTGCTGAA -ACGGAATAGCCACAACGTAGTACG -ACGGAATAGCCACAACGTATCCGA -ACGGAATAGCCACAACGTATGGGA -ACGGAATAGCCACAACGTGTGCAA -ACGGAATAGCCACAACGTGAGGAA -ACGGAATAGCCACAACGTCAGGTA -ACGGAATAGCCACAACGTGACTCT -ACGGAATAGCCACAACGTAGTCCT -ACGGAATAGCCACAACGTTAAGCC -ACGGAATAGCCACAACGTATAGCC -ACGGAATAGCCACAACGTTAACCG -ACGGAATAGCCACAACGTATGCCA -ACGGAATAGCCAGAAGCTGGAAAC -ACGGAATAGCCAGAAGCTAACACC -ACGGAATAGCCAGAAGCTATCGAG -ACGGAATAGCCAGAAGCTCTCCTT -ACGGAATAGCCAGAAGCTCCTGTT -ACGGAATAGCCAGAAGCTCGGTTT -ACGGAATAGCCAGAAGCTGTGGTT -ACGGAATAGCCAGAAGCTGCCTTT -ACGGAATAGCCAGAAGCTGGTCTT -ACGGAATAGCCAGAAGCTACGCTT -ACGGAATAGCCAGAAGCTAGCGTT -ACGGAATAGCCAGAAGCTTTCGTC -ACGGAATAGCCAGAAGCTTCTCTC -ACGGAATAGCCAGAAGCTTGGATC -ACGGAATAGCCAGAAGCTCACTTC -ACGGAATAGCCAGAAGCTGTACTC -ACGGAATAGCCAGAAGCTGATGTC -ACGGAATAGCCAGAAGCTACAGTC -ACGGAATAGCCAGAAGCTTTGCTG -ACGGAATAGCCAGAAGCTTCCATG -ACGGAATAGCCAGAAGCTTGTGTG -ACGGAATAGCCAGAAGCTCTAGTG -ACGGAATAGCCAGAAGCTCATCTG -ACGGAATAGCCAGAAGCTGAGTTG -ACGGAATAGCCAGAAGCTAGACTG -ACGGAATAGCCAGAAGCTTCGGTA -ACGGAATAGCCAGAAGCTTGCCTA -ACGGAATAGCCAGAAGCTCCACTA -ACGGAATAGCCAGAAGCTGGAGTA -ACGGAATAGCCAGAAGCTTCGTCT -ACGGAATAGCCAGAAGCTTGCACT -ACGGAATAGCCAGAAGCTCTGACT -ACGGAATAGCCAGAAGCTCAACCT -ACGGAATAGCCAGAAGCTGCTACT -ACGGAATAGCCAGAAGCTGGATCT -ACGGAATAGCCAGAAGCTAAGGCT -ACGGAATAGCCAGAAGCTTCAACC -ACGGAATAGCCAGAAGCTTGTTCC -ACGGAATAGCCAGAAGCTATTCCC -ACGGAATAGCCAGAAGCTTTCTCG -ACGGAATAGCCAGAAGCTTAGACG -ACGGAATAGCCAGAAGCTGTAACG -ACGGAATAGCCAGAAGCTACTTCG -ACGGAATAGCCAGAAGCTTACGCA -ACGGAATAGCCAGAAGCTCTTGCA -ACGGAATAGCCAGAAGCTCGAACA -ACGGAATAGCCAGAAGCTCAGTCA -ACGGAATAGCCAGAAGCTGATCCA -ACGGAATAGCCAGAAGCTACGACA -ACGGAATAGCCAGAAGCTAGCTCA -ACGGAATAGCCAGAAGCTTCACGT -ACGGAATAGCCAGAAGCTCGTAGT -ACGGAATAGCCAGAAGCTGTCAGT -ACGGAATAGCCAGAAGCTGAAGGT -ACGGAATAGCCAGAAGCTAACCGT -ACGGAATAGCCAGAAGCTTTGTGC -ACGGAATAGCCAGAAGCTCTAAGC -ACGGAATAGCCAGAAGCTACTAGC -ACGGAATAGCCAGAAGCTAGATGC -ACGGAATAGCCAGAAGCTTGAAGG -ACGGAATAGCCAGAAGCTCAATGG -ACGGAATAGCCAGAAGCTATGAGG -ACGGAATAGCCAGAAGCTAATGGG -ACGGAATAGCCAGAAGCTTCCTGA -ACGGAATAGCCAGAAGCTTAGCGA -ACGGAATAGCCAGAAGCTCACAGA -ACGGAATAGCCAGAAGCTGCAAGA -ACGGAATAGCCAGAAGCTGGTTGA -ACGGAATAGCCAGAAGCTTCCGAT -ACGGAATAGCCAGAAGCTTGGCAT -ACGGAATAGCCAGAAGCTCGAGAT -ACGGAATAGCCAGAAGCTTACCAC -ACGGAATAGCCAGAAGCTCAGAAC -ACGGAATAGCCAGAAGCTGTCTAC -ACGGAATAGCCAGAAGCTACGTAC -ACGGAATAGCCAGAAGCTAGTGAC -ACGGAATAGCCAGAAGCTCTGTAG -ACGGAATAGCCAGAAGCTCCTAAG -ACGGAATAGCCAGAAGCTGTTCAG -ACGGAATAGCCAGAAGCTGCATAG -ACGGAATAGCCAGAAGCTGACAAG -ACGGAATAGCCAGAAGCTAAGCAG -ACGGAATAGCCAGAAGCTCGTCAA -ACGGAATAGCCAGAAGCTGCTGAA -ACGGAATAGCCAGAAGCTAGTACG -ACGGAATAGCCAGAAGCTATCCGA -ACGGAATAGCCAGAAGCTATGGGA -ACGGAATAGCCAGAAGCTGTGCAA -ACGGAATAGCCAGAAGCTGAGGAA -ACGGAATAGCCAGAAGCTCAGGTA -ACGGAATAGCCAGAAGCTGACTCT -ACGGAATAGCCAGAAGCTAGTCCT -ACGGAATAGCCAGAAGCTTAAGCC -ACGGAATAGCCAGAAGCTATAGCC -ACGGAATAGCCAGAAGCTTAACCG -ACGGAATAGCCAGAAGCTATGCCA -ACGGAATAGCCAACGAGTGGAAAC -ACGGAATAGCCAACGAGTAACACC -ACGGAATAGCCAACGAGTATCGAG -ACGGAATAGCCAACGAGTCTCCTT -ACGGAATAGCCAACGAGTCCTGTT -ACGGAATAGCCAACGAGTCGGTTT -ACGGAATAGCCAACGAGTGTGGTT -ACGGAATAGCCAACGAGTGCCTTT -ACGGAATAGCCAACGAGTGGTCTT -ACGGAATAGCCAACGAGTACGCTT -ACGGAATAGCCAACGAGTAGCGTT -ACGGAATAGCCAACGAGTTTCGTC -ACGGAATAGCCAACGAGTTCTCTC -ACGGAATAGCCAACGAGTTGGATC -ACGGAATAGCCAACGAGTCACTTC -ACGGAATAGCCAACGAGTGTACTC -ACGGAATAGCCAACGAGTGATGTC -ACGGAATAGCCAACGAGTACAGTC -ACGGAATAGCCAACGAGTTTGCTG -ACGGAATAGCCAACGAGTTCCATG -ACGGAATAGCCAACGAGTTGTGTG -ACGGAATAGCCAACGAGTCTAGTG -ACGGAATAGCCAACGAGTCATCTG -ACGGAATAGCCAACGAGTGAGTTG -ACGGAATAGCCAACGAGTAGACTG -ACGGAATAGCCAACGAGTTCGGTA -ACGGAATAGCCAACGAGTTGCCTA -ACGGAATAGCCAACGAGTCCACTA -ACGGAATAGCCAACGAGTGGAGTA -ACGGAATAGCCAACGAGTTCGTCT -ACGGAATAGCCAACGAGTTGCACT -ACGGAATAGCCAACGAGTCTGACT -ACGGAATAGCCAACGAGTCAACCT -ACGGAATAGCCAACGAGTGCTACT -ACGGAATAGCCAACGAGTGGATCT -ACGGAATAGCCAACGAGTAAGGCT -ACGGAATAGCCAACGAGTTCAACC -ACGGAATAGCCAACGAGTTGTTCC -ACGGAATAGCCAACGAGTATTCCC -ACGGAATAGCCAACGAGTTTCTCG -ACGGAATAGCCAACGAGTTAGACG -ACGGAATAGCCAACGAGTGTAACG -ACGGAATAGCCAACGAGTACTTCG -ACGGAATAGCCAACGAGTTACGCA -ACGGAATAGCCAACGAGTCTTGCA -ACGGAATAGCCAACGAGTCGAACA -ACGGAATAGCCAACGAGTCAGTCA -ACGGAATAGCCAACGAGTGATCCA -ACGGAATAGCCAACGAGTACGACA -ACGGAATAGCCAACGAGTAGCTCA -ACGGAATAGCCAACGAGTTCACGT -ACGGAATAGCCAACGAGTCGTAGT -ACGGAATAGCCAACGAGTGTCAGT -ACGGAATAGCCAACGAGTGAAGGT -ACGGAATAGCCAACGAGTAACCGT -ACGGAATAGCCAACGAGTTTGTGC -ACGGAATAGCCAACGAGTCTAAGC -ACGGAATAGCCAACGAGTACTAGC -ACGGAATAGCCAACGAGTAGATGC -ACGGAATAGCCAACGAGTTGAAGG -ACGGAATAGCCAACGAGTCAATGG -ACGGAATAGCCAACGAGTATGAGG -ACGGAATAGCCAACGAGTAATGGG -ACGGAATAGCCAACGAGTTCCTGA -ACGGAATAGCCAACGAGTTAGCGA -ACGGAATAGCCAACGAGTCACAGA -ACGGAATAGCCAACGAGTGCAAGA -ACGGAATAGCCAACGAGTGGTTGA -ACGGAATAGCCAACGAGTTCCGAT -ACGGAATAGCCAACGAGTTGGCAT -ACGGAATAGCCAACGAGTCGAGAT -ACGGAATAGCCAACGAGTTACCAC -ACGGAATAGCCAACGAGTCAGAAC -ACGGAATAGCCAACGAGTGTCTAC -ACGGAATAGCCAACGAGTACGTAC -ACGGAATAGCCAACGAGTAGTGAC -ACGGAATAGCCAACGAGTCTGTAG -ACGGAATAGCCAACGAGTCCTAAG -ACGGAATAGCCAACGAGTGTTCAG -ACGGAATAGCCAACGAGTGCATAG -ACGGAATAGCCAACGAGTGACAAG -ACGGAATAGCCAACGAGTAAGCAG -ACGGAATAGCCAACGAGTCGTCAA -ACGGAATAGCCAACGAGTGCTGAA -ACGGAATAGCCAACGAGTAGTACG -ACGGAATAGCCAACGAGTATCCGA -ACGGAATAGCCAACGAGTATGGGA -ACGGAATAGCCAACGAGTGTGCAA -ACGGAATAGCCAACGAGTGAGGAA -ACGGAATAGCCAACGAGTCAGGTA -ACGGAATAGCCAACGAGTGACTCT -ACGGAATAGCCAACGAGTAGTCCT -ACGGAATAGCCAACGAGTTAAGCC -ACGGAATAGCCAACGAGTATAGCC -ACGGAATAGCCAACGAGTTAACCG -ACGGAATAGCCAACGAGTATGCCA -ACGGAATAGCCACGAATCGGAAAC -ACGGAATAGCCACGAATCAACACC -ACGGAATAGCCACGAATCATCGAG -ACGGAATAGCCACGAATCCTCCTT -ACGGAATAGCCACGAATCCCTGTT -ACGGAATAGCCACGAATCCGGTTT -ACGGAATAGCCACGAATCGTGGTT -ACGGAATAGCCACGAATCGCCTTT -ACGGAATAGCCACGAATCGGTCTT -ACGGAATAGCCACGAATCACGCTT -ACGGAATAGCCACGAATCAGCGTT -ACGGAATAGCCACGAATCTTCGTC -ACGGAATAGCCACGAATCTCTCTC -ACGGAATAGCCACGAATCTGGATC -ACGGAATAGCCACGAATCCACTTC -ACGGAATAGCCACGAATCGTACTC -ACGGAATAGCCACGAATCGATGTC -ACGGAATAGCCACGAATCACAGTC -ACGGAATAGCCACGAATCTTGCTG -ACGGAATAGCCACGAATCTCCATG -ACGGAATAGCCACGAATCTGTGTG -ACGGAATAGCCACGAATCCTAGTG -ACGGAATAGCCACGAATCCATCTG -ACGGAATAGCCACGAATCGAGTTG -ACGGAATAGCCACGAATCAGACTG -ACGGAATAGCCACGAATCTCGGTA -ACGGAATAGCCACGAATCTGCCTA -ACGGAATAGCCACGAATCCCACTA -ACGGAATAGCCACGAATCGGAGTA -ACGGAATAGCCACGAATCTCGTCT -ACGGAATAGCCACGAATCTGCACT -ACGGAATAGCCACGAATCCTGACT -ACGGAATAGCCACGAATCCAACCT -ACGGAATAGCCACGAATCGCTACT -ACGGAATAGCCACGAATCGGATCT -ACGGAATAGCCACGAATCAAGGCT -ACGGAATAGCCACGAATCTCAACC -ACGGAATAGCCACGAATCTGTTCC -ACGGAATAGCCACGAATCATTCCC -ACGGAATAGCCACGAATCTTCTCG -ACGGAATAGCCACGAATCTAGACG -ACGGAATAGCCACGAATCGTAACG -ACGGAATAGCCACGAATCACTTCG -ACGGAATAGCCACGAATCTACGCA -ACGGAATAGCCACGAATCCTTGCA -ACGGAATAGCCACGAATCCGAACA -ACGGAATAGCCACGAATCCAGTCA -ACGGAATAGCCACGAATCGATCCA -ACGGAATAGCCACGAATCACGACA -ACGGAATAGCCACGAATCAGCTCA -ACGGAATAGCCACGAATCTCACGT -ACGGAATAGCCACGAATCCGTAGT -ACGGAATAGCCACGAATCGTCAGT -ACGGAATAGCCACGAATCGAAGGT -ACGGAATAGCCACGAATCAACCGT -ACGGAATAGCCACGAATCTTGTGC -ACGGAATAGCCACGAATCCTAAGC -ACGGAATAGCCACGAATCACTAGC -ACGGAATAGCCACGAATCAGATGC -ACGGAATAGCCACGAATCTGAAGG -ACGGAATAGCCACGAATCCAATGG -ACGGAATAGCCACGAATCATGAGG -ACGGAATAGCCACGAATCAATGGG -ACGGAATAGCCACGAATCTCCTGA -ACGGAATAGCCACGAATCTAGCGA -ACGGAATAGCCACGAATCCACAGA -ACGGAATAGCCACGAATCGCAAGA -ACGGAATAGCCACGAATCGGTTGA -ACGGAATAGCCACGAATCTCCGAT -ACGGAATAGCCACGAATCTGGCAT -ACGGAATAGCCACGAATCCGAGAT -ACGGAATAGCCACGAATCTACCAC -ACGGAATAGCCACGAATCCAGAAC -ACGGAATAGCCACGAATCGTCTAC -ACGGAATAGCCACGAATCACGTAC -ACGGAATAGCCACGAATCAGTGAC -ACGGAATAGCCACGAATCCTGTAG -ACGGAATAGCCACGAATCCCTAAG -ACGGAATAGCCACGAATCGTTCAG -ACGGAATAGCCACGAATCGCATAG -ACGGAATAGCCACGAATCGACAAG -ACGGAATAGCCACGAATCAAGCAG -ACGGAATAGCCACGAATCCGTCAA -ACGGAATAGCCACGAATCGCTGAA -ACGGAATAGCCACGAATCAGTACG -ACGGAATAGCCACGAATCATCCGA -ACGGAATAGCCACGAATCATGGGA -ACGGAATAGCCACGAATCGTGCAA -ACGGAATAGCCACGAATCGAGGAA -ACGGAATAGCCACGAATCCAGGTA -ACGGAATAGCCACGAATCGACTCT -ACGGAATAGCCACGAATCAGTCCT -ACGGAATAGCCACGAATCTAAGCC -ACGGAATAGCCACGAATCATAGCC -ACGGAATAGCCACGAATCTAACCG -ACGGAATAGCCACGAATCATGCCA -ACGGAATAGCCAGGAATGGGAAAC -ACGGAATAGCCAGGAATGAACACC -ACGGAATAGCCAGGAATGATCGAG -ACGGAATAGCCAGGAATGCTCCTT -ACGGAATAGCCAGGAATGCCTGTT -ACGGAATAGCCAGGAATGCGGTTT -ACGGAATAGCCAGGAATGGTGGTT -ACGGAATAGCCAGGAATGGCCTTT -ACGGAATAGCCAGGAATGGGTCTT -ACGGAATAGCCAGGAATGACGCTT -ACGGAATAGCCAGGAATGAGCGTT -ACGGAATAGCCAGGAATGTTCGTC -ACGGAATAGCCAGGAATGTCTCTC -ACGGAATAGCCAGGAATGTGGATC -ACGGAATAGCCAGGAATGCACTTC -ACGGAATAGCCAGGAATGGTACTC -ACGGAATAGCCAGGAATGGATGTC -ACGGAATAGCCAGGAATGACAGTC -ACGGAATAGCCAGGAATGTTGCTG -ACGGAATAGCCAGGAATGTCCATG -ACGGAATAGCCAGGAATGTGTGTG -ACGGAATAGCCAGGAATGCTAGTG -ACGGAATAGCCAGGAATGCATCTG -ACGGAATAGCCAGGAATGGAGTTG -ACGGAATAGCCAGGAATGAGACTG -ACGGAATAGCCAGGAATGTCGGTA -ACGGAATAGCCAGGAATGTGCCTA -ACGGAATAGCCAGGAATGCCACTA -ACGGAATAGCCAGGAATGGGAGTA -ACGGAATAGCCAGGAATGTCGTCT -ACGGAATAGCCAGGAATGTGCACT -ACGGAATAGCCAGGAATGCTGACT -ACGGAATAGCCAGGAATGCAACCT -ACGGAATAGCCAGGAATGGCTACT -ACGGAATAGCCAGGAATGGGATCT -ACGGAATAGCCAGGAATGAAGGCT -ACGGAATAGCCAGGAATGTCAACC -ACGGAATAGCCAGGAATGTGTTCC -ACGGAATAGCCAGGAATGATTCCC -ACGGAATAGCCAGGAATGTTCTCG -ACGGAATAGCCAGGAATGTAGACG -ACGGAATAGCCAGGAATGGTAACG -ACGGAATAGCCAGGAATGACTTCG -ACGGAATAGCCAGGAATGTACGCA -ACGGAATAGCCAGGAATGCTTGCA -ACGGAATAGCCAGGAATGCGAACA -ACGGAATAGCCAGGAATGCAGTCA -ACGGAATAGCCAGGAATGGATCCA -ACGGAATAGCCAGGAATGACGACA -ACGGAATAGCCAGGAATGAGCTCA -ACGGAATAGCCAGGAATGTCACGT -ACGGAATAGCCAGGAATGCGTAGT -ACGGAATAGCCAGGAATGGTCAGT -ACGGAATAGCCAGGAATGGAAGGT -ACGGAATAGCCAGGAATGAACCGT -ACGGAATAGCCAGGAATGTTGTGC -ACGGAATAGCCAGGAATGCTAAGC -ACGGAATAGCCAGGAATGACTAGC -ACGGAATAGCCAGGAATGAGATGC -ACGGAATAGCCAGGAATGTGAAGG -ACGGAATAGCCAGGAATGCAATGG -ACGGAATAGCCAGGAATGATGAGG -ACGGAATAGCCAGGAATGAATGGG -ACGGAATAGCCAGGAATGTCCTGA -ACGGAATAGCCAGGAATGTAGCGA -ACGGAATAGCCAGGAATGCACAGA -ACGGAATAGCCAGGAATGGCAAGA -ACGGAATAGCCAGGAATGGGTTGA -ACGGAATAGCCAGGAATGTCCGAT -ACGGAATAGCCAGGAATGTGGCAT -ACGGAATAGCCAGGAATGCGAGAT -ACGGAATAGCCAGGAATGTACCAC -ACGGAATAGCCAGGAATGCAGAAC -ACGGAATAGCCAGGAATGGTCTAC -ACGGAATAGCCAGGAATGACGTAC -ACGGAATAGCCAGGAATGAGTGAC -ACGGAATAGCCAGGAATGCTGTAG -ACGGAATAGCCAGGAATGCCTAAG -ACGGAATAGCCAGGAATGGTTCAG -ACGGAATAGCCAGGAATGGCATAG -ACGGAATAGCCAGGAATGGACAAG -ACGGAATAGCCAGGAATGAAGCAG -ACGGAATAGCCAGGAATGCGTCAA -ACGGAATAGCCAGGAATGGCTGAA -ACGGAATAGCCAGGAATGAGTACG -ACGGAATAGCCAGGAATGATCCGA -ACGGAATAGCCAGGAATGATGGGA -ACGGAATAGCCAGGAATGGTGCAA -ACGGAATAGCCAGGAATGGAGGAA -ACGGAATAGCCAGGAATGCAGGTA -ACGGAATAGCCAGGAATGGACTCT -ACGGAATAGCCAGGAATGAGTCCT -ACGGAATAGCCAGGAATGTAAGCC -ACGGAATAGCCAGGAATGATAGCC -ACGGAATAGCCAGGAATGTAACCG -ACGGAATAGCCAGGAATGATGCCA -ACGGAATAGCCACAAGTGGGAAAC -ACGGAATAGCCACAAGTGAACACC -ACGGAATAGCCACAAGTGATCGAG -ACGGAATAGCCACAAGTGCTCCTT -ACGGAATAGCCACAAGTGCCTGTT -ACGGAATAGCCACAAGTGCGGTTT -ACGGAATAGCCACAAGTGGTGGTT -ACGGAATAGCCACAAGTGGCCTTT -ACGGAATAGCCACAAGTGGGTCTT -ACGGAATAGCCACAAGTGACGCTT -ACGGAATAGCCACAAGTGAGCGTT -ACGGAATAGCCACAAGTGTTCGTC -ACGGAATAGCCACAAGTGTCTCTC -ACGGAATAGCCACAAGTGTGGATC -ACGGAATAGCCACAAGTGCACTTC -ACGGAATAGCCACAAGTGGTACTC -ACGGAATAGCCACAAGTGGATGTC -ACGGAATAGCCACAAGTGACAGTC -ACGGAATAGCCACAAGTGTTGCTG -ACGGAATAGCCACAAGTGTCCATG -ACGGAATAGCCACAAGTGTGTGTG -ACGGAATAGCCACAAGTGCTAGTG -ACGGAATAGCCACAAGTGCATCTG -ACGGAATAGCCACAAGTGGAGTTG -ACGGAATAGCCACAAGTGAGACTG -ACGGAATAGCCACAAGTGTCGGTA -ACGGAATAGCCACAAGTGTGCCTA -ACGGAATAGCCACAAGTGCCACTA -ACGGAATAGCCACAAGTGGGAGTA -ACGGAATAGCCACAAGTGTCGTCT -ACGGAATAGCCACAAGTGTGCACT -ACGGAATAGCCACAAGTGCTGACT -ACGGAATAGCCACAAGTGCAACCT -ACGGAATAGCCACAAGTGGCTACT -ACGGAATAGCCACAAGTGGGATCT -ACGGAATAGCCACAAGTGAAGGCT -ACGGAATAGCCACAAGTGTCAACC -ACGGAATAGCCACAAGTGTGTTCC -ACGGAATAGCCACAAGTGATTCCC -ACGGAATAGCCACAAGTGTTCTCG -ACGGAATAGCCACAAGTGTAGACG -ACGGAATAGCCACAAGTGGTAACG -ACGGAATAGCCACAAGTGACTTCG -ACGGAATAGCCACAAGTGTACGCA -ACGGAATAGCCACAAGTGCTTGCA -ACGGAATAGCCACAAGTGCGAACA -ACGGAATAGCCACAAGTGCAGTCA -ACGGAATAGCCACAAGTGGATCCA -ACGGAATAGCCACAAGTGACGACA -ACGGAATAGCCACAAGTGAGCTCA -ACGGAATAGCCACAAGTGTCACGT -ACGGAATAGCCACAAGTGCGTAGT -ACGGAATAGCCACAAGTGGTCAGT -ACGGAATAGCCACAAGTGGAAGGT -ACGGAATAGCCACAAGTGAACCGT -ACGGAATAGCCACAAGTGTTGTGC -ACGGAATAGCCACAAGTGCTAAGC -ACGGAATAGCCACAAGTGACTAGC -ACGGAATAGCCACAAGTGAGATGC -ACGGAATAGCCACAAGTGTGAAGG -ACGGAATAGCCACAAGTGCAATGG -ACGGAATAGCCACAAGTGATGAGG -ACGGAATAGCCACAAGTGAATGGG -ACGGAATAGCCACAAGTGTCCTGA -ACGGAATAGCCACAAGTGTAGCGA -ACGGAATAGCCACAAGTGCACAGA -ACGGAATAGCCACAAGTGGCAAGA -ACGGAATAGCCACAAGTGGGTTGA -ACGGAATAGCCACAAGTGTCCGAT -ACGGAATAGCCACAAGTGTGGCAT -ACGGAATAGCCACAAGTGCGAGAT -ACGGAATAGCCACAAGTGTACCAC -ACGGAATAGCCACAAGTGCAGAAC -ACGGAATAGCCACAAGTGGTCTAC -ACGGAATAGCCACAAGTGACGTAC -ACGGAATAGCCACAAGTGAGTGAC -ACGGAATAGCCACAAGTGCTGTAG -ACGGAATAGCCACAAGTGCCTAAG -ACGGAATAGCCACAAGTGGTTCAG -ACGGAATAGCCACAAGTGGCATAG -ACGGAATAGCCACAAGTGGACAAG -ACGGAATAGCCACAAGTGAAGCAG -ACGGAATAGCCACAAGTGCGTCAA -ACGGAATAGCCACAAGTGGCTGAA -ACGGAATAGCCACAAGTGAGTACG -ACGGAATAGCCACAAGTGATCCGA -ACGGAATAGCCACAAGTGATGGGA -ACGGAATAGCCACAAGTGGTGCAA -ACGGAATAGCCACAAGTGGAGGAA -ACGGAATAGCCACAAGTGCAGGTA -ACGGAATAGCCACAAGTGGACTCT -ACGGAATAGCCACAAGTGAGTCCT -ACGGAATAGCCACAAGTGTAAGCC -ACGGAATAGCCACAAGTGATAGCC -ACGGAATAGCCACAAGTGTAACCG -ACGGAATAGCCACAAGTGATGCCA -ACGGAATAGCCAGAAGAGGGAAAC -ACGGAATAGCCAGAAGAGAACACC -ACGGAATAGCCAGAAGAGATCGAG -ACGGAATAGCCAGAAGAGCTCCTT -ACGGAATAGCCAGAAGAGCCTGTT -ACGGAATAGCCAGAAGAGCGGTTT -ACGGAATAGCCAGAAGAGGTGGTT -ACGGAATAGCCAGAAGAGGCCTTT -ACGGAATAGCCAGAAGAGGGTCTT -ACGGAATAGCCAGAAGAGACGCTT -ACGGAATAGCCAGAAGAGAGCGTT -ACGGAATAGCCAGAAGAGTTCGTC -ACGGAATAGCCAGAAGAGTCTCTC -ACGGAATAGCCAGAAGAGTGGATC -ACGGAATAGCCAGAAGAGCACTTC -ACGGAATAGCCAGAAGAGGTACTC -ACGGAATAGCCAGAAGAGGATGTC -ACGGAATAGCCAGAAGAGACAGTC -ACGGAATAGCCAGAAGAGTTGCTG -ACGGAATAGCCAGAAGAGTCCATG -ACGGAATAGCCAGAAGAGTGTGTG -ACGGAATAGCCAGAAGAGCTAGTG -ACGGAATAGCCAGAAGAGCATCTG -ACGGAATAGCCAGAAGAGGAGTTG -ACGGAATAGCCAGAAGAGAGACTG -ACGGAATAGCCAGAAGAGTCGGTA -ACGGAATAGCCAGAAGAGTGCCTA -ACGGAATAGCCAGAAGAGCCACTA -ACGGAATAGCCAGAAGAGGGAGTA -ACGGAATAGCCAGAAGAGTCGTCT -ACGGAATAGCCAGAAGAGTGCACT -ACGGAATAGCCAGAAGAGCTGACT -ACGGAATAGCCAGAAGAGCAACCT -ACGGAATAGCCAGAAGAGGCTACT -ACGGAATAGCCAGAAGAGGGATCT -ACGGAATAGCCAGAAGAGAAGGCT -ACGGAATAGCCAGAAGAGTCAACC -ACGGAATAGCCAGAAGAGTGTTCC -ACGGAATAGCCAGAAGAGATTCCC -ACGGAATAGCCAGAAGAGTTCTCG -ACGGAATAGCCAGAAGAGTAGACG -ACGGAATAGCCAGAAGAGGTAACG -ACGGAATAGCCAGAAGAGACTTCG -ACGGAATAGCCAGAAGAGTACGCA -ACGGAATAGCCAGAAGAGCTTGCA -ACGGAATAGCCAGAAGAGCGAACA -ACGGAATAGCCAGAAGAGCAGTCA -ACGGAATAGCCAGAAGAGGATCCA -ACGGAATAGCCAGAAGAGACGACA -ACGGAATAGCCAGAAGAGAGCTCA -ACGGAATAGCCAGAAGAGTCACGT -ACGGAATAGCCAGAAGAGCGTAGT -ACGGAATAGCCAGAAGAGGTCAGT -ACGGAATAGCCAGAAGAGGAAGGT -ACGGAATAGCCAGAAGAGAACCGT -ACGGAATAGCCAGAAGAGTTGTGC -ACGGAATAGCCAGAAGAGCTAAGC -ACGGAATAGCCAGAAGAGACTAGC -ACGGAATAGCCAGAAGAGAGATGC -ACGGAATAGCCAGAAGAGTGAAGG -ACGGAATAGCCAGAAGAGCAATGG -ACGGAATAGCCAGAAGAGATGAGG -ACGGAATAGCCAGAAGAGAATGGG -ACGGAATAGCCAGAAGAGTCCTGA -ACGGAATAGCCAGAAGAGTAGCGA -ACGGAATAGCCAGAAGAGCACAGA -ACGGAATAGCCAGAAGAGGCAAGA -ACGGAATAGCCAGAAGAGGGTTGA -ACGGAATAGCCAGAAGAGTCCGAT -ACGGAATAGCCAGAAGAGTGGCAT -ACGGAATAGCCAGAAGAGCGAGAT -ACGGAATAGCCAGAAGAGTACCAC -ACGGAATAGCCAGAAGAGCAGAAC -ACGGAATAGCCAGAAGAGGTCTAC -ACGGAATAGCCAGAAGAGACGTAC -ACGGAATAGCCAGAAGAGAGTGAC -ACGGAATAGCCAGAAGAGCTGTAG -ACGGAATAGCCAGAAGAGCCTAAG -ACGGAATAGCCAGAAGAGGTTCAG -ACGGAATAGCCAGAAGAGGCATAG -ACGGAATAGCCAGAAGAGGACAAG -ACGGAATAGCCAGAAGAGAAGCAG -ACGGAATAGCCAGAAGAGCGTCAA -ACGGAATAGCCAGAAGAGGCTGAA -ACGGAATAGCCAGAAGAGAGTACG -ACGGAATAGCCAGAAGAGATCCGA -ACGGAATAGCCAGAAGAGATGGGA -ACGGAATAGCCAGAAGAGGTGCAA -ACGGAATAGCCAGAAGAGGAGGAA -ACGGAATAGCCAGAAGAGCAGGTA -ACGGAATAGCCAGAAGAGGACTCT -ACGGAATAGCCAGAAGAGAGTCCT -ACGGAATAGCCAGAAGAGTAAGCC -ACGGAATAGCCAGAAGAGATAGCC -ACGGAATAGCCAGAAGAGTAACCG -ACGGAATAGCCAGAAGAGATGCCA -ACGGAATAGCCAGTACAGGGAAAC -ACGGAATAGCCAGTACAGAACACC -ACGGAATAGCCAGTACAGATCGAG -ACGGAATAGCCAGTACAGCTCCTT -ACGGAATAGCCAGTACAGCCTGTT -ACGGAATAGCCAGTACAGCGGTTT -ACGGAATAGCCAGTACAGGTGGTT -ACGGAATAGCCAGTACAGGCCTTT -ACGGAATAGCCAGTACAGGGTCTT -ACGGAATAGCCAGTACAGACGCTT -ACGGAATAGCCAGTACAGAGCGTT -ACGGAATAGCCAGTACAGTTCGTC -ACGGAATAGCCAGTACAGTCTCTC -ACGGAATAGCCAGTACAGTGGATC -ACGGAATAGCCAGTACAGCACTTC -ACGGAATAGCCAGTACAGGTACTC -ACGGAATAGCCAGTACAGGATGTC -ACGGAATAGCCAGTACAGACAGTC -ACGGAATAGCCAGTACAGTTGCTG -ACGGAATAGCCAGTACAGTCCATG -ACGGAATAGCCAGTACAGTGTGTG -ACGGAATAGCCAGTACAGCTAGTG -ACGGAATAGCCAGTACAGCATCTG -ACGGAATAGCCAGTACAGGAGTTG -ACGGAATAGCCAGTACAGAGACTG -ACGGAATAGCCAGTACAGTCGGTA -ACGGAATAGCCAGTACAGTGCCTA -ACGGAATAGCCAGTACAGCCACTA -ACGGAATAGCCAGTACAGGGAGTA -ACGGAATAGCCAGTACAGTCGTCT -ACGGAATAGCCAGTACAGTGCACT -ACGGAATAGCCAGTACAGCTGACT -ACGGAATAGCCAGTACAGCAACCT -ACGGAATAGCCAGTACAGGCTACT -ACGGAATAGCCAGTACAGGGATCT -ACGGAATAGCCAGTACAGAAGGCT -ACGGAATAGCCAGTACAGTCAACC -ACGGAATAGCCAGTACAGTGTTCC -ACGGAATAGCCAGTACAGATTCCC -ACGGAATAGCCAGTACAGTTCTCG -ACGGAATAGCCAGTACAGTAGACG -ACGGAATAGCCAGTACAGGTAACG -ACGGAATAGCCAGTACAGACTTCG -ACGGAATAGCCAGTACAGTACGCA -ACGGAATAGCCAGTACAGCTTGCA -ACGGAATAGCCAGTACAGCGAACA -ACGGAATAGCCAGTACAGCAGTCA -ACGGAATAGCCAGTACAGGATCCA -ACGGAATAGCCAGTACAGACGACA -ACGGAATAGCCAGTACAGAGCTCA -ACGGAATAGCCAGTACAGTCACGT -ACGGAATAGCCAGTACAGCGTAGT -ACGGAATAGCCAGTACAGGTCAGT -ACGGAATAGCCAGTACAGGAAGGT -ACGGAATAGCCAGTACAGAACCGT -ACGGAATAGCCAGTACAGTTGTGC -ACGGAATAGCCAGTACAGCTAAGC -ACGGAATAGCCAGTACAGACTAGC -ACGGAATAGCCAGTACAGAGATGC -ACGGAATAGCCAGTACAGTGAAGG -ACGGAATAGCCAGTACAGCAATGG -ACGGAATAGCCAGTACAGATGAGG -ACGGAATAGCCAGTACAGAATGGG -ACGGAATAGCCAGTACAGTCCTGA -ACGGAATAGCCAGTACAGTAGCGA -ACGGAATAGCCAGTACAGCACAGA -ACGGAATAGCCAGTACAGGCAAGA -ACGGAATAGCCAGTACAGGGTTGA -ACGGAATAGCCAGTACAGTCCGAT -ACGGAATAGCCAGTACAGTGGCAT -ACGGAATAGCCAGTACAGCGAGAT -ACGGAATAGCCAGTACAGTACCAC -ACGGAATAGCCAGTACAGCAGAAC -ACGGAATAGCCAGTACAGGTCTAC -ACGGAATAGCCAGTACAGACGTAC -ACGGAATAGCCAGTACAGAGTGAC -ACGGAATAGCCAGTACAGCTGTAG -ACGGAATAGCCAGTACAGCCTAAG -ACGGAATAGCCAGTACAGGTTCAG -ACGGAATAGCCAGTACAGGCATAG -ACGGAATAGCCAGTACAGGACAAG -ACGGAATAGCCAGTACAGAAGCAG -ACGGAATAGCCAGTACAGCGTCAA -ACGGAATAGCCAGTACAGGCTGAA -ACGGAATAGCCAGTACAGAGTACG -ACGGAATAGCCAGTACAGATCCGA -ACGGAATAGCCAGTACAGATGGGA -ACGGAATAGCCAGTACAGGTGCAA -ACGGAATAGCCAGTACAGGAGGAA -ACGGAATAGCCAGTACAGCAGGTA -ACGGAATAGCCAGTACAGGACTCT -ACGGAATAGCCAGTACAGAGTCCT -ACGGAATAGCCAGTACAGTAAGCC -ACGGAATAGCCAGTACAGATAGCC -ACGGAATAGCCAGTACAGTAACCG -ACGGAATAGCCAGTACAGATGCCA -ACGGAATAGCCATCTGACGGAAAC -ACGGAATAGCCATCTGACAACACC -ACGGAATAGCCATCTGACATCGAG -ACGGAATAGCCATCTGACCTCCTT -ACGGAATAGCCATCTGACCCTGTT -ACGGAATAGCCATCTGACCGGTTT -ACGGAATAGCCATCTGACGTGGTT -ACGGAATAGCCATCTGACGCCTTT -ACGGAATAGCCATCTGACGGTCTT -ACGGAATAGCCATCTGACACGCTT -ACGGAATAGCCATCTGACAGCGTT -ACGGAATAGCCATCTGACTTCGTC -ACGGAATAGCCATCTGACTCTCTC -ACGGAATAGCCATCTGACTGGATC -ACGGAATAGCCATCTGACCACTTC -ACGGAATAGCCATCTGACGTACTC -ACGGAATAGCCATCTGACGATGTC -ACGGAATAGCCATCTGACACAGTC -ACGGAATAGCCATCTGACTTGCTG -ACGGAATAGCCATCTGACTCCATG -ACGGAATAGCCATCTGACTGTGTG -ACGGAATAGCCATCTGACCTAGTG -ACGGAATAGCCATCTGACCATCTG -ACGGAATAGCCATCTGACGAGTTG -ACGGAATAGCCATCTGACAGACTG -ACGGAATAGCCATCTGACTCGGTA -ACGGAATAGCCATCTGACTGCCTA -ACGGAATAGCCATCTGACCCACTA -ACGGAATAGCCATCTGACGGAGTA -ACGGAATAGCCATCTGACTCGTCT -ACGGAATAGCCATCTGACTGCACT -ACGGAATAGCCATCTGACCTGACT -ACGGAATAGCCATCTGACCAACCT -ACGGAATAGCCATCTGACGCTACT -ACGGAATAGCCATCTGACGGATCT -ACGGAATAGCCATCTGACAAGGCT -ACGGAATAGCCATCTGACTCAACC -ACGGAATAGCCATCTGACTGTTCC -ACGGAATAGCCATCTGACATTCCC -ACGGAATAGCCATCTGACTTCTCG -ACGGAATAGCCATCTGACTAGACG -ACGGAATAGCCATCTGACGTAACG -ACGGAATAGCCATCTGACACTTCG -ACGGAATAGCCATCTGACTACGCA -ACGGAATAGCCATCTGACCTTGCA -ACGGAATAGCCATCTGACCGAACA -ACGGAATAGCCATCTGACCAGTCA -ACGGAATAGCCATCTGACGATCCA -ACGGAATAGCCATCTGACACGACA -ACGGAATAGCCATCTGACAGCTCA -ACGGAATAGCCATCTGACTCACGT -ACGGAATAGCCATCTGACCGTAGT -ACGGAATAGCCATCTGACGTCAGT -ACGGAATAGCCATCTGACGAAGGT -ACGGAATAGCCATCTGACAACCGT -ACGGAATAGCCATCTGACTTGTGC -ACGGAATAGCCATCTGACCTAAGC -ACGGAATAGCCATCTGACACTAGC -ACGGAATAGCCATCTGACAGATGC -ACGGAATAGCCATCTGACTGAAGG -ACGGAATAGCCATCTGACCAATGG -ACGGAATAGCCATCTGACATGAGG -ACGGAATAGCCATCTGACAATGGG -ACGGAATAGCCATCTGACTCCTGA -ACGGAATAGCCATCTGACTAGCGA -ACGGAATAGCCATCTGACCACAGA -ACGGAATAGCCATCTGACGCAAGA -ACGGAATAGCCATCTGACGGTTGA -ACGGAATAGCCATCTGACTCCGAT -ACGGAATAGCCATCTGACTGGCAT -ACGGAATAGCCATCTGACCGAGAT -ACGGAATAGCCATCTGACTACCAC -ACGGAATAGCCATCTGACCAGAAC -ACGGAATAGCCATCTGACGTCTAC -ACGGAATAGCCATCTGACACGTAC -ACGGAATAGCCATCTGACAGTGAC -ACGGAATAGCCATCTGACCTGTAG -ACGGAATAGCCATCTGACCCTAAG -ACGGAATAGCCATCTGACGTTCAG -ACGGAATAGCCATCTGACGCATAG -ACGGAATAGCCATCTGACGACAAG -ACGGAATAGCCATCTGACAAGCAG -ACGGAATAGCCATCTGACCGTCAA -ACGGAATAGCCATCTGACGCTGAA -ACGGAATAGCCATCTGACAGTACG -ACGGAATAGCCATCTGACATCCGA -ACGGAATAGCCATCTGACATGGGA -ACGGAATAGCCATCTGACGTGCAA -ACGGAATAGCCATCTGACGAGGAA -ACGGAATAGCCATCTGACCAGGTA -ACGGAATAGCCATCTGACGACTCT -ACGGAATAGCCATCTGACAGTCCT -ACGGAATAGCCATCTGACTAAGCC -ACGGAATAGCCATCTGACATAGCC -ACGGAATAGCCATCTGACTAACCG -ACGGAATAGCCATCTGACATGCCA -ACGGAATAGCCACCTAGTGGAAAC -ACGGAATAGCCACCTAGTAACACC -ACGGAATAGCCACCTAGTATCGAG -ACGGAATAGCCACCTAGTCTCCTT -ACGGAATAGCCACCTAGTCCTGTT -ACGGAATAGCCACCTAGTCGGTTT -ACGGAATAGCCACCTAGTGTGGTT -ACGGAATAGCCACCTAGTGCCTTT -ACGGAATAGCCACCTAGTGGTCTT -ACGGAATAGCCACCTAGTACGCTT -ACGGAATAGCCACCTAGTAGCGTT -ACGGAATAGCCACCTAGTTTCGTC -ACGGAATAGCCACCTAGTTCTCTC -ACGGAATAGCCACCTAGTTGGATC -ACGGAATAGCCACCTAGTCACTTC -ACGGAATAGCCACCTAGTGTACTC -ACGGAATAGCCACCTAGTGATGTC -ACGGAATAGCCACCTAGTACAGTC -ACGGAATAGCCACCTAGTTTGCTG -ACGGAATAGCCACCTAGTTCCATG -ACGGAATAGCCACCTAGTTGTGTG -ACGGAATAGCCACCTAGTCTAGTG -ACGGAATAGCCACCTAGTCATCTG -ACGGAATAGCCACCTAGTGAGTTG -ACGGAATAGCCACCTAGTAGACTG -ACGGAATAGCCACCTAGTTCGGTA -ACGGAATAGCCACCTAGTTGCCTA -ACGGAATAGCCACCTAGTCCACTA -ACGGAATAGCCACCTAGTGGAGTA -ACGGAATAGCCACCTAGTTCGTCT -ACGGAATAGCCACCTAGTTGCACT -ACGGAATAGCCACCTAGTCTGACT -ACGGAATAGCCACCTAGTCAACCT -ACGGAATAGCCACCTAGTGCTACT -ACGGAATAGCCACCTAGTGGATCT -ACGGAATAGCCACCTAGTAAGGCT -ACGGAATAGCCACCTAGTTCAACC -ACGGAATAGCCACCTAGTTGTTCC -ACGGAATAGCCACCTAGTATTCCC -ACGGAATAGCCACCTAGTTTCTCG -ACGGAATAGCCACCTAGTTAGACG -ACGGAATAGCCACCTAGTGTAACG -ACGGAATAGCCACCTAGTACTTCG -ACGGAATAGCCACCTAGTTACGCA -ACGGAATAGCCACCTAGTCTTGCA -ACGGAATAGCCACCTAGTCGAACA -ACGGAATAGCCACCTAGTCAGTCA -ACGGAATAGCCACCTAGTGATCCA -ACGGAATAGCCACCTAGTACGACA -ACGGAATAGCCACCTAGTAGCTCA -ACGGAATAGCCACCTAGTTCACGT -ACGGAATAGCCACCTAGTCGTAGT -ACGGAATAGCCACCTAGTGTCAGT -ACGGAATAGCCACCTAGTGAAGGT -ACGGAATAGCCACCTAGTAACCGT -ACGGAATAGCCACCTAGTTTGTGC -ACGGAATAGCCACCTAGTCTAAGC -ACGGAATAGCCACCTAGTACTAGC -ACGGAATAGCCACCTAGTAGATGC -ACGGAATAGCCACCTAGTTGAAGG -ACGGAATAGCCACCTAGTCAATGG -ACGGAATAGCCACCTAGTATGAGG -ACGGAATAGCCACCTAGTAATGGG -ACGGAATAGCCACCTAGTTCCTGA -ACGGAATAGCCACCTAGTTAGCGA -ACGGAATAGCCACCTAGTCACAGA -ACGGAATAGCCACCTAGTGCAAGA -ACGGAATAGCCACCTAGTGGTTGA -ACGGAATAGCCACCTAGTTCCGAT -ACGGAATAGCCACCTAGTTGGCAT -ACGGAATAGCCACCTAGTCGAGAT -ACGGAATAGCCACCTAGTTACCAC -ACGGAATAGCCACCTAGTCAGAAC -ACGGAATAGCCACCTAGTGTCTAC -ACGGAATAGCCACCTAGTACGTAC -ACGGAATAGCCACCTAGTAGTGAC -ACGGAATAGCCACCTAGTCTGTAG -ACGGAATAGCCACCTAGTCCTAAG -ACGGAATAGCCACCTAGTGTTCAG -ACGGAATAGCCACCTAGTGCATAG -ACGGAATAGCCACCTAGTGACAAG -ACGGAATAGCCACCTAGTAAGCAG -ACGGAATAGCCACCTAGTCGTCAA -ACGGAATAGCCACCTAGTGCTGAA -ACGGAATAGCCACCTAGTAGTACG -ACGGAATAGCCACCTAGTATCCGA -ACGGAATAGCCACCTAGTATGGGA -ACGGAATAGCCACCTAGTGTGCAA -ACGGAATAGCCACCTAGTGAGGAA -ACGGAATAGCCACCTAGTCAGGTA -ACGGAATAGCCACCTAGTGACTCT -ACGGAATAGCCACCTAGTAGTCCT -ACGGAATAGCCACCTAGTTAAGCC -ACGGAATAGCCACCTAGTATAGCC -ACGGAATAGCCACCTAGTTAACCG -ACGGAATAGCCACCTAGTATGCCA -ACGGAATAGCCAGCCTAAGGAAAC -ACGGAATAGCCAGCCTAAAACACC -ACGGAATAGCCAGCCTAAATCGAG -ACGGAATAGCCAGCCTAACTCCTT -ACGGAATAGCCAGCCTAACCTGTT -ACGGAATAGCCAGCCTAACGGTTT -ACGGAATAGCCAGCCTAAGTGGTT -ACGGAATAGCCAGCCTAAGCCTTT -ACGGAATAGCCAGCCTAAGGTCTT -ACGGAATAGCCAGCCTAAACGCTT -ACGGAATAGCCAGCCTAAAGCGTT -ACGGAATAGCCAGCCTAATTCGTC -ACGGAATAGCCAGCCTAATCTCTC -ACGGAATAGCCAGCCTAATGGATC -ACGGAATAGCCAGCCTAACACTTC -ACGGAATAGCCAGCCTAAGTACTC -ACGGAATAGCCAGCCTAAGATGTC -ACGGAATAGCCAGCCTAAACAGTC -ACGGAATAGCCAGCCTAATTGCTG -ACGGAATAGCCAGCCTAATCCATG -ACGGAATAGCCAGCCTAATGTGTG -ACGGAATAGCCAGCCTAACTAGTG -ACGGAATAGCCAGCCTAACATCTG -ACGGAATAGCCAGCCTAAGAGTTG -ACGGAATAGCCAGCCTAAAGACTG -ACGGAATAGCCAGCCTAATCGGTA -ACGGAATAGCCAGCCTAATGCCTA -ACGGAATAGCCAGCCTAACCACTA -ACGGAATAGCCAGCCTAAGGAGTA -ACGGAATAGCCAGCCTAATCGTCT -ACGGAATAGCCAGCCTAATGCACT -ACGGAATAGCCAGCCTAACTGACT -ACGGAATAGCCAGCCTAACAACCT -ACGGAATAGCCAGCCTAAGCTACT -ACGGAATAGCCAGCCTAAGGATCT -ACGGAATAGCCAGCCTAAAAGGCT -ACGGAATAGCCAGCCTAATCAACC -ACGGAATAGCCAGCCTAATGTTCC -ACGGAATAGCCAGCCTAAATTCCC -ACGGAATAGCCAGCCTAATTCTCG -ACGGAATAGCCAGCCTAATAGACG -ACGGAATAGCCAGCCTAAGTAACG -ACGGAATAGCCAGCCTAAACTTCG -ACGGAATAGCCAGCCTAATACGCA -ACGGAATAGCCAGCCTAACTTGCA -ACGGAATAGCCAGCCTAACGAACA -ACGGAATAGCCAGCCTAACAGTCA -ACGGAATAGCCAGCCTAAGATCCA -ACGGAATAGCCAGCCTAAACGACA -ACGGAATAGCCAGCCTAAAGCTCA -ACGGAATAGCCAGCCTAATCACGT -ACGGAATAGCCAGCCTAACGTAGT -ACGGAATAGCCAGCCTAAGTCAGT -ACGGAATAGCCAGCCTAAGAAGGT -ACGGAATAGCCAGCCTAAAACCGT -ACGGAATAGCCAGCCTAATTGTGC -ACGGAATAGCCAGCCTAACTAAGC -ACGGAATAGCCAGCCTAAACTAGC -ACGGAATAGCCAGCCTAAAGATGC -ACGGAATAGCCAGCCTAATGAAGG -ACGGAATAGCCAGCCTAACAATGG -ACGGAATAGCCAGCCTAAATGAGG -ACGGAATAGCCAGCCTAAAATGGG -ACGGAATAGCCAGCCTAATCCTGA -ACGGAATAGCCAGCCTAATAGCGA -ACGGAATAGCCAGCCTAACACAGA -ACGGAATAGCCAGCCTAAGCAAGA -ACGGAATAGCCAGCCTAAGGTTGA -ACGGAATAGCCAGCCTAATCCGAT -ACGGAATAGCCAGCCTAATGGCAT -ACGGAATAGCCAGCCTAACGAGAT -ACGGAATAGCCAGCCTAATACCAC -ACGGAATAGCCAGCCTAACAGAAC -ACGGAATAGCCAGCCTAAGTCTAC -ACGGAATAGCCAGCCTAAACGTAC -ACGGAATAGCCAGCCTAAAGTGAC -ACGGAATAGCCAGCCTAACTGTAG -ACGGAATAGCCAGCCTAACCTAAG -ACGGAATAGCCAGCCTAAGTTCAG -ACGGAATAGCCAGCCTAAGCATAG -ACGGAATAGCCAGCCTAAGACAAG -ACGGAATAGCCAGCCTAAAAGCAG -ACGGAATAGCCAGCCTAACGTCAA -ACGGAATAGCCAGCCTAAGCTGAA -ACGGAATAGCCAGCCTAAAGTACG -ACGGAATAGCCAGCCTAAATCCGA -ACGGAATAGCCAGCCTAAATGGGA -ACGGAATAGCCAGCCTAAGTGCAA -ACGGAATAGCCAGCCTAAGAGGAA -ACGGAATAGCCAGCCTAACAGGTA -ACGGAATAGCCAGCCTAAGACTCT -ACGGAATAGCCAGCCTAAAGTCCT -ACGGAATAGCCAGCCTAATAAGCC -ACGGAATAGCCAGCCTAAATAGCC -ACGGAATAGCCAGCCTAATAACCG -ACGGAATAGCCAGCCTAAATGCCA -ACGGAATAGCCAGCCATAGGAAAC -ACGGAATAGCCAGCCATAAACACC -ACGGAATAGCCAGCCATAATCGAG -ACGGAATAGCCAGCCATACTCCTT -ACGGAATAGCCAGCCATACCTGTT -ACGGAATAGCCAGCCATACGGTTT -ACGGAATAGCCAGCCATAGTGGTT -ACGGAATAGCCAGCCATAGCCTTT -ACGGAATAGCCAGCCATAGGTCTT -ACGGAATAGCCAGCCATAACGCTT -ACGGAATAGCCAGCCATAAGCGTT -ACGGAATAGCCAGCCATATTCGTC -ACGGAATAGCCAGCCATATCTCTC -ACGGAATAGCCAGCCATATGGATC -ACGGAATAGCCAGCCATACACTTC -ACGGAATAGCCAGCCATAGTACTC -ACGGAATAGCCAGCCATAGATGTC -ACGGAATAGCCAGCCATAACAGTC -ACGGAATAGCCAGCCATATTGCTG -ACGGAATAGCCAGCCATATCCATG -ACGGAATAGCCAGCCATATGTGTG -ACGGAATAGCCAGCCATACTAGTG -ACGGAATAGCCAGCCATACATCTG -ACGGAATAGCCAGCCATAGAGTTG -ACGGAATAGCCAGCCATAAGACTG -ACGGAATAGCCAGCCATATCGGTA -ACGGAATAGCCAGCCATATGCCTA -ACGGAATAGCCAGCCATACCACTA -ACGGAATAGCCAGCCATAGGAGTA -ACGGAATAGCCAGCCATATCGTCT -ACGGAATAGCCAGCCATATGCACT -ACGGAATAGCCAGCCATACTGACT -ACGGAATAGCCAGCCATACAACCT -ACGGAATAGCCAGCCATAGCTACT -ACGGAATAGCCAGCCATAGGATCT -ACGGAATAGCCAGCCATAAAGGCT -ACGGAATAGCCAGCCATATCAACC -ACGGAATAGCCAGCCATATGTTCC -ACGGAATAGCCAGCCATAATTCCC -ACGGAATAGCCAGCCATATTCTCG -ACGGAATAGCCAGCCATATAGACG -ACGGAATAGCCAGCCATAGTAACG -ACGGAATAGCCAGCCATAACTTCG -ACGGAATAGCCAGCCATATACGCA -ACGGAATAGCCAGCCATACTTGCA -ACGGAATAGCCAGCCATACGAACA -ACGGAATAGCCAGCCATACAGTCA -ACGGAATAGCCAGCCATAGATCCA -ACGGAATAGCCAGCCATAACGACA -ACGGAATAGCCAGCCATAAGCTCA -ACGGAATAGCCAGCCATATCACGT -ACGGAATAGCCAGCCATACGTAGT -ACGGAATAGCCAGCCATAGTCAGT -ACGGAATAGCCAGCCATAGAAGGT -ACGGAATAGCCAGCCATAAACCGT -ACGGAATAGCCAGCCATATTGTGC -ACGGAATAGCCAGCCATACTAAGC -ACGGAATAGCCAGCCATAACTAGC -ACGGAATAGCCAGCCATAAGATGC -ACGGAATAGCCAGCCATATGAAGG -ACGGAATAGCCAGCCATACAATGG -ACGGAATAGCCAGCCATAATGAGG -ACGGAATAGCCAGCCATAAATGGG -ACGGAATAGCCAGCCATATCCTGA -ACGGAATAGCCAGCCATATAGCGA -ACGGAATAGCCAGCCATACACAGA -ACGGAATAGCCAGCCATAGCAAGA -ACGGAATAGCCAGCCATAGGTTGA -ACGGAATAGCCAGCCATATCCGAT -ACGGAATAGCCAGCCATATGGCAT -ACGGAATAGCCAGCCATACGAGAT -ACGGAATAGCCAGCCATATACCAC -ACGGAATAGCCAGCCATACAGAAC -ACGGAATAGCCAGCCATAGTCTAC -ACGGAATAGCCAGCCATAACGTAC -ACGGAATAGCCAGCCATAAGTGAC -ACGGAATAGCCAGCCATACTGTAG -ACGGAATAGCCAGCCATACCTAAG -ACGGAATAGCCAGCCATAGTTCAG -ACGGAATAGCCAGCCATAGCATAG -ACGGAATAGCCAGCCATAGACAAG -ACGGAATAGCCAGCCATAAAGCAG -ACGGAATAGCCAGCCATACGTCAA -ACGGAATAGCCAGCCATAGCTGAA -ACGGAATAGCCAGCCATAAGTACG -ACGGAATAGCCAGCCATAATCCGA -ACGGAATAGCCAGCCATAATGGGA -ACGGAATAGCCAGCCATAGTGCAA -ACGGAATAGCCAGCCATAGAGGAA -ACGGAATAGCCAGCCATACAGGTA -ACGGAATAGCCAGCCATAGACTCT -ACGGAATAGCCAGCCATAAGTCCT -ACGGAATAGCCAGCCATATAAGCC -ACGGAATAGCCAGCCATAATAGCC -ACGGAATAGCCAGCCATATAACCG -ACGGAATAGCCAGCCATAATGCCA -ACGGAATAGCCACCGTAAGGAAAC -ACGGAATAGCCACCGTAAAACACC -ACGGAATAGCCACCGTAAATCGAG -ACGGAATAGCCACCGTAACTCCTT -ACGGAATAGCCACCGTAACCTGTT -ACGGAATAGCCACCGTAACGGTTT -ACGGAATAGCCACCGTAAGTGGTT -ACGGAATAGCCACCGTAAGCCTTT -ACGGAATAGCCACCGTAAGGTCTT -ACGGAATAGCCACCGTAAACGCTT -ACGGAATAGCCACCGTAAAGCGTT -ACGGAATAGCCACCGTAATTCGTC -ACGGAATAGCCACCGTAATCTCTC -ACGGAATAGCCACCGTAATGGATC -ACGGAATAGCCACCGTAACACTTC -ACGGAATAGCCACCGTAAGTACTC -ACGGAATAGCCACCGTAAGATGTC -ACGGAATAGCCACCGTAAACAGTC -ACGGAATAGCCACCGTAATTGCTG -ACGGAATAGCCACCGTAATCCATG -ACGGAATAGCCACCGTAATGTGTG -ACGGAATAGCCACCGTAACTAGTG -ACGGAATAGCCACCGTAACATCTG -ACGGAATAGCCACCGTAAGAGTTG -ACGGAATAGCCACCGTAAAGACTG -ACGGAATAGCCACCGTAATCGGTA -ACGGAATAGCCACCGTAATGCCTA -ACGGAATAGCCACCGTAACCACTA -ACGGAATAGCCACCGTAAGGAGTA -ACGGAATAGCCACCGTAATCGTCT -ACGGAATAGCCACCGTAATGCACT -ACGGAATAGCCACCGTAACTGACT -ACGGAATAGCCACCGTAACAACCT -ACGGAATAGCCACCGTAAGCTACT -ACGGAATAGCCACCGTAAGGATCT -ACGGAATAGCCACCGTAAAAGGCT -ACGGAATAGCCACCGTAATCAACC -ACGGAATAGCCACCGTAATGTTCC -ACGGAATAGCCACCGTAAATTCCC -ACGGAATAGCCACCGTAATTCTCG -ACGGAATAGCCACCGTAATAGACG -ACGGAATAGCCACCGTAAGTAACG -ACGGAATAGCCACCGTAAACTTCG -ACGGAATAGCCACCGTAATACGCA -ACGGAATAGCCACCGTAACTTGCA -ACGGAATAGCCACCGTAACGAACA -ACGGAATAGCCACCGTAACAGTCA -ACGGAATAGCCACCGTAAGATCCA -ACGGAATAGCCACCGTAAACGACA -ACGGAATAGCCACCGTAAAGCTCA -ACGGAATAGCCACCGTAATCACGT -ACGGAATAGCCACCGTAACGTAGT -ACGGAATAGCCACCGTAAGTCAGT -ACGGAATAGCCACCGTAAGAAGGT -ACGGAATAGCCACCGTAAAACCGT -ACGGAATAGCCACCGTAATTGTGC -ACGGAATAGCCACCGTAACTAAGC -ACGGAATAGCCACCGTAAACTAGC -ACGGAATAGCCACCGTAAAGATGC -ACGGAATAGCCACCGTAATGAAGG -ACGGAATAGCCACCGTAACAATGG -ACGGAATAGCCACCGTAAATGAGG -ACGGAATAGCCACCGTAAAATGGG -ACGGAATAGCCACCGTAATCCTGA -ACGGAATAGCCACCGTAATAGCGA -ACGGAATAGCCACCGTAACACAGA -ACGGAATAGCCACCGTAAGCAAGA -ACGGAATAGCCACCGTAAGGTTGA -ACGGAATAGCCACCGTAATCCGAT -ACGGAATAGCCACCGTAATGGCAT -ACGGAATAGCCACCGTAACGAGAT -ACGGAATAGCCACCGTAATACCAC -ACGGAATAGCCACCGTAACAGAAC -ACGGAATAGCCACCGTAAGTCTAC -ACGGAATAGCCACCGTAAACGTAC -ACGGAATAGCCACCGTAAAGTGAC -ACGGAATAGCCACCGTAACTGTAG -ACGGAATAGCCACCGTAACCTAAG -ACGGAATAGCCACCGTAAGTTCAG -ACGGAATAGCCACCGTAAGCATAG -ACGGAATAGCCACCGTAAGACAAG -ACGGAATAGCCACCGTAAAAGCAG -ACGGAATAGCCACCGTAACGTCAA -ACGGAATAGCCACCGTAAGCTGAA -ACGGAATAGCCACCGTAAAGTACG -ACGGAATAGCCACCGTAAATCCGA -ACGGAATAGCCACCGTAAATGGGA -ACGGAATAGCCACCGTAAGTGCAA -ACGGAATAGCCACCGTAAGAGGAA -ACGGAATAGCCACCGTAACAGGTA -ACGGAATAGCCACCGTAAGACTCT -ACGGAATAGCCACCGTAAAGTCCT -ACGGAATAGCCACCGTAATAAGCC -ACGGAATAGCCACCGTAAATAGCC -ACGGAATAGCCACCGTAATAACCG -ACGGAATAGCCACCGTAAATGCCA -ACGGAATAGCCACCAATGGGAAAC -ACGGAATAGCCACCAATGAACACC -ACGGAATAGCCACCAATGATCGAG -ACGGAATAGCCACCAATGCTCCTT -ACGGAATAGCCACCAATGCCTGTT -ACGGAATAGCCACCAATGCGGTTT -ACGGAATAGCCACCAATGGTGGTT -ACGGAATAGCCACCAATGGCCTTT -ACGGAATAGCCACCAATGGGTCTT -ACGGAATAGCCACCAATGACGCTT -ACGGAATAGCCACCAATGAGCGTT -ACGGAATAGCCACCAATGTTCGTC -ACGGAATAGCCACCAATGTCTCTC -ACGGAATAGCCACCAATGTGGATC -ACGGAATAGCCACCAATGCACTTC -ACGGAATAGCCACCAATGGTACTC -ACGGAATAGCCACCAATGGATGTC -ACGGAATAGCCACCAATGACAGTC -ACGGAATAGCCACCAATGTTGCTG -ACGGAATAGCCACCAATGTCCATG -ACGGAATAGCCACCAATGTGTGTG -ACGGAATAGCCACCAATGCTAGTG -ACGGAATAGCCACCAATGCATCTG -ACGGAATAGCCACCAATGGAGTTG -ACGGAATAGCCACCAATGAGACTG -ACGGAATAGCCACCAATGTCGGTA -ACGGAATAGCCACCAATGTGCCTA -ACGGAATAGCCACCAATGCCACTA -ACGGAATAGCCACCAATGGGAGTA -ACGGAATAGCCACCAATGTCGTCT -ACGGAATAGCCACCAATGTGCACT -ACGGAATAGCCACCAATGCTGACT -ACGGAATAGCCACCAATGCAACCT -ACGGAATAGCCACCAATGGCTACT -ACGGAATAGCCACCAATGGGATCT -ACGGAATAGCCACCAATGAAGGCT -ACGGAATAGCCACCAATGTCAACC -ACGGAATAGCCACCAATGTGTTCC -ACGGAATAGCCACCAATGATTCCC -ACGGAATAGCCACCAATGTTCTCG -ACGGAATAGCCACCAATGTAGACG -ACGGAATAGCCACCAATGGTAACG -ACGGAATAGCCACCAATGACTTCG -ACGGAATAGCCACCAATGTACGCA -ACGGAATAGCCACCAATGCTTGCA -ACGGAATAGCCACCAATGCGAACA -ACGGAATAGCCACCAATGCAGTCA -ACGGAATAGCCACCAATGGATCCA -ACGGAATAGCCACCAATGACGACA -ACGGAATAGCCACCAATGAGCTCA -ACGGAATAGCCACCAATGTCACGT -ACGGAATAGCCACCAATGCGTAGT -ACGGAATAGCCACCAATGGTCAGT -ACGGAATAGCCACCAATGGAAGGT -ACGGAATAGCCACCAATGAACCGT -ACGGAATAGCCACCAATGTTGTGC -ACGGAATAGCCACCAATGCTAAGC -ACGGAATAGCCACCAATGACTAGC -ACGGAATAGCCACCAATGAGATGC -ACGGAATAGCCACCAATGTGAAGG -ACGGAATAGCCACCAATGCAATGG -ACGGAATAGCCACCAATGATGAGG -ACGGAATAGCCACCAATGAATGGG -ACGGAATAGCCACCAATGTCCTGA -ACGGAATAGCCACCAATGTAGCGA -ACGGAATAGCCACCAATGCACAGA -ACGGAATAGCCACCAATGGCAAGA -ACGGAATAGCCACCAATGGGTTGA -ACGGAATAGCCACCAATGTCCGAT -ACGGAATAGCCACCAATGTGGCAT -ACGGAATAGCCACCAATGCGAGAT -ACGGAATAGCCACCAATGTACCAC -ACGGAATAGCCACCAATGCAGAAC -ACGGAATAGCCACCAATGGTCTAC -ACGGAATAGCCACCAATGACGTAC -ACGGAATAGCCACCAATGAGTGAC -ACGGAATAGCCACCAATGCTGTAG -ACGGAATAGCCACCAATGCCTAAG -ACGGAATAGCCACCAATGGTTCAG -ACGGAATAGCCACCAATGGCATAG -ACGGAATAGCCACCAATGGACAAG -ACGGAATAGCCACCAATGAAGCAG -ACGGAATAGCCACCAATGCGTCAA -ACGGAATAGCCACCAATGGCTGAA -ACGGAATAGCCACCAATGAGTACG -ACGGAATAGCCACCAATGATCCGA -ACGGAATAGCCACCAATGATGGGA -ACGGAATAGCCACCAATGGTGCAA -ACGGAATAGCCACCAATGGAGGAA -ACGGAATAGCCACCAATGCAGGTA -ACGGAATAGCCACCAATGGACTCT -ACGGAATAGCCACCAATGAGTCCT -ACGGAATAGCCACCAATGTAAGCC -ACGGAATAGCCACCAATGATAGCC -ACGGAATAGCCACCAATGTAACCG -ACGGAATAGCCACCAATGATGCCA -ACGGAAAACCGTAACGGAGGAAAC -ACGGAAAACCGTAACGGAAACACC -ACGGAAAACCGTAACGGAATCGAG -ACGGAAAACCGTAACGGACTCCTT -ACGGAAAACCGTAACGGACCTGTT -ACGGAAAACCGTAACGGACGGTTT -ACGGAAAACCGTAACGGAGTGGTT -ACGGAAAACCGTAACGGAGCCTTT -ACGGAAAACCGTAACGGAGGTCTT -ACGGAAAACCGTAACGGAACGCTT -ACGGAAAACCGTAACGGAAGCGTT -ACGGAAAACCGTAACGGATTCGTC -ACGGAAAACCGTAACGGATCTCTC -ACGGAAAACCGTAACGGATGGATC -ACGGAAAACCGTAACGGACACTTC -ACGGAAAACCGTAACGGAGTACTC -ACGGAAAACCGTAACGGAGATGTC -ACGGAAAACCGTAACGGAACAGTC -ACGGAAAACCGTAACGGATTGCTG -ACGGAAAACCGTAACGGATCCATG -ACGGAAAACCGTAACGGATGTGTG -ACGGAAAACCGTAACGGACTAGTG -ACGGAAAACCGTAACGGACATCTG -ACGGAAAACCGTAACGGAGAGTTG -ACGGAAAACCGTAACGGAAGACTG -ACGGAAAACCGTAACGGATCGGTA -ACGGAAAACCGTAACGGATGCCTA -ACGGAAAACCGTAACGGACCACTA -ACGGAAAACCGTAACGGAGGAGTA -ACGGAAAACCGTAACGGATCGTCT -ACGGAAAACCGTAACGGATGCACT -ACGGAAAACCGTAACGGACTGACT -ACGGAAAACCGTAACGGACAACCT -ACGGAAAACCGTAACGGAGCTACT -ACGGAAAACCGTAACGGAGGATCT -ACGGAAAACCGTAACGGAAAGGCT -ACGGAAAACCGTAACGGATCAACC -ACGGAAAACCGTAACGGATGTTCC -ACGGAAAACCGTAACGGAATTCCC -ACGGAAAACCGTAACGGATTCTCG -ACGGAAAACCGTAACGGATAGACG -ACGGAAAACCGTAACGGAGTAACG -ACGGAAAACCGTAACGGAACTTCG -ACGGAAAACCGTAACGGATACGCA -ACGGAAAACCGTAACGGACTTGCA -ACGGAAAACCGTAACGGACGAACA -ACGGAAAACCGTAACGGACAGTCA -ACGGAAAACCGTAACGGAGATCCA -ACGGAAAACCGTAACGGAACGACA -ACGGAAAACCGTAACGGAAGCTCA -ACGGAAAACCGTAACGGATCACGT -ACGGAAAACCGTAACGGACGTAGT -ACGGAAAACCGTAACGGAGTCAGT -ACGGAAAACCGTAACGGAGAAGGT -ACGGAAAACCGTAACGGAAACCGT -ACGGAAAACCGTAACGGATTGTGC -ACGGAAAACCGTAACGGACTAAGC -ACGGAAAACCGTAACGGAACTAGC -ACGGAAAACCGTAACGGAAGATGC -ACGGAAAACCGTAACGGATGAAGG -ACGGAAAACCGTAACGGACAATGG -ACGGAAAACCGTAACGGAATGAGG -ACGGAAAACCGTAACGGAAATGGG -ACGGAAAACCGTAACGGATCCTGA -ACGGAAAACCGTAACGGATAGCGA -ACGGAAAACCGTAACGGACACAGA -ACGGAAAACCGTAACGGAGCAAGA -ACGGAAAACCGTAACGGAGGTTGA -ACGGAAAACCGTAACGGATCCGAT -ACGGAAAACCGTAACGGATGGCAT -ACGGAAAACCGTAACGGACGAGAT -ACGGAAAACCGTAACGGATACCAC -ACGGAAAACCGTAACGGACAGAAC -ACGGAAAACCGTAACGGAGTCTAC -ACGGAAAACCGTAACGGAACGTAC -ACGGAAAACCGTAACGGAAGTGAC -ACGGAAAACCGTAACGGACTGTAG -ACGGAAAACCGTAACGGACCTAAG -ACGGAAAACCGTAACGGAGTTCAG -ACGGAAAACCGTAACGGAGCATAG -ACGGAAAACCGTAACGGAGACAAG -ACGGAAAACCGTAACGGAAAGCAG -ACGGAAAACCGTAACGGACGTCAA -ACGGAAAACCGTAACGGAGCTGAA -ACGGAAAACCGTAACGGAAGTACG -ACGGAAAACCGTAACGGAATCCGA -ACGGAAAACCGTAACGGAATGGGA -ACGGAAAACCGTAACGGAGTGCAA -ACGGAAAACCGTAACGGAGAGGAA -ACGGAAAACCGTAACGGACAGGTA -ACGGAAAACCGTAACGGAGACTCT -ACGGAAAACCGTAACGGAAGTCCT -ACGGAAAACCGTAACGGATAAGCC -ACGGAAAACCGTAACGGAATAGCC -ACGGAAAACCGTAACGGATAACCG -ACGGAAAACCGTAACGGAATGCCA -ACGGAAAACCGTACCAACGGAAAC -ACGGAAAACCGTACCAACAACACC -ACGGAAAACCGTACCAACATCGAG -ACGGAAAACCGTACCAACCTCCTT -ACGGAAAACCGTACCAACCCTGTT -ACGGAAAACCGTACCAACCGGTTT -ACGGAAAACCGTACCAACGTGGTT -ACGGAAAACCGTACCAACGCCTTT -ACGGAAAACCGTACCAACGGTCTT -ACGGAAAACCGTACCAACACGCTT -ACGGAAAACCGTACCAACAGCGTT -ACGGAAAACCGTACCAACTTCGTC -ACGGAAAACCGTACCAACTCTCTC -ACGGAAAACCGTACCAACTGGATC -ACGGAAAACCGTACCAACCACTTC -ACGGAAAACCGTACCAACGTACTC -ACGGAAAACCGTACCAACGATGTC -ACGGAAAACCGTACCAACACAGTC -ACGGAAAACCGTACCAACTTGCTG -ACGGAAAACCGTACCAACTCCATG -ACGGAAAACCGTACCAACTGTGTG -ACGGAAAACCGTACCAACCTAGTG -ACGGAAAACCGTACCAACCATCTG -ACGGAAAACCGTACCAACGAGTTG -ACGGAAAACCGTACCAACAGACTG -ACGGAAAACCGTACCAACTCGGTA -ACGGAAAACCGTACCAACTGCCTA -ACGGAAAACCGTACCAACCCACTA -ACGGAAAACCGTACCAACGGAGTA -ACGGAAAACCGTACCAACTCGTCT -ACGGAAAACCGTACCAACTGCACT -ACGGAAAACCGTACCAACCTGACT -ACGGAAAACCGTACCAACCAACCT -ACGGAAAACCGTACCAACGCTACT -ACGGAAAACCGTACCAACGGATCT -ACGGAAAACCGTACCAACAAGGCT -ACGGAAAACCGTACCAACTCAACC -ACGGAAAACCGTACCAACTGTTCC -ACGGAAAACCGTACCAACATTCCC -ACGGAAAACCGTACCAACTTCTCG -ACGGAAAACCGTACCAACTAGACG -ACGGAAAACCGTACCAACGTAACG -ACGGAAAACCGTACCAACACTTCG -ACGGAAAACCGTACCAACTACGCA -ACGGAAAACCGTACCAACCTTGCA -ACGGAAAACCGTACCAACCGAACA -ACGGAAAACCGTACCAACCAGTCA -ACGGAAAACCGTACCAACGATCCA -ACGGAAAACCGTACCAACACGACA -ACGGAAAACCGTACCAACAGCTCA -ACGGAAAACCGTACCAACTCACGT -ACGGAAAACCGTACCAACCGTAGT -ACGGAAAACCGTACCAACGTCAGT -ACGGAAAACCGTACCAACGAAGGT -ACGGAAAACCGTACCAACAACCGT -ACGGAAAACCGTACCAACTTGTGC -ACGGAAAACCGTACCAACCTAAGC -ACGGAAAACCGTACCAACACTAGC -ACGGAAAACCGTACCAACAGATGC -ACGGAAAACCGTACCAACTGAAGG -ACGGAAAACCGTACCAACCAATGG -ACGGAAAACCGTACCAACATGAGG -ACGGAAAACCGTACCAACAATGGG -ACGGAAAACCGTACCAACTCCTGA -ACGGAAAACCGTACCAACTAGCGA -ACGGAAAACCGTACCAACCACAGA -ACGGAAAACCGTACCAACGCAAGA -ACGGAAAACCGTACCAACGGTTGA -ACGGAAAACCGTACCAACTCCGAT -ACGGAAAACCGTACCAACTGGCAT -ACGGAAAACCGTACCAACCGAGAT -ACGGAAAACCGTACCAACTACCAC -ACGGAAAACCGTACCAACCAGAAC -ACGGAAAACCGTACCAACGTCTAC -ACGGAAAACCGTACCAACACGTAC -ACGGAAAACCGTACCAACAGTGAC -ACGGAAAACCGTACCAACCTGTAG -ACGGAAAACCGTACCAACCCTAAG -ACGGAAAACCGTACCAACGTTCAG -ACGGAAAACCGTACCAACGCATAG -ACGGAAAACCGTACCAACGACAAG -ACGGAAAACCGTACCAACAAGCAG -ACGGAAAACCGTACCAACCGTCAA -ACGGAAAACCGTACCAACGCTGAA -ACGGAAAACCGTACCAACAGTACG -ACGGAAAACCGTACCAACATCCGA -ACGGAAAACCGTACCAACATGGGA -ACGGAAAACCGTACCAACGTGCAA -ACGGAAAACCGTACCAACGAGGAA -ACGGAAAACCGTACCAACCAGGTA -ACGGAAAACCGTACCAACGACTCT -ACGGAAAACCGTACCAACAGTCCT -ACGGAAAACCGTACCAACTAAGCC -ACGGAAAACCGTACCAACATAGCC -ACGGAAAACCGTACCAACTAACCG -ACGGAAAACCGTACCAACATGCCA -ACGGAAAACCGTGAGATCGGAAAC -ACGGAAAACCGTGAGATCAACACC -ACGGAAAACCGTGAGATCATCGAG -ACGGAAAACCGTGAGATCCTCCTT -ACGGAAAACCGTGAGATCCCTGTT -ACGGAAAACCGTGAGATCCGGTTT -ACGGAAAACCGTGAGATCGTGGTT -ACGGAAAACCGTGAGATCGCCTTT -ACGGAAAACCGTGAGATCGGTCTT -ACGGAAAACCGTGAGATCACGCTT -ACGGAAAACCGTGAGATCAGCGTT -ACGGAAAACCGTGAGATCTTCGTC -ACGGAAAACCGTGAGATCTCTCTC -ACGGAAAACCGTGAGATCTGGATC -ACGGAAAACCGTGAGATCCACTTC -ACGGAAAACCGTGAGATCGTACTC -ACGGAAAACCGTGAGATCGATGTC -ACGGAAAACCGTGAGATCACAGTC -ACGGAAAACCGTGAGATCTTGCTG -ACGGAAAACCGTGAGATCTCCATG -ACGGAAAACCGTGAGATCTGTGTG -ACGGAAAACCGTGAGATCCTAGTG -ACGGAAAACCGTGAGATCCATCTG -ACGGAAAACCGTGAGATCGAGTTG -ACGGAAAACCGTGAGATCAGACTG -ACGGAAAACCGTGAGATCTCGGTA -ACGGAAAACCGTGAGATCTGCCTA -ACGGAAAACCGTGAGATCCCACTA -ACGGAAAACCGTGAGATCGGAGTA -ACGGAAAACCGTGAGATCTCGTCT -ACGGAAAACCGTGAGATCTGCACT -ACGGAAAACCGTGAGATCCTGACT -ACGGAAAACCGTGAGATCCAACCT -ACGGAAAACCGTGAGATCGCTACT -ACGGAAAACCGTGAGATCGGATCT -ACGGAAAACCGTGAGATCAAGGCT -ACGGAAAACCGTGAGATCTCAACC -ACGGAAAACCGTGAGATCTGTTCC -ACGGAAAACCGTGAGATCATTCCC -ACGGAAAACCGTGAGATCTTCTCG -ACGGAAAACCGTGAGATCTAGACG -ACGGAAAACCGTGAGATCGTAACG -ACGGAAAACCGTGAGATCACTTCG -ACGGAAAACCGTGAGATCTACGCA -ACGGAAAACCGTGAGATCCTTGCA -ACGGAAAACCGTGAGATCCGAACA -ACGGAAAACCGTGAGATCCAGTCA -ACGGAAAACCGTGAGATCGATCCA -ACGGAAAACCGTGAGATCACGACA -ACGGAAAACCGTGAGATCAGCTCA -ACGGAAAACCGTGAGATCTCACGT -ACGGAAAACCGTGAGATCCGTAGT -ACGGAAAACCGTGAGATCGTCAGT -ACGGAAAACCGTGAGATCGAAGGT -ACGGAAAACCGTGAGATCAACCGT -ACGGAAAACCGTGAGATCTTGTGC -ACGGAAAACCGTGAGATCCTAAGC -ACGGAAAACCGTGAGATCACTAGC -ACGGAAAACCGTGAGATCAGATGC -ACGGAAAACCGTGAGATCTGAAGG -ACGGAAAACCGTGAGATCCAATGG -ACGGAAAACCGTGAGATCATGAGG -ACGGAAAACCGTGAGATCAATGGG -ACGGAAAACCGTGAGATCTCCTGA -ACGGAAAACCGTGAGATCTAGCGA -ACGGAAAACCGTGAGATCCACAGA -ACGGAAAACCGTGAGATCGCAAGA -ACGGAAAACCGTGAGATCGGTTGA -ACGGAAAACCGTGAGATCTCCGAT -ACGGAAAACCGTGAGATCTGGCAT -ACGGAAAACCGTGAGATCCGAGAT -ACGGAAAACCGTGAGATCTACCAC -ACGGAAAACCGTGAGATCCAGAAC -ACGGAAAACCGTGAGATCGTCTAC -ACGGAAAACCGTGAGATCACGTAC -ACGGAAAACCGTGAGATCAGTGAC -ACGGAAAACCGTGAGATCCTGTAG -ACGGAAAACCGTGAGATCCCTAAG -ACGGAAAACCGTGAGATCGTTCAG -ACGGAAAACCGTGAGATCGCATAG -ACGGAAAACCGTGAGATCGACAAG -ACGGAAAACCGTGAGATCAAGCAG -ACGGAAAACCGTGAGATCCGTCAA -ACGGAAAACCGTGAGATCGCTGAA -ACGGAAAACCGTGAGATCAGTACG -ACGGAAAACCGTGAGATCATCCGA -ACGGAAAACCGTGAGATCATGGGA -ACGGAAAACCGTGAGATCGTGCAA -ACGGAAAACCGTGAGATCGAGGAA -ACGGAAAACCGTGAGATCCAGGTA -ACGGAAAACCGTGAGATCGACTCT -ACGGAAAACCGTGAGATCAGTCCT -ACGGAAAACCGTGAGATCTAAGCC -ACGGAAAACCGTGAGATCATAGCC -ACGGAAAACCGTGAGATCTAACCG -ACGGAAAACCGTGAGATCATGCCA -ACGGAAAACCGTCTTCTCGGAAAC -ACGGAAAACCGTCTTCTCAACACC -ACGGAAAACCGTCTTCTCATCGAG -ACGGAAAACCGTCTTCTCCTCCTT -ACGGAAAACCGTCTTCTCCCTGTT -ACGGAAAACCGTCTTCTCCGGTTT -ACGGAAAACCGTCTTCTCGTGGTT -ACGGAAAACCGTCTTCTCGCCTTT -ACGGAAAACCGTCTTCTCGGTCTT -ACGGAAAACCGTCTTCTCACGCTT -ACGGAAAACCGTCTTCTCAGCGTT -ACGGAAAACCGTCTTCTCTTCGTC -ACGGAAAACCGTCTTCTCTCTCTC -ACGGAAAACCGTCTTCTCTGGATC -ACGGAAAACCGTCTTCTCCACTTC -ACGGAAAACCGTCTTCTCGTACTC -ACGGAAAACCGTCTTCTCGATGTC -ACGGAAAACCGTCTTCTCACAGTC -ACGGAAAACCGTCTTCTCTTGCTG -ACGGAAAACCGTCTTCTCTCCATG -ACGGAAAACCGTCTTCTCTGTGTG -ACGGAAAACCGTCTTCTCCTAGTG -ACGGAAAACCGTCTTCTCCATCTG -ACGGAAAACCGTCTTCTCGAGTTG -ACGGAAAACCGTCTTCTCAGACTG -ACGGAAAACCGTCTTCTCTCGGTA -ACGGAAAACCGTCTTCTCTGCCTA -ACGGAAAACCGTCTTCTCCCACTA -ACGGAAAACCGTCTTCTCGGAGTA -ACGGAAAACCGTCTTCTCTCGTCT -ACGGAAAACCGTCTTCTCTGCACT -ACGGAAAACCGTCTTCTCCTGACT -ACGGAAAACCGTCTTCTCCAACCT -ACGGAAAACCGTCTTCTCGCTACT -ACGGAAAACCGTCTTCTCGGATCT -ACGGAAAACCGTCTTCTCAAGGCT -ACGGAAAACCGTCTTCTCTCAACC -ACGGAAAACCGTCTTCTCTGTTCC -ACGGAAAACCGTCTTCTCATTCCC -ACGGAAAACCGTCTTCTCTTCTCG -ACGGAAAACCGTCTTCTCTAGACG -ACGGAAAACCGTCTTCTCGTAACG -ACGGAAAACCGTCTTCTCACTTCG -ACGGAAAACCGTCTTCTCTACGCA -ACGGAAAACCGTCTTCTCCTTGCA -ACGGAAAACCGTCTTCTCCGAACA -ACGGAAAACCGTCTTCTCCAGTCA -ACGGAAAACCGTCTTCTCGATCCA -ACGGAAAACCGTCTTCTCACGACA -ACGGAAAACCGTCTTCTCAGCTCA -ACGGAAAACCGTCTTCTCTCACGT -ACGGAAAACCGTCTTCTCCGTAGT -ACGGAAAACCGTCTTCTCGTCAGT -ACGGAAAACCGTCTTCTCGAAGGT -ACGGAAAACCGTCTTCTCAACCGT -ACGGAAAACCGTCTTCTCTTGTGC -ACGGAAAACCGTCTTCTCCTAAGC -ACGGAAAACCGTCTTCTCACTAGC -ACGGAAAACCGTCTTCTCAGATGC -ACGGAAAACCGTCTTCTCTGAAGG -ACGGAAAACCGTCTTCTCCAATGG -ACGGAAAACCGTCTTCTCATGAGG -ACGGAAAACCGTCTTCTCAATGGG -ACGGAAAACCGTCTTCTCTCCTGA -ACGGAAAACCGTCTTCTCTAGCGA -ACGGAAAACCGTCTTCTCCACAGA -ACGGAAAACCGTCTTCTCGCAAGA -ACGGAAAACCGTCTTCTCGGTTGA -ACGGAAAACCGTCTTCTCTCCGAT -ACGGAAAACCGTCTTCTCTGGCAT -ACGGAAAACCGTCTTCTCCGAGAT -ACGGAAAACCGTCTTCTCTACCAC -ACGGAAAACCGTCTTCTCCAGAAC -ACGGAAAACCGTCTTCTCGTCTAC -ACGGAAAACCGTCTTCTCACGTAC -ACGGAAAACCGTCTTCTCAGTGAC -ACGGAAAACCGTCTTCTCCTGTAG -ACGGAAAACCGTCTTCTCCCTAAG -ACGGAAAACCGTCTTCTCGTTCAG -ACGGAAAACCGTCTTCTCGCATAG -ACGGAAAACCGTCTTCTCGACAAG -ACGGAAAACCGTCTTCTCAAGCAG -ACGGAAAACCGTCTTCTCCGTCAA -ACGGAAAACCGTCTTCTCGCTGAA -ACGGAAAACCGTCTTCTCAGTACG -ACGGAAAACCGTCTTCTCATCCGA -ACGGAAAACCGTCTTCTCATGGGA -ACGGAAAACCGTCTTCTCGTGCAA -ACGGAAAACCGTCTTCTCGAGGAA -ACGGAAAACCGTCTTCTCCAGGTA -ACGGAAAACCGTCTTCTCGACTCT -ACGGAAAACCGTCTTCTCAGTCCT -ACGGAAAACCGTCTTCTCTAAGCC -ACGGAAAACCGTCTTCTCATAGCC -ACGGAAAACCGTCTTCTCTAACCG -ACGGAAAACCGTCTTCTCATGCCA -ACGGAAAACCGTGTTCCTGGAAAC -ACGGAAAACCGTGTTCCTAACACC -ACGGAAAACCGTGTTCCTATCGAG -ACGGAAAACCGTGTTCCTCTCCTT -ACGGAAAACCGTGTTCCTCCTGTT -ACGGAAAACCGTGTTCCTCGGTTT -ACGGAAAACCGTGTTCCTGTGGTT -ACGGAAAACCGTGTTCCTGCCTTT -ACGGAAAACCGTGTTCCTGGTCTT -ACGGAAAACCGTGTTCCTACGCTT -ACGGAAAACCGTGTTCCTAGCGTT -ACGGAAAACCGTGTTCCTTTCGTC -ACGGAAAACCGTGTTCCTTCTCTC -ACGGAAAACCGTGTTCCTTGGATC -ACGGAAAACCGTGTTCCTCACTTC -ACGGAAAACCGTGTTCCTGTACTC -ACGGAAAACCGTGTTCCTGATGTC -ACGGAAAACCGTGTTCCTACAGTC -ACGGAAAACCGTGTTCCTTTGCTG -ACGGAAAACCGTGTTCCTTCCATG -ACGGAAAACCGTGTTCCTTGTGTG -ACGGAAAACCGTGTTCCTCTAGTG -ACGGAAAACCGTGTTCCTCATCTG -ACGGAAAACCGTGTTCCTGAGTTG -ACGGAAAACCGTGTTCCTAGACTG -ACGGAAAACCGTGTTCCTTCGGTA -ACGGAAAACCGTGTTCCTTGCCTA -ACGGAAAACCGTGTTCCTCCACTA -ACGGAAAACCGTGTTCCTGGAGTA -ACGGAAAACCGTGTTCCTTCGTCT -ACGGAAAACCGTGTTCCTTGCACT -ACGGAAAACCGTGTTCCTCTGACT -ACGGAAAACCGTGTTCCTCAACCT -ACGGAAAACCGTGTTCCTGCTACT -ACGGAAAACCGTGTTCCTGGATCT -ACGGAAAACCGTGTTCCTAAGGCT -ACGGAAAACCGTGTTCCTTCAACC -ACGGAAAACCGTGTTCCTTGTTCC -ACGGAAAACCGTGTTCCTATTCCC -ACGGAAAACCGTGTTCCTTTCTCG -ACGGAAAACCGTGTTCCTTAGACG -ACGGAAAACCGTGTTCCTGTAACG -ACGGAAAACCGTGTTCCTACTTCG -ACGGAAAACCGTGTTCCTTACGCA -ACGGAAAACCGTGTTCCTCTTGCA -ACGGAAAACCGTGTTCCTCGAACA -ACGGAAAACCGTGTTCCTCAGTCA -ACGGAAAACCGTGTTCCTGATCCA -ACGGAAAACCGTGTTCCTACGACA -ACGGAAAACCGTGTTCCTAGCTCA -ACGGAAAACCGTGTTCCTTCACGT -ACGGAAAACCGTGTTCCTCGTAGT -ACGGAAAACCGTGTTCCTGTCAGT -ACGGAAAACCGTGTTCCTGAAGGT -ACGGAAAACCGTGTTCCTAACCGT -ACGGAAAACCGTGTTCCTTTGTGC -ACGGAAAACCGTGTTCCTCTAAGC -ACGGAAAACCGTGTTCCTACTAGC -ACGGAAAACCGTGTTCCTAGATGC -ACGGAAAACCGTGTTCCTTGAAGG -ACGGAAAACCGTGTTCCTCAATGG -ACGGAAAACCGTGTTCCTATGAGG -ACGGAAAACCGTGTTCCTAATGGG -ACGGAAAACCGTGTTCCTTCCTGA -ACGGAAAACCGTGTTCCTTAGCGA -ACGGAAAACCGTGTTCCTCACAGA -ACGGAAAACCGTGTTCCTGCAAGA -ACGGAAAACCGTGTTCCTGGTTGA -ACGGAAAACCGTGTTCCTTCCGAT -ACGGAAAACCGTGTTCCTTGGCAT -ACGGAAAACCGTGTTCCTCGAGAT -ACGGAAAACCGTGTTCCTTACCAC -ACGGAAAACCGTGTTCCTCAGAAC -ACGGAAAACCGTGTTCCTGTCTAC -ACGGAAAACCGTGTTCCTACGTAC -ACGGAAAACCGTGTTCCTAGTGAC -ACGGAAAACCGTGTTCCTCTGTAG -ACGGAAAACCGTGTTCCTCCTAAG -ACGGAAAACCGTGTTCCTGTTCAG -ACGGAAAACCGTGTTCCTGCATAG -ACGGAAAACCGTGTTCCTGACAAG -ACGGAAAACCGTGTTCCTAAGCAG -ACGGAAAACCGTGTTCCTCGTCAA -ACGGAAAACCGTGTTCCTGCTGAA -ACGGAAAACCGTGTTCCTAGTACG -ACGGAAAACCGTGTTCCTATCCGA -ACGGAAAACCGTGTTCCTATGGGA -ACGGAAAACCGTGTTCCTGTGCAA -ACGGAAAACCGTGTTCCTGAGGAA -ACGGAAAACCGTGTTCCTCAGGTA -ACGGAAAACCGTGTTCCTGACTCT -ACGGAAAACCGTGTTCCTAGTCCT -ACGGAAAACCGTGTTCCTTAAGCC -ACGGAAAACCGTGTTCCTATAGCC -ACGGAAAACCGTGTTCCTTAACCG -ACGGAAAACCGTGTTCCTATGCCA -ACGGAAAACCGTTTTCGGGGAAAC -ACGGAAAACCGTTTTCGGAACACC -ACGGAAAACCGTTTTCGGATCGAG -ACGGAAAACCGTTTTCGGCTCCTT -ACGGAAAACCGTTTTCGGCCTGTT -ACGGAAAACCGTTTTCGGCGGTTT -ACGGAAAACCGTTTTCGGGTGGTT -ACGGAAAACCGTTTTCGGGCCTTT -ACGGAAAACCGTTTTCGGGGTCTT -ACGGAAAACCGTTTTCGGACGCTT -ACGGAAAACCGTTTTCGGAGCGTT -ACGGAAAACCGTTTTCGGTTCGTC -ACGGAAAACCGTTTTCGGTCTCTC -ACGGAAAACCGTTTTCGGTGGATC -ACGGAAAACCGTTTTCGGCACTTC -ACGGAAAACCGTTTTCGGGTACTC -ACGGAAAACCGTTTTCGGGATGTC -ACGGAAAACCGTTTTCGGACAGTC -ACGGAAAACCGTTTTCGGTTGCTG -ACGGAAAACCGTTTTCGGTCCATG -ACGGAAAACCGTTTTCGGTGTGTG -ACGGAAAACCGTTTTCGGCTAGTG -ACGGAAAACCGTTTTCGGCATCTG -ACGGAAAACCGTTTTCGGGAGTTG -ACGGAAAACCGTTTTCGGAGACTG -ACGGAAAACCGTTTTCGGTCGGTA -ACGGAAAACCGTTTTCGGTGCCTA -ACGGAAAACCGTTTTCGGCCACTA -ACGGAAAACCGTTTTCGGGGAGTA -ACGGAAAACCGTTTTCGGTCGTCT -ACGGAAAACCGTTTTCGGTGCACT -ACGGAAAACCGTTTTCGGCTGACT -ACGGAAAACCGTTTTCGGCAACCT -ACGGAAAACCGTTTTCGGGCTACT -ACGGAAAACCGTTTTCGGGGATCT -ACGGAAAACCGTTTTCGGAAGGCT -ACGGAAAACCGTTTTCGGTCAACC -ACGGAAAACCGTTTTCGGTGTTCC -ACGGAAAACCGTTTTCGGATTCCC -ACGGAAAACCGTTTTCGGTTCTCG -ACGGAAAACCGTTTTCGGTAGACG -ACGGAAAACCGTTTTCGGGTAACG -ACGGAAAACCGTTTTCGGACTTCG -ACGGAAAACCGTTTTCGGTACGCA -ACGGAAAACCGTTTTCGGCTTGCA -ACGGAAAACCGTTTTCGGCGAACA -ACGGAAAACCGTTTTCGGCAGTCA -ACGGAAAACCGTTTTCGGGATCCA -ACGGAAAACCGTTTTCGGACGACA -ACGGAAAACCGTTTTCGGAGCTCA -ACGGAAAACCGTTTTCGGTCACGT -ACGGAAAACCGTTTTCGGCGTAGT -ACGGAAAACCGTTTTCGGGTCAGT -ACGGAAAACCGTTTTCGGGAAGGT -ACGGAAAACCGTTTTCGGAACCGT -ACGGAAAACCGTTTTCGGTTGTGC -ACGGAAAACCGTTTTCGGCTAAGC -ACGGAAAACCGTTTTCGGACTAGC -ACGGAAAACCGTTTTCGGAGATGC -ACGGAAAACCGTTTTCGGTGAAGG -ACGGAAAACCGTTTTCGGCAATGG -ACGGAAAACCGTTTTCGGATGAGG -ACGGAAAACCGTTTTCGGAATGGG -ACGGAAAACCGTTTTCGGTCCTGA -ACGGAAAACCGTTTTCGGTAGCGA -ACGGAAAACCGTTTTCGGCACAGA -ACGGAAAACCGTTTTCGGGCAAGA -ACGGAAAACCGTTTTCGGGGTTGA -ACGGAAAACCGTTTTCGGTCCGAT -ACGGAAAACCGTTTTCGGTGGCAT -ACGGAAAACCGTTTTCGGCGAGAT -ACGGAAAACCGTTTTCGGTACCAC -ACGGAAAACCGTTTTCGGCAGAAC -ACGGAAAACCGTTTTCGGGTCTAC -ACGGAAAACCGTTTTCGGACGTAC -ACGGAAAACCGTTTTCGGAGTGAC -ACGGAAAACCGTTTTCGGCTGTAG -ACGGAAAACCGTTTTCGGCCTAAG -ACGGAAAACCGTTTTCGGGTTCAG -ACGGAAAACCGTTTTCGGGCATAG -ACGGAAAACCGTTTTCGGGACAAG -ACGGAAAACCGTTTTCGGAAGCAG -ACGGAAAACCGTTTTCGGCGTCAA -ACGGAAAACCGTTTTCGGGCTGAA -ACGGAAAACCGTTTTCGGAGTACG -ACGGAAAACCGTTTTCGGATCCGA -ACGGAAAACCGTTTTCGGATGGGA -ACGGAAAACCGTTTTCGGGTGCAA -ACGGAAAACCGTTTTCGGGAGGAA -ACGGAAAACCGTTTTCGGCAGGTA -ACGGAAAACCGTTTTCGGGACTCT -ACGGAAAACCGTTTTCGGAGTCCT -ACGGAAAACCGTTTTCGGTAAGCC -ACGGAAAACCGTTTTCGGATAGCC -ACGGAAAACCGTTTTCGGTAACCG -ACGGAAAACCGTTTTCGGATGCCA -ACGGAAAACCGTGTTGTGGGAAAC -ACGGAAAACCGTGTTGTGAACACC -ACGGAAAACCGTGTTGTGATCGAG -ACGGAAAACCGTGTTGTGCTCCTT -ACGGAAAACCGTGTTGTGCCTGTT -ACGGAAAACCGTGTTGTGCGGTTT -ACGGAAAACCGTGTTGTGGTGGTT -ACGGAAAACCGTGTTGTGGCCTTT -ACGGAAAACCGTGTTGTGGGTCTT -ACGGAAAACCGTGTTGTGACGCTT -ACGGAAAACCGTGTTGTGAGCGTT -ACGGAAAACCGTGTTGTGTTCGTC -ACGGAAAACCGTGTTGTGTCTCTC -ACGGAAAACCGTGTTGTGTGGATC -ACGGAAAACCGTGTTGTGCACTTC -ACGGAAAACCGTGTTGTGGTACTC -ACGGAAAACCGTGTTGTGGATGTC -ACGGAAAACCGTGTTGTGACAGTC -ACGGAAAACCGTGTTGTGTTGCTG -ACGGAAAACCGTGTTGTGTCCATG -ACGGAAAACCGTGTTGTGTGTGTG -ACGGAAAACCGTGTTGTGCTAGTG -ACGGAAAACCGTGTTGTGCATCTG -ACGGAAAACCGTGTTGTGGAGTTG -ACGGAAAACCGTGTTGTGAGACTG -ACGGAAAACCGTGTTGTGTCGGTA -ACGGAAAACCGTGTTGTGTGCCTA -ACGGAAAACCGTGTTGTGCCACTA -ACGGAAAACCGTGTTGTGGGAGTA -ACGGAAAACCGTGTTGTGTCGTCT -ACGGAAAACCGTGTTGTGTGCACT -ACGGAAAACCGTGTTGTGCTGACT -ACGGAAAACCGTGTTGTGCAACCT -ACGGAAAACCGTGTTGTGGCTACT -ACGGAAAACCGTGTTGTGGGATCT -ACGGAAAACCGTGTTGTGAAGGCT -ACGGAAAACCGTGTTGTGTCAACC -ACGGAAAACCGTGTTGTGTGTTCC -ACGGAAAACCGTGTTGTGATTCCC -ACGGAAAACCGTGTTGTGTTCTCG -ACGGAAAACCGTGTTGTGTAGACG -ACGGAAAACCGTGTTGTGGTAACG -ACGGAAAACCGTGTTGTGACTTCG -ACGGAAAACCGTGTTGTGTACGCA -ACGGAAAACCGTGTTGTGCTTGCA -ACGGAAAACCGTGTTGTGCGAACA -ACGGAAAACCGTGTTGTGCAGTCA -ACGGAAAACCGTGTTGTGGATCCA -ACGGAAAACCGTGTTGTGACGACA -ACGGAAAACCGTGTTGTGAGCTCA -ACGGAAAACCGTGTTGTGTCACGT -ACGGAAAACCGTGTTGTGCGTAGT -ACGGAAAACCGTGTTGTGGTCAGT -ACGGAAAACCGTGTTGTGGAAGGT -ACGGAAAACCGTGTTGTGAACCGT -ACGGAAAACCGTGTTGTGTTGTGC -ACGGAAAACCGTGTTGTGCTAAGC -ACGGAAAACCGTGTTGTGACTAGC -ACGGAAAACCGTGTTGTGAGATGC -ACGGAAAACCGTGTTGTGTGAAGG -ACGGAAAACCGTGTTGTGCAATGG -ACGGAAAACCGTGTTGTGATGAGG -ACGGAAAACCGTGTTGTGAATGGG -ACGGAAAACCGTGTTGTGTCCTGA -ACGGAAAACCGTGTTGTGTAGCGA -ACGGAAAACCGTGTTGTGCACAGA -ACGGAAAACCGTGTTGTGGCAAGA -ACGGAAAACCGTGTTGTGGGTTGA -ACGGAAAACCGTGTTGTGTCCGAT -ACGGAAAACCGTGTTGTGTGGCAT -ACGGAAAACCGTGTTGTGCGAGAT -ACGGAAAACCGTGTTGTGTACCAC -ACGGAAAACCGTGTTGTGCAGAAC -ACGGAAAACCGTGTTGTGGTCTAC -ACGGAAAACCGTGTTGTGACGTAC -ACGGAAAACCGTGTTGTGAGTGAC -ACGGAAAACCGTGTTGTGCTGTAG -ACGGAAAACCGTGTTGTGCCTAAG -ACGGAAAACCGTGTTGTGGTTCAG -ACGGAAAACCGTGTTGTGGCATAG -ACGGAAAACCGTGTTGTGGACAAG -ACGGAAAACCGTGTTGTGAAGCAG -ACGGAAAACCGTGTTGTGCGTCAA -ACGGAAAACCGTGTTGTGGCTGAA -ACGGAAAACCGTGTTGTGAGTACG -ACGGAAAACCGTGTTGTGATCCGA -ACGGAAAACCGTGTTGTGATGGGA -ACGGAAAACCGTGTTGTGGTGCAA -ACGGAAAACCGTGTTGTGGAGGAA -ACGGAAAACCGTGTTGTGCAGGTA -ACGGAAAACCGTGTTGTGGACTCT -ACGGAAAACCGTGTTGTGAGTCCT -ACGGAAAACCGTGTTGTGTAAGCC -ACGGAAAACCGTGTTGTGATAGCC -ACGGAAAACCGTGTTGTGTAACCG -ACGGAAAACCGTGTTGTGATGCCA -ACGGAAAACCGTTTTGCCGGAAAC -ACGGAAAACCGTTTTGCCAACACC -ACGGAAAACCGTTTTGCCATCGAG -ACGGAAAACCGTTTTGCCCTCCTT -ACGGAAAACCGTTTTGCCCCTGTT -ACGGAAAACCGTTTTGCCCGGTTT -ACGGAAAACCGTTTTGCCGTGGTT -ACGGAAAACCGTTTTGCCGCCTTT -ACGGAAAACCGTTTTGCCGGTCTT -ACGGAAAACCGTTTTGCCACGCTT -ACGGAAAACCGTTTTGCCAGCGTT -ACGGAAAACCGTTTTGCCTTCGTC -ACGGAAAACCGTTTTGCCTCTCTC -ACGGAAAACCGTTTTGCCTGGATC -ACGGAAAACCGTTTTGCCCACTTC -ACGGAAAACCGTTTTGCCGTACTC -ACGGAAAACCGTTTTGCCGATGTC -ACGGAAAACCGTTTTGCCACAGTC -ACGGAAAACCGTTTTGCCTTGCTG -ACGGAAAACCGTTTTGCCTCCATG -ACGGAAAACCGTTTTGCCTGTGTG -ACGGAAAACCGTTTTGCCCTAGTG -ACGGAAAACCGTTTTGCCCATCTG -ACGGAAAACCGTTTTGCCGAGTTG -ACGGAAAACCGTTTTGCCAGACTG -ACGGAAAACCGTTTTGCCTCGGTA -ACGGAAAACCGTTTTGCCTGCCTA -ACGGAAAACCGTTTTGCCCCACTA -ACGGAAAACCGTTTTGCCGGAGTA -ACGGAAAACCGTTTTGCCTCGTCT -ACGGAAAACCGTTTTGCCTGCACT -ACGGAAAACCGTTTTGCCCTGACT -ACGGAAAACCGTTTTGCCCAACCT -ACGGAAAACCGTTTTGCCGCTACT -ACGGAAAACCGTTTTGCCGGATCT -ACGGAAAACCGTTTTGCCAAGGCT -ACGGAAAACCGTTTTGCCTCAACC -ACGGAAAACCGTTTTGCCTGTTCC -ACGGAAAACCGTTTTGCCATTCCC -ACGGAAAACCGTTTTGCCTTCTCG -ACGGAAAACCGTTTTGCCTAGACG -ACGGAAAACCGTTTTGCCGTAACG -ACGGAAAACCGTTTTGCCACTTCG -ACGGAAAACCGTTTTGCCTACGCA -ACGGAAAACCGTTTTGCCCTTGCA -ACGGAAAACCGTTTTGCCCGAACA -ACGGAAAACCGTTTTGCCCAGTCA -ACGGAAAACCGTTTTGCCGATCCA -ACGGAAAACCGTTTTGCCACGACA -ACGGAAAACCGTTTTGCCAGCTCA -ACGGAAAACCGTTTTGCCTCACGT -ACGGAAAACCGTTTTGCCCGTAGT -ACGGAAAACCGTTTTGCCGTCAGT -ACGGAAAACCGTTTTGCCGAAGGT -ACGGAAAACCGTTTTGCCAACCGT -ACGGAAAACCGTTTTGCCTTGTGC -ACGGAAAACCGTTTTGCCCTAAGC -ACGGAAAACCGTTTTGCCACTAGC -ACGGAAAACCGTTTTGCCAGATGC -ACGGAAAACCGTTTTGCCTGAAGG -ACGGAAAACCGTTTTGCCCAATGG -ACGGAAAACCGTTTTGCCATGAGG -ACGGAAAACCGTTTTGCCAATGGG -ACGGAAAACCGTTTTGCCTCCTGA -ACGGAAAACCGTTTTGCCTAGCGA -ACGGAAAACCGTTTTGCCCACAGA -ACGGAAAACCGTTTTGCCGCAAGA -ACGGAAAACCGTTTTGCCGGTTGA -ACGGAAAACCGTTTTGCCTCCGAT -ACGGAAAACCGTTTTGCCTGGCAT -ACGGAAAACCGTTTTGCCCGAGAT -ACGGAAAACCGTTTTGCCTACCAC -ACGGAAAACCGTTTTGCCCAGAAC -ACGGAAAACCGTTTTGCCGTCTAC -ACGGAAAACCGTTTTGCCACGTAC -ACGGAAAACCGTTTTGCCAGTGAC -ACGGAAAACCGTTTTGCCCTGTAG -ACGGAAAACCGTTTTGCCCCTAAG -ACGGAAAACCGTTTTGCCGTTCAG -ACGGAAAACCGTTTTGCCGCATAG -ACGGAAAACCGTTTTGCCGACAAG -ACGGAAAACCGTTTTGCCAAGCAG -ACGGAAAACCGTTTTGCCCGTCAA -ACGGAAAACCGTTTTGCCGCTGAA -ACGGAAAACCGTTTTGCCAGTACG -ACGGAAAACCGTTTTGCCATCCGA -ACGGAAAACCGTTTTGCCATGGGA -ACGGAAAACCGTTTTGCCGTGCAA -ACGGAAAACCGTTTTGCCGAGGAA -ACGGAAAACCGTTTTGCCCAGGTA -ACGGAAAACCGTTTTGCCGACTCT -ACGGAAAACCGTTTTGCCAGTCCT -ACGGAAAACCGTTTTGCCTAAGCC -ACGGAAAACCGTTTTGCCATAGCC -ACGGAAAACCGTTTTGCCTAACCG -ACGGAAAACCGTTTTGCCATGCCA -ACGGAAAACCGTCTTGGTGGAAAC -ACGGAAAACCGTCTTGGTAACACC -ACGGAAAACCGTCTTGGTATCGAG -ACGGAAAACCGTCTTGGTCTCCTT -ACGGAAAACCGTCTTGGTCCTGTT -ACGGAAAACCGTCTTGGTCGGTTT -ACGGAAAACCGTCTTGGTGTGGTT -ACGGAAAACCGTCTTGGTGCCTTT -ACGGAAAACCGTCTTGGTGGTCTT -ACGGAAAACCGTCTTGGTACGCTT -ACGGAAAACCGTCTTGGTAGCGTT -ACGGAAAACCGTCTTGGTTTCGTC -ACGGAAAACCGTCTTGGTTCTCTC -ACGGAAAACCGTCTTGGTTGGATC -ACGGAAAACCGTCTTGGTCACTTC -ACGGAAAACCGTCTTGGTGTACTC -ACGGAAAACCGTCTTGGTGATGTC -ACGGAAAACCGTCTTGGTACAGTC -ACGGAAAACCGTCTTGGTTTGCTG -ACGGAAAACCGTCTTGGTTCCATG -ACGGAAAACCGTCTTGGTTGTGTG -ACGGAAAACCGTCTTGGTCTAGTG -ACGGAAAACCGTCTTGGTCATCTG -ACGGAAAACCGTCTTGGTGAGTTG -ACGGAAAACCGTCTTGGTAGACTG -ACGGAAAACCGTCTTGGTTCGGTA -ACGGAAAACCGTCTTGGTTGCCTA -ACGGAAAACCGTCTTGGTCCACTA -ACGGAAAACCGTCTTGGTGGAGTA -ACGGAAAACCGTCTTGGTTCGTCT -ACGGAAAACCGTCTTGGTTGCACT -ACGGAAAACCGTCTTGGTCTGACT -ACGGAAAACCGTCTTGGTCAACCT -ACGGAAAACCGTCTTGGTGCTACT -ACGGAAAACCGTCTTGGTGGATCT -ACGGAAAACCGTCTTGGTAAGGCT -ACGGAAAACCGTCTTGGTTCAACC -ACGGAAAACCGTCTTGGTTGTTCC -ACGGAAAACCGTCTTGGTATTCCC -ACGGAAAACCGTCTTGGTTTCTCG -ACGGAAAACCGTCTTGGTTAGACG -ACGGAAAACCGTCTTGGTGTAACG -ACGGAAAACCGTCTTGGTACTTCG -ACGGAAAACCGTCTTGGTTACGCA -ACGGAAAACCGTCTTGGTCTTGCA -ACGGAAAACCGTCTTGGTCGAACA -ACGGAAAACCGTCTTGGTCAGTCA -ACGGAAAACCGTCTTGGTGATCCA -ACGGAAAACCGTCTTGGTACGACA -ACGGAAAACCGTCTTGGTAGCTCA -ACGGAAAACCGTCTTGGTTCACGT -ACGGAAAACCGTCTTGGTCGTAGT -ACGGAAAACCGTCTTGGTGTCAGT -ACGGAAAACCGTCTTGGTGAAGGT -ACGGAAAACCGTCTTGGTAACCGT -ACGGAAAACCGTCTTGGTTTGTGC -ACGGAAAACCGTCTTGGTCTAAGC -ACGGAAAACCGTCTTGGTACTAGC -ACGGAAAACCGTCTTGGTAGATGC -ACGGAAAACCGTCTTGGTTGAAGG -ACGGAAAACCGTCTTGGTCAATGG -ACGGAAAACCGTCTTGGTATGAGG -ACGGAAAACCGTCTTGGTAATGGG -ACGGAAAACCGTCTTGGTTCCTGA -ACGGAAAACCGTCTTGGTTAGCGA -ACGGAAAACCGTCTTGGTCACAGA -ACGGAAAACCGTCTTGGTGCAAGA -ACGGAAAACCGTCTTGGTGGTTGA -ACGGAAAACCGTCTTGGTTCCGAT -ACGGAAAACCGTCTTGGTTGGCAT -ACGGAAAACCGTCTTGGTCGAGAT -ACGGAAAACCGTCTTGGTTACCAC -ACGGAAAACCGTCTTGGTCAGAAC -ACGGAAAACCGTCTTGGTGTCTAC -ACGGAAAACCGTCTTGGTACGTAC -ACGGAAAACCGTCTTGGTAGTGAC -ACGGAAAACCGTCTTGGTCTGTAG -ACGGAAAACCGTCTTGGTCCTAAG -ACGGAAAACCGTCTTGGTGTTCAG -ACGGAAAACCGTCTTGGTGCATAG -ACGGAAAACCGTCTTGGTGACAAG -ACGGAAAACCGTCTTGGTAAGCAG -ACGGAAAACCGTCTTGGTCGTCAA -ACGGAAAACCGTCTTGGTGCTGAA -ACGGAAAACCGTCTTGGTAGTACG -ACGGAAAACCGTCTTGGTATCCGA -ACGGAAAACCGTCTTGGTATGGGA -ACGGAAAACCGTCTTGGTGTGCAA -ACGGAAAACCGTCTTGGTGAGGAA -ACGGAAAACCGTCTTGGTCAGGTA -ACGGAAAACCGTCTTGGTGACTCT -ACGGAAAACCGTCTTGGTAGTCCT -ACGGAAAACCGTCTTGGTTAAGCC -ACGGAAAACCGTCTTGGTATAGCC -ACGGAAAACCGTCTTGGTTAACCG -ACGGAAAACCGTCTTGGTATGCCA -ACGGAAAACCGTCTTACGGGAAAC -ACGGAAAACCGTCTTACGAACACC -ACGGAAAACCGTCTTACGATCGAG -ACGGAAAACCGTCTTACGCTCCTT -ACGGAAAACCGTCTTACGCCTGTT -ACGGAAAACCGTCTTACGCGGTTT -ACGGAAAACCGTCTTACGGTGGTT -ACGGAAAACCGTCTTACGGCCTTT -ACGGAAAACCGTCTTACGGGTCTT -ACGGAAAACCGTCTTACGACGCTT -ACGGAAAACCGTCTTACGAGCGTT -ACGGAAAACCGTCTTACGTTCGTC -ACGGAAAACCGTCTTACGTCTCTC -ACGGAAAACCGTCTTACGTGGATC -ACGGAAAACCGTCTTACGCACTTC -ACGGAAAACCGTCTTACGGTACTC -ACGGAAAACCGTCTTACGGATGTC -ACGGAAAACCGTCTTACGACAGTC -ACGGAAAACCGTCTTACGTTGCTG -ACGGAAAACCGTCTTACGTCCATG -ACGGAAAACCGTCTTACGTGTGTG -ACGGAAAACCGTCTTACGCTAGTG -ACGGAAAACCGTCTTACGCATCTG -ACGGAAAACCGTCTTACGGAGTTG -ACGGAAAACCGTCTTACGAGACTG -ACGGAAAACCGTCTTACGTCGGTA -ACGGAAAACCGTCTTACGTGCCTA -ACGGAAAACCGTCTTACGCCACTA -ACGGAAAACCGTCTTACGGGAGTA -ACGGAAAACCGTCTTACGTCGTCT -ACGGAAAACCGTCTTACGTGCACT -ACGGAAAACCGTCTTACGCTGACT -ACGGAAAACCGTCTTACGCAACCT -ACGGAAAACCGTCTTACGGCTACT -ACGGAAAACCGTCTTACGGGATCT -ACGGAAAACCGTCTTACGAAGGCT -ACGGAAAACCGTCTTACGTCAACC -ACGGAAAACCGTCTTACGTGTTCC -ACGGAAAACCGTCTTACGATTCCC -ACGGAAAACCGTCTTACGTTCTCG -ACGGAAAACCGTCTTACGTAGACG -ACGGAAAACCGTCTTACGGTAACG -ACGGAAAACCGTCTTACGACTTCG -ACGGAAAACCGTCTTACGTACGCA -ACGGAAAACCGTCTTACGCTTGCA -ACGGAAAACCGTCTTACGCGAACA -ACGGAAAACCGTCTTACGCAGTCA -ACGGAAAACCGTCTTACGGATCCA -ACGGAAAACCGTCTTACGACGACA -ACGGAAAACCGTCTTACGAGCTCA -ACGGAAAACCGTCTTACGTCACGT -ACGGAAAACCGTCTTACGCGTAGT -ACGGAAAACCGTCTTACGGTCAGT -ACGGAAAACCGTCTTACGGAAGGT -ACGGAAAACCGTCTTACGAACCGT -ACGGAAAACCGTCTTACGTTGTGC -ACGGAAAACCGTCTTACGCTAAGC -ACGGAAAACCGTCTTACGACTAGC -ACGGAAAACCGTCTTACGAGATGC -ACGGAAAACCGTCTTACGTGAAGG -ACGGAAAACCGTCTTACGCAATGG -ACGGAAAACCGTCTTACGATGAGG -ACGGAAAACCGTCTTACGAATGGG -ACGGAAAACCGTCTTACGTCCTGA -ACGGAAAACCGTCTTACGTAGCGA -ACGGAAAACCGTCTTACGCACAGA -ACGGAAAACCGTCTTACGGCAAGA -ACGGAAAACCGTCTTACGGGTTGA -ACGGAAAACCGTCTTACGTCCGAT -ACGGAAAACCGTCTTACGTGGCAT -ACGGAAAACCGTCTTACGCGAGAT -ACGGAAAACCGTCTTACGTACCAC -ACGGAAAACCGTCTTACGCAGAAC -ACGGAAAACCGTCTTACGGTCTAC -ACGGAAAACCGTCTTACGACGTAC -ACGGAAAACCGTCTTACGAGTGAC -ACGGAAAACCGTCTTACGCTGTAG -ACGGAAAACCGTCTTACGCCTAAG -ACGGAAAACCGTCTTACGGTTCAG -ACGGAAAACCGTCTTACGGCATAG -ACGGAAAACCGTCTTACGGACAAG -ACGGAAAACCGTCTTACGAAGCAG -ACGGAAAACCGTCTTACGCGTCAA -ACGGAAAACCGTCTTACGGCTGAA -ACGGAAAACCGTCTTACGAGTACG -ACGGAAAACCGTCTTACGATCCGA -ACGGAAAACCGTCTTACGATGGGA -ACGGAAAACCGTCTTACGGTGCAA -ACGGAAAACCGTCTTACGGAGGAA -ACGGAAAACCGTCTTACGCAGGTA -ACGGAAAACCGTCTTACGGACTCT -ACGGAAAACCGTCTTACGAGTCCT -ACGGAAAACCGTCTTACGTAAGCC -ACGGAAAACCGTCTTACGATAGCC -ACGGAAAACCGTCTTACGTAACCG -ACGGAAAACCGTCTTACGATGCCA -ACGGAAAACCGTGTTAGCGGAAAC -ACGGAAAACCGTGTTAGCAACACC -ACGGAAAACCGTGTTAGCATCGAG -ACGGAAAACCGTGTTAGCCTCCTT -ACGGAAAACCGTGTTAGCCCTGTT -ACGGAAAACCGTGTTAGCCGGTTT -ACGGAAAACCGTGTTAGCGTGGTT -ACGGAAAACCGTGTTAGCGCCTTT -ACGGAAAACCGTGTTAGCGGTCTT -ACGGAAAACCGTGTTAGCACGCTT -ACGGAAAACCGTGTTAGCAGCGTT -ACGGAAAACCGTGTTAGCTTCGTC -ACGGAAAACCGTGTTAGCTCTCTC -ACGGAAAACCGTGTTAGCTGGATC -ACGGAAAACCGTGTTAGCCACTTC -ACGGAAAACCGTGTTAGCGTACTC -ACGGAAAACCGTGTTAGCGATGTC -ACGGAAAACCGTGTTAGCACAGTC -ACGGAAAACCGTGTTAGCTTGCTG -ACGGAAAACCGTGTTAGCTCCATG -ACGGAAAACCGTGTTAGCTGTGTG -ACGGAAAACCGTGTTAGCCTAGTG -ACGGAAAACCGTGTTAGCCATCTG -ACGGAAAACCGTGTTAGCGAGTTG -ACGGAAAACCGTGTTAGCAGACTG -ACGGAAAACCGTGTTAGCTCGGTA -ACGGAAAACCGTGTTAGCTGCCTA -ACGGAAAACCGTGTTAGCCCACTA -ACGGAAAACCGTGTTAGCGGAGTA -ACGGAAAACCGTGTTAGCTCGTCT -ACGGAAAACCGTGTTAGCTGCACT -ACGGAAAACCGTGTTAGCCTGACT -ACGGAAAACCGTGTTAGCCAACCT -ACGGAAAACCGTGTTAGCGCTACT -ACGGAAAACCGTGTTAGCGGATCT -ACGGAAAACCGTGTTAGCAAGGCT -ACGGAAAACCGTGTTAGCTCAACC -ACGGAAAACCGTGTTAGCTGTTCC -ACGGAAAACCGTGTTAGCATTCCC -ACGGAAAACCGTGTTAGCTTCTCG -ACGGAAAACCGTGTTAGCTAGACG -ACGGAAAACCGTGTTAGCGTAACG -ACGGAAAACCGTGTTAGCACTTCG -ACGGAAAACCGTGTTAGCTACGCA -ACGGAAAACCGTGTTAGCCTTGCA -ACGGAAAACCGTGTTAGCCGAACA -ACGGAAAACCGTGTTAGCCAGTCA -ACGGAAAACCGTGTTAGCGATCCA -ACGGAAAACCGTGTTAGCACGACA -ACGGAAAACCGTGTTAGCAGCTCA -ACGGAAAACCGTGTTAGCTCACGT -ACGGAAAACCGTGTTAGCCGTAGT -ACGGAAAACCGTGTTAGCGTCAGT -ACGGAAAACCGTGTTAGCGAAGGT -ACGGAAAACCGTGTTAGCAACCGT -ACGGAAAACCGTGTTAGCTTGTGC -ACGGAAAACCGTGTTAGCCTAAGC -ACGGAAAACCGTGTTAGCACTAGC -ACGGAAAACCGTGTTAGCAGATGC -ACGGAAAACCGTGTTAGCTGAAGG -ACGGAAAACCGTGTTAGCCAATGG -ACGGAAAACCGTGTTAGCATGAGG -ACGGAAAACCGTGTTAGCAATGGG -ACGGAAAACCGTGTTAGCTCCTGA -ACGGAAAACCGTGTTAGCTAGCGA -ACGGAAAACCGTGTTAGCCACAGA -ACGGAAAACCGTGTTAGCGCAAGA -ACGGAAAACCGTGTTAGCGGTTGA -ACGGAAAACCGTGTTAGCTCCGAT -ACGGAAAACCGTGTTAGCTGGCAT -ACGGAAAACCGTGTTAGCCGAGAT -ACGGAAAACCGTGTTAGCTACCAC -ACGGAAAACCGTGTTAGCCAGAAC -ACGGAAAACCGTGTTAGCGTCTAC -ACGGAAAACCGTGTTAGCACGTAC -ACGGAAAACCGTGTTAGCAGTGAC -ACGGAAAACCGTGTTAGCCTGTAG -ACGGAAAACCGTGTTAGCCCTAAG -ACGGAAAACCGTGTTAGCGTTCAG -ACGGAAAACCGTGTTAGCGCATAG -ACGGAAAACCGTGTTAGCGACAAG -ACGGAAAACCGTGTTAGCAAGCAG -ACGGAAAACCGTGTTAGCCGTCAA -ACGGAAAACCGTGTTAGCGCTGAA -ACGGAAAACCGTGTTAGCAGTACG -ACGGAAAACCGTGTTAGCATCCGA -ACGGAAAACCGTGTTAGCATGGGA -ACGGAAAACCGTGTTAGCGTGCAA -ACGGAAAACCGTGTTAGCGAGGAA -ACGGAAAACCGTGTTAGCCAGGTA -ACGGAAAACCGTGTTAGCGACTCT -ACGGAAAACCGTGTTAGCAGTCCT -ACGGAAAACCGTGTTAGCTAAGCC -ACGGAAAACCGTGTTAGCATAGCC -ACGGAAAACCGTGTTAGCTAACCG -ACGGAAAACCGTGTTAGCATGCCA -ACGGAAAACCGTGTCTTCGGAAAC -ACGGAAAACCGTGTCTTCAACACC -ACGGAAAACCGTGTCTTCATCGAG -ACGGAAAACCGTGTCTTCCTCCTT -ACGGAAAACCGTGTCTTCCCTGTT -ACGGAAAACCGTGTCTTCCGGTTT -ACGGAAAACCGTGTCTTCGTGGTT -ACGGAAAACCGTGTCTTCGCCTTT -ACGGAAAACCGTGTCTTCGGTCTT -ACGGAAAACCGTGTCTTCACGCTT -ACGGAAAACCGTGTCTTCAGCGTT -ACGGAAAACCGTGTCTTCTTCGTC -ACGGAAAACCGTGTCTTCTCTCTC -ACGGAAAACCGTGTCTTCTGGATC -ACGGAAAACCGTGTCTTCCACTTC -ACGGAAAACCGTGTCTTCGTACTC -ACGGAAAACCGTGTCTTCGATGTC -ACGGAAAACCGTGTCTTCACAGTC -ACGGAAAACCGTGTCTTCTTGCTG -ACGGAAAACCGTGTCTTCTCCATG -ACGGAAAACCGTGTCTTCTGTGTG -ACGGAAAACCGTGTCTTCCTAGTG -ACGGAAAACCGTGTCTTCCATCTG -ACGGAAAACCGTGTCTTCGAGTTG -ACGGAAAACCGTGTCTTCAGACTG -ACGGAAAACCGTGTCTTCTCGGTA -ACGGAAAACCGTGTCTTCTGCCTA -ACGGAAAACCGTGTCTTCCCACTA -ACGGAAAACCGTGTCTTCGGAGTA -ACGGAAAACCGTGTCTTCTCGTCT -ACGGAAAACCGTGTCTTCTGCACT -ACGGAAAACCGTGTCTTCCTGACT -ACGGAAAACCGTGTCTTCCAACCT -ACGGAAAACCGTGTCTTCGCTACT -ACGGAAAACCGTGTCTTCGGATCT -ACGGAAAACCGTGTCTTCAAGGCT -ACGGAAAACCGTGTCTTCTCAACC -ACGGAAAACCGTGTCTTCTGTTCC -ACGGAAAACCGTGTCTTCATTCCC -ACGGAAAACCGTGTCTTCTTCTCG -ACGGAAAACCGTGTCTTCTAGACG -ACGGAAAACCGTGTCTTCGTAACG -ACGGAAAACCGTGTCTTCACTTCG -ACGGAAAACCGTGTCTTCTACGCA -ACGGAAAACCGTGTCTTCCTTGCA -ACGGAAAACCGTGTCTTCCGAACA -ACGGAAAACCGTGTCTTCCAGTCA -ACGGAAAACCGTGTCTTCGATCCA -ACGGAAAACCGTGTCTTCACGACA -ACGGAAAACCGTGTCTTCAGCTCA -ACGGAAAACCGTGTCTTCTCACGT -ACGGAAAACCGTGTCTTCCGTAGT -ACGGAAAACCGTGTCTTCGTCAGT -ACGGAAAACCGTGTCTTCGAAGGT -ACGGAAAACCGTGTCTTCAACCGT -ACGGAAAACCGTGTCTTCTTGTGC -ACGGAAAACCGTGTCTTCCTAAGC -ACGGAAAACCGTGTCTTCACTAGC -ACGGAAAACCGTGTCTTCAGATGC -ACGGAAAACCGTGTCTTCTGAAGG -ACGGAAAACCGTGTCTTCCAATGG -ACGGAAAACCGTGTCTTCATGAGG -ACGGAAAACCGTGTCTTCAATGGG -ACGGAAAACCGTGTCTTCTCCTGA -ACGGAAAACCGTGTCTTCTAGCGA -ACGGAAAACCGTGTCTTCCACAGA -ACGGAAAACCGTGTCTTCGCAAGA -ACGGAAAACCGTGTCTTCGGTTGA -ACGGAAAACCGTGTCTTCTCCGAT -ACGGAAAACCGTGTCTTCTGGCAT -ACGGAAAACCGTGTCTTCCGAGAT -ACGGAAAACCGTGTCTTCTACCAC -ACGGAAAACCGTGTCTTCCAGAAC -ACGGAAAACCGTGTCTTCGTCTAC -ACGGAAAACCGTGTCTTCACGTAC -ACGGAAAACCGTGTCTTCAGTGAC -ACGGAAAACCGTGTCTTCCTGTAG -ACGGAAAACCGTGTCTTCCCTAAG -ACGGAAAACCGTGTCTTCGTTCAG -ACGGAAAACCGTGTCTTCGCATAG -ACGGAAAACCGTGTCTTCGACAAG -ACGGAAAACCGTGTCTTCAAGCAG -ACGGAAAACCGTGTCTTCCGTCAA -ACGGAAAACCGTGTCTTCGCTGAA -ACGGAAAACCGTGTCTTCAGTACG -ACGGAAAACCGTGTCTTCATCCGA -ACGGAAAACCGTGTCTTCATGGGA -ACGGAAAACCGTGTCTTCGTGCAA -ACGGAAAACCGTGTCTTCGAGGAA -ACGGAAAACCGTGTCTTCCAGGTA -ACGGAAAACCGTGTCTTCGACTCT -ACGGAAAACCGTGTCTTCAGTCCT -ACGGAAAACCGTGTCTTCTAAGCC -ACGGAAAACCGTGTCTTCATAGCC -ACGGAAAACCGTGTCTTCTAACCG -ACGGAAAACCGTGTCTTCATGCCA -ACGGAAAACCGTCTCTCTGGAAAC -ACGGAAAACCGTCTCTCTAACACC -ACGGAAAACCGTCTCTCTATCGAG -ACGGAAAACCGTCTCTCTCTCCTT -ACGGAAAACCGTCTCTCTCCTGTT -ACGGAAAACCGTCTCTCTCGGTTT -ACGGAAAACCGTCTCTCTGTGGTT -ACGGAAAACCGTCTCTCTGCCTTT -ACGGAAAACCGTCTCTCTGGTCTT -ACGGAAAACCGTCTCTCTACGCTT -ACGGAAAACCGTCTCTCTAGCGTT -ACGGAAAACCGTCTCTCTTTCGTC -ACGGAAAACCGTCTCTCTTCTCTC -ACGGAAAACCGTCTCTCTTGGATC -ACGGAAAACCGTCTCTCTCACTTC -ACGGAAAACCGTCTCTCTGTACTC -ACGGAAAACCGTCTCTCTGATGTC -ACGGAAAACCGTCTCTCTACAGTC -ACGGAAAACCGTCTCTCTTTGCTG -ACGGAAAACCGTCTCTCTTCCATG -ACGGAAAACCGTCTCTCTTGTGTG -ACGGAAAACCGTCTCTCTCTAGTG -ACGGAAAACCGTCTCTCTCATCTG -ACGGAAAACCGTCTCTCTGAGTTG -ACGGAAAACCGTCTCTCTAGACTG -ACGGAAAACCGTCTCTCTTCGGTA -ACGGAAAACCGTCTCTCTTGCCTA -ACGGAAAACCGTCTCTCTCCACTA -ACGGAAAACCGTCTCTCTGGAGTA -ACGGAAAACCGTCTCTCTTCGTCT -ACGGAAAACCGTCTCTCTTGCACT -ACGGAAAACCGTCTCTCTCTGACT -ACGGAAAACCGTCTCTCTCAACCT -ACGGAAAACCGTCTCTCTGCTACT -ACGGAAAACCGTCTCTCTGGATCT -ACGGAAAACCGTCTCTCTAAGGCT -ACGGAAAACCGTCTCTCTTCAACC -ACGGAAAACCGTCTCTCTTGTTCC -ACGGAAAACCGTCTCTCTATTCCC -ACGGAAAACCGTCTCTCTTTCTCG -ACGGAAAACCGTCTCTCTTAGACG -ACGGAAAACCGTCTCTCTGTAACG -ACGGAAAACCGTCTCTCTACTTCG -ACGGAAAACCGTCTCTCTTACGCA -ACGGAAAACCGTCTCTCTCTTGCA -ACGGAAAACCGTCTCTCTCGAACA -ACGGAAAACCGTCTCTCTCAGTCA -ACGGAAAACCGTCTCTCTGATCCA -ACGGAAAACCGTCTCTCTACGACA -ACGGAAAACCGTCTCTCTAGCTCA -ACGGAAAACCGTCTCTCTTCACGT -ACGGAAAACCGTCTCTCTCGTAGT -ACGGAAAACCGTCTCTCTGTCAGT -ACGGAAAACCGTCTCTCTGAAGGT -ACGGAAAACCGTCTCTCTAACCGT -ACGGAAAACCGTCTCTCTTTGTGC -ACGGAAAACCGTCTCTCTCTAAGC -ACGGAAAACCGTCTCTCTACTAGC -ACGGAAAACCGTCTCTCTAGATGC -ACGGAAAACCGTCTCTCTTGAAGG -ACGGAAAACCGTCTCTCTCAATGG -ACGGAAAACCGTCTCTCTATGAGG -ACGGAAAACCGTCTCTCTAATGGG -ACGGAAAACCGTCTCTCTTCCTGA -ACGGAAAACCGTCTCTCTTAGCGA -ACGGAAAACCGTCTCTCTCACAGA -ACGGAAAACCGTCTCTCTGCAAGA -ACGGAAAACCGTCTCTCTGGTTGA -ACGGAAAACCGTCTCTCTTCCGAT -ACGGAAAACCGTCTCTCTTGGCAT -ACGGAAAACCGTCTCTCTCGAGAT -ACGGAAAACCGTCTCTCTTACCAC -ACGGAAAACCGTCTCTCTCAGAAC -ACGGAAAACCGTCTCTCTGTCTAC -ACGGAAAACCGTCTCTCTACGTAC -ACGGAAAACCGTCTCTCTAGTGAC -ACGGAAAACCGTCTCTCTCTGTAG -ACGGAAAACCGTCTCTCTCCTAAG -ACGGAAAACCGTCTCTCTGTTCAG -ACGGAAAACCGTCTCTCTGCATAG -ACGGAAAACCGTCTCTCTGACAAG -ACGGAAAACCGTCTCTCTAAGCAG -ACGGAAAACCGTCTCTCTCGTCAA -ACGGAAAACCGTCTCTCTGCTGAA -ACGGAAAACCGTCTCTCTAGTACG -ACGGAAAACCGTCTCTCTATCCGA -ACGGAAAACCGTCTCTCTATGGGA -ACGGAAAACCGTCTCTCTGTGCAA -ACGGAAAACCGTCTCTCTGAGGAA -ACGGAAAACCGTCTCTCTCAGGTA -ACGGAAAACCGTCTCTCTGACTCT -ACGGAAAACCGTCTCTCTAGTCCT -ACGGAAAACCGTCTCTCTTAAGCC -ACGGAAAACCGTCTCTCTATAGCC -ACGGAAAACCGTCTCTCTTAACCG -ACGGAAAACCGTCTCTCTATGCCA -ACGGAAAACCGTATCTGGGGAAAC -ACGGAAAACCGTATCTGGAACACC -ACGGAAAACCGTATCTGGATCGAG -ACGGAAAACCGTATCTGGCTCCTT -ACGGAAAACCGTATCTGGCCTGTT -ACGGAAAACCGTATCTGGCGGTTT -ACGGAAAACCGTATCTGGGTGGTT -ACGGAAAACCGTATCTGGGCCTTT -ACGGAAAACCGTATCTGGGGTCTT -ACGGAAAACCGTATCTGGACGCTT -ACGGAAAACCGTATCTGGAGCGTT -ACGGAAAACCGTATCTGGTTCGTC -ACGGAAAACCGTATCTGGTCTCTC -ACGGAAAACCGTATCTGGTGGATC -ACGGAAAACCGTATCTGGCACTTC -ACGGAAAACCGTATCTGGGTACTC -ACGGAAAACCGTATCTGGGATGTC -ACGGAAAACCGTATCTGGACAGTC -ACGGAAAACCGTATCTGGTTGCTG -ACGGAAAACCGTATCTGGTCCATG -ACGGAAAACCGTATCTGGTGTGTG -ACGGAAAACCGTATCTGGCTAGTG -ACGGAAAACCGTATCTGGCATCTG -ACGGAAAACCGTATCTGGGAGTTG -ACGGAAAACCGTATCTGGAGACTG -ACGGAAAACCGTATCTGGTCGGTA -ACGGAAAACCGTATCTGGTGCCTA -ACGGAAAACCGTATCTGGCCACTA -ACGGAAAACCGTATCTGGGGAGTA -ACGGAAAACCGTATCTGGTCGTCT -ACGGAAAACCGTATCTGGTGCACT -ACGGAAAACCGTATCTGGCTGACT -ACGGAAAACCGTATCTGGCAACCT -ACGGAAAACCGTATCTGGGCTACT -ACGGAAAACCGTATCTGGGGATCT -ACGGAAAACCGTATCTGGAAGGCT -ACGGAAAACCGTATCTGGTCAACC -ACGGAAAACCGTATCTGGTGTTCC -ACGGAAAACCGTATCTGGATTCCC -ACGGAAAACCGTATCTGGTTCTCG -ACGGAAAACCGTATCTGGTAGACG -ACGGAAAACCGTATCTGGGTAACG -ACGGAAAACCGTATCTGGACTTCG -ACGGAAAACCGTATCTGGTACGCA -ACGGAAAACCGTATCTGGCTTGCA -ACGGAAAACCGTATCTGGCGAACA -ACGGAAAACCGTATCTGGCAGTCA -ACGGAAAACCGTATCTGGGATCCA -ACGGAAAACCGTATCTGGACGACA -ACGGAAAACCGTATCTGGAGCTCA -ACGGAAAACCGTATCTGGTCACGT -ACGGAAAACCGTATCTGGCGTAGT -ACGGAAAACCGTATCTGGGTCAGT -ACGGAAAACCGTATCTGGGAAGGT -ACGGAAAACCGTATCTGGAACCGT -ACGGAAAACCGTATCTGGTTGTGC -ACGGAAAACCGTATCTGGCTAAGC -ACGGAAAACCGTATCTGGACTAGC -ACGGAAAACCGTATCTGGAGATGC -ACGGAAAACCGTATCTGGTGAAGG -ACGGAAAACCGTATCTGGCAATGG -ACGGAAAACCGTATCTGGATGAGG -ACGGAAAACCGTATCTGGAATGGG -ACGGAAAACCGTATCTGGTCCTGA -ACGGAAAACCGTATCTGGTAGCGA -ACGGAAAACCGTATCTGGCACAGA -ACGGAAAACCGTATCTGGGCAAGA -ACGGAAAACCGTATCTGGGGTTGA -ACGGAAAACCGTATCTGGTCCGAT -ACGGAAAACCGTATCTGGTGGCAT -ACGGAAAACCGTATCTGGCGAGAT -ACGGAAAACCGTATCTGGTACCAC -ACGGAAAACCGTATCTGGCAGAAC -ACGGAAAACCGTATCTGGGTCTAC -ACGGAAAACCGTATCTGGACGTAC -ACGGAAAACCGTATCTGGAGTGAC -ACGGAAAACCGTATCTGGCTGTAG -ACGGAAAACCGTATCTGGCCTAAG -ACGGAAAACCGTATCTGGGTTCAG -ACGGAAAACCGTATCTGGGCATAG -ACGGAAAACCGTATCTGGGACAAG -ACGGAAAACCGTATCTGGAAGCAG -ACGGAAAACCGTATCTGGCGTCAA -ACGGAAAACCGTATCTGGGCTGAA -ACGGAAAACCGTATCTGGAGTACG -ACGGAAAACCGTATCTGGATCCGA -ACGGAAAACCGTATCTGGATGGGA -ACGGAAAACCGTATCTGGGTGCAA -ACGGAAAACCGTATCTGGGAGGAA -ACGGAAAACCGTATCTGGCAGGTA -ACGGAAAACCGTATCTGGGACTCT -ACGGAAAACCGTATCTGGAGTCCT -ACGGAAAACCGTATCTGGTAAGCC -ACGGAAAACCGTATCTGGATAGCC -ACGGAAAACCGTATCTGGTAACCG -ACGGAAAACCGTATCTGGATGCCA -ACGGAAAACCGTTTCCACGGAAAC -ACGGAAAACCGTTTCCACAACACC -ACGGAAAACCGTTTCCACATCGAG -ACGGAAAACCGTTTCCACCTCCTT -ACGGAAAACCGTTTCCACCCTGTT -ACGGAAAACCGTTTCCACCGGTTT -ACGGAAAACCGTTTCCACGTGGTT -ACGGAAAACCGTTTCCACGCCTTT -ACGGAAAACCGTTTCCACGGTCTT -ACGGAAAACCGTTTCCACACGCTT -ACGGAAAACCGTTTCCACAGCGTT -ACGGAAAACCGTTTCCACTTCGTC -ACGGAAAACCGTTTCCACTCTCTC -ACGGAAAACCGTTTCCACTGGATC -ACGGAAAACCGTTTCCACCACTTC -ACGGAAAACCGTTTCCACGTACTC -ACGGAAAACCGTTTCCACGATGTC -ACGGAAAACCGTTTCCACACAGTC -ACGGAAAACCGTTTCCACTTGCTG -ACGGAAAACCGTTTCCACTCCATG -ACGGAAAACCGTTTCCACTGTGTG -ACGGAAAACCGTTTCCACCTAGTG -ACGGAAAACCGTTTCCACCATCTG -ACGGAAAACCGTTTCCACGAGTTG -ACGGAAAACCGTTTCCACAGACTG -ACGGAAAACCGTTTCCACTCGGTA -ACGGAAAACCGTTTCCACTGCCTA -ACGGAAAACCGTTTCCACCCACTA -ACGGAAAACCGTTTCCACGGAGTA -ACGGAAAACCGTTTCCACTCGTCT -ACGGAAAACCGTTTCCACTGCACT -ACGGAAAACCGTTTCCACCTGACT -ACGGAAAACCGTTTCCACCAACCT -ACGGAAAACCGTTTCCACGCTACT -ACGGAAAACCGTTTCCACGGATCT -ACGGAAAACCGTTTCCACAAGGCT -ACGGAAAACCGTTTCCACTCAACC -ACGGAAAACCGTTTCCACTGTTCC -ACGGAAAACCGTTTCCACATTCCC -ACGGAAAACCGTTTCCACTTCTCG -ACGGAAAACCGTTTCCACTAGACG -ACGGAAAACCGTTTCCACGTAACG -ACGGAAAACCGTTTCCACACTTCG -ACGGAAAACCGTTTCCACTACGCA -ACGGAAAACCGTTTCCACCTTGCA -ACGGAAAACCGTTTCCACCGAACA -ACGGAAAACCGTTTCCACCAGTCA -ACGGAAAACCGTTTCCACGATCCA -ACGGAAAACCGTTTCCACACGACA -ACGGAAAACCGTTTCCACAGCTCA -ACGGAAAACCGTTTCCACTCACGT -ACGGAAAACCGTTTCCACCGTAGT -ACGGAAAACCGTTTCCACGTCAGT -ACGGAAAACCGTTTCCACGAAGGT -ACGGAAAACCGTTTCCACAACCGT -ACGGAAAACCGTTTCCACTTGTGC -ACGGAAAACCGTTTCCACCTAAGC -ACGGAAAACCGTTTCCACACTAGC -ACGGAAAACCGTTTCCACAGATGC -ACGGAAAACCGTTTCCACTGAAGG -ACGGAAAACCGTTTCCACCAATGG -ACGGAAAACCGTTTCCACATGAGG -ACGGAAAACCGTTTCCACAATGGG -ACGGAAAACCGTTTCCACTCCTGA -ACGGAAAACCGTTTCCACTAGCGA -ACGGAAAACCGTTTCCACCACAGA -ACGGAAAACCGTTTCCACGCAAGA -ACGGAAAACCGTTTCCACGGTTGA -ACGGAAAACCGTTTCCACTCCGAT -ACGGAAAACCGTTTCCACTGGCAT -ACGGAAAACCGTTTCCACCGAGAT -ACGGAAAACCGTTTCCACTACCAC -ACGGAAAACCGTTTCCACCAGAAC -ACGGAAAACCGTTTCCACGTCTAC -ACGGAAAACCGTTTCCACACGTAC -ACGGAAAACCGTTTCCACAGTGAC -ACGGAAAACCGTTTCCACCTGTAG -ACGGAAAACCGTTTCCACCCTAAG -ACGGAAAACCGTTTCCACGTTCAG -ACGGAAAACCGTTTCCACGCATAG -ACGGAAAACCGTTTCCACGACAAG -ACGGAAAACCGTTTCCACAAGCAG -ACGGAAAACCGTTTCCACCGTCAA -ACGGAAAACCGTTTCCACGCTGAA -ACGGAAAACCGTTTCCACAGTACG -ACGGAAAACCGTTTCCACATCCGA -ACGGAAAACCGTTTCCACATGGGA -ACGGAAAACCGTTTCCACGTGCAA -ACGGAAAACCGTTTCCACGAGGAA -ACGGAAAACCGTTTCCACCAGGTA -ACGGAAAACCGTTTCCACGACTCT -ACGGAAAACCGTTTCCACAGTCCT -ACGGAAAACCGTTTCCACTAAGCC -ACGGAAAACCGTTTCCACATAGCC -ACGGAAAACCGTTTCCACTAACCG -ACGGAAAACCGTTTCCACATGCCA -ACGGAAAACCGTCTCGTAGGAAAC -ACGGAAAACCGTCTCGTAAACACC -ACGGAAAACCGTCTCGTAATCGAG -ACGGAAAACCGTCTCGTACTCCTT -ACGGAAAACCGTCTCGTACCTGTT -ACGGAAAACCGTCTCGTACGGTTT -ACGGAAAACCGTCTCGTAGTGGTT -ACGGAAAACCGTCTCGTAGCCTTT -ACGGAAAACCGTCTCGTAGGTCTT -ACGGAAAACCGTCTCGTAACGCTT -ACGGAAAACCGTCTCGTAAGCGTT -ACGGAAAACCGTCTCGTATTCGTC -ACGGAAAACCGTCTCGTATCTCTC -ACGGAAAACCGTCTCGTATGGATC -ACGGAAAACCGTCTCGTACACTTC -ACGGAAAACCGTCTCGTAGTACTC -ACGGAAAACCGTCTCGTAGATGTC -ACGGAAAACCGTCTCGTAACAGTC -ACGGAAAACCGTCTCGTATTGCTG -ACGGAAAACCGTCTCGTATCCATG -ACGGAAAACCGTCTCGTATGTGTG -ACGGAAAACCGTCTCGTACTAGTG -ACGGAAAACCGTCTCGTACATCTG -ACGGAAAACCGTCTCGTAGAGTTG -ACGGAAAACCGTCTCGTAAGACTG -ACGGAAAACCGTCTCGTATCGGTA -ACGGAAAACCGTCTCGTATGCCTA -ACGGAAAACCGTCTCGTACCACTA -ACGGAAAACCGTCTCGTAGGAGTA -ACGGAAAACCGTCTCGTATCGTCT -ACGGAAAACCGTCTCGTATGCACT -ACGGAAAACCGTCTCGTACTGACT -ACGGAAAACCGTCTCGTACAACCT -ACGGAAAACCGTCTCGTAGCTACT -ACGGAAAACCGTCTCGTAGGATCT -ACGGAAAACCGTCTCGTAAAGGCT -ACGGAAAACCGTCTCGTATCAACC -ACGGAAAACCGTCTCGTATGTTCC -ACGGAAAACCGTCTCGTAATTCCC -ACGGAAAACCGTCTCGTATTCTCG -ACGGAAAACCGTCTCGTATAGACG -ACGGAAAACCGTCTCGTAGTAACG -ACGGAAAACCGTCTCGTAACTTCG -ACGGAAAACCGTCTCGTATACGCA -ACGGAAAACCGTCTCGTACTTGCA -ACGGAAAACCGTCTCGTACGAACA -ACGGAAAACCGTCTCGTACAGTCA -ACGGAAAACCGTCTCGTAGATCCA -ACGGAAAACCGTCTCGTAACGACA -ACGGAAAACCGTCTCGTAAGCTCA -ACGGAAAACCGTCTCGTATCACGT -ACGGAAAACCGTCTCGTACGTAGT -ACGGAAAACCGTCTCGTAGTCAGT -ACGGAAAACCGTCTCGTAGAAGGT -ACGGAAAACCGTCTCGTAAACCGT -ACGGAAAACCGTCTCGTATTGTGC -ACGGAAAACCGTCTCGTACTAAGC -ACGGAAAACCGTCTCGTAACTAGC -ACGGAAAACCGTCTCGTAAGATGC -ACGGAAAACCGTCTCGTATGAAGG -ACGGAAAACCGTCTCGTACAATGG -ACGGAAAACCGTCTCGTAATGAGG -ACGGAAAACCGTCTCGTAAATGGG -ACGGAAAACCGTCTCGTATCCTGA -ACGGAAAACCGTCTCGTATAGCGA -ACGGAAAACCGTCTCGTACACAGA -ACGGAAAACCGTCTCGTAGCAAGA -ACGGAAAACCGTCTCGTAGGTTGA -ACGGAAAACCGTCTCGTATCCGAT -ACGGAAAACCGTCTCGTATGGCAT -ACGGAAAACCGTCTCGTACGAGAT -ACGGAAAACCGTCTCGTATACCAC -ACGGAAAACCGTCTCGTACAGAAC -ACGGAAAACCGTCTCGTAGTCTAC -ACGGAAAACCGTCTCGTAACGTAC -ACGGAAAACCGTCTCGTAAGTGAC -ACGGAAAACCGTCTCGTACTGTAG -ACGGAAAACCGTCTCGTACCTAAG -ACGGAAAACCGTCTCGTAGTTCAG -ACGGAAAACCGTCTCGTAGCATAG -ACGGAAAACCGTCTCGTAGACAAG -ACGGAAAACCGTCTCGTAAAGCAG -ACGGAAAACCGTCTCGTACGTCAA -ACGGAAAACCGTCTCGTAGCTGAA -ACGGAAAACCGTCTCGTAAGTACG -ACGGAAAACCGTCTCGTAATCCGA -ACGGAAAACCGTCTCGTAATGGGA -ACGGAAAACCGTCTCGTAGTGCAA -ACGGAAAACCGTCTCGTAGAGGAA -ACGGAAAACCGTCTCGTACAGGTA -ACGGAAAACCGTCTCGTAGACTCT -ACGGAAAACCGTCTCGTAAGTCCT -ACGGAAAACCGTCTCGTATAAGCC -ACGGAAAACCGTCTCGTAATAGCC -ACGGAAAACCGTCTCGTATAACCG -ACGGAAAACCGTCTCGTAATGCCA -ACGGAAAACCGTGTCGATGGAAAC -ACGGAAAACCGTGTCGATAACACC -ACGGAAAACCGTGTCGATATCGAG -ACGGAAAACCGTGTCGATCTCCTT -ACGGAAAACCGTGTCGATCCTGTT -ACGGAAAACCGTGTCGATCGGTTT -ACGGAAAACCGTGTCGATGTGGTT -ACGGAAAACCGTGTCGATGCCTTT -ACGGAAAACCGTGTCGATGGTCTT -ACGGAAAACCGTGTCGATACGCTT -ACGGAAAACCGTGTCGATAGCGTT -ACGGAAAACCGTGTCGATTTCGTC -ACGGAAAACCGTGTCGATTCTCTC -ACGGAAAACCGTGTCGATTGGATC -ACGGAAAACCGTGTCGATCACTTC -ACGGAAAACCGTGTCGATGTACTC -ACGGAAAACCGTGTCGATGATGTC -ACGGAAAACCGTGTCGATACAGTC -ACGGAAAACCGTGTCGATTTGCTG -ACGGAAAACCGTGTCGATTCCATG -ACGGAAAACCGTGTCGATTGTGTG -ACGGAAAACCGTGTCGATCTAGTG -ACGGAAAACCGTGTCGATCATCTG -ACGGAAAACCGTGTCGATGAGTTG -ACGGAAAACCGTGTCGATAGACTG -ACGGAAAACCGTGTCGATTCGGTA -ACGGAAAACCGTGTCGATTGCCTA -ACGGAAAACCGTGTCGATCCACTA -ACGGAAAACCGTGTCGATGGAGTA -ACGGAAAACCGTGTCGATTCGTCT -ACGGAAAACCGTGTCGATTGCACT -ACGGAAAACCGTGTCGATCTGACT -ACGGAAAACCGTGTCGATCAACCT -ACGGAAAACCGTGTCGATGCTACT -ACGGAAAACCGTGTCGATGGATCT -ACGGAAAACCGTGTCGATAAGGCT -ACGGAAAACCGTGTCGATTCAACC -ACGGAAAACCGTGTCGATTGTTCC -ACGGAAAACCGTGTCGATATTCCC -ACGGAAAACCGTGTCGATTTCTCG -ACGGAAAACCGTGTCGATTAGACG -ACGGAAAACCGTGTCGATGTAACG -ACGGAAAACCGTGTCGATACTTCG -ACGGAAAACCGTGTCGATTACGCA -ACGGAAAACCGTGTCGATCTTGCA -ACGGAAAACCGTGTCGATCGAACA -ACGGAAAACCGTGTCGATCAGTCA -ACGGAAAACCGTGTCGATGATCCA -ACGGAAAACCGTGTCGATACGACA -ACGGAAAACCGTGTCGATAGCTCA -ACGGAAAACCGTGTCGATTCACGT -ACGGAAAACCGTGTCGATCGTAGT -ACGGAAAACCGTGTCGATGTCAGT -ACGGAAAACCGTGTCGATGAAGGT -ACGGAAAACCGTGTCGATAACCGT -ACGGAAAACCGTGTCGATTTGTGC -ACGGAAAACCGTGTCGATCTAAGC -ACGGAAAACCGTGTCGATACTAGC -ACGGAAAACCGTGTCGATAGATGC -ACGGAAAACCGTGTCGATTGAAGG -ACGGAAAACCGTGTCGATCAATGG -ACGGAAAACCGTGTCGATATGAGG -ACGGAAAACCGTGTCGATAATGGG -ACGGAAAACCGTGTCGATTCCTGA -ACGGAAAACCGTGTCGATTAGCGA -ACGGAAAACCGTGTCGATCACAGA -ACGGAAAACCGTGTCGATGCAAGA -ACGGAAAACCGTGTCGATGGTTGA -ACGGAAAACCGTGTCGATTCCGAT -ACGGAAAACCGTGTCGATTGGCAT -ACGGAAAACCGTGTCGATCGAGAT -ACGGAAAACCGTGTCGATTACCAC -ACGGAAAACCGTGTCGATCAGAAC -ACGGAAAACCGTGTCGATGTCTAC -ACGGAAAACCGTGTCGATACGTAC -ACGGAAAACCGTGTCGATAGTGAC -ACGGAAAACCGTGTCGATCTGTAG -ACGGAAAACCGTGTCGATCCTAAG -ACGGAAAACCGTGTCGATGTTCAG -ACGGAAAACCGTGTCGATGCATAG -ACGGAAAACCGTGTCGATGACAAG -ACGGAAAACCGTGTCGATAAGCAG -ACGGAAAACCGTGTCGATCGTCAA -ACGGAAAACCGTGTCGATGCTGAA -ACGGAAAACCGTGTCGATAGTACG -ACGGAAAACCGTGTCGATATCCGA -ACGGAAAACCGTGTCGATATGGGA -ACGGAAAACCGTGTCGATGTGCAA -ACGGAAAACCGTGTCGATGAGGAA -ACGGAAAACCGTGTCGATCAGGTA -ACGGAAAACCGTGTCGATGACTCT -ACGGAAAACCGTGTCGATAGTCCT -ACGGAAAACCGTGTCGATTAAGCC -ACGGAAAACCGTGTCGATATAGCC -ACGGAAAACCGTGTCGATTAACCG -ACGGAAAACCGTGTCGATATGCCA -ACGGAAAACCGTGTCACAGGAAAC -ACGGAAAACCGTGTCACAAACACC -ACGGAAAACCGTGTCACAATCGAG -ACGGAAAACCGTGTCACACTCCTT -ACGGAAAACCGTGTCACACCTGTT -ACGGAAAACCGTGTCACACGGTTT -ACGGAAAACCGTGTCACAGTGGTT -ACGGAAAACCGTGTCACAGCCTTT -ACGGAAAACCGTGTCACAGGTCTT -ACGGAAAACCGTGTCACAACGCTT -ACGGAAAACCGTGTCACAAGCGTT -ACGGAAAACCGTGTCACATTCGTC -ACGGAAAACCGTGTCACATCTCTC -ACGGAAAACCGTGTCACATGGATC -ACGGAAAACCGTGTCACACACTTC -ACGGAAAACCGTGTCACAGTACTC -ACGGAAAACCGTGTCACAGATGTC -ACGGAAAACCGTGTCACAACAGTC -ACGGAAAACCGTGTCACATTGCTG -ACGGAAAACCGTGTCACATCCATG -ACGGAAAACCGTGTCACATGTGTG -ACGGAAAACCGTGTCACACTAGTG -ACGGAAAACCGTGTCACACATCTG -ACGGAAAACCGTGTCACAGAGTTG -ACGGAAAACCGTGTCACAAGACTG -ACGGAAAACCGTGTCACATCGGTA -ACGGAAAACCGTGTCACATGCCTA -ACGGAAAACCGTGTCACACCACTA -ACGGAAAACCGTGTCACAGGAGTA -ACGGAAAACCGTGTCACATCGTCT -ACGGAAAACCGTGTCACATGCACT -ACGGAAAACCGTGTCACACTGACT -ACGGAAAACCGTGTCACACAACCT -ACGGAAAACCGTGTCACAGCTACT -ACGGAAAACCGTGTCACAGGATCT -ACGGAAAACCGTGTCACAAAGGCT -ACGGAAAACCGTGTCACATCAACC -ACGGAAAACCGTGTCACATGTTCC -ACGGAAAACCGTGTCACAATTCCC -ACGGAAAACCGTGTCACATTCTCG -ACGGAAAACCGTGTCACATAGACG -ACGGAAAACCGTGTCACAGTAACG -ACGGAAAACCGTGTCACAACTTCG -ACGGAAAACCGTGTCACATACGCA -ACGGAAAACCGTGTCACACTTGCA -ACGGAAAACCGTGTCACACGAACA -ACGGAAAACCGTGTCACACAGTCA -ACGGAAAACCGTGTCACAGATCCA -ACGGAAAACCGTGTCACAACGACA -ACGGAAAACCGTGTCACAAGCTCA -ACGGAAAACCGTGTCACATCACGT -ACGGAAAACCGTGTCACACGTAGT -ACGGAAAACCGTGTCACAGTCAGT -ACGGAAAACCGTGTCACAGAAGGT -ACGGAAAACCGTGTCACAAACCGT -ACGGAAAACCGTGTCACATTGTGC -ACGGAAAACCGTGTCACACTAAGC -ACGGAAAACCGTGTCACAACTAGC -ACGGAAAACCGTGTCACAAGATGC -ACGGAAAACCGTGTCACATGAAGG -ACGGAAAACCGTGTCACACAATGG -ACGGAAAACCGTGTCACAATGAGG -ACGGAAAACCGTGTCACAAATGGG -ACGGAAAACCGTGTCACATCCTGA -ACGGAAAACCGTGTCACATAGCGA -ACGGAAAACCGTGTCACACACAGA -ACGGAAAACCGTGTCACAGCAAGA -ACGGAAAACCGTGTCACAGGTTGA -ACGGAAAACCGTGTCACATCCGAT -ACGGAAAACCGTGTCACATGGCAT -ACGGAAAACCGTGTCACACGAGAT -ACGGAAAACCGTGTCACATACCAC -ACGGAAAACCGTGTCACACAGAAC -ACGGAAAACCGTGTCACAGTCTAC -ACGGAAAACCGTGTCACAACGTAC -ACGGAAAACCGTGTCACAAGTGAC -ACGGAAAACCGTGTCACACTGTAG -ACGGAAAACCGTGTCACACCTAAG -ACGGAAAACCGTGTCACAGTTCAG -ACGGAAAACCGTGTCACAGCATAG -ACGGAAAACCGTGTCACAGACAAG -ACGGAAAACCGTGTCACAAAGCAG -ACGGAAAACCGTGTCACACGTCAA -ACGGAAAACCGTGTCACAGCTGAA -ACGGAAAACCGTGTCACAAGTACG -ACGGAAAACCGTGTCACAATCCGA -ACGGAAAACCGTGTCACAATGGGA -ACGGAAAACCGTGTCACAGTGCAA -ACGGAAAACCGTGTCACAGAGGAA -ACGGAAAACCGTGTCACACAGGTA -ACGGAAAACCGTGTCACAGACTCT -ACGGAAAACCGTGTCACAAGTCCT -ACGGAAAACCGTGTCACATAAGCC -ACGGAAAACCGTGTCACAATAGCC -ACGGAAAACCGTGTCACATAACCG -ACGGAAAACCGTGTCACAATGCCA -ACGGAAAACCGTCTGTTGGGAAAC -ACGGAAAACCGTCTGTTGAACACC -ACGGAAAACCGTCTGTTGATCGAG -ACGGAAAACCGTCTGTTGCTCCTT -ACGGAAAACCGTCTGTTGCCTGTT -ACGGAAAACCGTCTGTTGCGGTTT -ACGGAAAACCGTCTGTTGGTGGTT -ACGGAAAACCGTCTGTTGGCCTTT -ACGGAAAACCGTCTGTTGGGTCTT -ACGGAAAACCGTCTGTTGACGCTT -ACGGAAAACCGTCTGTTGAGCGTT -ACGGAAAACCGTCTGTTGTTCGTC -ACGGAAAACCGTCTGTTGTCTCTC -ACGGAAAACCGTCTGTTGTGGATC -ACGGAAAACCGTCTGTTGCACTTC -ACGGAAAACCGTCTGTTGGTACTC -ACGGAAAACCGTCTGTTGGATGTC -ACGGAAAACCGTCTGTTGACAGTC -ACGGAAAACCGTCTGTTGTTGCTG -ACGGAAAACCGTCTGTTGTCCATG -ACGGAAAACCGTCTGTTGTGTGTG -ACGGAAAACCGTCTGTTGCTAGTG -ACGGAAAACCGTCTGTTGCATCTG -ACGGAAAACCGTCTGTTGGAGTTG -ACGGAAAACCGTCTGTTGAGACTG -ACGGAAAACCGTCTGTTGTCGGTA -ACGGAAAACCGTCTGTTGTGCCTA -ACGGAAAACCGTCTGTTGCCACTA -ACGGAAAACCGTCTGTTGGGAGTA -ACGGAAAACCGTCTGTTGTCGTCT -ACGGAAAACCGTCTGTTGTGCACT -ACGGAAAACCGTCTGTTGCTGACT -ACGGAAAACCGTCTGTTGCAACCT -ACGGAAAACCGTCTGTTGGCTACT -ACGGAAAACCGTCTGTTGGGATCT -ACGGAAAACCGTCTGTTGAAGGCT -ACGGAAAACCGTCTGTTGTCAACC -ACGGAAAACCGTCTGTTGTGTTCC -ACGGAAAACCGTCTGTTGATTCCC -ACGGAAAACCGTCTGTTGTTCTCG -ACGGAAAACCGTCTGTTGTAGACG -ACGGAAAACCGTCTGTTGGTAACG -ACGGAAAACCGTCTGTTGACTTCG -ACGGAAAACCGTCTGTTGTACGCA -ACGGAAAACCGTCTGTTGCTTGCA -ACGGAAAACCGTCTGTTGCGAACA -ACGGAAAACCGTCTGTTGCAGTCA -ACGGAAAACCGTCTGTTGGATCCA -ACGGAAAACCGTCTGTTGACGACA -ACGGAAAACCGTCTGTTGAGCTCA -ACGGAAAACCGTCTGTTGTCACGT -ACGGAAAACCGTCTGTTGCGTAGT -ACGGAAAACCGTCTGTTGGTCAGT -ACGGAAAACCGTCTGTTGGAAGGT -ACGGAAAACCGTCTGTTGAACCGT -ACGGAAAACCGTCTGTTGTTGTGC -ACGGAAAACCGTCTGTTGCTAAGC -ACGGAAAACCGTCTGTTGACTAGC -ACGGAAAACCGTCTGTTGAGATGC -ACGGAAAACCGTCTGTTGTGAAGG -ACGGAAAACCGTCTGTTGCAATGG -ACGGAAAACCGTCTGTTGATGAGG -ACGGAAAACCGTCTGTTGAATGGG -ACGGAAAACCGTCTGTTGTCCTGA -ACGGAAAACCGTCTGTTGTAGCGA -ACGGAAAACCGTCTGTTGCACAGA -ACGGAAAACCGTCTGTTGGCAAGA -ACGGAAAACCGTCTGTTGGGTTGA -ACGGAAAACCGTCTGTTGTCCGAT -ACGGAAAACCGTCTGTTGTGGCAT -ACGGAAAACCGTCTGTTGCGAGAT -ACGGAAAACCGTCTGTTGTACCAC -ACGGAAAACCGTCTGTTGCAGAAC -ACGGAAAACCGTCTGTTGGTCTAC -ACGGAAAACCGTCTGTTGACGTAC -ACGGAAAACCGTCTGTTGAGTGAC -ACGGAAAACCGTCTGTTGCTGTAG -ACGGAAAACCGTCTGTTGCCTAAG -ACGGAAAACCGTCTGTTGGTTCAG -ACGGAAAACCGTCTGTTGGCATAG -ACGGAAAACCGTCTGTTGGACAAG -ACGGAAAACCGTCTGTTGAAGCAG -ACGGAAAACCGTCTGTTGCGTCAA -ACGGAAAACCGTCTGTTGGCTGAA -ACGGAAAACCGTCTGTTGAGTACG -ACGGAAAACCGTCTGTTGATCCGA -ACGGAAAACCGTCTGTTGATGGGA -ACGGAAAACCGTCTGTTGGTGCAA -ACGGAAAACCGTCTGTTGGAGGAA -ACGGAAAACCGTCTGTTGCAGGTA -ACGGAAAACCGTCTGTTGGACTCT -ACGGAAAACCGTCTGTTGAGTCCT -ACGGAAAACCGTCTGTTGTAAGCC -ACGGAAAACCGTCTGTTGATAGCC -ACGGAAAACCGTCTGTTGTAACCG -ACGGAAAACCGTCTGTTGATGCCA -ACGGAAAACCGTATGTCCGGAAAC -ACGGAAAACCGTATGTCCAACACC -ACGGAAAACCGTATGTCCATCGAG -ACGGAAAACCGTATGTCCCTCCTT -ACGGAAAACCGTATGTCCCCTGTT -ACGGAAAACCGTATGTCCCGGTTT -ACGGAAAACCGTATGTCCGTGGTT -ACGGAAAACCGTATGTCCGCCTTT -ACGGAAAACCGTATGTCCGGTCTT -ACGGAAAACCGTATGTCCACGCTT -ACGGAAAACCGTATGTCCAGCGTT -ACGGAAAACCGTATGTCCTTCGTC -ACGGAAAACCGTATGTCCTCTCTC -ACGGAAAACCGTATGTCCTGGATC -ACGGAAAACCGTATGTCCCACTTC -ACGGAAAACCGTATGTCCGTACTC -ACGGAAAACCGTATGTCCGATGTC -ACGGAAAACCGTATGTCCACAGTC -ACGGAAAACCGTATGTCCTTGCTG -ACGGAAAACCGTATGTCCTCCATG -ACGGAAAACCGTATGTCCTGTGTG -ACGGAAAACCGTATGTCCCTAGTG -ACGGAAAACCGTATGTCCCATCTG -ACGGAAAACCGTATGTCCGAGTTG -ACGGAAAACCGTATGTCCAGACTG -ACGGAAAACCGTATGTCCTCGGTA -ACGGAAAACCGTATGTCCTGCCTA -ACGGAAAACCGTATGTCCCCACTA -ACGGAAAACCGTATGTCCGGAGTA -ACGGAAAACCGTATGTCCTCGTCT -ACGGAAAACCGTATGTCCTGCACT -ACGGAAAACCGTATGTCCCTGACT -ACGGAAAACCGTATGTCCCAACCT -ACGGAAAACCGTATGTCCGCTACT -ACGGAAAACCGTATGTCCGGATCT -ACGGAAAACCGTATGTCCAAGGCT -ACGGAAAACCGTATGTCCTCAACC -ACGGAAAACCGTATGTCCTGTTCC -ACGGAAAACCGTATGTCCATTCCC -ACGGAAAACCGTATGTCCTTCTCG -ACGGAAAACCGTATGTCCTAGACG -ACGGAAAACCGTATGTCCGTAACG -ACGGAAAACCGTATGTCCACTTCG -ACGGAAAACCGTATGTCCTACGCA -ACGGAAAACCGTATGTCCCTTGCA -ACGGAAAACCGTATGTCCCGAACA -ACGGAAAACCGTATGTCCCAGTCA -ACGGAAAACCGTATGTCCGATCCA -ACGGAAAACCGTATGTCCACGACA -ACGGAAAACCGTATGTCCAGCTCA -ACGGAAAACCGTATGTCCTCACGT -ACGGAAAACCGTATGTCCCGTAGT -ACGGAAAACCGTATGTCCGTCAGT -ACGGAAAACCGTATGTCCGAAGGT -ACGGAAAACCGTATGTCCAACCGT -ACGGAAAACCGTATGTCCTTGTGC -ACGGAAAACCGTATGTCCCTAAGC -ACGGAAAACCGTATGTCCACTAGC -ACGGAAAACCGTATGTCCAGATGC -ACGGAAAACCGTATGTCCTGAAGG -ACGGAAAACCGTATGTCCCAATGG -ACGGAAAACCGTATGTCCATGAGG -ACGGAAAACCGTATGTCCAATGGG -ACGGAAAACCGTATGTCCTCCTGA -ACGGAAAACCGTATGTCCTAGCGA -ACGGAAAACCGTATGTCCCACAGA -ACGGAAAACCGTATGTCCGCAAGA -ACGGAAAACCGTATGTCCGGTTGA -ACGGAAAACCGTATGTCCTCCGAT -ACGGAAAACCGTATGTCCTGGCAT -ACGGAAAACCGTATGTCCCGAGAT -ACGGAAAACCGTATGTCCTACCAC -ACGGAAAACCGTATGTCCCAGAAC -ACGGAAAACCGTATGTCCGTCTAC -ACGGAAAACCGTATGTCCACGTAC -ACGGAAAACCGTATGTCCAGTGAC -ACGGAAAACCGTATGTCCCTGTAG -ACGGAAAACCGTATGTCCCCTAAG -ACGGAAAACCGTATGTCCGTTCAG -ACGGAAAACCGTATGTCCGCATAG -ACGGAAAACCGTATGTCCGACAAG -ACGGAAAACCGTATGTCCAAGCAG -ACGGAAAACCGTATGTCCCGTCAA -ACGGAAAACCGTATGTCCGCTGAA -ACGGAAAACCGTATGTCCAGTACG -ACGGAAAACCGTATGTCCATCCGA -ACGGAAAACCGTATGTCCATGGGA -ACGGAAAACCGTATGTCCGTGCAA -ACGGAAAACCGTATGTCCGAGGAA -ACGGAAAACCGTATGTCCCAGGTA -ACGGAAAACCGTATGTCCGACTCT -ACGGAAAACCGTATGTCCAGTCCT -ACGGAAAACCGTATGTCCTAAGCC -ACGGAAAACCGTATGTCCATAGCC -ACGGAAAACCGTATGTCCTAACCG -ACGGAAAACCGTATGTCCATGCCA -ACGGAAAACCGTGTGTGTGGAAAC -ACGGAAAACCGTGTGTGTAACACC -ACGGAAAACCGTGTGTGTATCGAG -ACGGAAAACCGTGTGTGTCTCCTT -ACGGAAAACCGTGTGTGTCCTGTT -ACGGAAAACCGTGTGTGTCGGTTT -ACGGAAAACCGTGTGTGTGTGGTT -ACGGAAAACCGTGTGTGTGCCTTT -ACGGAAAACCGTGTGTGTGGTCTT -ACGGAAAACCGTGTGTGTACGCTT -ACGGAAAACCGTGTGTGTAGCGTT -ACGGAAAACCGTGTGTGTTTCGTC -ACGGAAAACCGTGTGTGTTCTCTC -ACGGAAAACCGTGTGTGTTGGATC -ACGGAAAACCGTGTGTGTCACTTC -ACGGAAAACCGTGTGTGTGTACTC -ACGGAAAACCGTGTGTGTGATGTC -ACGGAAAACCGTGTGTGTACAGTC -ACGGAAAACCGTGTGTGTTTGCTG -ACGGAAAACCGTGTGTGTTCCATG -ACGGAAAACCGTGTGTGTTGTGTG -ACGGAAAACCGTGTGTGTCTAGTG -ACGGAAAACCGTGTGTGTCATCTG -ACGGAAAACCGTGTGTGTGAGTTG -ACGGAAAACCGTGTGTGTAGACTG -ACGGAAAACCGTGTGTGTTCGGTA -ACGGAAAACCGTGTGTGTTGCCTA -ACGGAAAACCGTGTGTGTCCACTA -ACGGAAAACCGTGTGTGTGGAGTA -ACGGAAAACCGTGTGTGTTCGTCT -ACGGAAAACCGTGTGTGTTGCACT -ACGGAAAACCGTGTGTGTCTGACT -ACGGAAAACCGTGTGTGTCAACCT -ACGGAAAACCGTGTGTGTGCTACT -ACGGAAAACCGTGTGTGTGGATCT -ACGGAAAACCGTGTGTGTAAGGCT -ACGGAAAACCGTGTGTGTTCAACC -ACGGAAAACCGTGTGTGTTGTTCC -ACGGAAAACCGTGTGTGTATTCCC -ACGGAAAACCGTGTGTGTTTCTCG -ACGGAAAACCGTGTGTGTTAGACG -ACGGAAAACCGTGTGTGTGTAACG -ACGGAAAACCGTGTGTGTACTTCG -ACGGAAAACCGTGTGTGTTACGCA -ACGGAAAACCGTGTGTGTCTTGCA -ACGGAAAACCGTGTGTGTCGAACA -ACGGAAAACCGTGTGTGTCAGTCA -ACGGAAAACCGTGTGTGTGATCCA -ACGGAAAACCGTGTGTGTACGACA -ACGGAAAACCGTGTGTGTAGCTCA -ACGGAAAACCGTGTGTGTTCACGT -ACGGAAAACCGTGTGTGTCGTAGT -ACGGAAAACCGTGTGTGTGTCAGT -ACGGAAAACCGTGTGTGTGAAGGT -ACGGAAAACCGTGTGTGTAACCGT -ACGGAAAACCGTGTGTGTTTGTGC -ACGGAAAACCGTGTGTGTCTAAGC -ACGGAAAACCGTGTGTGTACTAGC -ACGGAAAACCGTGTGTGTAGATGC -ACGGAAAACCGTGTGTGTTGAAGG -ACGGAAAACCGTGTGTGTCAATGG -ACGGAAAACCGTGTGTGTATGAGG -ACGGAAAACCGTGTGTGTAATGGG -ACGGAAAACCGTGTGTGTTCCTGA -ACGGAAAACCGTGTGTGTTAGCGA -ACGGAAAACCGTGTGTGTCACAGA -ACGGAAAACCGTGTGTGTGCAAGA -ACGGAAAACCGTGTGTGTGGTTGA -ACGGAAAACCGTGTGTGTTCCGAT -ACGGAAAACCGTGTGTGTTGGCAT -ACGGAAAACCGTGTGTGTCGAGAT -ACGGAAAACCGTGTGTGTTACCAC -ACGGAAAACCGTGTGTGTCAGAAC -ACGGAAAACCGTGTGTGTGTCTAC -ACGGAAAACCGTGTGTGTACGTAC -ACGGAAAACCGTGTGTGTAGTGAC -ACGGAAAACCGTGTGTGTCTGTAG -ACGGAAAACCGTGTGTGTCCTAAG -ACGGAAAACCGTGTGTGTGTTCAG -ACGGAAAACCGTGTGTGTGCATAG -ACGGAAAACCGTGTGTGTGACAAG -ACGGAAAACCGTGTGTGTAAGCAG -ACGGAAAACCGTGTGTGTCGTCAA -ACGGAAAACCGTGTGTGTGCTGAA -ACGGAAAACCGTGTGTGTAGTACG -ACGGAAAACCGTGTGTGTATCCGA -ACGGAAAACCGTGTGTGTATGGGA -ACGGAAAACCGTGTGTGTGTGCAA -ACGGAAAACCGTGTGTGTGAGGAA -ACGGAAAACCGTGTGTGTCAGGTA -ACGGAAAACCGTGTGTGTGACTCT -ACGGAAAACCGTGTGTGTAGTCCT -ACGGAAAACCGTGTGTGTTAAGCC -ACGGAAAACCGTGTGTGTATAGCC -ACGGAAAACCGTGTGTGTTAACCG -ACGGAAAACCGTGTGTGTATGCCA -ACGGAAAACCGTGTGCTAGGAAAC -ACGGAAAACCGTGTGCTAAACACC -ACGGAAAACCGTGTGCTAATCGAG -ACGGAAAACCGTGTGCTACTCCTT -ACGGAAAACCGTGTGCTACCTGTT -ACGGAAAACCGTGTGCTACGGTTT -ACGGAAAACCGTGTGCTAGTGGTT -ACGGAAAACCGTGTGCTAGCCTTT -ACGGAAAACCGTGTGCTAGGTCTT -ACGGAAAACCGTGTGCTAACGCTT -ACGGAAAACCGTGTGCTAAGCGTT -ACGGAAAACCGTGTGCTATTCGTC -ACGGAAAACCGTGTGCTATCTCTC -ACGGAAAACCGTGTGCTATGGATC -ACGGAAAACCGTGTGCTACACTTC -ACGGAAAACCGTGTGCTAGTACTC -ACGGAAAACCGTGTGCTAGATGTC -ACGGAAAACCGTGTGCTAACAGTC -ACGGAAAACCGTGTGCTATTGCTG -ACGGAAAACCGTGTGCTATCCATG -ACGGAAAACCGTGTGCTATGTGTG -ACGGAAAACCGTGTGCTACTAGTG -ACGGAAAACCGTGTGCTACATCTG -ACGGAAAACCGTGTGCTAGAGTTG -ACGGAAAACCGTGTGCTAAGACTG -ACGGAAAACCGTGTGCTATCGGTA -ACGGAAAACCGTGTGCTATGCCTA -ACGGAAAACCGTGTGCTACCACTA -ACGGAAAACCGTGTGCTAGGAGTA -ACGGAAAACCGTGTGCTATCGTCT -ACGGAAAACCGTGTGCTATGCACT -ACGGAAAACCGTGTGCTACTGACT -ACGGAAAACCGTGTGCTACAACCT -ACGGAAAACCGTGTGCTAGCTACT -ACGGAAAACCGTGTGCTAGGATCT -ACGGAAAACCGTGTGCTAAAGGCT -ACGGAAAACCGTGTGCTATCAACC -ACGGAAAACCGTGTGCTATGTTCC -ACGGAAAACCGTGTGCTAATTCCC -ACGGAAAACCGTGTGCTATTCTCG -ACGGAAAACCGTGTGCTATAGACG -ACGGAAAACCGTGTGCTAGTAACG -ACGGAAAACCGTGTGCTAACTTCG -ACGGAAAACCGTGTGCTATACGCA -ACGGAAAACCGTGTGCTACTTGCA -ACGGAAAACCGTGTGCTACGAACA -ACGGAAAACCGTGTGCTACAGTCA -ACGGAAAACCGTGTGCTAGATCCA -ACGGAAAACCGTGTGCTAACGACA -ACGGAAAACCGTGTGCTAAGCTCA -ACGGAAAACCGTGTGCTATCACGT -ACGGAAAACCGTGTGCTACGTAGT -ACGGAAAACCGTGTGCTAGTCAGT -ACGGAAAACCGTGTGCTAGAAGGT -ACGGAAAACCGTGTGCTAAACCGT -ACGGAAAACCGTGTGCTATTGTGC -ACGGAAAACCGTGTGCTACTAAGC -ACGGAAAACCGTGTGCTAACTAGC -ACGGAAAACCGTGTGCTAAGATGC -ACGGAAAACCGTGTGCTATGAAGG -ACGGAAAACCGTGTGCTACAATGG -ACGGAAAACCGTGTGCTAATGAGG -ACGGAAAACCGTGTGCTAAATGGG -ACGGAAAACCGTGTGCTATCCTGA -ACGGAAAACCGTGTGCTATAGCGA -ACGGAAAACCGTGTGCTACACAGA -ACGGAAAACCGTGTGCTAGCAAGA -ACGGAAAACCGTGTGCTAGGTTGA -ACGGAAAACCGTGTGCTATCCGAT -ACGGAAAACCGTGTGCTATGGCAT -ACGGAAAACCGTGTGCTACGAGAT -ACGGAAAACCGTGTGCTATACCAC -ACGGAAAACCGTGTGCTACAGAAC -ACGGAAAACCGTGTGCTAGTCTAC -ACGGAAAACCGTGTGCTAACGTAC -ACGGAAAACCGTGTGCTAAGTGAC -ACGGAAAACCGTGTGCTACTGTAG -ACGGAAAACCGTGTGCTACCTAAG -ACGGAAAACCGTGTGCTAGTTCAG -ACGGAAAACCGTGTGCTAGCATAG -ACGGAAAACCGTGTGCTAGACAAG -ACGGAAAACCGTGTGCTAAAGCAG -ACGGAAAACCGTGTGCTACGTCAA -ACGGAAAACCGTGTGCTAGCTGAA -ACGGAAAACCGTGTGCTAAGTACG -ACGGAAAACCGTGTGCTAATCCGA -ACGGAAAACCGTGTGCTAATGGGA -ACGGAAAACCGTGTGCTAGTGCAA -ACGGAAAACCGTGTGCTAGAGGAA -ACGGAAAACCGTGTGCTACAGGTA -ACGGAAAACCGTGTGCTAGACTCT -ACGGAAAACCGTGTGCTAAGTCCT -ACGGAAAACCGTGTGCTATAAGCC -ACGGAAAACCGTGTGCTAATAGCC -ACGGAAAACCGTGTGCTATAACCG -ACGGAAAACCGTGTGCTAATGCCA -ACGGAAAACCGTCTGCATGGAAAC -ACGGAAAACCGTCTGCATAACACC -ACGGAAAACCGTCTGCATATCGAG -ACGGAAAACCGTCTGCATCTCCTT -ACGGAAAACCGTCTGCATCCTGTT -ACGGAAAACCGTCTGCATCGGTTT -ACGGAAAACCGTCTGCATGTGGTT -ACGGAAAACCGTCTGCATGCCTTT -ACGGAAAACCGTCTGCATGGTCTT -ACGGAAAACCGTCTGCATACGCTT -ACGGAAAACCGTCTGCATAGCGTT -ACGGAAAACCGTCTGCATTTCGTC -ACGGAAAACCGTCTGCATTCTCTC -ACGGAAAACCGTCTGCATTGGATC -ACGGAAAACCGTCTGCATCACTTC -ACGGAAAACCGTCTGCATGTACTC -ACGGAAAACCGTCTGCATGATGTC -ACGGAAAACCGTCTGCATACAGTC -ACGGAAAACCGTCTGCATTTGCTG -ACGGAAAACCGTCTGCATTCCATG -ACGGAAAACCGTCTGCATTGTGTG -ACGGAAAACCGTCTGCATCTAGTG -ACGGAAAACCGTCTGCATCATCTG -ACGGAAAACCGTCTGCATGAGTTG -ACGGAAAACCGTCTGCATAGACTG -ACGGAAAACCGTCTGCATTCGGTA -ACGGAAAACCGTCTGCATTGCCTA -ACGGAAAACCGTCTGCATCCACTA -ACGGAAAACCGTCTGCATGGAGTA -ACGGAAAACCGTCTGCATTCGTCT -ACGGAAAACCGTCTGCATTGCACT -ACGGAAAACCGTCTGCATCTGACT -ACGGAAAACCGTCTGCATCAACCT -ACGGAAAACCGTCTGCATGCTACT -ACGGAAAACCGTCTGCATGGATCT -ACGGAAAACCGTCTGCATAAGGCT -ACGGAAAACCGTCTGCATTCAACC -ACGGAAAACCGTCTGCATTGTTCC -ACGGAAAACCGTCTGCATATTCCC -ACGGAAAACCGTCTGCATTTCTCG -ACGGAAAACCGTCTGCATTAGACG -ACGGAAAACCGTCTGCATGTAACG -ACGGAAAACCGTCTGCATACTTCG -ACGGAAAACCGTCTGCATTACGCA -ACGGAAAACCGTCTGCATCTTGCA -ACGGAAAACCGTCTGCATCGAACA -ACGGAAAACCGTCTGCATCAGTCA -ACGGAAAACCGTCTGCATGATCCA -ACGGAAAACCGTCTGCATACGACA -ACGGAAAACCGTCTGCATAGCTCA -ACGGAAAACCGTCTGCATTCACGT -ACGGAAAACCGTCTGCATCGTAGT -ACGGAAAACCGTCTGCATGTCAGT -ACGGAAAACCGTCTGCATGAAGGT -ACGGAAAACCGTCTGCATAACCGT -ACGGAAAACCGTCTGCATTTGTGC -ACGGAAAACCGTCTGCATCTAAGC -ACGGAAAACCGTCTGCATACTAGC -ACGGAAAACCGTCTGCATAGATGC -ACGGAAAACCGTCTGCATTGAAGG -ACGGAAAACCGTCTGCATCAATGG -ACGGAAAACCGTCTGCATATGAGG -ACGGAAAACCGTCTGCATAATGGG -ACGGAAAACCGTCTGCATTCCTGA -ACGGAAAACCGTCTGCATTAGCGA -ACGGAAAACCGTCTGCATCACAGA -ACGGAAAACCGTCTGCATGCAAGA -ACGGAAAACCGTCTGCATGGTTGA -ACGGAAAACCGTCTGCATTCCGAT -ACGGAAAACCGTCTGCATTGGCAT -ACGGAAAACCGTCTGCATCGAGAT -ACGGAAAACCGTCTGCATTACCAC -ACGGAAAACCGTCTGCATCAGAAC -ACGGAAAACCGTCTGCATGTCTAC -ACGGAAAACCGTCTGCATACGTAC -ACGGAAAACCGTCTGCATAGTGAC -ACGGAAAACCGTCTGCATCTGTAG -ACGGAAAACCGTCTGCATCCTAAG -ACGGAAAACCGTCTGCATGTTCAG -ACGGAAAACCGTCTGCATGCATAG -ACGGAAAACCGTCTGCATGACAAG -ACGGAAAACCGTCTGCATAAGCAG -ACGGAAAACCGTCTGCATCGTCAA -ACGGAAAACCGTCTGCATGCTGAA -ACGGAAAACCGTCTGCATAGTACG -ACGGAAAACCGTCTGCATATCCGA -ACGGAAAACCGTCTGCATATGGGA -ACGGAAAACCGTCTGCATGTGCAA -ACGGAAAACCGTCTGCATGAGGAA -ACGGAAAACCGTCTGCATCAGGTA -ACGGAAAACCGTCTGCATGACTCT -ACGGAAAACCGTCTGCATAGTCCT -ACGGAAAACCGTCTGCATTAAGCC -ACGGAAAACCGTCTGCATATAGCC -ACGGAAAACCGTCTGCATTAACCG -ACGGAAAACCGTCTGCATATGCCA -ACGGAAAACCGTTTGGAGGGAAAC -ACGGAAAACCGTTTGGAGAACACC -ACGGAAAACCGTTTGGAGATCGAG -ACGGAAAACCGTTTGGAGCTCCTT -ACGGAAAACCGTTTGGAGCCTGTT -ACGGAAAACCGTTTGGAGCGGTTT -ACGGAAAACCGTTTGGAGGTGGTT -ACGGAAAACCGTTTGGAGGCCTTT -ACGGAAAACCGTTTGGAGGGTCTT -ACGGAAAACCGTTTGGAGACGCTT -ACGGAAAACCGTTTGGAGAGCGTT -ACGGAAAACCGTTTGGAGTTCGTC -ACGGAAAACCGTTTGGAGTCTCTC -ACGGAAAACCGTTTGGAGTGGATC -ACGGAAAACCGTTTGGAGCACTTC -ACGGAAAACCGTTTGGAGGTACTC -ACGGAAAACCGTTTGGAGGATGTC -ACGGAAAACCGTTTGGAGACAGTC -ACGGAAAACCGTTTGGAGTTGCTG -ACGGAAAACCGTTTGGAGTCCATG -ACGGAAAACCGTTTGGAGTGTGTG -ACGGAAAACCGTTTGGAGCTAGTG -ACGGAAAACCGTTTGGAGCATCTG -ACGGAAAACCGTTTGGAGGAGTTG -ACGGAAAACCGTTTGGAGAGACTG -ACGGAAAACCGTTTGGAGTCGGTA -ACGGAAAACCGTTTGGAGTGCCTA -ACGGAAAACCGTTTGGAGCCACTA -ACGGAAAACCGTTTGGAGGGAGTA -ACGGAAAACCGTTTGGAGTCGTCT -ACGGAAAACCGTTTGGAGTGCACT -ACGGAAAACCGTTTGGAGCTGACT -ACGGAAAACCGTTTGGAGCAACCT -ACGGAAAACCGTTTGGAGGCTACT -ACGGAAAACCGTTTGGAGGGATCT -ACGGAAAACCGTTTGGAGAAGGCT -ACGGAAAACCGTTTGGAGTCAACC -ACGGAAAACCGTTTGGAGTGTTCC -ACGGAAAACCGTTTGGAGATTCCC -ACGGAAAACCGTTTGGAGTTCTCG -ACGGAAAACCGTTTGGAGTAGACG -ACGGAAAACCGTTTGGAGGTAACG -ACGGAAAACCGTTTGGAGACTTCG -ACGGAAAACCGTTTGGAGTACGCA -ACGGAAAACCGTTTGGAGCTTGCA -ACGGAAAACCGTTTGGAGCGAACA -ACGGAAAACCGTTTGGAGCAGTCA -ACGGAAAACCGTTTGGAGGATCCA -ACGGAAAACCGTTTGGAGACGACA -ACGGAAAACCGTTTGGAGAGCTCA -ACGGAAAACCGTTTGGAGTCACGT -ACGGAAAACCGTTTGGAGCGTAGT -ACGGAAAACCGTTTGGAGGTCAGT -ACGGAAAACCGTTTGGAGGAAGGT -ACGGAAAACCGTTTGGAGAACCGT -ACGGAAAACCGTTTGGAGTTGTGC -ACGGAAAACCGTTTGGAGCTAAGC -ACGGAAAACCGTTTGGAGACTAGC -ACGGAAAACCGTTTGGAGAGATGC -ACGGAAAACCGTTTGGAGTGAAGG -ACGGAAAACCGTTTGGAGCAATGG -ACGGAAAACCGTTTGGAGATGAGG -ACGGAAAACCGTTTGGAGAATGGG -ACGGAAAACCGTTTGGAGTCCTGA -ACGGAAAACCGTTTGGAGTAGCGA -ACGGAAAACCGTTTGGAGCACAGA -ACGGAAAACCGTTTGGAGGCAAGA -ACGGAAAACCGTTTGGAGGGTTGA -ACGGAAAACCGTTTGGAGTCCGAT -ACGGAAAACCGTTTGGAGTGGCAT -ACGGAAAACCGTTTGGAGCGAGAT -ACGGAAAACCGTTTGGAGTACCAC -ACGGAAAACCGTTTGGAGCAGAAC -ACGGAAAACCGTTTGGAGGTCTAC -ACGGAAAACCGTTTGGAGACGTAC -ACGGAAAACCGTTTGGAGAGTGAC -ACGGAAAACCGTTTGGAGCTGTAG -ACGGAAAACCGTTTGGAGCCTAAG -ACGGAAAACCGTTTGGAGGTTCAG -ACGGAAAACCGTTTGGAGGCATAG -ACGGAAAACCGTTTGGAGGACAAG -ACGGAAAACCGTTTGGAGAAGCAG -ACGGAAAACCGTTTGGAGCGTCAA -ACGGAAAACCGTTTGGAGGCTGAA -ACGGAAAACCGTTTGGAGAGTACG -ACGGAAAACCGTTTGGAGATCCGA -ACGGAAAACCGTTTGGAGATGGGA -ACGGAAAACCGTTTGGAGGTGCAA -ACGGAAAACCGTTTGGAGGAGGAA -ACGGAAAACCGTTTGGAGCAGGTA -ACGGAAAACCGTTTGGAGGACTCT -ACGGAAAACCGTTTGGAGAGTCCT -ACGGAAAACCGTTTGGAGTAAGCC -ACGGAAAACCGTTTGGAGATAGCC -ACGGAAAACCGTTTGGAGTAACCG -ACGGAAAACCGTTTGGAGATGCCA -ACGGAAAACCGTCTGAGAGGAAAC -ACGGAAAACCGTCTGAGAAACACC -ACGGAAAACCGTCTGAGAATCGAG -ACGGAAAACCGTCTGAGACTCCTT -ACGGAAAACCGTCTGAGACCTGTT -ACGGAAAACCGTCTGAGACGGTTT -ACGGAAAACCGTCTGAGAGTGGTT -ACGGAAAACCGTCTGAGAGCCTTT -ACGGAAAACCGTCTGAGAGGTCTT -ACGGAAAACCGTCTGAGAACGCTT -ACGGAAAACCGTCTGAGAAGCGTT -ACGGAAAACCGTCTGAGATTCGTC -ACGGAAAACCGTCTGAGATCTCTC -ACGGAAAACCGTCTGAGATGGATC -ACGGAAAACCGTCTGAGACACTTC -ACGGAAAACCGTCTGAGAGTACTC -ACGGAAAACCGTCTGAGAGATGTC -ACGGAAAACCGTCTGAGAACAGTC -ACGGAAAACCGTCTGAGATTGCTG -ACGGAAAACCGTCTGAGATCCATG -ACGGAAAACCGTCTGAGATGTGTG -ACGGAAAACCGTCTGAGACTAGTG -ACGGAAAACCGTCTGAGACATCTG -ACGGAAAACCGTCTGAGAGAGTTG -ACGGAAAACCGTCTGAGAAGACTG -ACGGAAAACCGTCTGAGATCGGTA -ACGGAAAACCGTCTGAGATGCCTA -ACGGAAAACCGTCTGAGACCACTA -ACGGAAAACCGTCTGAGAGGAGTA -ACGGAAAACCGTCTGAGATCGTCT -ACGGAAAACCGTCTGAGATGCACT -ACGGAAAACCGTCTGAGACTGACT -ACGGAAAACCGTCTGAGACAACCT -ACGGAAAACCGTCTGAGAGCTACT -ACGGAAAACCGTCTGAGAGGATCT -ACGGAAAACCGTCTGAGAAAGGCT -ACGGAAAACCGTCTGAGATCAACC -ACGGAAAACCGTCTGAGATGTTCC -ACGGAAAACCGTCTGAGAATTCCC -ACGGAAAACCGTCTGAGATTCTCG -ACGGAAAACCGTCTGAGATAGACG -ACGGAAAACCGTCTGAGAGTAACG -ACGGAAAACCGTCTGAGAACTTCG -ACGGAAAACCGTCTGAGATACGCA -ACGGAAAACCGTCTGAGACTTGCA -ACGGAAAACCGTCTGAGACGAACA -ACGGAAAACCGTCTGAGACAGTCA -ACGGAAAACCGTCTGAGAGATCCA -ACGGAAAACCGTCTGAGAACGACA -ACGGAAAACCGTCTGAGAAGCTCA -ACGGAAAACCGTCTGAGATCACGT -ACGGAAAACCGTCTGAGACGTAGT -ACGGAAAACCGTCTGAGAGTCAGT -ACGGAAAACCGTCTGAGAGAAGGT -ACGGAAAACCGTCTGAGAAACCGT -ACGGAAAACCGTCTGAGATTGTGC -ACGGAAAACCGTCTGAGACTAAGC -ACGGAAAACCGTCTGAGAACTAGC -ACGGAAAACCGTCTGAGAAGATGC -ACGGAAAACCGTCTGAGATGAAGG -ACGGAAAACCGTCTGAGACAATGG -ACGGAAAACCGTCTGAGAATGAGG -ACGGAAAACCGTCTGAGAAATGGG -ACGGAAAACCGTCTGAGATCCTGA -ACGGAAAACCGTCTGAGATAGCGA -ACGGAAAACCGTCTGAGACACAGA -ACGGAAAACCGTCTGAGAGCAAGA -ACGGAAAACCGTCTGAGAGGTTGA -ACGGAAAACCGTCTGAGATCCGAT -ACGGAAAACCGTCTGAGATGGCAT -ACGGAAAACCGTCTGAGACGAGAT -ACGGAAAACCGTCTGAGATACCAC -ACGGAAAACCGTCTGAGACAGAAC -ACGGAAAACCGTCTGAGAGTCTAC -ACGGAAAACCGTCTGAGAACGTAC -ACGGAAAACCGTCTGAGAAGTGAC -ACGGAAAACCGTCTGAGACTGTAG -ACGGAAAACCGTCTGAGACCTAAG -ACGGAAAACCGTCTGAGAGTTCAG -ACGGAAAACCGTCTGAGAGCATAG -ACGGAAAACCGTCTGAGAGACAAG -ACGGAAAACCGTCTGAGAAAGCAG -ACGGAAAACCGTCTGAGACGTCAA -ACGGAAAACCGTCTGAGAGCTGAA -ACGGAAAACCGTCTGAGAAGTACG -ACGGAAAACCGTCTGAGAATCCGA -ACGGAAAACCGTCTGAGAATGGGA -ACGGAAAACCGTCTGAGAGTGCAA -ACGGAAAACCGTCTGAGAGAGGAA -ACGGAAAACCGTCTGAGACAGGTA -ACGGAAAACCGTCTGAGAGACTCT -ACGGAAAACCGTCTGAGAAGTCCT -ACGGAAAACCGTCTGAGATAAGCC -ACGGAAAACCGTCTGAGAATAGCC -ACGGAAAACCGTCTGAGATAACCG -ACGGAAAACCGTCTGAGAATGCCA -ACGGAAAACCGTGTATCGGGAAAC -ACGGAAAACCGTGTATCGAACACC -ACGGAAAACCGTGTATCGATCGAG -ACGGAAAACCGTGTATCGCTCCTT -ACGGAAAACCGTGTATCGCCTGTT -ACGGAAAACCGTGTATCGCGGTTT -ACGGAAAACCGTGTATCGGTGGTT -ACGGAAAACCGTGTATCGGCCTTT -ACGGAAAACCGTGTATCGGGTCTT -ACGGAAAACCGTGTATCGACGCTT -ACGGAAAACCGTGTATCGAGCGTT -ACGGAAAACCGTGTATCGTTCGTC -ACGGAAAACCGTGTATCGTCTCTC -ACGGAAAACCGTGTATCGTGGATC -ACGGAAAACCGTGTATCGCACTTC -ACGGAAAACCGTGTATCGGTACTC -ACGGAAAACCGTGTATCGGATGTC -ACGGAAAACCGTGTATCGACAGTC -ACGGAAAACCGTGTATCGTTGCTG -ACGGAAAACCGTGTATCGTCCATG -ACGGAAAACCGTGTATCGTGTGTG -ACGGAAAACCGTGTATCGCTAGTG -ACGGAAAACCGTGTATCGCATCTG -ACGGAAAACCGTGTATCGGAGTTG -ACGGAAAACCGTGTATCGAGACTG -ACGGAAAACCGTGTATCGTCGGTA -ACGGAAAACCGTGTATCGTGCCTA -ACGGAAAACCGTGTATCGCCACTA -ACGGAAAACCGTGTATCGGGAGTA -ACGGAAAACCGTGTATCGTCGTCT -ACGGAAAACCGTGTATCGTGCACT -ACGGAAAACCGTGTATCGCTGACT -ACGGAAAACCGTGTATCGCAACCT -ACGGAAAACCGTGTATCGGCTACT -ACGGAAAACCGTGTATCGGGATCT -ACGGAAAACCGTGTATCGAAGGCT -ACGGAAAACCGTGTATCGTCAACC -ACGGAAAACCGTGTATCGTGTTCC -ACGGAAAACCGTGTATCGATTCCC -ACGGAAAACCGTGTATCGTTCTCG -ACGGAAAACCGTGTATCGTAGACG -ACGGAAAACCGTGTATCGGTAACG -ACGGAAAACCGTGTATCGACTTCG -ACGGAAAACCGTGTATCGTACGCA -ACGGAAAACCGTGTATCGCTTGCA -ACGGAAAACCGTGTATCGCGAACA -ACGGAAAACCGTGTATCGCAGTCA -ACGGAAAACCGTGTATCGGATCCA -ACGGAAAACCGTGTATCGACGACA -ACGGAAAACCGTGTATCGAGCTCA -ACGGAAAACCGTGTATCGTCACGT -ACGGAAAACCGTGTATCGCGTAGT -ACGGAAAACCGTGTATCGGTCAGT -ACGGAAAACCGTGTATCGGAAGGT -ACGGAAAACCGTGTATCGAACCGT -ACGGAAAACCGTGTATCGTTGTGC -ACGGAAAACCGTGTATCGCTAAGC -ACGGAAAACCGTGTATCGACTAGC -ACGGAAAACCGTGTATCGAGATGC -ACGGAAAACCGTGTATCGTGAAGG -ACGGAAAACCGTGTATCGCAATGG -ACGGAAAACCGTGTATCGATGAGG -ACGGAAAACCGTGTATCGAATGGG -ACGGAAAACCGTGTATCGTCCTGA -ACGGAAAACCGTGTATCGTAGCGA -ACGGAAAACCGTGTATCGCACAGA -ACGGAAAACCGTGTATCGGCAAGA -ACGGAAAACCGTGTATCGGGTTGA -ACGGAAAACCGTGTATCGTCCGAT -ACGGAAAACCGTGTATCGTGGCAT -ACGGAAAACCGTGTATCGCGAGAT -ACGGAAAACCGTGTATCGTACCAC -ACGGAAAACCGTGTATCGCAGAAC -ACGGAAAACCGTGTATCGGTCTAC -ACGGAAAACCGTGTATCGACGTAC -ACGGAAAACCGTGTATCGAGTGAC -ACGGAAAACCGTGTATCGCTGTAG -ACGGAAAACCGTGTATCGCCTAAG -ACGGAAAACCGTGTATCGGTTCAG -ACGGAAAACCGTGTATCGGCATAG -ACGGAAAACCGTGTATCGGACAAG -ACGGAAAACCGTGTATCGAAGCAG -ACGGAAAACCGTGTATCGCGTCAA -ACGGAAAACCGTGTATCGGCTGAA -ACGGAAAACCGTGTATCGAGTACG -ACGGAAAACCGTGTATCGATCCGA -ACGGAAAACCGTGTATCGATGGGA -ACGGAAAACCGTGTATCGGTGCAA -ACGGAAAACCGTGTATCGGAGGAA -ACGGAAAACCGTGTATCGCAGGTA -ACGGAAAACCGTGTATCGGACTCT -ACGGAAAACCGTGTATCGAGTCCT -ACGGAAAACCGTGTATCGTAAGCC -ACGGAAAACCGTGTATCGATAGCC -ACGGAAAACCGTGTATCGTAACCG -ACGGAAAACCGTGTATCGATGCCA -ACGGAAAACCGTCTATGCGGAAAC -ACGGAAAACCGTCTATGCAACACC -ACGGAAAACCGTCTATGCATCGAG -ACGGAAAACCGTCTATGCCTCCTT -ACGGAAAACCGTCTATGCCCTGTT -ACGGAAAACCGTCTATGCCGGTTT -ACGGAAAACCGTCTATGCGTGGTT -ACGGAAAACCGTCTATGCGCCTTT -ACGGAAAACCGTCTATGCGGTCTT -ACGGAAAACCGTCTATGCACGCTT -ACGGAAAACCGTCTATGCAGCGTT -ACGGAAAACCGTCTATGCTTCGTC -ACGGAAAACCGTCTATGCTCTCTC -ACGGAAAACCGTCTATGCTGGATC -ACGGAAAACCGTCTATGCCACTTC -ACGGAAAACCGTCTATGCGTACTC -ACGGAAAACCGTCTATGCGATGTC -ACGGAAAACCGTCTATGCACAGTC -ACGGAAAACCGTCTATGCTTGCTG -ACGGAAAACCGTCTATGCTCCATG -ACGGAAAACCGTCTATGCTGTGTG -ACGGAAAACCGTCTATGCCTAGTG -ACGGAAAACCGTCTATGCCATCTG -ACGGAAAACCGTCTATGCGAGTTG -ACGGAAAACCGTCTATGCAGACTG -ACGGAAAACCGTCTATGCTCGGTA -ACGGAAAACCGTCTATGCTGCCTA -ACGGAAAACCGTCTATGCCCACTA -ACGGAAAACCGTCTATGCGGAGTA -ACGGAAAACCGTCTATGCTCGTCT -ACGGAAAACCGTCTATGCTGCACT -ACGGAAAACCGTCTATGCCTGACT -ACGGAAAACCGTCTATGCCAACCT -ACGGAAAACCGTCTATGCGCTACT -ACGGAAAACCGTCTATGCGGATCT -ACGGAAAACCGTCTATGCAAGGCT -ACGGAAAACCGTCTATGCTCAACC -ACGGAAAACCGTCTATGCTGTTCC -ACGGAAAACCGTCTATGCATTCCC -ACGGAAAACCGTCTATGCTTCTCG -ACGGAAAACCGTCTATGCTAGACG -ACGGAAAACCGTCTATGCGTAACG -ACGGAAAACCGTCTATGCACTTCG -ACGGAAAACCGTCTATGCTACGCA -ACGGAAAACCGTCTATGCCTTGCA -ACGGAAAACCGTCTATGCCGAACA -ACGGAAAACCGTCTATGCCAGTCA -ACGGAAAACCGTCTATGCGATCCA -ACGGAAAACCGTCTATGCACGACA -ACGGAAAACCGTCTATGCAGCTCA -ACGGAAAACCGTCTATGCTCACGT -ACGGAAAACCGTCTATGCCGTAGT -ACGGAAAACCGTCTATGCGTCAGT -ACGGAAAACCGTCTATGCGAAGGT -ACGGAAAACCGTCTATGCAACCGT -ACGGAAAACCGTCTATGCTTGTGC -ACGGAAAACCGTCTATGCCTAAGC -ACGGAAAACCGTCTATGCACTAGC -ACGGAAAACCGTCTATGCAGATGC -ACGGAAAACCGTCTATGCTGAAGG -ACGGAAAACCGTCTATGCCAATGG -ACGGAAAACCGTCTATGCATGAGG -ACGGAAAACCGTCTATGCAATGGG -ACGGAAAACCGTCTATGCTCCTGA -ACGGAAAACCGTCTATGCTAGCGA -ACGGAAAACCGTCTATGCCACAGA -ACGGAAAACCGTCTATGCGCAAGA -ACGGAAAACCGTCTATGCGGTTGA -ACGGAAAACCGTCTATGCTCCGAT -ACGGAAAACCGTCTATGCTGGCAT -ACGGAAAACCGTCTATGCCGAGAT -ACGGAAAACCGTCTATGCTACCAC -ACGGAAAACCGTCTATGCCAGAAC -ACGGAAAACCGTCTATGCGTCTAC -ACGGAAAACCGTCTATGCACGTAC -ACGGAAAACCGTCTATGCAGTGAC -ACGGAAAACCGTCTATGCCTGTAG -ACGGAAAACCGTCTATGCCCTAAG -ACGGAAAACCGTCTATGCGTTCAG -ACGGAAAACCGTCTATGCGCATAG -ACGGAAAACCGTCTATGCGACAAG -ACGGAAAACCGTCTATGCAAGCAG -ACGGAAAACCGTCTATGCCGTCAA -ACGGAAAACCGTCTATGCGCTGAA -ACGGAAAACCGTCTATGCAGTACG -ACGGAAAACCGTCTATGCATCCGA -ACGGAAAACCGTCTATGCATGGGA -ACGGAAAACCGTCTATGCGTGCAA -ACGGAAAACCGTCTATGCGAGGAA -ACGGAAAACCGTCTATGCCAGGTA -ACGGAAAACCGTCTATGCGACTCT -ACGGAAAACCGTCTATGCAGTCCT -ACGGAAAACCGTCTATGCTAAGCC -ACGGAAAACCGTCTATGCATAGCC -ACGGAAAACCGTCTATGCTAACCG -ACGGAAAACCGTCTATGCATGCCA -ACGGAAAACCGTCTACCAGGAAAC -ACGGAAAACCGTCTACCAAACACC -ACGGAAAACCGTCTACCAATCGAG -ACGGAAAACCGTCTACCACTCCTT -ACGGAAAACCGTCTACCACCTGTT -ACGGAAAACCGTCTACCACGGTTT -ACGGAAAACCGTCTACCAGTGGTT -ACGGAAAACCGTCTACCAGCCTTT -ACGGAAAACCGTCTACCAGGTCTT -ACGGAAAACCGTCTACCAACGCTT -ACGGAAAACCGTCTACCAAGCGTT -ACGGAAAACCGTCTACCATTCGTC -ACGGAAAACCGTCTACCATCTCTC -ACGGAAAACCGTCTACCATGGATC -ACGGAAAACCGTCTACCACACTTC -ACGGAAAACCGTCTACCAGTACTC -ACGGAAAACCGTCTACCAGATGTC -ACGGAAAACCGTCTACCAACAGTC -ACGGAAAACCGTCTACCATTGCTG -ACGGAAAACCGTCTACCATCCATG -ACGGAAAACCGTCTACCATGTGTG -ACGGAAAACCGTCTACCACTAGTG -ACGGAAAACCGTCTACCACATCTG -ACGGAAAACCGTCTACCAGAGTTG -ACGGAAAACCGTCTACCAAGACTG -ACGGAAAACCGTCTACCATCGGTA -ACGGAAAACCGTCTACCATGCCTA -ACGGAAAACCGTCTACCACCACTA -ACGGAAAACCGTCTACCAGGAGTA -ACGGAAAACCGTCTACCATCGTCT -ACGGAAAACCGTCTACCATGCACT -ACGGAAAACCGTCTACCACTGACT -ACGGAAAACCGTCTACCACAACCT -ACGGAAAACCGTCTACCAGCTACT -ACGGAAAACCGTCTACCAGGATCT -ACGGAAAACCGTCTACCAAAGGCT -ACGGAAAACCGTCTACCATCAACC -ACGGAAAACCGTCTACCATGTTCC -ACGGAAAACCGTCTACCAATTCCC -ACGGAAAACCGTCTACCATTCTCG -ACGGAAAACCGTCTACCATAGACG -ACGGAAAACCGTCTACCAGTAACG -ACGGAAAACCGTCTACCAACTTCG -ACGGAAAACCGTCTACCATACGCA -ACGGAAAACCGTCTACCACTTGCA -ACGGAAAACCGTCTACCACGAACA -ACGGAAAACCGTCTACCACAGTCA -ACGGAAAACCGTCTACCAGATCCA -ACGGAAAACCGTCTACCAACGACA -ACGGAAAACCGTCTACCAAGCTCA -ACGGAAAACCGTCTACCATCACGT -ACGGAAAACCGTCTACCACGTAGT -ACGGAAAACCGTCTACCAGTCAGT -ACGGAAAACCGTCTACCAGAAGGT -ACGGAAAACCGTCTACCAAACCGT -ACGGAAAACCGTCTACCATTGTGC -ACGGAAAACCGTCTACCACTAAGC -ACGGAAAACCGTCTACCAACTAGC -ACGGAAAACCGTCTACCAAGATGC -ACGGAAAACCGTCTACCATGAAGG -ACGGAAAACCGTCTACCACAATGG -ACGGAAAACCGTCTACCAATGAGG -ACGGAAAACCGTCTACCAAATGGG -ACGGAAAACCGTCTACCATCCTGA -ACGGAAAACCGTCTACCATAGCGA -ACGGAAAACCGTCTACCACACAGA -ACGGAAAACCGTCTACCAGCAAGA -ACGGAAAACCGTCTACCAGGTTGA -ACGGAAAACCGTCTACCATCCGAT -ACGGAAAACCGTCTACCATGGCAT -ACGGAAAACCGTCTACCACGAGAT -ACGGAAAACCGTCTACCATACCAC -ACGGAAAACCGTCTACCACAGAAC -ACGGAAAACCGTCTACCAGTCTAC -ACGGAAAACCGTCTACCAACGTAC -ACGGAAAACCGTCTACCAAGTGAC -ACGGAAAACCGTCTACCACTGTAG -ACGGAAAACCGTCTACCACCTAAG -ACGGAAAACCGTCTACCAGTTCAG -ACGGAAAACCGTCTACCAGCATAG -ACGGAAAACCGTCTACCAGACAAG -ACGGAAAACCGTCTACCAAAGCAG -ACGGAAAACCGTCTACCACGTCAA -ACGGAAAACCGTCTACCAGCTGAA -ACGGAAAACCGTCTACCAAGTACG -ACGGAAAACCGTCTACCAATCCGA -ACGGAAAACCGTCTACCAATGGGA -ACGGAAAACCGTCTACCAGTGCAA -ACGGAAAACCGTCTACCAGAGGAA -ACGGAAAACCGTCTACCACAGGTA -ACGGAAAACCGTCTACCAGACTCT -ACGGAAAACCGTCTACCAAGTCCT -ACGGAAAACCGTCTACCATAAGCC -ACGGAAAACCGTCTACCAATAGCC -ACGGAAAACCGTCTACCATAACCG -ACGGAAAACCGTCTACCAATGCCA -ACGGAAAACCGTGTAGGAGGAAAC -ACGGAAAACCGTGTAGGAAACACC -ACGGAAAACCGTGTAGGAATCGAG -ACGGAAAACCGTGTAGGACTCCTT -ACGGAAAACCGTGTAGGACCTGTT -ACGGAAAACCGTGTAGGACGGTTT -ACGGAAAACCGTGTAGGAGTGGTT -ACGGAAAACCGTGTAGGAGCCTTT -ACGGAAAACCGTGTAGGAGGTCTT -ACGGAAAACCGTGTAGGAACGCTT -ACGGAAAACCGTGTAGGAAGCGTT -ACGGAAAACCGTGTAGGATTCGTC -ACGGAAAACCGTGTAGGATCTCTC -ACGGAAAACCGTGTAGGATGGATC -ACGGAAAACCGTGTAGGACACTTC -ACGGAAAACCGTGTAGGAGTACTC -ACGGAAAACCGTGTAGGAGATGTC -ACGGAAAACCGTGTAGGAACAGTC -ACGGAAAACCGTGTAGGATTGCTG -ACGGAAAACCGTGTAGGATCCATG -ACGGAAAACCGTGTAGGATGTGTG -ACGGAAAACCGTGTAGGACTAGTG -ACGGAAAACCGTGTAGGACATCTG -ACGGAAAACCGTGTAGGAGAGTTG -ACGGAAAACCGTGTAGGAAGACTG -ACGGAAAACCGTGTAGGATCGGTA -ACGGAAAACCGTGTAGGATGCCTA -ACGGAAAACCGTGTAGGACCACTA -ACGGAAAACCGTGTAGGAGGAGTA -ACGGAAAACCGTGTAGGATCGTCT -ACGGAAAACCGTGTAGGATGCACT -ACGGAAAACCGTGTAGGACTGACT -ACGGAAAACCGTGTAGGACAACCT -ACGGAAAACCGTGTAGGAGCTACT -ACGGAAAACCGTGTAGGAGGATCT -ACGGAAAACCGTGTAGGAAAGGCT -ACGGAAAACCGTGTAGGATCAACC -ACGGAAAACCGTGTAGGATGTTCC -ACGGAAAACCGTGTAGGAATTCCC -ACGGAAAACCGTGTAGGATTCTCG -ACGGAAAACCGTGTAGGATAGACG -ACGGAAAACCGTGTAGGAGTAACG -ACGGAAAACCGTGTAGGAACTTCG -ACGGAAAACCGTGTAGGATACGCA -ACGGAAAACCGTGTAGGACTTGCA -ACGGAAAACCGTGTAGGACGAACA -ACGGAAAACCGTGTAGGACAGTCA -ACGGAAAACCGTGTAGGAGATCCA -ACGGAAAACCGTGTAGGAACGACA -ACGGAAAACCGTGTAGGAAGCTCA -ACGGAAAACCGTGTAGGATCACGT -ACGGAAAACCGTGTAGGACGTAGT -ACGGAAAACCGTGTAGGAGTCAGT -ACGGAAAACCGTGTAGGAGAAGGT -ACGGAAAACCGTGTAGGAAACCGT -ACGGAAAACCGTGTAGGATTGTGC -ACGGAAAACCGTGTAGGACTAAGC -ACGGAAAACCGTGTAGGAACTAGC -ACGGAAAACCGTGTAGGAAGATGC -ACGGAAAACCGTGTAGGATGAAGG -ACGGAAAACCGTGTAGGACAATGG -ACGGAAAACCGTGTAGGAATGAGG -ACGGAAAACCGTGTAGGAAATGGG -ACGGAAAACCGTGTAGGATCCTGA -ACGGAAAACCGTGTAGGATAGCGA -ACGGAAAACCGTGTAGGACACAGA -ACGGAAAACCGTGTAGGAGCAAGA -ACGGAAAACCGTGTAGGAGGTTGA -ACGGAAAACCGTGTAGGATCCGAT -ACGGAAAACCGTGTAGGATGGCAT -ACGGAAAACCGTGTAGGACGAGAT -ACGGAAAACCGTGTAGGATACCAC -ACGGAAAACCGTGTAGGACAGAAC -ACGGAAAACCGTGTAGGAGTCTAC -ACGGAAAACCGTGTAGGAACGTAC -ACGGAAAACCGTGTAGGAAGTGAC -ACGGAAAACCGTGTAGGACTGTAG -ACGGAAAACCGTGTAGGACCTAAG -ACGGAAAACCGTGTAGGAGTTCAG -ACGGAAAACCGTGTAGGAGCATAG -ACGGAAAACCGTGTAGGAGACAAG -ACGGAAAACCGTGTAGGAAAGCAG -ACGGAAAACCGTGTAGGACGTCAA -ACGGAAAACCGTGTAGGAGCTGAA -ACGGAAAACCGTGTAGGAAGTACG -ACGGAAAACCGTGTAGGAATCCGA -ACGGAAAACCGTGTAGGAATGGGA -ACGGAAAACCGTGTAGGAGTGCAA -ACGGAAAACCGTGTAGGAGAGGAA -ACGGAAAACCGTGTAGGACAGGTA -ACGGAAAACCGTGTAGGAGACTCT -ACGGAAAACCGTGTAGGAAGTCCT -ACGGAAAACCGTGTAGGATAAGCC -ACGGAAAACCGTGTAGGAATAGCC -ACGGAAAACCGTGTAGGATAACCG -ACGGAAAACCGTGTAGGAATGCCA -ACGGAAAACCGTTCTTCGGGAAAC -ACGGAAAACCGTTCTTCGAACACC -ACGGAAAACCGTTCTTCGATCGAG -ACGGAAAACCGTTCTTCGCTCCTT -ACGGAAAACCGTTCTTCGCCTGTT -ACGGAAAACCGTTCTTCGCGGTTT -ACGGAAAACCGTTCTTCGGTGGTT -ACGGAAAACCGTTCTTCGGCCTTT -ACGGAAAACCGTTCTTCGGGTCTT -ACGGAAAACCGTTCTTCGACGCTT -ACGGAAAACCGTTCTTCGAGCGTT -ACGGAAAACCGTTCTTCGTTCGTC -ACGGAAAACCGTTCTTCGTCTCTC -ACGGAAAACCGTTCTTCGTGGATC -ACGGAAAACCGTTCTTCGCACTTC -ACGGAAAACCGTTCTTCGGTACTC -ACGGAAAACCGTTCTTCGGATGTC -ACGGAAAACCGTTCTTCGACAGTC -ACGGAAAACCGTTCTTCGTTGCTG -ACGGAAAACCGTTCTTCGTCCATG -ACGGAAAACCGTTCTTCGTGTGTG -ACGGAAAACCGTTCTTCGCTAGTG -ACGGAAAACCGTTCTTCGCATCTG -ACGGAAAACCGTTCTTCGGAGTTG -ACGGAAAACCGTTCTTCGAGACTG -ACGGAAAACCGTTCTTCGTCGGTA -ACGGAAAACCGTTCTTCGTGCCTA -ACGGAAAACCGTTCTTCGCCACTA -ACGGAAAACCGTTCTTCGGGAGTA -ACGGAAAACCGTTCTTCGTCGTCT -ACGGAAAACCGTTCTTCGTGCACT -ACGGAAAACCGTTCTTCGCTGACT -ACGGAAAACCGTTCTTCGCAACCT -ACGGAAAACCGTTCTTCGGCTACT -ACGGAAAACCGTTCTTCGGGATCT -ACGGAAAACCGTTCTTCGAAGGCT -ACGGAAAACCGTTCTTCGTCAACC -ACGGAAAACCGTTCTTCGTGTTCC -ACGGAAAACCGTTCTTCGATTCCC -ACGGAAAACCGTTCTTCGTTCTCG -ACGGAAAACCGTTCTTCGTAGACG -ACGGAAAACCGTTCTTCGGTAACG -ACGGAAAACCGTTCTTCGACTTCG -ACGGAAAACCGTTCTTCGTACGCA -ACGGAAAACCGTTCTTCGCTTGCA -ACGGAAAACCGTTCTTCGCGAACA -ACGGAAAACCGTTCTTCGCAGTCA -ACGGAAAACCGTTCTTCGGATCCA -ACGGAAAACCGTTCTTCGACGACA -ACGGAAAACCGTTCTTCGAGCTCA -ACGGAAAACCGTTCTTCGTCACGT -ACGGAAAACCGTTCTTCGCGTAGT -ACGGAAAACCGTTCTTCGGTCAGT -ACGGAAAACCGTTCTTCGGAAGGT -ACGGAAAACCGTTCTTCGAACCGT -ACGGAAAACCGTTCTTCGTTGTGC -ACGGAAAACCGTTCTTCGCTAAGC -ACGGAAAACCGTTCTTCGACTAGC -ACGGAAAACCGTTCTTCGAGATGC -ACGGAAAACCGTTCTTCGTGAAGG -ACGGAAAACCGTTCTTCGCAATGG -ACGGAAAACCGTTCTTCGATGAGG -ACGGAAAACCGTTCTTCGAATGGG -ACGGAAAACCGTTCTTCGTCCTGA -ACGGAAAACCGTTCTTCGTAGCGA -ACGGAAAACCGTTCTTCGCACAGA -ACGGAAAACCGTTCTTCGGCAAGA -ACGGAAAACCGTTCTTCGGGTTGA -ACGGAAAACCGTTCTTCGTCCGAT -ACGGAAAACCGTTCTTCGTGGCAT -ACGGAAAACCGTTCTTCGCGAGAT -ACGGAAAACCGTTCTTCGTACCAC -ACGGAAAACCGTTCTTCGCAGAAC -ACGGAAAACCGTTCTTCGGTCTAC -ACGGAAAACCGTTCTTCGACGTAC -ACGGAAAACCGTTCTTCGAGTGAC -ACGGAAAACCGTTCTTCGCTGTAG -ACGGAAAACCGTTCTTCGCCTAAG -ACGGAAAACCGTTCTTCGGTTCAG -ACGGAAAACCGTTCTTCGGCATAG -ACGGAAAACCGTTCTTCGGACAAG -ACGGAAAACCGTTCTTCGAAGCAG -ACGGAAAACCGTTCTTCGCGTCAA -ACGGAAAACCGTTCTTCGGCTGAA -ACGGAAAACCGTTCTTCGAGTACG -ACGGAAAACCGTTCTTCGATCCGA -ACGGAAAACCGTTCTTCGATGGGA -ACGGAAAACCGTTCTTCGGTGCAA -ACGGAAAACCGTTCTTCGGAGGAA -ACGGAAAACCGTTCTTCGCAGGTA -ACGGAAAACCGTTCTTCGGACTCT -ACGGAAAACCGTTCTTCGAGTCCT -ACGGAAAACCGTTCTTCGTAAGCC -ACGGAAAACCGTTCTTCGATAGCC -ACGGAAAACCGTTCTTCGTAACCG -ACGGAAAACCGTTCTTCGATGCCA -ACGGAAAACCGTACTTGCGGAAAC -ACGGAAAACCGTACTTGCAACACC -ACGGAAAACCGTACTTGCATCGAG -ACGGAAAACCGTACTTGCCTCCTT -ACGGAAAACCGTACTTGCCCTGTT -ACGGAAAACCGTACTTGCCGGTTT -ACGGAAAACCGTACTTGCGTGGTT -ACGGAAAACCGTACTTGCGCCTTT -ACGGAAAACCGTACTTGCGGTCTT -ACGGAAAACCGTACTTGCACGCTT -ACGGAAAACCGTACTTGCAGCGTT -ACGGAAAACCGTACTTGCTTCGTC -ACGGAAAACCGTACTTGCTCTCTC -ACGGAAAACCGTACTTGCTGGATC -ACGGAAAACCGTACTTGCCACTTC -ACGGAAAACCGTACTTGCGTACTC -ACGGAAAACCGTACTTGCGATGTC -ACGGAAAACCGTACTTGCACAGTC -ACGGAAAACCGTACTTGCTTGCTG -ACGGAAAACCGTACTTGCTCCATG -ACGGAAAACCGTACTTGCTGTGTG -ACGGAAAACCGTACTTGCCTAGTG -ACGGAAAACCGTACTTGCCATCTG -ACGGAAAACCGTACTTGCGAGTTG -ACGGAAAACCGTACTTGCAGACTG -ACGGAAAACCGTACTTGCTCGGTA -ACGGAAAACCGTACTTGCTGCCTA -ACGGAAAACCGTACTTGCCCACTA -ACGGAAAACCGTACTTGCGGAGTA -ACGGAAAACCGTACTTGCTCGTCT -ACGGAAAACCGTACTTGCTGCACT -ACGGAAAACCGTACTTGCCTGACT -ACGGAAAACCGTACTTGCCAACCT -ACGGAAAACCGTACTTGCGCTACT -ACGGAAAACCGTACTTGCGGATCT -ACGGAAAACCGTACTTGCAAGGCT -ACGGAAAACCGTACTTGCTCAACC -ACGGAAAACCGTACTTGCTGTTCC -ACGGAAAACCGTACTTGCATTCCC -ACGGAAAACCGTACTTGCTTCTCG -ACGGAAAACCGTACTTGCTAGACG -ACGGAAAACCGTACTTGCGTAACG -ACGGAAAACCGTACTTGCACTTCG -ACGGAAAACCGTACTTGCTACGCA -ACGGAAAACCGTACTTGCCTTGCA -ACGGAAAACCGTACTTGCCGAACA -ACGGAAAACCGTACTTGCCAGTCA -ACGGAAAACCGTACTTGCGATCCA -ACGGAAAACCGTACTTGCACGACA -ACGGAAAACCGTACTTGCAGCTCA -ACGGAAAACCGTACTTGCTCACGT -ACGGAAAACCGTACTTGCCGTAGT -ACGGAAAACCGTACTTGCGTCAGT -ACGGAAAACCGTACTTGCGAAGGT -ACGGAAAACCGTACTTGCAACCGT -ACGGAAAACCGTACTTGCTTGTGC -ACGGAAAACCGTACTTGCCTAAGC -ACGGAAAACCGTACTTGCACTAGC -ACGGAAAACCGTACTTGCAGATGC -ACGGAAAACCGTACTTGCTGAAGG -ACGGAAAACCGTACTTGCCAATGG -ACGGAAAACCGTACTTGCATGAGG -ACGGAAAACCGTACTTGCAATGGG -ACGGAAAACCGTACTTGCTCCTGA -ACGGAAAACCGTACTTGCTAGCGA -ACGGAAAACCGTACTTGCCACAGA -ACGGAAAACCGTACTTGCGCAAGA -ACGGAAAACCGTACTTGCGGTTGA -ACGGAAAACCGTACTTGCTCCGAT -ACGGAAAACCGTACTTGCTGGCAT -ACGGAAAACCGTACTTGCCGAGAT -ACGGAAAACCGTACTTGCTACCAC -ACGGAAAACCGTACTTGCCAGAAC -ACGGAAAACCGTACTTGCGTCTAC -ACGGAAAACCGTACTTGCACGTAC -ACGGAAAACCGTACTTGCAGTGAC -ACGGAAAACCGTACTTGCCTGTAG -ACGGAAAACCGTACTTGCCCTAAG -ACGGAAAACCGTACTTGCGTTCAG -ACGGAAAACCGTACTTGCGCATAG -ACGGAAAACCGTACTTGCGACAAG -ACGGAAAACCGTACTTGCAAGCAG -ACGGAAAACCGTACTTGCCGTCAA -ACGGAAAACCGTACTTGCGCTGAA -ACGGAAAACCGTACTTGCAGTACG -ACGGAAAACCGTACTTGCATCCGA -ACGGAAAACCGTACTTGCATGGGA -ACGGAAAACCGTACTTGCGTGCAA -ACGGAAAACCGTACTTGCGAGGAA -ACGGAAAACCGTACTTGCCAGGTA -ACGGAAAACCGTACTTGCGACTCT -ACGGAAAACCGTACTTGCAGTCCT -ACGGAAAACCGTACTTGCTAAGCC -ACGGAAAACCGTACTTGCATAGCC -ACGGAAAACCGTACTTGCTAACCG -ACGGAAAACCGTACTTGCATGCCA -ACGGAAAACCGTACTCTGGGAAAC -ACGGAAAACCGTACTCTGAACACC -ACGGAAAACCGTACTCTGATCGAG -ACGGAAAACCGTACTCTGCTCCTT -ACGGAAAACCGTACTCTGCCTGTT -ACGGAAAACCGTACTCTGCGGTTT -ACGGAAAACCGTACTCTGGTGGTT -ACGGAAAACCGTACTCTGGCCTTT -ACGGAAAACCGTACTCTGGGTCTT -ACGGAAAACCGTACTCTGACGCTT -ACGGAAAACCGTACTCTGAGCGTT -ACGGAAAACCGTACTCTGTTCGTC -ACGGAAAACCGTACTCTGTCTCTC -ACGGAAAACCGTACTCTGTGGATC -ACGGAAAACCGTACTCTGCACTTC -ACGGAAAACCGTACTCTGGTACTC -ACGGAAAACCGTACTCTGGATGTC -ACGGAAAACCGTACTCTGACAGTC -ACGGAAAACCGTACTCTGTTGCTG -ACGGAAAACCGTACTCTGTCCATG -ACGGAAAACCGTACTCTGTGTGTG -ACGGAAAACCGTACTCTGCTAGTG -ACGGAAAACCGTACTCTGCATCTG -ACGGAAAACCGTACTCTGGAGTTG -ACGGAAAACCGTACTCTGAGACTG -ACGGAAAACCGTACTCTGTCGGTA -ACGGAAAACCGTACTCTGTGCCTA -ACGGAAAACCGTACTCTGCCACTA -ACGGAAAACCGTACTCTGGGAGTA -ACGGAAAACCGTACTCTGTCGTCT -ACGGAAAACCGTACTCTGTGCACT -ACGGAAAACCGTACTCTGCTGACT -ACGGAAAACCGTACTCTGCAACCT -ACGGAAAACCGTACTCTGGCTACT -ACGGAAAACCGTACTCTGGGATCT -ACGGAAAACCGTACTCTGAAGGCT -ACGGAAAACCGTACTCTGTCAACC -ACGGAAAACCGTACTCTGTGTTCC -ACGGAAAACCGTACTCTGATTCCC -ACGGAAAACCGTACTCTGTTCTCG -ACGGAAAACCGTACTCTGTAGACG -ACGGAAAACCGTACTCTGGTAACG -ACGGAAAACCGTACTCTGACTTCG -ACGGAAAACCGTACTCTGTACGCA -ACGGAAAACCGTACTCTGCTTGCA -ACGGAAAACCGTACTCTGCGAACA -ACGGAAAACCGTACTCTGCAGTCA -ACGGAAAACCGTACTCTGGATCCA -ACGGAAAACCGTACTCTGACGACA -ACGGAAAACCGTACTCTGAGCTCA -ACGGAAAACCGTACTCTGTCACGT -ACGGAAAACCGTACTCTGCGTAGT -ACGGAAAACCGTACTCTGGTCAGT -ACGGAAAACCGTACTCTGGAAGGT -ACGGAAAACCGTACTCTGAACCGT -ACGGAAAACCGTACTCTGTTGTGC -ACGGAAAACCGTACTCTGCTAAGC -ACGGAAAACCGTACTCTGACTAGC -ACGGAAAACCGTACTCTGAGATGC -ACGGAAAACCGTACTCTGTGAAGG -ACGGAAAACCGTACTCTGCAATGG -ACGGAAAACCGTACTCTGATGAGG -ACGGAAAACCGTACTCTGAATGGG -ACGGAAAACCGTACTCTGTCCTGA -ACGGAAAACCGTACTCTGTAGCGA -ACGGAAAACCGTACTCTGCACAGA -ACGGAAAACCGTACTCTGGCAAGA -ACGGAAAACCGTACTCTGGGTTGA -ACGGAAAACCGTACTCTGTCCGAT -ACGGAAAACCGTACTCTGTGGCAT -ACGGAAAACCGTACTCTGCGAGAT -ACGGAAAACCGTACTCTGTACCAC -ACGGAAAACCGTACTCTGCAGAAC -ACGGAAAACCGTACTCTGGTCTAC -ACGGAAAACCGTACTCTGACGTAC -ACGGAAAACCGTACTCTGAGTGAC -ACGGAAAACCGTACTCTGCTGTAG -ACGGAAAACCGTACTCTGCCTAAG -ACGGAAAACCGTACTCTGGTTCAG -ACGGAAAACCGTACTCTGGCATAG -ACGGAAAACCGTACTCTGGACAAG -ACGGAAAACCGTACTCTGAAGCAG -ACGGAAAACCGTACTCTGCGTCAA -ACGGAAAACCGTACTCTGGCTGAA -ACGGAAAACCGTACTCTGAGTACG -ACGGAAAACCGTACTCTGATCCGA -ACGGAAAACCGTACTCTGATGGGA -ACGGAAAACCGTACTCTGGTGCAA -ACGGAAAACCGTACTCTGGAGGAA -ACGGAAAACCGTACTCTGCAGGTA -ACGGAAAACCGTACTCTGGACTCT -ACGGAAAACCGTACTCTGAGTCCT -ACGGAAAACCGTACTCTGTAAGCC -ACGGAAAACCGTACTCTGATAGCC -ACGGAAAACCGTACTCTGTAACCG -ACGGAAAACCGTACTCTGATGCCA -ACGGAAAACCGTCCTCAAGGAAAC -ACGGAAAACCGTCCTCAAAACACC -ACGGAAAACCGTCCTCAAATCGAG -ACGGAAAACCGTCCTCAACTCCTT -ACGGAAAACCGTCCTCAACCTGTT -ACGGAAAACCGTCCTCAACGGTTT -ACGGAAAACCGTCCTCAAGTGGTT -ACGGAAAACCGTCCTCAAGCCTTT -ACGGAAAACCGTCCTCAAGGTCTT -ACGGAAAACCGTCCTCAAACGCTT -ACGGAAAACCGTCCTCAAAGCGTT -ACGGAAAACCGTCCTCAATTCGTC -ACGGAAAACCGTCCTCAATCTCTC -ACGGAAAACCGTCCTCAATGGATC -ACGGAAAACCGTCCTCAACACTTC -ACGGAAAACCGTCCTCAAGTACTC -ACGGAAAACCGTCCTCAAGATGTC -ACGGAAAACCGTCCTCAAACAGTC -ACGGAAAACCGTCCTCAATTGCTG -ACGGAAAACCGTCCTCAATCCATG -ACGGAAAACCGTCCTCAATGTGTG -ACGGAAAACCGTCCTCAACTAGTG -ACGGAAAACCGTCCTCAACATCTG -ACGGAAAACCGTCCTCAAGAGTTG -ACGGAAAACCGTCCTCAAAGACTG -ACGGAAAACCGTCCTCAATCGGTA -ACGGAAAACCGTCCTCAATGCCTA -ACGGAAAACCGTCCTCAACCACTA -ACGGAAAACCGTCCTCAAGGAGTA -ACGGAAAACCGTCCTCAATCGTCT -ACGGAAAACCGTCCTCAATGCACT -ACGGAAAACCGTCCTCAACTGACT -ACGGAAAACCGTCCTCAACAACCT -ACGGAAAACCGTCCTCAAGCTACT -ACGGAAAACCGTCCTCAAGGATCT -ACGGAAAACCGTCCTCAAAAGGCT -ACGGAAAACCGTCCTCAATCAACC -ACGGAAAACCGTCCTCAATGTTCC -ACGGAAAACCGTCCTCAAATTCCC -ACGGAAAACCGTCCTCAATTCTCG -ACGGAAAACCGTCCTCAATAGACG -ACGGAAAACCGTCCTCAAGTAACG -ACGGAAAACCGTCCTCAAACTTCG -ACGGAAAACCGTCCTCAATACGCA -ACGGAAAACCGTCCTCAACTTGCA -ACGGAAAACCGTCCTCAACGAACA -ACGGAAAACCGTCCTCAACAGTCA -ACGGAAAACCGTCCTCAAGATCCA -ACGGAAAACCGTCCTCAAACGACA -ACGGAAAACCGTCCTCAAAGCTCA -ACGGAAAACCGTCCTCAATCACGT -ACGGAAAACCGTCCTCAACGTAGT -ACGGAAAACCGTCCTCAAGTCAGT -ACGGAAAACCGTCCTCAAGAAGGT -ACGGAAAACCGTCCTCAAAACCGT -ACGGAAAACCGTCCTCAATTGTGC -ACGGAAAACCGTCCTCAACTAAGC -ACGGAAAACCGTCCTCAAACTAGC -ACGGAAAACCGTCCTCAAAGATGC -ACGGAAAACCGTCCTCAATGAAGG -ACGGAAAACCGTCCTCAACAATGG -ACGGAAAACCGTCCTCAAATGAGG -ACGGAAAACCGTCCTCAAAATGGG -ACGGAAAACCGTCCTCAATCCTGA -ACGGAAAACCGTCCTCAATAGCGA -ACGGAAAACCGTCCTCAACACAGA -ACGGAAAACCGTCCTCAAGCAAGA -ACGGAAAACCGTCCTCAAGGTTGA -ACGGAAAACCGTCCTCAATCCGAT -ACGGAAAACCGTCCTCAATGGCAT -ACGGAAAACCGTCCTCAACGAGAT -ACGGAAAACCGTCCTCAATACCAC -ACGGAAAACCGTCCTCAACAGAAC -ACGGAAAACCGTCCTCAAGTCTAC -ACGGAAAACCGTCCTCAAACGTAC -ACGGAAAACCGTCCTCAAAGTGAC -ACGGAAAACCGTCCTCAACTGTAG -ACGGAAAACCGTCCTCAACCTAAG -ACGGAAAACCGTCCTCAAGTTCAG -ACGGAAAACCGTCCTCAAGCATAG -ACGGAAAACCGTCCTCAAGACAAG -ACGGAAAACCGTCCTCAAAAGCAG -ACGGAAAACCGTCCTCAACGTCAA -ACGGAAAACCGTCCTCAAGCTGAA -ACGGAAAACCGTCCTCAAAGTACG -ACGGAAAACCGTCCTCAAATCCGA -ACGGAAAACCGTCCTCAAATGGGA -ACGGAAAACCGTCCTCAAGTGCAA -ACGGAAAACCGTCCTCAAGAGGAA -ACGGAAAACCGTCCTCAACAGGTA -ACGGAAAACCGTCCTCAAGACTCT -ACGGAAAACCGTCCTCAAAGTCCT -ACGGAAAACCGTCCTCAATAAGCC -ACGGAAAACCGTCCTCAAATAGCC -ACGGAAAACCGTCCTCAATAACCG -ACGGAAAACCGTCCTCAAATGCCA -ACGGAAAACCGTACTGCTGGAAAC -ACGGAAAACCGTACTGCTAACACC -ACGGAAAACCGTACTGCTATCGAG -ACGGAAAACCGTACTGCTCTCCTT -ACGGAAAACCGTACTGCTCCTGTT -ACGGAAAACCGTACTGCTCGGTTT -ACGGAAAACCGTACTGCTGTGGTT -ACGGAAAACCGTACTGCTGCCTTT -ACGGAAAACCGTACTGCTGGTCTT -ACGGAAAACCGTACTGCTACGCTT -ACGGAAAACCGTACTGCTAGCGTT -ACGGAAAACCGTACTGCTTTCGTC -ACGGAAAACCGTACTGCTTCTCTC -ACGGAAAACCGTACTGCTTGGATC -ACGGAAAACCGTACTGCTCACTTC -ACGGAAAACCGTACTGCTGTACTC -ACGGAAAACCGTACTGCTGATGTC -ACGGAAAACCGTACTGCTACAGTC -ACGGAAAACCGTACTGCTTTGCTG -ACGGAAAACCGTACTGCTTCCATG -ACGGAAAACCGTACTGCTTGTGTG -ACGGAAAACCGTACTGCTCTAGTG -ACGGAAAACCGTACTGCTCATCTG -ACGGAAAACCGTACTGCTGAGTTG -ACGGAAAACCGTACTGCTAGACTG -ACGGAAAACCGTACTGCTTCGGTA -ACGGAAAACCGTACTGCTTGCCTA -ACGGAAAACCGTACTGCTCCACTA -ACGGAAAACCGTACTGCTGGAGTA -ACGGAAAACCGTACTGCTTCGTCT -ACGGAAAACCGTACTGCTTGCACT -ACGGAAAACCGTACTGCTCTGACT -ACGGAAAACCGTACTGCTCAACCT -ACGGAAAACCGTACTGCTGCTACT -ACGGAAAACCGTACTGCTGGATCT -ACGGAAAACCGTACTGCTAAGGCT -ACGGAAAACCGTACTGCTTCAACC -ACGGAAAACCGTACTGCTTGTTCC -ACGGAAAACCGTACTGCTATTCCC -ACGGAAAACCGTACTGCTTTCTCG -ACGGAAAACCGTACTGCTTAGACG -ACGGAAAACCGTACTGCTGTAACG -ACGGAAAACCGTACTGCTACTTCG -ACGGAAAACCGTACTGCTTACGCA -ACGGAAAACCGTACTGCTCTTGCA -ACGGAAAACCGTACTGCTCGAACA -ACGGAAAACCGTACTGCTCAGTCA -ACGGAAAACCGTACTGCTGATCCA -ACGGAAAACCGTACTGCTACGACA -ACGGAAAACCGTACTGCTAGCTCA -ACGGAAAACCGTACTGCTTCACGT -ACGGAAAACCGTACTGCTCGTAGT -ACGGAAAACCGTACTGCTGTCAGT -ACGGAAAACCGTACTGCTGAAGGT -ACGGAAAACCGTACTGCTAACCGT -ACGGAAAACCGTACTGCTTTGTGC -ACGGAAAACCGTACTGCTCTAAGC -ACGGAAAACCGTACTGCTACTAGC -ACGGAAAACCGTACTGCTAGATGC -ACGGAAAACCGTACTGCTTGAAGG -ACGGAAAACCGTACTGCTCAATGG -ACGGAAAACCGTACTGCTATGAGG -ACGGAAAACCGTACTGCTAATGGG -ACGGAAAACCGTACTGCTTCCTGA -ACGGAAAACCGTACTGCTTAGCGA -ACGGAAAACCGTACTGCTCACAGA -ACGGAAAACCGTACTGCTGCAAGA -ACGGAAAACCGTACTGCTGGTTGA -ACGGAAAACCGTACTGCTTCCGAT -ACGGAAAACCGTACTGCTTGGCAT -ACGGAAAACCGTACTGCTCGAGAT -ACGGAAAACCGTACTGCTTACCAC -ACGGAAAACCGTACTGCTCAGAAC -ACGGAAAACCGTACTGCTGTCTAC -ACGGAAAACCGTACTGCTACGTAC -ACGGAAAACCGTACTGCTAGTGAC -ACGGAAAACCGTACTGCTCTGTAG -ACGGAAAACCGTACTGCTCCTAAG -ACGGAAAACCGTACTGCTGTTCAG -ACGGAAAACCGTACTGCTGCATAG -ACGGAAAACCGTACTGCTGACAAG -ACGGAAAACCGTACTGCTAAGCAG -ACGGAAAACCGTACTGCTCGTCAA -ACGGAAAACCGTACTGCTGCTGAA -ACGGAAAACCGTACTGCTAGTACG -ACGGAAAACCGTACTGCTATCCGA -ACGGAAAACCGTACTGCTATGGGA -ACGGAAAACCGTACTGCTGTGCAA -ACGGAAAACCGTACTGCTGAGGAA -ACGGAAAACCGTACTGCTCAGGTA -ACGGAAAACCGTACTGCTGACTCT -ACGGAAAACCGTACTGCTAGTCCT -ACGGAAAACCGTACTGCTTAAGCC -ACGGAAAACCGTACTGCTATAGCC -ACGGAAAACCGTACTGCTTAACCG -ACGGAAAACCGTACTGCTATGCCA -ACGGAAAACCGTTCTGGAGGAAAC -ACGGAAAACCGTTCTGGAAACACC -ACGGAAAACCGTTCTGGAATCGAG -ACGGAAAACCGTTCTGGACTCCTT -ACGGAAAACCGTTCTGGACCTGTT -ACGGAAAACCGTTCTGGACGGTTT -ACGGAAAACCGTTCTGGAGTGGTT -ACGGAAAACCGTTCTGGAGCCTTT -ACGGAAAACCGTTCTGGAGGTCTT -ACGGAAAACCGTTCTGGAACGCTT -ACGGAAAACCGTTCTGGAAGCGTT -ACGGAAAACCGTTCTGGATTCGTC -ACGGAAAACCGTTCTGGATCTCTC -ACGGAAAACCGTTCTGGATGGATC -ACGGAAAACCGTTCTGGACACTTC -ACGGAAAACCGTTCTGGAGTACTC -ACGGAAAACCGTTCTGGAGATGTC -ACGGAAAACCGTTCTGGAACAGTC -ACGGAAAACCGTTCTGGATTGCTG -ACGGAAAACCGTTCTGGATCCATG -ACGGAAAACCGTTCTGGATGTGTG -ACGGAAAACCGTTCTGGACTAGTG -ACGGAAAACCGTTCTGGACATCTG -ACGGAAAACCGTTCTGGAGAGTTG -ACGGAAAACCGTTCTGGAAGACTG -ACGGAAAACCGTTCTGGATCGGTA -ACGGAAAACCGTTCTGGATGCCTA -ACGGAAAACCGTTCTGGACCACTA -ACGGAAAACCGTTCTGGAGGAGTA -ACGGAAAACCGTTCTGGATCGTCT -ACGGAAAACCGTTCTGGATGCACT -ACGGAAAACCGTTCTGGACTGACT -ACGGAAAACCGTTCTGGACAACCT -ACGGAAAACCGTTCTGGAGCTACT -ACGGAAAACCGTTCTGGAGGATCT -ACGGAAAACCGTTCTGGAAAGGCT -ACGGAAAACCGTTCTGGATCAACC -ACGGAAAACCGTTCTGGATGTTCC -ACGGAAAACCGTTCTGGAATTCCC -ACGGAAAACCGTTCTGGATTCTCG -ACGGAAAACCGTTCTGGATAGACG -ACGGAAAACCGTTCTGGAGTAACG -ACGGAAAACCGTTCTGGAACTTCG -ACGGAAAACCGTTCTGGATACGCA -ACGGAAAACCGTTCTGGACTTGCA -ACGGAAAACCGTTCTGGACGAACA -ACGGAAAACCGTTCTGGACAGTCA -ACGGAAAACCGTTCTGGAGATCCA -ACGGAAAACCGTTCTGGAACGACA -ACGGAAAACCGTTCTGGAAGCTCA -ACGGAAAACCGTTCTGGATCACGT -ACGGAAAACCGTTCTGGACGTAGT -ACGGAAAACCGTTCTGGAGTCAGT -ACGGAAAACCGTTCTGGAGAAGGT -ACGGAAAACCGTTCTGGAAACCGT -ACGGAAAACCGTTCTGGATTGTGC -ACGGAAAACCGTTCTGGACTAAGC -ACGGAAAACCGTTCTGGAACTAGC -ACGGAAAACCGTTCTGGAAGATGC -ACGGAAAACCGTTCTGGATGAAGG -ACGGAAAACCGTTCTGGACAATGG -ACGGAAAACCGTTCTGGAATGAGG -ACGGAAAACCGTTCTGGAAATGGG -ACGGAAAACCGTTCTGGATCCTGA -ACGGAAAACCGTTCTGGATAGCGA -ACGGAAAACCGTTCTGGACACAGA -ACGGAAAACCGTTCTGGAGCAAGA -ACGGAAAACCGTTCTGGAGGTTGA -ACGGAAAACCGTTCTGGATCCGAT -ACGGAAAACCGTTCTGGATGGCAT -ACGGAAAACCGTTCTGGACGAGAT -ACGGAAAACCGTTCTGGATACCAC -ACGGAAAACCGTTCTGGACAGAAC -ACGGAAAACCGTTCTGGAGTCTAC -ACGGAAAACCGTTCTGGAACGTAC -ACGGAAAACCGTTCTGGAAGTGAC -ACGGAAAACCGTTCTGGACTGTAG -ACGGAAAACCGTTCTGGACCTAAG -ACGGAAAACCGTTCTGGAGTTCAG -ACGGAAAACCGTTCTGGAGCATAG -ACGGAAAACCGTTCTGGAGACAAG -ACGGAAAACCGTTCTGGAAAGCAG -ACGGAAAACCGTTCTGGACGTCAA -ACGGAAAACCGTTCTGGAGCTGAA -ACGGAAAACCGTTCTGGAAGTACG -ACGGAAAACCGTTCTGGAATCCGA -ACGGAAAACCGTTCTGGAATGGGA -ACGGAAAACCGTTCTGGAGTGCAA -ACGGAAAACCGTTCTGGAGAGGAA -ACGGAAAACCGTTCTGGACAGGTA -ACGGAAAACCGTTCTGGAGACTCT -ACGGAAAACCGTTCTGGAAGTCCT -ACGGAAAACCGTTCTGGATAAGCC -ACGGAAAACCGTTCTGGAATAGCC -ACGGAAAACCGTTCTGGATAACCG -ACGGAAAACCGTTCTGGAATGCCA -ACGGAAAACCGTGCTAAGGGAAAC -ACGGAAAACCGTGCTAAGAACACC -ACGGAAAACCGTGCTAAGATCGAG -ACGGAAAACCGTGCTAAGCTCCTT -ACGGAAAACCGTGCTAAGCCTGTT -ACGGAAAACCGTGCTAAGCGGTTT -ACGGAAAACCGTGCTAAGGTGGTT -ACGGAAAACCGTGCTAAGGCCTTT -ACGGAAAACCGTGCTAAGGGTCTT -ACGGAAAACCGTGCTAAGACGCTT -ACGGAAAACCGTGCTAAGAGCGTT -ACGGAAAACCGTGCTAAGTTCGTC -ACGGAAAACCGTGCTAAGTCTCTC -ACGGAAAACCGTGCTAAGTGGATC -ACGGAAAACCGTGCTAAGCACTTC -ACGGAAAACCGTGCTAAGGTACTC -ACGGAAAACCGTGCTAAGGATGTC -ACGGAAAACCGTGCTAAGACAGTC -ACGGAAAACCGTGCTAAGTTGCTG -ACGGAAAACCGTGCTAAGTCCATG -ACGGAAAACCGTGCTAAGTGTGTG -ACGGAAAACCGTGCTAAGCTAGTG -ACGGAAAACCGTGCTAAGCATCTG -ACGGAAAACCGTGCTAAGGAGTTG -ACGGAAAACCGTGCTAAGAGACTG -ACGGAAAACCGTGCTAAGTCGGTA -ACGGAAAACCGTGCTAAGTGCCTA -ACGGAAAACCGTGCTAAGCCACTA -ACGGAAAACCGTGCTAAGGGAGTA -ACGGAAAACCGTGCTAAGTCGTCT -ACGGAAAACCGTGCTAAGTGCACT -ACGGAAAACCGTGCTAAGCTGACT -ACGGAAAACCGTGCTAAGCAACCT -ACGGAAAACCGTGCTAAGGCTACT -ACGGAAAACCGTGCTAAGGGATCT -ACGGAAAACCGTGCTAAGAAGGCT -ACGGAAAACCGTGCTAAGTCAACC -ACGGAAAACCGTGCTAAGTGTTCC -ACGGAAAACCGTGCTAAGATTCCC -ACGGAAAACCGTGCTAAGTTCTCG -ACGGAAAACCGTGCTAAGTAGACG -ACGGAAAACCGTGCTAAGGTAACG -ACGGAAAACCGTGCTAAGACTTCG -ACGGAAAACCGTGCTAAGTACGCA -ACGGAAAACCGTGCTAAGCTTGCA -ACGGAAAACCGTGCTAAGCGAACA -ACGGAAAACCGTGCTAAGCAGTCA -ACGGAAAACCGTGCTAAGGATCCA -ACGGAAAACCGTGCTAAGACGACA -ACGGAAAACCGTGCTAAGAGCTCA -ACGGAAAACCGTGCTAAGTCACGT -ACGGAAAACCGTGCTAAGCGTAGT -ACGGAAAACCGTGCTAAGGTCAGT -ACGGAAAACCGTGCTAAGGAAGGT -ACGGAAAACCGTGCTAAGAACCGT -ACGGAAAACCGTGCTAAGTTGTGC -ACGGAAAACCGTGCTAAGCTAAGC -ACGGAAAACCGTGCTAAGACTAGC -ACGGAAAACCGTGCTAAGAGATGC -ACGGAAAACCGTGCTAAGTGAAGG -ACGGAAAACCGTGCTAAGCAATGG -ACGGAAAACCGTGCTAAGATGAGG -ACGGAAAACCGTGCTAAGAATGGG -ACGGAAAACCGTGCTAAGTCCTGA -ACGGAAAACCGTGCTAAGTAGCGA -ACGGAAAACCGTGCTAAGCACAGA -ACGGAAAACCGTGCTAAGGCAAGA -ACGGAAAACCGTGCTAAGGGTTGA -ACGGAAAACCGTGCTAAGTCCGAT -ACGGAAAACCGTGCTAAGTGGCAT -ACGGAAAACCGTGCTAAGCGAGAT -ACGGAAAACCGTGCTAAGTACCAC -ACGGAAAACCGTGCTAAGCAGAAC -ACGGAAAACCGTGCTAAGGTCTAC -ACGGAAAACCGTGCTAAGACGTAC -ACGGAAAACCGTGCTAAGAGTGAC -ACGGAAAACCGTGCTAAGCTGTAG -ACGGAAAACCGTGCTAAGCCTAAG -ACGGAAAACCGTGCTAAGGTTCAG -ACGGAAAACCGTGCTAAGGCATAG -ACGGAAAACCGTGCTAAGGACAAG -ACGGAAAACCGTGCTAAGAAGCAG -ACGGAAAACCGTGCTAAGCGTCAA -ACGGAAAACCGTGCTAAGGCTGAA -ACGGAAAACCGTGCTAAGAGTACG -ACGGAAAACCGTGCTAAGATCCGA -ACGGAAAACCGTGCTAAGATGGGA -ACGGAAAACCGTGCTAAGGTGCAA -ACGGAAAACCGTGCTAAGGAGGAA -ACGGAAAACCGTGCTAAGCAGGTA -ACGGAAAACCGTGCTAAGGACTCT -ACGGAAAACCGTGCTAAGAGTCCT -ACGGAAAACCGTGCTAAGTAAGCC -ACGGAAAACCGTGCTAAGATAGCC -ACGGAAAACCGTGCTAAGTAACCG -ACGGAAAACCGTGCTAAGATGCCA -ACGGAAAACCGTACCTCAGGAAAC -ACGGAAAACCGTACCTCAAACACC -ACGGAAAACCGTACCTCAATCGAG -ACGGAAAACCGTACCTCACTCCTT -ACGGAAAACCGTACCTCACCTGTT -ACGGAAAACCGTACCTCACGGTTT -ACGGAAAACCGTACCTCAGTGGTT -ACGGAAAACCGTACCTCAGCCTTT -ACGGAAAACCGTACCTCAGGTCTT -ACGGAAAACCGTACCTCAACGCTT -ACGGAAAACCGTACCTCAAGCGTT -ACGGAAAACCGTACCTCATTCGTC -ACGGAAAACCGTACCTCATCTCTC -ACGGAAAACCGTACCTCATGGATC -ACGGAAAACCGTACCTCACACTTC -ACGGAAAACCGTACCTCAGTACTC -ACGGAAAACCGTACCTCAGATGTC -ACGGAAAACCGTACCTCAACAGTC -ACGGAAAACCGTACCTCATTGCTG -ACGGAAAACCGTACCTCATCCATG -ACGGAAAACCGTACCTCATGTGTG -ACGGAAAACCGTACCTCACTAGTG -ACGGAAAACCGTACCTCACATCTG -ACGGAAAACCGTACCTCAGAGTTG -ACGGAAAACCGTACCTCAAGACTG -ACGGAAAACCGTACCTCATCGGTA -ACGGAAAACCGTACCTCATGCCTA -ACGGAAAACCGTACCTCACCACTA -ACGGAAAACCGTACCTCAGGAGTA -ACGGAAAACCGTACCTCATCGTCT -ACGGAAAACCGTACCTCATGCACT -ACGGAAAACCGTACCTCACTGACT -ACGGAAAACCGTACCTCACAACCT -ACGGAAAACCGTACCTCAGCTACT -ACGGAAAACCGTACCTCAGGATCT -ACGGAAAACCGTACCTCAAAGGCT -ACGGAAAACCGTACCTCATCAACC -ACGGAAAACCGTACCTCATGTTCC -ACGGAAAACCGTACCTCAATTCCC -ACGGAAAACCGTACCTCATTCTCG -ACGGAAAACCGTACCTCATAGACG -ACGGAAAACCGTACCTCAGTAACG -ACGGAAAACCGTACCTCAACTTCG -ACGGAAAACCGTACCTCATACGCA -ACGGAAAACCGTACCTCACTTGCA -ACGGAAAACCGTACCTCACGAACA -ACGGAAAACCGTACCTCACAGTCA -ACGGAAAACCGTACCTCAGATCCA -ACGGAAAACCGTACCTCAACGACA -ACGGAAAACCGTACCTCAAGCTCA -ACGGAAAACCGTACCTCATCACGT -ACGGAAAACCGTACCTCACGTAGT -ACGGAAAACCGTACCTCAGTCAGT -ACGGAAAACCGTACCTCAGAAGGT -ACGGAAAACCGTACCTCAAACCGT -ACGGAAAACCGTACCTCATTGTGC -ACGGAAAACCGTACCTCACTAAGC -ACGGAAAACCGTACCTCAACTAGC -ACGGAAAACCGTACCTCAAGATGC -ACGGAAAACCGTACCTCATGAAGG -ACGGAAAACCGTACCTCACAATGG -ACGGAAAACCGTACCTCAATGAGG -ACGGAAAACCGTACCTCAAATGGG -ACGGAAAACCGTACCTCATCCTGA -ACGGAAAACCGTACCTCATAGCGA -ACGGAAAACCGTACCTCACACAGA -ACGGAAAACCGTACCTCAGCAAGA -ACGGAAAACCGTACCTCAGGTTGA -ACGGAAAACCGTACCTCATCCGAT -ACGGAAAACCGTACCTCATGGCAT -ACGGAAAACCGTACCTCACGAGAT -ACGGAAAACCGTACCTCATACCAC -ACGGAAAACCGTACCTCACAGAAC -ACGGAAAACCGTACCTCAGTCTAC -ACGGAAAACCGTACCTCAACGTAC -ACGGAAAACCGTACCTCAAGTGAC -ACGGAAAACCGTACCTCACTGTAG -ACGGAAAACCGTACCTCACCTAAG -ACGGAAAACCGTACCTCAGTTCAG -ACGGAAAACCGTACCTCAGCATAG -ACGGAAAACCGTACCTCAGACAAG -ACGGAAAACCGTACCTCAAAGCAG -ACGGAAAACCGTACCTCACGTCAA -ACGGAAAACCGTACCTCAGCTGAA -ACGGAAAACCGTACCTCAAGTACG -ACGGAAAACCGTACCTCAATCCGA -ACGGAAAACCGTACCTCAATGGGA -ACGGAAAACCGTACCTCAGTGCAA -ACGGAAAACCGTACCTCAGAGGAA -ACGGAAAACCGTACCTCACAGGTA -ACGGAAAACCGTACCTCAGACTCT -ACGGAAAACCGTACCTCAAGTCCT -ACGGAAAACCGTACCTCATAAGCC -ACGGAAAACCGTACCTCAATAGCC -ACGGAAAACCGTACCTCATAACCG -ACGGAAAACCGTACCTCAATGCCA -ACGGAAAACCGTTCCTGTGGAAAC -ACGGAAAACCGTTCCTGTAACACC -ACGGAAAACCGTTCCTGTATCGAG -ACGGAAAACCGTTCCTGTCTCCTT -ACGGAAAACCGTTCCTGTCCTGTT -ACGGAAAACCGTTCCTGTCGGTTT -ACGGAAAACCGTTCCTGTGTGGTT -ACGGAAAACCGTTCCTGTGCCTTT -ACGGAAAACCGTTCCTGTGGTCTT -ACGGAAAACCGTTCCTGTACGCTT -ACGGAAAACCGTTCCTGTAGCGTT -ACGGAAAACCGTTCCTGTTTCGTC -ACGGAAAACCGTTCCTGTTCTCTC -ACGGAAAACCGTTCCTGTTGGATC -ACGGAAAACCGTTCCTGTCACTTC -ACGGAAAACCGTTCCTGTGTACTC -ACGGAAAACCGTTCCTGTGATGTC -ACGGAAAACCGTTCCTGTACAGTC -ACGGAAAACCGTTCCTGTTTGCTG -ACGGAAAACCGTTCCTGTTCCATG -ACGGAAAACCGTTCCTGTTGTGTG -ACGGAAAACCGTTCCTGTCTAGTG -ACGGAAAACCGTTCCTGTCATCTG -ACGGAAAACCGTTCCTGTGAGTTG -ACGGAAAACCGTTCCTGTAGACTG -ACGGAAAACCGTTCCTGTTCGGTA -ACGGAAAACCGTTCCTGTTGCCTA -ACGGAAAACCGTTCCTGTCCACTA -ACGGAAAACCGTTCCTGTGGAGTA -ACGGAAAACCGTTCCTGTTCGTCT -ACGGAAAACCGTTCCTGTTGCACT -ACGGAAAACCGTTCCTGTCTGACT -ACGGAAAACCGTTCCTGTCAACCT -ACGGAAAACCGTTCCTGTGCTACT -ACGGAAAACCGTTCCTGTGGATCT -ACGGAAAACCGTTCCTGTAAGGCT -ACGGAAAACCGTTCCTGTTCAACC -ACGGAAAACCGTTCCTGTTGTTCC -ACGGAAAACCGTTCCTGTATTCCC -ACGGAAAACCGTTCCTGTTTCTCG -ACGGAAAACCGTTCCTGTTAGACG -ACGGAAAACCGTTCCTGTGTAACG -ACGGAAAACCGTTCCTGTACTTCG -ACGGAAAACCGTTCCTGTTACGCA -ACGGAAAACCGTTCCTGTCTTGCA -ACGGAAAACCGTTCCTGTCGAACA -ACGGAAAACCGTTCCTGTCAGTCA -ACGGAAAACCGTTCCTGTGATCCA -ACGGAAAACCGTTCCTGTACGACA -ACGGAAAACCGTTCCTGTAGCTCA -ACGGAAAACCGTTCCTGTTCACGT -ACGGAAAACCGTTCCTGTCGTAGT -ACGGAAAACCGTTCCTGTGTCAGT -ACGGAAAACCGTTCCTGTGAAGGT -ACGGAAAACCGTTCCTGTAACCGT -ACGGAAAACCGTTCCTGTTTGTGC -ACGGAAAACCGTTCCTGTCTAAGC -ACGGAAAACCGTTCCTGTACTAGC -ACGGAAAACCGTTCCTGTAGATGC -ACGGAAAACCGTTCCTGTTGAAGG -ACGGAAAACCGTTCCTGTCAATGG -ACGGAAAACCGTTCCTGTATGAGG -ACGGAAAACCGTTCCTGTAATGGG -ACGGAAAACCGTTCCTGTTCCTGA -ACGGAAAACCGTTCCTGTTAGCGA -ACGGAAAACCGTTCCTGTCACAGA -ACGGAAAACCGTTCCTGTGCAAGA -ACGGAAAACCGTTCCTGTGGTTGA -ACGGAAAACCGTTCCTGTTCCGAT -ACGGAAAACCGTTCCTGTTGGCAT -ACGGAAAACCGTTCCTGTCGAGAT -ACGGAAAACCGTTCCTGTTACCAC -ACGGAAAACCGTTCCTGTCAGAAC -ACGGAAAACCGTTCCTGTGTCTAC -ACGGAAAACCGTTCCTGTACGTAC -ACGGAAAACCGTTCCTGTAGTGAC -ACGGAAAACCGTTCCTGTCTGTAG -ACGGAAAACCGTTCCTGTCCTAAG -ACGGAAAACCGTTCCTGTGTTCAG -ACGGAAAACCGTTCCTGTGCATAG -ACGGAAAACCGTTCCTGTGACAAG -ACGGAAAACCGTTCCTGTAAGCAG -ACGGAAAACCGTTCCTGTCGTCAA -ACGGAAAACCGTTCCTGTGCTGAA -ACGGAAAACCGTTCCTGTAGTACG -ACGGAAAACCGTTCCTGTATCCGA -ACGGAAAACCGTTCCTGTATGGGA -ACGGAAAACCGTTCCTGTGTGCAA -ACGGAAAACCGTTCCTGTGAGGAA -ACGGAAAACCGTTCCTGTCAGGTA -ACGGAAAACCGTTCCTGTGACTCT -ACGGAAAACCGTTCCTGTAGTCCT -ACGGAAAACCGTTCCTGTTAAGCC -ACGGAAAACCGTTCCTGTATAGCC -ACGGAAAACCGTTCCTGTTAACCG -ACGGAAAACCGTTCCTGTATGCCA -ACGGAAAACCGTCCCATTGGAAAC -ACGGAAAACCGTCCCATTAACACC -ACGGAAAACCGTCCCATTATCGAG -ACGGAAAACCGTCCCATTCTCCTT -ACGGAAAACCGTCCCATTCCTGTT -ACGGAAAACCGTCCCATTCGGTTT -ACGGAAAACCGTCCCATTGTGGTT -ACGGAAAACCGTCCCATTGCCTTT -ACGGAAAACCGTCCCATTGGTCTT -ACGGAAAACCGTCCCATTACGCTT -ACGGAAAACCGTCCCATTAGCGTT -ACGGAAAACCGTCCCATTTTCGTC -ACGGAAAACCGTCCCATTTCTCTC -ACGGAAAACCGTCCCATTTGGATC -ACGGAAAACCGTCCCATTCACTTC -ACGGAAAACCGTCCCATTGTACTC -ACGGAAAACCGTCCCATTGATGTC -ACGGAAAACCGTCCCATTACAGTC -ACGGAAAACCGTCCCATTTTGCTG -ACGGAAAACCGTCCCATTTCCATG -ACGGAAAACCGTCCCATTTGTGTG -ACGGAAAACCGTCCCATTCTAGTG -ACGGAAAACCGTCCCATTCATCTG -ACGGAAAACCGTCCCATTGAGTTG -ACGGAAAACCGTCCCATTAGACTG -ACGGAAAACCGTCCCATTTCGGTA -ACGGAAAACCGTCCCATTTGCCTA -ACGGAAAACCGTCCCATTCCACTA -ACGGAAAACCGTCCCATTGGAGTA -ACGGAAAACCGTCCCATTTCGTCT -ACGGAAAACCGTCCCATTTGCACT -ACGGAAAACCGTCCCATTCTGACT -ACGGAAAACCGTCCCATTCAACCT -ACGGAAAACCGTCCCATTGCTACT -ACGGAAAACCGTCCCATTGGATCT -ACGGAAAACCGTCCCATTAAGGCT -ACGGAAAACCGTCCCATTTCAACC -ACGGAAAACCGTCCCATTTGTTCC -ACGGAAAACCGTCCCATTATTCCC -ACGGAAAACCGTCCCATTTTCTCG -ACGGAAAACCGTCCCATTTAGACG -ACGGAAAACCGTCCCATTGTAACG -ACGGAAAACCGTCCCATTACTTCG -ACGGAAAACCGTCCCATTTACGCA -ACGGAAAACCGTCCCATTCTTGCA -ACGGAAAACCGTCCCATTCGAACA -ACGGAAAACCGTCCCATTCAGTCA -ACGGAAAACCGTCCCATTGATCCA -ACGGAAAACCGTCCCATTACGACA -ACGGAAAACCGTCCCATTAGCTCA -ACGGAAAACCGTCCCATTTCACGT -ACGGAAAACCGTCCCATTCGTAGT -ACGGAAAACCGTCCCATTGTCAGT -ACGGAAAACCGTCCCATTGAAGGT -ACGGAAAACCGTCCCATTAACCGT -ACGGAAAACCGTCCCATTTTGTGC -ACGGAAAACCGTCCCATTCTAAGC -ACGGAAAACCGTCCCATTACTAGC -ACGGAAAACCGTCCCATTAGATGC -ACGGAAAACCGTCCCATTTGAAGG -ACGGAAAACCGTCCCATTCAATGG -ACGGAAAACCGTCCCATTATGAGG -ACGGAAAACCGTCCCATTAATGGG -ACGGAAAACCGTCCCATTTCCTGA -ACGGAAAACCGTCCCATTTAGCGA -ACGGAAAACCGTCCCATTCACAGA -ACGGAAAACCGTCCCATTGCAAGA -ACGGAAAACCGTCCCATTGGTTGA -ACGGAAAACCGTCCCATTTCCGAT -ACGGAAAACCGTCCCATTTGGCAT -ACGGAAAACCGTCCCATTCGAGAT -ACGGAAAACCGTCCCATTTACCAC -ACGGAAAACCGTCCCATTCAGAAC -ACGGAAAACCGTCCCATTGTCTAC -ACGGAAAACCGTCCCATTACGTAC -ACGGAAAACCGTCCCATTAGTGAC -ACGGAAAACCGTCCCATTCTGTAG -ACGGAAAACCGTCCCATTCCTAAG -ACGGAAAACCGTCCCATTGTTCAG -ACGGAAAACCGTCCCATTGCATAG -ACGGAAAACCGTCCCATTGACAAG -ACGGAAAACCGTCCCATTAAGCAG -ACGGAAAACCGTCCCATTCGTCAA -ACGGAAAACCGTCCCATTGCTGAA -ACGGAAAACCGTCCCATTAGTACG -ACGGAAAACCGTCCCATTATCCGA -ACGGAAAACCGTCCCATTATGGGA -ACGGAAAACCGTCCCATTGTGCAA -ACGGAAAACCGTCCCATTGAGGAA -ACGGAAAACCGTCCCATTCAGGTA -ACGGAAAACCGTCCCATTGACTCT -ACGGAAAACCGTCCCATTAGTCCT -ACGGAAAACCGTCCCATTTAAGCC -ACGGAAAACCGTCCCATTATAGCC -ACGGAAAACCGTCCCATTTAACCG -ACGGAAAACCGTCCCATTATGCCA -ACGGAAAACCGTTCGTTCGGAAAC -ACGGAAAACCGTTCGTTCAACACC -ACGGAAAACCGTTCGTTCATCGAG -ACGGAAAACCGTTCGTTCCTCCTT -ACGGAAAACCGTTCGTTCCCTGTT -ACGGAAAACCGTTCGTTCCGGTTT -ACGGAAAACCGTTCGTTCGTGGTT -ACGGAAAACCGTTCGTTCGCCTTT -ACGGAAAACCGTTCGTTCGGTCTT -ACGGAAAACCGTTCGTTCACGCTT -ACGGAAAACCGTTCGTTCAGCGTT -ACGGAAAACCGTTCGTTCTTCGTC -ACGGAAAACCGTTCGTTCTCTCTC -ACGGAAAACCGTTCGTTCTGGATC -ACGGAAAACCGTTCGTTCCACTTC -ACGGAAAACCGTTCGTTCGTACTC -ACGGAAAACCGTTCGTTCGATGTC -ACGGAAAACCGTTCGTTCACAGTC -ACGGAAAACCGTTCGTTCTTGCTG -ACGGAAAACCGTTCGTTCTCCATG -ACGGAAAACCGTTCGTTCTGTGTG -ACGGAAAACCGTTCGTTCCTAGTG -ACGGAAAACCGTTCGTTCCATCTG -ACGGAAAACCGTTCGTTCGAGTTG -ACGGAAAACCGTTCGTTCAGACTG -ACGGAAAACCGTTCGTTCTCGGTA -ACGGAAAACCGTTCGTTCTGCCTA -ACGGAAAACCGTTCGTTCCCACTA -ACGGAAAACCGTTCGTTCGGAGTA -ACGGAAAACCGTTCGTTCTCGTCT -ACGGAAAACCGTTCGTTCTGCACT -ACGGAAAACCGTTCGTTCCTGACT -ACGGAAAACCGTTCGTTCCAACCT -ACGGAAAACCGTTCGTTCGCTACT -ACGGAAAACCGTTCGTTCGGATCT -ACGGAAAACCGTTCGTTCAAGGCT -ACGGAAAACCGTTCGTTCTCAACC -ACGGAAAACCGTTCGTTCTGTTCC -ACGGAAAACCGTTCGTTCATTCCC -ACGGAAAACCGTTCGTTCTTCTCG -ACGGAAAACCGTTCGTTCTAGACG -ACGGAAAACCGTTCGTTCGTAACG -ACGGAAAACCGTTCGTTCACTTCG -ACGGAAAACCGTTCGTTCTACGCA -ACGGAAAACCGTTCGTTCCTTGCA -ACGGAAAACCGTTCGTTCCGAACA -ACGGAAAACCGTTCGTTCCAGTCA -ACGGAAAACCGTTCGTTCGATCCA -ACGGAAAACCGTTCGTTCACGACA -ACGGAAAACCGTTCGTTCAGCTCA -ACGGAAAACCGTTCGTTCTCACGT -ACGGAAAACCGTTCGTTCCGTAGT -ACGGAAAACCGTTCGTTCGTCAGT -ACGGAAAACCGTTCGTTCGAAGGT -ACGGAAAACCGTTCGTTCAACCGT -ACGGAAAACCGTTCGTTCTTGTGC -ACGGAAAACCGTTCGTTCCTAAGC -ACGGAAAACCGTTCGTTCACTAGC -ACGGAAAACCGTTCGTTCAGATGC -ACGGAAAACCGTTCGTTCTGAAGG -ACGGAAAACCGTTCGTTCCAATGG -ACGGAAAACCGTTCGTTCATGAGG -ACGGAAAACCGTTCGTTCAATGGG -ACGGAAAACCGTTCGTTCTCCTGA -ACGGAAAACCGTTCGTTCTAGCGA -ACGGAAAACCGTTCGTTCCACAGA -ACGGAAAACCGTTCGTTCGCAAGA -ACGGAAAACCGTTCGTTCGGTTGA -ACGGAAAACCGTTCGTTCTCCGAT -ACGGAAAACCGTTCGTTCTGGCAT -ACGGAAAACCGTTCGTTCCGAGAT -ACGGAAAACCGTTCGTTCTACCAC -ACGGAAAACCGTTCGTTCCAGAAC -ACGGAAAACCGTTCGTTCGTCTAC -ACGGAAAACCGTTCGTTCACGTAC -ACGGAAAACCGTTCGTTCAGTGAC -ACGGAAAACCGTTCGTTCCTGTAG -ACGGAAAACCGTTCGTTCCCTAAG -ACGGAAAACCGTTCGTTCGTTCAG -ACGGAAAACCGTTCGTTCGCATAG -ACGGAAAACCGTTCGTTCGACAAG -ACGGAAAACCGTTCGTTCAAGCAG -ACGGAAAACCGTTCGTTCCGTCAA -ACGGAAAACCGTTCGTTCGCTGAA -ACGGAAAACCGTTCGTTCAGTACG -ACGGAAAACCGTTCGTTCATCCGA -ACGGAAAACCGTTCGTTCATGGGA -ACGGAAAACCGTTCGTTCGTGCAA -ACGGAAAACCGTTCGTTCGAGGAA -ACGGAAAACCGTTCGTTCCAGGTA -ACGGAAAACCGTTCGTTCGACTCT -ACGGAAAACCGTTCGTTCAGTCCT -ACGGAAAACCGTTCGTTCTAAGCC -ACGGAAAACCGTTCGTTCATAGCC -ACGGAAAACCGTTCGTTCTAACCG -ACGGAAAACCGTTCGTTCATGCCA -ACGGAAAACCGTACGTAGGGAAAC -ACGGAAAACCGTACGTAGAACACC -ACGGAAAACCGTACGTAGATCGAG -ACGGAAAACCGTACGTAGCTCCTT -ACGGAAAACCGTACGTAGCCTGTT -ACGGAAAACCGTACGTAGCGGTTT -ACGGAAAACCGTACGTAGGTGGTT -ACGGAAAACCGTACGTAGGCCTTT -ACGGAAAACCGTACGTAGGGTCTT -ACGGAAAACCGTACGTAGACGCTT -ACGGAAAACCGTACGTAGAGCGTT -ACGGAAAACCGTACGTAGTTCGTC -ACGGAAAACCGTACGTAGTCTCTC -ACGGAAAACCGTACGTAGTGGATC -ACGGAAAACCGTACGTAGCACTTC -ACGGAAAACCGTACGTAGGTACTC -ACGGAAAACCGTACGTAGGATGTC -ACGGAAAACCGTACGTAGACAGTC -ACGGAAAACCGTACGTAGTTGCTG -ACGGAAAACCGTACGTAGTCCATG -ACGGAAAACCGTACGTAGTGTGTG -ACGGAAAACCGTACGTAGCTAGTG -ACGGAAAACCGTACGTAGCATCTG -ACGGAAAACCGTACGTAGGAGTTG -ACGGAAAACCGTACGTAGAGACTG -ACGGAAAACCGTACGTAGTCGGTA -ACGGAAAACCGTACGTAGTGCCTA -ACGGAAAACCGTACGTAGCCACTA -ACGGAAAACCGTACGTAGGGAGTA -ACGGAAAACCGTACGTAGTCGTCT -ACGGAAAACCGTACGTAGTGCACT -ACGGAAAACCGTACGTAGCTGACT -ACGGAAAACCGTACGTAGCAACCT -ACGGAAAACCGTACGTAGGCTACT -ACGGAAAACCGTACGTAGGGATCT -ACGGAAAACCGTACGTAGAAGGCT -ACGGAAAACCGTACGTAGTCAACC -ACGGAAAACCGTACGTAGTGTTCC -ACGGAAAACCGTACGTAGATTCCC -ACGGAAAACCGTACGTAGTTCTCG -ACGGAAAACCGTACGTAGTAGACG -ACGGAAAACCGTACGTAGGTAACG -ACGGAAAACCGTACGTAGACTTCG -ACGGAAAACCGTACGTAGTACGCA -ACGGAAAACCGTACGTAGCTTGCA -ACGGAAAACCGTACGTAGCGAACA -ACGGAAAACCGTACGTAGCAGTCA -ACGGAAAACCGTACGTAGGATCCA -ACGGAAAACCGTACGTAGACGACA -ACGGAAAACCGTACGTAGAGCTCA -ACGGAAAACCGTACGTAGTCACGT -ACGGAAAACCGTACGTAGCGTAGT -ACGGAAAACCGTACGTAGGTCAGT -ACGGAAAACCGTACGTAGGAAGGT -ACGGAAAACCGTACGTAGAACCGT -ACGGAAAACCGTACGTAGTTGTGC -ACGGAAAACCGTACGTAGCTAAGC -ACGGAAAACCGTACGTAGACTAGC -ACGGAAAACCGTACGTAGAGATGC -ACGGAAAACCGTACGTAGTGAAGG -ACGGAAAACCGTACGTAGCAATGG -ACGGAAAACCGTACGTAGATGAGG -ACGGAAAACCGTACGTAGAATGGG -ACGGAAAACCGTACGTAGTCCTGA -ACGGAAAACCGTACGTAGTAGCGA -ACGGAAAACCGTACGTAGCACAGA -ACGGAAAACCGTACGTAGGCAAGA -ACGGAAAACCGTACGTAGGGTTGA -ACGGAAAACCGTACGTAGTCCGAT -ACGGAAAACCGTACGTAGTGGCAT -ACGGAAAACCGTACGTAGCGAGAT -ACGGAAAACCGTACGTAGTACCAC -ACGGAAAACCGTACGTAGCAGAAC -ACGGAAAACCGTACGTAGGTCTAC -ACGGAAAACCGTACGTAGACGTAC -ACGGAAAACCGTACGTAGAGTGAC -ACGGAAAACCGTACGTAGCTGTAG -ACGGAAAACCGTACGTAGCCTAAG -ACGGAAAACCGTACGTAGGTTCAG -ACGGAAAACCGTACGTAGGCATAG -ACGGAAAACCGTACGTAGGACAAG -ACGGAAAACCGTACGTAGAAGCAG -ACGGAAAACCGTACGTAGCGTCAA -ACGGAAAACCGTACGTAGGCTGAA -ACGGAAAACCGTACGTAGAGTACG -ACGGAAAACCGTACGTAGATCCGA -ACGGAAAACCGTACGTAGATGGGA -ACGGAAAACCGTACGTAGGTGCAA -ACGGAAAACCGTACGTAGGAGGAA -ACGGAAAACCGTACGTAGCAGGTA -ACGGAAAACCGTACGTAGGACTCT -ACGGAAAACCGTACGTAGAGTCCT -ACGGAAAACCGTACGTAGTAAGCC -ACGGAAAACCGTACGTAGATAGCC -ACGGAAAACCGTACGTAGTAACCG -ACGGAAAACCGTACGTAGATGCCA -ACGGAAAACCGTACGGTAGGAAAC -ACGGAAAACCGTACGGTAAACACC -ACGGAAAACCGTACGGTAATCGAG -ACGGAAAACCGTACGGTACTCCTT -ACGGAAAACCGTACGGTACCTGTT -ACGGAAAACCGTACGGTACGGTTT -ACGGAAAACCGTACGGTAGTGGTT -ACGGAAAACCGTACGGTAGCCTTT -ACGGAAAACCGTACGGTAGGTCTT -ACGGAAAACCGTACGGTAACGCTT -ACGGAAAACCGTACGGTAAGCGTT -ACGGAAAACCGTACGGTATTCGTC -ACGGAAAACCGTACGGTATCTCTC -ACGGAAAACCGTACGGTATGGATC -ACGGAAAACCGTACGGTACACTTC -ACGGAAAACCGTACGGTAGTACTC -ACGGAAAACCGTACGGTAGATGTC -ACGGAAAACCGTACGGTAACAGTC -ACGGAAAACCGTACGGTATTGCTG -ACGGAAAACCGTACGGTATCCATG -ACGGAAAACCGTACGGTATGTGTG -ACGGAAAACCGTACGGTACTAGTG -ACGGAAAACCGTACGGTACATCTG -ACGGAAAACCGTACGGTAGAGTTG -ACGGAAAACCGTACGGTAAGACTG -ACGGAAAACCGTACGGTATCGGTA -ACGGAAAACCGTACGGTATGCCTA -ACGGAAAACCGTACGGTACCACTA -ACGGAAAACCGTACGGTAGGAGTA -ACGGAAAACCGTACGGTATCGTCT -ACGGAAAACCGTACGGTATGCACT -ACGGAAAACCGTACGGTACTGACT -ACGGAAAACCGTACGGTACAACCT -ACGGAAAACCGTACGGTAGCTACT -ACGGAAAACCGTACGGTAGGATCT -ACGGAAAACCGTACGGTAAAGGCT -ACGGAAAACCGTACGGTATCAACC -ACGGAAAACCGTACGGTATGTTCC -ACGGAAAACCGTACGGTAATTCCC -ACGGAAAACCGTACGGTATTCTCG -ACGGAAAACCGTACGGTATAGACG -ACGGAAAACCGTACGGTAGTAACG -ACGGAAAACCGTACGGTAACTTCG -ACGGAAAACCGTACGGTATACGCA -ACGGAAAACCGTACGGTACTTGCA -ACGGAAAACCGTACGGTACGAACA -ACGGAAAACCGTACGGTACAGTCA -ACGGAAAACCGTACGGTAGATCCA -ACGGAAAACCGTACGGTAACGACA -ACGGAAAACCGTACGGTAAGCTCA -ACGGAAAACCGTACGGTATCACGT -ACGGAAAACCGTACGGTACGTAGT -ACGGAAAACCGTACGGTAGTCAGT -ACGGAAAACCGTACGGTAGAAGGT -ACGGAAAACCGTACGGTAAACCGT -ACGGAAAACCGTACGGTATTGTGC -ACGGAAAACCGTACGGTACTAAGC -ACGGAAAACCGTACGGTAACTAGC -ACGGAAAACCGTACGGTAAGATGC -ACGGAAAACCGTACGGTATGAAGG -ACGGAAAACCGTACGGTACAATGG -ACGGAAAACCGTACGGTAATGAGG -ACGGAAAACCGTACGGTAAATGGG -ACGGAAAACCGTACGGTATCCTGA -ACGGAAAACCGTACGGTATAGCGA -ACGGAAAACCGTACGGTACACAGA -ACGGAAAACCGTACGGTAGCAAGA -ACGGAAAACCGTACGGTAGGTTGA -ACGGAAAACCGTACGGTATCCGAT -ACGGAAAACCGTACGGTATGGCAT -ACGGAAAACCGTACGGTACGAGAT -ACGGAAAACCGTACGGTATACCAC -ACGGAAAACCGTACGGTACAGAAC -ACGGAAAACCGTACGGTAGTCTAC -ACGGAAAACCGTACGGTAACGTAC -ACGGAAAACCGTACGGTAAGTGAC -ACGGAAAACCGTACGGTACTGTAG -ACGGAAAACCGTACGGTACCTAAG -ACGGAAAACCGTACGGTAGTTCAG -ACGGAAAACCGTACGGTAGCATAG -ACGGAAAACCGTACGGTAGACAAG -ACGGAAAACCGTACGGTAAAGCAG -ACGGAAAACCGTACGGTACGTCAA -ACGGAAAACCGTACGGTAGCTGAA -ACGGAAAACCGTACGGTAAGTACG -ACGGAAAACCGTACGGTAATCCGA -ACGGAAAACCGTACGGTAATGGGA -ACGGAAAACCGTACGGTAGTGCAA -ACGGAAAACCGTACGGTAGAGGAA -ACGGAAAACCGTACGGTACAGGTA -ACGGAAAACCGTACGGTAGACTCT -ACGGAAAACCGTACGGTAAGTCCT -ACGGAAAACCGTACGGTATAAGCC -ACGGAAAACCGTACGGTAATAGCC -ACGGAAAACCGTACGGTATAACCG -ACGGAAAACCGTACGGTAATGCCA -ACGGAAAACCGTTCGACTGGAAAC -ACGGAAAACCGTTCGACTAACACC -ACGGAAAACCGTTCGACTATCGAG -ACGGAAAACCGTTCGACTCTCCTT -ACGGAAAACCGTTCGACTCCTGTT -ACGGAAAACCGTTCGACTCGGTTT -ACGGAAAACCGTTCGACTGTGGTT -ACGGAAAACCGTTCGACTGCCTTT -ACGGAAAACCGTTCGACTGGTCTT -ACGGAAAACCGTTCGACTACGCTT -ACGGAAAACCGTTCGACTAGCGTT -ACGGAAAACCGTTCGACTTTCGTC -ACGGAAAACCGTTCGACTTCTCTC -ACGGAAAACCGTTCGACTTGGATC -ACGGAAAACCGTTCGACTCACTTC -ACGGAAAACCGTTCGACTGTACTC -ACGGAAAACCGTTCGACTGATGTC -ACGGAAAACCGTTCGACTACAGTC -ACGGAAAACCGTTCGACTTTGCTG -ACGGAAAACCGTTCGACTTCCATG -ACGGAAAACCGTTCGACTTGTGTG -ACGGAAAACCGTTCGACTCTAGTG -ACGGAAAACCGTTCGACTCATCTG -ACGGAAAACCGTTCGACTGAGTTG -ACGGAAAACCGTTCGACTAGACTG -ACGGAAAACCGTTCGACTTCGGTA -ACGGAAAACCGTTCGACTTGCCTA -ACGGAAAACCGTTCGACTCCACTA -ACGGAAAACCGTTCGACTGGAGTA -ACGGAAAACCGTTCGACTTCGTCT -ACGGAAAACCGTTCGACTTGCACT -ACGGAAAACCGTTCGACTCTGACT -ACGGAAAACCGTTCGACTCAACCT -ACGGAAAACCGTTCGACTGCTACT -ACGGAAAACCGTTCGACTGGATCT -ACGGAAAACCGTTCGACTAAGGCT -ACGGAAAACCGTTCGACTTCAACC -ACGGAAAACCGTTCGACTTGTTCC -ACGGAAAACCGTTCGACTATTCCC -ACGGAAAACCGTTCGACTTTCTCG -ACGGAAAACCGTTCGACTTAGACG -ACGGAAAACCGTTCGACTGTAACG -ACGGAAAACCGTTCGACTACTTCG -ACGGAAAACCGTTCGACTTACGCA -ACGGAAAACCGTTCGACTCTTGCA -ACGGAAAACCGTTCGACTCGAACA -ACGGAAAACCGTTCGACTCAGTCA -ACGGAAAACCGTTCGACTGATCCA -ACGGAAAACCGTTCGACTACGACA -ACGGAAAACCGTTCGACTAGCTCA -ACGGAAAACCGTTCGACTTCACGT -ACGGAAAACCGTTCGACTCGTAGT -ACGGAAAACCGTTCGACTGTCAGT -ACGGAAAACCGTTCGACTGAAGGT -ACGGAAAACCGTTCGACTAACCGT -ACGGAAAACCGTTCGACTTTGTGC -ACGGAAAACCGTTCGACTCTAAGC -ACGGAAAACCGTTCGACTACTAGC -ACGGAAAACCGTTCGACTAGATGC -ACGGAAAACCGTTCGACTTGAAGG -ACGGAAAACCGTTCGACTCAATGG -ACGGAAAACCGTTCGACTATGAGG -ACGGAAAACCGTTCGACTAATGGG -ACGGAAAACCGTTCGACTTCCTGA -ACGGAAAACCGTTCGACTTAGCGA -ACGGAAAACCGTTCGACTCACAGA -ACGGAAAACCGTTCGACTGCAAGA -ACGGAAAACCGTTCGACTGGTTGA -ACGGAAAACCGTTCGACTTCCGAT -ACGGAAAACCGTTCGACTTGGCAT -ACGGAAAACCGTTCGACTCGAGAT -ACGGAAAACCGTTCGACTTACCAC -ACGGAAAACCGTTCGACTCAGAAC -ACGGAAAACCGTTCGACTGTCTAC -ACGGAAAACCGTTCGACTACGTAC -ACGGAAAACCGTTCGACTAGTGAC -ACGGAAAACCGTTCGACTCTGTAG -ACGGAAAACCGTTCGACTCCTAAG -ACGGAAAACCGTTCGACTGTTCAG -ACGGAAAACCGTTCGACTGCATAG -ACGGAAAACCGTTCGACTGACAAG -ACGGAAAACCGTTCGACTAAGCAG -ACGGAAAACCGTTCGACTCGTCAA -ACGGAAAACCGTTCGACTGCTGAA -ACGGAAAACCGTTCGACTAGTACG -ACGGAAAACCGTTCGACTATCCGA -ACGGAAAACCGTTCGACTATGGGA -ACGGAAAACCGTTCGACTGTGCAA -ACGGAAAACCGTTCGACTGAGGAA -ACGGAAAACCGTTCGACTCAGGTA -ACGGAAAACCGTTCGACTGACTCT -ACGGAAAACCGTTCGACTAGTCCT -ACGGAAAACCGTTCGACTTAAGCC -ACGGAAAACCGTTCGACTATAGCC -ACGGAAAACCGTTCGACTTAACCG -ACGGAAAACCGTTCGACTATGCCA -ACGGAAAACCGTGCATACGGAAAC -ACGGAAAACCGTGCATACAACACC -ACGGAAAACCGTGCATACATCGAG -ACGGAAAACCGTGCATACCTCCTT -ACGGAAAACCGTGCATACCCTGTT -ACGGAAAACCGTGCATACCGGTTT -ACGGAAAACCGTGCATACGTGGTT -ACGGAAAACCGTGCATACGCCTTT -ACGGAAAACCGTGCATACGGTCTT -ACGGAAAACCGTGCATACACGCTT -ACGGAAAACCGTGCATACAGCGTT -ACGGAAAACCGTGCATACTTCGTC -ACGGAAAACCGTGCATACTCTCTC -ACGGAAAACCGTGCATACTGGATC -ACGGAAAACCGTGCATACCACTTC -ACGGAAAACCGTGCATACGTACTC -ACGGAAAACCGTGCATACGATGTC -ACGGAAAACCGTGCATACACAGTC -ACGGAAAACCGTGCATACTTGCTG -ACGGAAAACCGTGCATACTCCATG -ACGGAAAACCGTGCATACTGTGTG -ACGGAAAACCGTGCATACCTAGTG -ACGGAAAACCGTGCATACCATCTG -ACGGAAAACCGTGCATACGAGTTG -ACGGAAAACCGTGCATACAGACTG -ACGGAAAACCGTGCATACTCGGTA -ACGGAAAACCGTGCATACTGCCTA -ACGGAAAACCGTGCATACCCACTA -ACGGAAAACCGTGCATACGGAGTA -ACGGAAAACCGTGCATACTCGTCT -ACGGAAAACCGTGCATACTGCACT -ACGGAAAACCGTGCATACCTGACT -ACGGAAAACCGTGCATACCAACCT -ACGGAAAACCGTGCATACGCTACT -ACGGAAAACCGTGCATACGGATCT -ACGGAAAACCGTGCATACAAGGCT -ACGGAAAACCGTGCATACTCAACC -ACGGAAAACCGTGCATACTGTTCC -ACGGAAAACCGTGCATACATTCCC -ACGGAAAACCGTGCATACTTCTCG -ACGGAAAACCGTGCATACTAGACG -ACGGAAAACCGTGCATACGTAACG -ACGGAAAACCGTGCATACACTTCG -ACGGAAAACCGTGCATACTACGCA -ACGGAAAACCGTGCATACCTTGCA -ACGGAAAACCGTGCATACCGAACA -ACGGAAAACCGTGCATACCAGTCA -ACGGAAAACCGTGCATACGATCCA -ACGGAAAACCGTGCATACACGACA -ACGGAAAACCGTGCATACAGCTCA -ACGGAAAACCGTGCATACTCACGT -ACGGAAAACCGTGCATACCGTAGT -ACGGAAAACCGTGCATACGTCAGT -ACGGAAAACCGTGCATACGAAGGT -ACGGAAAACCGTGCATACAACCGT -ACGGAAAACCGTGCATACTTGTGC -ACGGAAAACCGTGCATACCTAAGC -ACGGAAAACCGTGCATACACTAGC -ACGGAAAACCGTGCATACAGATGC -ACGGAAAACCGTGCATACTGAAGG -ACGGAAAACCGTGCATACCAATGG -ACGGAAAACCGTGCATACATGAGG -ACGGAAAACCGTGCATACAATGGG -ACGGAAAACCGTGCATACTCCTGA -ACGGAAAACCGTGCATACTAGCGA -ACGGAAAACCGTGCATACCACAGA -ACGGAAAACCGTGCATACGCAAGA -ACGGAAAACCGTGCATACGGTTGA -ACGGAAAACCGTGCATACTCCGAT -ACGGAAAACCGTGCATACTGGCAT -ACGGAAAACCGTGCATACCGAGAT -ACGGAAAACCGTGCATACTACCAC -ACGGAAAACCGTGCATACCAGAAC -ACGGAAAACCGTGCATACGTCTAC -ACGGAAAACCGTGCATACACGTAC -ACGGAAAACCGTGCATACAGTGAC -ACGGAAAACCGTGCATACCTGTAG -ACGGAAAACCGTGCATACCCTAAG -ACGGAAAACCGTGCATACGTTCAG -ACGGAAAACCGTGCATACGCATAG -ACGGAAAACCGTGCATACGACAAG -ACGGAAAACCGTGCATACAAGCAG -ACGGAAAACCGTGCATACCGTCAA -ACGGAAAACCGTGCATACGCTGAA -ACGGAAAACCGTGCATACAGTACG -ACGGAAAACCGTGCATACATCCGA -ACGGAAAACCGTGCATACATGGGA -ACGGAAAACCGTGCATACGTGCAA -ACGGAAAACCGTGCATACGAGGAA -ACGGAAAACCGTGCATACCAGGTA -ACGGAAAACCGTGCATACGACTCT -ACGGAAAACCGTGCATACAGTCCT -ACGGAAAACCGTGCATACTAAGCC -ACGGAAAACCGTGCATACATAGCC -ACGGAAAACCGTGCATACTAACCG -ACGGAAAACCGTGCATACATGCCA -ACGGAAAACCGTGCACTTGGAAAC -ACGGAAAACCGTGCACTTAACACC -ACGGAAAACCGTGCACTTATCGAG -ACGGAAAACCGTGCACTTCTCCTT -ACGGAAAACCGTGCACTTCCTGTT -ACGGAAAACCGTGCACTTCGGTTT -ACGGAAAACCGTGCACTTGTGGTT -ACGGAAAACCGTGCACTTGCCTTT -ACGGAAAACCGTGCACTTGGTCTT -ACGGAAAACCGTGCACTTACGCTT -ACGGAAAACCGTGCACTTAGCGTT -ACGGAAAACCGTGCACTTTTCGTC -ACGGAAAACCGTGCACTTTCTCTC -ACGGAAAACCGTGCACTTTGGATC -ACGGAAAACCGTGCACTTCACTTC -ACGGAAAACCGTGCACTTGTACTC -ACGGAAAACCGTGCACTTGATGTC -ACGGAAAACCGTGCACTTACAGTC -ACGGAAAACCGTGCACTTTTGCTG -ACGGAAAACCGTGCACTTTCCATG -ACGGAAAACCGTGCACTTTGTGTG -ACGGAAAACCGTGCACTTCTAGTG -ACGGAAAACCGTGCACTTCATCTG -ACGGAAAACCGTGCACTTGAGTTG -ACGGAAAACCGTGCACTTAGACTG -ACGGAAAACCGTGCACTTTCGGTA -ACGGAAAACCGTGCACTTTGCCTA -ACGGAAAACCGTGCACTTCCACTA -ACGGAAAACCGTGCACTTGGAGTA -ACGGAAAACCGTGCACTTTCGTCT -ACGGAAAACCGTGCACTTTGCACT -ACGGAAAACCGTGCACTTCTGACT -ACGGAAAACCGTGCACTTCAACCT -ACGGAAAACCGTGCACTTGCTACT -ACGGAAAACCGTGCACTTGGATCT -ACGGAAAACCGTGCACTTAAGGCT -ACGGAAAACCGTGCACTTTCAACC -ACGGAAAACCGTGCACTTTGTTCC -ACGGAAAACCGTGCACTTATTCCC -ACGGAAAACCGTGCACTTTTCTCG -ACGGAAAACCGTGCACTTTAGACG -ACGGAAAACCGTGCACTTGTAACG -ACGGAAAACCGTGCACTTACTTCG -ACGGAAAACCGTGCACTTTACGCA -ACGGAAAACCGTGCACTTCTTGCA -ACGGAAAACCGTGCACTTCGAACA -ACGGAAAACCGTGCACTTCAGTCA -ACGGAAAACCGTGCACTTGATCCA -ACGGAAAACCGTGCACTTACGACA -ACGGAAAACCGTGCACTTAGCTCA -ACGGAAAACCGTGCACTTTCACGT -ACGGAAAACCGTGCACTTCGTAGT -ACGGAAAACCGTGCACTTGTCAGT -ACGGAAAACCGTGCACTTGAAGGT -ACGGAAAACCGTGCACTTAACCGT -ACGGAAAACCGTGCACTTTTGTGC -ACGGAAAACCGTGCACTTCTAAGC -ACGGAAAACCGTGCACTTACTAGC -ACGGAAAACCGTGCACTTAGATGC -ACGGAAAACCGTGCACTTTGAAGG -ACGGAAAACCGTGCACTTCAATGG -ACGGAAAACCGTGCACTTATGAGG -ACGGAAAACCGTGCACTTAATGGG -ACGGAAAACCGTGCACTTTCCTGA -ACGGAAAACCGTGCACTTTAGCGA -ACGGAAAACCGTGCACTTCACAGA -ACGGAAAACCGTGCACTTGCAAGA -ACGGAAAACCGTGCACTTGGTTGA -ACGGAAAACCGTGCACTTTCCGAT -ACGGAAAACCGTGCACTTTGGCAT -ACGGAAAACCGTGCACTTCGAGAT -ACGGAAAACCGTGCACTTTACCAC -ACGGAAAACCGTGCACTTCAGAAC -ACGGAAAACCGTGCACTTGTCTAC -ACGGAAAACCGTGCACTTACGTAC -ACGGAAAACCGTGCACTTAGTGAC -ACGGAAAACCGTGCACTTCTGTAG -ACGGAAAACCGTGCACTTCCTAAG -ACGGAAAACCGTGCACTTGTTCAG -ACGGAAAACCGTGCACTTGCATAG -ACGGAAAACCGTGCACTTGACAAG -ACGGAAAACCGTGCACTTAAGCAG -ACGGAAAACCGTGCACTTCGTCAA -ACGGAAAACCGTGCACTTGCTGAA -ACGGAAAACCGTGCACTTAGTACG -ACGGAAAACCGTGCACTTATCCGA -ACGGAAAACCGTGCACTTATGGGA -ACGGAAAACCGTGCACTTGTGCAA -ACGGAAAACCGTGCACTTGAGGAA -ACGGAAAACCGTGCACTTCAGGTA -ACGGAAAACCGTGCACTTGACTCT -ACGGAAAACCGTGCACTTAGTCCT -ACGGAAAACCGTGCACTTTAAGCC -ACGGAAAACCGTGCACTTATAGCC -ACGGAAAACCGTGCACTTTAACCG -ACGGAAAACCGTGCACTTATGCCA -ACGGAAAACCGTACACGAGGAAAC -ACGGAAAACCGTACACGAAACACC -ACGGAAAACCGTACACGAATCGAG -ACGGAAAACCGTACACGACTCCTT -ACGGAAAACCGTACACGACCTGTT -ACGGAAAACCGTACACGACGGTTT -ACGGAAAACCGTACACGAGTGGTT -ACGGAAAACCGTACACGAGCCTTT -ACGGAAAACCGTACACGAGGTCTT -ACGGAAAACCGTACACGAACGCTT -ACGGAAAACCGTACACGAAGCGTT -ACGGAAAACCGTACACGATTCGTC -ACGGAAAACCGTACACGATCTCTC -ACGGAAAACCGTACACGATGGATC -ACGGAAAACCGTACACGACACTTC -ACGGAAAACCGTACACGAGTACTC -ACGGAAAACCGTACACGAGATGTC -ACGGAAAACCGTACACGAACAGTC -ACGGAAAACCGTACACGATTGCTG -ACGGAAAACCGTACACGATCCATG -ACGGAAAACCGTACACGATGTGTG -ACGGAAAACCGTACACGACTAGTG -ACGGAAAACCGTACACGACATCTG -ACGGAAAACCGTACACGAGAGTTG -ACGGAAAACCGTACACGAAGACTG -ACGGAAAACCGTACACGATCGGTA -ACGGAAAACCGTACACGATGCCTA -ACGGAAAACCGTACACGACCACTA -ACGGAAAACCGTACACGAGGAGTA -ACGGAAAACCGTACACGATCGTCT -ACGGAAAACCGTACACGATGCACT -ACGGAAAACCGTACACGACTGACT -ACGGAAAACCGTACACGACAACCT -ACGGAAAACCGTACACGAGCTACT -ACGGAAAACCGTACACGAGGATCT -ACGGAAAACCGTACACGAAAGGCT -ACGGAAAACCGTACACGATCAACC -ACGGAAAACCGTACACGATGTTCC -ACGGAAAACCGTACACGAATTCCC -ACGGAAAACCGTACACGATTCTCG -ACGGAAAACCGTACACGATAGACG -ACGGAAAACCGTACACGAGTAACG -ACGGAAAACCGTACACGAACTTCG -ACGGAAAACCGTACACGATACGCA -ACGGAAAACCGTACACGACTTGCA -ACGGAAAACCGTACACGACGAACA -ACGGAAAACCGTACACGACAGTCA -ACGGAAAACCGTACACGAGATCCA -ACGGAAAACCGTACACGAACGACA -ACGGAAAACCGTACACGAAGCTCA -ACGGAAAACCGTACACGATCACGT -ACGGAAAACCGTACACGACGTAGT -ACGGAAAACCGTACACGAGTCAGT -ACGGAAAACCGTACACGAGAAGGT -ACGGAAAACCGTACACGAAACCGT -ACGGAAAACCGTACACGATTGTGC -ACGGAAAACCGTACACGACTAAGC -ACGGAAAACCGTACACGAACTAGC -ACGGAAAACCGTACACGAAGATGC -ACGGAAAACCGTACACGATGAAGG -ACGGAAAACCGTACACGACAATGG -ACGGAAAACCGTACACGAATGAGG -ACGGAAAACCGTACACGAAATGGG -ACGGAAAACCGTACACGATCCTGA -ACGGAAAACCGTACACGATAGCGA -ACGGAAAACCGTACACGACACAGA -ACGGAAAACCGTACACGAGCAAGA -ACGGAAAACCGTACACGAGGTTGA -ACGGAAAACCGTACACGATCCGAT -ACGGAAAACCGTACACGATGGCAT -ACGGAAAACCGTACACGACGAGAT -ACGGAAAACCGTACACGATACCAC -ACGGAAAACCGTACACGACAGAAC -ACGGAAAACCGTACACGAGTCTAC -ACGGAAAACCGTACACGAACGTAC -ACGGAAAACCGTACACGAAGTGAC -ACGGAAAACCGTACACGACTGTAG -ACGGAAAACCGTACACGACCTAAG -ACGGAAAACCGTACACGAGTTCAG -ACGGAAAACCGTACACGAGCATAG -ACGGAAAACCGTACACGAGACAAG -ACGGAAAACCGTACACGAAAGCAG -ACGGAAAACCGTACACGACGTCAA -ACGGAAAACCGTACACGAGCTGAA -ACGGAAAACCGTACACGAAGTACG -ACGGAAAACCGTACACGAATCCGA -ACGGAAAACCGTACACGAATGGGA -ACGGAAAACCGTACACGAGTGCAA -ACGGAAAACCGTACACGAGAGGAA -ACGGAAAACCGTACACGACAGGTA -ACGGAAAACCGTACACGAGACTCT -ACGGAAAACCGTACACGAAGTCCT -ACGGAAAACCGTACACGATAAGCC -ACGGAAAACCGTACACGAATAGCC -ACGGAAAACCGTACACGATAACCG -ACGGAAAACCGTACACGAATGCCA -ACGGAAAACCGTTCACAGGGAAAC -ACGGAAAACCGTTCACAGAACACC -ACGGAAAACCGTTCACAGATCGAG -ACGGAAAACCGTTCACAGCTCCTT -ACGGAAAACCGTTCACAGCCTGTT -ACGGAAAACCGTTCACAGCGGTTT -ACGGAAAACCGTTCACAGGTGGTT -ACGGAAAACCGTTCACAGGCCTTT -ACGGAAAACCGTTCACAGGGTCTT -ACGGAAAACCGTTCACAGACGCTT -ACGGAAAACCGTTCACAGAGCGTT -ACGGAAAACCGTTCACAGTTCGTC -ACGGAAAACCGTTCACAGTCTCTC -ACGGAAAACCGTTCACAGTGGATC -ACGGAAAACCGTTCACAGCACTTC -ACGGAAAACCGTTCACAGGTACTC -ACGGAAAACCGTTCACAGGATGTC -ACGGAAAACCGTTCACAGACAGTC -ACGGAAAACCGTTCACAGTTGCTG -ACGGAAAACCGTTCACAGTCCATG -ACGGAAAACCGTTCACAGTGTGTG -ACGGAAAACCGTTCACAGCTAGTG -ACGGAAAACCGTTCACAGCATCTG -ACGGAAAACCGTTCACAGGAGTTG -ACGGAAAACCGTTCACAGAGACTG -ACGGAAAACCGTTCACAGTCGGTA -ACGGAAAACCGTTCACAGTGCCTA -ACGGAAAACCGTTCACAGCCACTA -ACGGAAAACCGTTCACAGGGAGTA -ACGGAAAACCGTTCACAGTCGTCT -ACGGAAAACCGTTCACAGTGCACT -ACGGAAAACCGTTCACAGCTGACT -ACGGAAAACCGTTCACAGCAACCT -ACGGAAAACCGTTCACAGGCTACT -ACGGAAAACCGTTCACAGGGATCT -ACGGAAAACCGTTCACAGAAGGCT -ACGGAAAACCGTTCACAGTCAACC -ACGGAAAACCGTTCACAGTGTTCC -ACGGAAAACCGTTCACAGATTCCC -ACGGAAAACCGTTCACAGTTCTCG -ACGGAAAACCGTTCACAGTAGACG -ACGGAAAACCGTTCACAGGTAACG -ACGGAAAACCGTTCACAGACTTCG -ACGGAAAACCGTTCACAGTACGCA -ACGGAAAACCGTTCACAGCTTGCA -ACGGAAAACCGTTCACAGCGAACA -ACGGAAAACCGTTCACAGCAGTCA -ACGGAAAACCGTTCACAGGATCCA -ACGGAAAACCGTTCACAGACGACA -ACGGAAAACCGTTCACAGAGCTCA -ACGGAAAACCGTTCACAGTCACGT -ACGGAAAACCGTTCACAGCGTAGT -ACGGAAAACCGTTCACAGGTCAGT -ACGGAAAACCGTTCACAGGAAGGT -ACGGAAAACCGTTCACAGAACCGT -ACGGAAAACCGTTCACAGTTGTGC -ACGGAAAACCGTTCACAGCTAAGC -ACGGAAAACCGTTCACAGACTAGC -ACGGAAAACCGTTCACAGAGATGC -ACGGAAAACCGTTCACAGTGAAGG -ACGGAAAACCGTTCACAGCAATGG -ACGGAAAACCGTTCACAGATGAGG -ACGGAAAACCGTTCACAGAATGGG -ACGGAAAACCGTTCACAGTCCTGA -ACGGAAAACCGTTCACAGTAGCGA -ACGGAAAACCGTTCACAGCACAGA -ACGGAAAACCGTTCACAGGCAAGA -ACGGAAAACCGTTCACAGGGTTGA -ACGGAAAACCGTTCACAGTCCGAT -ACGGAAAACCGTTCACAGTGGCAT -ACGGAAAACCGTTCACAGCGAGAT -ACGGAAAACCGTTCACAGTACCAC -ACGGAAAACCGTTCACAGCAGAAC -ACGGAAAACCGTTCACAGGTCTAC -ACGGAAAACCGTTCACAGACGTAC -ACGGAAAACCGTTCACAGAGTGAC -ACGGAAAACCGTTCACAGCTGTAG -ACGGAAAACCGTTCACAGCCTAAG -ACGGAAAACCGTTCACAGGTTCAG -ACGGAAAACCGTTCACAGGCATAG -ACGGAAAACCGTTCACAGGACAAG -ACGGAAAACCGTTCACAGAAGCAG -ACGGAAAACCGTTCACAGCGTCAA -ACGGAAAACCGTTCACAGGCTGAA -ACGGAAAACCGTTCACAGAGTACG -ACGGAAAACCGTTCACAGATCCGA -ACGGAAAACCGTTCACAGATGGGA -ACGGAAAACCGTTCACAGGTGCAA -ACGGAAAACCGTTCACAGGAGGAA -ACGGAAAACCGTTCACAGCAGGTA -ACGGAAAACCGTTCACAGGACTCT -ACGGAAAACCGTTCACAGAGTCCT -ACGGAAAACCGTTCACAGTAAGCC -ACGGAAAACCGTTCACAGATAGCC -ACGGAAAACCGTTCACAGTAACCG -ACGGAAAACCGTTCACAGATGCCA -ACGGAAAACCGTCCAGATGGAAAC -ACGGAAAACCGTCCAGATAACACC -ACGGAAAACCGTCCAGATATCGAG -ACGGAAAACCGTCCAGATCTCCTT -ACGGAAAACCGTCCAGATCCTGTT -ACGGAAAACCGTCCAGATCGGTTT -ACGGAAAACCGTCCAGATGTGGTT -ACGGAAAACCGTCCAGATGCCTTT -ACGGAAAACCGTCCAGATGGTCTT -ACGGAAAACCGTCCAGATACGCTT -ACGGAAAACCGTCCAGATAGCGTT -ACGGAAAACCGTCCAGATTTCGTC -ACGGAAAACCGTCCAGATTCTCTC -ACGGAAAACCGTCCAGATTGGATC -ACGGAAAACCGTCCAGATCACTTC -ACGGAAAACCGTCCAGATGTACTC -ACGGAAAACCGTCCAGATGATGTC -ACGGAAAACCGTCCAGATACAGTC -ACGGAAAACCGTCCAGATTTGCTG -ACGGAAAACCGTCCAGATTCCATG -ACGGAAAACCGTCCAGATTGTGTG -ACGGAAAACCGTCCAGATCTAGTG -ACGGAAAACCGTCCAGATCATCTG -ACGGAAAACCGTCCAGATGAGTTG -ACGGAAAACCGTCCAGATAGACTG -ACGGAAAACCGTCCAGATTCGGTA -ACGGAAAACCGTCCAGATTGCCTA -ACGGAAAACCGTCCAGATCCACTA -ACGGAAAACCGTCCAGATGGAGTA -ACGGAAAACCGTCCAGATTCGTCT -ACGGAAAACCGTCCAGATTGCACT -ACGGAAAACCGTCCAGATCTGACT -ACGGAAAACCGTCCAGATCAACCT -ACGGAAAACCGTCCAGATGCTACT -ACGGAAAACCGTCCAGATGGATCT -ACGGAAAACCGTCCAGATAAGGCT -ACGGAAAACCGTCCAGATTCAACC -ACGGAAAACCGTCCAGATTGTTCC -ACGGAAAACCGTCCAGATATTCCC -ACGGAAAACCGTCCAGATTTCTCG -ACGGAAAACCGTCCAGATTAGACG -ACGGAAAACCGTCCAGATGTAACG -ACGGAAAACCGTCCAGATACTTCG -ACGGAAAACCGTCCAGATTACGCA -ACGGAAAACCGTCCAGATCTTGCA -ACGGAAAACCGTCCAGATCGAACA -ACGGAAAACCGTCCAGATCAGTCA -ACGGAAAACCGTCCAGATGATCCA -ACGGAAAACCGTCCAGATACGACA -ACGGAAAACCGTCCAGATAGCTCA -ACGGAAAACCGTCCAGATTCACGT -ACGGAAAACCGTCCAGATCGTAGT -ACGGAAAACCGTCCAGATGTCAGT -ACGGAAAACCGTCCAGATGAAGGT -ACGGAAAACCGTCCAGATAACCGT -ACGGAAAACCGTCCAGATTTGTGC -ACGGAAAACCGTCCAGATCTAAGC -ACGGAAAACCGTCCAGATACTAGC -ACGGAAAACCGTCCAGATAGATGC -ACGGAAAACCGTCCAGATTGAAGG -ACGGAAAACCGTCCAGATCAATGG -ACGGAAAACCGTCCAGATATGAGG -ACGGAAAACCGTCCAGATAATGGG -ACGGAAAACCGTCCAGATTCCTGA -ACGGAAAACCGTCCAGATTAGCGA -ACGGAAAACCGTCCAGATCACAGA -ACGGAAAACCGTCCAGATGCAAGA -ACGGAAAACCGTCCAGATGGTTGA -ACGGAAAACCGTCCAGATTCCGAT -ACGGAAAACCGTCCAGATTGGCAT -ACGGAAAACCGTCCAGATCGAGAT -ACGGAAAACCGTCCAGATTACCAC -ACGGAAAACCGTCCAGATCAGAAC -ACGGAAAACCGTCCAGATGTCTAC -ACGGAAAACCGTCCAGATACGTAC -ACGGAAAACCGTCCAGATAGTGAC -ACGGAAAACCGTCCAGATCTGTAG -ACGGAAAACCGTCCAGATCCTAAG -ACGGAAAACCGTCCAGATGTTCAG -ACGGAAAACCGTCCAGATGCATAG -ACGGAAAACCGTCCAGATGACAAG -ACGGAAAACCGTCCAGATAAGCAG -ACGGAAAACCGTCCAGATCGTCAA -ACGGAAAACCGTCCAGATGCTGAA -ACGGAAAACCGTCCAGATAGTACG -ACGGAAAACCGTCCAGATATCCGA -ACGGAAAACCGTCCAGATATGGGA -ACGGAAAACCGTCCAGATGTGCAA -ACGGAAAACCGTCCAGATGAGGAA -ACGGAAAACCGTCCAGATCAGGTA -ACGGAAAACCGTCCAGATGACTCT -ACGGAAAACCGTCCAGATAGTCCT -ACGGAAAACCGTCCAGATTAAGCC -ACGGAAAACCGTCCAGATATAGCC -ACGGAAAACCGTCCAGATTAACCG -ACGGAAAACCGTCCAGATATGCCA -ACGGAAAACCGTACAACGGGAAAC -ACGGAAAACCGTACAACGAACACC -ACGGAAAACCGTACAACGATCGAG -ACGGAAAACCGTACAACGCTCCTT -ACGGAAAACCGTACAACGCCTGTT -ACGGAAAACCGTACAACGCGGTTT -ACGGAAAACCGTACAACGGTGGTT -ACGGAAAACCGTACAACGGCCTTT -ACGGAAAACCGTACAACGGGTCTT -ACGGAAAACCGTACAACGACGCTT -ACGGAAAACCGTACAACGAGCGTT -ACGGAAAACCGTACAACGTTCGTC -ACGGAAAACCGTACAACGTCTCTC -ACGGAAAACCGTACAACGTGGATC -ACGGAAAACCGTACAACGCACTTC -ACGGAAAACCGTACAACGGTACTC -ACGGAAAACCGTACAACGGATGTC -ACGGAAAACCGTACAACGACAGTC -ACGGAAAACCGTACAACGTTGCTG -ACGGAAAACCGTACAACGTCCATG -ACGGAAAACCGTACAACGTGTGTG -ACGGAAAACCGTACAACGCTAGTG -ACGGAAAACCGTACAACGCATCTG -ACGGAAAACCGTACAACGGAGTTG -ACGGAAAACCGTACAACGAGACTG -ACGGAAAACCGTACAACGTCGGTA -ACGGAAAACCGTACAACGTGCCTA -ACGGAAAACCGTACAACGCCACTA -ACGGAAAACCGTACAACGGGAGTA -ACGGAAAACCGTACAACGTCGTCT -ACGGAAAACCGTACAACGTGCACT -ACGGAAAACCGTACAACGCTGACT -ACGGAAAACCGTACAACGCAACCT -ACGGAAAACCGTACAACGGCTACT -ACGGAAAACCGTACAACGGGATCT -ACGGAAAACCGTACAACGAAGGCT -ACGGAAAACCGTACAACGTCAACC -ACGGAAAACCGTACAACGTGTTCC -ACGGAAAACCGTACAACGATTCCC -ACGGAAAACCGTACAACGTTCTCG -ACGGAAAACCGTACAACGTAGACG -ACGGAAAACCGTACAACGGTAACG -ACGGAAAACCGTACAACGACTTCG -ACGGAAAACCGTACAACGTACGCA -ACGGAAAACCGTACAACGCTTGCA -ACGGAAAACCGTACAACGCGAACA -ACGGAAAACCGTACAACGCAGTCA -ACGGAAAACCGTACAACGGATCCA -ACGGAAAACCGTACAACGACGACA -ACGGAAAACCGTACAACGAGCTCA -ACGGAAAACCGTACAACGTCACGT -ACGGAAAACCGTACAACGCGTAGT -ACGGAAAACCGTACAACGGTCAGT -ACGGAAAACCGTACAACGGAAGGT -ACGGAAAACCGTACAACGAACCGT -ACGGAAAACCGTACAACGTTGTGC -ACGGAAAACCGTACAACGCTAAGC -ACGGAAAACCGTACAACGACTAGC -ACGGAAAACCGTACAACGAGATGC -ACGGAAAACCGTACAACGTGAAGG -ACGGAAAACCGTACAACGCAATGG -ACGGAAAACCGTACAACGATGAGG -ACGGAAAACCGTACAACGAATGGG -ACGGAAAACCGTACAACGTCCTGA -ACGGAAAACCGTACAACGTAGCGA -ACGGAAAACCGTACAACGCACAGA -ACGGAAAACCGTACAACGGCAAGA -ACGGAAAACCGTACAACGGGTTGA -ACGGAAAACCGTACAACGTCCGAT -ACGGAAAACCGTACAACGTGGCAT -ACGGAAAACCGTACAACGCGAGAT -ACGGAAAACCGTACAACGTACCAC -ACGGAAAACCGTACAACGCAGAAC -ACGGAAAACCGTACAACGGTCTAC -ACGGAAAACCGTACAACGACGTAC -ACGGAAAACCGTACAACGAGTGAC -ACGGAAAACCGTACAACGCTGTAG -ACGGAAAACCGTACAACGCCTAAG -ACGGAAAACCGTACAACGGTTCAG -ACGGAAAACCGTACAACGGCATAG -ACGGAAAACCGTACAACGGACAAG -ACGGAAAACCGTACAACGAAGCAG -ACGGAAAACCGTACAACGCGTCAA -ACGGAAAACCGTACAACGGCTGAA -ACGGAAAACCGTACAACGAGTACG -ACGGAAAACCGTACAACGATCCGA -ACGGAAAACCGTACAACGATGGGA -ACGGAAAACCGTACAACGGTGCAA -ACGGAAAACCGTACAACGGAGGAA -ACGGAAAACCGTACAACGCAGGTA -ACGGAAAACCGTACAACGGACTCT -ACGGAAAACCGTACAACGAGTCCT -ACGGAAAACCGTACAACGTAAGCC -ACGGAAAACCGTACAACGATAGCC -ACGGAAAACCGTACAACGTAACCG -ACGGAAAACCGTACAACGATGCCA -ACGGAAAACCGTTCAAGCGGAAAC -ACGGAAAACCGTTCAAGCAACACC -ACGGAAAACCGTTCAAGCATCGAG -ACGGAAAACCGTTCAAGCCTCCTT -ACGGAAAACCGTTCAAGCCCTGTT -ACGGAAAACCGTTCAAGCCGGTTT -ACGGAAAACCGTTCAAGCGTGGTT -ACGGAAAACCGTTCAAGCGCCTTT -ACGGAAAACCGTTCAAGCGGTCTT -ACGGAAAACCGTTCAAGCACGCTT -ACGGAAAACCGTTCAAGCAGCGTT -ACGGAAAACCGTTCAAGCTTCGTC -ACGGAAAACCGTTCAAGCTCTCTC -ACGGAAAACCGTTCAAGCTGGATC -ACGGAAAACCGTTCAAGCCACTTC -ACGGAAAACCGTTCAAGCGTACTC -ACGGAAAACCGTTCAAGCGATGTC -ACGGAAAACCGTTCAAGCACAGTC -ACGGAAAACCGTTCAAGCTTGCTG -ACGGAAAACCGTTCAAGCTCCATG -ACGGAAAACCGTTCAAGCTGTGTG -ACGGAAAACCGTTCAAGCCTAGTG -ACGGAAAACCGTTCAAGCCATCTG -ACGGAAAACCGTTCAAGCGAGTTG -ACGGAAAACCGTTCAAGCAGACTG -ACGGAAAACCGTTCAAGCTCGGTA -ACGGAAAACCGTTCAAGCTGCCTA -ACGGAAAACCGTTCAAGCCCACTA -ACGGAAAACCGTTCAAGCGGAGTA -ACGGAAAACCGTTCAAGCTCGTCT -ACGGAAAACCGTTCAAGCTGCACT -ACGGAAAACCGTTCAAGCCTGACT -ACGGAAAACCGTTCAAGCCAACCT -ACGGAAAACCGTTCAAGCGCTACT -ACGGAAAACCGTTCAAGCGGATCT -ACGGAAAACCGTTCAAGCAAGGCT -ACGGAAAACCGTTCAAGCTCAACC -ACGGAAAACCGTTCAAGCTGTTCC -ACGGAAAACCGTTCAAGCATTCCC -ACGGAAAACCGTTCAAGCTTCTCG -ACGGAAAACCGTTCAAGCTAGACG -ACGGAAAACCGTTCAAGCGTAACG -ACGGAAAACCGTTCAAGCACTTCG -ACGGAAAACCGTTCAAGCTACGCA -ACGGAAAACCGTTCAAGCCTTGCA -ACGGAAAACCGTTCAAGCCGAACA -ACGGAAAACCGTTCAAGCCAGTCA -ACGGAAAACCGTTCAAGCGATCCA -ACGGAAAACCGTTCAAGCACGACA -ACGGAAAACCGTTCAAGCAGCTCA -ACGGAAAACCGTTCAAGCTCACGT -ACGGAAAACCGTTCAAGCCGTAGT -ACGGAAAACCGTTCAAGCGTCAGT -ACGGAAAACCGTTCAAGCGAAGGT -ACGGAAAACCGTTCAAGCAACCGT -ACGGAAAACCGTTCAAGCTTGTGC -ACGGAAAACCGTTCAAGCCTAAGC -ACGGAAAACCGTTCAAGCACTAGC -ACGGAAAACCGTTCAAGCAGATGC -ACGGAAAACCGTTCAAGCTGAAGG -ACGGAAAACCGTTCAAGCCAATGG -ACGGAAAACCGTTCAAGCATGAGG -ACGGAAAACCGTTCAAGCAATGGG -ACGGAAAACCGTTCAAGCTCCTGA -ACGGAAAACCGTTCAAGCTAGCGA -ACGGAAAACCGTTCAAGCCACAGA -ACGGAAAACCGTTCAAGCGCAAGA -ACGGAAAACCGTTCAAGCGGTTGA -ACGGAAAACCGTTCAAGCTCCGAT -ACGGAAAACCGTTCAAGCTGGCAT -ACGGAAAACCGTTCAAGCCGAGAT -ACGGAAAACCGTTCAAGCTACCAC -ACGGAAAACCGTTCAAGCCAGAAC -ACGGAAAACCGTTCAAGCGTCTAC -ACGGAAAACCGTTCAAGCACGTAC -ACGGAAAACCGTTCAAGCAGTGAC -ACGGAAAACCGTTCAAGCCTGTAG -ACGGAAAACCGTTCAAGCCCTAAG -ACGGAAAACCGTTCAAGCGTTCAG -ACGGAAAACCGTTCAAGCGCATAG -ACGGAAAACCGTTCAAGCGACAAG -ACGGAAAACCGTTCAAGCAAGCAG -ACGGAAAACCGTTCAAGCCGTCAA -ACGGAAAACCGTTCAAGCGCTGAA -ACGGAAAACCGTTCAAGCAGTACG -ACGGAAAACCGTTCAAGCATCCGA -ACGGAAAACCGTTCAAGCATGGGA -ACGGAAAACCGTTCAAGCGTGCAA -ACGGAAAACCGTTCAAGCGAGGAA -ACGGAAAACCGTTCAAGCCAGGTA -ACGGAAAACCGTTCAAGCGACTCT -ACGGAAAACCGTTCAAGCAGTCCT -ACGGAAAACCGTTCAAGCTAAGCC -ACGGAAAACCGTTCAAGCATAGCC -ACGGAAAACCGTTCAAGCTAACCG -ACGGAAAACCGTTCAAGCATGCCA -ACGGAAAACCGTCGTTCAGGAAAC -ACGGAAAACCGTCGTTCAAACACC -ACGGAAAACCGTCGTTCAATCGAG -ACGGAAAACCGTCGTTCACTCCTT -ACGGAAAACCGTCGTTCACCTGTT -ACGGAAAACCGTCGTTCACGGTTT -ACGGAAAACCGTCGTTCAGTGGTT -ACGGAAAACCGTCGTTCAGCCTTT -ACGGAAAACCGTCGTTCAGGTCTT -ACGGAAAACCGTCGTTCAACGCTT -ACGGAAAACCGTCGTTCAAGCGTT -ACGGAAAACCGTCGTTCATTCGTC -ACGGAAAACCGTCGTTCATCTCTC -ACGGAAAACCGTCGTTCATGGATC -ACGGAAAACCGTCGTTCACACTTC -ACGGAAAACCGTCGTTCAGTACTC -ACGGAAAACCGTCGTTCAGATGTC -ACGGAAAACCGTCGTTCAACAGTC -ACGGAAAACCGTCGTTCATTGCTG -ACGGAAAACCGTCGTTCATCCATG -ACGGAAAACCGTCGTTCATGTGTG -ACGGAAAACCGTCGTTCACTAGTG -ACGGAAAACCGTCGTTCACATCTG -ACGGAAAACCGTCGTTCAGAGTTG -ACGGAAAACCGTCGTTCAAGACTG -ACGGAAAACCGTCGTTCATCGGTA -ACGGAAAACCGTCGTTCATGCCTA -ACGGAAAACCGTCGTTCACCACTA -ACGGAAAACCGTCGTTCAGGAGTA -ACGGAAAACCGTCGTTCATCGTCT -ACGGAAAACCGTCGTTCATGCACT -ACGGAAAACCGTCGTTCACTGACT -ACGGAAAACCGTCGTTCACAACCT -ACGGAAAACCGTCGTTCAGCTACT -ACGGAAAACCGTCGTTCAGGATCT -ACGGAAAACCGTCGTTCAAAGGCT -ACGGAAAACCGTCGTTCATCAACC -ACGGAAAACCGTCGTTCATGTTCC -ACGGAAAACCGTCGTTCAATTCCC -ACGGAAAACCGTCGTTCATTCTCG -ACGGAAAACCGTCGTTCATAGACG -ACGGAAAACCGTCGTTCAGTAACG -ACGGAAAACCGTCGTTCAACTTCG -ACGGAAAACCGTCGTTCATACGCA -ACGGAAAACCGTCGTTCACTTGCA -ACGGAAAACCGTCGTTCACGAACA -ACGGAAAACCGTCGTTCACAGTCA -ACGGAAAACCGTCGTTCAGATCCA -ACGGAAAACCGTCGTTCAACGACA -ACGGAAAACCGTCGTTCAAGCTCA -ACGGAAAACCGTCGTTCATCACGT -ACGGAAAACCGTCGTTCACGTAGT -ACGGAAAACCGTCGTTCAGTCAGT -ACGGAAAACCGTCGTTCAGAAGGT -ACGGAAAACCGTCGTTCAAACCGT -ACGGAAAACCGTCGTTCATTGTGC -ACGGAAAACCGTCGTTCACTAAGC -ACGGAAAACCGTCGTTCAACTAGC -ACGGAAAACCGTCGTTCAAGATGC -ACGGAAAACCGTCGTTCATGAAGG -ACGGAAAACCGTCGTTCACAATGG -ACGGAAAACCGTCGTTCAATGAGG -ACGGAAAACCGTCGTTCAAATGGG -ACGGAAAACCGTCGTTCATCCTGA -ACGGAAAACCGTCGTTCATAGCGA -ACGGAAAACCGTCGTTCACACAGA -ACGGAAAACCGTCGTTCAGCAAGA -ACGGAAAACCGTCGTTCAGGTTGA -ACGGAAAACCGTCGTTCATCCGAT -ACGGAAAACCGTCGTTCATGGCAT -ACGGAAAACCGTCGTTCACGAGAT -ACGGAAAACCGTCGTTCATACCAC -ACGGAAAACCGTCGTTCACAGAAC -ACGGAAAACCGTCGTTCAGTCTAC -ACGGAAAACCGTCGTTCAACGTAC -ACGGAAAACCGTCGTTCAAGTGAC -ACGGAAAACCGTCGTTCACTGTAG -ACGGAAAACCGTCGTTCACCTAAG -ACGGAAAACCGTCGTTCAGTTCAG -ACGGAAAACCGTCGTTCAGCATAG -ACGGAAAACCGTCGTTCAGACAAG -ACGGAAAACCGTCGTTCAAAGCAG -ACGGAAAACCGTCGTTCACGTCAA -ACGGAAAACCGTCGTTCAGCTGAA -ACGGAAAACCGTCGTTCAAGTACG -ACGGAAAACCGTCGTTCAATCCGA -ACGGAAAACCGTCGTTCAATGGGA -ACGGAAAACCGTCGTTCAGTGCAA -ACGGAAAACCGTCGTTCAGAGGAA -ACGGAAAACCGTCGTTCACAGGTA -ACGGAAAACCGTCGTTCAGACTCT -ACGGAAAACCGTCGTTCAAGTCCT -ACGGAAAACCGTCGTTCATAAGCC -ACGGAAAACCGTCGTTCAATAGCC -ACGGAAAACCGTCGTTCATAACCG -ACGGAAAACCGTCGTTCAATGCCA -ACGGAAAACCGTAGTCGTGGAAAC -ACGGAAAACCGTAGTCGTAACACC -ACGGAAAACCGTAGTCGTATCGAG -ACGGAAAACCGTAGTCGTCTCCTT -ACGGAAAACCGTAGTCGTCCTGTT -ACGGAAAACCGTAGTCGTCGGTTT -ACGGAAAACCGTAGTCGTGTGGTT -ACGGAAAACCGTAGTCGTGCCTTT -ACGGAAAACCGTAGTCGTGGTCTT -ACGGAAAACCGTAGTCGTACGCTT -ACGGAAAACCGTAGTCGTAGCGTT -ACGGAAAACCGTAGTCGTTTCGTC -ACGGAAAACCGTAGTCGTTCTCTC -ACGGAAAACCGTAGTCGTTGGATC -ACGGAAAACCGTAGTCGTCACTTC -ACGGAAAACCGTAGTCGTGTACTC -ACGGAAAACCGTAGTCGTGATGTC -ACGGAAAACCGTAGTCGTACAGTC -ACGGAAAACCGTAGTCGTTTGCTG -ACGGAAAACCGTAGTCGTTCCATG -ACGGAAAACCGTAGTCGTTGTGTG -ACGGAAAACCGTAGTCGTCTAGTG -ACGGAAAACCGTAGTCGTCATCTG -ACGGAAAACCGTAGTCGTGAGTTG -ACGGAAAACCGTAGTCGTAGACTG -ACGGAAAACCGTAGTCGTTCGGTA -ACGGAAAACCGTAGTCGTTGCCTA -ACGGAAAACCGTAGTCGTCCACTA -ACGGAAAACCGTAGTCGTGGAGTA -ACGGAAAACCGTAGTCGTTCGTCT -ACGGAAAACCGTAGTCGTTGCACT -ACGGAAAACCGTAGTCGTCTGACT -ACGGAAAACCGTAGTCGTCAACCT -ACGGAAAACCGTAGTCGTGCTACT -ACGGAAAACCGTAGTCGTGGATCT -ACGGAAAACCGTAGTCGTAAGGCT -ACGGAAAACCGTAGTCGTTCAACC -ACGGAAAACCGTAGTCGTTGTTCC -ACGGAAAACCGTAGTCGTATTCCC -ACGGAAAACCGTAGTCGTTTCTCG -ACGGAAAACCGTAGTCGTTAGACG -ACGGAAAACCGTAGTCGTGTAACG -ACGGAAAACCGTAGTCGTACTTCG -ACGGAAAACCGTAGTCGTTACGCA -ACGGAAAACCGTAGTCGTCTTGCA -ACGGAAAACCGTAGTCGTCGAACA -ACGGAAAACCGTAGTCGTCAGTCA -ACGGAAAACCGTAGTCGTGATCCA -ACGGAAAACCGTAGTCGTACGACA -ACGGAAAACCGTAGTCGTAGCTCA -ACGGAAAACCGTAGTCGTTCACGT -ACGGAAAACCGTAGTCGTCGTAGT -ACGGAAAACCGTAGTCGTGTCAGT -ACGGAAAACCGTAGTCGTGAAGGT -ACGGAAAACCGTAGTCGTAACCGT -ACGGAAAACCGTAGTCGTTTGTGC -ACGGAAAACCGTAGTCGTCTAAGC -ACGGAAAACCGTAGTCGTACTAGC -ACGGAAAACCGTAGTCGTAGATGC -ACGGAAAACCGTAGTCGTTGAAGG -ACGGAAAACCGTAGTCGTCAATGG -ACGGAAAACCGTAGTCGTATGAGG -ACGGAAAACCGTAGTCGTAATGGG -ACGGAAAACCGTAGTCGTTCCTGA -ACGGAAAACCGTAGTCGTTAGCGA -ACGGAAAACCGTAGTCGTCACAGA -ACGGAAAACCGTAGTCGTGCAAGA -ACGGAAAACCGTAGTCGTGGTTGA -ACGGAAAACCGTAGTCGTTCCGAT -ACGGAAAACCGTAGTCGTTGGCAT -ACGGAAAACCGTAGTCGTCGAGAT -ACGGAAAACCGTAGTCGTTACCAC -ACGGAAAACCGTAGTCGTCAGAAC -ACGGAAAACCGTAGTCGTGTCTAC -ACGGAAAACCGTAGTCGTACGTAC -ACGGAAAACCGTAGTCGTAGTGAC -ACGGAAAACCGTAGTCGTCTGTAG -ACGGAAAACCGTAGTCGTCCTAAG -ACGGAAAACCGTAGTCGTGTTCAG -ACGGAAAACCGTAGTCGTGCATAG -ACGGAAAACCGTAGTCGTGACAAG -ACGGAAAACCGTAGTCGTAAGCAG -ACGGAAAACCGTAGTCGTCGTCAA -ACGGAAAACCGTAGTCGTGCTGAA -ACGGAAAACCGTAGTCGTAGTACG -ACGGAAAACCGTAGTCGTATCCGA -ACGGAAAACCGTAGTCGTATGGGA -ACGGAAAACCGTAGTCGTGTGCAA -ACGGAAAACCGTAGTCGTGAGGAA -ACGGAAAACCGTAGTCGTCAGGTA -ACGGAAAACCGTAGTCGTGACTCT -ACGGAAAACCGTAGTCGTAGTCCT -ACGGAAAACCGTAGTCGTTAAGCC -ACGGAAAACCGTAGTCGTATAGCC -ACGGAAAACCGTAGTCGTTAACCG -ACGGAAAACCGTAGTCGTATGCCA -ACGGAAAACCGTAGTGTCGGAAAC -ACGGAAAACCGTAGTGTCAACACC -ACGGAAAACCGTAGTGTCATCGAG -ACGGAAAACCGTAGTGTCCTCCTT -ACGGAAAACCGTAGTGTCCCTGTT -ACGGAAAACCGTAGTGTCCGGTTT -ACGGAAAACCGTAGTGTCGTGGTT -ACGGAAAACCGTAGTGTCGCCTTT -ACGGAAAACCGTAGTGTCGGTCTT -ACGGAAAACCGTAGTGTCACGCTT -ACGGAAAACCGTAGTGTCAGCGTT -ACGGAAAACCGTAGTGTCTTCGTC -ACGGAAAACCGTAGTGTCTCTCTC -ACGGAAAACCGTAGTGTCTGGATC -ACGGAAAACCGTAGTGTCCACTTC -ACGGAAAACCGTAGTGTCGTACTC -ACGGAAAACCGTAGTGTCGATGTC -ACGGAAAACCGTAGTGTCACAGTC -ACGGAAAACCGTAGTGTCTTGCTG -ACGGAAAACCGTAGTGTCTCCATG -ACGGAAAACCGTAGTGTCTGTGTG -ACGGAAAACCGTAGTGTCCTAGTG -ACGGAAAACCGTAGTGTCCATCTG -ACGGAAAACCGTAGTGTCGAGTTG -ACGGAAAACCGTAGTGTCAGACTG -ACGGAAAACCGTAGTGTCTCGGTA -ACGGAAAACCGTAGTGTCTGCCTA -ACGGAAAACCGTAGTGTCCCACTA -ACGGAAAACCGTAGTGTCGGAGTA -ACGGAAAACCGTAGTGTCTCGTCT -ACGGAAAACCGTAGTGTCTGCACT -ACGGAAAACCGTAGTGTCCTGACT -ACGGAAAACCGTAGTGTCCAACCT -ACGGAAAACCGTAGTGTCGCTACT -ACGGAAAACCGTAGTGTCGGATCT -ACGGAAAACCGTAGTGTCAAGGCT -ACGGAAAACCGTAGTGTCTCAACC -ACGGAAAACCGTAGTGTCTGTTCC -ACGGAAAACCGTAGTGTCATTCCC -ACGGAAAACCGTAGTGTCTTCTCG -ACGGAAAACCGTAGTGTCTAGACG -ACGGAAAACCGTAGTGTCGTAACG -ACGGAAAACCGTAGTGTCACTTCG -ACGGAAAACCGTAGTGTCTACGCA -ACGGAAAACCGTAGTGTCCTTGCA -ACGGAAAACCGTAGTGTCCGAACA -ACGGAAAACCGTAGTGTCCAGTCA -ACGGAAAACCGTAGTGTCGATCCA -ACGGAAAACCGTAGTGTCACGACA -ACGGAAAACCGTAGTGTCAGCTCA -ACGGAAAACCGTAGTGTCTCACGT -ACGGAAAACCGTAGTGTCCGTAGT -ACGGAAAACCGTAGTGTCGTCAGT -ACGGAAAACCGTAGTGTCGAAGGT -ACGGAAAACCGTAGTGTCAACCGT -ACGGAAAACCGTAGTGTCTTGTGC -ACGGAAAACCGTAGTGTCCTAAGC -ACGGAAAACCGTAGTGTCACTAGC -ACGGAAAACCGTAGTGTCAGATGC -ACGGAAAACCGTAGTGTCTGAAGG -ACGGAAAACCGTAGTGTCCAATGG -ACGGAAAACCGTAGTGTCATGAGG -ACGGAAAACCGTAGTGTCAATGGG -ACGGAAAACCGTAGTGTCTCCTGA -ACGGAAAACCGTAGTGTCTAGCGA -ACGGAAAACCGTAGTGTCCACAGA -ACGGAAAACCGTAGTGTCGCAAGA -ACGGAAAACCGTAGTGTCGGTTGA -ACGGAAAACCGTAGTGTCTCCGAT -ACGGAAAACCGTAGTGTCTGGCAT -ACGGAAAACCGTAGTGTCCGAGAT -ACGGAAAACCGTAGTGTCTACCAC -ACGGAAAACCGTAGTGTCCAGAAC -ACGGAAAACCGTAGTGTCGTCTAC -ACGGAAAACCGTAGTGTCACGTAC -ACGGAAAACCGTAGTGTCAGTGAC -ACGGAAAACCGTAGTGTCCTGTAG -ACGGAAAACCGTAGTGTCCCTAAG -ACGGAAAACCGTAGTGTCGTTCAG -ACGGAAAACCGTAGTGTCGCATAG -ACGGAAAACCGTAGTGTCGACAAG -ACGGAAAACCGTAGTGTCAAGCAG -ACGGAAAACCGTAGTGTCCGTCAA -ACGGAAAACCGTAGTGTCGCTGAA -ACGGAAAACCGTAGTGTCAGTACG -ACGGAAAACCGTAGTGTCATCCGA -ACGGAAAACCGTAGTGTCATGGGA -ACGGAAAACCGTAGTGTCGTGCAA -ACGGAAAACCGTAGTGTCGAGGAA -ACGGAAAACCGTAGTGTCCAGGTA -ACGGAAAACCGTAGTGTCGACTCT -ACGGAAAACCGTAGTGTCAGTCCT -ACGGAAAACCGTAGTGTCTAAGCC -ACGGAAAACCGTAGTGTCATAGCC -ACGGAAAACCGTAGTGTCTAACCG -ACGGAAAACCGTAGTGTCATGCCA -ACGGAAAACCGTGGTGAAGGAAAC -ACGGAAAACCGTGGTGAAAACACC -ACGGAAAACCGTGGTGAAATCGAG -ACGGAAAACCGTGGTGAACTCCTT -ACGGAAAACCGTGGTGAACCTGTT -ACGGAAAACCGTGGTGAACGGTTT -ACGGAAAACCGTGGTGAAGTGGTT -ACGGAAAACCGTGGTGAAGCCTTT -ACGGAAAACCGTGGTGAAGGTCTT -ACGGAAAACCGTGGTGAAACGCTT -ACGGAAAACCGTGGTGAAAGCGTT -ACGGAAAACCGTGGTGAATTCGTC -ACGGAAAACCGTGGTGAATCTCTC -ACGGAAAACCGTGGTGAATGGATC -ACGGAAAACCGTGGTGAACACTTC -ACGGAAAACCGTGGTGAAGTACTC -ACGGAAAACCGTGGTGAAGATGTC -ACGGAAAACCGTGGTGAAACAGTC -ACGGAAAACCGTGGTGAATTGCTG -ACGGAAAACCGTGGTGAATCCATG -ACGGAAAACCGTGGTGAATGTGTG -ACGGAAAACCGTGGTGAACTAGTG -ACGGAAAACCGTGGTGAACATCTG -ACGGAAAACCGTGGTGAAGAGTTG -ACGGAAAACCGTGGTGAAAGACTG -ACGGAAAACCGTGGTGAATCGGTA -ACGGAAAACCGTGGTGAATGCCTA -ACGGAAAACCGTGGTGAACCACTA -ACGGAAAACCGTGGTGAAGGAGTA -ACGGAAAACCGTGGTGAATCGTCT -ACGGAAAACCGTGGTGAATGCACT -ACGGAAAACCGTGGTGAACTGACT -ACGGAAAACCGTGGTGAACAACCT -ACGGAAAACCGTGGTGAAGCTACT -ACGGAAAACCGTGGTGAAGGATCT -ACGGAAAACCGTGGTGAAAAGGCT -ACGGAAAACCGTGGTGAATCAACC -ACGGAAAACCGTGGTGAATGTTCC -ACGGAAAACCGTGGTGAAATTCCC -ACGGAAAACCGTGGTGAATTCTCG -ACGGAAAACCGTGGTGAATAGACG -ACGGAAAACCGTGGTGAAGTAACG -ACGGAAAACCGTGGTGAAACTTCG -ACGGAAAACCGTGGTGAATACGCA -ACGGAAAACCGTGGTGAACTTGCA -ACGGAAAACCGTGGTGAACGAACA -ACGGAAAACCGTGGTGAACAGTCA -ACGGAAAACCGTGGTGAAGATCCA -ACGGAAAACCGTGGTGAAACGACA -ACGGAAAACCGTGGTGAAAGCTCA -ACGGAAAACCGTGGTGAATCACGT -ACGGAAAACCGTGGTGAACGTAGT -ACGGAAAACCGTGGTGAAGTCAGT -ACGGAAAACCGTGGTGAAGAAGGT -ACGGAAAACCGTGGTGAAAACCGT -ACGGAAAACCGTGGTGAATTGTGC -ACGGAAAACCGTGGTGAACTAAGC -ACGGAAAACCGTGGTGAAACTAGC -ACGGAAAACCGTGGTGAAAGATGC -ACGGAAAACCGTGGTGAATGAAGG -ACGGAAAACCGTGGTGAACAATGG -ACGGAAAACCGTGGTGAAATGAGG -ACGGAAAACCGTGGTGAAAATGGG -ACGGAAAACCGTGGTGAATCCTGA -ACGGAAAACCGTGGTGAATAGCGA -ACGGAAAACCGTGGTGAACACAGA -ACGGAAAACCGTGGTGAAGCAAGA -ACGGAAAACCGTGGTGAAGGTTGA -ACGGAAAACCGTGGTGAATCCGAT -ACGGAAAACCGTGGTGAATGGCAT -ACGGAAAACCGTGGTGAACGAGAT -ACGGAAAACCGTGGTGAATACCAC -ACGGAAAACCGTGGTGAACAGAAC -ACGGAAAACCGTGGTGAAGTCTAC -ACGGAAAACCGTGGTGAAACGTAC -ACGGAAAACCGTGGTGAAAGTGAC -ACGGAAAACCGTGGTGAACTGTAG -ACGGAAAACCGTGGTGAACCTAAG -ACGGAAAACCGTGGTGAAGTTCAG -ACGGAAAACCGTGGTGAAGCATAG -ACGGAAAACCGTGGTGAAGACAAG -ACGGAAAACCGTGGTGAAAAGCAG -ACGGAAAACCGTGGTGAACGTCAA -ACGGAAAACCGTGGTGAAGCTGAA -ACGGAAAACCGTGGTGAAAGTACG -ACGGAAAACCGTGGTGAAATCCGA -ACGGAAAACCGTGGTGAAATGGGA -ACGGAAAACCGTGGTGAAGTGCAA -ACGGAAAACCGTGGTGAAGAGGAA -ACGGAAAACCGTGGTGAACAGGTA -ACGGAAAACCGTGGTGAAGACTCT -ACGGAAAACCGTGGTGAAAGTCCT -ACGGAAAACCGTGGTGAATAAGCC -ACGGAAAACCGTGGTGAAATAGCC -ACGGAAAACCGTGGTGAATAACCG -ACGGAAAACCGTGGTGAAATGCCA -ACGGAAAACCGTCGTAACGGAAAC -ACGGAAAACCGTCGTAACAACACC -ACGGAAAACCGTCGTAACATCGAG -ACGGAAAACCGTCGTAACCTCCTT -ACGGAAAACCGTCGTAACCCTGTT -ACGGAAAACCGTCGTAACCGGTTT -ACGGAAAACCGTCGTAACGTGGTT -ACGGAAAACCGTCGTAACGCCTTT -ACGGAAAACCGTCGTAACGGTCTT -ACGGAAAACCGTCGTAACACGCTT -ACGGAAAACCGTCGTAACAGCGTT -ACGGAAAACCGTCGTAACTTCGTC -ACGGAAAACCGTCGTAACTCTCTC -ACGGAAAACCGTCGTAACTGGATC -ACGGAAAACCGTCGTAACCACTTC -ACGGAAAACCGTCGTAACGTACTC -ACGGAAAACCGTCGTAACGATGTC -ACGGAAAACCGTCGTAACACAGTC -ACGGAAAACCGTCGTAACTTGCTG -ACGGAAAACCGTCGTAACTCCATG -ACGGAAAACCGTCGTAACTGTGTG -ACGGAAAACCGTCGTAACCTAGTG -ACGGAAAACCGTCGTAACCATCTG -ACGGAAAACCGTCGTAACGAGTTG -ACGGAAAACCGTCGTAACAGACTG -ACGGAAAACCGTCGTAACTCGGTA -ACGGAAAACCGTCGTAACTGCCTA -ACGGAAAACCGTCGTAACCCACTA -ACGGAAAACCGTCGTAACGGAGTA -ACGGAAAACCGTCGTAACTCGTCT -ACGGAAAACCGTCGTAACTGCACT -ACGGAAAACCGTCGTAACCTGACT -ACGGAAAACCGTCGTAACCAACCT -ACGGAAAACCGTCGTAACGCTACT -ACGGAAAACCGTCGTAACGGATCT -ACGGAAAACCGTCGTAACAAGGCT -ACGGAAAACCGTCGTAACTCAACC -ACGGAAAACCGTCGTAACTGTTCC -ACGGAAAACCGTCGTAACATTCCC -ACGGAAAACCGTCGTAACTTCTCG -ACGGAAAACCGTCGTAACTAGACG -ACGGAAAACCGTCGTAACGTAACG -ACGGAAAACCGTCGTAACACTTCG -ACGGAAAACCGTCGTAACTACGCA -ACGGAAAACCGTCGTAACCTTGCA -ACGGAAAACCGTCGTAACCGAACA -ACGGAAAACCGTCGTAACCAGTCA -ACGGAAAACCGTCGTAACGATCCA -ACGGAAAACCGTCGTAACACGACA -ACGGAAAACCGTCGTAACAGCTCA -ACGGAAAACCGTCGTAACTCACGT -ACGGAAAACCGTCGTAACCGTAGT -ACGGAAAACCGTCGTAACGTCAGT -ACGGAAAACCGTCGTAACGAAGGT -ACGGAAAACCGTCGTAACAACCGT -ACGGAAAACCGTCGTAACTTGTGC -ACGGAAAACCGTCGTAACCTAAGC -ACGGAAAACCGTCGTAACACTAGC -ACGGAAAACCGTCGTAACAGATGC -ACGGAAAACCGTCGTAACTGAAGG -ACGGAAAACCGTCGTAACCAATGG -ACGGAAAACCGTCGTAACATGAGG -ACGGAAAACCGTCGTAACAATGGG -ACGGAAAACCGTCGTAACTCCTGA -ACGGAAAACCGTCGTAACTAGCGA -ACGGAAAACCGTCGTAACCACAGA -ACGGAAAACCGTCGTAACGCAAGA -ACGGAAAACCGTCGTAACGGTTGA -ACGGAAAACCGTCGTAACTCCGAT -ACGGAAAACCGTCGTAACTGGCAT -ACGGAAAACCGTCGTAACCGAGAT -ACGGAAAACCGTCGTAACTACCAC -ACGGAAAACCGTCGTAACCAGAAC -ACGGAAAACCGTCGTAACGTCTAC -ACGGAAAACCGTCGTAACACGTAC -ACGGAAAACCGTCGTAACAGTGAC -ACGGAAAACCGTCGTAACCTGTAG -ACGGAAAACCGTCGTAACCCTAAG -ACGGAAAACCGTCGTAACGTTCAG -ACGGAAAACCGTCGTAACGCATAG -ACGGAAAACCGTCGTAACGACAAG -ACGGAAAACCGTCGTAACAAGCAG -ACGGAAAACCGTCGTAACCGTCAA -ACGGAAAACCGTCGTAACGCTGAA -ACGGAAAACCGTCGTAACAGTACG -ACGGAAAACCGTCGTAACATCCGA -ACGGAAAACCGTCGTAACATGGGA -ACGGAAAACCGTCGTAACGTGCAA -ACGGAAAACCGTCGTAACGAGGAA -ACGGAAAACCGTCGTAACCAGGTA -ACGGAAAACCGTCGTAACGACTCT -ACGGAAAACCGTCGTAACAGTCCT -ACGGAAAACCGTCGTAACTAAGCC -ACGGAAAACCGTCGTAACATAGCC -ACGGAAAACCGTCGTAACTAACCG -ACGGAAAACCGTCGTAACATGCCA -ACGGAAAACCGTTGCTTGGGAAAC -ACGGAAAACCGTTGCTTGAACACC -ACGGAAAACCGTTGCTTGATCGAG -ACGGAAAACCGTTGCTTGCTCCTT -ACGGAAAACCGTTGCTTGCCTGTT -ACGGAAAACCGTTGCTTGCGGTTT -ACGGAAAACCGTTGCTTGGTGGTT -ACGGAAAACCGTTGCTTGGCCTTT -ACGGAAAACCGTTGCTTGGGTCTT -ACGGAAAACCGTTGCTTGACGCTT -ACGGAAAACCGTTGCTTGAGCGTT -ACGGAAAACCGTTGCTTGTTCGTC -ACGGAAAACCGTTGCTTGTCTCTC -ACGGAAAACCGTTGCTTGTGGATC -ACGGAAAACCGTTGCTTGCACTTC -ACGGAAAACCGTTGCTTGGTACTC -ACGGAAAACCGTTGCTTGGATGTC -ACGGAAAACCGTTGCTTGACAGTC -ACGGAAAACCGTTGCTTGTTGCTG -ACGGAAAACCGTTGCTTGTCCATG -ACGGAAAACCGTTGCTTGTGTGTG -ACGGAAAACCGTTGCTTGCTAGTG -ACGGAAAACCGTTGCTTGCATCTG -ACGGAAAACCGTTGCTTGGAGTTG -ACGGAAAACCGTTGCTTGAGACTG -ACGGAAAACCGTTGCTTGTCGGTA -ACGGAAAACCGTTGCTTGTGCCTA -ACGGAAAACCGTTGCTTGCCACTA -ACGGAAAACCGTTGCTTGGGAGTA -ACGGAAAACCGTTGCTTGTCGTCT -ACGGAAAACCGTTGCTTGTGCACT -ACGGAAAACCGTTGCTTGCTGACT -ACGGAAAACCGTTGCTTGCAACCT -ACGGAAAACCGTTGCTTGGCTACT -ACGGAAAACCGTTGCTTGGGATCT -ACGGAAAACCGTTGCTTGAAGGCT -ACGGAAAACCGTTGCTTGTCAACC -ACGGAAAACCGTTGCTTGTGTTCC -ACGGAAAACCGTTGCTTGATTCCC -ACGGAAAACCGTTGCTTGTTCTCG -ACGGAAAACCGTTGCTTGTAGACG -ACGGAAAACCGTTGCTTGGTAACG -ACGGAAAACCGTTGCTTGACTTCG -ACGGAAAACCGTTGCTTGTACGCA -ACGGAAAACCGTTGCTTGCTTGCA -ACGGAAAACCGTTGCTTGCGAACA -ACGGAAAACCGTTGCTTGCAGTCA -ACGGAAAACCGTTGCTTGGATCCA -ACGGAAAACCGTTGCTTGACGACA -ACGGAAAACCGTTGCTTGAGCTCA -ACGGAAAACCGTTGCTTGTCACGT -ACGGAAAACCGTTGCTTGCGTAGT -ACGGAAAACCGTTGCTTGGTCAGT -ACGGAAAACCGTTGCTTGGAAGGT -ACGGAAAACCGTTGCTTGAACCGT -ACGGAAAACCGTTGCTTGTTGTGC -ACGGAAAACCGTTGCTTGCTAAGC -ACGGAAAACCGTTGCTTGACTAGC -ACGGAAAACCGTTGCTTGAGATGC -ACGGAAAACCGTTGCTTGTGAAGG -ACGGAAAACCGTTGCTTGCAATGG -ACGGAAAACCGTTGCTTGATGAGG -ACGGAAAACCGTTGCTTGAATGGG -ACGGAAAACCGTTGCTTGTCCTGA -ACGGAAAACCGTTGCTTGTAGCGA -ACGGAAAACCGTTGCTTGCACAGA -ACGGAAAACCGTTGCTTGGCAAGA -ACGGAAAACCGTTGCTTGGGTTGA -ACGGAAAACCGTTGCTTGTCCGAT -ACGGAAAACCGTTGCTTGTGGCAT -ACGGAAAACCGTTGCTTGCGAGAT -ACGGAAAACCGTTGCTTGTACCAC -ACGGAAAACCGTTGCTTGCAGAAC -ACGGAAAACCGTTGCTTGGTCTAC -ACGGAAAACCGTTGCTTGACGTAC -ACGGAAAACCGTTGCTTGAGTGAC -ACGGAAAACCGTTGCTTGCTGTAG -ACGGAAAACCGTTGCTTGCCTAAG -ACGGAAAACCGTTGCTTGGTTCAG -ACGGAAAACCGTTGCTTGGCATAG -ACGGAAAACCGTTGCTTGGACAAG -ACGGAAAACCGTTGCTTGAAGCAG -ACGGAAAACCGTTGCTTGCGTCAA -ACGGAAAACCGTTGCTTGGCTGAA -ACGGAAAACCGTTGCTTGAGTACG -ACGGAAAACCGTTGCTTGATCCGA -ACGGAAAACCGTTGCTTGATGGGA -ACGGAAAACCGTTGCTTGGTGCAA -ACGGAAAACCGTTGCTTGGAGGAA -ACGGAAAACCGTTGCTTGCAGGTA -ACGGAAAACCGTTGCTTGGACTCT -ACGGAAAACCGTTGCTTGAGTCCT -ACGGAAAACCGTTGCTTGTAAGCC -ACGGAAAACCGTTGCTTGATAGCC -ACGGAAAACCGTTGCTTGTAACCG -ACGGAAAACCGTTGCTTGATGCCA -ACGGAAAACCGTAGCCTAGGAAAC -ACGGAAAACCGTAGCCTAAACACC -ACGGAAAACCGTAGCCTAATCGAG -ACGGAAAACCGTAGCCTACTCCTT -ACGGAAAACCGTAGCCTACCTGTT -ACGGAAAACCGTAGCCTACGGTTT -ACGGAAAACCGTAGCCTAGTGGTT -ACGGAAAACCGTAGCCTAGCCTTT -ACGGAAAACCGTAGCCTAGGTCTT -ACGGAAAACCGTAGCCTAACGCTT -ACGGAAAACCGTAGCCTAAGCGTT -ACGGAAAACCGTAGCCTATTCGTC -ACGGAAAACCGTAGCCTATCTCTC -ACGGAAAACCGTAGCCTATGGATC -ACGGAAAACCGTAGCCTACACTTC -ACGGAAAACCGTAGCCTAGTACTC -ACGGAAAACCGTAGCCTAGATGTC -ACGGAAAACCGTAGCCTAACAGTC -ACGGAAAACCGTAGCCTATTGCTG -ACGGAAAACCGTAGCCTATCCATG -ACGGAAAACCGTAGCCTATGTGTG -ACGGAAAACCGTAGCCTACTAGTG -ACGGAAAACCGTAGCCTACATCTG -ACGGAAAACCGTAGCCTAGAGTTG -ACGGAAAACCGTAGCCTAAGACTG -ACGGAAAACCGTAGCCTATCGGTA -ACGGAAAACCGTAGCCTATGCCTA -ACGGAAAACCGTAGCCTACCACTA -ACGGAAAACCGTAGCCTAGGAGTA -ACGGAAAACCGTAGCCTATCGTCT -ACGGAAAACCGTAGCCTATGCACT -ACGGAAAACCGTAGCCTACTGACT -ACGGAAAACCGTAGCCTACAACCT -ACGGAAAACCGTAGCCTAGCTACT -ACGGAAAACCGTAGCCTAGGATCT -ACGGAAAACCGTAGCCTAAAGGCT -ACGGAAAACCGTAGCCTATCAACC -ACGGAAAACCGTAGCCTATGTTCC -ACGGAAAACCGTAGCCTAATTCCC -ACGGAAAACCGTAGCCTATTCTCG -ACGGAAAACCGTAGCCTATAGACG -ACGGAAAACCGTAGCCTAGTAACG -ACGGAAAACCGTAGCCTAACTTCG -ACGGAAAACCGTAGCCTATACGCA -ACGGAAAACCGTAGCCTACTTGCA -ACGGAAAACCGTAGCCTACGAACA -ACGGAAAACCGTAGCCTACAGTCA -ACGGAAAACCGTAGCCTAGATCCA -ACGGAAAACCGTAGCCTAACGACA -ACGGAAAACCGTAGCCTAAGCTCA -ACGGAAAACCGTAGCCTATCACGT -ACGGAAAACCGTAGCCTACGTAGT -ACGGAAAACCGTAGCCTAGTCAGT -ACGGAAAACCGTAGCCTAGAAGGT -ACGGAAAACCGTAGCCTAAACCGT -ACGGAAAACCGTAGCCTATTGTGC -ACGGAAAACCGTAGCCTACTAAGC -ACGGAAAACCGTAGCCTAACTAGC -ACGGAAAACCGTAGCCTAAGATGC -ACGGAAAACCGTAGCCTATGAAGG -ACGGAAAACCGTAGCCTACAATGG -ACGGAAAACCGTAGCCTAATGAGG -ACGGAAAACCGTAGCCTAAATGGG -ACGGAAAACCGTAGCCTATCCTGA -ACGGAAAACCGTAGCCTATAGCGA -ACGGAAAACCGTAGCCTACACAGA -ACGGAAAACCGTAGCCTAGCAAGA -ACGGAAAACCGTAGCCTAGGTTGA -ACGGAAAACCGTAGCCTATCCGAT -ACGGAAAACCGTAGCCTATGGCAT -ACGGAAAACCGTAGCCTACGAGAT -ACGGAAAACCGTAGCCTATACCAC -ACGGAAAACCGTAGCCTACAGAAC -ACGGAAAACCGTAGCCTAGTCTAC -ACGGAAAACCGTAGCCTAACGTAC -ACGGAAAACCGTAGCCTAAGTGAC -ACGGAAAACCGTAGCCTACTGTAG -ACGGAAAACCGTAGCCTACCTAAG -ACGGAAAACCGTAGCCTAGTTCAG -ACGGAAAACCGTAGCCTAGCATAG -ACGGAAAACCGTAGCCTAGACAAG -ACGGAAAACCGTAGCCTAAAGCAG -ACGGAAAACCGTAGCCTACGTCAA -ACGGAAAACCGTAGCCTAGCTGAA -ACGGAAAACCGTAGCCTAAGTACG -ACGGAAAACCGTAGCCTAATCCGA -ACGGAAAACCGTAGCCTAATGGGA -ACGGAAAACCGTAGCCTAGTGCAA -ACGGAAAACCGTAGCCTAGAGGAA -ACGGAAAACCGTAGCCTACAGGTA -ACGGAAAACCGTAGCCTAGACTCT -ACGGAAAACCGTAGCCTAAGTCCT -ACGGAAAACCGTAGCCTATAAGCC -ACGGAAAACCGTAGCCTAATAGCC -ACGGAAAACCGTAGCCTATAACCG -ACGGAAAACCGTAGCCTAATGCCA -ACGGAAAACCGTAGCACTGGAAAC -ACGGAAAACCGTAGCACTAACACC -ACGGAAAACCGTAGCACTATCGAG -ACGGAAAACCGTAGCACTCTCCTT -ACGGAAAACCGTAGCACTCCTGTT -ACGGAAAACCGTAGCACTCGGTTT -ACGGAAAACCGTAGCACTGTGGTT -ACGGAAAACCGTAGCACTGCCTTT -ACGGAAAACCGTAGCACTGGTCTT -ACGGAAAACCGTAGCACTACGCTT -ACGGAAAACCGTAGCACTAGCGTT -ACGGAAAACCGTAGCACTTTCGTC -ACGGAAAACCGTAGCACTTCTCTC -ACGGAAAACCGTAGCACTTGGATC -ACGGAAAACCGTAGCACTCACTTC -ACGGAAAACCGTAGCACTGTACTC -ACGGAAAACCGTAGCACTGATGTC -ACGGAAAACCGTAGCACTACAGTC -ACGGAAAACCGTAGCACTTTGCTG -ACGGAAAACCGTAGCACTTCCATG -ACGGAAAACCGTAGCACTTGTGTG -ACGGAAAACCGTAGCACTCTAGTG -ACGGAAAACCGTAGCACTCATCTG -ACGGAAAACCGTAGCACTGAGTTG -ACGGAAAACCGTAGCACTAGACTG -ACGGAAAACCGTAGCACTTCGGTA -ACGGAAAACCGTAGCACTTGCCTA -ACGGAAAACCGTAGCACTCCACTA -ACGGAAAACCGTAGCACTGGAGTA -ACGGAAAACCGTAGCACTTCGTCT -ACGGAAAACCGTAGCACTTGCACT -ACGGAAAACCGTAGCACTCTGACT -ACGGAAAACCGTAGCACTCAACCT -ACGGAAAACCGTAGCACTGCTACT -ACGGAAAACCGTAGCACTGGATCT -ACGGAAAACCGTAGCACTAAGGCT -ACGGAAAACCGTAGCACTTCAACC -ACGGAAAACCGTAGCACTTGTTCC -ACGGAAAACCGTAGCACTATTCCC -ACGGAAAACCGTAGCACTTTCTCG -ACGGAAAACCGTAGCACTTAGACG -ACGGAAAACCGTAGCACTGTAACG -ACGGAAAACCGTAGCACTACTTCG -ACGGAAAACCGTAGCACTTACGCA -ACGGAAAACCGTAGCACTCTTGCA -ACGGAAAACCGTAGCACTCGAACA -ACGGAAAACCGTAGCACTCAGTCA -ACGGAAAACCGTAGCACTGATCCA -ACGGAAAACCGTAGCACTACGACA -ACGGAAAACCGTAGCACTAGCTCA -ACGGAAAACCGTAGCACTTCACGT -ACGGAAAACCGTAGCACTCGTAGT -ACGGAAAACCGTAGCACTGTCAGT -ACGGAAAACCGTAGCACTGAAGGT -ACGGAAAACCGTAGCACTAACCGT -ACGGAAAACCGTAGCACTTTGTGC -ACGGAAAACCGTAGCACTCTAAGC -ACGGAAAACCGTAGCACTACTAGC -ACGGAAAACCGTAGCACTAGATGC -ACGGAAAACCGTAGCACTTGAAGG -ACGGAAAACCGTAGCACTCAATGG -ACGGAAAACCGTAGCACTATGAGG -ACGGAAAACCGTAGCACTAATGGG -ACGGAAAACCGTAGCACTTCCTGA -ACGGAAAACCGTAGCACTTAGCGA -ACGGAAAACCGTAGCACTCACAGA -ACGGAAAACCGTAGCACTGCAAGA -ACGGAAAACCGTAGCACTGGTTGA -ACGGAAAACCGTAGCACTTCCGAT -ACGGAAAACCGTAGCACTTGGCAT -ACGGAAAACCGTAGCACTCGAGAT -ACGGAAAACCGTAGCACTTACCAC -ACGGAAAACCGTAGCACTCAGAAC -ACGGAAAACCGTAGCACTGTCTAC -ACGGAAAACCGTAGCACTACGTAC -ACGGAAAACCGTAGCACTAGTGAC -ACGGAAAACCGTAGCACTCTGTAG -ACGGAAAACCGTAGCACTCCTAAG -ACGGAAAACCGTAGCACTGTTCAG -ACGGAAAACCGTAGCACTGCATAG -ACGGAAAACCGTAGCACTGACAAG -ACGGAAAACCGTAGCACTAAGCAG -ACGGAAAACCGTAGCACTCGTCAA -ACGGAAAACCGTAGCACTGCTGAA -ACGGAAAACCGTAGCACTAGTACG -ACGGAAAACCGTAGCACTATCCGA -ACGGAAAACCGTAGCACTATGGGA -ACGGAAAACCGTAGCACTGTGCAA -ACGGAAAACCGTAGCACTGAGGAA -ACGGAAAACCGTAGCACTCAGGTA -ACGGAAAACCGTAGCACTGACTCT -ACGGAAAACCGTAGCACTAGTCCT -ACGGAAAACCGTAGCACTTAAGCC -ACGGAAAACCGTAGCACTATAGCC -ACGGAAAACCGTAGCACTTAACCG -ACGGAAAACCGTAGCACTATGCCA -ACGGAAAACCGTTGCAGAGGAAAC -ACGGAAAACCGTTGCAGAAACACC -ACGGAAAACCGTTGCAGAATCGAG -ACGGAAAACCGTTGCAGACTCCTT -ACGGAAAACCGTTGCAGACCTGTT -ACGGAAAACCGTTGCAGACGGTTT -ACGGAAAACCGTTGCAGAGTGGTT -ACGGAAAACCGTTGCAGAGCCTTT -ACGGAAAACCGTTGCAGAGGTCTT -ACGGAAAACCGTTGCAGAACGCTT -ACGGAAAACCGTTGCAGAAGCGTT -ACGGAAAACCGTTGCAGATTCGTC -ACGGAAAACCGTTGCAGATCTCTC -ACGGAAAACCGTTGCAGATGGATC -ACGGAAAACCGTTGCAGACACTTC -ACGGAAAACCGTTGCAGAGTACTC -ACGGAAAACCGTTGCAGAGATGTC -ACGGAAAACCGTTGCAGAACAGTC -ACGGAAAACCGTTGCAGATTGCTG -ACGGAAAACCGTTGCAGATCCATG -ACGGAAAACCGTTGCAGATGTGTG -ACGGAAAACCGTTGCAGACTAGTG -ACGGAAAACCGTTGCAGACATCTG -ACGGAAAACCGTTGCAGAGAGTTG -ACGGAAAACCGTTGCAGAAGACTG -ACGGAAAACCGTTGCAGATCGGTA -ACGGAAAACCGTTGCAGATGCCTA -ACGGAAAACCGTTGCAGACCACTA -ACGGAAAACCGTTGCAGAGGAGTA -ACGGAAAACCGTTGCAGATCGTCT -ACGGAAAACCGTTGCAGATGCACT -ACGGAAAACCGTTGCAGACTGACT -ACGGAAAACCGTTGCAGACAACCT -ACGGAAAACCGTTGCAGAGCTACT -ACGGAAAACCGTTGCAGAGGATCT -ACGGAAAACCGTTGCAGAAAGGCT -ACGGAAAACCGTTGCAGATCAACC -ACGGAAAACCGTTGCAGATGTTCC -ACGGAAAACCGTTGCAGAATTCCC -ACGGAAAACCGTTGCAGATTCTCG -ACGGAAAACCGTTGCAGATAGACG -ACGGAAAACCGTTGCAGAGTAACG -ACGGAAAACCGTTGCAGAACTTCG -ACGGAAAACCGTTGCAGATACGCA -ACGGAAAACCGTTGCAGACTTGCA -ACGGAAAACCGTTGCAGACGAACA -ACGGAAAACCGTTGCAGACAGTCA -ACGGAAAACCGTTGCAGAGATCCA -ACGGAAAACCGTTGCAGAACGACA -ACGGAAAACCGTTGCAGAAGCTCA -ACGGAAAACCGTTGCAGATCACGT -ACGGAAAACCGTTGCAGACGTAGT -ACGGAAAACCGTTGCAGAGTCAGT -ACGGAAAACCGTTGCAGAGAAGGT -ACGGAAAACCGTTGCAGAAACCGT -ACGGAAAACCGTTGCAGATTGTGC -ACGGAAAACCGTTGCAGACTAAGC -ACGGAAAACCGTTGCAGAACTAGC -ACGGAAAACCGTTGCAGAAGATGC -ACGGAAAACCGTTGCAGATGAAGG -ACGGAAAACCGTTGCAGACAATGG -ACGGAAAACCGTTGCAGAATGAGG -ACGGAAAACCGTTGCAGAAATGGG -ACGGAAAACCGTTGCAGATCCTGA -ACGGAAAACCGTTGCAGATAGCGA -ACGGAAAACCGTTGCAGACACAGA -ACGGAAAACCGTTGCAGAGCAAGA -ACGGAAAACCGTTGCAGAGGTTGA -ACGGAAAACCGTTGCAGATCCGAT -ACGGAAAACCGTTGCAGATGGCAT -ACGGAAAACCGTTGCAGACGAGAT -ACGGAAAACCGTTGCAGATACCAC -ACGGAAAACCGTTGCAGACAGAAC -ACGGAAAACCGTTGCAGAGTCTAC -ACGGAAAACCGTTGCAGAACGTAC -ACGGAAAACCGTTGCAGAAGTGAC -ACGGAAAACCGTTGCAGACTGTAG -ACGGAAAACCGTTGCAGACCTAAG -ACGGAAAACCGTTGCAGAGTTCAG -ACGGAAAACCGTTGCAGAGCATAG -ACGGAAAACCGTTGCAGAGACAAG -ACGGAAAACCGTTGCAGAAAGCAG -ACGGAAAACCGTTGCAGACGTCAA -ACGGAAAACCGTTGCAGAGCTGAA -ACGGAAAACCGTTGCAGAAGTACG -ACGGAAAACCGTTGCAGAATCCGA -ACGGAAAACCGTTGCAGAATGGGA -ACGGAAAACCGTTGCAGAGTGCAA -ACGGAAAACCGTTGCAGAGAGGAA -ACGGAAAACCGTTGCAGACAGGTA -ACGGAAAACCGTTGCAGAGACTCT -ACGGAAAACCGTTGCAGAAGTCCT -ACGGAAAACCGTTGCAGATAAGCC -ACGGAAAACCGTTGCAGAATAGCC -ACGGAAAACCGTTGCAGATAACCG -ACGGAAAACCGTTGCAGAATGCCA -ACGGAAAACCGTAGGTGAGGAAAC -ACGGAAAACCGTAGGTGAAACACC -ACGGAAAACCGTAGGTGAATCGAG -ACGGAAAACCGTAGGTGACTCCTT -ACGGAAAACCGTAGGTGACCTGTT -ACGGAAAACCGTAGGTGACGGTTT -ACGGAAAACCGTAGGTGAGTGGTT -ACGGAAAACCGTAGGTGAGCCTTT -ACGGAAAACCGTAGGTGAGGTCTT -ACGGAAAACCGTAGGTGAACGCTT -ACGGAAAACCGTAGGTGAAGCGTT -ACGGAAAACCGTAGGTGATTCGTC -ACGGAAAACCGTAGGTGATCTCTC -ACGGAAAACCGTAGGTGATGGATC -ACGGAAAACCGTAGGTGACACTTC -ACGGAAAACCGTAGGTGAGTACTC -ACGGAAAACCGTAGGTGAGATGTC -ACGGAAAACCGTAGGTGAACAGTC -ACGGAAAACCGTAGGTGATTGCTG -ACGGAAAACCGTAGGTGATCCATG -ACGGAAAACCGTAGGTGATGTGTG -ACGGAAAACCGTAGGTGACTAGTG -ACGGAAAACCGTAGGTGACATCTG -ACGGAAAACCGTAGGTGAGAGTTG -ACGGAAAACCGTAGGTGAAGACTG -ACGGAAAACCGTAGGTGATCGGTA -ACGGAAAACCGTAGGTGATGCCTA -ACGGAAAACCGTAGGTGACCACTA -ACGGAAAACCGTAGGTGAGGAGTA -ACGGAAAACCGTAGGTGATCGTCT -ACGGAAAACCGTAGGTGATGCACT -ACGGAAAACCGTAGGTGACTGACT -ACGGAAAACCGTAGGTGACAACCT -ACGGAAAACCGTAGGTGAGCTACT -ACGGAAAACCGTAGGTGAGGATCT -ACGGAAAACCGTAGGTGAAAGGCT -ACGGAAAACCGTAGGTGATCAACC -ACGGAAAACCGTAGGTGATGTTCC -ACGGAAAACCGTAGGTGAATTCCC -ACGGAAAACCGTAGGTGATTCTCG -ACGGAAAACCGTAGGTGATAGACG -ACGGAAAACCGTAGGTGAGTAACG -ACGGAAAACCGTAGGTGAACTTCG -ACGGAAAACCGTAGGTGATACGCA -ACGGAAAACCGTAGGTGACTTGCA -ACGGAAAACCGTAGGTGACGAACA -ACGGAAAACCGTAGGTGACAGTCA -ACGGAAAACCGTAGGTGAGATCCA -ACGGAAAACCGTAGGTGAACGACA -ACGGAAAACCGTAGGTGAAGCTCA -ACGGAAAACCGTAGGTGATCACGT -ACGGAAAACCGTAGGTGACGTAGT -ACGGAAAACCGTAGGTGAGTCAGT -ACGGAAAACCGTAGGTGAGAAGGT -ACGGAAAACCGTAGGTGAAACCGT -ACGGAAAACCGTAGGTGATTGTGC -ACGGAAAACCGTAGGTGACTAAGC -ACGGAAAACCGTAGGTGAACTAGC -ACGGAAAACCGTAGGTGAAGATGC -ACGGAAAACCGTAGGTGATGAAGG -ACGGAAAACCGTAGGTGACAATGG -ACGGAAAACCGTAGGTGAATGAGG -ACGGAAAACCGTAGGTGAAATGGG -ACGGAAAACCGTAGGTGATCCTGA -ACGGAAAACCGTAGGTGATAGCGA -ACGGAAAACCGTAGGTGACACAGA -ACGGAAAACCGTAGGTGAGCAAGA -ACGGAAAACCGTAGGTGAGGTTGA -ACGGAAAACCGTAGGTGATCCGAT -ACGGAAAACCGTAGGTGATGGCAT -ACGGAAAACCGTAGGTGACGAGAT -ACGGAAAACCGTAGGTGATACCAC -ACGGAAAACCGTAGGTGACAGAAC -ACGGAAAACCGTAGGTGAGTCTAC -ACGGAAAACCGTAGGTGAACGTAC -ACGGAAAACCGTAGGTGAAGTGAC -ACGGAAAACCGTAGGTGACTGTAG -ACGGAAAACCGTAGGTGACCTAAG -ACGGAAAACCGTAGGTGAGTTCAG -ACGGAAAACCGTAGGTGAGCATAG -ACGGAAAACCGTAGGTGAGACAAG -ACGGAAAACCGTAGGTGAAAGCAG -ACGGAAAACCGTAGGTGACGTCAA -ACGGAAAACCGTAGGTGAGCTGAA -ACGGAAAACCGTAGGTGAAGTACG -ACGGAAAACCGTAGGTGAATCCGA -ACGGAAAACCGTAGGTGAATGGGA -ACGGAAAACCGTAGGTGAGTGCAA -ACGGAAAACCGTAGGTGAGAGGAA -ACGGAAAACCGTAGGTGACAGGTA -ACGGAAAACCGTAGGTGAGACTCT -ACGGAAAACCGTAGGTGAAGTCCT -ACGGAAAACCGTAGGTGATAAGCC -ACGGAAAACCGTAGGTGAATAGCC -ACGGAAAACCGTAGGTGATAACCG -ACGGAAAACCGTAGGTGAATGCCA -ACGGAAAACCGTTGGCAAGGAAAC -ACGGAAAACCGTTGGCAAAACACC -ACGGAAAACCGTTGGCAAATCGAG -ACGGAAAACCGTTGGCAACTCCTT -ACGGAAAACCGTTGGCAACCTGTT -ACGGAAAACCGTTGGCAACGGTTT -ACGGAAAACCGTTGGCAAGTGGTT -ACGGAAAACCGTTGGCAAGCCTTT -ACGGAAAACCGTTGGCAAGGTCTT -ACGGAAAACCGTTGGCAAACGCTT -ACGGAAAACCGTTGGCAAAGCGTT -ACGGAAAACCGTTGGCAATTCGTC -ACGGAAAACCGTTGGCAATCTCTC -ACGGAAAACCGTTGGCAATGGATC -ACGGAAAACCGTTGGCAACACTTC -ACGGAAAACCGTTGGCAAGTACTC -ACGGAAAACCGTTGGCAAGATGTC -ACGGAAAACCGTTGGCAAACAGTC -ACGGAAAACCGTTGGCAATTGCTG -ACGGAAAACCGTTGGCAATCCATG -ACGGAAAACCGTTGGCAATGTGTG -ACGGAAAACCGTTGGCAACTAGTG -ACGGAAAACCGTTGGCAACATCTG -ACGGAAAACCGTTGGCAAGAGTTG -ACGGAAAACCGTTGGCAAAGACTG -ACGGAAAACCGTTGGCAATCGGTA -ACGGAAAACCGTTGGCAATGCCTA -ACGGAAAACCGTTGGCAACCACTA -ACGGAAAACCGTTGGCAAGGAGTA -ACGGAAAACCGTTGGCAATCGTCT -ACGGAAAACCGTTGGCAATGCACT -ACGGAAAACCGTTGGCAACTGACT -ACGGAAAACCGTTGGCAACAACCT -ACGGAAAACCGTTGGCAAGCTACT -ACGGAAAACCGTTGGCAAGGATCT -ACGGAAAACCGTTGGCAAAAGGCT -ACGGAAAACCGTTGGCAATCAACC -ACGGAAAACCGTTGGCAATGTTCC -ACGGAAAACCGTTGGCAAATTCCC -ACGGAAAACCGTTGGCAATTCTCG -ACGGAAAACCGTTGGCAATAGACG -ACGGAAAACCGTTGGCAAGTAACG -ACGGAAAACCGTTGGCAAACTTCG -ACGGAAAACCGTTGGCAATACGCA -ACGGAAAACCGTTGGCAACTTGCA -ACGGAAAACCGTTGGCAACGAACA -ACGGAAAACCGTTGGCAACAGTCA -ACGGAAAACCGTTGGCAAGATCCA -ACGGAAAACCGTTGGCAAACGACA -ACGGAAAACCGTTGGCAAAGCTCA -ACGGAAAACCGTTGGCAATCACGT -ACGGAAAACCGTTGGCAACGTAGT -ACGGAAAACCGTTGGCAAGTCAGT -ACGGAAAACCGTTGGCAAGAAGGT -ACGGAAAACCGTTGGCAAAACCGT -ACGGAAAACCGTTGGCAATTGTGC -ACGGAAAACCGTTGGCAACTAAGC -ACGGAAAACCGTTGGCAAACTAGC -ACGGAAAACCGTTGGCAAAGATGC -ACGGAAAACCGTTGGCAATGAAGG -ACGGAAAACCGTTGGCAACAATGG -ACGGAAAACCGTTGGCAAATGAGG -ACGGAAAACCGTTGGCAAAATGGG -ACGGAAAACCGTTGGCAATCCTGA -ACGGAAAACCGTTGGCAATAGCGA -ACGGAAAACCGTTGGCAACACAGA -ACGGAAAACCGTTGGCAAGCAAGA -ACGGAAAACCGTTGGCAAGGTTGA -ACGGAAAACCGTTGGCAATCCGAT -ACGGAAAACCGTTGGCAATGGCAT -ACGGAAAACCGTTGGCAACGAGAT -ACGGAAAACCGTTGGCAATACCAC -ACGGAAAACCGTTGGCAACAGAAC -ACGGAAAACCGTTGGCAAGTCTAC -ACGGAAAACCGTTGGCAAACGTAC -ACGGAAAACCGTTGGCAAAGTGAC -ACGGAAAACCGTTGGCAACTGTAG -ACGGAAAACCGTTGGCAACCTAAG -ACGGAAAACCGTTGGCAAGTTCAG -ACGGAAAACCGTTGGCAAGCATAG -ACGGAAAACCGTTGGCAAGACAAG -ACGGAAAACCGTTGGCAAAAGCAG -ACGGAAAACCGTTGGCAACGTCAA -ACGGAAAACCGTTGGCAAGCTGAA -ACGGAAAACCGTTGGCAAAGTACG -ACGGAAAACCGTTGGCAAATCCGA -ACGGAAAACCGTTGGCAAATGGGA -ACGGAAAACCGTTGGCAAGTGCAA -ACGGAAAACCGTTGGCAAGAGGAA -ACGGAAAACCGTTGGCAACAGGTA -ACGGAAAACCGTTGGCAAGACTCT -ACGGAAAACCGTTGGCAAAGTCCT -ACGGAAAACCGTTGGCAATAAGCC -ACGGAAAACCGTTGGCAAATAGCC -ACGGAAAACCGTTGGCAATAACCG -ACGGAAAACCGTTGGCAAATGCCA -ACGGAAAACCGTAGGATGGGAAAC -ACGGAAAACCGTAGGATGAACACC -ACGGAAAACCGTAGGATGATCGAG -ACGGAAAACCGTAGGATGCTCCTT -ACGGAAAACCGTAGGATGCCTGTT -ACGGAAAACCGTAGGATGCGGTTT -ACGGAAAACCGTAGGATGGTGGTT -ACGGAAAACCGTAGGATGGCCTTT -ACGGAAAACCGTAGGATGGGTCTT -ACGGAAAACCGTAGGATGACGCTT -ACGGAAAACCGTAGGATGAGCGTT -ACGGAAAACCGTAGGATGTTCGTC -ACGGAAAACCGTAGGATGTCTCTC -ACGGAAAACCGTAGGATGTGGATC -ACGGAAAACCGTAGGATGCACTTC -ACGGAAAACCGTAGGATGGTACTC -ACGGAAAACCGTAGGATGGATGTC -ACGGAAAACCGTAGGATGACAGTC -ACGGAAAACCGTAGGATGTTGCTG -ACGGAAAACCGTAGGATGTCCATG -ACGGAAAACCGTAGGATGTGTGTG -ACGGAAAACCGTAGGATGCTAGTG -ACGGAAAACCGTAGGATGCATCTG -ACGGAAAACCGTAGGATGGAGTTG -ACGGAAAACCGTAGGATGAGACTG -ACGGAAAACCGTAGGATGTCGGTA -ACGGAAAACCGTAGGATGTGCCTA -ACGGAAAACCGTAGGATGCCACTA -ACGGAAAACCGTAGGATGGGAGTA -ACGGAAAACCGTAGGATGTCGTCT -ACGGAAAACCGTAGGATGTGCACT -ACGGAAAACCGTAGGATGCTGACT -ACGGAAAACCGTAGGATGCAACCT -ACGGAAAACCGTAGGATGGCTACT -ACGGAAAACCGTAGGATGGGATCT -ACGGAAAACCGTAGGATGAAGGCT -ACGGAAAACCGTAGGATGTCAACC -ACGGAAAACCGTAGGATGTGTTCC -ACGGAAAACCGTAGGATGATTCCC -ACGGAAAACCGTAGGATGTTCTCG -ACGGAAAACCGTAGGATGTAGACG -ACGGAAAACCGTAGGATGGTAACG -ACGGAAAACCGTAGGATGACTTCG -ACGGAAAACCGTAGGATGTACGCA -ACGGAAAACCGTAGGATGCTTGCA -ACGGAAAACCGTAGGATGCGAACA -ACGGAAAACCGTAGGATGCAGTCA -ACGGAAAACCGTAGGATGGATCCA -ACGGAAAACCGTAGGATGACGACA -ACGGAAAACCGTAGGATGAGCTCA -ACGGAAAACCGTAGGATGTCACGT -ACGGAAAACCGTAGGATGCGTAGT -ACGGAAAACCGTAGGATGGTCAGT -ACGGAAAACCGTAGGATGGAAGGT -ACGGAAAACCGTAGGATGAACCGT -ACGGAAAACCGTAGGATGTTGTGC -ACGGAAAACCGTAGGATGCTAAGC -ACGGAAAACCGTAGGATGACTAGC -ACGGAAAACCGTAGGATGAGATGC -ACGGAAAACCGTAGGATGTGAAGG -ACGGAAAACCGTAGGATGCAATGG -ACGGAAAACCGTAGGATGATGAGG -ACGGAAAACCGTAGGATGAATGGG -ACGGAAAACCGTAGGATGTCCTGA -ACGGAAAACCGTAGGATGTAGCGA -ACGGAAAACCGTAGGATGCACAGA -ACGGAAAACCGTAGGATGGCAAGA -ACGGAAAACCGTAGGATGGGTTGA -ACGGAAAACCGTAGGATGTCCGAT -ACGGAAAACCGTAGGATGTGGCAT -ACGGAAAACCGTAGGATGCGAGAT -ACGGAAAACCGTAGGATGTACCAC -ACGGAAAACCGTAGGATGCAGAAC -ACGGAAAACCGTAGGATGGTCTAC -ACGGAAAACCGTAGGATGACGTAC -ACGGAAAACCGTAGGATGAGTGAC -ACGGAAAACCGTAGGATGCTGTAG -ACGGAAAACCGTAGGATGCCTAAG -ACGGAAAACCGTAGGATGGTTCAG -ACGGAAAACCGTAGGATGGCATAG -ACGGAAAACCGTAGGATGGACAAG -ACGGAAAACCGTAGGATGAAGCAG -ACGGAAAACCGTAGGATGCGTCAA -ACGGAAAACCGTAGGATGGCTGAA -ACGGAAAACCGTAGGATGAGTACG -ACGGAAAACCGTAGGATGATCCGA -ACGGAAAACCGTAGGATGATGGGA -ACGGAAAACCGTAGGATGGTGCAA -ACGGAAAACCGTAGGATGGAGGAA -ACGGAAAACCGTAGGATGCAGGTA -ACGGAAAACCGTAGGATGGACTCT -ACGGAAAACCGTAGGATGAGTCCT -ACGGAAAACCGTAGGATGTAAGCC -ACGGAAAACCGTAGGATGATAGCC -ACGGAAAACCGTAGGATGTAACCG -ACGGAAAACCGTAGGATGATGCCA -ACGGAAAACCGTGGGAATGGAAAC -ACGGAAAACCGTGGGAATAACACC -ACGGAAAACCGTGGGAATATCGAG -ACGGAAAACCGTGGGAATCTCCTT -ACGGAAAACCGTGGGAATCCTGTT -ACGGAAAACCGTGGGAATCGGTTT -ACGGAAAACCGTGGGAATGTGGTT -ACGGAAAACCGTGGGAATGCCTTT -ACGGAAAACCGTGGGAATGGTCTT -ACGGAAAACCGTGGGAATACGCTT -ACGGAAAACCGTGGGAATAGCGTT -ACGGAAAACCGTGGGAATTTCGTC -ACGGAAAACCGTGGGAATTCTCTC -ACGGAAAACCGTGGGAATTGGATC -ACGGAAAACCGTGGGAATCACTTC -ACGGAAAACCGTGGGAATGTACTC -ACGGAAAACCGTGGGAATGATGTC -ACGGAAAACCGTGGGAATACAGTC -ACGGAAAACCGTGGGAATTTGCTG -ACGGAAAACCGTGGGAATTCCATG -ACGGAAAACCGTGGGAATTGTGTG -ACGGAAAACCGTGGGAATCTAGTG -ACGGAAAACCGTGGGAATCATCTG -ACGGAAAACCGTGGGAATGAGTTG -ACGGAAAACCGTGGGAATAGACTG -ACGGAAAACCGTGGGAATTCGGTA -ACGGAAAACCGTGGGAATTGCCTA -ACGGAAAACCGTGGGAATCCACTA -ACGGAAAACCGTGGGAATGGAGTA -ACGGAAAACCGTGGGAATTCGTCT -ACGGAAAACCGTGGGAATTGCACT -ACGGAAAACCGTGGGAATCTGACT -ACGGAAAACCGTGGGAATCAACCT -ACGGAAAACCGTGGGAATGCTACT -ACGGAAAACCGTGGGAATGGATCT -ACGGAAAACCGTGGGAATAAGGCT -ACGGAAAACCGTGGGAATTCAACC -ACGGAAAACCGTGGGAATTGTTCC -ACGGAAAACCGTGGGAATATTCCC -ACGGAAAACCGTGGGAATTTCTCG -ACGGAAAACCGTGGGAATTAGACG -ACGGAAAACCGTGGGAATGTAACG -ACGGAAAACCGTGGGAATACTTCG -ACGGAAAACCGTGGGAATTACGCA -ACGGAAAACCGTGGGAATCTTGCA -ACGGAAAACCGTGGGAATCGAACA -ACGGAAAACCGTGGGAATCAGTCA -ACGGAAAACCGTGGGAATGATCCA -ACGGAAAACCGTGGGAATACGACA -ACGGAAAACCGTGGGAATAGCTCA -ACGGAAAACCGTGGGAATTCACGT -ACGGAAAACCGTGGGAATCGTAGT -ACGGAAAACCGTGGGAATGTCAGT -ACGGAAAACCGTGGGAATGAAGGT -ACGGAAAACCGTGGGAATAACCGT -ACGGAAAACCGTGGGAATTTGTGC -ACGGAAAACCGTGGGAATCTAAGC -ACGGAAAACCGTGGGAATACTAGC -ACGGAAAACCGTGGGAATAGATGC -ACGGAAAACCGTGGGAATTGAAGG -ACGGAAAACCGTGGGAATCAATGG -ACGGAAAACCGTGGGAATATGAGG -ACGGAAAACCGTGGGAATAATGGG -ACGGAAAACCGTGGGAATTCCTGA -ACGGAAAACCGTGGGAATTAGCGA -ACGGAAAACCGTGGGAATCACAGA -ACGGAAAACCGTGGGAATGCAAGA -ACGGAAAACCGTGGGAATGGTTGA -ACGGAAAACCGTGGGAATTCCGAT -ACGGAAAACCGTGGGAATTGGCAT -ACGGAAAACCGTGGGAATCGAGAT -ACGGAAAACCGTGGGAATTACCAC -ACGGAAAACCGTGGGAATCAGAAC -ACGGAAAACCGTGGGAATGTCTAC -ACGGAAAACCGTGGGAATACGTAC -ACGGAAAACCGTGGGAATAGTGAC -ACGGAAAACCGTGGGAATCTGTAG -ACGGAAAACCGTGGGAATCCTAAG -ACGGAAAACCGTGGGAATGTTCAG -ACGGAAAACCGTGGGAATGCATAG -ACGGAAAACCGTGGGAATGACAAG -ACGGAAAACCGTGGGAATAAGCAG -ACGGAAAACCGTGGGAATCGTCAA -ACGGAAAACCGTGGGAATGCTGAA -ACGGAAAACCGTGGGAATAGTACG -ACGGAAAACCGTGGGAATATCCGA -ACGGAAAACCGTGGGAATATGGGA -ACGGAAAACCGTGGGAATGTGCAA -ACGGAAAACCGTGGGAATGAGGAA -ACGGAAAACCGTGGGAATCAGGTA -ACGGAAAACCGTGGGAATGACTCT -ACGGAAAACCGTGGGAATAGTCCT -ACGGAAAACCGTGGGAATTAAGCC -ACGGAAAACCGTGGGAATATAGCC -ACGGAAAACCGTGGGAATTAACCG -ACGGAAAACCGTGGGAATATGCCA -ACGGAAAACCGTTGATCCGGAAAC -ACGGAAAACCGTTGATCCAACACC -ACGGAAAACCGTTGATCCATCGAG -ACGGAAAACCGTTGATCCCTCCTT -ACGGAAAACCGTTGATCCCCTGTT -ACGGAAAACCGTTGATCCCGGTTT -ACGGAAAACCGTTGATCCGTGGTT -ACGGAAAACCGTTGATCCGCCTTT -ACGGAAAACCGTTGATCCGGTCTT -ACGGAAAACCGTTGATCCACGCTT -ACGGAAAACCGTTGATCCAGCGTT -ACGGAAAACCGTTGATCCTTCGTC -ACGGAAAACCGTTGATCCTCTCTC -ACGGAAAACCGTTGATCCTGGATC -ACGGAAAACCGTTGATCCCACTTC -ACGGAAAACCGTTGATCCGTACTC -ACGGAAAACCGTTGATCCGATGTC -ACGGAAAACCGTTGATCCACAGTC -ACGGAAAACCGTTGATCCTTGCTG -ACGGAAAACCGTTGATCCTCCATG -ACGGAAAACCGTTGATCCTGTGTG -ACGGAAAACCGTTGATCCCTAGTG -ACGGAAAACCGTTGATCCCATCTG -ACGGAAAACCGTTGATCCGAGTTG -ACGGAAAACCGTTGATCCAGACTG -ACGGAAAACCGTTGATCCTCGGTA -ACGGAAAACCGTTGATCCTGCCTA -ACGGAAAACCGTTGATCCCCACTA -ACGGAAAACCGTTGATCCGGAGTA -ACGGAAAACCGTTGATCCTCGTCT -ACGGAAAACCGTTGATCCTGCACT -ACGGAAAACCGTTGATCCCTGACT -ACGGAAAACCGTTGATCCCAACCT -ACGGAAAACCGTTGATCCGCTACT -ACGGAAAACCGTTGATCCGGATCT -ACGGAAAACCGTTGATCCAAGGCT -ACGGAAAACCGTTGATCCTCAACC -ACGGAAAACCGTTGATCCTGTTCC -ACGGAAAACCGTTGATCCATTCCC -ACGGAAAACCGTTGATCCTTCTCG -ACGGAAAACCGTTGATCCTAGACG -ACGGAAAACCGTTGATCCGTAACG -ACGGAAAACCGTTGATCCACTTCG -ACGGAAAACCGTTGATCCTACGCA -ACGGAAAACCGTTGATCCCTTGCA -ACGGAAAACCGTTGATCCCGAACA -ACGGAAAACCGTTGATCCCAGTCA -ACGGAAAACCGTTGATCCGATCCA -ACGGAAAACCGTTGATCCACGACA -ACGGAAAACCGTTGATCCAGCTCA -ACGGAAAACCGTTGATCCTCACGT -ACGGAAAACCGTTGATCCCGTAGT -ACGGAAAACCGTTGATCCGTCAGT -ACGGAAAACCGTTGATCCGAAGGT -ACGGAAAACCGTTGATCCAACCGT -ACGGAAAACCGTTGATCCTTGTGC -ACGGAAAACCGTTGATCCCTAAGC -ACGGAAAACCGTTGATCCACTAGC -ACGGAAAACCGTTGATCCAGATGC -ACGGAAAACCGTTGATCCTGAAGG -ACGGAAAACCGTTGATCCCAATGG -ACGGAAAACCGTTGATCCATGAGG -ACGGAAAACCGTTGATCCAATGGG -ACGGAAAACCGTTGATCCTCCTGA -ACGGAAAACCGTTGATCCTAGCGA -ACGGAAAACCGTTGATCCCACAGA -ACGGAAAACCGTTGATCCGCAAGA -ACGGAAAACCGTTGATCCGGTTGA -ACGGAAAACCGTTGATCCTCCGAT -ACGGAAAACCGTTGATCCTGGCAT -ACGGAAAACCGTTGATCCCGAGAT -ACGGAAAACCGTTGATCCTACCAC -ACGGAAAACCGTTGATCCCAGAAC -ACGGAAAACCGTTGATCCGTCTAC -ACGGAAAACCGTTGATCCACGTAC -ACGGAAAACCGTTGATCCAGTGAC -ACGGAAAACCGTTGATCCCTGTAG -ACGGAAAACCGTTGATCCCCTAAG -ACGGAAAACCGTTGATCCGTTCAG -ACGGAAAACCGTTGATCCGCATAG -ACGGAAAACCGTTGATCCGACAAG -ACGGAAAACCGTTGATCCAAGCAG -ACGGAAAACCGTTGATCCCGTCAA -ACGGAAAACCGTTGATCCGCTGAA -ACGGAAAACCGTTGATCCAGTACG -ACGGAAAACCGTTGATCCATCCGA -ACGGAAAACCGTTGATCCATGGGA -ACGGAAAACCGTTGATCCGTGCAA -ACGGAAAACCGTTGATCCGAGGAA -ACGGAAAACCGTTGATCCCAGGTA -ACGGAAAACCGTTGATCCGACTCT -ACGGAAAACCGTTGATCCAGTCCT -ACGGAAAACCGTTGATCCTAAGCC -ACGGAAAACCGTTGATCCATAGCC -ACGGAAAACCGTTGATCCTAACCG -ACGGAAAACCGTTGATCCATGCCA -ACGGAAAACCGTCGATAGGGAAAC -ACGGAAAACCGTCGATAGAACACC -ACGGAAAACCGTCGATAGATCGAG -ACGGAAAACCGTCGATAGCTCCTT -ACGGAAAACCGTCGATAGCCTGTT -ACGGAAAACCGTCGATAGCGGTTT -ACGGAAAACCGTCGATAGGTGGTT -ACGGAAAACCGTCGATAGGCCTTT -ACGGAAAACCGTCGATAGGGTCTT -ACGGAAAACCGTCGATAGACGCTT -ACGGAAAACCGTCGATAGAGCGTT -ACGGAAAACCGTCGATAGTTCGTC -ACGGAAAACCGTCGATAGTCTCTC -ACGGAAAACCGTCGATAGTGGATC -ACGGAAAACCGTCGATAGCACTTC -ACGGAAAACCGTCGATAGGTACTC -ACGGAAAACCGTCGATAGGATGTC -ACGGAAAACCGTCGATAGACAGTC -ACGGAAAACCGTCGATAGTTGCTG -ACGGAAAACCGTCGATAGTCCATG -ACGGAAAACCGTCGATAGTGTGTG -ACGGAAAACCGTCGATAGCTAGTG -ACGGAAAACCGTCGATAGCATCTG -ACGGAAAACCGTCGATAGGAGTTG -ACGGAAAACCGTCGATAGAGACTG -ACGGAAAACCGTCGATAGTCGGTA -ACGGAAAACCGTCGATAGTGCCTA -ACGGAAAACCGTCGATAGCCACTA -ACGGAAAACCGTCGATAGGGAGTA -ACGGAAAACCGTCGATAGTCGTCT -ACGGAAAACCGTCGATAGTGCACT -ACGGAAAACCGTCGATAGCTGACT -ACGGAAAACCGTCGATAGCAACCT -ACGGAAAACCGTCGATAGGCTACT -ACGGAAAACCGTCGATAGGGATCT -ACGGAAAACCGTCGATAGAAGGCT -ACGGAAAACCGTCGATAGTCAACC -ACGGAAAACCGTCGATAGTGTTCC -ACGGAAAACCGTCGATAGATTCCC -ACGGAAAACCGTCGATAGTTCTCG -ACGGAAAACCGTCGATAGTAGACG -ACGGAAAACCGTCGATAGGTAACG -ACGGAAAACCGTCGATAGACTTCG -ACGGAAAACCGTCGATAGTACGCA -ACGGAAAACCGTCGATAGCTTGCA -ACGGAAAACCGTCGATAGCGAACA -ACGGAAAACCGTCGATAGCAGTCA -ACGGAAAACCGTCGATAGGATCCA -ACGGAAAACCGTCGATAGACGACA -ACGGAAAACCGTCGATAGAGCTCA -ACGGAAAACCGTCGATAGTCACGT -ACGGAAAACCGTCGATAGCGTAGT -ACGGAAAACCGTCGATAGGTCAGT -ACGGAAAACCGTCGATAGGAAGGT -ACGGAAAACCGTCGATAGAACCGT -ACGGAAAACCGTCGATAGTTGTGC -ACGGAAAACCGTCGATAGCTAAGC -ACGGAAAACCGTCGATAGACTAGC -ACGGAAAACCGTCGATAGAGATGC -ACGGAAAACCGTCGATAGTGAAGG -ACGGAAAACCGTCGATAGCAATGG -ACGGAAAACCGTCGATAGATGAGG -ACGGAAAACCGTCGATAGAATGGG -ACGGAAAACCGTCGATAGTCCTGA -ACGGAAAACCGTCGATAGTAGCGA -ACGGAAAACCGTCGATAGCACAGA -ACGGAAAACCGTCGATAGGCAAGA -ACGGAAAACCGTCGATAGGGTTGA -ACGGAAAACCGTCGATAGTCCGAT -ACGGAAAACCGTCGATAGTGGCAT -ACGGAAAACCGTCGATAGCGAGAT -ACGGAAAACCGTCGATAGTACCAC -ACGGAAAACCGTCGATAGCAGAAC -ACGGAAAACCGTCGATAGGTCTAC -ACGGAAAACCGTCGATAGACGTAC -ACGGAAAACCGTCGATAGAGTGAC -ACGGAAAACCGTCGATAGCTGTAG -ACGGAAAACCGTCGATAGCCTAAG -ACGGAAAACCGTCGATAGGTTCAG -ACGGAAAACCGTCGATAGGCATAG -ACGGAAAACCGTCGATAGGACAAG -ACGGAAAACCGTCGATAGAAGCAG -ACGGAAAACCGTCGATAGCGTCAA -ACGGAAAACCGTCGATAGGCTGAA -ACGGAAAACCGTCGATAGAGTACG -ACGGAAAACCGTCGATAGATCCGA -ACGGAAAACCGTCGATAGATGGGA -ACGGAAAACCGTCGATAGGTGCAA -ACGGAAAACCGTCGATAGGAGGAA -ACGGAAAACCGTCGATAGCAGGTA -ACGGAAAACCGTCGATAGGACTCT -ACGGAAAACCGTCGATAGAGTCCT -ACGGAAAACCGTCGATAGTAAGCC -ACGGAAAACCGTCGATAGATAGCC -ACGGAAAACCGTCGATAGTAACCG -ACGGAAAACCGTCGATAGATGCCA -ACGGAAAACCGTAGACACGGAAAC -ACGGAAAACCGTAGACACAACACC -ACGGAAAACCGTAGACACATCGAG -ACGGAAAACCGTAGACACCTCCTT -ACGGAAAACCGTAGACACCCTGTT -ACGGAAAACCGTAGACACCGGTTT -ACGGAAAACCGTAGACACGTGGTT -ACGGAAAACCGTAGACACGCCTTT -ACGGAAAACCGTAGACACGGTCTT -ACGGAAAACCGTAGACACACGCTT -ACGGAAAACCGTAGACACAGCGTT -ACGGAAAACCGTAGACACTTCGTC -ACGGAAAACCGTAGACACTCTCTC -ACGGAAAACCGTAGACACTGGATC -ACGGAAAACCGTAGACACCACTTC -ACGGAAAACCGTAGACACGTACTC -ACGGAAAACCGTAGACACGATGTC -ACGGAAAACCGTAGACACACAGTC -ACGGAAAACCGTAGACACTTGCTG -ACGGAAAACCGTAGACACTCCATG -ACGGAAAACCGTAGACACTGTGTG -ACGGAAAACCGTAGACACCTAGTG -ACGGAAAACCGTAGACACCATCTG -ACGGAAAACCGTAGACACGAGTTG -ACGGAAAACCGTAGACACAGACTG -ACGGAAAACCGTAGACACTCGGTA -ACGGAAAACCGTAGACACTGCCTA -ACGGAAAACCGTAGACACCCACTA -ACGGAAAACCGTAGACACGGAGTA -ACGGAAAACCGTAGACACTCGTCT -ACGGAAAACCGTAGACACTGCACT -ACGGAAAACCGTAGACACCTGACT -ACGGAAAACCGTAGACACCAACCT -ACGGAAAACCGTAGACACGCTACT -ACGGAAAACCGTAGACACGGATCT -ACGGAAAACCGTAGACACAAGGCT -ACGGAAAACCGTAGACACTCAACC -ACGGAAAACCGTAGACACTGTTCC -ACGGAAAACCGTAGACACATTCCC -ACGGAAAACCGTAGACACTTCTCG -ACGGAAAACCGTAGACACTAGACG -ACGGAAAACCGTAGACACGTAACG -ACGGAAAACCGTAGACACACTTCG -ACGGAAAACCGTAGACACTACGCA -ACGGAAAACCGTAGACACCTTGCA -ACGGAAAACCGTAGACACCGAACA -ACGGAAAACCGTAGACACCAGTCA -ACGGAAAACCGTAGACACGATCCA -ACGGAAAACCGTAGACACACGACA -ACGGAAAACCGTAGACACAGCTCA -ACGGAAAACCGTAGACACTCACGT -ACGGAAAACCGTAGACACCGTAGT -ACGGAAAACCGTAGACACGTCAGT -ACGGAAAACCGTAGACACGAAGGT -ACGGAAAACCGTAGACACAACCGT -ACGGAAAACCGTAGACACTTGTGC -ACGGAAAACCGTAGACACCTAAGC -ACGGAAAACCGTAGACACACTAGC -ACGGAAAACCGTAGACACAGATGC -ACGGAAAACCGTAGACACTGAAGG -ACGGAAAACCGTAGACACCAATGG -ACGGAAAACCGTAGACACATGAGG -ACGGAAAACCGTAGACACAATGGG -ACGGAAAACCGTAGACACTCCTGA -ACGGAAAACCGTAGACACTAGCGA -ACGGAAAACCGTAGACACCACAGA -ACGGAAAACCGTAGACACGCAAGA -ACGGAAAACCGTAGACACGGTTGA -ACGGAAAACCGTAGACACTCCGAT -ACGGAAAACCGTAGACACTGGCAT -ACGGAAAACCGTAGACACCGAGAT -ACGGAAAACCGTAGACACTACCAC -ACGGAAAACCGTAGACACCAGAAC -ACGGAAAACCGTAGACACGTCTAC -ACGGAAAACCGTAGACACACGTAC -ACGGAAAACCGTAGACACAGTGAC -ACGGAAAACCGTAGACACCTGTAG -ACGGAAAACCGTAGACACCCTAAG -ACGGAAAACCGTAGACACGTTCAG -ACGGAAAACCGTAGACACGCATAG -ACGGAAAACCGTAGACACGACAAG -ACGGAAAACCGTAGACACAAGCAG -ACGGAAAACCGTAGACACCGTCAA -ACGGAAAACCGTAGACACGCTGAA -ACGGAAAACCGTAGACACAGTACG -ACGGAAAACCGTAGACACATCCGA -ACGGAAAACCGTAGACACATGGGA -ACGGAAAACCGTAGACACGTGCAA -ACGGAAAACCGTAGACACGAGGAA -ACGGAAAACCGTAGACACCAGGTA -ACGGAAAACCGTAGACACGACTCT -ACGGAAAACCGTAGACACAGTCCT -ACGGAAAACCGTAGACACTAAGCC -ACGGAAAACCGTAGACACATAGCC -ACGGAAAACCGTAGACACTAACCG -ACGGAAAACCGTAGACACATGCCA -ACGGAAAACCGTAGAGCAGGAAAC -ACGGAAAACCGTAGAGCAAACACC -ACGGAAAACCGTAGAGCAATCGAG -ACGGAAAACCGTAGAGCACTCCTT -ACGGAAAACCGTAGAGCACCTGTT -ACGGAAAACCGTAGAGCACGGTTT -ACGGAAAACCGTAGAGCAGTGGTT -ACGGAAAACCGTAGAGCAGCCTTT -ACGGAAAACCGTAGAGCAGGTCTT -ACGGAAAACCGTAGAGCAACGCTT -ACGGAAAACCGTAGAGCAAGCGTT -ACGGAAAACCGTAGAGCATTCGTC -ACGGAAAACCGTAGAGCATCTCTC -ACGGAAAACCGTAGAGCATGGATC -ACGGAAAACCGTAGAGCACACTTC -ACGGAAAACCGTAGAGCAGTACTC -ACGGAAAACCGTAGAGCAGATGTC -ACGGAAAACCGTAGAGCAACAGTC -ACGGAAAACCGTAGAGCATTGCTG -ACGGAAAACCGTAGAGCATCCATG -ACGGAAAACCGTAGAGCATGTGTG -ACGGAAAACCGTAGAGCACTAGTG -ACGGAAAACCGTAGAGCACATCTG -ACGGAAAACCGTAGAGCAGAGTTG -ACGGAAAACCGTAGAGCAAGACTG -ACGGAAAACCGTAGAGCATCGGTA -ACGGAAAACCGTAGAGCATGCCTA -ACGGAAAACCGTAGAGCACCACTA -ACGGAAAACCGTAGAGCAGGAGTA -ACGGAAAACCGTAGAGCATCGTCT -ACGGAAAACCGTAGAGCATGCACT -ACGGAAAACCGTAGAGCACTGACT -ACGGAAAACCGTAGAGCACAACCT -ACGGAAAACCGTAGAGCAGCTACT -ACGGAAAACCGTAGAGCAGGATCT -ACGGAAAACCGTAGAGCAAAGGCT -ACGGAAAACCGTAGAGCATCAACC -ACGGAAAACCGTAGAGCATGTTCC -ACGGAAAACCGTAGAGCAATTCCC -ACGGAAAACCGTAGAGCATTCTCG -ACGGAAAACCGTAGAGCATAGACG -ACGGAAAACCGTAGAGCAGTAACG -ACGGAAAACCGTAGAGCAACTTCG -ACGGAAAACCGTAGAGCATACGCA -ACGGAAAACCGTAGAGCACTTGCA -ACGGAAAACCGTAGAGCACGAACA -ACGGAAAACCGTAGAGCACAGTCA -ACGGAAAACCGTAGAGCAGATCCA -ACGGAAAACCGTAGAGCAACGACA -ACGGAAAACCGTAGAGCAAGCTCA -ACGGAAAACCGTAGAGCATCACGT -ACGGAAAACCGTAGAGCACGTAGT -ACGGAAAACCGTAGAGCAGTCAGT -ACGGAAAACCGTAGAGCAGAAGGT -ACGGAAAACCGTAGAGCAAACCGT -ACGGAAAACCGTAGAGCATTGTGC -ACGGAAAACCGTAGAGCACTAAGC -ACGGAAAACCGTAGAGCAACTAGC -ACGGAAAACCGTAGAGCAAGATGC -ACGGAAAACCGTAGAGCATGAAGG -ACGGAAAACCGTAGAGCACAATGG -ACGGAAAACCGTAGAGCAATGAGG -ACGGAAAACCGTAGAGCAAATGGG -ACGGAAAACCGTAGAGCATCCTGA -ACGGAAAACCGTAGAGCATAGCGA -ACGGAAAACCGTAGAGCACACAGA -ACGGAAAACCGTAGAGCAGCAAGA -ACGGAAAACCGTAGAGCAGGTTGA -ACGGAAAACCGTAGAGCATCCGAT -ACGGAAAACCGTAGAGCATGGCAT -ACGGAAAACCGTAGAGCACGAGAT -ACGGAAAACCGTAGAGCATACCAC -ACGGAAAACCGTAGAGCACAGAAC -ACGGAAAACCGTAGAGCAGTCTAC -ACGGAAAACCGTAGAGCAACGTAC -ACGGAAAACCGTAGAGCAAGTGAC -ACGGAAAACCGTAGAGCACTGTAG -ACGGAAAACCGTAGAGCACCTAAG -ACGGAAAACCGTAGAGCAGTTCAG -ACGGAAAACCGTAGAGCAGCATAG -ACGGAAAACCGTAGAGCAGACAAG -ACGGAAAACCGTAGAGCAAAGCAG -ACGGAAAACCGTAGAGCACGTCAA -ACGGAAAACCGTAGAGCAGCTGAA -ACGGAAAACCGTAGAGCAAGTACG -ACGGAAAACCGTAGAGCAATCCGA -ACGGAAAACCGTAGAGCAATGGGA -ACGGAAAACCGTAGAGCAGTGCAA -ACGGAAAACCGTAGAGCAGAGGAA -ACGGAAAACCGTAGAGCACAGGTA -ACGGAAAACCGTAGAGCAGACTCT -ACGGAAAACCGTAGAGCAAGTCCT -ACGGAAAACCGTAGAGCATAAGCC -ACGGAAAACCGTAGAGCAATAGCC -ACGGAAAACCGTAGAGCATAACCG -ACGGAAAACCGTAGAGCAATGCCA -ACGGAAAACCGTTGAGGTGGAAAC -ACGGAAAACCGTTGAGGTAACACC -ACGGAAAACCGTTGAGGTATCGAG -ACGGAAAACCGTTGAGGTCTCCTT -ACGGAAAACCGTTGAGGTCCTGTT -ACGGAAAACCGTTGAGGTCGGTTT -ACGGAAAACCGTTGAGGTGTGGTT -ACGGAAAACCGTTGAGGTGCCTTT -ACGGAAAACCGTTGAGGTGGTCTT -ACGGAAAACCGTTGAGGTACGCTT -ACGGAAAACCGTTGAGGTAGCGTT -ACGGAAAACCGTTGAGGTTTCGTC -ACGGAAAACCGTTGAGGTTCTCTC -ACGGAAAACCGTTGAGGTTGGATC -ACGGAAAACCGTTGAGGTCACTTC -ACGGAAAACCGTTGAGGTGTACTC -ACGGAAAACCGTTGAGGTGATGTC -ACGGAAAACCGTTGAGGTACAGTC -ACGGAAAACCGTTGAGGTTTGCTG -ACGGAAAACCGTTGAGGTTCCATG -ACGGAAAACCGTTGAGGTTGTGTG -ACGGAAAACCGTTGAGGTCTAGTG -ACGGAAAACCGTTGAGGTCATCTG -ACGGAAAACCGTTGAGGTGAGTTG -ACGGAAAACCGTTGAGGTAGACTG -ACGGAAAACCGTTGAGGTTCGGTA -ACGGAAAACCGTTGAGGTTGCCTA -ACGGAAAACCGTTGAGGTCCACTA -ACGGAAAACCGTTGAGGTGGAGTA -ACGGAAAACCGTTGAGGTTCGTCT -ACGGAAAACCGTTGAGGTTGCACT -ACGGAAAACCGTTGAGGTCTGACT -ACGGAAAACCGTTGAGGTCAACCT -ACGGAAAACCGTTGAGGTGCTACT -ACGGAAAACCGTTGAGGTGGATCT -ACGGAAAACCGTTGAGGTAAGGCT -ACGGAAAACCGTTGAGGTTCAACC -ACGGAAAACCGTTGAGGTTGTTCC -ACGGAAAACCGTTGAGGTATTCCC -ACGGAAAACCGTTGAGGTTTCTCG -ACGGAAAACCGTTGAGGTTAGACG -ACGGAAAACCGTTGAGGTGTAACG -ACGGAAAACCGTTGAGGTACTTCG -ACGGAAAACCGTTGAGGTTACGCA -ACGGAAAACCGTTGAGGTCTTGCA -ACGGAAAACCGTTGAGGTCGAACA -ACGGAAAACCGTTGAGGTCAGTCA -ACGGAAAACCGTTGAGGTGATCCA -ACGGAAAACCGTTGAGGTACGACA -ACGGAAAACCGTTGAGGTAGCTCA -ACGGAAAACCGTTGAGGTTCACGT -ACGGAAAACCGTTGAGGTCGTAGT -ACGGAAAACCGTTGAGGTGTCAGT -ACGGAAAACCGTTGAGGTGAAGGT -ACGGAAAACCGTTGAGGTAACCGT -ACGGAAAACCGTTGAGGTTTGTGC -ACGGAAAACCGTTGAGGTCTAAGC -ACGGAAAACCGTTGAGGTACTAGC -ACGGAAAACCGTTGAGGTAGATGC -ACGGAAAACCGTTGAGGTTGAAGG -ACGGAAAACCGTTGAGGTCAATGG -ACGGAAAACCGTTGAGGTATGAGG -ACGGAAAACCGTTGAGGTAATGGG -ACGGAAAACCGTTGAGGTTCCTGA -ACGGAAAACCGTTGAGGTTAGCGA -ACGGAAAACCGTTGAGGTCACAGA -ACGGAAAACCGTTGAGGTGCAAGA -ACGGAAAACCGTTGAGGTGGTTGA -ACGGAAAACCGTTGAGGTTCCGAT -ACGGAAAACCGTTGAGGTTGGCAT -ACGGAAAACCGTTGAGGTCGAGAT -ACGGAAAACCGTTGAGGTTACCAC -ACGGAAAACCGTTGAGGTCAGAAC -ACGGAAAACCGTTGAGGTGTCTAC -ACGGAAAACCGTTGAGGTACGTAC -ACGGAAAACCGTTGAGGTAGTGAC -ACGGAAAACCGTTGAGGTCTGTAG -ACGGAAAACCGTTGAGGTCCTAAG -ACGGAAAACCGTTGAGGTGTTCAG -ACGGAAAACCGTTGAGGTGCATAG -ACGGAAAACCGTTGAGGTGACAAG -ACGGAAAACCGTTGAGGTAAGCAG -ACGGAAAACCGTTGAGGTCGTCAA -ACGGAAAACCGTTGAGGTGCTGAA -ACGGAAAACCGTTGAGGTAGTACG -ACGGAAAACCGTTGAGGTATCCGA -ACGGAAAACCGTTGAGGTATGGGA -ACGGAAAACCGTTGAGGTGTGCAA -ACGGAAAACCGTTGAGGTGAGGAA -ACGGAAAACCGTTGAGGTCAGGTA -ACGGAAAACCGTTGAGGTGACTCT -ACGGAAAACCGTTGAGGTAGTCCT -ACGGAAAACCGTTGAGGTTAAGCC -ACGGAAAACCGTTGAGGTATAGCC -ACGGAAAACCGTTGAGGTTAACCG -ACGGAAAACCGTTGAGGTATGCCA -ACGGAAAACCGTGATTCCGGAAAC -ACGGAAAACCGTGATTCCAACACC -ACGGAAAACCGTGATTCCATCGAG -ACGGAAAACCGTGATTCCCTCCTT -ACGGAAAACCGTGATTCCCCTGTT -ACGGAAAACCGTGATTCCCGGTTT -ACGGAAAACCGTGATTCCGTGGTT -ACGGAAAACCGTGATTCCGCCTTT -ACGGAAAACCGTGATTCCGGTCTT -ACGGAAAACCGTGATTCCACGCTT -ACGGAAAACCGTGATTCCAGCGTT -ACGGAAAACCGTGATTCCTTCGTC -ACGGAAAACCGTGATTCCTCTCTC -ACGGAAAACCGTGATTCCTGGATC -ACGGAAAACCGTGATTCCCACTTC -ACGGAAAACCGTGATTCCGTACTC -ACGGAAAACCGTGATTCCGATGTC -ACGGAAAACCGTGATTCCACAGTC -ACGGAAAACCGTGATTCCTTGCTG -ACGGAAAACCGTGATTCCTCCATG -ACGGAAAACCGTGATTCCTGTGTG -ACGGAAAACCGTGATTCCCTAGTG -ACGGAAAACCGTGATTCCCATCTG -ACGGAAAACCGTGATTCCGAGTTG -ACGGAAAACCGTGATTCCAGACTG -ACGGAAAACCGTGATTCCTCGGTA -ACGGAAAACCGTGATTCCTGCCTA -ACGGAAAACCGTGATTCCCCACTA -ACGGAAAACCGTGATTCCGGAGTA -ACGGAAAACCGTGATTCCTCGTCT -ACGGAAAACCGTGATTCCTGCACT -ACGGAAAACCGTGATTCCCTGACT -ACGGAAAACCGTGATTCCCAACCT -ACGGAAAACCGTGATTCCGCTACT -ACGGAAAACCGTGATTCCGGATCT -ACGGAAAACCGTGATTCCAAGGCT -ACGGAAAACCGTGATTCCTCAACC -ACGGAAAACCGTGATTCCTGTTCC -ACGGAAAACCGTGATTCCATTCCC -ACGGAAAACCGTGATTCCTTCTCG -ACGGAAAACCGTGATTCCTAGACG -ACGGAAAACCGTGATTCCGTAACG -ACGGAAAACCGTGATTCCACTTCG -ACGGAAAACCGTGATTCCTACGCA -ACGGAAAACCGTGATTCCCTTGCA -ACGGAAAACCGTGATTCCCGAACA -ACGGAAAACCGTGATTCCCAGTCA -ACGGAAAACCGTGATTCCGATCCA -ACGGAAAACCGTGATTCCACGACA -ACGGAAAACCGTGATTCCAGCTCA -ACGGAAAACCGTGATTCCTCACGT -ACGGAAAACCGTGATTCCCGTAGT -ACGGAAAACCGTGATTCCGTCAGT -ACGGAAAACCGTGATTCCGAAGGT -ACGGAAAACCGTGATTCCAACCGT -ACGGAAAACCGTGATTCCTTGTGC -ACGGAAAACCGTGATTCCCTAAGC -ACGGAAAACCGTGATTCCACTAGC -ACGGAAAACCGTGATTCCAGATGC -ACGGAAAACCGTGATTCCTGAAGG -ACGGAAAACCGTGATTCCCAATGG -ACGGAAAACCGTGATTCCATGAGG -ACGGAAAACCGTGATTCCAATGGG -ACGGAAAACCGTGATTCCTCCTGA -ACGGAAAACCGTGATTCCTAGCGA -ACGGAAAACCGTGATTCCCACAGA -ACGGAAAACCGTGATTCCGCAAGA -ACGGAAAACCGTGATTCCGGTTGA -ACGGAAAACCGTGATTCCTCCGAT -ACGGAAAACCGTGATTCCTGGCAT -ACGGAAAACCGTGATTCCCGAGAT -ACGGAAAACCGTGATTCCTACCAC -ACGGAAAACCGTGATTCCCAGAAC -ACGGAAAACCGTGATTCCGTCTAC -ACGGAAAACCGTGATTCCACGTAC -ACGGAAAACCGTGATTCCAGTGAC -ACGGAAAACCGTGATTCCCTGTAG -ACGGAAAACCGTGATTCCCCTAAG -ACGGAAAACCGTGATTCCGTTCAG -ACGGAAAACCGTGATTCCGCATAG -ACGGAAAACCGTGATTCCGACAAG -ACGGAAAACCGTGATTCCAAGCAG -ACGGAAAACCGTGATTCCCGTCAA -ACGGAAAACCGTGATTCCGCTGAA -ACGGAAAACCGTGATTCCAGTACG -ACGGAAAACCGTGATTCCATCCGA -ACGGAAAACCGTGATTCCATGGGA -ACGGAAAACCGTGATTCCGTGCAA -ACGGAAAACCGTGATTCCGAGGAA -ACGGAAAACCGTGATTCCCAGGTA -ACGGAAAACCGTGATTCCGACTCT -ACGGAAAACCGTGATTCCAGTCCT -ACGGAAAACCGTGATTCCTAAGCC -ACGGAAAACCGTGATTCCATAGCC -ACGGAAAACCGTGATTCCTAACCG -ACGGAAAACCGTGATTCCATGCCA -ACGGAAAACCGTCATTGGGGAAAC -ACGGAAAACCGTCATTGGAACACC -ACGGAAAACCGTCATTGGATCGAG -ACGGAAAACCGTCATTGGCTCCTT -ACGGAAAACCGTCATTGGCCTGTT -ACGGAAAACCGTCATTGGCGGTTT -ACGGAAAACCGTCATTGGGTGGTT -ACGGAAAACCGTCATTGGGCCTTT -ACGGAAAACCGTCATTGGGGTCTT -ACGGAAAACCGTCATTGGACGCTT -ACGGAAAACCGTCATTGGAGCGTT -ACGGAAAACCGTCATTGGTTCGTC -ACGGAAAACCGTCATTGGTCTCTC -ACGGAAAACCGTCATTGGTGGATC -ACGGAAAACCGTCATTGGCACTTC -ACGGAAAACCGTCATTGGGTACTC -ACGGAAAACCGTCATTGGGATGTC -ACGGAAAACCGTCATTGGACAGTC -ACGGAAAACCGTCATTGGTTGCTG -ACGGAAAACCGTCATTGGTCCATG -ACGGAAAACCGTCATTGGTGTGTG -ACGGAAAACCGTCATTGGCTAGTG -ACGGAAAACCGTCATTGGCATCTG -ACGGAAAACCGTCATTGGGAGTTG -ACGGAAAACCGTCATTGGAGACTG -ACGGAAAACCGTCATTGGTCGGTA -ACGGAAAACCGTCATTGGTGCCTA -ACGGAAAACCGTCATTGGCCACTA -ACGGAAAACCGTCATTGGGGAGTA -ACGGAAAACCGTCATTGGTCGTCT -ACGGAAAACCGTCATTGGTGCACT -ACGGAAAACCGTCATTGGCTGACT -ACGGAAAACCGTCATTGGCAACCT -ACGGAAAACCGTCATTGGGCTACT -ACGGAAAACCGTCATTGGGGATCT -ACGGAAAACCGTCATTGGAAGGCT -ACGGAAAACCGTCATTGGTCAACC -ACGGAAAACCGTCATTGGTGTTCC -ACGGAAAACCGTCATTGGATTCCC -ACGGAAAACCGTCATTGGTTCTCG -ACGGAAAACCGTCATTGGTAGACG -ACGGAAAACCGTCATTGGGTAACG -ACGGAAAACCGTCATTGGACTTCG -ACGGAAAACCGTCATTGGTACGCA -ACGGAAAACCGTCATTGGCTTGCA -ACGGAAAACCGTCATTGGCGAACA -ACGGAAAACCGTCATTGGCAGTCA -ACGGAAAACCGTCATTGGGATCCA -ACGGAAAACCGTCATTGGACGACA -ACGGAAAACCGTCATTGGAGCTCA -ACGGAAAACCGTCATTGGTCACGT -ACGGAAAACCGTCATTGGCGTAGT -ACGGAAAACCGTCATTGGGTCAGT -ACGGAAAACCGTCATTGGGAAGGT -ACGGAAAACCGTCATTGGAACCGT -ACGGAAAACCGTCATTGGTTGTGC -ACGGAAAACCGTCATTGGCTAAGC -ACGGAAAACCGTCATTGGACTAGC -ACGGAAAACCGTCATTGGAGATGC -ACGGAAAACCGTCATTGGTGAAGG -ACGGAAAACCGTCATTGGCAATGG -ACGGAAAACCGTCATTGGATGAGG -ACGGAAAACCGTCATTGGAATGGG -ACGGAAAACCGTCATTGGTCCTGA -ACGGAAAACCGTCATTGGTAGCGA -ACGGAAAACCGTCATTGGCACAGA -ACGGAAAACCGTCATTGGGCAAGA -ACGGAAAACCGTCATTGGGGTTGA -ACGGAAAACCGTCATTGGTCCGAT -ACGGAAAACCGTCATTGGTGGCAT -ACGGAAAACCGTCATTGGCGAGAT -ACGGAAAACCGTCATTGGTACCAC -ACGGAAAACCGTCATTGGCAGAAC -ACGGAAAACCGTCATTGGGTCTAC -ACGGAAAACCGTCATTGGACGTAC -ACGGAAAACCGTCATTGGAGTGAC -ACGGAAAACCGTCATTGGCTGTAG -ACGGAAAACCGTCATTGGCCTAAG -ACGGAAAACCGTCATTGGGTTCAG -ACGGAAAACCGTCATTGGGCATAG -ACGGAAAACCGTCATTGGGACAAG -ACGGAAAACCGTCATTGGAAGCAG -ACGGAAAACCGTCATTGGCGTCAA -ACGGAAAACCGTCATTGGGCTGAA -ACGGAAAACCGTCATTGGAGTACG -ACGGAAAACCGTCATTGGATCCGA -ACGGAAAACCGTCATTGGATGGGA -ACGGAAAACCGTCATTGGGTGCAA -ACGGAAAACCGTCATTGGGAGGAA -ACGGAAAACCGTCATTGGCAGGTA -ACGGAAAACCGTCATTGGGACTCT -ACGGAAAACCGTCATTGGAGTCCT -ACGGAAAACCGTCATTGGTAAGCC -ACGGAAAACCGTCATTGGATAGCC -ACGGAAAACCGTCATTGGTAACCG -ACGGAAAACCGTCATTGGATGCCA -ACGGAAAACCGTGATCGAGGAAAC -ACGGAAAACCGTGATCGAAACACC -ACGGAAAACCGTGATCGAATCGAG -ACGGAAAACCGTGATCGACTCCTT -ACGGAAAACCGTGATCGACCTGTT -ACGGAAAACCGTGATCGACGGTTT -ACGGAAAACCGTGATCGAGTGGTT -ACGGAAAACCGTGATCGAGCCTTT -ACGGAAAACCGTGATCGAGGTCTT -ACGGAAAACCGTGATCGAACGCTT -ACGGAAAACCGTGATCGAAGCGTT -ACGGAAAACCGTGATCGATTCGTC -ACGGAAAACCGTGATCGATCTCTC -ACGGAAAACCGTGATCGATGGATC -ACGGAAAACCGTGATCGACACTTC -ACGGAAAACCGTGATCGAGTACTC -ACGGAAAACCGTGATCGAGATGTC -ACGGAAAACCGTGATCGAACAGTC -ACGGAAAACCGTGATCGATTGCTG -ACGGAAAACCGTGATCGATCCATG -ACGGAAAACCGTGATCGATGTGTG -ACGGAAAACCGTGATCGACTAGTG -ACGGAAAACCGTGATCGACATCTG -ACGGAAAACCGTGATCGAGAGTTG -ACGGAAAACCGTGATCGAAGACTG -ACGGAAAACCGTGATCGATCGGTA -ACGGAAAACCGTGATCGATGCCTA -ACGGAAAACCGTGATCGACCACTA -ACGGAAAACCGTGATCGAGGAGTA -ACGGAAAACCGTGATCGATCGTCT -ACGGAAAACCGTGATCGATGCACT -ACGGAAAACCGTGATCGACTGACT -ACGGAAAACCGTGATCGACAACCT -ACGGAAAACCGTGATCGAGCTACT -ACGGAAAACCGTGATCGAGGATCT -ACGGAAAACCGTGATCGAAAGGCT -ACGGAAAACCGTGATCGATCAACC -ACGGAAAACCGTGATCGATGTTCC -ACGGAAAACCGTGATCGAATTCCC -ACGGAAAACCGTGATCGATTCTCG -ACGGAAAACCGTGATCGATAGACG -ACGGAAAACCGTGATCGAGTAACG -ACGGAAAACCGTGATCGAACTTCG -ACGGAAAACCGTGATCGATACGCA -ACGGAAAACCGTGATCGACTTGCA -ACGGAAAACCGTGATCGACGAACA -ACGGAAAACCGTGATCGACAGTCA -ACGGAAAACCGTGATCGAGATCCA -ACGGAAAACCGTGATCGAACGACA -ACGGAAAACCGTGATCGAAGCTCA -ACGGAAAACCGTGATCGATCACGT -ACGGAAAACCGTGATCGACGTAGT -ACGGAAAACCGTGATCGAGTCAGT -ACGGAAAACCGTGATCGAGAAGGT -ACGGAAAACCGTGATCGAAACCGT -ACGGAAAACCGTGATCGATTGTGC -ACGGAAAACCGTGATCGACTAAGC -ACGGAAAACCGTGATCGAACTAGC -ACGGAAAACCGTGATCGAAGATGC -ACGGAAAACCGTGATCGATGAAGG -ACGGAAAACCGTGATCGACAATGG -ACGGAAAACCGTGATCGAATGAGG -ACGGAAAACCGTGATCGAAATGGG -ACGGAAAACCGTGATCGATCCTGA -ACGGAAAACCGTGATCGATAGCGA -ACGGAAAACCGTGATCGACACAGA -ACGGAAAACCGTGATCGAGCAAGA -ACGGAAAACCGTGATCGAGGTTGA -ACGGAAAACCGTGATCGATCCGAT -ACGGAAAACCGTGATCGATGGCAT -ACGGAAAACCGTGATCGACGAGAT -ACGGAAAACCGTGATCGATACCAC -ACGGAAAACCGTGATCGACAGAAC -ACGGAAAACCGTGATCGAGTCTAC -ACGGAAAACCGTGATCGAACGTAC -ACGGAAAACCGTGATCGAAGTGAC -ACGGAAAACCGTGATCGACTGTAG -ACGGAAAACCGTGATCGACCTAAG -ACGGAAAACCGTGATCGAGTTCAG -ACGGAAAACCGTGATCGAGCATAG -ACGGAAAACCGTGATCGAGACAAG -ACGGAAAACCGTGATCGAAAGCAG -ACGGAAAACCGTGATCGACGTCAA -ACGGAAAACCGTGATCGAGCTGAA -ACGGAAAACCGTGATCGAAGTACG -ACGGAAAACCGTGATCGAATCCGA -ACGGAAAACCGTGATCGAATGGGA -ACGGAAAACCGTGATCGAGTGCAA -ACGGAAAACCGTGATCGAGAGGAA -ACGGAAAACCGTGATCGACAGGTA -ACGGAAAACCGTGATCGAGACTCT -ACGGAAAACCGTGATCGAAGTCCT -ACGGAAAACCGTGATCGATAAGCC -ACGGAAAACCGTGATCGAATAGCC -ACGGAAAACCGTGATCGATAACCG -ACGGAAAACCGTGATCGAATGCCA -ACGGAAAACCGTCACTACGGAAAC -ACGGAAAACCGTCACTACAACACC -ACGGAAAACCGTCACTACATCGAG -ACGGAAAACCGTCACTACCTCCTT -ACGGAAAACCGTCACTACCCTGTT -ACGGAAAACCGTCACTACCGGTTT -ACGGAAAACCGTCACTACGTGGTT -ACGGAAAACCGTCACTACGCCTTT -ACGGAAAACCGTCACTACGGTCTT -ACGGAAAACCGTCACTACACGCTT -ACGGAAAACCGTCACTACAGCGTT -ACGGAAAACCGTCACTACTTCGTC -ACGGAAAACCGTCACTACTCTCTC -ACGGAAAACCGTCACTACTGGATC -ACGGAAAACCGTCACTACCACTTC -ACGGAAAACCGTCACTACGTACTC -ACGGAAAACCGTCACTACGATGTC -ACGGAAAACCGTCACTACACAGTC -ACGGAAAACCGTCACTACTTGCTG -ACGGAAAACCGTCACTACTCCATG -ACGGAAAACCGTCACTACTGTGTG -ACGGAAAACCGTCACTACCTAGTG -ACGGAAAACCGTCACTACCATCTG -ACGGAAAACCGTCACTACGAGTTG -ACGGAAAACCGTCACTACAGACTG -ACGGAAAACCGTCACTACTCGGTA -ACGGAAAACCGTCACTACTGCCTA -ACGGAAAACCGTCACTACCCACTA -ACGGAAAACCGTCACTACGGAGTA -ACGGAAAACCGTCACTACTCGTCT -ACGGAAAACCGTCACTACTGCACT -ACGGAAAACCGTCACTACCTGACT -ACGGAAAACCGTCACTACCAACCT -ACGGAAAACCGTCACTACGCTACT -ACGGAAAACCGTCACTACGGATCT -ACGGAAAACCGTCACTACAAGGCT -ACGGAAAACCGTCACTACTCAACC -ACGGAAAACCGTCACTACTGTTCC -ACGGAAAACCGTCACTACATTCCC -ACGGAAAACCGTCACTACTTCTCG -ACGGAAAACCGTCACTACTAGACG -ACGGAAAACCGTCACTACGTAACG -ACGGAAAACCGTCACTACACTTCG -ACGGAAAACCGTCACTACTACGCA -ACGGAAAACCGTCACTACCTTGCA -ACGGAAAACCGTCACTACCGAACA -ACGGAAAACCGTCACTACCAGTCA -ACGGAAAACCGTCACTACGATCCA -ACGGAAAACCGTCACTACACGACA -ACGGAAAACCGTCACTACAGCTCA -ACGGAAAACCGTCACTACTCACGT -ACGGAAAACCGTCACTACCGTAGT -ACGGAAAACCGTCACTACGTCAGT -ACGGAAAACCGTCACTACGAAGGT -ACGGAAAACCGTCACTACAACCGT -ACGGAAAACCGTCACTACTTGTGC -ACGGAAAACCGTCACTACCTAAGC -ACGGAAAACCGTCACTACACTAGC -ACGGAAAACCGTCACTACAGATGC -ACGGAAAACCGTCACTACTGAAGG -ACGGAAAACCGTCACTACCAATGG -ACGGAAAACCGTCACTACATGAGG -ACGGAAAACCGTCACTACAATGGG -ACGGAAAACCGTCACTACTCCTGA -ACGGAAAACCGTCACTACTAGCGA -ACGGAAAACCGTCACTACCACAGA -ACGGAAAACCGTCACTACGCAAGA -ACGGAAAACCGTCACTACGGTTGA -ACGGAAAACCGTCACTACTCCGAT -ACGGAAAACCGTCACTACTGGCAT -ACGGAAAACCGTCACTACCGAGAT -ACGGAAAACCGTCACTACTACCAC -ACGGAAAACCGTCACTACCAGAAC -ACGGAAAACCGTCACTACGTCTAC -ACGGAAAACCGTCACTACACGTAC -ACGGAAAACCGTCACTACAGTGAC -ACGGAAAACCGTCACTACCTGTAG -ACGGAAAACCGTCACTACCCTAAG -ACGGAAAACCGTCACTACGTTCAG -ACGGAAAACCGTCACTACGCATAG -ACGGAAAACCGTCACTACGACAAG -ACGGAAAACCGTCACTACAAGCAG -ACGGAAAACCGTCACTACCGTCAA -ACGGAAAACCGTCACTACGCTGAA -ACGGAAAACCGTCACTACAGTACG -ACGGAAAACCGTCACTACATCCGA -ACGGAAAACCGTCACTACATGGGA -ACGGAAAACCGTCACTACGTGCAA -ACGGAAAACCGTCACTACGAGGAA -ACGGAAAACCGTCACTACCAGGTA -ACGGAAAACCGTCACTACGACTCT -ACGGAAAACCGTCACTACAGTCCT -ACGGAAAACCGTCACTACTAAGCC -ACGGAAAACCGTCACTACATAGCC -ACGGAAAACCGTCACTACTAACCG -ACGGAAAACCGTCACTACATGCCA -ACGGAAAACCGTAACCAGGGAAAC -ACGGAAAACCGTAACCAGAACACC -ACGGAAAACCGTAACCAGATCGAG -ACGGAAAACCGTAACCAGCTCCTT -ACGGAAAACCGTAACCAGCCTGTT -ACGGAAAACCGTAACCAGCGGTTT -ACGGAAAACCGTAACCAGGTGGTT -ACGGAAAACCGTAACCAGGCCTTT -ACGGAAAACCGTAACCAGGGTCTT -ACGGAAAACCGTAACCAGACGCTT -ACGGAAAACCGTAACCAGAGCGTT -ACGGAAAACCGTAACCAGTTCGTC -ACGGAAAACCGTAACCAGTCTCTC -ACGGAAAACCGTAACCAGTGGATC -ACGGAAAACCGTAACCAGCACTTC -ACGGAAAACCGTAACCAGGTACTC -ACGGAAAACCGTAACCAGGATGTC -ACGGAAAACCGTAACCAGACAGTC -ACGGAAAACCGTAACCAGTTGCTG -ACGGAAAACCGTAACCAGTCCATG -ACGGAAAACCGTAACCAGTGTGTG -ACGGAAAACCGTAACCAGCTAGTG -ACGGAAAACCGTAACCAGCATCTG -ACGGAAAACCGTAACCAGGAGTTG -ACGGAAAACCGTAACCAGAGACTG -ACGGAAAACCGTAACCAGTCGGTA -ACGGAAAACCGTAACCAGTGCCTA -ACGGAAAACCGTAACCAGCCACTA -ACGGAAAACCGTAACCAGGGAGTA -ACGGAAAACCGTAACCAGTCGTCT -ACGGAAAACCGTAACCAGTGCACT -ACGGAAAACCGTAACCAGCTGACT -ACGGAAAACCGTAACCAGCAACCT -ACGGAAAACCGTAACCAGGCTACT -ACGGAAAACCGTAACCAGGGATCT -ACGGAAAACCGTAACCAGAAGGCT -ACGGAAAACCGTAACCAGTCAACC -ACGGAAAACCGTAACCAGTGTTCC -ACGGAAAACCGTAACCAGATTCCC -ACGGAAAACCGTAACCAGTTCTCG -ACGGAAAACCGTAACCAGTAGACG -ACGGAAAACCGTAACCAGGTAACG -ACGGAAAACCGTAACCAGACTTCG -ACGGAAAACCGTAACCAGTACGCA -ACGGAAAACCGTAACCAGCTTGCA -ACGGAAAACCGTAACCAGCGAACA -ACGGAAAACCGTAACCAGCAGTCA -ACGGAAAACCGTAACCAGGATCCA -ACGGAAAACCGTAACCAGACGACA -ACGGAAAACCGTAACCAGAGCTCA -ACGGAAAACCGTAACCAGTCACGT -ACGGAAAACCGTAACCAGCGTAGT -ACGGAAAACCGTAACCAGGTCAGT -ACGGAAAACCGTAACCAGGAAGGT -ACGGAAAACCGTAACCAGAACCGT -ACGGAAAACCGTAACCAGTTGTGC -ACGGAAAACCGTAACCAGCTAAGC -ACGGAAAACCGTAACCAGACTAGC -ACGGAAAACCGTAACCAGAGATGC -ACGGAAAACCGTAACCAGTGAAGG -ACGGAAAACCGTAACCAGCAATGG -ACGGAAAACCGTAACCAGATGAGG -ACGGAAAACCGTAACCAGAATGGG -ACGGAAAACCGTAACCAGTCCTGA -ACGGAAAACCGTAACCAGTAGCGA -ACGGAAAACCGTAACCAGCACAGA -ACGGAAAACCGTAACCAGGCAAGA -ACGGAAAACCGTAACCAGGGTTGA -ACGGAAAACCGTAACCAGTCCGAT -ACGGAAAACCGTAACCAGTGGCAT -ACGGAAAACCGTAACCAGCGAGAT -ACGGAAAACCGTAACCAGTACCAC -ACGGAAAACCGTAACCAGCAGAAC -ACGGAAAACCGTAACCAGGTCTAC -ACGGAAAACCGTAACCAGACGTAC -ACGGAAAACCGTAACCAGAGTGAC -ACGGAAAACCGTAACCAGCTGTAG -ACGGAAAACCGTAACCAGCCTAAG -ACGGAAAACCGTAACCAGGTTCAG -ACGGAAAACCGTAACCAGGCATAG -ACGGAAAACCGTAACCAGGACAAG -ACGGAAAACCGTAACCAGAAGCAG -ACGGAAAACCGTAACCAGCGTCAA -ACGGAAAACCGTAACCAGGCTGAA -ACGGAAAACCGTAACCAGAGTACG -ACGGAAAACCGTAACCAGATCCGA -ACGGAAAACCGTAACCAGATGGGA -ACGGAAAACCGTAACCAGGTGCAA -ACGGAAAACCGTAACCAGGAGGAA -ACGGAAAACCGTAACCAGCAGGTA -ACGGAAAACCGTAACCAGGACTCT -ACGGAAAACCGTAACCAGAGTCCT -ACGGAAAACCGTAACCAGTAAGCC -ACGGAAAACCGTAACCAGATAGCC -ACGGAAAACCGTAACCAGTAACCG -ACGGAAAACCGTAACCAGATGCCA -ACGGAAAACCGTTACGTCGGAAAC -ACGGAAAACCGTTACGTCAACACC -ACGGAAAACCGTTACGTCATCGAG -ACGGAAAACCGTTACGTCCTCCTT -ACGGAAAACCGTTACGTCCCTGTT -ACGGAAAACCGTTACGTCCGGTTT -ACGGAAAACCGTTACGTCGTGGTT -ACGGAAAACCGTTACGTCGCCTTT -ACGGAAAACCGTTACGTCGGTCTT -ACGGAAAACCGTTACGTCACGCTT -ACGGAAAACCGTTACGTCAGCGTT -ACGGAAAACCGTTACGTCTTCGTC -ACGGAAAACCGTTACGTCTCTCTC -ACGGAAAACCGTTACGTCTGGATC -ACGGAAAACCGTTACGTCCACTTC -ACGGAAAACCGTTACGTCGTACTC -ACGGAAAACCGTTACGTCGATGTC -ACGGAAAACCGTTACGTCACAGTC -ACGGAAAACCGTTACGTCTTGCTG -ACGGAAAACCGTTACGTCTCCATG -ACGGAAAACCGTTACGTCTGTGTG -ACGGAAAACCGTTACGTCCTAGTG -ACGGAAAACCGTTACGTCCATCTG -ACGGAAAACCGTTACGTCGAGTTG -ACGGAAAACCGTTACGTCAGACTG -ACGGAAAACCGTTACGTCTCGGTA -ACGGAAAACCGTTACGTCTGCCTA -ACGGAAAACCGTTACGTCCCACTA -ACGGAAAACCGTTACGTCGGAGTA -ACGGAAAACCGTTACGTCTCGTCT -ACGGAAAACCGTTACGTCTGCACT -ACGGAAAACCGTTACGTCCTGACT -ACGGAAAACCGTTACGTCCAACCT -ACGGAAAACCGTTACGTCGCTACT -ACGGAAAACCGTTACGTCGGATCT -ACGGAAAACCGTTACGTCAAGGCT -ACGGAAAACCGTTACGTCTCAACC -ACGGAAAACCGTTACGTCTGTTCC -ACGGAAAACCGTTACGTCATTCCC -ACGGAAAACCGTTACGTCTTCTCG -ACGGAAAACCGTTACGTCTAGACG -ACGGAAAACCGTTACGTCGTAACG -ACGGAAAACCGTTACGTCACTTCG -ACGGAAAACCGTTACGTCTACGCA -ACGGAAAACCGTTACGTCCTTGCA -ACGGAAAACCGTTACGTCCGAACA -ACGGAAAACCGTTACGTCCAGTCA -ACGGAAAACCGTTACGTCGATCCA -ACGGAAAACCGTTACGTCACGACA -ACGGAAAACCGTTACGTCAGCTCA -ACGGAAAACCGTTACGTCTCACGT -ACGGAAAACCGTTACGTCCGTAGT -ACGGAAAACCGTTACGTCGTCAGT -ACGGAAAACCGTTACGTCGAAGGT -ACGGAAAACCGTTACGTCAACCGT -ACGGAAAACCGTTACGTCTTGTGC -ACGGAAAACCGTTACGTCCTAAGC -ACGGAAAACCGTTACGTCACTAGC -ACGGAAAACCGTTACGTCAGATGC -ACGGAAAACCGTTACGTCTGAAGG -ACGGAAAACCGTTACGTCCAATGG -ACGGAAAACCGTTACGTCATGAGG -ACGGAAAACCGTTACGTCAATGGG -ACGGAAAACCGTTACGTCTCCTGA -ACGGAAAACCGTTACGTCTAGCGA -ACGGAAAACCGTTACGTCCACAGA -ACGGAAAACCGTTACGTCGCAAGA -ACGGAAAACCGTTACGTCGGTTGA -ACGGAAAACCGTTACGTCTCCGAT -ACGGAAAACCGTTACGTCTGGCAT -ACGGAAAACCGTTACGTCCGAGAT -ACGGAAAACCGTTACGTCTACCAC -ACGGAAAACCGTTACGTCCAGAAC -ACGGAAAACCGTTACGTCGTCTAC -ACGGAAAACCGTTACGTCACGTAC -ACGGAAAACCGTTACGTCAGTGAC -ACGGAAAACCGTTACGTCCTGTAG -ACGGAAAACCGTTACGTCCCTAAG -ACGGAAAACCGTTACGTCGTTCAG -ACGGAAAACCGTTACGTCGCATAG -ACGGAAAACCGTTACGTCGACAAG -ACGGAAAACCGTTACGTCAAGCAG -ACGGAAAACCGTTACGTCCGTCAA -ACGGAAAACCGTTACGTCGCTGAA -ACGGAAAACCGTTACGTCAGTACG -ACGGAAAACCGTTACGTCATCCGA -ACGGAAAACCGTTACGTCATGGGA -ACGGAAAACCGTTACGTCGTGCAA -ACGGAAAACCGTTACGTCGAGGAA -ACGGAAAACCGTTACGTCCAGGTA -ACGGAAAACCGTTACGTCGACTCT -ACGGAAAACCGTTACGTCAGTCCT -ACGGAAAACCGTTACGTCTAAGCC -ACGGAAAACCGTTACGTCATAGCC -ACGGAAAACCGTTACGTCTAACCG -ACGGAAAACCGTTACGTCATGCCA -ACGGAAAACCGTTACACGGGAAAC -ACGGAAAACCGTTACACGAACACC -ACGGAAAACCGTTACACGATCGAG -ACGGAAAACCGTTACACGCTCCTT -ACGGAAAACCGTTACACGCCTGTT -ACGGAAAACCGTTACACGCGGTTT -ACGGAAAACCGTTACACGGTGGTT -ACGGAAAACCGTTACACGGCCTTT -ACGGAAAACCGTTACACGGGTCTT -ACGGAAAACCGTTACACGACGCTT -ACGGAAAACCGTTACACGAGCGTT -ACGGAAAACCGTTACACGTTCGTC -ACGGAAAACCGTTACACGTCTCTC -ACGGAAAACCGTTACACGTGGATC -ACGGAAAACCGTTACACGCACTTC -ACGGAAAACCGTTACACGGTACTC -ACGGAAAACCGTTACACGGATGTC -ACGGAAAACCGTTACACGACAGTC -ACGGAAAACCGTTACACGTTGCTG -ACGGAAAACCGTTACACGTCCATG -ACGGAAAACCGTTACACGTGTGTG -ACGGAAAACCGTTACACGCTAGTG -ACGGAAAACCGTTACACGCATCTG -ACGGAAAACCGTTACACGGAGTTG -ACGGAAAACCGTTACACGAGACTG -ACGGAAAACCGTTACACGTCGGTA -ACGGAAAACCGTTACACGTGCCTA -ACGGAAAACCGTTACACGCCACTA -ACGGAAAACCGTTACACGGGAGTA -ACGGAAAACCGTTACACGTCGTCT -ACGGAAAACCGTTACACGTGCACT -ACGGAAAACCGTTACACGCTGACT -ACGGAAAACCGTTACACGCAACCT -ACGGAAAACCGTTACACGGCTACT -ACGGAAAACCGTTACACGGGATCT -ACGGAAAACCGTTACACGAAGGCT -ACGGAAAACCGTTACACGTCAACC -ACGGAAAACCGTTACACGTGTTCC -ACGGAAAACCGTTACACGATTCCC -ACGGAAAACCGTTACACGTTCTCG -ACGGAAAACCGTTACACGTAGACG -ACGGAAAACCGTTACACGGTAACG -ACGGAAAACCGTTACACGACTTCG -ACGGAAAACCGTTACACGTACGCA -ACGGAAAACCGTTACACGCTTGCA -ACGGAAAACCGTTACACGCGAACA -ACGGAAAACCGTTACACGCAGTCA -ACGGAAAACCGTTACACGGATCCA -ACGGAAAACCGTTACACGACGACA -ACGGAAAACCGTTACACGAGCTCA -ACGGAAAACCGTTACACGTCACGT -ACGGAAAACCGTTACACGCGTAGT -ACGGAAAACCGTTACACGGTCAGT -ACGGAAAACCGTTACACGGAAGGT -ACGGAAAACCGTTACACGAACCGT -ACGGAAAACCGTTACACGTTGTGC -ACGGAAAACCGTTACACGCTAAGC -ACGGAAAACCGTTACACGACTAGC -ACGGAAAACCGTTACACGAGATGC -ACGGAAAACCGTTACACGTGAAGG -ACGGAAAACCGTTACACGCAATGG -ACGGAAAACCGTTACACGATGAGG -ACGGAAAACCGTTACACGAATGGG -ACGGAAAACCGTTACACGTCCTGA -ACGGAAAACCGTTACACGTAGCGA -ACGGAAAACCGTTACACGCACAGA -ACGGAAAACCGTTACACGGCAAGA -ACGGAAAACCGTTACACGGGTTGA -ACGGAAAACCGTTACACGTCCGAT -ACGGAAAACCGTTACACGTGGCAT -ACGGAAAACCGTTACACGCGAGAT -ACGGAAAACCGTTACACGTACCAC -ACGGAAAACCGTTACACGCAGAAC -ACGGAAAACCGTTACACGGTCTAC -ACGGAAAACCGTTACACGACGTAC -ACGGAAAACCGTTACACGAGTGAC -ACGGAAAACCGTTACACGCTGTAG -ACGGAAAACCGTTACACGCCTAAG -ACGGAAAACCGTTACACGGTTCAG -ACGGAAAACCGTTACACGGCATAG -ACGGAAAACCGTTACACGGACAAG -ACGGAAAACCGTTACACGAAGCAG -ACGGAAAACCGTTACACGCGTCAA -ACGGAAAACCGTTACACGGCTGAA -ACGGAAAACCGTTACACGAGTACG -ACGGAAAACCGTTACACGATCCGA -ACGGAAAACCGTTACACGATGGGA -ACGGAAAACCGTTACACGGTGCAA -ACGGAAAACCGTTACACGGAGGAA -ACGGAAAACCGTTACACGCAGGTA -ACGGAAAACCGTTACACGGACTCT -ACGGAAAACCGTTACACGAGTCCT -ACGGAAAACCGTTACACGTAAGCC -ACGGAAAACCGTTACACGATAGCC -ACGGAAAACCGTTACACGTAACCG -ACGGAAAACCGTTACACGATGCCA -ACGGAAAACCGTGACAGTGGAAAC -ACGGAAAACCGTGACAGTAACACC -ACGGAAAACCGTGACAGTATCGAG -ACGGAAAACCGTGACAGTCTCCTT -ACGGAAAACCGTGACAGTCCTGTT -ACGGAAAACCGTGACAGTCGGTTT -ACGGAAAACCGTGACAGTGTGGTT -ACGGAAAACCGTGACAGTGCCTTT -ACGGAAAACCGTGACAGTGGTCTT -ACGGAAAACCGTGACAGTACGCTT -ACGGAAAACCGTGACAGTAGCGTT -ACGGAAAACCGTGACAGTTTCGTC -ACGGAAAACCGTGACAGTTCTCTC -ACGGAAAACCGTGACAGTTGGATC -ACGGAAAACCGTGACAGTCACTTC -ACGGAAAACCGTGACAGTGTACTC -ACGGAAAACCGTGACAGTGATGTC -ACGGAAAACCGTGACAGTACAGTC -ACGGAAAACCGTGACAGTTTGCTG -ACGGAAAACCGTGACAGTTCCATG -ACGGAAAACCGTGACAGTTGTGTG -ACGGAAAACCGTGACAGTCTAGTG -ACGGAAAACCGTGACAGTCATCTG -ACGGAAAACCGTGACAGTGAGTTG -ACGGAAAACCGTGACAGTAGACTG -ACGGAAAACCGTGACAGTTCGGTA -ACGGAAAACCGTGACAGTTGCCTA -ACGGAAAACCGTGACAGTCCACTA -ACGGAAAACCGTGACAGTGGAGTA -ACGGAAAACCGTGACAGTTCGTCT -ACGGAAAACCGTGACAGTTGCACT -ACGGAAAACCGTGACAGTCTGACT -ACGGAAAACCGTGACAGTCAACCT -ACGGAAAACCGTGACAGTGCTACT -ACGGAAAACCGTGACAGTGGATCT -ACGGAAAACCGTGACAGTAAGGCT -ACGGAAAACCGTGACAGTTCAACC -ACGGAAAACCGTGACAGTTGTTCC -ACGGAAAACCGTGACAGTATTCCC -ACGGAAAACCGTGACAGTTTCTCG -ACGGAAAACCGTGACAGTTAGACG -ACGGAAAACCGTGACAGTGTAACG -ACGGAAAACCGTGACAGTACTTCG -ACGGAAAACCGTGACAGTTACGCA -ACGGAAAACCGTGACAGTCTTGCA -ACGGAAAACCGTGACAGTCGAACA -ACGGAAAACCGTGACAGTCAGTCA -ACGGAAAACCGTGACAGTGATCCA -ACGGAAAACCGTGACAGTACGACA -ACGGAAAACCGTGACAGTAGCTCA -ACGGAAAACCGTGACAGTTCACGT -ACGGAAAACCGTGACAGTCGTAGT -ACGGAAAACCGTGACAGTGTCAGT -ACGGAAAACCGTGACAGTGAAGGT -ACGGAAAACCGTGACAGTAACCGT -ACGGAAAACCGTGACAGTTTGTGC -ACGGAAAACCGTGACAGTCTAAGC -ACGGAAAACCGTGACAGTACTAGC -ACGGAAAACCGTGACAGTAGATGC -ACGGAAAACCGTGACAGTTGAAGG -ACGGAAAACCGTGACAGTCAATGG -ACGGAAAACCGTGACAGTATGAGG -ACGGAAAACCGTGACAGTAATGGG -ACGGAAAACCGTGACAGTTCCTGA -ACGGAAAACCGTGACAGTTAGCGA -ACGGAAAACCGTGACAGTCACAGA -ACGGAAAACCGTGACAGTGCAAGA -ACGGAAAACCGTGACAGTGGTTGA -ACGGAAAACCGTGACAGTTCCGAT -ACGGAAAACCGTGACAGTTGGCAT -ACGGAAAACCGTGACAGTCGAGAT -ACGGAAAACCGTGACAGTTACCAC -ACGGAAAACCGTGACAGTCAGAAC -ACGGAAAACCGTGACAGTGTCTAC -ACGGAAAACCGTGACAGTACGTAC -ACGGAAAACCGTGACAGTAGTGAC -ACGGAAAACCGTGACAGTCTGTAG -ACGGAAAACCGTGACAGTCCTAAG -ACGGAAAACCGTGACAGTGTTCAG -ACGGAAAACCGTGACAGTGCATAG -ACGGAAAACCGTGACAGTGACAAG -ACGGAAAACCGTGACAGTAAGCAG -ACGGAAAACCGTGACAGTCGTCAA -ACGGAAAACCGTGACAGTGCTGAA -ACGGAAAACCGTGACAGTAGTACG -ACGGAAAACCGTGACAGTATCCGA -ACGGAAAACCGTGACAGTATGGGA -ACGGAAAACCGTGACAGTGTGCAA -ACGGAAAACCGTGACAGTGAGGAA -ACGGAAAACCGTGACAGTCAGGTA -ACGGAAAACCGTGACAGTGACTCT -ACGGAAAACCGTGACAGTAGTCCT -ACGGAAAACCGTGACAGTTAAGCC -ACGGAAAACCGTGACAGTATAGCC -ACGGAAAACCGTGACAGTTAACCG -ACGGAAAACCGTGACAGTATGCCA -ACGGAAAACCGTTAGCTGGGAAAC -ACGGAAAACCGTTAGCTGAACACC -ACGGAAAACCGTTAGCTGATCGAG -ACGGAAAACCGTTAGCTGCTCCTT -ACGGAAAACCGTTAGCTGCCTGTT -ACGGAAAACCGTTAGCTGCGGTTT -ACGGAAAACCGTTAGCTGGTGGTT -ACGGAAAACCGTTAGCTGGCCTTT -ACGGAAAACCGTTAGCTGGGTCTT -ACGGAAAACCGTTAGCTGACGCTT -ACGGAAAACCGTTAGCTGAGCGTT -ACGGAAAACCGTTAGCTGTTCGTC -ACGGAAAACCGTTAGCTGTCTCTC -ACGGAAAACCGTTAGCTGTGGATC -ACGGAAAACCGTTAGCTGCACTTC -ACGGAAAACCGTTAGCTGGTACTC -ACGGAAAACCGTTAGCTGGATGTC -ACGGAAAACCGTTAGCTGACAGTC -ACGGAAAACCGTTAGCTGTTGCTG -ACGGAAAACCGTTAGCTGTCCATG -ACGGAAAACCGTTAGCTGTGTGTG -ACGGAAAACCGTTAGCTGCTAGTG -ACGGAAAACCGTTAGCTGCATCTG -ACGGAAAACCGTTAGCTGGAGTTG -ACGGAAAACCGTTAGCTGAGACTG -ACGGAAAACCGTTAGCTGTCGGTA -ACGGAAAACCGTTAGCTGTGCCTA -ACGGAAAACCGTTAGCTGCCACTA -ACGGAAAACCGTTAGCTGGGAGTA -ACGGAAAACCGTTAGCTGTCGTCT -ACGGAAAACCGTTAGCTGTGCACT -ACGGAAAACCGTTAGCTGCTGACT -ACGGAAAACCGTTAGCTGCAACCT -ACGGAAAACCGTTAGCTGGCTACT -ACGGAAAACCGTTAGCTGGGATCT -ACGGAAAACCGTTAGCTGAAGGCT -ACGGAAAACCGTTAGCTGTCAACC -ACGGAAAACCGTTAGCTGTGTTCC -ACGGAAAACCGTTAGCTGATTCCC -ACGGAAAACCGTTAGCTGTTCTCG -ACGGAAAACCGTTAGCTGTAGACG -ACGGAAAACCGTTAGCTGGTAACG -ACGGAAAACCGTTAGCTGACTTCG -ACGGAAAACCGTTAGCTGTACGCA -ACGGAAAACCGTTAGCTGCTTGCA -ACGGAAAACCGTTAGCTGCGAACA -ACGGAAAACCGTTAGCTGCAGTCA -ACGGAAAACCGTTAGCTGGATCCA -ACGGAAAACCGTTAGCTGACGACA -ACGGAAAACCGTTAGCTGAGCTCA -ACGGAAAACCGTTAGCTGTCACGT -ACGGAAAACCGTTAGCTGCGTAGT -ACGGAAAACCGTTAGCTGGTCAGT -ACGGAAAACCGTTAGCTGGAAGGT -ACGGAAAACCGTTAGCTGAACCGT -ACGGAAAACCGTTAGCTGTTGTGC -ACGGAAAACCGTTAGCTGCTAAGC -ACGGAAAACCGTTAGCTGACTAGC -ACGGAAAACCGTTAGCTGAGATGC -ACGGAAAACCGTTAGCTGTGAAGG -ACGGAAAACCGTTAGCTGCAATGG -ACGGAAAACCGTTAGCTGATGAGG -ACGGAAAACCGTTAGCTGAATGGG -ACGGAAAACCGTTAGCTGTCCTGA -ACGGAAAACCGTTAGCTGTAGCGA -ACGGAAAACCGTTAGCTGCACAGA -ACGGAAAACCGTTAGCTGGCAAGA -ACGGAAAACCGTTAGCTGGGTTGA -ACGGAAAACCGTTAGCTGTCCGAT -ACGGAAAACCGTTAGCTGTGGCAT -ACGGAAAACCGTTAGCTGCGAGAT -ACGGAAAACCGTTAGCTGTACCAC -ACGGAAAACCGTTAGCTGCAGAAC -ACGGAAAACCGTTAGCTGGTCTAC -ACGGAAAACCGTTAGCTGACGTAC -ACGGAAAACCGTTAGCTGAGTGAC -ACGGAAAACCGTTAGCTGCTGTAG -ACGGAAAACCGTTAGCTGCCTAAG -ACGGAAAACCGTTAGCTGGTTCAG -ACGGAAAACCGTTAGCTGGCATAG -ACGGAAAACCGTTAGCTGGACAAG -ACGGAAAACCGTTAGCTGAAGCAG -ACGGAAAACCGTTAGCTGCGTCAA -ACGGAAAACCGTTAGCTGGCTGAA -ACGGAAAACCGTTAGCTGAGTACG -ACGGAAAACCGTTAGCTGATCCGA -ACGGAAAACCGTTAGCTGATGGGA -ACGGAAAACCGTTAGCTGGTGCAA -ACGGAAAACCGTTAGCTGGAGGAA -ACGGAAAACCGTTAGCTGCAGGTA -ACGGAAAACCGTTAGCTGGACTCT -ACGGAAAACCGTTAGCTGAGTCCT -ACGGAAAACCGTTAGCTGTAAGCC -ACGGAAAACCGTTAGCTGATAGCC -ACGGAAAACCGTTAGCTGTAACCG -ACGGAAAACCGTTAGCTGATGCCA -ACGGAAAACCGTAAGCCTGGAAAC -ACGGAAAACCGTAAGCCTAACACC -ACGGAAAACCGTAAGCCTATCGAG -ACGGAAAACCGTAAGCCTCTCCTT -ACGGAAAACCGTAAGCCTCCTGTT -ACGGAAAACCGTAAGCCTCGGTTT -ACGGAAAACCGTAAGCCTGTGGTT -ACGGAAAACCGTAAGCCTGCCTTT -ACGGAAAACCGTAAGCCTGGTCTT -ACGGAAAACCGTAAGCCTACGCTT -ACGGAAAACCGTAAGCCTAGCGTT -ACGGAAAACCGTAAGCCTTTCGTC -ACGGAAAACCGTAAGCCTTCTCTC -ACGGAAAACCGTAAGCCTTGGATC -ACGGAAAACCGTAAGCCTCACTTC -ACGGAAAACCGTAAGCCTGTACTC -ACGGAAAACCGTAAGCCTGATGTC -ACGGAAAACCGTAAGCCTACAGTC -ACGGAAAACCGTAAGCCTTTGCTG -ACGGAAAACCGTAAGCCTTCCATG -ACGGAAAACCGTAAGCCTTGTGTG -ACGGAAAACCGTAAGCCTCTAGTG -ACGGAAAACCGTAAGCCTCATCTG -ACGGAAAACCGTAAGCCTGAGTTG -ACGGAAAACCGTAAGCCTAGACTG -ACGGAAAACCGTAAGCCTTCGGTA -ACGGAAAACCGTAAGCCTTGCCTA -ACGGAAAACCGTAAGCCTCCACTA -ACGGAAAACCGTAAGCCTGGAGTA -ACGGAAAACCGTAAGCCTTCGTCT -ACGGAAAACCGTAAGCCTTGCACT -ACGGAAAACCGTAAGCCTCTGACT -ACGGAAAACCGTAAGCCTCAACCT -ACGGAAAACCGTAAGCCTGCTACT -ACGGAAAACCGTAAGCCTGGATCT -ACGGAAAACCGTAAGCCTAAGGCT -ACGGAAAACCGTAAGCCTTCAACC -ACGGAAAACCGTAAGCCTTGTTCC -ACGGAAAACCGTAAGCCTATTCCC -ACGGAAAACCGTAAGCCTTTCTCG -ACGGAAAACCGTAAGCCTTAGACG -ACGGAAAACCGTAAGCCTGTAACG -ACGGAAAACCGTAAGCCTACTTCG -ACGGAAAACCGTAAGCCTTACGCA -ACGGAAAACCGTAAGCCTCTTGCA -ACGGAAAACCGTAAGCCTCGAACA -ACGGAAAACCGTAAGCCTCAGTCA -ACGGAAAACCGTAAGCCTGATCCA -ACGGAAAACCGTAAGCCTACGACA -ACGGAAAACCGTAAGCCTAGCTCA -ACGGAAAACCGTAAGCCTTCACGT -ACGGAAAACCGTAAGCCTCGTAGT -ACGGAAAACCGTAAGCCTGTCAGT -ACGGAAAACCGTAAGCCTGAAGGT -ACGGAAAACCGTAAGCCTAACCGT -ACGGAAAACCGTAAGCCTTTGTGC -ACGGAAAACCGTAAGCCTCTAAGC -ACGGAAAACCGTAAGCCTACTAGC -ACGGAAAACCGTAAGCCTAGATGC -ACGGAAAACCGTAAGCCTTGAAGG -ACGGAAAACCGTAAGCCTCAATGG -ACGGAAAACCGTAAGCCTATGAGG -ACGGAAAACCGTAAGCCTAATGGG -ACGGAAAACCGTAAGCCTTCCTGA -ACGGAAAACCGTAAGCCTTAGCGA -ACGGAAAACCGTAAGCCTCACAGA -ACGGAAAACCGTAAGCCTGCAAGA -ACGGAAAACCGTAAGCCTGGTTGA -ACGGAAAACCGTAAGCCTTCCGAT -ACGGAAAACCGTAAGCCTTGGCAT -ACGGAAAACCGTAAGCCTCGAGAT -ACGGAAAACCGTAAGCCTTACCAC -ACGGAAAACCGTAAGCCTCAGAAC -ACGGAAAACCGTAAGCCTGTCTAC -ACGGAAAACCGTAAGCCTACGTAC -ACGGAAAACCGTAAGCCTAGTGAC -ACGGAAAACCGTAAGCCTCTGTAG -ACGGAAAACCGTAAGCCTCCTAAG -ACGGAAAACCGTAAGCCTGTTCAG -ACGGAAAACCGTAAGCCTGCATAG -ACGGAAAACCGTAAGCCTGACAAG -ACGGAAAACCGTAAGCCTAAGCAG -ACGGAAAACCGTAAGCCTCGTCAA -ACGGAAAACCGTAAGCCTGCTGAA -ACGGAAAACCGTAAGCCTAGTACG -ACGGAAAACCGTAAGCCTATCCGA -ACGGAAAACCGTAAGCCTATGGGA -ACGGAAAACCGTAAGCCTGTGCAA -ACGGAAAACCGTAAGCCTGAGGAA -ACGGAAAACCGTAAGCCTCAGGTA -ACGGAAAACCGTAAGCCTGACTCT -ACGGAAAACCGTAAGCCTAGTCCT -ACGGAAAACCGTAAGCCTTAAGCC -ACGGAAAACCGTAAGCCTATAGCC -ACGGAAAACCGTAAGCCTTAACCG -ACGGAAAACCGTAAGCCTATGCCA -ACGGAAAACCGTCAGGTTGGAAAC -ACGGAAAACCGTCAGGTTAACACC -ACGGAAAACCGTCAGGTTATCGAG -ACGGAAAACCGTCAGGTTCTCCTT -ACGGAAAACCGTCAGGTTCCTGTT -ACGGAAAACCGTCAGGTTCGGTTT -ACGGAAAACCGTCAGGTTGTGGTT -ACGGAAAACCGTCAGGTTGCCTTT -ACGGAAAACCGTCAGGTTGGTCTT -ACGGAAAACCGTCAGGTTACGCTT -ACGGAAAACCGTCAGGTTAGCGTT -ACGGAAAACCGTCAGGTTTTCGTC -ACGGAAAACCGTCAGGTTTCTCTC -ACGGAAAACCGTCAGGTTTGGATC -ACGGAAAACCGTCAGGTTCACTTC -ACGGAAAACCGTCAGGTTGTACTC -ACGGAAAACCGTCAGGTTGATGTC -ACGGAAAACCGTCAGGTTACAGTC -ACGGAAAACCGTCAGGTTTTGCTG -ACGGAAAACCGTCAGGTTTCCATG -ACGGAAAACCGTCAGGTTTGTGTG -ACGGAAAACCGTCAGGTTCTAGTG -ACGGAAAACCGTCAGGTTCATCTG -ACGGAAAACCGTCAGGTTGAGTTG -ACGGAAAACCGTCAGGTTAGACTG -ACGGAAAACCGTCAGGTTTCGGTA -ACGGAAAACCGTCAGGTTTGCCTA -ACGGAAAACCGTCAGGTTCCACTA -ACGGAAAACCGTCAGGTTGGAGTA -ACGGAAAACCGTCAGGTTTCGTCT -ACGGAAAACCGTCAGGTTTGCACT -ACGGAAAACCGTCAGGTTCTGACT -ACGGAAAACCGTCAGGTTCAACCT -ACGGAAAACCGTCAGGTTGCTACT -ACGGAAAACCGTCAGGTTGGATCT -ACGGAAAACCGTCAGGTTAAGGCT -ACGGAAAACCGTCAGGTTTCAACC -ACGGAAAACCGTCAGGTTTGTTCC -ACGGAAAACCGTCAGGTTATTCCC -ACGGAAAACCGTCAGGTTTTCTCG -ACGGAAAACCGTCAGGTTTAGACG -ACGGAAAACCGTCAGGTTGTAACG -ACGGAAAACCGTCAGGTTACTTCG -ACGGAAAACCGTCAGGTTTACGCA -ACGGAAAACCGTCAGGTTCTTGCA -ACGGAAAACCGTCAGGTTCGAACA -ACGGAAAACCGTCAGGTTCAGTCA -ACGGAAAACCGTCAGGTTGATCCA -ACGGAAAACCGTCAGGTTACGACA -ACGGAAAACCGTCAGGTTAGCTCA -ACGGAAAACCGTCAGGTTTCACGT -ACGGAAAACCGTCAGGTTCGTAGT -ACGGAAAACCGTCAGGTTGTCAGT -ACGGAAAACCGTCAGGTTGAAGGT -ACGGAAAACCGTCAGGTTAACCGT -ACGGAAAACCGTCAGGTTTTGTGC -ACGGAAAACCGTCAGGTTCTAAGC -ACGGAAAACCGTCAGGTTACTAGC -ACGGAAAACCGTCAGGTTAGATGC -ACGGAAAACCGTCAGGTTTGAAGG -ACGGAAAACCGTCAGGTTCAATGG -ACGGAAAACCGTCAGGTTATGAGG -ACGGAAAACCGTCAGGTTAATGGG -ACGGAAAACCGTCAGGTTTCCTGA -ACGGAAAACCGTCAGGTTTAGCGA -ACGGAAAACCGTCAGGTTCACAGA -ACGGAAAACCGTCAGGTTGCAAGA -ACGGAAAACCGTCAGGTTGGTTGA -ACGGAAAACCGTCAGGTTTCCGAT -ACGGAAAACCGTCAGGTTTGGCAT -ACGGAAAACCGTCAGGTTCGAGAT -ACGGAAAACCGTCAGGTTTACCAC -ACGGAAAACCGTCAGGTTCAGAAC -ACGGAAAACCGTCAGGTTGTCTAC -ACGGAAAACCGTCAGGTTACGTAC -ACGGAAAACCGTCAGGTTAGTGAC -ACGGAAAACCGTCAGGTTCTGTAG -ACGGAAAACCGTCAGGTTCCTAAG -ACGGAAAACCGTCAGGTTGTTCAG -ACGGAAAACCGTCAGGTTGCATAG -ACGGAAAACCGTCAGGTTGACAAG -ACGGAAAACCGTCAGGTTAAGCAG -ACGGAAAACCGTCAGGTTCGTCAA -ACGGAAAACCGTCAGGTTGCTGAA -ACGGAAAACCGTCAGGTTAGTACG -ACGGAAAACCGTCAGGTTATCCGA -ACGGAAAACCGTCAGGTTATGGGA -ACGGAAAACCGTCAGGTTGTGCAA -ACGGAAAACCGTCAGGTTGAGGAA -ACGGAAAACCGTCAGGTTCAGGTA -ACGGAAAACCGTCAGGTTGACTCT -ACGGAAAACCGTCAGGTTAGTCCT -ACGGAAAACCGTCAGGTTTAAGCC -ACGGAAAACCGTCAGGTTATAGCC -ACGGAAAACCGTCAGGTTTAACCG -ACGGAAAACCGTCAGGTTATGCCA -ACGGAAAACCGTTAGGCAGGAAAC -ACGGAAAACCGTTAGGCAAACACC -ACGGAAAACCGTTAGGCAATCGAG -ACGGAAAACCGTTAGGCACTCCTT -ACGGAAAACCGTTAGGCACCTGTT -ACGGAAAACCGTTAGGCACGGTTT -ACGGAAAACCGTTAGGCAGTGGTT -ACGGAAAACCGTTAGGCAGCCTTT -ACGGAAAACCGTTAGGCAGGTCTT -ACGGAAAACCGTTAGGCAACGCTT -ACGGAAAACCGTTAGGCAAGCGTT -ACGGAAAACCGTTAGGCATTCGTC -ACGGAAAACCGTTAGGCATCTCTC -ACGGAAAACCGTTAGGCATGGATC -ACGGAAAACCGTTAGGCACACTTC -ACGGAAAACCGTTAGGCAGTACTC -ACGGAAAACCGTTAGGCAGATGTC -ACGGAAAACCGTTAGGCAACAGTC -ACGGAAAACCGTTAGGCATTGCTG -ACGGAAAACCGTTAGGCATCCATG -ACGGAAAACCGTTAGGCATGTGTG -ACGGAAAACCGTTAGGCACTAGTG -ACGGAAAACCGTTAGGCACATCTG -ACGGAAAACCGTTAGGCAGAGTTG -ACGGAAAACCGTTAGGCAAGACTG -ACGGAAAACCGTTAGGCATCGGTA -ACGGAAAACCGTTAGGCATGCCTA -ACGGAAAACCGTTAGGCACCACTA -ACGGAAAACCGTTAGGCAGGAGTA -ACGGAAAACCGTTAGGCATCGTCT -ACGGAAAACCGTTAGGCATGCACT -ACGGAAAACCGTTAGGCACTGACT -ACGGAAAACCGTTAGGCACAACCT -ACGGAAAACCGTTAGGCAGCTACT -ACGGAAAACCGTTAGGCAGGATCT -ACGGAAAACCGTTAGGCAAAGGCT -ACGGAAAACCGTTAGGCATCAACC -ACGGAAAACCGTTAGGCATGTTCC -ACGGAAAACCGTTAGGCAATTCCC -ACGGAAAACCGTTAGGCATTCTCG -ACGGAAAACCGTTAGGCATAGACG -ACGGAAAACCGTTAGGCAGTAACG -ACGGAAAACCGTTAGGCAACTTCG -ACGGAAAACCGTTAGGCATACGCA -ACGGAAAACCGTTAGGCACTTGCA -ACGGAAAACCGTTAGGCACGAACA -ACGGAAAACCGTTAGGCACAGTCA -ACGGAAAACCGTTAGGCAGATCCA -ACGGAAAACCGTTAGGCAACGACA -ACGGAAAACCGTTAGGCAAGCTCA -ACGGAAAACCGTTAGGCATCACGT -ACGGAAAACCGTTAGGCACGTAGT -ACGGAAAACCGTTAGGCAGTCAGT -ACGGAAAACCGTTAGGCAGAAGGT -ACGGAAAACCGTTAGGCAAACCGT -ACGGAAAACCGTTAGGCATTGTGC -ACGGAAAACCGTTAGGCACTAAGC -ACGGAAAACCGTTAGGCAACTAGC -ACGGAAAACCGTTAGGCAAGATGC -ACGGAAAACCGTTAGGCATGAAGG -ACGGAAAACCGTTAGGCACAATGG -ACGGAAAACCGTTAGGCAATGAGG -ACGGAAAACCGTTAGGCAAATGGG -ACGGAAAACCGTTAGGCATCCTGA -ACGGAAAACCGTTAGGCATAGCGA -ACGGAAAACCGTTAGGCACACAGA -ACGGAAAACCGTTAGGCAGCAAGA -ACGGAAAACCGTTAGGCAGGTTGA -ACGGAAAACCGTTAGGCATCCGAT -ACGGAAAACCGTTAGGCATGGCAT -ACGGAAAACCGTTAGGCACGAGAT -ACGGAAAACCGTTAGGCATACCAC -ACGGAAAACCGTTAGGCACAGAAC -ACGGAAAACCGTTAGGCAGTCTAC -ACGGAAAACCGTTAGGCAACGTAC -ACGGAAAACCGTTAGGCAAGTGAC -ACGGAAAACCGTTAGGCACTGTAG -ACGGAAAACCGTTAGGCACCTAAG -ACGGAAAACCGTTAGGCAGTTCAG -ACGGAAAACCGTTAGGCAGCATAG -ACGGAAAACCGTTAGGCAGACAAG -ACGGAAAACCGTTAGGCAAAGCAG -ACGGAAAACCGTTAGGCACGTCAA -ACGGAAAACCGTTAGGCAGCTGAA -ACGGAAAACCGTTAGGCAAGTACG -ACGGAAAACCGTTAGGCAATCCGA -ACGGAAAACCGTTAGGCAATGGGA -ACGGAAAACCGTTAGGCAGTGCAA -ACGGAAAACCGTTAGGCAGAGGAA -ACGGAAAACCGTTAGGCACAGGTA -ACGGAAAACCGTTAGGCAGACTCT -ACGGAAAACCGTTAGGCAAGTCCT -ACGGAAAACCGTTAGGCATAAGCC -ACGGAAAACCGTTAGGCAATAGCC -ACGGAAAACCGTTAGGCATAACCG -ACGGAAAACCGTTAGGCAATGCCA -ACGGAAAACCGTAAGGACGGAAAC -ACGGAAAACCGTAAGGACAACACC -ACGGAAAACCGTAAGGACATCGAG -ACGGAAAACCGTAAGGACCTCCTT -ACGGAAAACCGTAAGGACCCTGTT -ACGGAAAACCGTAAGGACCGGTTT -ACGGAAAACCGTAAGGACGTGGTT -ACGGAAAACCGTAAGGACGCCTTT -ACGGAAAACCGTAAGGACGGTCTT -ACGGAAAACCGTAAGGACACGCTT -ACGGAAAACCGTAAGGACAGCGTT -ACGGAAAACCGTAAGGACTTCGTC -ACGGAAAACCGTAAGGACTCTCTC -ACGGAAAACCGTAAGGACTGGATC -ACGGAAAACCGTAAGGACCACTTC -ACGGAAAACCGTAAGGACGTACTC -ACGGAAAACCGTAAGGACGATGTC -ACGGAAAACCGTAAGGACACAGTC -ACGGAAAACCGTAAGGACTTGCTG -ACGGAAAACCGTAAGGACTCCATG -ACGGAAAACCGTAAGGACTGTGTG -ACGGAAAACCGTAAGGACCTAGTG -ACGGAAAACCGTAAGGACCATCTG -ACGGAAAACCGTAAGGACGAGTTG -ACGGAAAACCGTAAGGACAGACTG -ACGGAAAACCGTAAGGACTCGGTA -ACGGAAAACCGTAAGGACTGCCTA -ACGGAAAACCGTAAGGACCCACTA -ACGGAAAACCGTAAGGACGGAGTA -ACGGAAAACCGTAAGGACTCGTCT -ACGGAAAACCGTAAGGACTGCACT -ACGGAAAACCGTAAGGACCTGACT -ACGGAAAACCGTAAGGACCAACCT -ACGGAAAACCGTAAGGACGCTACT -ACGGAAAACCGTAAGGACGGATCT -ACGGAAAACCGTAAGGACAAGGCT -ACGGAAAACCGTAAGGACTCAACC -ACGGAAAACCGTAAGGACTGTTCC -ACGGAAAACCGTAAGGACATTCCC -ACGGAAAACCGTAAGGACTTCTCG -ACGGAAAACCGTAAGGACTAGACG -ACGGAAAACCGTAAGGACGTAACG -ACGGAAAACCGTAAGGACACTTCG -ACGGAAAACCGTAAGGACTACGCA -ACGGAAAACCGTAAGGACCTTGCA -ACGGAAAACCGTAAGGACCGAACA -ACGGAAAACCGTAAGGACCAGTCA -ACGGAAAACCGTAAGGACGATCCA -ACGGAAAACCGTAAGGACACGACA -ACGGAAAACCGTAAGGACAGCTCA -ACGGAAAACCGTAAGGACTCACGT -ACGGAAAACCGTAAGGACCGTAGT -ACGGAAAACCGTAAGGACGTCAGT -ACGGAAAACCGTAAGGACGAAGGT -ACGGAAAACCGTAAGGACAACCGT -ACGGAAAACCGTAAGGACTTGTGC -ACGGAAAACCGTAAGGACCTAAGC -ACGGAAAACCGTAAGGACACTAGC -ACGGAAAACCGTAAGGACAGATGC -ACGGAAAACCGTAAGGACTGAAGG -ACGGAAAACCGTAAGGACCAATGG -ACGGAAAACCGTAAGGACATGAGG -ACGGAAAACCGTAAGGACAATGGG -ACGGAAAACCGTAAGGACTCCTGA -ACGGAAAACCGTAAGGACTAGCGA -ACGGAAAACCGTAAGGACCACAGA -ACGGAAAACCGTAAGGACGCAAGA -ACGGAAAACCGTAAGGACGGTTGA -ACGGAAAACCGTAAGGACTCCGAT -ACGGAAAACCGTAAGGACTGGCAT -ACGGAAAACCGTAAGGACCGAGAT -ACGGAAAACCGTAAGGACTACCAC -ACGGAAAACCGTAAGGACCAGAAC -ACGGAAAACCGTAAGGACGTCTAC -ACGGAAAACCGTAAGGACACGTAC -ACGGAAAACCGTAAGGACAGTGAC -ACGGAAAACCGTAAGGACCTGTAG -ACGGAAAACCGTAAGGACCCTAAG -ACGGAAAACCGTAAGGACGTTCAG -ACGGAAAACCGTAAGGACGCATAG -ACGGAAAACCGTAAGGACGACAAG -ACGGAAAACCGTAAGGACAAGCAG -ACGGAAAACCGTAAGGACCGTCAA -ACGGAAAACCGTAAGGACGCTGAA -ACGGAAAACCGTAAGGACAGTACG -ACGGAAAACCGTAAGGACATCCGA -ACGGAAAACCGTAAGGACATGGGA -ACGGAAAACCGTAAGGACGTGCAA -ACGGAAAACCGTAAGGACGAGGAA -ACGGAAAACCGTAAGGACCAGGTA -ACGGAAAACCGTAAGGACGACTCT -ACGGAAAACCGTAAGGACAGTCCT -ACGGAAAACCGTAAGGACTAAGCC -ACGGAAAACCGTAAGGACATAGCC -ACGGAAAACCGTAAGGACTAACCG -ACGGAAAACCGTAAGGACATGCCA -ACGGAAAACCGTCAGAAGGGAAAC -ACGGAAAACCGTCAGAAGAACACC -ACGGAAAACCGTCAGAAGATCGAG -ACGGAAAACCGTCAGAAGCTCCTT -ACGGAAAACCGTCAGAAGCCTGTT -ACGGAAAACCGTCAGAAGCGGTTT -ACGGAAAACCGTCAGAAGGTGGTT -ACGGAAAACCGTCAGAAGGCCTTT -ACGGAAAACCGTCAGAAGGGTCTT -ACGGAAAACCGTCAGAAGACGCTT -ACGGAAAACCGTCAGAAGAGCGTT -ACGGAAAACCGTCAGAAGTTCGTC -ACGGAAAACCGTCAGAAGTCTCTC -ACGGAAAACCGTCAGAAGTGGATC -ACGGAAAACCGTCAGAAGCACTTC -ACGGAAAACCGTCAGAAGGTACTC -ACGGAAAACCGTCAGAAGGATGTC -ACGGAAAACCGTCAGAAGACAGTC -ACGGAAAACCGTCAGAAGTTGCTG -ACGGAAAACCGTCAGAAGTCCATG -ACGGAAAACCGTCAGAAGTGTGTG -ACGGAAAACCGTCAGAAGCTAGTG -ACGGAAAACCGTCAGAAGCATCTG -ACGGAAAACCGTCAGAAGGAGTTG -ACGGAAAACCGTCAGAAGAGACTG -ACGGAAAACCGTCAGAAGTCGGTA -ACGGAAAACCGTCAGAAGTGCCTA -ACGGAAAACCGTCAGAAGCCACTA -ACGGAAAACCGTCAGAAGGGAGTA -ACGGAAAACCGTCAGAAGTCGTCT -ACGGAAAACCGTCAGAAGTGCACT -ACGGAAAACCGTCAGAAGCTGACT -ACGGAAAACCGTCAGAAGCAACCT -ACGGAAAACCGTCAGAAGGCTACT -ACGGAAAACCGTCAGAAGGGATCT -ACGGAAAACCGTCAGAAGAAGGCT -ACGGAAAACCGTCAGAAGTCAACC -ACGGAAAACCGTCAGAAGTGTTCC -ACGGAAAACCGTCAGAAGATTCCC -ACGGAAAACCGTCAGAAGTTCTCG -ACGGAAAACCGTCAGAAGTAGACG -ACGGAAAACCGTCAGAAGGTAACG -ACGGAAAACCGTCAGAAGACTTCG -ACGGAAAACCGTCAGAAGTACGCA -ACGGAAAACCGTCAGAAGCTTGCA -ACGGAAAACCGTCAGAAGCGAACA -ACGGAAAACCGTCAGAAGCAGTCA -ACGGAAAACCGTCAGAAGGATCCA -ACGGAAAACCGTCAGAAGACGACA -ACGGAAAACCGTCAGAAGAGCTCA -ACGGAAAACCGTCAGAAGTCACGT -ACGGAAAACCGTCAGAAGCGTAGT -ACGGAAAACCGTCAGAAGGTCAGT -ACGGAAAACCGTCAGAAGGAAGGT -ACGGAAAACCGTCAGAAGAACCGT -ACGGAAAACCGTCAGAAGTTGTGC -ACGGAAAACCGTCAGAAGCTAAGC -ACGGAAAACCGTCAGAAGACTAGC -ACGGAAAACCGTCAGAAGAGATGC -ACGGAAAACCGTCAGAAGTGAAGG -ACGGAAAACCGTCAGAAGCAATGG -ACGGAAAACCGTCAGAAGATGAGG -ACGGAAAACCGTCAGAAGAATGGG -ACGGAAAACCGTCAGAAGTCCTGA -ACGGAAAACCGTCAGAAGTAGCGA -ACGGAAAACCGTCAGAAGCACAGA -ACGGAAAACCGTCAGAAGGCAAGA -ACGGAAAACCGTCAGAAGGGTTGA -ACGGAAAACCGTCAGAAGTCCGAT -ACGGAAAACCGTCAGAAGTGGCAT -ACGGAAAACCGTCAGAAGCGAGAT -ACGGAAAACCGTCAGAAGTACCAC -ACGGAAAACCGTCAGAAGCAGAAC -ACGGAAAACCGTCAGAAGGTCTAC -ACGGAAAACCGTCAGAAGACGTAC -ACGGAAAACCGTCAGAAGAGTGAC -ACGGAAAACCGTCAGAAGCTGTAG -ACGGAAAACCGTCAGAAGCCTAAG -ACGGAAAACCGTCAGAAGGTTCAG -ACGGAAAACCGTCAGAAGGCATAG -ACGGAAAACCGTCAGAAGGACAAG -ACGGAAAACCGTCAGAAGAAGCAG -ACGGAAAACCGTCAGAAGCGTCAA -ACGGAAAACCGTCAGAAGGCTGAA -ACGGAAAACCGTCAGAAGAGTACG -ACGGAAAACCGTCAGAAGATCCGA -ACGGAAAACCGTCAGAAGATGGGA -ACGGAAAACCGTCAGAAGGTGCAA -ACGGAAAACCGTCAGAAGGAGGAA -ACGGAAAACCGTCAGAAGCAGGTA -ACGGAAAACCGTCAGAAGGACTCT -ACGGAAAACCGTCAGAAGAGTCCT -ACGGAAAACCGTCAGAAGTAAGCC -ACGGAAAACCGTCAGAAGATAGCC -ACGGAAAACCGTCAGAAGTAACCG -ACGGAAAACCGTCAGAAGATGCCA -ACGGAAAACCGTCAACGTGGAAAC -ACGGAAAACCGTCAACGTAACACC -ACGGAAAACCGTCAACGTATCGAG -ACGGAAAACCGTCAACGTCTCCTT -ACGGAAAACCGTCAACGTCCTGTT -ACGGAAAACCGTCAACGTCGGTTT -ACGGAAAACCGTCAACGTGTGGTT -ACGGAAAACCGTCAACGTGCCTTT -ACGGAAAACCGTCAACGTGGTCTT -ACGGAAAACCGTCAACGTACGCTT -ACGGAAAACCGTCAACGTAGCGTT -ACGGAAAACCGTCAACGTTTCGTC -ACGGAAAACCGTCAACGTTCTCTC -ACGGAAAACCGTCAACGTTGGATC -ACGGAAAACCGTCAACGTCACTTC -ACGGAAAACCGTCAACGTGTACTC -ACGGAAAACCGTCAACGTGATGTC -ACGGAAAACCGTCAACGTACAGTC -ACGGAAAACCGTCAACGTTTGCTG -ACGGAAAACCGTCAACGTTCCATG -ACGGAAAACCGTCAACGTTGTGTG -ACGGAAAACCGTCAACGTCTAGTG -ACGGAAAACCGTCAACGTCATCTG -ACGGAAAACCGTCAACGTGAGTTG -ACGGAAAACCGTCAACGTAGACTG -ACGGAAAACCGTCAACGTTCGGTA -ACGGAAAACCGTCAACGTTGCCTA -ACGGAAAACCGTCAACGTCCACTA -ACGGAAAACCGTCAACGTGGAGTA -ACGGAAAACCGTCAACGTTCGTCT -ACGGAAAACCGTCAACGTTGCACT -ACGGAAAACCGTCAACGTCTGACT -ACGGAAAACCGTCAACGTCAACCT -ACGGAAAACCGTCAACGTGCTACT -ACGGAAAACCGTCAACGTGGATCT -ACGGAAAACCGTCAACGTAAGGCT -ACGGAAAACCGTCAACGTTCAACC -ACGGAAAACCGTCAACGTTGTTCC -ACGGAAAACCGTCAACGTATTCCC -ACGGAAAACCGTCAACGTTTCTCG -ACGGAAAACCGTCAACGTTAGACG -ACGGAAAACCGTCAACGTGTAACG -ACGGAAAACCGTCAACGTACTTCG -ACGGAAAACCGTCAACGTTACGCA -ACGGAAAACCGTCAACGTCTTGCA -ACGGAAAACCGTCAACGTCGAACA -ACGGAAAACCGTCAACGTCAGTCA -ACGGAAAACCGTCAACGTGATCCA -ACGGAAAACCGTCAACGTACGACA -ACGGAAAACCGTCAACGTAGCTCA -ACGGAAAACCGTCAACGTTCACGT -ACGGAAAACCGTCAACGTCGTAGT -ACGGAAAACCGTCAACGTGTCAGT -ACGGAAAACCGTCAACGTGAAGGT -ACGGAAAACCGTCAACGTAACCGT -ACGGAAAACCGTCAACGTTTGTGC -ACGGAAAACCGTCAACGTCTAAGC -ACGGAAAACCGTCAACGTACTAGC -ACGGAAAACCGTCAACGTAGATGC -ACGGAAAACCGTCAACGTTGAAGG -ACGGAAAACCGTCAACGTCAATGG -ACGGAAAACCGTCAACGTATGAGG -ACGGAAAACCGTCAACGTAATGGG -ACGGAAAACCGTCAACGTTCCTGA -ACGGAAAACCGTCAACGTTAGCGA -ACGGAAAACCGTCAACGTCACAGA -ACGGAAAACCGTCAACGTGCAAGA -ACGGAAAACCGTCAACGTGGTTGA -ACGGAAAACCGTCAACGTTCCGAT -ACGGAAAACCGTCAACGTTGGCAT -ACGGAAAACCGTCAACGTCGAGAT -ACGGAAAACCGTCAACGTTACCAC -ACGGAAAACCGTCAACGTCAGAAC -ACGGAAAACCGTCAACGTGTCTAC -ACGGAAAACCGTCAACGTACGTAC -ACGGAAAACCGTCAACGTAGTGAC -ACGGAAAACCGTCAACGTCTGTAG -ACGGAAAACCGTCAACGTCCTAAG -ACGGAAAACCGTCAACGTGTTCAG -ACGGAAAACCGTCAACGTGCATAG -ACGGAAAACCGTCAACGTGACAAG -ACGGAAAACCGTCAACGTAAGCAG -ACGGAAAACCGTCAACGTCGTCAA -ACGGAAAACCGTCAACGTGCTGAA -ACGGAAAACCGTCAACGTAGTACG -ACGGAAAACCGTCAACGTATCCGA -ACGGAAAACCGTCAACGTATGGGA -ACGGAAAACCGTCAACGTGTGCAA -ACGGAAAACCGTCAACGTGAGGAA -ACGGAAAACCGTCAACGTCAGGTA -ACGGAAAACCGTCAACGTGACTCT -ACGGAAAACCGTCAACGTAGTCCT -ACGGAAAACCGTCAACGTTAAGCC -ACGGAAAACCGTCAACGTATAGCC -ACGGAAAACCGTCAACGTTAACCG -ACGGAAAACCGTCAACGTATGCCA -ACGGAAAACCGTGAAGCTGGAAAC -ACGGAAAACCGTGAAGCTAACACC -ACGGAAAACCGTGAAGCTATCGAG -ACGGAAAACCGTGAAGCTCTCCTT -ACGGAAAACCGTGAAGCTCCTGTT -ACGGAAAACCGTGAAGCTCGGTTT -ACGGAAAACCGTGAAGCTGTGGTT -ACGGAAAACCGTGAAGCTGCCTTT -ACGGAAAACCGTGAAGCTGGTCTT -ACGGAAAACCGTGAAGCTACGCTT -ACGGAAAACCGTGAAGCTAGCGTT -ACGGAAAACCGTGAAGCTTTCGTC -ACGGAAAACCGTGAAGCTTCTCTC -ACGGAAAACCGTGAAGCTTGGATC -ACGGAAAACCGTGAAGCTCACTTC -ACGGAAAACCGTGAAGCTGTACTC -ACGGAAAACCGTGAAGCTGATGTC -ACGGAAAACCGTGAAGCTACAGTC -ACGGAAAACCGTGAAGCTTTGCTG -ACGGAAAACCGTGAAGCTTCCATG -ACGGAAAACCGTGAAGCTTGTGTG -ACGGAAAACCGTGAAGCTCTAGTG -ACGGAAAACCGTGAAGCTCATCTG -ACGGAAAACCGTGAAGCTGAGTTG -ACGGAAAACCGTGAAGCTAGACTG -ACGGAAAACCGTGAAGCTTCGGTA -ACGGAAAACCGTGAAGCTTGCCTA -ACGGAAAACCGTGAAGCTCCACTA -ACGGAAAACCGTGAAGCTGGAGTA -ACGGAAAACCGTGAAGCTTCGTCT -ACGGAAAACCGTGAAGCTTGCACT -ACGGAAAACCGTGAAGCTCTGACT -ACGGAAAACCGTGAAGCTCAACCT -ACGGAAAACCGTGAAGCTGCTACT -ACGGAAAACCGTGAAGCTGGATCT -ACGGAAAACCGTGAAGCTAAGGCT -ACGGAAAACCGTGAAGCTTCAACC -ACGGAAAACCGTGAAGCTTGTTCC -ACGGAAAACCGTGAAGCTATTCCC -ACGGAAAACCGTGAAGCTTTCTCG -ACGGAAAACCGTGAAGCTTAGACG -ACGGAAAACCGTGAAGCTGTAACG -ACGGAAAACCGTGAAGCTACTTCG -ACGGAAAACCGTGAAGCTTACGCA -ACGGAAAACCGTGAAGCTCTTGCA -ACGGAAAACCGTGAAGCTCGAACA -ACGGAAAACCGTGAAGCTCAGTCA -ACGGAAAACCGTGAAGCTGATCCA -ACGGAAAACCGTGAAGCTACGACA -ACGGAAAACCGTGAAGCTAGCTCA -ACGGAAAACCGTGAAGCTTCACGT -ACGGAAAACCGTGAAGCTCGTAGT -ACGGAAAACCGTGAAGCTGTCAGT -ACGGAAAACCGTGAAGCTGAAGGT -ACGGAAAACCGTGAAGCTAACCGT -ACGGAAAACCGTGAAGCTTTGTGC -ACGGAAAACCGTGAAGCTCTAAGC -ACGGAAAACCGTGAAGCTACTAGC -ACGGAAAACCGTGAAGCTAGATGC -ACGGAAAACCGTGAAGCTTGAAGG -ACGGAAAACCGTGAAGCTCAATGG -ACGGAAAACCGTGAAGCTATGAGG -ACGGAAAACCGTGAAGCTAATGGG -ACGGAAAACCGTGAAGCTTCCTGA -ACGGAAAACCGTGAAGCTTAGCGA -ACGGAAAACCGTGAAGCTCACAGA -ACGGAAAACCGTGAAGCTGCAAGA -ACGGAAAACCGTGAAGCTGGTTGA -ACGGAAAACCGTGAAGCTTCCGAT -ACGGAAAACCGTGAAGCTTGGCAT -ACGGAAAACCGTGAAGCTCGAGAT -ACGGAAAACCGTGAAGCTTACCAC -ACGGAAAACCGTGAAGCTCAGAAC -ACGGAAAACCGTGAAGCTGTCTAC -ACGGAAAACCGTGAAGCTACGTAC -ACGGAAAACCGTGAAGCTAGTGAC -ACGGAAAACCGTGAAGCTCTGTAG -ACGGAAAACCGTGAAGCTCCTAAG -ACGGAAAACCGTGAAGCTGTTCAG -ACGGAAAACCGTGAAGCTGCATAG -ACGGAAAACCGTGAAGCTGACAAG -ACGGAAAACCGTGAAGCTAAGCAG -ACGGAAAACCGTGAAGCTCGTCAA -ACGGAAAACCGTGAAGCTGCTGAA -ACGGAAAACCGTGAAGCTAGTACG -ACGGAAAACCGTGAAGCTATCCGA -ACGGAAAACCGTGAAGCTATGGGA -ACGGAAAACCGTGAAGCTGTGCAA -ACGGAAAACCGTGAAGCTGAGGAA -ACGGAAAACCGTGAAGCTCAGGTA -ACGGAAAACCGTGAAGCTGACTCT -ACGGAAAACCGTGAAGCTAGTCCT -ACGGAAAACCGTGAAGCTTAAGCC -ACGGAAAACCGTGAAGCTATAGCC -ACGGAAAACCGTGAAGCTTAACCG -ACGGAAAACCGTGAAGCTATGCCA -ACGGAAAACCGTACGAGTGGAAAC -ACGGAAAACCGTACGAGTAACACC -ACGGAAAACCGTACGAGTATCGAG -ACGGAAAACCGTACGAGTCTCCTT -ACGGAAAACCGTACGAGTCCTGTT -ACGGAAAACCGTACGAGTCGGTTT -ACGGAAAACCGTACGAGTGTGGTT -ACGGAAAACCGTACGAGTGCCTTT -ACGGAAAACCGTACGAGTGGTCTT -ACGGAAAACCGTACGAGTACGCTT -ACGGAAAACCGTACGAGTAGCGTT -ACGGAAAACCGTACGAGTTTCGTC -ACGGAAAACCGTACGAGTTCTCTC -ACGGAAAACCGTACGAGTTGGATC -ACGGAAAACCGTACGAGTCACTTC -ACGGAAAACCGTACGAGTGTACTC -ACGGAAAACCGTACGAGTGATGTC -ACGGAAAACCGTACGAGTACAGTC -ACGGAAAACCGTACGAGTTTGCTG -ACGGAAAACCGTACGAGTTCCATG -ACGGAAAACCGTACGAGTTGTGTG -ACGGAAAACCGTACGAGTCTAGTG -ACGGAAAACCGTACGAGTCATCTG -ACGGAAAACCGTACGAGTGAGTTG -ACGGAAAACCGTACGAGTAGACTG -ACGGAAAACCGTACGAGTTCGGTA -ACGGAAAACCGTACGAGTTGCCTA -ACGGAAAACCGTACGAGTCCACTA -ACGGAAAACCGTACGAGTGGAGTA -ACGGAAAACCGTACGAGTTCGTCT -ACGGAAAACCGTACGAGTTGCACT -ACGGAAAACCGTACGAGTCTGACT -ACGGAAAACCGTACGAGTCAACCT -ACGGAAAACCGTACGAGTGCTACT -ACGGAAAACCGTACGAGTGGATCT -ACGGAAAACCGTACGAGTAAGGCT -ACGGAAAACCGTACGAGTTCAACC -ACGGAAAACCGTACGAGTTGTTCC -ACGGAAAACCGTACGAGTATTCCC -ACGGAAAACCGTACGAGTTTCTCG -ACGGAAAACCGTACGAGTTAGACG -ACGGAAAACCGTACGAGTGTAACG -ACGGAAAACCGTACGAGTACTTCG -ACGGAAAACCGTACGAGTTACGCA -ACGGAAAACCGTACGAGTCTTGCA -ACGGAAAACCGTACGAGTCGAACA -ACGGAAAACCGTACGAGTCAGTCA -ACGGAAAACCGTACGAGTGATCCA -ACGGAAAACCGTACGAGTACGACA -ACGGAAAACCGTACGAGTAGCTCA -ACGGAAAACCGTACGAGTTCACGT -ACGGAAAACCGTACGAGTCGTAGT -ACGGAAAACCGTACGAGTGTCAGT -ACGGAAAACCGTACGAGTGAAGGT -ACGGAAAACCGTACGAGTAACCGT -ACGGAAAACCGTACGAGTTTGTGC -ACGGAAAACCGTACGAGTCTAAGC -ACGGAAAACCGTACGAGTACTAGC -ACGGAAAACCGTACGAGTAGATGC -ACGGAAAACCGTACGAGTTGAAGG -ACGGAAAACCGTACGAGTCAATGG -ACGGAAAACCGTACGAGTATGAGG -ACGGAAAACCGTACGAGTAATGGG -ACGGAAAACCGTACGAGTTCCTGA -ACGGAAAACCGTACGAGTTAGCGA -ACGGAAAACCGTACGAGTCACAGA -ACGGAAAACCGTACGAGTGCAAGA -ACGGAAAACCGTACGAGTGGTTGA -ACGGAAAACCGTACGAGTTCCGAT -ACGGAAAACCGTACGAGTTGGCAT -ACGGAAAACCGTACGAGTCGAGAT -ACGGAAAACCGTACGAGTTACCAC -ACGGAAAACCGTACGAGTCAGAAC -ACGGAAAACCGTACGAGTGTCTAC -ACGGAAAACCGTACGAGTACGTAC -ACGGAAAACCGTACGAGTAGTGAC -ACGGAAAACCGTACGAGTCTGTAG -ACGGAAAACCGTACGAGTCCTAAG -ACGGAAAACCGTACGAGTGTTCAG -ACGGAAAACCGTACGAGTGCATAG -ACGGAAAACCGTACGAGTGACAAG -ACGGAAAACCGTACGAGTAAGCAG -ACGGAAAACCGTACGAGTCGTCAA -ACGGAAAACCGTACGAGTGCTGAA -ACGGAAAACCGTACGAGTAGTACG -ACGGAAAACCGTACGAGTATCCGA -ACGGAAAACCGTACGAGTATGGGA -ACGGAAAACCGTACGAGTGTGCAA -ACGGAAAACCGTACGAGTGAGGAA -ACGGAAAACCGTACGAGTCAGGTA -ACGGAAAACCGTACGAGTGACTCT -ACGGAAAACCGTACGAGTAGTCCT -ACGGAAAACCGTACGAGTTAAGCC -ACGGAAAACCGTACGAGTATAGCC -ACGGAAAACCGTACGAGTTAACCG -ACGGAAAACCGTACGAGTATGCCA -ACGGAAAACCGTCGAATCGGAAAC -ACGGAAAACCGTCGAATCAACACC -ACGGAAAACCGTCGAATCATCGAG -ACGGAAAACCGTCGAATCCTCCTT -ACGGAAAACCGTCGAATCCCTGTT -ACGGAAAACCGTCGAATCCGGTTT -ACGGAAAACCGTCGAATCGTGGTT -ACGGAAAACCGTCGAATCGCCTTT -ACGGAAAACCGTCGAATCGGTCTT -ACGGAAAACCGTCGAATCACGCTT -ACGGAAAACCGTCGAATCAGCGTT -ACGGAAAACCGTCGAATCTTCGTC -ACGGAAAACCGTCGAATCTCTCTC -ACGGAAAACCGTCGAATCTGGATC -ACGGAAAACCGTCGAATCCACTTC -ACGGAAAACCGTCGAATCGTACTC -ACGGAAAACCGTCGAATCGATGTC -ACGGAAAACCGTCGAATCACAGTC -ACGGAAAACCGTCGAATCTTGCTG -ACGGAAAACCGTCGAATCTCCATG -ACGGAAAACCGTCGAATCTGTGTG -ACGGAAAACCGTCGAATCCTAGTG -ACGGAAAACCGTCGAATCCATCTG -ACGGAAAACCGTCGAATCGAGTTG -ACGGAAAACCGTCGAATCAGACTG -ACGGAAAACCGTCGAATCTCGGTA -ACGGAAAACCGTCGAATCTGCCTA -ACGGAAAACCGTCGAATCCCACTA -ACGGAAAACCGTCGAATCGGAGTA -ACGGAAAACCGTCGAATCTCGTCT -ACGGAAAACCGTCGAATCTGCACT -ACGGAAAACCGTCGAATCCTGACT -ACGGAAAACCGTCGAATCCAACCT -ACGGAAAACCGTCGAATCGCTACT -ACGGAAAACCGTCGAATCGGATCT -ACGGAAAACCGTCGAATCAAGGCT -ACGGAAAACCGTCGAATCTCAACC -ACGGAAAACCGTCGAATCTGTTCC -ACGGAAAACCGTCGAATCATTCCC -ACGGAAAACCGTCGAATCTTCTCG -ACGGAAAACCGTCGAATCTAGACG -ACGGAAAACCGTCGAATCGTAACG -ACGGAAAACCGTCGAATCACTTCG -ACGGAAAACCGTCGAATCTACGCA -ACGGAAAACCGTCGAATCCTTGCA -ACGGAAAACCGTCGAATCCGAACA -ACGGAAAACCGTCGAATCCAGTCA -ACGGAAAACCGTCGAATCGATCCA -ACGGAAAACCGTCGAATCACGACA -ACGGAAAACCGTCGAATCAGCTCA -ACGGAAAACCGTCGAATCTCACGT -ACGGAAAACCGTCGAATCCGTAGT -ACGGAAAACCGTCGAATCGTCAGT -ACGGAAAACCGTCGAATCGAAGGT -ACGGAAAACCGTCGAATCAACCGT -ACGGAAAACCGTCGAATCTTGTGC -ACGGAAAACCGTCGAATCCTAAGC -ACGGAAAACCGTCGAATCACTAGC -ACGGAAAACCGTCGAATCAGATGC -ACGGAAAACCGTCGAATCTGAAGG -ACGGAAAACCGTCGAATCCAATGG -ACGGAAAACCGTCGAATCATGAGG -ACGGAAAACCGTCGAATCAATGGG -ACGGAAAACCGTCGAATCTCCTGA -ACGGAAAACCGTCGAATCTAGCGA -ACGGAAAACCGTCGAATCCACAGA -ACGGAAAACCGTCGAATCGCAAGA -ACGGAAAACCGTCGAATCGGTTGA -ACGGAAAACCGTCGAATCTCCGAT -ACGGAAAACCGTCGAATCTGGCAT -ACGGAAAACCGTCGAATCCGAGAT -ACGGAAAACCGTCGAATCTACCAC -ACGGAAAACCGTCGAATCCAGAAC -ACGGAAAACCGTCGAATCGTCTAC -ACGGAAAACCGTCGAATCACGTAC -ACGGAAAACCGTCGAATCAGTGAC -ACGGAAAACCGTCGAATCCTGTAG -ACGGAAAACCGTCGAATCCCTAAG -ACGGAAAACCGTCGAATCGTTCAG -ACGGAAAACCGTCGAATCGCATAG -ACGGAAAACCGTCGAATCGACAAG -ACGGAAAACCGTCGAATCAAGCAG -ACGGAAAACCGTCGAATCCGTCAA -ACGGAAAACCGTCGAATCGCTGAA -ACGGAAAACCGTCGAATCAGTACG -ACGGAAAACCGTCGAATCATCCGA -ACGGAAAACCGTCGAATCATGGGA -ACGGAAAACCGTCGAATCGTGCAA -ACGGAAAACCGTCGAATCGAGGAA -ACGGAAAACCGTCGAATCCAGGTA -ACGGAAAACCGTCGAATCGACTCT -ACGGAAAACCGTCGAATCAGTCCT -ACGGAAAACCGTCGAATCTAAGCC -ACGGAAAACCGTCGAATCATAGCC -ACGGAAAACCGTCGAATCTAACCG -ACGGAAAACCGTCGAATCATGCCA -ACGGAAAACCGTGGAATGGGAAAC -ACGGAAAACCGTGGAATGAACACC -ACGGAAAACCGTGGAATGATCGAG -ACGGAAAACCGTGGAATGCTCCTT -ACGGAAAACCGTGGAATGCCTGTT -ACGGAAAACCGTGGAATGCGGTTT -ACGGAAAACCGTGGAATGGTGGTT -ACGGAAAACCGTGGAATGGCCTTT -ACGGAAAACCGTGGAATGGGTCTT -ACGGAAAACCGTGGAATGACGCTT -ACGGAAAACCGTGGAATGAGCGTT -ACGGAAAACCGTGGAATGTTCGTC -ACGGAAAACCGTGGAATGTCTCTC -ACGGAAAACCGTGGAATGTGGATC -ACGGAAAACCGTGGAATGCACTTC -ACGGAAAACCGTGGAATGGTACTC -ACGGAAAACCGTGGAATGGATGTC -ACGGAAAACCGTGGAATGACAGTC -ACGGAAAACCGTGGAATGTTGCTG -ACGGAAAACCGTGGAATGTCCATG -ACGGAAAACCGTGGAATGTGTGTG -ACGGAAAACCGTGGAATGCTAGTG -ACGGAAAACCGTGGAATGCATCTG -ACGGAAAACCGTGGAATGGAGTTG -ACGGAAAACCGTGGAATGAGACTG -ACGGAAAACCGTGGAATGTCGGTA -ACGGAAAACCGTGGAATGTGCCTA -ACGGAAAACCGTGGAATGCCACTA -ACGGAAAACCGTGGAATGGGAGTA -ACGGAAAACCGTGGAATGTCGTCT -ACGGAAAACCGTGGAATGTGCACT -ACGGAAAACCGTGGAATGCTGACT -ACGGAAAACCGTGGAATGCAACCT -ACGGAAAACCGTGGAATGGCTACT -ACGGAAAACCGTGGAATGGGATCT -ACGGAAAACCGTGGAATGAAGGCT -ACGGAAAACCGTGGAATGTCAACC -ACGGAAAACCGTGGAATGTGTTCC -ACGGAAAACCGTGGAATGATTCCC -ACGGAAAACCGTGGAATGTTCTCG -ACGGAAAACCGTGGAATGTAGACG -ACGGAAAACCGTGGAATGGTAACG -ACGGAAAACCGTGGAATGACTTCG -ACGGAAAACCGTGGAATGTACGCA -ACGGAAAACCGTGGAATGCTTGCA -ACGGAAAACCGTGGAATGCGAACA -ACGGAAAACCGTGGAATGCAGTCA -ACGGAAAACCGTGGAATGGATCCA -ACGGAAAACCGTGGAATGACGACA -ACGGAAAACCGTGGAATGAGCTCA -ACGGAAAACCGTGGAATGTCACGT -ACGGAAAACCGTGGAATGCGTAGT -ACGGAAAACCGTGGAATGGTCAGT -ACGGAAAACCGTGGAATGGAAGGT -ACGGAAAACCGTGGAATGAACCGT -ACGGAAAACCGTGGAATGTTGTGC -ACGGAAAACCGTGGAATGCTAAGC -ACGGAAAACCGTGGAATGACTAGC -ACGGAAAACCGTGGAATGAGATGC -ACGGAAAACCGTGGAATGTGAAGG -ACGGAAAACCGTGGAATGCAATGG -ACGGAAAACCGTGGAATGATGAGG -ACGGAAAACCGTGGAATGAATGGG -ACGGAAAACCGTGGAATGTCCTGA -ACGGAAAACCGTGGAATGTAGCGA -ACGGAAAACCGTGGAATGCACAGA -ACGGAAAACCGTGGAATGGCAAGA -ACGGAAAACCGTGGAATGGGTTGA -ACGGAAAACCGTGGAATGTCCGAT -ACGGAAAACCGTGGAATGTGGCAT -ACGGAAAACCGTGGAATGCGAGAT -ACGGAAAACCGTGGAATGTACCAC -ACGGAAAACCGTGGAATGCAGAAC -ACGGAAAACCGTGGAATGGTCTAC -ACGGAAAACCGTGGAATGACGTAC -ACGGAAAACCGTGGAATGAGTGAC -ACGGAAAACCGTGGAATGCTGTAG -ACGGAAAACCGTGGAATGCCTAAG -ACGGAAAACCGTGGAATGGTTCAG -ACGGAAAACCGTGGAATGGCATAG -ACGGAAAACCGTGGAATGGACAAG -ACGGAAAACCGTGGAATGAAGCAG -ACGGAAAACCGTGGAATGCGTCAA -ACGGAAAACCGTGGAATGGCTGAA -ACGGAAAACCGTGGAATGAGTACG -ACGGAAAACCGTGGAATGATCCGA -ACGGAAAACCGTGGAATGATGGGA -ACGGAAAACCGTGGAATGGTGCAA -ACGGAAAACCGTGGAATGGAGGAA -ACGGAAAACCGTGGAATGCAGGTA -ACGGAAAACCGTGGAATGGACTCT -ACGGAAAACCGTGGAATGAGTCCT -ACGGAAAACCGTGGAATGTAAGCC -ACGGAAAACCGTGGAATGATAGCC -ACGGAAAACCGTGGAATGTAACCG -ACGGAAAACCGTGGAATGATGCCA -ACGGAAAACCGTCAAGTGGGAAAC -ACGGAAAACCGTCAAGTGAACACC -ACGGAAAACCGTCAAGTGATCGAG -ACGGAAAACCGTCAAGTGCTCCTT -ACGGAAAACCGTCAAGTGCCTGTT -ACGGAAAACCGTCAAGTGCGGTTT -ACGGAAAACCGTCAAGTGGTGGTT -ACGGAAAACCGTCAAGTGGCCTTT -ACGGAAAACCGTCAAGTGGGTCTT -ACGGAAAACCGTCAAGTGACGCTT -ACGGAAAACCGTCAAGTGAGCGTT -ACGGAAAACCGTCAAGTGTTCGTC -ACGGAAAACCGTCAAGTGTCTCTC -ACGGAAAACCGTCAAGTGTGGATC -ACGGAAAACCGTCAAGTGCACTTC -ACGGAAAACCGTCAAGTGGTACTC -ACGGAAAACCGTCAAGTGGATGTC -ACGGAAAACCGTCAAGTGACAGTC -ACGGAAAACCGTCAAGTGTTGCTG -ACGGAAAACCGTCAAGTGTCCATG -ACGGAAAACCGTCAAGTGTGTGTG -ACGGAAAACCGTCAAGTGCTAGTG -ACGGAAAACCGTCAAGTGCATCTG -ACGGAAAACCGTCAAGTGGAGTTG -ACGGAAAACCGTCAAGTGAGACTG -ACGGAAAACCGTCAAGTGTCGGTA -ACGGAAAACCGTCAAGTGTGCCTA -ACGGAAAACCGTCAAGTGCCACTA -ACGGAAAACCGTCAAGTGGGAGTA -ACGGAAAACCGTCAAGTGTCGTCT -ACGGAAAACCGTCAAGTGTGCACT -ACGGAAAACCGTCAAGTGCTGACT -ACGGAAAACCGTCAAGTGCAACCT -ACGGAAAACCGTCAAGTGGCTACT -ACGGAAAACCGTCAAGTGGGATCT -ACGGAAAACCGTCAAGTGAAGGCT -ACGGAAAACCGTCAAGTGTCAACC -ACGGAAAACCGTCAAGTGTGTTCC -ACGGAAAACCGTCAAGTGATTCCC -ACGGAAAACCGTCAAGTGTTCTCG -ACGGAAAACCGTCAAGTGTAGACG -ACGGAAAACCGTCAAGTGGTAACG -ACGGAAAACCGTCAAGTGACTTCG -ACGGAAAACCGTCAAGTGTACGCA -ACGGAAAACCGTCAAGTGCTTGCA -ACGGAAAACCGTCAAGTGCGAACA -ACGGAAAACCGTCAAGTGCAGTCA -ACGGAAAACCGTCAAGTGGATCCA -ACGGAAAACCGTCAAGTGACGACA -ACGGAAAACCGTCAAGTGAGCTCA -ACGGAAAACCGTCAAGTGTCACGT -ACGGAAAACCGTCAAGTGCGTAGT -ACGGAAAACCGTCAAGTGGTCAGT -ACGGAAAACCGTCAAGTGGAAGGT -ACGGAAAACCGTCAAGTGAACCGT -ACGGAAAACCGTCAAGTGTTGTGC -ACGGAAAACCGTCAAGTGCTAAGC -ACGGAAAACCGTCAAGTGACTAGC -ACGGAAAACCGTCAAGTGAGATGC -ACGGAAAACCGTCAAGTGTGAAGG -ACGGAAAACCGTCAAGTGCAATGG -ACGGAAAACCGTCAAGTGATGAGG -ACGGAAAACCGTCAAGTGAATGGG -ACGGAAAACCGTCAAGTGTCCTGA -ACGGAAAACCGTCAAGTGTAGCGA -ACGGAAAACCGTCAAGTGCACAGA -ACGGAAAACCGTCAAGTGGCAAGA -ACGGAAAACCGTCAAGTGGGTTGA -ACGGAAAACCGTCAAGTGTCCGAT -ACGGAAAACCGTCAAGTGTGGCAT -ACGGAAAACCGTCAAGTGCGAGAT -ACGGAAAACCGTCAAGTGTACCAC -ACGGAAAACCGTCAAGTGCAGAAC -ACGGAAAACCGTCAAGTGGTCTAC -ACGGAAAACCGTCAAGTGACGTAC -ACGGAAAACCGTCAAGTGAGTGAC -ACGGAAAACCGTCAAGTGCTGTAG -ACGGAAAACCGTCAAGTGCCTAAG -ACGGAAAACCGTCAAGTGGTTCAG -ACGGAAAACCGTCAAGTGGCATAG -ACGGAAAACCGTCAAGTGGACAAG -ACGGAAAACCGTCAAGTGAAGCAG -ACGGAAAACCGTCAAGTGCGTCAA -ACGGAAAACCGTCAAGTGGCTGAA -ACGGAAAACCGTCAAGTGAGTACG -ACGGAAAACCGTCAAGTGATCCGA -ACGGAAAACCGTCAAGTGATGGGA -ACGGAAAACCGTCAAGTGGTGCAA -ACGGAAAACCGTCAAGTGGAGGAA -ACGGAAAACCGTCAAGTGCAGGTA -ACGGAAAACCGTCAAGTGGACTCT -ACGGAAAACCGTCAAGTGAGTCCT -ACGGAAAACCGTCAAGTGTAAGCC -ACGGAAAACCGTCAAGTGATAGCC -ACGGAAAACCGTCAAGTGTAACCG -ACGGAAAACCGTCAAGTGATGCCA -ACGGAAAACCGTGAAGAGGGAAAC -ACGGAAAACCGTGAAGAGAACACC -ACGGAAAACCGTGAAGAGATCGAG -ACGGAAAACCGTGAAGAGCTCCTT -ACGGAAAACCGTGAAGAGCCTGTT -ACGGAAAACCGTGAAGAGCGGTTT -ACGGAAAACCGTGAAGAGGTGGTT -ACGGAAAACCGTGAAGAGGCCTTT -ACGGAAAACCGTGAAGAGGGTCTT -ACGGAAAACCGTGAAGAGACGCTT -ACGGAAAACCGTGAAGAGAGCGTT -ACGGAAAACCGTGAAGAGTTCGTC -ACGGAAAACCGTGAAGAGTCTCTC -ACGGAAAACCGTGAAGAGTGGATC -ACGGAAAACCGTGAAGAGCACTTC -ACGGAAAACCGTGAAGAGGTACTC -ACGGAAAACCGTGAAGAGGATGTC -ACGGAAAACCGTGAAGAGACAGTC -ACGGAAAACCGTGAAGAGTTGCTG -ACGGAAAACCGTGAAGAGTCCATG -ACGGAAAACCGTGAAGAGTGTGTG -ACGGAAAACCGTGAAGAGCTAGTG -ACGGAAAACCGTGAAGAGCATCTG -ACGGAAAACCGTGAAGAGGAGTTG -ACGGAAAACCGTGAAGAGAGACTG -ACGGAAAACCGTGAAGAGTCGGTA -ACGGAAAACCGTGAAGAGTGCCTA -ACGGAAAACCGTGAAGAGCCACTA -ACGGAAAACCGTGAAGAGGGAGTA -ACGGAAAACCGTGAAGAGTCGTCT -ACGGAAAACCGTGAAGAGTGCACT -ACGGAAAACCGTGAAGAGCTGACT -ACGGAAAACCGTGAAGAGCAACCT -ACGGAAAACCGTGAAGAGGCTACT -ACGGAAAACCGTGAAGAGGGATCT -ACGGAAAACCGTGAAGAGAAGGCT -ACGGAAAACCGTGAAGAGTCAACC -ACGGAAAACCGTGAAGAGTGTTCC -ACGGAAAACCGTGAAGAGATTCCC -ACGGAAAACCGTGAAGAGTTCTCG -ACGGAAAACCGTGAAGAGTAGACG -ACGGAAAACCGTGAAGAGGTAACG -ACGGAAAACCGTGAAGAGACTTCG -ACGGAAAACCGTGAAGAGTACGCA -ACGGAAAACCGTGAAGAGCTTGCA -ACGGAAAACCGTGAAGAGCGAACA -ACGGAAAACCGTGAAGAGCAGTCA -ACGGAAAACCGTGAAGAGGATCCA -ACGGAAAACCGTGAAGAGACGACA -ACGGAAAACCGTGAAGAGAGCTCA -ACGGAAAACCGTGAAGAGTCACGT -ACGGAAAACCGTGAAGAGCGTAGT -ACGGAAAACCGTGAAGAGGTCAGT -ACGGAAAACCGTGAAGAGGAAGGT -ACGGAAAACCGTGAAGAGAACCGT -ACGGAAAACCGTGAAGAGTTGTGC -ACGGAAAACCGTGAAGAGCTAAGC -ACGGAAAACCGTGAAGAGACTAGC -ACGGAAAACCGTGAAGAGAGATGC -ACGGAAAACCGTGAAGAGTGAAGG -ACGGAAAACCGTGAAGAGCAATGG -ACGGAAAACCGTGAAGAGATGAGG -ACGGAAAACCGTGAAGAGAATGGG -ACGGAAAACCGTGAAGAGTCCTGA -ACGGAAAACCGTGAAGAGTAGCGA -ACGGAAAACCGTGAAGAGCACAGA -ACGGAAAACCGTGAAGAGGCAAGA -ACGGAAAACCGTGAAGAGGGTTGA -ACGGAAAACCGTGAAGAGTCCGAT -ACGGAAAACCGTGAAGAGTGGCAT -ACGGAAAACCGTGAAGAGCGAGAT -ACGGAAAACCGTGAAGAGTACCAC -ACGGAAAACCGTGAAGAGCAGAAC -ACGGAAAACCGTGAAGAGGTCTAC -ACGGAAAACCGTGAAGAGACGTAC -ACGGAAAACCGTGAAGAGAGTGAC -ACGGAAAACCGTGAAGAGCTGTAG -ACGGAAAACCGTGAAGAGCCTAAG -ACGGAAAACCGTGAAGAGGTTCAG -ACGGAAAACCGTGAAGAGGCATAG -ACGGAAAACCGTGAAGAGGACAAG -ACGGAAAACCGTGAAGAGAAGCAG -ACGGAAAACCGTGAAGAGCGTCAA -ACGGAAAACCGTGAAGAGGCTGAA -ACGGAAAACCGTGAAGAGAGTACG -ACGGAAAACCGTGAAGAGATCCGA -ACGGAAAACCGTGAAGAGATGGGA -ACGGAAAACCGTGAAGAGGTGCAA -ACGGAAAACCGTGAAGAGGAGGAA -ACGGAAAACCGTGAAGAGCAGGTA -ACGGAAAACCGTGAAGAGGACTCT -ACGGAAAACCGTGAAGAGAGTCCT -ACGGAAAACCGTGAAGAGTAAGCC -ACGGAAAACCGTGAAGAGATAGCC -ACGGAAAACCGTGAAGAGTAACCG -ACGGAAAACCGTGAAGAGATGCCA -ACGGAAAACCGTGTACAGGGAAAC -ACGGAAAACCGTGTACAGAACACC -ACGGAAAACCGTGTACAGATCGAG -ACGGAAAACCGTGTACAGCTCCTT -ACGGAAAACCGTGTACAGCCTGTT -ACGGAAAACCGTGTACAGCGGTTT -ACGGAAAACCGTGTACAGGTGGTT -ACGGAAAACCGTGTACAGGCCTTT -ACGGAAAACCGTGTACAGGGTCTT -ACGGAAAACCGTGTACAGACGCTT -ACGGAAAACCGTGTACAGAGCGTT -ACGGAAAACCGTGTACAGTTCGTC -ACGGAAAACCGTGTACAGTCTCTC -ACGGAAAACCGTGTACAGTGGATC -ACGGAAAACCGTGTACAGCACTTC -ACGGAAAACCGTGTACAGGTACTC -ACGGAAAACCGTGTACAGGATGTC -ACGGAAAACCGTGTACAGACAGTC -ACGGAAAACCGTGTACAGTTGCTG -ACGGAAAACCGTGTACAGTCCATG -ACGGAAAACCGTGTACAGTGTGTG -ACGGAAAACCGTGTACAGCTAGTG -ACGGAAAACCGTGTACAGCATCTG -ACGGAAAACCGTGTACAGGAGTTG -ACGGAAAACCGTGTACAGAGACTG -ACGGAAAACCGTGTACAGTCGGTA -ACGGAAAACCGTGTACAGTGCCTA -ACGGAAAACCGTGTACAGCCACTA -ACGGAAAACCGTGTACAGGGAGTA -ACGGAAAACCGTGTACAGTCGTCT -ACGGAAAACCGTGTACAGTGCACT -ACGGAAAACCGTGTACAGCTGACT -ACGGAAAACCGTGTACAGCAACCT -ACGGAAAACCGTGTACAGGCTACT -ACGGAAAACCGTGTACAGGGATCT -ACGGAAAACCGTGTACAGAAGGCT -ACGGAAAACCGTGTACAGTCAACC -ACGGAAAACCGTGTACAGTGTTCC -ACGGAAAACCGTGTACAGATTCCC -ACGGAAAACCGTGTACAGTTCTCG -ACGGAAAACCGTGTACAGTAGACG -ACGGAAAACCGTGTACAGGTAACG -ACGGAAAACCGTGTACAGACTTCG -ACGGAAAACCGTGTACAGTACGCA -ACGGAAAACCGTGTACAGCTTGCA -ACGGAAAACCGTGTACAGCGAACA -ACGGAAAACCGTGTACAGCAGTCA -ACGGAAAACCGTGTACAGGATCCA -ACGGAAAACCGTGTACAGACGACA -ACGGAAAACCGTGTACAGAGCTCA -ACGGAAAACCGTGTACAGTCACGT -ACGGAAAACCGTGTACAGCGTAGT -ACGGAAAACCGTGTACAGGTCAGT -ACGGAAAACCGTGTACAGGAAGGT -ACGGAAAACCGTGTACAGAACCGT -ACGGAAAACCGTGTACAGTTGTGC -ACGGAAAACCGTGTACAGCTAAGC -ACGGAAAACCGTGTACAGACTAGC -ACGGAAAACCGTGTACAGAGATGC -ACGGAAAACCGTGTACAGTGAAGG -ACGGAAAACCGTGTACAGCAATGG -ACGGAAAACCGTGTACAGATGAGG -ACGGAAAACCGTGTACAGAATGGG -ACGGAAAACCGTGTACAGTCCTGA -ACGGAAAACCGTGTACAGTAGCGA -ACGGAAAACCGTGTACAGCACAGA -ACGGAAAACCGTGTACAGGCAAGA -ACGGAAAACCGTGTACAGGGTTGA -ACGGAAAACCGTGTACAGTCCGAT -ACGGAAAACCGTGTACAGTGGCAT -ACGGAAAACCGTGTACAGCGAGAT -ACGGAAAACCGTGTACAGTACCAC -ACGGAAAACCGTGTACAGCAGAAC -ACGGAAAACCGTGTACAGGTCTAC -ACGGAAAACCGTGTACAGACGTAC -ACGGAAAACCGTGTACAGAGTGAC -ACGGAAAACCGTGTACAGCTGTAG -ACGGAAAACCGTGTACAGCCTAAG -ACGGAAAACCGTGTACAGGTTCAG -ACGGAAAACCGTGTACAGGCATAG -ACGGAAAACCGTGTACAGGACAAG -ACGGAAAACCGTGTACAGAAGCAG -ACGGAAAACCGTGTACAGCGTCAA -ACGGAAAACCGTGTACAGGCTGAA -ACGGAAAACCGTGTACAGAGTACG -ACGGAAAACCGTGTACAGATCCGA -ACGGAAAACCGTGTACAGATGGGA -ACGGAAAACCGTGTACAGGTGCAA -ACGGAAAACCGTGTACAGGAGGAA -ACGGAAAACCGTGTACAGCAGGTA -ACGGAAAACCGTGTACAGGACTCT -ACGGAAAACCGTGTACAGAGTCCT -ACGGAAAACCGTGTACAGTAAGCC -ACGGAAAACCGTGTACAGATAGCC -ACGGAAAACCGTGTACAGTAACCG -ACGGAAAACCGTGTACAGATGCCA -ACGGAAAACCGTTCTGACGGAAAC -ACGGAAAACCGTTCTGACAACACC -ACGGAAAACCGTTCTGACATCGAG -ACGGAAAACCGTTCTGACCTCCTT -ACGGAAAACCGTTCTGACCCTGTT -ACGGAAAACCGTTCTGACCGGTTT -ACGGAAAACCGTTCTGACGTGGTT -ACGGAAAACCGTTCTGACGCCTTT -ACGGAAAACCGTTCTGACGGTCTT -ACGGAAAACCGTTCTGACACGCTT -ACGGAAAACCGTTCTGACAGCGTT -ACGGAAAACCGTTCTGACTTCGTC -ACGGAAAACCGTTCTGACTCTCTC -ACGGAAAACCGTTCTGACTGGATC -ACGGAAAACCGTTCTGACCACTTC -ACGGAAAACCGTTCTGACGTACTC -ACGGAAAACCGTTCTGACGATGTC -ACGGAAAACCGTTCTGACACAGTC -ACGGAAAACCGTTCTGACTTGCTG -ACGGAAAACCGTTCTGACTCCATG -ACGGAAAACCGTTCTGACTGTGTG -ACGGAAAACCGTTCTGACCTAGTG -ACGGAAAACCGTTCTGACCATCTG -ACGGAAAACCGTTCTGACGAGTTG -ACGGAAAACCGTTCTGACAGACTG -ACGGAAAACCGTTCTGACTCGGTA -ACGGAAAACCGTTCTGACTGCCTA -ACGGAAAACCGTTCTGACCCACTA -ACGGAAAACCGTTCTGACGGAGTA -ACGGAAAACCGTTCTGACTCGTCT -ACGGAAAACCGTTCTGACTGCACT -ACGGAAAACCGTTCTGACCTGACT -ACGGAAAACCGTTCTGACCAACCT -ACGGAAAACCGTTCTGACGCTACT -ACGGAAAACCGTTCTGACGGATCT -ACGGAAAACCGTTCTGACAAGGCT -ACGGAAAACCGTTCTGACTCAACC -ACGGAAAACCGTTCTGACTGTTCC -ACGGAAAACCGTTCTGACATTCCC -ACGGAAAACCGTTCTGACTTCTCG -ACGGAAAACCGTTCTGACTAGACG -ACGGAAAACCGTTCTGACGTAACG -ACGGAAAACCGTTCTGACACTTCG -ACGGAAAACCGTTCTGACTACGCA -ACGGAAAACCGTTCTGACCTTGCA -ACGGAAAACCGTTCTGACCGAACA -ACGGAAAACCGTTCTGACCAGTCA -ACGGAAAACCGTTCTGACGATCCA -ACGGAAAACCGTTCTGACACGACA -ACGGAAAACCGTTCTGACAGCTCA -ACGGAAAACCGTTCTGACTCACGT -ACGGAAAACCGTTCTGACCGTAGT -ACGGAAAACCGTTCTGACGTCAGT -ACGGAAAACCGTTCTGACGAAGGT -ACGGAAAACCGTTCTGACAACCGT -ACGGAAAACCGTTCTGACTTGTGC -ACGGAAAACCGTTCTGACCTAAGC -ACGGAAAACCGTTCTGACACTAGC -ACGGAAAACCGTTCTGACAGATGC -ACGGAAAACCGTTCTGACTGAAGG -ACGGAAAACCGTTCTGACCAATGG -ACGGAAAACCGTTCTGACATGAGG -ACGGAAAACCGTTCTGACAATGGG -ACGGAAAACCGTTCTGACTCCTGA -ACGGAAAACCGTTCTGACTAGCGA -ACGGAAAACCGTTCTGACCACAGA -ACGGAAAACCGTTCTGACGCAAGA -ACGGAAAACCGTTCTGACGGTTGA -ACGGAAAACCGTTCTGACTCCGAT -ACGGAAAACCGTTCTGACTGGCAT -ACGGAAAACCGTTCTGACCGAGAT -ACGGAAAACCGTTCTGACTACCAC -ACGGAAAACCGTTCTGACCAGAAC -ACGGAAAACCGTTCTGACGTCTAC -ACGGAAAACCGTTCTGACACGTAC -ACGGAAAACCGTTCTGACAGTGAC -ACGGAAAACCGTTCTGACCTGTAG -ACGGAAAACCGTTCTGACCCTAAG -ACGGAAAACCGTTCTGACGTTCAG -ACGGAAAACCGTTCTGACGCATAG -ACGGAAAACCGTTCTGACGACAAG -ACGGAAAACCGTTCTGACAAGCAG -ACGGAAAACCGTTCTGACCGTCAA -ACGGAAAACCGTTCTGACGCTGAA -ACGGAAAACCGTTCTGACAGTACG -ACGGAAAACCGTTCTGACATCCGA -ACGGAAAACCGTTCTGACATGGGA -ACGGAAAACCGTTCTGACGTGCAA -ACGGAAAACCGTTCTGACGAGGAA -ACGGAAAACCGTTCTGACCAGGTA -ACGGAAAACCGTTCTGACGACTCT -ACGGAAAACCGTTCTGACAGTCCT -ACGGAAAACCGTTCTGACTAAGCC -ACGGAAAACCGTTCTGACATAGCC -ACGGAAAACCGTTCTGACTAACCG -ACGGAAAACCGTTCTGACATGCCA -ACGGAAAACCGTCCTAGTGGAAAC -ACGGAAAACCGTCCTAGTAACACC -ACGGAAAACCGTCCTAGTATCGAG -ACGGAAAACCGTCCTAGTCTCCTT -ACGGAAAACCGTCCTAGTCCTGTT -ACGGAAAACCGTCCTAGTCGGTTT -ACGGAAAACCGTCCTAGTGTGGTT -ACGGAAAACCGTCCTAGTGCCTTT -ACGGAAAACCGTCCTAGTGGTCTT -ACGGAAAACCGTCCTAGTACGCTT -ACGGAAAACCGTCCTAGTAGCGTT -ACGGAAAACCGTCCTAGTTTCGTC -ACGGAAAACCGTCCTAGTTCTCTC -ACGGAAAACCGTCCTAGTTGGATC -ACGGAAAACCGTCCTAGTCACTTC -ACGGAAAACCGTCCTAGTGTACTC -ACGGAAAACCGTCCTAGTGATGTC -ACGGAAAACCGTCCTAGTACAGTC -ACGGAAAACCGTCCTAGTTTGCTG -ACGGAAAACCGTCCTAGTTCCATG -ACGGAAAACCGTCCTAGTTGTGTG -ACGGAAAACCGTCCTAGTCTAGTG -ACGGAAAACCGTCCTAGTCATCTG -ACGGAAAACCGTCCTAGTGAGTTG -ACGGAAAACCGTCCTAGTAGACTG -ACGGAAAACCGTCCTAGTTCGGTA -ACGGAAAACCGTCCTAGTTGCCTA -ACGGAAAACCGTCCTAGTCCACTA -ACGGAAAACCGTCCTAGTGGAGTA -ACGGAAAACCGTCCTAGTTCGTCT -ACGGAAAACCGTCCTAGTTGCACT -ACGGAAAACCGTCCTAGTCTGACT -ACGGAAAACCGTCCTAGTCAACCT -ACGGAAAACCGTCCTAGTGCTACT -ACGGAAAACCGTCCTAGTGGATCT -ACGGAAAACCGTCCTAGTAAGGCT -ACGGAAAACCGTCCTAGTTCAACC -ACGGAAAACCGTCCTAGTTGTTCC -ACGGAAAACCGTCCTAGTATTCCC -ACGGAAAACCGTCCTAGTTTCTCG -ACGGAAAACCGTCCTAGTTAGACG -ACGGAAAACCGTCCTAGTGTAACG -ACGGAAAACCGTCCTAGTACTTCG -ACGGAAAACCGTCCTAGTTACGCA -ACGGAAAACCGTCCTAGTCTTGCA -ACGGAAAACCGTCCTAGTCGAACA -ACGGAAAACCGTCCTAGTCAGTCA -ACGGAAAACCGTCCTAGTGATCCA -ACGGAAAACCGTCCTAGTACGACA -ACGGAAAACCGTCCTAGTAGCTCA -ACGGAAAACCGTCCTAGTTCACGT -ACGGAAAACCGTCCTAGTCGTAGT -ACGGAAAACCGTCCTAGTGTCAGT -ACGGAAAACCGTCCTAGTGAAGGT -ACGGAAAACCGTCCTAGTAACCGT -ACGGAAAACCGTCCTAGTTTGTGC -ACGGAAAACCGTCCTAGTCTAAGC -ACGGAAAACCGTCCTAGTACTAGC -ACGGAAAACCGTCCTAGTAGATGC -ACGGAAAACCGTCCTAGTTGAAGG -ACGGAAAACCGTCCTAGTCAATGG -ACGGAAAACCGTCCTAGTATGAGG -ACGGAAAACCGTCCTAGTAATGGG -ACGGAAAACCGTCCTAGTTCCTGA -ACGGAAAACCGTCCTAGTTAGCGA -ACGGAAAACCGTCCTAGTCACAGA -ACGGAAAACCGTCCTAGTGCAAGA -ACGGAAAACCGTCCTAGTGGTTGA -ACGGAAAACCGTCCTAGTTCCGAT -ACGGAAAACCGTCCTAGTTGGCAT -ACGGAAAACCGTCCTAGTCGAGAT -ACGGAAAACCGTCCTAGTTACCAC -ACGGAAAACCGTCCTAGTCAGAAC -ACGGAAAACCGTCCTAGTGTCTAC -ACGGAAAACCGTCCTAGTACGTAC -ACGGAAAACCGTCCTAGTAGTGAC -ACGGAAAACCGTCCTAGTCTGTAG -ACGGAAAACCGTCCTAGTCCTAAG -ACGGAAAACCGTCCTAGTGTTCAG -ACGGAAAACCGTCCTAGTGCATAG -ACGGAAAACCGTCCTAGTGACAAG -ACGGAAAACCGTCCTAGTAAGCAG -ACGGAAAACCGTCCTAGTCGTCAA -ACGGAAAACCGTCCTAGTGCTGAA -ACGGAAAACCGTCCTAGTAGTACG -ACGGAAAACCGTCCTAGTATCCGA -ACGGAAAACCGTCCTAGTATGGGA -ACGGAAAACCGTCCTAGTGTGCAA -ACGGAAAACCGTCCTAGTGAGGAA -ACGGAAAACCGTCCTAGTCAGGTA -ACGGAAAACCGTCCTAGTGACTCT -ACGGAAAACCGTCCTAGTAGTCCT -ACGGAAAACCGTCCTAGTTAAGCC -ACGGAAAACCGTCCTAGTATAGCC -ACGGAAAACCGTCCTAGTTAACCG -ACGGAAAACCGTCCTAGTATGCCA -ACGGAAAACCGTGCCTAAGGAAAC -ACGGAAAACCGTGCCTAAAACACC -ACGGAAAACCGTGCCTAAATCGAG -ACGGAAAACCGTGCCTAACTCCTT -ACGGAAAACCGTGCCTAACCTGTT -ACGGAAAACCGTGCCTAACGGTTT -ACGGAAAACCGTGCCTAAGTGGTT -ACGGAAAACCGTGCCTAAGCCTTT -ACGGAAAACCGTGCCTAAGGTCTT -ACGGAAAACCGTGCCTAAACGCTT -ACGGAAAACCGTGCCTAAAGCGTT -ACGGAAAACCGTGCCTAATTCGTC -ACGGAAAACCGTGCCTAATCTCTC -ACGGAAAACCGTGCCTAATGGATC -ACGGAAAACCGTGCCTAACACTTC -ACGGAAAACCGTGCCTAAGTACTC -ACGGAAAACCGTGCCTAAGATGTC -ACGGAAAACCGTGCCTAAACAGTC -ACGGAAAACCGTGCCTAATTGCTG -ACGGAAAACCGTGCCTAATCCATG -ACGGAAAACCGTGCCTAATGTGTG -ACGGAAAACCGTGCCTAACTAGTG -ACGGAAAACCGTGCCTAACATCTG -ACGGAAAACCGTGCCTAAGAGTTG -ACGGAAAACCGTGCCTAAAGACTG -ACGGAAAACCGTGCCTAATCGGTA -ACGGAAAACCGTGCCTAATGCCTA -ACGGAAAACCGTGCCTAACCACTA -ACGGAAAACCGTGCCTAAGGAGTA -ACGGAAAACCGTGCCTAATCGTCT -ACGGAAAACCGTGCCTAATGCACT -ACGGAAAACCGTGCCTAACTGACT -ACGGAAAACCGTGCCTAACAACCT -ACGGAAAACCGTGCCTAAGCTACT -ACGGAAAACCGTGCCTAAGGATCT -ACGGAAAACCGTGCCTAAAAGGCT -ACGGAAAACCGTGCCTAATCAACC -ACGGAAAACCGTGCCTAATGTTCC -ACGGAAAACCGTGCCTAAATTCCC -ACGGAAAACCGTGCCTAATTCTCG -ACGGAAAACCGTGCCTAATAGACG -ACGGAAAACCGTGCCTAAGTAACG -ACGGAAAACCGTGCCTAAACTTCG -ACGGAAAACCGTGCCTAATACGCA -ACGGAAAACCGTGCCTAACTTGCA -ACGGAAAACCGTGCCTAACGAACA -ACGGAAAACCGTGCCTAACAGTCA -ACGGAAAACCGTGCCTAAGATCCA -ACGGAAAACCGTGCCTAAACGACA -ACGGAAAACCGTGCCTAAAGCTCA -ACGGAAAACCGTGCCTAATCACGT -ACGGAAAACCGTGCCTAACGTAGT -ACGGAAAACCGTGCCTAAGTCAGT -ACGGAAAACCGTGCCTAAGAAGGT -ACGGAAAACCGTGCCTAAAACCGT -ACGGAAAACCGTGCCTAATTGTGC -ACGGAAAACCGTGCCTAACTAAGC -ACGGAAAACCGTGCCTAAACTAGC -ACGGAAAACCGTGCCTAAAGATGC -ACGGAAAACCGTGCCTAATGAAGG -ACGGAAAACCGTGCCTAACAATGG -ACGGAAAACCGTGCCTAAATGAGG -ACGGAAAACCGTGCCTAAAATGGG -ACGGAAAACCGTGCCTAATCCTGA -ACGGAAAACCGTGCCTAATAGCGA -ACGGAAAACCGTGCCTAACACAGA -ACGGAAAACCGTGCCTAAGCAAGA -ACGGAAAACCGTGCCTAAGGTTGA -ACGGAAAACCGTGCCTAATCCGAT -ACGGAAAACCGTGCCTAATGGCAT -ACGGAAAACCGTGCCTAACGAGAT -ACGGAAAACCGTGCCTAATACCAC -ACGGAAAACCGTGCCTAACAGAAC -ACGGAAAACCGTGCCTAAGTCTAC -ACGGAAAACCGTGCCTAAACGTAC -ACGGAAAACCGTGCCTAAAGTGAC -ACGGAAAACCGTGCCTAACTGTAG -ACGGAAAACCGTGCCTAACCTAAG -ACGGAAAACCGTGCCTAAGTTCAG -ACGGAAAACCGTGCCTAAGCATAG -ACGGAAAACCGTGCCTAAGACAAG -ACGGAAAACCGTGCCTAAAAGCAG -ACGGAAAACCGTGCCTAACGTCAA -ACGGAAAACCGTGCCTAAGCTGAA -ACGGAAAACCGTGCCTAAAGTACG -ACGGAAAACCGTGCCTAAATCCGA -ACGGAAAACCGTGCCTAAATGGGA -ACGGAAAACCGTGCCTAAGTGCAA -ACGGAAAACCGTGCCTAAGAGGAA -ACGGAAAACCGTGCCTAACAGGTA -ACGGAAAACCGTGCCTAAGACTCT -ACGGAAAACCGTGCCTAAAGTCCT -ACGGAAAACCGTGCCTAATAAGCC -ACGGAAAACCGTGCCTAAATAGCC -ACGGAAAACCGTGCCTAATAACCG -ACGGAAAACCGTGCCTAAATGCCA -ACGGAAAACCGTGCCATAGGAAAC -ACGGAAAACCGTGCCATAAACACC -ACGGAAAACCGTGCCATAATCGAG -ACGGAAAACCGTGCCATACTCCTT -ACGGAAAACCGTGCCATACCTGTT -ACGGAAAACCGTGCCATACGGTTT -ACGGAAAACCGTGCCATAGTGGTT -ACGGAAAACCGTGCCATAGCCTTT -ACGGAAAACCGTGCCATAGGTCTT -ACGGAAAACCGTGCCATAACGCTT -ACGGAAAACCGTGCCATAAGCGTT -ACGGAAAACCGTGCCATATTCGTC -ACGGAAAACCGTGCCATATCTCTC -ACGGAAAACCGTGCCATATGGATC -ACGGAAAACCGTGCCATACACTTC -ACGGAAAACCGTGCCATAGTACTC -ACGGAAAACCGTGCCATAGATGTC -ACGGAAAACCGTGCCATAACAGTC -ACGGAAAACCGTGCCATATTGCTG -ACGGAAAACCGTGCCATATCCATG -ACGGAAAACCGTGCCATATGTGTG -ACGGAAAACCGTGCCATACTAGTG -ACGGAAAACCGTGCCATACATCTG -ACGGAAAACCGTGCCATAGAGTTG -ACGGAAAACCGTGCCATAAGACTG -ACGGAAAACCGTGCCATATCGGTA -ACGGAAAACCGTGCCATATGCCTA -ACGGAAAACCGTGCCATACCACTA -ACGGAAAACCGTGCCATAGGAGTA -ACGGAAAACCGTGCCATATCGTCT -ACGGAAAACCGTGCCATATGCACT -ACGGAAAACCGTGCCATACTGACT -ACGGAAAACCGTGCCATACAACCT -ACGGAAAACCGTGCCATAGCTACT -ACGGAAAACCGTGCCATAGGATCT -ACGGAAAACCGTGCCATAAAGGCT -ACGGAAAACCGTGCCATATCAACC -ACGGAAAACCGTGCCATATGTTCC -ACGGAAAACCGTGCCATAATTCCC -ACGGAAAACCGTGCCATATTCTCG -ACGGAAAACCGTGCCATATAGACG -ACGGAAAACCGTGCCATAGTAACG -ACGGAAAACCGTGCCATAACTTCG -ACGGAAAACCGTGCCATATACGCA -ACGGAAAACCGTGCCATACTTGCA -ACGGAAAACCGTGCCATACGAACA -ACGGAAAACCGTGCCATACAGTCA -ACGGAAAACCGTGCCATAGATCCA -ACGGAAAACCGTGCCATAACGACA -ACGGAAAACCGTGCCATAAGCTCA -ACGGAAAACCGTGCCATATCACGT -ACGGAAAACCGTGCCATACGTAGT -ACGGAAAACCGTGCCATAGTCAGT -ACGGAAAACCGTGCCATAGAAGGT -ACGGAAAACCGTGCCATAAACCGT -ACGGAAAACCGTGCCATATTGTGC -ACGGAAAACCGTGCCATACTAAGC -ACGGAAAACCGTGCCATAACTAGC -ACGGAAAACCGTGCCATAAGATGC -ACGGAAAACCGTGCCATATGAAGG -ACGGAAAACCGTGCCATACAATGG -ACGGAAAACCGTGCCATAATGAGG -ACGGAAAACCGTGCCATAAATGGG -ACGGAAAACCGTGCCATATCCTGA -ACGGAAAACCGTGCCATATAGCGA -ACGGAAAACCGTGCCATACACAGA -ACGGAAAACCGTGCCATAGCAAGA -ACGGAAAACCGTGCCATAGGTTGA -ACGGAAAACCGTGCCATATCCGAT -ACGGAAAACCGTGCCATATGGCAT -ACGGAAAACCGTGCCATACGAGAT -ACGGAAAACCGTGCCATATACCAC -ACGGAAAACCGTGCCATACAGAAC -ACGGAAAACCGTGCCATAGTCTAC -ACGGAAAACCGTGCCATAACGTAC -ACGGAAAACCGTGCCATAAGTGAC -ACGGAAAACCGTGCCATACTGTAG -ACGGAAAACCGTGCCATACCTAAG -ACGGAAAACCGTGCCATAGTTCAG -ACGGAAAACCGTGCCATAGCATAG -ACGGAAAACCGTGCCATAGACAAG -ACGGAAAACCGTGCCATAAAGCAG -ACGGAAAACCGTGCCATACGTCAA -ACGGAAAACCGTGCCATAGCTGAA -ACGGAAAACCGTGCCATAAGTACG -ACGGAAAACCGTGCCATAATCCGA -ACGGAAAACCGTGCCATAATGGGA -ACGGAAAACCGTGCCATAGTGCAA -ACGGAAAACCGTGCCATAGAGGAA -ACGGAAAACCGTGCCATACAGGTA -ACGGAAAACCGTGCCATAGACTCT -ACGGAAAACCGTGCCATAAGTCCT -ACGGAAAACCGTGCCATATAAGCC -ACGGAAAACCGTGCCATAATAGCC -ACGGAAAACCGTGCCATATAACCG -ACGGAAAACCGTGCCATAATGCCA -ACGGAAAACCGTCCGTAAGGAAAC -ACGGAAAACCGTCCGTAAAACACC -ACGGAAAACCGTCCGTAAATCGAG -ACGGAAAACCGTCCGTAACTCCTT -ACGGAAAACCGTCCGTAACCTGTT -ACGGAAAACCGTCCGTAACGGTTT -ACGGAAAACCGTCCGTAAGTGGTT -ACGGAAAACCGTCCGTAAGCCTTT -ACGGAAAACCGTCCGTAAGGTCTT -ACGGAAAACCGTCCGTAAACGCTT -ACGGAAAACCGTCCGTAAAGCGTT -ACGGAAAACCGTCCGTAATTCGTC -ACGGAAAACCGTCCGTAATCTCTC -ACGGAAAACCGTCCGTAATGGATC -ACGGAAAACCGTCCGTAACACTTC -ACGGAAAACCGTCCGTAAGTACTC -ACGGAAAACCGTCCGTAAGATGTC -ACGGAAAACCGTCCGTAAACAGTC -ACGGAAAACCGTCCGTAATTGCTG -ACGGAAAACCGTCCGTAATCCATG -ACGGAAAACCGTCCGTAATGTGTG -ACGGAAAACCGTCCGTAACTAGTG -ACGGAAAACCGTCCGTAACATCTG -ACGGAAAACCGTCCGTAAGAGTTG -ACGGAAAACCGTCCGTAAAGACTG -ACGGAAAACCGTCCGTAATCGGTA -ACGGAAAACCGTCCGTAATGCCTA -ACGGAAAACCGTCCGTAACCACTA -ACGGAAAACCGTCCGTAAGGAGTA -ACGGAAAACCGTCCGTAATCGTCT -ACGGAAAACCGTCCGTAATGCACT -ACGGAAAACCGTCCGTAACTGACT -ACGGAAAACCGTCCGTAACAACCT -ACGGAAAACCGTCCGTAAGCTACT -ACGGAAAACCGTCCGTAAGGATCT -ACGGAAAACCGTCCGTAAAAGGCT -ACGGAAAACCGTCCGTAATCAACC -ACGGAAAACCGTCCGTAATGTTCC -ACGGAAAACCGTCCGTAAATTCCC -ACGGAAAACCGTCCGTAATTCTCG -ACGGAAAACCGTCCGTAATAGACG -ACGGAAAACCGTCCGTAAGTAACG -ACGGAAAACCGTCCGTAAACTTCG -ACGGAAAACCGTCCGTAATACGCA -ACGGAAAACCGTCCGTAACTTGCA -ACGGAAAACCGTCCGTAACGAACA -ACGGAAAACCGTCCGTAACAGTCA -ACGGAAAACCGTCCGTAAGATCCA -ACGGAAAACCGTCCGTAAACGACA -ACGGAAAACCGTCCGTAAAGCTCA -ACGGAAAACCGTCCGTAATCACGT -ACGGAAAACCGTCCGTAACGTAGT -ACGGAAAACCGTCCGTAAGTCAGT -ACGGAAAACCGTCCGTAAGAAGGT -ACGGAAAACCGTCCGTAAAACCGT -ACGGAAAACCGTCCGTAATTGTGC -ACGGAAAACCGTCCGTAACTAAGC -ACGGAAAACCGTCCGTAAACTAGC -ACGGAAAACCGTCCGTAAAGATGC -ACGGAAAACCGTCCGTAATGAAGG -ACGGAAAACCGTCCGTAACAATGG -ACGGAAAACCGTCCGTAAATGAGG -ACGGAAAACCGTCCGTAAAATGGG -ACGGAAAACCGTCCGTAATCCTGA -ACGGAAAACCGTCCGTAATAGCGA -ACGGAAAACCGTCCGTAACACAGA -ACGGAAAACCGTCCGTAAGCAAGA -ACGGAAAACCGTCCGTAAGGTTGA -ACGGAAAACCGTCCGTAATCCGAT -ACGGAAAACCGTCCGTAATGGCAT -ACGGAAAACCGTCCGTAACGAGAT -ACGGAAAACCGTCCGTAATACCAC -ACGGAAAACCGTCCGTAACAGAAC -ACGGAAAACCGTCCGTAAGTCTAC -ACGGAAAACCGTCCGTAAACGTAC -ACGGAAAACCGTCCGTAAAGTGAC -ACGGAAAACCGTCCGTAACTGTAG -ACGGAAAACCGTCCGTAACCTAAG -ACGGAAAACCGTCCGTAAGTTCAG -ACGGAAAACCGTCCGTAAGCATAG -ACGGAAAACCGTCCGTAAGACAAG -ACGGAAAACCGTCCGTAAAAGCAG -ACGGAAAACCGTCCGTAACGTCAA -ACGGAAAACCGTCCGTAAGCTGAA -ACGGAAAACCGTCCGTAAAGTACG -ACGGAAAACCGTCCGTAAATCCGA -ACGGAAAACCGTCCGTAAATGGGA -ACGGAAAACCGTCCGTAAGTGCAA -ACGGAAAACCGTCCGTAAGAGGAA -ACGGAAAACCGTCCGTAACAGGTA -ACGGAAAACCGTCCGTAAGACTCT -ACGGAAAACCGTCCGTAAAGTCCT -ACGGAAAACCGTCCGTAATAAGCC -ACGGAAAACCGTCCGTAAATAGCC -ACGGAAAACCGTCCGTAATAACCG -ACGGAAAACCGTCCGTAAATGCCA -ACGGAAAACCGTCCAATGGGAAAC -ACGGAAAACCGTCCAATGAACACC -ACGGAAAACCGTCCAATGATCGAG -ACGGAAAACCGTCCAATGCTCCTT -ACGGAAAACCGTCCAATGCCTGTT -ACGGAAAACCGTCCAATGCGGTTT -ACGGAAAACCGTCCAATGGTGGTT -ACGGAAAACCGTCCAATGGCCTTT -ACGGAAAACCGTCCAATGGGTCTT -ACGGAAAACCGTCCAATGACGCTT -ACGGAAAACCGTCCAATGAGCGTT -ACGGAAAACCGTCCAATGTTCGTC -ACGGAAAACCGTCCAATGTCTCTC -ACGGAAAACCGTCCAATGTGGATC -ACGGAAAACCGTCCAATGCACTTC -ACGGAAAACCGTCCAATGGTACTC -ACGGAAAACCGTCCAATGGATGTC -ACGGAAAACCGTCCAATGACAGTC -ACGGAAAACCGTCCAATGTTGCTG -ACGGAAAACCGTCCAATGTCCATG -ACGGAAAACCGTCCAATGTGTGTG -ACGGAAAACCGTCCAATGCTAGTG -ACGGAAAACCGTCCAATGCATCTG -ACGGAAAACCGTCCAATGGAGTTG -ACGGAAAACCGTCCAATGAGACTG -ACGGAAAACCGTCCAATGTCGGTA -ACGGAAAACCGTCCAATGTGCCTA -ACGGAAAACCGTCCAATGCCACTA -ACGGAAAACCGTCCAATGGGAGTA -ACGGAAAACCGTCCAATGTCGTCT -ACGGAAAACCGTCCAATGTGCACT -ACGGAAAACCGTCCAATGCTGACT -ACGGAAAACCGTCCAATGCAACCT -ACGGAAAACCGTCCAATGGCTACT -ACGGAAAACCGTCCAATGGGATCT -ACGGAAAACCGTCCAATGAAGGCT -ACGGAAAACCGTCCAATGTCAACC -ACGGAAAACCGTCCAATGTGTTCC -ACGGAAAACCGTCCAATGATTCCC -ACGGAAAACCGTCCAATGTTCTCG -ACGGAAAACCGTCCAATGTAGACG -ACGGAAAACCGTCCAATGGTAACG -ACGGAAAACCGTCCAATGACTTCG -ACGGAAAACCGTCCAATGTACGCA -ACGGAAAACCGTCCAATGCTTGCA -ACGGAAAACCGTCCAATGCGAACA -ACGGAAAACCGTCCAATGCAGTCA -ACGGAAAACCGTCCAATGGATCCA -ACGGAAAACCGTCCAATGACGACA -ACGGAAAACCGTCCAATGAGCTCA -ACGGAAAACCGTCCAATGTCACGT -ACGGAAAACCGTCCAATGCGTAGT -ACGGAAAACCGTCCAATGGTCAGT -ACGGAAAACCGTCCAATGGAAGGT -ACGGAAAACCGTCCAATGAACCGT -ACGGAAAACCGTCCAATGTTGTGC -ACGGAAAACCGTCCAATGCTAAGC -ACGGAAAACCGTCCAATGACTAGC -ACGGAAAACCGTCCAATGAGATGC -ACGGAAAACCGTCCAATGTGAAGG -ACGGAAAACCGTCCAATGCAATGG -ACGGAAAACCGTCCAATGATGAGG -ACGGAAAACCGTCCAATGAATGGG -ACGGAAAACCGTCCAATGTCCTGA -ACGGAAAACCGTCCAATGTAGCGA -ACGGAAAACCGTCCAATGCACAGA -ACGGAAAACCGTCCAATGGCAAGA -ACGGAAAACCGTCCAATGGGTTGA -ACGGAAAACCGTCCAATGTCCGAT -ACGGAAAACCGTCCAATGTGGCAT -ACGGAAAACCGTCCAATGCGAGAT -ACGGAAAACCGTCCAATGTACCAC -ACGGAAAACCGTCCAATGCAGAAC -ACGGAAAACCGTCCAATGGTCTAC -ACGGAAAACCGTCCAATGACGTAC -ACGGAAAACCGTCCAATGAGTGAC -ACGGAAAACCGTCCAATGCTGTAG -ACGGAAAACCGTCCAATGCCTAAG -ACGGAAAACCGTCCAATGGTTCAG -ACGGAAAACCGTCCAATGGCATAG -ACGGAAAACCGTCCAATGGACAAG -ACGGAAAACCGTCCAATGAAGCAG -ACGGAAAACCGTCCAATGCGTCAA -ACGGAAAACCGTCCAATGGCTGAA -ACGGAAAACCGTCCAATGAGTACG -ACGGAAAACCGTCCAATGATCCGA -ACGGAAAACCGTCCAATGATGGGA -ACGGAAAACCGTCCAATGGTGCAA -ACGGAAAACCGTCCAATGGAGGAA -ACGGAAAACCGTCCAATGCAGGTA -ACGGAAAACCGTCCAATGGACTCT -ACGGAAAACCGTCCAATGAGTCCT -ACGGAAAACCGTCCAATGTAAGCC -ACGGAAAACCGTCCAATGATAGCC -ACGGAAAACCGTCCAATGTAACCG -ACGGAAAACCGTCCAATGATGCCA -ACGGAATGCCAAAACGGAGGAAAC -ACGGAATGCCAAAACGGAAACACC -ACGGAATGCCAAAACGGAATCGAG -ACGGAATGCCAAAACGGACTCCTT -ACGGAATGCCAAAACGGACCTGTT -ACGGAATGCCAAAACGGACGGTTT -ACGGAATGCCAAAACGGAGTGGTT -ACGGAATGCCAAAACGGAGCCTTT -ACGGAATGCCAAAACGGAGGTCTT -ACGGAATGCCAAAACGGAACGCTT -ACGGAATGCCAAAACGGAAGCGTT -ACGGAATGCCAAAACGGATTCGTC -ACGGAATGCCAAAACGGATCTCTC -ACGGAATGCCAAAACGGATGGATC -ACGGAATGCCAAAACGGACACTTC -ACGGAATGCCAAAACGGAGTACTC -ACGGAATGCCAAAACGGAGATGTC -ACGGAATGCCAAAACGGAACAGTC -ACGGAATGCCAAAACGGATTGCTG -ACGGAATGCCAAAACGGATCCATG -ACGGAATGCCAAAACGGATGTGTG -ACGGAATGCCAAAACGGACTAGTG -ACGGAATGCCAAAACGGACATCTG -ACGGAATGCCAAAACGGAGAGTTG -ACGGAATGCCAAAACGGAAGACTG -ACGGAATGCCAAAACGGATCGGTA -ACGGAATGCCAAAACGGATGCCTA -ACGGAATGCCAAAACGGACCACTA -ACGGAATGCCAAAACGGAGGAGTA -ACGGAATGCCAAAACGGATCGTCT -ACGGAATGCCAAAACGGATGCACT -ACGGAATGCCAAAACGGACTGACT -ACGGAATGCCAAAACGGACAACCT -ACGGAATGCCAAAACGGAGCTACT -ACGGAATGCCAAAACGGAGGATCT -ACGGAATGCCAAAACGGAAAGGCT -ACGGAATGCCAAAACGGATCAACC -ACGGAATGCCAAAACGGATGTTCC -ACGGAATGCCAAAACGGAATTCCC -ACGGAATGCCAAAACGGATTCTCG -ACGGAATGCCAAAACGGATAGACG -ACGGAATGCCAAAACGGAGTAACG -ACGGAATGCCAAAACGGAACTTCG -ACGGAATGCCAAAACGGATACGCA -ACGGAATGCCAAAACGGACTTGCA -ACGGAATGCCAAAACGGACGAACA -ACGGAATGCCAAAACGGACAGTCA -ACGGAATGCCAAAACGGAGATCCA -ACGGAATGCCAAAACGGAACGACA -ACGGAATGCCAAAACGGAAGCTCA -ACGGAATGCCAAAACGGATCACGT -ACGGAATGCCAAAACGGACGTAGT -ACGGAATGCCAAAACGGAGTCAGT -ACGGAATGCCAAAACGGAGAAGGT -ACGGAATGCCAAAACGGAAACCGT -ACGGAATGCCAAAACGGATTGTGC -ACGGAATGCCAAAACGGACTAAGC -ACGGAATGCCAAAACGGAACTAGC -ACGGAATGCCAAAACGGAAGATGC -ACGGAATGCCAAAACGGATGAAGG -ACGGAATGCCAAAACGGACAATGG -ACGGAATGCCAAAACGGAATGAGG -ACGGAATGCCAAAACGGAAATGGG -ACGGAATGCCAAAACGGATCCTGA -ACGGAATGCCAAAACGGATAGCGA -ACGGAATGCCAAAACGGACACAGA -ACGGAATGCCAAAACGGAGCAAGA -ACGGAATGCCAAAACGGAGGTTGA -ACGGAATGCCAAAACGGATCCGAT -ACGGAATGCCAAAACGGATGGCAT -ACGGAATGCCAAAACGGACGAGAT -ACGGAATGCCAAAACGGATACCAC -ACGGAATGCCAAAACGGACAGAAC -ACGGAATGCCAAAACGGAGTCTAC -ACGGAATGCCAAAACGGAACGTAC -ACGGAATGCCAAAACGGAAGTGAC -ACGGAATGCCAAAACGGACTGTAG -ACGGAATGCCAAAACGGACCTAAG -ACGGAATGCCAAAACGGAGTTCAG -ACGGAATGCCAAAACGGAGCATAG -ACGGAATGCCAAAACGGAGACAAG -ACGGAATGCCAAAACGGAAAGCAG -ACGGAATGCCAAAACGGACGTCAA -ACGGAATGCCAAAACGGAGCTGAA -ACGGAATGCCAAAACGGAAGTACG -ACGGAATGCCAAAACGGAATCCGA -ACGGAATGCCAAAACGGAATGGGA -ACGGAATGCCAAAACGGAGTGCAA -ACGGAATGCCAAAACGGAGAGGAA -ACGGAATGCCAAAACGGACAGGTA -ACGGAATGCCAAAACGGAGACTCT -ACGGAATGCCAAAACGGAAGTCCT -ACGGAATGCCAAAACGGATAAGCC -ACGGAATGCCAAAACGGAATAGCC -ACGGAATGCCAAAACGGATAACCG -ACGGAATGCCAAAACGGAATGCCA -ACGGAATGCCAAACCAACGGAAAC -ACGGAATGCCAAACCAACAACACC -ACGGAATGCCAAACCAACATCGAG -ACGGAATGCCAAACCAACCTCCTT -ACGGAATGCCAAACCAACCCTGTT -ACGGAATGCCAAACCAACCGGTTT -ACGGAATGCCAAACCAACGTGGTT -ACGGAATGCCAAACCAACGCCTTT -ACGGAATGCCAAACCAACGGTCTT -ACGGAATGCCAAACCAACACGCTT -ACGGAATGCCAAACCAACAGCGTT -ACGGAATGCCAAACCAACTTCGTC -ACGGAATGCCAAACCAACTCTCTC -ACGGAATGCCAAACCAACTGGATC -ACGGAATGCCAAACCAACCACTTC -ACGGAATGCCAAACCAACGTACTC -ACGGAATGCCAAACCAACGATGTC -ACGGAATGCCAAACCAACACAGTC -ACGGAATGCCAAACCAACTTGCTG -ACGGAATGCCAAACCAACTCCATG -ACGGAATGCCAAACCAACTGTGTG -ACGGAATGCCAAACCAACCTAGTG -ACGGAATGCCAAACCAACCATCTG -ACGGAATGCCAAACCAACGAGTTG -ACGGAATGCCAAACCAACAGACTG -ACGGAATGCCAAACCAACTCGGTA -ACGGAATGCCAAACCAACTGCCTA -ACGGAATGCCAAACCAACCCACTA -ACGGAATGCCAAACCAACGGAGTA -ACGGAATGCCAAACCAACTCGTCT -ACGGAATGCCAAACCAACTGCACT -ACGGAATGCCAAACCAACCTGACT -ACGGAATGCCAAACCAACCAACCT -ACGGAATGCCAAACCAACGCTACT -ACGGAATGCCAAACCAACGGATCT -ACGGAATGCCAAACCAACAAGGCT -ACGGAATGCCAAACCAACTCAACC -ACGGAATGCCAAACCAACTGTTCC -ACGGAATGCCAAACCAACATTCCC -ACGGAATGCCAAACCAACTTCTCG -ACGGAATGCCAAACCAACTAGACG -ACGGAATGCCAAACCAACGTAACG -ACGGAATGCCAAACCAACACTTCG -ACGGAATGCCAAACCAACTACGCA -ACGGAATGCCAAACCAACCTTGCA -ACGGAATGCCAAACCAACCGAACA -ACGGAATGCCAAACCAACCAGTCA -ACGGAATGCCAAACCAACGATCCA -ACGGAATGCCAAACCAACACGACA -ACGGAATGCCAAACCAACAGCTCA -ACGGAATGCCAAACCAACTCACGT -ACGGAATGCCAAACCAACCGTAGT -ACGGAATGCCAAACCAACGTCAGT -ACGGAATGCCAAACCAACGAAGGT -ACGGAATGCCAAACCAACAACCGT -ACGGAATGCCAAACCAACTTGTGC -ACGGAATGCCAAACCAACCTAAGC -ACGGAATGCCAAACCAACACTAGC -ACGGAATGCCAAACCAACAGATGC -ACGGAATGCCAAACCAACTGAAGG -ACGGAATGCCAAACCAACCAATGG -ACGGAATGCCAAACCAACATGAGG -ACGGAATGCCAAACCAACAATGGG -ACGGAATGCCAAACCAACTCCTGA -ACGGAATGCCAAACCAACTAGCGA -ACGGAATGCCAAACCAACCACAGA -ACGGAATGCCAAACCAACGCAAGA -ACGGAATGCCAAACCAACGGTTGA -ACGGAATGCCAAACCAACTCCGAT -ACGGAATGCCAAACCAACTGGCAT -ACGGAATGCCAAACCAACCGAGAT -ACGGAATGCCAAACCAACTACCAC -ACGGAATGCCAAACCAACCAGAAC -ACGGAATGCCAAACCAACGTCTAC -ACGGAATGCCAAACCAACACGTAC -ACGGAATGCCAAACCAACAGTGAC -ACGGAATGCCAAACCAACCTGTAG -ACGGAATGCCAAACCAACCCTAAG -ACGGAATGCCAAACCAACGTTCAG -ACGGAATGCCAAACCAACGCATAG -ACGGAATGCCAAACCAACGACAAG -ACGGAATGCCAAACCAACAAGCAG -ACGGAATGCCAAACCAACCGTCAA -ACGGAATGCCAAACCAACGCTGAA -ACGGAATGCCAAACCAACAGTACG -ACGGAATGCCAAACCAACATCCGA -ACGGAATGCCAAACCAACATGGGA -ACGGAATGCCAAACCAACGTGCAA -ACGGAATGCCAAACCAACGAGGAA -ACGGAATGCCAAACCAACCAGGTA -ACGGAATGCCAAACCAACGACTCT -ACGGAATGCCAAACCAACAGTCCT -ACGGAATGCCAAACCAACTAAGCC -ACGGAATGCCAAACCAACATAGCC -ACGGAATGCCAAACCAACTAACCG -ACGGAATGCCAAACCAACATGCCA -ACGGAATGCCAAGAGATCGGAAAC -ACGGAATGCCAAGAGATCAACACC -ACGGAATGCCAAGAGATCATCGAG -ACGGAATGCCAAGAGATCCTCCTT -ACGGAATGCCAAGAGATCCCTGTT -ACGGAATGCCAAGAGATCCGGTTT -ACGGAATGCCAAGAGATCGTGGTT -ACGGAATGCCAAGAGATCGCCTTT -ACGGAATGCCAAGAGATCGGTCTT -ACGGAATGCCAAGAGATCACGCTT -ACGGAATGCCAAGAGATCAGCGTT -ACGGAATGCCAAGAGATCTTCGTC -ACGGAATGCCAAGAGATCTCTCTC -ACGGAATGCCAAGAGATCTGGATC -ACGGAATGCCAAGAGATCCACTTC -ACGGAATGCCAAGAGATCGTACTC -ACGGAATGCCAAGAGATCGATGTC -ACGGAATGCCAAGAGATCACAGTC -ACGGAATGCCAAGAGATCTTGCTG -ACGGAATGCCAAGAGATCTCCATG -ACGGAATGCCAAGAGATCTGTGTG -ACGGAATGCCAAGAGATCCTAGTG -ACGGAATGCCAAGAGATCCATCTG -ACGGAATGCCAAGAGATCGAGTTG -ACGGAATGCCAAGAGATCAGACTG -ACGGAATGCCAAGAGATCTCGGTA -ACGGAATGCCAAGAGATCTGCCTA -ACGGAATGCCAAGAGATCCCACTA -ACGGAATGCCAAGAGATCGGAGTA -ACGGAATGCCAAGAGATCTCGTCT -ACGGAATGCCAAGAGATCTGCACT -ACGGAATGCCAAGAGATCCTGACT -ACGGAATGCCAAGAGATCCAACCT -ACGGAATGCCAAGAGATCGCTACT -ACGGAATGCCAAGAGATCGGATCT -ACGGAATGCCAAGAGATCAAGGCT -ACGGAATGCCAAGAGATCTCAACC -ACGGAATGCCAAGAGATCTGTTCC -ACGGAATGCCAAGAGATCATTCCC -ACGGAATGCCAAGAGATCTTCTCG -ACGGAATGCCAAGAGATCTAGACG -ACGGAATGCCAAGAGATCGTAACG -ACGGAATGCCAAGAGATCACTTCG -ACGGAATGCCAAGAGATCTACGCA -ACGGAATGCCAAGAGATCCTTGCA -ACGGAATGCCAAGAGATCCGAACA -ACGGAATGCCAAGAGATCCAGTCA -ACGGAATGCCAAGAGATCGATCCA -ACGGAATGCCAAGAGATCACGACA -ACGGAATGCCAAGAGATCAGCTCA -ACGGAATGCCAAGAGATCTCACGT -ACGGAATGCCAAGAGATCCGTAGT -ACGGAATGCCAAGAGATCGTCAGT -ACGGAATGCCAAGAGATCGAAGGT -ACGGAATGCCAAGAGATCAACCGT -ACGGAATGCCAAGAGATCTTGTGC -ACGGAATGCCAAGAGATCCTAAGC -ACGGAATGCCAAGAGATCACTAGC -ACGGAATGCCAAGAGATCAGATGC -ACGGAATGCCAAGAGATCTGAAGG -ACGGAATGCCAAGAGATCCAATGG -ACGGAATGCCAAGAGATCATGAGG -ACGGAATGCCAAGAGATCAATGGG -ACGGAATGCCAAGAGATCTCCTGA -ACGGAATGCCAAGAGATCTAGCGA -ACGGAATGCCAAGAGATCCACAGA -ACGGAATGCCAAGAGATCGCAAGA -ACGGAATGCCAAGAGATCGGTTGA -ACGGAATGCCAAGAGATCTCCGAT -ACGGAATGCCAAGAGATCTGGCAT -ACGGAATGCCAAGAGATCCGAGAT -ACGGAATGCCAAGAGATCTACCAC -ACGGAATGCCAAGAGATCCAGAAC -ACGGAATGCCAAGAGATCGTCTAC -ACGGAATGCCAAGAGATCACGTAC -ACGGAATGCCAAGAGATCAGTGAC -ACGGAATGCCAAGAGATCCTGTAG -ACGGAATGCCAAGAGATCCCTAAG -ACGGAATGCCAAGAGATCGTTCAG -ACGGAATGCCAAGAGATCGCATAG -ACGGAATGCCAAGAGATCGACAAG -ACGGAATGCCAAGAGATCAAGCAG -ACGGAATGCCAAGAGATCCGTCAA -ACGGAATGCCAAGAGATCGCTGAA -ACGGAATGCCAAGAGATCAGTACG -ACGGAATGCCAAGAGATCATCCGA -ACGGAATGCCAAGAGATCATGGGA -ACGGAATGCCAAGAGATCGTGCAA -ACGGAATGCCAAGAGATCGAGGAA -ACGGAATGCCAAGAGATCCAGGTA -ACGGAATGCCAAGAGATCGACTCT -ACGGAATGCCAAGAGATCAGTCCT -ACGGAATGCCAAGAGATCTAAGCC -ACGGAATGCCAAGAGATCATAGCC -ACGGAATGCCAAGAGATCTAACCG -ACGGAATGCCAAGAGATCATGCCA -ACGGAATGCCAACTTCTCGGAAAC -ACGGAATGCCAACTTCTCAACACC -ACGGAATGCCAACTTCTCATCGAG -ACGGAATGCCAACTTCTCCTCCTT -ACGGAATGCCAACTTCTCCCTGTT -ACGGAATGCCAACTTCTCCGGTTT -ACGGAATGCCAACTTCTCGTGGTT -ACGGAATGCCAACTTCTCGCCTTT -ACGGAATGCCAACTTCTCGGTCTT -ACGGAATGCCAACTTCTCACGCTT -ACGGAATGCCAACTTCTCAGCGTT -ACGGAATGCCAACTTCTCTTCGTC -ACGGAATGCCAACTTCTCTCTCTC -ACGGAATGCCAACTTCTCTGGATC -ACGGAATGCCAACTTCTCCACTTC -ACGGAATGCCAACTTCTCGTACTC -ACGGAATGCCAACTTCTCGATGTC -ACGGAATGCCAACTTCTCACAGTC -ACGGAATGCCAACTTCTCTTGCTG -ACGGAATGCCAACTTCTCTCCATG -ACGGAATGCCAACTTCTCTGTGTG -ACGGAATGCCAACTTCTCCTAGTG -ACGGAATGCCAACTTCTCCATCTG -ACGGAATGCCAACTTCTCGAGTTG -ACGGAATGCCAACTTCTCAGACTG -ACGGAATGCCAACTTCTCTCGGTA -ACGGAATGCCAACTTCTCTGCCTA -ACGGAATGCCAACTTCTCCCACTA -ACGGAATGCCAACTTCTCGGAGTA -ACGGAATGCCAACTTCTCTCGTCT -ACGGAATGCCAACTTCTCTGCACT -ACGGAATGCCAACTTCTCCTGACT -ACGGAATGCCAACTTCTCCAACCT -ACGGAATGCCAACTTCTCGCTACT -ACGGAATGCCAACTTCTCGGATCT -ACGGAATGCCAACTTCTCAAGGCT -ACGGAATGCCAACTTCTCTCAACC -ACGGAATGCCAACTTCTCTGTTCC -ACGGAATGCCAACTTCTCATTCCC -ACGGAATGCCAACTTCTCTTCTCG -ACGGAATGCCAACTTCTCTAGACG -ACGGAATGCCAACTTCTCGTAACG -ACGGAATGCCAACTTCTCACTTCG -ACGGAATGCCAACTTCTCTACGCA -ACGGAATGCCAACTTCTCCTTGCA -ACGGAATGCCAACTTCTCCGAACA -ACGGAATGCCAACTTCTCCAGTCA -ACGGAATGCCAACTTCTCGATCCA -ACGGAATGCCAACTTCTCACGACA -ACGGAATGCCAACTTCTCAGCTCA -ACGGAATGCCAACTTCTCTCACGT -ACGGAATGCCAACTTCTCCGTAGT -ACGGAATGCCAACTTCTCGTCAGT -ACGGAATGCCAACTTCTCGAAGGT -ACGGAATGCCAACTTCTCAACCGT -ACGGAATGCCAACTTCTCTTGTGC -ACGGAATGCCAACTTCTCCTAAGC -ACGGAATGCCAACTTCTCACTAGC -ACGGAATGCCAACTTCTCAGATGC -ACGGAATGCCAACTTCTCTGAAGG -ACGGAATGCCAACTTCTCCAATGG -ACGGAATGCCAACTTCTCATGAGG -ACGGAATGCCAACTTCTCAATGGG -ACGGAATGCCAACTTCTCTCCTGA -ACGGAATGCCAACTTCTCTAGCGA -ACGGAATGCCAACTTCTCCACAGA -ACGGAATGCCAACTTCTCGCAAGA -ACGGAATGCCAACTTCTCGGTTGA -ACGGAATGCCAACTTCTCTCCGAT -ACGGAATGCCAACTTCTCTGGCAT -ACGGAATGCCAACTTCTCCGAGAT -ACGGAATGCCAACTTCTCTACCAC -ACGGAATGCCAACTTCTCCAGAAC -ACGGAATGCCAACTTCTCGTCTAC -ACGGAATGCCAACTTCTCACGTAC -ACGGAATGCCAACTTCTCAGTGAC -ACGGAATGCCAACTTCTCCTGTAG -ACGGAATGCCAACTTCTCCCTAAG -ACGGAATGCCAACTTCTCGTTCAG -ACGGAATGCCAACTTCTCGCATAG -ACGGAATGCCAACTTCTCGACAAG -ACGGAATGCCAACTTCTCAAGCAG -ACGGAATGCCAACTTCTCCGTCAA -ACGGAATGCCAACTTCTCGCTGAA -ACGGAATGCCAACTTCTCAGTACG -ACGGAATGCCAACTTCTCATCCGA -ACGGAATGCCAACTTCTCATGGGA -ACGGAATGCCAACTTCTCGTGCAA -ACGGAATGCCAACTTCTCGAGGAA -ACGGAATGCCAACTTCTCCAGGTA -ACGGAATGCCAACTTCTCGACTCT -ACGGAATGCCAACTTCTCAGTCCT -ACGGAATGCCAACTTCTCTAAGCC -ACGGAATGCCAACTTCTCATAGCC -ACGGAATGCCAACTTCTCTAACCG -ACGGAATGCCAACTTCTCATGCCA -ACGGAATGCCAAGTTCCTGGAAAC -ACGGAATGCCAAGTTCCTAACACC -ACGGAATGCCAAGTTCCTATCGAG -ACGGAATGCCAAGTTCCTCTCCTT -ACGGAATGCCAAGTTCCTCCTGTT -ACGGAATGCCAAGTTCCTCGGTTT -ACGGAATGCCAAGTTCCTGTGGTT -ACGGAATGCCAAGTTCCTGCCTTT -ACGGAATGCCAAGTTCCTGGTCTT -ACGGAATGCCAAGTTCCTACGCTT -ACGGAATGCCAAGTTCCTAGCGTT -ACGGAATGCCAAGTTCCTTTCGTC -ACGGAATGCCAAGTTCCTTCTCTC -ACGGAATGCCAAGTTCCTTGGATC -ACGGAATGCCAAGTTCCTCACTTC -ACGGAATGCCAAGTTCCTGTACTC -ACGGAATGCCAAGTTCCTGATGTC -ACGGAATGCCAAGTTCCTACAGTC -ACGGAATGCCAAGTTCCTTTGCTG -ACGGAATGCCAAGTTCCTTCCATG -ACGGAATGCCAAGTTCCTTGTGTG -ACGGAATGCCAAGTTCCTCTAGTG -ACGGAATGCCAAGTTCCTCATCTG -ACGGAATGCCAAGTTCCTGAGTTG -ACGGAATGCCAAGTTCCTAGACTG -ACGGAATGCCAAGTTCCTTCGGTA -ACGGAATGCCAAGTTCCTTGCCTA -ACGGAATGCCAAGTTCCTCCACTA -ACGGAATGCCAAGTTCCTGGAGTA -ACGGAATGCCAAGTTCCTTCGTCT -ACGGAATGCCAAGTTCCTTGCACT -ACGGAATGCCAAGTTCCTCTGACT -ACGGAATGCCAAGTTCCTCAACCT -ACGGAATGCCAAGTTCCTGCTACT -ACGGAATGCCAAGTTCCTGGATCT -ACGGAATGCCAAGTTCCTAAGGCT -ACGGAATGCCAAGTTCCTTCAACC -ACGGAATGCCAAGTTCCTTGTTCC -ACGGAATGCCAAGTTCCTATTCCC -ACGGAATGCCAAGTTCCTTTCTCG -ACGGAATGCCAAGTTCCTTAGACG -ACGGAATGCCAAGTTCCTGTAACG -ACGGAATGCCAAGTTCCTACTTCG -ACGGAATGCCAAGTTCCTTACGCA -ACGGAATGCCAAGTTCCTCTTGCA -ACGGAATGCCAAGTTCCTCGAACA -ACGGAATGCCAAGTTCCTCAGTCA -ACGGAATGCCAAGTTCCTGATCCA -ACGGAATGCCAAGTTCCTACGACA -ACGGAATGCCAAGTTCCTAGCTCA -ACGGAATGCCAAGTTCCTTCACGT -ACGGAATGCCAAGTTCCTCGTAGT -ACGGAATGCCAAGTTCCTGTCAGT -ACGGAATGCCAAGTTCCTGAAGGT -ACGGAATGCCAAGTTCCTAACCGT -ACGGAATGCCAAGTTCCTTTGTGC -ACGGAATGCCAAGTTCCTCTAAGC -ACGGAATGCCAAGTTCCTACTAGC -ACGGAATGCCAAGTTCCTAGATGC -ACGGAATGCCAAGTTCCTTGAAGG -ACGGAATGCCAAGTTCCTCAATGG -ACGGAATGCCAAGTTCCTATGAGG -ACGGAATGCCAAGTTCCTAATGGG -ACGGAATGCCAAGTTCCTTCCTGA -ACGGAATGCCAAGTTCCTTAGCGA -ACGGAATGCCAAGTTCCTCACAGA -ACGGAATGCCAAGTTCCTGCAAGA -ACGGAATGCCAAGTTCCTGGTTGA -ACGGAATGCCAAGTTCCTTCCGAT -ACGGAATGCCAAGTTCCTTGGCAT -ACGGAATGCCAAGTTCCTCGAGAT -ACGGAATGCCAAGTTCCTTACCAC -ACGGAATGCCAAGTTCCTCAGAAC -ACGGAATGCCAAGTTCCTGTCTAC -ACGGAATGCCAAGTTCCTACGTAC -ACGGAATGCCAAGTTCCTAGTGAC -ACGGAATGCCAAGTTCCTCTGTAG -ACGGAATGCCAAGTTCCTCCTAAG -ACGGAATGCCAAGTTCCTGTTCAG -ACGGAATGCCAAGTTCCTGCATAG -ACGGAATGCCAAGTTCCTGACAAG -ACGGAATGCCAAGTTCCTAAGCAG -ACGGAATGCCAAGTTCCTCGTCAA -ACGGAATGCCAAGTTCCTGCTGAA -ACGGAATGCCAAGTTCCTAGTACG -ACGGAATGCCAAGTTCCTATCCGA -ACGGAATGCCAAGTTCCTATGGGA -ACGGAATGCCAAGTTCCTGTGCAA -ACGGAATGCCAAGTTCCTGAGGAA -ACGGAATGCCAAGTTCCTCAGGTA -ACGGAATGCCAAGTTCCTGACTCT -ACGGAATGCCAAGTTCCTAGTCCT -ACGGAATGCCAAGTTCCTTAAGCC -ACGGAATGCCAAGTTCCTATAGCC -ACGGAATGCCAAGTTCCTTAACCG -ACGGAATGCCAAGTTCCTATGCCA -ACGGAATGCCAATTTCGGGGAAAC -ACGGAATGCCAATTTCGGAACACC -ACGGAATGCCAATTTCGGATCGAG -ACGGAATGCCAATTTCGGCTCCTT -ACGGAATGCCAATTTCGGCCTGTT -ACGGAATGCCAATTTCGGCGGTTT -ACGGAATGCCAATTTCGGGTGGTT -ACGGAATGCCAATTTCGGGCCTTT -ACGGAATGCCAATTTCGGGGTCTT -ACGGAATGCCAATTTCGGACGCTT -ACGGAATGCCAATTTCGGAGCGTT -ACGGAATGCCAATTTCGGTTCGTC -ACGGAATGCCAATTTCGGTCTCTC -ACGGAATGCCAATTTCGGTGGATC -ACGGAATGCCAATTTCGGCACTTC -ACGGAATGCCAATTTCGGGTACTC -ACGGAATGCCAATTTCGGGATGTC -ACGGAATGCCAATTTCGGACAGTC -ACGGAATGCCAATTTCGGTTGCTG -ACGGAATGCCAATTTCGGTCCATG -ACGGAATGCCAATTTCGGTGTGTG -ACGGAATGCCAATTTCGGCTAGTG -ACGGAATGCCAATTTCGGCATCTG -ACGGAATGCCAATTTCGGGAGTTG -ACGGAATGCCAATTTCGGAGACTG -ACGGAATGCCAATTTCGGTCGGTA -ACGGAATGCCAATTTCGGTGCCTA -ACGGAATGCCAATTTCGGCCACTA -ACGGAATGCCAATTTCGGGGAGTA -ACGGAATGCCAATTTCGGTCGTCT -ACGGAATGCCAATTTCGGTGCACT -ACGGAATGCCAATTTCGGCTGACT -ACGGAATGCCAATTTCGGCAACCT -ACGGAATGCCAATTTCGGGCTACT -ACGGAATGCCAATTTCGGGGATCT -ACGGAATGCCAATTTCGGAAGGCT -ACGGAATGCCAATTTCGGTCAACC -ACGGAATGCCAATTTCGGTGTTCC -ACGGAATGCCAATTTCGGATTCCC -ACGGAATGCCAATTTCGGTTCTCG -ACGGAATGCCAATTTCGGTAGACG -ACGGAATGCCAATTTCGGGTAACG -ACGGAATGCCAATTTCGGACTTCG -ACGGAATGCCAATTTCGGTACGCA -ACGGAATGCCAATTTCGGCTTGCA -ACGGAATGCCAATTTCGGCGAACA -ACGGAATGCCAATTTCGGCAGTCA -ACGGAATGCCAATTTCGGGATCCA -ACGGAATGCCAATTTCGGACGACA -ACGGAATGCCAATTTCGGAGCTCA -ACGGAATGCCAATTTCGGTCACGT -ACGGAATGCCAATTTCGGCGTAGT -ACGGAATGCCAATTTCGGGTCAGT -ACGGAATGCCAATTTCGGGAAGGT -ACGGAATGCCAATTTCGGAACCGT -ACGGAATGCCAATTTCGGTTGTGC -ACGGAATGCCAATTTCGGCTAAGC -ACGGAATGCCAATTTCGGACTAGC -ACGGAATGCCAATTTCGGAGATGC -ACGGAATGCCAATTTCGGTGAAGG -ACGGAATGCCAATTTCGGCAATGG -ACGGAATGCCAATTTCGGATGAGG -ACGGAATGCCAATTTCGGAATGGG -ACGGAATGCCAATTTCGGTCCTGA -ACGGAATGCCAATTTCGGTAGCGA -ACGGAATGCCAATTTCGGCACAGA -ACGGAATGCCAATTTCGGGCAAGA -ACGGAATGCCAATTTCGGGGTTGA -ACGGAATGCCAATTTCGGTCCGAT -ACGGAATGCCAATTTCGGTGGCAT -ACGGAATGCCAATTTCGGCGAGAT -ACGGAATGCCAATTTCGGTACCAC -ACGGAATGCCAATTTCGGCAGAAC -ACGGAATGCCAATTTCGGGTCTAC -ACGGAATGCCAATTTCGGACGTAC -ACGGAATGCCAATTTCGGAGTGAC -ACGGAATGCCAATTTCGGCTGTAG -ACGGAATGCCAATTTCGGCCTAAG -ACGGAATGCCAATTTCGGGTTCAG -ACGGAATGCCAATTTCGGGCATAG -ACGGAATGCCAATTTCGGGACAAG -ACGGAATGCCAATTTCGGAAGCAG -ACGGAATGCCAATTTCGGCGTCAA -ACGGAATGCCAATTTCGGGCTGAA -ACGGAATGCCAATTTCGGAGTACG -ACGGAATGCCAATTTCGGATCCGA -ACGGAATGCCAATTTCGGATGGGA -ACGGAATGCCAATTTCGGGTGCAA -ACGGAATGCCAATTTCGGGAGGAA -ACGGAATGCCAATTTCGGCAGGTA -ACGGAATGCCAATTTCGGGACTCT -ACGGAATGCCAATTTCGGAGTCCT -ACGGAATGCCAATTTCGGTAAGCC -ACGGAATGCCAATTTCGGATAGCC -ACGGAATGCCAATTTCGGTAACCG -ACGGAATGCCAATTTCGGATGCCA -ACGGAATGCCAAGTTGTGGGAAAC -ACGGAATGCCAAGTTGTGAACACC -ACGGAATGCCAAGTTGTGATCGAG -ACGGAATGCCAAGTTGTGCTCCTT -ACGGAATGCCAAGTTGTGCCTGTT -ACGGAATGCCAAGTTGTGCGGTTT -ACGGAATGCCAAGTTGTGGTGGTT -ACGGAATGCCAAGTTGTGGCCTTT -ACGGAATGCCAAGTTGTGGGTCTT -ACGGAATGCCAAGTTGTGACGCTT -ACGGAATGCCAAGTTGTGAGCGTT -ACGGAATGCCAAGTTGTGTTCGTC -ACGGAATGCCAAGTTGTGTCTCTC -ACGGAATGCCAAGTTGTGTGGATC -ACGGAATGCCAAGTTGTGCACTTC -ACGGAATGCCAAGTTGTGGTACTC -ACGGAATGCCAAGTTGTGGATGTC -ACGGAATGCCAAGTTGTGACAGTC -ACGGAATGCCAAGTTGTGTTGCTG -ACGGAATGCCAAGTTGTGTCCATG -ACGGAATGCCAAGTTGTGTGTGTG -ACGGAATGCCAAGTTGTGCTAGTG -ACGGAATGCCAAGTTGTGCATCTG -ACGGAATGCCAAGTTGTGGAGTTG -ACGGAATGCCAAGTTGTGAGACTG -ACGGAATGCCAAGTTGTGTCGGTA -ACGGAATGCCAAGTTGTGTGCCTA -ACGGAATGCCAAGTTGTGCCACTA -ACGGAATGCCAAGTTGTGGGAGTA -ACGGAATGCCAAGTTGTGTCGTCT -ACGGAATGCCAAGTTGTGTGCACT -ACGGAATGCCAAGTTGTGCTGACT -ACGGAATGCCAAGTTGTGCAACCT -ACGGAATGCCAAGTTGTGGCTACT -ACGGAATGCCAAGTTGTGGGATCT -ACGGAATGCCAAGTTGTGAAGGCT -ACGGAATGCCAAGTTGTGTCAACC -ACGGAATGCCAAGTTGTGTGTTCC -ACGGAATGCCAAGTTGTGATTCCC -ACGGAATGCCAAGTTGTGTTCTCG -ACGGAATGCCAAGTTGTGTAGACG -ACGGAATGCCAAGTTGTGGTAACG -ACGGAATGCCAAGTTGTGACTTCG -ACGGAATGCCAAGTTGTGTACGCA -ACGGAATGCCAAGTTGTGCTTGCA -ACGGAATGCCAAGTTGTGCGAACA -ACGGAATGCCAAGTTGTGCAGTCA -ACGGAATGCCAAGTTGTGGATCCA -ACGGAATGCCAAGTTGTGACGACA -ACGGAATGCCAAGTTGTGAGCTCA -ACGGAATGCCAAGTTGTGTCACGT -ACGGAATGCCAAGTTGTGCGTAGT -ACGGAATGCCAAGTTGTGGTCAGT -ACGGAATGCCAAGTTGTGGAAGGT -ACGGAATGCCAAGTTGTGAACCGT -ACGGAATGCCAAGTTGTGTTGTGC -ACGGAATGCCAAGTTGTGCTAAGC -ACGGAATGCCAAGTTGTGACTAGC -ACGGAATGCCAAGTTGTGAGATGC -ACGGAATGCCAAGTTGTGTGAAGG -ACGGAATGCCAAGTTGTGCAATGG -ACGGAATGCCAAGTTGTGATGAGG -ACGGAATGCCAAGTTGTGAATGGG -ACGGAATGCCAAGTTGTGTCCTGA -ACGGAATGCCAAGTTGTGTAGCGA -ACGGAATGCCAAGTTGTGCACAGA -ACGGAATGCCAAGTTGTGGCAAGA -ACGGAATGCCAAGTTGTGGGTTGA -ACGGAATGCCAAGTTGTGTCCGAT -ACGGAATGCCAAGTTGTGTGGCAT -ACGGAATGCCAAGTTGTGCGAGAT -ACGGAATGCCAAGTTGTGTACCAC -ACGGAATGCCAAGTTGTGCAGAAC -ACGGAATGCCAAGTTGTGGTCTAC -ACGGAATGCCAAGTTGTGACGTAC -ACGGAATGCCAAGTTGTGAGTGAC -ACGGAATGCCAAGTTGTGCTGTAG -ACGGAATGCCAAGTTGTGCCTAAG -ACGGAATGCCAAGTTGTGGTTCAG -ACGGAATGCCAAGTTGTGGCATAG -ACGGAATGCCAAGTTGTGGACAAG -ACGGAATGCCAAGTTGTGAAGCAG -ACGGAATGCCAAGTTGTGCGTCAA -ACGGAATGCCAAGTTGTGGCTGAA -ACGGAATGCCAAGTTGTGAGTACG -ACGGAATGCCAAGTTGTGATCCGA -ACGGAATGCCAAGTTGTGATGGGA -ACGGAATGCCAAGTTGTGGTGCAA -ACGGAATGCCAAGTTGTGGAGGAA -ACGGAATGCCAAGTTGTGCAGGTA -ACGGAATGCCAAGTTGTGGACTCT -ACGGAATGCCAAGTTGTGAGTCCT -ACGGAATGCCAAGTTGTGTAAGCC -ACGGAATGCCAAGTTGTGATAGCC -ACGGAATGCCAAGTTGTGTAACCG -ACGGAATGCCAAGTTGTGATGCCA -ACGGAATGCCAATTTGCCGGAAAC -ACGGAATGCCAATTTGCCAACACC -ACGGAATGCCAATTTGCCATCGAG -ACGGAATGCCAATTTGCCCTCCTT -ACGGAATGCCAATTTGCCCCTGTT -ACGGAATGCCAATTTGCCCGGTTT -ACGGAATGCCAATTTGCCGTGGTT -ACGGAATGCCAATTTGCCGCCTTT -ACGGAATGCCAATTTGCCGGTCTT -ACGGAATGCCAATTTGCCACGCTT -ACGGAATGCCAATTTGCCAGCGTT -ACGGAATGCCAATTTGCCTTCGTC -ACGGAATGCCAATTTGCCTCTCTC -ACGGAATGCCAATTTGCCTGGATC -ACGGAATGCCAATTTGCCCACTTC -ACGGAATGCCAATTTGCCGTACTC -ACGGAATGCCAATTTGCCGATGTC -ACGGAATGCCAATTTGCCACAGTC -ACGGAATGCCAATTTGCCTTGCTG -ACGGAATGCCAATTTGCCTCCATG -ACGGAATGCCAATTTGCCTGTGTG -ACGGAATGCCAATTTGCCCTAGTG -ACGGAATGCCAATTTGCCCATCTG -ACGGAATGCCAATTTGCCGAGTTG -ACGGAATGCCAATTTGCCAGACTG -ACGGAATGCCAATTTGCCTCGGTA -ACGGAATGCCAATTTGCCTGCCTA -ACGGAATGCCAATTTGCCCCACTA -ACGGAATGCCAATTTGCCGGAGTA -ACGGAATGCCAATTTGCCTCGTCT -ACGGAATGCCAATTTGCCTGCACT -ACGGAATGCCAATTTGCCCTGACT -ACGGAATGCCAATTTGCCCAACCT -ACGGAATGCCAATTTGCCGCTACT -ACGGAATGCCAATTTGCCGGATCT -ACGGAATGCCAATTTGCCAAGGCT -ACGGAATGCCAATTTGCCTCAACC -ACGGAATGCCAATTTGCCTGTTCC -ACGGAATGCCAATTTGCCATTCCC -ACGGAATGCCAATTTGCCTTCTCG -ACGGAATGCCAATTTGCCTAGACG -ACGGAATGCCAATTTGCCGTAACG -ACGGAATGCCAATTTGCCACTTCG -ACGGAATGCCAATTTGCCTACGCA -ACGGAATGCCAATTTGCCCTTGCA -ACGGAATGCCAATTTGCCCGAACA -ACGGAATGCCAATTTGCCCAGTCA -ACGGAATGCCAATTTGCCGATCCA -ACGGAATGCCAATTTGCCACGACA -ACGGAATGCCAATTTGCCAGCTCA -ACGGAATGCCAATTTGCCTCACGT -ACGGAATGCCAATTTGCCCGTAGT -ACGGAATGCCAATTTGCCGTCAGT -ACGGAATGCCAATTTGCCGAAGGT -ACGGAATGCCAATTTGCCAACCGT -ACGGAATGCCAATTTGCCTTGTGC -ACGGAATGCCAATTTGCCCTAAGC -ACGGAATGCCAATTTGCCACTAGC -ACGGAATGCCAATTTGCCAGATGC -ACGGAATGCCAATTTGCCTGAAGG -ACGGAATGCCAATTTGCCCAATGG -ACGGAATGCCAATTTGCCATGAGG -ACGGAATGCCAATTTGCCAATGGG -ACGGAATGCCAATTTGCCTCCTGA -ACGGAATGCCAATTTGCCTAGCGA -ACGGAATGCCAATTTGCCCACAGA -ACGGAATGCCAATTTGCCGCAAGA -ACGGAATGCCAATTTGCCGGTTGA -ACGGAATGCCAATTTGCCTCCGAT -ACGGAATGCCAATTTGCCTGGCAT -ACGGAATGCCAATTTGCCCGAGAT -ACGGAATGCCAATTTGCCTACCAC -ACGGAATGCCAATTTGCCCAGAAC -ACGGAATGCCAATTTGCCGTCTAC -ACGGAATGCCAATTTGCCACGTAC -ACGGAATGCCAATTTGCCAGTGAC -ACGGAATGCCAATTTGCCCTGTAG -ACGGAATGCCAATTTGCCCCTAAG -ACGGAATGCCAATTTGCCGTTCAG -ACGGAATGCCAATTTGCCGCATAG -ACGGAATGCCAATTTGCCGACAAG -ACGGAATGCCAATTTGCCAAGCAG -ACGGAATGCCAATTTGCCCGTCAA -ACGGAATGCCAATTTGCCGCTGAA -ACGGAATGCCAATTTGCCAGTACG -ACGGAATGCCAATTTGCCATCCGA -ACGGAATGCCAATTTGCCATGGGA -ACGGAATGCCAATTTGCCGTGCAA -ACGGAATGCCAATTTGCCGAGGAA -ACGGAATGCCAATTTGCCCAGGTA -ACGGAATGCCAATTTGCCGACTCT -ACGGAATGCCAATTTGCCAGTCCT -ACGGAATGCCAATTTGCCTAAGCC -ACGGAATGCCAATTTGCCATAGCC -ACGGAATGCCAATTTGCCTAACCG -ACGGAATGCCAATTTGCCATGCCA -ACGGAATGCCAACTTGGTGGAAAC -ACGGAATGCCAACTTGGTAACACC -ACGGAATGCCAACTTGGTATCGAG -ACGGAATGCCAACTTGGTCTCCTT -ACGGAATGCCAACTTGGTCCTGTT -ACGGAATGCCAACTTGGTCGGTTT -ACGGAATGCCAACTTGGTGTGGTT -ACGGAATGCCAACTTGGTGCCTTT -ACGGAATGCCAACTTGGTGGTCTT -ACGGAATGCCAACTTGGTACGCTT -ACGGAATGCCAACTTGGTAGCGTT -ACGGAATGCCAACTTGGTTTCGTC -ACGGAATGCCAACTTGGTTCTCTC -ACGGAATGCCAACTTGGTTGGATC -ACGGAATGCCAACTTGGTCACTTC -ACGGAATGCCAACTTGGTGTACTC -ACGGAATGCCAACTTGGTGATGTC -ACGGAATGCCAACTTGGTACAGTC -ACGGAATGCCAACTTGGTTTGCTG -ACGGAATGCCAACTTGGTTCCATG -ACGGAATGCCAACTTGGTTGTGTG -ACGGAATGCCAACTTGGTCTAGTG -ACGGAATGCCAACTTGGTCATCTG -ACGGAATGCCAACTTGGTGAGTTG -ACGGAATGCCAACTTGGTAGACTG -ACGGAATGCCAACTTGGTTCGGTA -ACGGAATGCCAACTTGGTTGCCTA -ACGGAATGCCAACTTGGTCCACTA -ACGGAATGCCAACTTGGTGGAGTA -ACGGAATGCCAACTTGGTTCGTCT -ACGGAATGCCAACTTGGTTGCACT -ACGGAATGCCAACTTGGTCTGACT -ACGGAATGCCAACTTGGTCAACCT -ACGGAATGCCAACTTGGTGCTACT -ACGGAATGCCAACTTGGTGGATCT -ACGGAATGCCAACTTGGTAAGGCT -ACGGAATGCCAACTTGGTTCAACC -ACGGAATGCCAACTTGGTTGTTCC -ACGGAATGCCAACTTGGTATTCCC -ACGGAATGCCAACTTGGTTTCTCG -ACGGAATGCCAACTTGGTTAGACG -ACGGAATGCCAACTTGGTGTAACG -ACGGAATGCCAACTTGGTACTTCG -ACGGAATGCCAACTTGGTTACGCA -ACGGAATGCCAACTTGGTCTTGCA -ACGGAATGCCAACTTGGTCGAACA -ACGGAATGCCAACTTGGTCAGTCA -ACGGAATGCCAACTTGGTGATCCA -ACGGAATGCCAACTTGGTACGACA -ACGGAATGCCAACTTGGTAGCTCA -ACGGAATGCCAACTTGGTTCACGT -ACGGAATGCCAACTTGGTCGTAGT -ACGGAATGCCAACTTGGTGTCAGT -ACGGAATGCCAACTTGGTGAAGGT -ACGGAATGCCAACTTGGTAACCGT -ACGGAATGCCAACTTGGTTTGTGC -ACGGAATGCCAACTTGGTCTAAGC -ACGGAATGCCAACTTGGTACTAGC -ACGGAATGCCAACTTGGTAGATGC -ACGGAATGCCAACTTGGTTGAAGG -ACGGAATGCCAACTTGGTCAATGG -ACGGAATGCCAACTTGGTATGAGG -ACGGAATGCCAACTTGGTAATGGG -ACGGAATGCCAACTTGGTTCCTGA -ACGGAATGCCAACTTGGTTAGCGA -ACGGAATGCCAACTTGGTCACAGA -ACGGAATGCCAACTTGGTGCAAGA -ACGGAATGCCAACTTGGTGGTTGA -ACGGAATGCCAACTTGGTTCCGAT -ACGGAATGCCAACTTGGTTGGCAT -ACGGAATGCCAACTTGGTCGAGAT -ACGGAATGCCAACTTGGTTACCAC -ACGGAATGCCAACTTGGTCAGAAC -ACGGAATGCCAACTTGGTGTCTAC -ACGGAATGCCAACTTGGTACGTAC -ACGGAATGCCAACTTGGTAGTGAC -ACGGAATGCCAACTTGGTCTGTAG -ACGGAATGCCAACTTGGTCCTAAG -ACGGAATGCCAACTTGGTGTTCAG -ACGGAATGCCAACTTGGTGCATAG -ACGGAATGCCAACTTGGTGACAAG -ACGGAATGCCAACTTGGTAAGCAG -ACGGAATGCCAACTTGGTCGTCAA -ACGGAATGCCAACTTGGTGCTGAA -ACGGAATGCCAACTTGGTAGTACG -ACGGAATGCCAACTTGGTATCCGA -ACGGAATGCCAACTTGGTATGGGA -ACGGAATGCCAACTTGGTGTGCAA -ACGGAATGCCAACTTGGTGAGGAA -ACGGAATGCCAACTTGGTCAGGTA -ACGGAATGCCAACTTGGTGACTCT -ACGGAATGCCAACTTGGTAGTCCT -ACGGAATGCCAACTTGGTTAAGCC -ACGGAATGCCAACTTGGTATAGCC -ACGGAATGCCAACTTGGTTAACCG -ACGGAATGCCAACTTGGTATGCCA -ACGGAATGCCAACTTACGGGAAAC -ACGGAATGCCAACTTACGAACACC -ACGGAATGCCAACTTACGATCGAG -ACGGAATGCCAACTTACGCTCCTT -ACGGAATGCCAACTTACGCCTGTT -ACGGAATGCCAACTTACGCGGTTT -ACGGAATGCCAACTTACGGTGGTT -ACGGAATGCCAACTTACGGCCTTT -ACGGAATGCCAACTTACGGGTCTT -ACGGAATGCCAACTTACGACGCTT -ACGGAATGCCAACTTACGAGCGTT -ACGGAATGCCAACTTACGTTCGTC -ACGGAATGCCAACTTACGTCTCTC -ACGGAATGCCAACTTACGTGGATC -ACGGAATGCCAACTTACGCACTTC -ACGGAATGCCAACTTACGGTACTC -ACGGAATGCCAACTTACGGATGTC -ACGGAATGCCAACTTACGACAGTC -ACGGAATGCCAACTTACGTTGCTG -ACGGAATGCCAACTTACGTCCATG -ACGGAATGCCAACTTACGTGTGTG -ACGGAATGCCAACTTACGCTAGTG -ACGGAATGCCAACTTACGCATCTG -ACGGAATGCCAACTTACGGAGTTG -ACGGAATGCCAACTTACGAGACTG -ACGGAATGCCAACTTACGTCGGTA -ACGGAATGCCAACTTACGTGCCTA -ACGGAATGCCAACTTACGCCACTA -ACGGAATGCCAACTTACGGGAGTA -ACGGAATGCCAACTTACGTCGTCT -ACGGAATGCCAACTTACGTGCACT -ACGGAATGCCAACTTACGCTGACT -ACGGAATGCCAACTTACGCAACCT -ACGGAATGCCAACTTACGGCTACT -ACGGAATGCCAACTTACGGGATCT -ACGGAATGCCAACTTACGAAGGCT -ACGGAATGCCAACTTACGTCAACC -ACGGAATGCCAACTTACGTGTTCC -ACGGAATGCCAACTTACGATTCCC -ACGGAATGCCAACTTACGTTCTCG -ACGGAATGCCAACTTACGTAGACG -ACGGAATGCCAACTTACGGTAACG -ACGGAATGCCAACTTACGACTTCG -ACGGAATGCCAACTTACGTACGCA -ACGGAATGCCAACTTACGCTTGCA -ACGGAATGCCAACTTACGCGAACA -ACGGAATGCCAACTTACGCAGTCA -ACGGAATGCCAACTTACGGATCCA -ACGGAATGCCAACTTACGACGACA -ACGGAATGCCAACTTACGAGCTCA -ACGGAATGCCAACTTACGTCACGT -ACGGAATGCCAACTTACGCGTAGT -ACGGAATGCCAACTTACGGTCAGT -ACGGAATGCCAACTTACGGAAGGT -ACGGAATGCCAACTTACGAACCGT -ACGGAATGCCAACTTACGTTGTGC -ACGGAATGCCAACTTACGCTAAGC -ACGGAATGCCAACTTACGACTAGC -ACGGAATGCCAACTTACGAGATGC -ACGGAATGCCAACTTACGTGAAGG -ACGGAATGCCAACTTACGCAATGG -ACGGAATGCCAACTTACGATGAGG -ACGGAATGCCAACTTACGAATGGG -ACGGAATGCCAACTTACGTCCTGA -ACGGAATGCCAACTTACGTAGCGA -ACGGAATGCCAACTTACGCACAGA -ACGGAATGCCAACTTACGGCAAGA -ACGGAATGCCAACTTACGGGTTGA -ACGGAATGCCAACTTACGTCCGAT -ACGGAATGCCAACTTACGTGGCAT -ACGGAATGCCAACTTACGCGAGAT -ACGGAATGCCAACTTACGTACCAC -ACGGAATGCCAACTTACGCAGAAC -ACGGAATGCCAACTTACGGTCTAC -ACGGAATGCCAACTTACGACGTAC -ACGGAATGCCAACTTACGAGTGAC -ACGGAATGCCAACTTACGCTGTAG -ACGGAATGCCAACTTACGCCTAAG -ACGGAATGCCAACTTACGGTTCAG -ACGGAATGCCAACTTACGGCATAG -ACGGAATGCCAACTTACGGACAAG -ACGGAATGCCAACTTACGAAGCAG -ACGGAATGCCAACTTACGCGTCAA -ACGGAATGCCAACTTACGGCTGAA -ACGGAATGCCAACTTACGAGTACG -ACGGAATGCCAACTTACGATCCGA -ACGGAATGCCAACTTACGATGGGA -ACGGAATGCCAACTTACGGTGCAA -ACGGAATGCCAACTTACGGAGGAA -ACGGAATGCCAACTTACGCAGGTA -ACGGAATGCCAACTTACGGACTCT -ACGGAATGCCAACTTACGAGTCCT -ACGGAATGCCAACTTACGTAAGCC -ACGGAATGCCAACTTACGATAGCC -ACGGAATGCCAACTTACGTAACCG -ACGGAATGCCAACTTACGATGCCA -ACGGAATGCCAAGTTAGCGGAAAC -ACGGAATGCCAAGTTAGCAACACC -ACGGAATGCCAAGTTAGCATCGAG -ACGGAATGCCAAGTTAGCCTCCTT -ACGGAATGCCAAGTTAGCCCTGTT -ACGGAATGCCAAGTTAGCCGGTTT -ACGGAATGCCAAGTTAGCGTGGTT -ACGGAATGCCAAGTTAGCGCCTTT -ACGGAATGCCAAGTTAGCGGTCTT -ACGGAATGCCAAGTTAGCACGCTT -ACGGAATGCCAAGTTAGCAGCGTT -ACGGAATGCCAAGTTAGCTTCGTC -ACGGAATGCCAAGTTAGCTCTCTC -ACGGAATGCCAAGTTAGCTGGATC -ACGGAATGCCAAGTTAGCCACTTC -ACGGAATGCCAAGTTAGCGTACTC -ACGGAATGCCAAGTTAGCGATGTC -ACGGAATGCCAAGTTAGCACAGTC -ACGGAATGCCAAGTTAGCTTGCTG -ACGGAATGCCAAGTTAGCTCCATG -ACGGAATGCCAAGTTAGCTGTGTG -ACGGAATGCCAAGTTAGCCTAGTG -ACGGAATGCCAAGTTAGCCATCTG -ACGGAATGCCAAGTTAGCGAGTTG -ACGGAATGCCAAGTTAGCAGACTG -ACGGAATGCCAAGTTAGCTCGGTA -ACGGAATGCCAAGTTAGCTGCCTA -ACGGAATGCCAAGTTAGCCCACTA -ACGGAATGCCAAGTTAGCGGAGTA -ACGGAATGCCAAGTTAGCTCGTCT -ACGGAATGCCAAGTTAGCTGCACT -ACGGAATGCCAAGTTAGCCTGACT -ACGGAATGCCAAGTTAGCCAACCT -ACGGAATGCCAAGTTAGCGCTACT -ACGGAATGCCAAGTTAGCGGATCT -ACGGAATGCCAAGTTAGCAAGGCT -ACGGAATGCCAAGTTAGCTCAACC -ACGGAATGCCAAGTTAGCTGTTCC -ACGGAATGCCAAGTTAGCATTCCC -ACGGAATGCCAAGTTAGCTTCTCG -ACGGAATGCCAAGTTAGCTAGACG -ACGGAATGCCAAGTTAGCGTAACG -ACGGAATGCCAAGTTAGCACTTCG -ACGGAATGCCAAGTTAGCTACGCA -ACGGAATGCCAAGTTAGCCTTGCA -ACGGAATGCCAAGTTAGCCGAACA -ACGGAATGCCAAGTTAGCCAGTCA -ACGGAATGCCAAGTTAGCGATCCA -ACGGAATGCCAAGTTAGCACGACA -ACGGAATGCCAAGTTAGCAGCTCA -ACGGAATGCCAAGTTAGCTCACGT -ACGGAATGCCAAGTTAGCCGTAGT -ACGGAATGCCAAGTTAGCGTCAGT -ACGGAATGCCAAGTTAGCGAAGGT -ACGGAATGCCAAGTTAGCAACCGT -ACGGAATGCCAAGTTAGCTTGTGC -ACGGAATGCCAAGTTAGCCTAAGC -ACGGAATGCCAAGTTAGCACTAGC -ACGGAATGCCAAGTTAGCAGATGC -ACGGAATGCCAAGTTAGCTGAAGG -ACGGAATGCCAAGTTAGCCAATGG -ACGGAATGCCAAGTTAGCATGAGG -ACGGAATGCCAAGTTAGCAATGGG -ACGGAATGCCAAGTTAGCTCCTGA -ACGGAATGCCAAGTTAGCTAGCGA -ACGGAATGCCAAGTTAGCCACAGA -ACGGAATGCCAAGTTAGCGCAAGA -ACGGAATGCCAAGTTAGCGGTTGA -ACGGAATGCCAAGTTAGCTCCGAT -ACGGAATGCCAAGTTAGCTGGCAT -ACGGAATGCCAAGTTAGCCGAGAT -ACGGAATGCCAAGTTAGCTACCAC -ACGGAATGCCAAGTTAGCCAGAAC -ACGGAATGCCAAGTTAGCGTCTAC -ACGGAATGCCAAGTTAGCACGTAC -ACGGAATGCCAAGTTAGCAGTGAC -ACGGAATGCCAAGTTAGCCTGTAG -ACGGAATGCCAAGTTAGCCCTAAG -ACGGAATGCCAAGTTAGCGTTCAG -ACGGAATGCCAAGTTAGCGCATAG -ACGGAATGCCAAGTTAGCGACAAG -ACGGAATGCCAAGTTAGCAAGCAG -ACGGAATGCCAAGTTAGCCGTCAA -ACGGAATGCCAAGTTAGCGCTGAA -ACGGAATGCCAAGTTAGCAGTACG -ACGGAATGCCAAGTTAGCATCCGA -ACGGAATGCCAAGTTAGCATGGGA -ACGGAATGCCAAGTTAGCGTGCAA -ACGGAATGCCAAGTTAGCGAGGAA -ACGGAATGCCAAGTTAGCCAGGTA -ACGGAATGCCAAGTTAGCGACTCT -ACGGAATGCCAAGTTAGCAGTCCT -ACGGAATGCCAAGTTAGCTAAGCC -ACGGAATGCCAAGTTAGCATAGCC -ACGGAATGCCAAGTTAGCTAACCG -ACGGAATGCCAAGTTAGCATGCCA -ACGGAATGCCAAGTCTTCGGAAAC -ACGGAATGCCAAGTCTTCAACACC -ACGGAATGCCAAGTCTTCATCGAG -ACGGAATGCCAAGTCTTCCTCCTT -ACGGAATGCCAAGTCTTCCCTGTT -ACGGAATGCCAAGTCTTCCGGTTT -ACGGAATGCCAAGTCTTCGTGGTT -ACGGAATGCCAAGTCTTCGCCTTT -ACGGAATGCCAAGTCTTCGGTCTT -ACGGAATGCCAAGTCTTCACGCTT -ACGGAATGCCAAGTCTTCAGCGTT -ACGGAATGCCAAGTCTTCTTCGTC -ACGGAATGCCAAGTCTTCTCTCTC -ACGGAATGCCAAGTCTTCTGGATC -ACGGAATGCCAAGTCTTCCACTTC -ACGGAATGCCAAGTCTTCGTACTC -ACGGAATGCCAAGTCTTCGATGTC -ACGGAATGCCAAGTCTTCACAGTC -ACGGAATGCCAAGTCTTCTTGCTG -ACGGAATGCCAAGTCTTCTCCATG -ACGGAATGCCAAGTCTTCTGTGTG -ACGGAATGCCAAGTCTTCCTAGTG -ACGGAATGCCAAGTCTTCCATCTG -ACGGAATGCCAAGTCTTCGAGTTG -ACGGAATGCCAAGTCTTCAGACTG -ACGGAATGCCAAGTCTTCTCGGTA -ACGGAATGCCAAGTCTTCTGCCTA -ACGGAATGCCAAGTCTTCCCACTA -ACGGAATGCCAAGTCTTCGGAGTA -ACGGAATGCCAAGTCTTCTCGTCT -ACGGAATGCCAAGTCTTCTGCACT -ACGGAATGCCAAGTCTTCCTGACT -ACGGAATGCCAAGTCTTCCAACCT -ACGGAATGCCAAGTCTTCGCTACT -ACGGAATGCCAAGTCTTCGGATCT -ACGGAATGCCAAGTCTTCAAGGCT -ACGGAATGCCAAGTCTTCTCAACC -ACGGAATGCCAAGTCTTCTGTTCC -ACGGAATGCCAAGTCTTCATTCCC -ACGGAATGCCAAGTCTTCTTCTCG -ACGGAATGCCAAGTCTTCTAGACG -ACGGAATGCCAAGTCTTCGTAACG -ACGGAATGCCAAGTCTTCACTTCG -ACGGAATGCCAAGTCTTCTACGCA -ACGGAATGCCAAGTCTTCCTTGCA -ACGGAATGCCAAGTCTTCCGAACA -ACGGAATGCCAAGTCTTCCAGTCA -ACGGAATGCCAAGTCTTCGATCCA -ACGGAATGCCAAGTCTTCACGACA -ACGGAATGCCAAGTCTTCAGCTCA -ACGGAATGCCAAGTCTTCTCACGT -ACGGAATGCCAAGTCTTCCGTAGT -ACGGAATGCCAAGTCTTCGTCAGT -ACGGAATGCCAAGTCTTCGAAGGT -ACGGAATGCCAAGTCTTCAACCGT -ACGGAATGCCAAGTCTTCTTGTGC -ACGGAATGCCAAGTCTTCCTAAGC -ACGGAATGCCAAGTCTTCACTAGC -ACGGAATGCCAAGTCTTCAGATGC -ACGGAATGCCAAGTCTTCTGAAGG -ACGGAATGCCAAGTCTTCCAATGG -ACGGAATGCCAAGTCTTCATGAGG -ACGGAATGCCAAGTCTTCAATGGG -ACGGAATGCCAAGTCTTCTCCTGA -ACGGAATGCCAAGTCTTCTAGCGA -ACGGAATGCCAAGTCTTCCACAGA -ACGGAATGCCAAGTCTTCGCAAGA -ACGGAATGCCAAGTCTTCGGTTGA -ACGGAATGCCAAGTCTTCTCCGAT -ACGGAATGCCAAGTCTTCTGGCAT -ACGGAATGCCAAGTCTTCCGAGAT -ACGGAATGCCAAGTCTTCTACCAC -ACGGAATGCCAAGTCTTCCAGAAC -ACGGAATGCCAAGTCTTCGTCTAC -ACGGAATGCCAAGTCTTCACGTAC -ACGGAATGCCAAGTCTTCAGTGAC -ACGGAATGCCAAGTCTTCCTGTAG -ACGGAATGCCAAGTCTTCCCTAAG -ACGGAATGCCAAGTCTTCGTTCAG -ACGGAATGCCAAGTCTTCGCATAG -ACGGAATGCCAAGTCTTCGACAAG -ACGGAATGCCAAGTCTTCAAGCAG -ACGGAATGCCAAGTCTTCCGTCAA -ACGGAATGCCAAGTCTTCGCTGAA -ACGGAATGCCAAGTCTTCAGTACG -ACGGAATGCCAAGTCTTCATCCGA -ACGGAATGCCAAGTCTTCATGGGA -ACGGAATGCCAAGTCTTCGTGCAA -ACGGAATGCCAAGTCTTCGAGGAA -ACGGAATGCCAAGTCTTCCAGGTA -ACGGAATGCCAAGTCTTCGACTCT -ACGGAATGCCAAGTCTTCAGTCCT -ACGGAATGCCAAGTCTTCTAAGCC -ACGGAATGCCAAGTCTTCATAGCC -ACGGAATGCCAAGTCTTCTAACCG -ACGGAATGCCAAGTCTTCATGCCA -ACGGAATGCCAACTCTCTGGAAAC -ACGGAATGCCAACTCTCTAACACC -ACGGAATGCCAACTCTCTATCGAG -ACGGAATGCCAACTCTCTCTCCTT -ACGGAATGCCAACTCTCTCCTGTT -ACGGAATGCCAACTCTCTCGGTTT -ACGGAATGCCAACTCTCTGTGGTT -ACGGAATGCCAACTCTCTGCCTTT -ACGGAATGCCAACTCTCTGGTCTT -ACGGAATGCCAACTCTCTACGCTT -ACGGAATGCCAACTCTCTAGCGTT -ACGGAATGCCAACTCTCTTTCGTC -ACGGAATGCCAACTCTCTTCTCTC -ACGGAATGCCAACTCTCTTGGATC -ACGGAATGCCAACTCTCTCACTTC -ACGGAATGCCAACTCTCTGTACTC -ACGGAATGCCAACTCTCTGATGTC -ACGGAATGCCAACTCTCTACAGTC -ACGGAATGCCAACTCTCTTTGCTG -ACGGAATGCCAACTCTCTTCCATG -ACGGAATGCCAACTCTCTTGTGTG -ACGGAATGCCAACTCTCTCTAGTG -ACGGAATGCCAACTCTCTCATCTG -ACGGAATGCCAACTCTCTGAGTTG -ACGGAATGCCAACTCTCTAGACTG -ACGGAATGCCAACTCTCTTCGGTA -ACGGAATGCCAACTCTCTTGCCTA -ACGGAATGCCAACTCTCTCCACTA -ACGGAATGCCAACTCTCTGGAGTA -ACGGAATGCCAACTCTCTTCGTCT -ACGGAATGCCAACTCTCTTGCACT -ACGGAATGCCAACTCTCTCTGACT -ACGGAATGCCAACTCTCTCAACCT -ACGGAATGCCAACTCTCTGCTACT -ACGGAATGCCAACTCTCTGGATCT -ACGGAATGCCAACTCTCTAAGGCT -ACGGAATGCCAACTCTCTTCAACC -ACGGAATGCCAACTCTCTTGTTCC -ACGGAATGCCAACTCTCTATTCCC -ACGGAATGCCAACTCTCTTTCTCG -ACGGAATGCCAACTCTCTTAGACG -ACGGAATGCCAACTCTCTGTAACG -ACGGAATGCCAACTCTCTACTTCG -ACGGAATGCCAACTCTCTTACGCA -ACGGAATGCCAACTCTCTCTTGCA -ACGGAATGCCAACTCTCTCGAACA -ACGGAATGCCAACTCTCTCAGTCA -ACGGAATGCCAACTCTCTGATCCA -ACGGAATGCCAACTCTCTACGACA -ACGGAATGCCAACTCTCTAGCTCA -ACGGAATGCCAACTCTCTTCACGT -ACGGAATGCCAACTCTCTCGTAGT -ACGGAATGCCAACTCTCTGTCAGT -ACGGAATGCCAACTCTCTGAAGGT -ACGGAATGCCAACTCTCTAACCGT -ACGGAATGCCAACTCTCTTTGTGC -ACGGAATGCCAACTCTCTCTAAGC -ACGGAATGCCAACTCTCTACTAGC -ACGGAATGCCAACTCTCTAGATGC -ACGGAATGCCAACTCTCTTGAAGG -ACGGAATGCCAACTCTCTCAATGG -ACGGAATGCCAACTCTCTATGAGG -ACGGAATGCCAACTCTCTAATGGG -ACGGAATGCCAACTCTCTTCCTGA -ACGGAATGCCAACTCTCTTAGCGA -ACGGAATGCCAACTCTCTCACAGA -ACGGAATGCCAACTCTCTGCAAGA -ACGGAATGCCAACTCTCTGGTTGA -ACGGAATGCCAACTCTCTTCCGAT -ACGGAATGCCAACTCTCTTGGCAT -ACGGAATGCCAACTCTCTCGAGAT -ACGGAATGCCAACTCTCTTACCAC -ACGGAATGCCAACTCTCTCAGAAC -ACGGAATGCCAACTCTCTGTCTAC -ACGGAATGCCAACTCTCTACGTAC -ACGGAATGCCAACTCTCTAGTGAC -ACGGAATGCCAACTCTCTCTGTAG -ACGGAATGCCAACTCTCTCCTAAG -ACGGAATGCCAACTCTCTGTTCAG -ACGGAATGCCAACTCTCTGCATAG -ACGGAATGCCAACTCTCTGACAAG -ACGGAATGCCAACTCTCTAAGCAG -ACGGAATGCCAACTCTCTCGTCAA -ACGGAATGCCAACTCTCTGCTGAA -ACGGAATGCCAACTCTCTAGTACG -ACGGAATGCCAACTCTCTATCCGA -ACGGAATGCCAACTCTCTATGGGA -ACGGAATGCCAACTCTCTGTGCAA -ACGGAATGCCAACTCTCTGAGGAA -ACGGAATGCCAACTCTCTCAGGTA -ACGGAATGCCAACTCTCTGACTCT -ACGGAATGCCAACTCTCTAGTCCT -ACGGAATGCCAACTCTCTTAAGCC -ACGGAATGCCAACTCTCTATAGCC -ACGGAATGCCAACTCTCTTAACCG -ACGGAATGCCAACTCTCTATGCCA -ACGGAATGCCAAATCTGGGGAAAC -ACGGAATGCCAAATCTGGAACACC -ACGGAATGCCAAATCTGGATCGAG -ACGGAATGCCAAATCTGGCTCCTT -ACGGAATGCCAAATCTGGCCTGTT -ACGGAATGCCAAATCTGGCGGTTT -ACGGAATGCCAAATCTGGGTGGTT -ACGGAATGCCAAATCTGGGCCTTT -ACGGAATGCCAAATCTGGGGTCTT -ACGGAATGCCAAATCTGGACGCTT -ACGGAATGCCAAATCTGGAGCGTT -ACGGAATGCCAAATCTGGTTCGTC -ACGGAATGCCAAATCTGGTCTCTC -ACGGAATGCCAAATCTGGTGGATC -ACGGAATGCCAAATCTGGCACTTC -ACGGAATGCCAAATCTGGGTACTC -ACGGAATGCCAAATCTGGGATGTC -ACGGAATGCCAAATCTGGACAGTC -ACGGAATGCCAAATCTGGTTGCTG -ACGGAATGCCAAATCTGGTCCATG -ACGGAATGCCAAATCTGGTGTGTG -ACGGAATGCCAAATCTGGCTAGTG -ACGGAATGCCAAATCTGGCATCTG -ACGGAATGCCAAATCTGGGAGTTG -ACGGAATGCCAAATCTGGAGACTG -ACGGAATGCCAAATCTGGTCGGTA -ACGGAATGCCAAATCTGGTGCCTA -ACGGAATGCCAAATCTGGCCACTA -ACGGAATGCCAAATCTGGGGAGTA -ACGGAATGCCAAATCTGGTCGTCT -ACGGAATGCCAAATCTGGTGCACT -ACGGAATGCCAAATCTGGCTGACT -ACGGAATGCCAAATCTGGCAACCT -ACGGAATGCCAAATCTGGGCTACT -ACGGAATGCCAAATCTGGGGATCT -ACGGAATGCCAAATCTGGAAGGCT -ACGGAATGCCAAATCTGGTCAACC -ACGGAATGCCAAATCTGGTGTTCC -ACGGAATGCCAAATCTGGATTCCC -ACGGAATGCCAAATCTGGTTCTCG -ACGGAATGCCAAATCTGGTAGACG -ACGGAATGCCAAATCTGGGTAACG -ACGGAATGCCAAATCTGGACTTCG -ACGGAATGCCAAATCTGGTACGCA -ACGGAATGCCAAATCTGGCTTGCA -ACGGAATGCCAAATCTGGCGAACA -ACGGAATGCCAAATCTGGCAGTCA -ACGGAATGCCAAATCTGGGATCCA -ACGGAATGCCAAATCTGGACGACA -ACGGAATGCCAAATCTGGAGCTCA -ACGGAATGCCAAATCTGGTCACGT -ACGGAATGCCAAATCTGGCGTAGT -ACGGAATGCCAAATCTGGGTCAGT -ACGGAATGCCAAATCTGGGAAGGT -ACGGAATGCCAAATCTGGAACCGT -ACGGAATGCCAAATCTGGTTGTGC -ACGGAATGCCAAATCTGGCTAAGC -ACGGAATGCCAAATCTGGACTAGC -ACGGAATGCCAAATCTGGAGATGC -ACGGAATGCCAAATCTGGTGAAGG -ACGGAATGCCAAATCTGGCAATGG -ACGGAATGCCAAATCTGGATGAGG -ACGGAATGCCAAATCTGGAATGGG -ACGGAATGCCAAATCTGGTCCTGA -ACGGAATGCCAAATCTGGTAGCGA -ACGGAATGCCAAATCTGGCACAGA -ACGGAATGCCAAATCTGGGCAAGA -ACGGAATGCCAAATCTGGGGTTGA -ACGGAATGCCAAATCTGGTCCGAT -ACGGAATGCCAAATCTGGTGGCAT -ACGGAATGCCAAATCTGGCGAGAT -ACGGAATGCCAAATCTGGTACCAC -ACGGAATGCCAAATCTGGCAGAAC -ACGGAATGCCAAATCTGGGTCTAC -ACGGAATGCCAAATCTGGACGTAC -ACGGAATGCCAAATCTGGAGTGAC -ACGGAATGCCAAATCTGGCTGTAG -ACGGAATGCCAAATCTGGCCTAAG -ACGGAATGCCAAATCTGGGTTCAG -ACGGAATGCCAAATCTGGGCATAG -ACGGAATGCCAAATCTGGGACAAG -ACGGAATGCCAAATCTGGAAGCAG -ACGGAATGCCAAATCTGGCGTCAA -ACGGAATGCCAAATCTGGGCTGAA -ACGGAATGCCAAATCTGGAGTACG -ACGGAATGCCAAATCTGGATCCGA -ACGGAATGCCAAATCTGGATGGGA -ACGGAATGCCAAATCTGGGTGCAA -ACGGAATGCCAAATCTGGGAGGAA -ACGGAATGCCAAATCTGGCAGGTA -ACGGAATGCCAAATCTGGGACTCT -ACGGAATGCCAAATCTGGAGTCCT -ACGGAATGCCAAATCTGGTAAGCC -ACGGAATGCCAAATCTGGATAGCC -ACGGAATGCCAAATCTGGTAACCG -ACGGAATGCCAAATCTGGATGCCA -ACGGAATGCCAATTCCACGGAAAC -ACGGAATGCCAATTCCACAACACC -ACGGAATGCCAATTCCACATCGAG -ACGGAATGCCAATTCCACCTCCTT -ACGGAATGCCAATTCCACCCTGTT -ACGGAATGCCAATTCCACCGGTTT -ACGGAATGCCAATTCCACGTGGTT -ACGGAATGCCAATTCCACGCCTTT -ACGGAATGCCAATTCCACGGTCTT -ACGGAATGCCAATTCCACACGCTT -ACGGAATGCCAATTCCACAGCGTT -ACGGAATGCCAATTCCACTTCGTC -ACGGAATGCCAATTCCACTCTCTC -ACGGAATGCCAATTCCACTGGATC -ACGGAATGCCAATTCCACCACTTC -ACGGAATGCCAATTCCACGTACTC -ACGGAATGCCAATTCCACGATGTC -ACGGAATGCCAATTCCACACAGTC -ACGGAATGCCAATTCCACTTGCTG -ACGGAATGCCAATTCCACTCCATG -ACGGAATGCCAATTCCACTGTGTG -ACGGAATGCCAATTCCACCTAGTG -ACGGAATGCCAATTCCACCATCTG -ACGGAATGCCAATTCCACGAGTTG -ACGGAATGCCAATTCCACAGACTG -ACGGAATGCCAATTCCACTCGGTA -ACGGAATGCCAATTCCACTGCCTA -ACGGAATGCCAATTCCACCCACTA -ACGGAATGCCAATTCCACGGAGTA -ACGGAATGCCAATTCCACTCGTCT -ACGGAATGCCAATTCCACTGCACT -ACGGAATGCCAATTCCACCTGACT -ACGGAATGCCAATTCCACCAACCT -ACGGAATGCCAATTCCACGCTACT -ACGGAATGCCAATTCCACGGATCT -ACGGAATGCCAATTCCACAAGGCT -ACGGAATGCCAATTCCACTCAACC -ACGGAATGCCAATTCCACTGTTCC -ACGGAATGCCAATTCCACATTCCC -ACGGAATGCCAATTCCACTTCTCG -ACGGAATGCCAATTCCACTAGACG -ACGGAATGCCAATTCCACGTAACG -ACGGAATGCCAATTCCACACTTCG -ACGGAATGCCAATTCCACTACGCA -ACGGAATGCCAATTCCACCTTGCA -ACGGAATGCCAATTCCACCGAACA -ACGGAATGCCAATTCCACCAGTCA -ACGGAATGCCAATTCCACGATCCA -ACGGAATGCCAATTCCACACGACA -ACGGAATGCCAATTCCACAGCTCA -ACGGAATGCCAATTCCACTCACGT -ACGGAATGCCAATTCCACCGTAGT -ACGGAATGCCAATTCCACGTCAGT -ACGGAATGCCAATTCCACGAAGGT -ACGGAATGCCAATTCCACAACCGT -ACGGAATGCCAATTCCACTTGTGC -ACGGAATGCCAATTCCACCTAAGC -ACGGAATGCCAATTCCACACTAGC -ACGGAATGCCAATTCCACAGATGC -ACGGAATGCCAATTCCACTGAAGG -ACGGAATGCCAATTCCACCAATGG -ACGGAATGCCAATTCCACATGAGG -ACGGAATGCCAATTCCACAATGGG -ACGGAATGCCAATTCCACTCCTGA -ACGGAATGCCAATTCCACTAGCGA -ACGGAATGCCAATTCCACCACAGA -ACGGAATGCCAATTCCACGCAAGA -ACGGAATGCCAATTCCACGGTTGA -ACGGAATGCCAATTCCACTCCGAT -ACGGAATGCCAATTCCACTGGCAT -ACGGAATGCCAATTCCACCGAGAT -ACGGAATGCCAATTCCACTACCAC -ACGGAATGCCAATTCCACCAGAAC -ACGGAATGCCAATTCCACGTCTAC -ACGGAATGCCAATTCCACACGTAC -ACGGAATGCCAATTCCACAGTGAC -ACGGAATGCCAATTCCACCTGTAG -ACGGAATGCCAATTCCACCCTAAG -ACGGAATGCCAATTCCACGTTCAG -ACGGAATGCCAATTCCACGCATAG -ACGGAATGCCAATTCCACGACAAG -ACGGAATGCCAATTCCACAAGCAG -ACGGAATGCCAATTCCACCGTCAA -ACGGAATGCCAATTCCACGCTGAA -ACGGAATGCCAATTCCACAGTACG -ACGGAATGCCAATTCCACATCCGA -ACGGAATGCCAATTCCACATGGGA -ACGGAATGCCAATTCCACGTGCAA -ACGGAATGCCAATTCCACGAGGAA -ACGGAATGCCAATTCCACCAGGTA -ACGGAATGCCAATTCCACGACTCT -ACGGAATGCCAATTCCACAGTCCT -ACGGAATGCCAATTCCACTAAGCC -ACGGAATGCCAATTCCACATAGCC -ACGGAATGCCAATTCCACTAACCG -ACGGAATGCCAATTCCACATGCCA -ACGGAATGCCAACTCGTAGGAAAC -ACGGAATGCCAACTCGTAAACACC -ACGGAATGCCAACTCGTAATCGAG -ACGGAATGCCAACTCGTACTCCTT -ACGGAATGCCAACTCGTACCTGTT -ACGGAATGCCAACTCGTACGGTTT -ACGGAATGCCAACTCGTAGTGGTT -ACGGAATGCCAACTCGTAGCCTTT -ACGGAATGCCAACTCGTAGGTCTT -ACGGAATGCCAACTCGTAACGCTT -ACGGAATGCCAACTCGTAAGCGTT -ACGGAATGCCAACTCGTATTCGTC -ACGGAATGCCAACTCGTATCTCTC -ACGGAATGCCAACTCGTATGGATC -ACGGAATGCCAACTCGTACACTTC -ACGGAATGCCAACTCGTAGTACTC -ACGGAATGCCAACTCGTAGATGTC -ACGGAATGCCAACTCGTAACAGTC -ACGGAATGCCAACTCGTATTGCTG -ACGGAATGCCAACTCGTATCCATG -ACGGAATGCCAACTCGTATGTGTG -ACGGAATGCCAACTCGTACTAGTG -ACGGAATGCCAACTCGTACATCTG -ACGGAATGCCAACTCGTAGAGTTG -ACGGAATGCCAACTCGTAAGACTG -ACGGAATGCCAACTCGTATCGGTA -ACGGAATGCCAACTCGTATGCCTA -ACGGAATGCCAACTCGTACCACTA -ACGGAATGCCAACTCGTAGGAGTA -ACGGAATGCCAACTCGTATCGTCT -ACGGAATGCCAACTCGTATGCACT -ACGGAATGCCAACTCGTACTGACT -ACGGAATGCCAACTCGTACAACCT -ACGGAATGCCAACTCGTAGCTACT -ACGGAATGCCAACTCGTAGGATCT -ACGGAATGCCAACTCGTAAAGGCT -ACGGAATGCCAACTCGTATCAACC -ACGGAATGCCAACTCGTATGTTCC -ACGGAATGCCAACTCGTAATTCCC -ACGGAATGCCAACTCGTATTCTCG -ACGGAATGCCAACTCGTATAGACG -ACGGAATGCCAACTCGTAGTAACG -ACGGAATGCCAACTCGTAACTTCG -ACGGAATGCCAACTCGTATACGCA -ACGGAATGCCAACTCGTACTTGCA -ACGGAATGCCAACTCGTACGAACA -ACGGAATGCCAACTCGTACAGTCA -ACGGAATGCCAACTCGTAGATCCA -ACGGAATGCCAACTCGTAACGACA -ACGGAATGCCAACTCGTAAGCTCA -ACGGAATGCCAACTCGTATCACGT -ACGGAATGCCAACTCGTACGTAGT -ACGGAATGCCAACTCGTAGTCAGT -ACGGAATGCCAACTCGTAGAAGGT -ACGGAATGCCAACTCGTAAACCGT -ACGGAATGCCAACTCGTATTGTGC -ACGGAATGCCAACTCGTACTAAGC -ACGGAATGCCAACTCGTAACTAGC -ACGGAATGCCAACTCGTAAGATGC -ACGGAATGCCAACTCGTATGAAGG -ACGGAATGCCAACTCGTACAATGG -ACGGAATGCCAACTCGTAATGAGG -ACGGAATGCCAACTCGTAAATGGG -ACGGAATGCCAACTCGTATCCTGA -ACGGAATGCCAACTCGTATAGCGA -ACGGAATGCCAACTCGTACACAGA -ACGGAATGCCAACTCGTAGCAAGA -ACGGAATGCCAACTCGTAGGTTGA -ACGGAATGCCAACTCGTATCCGAT -ACGGAATGCCAACTCGTATGGCAT -ACGGAATGCCAACTCGTACGAGAT -ACGGAATGCCAACTCGTATACCAC -ACGGAATGCCAACTCGTACAGAAC -ACGGAATGCCAACTCGTAGTCTAC -ACGGAATGCCAACTCGTAACGTAC -ACGGAATGCCAACTCGTAAGTGAC -ACGGAATGCCAACTCGTACTGTAG -ACGGAATGCCAACTCGTACCTAAG -ACGGAATGCCAACTCGTAGTTCAG -ACGGAATGCCAACTCGTAGCATAG -ACGGAATGCCAACTCGTAGACAAG -ACGGAATGCCAACTCGTAAAGCAG -ACGGAATGCCAACTCGTACGTCAA -ACGGAATGCCAACTCGTAGCTGAA -ACGGAATGCCAACTCGTAAGTACG -ACGGAATGCCAACTCGTAATCCGA -ACGGAATGCCAACTCGTAATGGGA -ACGGAATGCCAACTCGTAGTGCAA -ACGGAATGCCAACTCGTAGAGGAA -ACGGAATGCCAACTCGTACAGGTA -ACGGAATGCCAACTCGTAGACTCT -ACGGAATGCCAACTCGTAAGTCCT -ACGGAATGCCAACTCGTATAAGCC -ACGGAATGCCAACTCGTAATAGCC -ACGGAATGCCAACTCGTATAACCG -ACGGAATGCCAACTCGTAATGCCA -ACGGAATGCCAAGTCGATGGAAAC -ACGGAATGCCAAGTCGATAACACC -ACGGAATGCCAAGTCGATATCGAG -ACGGAATGCCAAGTCGATCTCCTT -ACGGAATGCCAAGTCGATCCTGTT -ACGGAATGCCAAGTCGATCGGTTT -ACGGAATGCCAAGTCGATGTGGTT -ACGGAATGCCAAGTCGATGCCTTT -ACGGAATGCCAAGTCGATGGTCTT -ACGGAATGCCAAGTCGATACGCTT -ACGGAATGCCAAGTCGATAGCGTT -ACGGAATGCCAAGTCGATTTCGTC -ACGGAATGCCAAGTCGATTCTCTC -ACGGAATGCCAAGTCGATTGGATC -ACGGAATGCCAAGTCGATCACTTC -ACGGAATGCCAAGTCGATGTACTC -ACGGAATGCCAAGTCGATGATGTC -ACGGAATGCCAAGTCGATACAGTC -ACGGAATGCCAAGTCGATTTGCTG -ACGGAATGCCAAGTCGATTCCATG -ACGGAATGCCAAGTCGATTGTGTG -ACGGAATGCCAAGTCGATCTAGTG -ACGGAATGCCAAGTCGATCATCTG -ACGGAATGCCAAGTCGATGAGTTG -ACGGAATGCCAAGTCGATAGACTG -ACGGAATGCCAAGTCGATTCGGTA -ACGGAATGCCAAGTCGATTGCCTA -ACGGAATGCCAAGTCGATCCACTA -ACGGAATGCCAAGTCGATGGAGTA -ACGGAATGCCAAGTCGATTCGTCT -ACGGAATGCCAAGTCGATTGCACT -ACGGAATGCCAAGTCGATCTGACT -ACGGAATGCCAAGTCGATCAACCT -ACGGAATGCCAAGTCGATGCTACT -ACGGAATGCCAAGTCGATGGATCT -ACGGAATGCCAAGTCGATAAGGCT -ACGGAATGCCAAGTCGATTCAACC -ACGGAATGCCAAGTCGATTGTTCC -ACGGAATGCCAAGTCGATATTCCC -ACGGAATGCCAAGTCGATTTCTCG -ACGGAATGCCAAGTCGATTAGACG -ACGGAATGCCAAGTCGATGTAACG -ACGGAATGCCAAGTCGATACTTCG -ACGGAATGCCAAGTCGATTACGCA -ACGGAATGCCAAGTCGATCTTGCA -ACGGAATGCCAAGTCGATCGAACA -ACGGAATGCCAAGTCGATCAGTCA -ACGGAATGCCAAGTCGATGATCCA -ACGGAATGCCAAGTCGATACGACA -ACGGAATGCCAAGTCGATAGCTCA -ACGGAATGCCAAGTCGATTCACGT -ACGGAATGCCAAGTCGATCGTAGT -ACGGAATGCCAAGTCGATGTCAGT -ACGGAATGCCAAGTCGATGAAGGT -ACGGAATGCCAAGTCGATAACCGT -ACGGAATGCCAAGTCGATTTGTGC -ACGGAATGCCAAGTCGATCTAAGC -ACGGAATGCCAAGTCGATACTAGC -ACGGAATGCCAAGTCGATAGATGC -ACGGAATGCCAAGTCGATTGAAGG -ACGGAATGCCAAGTCGATCAATGG -ACGGAATGCCAAGTCGATATGAGG -ACGGAATGCCAAGTCGATAATGGG -ACGGAATGCCAAGTCGATTCCTGA -ACGGAATGCCAAGTCGATTAGCGA -ACGGAATGCCAAGTCGATCACAGA -ACGGAATGCCAAGTCGATGCAAGA -ACGGAATGCCAAGTCGATGGTTGA -ACGGAATGCCAAGTCGATTCCGAT -ACGGAATGCCAAGTCGATTGGCAT -ACGGAATGCCAAGTCGATCGAGAT -ACGGAATGCCAAGTCGATTACCAC -ACGGAATGCCAAGTCGATCAGAAC -ACGGAATGCCAAGTCGATGTCTAC -ACGGAATGCCAAGTCGATACGTAC -ACGGAATGCCAAGTCGATAGTGAC -ACGGAATGCCAAGTCGATCTGTAG -ACGGAATGCCAAGTCGATCCTAAG -ACGGAATGCCAAGTCGATGTTCAG -ACGGAATGCCAAGTCGATGCATAG -ACGGAATGCCAAGTCGATGACAAG -ACGGAATGCCAAGTCGATAAGCAG -ACGGAATGCCAAGTCGATCGTCAA -ACGGAATGCCAAGTCGATGCTGAA -ACGGAATGCCAAGTCGATAGTACG -ACGGAATGCCAAGTCGATATCCGA -ACGGAATGCCAAGTCGATATGGGA -ACGGAATGCCAAGTCGATGTGCAA -ACGGAATGCCAAGTCGATGAGGAA -ACGGAATGCCAAGTCGATCAGGTA -ACGGAATGCCAAGTCGATGACTCT -ACGGAATGCCAAGTCGATAGTCCT -ACGGAATGCCAAGTCGATTAAGCC -ACGGAATGCCAAGTCGATATAGCC -ACGGAATGCCAAGTCGATTAACCG -ACGGAATGCCAAGTCGATATGCCA -ACGGAATGCCAAGTCACAGGAAAC -ACGGAATGCCAAGTCACAAACACC -ACGGAATGCCAAGTCACAATCGAG -ACGGAATGCCAAGTCACACTCCTT -ACGGAATGCCAAGTCACACCTGTT -ACGGAATGCCAAGTCACACGGTTT -ACGGAATGCCAAGTCACAGTGGTT -ACGGAATGCCAAGTCACAGCCTTT -ACGGAATGCCAAGTCACAGGTCTT -ACGGAATGCCAAGTCACAACGCTT -ACGGAATGCCAAGTCACAAGCGTT -ACGGAATGCCAAGTCACATTCGTC -ACGGAATGCCAAGTCACATCTCTC -ACGGAATGCCAAGTCACATGGATC -ACGGAATGCCAAGTCACACACTTC -ACGGAATGCCAAGTCACAGTACTC -ACGGAATGCCAAGTCACAGATGTC -ACGGAATGCCAAGTCACAACAGTC -ACGGAATGCCAAGTCACATTGCTG -ACGGAATGCCAAGTCACATCCATG -ACGGAATGCCAAGTCACATGTGTG -ACGGAATGCCAAGTCACACTAGTG -ACGGAATGCCAAGTCACACATCTG -ACGGAATGCCAAGTCACAGAGTTG -ACGGAATGCCAAGTCACAAGACTG -ACGGAATGCCAAGTCACATCGGTA -ACGGAATGCCAAGTCACATGCCTA -ACGGAATGCCAAGTCACACCACTA -ACGGAATGCCAAGTCACAGGAGTA -ACGGAATGCCAAGTCACATCGTCT -ACGGAATGCCAAGTCACATGCACT -ACGGAATGCCAAGTCACACTGACT -ACGGAATGCCAAGTCACACAACCT -ACGGAATGCCAAGTCACAGCTACT -ACGGAATGCCAAGTCACAGGATCT -ACGGAATGCCAAGTCACAAAGGCT -ACGGAATGCCAAGTCACATCAACC -ACGGAATGCCAAGTCACATGTTCC -ACGGAATGCCAAGTCACAATTCCC -ACGGAATGCCAAGTCACATTCTCG -ACGGAATGCCAAGTCACATAGACG -ACGGAATGCCAAGTCACAGTAACG -ACGGAATGCCAAGTCACAACTTCG -ACGGAATGCCAAGTCACATACGCA -ACGGAATGCCAAGTCACACTTGCA -ACGGAATGCCAAGTCACACGAACA -ACGGAATGCCAAGTCACACAGTCA -ACGGAATGCCAAGTCACAGATCCA -ACGGAATGCCAAGTCACAACGACA -ACGGAATGCCAAGTCACAAGCTCA -ACGGAATGCCAAGTCACATCACGT -ACGGAATGCCAAGTCACACGTAGT -ACGGAATGCCAAGTCACAGTCAGT -ACGGAATGCCAAGTCACAGAAGGT -ACGGAATGCCAAGTCACAAACCGT -ACGGAATGCCAAGTCACATTGTGC -ACGGAATGCCAAGTCACACTAAGC -ACGGAATGCCAAGTCACAACTAGC -ACGGAATGCCAAGTCACAAGATGC -ACGGAATGCCAAGTCACATGAAGG -ACGGAATGCCAAGTCACACAATGG -ACGGAATGCCAAGTCACAATGAGG -ACGGAATGCCAAGTCACAAATGGG -ACGGAATGCCAAGTCACATCCTGA -ACGGAATGCCAAGTCACATAGCGA -ACGGAATGCCAAGTCACACACAGA -ACGGAATGCCAAGTCACAGCAAGA -ACGGAATGCCAAGTCACAGGTTGA -ACGGAATGCCAAGTCACATCCGAT -ACGGAATGCCAAGTCACATGGCAT -ACGGAATGCCAAGTCACACGAGAT -ACGGAATGCCAAGTCACATACCAC -ACGGAATGCCAAGTCACACAGAAC -ACGGAATGCCAAGTCACAGTCTAC -ACGGAATGCCAAGTCACAACGTAC -ACGGAATGCCAAGTCACAAGTGAC -ACGGAATGCCAAGTCACACTGTAG -ACGGAATGCCAAGTCACACCTAAG -ACGGAATGCCAAGTCACAGTTCAG -ACGGAATGCCAAGTCACAGCATAG -ACGGAATGCCAAGTCACAGACAAG -ACGGAATGCCAAGTCACAAAGCAG -ACGGAATGCCAAGTCACACGTCAA -ACGGAATGCCAAGTCACAGCTGAA -ACGGAATGCCAAGTCACAAGTACG -ACGGAATGCCAAGTCACAATCCGA -ACGGAATGCCAAGTCACAATGGGA -ACGGAATGCCAAGTCACAGTGCAA -ACGGAATGCCAAGTCACAGAGGAA -ACGGAATGCCAAGTCACACAGGTA -ACGGAATGCCAAGTCACAGACTCT -ACGGAATGCCAAGTCACAAGTCCT -ACGGAATGCCAAGTCACATAAGCC -ACGGAATGCCAAGTCACAATAGCC -ACGGAATGCCAAGTCACATAACCG -ACGGAATGCCAAGTCACAATGCCA -ACGGAATGCCAACTGTTGGGAAAC -ACGGAATGCCAACTGTTGAACACC -ACGGAATGCCAACTGTTGATCGAG -ACGGAATGCCAACTGTTGCTCCTT -ACGGAATGCCAACTGTTGCCTGTT -ACGGAATGCCAACTGTTGCGGTTT -ACGGAATGCCAACTGTTGGTGGTT -ACGGAATGCCAACTGTTGGCCTTT -ACGGAATGCCAACTGTTGGGTCTT -ACGGAATGCCAACTGTTGACGCTT -ACGGAATGCCAACTGTTGAGCGTT -ACGGAATGCCAACTGTTGTTCGTC -ACGGAATGCCAACTGTTGTCTCTC -ACGGAATGCCAACTGTTGTGGATC -ACGGAATGCCAACTGTTGCACTTC -ACGGAATGCCAACTGTTGGTACTC -ACGGAATGCCAACTGTTGGATGTC -ACGGAATGCCAACTGTTGACAGTC -ACGGAATGCCAACTGTTGTTGCTG -ACGGAATGCCAACTGTTGTCCATG -ACGGAATGCCAACTGTTGTGTGTG -ACGGAATGCCAACTGTTGCTAGTG -ACGGAATGCCAACTGTTGCATCTG -ACGGAATGCCAACTGTTGGAGTTG -ACGGAATGCCAACTGTTGAGACTG -ACGGAATGCCAACTGTTGTCGGTA -ACGGAATGCCAACTGTTGTGCCTA -ACGGAATGCCAACTGTTGCCACTA -ACGGAATGCCAACTGTTGGGAGTA -ACGGAATGCCAACTGTTGTCGTCT -ACGGAATGCCAACTGTTGTGCACT -ACGGAATGCCAACTGTTGCTGACT -ACGGAATGCCAACTGTTGCAACCT -ACGGAATGCCAACTGTTGGCTACT -ACGGAATGCCAACTGTTGGGATCT -ACGGAATGCCAACTGTTGAAGGCT -ACGGAATGCCAACTGTTGTCAACC -ACGGAATGCCAACTGTTGTGTTCC -ACGGAATGCCAACTGTTGATTCCC -ACGGAATGCCAACTGTTGTTCTCG -ACGGAATGCCAACTGTTGTAGACG -ACGGAATGCCAACTGTTGGTAACG -ACGGAATGCCAACTGTTGACTTCG -ACGGAATGCCAACTGTTGTACGCA -ACGGAATGCCAACTGTTGCTTGCA -ACGGAATGCCAACTGTTGCGAACA -ACGGAATGCCAACTGTTGCAGTCA -ACGGAATGCCAACTGTTGGATCCA -ACGGAATGCCAACTGTTGACGACA -ACGGAATGCCAACTGTTGAGCTCA -ACGGAATGCCAACTGTTGTCACGT -ACGGAATGCCAACTGTTGCGTAGT -ACGGAATGCCAACTGTTGGTCAGT -ACGGAATGCCAACTGTTGGAAGGT -ACGGAATGCCAACTGTTGAACCGT -ACGGAATGCCAACTGTTGTTGTGC -ACGGAATGCCAACTGTTGCTAAGC -ACGGAATGCCAACTGTTGACTAGC -ACGGAATGCCAACTGTTGAGATGC -ACGGAATGCCAACTGTTGTGAAGG -ACGGAATGCCAACTGTTGCAATGG -ACGGAATGCCAACTGTTGATGAGG -ACGGAATGCCAACTGTTGAATGGG -ACGGAATGCCAACTGTTGTCCTGA -ACGGAATGCCAACTGTTGTAGCGA -ACGGAATGCCAACTGTTGCACAGA -ACGGAATGCCAACTGTTGGCAAGA -ACGGAATGCCAACTGTTGGGTTGA -ACGGAATGCCAACTGTTGTCCGAT -ACGGAATGCCAACTGTTGTGGCAT -ACGGAATGCCAACTGTTGCGAGAT -ACGGAATGCCAACTGTTGTACCAC -ACGGAATGCCAACTGTTGCAGAAC -ACGGAATGCCAACTGTTGGTCTAC -ACGGAATGCCAACTGTTGACGTAC -ACGGAATGCCAACTGTTGAGTGAC -ACGGAATGCCAACTGTTGCTGTAG -ACGGAATGCCAACTGTTGCCTAAG -ACGGAATGCCAACTGTTGGTTCAG -ACGGAATGCCAACTGTTGGCATAG -ACGGAATGCCAACTGTTGGACAAG -ACGGAATGCCAACTGTTGAAGCAG -ACGGAATGCCAACTGTTGCGTCAA -ACGGAATGCCAACTGTTGGCTGAA -ACGGAATGCCAACTGTTGAGTACG -ACGGAATGCCAACTGTTGATCCGA -ACGGAATGCCAACTGTTGATGGGA -ACGGAATGCCAACTGTTGGTGCAA -ACGGAATGCCAACTGTTGGAGGAA -ACGGAATGCCAACTGTTGCAGGTA -ACGGAATGCCAACTGTTGGACTCT -ACGGAATGCCAACTGTTGAGTCCT -ACGGAATGCCAACTGTTGTAAGCC -ACGGAATGCCAACTGTTGATAGCC -ACGGAATGCCAACTGTTGTAACCG -ACGGAATGCCAACTGTTGATGCCA -ACGGAATGCCAAATGTCCGGAAAC -ACGGAATGCCAAATGTCCAACACC -ACGGAATGCCAAATGTCCATCGAG -ACGGAATGCCAAATGTCCCTCCTT -ACGGAATGCCAAATGTCCCCTGTT -ACGGAATGCCAAATGTCCCGGTTT -ACGGAATGCCAAATGTCCGTGGTT -ACGGAATGCCAAATGTCCGCCTTT -ACGGAATGCCAAATGTCCGGTCTT -ACGGAATGCCAAATGTCCACGCTT -ACGGAATGCCAAATGTCCAGCGTT -ACGGAATGCCAAATGTCCTTCGTC -ACGGAATGCCAAATGTCCTCTCTC -ACGGAATGCCAAATGTCCTGGATC -ACGGAATGCCAAATGTCCCACTTC -ACGGAATGCCAAATGTCCGTACTC -ACGGAATGCCAAATGTCCGATGTC -ACGGAATGCCAAATGTCCACAGTC -ACGGAATGCCAAATGTCCTTGCTG -ACGGAATGCCAAATGTCCTCCATG -ACGGAATGCCAAATGTCCTGTGTG -ACGGAATGCCAAATGTCCCTAGTG -ACGGAATGCCAAATGTCCCATCTG -ACGGAATGCCAAATGTCCGAGTTG -ACGGAATGCCAAATGTCCAGACTG -ACGGAATGCCAAATGTCCTCGGTA -ACGGAATGCCAAATGTCCTGCCTA -ACGGAATGCCAAATGTCCCCACTA -ACGGAATGCCAAATGTCCGGAGTA -ACGGAATGCCAAATGTCCTCGTCT -ACGGAATGCCAAATGTCCTGCACT -ACGGAATGCCAAATGTCCCTGACT -ACGGAATGCCAAATGTCCCAACCT -ACGGAATGCCAAATGTCCGCTACT -ACGGAATGCCAAATGTCCGGATCT -ACGGAATGCCAAATGTCCAAGGCT -ACGGAATGCCAAATGTCCTCAACC -ACGGAATGCCAAATGTCCTGTTCC -ACGGAATGCCAAATGTCCATTCCC -ACGGAATGCCAAATGTCCTTCTCG -ACGGAATGCCAAATGTCCTAGACG -ACGGAATGCCAAATGTCCGTAACG -ACGGAATGCCAAATGTCCACTTCG -ACGGAATGCCAAATGTCCTACGCA -ACGGAATGCCAAATGTCCCTTGCA -ACGGAATGCCAAATGTCCCGAACA -ACGGAATGCCAAATGTCCCAGTCA -ACGGAATGCCAAATGTCCGATCCA -ACGGAATGCCAAATGTCCACGACA -ACGGAATGCCAAATGTCCAGCTCA -ACGGAATGCCAAATGTCCTCACGT -ACGGAATGCCAAATGTCCCGTAGT -ACGGAATGCCAAATGTCCGTCAGT -ACGGAATGCCAAATGTCCGAAGGT -ACGGAATGCCAAATGTCCAACCGT -ACGGAATGCCAAATGTCCTTGTGC -ACGGAATGCCAAATGTCCCTAAGC -ACGGAATGCCAAATGTCCACTAGC -ACGGAATGCCAAATGTCCAGATGC -ACGGAATGCCAAATGTCCTGAAGG -ACGGAATGCCAAATGTCCCAATGG -ACGGAATGCCAAATGTCCATGAGG -ACGGAATGCCAAATGTCCAATGGG -ACGGAATGCCAAATGTCCTCCTGA -ACGGAATGCCAAATGTCCTAGCGA -ACGGAATGCCAAATGTCCCACAGA -ACGGAATGCCAAATGTCCGCAAGA -ACGGAATGCCAAATGTCCGGTTGA -ACGGAATGCCAAATGTCCTCCGAT -ACGGAATGCCAAATGTCCTGGCAT -ACGGAATGCCAAATGTCCCGAGAT -ACGGAATGCCAAATGTCCTACCAC -ACGGAATGCCAAATGTCCCAGAAC -ACGGAATGCCAAATGTCCGTCTAC -ACGGAATGCCAAATGTCCACGTAC -ACGGAATGCCAAATGTCCAGTGAC -ACGGAATGCCAAATGTCCCTGTAG -ACGGAATGCCAAATGTCCCCTAAG -ACGGAATGCCAAATGTCCGTTCAG -ACGGAATGCCAAATGTCCGCATAG -ACGGAATGCCAAATGTCCGACAAG -ACGGAATGCCAAATGTCCAAGCAG -ACGGAATGCCAAATGTCCCGTCAA -ACGGAATGCCAAATGTCCGCTGAA -ACGGAATGCCAAATGTCCAGTACG -ACGGAATGCCAAATGTCCATCCGA -ACGGAATGCCAAATGTCCATGGGA -ACGGAATGCCAAATGTCCGTGCAA -ACGGAATGCCAAATGTCCGAGGAA -ACGGAATGCCAAATGTCCCAGGTA -ACGGAATGCCAAATGTCCGACTCT -ACGGAATGCCAAATGTCCAGTCCT -ACGGAATGCCAAATGTCCTAAGCC -ACGGAATGCCAAATGTCCATAGCC -ACGGAATGCCAAATGTCCTAACCG -ACGGAATGCCAAATGTCCATGCCA -ACGGAATGCCAAGTGTGTGGAAAC -ACGGAATGCCAAGTGTGTAACACC -ACGGAATGCCAAGTGTGTATCGAG -ACGGAATGCCAAGTGTGTCTCCTT -ACGGAATGCCAAGTGTGTCCTGTT -ACGGAATGCCAAGTGTGTCGGTTT -ACGGAATGCCAAGTGTGTGTGGTT -ACGGAATGCCAAGTGTGTGCCTTT -ACGGAATGCCAAGTGTGTGGTCTT -ACGGAATGCCAAGTGTGTACGCTT -ACGGAATGCCAAGTGTGTAGCGTT -ACGGAATGCCAAGTGTGTTTCGTC -ACGGAATGCCAAGTGTGTTCTCTC -ACGGAATGCCAAGTGTGTTGGATC -ACGGAATGCCAAGTGTGTCACTTC -ACGGAATGCCAAGTGTGTGTACTC -ACGGAATGCCAAGTGTGTGATGTC -ACGGAATGCCAAGTGTGTACAGTC -ACGGAATGCCAAGTGTGTTTGCTG -ACGGAATGCCAAGTGTGTTCCATG -ACGGAATGCCAAGTGTGTTGTGTG -ACGGAATGCCAAGTGTGTCTAGTG -ACGGAATGCCAAGTGTGTCATCTG -ACGGAATGCCAAGTGTGTGAGTTG -ACGGAATGCCAAGTGTGTAGACTG -ACGGAATGCCAAGTGTGTTCGGTA -ACGGAATGCCAAGTGTGTTGCCTA -ACGGAATGCCAAGTGTGTCCACTA -ACGGAATGCCAAGTGTGTGGAGTA -ACGGAATGCCAAGTGTGTTCGTCT -ACGGAATGCCAAGTGTGTTGCACT -ACGGAATGCCAAGTGTGTCTGACT -ACGGAATGCCAAGTGTGTCAACCT -ACGGAATGCCAAGTGTGTGCTACT -ACGGAATGCCAAGTGTGTGGATCT -ACGGAATGCCAAGTGTGTAAGGCT -ACGGAATGCCAAGTGTGTTCAACC -ACGGAATGCCAAGTGTGTTGTTCC -ACGGAATGCCAAGTGTGTATTCCC -ACGGAATGCCAAGTGTGTTTCTCG -ACGGAATGCCAAGTGTGTTAGACG -ACGGAATGCCAAGTGTGTGTAACG -ACGGAATGCCAAGTGTGTACTTCG -ACGGAATGCCAAGTGTGTTACGCA -ACGGAATGCCAAGTGTGTCTTGCA -ACGGAATGCCAAGTGTGTCGAACA -ACGGAATGCCAAGTGTGTCAGTCA -ACGGAATGCCAAGTGTGTGATCCA -ACGGAATGCCAAGTGTGTACGACA -ACGGAATGCCAAGTGTGTAGCTCA -ACGGAATGCCAAGTGTGTTCACGT -ACGGAATGCCAAGTGTGTCGTAGT -ACGGAATGCCAAGTGTGTGTCAGT -ACGGAATGCCAAGTGTGTGAAGGT -ACGGAATGCCAAGTGTGTAACCGT -ACGGAATGCCAAGTGTGTTTGTGC -ACGGAATGCCAAGTGTGTCTAAGC -ACGGAATGCCAAGTGTGTACTAGC -ACGGAATGCCAAGTGTGTAGATGC -ACGGAATGCCAAGTGTGTTGAAGG -ACGGAATGCCAAGTGTGTCAATGG -ACGGAATGCCAAGTGTGTATGAGG -ACGGAATGCCAAGTGTGTAATGGG -ACGGAATGCCAAGTGTGTTCCTGA -ACGGAATGCCAAGTGTGTTAGCGA -ACGGAATGCCAAGTGTGTCACAGA -ACGGAATGCCAAGTGTGTGCAAGA -ACGGAATGCCAAGTGTGTGGTTGA -ACGGAATGCCAAGTGTGTTCCGAT -ACGGAATGCCAAGTGTGTTGGCAT -ACGGAATGCCAAGTGTGTCGAGAT -ACGGAATGCCAAGTGTGTTACCAC -ACGGAATGCCAAGTGTGTCAGAAC -ACGGAATGCCAAGTGTGTGTCTAC -ACGGAATGCCAAGTGTGTACGTAC -ACGGAATGCCAAGTGTGTAGTGAC -ACGGAATGCCAAGTGTGTCTGTAG -ACGGAATGCCAAGTGTGTCCTAAG -ACGGAATGCCAAGTGTGTGTTCAG -ACGGAATGCCAAGTGTGTGCATAG -ACGGAATGCCAAGTGTGTGACAAG -ACGGAATGCCAAGTGTGTAAGCAG -ACGGAATGCCAAGTGTGTCGTCAA -ACGGAATGCCAAGTGTGTGCTGAA -ACGGAATGCCAAGTGTGTAGTACG -ACGGAATGCCAAGTGTGTATCCGA -ACGGAATGCCAAGTGTGTATGGGA -ACGGAATGCCAAGTGTGTGTGCAA -ACGGAATGCCAAGTGTGTGAGGAA -ACGGAATGCCAAGTGTGTCAGGTA -ACGGAATGCCAAGTGTGTGACTCT -ACGGAATGCCAAGTGTGTAGTCCT -ACGGAATGCCAAGTGTGTTAAGCC -ACGGAATGCCAAGTGTGTATAGCC -ACGGAATGCCAAGTGTGTTAACCG -ACGGAATGCCAAGTGTGTATGCCA -ACGGAATGCCAAGTGCTAGGAAAC -ACGGAATGCCAAGTGCTAAACACC -ACGGAATGCCAAGTGCTAATCGAG -ACGGAATGCCAAGTGCTACTCCTT -ACGGAATGCCAAGTGCTACCTGTT -ACGGAATGCCAAGTGCTACGGTTT -ACGGAATGCCAAGTGCTAGTGGTT -ACGGAATGCCAAGTGCTAGCCTTT -ACGGAATGCCAAGTGCTAGGTCTT -ACGGAATGCCAAGTGCTAACGCTT -ACGGAATGCCAAGTGCTAAGCGTT -ACGGAATGCCAAGTGCTATTCGTC -ACGGAATGCCAAGTGCTATCTCTC -ACGGAATGCCAAGTGCTATGGATC -ACGGAATGCCAAGTGCTACACTTC -ACGGAATGCCAAGTGCTAGTACTC -ACGGAATGCCAAGTGCTAGATGTC -ACGGAATGCCAAGTGCTAACAGTC -ACGGAATGCCAAGTGCTATTGCTG -ACGGAATGCCAAGTGCTATCCATG -ACGGAATGCCAAGTGCTATGTGTG -ACGGAATGCCAAGTGCTACTAGTG -ACGGAATGCCAAGTGCTACATCTG -ACGGAATGCCAAGTGCTAGAGTTG -ACGGAATGCCAAGTGCTAAGACTG -ACGGAATGCCAAGTGCTATCGGTA -ACGGAATGCCAAGTGCTATGCCTA -ACGGAATGCCAAGTGCTACCACTA -ACGGAATGCCAAGTGCTAGGAGTA -ACGGAATGCCAAGTGCTATCGTCT -ACGGAATGCCAAGTGCTATGCACT -ACGGAATGCCAAGTGCTACTGACT -ACGGAATGCCAAGTGCTACAACCT -ACGGAATGCCAAGTGCTAGCTACT -ACGGAATGCCAAGTGCTAGGATCT -ACGGAATGCCAAGTGCTAAAGGCT -ACGGAATGCCAAGTGCTATCAACC -ACGGAATGCCAAGTGCTATGTTCC -ACGGAATGCCAAGTGCTAATTCCC -ACGGAATGCCAAGTGCTATTCTCG -ACGGAATGCCAAGTGCTATAGACG -ACGGAATGCCAAGTGCTAGTAACG -ACGGAATGCCAAGTGCTAACTTCG -ACGGAATGCCAAGTGCTATACGCA -ACGGAATGCCAAGTGCTACTTGCA -ACGGAATGCCAAGTGCTACGAACA -ACGGAATGCCAAGTGCTACAGTCA -ACGGAATGCCAAGTGCTAGATCCA -ACGGAATGCCAAGTGCTAACGACA -ACGGAATGCCAAGTGCTAAGCTCA -ACGGAATGCCAAGTGCTATCACGT -ACGGAATGCCAAGTGCTACGTAGT -ACGGAATGCCAAGTGCTAGTCAGT -ACGGAATGCCAAGTGCTAGAAGGT -ACGGAATGCCAAGTGCTAAACCGT -ACGGAATGCCAAGTGCTATTGTGC -ACGGAATGCCAAGTGCTACTAAGC -ACGGAATGCCAAGTGCTAACTAGC -ACGGAATGCCAAGTGCTAAGATGC -ACGGAATGCCAAGTGCTATGAAGG -ACGGAATGCCAAGTGCTACAATGG -ACGGAATGCCAAGTGCTAATGAGG -ACGGAATGCCAAGTGCTAAATGGG -ACGGAATGCCAAGTGCTATCCTGA -ACGGAATGCCAAGTGCTATAGCGA -ACGGAATGCCAAGTGCTACACAGA -ACGGAATGCCAAGTGCTAGCAAGA -ACGGAATGCCAAGTGCTAGGTTGA -ACGGAATGCCAAGTGCTATCCGAT -ACGGAATGCCAAGTGCTATGGCAT -ACGGAATGCCAAGTGCTACGAGAT -ACGGAATGCCAAGTGCTATACCAC -ACGGAATGCCAAGTGCTACAGAAC -ACGGAATGCCAAGTGCTAGTCTAC -ACGGAATGCCAAGTGCTAACGTAC -ACGGAATGCCAAGTGCTAAGTGAC -ACGGAATGCCAAGTGCTACTGTAG -ACGGAATGCCAAGTGCTACCTAAG -ACGGAATGCCAAGTGCTAGTTCAG -ACGGAATGCCAAGTGCTAGCATAG -ACGGAATGCCAAGTGCTAGACAAG -ACGGAATGCCAAGTGCTAAAGCAG -ACGGAATGCCAAGTGCTACGTCAA -ACGGAATGCCAAGTGCTAGCTGAA -ACGGAATGCCAAGTGCTAAGTACG -ACGGAATGCCAAGTGCTAATCCGA -ACGGAATGCCAAGTGCTAATGGGA -ACGGAATGCCAAGTGCTAGTGCAA -ACGGAATGCCAAGTGCTAGAGGAA -ACGGAATGCCAAGTGCTACAGGTA -ACGGAATGCCAAGTGCTAGACTCT -ACGGAATGCCAAGTGCTAAGTCCT -ACGGAATGCCAAGTGCTATAAGCC -ACGGAATGCCAAGTGCTAATAGCC -ACGGAATGCCAAGTGCTATAACCG -ACGGAATGCCAAGTGCTAATGCCA -ACGGAATGCCAACTGCATGGAAAC -ACGGAATGCCAACTGCATAACACC -ACGGAATGCCAACTGCATATCGAG -ACGGAATGCCAACTGCATCTCCTT -ACGGAATGCCAACTGCATCCTGTT -ACGGAATGCCAACTGCATCGGTTT -ACGGAATGCCAACTGCATGTGGTT -ACGGAATGCCAACTGCATGCCTTT -ACGGAATGCCAACTGCATGGTCTT -ACGGAATGCCAACTGCATACGCTT -ACGGAATGCCAACTGCATAGCGTT -ACGGAATGCCAACTGCATTTCGTC -ACGGAATGCCAACTGCATTCTCTC -ACGGAATGCCAACTGCATTGGATC -ACGGAATGCCAACTGCATCACTTC -ACGGAATGCCAACTGCATGTACTC -ACGGAATGCCAACTGCATGATGTC -ACGGAATGCCAACTGCATACAGTC -ACGGAATGCCAACTGCATTTGCTG -ACGGAATGCCAACTGCATTCCATG -ACGGAATGCCAACTGCATTGTGTG -ACGGAATGCCAACTGCATCTAGTG -ACGGAATGCCAACTGCATCATCTG -ACGGAATGCCAACTGCATGAGTTG -ACGGAATGCCAACTGCATAGACTG -ACGGAATGCCAACTGCATTCGGTA -ACGGAATGCCAACTGCATTGCCTA -ACGGAATGCCAACTGCATCCACTA -ACGGAATGCCAACTGCATGGAGTA -ACGGAATGCCAACTGCATTCGTCT -ACGGAATGCCAACTGCATTGCACT -ACGGAATGCCAACTGCATCTGACT -ACGGAATGCCAACTGCATCAACCT -ACGGAATGCCAACTGCATGCTACT -ACGGAATGCCAACTGCATGGATCT -ACGGAATGCCAACTGCATAAGGCT -ACGGAATGCCAACTGCATTCAACC -ACGGAATGCCAACTGCATTGTTCC -ACGGAATGCCAACTGCATATTCCC -ACGGAATGCCAACTGCATTTCTCG -ACGGAATGCCAACTGCATTAGACG -ACGGAATGCCAACTGCATGTAACG -ACGGAATGCCAACTGCATACTTCG -ACGGAATGCCAACTGCATTACGCA -ACGGAATGCCAACTGCATCTTGCA -ACGGAATGCCAACTGCATCGAACA -ACGGAATGCCAACTGCATCAGTCA -ACGGAATGCCAACTGCATGATCCA -ACGGAATGCCAACTGCATACGACA -ACGGAATGCCAACTGCATAGCTCA -ACGGAATGCCAACTGCATTCACGT -ACGGAATGCCAACTGCATCGTAGT -ACGGAATGCCAACTGCATGTCAGT -ACGGAATGCCAACTGCATGAAGGT -ACGGAATGCCAACTGCATAACCGT -ACGGAATGCCAACTGCATTTGTGC -ACGGAATGCCAACTGCATCTAAGC -ACGGAATGCCAACTGCATACTAGC -ACGGAATGCCAACTGCATAGATGC -ACGGAATGCCAACTGCATTGAAGG -ACGGAATGCCAACTGCATCAATGG -ACGGAATGCCAACTGCATATGAGG -ACGGAATGCCAACTGCATAATGGG -ACGGAATGCCAACTGCATTCCTGA -ACGGAATGCCAACTGCATTAGCGA -ACGGAATGCCAACTGCATCACAGA -ACGGAATGCCAACTGCATGCAAGA -ACGGAATGCCAACTGCATGGTTGA -ACGGAATGCCAACTGCATTCCGAT -ACGGAATGCCAACTGCATTGGCAT -ACGGAATGCCAACTGCATCGAGAT -ACGGAATGCCAACTGCATTACCAC -ACGGAATGCCAACTGCATCAGAAC -ACGGAATGCCAACTGCATGTCTAC -ACGGAATGCCAACTGCATACGTAC -ACGGAATGCCAACTGCATAGTGAC -ACGGAATGCCAACTGCATCTGTAG -ACGGAATGCCAACTGCATCCTAAG -ACGGAATGCCAACTGCATGTTCAG -ACGGAATGCCAACTGCATGCATAG -ACGGAATGCCAACTGCATGACAAG -ACGGAATGCCAACTGCATAAGCAG -ACGGAATGCCAACTGCATCGTCAA -ACGGAATGCCAACTGCATGCTGAA -ACGGAATGCCAACTGCATAGTACG -ACGGAATGCCAACTGCATATCCGA -ACGGAATGCCAACTGCATATGGGA -ACGGAATGCCAACTGCATGTGCAA -ACGGAATGCCAACTGCATGAGGAA -ACGGAATGCCAACTGCATCAGGTA -ACGGAATGCCAACTGCATGACTCT -ACGGAATGCCAACTGCATAGTCCT -ACGGAATGCCAACTGCATTAAGCC -ACGGAATGCCAACTGCATATAGCC -ACGGAATGCCAACTGCATTAACCG -ACGGAATGCCAACTGCATATGCCA -ACGGAATGCCAATTGGAGGGAAAC -ACGGAATGCCAATTGGAGAACACC -ACGGAATGCCAATTGGAGATCGAG -ACGGAATGCCAATTGGAGCTCCTT -ACGGAATGCCAATTGGAGCCTGTT -ACGGAATGCCAATTGGAGCGGTTT -ACGGAATGCCAATTGGAGGTGGTT -ACGGAATGCCAATTGGAGGCCTTT -ACGGAATGCCAATTGGAGGGTCTT -ACGGAATGCCAATTGGAGACGCTT -ACGGAATGCCAATTGGAGAGCGTT -ACGGAATGCCAATTGGAGTTCGTC -ACGGAATGCCAATTGGAGTCTCTC -ACGGAATGCCAATTGGAGTGGATC -ACGGAATGCCAATTGGAGCACTTC -ACGGAATGCCAATTGGAGGTACTC -ACGGAATGCCAATTGGAGGATGTC -ACGGAATGCCAATTGGAGACAGTC -ACGGAATGCCAATTGGAGTTGCTG -ACGGAATGCCAATTGGAGTCCATG -ACGGAATGCCAATTGGAGTGTGTG -ACGGAATGCCAATTGGAGCTAGTG -ACGGAATGCCAATTGGAGCATCTG -ACGGAATGCCAATTGGAGGAGTTG -ACGGAATGCCAATTGGAGAGACTG -ACGGAATGCCAATTGGAGTCGGTA -ACGGAATGCCAATTGGAGTGCCTA -ACGGAATGCCAATTGGAGCCACTA -ACGGAATGCCAATTGGAGGGAGTA -ACGGAATGCCAATTGGAGTCGTCT -ACGGAATGCCAATTGGAGTGCACT -ACGGAATGCCAATTGGAGCTGACT -ACGGAATGCCAATTGGAGCAACCT -ACGGAATGCCAATTGGAGGCTACT -ACGGAATGCCAATTGGAGGGATCT -ACGGAATGCCAATTGGAGAAGGCT -ACGGAATGCCAATTGGAGTCAACC -ACGGAATGCCAATTGGAGTGTTCC -ACGGAATGCCAATTGGAGATTCCC -ACGGAATGCCAATTGGAGTTCTCG -ACGGAATGCCAATTGGAGTAGACG -ACGGAATGCCAATTGGAGGTAACG -ACGGAATGCCAATTGGAGACTTCG -ACGGAATGCCAATTGGAGTACGCA -ACGGAATGCCAATTGGAGCTTGCA -ACGGAATGCCAATTGGAGCGAACA -ACGGAATGCCAATTGGAGCAGTCA -ACGGAATGCCAATTGGAGGATCCA -ACGGAATGCCAATTGGAGACGACA -ACGGAATGCCAATTGGAGAGCTCA -ACGGAATGCCAATTGGAGTCACGT -ACGGAATGCCAATTGGAGCGTAGT -ACGGAATGCCAATTGGAGGTCAGT -ACGGAATGCCAATTGGAGGAAGGT -ACGGAATGCCAATTGGAGAACCGT -ACGGAATGCCAATTGGAGTTGTGC -ACGGAATGCCAATTGGAGCTAAGC -ACGGAATGCCAATTGGAGACTAGC -ACGGAATGCCAATTGGAGAGATGC -ACGGAATGCCAATTGGAGTGAAGG -ACGGAATGCCAATTGGAGCAATGG -ACGGAATGCCAATTGGAGATGAGG -ACGGAATGCCAATTGGAGAATGGG -ACGGAATGCCAATTGGAGTCCTGA -ACGGAATGCCAATTGGAGTAGCGA -ACGGAATGCCAATTGGAGCACAGA -ACGGAATGCCAATTGGAGGCAAGA -ACGGAATGCCAATTGGAGGGTTGA -ACGGAATGCCAATTGGAGTCCGAT -ACGGAATGCCAATTGGAGTGGCAT -ACGGAATGCCAATTGGAGCGAGAT -ACGGAATGCCAATTGGAGTACCAC -ACGGAATGCCAATTGGAGCAGAAC -ACGGAATGCCAATTGGAGGTCTAC -ACGGAATGCCAATTGGAGACGTAC -ACGGAATGCCAATTGGAGAGTGAC -ACGGAATGCCAATTGGAGCTGTAG -ACGGAATGCCAATTGGAGCCTAAG -ACGGAATGCCAATTGGAGGTTCAG -ACGGAATGCCAATTGGAGGCATAG -ACGGAATGCCAATTGGAGGACAAG -ACGGAATGCCAATTGGAGAAGCAG -ACGGAATGCCAATTGGAGCGTCAA -ACGGAATGCCAATTGGAGGCTGAA -ACGGAATGCCAATTGGAGAGTACG -ACGGAATGCCAATTGGAGATCCGA -ACGGAATGCCAATTGGAGATGGGA -ACGGAATGCCAATTGGAGGTGCAA -ACGGAATGCCAATTGGAGGAGGAA -ACGGAATGCCAATTGGAGCAGGTA -ACGGAATGCCAATTGGAGGACTCT -ACGGAATGCCAATTGGAGAGTCCT -ACGGAATGCCAATTGGAGTAAGCC -ACGGAATGCCAATTGGAGATAGCC -ACGGAATGCCAATTGGAGTAACCG -ACGGAATGCCAATTGGAGATGCCA -ACGGAATGCCAACTGAGAGGAAAC -ACGGAATGCCAACTGAGAAACACC -ACGGAATGCCAACTGAGAATCGAG -ACGGAATGCCAACTGAGACTCCTT -ACGGAATGCCAACTGAGACCTGTT -ACGGAATGCCAACTGAGACGGTTT -ACGGAATGCCAACTGAGAGTGGTT -ACGGAATGCCAACTGAGAGCCTTT -ACGGAATGCCAACTGAGAGGTCTT -ACGGAATGCCAACTGAGAACGCTT -ACGGAATGCCAACTGAGAAGCGTT -ACGGAATGCCAACTGAGATTCGTC -ACGGAATGCCAACTGAGATCTCTC -ACGGAATGCCAACTGAGATGGATC -ACGGAATGCCAACTGAGACACTTC -ACGGAATGCCAACTGAGAGTACTC -ACGGAATGCCAACTGAGAGATGTC -ACGGAATGCCAACTGAGAACAGTC -ACGGAATGCCAACTGAGATTGCTG -ACGGAATGCCAACTGAGATCCATG -ACGGAATGCCAACTGAGATGTGTG -ACGGAATGCCAACTGAGACTAGTG -ACGGAATGCCAACTGAGACATCTG -ACGGAATGCCAACTGAGAGAGTTG -ACGGAATGCCAACTGAGAAGACTG -ACGGAATGCCAACTGAGATCGGTA -ACGGAATGCCAACTGAGATGCCTA -ACGGAATGCCAACTGAGACCACTA -ACGGAATGCCAACTGAGAGGAGTA -ACGGAATGCCAACTGAGATCGTCT -ACGGAATGCCAACTGAGATGCACT -ACGGAATGCCAACTGAGACTGACT -ACGGAATGCCAACTGAGACAACCT -ACGGAATGCCAACTGAGAGCTACT -ACGGAATGCCAACTGAGAGGATCT -ACGGAATGCCAACTGAGAAAGGCT -ACGGAATGCCAACTGAGATCAACC -ACGGAATGCCAACTGAGATGTTCC -ACGGAATGCCAACTGAGAATTCCC -ACGGAATGCCAACTGAGATTCTCG -ACGGAATGCCAACTGAGATAGACG -ACGGAATGCCAACTGAGAGTAACG -ACGGAATGCCAACTGAGAACTTCG -ACGGAATGCCAACTGAGATACGCA -ACGGAATGCCAACTGAGACTTGCA -ACGGAATGCCAACTGAGACGAACA -ACGGAATGCCAACTGAGACAGTCA -ACGGAATGCCAACTGAGAGATCCA -ACGGAATGCCAACTGAGAACGACA -ACGGAATGCCAACTGAGAAGCTCA -ACGGAATGCCAACTGAGATCACGT -ACGGAATGCCAACTGAGACGTAGT -ACGGAATGCCAACTGAGAGTCAGT -ACGGAATGCCAACTGAGAGAAGGT -ACGGAATGCCAACTGAGAAACCGT -ACGGAATGCCAACTGAGATTGTGC -ACGGAATGCCAACTGAGACTAAGC -ACGGAATGCCAACTGAGAACTAGC -ACGGAATGCCAACTGAGAAGATGC -ACGGAATGCCAACTGAGATGAAGG -ACGGAATGCCAACTGAGACAATGG -ACGGAATGCCAACTGAGAATGAGG -ACGGAATGCCAACTGAGAAATGGG -ACGGAATGCCAACTGAGATCCTGA -ACGGAATGCCAACTGAGATAGCGA -ACGGAATGCCAACTGAGACACAGA -ACGGAATGCCAACTGAGAGCAAGA -ACGGAATGCCAACTGAGAGGTTGA -ACGGAATGCCAACTGAGATCCGAT -ACGGAATGCCAACTGAGATGGCAT -ACGGAATGCCAACTGAGACGAGAT -ACGGAATGCCAACTGAGATACCAC -ACGGAATGCCAACTGAGACAGAAC -ACGGAATGCCAACTGAGAGTCTAC -ACGGAATGCCAACTGAGAACGTAC -ACGGAATGCCAACTGAGAAGTGAC -ACGGAATGCCAACTGAGACTGTAG -ACGGAATGCCAACTGAGACCTAAG -ACGGAATGCCAACTGAGAGTTCAG -ACGGAATGCCAACTGAGAGCATAG -ACGGAATGCCAACTGAGAGACAAG -ACGGAATGCCAACTGAGAAAGCAG -ACGGAATGCCAACTGAGACGTCAA -ACGGAATGCCAACTGAGAGCTGAA -ACGGAATGCCAACTGAGAAGTACG -ACGGAATGCCAACTGAGAATCCGA -ACGGAATGCCAACTGAGAATGGGA -ACGGAATGCCAACTGAGAGTGCAA -ACGGAATGCCAACTGAGAGAGGAA -ACGGAATGCCAACTGAGACAGGTA -ACGGAATGCCAACTGAGAGACTCT -ACGGAATGCCAACTGAGAAGTCCT -ACGGAATGCCAACTGAGATAAGCC -ACGGAATGCCAACTGAGAATAGCC -ACGGAATGCCAACTGAGATAACCG -ACGGAATGCCAACTGAGAATGCCA -ACGGAATGCCAAGTATCGGGAAAC -ACGGAATGCCAAGTATCGAACACC -ACGGAATGCCAAGTATCGATCGAG -ACGGAATGCCAAGTATCGCTCCTT -ACGGAATGCCAAGTATCGCCTGTT -ACGGAATGCCAAGTATCGCGGTTT -ACGGAATGCCAAGTATCGGTGGTT -ACGGAATGCCAAGTATCGGCCTTT -ACGGAATGCCAAGTATCGGGTCTT -ACGGAATGCCAAGTATCGACGCTT -ACGGAATGCCAAGTATCGAGCGTT -ACGGAATGCCAAGTATCGTTCGTC -ACGGAATGCCAAGTATCGTCTCTC -ACGGAATGCCAAGTATCGTGGATC -ACGGAATGCCAAGTATCGCACTTC -ACGGAATGCCAAGTATCGGTACTC -ACGGAATGCCAAGTATCGGATGTC -ACGGAATGCCAAGTATCGACAGTC -ACGGAATGCCAAGTATCGTTGCTG -ACGGAATGCCAAGTATCGTCCATG -ACGGAATGCCAAGTATCGTGTGTG -ACGGAATGCCAAGTATCGCTAGTG -ACGGAATGCCAAGTATCGCATCTG -ACGGAATGCCAAGTATCGGAGTTG -ACGGAATGCCAAGTATCGAGACTG -ACGGAATGCCAAGTATCGTCGGTA -ACGGAATGCCAAGTATCGTGCCTA -ACGGAATGCCAAGTATCGCCACTA -ACGGAATGCCAAGTATCGGGAGTA -ACGGAATGCCAAGTATCGTCGTCT -ACGGAATGCCAAGTATCGTGCACT -ACGGAATGCCAAGTATCGCTGACT -ACGGAATGCCAAGTATCGCAACCT -ACGGAATGCCAAGTATCGGCTACT -ACGGAATGCCAAGTATCGGGATCT -ACGGAATGCCAAGTATCGAAGGCT -ACGGAATGCCAAGTATCGTCAACC -ACGGAATGCCAAGTATCGTGTTCC -ACGGAATGCCAAGTATCGATTCCC -ACGGAATGCCAAGTATCGTTCTCG -ACGGAATGCCAAGTATCGTAGACG -ACGGAATGCCAAGTATCGGTAACG -ACGGAATGCCAAGTATCGACTTCG -ACGGAATGCCAAGTATCGTACGCA -ACGGAATGCCAAGTATCGCTTGCA -ACGGAATGCCAAGTATCGCGAACA -ACGGAATGCCAAGTATCGCAGTCA -ACGGAATGCCAAGTATCGGATCCA -ACGGAATGCCAAGTATCGACGACA -ACGGAATGCCAAGTATCGAGCTCA -ACGGAATGCCAAGTATCGTCACGT -ACGGAATGCCAAGTATCGCGTAGT -ACGGAATGCCAAGTATCGGTCAGT -ACGGAATGCCAAGTATCGGAAGGT -ACGGAATGCCAAGTATCGAACCGT -ACGGAATGCCAAGTATCGTTGTGC -ACGGAATGCCAAGTATCGCTAAGC -ACGGAATGCCAAGTATCGACTAGC -ACGGAATGCCAAGTATCGAGATGC -ACGGAATGCCAAGTATCGTGAAGG -ACGGAATGCCAAGTATCGCAATGG -ACGGAATGCCAAGTATCGATGAGG -ACGGAATGCCAAGTATCGAATGGG -ACGGAATGCCAAGTATCGTCCTGA -ACGGAATGCCAAGTATCGTAGCGA -ACGGAATGCCAAGTATCGCACAGA -ACGGAATGCCAAGTATCGGCAAGA -ACGGAATGCCAAGTATCGGGTTGA -ACGGAATGCCAAGTATCGTCCGAT -ACGGAATGCCAAGTATCGTGGCAT -ACGGAATGCCAAGTATCGCGAGAT -ACGGAATGCCAAGTATCGTACCAC -ACGGAATGCCAAGTATCGCAGAAC -ACGGAATGCCAAGTATCGGTCTAC -ACGGAATGCCAAGTATCGACGTAC -ACGGAATGCCAAGTATCGAGTGAC -ACGGAATGCCAAGTATCGCTGTAG -ACGGAATGCCAAGTATCGCCTAAG -ACGGAATGCCAAGTATCGGTTCAG -ACGGAATGCCAAGTATCGGCATAG -ACGGAATGCCAAGTATCGGACAAG -ACGGAATGCCAAGTATCGAAGCAG -ACGGAATGCCAAGTATCGCGTCAA -ACGGAATGCCAAGTATCGGCTGAA -ACGGAATGCCAAGTATCGAGTACG -ACGGAATGCCAAGTATCGATCCGA -ACGGAATGCCAAGTATCGATGGGA -ACGGAATGCCAAGTATCGGTGCAA -ACGGAATGCCAAGTATCGGAGGAA -ACGGAATGCCAAGTATCGCAGGTA -ACGGAATGCCAAGTATCGGACTCT -ACGGAATGCCAAGTATCGAGTCCT -ACGGAATGCCAAGTATCGTAAGCC -ACGGAATGCCAAGTATCGATAGCC -ACGGAATGCCAAGTATCGTAACCG -ACGGAATGCCAAGTATCGATGCCA -ACGGAATGCCAACTATGCGGAAAC -ACGGAATGCCAACTATGCAACACC -ACGGAATGCCAACTATGCATCGAG -ACGGAATGCCAACTATGCCTCCTT -ACGGAATGCCAACTATGCCCTGTT -ACGGAATGCCAACTATGCCGGTTT -ACGGAATGCCAACTATGCGTGGTT -ACGGAATGCCAACTATGCGCCTTT -ACGGAATGCCAACTATGCGGTCTT -ACGGAATGCCAACTATGCACGCTT -ACGGAATGCCAACTATGCAGCGTT -ACGGAATGCCAACTATGCTTCGTC -ACGGAATGCCAACTATGCTCTCTC -ACGGAATGCCAACTATGCTGGATC -ACGGAATGCCAACTATGCCACTTC -ACGGAATGCCAACTATGCGTACTC -ACGGAATGCCAACTATGCGATGTC -ACGGAATGCCAACTATGCACAGTC -ACGGAATGCCAACTATGCTTGCTG -ACGGAATGCCAACTATGCTCCATG -ACGGAATGCCAACTATGCTGTGTG -ACGGAATGCCAACTATGCCTAGTG -ACGGAATGCCAACTATGCCATCTG -ACGGAATGCCAACTATGCGAGTTG -ACGGAATGCCAACTATGCAGACTG -ACGGAATGCCAACTATGCTCGGTA -ACGGAATGCCAACTATGCTGCCTA -ACGGAATGCCAACTATGCCCACTA -ACGGAATGCCAACTATGCGGAGTA -ACGGAATGCCAACTATGCTCGTCT -ACGGAATGCCAACTATGCTGCACT -ACGGAATGCCAACTATGCCTGACT -ACGGAATGCCAACTATGCCAACCT -ACGGAATGCCAACTATGCGCTACT -ACGGAATGCCAACTATGCGGATCT -ACGGAATGCCAACTATGCAAGGCT -ACGGAATGCCAACTATGCTCAACC -ACGGAATGCCAACTATGCTGTTCC -ACGGAATGCCAACTATGCATTCCC -ACGGAATGCCAACTATGCTTCTCG -ACGGAATGCCAACTATGCTAGACG -ACGGAATGCCAACTATGCGTAACG -ACGGAATGCCAACTATGCACTTCG -ACGGAATGCCAACTATGCTACGCA -ACGGAATGCCAACTATGCCTTGCA -ACGGAATGCCAACTATGCCGAACA -ACGGAATGCCAACTATGCCAGTCA -ACGGAATGCCAACTATGCGATCCA -ACGGAATGCCAACTATGCACGACA -ACGGAATGCCAACTATGCAGCTCA -ACGGAATGCCAACTATGCTCACGT -ACGGAATGCCAACTATGCCGTAGT -ACGGAATGCCAACTATGCGTCAGT -ACGGAATGCCAACTATGCGAAGGT -ACGGAATGCCAACTATGCAACCGT -ACGGAATGCCAACTATGCTTGTGC -ACGGAATGCCAACTATGCCTAAGC -ACGGAATGCCAACTATGCACTAGC -ACGGAATGCCAACTATGCAGATGC -ACGGAATGCCAACTATGCTGAAGG -ACGGAATGCCAACTATGCCAATGG -ACGGAATGCCAACTATGCATGAGG -ACGGAATGCCAACTATGCAATGGG -ACGGAATGCCAACTATGCTCCTGA -ACGGAATGCCAACTATGCTAGCGA -ACGGAATGCCAACTATGCCACAGA -ACGGAATGCCAACTATGCGCAAGA -ACGGAATGCCAACTATGCGGTTGA -ACGGAATGCCAACTATGCTCCGAT -ACGGAATGCCAACTATGCTGGCAT -ACGGAATGCCAACTATGCCGAGAT -ACGGAATGCCAACTATGCTACCAC -ACGGAATGCCAACTATGCCAGAAC -ACGGAATGCCAACTATGCGTCTAC -ACGGAATGCCAACTATGCACGTAC -ACGGAATGCCAACTATGCAGTGAC -ACGGAATGCCAACTATGCCTGTAG -ACGGAATGCCAACTATGCCCTAAG -ACGGAATGCCAACTATGCGTTCAG -ACGGAATGCCAACTATGCGCATAG -ACGGAATGCCAACTATGCGACAAG -ACGGAATGCCAACTATGCAAGCAG -ACGGAATGCCAACTATGCCGTCAA -ACGGAATGCCAACTATGCGCTGAA -ACGGAATGCCAACTATGCAGTACG -ACGGAATGCCAACTATGCATCCGA -ACGGAATGCCAACTATGCATGGGA -ACGGAATGCCAACTATGCGTGCAA -ACGGAATGCCAACTATGCGAGGAA -ACGGAATGCCAACTATGCCAGGTA -ACGGAATGCCAACTATGCGACTCT -ACGGAATGCCAACTATGCAGTCCT -ACGGAATGCCAACTATGCTAAGCC -ACGGAATGCCAACTATGCATAGCC -ACGGAATGCCAACTATGCTAACCG -ACGGAATGCCAACTATGCATGCCA -ACGGAATGCCAACTACCAGGAAAC -ACGGAATGCCAACTACCAAACACC -ACGGAATGCCAACTACCAATCGAG -ACGGAATGCCAACTACCACTCCTT -ACGGAATGCCAACTACCACCTGTT -ACGGAATGCCAACTACCACGGTTT -ACGGAATGCCAACTACCAGTGGTT -ACGGAATGCCAACTACCAGCCTTT -ACGGAATGCCAACTACCAGGTCTT -ACGGAATGCCAACTACCAACGCTT -ACGGAATGCCAACTACCAAGCGTT -ACGGAATGCCAACTACCATTCGTC -ACGGAATGCCAACTACCATCTCTC -ACGGAATGCCAACTACCATGGATC -ACGGAATGCCAACTACCACACTTC -ACGGAATGCCAACTACCAGTACTC -ACGGAATGCCAACTACCAGATGTC -ACGGAATGCCAACTACCAACAGTC -ACGGAATGCCAACTACCATTGCTG -ACGGAATGCCAACTACCATCCATG -ACGGAATGCCAACTACCATGTGTG -ACGGAATGCCAACTACCACTAGTG -ACGGAATGCCAACTACCACATCTG -ACGGAATGCCAACTACCAGAGTTG -ACGGAATGCCAACTACCAAGACTG -ACGGAATGCCAACTACCATCGGTA -ACGGAATGCCAACTACCATGCCTA -ACGGAATGCCAACTACCACCACTA -ACGGAATGCCAACTACCAGGAGTA -ACGGAATGCCAACTACCATCGTCT -ACGGAATGCCAACTACCATGCACT -ACGGAATGCCAACTACCACTGACT -ACGGAATGCCAACTACCACAACCT -ACGGAATGCCAACTACCAGCTACT -ACGGAATGCCAACTACCAGGATCT -ACGGAATGCCAACTACCAAAGGCT -ACGGAATGCCAACTACCATCAACC -ACGGAATGCCAACTACCATGTTCC -ACGGAATGCCAACTACCAATTCCC -ACGGAATGCCAACTACCATTCTCG -ACGGAATGCCAACTACCATAGACG -ACGGAATGCCAACTACCAGTAACG -ACGGAATGCCAACTACCAACTTCG -ACGGAATGCCAACTACCATACGCA -ACGGAATGCCAACTACCACTTGCA -ACGGAATGCCAACTACCACGAACA -ACGGAATGCCAACTACCACAGTCA -ACGGAATGCCAACTACCAGATCCA -ACGGAATGCCAACTACCAACGACA -ACGGAATGCCAACTACCAAGCTCA -ACGGAATGCCAACTACCATCACGT -ACGGAATGCCAACTACCACGTAGT -ACGGAATGCCAACTACCAGTCAGT -ACGGAATGCCAACTACCAGAAGGT -ACGGAATGCCAACTACCAAACCGT -ACGGAATGCCAACTACCATTGTGC -ACGGAATGCCAACTACCACTAAGC -ACGGAATGCCAACTACCAACTAGC -ACGGAATGCCAACTACCAAGATGC -ACGGAATGCCAACTACCATGAAGG -ACGGAATGCCAACTACCACAATGG -ACGGAATGCCAACTACCAATGAGG -ACGGAATGCCAACTACCAAATGGG -ACGGAATGCCAACTACCATCCTGA -ACGGAATGCCAACTACCATAGCGA -ACGGAATGCCAACTACCACACAGA -ACGGAATGCCAACTACCAGCAAGA -ACGGAATGCCAACTACCAGGTTGA -ACGGAATGCCAACTACCATCCGAT -ACGGAATGCCAACTACCATGGCAT -ACGGAATGCCAACTACCACGAGAT -ACGGAATGCCAACTACCATACCAC -ACGGAATGCCAACTACCACAGAAC -ACGGAATGCCAACTACCAGTCTAC -ACGGAATGCCAACTACCAACGTAC -ACGGAATGCCAACTACCAAGTGAC -ACGGAATGCCAACTACCACTGTAG -ACGGAATGCCAACTACCACCTAAG -ACGGAATGCCAACTACCAGTTCAG -ACGGAATGCCAACTACCAGCATAG -ACGGAATGCCAACTACCAGACAAG -ACGGAATGCCAACTACCAAAGCAG -ACGGAATGCCAACTACCACGTCAA -ACGGAATGCCAACTACCAGCTGAA -ACGGAATGCCAACTACCAAGTACG -ACGGAATGCCAACTACCAATCCGA -ACGGAATGCCAACTACCAATGGGA -ACGGAATGCCAACTACCAGTGCAA -ACGGAATGCCAACTACCAGAGGAA -ACGGAATGCCAACTACCACAGGTA -ACGGAATGCCAACTACCAGACTCT -ACGGAATGCCAACTACCAAGTCCT -ACGGAATGCCAACTACCATAAGCC -ACGGAATGCCAACTACCAATAGCC -ACGGAATGCCAACTACCATAACCG -ACGGAATGCCAACTACCAATGCCA -ACGGAATGCCAAGTAGGAGGAAAC -ACGGAATGCCAAGTAGGAAACACC -ACGGAATGCCAAGTAGGAATCGAG -ACGGAATGCCAAGTAGGACTCCTT -ACGGAATGCCAAGTAGGACCTGTT -ACGGAATGCCAAGTAGGACGGTTT -ACGGAATGCCAAGTAGGAGTGGTT -ACGGAATGCCAAGTAGGAGCCTTT -ACGGAATGCCAAGTAGGAGGTCTT -ACGGAATGCCAAGTAGGAACGCTT -ACGGAATGCCAAGTAGGAAGCGTT -ACGGAATGCCAAGTAGGATTCGTC -ACGGAATGCCAAGTAGGATCTCTC -ACGGAATGCCAAGTAGGATGGATC -ACGGAATGCCAAGTAGGACACTTC -ACGGAATGCCAAGTAGGAGTACTC -ACGGAATGCCAAGTAGGAGATGTC -ACGGAATGCCAAGTAGGAACAGTC -ACGGAATGCCAAGTAGGATTGCTG -ACGGAATGCCAAGTAGGATCCATG -ACGGAATGCCAAGTAGGATGTGTG -ACGGAATGCCAAGTAGGACTAGTG -ACGGAATGCCAAGTAGGACATCTG -ACGGAATGCCAAGTAGGAGAGTTG -ACGGAATGCCAAGTAGGAAGACTG -ACGGAATGCCAAGTAGGATCGGTA -ACGGAATGCCAAGTAGGATGCCTA -ACGGAATGCCAAGTAGGACCACTA -ACGGAATGCCAAGTAGGAGGAGTA -ACGGAATGCCAAGTAGGATCGTCT -ACGGAATGCCAAGTAGGATGCACT -ACGGAATGCCAAGTAGGACTGACT -ACGGAATGCCAAGTAGGACAACCT -ACGGAATGCCAAGTAGGAGCTACT -ACGGAATGCCAAGTAGGAGGATCT -ACGGAATGCCAAGTAGGAAAGGCT -ACGGAATGCCAAGTAGGATCAACC -ACGGAATGCCAAGTAGGATGTTCC -ACGGAATGCCAAGTAGGAATTCCC -ACGGAATGCCAAGTAGGATTCTCG -ACGGAATGCCAAGTAGGATAGACG -ACGGAATGCCAAGTAGGAGTAACG -ACGGAATGCCAAGTAGGAACTTCG -ACGGAATGCCAAGTAGGATACGCA -ACGGAATGCCAAGTAGGACTTGCA -ACGGAATGCCAAGTAGGACGAACA -ACGGAATGCCAAGTAGGACAGTCA -ACGGAATGCCAAGTAGGAGATCCA -ACGGAATGCCAAGTAGGAACGACA -ACGGAATGCCAAGTAGGAAGCTCA -ACGGAATGCCAAGTAGGATCACGT -ACGGAATGCCAAGTAGGACGTAGT -ACGGAATGCCAAGTAGGAGTCAGT -ACGGAATGCCAAGTAGGAGAAGGT -ACGGAATGCCAAGTAGGAAACCGT -ACGGAATGCCAAGTAGGATTGTGC -ACGGAATGCCAAGTAGGACTAAGC -ACGGAATGCCAAGTAGGAACTAGC -ACGGAATGCCAAGTAGGAAGATGC -ACGGAATGCCAAGTAGGATGAAGG -ACGGAATGCCAAGTAGGACAATGG -ACGGAATGCCAAGTAGGAATGAGG -ACGGAATGCCAAGTAGGAAATGGG -ACGGAATGCCAAGTAGGATCCTGA -ACGGAATGCCAAGTAGGATAGCGA -ACGGAATGCCAAGTAGGACACAGA -ACGGAATGCCAAGTAGGAGCAAGA -ACGGAATGCCAAGTAGGAGGTTGA -ACGGAATGCCAAGTAGGATCCGAT -ACGGAATGCCAAGTAGGATGGCAT -ACGGAATGCCAAGTAGGACGAGAT -ACGGAATGCCAAGTAGGATACCAC -ACGGAATGCCAAGTAGGACAGAAC -ACGGAATGCCAAGTAGGAGTCTAC -ACGGAATGCCAAGTAGGAACGTAC -ACGGAATGCCAAGTAGGAAGTGAC -ACGGAATGCCAAGTAGGACTGTAG -ACGGAATGCCAAGTAGGACCTAAG -ACGGAATGCCAAGTAGGAGTTCAG -ACGGAATGCCAAGTAGGAGCATAG -ACGGAATGCCAAGTAGGAGACAAG -ACGGAATGCCAAGTAGGAAAGCAG -ACGGAATGCCAAGTAGGACGTCAA -ACGGAATGCCAAGTAGGAGCTGAA -ACGGAATGCCAAGTAGGAAGTACG -ACGGAATGCCAAGTAGGAATCCGA -ACGGAATGCCAAGTAGGAATGGGA -ACGGAATGCCAAGTAGGAGTGCAA -ACGGAATGCCAAGTAGGAGAGGAA -ACGGAATGCCAAGTAGGACAGGTA -ACGGAATGCCAAGTAGGAGACTCT -ACGGAATGCCAAGTAGGAAGTCCT -ACGGAATGCCAAGTAGGATAAGCC -ACGGAATGCCAAGTAGGAATAGCC -ACGGAATGCCAAGTAGGATAACCG -ACGGAATGCCAAGTAGGAATGCCA -ACGGAATGCCAATCTTCGGGAAAC -ACGGAATGCCAATCTTCGAACACC -ACGGAATGCCAATCTTCGATCGAG -ACGGAATGCCAATCTTCGCTCCTT -ACGGAATGCCAATCTTCGCCTGTT -ACGGAATGCCAATCTTCGCGGTTT -ACGGAATGCCAATCTTCGGTGGTT -ACGGAATGCCAATCTTCGGCCTTT -ACGGAATGCCAATCTTCGGGTCTT -ACGGAATGCCAATCTTCGACGCTT -ACGGAATGCCAATCTTCGAGCGTT -ACGGAATGCCAATCTTCGTTCGTC -ACGGAATGCCAATCTTCGTCTCTC -ACGGAATGCCAATCTTCGTGGATC -ACGGAATGCCAATCTTCGCACTTC -ACGGAATGCCAATCTTCGGTACTC -ACGGAATGCCAATCTTCGGATGTC -ACGGAATGCCAATCTTCGACAGTC -ACGGAATGCCAATCTTCGTTGCTG -ACGGAATGCCAATCTTCGTCCATG -ACGGAATGCCAATCTTCGTGTGTG -ACGGAATGCCAATCTTCGCTAGTG -ACGGAATGCCAATCTTCGCATCTG -ACGGAATGCCAATCTTCGGAGTTG -ACGGAATGCCAATCTTCGAGACTG -ACGGAATGCCAATCTTCGTCGGTA -ACGGAATGCCAATCTTCGTGCCTA -ACGGAATGCCAATCTTCGCCACTA -ACGGAATGCCAATCTTCGGGAGTA -ACGGAATGCCAATCTTCGTCGTCT -ACGGAATGCCAATCTTCGTGCACT -ACGGAATGCCAATCTTCGCTGACT -ACGGAATGCCAATCTTCGCAACCT -ACGGAATGCCAATCTTCGGCTACT -ACGGAATGCCAATCTTCGGGATCT -ACGGAATGCCAATCTTCGAAGGCT -ACGGAATGCCAATCTTCGTCAACC -ACGGAATGCCAATCTTCGTGTTCC -ACGGAATGCCAATCTTCGATTCCC -ACGGAATGCCAATCTTCGTTCTCG -ACGGAATGCCAATCTTCGTAGACG -ACGGAATGCCAATCTTCGGTAACG -ACGGAATGCCAATCTTCGACTTCG -ACGGAATGCCAATCTTCGTACGCA -ACGGAATGCCAATCTTCGCTTGCA -ACGGAATGCCAATCTTCGCGAACA -ACGGAATGCCAATCTTCGCAGTCA -ACGGAATGCCAATCTTCGGATCCA -ACGGAATGCCAATCTTCGACGACA -ACGGAATGCCAATCTTCGAGCTCA -ACGGAATGCCAATCTTCGTCACGT -ACGGAATGCCAATCTTCGCGTAGT -ACGGAATGCCAATCTTCGGTCAGT -ACGGAATGCCAATCTTCGGAAGGT -ACGGAATGCCAATCTTCGAACCGT -ACGGAATGCCAATCTTCGTTGTGC -ACGGAATGCCAATCTTCGCTAAGC -ACGGAATGCCAATCTTCGACTAGC -ACGGAATGCCAATCTTCGAGATGC -ACGGAATGCCAATCTTCGTGAAGG -ACGGAATGCCAATCTTCGCAATGG -ACGGAATGCCAATCTTCGATGAGG -ACGGAATGCCAATCTTCGAATGGG -ACGGAATGCCAATCTTCGTCCTGA -ACGGAATGCCAATCTTCGTAGCGA -ACGGAATGCCAATCTTCGCACAGA -ACGGAATGCCAATCTTCGGCAAGA -ACGGAATGCCAATCTTCGGGTTGA -ACGGAATGCCAATCTTCGTCCGAT -ACGGAATGCCAATCTTCGTGGCAT -ACGGAATGCCAATCTTCGCGAGAT -ACGGAATGCCAATCTTCGTACCAC -ACGGAATGCCAATCTTCGCAGAAC -ACGGAATGCCAATCTTCGGTCTAC -ACGGAATGCCAATCTTCGACGTAC -ACGGAATGCCAATCTTCGAGTGAC -ACGGAATGCCAATCTTCGCTGTAG -ACGGAATGCCAATCTTCGCCTAAG -ACGGAATGCCAATCTTCGGTTCAG -ACGGAATGCCAATCTTCGGCATAG -ACGGAATGCCAATCTTCGGACAAG -ACGGAATGCCAATCTTCGAAGCAG -ACGGAATGCCAATCTTCGCGTCAA -ACGGAATGCCAATCTTCGGCTGAA -ACGGAATGCCAATCTTCGAGTACG -ACGGAATGCCAATCTTCGATCCGA -ACGGAATGCCAATCTTCGATGGGA -ACGGAATGCCAATCTTCGGTGCAA -ACGGAATGCCAATCTTCGGAGGAA -ACGGAATGCCAATCTTCGCAGGTA -ACGGAATGCCAATCTTCGGACTCT -ACGGAATGCCAATCTTCGAGTCCT -ACGGAATGCCAATCTTCGTAAGCC -ACGGAATGCCAATCTTCGATAGCC -ACGGAATGCCAATCTTCGTAACCG -ACGGAATGCCAATCTTCGATGCCA -ACGGAATGCCAAACTTGCGGAAAC -ACGGAATGCCAAACTTGCAACACC -ACGGAATGCCAAACTTGCATCGAG -ACGGAATGCCAAACTTGCCTCCTT -ACGGAATGCCAAACTTGCCCTGTT -ACGGAATGCCAAACTTGCCGGTTT -ACGGAATGCCAAACTTGCGTGGTT -ACGGAATGCCAAACTTGCGCCTTT -ACGGAATGCCAAACTTGCGGTCTT -ACGGAATGCCAAACTTGCACGCTT -ACGGAATGCCAAACTTGCAGCGTT -ACGGAATGCCAAACTTGCTTCGTC -ACGGAATGCCAAACTTGCTCTCTC -ACGGAATGCCAAACTTGCTGGATC -ACGGAATGCCAAACTTGCCACTTC -ACGGAATGCCAAACTTGCGTACTC -ACGGAATGCCAAACTTGCGATGTC -ACGGAATGCCAAACTTGCACAGTC -ACGGAATGCCAAACTTGCTTGCTG -ACGGAATGCCAAACTTGCTCCATG -ACGGAATGCCAAACTTGCTGTGTG -ACGGAATGCCAAACTTGCCTAGTG -ACGGAATGCCAAACTTGCCATCTG -ACGGAATGCCAAACTTGCGAGTTG -ACGGAATGCCAAACTTGCAGACTG -ACGGAATGCCAAACTTGCTCGGTA -ACGGAATGCCAAACTTGCTGCCTA -ACGGAATGCCAAACTTGCCCACTA -ACGGAATGCCAAACTTGCGGAGTA -ACGGAATGCCAAACTTGCTCGTCT -ACGGAATGCCAAACTTGCTGCACT -ACGGAATGCCAAACTTGCCTGACT -ACGGAATGCCAAACTTGCCAACCT -ACGGAATGCCAAACTTGCGCTACT -ACGGAATGCCAAACTTGCGGATCT -ACGGAATGCCAAACTTGCAAGGCT -ACGGAATGCCAAACTTGCTCAACC -ACGGAATGCCAAACTTGCTGTTCC -ACGGAATGCCAAACTTGCATTCCC -ACGGAATGCCAAACTTGCTTCTCG -ACGGAATGCCAAACTTGCTAGACG -ACGGAATGCCAAACTTGCGTAACG -ACGGAATGCCAAACTTGCACTTCG -ACGGAATGCCAAACTTGCTACGCA -ACGGAATGCCAAACTTGCCTTGCA -ACGGAATGCCAAACTTGCCGAACA -ACGGAATGCCAAACTTGCCAGTCA -ACGGAATGCCAAACTTGCGATCCA -ACGGAATGCCAAACTTGCACGACA -ACGGAATGCCAAACTTGCAGCTCA -ACGGAATGCCAAACTTGCTCACGT -ACGGAATGCCAAACTTGCCGTAGT -ACGGAATGCCAAACTTGCGTCAGT -ACGGAATGCCAAACTTGCGAAGGT -ACGGAATGCCAAACTTGCAACCGT -ACGGAATGCCAAACTTGCTTGTGC -ACGGAATGCCAAACTTGCCTAAGC -ACGGAATGCCAAACTTGCACTAGC -ACGGAATGCCAAACTTGCAGATGC -ACGGAATGCCAAACTTGCTGAAGG -ACGGAATGCCAAACTTGCCAATGG -ACGGAATGCCAAACTTGCATGAGG -ACGGAATGCCAAACTTGCAATGGG -ACGGAATGCCAAACTTGCTCCTGA -ACGGAATGCCAAACTTGCTAGCGA -ACGGAATGCCAAACTTGCCACAGA -ACGGAATGCCAAACTTGCGCAAGA -ACGGAATGCCAAACTTGCGGTTGA -ACGGAATGCCAAACTTGCTCCGAT -ACGGAATGCCAAACTTGCTGGCAT -ACGGAATGCCAAACTTGCCGAGAT -ACGGAATGCCAAACTTGCTACCAC -ACGGAATGCCAAACTTGCCAGAAC -ACGGAATGCCAAACTTGCGTCTAC -ACGGAATGCCAAACTTGCACGTAC -ACGGAATGCCAAACTTGCAGTGAC -ACGGAATGCCAAACTTGCCTGTAG -ACGGAATGCCAAACTTGCCCTAAG -ACGGAATGCCAAACTTGCGTTCAG -ACGGAATGCCAAACTTGCGCATAG -ACGGAATGCCAAACTTGCGACAAG -ACGGAATGCCAAACTTGCAAGCAG -ACGGAATGCCAAACTTGCCGTCAA -ACGGAATGCCAAACTTGCGCTGAA -ACGGAATGCCAAACTTGCAGTACG -ACGGAATGCCAAACTTGCATCCGA -ACGGAATGCCAAACTTGCATGGGA -ACGGAATGCCAAACTTGCGTGCAA -ACGGAATGCCAAACTTGCGAGGAA -ACGGAATGCCAAACTTGCCAGGTA -ACGGAATGCCAAACTTGCGACTCT -ACGGAATGCCAAACTTGCAGTCCT -ACGGAATGCCAAACTTGCTAAGCC -ACGGAATGCCAAACTTGCATAGCC -ACGGAATGCCAAACTTGCTAACCG -ACGGAATGCCAAACTTGCATGCCA -ACGGAATGCCAAACTCTGGGAAAC -ACGGAATGCCAAACTCTGAACACC -ACGGAATGCCAAACTCTGATCGAG -ACGGAATGCCAAACTCTGCTCCTT -ACGGAATGCCAAACTCTGCCTGTT -ACGGAATGCCAAACTCTGCGGTTT -ACGGAATGCCAAACTCTGGTGGTT -ACGGAATGCCAAACTCTGGCCTTT -ACGGAATGCCAAACTCTGGGTCTT -ACGGAATGCCAAACTCTGACGCTT -ACGGAATGCCAAACTCTGAGCGTT -ACGGAATGCCAAACTCTGTTCGTC -ACGGAATGCCAAACTCTGTCTCTC -ACGGAATGCCAAACTCTGTGGATC -ACGGAATGCCAAACTCTGCACTTC -ACGGAATGCCAAACTCTGGTACTC -ACGGAATGCCAAACTCTGGATGTC -ACGGAATGCCAAACTCTGACAGTC -ACGGAATGCCAAACTCTGTTGCTG -ACGGAATGCCAAACTCTGTCCATG -ACGGAATGCCAAACTCTGTGTGTG -ACGGAATGCCAAACTCTGCTAGTG -ACGGAATGCCAAACTCTGCATCTG -ACGGAATGCCAAACTCTGGAGTTG -ACGGAATGCCAAACTCTGAGACTG -ACGGAATGCCAAACTCTGTCGGTA -ACGGAATGCCAAACTCTGTGCCTA -ACGGAATGCCAAACTCTGCCACTA -ACGGAATGCCAAACTCTGGGAGTA -ACGGAATGCCAAACTCTGTCGTCT -ACGGAATGCCAAACTCTGTGCACT -ACGGAATGCCAAACTCTGCTGACT -ACGGAATGCCAAACTCTGCAACCT -ACGGAATGCCAAACTCTGGCTACT -ACGGAATGCCAAACTCTGGGATCT -ACGGAATGCCAAACTCTGAAGGCT -ACGGAATGCCAAACTCTGTCAACC -ACGGAATGCCAAACTCTGTGTTCC -ACGGAATGCCAAACTCTGATTCCC -ACGGAATGCCAAACTCTGTTCTCG -ACGGAATGCCAAACTCTGTAGACG -ACGGAATGCCAAACTCTGGTAACG -ACGGAATGCCAAACTCTGACTTCG -ACGGAATGCCAAACTCTGTACGCA -ACGGAATGCCAAACTCTGCTTGCA -ACGGAATGCCAAACTCTGCGAACA -ACGGAATGCCAAACTCTGCAGTCA -ACGGAATGCCAAACTCTGGATCCA -ACGGAATGCCAAACTCTGACGACA -ACGGAATGCCAAACTCTGAGCTCA -ACGGAATGCCAAACTCTGTCACGT -ACGGAATGCCAAACTCTGCGTAGT -ACGGAATGCCAAACTCTGGTCAGT -ACGGAATGCCAAACTCTGGAAGGT -ACGGAATGCCAAACTCTGAACCGT -ACGGAATGCCAAACTCTGTTGTGC -ACGGAATGCCAAACTCTGCTAAGC -ACGGAATGCCAAACTCTGACTAGC -ACGGAATGCCAAACTCTGAGATGC -ACGGAATGCCAAACTCTGTGAAGG -ACGGAATGCCAAACTCTGCAATGG -ACGGAATGCCAAACTCTGATGAGG -ACGGAATGCCAAACTCTGAATGGG -ACGGAATGCCAAACTCTGTCCTGA -ACGGAATGCCAAACTCTGTAGCGA -ACGGAATGCCAAACTCTGCACAGA -ACGGAATGCCAAACTCTGGCAAGA -ACGGAATGCCAAACTCTGGGTTGA -ACGGAATGCCAAACTCTGTCCGAT -ACGGAATGCCAAACTCTGTGGCAT -ACGGAATGCCAAACTCTGCGAGAT -ACGGAATGCCAAACTCTGTACCAC -ACGGAATGCCAAACTCTGCAGAAC -ACGGAATGCCAAACTCTGGTCTAC -ACGGAATGCCAAACTCTGACGTAC -ACGGAATGCCAAACTCTGAGTGAC -ACGGAATGCCAAACTCTGCTGTAG -ACGGAATGCCAAACTCTGCCTAAG -ACGGAATGCCAAACTCTGGTTCAG -ACGGAATGCCAAACTCTGGCATAG -ACGGAATGCCAAACTCTGGACAAG -ACGGAATGCCAAACTCTGAAGCAG -ACGGAATGCCAAACTCTGCGTCAA -ACGGAATGCCAAACTCTGGCTGAA -ACGGAATGCCAAACTCTGAGTACG -ACGGAATGCCAAACTCTGATCCGA -ACGGAATGCCAAACTCTGATGGGA -ACGGAATGCCAAACTCTGGTGCAA -ACGGAATGCCAAACTCTGGAGGAA -ACGGAATGCCAAACTCTGCAGGTA -ACGGAATGCCAAACTCTGGACTCT -ACGGAATGCCAAACTCTGAGTCCT -ACGGAATGCCAAACTCTGTAAGCC -ACGGAATGCCAAACTCTGATAGCC -ACGGAATGCCAAACTCTGTAACCG -ACGGAATGCCAAACTCTGATGCCA -ACGGAATGCCAACCTCAAGGAAAC -ACGGAATGCCAACCTCAAAACACC -ACGGAATGCCAACCTCAAATCGAG -ACGGAATGCCAACCTCAACTCCTT -ACGGAATGCCAACCTCAACCTGTT -ACGGAATGCCAACCTCAACGGTTT -ACGGAATGCCAACCTCAAGTGGTT -ACGGAATGCCAACCTCAAGCCTTT -ACGGAATGCCAACCTCAAGGTCTT -ACGGAATGCCAACCTCAAACGCTT -ACGGAATGCCAACCTCAAAGCGTT -ACGGAATGCCAACCTCAATTCGTC -ACGGAATGCCAACCTCAATCTCTC -ACGGAATGCCAACCTCAATGGATC -ACGGAATGCCAACCTCAACACTTC -ACGGAATGCCAACCTCAAGTACTC -ACGGAATGCCAACCTCAAGATGTC -ACGGAATGCCAACCTCAAACAGTC -ACGGAATGCCAACCTCAATTGCTG -ACGGAATGCCAACCTCAATCCATG -ACGGAATGCCAACCTCAATGTGTG -ACGGAATGCCAACCTCAACTAGTG -ACGGAATGCCAACCTCAACATCTG -ACGGAATGCCAACCTCAAGAGTTG -ACGGAATGCCAACCTCAAAGACTG -ACGGAATGCCAACCTCAATCGGTA -ACGGAATGCCAACCTCAATGCCTA -ACGGAATGCCAACCTCAACCACTA -ACGGAATGCCAACCTCAAGGAGTA -ACGGAATGCCAACCTCAATCGTCT -ACGGAATGCCAACCTCAATGCACT -ACGGAATGCCAACCTCAACTGACT -ACGGAATGCCAACCTCAACAACCT -ACGGAATGCCAACCTCAAGCTACT -ACGGAATGCCAACCTCAAGGATCT -ACGGAATGCCAACCTCAAAAGGCT -ACGGAATGCCAACCTCAATCAACC -ACGGAATGCCAACCTCAATGTTCC -ACGGAATGCCAACCTCAAATTCCC -ACGGAATGCCAACCTCAATTCTCG -ACGGAATGCCAACCTCAATAGACG -ACGGAATGCCAACCTCAAGTAACG -ACGGAATGCCAACCTCAAACTTCG -ACGGAATGCCAACCTCAATACGCA -ACGGAATGCCAACCTCAACTTGCA -ACGGAATGCCAACCTCAACGAACA -ACGGAATGCCAACCTCAACAGTCA -ACGGAATGCCAACCTCAAGATCCA -ACGGAATGCCAACCTCAAACGACA -ACGGAATGCCAACCTCAAAGCTCA -ACGGAATGCCAACCTCAATCACGT -ACGGAATGCCAACCTCAACGTAGT -ACGGAATGCCAACCTCAAGTCAGT -ACGGAATGCCAACCTCAAGAAGGT -ACGGAATGCCAACCTCAAAACCGT -ACGGAATGCCAACCTCAATTGTGC -ACGGAATGCCAACCTCAACTAAGC -ACGGAATGCCAACCTCAAACTAGC -ACGGAATGCCAACCTCAAAGATGC -ACGGAATGCCAACCTCAATGAAGG -ACGGAATGCCAACCTCAACAATGG -ACGGAATGCCAACCTCAAATGAGG -ACGGAATGCCAACCTCAAAATGGG -ACGGAATGCCAACCTCAATCCTGA -ACGGAATGCCAACCTCAATAGCGA -ACGGAATGCCAACCTCAACACAGA -ACGGAATGCCAACCTCAAGCAAGA -ACGGAATGCCAACCTCAAGGTTGA -ACGGAATGCCAACCTCAATCCGAT -ACGGAATGCCAACCTCAATGGCAT -ACGGAATGCCAACCTCAACGAGAT -ACGGAATGCCAACCTCAATACCAC -ACGGAATGCCAACCTCAACAGAAC -ACGGAATGCCAACCTCAAGTCTAC -ACGGAATGCCAACCTCAAACGTAC -ACGGAATGCCAACCTCAAAGTGAC -ACGGAATGCCAACCTCAACTGTAG -ACGGAATGCCAACCTCAACCTAAG -ACGGAATGCCAACCTCAAGTTCAG -ACGGAATGCCAACCTCAAGCATAG -ACGGAATGCCAACCTCAAGACAAG -ACGGAATGCCAACCTCAAAAGCAG -ACGGAATGCCAACCTCAACGTCAA -ACGGAATGCCAACCTCAAGCTGAA -ACGGAATGCCAACCTCAAAGTACG -ACGGAATGCCAACCTCAAATCCGA -ACGGAATGCCAACCTCAAATGGGA -ACGGAATGCCAACCTCAAGTGCAA -ACGGAATGCCAACCTCAAGAGGAA -ACGGAATGCCAACCTCAACAGGTA -ACGGAATGCCAACCTCAAGACTCT -ACGGAATGCCAACCTCAAAGTCCT -ACGGAATGCCAACCTCAATAAGCC -ACGGAATGCCAACCTCAAATAGCC -ACGGAATGCCAACCTCAATAACCG -ACGGAATGCCAACCTCAAATGCCA -ACGGAATGCCAAACTGCTGGAAAC -ACGGAATGCCAAACTGCTAACACC -ACGGAATGCCAAACTGCTATCGAG -ACGGAATGCCAAACTGCTCTCCTT -ACGGAATGCCAAACTGCTCCTGTT -ACGGAATGCCAAACTGCTCGGTTT -ACGGAATGCCAAACTGCTGTGGTT -ACGGAATGCCAAACTGCTGCCTTT -ACGGAATGCCAAACTGCTGGTCTT -ACGGAATGCCAAACTGCTACGCTT -ACGGAATGCCAAACTGCTAGCGTT -ACGGAATGCCAAACTGCTTTCGTC -ACGGAATGCCAAACTGCTTCTCTC -ACGGAATGCCAAACTGCTTGGATC -ACGGAATGCCAAACTGCTCACTTC -ACGGAATGCCAAACTGCTGTACTC -ACGGAATGCCAAACTGCTGATGTC -ACGGAATGCCAAACTGCTACAGTC -ACGGAATGCCAAACTGCTTTGCTG -ACGGAATGCCAAACTGCTTCCATG -ACGGAATGCCAAACTGCTTGTGTG -ACGGAATGCCAAACTGCTCTAGTG -ACGGAATGCCAAACTGCTCATCTG -ACGGAATGCCAAACTGCTGAGTTG -ACGGAATGCCAAACTGCTAGACTG -ACGGAATGCCAAACTGCTTCGGTA -ACGGAATGCCAAACTGCTTGCCTA -ACGGAATGCCAAACTGCTCCACTA -ACGGAATGCCAAACTGCTGGAGTA -ACGGAATGCCAAACTGCTTCGTCT -ACGGAATGCCAAACTGCTTGCACT -ACGGAATGCCAAACTGCTCTGACT -ACGGAATGCCAAACTGCTCAACCT -ACGGAATGCCAAACTGCTGCTACT -ACGGAATGCCAAACTGCTGGATCT -ACGGAATGCCAAACTGCTAAGGCT -ACGGAATGCCAAACTGCTTCAACC -ACGGAATGCCAAACTGCTTGTTCC -ACGGAATGCCAAACTGCTATTCCC -ACGGAATGCCAAACTGCTTTCTCG -ACGGAATGCCAAACTGCTTAGACG -ACGGAATGCCAAACTGCTGTAACG -ACGGAATGCCAAACTGCTACTTCG -ACGGAATGCCAAACTGCTTACGCA -ACGGAATGCCAAACTGCTCTTGCA -ACGGAATGCCAAACTGCTCGAACA -ACGGAATGCCAAACTGCTCAGTCA -ACGGAATGCCAAACTGCTGATCCA -ACGGAATGCCAAACTGCTACGACA -ACGGAATGCCAAACTGCTAGCTCA -ACGGAATGCCAAACTGCTTCACGT -ACGGAATGCCAAACTGCTCGTAGT -ACGGAATGCCAAACTGCTGTCAGT -ACGGAATGCCAAACTGCTGAAGGT -ACGGAATGCCAAACTGCTAACCGT -ACGGAATGCCAAACTGCTTTGTGC -ACGGAATGCCAAACTGCTCTAAGC -ACGGAATGCCAAACTGCTACTAGC -ACGGAATGCCAAACTGCTAGATGC -ACGGAATGCCAAACTGCTTGAAGG -ACGGAATGCCAAACTGCTCAATGG -ACGGAATGCCAAACTGCTATGAGG -ACGGAATGCCAAACTGCTAATGGG -ACGGAATGCCAAACTGCTTCCTGA -ACGGAATGCCAAACTGCTTAGCGA -ACGGAATGCCAAACTGCTCACAGA -ACGGAATGCCAAACTGCTGCAAGA -ACGGAATGCCAAACTGCTGGTTGA -ACGGAATGCCAAACTGCTTCCGAT -ACGGAATGCCAAACTGCTTGGCAT -ACGGAATGCCAAACTGCTCGAGAT -ACGGAATGCCAAACTGCTTACCAC -ACGGAATGCCAAACTGCTCAGAAC -ACGGAATGCCAAACTGCTGTCTAC -ACGGAATGCCAAACTGCTACGTAC -ACGGAATGCCAAACTGCTAGTGAC -ACGGAATGCCAAACTGCTCTGTAG -ACGGAATGCCAAACTGCTCCTAAG -ACGGAATGCCAAACTGCTGTTCAG -ACGGAATGCCAAACTGCTGCATAG -ACGGAATGCCAAACTGCTGACAAG -ACGGAATGCCAAACTGCTAAGCAG -ACGGAATGCCAAACTGCTCGTCAA -ACGGAATGCCAAACTGCTGCTGAA -ACGGAATGCCAAACTGCTAGTACG -ACGGAATGCCAAACTGCTATCCGA -ACGGAATGCCAAACTGCTATGGGA -ACGGAATGCCAAACTGCTGTGCAA -ACGGAATGCCAAACTGCTGAGGAA -ACGGAATGCCAAACTGCTCAGGTA -ACGGAATGCCAAACTGCTGACTCT -ACGGAATGCCAAACTGCTAGTCCT -ACGGAATGCCAAACTGCTTAAGCC -ACGGAATGCCAAACTGCTATAGCC -ACGGAATGCCAAACTGCTTAACCG -ACGGAATGCCAAACTGCTATGCCA -ACGGAATGCCAATCTGGAGGAAAC -ACGGAATGCCAATCTGGAAACACC -ACGGAATGCCAATCTGGAATCGAG -ACGGAATGCCAATCTGGACTCCTT -ACGGAATGCCAATCTGGACCTGTT -ACGGAATGCCAATCTGGACGGTTT -ACGGAATGCCAATCTGGAGTGGTT -ACGGAATGCCAATCTGGAGCCTTT -ACGGAATGCCAATCTGGAGGTCTT -ACGGAATGCCAATCTGGAACGCTT -ACGGAATGCCAATCTGGAAGCGTT -ACGGAATGCCAATCTGGATTCGTC -ACGGAATGCCAATCTGGATCTCTC -ACGGAATGCCAATCTGGATGGATC -ACGGAATGCCAATCTGGACACTTC -ACGGAATGCCAATCTGGAGTACTC -ACGGAATGCCAATCTGGAGATGTC -ACGGAATGCCAATCTGGAACAGTC -ACGGAATGCCAATCTGGATTGCTG -ACGGAATGCCAATCTGGATCCATG -ACGGAATGCCAATCTGGATGTGTG -ACGGAATGCCAATCTGGACTAGTG -ACGGAATGCCAATCTGGACATCTG -ACGGAATGCCAATCTGGAGAGTTG -ACGGAATGCCAATCTGGAAGACTG -ACGGAATGCCAATCTGGATCGGTA -ACGGAATGCCAATCTGGATGCCTA -ACGGAATGCCAATCTGGACCACTA -ACGGAATGCCAATCTGGAGGAGTA -ACGGAATGCCAATCTGGATCGTCT -ACGGAATGCCAATCTGGATGCACT -ACGGAATGCCAATCTGGACTGACT -ACGGAATGCCAATCTGGACAACCT -ACGGAATGCCAATCTGGAGCTACT -ACGGAATGCCAATCTGGAGGATCT -ACGGAATGCCAATCTGGAAAGGCT -ACGGAATGCCAATCTGGATCAACC -ACGGAATGCCAATCTGGATGTTCC -ACGGAATGCCAATCTGGAATTCCC -ACGGAATGCCAATCTGGATTCTCG -ACGGAATGCCAATCTGGATAGACG -ACGGAATGCCAATCTGGAGTAACG -ACGGAATGCCAATCTGGAACTTCG -ACGGAATGCCAATCTGGATACGCA -ACGGAATGCCAATCTGGACTTGCA -ACGGAATGCCAATCTGGACGAACA -ACGGAATGCCAATCTGGACAGTCA -ACGGAATGCCAATCTGGAGATCCA -ACGGAATGCCAATCTGGAACGACA -ACGGAATGCCAATCTGGAAGCTCA -ACGGAATGCCAATCTGGATCACGT -ACGGAATGCCAATCTGGACGTAGT -ACGGAATGCCAATCTGGAGTCAGT -ACGGAATGCCAATCTGGAGAAGGT -ACGGAATGCCAATCTGGAAACCGT -ACGGAATGCCAATCTGGATTGTGC -ACGGAATGCCAATCTGGACTAAGC -ACGGAATGCCAATCTGGAACTAGC -ACGGAATGCCAATCTGGAAGATGC -ACGGAATGCCAATCTGGATGAAGG -ACGGAATGCCAATCTGGACAATGG -ACGGAATGCCAATCTGGAATGAGG -ACGGAATGCCAATCTGGAAATGGG -ACGGAATGCCAATCTGGATCCTGA -ACGGAATGCCAATCTGGATAGCGA -ACGGAATGCCAATCTGGACACAGA -ACGGAATGCCAATCTGGAGCAAGA -ACGGAATGCCAATCTGGAGGTTGA -ACGGAATGCCAATCTGGATCCGAT -ACGGAATGCCAATCTGGATGGCAT -ACGGAATGCCAATCTGGACGAGAT -ACGGAATGCCAATCTGGATACCAC -ACGGAATGCCAATCTGGACAGAAC -ACGGAATGCCAATCTGGAGTCTAC -ACGGAATGCCAATCTGGAACGTAC -ACGGAATGCCAATCTGGAAGTGAC -ACGGAATGCCAATCTGGACTGTAG -ACGGAATGCCAATCTGGACCTAAG -ACGGAATGCCAATCTGGAGTTCAG -ACGGAATGCCAATCTGGAGCATAG -ACGGAATGCCAATCTGGAGACAAG -ACGGAATGCCAATCTGGAAAGCAG -ACGGAATGCCAATCTGGACGTCAA -ACGGAATGCCAATCTGGAGCTGAA -ACGGAATGCCAATCTGGAAGTACG -ACGGAATGCCAATCTGGAATCCGA -ACGGAATGCCAATCTGGAATGGGA -ACGGAATGCCAATCTGGAGTGCAA -ACGGAATGCCAATCTGGAGAGGAA -ACGGAATGCCAATCTGGACAGGTA -ACGGAATGCCAATCTGGAGACTCT -ACGGAATGCCAATCTGGAAGTCCT -ACGGAATGCCAATCTGGATAAGCC -ACGGAATGCCAATCTGGAATAGCC -ACGGAATGCCAATCTGGATAACCG -ACGGAATGCCAATCTGGAATGCCA -ACGGAATGCCAAGCTAAGGGAAAC -ACGGAATGCCAAGCTAAGAACACC -ACGGAATGCCAAGCTAAGATCGAG -ACGGAATGCCAAGCTAAGCTCCTT -ACGGAATGCCAAGCTAAGCCTGTT -ACGGAATGCCAAGCTAAGCGGTTT -ACGGAATGCCAAGCTAAGGTGGTT -ACGGAATGCCAAGCTAAGGCCTTT -ACGGAATGCCAAGCTAAGGGTCTT -ACGGAATGCCAAGCTAAGACGCTT -ACGGAATGCCAAGCTAAGAGCGTT -ACGGAATGCCAAGCTAAGTTCGTC -ACGGAATGCCAAGCTAAGTCTCTC -ACGGAATGCCAAGCTAAGTGGATC -ACGGAATGCCAAGCTAAGCACTTC -ACGGAATGCCAAGCTAAGGTACTC -ACGGAATGCCAAGCTAAGGATGTC -ACGGAATGCCAAGCTAAGACAGTC -ACGGAATGCCAAGCTAAGTTGCTG -ACGGAATGCCAAGCTAAGTCCATG -ACGGAATGCCAAGCTAAGTGTGTG -ACGGAATGCCAAGCTAAGCTAGTG -ACGGAATGCCAAGCTAAGCATCTG -ACGGAATGCCAAGCTAAGGAGTTG -ACGGAATGCCAAGCTAAGAGACTG -ACGGAATGCCAAGCTAAGTCGGTA -ACGGAATGCCAAGCTAAGTGCCTA -ACGGAATGCCAAGCTAAGCCACTA -ACGGAATGCCAAGCTAAGGGAGTA -ACGGAATGCCAAGCTAAGTCGTCT -ACGGAATGCCAAGCTAAGTGCACT -ACGGAATGCCAAGCTAAGCTGACT -ACGGAATGCCAAGCTAAGCAACCT -ACGGAATGCCAAGCTAAGGCTACT -ACGGAATGCCAAGCTAAGGGATCT -ACGGAATGCCAAGCTAAGAAGGCT -ACGGAATGCCAAGCTAAGTCAACC -ACGGAATGCCAAGCTAAGTGTTCC -ACGGAATGCCAAGCTAAGATTCCC -ACGGAATGCCAAGCTAAGTTCTCG -ACGGAATGCCAAGCTAAGTAGACG -ACGGAATGCCAAGCTAAGGTAACG -ACGGAATGCCAAGCTAAGACTTCG -ACGGAATGCCAAGCTAAGTACGCA -ACGGAATGCCAAGCTAAGCTTGCA -ACGGAATGCCAAGCTAAGCGAACA -ACGGAATGCCAAGCTAAGCAGTCA -ACGGAATGCCAAGCTAAGGATCCA -ACGGAATGCCAAGCTAAGACGACA -ACGGAATGCCAAGCTAAGAGCTCA -ACGGAATGCCAAGCTAAGTCACGT -ACGGAATGCCAAGCTAAGCGTAGT -ACGGAATGCCAAGCTAAGGTCAGT -ACGGAATGCCAAGCTAAGGAAGGT -ACGGAATGCCAAGCTAAGAACCGT -ACGGAATGCCAAGCTAAGTTGTGC -ACGGAATGCCAAGCTAAGCTAAGC -ACGGAATGCCAAGCTAAGACTAGC -ACGGAATGCCAAGCTAAGAGATGC -ACGGAATGCCAAGCTAAGTGAAGG -ACGGAATGCCAAGCTAAGCAATGG -ACGGAATGCCAAGCTAAGATGAGG -ACGGAATGCCAAGCTAAGAATGGG -ACGGAATGCCAAGCTAAGTCCTGA -ACGGAATGCCAAGCTAAGTAGCGA -ACGGAATGCCAAGCTAAGCACAGA -ACGGAATGCCAAGCTAAGGCAAGA -ACGGAATGCCAAGCTAAGGGTTGA -ACGGAATGCCAAGCTAAGTCCGAT -ACGGAATGCCAAGCTAAGTGGCAT -ACGGAATGCCAAGCTAAGCGAGAT -ACGGAATGCCAAGCTAAGTACCAC -ACGGAATGCCAAGCTAAGCAGAAC -ACGGAATGCCAAGCTAAGGTCTAC -ACGGAATGCCAAGCTAAGACGTAC -ACGGAATGCCAAGCTAAGAGTGAC -ACGGAATGCCAAGCTAAGCTGTAG -ACGGAATGCCAAGCTAAGCCTAAG -ACGGAATGCCAAGCTAAGGTTCAG -ACGGAATGCCAAGCTAAGGCATAG -ACGGAATGCCAAGCTAAGGACAAG -ACGGAATGCCAAGCTAAGAAGCAG -ACGGAATGCCAAGCTAAGCGTCAA -ACGGAATGCCAAGCTAAGGCTGAA -ACGGAATGCCAAGCTAAGAGTACG -ACGGAATGCCAAGCTAAGATCCGA -ACGGAATGCCAAGCTAAGATGGGA -ACGGAATGCCAAGCTAAGGTGCAA -ACGGAATGCCAAGCTAAGGAGGAA -ACGGAATGCCAAGCTAAGCAGGTA -ACGGAATGCCAAGCTAAGGACTCT -ACGGAATGCCAAGCTAAGAGTCCT -ACGGAATGCCAAGCTAAGTAAGCC -ACGGAATGCCAAGCTAAGATAGCC -ACGGAATGCCAAGCTAAGTAACCG -ACGGAATGCCAAGCTAAGATGCCA -ACGGAATGCCAAACCTCAGGAAAC -ACGGAATGCCAAACCTCAAACACC -ACGGAATGCCAAACCTCAATCGAG -ACGGAATGCCAAACCTCACTCCTT -ACGGAATGCCAAACCTCACCTGTT -ACGGAATGCCAAACCTCACGGTTT -ACGGAATGCCAAACCTCAGTGGTT -ACGGAATGCCAAACCTCAGCCTTT -ACGGAATGCCAAACCTCAGGTCTT -ACGGAATGCCAAACCTCAACGCTT -ACGGAATGCCAAACCTCAAGCGTT -ACGGAATGCCAAACCTCATTCGTC -ACGGAATGCCAAACCTCATCTCTC -ACGGAATGCCAAACCTCATGGATC -ACGGAATGCCAAACCTCACACTTC -ACGGAATGCCAAACCTCAGTACTC -ACGGAATGCCAAACCTCAGATGTC -ACGGAATGCCAAACCTCAACAGTC -ACGGAATGCCAAACCTCATTGCTG -ACGGAATGCCAAACCTCATCCATG -ACGGAATGCCAAACCTCATGTGTG -ACGGAATGCCAAACCTCACTAGTG -ACGGAATGCCAAACCTCACATCTG -ACGGAATGCCAAACCTCAGAGTTG -ACGGAATGCCAAACCTCAAGACTG -ACGGAATGCCAAACCTCATCGGTA -ACGGAATGCCAAACCTCATGCCTA -ACGGAATGCCAAACCTCACCACTA -ACGGAATGCCAAACCTCAGGAGTA -ACGGAATGCCAAACCTCATCGTCT -ACGGAATGCCAAACCTCATGCACT -ACGGAATGCCAAACCTCACTGACT -ACGGAATGCCAAACCTCACAACCT -ACGGAATGCCAAACCTCAGCTACT -ACGGAATGCCAAACCTCAGGATCT -ACGGAATGCCAAACCTCAAAGGCT -ACGGAATGCCAAACCTCATCAACC -ACGGAATGCCAAACCTCATGTTCC -ACGGAATGCCAAACCTCAATTCCC -ACGGAATGCCAAACCTCATTCTCG -ACGGAATGCCAAACCTCATAGACG -ACGGAATGCCAAACCTCAGTAACG -ACGGAATGCCAAACCTCAACTTCG -ACGGAATGCCAAACCTCATACGCA -ACGGAATGCCAAACCTCACTTGCA -ACGGAATGCCAAACCTCACGAACA -ACGGAATGCCAAACCTCACAGTCA -ACGGAATGCCAAACCTCAGATCCA -ACGGAATGCCAAACCTCAACGACA -ACGGAATGCCAAACCTCAAGCTCA -ACGGAATGCCAAACCTCATCACGT -ACGGAATGCCAAACCTCACGTAGT -ACGGAATGCCAAACCTCAGTCAGT -ACGGAATGCCAAACCTCAGAAGGT -ACGGAATGCCAAACCTCAAACCGT -ACGGAATGCCAAACCTCATTGTGC -ACGGAATGCCAAACCTCACTAAGC -ACGGAATGCCAAACCTCAACTAGC -ACGGAATGCCAAACCTCAAGATGC -ACGGAATGCCAAACCTCATGAAGG -ACGGAATGCCAAACCTCACAATGG -ACGGAATGCCAAACCTCAATGAGG -ACGGAATGCCAAACCTCAAATGGG -ACGGAATGCCAAACCTCATCCTGA -ACGGAATGCCAAACCTCATAGCGA -ACGGAATGCCAAACCTCACACAGA -ACGGAATGCCAAACCTCAGCAAGA -ACGGAATGCCAAACCTCAGGTTGA -ACGGAATGCCAAACCTCATCCGAT -ACGGAATGCCAAACCTCATGGCAT -ACGGAATGCCAAACCTCACGAGAT -ACGGAATGCCAAACCTCATACCAC -ACGGAATGCCAAACCTCACAGAAC -ACGGAATGCCAAACCTCAGTCTAC -ACGGAATGCCAAACCTCAACGTAC -ACGGAATGCCAAACCTCAAGTGAC -ACGGAATGCCAAACCTCACTGTAG -ACGGAATGCCAAACCTCACCTAAG -ACGGAATGCCAAACCTCAGTTCAG -ACGGAATGCCAAACCTCAGCATAG -ACGGAATGCCAAACCTCAGACAAG -ACGGAATGCCAAACCTCAAAGCAG -ACGGAATGCCAAACCTCACGTCAA -ACGGAATGCCAAACCTCAGCTGAA -ACGGAATGCCAAACCTCAAGTACG -ACGGAATGCCAAACCTCAATCCGA -ACGGAATGCCAAACCTCAATGGGA -ACGGAATGCCAAACCTCAGTGCAA -ACGGAATGCCAAACCTCAGAGGAA -ACGGAATGCCAAACCTCACAGGTA -ACGGAATGCCAAACCTCAGACTCT -ACGGAATGCCAAACCTCAAGTCCT -ACGGAATGCCAAACCTCATAAGCC -ACGGAATGCCAAACCTCAATAGCC -ACGGAATGCCAAACCTCATAACCG -ACGGAATGCCAAACCTCAATGCCA -ACGGAATGCCAATCCTGTGGAAAC -ACGGAATGCCAATCCTGTAACACC -ACGGAATGCCAATCCTGTATCGAG -ACGGAATGCCAATCCTGTCTCCTT -ACGGAATGCCAATCCTGTCCTGTT -ACGGAATGCCAATCCTGTCGGTTT -ACGGAATGCCAATCCTGTGTGGTT -ACGGAATGCCAATCCTGTGCCTTT -ACGGAATGCCAATCCTGTGGTCTT -ACGGAATGCCAATCCTGTACGCTT -ACGGAATGCCAATCCTGTAGCGTT -ACGGAATGCCAATCCTGTTTCGTC -ACGGAATGCCAATCCTGTTCTCTC -ACGGAATGCCAATCCTGTTGGATC -ACGGAATGCCAATCCTGTCACTTC -ACGGAATGCCAATCCTGTGTACTC -ACGGAATGCCAATCCTGTGATGTC -ACGGAATGCCAATCCTGTACAGTC -ACGGAATGCCAATCCTGTTTGCTG -ACGGAATGCCAATCCTGTTCCATG -ACGGAATGCCAATCCTGTTGTGTG -ACGGAATGCCAATCCTGTCTAGTG -ACGGAATGCCAATCCTGTCATCTG -ACGGAATGCCAATCCTGTGAGTTG -ACGGAATGCCAATCCTGTAGACTG -ACGGAATGCCAATCCTGTTCGGTA -ACGGAATGCCAATCCTGTTGCCTA -ACGGAATGCCAATCCTGTCCACTA -ACGGAATGCCAATCCTGTGGAGTA -ACGGAATGCCAATCCTGTTCGTCT -ACGGAATGCCAATCCTGTTGCACT -ACGGAATGCCAATCCTGTCTGACT -ACGGAATGCCAATCCTGTCAACCT -ACGGAATGCCAATCCTGTGCTACT -ACGGAATGCCAATCCTGTGGATCT -ACGGAATGCCAATCCTGTAAGGCT -ACGGAATGCCAATCCTGTTCAACC -ACGGAATGCCAATCCTGTTGTTCC -ACGGAATGCCAATCCTGTATTCCC -ACGGAATGCCAATCCTGTTTCTCG -ACGGAATGCCAATCCTGTTAGACG -ACGGAATGCCAATCCTGTGTAACG -ACGGAATGCCAATCCTGTACTTCG -ACGGAATGCCAATCCTGTTACGCA -ACGGAATGCCAATCCTGTCTTGCA -ACGGAATGCCAATCCTGTCGAACA -ACGGAATGCCAATCCTGTCAGTCA -ACGGAATGCCAATCCTGTGATCCA -ACGGAATGCCAATCCTGTACGACA -ACGGAATGCCAATCCTGTAGCTCA -ACGGAATGCCAATCCTGTTCACGT -ACGGAATGCCAATCCTGTCGTAGT -ACGGAATGCCAATCCTGTGTCAGT -ACGGAATGCCAATCCTGTGAAGGT -ACGGAATGCCAATCCTGTAACCGT -ACGGAATGCCAATCCTGTTTGTGC -ACGGAATGCCAATCCTGTCTAAGC -ACGGAATGCCAATCCTGTACTAGC -ACGGAATGCCAATCCTGTAGATGC -ACGGAATGCCAATCCTGTTGAAGG -ACGGAATGCCAATCCTGTCAATGG -ACGGAATGCCAATCCTGTATGAGG -ACGGAATGCCAATCCTGTAATGGG -ACGGAATGCCAATCCTGTTCCTGA -ACGGAATGCCAATCCTGTTAGCGA -ACGGAATGCCAATCCTGTCACAGA -ACGGAATGCCAATCCTGTGCAAGA -ACGGAATGCCAATCCTGTGGTTGA -ACGGAATGCCAATCCTGTTCCGAT -ACGGAATGCCAATCCTGTTGGCAT -ACGGAATGCCAATCCTGTCGAGAT -ACGGAATGCCAATCCTGTTACCAC -ACGGAATGCCAATCCTGTCAGAAC -ACGGAATGCCAATCCTGTGTCTAC -ACGGAATGCCAATCCTGTACGTAC -ACGGAATGCCAATCCTGTAGTGAC -ACGGAATGCCAATCCTGTCTGTAG -ACGGAATGCCAATCCTGTCCTAAG -ACGGAATGCCAATCCTGTGTTCAG -ACGGAATGCCAATCCTGTGCATAG -ACGGAATGCCAATCCTGTGACAAG -ACGGAATGCCAATCCTGTAAGCAG -ACGGAATGCCAATCCTGTCGTCAA -ACGGAATGCCAATCCTGTGCTGAA -ACGGAATGCCAATCCTGTAGTACG -ACGGAATGCCAATCCTGTATCCGA -ACGGAATGCCAATCCTGTATGGGA -ACGGAATGCCAATCCTGTGTGCAA -ACGGAATGCCAATCCTGTGAGGAA -ACGGAATGCCAATCCTGTCAGGTA -ACGGAATGCCAATCCTGTGACTCT -ACGGAATGCCAATCCTGTAGTCCT -ACGGAATGCCAATCCTGTTAAGCC -ACGGAATGCCAATCCTGTATAGCC -ACGGAATGCCAATCCTGTTAACCG -ACGGAATGCCAATCCTGTATGCCA -ACGGAATGCCAACCCATTGGAAAC -ACGGAATGCCAACCCATTAACACC -ACGGAATGCCAACCCATTATCGAG -ACGGAATGCCAACCCATTCTCCTT -ACGGAATGCCAACCCATTCCTGTT -ACGGAATGCCAACCCATTCGGTTT -ACGGAATGCCAACCCATTGTGGTT -ACGGAATGCCAACCCATTGCCTTT -ACGGAATGCCAACCCATTGGTCTT -ACGGAATGCCAACCCATTACGCTT -ACGGAATGCCAACCCATTAGCGTT -ACGGAATGCCAACCCATTTTCGTC -ACGGAATGCCAACCCATTTCTCTC -ACGGAATGCCAACCCATTTGGATC -ACGGAATGCCAACCCATTCACTTC -ACGGAATGCCAACCCATTGTACTC -ACGGAATGCCAACCCATTGATGTC -ACGGAATGCCAACCCATTACAGTC -ACGGAATGCCAACCCATTTTGCTG -ACGGAATGCCAACCCATTTCCATG -ACGGAATGCCAACCCATTTGTGTG -ACGGAATGCCAACCCATTCTAGTG -ACGGAATGCCAACCCATTCATCTG -ACGGAATGCCAACCCATTGAGTTG -ACGGAATGCCAACCCATTAGACTG -ACGGAATGCCAACCCATTTCGGTA -ACGGAATGCCAACCCATTTGCCTA -ACGGAATGCCAACCCATTCCACTA -ACGGAATGCCAACCCATTGGAGTA -ACGGAATGCCAACCCATTTCGTCT -ACGGAATGCCAACCCATTTGCACT -ACGGAATGCCAACCCATTCTGACT -ACGGAATGCCAACCCATTCAACCT -ACGGAATGCCAACCCATTGCTACT -ACGGAATGCCAACCCATTGGATCT -ACGGAATGCCAACCCATTAAGGCT -ACGGAATGCCAACCCATTTCAACC -ACGGAATGCCAACCCATTTGTTCC -ACGGAATGCCAACCCATTATTCCC -ACGGAATGCCAACCCATTTTCTCG -ACGGAATGCCAACCCATTTAGACG -ACGGAATGCCAACCCATTGTAACG -ACGGAATGCCAACCCATTACTTCG -ACGGAATGCCAACCCATTTACGCA -ACGGAATGCCAACCCATTCTTGCA -ACGGAATGCCAACCCATTCGAACA -ACGGAATGCCAACCCATTCAGTCA -ACGGAATGCCAACCCATTGATCCA -ACGGAATGCCAACCCATTACGACA -ACGGAATGCCAACCCATTAGCTCA -ACGGAATGCCAACCCATTTCACGT -ACGGAATGCCAACCCATTCGTAGT -ACGGAATGCCAACCCATTGTCAGT -ACGGAATGCCAACCCATTGAAGGT -ACGGAATGCCAACCCATTAACCGT -ACGGAATGCCAACCCATTTTGTGC -ACGGAATGCCAACCCATTCTAAGC -ACGGAATGCCAACCCATTACTAGC -ACGGAATGCCAACCCATTAGATGC -ACGGAATGCCAACCCATTTGAAGG -ACGGAATGCCAACCCATTCAATGG -ACGGAATGCCAACCCATTATGAGG -ACGGAATGCCAACCCATTAATGGG -ACGGAATGCCAACCCATTTCCTGA -ACGGAATGCCAACCCATTTAGCGA -ACGGAATGCCAACCCATTCACAGA -ACGGAATGCCAACCCATTGCAAGA -ACGGAATGCCAACCCATTGGTTGA -ACGGAATGCCAACCCATTTCCGAT -ACGGAATGCCAACCCATTTGGCAT -ACGGAATGCCAACCCATTCGAGAT -ACGGAATGCCAACCCATTTACCAC -ACGGAATGCCAACCCATTCAGAAC -ACGGAATGCCAACCCATTGTCTAC -ACGGAATGCCAACCCATTACGTAC -ACGGAATGCCAACCCATTAGTGAC -ACGGAATGCCAACCCATTCTGTAG -ACGGAATGCCAACCCATTCCTAAG -ACGGAATGCCAACCCATTGTTCAG -ACGGAATGCCAACCCATTGCATAG -ACGGAATGCCAACCCATTGACAAG -ACGGAATGCCAACCCATTAAGCAG -ACGGAATGCCAACCCATTCGTCAA -ACGGAATGCCAACCCATTGCTGAA -ACGGAATGCCAACCCATTAGTACG -ACGGAATGCCAACCCATTATCCGA -ACGGAATGCCAACCCATTATGGGA -ACGGAATGCCAACCCATTGTGCAA -ACGGAATGCCAACCCATTGAGGAA -ACGGAATGCCAACCCATTCAGGTA -ACGGAATGCCAACCCATTGACTCT -ACGGAATGCCAACCCATTAGTCCT -ACGGAATGCCAACCCATTTAAGCC -ACGGAATGCCAACCCATTATAGCC -ACGGAATGCCAACCCATTTAACCG -ACGGAATGCCAACCCATTATGCCA -ACGGAATGCCAATCGTTCGGAAAC -ACGGAATGCCAATCGTTCAACACC -ACGGAATGCCAATCGTTCATCGAG -ACGGAATGCCAATCGTTCCTCCTT -ACGGAATGCCAATCGTTCCCTGTT -ACGGAATGCCAATCGTTCCGGTTT -ACGGAATGCCAATCGTTCGTGGTT -ACGGAATGCCAATCGTTCGCCTTT -ACGGAATGCCAATCGTTCGGTCTT -ACGGAATGCCAATCGTTCACGCTT -ACGGAATGCCAATCGTTCAGCGTT -ACGGAATGCCAATCGTTCTTCGTC -ACGGAATGCCAATCGTTCTCTCTC -ACGGAATGCCAATCGTTCTGGATC -ACGGAATGCCAATCGTTCCACTTC -ACGGAATGCCAATCGTTCGTACTC -ACGGAATGCCAATCGTTCGATGTC -ACGGAATGCCAATCGTTCACAGTC -ACGGAATGCCAATCGTTCTTGCTG -ACGGAATGCCAATCGTTCTCCATG -ACGGAATGCCAATCGTTCTGTGTG -ACGGAATGCCAATCGTTCCTAGTG -ACGGAATGCCAATCGTTCCATCTG -ACGGAATGCCAATCGTTCGAGTTG -ACGGAATGCCAATCGTTCAGACTG -ACGGAATGCCAATCGTTCTCGGTA -ACGGAATGCCAATCGTTCTGCCTA -ACGGAATGCCAATCGTTCCCACTA -ACGGAATGCCAATCGTTCGGAGTA -ACGGAATGCCAATCGTTCTCGTCT -ACGGAATGCCAATCGTTCTGCACT -ACGGAATGCCAATCGTTCCTGACT -ACGGAATGCCAATCGTTCCAACCT -ACGGAATGCCAATCGTTCGCTACT -ACGGAATGCCAATCGTTCGGATCT -ACGGAATGCCAATCGTTCAAGGCT -ACGGAATGCCAATCGTTCTCAACC -ACGGAATGCCAATCGTTCTGTTCC -ACGGAATGCCAATCGTTCATTCCC -ACGGAATGCCAATCGTTCTTCTCG -ACGGAATGCCAATCGTTCTAGACG -ACGGAATGCCAATCGTTCGTAACG -ACGGAATGCCAATCGTTCACTTCG -ACGGAATGCCAATCGTTCTACGCA -ACGGAATGCCAATCGTTCCTTGCA -ACGGAATGCCAATCGTTCCGAACA -ACGGAATGCCAATCGTTCCAGTCA -ACGGAATGCCAATCGTTCGATCCA -ACGGAATGCCAATCGTTCACGACA -ACGGAATGCCAATCGTTCAGCTCA -ACGGAATGCCAATCGTTCTCACGT -ACGGAATGCCAATCGTTCCGTAGT -ACGGAATGCCAATCGTTCGTCAGT -ACGGAATGCCAATCGTTCGAAGGT -ACGGAATGCCAATCGTTCAACCGT -ACGGAATGCCAATCGTTCTTGTGC -ACGGAATGCCAATCGTTCCTAAGC -ACGGAATGCCAATCGTTCACTAGC -ACGGAATGCCAATCGTTCAGATGC -ACGGAATGCCAATCGTTCTGAAGG -ACGGAATGCCAATCGTTCCAATGG -ACGGAATGCCAATCGTTCATGAGG -ACGGAATGCCAATCGTTCAATGGG -ACGGAATGCCAATCGTTCTCCTGA -ACGGAATGCCAATCGTTCTAGCGA -ACGGAATGCCAATCGTTCCACAGA -ACGGAATGCCAATCGTTCGCAAGA -ACGGAATGCCAATCGTTCGGTTGA -ACGGAATGCCAATCGTTCTCCGAT -ACGGAATGCCAATCGTTCTGGCAT -ACGGAATGCCAATCGTTCCGAGAT -ACGGAATGCCAATCGTTCTACCAC -ACGGAATGCCAATCGTTCCAGAAC -ACGGAATGCCAATCGTTCGTCTAC -ACGGAATGCCAATCGTTCACGTAC -ACGGAATGCCAATCGTTCAGTGAC -ACGGAATGCCAATCGTTCCTGTAG -ACGGAATGCCAATCGTTCCCTAAG -ACGGAATGCCAATCGTTCGTTCAG -ACGGAATGCCAATCGTTCGCATAG -ACGGAATGCCAATCGTTCGACAAG -ACGGAATGCCAATCGTTCAAGCAG -ACGGAATGCCAATCGTTCCGTCAA -ACGGAATGCCAATCGTTCGCTGAA -ACGGAATGCCAATCGTTCAGTACG -ACGGAATGCCAATCGTTCATCCGA -ACGGAATGCCAATCGTTCATGGGA -ACGGAATGCCAATCGTTCGTGCAA -ACGGAATGCCAATCGTTCGAGGAA -ACGGAATGCCAATCGTTCCAGGTA -ACGGAATGCCAATCGTTCGACTCT -ACGGAATGCCAATCGTTCAGTCCT -ACGGAATGCCAATCGTTCTAAGCC -ACGGAATGCCAATCGTTCATAGCC -ACGGAATGCCAATCGTTCTAACCG -ACGGAATGCCAATCGTTCATGCCA -ACGGAATGCCAAACGTAGGGAAAC -ACGGAATGCCAAACGTAGAACACC -ACGGAATGCCAAACGTAGATCGAG -ACGGAATGCCAAACGTAGCTCCTT -ACGGAATGCCAAACGTAGCCTGTT -ACGGAATGCCAAACGTAGCGGTTT -ACGGAATGCCAAACGTAGGTGGTT -ACGGAATGCCAAACGTAGGCCTTT -ACGGAATGCCAAACGTAGGGTCTT -ACGGAATGCCAAACGTAGACGCTT -ACGGAATGCCAAACGTAGAGCGTT -ACGGAATGCCAAACGTAGTTCGTC -ACGGAATGCCAAACGTAGTCTCTC -ACGGAATGCCAAACGTAGTGGATC -ACGGAATGCCAAACGTAGCACTTC -ACGGAATGCCAAACGTAGGTACTC -ACGGAATGCCAAACGTAGGATGTC -ACGGAATGCCAAACGTAGACAGTC -ACGGAATGCCAAACGTAGTTGCTG -ACGGAATGCCAAACGTAGTCCATG -ACGGAATGCCAAACGTAGTGTGTG -ACGGAATGCCAAACGTAGCTAGTG -ACGGAATGCCAAACGTAGCATCTG -ACGGAATGCCAAACGTAGGAGTTG -ACGGAATGCCAAACGTAGAGACTG -ACGGAATGCCAAACGTAGTCGGTA -ACGGAATGCCAAACGTAGTGCCTA -ACGGAATGCCAAACGTAGCCACTA -ACGGAATGCCAAACGTAGGGAGTA -ACGGAATGCCAAACGTAGTCGTCT -ACGGAATGCCAAACGTAGTGCACT -ACGGAATGCCAAACGTAGCTGACT -ACGGAATGCCAAACGTAGCAACCT -ACGGAATGCCAAACGTAGGCTACT -ACGGAATGCCAAACGTAGGGATCT -ACGGAATGCCAAACGTAGAAGGCT -ACGGAATGCCAAACGTAGTCAACC -ACGGAATGCCAAACGTAGTGTTCC -ACGGAATGCCAAACGTAGATTCCC -ACGGAATGCCAAACGTAGTTCTCG -ACGGAATGCCAAACGTAGTAGACG -ACGGAATGCCAAACGTAGGTAACG -ACGGAATGCCAAACGTAGACTTCG -ACGGAATGCCAAACGTAGTACGCA -ACGGAATGCCAAACGTAGCTTGCA -ACGGAATGCCAAACGTAGCGAACA -ACGGAATGCCAAACGTAGCAGTCA -ACGGAATGCCAAACGTAGGATCCA -ACGGAATGCCAAACGTAGACGACA -ACGGAATGCCAAACGTAGAGCTCA -ACGGAATGCCAAACGTAGTCACGT -ACGGAATGCCAAACGTAGCGTAGT -ACGGAATGCCAAACGTAGGTCAGT -ACGGAATGCCAAACGTAGGAAGGT -ACGGAATGCCAAACGTAGAACCGT -ACGGAATGCCAAACGTAGTTGTGC -ACGGAATGCCAAACGTAGCTAAGC -ACGGAATGCCAAACGTAGACTAGC -ACGGAATGCCAAACGTAGAGATGC -ACGGAATGCCAAACGTAGTGAAGG -ACGGAATGCCAAACGTAGCAATGG -ACGGAATGCCAAACGTAGATGAGG -ACGGAATGCCAAACGTAGAATGGG -ACGGAATGCCAAACGTAGTCCTGA -ACGGAATGCCAAACGTAGTAGCGA -ACGGAATGCCAAACGTAGCACAGA -ACGGAATGCCAAACGTAGGCAAGA -ACGGAATGCCAAACGTAGGGTTGA -ACGGAATGCCAAACGTAGTCCGAT -ACGGAATGCCAAACGTAGTGGCAT -ACGGAATGCCAAACGTAGCGAGAT -ACGGAATGCCAAACGTAGTACCAC -ACGGAATGCCAAACGTAGCAGAAC -ACGGAATGCCAAACGTAGGTCTAC -ACGGAATGCCAAACGTAGACGTAC -ACGGAATGCCAAACGTAGAGTGAC -ACGGAATGCCAAACGTAGCTGTAG -ACGGAATGCCAAACGTAGCCTAAG -ACGGAATGCCAAACGTAGGTTCAG -ACGGAATGCCAAACGTAGGCATAG -ACGGAATGCCAAACGTAGGACAAG -ACGGAATGCCAAACGTAGAAGCAG -ACGGAATGCCAAACGTAGCGTCAA -ACGGAATGCCAAACGTAGGCTGAA -ACGGAATGCCAAACGTAGAGTACG -ACGGAATGCCAAACGTAGATCCGA -ACGGAATGCCAAACGTAGATGGGA -ACGGAATGCCAAACGTAGGTGCAA -ACGGAATGCCAAACGTAGGAGGAA -ACGGAATGCCAAACGTAGCAGGTA -ACGGAATGCCAAACGTAGGACTCT -ACGGAATGCCAAACGTAGAGTCCT -ACGGAATGCCAAACGTAGTAAGCC -ACGGAATGCCAAACGTAGATAGCC -ACGGAATGCCAAACGTAGTAACCG -ACGGAATGCCAAACGTAGATGCCA -ACGGAATGCCAAACGGTAGGAAAC -ACGGAATGCCAAACGGTAAACACC -ACGGAATGCCAAACGGTAATCGAG -ACGGAATGCCAAACGGTACTCCTT -ACGGAATGCCAAACGGTACCTGTT -ACGGAATGCCAAACGGTACGGTTT -ACGGAATGCCAAACGGTAGTGGTT -ACGGAATGCCAAACGGTAGCCTTT -ACGGAATGCCAAACGGTAGGTCTT -ACGGAATGCCAAACGGTAACGCTT -ACGGAATGCCAAACGGTAAGCGTT -ACGGAATGCCAAACGGTATTCGTC -ACGGAATGCCAAACGGTATCTCTC -ACGGAATGCCAAACGGTATGGATC -ACGGAATGCCAAACGGTACACTTC -ACGGAATGCCAAACGGTAGTACTC -ACGGAATGCCAAACGGTAGATGTC -ACGGAATGCCAAACGGTAACAGTC -ACGGAATGCCAAACGGTATTGCTG -ACGGAATGCCAAACGGTATCCATG -ACGGAATGCCAAACGGTATGTGTG -ACGGAATGCCAAACGGTACTAGTG -ACGGAATGCCAAACGGTACATCTG -ACGGAATGCCAAACGGTAGAGTTG -ACGGAATGCCAAACGGTAAGACTG -ACGGAATGCCAAACGGTATCGGTA -ACGGAATGCCAAACGGTATGCCTA -ACGGAATGCCAAACGGTACCACTA -ACGGAATGCCAAACGGTAGGAGTA -ACGGAATGCCAAACGGTATCGTCT -ACGGAATGCCAAACGGTATGCACT -ACGGAATGCCAAACGGTACTGACT -ACGGAATGCCAAACGGTACAACCT -ACGGAATGCCAAACGGTAGCTACT -ACGGAATGCCAAACGGTAGGATCT -ACGGAATGCCAAACGGTAAAGGCT -ACGGAATGCCAAACGGTATCAACC -ACGGAATGCCAAACGGTATGTTCC -ACGGAATGCCAAACGGTAATTCCC -ACGGAATGCCAAACGGTATTCTCG -ACGGAATGCCAAACGGTATAGACG -ACGGAATGCCAAACGGTAGTAACG -ACGGAATGCCAAACGGTAACTTCG -ACGGAATGCCAAACGGTATACGCA -ACGGAATGCCAAACGGTACTTGCA -ACGGAATGCCAAACGGTACGAACA -ACGGAATGCCAAACGGTACAGTCA -ACGGAATGCCAAACGGTAGATCCA -ACGGAATGCCAAACGGTAACGACA -ACGGAATGCCAAACGGTAAGCTCA -ACGGAATGCCAAACGGTATCACGT -ACGGAATGCCAAACGGTACGTAGT -ACGGAATGCCAAACGGTAGTCAGT -ACGGAATGCCAAACGGTAGAAGGT -ACGGAATGCCAAACGGTAAACCGT -ACGGAATGCCAAACGGTATTGTGC -ACGGAATGCCAAACGGTACTAAGC -ACGGAATGCCAAACGGTAACTAGC -ACGGAATGCCAAACGGTAAGATGC -ACGGAATGCCAAACGGTATGAAGG -ACGGAATGCCAAACGGTACAATGG -ACGGAATGCCAAACGGTAATGAGG -ACGGAATGCCAAACGGTAAATGGG -ACGGAATGCCAAACGGTATCCTGA -ACGGAATGCCAAACGGTATAGCGA -ACGGAATGCCAAACGGTACACAGA -ACGGAATGCCAAACGGTAGCAAGA -ACGGAATGCCAAACGGTAGGTTGA -ACGGAATGCCAAACGGTATCCGAT -ACGGAATGCCAAACGGTATGGCAT -ACGGAATGCCAAACGGTACGAGAT -ACGGAATGCCAAACGGTATACCAC -ACGGAATGCCAAACGGTACAGAAC -ACGGAATGCCAAACGGTAGTCTAC -ACGGAATGCCAAACGGTAACGTAC -ACGGAATGCCAAACGGTAAGTGAC -ACGGAATGCCAAACGGTACTGTAG -ACGGAATGCCAAACGGTACCTAAG -ACGGAATGCCAAACGGTAGTTCAG -ACGGAATGCCAAACGGTAGCATAG -ACGGAATGCCAAACGGTAGACAAG -ACGGAATGCCAAACGGTAAAGCAG -ACGGAATGCCAAACGGTACGTCAA -ACGGAATGCCAAACGGTAGCTGAA -ACGGAATGCCAAACGGTAAGTACG -ACGGAATGCCAAACGGTAATCCGA -ACGGAATGCCAAACGGTAATGGGA -ACGGAATGCCAAACGGTAGTGCAA -ACGGAATGCCAAACGGTAGAGGAA -ACGGAATGCCAAACGGTACAGGTA -ACGGAATGCCAAACGGTAGACTCT -ACGGAATGCCAAACGGTAAGTCCT -ACGGAATGCCAAACGGTATAAGCC -ACGGAATGCCAAACGGTAATAGCC -ACGGAATGCCAAACGGTATAACCG -ACGGAATGCCAAACGGTAATGCCA -ACGGAATGCCAATCGACTGGAAAC -ACGGAATGCCAATCGACTAACACC -ACGGAATGCCAATCGACTATCGAG -ACGGAATGCCAATCGACTCTCCTT -ACGGAATGCCAATCGACTCCTGTT -ACGGAATGCCAATCGACTCGGTTT -ACGGAATGCCAATCGACTGTGGTT -ACGGAATGCCAATCGACTGCCTTT -ACGGAATGCCAATCGACTGGTCTT -ACGGAATGCCAATCGACTACGCTT -ACGGAATGCCAATCGACTAGCGTT -ACGGAATGCCAATCGACTTTCGTC -ACGGAATGCCAATCGACTTCTCTC -ACGGAATGCCAATCGACTTGGATC -ACGGAATGCCAATCGACTCACTTC -ACGGAATGCCAATCGACTGTACTC -ACGGAATGCCAATCGACTGATGTC -ACGGAATGCCAATCGACTACAGTC -ACGGAATGCCAATCGACTTTGCTG -ACGGAATGCCAATCGACTTCCATG -ACGGAATGCCAATCGACTTGTGTG -ACGGAATGCCAATCGACTCTAGTG -ACGGAATGCCAATCGACTCATCTG -ACGGAATGCCAATCGACTGAGTTG -ACGGAATGCCAATCGACTAGACTG -ACGGAATGCCAATCGACTTCGGTA -ACGGAATGCCAATCGACTTGCCTA -ACGGAATGCCAATCGACTCCACTA -ACGGAATGCCAATCGACTGGAGTA -ACGGAATGCCAATCGACTTCGTCT -ACGGAATGCCAATCGACTTGCACT -ACGGAATGCCAATCGACTCTGACT -ACGGAATGCCAATCGACTCAACCT -ACGGAATGCCAATCGACTGCTACT -ACGGAATGCCAATCGACTGGATCT -ACGGAATGCCAATCGACTAAGGCT -ACGGAATGCCAATCGACTTCAACC -ACGGAATGCCAATCGACTTGTTCC -ACGGAATGCCAATCGACTATTCCC -ACGGAATGCCAATCGACTTTCTCG -ACGGAATGCCAATCGACTTAGACG -ACGGAATGCCAATCGACTGTAACG -ACGGAATGCCAATCGACTACTTCG -ACGGAATGCCAATCGACTTACGCA -ACGGAATGCCAATCGACTCTTGCA -ACGGAATGCCAATCGACTCGAACA -ACGGAATGCCAATCGACTCAGTCA -ACGGAATGCCAATCGACTGATCCA -ACGGAATGCCAATCGACTACGACA -ACGGAATGCCAATCGACTAGCTCA -ACGGAATGCCAATCGACTTCACGT -ACGGAATGCCAATCGACTCGTAGT -ACGGAATGCCAATCGACTGTCAGT -ACGGAATGCCAATCGACTGAAGGT -ACGGAATGCCAATCGACTAACCGT -ACGGAATGCCAATCGACTTTGTGC -ACGGAATGCCAATCGACTCTAAGC -ACGGAATGCCAATCGACTACTAGC -ACGGAATGCCAATCGACTAGATGC -ACGGAATGCCAATCGACTTGAAGG -ACGGAATGCCAATCGACTCAATGG -ACGGAATGCCAATCGACTATGAGG -ACGGAATGCCAATCGACTAATGGG -ACGGAATGCCAATCGACTTCCTGA -ACGGAATGCCAATCGACTTAGCGA -ACGGAATGCCAATCGACTCACAGA -ACGGAATGCCAATCGACTGCAAGA -ACGGAATGCCAATCGACTGGTTGA -ACGGAATGCCAATCGACTTCCGAT -ACGGAATGCCAATCGACTTGGCAT -ACGGAATGCCAATCGACTCGAGAT -ACGGAATGCCAATCGACTTACCAC -ACGGAATGCCAATCGACTCAGAAC -ACGGAATGCCAATCGACTGTCTAC -ACGGAATGCCAATCGACTACGTAC -ACGGAATGCCAATCGACTAGTGAC -ACGGAATGCCAATCGACTCTGTAG -ACGGAATGCCAATCGACTCCTAAG -ACGGAATGCCAATCGACTGTTCAG -ACGGAATGCCAATCGACTGCATAG -ACGGAATGCCAATCGACTGACAAG -ACGGAATGCCAATCGACTAAGCAG -ACGGAATGCCAATCGACTCGTCAA -ACGGAATGCCAATCGACTGCTGAA -ACGGAATGCCAATCGACTAGTACG -ACGGAATGCCAATCGACTATCCGA -ACGGAATGCCAATCGACTATGGGA -ACGGAATGCCAATCGACTGTGCAA -ACGGAATGCCAATCGACTGAGGAA -ACGGAATGCCAATCGACTCAGGTA -ACGGAATGCCAATCGACTGACTCT -ACGGAATGCCAATCGACTAGTCCT -ACGGAATGCCAATCGACTTAAGCC -ACGGAATGCCAATCGACTATAGCC -ACGGAATGCCAATCGACTTAACCG -ACGGAATGCCAATCGACTATGCCA -ACGGAATGCCAAGCATACGGAAAC -ACGGAATGCCAAGCATACAACACC -ACGGAATGCCAAGCATACATCGAG -ACGGAATGCCAAGCATACCTCCTT -ACGGAATGCCAAGCATACCCTGTT -ACGGAATGCCAAGCATACCGGTTT -ACGGAATGCCAAGCATACGTGGTT -ACGGAATGCCAAGCATACGCCTTT -ACGGAATGCCAAGCATACGGTCTT -ACGGAATGCCAAGCATACACGCTT -ACGGAATGCCAAGCATACAGCGTT -ACGGAATGCCAAGCATACTTCGTC -ACGGAATGCCAAGCATACTCTCTC -ACGGAATGCCAAGCATACTGGATC -ACGGAATGCCAAGCATACCACTTC -ACGGAATGCCAAGCATACGTACTC -ACGGAATGCCAAGCATACGATGTC -ACGGAATGCCAAGCATACACAGTC -ACGGAATGCCAAGCATACTTGCTG -ACGGAATGCCAAGCATACTCCATG -ACGGAATGCCAAGCATACTGTGTG -ACGGAATGCCAAGCATACCTAGTG -ACGGAATGCCAAGCATACCATCTG -ACGGAATGCCAAGCATACGAGTTG -ACGGAATGCCAAGCATACAGACTG -ACGGAATGCCAAGCATACTCGGTA -ACGGAATGCCAAGCATACTGCCTA -ACGGAATGCCAAGCATACCCACTA -ACGGAATGCCAAGCATACGGAGTA -ACGGAATGCCAAGCATACTCGTCT -ACGGAATGCCAAGCATACTGCACT -ACGGAATGCCAAGCATACCTGACT -ACGGAATGCCAAGCATACCAACCT -ACGGAATGCCAAGCATACGCTACT -ACGGAATGCCAAGCATACGGATCT -ACGGAATGCCAAGCATACAAGGCT -ACGGAATGCCAAGCATACTCAACC -ACGGAATGCCAAGCATACTGTTCC -ACGGAATGCCAAGCATACATTCCC -ACGGAATGCCAAGCATACTTCTCG -ACGGAATGCCAAGCATACTAGACG -ACGGAATGCCAAGCATACGTAACG -ACGGAATGCCAAGCATACACTTCG -ACGGAATGCCAAGCATACTACGCA -ACGGAATGCCAAGCATACCTTGCA -ACGGAATGCCAAGCATACCGAACA -ACGGAATGCCAAGCATACCAGTCA -ACGGAATGCCAAGCATACGATCCA -ACGGAATGCCAAGCATACACGACA -ACGGAATGCCAAGCATACAGCTCA -ACGGAATGCCAAGCATACTCACGT -ACGGAATGCCAAGCATACCGTAGT -ACGGAATGCCAAGCATACGTCAGT -ACGGAATGCCAAGCATACGAAGGT -ACGGAATGCCAAGCATACAACCGT -ACGGAATGCCAAGCATACTTGTGC -ACGGAATGCCAAGCATACCTAAGC -ACGGAATGCCAAGCATACACTAGC -ACGGAATGCCAAGCATACAGATGC -ACGGAATGCCAAGCATACTGAAGG -ACGGAATGCCAAGCATACCAATGG -ACGGAATGCCAAGCATACATGAGG -ACGGAATGCCAAGCATACAATGGG -ACGGAATGCCAAGCATACTCCTGA -ACGGAATGCCAAGCATACTAGCGA -ACGGAATGCCAAGCATACCACAGA -ACGGAATGCCAAGCATACGCAAGA -ACGGAATGCCAAGCATACGGTTGA -ACGGAATGCCAAGCATACTCCGAT -ACGGAATGCCAAGCATACTGGCAT -ACGGAATGCCAAGCATACCGAGAT -ACGGAATGCCAAGCATACTACCAC -ACGGAATGCCAAGCATACCAGAAC -ACGGAATGCCAAGCATACGTCTAC -ACGGAATGCCAAGCATACACGTAC -ACGGAATGCCAAGCATACAGTGAC -ACGGAATGCCAAGCATACCTGTAG -ACGGAATGCCAAGCATACCCTAAG -ACGGAATGCCAAGCATACGTTCAG -ACGGAATGCCAAGCATACGCATAG -ACGGAATGCCAAGCATACGACAAG -ACGGAATGCCAAGCATACAAGCAG -ACGGAATGCCAAGCATACCGTCAA -ACGGAATGCCAAGCATACGCTGAA -ACGGAATGCCAAGCATACAGTACG -ACGGAATGCCAAGCATACATCCGA -ACGGAATGCCAAGCATACATGGGA -ACGGAATGCCAAGCATACGTGCAA -ACGGAATGCCAAGCATACGAGGAA -ACGGAATGCCAAGCATACCAGGTA -ACGGAATGCCAAGCATACGACTCT -ACGGAATGCCAAGCATACAGTCCT -ACGGAATGCCAAGCATACTAAGCC -ACGGAATGCCAAGCATACATAGCC -ACGGAATGCCAAGCATACTAACCG -ACGGAATGCCAAGCATACATGCCA -ACGGAATGCCAAGCACTTGGAAAC -ACGGAATGCCAAGCACTTAACACC -ACGGAATGCCAAGCACTTATCGAG -ACGGAATGCCAAGCACTTCTCCTT -ACGGAATGCCAAGCACTTCCTGTT -ACGGAATGCCAAGCACTTCGGTTT -ACGGAATGCCAAGCACTTGTGGTT -ACGGAATGCCAAGCACTTGCCTTT -ACGGAATGCCAAGCACTTGGTCTT -ACGGAATGCCAAGCACTTACGCTT -ACGGAATGCCAAGCACTTAGCGTT -ACGGAATGCCAAGCACTTTTCGTC -ACGGAATGCCAAGCACTTTCTCTC -ACGGAATGCCAAGCACTTTGGATC -ACGGAATGCCAAGCACTTCACTTC -ACGGAATGCCAAGCACTTGTACTC -ACGGAATGCCAAGCACTTGATGTC -ACGGAATGCCAAGCACTTACAGTC -ACGGAATGCCAAGCACTTTTGCTG -ACGGAATGCCAAGCACTTTCCATG -ACGGAATGCCAAGCACTTTGTGTG -ACGGAATGCCAAGCACTTCTAGTG -ACGGAATGCCAAGCACTTCATCTG -ACGGAATGCCAAGCACTTGAGTTG -ACGGAATGCCAAGCACTTAGACTG -ACGGAATGCCAAGCACTTTCGGTA -ACGGAATGCCAAGCACTTTGCCTA -ACGGAATGCCAAGCACTTCCACTA -ACGGAATGCCAAGCACTTGGAGTA -ACGGAATGCCAAGCACTTTCGTCT -ACGGAATGCCAAGCACTTTGCACT -ACGGAATGCCAAGCACTTCTGACT -ACGGAATGCCAAGCACTTCAACCT -ACGGAATGCCAAGCACTTGCTACT -ACGGAATGCCAAGCACTTGGATCT -ACGGAATGCCAAGCACTTAAGGCT -ACGGAATGCCAAGCACTTTCAACC -ACGGAATGCCAAGCACTTTGTTCC -ACGGAATGCCAAGCACTTATTCCC -ACGGAATGCCAAGCACTTTTCTCG -ACGGAATGCCAAGCACTTTAGACG -ACGGAATGCCAAGCACTTGTAACG -ACGGAATGCCAAGCACTTACTTCG -ACGGAATGCCAAGCACTTTACGCA -ACGGAATGCCAAGCACTTCTTGCA -ACGGAATGCCAAGCACTTCGAACA -ACGGAATGCCAAGCACTTCAGTCA -ACGGAATGCCAAGCACTTGATCCA -ACGGAATGCCAAGCACTTACGACA -ACGGAATGCCAAGCACTTAGCTCA -ACGGAATGCCAAGCACTTTCACGT -ACGGAATGCCAAGCACTTCGTAGT -ACGGAATGCCAAGCACTTGTCAGT -ACGGAATGCCAAGCACTTGAAGGT -ACGGAATGCCAAGCACTTAACCGT -ACGGAATGCCAAGCACTTTTGTGC -ACGGAATGCCAAGCACTTCTAAGC -ACGGAATGCCAAGCACTTACTAGC -ACGGAATGCCAAGCACTTAGATGC -ACGGAATGCCAAGCACTTTGAAGG -ACGGAATGCCAAGCACTTCAATGG -ACGGAATGCCAAGCACTTATGAGG -ACGGAATGCCAAGCACTTAATGGG -ACGGAATGCCAAGCACTTTCCTGA -ACGGAATGCCAAGCACTTTAGCGA -ACGGAATGCCAAGCACTTCACAGA -ACGGAATGCCAAGCACTTGCAAGA -ACGGAATGCCAAGCACTTGGTTGA -ACGGAATGCCAAGCACTTTCCGAT -ACGGAATGCCAAGCACTTTGGCAT -ACGGAATGCCAAGCACTTCGAGAT -ACGGAATGCCAAGCACTTTACCAC -ACGGAATGCCAAGCACTTCAGAAC -ACGGAATGCCAAGCACTTGTCTAC -ACGGAATGCCAAGCACTTACGTAC -ACGGAATGCCAAGCACTTAGTGAC -ACGGAATGCCAAGCACTTCTGTAG -ACGGAATGCCAAGCACTTCCTAAG -ACGGAATGCCAAGCACTTGTTCAG -ACGGAATGCCAAGCACTTGCATAG -ACGGAATGCCAAGCACTTGACAAG -ACGGAATGCCAAGCACTTAAGCAG -ACGGAATGCCAAGCACTTCGTCAA -ACGGAATGCCAAGCACTTGCTGAA -ACGGAATGCCAAGCACTTAGTACG -ACGGAATGCCAAGCACTTATCCGA -ACGGAATGCCAAGCACTTATGGGA -ACGGAATGCCAAGCACTTGTGCAA -ACGGAATGCCAAGCACTTGAGGAA -ACGGAATGCCAAGCACTTCAGGTA -ACGGAATGCCAAGCACTTGACTCT -ACGGAATGCCAAGCACTTAGTCCT -ACGGAATGCCAAGCACTTTAAGCC -ACGGAATGCCAAGCACTTATAGCC -ACGGAATGCCAAGCACTTTAACCG -ACGGAATGCCAAGCACTTATGCCA -ACGGAATGCCAAACACGAGGAAAC -ACGGAATGCCAAACACGAAACACC -ACGGAATGCCAAACACGAATCGAG -ACGGAATGCCAAACACGACTCCTT -ACGGAATGCCAAACACGACCTGTT -ACGGAATGCCAAACACGACGGTTT -ACGGAATGCCAAACACGAGTGGTT -ACGGAATGCCAAACACGAGCCTTT -ACGGAATGCCAAACACGAGGTCTT -ACGGAATGCCAAACACGAACGCTT -ACGGAATGCCAAACACGAAGCGTT -ACGGAATGCCAAACACGATTCGTC -ACGGAATGCCAAACACGATCTCTC -ACGGAATGCCAAACACGATGGATC -ACGGAATGCCAAACACGACACTTC -ACGGAATGCCAAACACGAGTACTC -ACGGAATGCCAAACACGAGATGTC -ACGGAATGCCAAACACGAACAGTC -ACGGAATGCCAAACACGATTGCTG -ACGGAATGCCAAACACGATCCATG -ACGGAATGCCAAACACGATGTGTG -ACGGAATGCCAAACACGACTAGTG -ACGGAATGCCAAACACGACATCTG -ACGGAATGCCAAACACGAGAGTTG -ACGGAATGCCAAACACGAAGACTG -ACGGAATGCCAAACACGATCGGTA -ACGGAATGCCAAACACGATGCCTA -ACGGAATGCCAAACACGACCACTA -ACGGAATGCCAAACACGAGGAGTA -ACGGAATGCCAAACACGATCGTCT -ACGGAATGCCAAACACGATGCACT -ACGGAATGCCAAACACGACTGACT -ACGGAATGCCAAACACGACAACCT -ACGGAATGCCAAACACGAGCTACT -ACGGAATGCCAAACACGAGGATCT -ACGGAATGCCAAACACGAAAGGCT -ACGGAATGCCAAACACGATCAACC -ACGGAATGCCAAACACGATGTTCC -ACGGAATGCCAAACACGAATTCCC -ACGGAATGCCAAACACGATTCTCG -ACGGAATGCCAAACACGATAGACG -ACGGAATGCCAAACACGAGTAACG -ACGGAATGCCAAACACGAACTTCG -ACGGAATGCCAAACACGATACGCA -ACGGAATGCCAAACACGACTTGCA -ACGGAATGCCAAACACGACGAACA -ACGGAATGCCAAACACGACAGTCA -ACGGAATGCCAAACACGAGATCCA -ACGGAATGCCAAACACGAACGACA -ACGGAATGCCAAACACGAAGCTCA -ACGGAATGCCAAACACGATCACGT -ACGGAATGCCAAACACGACGTAGT -ACGGAATGCCAAACACGAGTCAGT -ACGGAATGCCAAACACGAGAAGGT -ACGGAATGCCAAACACGAAACCGT -ACGGAATGCCAAACACGATTGTGC -ACGGAATGCCAAACACGACTAAGC -ACGGAATGCCAAACACGAACTAGC -ACGGAATGCCAAACACGAAGATGC -ACGGAATGCCAAACACGATGAAGG -ACGGAATGCCAAACACGACAATGG -ACGGAATGCCAAACACGAATGAGG -ACGGAATGCCAAACACGAAATGGG -ACGGAATGCCAAACACGATCCTGA -ACGGAATGCCAAACACGATAGCGA -ACGGAATGCCAAACACGACACAGA -ACGGAATGCCAAACACGAGCAAGA -ACGGAATGCCAAACACGAGGTTGA -ACGGAATGCCAAACACGATCCGAT -ACGGAATGCCAAACACGATGGCAT -ACGGAATGCCAAACACGACGAGAT -ACGGAATGCCAAACACGATACCAC -ACGGAATGCCAAACACGACAGAAC -ACGGAATGCCAAACACGAGTCTAC -ACGGAATGCCAAACACGAACGTAC -ACGGAATGCCAAACACGAAGTGAC -ACGGAATGCCAAACACGACTGTAG -ACGGAATGCCAAACACGACCTAAG -ACGGAATGCCAAACACGAGTTCAG -ACGGAATGCCAAACACGAGCATAG -ACGGAATGCCAAACACGAGACAAG -ACGGAATGCCAAACACGAAAGCAG -ACGGAATGCCAAACACGACGTCAA -ACGGAATGCCAAACACGAGCTGAA -ACGGAATGCCAAACACGAAGTACG -ACGGAATGCCAAACACGAATCCGA -ACGGAATGCCAAACACGAATGGGA -ACGGAATGCCAAACACGAGTGCAA -ACGGAATGCCAAACACGAGAGGAA -ACGGAATGCCAAACACGACAGGTA -ACGGAATGCCAAACACGAGACTCT -ACGGAATGCCAAACACGAAGTCCT -ACGGAATGCCAAACACGATAAGCC -ACGGAATGCCAAACACGAATAGCC -ACGGAATGCCAAACACGATAACCG -ACGGAATGCCAAACACGAATGCCA -ACGGAATGCCAATCACAGGGAAAC -ACGGAATGCCAATCACAGAACACC -ACGGAATGCCAATCACAGATCGAG -ACGGAATGCCAATCACAGCTCCTT -ACGGAATGCCAATCACAGCCTGTT -ACGGAATGCCAATCACAGCGGTTT -ACGGAATGCCAATCACAGGTGGTT -ACGGAATGCCAATCACAGGCCTTT -ACGGAATGCCAATCACAGGGTCTT -ACGGAATGCCAATCACAGACGCTT -ACGGAATGCCAATCACAGAGCGTT -ACGGAATGCCAATCACAGTTCGTC -ACGGAATGCCAATCACAGTCTCTC -ACGGAATGCCAATCACAGTGGATC -ACGGAATGCCAATCACAGCACTTC -ACGGAATGCCAATCACAGGTACTC -ACGGAATGCCAATCACAGGATGTC -ACGGAATGCCAATCACAGACAGTC -ACGGAATGCCAATCACAGTTGCTG -ACGGAATGCCAATCACAGTCCATG -ACGGAATGCCAATCACAGTGTGTG -ACGGAATGCCAATCACAGCTAGTG -ACGGAATGCCAATCACAGCATCTG -ACGGAATGCCAATCACAGGAGTTG -ACGGAATGCCAATCACAGAGACTG -ACGGAATGCCAATCACAGTCGGTA -ACGGAATGCCAATCACAGTGCCTA -ACGGAATGCCAATCACAGCCACTA -ACGGAATGCCAATCACAGGGAGTA -ACGGAATGCCAATCACAGTCGTCT -ACGGAATGCCAATCACAGTGCACT -ACGGAATGCCAATCACAGCTGACT -ACGGAATGCCAATCACAGCAACCT -ACGGAATGCCAATCACAGGCTACT -ACGGAATGCCAATCACAGGGATCT -ACGGAATGCCAATCACAGAAGGCT -ACGGAATGCCAATCACAGTCAACC -ACGGAATGCCAATCACAGTGTTCC -ACGGAATGCCAATCACAGATTCCC -ACGGAATGCCAATCACAGTTCTCG -ACGGAATGCCAATCACAGTAGACG -ACGGAATGCCAATCACAGGTAACG -ACGGAATGCCAATCACAGACTTCG -ACGGAATGCCAATCACAGTACGCA -ACGGAATGCCAATCACAGCTTGCA -ACGGAATGCCAATCACAGCGAACA -ACGGAATGCCAATCACAGCAGTCA -ACGGAATGCCAATCACAGGATCCA -ACGGAATGCCAATCACAGACGACA -ACGGAATGCCAATCACAGAGCTCA -ACGGAATGCCAATCACAGTCACGT -ACGGAATGCCAATCACAGCGTAGT -ACGGAATGCCAATCACAGGTCAGT -ACGGAATGCCAATCACAGGAAGGT -ACGGAATGCCAATCACAGAACCGT -ACGGAATGCCAATCACAGTTGTGC -ACGGAATGCCAATCACAGCTAAGC -ACGGAATGCCAATCACAGACTAGC -ACGGAATGCCAATCACAGAGATGC -ACGGAATGCCAATCACAGTGAAGG -ACGGAATGCCAATCACAGCAATGG -ACGGAATGCCAATCACAGATGAGG -ACGGAATGCCAATCACAGAATGGG -ACGGAATGCCAATCACAGTCCTGA -ACGGAATGCCAATCACAGTAGCGA -ACGGAATGCCAATCACAGCACAGA -ACGGAATGCCAATCACAGGCAAGA -ACGGAATGCCAATCACAGGGTTGA -ACGGAATGCCAATCACAGTCCGAT -ACGGAATGCCAATCACAGTGGCAT -ACGGAATGCCAATCACAGCGAGAT -ACGGAATGCCAATCACAGTACCAC -ACGGAATGCCAATCACAGCAGAAC -ACGGAATGCCAATCACAGGTCTAC -ACGGAATGCCAATCACAGACGTAC -ACGGAATGCCAATCACAGAGTGAC -ACGGAATGCCAATCACAGCTGTAG -ACGGAATGCCAATCACAGCCTAAG -ACGGAATGCCAATCACAGGTTCAG -ACGGAATGCCAATCACAGGCATAG -ACGGAATGCCAATCACAGGACAAG -ACGGAATGCCAATCACAGAAGCAG -ACGGAATGCCAATCACAGCGTCAA -ACGGAATGCCAATCACAGGCTGAA -ACGGAATGCCAATCACAGAGTACG -ACGGAATGCCAATCACAGATCCGA -ACGGAATGCCAATCACAGATGGGA -ACGGAATGCCAATCACAGGTGCAA -ACGGAATGCCAATCACAGGAGGAA -ACGGAATGCCAATCACAGCAGGTA -ACGGAATGCCAATCACAGGACTCT -ACGGAATGCCAATCACAGAGTCCT -ACGGAATGCCAATCACAGTAAGCC -ACGGAATGCCAATCACAGATAGCC -ACGGAATGCCAATCACAGTAACCG -ACGGAATGCCAATCACAGATGCCA -ACGGAATGCCAACCAGATGGAAAC -ACGGAATGCCAACCAGATAACACC -ACGGAATGCCAACCAGATATCGAG -ACGGAATGCCAACCAGATCTCCTT -ACGGAATGCCAACCAGATCCTGTT -ACGGAATGCCAACCAGATCGGTTT -ACGGAATGCCAACCAGATGTGGTT -ACGGAATGCCAACCAGATGCCTTT -ACGGAATGCCAACCAGATGGTCTT -ACGGAATGCCAACCAGATACGCTT -ACGGAATGCCAACCAGATAGCGTT -ACGGAATGCCAACCAGATTTCGTC -ACGGAATGCCAACCAGATTCTCTC -ACGGAATGCCAACCAGATTGGATC -ACGGAATGCCAACCAGATCACTTC -ACGGAATGCCAACCAGATGTACTC -ACGGAATGCCAACCAGATGATGTC -ACGGAATGCCAACCAGATACAGTC -ACGGAATGCCAACCAGATTTGCTG -ACGGAATGCCAACCAGATTCCATG -ACGGAATGCCAACCAGATTGTGTG -ACGGAATGCCAACCAGATCTAGTG -ACGGAATGCCAACCAGATCATCTG -ACGGAATGCCAACCAGATGAGTTG -ACGGAATGCCAACCAGATAGACTG -ACGGAATGCCAACCAGATTCGGTA -ACGGAATGCCAACCAGATTGCCTA -ACGGAATGCCAACCAGATCCACTA -ACGGAATGCCAACCAGATGGAGTA -ACGGAATGCCAACCAGATTCGTCT -ACGGAATGCCAACCAGATTGCACT -ACGGAATGCCAACCAGATCTGACT -ACGGAATGCCAACCAGATCAACCT -ACGGAATGCCAACCAGATGCTACT -ACGGAATGCCAACCAGATGGATCT -ACGGAATGCCAACCAGATAAGGCT -ACGGAATGCCAACCAGATTCAACC -ACGGAATGCCAACCAGATTGTTCC -ACGGAATGCCAACCAGATATTCCC -ACGGAATGCCAACCAGATTTCTCG -ACGGAATGCCAACCAGATTAGACG -ACGGAATGCCAACCAGATGTAACG -ACGGAATGCCAACCAGATACTTCG -ACGGAATGCCAACCAGATTACGCA -ACGGAATGCCAACCAGATCTTGCA -ACGGAATGCCAACCAGATCGAACA -ACGGAATGCCAACCAGATCAGTCA -ACGGAATGCCAACCAGATGATCCA -ACGGAATGCCAACCAGATACGACA -ACGGAATGCCAACCAGATAGCTCA -ACGGAATGCCAACCAGATTCACGT -ACGGAATGCCAACCAGATCGTAGT -ACGGAATGCCAACCAGATGTCAGT -ACGGAATGCCAACCAGATGAAGGT -ACGGAATGCCAACCAGATAACCGT -ACGGAATGCCAACCAGATTTGTGC -ACGGAATGCCAACCAGATCTAAGC -ACGGAATGCCAACCAGATACTAGC -ACGGAATGCCAACCAGATAGATGC -ACGGAATGCCAACCAGATTGAAGG -ACGGAATGCCAACCAGATCAATGG -ACGGAATGCCAACCAGATATGAGG -ACGGAATGCCAACCAGATAATGGG -ACGGAATGCCAACCAGATTCCTGA -ACGGAATGCCAACCAGATTAGCGA -ACGGAATGCCAACCAGATCACAGA -ACGGAATGCCAACCAGATGCAAGA -ACGGAATGCCAACCAGATGGTTGA -ACGGAATGCCAACCAGATTCCGAT -ACGGAATGCCAACCAGATTGGCAT -ACGGAATGCCAACCAGATCGAGAT -ACGGAATGCCAACCAGATTACCAC -ACGGAATGCCAACCAGATCAGAAC -ACGGAATGCCAACCAGATGTCTAC -ACGGAATGCCAACCAGATACGTAC -ACGGAATGCCAACCAGATAGTGAC -ACGGAATGCCAACCAGATCTGTAG -ACGGAATGCCAACCAGATCCTAAG -ACGGAATGCCAACCAGATGTTCAG -ACGGAATGCCAACCAGATGCATAG -ACGGAATGCCAACCAGATGACAAG -ACGGAATGCCAACCAGATAAGCAG -ACGGAATGCCAACCAGATCGTCAA -ACGGAATGCCAACCAGATGCTGAA -ACGGAATGCCAACCAGATAGTACG -ACGGAATGCCAACCAGATATCCGA -ACGGAATGCCAACCAGATATGGGA -ACGGAATGCCAACCAGATGTGCAA -ACGGAATGCCAACCAGATGAGGAA -ACGGAATGCCAACCAGATCAGGTA -ACGGAATGCCAACCAGATGACTCT -ACGGAATGCCAACCAGATAGTCCT -ACGGAATGCCAACCAGATTAAGCC -ACGGAATGCCAACCAGATATAGCC -ACGGAATGCCAACCAGATTAACCG -ACGGAATGCCAACCAGATATGCCA -ACGGAATGCCAAACAACGGGAAAC -ACGGAATGCCAAACAACGAACACC -ACGGAATGCCAAACAACGATCGAG -ACGGAATGCCAAACAACGCTCCTT -ACGGAATGCCAAACAACGCCTGTT -ACGGAATGCCAAACAACGCGGTTT -ACGGAATGCCAAACAACGGTGGTT -ACGGAATGCCAAACAACGGCCTTT -ACGGAATGCCAAACAACGGGTCTT -ACGGAATGCCAAACAACGACGCTT -ACGGAATGCCAAACAACGAGCGTT -ACGGAATGCCAAACAACGTTCGTC -ACGGAATGCCAAACAACGTCTCTC -ACGGAATGCCAAACAACGTGGATC -ACGGAATGCCAAACAACGCACTTC -ACGGAATGCCAAACAACGGTACTC -ACGGAATGCCAAACAACGGATGTC -ACGGAATGCCAAACAACGACAGTC -ACGGAATGCCAAACAACGTTGCTG -ACGGAATGCCAAACAACGTCCATG -ACGGAATGCCAAACAACGTGTGTG -ACGGAATGCCAAACAACGCTAGTG -ACGGAATGCCAAACAACGCATCTG -ACGGAATGCCAAACAACGGAGTTG -ACGGAATGCCAAACAACGAGACTG -ACGGAATGCCAAACAACGTCGGTA -ACGGAATGCCAAACAACGTGCCTA -ACGGAATGCCAAACAACGCCACTA -ACGGAATGCCAAACAACGGGAGTA -ACGGAATGCCAAACAACGTCGTCT -ACGGAATGCCAAACAACGTGCACT -ACGGAATGCCAAACAACGCTGACT -ACGGAATGCCAAACAACGCAACCT -ACGGAATGCCAAACAACGGCTACT -ACGGAATGCCAAACAACGGGATCT -ACGGAATGCCAAACAACGAAGGCT -ACGGAATGCCAAACAACGTCAACC -ACGGAATGCCAAACAACGTGTTCC -ACGGAATGCCAAACAACGATTCCC -ACGGAATGCCAAACAACGTTCTCG -ACGGAATGCCAAACAACGTAGACG -ACGGAATGCCAAACAACGGTAACG -ACGGAATGCCAAACAACGACTTCG -ACGGAATGCCAAACAACGTACGCA -ACGGAATGCCAAACAACGCTTGCA -ACGGAATGCCAAACAACGCGAACA -ACGGAATGCCAAACAACGCAGTCA -ACGGAATGCCAAACAACGGATCCA -ACGGAATGCCAAACAACGACGACA -ACGGAATGCCAAACAACGAGCTCA -ACGGAATGCCAAACAACGTCACGT -ACGGAATGCCAAACAACGCGTAGT -ACGGAATGCCAAACAACGGTCAGT -ACGGAATGCCAAACAACGGAAGGT -ACGGAATGCCAAACAACGAACCGT -ACGGAATGCCAAACAACGTTGTGC -ACGGAATGCCAAACAACGCTAAGC -ACGGAATGCCAAACAACGACTAGC -ACGGAATGCCAAACAACGAGATGC -ACGGAATGCCAAACAACGTGAAGG -ACGGAATGCCAAACAACGCAATGG -ACGGAATGCCAAACAACGATGAGG -ACGGAATGCCAAACAACGAATGGG -ACGGAATGCCAAACAACGTCCTGA -ACGGAATGCCAAACAACGTAGCGA -ACGGAATGCCAAACAACGCACAGA -ACGGAATGCCAAACAACGGCAAGA -ACGGAATGCCAAACAACGGGTTGA -ACGGAATGCCAAACAACGTCCGAT -ACGGAATGCCAAACAACGTGGCAT -ACGGAATGCCAAACAACGCGAGAT -ACGGAATGCCAAACAACGTACCAC -ACGGAATGCCAAACAACGCAGAAC -ACGGAATGCCAAACAACGGTCTAC -ACGGAATGCCAAACAACGACGTAC -ACGGAATGCCAAACAACGAGTGAC -ACGGAATGCCAAACAACGCTGTAG -ACGGAATGCCAAACAACGCCTAAG -ACGGAATGCCAAACAACGGTTCAG -ACGGAATGCCAAACAACGGCATAG -ACGGAATGCCAAACAACGGACAAG -ACGGAATGCCAAACAACGAAGCAG -ACGGAATGCCAAACAACGCGTCAA -ACGGAATGCCAAACAACGGCTGAA -ACGGAATGCCAAACAACGAGTACG -ACGGAATGCCAAACAACGATCCGA -ACGGAATGCCAAACAACGATGGGA -ACGGAATGCCAAACAACGGTGCAA -ACGGAATGCCAAACAACGGAGGAA -ACGGAATGCCAAACAACGCAGGTA -ACGGAATGCCAAACAACGGACTCT -ACGGAATGCCAAACAACGAGTCCT -ACGGAATGCCAAACAACGTAAGCC -ACGGAATGCCAAACAACGATAGCC -ACGGAATGCCAAACAACGTAACCG -ACGGAATGCCAAACAACGATGCCA -ACGGAATGCCAATCAAGCGGAAAC -ACGGAATGCCAATCAAGCAACACC -ACGGAATGCCAATCAAGCATCGAG -ACGGAATGCCAATCAAGCCTCCTT -ACGGAATGCCAATCAAGCCCTGTT -ACGGAATGCCAATCAAGCCGGTTT -ACGGAATGCCAATCAAGCGTGGTT -ACGGAATGCCAATCAAGCGCCTTT -ACGGAATGCCAATCAAGCGGTCTT -ACGGAATGCCAATCAAGCACGCTT -ACGGAATGCCAATCAAGCAGCGTT -ACGGAATGCCAATCAAGCTTCGTC -ACGGAATGCCAATCAAGCTCTCTC -ACGGAATGCCAATCAAGCTGGATC -ACGGAATGCCAATCAAGCCACTTC -ACGGAATGCCAATCAAGCGTACTC -ACGGAATGCCAATCAAGCGATGTC -ACGGAATGCCAATCAAGCACAGTC -ACGGAATGCCAATCAAGCTTGCTG -ACGGAATGCCAATCAAGCTCCATG -ACGGAATGCCAATCAAGCTGTGTG -ACGGAATGCCAATCAAGCCTAGTG -ACGGAATGCCAATCAAGCCATCTG -ACGGAATGCCAATCAAGCGAGTTG -ACGGAATGCCAATCAAGCAGACTG -ACGGAATGCCAATCAAGCTCGGTA -ACGGAATGCCAATCAAGCTGCCTA -ACGGAATGCCAATCAAGCCCACTA -ACGGAATGCCAATCAAGCGGAGTA -ACGGAATGCCAATCAAGCTCGTCT -ACGGAATGCCAATCAAGCTGCACT -ACGGAATGCCAATCAAGCCTGACT -ACGGAATGCCAATCAAGCCAACCT -ACGGAATGCCAATCAAGCGCTACT -ACGGAATGCCAATCAAGCGGATCT -ACGGAATGCCAATCAAGCAAGGCT -ACGGAATGCCAATCAAGCTCAACC -ACGGAATGCCAATCAAGCTGTTCC -ACGGAATGCCAATCAAGCATTCCC -ACGGAATGCCAATCAAGCTTCTCG -ACGGAATGCCAATCAAGCTAGACG -ACGGAATGCCAATCAAGCGTAACG -ACGGAATGCCAATCAAGCACTTCG -ACGGAATGCCAATCAAGCTACGCA -ACGGAATGCCAATCAAGCCTTGCA -ACGGAATGCCAATCAAGCCGAACA -ACGGAATGCCAATCAAGCCAGTCA -ACGGAATGCCAATCAAGCGATCCA -ACGGAATGCCAATCAAGCACGACA -ACGGAATGCCAATCAAGCAGCTCA -ACGGAATGCCAATCAAGCTCACGT -ACGGAATGCCAATCAAGCCGTAGT -ACGGAATGCCAATCAAGCGTCAGT -ACGGAATGCCAATCAAGCGAAGGT -ACGGAATGCCAATCAAGCAACCGT -ACGGAATGCCAATCAAGCTTGTGC -ACGGAATGCCAATCAAGCCTAAGC -ACGGAATGCCAATCAAGCACTAGC -ACGGAATGCCAATCAAGCAGATGC -ACGGAATGCCAATCAAGCTGAAGG -ACGGAATGCCAATCAAGCCAATGG -ACGGAATGCCAATCAAGCATGAGG -ACGGAATGCCAATCAAGCAATGGG -ACGGAATGCCAATCAAGCTCCTGA -ACGGAATGCCAATCAAGCTAGCGA -ACGGAATGCCAATCAAGCCACAGA -ACGGAATGCCAATCAAGCGCAAGA -ACGGAATGCCAATCAAGCGGTTGA -ACGGAATGCCAATCAAGCTCCGAT -ACGGAATGCCAATCAAGCTGGCAT -ACGGAATGCCAATCAAGCCGAGAT -ACGGAATGCCAATCAAGCTACCAC -ACGGAATGCCAATCAAGCCAGAAC -ACGGAATGCCAATCAAGCGTCTAC -ACGGAATGCCAATCAAGCACGTAC -ACGGAATGCCAATCAAGCAGTGAC -ACGGAATGCCAATCAAGCCTGTAG -ACGGAATGCCAATCAAGCCCTAAG -ACGGAATGCCAATCAAGCGTTCAG -ACGGAATGCCAATCAAGCGCATAG -ACGGAATGCCAATCAAGCGACAAG -ACGGAATGCCAATCAAGCAAGCAG -ACGGAATGCCAATCAAGCCGTCAA -ACGGAATGCCAATCAAGCGCTGAA -ACGGAATGCCAATCAAGCAGTACG -ACGGAATGCCAATCAAGCATCCGA -ACGGAATGCCAATCAAGCATGGGA -ACGGAATGCCAATCAAGCGTGCAA -ACGGAATGCCAATCAAGCGAGGAA -ACGGAATGCCAATCAAGCCAGGTA -ACGGAATGCCAATCAAGCGACTCT -ACGGAATGCCAATCAAGCAGTCCT -ACGGAATGCCAATCAAGCTAAGCC -ACGGAATGCCAATCAAGCATAGCC -ACGGAATGCCAATCAAGCTAACCG -ACGGAATGCCAATCAAGCATGCCA -ACGGAATGCCAACGTTCAGGAAAC -ACGGAATGCCAACGTTCAAACACC -ACGGAATGCCAACGTTCAATCGAG -ACGGAATGCCAACGTTCACTCCTT -ACGGAATGCCAACGTTCACCTGTT -ACGGAATGCCAACGTTCACGGTTT -ACGGAATGCCAACGTTCAGTGGTT -ACGGAATGCCAACGTTCAGCCTTT -ACGGAATGCCAACGTTCAGGTCTT -ACGGAATGCCAACGTTCAACGCTT -ACGGAATGCCAACGTTCAAGCGTT -ACGGAATGCCAACGTTCATTCGTC -ACGGAATGCCAACGTTCATCTCTC -ACGGAATGCCAACGTTCATGGATC -ACGGAATGCCAACGTTCACACTTC -ACGGAATGCCAACGTTCAGTACTC -ACGGAATGCCAACGTTCAGATGTC -ACGGAATGCCAACGTTCAACAGTC -ACGGAATGCCAACGTTCATTGCTG -ACGGAATGCCAACGTTCATCCATG -ACGGAATGCCAACGTTCATGTGTG -ACGGAATGCCAACGTTCACTAGTG -ACGGAATGCCAACGTTCACATCTG -ACGGAATGCCAACGTTCAGAGTTG -ACGGAATGCCAACGTTCAAGACTG -ACGGAATGCCAACGTTCATCGGTA -ACGGAATGCCAACGTTCATGCCTA -ACGGAATGCCAACGTTCACCACTA -ACGGAATGCCAACGTTCAGGAGTA -ACGGAATGCCAACGTTCATCGTCT -ACGGAATGCCAACGTTCATGCACT -ACGGAATGCCAACGTTCACTGACT -ACGGAATGCCAACGTTCACAACCT -ACGGAATGCCAACGTTCAGCTACT -ACGGAATGCCAACGTTCAGGATCT -ACGGAATGCCAACGTTCAAAGGCT -ACGGAATGCCAACGTTCATCAACC -ACGGAATGCCAACGTTCATGTTCC -ACGGAATGCCAACGTTCAATTCCC -ACGGAATGCCAACGTTCATTCTCG -ACGGAATGCCAACGTTCATAGACG -ACGGAATGCCAACGTTCAGTAACG -ACGGAATGCCAACGTTCAACTTCG -ACGGAATGCCAACGTTCATACGCA -ACGGAATGCCAACGTTCACTTGCA -ACGGAATGCCAACGTTCACGAACA -ACGGAATGCCAACGTTCACAGTCA -ACGGAATGCCAACGTTCAGATCCA -ACGGAATGCCAACGTTCAACGACA -ACGGAATGCCAACGTTCAAGCTCA -ACGGAATGCCAACGTTCATCACGT -ACGGAATGCCAACGTTCACGTAGT -ACGGAATGCCAACGTTCAGTCAGT -ACGGAATGCCAACGTTCAGAAGGT -ACGGAATGCCAACGTTCAAACCGT -ACGGAATGCCAACGTTCATTGTGC -ACGGAATGCCAACGTTCACTAAGC -ACGGAATGCCAACGTTCAACTAGC -ACGGAATGCCAACGTTCAAGATGC -ACGGAATGCCAACGTTCATGAAGG -ACGGAATGCCAACGTTCACAATGG -ACGGAATGCCAACGTTCAATGAGG -ACGGAATGCCAACGTTCAAATGGG -ACGGAATGCCAACGTTCATCCTGA -ACGGAATGCCAACGTTCATAGCGA -ACGGAATGCCAACGTTCACACAGA -ACGGAATGCCAACGTTCAGCAAGA -ACGGAATGCCAACGTTCAGGTTGA -ACGGAATGCCAACGTTCATCCGAT -ACGGAATGCCAACGTTCATGGCAT -ACGGAATGCCAACGTTCACGAGAT -ACGGAATGCCAACGTTCATACCAC -ACGGAATGCCAACGTTCACAGAAC -ACGGAATGCCAACGTTCAGTCTAC -ACGGAATGCCAACGTTCAACGTAC -ACGGAATGCCAACGTTCAAGTGAC -ACGGAATGCCAACGTTCACTGTAG -ACGGAATGCCAACGTTCACCTAAG -ACGGAATGCCAACGTTCAGTTCAG -ACGGAATGCCAACGTTCAGCATAG -ACGGAATGCCAACGTTCAGACAAG -ACGGAATGCCAACGTTCAAAGCAG -ACGGAATGCCAACGTTCACGTCAA -ACGGAATGCCAACGTTCAGCTGAA -ACGGAATGCCAACGTTCAAGTACG -ACGGAATGCCAACGTTCAATCCGA -ACGGAATGCCAACGTTCAATGGGA -ACGGAATGCCAACGTTCAGTGCAA -ACGGAATGCCAACGTTCAGAGGAA -ACGGAATGCCAACGTTCACAGGTA -ACGGAATGCCAACGTTCAGACTCT -ACGGAATGCCAACGTTCAAGTCCT -ACGGAATGCCAACGTTCATAAGCC -ACGGAATGCCAACGTTCAATAGCC -ACGGAATGCCAACGTTCATAACCG -ACGGAATGCCAACGTTCAATGCCA -ACGGAATGCCAAAGTCGTGGAAAC -ACGGAATGCCAAAGTCGTAACACC -ACGGAATGCCAAAGTCGTATCGAG -ACGGAATGCCAAAGTCGTCTCCTT -ACGGAATGCCAAAGTCGTCCTGTT -ACGGAATGCCAAAGTCGTCGGTTT -ACGGAATGCCAAAGTCGTGTGGTT -ACGGAATGCCAAAGTCGTGCCTTT -ACGGAATGCCAAAGTCGTGGTCTT -ACGGAATGCCAAAGTCGTACGCTT -ACGGAATGCCAAAGTCGTAGCGTT -ACGGAATGCCAAAGTCGTTTCGTC -ACGGAATGCCAAAGTCGTTCTCTC -ACGGAATGCCAAAGTCGTTGGATC -ACGGAATGCCAAAGTCGTCACTTC -ACGGAATGCCAAAGTCGTGTACTC -ACGGAATGCCAAAGTCGTGATGTC -ACGGAATGCCAAAGTCGTACAGTC -ACGGAATGCCAAAGTCGTTTGCTG -ACGGAATGCCAAAGTCGTTCCATG -ACGGAATGCCAAAGTCGTTGTGTG -ACGGAATGCCAAAGTCGTCTAGTG -ACGGAATGCCAAAGTCGTCATCTG -ACGGAATGCCAAAGTCGTGAGTTG -ACGGAATGCCAAAGTCGTAGACTG -ACGGAATGCCAAAGTCGTTCGGTA -ACGGAATGCCAAAGTCGTTGCCTA -ACGGAATGCCAAAGTCGTCCACTA -ACGGAATGCCAAAGTCGTGGAGTA -ACGGAATGCCAAAGTCGTTCGTCT -ACGGAATGCCAAAGTCGTTGCACT -ACGGAATGCCAAAGTCGTCTGACT -ACGGAATGCCAAAGTCGTCAACCT -ACGGAATGCCAAAGTCGTGCTACT -ACGGAATGCCAAAGTCGTGGATCT -ACGGAATGCCAAAGTCGTAAGGCT -ACGGAATGCCAAAGTCGTTCAACC -ACGGAATGCCAAAGTCGTTGTTCC -ACGGAATGCCAAAGTCGTATTCCC -ACGGAATGCCAAAGTCGTTTCTCG -ACGGAATGCCAAAGTCGTTAGACG -ACGGAATGCCAAAGTCGTGTAACG -ACGGAATGCCAAAGTCGTACTTCG -ACGGAATGCCAAAGTCGTTACGCA -ACGGAATGCCAAAGTCGTCTTGCA -ACGGAATGCCAAAGTCGTCGAACA -ACGGAATGCCAAAGTCGTCAGTCA -ACGGAATGCCAAAGTCGTGATCCA -ACGGAATGCCAAAGTCGTACGACA -ACGGAATGCCAAAGTCGTAGCTCA -ACGGAATGCCAAAGTCGTTCACGT -ACGGAATGCCAAAGTCGTCGTAGT -ACGGAATGCCAAAGTCGTGTCAGT -ACGGAATGCCAAAGTCGTGAAGGT -ACGGAATGCCAAAGTCGTAACCGT -ACGGAATGCCAAAGTCGTTTGTGC -ACGGAATGCCAAAGTCGTCTAAGC -ACGGAATGCCAAAGTCGTACTAGC -ACGGAATGCCAAAGTCGTAGATGC -ACGGAATGCCAAAGTCGTTGAAGG -ACGGAATGCCAAAGTCGTCAATGG -ACGGAATGCCAAAGTCGTATGAGG -ACGGAATGCCAAAGTCGTAATGGG -ACGGAATGCCAAAGTCGTTCCTGA -ACGGAATGCCAAAGTCGTTAGCGA -ACGGAATGCCAAAGTCGTCACAGA -ACGGAATGCCAAAGTCGTGCAAGA -ACGGAATGCCAAAGTCGTGGTTGA -ACGGAATGCCAAAGTCGTTCCGAT -ACGGAATGCCAAAGTCGTTGGCAT -ACGGAATGCCAAAGTCGTCGAGAT -ACGGAATGCCAAAGTCGTTACCAC -ACGGAATGCCAAAGTCGTCAGAAC -ACGGAATGCCAAAGTCGTGTCTAC -ACGGAATGCCAAAGTCGTACGTAC -ACGGAATGCCAAAGTCGTAGTGAC -ACGGAATGCCAAAGTCGTCTGTAG -ACGGAATGCCAAAGTCGTCCTAAG -ACGGAATGCCAAAGTCGTGTTCAG -ACGGAATGCCAAAGTCGTGCATAG -ACGGAATGCCAAAGTCGTGACAAG -ACGGAATGCCAAAGTCGTAAGCAG -ACGGAATGCCAAAGTCGTCGTCAA -ACGGAATGCCAAAGTCGTGCTGAA -ACGGAATGCCAAAGTCGTAGTACG -ACGGAATGCCAAAGTCGTATCCGA -ACGGAATGCCAAAGTCGTATGGGA -ACGGAATGCCAAAGTCGTGTGCAA -ACGGAATGCCAAAGTCGTGAGGAA -ACGGAATGCCAAAGTCGTCAGGTA -ACGGAATGCCAAAGTCGTGACTCT -ACGGAATGCCAAAGTCGTAGTCCT -ACGGAATGCCAAAGTCGTTAAGCC -ACGGAATGCCAAAGTCGTATAGCC -ACGGAATGCCAAAGTCGTTAACCG -ACGGAATGCCAAAGTCGTATGCCA -ACGGAATGCCAAAGTGTCGGAAAC -ACGGAATGCCAAAGTGTCAACACC -ACGGAATGCCAAAGTGTCATCGAG -ACGGAATGCCAAAGTGTCCTCCTT -ACGGAATGCCAAAGTGTCCCTGTT -ACGGAATGCCAAAGTGTCCGGTTT -ACGGAATGCCAAAGTGTCGTGGTT -ACGGAATGCCAAAGTGTCGCCTTT -ACGGAATGCCAAAGTGTCGGTCTT -ACGGAATGCCAAAGTGTCACGCTT -ACGGAATGCCAAAGTGTCAGCGTT -ACGGAATGCCAAAGTGTCTTCGTC -ACGGAATGCCAAAGTGTCTCTCTC -ACGGAATGCCAAAGTGTCTGGATC -ACGGAATGCCAAAGTGTCCACTTC -ACGGAATGCCAAAGTGTCGTACTC -ACGGAATGCCAAAGTGTCGATGTC -ACGGAATGCCAAAGTGTCACAGTC -ACGGAATGCCAAAGTGTCTTGCTG -ACGGAATGCCAAAGTGTCTCCATG -ACGGAATGCCAAAGTGTCTGTGTG -ACGGAATGCCAAAGTGTCCTAGTG -ACGGAATGCCAAAGTGTCCATCTG -ACGGAATGCCAAAGTGTCGAGTTG -ACGGAATGCCAAAGTGTCAGACTG -ACGGAATGCCAAAGTGTCTCGGTA -ACGGAATGCCAAAGTGTCTGCCTA -ACGGAATGCCAAAGTGTCCCACTA -ACGGAATGCCAAAGTGTCGGAGTA -ACGGAATGCCAAAGTGTCTCGTCT -ACGGAATGCCAAAGTGTCTGCACT -ACGGAATGCCAAAGTGTCCTGACT -ACGGAATGCCAAAGTGTCCAACCT -ACGGAATGCCAAAGTGTCGCTACT -ACGGAATGCCAAAGTGTCGGATCT -ACGGAATGCCAAAGTGTCAAGGCT -ACGGAATGCCAAAGTGTCTCAACC -ACGGAATGCCAAAGTGTCTGTTCC -ACGGAATGCCAAAGTGTCATTCCC -ACGGAATGCCAAAGTGTCTTCTCG -ACGGAATGCCAAAGTGTCTAGACG -ACGGAATGCCAAAGTGTCGTAACG -ACGGAATGCCAAAGTGTCACTTCG -ACGGAATGCCAAAGTGTCTACGCA -ACGGAATGCCAAAGTGTCCTTGCA -ACGGAATGCCAAAGTGTCCGAACA -ACGGAATGCCAAAGTGTCCAGTCA -ACGGAATGCCAAAGTGTCGATCCA -ACGGAATGCCAAAGTGTCACGACA -ACGGAATGCCAAAGTGTCAGCTCA -ACGGAATGCCAAAGTGTCTCACGT -ACGGAATGCCAAAGTGTCCGTAGT -ACGGAATGCCAAAGTGTCGTCAGT -ACGGAATGCCAAAGTGTCGAAGGT -ACGGAATGCCAAAGTGTCAACCGT -ACGGAATGCCAAAGTGTCTTGTGC -ACGGAATGCCAAAGTGTCCTAAGC -ACGGAATGCCAAAGTGTCACTAGC -ACGGAATGCCAAAGTGTCAGATGC -ACGGAATGCCAAAGTGTCTGAAGG -ACGGAATGCCAAAGTGTCCAATGG -ACGGAATGCCAAAGTGTCATGAGG -ACGGAATGCCAAAGTGTCAATGGG -ACGGAATGCCAAAGTGTCTCCTGA -ACGGAATGCCAAAGTGTCTAGCGA -ACGGAATGCCAAAGTGTCCACAGA -ACGGAATGCCAAAGTGTCGCAAGA -ACGGAATGCCAAAGTGTCGGTTGA -ACGGAATGCCAAAGTGTCTCCGAT -ACGGAATGCCAAAGTGTCTGGCAT -ACGGAATGCCAAAGTGTCCGAGAT -ACGGAATGCCAAAGTGTCTACCAC -ACGGAATGCCAAAGTGTCCAGAAC -ACGGAATGCCAAAGTGTCGTCTAC -ACGGAATGCCAAAGTGTCACGTAC -ACGGAATGCCAAAGTGTCAGTGAC -ACGGAATGCCAAAGTGTCCTGTAG -ACGGAATGCCAAAGTGTCCCTAAG -ACGGAATGCCAAAGTGTCGTTCAG -ACGGAATGCCAAAGTGTCGCATAG -ACGGAATGCCAAAGTGTCGACAAG -ACGGAATGCCAAAGTGTCAAGCAG -ACGGAATGCCAAAGTGTCCGTCAA -ACGGAATGCCAAAGTGTCGCTGAA -ACGGAATGCCAAAGTGTCAGTACG -ACGGAATGCCAAAGTGTCATCCGA -ACGGAATGCCAAAGTGTCATGGGA -ACGGAATGCCAAAGTGTCGTGCAA -ACGGAATGCCAAAGTGTCGAGGAA -ACGGAATGCCAAAGTGTCCAGGTA -ACGGAATGCCAAAGTGTCGACTCT -ACGGAATGCCAAAGTGTCAGTCCT -ACGGAATGCCAAAGTGTCTAAGCC -ACGGAATGCCAAAGTGTCATAGCC -ACGGAATGCCAAAGTGTCTAACCG -ACGGAATGCCAAAGTGTCATGCCA -ACGGAATGCCAAGGTGAAGGAAAC -ACGGAATGCCAAGGTGAAAACACC -ACGGAATGCCAAGGTGAAATCGAG -ACGGAATGCCAAGGTGAACTCCTT -ACGGAATGCCAAGGTGAACCTGTT -ACGGAATGCCAAGGTGAACGGTTT -ACGGAATGCCAAGGTGAAGTGGTT -ACGGAATGCCAAGGTGAAGCCTTT -ACGGAATGCCAAGGTGAAGGTCTT -ACGGAATGCCAAGGTGAAACGCTT -ACGGAATGCCAAGGTGAAAGCGTT -ACGGAATGCCAAGGTGAATTCGTC -ACGGAATGCCAAGGTGAATCTCTC -ACGGAATGCCAAGGTGAATGGATC -ACGGAATGCCAAGGTGAACACTTC -ACGGAATGCCAAGGTGAAGTACTC -ACGGAATGCCAAGGTGAAGATGTC -ACGGAATGCCAAGGTGAAACAGTC -ACGGAATGCCAAGGTGAATTGCTG -ACGGAATGCCAAGGTGAATCCATG -ACGGAATGCCAAGGTGAATGTGTG -ACGGAATGCCAAGGTGAACTAGTG -ACGGAATGCCAAGGTGAACATCTG -ACGGAATGCCAAGGTGAAGAGTTG -ACGGAATGCCAAGGTGAAAGACTG -ACGGAATGCCAAGGTGAATCGGTA -ACGGAATGCCAAGGTGAATGCCTA -ACGGAATGCCAAGGTGAACCACTA -ACGGAATGCCAAGGTGAAGGAGTA -ACGGAATGCCAAGGTGAATCGTCT -ACGGAATGCCAAGGTGAATGCACT -ACGGAATGCCAAGGTGAACTGACT -ACGGAATGCCAAGGTGAACAACCT -ACGGAATGCCAAGGTGAAGCTACT -ACGGAATGCCAAGGTGAAGGATCT -ACGGAATGCCAAGGTGAAAAGGCT -ACGGAATGCCAAGGTGAATCAACC -ACGGAATGCCAAGGTGAATGTTCC -ACGGAATGCCAAGGTGAAATTCCC -ACGGAATGCCAAGGTGAATTCTCG -ACGGAATGCCAAGGTGAATAGACG -ACGGAATGCCAAGGTGAAGTAACG -ACGGAATGCCAAGGTGAAACTTCG -ACGGAATGCCAAGGTGAATACGCA -ACGGAATGCCAAGGTGAACTTGCA -ACGGAATGCCAAGGTGAACGAACA -ACGGAATGCCAAGGTGAACAGTCA -ACGGAATGCCAAGGTGAAGATCCA -ACGGAATGCCAAGGTGAAACGACA -ACGGAATGCCAAGGTGAAAGCTCA -ACGGAATGCCAAGGTGAATCACGT -ACGGAATGCCAAGGTGAACGTAGT -ACGGAATGCCAAGGTGAAGTCAGT -ACGGAATGCCAAGGTGAAGAAGGT -ACGGAATGCCAAGGTGAAAACCGT -ACGGAATGCCAAGGTGAATTGTGC -ACGGAATGCCAAGGTGAACTAAGC -ACGGAATGCCAAGGTGAAACTAGC -ACGGAATGCCAAGGTGAAAGATGC -ACGGAATGCCAAGGTGAATGAAGG -ACGGAATGCCAAGGTGAACAATGG -ACGGAATGCCAAGGTGAAATGAGG -ACGGAATGCCAAGGTGAAAATGGG -ACGGAATGCCAAGGTGAATCCTGA -ACGGAATGCCAAGGTGAATAGCGA -ACGGAATGCCAAGGTGAACACAGA -ACGGAATGCCAAGGTGAAGCAAGA -ACGGAATGCCAAGGTGAAGGTTGA -ACGGAATGCCAAGGTGAATCCGAT -ACGGAATGCCAAGGTGAATGGCAT -ACGGAATGCCAAGGTGAACGAGAT -ACGGAATGCCAAGGTGAATACCAC -ACGGAATGCCAAGGTGAACAGAAC -ACGGAATGCCAAGGTGAAGTCTAC -ACGGAATGCCAAGGTGAAACGTAC -ACGGAATGCCAAGGTGAAAGTGAC -ACGGAATGCCAAGGTGAACTGTAG -ACGGAATGCCAAGGTGAACCTAAG -ACGGAATGCCAAGGTGAAGTTCAG -ACGGAATGCCAAGGTGAAGCATAG -ACGGAATGCCAAGGTGAAGACAAG -ACGGAATGCCAAGGTGAAAAGCAG -ACGGAATGCCAAGGTGAACGTCAA -ACGGAATGCCAAGGTGAAGCTGAA -ACGGAATGCCAAGGTGAAAGTACG -ACGGAATGCCAAGGTGAAATCCGA -ACGGAATGCCAAGGTGAAATGGGA -ACGGAATGCCAAGGTGAAGTGCAA -ACGGAATGCCAAGGTGAAGAGGAA -ACGGAATGCCAAGGTGAACAGGTA -ACGGAATGCCAAGGTGAAGACTCT -ACGGAATGCCAAGGTGAAAGTCCT -ACGGAATGCCAAGGTGAATAAGCC -ACGGAATGCCAAGGTGAAATAGCC -ACGGAATGCCAAGGTGAATAACCG -ACGGAATGCCAAGGTGAAATGCCA -ACGGAATGCCAACGTAACGGAAAC -ACGGAATGCCAACGTAACAACACC -ACGGAATGCCAACGTAACATCGAG -ACGGAATGCCAACGTAACCTCCTT -ACGGAATGCCAACGTAACCCTGTT -ACGGAATGCCAACGTAACCGGTTT -ACGGAATGCCAACGTAACGTGGTT -ACGGAATGCCAACGTAACGCCTTT -ACGGAATGCCAACGTAACGGTCTT -ACGGAATGCCAACGTAACACGCTT -ACGGAATGCCAACGTAACAGCGTT -ACGGAATGCCAACGTAACTTCGTC -ACGGAATGCCAACGTAACTCTCTC -ACGGAATGCCAACGTAACTGGATC -ACGGAATGCCAACGTAACCACTTC -ACGGAATGCCAACGTAACGTACTC -ACGGAATGCCAACGTAACGATGTC -ACGGAATGCCAACGTAACACAGTC -ACGGAATGCCAACGTAACTTGCTG -ACGGAATGCCAACGTAACTCCATG -ACGGAATGCCAACGTAACTGTGTG -ACGGAATGCCAACGTAACCTAGTG -ACGGAATGCCAACGTAACCATCTG -ACGGAATGCCAACGTAACGAGTTG -ACGGAATGCCAACGTAACAGACTG -ACGGAATGCCAACGTAACTCGGTA -ACGGAATGCCAACGTAACTGCCTA -ACGGAATGCCAACGTAACCCACTA -ACGGAATGCCAACGTAACGGAGTA -ACGGAATGCCAACGTAACTCGTCT -ACGGAATGCCAACGTAACTGCACT -ACGGAATGCCAACGTAACCTGACT -ACGGAATGCCAACGTAACCAACCT -ACGGAATGCCAACGTAACGCTACT -ACGGAATGCCAACGTAACGGATCT -ACGGAATGCCAACGTAACAAGGCT -ACGGAATGCCAACGTAACTCAACC -ACGGAATGCCAACGTAACTGTTCC -ACGGAATGCCAACGTAACATTCCC -ACGGAATGCCAACGTAACTTCTCG -ACGGAATGCCAACGTAACTAGACG -ACGGAATGCCAACGTAACGTAACG -ACGGAATGCCAACGTAACACTTCG -ACGGAATGCCAACGTAACTACGCA -ACGGAATGCCAACGTAACCTTGCA -ACGGAATGCCAACGTAACCGAACA -ACGGAATGCCAACGTAACCAGTCA -ACGGAATGCCAACGTAACGATCCA -ACGGAATGCCAACGTAACACGACA -ACGGAATGCCAACGTAACAGCTCA -ACGGAATGCCAACGTAACTCACGT -ACGGAATGCCAACGTAACCGTAGT -ACGGAATGCCAACGTAACGTCAGT -ACGGAATGCCAACGTAACGAAGGT -ACGGAATGCCAACGTAACAACCGT -ACGGAATGCCAACGTAACTTGTGC -ACGGAATGCCAACGTAACCTAAGC -ACGGAATGCCAACGTAACACTAGC -ACGGAATGCCAACGTAACAGATGC -ACGGAATGCCAACGTAACTGAAGG -ACGGAATGCCAACGTAACCAATGG -ACGGAATGCCAACGTAACATGAGG -ACGGAATGCCAACGTAACAATGGG -ACGGAATGCCAACGTAACTCCTGA -ACGGAATGCCAACGTAACTAGCGA -ACGGAATGCCAACGTAACCACAGA -ACGGAATGCCAACGTAACGCAAGA -ACGGAATGCCAACGTAACGGTTGA -ACGGAATGCCAACGTAACTCCGAT -ACGGAATGCCAACGTAACTGGCAT -ACGGAATGCCAACGTAACCGAGAT -ACGGAATGCCAACGTAACTACCAC -ACGGAATGCCAACGTAACCAGAAC -ACGGAATGCCAACGTAACGTCTAC -ACGGAATGCCAACGTAACACGTAC -ACGGAATGCCAACGTAACAGTGAC -ACGGAATGCCAACGTAACCTGTAG -ACGGAATGCCAACGTAACCCTAAG -ACGGAATGCCAACGTAACGTTCAG -ACGGAATGCCAACGTAACGCATAG -ACGGAATGCCAACGTAACGACAAG -ACGGAATGCCAACGTAACAAGCAG -ACGGAATGCCAACGTAACCGTCAA -ACGGAATGCCAACGTAACGCTGAA -ACGGAATGCCAACGTAACAGTACG -ACGGAATGCCAACGTAACATCCGA -ACGGAATGCCAACGTAACATGGGA -ACGGAATGCCAACGTAACGTGCAA -ACGGAATGCCAACGTAACGAGGAA -ACGGAATGCCAACGTAACCAGGTA -ACGGAATGCCAACGTAACGACTCT -ACGGAATGCCAACGTAACAGTCCT -ACGGAATGCCAACGTAACTAAGCC -ACGGAATGCCAACGTAACATAGCC -ACGGAATGCCAACGTAACTAACCG -ACGGAATGCCAACGTAACATGCCA -ACGGAATGCCAATGCTTGGGAAAC -ACGGAATGCCAATGCTTGAACACC -ACGGAATGCCAATGCTTGATCGAG -ACGGAATGCCAATGCTTGCTCCTT -ACGGAATGCCAATGCTTGCCTGTT -ACGGAATGCCAATGCTTGCGGTTT -ACGGAATGCCAATGCTTGGTGGTT -ACGGAATGCCAATGCTTGGCCTTT -ACGGAATGCCAATGCTTGGGTCTT -ACGGAATGCCAATGCTTGACGCTT -ACGGAATGCCAATGCTTGAGCGTT -ACGGAATGCCAATGCTTGTTCGTC -ACGGAATGCCAATGCTTGTCTCTC -ACGGAATGCCAATGCTTGTGGATC -ACGGAATGCCAATGCTTGCACTTC -ACGGAATGCCAATGCTTGGTACTC -ACGGAATGCCAATGCTTGGATGTC -ACGGAATGCCAATGCTTGACAGTC -ACGGAATGCCAATGCTTGTTGCTG -ACGGAATGCCAATGCTTGTCCATG -ACGGAATGCCAATGCTTGTGTGTG -ACGGAATGCCAATGCTTGCTAGTG -ACGGAATGCCAATGCTTGCATCTG -ACGGAATGCCAATGCTTGGAGTTG -ACGGAATGCCAATGCTTGAGACTG -ACGGAATGCCAATGCTTGTCGGTA -ACGGAATGCCAATGCTTGTGCCTA -ACGGAATGCCAATGCTTGCCACTA -ACGGAATGCCAATGCTTGGGAGTA -ACGGAATGCCAATGCTTGTCGTCT -ACGGAATGCCAATGCTTGTGCACT -ACGGAATGCCAATGCTTGCTGACT -ACGGAATGCCAATGCTTGCAACCT -ACGGAATGCCAATGCTTGGCTACT -ACGGAATGCCAATGCTTGGGATCT -ACGGAATGCCAATGCTTGAAGGCT -ACGGAATGCCAATGCTTGTCAACC -ACGGAATGCCAATGCTTGTGTTCC -ACGGAATGCCAATGCTTGATTCCC -ACGGAATGCCAATGCTTGTTCTCG -ACGGAATGCCAATGCTTGTAGACG -ACGGAATGCCAATGCTTGGTAACG -ACGGAATGCCAATGCTTGACTTCG -ACGGAATGCCAATGCTTGTACGCA -ACGGAATGCCAATGCTTGCTTGCA -ACGGAATGCCAATGCTTGCGAACA -ACGGAATGCCAATGCTTGCAGTCA -ACGGAATGCCAATGCTTGGATCCA -ACGGAATGCCAATGCTTGACGACA -ACGGAATGCCAATGCTTGAGCTCA -ACGGAATGCCAATGCTTGTCACGT -ACGGAATGCCAATGCTTGCGTAGT -ACGGAATGCCAATGCTTGGTCAGT -ACGGAATGCCAATGCTTGGAAGGT -ACGGAATGCCAATGCTTGAACCGT -ACGGAATGCCAATGCTTGTTGTGC -ACGGAATGCCAATGCTTGCTAAGC -ACGGAATGCCAATGCTTGACTAGC -ACGGAATGCCAATGCTTGAGATGC -ACGGAATGCCAATGCTTGTGAAGG -ACGGAATGCCAATGCTTGCAATGG -ACGGAATGCCAATGCTTGATGAGG -ACGGAATGCCAATGCTTGAATGGG -ACGGAATGCCAATGCTTGTCCTGA -ACGGAATGCCAATGCTTGTAGCGA -ACGGAATGCCAATGCTTGCACAGA -ACGGAATGCCAATGCTTGGCAAGA -ACGGAATGCCAATGCTTGGGTTGA -ACGGAATGCCAATGCTTGTCCGAT -ACGGAATGCCAATGCTTGTGGCAT -ACGGAATGCCAATGCTTGCGAGAT -ACGGAATGCCAATGCTTGTACCAC -ACGGAATGCCAATGCTTGCAGAAC -ACGGAATGCCAATGCTTGGTCTAC -ACGGAATGCCAATGCTTGACGTAC -ACGGAATGCCAATGCTTGAGTGAC -ACGGAATGCCAATGCTTGCTGTAG -ACGGAATGCCAATGCTTGCCTAAG -ACGGAATGCCAATGCTTGGTTCAG -ACGGAATGCCAATGCTTGGCATAG -ACGGAATGCCAATGCTTGGACAAG -ACGGAATGCCAATGCTTGAAGCAG -ACGGAATGCCAATGCTTGCGTCAA -ACGGAATGCCAATGCTTGGCTGAA -ACGGAATGCCAATGCTTGAGTACG -ACGGAATGCCAATGCTTGATCCGA -ACGGAATGCCAATGCTTGATGGGA -ACGGAATGCCAATGCTTGGTGCAA -ACGGAATGCCAATGCTTGGAGGAA -ACGGAATGCCAATGCTTGCAGGTA -ACGGAATGCCAATGCTTGGACTCT -ACGGAATGCCAATGCTTGAGTCCT -ACGGAATGCCAATGCTTGTAAGCC -ACGGAATGCCAATGCTTGATAGCC -ACGGAATGCCAATGCTTGTAACCG -ACGGAATGCCAATGCTTGATGCCA -ACGGAATGCCAAAGCCTAGGAAAC -ACGGAATGCCAAAGCCTAAACACC -ACGGAATGCCAAAGCCTAATCGAG -ACGGAATGCCAAAGCCTACTCCTT -ACGGAATGCCAAAGCCTACCTGTT -ACGGAATGCCAAAGCCTACGGTTT -ACGGAATGCCAAAGCCTAGTGGTT -ACGGAATGCCAAAGCCTAGCCTTT -ACGGAATGCCAAAGCCTAGGTCTT -ACGGAATGCCAAAGCCTAACGCTT -ACGGAATGCCAAAGCCTAAGCGTT -ACGGAATGCCAAAGCCTATTCGTC -ACGGAATGCCAAAGCCTATCTCTC -ACGGAATGCCAAAGCCTATGGATC -ACGGAATGCCAAAGCCTACACTTC -ACGGAATGCCAAAGCCTAGTACTC -ACGGAATGCCAAAGCCTAGATGTC -ACGGAATGCCAAAGCCTAACAGTC -ACGGAATGCCAAAGCCTATTGCTG -ACGGAATGCCAAAGCCTATCCATG -ACGGAATGCCAAAGCCTATGTGTG -ACGGAATGCCAAAGCCTACTAGTG -ACGGAATGCCAAAGCCTACATCTG -ACGGAATGCCAAAGCCTAGAGTTG -ACGGAATGCCAAAGCCTAAGACTG -ACGGAATGCCAAAGCCTATCGGTA -ACGGAATGCCAAAGCCTATGCCTA -ACGGAATGCCAAAGCCTACCACTA -ACGGAATGCCAAAGCCTAGGAGTA -ACGGAATGCCAAAGCCTATCGTCT -ACGGAATGCCAAAGCCTATGCACT -ACGGAATGCCAAAGCCTACTGACT -ACGGAATGCCAAAGCCTACAACCT -ACGGAATGCCAAAGCCTAGCTACT -ACGGAATGCCAAAGCCTAGGATCT -ACGGAATGCCAAAGCCTAAAGGCT -ACGGAATGCCAAAGCCTATCAACC -ACGGAATGCCAAAGCCTATGTTCC -ACGGAATGCCAAAGCCTAATTCCC -ACGGAATGCCAAAGCCTATTCTCG -ACGGAATGCCAAAGCCTATAGACG -ACGGAATGCCAAAGCCTAGTAACG -ACGGAATGCCAAAGCCTAACTTCG -ACGGAATGCCAAAGCCTATACGCA -ACGGAATGCCAAAGCCTACTTGCA -ACGGAATGCCAAAGCCTACGAACA -ACGGAATGCCAAAGCCTACAGTCA -ACGGAATGCCAAAGCCTAGATCCA -ACGGAATGCCAAAGCCTAACGACA -ACGGAATGCCAAAGCCTAAGCTCA -ACGGAATGCCAAAGCCTATCACGT -ACGGAATGCCAAAGCCTACGTAGT -ACGGAATGCCAAAGCCTAGTCAGT -ACGGAATGCCAAAGCCTAGAAGGT -ACGGAATGCCAAAGCCTAAACCGT -ACGGAATGCCAAAGCCTATTGTGC -ACGGAATGCCAAAGCCTACTAAGC -ACGGAATGCCAAAGCCTAACTAGC -ACGGAATGCCAAAGCCTAAGATGC -ACGGAATGCCAAAGCCTATGAAGG -ACGGAATGCCAAAGCCTACAATGG -ACGGAATGCCAAAGCCTAATGAGG -ACGGAATGCCAAAGCCTAAATGGG -ACGGAATGCCAAAGCCTATCCTGA -ACGGAATGCCAAAGCCTATAGCGA -ACGGAATGCCAAAGCCTACACAGA -ACGGAATGCCAAAGCCTAGCAAGA -ACGGAATGCCAAAGCCTAGGTTGA -ACGGAATGCCAAAGCCTATCCGAT -ACGGAATGCCAAAGCCTATGGCAT -ACGGAATGCCAAAGCCTACGAGAT -ACGGAATGCCAAAGCCTATACCAC -ACGGAATGCCAAAGCCTACAGAAC -ACGGAATGCCAAAGCCTAGTCTAC -ACGGAATGCCAAAGCCTAACGTAC -ACGGAATGCCAAAGCCTAAGTGAC -ACGGAATGCCAAAGCCTACTGTAG -ACGGAATGCCAAAGCCTACCTAAG -ACGGAATGCCAAAGCCTAGTTCAG -ACGGAATGCCAAAGCCTAGCATAG -ACGGAATGCCAAAGCCTAGACAAG -ACGGAATGCCAAAGCCTAAAGCAG -ACGGAATGCCAAAGCCTACGTCAA -ACGGAATGCCAAAGCCTAGCTGAA -ACGGAATGCCAAAGCCTAAGTACG -ACGGAATGCCAAAGCCTAATCCGA -ACGGAATGCCAAAGCCTAATGGGA -ACGGAATGCCAAAGCCTAGTGCAA -ACGGAATGCCAAAGCCTAGAGGAA -ACGGAATGCCAAAGCCTACAGGTA -ACGGAATGCCAAAGCCTAGACTCT -ACGGAATGCCAAAGCCTAAGTCCT -ACGGAATGCCAAAGCCTATAAGCC -ACGGAATGCCAAAGCCTAATAGCC -ACGGAATGCCAAAGCCTATAACCG -ACGGAATGCCAAAGCCTAATGCCA -ACGGAATGCCAAAGCACTGGAAAC -ACGGAATGCCAAAGCACTAACACC -ACGGAATGCCAAAGCACTATCGAG -ACGGAATGCCAAAGCACTCTCCTT -ACGGAATGCCAAAGCACTCCTGTT -ACGGAATGCCAAAGCACTCGGTTT -ACGGAATGCCAAAGCACTGTGGTT -ACGGAATGCCAAAGCACTGCCTTT -ACGGAATGCCAAAGCACTGGTCTT -ACGGAATGCCAAAGCACTACGCTT -ACGGAATGCCAAAGCACTAGCGTT -ACGGAATGCCAAAGCACTTTCGTC -ACGGAATGCCAAAGCACTTCTCTC -ACGGAATGCCAAAGCACTTGGATC -ACGGAATGCCAAAGCACTCACTTC -ACGGAATGCCAAAGCACTGTACTC -ACGGAATGCCAAAGCACTGATGTC -ACGGAATGCCAAAGCACTACAGTC -ACGGAATGCCAAAGCACTTTGCTG -ACGGAATGCCAAAGCACTTCCATG -ACGGAATGCCAAAGCACTTGTGTG -ACGGAATGCCAAAGCACTCTAGTG -ACGGAATGCCAAAGCACTCATCTG -ACGGAATGCCAAAGCACTGAGTTG -ACGGAATGCCAAAGCACTAGACTG -ACGGAATGCCAAAGCACTTCGGTA -ACGGAATGCCAAAGCACTTGCCTA -ACGGAATGCCAAAGCACTCCACTA -ACGGAATGCCAAAGCACTGGAGTA -ACGGAATGCCAAAGCACTTCGTCT -ACGGAATGCCAAAGCACTTGCACT -ACGGAATGCCAAAGCACTCTGACT -ACGGAATGCCAAAGCACTCAACCT -ACGGAATGCCAAAGCACTGCTACT -ACGGAATGCCAAAGCACTGGATCT -ACGGAATGCCAAAGCACTAAGGCT -ACGGAATGCCAAAGCACTTCAACC -ACGGAATGCCAAAGCACTTGTTCC -ACGGAATGCCAAAGCACTATTCCC -ACGGAATGCCAAAGCACTTTCTCG -ACGGAATGCCAAAGCACTTAGACG -ACGGAATGCCAAAGCACTGTAACG -ACGGAATGCCAAAGCACTACTTCG -ACGGAATGCCAAAGCACTTACGCA -ACGGAATGCCAAAGCACTCTTGCA -ACGGAATGCCAAAGCACTCGAACA -ACGGAATGCCAAAGCACTCAGTCA -ACGGAATGCCAAAGCACTGATCCA -ACGGAATGCCAAAGCACTACGACA -ACGGAATGCCAAAGCACTAGCTCA -ACGGAATGCCAAAGCACTTCACGT -ACGGAATGCCAAAGCACTCGTAGT -ACGGAATGCCAAAGCACTGTCAGT -ACGGAATGCCAAAGCACTGAAGGT -ACGGAATGCCAAAGCACTAACCGT -ACGGAATGCCAAAGCACTTTGTGC -ACGGAATGCCAAAGCACTCTAAGC -ACGGAATGCCAAAGCACTACTAGC -ACGGAATGCCAAAGCACTAGATGC -ACGGAATGCCAAAGCACTTGAAGG -ACGGAATGCCAAAGCACTCAATGG -ACGGAATGCCAAAGCACTATGAGG -ACGGAATGCCAAAGCACTAATGGG -ACGGAATGCCAAAGCACTTCCTGA -ACGGAATGCCAAAGCACTTAGCGA -ACGGAATGCCAAAGCACTCACAGA -ACGGAATGCCAAAGCACTGCAAGA -ACGGAATGCCAAAGCACTGGTTGA -ACGGAATGCCAAAGCACTTCCGAT -ACGGAATGCCAAAGCACTTGGCAT -ACGGAATGCCAAAGCACTCGAGAT -ACGGAATGCCAAAGCACTTACCAC -ACGGAATGCCAAAGCACTCAGAAC -ACGGAATGCCAAAGCACTGTCTAC -ACGGAATGCCAAAGCACTACGTAC -ACGGAATGCCAAAGCACTAGTGAC -ACGGAATGCCAAAGCACTCTGTAG -ACGGAATGCCAAAGCACTCCTAAG -ACGGAATGCCAAAGCACTGTTCAG -ACGGAATGCCAAAGCACTGCATAG -ACGGAATGCCAAAGCACTGACAAG -ACGGAATGCCAAAGCACTAAGCAG -ACGGAATGCCAAAGCACTCGTCAA -ACGGAATGCCAAAGCACTGCTGAA -ACGGAATGCCAAAGCACTAGTACG -ACGGAATGCCAAAGCACTATCCGA -ACGGAATGCCAAAGCACTATGGGA -ACGGAATGCCAAAGCACTGTGCAA -ACGGAATGCCAAAGCACTGAGGAA -ACGGAATGCCAAAGCACTCAGGTA -ACGGAATGCCAAAGCACTGACTCT -ACGGAATGCCAAAGCACTAGTCCT -ACGGAATGCCAAAGCACTTAAGCC -ACGGAATGCCAAAGCACTATAGCC -ACGGAATGCCAAAGCACTTAACCG -ACGGAATGCCAAAGCACTATGCCA -ACGGAATGCCAATGCAGAGGAAAC -ACGGAATGCCAATGCAGAAACACC -ACGGAATGCCAATGCAGAATCGAG -ACGGAATGCCAATGCAGACTCCTT -ACGGAATGCCAATGCAGACCTGTT -ACGGAATGCCAATGCAGACGGTTT -ACGGAATGCCAATGCAGAGTGGTT -ACGGAATGCCAATGCAGAGCCTTT -ACGGAATGCCAATGCAGAGGTCTT -ACGGAATGCCAATGCAGAACGCTT -ACGGAATGCCAATGCAGAAGCGTT -ACGGAATGCCAATGCAGATTCGTC -ACGGAATGCCAATGCAGATCTCTC -ACGGAATGCCAATGCAGATGGATC -ACGGAATGCCAATGCAGACACTTC -ACGGAATGCCAATGCAGAGTACTC -ACGGAATGCCAATGCAGAGATGTC -ACGGAATGCCAATGCAGAACAGTC -ACGGAATGCCAATGCAGATTGCTG -ACGGAATGCCAATGCAGATCCATG -ACGGAATGCCAATGCAGATGTGTG -ACGGAATGCCAATGCAGACTAGTG -ACGGAATGCCAATGCAGACATCTG -ACGGAATGCCAATGCAGAGAGTTG -ACGGAATGCCAATGCAGAAGACTG -ACGGAATGCCAATGCAGATCGGTA -ACGGAATGCCAATGCAGATGCCTA -ACGGAATGCCAATGCAGACCACTA -ACGGAATGCCAATGCAGAGGAGTA -ACGGAATGCCAATGCAGATCGTCT -ACGGAATGCCAATGCAGATGCACT -ACGGAATGCCAATGCAGACTGACT -ACGGAATGCCAATGCAGACAACCT -ACGGAATGCCAATGCAGAGCTACT -ACGGAATGCCAATGCAGAGGATCT -ACGGAATGCCAATGCAGAAAGGCT -ACGGAATGCCAATGCAGATCAACC -ACGGAATGCCAATGCAGATGTTCC -ACGGAATGCCAATGCAGAATTCCC -ACGGAATGCCAATGCAGATTCTCG -ACGGAATGCCAATGCAGATAGACG -ACGGAATGCCAATGCAGAGTAACG -ACGGAATGCCAATGCAGAACTTCG -ACGGAATGCCAATGCAGATACGCA -ACGGAATGCCAATGCAGACTTGCA -ACGGAATGCCAATGCAGACGAACA -ACGGAATGCCAATGCAGACAGTCA -ACGGAATGCCAATGCAGAGATCCA -ACGGAATGCCAATGCAGAACGACA -ACGGAATGCCAATGCAGAAGCTCA -ACGGAATGCCAATGCAGATCACGT -ACGGAATGCCAATGCAGACGTAGT -ACGGAATGCCAATGCAGAGTCAGT -ACGGAATGCCAATGCAGAGAAGGT -ACGGAATGCCAATGCAGAAACCGT -ACGGAATGCCAATGCAGATTGTGC -ACGGAATGCCAATGCAGACTAAGC -ACGGAATGCCAATGCAGAACTAGC -ACGGAATGCCAATGCAGAAGATGC -ACGGAATGCCAATGCAGATGAAGG -ACGGAATGCCAATGCAGACAATGG -ACGGAATGCCAATGCAGAATGAGG -ACGGAATGCCAATGCAGAAATGGG -ACGGAATGCCAATGCAGATCCTGA -ACGGAATGCCAATGCAGATAGCGA -ACGGAATGCCAATGCAGACACAGA -ACGGAATGCCAATGCAGAGCAAGA -ACGGAATGCCAATGCAGAGGTTGA -ACGGAATGCCAATGCAGATCCGAT -ACGGAATGCCAATGCAGATGGCAT -ACGGAATGCCAATGCAGACGAGAT -ACGGAATGCCAATGCAGATACCAC -ACGGAATGCCAATGCAGACAGAAC -ACGGAATGCCAATGCAGAGTCTAC -ACGGAATGCCAATGCAGAACGTAC -ACGGAATGCCAATGCAGAAGTGAC -ACGGAATGCCAATGCAGACTGTAG -ACGGAATGCCAATGCAGACCTAAG -ACGGAATGCCAATGCAGAGTTCAG -ACGGAATGCCAATGCAGAGCATAG -ACGGAATGCCAATGCAGAGACAAG -ACGGAATGCCAATGCAGAAAGCAG -ACGGAATGCCAATGCAGACGTCAA -ACGGAATGCCAATGCAGAGCTGAA -ACGGAATGCCAATGCAGAAGTACG -ACGGAATGCCAATGCAGAATCCGA -ACGGAATGCCAATGCAGAATGGGA -ACGGAATGCCAATGCAGAGTGCAA -ACGGAATGCCAATGCAGAGAGGAA -ACGGAATGCCAATGCAGACAGGTA -ACGGAATGCCAATGCAGAGACTCT -ACGGAATGCCAATGCAGAAGTCCT -ACGGAATGCCAATGCAGATAAGCC -ACGGAATGCCAATGCAGAATAGCC -ACGGAATGCCAATGCAGATAACCG -ACGGAATGCCAATGCAGAATGCCA -ACGGAATGCCAAAGGTGAGGAAAC -ACGGAATGCCAAAGGTGAAACACC -ACGGAATGCCAAAGGTGAATCGAG -ACGGAATGCCAAAGGTGACTCCTT -ACGGAATGCCAAAGGTGACCTGTT -ACGGAATGCCAAAGGTGACGGTTT -ACGGAATGCCAAAGGTGAGTGGTT -ACGGAATGCCAAAGGTGAGCCTTT -ACGGAATGCCAAAGGTGAGGTCTT -ACGGAATGCCAAAGGTGAACGCTT -ACGGAATGCCAAAGGTGAAGCGTT -ACGGAATGCCAAAGGTGATTCGTC -ACGGAATGCCAAAGGTGATCTCTC -ACGGAATGCCAAAGGTGATGGATC -ACGGAATGCCAAAGGTGACACTTC -ACGGAATGCCAAAGGTGAGTACTC -ACGGAATGCCAAAGGTGAGATGTC -ACGGAATGCCAAAGGTGAACAGTC -ACGGAATGCCAAAGGTGATTGCTG -ACGGAATGCCAAAGGTGATCCATG -ACGGAATGCCAAAGGTGATGTGTG -ACGGAATGCCAAAGGTGACTAGTG -ACGGAATGCCAAAGGTGACATCTG -ACGGAATGCCAAAGGTGAGAGTTG -ACGGAATGCCAAAGGTGAAGACTG -ACGGAATGCCAAAGGTGATCGGTA -ACGGAATGCCAAAGGTGATGCCTA -ACGGAATGCCAAAGGTGACCACTA -ACGGAATGCCAAAGGTGAGGAGTA -ACGGAATGCCAAAGGTGATCGTCT -ACGGAATGCCAAAGGTGATGCACT -ACGGAATGCCAAAGGTGACTGACT -ACGGAATGCCAAAGGTGACAACCT -ACGGAATGCCAAAGGTGAGCTACT -ACGGAATGCCAAAGGTGAGGATCT -ACGGAATGCCAAAGGTGAAAGGCT -ACGGAATGCCAAAGGTGATCAACC -ACGGAATGCCAAAGGTGATGTTCC -ACGGAATGCCAAAGGTGAATTCCC -ACGGAATGCCAAAGGTGATTCTCG -ACGGAATGCCAAAGGTGATAGACG -ACGGAATGCCAAAGGTGAGTAACG -ACGGAATGCCAAAGGTGAACTTCG -ACGGAATGCCAAAGGTGATACGCA -ACGGAATGCCAAAGGTGACTTGCA -ACGGAATGCCAAAGGTGACGAACA -ACGGAATGCCAAAGGTGACAGTCA -ACGGAATGCCAAAGGTGAGATCCA -ACGGAATGCCAAAGGTGAACGACA -ACGGAATGCCAAAGGTGAAGCTCA -ACGGAATGCCAAAGGTGATCACGT -ACGGAATGCCAAAGGTGACGTAGT -ACGGAATGCCAAAGGTGAGTCAGT -ACGGAATGCCAAAGGTGAGAAGGT -ACGGAATGCCAAAGGTGAAACCGT -ACGGAATGCCAAAGGTGATTGTGC -ACGGAATGCCAAAGGTGACTAAGC -ACGGAATGCCAAAGGTGAACTAGC -ACGGAATGCCAAAGGTGAAGATGC -ACGGAATGCCAAAGGTGATGAAGG -ACGGAATGCCAAAGGTGACAATGG -ACGGAATGCCAAAGGTGAATGAGG -ACGGAATGCCAAAGGTGAAATGGG -ACGGAATGCCAAAGGTGATCCTGA -ACGGAATGCCAAAGGTGATAGCGA -ACGGAATGCCAAAGGTGACACAGA -ACGGAATGCCAAAGGTGAGCAAGA -ACGGAATGCCAAAGGTGAGGTTGA -ACGGAATGCCAAAGGTGATCCGAT -ACGGAATGCCAAAGGTGATGGCAT -ACGGAATGCCAAAGGTGACGAGAT -ACGGAATGCCAAAGGTGATACCAC -ACGGAATGCCAAAGGTGACAGAAC -ACGGAATGCCAAAGGTGAGTCTAC -ACGGAATGCCAAAGGTGAACGTAC -ACGGAATGCCAAAGGTGAAGTGAC -ACGGAATGCCAAAGGTGACTGTAG -ACGGAATGCCAAAGGTGACCTAAG -ACGGAATGCCAAAGGTGAGTTCAG -ACGGAATGCCAAAGGTGAGCATAG -ACGGAATGCCAAAGGTGAGACAAG -ACGGAATGCCAAAGGTGAAAGCAG -ACGGAATGCCAAAGGTGACGTCAA -ACGGAATGCCAAAGGTGAGCTGAA -ACGGAATGCCAAAGGTGAAGTACG -ACGGAATGCCAAAGGTGAATCCGA -ACGGAATGCCAAAGGTGAATGGGA -ACGGAATGCCAAAGGTGAGTGCAA -ACGGAATGCCAAAGGTGAGAGGAA -ACGGAATGCCAAAGGTGACAGGTA -ACGGAATGCCAAAGGTGAGACTCT -ACGGAATGCCAAAGGTGAAGTCCT -ACGGAATGCCAAAGGTGATAAGCC -ACGGAATGCCAAAGGTGAATAGCC -ACGGAATGCCAAAGGTGATAACCG -ACGGAATGCCAAAGGTGAATGCCA -ACGGAATGCCAATGGCAAGGAAAC -ACGGAATGCCAATGGCAAAACACC -ACGGAATGCCAATGGCAAATCGAG -ACGGAATGCCAATGGCAACTCCTT -ACGGAATGCCAATGGCAACCTGTT -ACGGAATGCCAATGGCAACGGTTT -ACGGAATGCCAATGGCAAGTGGTT -ACGGAATGCCAATGGCAAGCCTTT -ACGGAATGCCAATGGCAAGGTCTT -ACGGAATGCCAATGGCAAACGCTT -ACGGAATGCCAATGGCAAAGCGTT -ACGGAATGCCAATGGCAATTCGTC -ACGGAATGCCAATGGCAATCTCTC -ACGGAATGCCAATGGCAATGGATC -ACGGAATGCCAATGGCAACACTTC -ACGGAATGCCAATGGCAAGTACTC -ACGGAATGCCAATGGCAAGATGTC -ACGGAATGCCAATGGCAAACAGTC -ACGGAATGCCAATGGCAATTGCTG -ACGGAATGCCAATGGCAATCCATG -ACGGAATGCCAATGGCAATGTGTG -ACGGAATGCCAATGGCAACTAGTG -ACGGAATGCCAATGGCAACATCTG -ACGGAATGCCAATGGCAAGAGTTG -ACGGAATGCCAATGGCAAAGACTG -ACGGAATGCCAATGGCAATCGGTA -ACGGAATGCCAATGGCAATGCCTA -ACGGAATGCCAATGGCAACCACTA -ACGGAATGCCAATGGCAAGGAGTA -ACGGAATGCCAATGGCAATCGTCT -ACGGAATGCCAATGGCAATGCACT -ACGGAATGCCAATGGCAACTGACT -ACGGAATGCCAATGGCAACAACCT -ACGGAATGCCAATGGCAAGCTACT -ACGGAATGCCAATGGCAAGGATCT -ACGGAATGCCAATGGCAAAAGGCT -ACGGAATGCCAATGGCAATCAACC -ACGGAATGCCAATGGCAATGTTCC -ACGGAATGCCAATGGCAAATTCCC -ACGGAATGCCAATGGCAATTCTCG -ACGGAATGCCAATGGCAATAGACG -ACGGAATGCCAATGGCAAGTAACG -ACGGAATGCCAATGGCAAACTTCG -ACGGAATGCCAATGGCAATACGCA -ACGGAATGCCAATGGCAACTTGCA -ACGGAATGCCAATGGCAACGAACA -ACGGAATGCCAATGGCAACAGTCA -ACGGAATGCCAATGGCAAGATCCA -ACGGAATGCCAATGGCAAACGACA -ACGGAATGCCAATGGCAAAGCTCA -ACGGAATGCCAATGGCAATCACGT -ACGGAATGCCAATGGCAACGTAGT -ACGGAATGCCAATGGCAAGTCAGT -ACGGAATGCCAATGGCAAGAAGGT -ACGGAATGCCAATGGCAAAACCGT -ACGGAATGCCAATGGCAATTGTGC -ACGGAATGCCAATGGCAACTAAGC -ACGGAATGCCAATGGCAAACTAGC -ACGGAATGCCAATGGCAAAGATGC -ACGGAATGCCAATGGCAATGAAGG -ACGGAATGCCAATGGCAACAATGG -ACGGAATGCCAATGGCAAATGAGG -ACGGAATGCCAATGGCAAAATGGG -ACGGAATGCCAATGGCAATCCTGA -ACGGAATGCCAATGGCAATAGCGA -ACGGAATGCCAATGGCAACACAGA -ACGGAATGCCAATGGCAAGCAAGA -ACGGAATGCCAATGGCAAGGTTGA -ACGGAATGCCAATGGCAATCCGAT -ACGGAATGCCAATGGCAATGGCAT -ACGGAATGCCAATGGCAACGAGAT -ACGGAATGCCAATGGCAATACCAC -ACGGAATGCCAATGGCAACAGAAC -ACGGAATGCCAATGGCAAGTCTAC -ACGGAATGCCAATGGCAAACGTAC -ACGGAATGCCAATGGCAAAGTGAC -ACGGAATGCCAATGGCAACTGTAG -ACGGAATGCCAATGGCAACCTAAG -ACGGAATGCCAATGGCAAGTTCAG -ACGGAATGCCAATGGCAAGCATAG -ACGGAATGCCAATGGCAAGACAAG -ACGGAATGCCAATGGCAAAAGCAG -ACGGAATGCCAATGGCAACGTCAA -ACGGAATGCCAATGGCAAGCTGAA -ACGGAATGCCAATGGCAAAGTACG -ACGGAATGCCAATGGCAAATCCGA -ACGGAATGCCAATGGCAAATGGGA -ACGGAATGCCAATGGCAAGTGCAA -ACGGAATGCCAATGGCAAGAGGAA -ACGGAATGCCAATGGCAACAGGTA -ACGGAATGCCAATGGCAAGACTCT -ACGGAATGCCAATGGCAAAGTCCT -ACGGAATGCCAATGGCAATAAGCC -ACGGAATGCCAATGGCAAATAGCC -ACGGAATGCCAATGGCAATAACCG -ACGGAATGCCAATGGCAAATGCCA -ACGGAATGCCAAAGGATGGGAAAC -ACGGAATGCCAAAGGATGAACACC -ACGGAATGCCAAAGGATGATCGAG -ACGGAATGCCAAAGGATGCTCCTT -ACGGAATGCCAAAGGATGCCTGTT -ACGGAATGCCAAAGGATGCGGTTT -ACGGAATGCCAAAGGATGGTGGTT -ACGGAATGCCAAAGGATGGCCTTT -ACGGAATGCCAAAGGATGGGTCTT -ACGGAATGCCAAAGGATGACGCTT -ACGGAATGCCAAAGGATGAGCGTT -ACGGAATGCCAAAGGATGTTCGTC -ACGGAATGCCAAAGGATGTCTCTC -ACGGAATGCCAAAGGATGTGGATC -ACGGAATGCCAAAGGATGCACTTC -ACGGAATGCCAAAGGATGGTACTC -ACGGAATGCCAAAGGATGGATGTC -ACGGAATGCCAAAGGATGACAGTC -ACGGAATGCCAAAGGATGTTGCTG -ACGGAATGCCAAAGGATGTCCATG -ACGGAATGCCAAAGGATGTGTGTG -ACGGAATGCCAAAGGATGCTAGTG -ACGGAATGCCAAAGGATGCATCTG -ACGGAATGCCAAAGGATGGAGTTG -ACGGAATGCCAAAGGATGAGACTG -ACGGAATGCCAAAGGATGTCGGTA -ACGGAATGCCAAAGGATGTGCCTA -ACGGAATGCCAAAGGATGCCACTA -ACGGAATGCCAAAGGATGGGAGTA -ACGGAATGCCAAAGGATGTCGTCT -ACGGAATGCCAAAGGATGTGCACT -ACGGAATGCCAAAGGATGCTGACT -ACGGAATGCCAAAGGATGCAACCT -ACGGAATGCCAAAGGATGGCTACT -ACGGAATGCCAAAGGATGGGATCT -ACGGAATGCCAAAGGATGAAGGCT -ACGGAATGCCAAAGGATGTCAACC -ACGGAATGCCAAAGGATGTGTTCC -ACGGAATGCCAAAGGATGATTCCC -ACGGAATGCCAAAGGATGTTCTCG -ACGGAATGCCAAAGGATGTAGACG -ACGGAATGCCAAAGGATGGTAACG -ACGGAATGCCAAAGGATGACTTCG -ACGGAATGCCAAAGGATGTACGCA -ACGGAATGCCAAAGGATGCTTGCA -ACGGAATGCCAAAGGATGCGAACA -ACGGAATGCCAAAGGATGCAGTCA -ACGGAATGCCAAAGGATGGATCCA -ACGGAATGCCAAAGGATGACGACA -ACGGAATGCCAAAGGATGAGCTCA -ACGGAATGCCAAAGGATGTCACGT -ACGGAATGCCAAAGGATGCGTAGT -ACGGAATGCCAAAGGATGGTCAGT -ACGGAATGCCAAAGGATGGAAGGT -ACGGAATGCCAAAGGATGAACCGT -ACGGAATGCCAAAGGATGTTGTGC -ACGGAATGCCAAAGGATGCTAAGC -ACGGAATGCCAAAGGATGACTAGC -ACGGAATGCCAAAGGATGAGATGC -ACGGAATGCCAAAGGATGTGAAGG -ACGGAATGCCAAAGGATGCAATGG -ACGGAATGCCAAAGGATGATGAGG -ACGGAATGCCAAAGGATGAATGGG -ACGGAATGCCAAAGGATGTCCTGA -ACGGAATGCCAAAGGATGTAGCGA -ACGGAATGCCAAAGGATGCACAGA -ACGGAATGCCAAAGGATGGCAAGA -ACGGAATGCCAAAGGATGGGTTGA -ACGGAATGCCAAAGGATGTCCGAT -ACGGAATGCCAAAGGATGTGGCAT -ACGGAATGCCAAAGGATGCGAGAT -ACGGAATGCCAAAGGATGTACCAC -ACGGAATGCCAAAGGATGCAGAAC -ACGGAATGCCAAAGGATGGTCTAC -ACGGAATGCCAAAGGATGACGTAC -ACGGAATGCCAAAGGATGAGTGAC -ACGGAATGCCAAAGGATGCTGTAG -ACGGAATGCCAAAGGATGCCTAAG -ACGGAATGCCAAAGGATGGTTCAG -ACGGAATGCCAAAGGATGGCATAG -ACGGAATGCCAAAGGATGGACAAG -ACGGAATGCCAAAGGATGAAGCAG -ACGGAATGCCAAAGGATGCGTCAA -ACGGAATGCCAAAGGATGGCTGAA -ACGGAATGCCAAAGGATGAGTACG -ACGGAATGCCAAAGGATGATCCGA -ACGGAATGCCAAAGGATGATGGGA -ACGGAATGCCAAAGGATGGTGCAA -ACGGAATGCCAAAGGATGGAGGAA -ACGGAATGCCAAAGGATGCAGGTA -ACGGAATGCCAAAGGATGGACTCT -ACGGAATGCCAAAGGATGAGTCCT -ACGGAATGCCAAAGGATGTAAGCC -ACGGAATGCCAAAGGATGATAGCC -ACGGAATGCCAAAGGATGTAACCG -ACGGAATGCCAAAGGATGATGCCA -ACGGAATGCCAAGGGAATGGAAAC -ACGGAATGCCAAGGGAATAACACC -ACGGAATGCCAAGGGAATATCGAG -ACGGAATGCCAAGGGAATCTCCTT -ACGGAATGCCAAGGGAATCCTGTT -ACGGAATGCCAAGGGAATCGGTTT -ACGGAATGCCAAGGGAATGTGGTT -ACGGAATGCCAAGGGAATGCCTTT -ACGGAATGCCAAGGGAATGGTCTT -ACGGAATGCCAAGGGAATACGCTT -ACGGAATGCCAAGGGAATAGCGTT -ACGGAATGCCAAGGGAATTTCGTC -ACGGAATGCCAAGGGAATTCTCTC -ACGGAATGCCAAGGGAATTGGATC -ACGGAATGCCAAGGGAATCACTTC -ACGGAATGCCAAGGGAATGTACTC -ACGGAATGCCAAGGGAATGATGTC -ACGGAATGCCAAGGGAATACAGTC -ACGGAATGCCAAGGGAATTTGCTG -ACGGAATGCCAAGGGAATTCCATG -ACGGAATGCCAAGGGAATTGTGTG -ACGGAATGCCAAGGGAATCTAGTG -ACGGAATGCCAAGGGAATCATCTG -ACGGAATGCCAAGGGAATGAGTTG -ACGGAATGCCAAGGGAATAGACTG -ACGGAATGCCAAGGGAATTCGGTA -ACGGAATGCCAAGGGAATTGCCTA -ACGGAATGCCAAGGGAATCCACTA -ACGGAATGCCAAGGGAATGGAGTA -ACGGAATGCCAAGGGAATTCGTCT -ACGGAATGCCAAGGGAATTGCACT -ACGGAATGCCAAGGGAATCTGACT -ACGGAATGCCAAGGGAATCAACCT -ACGGAATGCCAAGGGAATGCTACT -ACGGAATGCCAAGGGAATGGATCT -ACGGAATGCCAAGGGAATAAGGCT -ACGGAATGCCAAGGGAATTCAACC -ACGGAATGCCAAGGGAATTGTTCC -ACGGAATGCCAAGGGAATATTCCC -ACGGAATGCCAAGGGAATTTCTCG -ACGGAATGCCAAGGGAATTAGACG -ACGGAATGCCAAGGGAATGTAACG -ACGGAATGCCAAGGGAATACTTCG -ACGGAATGCCAAGGGAATTACGCA -ACGGAATGCCAAGGGAATCTTGCA -ACGGAATGCCAAGGGAATCGAACA -ACGGAATGCCAAGGGAATCAGTCA -ACGGAATGCCAAGGGAATGATCCA -ACGGAATGCCAAGGGAATACGACA -ACGGAATGCCAAGGGAATAGCTCA -ACGGAATGCCAAGGGAATTCACGT -ACGGAATGCCAAGGGAATCGTAGT -ACGGAATGCCAAGGGAATGTCAGT -ACGGAATGCCAAGGGAATGAAGGT -ACGGAATGCCAAGGGAATAACCGT -ACGGAATGCCAAGGGAATTTGTGC -ACGGAATGCCAAGGGAATCTAAGC -ACGGAATGCCAAGGGAATACTAGC -ACGGAATGCCAAGGGAATAGATGC -ACGGAATGCCAAGGGAATTGAAGG -ACGGAATGCCAAGGGAATCAATGG -ACGGAATGCCAAGGGAATATGAGG -ACGGAATGCCAAGGGAATAATGGG -ACGGAATGCCAAGGGAATTCCTGA -ACGGAATGCCAAGGGAATTAGCGA -ACGGAATGCCAAGGGAATCACAGA -ACGGAATGCCAAGGGAATGCAAGA -ACGGAATGCCAAGGGAATGGTTGA -ACGGAATGCCAAGGGAATTCCGAT -ACGGAATGCCAAGGGAATTGGCAT -ACGGAATGCCAAGGGAATCGAGAT -ACGGAATGCCAAGGGAATTACCAC -ACGGAATGCCAAGGGAATCAGAAC -ACGGAATGCCAAGGGAATGTCTAC -ACGGAATGCCAAGGGAATACGTAC -ACGGAATGCCAAGGGAATAGTGAC -ACGGAATGCCAAGGGAATCTGTAG -ACGGAATGCCAAGGGAATCCTAAG -ACGGAATGCCAAGGGAATGTTCAG -ACGGAATGCCAAGGGAATGCATAG -ACGGAATGCCAAGGGAATGACAAG -ACGGAATGCCAAGGGAATAAGCAG -ACGGAATGCCAAGGGAATCGTCAA -ACGGAATGCCAAGGGAATGCTGAA -ACGGAATGCCAAGGGAATAGTACG -ACGGAATGCCAAGGGAATATCCGA -ACGGAATGCCAAGGGAATATGGGA -ACGGAATGCCAAGGGAATGTGCAA -ACGGAATGCCAAGGGAATGAGGAA -ACGGAATGCCAAGGGAATCAGGTA -ACGGAATGCCAAGGGAATGACTCT -ACGGAATGCCAAGGGAATAGTCCT -ACGGAATGCCAAGGGAATTAAGCC -ACGGAATGCCAAGGGAATATAGCC -ACGGAATGCCAAGGGAATTAACCG -ACGGAATGCCAAGGGAATATGCCA -ACGGAATGCCAATGATCCGGAAAC -ACGGAATGCCAATGATCCAACACC -ACGGAATGCCAATGATCCATCGAG -ACGGAATGCCAATGATCCCTCCTT -ACGGAATGCCAATGATCCCCTGTT -ACGGAATGCCAATGATCCCGGTTT -ACGGAATGCCAATGATCCGTGGTT -ACGGAATGCCAATGATCCGCCTTT -ACGGAATGCCAATGATCCGGTCTT -ACGGAATGCCAATGATCCACGCTT -ACGGAATGCCAATGATCCAGCGTT -ACGGAATGCCAATGATCCTTCGTC -ACGGAATGCCAATGATCCTCTCTC -ACGGAATGCCAATGATCCTGGATC -ACGGAATGCCAATGATCCCACTTC -ACGGAATGCCAATGATCCGTACTC -ACGGAATGCCAATGATCCGATGTC -ACGGAATGCCAATGATCCACAGTC -ACGGAATGCCAATGATCCTTGCTG -ACGGAATGCCAATGATCCTCCATG -ACGGAATGCCAATGATCCTGTGTG -ACGGAATGCCAATGATCCCTAGTG -ACGGAATGCCAATGATCCCATCTG -ACGGAATGCCAATGATCCGAGTTG -ACGGAATGCCAATGATCCAGACTG -ACGGAATGCCAATGATCCTCGGTA -ACGGAATGCCAATGATCCTGCCTA -ACGGAATGCCAATGATCCCCACTA -ACGGAATGCCAATGATCCGGAGTA -ACGGAATGCCAATGATCCTCGTCT -ACGGAATGCCAATGATCCTGCACT -ACGGAATGCCAATGATCCCTGACT -ACGGAATGCCAATGATCCCAACCT -ACGGAATGCCAATGATCCGCTACT -ACGGAATGCCAATGATCCGGATCT -ACGGAATGCCAATGATCCAAGGCT -ACGGAATGCCAATGATCCTCAACC -ACGGAATGCCAATGATCCTGTTCC -ACGGAATGCCAATGATCCATTCCC -ACGGAATGCCAATGATCCTTCTCG -ACGGAATGCCAATGATCCTAGACG -ACGGAATGCCAATGATCCGTAACG -ACGGAATGCCAATGATCCACTTCG -ACGGAATGCCAATGATCCTACGCA -ACGGAATGCCAATGATCCCTTGCA -ACGGAATGCCAATGATCCCGAACA -ACGGAATGCCAATGATCCCAGTCA -ACGGAATGCCAATGATCCGATCCA -ACGGAATGCCAATGATCCACGACA -ACGGAATGCCAATGATCCAGCTCA -ACGGAATGCCAATGATCCTCACGT -ACGGAATGCCAATGATCCCGTAGT -ACGGAATGCCAATGATCCGTCAGT -ACGGAATGCCAATGATCCGAAGGT -ACGGAATGCCAATGATCCAACCGT -ACGGAATGCCAATGATCCTTGTGC -ACGGAATGCCAATGATCCCTAAGC -ACGGAATGCCAATGATCCACTAGC -ACGGAATGCCAATGATCCAGATGC -ACGGAATGCCAATGATCCTGAAGG -ACGGAATGCCAATGATCCCAATGG -ACGGAATGCCAATGATCCATGAGG -ACGGAATGCCAATGATCCAATGGG -ACGGAATGCCAATGATCCTCCTGA -ACGGAATGCCAATGATCCTAGCGA -ACGGAATGCCAATGATCCCACAGA -ACGGAATGCCAATGATCCGCAAGA -ACGGAATGCCAATGATCCGGTTGA -ACGGAATGCCAATGATCCTCCGAT -ACGGAATGCCAATGATCCTGGCAT -ACGGAATGCCAATGATCCCGAGAT -ACGGAATGCCAATGATCCTACCAC -ACGGAATGCCAATGATCCCAGAAC -ACGGAATGCCAATGATCCGTCTAC -ACGGAATGCCAATGATCCACGTAC -ACGGAATGCCAATGATCCAGTGAC -ACGGAATGCCAATGATCCCTGTAG -ACGGAATGCCAATGATCCCCTAAG -ACGGAATGCCAATGATCCGTTCAG -ACGGAATGCCAATGATCCGCATAG -ACGGAATGCCAATGATCCGACAAG -ACGGAATGCCAATGATCCAAGCAG -ACGGAATGCCAATGATCCCGTCAA -ACGGAATGCCAATGATCCGCTGAA -ACGGAATGCCAATGATCCAGTACG -ACGGAATGCCAATGATCCATCCGA -ACGGAATGCCAATGATCCATGGGA -ACGGAATGCCAATGATCCGTGCAA -ACGGAATGCCAATGATCCGAGGAA -ACGGAATGCCAATGATCCCAGGTA -ACGGAATGCCAATGATCCGACTCT -ACGGAATGCCAATGATCCAGTCCT -ACGGAATGCCAATGATCCTAAGCC -ACGGAATGCCAATGATCCATAGCC -ACGGAATGCCAATGATCCTAACCG -ACGGAATGCCAATGATCCATGCCA -ACGGAATGCCAACGATAGGGAAAC -ACGGAATGCCAACGATAGAACACC -ACGGAATGCCAACGATAGATCGAG -ACGGAATGCCAACGATAGCTCCTT -ACGGAATGCCAACGATAGCCTGTT -ACGGAATGCCAACGATAGCGGTTT -ACGGAATGCCAACGATAGGTGGTT -ACGGAATGCCAACGATAGGCCTTT -ACGGAATGCCAACGATAGGGTCTT -ACGGAATGCCAACGATAGACGCTT -ACGGAATGCCAACGATAGAGCGTT -ACGGAATGCCAACGATAGTTCGTC -ACGGAATGCCAACGATAGTCTCTC -ACGGAATGCCAACGATAGTGGATC -ACGGAATGCCAACGATAGCACTTC -ACGGAATGCCAACGATAGGTACTC -ACGGAATGCCAACGATAGGATGTC -ACGGAATGCCAACGATAGACAGTC -ACGGAATGCCAACGATAGTTGCTG -ACGGAATGCCAACGATAGTCCATG -ACGGAATGCCAACGATAGTGTGTG -ACGGAATGCCAACGATAGCTAGTG -ACGGAATGCCAACGATAGCATCTG -ACGGAATGCCAACGATAGGAGTTG -ACGGAATGCCAACGATAGAGACTG -ACGGAATGCCAACGATAGTCGGTA -ACGGAATGCCAACGATAGTGCCTA -ACGGAATGCCAACGATAGCCACTA -ACGGAATGCCAACGATAGGGAGTA -ACGGAATGCCAACGATAGTCGTCT -ACGGAATGCCAACGATAGTGCACT -ACGGAATGCCAACGATAGCTGACT -ACGGAATGCCAACGATAGCAACCT -ACGGAATGCCAACGATAGGCTACT -ACGGAATGCCAACGATAGGGATCT -ACGGAATGCCAACGATAGAAGGCT -ACGGAATGCCAACGATAGTCAACC -ACGGAATGCCAACGATAGTGTTCC -ACGGAATGCCAACGATAGATTCCC -ACGGAATGCCAACGATAGTTCTCG -ACGGAATGCCAACGATAGTAGACG -ACGGAATGCCAACGATAGGTAACG -ACGGAATGCCAACGATAGACTTCG -ACGGAATGCCAACGATAGTACGCA -ACGGAATGCCAACGATAGCTTGCA -ACGGAATGCCAACGATAGCGAACA -ACGGAATGCCAACGATAGCAGTCA -ACGGAATGCCAACGATAGGATCCA -ACGGAATGCCAACGATAGACGACA -ACGGAATGCCAACGATAGAGCTCA -ACGGAATGCCAACGATAGTCACGT -ACGGAATGCCAACGATAGCGTAGT -ACGGAATGCCAACGATAGGTCAGT -ACGGAATGCCAACGATAGGAAGGT -ACGGAATGCCAACGATAGAACCGT -ACGGAATGCCAACGATAGTTGTGC -ACGGAATGCCAACGATAGCTAAGC -ACGGAATGCCAACGATAGACTAGC -ACGGAATGCCAACGATAGAGATGC -ACGGAATGCCAACGATAGTGAAGG -ACGGAATGCCAACGATAGCAATGG -ACGGAATGCCAACGATAGATGAGG -ACGGAATGCCAACGATAGAATGGG -ACGGAATGCCAACGATAGTCCTGA -ACGGAATGCCAACGATAGTAGCGA -ACGGAATGCCAACGATAGCACAGA -ACGGAATGCCAACGATAGGCAAGA -ACGGAATGCCAACGATAGGGTTGA -ACGGAATGCCAACGATAGTCCGAT -ACGGAATGCCAACGATAGTGGCAT -ACGGAATGCCAACGATAGCGAGAT -ACGGAATGCCAACGATAGTACCAC -ACGGAATGCCAACGATAGCAGAAC -ACGGAATGCCAACGATAGGTCTAC -ACGGAATGCCAACGATAGACGTAC -ACGGAATGCCAACGATAGAGTGAC -ACGGAATGCCAACGATAGCTGTAG -ACGGAATGCCAACGATAGCCTAAG -ACGGAATGCCAACGATAGGTTCAG -ACGGAATGCCAACGATAGGCATAG -ACGGAATGCCAACGATAGGACAAG -ACGGAATGCCAACGATAGAAGCAG -ACGGAATGCCAACGATAGCGTCAA -ACGGAATGCCAACGATAGGCTGAA -ACGGAATGCCAACGATAGAGTACG -ACGGAATGCCAACGATAGATCCGA -ACGGAATGCCAACGATAGATGGGA -ACGGAATGCCAACGATAGGTGCAA -ACGGAATGCCAACGATAGGAGGAA -ACGGAATGCCAACGATAGCAGGTA -ACGGAATGCCAACGATAGGACTCT -ACGGAATGCCAACGATAGAGTCCT -ACGGAATGCCAACGATAGTAAGCC -ACGGAATGCCAACGATAGATAGCC -ACGGAATGCCAACGATAGTAACCG -ACGGAATGCCAACGATAGATGCCA -ACGGAATGCCAAAGACACGGAAAC -ACGGAATGCCAAAGACACAACACC -ACGGAATGCCAAAGACACATCGAG -ACGGAATGCCAAAGACACCTCCTT -ACGGAATGCCAAAGACACCCTGTT -ACGGAATGCCAAAGACACCGGTTT -ACGGAATGCCAAAGACACGTGGTT -ACGGAATGCCAAAGACACGCCTTT -ACGGAATGCCAAAGACACGGTCTT -ACGGAATGCCAAAGACACACGCTT -ACGGAATGCCAAAGACACAGCGTT -ACGGAATGCCAAAGACACTTCGTC -ACGGAATGCCAAAGACACTCTCTC -ACGGAATGCCAAAGACACTGGATC -ACGGAATGCCAAAGACACCACTTC -ACGGAATGCCAAAGACACGTACTC -ACGGAATGCCAAAGACACGATGTC -ACGGAATGCCAAAGACACACAGTC -ACGGAATGCCAAAGACACTTGCTG -ACGGAATGCCAAAGACACTCCATG -ACGGAATGCCAAAGACACTGTGTG -ACGGAATGCCAAAGACACCTAGTG -ACGGAATGCCAAAGACACCATCTG -ACGGAATGCCAAAGACACGAGTTG -ACGGAATGCCAAAGACACAGACTG -ACGGAATGCCAAAGACACTCGGTA -ACGGAATGCCAAAGACACTGCCTA -ACGGAATGCCAAAGACACCCACTA -ACGGAATGCCAAAGACACGGAGTA -ACGGAATGCCAAAGACACTCGTCT -ACGGAATGCCAAAGACACTGCACT -ACGGAATGCCAAAGACACCTGACT -ACGGAATGCCAAAGACACCAACCT -ACGGAATGCCAAAGACACGCTACT -ACGGAATGCCAAAGACACGGATCT -ACGGAATGCCAAAGACACAAGGCT -ACGGAATGCCAAAGACACTCAACC -ACGGAATGCCAAAGACACTGTTCC -ACGGAATGCCAAAGACACATTCCC -ACGGAATGCCAAAGACACTTCTCG -ACGGAATGCCAAAGACACTAGACG -ACGGAATGCCAAAGACACGTAACG -ACGGAATGCCAAAGACACACTTCG -ACGGAATGCCAAAGACACTACGCA -ACGGAATGCCAAAGACACCTTGCA -ACGGAATGCCAAAGACACCGAACA -ACGGAATGCCAAAGACACCAGTCA -ACGGAATGCCAAAGACACGATCCA -ACGGAATGCCAAAGACACACGACA -ACGGAATGCCAAAGACACAGCTCA -ACGGAATGCCAAAGACACTCACGT -ACGGAATGCCAAAGACACCGTAGT -ACGGAATGCCAAAGACACGTCAGT -ACGGAATGCCAAAGACACGAAGGT -ACGGAATGCCAAAGACACAACCGT -ACGGAATGCCAAAGACACTTGTGC -ACGGAATGCCAAAGACACCTAAGC -ACGGAATGCCAAAGACACACTAGC -ACGGAATGCCAAAGACACAGATGC -ACGGAATGCCAAAGACACTGAAGG -ACGGAATGCCAAAGACACCAATGG -ACGGAATGCCAAAGACACATGAGG -ACGGAATGCCAAAGACACAATGGG -ACGGAATGCCAAAGACACTCCTGA -ACGGAATGCCAAAGACACTAGCGA -ACGGAATGCCAAAGACACCACAGA -ACGGAATGCCAAAGACACGCAAGA -ACGGAATGCCAAAGACACGGTTGA -ACGGAATGCCAAAGACACTCCGAT -ACGGAATGCCAAAGACACTGGCAT -ACGGAATGCCAAAGACACCGAGAT -ACGGAATGCCAAAGACACTACCAC -ACGGAATGCCAAAGACACCAGAAC -ACGGAATGCCAAAGACACGTCTAC -ACGGAATGCCAAAGACACACGTAC -ACGGAATGCCAAAGACACAGTGAC -ACGGAATGCCAAAGACACCTGTAG -ACGGAATGCCAAAGACACCCTAAG -ACGGAATGCCAAAGACACGTTCAG -ACGGAATGCCAAAGACACGCATAG -ACGGAATGCCAAAGACACGACAAG -ACGGAATGCCAAAGACACAAGCAG -ACGGAATGCCAAAGACACCGTCAA -ACGGAATGCCAAAGACACGCTGAA -ACGGAATGCCAAAGACACAGTACG -ACGGAATGCCAAAGACACATCCGA -ACGGAATGCCAAAGACACATGGGA -ACGGAATGCCAAAGACACGTGCAA -ACGGAATGCCAAAGACACGAGGAA -ACGGAATGCCAAAGACACCAGGTA -ACGGAATGCCAAAGACACGACTCT -ACGGAATGCCAAAGACACAGTCCT -ACGGAATGCCAAAGACACTAAGCC -ACGGAATGCCAAAGACACATAGCC -ACGGAATGCCAAAGACACTAACCG -ACGGAATGCCAAAGACACATGCCA -ACGGAATGCCAAAGAGCAGGAAAC -ACGGAATGCCAAAGAGCAAACACC -ACGGAATGCCAAAGAGCAATCGAG -ACGGAATGCCAAAGAGCACTCCTT -ACGGAATGCCAAAGAGCACCTGTT -ACGGAATGCCAAAGAGCACGGTTT -ACGGAATGCCAAAGAGCAGTGGTT -ACGGAATGCCAAAGAGCAGCCTTT -ACGGAATGCCAAAGAGCAGGTCTT -ACGGAATGCCAAAGAGCAACGCTT -ACGGAATGCCAAAGAGCAAGCGTT -ACGGAATGCCAAAGAGCATTCGTC -ACGGAATGCCAAAGAGCATCTCTC -ACGGAATGCCAAAGAGCATGGATC -ACGGAATGCCAAAGAGCACACTTC -ACGGAATGCCAAAGAGCAGTACTC -ACGGAATGCCAAAGAGCAGATGTC -ACGGAATGCCAAAGAGCAACAGTC -ACGGAATGCCAAAGAGCATTGCTG -ACGGAATGCCAAAGAGCATCCATG -ACGGAATGCCAAAGAGCATGTGTG -ACGGAATGCCAAAGAGCACTAGTG -ACGGAATGCCAAAGAGCACATCTG -ACGGAATGCCAAAGAGCAGAGTTG -ACGGAATGCCAAAGAGCAAGACTG -ACGGAATGCCAAAGAGCATCGGTA -ACGGAATGCCAAAGAGCATGCCTA -ACGGAATGCCAAAGAGCACCACTA -ACGGAATGCCAAAGAGCAGGAGTA -ACGGAATGCCAAAGAGCATCGTCT -ACGGAATGCCAAAGAGCATGCACT -ACGGAATGCCAAAGAGCACTGACT -ACGGAATGCCAAAGAGCACAACCT -ACGGAATGCCAAAGAGCAGCTACT -ACGGAATGCCAAAGAGCAGGATCT -ACGGAATGCCAAAGAGCAAAGGCT -ACGGAATGCCAAAGAGCATCAACC -ACGGAATGCCAAAGAGCATGTTCC -ACGGAATGCCAAAGAGCAATTCCC -ACGGAATGCCAAAGAGCATTCTCG -ACGGAATGCCAAAGAGCATAGACG -ACGGAATGCCAAAGAGCAGTAACG -ACGGAATGCCAAAGAGCAACTTCG -ACGGAATGCCAAAGAGCATACGCA -ACGGAATGCCAAAGAGCACTTGCA -ACGGAATGCCAAAGAGCACGAACA -ACGGAATGCCAAAGAGCACAGTCA -ACGGAATGCCAAAGAGCAGATCCA -ACGGAATGCCAAAGAGCAACGACA -ACGGAATGCCAAAGAGCAAGCTCA -ACGGAATGCCAAAGAGCATCACGT -ACGGAATGCCAAAGAGCACGTAGT -ACGGAATGCCAAAGAGCAGTCAGT -ACGGAATGCCAAAGAGCAGAAGGT -ACGGAATGCCAAAGAGCAAACCGT -ACGGAATGCCAAAGAGCATTGTGC -ACGGAATGCCAAAGAGCACTAAGC -ACGGAATGCCAAAGAGCAACTAGC -ACGGAATGCCAAAGAGCAAGATGC -ACGGAATGCCAAAGAGCATGAAGG -ACGGAATGCCAAAGAGCACAATGG -ACGGAATGCCAAAGAGCAATGAGG -ACGGAATGCCAAAGAGCAAATGGG -ACGGAATGCCAAAGAGCATCCTGA -ACGGAATGCCAAAGAGCATAGCGA -ACGGAATGCCAAAGAGCACACAGA -ACGGAATGCCAAAGAGCAGCAAGA -ACGGAATGCCAAAGAGCAGGTTGA -ACGGAATGCCAAAGAGCATCCGAT -ACGGAATGCCAAAGAGCATGGCAT -ACGGAATGCCAAAGAGCACGAGAT -ACGGAATGCCAAAGAGCATACCAC -ACGGAATGCCAAAGAGCACAGAAC -ACGGAATGCCAAAGAGCAGTCTAC -ACGGAATGCCAAAGAGCAACGTAC -ACGGAATGCCAAAGAGCAAGTGAC -ACGGAATGCCAAAGAGCACTGTAG -ACGGAATGCCAAAGAGCACCTAAG -ACGGAATGCCAAAGAGCAGTTCAG -ACGGAATGCCAAAGAGCAGCATAG -ACGGAATGCCAAAGAGCAGACAAG -ACGGAATGCCAAAGAGCAAAGCAG -ACGGAATGCCAAAGAGCACGTCAA -ACGGAATGCCAAAGAGCAGCTGAA -ACGGAATGCCAAAGAGCAAGTACG -ACGGAATGCCAAAGAGCAATCCGA -ACGGAATGCCAAAGAGCAATGGGA -ACGGAATGCCAAAGAGCAGTGCAA -ACGGAATGCCAAAGAGCAGAGGAA -ACGGAATGCCAAAGAGCACAGGTA -ACGGAATGCCAAAGAGCAGACTCT -ACGGAATGCCAAAGAGCAAGTCCT -ACGGAATGCCAAAGAGCATAAGCC -ACGGAATGCCAAAGAGCAATAGCC -ACGGAATGCCAAAGAGCATAACCG -ACGGAATGCCAAAGAGCAATGCCA -ACGGAATGCCAATGAGGTGGAAAC -ACGGAATGCCAATGAGGTAACACC -ACGGAATGCCAATGAGGTATCGAG -ACGGAATGCCAATGAGGTCTCCTT -ACGGAATGCCAATGAGGTCCTGTT -ACGGAATGCCAATGAGGTCGGTTT -ACGGAATGCCAATGAGGTGTGGTT -ACGGAATGCCAATGAGGTGCCTTT -ACGGAATGCCAATGAGGTGGTCTT -ACGGAATGCCAATGAGGTACGCTT -ACGGAATGCCAATGAGGTAGCGTT -ACGGAATGCCAATGAGGTTTCGTC -ACGGAATGCCAATGAGGTTCTCTC -ACGGAATGCCAATGAGGTTGGATC -ACGGAATGCCAATGAGGTCACTTC -ACGGAATGCCAATGAGGTGTACTC -ACGGAATGCCAATGAGGTGATGTC -ACGGAATGCCAATGAGGTACAGTC -ACGGAATGCCAATGAGGTTTGCTG -ACGGAATGCCAATGAGGTTCCATG -ACGGAATGCCAATGAGGTTGTGTG -ACGGAATGCCAATGAGGTCTAGTG -ACGGAATGCCAATGAGGTCATCTG -ACGGAATGCCAATGAGGTGAGTTG -ACGGAATGCCAATGAGGTAGACTG -ACGGAATGCCAATGAGGTTCGGTA -ACGGAATGCCAATGAGGTTGCCTA -ACGGAATGCCAATGAGGTCCACTA -ACGGAATGCCAATGAGGTGGAGTA -ACGGAATGCCAATGAGGTTCGTCT -ACGGAATGCCAATGAGGTTGCACT -ACGGAATGCCAATGAGGTCTGACT -ACGGAATGCCAATGAGGTCAACCT -ACGGAATGCCAATGAGGTGCTACT -ACGGAATGCCAATGAGGTGGATCT -ACGGAATGCCAATGAGGTAAGGCT -ACGGAATGCCAATGAGGTTCAACC -ACGGAATGCCAATGAGGTTGTTCC -ACGGAATGCCAATGAGGTATTCCC -ACGGAATGCCAATGAGGTTTCTCG -ACGGAATGCCAATGAGGTTAGACG -ACGGAATGCCAATGAGGTGTAACG -ACGGAATGCCAATGAGGTACTTCG -ACGGAATGCCAATGAGGTTACGCA -ACGGAATGCCAATGAGGTCTTGCA -ACGGAATGCCAATGAGGTCGAACA -ACGGAATGCCAATGAGGTCAGTCA -ACGGAATGCCAATGAGGTGATCCA -ACGGAATGCCAATGAGGTACGACA -ACGGAATGCCAATGAGGTAGCTCA -ACGGAATGCCAATGAGGTTCACGT -ACGGAATGCCAATGAGGTCGTAGT -ACGGAATGCCAATGAGGTGTCAGT -ACGGAATGCCAATGAGGTGAAGGT -ACGGAATGCCAATGAGGTAACCGT -ACGGAATGCCAATGAGGTTTGTGC -ACGGAATGCCAATGAGGTCTAAGC -ACGGAATGCCAATGAGGTACTAGC -ACGGAATGCCAATGAGGTAGATGC -ACGGAATGCCAATGAGGTTGAAGG -ACGGAATGCCAATGAGGTCAATGG -ACGGAATGCCAATGAGGTATGAGG -ACGGAATGCCAATGAGGTAATGGG -ACGGAATGCCAATGAGGTTCCTGA -ACGGAATGCCAATGAGGTTAGCGA -ACGGAATGCCAATGAGGTCACAGA -ACGGAATGCCAATGAGGTGCAAGA -ACGGAATGCCAATGAGGTGGTTGA -ACGGAATGCCAATGAGGTTCCGAT -ACGGAATGCCAATGAGGTTGGCAT -ACGGAATGCCAATGAGGTCGAGAT -ACGGAATGCCAATGAGGTTACCAC -ACGGAATGCCAATGAGGTCAGAAC -ACGGAATGCCAATGAGGTGTCTAC -ACGGAATGCCAATGAGGTACGTAC -ACGGAATGCCAATGAGGTAGTGAC -ACGGAATGCCAATGAGGTCTGTAG -ACGGAATGCCAATGAGGTCCTAAG -ACGGAATGCCAATGAGGTGTTCAG -ACGGAATGCCAATGAGGTGCATAG -ACGGAATGCCAATGAGGTGACAAG -ACGGAATGCCAATGAGGTAAGCAG -ACGGAATGCCAATGAGGTCGTCAA -ACGGAATGCCAATGAGGTGCTGAA -ACGGAATGCCAATGAGGTAGTACG -ACGGAATGCCAATGAGGTATCCGA -ACGGAATGCCAATGAGGTATGGGA -ACGGAATGCCAATGAGGTGTGCAA -ACGGAATGCCAATGAGGTGAGGAA -ACGGAATGCCAATGAGGTCAGGTA -ACGGAATGCCAATGAGGTGACTCT -ACGGAATGCCAATGAGGTAGTCCT -ACGGAATGCCAATGAGGTTAAGCC -ACGGAATGCCAATGAGGTATAGCC -ACGGAATGCCAATGAGGTTAACCG -ACGGAATGCCAATGAGGTATGCCA -ACGGAATGCCAAGATTCCGGAAAC -ACGGAATGCCAAGATTCCAACACC -ACGGAATGCCAAGATTCCATCGAG -ACGGAATGCCAAGATTCCCTCCTT -ACGGAATGCCAAGATTCCCCTGTT -ACGGAATGCCAAGATTCCCGGTTT -ACGGAATGCCAAGATTCCGTGGTT -ACGGAATGCCAAGATTCCGCCTTT -ACGGAATGCCAAGATTCCGGTCTT -ACGGAATGCCAAGATTCCACGCTT -ACGGAATGCCAAGATTCCAGCGTT -ACGGAATGCCAAGATTCCTTCGTC -ACGGAATGCCAAGATTCCTCTCTC -ACGGAATGCCAAGATTCCTGGATC -ACGGAATGCCAAGATTCCCACTTC -ACGGAATGCCAAGATTCCGTACTC -ACGGAATGCCAAGATTCCGATGTC -ACGGAATGCCAAGATTCCACAGTC -ACGGAATGCCAAGATTCCTTGCTG -ACGGAATGCCAAGATTCCTCCATG -ACGGAATGCCAAGATTCCTGTGTG -ACGGAATGCCAAGATTCCCTAGTG -ACGGAATGCCAAGATTCCCATCTG -ACGGAATGCCAAGATTCCGAGTTG -ACGGAATGCCAAGATTCCAGACTG -ACGGAATGCCAAGATTCCTCGGTA -ACGGAATGCCAAGATTCCTGCCTA -ACGGAATGCCAAGATTCCCCACTA -ACGGAATGCCAAGATTCCGGAGTA -ACGGAATGCCAAGATTCCTCGTCT -ACGGAATGCCAAGATTCCTGCACT -ACGGAATGCCAAGATTCCCTGACT -ACGGAATGCCAAGATTCCCAACCT -ACGGAATGCCAAGATTCCGCTACT -ACGGAATGCCAAGATTCCGGATCT -ACGGAATGCCAAGATTCCAAGGCT -ACGGAATGCCAAGATTCCTCAACC -ACGGAATGCCAAGATTCCTGTTCC -ACGGAATGCCAAGATTCCATTCCC -ACGGAATGCCAAGATTCCTTCTCG -ACGGAATGCCAAGATTCCTAGACG -ACGGAATGCCAAGATTCCGTAACG -ACGGAATGCCAAGATTCCACTTCG -ACGGAATGCCAAGATTCCTACGCA -ACGGAATGCCAAGATTCCCTTGCA -ACGGAATGCCAAGATTCCCGAACA -ACGGAATGCCAAGATTCCCAGTCA -ACGGAATGCCAAGATTCCGATCCA -ACGGAATGCCAAGATTCCACGACA -ACGGAATGCCAAGATTCCAGCTCA -ACGGAATGCCAAGATTCCTCACGT -ACGGAATGCCAAGATTCCCGTAGT -ACGGAATGCCAAGATTCCGTCAGT -ACGGAATGCCAAGATTCCGAAGGT -ACGGAATGCCAAGATTCCAACCGT -ACGGAATGCCAAGATTCCTTGTGC -ACGGAATGCCAAGATTCCCTAAGC -ACGGAATGCCAAGATTCCACTAGC -ACGGAATGCCAAGATTCCAGATGC -ACGGAATGCCAAGATTCCTGAAGG -ACGGAATGCCAAGATTCCCAATGG -ACGGAATGCCAAGATTCCATGAGG -ACGGAATGCCAAGATTCCAATGGG -ACGGAATGCCAAGATTCCTCCTGA -ACGGAATGCCAAGATTCCTAGCGA -ACGGAATGCCAAGATTCCCACAGA -ACGGAATGCCAAGATTCCGCAAGA -ACGGAATGCCAAGATTCCGGTTGA -ACGGAATGCCAAGATTCCTCCGAT -ACGGAATGCCAAGATTCCTGGCAT -ACGGAATGCCAAGATTCCCGAGAT -ACGGAATGCCAAGATTCCTACCAC -ACGGAATGCCAAGATTCCCAGAAC -ACGGAATGCCAAGATTCCGTCTAC -ACGGAATGCCAAGATTCCACGTAC -ACGGAATGCCAAGATTCCAGTGAC -ACGGAATGCCAAGATTCCCTGTAG -ACGGAATGCCAAGATTCCCCTAAG -ACGGAATGCCAAGATTCCGTTCAG -ACGGAATGCCAAGATTCCGCATAG -ACGGAATGCCAAGATTCCGACAAG -ACGGAATGCCAAGATTCCAAGCAG -ACGGAATGCCAAGATTCCCGTCAA -ACGGAATGCCAAGATTCCGCTGAA -ACGGAATGCCAAGATTCCAGTACG -ACGGAATGCCAAGATTCCATCCGA -ACGGAATGCCAAGATTCCATGGGA -ACGGAATGCCAAGATTCCGTGCAA -ACGGAATGCCAAGATTCCGAGGAA -ACGGAATGCCAAGATTCCCAGGTA -ACGGAATGCCAAGATTCCGACTCT -ACGGAATGCCAAGATTCCAGTCCT -ACGGAATGCCAAGATTCCTAAGCC -ACGGAATGCCAAGATTCCATAGCC -ACGGAATGCCAAGATTCCTAACCG -ACGGAATGCCAAGATTCCATGCCA -ACGGAATGCCAACATTGGGGAAAC -ACGGAATGCCAACATTGGAACACC -ACGGAATGCCAACATTGGATCGAG -ACGGAATGCCAACATTGGCTCCTT -ACGGAATGCCAACATTGGCCTGTT -ACGGAATGCCAACATTGGCGGTTT -ACGGAATGCCAACATTGGGTGGTT -ACGGAATGCCAACATTGGGCCTTT -ACGGAATGCCAACATTGGGGTCTT -ACGGAATGCCAACATTGGACGCTT -ACGGAATGCCAACATTGGAGCGTT -ACGGAATGCCAACATTGGTTCGTC -ACGGAATGCCAACATTGGTCTCTC -ACGGAATGCCAACATTGGTGGATC -ACGGAATGCCAACATTGGCACTTC -ACGGAATGCCAACATTGGGTACTC -ACGGAATGCCAACATTGGGATGTC -ACGGAATGCCAACATTGGACAGTC -ACGGAATGCCAACATTGGTTGCTG -ACGGAATGCCAACATTGGTCCATG -ACGGAATGCCAACATTGGTGTGTG -ACGGAATGCCAACATTGGCTAGTG -ACGGAATGCCAACATTGGCATCTG -ACGGAATGCCAACATTGGGAGTTG -ACGGAATGCCAACATTGGAGACTG -ACGGAATGCCAACATTGGTCGGTA -ACGGAATGCCAACATTGGTGCCTA -ACGGAATGCCAACATTGGCCACTA -ACGGAATGCCAACATTGGGGAGTA -ACGGAATGCCAACATTGGTCGTCT -ACGGAATGCCAACATTGGTGCACT -ACGGAATGCCAACATTGGCTGACT -ACGGAATGCCAACATTGGCAACCT -ACGGAATGCCAACATTGGGCTACT -ACGGAATGCCAACATTGGGGATCT -ACGGAATGCCAACATTGGAAGGCT -ACGGAATGCCAACATTGGTCAACC -ACGGAATGCCAACATTGGTGTTCC -ACGGAATGCCAACATTGGATTCCC -ACGGAATGCCAACATTGGTTCTCG -ACGGAATGCCAACATTGGTAGACG -ACGGAATGCCAACATTGGGTAACG -ACGGAATGCCAACATTGGACTTCG -ACGGAATGCCAACATTGGTACGCA -ACGGAATGCCAACATTGGCTTGCA -ACGGAATGCCAACATTGGCGAACA -ACGGAATGCCAACATTGGCAGTCA -ACGGAATGCCAACATTGGGATCCA -ACGGAATGCCAACATTGGACGACA -ACGGAATGCCAACATTGGAGCTCA -ACGGAATGCCAACATTGGTCACGT -ACGGAATGCCAACATTGGCGTAGT -ACGGAATGCCAACATTGGGTCAGT -ACGGAATGCCAACATTGGGAAGGT -ACGGAATGCCAACATTGGAACCGT -ACGGAATGCCAACATTGGTTGTGC -ACGGAATGCCAACATTGGCTAAGC -ACGGAATGCCAACATTGGACTAGC -ACGGAATGCCAACATTGGAGATGC -ACGGAATGCCAACATTGGTGAAGG -ACGGAATGCCAACATTGGCAATGG -ACGGAATGCCAACATTGGATGAGG -ACGGAATGCCAACATTGGAATGGG -ACGGAATGCCAACATTGGTCCTGA -ACGGAATGCCAACATTGGTAGCGA -ACGGAATGCCAACATTGGCACAGA -ACGGAATGCCAACATTGGGCAAGA -ACGGAATGCCAACATTGGGGTTGA -ACGGAATGCCAACATTGGTCCGAT -ACGGAATGCCAACATTGGTGGCAT -ACGGAATGCCAACATTGGCGAGAT -ACGGAATGCCAACATTGGTACCAC -ACGGAATGCCAACATTGGCAGAAC -ACGGAATGCCAACATTGGGTCTAC -ACGGAATGCCAACATTGGACGTAC -ACGGAATGCCAACATTGGAGTGAC -ACGGAATGCCAACATTGGCTGTAG -ACGGAATGCCAACATTGGCCTAAG -ACGGAATGCCAACATTGGGTTCAG -ACGGAATGCCAACATTGGGCATAG -ACGGAATGCCAACATTGGGACAAG -ACGGAATGCCAACATTGGAAGCAG -ACGGAATGCCAACATTGGCGTCAA -ACGGAATGCCAACATTGGGCTGAA -ACGGAATGCCAACATTGGAGTACG -ACGGAATGCCAACATTGGATCCGA -ACGGAATGCCAACATTGGATGGGA -ACGGAATGCCAACATTGGGTGCAA -ACGGAATGCCAACATTGGGAGGAA -ACGGAATGCCAACATTGGCAGGTA -ACGGAATGCCAACATTGGGACTCT -ACGGAATGCCAACATTGGAGTCCT -ACGGAATGCCAACATTGGTAAGCC -ACGGAATGCCAACATTGGATAGCC -ACGGAATGCCAACATTGGTAACCG -ACGGAATGCCAACATTGGATGCCA -ACGGAATGCCAAGATCGAGGAAAC -ACGGAATGCCAAGATCGAAACACC -ACGGAATGCCAAGATCGAATCGAG -ACGGAATGCCAAGATCGACTCCTT -ACGGAATGCCAAGATCGACCTGTT -ACGGAATGCCAAGATCGACGGTTT -ACGGAATGCCAAGATCGAGTGGTT -ACGGAATGCCAAGATCGAGCCTTT -ACGGAATGCCAAGATCGAGGTCTT -ACGGAATGCCAAGATCGAACGCTT -ACGGAATGCCAAGATCGAAGCGTT -ACGGAATGCCAAGATCGATTCGTC -ACGGAATGCCAAGATCGATCTCTC -ACGGAATGCCAAGATCGATGGATC -ACGGAATGCCAAGATCGACACTTC -ACGGAATGCCAAGATCGAGTACTC -ACGGAATGCCAAGATCGAGATGTC -ACGGAATGCCAAGATCGAACAGTC -ACGGAATGCCAAGATCGATTGCTG -ACGGAATGCCAAGATCGATCCATG -ACGGAATGCCAAGATCGATGTGTG -ACGGAATGCCAAGATCGACTAGTG -ACGGAATGCCAAGATCGACATCTG -ACGGAATGCCAAGATCGAGAGTTG -ACGGAATGCCAAGATCGAAGACTG -ACGGAATGCCAAGATCGATCGGTA -ACGGAATGCCAAGATCGATGCCTA -ACGGAATGCCAAGATCGACCACTA -ACGGAATGCCAAGATCGAGGAGTA -ACGGAATGCCAAGATCGATCGTCT -ACGGAATGCCAAGATCGATGCACT -ACGGAATGCCAAGATCGACTGACT -ACGGAATGCCAAGATCGACAACCT -ACGGAATGCCAAGATCGAGCTACT -ACGGAATGCCAAGATCGAGGATCT -ACGGAATGCCAAGATCGAAAGGCT -ACGGAATGCCAAGATCGATCAACC -ACGGAATGCCAAGATCGATGTTCC -ACGGAATGCCAAGATCGAATTCCC -ACGGAATGCCAAGATCGATTCTCG -ACGGAATGCCAAGATCGATAGACG -ACGGAATGCCAAGATCGAGTAACG -ACGGAATGCCAAGATCGAACTTCG -ACGGAATGCCAAGATCGATACGCA -ACGGAATGCCAAGATCGACTTGCA -ACGGAATGCCAAGATCGACGAACA -ACGGAATGCCAAGATCGACAGTCA -ACGGAATGCCAAGATCGAGATCCA -ACGGAATGCCAAGATCGAACGACA -ACGGAATGCCAAGATCGAAGCTCA -ACGGAATGCCAAGATCGATCACGT -ACGGAATGCCAAGATCGACGTAGT -ACGGAATGCCAAGATCGAGTCAGT -ACGGAATGCCAAGATCGAGAAGGT -ACGGAATGCCAAGATCGAAACCGT -ACGGAATGCCAAGATCGATTGTGC -ACGGAATGCCAAGATCGACTAAGC -ACGGAATGCCAAGATCGAACTAGC -ACGGAATGCCAAGATCGAAGATGC -ACGGAATGCCAAGATCGATGAAGG -ACGGAATGCCAAGATCGACAATGG -ACGGAATGCCAAGATCGAATGAGG -ACGGAATGCCAAGATCGAAATGGG -ACGGAATGCCAAGATCGATCCTGA -ACGGAATGCCAAGATCGATAGCGA -ACGGAATGCCAAGATCGACACAGA -ACGGAATGCCAAGATCGAGCAAGA -ACGGAATGCCAAGATCGAGGTTGA -ACGGAATGCCAAGATCGATCCGAT -ACGGAATGCCAAGATCGATGGCAT -ACGGAATGCCAAGATCGACGAGAT -ACGGAATGCCAAGATCGATACCAC -ACGGAATGCCAAGATCGACAGAAC -ACGGAATGCCAAGATCGAGTCTAC -ACGGAATGCCAAGATCGAACGTAC -ACGGAATGCCAAGATCGAAGTGAC -ACGGAATGCCAAGATCGACTGTAG -ACGGAATGCCAAGATCGACCTAAG -ACGGAATGCCAAGATCGAGTTCAG -ACGGAATGCCAAGATCGAGCATAG -ACGGAATGCCAAGATCGAGACAAG -ACGGAATGCCAAGATCGAAAGCAG -ACGGAATGCCAAGATCGACGTCAA -ACGGAATGCCAAGATCGAGCTGAA -ACGGAATGCCAAGATCGAAGTACG -ACGGAATGCCAAGATCGAATCCGA -ACGGAATGCCAAGATCGAATGGGA -ACGGAATGCCAAGATCGAGTGCAA -ACGGAATGCCAAGATCGAGAGGAA -ACGGAATGCCAAGATCGACAGGTA -ACGGAATGCCAAGATCGAGACTCT -ACGGAATGCCAAGATCGAAGTCCT -ACGGAATGCCAAGATCGATAAGCC -ACGGAATGCCAAGATCGAATAGCC -ACGGAATGCCAAGATCGATAACCG -ACGGAATGCCAAGATCGAATGCCA -ACGGAATGCCAACACTACGGAAAC -ACGGAATGCCAACACTACAACACC -ACGGAATGCCAACACTACATCGAG -ACGGAATGCCAACACTACCTCCTT -ACGGAATGCCAACACTACCCTGTT -ACGGAATGCCAACACTACCGGTTT -ACGGAATGCCAACACTACGTGGTT -ACGGAATGCCAACACTACGCCTTT -ACGGAATGCCAACACTACGGTCTT -ACGGAATGCCAACACTACACGCTT -ACGGAATGCCAACACTACAGCGTT -ACGGAATGCCAACACTACTTCGTC -ACGGAATGCCAACACTACTCTCTC -ACGGAATGCCAACACTACTGGATC -ACGGAATGCCAACACTACCACTTC -ACGGAATGCCAACACTACGTACTC -ACGGAATGCCAACACTACGATGTC -ACGGAATGCCAACACTACACAGTC -ACGGAATGCCAACACTACTTGCTG -ACGGAATGCCAACACTACTCCATG -ACGGAATGCCAACACTACTGTGTG -ACGGAATGCCAACACTACCTAGTG -ACGGAATGCCAACACTACCATCTG -ACGGAATGCCAACACTACGAGTTG -ACGGAATGCCAACACTACAGACTG -ACGGAATGCCAACACTACTCGGTA -ACGGAATGCCAACACTACTGCCTA -ACGGAATGCCAACACTACCCACTA -ACGGAATGCCAACACTACGGAGTA -ACGGAATGCCAACACTACTCGTCT -ACGGAATGCCAACACTACTGCACT -ACGGAATGCCAACACTACCTGACT -ACGGAATGCCAACACTACCAACCT -ACGGAATGCCAACACTACGCTACT -ACGGAATGCCAACACTACGGATCT -ACGGAATGCCAACACTACAAGGCT -ACGGAATGCCAACACTACTCAACC -ACGGAATGCCAACACTACTGTTCC -ACGGAATGCCAACACTACATTCCC -ACGGAATGCCAACACTACTTCTCG -ACGGAATGCCAACACTACTAGACG -ACGGAATGCCAACACTACGTAACG -ACGGAATGCCAACACTACACTTCG -ACGGAATGCCAACACTACTACGCA -ACGGAATGCCAACACTACCTTGCA -ACGGAATGCCAACACTACCGAACA -ACGGAATGCCAACACTACCAGTCA -ACGGAATGCCAACACTACGATCCA -ACGGAATGCCAACACTACACGACA -ACGGAATGCCAACACTACAGCTCA -ACGGAATGCCAACACTACTCACGT -ACGGAATGCCAACACTACCGTAGT -ACGGAATGCCAACACTACGTCAGT -ACGGAATGCCAACACTACGAAGGT -ACGGAATGCCAACACTACAACCGT -ACGGAATGCCAACACTACTTGTGC -ACGGAATGCCAACACTACCTAAGC -ACGGAATGCCAACACTACACTAGC -ACGGAATGCCAACACTACAGATGC -ACGGAATGCCAACACTACTGAAGG -ACGGAATGCCAACACTACCAATGG -ACGGAATGCCAACACTACATGAGG -ACGGAATGCCAACACTACAATGGG -ACGGAATGCCAACACTACTCCTGA -ACGGAATGCCAACACTACTAGCGA -ACGGAATGCCAACACTACCACAGA -ACGGAATGCCAACACTACGCAAGA -ACGGAATGCCAACACTACGGTTGA -ACGGAATGCCAACACTACTCCGAT -ACGGAATGCCAACACTACTGGCAT -ACGGAATGCCAACACTACCGAGAT -ACGGAATGCCAACACTACTACCAC -ACGGAATGCCAACACTACCAGAAC -ACGGAATGCCAACACTACGTCTAC -ACGGAATGCCAACACTACACGTAC -ACGGAATGCCAACACTACAGTGAC -ACGGAATGCCAACACTACCTGTAG -ACGGAATGCCAACACTACCCTAAG -ACGGAATGCCAACACTACGTTCAG -ACGGAATGCCAACACTACGCATAG -ACGGAATGCCAACACTACGACAAG -ACGGAATGCCAACACTACAAGCAG -ACGGAATGCCAACACTACCGTCAA -ACGGAATGCCAACACTACGCTGAA -ACGGAATGCCAACACTACAGTACG -ACGGAATGCCAACACTACATCCGA -ACGGAATGCCAACACTACATGGGA -ACGGAATGCCAACACTACGTGCAA -ACGGAATGCCAACACTACGAGGAA -ACGGAATGCCAACACTACCAGGTA -ACGGAATGCCAACACTACGACTCT -ACGGAATGCCAACACTACAGTCCT -ACGGAATGCCAACACTACTAAGCC -ACGGAATGCCAACACTACATAGCC -ACGGAATGCCAACACTACTAACCG -ACGGAATGCCAACACTACATGCCA -ACGGAATGCCAAAACCAGGGAAAC -ACGGAATGCCAAAACCAGAACACC -ACGGAATGCCAAAACCAGATCGAG -ACGGAATGCCAAAACCAGCTCCTT -ACGGAATGCCAAAACCAGCCTGTT -ACGGAATGCCAAAACCAGCGGTTT -ACGGAATGCCAAAACCAGGTGGTT -ACGGAATGCCAAAACCAGGCCTTT -ACGGAATGCCAAAACCAGGGTCTT -ACGGAATGCCAAAACCAGACGCTT -ACGGAATGCCAAAACCAGAGCGTT -ACGGAATGCCAAAACCAGTTCGTC -ACGGAATGCCAAAACCAGTCTCTC -ACGGAATGCCAAAACCAGTGGATC -ACGGAATGCCAAAACCAGCACTTC -ACGGAATGCCAAAACCAGGTACTC -ACGGAATGCCAAAACCAGGATGTC -ACGGAATGCCAAAACCAGACAGTC -ACGGAATGCCAAAACCAGTTGCTG -ACGGAATGCCAAAACCAGTCCATG -ACGGAATGCCAAAACCAGTGTGTG -ACGGAATGCCAAAACCAGCTAGTG -ACGGAATGCCAAAACCAGCATCTG -ACGGAATGCCAAAACCAGGAGTTG -ACGGAATGCCAAAACCAGAGACTG -ACGGAATGCCAAAACCAGTCGGTA -ACGGAATGCCAAAACCAGTGCCTA -ACGGAATGCCAAAACCAGCCACTA -ACGGAATGCCAAAACCAGGGAGTA -ACGGAATGCCAAAACCAGTCGTCT -ACGGAATGCCAAAACCAGTGCACT -ACGGAATGCCAAAACCAGCTGACT -ACGGAATGCCAAAACCAGCAACCT -ACGGAATGCCAAAACCAGGCTACT -ACGGAATGCCAAAACCAGGGATCT -ACGGAATGCCAAAACCAGAAGGCT -ACGGAATGCCAAAACCAGTCAACC -ACGGAATGCCAAAACCAGTGTTCC -ACGGAATGCCAAAACCAGATTCCC -ACGGAATGCCAAAACCAGTTCTCG -ACGGAATGCCAAAACCAGTAGACG -ACGGAATGCCAAAACCAGGTAACG -ACGGAATGCCAAAACCAGACTTCG -ACGGAATGCCAAAACCAGTACGCA -ACGGAATGCCAAAACCAGCTTGCA -ACGGAATGCCAAAACCAGCGAACA -ACGGAATGCCAAAACCAGCAGTCA -ACGGAATGCCAAAACCAGGATCCA -ACGGAATGCCAAAACCAGACGACA -ACGGAATGCCAAAACCAGAGCTCA -ACGGAATGCCAAAACCAGTCACGT -ACGGAATGCCAAAACCAGCGTAGT -ACGGAATGCCAAAACCAGGTCAGT -ACGGAATGCCAAAACCAGGAAGGT -ACGGAATGCCAAAACCAGAACCGT -ACGGAATGCCAAAACCAGTTGTGC -ACGGAATGCCAAAACCAGCTAAGC -ACGGAATGCCAAAACCAGACTAGC -ACGGAATGCCAAAACCAGAGATGC -ACGGAATGCCAAAACCAGTGAAGG -ACGGAATGCCAAAACCAGCAATGG -ACGGAATGCCAAAACCAGATGAGG -ACGGAATGCCAAAACCAGAATGGG -ACGGAATGCCAAAACCAGTCCTGA -ACGGAATGCCAAAACCAGTAGCGA -ACGGAATGCCAAAACCAGCACAGA -ACGGAATGCCAAAACCAGGCAAGA -ACGGAATGCCAAAACCAGGGTTGA -ACGGAATGCCAAAACCAGTCCGAT -ACGGAATGCCAAAACCAGTGGCAT -ACGGAATGCCAAAACCAGCGAGAT -ACGGAATGCCAAAACCAGTACCAC -ACGGAATGCCAAAACCAGCAGAAC -ACGGAATGCCAAAACCAGGTCTAC -ACGGAATGCCAAAACCAGACGTAC -ACGGAATGCCAAAACCAGAGTGAC -ACGGAATGCCAAAACCAGCTGTAG -ACGGAATGCCAAAACCAGCCTAAG -ACGGAATGCCAAAACCAGGTTCAG -ACGGAATGCCAAAACCAGGCATAG -ACGGAATGCCAAAACCAGGACAAG -ACGGAATGCCAAAACCAGAAGCAG -ACGGAATGCCAAAACCAGCGTCAA -ACGGAATGCCAAAACCAGGCTGAA -ACGGAATGCCAAAACCAGAGTACG -ACGGAATGCCAAAACCAGATCCGA -ACGGAATGCCAAAACCAGATGGGA -ACGGAATGCCAAAACCAGGTGCAA -ACGGAATGCCAAAACCAGGAGGAA -ACGGAATGCCAAAACCAGCAGGTA -ACGGAATGCCAAAACCAGGACTCT -ACGGAATGCCAAAACCAGAGTCCT -ACGGAATGCCAAAACCAGTAAGCC -ACGGAATGCCAAAACCAGATAGCC -ACGGAATGCCAAAACCAGTAACCG -ACGGAATGCCAAAACCAGATGCCA -ACGGAATGCCAATACGTCGGAAAC -ACGGAATGCCAATACGTCAACACC -ACGGAATGCCAATACGTCATCGAG -ACGGAATGCCAATACGTCCTCCTT -ACGGAATGCCAATACGTCCCTGTT -ACGGAATGCCAATACGTCCGGTTT -ACGGAATGCCAATACGTCGTGGTT -ACGGAATGCCAATACGTCGCCTTT -ACGGAATGCCAATACGTCGGTCTT -ACGGAATGCCAATACGTCACGCTT -ACGGAATGCCAATACGTCAGCGTT -ACGGAATGCCAATACGTCTTCGTC -ACGGAATGCCAATACGTCTCTCTC -ACGGAATGCCAATACGTCTGGATC -ACGGAATGCCAATACGTCCACTTC -ACGGAATGCCAATACGTCGTACTC -ACGGAATGCCAATACGTCGATGTC -ACGGAATGCCAATACGTCACAGTC -ACGGAATGCCAATACGTCTTGCTG -ACGGAATGCCAATACGTCTCCATG -ACGGAATGCCAATACGTCTGTGTG -ACGGAATGCCAATACGTCCTAGTG -ACGGAATGCCAATACGTCCATCTG -ACGGAATGCCAATACGTCGAGTTG -ACGGAATGCCAATACGTCAGACTG -ACGGAATGCCAATACGTCTCGGTA -ACGGAATGCCAATACGTCTGCCTA -ACGGAATGCCAATACGTCCCACTA -ACGGAATGCCAATACGTCGGAGTA -ACGGAATGCCAATACGTCTCGTCT -ACGGAATGCCAATACGTCTGCACT -ACGGAATGCCAATACGTCCTGACT -ACGGAATGCCAATACGTCCAACCT -ACGGAATGCCAATACGTCGCTACT -ACGGAATGCCAATACGTCGGATCT -ACGGAATGCCAATACGTCAAGGCT -ACGGAATGCCAATACGTCTCAACC -ACGGAATGCCAATACGTCTGTTCC -ACGGAATGCCAATACGTCATTCCC -ACGGAATGCCAATACGTCTTCTCG -ACGGAATGCCAATACGTCTAGACG -ACGGAATGCCAATACGTCGTAACG -ACGGAATGCCAATACGTCACTTCG -ACGGAATGCCAATACGTCTACGCA -ACGGAATGCCAATACGTCCTTGCA -ACGGAATGCCAATACGTCCGAACA -ACGGAATGCCAATACGTCCAGTCA -ACGGAATGCCAATACGTCGATCCA -ACGGAATGCCAATACGTCACGACA -ACGGAATGCCAATACGTCAGCTCA -ACGGAATGCCAATACGTCTCACGT -ACGGAATGCCAATACGTCCGTAGT -ACGGAATGCCAATACGTCGTCAGT -ACGGAATGCCAATACGTCGAAGGT -ACGGAATGCCAATACGTCAACCGT -ACGGAATGCCAATACGTCTTGTGC -ACGGAATGCCAATACGTCCTAAGC -ACGGAATGCCAATACGTCACTAGC -ACGGAATGCCAATACGTCAGATGC -ACGGAATGCCAATACGTCTGAAGG -ACGGAATGCCAATACGTCCAATGG -ACGGAATGCCAATACGTCATGAGG -ACGGAATGCCAATACGTCAATGGG -ACGGAATGCCAATACGTCTCCTGA -ACGGAATGCCAATACGTCTAGCGA -ACGGAATGCCAATACGTCCACAGA -ACGGAATGCCAATACGTCGCAAGA -ACGGAATGCCAATACGTCGGTTGA -ACGGAATGCCAATACGTCTCCGAT -ACGGAATGCCAATACGTCTGGCAT -ACGGAATGCCAATACGTCCGAGAT -ACGGAATGCCAATACGTCTACCAC -ACGGAATGCCAATACGTCCAGAAC -ACGGAATGCCAATACGTCGTCTAC -ACGGAATGCCAATACGTCACGTAC -ACGGAATGCCAATACGTCAGTGAC -ACGGAATGCCAATACGTCCTGTAG -ACGGAATGCCAATACGTCCCTAAG -ACGGAATGCCAATACGTCGTTCAG -ACGGAATGCCAATACGTCGCATAG -ACGGAATGCCAATACGTCGACAAG -ACGGAATGCCAATACGTCAAGCAG -ACGGAATGCCAATACGTCCGTCAA -ACGGAATGCCAATACGTCGCTGAA -ACGGAATGCCAATACGTCAGTACG -ACGGAATGCCAATACGTCATCCGA -ACGGAATGCCAATACGTCATGGGA -ACGGAATGCCAATACGTCGTGCAA -ACGGAATGCCAATACGTCGAGGAA -ACGGAATGCCAATACGTCCAGGTA -ACGGAATGCCAATACGTCGACTCT -ACGGAATGCCAATACGTCAGTCCT -ACGGAATGCCAATACGTCTAAGCC -ACGGAATGCCAATACGTCATAGCC -ACGGAATGCCAATACGTCTAACCG -ACGGAATGCCAATACGTCATGCCA -ACGGAATGCCAATACACGGGAAAC -ACGGAATGCCAATACACGAACACC -ACGGAATGCCAATACACGATCGAG -ACGGAATGCCAATACACGCTCCTT -ACGGAATGCCAATACACGCCTGTT -ACGGAATGCCAATACACGCGGTTT -ACGGAATGCCAATACACGGTGGTT -ACGGAATGCCAATACACGGCCTTT -ACGGAATGCCAATACACGGGTCTT -ACGGAATGCCAATACACGACGCTT -ACGGAATGCCAATACACGAGCGTT -ACGGAATGCCAATACACGTTCGTC -ACGGAATGCCAATACACGTCTCTC -ACGGAATGCCAATACACGTGGATC -ACGGAATGCCAATACACGCACTTC -ACGGAATGCCAATACACGGTACTC -ACGGAATGCCAATACACGGATGTC -ACGGAATGCCAATACACGACAGTC -ACGGAATGCCAATACACGTTGCTG -ACGGAATGCCAATACACGTCCATG -ACGGAATGCCAATACACGTGTGTG -ACGGAATGCCAATACACGCTAGTG -ACGGAATGCCAATACACGCATCTG -ACGGAATGCCAATACACGGAGTTG -ACGGAATGCCAATACACGAGACTG -ACGGAATGCCAATACACGTCGGTA -ACGGAATGCCAATACACGTGCCTA -ACGGAATGCCAATACACGCCACTA -ACGGAATGCCAATACACGGGAGTA -ACGGAATGCCAATACACGTCGTCT -ACGGAATGCCAATACACGTGCACT -ACGGAATGCCAATACACGCTGACT -ACGGAATGCCAATACACGCAACCT -ACGGAATGCCAATACACGGCTACT -ACGGAATGCCAATACACGGGATCT -ACGGAATGCCAATACACGAAGGCT -ACGGAATGCCAATACACGTCAACC -ACGGAATGCCAATACACGTGTTCC -ACGGAATGCCAATACACGATTCCC -ACGGAATGCCAATACACGTTCTCG -ACGGAATGCCAATACACGTAGACG -ACGGAATGCCAATACACGGTAACG -ACGGAATGCCAATACACGACTTCG -ACGGAATGCCAATACACGTACGCA -ACGGAATGCCAATACACGCTTGCA -ACGGAATGCCAATACACGCGAACA -ACGGAATGCCAATACACGCAGTCA -ACGGAATGCCAATACACGGATCCA -ACGGAATGCCAATACACGACGACA -ACGGAATGCCAATACACGAGCTCA -ACGGAATGCCAATACACGTCACGT -ACGGAATGCCAATACACGCGTAGT -ACGGAATGCCAATACACGGTCAGT -ACGGAATGCCAATACACGGAAGGT -ACGGAATGCCAATACACGAACCGT -ACGGAATGCCAATACACGTTGTGC -ACGGAATGCCAATACACGCTAAGC -ACGGAATGCCAATACACGACTAGC -ACGGAATGCCAATACACGAGATGC -ACGGAATGCCAATACACGTGAAGG -ACGGAATGCCAATACACGCAATGG -ACGGAATGCCAATACACGATGAGG -ACGGAATGCCAATACACGAATGGG -ACGGAATGCCAATACACGTCCTGA -ACGGAATGCCAATACACGTAGCGA -ACGGAATGCCAATACACGCACAGA -ACGGAATGCCAATACACGGCAAGA -ACGGAATGCCAATACACGGGTTGA -ACGGAATGCCAATACACGTCCGAT -ACGGAATGCCAATACACGTGGCAT -ACGGAATGCCAATACACGCGAGAT -ACGGAATGCCAATACACGTACCAC -ACGGAATGCCAATACACGCAGAAC -ACGGAATGCCAATACACGGTCTAC -ACGGAATGCCAATACACGACGTAC -ACGGAATGCCAATACACGAGTGAC -ACGGAATGCCAATACACGCTGTAG -ACGGAATGCCAATACACGCCTAAG -ACGGAATGCCAATACACGGTTCAG -ACGGAATGCCAATACACGGCATAG -ACGGAATGCCAATACACGGACAAG -ACGGAATGCCAATACACGAAGCAG -ACGGAATGCCAATACACGCGTCAA -ACGGAATGCCAATACACGGCTGAA -ACGGAATGCCAATACACGAGTACG -ACGGAATGCCAATACACGATCCGA -ACGGAATGCCAATACACGATGGGA -ACGGAATGCCAATACACGGTGCAA -ACGGAATGCCAATACACGGAGGAA -ACGGAATGCCAATACACGCAGGTA -ACGGAATGCCAATACACGGACTCT -ACGGAATGCCAATACACGAGTCCT -ACGGAATGCCAATACACGTAAGCC -ACGGAATGCCAATACACGATAGCC -ACGGAATGCCAATACACGTAACCG -ACGGAATGCCAATACACGATGCCA -ACGGAATGCCAAGACAGTGGAAAC -ACGGAATGCCAAGACAGTAACACC -ACGGAATGCCAAGACAGTATCGAG -ACGGAATGCCAAGACAGTCTCCTT -ACGGAATGCCAAGACAGTCCTGTT -ACGGAATGCCAAGACAGTCGGTTT -ACGGAATGCCAAGACAGTGTGGTT -ACGGAATGCCAAGACAGTGCCTTT -ACGGAATGCCAAGACAGTGGTCTT -ACGGAATGCCAAGACAGTACGCTT -ACGGAATGCCAAGACAGTAGCGTT -ACGGAATGCCAAGACAGTTTCGTC -ACGGAATGCCAAGACAGTTCTCTC -ACGGAATGCCAAGACAGTTGGATC -ACGGAATGCCAAGACAGTCACTTC -ACGGAATGCCAAGACAGTGTACTC -ACGGAATGCCAAGACAGTGATGTC -ACGGAATGCCAAGACAGTACAGTC -ACGGAATGCCAAGACAGTTTGCTG -ACGGAATGCCAAGACAGTTCCATG -ACGGAATGCCAAGACAGTTGTGTG -ACGGAATGCCAAGACAGTCTAGTG -ACGGAATGCCAAGACAGTCATCTG -ACGGAATGCCAAGACAGTGAGTTG -ACGGAATGCCAAGACAGTAGACTG -ACGGAATGCCAAGACAGTTCGGTA -ACGGAATGCCAAGACAGTTGCCTA -ACGGAATGCCAAGACAGTCCACTA -ACGGAATGCCAAGACAGTGGAGTA -ACGGAATGCCAAGACAGTTCGTCT -ACGGAATGCCAAGACAGTTGCACT -ACGGAATGCCAAGACAGTCTGACT -ACGGAATGCCAAGACAGTCAACCT -ACGGAATGCCAAGACAGTGCTACT -ACGGAATGCCAAGACAGTGGATCT -ACGGAATGCCAAGACAGTAAGGCT -ACGGAATGCCAAGACAGTTCAACC -ACGGAATGCCAAGACAGTTGTTCC -ACGGAATGCCAAGACAGTATTCCC -ACGGAATGCCAAGACAGTTTCTCG -ACGGAATGCCAAGACAGTTAGACG -ACGGAATGCCAAGACAGTGTAACG -ACGGAATGCCAAGACAGTACTTCG -ACGGAATGCCAAGACAGTTACGCA -ACGGAATGCCAAGACAGTCTTGCA -ACGGAATGCCAAGACAGTCGAACA -ACGGAATGCCAAGACAGTCAGTCA -ACGGAATGCCAAGACAGTGATCCA -ACGGAATGCCAAGACAGTACGACA -ACGGAATGCCAAGACAGTAGCTCA -ACGGAATGCCAAGACAGTTCACGT -ACGGAATGCCAAGACAGTCGTAGT -ACGGAATGCCAAGACAGTGTCAGT -ACGGAATGCCAAGACAGTGAAGGT -ACGGAATGCCAAGACAGTAACCGT -ACGGAATGCCAAGACAGTTTGTGC -ACGGAATGCCAAGACAGTCTAAGC -ACGGAATGCCAAGACAGTACTAGC -ACGGAATGCCAAGACAGTAGATGC -ACGGAATGCCAAGACAGTTGAAGG -ACGGAATGCCAAGACAGTCAATGG -ACGGAATGCCAAGACAGTATGAGG -ACGGAATGCCAAGACAGTAATGGG -ACGGAATGCCAAGACAGTTCCTGA -ACGGAATGCCAAGACAGTTAGCGA -ACGGAATGCCAAGACAGTCACAGA -ACGGAATGCCAAGACAGTGCAAGA -ACGGAATGCCAAGACAGTGGTTGA -ACGGAATGCCAAGACAGTTCCGAT -ACGGAATGCCAAGACAGTTGGCAT -ACGGAATGCCAAGACAGTCGAGAT -ACGGAATGCCAAGACAGTTACCAC -ACGGAATGCCAAGACAGTCAGAAC -ACGGAATGCCAAGACAGTGTCTAC -ACGGAATGCCAAGACAGTACGTAC -ACGGAATGCCAAGACAGTAGTGAC -ACGGAATGCCAAGACAGTCTGTAG -ACGGAATGCCAAGACAGTCCTAAG -ACGGAATGCCAAGACAGTGTTCAG -ACGGAATGCCAAGACAGTGCATAG -ACGGAATGCCAAGACAGTGACAAG -ACGGAATGCCAAGACAGTAAGCAG -ACGGAATGCCAAGACAGTCGTCAA -ACGGAATGCCAAGACAGTGCTGAA -ACGGAATGCCAAGACAGTAGTACG -ACGGAATGCCAAGACAGTATCCGA -ACGGAATGCCAAGACAGTATGGGA -ACGGAATGCCAAGACAGTGTGCAA -ACGGAATGCCAAGACAGTGAGGAA -ACGGAATGCCAAGACAGTCAGGTA -ACGGAATGCCAAGACAGTGACTCT -ACGGAATGCCAAGACAGTAGTCCT -ACGGAATGCCAAGACAGTTAAGCC -ACGGAATGCCAAGACAGTATAGCC -ACGGAATGCCAAGACAGTTAACCG -ACGGAATGCCAAGACAGTATGCCA -ACGGAATGCCAATAGCTGGGAAAC -ACGGAATGCCAATAGCTGAACACC -ACGGAATGCCAATAGCTGATCGAG -ACGGAATGCCAATAGCTGCTCCTT -ACGGAATGCCAATAGCTGCCTGTT -ACGGAATGCCAATAGCTGCGGTTT -ACGGAATGCCAATAGCTGGTGGTT -ACGGAATGCCAATAGCTGGCCTTT -ACGGAATGCCAATAGCTGGGTCTT -ACGGAATGCCAATAGCTGACGCTT -ACGGAATGCCAATAGCTGAGCGTT -ACGGAATGCCAATAGCTGTTCGTC -ACGGAATGCCAATAGCTGTCTCTC -ACGGAATGCCAATAGCTGTGGATC -ACGGAATGCCAATAGCTGCACTTC -ACGGAATGCCAATAGCTGGTACTC -ACGGAATGCCAATAGCTGGATGTC -ACGGAATGCCAATAGCTGACAGTC -ACGGAATGCCAATAGCTGTTGCTG -ACGGAATGCCAATAGCTGTCCATG -ACGGAATGCCAATAGCTGTGTGTG -ACGGAATGCCAATAGCTGCTAGTG -ACGGAATGCCAATAGCTGCATCTG -ACGGAATGCCAATAGCTGGAGTTG -ACGGAATGCCAATAGCTGAGACTG -ACGGAATGCCAATAGCTGTCGGTA -ACGGAATGCCAATAGCTGTGCCTA -ACGGAATGCCAATAGCTGCCACTA -ACGGAATGCCAATAGCTGGGAGTA -ACGGAATGCCAATAGCTGTCGTCT -ACGGAATGCCAATAGCTGTGCACT -ACGGAATGCCAATAGCTGCTGACT -ACGGAATGCCAATAGCTGCAACCT -ACGGAATGCCAATAGCTGGCTACT -ACGGAATGCCAATAGCTGGGATCT -ACGGAATGCCAATAGCTGAAGGCT -ACGGAATGCCAATAGCTGTCAACC -ACGGAATGCCAATAGCTGTGTTCC -ACGGAATGCCAATAGCTGATTCCC -ACGGAATGCCAATAGCTGTTCTCG -ACGGAATGCCAATAGCTGTAGACG -ACGGAATGCCAATAGCTGGTAACG -ACGGAATGCCAATAGCTGACTTCG -ACGGAATGCCAATAGCTGTACGCA -ACGGAATGCCAATAGCTGCTTGCA -ACGGAATGCCAATAGCTGCGAACA -ACGGAATGCCAATAGCTGCAGTCA -ACGGAATGCCAATAGCTGGATCCA -ACGGAATGCCAATAGCTGACGACA -ACGGAATGCCAATAGCTGAGCTCA -ACGGAATGCCAATAGCTGTCACGT -ACGGAATGCCAATAGCTGCGTAGT -ACGGAATGCCAATAGCTGGTCAGT -ACGGAATGCCAATAGCTGGAAGGT -ACGGAATGCCAATAGCTGAACCGT -ACGGAATGCCAATAGCTGTTGTGC -ACGGAATGCCAATAGCTGCTAAGC -ACGGAATGCCAATAGCTGACTAGC -ACGGAATGCCAATAGCTGAGATGC -ACGGAATGCCAATAGCTGTGAAGG -ACGGAATGCCAATAGCTGCAATGG -ACGGAATGCCAATAGCTGATGAGG -ACGGAATGCCAATAGCTGAATGGG -ACGGAATGCCAATAGCTGTCCTGA -ACGGAATGCCAATAGCTGTAGCGA -ACGGAATGCCAATAGCTGCACAGA -ACGGAATGCCAATAGCTGGCAAGA -ACGGAATGCCAATAGCTGGGTTGA -ACGGAATGCCAATAGCTGTCCGAT -ACGGAATGCCAATAGCTGTGGCAT -ACGGAATGCCAATAGCTGCGAGAT -ACGGAATGCCAATAGCTGTACCAC -ACGGAATGCCAATAGCTGCAGAAC -ACGGAATGCCAATAGCTGGTCTAC -ACGGAATGCCAATAGCTGACGTAC -ACGGAATGCCAATAGCTGAGTGAC -ACGGAATGCCAATAGCTGCTGTAG -ACGGAATGCCAATAGCTGCCTAAG -ACGGAATGCCAATAGCTGGTTCAG -ACGGAATGCCAATAGCTGGCATAG -ACGGAATGCCAATAGCTGGACAAG -ACGGAATGCCAATAGCTGAAGCAG -ACGGAATGCCAATAGCTGCGTCAA -ACGGAATGCCAATAGCTGGCTGAA -ACGGAATGCCAATAGCTGAGTACG -ACGGAATGCCAATAGCTGATCCGA -ACGGAATGCCAATAGCTGATGGGA -ACGGAATGCCAATAGCTGGTGCAA -ACGGAATGCCAATAGCTGGAGGAA -ACGGAATGCCAATAGCTGCAGGTA -ACGGAATGCCAATAGCTGGACTCT -ACGGAATGCCAATAGCTGAGTCCT -ACGGAATGCCAATAGCTGTAAGCC -ACGGAATGCCAATAGCTGATAGCC -ACGGAATGCCAATAGCTGTAACCG -ACGGAATGCCAATAGCTGATGCCA -ACGGAATGCCAAAAGCCTGGAAAC -ACGGAATGCCAAAAGCCTAACACC -ACGGAATGCCAAAAGCCTATCGAG -ACGGAATGCCAAAAGCCTCTCCTT -ACGGAATGCCAAAAGCCTCCTGTT -ACGGAATGCCAAAAGCCTCGGTTT -ACGGAATGCCAAAAGCCTGTGGTT -ACGGAATGCCAAAAGCCTGCCTTT -ACGGAATGCCAAAAGCCTGGTCTT -ACGGAATGCCAAAAGCCTACGCTT -ACGGAATGCCAAAAGCCTAGCGTT -ACGGAATGCCAAAAGCCTTTCGTC -ACGGAATGCCAAAAGCCTTCTCTC -ACGGAATGCCAAAAGCCTTGGATC -ACGGAATGCCAAAAGCCTCACTTC -ACGGAATGCCAAAAGCCTGTACTC -ACGGAATGCCAAAAGCCTGATGTC -ACGGAATGCCAAAAGCCTACAGTC -ACGGAATGCCAAAAGCCTTTGCTG -ACGGAATGCCAAAAGCCTTCCATG -ACGGAATGCCAAAAGCCTTGTGTG -ACGGAATGCCAAAAGCCTCTAGTG -ACGGAATGCCAAAAGCCTCATCTG -ACGGAATGCCAAAAGCCTGAGTTG -ACGGAATGCCAAAAGCCTAGACTG -ACGGAATGCCAAAAGCCTTCGGTA -ACGGAATGCCAAAAGCCTTGCCTA -ACGGAATGCCAAAAGCCTCCACTA -ACGGAATGCCAAAAGCCTGGAGTA -ACGGAATGCCAAAAGCCTTCGTCT -ACGGAATGCCAAAAGCCTTGCACT -ACGGAATGCCAAAAGCCTCTGACT -ACGGAATGCCAAAAGCCTCAACCT -ACGGAATGCCAAAAGCCTGCTACT -ACGGAATGCCAAAAGCCTGGATCT -ACGGAATGCCAAAAGCCTAAGGCT -ACGGAATGCCAAAAGCCTTCAACC -ACGGAATGCCAAAAGCCTTGTTCC -ACGGAATGCCAAAAGCCTATTCCC -ACGGAATGCCAAAAGCCTTTCTCG -ACGGAATGCCAAAAGCCTTAGACG -ACGGAATGCCAAAAGCCTGTAACG -ACGGAATGCCAAAAGCCTACTTCG -ACGGAATGCCAAAAGCCTTACGCA -ACGGAATGCCAAAAGCCTCTTGCA -ACGGAATGCCAAAAGCCTCGAACA -ACGGAATGCCAAAAGCCTCAGTCA -ACGGAATGCCAAAAGCCTGATCCA -ACGGAATGCCAAAAGCCTACGACA -ACGGAATGCCAAAAGCCTAGCTCA -ACGGAATGCCAAAAGCCTTCACGT -ACGGAATGCCAAAAGCCTCGTAGT -ACGGAATGCCAAAAGCCTGTCAGT -ACGGAATGCCAAAAGCCTGAAGGT -ACGGAATGCCAAAAGCCTAACCGT -ACGGAATGCCAAAAGCCTTTGTGC -ACGGAATGCCAAAAGCCTCTAAGC -ACGGAATGCCAAAAGCCTACTAGC -ACGGAATGCCAAAAGCCTAGATGC -ACGGAATGCCAAAAGCCTTGAAGG -ACGGAATGCCAAAAGCCTCAATGG -ACGGAATGCCAAAAGCCTATGAGG -ACGGAATGCCAAAAGCCTAATGGG -ACGGAATGCCAAAAGCCTTCCTGA -ACGGAATGCCAAAAGCCTTAGCGA -ACGGAATGCCAAAAGCCTCACAGA -ACGGAATGCCAAAAGCCTGCAAGA -ACGGAATGCCAAAAGCCTGGTTGA -ACGGAATGCCAAAAGCCTTCCGAT -ACGGAATGCCAAAAGCCTTGGCAT -ACGGAATGCCAAAAGCCTCGAGAT -ACGGAATGCCAAAAGCCTTACCAC -ACGGAATGCCAAAAGCCTCAGAAC -ACGGAATGCCAAAAGCCTGTCTAC -ACGGAATGCCAAAAGCCTACGTAC -ACGGAATGCCAAAAGCCTAGTGAC -ACGGAATGCCAAAAGCCTCTGTAG -ACGGAATGCCAAAAGCCTCCTAAG -ACGGAATGCCAAAAGCCTGTTCAG -ACGGAATGCCAAAAGCCTGCATAG -ACGGAATGCCAAAAGCCTGACAAG -ACGGAATGCCAAAAGCCTAAGCAG -ACGGAATGCCAAAAGCCTCGTCAA -ACGGAATGCCAAAAGCCTGCTGAA -ACGGAATGCCAAAAGCCTAGTACG -ACGGAATGCCAAAAGCCTATCCGA -ACGGAATGCCAAAAGCCTATGGGA -ACGGAATGCCAAAAGCCTGTGCAA -ACGGAATGCCAAAAGCCTGAGGAA -ACGGAATGCCAAAAGCCTCAGGTA -ACGGAATGCCAAAAGCCTGACTCT -ACGGAATGCCAAAAGCCTAGTCCT -ACGGAATGCCAAAAGCCTTAAGCC -ACGGAATGCCAAAAGCCTATAGCC -ACGGAATGCCAAAAGCCTTAACCG -ACGGAATGCCAAAAGCCTATGCCA -ACGGAATGCCAACAGGTTGGAAAC -ACGGAATGCCAACAGGTTAACACC -ACGGAATGCCAACAGGTTATCGAG -ACGGAATGCCAACAGGTTCTCCTT -ACGGAATGCCAACAGGTTCCTGTT -ACGGAATGCCAACAGGTTCGGTTT -ACGGAATGCCAACAGGTTGTGGTT -ACGGAATGCCAACAGGTTGCCTTT -ACGGAATGCCAACAGGTTGGTCTT -ACGGAATGCCAACAGGTTACGCTT -ACGGAATGCCAACAGGTTAGCGTT -ACGGAATGCCAACAGGTTTTCGTC -ACGGAATGCCAACAGGTTTCTCTC -ACGGAATGCCAACAGGTTTGGATC -ACGGAATGCCAACAGGTTCACTTC -ACGGAATGCCAACAGGTTGTACTC -ACGGAATGCCAACAGGTTGATGTC -ACGGAATGCCAACAGGTTACAGTC -ACGGAATGCCAACAGGTTTTGCTG -ACGGAATGCCAACAGGTTTCCATG -ACGGAATGCCAACAGGTTTGTGTG -ACGGAATGCCAACAGGTTCTAGTG -ACGGAATGCCAACAGGTTCATCTG -ACGGAATGCCAACAGGTTGAGTTG -ACGGAATGCCAACAGGTTAGACTG -ACGGAATGCCAACAGGTTTCGGTA -ACGGAATGCCAACAGGTTTGCCTA -ACGGAATGCCAACAGGTTCCACTA -ACGGAATGCCAACAGGTTGGAGTA -ACGGAATGCCAACAGGTTTCGTCT -ACGGAATGCCAACAGGTTTGCACT -ACGGAATGCCAACAGGTTCTGACT -ACGGAATGCCAACAGGTTCAACCT -ACGGAATGCCAACAGGTTGCTACT -ACGGAATGCCAACAGGTTGGATCT -ACGGAATGCCAACAGGTTAAGGCT -ACGGAATGCCAACAGGTTTCAACC -ACGGAATGCCAACAGGTTTGTTCC -ACGGAATGCCAACAGGTTATTCCC -ACGGAATGCCAACAGGTTTTCTCG -ACGGAATGCCAACAGGTTTAGACG -ACGGAATGCCAACAGGTTGTAACG -ACGGAATGCCAACAGGTTACTTCG -ACGGAATGCCAACAGGTTTACGCA -ACGGAATGCCAACAGGTTCTTGCA -ACGGAATGCCAACAGGTTCGAACA -ACGGAATGCCAACAGGTTCAGTCA -ACGGAATGCCAACAGGTTGATCCA -ACGGAATGCCAACAGGTTACGACA -ACGGAATGCCAACAGGTTAGCTCA -ACGGAATGCCAACAGGTTTCACGT -ACGGAATGCCAACAGGTTCGTAGT -ACGGAATGCCAACAGGTTGTCAGT -ACGGAATGCCAACAGGTTGAAGGT -ACGGAATGCCAACAGGTTAACCGT -ACGGAATGCCAACAGGTTTTGTGC -ACGGAATGCCAACAGGTTCTAAGC -ACGGAATGCCAACAGGTTACTAGC -ACGGAATGCCAACAGGTTAGATGC -ACGGAATGCCAACAGGTTTGAAGG -ACGGAATGCCAACAGGTTCAATGG -ACGGAATGCCAACAGGTTATGAGG -ACGGAATGCCAACAGGTTAATGGG -ACGGAATGCCAACAGGTTTCCTGA -ACGGAATGCCAACAGGTTTAGCGA -ACGGAATGCCAACAGGTTCACAGA -ACGGAATGCCAACAGGTTGCAAGA -ACGGAATGCCAACAGGTTGGTTGA -ACGGAATGCCAACAGGTTTCCGAT -ACGGAATGCCAACAGGTTTGGCAT -ACGGAATGCCAACAGGTTCGAGAT -ACGGAATGCCAACAGGTTTACCAC -ACGGAATGCCAACAGGTTCAGAAC -ACGGAATGCCAACAGGTTGTCTAC -ACGGAATGCCAACAGGTTACGTAC -ACGGAATGCCAACAGGTTAGTGAC -ACGGAATGCCAACAGGTTCTGTAG -ACGGAATGCCAACAGGTTCCTAAG -ACGGAATGCCAACAGGTTGTTCAG -ACGGAATGCCAACAGGTTGCATAG -ACGGAATGCCAACAGGTTGACAAG -ACGGAATGCCAACAGGTTAAGCAG -ACGGAATGCCAACAGGTTCGTCAA -ACGGAATGCCAACAGGTTGCTGAA -ACGGAATGCCAACAGGTTAGTACG -ACGGAATGCCAACAGGTTATCCGA -ACGGAATGCCAACAGGTTATGGGA -ACGGAATGCCAACAGGTTGTGCAA -ACGGAATGCCAACAGGTTGAGGAA -ACGGAATGCCAACAGGTTCAGGTA -ACGGAATGCCAACAGGTTGACTCT -ACGGAATGCCAACAGGTTAGTCCT -ACGGAATGCCAACAGGTTTAAGCC -ACGGAATGCCAACAGGTTATAGCC -ACGGAATGCCAACAGGTTTAACCG -ACGGAATGCCAACAGGTTATGCCA -ACGGAATGCCAATAGGCAGGAAAC -ACGGAATGCCAATAGGCAAACACC -ACGGAATGCCAATAGGCAATCGAG -ACGGAATGCCAATAGGCACTCCTT -ACGGAATGCCAATAGGCACCTGTT -ACGGAATGCCAATAGGCACGGTTT -ACGGAATGCCAATAGGCAGTGGTT -ACGGAATGCCAATAGGCAGCCTTT -ACGGAATGCCAATAGGCAGGTCTT -ACGGAATGCCAATAGGCAACGCTT -ACGGAATGCCAATAGGCAAGCGTT -ACGGAATGCCAATAGGCATTCGTC -ACGGAATGCCAATAGGCATCTCTC -ACGGAATGCCAATAGGCATGGATC -ACGGAATGCCAATAGGCACACTTC -ACGGAATGCCAATAGGCAGTACTC -ACGGAATGCCAATAGGCAGATGTC -ACGGAATGCCAATAGGCAACAGTC -ACGGAATGCCAATAGGCATTGCTG -ACGGAATGCCAATAGGCATCCATG -ACGGAATGCCAATAGGCATGTGTG -ACGGAATGCCAATAGGCACTAGTG -ACGGAATGCCAATAGGCACATCTG -ACGGAATGCCAATAGGCAGAGTTG -ACGGAATGCCAATAGGCAAGACTG -ACGGAATGCCAATAGGCATCGGTA -ACGGAATGCCAATAGGCATGCCTA -ACGGAATGCCAATAGGCACCACTA -ACGGAATGCCAATAGGCAGGAGTA -ACGGAATGCCAATAGGCATCGTCT -ACGGAATGCCAATAGGCATGCACT -ACGGAATGCCAATAGGCACTGACT -ACGGAATGCCAATAGGCACAACCT -ACGGAATGCCAATAGGCAGCTACT -ACGGAATGCCAATAGGCAGGATCT -ACGGAATGCCAATAGGCAAAGGCT -ACGGAATGCCAATAGGCATCAACC -ACGGAATGCCAATAGGCATGTTCC -ACGGAATGCCAATAGGCAATTCCC -ACGGAATGCCAATAGGCATTCTCG -ACGGAATGCCAATAGGCATAGACG -ACGGAATGCCAATAGGCAGTAACG -ACGGAATGCCAATAGGCAACTTCG -ACGGAATGCCAATAGGCATACGCA -ACGGAATGCCAATAGGCACTTGCA -ACGGAATGCCAATAGGCACGAACA -ACGGAATGCCAATAGGCACAGTCA -ACGGAATGCCAATAGGCAGATCCA -ACGGAATGCCAATAGGCAACGACA -ACGGAATGCCAATAGGCAAGCTCA -ACGGAATGCCAATAGGCATCACGT -ACGGAATGCCAATAGGCACGTAGT -ACGGAATGCCAATAGGCAGTCAGT -ACGGAATGCCAATAGGCAGAAGGT -ACGGAATGCCAATAGGCAAACCGT -ACGGAATGCCAATAGGCATTGTGC -ACGGAATGCCAATAGGCACTAAGC -ACGGAATGCCAATAGGCAACTAGC -ACGGAATGCCAATAGGCAAGATGC -ACGGAATGCCAATAGGCATGAAGG -ACGGAATGCCAATAGGCACAATGG -ACGGAATGCCAATAGGCAATGAGG -ACGGAATGCCAATAGGCAAATGGG -ACGGAATGCCAATAGGCATCCTGA -ACGGAATGCCAATAGGCATAGCGA -ACGGAATGCCAATAGGCACACAGA -ACGGAATGCCAATAGGCAGCAAGA -ACGGAATGCCAATAGGCAGGTTGA -ACGGAATGCCAATAGGCATCCGAT -ACGGAATGCCAATAGGCATGGCAT -ACGGAATGCCAATAGGCACGAGAT -ACGGAATGCCAATAGGCATACCAC -ACGGAATGCCAATAGGCACAGAAC -ACGGAATGCCAATAGGCAGTCTAC -ACGGAATGCCAATAGGCAACGTAC -ACGGAATGCCAATAGGCAAGTGAC -ACGGAATGCCAATAGGCACTGTAG -ACGGAATGCCAATAGGCACCTAAG -ACGGAATGCCAATAGGCAGTTCAG -ACGGAATGCCAATAGGCAGCATAG -ACGGAATGCCAATAGGCAGACAAG -ACGGAATGCCAATAGGCAAAGCAG -ACGGAATGCCAATAGGCACGTCAA -ACGGAATGCCAATAGGCAGCTGAA -ACGGAATGCCAATAGGCAAGTACG -ACGGAATGCCAATAGGCAATCCGA -ACGGAATGCCAATAGGCAATGGGA -ACGGAATGCCAATAGGCAGTGCAA -ACGGAATGCCAATAGGCAGAGGAA -ACGGAATGCCAATAGGCACAGGTA -ACGGAATGCCAATAGGCAGACTCT -ACGGAATGCCAATAGGCAAGTCCT -ACGGAATGCCAATAGGCATAAGCC -ACGGAATGCCAATAGGCAATAGCC -ACGGAATGCCAATAGGCATAACCG -ACGGAATGCCAATAGGCAATGCCA -ACGGAATGCCAAAAGGACGGAAAC -ACGGAATGCCAAAAGGACAACACC -ACGGAATGCCAAAAGGACATCGAG -ACGGAATGCCAAAAGGACCTCCTT -ACGGAATGCCAAAAGGACCCTGTT -ACGGAATGCCAAAAGGACCGGTTT -ACGGAATGCCAAAAGGACGTGGTT -ACGGAATGCCAAAAGGACGCCTTT -ACGGAATGCCAAAAGGACGGTCTT -ACGGAATGCCAAAAGGACACGCTT -ACGGAATGCCAAAAGGACAGCGTT -ACGGAATGCCAAAAGGACTTCGTC -ACGGAATGCCAAAAGGACTCTCTC -ACGGAATGCCAAAAGGACTGGATC -ACGGAATGCCAAAAGGACCACTTC -ACGGAATGCCAAAAGGACGTACTC -ACGGAATGCCAAAAGGACGATGTC -ACGGAATGCCAAAAGGACACAGTC -ACGGAATGCCAAAAGGACTTGCTG -ACGGAATGCCAAAAGGACTCCATG -ACGGAATGCCAAAAGGACTGTGTG -ACGGAATGCCAAAAGGACCTAGTG -ACGGAATGCCAAAAGGACCATCTG -ACGGAATGCCAAAAGGACGAGTTG -ACGGAATGCCAAAAGGACAGACTG -ACGGAATGCCAAAAGGACTCGGTA -ACGGAATGCCAAAAGGACTGCCTA -ACGGAATGCCAAAAGGACCCACTA -ACGGAATGCCAAAAGGACGGAGTA -ACGGAATGCCAAAAGGACTCGTCT -ACGGAATGCCAAAAGGACTGCACT -ACGGAATGCCAAAAGGACCTGACT -ACGGAATGCCAAAAGGACCAACCT -ACGGAATGCCAAAAGGACGCTACT -ACGGAATGCCAAAAGGACGGATCT -ACGGAATGCCAAAAGGACAAGGCT -ACGGAATGCCAAAAGGACTCAACC -ACGGAATGCCAAAAGGACTGTTCC -ACGGAATGCCAAAAGGACATTCCC -ACGGAATGCCAAAAGGACTTCTCG -ACGGAATGCCAAAAGGACTAGACG -ACGGAATGCCAAAAGGACGTAACG -ACGGAATGCCAAAAGGACACTTCG -ACGGAATGCCAAAAGGACTACGCA -ACGGAATGCCAAAAGGACCTTGCA -ACGGAATGCCAAAAGGACCGAACA -ACGGAATGCCAAAAGGACCAGTCA -ACGGAATGCCAAAAGGACGATCCA -ACGGAATGCCAAAAGGACACGACA -ACGGAATGCCAAAAGGACAGCTCA -ACGGAATGCCAAAAGGACTCACGT -ACGGAATGCCAAAAGGACCGTAGT -ACGGAATGCCAAAAGGACGTCAGT -ACGGAATGCCAAAAGGACGAAGGT -ACGGAATGCCAAAAGGACAACCGT -ACGGAATGCCAAAAGGACTTGTGC -ACGGAATGCCAAAAGGACCTAAGC -ACGGAATGCCAAAAGGACACTAGC -ACGGAATGCCAAAAGGACAGATGC -ACGGAATGCCAAAAGGACTGAAGG -ACGGAATGCCAAAAGGACCAATGG -ACGGAATGCCAAAAGGACATGAGG -ACGGAATGCCAAAAGGACAATGGG -ACGGAATGCCAAAAGGACTCCTGA -ACGGAATGCCAAAAGGACTAGCGA -ACGGAATGCCAAAAGGACCACAGA -ACGGAATGCCAAAAGGACGCAAGA -ACGGAATGCCAAAAGGACGGTTGA -ACGGAATGCCAAAAGGACTCCGAT -ACGGAATGCCAAAAGGACTGGCAT -ACGGAATGCCAAAAGGACCGAGAT -ACGGAATGCCAAAAGGACTACCAC -ACGGAATGCCAAAAGGACCAGAAC -ACGGAATGCCAAAAGGACGTCTAC -ACGGAATGCCAAAAGGACACGTAC -ACGGAATGCCAAAAGGACAGTGAC -ACGGAATGCCAAAAGGACCTGTAG -ACGGAATGCCAAAAGGACCCTAAG -ACGGAATGCCAAAAGGACGTTCAG -ACGGAATGCCAAAAGGACGCATAG -ACGGAATGCCAAAAGGACGACAAG -ACGGAATGCCAAAAGGACAAGCAG -ACGGAATGCCAAAAGGACCGTCAA -ACGGAATGCCAAAAGGACGCTGAA -ACGGAATGCCAAAAGGACAGTACG -ACGGAATGCCAAAAGGACATCCGA -ACGGAATGCCAAAAGGACATGGGA -ACGGAATGCCAAAAGGACGTGCAA -ACGGAATGCCAAAAGGACGAGGAA -ACGGAATGCCAAAAGGACCAGGTA -ACGGAATGCCAAAAGGACGACTCT -ACGGAATGCCAAAAGGACAGTCCT -ACGGAATGCCAAAAGGACTAAGCC -ACGGAATGCCAAAAGGACATAGCC -ACGGAATGCCAAAAGGACTAACCG -ACGGAATGCCAAAAGGACATGCCA -ACGGAATGCCAACAGAAGGGAAAC -ACGGAATGCCAACAGAAGAACACC -ACGGAATGCCAACAGAAGATCGAG -ACGGAATGCCAACAGAAGCTCCTT -ACGGAATGCCAACAGAAGCCTGTT -ACGGAATGCCAACAGAAGCGGTTT -ACGGAATGCCAACAGAAGGTGGTT -ACGGAATGCCAACAGAAGGCCTTT -ACGGAATGCCAACAGAAGGGTCTT -ACGGAATGCCAACAGAAGACGCTT -ACGGAATGCCAACAGAAGAGCGTT -ACGGAATGCCAACAGAAGTTCGTC -ACGGAATGCCAACAGAAGTCTCTC -ACGGAATGCCAACAGAAGTGGATC -ACGGAATGCCAACAGAAGCACTTC -ACGGAATGCCAACAGAAGGTACTC -ACGGAATGCCAACAGAAGGATGTC -ACGGAATGCCAACAGAAGACAGTC -ACGGAATGCCAACAGAAGTTGCTG -ACGGAATGCCAACAGAAGTCCATG -ACGGAATGCCAACAGAAGTGTGTG -ACGGAATGCCAACAGAAGCTAGTG -ACGGAATGCCAACAGAAGCATCTG -ACGGAATGCCAACAGAAGGAGTTG -ACGGAATGCCAACAGAAGAGACTG -ACGGAATGCCAACAGAAGTCGGTA -ACGGAATGCCAACAGAAGTGCCTA -ACGGAATGCCAACAGAAGCCACTA -ACGGAATGCCAACAGAAGGGAGTA -ACGGAATGCCAACAGAAGTCGTCT -ACGGAATGCCAACAGAAGTGCACT -ACGGAATGCCAACAGAAGCTGACT -ACGGAATGCCAACAGAAGCAACCT -ACGGAATGCCAACAGAAGGCTACT -ACGGAATGCCAACAGAAGGGATCT -ACGGAATGCCAACAGAAGAAGGCT -ACGGAATGCCAACAGAAGTCAACC -ACGGAATGCCAACAGAAGTGTTCC -ACGGAATGCCAACAGAAGATTCCC -ACGGAATGCCAACAGAAGTTCTCG -ACGGAATGCCAACAGAAGTAGACG -ACGGAATGCCAACAGAAGGTAACG -ACGGAATGCCAACAGAAGACTTCG -ACGGAATGCCAACAGAAGTACGCA -ACGGAATGCCAACAGAAGCTTGCA -ACGGAATGCCAACAGAAGCGAACA -ACGGAATGCCAACAGAAGCAGTCA -ACGGAATGCCAACAGAAGGATCCA -ACGGAATGCCAACAGAAGACGACA -ACGGAATGCCAACAGAAGAGCTCA -ACGGAATGCCAACAGAAGTCACGT -ACGGAATGCCAACAGAAGCGTAGT -ACGGAATGCCAACAGAAGGTCAGT -ACGGAATGCCAACAGAAGGAAGGT -ACGGAATGCCAACAGAAGAACCGT -ACGGAATGCCAACAGAAGTTGTGC -ACGGAATGCCAACAGAAGCTAAGC -ACGGAATGCCAACAGAAGACTAGC -ACGGAATGCCAACAGAAGAGATGC -ACGGAATGCCAACAGAAGTGAAGG -ACGGAATGCCAACAGAAGCAATGG -ACGGAATGCCAACAGAAGATGAGG -ACGGAATGCCAACAGAAGAATGGG -ACGGAATGCCAACAGAAGTCCTGA -ACGGAATGCCAACAGAAGTAGCGA -ACGGAATGCCAACAGAAGCACAGA -ACGGAATGCCAACAGAAGGCAAGA -ACGGAATGCCAACAGAAGGGTTGA -ACGGAATGCCAACAGAAGTCCGAT -ACGGAATGCCAACAGAAGTGGCAT -ACGGAATGCCAACAGAAGCGAGAT -ACGGAATGCCAACAGAAGTACCAC -ACGGAATGCCAACAGAAGCAGAAC -ACGGAATGCCAACAGAAGGTCTAC -ACGGAATGCCAACAGAAGACGTAC -ACGGAATGCCAACAGAAGAGTGAC -ACGGAATGCCAACAGAAGCTGTAG -ACGGAATGCCAACAGAAGCCTAAG -ACGGAATGCCAACAGAAGGTTCAG -ACGGAATGCCAACAGAAGGCATAG -ACGGAATGCCAACAGAAGGACAAG -ACGGAATGCCAACAGAAGAAGCAG -ACGGAATGCCAACAGAAGCGTCAA -ACGGAATGCCAACAGAAGGCTGAA -ACGGAATGCCAACAGAAGAGTACG -ACGGAATGCCAACAGAAGATCCGA -ACGGAATGCCAACAGAAGATGGGA -ACGGAATGCCAACAGAAGGTGCAA -ACGGAATGCCAACAGAAGGAGGAA -ACGGAATGCCAACAGAAGCAGGTA -ACGGAATGCCAACAGAAGGACTCT -ACGGAATGCCAACAGAAGAGTCCT -ACGGAATGCCAACAGAAGTAAGCC -ACGGAATGCCAACAGAAGATAGCC -ACGGAATGCCAACAGAAGTAACCG -ACGGAATGCCAACAGAAGATGCCA -ACGGAATGCCAACAACGTGGAAAC -ACGGAATGCCAACAACGTAACACC -ACGGAATGCCAACAACGTATCGAG -ACGGAATGCCAACAACGTCTCCTT -ACGGAATGCCAACAACGTCCTGTT -ACGGAATGCCAACAACGTCGGTTT -ACGGAATGCCAACAACGTGTGGTT -ACGGAATGCCAACAACGTGCCTTT -ACGGAATGCCAACAACGTGGTCTT -ACGGAATGCCAACAACGTACGCTT -ACGGAATGCCAACAACGTAGCGTT -ACGGAATGCCAACAACGTTTCGTC -ACGGAATGCCAACAACGTTCTCTC -ACGGAATGCCAACAACGTTGGATC -ACGGAATGCCAACAACGTCACTTC -ACGGAATGCCAACAACGTGTACTC -ACGGAATGCCAACAACGTGATGTC -ACGGAATGCCAACAACGTACAGTC -ACGGAATGCCAACAACGTTTGCTG -ACGGAATGCCAACAACGTTCCATG -ACGGAATGCCAACAACGTTGTGTG -ACGGAATGCCAACAACGTCTAGTG -ACGGAATGCCAACAACGTCATCTG -ACGGAATGCCAACAACGTGAGTTG -ACGGAATGCCAACAACGTAGACTG -ACGGAATGCCAACAACGTTCGGTA -ACGGAATGCCAACAACGTTGCCTA -ACGGAATGCCAACAACGTCCACTA -ACGGAATGCCAACAACGTGGAGTA -ACGGAATGCCAACAACGTTCGTCT -ACGGAATGCCAACAACGTTGCACT -ACGGAATGCCAACAACGTCTGACT -ACGGAATGCCAACAACGTCAACCT -ACGGAATGCCAACAACGTGCTACT -ACGGAATGCCAACAACGTGGATCT -ACGGAATGCCAACAACGTAAGGCT -ACGGAATGCCAACAACGTTCAACC -ACGGAATGCCAACAACGTTGTTCC -ACGGAATGCCAACAACGTATTCCC -ACGGAATGCCAACAACGTTTCTCG -ACGGAATGCCAACAACGTTAGACG -ACGGAATGCCAACAACGTGTAACG -ACGGAATGCCAACAACGTACTTCG -ACGGAATGCCAACAACGTTACGCA -ACGGAATGCCAACAACGTCTTGCA -ACGGAATGCCAACAACGTCGAACA -ACGGAATGCCAACAACGTCAGTCA -ACGGAATGCCAACAACGTGATCCA -ACGGAATGCCAACAACGTACGACA -ACGGAATGCCAACAACGTAGCTCA -ACGGAATGCCAACAACGTTCACGT -ACGGAATGCCAACAACGTCGTAGT -ACGGAATGCCAACAACGTGTCAGT -ACGGAATGCCAACAACGTGAAGGT -ACGGAATGCCAACAACGTAACCGT -ACGGAATGCCAACAACGTTTGTGC -ACGGAATGCCAACAACGTCTAAGC -ACGGAATGCCAACAACGTACTAGC -ACGGAATGCCAACAACGTAGATGC -ACGGAATGCCAACAACGTTGAAGG -ACGGAATGCCAACAACGTCAATGG -ACGGAATGCCAACAACGTATGAGG -ACGGAATGCCAACAACGTAATGGG -ACGGAATGCCAACAACGTTCCTGA -ACGGAATGCCAACAACGTTAGCGA -ACGGAATGCCAACAACGTCACAGA -ACGGAATGCCAACAACGTGCAAGA -ACGGAATGCCAACAACGTGGTTGA -ACGGAATGCCAACAACGTTCCGAT -ACGGAATGCCAACAACGTTGGCAT -ACGGAATGCCAACAACGTCGAGAT -ACGGAATGCCAACAACGTTACCAC -ACGGAATGCCAACAACGTCAGAAC -ACGGAATGCCAACAACGTGTCTAC -ACGGAATGCCAACAACGTACGTAC -ACGGAATGCCAACAACGTAGTGAC -ACGGAATGCCAACAACGTCTGTAG -ACGGAATGCCAACAACGTCCTAAG -ACGGAATGCCAACAACGTGTTCAG -ACGGAATGCCAACAACGTGCATAG -ACGGAATGCCAACAACGTGACAAG -ACGGAATGCCAACAACGTAAGCAG -ACGGAATGCCAACAACGTCGTCAA -ACGGAATGCCAACAACGTGCTGAA -ACGGAATGCCAACAACGTAGTACG -ACGGAATGCCAACAACGTATCCGA -ACGGAATGCCAACAACGTATGGGA -ACGGAATGCCAACAACGTGTGCAA -ACGGAATGCCAACAACGTGAGGAA -ACGGAATGCCAACAACGTCAGGTA -ACGGAATGCCAACAACGTGACTCT -ACGGAATGCCAACAACGTAGTCCT -ACGGAATGCCAACAACGTTAAGCC -ACGGAATGCCAACAACGTATAGCC -ACGGAATGCCAACAACGTTAACCG -ACGGAATGCCAACAACGTATGCCA -ACGGAATGCCAAGAAGCTGGAAAC -ACGGAATGCCAAGAAGCTAACACC -ACGGAATGCCAAGAAGCTATCGAG -ACGGAATGCCAAGAAGCTCTCCTT -ACGGAATGCCAAGAAGCTCCTGTT -ACGGAATGCCAAGAAGCTCGGTTT -ACGGAATGCCAAGAAGCTGTGGTT -ACGGAATGCCAAGAAGCTGCCTTT -ACGGAATGCCAAGAAGCTGGTCTT -ACGGAATGCCAAGAAGCTACGCTT -ACGGAATGCCAAGAAGCTAGCGTT -ACGGAATGCCAAGAAGCTTTCGTC -ACGGAATGCCAAGAAGCTTCTCTC -ACGGAATGCCAAGAAGCTTGGATC -ACGGAATGCCAAGAAGCTCACTTC -ACGGAATGCCAAGAAGCTGTACTC -ACGGAATGCCAAGAAGCTGATGTC -ACGGAATGCCAAGAAGCTACAGTC -ACGGAATGCCAAGAAGCTTTGCTG -ACGGAATGCCAAGAAGCTTCCATG -ACGGAATGCCAAGAAGCTTGTGTG -ACGGAATGCCAAGAAGCTCTAGTG -ACGGAATGCCAAGAAGCTCATCTG -ACGGAATGCCAAGAAGCTGAGTTG -ACGGAATGCCAAGAAGCTAGACTG -ACGGAATGCCAAGAAGCTTCGGTA -ACGGAATGCCAAGAAGCTTGCCTA -ACGGAATGCCAAGAAGCTCCACTA -ACGGAATGCCAAGAAGCTGGAGTA -ACGGAATGCCAAGAAGCTTCGTCT -ACGGAATGCCAAGAAGCTTGCACT -ACGGAATGCCAAGAAGCTCTGACT -ACGGAATGCCAAGAAGCTCAACCT -ACGGAATGCCAAGAAGCTGCTACT -ACGGAATGCCAAGAAGCTGGATCT -ACGGAATGCCAAGAAGCTAAGGCT -ACGGAATGCCAAGAAGCTTCAACC -ACGGAATGCCAAGAAGCTTGTTCC -ACGGAATGCCAAGAAGCTATTCCC -ACGGAATGCCAAGAAGCTTTCTCG -ACGGAATGCCAAGAAGCTTAGACG -ACGGAATGCCAAGAAGCTGTAACG -ACGGAATGCCAAGAAGCTACTTCG -ACGGAATGCCAAGAAGCTTACGCA -ACGGAATGCCAAGAAGCTCTTGCA -ACGGAATGCCAAGAAGCTCGAACA -ACGGAATGCCAAGAAGCTCAGTCA -ACGGAATGCCAAGAAGCTGATCCA -ACGGAATGCCAAGAAGCTACGACA -ACGGAATGCCAAGAAGCTAGCTCA -ACGGAATGCCAAGAAGCTTCACGT -ACGGAATGCCAAGAAGCTCGTAGT -ACGGAATGCCAAGAAGCTGTCAGT -ACGGAATGCCAAGAAGCTGAAGGT -ACGGAATGCCAAGAAGCTAACCGT -ACGGAATGCCAAGAAGCTTTGTGC -ACGGAATGCCAAGAAGCTCTAAGC -ACGGAATGCCAAGAAGCTACTAGC -ACGGAATGCCAAGAAGCTAGATGC -ACGGAATGCCAAGAAGCTTGAAGG -ACGGAATGCCAAGAAGCTCAATGG -ACGGAATGCCAAGAAGCTATGAGG -ACGGAATGCCAAGAAGCTAATGGG -ACGGAATGCCAAGAAGCTTCCTGA -ACGGAATGCCAAGAAGCTTAGCGA -ACGGAATGCCAAGAAGCTCACAGA -ACGGAATGCCAAGAAGCTGCAAGA -ACGGAATGCCAAGAAGCTGGTTGA -ACGGAATGCCAAGAAGCTTCCGAT -ACGGAATGCCAAGAAGCTTGGCAT -ACGGAATGCCAAGAAGCTCGAGAT -ACGGAATGCCAAGAAGCTTACCAC -ACGGAATGCCAAGAAGCTCAGAAC -ACGGAATGCCAAGAAGCTGTCTAC -ACGGAATGCCAAGAAGCTACGTAC -ACGGAATGCCAAGAAGCTAGTGAC -ACGGAATGCCAAGAAGCTCTGTAG -ACGGAATGCCAAGAAGCTCCTAAG -ACGGAATGCCAAGAAGCTGTTCAG -ACGGAATGCCAAGAAGCTGCATAG -ACGGAATGCCAAGAAGCTGACAAG -ACGGAATGCCAAGAAGCTAAGCAG -ACGGAATGCCAAGAAGCTCGTCAA -ACGGAATGCCAAGAAGCTGCTGAA -ACGGAATGCCAAGAAGCTAGTACG -ACGGAATGCCAAGAAGCTATCCGA -ACGGAATGCCAAGAAGCTATGGGA -ACGGAATGCCAAGAAGCTGTGCAA -ACGGAATGCCAAGAAGCTGAGGAA -ACGGAATGCCAAGAAGCTCAGGTA -ACGGAATGCCAAGAAGCTGACTCT -ACGGAATGCCAAGAAGCTAGTCCT -ACGGAATGCCAAGAAGCTTAAGCC -ACGGAATGCCAAGAAGCTATAGCC -ACGGAATGCCAAGAAGCTTAACCG -ACGGAATGCCAAGAAGCTATGCCA -ACGGAATGCCAAACGAGTGGAAAC -ACGGAATGCCAAACGAGTAACACC -ACGGAATGCCAAACGAGTATCGAG -ACGGAATGCCAAACGAGTCTCCTT -ACGGAATGCCAAACGAGTCCTGTT -ACGGAATGCCAAACGAGTCGGTTT -ACGGAATGCCAAACGAGTGTGGTT -ACGGAATGCCAAACGAGTGCCTTT -ACGGAATGCCAAACGAGTGGTCTT -ACGGAATGCCAAACGAGTACGCTT -ACGGAATGCCAAACGAGTAGCGTT -ACGGAATGCCAAACGAGTTTCGTC -ACGGAATGCCAAACGAGTTCTCTC -ACGGAATGCCAAACGAGTTGGATC -ACGGAATGCCAAACGAGTCACTTC -ACGGAATGCCAAACGAGTGTACTC -ACGGAATGCCAAACGAGTGATGTC -ACGGAATGCCAAACGAGTACAGTC -ACGGAATGCCAAACGAGTTTGCTG -ACGGAATGCCAAACGAGTTCCATG -ACGGAATGCCAAACGAGTTGTGTG -ACGGAATGCCAAACGAGTCTAGTG -ACGGAATGCCAAACGAGTCATCTG -ACGGAATGCCAAACGAGTGAGTTG -ACGGAATGCCAAACGAGTAGACTG -ACGGAATGCCAAACGAGTTCGGTA -ACGGAATGCCAAACGAGTTGCCTA -ACGGAATGCCAAACGAGTCCACTA -ACGGAATGCCAAACGAGTGGAGTA -ACGGAATGCCAAACGAGTTCGTCT -ACGGAATGCCAAACGAGTTGCACT -ACGGAATGCCAAACGAGTCTGACT -ACGGAATGCCAAACGAGTCAACCT -ACGGAATGCCAAACGAGTGCTACT -ACGGAATGCCAAACGAGTGGATCT -ACGGAATGCCAAACGAGTAAGGCT -ACGGAATGCCAAACGAGTTCAACC -ACGGAATGCCAAACGAGTTGTTCC -ACGGAATGCCAAACGAGTATTCCC -ACGGAATGCCAAACGAGTTTCTCG -ACGGAATGCCAAACGAGTTAGACG -ACGGAATGCCAAACGAGTGTAACG -ACGGAATGCCAAACGAGTACTTCG -ACGGAATGCCAAACGAGTTACGCA -ACGGAATGCCAAACGAGTCTTGCA -ACGGAATGCCAAACGAGTCGAACA -ACGGAATGCCAAACGAGTCAGTCA -ACGGAATGCCAAACGAGTGATCCA -ACGGAATGCCAAACGAGTACGACA -ACGGAATGCCAAACGAGTAGCTCA -ACGGAATGCCAAACGAGTTCACGT -ACGGAATGCCAAACGAGTCGTAGT -ACGGAATGCCAAACGAGTGTCAGT -ACGGAATGCCAAACGAGTGAAGGT -ACGGAATGCCAAACGAGTAACCGT -ACGGAATGCCAAACGAGTTTGTGC -ACGGAATGCCAAACGAGTCTAAGC -ACGGAATGCCAAACGAGTACTAGC -ACGGAATGCCAAACGAGTAGATGC -ACGGAATGCCAAACGAGTTGAAGG -ACGGAATGCCAAACGAGTCAATGG -ACGGAATGCCAAACGAGTATGAGG -ACGGAATGCCAAACGAGTAATGGG -ACGGAATGCCAAACGAGTTCCTGA -ACGGAATGCCAAACGAGTTAGCGA -ACGGAATGCCAAACGAGTCACAGA -ACGGAATGCCAAACGAGTGCAAGA -ACGGAATGCCAAACGAGTGGTTGA -ACGGAATGCCAAACGAGTTCCGAT -ACGGAATGCCAAACGAGTTGGCAT -ACGGAATGCCAAACGAGTCGAGAT -ACGGAATGCCAAACGAGTTACCAC -ACGGAATGCCAAACGAGTCAGAAC -ACGGAATGCCAAACGAGTGTCTAC -ACGGAATGCCAAACGAGTACGTAC -ACGGAATGCCAAACGAGTAGTGAC -ACGGAATGCCAAACGAGTCTGTAG -ACGGAATGCCAAACGAGTCCTAAG -ACGGAATGCCAAACGAGTGTTCAG -ACGGAATGCCAAACGAGTGCATAG -ACGGAATGCCAAACGAGTGACAAG -ACGGAATGCCAAACGAGTAAGCAG -ACGGAATGCCAAACGAGTCGTCAA -ACGGAATGCCAAACGAGTGCTGAA -ACGGAATGCCAAACGAGTAGTACG -ACGGAATGCCAAACGAGTATCCGA -ACGGAATGCCAAACGAGTATGGGA -ACGGAATGCCAAACGAGTGTGCAA -ACGGAATGCCAAACGAGTGAGGAA -ACGGAATGCCAAACGAGTCAGGTA -ACGGAATGCCAAACGAGTGACTCT -ACGGAATGCCAAACGAGTAGTCCT -ACGGAATGCCAAACGAGTTAAGCC -ACGGAATGCCAAACGAGTATAGCC -ACGGAATGCCAAACGAGTTAACCG -ACGGAATGCCAAACGAGTATGCCA -ACGGAATGCCAACGAATCGGAAAC -ACGGAATGCCAACGAATCAACACC -ACGGAATGCCAACGAATCATCGAG -ACGGAATGCCAACGAATCCTCCTT -ACGGAATGCCAACGAATCCCTGTT -ACGGAATGCCAACGAATCCGGTTT -ACGGAATGCCAACGAATCGTGGTT -ACGGAATGCCAACGAATCGCCTTT -ACGGAATGCCAACGAATCGGTCTT -ACGGAATGCCAACGAATCACGCTT -ACGGAATGCCAACGAATCAGCGTT -ACGGAATGCCAACGAATCTTCGTC -ACGGAATGCCAACGAATCTCTCTC -ACGGAATGCCAACGAATCTGGATC -ACGGAATGCCAACGAATCCACTTC -ACGGAATGCCAACGAATCGTACTC -ACGGAATGCCAACGAATCGATGTC -ACGGAATGCCAACGAATCACAGTC -ACGGAATGCCAACGAATCTTGCTG -ACGGAATGCCAACGAATCTCCATG -ACGGAATGCCAACGAATCTGTGTG -ACGGAATGCCAACGAATCCTAGTG -ACGGAATGCCAACGAATCCATCTG -ACGGAATGCCAACGAATCGAGTTG -ACGGAATGCCAACGAATCAGACTG -ACGGAATGCCAACGAATCTCGGTA -ACGGAATGCCAACGAATCTGCCTA -ACGGAATGCCAACGAATCCCACTA -ACGGAATGCCAACGAATCGGAGTA -ACGGAATGCCAACGAATCTCGTCT -ACGGAATGCCAACGAATCTGCACT -ACGGAATGCCAACGAATCCTGACT -ACGGAATGCCAACGAATCCAACCT -ACGGAATGCCAACGAATCGCTACT -ACGGAATGCCAACGAATCGGATCT -ACGGAATGCCAACGAATCAAGGCT -ACGGAATGCCAACGAATCTCAACC -ACGGAATGCCAACGAATCTGTTCC -ACGGAATGCCAACGAATCATTCCC -ACGGAATGCCAACGAATCTTCTCG -ACGGAATGCCAACGAATCTAGACG -ACGGAATGCCAACGAATCGTAACG -ACGGAATGCCAACGAATCACTTCG -ACGGAATGCCAACGAATCTACGCA -ACGGAATGCCAACGAATCCTTGCA -ACGGAATGCCAACGAATCCGAACA -ACGGAATGCCAACGAATCCAGTCA -ACGGAATGCCAACGAATCGATCCA -ACGGAATGCCAACGAATCACGACA -ACGGAATGCCAACGAATCAGCTCA -ACGGAATGCCAACGAATCTCACGT -ACGGAATGCCAACGAATCCGTAGT -ACGGAATGCCAACGAATCGTCAGT -ACGGAATGCCAACGAATCGAAGGT -ACGGAATGCCAACGAATCAACCGT -ACGGAATGCCAACGAATCTTGTGC -ACGGAATGCCAACGAATCCTAAGC -ACGGAATGCCAACGAATCACTAGC -ACGGAATGCCAACGAATCAGATGC -ACGGAATGCCAACGAATCTGAAGG -ACGGAATGCCAACGAATCCAATGG -ACGGAATGCCAACGAATCATGAGG -ACGGAATGCCAACGAATCAATGGG -ACGGAATGCCAACGAATCTCCTGA -ACGGAATGCCAACGAATCTAGCGA -ACGGAATGCCAACGAATCCACAGA -ACGGAATGCCAACGAATCGCAAGA -ACGGAATGCCAACGAATCGGTTGA -ACGGAATGCCAACGAATCTCCGAT -ACGGAATGCCAACGAATCTGGCAT -ACGGAATGCCAACGAATCCGAGAT -ACGGAATGCCAACGAATCTACCAC -ACGGAATGCCAACGAATCCAGAAC -ACGGAATGCCAACGAATCGTCTAC -ACGGAATGCCAACGAATCACGTAC -ACGGAATGCCAACGAATCAGTGAC -ACGGAATGCCAACGAATCCTGTAG -ACGGAATGCCAACGAATCCCTAAG -ACGGAATGCCAACGAATCGTTCAG -ACGGAATGCCAACGAATCGCATAG -ACGGAATGCCAACGAATCGACAAG -ACGGAATGCCAACGAATCAAGCAG -ACGGAATGCCAACGAATCCGTCAA -ACGGAATGCCAACGAATCGCTGAA -ACGGAATGCCAACGAATCAGTACG -ACGGAATGCCAACGAATCATCCGA -ACGGAATGCCAACGAATCATGGGA -ACGGAATGCCAACGAATCGTGCAA -ACGGAATGCCAACGAATCGAGGAA -ACGGAATGCCAACGAATCCAGGTA -ACGGAATGCCAACGAATCGACTCT -ACGGAATGCCAACGAATCAGTCCT -ACGGAATGCCAACGAATCTAAGCC -ACGGAATGCCAACGAATCATAGCC -ACGGAATGCCAACGAATCTAACCG -ACGGAATGCCAACGAATCATGCCA -ACGGAATGCCAAGGAATGGGAAAC -ACGGAATGCCAAGGAATGAACACC -ACGGAATGCCAAGGAATGATCGAG -ACGGAATGCCAAGGAATGCTCCTT -ACGGAATGCCAAGGAATGCCTGTT -ACGGAATGCCAAGGAATGCGGTTT -ACGGAATGCCAAGGAATGGTGGTT -ACGGAATGCCAAGGAATGGCCTTT -ACGGAATGCCAAGGAATGGGTCTT -ACGGAATGCCAAGGAATGACGCTT -ACGGAATGCCAAGGAATGAGCGTT -ACGGAATGCCAAGGAATGTTCGTC -ACGGAATGCCAAGGAATGTCTCTC -ACGGAATGCCAAGGAATGTGGATC -ACGGAATGCCAAGGAATGCACTTC -ACGGAATGCCAAGGAATGGTACTC -ACGGAATGCCAAGGAATGGATGTC -ACGGAATGCCAAGGAATGACAGTC -ACGGAATGCCAAGGAATGTTGCTG -ACGGAATGCCAAGGAATGTCCATG -ACGGAATGCCAAGGAATGTGTGTG -ACGGAATGCCAAGGAATGCTAGTG -ACGGAATGCCAAGGAATGCATCTG -ACGGAATGCCAAGGAATGGAGTTG -ACGGAATGCCAAGGAATGAGACTG -ACGGAATGCCAAGGAATGTCGGTA -ACGGAATGCCAAGGAATGTGCCTA -ACGGAATGCCAAGGAATGCCACTA -ACGGAATGCCAAGGAATGGGAGTA -ACGGAATGCCAAGGAATGTCGTCT -ACGGAATGCCAAGGAATGTGCACT -ACGGAATGCCAAGGAATGCTGACT -ACGGAATGCCAAGGAATGCAACCT -ACGGAATGCCAAGGAATGGCTACT -ACGGAATGCCAAGGAATGGGATCT -ACGGAATGCCAAGGAATGAAGGCT -ACGGAATGCCAAGGAATGTCAACC -ACGGAATGCCAAGGAATGTGTTCC -ACGGAATGCCAAGGAATGATTCCC -ACGGAATGCCAAGGAATGTTCTCG -ACGGAATGCCAAGGAATGTAGACG -ACGGAATGCCAAGGAATGGTAACG -ACGGAATGCCAAGGAATGACTTCG -ACGGAATGCCAAGGAATGTACGCA -ACGGAATGCCAAGGAATGCTTGCA -ACGGAATGCCAAGGAATGCGAACA -ACGGAATGCCAAGGAATGCAGTCA -ACGGAATGCCAAGGAATGGATCCA -ACGGAATGCCAAGGAATGACGACA -ACGGAATGCCAAGGAATGAGCTCA -ACGGAATGCCAAGGAATGTCACGT -ACGGAATGCCAAGGAATGCGTAGT -ACGGAATGCCAAGGAATGGTCAGT -ACGGAATGCCAAGGAATGGAAGGT -ACGGAATGCCAAGGAATGAACCGT -ACGGAATGCCAAGGAATGTTGTGC -ACGGAATGCCAAGGAATGCTAAGC -ACGGAATGCCAAGGAATGACTAGC -ACGGAATGCCAAGGAATGAGATGC -ACGGAATGCCAAGGAATGTGAAGG -ACGGAATGCCAAGGAATGCAATGG -ACGGAATGCCAAGGAATGATGAGG -ACGGAATGCCAAGGAATGAATGGG -ACGGAATGCCAAGGAATGTCCTGA -ACGGAATGCCAAGGAATGTAGCGA -ACGGAATGCCAAGGAATGCACAGA -ACGGAATGCCAAGGAATGGCAAGA -ACGGAATGCCAAGGAATGGGTTGA -ACGGAATGCCAAGGAATGTCCGAT -ACGGAATGCCAAGGAATGTGGCAT -ACGGAATGCCAAGGAATGCGAGAT -ACGGAATGCCAAGGAATGTACCAC -ACGGAATGCCAAGGAATGCAGAAC -ACGGAATGCCAAGGAATGGTCTAC -ACGGAATGCCAAGGAATGACGTAC -ACGGAATGCCAAGGAATGAGTGAC -ACGGAATGCCAAGGAATGCTGTAG -ACGGAATGCCAAGGAATGCCTAAG -ACGGAATGCCAAGGAATGGTTCAG -ACGGAATGCCAAGGAATGGCATAG -ACGGAATGCCAAGGAATGGACAAG -ACGGAATGCCAAGGAATGAAGCAG -ACGGAATGCCAAGGAATGCGTCAA -ACGGAATGCCAAGGAATGGCTGAA -ACGGAATGCCAAGGAATGAGTACG -ACGGAATGCCAAGGAATGATCCGA -ACGGAATGCCAAGGAATGATGGGA -ACGGAATGCCAAGGAATGGTGCAA -ACGGAATGCCAAGGAATGGAGGAA -ACGGAATGCCAAGGAATGCAGGTA -ACGGAATGCCAAGGAATGGACTCT -ACGGAATGCCAAGGAATGAGTCCT -ACGGAATGCCAAGGAATGTAAGCC -ACGGAATGCCAAGGAATGATAGCC -ACGGAATGCCAAGGAATGTAACCG -ACGGAATGCCAAGGAATGATGCCA -ACGGAATGCCAACAAGTGGGAAAC -ACGGAATGCCAACAAGTGAACACC -ACGGAATGCCAACAAGTGATCGAG -ACGGAATGCCAACAAGTGCTCCTT -ACGGAATGCCAACAAGTGCCTGTT -ACGGAATGCCAACAAGTGCGGTTT -ACGGAATGCCAACAAGTGGTGGTT -ACGGAATGCCAACAAGTGGCCTTT -ACGGAATGCCAACAAGTGGGTCTT -ACGGAATGCCAACAAGTGACGCTT -ACGGAATGCCAACAAGTGAGCGTT -ACGGAATGCCAACAAGTGTTCGTC -ACGGAATGCCAACAAGTGTCTCTC -ACGGAATGCCAACAAGTGTGGATC -ACGGAATGCCAACAAGTGCACTTC -ACGGAATGCCAACAAGTGGTACTC -ACGGAATGCCAACAAGTGGATGTC -ACGGAATGCCAACAAGTGACAGTC -ACGGAATGCCAACAAGTGTTGCTG -ACGGAATGCCAACAAGTGTCCATG -ACGGAATGCCAACAAGTGTGTGTG -ACGGAATGCCAACAAGTGCTAGTG -ACGGAATGCCAACAAGTGCATCTG -ACGGAATGCCAACAAGTGGAGTTG -ACGGAATGCCAACAAGTGAGACTG -ACGGAATGCCAACAAGTGTCGGTA -ACGGAATGCCAACAAGTGTGCCTA -ACGGAATGCCAACAAGTGCCACTA -ACGGAATGCCAACAAGTGGGAGTA -ACGGAATGCCAACAAGTGTCGTCT -ACGGAATGCCAACAAGTGTGCACT -ACGGAATGCCAACAAGTGCTGACT -ACGGAATGCCAACAAGTGCAACCT -ACGGAATGCCAACAAGTGGCTACT -ACGGAATGCCAACAAGTGGGATCT -ACGGAATGCCAACAAGTGAAGGCT -ACGGAATGCCAACAAGTGTCAACC -ACGGAATGCCAACAAGTGTGTTCC -ACGGAATGCCAACAAGTGATTCCC -ACGGAATGCCAACAAGTGTTCTCG -ACGGAATGCCAACAAGTGTAGACG -ACGGAATGCCAACAAGTGGTAACG -ACGGAATGCCAACAAGTGACTTCG -ACGGAATGCCAACAAGTGTACGCA -ACGGAATGCCAACAAGTGCTTGCA -ACGGAATGCCAACAAGTGCGAACA -ACGGAATGCCAACAAGTGCAGTCA -ACGGAATGCCAACAAGTGGATCCA -ACGGAATGCCAACAAGTGACGACA -ACGGAATGCCAACAAGTGAGCTCA -ACGGAATGCCAACAAGTGTCACGT -ACGGAATGCCAACAAGTGCGTAGT -ACGGAATGCCAACAAGTGGTCAGT -ACGGAATGCCAACAAGTGGAAGGT -ACGGAATGCCAACAAGTGAACCGT -ACGGAATGCCAACAAGTGTTGTGC -ACGGAATGCCAACAAGTGCTAAGC -ACGGAATGCCAACAAGTGACTAGC -ACGGAATGCCAACAAGTGAGATGC -ACGGAATGCCAACAAGTGTGAAGG -ACGGAATGCCAACAAGTGCAATGG -ACGGAATGCCAACAAGTGATGAGG -ACGGAATGCCAACAAGTGAATGGG -ACGGAATGCCAACAAGTGTCCTGA -ACGGAATGCCAACAAGTGTAGCGA -ACGGAATGCCAACAAGTGCACAGA -ACGGAATGCCAACAAGTGGCAAGA -ACGGAATGCCAACAAGTGGGTTGA -ACGGAATGCCAACAAGTGTCCGAT -ACGGAATGCCAACAAGTGTGGCAT -ACGGAATGCCAACAAGTGCGAGAT -ACGGAATGCCAACAAGTGTACCAC -ACGGAATGCCAACAAGTGCAGAAC -ACGGAATGCCAACAAGTGGTCTAC -ACGGAATGCCAACAAGTGACGTAC -ACGGAATGCCAACAAGTGAGTGAC -ACGGAATGCCAACAAGTGCTGTAG -ACGGAATGCCAACAAGTGCCTAAG -ACGGAATGCCAACAAGTGGTTCAG -ACGGAATGCCAACAAGTGGCATAG -ACGGAATGCCAACAAGTGGACAAG -ACGGAATGCCAACAAGTGAAGCAG -ACGGAATGCCAACAAGTGCGTCAA -ACGGAATGCCAACAAGTGGCTGAA -ACGGAATGCCAACAAGTGAGTACG -ACGGAATGCCAACAAGTGATCCGA -ACGGAATGCCAACAAGTGATGGGA -ACGGAATGCCAACAAGTGGTGCAA -ACGGAATGCCAACAAGTGGAGGAA -ACGGAATGCCAACAAGTGCAGGTA -ACGGAATGCCAACAAGTGGACTCT -ACGGAATGCCAACAAGTGAGTCCT -ACGGAATGCCAACAAGTGTAAGCC -ACGGAATGCCAACAAGTGATAGCC -ACGGAATGCCAACAAGTGTAACCG -ACGGAATGCCAACAAGTGATGCCA -ACGGAATGCCAAGAAGAGGGAAAC -ACGGAATGCCAAGAAGAGAACACC -ACGGAATGCCAAGAAGAGATCGAG -ACGGAATGCCAAGAAGAGCTCCTT -ACGGAATGCCAAGAAGAGCCTGTT -ACGGAATGCCAAGAAGAGCGGTTT -ACGGAATGCCAAGAAGAGGTGGTT -ACGGAATGCCAAGAAGAGGCCTTT -ACGGAATGCCAAGAAGAGGGTCTT -ACGGAATGCCAAGAAGAGACGCTT -ACGGAATGCCAAGAAGAGAGCGTT -ACGGAATGCCAAGAAGAGTTCGTC -ACGGAATGCCAAGAAGAGTCTCTC -ACGGAATGCCAAGAAGAGTGGATC -ACGGAATGCCAAGAAGAGCACTTC -ACGGAATGCCAAGAAGAGGTACTC -ACGGAATGCCAAGAAGAGGATGTC -ACGGAATGCCAAGAAGAGACAGTC -ACGGAATGCCAAGAAGAGTTGCTG -ACGGAATGCCAAGAAGAGTCCATG -ACGGAATGCCAAGAAGAGTGTGTG -ACGGAATGCCAAGAAGAGCTAGTG -ACGGAATGCCAAGAAGAGCATCTG -ACGGAATGCCAAGAAGAGGAGTTG -ACGGAATGCCAAGAAGAGAGACTG -ACGGAATGCCAAGAAGAGTCGGTA -ACGGAATGCCAAGAAGAGTGCCTA -ACGGAATGCCAAGAAGAGCCACTA -ACGGAATGCCAAGAAGAGGGAGTA -ACGGAATGCCAAGAAGAGTCGTCT -ACGGAATGCCAAGAAGAGTGCACT -ACGGAATGCCAAGAAGAGCTGACT -ACGGAATGCCAAGAAGAGCAACCT -ACGGAATGCCAAGAAGAGGCTACT -ACGGAATGCCAAGAAGAGGGATCT -ACGGAATGCCAAGAAGAGAAGGCT -ACGGAATGCCAAGAAGAGTCAACC -ACGGAATGCCAAGAAGAGTGTTCC -ACGGAATGCCAAGAAGAGATTCCC -ACGGAATGCCAAGAAGAGTTCTCG -ACGGAATGCCAAGAAGAGTAGACG -ACGGAATGCCAAGAAGAGGTAACG -ACGGAATGCCAAGAAGAGACTTCG -ACGGAATGCCAAGAAGAGTACGCA -ACGGAATGCCAAGAAGAGCTTGCA -ACGGAATGCCAAGAAGAGCGAACA -ACGGAATGCCAAGAAGAGCAGTCA -ACGGAATGCCAAGAAGAGGATCCA -ACGGAATGCCAAGAAGAGACGACA -ACGGAATGCCAAGAAGAGAGCTCA -ACGGAATGCCAAGAAGAGTCACGT -ACGGAATGCCAAGAAGAGCGTAGT -ACGGAATGCCAAGAAGAGGTCAGT -ACGGAATGCCAAGAAGAGGAAGGT -ACGGAATGCCAAGAAGAGAACCGT -ACGGAATGCCAAGAAGAGTTGTGC -ACGGAATGCCAAGAAGAGCTAAGC -ACGGAATGCCAAGAAGAGACTAGC -ACGGAATGCCAAGAAGAGAGATGC -ACGGAATGCCAAGAAGAGTGAAGG -ACGGAATGCCAAGAAGAGCAATGG -ACGGAATGCCAAGAAGAGATGAGG -ACGGAATGCCAAGAAGAGAATGGG -ACGGAATGCCAAGAAGAGTCCTGA -ACGGAATGCCAAGAAGAGTAGCGA -ACGGAATGCCAAGAAGAGCACAGA -ACGGAATGCCAAGAAGAGGCAAGA -ACGGAATGCCAAGAAGAGGGTTGA -ACGGAATGCCAAGAAGAGTCCGAT -ACGGAATGCCAAGAAGAGTGGCAT -ACGGAATGCCAAGAAGAGCGAGAT -ACGGAATGCCAAGAAGAGTACCAC -ACGGAATGCCAAGAAGAGCAGAAC -ACGGAATGCCAAGAAGAGGTCTAC -ACGGAATGCCAAGAAGAGACGTAC -ACGGAATGCCAAGAAGAGAGTGAC -ACGGAATGCCAAGAAGAGCTGTAG -ACGGAATGCCAAGAAGAGCCTAAG -ACGGAATGCCAAGAAGAGGTTCAG -ACGGAATGCCAAGAAGAGGCATAG -ACGGAATGCCAAGAAGAGGACAAG -ACGGAATGCCAAGAAGAGAAGCAG -ACGGAATGCCAAGAAGAGCGTCAA -ACGGAATGCCAAGAAGAGGCTGAA -ACGGAATGCCAAGAAGAGAGTACG -ACGGAATGCCAAGAAGAGATCCGA -ACGGAATGCCAAGAAGAGATGGGA -ACGGAATGCCAAGAAGAGGTGCAA -ACGGAATGCCAAGAAGAGGAGGAA -ACGGAATGCCAAGAAGAGCAGGTA -ACGGAATGCCAAGAAGAGGACTCT -ACGGAATGCCAAGAAGAGAGTCCT -ACGGAATGCCAAGAAGAGTAAGCC -ACGGAATGCCAAGAAGAGATAGCC -ACGGAATGCCAAGAAGAGTAACCG -ACGGAATGCCAAGAAGAGATGCCA -ACGGAATGCCAAGTACAGGGAAAC -ACGGAATGCCAAGTACAGAACACC -ACGGAATGCCAAGTACAGATCGAG -ACGGAATGCCAAGTACAGCTCCTT -ACGGAATGCCAAGTACAGCCTGTT -ACGGAATGCCAAGTACAGCGGTTT -ACGGAATGCCAAGTACAGGTGGTT -ACGGAATGCCAAGTACAGGCCTTT -ACGGAATGCCAAGTACAGGGTCTT -ACGGAATGCCAAGTACAGACGCTT -ACGGAATGCCAAGTACAGAGCGTT -ACGGAATGCCAAGTACAGTTCGTC -ACGGAATGCCAAGTACAGTCTCTC -ACGGAATGCCAAGTACAGTGGATC -ACGGAATGCCAAGTACAGCACTTC -ACGGAATGCCAAGTACAGGTACTC -ACGGAATGCCAAGTACAGGATGTC -ACGGAATGCCAAGTACAGACAGTC -ACGGAATGCCAAGTACAGTTGCTG -ACGGAATGCCAAGTACAGTCCATG -ACGGAATGCCAAGTACAGTGTGTG -ACGGAATGCCAAGTACAGCTAGTG -ACGGAATGCCAAGTACAGCATCTG -ACGGAATGCCAAGTACAGGAGTTG -ACGGAATGCCAAGTACAGAGACTG -ACGGAATGCCAAGTACAGTCGGTA -ACGGAATGCCAAGTACAGTGCCTA -ACGGAATGCCAAGTACAGCCACTA -ACGGAATGCCAAGTACAGGGAGTA -ACGGAATGCCAAGTACAGTCGTCT -ACGGAATGCCAAGTACAGTGCACT -ACGGAATGCCAAGTACAGCTGACT -ACGGAATGCCAAGTACAGCAACCT -ACGGAATGCCAAGTACAGGCTACT -ACGGAATGCCAAGTACAGGGATCT -ACGGAATGCCAAGTACAGAAGGCT -ACGGAATGCCAAGTACAGTCAACC -ACGGAATGCCAAGTACAGTGTTCC -ACGGAATGCCAAGTACAGATTCCC -ACGGAATGCCAAGTACAGTTCTCG -ACGGAATGCCAAGTACAGTAGACG -ACGGAATGCCAAGTACAGGTAACG -ACGGAATGCCAAGTACAGACTTCG -ACGGAATGCCAAGTACAGTACGCA -ACGGAATGCCAAGTACAGCTTGCA -ACGGAATGCCAAGTACAGCGAACA -ACGGAATGCCAAGTACAGCAGTCA -ACGGAATGCCAAGTACAGGATCCA -ACGGAATGCCAAGTACAGACGACA -ACGGAATGCCAAGTACAGAGCTCA -ACGGAATGCCAAGTACAGTCACGT -ACGGAATGCCAAGTACAGCGTAGT -ACGGAATGCCAAGTACAGGTCAGT -ACGGAATGCCAAGTACAGGAAGGT -ACGGAATGCCAAGTACAGAACCGT -ACGGAATGCCAAGTACAGTTGTGC -ACGGAATGCCAAGTACAGCTAAGC -ACGGAATGCCAAGTACAGACTAGC -ACGGAATGCCAAGTACAGAGATGC -ACGGAATGCCAAGTACAGTGAAGG -ACGGAATGCCAAGTACAGCAATGG -ACGGAATGCCAAGTACAGATGAGG -ACGGAATGCCAAGTACAGAATGGG -ACGGAATGCCAAGTACAGTCCTGA -ACGGAATGCCAAGTACAGTAGCGA -ACGGAATGCCAAGTACAGCACAGA -ACGGAATGCCAAGTACAGGCAAGA -ACGGAATGCCAAGTACAGGGTTGA -ACGGAATGCCAAGTACAGTCCGAT -ACGGAATGCCAAGTACAGTGGCAT -ACGGAATGCCAAGTACAGCGAGAT -ACGGAATGCCAAGTACAGTACCAC -ACGGAATGCCAAGTACAGCAGAAC -ACGGAATGCCAAGTACAGGTCTAC -ACGGAATGCCAAGTACAGACGTAC -ACGGAATGCCAAGTACAGAGTGAC -ACGGAATGCCAAGTACAGCTGTAG -ACGGAATGCCAAGTACAGCCTAAG -ACGGAATGCCAAGTACAGGTTCAG -ACGGAATGCCAAGTACAGGCATAG -ACGGAATGCCAAGTACAGGACAAG -ACGGAATGCCAAGTACAGAAGCAG -ACGGAATGCCAAGTACAGCGTCAA -ACGGAATGCCAAGTACAGGCTGAA -ACGGAATGCCAAGTACAGAGTACG -ACGGAATGCCAAGTACAGATCCGA -ACGGAATGCCAAGTACAGATGGGA -ACGGAATGCCAAGTACAGGTGCAA -ACGGAATGCCAAGTACAGGAGGAA -ACGGAATGCCAAGTACAGCAGGTA -ACGGAATGCCAAGTACAGGACTCT -ACGGAATGCCAAGTACAGAGTCCT -ACGGAATGCCAAGTACAGTAAGCC -ACGGAATGCCAAGTACAGATAGCC -ACGGAATGCCAAGTACAGTAACCG -ACGGAATGCCAAGTACAGATGCCA -ACGGAATGCCAATCTGACGGAAAC -ACGGAATGCCAATCTGACAACACC -ACGGAATGCCAATCTGACATCGAG -ACGGAATGCCAATCTGACCTCCTT -ACGGAATGCCAATCTGACCCTGTT -ACGGAATGCCAATCTGACCGGTTT -ACGGAATGCCAATCTGACGTGGTT -ACGGAATGCCAATCTGACGCCTTT -ACGGAATGCCAATCTGACGGTCTT -ACGGAATGCCAATCTGACACGCTT -ACGGAATGCCAATCTGACAGCGTT -ACGGAATGCCAATCTGACTTCGTC -ACGGAATGCCAATCTGACTCTCTC -ACGGAATGCCAATCTGACTGGATC -ACGGAATGCCAATCTGACCACTTC -ACGGAATGCCAATCTGACGTACTC -ACGGAATGCCAATCTGACGATGTC -ACGGAATGCCAATCTGACACAGTC -ACGGAATGCCAATCTGACTTGCTG -ACGGAATGCCAATCTGACTCCATG -ACGGAATGCCAATCTGACTGTGTG -ACGGAATGCCAATCTGACCTAGTG -ACGGAATGCCAATCTGACCATCTG -ACGGAATGCCAATCTGACGAGTTG -ACGGAATGCCAATCTGACAGACTG -ACGGAATGCCAATCTGACTCGGTA -ACGGAATGCCAATCTGACTGCCTA -ACGGAATGCCAATCTGACCCACTA -ACGGAATGCCAATCTGACGGAGTA -ACGGAATGCCAATCTGACTCGTCT -ACGGAATGCCAATCTGACTGCACT -ACGGAATGCCAATCTGACCTGACT -ACGGAATGCCAATCTGACCAACCT -ACGGAATGCCAATCTGACGCTACT -ACGGAATGCCAATCTGACGGATCT -ACGGAATGCCAATCTGACAAGGCT -ACGGAATGCCAATCTGACTCAACC -ACGGAATGCCAATCTGACTGTTCC -ACGGAATGCCAATCTGACATTCCC -ACGGAATGCCAATCTGACTTCTCG -ACGGAATGCCAATCTGACTAGACG -ACGGAATGCCAATCTGACGTAACG -ACGGAATGCCAATCTGACACTTCG -ACGGAATGCCAATCTGACTACGCA -ACGGAATGCCAATCTGACCTTGCA -ACGGAATGCCAATCTGACCGAACA -ACGGAATGCCAATCTGACCAGTCA -ACGGAATGCCAATCTGACGATCCA -ACGGAATGCCAATCTGACACGACA -ACGGAATGCCAATCTGACAGCTCA -ACGGAATGCCAATCTGACTCACGT -ACGGAATGCCAATCTGACCGTAGT -ACGGAATGCCAATCTGACGTCAGT -ACGGAATGCCAATCTGACGAAGGT -ACGGAATGCCAATCTGACAACCGT -ACGGAATGCCAATCTGACTTGTGC -ACGGAATGCCAATCTGACCTAAGC -ACGGAATGCCAATCTGACACTAGC -ACGGAATGCCAATCTGACAGATGC -ACGGAATGCCAATCTGACTGAAGG -ACGGAATGCCAATCTGACCAATGG -ACGGAATGCCAATCTGACATGAGG -ACGGAATGCCAATCTGACAATGGG -ACGGAATGCCAATCTGACTCCTGA -ACGGAATGCCAATCTGACTAGCGA -ACGGAATGCCAATCTGACCACAGA -ACGGAATGCCAATCTGACGCAAGA -ACGGAATGCCAATCTGACGGTTGA -ACGGAATGCCAATCTGACTCCGAT -ACGGAATGCCAATCTGACTGGCAT -ACGGAATGCCAATCTGACCGAGAT -ACGGAATGCCAATCTGACTACCAC -ACGGAATGCCAATCTGACCAGAAC -ACGGAATGCCAATCTGACGTCTAC -ACGGAATGCCAATCTGACACGTAC -ACGGAATGCCAATCTGACAGTGAC -ACGGAATGCCAATCTGACCTGTAG -ACGGAATGCCAATCTGACCCTAAG -ACGGAATGCCAATCTGACGTTCAG -ACGGAATGCCAATCTGACGCATAG -ACGGAATGCCAATCTGACGACAAG -ACGGAATGCCAATCTGACAAGCAG -ACGGAATGCCAATCTGACCGTCAA -ACGGAATGCCAATCTGACGCTGAA -ACGGAATGCCAATCTGACAGTACG -ACGGAATGCCAATCTGACATCCGA -ACGGAATGCCAATCTGACATGGGA -ACGGAATGCCAATCTGACGTGCAA -ACGGAATGCCAATCTGACGAGGAA -ACGGAATGCCAATCTGACCAGGTA -ACGGAATGCCAATCTGACGACTCT -ACGGAATGCCAATCTGACAGTCCT -ACGGAATGCCAATCTGACTAAGCC -ACGGAATGCCAATCTGACATAGCC -ACGGAATGCCAATCTGACTAACCG -ACGGAATGCCAATCTGACATGCCA -ACGGAATGCCAACCTAGTGGAAAC -ACGGAATGCCAACCTAGTAACACC -ACGGAATGCCAACCTAGTATCGAG -ACGGAATGCCAACCTAGTCTCCTT -ACGGAATGCCAACCTAGTCCTGTT -ACGGAATGCCAACCTAGTCGGTTT -ACGGAATGCCAACCTAGTGTGGTT -ACGGAATGCCAACCTAGTGCCTTT -ACGGAATGCCAACCTAGTGGTCTT -ACGGAATGCCAACCTAGTACGCTT -ACGGAATGCCAACCTAGTAGCGTT -ACGGAATGCCAACCTAGTTTCGTC -ACGGAATGCCAACCTAGTTCTCTC -ACGGAATGCCAACCTAGTTGGATC -ACGGAATGCCAACCTAGTCACTTC -ACGGAATGCCAACCTAGTGTACTC -ACGGAATGCCAACCTAGTGATGTC -ACGGAATGCCAACCTAGTACAGTC -ACGGAATGCCAACCTAGTTTGCTG -ACGGAATGCCAACCTAGTTCCATG -ACGGAATGCCAACCTAGTTGTGTG -ACGGAATGCCAACCTAGTCTAGTG -ACGGAATGCCAACCTAGTCATCTG -ACGGAATGCCAACCTAGTGAGTTG -ACGGAATGCCAACCTAGTAGACTG -ACGGAATGCCAACCTAGTTCGGTA -ACGGAATGCCAACCTAGTTGCCTA -ACGGAATGCCAACCTAGTCCACTA -ACGGAATGCCAACCTAGTGGAGTA -ACGGAATGCCAACCTAGTTCGTCT -ACGGAATGCCAACCTAGTTGCACT -ACGGAATGCCAACCTAGTCTGACT -ACGGAATGCCAACCTAGTCAACCT -ACGGAATGCCAACCTAGTGCTACT -ACGGAATGCCAACCTAGTGGATCT -ACGGAATGCCAACCTAGTAAGGCT -ACGGAATGCCAACCTAGTTCAACC -ACGGAATGCCAACCTAGTTGTTCC -ACGGAATGCCAACCTAGTATTCCC -ACGGAATGCCAACCTAGTTTCTCG -ACGGAATGCCAACCTAGTTAGACG -ACGGAATGCCAACCTAGTGTAACG -ACGGAATGCCAACCTAGTACTTCG -ACGGAATGCCAACCTAGTTACGCA -ACGGAATGCCAACCTAGTCTTGCA -ACGGAATGCCAACCTAGTCGAACA -ACGGAATGCCAACCTAGTCAGTCA -ACGGAATGCCAACCTAGTGATCCA -ACGGAATGCCAACCTAGTACGACA -ACGGAATGCCAACCTAGTAGCTCA -ACGGAATGCCAACCTAGTTCACGT -ACGGAATGCCAACCTAGTCGTAGT -ACGGAATGCCAACCTAGTGTCAGT -ACGGAATGCCAACCTAGTGAAGGT -ACGGAATGCCAACCTAGTAACCGT -ACGGAATGCCAACCTAGTTTGTGC -ACGGAATGCCAACCTAGTCTAAGC -ACGGAATGCCAACCTAGTACTAGC -ACGGAATGCCAACCTAGTAGATGC -ACGGAATGCCAACCTAGTTGAAGG -ACGGAATGCCAACCTAGTCAATGG -ACGGAATGCCAACCTAGTATGAGG -ACGGAATGCCAACCTAGTAATGGG -ACGGAATGCCAACCTAGTTCCTGA -ACGGAATGCCAACCTAGTTAGCGA -ACGGAATGCCAACCTAGTCACAGA -ACGGAATGCCAACCTAGTGCAAGA -ACGGAATGCCAACCTAGTGGTTGA -ACGGAATGCCAACCTAGTTCCGAT -ACGGAATGCCAACCTAGTTGGCAT -ACGGAATGCCAACCTAGTCGAGAT -ACGGAATGCCAACCTAGTTACCAC -ACGGAATGCCAACCTAGTCAGAAC -ACGGAATGCCAACCTAGTGTCTAC -ACGGAATGCCAACCTAGTACGTAC -ACGGAATGCCAACCTAGTAGTGAC -ACGGAATGCCAACCTAGTCTGTAG -ACGGAATGCCAACCTAGTCCTAAG -ACGGAATGCCAACCTAGTGTTCAG -ACGGAATGCCAACCTAGTGCATAG -ACGGAATGCCAACCTAGTGACAAG -ACGGAATGCCAACCTAGTAAGCAG -ACGGAATGCCAACCTAGTCGTCAA -ACGGAATGCCAACCTAGTGCTGAA -ACGGAATGCCAACCTAGTAGTACG -ACGGAATGCCAACCTAGTATCCGA -ACGGAATGCCAACCTAGTATGGGA -ACGGAATGCCAACCTAGTGTGCAA -ACGGAATGCCAACCTAGTGAGGAA -ACGGAATGCCAACCTAGTCAGGTA -ACGGAATGCCAACCTAGTGACTCT -ACGGAATGCCAACCTAGTAGTCCT -ACGGAATGCCAACCTAGTTAAGCC -ACGGAATGCCAACCTAGTATAGCC -ACGGAATGCCAACCTAGTTAACCG -ACGGAATGCCAACCTAGTATGCCA -ACGGAATGCCAAGCCTAAGGAAAC -ACGGAATGCCAAGCCTAAAACACC -ACGGAATGCCAAGCCTAAATCGAG -ACGGAATGCCAAGCCTAACTCCTT -ACGGAATGCCAAGCCTAACCTGTT -ACGGAATGCCAAGCCTAACGGTTT -ACGGAATGCCAAGCCTAAGTGGTT -ACGGAATGCCAAGCCTAAGCCTTT -ACGGAATGCCAAGCCTAAGGTCTT -ACGGAATGCCAAGCCTAAACGCTT -ACGGAATGCCAAGCCTAAAGCGTT -ACGGAATGCCAAGCCTAATTCGTC -ACGGAATGCCAAGCCTAATCTCTC -ACGGAATGCCAAGCCTAATGGATC -ACGGAATGCCAAGCCTAACACTTC -ACGGAATGCCAAGCCTAAGTACTC -ACGGAATGCCAAGCCTAAGATGTC -ACGGAATGCCAAGCCTAAACAGTC -ACGGAATGCCAAGCCTAATTGCTG -ACGGAATGCCAAGCCTAATCCATG -ACGGAATGCCAAGCCTAATGTGTG -ACGGAATGCCAAGCCTAACTAGTG -ACGGAATGCCAAGCCTAACATCTG -ACGGAATGCCAAGCCTAAGAGTTG -ACGGAATGCCAAGCCTAAAGACTG -ACGGAATGCCAAGCCTAATCGGTA -ACGGAATGCCAAGCCTAATGCCTA -ACGGAATGCCAAGCCTAACCACTA -ACGGAATGCCAAGCCTAAGGAGTA -ACGGAATGCCAAGCCTAATCGTCT -ACGGAATGCCAAGCCTAATGCACT -ACGGAATGCCAAGCCTAACTGACT -ACGGAATGCCAAGCCTAACAACCT -ACGGAATGCCAAGCCTAAGCTACT -ACGGAATGCCAAGCCTAAGGATCT -ACGGAATGCCAAGCCTAAAAGGCT -ACGGAATGCCAAGCCTAATCAACC -ACGGAATGCCAAGCCTAATGTTCC -ACGGAATGCCAAGCCTAAATTCCC -ACGGAATGCCAAGCCTAATTCTCG -ACGGAATGCCAAGCCTAATAGACG -ACGGAATGCCAAGCCTAAGTAACG -ACGGAATGCCAAGCCTAAACTTCG -ACGGAATGCCAAGCCTAATACGCA -ACGGAATGCCAAGCCTAACTTGCA -ACGGAATGCCAAGCCTAACGAACA -ACGGAATGCCAAGCCTAACAGTCA -ACGGAATGCCAAGCCTAAGATCCA -ACGGAATGCCAAGCCTAAACGACA -ACGGAATGCCAAGCCTAAAGCTCA -ACGGAATGCCAAGCCTAATCACGT -ACGGAATGCCAAGCCTAACGTAGT -ACGGAATGCCAAGCCTAAGTCAGT -ACGGAATGCCAAGCCTAAGAAGGT -ACGGAATGCCAAGCCTAAAACCGT -ACGGAATGCCAAGCCTAATTGTGC -ACGGAATGCCAAGCCTAACTAAGC -ACGGAATGCCAAGCCTAAACTAGC -ACGGAATGCCAAGCCTAAAGATGC -ACGGAATGCCAAGCCTAATGAAGG -ACGGAATGCCAAGCCTAACAATGG -ACGGAATGCCAAGCCTAAATGAGG -ACGGAATGCCAAGCCTAAAATGGG -ACGGAATGCCAAGCCTAATCCTGA -ACGGAATGCCAAGCCTAATAGCGA -ACGGAATGCCAAGCCTAACACAGA -ACGGAATGCCAAGCCTAAGCAAGA -ACGGAATGCCAAGCCTAAGGTTGA -ACGGAATGCCAAGCCTAATCCGAT -ACGGAATGCCAAGCCTAATGGCAT -ACGGAATGCCAAGCCTAACGAGAT -ACGGAATGCCAAGCCTAATACCAC -ACGGAATGCCAAGCCTAACAGAAC -ACGGAATGCCAAGCCTAAGTCTAC -ACGGAATGCCAAGCCTAAACGTAC -ACGGAATGCCAAGCCTAAAGTGAC -ACGGAATGCCAAGCCTAACTGTAG -ACGGAATGCCAAGCCTAACCTAAG -ACGGAATGCCAAGCCTAAGTTCAG -ACGGAATGCCAAGCCTAAGCATAG -ACGGAATGCCAAGCCTAAGACAAG -ACGGAATGCCAAGCCTAAAAGCAG -ACGGAATGCCAAGCCTAACGTCAA -ACGGAATGCCAAGCCTAAGCTGAA -ACGGAATGCCAAGCCTAAAGTACG -ACGGAATGCCAAGCCTAAATCCGA -ACGGAATGCCAAGCCTAAATGGGA -ACGGAATGCCAAGCCTAAGTGCAA -ACGGAATGCCAAGCCTAAGAGGAA -ACGGAATGCCAAGCCTAACAGGTA -ACGGAATGCCAAGCCTAAGACTCT -ACGGAATGCCAAGCCTAAAGTCCT -ACGGAATGCCAAGCCTAATAAGCC -ACGGAATGCCAAGCCTAAATAGCC -ACGGAATGCCAAGCCTAATAACCG -ACGGAATGCCAAGCCTAAATGCCA -ACGGAATGCCAAGCCATAGGAAAC -ACGGAATGCCAAGCCATAAACACC -ACGGAATGCCAAGCCATAATCGAG -ACGGAATGCCAAGCCATACTCCTT -ACGGAATGCCAAGCCATACCTGTT -ACGGAATGCCAAGCCATACGGTTT -ACGGAATGCCAAGCCATAGTGGTT -ACGGAATGCCAAGCCATAGCCTTT -ACGGAATGCCAAGCCATAGGTCTT -ACGGAATGCCAAGCCATAACGCTT -ACGGAATGCCAAGCCATAAGCGTT -ACGGAATGCCAAGCCATATTCGTC -ACGGAATGCCAAGCCATATCTCTC -ACGGAATGCCAAGCCATATGGATC -ACGGAATGCCAAGCCATACACTTC -ACGGAATGCCAAGCCATAGTACTC -ACGGAATGCCAAGCCATAGATGTC -ACGGAATGCCAAGCCATAACAGTC -ACGGAATGCCAAGCCATATTGCTG -ACGGAATGCCAAGCCATATCCATG -ACGGAATGCCAAGCCATATGTGTG -ACGGAATGCCAAGCCATACTAGTG -ACGGAATGCCAAGCCATACATCTG -ACGGAATGCCAAGCCATAGAGTTG -ACGGAATGCCAAGCCATAAGACTG -ACGGAATGCCAAGCCATATCGGTA -ACGGAATGCCAAGCCATATGCCTA -ACGGAATGCCAAGCCATACCACTA -ACGGAATGCCAAGCCATAGGAGTA -ACGGAATGCCAAGCCATATCGTCT -ACGGAATGCCAAGCCATATGCACT -ACGGAATGCCAAGCCATACTGACT -ACGGAATGCCAAGCCATACAACCT -ACGGAATGCCAAGCCATAGCTACT -ACGGAATGCCAAGCCATAGGATCT -ACGGAATGCCAAGCCATAAAGGCT -ACGGAATGCCAAGCCATATCAACC -ACGGAATGCCAAGCCATATGTTCC -ACGGAATGCCAAGCCATAATTCCC -ACGGAATGCCAAGCCATATTCTCG -ACGGAATGCCAAGCCATATAGACG -ACGGAATGCCAAGCCATAGTAACG -ACGGAATGCCAAGCCATAACTTCG -ACGGAATGCCAAGCCATATACGCA -ACGGAATGCCAAGCCATACTTGCA -ACGGAATGCCAAGCCATACGAACA -ACGGAATGCCAAGCCATACAGTCA -ACGGAATGCCAAGCCATAGATCCA -ACGGAATGCCAAGCCATAACGACA -ACGGAATGCCAAGCCATAAGCTCA -ACGGAATGCCAAGCCATATCACGT -ACGGAATGCCAAGCCATACGTAGT -ACGGAATGCCAAGCCATAGTCAGT -ACGGAATGCCAAGCCATAGAAGGT -ACGGAATGCCAAGCCATAAACCGT -ACGGAATGCCAAGCCATATTGTGC -ACGGAATGCCAAGCCATACTAAGC -ACGGAATGCCAAGCCATAACTAGC -ACGGAATGCCAAGCCATAAGATGC -ACGGAATGCCAAGCCATATGAAGG -ACGGAATGCCAAGCCATACAATGG -ACGGAATGCCAAGCCATAATGAGG -ACGGAATGCCAAGCCATAAATGGG -ACGGAATGCCAAGCCATATCCTGA -ACGGAATGCCAAGCCATATAGCGA -ACGGAATGCCAAGCCATACACAGA -ACGGAATGCCAAGCCATAGCAAGA -ACGGAATGCCAAGCCATAGGTTGA -ACGGAATGCCAAGCCATATCCGAT -ACGGAATGCCAAGCCATATGGCAT -ACGGAATGCCAAGCCATACGAGAT -ACGGAATGCCAAGCCATATACCAC -ACGGAATGCCAAGCCATACAGAAC -ACGGAATGCCAAGCCATAGTCTAC -ACGGAATGCCAAGCCATAACGTAC -ACGGAATGCCAAGCCATAAGTGAC -ACGGAATGCCAAGCCATACTGTAG -ACGGAATGCCAAGCCATACCTAAG -ACGGAATGCCAAGCCATAGTTCAG -ACGGAATGCCAAGCCATAGCATAG -ACGGAATGCCAAGCCATAGACAAG -ACGGAATGCCAAGCCATAAAGCAG -ACGGAATGCCAAGCCATACGTCAA -ACGGAATGCCAAGCCATAGCTGAA -ACGGAATGCCAAGCCATAAGTACG -ACGGAATGCCAAGCCATAATCCGA -ACGGAATGCCAAGCCATAATGGGA -ACGGAATGCCAAGCCATAGTGCAA -ACGGAATGCCAAGCCATAGAGGAA -ACGGAATGCCAAGCCATACAGGTA -ACGGAATGCCAAGCCATAGACTCT -ACGGAATGCCAAGCCATAAGTCCT -ACGGAATGCCAAGCCATATAAGCC -ACGGAATGCCAAGCCATAATAGCC -ACGGAATGCCAAGCCATATAACCG -ACGGAATGCCAAGCCATAATGCCA -ACGGAATGCCAACCGTAAGGAAAC -ACGGAATGCCAACCGTAAAACACC -ACGGAATGCCAACCGTAAATCGAG -ACGGAATGCCAACCGTAACTCCTT -ACGGAATGCCAACCGTAACCTGTT -ACGGAATGCCAACCGTAACGGTTT -ACGGAATGCCAACCGTAAGTGGTT -ACGGAATGCCAACCGTAAGCCTTT -ACGGAATGCCAACCGTAAGGTCTT -ACGGAATGCCAACCGTAAACGCTT -ACGGAATGCCAACCGTAAAGCGTT -ACGGAATGCCAACCGTAATTCGTC -ACGGAATGCCAACCGTAATCTCTC -ACGGAATGCCAACCGTAATGGATC -ACGGAATGCCAACCGTAACACTTC -ACGGAATGCCAACCGTAAGTACTC -ACGGAATGCCAACCGTAAGATGTC -ACGGAATGCCAACCGTAAACAGTC -ACGGAATGCCAACCGTAATTGCTG -ACGGAATGCCAACCGTAATCCATG -ACGGAATGCCAACCGTAATGTGTG -ACGGAATGCCAACCGTAACTAGTG -ACGGAATGCCAACCGTAACATCTG -ACGGAATGCCAACCGTAAGAGTTG -ACGGAATGCCAACCGTAAAGACTG -ACGGAATGCCAACCGTAATCGGTA -ACGGAATGCCAACCGTAATGCCTA -ACGGAATGCCAACCGTAACCACTA -ACGGAATGCCAACCGTAAGGAGTA -ACGGAATGCCAACCGTAATCGTCT -ACGGAATGCCAACCGTAATGCACT -ACGGAATGCCAACCGTAACTGACT -ACGGAATGCCAACCGTAACAACCT -ACGGAATGCCAACCGTAAGCTACT -ACGGAATGCCAACCGTAAGGATCT -ACGGAATGCCAACCGTAAAAGGCT -ACGGAATGCCAACCGTAATCAACC -ACGGAATGCCAACCGTAATGTTCC -ACGGAATGCCAACCGTAAATTCCC -ACGGAATGCCAACCGTAATTCTCG -ACGGAATGCCAACCGTAATAGACG -ACGGAATGCCAACCGTAAGTAACG -ACGGAATGCCAACCGTAAACTTCG -ACGGAATGCCAACCGTAATACGCA -ACGGAATGCCAACCGTAACTTGCA -ACGGAATGCCAACCGTAACGAACA -ACGGAATGCCAACCGTAACAGTCA -ACGGAATGCCAACCGTAAGATCCA -ACGGAATGCCAACCGTAAACGACA -ACGGAATGCCAACCGTAAAGCTCA -ACGGAATGCCAACCGTAATCACGT -ACGGAATGCCAACCGTAACGTAGT -ACGGAATGCCAACCGTAAGTCAGT -ACGGAATGCCAACCGTAAGAAGGT -ACGGAATGCCAACCGTAAAACCGT -ACGGAATGCCAACCGTAATTGTGC -ACGGAATGCCAACCGTAACTAAGC -ACGGAATGCCAACCGTAAACTAGC -ACGGAATGCCAACCGTAAAGATGC -ACGGAATGCCAACCGTAATGAAGG -ACGGAATGCCAACCGTAACAATGG -ACGGAATGCCAACCGTAAATGAGG -ACGGAATGCCAACCGTAAAATGGG -ACGGAATGCCAACCGTAATCCTGA -ACGGAATGCCAACCGTAATAGCGA -ACGGAATGCCAACCGTAACACAGA -ACGGAATGCCAACCGTAAGCAAGA -ACGGAATGCCAACCGTAAGGTTGA -ACGGAATGCCAACCGTAATCCGAT -ACGGAATGCCAACCGTAATGGCAT -ACGGAATGCCAACCGTAACGAGAT -ACGGAATGCCAACCGTAATACCAC -ACGGAATGCCAACCGTAACAGAAC -ACGGAATGCCAACCGTAAGTCTAC -ACGGAATGCCAACCGTAAACGTAC -ACGGAATGCCAACCGTAAAGTGAC -ACGGAATGCCAACCGTAACTGTAG -ACGGAATGCCAACCGTAACCTAAG -ACGGAATGCCAACCGTAAGTTCAG -ACGGAATGCCAACCGTAAGCATAG -ACGGAATGCCAACCGTAAGACAAG -ACGGAATGCCAACCGTAAAAGCAG -ACGGAATGCCAACCGTAACGTCAA -ACGGAATGCCAACCGTAAGCTGAA -ACGGAATGCCAACCGTAAAGTACG -ACGGAATGCCAACCGTAAATCCGA -ACGGAATGCCAACCGTAAATGGGA -ACGGAATGCCAACCGTAAGTGCAA -ACGGAATGCCAACCGTAAGAGGAA -ACGGAATGCCAACCGTAACAGGTA -ACGGAATGCCAACCGTAAGACTCT -ACGGAATGCCAACCGTAAAGTCCT -ACGGAATGCCAACCGTAATAAGCC -ACGGAATGCCAACCGTAAATAGCC -ACGGAATGCCAACCGTAATAACCG -ACGGAATGCCAACCGTAAATGCCA -ACGGAATGCCAACCAATGGGAAAC -ACGGAATGCCAACCAATGAACACC -ACGGAATGCCAACCAATGATCGAG -ACGGAATGCCAACCAATGCTCCTT -ACGGAATGCCAACCAATGCCTGTT -ACGGAATGCCAACCAATGCGGTTT -ACGGAATGCCAACCAATGGTGGTT -ACGGAATGCCAACCAATGGCCTTT -ACGGAATGCCAACCAATGGGTCTT -ACGGAATGCCAACCAATGACGCTT -ACGGAATGCCAACCAATGAGCGTT -ACGGAATGCCAACCAATGTTCGTC -ACGGAATGCCAACCAATGTCTCTC -ACGGAATGCCAACCAATGTGGATC -ACGGAATGCCAACCAATGCACTTC -ACGGAATGCCAACCAATGGTACTC -ACGGAATGCCAACCAATGGATGTC -ACGGAATGCCAACCAATGACAGTC -ACGGAATGCCAACCAATGTTGCTG -ACGGAATGCCAACCAATGTCCATG -ACGGAATGCCAACCAATGTGTGTG -ACGGAATGCCAACCAATGCTAGTG -ACGGAATGCCAACCAATGCATCTG -ACGGAATGCCAACCAATGGAGTTG -ACGGAATGCCAACCAATGAGACTG -ACGGAATGCCAACCAATGTCGGTA -ACGGAATGCCAACCAATGTGCCTA -ACGGAATGCCAACCAATGCCACTA -ACGGAATGCCAACCAATGGGAGTA -ACGGAATGCCAACCAATGTCGTCT -ACGGAATGCCAACCAATGTGCACT -ACGGAATGCCAACCAATGCTGACT -ACGGAATGCCAACCAATGCAACCT -ACGGAATGCCAACCAATGGCTACT -ACGGAATGCCAACCAATGGGATCT -ACGGAATGCCAACCAATGAAGGCT -ACGGAATGCCAACCAATGTCAACC -ACGGAATGCCAACCAATGTGTTCC -ACGGAATGCCAACCAATGATTCCC -ACGGAATGCCAACCAATGTTCTCG -ACGGAATGCCAACCAATGTAGACG -ACGGAATGCCAACCAATGGTAACG -ACGGAATGCCAACCAATGACTTCG -ACGGAATGCCAACCAATGTACGCA -ACGGAATGCCAACCAATGCTTGCA -ACGGAATGCCAACCAATGCGAACA -ACGGAATGCCAACCAATGCAGTCA -ACGGAATGCCAACCAATGGATCCA -ACGGAATGCCAACCAATGACGACA -ACGGAATGCCAACCAATGAGCTCA -ACGGAATGCCAACCAATGTCACGT -ACGGAATGCCAACCAATGCGTAGT -ACGGAATGCCAACCAATGGTCAGT -ACGGAATGCCAACCAATGGAAGGT -ACGGAATGCCAACCAATGAACCGT -ACGGAATGCCAACCAATGTTGTGC -ACGGAATGCCAACCAATGCTAAGC -ACGGAATGCCAACCAATGACTAGC -ACGGAATGCCAACCAATGAGATGC -ACGGAATGCCAACCAATGTGAAGG -ACGGAATGCCAACCAATGCAATGG -ACGGAATGCCAACCAATGATGAGG -ACGGAATGCCAACCAATGAATGGG -ACGGAATGCCAACCAATGTCCTGA -ACGGAATGCCAACCAATGTAGCGA -ACGGAATGCCAACCAATGCACAGA -ACGGAATGCCAACCAATGGCAAGA -ACGGAATGCCAACCAATGGGTTGA -ACGGAATGCCAACCAATGTCCGAT -ACGGAATGCCAACCAATGTGGCAT -ACGGAATGCCAACCAATGCGAGAT -ACGGAATGCCAACCAATGTACCAC -ACGGAATGCCAACCAATGCAGAAC -ACGGAATGCCAACCAATGGTCTAC -ACGGAATGCCAACCAATGACGTAC -ACGGAATGCCAACCAATGAGTGAC -ACGGAATGCCAACCAATGCTGTAG -ACGGAATGCCAACCAATGCCTAAG -ACGGAATGCCAACCAATGGTTCAG -ACGGAATGCCAACCAATGGCATAG -ACGGAATGCCAACCAATGGACAAG -ACGGAATGCCAACCAATGAAGCAG -ACGGAATGCCAACCAATGCGTCAA -ACGGAATGCCAACCAATGGCTGAA -ACGGAATGCCAACCAATGAGTACG -ACGGAATGCCAACCAATGATCCGA -ACGGAATGCCAACCAATGATGGGA -ACGGAATGCCAACCAATGGTGCAA -ACGGAATGCCAACCAATGGAGGAA -ACGGAATGCCAACCAATGCAGGTA -ACGGAATGCCAACCAATGGACTCT -ACGGAATGCCAACCAATGAGTCCT -ACGGAATGCCAACCAATGTAAGCC -ACGGAATGCCAACCAATGATAGCC -ACGGAATGCCAACCAATGTAACCG -ACGGAATGCCAACCAATGATGCCA -CCAACAGAAACGAACGGAGGAAAC -CCAACAGAAACGAACGGAAACACC -CCAACAGAAACGAACGGAATCGAG -CCAACAGAAACGAACGGACTCCTT -CCAACAGAAACGAACGGACCTGTT -CCAACAGAAACGAACGGACGGTTT -CCAACAGAAACGAACGGAGTGGTT -CCAACAGAAACGAACGGAGCCTTT -CCAACAGAAACGAACGGAGGTCTT -CCAACAGAAACGAACGGAACGCTT -CCAACAGAAACGAACGGAAGCGTT -CCAACAGAAACGAACGGATTCGTC -CCAACAGAAACGAACGGATCTCTC -CCAACAGAAACGAACGGATGGATC -CCAACAGAAACGAACGGACACTTC -CCAACAGAAACGAACGGAGTACTC -CCAACAGAAACGAACGGAGATGTC -CCAACAGAAACGAACGGAACAGTC -CCAACAGAAACGAACGGATTGCTG -CCAACAGAAACGAACGGATCCATG -CCAACAGAAACGAACGGATGTGTG -CCAACAGAAACGAACGGACTAGTG -CCAACAGAAACGAACGGACATCTG -CCAACAGAAACGAACGGAGAGTTG -CCAACAGAAACGAACGGAAGACTG -CCAACAGAAACGAACGGATCGGTA -CCAACAGAAACGAACGGATGCCTA -CCAACAGAAACGAACGGACCACTA -CCAACAGAAACGAACGGAGGAGTA -CCAACAGAAACGAACGGATCGTCT -CCAACAGAAACGAACGGATGCACT -CCAACAGAAACGAACGGACTGACT -CCAACAGAAACGAACGGACAACCT -CCAACAGAAACGAACGGAGCTACT -CCAACAGAAACGAACGGAGGATCT -CCAACAGAAACGAACGGAAAGGCT -CCAACAGAAACGAACGGATCAACC -CCAACAGAAACGAACGGATGTTCC -CCAACAGAAACGAACGGAATTCCC -CCAACAGAAACGAACGGATTCTCG -CCAACAGAAACGAACGGATAGACG -CCAACAGAAACGAACGGAGTAACG -CCAACAGAAACGAACGGAACTTCG -CCAACAGAAACGAACGGATACGCA -CCAACAGAAACGAACGGACTTGCA -CCAACAGAAACGAACGGACGAACA -CCAACAGAAACGAACGGACAGTCA -CCAACAGAAACGAACGGAGATCCA -CCAACAGAAACGAACGGAACGACA -CCAACAGAAACGAACGGAAGCTCA -CCAACAGAAACGAACGGATCACGT -CCAACAGAAACGAACGGACGTAGT -CCAACAGAAACGAACGGAGTCAGT -CCAACAGAAACGAACGGAGAAGGT -CCAACAGAAACGAACGGAAACCGT -CCAACAGAAACGAACGGATTGTGC -CCAACAGAAACGAACGGACTAAGC -CCAACAGAAACGAACGGAACTAGC -CCAACAGAAACGAACGGAAGATGC -CCAACAGAAACGAACGGATGAAGG -CCAACAGAAACGAACGGACAATGG -CCAACAGAAACGAACGGAATGAGG -CCAACAGAAACGAACGGAAATGGG -CCAACAGAAACGAACGGATCCTGA -CCAACAGAAACGAACGGATAGCGA -CCAACAGAAACGAACGGACACAGA -CCAACAGAAACGAACGGAGCAAGA -CCAACAGAAACGAACGGAGGTTGA -CCAACAGAAACGAACGGATCCGAT -CCAACAGAAACGAACGGATGGCAT -CCAACAGAAACGAACGGACGAGAT -CCAACAGAAACGAACGGATACCAC -CCAACAGAAACGAACGGACAGAAC -CCAACAGAAACGAACGGAGTCTAC -CCAACAGAAACGAACGGAACGTAC -CCAACAGAAACGAACGGAAGTGAC -CCAACAGAAACGAACGGACTGTAG -CCAACAGAAACGAACGGACCTAAG -CCAACAGAAACGAACGGAGTTCAG -CCAACAGAAACGAACGGAGCATAG -CCAACAGAAACGAACGGAGACAAG -CCAACAGAAACGAACGGAAAGCAG -CCAACAGAAACGAACGGACGTCAA -CCAACAGAAACGAACGGAGCTGAA -CCAACAGAAACGAACGGAAGTACG -CCAACAGAAACGAACGGAATCCGA -CCAACAGAAACGAACGGAATGGGA -CCAACAGAAACGAACGGAGTGCAA -CCAACAGAAACGAACGGAGAGGAA -CCAACAGAAACGAACGGACAGGTA -CCAACAGAAACGAACGGAGACTCT -CCAACAGAAACGAACGGAAGTCCT -CCAACAGAAACGAACGGATAAGCC -CCAACAGAAACGAACGGAATAGCC -CCAACAGAAACGAACGGATAACCG -CCAACAGAAACGAACGGAATGCCA -CCAACAGAAACGACCAACGGAAAC -CCAACAGAAACGACCAACAACACC -CCAACAGAAACGACCAACATCGAG -CCAACAGAAACGACCAACCTCCTT -CCAACAGAAACGACCAACCCTGTT -CCAACAGAAACGACCAACCGGTTT -CCAACAGAAACGACCAACGTGGTT -CCAACAGAAACGACCAACGCCTTT -CCAACAGAAACGACCAACGGTCTT -CCAACAGAAACGACCAACACGCTT -CCAACAGAAACGACCAACAGCGTT -CCAACAGAAACGACCAACTTCGTC -CCAACAGAAACGACCAACTCTCTC -CCAACAGAAACGACCAACTGGATC -CCAACAGAAACGACCAACCACTTC -CCAACAGAAACGACCAACGTACTC -CCAACAGAAACGACCAACGATGTC -CCAACAGAAACGACCAACACAGTC -CCAACAGAAACGACCAACTTGCTG -CCAACAGAAACGACCAACTCCATG -CCAACAGAAACGACCAACTGTGTG -CCAACAGAAACGACCAACCTAGTG -CCAACAGAAACGACCAACCATCTG -CCAACAGAAACGACCAACGAGTTG -CCAACAGAAACGACCAACAGACTG -CCAACAGAAACGACCAACTCGGTA -CCAACAGAAACGACCAACTGCCTA -CCAACAGAAACGACCAACCCACTA -CCAACAGAAACGACCAACGGAGTA -CCAACAGAAACGACCAACTCGTCT -CCAACAGAAACGACCAACTGCACT -CCAACAGAAACGACCAACCTGACT -CCAACAGAAACGACCAACCAACCT -CCAACAGAAACGACCAACGCTACT -CCAACAGAAACGACCAACGGATCT -CCAACAGAAACGACCAACAAGGCT -CCAACAGAAACGACCAACTCAACC -CCAACAGAAACGACCAACTGTTCC -CCAACAGAAACGACCAACATTCCC -CCAACAGAAACGACCAACTTCTCG -CCAACAGAAACGACCAACTAGACG -CCAACAGAAACGACCAACGTAACG -CCAACAGAAACGACCAACACTTCG -CCAACAGAAACGACCAACTACGCA -CCAACAGAAACGACCAACCTTGCA -CCAACAGAAACGACCAACCGAACA -CCAACAGAAACGACCAACCAGTCA -CCAACAGAAACGACCAACGATCCA -CCAACAGAAACGACCAACACGACA -CCAACAGAAACGACCAACAGCTCA -CCAACAGAAACGACCAACTCACGT -CCAACAGAAACGACCAACCGTAGT -CCAACAGAAACGACCAACGTCAGT -CCAACAGAAACGACCAACGAAGGT -CCAACAGAAACGACCAACAACCGT -CCAACAGAAACGACCAACTTGTGC -CCAACAGAAACGACCAACCTAAGC -CCAACAGAAACGACCAACACTAGC -CCAACAGAAACGACCAACAGATGC -CCAACAGAAACGACCAACTGAAGG -CCAACAGAAACGACCAACCAATGG -CCAACAGAAACGACCAACATGAGG -CCAACAGAAACGACCAACAATGGG -CCAACAGAAACGACCAACTCCTGA -CCAACAGAAACGACCAACTAGCGA -CCAACAGAAACGACCAACCACAGA -CCAACAGAAACGACCAACGCAAGA -CCAACAGAAACGACCAACGGTTGA -CCAACAGAAACGACCAACTCCGAT -CCAACAGAAACGACCAACTGGCAT -CCAACAGAAACGACCAACCGAGAT -CCAACAGAAACGACCAACTACCAC -CCAACAGAAACGACCAACCAGAAC -CCAACAGAAACGACCAACGTCTAC -CCAACAGAAACGACCAACACGTAC -CCAACAGAAACGACCAACAGTGAC -CCAACAGAAACGACCAACCTGTAG -CCAACAGAAACGACCAACCCTAAG -CCAACAGAAACGACCAACGTTCAG -CCAACAGAAACGACCAACGCATAG -CCAACAGAAACGACCAACGACAAG -CCAACAGAAACGACCAACAAGCAG -CCAACAGAAACGACCAACCGTCAA -CCAACAGAAACGACCAACGCTGAA -CCAACAGAAACGACCAACAGTACG -CCAACAGAAACGACCAACATCCGA -CCAACAGAAACGACCAACATGGGA -CCAACAGAAACGACCAACGTGCAA -CCAACAGAAACGACCAACGAGGAA -CCAACAGAAACGACCAACCAGGTA -CCAACAGAAACGACCAACGACTCT -CCAACAGAAACGACCAACAGTCCT -CCAACAGAAACGACCAACTAAGCC -CCAACAGAAACGACCAACATAGCC -CCAACAGAAACGACCAACTAACCG -CCAACAGAAACGACCAACATGCCA -CCAACAGAAACGGAGATCGGAAAC -CCAACAGAAACGGAGATCAACACC -CCAACAGAAACGGAGATCATCGAG -CCAACAGAAACGGAGATCCTCCTT -CCAACAGAAACGGAGATCCCTGTT -CCAACAGAAACGGAGATCCGGTTT -CCAACAGAAACGGAGATCGTGGTT -CCAACAGAAACGGAGATCGCCTTT -CCAACAGAAACGGAGATCGGTCTT -CCAACAGAAACGGAGATCACGCTT -CCAACAGAAACGGAGATCAGCGTT -CCAACAGAAACGGAGATCTTCGTC -CCAACAGAAACGGAGATCTCTCTC -CCAACAGAAACGGAGATCTGGATC -CCAACAGAAACGGAGATCCACTTC -CCAACAGAAACGGAGATCGTACTC -CCAACAGAAACGGAGATCGATGTC -CCAACAGAAACGGAGATCACAGTC -CCAACAGAAACGGAGATCTTGCTG -CCAACAGAAACGGAGATCTCCATG -CCAACAGAAACGGAGATCTGTGTG -CCAACAGAAACGGAGATCCTAGTG -CCAACAGAAACGGAGATCCATCTG -CCAACAGAAACGGAGATCGAGTTG -CCAACAGAAACGGAGATCAGACTG -CCAACAGAAACGGAGATCTCGGTA -CCAACAGAAACGGAGATCTGCCTA -CCAACAGAAACGGAGATCCCACTA -CCAACAGAAACGGAGATCGGAGTA -CCAACAGAAACGGAGATCTCGTCT -CCAACAGAAACGGAGATCTGCACT -CCAACAGAAACGGAGATCCTGACT -CCAACAGAAACGGAGATCCAACCT -CCAACAGAAACGGAGATCGCTACT -CCAACAGAAACGGAGATCGGATCT -CCAACAGAAACGGAGATCAAGGCT -CCAACAGAAACGGAGATCTCAACC -CCAACAGAAACGGAGATCTGTTCC -CCAACAGAAACGGAGATCATTCCC -CCAACAGAAACGGAGATCTTCTCG -CCAACAGAAACGGAGATCTAGACG -CCAACAGAAACGGAGATCGTAACG -CCAACAGAAACGGAGATCACTTCG -CCAACAGAAACGGAGATCTACGCA -CCAACAGAAACGGAGATCCTTGCA -CCAACAGAAACGGAGATCCGAACA -CCAACAGAAACGGAGATCCAGTCA -CCAACAGAAACGGAGATCGATCCA -CCAACAGAAACGGAGATCACGACA -CCAACAGAAACGGAGATCAGCTCA -CCAACAGAAACGGAGATCTCACGT -CCAACAGAAACGGAGATCCGTAGT -CCAACAGAAACGGAGATCGTCAGT -CCAACAGAAACGGAGATCGAAGGT -CCAACAGAAACGGAGATCAACCGT -CCAACAGAAACGGAGATCTTGTGC -CCAACAGAAACGGAGATCCTAAGC -CCAACAGAAACGGAGATCACTAGC -CCAACAGAAACGGAGATCAGATGC -CCAACAGAAACGGAGATCTGAAGG -CCAACAGAAACGGAGATCCAATGG -CCAACAGAAACGGAGATCATGAGG -CCAACAGAAACGGAGATCAATGGG -CCAACAGAAACGGAGATCTCCTGA -CCAACAGAAACGGAGATCTAGCGA -CCAACAGAAACGGAGATCCACAGA -CCAACAGAAACGGAGATCGCAAGA -CCAACAGAAACGGAGATCGGTTGA -CCAACAGAAACGGAGATCTCCGAT -CCAACAGAAACGGAGATCTGGCAT -CCAACAGAAACGGAGATCCGAGAT -CCAACAGAAACGGAGATCTACCAC -CCAACAGAAACGGAGATCCAGAAC -CCAACAGAAACGGAGATCGTCTAC -CCAACAGAAACGGAGATCACGTAC -CCAACAGAAACGGAGATCAGTGAC -CCAACAGAAACGGAGATCCTGTAG -CCAACAGAAACGGAGATCCCTAAG -CCAACAGAAACGGAGATCGTTCAG -CCAACAGAAACGGAGATCGCATAG -CCAACAGAAACGGAGATCGACAAG -CCAACAGAAACGGAGATCAAGCAG -CCAACAGAAACGGAGATCCGTCAA -CCAACAGAAACGGAGATCGCTGAA -CCAACAGAAACGGAGATCAGTACG -CCAACAGAAACGGAGATCATCCGA -CCAACAGAAACGGAGATCATGGGA -CCAACAGAAACGGAGATCGTGCAA -CCAACAGAAACGGAGATCGAGGAA -CCAACAGAAACGGAGATCCAGGTA -CCAACAGAAACGGAGATCGACTCT -CCAACAGAAACGGAGATCAGTCCT -CCAACAGAAACGGAGATCTAAGCC -CCAACAGAAACGGAGATCATAGCC -CCAACAGAAACGGAGATCTAACCG -CCAACAGAAACGGAGATCATGCCA -CCAACAGAAACGCTTCTCGGAAAC -CCAACAGAAACGCTTCTCAACACC -CCAACAGAAACGCTTCTCATCGAG -CCAACAGAAACGCTTCTCCTCCTT -CCAACAGAAACGCTTCTCCCTGTT -CCAACAGAAACGCTTCTCCGGTTT -CCAACAGAAACGCTTCTCGTGGTT -CCAACAGAAACGCTTCTCGCCTTT -CCAACAGAAACGCTTCTCGGTCTT -CCAACAGAAACGCTTCTCACGCTT -CCAACAGAAACGCTTCTCAGCGTT -CCAACAGAAACGCTTCTCTTCGTC -CCAACAGAAACGCTTCTCTCTCTC -CCAACAGAAACGCTTCTCTGGATC -CCAACAGAAACGCTTCTCCACTTC -CCAACAGAAACGCTTCTCGTACTC -CCAACAGAAACGCTTCTCGATGTC -CCAACAGAAACGCTTCTCACAGTC -CCAACAGAAACGCTTCTCTTGCTG -CCAACAGAAACGCTTCTCTCCATG -CCAACAGAAACGCTTCTCTGTGTG -CCAACAGAAACGCTTCTCCTAGTG -CCAACAGAAACGCTTCTCCATCTG -CCAACAGAAACGCTTCTCGAGTTG -CCAACAGAAACGCTTCTCAGACTG -CCAACAGAAACGCTTCTCTCGGTA -CCAACAGAAACGCTTCTCTGCCTA -CCAACAGAAACGCTTCTCCCACTA -CCAACAGAAACGCTTCTCGGAGTA -CCAACAGAAACGCTTCTCTCGTCT -CCAACAGAAACGCTTCTCTGCACT -CCAACAGAAACGCTTCTCCTGACT -CCAACAGAAACGCTTCTCCAACCT -CCAACAGAAACGCTTCTCGCTACT -CCAACAGAAACGCTTCTCGGATCT -CCAACAGAAACGCTTCTCAAGGCT -CCAACAGAAACGCTTCTCTCAACC -CCAACAGAAACGCTTCTCTGTTCC -CCAACAGAAACGCTTCTCATTCCC -CCAACAGAAACGCTTCTCTTCTCG -CCAACAGAAACGCTTCTCTAGACG -CCAACAGAAACGCTTCTCGTAACG -CCAACAGAAACGCTTCTCACTTCG -CCAACAGAAACGCTTCTCTACGCA -CCAACAGAAACGCTTCTCCTTGCA -CCAACAGAAACGCTTCTCCGAACA -CCAACAGAAACGCTTCTCCAGTCA -CCAACAGAAACGCTTCTCGATCCA -CCAACAGAAACGCTTCTCACGACA -CCAACAGAAACGCTTCTCAGCTCA -CCAACAGAAACGCTTCTCTCACGT -CCAACAGAAACGCTTCTCCGTAGT -CCAACAGAAACGCTTCTCGTCAGT -CCAACAGAAACGCTTCTCGAAGGT -CCAACAGAAACGCTTCTCAACCGT -CCAACAGAAACGCTTCTCTTGTGC -CCAACAGAAACGCTTCTCCTAAGC -CCAACAGAAACGCTTCTCACTAGC -CCAACAGAAACGCTTCTCAGATGC -CCAACAGAAACGCTTCTCTGAAGG -CCAACAGAAACGCTTCTCCAATGG -CCAACAGAAACGCTTCTCATGAGG -CCAACAGAAACGCTTCTCAATGGG -CCAACAGAAACGCTTCTCTCCTGA -CCAACAGAAACGCTTCTCTAGCGA -CCAACAGAAACGCTTCTCCACAGA -CCAACAGAAACGCTTCTCGCAAGA -CCAACAGAAACGCTTCTCGGTTGA -CCAACAGAAACGCTTCTCTCCGAT -CCAACAGAAACGCTTCTCTGGCAT -CCAACAGAAACGCTTCTCCGAGAT -CCAACAGAAACGCTTCTCTACCAC -CCAACAGAAACGCTTCTCCAGAAC -CCAACAGAAACGCTTCTCGTCTAC -CCAACAGAAACGCTTCTCACGTAC -CCAACAGAAACGCTTCTCAGTGAC -CCAACAGAAACGCTTCTCCTGTAG -CCAACAGAAACGCTTCTCCCTAAG -CCAACAGAAACGCTTCTCGTTCAG -CCAACAGAAACGCTTCTCGCATAG -CCAACAGAAACGCTTCTCGACAAG -CCAACAGAAACGCTTCTCAAGCAG -CCAACAGAAACGCTTCTCCGTCAA -CCAACAGAAACGCTTCTCGCTGAA -CCAACAGAAACGCTTCTCAGTACG -CCAACAGAAACGCTTCTCATCCGA -CCAACAGAAACGCTTCTCATGGGA -CCAACAGAAACGCTTCTCGTGCAA -CCAACAGAAACGCTTCTCGAGGAA -CCAACAGAAACGCTTCTCCAGGTA -CCAACAGAAACGCTTCTCGACTCT -CCAACAGAAACGCTTCTCAGTCCT -CCAACAGAAACGCTTCTCTAAGCC -CCAACAGAAACGCTTCTCATAGCC -CCAACAGAAACGCTTCTCTAACCG -CCAACAGAAACGCTTCTCATGCCA -CCAACAGAAACGGTTCCTGGAAAC -CCAACAGAAACGGTTCCTAACACC -CCAACAGAAACGGTTCCTATCGAG -CCAACAGAAACGGTTCCTCTCCTT -CCAACAGAAACGGTTCCTCCTGTT -CCAACAGAAACGGTTCCTCGGTTT -CCAACAGAAACGGTTCCTGTGGTT -CCAACAGAAACGGTTCCTGCCTTT -CCAACAGAAACGGTTCCTGGTCTT -CCAACAGAAACGGTTCCTACGCTT -CCAACAGAAACGGTTCCTAGCGTT -CCAACAGAAACGGTTCCTTTCGTC -CCAACAGAAACGGTTCCTTCTCTC -CCAACAGAAACGGTTCCTTGGATC -CCAACAGAAACGGTTCCTCACTTC -CCAACAGAAACGGTTCCTGTACTC -CCAACAGAAACGGTTCCTGATGTC -CCAACAGAAACGGTTCCTACAGTC -CCAACAGAAACGGTTCCTTTGCTG -CCAACAGAAACGGTTCCTTCCATG -CCAACAGAAACGGTTCCTTGTGTG -CCAACAGAAACGGTTCCTCTAGTG -CCAACAGAAACGGTTCCTCATCTG -CCAACAGAAACGGTTCCTGAGTTG -CCAACAGAAACGGTTCCTAGACTG -CCAACAGAAACGGTTCCTTCGGTA -CCAACAGAAACGGTTCCTTGCCTA -CCAACAGAAACGGTTCCTCCACTA -CCAACAGAAACGGTTCCTGGAGTA -CCAACAGAAACGGTTCCTTCGTCT -CCAACAGAAACGGTTCCTTGCACT -CCAACAGAAACGGTTCCTCTGACT -CCAACAGAAACGGTTCCTCAACCT -CCAACAGAAACGGTTCCTGCTACT -CCAACAGAAACGGTTCCTGGATCT -CCAACAGAAACGGTTCCTAAGGCT -CCAACAGAAACGGTTCCTTCAACC -CCAACAGAAACGGTTCCTTGTTCC -CCAACAGAAACGGTTCCTATTCCC -CCAACAGAAACGGTTCCTTTCTCG -CCAACAGAAACGGTTCCTTAGACG -CCAACAGAAACGGTTCCTGTAACG -CCAACAGAAACGGTTCCTACTTCG -CCAACAGAAACGGTTCCTTACGCA -CCAACAGAAACGGTTCCTCTTGCA -CCAACAGAAACGGTTCCTCGAACA -CCAACAGAAACGGTTCCTCAGTCA -CCAACAGAAACGGTTCCTGATCCA -CCAACAGAAACGGTTCCTACGACA -CCAACAGAAACGGTTCCTAGCTCA -CCAACAGAAACGGTTCCTTCACGT -CCAACAGAAACGGTTCCTCGTAGT -CCAACAGAAACGGTTCCTGTCAGT -CCAACAGAAACGGTTCCTGAAGGT -CCAACAGAAACGGTTCCTAACCGT -CCAACAGAAACGGTTCCTTTGTGC -CCAACAGAAACGGTTCCTCTAAGC -CCAACAGAAACGGTTCCTACTAGC -CCAACAGAAACGGTTCCTAGATGC -CCAACAGAAACGGTTCCTTGAAGG -CCAACAGAAACGGTTCCTCAATGG -CCAACAGAAACGGTTCCTATGAGG -CCAACAGAAACGGTTCCTAATGGG -CCAACAGAAACGGTTCCTTCCTGA -CCAACAGAAACGGTTCCTTAGCGA -CCAACAGAAACGGTTCCTCACAGA -CCAACAGAAACGGTTCCTGCAAGA -CCAACAGAAACGGTTCCTGGTTGA -CCAACAGAAACGGTTCCTTCCGAT -CCAACAGAAACGGTTCCTTGGCAT -CCAACAGAAACGGTTCCTCGAGAT -CCAACAGAAACGGTTCCTTACCAC -CCAACAGAAACGGTTCCTCAGAAC -CCAACAGAAACGGTTCCTGTCTAC -CCAACAGAAACGGTTCCTACGTAC -CCAACAGAAACGGTTCCTAGTGAC -CCAACAGAAACGGTTCCTCTGTAG -CCAACAGAAACGGTTCCTCCTAAG -CCAACAGAAACGGTTCCTGTTCAG -CCAACAGAAACGGTTCCTGCATAG -CCAACAGAAACGGTTCCTGACAAG -CCAACAGAAACGGTTCCTAAGCAG -CCAACAGAAACGGTTCCTCGTCAA -CCAACAGAAACGGTTCCTGCTGAA -CCAACAGAAACGGTTCCTAGTACG -CCAACAGAAACGGTTCCTATCCGA -CCAACAGAAACGGTTCCTATGGGA -CCAACAGAAACGGTTCCTGTGCAA -CCAACAGAAACGGTTCCTGAGGAA -CCAACAGAAACGGTTCCTCAGGTA -CCAACAGAAACGGTTCCTGACTCT -CCAACAGAAACGGTTCCTAGTCCT -CCAACAGAAACGGTTCCTTAAGCC -CCAACAGAAACGGTTCCTATAGCC -CCAACAGAAACGGTTCCTTAACCG -CCAACAGAAACGGTTCCTATGCCA -CCAACAGAAACGTTTCGGGGAAAC -CCAACAGAAACGTTTCGGAACACC -CCAACAGAAACGTTTCGGATCGAG -CCAACAGAAACGTTTCGGCTCCTT -CCAACAGAAACGTTTCGGCCTGTT -CCAACAGAAACGTTTCGGCGGTTT -CCAACAGAAACGTTTCGGGTGGTT -CCAACAGAAACGTTTCGGGCCTTT -CCAACAGAAACGTTTCGGGGTCTT -CCAACAGAAACGTTTCGGACGCTT -CCAACAGAAACGTTTCGGAGCGTT -CCAACAGAAACGTTTCGGTTCGTC -CCAACAGAAACGTTTCGGTCTCTC -CCAACAGAAACGTTTCGGTGGATC -CCAACAGAAACGTTTCGGCACTTC -CCAACAGAAACGTTTCGGGTACTC -CCAACAGAAACGTTTCGGGATGTC -CCAACAGAAACGTTTCGGACAGTC -CCAACAGAAACGTTTCGGTTGCTG -CCAACAGAAACGTTTCGGTCCATG -CCAACAGAAACGTTTCGGTGTGTG -CCAACAGAAACGTTTCGGCTAGTG -CCAACAGAAACGTTTCGGCATCTG -CCAACAGAAACGTTTCGGGAGTTG -CCAACAGAAACGTTTCGGAGACTG -CCAACAGAAACGTTTCGGTCGGTA -CCAACAGAAACGTTTCGGTGCCTA -CCAACAGAAACGTTTCGGCCACTA -CCAACAGAAACGTTTCGGGGAGTA -CCAACAGAAACGTTTCGGTCGTCT -CCAACAGAAACGTTTCGGTGCACT -CCAACAGAAACGTTTCGGCTGACT -CCAACAGAAACGTTTCGGCAACCT -CCAACAGAAACGTTTCGGGCTACT -CCAACAGAAACGTTTCGGGGATCT -CCAACAGAAACGTTTCGGAAGGCT -CCAACAGAAACGTTTCGGTCAACC -CCAACAGAAACGTTTCGGTGTTCC -CCAACAGAAACGTTTCGGATTCCC -CCAACAGAAACGTTTCGGTTCTCG -CCAACAGAAACGTTTCGGTAGACG -CCAACAGAAACGTTTCGGGTAACG -CCAACAGAAACGTTTCGGACTTCG -CCAACAGAAACGTTTCGGTACGCA -CCAACAGAAACGTTTCGGCTTGCA -CCAACAGAAACGTTTCGGCGAACA -CCAACAGAAACGTTTCGGCAGTCA -CCAACAGAAACGTTTCGGGATCCA -CCAACAGAAACGTTTCGGACGACA -CCAACAGAAACGTTTCGGAGCTCA -CCAACAGAAACGTTTCGGTCACGT -CCAACAGAAACGTTTCGGCGTAGT -CCAACAGAAACGTTTCGGGTCAGT -CCAACAGAAACGTTTCGGGAAGGT -CCAACAGAAACGTTTCGGAACCGT -CCAACAGAAACGTTTCGGTTGTGC -CCAACAGAAACGTTTCGGCTAAGC -CCAACAGAAACGTTTCGGACTAGC -CCAACAGAAACGTTTCGGAGATGC -CCAACAGAAACGTTTCGGTGAAGG -CCAACAGAAACGTTTCGGCAATGG -CCAACAGAAACGTTTCGGATGAGG -CCAACAGAAACGTTTCGGAATGGG -CCAACAGAAACGTTTCGGTCCTGA -CCAACAGAAACGTTTCGGTAGCGA -CCAACAGAAACGTTTCGGCACAGA -CCAACAGAAACGTTTCGGGCAAGA -CCAACAGAAACGTTTCGGGGTTGA -CCAACAGAAACGTTTCGGTCCGAT -CCAACAGAAACGTTTCGGTGGCAT -CCAACAGAAACGTTTCGGCGAGAT -CCAACAGAAACGTTTCGGTACCAC -CCAACAGAAACGTTTCGGCAGAAC -CCAACAGAAACGTTTCGGGTCTAC -CCAACAGAAACGTTTCGGACGTAC -CCAACAGAAACGTTTCGGAGTGAC -CCAACAGAAACGTTTCGGCTGTAG -CCAACAGAAACGTTTCGGCCTAAG -CCAACAGAAACGTTTCGGGTTCAG -CCAACAGAAACGTTTCGGGCATAG -CCAACAGAAACGTTTCGGGACAAG -CCAACAGAAACGTTTCGGAAGCAG -CCAACAGAAACGTTTCGGCGTCAA -CCAACAGAAACGTTTCGGGCTGAA -CCAACAGAAACGTTTCGGAGTACG -CCAACAGAAACGTTTCGGATCCGA -CCAACAGAAACGTTTCGGATGGGA -CCAACAGAAACGTTTCGGGTGCAA -CCAACAGAAACGTTTCGGGAGGAA -CCAACAGAAACGTTTCGGCAGGTA -CCAACAGAAACGTTTCGGGACTCT -CCAACAGAAACGTTTCGGAGTCCT -CCAACAGAAACGTTTCGGTAAGCC -CCAACAGAAACGTTTCGGATAGCC -CCAACAGAAACGTTTCGGTAACCG -CCAACAGAAACGTTTCGGATGCCA -CCAACAGAAACGGTTGTGGGAAAC -CCAACAGAAACGGTTGTGAACACC -CCAACAGAAACGGTTGTGATCGAG -CCAACAGAAACGGTTGTGCTCCTT -CCAACAGAAACGGTTGTGCCTGTT -CCAACAGAAACGGTTGTGCGGTTT -CCAACAGAAACGGTTGTGGTGGTT -CCAACAGAAACGGTTGTGGCCTTT -CCAACAGAAACGGTTGTGGGTCTT -CCAACAGAAACGGTTGTGACGCTT -CCAACAGAAACGGTTGTGAGCGTT -CCAACAGAAACGGTTGTGTTCGTC -CCAACAGAAACGGTTGTGTCTCTC -CCAACAGAAACGGTTGTGTGGATC -CCAACAGAAACGGTTGTGCACTTC -CCAACAGAAACGGTTGTGGTACTC -CCAACAGAAACGGTTGTGGATGTC -CCAACAGAAACGGTTGTGACAGTC -CCAACAGAAACGGTTGTGTTGCTG -CCAACAGAAACGGTTGTGTCCATG -CCAACAGAAACGGTTGTGTGTGTG -CCAACAGAAACGGTTGTGCTAGTG -CCAACAGAAACGGTTGTGCATCTG -CCAACAGAAACGGTTGTGGAGTTG -CCAACAGAAACGGTTGTGAGACTG -CCAACAGAAACGGTTGTGTCGGTA -CCAACAGAAACGGTTGTGTGCCTA -CCAACAGAAACGGTTGTGCCACTA -CCAACAGAAACGGTTGTGGGAGTA -CCAACAGAAACGGTTGTGTCGTCT -CCAACAGAAACGGTTGTGTGCACT -CCAACAGAAACGGTTGTGCTGACT -CCAACAGAAACGGTTGTGCAACCT -CCAACAGAAACGGTTGTGGCTACT -CCAACAGAAACGGTTGTGGGATCT -CCAACAGAAACGGTTGTGAAGGCT -CCAACAGAAACGGTTGTGTCAACC -CCAACAGAAACGGTTGTGTGTTCC -CCAACAGAAACGGTTGTGATTCCC -CCAACAGAAACGGTTGTGTTCTCG -CCAACAGAAACGGTTGTGTAGACG -CCAACAGAAACGGTTGTGGTAACG -CCAACAGAAACGGTTGTGACTTCG -CCAACAGAAACGGTTGTGTACGCA -CCAACAGAAACGGTTGTGCTTGCA -CCAACAGAAACGGTTGTGCGAACA -CCAACAGAAACGGTTGTGCAGTCA -CCAACAGAAACGGTTGTGGATCCA -CCAACAGAAACGGTTGTGACGACA -CCAACAGAAACGGTTGTGAGCTCA -CCAACAGAAACGGTTGTGTCACGT -CCAACAGAAACGGTTGTGCGTAGT -CCAACAGAAACGGTTGTGGTCAGT -CCAACAGAAACGGTTGTGGAAGGT -CCAACAGAAACGGTTGTGAACCGT -CCAACAGAAACGGTTGTGTTGTGC -CCAACAGAAACGGTTGTGCTAAGC -CCAACAGAAACGGTTGTGACTAGC -CCAACAGAAACGGTTGTGAGATGC -CCAACAGAAACGGTTGTGTGAAGG -CCAACAGAAACGGTTGTGCAATGG -CCAACAGAAACGGTTGTGATGAGG -CCAACAGAAACGGTTGTGAATGGG -CCAACAGAAACGGTTGTGTCCTGA -CCAACAGAAACGGTTGTGTAGCGA -CCAACAGAAACGGTTGTGCACAGA -CCAACAGAAACGGTTGTGGCAAGA -CCAACAGAAACGGTTGTGGGTTGA -CCAACAGAAACGGTTGTGTCCGAT -CCAACAGAAACGGTTGTGTGGCAT -CCAACAGAAACGGTTGTGCGAGAT -CCAACAGAAACGGTTGTGTACCAC -CCAACAGAAACGGTTGTGCAGAAC -CCAACAGAAACGGTTGTGGTCTAC -CCAACAGAAACGGTTGTGACGTAC -CCAACAGAAACGGTTGTGAGTGAC -CCAACAGAAACGGTTGTGCTGTAG -CCAACAGAAACGGTTGTGCCTAAG -CCAACAGAAACGGTTGTGGTTCAG -CCAACAGAAACGGTTGTGGCATAG -CCAACAGAAACGGTTGTGGACAAG -CCAACAGAAACGGTTGTGAAGCAG -CCAACAGAAACGGTTGTGCGTCAA -CCAACAGAAACGGTTGTGGCTGAA -CCAACAGAAACGGTTGTGAGTACG -CCAACAGAAACGGTTGTGATCCGA -CCAACAGAAACGGTTGTGATGGGA -CCAACAGAAACGGTTGTGGTGCAA -CCAACAGAAACGGTTGTGGAGGAA -CCAACAGAAACGGTTGTGCAGGTA -CCAACAGAAACGGTTGTGGACTCT -CCAACAGAAACGGTTGTGAGTCCT -CCAACAGAAACGGTTGTGTAAGCC -CCAACAGAAACGGTTGTGATAGCC -CCAACAGAAACGGTTGTGTAACCG -CCAACAGAAACGGTTGTGATGCCA -CCAACAGAAACGTTTGCCGGAAAC -CCAACAGAAACGTTTGCCAACACC -CCAACAGAAACGTTTGCCATCGAG -CCAACAGAAACGTTTGCCCTCCTT -CCAACAGAAACGTTTGCCCCTGTT -CCAACAGAAACGTTTGCCCGGTTT -CCAACAGAAACGTTTGCCGTGGTT -CCAACAGAAACGTTTGCCGCCTTT -CCAACAGAAACGTTTGCCGGTCTT -CCAACAGAAACGTTTGCCACGCTT -CCAACAGAAACGTTTGCCAGCGTT -CCAACAGAAACGTTTGCCTTCGTC -CCAACAGAAACGTTTGCCTCTCTC -CCAACAGAAACGTTTGCCTGGATC -CCAACAGAAACGTTTGCCCACTTC -CCAACAGAAACGTTTGCCGTACTC -CCAACAGAAACGTTTGCCGATGTC -CCAACAGAAACGTTTGCCACAGTC -CCAACAGAAACGTTTGCCTTGCTG -CCAACAGAAACGTTTGCCTCCATG -CCAACAGAAACGTTTGCCTGTGTG -CCAACAGAAACGTTTGCCCTAGTG -CCAACAGAAACGTTTGCCCATCTG -CCAACAGAAACGTTTGCCGAGTTG -CCAACAGAAACGTTTGCCAGACTG -CCAACAGAAACGTTTGCCTCGGTA -CCAACAGAAACGTTTGCCTGCCTA -CCAACAGAAACGTTTGCCCCACTA -CCAACAGAAACGTTTGCCGGAGTA -CCAACAGAAACGTTTGCCTCGTCT -CCAACAGAAACGTTTGCCTGCACT -CCAACAGAAACGTTTGCCCTGACT -CCAACAGAAACGTTTGCCCAACCT -CCAACAGAAACGTTTGCCGCTACT -CCAACAGAAACGTTTGCCGGATCT -CCAACAGAAACGTTTGCCAAGGCT -CCAACAGAAACGTTTGCCTCAACC -CCAACAGAAACGTTTGCCTGTTCC -CCAACAGAAACGTTTGCCATTCCC -CCAACAGAAACGTTTGCCTTCTCG -CCAACAGAAACGTTTGCCTAGACG -CCAACAGAAACGTTTGCCGTAACG -CCAACAGAAACGTTTGCCACTTCG -CCAACAGAAACGTTTGCCTACGCA -CCAACAGAAACGTTTGCCCTTGCA -CCAACAGAAACGTTTGCCCGAACA -CCAACAGAAACGTTTGCCCAGTCA -CCAACAGAAACGTTTGCCGATCCA -CCAACAGAAACGTTTGCCACGACA -CCAACAGAAACGTTTGCCAGCTCA -CCAACAGAAACGTTTGCCTCACGT -CCAACAGAAACGTTTGCCCGTAGT -CCAACAGAAACGTTTGCCGTCAGT -CCAACAGAAACGTTTGCCGAAGGT -CCAACAGAAACGTTTGCCAACCGT -CCAACAGAAACGTTTGCCTTGTGC -CCAACAGAAACGTTTGCCCTAAGC -CCAACAGAAACGTTTGCCACTAGC -CCAACAGAAACGTTTGCCAGATGC -CCAACAGAAACGTTTGCCTGAAGG -CCAACAGAAACGTTTGCCCAATGG -CCAACAGAAACGTTTGCCATGAGG -CCAACAGAAACGTTTGCCAATGGG -CCAACAGAAACGTTTGCCTCCTGA -CCAACAGAAACGTTTGCCTAGCGA -CCAACAGAAACGTTTGCCCACAGA -CCAACAGAAACGTTTGCCGCAAGA -CCAACAGAAACGTTTGCCGGTTGA -CCAACAGAAACGTTTGCCTCCGAT -CCAACAGAAACGTTTGCCTGGCAT -CCAACAGAAACGTTTGCCCGAGAT -CCAACAGAAACGTTTGCCTACCAC -CCAACAGAAACGTTTGCCCAGAAC -CCAACAGAAACGTTTGCCGTCTAC -CCAACAGAAACGTTTGCCACGTAC -CCAACAGAAACGTTTGCCAGTGAC -CCAACAGAAACGTTTGCCCTGTAG -CCAACAGAAACGTTTGCCCCTAAG -CCAACAGAAACGTTTGCCGTTCAG -CCAACAGAAACGTTTGCCGCATAG -CCAACAGAAACGTTTGCCGACAAG -CCAACAGAAACGTTTGCCAAGCAG -CCAACAGAAACGTTTGCCCGTCAA -CCAACAGAAACGTTTGCCGCTGAA -CCAACAGAAACGTTTGCCAGTACG -CCAACAGAAACGTTTGCCATCCGA -CCAACAGAAACGTTTGCCATGGGA -CCAACAGAAACGTTTGCCGTGCAA -CCAACAGAAACGTTTGCCGAGGAA -CCAACAGAAACGTTTGCCCAGGTA -CCAACAGAAACGTTTGCCGACTCT -CCAACAGAAACGTTTGCCAGTCCT -CCAACAGAAACGTTTGCCTAAGCC -CCAACAGAAACGTTTGCCATAGCC -CCAACAGAAACGTTTGCCTAACCG -CCAACAGAAACGTTTGCCATGCCA -CCAACAGAAACGCTTGGTGGAAAC -CCAACAGAAACGCTTGGTAACACC -CCAACAGAAACGCTTGGTATCGAG -CCAACAGAAACGCTTGGTCTCCTT -CCAACAGAAACGCTTGGTCCTGTT -CCAACAGAAACGCTTGGTCGGTTT -CCAACAGAAACGCTTGGTGTGGTT -CCAACAGAAACGCTTGGTGCCTTT -CCAACAGAAACGCTTGGTGGTCTT -CCAACAGAAACGCTTGGTACGCTT -CCAACAGAAACGCTTGGTAGCGTT -CCAACAGAAACGCTTGGTTTCGTC -CCAACAGAAACGCTTGGTTCTCTC -CCAACAGAAACGCTTGGTTGGATC -CCAACAGAAACGCTTGGTCACTTC -CCAACAGAAACGCTTGGTGTACTC -CCAACAGAAACGCTTGGTGATGTC -CCAACAGAAACGCTTGGTACAGTC -CCAACAGAAACGCTTGGTTTGCTG -CCAACAGAAACGCTTGGTTCCATG -CCAACAGAAACGCTTGGTTGTGTG -CCAACAGAAACGCTTGGTCTAGTG -CCAACAGAAACGCTTGGTCATCTG -CCAACAGAAACGCTTGGTGAGTTG -CCAACAGAAACGCTTGGTAGACTG -CCAACAGAAACGCTTGGTTCGGTA -CCAACAGAAACGCTTGGTTGCCTA -CCAACAGAAACGCTTGGTCCACTA -CCAACAGAAACGCTTGGTGGAGTA -CCAACAGAAACGCTTGGTTCGTCT -CCAACAGAAACGCTTGGTTGCACT -CCAACAGAAACGCTTGGTCTGACT -CCAACAGAAACGCTTGGTCAACCT -CCAACAGAAACGCTTGGTGCTACT -CCAACAGAAACGCTTGGTGGATCT -CCAACAGAAACGCTTGGTAAGGCT -CCAACAGAAACGCTTGGTTCAACC -CCAACAGAAACGCTTGGTTGTTCC -CCAACAGAAACGCTTGGTATTCCC -CCAACAGAAACGCTTGGTTTCTCG -CCAACAGAAACGCTTGGTTAGACG -CCAACAGAAACGCTTGGTGTAACG -CCAACAGAAACGCTTGGTACTTCG -CCAACAGAAACGCTTGGTTACGCA -CCAACAGAAACGCTTGGTCTTGCA -CCAACAGAAACGCTTGGTCGAACA -CCAACAGAAACGCTTGGTCAGTCA -CCAACAGAAACGCTTGGTGATCCA -CCAACAGAAACGCTTGGTACGACA -CCAACAGAAACGCTTGGTAGCTCA -CCAACAGAAACGCTTGGTTCACGT -CCAACAGAAACGCTTGGTCGTAGT -CCAACAGAAACGCTTGGTGTCAGT -CCAACAGAAACGCTTGGTGAAGGT -CCAACAGAAACGCTTGGTAACCGT -CCAACAGAAACGCTTGGTTTGTGC -CCAACAGAAACGCTTGGTCTAAGC -CCAACAGAAACGCTTGGTACTAGC -CCAACAGAAACGCTTGGTAGATGC -CCAACAGAAACGCTTGGTTGAAGG -CCAACAGAAACGCTTGGTCAATGG -CCAACAGAAACGCTTGGTATGAGG -CCAACAGAAACGCTTGGTAATGGG -CCAACAGAAACGCTTGGTTCCTGA -CCAACAGAAACGCTTGGTTAGCGA -CCAACAGAAACGCTTGGTCACAGA -CCAACAGAAACGCTTGGTGCAAGA -CCAACAGAAACGCTTGGTGGTTGA -CCAACAGAAACGCTTGGTTCCGAT -CCAACAGAAACGCTTGGTTGGCAT -CCAACAGAAACGCTTGGTCGAGAT -CCAACAGAAACGCTTGGTTACCAC -CCAACAGAAACGCTTGGTCAGAAC -CCAACAGAAACGCTTGGTGTCTAC -CCAACAGAAACGCTTGGTACGTAC -CCAACAGAAACGCTTGGTAGTGAC -CCAACAGAAACGCTTGGTCTGTAG -CCAACAGAAACGCTTGGTCCTAAG -CCAACAGAAACGCTTGGTGTTCAG -CCAACAGAAACGCTTGGTGCATAG -CCAACAGAAACGCTTGGTGACAAG -CCAACAGAAACGCTTGGTAAGCAG -CCAACAGAAACGCTTGGTCGTCAA -CCAACAGAAACGCTTGGTGCTGAA -CCAACAGAAACGCTTGGTAGTACG -CCAACAGAAACGCTTGGTATCCGA -CCAACAGAAACGCTTGGTATGGGA -CCAACAGAAACGCTTGGTGTGCAA -CCAACAGAAACGCTTGGTGAGGAA -CCAACAGAAACGCTTGGTCAGGTA -CCAACAGAAACGCTTGGTGACTCT -CCAACAGAAACGCTTGGTAGTCCT -CCAACAGAAACGCTTGGTTAAGCC -CCAACAGAAACGCTTGGTATAGCC -CCAACAGAAACGCTTGGTTAACCG -CCAACAGAAACGCTTGGTATGCCA -CCAACAGAAACGCTTACGGGAAAC -CCAACAGAAACGCTTACGAACACC -CCAACAGAAACGCTTACGATCGAG -CCAACAGAAACGCTTACGCTCCTT -CCAACAGAAACGCTTACGCCTGTT -CCAACAGAAACGCTTACGCGGTTT -CCAACAGAAACGCTTACGGTGGTT -CCAACAGAAACGCTTACGGCCTTT -CCAACAGAAACGCTTACGGGTCTT -CCAACAGAAACGCTTACGACGCTT -CCAACAGAAACGCTTACGAGCGTT -CCAACAGAAACGCTTACGTTCGTC -CCAACAGAAACGCTTACGTCTCTC -CCAACAGAAACGCTTACGTGGATC -CCAACAGAAACGCTTACGCACTTC -CCAACAGAAACGCTTACGGTACTC -CCAACAGAAACGCTTACGGATGTC -CCAACAGAAACGCTTACGACAGTC -CCAACAGAAACGCTTACGTTGCTG -CCAACAGAAACGCTTACGTCCATG -CCAACAGAAACGCTTACGTGTGTG -CCAACAGAAACGCTTACGCTAGTG -CCAACAGAAACGCTTACGCATCTG -CCAACAGAAACGCTTACGGAGTTG -CCAACAGAAACGCTTACGAGACTG -CCAACAGAAACGCTTACGTCGGTA -CCAACAGAAACGCTTACGTGCCTA -CCAACAGAAACGCTTACGCCACTA -CCAACAGAAACGCTTACGGGAGTA -CCAACAGAAACGCTTACGTCGTCT -CCAACAGAAACGCTTACGTGCACT -CCAACAGAAACGCTTACGCTGACT -CCAACAGAAACGCTTACGCAACCT -CCAACAGAAACGCTTACGGCTACT -CCAACAGAAACGCTTACGGGATCT -CCAACAGAAACGCTTACGAAGGCT -CCAACAGAAACGCTTACGTCAACC -CCAACAGAAACGCTTACGTGTTCC -CCAACAGAAACGCTTACGATTCCC -CCAACAGAAACGCTTACGTTCTCG -CCAACAGAAACGCTTACGTAGACG -CCAACAGAAACGCTTACGGTAACG -CCAACAGAAACGCTTACGACTTCG -CCAACAGAAACGCTTACGTACGCA -CCAACAGAAACGCTTACGCTTGCA -CCAACAGAAACGCTTACGCGAACA -CCAACAGAAACGCTTACGCAGTCA -CCAACAGAAACGCTTACGGATCCA -CCAACAGAAACGCTTACGACGACA -CCAACAGAAACGCTTACGAGCTCA -CCAACAGAAACGCTTACGTCACGT -CCAACAGAAACGCTTACGCGTAGT -CCAACAGAAACGCTTACGGTCAGT -CCAACAGAAACGCTTACGGAAGGT -CCAACAGAAACGCTTACGAACCGT -CCAACAGAAACGCTTACGTTGTGC -CCAACAGAAACGCTTACGCTAAGC -CCAACAGAAACGCTTACGACTAGC -CCAACAGAAACGCTTACGAGATGC -CCAACAGAAACGCTTACGTGAAGG -CCAACAGAAACGCTTACGCAATGG -CCAACAGAAACGCTTACGATGAGG -CCAACAGAAACGCTTACGAATGGG -CCAACAGAAACGCTTACGTCCTGA -CCAACAGAAACGCTTACGTAGCGA -CCAACAGAAACGCTTACGCACAGA -CCAACAGAAACGCTTACGGCAAGA -CCAACAGAAACGCTTACGGGTTGA -CCAACAGAAACGCTTACGTCCGAT -CCAACAGAAACGCTTACGTGGCAT -CCAACAGAAACGCTTACGCGAGAT -CCAACAGAAACGCTTACGTACCAC -CCAACAGAAACGCTTACGCAGAAC -CCAACAGAAACGCTTACGGTCTAC -CCAACAGAAACGCTTACGACGTAC -CCAACAGAAACGCTTACGAGTGAC -CCAACAGAAACGCTTACGCTGTAG -CCAACAGAAACGCTTACGCCTAAG -CCAACAGAAACGCTTACGGTTCAG -CCAACAGAAACGCTTACGGCATAG -CCAACAGAAACGCTTACGGACAAG -CCAACAGAAACGCTTACGAAGCAG -CCAACAGAAACGCTTACGCGTCAA -CCAACAGAAACGCTTACGGCTGAA -CCAACAGAAACGCTTACGAGTACG -CCAACAGAAACGCTTACGATCCGA -CCAACAGAAACGCTTACGATGGGA -CCAACAGAAACGCTTACGGTGCAA -CCAACAGAAACGCTTACGGAGGAA -CCAACAGAAACGCTTACGCAGGTA -CCAACAGAAACGCTTACGGACTCT -CCAACAGAAACGCTTACGAGTCCT -CCAACAGAAACGCTTACGTAAGCC -CCAACAGAAACGCTTACGATAGCC -CCAACAGAAACGCTTACGTAACCG -CCAACAGAAACGCTTACGATGCCA -CCAACAGAAACGGTTAGCGGAAAC -CCAACAGAAACGGTTAGCAACACC -CCAACAGAAACGGTTAGCATCGAG -CCAACAGAAACGGTTAGCCTCCTT -CCAACAGAAACGGTTAGCCCTGTT -CCAACAGAAACGGTTAGCCGGTTT -CCAACAGAAACGGTTAGCGTGGTT -CCAACAGAAACGGTTAGCGCCTTT -CCAACAGAAACGGTTAGCGGTCTT -CCAACAGAAACGGTTAGCACGCTT -CCAACAGAAACGGTTAGCAGCGTT -CCAACAGAAACGGTTAGCTTCGTC -CCAACAGAAACGGTTAGCTCTCTC -CCAACAGAAACGGTTAGCTGGATC -CCAACAGAAACGGTTAGCCACTTC -CCAACAGAAACGGTTAGCGTACTC -CCAACAGAAACGGTTAGCGATGTC -CCAACAGAAACGGTTAGCACAGTC -CCAACAGAAACGGTTAGCTTGCTG -CCAACAGAAACGGTTAGCTCCATG -CCAACAGAAACGGTTAGCTGTGTG -CCAACAGAAACGGTTAGCCTAGTG -CCAACAGAAACGGTTAGCCATCTG -CCAACAGAAACGGTTAGCGAGTTG -CCAACAGAAACGGTTAGCAGACTG -CCAACAGAAACGGTTAGCTCGGTA -CCAACAGAAACGGTTAGCTGCCTA -CCAACAGAAACGGTTAGCCCACTA -CCAACAGAAACGGTTAGCGGAGTA -CCAACAGAAACGGTTAGCTCGTCT -CCAACAGAAACGGTTAGCTGCACT -CCAACAGAAACGGTTAGCCTGACT -CCAACAGAAACGGTTAGCCAACCT -CCAACAGAAACGGTTAGCGCTACT -CCAACAGAAACGGTTAGCGGATCT -CCAACAGAAACGGTTAGCAAGGCT -CCAACAGAAACGGTTAGCTCAACC -CCAACAGAAACGGTTAGCTGTTCC -CCAACAGAAACGGTTAGCATTCCC -CCAACAGAAACGGTTAGCTTCTCG -CCAACAGAAACGGTTAGCTAGACG -CCAACAGAAACGGTTAGCGTAACG -CCAACAGAAACGGTTAGCACTTCG -CCAACAGAAACGGTTAGCTACGCA -CCAACAGAAACGGTTAGCCTTGCA -CCAACAGAAACGGTTAGCCGAACA -CCAACAGAAACGGTTAGCCAGTCA -CCAACAGAAACGGTTAGCGATCCA -CCAACAGAAACGGTTAGCACGACA -CCAACAGAAACGGTTAGCAGCTCA -CCAACAGAAACGGTTAGCTCACGT -CCAACAGAAACGGTTAGCCGTAGT -CCAACAGAAACGGTTAGCGTCAGT -CCAACAGAAACGGTTAGCGAAGGT -CCAACAGAAACGGTTAGCAACCGT -CCAACAGAAACGGTTAGCTTGTGC -CCAACAGAAACGGTTAGCCTAAGC -CCAACAGAAACGGTTAGCACTAGC -CCAACAGAAACGGTTAGCAGATGC -CCAACAGAAACGGTTAGCTGAAGG -CCAACAGAAACGGTTAGCCAATGG -CCAACAGAAACGGTTAGCATGAGG -CCAACAGAAACGGTTAGCAATGGG -CCAACAGAAACGGTTAGCTCCTGA -CCAACAGAAACGGTTAGCTAGCGA -CCAACAGAAACGGTTAGCCACAGA -CCAACAGAAACGGTTAGCGCAAGA -CCAACAGAAACGGTTAGCGGTTGA -CCAACAGAAACGGTTAGCTCCGAT -CCAACAGAAACGGTTAGCTGGCAT -CCAACAGAAACGGTTAGCCGAGAT -CCAACAGAAACGGTTAGCTACCAC -CCAACAGAAACGGTTAGCCAGAAC -CCAACAGAAACGGTTAGCGTCTAC -CCAACAGAAACGGTTAGCACGTAC -CCAACAGAAACGGTTAGCAGTGAC -CCAACAGAAACGGTTAGCCTGTAG -CCAACAGAAACGGTTAGCCCTAAG -CCAACAGAAACGGTTAGCGTTCAG -CCAACAGAAACGGTTAGCGCATAG -CCAACAGAAACGGTTAGCGACAAG -CCAACAGAAACGGTTAGCAAGCAG -CCAACAGAAACGGTTAGCCGTCAA -CCAACAGAAACGGTTAGCGCTGAA -CCAACAGAAACGGTTAGCAGTACG -CCAACAGAAACGGTTAGCATCCGA -CCAACAGAAACGGTTAGCATGGGA -CCAACAGAAACGGTTAGCGTGCAA -CCAACAGAAACGGTTAGCGAGGAA -CCAACAGAAACGGTTAGCCAGGTA -CCAACAGAAACGGTTAGCGACTCT -CCAACAGAAACGGTTAGCAGTCCT -CCAACAGAAACGGTTAGCTAAGCC -CCAACAGAAACGGTTAGCATAGCC -CCAACAGAAACGGTTAGCTAACCG -CCAACAGAAACGGTTAGCATGCCA -CCAACAGAAACGGTCTTCGGAAAC -CCAACAGAAACGGTCTTCAACACC -CCAACAGAAACGGTCTTCATCGAG -CCAACAGAAACGGTCTTCCTCCTT -CCAACAGAAACGGTCTTCCCTGTT -CCAACAGAAACGGTCTTCCGGTTT -CCAACAGAAACGGTCTTCGTGGTT -CCAACAGAAACGGTCTTCGCCTTT -CCAACAGAAACGGTCTTCGGTCTT -CCAACAGAAACGGTCTTCACGCTT -CCAACAGAAACGGTCTTCAGCGTT -CCAACAGAAACGGTCTTCTTCGTC -CCAACAGAAACGGTCTTCTCTCTC -CCAACAGAAACGGTCTTCTGGATC -CCAACAGAAACGGTCTTCCACTTC -CCAACAGAAACGGTCTTCGTACTC -CCAACAGAAACGGTCTTCGATGTC -CCAACAGAAACGGTCTTCACAGTC -CCAACAGAAACGGTCTTCTTGCTG -CCAACAGAAACGGTCTTCTCCATG -CCAACAGAAACGGTCTTCTGTGTG -CCAACAGAAACGGTCTTCCTAGTG -CCAACAGAAACGGTCTTCCATCTG -CCAACAGAAACGGTCTTCGAGTTG -CCAACAGAAACGGTCTTCAGACTG -CCAACAGAAACGGTCTTCTCGGTA -CCAACAGAAACGGTCTTCTGCCTA -CCAACAGAAACGGTCTTCCCACTA -CCAACAGAAACGGTCTTCGGAGTA -CCAACAGAAACGGTCTTCTCGTCT -CCAACAGAAACGGTCTTCTGCACT -CCAACAGAAACGGTCTTCCTGACT -CCAACAGAAACGGTCTTCCAACCT -CCAACAGAAACGGTCTTCGCTACT -CCAACAGAAACGGTCTTCGGATCT -CCAACAGAAACGGTCTTCAAGGCT -CCAACAGAAACGGTCTTCTCAACC -CCAACAGAAACGGTCTTCTGTTCC -CCAACAGAAACGGTCTTCATTCCC -CCAACAGAAACGGTCTTCTTCTCG -CCAACAGAAACGGTCTTCTAGACG -CCAACAGAAACGGTCTTCGTAACG -CCAACAGAAACGGTCTTCACTTCG -CCAACAGAAACGGTCTTCTACGCA -CCAACAGAAACGGTCTTCCTTGCA -CCAACAGAAACGGTCTTCCGAACA -CCAACAGAAACGGTCTTCCAGTCA -CCAACAGAAACGGTCTTCGATCCA -CCAACAGAAACGGTCTTCACGACA -CCAACAGAAACGGTCTTCAGCTCA -CCAACAGAAACGGTCTTCTCACGT -CCAACAGAAACGGTCTTCCGTAGT -CCAACAGAAACGGTCTTCGTCAGT -CCAACAGAAACGGTCTTCGAAGGT -CCAACAGAAACGGTCTTCAACCGT -CCAACAGAAACGGTCTTCTTGTGC -CCAACAGAAACGGTCTTCCTAAGC -CCAACAGAAACGGTCTTCACTAGC -CCAACAGAAACGGTCTTCAGATGC -CCAACAGAAACGGTCTTCTGAAGG -CCAACAGAAACGGTCTTCCAATGG -CCAACAGAAACGGTCTTCATGAGG -CCAACAGAAACGGTCTTCAATGGG -CCAACAGAAACGGTCTTCTCCTGA -CCAACAGAAACGGTCTTCTAGCGA -CCAACAGAAACGGTCTTCCACAGA -CCAACAGAAACGGTCTTCGCAAGA -CCAACAGAAACGGTCTTCGGTTGA -CCAACAGAAACGGTCTTCTCCGAT -CCAACAGAAACGGTCTTCTGGCAT -CCAACAGAAACGGTCTTCCGAGAT -CCAACAGAAACGGTCTTCTACCAC -CCAACAGAAACGGTCTTCCAGAAC -CCAACAGAAACGGTCTTCGTCTAC -CCAACAGAAACGGTCTTCACGTAC -CCAACAGAAACGGTCTTCAGTGAC -CCAACAGAAACGGTCTTCCTGTAG -CCAACAGAAACGGTCTTCCCTAAG -CCAACAGAAACGGTCTTCGTTCAG -CCAACAGAAACGGTCTTCGCATAG -CCAACAGAAACGGTCTTCGACAAG -CCAACAGAAACGGTCTTCAAGCAG -CCAACAGAAACGGTCTTCCGTCAA -CCAACAGAAACGGTCTTCGCTGAA -CCAACAGAAACGGTCTTCAGTACG -CCAACAGAAACGGTCTTCATCCGA -CCAACAGAAACGGTCTTCATGGGA -CCAACAGAAACGGTCTTCGTGCAA -CCAACAGAAACGGTCTTCGAGGAA -CCAACAGAAACGGTCTTCCAGGTA -CCAACAGAAACGGTCTTCGACTCT -CCAACAGAAACGGTCTTCAGTCCT -CCAACAGAAACGGTCTTCTAAGCC -CCAACAGAAACGGTCTTCATAGCC -CCAACAGAAACGGTCTTCTAACCG -CCAACAGAAACGGTCTTCATGCCA -CCAACAGAAACGCTCTCTGGAAAC -CCAACAGAAACGCTCTCTAACACC -CCAACAGAAACGCTCTCTATCGAG -CCAACAGAAACGCTCTCTCTCCTT -CCAACAGAAACGCTCTCTCCTGTT -CCAACAGAAACGCTCTCTCGGTTT -CCAACAGAAACGCTCTCTGTGGTT -CCAACAGAAACGCTCTCTGCCTTT -CCAACAGAAACGCTCTCTGGTCTT -CCAACAGAAACGCTCTCTACGCTT -CCAACAGAAACGCTCTCTAGCGTT -CCAACAGAAACGCTCTCTTTCGTC -CCAACAGAAACGCTCTCTTCTCTC -CCAACAGAAACGCTCTCTTGGATC -CCAACAGAAACGCTCTCTCACTTC -CCAACAGAAACGCTCTCTGTACTC -CCAACAGAAACGCTCTCTGATGTC -CCAACAGAAACGCTCTCTACAGTC -CCAACAGAAACGCTCTCTTTGCTG -CCAACAGAAACGCTCTCTTCCATG -CCAACAGAAACGCTCTCTTGTGTG -CCAACAGAAACGCTCTCTCTAGTG -CCAACAGAAACGCTCTCTCATCTG -CCAACAGAAACGCTCTCTGAGTTG -CCAACAGAAACGCTCTCTAGACTG -CCAACAGAAACGCTCTCTTCGGTA -CCAACAGAAACGCTCTCTTGCCTA -CCAACAGAAACGCTCTCTCCACTA -CCAACAGAAACGCTCTCTGGAGTA -CCAACAGAAACGCTCTCTTCGTCT -CCAACAGAAACGCTCTCTTGCACT -CCAACAGAAACGCTCTCTCTGACT -CCAACAGAAACGCTCTCTCAACCT -CCAACAGAAACGCTCTCTGCTACT -CCAACAGAAACGCTCTCTGGATCT -CCAACAGAAACGCTCTCTAAGGCT -CCAACAGAAACGCTCTCTTCAACC -CCAACAGAAACGCTCTCTTGTTCC -CCAACAGAAACGCTCTCTATTCCC -CCAACAGAAACGCTCTCTTTCTCG -CCAACAGAAACGCTCTCTTAGACG -CCAACAGAAACGCTCTCTGTAACG -CCAACAGAAACGCTCTCTACTTCG -CCAACAGAAACGCTCTCTTACGCA -CCAACAGAAACGCTCTCTCTTGCA -CCAACAGAAACGCTCTCTCGAACA -CCAACAGAAACGCTCTCTCAGTCA -CCAACAGAAACGCTCTCTGATCCA -CCAACAGAAACGCTCTCTACGACA -CCAACAGAAACGCTCTCTAGCTCA -CCAACAGAAACGCTCTCTTCACGT -CCAACAGAAACGCTCTCTCGTAGT -CCAACAGAAACGCTCTCTGTCAGT -CCAACAGAAACGCTCTCTGAAGGT -CCAACAGAAACGCTCTCTAACCGT -CCAACAGAAACGCTCTCTTTGTGC -CCAACAGAAACGCTCTCTCTAAGC -CCAACAGAAACGCTCTCTACTAGC -CCAACAGAAACGCTCTCTAGATGC -CCAACAGAAACGCTCTCTTGAAGG -CCAACAGAAACGCTCTCTCAATGG -CCAACAGAAACGCTCTCTATGAGG -CCAACAGAAACGCTCTCTAATGGG -CCAACAGAAACGCTCTCTTCCTGA -CCAACAGAAACGCTCTCTTAGCGA -CCAACAGAAACGCTCTCTCACAGA -CCAACAGAAACGCTCTCTGCAAGA -CCAACAGAAACGCTCTCTGGTTGA -CCAACAGAAACGCTCTCTTCCGAT -CCAACAGAAACGCTCTCTTGGCAT -CCAACAGAAACGCTCTCTCGAGAT -CCAACAGAAACGCTCTCTTACCAC -CCAACAGAAACGCTCTCTCAGAAC -CCAACAGAAACGCTCTCTGTCTAC -CCAACAGAAACGCTCTCTACGTAC -CCAACAGAAACGCTCTCTAGTGAC -CCAACAGAAACGCTCTCTCTGTAG -CCAACAGAAACGCTCTCTCCTAAG -CCAACAGAAACGCTCTCTGTTCAG -CCAACAGAAACGCTCTCTGCATAG -CCAACAGAAACGCTCTCTGACAAG -CCAACAGAAACGCTCTCTAAGCAG -CCAACAGAAACGCTCTCTCGTCAA -CCAACAGAAACGCTCTCTGCTGAA -CCAACAGAAACGCTCTCTAGTACG -CCAACAGAAACGCTCTCTATCCGA -CCAACAGAAACGCTCTCTATGGGA -CCAACAGAAACGCTCTCTGTGCAA -CCAACAGAAACGCTCTCTGAGGAA -CCAACAGAAACGCTCTCTCAGGTA -CCAACAGAAACGCTCTCTGACTCT -CCAACAGAAACGCTCTCTAGTCCT -CCAACAGAAACGCTCTCTTAAGCC -CCAACAGAAACGCTCTCTATAGCC -CCAACAGAAACGCTCTCTTAACCG -CCAACAGAAACGCTCTCTATGCCA -CCAACAGAAACGATCTGGGGAAAC -CCAACAGAAACGATCTGGAACACC -CCAACAGAAACGATCTGGATCGAG -CCAACAGAAACGATCTGGCTCCTT -CCAACAGAAACGATCTGGCCTGTT -CCAACAGAAACGATCTGGCGGTTT -CCAACAGAAACGATCTGGGTGGTT -CCAACAGAAACGATCTGGGCCTTT -CCAACAGAAACGATCTGGGGTCTT -CCAACAGAAACGATCTGGACGCTT -CCAACAGAAACGATCTGGAGCGTT -CCAACAGAAACGATCTGGTTCGTC -CCAACAGAAACGATCTGGTCTCTC -CCAACAGAAACGATCTGGTGGATC -CCAACAGAAACGATCTGGCACTTC -CCAACAGAAACGATCTGGGTACTC -CCAACAGAAACGATCTGGGATGTC -CCAACAGAAACGATCTGGACAGTC -CCAACAGAAACGATCTGGTTGCTG -CCAACAGAAACGATCTGGTCCATG -CCAACAGAAACGATCTGGTGTGTG -CCAACAGAAACGATCTGGCTAGTG -CCAACAGAAACGATCTGGCATCTG -CCAACAGAAACGATCTGGGAGTTG -CCAACAGAAACGATCTGGAGACTG -CCAACAGAAACGATCTGGTCGGTA -CCAACAGAAACGATCTGGTGCCTA -CCAACAGAAACGATCTGGCCACTA -CCAACAGAAACGATCTGGGGAGTA -CCAACAGAAACGATCTGGTCGTCT -CCAACAGAAACGATCTGGTGCACT -CCAACAGAAACGATCTGGCTGACT -CCAACAGAAACGATCTGGCAACCT -CCAACAGAAACGATCTGGGCTACT -CCAACAGAAACGATCTGGGGATCT -CCAACAGAAACGATCTGGAAGGCT -CCAACAGAAACGATCTGGTCAACC -CCAACAGAAACGATCTGGTGTTCC -CCAACAGAAACGATCTGGATTCCC -CCAACAGAAACGATCTGGTTCTCG -CCAACAGAAACGATCTGGTAGACG -CCAACAGAAACGATCTGGGTAACG -CCAACAGAAACGATCTGGACTTCG -CCAACAGAAACGATCTGGTACGCA -CCAACAGAAACGATCTGGCTTGCA -CCAACAGAAACGATCTGGCGAACA -CCAACAGAAACGATCTGGCAGTCA -CCAACAGAAACGATCTGGGATCCA -CCAACAGAAACGATCTGGACGACA -CCAACAGAAACGATCTGGAGCTCA -CCAACAGAAACGATCTGGTCACGT -CCAACAGAAACGATCTGGCGTAGT -CCAACAGAAACGATCTGGGTCAGT -CCAACAGAAACGATCTGGGAAGGT -CCAACAGAAACGATCTGGAACCGT -CCAACAGAAACGATCTGGTTGTGC -CCAACAGAAACGATCTGGCTAAGC -CCAACAGAAACGATCTGGACTAGC -CCAACAGAAACGATCTGGAGATGC -CCAACAGAAACGATCTGGTGAAGG -CCAACAGAAACGATCTGGCAATGG -CCAACAGAAACGATCTGGATGAGG -CCAACAGAAACGATCTGGAATGGG -CCAACAGAAACGATCTGGTCCTGA -CCAACAGAAACGATCTGGTAGCGA -CCAACAGAAACGATCTGGCACAGA -CCAACAGAAACGATCTGGGCAAGA -CCAACAGAAACGATCTGGGGTTGA -CCAACAGAAACGATCTGGTCCGAT -CCAACAGAAACGATCTGGTGGCAT -CCAACAGAAACGATCTGGCGAGAT -CCAACAGAAACGATCTGGTACCAC -CCAACAGAAACGATCTGGCAGAAC -CCAACAGAAACGATCTGGGTCTAC -CCAACAGAAACGATCTGGACGTAC -CCAACAGAAACGATCTGGAGTGAC -CCAACAGAAACGATCTGGCTGTAG -CCAACAGAAACGATCTGGCCTAAG -CCAACAGAAACGATCTGGGTTCAG -CCAACAGAAACGATCTGGGCATAG -CCAACAGAAACGATCTGGGACAAG -CCAACAGAAACGATCTGGAAGCAG -CCAACAGAAACGATCTGGCGTCAA -CCAACAGAAACGATCTGGGCTGAA -CCAACAGAAACGATCTGGAGTACG -CCAACAGAAACGATCTGGATCCGA -CCAACAGAAACGATCTGGATGGGA -CCAACAGAAACGATCTGGGTGCAA -CCAACAGAAACGATCTGGGAGGAA -CCAACAGAAACGATCTGGCAGGTA -CCAACAGAAACGATCTGGGACTCT -CCAACAGAAACGATCTGGAGTCCT -CCAACAGAAACGATCTGGTAAGCC -CCAACAGAAACGATCTGGATAGCC -CCAACAGAAACGATCTGGTAACCG -CCAACAGAAACGATCTGGATGCCA -CCAACAGAAACGTTCCACGGAAAC -CCAACAGAAACGTTCCACAACACC -CCAACAGAAACGTTCCACATCGAG -CCAACAGAAACGTTCCACCTCCTT -CCAACAGAAACGTTCCACCCTGTT -CCAACAGAAACGTTCCACCGGTTT -CCAACAGAAACGTTCCACGTGGTT -CCAACAGAAACGTTCCACGCCTTT -CCAACAGAAACGTTCCACGGTCTT -CCAACAGAAACGTTCCACACGCTT -CCAACAGAAACGTTCCACAGCGTT -CCAACAGAAACGTTCCACTTCGTC -CCAACAGAAACGTTCCACTCTCTC -CCAACAGAAACGTTCCACTGGATC -CCAACAGAAACGTTCCACCACTTC -CCAACAGAAACGTTCCACGTACTC -CCAACAGAAACGTTCCACGATGTC -CCAACAGAAACGTTCCACACAGTC -CCAACAGAAACGTTCCACTTGCTG -CCAACAGAAACGTTCCACTCCATG -CCAACAGAAACGTTCCACTGTGTG -CCAACAGAAACGTTCCACCTAGTG -CCAACAGAAACGTTCCACCATCTG -CCAACAGAAACGTTCCACGAGTTG -CCAACAGAAACGTTCCACAGACTG -CCAACAGAAACGTTCCACTCGGTA -CCAACAGAAACGTTCCACTGCCTA -CCAACAGAAACGTTCCACCCACTA -CCAACAGAAACGTTCCACGGAGTA -CCAACAGAAACGTTCCACTCGTCT -CCAACAGAAACGTTCCACTGCACT -CCAACAGAAACGTTCCACCTGACT -CCAACAGAAACGTTCCACCAACCT -CCAACAGAAACGTTCCACGCTACT -CCAACAGAAACGTTCCACGGATCT -CCAACAGAAACGTTCCACAAGGCT -CCAACAGAAACGTTCCACTCAACC -CCAACAGAAACGTTCCACTGTTCC -CCAACAGAAACGTTCCACATTCCC -CCAACAGAAACGTTCCACTTCTCG -CCAACAGAAACGTTCCACTAGACG -CCAACAGAAACGTTCCACGTAACG -CCAACAGAAACGTTCCACACTTCG -CCAACAGAAACGTTCCACTACGCA -CCAACAGAAACGTTCCACCTTGCA -CCAACAGAAACGTTCCACCGAACA -CCAACAGAAACGTTCCACCAGTCA -CCAACAGAAACGTTCCACGATCCA -CCAACAGAAACGTTCCACACGACA -CCAACAGAAACGTTCCACAGCTCA -CCAACAGAAACGTTCCACTCACGT -CCAACAGAAACGTTCCACCGTAGT -CCAACAGAAACGTTCCACGTCAGT -CCAACAGAAACGTTCCACGAAGGT -CCAACAGAAACGTTCCACAACCGT -CCAACAGAAACGTTCCACTTGTGC -CCAACAGAAACGTTCCACCTAAGC -CCAACAGAAACGTTCCACACTAGC -CCAACAGAAACGTTCCACAGATGC -CCAACAGAAACGTTCCACTGAAGG -CCAACAGAAACGTTCCACCAATGG -CCAACAGAAACGTTCCACATGAGG -CCAACAGAAACGTTCCACAATGGG -CCAACAGAAACGTTCCACTCCTGA -CCAACAGAAACGTTCCACTAGCGA -CCAACAGAAACGTTCCACCACAGA -CCAACAGAAACGTTCCACGCAAGA -CCAACAGAAACGTTCCACGGTTGA -CCAACAGAAACGTTCCACTCCGAT -CCAACAGAAACGTTCCACTGGCAT -CCAACAGAAACGTTCCACCGAGAT -CCAACAGAAACGTTCCACTACCAC -CCAACAGAAACGTTCCACCAGAAC -CCAACAGAAACGTTCCACGTCTAC -CCAACAGAAACGTTCCACACGTAC -CCAACAGAAACGTTCCACAGTGAC -CCAACAGAAACGTTCCACCTGTAG -CCAACAGAAACGTTCCACCCTAAG -CCAACAGAAACGTTCCACGTTCAG -CCAACAGAAACGTTCCACGCATAG -CCAACAGAAACGTTCCACGACAAG -CCAACAGAAACGTTCCACAAGCAG -CCAACAGAAACGTTCCACCGTCAA -CCAACAGAAACGTTCCACGCTGAA -CCAACAGAAACGTTCCACAGTACG -CCAACAGAAACGTTCCACATCCGA -CCAACAGAAACGTTCCACATGGGA -CCAACAGAAACGTTCCACGTGCAA -CCAACAGAAACGTTCCACGAGGAA -CCAACAGAAACGTTCCACCAGGTA -CCAACAGAAACGTTCCACGACTCT -CCAACAGAAACGTTCCACAGTCCT -CCAACAGAAACGTTCCACTAAGCC -CCAACAGAAACGTTCCACATAGCC -CCAACAGAAACGTTCCACTAACCG -CCAACAGAAACGTTCCACATGCCA -CCAACAGAAACGCTCGTAGGAAAC -CCAACAGAAACGCTCGTAAACACC -CCAACAGAAACGCTCGTAATCGAG -CCAACAGAAACGCTCGTACTCCTT -CCAACAGAAACGCTCGTACCTGTT -CCAACAGAAACGCTCGTACGGTTT -CCAACAGAAACGCTCGTAGTGGTT -CCAACAGAAACGCTCGTAGCCTTT -CCAACAGAAACGCTCGTAGGTCTT -CCAACAGAAACGCTCGTAACGCTT -CCAACAGAAACGCTCGTAAGCGTT -CCAACAGAAACGCTCGTATTCGTC -CCAACAGAAACGCTCGTATCTCTC -CCAACAGAAACGCTCGTATGGATC -CCAACAGAAACGCTCGTACACTTC -CCAACAGAAACGCTCGTAGTACTC -CCAACAGAAACGCTCGTAGATGTC -CCAACAGAAACGCTCGTAACAGTC -CCAACAGAAACGCTCGTATTGCTG -CCAACAGAAACGCTCGTATCCATG -CCAACAGAAACGCTCGTATGTGTG -CCAACAGAAACGCTCGTACTAGTG -CCAACAGAAACGCTCGTACATCTG -CCAACAGAAACGCTCGTAGAGTTG -CCAACAGAAACGCTCGTAAGACTG -CCAACAGAAACGCTCGTATCGGTA -CCAACAGAAACGCTCGTATGCCTA -CCAACAGAAACGCTCGTACCACTA -CCAACAGAAACGCTCGTAGGAGTA -CCAACAGAAACGCTCGTATCGTCT -CCAACAGAAACGCTCGTATGCACT -CCAACAGAAACGCTCGTACTGACT -CCAACAGAAACGCTCGTACAACCT -CCAACAGAAACGCTCGTAGCTACT -CCAACAGAAACGCTCGTAGGATCT -CCAACAGAAACGCTCGTAAAGGCT -CCAACAGAAACGCTCGTATCAACC -CCAACAGAAACGCTCGTATGTTCC -CCAACAGAAACGCTCGTAATTCCC -CCAACAGAAACGCTCGTATTCTCG -CCAACAGAAACGCTCGTATAGACG -CCAACAGAAACGCTCGTAGTAACG -CCAACAGAAACGCTCGTAACTTCG -CCAACAGAAACGCTCGTATACGCA -CCAACAGAAACGCTCGTACTTGCA -CCAACAGAAACGCTCGTACGAACA -CCAACAGAAACGCTCGTACAGTCA -CCAACAGAAACGCTCGTAGATCCA -CCAACAGAAACGCTCGTAACGACA -CCAACAGAAACGCTCGTAAGCTCA -CCAACAGAAACGCTCGTATCACGT -CCAACAGAAACGCTCGTACGTAGT -CCAACAGAAACGCTCGTAGTCAGT -CCAACAGAAACGCTCGTAGAAGGT -CCAACAGAAACGCTCGTAAACCGT -CCAACAGAAACGCTCGTATTGTGC -CCAACAGAAACGCTCGTACTAAGC -CCAACAGAAACGCTCGTAACTAGC -CCAACAGAAACGCTCGTAAGATGC -CCAACAGAAACGCTCGTATGAAGG -CCAACAGAAACGCTCGTACAATGG -CCAACAGAAACGCTCGTAATGAGG -CCAACAGAAACGCTCGTAAATGGG -CCAACAGAAACGCTCGTATCCTGA -CCAACAGAAACGCTCGTATAGCGA -CCAACAGAAACGCTCGTACACAGA -CCAACAGAAACGCTCGTAGCAAGA -CCAACAGAAACGCTCGTAGGTTGA -CCAACAGAAACGCTCGTATCCGAT -CCAACAGAAACGCTCGTATGGCAT -CCAACAGAAACGCTCGTACGAGAT -CCAACAGAAACGCTCGTATACCAC -CCAACAGAAACGCTCGTACAGAAC -CCAACAGAAACGCTCGTAGTCTAC -CCAACAGAAACGCTCGTAACGTAC -CCAACAGAAACGCTCGTAAGTGAC -CCAACAGAAACGCTCGTACTGTAG -CCAACAGAAACGCTCGTACCTAAG -CCAACAGAAACGCTCGTAGTTCAG -CCAACAGAAACGCTCGTAGCATAG -CCAACAGAAACGCTCGTAGACAAG -CCAACAGAAACGCTCGTAAAGCAG -CCAACAGAAACGCTCGTACGTCAA -CCAACAGAAACGCTCGTAGCTGAA -CCAACAGAAACGCTCGTAAGTACG -CCAACAGAAACGCTCGTAATCCGA -CCAACAGAAACGCTCGTAATGGGA -CCAACAGAAACGCTCGTAGTGCAA -CCAACAGAAACGCTCGTAGAGGAA -CCAACAGAAACGCTCGTACAGGTA -CCAACAGAAACGCTCGTAGACTCT -CCAACAGAAACGCTCGTAAGTCCT -CCAACAGAAACGCTCGTATAAGCC -CCAACAGAAACGCTCGTAATAGCC -CCAACAGAAACGCTCGTATAACCG -CCAACAGAAACGCTCGTAATGCCA -CCAACAGAAACGGTCGATGGAAAC -CCAACAGAAACGGTCGATAACACC -CCAACAGAAACGGTCGATATCGAG -CCAACAGAAACGGTCGATCTCCTT -CCAACAGAAACGGTCGATCCTGTT -CCAACAGAAACGGTCGATCGGTTT -CCAACAGAAACGGTCGATGTGGTT -CCAACAGAAACGGTCGATGCCTTT -CCAACAGAAACGGTCGATGGTCTT -CCAACAGAAACGGTCGATACGCTT -CCAACAGAAACGGTCGATAGCGTT -CCAACAGAAACGGTCGATTTCGTC -CCAACAGAAACGGTCGATTCTCTC -CCAACAGAAACGGTCGATTGGATC -CCAACAGAAACGGTCGATCACTTC -CCAACAGAAACGGTCGATGTACTC -CCAACAGAAACGGTCGATGATGTC -CCAACAGAAACGGTCGATACAGTC -CCAACAGAAACGGTCGATTTGCTG -CCAACAGAAACGGTCGATTCCATG -CCAACAGAAACGGTCGATTGTGTG -CCAACAGAAACGGTCGATCTAGTG -CCAACAGAAACGGTCGATCATCTG -CCAACAGAAACGGTCGATGAGTTG -CCAACAGAAACGGTCGATAGACTG -CCAACAGAAACGGTCGATTCGGTA -CCAACAGAAACGGTCGATTGCCTA -CCAACAGAAACGGTCGATCCACTA -CCAACAGAAACGGTCGATGGAGTA -CCAACAGAAACGGTCGATTCGTCT -CCAACAGAAACGGTCGATTGCACT -CCAACAGAAACGGTCGATCTGACT -CCAACAGAAACGGTCGATCAACCT -CCAACAGAAACGGTCGATGCTACT -CCAACAGAAACGGTCGATGGATCT -CCAACAGAAACGGTCGATAAGGCT -CCAACAGAAACGGTCGATTCAACC -CCAACAGAAACGGTCGATTGTTCC -CCAACAGAAACGGTCGATATTCCC -CCAACAGAAACGGTCGATTTCTCG -CCAACAGAAACGGTCGATTAGACG -CCAACAGAAACGGTCGATGTAACG -CCAACAGAAACGGTCGATACTTCG -CCAACAGAAACGGTCGATTACGCA -CCAACAGAAACGGTCGATCTTGCA -CCAACAGAAACGGTCGATCGAACA -CCAACAGAAACGGTCGATCAGTCA -CCAACAGAAACGGTCGATGATCCA -CCAACAGAAACGGTCGATACGACA -CCAACAGAAACGGTCGATAGCTCA -CCAACAGAAACGGTCGATTCACGT -CCAACAGAAACGGTCGATCGTAGT -CCAACAGAAACGGTCGATGTCAGT -CCAACAGAAACGGTCGATGAAGGT -CCAACAGAAACGGTCGATAACCGT -CCAACAGAAACGGTCGATTTGTGC -CCAACAGAAACGGTCGATCTAAGC -CCAACAGAAACGGTCGATACTAGC -CCAACAGAAACGGTCGATAGATGC -CCAACAGAAACGGTCGATTGAAGG -CCAACAGAAACGGTCGATCAATGG -CCAACAGAAACGGTCGATATGAGG -CCAACAGAAACGGTCGATAATGGG -CCAACAGAAACGGTCGATTCCTGA -CCAACAGAAACGGTCGATTAGCGA -CCAACAGAAACGGTCGATCACAGA -CCAACAGAAACGGTCGATGCAAGA -CCAACAGAAACGGTCGATGGTTGA -CCAACAGAAACGGTCGATTCCGAT -CCAACAGAAACGGTCGATTGGCAT -CCAACAGAAACGGTCGATCGAGAT -CCAACAGAAACGGTCGATTACCAC -CCAACAGAAACGGTCGATCAGAAC -CCAACAGAAACGGTCGATGTCTAC -CCAACAGAAACGGTCGATACGTAC -CCAACAGAAACGGTCGATAGTGAC -CCAACAGAAACGGTCGATCTGTAG -CCAACAGAAACGGTCGATCCTAAG -CCAACAGAAACGGTCGATGTTCAG -CCAACAGAAACGGTCGATGCATAG -CCAACAGAAACGGTCGATGACAAG -CCAACAGAAACGGTCGATAAGCAG -CCAACAGAAACGGTCGATCGTCAA -CCAACAGAAACGGTCGATGCTGAA -CCAACAGAAACGGTCGATAGTACG -CCAACAGAAACGGTCGATATCCGA -CCAACAGAAACGGTCGATATGGGA -CCAACAGAAACGGTCGATGTGCAA -CCAACAGAAACGGTCGATGAGGAA -CCAACAGAAACGGTCGATCAGGTA -CCAACAGAAACGGTCGATGACTCT -CCAACAGAAACGGTCGATAGTCCT -CCAACAGAAACGGTCGATTAAGCC -CCAACAGAAACGGTCGATATAGCC -CCAACAGAAACGGTCGATTAACCG -CCAACAGAAACGGTCGATATGCCA -CCAACAGAAACGGTCACAGGAAAC -CCAACAGAAACGGTCACAAACACC -CCAACAGAAACGGTCACAATCGAG -CCAACAGAAACGGTCACACTCCTT -CCAACAGAAACGGTCACACCTGTT -CCAACAGAAACGGTCACACGGTTT -CCAACAGAAACGGTCACAGTGGTT -CCAACAGAAACGGTCACAGCCTTT -CCAACAGAAACGGTCACAGGTCTT -CCAACAGAAACGGTCACAACGCTT -CCAACAGAAACGGTCACAAGCGTT -CCAACAGAAACGGTCACATTCGTC -CCAACAGAAACGGTCACATCTCTC -CCAACAGAAACGGTCACATGGATC -CCAACAGAAACGGTCACACACTTC -CCAACAGAAACGGTCACAGTACTC -CCAACAGAAACGGTCACAGATGTC -CCAACAGAAACGGTCACAACAGTC -CCAACAGAAACGGTCACATTGCTG -CCAACAGAAACGGTCACATCCATG -CCAACAGAAACGGTCACATGTGTG -CCAACAGAAACGGTCACACTAGTG -CCAACAGAAACGGTCACACATCTG -CCAACAGAAACGGTCACAGAGTTG -CCAACAGAAACGGTCACAAGACTG -CCAACAGAAACGGTCACATCGGTA -CCAACAGAAACGGTCACATGCCTA -CCAACAGAAACGGTCACACCACTA -CCAACAGAAACGGTCACAGGAGTA -CCAACAGAAACGGTCACATCGTCT -CCAACAGAAACGGTCACATGCACT -CCAACAGAAACGGTCACACTGACT -CCAACAGAAACGGTCACACAACCT -CCAACAGAAACGGTCACAGCTACT -CCAACAGAAACGGTCACAGGATCT -CCAACAGAAACGGTCACAAAGGCT -CCAACAGAAACGGTCACATCAACC -CCAACAGAAACGGTCACATGTTCC -CCAACAGAAACGGTCACAATTCCC -CCAACAGAAACGGTCACATTCTCG -CCAACAGAAACGGTCACATAGACG -CCAACAGAAACGGTCACAGTAACG -CCAACAGAAACGGTCACAACTTCG -CCAACAGAAACGGTCACATACGCA -CCAACAGAAACGGTCACACTTGCA -CCAACAGAAACGGTCACACGAACA -CCAACAGAAACGGTCACACAGTCA -CCAACAGAAACGGTCACAGATCCA -CCAACAGAAACGGTCACAACGACA -CCAACAGAAACGGTCACAAGCTCA -CCAACAGAAACGGTCACATCACGT -CCAACAGAAACGGTCACACGTAGT -CCAACAGAAACGGTCACAGTCAGT -CCAACAGAAACGGTCACAGAAGGT -CCAACAGAAACGGTCACAAACCGT -CCAACAGAAACGGTCACATTGTGC -CCAACAGAAACGGTCACACTAAGC -CCAACAGAAACGGTCACAACTAGC -CCAACAGAAACGGTCACAAGATGC -CCAACAGAAACGGTCACATGAAGG -CCAACAGAAACGGTCACACAATGG -CCAACAGAAACGGTCACAATGAGG -CCAACAGAAACGGTCACAAATGGG -CCAACAGAAACGGTCACATCCTGA -CCAACAGAAACGGTCACATAGCGA -CCAACAGAAACGGTCACACACAGA -CCAACAGAAACGGTCACAGCAAGA -CCAACAGAAACGGTCACAGGTTGA -CCAACAGAAACGGTCACATCCGAT -CCAACAGAAACGGTCACATGGCAT -CCAACAGAAACGGTCACACGAGAT -CCAACAGAAACGGTCACATACCAC -CCAACAGAAACGGTCACACAGAAC -CCAACAGAAACGGTCACAGTCTAC -CCAACAGAAACGGTCACAACGTAC -CCAACAGAAACGGTCACAAGTGAC -CCAACAGAAACGGTCACACTGTAG -CCAACAGAAACGGTCACACCTAAG -CCAACAGAAACGGTCACAGTTCAG -CCAACAGAAACGGTCACAGCATAG -CCAACAGAAACGGTCACAGACAAG -CCAACAGAAACGGTCACAAAGCAG -CCAACAGAAACGGTCACACGTCAA -CCAACAGAAACGGTCACAGCTGAA -CCAACAGAAACGGTCACAAGTACG -CCAACAGAAACGGTCACAATCCGA -CCAACAGAAACGGTCACAATGGGA -CCAACAGAAACGGTCACAGTGCAA -CCAACAGAAACGGTCACAGAGGAA -CCAACAGAAACGGTCACACAGGTA -CCAACAGAAACGGTCACAGACTCT -CCAACAGAAACGGTCACAAGTCCT -CCAACAGAAACGGTCACATAAGCC -CCAACAGAAACGGTCACAATAGCC -CCAACAGAAACGGTCACATAACCG -CCAACAGAAACGGTCACAATGCCA -CCAACAGAAACGCTGTTGGGAAAC -CCAACAGAAACGCTGTTGAACACC -CCAACAGAAACGCTGTTGATCGAG -CCAACAGAAACGCTGTTGCTCCTT -CCAACAGAAACGCTGTTGCCTGTT -CCAACAGAAACGCTGTTGCGGTTT -CCAACAGAAACGCTGTTGGTGGTT -CCAACAGAAACGCTGTTGGCCTTT -CCAACAGAAACGCTGTTGGGTCTT -CCAACAGAAACGCTGTTGACGCTT -CCAACAGAAACGCTGTTGAGCGTT -CCAACAGAAACGCTGTTGTTCGTC -CCAACAGAAACGCTGTTGTCTCTC -CCAACAGAAACGCTGTTGTGGATC -CCAACAGAAACGCTGTTGCACTTC -CCAACAGAAACGCTGTTGGTACTC -CCAACAGAAACGCTGTTGGATGTC -CCAACAGAAACGCTGTTGACAGTC -CCAACAGAAACGCTGTTGTTGCTG -CCAACAGAAACGCTGTTGTCCATG -CCAACAGAAACGCTGTTGTGTGTG -CCAACAGAAACGCTGTTGCTAGTG -CCAACAGAAACGCTGTTGCATCTG -CCAACAGAAACGCTGTTGGAGTTG -CCAACAGAAACGCTGTTGAGACTG -CCAACAGAAACGCTGTTGTCGGTA -CCAACAGAAACGCTGTTGTGCCTA -CCAACAGAAACGCTGTTGCCACTA -CCAACAGAAACGCTGTTGGGAGTA -CCAACAGAAACGCTGTTGTCGTCT -CCAACAGAAACGCTGTTGTGCACT -CCAACAGAAACGCTGTTGCTGACT -CCAACAGAAACGCTGTTGCAACCT -CCAACAGAAACGCTGTTGGCTACT -CCAACAGAAACGCTGTTGGGATCT -CCAACAGAAACGCTGTTGAAGGCT -CCAACAGAAACGCTGTTGTCAACC -CCAACAGAAACGCTGTTGTGTTCC -CCAACAGAAACGCTGTTGATTCCC -CCAACAGAAACGCTGTTGTTCTCG -CCAACAGAAACGCTGTTGTAGACG -CCAACAGAAACGCTGTTGGTAACG -CCAACAGAAACGCTGTTGACTTCG -CCAACAGAAACGCTGTTGTACGCA -CCAACAGAAACGCTGTTGCTTGCA -CCAACAGAAACGCTGTTGCGAACA -CCAACAGAAACGCTGTTGCAGTCA -CCAACAGAAACGCTGTTGGATCCA -CCAACAGAAACGCTGTTGACGACA -CCAACAGAAACGCTGTTGAGCTCA -CCAACAGAAACGCTGTTGTCACGT -CCAACAGAAACGCTGTTGCGTAGT -CCAACAGAAACGCTGTTGGTCAGT -CCAACAGAAACGCTGTTGGAAGGT -CCAACAGAAACGCTGTTGAACCGT -CCAACAGAAACGCTGTTGTTGTGC -CCAACAGAAACGCTGTTGCTAAGC -CCAACAGAAACGCTGTTGACTAGC -CCAACAGAAACGCTGTTGAGATGC -CCAACAGAAACGCTGTTGTGAAGG -CCAACAGAAACGCTGTTGCAATGG -CCAACAGAAACGCTGTTGATGAGG -CCAACAGAAACGCTGTTGAATGGG -CCAACAGAAACGCTGTTGTCCTGA -CCAACAGAAACGCTGTTGTAGCGA -CCAACAGAAACGCTGTTGCACAGA -CCAACAGAAACGCTGTTGGCAAGA -CCAACAGAAACGCTGTTGGGTTGA -CCAACAGAAACGCTGTTGTCCGAT -CCAACAGAAACGCTGTTGTGGCAT -CCAACAGAAACGCTGTTGCGAGAT -CCAACAGAAACGCTGTTGTACCAC -CCAACAGAAACGCTGTTGCAGAAC -CCAACAGAAACGCTGTTGGTCTAC -CCAACAGAAACGCTGTTGACGTAC -CCAACAGAAACGCTGTTGAGTGAC -CCAACAGAAACGCTGTTGCTGTAG -CCAACAGAAACGCTGTTGCCTAAG -CCAACAGAAACGCTGTTGGTTCAG -CCAACAGAAACGCTGTTGGCATAG -CCAACAGAAACGCTGTTGGACAAG -CCAACAGAAACGCTGTTGAAGCAG -CCAACAGAAACGCTGTTGCGTCAA -CCAACAGAAACGCTGTTGGCTGAA -CCAACAGAAACGCTGTTGAGTACG -CCAACAGAAACGCTGTTGATCCGA -CCAACAGAAACGCTGTTGATGGGA -CCAACAGAAACGCTGTTGGTGCAA -CCAACAGAAACGCTGTTGGAGGAA -CCAACAGAAACGCTGTTGCAGGTA -CCAACAGAAACGCTGTTGGACTCT -CCAACAGAAACGCTGTTGAGTCCT -CCAACAGAAACGCTGTTGTAAGCC -CCAACAGAAACGCTGTTGATAGCC -CCAACAGAAACGCTGTTGTAACCG -CCAACAGAAACGCTGTTGATGCCA -CCAACAGAAACGATGTCCGGAAAC -CCAACAGAAACGATGTCCAACACC -CCAACAGAAACGATGTCCATCGAG -CCAACAGAAACGATGTCCCTCCTT -CCAACAGAAACGATGTCCCCTGTT -CCAACAGAAACGATGTCCCGGTTT -CCAACAGAAACGATGTCCGTGGTT -CCAACAGAAACGATGTCCGCCTTT -CCAACAGAAACGATGTCCGGTCTT -CCAACAGAAACGATGTCCACGCTT -CCAACAGAAACGATGTCCAGCGTT -CCAACAGAAACGATGTCCTTCGTC -CCAACAGAAACGATGTCCTCTCTC -CCAACAGAAACGATGTCCTGGATC -CCAACAGAAACGATGTCCCACTTC -CCAACAGAAACGATGTCCGTACTC -CCAACAGAAACGATGTCCGATGTC -CCAACAGAAACGATGTCCACAGTC -CCAACAGAAACGATGTCCTTGCTG -CCAACAGAAACGATGTCCTCCATG -CCAACAGAAACGATGTCCTGTGTG -CCAACAGAAACGATGTCCCTAGTG -CCAACAGAAACGATGTCCCATCTG -CCAACAGAAACGATGTCCGAGTTG -CCAACAGAAACGATGTCCAGACTG -CCAACAGAAACGATGTCCTCGGTA -CCAACAGAAACGATGTCCTGCCTA -CCAACAGAAACGATGTCCCCACTA -CCAACAGAAACGATGTCCGGAGTA -CCAACAGAAACGATGTCCTCGTCT -CCAACAGAAACGATGTCCTGCACT -CCAACAGAAACGATGTCCCTGACT -CCAACAGAAACGATGTCCCAACCT -CCAACAGAAACGATGTCCGCTACT -CCAACAGAAACGATGTCCGGATCT -CCAACAGAAACGATGTCCAAGGCT -CCAACAGAAACGATGTCCTCAACC -CCAACAGAAACGATGTCCTGTTCC -CCAACAGAAACGATGTCCATTCCC -CCAACAGAAACGATGTCCTTCTCG -CCAACAGAAACGATGTCCTAGACG -CCAACAGAAACGATGTCCGTAACG -CCAACAGAAACGATGTCCACTTCG -CCAACAGAAACGATGTCCTACGCA -CCAACAGAAACGATGTCCCTTGCA -CCAACAGAAACGATGTCCCGAACA -CCAACAGAAACGATGTCCCAGTCA -CCAACAGAAACGATGTCCGATCCA -CCAACAGAAACGATGTCCACGACA -CCAACAGAAACGATGTCCAGCTCA -CCAACAGAAACGATGTCCTCACGT -CCAACAGAAACGATGTCCCGTAGT -CCAACAGAAACGATGTCCGTCAGT -CCAACAGAAACGATGTCCGAAGGT -CCAACAGAAACGATGTCCAACCGT -CCAACAGAAACGATGTCCTTGTGC -CCAACAGAAACGATGTCCCTAAGC -CCAACAGAAACGATGTCCACTAGC -CCAACAGAAACGATGTCCAGATGC -CCAACAGAAACGATGTCCTGAAGG -CCAACAGAAACGATGTCCCAATGG -CCAACAGAAACGATGTCCATGAGG -CCAACAGAAACGATGTCCAATGGG -CCAACAGAAACGATGTCCTCCTGA -CCAACAGAAACGATGTCCTAGCGA -CCAACAGAAACGATGTCCCACAGA -CCAACAGAAACGATGTCCGCAAGA -CCAACAGAAACGATGTCCGGTTGA -CCAACAGAAACGATGTCCTCCGAT -CCAACAGAAACGATGTCCTGGCAT -CCAACAGAAACGATGTCCCGAGAT -CCAACAGAAACGATGTCCTACCAC -CCAACAGAAACGATGTCCCAGAAC -CCAACAGAAACGATGTCCGTCTAC -CCAACAGAAACGATGTCCACGTAC -CCAACAGAAACGATGTCCAGTGAC -CCAACAGAAACGATGTCCCTGTAG -CCAACAGAAACGATGTCCCCTAAG -CCAACAGAAACGATGTCCGTTCAG -CCAACAGAAACGATGTCCGCATAG -CCAACAGAAACGATGTCCGACAAG -CCAACAGAAACGATGTCCAAGCAG -CCAACAGAAACGATGTCCCGTCAA -CCAACAGAAACGATGTCCGCTGAA -CCAACAGAAACGATGTCCAGTACG -CCAACAGAAACGATGTCCATCCGA -CCAACAGAAACGATGTCCATGGGA -CCAACAGAAACGATGTCCGTGCAA -CCAACAGAAACGATGTCCGAGGAA -CCAACAGAAACGATGTCCCAGGTA -CCAACAGAAACGATGTCCGACTCT -CCAACAGAAACGATGTCCAGTCCT -CCAACAGAAACGATGTCCTAAGCC -CCAACAGAAACGATGTCCATAGCC -CCAACAGAAACGATGTCCTAACCG -CCAACAGAAACGATGTCCATGCCA -CCAACAGAAACGGTGTGTGGAAAC -CCAACAGAAACGGTGTGTAACACC -CCAACAGAAACGGTGTGTATCGAG -CCAACAGAAACGGTGTGTCTCCTT -CCAACAGAAACGGTGTGTCCTGTT -CCAACAGAAACGGTGTGTCGGTTT -CCAACAGAAACGGTGTGTGTGGTT -CCAACAGAAACGGTGTGTGCCTTT -CCAACAGAAACGGTGTGTGGTCTT -CCAACAGAAACGGTGTGTACGCTT -CCAACAGAAACGGTGTGTAGCGTT -CCAACAGAAACGGTGTGTTTCGTC -CCAACAGAAACGGTGTGTTCTCTC -CCAACAGAAACGGTGTGTTGGATC -CCAACAGAAACGGTGTGTCACTTC -CCAACAGAAACGGTGTGTGTACTC -CCAACAGAAACGGTGTGTGATGTC -CCAACAGAAACGGTGTGTACAGTC -CCAACAGAAACGGTGTGTTTGCTG -CCAACAGAAACGGTGTGTTCCATG -CCAACAGAAACGGTGTGTTGTGTG -CCAACAGAAACGGTGTGTCTAGTG -CCAACAGAAACGGTGTGTCATCTG -CCAACAGAAACGGTGTGTGAGTTG -CCAACAGAAACGGTGTGTAGACTG -CCAACAGAAACGGTGTGTTCGGTA -CCAACAGAAACGGTGTGTTGCCTA -CCAACAGAAACGGTGTGTCCACTA -CCAACAGAAACGGTGTGTGGAGTA -CCAACAGAAACGGTGTGTTCGTCT -CCAACAGAAACGGTGTGTTGCACT -CCAACAGAAACGGTGTGTCTGACT -CCAACAGAAACGGTGTGTCAACCT -CCAACAGAAACGGTGTGTGCTACT -CCAACAGAAACGGTGTGTGGATCT -CCAACAGAAACGGTGTGTAAGGCT -CCAACAGAAACGGTGTGTTCAACC -CCAACAGAAACGGTGTGTTGTTCC -CCAACAGAAACGGTGTGTATTCCC -CCAACAGAAACGGTGTGTTTCTCG -CCAACAGAAACGGTGTGTTAGACG -CCAACAGAAACGGTGTGTGTAACG -CCAACAGAAACGGTGTGTACTTCG -CCAACAGAAACGGTGTGTTACGCA -CCAACAGAAACGGTGTGTCTTGCA -CCAACAGAAACGGTGTGTCGAACA -CCAACAGAAACGGTGTGTCAGTCA -CCAACAGAAACGGTGTGTGATCCA -CCAACAGAAACGGTGTGTACGACA -CCAACAGAAACGGTGTGTAGCTCA -CCAACAGAAACGGTGTGTTCACGT -CCAACAGAAACGGTGTGTCGTAGT -CCAACAGAAACGGTGTGTGTCAGT -CCAACAGAAACGGTGTGTGAAGGT -CCAACAGAAACGGTGTGTAACCGT -CCAACAGAAACGGTGTGTTTGTGC -CCAACAGAAACGGTGTGTCTAAGC -CCAACAGAAACGGTGTGTACTAGC -CCAACAGAAACGGTGTGTAGATGC -CCAACAGAAACGGTGTGTTGAAGG -CCAACAGAAACGGTGTGTCAATGG -CCAACAGAAACGGTGTGTATGAGG -CCAACAGAAACGGTGTGTAATGGG -CCAACAGAAACGGTGTGTTCCTGA -CCAACAGAAACGGTGTGTTAGCGA -CCAACAGAAACGGTGTGTCACAGA -CCAACAGAAACGGTGTGTGCAAGA -CCAACAGAAACGGTGTGTGGTTGA -CCAACAGAAACGGTGTGTTCCGAT -CCAACAGAAACGGTGTGTTGGCAT -CCAACAGAAACGGTGTGTCGAGAT -CCAACAGAAACGGTGTGTTACCAC -CCAACAGAAACGGTGTGTCAGAAC -CCAACAGAAACGGTGTGTGTCTAC -CCAACAGAAACGGTGTGTACGTAC -CCAACAGAAACGGTGTGTAGTGAC -CCAACAGAAACGGTGTGTCTGTAG -CCAACAGAAACGGTGTGTCCTAAG -CCAACAGAAACGGTGTGTGTTCAG -CCAACAGAAACGGTGTGTGCATAG -CCAACAGAAACGGTGTGTGACAAG -CCAACAGAAACGGTGTGTAAGCAG -CCAACAGAAACGGTGTGTCGTCAA -CCAACAGAAACGGTGTGTGCTGAA -CCAACAGAAACGGTGTGTAGTACG -CCAACAGAAACGGTGTGTATCCGA -CCAACAGAAACGGTGTGTATGGGA -CCAACAGAAACGGTGTGTGTGCAA -CCAACAGAAACGGTGTGTGAGGAA -CCAACAGAAACGGTGTGTCAGGTA -CCAACAGAAACGGTGTGTGACTCT -CCAACAGAAACGGTGTGTAGTCCT -CCAACAGAAACGGTGTGTTAAGCC -CCAACAGAAACGGTGTGTATAGCC -CCAACAGAAACGGTGTGTTAACCG -CCAACAGAAACGGTGTGTATGCCA -CCAACAGAAACGGTGCTAGGAAAC -CCAACAGAAACGGTGCTAAACACC -CCAACAGAAACGGTGCTAATCGAG -CCAACAGAAACGGTGCTACTCCTT -CCAACAGAAACGGTGCTACCTGTT -CCAACAGAAACGGTGCTACGGTTT -CCAACAGAAACGGTGCTAGTGGTT -CCAACAGAAACGGTGCTAGCCTTT -CCAACAGAAACGGTGCTAGGTCTT -CCAACAGAAACGGTGCTAACGCTT -CCAACAGAAACGGTGCTAAGCGTT -CCAACAGAAACGGTGCTATTCGTC -CCAACAGAAACGGTGCTATCTCTC -CCAACAGAAACGGTGCTATGGATC -CCAACAGAAACGGTGCTACACTTC -CCAACAGAAACGGTGCTAGTACTC -CCAACAGAAACGGTGCTAGATGTC -CCAACAGAAACGGTGCTAACAGTC -CCAACAGAAACGGTGCTATTGCTG -CCAACAGAAACGGTGCTATCCATG -CCAACAGAAACGGTGCTATGTGTG -CCAACAGAAACGGTGCTACTAGTG -CCAACAGAAACGGTGCTACATCTG -CCAACAGAAACGGTGCTAGAGTTG -CCAACAGAAACGGTGCTAAGACTG -CCAACAGAAACGGTGCTATCGGTA -CCAACAGAAACGGTGCTATGCCTA -CCAACAGAAACGGTGCTACCACTA -CCAACAGAAACGGTGCTAGGAGTA -CCAACAGAAACGGTGCTATCGTCT -CCAACAGAAACGGTGCTATGCACT -CCAACAGAAACGGTGCTACTGACT -CCAACAGAAACGGTGCTACAACCT -CCAACAGAAACGGTGCTAGCTACT -CCAACAGAAACGGTGCTAGGATCT -CCAACAGAAACGGTGCTAAAGGCT -CCAACAGAAACGGTGCTATCAACC -CCAACAGAAACGGTGCTATGTTCC -CCAACAGAAACGGTGCTAATTCCC -CCAACAGAAACGGTGCTATTCTCG -CCAACAGAAACGGTGCTATAGACG -CCAACAGAAACGGTGCTAGTAACG -CCAACAGAAACGGTGCTAACTTCG -CCAACAGAAACGGTGCTATACGCA -CCAACAGAAACGGTGCTACTTGCA -CCAACAGAAACGGTGCTACGAACA -CCAACAGAAACGGTGCTACAGTCA -CCAACAGAAACGGTGCTAGATCCA -CCAACAGAAACGGTGCTAACGACA -CCAACAGAAACGGTGCTAAGCTCA -CCAACAGAAACGGTGCTATCACGT -CCAACAGAAACGGTGCTACGTAGT -CCAACAGAAACGGTGCTAGTCAGT -CCAACAGAAACGGTGCTAGAAGGT -CCAACAGAAACGGTGCTAAACCGT -CCAACAGAAACGGTGCTATTGTGC -CCAACAGAAACGGTGCTACTAAGC -CCAACAGAAACGGTGCTAACTAGC -CCAACAGAAACGGTGCTAAGATGC -CCAACAGAAACGGTGCTATGAAGG -CCAACAGAAACGGTGCTACAATGG -CCAACAGAAACGGTGCTAATGAGG -CCAACAGAAACGGTGCTAAATGGG -CCAACAGAAACGGTGCTATCCTGA -CCAACAGAAACGGTGCTATAGCGA -CCAACAGAAACGGTGCTACACAGA -CCAACAGAAACGGTGCTAGCAAGA -CCAACAGAAACGGTGCTAGGTTGA -CCAACAGAAACGGTGCTATCCGAT -CCAACAGAAACGGTGCTATGGCAT -CCAACAGAAACGGTGCTACGAGAT -CCAACAGAAACGGTGCTATACCAC -CCAACAGAAACGGTGCTACAGAAC -CCAACAGAAACGGTGCTAGTCTAC -CCAACAGAAACGGTGCTAACGTAC -CCAACAGAAACGGTGCTAAGTGAC -CCAACAGAAACGGTGCTACTGTAG -CCAACAGAAACGGTGCTACCTAAG -CCAACAGAAACGGTGCTAGTTCAG -CCAACAGAAACGGTGCTAGCATAG -CCAACAGAAACGGTGCTAGACAAG -CCAACAGAAACGGTGCTAAAGCAG -CCAACAGAAACGGTGCTACGTCAA -CCAACAGAAACGGTGCTAGCTGAA -CCAACAGAAACGGTGCTAAGTACG -CCAACAGAAACGGTGCTAATCCGA -CCAACAGAAACGGTGCTAATGGGA -CCAACAGAAACGGTGCTAGTGCAA -CCAACAGAAACGGTGCTAGAGGAA -CCAACAGAAACGGTGCTACAGGTA -CCAACAGAAACGGTGCTAGACTCT -CCAACAGAAACGGTGCTAAGTCCT -CCAACAGAAACGGTGCTATAAGCC -CCAACAGAAACGGTGCTAATAGCC -CCAACAGAAACGGTGCTATAACCG -CCAACAGAAACGGTGCTAATGCCA -CCAACAGAAACGCTGCATGGAAAC -CCAACAGAAACGCTGCATAACACC -CCAACAGAAACGCTGCATATCGAG -CCAACAGAAACGCTGCATCTCCTT -CCAACAGAAACGCTGCATCCTGTT -CCAACAGAAACGCTGCATCGGTTT -CCAACAGAAACGCTGCATGTGGTT -CCAACAGAAACGCTGCATGCCTTT -CCAACAGAAACGCTGCATGGTCTT -CCAACAGAAACGCTGCATACGCTT -CCAACAGAAACGCTGCATAGCGTT -CCAACAGAAACGCTGCATTTCGTC -CCAACAGAAACGCTGCATTCTCTC -CCAACAGAAACGCTGCATTGGATC -CCAACAGAAACGCTGCATCACTTC -CCAACAGAAACGCTGCATGTACTC -CCAACAGAAACGCTGCATGATGTC -CCAACAGAAACGCTGCATACAGTC -CCAACAGAAACGCTGCATTTGCTG -CCAACAGAAACGCTGCATTCCATG -CCAACAGAAACGCTGCATTGTGTG -CCAACAGAAACGCTGCATCTAGTG -CCAACAGAAACGCTGCATCATCTG -CCAACAGAAACGCTGCATGAGTTG -CCAACAGAAACGCTGCATAGACTG -CCAACAGAAACGCTGCATTCGGTA -CCAACAGAAACGCTGCATTGCCTA -CCAACAGAAACGCTGCATCCACTA -CCAACAGAAACGCTGCATGGAGTA -CCAACAGAAACGCTGCATTCGTCT -CCAACAGAAACGCTGCATTGCACT -CCAACAGAAACGCTGCATCTGACT -CCAACAGAAACGCTGCATCAACCT -CCAACAGAAACGCTGCATGCTACT -CCAACAGAAACGCTGCATGGATCT -CCAACAGAAACGCTGCATAAGGCT -CCAACAGAAACGCTGCATTCAACC -CCAACAGAAACGCTGCATTGTTCC -CCAACAGAAACGCTGCATATTCCC -CCAACAGAAACGCTGCATTTCTCG -CCAACAGAAACGCTGCATTAGACG -CCAACAGAAACGCTGCATGTAACG -CCAACAGAAACGCTGCATACTTCG -CCAACAGAAACGCTGCATTACGCA -CCAACAGAAACGCTGCATCTTGCA -CCAACAGAAACGCTGCATCGAACA -CCAACAGAAACGCTGCATCAGTCA -CCAACAGAAACGCTGCATGATCCA -CCAACAGAAACGCTGCATACGACA -CCAACAGAAACGCTGCATAGCTCA -CCAACAGAAACGCTGCATTCACGT -CCAACAGAAACGCTGCATCGTAGT -CCAACAGAAACGCTGCATGTCAGT -CCAACAGAAACGCTGCATGAAGGT -CCAACAGAAACGCTGCATAACCGT -CCAACAGAAACGCTGCATTTGTGC -CCAACAGAAACGCTGCATCTAAGC -CCAACAGAAACGCTGCATACTAGC -CCAACAGAAACGCTGCATAGATGC -CCAACAGAAACGCTGCATTGAAGG -CCAACAGAAACGCTGCATCAATGG -CCAACAGAAACGCTGCATATGAGG -CCAACAGAAACGCTGCATAATGGG -CCAACAGAAACGCTGCATTCCTGA -CCAACAGAAACGCTGCATTAGCGA -CCAACAGAAACGCTGCATCACAGA -CCAACAGAAACGCTGCATGCAAGA -CCAACAGAAACGCTGCATGGTTGA -CCAACAGAAACGCTGCATTCCGAT -CCAACAGAAACGCTGCATTGGCAT -CCAACAGAAACGCTGCATCGAGAT -CCAACAGAAACGCTGCATTACCAC -CCAACAGAAACGCTGCATCAGAAC -CCAACAGAAACGCTGCATGTCTAC -CCAACAGAAACGCTGCATACGTAC -CCAACAGAAACGCTGCATAGTGAC -CCAACAGAAACGCTGCATCTGTAG -CCAACAGAAACGCTGCATCCTAAG -CCAACAGAAACGCTGCATGTTCAG -CCAACAGAAACGCTGCATGCATAG -CCAACAGAAACGCTGCATGACAAG -CCAACAGAAACGCTGCATAAGCAG -CCAACAGAAACGCTGCATCGTCAA -CCAACAGAAACGCTGCATGCTGAA -CCAACAGAAACGCTGCATAGTACG -CCAACAGAAACGCTGCATATCCGA -CCAACAGAAACGCTGCATATGGGA -CCAACAGAAACGCTGCATGTGCAA -CCAACAGAAACGCTGCATGAGGAA -CCAACAGAAACGCTGCATCAGGTA -CCAACAGAAACGCTGCATGACTCT -CCAACAGAAACGCTGCATAGTCCT -CCAACAGAAACGCTGCATTAAGCC -CCAACAGAAACGCTGCATATAGCC -CCAACAGAAACGCTGCATTAACCG -CCAACAGAAACGCTGCATATGCCA -CCAACAGAAACGTTGGAGGGAAAC -CCAACAGAAACGTTGGAGAACACC -CCAACAGAAACGTTGGAGATCGAG -CCAACAGAAACGTTGGAGCTCCTT -CCAACAGAAACGTTGGAGCCTGTT -CCAACAGAAACGTTGGAGCGGTTT -CCAACAGAAACGTTGGAGGTGGTT -CCAACAGAAACGTTGGAGGCCTTT -CCAACAGAAACGTTGGAGGGTCTT -CCAACAGAAACGTTGGAGACGCTT -CCAACAGAAACGTTGGAGAGCGTT -CCAACAGAAACGTTGGAGTTCGTC -CCAACAGAAACGTTGGAGTCTCTC -CCAACAGAAACGTTGGAGTGGATC -CCAACAGAAACGTTGGAGCACTTC -CCAACAGAAACGTTGGAGGTACTC -CCAACAGAAACGTTGGAGGATGTC -CCAACAGAAACGTTGGAGACAGTC -CCAACAGAAACGTTGGAGTTGCTG -CCAACAGAAACGTTGGAGTCCATG -CCAACAGAAACGTTGGAGTGTGTG -CCAACAGAAACGTTGGAGCTAGTG -CCAACAGAAACGTTGGAGCATCTG -CCAACAGAAACGTTGGAGGAGTTG -CCAACAGAAACGTTGGAGAGACTG -CCAACAGAAACGTTGGAGTCGGTA -CCAACAGAAACGTTGGAGTGCCTA -CCAACAGAAACGTTGGAGCCACTA -CCAACAGAAACGTTGGAGGGAGTA -CCAACAGAAACGTTGGAGTCGTCT -CCAACAGAAACGTTGGAGTGCACT -CCAACAGAAACGTTGGAGCTGACT -CCAACAGAAACGTTGGAGCAACCT -CCAACAGAAACGTTGGAGGCTACT -CCAACAGAAACGTTGGAGGGATCT -CCAACAGAAACGTTGGAGAAGGCT -CCAACAGAAACGTTGGAGTCAACC -CCAACAGAAACGTTGGAGTGTTCC -CCAACAGAAACGTTGGAGATTCCC -CCAACAGAAACGTTGGAGTTCTCG -CCAACAGAAACGTTGGAGTAGACG -CCAACAGAAACGTTGGAGGTAACG -CCAACAGAAACGTTGGAGACTTCG -CCAACAGAAACGTTGGAGTACGCA -CCAACAGAAACGTTGGAGCTTGCA -CCAACAGAAACGTTGGAGCGAACA -CCAACAGAAACGTTGGAGCAGTCA -CCAACAGAAACGTTGGAGGATCCA -CCAACAGAAACGTTGGAGACGACA -CCAACAGAAACGTTGGAGAGCTCA -CCAACAGAAACGTTGGAGTCACGT -CCAACAGAAACGTTGGAGCGTAGT -CCAACAGAAACGTTGGAGGTCAGT -CCAACAGAAACGTTGGAGGAAGGT -CCAACAGAAACGTTGGAGAACCGT -CCAACAGAAACGTTGGAGTTGTGC -CCAACAGAAACGTTGGAGCTAAGC -CCAACAGAAACGTTGGAGACTAGC -CCAACAGAAACGTTGGAGAGATGC -CCAACAGAAACGTTGGAGTGAAGG -CCAACAGAAACGTTGGAGCAATGG -CCAACAGAAACGTTGGAGATGAGG -CCAACAGAAACGTTGGAGAATGGG -CCAACAGAAACGTTGGAGTCCTGA -CCAACAGAAACGTTGGAGTAGCGA -CCAACAGAAACGTTGGAGCACAGA -CCAACAGAAACGTTGGAGGCAAGA -CCAACAGAAACGTTGGAGGGTTGA -CCAACAGAAACGTTGGAGTCCGAT -CCAACAGAAACGTTGGAGTGGCAT -CCAACAGAAACGTTGGAGCGAGAT -CCAACAGAAACGTTGGAGTACCAC -CCAACAGAAACGTTGGAGCAGAAC -CCAACAGAAACGTTGGAGGTCTAC -CCAACAGAAACGTTGGAGACGTAC -CCAACAGAAACGTTGGAGAGTGAC -CCAACAGAAACGTTGGAGCTGTAG -CCAACAGAAACGTTGGAGCCTAAG -CCAACAGAAACGTTGGAGGTTCAG -CCAACAGAAACGTTGGAGGCATAG -CCAACAGAAACGTTGGAGGACAAG -CCAACAGAAACGTTGGAGAAGCAG -CCAACAGAAACGTTGGAGCGTCAA -CCAACAGAAACGTTGGAGGCTGAA -CCAACAGAAACGTTGGAGAGTACG -CCAACAGAAACGTTGGAGATCCGA -CCAACAGAAACGTTGGAGATGGGA -CCAACAGAAACGTTGGAGGTGCAA -CCAACAGAAACGTTGGAGGAGGAA -CCAACAGAAACGTTGGAGCAGGTA -CCAACAGAAACGTTGGAGGACTCT -CCAACAGAAACGTTGGAGAGTCCT -CCAACAGAAACGTTGGAGTAAGCC -CCAACAGAAACGTTGGAGATAGCC -CCAACAGAAACGTTGGAGTAACCG -CCAACAGAAACGTTGGAGATGCCA -CCAACAGAAACGCTGAGAGGAAAC -CCAACAGAAACGCTGAGAAACACC -CCAACAGAAACGCTGAGAATCGAG -CCAACAGAAACGCTGAGACTCCTT -CCAACAGAAACGCTGAGACCTGTT -CCAACAGAAACGCTGAGACGGTTT -CCAACAGAAACGCTGAGAGTGGTT -CCAACAGAAACGCTGAGAGCCTTT -CCAACAGAAACGCTGAGAGGTCTT -CCAACAGAAACGCTGAGAACGCTT -CCAACAGAAACGCTGAGAAGCGTT -CCAACAGAAACGCTGAGATTCGTC -CCAACAGAAACGCTGAGATCTCTC -CCAACAGAAACGCTGAGATGGATC -CCAACAGAAACGCTGAGACACTTC -CCAACAGAAACGCTGAGAGTACTC -CCAACAGAAACGCTGAGAGATGTC -CCAACAGAAACGCTGAGAACAGTC -CCAACAGAAACGCTGAGATTGCTG -CCAACAGAAACGCTGAGATCCATG -CCAACAGAAACGCTGAGATGTGTG -CCAACAGAAACGCTGAGACTAGTG -CCAACAGAAACGCTGAGACATCTG -CCAACAGAAACGCTGAGAGAGTTG -CCAACAGAAACGCTGAGAAGACTG -CCAACAGAAACGCTGAGATCGGTA -CCAACAGAAACGCTGAGATGCCTA -CCAACAGAAACGCTGAGACCACTA -CCAACAGAAACGCTGAGAGGAGTA -CCAACAGAAACGCTGAGATCGTCT -CCAACAGAAACGCTGAGATGCACT -CCAACAGAAACGCTGAGACTGACT -CCAACAGAAACGCTGAGACAACCT -CCAACAGAAACGCTGAGAGCTACT -CCAACAGAAACGCTGAGAGGATCT -CCAACAGAAACGCTGAGAAAGGCT -CCAACAGAAACGCTGAGATCAACC -CCAACAGAAACGCTGAGATGTTCC -CCAACAGAAACGCTGAGAATTCCC -CCAACAGAAACGCTGAGATTCTCG -CCAACAGAAACGCTGAGATAGACG -CCAACAGAAACGCTGAGAGTAACG -CCAACAGAAACGCTGAGAACTTCG -CCAACAGAAACGCTGAGATACGCA -CCAACAGAAACGCTGAGACTTGCA -CCAACAGAAACGCTGAGACGAACA -CCAACAGAAACGCTGAGACAGTCA -CCAACAGAAACGCTGAGAGATCCA -CCAACAGAAACGCTGAGAACGACA -CCAACAGAAACGCTGAGAAGCTCA -CCAACAGAAACGCTGAGATCACGT -CCAACAGAAACGCTGAGACGTAGT -CCAACAGAAACGCTGAGAGTCAGT -CCAACAGAAACGCTGAGAGAAGGT -CCAACAGAAACGCTGAGAAACCGT -CCAACAGAAACGCTGAGATTGTGC -CCAACAGAAACGCTGAGACTAAGC -CCAACAGAAACGCTGAGAACTAGC -CCAACAGAAACGCTGAGAAGATGC -CCAACAGAAACGCTGAGATGAAGG -CCAACAGAAACGCTGAGACAATGG -CCAACAGAAACGCTGAGAATGAGG -CCAACAGAAACGCTGAGAAATGGG -CCAACAGAAACGCTGAGATCCTGA -CCAACAGAAACGCTGAGATAGCGA -CCAACAGAAACGCTGAGACACAGA -CCAACAGAAACGCTGAGAGCAAGA -CCAACAGAAACGCTGAGAGGTTGA -CCAACAGAAACGCTGAGATCCGAT -CCAACAGAAACGCTGAGATGGCAT -CCAACAGAAACGCTGAGACGAGAT -CCAACAGAAACGCTGAGATACCAC -CCAACAGAAACGCTGAGACAGAAC -CCAACAGAAACGCTGAGAGTCTAC -CCAACAGAAACGCTGAGAACGTAC -CCAACAGAAACGCTGAGAAGTGAC -CCAACAGAAACGCTGAGACTGTAG -CCAACAGAAACGCTGAGACCTAAG -CCAACAGAAACGCTGAGAGTTCAG -CCAACAGAAACGCTGAGAGCATAG -CCAACAGAAACGCTGAGAGACAAG -CCAACAGAAACGCTGAGAAAGCAG -CCAACAGAAACGCTGAGACGTCAA -CCAACAGAAACGCTGAGAGCTGAA -CCAACAGAAACGCTGAGAAGTACG -CCAACAGAAACGCTGAGAATCCGA -CCAACAGAAACGCTGAGAATGGGA -CCAACAGAAACGCTGAGAGTGCAA -CCAACAGAAACGCTGAGAGAGGAA -CCAACAGAAACGCTGAGACAGGTA -CCAACAGAAACGCTGAGAGACTCT -CCAACAGAAACGCTGAGAAGTCCT -CCAACAGAAACGCTGAGATAAGCC -CCAACAGAAACGCTGAGAATAGCC -CCAACAGAAACGCTGAGATAACCG -CCAACAGAAACGCTGAGAATGCCA -CCAACAGAAACGGTATCGGGAAAC -CCAACAGAAACGGTATCGAACACC -CCAACAGAAACGGTATCGATCGAG -CCAACAGAAACGGTATCGCTCCTT -CCAACAGAAACGGTATCGCCTGTT -CCAACAGAAACGGTATCGCGGTTT -CCAACAGAAACGGTATCGGTGGTT -CCAACAGAAACGGTATCGGCCTTT -CCAACAGAAACGGTATCGGGTCTT -CCAACAGAAACGGTATCGACGCTT -CCAACAGAAACGGTATCGAGCGTT -CCAACAGAAACGGTATCGTTCGTC -CCAACAGAAACGGTATCGTCTCTC -CCAACAGAAACGGTATCGTGGATC -CCAACAGAAACGGTATCGCACTTC -CCAACAGAAACGGTATCGGTACTC -CCAACAGAAACGGTATCGGATGTC -CCAACAGAAACGGTATCGACAGTC -CCAACAGAAACGGTATCGTTGCTG -CCAACAGAAACGGTATCGTCCATG -CCAACAGAAACGGTATCGTGTGTG -CCAACAGAAACGGTATCGCTAGTG -CCAACAGAAACGGTATCGCATCTG -CCAACAGAAACGGTATCGGAGTTG -CCAACAGAAACGGTATCGAGACTG -CCAACAGAAACGGTATCGTCGGTA -CCAACAGAAACGGTATCGTGCCTA -CCAACAGAAACGGTATCGCCACTA -CCAACAGAAACGGTATCGGGAGTA -CCAACAGAAACGGTATCGTCGTCT -CCAACAGAAACGGTATCGTGCACT -CCAACAGAAACGGTATCGCTGACT -CCAACAGAAACGGTATCGCAACCT -CCAACAGAAACGGTATCGGCTACT -CCAACAGAAACGGTATCGGGATCT -CCAACAGAAACGGTATCGAAGGCT -CCAACAGAAACGGTATCGTCAACC -CCAACAGAAACGGTATCGTGTTCC -CCAACAGAAACGGTATCGATTCCC -CCAACAGAAACGGTATCGTTCTCG -CCAACAGAAACGGTATCGTAGACG -CCAACAGAAACGGTATCGGTAACG -CCAACAGAAACGGTATCGACTTCG -CCAACAGAAACGGTATCGTACGCA -CCAACAGAAACGGTATCGCTTGCA -CCAACAGAAACGGTATCGCGAACA -CCAACAGAAACGGTATCGCAGTCA -CCAACAGAAACGGTATCGGATCCA -CCAACAGAAACGGTATCGACGACA -CCAACAGAAACGGTATCGAGCTCA -CCAACAGAAACGGTATCGTCACGT -CCAACAGAAACGGTATCGCGTAGT -CCAACAGAAACGGTATCGGTCAGT -CCAACAGAAACGGTATCGGAAGGT -CCAACAGAAACGGTATCGAACCGT -CCAACAGAAACGGTATCGTTGTGC -CCAACAGAAACGGTATCGCTAAGC -CCAACAGAAACGGTATCGACTAGC -CCAACAGAAACGGTATCGAGATGC -CCAACAGAAACGGTATCGTGAAGG -CCAACAGAAACGGTATCGCAATGG -CCAACAGAAACGGTATCGATGAGG -CCAACAGAAACGGTATCGAATGGG -CCAACAGAAACGGTATCGTCCTGA -CCAACAGAAACGGTATCGTAGCGA -CCAACAGAAACGGTATCGCACAGA -CCAACAGAAACGGTATCGGCAAGA -CCAACAGAAACGGTATCGGGTTGA -CCAACAGAAACGGTATCGTCCGAT -CCAACAGAAACGGTATCGTGGCAT -CCAACAGAAACGGTATCGCGAGAT -CCAACAGAAACGGTATCGTACCAC -CCAACAGAAACGGTATCGCAGAAC -CCAACAGAAACGGTATCGGTCTAC -CCAACAGAAACGGTATCGACGTAC -CCAACAGAAACGGTATCGAGTGAC -CCAACAGAAACGGTATCGCTGTAG -CCAACAGAAACGGTATCGCCTAAG -CCAACAGAAACGGTATCGGTTCAG -CCAACAGAAACGGTATCGGCATAG -CCAACAGAAACGGTATCGGACAAG -CCAACAGAAACGGTATCGAAGCAG -CCAACAGAAACGGTATCGCGTCAA -CCAACAGAAACGGTATCGGCTGAA -CCAACAGAAACGGTATCGAGTACG -CCAACAGAAACGGTATCGATCCGA -CCAACAGAAACGGTATCGATGGGA -CCAACAGAAACGGTATCGGTGCAA -CCAACAGAAACGGTATCGGAGGAA -CCAACAGAAACGGTATCGCAGGTA -CCAACAGAAACGGTATCGGACTCT -CCAACAGAAACGGTATCGAGTCCT -CCAACAGAAACGGTATCGTAAGCC -CCAACAGAAACGGTATCGATAGCC -CCAACAGAAACGGTATCGTAACCG -CCAACAGAAACGGTATCGATGCCA -CCAACAGAAACGCTATGCGGAAAC -CCAACAGAAACGCTATGCAACACC -CCAACAGAAACGCTATGCATCGAG -CCAACAGAAACGCTATGCCTCCTT -CCAACAGAAACGCTATGCCCTGTT -CCAACAGAAACGCTATGCCGGTTT -CCAACAGAAACGCTATGCGTGGTT -CCAACAGAAACGCTATGCGCCTTT -CCAACAGAAACGCTATGCGGTCTT -CCAACAGAAACGCTATGCACGCTT -CCAACAGAAACGCTATGCAGCGTT -CCAACAGAAACGCTATGCTTCGTC -CCAACAGAAACGCTATGCTCTCTC -CCAACAGAAACGCTATGCTGGATC -CCAACAGAAACGCTATGCCACTTC -CCAACAGAAACGCTATGCGTACTC -CCAACAGAAACGCTATGCGATGTC -CCAACAGAAACGCTATGCACAGTC -CCAACAGAAACGCTATGCTTGCTG -CCAACAGAAACGCTATGCTCCATG -CCAACAGAAACGCTATGCTGTGTG -CCAACAGAAACGCTATGCCTAGTG -CCAACAGAAACGCTATGCCATCTG -CCAACAGAAACGCTATGCGAGTTG -CCAACAGAAACGCTATGCAGACTG -CCAACAGAAACGCTATGCTCGGTA -CCAACAGAAACGCTATGCTGCCTA -CCAACAGAAACGCTATGCCCACTA -CCAACAGAAACGCTATGCGGAGTA -CCAACAGAAACGCTATGCTCGTCT -CCAACAGAAACGCTATGCTGCACT -CCAACAGAAACGCTATGCCTGACT -CCAACAGAAACGCTATGCCAACCT -CCAACAGAAACGCTATGCGCTACT -CCAACAGAAACGCTATGCGGATCT -CCAACAGAAACGCTATGCAAGGCT -CCAACAGAAACGCTATGCTCAACC -CCAACAGAAACGCTATGCTGTTCC -CCAACAGAAACGCTATGCATTCCC -CCAACAGAAACGCTATGCTTCTCG -CCAACAGAAACGCTATGCTAGACG -CCAACAGAAACGCTATGCGTAACG -CCAACAGAAACGCTATGCACTTCG -CCAACAGAAACGCTATGCTACGCA -CCAACAGAAACGCTATGCCTTGCA -CCAACAGAAACGCTATGCCGAACA -CCAACAGAAACGCTATGCCAGTCA -CCAACAGAAACGCTATGCGATCCA -CCAACAGAAACGCTATGCACGACA -CCAACAGAAACGCTATGCAGCTCA -CCAACAGAAACGCTATGCTCACGT -CCAACAGAAACGCTATGCCGTAGT -CCAACAGAAACGCTATGCGTCAGT -CCAACAGAAACGCTATGCGAAGGT -CCAACAGAAACGCTATGCAACCGT -CCAACAGAAACGCTATGCTTGTGC -CCAACAGAAACGCTATGCCTAAGC -CCAACAGAAACGCTATGCACTAGC -CCAACAGAAACGCTATGCAGATGC -CCAACAGAAACGCTATGCTGAAGG -CCAACAGAAACGCTATGCCAATGG -CCAACAGAAACGCTATGCATGAGG -CCAACAGAAACGCTATGCAATGGG -CCAACAGAAACGCTATGCTCCTGA -CCAACAGAAACGCTATGCTAGCGA -CCAACAGAAACGCTATGCCACAGA -CCAACAGAAACGCTATGCGCAAGA -CCAACAGAAACGCTATGCGGTTGA -CCAACAGAAACGCTATGCTCCGAT -CCAACAGAAACGCTATGCTGGCAT -CCAACAGAAACGCTATGCCGAGAT -CCAACAGAAACGCTATGCTACCAC -CCAACAGAAACGCTATGCCAGAAC -CCAACAGAAACGCTATGCGTCTAC -CCAACAGAAACGCTATGCACGTAC -CCAACAGAAACGCTATGCAGTGAC -CCAACAGAAACGCTATGCCTGTAG -CCAACAGAAACGCTATGCCCTAAG -CCAACAGAAACGCTATGCGTTCAG -CCAACAGAAACGCTATGCGCATAG -CCAACAGAAACGCTATGCGACAAG -CCAACAGAAACGCTATGCAAGCAG -CCAACAGAAACGCTATGCCGTCAA -CCAACAGAAACGCTATGCGCTGAA -CCAACAGAAACGCTATGCAGTACG -CCAACAGAAACGCTATGCATCCGA -CCAACAGAAACGCTATGCATGGGA -CCAACAGAAACGCTATGCGTGCAA -CCAACAGAAACGCTATGCGAGGAA -CCAACAGAAACGCTATGCCAGGTA -CCAACAGAAACGCTATGCGACTCT -CCAACAGAAACGCTATGCAGTCCT -CCAACAGAAACGCTATGCTAAGCC -CCAACAGAAACGCTATGCATAGCC -CCAACAGAAACGCTATGCTAACCG -CCAACAGAAACGCTATGCATGCCA -CCAACAGAAACGCTACCAGGAAAC -CCAACAGAAACGCTACCAAACACC -CCAACAGAAACGCTACCAATCGAG -CCAACAGAAACGCTACCACTCCTT -CCAACAGAAACGCTACCACCTGTT -CCAACAGAAACGCTACCACGGTTT -CCAACAGAAACGCTACCAGTGGTT -CCAACAGAAACGCTACCAGCCTTT -CCAACAGAAACGCTACCAGGTCTT -CCAACAGAAACGCTACCAACGCTT -CCAACAGAAACGCTACCAAGCGTT -CCAACAGAAACGCTACCATTCGTC -CCAACAGAAACGCTACCATCTCTC -CCAACAGAAACGCTACCATGGATC -CCAACAGAAACGCTACCACACTTC -CCAACAGAAACGCTACCAGTACTC -CCAACAGAAACGCTACCAGATGTC -CCAACAGAAACGCTACCAACAGTC -CCAACAGAAACGCTACCATTGCTG -CCAACAGAAACGCTACCATCCATG -CCAACAGAAACGCTACCATGTGTG -CCAACAGAAACGCTACCACTAGTG -CCAACAGAAACGCTACCACATCTG -CCAACAGAAACGCTACCAGAGTTG -CCAACAGAAACGCTACCAAGACTG -CCAACAGAAACGCTACCATCGGTA -CCAACAGAAACGCTACCATGCCTA -CCAACAGAAACGCTACCACCACTA -CCAACAGAAACGCTACCAGGAGTA -CCAACAGAAACGCTACCATCGTCT -CCAACAGAAACGCTACCATGCACT -CCAACAGAAACGCTACCACTGACT -CCAACAGAAACGCTACCACAACCT -CCAACAGAAACGCTACCAGCTACT -CCAACAGAAACGCTACCAGGATCT -CCAACAGAAACGCTACCAAAGGCT -CCAACAGAAACGCTACCATCAACC -CCAACAGAAACGCTACCATGTTCC -CCAACAGAAACGCTACCAATTCCC -CCAACAGAAACGCTACCATTCTCG -CCAACAGAAACGCTACCATAGACG -CCAACAGAAACGCTACCAGTAACG -CCAACAGAAACGCTACCAACTTCG -CCAACAGAAACGCTACCATACGCA -CCAACAGAAACGCTACCACTTGCA -CCAACAGAAACGCTACCACGAACA -CCAACAGAAACGCTACCACAGTCA -CCAACAGAAACGCTACCAGATCCA -CCAACAGAAACGCTACCAACGACA -CCAACAGAAACGCTACCAAGCTCA -CCAACAGAAACGCTACCATCACGT -CCAACAGAAACGCTACCACGTAGT -CCAACAGAAACGCTACCAGTCAGT -CCAACAGAAACGCTACCAGAAGGT -CCAACAGAAACGCTACCAAACCGT -CCAACAGAAACGCTACCATTGTGC -CCAACAGAAACGCTACCACTAAGC -CCAACAGAAACGCTACCAACTAGC -CCAACAGAAACGCTACCAAGATGC -CCAACAGAAACGCTACCATGAAGG -CCAACAGAAACGCTACCACAATGG -CCAACAGAAACGCTACCAATGAGG -CCAACAGAAACGCTACCAAATGGG -CCAACAGAAACGCTACCATCCTGA -CCAACAGAAACGCTACCATAGCGA -CCAACAGAAACGCTACCACACAGA -CCAACAGAAACGCTACCAGCAAGA -CCAACAGAAACGCTACCAGGTTGA -CCAACAGAAACGCTACCATCCGAT -CCAACAGAAACGCTACCATGGCAT -CCAACAGAAACGCTACCACGAGAT -CCAACAGAAACGCTACCATACCAC -CCAACAGAAACGCTACCACAGAAC -CCAACAGAAACGCTACCAGTCTAC -CCAACAGAAACGCTACCAACGTAC -CCAACAGAAACGCTACCAAGTGAC -CCAACAGAAACGCTACCACTGTAG -CCAACAGAAACGCTACCACCTAAG -CCAACAGAAACGCTACCAGTTCAG -CCAACAGAAACGCTACCAGCATAG -CCAACAGAAACGCTACCAGACAAG -CCAACAGAAACGCTACCAAAGCAG -CCAACAGAAACGCTACCACGTCAA -CCAACAGAAACGCTACCAGCTGAA -CCAACAGAAACGCTACCAAGTACG -CCAACAGAAACGCTACCAATCCGA -CCAACAGAAACGCTACCAATGGGA -CCAACAGAAACGCTACCAGTGCAA -CCAACAGAAACGCTACCAGAGGAA -CCAACAGAAACGCTACCACAGGTA -CCAACAGAAACGCTACCAGACTCT -CCAACAGAAACGCTACCAAGTCCT -CCAACAGAAACGCTACCATAAGCC -CCAACAGAAACGCTACCAATAGCC -CCAACAGAAACGCTACCATAACCG -CCAACAGAAACGCTACCAATGCCA -CCAACAGAAACGGTAGGAGGAAAC -CCAACAGAAACGGTAGGAAACACC -CCAACAGAAACGGTAGGAATCGAG -CCAACAGAAACGGTAGGACTCCTT -CCAACAGAAACGGTAGGACCTGTT -CCAACAGAAACGGTAGGACGGTTT -CCAACAGAAACGGTAGGAGTGGTT -CCAACAGAAACGGTAGGAGCCTTT -CCAACAGAAACGGTAGGAGGTCTT -CCAACAGAAACGGTAGGAACGCTT -CCAACAGAAACGGTAGGAAGCGTT -CCAACAGAAACGGTAGGATTCGTC -CCAACAGAAACGGTAGGATCTCTC -CCAACAGAAACGGTAGGATGGATC -CCAACAGAAACGGTAGGACACTTC -CCAACAGAAACGGTAGGAGTACTC -CCAACAGAAACGGTAGGAGATGTC -CCAACAGAAACGGTAGGAACAGTC -CCAACAGAAACGGTAGGATTGCTG -CCAACAGAAACGGTAGGATCCATG -CCAACAGAAACGGTAGGATGTGTG -CCAACAGAAACGGTAGGACTAGTG -CCAACAGAAACGGTAGGACATCTG -CCAACAGAAACGGTAGGAGAGTTG -CCAACAGAAACGGTAGGAAGACTG -CCAACAGAAACGGTAGGATCGGTA -CCAACAGAAACGGTAGGATGCCTA -CCAACAGAAACGGTAGGACCACTA -CCAACAGAAACGGTAGGAGGAGTA -CCAACAGAAACGGTAGGATCGTCT -CCAACAGAAACGGTAGGATGCACT -CCAACAGAAACGGTAGGACTGACT -CCAACAGAAACGGTAGGACAACCT -CCAACAGAAACGGTAGGAGCTACT -CCAACAGAAACGGTAGGAGGATCT -CCAACAGAAACGGTAGGAAAGGCT -CCAACAGAAACGGTAGGATCAACC -CCAACAGAAACGGTAGGATGTTCC -CCAACAGAAACGGTAGGAATTCCC -CCAACAGAAACGGTAGGATTCTCG -CCAACAGAAACGGTAGGATAGACG -CCAACAGAAACGGTAGGAGTAACG -CCAACAGAAACGGTAGGAACTTCG -CCAACAGAAACGGTAGGATACGCA -CCAACAGAAACGGTAGGACTTGCA -CCAACAGAAACGGTAGGACGAACA -CCAACAGAAACGGTAGGACAGTCA -CCAACAGAAACGGTAGGAGATCCA -CCAACAGAAACGGTAGGAACGACA -CCAACAGAAACGGTAGGAAGCTCA -CCAACAGAAACGGTAGGATCACGT -CCAACAGAAACGGTAGGACGTAGT -CCAACAGAAACGGTAGGAGTCAGT -CCAACAGAAACGGTAGGAGAAGGT -CCAACAGAAACGGTAGGAAACCGT -CCAACAGAAACGGTAGGATTGTGC -CCAACAGAAACGGTAGGACTAAGC -CCAACAGAAACGGTAGGAACTAGC -CCAACAGAAACGGTAGGAAGATGC -CCAACAGAAACGGTAGGATGAAGG -CCAACAGAAACGGTAGGACAATGG -CCAACAGAAACGGTAGGAATGAGG -CCAACAGAAACGGTAGGAAATGGG -CCAACAGAAACGGTAGGATCCTGA -CCAACAGAAACGGTAGGATAGCGA -CCAACAGAAACGGTAGGACACAGA -CCAACAGAAACGGTAGGAGCAAGA -CCAACAGAAACGGTAGGAGGTTGA -CCAACAGAAACGGTAGGATCCGAT -CCAACAGAAACGGTAGGATGGCAT -CCAACAGAAACGGTAGGACGAGAT -CCAACAGAAACGGTAGGATACCAC -CCAACAGAAACGGTAGGACAGAAC -CCAACAGAAACGGTAGGAGTCTAC -CCAACAGAAACGGTAGGAACGTAC -CCAACAGAAACGGTAGGAAGTGAC -CCAACAGAAACGGTAGGACTGTAG -CCAACAGAAACGGTAGGACCTAAG -CCAACAGAAACGGTAGGAGTTCAG -CCAACAGAAACGGTAGGAGCATAG -CCAACAGAAACGGTAGGAGACAAG -CCAACAGAAACGGTAGGAAAGCAG -CCAACAGAAACGGTAGGACGTCAA -CCAACAGAAACGGTAGGAGCTGAA -CCAACAGAAACGGTAGGAAGTACG -CCAACAGAAACGGTAGGAATCCGA -CCAACAGAAACGGTAGGAATGGGA -CCAACAGAAACGGTAGGAGTGCAA -CCAACAGAAACGGTAGGAGAGGAA -CCAACAGAAACGGTAGGACAGGTA -CCAACAGAAACGGTAGGAGACTCT -CCAACAGAAACGGTAGGAAGTCCT -CCAACAGAAACGGTAGGATAAGCC -CCAACAGAAACGGTAGGAATAGCC -CCAACAGAAACGGTAGGATAACCG -CCAACAGAAACGGTAGGAATGCCA -CCAACAGAAACGTCTTCGGGAAAC -CCAACAGAAACGTCTTCGAACACC -CCAACAGAAACGTCTTCGATCGAG -CCAACAGAAACGTCTTCGCTCCTT -CCAACAGAAACGTCTTCGCCTGTT -CCAACAGAAACGTCTTCGCGGTTT -CCAACAGAAACGTCTTCGGTGGTT -CCAACAGAAACGTCTTCGGCCTTT -CCAACAGAAACGTCTTCGGGTCTT -CCAACAGAAACGTCTTCGACGCTT -CCAACAGAAACGTCTTCGAGCGTT -CCAACAGAAACGTCTTCGTTCGTC -CCAACAGAAACGTCTTCGTCTCTC -CCAACAGAAACGTCTTCGTGGATC -CCAACAGAAACGTCTTCGCACTTC -CCAACAGAAACGTCTTCGGTACTC -CCAACAGAAACGTCTTCGGATGTC -CCAACAGAAACGTCTTCGACAGTC -CCAACAGAAACGTCTTCGTTGCTG -CCAACAGAAACGTCTTCGTCCATG -CCAACAGAAACGTCTTCGTGTGTG -CCAACAGAAACGTCTTCGCTAGTG -CCAACAGAAACGTCTTCGCATCTG -CCAACAGAAACGTCTTCGGAGTTG -CCAACAGAAACGTCTTCGAGACTG -CCAACAGAAACGTCTTCGTCGGTA -CCAACAGAAACGTCTTCGTGCCTA -CCAACAGAAACGTCTTCGCCACTA -CCAACAGAAACGTCTTCGGGAGTA -CCAACAGAAACGTCTTCGTCGTCT -CCAACAGAAACGTCTTCGTGCACT -CCAACAGAAACGTCTTCGCTGACT -CCAACAGAAACGTCTTCGCAACCT -CCAACAGAAACGTCTTCGGCTACT -CCAACAGAAACGTCTTCGGGATCT -CCAACAGAAACGTCTTCGAAGGCT -CCAACAGAAACGTCTTCGTCAACC -CCAACAGAAACGTCTTCGTGTTCC -CCAACAGAAACGTCTTCGATTCCC -CCAACAGAAACGTCTTCGTTCTCG -CCAACAGAAACGTCTTCGTAGACG -CCAACAGAAACGTCTTCGGTAACG -CCAACAGAAACGTCTTCGACTTCG -CCAACAGAAACGTCTTCGTACGCA -CCAACAGAAACGTCTTCGCTTGCA -CCAACAGAAACGTCTTCGCGAACA -CCAACAGAAACGTCTTCGCAGTCA -CCAACAGAAACGTCTTCGGATCCA -CCAACAGAAACGTCTTCGACGACA -CCAACAGAAACGTCTTCGAGCTCA -CCAACAGAAACGTCTTCGTCACGT -CCAACAGAAACGTCTTCGCGTAGT -CCAACAGAAACGTCTTCGGTCAGT -CCAACAGAAACGTCTTCGGAAGGT -CCAACAGAAACGTCTTCGAACCGT -CCAACAGAAACGTCTTCGTTGTGC -CCAACAGAAACGTCTTCGCTAAGC -CCAACAGAAACGTCTTCGACTAGC -CCAACAGAAACGTCTTCGAGATGC -CCAACAGAAACGTCTTCGTGAAGG -CCAACAGAAACGTCTTCGCAATGG -CCAACAGAAACGTCTTCGATGAGG -CCAACAGAAACGTCTTCGAATGGG -CCAACAGAAACGTCTTCGTCCTGA -CCAACAGAAACGTCTTCGTAGCGA -CCAACAGAAACGTCTTCGCACAGA -CCAACAGAAACGTCTTCGGCAAGA -CCAACAGAAACGTCTTCGGGTTGA -CCAACAGAAACGTCTTCGTCCGAT -CCAACAGAAACGTCTTCGTGGCAT -CCAACAGAAACGTCTTCGCGAGAT -CCAACAGAAACGTCTTCGTACCAC -CCAACAGAAACGTCTTCGCAGAAC -CCAACAGAAACGTCTTCGGTCTAC -CCAACAGAAACGTCTTCGACGTAC -CCAACAGAAACGTCTTCGAGTGAC -CCAACAGAAACGTCTTCGCTGTAG -CCAACAGAAACGTCTTCGCCTAAG -CCAACAGAAACGTCTTCGGTTCAG -CCAACAGAAACGTCTTCGGCATAG -CCAACAGAAACGTCTTCGGACAAG -CCAACAGAAACGTCTTCGAAGCAG -CCAACAGAAACGTCTTCGCGTCAA -CCAACAGAAACGTCTTCGGCTGAA -CCAACAGAAACGTCTTCGAGTACG -CCAACAGAAACGTCTTCGATCCGA -CCAACAGAAACGTCTTCGATGGGA -CCAACAGAAACGTCTTCGGTGCAA -CCAACAGAAACGTCTTCGGAGGAA -CCAACAGAAACGTCTTCGCAGGTA -CCAACAGAAACGTCTTCGGACTCT -CCAACAGAAACGTCTTCGAGTCCT -CCAACAGAAACGTCTTCGTAAGCC -CCAACAGAAACGTCTTCGATAGCC -CCAACAGAAACGTCTTCGTAACCG -CCAACAGAAACGTCTTCGATGCCA -CCAACAGAAACGACTTGCGGAAAC -CCAACAGAAACGACTTGCAACACC -CCAACAGAAACGACTTGCATCGAG -CCAACAGAAACGACTTGCCTCCTT -CCAACAGAAACGACTTGCCCTGTT -CCAACAGAAACGACTTGCCGGTTT -CCAACAGAAACGACTTGCGTGGTT -CCAACAGAAACGACTTGCGCCTTT -CCAACAGAAACGACTTGCGGTCTT -CCAACAGAAACGACTTGCACGCTT -CCAACAGAAACGACTTGCAGCGTT -CCAACAGAAACGACTTGCTTCGTC -CCAACAGAAACGACTTGCTCTCTC -CCAACAGAAACGACTTGCTGGATC -CCAACAGAAACGACTTGCCACTTC -CCAACAGAAACGACTTGCGTACTC -CCAACAGAAACGACTTGCGATGTC -CCAACAGAAACGACTTGCACAGTC -CCAACAGAAACGACTTGCTTGCTG -CCAACAGAAACGACTTGCTCCATG -CCAACAGAAACGACTTGCTGTGTG -CCAACAGAAACGACTTGCCTAGTG -CCAACAGAAACGACTTGCCATCTG -CCAACAGAAACGACTTGCGAGTTG -CCAACAGAAACGACTTGCAGACTG -CCAACAGAAACGACTTGCTCGGTA -CCAACAGAAACGACTTGCTGCCTA -CCAACAGAAACGACTTGCCCACTA -CCAACAGAAACGACTTGCGGAGTA -CCAACAGAAACGACTTGCTCGTCT -CCAACAGAAACGACTTGCTGCACT -CCAACAGAAACGACTTGCCTGACT -CCAACAGAAACGACTTGCCAACCT -CCAACAGAAACGACTTGCGCTACT -CCAACAGAAACGACTTGCGGATCT -CCAACAGAAACGACTTGCAAGGCT -CCAACAGAAACGACTTGCTCAACC -CCAACAGAAACGACTTGCTGTTCC -CCAACAGAAACGACTTGCATTCCC -CCAACAGAAACGACTTGCTTCTCG -CCAACAGAAACGACTTGCTAGACG -CCAACAGAAACGACTTGCGTAACG -CCAACAGAAACGACTTGCACTTCG -CCAACAGAAACGACTTGCTACGCA -CCAACAGAAACGACTTGCCTTGCA -CCAACAGAAACGACTTGCCGAACA -CCAACAGAAACGACTTGCCAGTCA -CCAACAGAAACGACTTGCGATCCA -CCAACAGAAACGACTTGCACGACA -CCAACAGAAACGACTTGCAGCTCA -CCAACAGAAACGACTTGCTCACGT -CCAACAGAAACGACTTGCCGTAGT -CCAACAGAAACGACTTGCGTCAGT -CCAACAGAAACGACTTGCGAAGGT -CCAACAGAAACGACTTGCAACCGT -CCAACAGAAACGACTTGCTTGTGC -CCAACAGAAACGACTTGCCTAAGC -CCAACAGAAACGACTTGCACTAGC -CCAACAGAAACGACTTGCAGATGC -CCAACAGAAACGACTTGCTGAAGG -CCAACAGAAACGACTTGCCAATGG -CCAACAGAAACGACTTGCATGAGG -CCAACAGAAACGACTTGCAATGGG -CCAACAGAAACGACTTGCTCCTGA -CCAACAGAAACGACTTGCTAGCGA -CCAACAGAAACGACTTGCCACAGA -CCAACAGAAACGACTTGCGCAAGA -CCAACAGAAACGACTTGCGGTTGA -CCAACAGAAACGACTTGCTCCGAT -CCAACAGAAACGACTTGCTGGCAT -CCAACAGAAACGACTTGCCGAGAT -CCAACAGAAACGACTTGCTACCAC -CCAACAGAAACGACTTGCCAGAAC -CCAACAGAAACGACTTGCGTCTAC -CCAACAGAAACGACTTGCACGTAC -CCAACAGAAACGACTTGCAGTGAC -CCAACAGAAACGACTTGCCTGTAG -CCAACAGAAACGACTTGCCCTAAG -CCAACAGAAACGACTTGCGTTCAG -CCAACAGAAACGACTTGCGCATAG -CCAACAGAAACGACTTGCGACAAG -CCAACAGAAACGACTTGCAAGCAG -CCAACAGAAACGACTTGCCGTCAA -CCAACAGAAACGACTTGCGCTGAA -CCAACAGAAACGACTTGCAGTACG -CCAACAGAAACGACTTGCATCCGA -CCAACAGAAACGACTTGCATGGGA -CCAACAGAAACGACTTGCGTGCAA -CCAACAGAAACGACTTGCGAGGAA -CCAACAGAAACGACTTGCCAGGTA -CCAACAGAAACGACTTGCGACTCT -CCAACAGAAACGACTTGCAGTCCT -CCAACAGAAACGACTTGCTAAGCC -CCAACAGAAACGACTTGCATAGCC -CCAACAGAAACGACTTGCTAACCG -CCAACAGAAACGACTTGCATGCCA -CCAACAGAAACGACTCTGGGAAAC -CCAACAGAAACGACTCTGAACACC -CCAACAGAAACGACTCTGATCGAG -CCAACAGAAACGACTCTGCTCCTT -CCAACAGAAACGACTCTGCCTGTT -CCAACAGAAACGACTCTGCGGTTT -CCAACAGAAACGACTCTGGTGGTT -CCAACAGAAACGACTCTGGCCTTT -CCAACAGAAACGACTCTGGGTCTT -CCAACAGAAACGACTCTGACGCTT -CCAACAGAAACGACTCTGAGCGTT -CCAACAGAAACGACTCTGTTCGTC -CCAACAGAAACGACTCTGTCTCTC -CCAACAGAAACGACTCTGTGGATC -CCAACAGAAACGACTCTGCACTTC -CCAACAGAAACGACTCTGGTACTC -CCAACAGAAACGACTCTGGATGTC -CCAACAGAAACGACTCTGACAGTC -CCAACAGAAACGACTCTGTTGCTG -CCAACAGAAACGACTCTGTCCATG -CCAACAGAAACGACTCTGTGTGTG -CCAACAGAAACGACTCTGCTAGTG -CCAACAGAAACGACTCTGCATCTG -CCAACAGAAACGACTCTGGAGTTG -CCAACAGAAACGACTCTGAGACTG -CCAACAGAAACGACTCTGTCGGTA -CCAACAGAAACGACTCTGTGCCTA -CCAACAGAAACGACTCTGCCACTA -CCAACAGAAACGACTCTGGGAGTA -CCAACAGAAACGACTCTGTCGTCT -CCAACAGAAACGACTCTGTGCACT -CCAACAGAAACGACTCTGCTGACT -CCAACAGAAACGACTCTGCAACCT -CCAACAGAAACGACTCTGGCTACT -CCAACAGAAACGACTCTGGGATCT -CCAACAGAAACGACTCTGAAGGCT -CCAACAGAAACGACTCTGTCAACC -CCAACAGAAACGACTCTGTGTTCC -CCAACAGAAACGACTCTGATTCCC -CCAACAGAAACGACTCTGTTCTCG -CCAACAGAAACGACTCTGTAGACG -CCAACAGAAACGACTCTGGTAACG -CCAACAGAAACGACTCTGACTTCG -CCAACAGAAACGACTCTGTACGCA -CCAACAGAAACGACTCTGCTTGCA -CCAACAGAAACGACTCTGCGAACA -CCAACAGAAACGACTCTGCAGTCA -CCAACAGAAACGACTCTGGATCCA -CCAACAGAAACGACTCTGACGACA -CCAACAGAAACGACTCTGAGCTCA -CCAACAGAAACGACTCTGTCACGT -CCAACAGAAACGACTCTGCGTAGT -CCAACAGAAACGACTCTGGTCAGT -CCAACAGAAACGACTCTGGAAGGT -CCAACAGAAACGACTCTGAACCGT -CCAACAGAAACGACTCTGTTGTGC -CCAACAGAAACGACTCTGCTAAGC -CCAACAGAAACGACTCTGACTAGC -CCAACAGAAACGACTCTGAGATGC -CCAACAGAAACGACTCTGTGAAGG -CCAACAGAAACGACTCTGCAATGG -CCAACAGAAACGACTCTGATGAGG -CCAACAGAAACGACTCTGAATGGG -CCAACAGAAACGACTCTGTCCTGA -CCAACAGAAACGACTCTGTAGCGA -CCAACAGAAACGACTCTGCACAGA -CCAACAGAAACGACTCTGGCAAGA -CCAACAGAAACGACTCTGGGTTGA -CCAACAGAAACGACTCTGTCCGAT -CCAACAGAAACGACTCTGTGGCAT -CCAACAGAAACGACTCTGCGAGAT -CCAACAGAAACGACTCTGTACCAC -CCAACAGAAACGACTCTGCAGAAC -CCAACAGAAACGACTCTGGTCTAC -CCAACAGAAACGACTCTGACGTAC -CCAACAGAAACGACTCTGAGTGAC -CCAACAGAAACGACTCTGCTGTAG -CCAACAGAAACGACTCTGCCTAAG -CCAACAGAAACGACTCTGGTTCAG -CCAACAGAAACGACTCTGGCATAG -CCAACAGAAACGACTCTGGACAAG -CCAACAGAAACGACTCTGAAGCAG -CCAACAGAAACGACTCTGCGTCAA -CCAACAGAAACGACTCTGGCTGAA -CCAACAGAAACGACTCTGAGTACG -CCAACAGAAACGACTCTGATCCGA -CCAACAGAAACGACTCTGATGGGA -CCAACAGAAACGACTCTGGTGCAA -CCAACAGAAACGACTCTGGAGGAA -CCAACAGAAACGACTCTGCAGGTA -CCAACAGAAACGACTCTGGACTCT -CCAACAGAAACGACTCTGAGTCCT -CCAACAGAAACGACTCTGTAAGCC -CCAACAGAAACGACTCTGATAGCC -CCAACAGAAACGACTCTGTAACCG -CCAACAGAAACGACTCTGATGCCA -CCAACAGAAACGCCTCAAGGAAAC -CCAACAGAAACGCCTCAAAACACC -CCAACAGAAACGCCTCAAATCGAG -CCAACAGAAACGCCTCAACTCCTT -CCAACAGAAACGCCTCAACCTGTT -CCAACAGAAACGCCTCAACGGTTT -CCAACAGAAACGCCTCAAGTGGTT -CCAACAGAAACGCCTCAAGCCTTT -CCAACAGAAACGCCTCAAGGTCTT -CCAACAGAAACGCCTCAAACGCTT -CCAACAGAAACGCCTCAAAGCGTT -CCAACAGAAACGCCTCAATTCGTC -CCAACAGAAACGCCTCAATCTCTC -CCAACAGAAACGCCTCAATGGATC -CCAACAGAAACGCCTCAACACTTC -CCAACAGAAACGCCTCAAGTACTC -CCAACAGAAACGCCTCAAGATGTC -CCAACAGAAACGCCTCAAACAGTC -CCAACAGAAACGCCTCAATTGCTG -CCAACAGAAACGCCTCAATCCATG -CCAACAGAAACGCCTCAATGTGTG -CCAACAGAAACGCCTCAACTAGTG -CCAACAGAAACGCCTCAACATCTG -CCAACAGAAACGCCTCAAGAGTTG -CCAACAGAAACGCCTCAAAGACTG -CCAACAGAAACGCCTCAATCGGTA -CCAACAGAAACGCCTCAATGCCTA -CCAACAGAAACGCCTCAACCACTA -CCAACAGAAACGCCTCAAGGAGTA -CCAACAGAAACGCCTCAATCGTCT -CCAACAGAAACGCCTCAATGCACT -CCAACAGAAACGCCTCAACTGACT -CCAACAGAAACGCCTCAACAACCT -CCAACAGAAACGCCTCAAGCTACT -CCAACAGAAACGCCTCAAGGATCT -CCAACAGAAACGCCTCAAAAGGCT -CCAACAGAAACGCCTCAATCAACC -CCAACAGAAACGCCTCAATGTTCC -CCAACAGAAACGCCTCAAATTCCC -CCAACAGAAACGCCTCAATTCTCG -CCAACAGAAACGCCTCAATAGACG -CCAACAGAAACGCCTCAAGTAACG -CCAACAGAAACGCCTCAAACTTCG -CCAACAGAAACGCCTCAATACGCA -CCAACAGAAACGCCTCAACTTGCA -CCAACAGAAACGCCTCAACGAACA -CCAACAGAAACGCCTCAACAGTCA -CCAACAGAAACGCCTCAAGATCCA -CCAACAGAAACGCCTCAAACGACA -CCAACAGAAACGCCTCAAAGCTCA -CCAACAGAAACGCCTCAATCACGT -CCAACAGAAACGCCTCAACGTAGT -CCAACAGAAACGCCTCAAGTCAGT -CCAACAGAAACGCCTCAAGAAGGT -CCAACAGAAACGCCTCAAAACCGT -CCAACAGAAACGCCTCAATTGTGC -CCAACAGAAACGCCTCAACTAAGC -CCAACAGAAACGCCTCAAACTAGC -CCAACAGAAACGCCTCAAAGATGC -CCAACAGAAACGCCTCAATGAAGG -CCAACAGAAACGCCTCAACAATGG -CCAACAGAAACGCCTCAAATGAGG -CCAACAGAAACGCCTCAAAATGGG -CCAACAGAAACGCCTCAATCCTGA -CCAACAGAAACGCCTCAATAGCGA -CCAACAGAAACGCCTCAACACAGA -CCAACAGAAACGCCTCAAGCAAGA -CCAACAGAAACGCCTCAAGGTTGA -CCAACAGAAACGCCTCAATCCGAT -CCAACAGAAACGCCTCAATGGCAT -CCAACAGAAACGCCTCAACGAGAT -CCAACAGAAACGCCTCAATACCAC -CCAACAGAAACGCCTCAACAGAAC -CCAACAGAAACGCCTCAAGTCTAC -CCAACAGAAACGCCTCAAACGTAC -CCAACAGAAACGCCTCAAAGTGAC -CCAACAGAAACGCCTCAACTGTAG -CCAACAGAAACGCCTCAACCTAAG -CCAACAGAAACGCCTCAAGTTCAG -CCAACAGAAACGCCTCAAGCATAG -CCAACAGAAACGCCTCAAGACAAG -CCAACAGAAACGCCTCAAAAGCAG -CCAACAGAAACGCCTCAACGTCAA -CCAACAGAAACGCCTCAAGCTGAA -CCAACAGAAACGCCTCAAAGTACG -CCAACAGAAACGCCTCAAATCCGA -CCAACAGAAACGCCTCAAATGGGA -CCAACAGAAACGCCTCAAGTGCAA -CCAACAGAAACGCCTCAAGAGGAA -CCAACAGAAACGCCTCAACAGGTA -CCAACAGAAACGCCTCAAGACTCT -CCAACAGAAACGCCTCAAAGTCCT -CCAACAGAAACGCCTCAATAAGCC -CCAACAGAAACGCCTCAAATAGCC -CCAACAGAAACGCCTCAATAACCG -CCAACAGAAACGCCTCAAATGCCA -CCAACAGAAACGACTGCTGGAAAC -CCAACAGAAACGACTGCTAACACC -CCAACAGAAACGACTGCTATCGAG -CCAACAGAAACGACTGCTCTCCTT -CCAACAGAAACGACTGCTCCTGTT -CCAACAGAAACGACTGCTCGGTTT -CCAACAGAAACGACTGCTGTGGTT -CCAACAGAAACGACTGCTGCCTTT -CCAACAGAAACGACTGCTGGTCTT -CCAACAGAAACGACTGCTACGCTT -CCAACAGAAACGACTGCTAGCGTT -CCAACAGAAACGACTGCTTTCGTC -CCAACAGAAACGACTGCTTCTCTC -CCAACAGAAACGACTGCTTGGATC -CCAACAGAAACGACTGCTCACTTC -CCAACAGAAACGACTGCTGTACTC -CCAACAGAAACGACTGCTGATGTC -CCAACAGAAACGACTGCTACAGTC -CCAACAGAAACGACTGCTTTGCTG -CCAACAGAAACGACTGCTTCCATG -CCAACAGAAACGACTGCTTGTGTG -CCAACAGAAACGACTGCTCTAGTG -CCAACAGAAACGACTGCTCATCTG -CCAACAGAAACGACTGCTGAGTTG -CCAACAGAAACGACTGCTAGACTG -CCAACAGAAACGACTGCTTCGGTA -CCAACAGAAACGACTGCTTGCCTA -CCAACAGAAACGACTGCTCCACTA -CCAACAGAAACGACTGCTGGAGTA -CCAACAGAAACGACTGCTTCGTCT -CCAACAGAAACGACTGCTTGCACT -CCAACAGAAACGACTGCTCTGACT -CCAACAGAAACGACTGCTCAACCT -CCAACAGAAACGACTGCTGCTACT -CCAACAGAAACGACTGCTGGATCT -CCAACAGAAACGACTGCTAAGGCT -CCAACAGAAACGACTGCTTCAACC -CCAACAGAAACGACTGCTTGTTCC -CCAACAGAAACGACTGCTATTCCC -CCAACAGAAACGACTGCTTTCTCG -CCAACAGAAACGACTGCTTAGACG -CCAACAGAAACGACTGCTGTAACG -CCAACAGAAACGACTGCTACTTCG -CCAACAGAAACGACTGCTTACGCA -CCAACAGAAACGACTGCTCTTGCA -CCAACAGAAACGACTGCTCGAACA -CCAACAGAAACGACTGCTCAGTCA -CCAACAGAAACGACTGCTGATCCA -CCAACAGAAACGACTGCTACGACA -CCAACAGAAACGACTGCTAGCTCA -CCAACAGAAACGACTGCTTCACGT -CCAACAGAAACGACTGCTCGTAGT -CCAACAGAAACGACTGCTGTCAGT -CCAACAGAAACGACTGCTGAAGGT -CCAACAGAAACGACTGCTAACCGT -CCAACAGAAACGACTGCTTTGTGC -CCAACAGAAACGACTGCTCTAAGC -CCAACAGAAACGACTGCTACTAGC -CCAACAGAAACGACTGCTAGATGC -CCAACAGAAACGACTGCTTGAAGG -CCAACAGAAACGACTGCTCAATGG -CCAACAGAAACGACTGCTATGAGG -CCAACAGAAACGACTGCTAATGGG -CCAACAGAAACGACTGCTTCCTGA -CCAACAGAAACGACTGCTTAGCGA -CCAACAGAAACGACTGCTCACAGA -CCAACAGAAACGACTGCTGCAAGA -CCAACAGAAACGACTGCTGGTTGA -CCAACAGAAACGACTGCTTCCGAT -CCAACAGAAACGACTGCTTGGCAT -CCAACAGAAACGACTGCTCGAGAT -CCAACAGAAACGACTGCTTACCAC -CCAACAGAAACGACTGCTCAGAAC -CCAACAGAAACGACTGCTGTCTAC -CCAACAGAAACGACTGCTACGTAC -CCAACAGAAACGACTGCTAGTGAC -CCAACAGAAACGACTGCTCTGTAG -CCAACAGAAACGACTGCTCCTAAG -CCAACAGAAACGACTGCTGTTCAG -CCAACAGAAACGACTGCTGCATAG -CCAACAGAAACGACTGCTGACAAG -CCAACAGAAACGACTGCTAAGCAG -CCAACAGAAACGACTGCTCGTCAA -CCAACAGAAACGACTGCTGCTGAA -CCAACAGAAACGACTGCTAGTACG -CCAACAGAAACGACTGCTATCCGA -CCAACAGAAACGACTGCTATGGGA -CCAACAGAAACGACTGCTGTGCAA -CCAACAGAAACGACTGCTGAGGAA -CCAACAGAAACGACTGCTCAGGTA -CCAACAGAAACGACTGCTGACTCT -CCAACAGAAACGACTGCTAGTCCT -CCAACAGAAACGACTGCTTAAGCC -CCAACAGAAACGACTGCTATAGCC -CCAACAGAAACGACTGCTTAACCG -CCAACAGAAACGACTGCTATGCCA -CCAACAGAAACGTCTGGAGGAAAC -CCAACAGAAACGTCTGGAAACACC -CCAACAGAAACGTCTGGAATCGAG -CCAACAGAAACGTCTGGACTCCTT -CCAACAGAAACGTCTGGACCTGTT -CCAACAGAAACGTCTGGACGGTTT -CCAACAGAAACGTCTGGAGTGGTT -CCAACAGAAACGTCTGGAGCCTTT -CCAACAGAAACGTCTGGAGGTCTT -CCAACAGAAACGTCTGGAACGCTT -CCAACAGAAACGTCTGGAAGCGTT -CCAACAGAAACGTCTGGATTCGTC -CCAACAGAAACGTCTGGATCTCTC -CCAACAGAAACGTCTGGATGGATC -CCAACAGAAACGTCTGGACACTTC -CCAACAGAAACGTCTGGAGTACTC -CCAACAGAAACGTCTGGAGATGTC -CCAACAGAAACGTCTGGAACAGTC -CCAACAGAAACGTCTGGATTGCTG -CCAACAGAAACGTCTGGATCCATG -CCAACAGAAACGTCTGGATGTGTG -CCAACAGAAACGTCTGGACTAGTG -CCAACAGAAACGTCTGGACATCTG -CCAACAGAAACGTCTGGAGAGTTG -CCAACAGAAACGTCTGGAAGACTG -CCAACAGAAACGTCTGGATCGGTA -CCAACAGAAACGTCTGGATGCCTA -CCAACAGAAACGTCTGGACCACTA -CCAACAGAAACGTCTGGAGGAGTA -CCAACAGAAACGTCTGGATCGTCT -CCAACAGAAACGTCTGGATGCACT -CCAACAGAAACGTCTGGACTGACT -CCAACAGAAACGTCTGGACAACCT -CCAACAGAAACGTCTGGAGCTACT -CCAACAGAAACGTCTGGAGGATCT -CCAACAGAAACGTCTGGAAAGGCT -CCAACAGAAACGTCTGGATCAACC -CCAACAGAAACGTCTGGATGTTCC -CCAACAGAAACGTCTGGAATTCCC -CCAACAGAAACGTCTGGATTCTCG -CCAACAGAAACGTCTGGATAGACG -CCAACAGAAACGTCTGGAGTAACG -CCAACAGAAACGTCTGGAACTTCG -CCAACAGAAACGTCTGGATACGCA -CCAACAGAAACGTCTGGACTTGCA -CCAACAGAAACGTCTGGACGAACA -CCAACAGAAACGTCTGGACAGTCA -CCAACAGAAACGTCTGGAGATCCA -CCAACAGAAACGTCTGGAACGACA -CCAACAGAAACGTCTGGAAGCTCA -CCAACAGAAACGTCTGGATCACGT -CCAACAGAAACGTCTGGACGTAGT -CCAACAGAAACGTCTGGAGTCAGT -CCAACAGAAACGTCTGGAGAAGGT -CCAACAGAAACGTCTGGAAACCGT -CCAACAGAAACGTCTGGATTGTGC -CCAACAGAAACGTCTGGACTAAGC -CCAACAGAAACGTCTGGAACTAGC -CCAACAGAAACGTCTGGAAGATGC -CCAACAGAAACGTCTGGATGAAGG -CCAACAGAAACGTCTGGACAATGG -CCAACAGAAACGTCTGGAATGAGG -CCAACAGAAACGTCTGGAAATGGG -CCAACAGAAACGTCTGGATCCTGA -CCAACAGAAACGTCTGGATAGCGA -CCAACAGAAACGTCTGGACACAGA -CCAACAGAAACGTCTGGAGCAAGA -CCAACAGAAACGTCTGGAGGTTGA -CCAACAGAAACGTCTGGATCCGAT -CCAACAGAAACGTCTGGATGGCAT -CCAACAGAAACGTCTGGACGAGAT -CCAACAGAAACGTCTGGATACCAC -CCAACAGAAACGTCTGGACAGAAC -CCAACAGAAACGTCTGGAGTCTAC -CCAACAGAAACGTCTGGAACGTAC -CCAACAGAAACGTCTGGAAGTGAC -CCAACAGAAACGTCTGGACTGTAG -CCAACAGAAACGTCTGGACCTAAG -CCAACAGAAACGTCTGGAGTTCAG -CCAACAGAAACGTCTGGAGCATAG -CCAACAGAAACGTCTGGAGACAAG -CCAACAGAAACGTCTGGAAAGCAG -CCAACAGAAACGTCTGGACGTCAA -CCAACAGAAACGTCTGGAGCTGAA -CCAACAGAAACGTCTGGAAGTACG -CCAACAGAAACGTCTGGAATCCGA -CCAACAGAAACGTCTGGAATGGGA -CCAACAGAAACGTCTGGAGTGCAA -CCAACAGAAACGTCTGGAGAGGAA -CCAACAGAAACGTCTGGACAGGTA -CCAACAGAAACGTCTGGAGACTCT -CCAACAGAAACGTCTGGAAGTCCT -CCAACAGAAACGTCTGGATAAGCC -CCAACAGAAACGTCTGGAATAGCC -CCAACAGAAACGTCTGGATAACCG -CCAACAGAAACGTCTGGAATGCCA -CCAACAGAAACGGCTAAGGGAAAC -CCAACAGAAACGGCTAAGAACACC -CCAACAGAAACGGCTAAGATCGAG -CCAACAGAAACGGCTAAGCTCCTT -CCAACAGAAACGGCTAAGCCTGTT -CCAACAGAAACGGCTAAGCGGTTT -CCAACAGAAACGGCTAAGGTGGTT -CCAACAGAAACGGCTAAGGCCTTT -CCAACAGAAACGGCTAAGGGTCTT -CCAACAGAAACGGCTAAGACGCTT -CCAACAGAAACGGCTAAGAGCGTT -CCAACAGAAACGGCTAAGTTCGTC -CCAACAGAAACGGCTAAGTCTCTC -CCAACAGAAACGGCTAAGTGGATC -CCAACAGAAACGGCTAAGCACTTC -CCAACAGAAACGGCTAAGGTACTC -CCAACAGAAACGGCTAAGGATGTC -CCAACAGAAACGGCTAAGACAGTC -CCAACAGAAACGGCTAAGTTGCTG -CCAACAGAAACGGCTAAGTCCATG -CCAACAGAAACGGCTAAGTGTGTG -CCAACAGAAACGGCTAAGCTAGTG -CCAACAGAAACGGCTAAGCATCTG -CCAACAGAAACGGCTAAGGAGTTG -CCAACAGAAACGGCTAAGAGACTG -CCAACAGAAACGGCTAAGTCGGTA -CCAACAGAAACGGCTAAGTGCCTA -CCAACAGAAACGGCTAAGCCACTA -CCAACAGAAACGGCTAAGGGAGTA -CCAACAGAAACGGCTAAGTCGTCT -CCAACAGAAACGGCTAAGTGCACT -CCAACAGAAACGGCTAAGCTGACT -CCAACAGAAACGGCTAAGCAACCT -CCAACAGAAACGGCTAAGGCTACT -CCAACAGAAACGGCTAAGGGATCT -CCAACAGAAACGGCTAAGAAGGCT -CCAACAGAAACGGCTAAGTCAACC -CCAACAGAAACGGCTAAGTGTTCC -CCAACAGAAACGGCTAAGATTCCC -CCAACAGAAACGGCTAAGTTCTCG -CCAACAGAAACGGCTAAGTAGACG -CCAACAGAAACGGCTAAGGTAACG -CCAACAGAAACGGCTAAGACTTCG -CCAACAGAAACGGCTAAGTACGCA -CCAACAGAAACGGCTAAGCTTGCA -CCAACAGAAACGGCTAAGCGAACA -CCAACAGAAACGGCTAAGCAGTCA -CCAACAGAAACGGCTAAGGATCCA -CCAACAGAAACGGCTAAGACGACA -CCAACAGAAACGGCTAAGAGCTCA -CCAACAGAAACGGCTAAGTCACGT -CCAACAGAAACGGCTAAGCGTAGT -CCAACAGAAACGGCTAAGGTCAGT -CCAACAGAAACGGCTAAGGAAGGT -CCAACAGAAACGGCTAAGAACCGT -CCAACAGAAACGGCTAAGTTGTGC -CCAACAGAAACGGCTAAGCTAAGC -CCAACAGAAACGGCTAAGACTAGC -CCAACAGAAACGGCTAAGAGATGC -CCAACAGAAACGGCTAAGTGAAGG -CCAACAGAAACGGCTAAGCAATGG -CCAACAGAAACGGCTAAGATGAGG -CCAACAGAAACGGCTAAGAATGGG -CCAACAGAAACGGCTAAGTCCTGA -CCAACAGAAACGGCTAAGTAGCGA -CCAACAGAAACGGCTAAGCACAGA -CCAACAGAAACGGCTAAGGCAAGA -CCAACAGAAACGGCTAAGGGTTGA -CCAACAGAAACGGCTAAGTCCGAT -CCAACAGAAACGGCTAAGTGGCAT -CCAACAGAAACGGCTAAGCGAGAT -CCAACAGAAACGGCTAAGTACCAC -CCAACAGAAACGGCTAAGCAGAAC -CCAACAGAAACGGCTAAGGTCTAC -CCAACAGAAACGGCTAAGACGTAC -CCAACAGAAACGGCTAAGAGTGAC -CCAACAGAAACGGCTAAGCTGTAG -CCAACAGAAACGGCTAAGCCTAAG -CCAACAGAAACGGCTAAGGTTCAG -CCAACAGAAACGGCTAAGGCATAG -CCAACAGAAACGGCTAAGGACAAG -CCAACAGAAACGGCTAAGAAGCAG -CCAACAGAAACGGCTAAGCGTCAA -CCAACAGAAACGGCTAAGGCTGAA -CCAACAGAAACGGCTAAGAGTACG -CCAACAGAAACGGCTAAGATCCGA -CCAACAGAAACGGCTAAGATGGGA -CCAACAGAAACGGCTAAGGTGCAA -CCAACAGAAACGGCTAAGGAGGAA -CCAACAGAAACGGCTAAGCAGGTA -CCAACAGAAACGGCTAAGGACTCT -CCAACAGAAACGGCTAAGAGTCCT -CCAACAGAAACGGCTAAGTAAGCC -CCAACAGAAACGGCTAAGATAGCC -CCAACAGAAACGGCTAAGTAACCG -CCAACAGAAACGGCTAAGATGCCA -CCAACAGAAACGACCTCAGGAAAC -CCAACAGAAACGACCTCAAACACC -CCAACAGAAACGACCTCAATCGAG -CCAACAGAAACGACCTCACTCCTT -CCAACAGAAACGACCTCACCTGTT -CCAACAGAAACGACCTCACGGTTT -CCAACAGAAACGACCTCAGTGGTT -CCAACAGAAACGACCTCAGCCTTT -CCAACAGAAACGACCTCAGGTCTT -CCAACAGAAACGACCTCAACGCTT -CCAACAGAAACGACCTCAAGCGTT -CCAACAGAAACGACCTCATTCGTC -CCAACAGAAACGACCTCATCTCTC -CCAACAGAAACGACCTCATGGATC -CCAACAGAAACGACCTCACACTTC -CCAACAGAAACGACCTCAGTACTC -CCAACAGAAACGACCTCAGATGTC -CCAACAGAAACGACCTCAACAGTC -CCAACAGAAACGACCTCATTGCTG -CCAACAGAAACGACCTCATCCATG -CCAACAGAAACGACCTCATGTGTG -CCAACAGAAACGACCTCACTAGTG -CCAACAGAAACGACCTCACATCTG -CCAACAGAAACGACCTCAGAGTTG -CCAACAGAAACGACCTCAAGACTG -CCAACAGAAACGACCTCATCGGTA -CCAACAGAAACGACCTCATGCCTA -CCAACAGAAACGACCTCACCACTA -CCAACAGAAACGACCTCAGGAGTA -CCAACAGAAACGACCTCATCGTCT -CCAACAGAAACGACCTCATGCACT -CCAACAGAAACGACCTCACTGACT -CCAACAGAAACGACCTCACAACCT -CCAACAGAAACGACCTCAGCTACT -CCAACAGAAACGACCTCAGGATCT -CCAACAGAAACGACCTCAAAGGCT -CCAACAGAAACGACCTCATCAACC -CCAACAGAAACGACCTCATGTTCC -CCAACAGAAACGACCTCAATTCCC -CCAACAGAAACGACCTCATTCTCG -CCAACAGAAACGACCTCATAGACG -CCAACAGAAACGACCTCAGTAACG -CCAACAGAAACGACCTCAACTTCG -CCAACAGAAACGACCTCATACGCA -CCAACAGAAACGACCTCACTTGCA -CCAACAGAAACGACCTCACGAACA -CCAACAGAAACGACCTCACAGTCA -CCAACAGAAACGACCTCAGATCCA -CCAACAGAAACGACCTCAACGACA -CCAACAGAAACGACCTCAAGCTCA -CCAACAGAAACGACCTCATCACGT -CCAACAGAAACGACCTCACGTAGT -CCAACAGAAACGACCTCAGTCAGT -CCAACAGAAACGACCTCAGAAGGT -CCAACAGAAACGACCTCAAACCGT -CCAACAGAAACGACCTCATTGTGC -CCAACAGAAACGACCTCACTAAGC -CCAACAGAAACGACCTCAACTAGC -CCAACAGAAACGACCTCAAGATGC -CCAACAGAAACGACCTCATGAAGG -CCAACAGAAACGACCTCACAATGG -CCAACAGAAACGACCTCAATGAGG -CCAACAGAAACGACCTCAAATGGG -CCAACAGAAACGACCTCATCCTGA -CCAACAGAAACGACCTCATAGCGA -CCAACAGAAACGACCTCACACAGA -CCAACAGAAACGACCTCAGCAAGA -CCAACAGAAACGACCTCAGGTTGA -CCAACAGAAACGACCTCATCCGAT -CCAACAGAAACGACCTCATGGCAT -CCAACAGAAACGACCTCACGAGAT -CCAACAGAAACGACCTCATACCAC -CCAACAGAAACGACCTCACAGAAC -CCAACAGAAACGACCTCAGTCTAC -CCAACAGAAACGACCTCAACGTAC -CCAACAGAAACGACCTCAAGTGAC -CCAACAGAAACGACCTCACTGTAG -CCAACAGAAACGACCTCACCTAAG -CCAACAGAAACGACCTCAGTTCAG -CCAACAGAAACGACCTCAGCATAG -CCAACAGAAACGACCTCAGACAAG -CCAACAGAAACGACCTCAAAGCAG -CCAACAGAAACGACCTCACGTCAA -CCAACAGAAACGACCTCAGCTGAA -CCAACAGAAACGACCTCAAGTACG -CCAACAGAAACGACCTCAATCCGA -CCAACAGAAACGACCTCAATGGGA -CCAACAGAAACGACCTCAGTGCAA -CCAACAGAAACGACCTCAGAGGAA -CCAACAGAAACGACCTCACAGGTA -CCAACAGAAACGACCTCAGACTCT -CCAACAGAAACGACCTCAAGTCCT -CCAACAGAAACGACCTCATAAGCC -CCAACAGAAACGACCTCAATAGCC -CCAACAGAAACGACCTCATAACCG -CCAACAGAAACGACCTCAATGCCA -CCAACAGAAACGTCCTGTGGAAAC -CCAACAGAAACGTCCTGTAACACC -CCAACAGAAACGTCCTGTATCGAG -CCAACAGAAACGTCCTGTCTCCTT -CCAACAGAAACGTCCTGTCCTGTT -CCAACAGAAACGTCCTGTCGGTTT -CCAACAGAAACGTCCTGTGTGGTT -CCAACAGAAACGTCCTGTGCCTTT -CCAACAGAAACGTCCTGTGGTCTT -CCAACAGAAACGTCCTGTACGCTT -CCAACAGAAACGTCCTGTAGCGTT -CCAACAGAAACGTCCTGTTTCGTC -CCAACAGAAACGTCCTGTTCTCTC -CCAACAGAAACGTCCTGTTGGATC -CCAACAGAAACGTCCTGTCACTTC -CCAACAGAAACGTCCTGTGTACTC -CCAACAGAAACGTCCTGTGATGTC -CCAACAGAAACGTCCTGTACAGTC -CCAACAGAAACGTCCTGTTTGCTG -CCAACAGAAACGTCCTGTTCCATG -CCAACAGAAACGTCCTGTTGTGTG -CCAACAGAAACGTCCTGTCTAGTG -CCAACAGAAACGTCCTGTCATCTG -CCAACAGAAACGTCCTGTGAGTTG -CCAACAGAAACGTCCTGTAGACTG -CCAACAGAAACGTCCTGTTCGGTA -CCAACAGAAACGTCCTGTTGCCTA -CCAACAGAAACGTCCTGTCCACTA -CCAACAGAAACGTCCTGTGGAGTA -CCAACAGAAACGTCCTGTTCGTCT -CCAACAGAAACGTCCTGTTGCACT -CCAACAGAAACGTCCTGTCTGACT -CCAACAGAAACGTCCTGTCAACCT -CCAACAGAAACGTCCTGTGCTACT -CCAACAGAAACGTCCTGTGGATCT -CCAACAGAAACGTCCTGTAAGGCT -CCAACAGAAACGTCCTGTTCAACC -CCAACAGAAACGTCCTGTTGTTCC -CCAACAGAAACGTCCTGTATTCCC -CCAACAGAAACGTCCTGTTTCTCG -CCAACAGAAACGTCCTGTTAGACG -CCAACAGAAACGTCCTGTGTAACG -CCAACAGAAACGTCCTGTACTTCG -CCAACAGAAACGTCCTGTTACGCA -CCAACAGAAACGTCCTGTCTTGCA -CCAACAGAAACGTCCTGTCGAACA -CCAACAGAAACGTCCTGTCAGTCA -CCAACAGAAACGTCCTGTGATCCA -CCAACAGAAACGTCCTGTACGACA -CCAACAGAAACGTCCTGTAGCTCA -CCAACAGAAACGTCCTGTTCACGT -CCAACAGAAACGTCCTGTCGTAGT -CCAACAGAAACGTCCTGTGTCAGT -CCAACAGAAACGTCCTGTGAAGGT -CCAACAGAAACGTCCTGTAACCGT -CCAACAGAAACGTCCTGTTTGTGC -CCAACAGAAACGTCCTGTCTAAGC -CCAACAGAAACGTCCTGTACTAGC -CCAACAGAAACGTCCTGTAGATGC -CCAACAGAAACGTCCTGTTGAAGG -CCAACAGAAACGTCCTGTCAATGG -CCAACAGAAACGTCCTGTATGAGG -CCAACAGAAACGTCCTGTAATGGG -CCAACAGAAACGTCCTGTTCCTGA -CCAACAGAAACGTCCTGTTAGCGA -CCAACAGAAACGTCCTGTCACAGA -CCAACAGAAACGTCCTGTGCAAGA -CCAACAGAAACGTCCTGTGGTTGA -CCAACAGAAACGTCCTGTTCCGAT -CCAACAGAAACGTCCTGTTGGCAT -CCAACAGAAACGTCCTGTCGAGAT -CCAACAGAAACGTCCTGTTACCAC -CCAACAGAAACGTCCTGTCAGAAC -CCAACAGAAACGTCCTGTGTCTAC -CCAACAGAAACGTCCTGTACGTAC -CCAACAGAAACGTCCTGTAGTGAC -CCAACAGAAACGTCCTGTCTGTAG -CCAACAGAAACGTCCTGTCCTAAG -CCAACAGAAACGTCCTGTGTTCAG -CCAACAGAAACGTCCTGTGCATAG -CCAACAGAAACGTCCTGTGACAAG -CCAACAGAAACGTCCTGTAAGCAG -CCAACAGAAACGTCCTGTCGTCAA -CCAACAGAAACGTCCTGTGCTGAA -CCAACAGAAACGTCCTGTAGTACG -CCAACAGAAACGTCCTGTATCCGA -CCAACAGAAACGTCCTGTATGGGA -CCAACAGAAACGTCCTGTGTGCAA -CCAACAGAAACGTCCTGTGAGGAA -CCAACAGAAACGTCCTGTCAGGTA -CCAACAGAAACGTCCTGTGACTCT -CCAACAGAAACGTCCTGTAGTCCT -CCAACAGAAACGTCCTGTTAAGCC -CCAACAGAAACGTCCTGTATAGCC -CCAACAGAAACGTCCTGTTAACCG -CCAACAGAAACGTCCTGTATGCCA -CCAACAGAAACGCCCATTGGAAAC -CCAACAGAAACGCCCATTAACACC -CCAACAGAAACGCCCATTATCGAG -CCAACAGAAACGCCCATTCTCCTT -CCAACAGAAACGCCCATTCCTGTT -CCAACAGAAACGCCCATTCGGTTT -CCAACAGAAACGCCCATTGTGGTT -CCAACAGAAACGCCCATTGCCTTT -CCAACAGAAACGCCCATTGGTCTT -CCAACAGAAACGCCCATTACGCTT -CCAACAGAAACGCCCATTAGCGTT -CCAACAGAAACGCCCATTTTCGTC -CCAACAGAAACGCCCATTTCTCTC -CCAACAGAAACGCCCATTTGGATC -CCAACAGAAACGCCCATTCACTTC -CCAACAGAAACGCCCATTGTACTC -CCAACAGAAACGCCCATTGATGTC -CCAACAGAAACGCCCATTACAGTC -CCAACAGAAACGCCCATTTTGCTG -CCAACAGAAACGCCCATTTCCATG -CCAACAGAAACGCCCATTTGTGTG -CCAACAGAAACGCCCATTCTAGTG -CCAACAGAAACGCCCATTCATCTG -CCAACAGAAACGCCCATTGAGTTG -CCAACAGAAACGCCCATTAGACTG -CCAACAGAAACGCCCATTTCGGTA -CCAACAGAAACGCCCATTTGCCTA -CCAACAGAAACGCCCATTCCACTA -CCAACAGAAACGCCCATTGGAGTA -CCAACAGAAACGCCCATTTCGTCT -CCAACAGAAACGCCCATTTGCACT -CCAACAGAAACGCCCATTCTGACT -CCAACAGAAACGCCCATTCAACCT -CCAACAGAAACGCCCATTGCTACT -CCAACAGAAACGCCCATTGGATCT -CCAACAGAAACGCCCATTAAGGCT -CCAACAGAAACGCCCATTTCAACC -CCAACAGAAACGCCCATTTGTTCC -CCAACAGAAACGCCCATTATTCCC -CCAACAGAAACGCCCATTTTCTCG -CCAACAGAAACGCCCATTTAGACG -CCAACAGAAACGCCCATTGTAACG -CCAACAGAAACGCCCATTACTTCG -CCAACAGAAACGCCCATTTACGCA -CCAACAGAAACGCCCATTCTTGCA -CCAACAGAAACGCCCATTCGAACA -CCAACAGAAACGCCCATTCAGTCA -CCAACAGAAACGCCCATTGATCCA -CCAACAGAAACGCCCATTACGACA -CCAACAGAAACGCCCATTAGCTCA -CCAACAGAAACGCCCATTTCACGT -CCAACAGAAACGCCCATTCGTAGT -CCAACAGAAACGCCCATTGTCAGT -CCAACAGAAACGCCCATTGAAGGT -CCAACAGAAACGCCCATTAACCGT -CCAACAGAAACGCCCATTTTGTGC -CCAACAGAAACGCCCATTCTAAGC -CCAACAGAAACGCCCATTACTAGC -CCAACAGAAACGCCCATTAGATGC -CCAACAGAAACGCCCATTTGAAGG -CCAACAGAAACGCCCATTCAATGG -CCAACAGAAACGCCCATTATGAGG -CCAACAGAAACGCCCATTAATGGG -CCAACAGAAACGCCCATTTCCTGA -CCAACAGAAACGCCCATTTAGCGA -CCAACAGAAACGCCCATTCACAGA -CCAACAGAAACGCCCATTGCAAGA -CCAACAGAAACGCCCATTGGTTGA -CCAACAGAAACGCCCATTTCCGAT -CCAACAGAAACGCCCATTTGGCAT -CCAACAGAAACGCCCATTCGAGAT -CCAACAGAAACGCCCATTTACCAC -CCAACAGAAACGCCCATTCAGAAC -CCAACAGAAACGCCCATTGTCTAC -CCAACAGAAACGCCCATTACGTAC -CCAACAGAAACGCCCATTAGTGAC -CCAACAGAAACGCCCATTCTGTAG -CCAACAGAAACGCCCATTCCTAAG -CCAACAGAAACGCCCATTGTTCAG -CCAACAGAAACGCCCATTGCATAG -CCAACAGAAACGCCCATTGACAAG -CCAACAGAAACGCCCATTAAGCAG -CCAACAGAAACGCCCATTCGTCAA -CCAACAGAAACGCCCATTGCTGAA -CCAACAGAAACGCCCATTAGTACG -CCAACAGAAACGCCCATTATCCGA -CCAACAGAAACGCCCATTATGGGA -CCAACAGAAACGCCCATTGTGCAA -CCAACAGAAACGCCCATTGAGGAA -CCAACAGAAACGCCCATTCAGGTA -CCAACAGAAACGCCCATTGACTCT -CCAACAGAAACGCCCATTAGTCCT -CCAACAGAAACGCCCATTTAAGCC -CCAACAGAAACGCCCATTATAGCC -CCAACAGAAACGCCCATTTAACCG -CCAACAGAAACGCCCATTATGCCA -CCAACAGAAACGTCGTTCGGAAAC -CCAACAGAAACGTCGTTCAACACC -CCAACAGAAACGTCGTTCATCGAG -CCAACAGAAACGTCGTTCCTCCTT -CCAACAGAAACGTCGTTCCCTGTT -CCAACAGAAACGTCGTTCCGGTTT -CCAACAGAAACGTCGTTCGTGGTT -CCAACAGAAACGTCGTTCGCCTTT -CCAACAGAAACGTCGTTCGGTCTT -CCAACAGAAACGTCGTTCACGCTT -CCAACAGAAACGTCGTTCAGCGTT -CCAACAGAAACGTCGTTCTTCGTC -CCAACAGAAACGTCGTTCTCTCTC -CCAACAGAAACGTCGTTCTGGATC -CCAACAGAAACGTCGTTCCACTTC -CCAACAGAAACGTCGTTCGTACTC -CCAACAGAAACGTCGTTCGATGTC -CCAACAGAAACGTCGTTCACAGTC -CCAACAGAAACGTCGTTCTTGCTG -CCAACAGAAACGTCGTTCTCCATG -CCAACAGAAACGTCGTTCTGTGTG -CCAACAGAAACGTCGTTCCTAGTG -CCAACAGAAACGTCGTTCCATCTG -CCAACAGAAACGTCGTTCGAGTTG -CCAACAGAAACGTCGTTCAGACTG -CCAACAGAAACGTCGTTCTCGGTA -CCAACAGAAACGTCGTTCTGCCTA -CCAACAGAAACGTCGTTCCCACTA -CCAACAGAAACGTCGTTCGGAGTA -CCAACAGAAACGTCGTTCTCGTCT -CCAACAGAAACGTCGTTCTGCACT -CCAACAGAAACGTCGTTCCTGACT -CCAACAGAAACGTCGTTCCAACCT -CCAACAGAAACGTCGTTCGCTACT -CCAACAGAAACGTCGTTCGGATCT -CCAACAGAAACGTCGTTCAAGGCT -CCAACAGAAACGTCGTTCTCAACC -CCAACAGAAACGTCGTTCTGTTCC -CCAACAGAAACGTCGTTCATTCCC -CCAACAGAAACGTCGTTCTTCTCG -CCAACAGAAACGTCGTTCTAGACG -CCAACAGAAACGTCGTTCGTAACG -CCAACAGAAACGTCGTTCACTTCG -CCAACAGAAACGTCGTTCTACGCA -CCAACAGAAACGTCGTTCCTTGCA -CCAACAGAAACGTCGTTCCGAACA -CCAACAGAAACGTCGTTCCAGTCA -CCAACAGAAACGTCGTTCGATCCA -CCAACAGAAACGTCGTTCACGACA -CCAACAGAAACGTCGTTCAGCTCA -CCAACAGAAACGTCGTTCTCACGT -CCAACAGAAACGTCGTTCCGTAGT -CCAACAGAAACGTCGTTCGTCAGT -CCAACAGAAACGTCGTTCGAAGGT -CCAACAGAAACGTCGTTCAACCGT -CCAACAGAAACGTCGTTCTTGTGC -CCAACAGAAACGTCGTTCCTAAGC -CCAACAGAAACGTCGTTCACTAGC -CCAACAGAAACGTCGTTCAGATGC -CCAACAGAAACGTCGTTCTGAAGG -CCAACAGAAACGTCGTTCCAATGG -CCAACAGAAACGTCGTTCATGAGG -CCAACAGAAACGTCGTTCAATGGG -CCAACAGAAACGTCGTTCTCCTGA -CCAACAGAAACGTCGTTCTAGCGA -CCAACAGAAACGTCGTTCCACAGA -CCAACAGAAACGTCGTTCGCAAGA -CCAACAGAAACGTCGTTCGGTTGA -CCAACAGAAACGTCGTTCTCCGAT -CCAACAGAAACGTCGTTCTGGCAT -CCAACAGAAACGTCGTTCCGAGAT -CCAACAGAAACGTCGTTCTACCAC -CCAACAGAAACGTCGTTCCAGAAC -CCAACAGAAACGTCGTTCGTCTAC -CCAACAGAAACGTCGTTCACGTAC -CCAACAGAAACGTCGTTCAGTGAC -CCAACAGAAACGTCGTTCCTGTAG -CCAACAGAAACGTCGTTCCCTAAG -CCAACAGAAACGTCGTTCGTTCAG -CCAACAGAAACGTCGTTCGCATAG -CCAACAGAAACGTCGTTCGACAAG -CCAACAGAAACGTCGTTCAAGCAG -CCAACAGAAACGTCGTTCCGTCAA -CCAACAGAAACGTCGTTCGCTGAA -CCAACAGAAACGTCGTTCAGTACG -CCAACAGAAACGTCGTTCATCCGA -CCAACAGAAACGTCGTTCATGGGA -CCAACAGAAACGTCGTTCGTGCAA -CCAACAGAAACGTCGTTCGAGGAA -CCAACAGAAACGTCGTTCCAGGTA -CCAACAGAAACGTCGTTCGACTCT -CCAACAGAAACGTCGTTCAGTCCT -CCAACAGAAACGTCGTTCTAAGCC -CCAACAGAAACGTCGTTCATAGCC -CCAACAGAAACGTCGTTCTAACCG -CCAACAGAAACGTCGTTCATGCCA -CCAACAGAAACGACGTAGGGAAAC -CCAACAGAAACGACGTAGAACACC -CCAACAGAAACGACGTAGATCGAG -CCAACAGAAACGACGTAGCTCCTT -CCAACAGAAACGACGTAGCCTGTT -CCAACAGAAACGACGTAGCGGTTT -CCAACAGAAACGACGTAGGTGGTT -CCAACAGAAACGACGTAGGCCTTT -CCAACAGAAACGACGTAGGGTCTT -CCAACAGAAACGACGTAGACGCTT -CCAACAGAAACGACGTAGAGCGTT -CCAACAGAAACGACGTAGTTCGTC -CCAACAGAAACGACGTAGTCTCTC -CCAACAGAAACGACGTAGTGGATC -CCAACAGAAACGACGTAGCACTTC -CCAACAGAAACGACGTAGGTACTC -CCAACAGAAACGACGTAGGATGTC -CCAACAGAAACGACGTAGACAGTC -CCAACAGAAACGACGTAGTTGCTG -CCAACAGAAACGACGTAGTCCATG -CCAACAGAAACGACGTAGTGTGTG -CCAACAGAAACGACGTAGCTAGTG -CCAACAGAAACGACGTAGCATCTG -CCAACAGAAACGACGTAGGAGTTG -CCAACAGAAACGACGTAGAGACTG -CCAACAGAAACGACGTAGTCGGTA -CCAACAGAAACGACGTAGTGCCTA -CCAACAGAAACGACGTAGCCACTA -CCAACAGAAACGACGTAGGGAGTA -CCAACAGAAACGACGTAGTCGTCT -CCAACAGAAACGACGTAGTGCACT -CCAACAGAAACGACGTAGCTGACT -CCAACAGAAACGACGTAGCAACCT -CCAACAGAAACGACGTAGGCTACT -CCAACAGAAACGACGTAGGGATCT -CCAACAGAAACGACGTAGAAGGCT -CCAACAGAAACGACGTAGTCAACC -CCAACAGAAACGACGTAGTGTTCC -CCAACAGAAACGACGTAGATTCCC -CCAACAGAAACGACGTAGTTCTCG -CCAACAGAAACGACGTAGTAGACG -CCAACAGAAACGACGTAGGTAACG -CCAACAGAAACGACGTAGACTTCG -CCAACAGAAACGACGTAGTACGCA -CCAACAGAAACGACGTAGCTTGCA -CCAACAGAAACGACGTAGCGAACA -CCAACAGAAACGACGTAGCAGTCA -CCAACAGAAACGACGTAGGATCCA -CCAACAGAAACGACGTAGACGACA -CCAACAGAAACGACGTAGAGCTCA -CCAACAGAAACGACGTAGTCACGT -CCAACAGAAACGACGTAGCGTAGT -CCAACAGAAACGACGTAGGTCAGT -CCAACAGAAACGACGTAGGAAGGT -CCAACAGAAACGACGTAGAACCGT -CCAACAGAAACGACGTAGTTGTGC -CCAACAGAAACGACGTAGCTAAGC -CCAACAGAAACGACGTAGACTAGC -CCAACAGAAACGACGTAGAGATGC -CCAACAGAAACGACGTAGTGAAGG -CCAACAGAAACGACGTAGCAATGG -CCAACAGAAACGACGTAGATGAGG -CCAACAGAAACGACGTAGAATGGG -CCAACAGAAACGACGTAGTCCTGA -CCAACAGAAACGACGTAGTAGCGA -CCAACAGAAACGACGTAGCACAGA -CCAACAGAAACGACGTAGGCAAGA -CCAACAGAAACGACGTAGGGTTGA -CCAACAGAAACGACGTAGTCCGAT -CCAACAGAAACGACGTAGTGGCAT -CCAACAGAAACGACGTAGCGAGAT -CCAACAGAAACGACGTAGTACCAC -CCAACAGAAACGACGTAGCAGAAC -CCAACAGAAACGACGTAGGTCTAC -CCAACAGAAACGACGTAGACGTAC -CCAACAGAAACGACGTAGAGTGAC -CCAACAGAAACGACGTAGCTGTAG -CCAACAGAAACGACGTAGCCTAAG -CCAACAGAAACGACGTAGGTTCAG -CCAACAGAAACGACGTAGGCATAG -CCAACAGAAACGACGTAGGACAAG -CCAACAGAAACGACGTAGAAGCAG -CCAACAGAAACGACGTAGCGTCAA -CCAACAGAAACGACGTAGGCTGAA -CCAACAGAAACGACGTAGAGTACG -CCAACAGAAACGACGTAGATCCGA -CCAACAGAAACGACGTAGATGGGA -CCAACAGAAACGACGTAGGTGCAA -CCAACAGAAACGACGTAGGAGGAA -CCAACAGAAACGACGTAGCAGGTA -CCAACAGAAACGACGTAGGACTCT -CCAACAGAAACGACGTAGAGTCCT -CCAACAGAAACGACGTAGTAAGCC -CCAACAGAAACGACGTAGATAGCC -CCAACAGAAACGACGTAGTAACCG -CCAACAGAAACGACGTAGATGCCA -CCAACAGAAACGACGGTAGGAAAC -CCAACAGAAACGACGGTAAACACC -CCAACAGAAACGACGGTAATCGAG -CCAACAGAAACGACGGTACTCCTT -CCAACAGAAACGACGGTACCTGTT -CCAACAGAAACGACGGTACGGTTT -CCAACAGAAACGACGGTAGTGGTT -CCAACAGAAACGACGGTAGCCTTT -CCAACAGAAACGACGGTAGGTCTT -CCAACAGAAACGACGGTAACGCTT -CCAACAGAAACGACGGTAAGCGTT -CCAACAGAAACGACGGTATTCGTC -CCAACAGAAACGACGGTATCTCTC -CCAACAGAAACGACGGTATGGATC -CCAACAGAAACGACGGTACACTTC -CCAACAGAAACGACGGTAGTACTC -CCAACAGAAACGACGGTAGATGTC -CCAACAGAAACGACGGTAACAGTC -CCAACAGAAACGACGGTATTGCTG -CCAACAGAAACGACGGTATCCATG -CCAACAGAAACGACGGTATGTGTG -CCAACAGAAACGACGGTACTAGTG -CCAACAGAAACGACGGTACATCTG -CCAACAGAAACGACGGTAGAGTTG -CCAACAGAAACGACGGTAAGACTG -CCAACAGAAACGACGGTATCGGTA -CCAACAGAAACGACGGTATGCCTA -CCAACAGAAACGACGGTACCACTA -CCAACAGAAACGACGGTAGGAGTA -CCAACAGAAACGACGGTATCGTCT -CCAACAGAAACGACGGTATGCACT -CCAACAGAAACGACGGTACTGACT -CCAACAGAAACGACGGTACAACCT -CCAACAGAAACGACGGTAGCTACT -CCAACAGAAACGACGGTAGGATCT -CCAACAGAAACGACGGTAAAGGCT -CCAACAGAAACGACGGTATCAACC -CCAACAGAAACGACGGTATGTTCC -CCAACAGAAACGACGGTAATTCCC -CCAACAGAAACGACGGTATTCTCG -CCAACAGAAACGACGGTATAGACG -CCAACAGAAACGACGGTAGTAACG -CCAACAGAAACGACGGTAACTTCG -CCAACAGAAACGACGGTATACGCA -CCAACAGAAACGACGGTACTTGCA -CCAACAGAAACGACGGTACGAACA -CCAACAGAAACGACGGTACAGTCA -CCAACAGAAACGACGGTAGATCCA -CCAACAGAAACGACGGTAACGACA -CCAACAGAAACGACGGTAAGCTCA -CCAACAGAAACGACGGTATCACGT -CCAACAGAAACGACGGTACGTAGT -CCAACAGAAACGACGGTAGTCAGT -CCAACAGAAACGACGGTAGAAGGT -CCAACAGAAACGACGGTAAACCGT -CCAACAGAAACGACGGTATTGTGC -CCAACAGAAACGACGGTACTAAGC -CCAACAGAAACGACGGTAACTAGC -CCAACAGAAACGACGGTAAGATGC -CCAACAGAAACGACGGTATGAAGG -CCAACAGAAACGACGGTACAATGG -CCAACAGAAACGACGGTAATGAGG -CCAACAGAAACGACGGTAAATGGG -CCAACAGAAACGACGGTATCCTGA -CCAACAGAAACGACGGTATAGCGA -CCAACAGAAACGACGGTACACAGA -CCAACAGAAACGACGGTAGCAAGA -CCAACAGAAACGACGGTAGGTTGA -CCAACAGAAACGACGGTATCCGAT -CCAACAGAAACGACGGTATGGCAT -CCAACAGAAACGACGGTACGAGAT -CCAACAGAAACGACGGTATACCAC -CCAACAGAAACGACGGTACAGAAC -CCAACAGAAACGACGGTAGTCTAC -CCAACAGAAACGACGGTAACGTAC -CCAACAGAAACGACGGTAAGTGAC -CCAACAGAAACGACGGTACTGTAG -CCAACAGAAACGACGGTACCTAAG -CCAACAGAAACGACGGTAGTTCAG -CCAACAGAAACGACGGTAGCATAG -CCAACAGAAACGACGGTAGACAAG -CCAACAGAAACGACGGTAAAGCAG -CCAACAGAAACGACGGTACGTCAA -CCAACAGAAACGACGGTAGCTGAA -CCAACAGAAACGACGGTAAGTACG -CCAACAGAAACGACGGTAATCCGA -CCAACAGAAACGACGGTAATGGGA -CCAACAGAAACGACGGTAGTGCAA -CCAACAGAAACGACGGTAGAGGAA -CCAACAGAAACGACGGTACAGGTA -CCAACAGAAACGACGGTAGACTCT -CCAACAGAAACGACGGTAAGTCCT -CCAACAGAAACGACGGTATAAGCC -CCAACAGAAACGACGGTAATAGCC -CCAACAGAAACGACGGTATAACCG -CCAACAGAAACGACGGTAATGCCA -CCAACAGAAACGTCGACTGGAAAC -CCAACAGAAACGTCGACTAACACC -CCAACAGAAACGTCGACTATCGAG -CCAACAGAAACGTCGACTCTCCTT -CCAACAGAAACGTCGACTCCTGTT -CCAACAGAAACGTCGACTCGGTTT -CCAACAGAAACGTCGACTGTGGTT -CCAACAGAAACGTCGACTGCCTTT -CCAACAGAAACGTCGACTGGTCTT -CCAACAGAAACGTCGACTACGCTT -CCAACAGAAACGTCGACTAGCGTT -CCAACAGAAACGTCGACTTTCGTC -CCAACAGAAACGTCGACTTCTCTC -CCAACAGAAACGTCGACTTGGATC -CCAACAGAAACGTCGACTCACTTC -CCAACAGAAACGTCGACTGTACTC -CCAACAGAAACGTCGACTGATGTC -CCAACAGAAACGTCGACTACAGTC -CCAACAGAAACGTCGACTTTGCTG -CCAACAGAAACGTCGACTTCCATG -CCAACAGAAACGTCGACTTGTGTG -CCAACAGAAACGTCGACTCTAGTG -CCAACAGAAACGTCGACTCATCTG -CCAACAGAAACGTCGACTGAGTTG -CCAACAGAAACGTCGACTAGACTG -CCAACAGAAACGTCGACTTCGGTA -CCAACAGAAACGTCGACTTGCCTA -CCAACAGAAACGTCGACTCCACTA -CCAACAGAAACGTCGACTGGAGTA -CCAACAGAAACGTCGACTTCGTCT -CCAACAGAAACGTCGACTTGCACT -CCAACAGAAACGTCGACTCTGACT -CCAACAGAAACGTCGACTCAACCT -CCAACAGAAACGTCGACTGCTACT -CCAACAGAAACGTCGACTGGATCT -CCAACAGAAACGTCGACTAAGGCT -CCAACAGAAACGTCGACTTCAACC -CCAACAGAAACGTCGACTTGTTCC -CCAACAGAAACGTCGACTATTCCC -CCAACAGAAACGTCGACTTTCTCG -CCAACAGAAACGTCGACTTAGACG -CCAACAGAAACGTCGACTGTAACG -CCAACAGAAACGTCGACTACTTCG -CCAACAGAAACGTCGACTTACGCA -CCAACAGAAACGTCGACTCTTGCA -CCAACAGAAACGTCGACTCGAACA -CCAACAGAAACGTCGACTCAGTCA -CCAACAGAAACGTCGACTGATCCA -CCAACAGAAACGTCGACTACGACA -CCAACAGAAACGTCGACTAGCTCA -CCAACAGAAACGTCGACTTCACGT -CCAACAGAAACGTCGACTCGTAGT -CCAACAGAAACGTCGACTGTCAGT -CCAACAGAAACGTCGACTGAAGGT -CCAACAGAAACGTCGACTAACCGT -CCAACAGAAACGTCGACTTTGTGC -CCAACAGAAACGTCGACTCTAAGC -CCAACAGAAACGTCGACTACTAGC -CCAACAGAAACGTCGACTAGATGC -CCAACAGAAACGTCGACTTGAAGG -CCAACAGAAACGTCGACTCAATGG -CCAACAGAAACGTCGACTATGAGG -CCAACAGAAACGTCGACTAATGGG -CCAACAGAAACGTCGACTTCCTGA -CCAACAGAAACGTCGACTTAGCGA -CCAACAGAAACGTCGACTCACAGA -CCAACAGAAACGTCGACTGCAAGA -CCAACAGAAACGTCGACTGGTTGA -CCAACAGAAACGTCGACTTCCGAT -CCAACAGAAACGTCGACTTGGCAT -CCAACAGAAACGTCGACTCGAGAT -CCAACAGAAACGTCGACTTACCAC -CCAACAGAAACGTCGACTCAGAAC -CCAACAGAAACGTCGACTGTCTAC -CCAACAGAAACGTCGACTACGTAC -CCAACAGAAACGTCGACTAGTGAC -CCAACAGAAACGTCGACTCTGTAG -CCAACAGAAACGTCGACTCCTAAG -CCAACAGAAACGTCGACTGTTCAG -CCAACAGAAACGTCGACTGCATAG -CCAACAGAAACGTCGACTGACAAG -CCAACAGAAACGTCGACTAAGCAG -CCAACAGAAACGTCGACTCGTCAA -CCAACAGAAACGTCGACTGCTGAA -CCAACAGAAACGTCGACTAGTACG -CCAACAGAAACGTCGACTATCCGA -CCAACAGAAACGTCGACTATGGGA -CCAACAGAAACGTCGACTGTGCAA -CCAACAGAAACGTCGACTGAGGAA -CCAACAGAAACGTCGACTCAGGTA -CCAACAGAAACGTCGACTGACTCT -CCAACAGAAACGTCGACTAGTCCT -CCAACAGAAACGTCGACTTAAGCC -CCAACAGAAACGTCGACTATAGCC -CCAACAGAAACGTCGACTTAACCG -CCAACAGAAACGTCGACTATGCCA -CCAACAGAAACGGCATACGGAAAC -CCAACAGAAACGGCATACAACACC -CCAACAGAAACGGCATACATCGAG -CCAACAGAAACGGCATACCTCCTT -CCAACAGAAACGGCATACCCTGTT -CCAACAGAAACGGCATACCGGTTT -CCAACAGAAACGGCATACGTGGTT -CCAACAGAAACGGCATACGCCTTT -CCAACAGAAACGGCATACGGTCTT -CCAACAGAAACGGCATACACGCTT -CCAACAGAAACGGCATACAGCGTT -CCAACAGAAACGGCATACTTCGTC -CCAACAGAAACGGCATACTCTCTC -CCAACAGAAACGGCATACTGGATC -CCAACAGAAACGGCATACCACTTC -CCAACAGAAACGGCATACGTACTC -CCAACAGAAACGGCATACGATGTC -CCAACAGAAACGGCATACACAGTC -CCAACAGAAACGGCATACTTGCTG -CCAACAGAAACGGCATACTCCATG -CCAACAGAAACGGCATACTGTGTG -CCAACAGAAACGGCATACCTAGTG -CCAACAGAAACGGCATACCATCTG -CCAACAGAAACGGCATACGAGTTG -CCAACAGAAACGGCATACAGACTG -CCAACAGAAACGGCATACTCGGTA -CCAACAGAAACGGCATACTGCCTA -CCAACAGAAACGGCATACCCACTA -CCAACAGAAACGGCATACGGAGTA -CCAACAGAAACGGCATACTCGTCT -CCAACAGAAACGGCATACTGCACT -CCAACAGAAACGGCATACCTGACT -CCAACAGAAACGGCATACCAACCT -CCAACAGAAACGGCATACGCTACT -CCAACAGAAACGGCATACGGATCT -CCAACAGAAACGGCATACAAGGCT -CCAACAGAAACGGCATACTCAACC -CCAACAGAAACGGCATACTGTTCC -CCAACAGAAACGGCATACATTCCC -CCAACAGAAACGGCATACTTCTCG -CCAACAGAAACGGCATACTAGACG -CCAACAGAAACGGCATACGTAACG -CCAACAGAAACGGCATACACTTCG -CCAACAGAAACGGCATACTACGCA -CCAACAGAAACGGCATACCTTGCA -CCAACAGAAACGGCATACCGAACA -CCAACAGAAACGGCATACCAGTCA -CCAACAGAAACGGCATACGATCCA -CCAACAGAAACGGCATACACGACA -CCAACAGAAACGGCATACAGCTCA -CCAACAGAAACGGCATACTCACGT -CCAACAGAAACGGCATACCGTAGT -CCAACAGAAACGGCATACGTCAGT -CCAACAGAAACGGCATACGAAGGT -CCAACAGAAACGGCATACAACCGT -CCAACAGAAACGGCATACTTGTGC -CCAACAGAAACGGCATACCTAAGC -CCAACAGAAACGGCATACACTAGC -CCAACAGAAACGGCATACAGATGC -CCAACAGAAACGGCATACTGAAGG -CCAACAGAAACGGCATACCAATGG -CCAACAGAAACGGCATACATGAGG -CCAACAGAAACGGCATACAATGGG -CCAACAGAAACGGCATACTCCTGA -CCAACAGAAACGGCATACTAGCGA -CCAACAGAAACGGCATACCACAGA -CCAACAGAAACGGCATACGCAAGA -CCAACAGAAACGGCATACGGTTGA -CCAACAGAAACGGCATACTCCGAT -CCAACAGAAACGGCATACTGGCAT -CCAACAGAAACGGCATACCGAGAT -CCAACAGAAACGGCATACTACCAC -CCAACAGAAACGGCATACCAGAAC -CCAACAGAAACGGCATACGTCTAC -CCAACAGAAACGGCATACACGTAC -CCAACAGAAACGGCATACAGTGAC -CCAACAGAAACGGCATACCTGTAG -CCAACAGAAACGGCATACCCTAAG -CCAACAGAAACGGCATACGTTCAG -CCAACAGAAACGGCATACGCATAG -CCAACAGAAACGGCATACGACAAG -CCAACAGAAACGGCATACAAGCAG -CCAACAGAAACGGCATACCGTCAA -CCAACAGAAACGGCATACGCTGAA -CCAACAGAAACGGCATACAGTACG -CCAACAGAAACGGCATACATCCGA -CCAACAGAAACGGCATACATGGGA -CCAACAGAAACGGCATACGTGCAA -CCAACAGAAACGGCATACGAGGAA -CCAACAGAAACGGCATACCAGGTA -CCAACAGAAACGGCATACGACTCT -CCAACAGAAACGGCATACAGTCCT -CCAACAGAAACGGCATACTAAGCC -CCAACAGAAACGGCATACATAGCC -CCAACAGAAACGGCATACTAACCG -CCAACAGAAACGGCATACATGCCA -CCAACAGAAACGGCACTTGGAAAC -CCAACAGAAACGGCACTTAACACC -CCAACAGAAACGGCACTTATCGAG -CCAACAGAAACGGCACTTCTCCTT -CCAACAGAAACGGCACTTCCTGTT -CCAACAGAAACGGCACTTCGGTTT -CCAACAGAAACGGCACTTGTGGTT -CCAACAGAAACGGCACTTGCCTTT -CCAACAGAAACGGCACTTGGTCTT -CCAACAGAAACGGCACTTACGCTT -CCAACAGAAACGGCACTTAGCGTT -CCAACAGAAACGGCACTTTTCGTC -CCAACAGAAACGGCACTTTCTCTC -CCAACAGAAACGGCACTTTGGATC -CCAACAGAAACGGCACTTCACTTC -CCAACAGAAACGGCACTTGTACTC -CCAACAGAAACGGCACTTGATGTC -CCAACAGAAACGGCACTTACAGTC -CCAACAGAAACGGCACTTTTGCTG -CCAACAGAAACGGCACTTTCCATG -CCAACAGAAACGGCACTTTGTGTG -CCAACAGAAACGGCACTTCTAGTG -CCAACAGAAACGGCACTTCATCTG -CCAACAGAAACGGCACTTGAGTTG -CCAACAGAAACGGCACTTAGACTG -CCAACAGAAACGGCACTTTCGGTA -CCAACAGAAACGGCACTTTGCCTA -CCAACAGAAACGGCACTTCCACTA -CCAACAGAAACGGCACTTGGAGTA -CCAACAGAAACGGCACTTTCGTCT -CCAACAGAAACGGCACTTTGCACT -CCAACAGAAACGGCACTTCTGACT -CCAACAGAAACGGCACTTCAACCT -CCAACAGAAACGGCACTTGCTACT -CCAACAGAAACGGCACTTGGATCT -CCAACAGAAACGGCACTTAAGGCT -CCAACAGAAACGGCACTTTCAACC -CCAACAGAAACGGCACTTTGTTCC -CCAACAGAAACGGCACTTATTCCC -CCAACAGAAACGGCACTTTTCTCG -CCAACAGAAACGGCACTTTAGACG -CCAACAGAAACGGCACTTGTAACG -CCAACAGAAACGGCACTTACTTCG -CCAACAGAAACGGCACTTTACGCA -CCAACAGAAACGGCACTTCTTGCA -CCAACAGAAACGGCACTTCGAACA -CCAACAGAAACGGCACTTCAGTCA -CCAACAGAAACGGCACTTGATCCA -CCAACAGAAACGGCACTTACGACA -CCAACAGAAACGGCACTTAGCTCA -CCAACAGAAACGGCACTTTCACGT -CCAACAGAAACGGCACTTCGTAGT -CCAACAGAAACGGCACTTGTCAGT -CCAACAGAAACGGCACTTGAAGGT -CCAACAGAAACGGCACTTAACCGT -CCAACAGAAACGGCACTTTTGTGC -CCAACAGAAACGGCACTTCTAAGC -CCAACAGAAACGGCACTTACTAGC -CCAACAGAAACGGCACTTAGATGC -CCAACAGAAACGGCACTTTGAAGG -CCAACAGAAACGGCACTTCAATGG -CCAACAGAAACGGCACTTATGAGG -CCAACAGAAACGGCACTTAATGGG -CCAACAGAAACGGCACTTTCCTGA -CCAACAGAAACGGCACTTTAGCGA -CCAACAGAAACGGCACTTCACAGA -CCAACAGAAACGGCACTTGCAAGA -CCAACAGAAACGGCACTTGGTTGA -CCAACAGAAACGGCACTTTCCGAT -CCAACAGAAACGGCACTTTGGCAT -CCAACAGAAACGGCACTTCGAGAT -CCAACAGAAACGGCACTTTACCAC -CCAACAGAAACGGCACTTCAGAAC -CCAACAGAAACGGCACTTGTCTAC -CCAACAGAAACGGCACTTACGTAC -CCAACAGAAACGGCACTTAGTGAC -CCAACAGAAACGGCACTTCTGTAG -CCAACAGAAACGGCACTTCCTAAG -CCAACAGAAACGGCACTTGTTCAG -CCAACAGAAACGGCACTTGCATAG -CCAACAGAAACGGCACTTGACAAG -CCAACAGAAACGGCACTTAAGCAG -CCAACAGAAACGGCACTTCGTCAA -CCAACAGAAACGGCACTTGCTGAA -CCAACAGAAACGGCACTTAGTACG -CCAACAGAAACGGCACTTATCCGA -CCAACAGAAACGGCACTTATGGGA -CCAACAGAAACGGCACTTGTGCAA -CCAACAGAAACGGCACTTGAGGAA -CCAACAGAAACGGCACTTCAGGTA -CCAACAGAAACGGCACTTGACTCT -CCAACAGAAACGGCACTTAGTCCT -CCAACAGAAACGGCACTTTAAGCC -CCAACAGAAACGGCACTTATAGCC -CCAACAGAAACGGCACTTTAACCG -CCAACAGAAACGGCACTTATGCCA -CCAACAGAAACGACACGAGGAAAC -CCAACAGAAACGACACGAAACACC -CCAACAGAAACGACACGAATCGAG -CCAACAGAAACGACACGACTCCTT -CCAACAGAAACGACACGACCTGTT -CCAACAGAAACGACACGACGGTTT -CCAACAGAAACGACACGAGTGGTT -CCAACAGAAACGACACGAGCCTTT -CCAACAGAAACGACACGAGGTCTT -CCAACAGAAACGACACGAACGCTT -CCAACAGAAACGACACGAAGCGTT -CCAACAGAAACGACACGATTCGTC -CCAACAGAAACGACACGATCTCTC -CCAACAGAAACGACACGATGGATC -CCAACAGAAACGACACGACACTTC -CCAACAGAAACGACACGAGTACTC -CCAACAGAAACGACACGAGATGTC -CCAACAGAAACGACACGAACAGTC -CCAACAGAAACGACACGATTGCTG -CCAACAGAAACGACACGATCCATG -CCAACAGAAACGACACGATGTGTG -CCAACAGAAACGACACGACTAGTG -CCAACAGAAACGACACGACATCTG -CCAACAGAAACGACACGAGAGTTG -CCAACAGAAACGACACGAAGACTG -CCAACAGAAACGACACGATCGGTA -CCAACAGAAACGACACGATGCCTA -CCAACAGAAACGACACGACCACTA -CCAACAGAAACGACACGAGGAGTA -CCAACAGAAACGACACGATCGTCT -CCAACAGAAACGACACGATGCACT -CCAACAGAAACGACACGACTGACT -CCAACAGAAACGACACGACAACCT -CCAACAGAAACGACACGAGCTACT -CCAACAGAAACGACACGAGGATCT -CCAACAGAAACGACACGAAAGGCT -CCAACAGAAACGACACGATCAACC -CCAACAGAAACGACACGATGTTCC -CCAACAGAAACGACACGAATTCCC -CCAACAGAAACGACACGATTCTCG -CCAACAGAAACGACACGATAGACG -CCAACAGAAACGACACGAGTAACG -CCAACAGAAACGACACGAACTTCG -CCAACAGAAACGACACGATACGCA -CCAACAGAAACGACACGACTTGCA -CCAACAGAAACGACACGACGAACA -CCAACAGAAACGACACGACAGTCA -CCAACAGAAACGACACGAGATCCA -CCAACAGAAACGACACGAACGACA -CCAACAGAAACGACACGAAGCTCA -CCAACAGAAACGACACGATCACGT -CCAACAGAAACGACACGACGTAGT -CCAACAGAAACGACACGAGTCAGT -CCAACAGAAACGACACGAGAAGGT -CCAACAGAAACGACACGAAACCGT -CCAACAGAAACGACACGATTGTGC -CCAACAGAAACGACACGACTAAGC -CCAACAGAAACGACACGAACTAGC -CCAACAGAAACGACACGAAGATGC -CCAACAGAAACGACACGATGAAGG -CCAACAGAAACGACACGACAATGG -CCAACAGAAACGACACGAATGAGG -CCAACAGAAACGACACGAAATGGG -CCAACAGAAACGACACGATCCTGA -CCAACAGAAACGACACGATAGCGA -CCAACAGAAACGACACGACACAGA -CCAACAGAAACGACACGAGCAAGA -CCAACAGAAACGACACGAGGTTGA -CCAACAGAAACGACACGATCCGAT -CCAACAGAAACGACACGATGGCAT -CCAACAGAAACGACACGACGAGAT -CCAACAGAAACGACACGATACCAC -CCAACAGAAACGACACGACAGAAC -CCAACAGAAACGACACGAGTCTAC -CCAACAGAAACGACACGAACGTAC -CCAACAGAAACGACACGAAGTGAC -CCAACAGAAACGACACGACTGTAG -CCAACAGAAACGACACGACCTAAG -CCAACAGAAACGACACGAGTTCAG -CCAACAGAAACGACACGAGCATAG -CCAACAGAAACGACACGAGACAAG -CCAACAGAAACGACACGAAAGCAG -CCAACAGAAACGACACGACGTCAA -CCAACAGAAACGACACGAGCTGAA -CCAACAGAAACGACACGAAGTACG -CCAACAGAAACGACACGAATCCGA -CCAACAGAAACGACACGAATGGGA -CCAACAGAAACGACACGAGTGCAA -CCAACAGAAACGACACGAGAGGAA -CCAACAGAAACGACACGACAGGTA -CCAACAGAAACGACACGAGACTCT -CCAACAGAAACGACACGAAGTCCT -CCAACAGAAACGACACGATAAGCC -CCAACAGAAACGACACGAATAGCC -CCAACAGAAACGACACGATAACCG -CCAACAGAAACGACACGAATGCCA -CCAACAGAAACGTCACAGGGAAAC -CCAACAGAAACGTCACAGAACACC -CCAACAGAAACGTCACAGATCGAG -CCAACAGAAACGTCACAGCTCCTT -CCAACAGAAACGTCACAGCCTGTT -CCAACAGAAACGTCACAGCGGTTT -CCAACAGAAACGTCACAGGTGGTT -CCAACAGAAACGTCACAGGCCTTT -CCAACAGAAACGTCACAGGGTCTT -CCAACAGAAACGTCACAGACGCTT -CCAACAGAAACGTCACAGAGCGTT -CCAACAGAAACGTCACAGTTCGTC -CCAACAGAAACGTCACAGTCTCTC -CCAACAGAAACGTCACAGTGGATC -CCAACAGAAACGTCACAGCACTTC -CCAACAGAAACGTCACAGGTACTC -CCAACAGAAACGTCACAGGATGTC -CCAACAGAAACGTCACAGACAGTC -CCAACAGAAACGTCACAGTTGCTG -CCAACAGAAACGTCACAGTCCATG -CCAACAGAAACGTCACAGTGTGTG -CCAACAGAAACGTCACAGCTAGTG -CCAACAGAAACGTCACAGCATCTG -CCAACAGAAACGTCACAGGAGTTG -CCAACAGAAACGTCACAGAGACTG -CCAACAGAAACGTCACAGTCGGTA -CCAACAGAAACGTCACAGTGCCTA -CCAACAGAAACGTCACAGCCACTA -CCAACAGAAACGTCACAGGGAGTA -CCAACAGAAACGTCACAGTCGTCT -CCAACAGAAACGTCACAGTGCACT -CCAACAGAAACGTCACAGCTGACT -CCAACAGAAACGTCACAGCAACCT -CCAACAGAAACGTCACAGGCTACT -CCAACAGAAACGTCACAGGGATCT -CCAACAGAAACGTCACAGAAGGCT -CCAACAGAAACGTCACAGTCAACC -CCAACAGAAACGTCACAGTGTTCC -CCAACAGAAACGTCACAGATTCCC -CCAACAGAAACGTCACAGTTCTCG -CCAACAGAAACGTCACAGTAGACG -CCAACAGAAACGTCACAGGTAACG -CCAACAGAAACGTCACAGACTTCG -CCAACAGAAACGTCACAGTACGCA -CCAACAGAAACGTCACAGCTTGCA -CCAACAGAAACGTCACAGCGAACA -CCAACAGAAACGTCACAGCAGTCA -CCAACAGAAACGTCACAGGATCCA -CCAACAGAAACGTCACAGACGACA -CCAACAGAAACGTCACAGAGCTCA -CCAACAGAAACGTCACAGTCACGT -CCAACAGAAACGTCACAGCGTAGT -CCAACAGAAACGTCACAGGTCAGT -CCAACAGAAACGTCACAGGAAGGT -CCAACAGAAACGTCACAGAACCGT -CCAACAGAAACGTCACAGTTGTGC -CCAACAGAAACGTCACAGCTAAGC -CCAACAGAAACGTCACAGACTAGC -CCAACAGAAACGTCACAGAGATGC -CCAACAGAAACGTCACAGTGAAGG -CCAACAGAAACGTCACAGCAATGG -CCAACAGAAACGTCACAGATGAGG -CCAACAGAAACGTCACAGAATGGG -CCAACAGAAACGTCACAGTCCTGA -CCAACAGAAACGTCACAGTAGCGA -CCAACAGAAACGTCACAGCACAGA -CCAACAGAAACGTCACAGGCAAGA -CCAACAGAAACGTCACAGGGTTGA -CCAACAGAAACGTCACAGTCCGAT -CCAACAGAAACGTCACAGTGGCAT -CCAACAGAAACGTCACAGCGAGAT -CCAACAGAAACGTCACAGTACCAC -CCAACAGAAACGTCACAGCAGAAC -CCAACAGAAACGTCACAGGTCTAC -CCAACAGAAACGTCACAGACGTAC -CCAACAGAAACGTCACAGAGTGAC -CCAACAGAAACGTCACAGCTGTAG -CCAACAGAAACGTCACAGCCTAAG -CCAACAGAAACGTCACAGGTTCAG -CCAACAGAAACGTCACAGGCATAG -CCAACAGAAACGTCACAGGACAAG -CCAACAGAAACGTCACAGAAGCAG -CCAACAGAAACGTCACAGCGTCAA -CCAACAGAAACGTCACAGGCTGAA -CCAACAGAAACGTCACAGAGTACG -CCAACAGAAACGTCACAGATCCGA -CCAACAGAAACGTCACAGATGGGA -CCAACAGAAACGTCACAGGTGCAA -CCAACAGAAACGTCACAGGAGGAA -CCAACAGAAACGTCACAGCAGGTA -CCAACAGAAACGTCACAGGACTCT -CCAACAGAAACGTCACAGAGTCCT -CCAACAGAAACGTCACAGTAAGCC -CCAACAGAAACGTCACAGATAGCC -CCAACAGAAACGTCACAGTAACCG -CCAACAGAAACGTCACAGATGCCA -CCAACAGAAACGCCAGATGGAAAC -CCAACAGAAACGCCAGATAACACC -CCAACAGAAACGCCAGATATCGAG -CCAACAGAAACGCCAGATCTCCTT -CCAACAGAAACGCCAGATCCTGTT -CCAACAGAAACGCCAGATCGGTTT -CCAACAGAAACGCCAGATGTGGTT -CCAACAGAAACGCCAGATGCCTTT -CCAACAGAAACGCCAGATGGTCTT -CCAACAGAAACGCCAGATACGCTT -CCAACAGAAACGCCAGATAGCGTT -CCAACAGAAACGCCAGATTTCGTC -CCAACAGAAACGCCAGATTCTCTC -CCAACAGAAACGCCAGATTGGATC -CCAACAGAAACGCCAGATCACTTC -CCAACAGAAACGCCAGATGTACTC -CCAACAGAAACGCCAGATGATGTC -CCAACAGAAACGCCAGATACAGTC -CCAACAGAAACGCCAGATTTGCTG -CCAACAGAAACGCCAGATTCCATG -CCAACAGAAACGCCAGATTGTGTG -CCAACAGAAACGCCAGATCTAGTG -CCAACAGAAACGCCAGATCATCTG -CCAACAGAAACGCCAGATGAGTTG -CCAACAGAAACGCCAGATAGACTG -CCAACAGAAACGCCAGATTCGGTA -CCAACAGAAACGCCAGATTGCCTA -CCAACAGAAACGCCAGATCCACTA -CCAACAGAAACGCCAGATGGAGTA -CCAACAGAAACGCCAGATTCGTCT -CCAACAGAAACGCCAGATTGCACT -CCAACAGAAACGCCAGATCTGACT -CCAACAGAAACGCCAGATCAACCT -CCAACAGAAACGCCAGATGCTACT -CCAACAGAAACGCCAGATGGATCT -CCAACAGAAACGCCAGATAAGGCT -CCAACAGAAACGCCAGATTCAACC -CCAACAGAAACGCCAGATTGTTCC -CCAACAGAAACGCCAGATATTCCC -CCAACAGAAACGCCAGATTTCTCG -CCAACAGAAACGCCAGATTAGACG -CCAACAGAAACGCCAGATGTAACG -CCAACAGAAACGCCAGATACTTCG -CCAACAGAAACGCCAGATTACGCA -CCAACAGAAACGCCAGATCTTGCA -CCAACAGAAACGCCAGATCGAACA -CCAACAGAAACGCCAGATCAGTCA -CCAACAGAAACGCCAGATGATCCA -CCAACAGAAACGCCAGATACGACA -CCAACAGAAACGCCAGATAGCTCA -CCAACAGAAACGCCAGATTCACGT -CCAACAGAAACGCCAGATCGTAGT -CCAACAGAAACGCCAGATGTCAGT -CCAACAGAAACGCCAGATGAAGGT -CCAACAGAAACGCCAGATAACCGT -CCAACAGAAACGCCAGATTTGTGC -CCAACAGAAACGCCAGATCTAAGC -CCAACAGAAACGCCAGATACTAGC -CCAACAGAAACGCCAGATAGATGC -CCAACAGAAACGCCAGATTGAAGG -CCAACAGAAACGCCAGATCAATGG -CCAACAGAAACGCCAGATATGAGG -CCAACAGAAACGCCAGATAATGGG -CCAACAGAAACGCCAGATTCCTGA -CCAACAGAAACGCCAGATTAGCGA -CCAACAGAAACGCCAGATCACAGA -CCAACAGAAACGCCAGATGCAAGA -CCAACAGAAACGCCAGATGGTTGA -CCAACAGAAACGCCAGATTCCGAT -CCAACAGAAACGCCAGATTGGCAT -CCAACAGAAACGCCAGATCGAGAT -CCAACAGAAACGCCAGATTACCAC -CCAACAGAAACGCCAGATCAGAAC -CCAACAGAAACGCCAGATGTCTAC -CCAACAGAAACGCCAGATACGTAC -CCAACAGAAACGCCAGATAGTGAC -CCAACAGAAACGCCAGATCTGTAG -CCAACAGAAACGCCAGATCCTAAG -CCAACAGAAACGCCAGATGTTCAG -CCAACAGAAACGCCAGATGCATAG -CCAACAGAAACGCCAGATGACAAG -CCAACAGAAACGCCAGATAAGCAG -CCAACAGAAACGCCAGATCGTCAA -CCAACAGAAACGCCAGATGCTGAA -CCAACAGAAACGCCAGATAGTACG -CCAACAGAAACGCCAGATATCCGA -CCAACAGAAACGCCAGATATGGGA -CCAACAGAAACGCCAGATGTGCAA -CCAACAGAAACGCCAGATGAGGAA -CCAACAGAAACGCCAGATCAGGTA -CCAACAGAAACGCCAGATGACTCT -CCAACAGAAACGCCAGATAGTCCT -CCAACAGAAACGCCAGATTAAGCC -CCAACAGAAACGCCAGATATAGCC -CCAACAGAAACGCCAGATTAACCG -CCAACAGAAACGCCAGATATGCCA -CCAACAGAAACGACAACGGGAAAC -CCAACAGAAACGACAACGAACACC -CCAACAGAAACGACAACGATCGAG -CCAACAGAAACGACAACGCTCCTT -CCAACAGAAACGACAACGCCTGTT -CCAACAGAAACGACAACGCGGTTT -CCAACAGAAACGACAACGGTGGTT -CCAACAGAAACGACAACGGCCTTT -CCAACAGAAACGACAACGGGTCTT -CCAACAGAAACGACAACGACGCTT -CCAACAGAAACGACAACGAGCGTT -CCAACAGAAACGACAACGTTCGTC -CCAACAGAAACGACAACGTCTCTC -CCAACAGAAACGACAACGTGGATC -CCAACAGAAACGACAACGCACTTC -CCAACAGAAACGACAACGGTACTC -CCAACAGAAACGACAACGGATGTC -CCAACAGAAACGACAACGACAGTC -CCAACAGAAACGACAACGTTGCTG -CCAACAGAAACGACAACGTCCATG -CCAACAGAAACGACAACGTGTGTG -CCAACAGAAACGACAACGCTAGTG -CCAACAGAAACGACAACGCATCTG -CCAACAGAAACGACAACGGAGTTG -CCAACAGAAACGACAACGAGACTG -CCAACAGAAACGACAACGTCGGTA -CCAACAGAAACGACAACGTGCCTA -CCAACAGAAACGACAACGCCACTA -CCAACAGAAACGACAACGGGAGTA -CCAACAGAAACGACAACGTCGTCT -CCAACAGAAACGACAACGTGCACT -CCAACAGAAACGACAACGCTGACT -CCAACAGAAACGACAACGCAACCT -CCAACAGAAACGACAACGGCTACT -CCAACAGAAACGACAACGGGATCT -CCAACAGAAACGACAACGAAGGCT -CCAACAGAAACGACAACGTCAACC -CCAACAGAAACGACAACGTGTTCC -CCAACAGAAACGACAACGATTCCC -CCAACAGAAACGACAACGTTCTCG -CCAACAGAAACGACAACGTAGACG -CCAACAGAAACGACAACGGTAACG -CCAACAGAAACGACAACGACTTCG -CCAACAGAAACGACAACGTACGCA -CCAACAGAAACGACAACGCTTGCA -CCAACAGAAACGACAACGCGAACA -CCAACAGAAACGACAACGCAGTCA -CCAACAGAAACGACAACGGATCCA -CCAACAGAAACGACAACGACGACA -CCAACAGAAACGACAACGAGCTCA -CCAACAGAAACGACAACGTCACGT -CCAACAGAAACGACAACGCGTAGT -CCAACAGAAACGACAACGGTCAGT -CCAACAGAAACGACAACGGAAGGT -CCAACAGAAACGACAACGAACCGT -CCAACAGAAACGACAACGTTGTGC -CCAACAGAAACGACAACGCTAAGC -CCAACAGAAACGACAACGACTAGC -CCAACAGAAACGACAACGAGATGC -CCAACAGAAACGACAACGTGAAGG -CCAACAGAAACGACAACGCAATGG -CCAACAGAAACGACAACGATGAGG -CCAACAGAAACGACAACGAATGGG -CCAACAGAAACGACAACGTCCTGA -CCAACAGAAACGACAACGTAGCGA -CCAACAGAAACGACAACGCACAGA -CCAACAGAAACGACAACGGCAAGA -CCAACAGAAACGACAACGGGTTGA -CCAACAGAAACGACAACGTCCGAT -CCAACAGAAACGACAACGTGGCAT -CCAACAGAAACGACAACGCGAGAT -CCAACAGAAACGACAACGTACCAC -CCAACAGAAACGACAACGCAGAAC -CCAACAGAAACGACAACGGTCTAC -CCAACAGAAACGACAACGACGTAC -CCAACAGAAACGACAACGAGTGAC -CCAACAGAAACGACAACGCTGTAG -CCAACAGAAACGACAACGCCTAAG -CCAACAGAAACGACAACGGTTCAG -CCAACAGAAACGACAACGGCATAG -CCAACAGAAACGACAACGGACAAG -CCAACAGAAACGACAACGAAGCAG -CCAACAGAAACGACAACGCGTCAA -CCAACAGAAACGACAACGGCTGAA -CCAACAGAAACGACAACGAGTACG -CCAACAGAAACGACAACGATCCGA -CCAACAGAAACGACAACGATGGGA -CCAACAGAAACGACAACGGTGCAA -CCAACAGAAACGACAACGGAGGAA -CCAACAGAAACGACAACGCAGGTA -CCAACAGAAACGACAACGGACTCT -CCAACAGAAACGACAACGAGTCCT -CCAACAGAAACGACAACGTAAGCC -CCAACAGAAACGACAACGATAGCC -CCAACAGAAACGACAACGTAACCG -CCAACAGAAACGACAACGATGCCA -CCAACAGAAACGTCAAGCGGAAAC -CCAACAGAAACGTCAAGCAACACC -CCAACAGAAACGTCAAGCATCGAG -CCAACAGAAACGTCAAGCCTCCTT -CCAACAGAAACGTCAAGCCCTGTT -CCAACAGAAACGTCAAGCCGGTTT -CCAACAGAAACGTCAAGCGTGGTT -CCAACAGAAACGTCAAGCGCCTTT -CCAACAGAAACGTCAAGCGGTCTT -CCAACAGAAACGTCAAGCACGCTT -CCAACAGAAACGTCAAGCAGCGTT -CCAACAGAAACGTCAAGCTTCGTC -CCAACAGAAACGTCAAGCTCTCTC -CCAACAGAAACGTCAAGCTGGATC -CCAACAGAAACGTCAAGCCACTTC -CCAACAGAAACGTCAAGCGTACTC -CCAACAGAAACGTCAAGCGATGTC -CCAACAGAAACGTCAAGCACAGTC -CCAACAGAAACGTCAAGCTTGCTG -CCAACAGAAACGTCAAGCTCCATG -CCAACAGAAACGTCAAGCTGTGTG -CCAACAGAAACGTCAAGCCTAGTG -CCAACAGAAACGTCAAGCCATCTG -CCAACAGAAACGTCAAGCGAGTTG -CCAACAGAAACGTCAAGCAGACTG -CCAACAGAAACGTCAAGCTCGGTA -CCAACAGAAACGTCAAGCTGCCTA -CCAACAGAAACGTCAAGCCCACTA -CCAACAGAAACGTCAAGCGGAGTA -CCAACAGAAACGTCAAGCTCGTCT -CCAACAGAAACGTCAAGCTGCACT -CCAACAGAAACGTCAAGCCTGACT -CCAACAGAAACGTCAAGCCAACCT -CCAACAGAAACGTCAAGCGCTACT -CCAACAGAAACGTCAAGCGGATCT -CCAACAGAAACGTCAAGCAAGGCT -CCAACAGAAACGTCAAGCTCAACC -CCAACAGAAACGTCAAGCTGTTCC -CCAACAGAAACGTCAAGCATTCCC -CCAACAGAAACGTCAAGCTTCTCG -CCAACAGAAACGTCAAGCTAGACG -CCAACAGAAACGTCAAGCGTAACG -CCAACAGAAACGTCAAGCACTTCG -CCAACAGAAACGTCAAGCTACGCA -CCAACAGAAACGTCAAGCCTTGCA -CCAACAGAAACGTCAAGCCGAACA -CCAACAGAAACGTCAAGCCAGTCA -CCAACAGAAACGTCAAGCGATCCA -CCAACAGAAACGTCAAGCACGACA -CCAACAGAAACGTCAAGCAGCTCA -CCAACAGAAACGTCAAGCTCACGT -CCAACAGAAACGTCAAGCCGTAGT -CCAACAGAAACGTCAAGCGTCAGT -CCAACAGAAACGTCAAGCGAAGGT -CCAACAGAAACGTCAAGCAACCGT -CCAACAGAAACGTCAAGCTTGTGC -CCAACAGAAACGTCAAGCCTAAGC -CCAACAGAAACGTCAAGCACTAGC -CCAACAGAAACGTCAAGCAGATGC -CCAACAGAAACGTCAAGCTGAAGG -CCAACAGAAACGTCAAGCCAATGG -CCAACAGAAACGTCAAGCATGAGG -CCAACAGAAACGTCAAGCAATGGG -CCAACAGAAACGTCAAGCTCCTGA -CCAACAGAAACGTCAAGCTAGCGA -CCAACAGAAACGTCAAGCCACAGA -CCAACAGAAACGTCAAGCGCAAGA -CCAACAGAAACGTCAAGCGGTTGA -CCAACAGAAACGTCAAGCTCCGAT -CCAACAGAAACGTCAAGCTGGCAT -CCAACAGAAACGTCAAGCCGAGAT -CCAACAGAAACGTCAAGCTACCAC -CCAACAGAAACGTCAAGCCAGAAC -CCAACAGAAACGTCAAGCGTCTAC -CCAACAGAAACGTCAAGCACGTAC -CCAACAGAAACGTCAAGCAGTGAC -CCAACAGAAACGTCAAGCCTGTAG -CCAACAGAAACGTCAAGCCCTAAG -CCAACAGAAACGTCAAGCGTTCAG -CCAACAGAAACGTCAAGCGCATAG -CCAACAGAAACGTCAAGCGACAAG -CCAACAGAAACGTCAAGCAAGCAG -CCAACAGAAACGTCAAGCCGTCAA -CCAACAGAAACGTCAAGCGCTGAA -CCAACAGAAACGTCAAGCAGTACG -CCAACAGAAACGTCAAGCATCCGA -CCAACAGAAACGTCAAGCATGGGA -CCAACAGAAACGTCAAGCGTGCAA -CCAACAGAAACGTCAAGCGAGGAA -CCAACAGAAACGTCAAGCCAGGTA -CCAACAGAAACGTCAAGCGACTCT -CCAACAGAAACGTCAAGCAGTCCT -CCAACAGAAACGTCAAGCTAAGCC -CCAACAGAAACGTCAAGCATAGCC -CCAACAGAAACGTCAAGCTAACCG -CCAACAGAAACGTCAAGCATGCCA -CCAACAGAAACGCGTTCAGGAAAC -CCAACAGAAACGCGTTCAAACACC -CCAACAGAAACGCGTTCAATCGAG -CCAACAGAAACGCGTTCACTCCTT -CCAACAGAAACGCGTTCACCTGTT -CCAACAGAAACGCGTTCACGGTTT -CCAACAGAAACGCGTTCAGTGGTT -CCAACAGAAACGCGTTCAGCCTTT -CCAACAGAAACGCGTTCAGGTCTT -CCAACAGAAACGCGTTCAACGCTT -CCAACAGAAACGCGTTCAAGCGTT -CCAACAGAAACGCGTTCATTCGTC -CCAACAGAAACGCGTTCATCTCTC -CCAACAGAAACGCGTTCATGGATC -CCAACAGAAACGCGTTCACACTTC -CCAACAGAAACGCGTTCAGTACTC -CCAACAGAAACGCGTTCAGATGTC -CCAACAGAAACGCGTTCAACAGTC -CCAACAGAAACGCGTTCATTGCTG -CCAACAGAAACGCGTTCATCCATG -CCAACAGAAACGCGTTCATGTGTG -CCAACAGAAACGCGTTCACTAGTG -CCAACAGAAACGCGTTCACATCTG -CCAACAGAAACGCGTTCAGAGTTG -CCAACAGAAACGCGTTCAAGACTG -CCAACAGAAACGCGTTCATCGGTA -CCAACAGAAACGCGTTCATGCCTA -CCAACAGAAACGCGTTCACCACTA -CCAACAGAAACGCGTTCAGGAGTA -CCAACAGAAACGCGTTCATCGTCT -CCAACAGAAACGCGTTCATGCACT -CCAACAGAAACGCGTTCACTGACT -CCAACAGAAACGCGTTCACAACCT -CCAACAGAAACGCGTTCAGCTACT -CCAACAGAAACGCGTTCAGGATCT -CCAACAGAAACGCGTTCAAAGGCT -CCAACAGAAACGCGTTCATCAACC -CCAACAGAAACGCGTTCATGTTCC -CCAACAGAAACGCGTTCAATTCCC -CCAACAGAAACGCGTTCATTCTCG -CCAACAGAAACGCGTTCATAGACG -CCAACAGAAACGCGTTCAGTAACG -CCAACAGAAACGCGTTCAACTTCG -CCAACAGAAACGCGTTCATACGCA -CCAACAGAAACGCGTTCACTTGCA -CCAACAGAAACGCGTTCACGAACA -CCAACAGAAACGCGTTCACAGTCA -CCAACAGAAACGCGTTCAGATCCA -CCAACAGAAACGCGTTCAACGACA -CCAACAGAAACGCGTTCAAGCTCA -CCAACAGAAACGCGTTCATCACGT -CCAACAGAAACGCGTTCACGTAGT -CCAACAGAAACGCGTTCAGTCAGT -CCAACAGAAACGCGTTCAGAAGGT -CCAACAGAAACGCGTTCAAACCGT -CCAACAGAAACGCGTTCATTGTGC -CCAACAGAAACGCGTTCACTAAGC -CCAACAGAAACGCGTTCAACTAGC -CCAACAGAAACGCGTTCAAGATGC -CCAACAGAAACGCGTTCATGAAGG -CCAACAGAAACGCGTTCACAATGG -CCAACAGAAACGCGTTCAATGAGG -CCAACAGAAACGCGTTCAAATGGG -CCAACAGAAACGCGTTCATCCTGA -CCAACAGAAACGCGTTCATAGCGA -CCAACAGAAACGCGTTCACACAGA -CCAACAGAAACGCGTTCAGCAAGA -CCAACAGAAACGCGTTCAGGTTGA -CCAACAGAAACGCGTTCATCCGAT -CCAACAGAAACGCGTTCATGGCAT -CCAACAGAAACGCGTTCACGAGAT -CCAACAGAAACGCGTTCATACCAC -CCAACAGAAACGCGTTCACAGAAC -CCAACAGAAACGCGTTCAGTCTAC -CCAACAGAAACGCGTTCAACGTAC -CCAACAGAAACGCGTTCAAGTGAC -CCAACAGAAACGCGTTCACTGTAG -CCAACAGAAACGCGTTCACCTAAG -CCAACAGAAACGCGTTCAGTTCAG -CCAACAGAAACGCGTTCAGCATAG -CCAACAGAAACGCGTTCAGACAAG -CCAACAGAAACGCGTTCAAAGCAG -CCAACAGAAACGCGTTCACGTCAA -CCAACAGAAACGCGTTCAGCTGAA -CCAACAGAAACGCGTTCAAGTACG -CCAACAGAAACGCGTTCAATCCGA -CCAACAGAAACGCGTTCAATGGGA -CCAACAGAAACGCGTTCAGTGCAA -CCAACAGAAACGCGTTCAGAGGAA -CCAACAGAAACGCGTTCACAGGTA -CCAACAGAAACGCGTTCAGACTCT -CCAACAGAAACGCGTTCAAGTCCT -CCAACAGAAACGCGTTCATAAGCC -CCAACAGAAACGCGTTCAATAGCC -CCAACAGAAACGCGTTCATAACCG -CCAACAGAAACGCGTTCAATGCCA -CCAACAGAAACGAGTCGTGGAAAC -CCAACAGAAACGAGTCGTAACACC -CCAACAGAAACGAGTCGTATCGAG -CCAACAGAAACGAGTCGTCTCCTT -CCAACAGAAACGAGTCGTCCTGTT -CCAACAGAAACGAGTCGTCGGTTT -CCAACAGAAACGAGTCGTGTGGTT -CCAACAGAAACGAGTCGTGCCTTT -CCAACAGAAACGAGTCGTGGTCTT -CCAACAGAAACGAGTCGTACGCTT -CCAACAGAAACGAGTCGTAGCGTT -CCAACAGAAACGAGTCGTTTCGTC -CCAACAGAAACGAGTCGTTCTCTC -CCAACAGAAACGAGTCGTTGGATC -CCAACAGAAACGAGTCGTCACTTC -CCAACAGAAACGAGTCGTGTACTC -CCAACAGAAACGAGTCGTGATGTC -CCAACAGAAACGAGTCGTACAGTC -CCAACAGAAACGAGTCGTTTGCTG -CCAACAGAAACGAGTCGTTCCATG -CCAACAGAAACGAGTCGTTGTGTG -CCAACAGAAACGAGTCGTCTAGTG -CCAACAGAAACGAGTCGTCATCTG -CCAACAGAAACGAGTCGTGAGTTG -CCAACAGAAACGAGTCGTAGACTG -CCAACAGAAACGAGTCGTTCGGTA -CCAACAGAAACGAGTCGTTGCCTA -CCAACAGAAACGAGTCGTCCACTA -CCAACAGAAACGAGTCGTGGAGTA -CCAACAGAAACGAGTCGTTCGTCT -CCAACAGAAACGAGTCGTTGCACT -CCAACAGAAACGAGTCGTCTGACT -CCAACAGAAACGAGTCGTCAACCT -CCAACAGAAACGAGTCGTGCTACT -CCAACAGAAACGAGTCGTGGATCT -CCAACAGAAACGAGTCGTAAGGCT -CCAACAGAAACGAGTCGTTCAACC -CCAACAGAAACGAGTCGTTGTTCC -CCAACAGAAACGAGTCGTATTCCC -CCAACAGAAACGAGTCGTTTCTCG -CCAACAGAAACGAGTCGTTAGACG -CCAACAGAAACGAGTCGTGTAACG -CCAACAGAAACGAGTCGTACTTCG -CCAACAGAAACGAGTCGTTACGCA -CCAACAGAAACGAGTCGTCTTGCA -CCAACAGAAACGAGTCGTCGAACA -CCAACAGAAACGAGTCGTCAGTCA -CCAACAGAAACGAGTCGTGATCCA -CCAACAGAAACGAGTCGTACGACA -CCAACAGAAACGAGTCGTAGCTCA -CCAACAGAAACGAGTCGTTCACGT -CCAACAGAAACGAGTCGTCGTAGT -CCAACAGAAACGAGTCGTGTCAGT -CCAACAGAAACGAGTCGTGAAGGT -CCAACAGAAACGAGTCGTAACCGT -CCAACAGAAACGAGTCGTTTGTGC -CCAACAGAAACGAGTCGTCTAAGC -CCAACAGAAACGAGTCGTACTAGC -CCAACAGAAACGAGTCGTAGATGC -CCAACAGAAACGAGTCGTTGAAGG -CCAACAGAAACGAGTCGTCAATGG -CCAACAGAAACGAGTCGTATGAGG -CCAACAGAAACGAGTCGTAATGGG -CCAACAGAAACGAGTCGTTCCTGA -CCAACAGAAACGAGTCGTTAGCGA -CCAACAGAAACGAGTCGTCACAGA -CCAACAGAAACGAGTCGTGCAAGA -CCAACAGAAACGAGTCGTGGTTGA -CCAACAGAAACGAGTCGTTCCGAT -CCAACAGAAACGAGTCGTTGGCAT -CCAACAGAAACGAGTCGTCGAGAT -CCAACAGAAACGAGTCGTTACCAC -CCAACAGAAACGAGTCGTCAGAAC -CCAACAGAAACGAGTCGTGTCTAC -CCAACAGAAACGAGTCGTACGTAC -CCAACAGAAACGAGTCGTAGTGAC -CCAACAGAAACGAGTCGTCTGTAG -CCAACAGAAACGAGTCGTCCTAAG -CCAACAGAAACGAGTCGTGTTCAG -CCAACAGAAACGAGTCGTGCATAG -CCAACAGAAACGAGTCGTGACAAG -CCAACAGAAACGAGTCGTAAGCAG -CCAACAGAAACGAGTCGTCGTCAA -CCAACAGAAACGAGTCGTGCTGAA -CCAACAGAAACGAGTCGTAGTACG -CCAACAGAAACGAGTCGTATCCGA -CCAACAGAAACGAGTCGTATGGGA -CCAACAGAAACGAGTCGTGTGCAA -CCAACAGAAACGAGTCGTGAGGAA -CCAACAGAAACGAGTCGTCAGGTA -CCAACAGAAACGAGTCGTGACTCT -CCAACAGAAACGAGTCGTAGTCCT -CCAACAGAAACGAGTCGTTAAGCC -CCAACAGAAACGAGTCGTATAGCC -CCAACAGAAACGAGTCGTTAACCG -CCAACAGAAACGAGTCGTATGCCA -CCAACAGAAACGAGTGTCGGAAAC -CCAACAGAAACGAGTGTCAACACC -CCAACAGAAACGAGTGTCATCGAG -CCAACAGAAACGAGTGTCCTCCTT -CCAACAGAAACGAGTGTCCCTGTT -CCAACAGAAACGAGTGTCCGGTTT -CCAACAGAAACGAGTGTCGTGGTT -CCAACAGAAACGAGTGTCGCCTTT -CCAACAGAAACGAGTGTCGGTCTT -CCAACAGAAACGAGTGTCACGCTT -CCAACAGAAACGAGTGTCAGCGTT -CCAACAGAAACGAGTGTCTTCGTC -CCAACAGAAACGAGTGTCTCTCTC -CCAACAGAAACGAGTGTCTGGATC -CCAACAGAAACGAGTGTCCACTTC -CCAACAGAAACGAGTGTCGTACTC -CCAACAGAAACGAGTGTCGATGTC -CCAACAGAAACGAGTGTCACAGTC -CCAACAGAAACGAGTGTCTTGCTG -CCAACAGAAACGAGTGTCTCCATG -CCAACAGAAACGAGTGTCTGTGTG -CCAACAGAAACGAGTGTCCTAGTG -CCAACAGAAACGAGTGTCCATCTG -CCAACAGAAACGAGTGTCGAGTTG -CCAACAGAAACGAGTGTCAGACTG -CCAACAGAAACGAGTGTCTCGGTA -CCAACAGAAACGAGTGTCTGCCTA -CCAACAGAAACGAGTGTCCCACTA -CCAACAGAAACGAGTGTCGGAGTA -CCAACAGAAACGAGTGTCTCGTCT -CCAACAGAAACGAGTGTCTGCACT -CCAACAGAAACGAGTGTCCTGACT -CCAACAGAAACGAGTGTCCAACCT -CCAACAGAAACGAGTGTCGCTACT -CCAACAGAAACGAGTGTCGGATCT -CCAACAGAAACGAGTGTCAAGGCT -CCAACAGAAACGAGTGTCTCAACC -CCAACAGAAACGAGTGTCTGTTCC -CCAACAGAAACGAGTGTCATTCCC -CCAACAGAAACGAGTGTCTTCTCG -CCAACAGAAACGAGTGTCTAGACG -CCAACAGAAACGAGTGTCGTAACG -CCAACAGAAACGAGTGTCACTTCG -CCAACAGAAACGAGTGTCTACGCA -CCAACAGAAACGAGTGTCCTTGCA -CCAACAGAAACGAGTGTCCGAACA -CCAACAGAAACGAGTGTCCAGTCA -CCAACAGAAACGAGTGTCGATCCA -CCAACAGAAACGAGTGTCACGACA -CCAACAGAAACGAGTGTCAGCTCA -CCAACAGAAACGAGTGTCTCACGT -CCAACAGAAACGAGTGTCCGTAGT -CCAACAGAAACGAGTGTCGTCAGT -CCAACAGAAACGAGTGTCGAAGGT -CCAACAGAAACGAGTGTCAACCGT -CCAACAGAAACGAGTGTCTTGTGC -CCAACAGAAACGAGTGTCCTAAGC -CCAACAGAAACGAGTGTCACTAGC -CCAACAGAAACGAGTGTCAGATGC -CCAACAGAAACGAGTGTCTGAAGG -CCAACAGAAACGAGTGTCCAATGG -CCAACAGAAACGAGTGTCATGAGG -CCAACAGAAACGAGTGTCAATGGG -CCAACAGAAACGAGTGTCTCCTGA -CCAACAGAAACGAGTGTCTAGCGA -CCAACAGAAACGAGTGTCCACAGA -CCAACAGAAACGAGTGTCGCAAGA -CCAACAGAAACGAGTGTCGGTTGA -CCAACAGAAACGAGTGTCTCCGAT -CCAACAGAAACGAGTGTCTGGCAT -CCAACAGAAACGAGTGTCCGAGAT -CCAACAGAAACGAGTGTCTACCAC -CCAACAGAAACGAGTGTCCAGAAC -CCAACAGAAACGAGTGTCGTCTAC -CCAACAGAAACGAGTGTCACGTAC -CCAACAGAAACGAGTGTCAGTGAC -CCAACAGAAACGAGTGTCCTGTAG -CCAACAGAAACGAGTGTCCCTAAG -CCAACAGAAACGAGTGTCGTTCAG -CCAACAGAAACGAGTGTCGCATAG -CCAACAGAAACGAGTGTCGACAAG -CCAACAGAAACGAGTGTCAAGCAG -CCAACAGAAACGAGTGTCCGTCAA -CCAACAGAAACGAGTGTCGCTGAA -CCAACAGAAACGAGTGTCAGTACG -CCAACAGAAACGAGTGTCATCCGA -CCAACAGAAACGAGTGTCATGGGA -CCAACAGAAACGAGTGTCGTGCAA -CCAACAGAAACGAGTGTCGAGGAA -CCAACAGAAACGAGTGTCCAGGTA -CCAACAGAAACGAGTGTCGACTCT -CCAACAGAAACGAGTGTCAGTCCT -CCAACAGAAACGAGTGTCTAAGCC -CCAACAGAAACGAGTGTCATAGCC -CCAACAGAAACGAGTGTCTAACCG -CCAACAGAAACGAGTGTCATGCCA -CCAACAGAAACGGGTGAAGGAAAC -CCAACAGAAACGGGTGAAAACACC -CCAACAGAAACGGGTGAAATCGAG -CCAACAGAAACGGGTGAACTCCTT -CCAACAGAAACGGGTGAACCTGTT -CCAACAGAAACGGGTGAACGGTTT -CCAACAGAAACGGGTGAAGTGGTT -CCAACAGAAACGGGTGAAGCCTTT -CCAACAGAAACGGGTGAAGGTCTT -CCAACAGAAACGGGTGAAACGCTT -CCAACAGAAACGGGTGAAAGCGTT -CCAACAGAAACGGGTGAATTCGTC -CCAACAGAAACGGGTGAATCTCTC -CCAACAGAAACGGGTGAATGGATC -CCAACAGAAACGGGTGAACACTTC -CCAACAGAAACGGGTGAAGTACTC -CCAACAGAAACGGGTGAAGATGTC -CCAACAGAAACGGGTGAAACAGTC -CCAACAGAAACGGGTGAATTGCTG -CCAACAGAAACGGGTGAATCCATG -CCAACAGAAACGGGTGAATGTGTG -CCAACAGAAACGGGTGAACTAGTG -CCAACAGAAACGGGTGAACATCTG -CCAACAGAAACGGGTGAAGAGTTG -CCAACAGAAACGGGTGAAAGACTG -CCAACAGAAACGGGTGAATCGGTA -CCAACAGAAACGGGTGAATGCCTA -CCAACAGAAACGGGTGAACCACTA -CCAACAGAAACGGGTGAAGGAGTA -CCAACAGAAACGGGTGAATCGTCT -CCAACAGAAACGGGTGAATGCACT -CCAACAGAAACGGGTGAACTGACT -CCAACAGAAACGGGTGAACAACCT -CCAACAGAAACGGGTGAAGCTACT -CCAACAGAAACGGGTGAAGGATCT -CCAACAGAAACGGGTGAAAAGGCT -CCAACAGAAACGGGTGAATCAACC -CCAACAGAAACGGGTGAATGTTCC -CCAACAGAAACGGGTGAAATTCCC -CCAACAGAAACGGGTGAATTCTCG -CCAACAGAAACGGGTGAATAGACG -CCAACAGAAACGGGTGAAGTAACG -CCAACAGAAACGGGTGAAACTTCG -CCAACAGAAACGGGTGAATACGCA -CCAACAGAAACGGGTGAACTTGCA -CCAACAGAAACGGGTGAACGAACA -CCAACAGAAACGGGTGAACAGTCA -CCAACAGAAACGGGTGAAGATCCA -CCAACAGAAACGGGTGAAACGACA -CCAACAGAAACGGGTGAAAGCTCA -CCAACAGAAACGGGTGAATCACGT -CCAACAGAAACGGGTGAACGTAGT -CCAACAGAAACGGGTGAAGTCAGT -CCAACAGAAACGGGTGAAGAAGGT -CCAACAGAAACGGGTGAAAACCGT -CCAACAGAAACGGGTGAATTGTGC -CCAACAGAAACGGGTGAACTAAGC -CCAACAGAAACGGGTGAAACTAGC -CCAACAGAAACGGGTGAAAGATGC -CCAACAGAAACGGGTGAATGAAGG -CCAACAGAAACGGGTGAACAATGG -CCAACAGAAACGGGTGAAATGAGG -CCAACAGAAACGGGTGAAAATGGG -CCAACAGAAACGGGTGAATCCTGA -CCAACAGAAACGGGTGAATAGCGA -CCAACAGAAACGGGTGAACACAGA -CCAACAGAAACGGGTGAAGCAAGA -CCAACAGAAACGGGTGAAGGTTGA -CCAACAGAAACGGGTGAATCCGAT -CCAACAGAAACGGGTGAATGGCAT -CCAACAGAAACGGGTGAACGAGAT -CCAACAGAAACGGGTGAATACCAC -CCAACAGAAACGGGTGAACAGAAC -CCAACAGAAACGGGTGAAGTCTAC -CCAACAGAAACGGGTGAAACGTAC -CCAACAGAAACGGGTGAAAGTGAC -CCAACAGAAACGGGTGAACTGTAG -CCAACAGAAACGGGTGAACCTAAG -CCAACAGAAACGGGTGAAGTTCAG -CCAACAGAAACGGGTGAAGCATAG -CCAACAGAAACGGGTGAAGACAAG -CCAACAGAAACGGGTGAAAAGCAG -CCAACAGAAACGGGTGAACGTCAA -CCAACAGAAACGGGTGAAGCTGAA -CCAACAGAAACGGGTGAAAGTACG -CCAACAGAAACGGGTGAAATCCGA -CCAACAGAAACGGGTGAAATGGGA -CCAACAGAAACGGGTGAAGTGCAA -CCAACAGAAACGGGTGAAGAGGAA -CCAACAGAAACGGGTGAACAGGTA -CCAACAGAAACGGGTGAAGACTCT -CCAACAGAAACGGGTGAAAGTCCT -CCAACAGAAACGGGTGAATAAGCC -CCAACAGAAACGGGTGAAATAGCC -CCAACAGAAACGGGTGAATAACCG -CCAACAGAAACGGGTGAAATGCCA -CCAACAGAAACGCGTAACGGAAAC -CCAACAGAAACGCGTAACAACACC -CCAACAGAAACGCGTAACATCGAG -CCAACAGAAACGCGTAACCTCCTT -CCAACAGAAACGCGTAACCCTGTT -CCAACAGAAACGCGTAACCGGTTT -CCAACAGAAACGCGTAACGTGGTT -CCAACAGAAACGCGTAACGCCTTT -CCAACAGAAACGCGTAACGGTCTT -CCAACAGAAACGCGTAACACGCTT -CCAACAGAAACGCGTAACAGCGTT -CCAACAGAAACGCGTAACTTCGTC -CCAACAGAAACGCGTAACTCTCTC -CCAACAGAAACGCGTAACTGGATC -CCAACAGAAACGCGTAACCACTTC -CCAACAGAAACGCGTAACGTACTC -CCAACAGAAACGCGTAACGATGTC -CCAACAGAAACGCGTAACACAGTC -CCAACAGAAACGCGTAACTTGCTG -CCAACAGAAACGCGTAACTCCATG -CCAACAGAAACGCGTAACTGTGTG -CCAACAGAAACGCGTAACCTAGTG -CCAACAGAAACGCGTAACCATCTG -CCAACAGAAACGCGTAACGAGTTG -CCAACAGAAACGCGTAACAGACTG -CCAACAGAAACGCGTAACTCGGTA -CCAACAGAAACGCGTAACTGCCTA -CCAACAGAAACGCGTAACCCACTA -CCAACAGAAACGCGTAACGGAGTA -CCAACAGAAACGCGTAACTCGTCT -CCAACAGAAACGCGTAACTGCACT -CCAACAGAAACGCGTAACCTGACT -CCAACAGAAACGCGTAACCAACCT -CCAACAGAAACGCGTAACGCTACT -CCAACAGAAACGCGTAACGGATCT -CCAACAGAAACGCGTAACAAGGCT -CCAACAGAAACGCGTAACTCAACC -CCAACAGAAACGCGTAACTGTTCC -CCAACAGAAACGCGTAACATTCCC -CCAACAGAAACGCGTAACTTCTCG -CCAACAGAAACGCGTAACTAGACG -CCAACAGAAACGCGTAACGTAACG -CCAACAGAAACGCGTAACACTTCG -CCAACAGAAACGCGTAACTACGCA -CCAACAGAAACGCGTAACCTTGCA -CCAACAGAAACGCGTAACCGAACA -CCAACAGAAACGCGTAACCAGTCA -CCAACAGAAACGCGTAACGATCCA -CCAACAGAAACGCGTAACACGACA -CCAACAGAAACGCGTAACAGCTCA -CCAACAGAAACGCGTAACTCACGT -CCAACAGAAACGCGTAACCGTAGT -CCAACAGAAACGCGTAACGTCAGT -CCAACAGAAACGCGTAACGAAGGT -CCAACAGAAACGCGTAACAACCGT -CCAACAGAAACGCGTAACTTGTGC -CCAACAGAAACGCGTAACCTAAGC -CCAACAGAAACGCGTAACACTAGC -CCAACAGAAACGCGTAACAGATGC -CCAACAGAAACGCGTAACTGAAGG -CCAACAGAAACGCGTAACCAATGG -CCAACAGAAACGCGTAACATGAGG -CCAACAGAAACGCGTAACAATGGG -CCAACAGAAACGCGTAACTCCTGA -CCAACAGAAACGCGTAACTAGCGA -CCAACAGAAACGCGTAACCACAGA -CCAACAGAAACGCGTAACGCAAGA -CCAACAGAAACGCGTAACGGTTGA -CCAACAGAAACGCGTAACTCCGAT -CCAACAGAAACGCGTAACTGGCAT -CCAACAGAAACGCGTAACCGAGAT -CCAACAGAAACGCGTAACTACCAC -CCAACAGAAACGCGTAACCAGAAC -CCAACAGAAACGCGTAACGTCTAC -CCAACAGAAACGCGTAACACGTAC -CCAACAGAAACGCGTAACAGTGAC -CCAACAGAAACGCGTAACCTGTAG -CCAACAGAAACGCGTAACCCTAAG -CCAACAGAAACGCGTAACGTTCAG -CCAACAGAAACGCGTAACGCATAG -CCAACAGAAACGCGTAACGACAAG -CCAACAGAAACGCGTAACAAGCAG -CCAACAGAAACGCGTAACCGTCAA -CCAACAGAAACGCGTAACGCTGAA -CCAACAGAAACGCGTAACAGTACG -CCAACAGAAACGCGTAACATCCGA -CCAACAGAAACGCGTAACATGGGA -CCAACAGAAACGCGTAACGTGCAA -CCAACAGAAACGCGTAACGAGGAA -CCAACAGAAACGCGTAACCAGGTA -CCAACAGAAACGCGTAACGACTCT -CCAACAGAAACGCGTAACAGTCCT -CCAACAGAAACGCGTAACTAAGCC -CCAACAGAAACGCGTAACATAGCC -CCAACAGAAACGCGTAACTAACCG -CCAACAGAAACGCGTAACATGCCA -CCAACAGAAACGTGCTTGGGAAAC -CCAACAGAAACGTGCTTGAACACC -CCAACAGAAACGTGCTTGATCGAG -CCAACAGAAACGTGCTTGCTCCTT -CCAACAGAAACGTGCTTGCCTGTT -CCAACAGAAACGTGCTTGCGGTTT -CCAACAGAAACGTGCTTGGTGGTT -CCAACAGAAACGTGCTTGGCCTTT -CCAACAGAAACGTGCTTGGGTCTT -CCAACAGAAACGTGCTTGACGCTT -CCAACAGAAACGTGCTTGAGCGTT -CCAACAGAAACGTGCTTGTTCGTC -CCAACAGAAACGTGCTTGTCTCTC -CCAACAGAAACGTGCTTGTGGATC -CCAACAGAAACGTGCTTGCACTTC -CCAACAGAAACGTGCTTGGTACTC -CCAACAGAAACGTGCTTGGATGTC -CCAACAGAAACGTGCTTGACAGTC -CCAACAGAAACGTGCTTGTTGCTG -CCAACAGAAACGTGCTTGTCCATG -CCAACAGAAACGTGCTTGTGTGTG -CCAACAGAAACGTGCTTGCTAGTG -CCAACAGAAACGTGCTTGCATCTG -CCAACAGAAACGTGCTTGGAGTTG -CCAACAGAAACGTGCTTGAGACTG -CCAACAGAAACGTGCTTGTCGGTA -CCAACAGAAACGTGCTTGTGCCTA -CCAACAGAAACGTGCTTGCCACTA -CCAACAGAAACGTGCTTGGGAGTA -CCAACAGAAACGTGCTTGTCGTCT -CCAACAGAAACGTGCTTGTGCACT -CCAACAGAAACGTGCTTGCTGACT -CCAACAGAAACGTGCTTGCAACCT -CCAACAGAAACGTGCTTGGCTACT -CCAACAGAAACGTGCTTGGGATCT -CCAACAGAAACGTGCTTGAAGGCT -CCAACAGAAACGTGCTTGTCAACC -CCAACAGAAACGTGCTTGTGTTCC -CCAACAGAAACGTGCTTGATTCCC -CCAACAGAAACGTGCTTGTTCTCG -CCAACAGAAACGTGCTTGTAGACG -CCAACAGAAACGTGCTTGGTAACG -CCAACAGAAACGTGCTTGACTTCG -CCAACAGAAACGTGCTTGTACGCA -CCAACAGAAACGTGCTTGCTTGCA -CCAACAGAAACGTGCTTGCGAACA -CCAACAGAAACGTGCTTGCAGTCA -CCAACAGAAACGTGCTTGGATCCA -CCAACAGAAACGTGCTTGACGACA -CCAACAGAAACGTGCTTGAGCTCA -CCAACAGAAACGTGCTTGTCACGT -CCAACAGAAACGTGCTTGCGTAGT -CCAACAGAAACGTGCTTGGTCAGT -CCAACAGAAACGTGCTTGGAAGGT -CCAACAGAAACGTGCTTGAACCGT -CCAACAGAAACGTGCTTGTTGTGC -CCAACAGAAACGTGCTTGCTAAGC -CCAACAGAAACGTGCTTGACTAGC -CCAACAGAAACGTGCTTGAGATGC -CCAACAGAAACGTGCTTGTGAAGG -CCAACAGAAACGTGCTTGCAATGG -CCAACAGAAACGTGCTTGATGAGG -CCAACAGAAACGTGCTTGAATGGG -CCAACAGAAACGTGCTTGTCCTGA -CCAACAGAAACGTGCTTGTAGCGA -CCAACAGAAACGTGCTTGCACAGA -CCAACAGAAACGTGCTTGGCAAGA -CCAACAGAAACGTGCTTGGGTTGA -CCAACAGAAACGTGCTTGTCCGAT -CCAACAGAAACGTGCTTGTGGCAT -CCAACAGAAACGTGCTTGCGAGAT -CCAACAGAAACGTGCTTGTACCAC -CCAACAGAAACGTGCTTGCAGAAC -CCAACAGAAACGTGCTTGGTCTAC -CCAACAGAAACGTGCTTGACGTAC -CCAACAGAAACGTGCTTGAGTGAC -CCAACAGAAACGTGCTTGCTGTAG -CCAACAGAAACGTGCTTGCCTAAG -CCAACAGAAACGTGCTTGGTTCAG -CCAACAGAAACGTGCTTGGCATAG -CCAACAGAAACGTGCTTGGACAAG -CCAACAGAAACGTGCTTGAAGCAG -CCAACAGAAACGTGCTTGCGTCAA -CCAACAGAAACGTGCTTGGCTGAA -CCAACAGAAACGTGCTTGAGTACG -CCAACAGAAACGTGCTTGATCCGA -CCAACAGAAACGTGCTTGATGGGA -CCAACAGAAACGTGCTTGGTGCAA -CCAACAGAAACGTGCTTGGAGGAA -CCAACAGAAACGTGCTTGCAGGTA -CCAACAGAAACGTGCTTGGACTCT -CCAACAGAAACGTGCTTGAGTCCT -CCAACAGAAACGTGCTTGTAAGCC -CCAACAGAAACGTGCTTGATAGCC -CCAACAGAAACGTGCTTGTAACCG -CCAACAGAAACGTGCTTGATGCCA -CCAACAGAAACGAGCCTAGGAAAC -CCAACAGAAACGAGCCTAAACACC -CCAACAGAAACGAGCCTAATCGAG -CCAACAGAAACGAGCCTACTCCTT -CCAACAGAAACGAGCCTACCTGTT -CCAACAGAAACGAGCCTACGGTTT -CCAACAGAAACGAGCCTAGTGGTT -CCAACAGAAACGAGCCTAGCCTTT -CCAACAGAAACGAGCCTAGGTCTT -CCAACAGAAACGAGCCTAACGCTT -CCAACAGAAACGAGCCTAAGCGTT -CCAACAGAAACGAGCCTATTCGTC -CCAACAGAAACGAGCCTATCTCTC -CCAACAGAAACGAGCCTATGGATC -CCAACAGAAACGAGCCTACACTTC -CCAACAGAAACGAGCCTAGTACTC -CCAACAGAAACGAGCCTAGATGTC -CCAACAGAAACGAGCCTAACAGTC -CCAACAGAAACGAGCCTATTGCTG -CCAACAGAAACGAGCCTATCCATG -CCAACAGAAACGAGCCTATGTGTG -CCAACAGAAACGAGCCTACTAGTG -CCAACAGAAACGAGCCTACATCTG -CCAACAGAAACGAGCCTAGAGTTG -CCAACAGAAACGAGCCTAAGACTG -CCAACAGAAACGAGCCTATCGGTA -CCAACAGAAACGAGCCTATGCCTA -CCAACAGAAACGAGCCTACCACTA -CCAACAGAAACGAGCCTAGGAGTA -CCAACAGAAACGAGCCTATCGTCT -CCAACAGAAACGAGCCTATGCACT -CCAACAGAAACGAGCCTACTGACT -CCAACAGAAACGAGCCTACAACCT -CCAACAGAAACGAGCCTAGCTACT -CCAACAGAAACGAGCCTAGGATCT -CCAACAGAAACGAGCCTAAAGGCT -CCAACAGAAACGAGCCTATCAACC -CCAACAGAAACGAGCCTATGTTCC -CCAACAGAAACGAGCCTAATTCCC -CCAACAGAAACGAGCCTATTCTCG -CCAACAGAAACGAGCCTATAGACG -CCAACAGAAACGAGCCTAGTAACG -CCAACAGAAACGAGCCTAACTTCG -CCAACAGAAACGAGCCTATACGCA -CCAACAGAAACGAGCCTACTTGCA -CCAACAGAAACGAGCCTACGAACA -CCAACAGAAACGAGCCTACAGTCA -CCAACAGAAACGAGCCTAGATCCA -CCAACAGAAACGAGCCTAACGACA -CCAACAGAAACGAGCCTAAGCTCA -CCAACAGAAACGAGCCTATCACGT -CCAACAGAAACGAGCCTACGTAGT -CCAACAGAAACGAGCCTAGTCAGT -CCAACAGAAACGAGCCTAGAAGGT -CCAACAGAAACGAGCCTAAACCGT -CCAACAGAAACGAGCCTATTGTGC -CCAACAGAAACGAGCCTACTAAGC -CCAACAGAAACGAGCCTAACTAGC -CCAACAGAAACGAGCCTAAGATGC -CCAACAGAAACGAGCCTATGAAGG -CCAACAGAAACGAGCCTACAATGG -CCAACAGAAACGAGCCTAATGAGG -CCAACAGAAACGAGCCTAAATGGG -CCAACAGAAACGAGCCTATCCTGA -CCAACAGAAACGAGCCTATAGCGA -CCAACAGAAACGAGCCTACACAGA -CCAACAGAAACGAGCCTAGCAAGA -CCAACAGAAACGAGCCTAGGTTGA -CCAACAGAAACGAGCCTATCCGAT -CCAACAGAAACGAGCCTATGGCAT -CCAACAGAAACGAGCCTACGAGAT -CCAACAGAAACGAGCCTATACCAC -CCAACAGAAACGAGCCTACAGAAC -CCAACAGAAACGAGCCTAGTCTAC -CCAACAGAAACGAGCCTAACGTAC -CCAACAGAAACGAGCCTAAGTGAC -CCAACAGAAACGAGCCTACTGTAG -CCAACAGAAACGAGCCTACCTAAG -CCAACAGAAACGAGCCTAGTTCAG -CCAACAGAAACGAGCCTAGCATAG -CCAACAGAAACGAGCCTAGACAAG -CCAACAGAAACGAGCCTAAAGCAG -CCAACAGAAACGAGCCTACGTCAA -CCAACAGAAACGAGCCTAGCTGAA -CCAACAGAAACGAGCCTAAGTACG -CCAACAGAAACGAGCCTAATCCGA -CCAACAGAAACGAGCCTAATGGGA -CCAACAGAAACGAGCCTAGTGCAA -CCAACAGAAACGAGCCTAGAGGAA -CCAACAGAAACGAGCCTACAGGTA -CCAACAGAAACGAGCCTAGACTCT -CCAACAGAAACGAGCCTAAGTCCT -CCAACAGAAACGAGCCTATAAGCC -CCAACAGAAACGAGCCTAATAGCC -CCAACAGAAACGAGCCTATAACCG -CCAACAGAAACGAGCCTAATGCCA -CCAACAGAAACGAGCACTGGAAAC -CCAACAGAAACGAGCACTAACACC -CCAACAGAAACGAGCACTATCGAG -CCAACAGAAACGAGCACTCTCCTT -CCAACAGAAACGAGCACTCCTGTT -CCAACAGAAACGAGCACTCGGTTT -CCAACAGAAACGAGCACTGTGGTT -CCAACAGAAACGAGCACTGCCTTT -CCAACAGAAACGAGCACTGGTCTT -CCAACAGAAACGAGCACTACGCTT -CCAACAGAAACGAGCACTAGCGTT -CCAACAGAAACGAGCACTTTCGTC -CCAACAGAAACGAGCACTTCTCTC -CCAACAGAAACGAGCACTTGGATC -CCAACAGAAACGAGCACTCACTTC -CCAACAGAAACGAGCACTGTACTC -CCAACAGAAACGAGCACTGATGTC -CCAACAGAAACGAGCACTACAGTC -CCAACAGAAACGAGCACTTTGCTG -CCAACAGAAACGAGCACTTCCATG -CCAACAGAAACGAGCACTTGTGTG -CCAACAGAAACGAGCACTCTAGTG -CCAACAGAAACGAGCACTCATCTG -CCAACAGAAACGAGCACTGAGTTG -CCAACAGAAACGAGCACTAGACTG -CCAACAGAAACGAGCACTTCGGTA -CCAACAGAAACGAGCACTTGCCTA -CCAACAGAAACGAGCACTCCACTA -CCAACAGAAACGAGCACTGGAGTA -CCAACAGAAACGAGCACTTCGTCT -CCAACAGAAACGAGCACTTGCACT -CCAACAGAAACGAGCACTCTGACT -CCAACAGAAACGAGCACTCAACCT -CCAACAGAAACGAGCACTGCTACT -CCAACAGAAACGAGCACTGGATCT -CCAACAGAAACGAGCACTAAGGCT -CCAACAGAAACGAGCACTTCAACC -CCAACAGAAACGAGCACTTGTTCC -CCAACAGAAACGAGCACTATTCCC -CCAACAGAAACGAGCACTTTCTCG -CCAACAGAAACGAGCACTTAGACG -CCAACAGAAACGAGCACTGTAACG -CCAACAGAAACGAGCACTACTTCG -CCAACAGAAACGAGCACTTACGCA -CCAACAGAAACGAGCACTCTTGCA -CCAACAGAAACGAGCACTCGAACA -CCAACAGAAACGAGCACTCAGTCA -CCAACAGAAACGAGCACTGATCCA -CCAACAGAAACGAGCACTACGACA -CCAACAGAAACGAGCACTAGCTCA -CCAACAGAAACGAGCACTTCACGT -CCAACAGAAACGAGCACTCGTAGT -CCAACAGAAACGAGCACTGTCAGT -CCAACAGAAACGAGCACTGAAGGT -CCAACAGAAACGAGCACTAACCGT -CCAACAGAAACGAGCACTTTGTGC -CCAACAGAAACGAGCACTCTAAGC -CCAACAGAAACGAGCACTACTAGC -CCAACAGAAACGAGCACTAGATGC -CCAACAGAAACGAGCACTTGAAGG -CCAACAGAAACGAGCACTCAATGG -CCAACAGAAACGAGCACTATGAGG -CCAACAGAAACGAGCACTAATGGG -CCAACAGAAACGAGCACTTCCTGA -CCAACAGAAACGAGCACTTAGCGA -CCAACAGAAACGAGCACTCACAGA -CCAACAGAAACGAGCACTGCAAGA -CCAACAGAAACGAGCACTGGTTGA -CCAACAGAAACGAGCACTTCCGAT -CCAACAGAAACGAGCACTTGGCAT -CCAACAGAAACGAGCACTCGAGAT -CCAACAGAAACGAGCACTTACCAC -CCAACAGAAACGAGCACTCAGAAC -CCAACAGAAACGAGCACTGTCTAC -CCAACAGAAACGAGCACTACGTAC -CCAACAGAAACGAGCACTAGTGAC -CCAACAGAAACGAGCACTCTGTAG -CCAACAGAAACGAGCACTCCTAAG -CCAACAGAAACGAGCACTGTTCAG -CCAACAGAAACGAGCACTGCATAG -CCAACAGAAACGAGCACTGACAAG -CCAACAGAAACGAGCACTAAGCAG -CCAACAGAAACGAGCACTCGTCAA -CCAACAGAAACGAGCACTGCTGAA -CCAACAGAAACGAGCACTAGTACG -CCAACAGAAACGAGCACTATCCGA -CCAACAGAAACGAGCACTATGGGA -CCAACAGAAACGAGCACTGTGCAA -CCAACAGAAACGAGCACTGAGGAA -CCAACAGAAACGAGCACTCAGGTA -CCAACAGAAACGAGCACTGACTCT -CCAACAGAAACGAGCACTAGTCCT -CCAACAGAAACGAGCACTTAAGCC -CCAACAGAAACGAGCACTATAGCC -CCAACAGAAACGAGCACTTAACCG -CCAACAGAAACGAGCACTATGCCA -CCAACAGAAACGTGCAGAGGAAAC -CCAACAGAAACGTGCAGAAACACC -CCAACAGAAACGTGCAGAATCGAG -CCAACAGAAACGTGCAGACTCCTT -CCAACAGAAACGTGCAGACCTGTT -CCAACAGAAACGTGCAGACGGTTT -CCAACAGAAACGTGCAGAGTGGTT -CCAACAGAAACGTGCAGAGCCTTT -CCAACAGAAACGTGCAGAGGTCTT -CCAACAGAAACGTGCAGAACGCTT -CCAACAGAAACGTGCAGAAGCGTT -CCAACAGAAACGTGCAGATTCGTC -CCAACAGAAACGTGCAGATCTCTC -CCAACAGAAACGTGCAGATGGATC -CCAACAGAAACGTGCAGACACTTC -CCAACAGAAACGTGCAGAGTACTC -CCAACAGAAACGTGCAGAGATGTC -CCAACAGAAACGTGCAGAACAGTC -CCAACAGAAACGTGCAGATTGCTG -CCAACAGAAACGTGCAGATCCATG -CCAACAGAAACGTGCAGATGTGTG -CCAACAGAAACGTGCAGACTAGTG -CCAACAGAAACGTGCAGACATCTG -CCAACAGAAACGTGCAGAGAGTTG -CCAACAGAAACGTGCAGAAGACTG -CCAACAGAAACGTGCAGATCGGTA -CCAACAGAAACGTGCAGATGCCTA -CCAACAGAAACGTGCAGACCACTA -CCAACAGAAACGTGCAGAGGAGTA -CCAACAGAAACGTGCAGATCGTCT -CCAACAGAAACGTGCAGATGCACT -CCAACAGAAACGTGCAGACTGACT -CCAACAGAAACGTGCAGACAACCT -CCAACAGAAACGTGCAGAGCTACT -CCAACAGAAACGTGCAGAGGATCT -CCAACAGAAACGTGCAGAAAGGCT -CCAACAGAAACGTGCAGATCAACC -CCAACAGAAACGTGCAGATGTTCC -CCAACAGAAACGTGCAGAATTCCC -CCAACAGAAACGTGCAGATTCTCG -CCAACAGAAACGTGCAGATAGACG -CCAACAGAAACGTGCAGAGTAACG -CCAACAGAAACGTGCAGAACTTCG -CCAACAGAAACGTGCAGATACGCA -CCAACAGAAACGTGCAGACTTGCA -CCAACAGAAACGTGCAGACGAACA -CCAACAGAAACGTGCAGACAGTCA -CCAACAGAAACGTGCAGAGATCCA -CCAACAGAAACGTGCAGAACGACA -CCAACAGAAACGTGCAGAAGCTCA -CCAACAGAAACGTGCAGATCACGT -CCAACAGAAACGTGCAGACGTAGT -CCAACAGAAACGTGCAGAGTCAGT -CCAACAGAAACGTGCAGAGAAGGT -CCAACAGAAACGTGCAGAAACCGT -CCAACAGAAACGTGCAGATTGTGC -CCAACAGAAACGTGCAGACTAAGC -CCAACAGAAACGTGCAGAACTAGC -CCAACAGAAACGTGCAGAAGATGC -CCAACAGAAACGTGCAGATGAAGG -CCAACAGAAACGTGCAGACAATGG -CCAACAGAAACGTGCAGAATGAGG -CCAACAGAAACGTGCAGAAATGGG -CCAACAGAAACGTGCAGATCCTGA -CCAACAGAAACGTGCAGATAGCGA -CCAACAGAAACGTGCAGACACAGA -CCAACAGAAACGTGCAGAGCAAGA -CCAACAGAAACGTGCAGAGGTTGA -CCAACAGAAACGTGCAGATCCGAT -CCAACAGAAACGTGCAGATGGCAT -CCAACAGAAACGTGCAGACGAGAT -CCAACAGAAACGTGCAGATACCAC -CCAACAGAAACGTGCAGACAGAAC -CCAACAGAAACGTGCAGAGTCTAC -CCAACAGAAACGTGCAGAACGTAC -CCAACAGAAACGTGCAGAAGTGAC -CCAACAGAAACGTGCAGACTGTAG -CCAACAGAAACGTGCAGACCTAAG -CCAACAGAAACGTGCAGAGTTCAG -CCAACAGAAACGTGCAGAGCATAG -CCAACAGAAACGTGCAGAGACAAG -CCAACAGAAACGTGCAGAAAGCAG -CCAACAGAAACGTGCAGACGTCAA -CCAACAGAAACGTGCAGAGCTGAA -CCAACAGAAACGTGCAGAAGTACG -CCAACAGAAACGTGCAGAATCCGA -CCAACAGAAACGTGCAGAATGGGA -CCAACAGAAACGTGCAGAGTGCAA -CCAACAGAAACGTGCAGAGAGGAA -CCAACAGAAACGTGCAGACAGGTA -CCAACAGAAACGTGCAGAGACTCT -CCAACAGAAACGTGCAGAAGTCCT -CCAACAGAAACGTGCAGATAAGCC -CCAACAGAAACGTGCAGAATAGCC -CCAACAGAAACGTGCAGATAACCG -CCAACAGAAACGTGCAGAATGCCA -CCAACAGAAACGAGGTGAGGAAAC -CCAACAGAAACGAGGTGAAACACC -CCAACAGAAACGAGGTGAATCGAG -CCAACAGAAACGAGGTGACTCCTT -CCAACAGAAACGAGGTGACCTGTT -CCAACAGAAACGAGGTGACGGTTT -CCAACAGAAACGAGGTGAGTGGTT -CCAACAGAAACGAGGTGAGCCTTT -CCAACAGAAACGAGGTGAGGTCTT -CCAACAGAAACGAGGTGAACGCTT -CCAACAGAAACGAGGTGAAGCGTT -CCAACAGAAACGAGGTGATTCGTC -CCAACAGAAACGAGGTGATCTCTC -CCAACAGAAACGAGGTGATGGATC -CCAACAGAAACGAGGTGACACTTC -CCAACAGAAACGAGGTGAGTACTC -CCAACAGAAACGAGGTGAGATGTC -CCAACAGAAACGAGGTGAACAGTC -CCAACAGAAACGAGGTGATTGCTG -CCAACAGAAACGAGGTGATCCATG -CCAACAGAAACGAGGTGATGTGTG -CCAACAGAAACGAGGTGACTAGTG -CCAACAGAAACGAGGTGACATCTG -CCAACAGAAACGAGGTGAGAGTTG -CCAACAGAAACGAGGTGAAGACTG -CCAACAGAAACGAGGTGATCGGTA -CCAACAGAAACGAGGTGATGCCTA -CCAACAGAAACGAGGTGACCACTA -CCAACAGAAACGAGGTGAGGAGTA -CCAACAGAAACGAGGTGATCGTCT -CCAACAGAAACGAGGTGATGCACT -CCAACAGAAACGAGGTGACTGACT -CCAACAGAAACGAGGTGACAACCT -CCAACAGAAACGAGGTGAGCTACT -CCAACAGAAACGAGGTGAGGATCT -CCAACAGAAACGAGGTGAAAGGCT -CCAACAGAAACGAGGTGATCAACC -CCAACAGAAACGAGGTGATGTTCC -CCAACAGAAACGAGGTGAATTCCC -CCAACAGAAACGAGGTGATTCTCG -CCAACAGAAACGAGGTGATAGACG -CCAACAGAAACGAGGTGAGTAACG -CCAACAGAAACGAGGTGAACTTCG -CCAACAGAAACGAGGTGATACGCA -CCAACAGAAACGAGGTGACTTGCA -CCAACAGAAACGAGGTGACGAACA -CCAACAGAAACGAGGTGACAGTCA -CCAACAGAAACGAGGTGAGATCCA -CCAACAGAAACGAGGTGAACGACA -CCAACAGAAACGAGGTGAAGCTCA -CCAACAGAAACGAGGTGATCACGT -CCAACAGAAACGAGGTGACGTAGT -CCAACAGAAACGAGGTGAGTCAGT -CCAACAGAAACGAGGTGAGAAGGT -CCAACAGAAACGAGGTGAAACCGT -CCAACAGAAACGAGGTGATTGTGC -CCAACAGAAACGAGGTGACTAAGC -CCAACAGAAACGAGGTGAACTAGC -CCAACAGAAACGAGGTGAAGATGC -CCAACAGAAACGAGGTGATGAAGG -CCAACAGAAACGAGGTGACAATGG -CCAACAGAAACGAGGTGAATGAGG -CCAACAGAAACGAGGTGAAATGGG -CCAACAGAAACGAGGTGATCCTGA -CCAACAGAAACGAGGTGATAGCGA -CCAACAGAAACGAGGTGACACAGA -CCAACAGAAACGAGGTGAGCAAGA -CCAACAGAAACGAGGTGAGGTTGA -CCAACAGAAACGAGGTGATCCGAT -CCAACAGAAACGAGGTGATGGCAT -CCAACAGAAACGAGGTGACGAGAT -CCAACAGAAACGAGGTGATACCAC -CCAACAGAAACGAGGTGACAGAAC -CCAACAGAAACGAGGTGAGTCTAC -CCAACAGAAACGAGGTGAACGTAC -CCAACAGAAACGAGGTGAAGTGAC -CCAACAGAAACGAGGTGACTGTAG -CCAACAGAAACGAGGTGACCTAAG -CCAACAGAAACGAGGTGAGTTCAG -CCAACAGAAACGAGGTGAGCATAG -CCAACAGAAACGAGGTGAGACAAG -CCAACAGAAACGAGGTGAAAGCAG -CCAACAGAAACGAGGTGACGTCAA -CCAACAGAAACGAGGTGAGCTGAA -CCAACAGAAACGAGGTGAAGTACG -CCAACAGAAACGAGGTGAATCCGA -CCAACAGAAACGAGGTGAATGGGA -CCAACAGAAACGAGGTGAGTGCAA -CCAACAGAAACGAGGTGAGAGGAA -CCAACAGAAACGAGGTGACAGGTA -CCAACAGAAACGAGGTGAGACTCT -CCAACAGAAACGAGGTGAAGTCCT -CCAACAGAAACGAGGTGATAAGCC -CCAACAGAAACGAGGTGAATAGCC -CCAACAGAAACGAGGTGATAACCG -CCAACAGAAACGAGGTGAATGCCA -CCAACAGAAACGTGGCAAGGAAAC -CCAACAGAAACGTGGCAAAACACC -CCAACAGAAACGTGGCAAATCGAG -CCAACAGAAACGTGGCAACTCCTT -CCAACAGAAACGTGGCAACCTGTT -CCAACAGAAACGTGGCAACGGTTT -CCAACAGAAACGTGGCAAGTGGTT -CCAACAGAAACGTGGCAAGCCTTT -CCAACAGAAACGTGGCAAGGTCTT -CCAACAGAAACGTGGCAAACGCTT -CCAACAGAAACGTGGCAAAGCGTT -CCAACAGAAACGTGGCAATTCGTC -CCAACAGAAACGTGGCAATCTCTC -CCAACAGAAACGTGGCAATGGATC -CCAACAGAAACGTGGCAACACTTC -CCAACAGAAACGTGGCAAGTACTC -CCAACAGAAACGTGGCAAGATGTC -CCAACAGAAACGTGGCAAACAGTC -CCAACAGAAACGTGGCAATTGCTG -CCAACAGAAACGTGGCAATCCATG -CCAACAGAAACGTGGCAATGTGTG -CCAACAGAAACGTGGCAACTAGTG -CCAACAGAAACGTGGCAACATCTG -CCAACAGAAACGTGGCAAGAGTTG -CCAACAGAAACGTGGCAAAGACTG -CCAACAGAAACGTGGCAATCGGTA -CCAACAGAAACGTGGCAATGCCTA -CCAACAGAAACGTGGCAACCACTA -CCAACAGAAACGTGGCAAGGAGTA -CCAACAGAAACGTGGCAATCGTCT -CCAACAGAAACGTGGCAATGCACT -CCAACAGAAACGTGGCAACTGACT -CCAACAGAAACGTGGCAACAACCT -CCAACAGAAACGTGGCAAGCTACT -CCAACAGAAACGTGGCAAGGATCT -CCAACAGAAACGTGGCAAAAGGCT -CCAACAGAAACGTGGCAATCAACC -CCAACAGAAACGTGGCAATGTTCC -CCAACAGAAACGTGGCAAATTCCC -CCAACAGAAACGTGGCAATTCTCG -CCAACAGAAACGTGGCAATAGACG -CCAACAGAAACGTGGCAAGTAACG -CCAACAGAAACGTGGCAAACTTCG -CCAACAGAAACGTGGCAATACGCA -CCAACAGAAACGTGGCAACTTGCA -CCAACAGAAACGTGGCAACGAACA -CCAACAGAAACGTGGCAACAGTCA -CCAACAGAAACGTGGCAAGATCCA -CCAACAGAAACGTGGCAAACGACA -CCAACAGAAACGTGGCAAAGCTCA -CCAACAGAAACGTGGCAATCACGT -CCAACAGAAACGTGGCAACGTAGT -CCAACAGAAACGTGGCAAGTCAGT -CCAACAGAAACGTGGCAAGAAGGT -CCAACAGAAACGTGGCAAAACCGT -CCAACAGAAACGTGGCAATTGTGC -CCAACAGAAACGTGGCAACTAAGC -CCAACAGAAACGTGGCAAACTAGC -CCAACAGAAACGTGGCAAAGATGC -CCAACAGAAACGTGGCAATGAAGG -CCAACAGAAACGTGGCAACAATGG -CCAACAGAAACGTGGCAAATGAGG -CCAACAGAAACGTGGCAAAATGGG -CCAACAGAAACGTGGCAATCCTGA -CCAACAGAAACGTGGCAATAGCGA -CCAACAGAAACGTGGCAACACAGA -CCAACAGAAACGTGGCAAGCAAGA -CCAACAGAAACGTGGCAAGGTTGA -CCAACAGAAACGTGGCAATCCGAT -CCAACAGAAACGTGGCAATGGCAT -CCAACAGAAACGTGGCAACGAGAT -CCAACAGAAACGTGGCAATACCAC -CCAACAGAAACGTGGCAACAGAAC -CCAACAGAAACGTGGCAAGTCTAC -CCAACAGAAACGTGGCAAACGTAC -CCAACAGAAACGTGGCAAAGTGAC -CCAACAGAAACGTGGCAACTGTAG -CCAACAGAAACGTGGCAACCTAAG -CCAACAGAAACGTGGCAAGTTCAG -CCAACAGAAACGTGGCAAGCATAG -CCAACAGAAACGTGGCAAGACAAG -CCAACAGAAACGTGGCAAAAGCAG -CCAACAGAAACGTGGCAACGTCAA -CCAACAGAAACGTGGCAAGCTGAA -CCAACAGAAACGTGGCAAAGTACG -CCAACAGAAACGTGGCAAATCCGA -CCAACAGAAACGTGGCAAATGGGA -CCAACAGAAACGTGGCAAGTGCAA -CCAACAGAAACGTGGCAAGAGGAA -CCAACAGAAACGTGGCAACAGGTA -CCAACAGAAACGTGGCAAGACTCT -CCAACAGAAACGTGGCAAAGTCCT -CCAACAGAAACGTGGCAATAAGCC -CCAACAGAAACGTGGCAAATAGCC -CCAACAGAAACGTGGCAATAACCG -CCAACAGAAACGTGGCAAATGCCA -CCAACAGAAACGAGGATGGGAAAC -CCAACAGAAACGAGGATGAACACC -CCAACAGAAACGAGGATGATCGAG -CCAACAGAAACGAGGATGCTCCTT -CCAACAGAAACGAGGATGCCTGTT -CCAACAGAAACGAGGATGCGGTTT -CCAACAGAAACGAGGATGGTGGTT -CCAACAGAAACGAGGATGGCCTTT -CCAACAGAAACGAGGATGGGTCTT -CCAACAGAAACGAGGATGACGCTT -CCAACAGAAACGAGGATGAGCGTT -CCAACAGAAACGAGGATGTTCGTC -CCAACAGAAACGAGGATGTCTCTC -CCAACAGAAACGAGGATGTGGATC -CCAACAGAAACGAGGATGCACTTC -CCAACAGAAACGAGGATGGTACTC -CCAACAGAAACGAGGATGGATGTC -CCAACAGAAACGAGGATGACAGTC -CCAACAGAAACGAGGATGTTGCTG -CCAACAGAAACGAGGATGTCCATG -CCAACAGAAACGAGGATGTGTGTG -CCAACAGAAACGAGGATGCTAGTG -CCAACAGAAACGAGGATGCATCTG -CCAACAGAAACGAGGATGGAGTTG -CCAACAGAAACGAGGATGAGACTG -CCAACAGAAACGAGGATGTCGGTA -CCAACAGAAACGAGGATGTGCCTA -CCAACAGAAACGAGGATGCCACTA -CCAACAGAAACGAGGATGGGAGTA -CCAACAGAAACGAGGATGTCGTCT -CCAACAGAAACGAGGATGTGCACT -CCAACAGAAACGAGGATGCTGACT -CCAACAGAAACGAGGATGCAACCT -CCAACAGAAACGAGGATGGCTACT -CCAACAGAAACGAGGATGGGATCT -CCAACAGAAACGAGGATGAAGGCT -CCAACAGAAACGAGGATGTCAACC -CCAACAGAAACGAGGATGTGTTCC -CCAACAGAAACGAGGATGATTCCC -CCAACAGAAACGAGGATGTTCTCG -CCAACAGAAACGAGGATGTAGACG -CCAACAGAAACGAGGATGGTAACG -CCAACAGAAACGAGGATGACTTCG -CCAACAGAAACGAGGATGTACGCA -CCAACAGAAACGAGGATGCTTGCA -CCAACAGAAACGAGGATGCGAACA -CCAACAGAAACGAGGATGCAGTCA -CCAACAGAAACGAGGATGGATCCA -CCAACAGAAACGAGGATGACGACA -CCAACAGAAACGAGGATGAGCTCA -CCAACAGAAACGAGGATGTCACGT -CCAACAGAAACGAGGATGCGTAGT -CCAACAGAAACGAGGATGGTCAGT -CCAACAGAAACGAGGATGGAAGGT -CCAACAGAAACGAGGATGAACCGT -CCAACAGAAACGAGGATGTTGTGC -CCAACAGAAACGAGGATGCTAAGC -CCAACAGAAACGAGGATGACTAGC -CCAACAGAAACGAGGATGAGATGC -CCAACAGAAACGAGGATGTGAAGG -CCAACAGAAACGAGGATGCAATGG -CCAACAGAAACGAGGATGATGAGG -CCAACAGAAACGAGGATGAATGGG -CCAACAGAAACGAGGATGTCCTGA -CCAACAGAAACGAGGATGTAGCGA -CCAACAGAAACGAGGATGCACAGA -CCAACAGAAACGAGGATGGCAAGA -CCAACAGAAACGAGGATGGGTTGA -CCAACAGAAACGAGGATGTCCGAT -CCAACAGAAACGAGGATGTGGCAT -CCAACAGAAACGAGGATGCGAGAT -CCAACAGAAACGAGGATGTACCAC -CCAACAGAAACGAGGATGCAGAAC -CCAACAGAAACGAGGATGGTCTAC -CCAACAGAAACGAGGATGACGTAC -CCAACAGAAACGAGGATGAGTGAC -CCAACAGAAACGAGGATGCTGTAG -CCAACAGAAACGAGGATGCCTAAG -CCAACAGAAACGAGGATGGTTCAG -CCAACAGAAACGAGGATGGCATAG -CCAACAGAAACGAGGATGGACAAG -CCAACAGAAACGAGGATGAAGCAG -CCAACAGAAACGAGGATGCGTCAA -CCAACAGAAACGAGGATGGCTGAA -CCAACAGAAACGAGGATGAGTACG -CCAACAGAAACGAGGATGATCCGA -CCAACAGAAACGAGGATGATGGGA -CCAACAGAAACGAGGATGGTGCAA -CCAACAGAAACGAGGATGGAGGAA -CCAACAGAAACGAGGATGCAGGTA -CCAACAGAAACGAGGATGGACTCT -CCAACAGAAACGAGGATGAGTCCT -CCAACAGAAACGAGGATGTAAGCC -CCAACAGAAACGAGGATGATAGCC -CCAACAGAAACGAGGATGTAACCG -CCAACAGAAACGAGGATGATGCCA -CCAACAGAAACGGGGAATGGAAAC -CCAACAGAAACGGGGAATAACACC -CCAACAGAAACGGGGAATATCGAG -CCAACAGAAACGGGGAATCTCCTT -CCAACAGAAACGGGGAATCCTGTT -CCAACAGAAACGGGGAATCGGTTT -CCAACAGAAACGGGGAATGTGGTT -CCAACAGAAACGGGGAATGCCTTT -CCAACAGAAACGGGGAATGGTCTT -CCAACAGAAACGGGGAATACGCTT -CCAACAGAAACGGGGAATAGCGTT -CCAACAGAAACGGGGAATTTCGTC -CCAACAGAAACGGGGAATTCTCTC -CCAACAGAAACGGGGAATTGGATC -CCAACAGAAACGGGGAATCACTTC -CCAACAGAAACGGGGAATGTACTC -CCAACAGAAACGGGGAATGATGTC -CCAACAGAAACGGGGAATACAGTC -CCAACAGAAACGGGGAATTTGCTG -CCAACAGAAACGGGGAATTCCATG -CCAACAGAAACGGGGAATTGTGTG -CCAACAGAAACGGGGAATCTAGTG -CCAACAGAAACGGGGAATCATCTG -CCAACAGAAACGGGGAATGAGTTG -CCAACAGAAACGGGGAATAGACTG -CCAACAGAAACGGGGAATTCGGTA -CCAACAGAAACGGGGAATTGCCTA -CCAACAGAAACGGGGAATCCACTA -CCAACAGAAACGGGGAATGGAGTA -CCAACAGAAACGGGGAATTCGTCT -CCAACAGAAACGGGGAATTGCACT -CCAACAGAAACGGGGAATCTGACT -CCAACAGAAACGGGGAATCAACCT -CCAACAGAAACGGGGAATGCTACT -CCAACAGAAACGGGGAATGGATCT -CCAACAGAAACGGGGAATAAGGCT -CCAACAGAAACGGGGAATTCAACC -CCAACAGAAACGGGGAATTGTTCC -CCAACAGAAACGGGGAATATTCCC -CCAACAGAAACGGGGAATTTCTCG -CCAACAGAAACGGGGAATTAGACG -CCAACAGAAACGGGGAATGTAACG -CCAACAGAAACGGGGAATACTTCG -CCAACAGAAACGGGGAATTACGCA -CCAACAGAAACGGGGAATCTTGCA -CCAACAGAAACGGGGAATCGAACA -CCAACAGAAACGGGGAATCAGTCA -CCAACAGAAACGGGGAATGATCCA -CCAACAGAAACGGGGAATACGACA -CCAACAGAAACGGGGAATAGCTCA -CCAACAGAAACGGGGAATTCACGT -CCAACAGAAACGGGGAATCGTAGT -CCAACAGAAACGGGGAATGTCAGT -CCAACAGAAACGGGGAATGAAGGT -CCAACAGAAACGGGGAATAACCGT -CCAACAGAAACGGGGAATTTGTGC -CCAACAGAAACGGGGAATCTAAGC -CCAACAGAAACGGGGAATACTAGC -CCAACAGAAACGGGGAATAGATGC -CCAACAGAAACGGGGAATTGAAGG -CCAACAGAAACGGGGAATCAATGG -CCAACAGAAACGGGGAATATGAGG -CCAACAGAAACGGGGAATAATGGG -CCAACAGAAACGGGGAATTCCTGA -CCAACAGAAACGGGGAATTAGCGA -CCAACAGAAACGGGGAATCACAGA -CCAACAGAAACGGGGAATGCAAGA -CCAACAGAAACGGGGAATGGTTGA -CCAACAGAAACGGGGAATTCCGAT -CCAACAGAAACGGGGAATTGGCAT -CCAACAGAAACGGGGAATCGAGAT -CCAACAGAAACGGGGAATTACCAC -CCAACAGAAACGGGGAATCAGAAC -CCAACAGAAACGGGGAATGTCTAC -CCAACAGAAACGGGGAATACGTAC -CCAACAGAAACGGGGAATAGTGAC -CCAACAGAAACGGGGAATCTGTAG -CCAACAGAAACGGGGAATCCTAAG -CCAACAGAAACGGGGAATGTTCAG -CCAACAGAAACGGGGAATGCATAG -CCAACAGAAACGGGGAATGACAAG -CCAACAGAAACGGGGAATAAGCAG -CCAACAGAAACGGGGAATCGTCAA -CCAACAGAAACGGGGAATGCTGAA -CCAACAGAAACGGGGAATAGTACG -CCAACAGAAACGGGGAATATCCGA -CCAACAGAAACGGGGAATATGGGA -CCAACAGAAACGGGGAATGTGCAA -CCAACAGAAACGGGGAATGAGGAA -CCAACAGAAACGGGGAATCAGGTA -CCAACAGAAACGGGGAATGACTCT -CCAACAGAAACGGGGAATAGTCCT -CCAACAGAAACGGGGAATTAAGCC -CCAACAGAAACGGGGAATATAGCC -CCAACAGAAACGGGGAATTAACCG -CCAACAGAAACGGGGAATATGCCA -CCAACAGAAACGTGATCCGGAAAC -CCAACAGAAACGTGATCCAACACC -CCAACAGAAACGTGATCCATCGAG -CCAACAGAAACGTGATCCCTCCTT -CCAACAGAAACGTGATCCCCTGTT -CCAACAGAAACGTGATCCCGGTTT -CCAACAGAAACGTGATCCGTGGTT -CCAACAGAAACGTGATCCGCCTTT -CCAACAGAAACGTGATCCGGTCTT -CCAACAGAAACGTGATCCACGCTT -CCAACAGAAACGTGATCCAGCGTT -CCAACAGAAACGTGATCCTTCGTC -CCAACAGAAACGTGATCCTCTCTC -CCAACAGAAACGTGATCCTGGATC -CCAACAGAAACGTGATCCCACTTC -CCAACAGAAACGTGATCCGTACTC -CCAACAGAAACGTGATCCGATGTC -CCAACAGAAACGTGATCCACAGTC -CCAACAGAAACGTGATCCTTGCTG -CCAACAGAAACGTGATCCTCCATG -CCAACAGAAACGTGATCCTGTGTG -CCAACAGAAACGTGATCCCTAGTG -CCAACAGAAACGTGATCCCATCTG -CCAACAGAAACGTGATCCGAGTTG -CCAACAGAAACGTGATCCAGACTG -CCAACAGAAACGTGATCCTCGGTA -CCAACAGAAACGTGATCCTGCCTA -CCAACAGAAACGTGATCCCCACTA -CCAACAGAAACGTGATCCGGAGTA -CCAACAGAAACGTGATCCTCGTCT -CCAACAGAAACGTGATCCTGCACT -CCAACAGAAACGTGATCCCTGACT -CCAACAGAAACGTGATCCCAACCT -CCAACAGAAACGTGATCCGCTACT -CCAACAGAAACGTGATCCGGATCT -CCAACAGAAACGTGATCCAAGGCT -CCAACAGAAACGTGATCCTCAACC -CCAACAGAAACGTGATCCTGTTCC -CCAACAGAAACGTGATCCATTCCC -CCAACAGAAACGTGATCCTTCTCG -CCAACAGAAACGTGATCCTAGACG -CCAACAGAAACGTGATCCGTAACG -CCAACAGAAACGTGATCCACTTCG -CCAACAGAAACGTGATCCTACGCA -CCAACAGAAACGTGATCCCTTGCA -CCAACAGAAACGTGATCCCGAACA -CCAACAGAAACGTGATCCCAGTCA -CCAACAGAAACGTGATCCGATCCA -CCAACAGAAACGTGATCCACGACA -CCAACAGAAACGTGATCCAGCTCA -CCAACAGAAACGTGATCCTCACGT -CCAACAGAAACGTGATCCCGTAGT -CCAACAGAAACGTGATCCGTCAGT -CCAACAGAAACGTGATCCGAAGGT -CCAACAGAAACGTGATCCAACCGT -CCAACAGAAACGTGATCCTTGTGC -CCAACAGAAACGTGATCCCTAAGC -CCAACAGAAACGTGATCCACTAGC -CCAACAGAAACGTGATCCAGATGC -CCAACAGAAACGTGATCCTGAAGG -CCAACAGAAACGTGATCCCAATGG -CCAACAGAAACGTGATCCATGAGG -CCAACAGAAACGTGATCCAATGGG -CCAACAGAAACGTGATCCTCCTGA -CCAACAGAAACGTGATCCTAGCGA -CCAACAGAAACGTGATCCCACAGA -CCAACAGAAACGTGATCCGCAAGA -CCAACAGAAACGTGATCCGGTTGA -CCAACAGAAACGTGATCCTCCGAT -CCAACAGAAACGTGATCCTGGCAT -CCAACAGAAACGTGATCCCGAGAT -CCAACAGAAACGTGATCCTACCAC -CCAACAGAAACGTGATCCCAGAAC -CCAACAGAAACGTGATCCGTCTAC -CCAACAGAAACGTGATCCACGTAC -CCAACAGAAACGTGATCCAGTGAC -CCAACAGAAACGTGATCCCTGTAG -CCAACAGAAACGTGATCCCCTAAG -CCAACAGAAACGTGATCCGTTCAG -CCAACAGAAACGTGATCCGCATAG -CCAACAGAAACGTGATCCGACAAG -CCAACAGAAACGTGATCCAAGCAG -CCAACAGAAACGTGATCCCGTCAA -CCAACAGAAACGTGATCCGCTGAA -CCAACAGAAACGTGATCCAGTACG -CCAACAGAAACGTGATCCATCCGA -CCAACAGAAACGTGATCCATGGGA -CCAACAGAAACGTGATCCGTGCAA -CCAACAGAAACGTGATCCGAGGAA -CCAACAGAAACGTGATCCCAGGTA -CCAACAGAAACGTGATCCGACTCT -CCAACAGAAACGTGATCCAGTCCT -CCAACAGAAACGTGATCCTAAGCC -CCAACAGAAACGTGATCCATAGCC -CCAACAGAAACGTGATCCTAACCG -CCAACAGAAACGTGATCCATGCCA -CCAACAGAAACGCGATAGGGAAAC -CCAACAGAAACGCGATAGAACACC -CCAACAGAAACGCGATAGATCGAG -CCAACAGAAACGCGATAGCTCCTT -CCAACAGAAACGCGATAGCCTGTT -CCAACAGAAACGCGATAGCGGTTT -CCAACAGAAACGCGATAGGTGGTT -CCAACAGAAACGCGATAGGCCTTT -CCAACAGAAACGCGATAGGGTCTT -CCAACAGAAACGCGATAGACGCTT -CCAACAGAAACGCGATAGAGCGTT -CCAACAGAAACGCGATAGTTCGTC -CCAACAGAAACGCGATAGTCTCTC -CCAACAGAAACGCGATAGTGGATC -CCAACAGAAACGCGATAGCACTTC -CCAACAGAAACGCGATAGGTACTC -CCAACAGAAACGCGATAGGATGTC -CCAACAGAAACGCGATAGACAGTC -CCAACAGAAACGCGATAGTTGCTG -CCAACAGAAACGCGATAGTCCATG -CCAACAGAAACGCGATAGTGTGTG -CCAACAGAAACGCGATAGCTAGTG -CCAACAGAAACGCGATAGCATCTG -CCAACAGAAACGCGATAGGAGTTG -CCAACAGAAACGCGATAGAGACTG -CCAACAGAAACGCGATAGTCGGTA -CCAACAGAAACGCGATAGTGCCTA -CCAACAGAAACGCGATAGCCACTA -CCAACAGAAACGCGATAGGGAGTA -CCAACAGAAACGCGATAGTCGTCT -CCAACAGAAACGCGATAGTGCACT -CCAACAGAAACGCGATAGCTGACT -CCAACAGAAACGCGATAGCAACCT -CCAACAGAAACGCGATAGGCTACT -CCAACAGAAACGCGATAGGGATCT -CCAACAGAAACGCGATAGAAGGCT -CCAACAGAAACGCGATAGTCAACC -CCAACAGAAACGCGATAGTGTTCC -CCAACAGAAACGCGATAGATTCCC -CCAACAGAAACGCGATAGTTCTCG -CCAACAGAAACGCGATAGTAGACG -CCAACAGAAACGCGATAGGTAACG -CCAACAGAAACGCGATAGACTTCG -CCAACAGAAACGCGATAGTACGCA -CCAACAGAAACGCGATAGCTTGCA -CCAACAGAAACGCGATAGCGAACA -CCAACAGAAACGCGATAGCAGTCA -CCAACAGAAACGCGATAGGATCCA -CCAACAGAAACGCGATAGACGACA -CCAACAGAAACGCGATAGAGCTCA -CCAACAGAAACGCGATAGTCACGT -CCAACAGAAACGCGATAGCGTAGT -CCAACAGAAACGCGATAGGTCAGT -CCAACAGAAACGCGATAGGAAGGT -CCAACAGAAACGCGATAGAACCGT -CCAACAGAAACGCGATAGTTGTGC -CCAACAGAAACGCGATAGCTAAGC -CCAACAGAAACGCGATAGACTAGC -CCAACAGAAACGCGATAGAGATGC -CCAACAGAAACGCGATAGTGAAGG -CCAACAGAAACGCGATAGCAATGG -CCAACAGAAACGCGATAGATGAGG -CCAACAGAAACGCGATAGAATGGG -CCAACAGAAACGCGATAGTCCTGA -CCAACAGAAACGCGATAGTAGCGA -CCAACAGAAACGCGATAGCACAGA -CCAACAGAAACGCGATAGGCAAGA -CCAACAGAAACGCGATAGGGTTGA -CCAACAGAAACGCGATAGTCCGAT -CCAACAGAAACGCGATAGTGGCAT -CCAACAGAAACGCGATAGCGAGAT -CCAACAGAAACGCGATAGTACCAC -CCAACAGAAACGCGATAGCAGAAC -CCAACAGAAACGCGATAGGTCTAC -CCAACAGAAACGCGATAGACGTAC -CCAACAGAAACGCGATAGAGTGAC -CCAACAGAAACGCGATAGCTGTAG -CCAACAGAAACGCGATAGCCTAAG -CCAACAGAAACGCGATAGGTTCAG -CCAACAGAAACGCGATAGGCATAG -CCAACAGAAACGCGATAGGACAAG -CCAACAGAAACGCGATAGAAGCAG -CCAACAGAAACGCGATAGCGTCAA -CCAACAGAAACGCGATAGGCTGAA -CCAACAGAAACGCGATAGAGTACG -CCAACAGAAACGCGATAGATCCGA -CCAACAGAAACGCGATAGATGGGA -CCAACAGAAACGCGATAGGTGCAA -CCAACAGAAACGCGATAGGAGGAA -CCAACAGAAACGCGATAGCAGGTA -CCAACAGAAACGCGATAGGACTCT -CCAACAGAAACGCGATAGAGTCCT -CCAACAGAAACGCGATAGTAAGCC -CCAACAGAAACGCGATAGATAGCC -CCAACAGAAACGCGATAGTAACCG -CCAACAGAAACGCGATAGATGCCA -CCAACAGAAACGAGACACGGAAAC -CCAACAGAAACGAGACACAACACC -CCAACAGAAACGAGACACATCGAG -CCAACAGAAACGAGACACCTCCTT -CCAACAGAAACGAGACACCCTGTT -CCAACAGAAACGAGACACCGGTTT -CCAACAGAAACGAGACACGTGGTT -CCAACAGAAACGAGACACGCCTTT -CCAACAGAAACGAGACACGGTCTT -CCAACAGAAACGAGACACACGCTT -CCAACAGAAACGAGACACAGCGTT -CCAACAGAAACGAGACACTTCGTC -CCAACAGAAACGAGACACTCTCTC -CCAACAGAAACGAGACACTGGATC -CCAACAGAAACGAGACACCACTTC -CCAACAGAAACGAGACACGTACTC -CCAACAGAAACGAGACACGATGTC -CCAACAGAAACGAGACACACAGTC -CCAACAGAAACGAGACACTTGCTG -CCAACAGAAACGAGACACTCCATG -CCAACAGAAACGAGACACTGTGTG -CCAACAGAAACGAGACACCTAGTG -CCAACAGAAACGAGACACCATCTG -CCAACAGAAACGAGACACGAGTTG -CCAACAGAAACGAGACACAGACTG -CCAACAGAAACGAGACACTCGGTA -CCAACAGAAACGAGACACTGCCTA -CCAACAGAAACGAGACACCCACTA -CCAACAGAAACGAGACACGGAGTA -CCAACAGAAACGAGACACTCGTCT -CCAACAGAAACGAGACACTGCACT -CCAACAGAAACGAGACACCTGACT -CCAACAGAAACGAGACACCAACCT -CCAACAGAAACGAGACACGCTACT -CCAACAGAAACGAGACACGGATCT -CCAACAGAAACGAGACACAAGGCT -CCAACAGAAACGAGACACTCAACC -CCAACAGAAACGAGACACTGTTCC -CCAACAGAAACGAGACACATTCCC -CCAACAGAAACGAGACACTTCTCG -CCAACAGAAACGAGACACTAGACG -CCAACAGAAACGAGACACGTAACG -CCAACAGAAACGAGACACACTTCG -CCAACAGAAACGAGACACTACGCA -CCAACAGAAACGAGACACCTTGCA -CCAACAGAAACGAGACACCGAACA -CCAACAGAAACGAGACACCAGTCA -CCAACAGAAACGAGACACGATCCA -CCAACAGAAACGAGACACACGACA -CCAACAGAAACGAGACACAGCTCA -CCAACAGAAACGAGACACTCACGT -CCAACAGAAACGAGACACCGTAGT -CCAACAGAAACGAGACACGTCAGT -CCAACAGAAACGAGACACGAAGGT -CCAACAGAAACGAGACACAACCGT -CCAACAGAAACGAGACACTTGTGC -CCAACAGAAACGAGACACCTAAGC -CCAACAGAAACGAGACACACTAGC -CCAACAGAAACGAGACACAGATGC -CCAACAGAAACGAGACACTGAAGG -CCAACAGAAACGAGACACCAATGG -CCAACAGAAACGAGACACATGAGG -CCAACAGAAACGAGACACAATGGG -CCAACAGAAACGAGACACTCCTGA -CCAACAGAAACGAGACACTAGCGA -CCAACAGAAACGAGACACCACAGA -CCAACAGAAACGAGACACGCAAGA -CCAACAGAAACGAGACACGGTTGA -CCAACAGAAACGAGACACTCCGAT -CCAACAGAAACGAGACACTGGCAT -CCAACAGAAACGAGACACCGAGAT -CCAACAGAAACGAGACACTACCAC -CCAACAGAAACGAGACACCAGAAC -CCAACAGAAACGAGACACGTCTAC -CCAACAGAAACGAGACACACGTAC -CCAACAGAAACGAGACACAGTGAC -CCAACAGAAACGAGACACCTGTAG -CCAACAGAAACGAGACACCCTAAG -CCAACAGAAACGAGACACGTTCAG -CCAACAGAAACGAGACACGCATAG -CCAACAGAAACGAGACACGACAAG -CCAACAGAAACGAGACACAAGCAG -CCAACAGAAACGAGACACCGTCAA -CCAACAGAAACGAGACACGCTGAA -CCAACAGAAACGAGACACAGTACG -CCAACAGAAACGAGACACATCCGA -CCAACAGAAACGAGACACATGGGA -CCAACAGAAACGAGACACGTGCAA -CCAACAGAAACGAGACACGAGGAA -CCAACAGAAACGAGACACCAGGTA -CCAACAGAAACGAGACACGACTCT -CCAACAGAAACGAGACACAGTCCT -CCAACAGAAACGAGACACTAAGCC -CCAACAGAAACGAGACACATAGCC -CCAACAGAAACGAGACACTAACCG -CCAACAGAAACGAGACACATGCCA -CCAACAGAAACGAGAGCAGGAAAC -CCAACAGAAACGAGAGCAAACACC -CCAACAGAAACGAGAGCAATCGAG -CCAACAGAAACGAGAGCACTCCTT -CCAACAGAAACGAGAGCACCTGTT -CCAACAGAAACGAGAGCACGGTTT -CCAACAGAAACGAGAGCAGTGGTT -CCAACAGAAACGAGAGCAGCCTTT -CCAACAGAAACGAGAGCAGGTCTT -CCAACAGAAACGAGAGCAACGCTT -CCAACAGAAACGAGAGCAAGCGTT -CCAACAGAAACGAGAGCATTCGTC -CCAACAGAAACGAGAGCATCTCTC -CCAACAGAAACGAGAGCATGGATC -CCAACAGAAACGAGAGCACACTTC -CCAACAGAAACGAGAGCAGTACTC -CCAACAGAAACGAGAGCAGATGTC -CCAACAGAAACGAGAGCAACAGTC -CCAACAGAAACGAGAGCATTGCTG -CCAACAGAAACGAGAGCATCCATG -CCAACAGAAACGAGAGCATGTGTG -CCAACAGAAACGAGAGCACTAGTG -CCAACAGAAACGAGAGCACATCTG -CCAACAGAAACGAGAGCAGAGTTG -CCAACAGAAACGAGAGCAAGACTG -CCAACAGAAACGAGAGCATCGGTA -CCAACAGAAACGAGAGCATGCCTA -CCAACAGAAACGAGAGCACCACTA -CCAACAGAAACGAGAGCAGGAGTA -CCAACAGAAACGAGAGCATCGTCT -CCAACAGAAACGAGAGCATGCACT -CCAACAGAAACGAGAGCACTGACT -CCAACAGAAACGAGAGCACAACCT -CCAACAGAAACGAGAGCAGCTACT -CCAACAGAAACGAGAGCAGGATCT -CCAACAGAAACGAGAGCAAAGGCT -CCAACAGAAACGAGAGCATCAACC -CCAACAGAAACGAGAGCATGTTCC -CCAACAGAAACGAGAGCAATTCCC -CCAACAGAAACGAGAGCATTCTCG -CCAACAGAAACGAGAGCATAGACG -CCAACAGAAACGAGAGCAGTAACG -CCAACAGAAACGAGAGCAACTTCG -CCAACAGAAACGAGAGCATACGCA -CCAACAGAAACGAGAGCACTTGCA -CCAACAGAAACGAGAGCACGAACA -CCAACAGAAACGAGAGCACAGTCA -CCAACAGAAACGAGAGCAGATCCA -CCAACAGAAACGAGAGCAACGACA -CCAACAGAAACGAGAGCAAGCTCA -CCAACAGAAACGAGAGCATCACGT -CCAACAGAAACGAGAGCACGTAGT -CCAACAGAAACGAGAGCAGTCAGT -CCAACAGAAACGAGAGCAGAAGGT -CCAACAGAAACGAGAGCAAACCGT -CCAACAGAAACGAGAGCATTGTGC -CCAACAGAAACGAGAGCACTAAGC -CCAACAGAAACGAGAGCAACTAGC -CCAACAGAAACGAGAGCAAGATGC -CCAACAGAAACGAGAGCATGAAGG -CCAACAGAAACGAGAGCACAATGG -CCAACAGAAACGAGAGCAATGAGG -CCAACAGAAACGAGAGCAAATGGG -CCAACAGAAACGAGAGCATCCTGA -CCAACAGAAACGAGAGCATAGCGA -CCAACAGAAACGAGAGCACACAGA -CCAACAGAAACGAGAGCAGCAAGA -CCAACAGAAACGAGAGCAGGTTGA -CCAACAGAAACGAGAGCATCCGAT -CCAACAGAAACGAGAGCATGGCAT -CCAACAGAAACGAGAGCACGAGAT -CCAACAGAAACGAGAGCATACCAC -CCAACAGAAACGAGAGCACAGAAC -CCAACAGAAACGAGAGCAGTCTAC -CCAACAGAAACGAGAGCAACGTAC -CCAACAGAAACGAGAGCAAGTGAC -CCAACAGAAACGAGAGCACTGTAG -CCAACAGAAACGAGAGCACCTAAG -CCAACAGAAACGAGAGCAGTTCAG -CCAACAGAAACGAGAGCAGCATAG -CCAACAGAAACGAGAGCAGACAAG -CCAACAGAAACGAGAGCAAAGCAG -CCAACAGAAACGAGAGCACGTCAA -CCAACAGAAACGAGAGCAGCTGAA -CCAACAGAAACGAGAGCAAGTACG -CCAACAGAAACGAGAGCAATCCGA -CCAACAGAAACGAGAGCAATGGGA -CCAACAGAAACGAGAGCAGTGCAA -CCAACAGAAACGAGAGCAGAGGAA -CCAACAGAAACGAGAGCACAGGTA -CCAACAGAAACGAGAGCAGACTCT -CCAACAGAAACGAGAGCAAGTCCT -CCAACAGAAACGAGAGCATAAGCC -CCAACAGAAACGAGAGCAATAGCC -CCAACAGAAACGAGAGCATAACCG -CCAACAGAAACGAGAGCAATGCCA -CCAACAGAAACGTGAGGTGGAAAC -CCAACAGAAACGTGAGGTAACACC -CCAACAGAAACGTGAGGTATCGAG -CCAACAGAAACGTGAGGTCTCCTT -CCAACAGAAACGTGAGGTCCTGTT -CCAACAGAAACGTGAGGTCGGTTT -CCAACAGAAACGTGAGGTGTGGTT -CCAACAGAAACGTGAGGTGCCTTT -CCAACAGAAACGTGAGGTGGTCTT -CCAACAGAAACGTGAGGTACGCTT -CCAACAGAAACGTGAGGTAGCGTT -CCAACAGAAACGTGAGGTTTCGTC -CCAACAGAAACGTGAGGTTCTCTC -CCAACAGAAACGTGAGGTTGGATC -CCAACAGAAACGTGAGGTCACTTC -CCAACAGAAACGTGAGGTGTACTC -CCAACAGAAACGTGAGGTGATGTC -CCAACAGAAACGTGAGGTACAGTC -CCAACAGAAACGTGAGGTTTGCTG -CCAACAGAAACGTGAGGTTCCATG -CCAACAGAAACGTGAGGTTGTGTG -CCAACAGAAACGTGAGGTCTAGTG -CCAACAGAAACGTGAGGTCATCTG -CCAACAGAAACGTGAGGTGAGTTG -CCAACAGAAACGTGAGGTAGACTG -CCAACAGAAACGTGAGGTTCGGTA -CCAACAGAAACGTGAGGTTGCCTA -CCAACAGAAACGTGAGGTCCACTA -CCAACAGAAACGTGAGGTGGAGTA -CCAACAGAAACGTGAGGTTCGTCT -CCAACAGAAACGTGAGGTTGCACT -CCAACAGAAACGTGAGGTCTGACT -CCAACAGAAACGTGAGGTCAACCT -CCAACAGAAACGTGAGGTGCTACT -CCAACAGAAACGTGAGGTGGATCT -CCAACAGAAACGTGAGGTAAGGCT -CCAACAGAAACGTGAGGTTCAACC -CCAACAGAAACGTGAGGTTGTTCC -CCAACAGAAACGTGAGGTATTCCC -CCAACAGAAACGTGAGGTTTCTCG -CCAACAGAAACGTGAGGTTAGACG -CCAACAGAAACGTGAGGTGTAACG -CCAACAGAAACGTGAGGTACTTCG -CCAACAGAAACGTGAGGTTACGCA -CCAACAGAAACGTGAGGTCTTGCA -CCAACAGAAACGTGAGGTCGAACA -CCAACAGAAACGTGAGGTCAGTCA -CCAACAGAAACGTGAGGTGATCCA -CCAACAGAAACGTGAGGTACGACA -CCAACAGAAACGTGAGGTAGCTCA -CCAACAGAAACGTGAGGTTCACGT -CCAACAGAAACGTGAGGTCGTAGT -CCAACAGAAACGTGAGGTGTCAGT -CCAACAGAAACGTGAGGTGAAGGT -CCAACAGAAACGTGAGGTAACCGT -CCAACAGAAACGTGAGGTTTGTGC -CCAACAGAAACGTGAGGTCTAAGC -CCAACAGAAACGTGAGGTACTAGC -CCAACAGAAACGTGAGGTAGATGC -CCAACAGAAACGTGAGGTTGAAGG -CCAACAGAAACGTGAGGTCAATGG -CCAACAGAAACGTGAGGTATGAGG -CCAACAGAAACGTGAGGTAATGGG -CCAACAGAAACGTGAGGTTCCTGA -CCAACAGAAACGTGAGGTTAGCGA -CCAACAGAAACGTGAGGTCACAGA -CCAACAGAAACGTGAGGTGCAAGA -CCAACAGAAACGTGAGGTGGTTGA -CCAACAGAAACGTGAGGTTCCGAT -CCAACAGAAACGTGAGGTTGGCAT -CCAACAGAAACGTGAGGTCGAGAT -CCAACAGAAACGTGAGGTTACCAC -CCAACAGAAACGTGAGGTCAGAAC -CCAACAGAAACGTGAGGTGTCTAC -CCAACAGAAACGTGAGGTACGTAC -CCAACAGAAACGTGAGGTAGTGAC -CCAACAGAAACGTGAGGTCTGTAG -CCAACAGAAACGTGAGGTCCTAAG -CCAACAGAAACGTGAGGTGTTCAG -CCAACAGAAACGTGAGGTGCATAG -CCAACAGAAACGTGAGGTGACAAG -CCAACAGAAACGTGAGGTAAGCAG -CCAACAGAAACGTGAGGTCGTCAA -CCAACAGAAACGTGAGGTGCTGAA -CCAACAGAAACGTGAGGTAGTACG -CCAACAGAAACGTGAGGTATCCGA -CCAACAGAAACGTGAGGTATGGGA -CCAACAGAAACGTGAGGTGTGCAA -CCAACAGAAACGTGAGGTGAGGAA -CCAACAGAAACGTGAGGTCAGGTA -CCAACAGAAACGTGAGGTGACTCT -CCAACAGAAACGTGAGGTAGTCCT -CCAACAGAAACGTGAGGTTAAGCC -CCAACAGAAACGTGAGGTATAGCC -CCAACAGAAACGTGAGGTTAACCG -CCAACAGAAACGTGAGGTATGCCA -CCAACAGAAACGGATTCCGGAAAC -CCAACAGAAACGGATTCCAACACC -CCAACAGAAACGGATTCCATCGAG -CCAACAGAAACGGATTCCCTCCTT -CCAACAGAAACGGATTCCCCTGTT -CCAACAGAAACGGATTCCCGGTTT -CCAACAGAAACGGATTCCGTGGTT -CCAACAGAAACGGATTCCGCCTTT -CCAACAGAAACGGATTCCGGTCTT -CCAACAGAAACGGATTCCACGCTT -CCAACAGAAACGGATTCCAGCGTT -CCAACAGAAACGGATTCCTTCGTC -CCAACAGAAACGGATTCCTCTCTC -CCAACAGAAACGGATTCCTGGATC -CCAACAGAAACGGATTCCCACTTC -CCAACAGAAACGGATTCCGTACTC -CCAACAGAAACGGATTCCGATGTC -CCAACAGAAACGGATTCCACAGTC -CCAACAGAAACGGATTCCTTGCTG -CCAACAGAAACGGATTCCTCCATG -CCAACAGAAACGGATTCCTGTGTG -CCAACAGAAACGGATTCCCTAGTG -CCAACAGAAACGGATTCCCATCTG -CCAACAGAAACGGATTCCGAGTTG -CCAACAGAAACGGATTCCAGACTG -CCAACAGAAACGGATTCCTCGGTA -CCAACAGAAACGGATTCCTGCCTA -CCAACAGAAACGGATTCCCCACTA -CCAACAGAAACGGATTCCGGAGTA -CCAACAGAAACGGATTCCTCGTCT -CCAACAGAAACGGATTCCTGCACT -CCAACAGAAACGGATTCCCTGACT -CCAACAGAAACGGATTCCCAACCT -CCAACAGAAACGGATTCCGCTACT -CCAACAGAAACGGATTCCGGATCT -CCAACAGAAACGGATTCCAAGGCT -CCAACAGAAACGGATTCCTCAACC -CCAACAGAAACGGATTCCTGTTCC -CCAACAGAAACGGATTCCATTCCC -CCAACAGAAACGGATTCCTTCTCG -CCAACAGAAACGGATTCCTAGACG -CCAACAGAAACGGATTCCGTAACG -CCAACAGAAACGGATTCCACTTCG -CCAACAGAAACGGATTCCTACGCA -CCAACAGAAACGGATTCCCTTGCA -CCAACAGAAACGGATTCCCGAACA -CCAACAGAAACGGATTCCCAGTCA -CCAACAGAAACGGATTCCGATCCA -CCAACAGAAACGGATTCCACGACA -CCAACAGAAACGGATTCCAGCTCA -CCAACAGAAACGGATTCCTCACGT -CCAACAGAAACGGATTCCCGTAGT -CCAACAGAAACGGATTCCGTCAGT -CCAACAGAAACGGATTCCGAAGGT -CCAACAGAAACGGATTCCAACCGT -CCAACAGAAACGGATTCCTTGTGC -CCAACAGAAACGGATTCCCTAAGC -CCAACAGAAACGGATTCCACTAGC -CCAACAGAAACGGATTCCAGATGC -CCAACAGAAACGGATTCCTGAAGG -CCAACAGAAACGGATTCCCAATGG -CCAACAGAAACGGATTCCATGAGG -CCAACAGAAACGGATTCCAATGGG -CCAACAGAAACGGATTCCTCCTGA -CCAACAGAAACGGATTCCTAGCGA -CCAACAGAAACGGATTCCCACAGA -CCAACAGAAACGGATTCCGCAAGA -CCAACAGAAACGGATTCCGGTTGA -CCAACAGAAACGGATTCCTCCGAT -CCAACAGAAACGGATTCCTGGCAT -CCAACAGAAACGGATTCCCGAGAT -CCAACAGAAACGGATTCCTACCAC -CCAACAGAAACGGATTCCCAGAAC -CCAACAGAAACGGATTCCGTCTAC -CCAACAGAAACGGATTCCACGTAC -CCAACAGAAACGGATTCCAGTGAC -CCAACAGAAACGGATTCCCTGTAG -CCAACAGAAACGGATTCCCCTAAG -CCAACAGAAACGGATTCCGTTCAG -CCAACAGAAACGGATTCCGCATAG -CCAACAGAAACGGATTCCGACAAG -CCAACAGAAACGGATTCCAAGCAG -CCAACAGAAACGGATTCCCGTCAA -CCAACAGAAACGGATTCCGCTGAA -CCAACAGAAACGGATTCCAGTACG -CCAACAGAAACGGATTCCATCCGA -CCAACAGAAACGGATTCCATGGGA -CCAACAGAAACGGATTCCGTGCAA -CCAACAGAAACGGATTCCGAGGAA -CCAACAGAAACGGATTCCCAGGTA -CCAACAGAAACGGATTCCGACTCT -CCAACAGAAACGGATTCCAGTCCT -CCAACAGAAACGGATTCCTAAGCC -CCAACAGAAACGGATTCCATAGCC -CCAACAGAAACGGATTCCTAACCG -CCAACAGAAACGGATTCCATGCCA -CCAACAGAAACGCATTGGGGAAAC -CCAACAGAAACGCATTGGAACACC -CCAACAGAAACGCATTGGATCGAG -CCAACAGAAACGCATTGGCTCCTT -CCAACAGAAACGCATTGGCCTGTT -CCAACAGAAACGCATTGGCGGTTT -CCAACAGAAACGCATTGGGTGGTT -CCAACAGAAACGCATTGGGCCTTT -CCAACAGAAACGCATTGGGGTCTT -CCAACAGAAACGCATTGGACGCTT -CCAACAGAAACGCATTGGAGCGTT -CCAACAGAAACGCATTGGTTCGTC -CCAACAGAAACGCATTGGTCTCTC -CCAACAGAAACGCATTGGTGGATC -CCAACAGAAACGCATTGGCACTTC -CCAACAGAAACGCATTGGGTACTC -CCAACAGAAACGCATTGGGATGTC -CCAACAGAAACGCATTGGACAGTC -CCAACAGAAACGCATTGGTTGCTG -CCAACAGAAACGCATTGGTCCATG -CCAACAGAAACGCATTGGTGTGTG -CCAACAGAAACGCATTGGCTAGTG -CCAACAGAAACGCATTGGCATCTG -CCAACAGAAACGCATTGGGAGTTG -CCAACAGAAACGCATTGGAGACTG -CCAACAGAAACGCATTGGTCGGTA -CCAACAGAAACGCATTGGTGCCTA -CCAACAGAAACGCATTGGCCACTA -CCAACAGAAACGCATTGGGGAGTA -CCAACAGAAACGCATTGGTCGTCT -CCAACAGAAACGCATTGGTGCACT -CCAACAGAAACGCATTGGCTGACT -CCAACAGAAACGCATTGGCAACCT -CCAACAGAAACGCATTGGGCTACT -CCAACAGAAACGCATTGGGGATCT -CCAACAGAAACGCATTGGAAGGCT -CCAACAGAAACGCATTGGTCAACC -CCAACAGAAACGCATTGGTGTTCC -CCAACAGAAACGCATTGGATTCCC -CCAACAGAAACGCATTGGTTCTCG -CCAACAGAAACGCATTGGTAGACG -CCAACAGAAACGCATTGGGTAACG -CCAACAGAAACGCATTGGACTTCG -CCAACAGAAACGCATTGGTACGCA -CCAACAGAAACGCATTGGCTTGCA -CCAACAGAAACGCATTGGCGAACA -CCAACAGAAACGCATTGGCAGTCA -CCAACAGAAACGCATTGGGATCCA -CCAACAGAAACGCATTGGACGACA -CCAACAGAAACGCATTGGAGCTCA -CCAACAGAAACGCATTGGTCACGT -CCAACAGAAACGCATTGGCGTAGT -CCAACAGAAACGCATTGGGTCAGT -CCAACAGAAACGCATTGGGAAGGT -CCAACAGAAACGCATTGGAACCGT -CCAACAGAAACGCATTGGTTGTGC -CCAACAGAAACGCATTGGCTAAGC -CCAACAGAAACGCATTGGACTAGC -CCAACAGAAACGCATTGGAGATGC -CCAACAGAAACGCATTGGTGAAGG -CCAACAGAAACGCATTGGCAATGG -CCAACAGAAACGCATTGGATGAGG -CCAACAGAAACGCATTGGAATGGG -CCAACAGAAACGCATTGGTCCTGA -CCAACAGAAACGCATTGGTAGCGA -CCAACAGAAACGCATTGGCACAGA -CCAACAGAAACGCATTGGGCAAGA -CCAACAGAAACGCATTGGGGTTGA -CCAACAGAAACGCATTGGTCCGAT -CCAACAGAAACGCATTGGTGGCAT -CCAACAGAAACGCATTGGCGAGAT -CCAACAGAAACGCATTGGTACCAC -CCAACAGAAACGCATTGGCAGAAC -CCAACAGAAACGCATTGGGTCTAC -CCAACAGAAACGCATTGGACGTAC -CCAACAGAAACGCATTGGAGTGAC -CCAACAGAAACGCATTGGCTGTAG -CCAACAGAAACGCATTGGCCTAAG -CCAACAGAAACGCATTGGGTTCAG -CCAACAGAAACGCATTGGGCATAG -CCAACAGAAACGCATTGGGACAAG -CCAACAGAAACGCATTGGAAGCAG -CCAACAGAAACGCATTGGCGTCAA -CCAACAGAAACGCATTGGGCTGAA -CCAACAGAAACGCATTGGAGTACG -CCAACAGAAACGCATTGGATCCGA -CCAACAGAAACGCATTGGATGGGA -CCAACAGAAACGCATTGGGTGCAA -CCAACAGAAACGCATTGGGAGGAA -CCAACAGAAACGCATTGGCAGGTA -CCAACAGAAACGCATTGGGACTCT -CCAACAGAAACGCATTGGAGTCCT -CCAACAGAAACGCATTGGTAAGCC -CCAACAGAAACGCATTGGATAGCC -CCAACAGAAACGCATTGGTAACCG -CCAACAGAAACGCATTGGATGCCA -CCAACAGAAACGGATCGAGGAAAC -CCAACAGAAACGGATCGAAACACC -CCAACAGAAACGGATCGAATCGAG -CCAACAGAAACGGATCGACTCCTT -CCAACAGAAACGGATCGACCTGTT -CCAACAGAAACGGATCGACGGTTT -CCAACAGAAACGGATCGAGTGGTT -CCAACAGAAACGGATCGAGCCTTT -CCAACAGAAACGGATCGAGGTCTT -CCAACAGAAACGGATCGAACGCTT -CCAACAGAAACGGATCGAAGCGTT -CCAACAGAAACGGATCGATTCGTC -CCAACAGAAACGGATCGATCTCTC -CCAACAGAAACGGATCGATGGATC -CCAACAGAAACGGATCGACACTTC -CCAACAGAAACGGATCGAGTACTC -CCAACAGAAACGGATCGAGATGTC -CCAACAGAAACGGATCGAACAGTC -CCAACAGAAACGGATCGATTGCTG -CCAACAGAAACGGATCGATCCATG -CCAACAGAAACGGATCGATGTGTG -CCAACAGAAACGGATCGACTAGTG -CCAACAGAAACGGATCGACATCTG -CCAACAGAAACGGATCGAGAGTTG -CCAACAGAAACGGATCGAAGACTG -CCAACAGAAACGGATCGATCGGTA -CCAACAGAAACGGATCGATGCCTA -CCAACAGAAACGGATCGACCACTA -CCAACAGAAACGGATCGAGGAGTA -CCAACAGAAACGGATCGATCGTCT -CCAACAGAAACGGATCGATGCACT -CCAACAGAAACGGATCGACTGACT -CCAACAGAAACGGATCGACAACCT -CCAACAGAAACGGATCGAGCTACT -CCAACAGAAACGGATCGAGGATCT -CCAACAGAAACGGATCGAAAGGCT -CCAACAGAAACGGATCGATCAACC -CCAACAGAAACGGATCGATGTTCC -CCAACAGAAACGGATCGAATTCCC -CCAACAGAAACGGATCGATTCTCG -CCAACAGAAACGGATCGATAGACG -CCAACAGAAACGGATCGAGTAACG -CCAACAGAAACGGATCGAACTTCG -CCAACAGAAACGGATCGATACGCA -CCAACAGAAACGGATCGACTTGCA -CCAACAGAAACGGATCGACGAACA -CCAACAGAAACGGATCGACAGTCA -CCAACAGAAACGGATCGAGATCCA -CCAACAGAAACGGATCGAACGACA -CCAACAGAAACGGATCGAAGCTCA -CCAACAGAAACGGATCGATCACGT -CCAACAGAAACGGATCGACGTAGT -CCAACAGAAACGGATCGAGTCAGT -CCAACAGAAACGGATCGAGAAGGT -CCAACAGAAACGGATCGAAACCGT -CCAACAGAAACGGATCGATTGTGC -CCAACAGAAACGGATCGACTAAGC -CCAACAGAAACGGATCGAACTAGC -CCAACAGAAACGGATCGAAGATGC -CCAACAGAAACGGATCGATGAAGG -CCAACAGAAACGGATCGACAATGG -CCAACAGAAACGGATCGAATGAGG -CCAACAGAAACGGATCGAAATGGG -CCAACAGAAACGGATCGATCCTGA -CCAACAGAAACGGATCGATAGCGA -CCAACAGAAACGGATCGACACAGA -CCAACAGAAACGGATCGAGCAAGA -CCAACAGAAACGGATCGAGGTTGA -CCAACAGAAACGGATCGATCCGAT -CCAACAGAAACGGATCGATGGCAT -CCAACAGAAACGGATCGACGAGAT -CCAACAGAAACGGATCGATACCAC -CCAACAGAAACGGATCGACAGAAC -CCAACAGAAACGGATCGAGTCTAC -CCAACAGAAACGGATCGAACGTAC -CCAACAGAAACGGATCGAAGTGAC -CCAACAGAAACGGATCGACTGTAG -CCAACAGAAACGGATCGACCTAAG -CCAACAGAAACGGATCGAGTTCAG -CCAACAGAAACGGATCGAGCATAG -CCAACAGAAACGGATCGAGACAAG -CCAACAGAAACGGATCGAAAGCAG -CCAACAGAAACGGATCGACGTCAA -CCAACAGAAACGGATCGAGCTGAA -CCAACAGAAACGGATCGAAGTACG -CCAACAGAAACGGATCGAATCCGA -CCAACAGAAACGGATCGAATGGGA -CCAACAGAAACGGATCGAGTGCAA -CCAACAGAAACGGATCGAGAGGAA -CCAACAGAAACGGATCGACAGGTA -CCAACAGAAACGGATCGAGACTCT -CCAACAGAAACGGATCGAAGTCCT -CCAACAGAAACGGATCGATAAGCC -CCAACAGAAACGGATCGAATAGCC -CCAACAGAAACGGATCGATAACCG -CCAACAGAAACGGATCGAATGCCA -CCAACAGAAACGCACTACGGAAAC -CCAACAGAAACGCACTACAACACC -CCAACAGAAACGCACTACATCGAG -CCAACAGAAACGCACTACCTCCTT -CCAACAGAAACGCACTACCCTGTT -CCAACAGAAACGCACTACCGGTTT -CCAACAGAAACGCACTACGTGGTT -CCAACAGAAACGCACTACGCCTTT -CCAACAGAAACGCACTACGGTCTT -CCAACAGAAACGCACTACACGCTT -CCAACAGAAACGCACTACAGCGTT -CCAACAGAAACGCACTACTTCGTC -CCAACAGAAACGCACTACTCTCTC -CCAACAGAAACGCACTACTGGATC -CCAACAGAAACGCACTACCACTTC -CCAACAGAAACGCACTACGTACTC -CCAACAGAAACGCACTACGATGTC -CCAACAGAAACGCACTACACAGTC -CCAACAGAAACGCACTACTTGCTG -CCAACAGAAACGCACTACTCCATG -CCAACAGAAACGCACTACTGTGTG -CCAACAGAAACGCACTACCTAGTG -CCAACAGAAACGCACTACCATCTG -CCAACAGAAACGCACTACGAGTTG -CCAACAGAAACGCACTACAGACTG -CCAACAGAAACGCACTACTCGGTA -CCAACAGAAACGCACTACTGCCTA -CCAACAGAAACGCACTACCCACTA -CCAACAGAAACGCACTACGGAGTA -CCAACAGAAACGCACTACTCGTCT -CCAACAGAAACGCACTACTGCACT -CCAACAGAAACGCACTACCTGACT -CCAACAGAAACGCACTACCAACCT -CCAACAGAAACGCACTACGCTACT -CCAACAGAAACGCACTACGGATCT -CCAACAGAAACGCACTACAAGGCT -CCAACAGAAACGCACTACTCAACC -CCAACAGAAACGCACTACTGTTCC -CCAACAGAAACGCACTACATTCCC -CCAACAGAAACGCACTACTTCTCG -CCAACAGAAACGCACTACTAGACG -CCAACAGAAACGCACTACGTAACG -CCAACAGAAACGCACTACACTTCG -CCAACAGAAACGCACTACTACGCA -CCAACAGAAACGCACTACCTTGCA -CCAACAGAAACGCACTACCGAACA -CCAACAGAAACGCACTACCAGTCA -CCAACAGAAACGCACTACGATCCA -CCAACAGAAACGCACTACACGACA -CCAACAGAAACGCACTACAGCTCA -CCAACAGAAACGCACTACTCACGT -CCAACAGAAACGCACTACCGTAGT -CCAACAGAAACGCACTACGTCAGT -CCAACAGAAACGCACTACGAAGGT -CCAACAGAAACGCACTACAACCGT -CCAACAGAAACGCACTACTTGTGC -CCAACAGAAACGCACTACCTAAGC -CCAACAGAAACGCACTACACTAGC -CCAACAGAAACGCACTACAGATGC -CCAACAGAAACGCACTACTGAAGG -CCAACAGAAACGCACTACCAATGG -CCAACAGAAACGCACTACATGAGG -CCAACAGAAACGCACTACAATGGG -CCAACAGAAACGCACTACTCCTGA -CCAACAGAAACGCACTACTAGCGA -CCAACAGAAACGCACTACCACAGA -CCAACAGAAACGCACTACGCAAGA -CCAACAGAAACGCACTACGGTTGA -CCAACAGAAACGCACTACTCCGAT -CCAACAGAAACGCACTACTGGCAT -CCAACAGAAACGCACTACCGAGAT -CCAACAGAAACGCACTACTACCAC -CCAACAGAAACGCACTACCAGAAC -CCAACAGAAACGCACTACGTCTAC -CCAACAGAAACGCACTACACGTAC -CCAACAGAAACGCACTACAGTGAC -CCAACAGAAACGCACTACCTGTAG -CCAACAGAAACGCACTACCCTAAG -CCAACAGAAACGCACTACGTTCAG -CCAACAGAAACGCACTACGCATAG -CCAACAGAAACGCACTACGACAAG -CCAACAGAAACGCACTACAAGCAG -CCAACAGAAACGCACTACCGTCAA -CCAACAGAAACGCACTACGCTGAA -CCAACAGAAACGCACTACAGTACG -CCAACAGAAACGCACTACATCCGA -CCAACAGAAACGCACTACATGGGA -CCAACAGAAACGCACTACGTGCAA -CCAACAGAAACGCACTACGAGGAA -CCAACAGAAACGCACTACCAGGTA -CCAACAGAAACGCACTACGACTCT -CCAACAGAAACGCACTACAGTCCT -CCAACAGAAACGCACTACTAAGCC -CCAACAGAAACGCACTACATAGCC -CCAACAGAAACGCACTACTAACCG -CCAACAGAAACGCACTACATGCCA -CCAACAGAAACGAACCAGGGAAAC -CCAACAGAAACGAACCAGAACACC -CCAACAGAAACGAACCAGATCGAG -CCAACAGAAACGAACCAGCTCCTT -CCAACAGAAACGAACCAGCCTGTT -CCAACAGAAACGAACCAGCGGTTT -CCAACAGAAACGAACCAGGTGGTT -CCAACAGAAACGAACCAGGCCTTT -CCAACAGAAACGAACCAGGGTCTT -CCAACAGAAACGAACCAGACGCTT -CCAACAGAAACGAACCAGAGCGTT -CCAACAGAAACGAACCAGTTCGTC -CCAACAGAAACGAACCAGTCTCTC -CCAACAGAAACGAACCAGTGGATC -CCAACAGAAACGAACCAGCACTTC -CCAACAGAAACGAACCAGGTACTC -CCAACAGAAACGAACCAGGATGTC -CCAACAGAAACGAACCAGACAGTC -CCAACAGAAACGAACCAGTTGCTG -CCAACAGAAACGAACCAGTCCATG -CCAACAGAAACGAACCAGTGTGTG -CCAACAGAAACGAACCAGCTAGTG -CCAACAGAAACGAACCAGCATCTG -CCAACAGAAACGAACCAGGAGTTG -CCAACAGAAACGAACCAGAGACTG -CCAACAGAAACGAACCAGTCGGTA -CCAACAGAAACGAACCAGTGCCTA -CCAACAGAAACGAACCAGCCACTA -CCAACAGAAACGAACCAGGGAGTA -CCAACAGAAACGAACCAGTCGTCT -CCAACAGAAACGAACCAGTGCACT -CCAACAGAAACGAACCAGCTGACT -CCAACAGAAACGAACCAGCAACCT -CCAACAGAAACGAACCAGGCTACT -CCAACAGAAACGAACCAGGGATCT -CCAACAGAAACGAACCAGAAGGCT -CCAACAGAAACGAACCAGTCAACC -CCAACAGAAACGAACCAGTGTTCC -CCAACAGAAACGAACCAGATTCCC -CCAACAGAAACGAACCAGTTCTCG -CCAACAGAAACGAACCAGTAGACG -CCAACAGAAACGAACCAGGTAACG -CCAACAGAAACGAACCAGACTTCG -CCAACAGAAACGAACCAGTACGCA -CCAACAGAAACGAACCAGCTTGCA -CCAACAGAAACGAACCAGCGAACA -CCAACAGAAACGAACCAGCAGTCA -CCAACAGAAACGAACCAGGATCCA -CCAACAGAAACGAACCAGACGACA -CCAACAGAAACGAACCAGAGCTCA -CCAACAGAAACGAACCAGTCACGT -CCAACAGAAACGAACCAGCGTAGT -CCAACAGAAACGAACCAGGTCAGT -CCAACAGAAACGAACCAGGAAGGT -CCAACAGAAACGAACCAGAACCGT -CCAACAGAAACGAACCAGTTGTGC -CCAACAGAAACGAACCAGCTAAGC -CCAACAGAAACGAACCAGACTAGC -CCAACAGAAACGAACCAGAGATGC -CCAACAGAAACGAACCAGTGAAGG -CCAACAGAAACGAACCAGCAATGG -CCAACAGAAACGAACCAGATGAGG -CCAACAGAAACGAACCAGAATGGG -CCAACAGAAACGAACCAGTCCTGA -CCAACAGAAACGAACCAGTAGCGA -CCAACAGAAACGAACCAGCACAGA -CCAACAGAAACGAACCAGGCAAGA -CCAACAGAAACGAACCAGGGTTGA -CCAACAGAAACGAACCAGTCCGAT -CCAACAGAAACGAACCAGTGGCAT -CCAACAGAAACGAACCAGCGAGAT -CCAACAGAAACGAACCAGTACCAC -CCAACAGAAACGAACCAGCAGAAC -CCAACAGAAACGAACCAGGTCTAC -CCAACAGAAACGAACCAGACGTAC -CCAACAGAAACGAACCAGAGTGAC -CCAACAGAAACGAACCAGCTGTAG -CCAACAGAAACGAACCAGCCTAAG -CCAACAGAAACGAACCAGGTTCAG -CCAACAGAAACGAACCAGGCATAG -CCAACAGAAACGAACCAGGACAAG -CCAACAGAAACGAACCAGAAGCAG -CCAACAGAAACGAACCAGCGTCAA -CCAACAGAAACGAACCAGGCTGAA -CCAACAGAAACGAACCAGAGTACG -CCAACAGAAACGAACCAGATCCGA -CCAACAGAAACGAACCAGATGGGA -CCAACAGAAACGAACCAGGTGCAA -CCAACAGAAACGAACCAGGAGGAA -CCAACAGAAACGAACCAGCAGGTA -CCAACAGAAACGAACCAGGACTCT -CCAACAGAAACGAACCAGAGTCCT -CCAACAGAAACGAACCAGTAAGCC -CCAACAGAAACGAACCAGATAGCC -CCAACAGAAACGAACCAGTAACCG -CCAACAGAAACGAACCAGATGCCA -CCAACAGAAACGTACGTCGGAAAC -CCAACAGAAACGTACGTCAACACC -CCAACAGAAACGTACGTCATCGAG -CCAACAGAAACGTACGTCCTCCTT -CCAACAGAAACGTACGTCCCTGTT -CCAACAGAAACGTACGTCCGGTTT -CCAACAGAAACGTACGTCGTGGTT -CCAACAGAAACGTACGTCGCCTTT -CCAACAGAAACGTACGTCGGTCTT -CCAACAGAAACGTACGTCACGCTT -CCAACAGAAACGTACGTCAGCGTT -CCAACAGAAACGTACGTCTTCGTC -CCAACAGAAACGTACGTCTCTCTC -CCAACAGAAACGTACGTCTGGATC -CCAACAGAAACGTACGTCCACTTC -CCAACAGAAACGTACGTCGTACTC -CCAACAGAAACGTACGTCGATGTC -CCAACAGAAACGTACGTCACAGTC -CCAACAGAAACGTACGTCTTGCTG -CCAACAGAAACGTACGTCTCCATG -CCAACAGAAACGTACGTCTGTGTG -CCAACAGAAACGTACGTCCTAGTG -CCAACAGAAACGTACGTCCATCTG -CCAACAGAAACGTACGTCGAGTTG -CCAACAGAAACGTACGTCAGACTG -CCAACAGAAACGTACGTCTCGGTA -CCAACAGAAACGTACGTCTGCCTA -CCAACAGAAACGTACGTCCCACTA -CCAACAGAAACGTACGTCGGAGTA -CCAACAGAAACGTACGTCTCGTCT -CCAACAGAAACGTACGTCTGCACT -CCAACAGAAACGTACGTCCTGACT -CCAACAGAAACGTACGTCCAACCT -CCAACAGAAACGTACGTCGCTACT -CCAACAGAAACGTACGTCGGATCT -CCAACAGAAACGTACGTCAAGGCT -CCAACAGAAACGTACGTCTCAACC -CCAACAGAAACGTACGTCTGTTCC -CCAACAGAAACGTACGTCATTCCC -CCAACAGAAACGTACGTCTTCTCG -CCAACAGAAACGTACGTCTAGACG -CCAACAGAAACGTACGTCGTAACG -CCAACAGAAACGTACGTCACTTCG -CCAACAGAAACGTACGTCTACGCA -CCAACAGAAACGTACGTCCTTGCA -CCAACAGAAACGTACGTCCGAACA -CCAACAGAAACGTACGTCCAGTCA -CCAACAGAAACGTACGTCGATCCA -CCAACAGAAACGTACGTCACGACA -CCAACAGAAACGTACGTCAGCTCA -CCAACAGAAACGTACGTCTCACGT -CCAACAGAAACGTACGTCCGTAGT -CCAACAGAAACGTACGTCGTCAGT -CCAACAGAAACGTACGTCGAAGGT -CCAACAGAAACGTACGTCAACCGT -CCAACAGAAACGTACGTCTTGTGC -CCAACAGAAACGTACGTCCTAAGC -CCAACAGAAACGTACGTCACTAGC -CCAACAGAAACGTACGTCAGATGC -CCAACAGAAACGTACGTCTGAAGG -CCAACAGAAACGTACGTCCAATGG -CCAACAGAAACGTACGTCATGAGG -CCAACAGAAACGTACGTCAATGGG -CCAACAGAAACGTACGTCTCCTGA -CCAACAGAAACGTACGTCTAGCGA -CCAACAGAAACGTACGTCCACAGA -CCAACAGAAACGTACGTCGCAAGA -CCAACAGAAACGTACGTCGGTTGA -CCAACAGAAACGTACGTCTCCGAT -CCAACAGAAACGTACGTCTGGCAT -CCAACAGAAACGTACGTCCGAGAT -CCAACAGAAACGTACGTCTACCAC -CCAACAGAAACGTACGTCCAGAAC -CCAACAGAAACGTACGTCGTCTAC -CCAACAGAAACGTACGTCACGTAC -CCAACAGAAACGTACGTCAGTGAC -CCAACAGAAACGTACGTCCTGTAG -CCAACAGAAACGTACGTCCCTAAG -CCAACAGAAACGTACGTCGTTCAG -CCAACAGAAACGTACGTCGCATAG -CCAACAGAAACGTACGTCGACAAG -CCAACAGAAACGTACGTCAAGCAG -CCAACAGAAACGTACGTCCGTCAA -CCAACAGAAACGTACGTCGCTGAA -CCAACAGAAACGTACGTCAGTACG -CCAACAGAAACGTACGTCATCCGA -CCAACAGAAACGTACGTCATGGGA -CCAACAGAAACGTACGTCGTGCAA -CCAACAGAAACGTACGTCGAGGAA -CCAACAGAAACGTACGTCCAGGTA -CCAACAGAAACGTACGTCGACTCT -CCAACAGAAACGTACGTCAGTCCT -CCAACAGAAACGTACGTCTAAGCC -CCAACAGAAACGTACGTCATAGCC -CCAACAGAAACGTACGTCTAACCG -CCAACAGAAACGTACGTCATGCCA -CCAACAGAAACGTACACGGGAAAC -CCAACAGAAACGTACACGAACACC -CCAACAGAAACGTACACGATCGAG -CCAACAGAAACGTACACGCTCCTT -CCAACAGAAACGTACACGCCTGTT -CCAACAGAAACGTACACGCGGTTT -CCAACAGAAACGTACACGGTGGTT -CCAACAGAAACGTACACGGCCTTT -CCAACAGAAACGTACACGGGTCTT -CCAACAGAAACGTACACGACGCTT -CCAACAGAAACGTACACGAGCGTT -CCAACAGAAACGTACACGTTCGTC -CCAACAGAAACGTACACGTCTCTC -CCAACAGAAACGTACACGTGGATC -CCAACAGAAACGTACACGCACTTC -CCAACAGAAACGTACACGGTACTC -CCAACAGAAACGTACACGGATGTC -CCAACAGAAACGTACACGACAGTC -CCAACAGAAACGTACACGTTGCTG -CCAACAGAAACGTACACGTCCATG -CCAACAGAAACGTACACGTGTGTG -CCAACAGAAACGTACACGCTAGTG -CCAACAGAAACGTACACGCATCTG -CCAACAGAAACGTACACGGAGTTG -CCAACAGAAACGTACACGAGACTG -CCAACAGAAACGTACACGTCGGTA -CCAACAGAAACGTACACGTGCCTA -CCAACAGAAACGTACACGCCACTA -CCAACAGAAACGTACACGGGAGTA -CCAACAGAAACGTACACGTCGTCT -CCAACAGAAACGTACACGTGCACT -CCAACAGAAACGTACACGCTGACT -CCAACAGAAACGTACACGCAACCT -CCAACAGAAACGTACACGGCTACT -CCAACAGAAACGTACACGGGATCT -CCAACAGAAACGTACACGAAGGCT -CCAACAGAAACGTACACGTCAACC -CCAACAGAAACGTACACGTGTTCC -CCAACAGAAACGTACACGATTCCC -CCAACAGAAACGTACACGTTCTCG -CCAACAGAAACGTACACGTAGACG -CCAACAGAAACGTACACGGTAACG -CCAACAGAAACGTACACGACTTCG -CCAACAGAAACGTACACGTACGCA -CCAACAGAAACGTACACGCTTGCA -CCAACAGAAACGTACACGCGAACA -CCAACAGAAACGTACACGCAGTCA -CCAACAGAAACGTACACGGATCCA -CCAACAGAAACGTACACGACGACA -CCAACAGAAACGTACACGAGCTCA -CCAACAGAAACGTACACGTCACGT -CCAACAGAAACGTACACGCGTAGT -CCAACAGAAACGTACACGGTCAGT -CCAACAGAAACGTACACGGAAGGT -CCAACAGAAACGTACACGAACCGT -CCAACAGAAACGTACACGTTGTGC -CCAACAGAAACGTACACGCTAAGC -CCAACAGAAACGTACACGACTAGC -CCAACAGAAACGTACACGAGATGC -CCAACAGAAACGTACACGTGAAGG -CCAACAGAAACGTACACGCAATGG -CCAACAGAAACGTACACGATGAGG -CCAACAGAAACGTACACGAATGGG -CCAACAGAAACGTACACGTCCTGA -CCAACAGAAACGTACACGTAGCGA -CCAACAGAAACGTACACGCACAGA -CCAACAGAAACGTACACGGCAAGA -CCAACAGAAACGTACACGGGTTGA -CCAACAGAAACGTACACGTCCGAT -CCAACAGAAACGTACACGTGGCAT -CCAACAGAAACGTACACGCGAGAT -CCAACAGAAACGTACACGTACCAC -CCAACAGAAACGTACACGCAGAAC -CCAACAGAAACGTACACGGTCTAC -CCAACAGAAACGTACACGACGTAC -CCAACAGAAACGTACACGAGTGAC -CCAACAGAAACGTACACGCTGTAG -CCAACAGAAACGTACACGCCTAAG -CCAACAGAAACGTACACGGTTCAG -CCAACAGAAACGTACACGGCATAG -CCAACAGAAACGTACACGGACAAG -CCAACAGAAACGTACACGAAGCAG -CCAACAGAAACGTACACGCGTCAA -CCAACAGAAACGTACACGGCTGAA -CCAACAGAAACGTACACGAGTACG -CCAACAGAAACGTACACGATCCGA -CCAACAGAAACGTACACGATGGGA -CCAACAGAAACGTACACGGTGCAA -CCAACAGAAACGTACACGGAGGAA -CCAACAGAAACGTACACGCAGGTA -CCAACAGAAACGTACACGGACTCT -CCAACAGAAACGTACACGAGTCCT -CCAACAGAAACGTACACGTAAGCC -CCAACAGAAACGTACACGATAGCC -CCAACAGAAACGTACACGTAACCG -CCAACAGAAACGTACACGATGCCA -CCAACAGAAACGGACAGTGGAAAC -CCAACAGAAACGGACAGTAACACC -CCAACAGAAACGGACAGTATCGAG -CCAACAGAAACGGACAGTCTCCTT -CCAACAGAAACGGACAGTCCTGTT -CCAACAGAAACGGACAGTCGGTTT -CCAACAGAAACGGACAGTGTGGTT -CCAACAGAAACGGACAGTGCCTTT -CCAACAGAAACGGACAGTGGTCTT -CCAACAGAAACGGACAGTACGCTT -CCAACAGAAACGGACAGTAGCGTT -CCAACAGAAACGGACAGTTTCGTC -CCAACAGAAACGGACAGTTCTCTC -CCAACAGAAACGGACAGTTGGATC -CCAACAGAAACGGACAGTCACTTC -CCAACAGAAACGGACAGTGTACTC -CCAACAGAAACGGACAGTGATGTC -CCAACAGAAACGGACAGTACAGTC -CCAACAGAAACGGACAGTTTGCTG -CCAACAGAAACGGACAGTTCCATG -CCAACAGAAACGGACAGTTGTGTG -CCAACAGAAACGGACAGTCTAGTG -CCAACAGAAACGGACAGTCATCTG -CCAACAGAAACGGACAGTGAGTTG -CCAACAGAAACGGACAGTAGACTG -CCAACAGAAACGGACAGTTCGGTA -CCAACAGAAACGGACAGTTGCCTA -CCAACAGAAACGGACAGTCCACTA -CCAACAGAAACGGACAGTGGAGTA -CCAACAGAAACGGACAGTTCGTCT -CCAACAGAAACGGACAGTTGCACT -CCAACAGAAACGGACAGTCTGACT -CCAACAGAAACGGACAGTCAACCT -CCAACAGAAACGGACAGTGCTACT -CCAACAGAAACGGACAGTGGATCT -CCAACAGAAACGGACAGTAAGGCT -CCAACAGAAACGGACAGTTCAACC -CCAACAGAAACGGACAGTTGTTCC -CCAACAGAAACGGACAGTATTCCC -CCAACAGAAACGGACAGTTTCTCG -CCAACAGAAACGGACAGTTAGACG -CCAACAGAAACGGACAGTGTAACG -CCAACAGAAACGGACAGTACTTCG -CCAACAGAAACGGACAGTTACGCA -CCAACAGAAACGGACAGTCTTGCA -CCAACAGAAACGGACAGTCGAACA -CCAACAGAAACGGACAGTCAGTCA -CCAACAGAAACGGACAGTGATCCA -CCAACAGAAACGGACAGTACGACA -CCAACAGAAACGGACAGTAGCTCA -CCAACAGAAACGGACAGTTCACGT -CCAACAGAAACGGACAGTCGTAGT -CCAACAGAAACGGACAGTGTCAGT -CCAACAGAAACGGACAGTGAAGGT -CCAACAGAAACGGACAGTAACCGT -CCAACAGAAACGGACAGTTTGTGC -CCAACAGAAACGGACAGTCTAAGC -CCAACAGAAACGGACAGTACTAGC -CCAACAGAAACGGACAGTAGATGC -CCAACAGAAACGGACAGTTGAAGG -CCAACAGAAACGGACAGTCAATGG -CCAACAGAAACGGACAGTATGAGG -CCAACAGAAACGGACAGTAATGGG -CCAACAGAAACGGACAGTTCCTGA -CCAACAGAAACGGACAGTTAGCGA -CCAACAGAAACGGACAGTCACAGA -CCAACAGAAACGGACAGTGCAAGA -CCAACAGAAACGGACAGTGGTTGA -CCAACAGAAACGGACAGTTCCGAT -CCAACAGAAACGGACAGTTGGCAT -CCAACAGAAACGGACAGTCGAGAT -CCAACAGAAACGGACAGTTACCAC -CCAACAGAAACGGACAGTCAGAAC -CCAACAGAAACGGACAGTGTCTAC -CCAACAGAAACGGACAGTACGTAC -CCAACAGAAACGGACAGTAGTGAC -CCAACAGAAACGGACAGTCTGTAG -CCAACAGAAACGGACAGTCCTAAG -CCAACAGAAACGGACAGTGTTCAG -CCAACAGAAACGGACAGTGCATAG -CCAACAGAAACGGACAGTGACAAG -CCAACAGAAACGGACAGTAAGCAG -CCAACAGAAACGGACAGTCGTCAA -CCAACAGAAACGGACAGTGCTGAA -CCAACAGAAACGGACAGTAGTACG -CCAACAGAAACGGACAGTATCCGA -CCAACAGAAACGGACAGTATGGGA -CCAACAGAAACGGACAGTGTGCAA -CCAACAGAAACGGACAGTGAGGAA -CCAACAGAAACGGACAGTCAGGTA -CCAACAGAAACGGACAGTGACTCT -CCAACAGAAACGGACAGTAGTCCT -CCAACAGAAACGGACAGTTAAGCC -CCAACAGAAACGGACAGTATAGCC -CCAACAGAAACGGACAGTTAACCG -CCAACAGAAACGGACAGTATGCCA -CCAACAGAAACGTAGCTGGGAAAC -CCAACAGAAACGTAGCTGAACACC -CCAACAGAAACGTAGCTGATCGAG -CCAACAGAAACGTAGCTGCTCCTT -CCAACAGAAACGTAGCTGCCTGTT -CCAACAGAAACGTAGCTGCGGTTT -CCAACAGAAACGTAGCTGGTGGTT -CCAACAGAAACGTAGCTGGCCTTT -CCAACAGAAACGTAGCTGGGTCTT -CCAACAGAAACGTAGCTGACGCTT -CCAACAGAAACGTAGCTGAGCGTT -CCAACAGAAACGTAGCTGTTCGTC -CCAACAGAAACGTAGCTGTCTCTC -CCAACAGAAACGTAGCTGTGGATC -CCAACAGAAACGTAGCTGCACTTC -CCAACAGAAACGTAGCTGGTACTC -CCAACAGAAACGTAGCTGGATGTC -CCAACAGAAACGTAGCTGACAGTC -CCAACAGAAACGTAGCTGTTGCTG -CCAACAGAAACGTAGCTGTCCATG -CCAACAGAAACGTAGCTGTGTGTG -CCAACAGAAACGTAGCTGCTAGTG -CCAACAGAAACGTAGCTGCATCTG -CCAACAGAAACGTAGCTGGAGTTG -CCAACAGAAACGTAGCTGAGACTG -CCAACAGAAACGTAGCTGTCGGTA -CCAACAGAAACGTAGCTGTGCCTA -CCAACAGAAACGTAGCTGCCACTA -CCAACAGAAACGTAGCTGGGAGTA -CCAACAGAAACGTAGCTGTCGTCT -CCAACAGAAACGTAGCTGTGCACT -CCAACAGAAACGTAGCTGCTGACT -CCAACAGAAACGTAGCTGCAACCT -CCAACAGAAACGTAGCTGGCTACT -CCAACAGAAACGTAGCTGGGATCT -CCAACAGAAACGTAGCTGAAGGCT -CCAACAGAAACGTAGCTGTCAACC -CCAACAGAAACGTAGCTGTGTTCC -CCAACAGAAACGTAGCTGATTCCC -CCAACAGAAACGTAGCTGTTCTCG -CCAACAGAAACGTAGCTGTAGACG -CCAACAGAAACGTAGCTGGTAACG -CCAACAGAAACGTAGCTGACTTCG -CCAACAGAAACGTAGCTGTACGCA -CCAACAGAAACGTAGCTGCTTGCA -CCAACAGAAACGTAGCTGCGAACA -CCAACAGAAACGTAGCTGCAGTCA -CCAACAGAAACGTAGCTGGATCCA -CCAACAGAAACGTAGCTGACGACA -CCAACAGAAACGTAGCTGAGCTCA -CCAACAGAAACGTAGCTGTCACGT -CCAACAGAAACGTAGCTGCGTAGT -CCAACAGAAACGTAGCTGGTCAGT -CCAACAGAAACGTAGCTGGAAGGT -CCAACAGAAACGTAGCTGAACCGT -CCAACAGAAACGTAGCTGTTGTGC -CCAACAGAAACGTAGCTGCTAAGC -CCAACAGAAACGTAGCTGACTAGC -CCAACAGAAACGTAGCTGAGATGC -CCAACAGAAACGTAGCTGTGAAGG -CCAACAGAAACGTAGCTGCAATGG -CCAACAGAAACGTAGCTGATGAGG -CCAACAGAAACGTAGCTGAATGGG -CCAACAGAAACGTAGCTGTCCTGA -CCAACAGAAACGTAGCTGTAGCGA -CCAACAGAAACGTAGCTGCACAGA -CCAACAGAAACGTAGCTGGCAAGA -CCAACAGAAACGTAGCTGGGTTGA -CCAACAGAAACGTAGCTGTCCGAT -CCAACAGAAACGTAGCTGTGGCAT -CCAACAGAAACGTAGCTGCGAGAT -CCAACAGAAACGTAGCTGTACCAC -CCAACAGAAACGTAGCTGCAGAAC -CCAACAGAAACGTAGCTGGTCTAC -CCAACAGAAACGTAGCTGACGTAC -CCAACAGAAACGTAGCTGAGTGAC -CCAACAGAAACGTAGCTGCTGTAG -CCAACAGAAACGTAGCTGCCTAAG -CCAACAGAAACGTAGCTGGTTCAG -CCAACAGAAACGTAGCTGGCATAG -CCAACAGAAACGTAGCTGGACAAG -CCAACAGAAACGTAGCTGAAGCAG -CCAACAGAAACGTAGCTGCGTCAA -CCAACAGAAACGTAGCTGGCTGAA -CCAACAGAAACGTAGCTGAGTACG -CCAACAGAAACGTAGCTGATCCGA -CCAACAGAAACGTAGCTGATGGGA -CCAACAGAAACGTAGCTGGTGCAA -CCAACAGAAACGTAGCTGGAGGAA -CCAACAGAAACGTAGCTGCAGGTA -CCAACAGAAACGTAGCTGGACTCT -CCAACAGAAACGTAGCTGAGTCCT -CCAACAGAAACGTAGCTGTAAGCC -CCAACAGAAACGTAGCTGATAGCC -CCAACAGAAACGTAGCTGTAACCG -CCAACAGAAACGTAGCTGATGCCA -CCAACAGAAACGAAGCCTGGAAAC -CCAACAGAAACGAAGCCTAACACC -CCAACAGAAACGAAGCCTATCGAG -CCAACAGAAACGAAGCCTCTCCTT -CCAACAGAAACGAAGCCTCCTGTT -CCAACAGAAACGAAGCCTCGGTTT -CCAACAGAAACGAAGCCTGTGGTT -CCAACAGAAACGAAGCCTGCCTTT -CCAACAGAAACGAAGCCTGGTCTT -CCAACAGAAACGAAGCCTACGCTT -CCAACAGAAACGAAGCCTAGCGTT -CCAACAGAAACGAAGCCTTTCGTC -CCAACAGAAACGAAGCCTTCTCTC -CCAACAGAAACGAAGCCTTGGATC -CCAACAGAAACGAAGCCTCACTTC -CCAACAGAAACGAAGCCTGTACTC -CCAACAGAAACGAAGCCTGATGTC -CCAACAGAAACGAAGCCTACAGTC -CCAACAGAAACGAAGCCTTTGCTG -CCAACAGAAACGAAGCCTTCCATG -CCAACAGAAACGAAGCCTTGTGTG -CCAACAGAAACGAAGCCTCTAGTG -CCAACAGAAACGAAGCCTCATCTG -CCAACAGAAACGAAGCCTGAGTTG -CCAACAGAAACGAAGCCTAGACTG -CCAACAGAAACGAAGCCTTCGGTA -CCAACAGAAACGAAGCCTTGCCTA -CCAACAGAAACGAAGCCTCCACTA -CCAACAGAAACGAAGCCTGGAGTA -CCAACAGAAACGAAGCCTTCGTCT -CCAACAGAAACGAAGCCTTGCACT -CCAACAGAAACGAAGCCTCTGACT -CCAACAGAAACGAAGCCTCAACCT -CCAACAGAAACGAAGCCTGCTACT -CCAACAGAAACGAAGCCTGGATCT -CCAACAGAAACGAAGCCTAAGGCT -CCAACAGAAACGAAGCCTTCAACC -CCAACAGAAACGAAGCCTTGTTCC -CCAACAGAAACGAAGCCTATTCCC -CCAACAGAAACGAAGCCTTTCTCG -CCAACAGAAACGAAGCCTTAGACG -CCAACAGAAACGAAGCCTGTAACG -CCAACAGAAACGAAGCCTACTTCG -CCAACAGAAACGAAGCCTTACGCA -CCAACAGAAACGAAGCCTCTTGCA -CCAACAGAAACGAAGCCTCGAACA -CCAACAGAAACGAAGCCTCAGTCA -CCAACAGAAACGAAGCCTGATCCA -CCAACAGAAACGAAGCCTACGACA -CCAACAGAAACGAAGCCTAGCTCA -CCAACAGAAACGAAGCCTTCACGT -CCAACAGAAACGAAGCCTCGTAGT -CCAACAGAAACGAAGCCTGTCAGT -CCAACAGAAACGAAGCCTGAAGGT -CCAACAGAAACGAAGCCTAACCGT -CCAACAGAAACGAAGCCTTTGTGC -CCAACAGAAACGAAGCCTCTAAGC -CCAACAGAAACGAAGCCTACTAGC -CCAACAGAAACGAAGCCTAGATGC -CCAACAGAAACGAAGCCTTGAAGG -CCAACAGAAACGAAGCCTCAATGG -CCAACAGAAACGAAGCCTATGAGG -CCAACAGAAACGAAGCCTAATGGG -CCAACAGAAACGAAGCCTTCCTGA -CCAACAGAAACGAAGCCTTAGCGA -CCAACAGAAACGAAGCCTCACAGA -CCAACAGAAACGAAGCCTGCAAGA -CCAACAGAAACGAAGCCTGGTTGA -CCAACAGAAACGAAGCCTTCCGAT -CCAACAGAAACGAAGCCTTGGCAT -CCAACAGAAACGAAGCCTCGAGAT -CCAACAGAAACGAAGCCTTACCAC -CCAACAGAAACGAAGCCTCAGAAC -CCAACAGAAACGAAGCCTGTCTAC -CCAACAGAAACGAAGCCTACGTAC -CCAACAGAAACGAAGCCTAGTGAC -CCAACAGAAACGAAGCCTCTGTAG -CCAACAGAAACGAAGCCTCCTAAG -CCAACAGAAACGAAGCCTGTTCAG -CCAACAGAAACGAAGCCTGCATAG -CCAACAGAAACGAAGCCTGACAAG -CCAACAGAAACGAAGCCTAAGCAG -CCAACAGAAACGAAGCCTCGTCAA -CCAACAGAAACGAAGCCTGCTGAA -CCAACAGAAACGAAGCCTAGTACG -CCAACAGAAACGAAGCCTATCCGA -CCAACAGAAACGAAGCCTATGGGA -CCAACAGAAACGAAGCCTGTGCAA -CCAACAGAAACGAAGCCTGAGGAA -CCAACAGAAACGAAGCCTCAGGTA -CCAACAGAAACGAAGCCTGACTCT -CCAACAGAAACGAAGCCTAGTCCT -CCAACAGAAACGAAGCCTTAAGCC -CCAACAGAAACGAAGCCTATAGCC -CCAACAGAAACGAAGCCTTAACCG -CCAACAGAAACGAAGCCTATGCCA -CCAACAGAAACGCAGGTTGGAAAC -CCAACAGAAACGCAGGTTAACACC -CCAACAGAAACGCAGGTTATCGAG -CCAACAGAAACGCAGGTTCTCCTT -CCAACAGAAACGCAGGTTCCTGTT -CCAACAGAAACGCAGGTTCGGTTT -CCAACAGAAACGCAGGTTGTGGTT -CCAACAGAAACGCAGGTTGCCTTT -CCAACAGAAACGCAGGTTGGTCTT -CCAACAGAAACGCAGGTTACGCTT -CCAACAGAAACGCAGGTTAGCGTT -CCAACAGAAACGCAGGTTTTCGTC -CCAACAGAAACGCAGGTTTCTCTC -CCAACAGAAACGCAGGTTTGGATC -CCAACAGAAACGCAGGTTCACTTC -CCAACAGAAACGCAGGTTGTACTC -CCAACAGAAACGCAGGTTGATGTC -CCAACAGAAACGCAGGTTACAGTC -CCAACAGAAACGCAGGTTTTGCTG -CCAACAGAAACGCAGGTTTCCATG -CCAACAGAAACGCAGGTTTGTGTG -CCAACAGAAACGCAGGTTCTAGTG -CCAACAGAAACGCAGGTTCATCTG -CCAACAGAAACGCAGGTTGAGTTG -CCAACAGAAACGCAGGTTAGACTG -CCAACAGAAACGCAGGTTTCGGTA -CCAACAGAAACGCAGGTTTGCCTA -CCAACAGAAACGCAGGTTCCACTA -CCAACAGAAACGCAGGTTGGAGTA -CCAACAGAAACGCAGGTTTCGTCT -CCAACAGAAACGCAGGTTTGCACT -CCAACAGAAACGCAGGTTCTGACT -CCAACAGAAACGCAGGTTCAACCT -CCAACAGAAACGCAGGTTGCTACT -CCAACAGAAACGCAGGTTGGATCT -CCAACAGAAACGCAGGTTAAGGCT -CCAACAGAAACGCAGGTTTCAACC -CCAACAGAAACGCAGGTTTGTTCC -CCAACAGAAACGCAGGTTATTCCC -CCAACAGAAACGCAGGTTTTCTCG -CCAACAGAAACGCAGGTTTAGACG -CCAACAGAAACGCAGGTTGTAACG -CCAACAGAAACGCAGGTTACTTCG -CCAACAGAAACGCAGGTTTACGCA -CCAACAGAAACGCAGGTTCTTGCA -CCAACAGAAACGCAGGTTCGAACA -CCAACAGAAACGCAGGTTCAGTCA -CCAACAGAAACGCAGGTTGATCCA -CCAACAGAAACGCAGGTTACGACA -CCAACAGAAACGCAGGTTAGCTCA -CCAACAGAAACGCAGGTTTCACGT -CCAACAGAAACGCAGGTTCGTAGT -CCAACAGAAACGCAGGTTGTCAGT -CCAACAGAAACGCAGGTTGAAGGT -CCAACAGAAACGCAGGTTAACCGT -CCAACAGAAACGCAGGTTTTGTGC -CCAACAGAAACGCAGGTTCTAAGC -CCAACAGAAACGCAGGTTACTAGC -CCAACAGAAACGCAGGTTAGATGC -CCAACAGAAACGCAGGTTTGAAGG -CCAACAGAAACGCAGGTTCAATGG -CCAACAGAAACGCAGGTTATGAGG -CCAACAGAAACGCAGGTTAATGGG -CCAACAGAAACGCAGGTTTCCTGA -CCAACAGAAACGCAGGTTTAGCGA -CCAACAGAAACGCAGGTTCACAGA -CCAACAGAAACGCAGGTTGCAAGA -CCAACAGAAACGCAGGTTGGTTGA -CCAACAGAAACGCAGGTTTCCGAT -CCAACAGAAACGCAGGTTTGGCAT -CCAACAGAAACGCAGGTTCGAGAT -CCAACAGAAACGCAGGTTTACCAC -CCAACAGAAACGCAGGTTCAGAAC -CCAACAGAAACGCAGGTTGTCTAC -CCAACAGAAACGCAGGTTACGTAC -CCAACAGAAACGCAGGTTAGTGAC -CCAACAGAAACGCAGGTTCTGTAG -CCAACAGAAACGCAGGTTCCTAAG -CCAACAGAAACGCAGGTTGTTCAG -CCAACAGAAACGCAGGTTGCATAG -CCAACAGAAACGCAGGTTGACAAG -CCAACAGAAACGCAGGTTAAGCAG -CCAACAGAAACGCAGGTTCGTCAA -CCAACAGAAACGCAGGTTGCTGAA -CCAACAGAAACGCAGGTTAGTACG -CCAACAGAAACGCAGGTTATCCGA -CCAACAGAAACGCAGGTTATGGGA -CCAACAGAAACGCAGGTTGTGCAA -CCAACAGAAACGCAGGTTGAGGAA -CCAACAGAAACGCAGGTTCAGGTA -CCAACAGAAACGCAGGTTGACTCT -CCAACAGAAACGCAGGTTAGTCCT -CCAACAGAAACGCAGGTTTAAGCC -CCAACAGAAACGCAGGTTATAGCC -CCAACAGAAACGCAGGTTTAACCG -CCAACAGAAACGCAGGTTATGCCA -CCAACAGAAACGTAGGCAGGAAAC -CCAACAGAAACGTAGGCAAACACC -CCAACAGAAACGTAGGCAATCGAG -CCAACAGAAACGTAGGCACTCCTT -CCAACAGAAACGTAGGCACCTGTT -CCAACAGAAACGTAGGCACGGTTT -CCAACAGAAACGTAGGCAGTGGTT -CCAACAGAAACGTAGGCAGCCTTT -CCAACAGAAACGTAGGCAGGTCTT -CCAACAGAAACGTAGGCAACGCTT -CCAACAGAAACGTAGGCAAGCGTT -CCAACAGAAACGTAGGCATTCGTC -CCAACAGAAACGTAGGCATCTCTC -CCAACAGAAACGTAGGCATGGATC -CCAACAGAAACGTAGGCACACTTC -CCAACAGAAACGTAGGCAGTACTC -CCAACAGAAACGTAGGCAGATGTC -CCAACAGAAACGTAGGCAACAGTC -CCAACAGAAACGTAGGCATTGCTG -CCAACAGAAACGTAGGCATCCATG -CCAACAGAAACGTAGGCATGTGTG -CCAACAGAAACGTAGGCACTAGTG -CCAACAGAAACGTAGGCACATCTG -CCAACAGAAACGTAGGCAGAGTTG -CCAACAGAAACGTAGGCAAGACTG -CCAACAGAAACGTAGGCATCGGTA -CCAACAGAAACGTAGGCATGCCTA -CCAACAGAAACGTAGGCACCACTA -CCAACAGAAACGTAGGCAGGAGTA -CCAACAGAAACGTAGGCATCGTCT -CCAACAGAAACGTAGGCATGCACT -CCAACAGAAACGTAGGCACTGACT -CCAACAGAAACGTAGGCACAACCT -CCAACAGAAACGTAGGCAGCTACT -CCAACAGAAACGTAGGCAGGATCT -CCAACAGAAACGTAGGCAAAGGCT -CCAACAGAAACGTAGGCATCAACC -CCAACAGAAACGTAGGCATGTTCC -CCAACAGAAACGTAGGCAATTCCC -CCAACAGAAACGTAGGCATTCTCG -CCAACAGAAACGTAGGCATAGACG -CCAACAGAAACGTAGGCAGTAACG -CCAACAGAAACGTAGGCAACTTCG -CCAACAGAAACGTAGGCATACGCA -CCAACAGAAACGTAGGCACTTGCA -CCAACAGAAACGTAGGCACGAACA -CCAACAGAAACGTAGGCACAGTCA -CCAACAGAAACGTAGGCAGATCCA -CCAACAGAAACGTAGGCAACGACA -CCAACAGAAACGTAGGCAAGCTCA -CCAACAGAAACGTAGGCATCACGT -CCAACAGAAACGTAGGCACGTAGT -CCAACAGAAACGTAGGCAGTCAGT -CCAACAGAAACGTAGGCAGAAGGT -CCAACAGAAACGTAGGCAAACCGT -CCAACAGAAACGTAGGCATTGTGC -CCAACAGAAACGTAGGCACTAAGC -CCAACAGAAACGTAGGCAACTAGC -CCAACAGAAACGTAGGCAAGATGC -CCAACAGAAACGTAGGCATGAAGG -CCAACAGAAACGTAGGCACAATGG -CCAACAGAAACGTAGGCAATGAGG -CCAACAGAAACGTAGGCAAATGGG -CCAACAGAAACGTAGGCATCCTGA -CCAACAGAAACGTAGGCATAGCGA -CCAACAGAAACGTAGGCACACAGA -CCAACAGAAACGTAGGCAGCAAGA -CCAACAGAAACGTAGGCAGGTTGA -CCAACAGAAACGTAGGCATCCGAT -CCAACAGAAACGTAGGCATGGCAT -CCAACAGAAACGTAGGCACGAGAT -CCAACAGAAACGTAGGCATACCAC -CCAACAGAAACGTAGGCACAGAAC -CCAACAGAAACGTAGGCAGTCTAC -CCAACAGAAACGTAGGCAACGTAC -CCAACAGAAACGTAGGCAAGTGAC -CCAACAGAAACGTAGGCACTGTAG -CCAACAGAAACGTAGGCACCTAAG -CCAACAGAAACGTAGGCAGTTCAG -CCAACAGAAACGTAGGCAGCATAG -CCAACAGAAACGTAGGCAGACAAG -CCAACAGAAACGTAGGCAAAGCAG -CCAACAGAAACGTAGGCACGTCAA -CCAACAGAAACGTAGGCAGCTGAA -CCAACAGAAACGTAGGCAAGTACG -CCAACAGAAACGTAGGCAATCCGA -CCAACAGAAACGTAGGCAATGGGA -CCAACAGAAACGTAGGCAGTGCAA -CCAACAGAAACGTAGGCAGAGGAA -CCAACAGAAACGTAGGCACAGGTA -CCAACAGAAACGTAGGCAGACTCT -CCAACAGAAACGTAGGCAAGTCCT -CCAACAGAAACGTAGGCATAAGCC -CCAACAGAAACGTAGGCAATAGCC -CCAACAGAAACGTAGGCATAACCG -CCAACAGAAACGTAGGCAATGCCA -CCAACAGAAACGAAGGACGGAAAC -CCAACAGAAACGAAGGACAACACC -CCAACAGAAACGAAGGACATCGAG -CCAACAGAAACGAAGGACCTCCTT -CCAACAGAAACGAAGGACCCTGTT -CCAACAGAAACGAAGGACCGGTTT -CCAACAGAAACGAAGGACGTGGTT -CCAACAGAAACGAAGGACGCCTTT -CCAACAGAAACGAAGGACGGTCTT -CCAACAGAAACGAAGGACACGCTT -CCAACAGAAACGAAGGACAGCGTT -CCAACAGAAACGAAGGACTTCGTC -CCAACAGAAACGAAGGACTCTCTC -CCAACAGAAACGAAGGACTGGATC -CCAACAGAAACGAAGGACCACTTC -CCAACAGAAACGAAGGACGTACTC -CCAACAGAAACGAAGGACGATGTC -CCAACAGAAACGAAGGACACAGTC -CCAACAGAAACGAAGGACTTGCTG -CCAACAGAAACGAAGGACTCCATG -CCAACAGAAACGAAGGACTGTGTG -CCAACAGAAACGAAGGACCTAGTG -CCAACAGAAACGAAGGACCATCTG -CCAACAGAAACGAAGGACGAGTTG -CCAACAGAAACGAAGGACAGACTG -CCAACAGAAACGAAGGACTCGGTA -CCAACAGAAACGAAGGACTGCCTA -CCAACAGAAACGAAGGACCCACTA -CCAACAGAAACGAAGGACGGAGTA -CCAACAGAAACGAAGGACTCGTCT -CCAACAGAAACGAAGGACTGCACT -CCAACAGAAACGAAGGACCTGACT -CCAACAGAAACGAAGGACCAACCT -CCAACAGAAACGAAGGACGCTACT -CCAACAGAAACGAAGGACGGATCT -CCAACAGAAACGAAGGACAAGGCT -CCAACAGAAACGAAGGACTCAACC -CCAACAGAAACGAAGGACTGTTCC -CCAACAGAAACGAAGGACATTCCC -CCAACAGAAACGAAGGACTTCTCG -CCAACAGAAACGAAGGACTAGACG -CCAACAGAAACGAAGGACGTAACG -CCAACAGAAACGAAGGACACTTCG -CCAACAGAAACGAAGGACTACGCA -CCAACAGAAACGAAGGACCTTGCA -CCAACAGAAACGAAGGACCGAACA -CCAACAGAAACGAAGGACCAGTCA -CCAACAGAAACGAAGGACGATCCA -CCAACAGAAACGAAGGACACGACA -CCAACAGAAACGAAGGACAGCTCA -CCAACAGAAACGAAGGACTCACGT -CCAACAGAAACGAAGGACCGTAGT -CCAACAGAAACGAAGGACGTCAGT -CCAACAGAAACGAAGGACGAAGGT -CCAACAGAAACGAAGGACAACCGT -CCAACAGAAACGAAGGACTTGTGC -CCAACAGAAACGAAGGACCTAAGC -CCAACAGAAACGAAGGACACTAGC -CCAACAGAAACGAAGGACAGATGC -CCAACAGAAACGAAGGACTGAAGG -CCAACAGAAACGAAGGACCAATGG -CCAACAGAAACGAAGGACATGAGG -CCAACAGAAACGAAGGACAATGGG -CCAACAGAAACGAAGGACTCCTGA -CCAACAGAAACGAAGGACTAGCGA -CCAACAGAAACGAAGGACCACAGA -CCAACAGAAACGAAGGACGCAAGA -CCAACAGAAACGAAGGACGGTTGA -CCAACAGAAACGAAGGACTCCGAT -CCAACAGAAACGAAGGACTGGCAT -CCAACAGAAACGAAGGACCGAGAT -CCAACAGAAACGAAGGACTACCAC -CCAACAGAAACGAAGGACCAGAAC -CCAACAGAAACGAAGGACGTCTAC -CCAACAGAAACGAAGGACACGTAC -CCAACAGAAACGAAGGACAGTGAC -CCAACAGAAACGAAGGACCTGTAG -CCAACAGAAACGAAGGACCCTAAG -CCAACAGAAACGAAGGACGTTCAG -CCAACAGAAACGAAGGACGCATAG -CCAACAGAAACGAAGGACGACAAG -CCAACAGAAACGAAGGACAAGCAG -CCAACAGAAACGAAGGACCGTCAA -CCAACAGAAACGAAGGACGCTGAA -CCAACAGAAACGAAGGACAGTACG -CCAACAGAAACGAAGGACATCCGA -CCAACAGAAACGAAGGACATGGGA -CCAACAGAAACGAAGGACGTGCAA -CCAACAGAAACGAAGGACGAGGAA -CCAACAGAAACGAAGGACCAGGTA -CCAACAGAAACGAAGGACGACTCT -CCAACAGAAACGAAGGACAGTCCT -CCAACAGAAACGAAGGACTAAGCC -CCAACAGAAACGAAGGACATAGCC -CCAACAGAAACGAAGGACTAACCG -CCAACAGAAACGAAGGACATGCCA -CCAACAGAAACGCAGAAGGGAAAC -CCAACAGAAACGCAGAAGAACACC -CCAACAGAAACGCAGAAGATCGAG -CCAACAGAAACGCAGAAGCTCCTT -CCAACAGAAACGCAGAAGCCTGTT -CCAACAGAAACGCAGAAGCGGTTT -CCAACAGAAACGCAGAAGGTGGTT -CCAACAGAAACGCAGAAGGCCTTT -CCAACAGAAACGCAGAAGGGTCTT -CCAACAGAAACGCAGAAGACGCTT -CCAACAGAAACGCAGAAGAGCGTT -CCAACAGAAACGCAGAAGTTCGTC -CCAACAGAAACGCAGAAGTCTCTC -CCAACAGAAACGCAGAAGTGGATC -CCAACAGAAACGCAGAAGCACTTC -CCAACAGAAACGCAGAAGGTACTC -CCAACAGAAACGCAGAAGGATGTC -CCAACAGAAACGCAGAAGACAGTC -CCAACAGAAACGCAGAAGTTGCTG -CCAACAGAAACGCAGAAGTCCATG -CCAACAGAAACGCAGAAGTGTGTG -CCAACAGAAACGCAGAAGCTAGTG -CCAACAGAAACGCAGAAGCATCTG -CCAACAGAAACGCAGAAGGAGTTG -CCAACAGAAACGCAGAAGAGACTG -CCAACAGAAACGCAGAAGTCGGTA -CCAACAGAAACGCAGAAGTGCCTA -CCAACAGAAACGCAGAAGCCACTA -CCAACAGAAACGCAGAAGGGAGTA -CCAACAGAAACGCAGAAGTCGTCT -CCAACAGAAACGCAGAAGTGCACT -CCAACAGAAACGCAGAAGCTGACT -CCAACAGAAACGCAGAAGCAACCT -CCAACAGAAACGCAGAAGGCTACT -CCAACAGAAACGCAGAAGGGATCT -CCAACAGAAACGCAGAAGAAGGCT -CCAACAGAAACGCAGAAGTCAACC -CCAACAGAAACGCAGAAGTGTTCC -CCAACAGAAACGCAGAAGATTCCC -CCAACAGAAACGCAGAAGTTCTCG -CCAACAGAAACGCAGAAGTAGACG -CCAACAGAAACGCAGAAGGTAACG -CCAACAGAAACGCAGAAGACTTCG -CCAACAGAAACGCAGAAGTACGCA -CCAACAGAAACGCAGAAGCTTGCA -CCAACAGAAACGCAGAAGCGAACA -CCAACAGAAACGCAGAAGCAGTCA -CCAACAGAAACGCAGAAGGATCCA -CCAACAGAAACGCAGAAGACGACA -CCAACAGAAACGCAGAAGAGCTCA -CCAACAGAAACGCAGAAGTCACGT -CCAACAGAAACGCAGAAGCGTAGT -CCAACAGAAACGCAGAAGGTCAGT -CCAACAGAAACGCAGAAGGAAGGT -CCAACAGAAACGCAGAAGAACCGT -CCAACAGAAACGCAGAAGTTGTGC -CCAACAGAAACGCAGAAGCTAAGC -CCAACAGAAACGCAGAAGACTAGC -CCAACAGAAACGCAGAAGAGATGC -CCAACAGAAACGCAGAAGTGAAGG -CCAACAGAAACGCAGAAGCAATGG -CCAACAGAAACGCAGAAGATGAGG -CCAACAGAAACGCAGAAGAATGGG -CCAACAGAAACGCAGAAGTCCTGA -CCAACAGAAACGCAGAAGTAGCGA -CCAACAGAAACGCAGAAGCACAGA -CCAACAGAAACGCAGAAGGCAAGA -CCAACAGAAACGCAGAAGGGTTGA -CCAACAGAAACGCAGAAGTCCGAT -CCAACAGAAACGCAGAAGTGGCAT -CCAACAGAAACGCAGAAGCGAGAT -CCAACAGAAACGCAGAAGTACCAC -CCAACAGAAACGCAGAAGCAGAAC -CCAACAGAAACGCAGAAGGTCTAC -CCAACAGAAACGCAGAAGACGTAC -CCAACAGAAACGCAGAAGAGTGAC -CCAACAGAAACGCAGAAGCTGTAG -CCAACAGAAACGCAGAAGCCTAAG -CCAACAGAAACGCAGAAGGTTCAG -CCAACAGAAACGCAGAAGGCATAG -CCAACAGAAACGCAGAAGGACAAG -CCAACAGAAACGCAGAAGAAGCAG -CCAACAGAAACGCAGAAGCGTCAA -CCAACAGAAACGCAGAAGGCTGAA -CCAACAGAAACGCAGAAGAGTACG -CCAACAGAAACGCAGAAGATCCGA -CCAACAGAAACGCAGAAGATGGGA -CCAACAGAAACGCAGAAGGTGCAA -CCAACAGAAACGCAGAAGGAGGAA -CCAACAGAAACGCAGAAGCAGGTA -CCAACAGAAACGCAGAAGGACTCT -CCAACAGAAACGCAGAAGAGTCCT -CCAACAGAAACGCAGAAGTAAGCC -CCAACAGAAACGCAGAAGATAGCC -CCAACAGAAACGCAGAAGTAACCG -CCAACAGAAACGCAGAAGATGCCA -CCAACAGAAACGCAACGTGGAAAC -CCAACAGAAACGCAACGTAACACC -CCAACAGAAACGCAACGTATCGAG -CCAACAGAAACGCAACGTCTCCTT -CCAACAGAAACGCAACGTCCTGTT -CCAACAGAAACGCAACGTCGGTTT -CCAACAGAAACGCAACGTGTGGTT -CCAACAGAAACGCAACGTGCCTTT -CCAACAGAAACGCAACGTGGTCTT -CCAACAGAAACGCAACGTACGCTT -CCAACAGAAACGCAACGTAGCGTT -CCAACAGAAACGCAACGTTTCGTC -CCAACAGAAACGCAACGTTCTCTC -CCAACAGAAACGCAACGTTGGATC -CCAACAGAAACGCAACGTCACTTC -CCAACAGAAACGCAACGTGTACTC -CCAACAGAAACGCAACGTGATGTC -CCAACAGAAACGCAACGTACAGTC -CCAACAGAAACGCAACGTTTGCTG -CCAACAGAAACGCAACGTTCCATG -CCAACAGAAACGCAACGTTGTGTG -CCAACAGAAACGCAACGTCTAGTG -CCAACAGAAACGCAACGTCATCTG -CCAACAGAAACGCAACGTGAGTTG -CCAACAGAAACGCAACGTAGACTG -CCAACAGAAACGCAACGTTCGGTA -CCAACAGAAACGCAACGTTGCCTA -CCAACAGAAACGCAACGTCCACTA -CCAACAGAAACGCAACGTGGAGTA -CCAACAGAAACGCAACGTTCGTCT -CCAACAGAAACGCAACGTTGCACT -CCAACAGAAACGCAACGTCTGACT -CCAACAGAAACGCAACGTCAACCT -CCAACAGAAACGCAACGTGCTACT -CCAACAGAAACGCAACGTGGATCT -CCAACAGAAACGCAACGTAAGGCT -CCAACAGAAACGCAACGTTCAACC -CCAACAGAAACGCAACGTTGTTCC -CCAACAGAAACGCAACGTATTCCC -CCAACAGAAACGCAACGTTTCTCG -CCAACAGAAACGCAACGTTAGACG -CCAACAGAAACGCAACGTGTAACG -CCAACAGAAACGCAACGTACTTCG -CCAACAGAAACGCAACGTTACGCA -CCAACAGAAACGCAACGTCTTGCA -CCAACAGAAACGCAACGTCGAACA -CCAACAGAAACGCAACGTCAGTCA -CCAACAGAAACGCAACGTGATCCA -CCAACAGAAACGCAACGTACGACA -CCAACAGAAACGCAACGTAGCTCA -CCAACAGAAACGCAACGTTCACGT -CCAACAGAAACGCAACGTCGTAGT -CCAACAGAAACGCAACGTGTCAGT -CCAACAGAAACGCAACGTGAAGGT -CCAACAGAAACGCAACGTAACCGT -CCAACAGAAACGCAACGTTTGTGC -CCAACAGAAACGCAACGTCTAAGC -CCAACAGAAACGCAACGTACTAGC -CCAACAGAAACGCAACGTAGATGC -CCAACAGAAACGCAACGTTGAAGG -CCAACAGAAACGCAACGTCAATGG -CCAACAGAAACGCAACGTATGAGG -CCAACAGAAACGCAACGTAATGGG -CCAACAGAAACGCAACGTTCCTGA -CCAACAGAAACGCAACGTTAGCGA -CCAACAGAAACGCAACGTCACAGA -CCAACAGAAACGCAACGTGCAAGA -CCAACAGAAACGCAACGTGGTTGA -CCAACAGAAACGCAACGTTCCGAT -CCAACAGAAACGCAACGTTGGCAT -CCAACAGAAACGCAACGTCGAGAT -CCAACAGAAACGCAACGTTACCAC -CCAACAGAAACGCAACGTCAGAAC -CCAACAGAAACGCAACGTGTCTAC -CCAACAGAAACGCAACGTACGTAC -CCAACAGAAACGCAACGTAGTGAC -CCAACAGAAACGCAACGTCTGTAG -CCAACAGAAACGCAACGTCCTAAG -CCAACAGAAACGCAACGTGTTCAG -CCAACAGAAACGCAACGTGCATAG -CCAACAGAAACGCAACGTGACAAG -CCAACAGAAACGCAACGTAAGCAG -CCAACAGAAACGCAACGTCGTCAA -CCAACAGAAACGCAACGTGCTGAA -CCAACAGAAACGCAACGTAGTACG -CCAACAGAAACGCAACGTATCCGA -CCAACAGAAACGCAACGTATGGGA -CCAACAGAAACGCAACGTGTGCAA -CCAACAGAAACGCAACGTGAGGAA -CCAACAGAAACGCAACGTCAGGTA -CCAACAGAAACGCAACGTGACTCT -CCAACAGAAACGCAACGTAGTCCT -CCAACAGAAACGCAACGTTAAGCC -CCAACAGAAACGCAACGTATAGCC -CCAACAGAAACGCAACGTTAACCG -CCAACAGAAACGCAACGTATGCCA -CCAACAGAAACGGAAGCTGGAAAC -CCAACAGAAACGGAAGCTAACACC -CCAACAGAAACGGAAGCTATCGAG -CCAACAGAAACGGAAGCTCTCCTT -CCAACAGAAACGGAAGCTCCTGTT -CCAACAGAAACGGAAGCTCGGTTT -CCAACAGAAACGGAAGCTGTGGTT -CCAACAGAAACGGAAGCTGCCTTT -CCAACAGAAACGGAAGCTGGTCTT -CCAACAGAAACGGAAGCTACGCTT -CCAACAGAAACGGAAGCTAGCGTT -CCAACAGAAACGGAAGCTTTCGTC -CCAACAGAAACGGAAGCTTCTCTC -CCAACAGAAACGGAAGCTTGGATC -CCAACAGAAACGGAAGCTCACTTC -CCAACAGAAACGGAAGCTGTACTC -CCAACAGAAACGGAAGCTGATGTC -CCAACAGAAACGGAAGCTACAGTC -CCAACAGAAACGGAAGCTTTGCTG -CCAACAGAAACGGAAGCTTCCATG -CCAACAGAAACGGAAGCTTGTGTG -CCAACAGAAACGGAAGCTCTAGTG -CCAACAGAAACGGAAGCTCATCTG -CCAACAGAAACGGAAGCTGAGTTG -CCAACAGAAACGGAAGCTAGACTG -CCAACAGAAACGGAAGCTTCGGTA -CCAACAGAAACGGAAGCTTGCCTA -CCAACAGAAACGGAAGCTCCACTA -CCAACAGAAACGGAAGCTGGAGTA -CCAACAGAAACGGAAGCTTCGTCT -CCAACAGAAACGGAAGCTTGCACT -CCAACAGAAACGGAAGCTCTGACT -CCAACAGAAACGGAAGCTCAACCT -CCAACAGAAACGGAAGCTGCTACT -CCAACAGAAACGGAAGCTGGATCT -CCAACAGAAACGGAAGCTAAGGCT -CCAACAGAAACGGAAGCTTCAACC -CCAACAGAAACGGAAGCTTGTTCC -CCAACAGAAACGGAAGCTATTCCC -CCAACAGAAACGGAAGCTTTCTCG -CCAACAGAAACGGAAGCTTAGACG -CCAACAGAAACGGAAGCTGTAACG -CCAACAGAAACGGAAGCTACTTCG -CCAACAGAAACGGAAGCTTACGCA -CCAACAGAAACGGAAGCTCTTGCA -CCAACAGAAACGGAAGCTCGAACA -CCAACAGAAACGGAAGCTCAGTCA -CCAACAGAAACGGAAGCTGATCCA -CCAACAGAAACGGAAGCTACGACA -CCAACAGAAACGGAAGCTAGCTCA -CCAACAGAAACGGAAGCTTCACGT -CCAACAGAAACGGAAGCTCGTAGT -CCAACAGAAACGGAAGCTGTCAGT -CCAACAGAAACGGAAGCTGAAGGT -CCAACAGAAACGGAAGCTAACCGT -CCAACAGAAACGGAAGCTTTGTGC -CCAACAGAAACGGAAGCTCTAAGC -CCAACAGAAACGGAAGCTACTAGC -CCAACAGAAACGGAAGCTAGATGC -CCAACAGAAACGGAAGCTTGAAGG -CCAACAGAAACGGAAGCTCAATGG -CCAACAGAAACGGAAGCTATGAGG -CCAACAGAAACGGAAGCTAATGGG -CCAACAGAAACGGAAGCTTCCTGA -CCAACAGAAACGGAAGCTTAGCGA -CCAACAGAAACGGAAGCTCACAGA -CCAACAGAAACGGAAGCTGCAAGA -CCAACAGAAACGGAAGCTGGTTGA -CCAACAGAAACGGAAGCTTCCGAT -CCAACAGAAACGGAAGCTTGGCAT -CCAACAGAAACGGAAGCTCGAGAT -CCAACAGAAACGGAAGCTTACCAC -CCAACAGAAACGGAAGCTCAGAAC -CCAACAGAAACGGAAGCTGTCTAC -CCAACAGAAACGGAAGCTACGTAC -CCAACAGAAACGGAAGCTAGTGAC -CCAACAGAAACGGAAGCTCTGTAG -CCAACAGAAACGGAAGCTCCTAAG -CCAACAGAAACGGAAGCTGTTCAG -CCAACAGAAACGGAAGCTGCATAG -CCAACAGAAACGGAAGCTGACAAG -CCAACAGAAACGGAAGCTAAGCAG -CCAACAGAAACGGAAGCTCGTCAA -CCAACAGAAACGGAAGCTGCTGAA -CCAACAGAAACGGAAGCTAGTACG -CCAACAGAAACGGAAGCTATCCGA -CCAACAGAAACGGAAGCTATGGGA -CCAACAGAAACGGAAGCTGTGCAA -CCAACAGAAACGGAAGCTGAGGAA -CCAACAGAAACGGAAGCTCAGGTA -CCAACAGAAACGGAAGCTGACTCT -CCAACAGAAACGGAAGCTAGTCCT -CCAACAGAAACGGAAGCTTAAGCC -CCAACAGAAACGGAAGCTATAGCC -CCAACAGAAACGGAAGCTTAACCG -CCAACAGAAACGGAAGCTATGCCA -CCAACAGAAACGACGAGTGGAAAC -CCAACAGAAACGACGAGTAACACC -CCAACAGAAACGACGAGTATCGAG -CCAACAGAAACGACGAGTCTCCTT -CCAACAGAAACGACGAGTCCTGTT -CCAACAGAAACGACGAGTCGGTTT -CCAACAGAAACGACGAGTGTGGTT -CCAACAGAAACGACGAGTGCCTTT -CCAACAGAAACGACGAGTGGTCTT -CCAACAGAAACGACGAGTACGCTT -CCAACAGAAACGACGAGTAGCGTT -CCAACAGAAACGACGAGTTTCGTC -CCAACAGAAACGACGAGTTCTCTC -CCAACAGAAACGACGAGTTGGATC -CCAACAGAAACGACGAGTCACTTC -CCAACAGAAACGACGAGTGTACTC -CCAACAGAAACGACGAGTGATGTC -CCAACAGAAACGACGAGTACAGTC -CCAACAGAAACGACGAGTTTGCTG -CCAACAGAAACGACGAGTTCCATG -CCAACAGAAACGACGAGTTGTGTG -CCAACAGAAACGACGAGTCTAGTG -CCAACAGAAACGACGAGTCATCTG -CCAACAGAAACGACGAGTGAGTTG -CCAACAGAAACGACGAGTAGACTG -CCAACAGAAACGACGAGTTCGGTA -CCAACAGAAACGACGAGTTGCCTA -CCAACAGAAACGACGAGTCCACTA -CCAACAGAAACGACGAGTGGAGTA -CCAACAGAAACGACGAGTTCGTCT -CCAACAGAAACGACGAGTTGCACT -CCAACAGAAACGACGAGTCTGACT -CCAACAGAAACGACGAGTCAACCT -CCAACAGAAACGACGAGTGCTACT -CCAACAGAAACGACGAGTGGATCT -CCAACAGAAACGACGAGTAAGGCT -CCAACAGAAACGACGAGTTCAACC -CCAACAGAAACGACGAGTTGTTCC -CCAACAGAAACGACGAGTATTCCC -CCAACAGAAACGACGAGTTTCTCG -CCAACAGAAACGACGAGTTAGACG -CCAACAGAAACGACGAGTGTAACG -CCAACAGAAACGACGAGTACTTCG -CCAACAGAAACGACGAGTTACGCA -CCAACAGAAACGACGAGTCTTGCA -CCAACAGAAACGACGAGTCGAACA -CCAACAGAAACGACGAGTCAGTCA -CCAACAGAAACGACGAGTGATCCA -CCAACAGAAACGACGAGTACGACA -CCAACAGAAACGACGAGTAGCTCA -CCAACAGAAACGACGAGTTCACGT -CCAACAGAAACGACGAGTCGTAGT -CCAACAGAAACGACGAGTGTCAGT -CCAACAGAAACGACGAGTGAAGGT -CCAACAGAAACGACGAGTAACCGT -CCAACAGAAACGACGAGTTTGTGC -CCAACAGAAACGACGAGTCTAAGC -CCAACAGAAACGACGAGTACTAGC -CCAACAGAAACGACGAGTAGATGC -CCAACAGAAACGACGAGTTGAAGG -CCAACAGAAACGACGAGTCAATGG -CCAACAGAAACGACGAGTATGAGG -CCAACAGAAACGACGAGTAATGGG -CCAACAGAAACGACGAGTTCCTGA -CCAACAGAAACGACGAGTTAGCGA -CCAACAGAAACGACGAGTCACAGA -CCAACAGAAACGACGAGTGCAAGA -CCAACAGAAACGACGAGTGGTTGA -CCAACAGAAACGACGAGTTCCGAT -CCAACAGAAACGACGAGTTGGCAT -CCAACAGAAACGACGAGTCGAGAT -CCAACAGAAACGACGAGTTACCAC -CCAACAGAAACGACGAGTCAGAAC -CCAACAGAAACGACGAGTGTCTAC -CCAACAGAAACGACGAGTACGTAC -CCAACAGAAACGACGAGTAGTGAC -CCAACAGAAACGACGAGTCTGTAG -CCAACAGAAACGACGAGTCCTAAG -CCAACAGAAACGACGAGTGTTCAG -CCAACAGAAACGACGAGTGCATAG -CCAACAGAAACGACGAGTGACAAG -CCAACAGAAACGACGAGTAAGCAG -CCAACAGAAACGACGAGTCGTCAA -CCAACAGAAACGACGAGTGCTGAA -CCAACAGAAACGACGAGTAGTACG -CCAACAGAAACGACGAGTATCCGA -CCAACAGAAACGACGAGTATGGGA -CCAACAGAAACGACGAGTGTGCAA -CCAACAGAAACGACGAGTGAGGAA -CCAACAGAAACGACGAGTCAGGTA -CCAACAGAAACGACGAGTGACTCT -CCAACAGAAACGACGAGTAGTCCT -CCAACAGAAACGACGAGTTAAGCC -CCAACAGAAACGACGAGTATAGCC -CCAACAGAAACGACGAGTTAACCG -CCAACAGAAACGACGAGTATGCCA -CCAACAGAAACGCGAATCGGAAAC -CCAACAGAAACGCGAATCAACACC -CCAACAGAAACGCGAATCATCGAG -CCAACAGAAACGCGAATCCTCCTT -CCAACAGAAACGCGAATCCCTGTT -CCAACAGAAACGCGAATCCGGTTT -CCAACAGAAACGCGAATCGTGGTT -CCAACAGAAACGCGAATCGCCTTT -CCAACAGAAACGCGAATCGGTCTT -CCAACAGAAACGCGAATCACGCTT -CCAACAGAAACGCGAATCAGCGTT -CCAACAGAAACGCGAATCTTCGTC -CCAACAGAAACGCGAATCTCTCTC -CCAACAGAAACGCGAATCTGGATC -CCAACAGAAACGCGAATCCACTTC -CCAACAGAAACGCGAATCGTACTC -CCAACAGAAACGCGAATCGATGTC -CCAACAGAAACGCGAATCACAGTC -CCAACAGAAACGCGAATCTTGCTG -CCAACAGAAACGCGAATCTCCATG -CCAACAGAAACGCGAATCTGTGTG -CCAACAGAAACGCGAATCCTAGTG -CCAACAGAAACGCGAATCCATCTG -CCAACAGAAACGCGAATCGAGTTG -CCAACAGAAACGCGAATCAGACTG -CCAACAGAAACGCGAATCTCGGTA -CCAACAGAAACGCGAATCTGCCTA -CCAACAGAAACGCGAATCCCACTA -CCAACAGAAACGCGAATCGGAGTA -CCAACAGAAACGCGAATCTCGTCT -CCAACAGAAACGCGAATCTGCACT -CCAACAGAAACGCGAATCCTGACT -CCAACAGAAACGCGAATCCAACCT -CCAACAGAAACGCGAATCGCTACT -CCAACAGAAACGCGAATCGGATCT -CCAACAGAAACGCGAATCAAGGCT -CCAACAGAAACGCGAATCTCAACC -CCAACAGAAACGCGAATCTGTTCC -CCAACAGAAACGCGAATCATTCCC -CCAACAGAAACGCGAATCTTCTCG -CCAACAGAAACGCGAATCTAGACG -CCAACAGAAACGCGAATCGTAACG -CCAACAGAAACGCGAATCACTTCG -CCAACAGAAACGCGAATCTACGCA -CCAACAGAAACGCGAATCCTTGCA -CCAACAGAAACGCGAATCCGAACA -CCAACAGAAACGCGAATCCAGTCA -CCAACAGAAACGCGAATCGATCCA -CCAACAGAAACGCGAATCACGACA -CCAACAGAAACGCGAATCAGCTCA -CCAACAGAAACGCGAATCTCACGT -CCAACAGAAACGCGAATCCGTAGT -CCAACAGAAACGCGAATCGTCAGT -CCAACAGAAACGCGAATCGAAGGT -CCAACAGAAACGCGAATCAACCGT -CCAACAGAAACGCGAATCTTGTGC -CCAACAGAAACGCGAATCCTAAGC -CCAACAGAAACGCGAATCACTAGC -CCAACAGAAACGCGAATCAGATGC -CCAACAGAAACGCGAATCTGAAGG -CCAACAGAAACGCGAATCCAATGG -CCAACAGAAACGCGAATCATGAGG -CCAACAGAAACGCGAATCAATGGG -CCAACAGAAACGCGAATCTCCTGA -CCAACAGAAACGCGAATCTAGCGA -CCAACAGAAACGCGAATCCACAGA -CCAACAGAAACGCGAATCGCAAGA -CCAACAGAAACGCGAATCGGTTGA -CCAACAGAAACGCGAATCTCCGAT -CCAACAGAAACGCGAATCTGGCAT -CCAACAGAAACGCGAATCCGAGAT -CCAACAGAAACGCGAATCTACCAC -CCAACAGAAACGCGAATCCAGAAC -CCAACAGAAACGCGAATCGTCTAC -CCAACAGAAACGCGAATCACGTAC -CCAACAGAAACGCGAATCAGTGAC -CCAACAGAAACGCGAATCCTGTAG -CCAACAGAAACGCGAATCCCTAAG -CCAACAGAAACGCGAATCGTTCAG -CCAACAGAAACGCGAATCGCATAG -CCAACAGAAACGCGAATCGACAAG -CCAACAGAAACGCGAATCAAGCAG -CCAACAGAAACGCGAATCCGTCAA -CCAACAGAAACGCGAATCGCTGAA -CCAACAGAAACGCGAATCAGTACG -CCAACAGAAACGCGAATCATCCGA -CCAACAGAAACGCGAATCATGGGA -CCAACAGAAACGCGAATCGTGCAA -CCAACAGAAACGCGAATCGAGGAA -CCAACAGAAACGCGAATCCAGGTA -CCAACAGAAACGCGAATCGACTCT -CCAACAGAAACGCGAATCAGTCCT -CCAACAGAAACGCGAATCTAAGCC -CCAACAGAAACGCGAATCATAGCC -CCAACAGAAACGCGAATCTAACCG -CCAACAGAAACGCGAATCATGCCA -CCAACAGAAACGGGAATGGGAAAC -CCAACAGAAACGGGAATGAACACC -CCAACAGAAACGGGAATGATCGAG -CCAACAGAAACGGGAATGCTCCTT -CCAACAGAAACGGGAATGCCTGTT -CCAACAGAAACGGGAATGCGGTTT -CCAACAGAAACGGGAATGGTGGTT -CCAACAGAAACGGGAATGGCCTTT -CCAACAGAAACGGGAATGGGTCTT -CCAACAGAAACGGGAATGACGCTT -CCAACAGAAACGGGAATGAGCGTT -CCAACAGAAACGGGAATGTTCGTC -CCAACAGAAACGGGAATGTCTCTC -CCAACAGAAACGGGAATGTGGATC -CCAACAGAAACGGGAATGCACTTC -CCAACAGAAACGGGAATGGTACTC -CCAACAGAAACGGGAATGGATGTC -CCAACAGAAACGGGAATGACAGTC -CCAACAGAAACGGGAATGTTGCTG -CCAACAGAAACGGGAATGTCCATG -CCAACAGAAACGGGAATGTGTGTG -CCAACAGAAACGGGAATGCTAGTG -CCAACAGAAACGGGAATGCATCTG -CCAACAGAAACGGGAATGGAGTTG -CCAACAGAAACGGGAATGAGACTG -CCAACAGAAACGGGAATGTCGGTA -CCAACAGAAACGGGAATGTGCCTA -CCAACAGAAACGGGAATGCCACTA -CCAACAGAAACGGGAATGGGAGTA -CCAACAGAAACGGGAATGTCGTCT -CCAACAGAAACGGGAATGTGCACT -CCAACAGAAACGGGAATGCTGACT -CCAACAGAAACGGGAATGCAACCT -CCAACAGAAACGGGAATGGCTACT -CCAACAGAAACGGGAATGGGATCT -CCAACAGAAACGGGAATGAAGGCT -CCAACAGAAACGGGAATGTCAACC -CCAACAGAAACGGGAATGTGTTCC -CCAACAGAAACGGGAATGATTCCC -CCAACAGAAACGGGAATGTTCTCG -CCAACAGAAACGGGAATGTAGACG -CCAACAGAAACGGGAATGGTAACG -CCAACAGAAACGGGAATGACTTCG -CCAACAGAAACGGGAATGTACGCA -CCAACAGAAACGGGAATGCTTGCA -CCAACAGAAACGGGAATGCGAACA -CCAACAGAAACGGGAATGCAGTCA -CCAACAGAAACGGGAATGGATCCA -CCAACAGAAACGGGAATGACGACA -CCAACAGAAACGGGAATGAGCTCA -CCAACAGAAACGGGAATGTCACGT -CCAACAGAAACGGGAATGCGTAGT -CCAACAGAAACGGGAATGGTCAGT -CCAACAGAAACGGGAATGGAAGGT -CCAACAGAAACGGGAATGAACCGT -CCAACAGAAACGGGAATGTTGTGC -CCAACAGAAACGGGAATGCTAAGC -CCAACAGAAACGGGAATGACTAGC -CCAACAGAAACGGGAATGAGATGC -CCAACAGAAACGGGAATGTGAAGG -CCAACAGAAACGGGAATGCAATGG -CCAACAGAAACGGGAATGATGAGG -CCAACAGAAACGGGAATGAATGGG -CCAACAGAAACGGGAATGTCCTGA -CCAACAGAAACGGGAATGTAGCGA -CCAACAGAAACGGGAATGCACAGA -CCAACAGAAACGGGAATGGCAAGA -CCAACAGAAACGGGAATGGGTTGA -CCAACAGAAACGGGAATGTCCGAT -CCAACAGAAACGGGAATGTGGCAT -CCAACAGAAACGGGAATGCGAGAT -CCAACAGAAACGGGAATGTACCAC -CCAACAGAAACGGGAATGCAGAAC -CCAACAGAAACGGGAATGGTCTAC -CCAACAGAAACGGGAATGACGTAC -CCAACAGAAACGGGAATGAGTGAC -CCAACAGAAACGGGAATGCTGTAG -CCAACAGAAACGGGAATGCCTAAG -CCAACAGAAACGGGAATGGTTCAG -CCAACAGAAACGGGAATGGCATAG -CCAACAGAAACGGGAATGGACAAG -CCAACAGAAACGGGAATGAAGCAG -CCAACAGAAACGGGAATGCGTCAA -CCAACAGAAACGGGAATGGCTGAA -CCAACAGAAACGGGAATGAGTACG -CCAACAGAAACGGGAATGATCCGA -CCAACAGAAACGGGAATGATGGGA -CCAACAGAAACGGGAATGGTGCAA -CCAACAGAAACGGGAATGGAGGAA -CCAACAGAAACGGGAATGCAGGTA -CCAACAGAAACGGGAATGGACTCT -CCAACAGAAACGGGAATGAGTCCT -CCAACAGAAACGGGAATGTAAGCC -CCAACAGAAACGGGAATGATAGCC -CCAACAGAAACGGGAATGTAACCG -CCAACAGAAACGGGAATGATGCCA -CCAACAGAAACGCAAGTGGGAAAC -CCAACAGAAACGCAAGTGAACACC -CCAACAGAAACGCAAGTGATCGAG -CCAACAGAAACGCAAGTGCTCCTT -CCAACAGAAACGCAAGTGCCTGTT -CCAACAGAAACGCAAGTGCGGTTT -CCAACAGAAACGCAAGTGGTGGTT -CCAACAGAAACGCAAGTGGCCTTT -CCAACAGAAACGCAAGTGGGTCTT -CCAACAGAAACGCAAGTGACGCTT -CCAACAGAAACGCAAGTGAGCGTT -CCAACAGAAACGCAAGTGTTCGTC -CCAACAGAAACGCAAGTGTCTCTC -CCAACAGAAACGCAAGTGTGGATC -CCAACAGAAACGCAAGTGCACTTC -CCAACAGAAACGCAAGTGGTACTC -CCAACAGAAACGCAAGTGGATGTC -CCAACAGAAACGCAAGTGACAGTC -CCAACAGAAACGCAAGTGTTGCTG -CCAACAGAAACGCAAGTGTCCATG -CCAACAGAAACGCAAGTGTGTGTG -CCAACAGAAACGCAAGTGCTAGTG -CCAACAGAAACGCAAGTGCATCTG -CCAACAGAAACGCAAGTGGAGTTG -CCAACAGAAACGCAAGTGAGACTG -CCAACAGAAACGCAAGTGTCGGTA -CCAACAGAAACGCAAGTGTGCCTA -CCAACAGAAACGCAAGTGCCACTA -CCAACAGAAACGCAAGTGGGAGTA -CCAACAGAAACGCAAGTGTCGTCT -CCAACAGAAACGCAAGTGTGCACT -CCAACAGAAACGCAAGTGCTGACT -CCAACAGAAACGCAAGTGCAACCT -CCAACAGAAACGCAAGTGGCTACT -CCAACAGAAACGCAAGTGGGATCT -CCAACAGAAACGCAAGTGAAGGCT -CCAACAGAAACGCAAGTGTCAACC -CCAACAGAAACGCAAGTGTGTTCC -CCAACAGAAACGCAAGTGATTCCC -CCAACAGAAACGCAAGTGTTCTCG -CCAACAGAAACGCAAGTGTAGACG -CCAACAGAAACGCAAGTGGTAACG -CCAACAGAAACGCAAGTGACTTCG -CCAACAGAAACGCAAGTGTACGCA -CCAACAGAAACGCAAGTGCTTGCA -CCAACAGAAACGCAAGTGCGAACA -CCAACAGAAACGCAAGTGCAGTCA -CCAACAGAAACGCAAGTGGATCCA -CCAACAGAAACGCAAGTGACGACA -CCAACAGAAACGCAAGTGAGCTCA -CCAACAGAAACGCAAGTGTCACGT -CCAACAGAAACGCAAGTGCGTAGT -CCAACAGAAACGCAAGTGGTCAGT -CCAACAGAAACGCAAGTGGAAGGT -CCAACAGAAACGCAAGTGAACCGT -CCAACAGAAACGCAAGTGTTGTGC -CCAACAGAAACGCAAGTGCTAAGC -CCAACAGAAACGCAAGTGACTAGC -CCAACAGAAACGCAAGTGAGATGC -CCAACAGAAACGCAAGTGTGAAGG -CCAACAGAAACGCAAGTGCAATGG -CCAACAGAAACGCAAGTGATGAGG -CCAACAGAAACGCAAGTGAATGGG -CCAACAGAAACGCAAGTGTCCTGA -CCAACAGAAACGCAAGTGTAGCGA -CCAACAGAAACGCAAGTGCACAGA -CCAACAGAAACGCAAGTGGCAAGA -CCAACAGAAACGCAAGTGGGTTGA -CCAACAGAAACGCAAGTGTCCGAT -CCAACAGAAACGCAAGTGTGGCAT -CCAACAGAAACGCAAGTGCGAGAT -CCAACAGAAACGCAAGTGTACCAC -CCAACAGAAACGCAAGTGCAGAAC -CCAACAGAAACGCAAGTGGTCTAC -CCAACAGAAACGCAAGTGACGTAC -CCAACAGAAACGCAAGTGAGTGAC -CCAACAGAAACGCAAGTGCTGTAG -CCAACAGAAACGCAAGTGCCTAAG -CCAACAGAAACGCAAGTGGTTCAG -CCAACAGAAACGCAAGTGGCATAG -CCAACAGAAACGCAAGTGGACAAG -CCAACAGAAACGCAAGTGAAGCAG -CCAACAGAAACGCAAGTGCGTCAA -CCAACAGAAACGCAAGTGGCTGAA -CCAACAGAAACGCAAGTGAGTACG -CCAACAGAAACGCAAGTGATCCGA -CCAACAGAAACGCAAGTGATGGGA -CCAACAGAAACGCAAGTGGTGCAA -CCAACAGAAACGCAAGTGGAGGAA -CCAACAGAAACGCAAGTGCAGGTA -CCAACAGAAACGCAAGTGGACTCT -CCAACAGAAACGCAAGTGAGTCCT -CCAACAGAAACGCAAGTGTAAGCC -CCAACAGAAACGCAAGTGATAGCC -CCAACAGAAACGCAAGTGTAACCG -CCAACAGAAACGCAAGTGATGCCA -CCAACAGAAACGGAAGAGGGAAAC -CCAACAGAAACGGAAGAGAACACC -CCAACAGAAACGGAAGAGATCGAG -CCAACAGAAACGGAAGAGCTCCTT -CCAACAGAAACGGAAGAGCCTGTT -CCAACAGAAACGGAAGAGCGGTTT -CCAACAGAAACGGAAGAGGTGGTT -CCAACAGAAACGGAAGAGGCCTTT -CCAACAGAAACGGAAGAGGGTCTT -CCAACAGAAACGGAAGAGACGCTT -CCAACAGAAACGGAAGAGAGCGTT -CCAACAGAAACGGAAGAGTTCGTC -CCAACAGAAACGGAAGAGTCTCTC -CCAACAGAAACGGAAGAGTGGATC -CCAACAGAAACGGAAGAGCACTTC -CCAACAGAAACGGAAGAGGTACTC -CCAACAGAAACGGAAGAGGATGTC -CCAACAGAAACGGAAGAGACAGTC -CCAACAGAAACGGAAGAGTTGCTG -CCAACAGAAACGGAAGAGTCCATG -CCAACAGAAACGGAAGAGTGTGTG -CCAACAGAAACGGAAGAGCTAGTG -CCAACAGAAACGGAAGAGCATCTG -CCAACAGAAACGGAAGAGGAGTTG -CCAACAGAAACGGAAGAGAGACTG -CCAACAGAAACGGAAGAGTCGGTA -CCAACAGAAACGGAAGAGTGCCTA -CCAACAGAAACGGAAGAGCCACTA -CCAACAGAAACGGAAGAGGGAGTA -CCAACAGAAACGGAAGAGTCGTCT -CCAACAGAAACGGAAGAGTGCACT -CCAACAGAAACGGAAGAGCTGACT -CCAACAGAAACGGAAGAGCAACCT -CCAACAGAAACGGAAGAGGCTACT -CCAACAGAAACGGAAGAGGGATCT -CCAACAGAAACGGAAGAGAAGGCT -CCAACAGAAACGGAAGAGTCAACC -CCAACAGAAACGGAAGAGTGTTCC -CCAACAGAAACGGAAGAGATTCCC -CCAACAGAAACGGAAGAGTTCTCG -CCAACAGAAACGGAAGAGTAGACG -CCAACAGAAACGGAAGAGGTAACG -CCAACAGAAACGGAAGAGACTTCG -CCAACAGAAACGGAAGAGTACGCA -CCAACAGAAACGGAAGAGCTTGCA -CCAACAGAAACGGAAGAGCGAACA -CCAACAGAAACGGAAGAGCAGTCA -CCAACAGAAACGGAAGAGGATCCA -CCAACAGAAACGGAAGAGACGACA -CCAACAGAAACGGAAGAGAGCTCA -CCAACAGAAACGGAAGAGTCACGT -CCAACAGAAACGGAAGAGCGTAGT -CCAACAGAAACGGAAGAGGTCAGT -CCAACAGAAACGGAAGAGGAAGGT -CCAACAGAAACGGAAGAGAACCGT -CCAACAGAAACGGAAGAGTTGTGC -CCAACAGAAACGGAAGAGCTAAGC -CCAACAGAAACGGAAGAGACTAGC -CCAACAGAAACGGAAGAGAGATGC -CCAACAGAAACGGAAGAGTGAAGG -CCAACAGAAACGGAAGAGCAATGG -CCAACAGAAACGGAAGAGATGAGG -CCAACAGAAACGGAAGAGAATGGG -CCAACAGAAACGGAAGAGTCCTGA -CCAACAGAAACGGAAGAGTAGCGA -CCAACAGAAACGGAAGAGCACAGA -CCAACAGAAACGGAAGAGGCAAGA -CCAACAGAAACGGAAGAGGGTTGA -CCAACAGAAACGGAAGAGTCCGAT -CCAACAGAAACGGAAGAGTGGCAT -CCAACAGAAACGGAAGAGCGAGAT -CCAACAGAAACGGAAGAGTACCAC -CCAACAGAAACGGAAGAGCAGAAC -CCAACAGAAACGGAAGAGGTCTAC -CCAACAGAAACGGAAGAGACGTAC -CCAACAGAAACGGAAGAGAGTGAC -CCAACAGAAACGGAAGAGCTGTAG -CCAACAGAAACGGAAGAGCCTAAG -CCAACAGAAACGGAAGAGGTTCAG -CCAACAGAAACGGAAGAGGCATAG -CCAACAGAAACGGAAGAGGACAAG -CCAACAGAAACGGAAGAGAAGCAG -CCAACAGAAACGGAAGAGCGTCAA -CCAACAGAAACGGAAGAGGCTGAA -CCAACAGAAACGGAAGAGAGTACG -CCAACAGAAACGGAAGAGATCCGA -CCAACAGAAACGGAAGAGATGGGA -CCAACAGAAACGGAAGAGGTGCAA -CCAACAGAAACGGAAGAGGAGGAA -CCAACAGAAACGGAAGAGCAGGTA -CCAACAGAAACGGAAGAGGACTCT -CCAACAGAAACGGAAGAGAGTCCT -CCAACAGAAACGGAAGAGTAAGCC -CCAACAGAAACGGAAGAGATAGCC -CCAACAGAAACGGAAGAGTAACCG -CCAACAGAAACGGAAGAGATGCCA -CCAACAGAAACGGTACAGGGAAAC -CCAACAGAAACGGTACAGAACACC -CCAACAGAAACGGTACAGATCGAG -CCAACAGAAACGGTACAGCTCCTT -CCAACAGAAACGGTACAGCCTGTT -CCAACAGAAACGGTACAGCGGTTT -CCAACAGAAACGGTACAGGTGGTT -CCAACAGAAACGGTACAGGCCTTT -CCAACAGAAACGGTACAGGGTCTT -CCAACAGAAACGGTACAGACGCTT -CCAACAGAAACGGTACAGAGCGTT -CCAACAGAAACGGTACAGTTCGTC -CCAACAGAAACGGTACAGTCTCTC -CCAACAGAAACGGTACAGTGGATC -CCAACAGAAACGGTACAGCACTTC -CCAACAGAAACGGTACAGGTACTC -CCAACAGAAACGGTACAGGATGTC -CCAACAGAAACGGTACAGACAGTC -CCAACAGAAACGGTACAGTTGCTG -CCAACAGAAACGGTACAGTCCATG -CCAACAGAAACGGTACAGTGTGTG -CCAACAGAAACGGTACAGCTAGTG -CCAACAGAAACGGTACAGCATCTG -CCAACAGAAACGGTACAGGAGTTG -CCAACAGAAACGGTACAGAGACTG -CCAACAGAAACGGTACAGTCGGTA -CCAACAGAAACGGTACAGTGCCTA -CCAACAGAAACGGTACAGCCACTA -CCAACAGAAACGGTACAGGGAGTA -CCAACAGAAACGGTACAGTCGTCT -CCAACAGAAACGGTACAGTGCACT -CCAACAGAAACGGTACAGCTGACT -CCAACAGAAACGGTACAGCAACCT -CCAACAGAAACGGTACAGGCTACT -CCAACAGAAACGGTACAGGGATCT -CCAACAGAAACGGTACAGAAGGCT -CCAACAGAAACGGTACAGTCAACC -CCAACAGAAACGGTACAGTGTTCC -CCAACAGAAACGGTACAGATTCCC -CCAACAGAAACGGTACAGTTCTCG -CCAACAGAAACGGTACAGTAGACG -CCAACAGAAACGGTACAGGTAACG -CCAACAGAAACGGTACAGACTTCG -CCAACAGAAACGGTACAGTACGCA -CCAACAGAAACGGTACAGCTTGCA -CCAACAGAAACGGTACAGCGAACA -CCAACAGAAACGGTACAGCAGTCA -CCAACAGAAACGGTACAGGATCCA -CCAACAGAAACGGTACAGACGACA -CCAACAGAAACGGTACAGAGCTCA -CCAACAGAAACGGTACAGTCACGT -CCAACAGAAACGGTACAGCGTAGT -CCAACAGAAACGGTACAGGTCAGT -CCAACAGAAACGGTACAGGAAGGT -CCAACAGAAACGGTACAGAACCGT -CCAACAGAAACGGTACAGTTGTGC -CCAACAGAAACGGTACAGCTAAGC -CCAACAGAAACGGTACAGACTAGC -CCAACAGAAACGGTACAGAGATGC -CCAACAGAAACGGTACAGTGAAGG -CCAACAGAAACGGTACAGCAATGG -CCAACAGAAACGGTACAGATGAGG -CCAACAGAAACGGTACAGAATGGG -CCAACAGAAACGGTACAGTCCTGA -CCAACAGAAACGGTACAGTAGCGA -CCAACAGAAACGGTACAGCACAGA -CCAACAGAAACGGTACAGGCAAGA -CCAACAGAAACGGTACAGGGTTGA -CCAACAGAAACGGTACAGTCCGAT -CCAACAGAAACGGTACAGTGGCAT -CCAACAGAAACGGTACAGCGAGAT -CCAACAGAAACGGTACAGTACCAC -CCAACAGAAACGGTACAGCAGAAC -CCAACAGAAACGGTACAGGTCTAC -CCAACAGAAACGGTACAGACGTAC -CCAACAGAAACGGTACAGAGTGAC -CCAACAGAAACGGTACAGCTGTAG -CCAACAGAAACGGTACAGCCTAAG -CCAACAGAAACGGTACAGGTTCAG -CCAACAGAAACGGTACAGGCATAG -CCAACAGAAACGGTACAGGACAAG -CCAACAGAAACGGTACAGAAGCAG -CCAACAGAAACGGTACAGCGTCAA -CCAACAGAAACGGTACAGGCTGAA -CCAACAGAAACGGTACAGAGTACG -CCAACAGAAACGGTACAGATCCGA -CCAACAGAAACGGTACAGATGGGA -CCAACAGAAACGGTACAGGTGCAA -CCAACAGAAACGGTACAGGAGGAA -CCAACAGAAACGGTACAGCAGGTA -CCAACAGAAACGGTACAGGACTCT -CCAACAGAAACGGTACAGAGTCCT -CCAACAGAAACGGTACAGTAAGCC -CCAACAGAAACGGTACAGATAGCC -CCAACAGAAACGGTACAGTAACCG -CCAACAGAAACGGTACAGATGCCA -CCAACAGAAACGTCTGACGGAAAC -CCAACAGAAACGTCTGACAACACC -CCAACAGAAACGTCTGACATCGAG -CCAACAGAAACGTCTGACCTCCTT -CCAACAGAAACGTCTGACCCTGTT -CCAACAGAAACGTCTGACCGGTTT -CCAACAGAAACGTCTGACGTGGTT -CCAACAGAAACGTCTGACGCCTTT -CCAACAGAAACGTCTGACGGTCTT -CCAACAGAAACGTCTGACACGCTT -CCAACAGAAACGTCTGACAGCGTT -CCAACAGAAACGTCTGACTTCGTC -CCAACAGAAACGTCTGACTCTCTC -CCAACAGAAACGTCTGACTGGATC -CCAACAGAAACGTCTGACCACTTC -CCAACAGAAACGTCTGACGTACTC -CCAACAGAAACGTCTGACGATGTC -CCAACAGAAACGTCTGACACAGTC -CCAACAGAAACGTCTGACTTGCTG -CCAACAGAAACGTCTGACTCCATG -CCAACAGAAACGTCTGACTGTGTG -CCAACAGAAACGTCTGACCTAGTG -CCAACAGAAACGTCTGACCATCTG -CCAACAGAAACGTCTGACGAGTTG -CCAACAGAAACGTCTGACAGACTG -CCAACAGAAACGTCTGACTCGGTA -CCAACAGAAACGTCTGACTGCCTA -CCAACAGAAACGTCTGACCCACTA -CCAACAGAAACGTCTGACGGAGTA -CCAACAGAAACGTCTGACTCGTCT -CCAACAGAAACGTCTGACTGCACT -CCAACAGAAACGTCTGACCTGACT -CCAACAGAAACGTCTGACCAACCT -CCAACAGAAACGTCTGACGCTACT -CCAACAGAAACGTCTGACGGATCT -CCAACAGAAACGTCTGACAAGGCT -CCAACAGAAACGTCTGACTCAACC -CCAACAGAAACGTCTGACTGTTCC -CCAACAGAAACGTCTGACATTCCC -CCAACAGAAACGTCTGACTTCTCG -CCAACAGAAACGTCTGACTAGACG -CCAACAGAAACGTCTGACGTAACG -CCAACAGAAACGTCTGACACTTCG -CCAACAGAAACGTCTGACTACGCA -CCAACAGAAACGTCTGACCTTGCA -CCAACAGAAACGTCTGACCGAACA -CCAACAGAAACGTCTGACCAGTCA -CCAACAGAAACGTCTGACGATCCA -CCAACAGAAACGTCTGACACGACA -CCAACAGAAACGTCTGACAGCTCA -CCAACAGAAACGTCTGACTCACGT -CCAACAGAAACGTCTGACCGTAGT -CCAACAGAAACGTCTGACGTCAGT -CCAACAGAAACGTCTGACGAAGGT -CCAACAGAAACGTCTGACAACCGT -CCAACAGAAACGTCTGACTTGTGC -CCAACAGAAACGTCTGACCTAAGC -CCAACAGAAACGTCTGACACTAGC -CCAACAGAAACGTCTGACAGATGC -CCAACAGAAACGTCTGACTGAAGG -CCAACAGAAACGTCTGACCAATGG -CCAACAGAAACGTCTGACATGAGG -CCAACAGAAACGTCTGACAATGGG -CCAACAGAAACGTCTGACTCCTGA -CCAACAGAAACGTCTGACTAGCGA -CCAACAGAAACGTCTGACCACAGA -CCAACAGAAACGTCTGACGCAAGA -CCAACAGAAACGTCTGACGGTTGA -CCAACAGAAACGTCTGACTCCGAT -CCAACAGAAACGTCTGACTGGCAT -CCAACAGAAACGTCTGACCGAGAT -CCAACAGAAACGTCTGACTACCAC -CCAACAGAAACGTCTGACCAGAAC -CCAACAGAAACGTCTGACGTCTAC -CCAACAGAAACGTCTGACACGTAC -CCAACAGAAACGTCTGACAGTGAC -CCAACAGAAACGTCTGACCTGTAG -CCAACAGAAACGTCTGACCCTAAG -CCAACAGAAACGTCTGACGTTCAG -CCAACAGAAACGTCTGACGCATAG -CCAACAGAAACGTCTGACGACAAG -CCAACAGAAACGTCTGACAAGCAG -CCAACAGAAACGTCTGACCGTCAA -CCAACAGAAACGTCTGACGCTGAA -CCAACAGAAACGTCTGACAGTACG -CCAACAGAAACGTCTGACATCCGA -CCAACAGAAACGTCTGACATGGGA -CCAACAGAAACGTCTGACGTGCAA -CCAACAGAAACGTCTGACGAGGAA -CCAACAGAAACGTCTGACCAGGTA -CCAACAGAAACGTCTGACGACTCT -CCAACAGAAACGTCTGACAGTCCT -CCAACAGAAACGTCTGACTAAGCC -CCAACAGAAACGTCTGACATAGCC -CCAACAGAAACGTCTGACTAACCG -CCAACAGAAACGTCTGACATGCCA -CCAACAGAAACGCCTAGTGGAAAC -CCAACAGAAACGCCTAGTAACACC -CCAACAGAAACGCCTAGTATCGAG -CCAACAGAAACGCCTAGTCTCCTT -CCAACAGAAACGCCTAGTCCTGTT -CCAACAGAAACGCCTAGTCGGTTT -CCAACAGAAACGCCTAGTGTGGTT -CCAACAGAAACGCCTAGTGCCTTT -CCAACAGAAACGCCTAGTGGTCTT -CCAACAGAAACGCCTAGTACGCTT -CCAACAGAAACGCCTAGTAGCGTT -CCAACAGAAACGCCTAGTTTCGTC -CCAACAGAAACGCCTAGTTCTCTC -CCAACAGAAACGCCTAGTTGGATC -CCAACAGAAACGCCTAGTCACTTC -CCAACAGAAACGCCTAGTGTACTC -CCAACAGAAACGCCTAGTGATGTC -CCAACAGAAACGCCTAGTACAGTC -CCAACAGAAACGCCTAGTTTGCTG -CCAACAGAAACGCCTAGTTCCATG -CCAACAGAAACGCCTAGTTGTGTG -CCAACAGAAACGCCTAGTCTAGTG -CCAACAGAAACGCCTAGTCATCTG -CCAACAGAAACGCCTAGTGAGTTG -CCAACAGAAACGCCTAGTAGACTG -CCAACAGAAACGCCTAGTTCGGTA -CCAACAGAAACGCCTAGTTGCCTA -CCAACAGAAACGCCTAGTCCACTA -CCAACAGAAACGCCTAGTGGAGTA -CCAACAGAAACGCCTAGTTCGTCT -CCAACAGAAACGCCTAGTTGCACT -CCAACAGAAACGCCTAGTCTGACT -CCAACAGAAACGCCTAGTCAACCT -CCAACAGAAACGCCTAGTGCTACT -CCAACAGAAACGCCTAGTGGATCT -CCAACAGAAACGCCTAGTAAGGCT -CCAACAGAAACGCCTAGTTCAACC -CCAACAGAAACGCCTAGTTGTTCC -CCAACAGAAACGCCTAGTATTCCC -CCAACAGAAACGCCTAGTTTCTCG -CCAACAGAAACGCCTAGTTAGACG -CCAACAGAAACGCCTAGTGTAACG -CCAACAGAAACGCCTAGTACTTCG -CCAACAGAAACGCCTAGTTACGCA -CCAACAGAAACGCCTAGTCTTGCA -CCAACAGAAACGCCTAGTCGAACA -CCAACAGAAACGCCTAGTCAGTCA -CCAACAGAAACGCCTAGTGATCCA -CCAACAGAAACGCCTAGTACGACA -CCAACAGAAACGCCTAGTAGCTCA -CCAACAGAAACGCCTAGTTCACGT -CCAACAGAAACGCCTAGTCGTAGT -CCAACAGAAACGCCTAGTGTCAGT -CCAACAGAAACGCCTAGTGAAGGT -CCAACAGAAACGCCTAGTAACCGT -CCAACAGAAACGCCTAGTTTGTGC -CCAACAGAAACGCCTAGTCTAAGC -CCAACAGAAACGCCTAGTACTAGC -CCAACAGAAACGCCTAGTAGATGC -CCAACAGAAACGCCTAGTTGAAGG -CCAACAGAAACGCCTAGTCAATGG -CCAACAGAAACGCCTAGTATGAGG -CCAACAGAAACGCCTAGTAATGGG -CCAACAGAAACGCCTAGTTCCTGA -CCAACAGAAACGCCTAGTTAGCGA -CCAACAGAAACGCCTAGTCACAGA -CCAACAGAAACGCCTAGTGCAAGA -CCAACAGAAACGCCTAGTGGTTGA -CCAACAGAAACGCCTAGTTCCGAT -CCAACAGAAACGCCTAGTTGGCAT -CCAACAGAAACGCCTAGTCGAGAT -CCAACAGAAACGCCTAGTTACCAC -CCAACAGAAACGCCTAGTCAGAAC -CCAACAGAAACGCCTAGTGTCTAC -CCAACAGAAACGCCTAGTACGTAC -CCAACAGAAACGCCTAGTAGTGAC -CCAACAGAAACGCCTAGTCTGTAG -CCAACAGAAACGCCTAGTCCTAAG -CCAACAGAAACGCCTAGTGTTCAG -CCAACAGAAACGCCTAGTGCATAG -CCAACAGAAACGCCTAGTGACAAG -CCAACAGAAACGCCTAGTAAGCAG -CCAACAGAAACGCCTAGTCGTCAA -CCAACAGAAACGCCTAGTGCTGAA -CCAACAGAAACGCCTAGTAGTACG -CCAACAGAAACGCCTAGTATCCGA -CCAACAGAAACGCCTAGTATGGGA -CCAACAGAAACGCCTAGTGTGCAA -CCAACAGAAACGCCTAGTGAGGAA -CCAACAGAAACGCCTAGTCAGGTA -CCAACAGAAACGCCTAGTGACTCT -CCAACAGAAACGCCTAGTAGTCCT -CCAACAGAAACGCCTAGTTAAGCC -CCAACAGAAACGCCTAGTATAGCC -CCAACAGAAACGCCTAGTTAACCG -CCAACAGAAACGCCTAGTATGCCA -CCAACAGAAACGGCCTAAGGAAAC -CCAACAGAAACGGCCTAAAACACC -CCAACAGAAACGGCCTAAATCGAG -CCAACAGAAACGGCCTAACTCCTT -CCAACAGAAACGGCCTAACCTGTT -CCAACAGAAACGGCCTAACGGTTT -CCAACAGAAACGGCCTAAGTGGTT -CCAACAGAAACGGCCTAAGCCTTT -CCAACAGAAACGGCCTAAGGTCTT -CCAACAGAAACGGCCTAAACGCTT -CCAACAGAAACGGCCTAAAGCGTT -CCAACAGAAACGGCCTAATTCGTC -CCAACAGAAACGGCCTAATCTCTC -CCAACAGAAACGGCCTAATGGATC -CCAACAGAAACGGCCTAACACTTC -CCAACAGAAACGGCCTAAGTACTC -CCAACAGAAACGGCCTAAGATGTC -CCAACAGAAACGGCCTAAACAGTC -CCAACAGAAACGGCCTAATTGCTG -CCAACAGAAACGGCCTAATCCATG -CCAACAGAAACGGCCTAATGTGTG -CCAACAGAAACGGCCTAACTAGTG -CCAACAGAAACGGCCTAACATCTG -CCAACAGAAACGGCCTAAGAGTTG -CCAACAGAAACGGCCTAAAGACTG -CCAACAGAAACGGCCTAATCGGTA -CCAACAGAAACGGCCTAATGCCTA -CCAACAGAAACGGCCTAACCACTA -CCAACAGAAACGGCCTAAGGAGTA -CCAACAGAAACGGCCTAATCGTCT -CCAACAGAAACGGCCTAATGCACT -CCAACAGAAACGGCCTAACTGACT -CCAACAGAAACGGCCTAACAACCT -CCAACAGAAACGGCCTAAGCTACT -CCAACAGAAACGGCCTAAGGATCT -CCAACAGAAACGGCCTAAAAGGCT -CCAACAGAAACGGCCTAATCAACC -CCAACAGAAACGGCCTAATGTTCC -CCAACAGAAACGGCCTAAATTCCC -CCAACAGAAACGGCCTAATTCTCG -CCAACAGAAACGGCCTAATAGACG -CCAACAGAAACGGCCTAAGTAACG -CCAACAGAAACGGCCTAAACTTCG -CCAACAGAAACGGCCTAATACGCA -CCAACAGAAACGGCCTAACTTGCA -CCAACAGAAACGGCCTAACGAACA -CCAACAGAAACGGCCTAACAGTCA -CCAACAGAAACGGCCTAAGATCCA -CCAACAGAAACGGCCTAAACGACA -CCAACAGAAACGGCCTAAAGCTCA -CCAACAGAAACGGCCTAATCACGT -CCAACAGAAACGGCCTAACGTAGT -CCAACAGAAACGGCCTAAGTCAGT -CCAACAGAAACGGCCTAAGAAGGT -CCAACAGAAACGGCCTAAAACCGT -CCAACAGAAACGGCCTAATTGTGC -CCAACAGAAACGGCCTAACTAAGC -CCAACAGAAACGGCCTAAACTAGC -CCAACAGAAACGGCCTAAAGATGC -CCAACAGAAACGGCCTAATGAAGG -CCAACAGAAACGGCCTAACAATGG -CCAACAGAAACGGCCTAAATGAGG -CCAACAGAAACGGCCTAAAATGGG -CCAACAGAAACGGCCTAATCCTGA -CCAACAGAAACGGCCTAATAGCGA -CCAACAGAAACGGCCTAACACAGA -CCAACAGAAACGGCCTAAGCAAGA -CCAACAGAAACGGCCTAAGGTTGA -CCAACAGAAACGGCCTAATCCGAT -CCAACAGAAACGGCCTAATGGCAT -CCAACAGAAACGGCCTAACGAGAT -CCAACAGAAACGGCCTAATACCAC -CCAACAGAAACGGCCTAACAGAAC -CCAACAGAAACGGCCTAAGTCTAC -CCAACAGAAACGGCCTAAACGTAC -CCAACAGAAACGGCCTAAAGTGAC -CCAACAGAAACGGCCTAACTGTAG -CCAACAGAAACGGCCTAACCTAAG -CCAACAGAAACGGCCTAAGTTCAG -CCAACAGAAACGGCCTAAGCATAG -CCAACAGAAACGGCCTAAGACAAG -CCAACAGAAACGGCCTAAAAGCAG -CCAACAGAAACGGCCTAACGTCAA -CCAACAGAAACGGCCTAAGCTGAA -CCAACAGAAACGGCCTAAAGTACG -CCAACAGAAACGGCCTAAATCCGA -CCAACAGAAACGGCCTAAATGGGA -CCAACAGAAACGGCCTAAGTGCAA -CCAACAGAAACGGCCTAAGAGGAA -CCAACAGAAACGGCCTAACAGGTA -CCAACAGAAACGGCCTAAGACTCT -CCAACAGAAACGGCCTAAAGTCCT -CCAACAGAAACGGCCTAATAAGCC -CCAACAGAAACGGCCTAAATAGCC -CCAACAGAAACGGCCTAATAACCG -CCAACAGAAACGGCCTAAATGCCA -CCAACAGAAACGGCCATAGGAAAC -CCAACAGAAACGGCCATAAACACC -CCAACAGAAACGGCCATAATCGAG -CCAACAGAAACGGCCATACTCCTT -CCAACAGAAACGGCCATACCTGTT -CCAACAGAAACGGCCATACGGTTT -CCAACAGAAACGGCCATAGTGGTT -CCAACAGAAACGGCCATAGCCTTT -CCAACAGAAACGGCCATAGGTCTT -CCAACAGAAACGGCCATAACGCTT -CCAACAGAAACGGCCATAAGCGTT -CCAACAGAAACGGCCATATTCGTC -CCAACAGAAACGGCCATATCTCTC -CCAACAGAAACGGCCATATGGATC -CCAACAGAAACGGCCATACACTTC -CCAACAGAAACGGCCATAGTACTC -CCAACAGAAACGGCCATAGATGTC -CCAACAGAAACGGCCATAACAGTC -CCAACAGAAACGGCCATATTGCTG -CCAACAGAAACGGCCATATCCATG -CCAACAGAAACGGCCATATGTGTG -CCAACAGAAACGGCCATACTAGTG -CCAACAGAAACGGCCATACATCTG -CCAACAGAAACGGCCATAGAGTTG -CCAACAGAAACGGCCATAAGACTG -CCAACAGAAACGGCCATATCGGTA -CCAACAGAAACGGCCATATGCCTA -CCAACAGAAACGGCCATACCACTA -CCAACAGAAACGGCCATAGGAGTA -CCAACAGAAACGGCCATATCGTCT -CCAACAGAAACGGCCATATGCACT -CCAACAGAAACGGCCATACTGACT -CCAACAGAAACGGCCATACAACCT -CCAACAGAAACGGCCATAGCTACT -CCAACAGAAACGGCCATAGGATCT -CCAACAGAAACGGCCATAAAGGCT -CCAACAGAAACGGCCATATCAACC -CCAACAGAAACGGCCATATGTTCC -CCAACAGAAACGGCCATAATTCCC -CCAACAGAAACGGCCATATTCTCG -CCAACAGAAACGGCCATATAGACG -CCAACAGAAACGGCCATAGTAACG -CCAACAGAAACGGCCATAACTTCG -CCAACAGAAACGGCCATATACGCA -CCAACAGAAACGGCCATACTTGCA -CCAACAGAAACGGCCATACGAACA -CCAACAGAAACGGCCATACAGTCA -CCAACAGAAACGGCCATAGATCCA -CCAACAGAAACGGCCATAACGACA -CCAACAGAAACGGCCATAAGCTCA -CCAACAGAAACGGCCATATCACGT -CCAACAGAAACGGCCATACGTAGT -CCAACAGAAACGGCCATAGTCAGT -CCAACAGAAACGGCCATAGAAGGT -CCAACAGAAACGGCCATAAACCGT -CCAACAGAAACGGCCATATTGTGC -CCAACAGAAACGGCCATACTAAGC -CCAACAGAAACGGCCATAACTAGC -CCAACAGAAACGGCCATAAGATGC -CCAACAGAAACGGCCATATGAAGG -CCAACAGAAACGGCCATACAATGG -CCAACAGAAACGGCCATAATGAGG -CCAACAGAAACGGCCATAAATGGG -CCAACAGAAACGGCCATATCCTGA -CCAACAGAAACGGCCATATAGCGA -CCAACAGAAACGGCCATACACAGA -CCAACAGAAACGGCCATAGCAAGA -CCAACAGAAACGGCCATAGGTTGA -CCAACAGAAACGGCCATATCCGAT -CCAACAGAAACGGCCATATGGCAT -CCAACAGAAACGGCCATACGAGAT -CCAACAGAAACGGCCATATACCAC -CCAACAGAAACGGCCATACAGAAC -CCAACAGAAACGGCCATAGTCTAC -CCAACAGAAACGGCCATAACGTAC -CCAACAGAAACGGCCATAAGTGAC -CCAACAGAAACGGCCATACTGTAG -CCAACAGAAACGGCCATACCTAAG -CCAACAGAAACGGCCATAGTTCAG -CCAACAGAAACGGCCATAGCATAG -CCAACAGAAACGGCCATAGACAAG -CCAACAGAAACGGCCATAAAGCAG -CCAACAGAAACGGCCATACGTCAA -CCAACAGAAACGGCCATAGCTGAA -CCAACAGAAACGGCCATAAGTACG -CCAACAGAAACGGCCATAATCCGA -CCAACAGAAACGGCCATAATGGGA -CCAACAGAAACGGCCATAGTGCAA -CCAACAGAAACGGCCATAGAGGAA -CCAACAGAAACGGCCATACAGGTA -CCAACAGAAACGGCCATAGACTCT -CCAACAGAAACGGCCATAAGTCCT -CCAACAGAAACGGCCATATAAGCC -CCAACAGAAACGGCCATAATAGCC -CCAACAGAAACGGCCATATAACCG -CCAACAGAAACGGCCATAATGCCA -CCAACAGAAACGCCGTAAGGAAAC -CCAACAGAAACGCCGTAAAACACC -CCAACAGAAACGCCGTAAATCGAG -CCAACAGAAACGCCGTAACTCCTT -CCAACAGAAACGCCGTAACCTGTT -CCAACAGAAACGCCGTAACGGTTT -CCAACAGAAACGCCGTAAGTGGTT -CCAACAGAAACGCCGTAAGCCTTT -CCAACAGAAACGCCGTAAGGTCTT -CCAACAGAAACGCCGTAAACGCTT -CCAACAGAAACGCCGTAAAGCGTT -CCAACAGAAACGCCGTAATTCGTC -CCAACAGAAACGCCGTAATCTCTC -CCAACAGAAACGCCGTAATGGATC -CCAACAGAAACGCCGTAACACTTC -CCAACAGAAACGCCGTAAGTACTC -CCAACAGAAACGCCGTAAGATGTC -CCAACAGAAACGCCGTAAACAGTC -CCAACAGAAACGCCGTAATTGCTG -CCAACAGAAACGCCGTAATCCATG -CCAACAGAAACGCCGTAATGTGTG -CCAACAGAAACGCCGTAACTAGTG -CCAACAGAAACGCCGTAACATCTG -CCAACAGAAACGCCGTAAGAGTTG -CCAACAGAAACGCCGTAAAGACTG -CCAACAGAAACGCCGTAATCGGTA -CCAACAGAAACGCCGTAATGCCTA -CCAACAGAAACGCCGTAACCACTA -CCAACAGAAACGCCGTAAGGAGTA -CCAACAGAAACGCCGTAATCGTCT -CCAACAGAAACGCCGTAATGCACT -CCAACAGAAACGCCGTAACTGACT -CCAACAGAAACGCCGTAACAACCT -CCAACAGAAACGCCGTAAGCTACT -CCAACAGAAACGCCGTAAGGATCT -CCAACAGAAACGCCGTAAAAGGCT -CCAACAGAAACGCCGTAATCAACC -CCAACAGAAACGCCGTAATGTTCC -CCAACAGAAACGCCGTAAATTCCC -CCAACAGAAACGCCGTAATTCTCG -CCAACAGAAACGCCGTAATAGACG -CCAACAGAAACGCCGTAAGTAACG -CCAACAGAAACGCCGTAAACTTCG -CCAACAGAAACGCCGTAATACGCA -CCAACAGAAACGCCGTAACTTGCA -CCAACAGAAACGCCGTAACGAACA -CCAACAGAAACGCCGTAACAGTCA -CCAACAGAAACGCCGTAAGATCCA -CCAACAGAAACGCCGTAAACGACA -CCAACAGAAACGCCGTAAAGCTCA -CCAACAGAAACGCCGTAATCACGT -CCAACAGAAACGCCGTAACGTAGT -CCAACAGAAACGCCGTAAGTCAGT -CCAACAGAAACGCCGTAAGAAGGT -CCAACAGAAACGCCGTAAAACCGT -CCAACAGAAACGCCGTAATTGTGC -CCAACAGAAACGCCGTAACTAAGC -CCAACAGAAACGCCGTAAACTAGC -CCAACAGAAACGCCGTAAAGATGC -CCAACAGAAACGCCGTAATGAAGG -CCAACAGAAACGCCGTAACAATGG -CCAACAGAAACGCCGTAAATGAGG -CCAACAGAAACGCCGTAAAATGGG -CCAACAGAAACGCCGTAATCCTGA -CCAACAGAAACGCCGTAATAGCGA -CCAACAGAAACGCCGTAACACAGA -CCAACAGAAACGCCGTAAGCAAGA -CCAACAGAAACGCCGTAAGGTTGA -CCAACAGAAACGCCGTAATCCGAT -CCAACAGAAACGCCGTAATGGCAT -CCAACAGAAACGCCGTAACGAGAT -CCAACAGAAACGCCGTAATACCAC -CCAACAGAAACGCCGTAACAGAAC -CCAACAGAAACGCCGTAAGTCTAC -CCAACAGAAACGCCGTAAACGTAC -CCAACAGAAACGCCGTAAAGTGAC -CCAACAGAAACGCCGTAACTGTAG -CCAACAGAAACGCCGTAACCTAAG -CCAACAGAAACGCCGTAAGTTCAG -CCAACAGAAACGCCGTAAGCATAG -CCAACAGAAACGCCGTAAGACAAG -CCAACAGAAACGCCGTAAAAGCAG -CCAACAGAAACGCCGTAACGTCAA -CCAACAGAAACGCCGTAAGCTGAA -CCAACAGAAACGCCGTAAAGTACG -CCAACAGAAACGCCGTAAATCCGA -CCAACAGAAACGCCGTAAATGGGA -CCAACAGAAACGCCGTAAGTGCAA -CCAACAGAAACGCCGTAAGAGGAA -CCAACAGAAACGCCGTAACAGGTA -CCAACAGAAACGCCGTAAGACTCT -CCAACAGAAACGCCGTAAAGTCCT -CCAACAGAAACGCCGTAATAAGCC -CCAACAGAAACGCCGTAAATAGCC -CCAACAGAAACGCCGTAATAACCG -CCAACAGAAACGCCGTAAATGCCA -CCAACAGAAACGCCAATGGGAAAC -CCAACAGAAACGCCAATGAACACC -CCAACAGAAACGCCAATGATCGAG -CCAACAGAAACGCCAATGCTCCTT -CCAACAGAAACGCCAATGCCTGTT -CCAACAGAAACGCCAATGCGGTTT -CCAACAGAAACGCCAATGGTGGTT -CCAACAGAAACGCCAATGGCCTTT -CCAACAGAAACGCCAATGGGTCTT -CCAACAGAAACGCCAATGACGCTT -CCAACAGAAACGCCAATGAGCGTT -CCAACAGAAACGCCAATGTTCGTC -CCAACAGAAACGCCAATGTCTCTC -CCAACAGAAACGCCAATGTGGATC -CCAACAGAAACGCCAATGCACTTC -CCAACAGAAACGCCAATGGTACTC -CCAACAGAAACGCCAATGGATGTC -CCAACAGAAACGCCAATGACAGTC -CCAACAGAAACGCCAATGTTGCTG -CCAACAGAAACGCCAATGTCCATG -CCAACAGAAACGCCAATGTGTGTG -CCAACAGAAACGCCAATGCTAGTG -CCAACAGAAACGCCAATGCATCTG -CCAACAGAAACGCCAATGGAGTTG -CCAACAGAAACGCCAATGAGACTG -CCAACAGAAACGCCAATGTCGGTA -CCAACAGAAACGCCAATGTGCCTA -CCAACAGAAACGCCAATGCCACTA -CCAACAGAAACGCCAATGGGAGTA -CCAACAGAAACGCCAATGTCGTCT -CCAACAGAAACGCCAATGTGCACT -CCAACAGAAACGCCAATGCTGACT -CCAACAGAAACGCCAATGCAACCT -CCAACAGAAACGCCAATGGCTACT -CCAACAGAAACGCCAATGGGATCT -CCAACAGAAACGCCAATGAAGGCT -CCAACAGAAACGCCAATGTCAACC -CCAACAGAAACGCCAATGTGTTCC -CCAACAGAAACGCCAATGATTCCC -CCAACAGAAACGCCAATGTTCTCG -CCAACAGAAACGCCAATGTAGACG -CCAACAGAAACGCCAATGGTAACG -CCAACAGAAACGCCAATGACTTCG -CCAACAGAAACGCCAATGTACGCA -CCAACAGAAACGCCAATGCTTGCA -CCAACAGAAACGCCAATGCGAACA -CCAACAGAAACGCCAATGCAGTCA -CCAACAGAAACGCCAATGGATCCA -CCAACAGAAACGCCAATGACGACA -CCAACAGAAACGCCAATGAGCTCA -CCAACAGAAACGCCAATGTCACGT -CCAACAGAAACGCCAATGCGTAGT -CCAACAGAAACGCCAATGGTCAGT -CCAACAGAAACGCCAATGGAAGGT -CCAACAGAAACGCCAATGAACCGT -CCAACAGAAACGCCAATGTTGTGC -CCAACAGAAACGCCAATGCTAAGC -CCAACAGAAACGCCAATGACTAGC -CCAACAGAAACGCCAATGAGATGC -CCAACAGAAACGCCAATGTGAAGG -CCAACAGAAACGCCAATGCAATGG -CCAACAGAAACGCCAATGATGAGG -CCAACAGAAACGCCAATGAATGGG -CCAACAGAAACGCCAATGTCCTGA -CCAACAGAAACGCCAATGTAGCGA -CCAACAGAAACGCCAATGCACAGA -CCAACAGAAACGCCAATGGCAAGA -CCAACAGAAACGCCAATGGGTTGA -CCAACAGAAACGCCAATGTCCGAT -CCAACAGAAACGCCAATGTGGCAT -CCAACAGAAACGCCAATGCGAGAT -CCAACAGAAACGCCAATGTACCAC -CCAACAGAAACGCCAATGCAGAAC -CCAACAGAAACGCCAATGGTCTAC -CCAACAGAAACGCCAATGACGTAC -CCAACAGAAACGCCAATGAGTGAC -CCAACAGAAACGCCAATGCTGTAG -CCAACAGAAACGCCAATGCCTAAG -CCAACAGAAACGCCAATGGTTCAG -CCAACAGAAACGCCAATGGCATAG -CCAACAGAAACGCCAATGGACAAG -CCAACAGAAACGCCAATGAAGCAG -CCAACAGAAACGCCAATGCGTCAA -CCAACAGAAACGCCAATGGCTGAA -CCAACAGAAACGCCAATGAGTACG -CCAACAGAAACGCCAATGATCCGA -CCAACAGAAACGCCAATGATGGGA -CCAACAGAAACGCCAATGGTGCAA -CCAACAGAAACGCCAATGGAGGAA -CCAACAGAAACGCCAATGCAGGTA -CCAACAGAAACGCCAATGGACTCT -CCAACAGAAACGCCAATGAGTCCT -CCAACAGAAACGCCAATGTAAGCC -CCAACAGAAACGCCAATGATAGCC -CCAACAGAAACGCCAATGTAACCG -CCAACAGAAACGCCAATGATGCCA -CCAACAACACCAAACGGAGGAAAC -CCAACAACACCAAACGGAAACACC -CCAACAACACCAAACGGAATCGAG -CCAACAACACCAAACGGACTCCTT -CCAACAACACCAAACGGACCTGTT -CCAACAACACCAAACGGACGGTTT -CCAACAACACCAAACGGAGTGGTT -CCAACAACACCAAACGGAGCCTTT -CCAACAACACCAAACGGAGGTCTT -CCAACAACACCAAACGGAACGCTT -CCAACAACACCAAACGGAAGCGTT -CCAACAACACCAAACGGATTCGTC -CCAACAACACCAAACGGATCTCTC -CCAACAACACCAAACGGATGGATC -CCAACAACACCAAACGGACACTTC -CCAACAACACCAAACGGAGTACTC -CCAACAACACCAAACGGAGATGTC -CCAACAACACCAAACGGAACAGTC -CCAACAACACCAAACGGATTGCTG -CCAACAACACCAAACGGATCCATG -CCAACAACACCAAACGGATGTGTG -CCAACAACACCAAACGGACTAGTG -CCAACAACACCAAACGGACATCTG -CCAACAACACCAAACGGAGAGTTG -CCAACAACACCAAACGGAAGACTG -CCAACAACACCAAACGGATCGGTA -CCAACAACACCAAACGGATGCCTA -CCAACAACACCAAACGGACCACTA -CCAACAACACCAAACGGAGGAGTA -CCAACAACACCAAACGGATCGTCT -CCAACAACACCAAACGGATGCACT -CCAACAACACCAAACGGACTGACT -CCAACAACACCAAACGGACAACCT -CCAACAACACCAAACGGAGCTACT -CCAACAACACCAAACGGAGGATCT -CCAACAACACCAAACGGAAAGGCT -CCAACAACACCAAACGGATCAACC -CCAACAACACCAAACGGATGTTCC -CCAACAACACCAAACGGAATTCCC -CCAACAACACCAAACGGATTCTCG -CCAACAACACCAAACGGATAGACG -CCAACAACACCAAACGGAGTAACG -CCAACAACACCAAACGGAACTTCG -CCAACAACACCAAACGGATACGCA -CCAACAACACCAAACGGACTTGCA -CCAACAACACCAAACGGACGAACA -CCAACAACACCAAACGGACAGTCA -CCAACAACACCAAACGGAGATCCA -CCAACAACACCAAACGGAACGACA -CCAACAACACCAAACGGAAGCTCA -CCAACAACACCAAACGGATCACGT -CCAACAACACCAAACGGACGTAGT -CCAACAACACCAAACGGAGTCAGT -CCAACAACACCAAACGGAGAAGGT -CCAACAACACCAAACGGAAACCGT -CCAACAACACCAAACGGATTGTGC -CCAACAACACCAAACGGACTAAGC -CCAACAACACCAAACGGAACTAGC -CCAACAACACCAAACGGAAGATGC -CCAACAACACCAAACGGATGAAGG -CCAACAACACCAAACGGACAATGG -CCAACAACACCAAACGGAATGAGG -CCAACAACACCAAACGGAAATGGG -CCAACAACACCAAACGGATCCTGA -CCAACAACACCAAACGGATAGCGA -CCAACAACACCAAACGGACACAGA -CCAACAACACCAAACGGAGCAAGA -CCAACAACACCAAACGGAGGTTGA -CCAACAACACCAAACGGATCCGAT -CCAACAACACCAAACGGATGGCAT -CCAACAACACCAAACGGACGAGAT -CCAACAACACCAAACGGATACCAC -CCAACAACACCAAACGGACAGAAC -CCAACAACACCAAACGGAGTCTAC -CCAACAACACCAAACGGAACGTAC -CCAACAACACCAAACGGAAGTGAC -CCAACAACACCAAACGGACTGTAG -CCAACAACACCAAACGGACCTAAG -CCAACAACACCAAACGGAGTTCAG -CCAACAACACCAAACGGAGCATAG -CCAACAACACCAAACGGAGACAAG -CCAACAACACCAAACGGAAAGCAG -CCAACAACACCAAACGGACGTCAA -CCAACAACACCAAACGGAGCTGAA -CCAACAACACCAAACGGAAGTACG -CCAACAACACCAAACGGAATCCGA -CCAACAACACCAAACGGAATGGGA -CCAACAACACCAAACGGAGTGCAA -CCAACAACACCAAACGGAGAGGAA -CCAACAACACCAAACGGACAGGTA -CCAACAACACCAAACGGAGACTCT -CCAACAACACCAAACGGAAGTCCT -CCAACAACACCAAACGGATAAGCC -CCAACAACACCAAACGGAATAGCC -CCAACAACACCAAACGGATAACCG -CCAACAACACCAAACGGAATGCCA -CCAACAACACCAACCAACGGAAAC -CCAACAACACCAACCAACAACACC -CCAACAACACCAACCAACATCGAG -CCAACAACACCAACCAACCTCCTT -CCAACAACACCAACCAACCCTGTT -CCAACAACACCAACCAACCGGTTT -CCAACAACACCAACCAACGTGGTT -CCAACAACACCAACCAACGCCTTT -CCAACAACACCAACCAACGGTCTT -CCAACAACACCAACCAACACGCTT -CCAACAACACCAACCAACAGCGTT -CCAACAACACCAACCAACTTCGTC -CCAACAACACCAACCAACTCTCTC -CCAACAACACCAACCAACTGGATC -CCAACAACACCAACCAACCACTTC -CCAACAACACCAACCAACGTACTC -CCAACAACACCAACCAACGATGTC -CCAACAACACCAACCAACACAGTC -CCAACAACACCAACCAACTTGCTG -CCAACAACACCAACCAACTCCATG -CCAACAACACCAACCAACTGTGTG -CCAACAACACCAACCAACCTAGTG -CCAACAACACCAACCAACCATCTG -CCAACAACACCAACCAACGAGTTG -CCAACAACACCAACCAACAGACTG -CCAACAACACCAACCAACTCGGTA -CCAACAACACCAACCAACTGCCTA -CCAACAACACCAACCAACCCACTA -CCAACAACACCAACCAACGGAGTA -CCAACAACACCAACCAACTCGTCT -CCAACAACACCAACCAACTGCACT -CCAACAACACCAACCAACCTGACT -CCAACAACACCAACCAACCAACCT -CCAACAACACCAACCAACGCTACT -CCAACAACACCAACCAACGGATCT -CCAACAACACCAACCAACAAGGCT -CCAACAACACCAACCAACTCAACC -CCAACAACACCAACCAACTGTTCC -CCAACAACACCAACCAACATTCCC -CCAACAACACCAACCAACTTCTCG -CCAACAACACCAACCAACTAGACG -CCAACAACACCAACCAACGTAACG -CCAACAACACCAACCAACACTTCG -CCAACAACACCAACCAACTACGCA -CCAACAACACCAACCAACCTTGCA -CCAACAACACCAACCAACCGAACA -CCAACAACACCAACCAACCAGTCA -CCAACAACACCAACCAACGATCCA -CCAACAACACCAACCAACACGACA -CCAACAACACCAACCAACAGCTCA -CCAACAACACCAACCAACTCACGT -CCAACAACACCAACCAACCGTAGT -CCAACAACACCAACCAACGTCAGT -CCAACAACACCAACCAACGAAGGT -CCAACAACACCAACCAACAACCGT -CCAACAACACCAACCAACTTGTGC -CCAACAACACCAACCAACCTAAGC -CCAACAACACCAACCAACACTAGC -CCAACAACACCAACCAACAGATGC -CCAACAACACCAACCAACTGAAGG -CCAACAACACCAACCAACCAATGG -CCAACAACACCAACCAACATGAGG -CCAACAACACCAACCAACAATGGG -CCAACAACACCAACCAACTCCTGA -CCAACAACACCAACCAACTAGCGA -CCAACAACACCAACCAACCACAGA -CCAACAACACCAACCAACGCAAGA -CCAACAACACCAACCAACGGTTGA -CCAACAACACCAACCAACTCCGAT -CCAACAACACCAACCAACTGGCAT -CCAACAACACCAACCAACCGAGAT -CCAACAACACCAACCAACTACCAC -CCAACAACACCAACCAACCAGAAC -CCAACAACACCAACCAACGTCTAC -CCAACAACACCAACCAACACGTAC -CCAACAACACCAACCAACAGTGAC -CCAACAACACCAACCAACCTGTAG -CCAACAACACCAACCAACCCTAAG -CCAACAACACCAACCAACGTTCAG -CCAACAACACCAACCAACGCATAG -CCAACAACACCAACCAACGACAAG -CCAACAACACCAACCAACAAGCAG -CCAACAACACCAACCAACCGTCAA -CCAACAACACCAACCAACGCTGAA -CCAACAACACCAACCAACAGTACG -CCAACAACACCAACCAACATCCGA -CCAACAACACCAACCAACATGGGA -CCAACAACACCAACCAACGTGCAA -CCAACAACACCAACCAACGAGGAA -CCAACAACACCAACCAACCAGGTA -CCAACAACACCAACCAACGACTCT -CCAACAACACCAACCAACAGTCCT -CCAACAACACCAACCAACTAAGCC -CCAACAACACCAACCAACATAGCC -CCAACAACACCAACCAACTAACCG -CCAACAACACCAACCAACATGCCA -CCAACAACACCAGAGATCGGAAAC -CCAACAACACCAGAGATCAACACC -CCAACAACACCAGAGATCATCGAG -CCAACAACACCAGAGATCCTCCTT -CCAACAACACCAGAGATCCCTGTT -CCAACAACACCAGAGATCCGGTTT -CCAACAACACCAGAGATCGTGGTT -CCAACAACACCAGAGATCGCCTTT -CCAACAACACCAGAGATCGGTCTT -CCAACAACACCAGAGATCACGCTT -CCAACAACACCAGAGATCAGCGTT -CCAACAACACCAGAGATCTTCGTC -CCAACAACACCAGAGATCTCTCTC -CCAACAACACCAGAGATCTGGATC -CCAACAACACCAGAGATCCACTTC -CCAACAACACCAGAGATCGTACTC -CCAACAACACCAGAGATCGATGTC -CCAACAACACCAGAGATCACAGTC -CCAACAACACCAGAGATCTTGCTG -CCAACAACACCAGAGATCTCCATG -CCAACAACACCAGAGATCTGTGTG -CCAACAACACCAGAGATCCTAGTG -CCAACAACACCAGAGATCCATCTG -CCAACAACACCAGAGATCGAGTTG -CCAACAACACCAGAGATCAGACTG -CCAACAACACCAGAGATCTCGGTA -CCAACAACACCAGAGATCTGCCTA -CCAACAACACCAGAGATCCCACTA -CCAACAACACCAGAGATCGGAGTA -CCAACAACACCAGAGATCTCGTCT -CCAACAACACCAGAGATCTGCACT -CCAACAACACCAGAGATCCTGACT -CCAACAACACCAGAGATCCAACCT -CCAACAACACCAGAGATCGCTACT -CCAACAACACCAGAGATCGGATCT -CCAACAACACCAGAGATCAAGGCT -CCAACAACACCAGAGATCTCAACC -CCAACAACACCAGAGATCTGTTCC -CCAACAACACCAGAGATCATTCCC -CCAACAACACCAGAGATCTTCTCG -CCAACAACACCAGAGATCTAGACG -CCAACAACACCAGAGATCGTAACG -CCAACAACACCAGAGATCACTTCG -CCAACAACACCAGAGATCTACGCA -CCAACAACACCAGAGATCCTTGCA -CCAACAACACCAGAGATCCGAACA -CCAACAACACCAGAGATCCAGTCA -CCAACAACACCAGAGATCGATCCA -CCAACAACACCAGAGATCACGACA -CCAACAACACCAGAGATCAGCTCA -CCAACAACACCAGAGATCTCACGT -CCAACAACACCAGAGATCCGTAGT -CCAACAACACCAGAGATCGTCAGT -CCAACAACACCAGAGATCGAAGGT -CCAACAACACCAGAGATCAACCGT -CCAACAACACCAGAGATCTTGTGC -CCAACAACACCAGAGATCCTAAGC -CCAACAACACCAGAGATCACTAGC -CCAACAACACCAGAGATCAGATGC -CCAACAACACCAGAGATCTGAAGG -CCAACAACACCAGAGATCCAATGG -CCAACAACACCAGAGATCATGAGG -CCAACAACACCAGAGATCAATGGG -CCAACAACACCAGAGATCTCCTGA -CCAACAACACCAGAGATCTAGCGA -CCAACAACACCAGAGATCCACAGA -CCAACAACACCAGAGATCGCAAGA -CCAACAACACCAGAGATCGGTTGA -CCAACAACACCAGAGATCTCCGAT -CCAACAACACCAGAGATCTGGCAT -CCAACAACACCAGAGATCCGAGAT -CCAACAACACCAGAGATCTACCAC -CCAACAACACCAGAGATCCAGAAC -CCAACAACACCAGAGATCGTCTAC -CCAACAACACCAGAGATCACGTAC -CCAACAACACCAGAGATCAGTGAC -CCAACAACACCAGAGATCCTGTAG -CCAACAACACCAGAGATCCCTAAG -CCAACAACACCAGAGATCGTTCAG -CCAACAACACCAGAGATCGCATAG -CCAACAACACCAGAGATCGACAAG -CCAACAACACCAGAGATCAAGCAG -CCAACAACACCAGAGATCCGTCAA -CCAACAACACCAGAGATCGCTGAA -CCAACAACACCAGAGATCAGTACG -CCAACAACACCAGAGATCATCCGA -CCAACAACACCAGAGATCATGGGA -CCAACAACACCAGAGATCGTGCAA -CCAACAACACCAGAGATCGAGGAA -CCAACAACACCAGAGATCCAGGTA -CCAACAACACCAGAGATCGACTCT -CCAACAACACCAGAGATCAGTCCT -CCAACAACACCAGAGATCTAAGCC -CCAACAACACCAGAGATCATAGCC -CCAACAACACCAGAGATCTAACCG -CCAACAACACCAGAGATCATGCCA -CCAACAACACCACTTCTCGGAAAC -CCAACAACACCACTTCTCAACACC -CCAACAACACCACTTCTCATCGAG -CCAACAACACCACTTCTCCTCCTT -CCAACAACACCACTTCTCCCTGTT -CCAACAACACCACTTCTCCGGTTT -CCAACAACACCACTTCTCGTGGTT -CCAACAACACCACTTCTCGCCTTT -CCAACAACACCACTTCTCGGTCTT -CCAACAACACCACTTCTCACGCTT -CCAACAACACCACTTCTCAGCGTT -CCAACAACACCACTTCTCTTCGTC -CCAACAACACCACTTCTCTCTCTC -CCAACAACACCACTTCTCTGGATC -CCAACAACACCACTTCTCCACTTC -CCAACAACACCACTTCTCGTACTC -CCAACAACACCACTTCTCGATGTC -CCAACAACACCACTTCTCACAGTC -CCAACAACACCACTTCTCTTGCTG -CCAACAACACCACTTCTCTCCATG -CCAACAACACCACTTCTCTGTGTG -CCAACAACACCACTTCTCCTAGTG -CCAACAACACCACTTCTCCATCTG -CCAACAACACCACTTCTCGAGTTG -CCAACAACACCACTTCTCAGACTG -CCAACAACACCACTTCTCTCGGTA -CCAACAACACCACTTCTCTGCCTA -CCAACAACACCACTTCTCCCACTA -CCAACAACACCACTTCTCGGAGTA -CCAACAACACCACTTCTCTCGTCT -CCAACAACACCACTTCTCTGCACT -CCAACAACACCACTTCTCCTGACT -CCAACAACACCACTTCTCCAACCT -CCAACAACACCACTTCTCGCTACT -CCAACAACACCACTTCTCGGATCT -CCAACAACACCACTTCTCAAGGCT -CCAACAACACCACTTCTCTCAACC -CCAACAACACCACTTCTCTGTTCC -CCAACAACACCACTTCTCATTCCC -CCAACAACACCACTTCTCTTCTCG -CCAACAACACCACTTCTCTAGACG -CCAACAACACCACTTCTCGTAACG -CCAACAACACCACTTCTCACTTCG -CCAACAACACCACTTCTCTACGCA -CCAACAACACCACTTCTCCTTGCA -CCAACAACACCACTTCTCCGAACA -CCAACAACACCACTTCTCCAGTCA -CCAACAACACCACTTCTCGATCCA -CCAACAACACCACTTCTCACGACA -CCAACAACACCACTTCTCAGCTCA -CCAACAACACCACTTCTCTCACGT -CCAACAACACCACTTCTCCGTAGT -CCAACAACACCACTTCTCGTCAGT -CCAACAACACCACTTCTCGAAGGT -CCAACAACACCACTTCTCAACCGT -CCAACAACACCACTTCTCTTGTGC -CCAACAACACCACTTCTCCTAAGC -CCAACAACACCACTTCTCACTAGC -CCAACAACACCACTTCTCAGATGC -CCAACAACACCACTTCTCTGAAGG -CCAACAACACCACTTCTCCAATGG -CCAACAACACCACTTCTCATGAGG -CCAACAACACCACTTCTCAATGGG -CCAACAACACCACTTCTCTCCTGA -CCAACAACACCACTTCTCTAGCGA -CCAACAACACCACTTCTCCACAGA -CCAACAACACCACTTCTCGCAAGA -CCAACAACACCACTTCTCGGTTGA -CCAACAACACCACTTCTCTCCGAT -CCAACAACACCACTTCTCTGGCAT -CCAACAACACCACTTCTCCGAGAT -CCAACAACACCACTTCTCTACCAC -CCAACAACACCACTTCTCCAGAAC -CCAACAACACCACTTCTCGTCTAC -CCAACAACACCACTTCTCACGTAC -CCAACAACACCACTTCTCAGTGAC -CCAACAACACCACTTCTCCTGTAG -CCAACAACACCACTTCTCCCTAAG -CCAACAACACCACTTCTCGTTCAG -CCAACAACACCACTTCTCGCATAG -CCAACAACACCACTTCTCGACAAG -CCAACAACACCACTTCTCAAGCAG -CCAACAACACCACTTCTCCGTCAA -CCAACAACACCACTTCTCGCTGAA -CCAACAACACCACTTCTCAGTACG -CCAACAACACCACTTCTCATCCGA -CCAACAACACCACTTCTCATGGGA -CCAACAACACCACTTCTCGTGCAA -CCAACAACACCACTTCTCGAGGAA -CCAACAACACCACTTCTCCAGGTA -CCAACAACACCACTTCTCGACTCT -CCAACAACACCACTTCTCAGTCCT -CCAACAACACCACTTCTCTAAGCC -CCAACAACACCACTTCTCATAGCC -CCAACAACACCACTTCTCTAACCG -CCAACAACACCACTTCTCATGCCA -CCAACAACACCAGTTCCTGGAAAC -CCAACAACACCAGTTCCTAACACC -CCAACAACACCAGTTCCTATCGAG -CCAACAACACCAGTTCCTCTCCTT -CCAACAACACCAGTTCCTCCTGTT -CCAACAACACCAGTTCCTCGGTTT -CCAACAACACCAGTTCCTGTGGTT -CCAACAACACCAGTTCCTGCCTTT -CCAACAACACCAGTTCCTGGTCTT -CCAACAACACCAGTTCCTACGCTT -CCAACAACACCAGTTCCTAGCGTT -CCAACAACACCAGTTCCTTTCGTC -CCAACAACACCAGTTCCTTCTCTC -CCAACAACACCAGTTCCTTGGATC -CCAACAACACCAGTTCCTCACTTC -CCAACAACACCAGTTCCTGTACTC -CCAACAACACCAGTTCCTGATGTC -CCAACAACACCAGTTCCTACAGTC -CCAACAACACCAGTTCCTTTGCTG -CCAACAACACCAGTTCCTTCCATG -CCAACAACACCAGTTCCTTGTGTG -CCAACAACACCAGTTCCTCTAGTG -CCAACAACACCAGTTCCTCATCTG -CCAACAACACCAGTTCCTGAGTTG -CCAACAACACCAGTTCCTAGACTG -CCAACAACACCAGTTCCTTCGGTA -CCAACAACACCAGTTCCTTGCCTA -CCAACAACACCAGTTCCTCCACTA -CCAACAACACCAGTTCCTGGAGTA -CCAACAACACCAGTTCCTTCGTCT -CCAACAACACCAGTTCCTTGCACT -CCAACAACACCAGTTCCTCTGACT -CCAACAACACCAGTTCCTCAACCT -CCAACAACACCAGTTCCTGCTACT -CCAACAACACCAGTTCCTGGATCT -CCAACAACACCAGTTCCTAAGGCT -CCAACAACACCAGTTCCTTCAACC -CCAACAACACCAGTTCCTTGTTCC -CCAACAACACCAGTTCCTATTCCC -CCAACAACACCAGTTCCTTTCTCG -CCAACAACACCAGTTCCTTAGACG -CCAACAACACCAGTTCCTGTAACG -CCAACAACACCAGTTCCTACTTCG -CCAACAACACCAGTTCCTTACGCA -CCAACAACACCAGTTCCTCTTGCA -CCAACAACACCAGTTCCTCGAACA -CCAACAACACCAGTTCCTCAGTCA -CCAACAACACCAGTTCCTGATCCA -CCAACAACACCAGTTCCTACGACA -CCAACAACACCAGTTCCTAGCTCA -CCAACAACACCAGTTCCTTCACGT -CCAACAACACCAGTTCCTCGTAGT -CCAACAACACCAGTTCCTGTCAGT -CCAACAACACCAGTTCCTGAAGGT -CCAACAACACCAGTTCCTAACCGT -CCAACAACACCAGTTCCTTTGTGC -CCAACAACACCAGTTCCTCTAAGC -CCAACAACACCAGTTCCTACTAGC -CCAACAACACCAGTTCCTAGATGC -CCAACAACACCAGTTCCTTGAAGG -CCAACAACACCAGTTCCTCAATGG -CCAACAACACCAGTTCCTATGAGG -CCAACAACACCAGTTCCTAATGGG -CCAACAACACCAGTTCCTTCCTGA -CCAACAACACCAGTTCCTTAGCGA -CCAACAACACCAGTTCCTCACAGA -CCAACAACACCAGTTCCTGCAAGA -CCAACAACACCAGTTCCTGGTTGA -CCAACAACACCAGTTCCTTCCGAT -CCAACAACACCAGTTCCTTGGCAT -CCAACAACACCAGTTCCTCGAGAT -CCAACAACACCAGTTCCTTACCAC -CCAACAACACCAGTTCCTCAGAAC -CCAACAACACCAGTTCCTGTCTAC -CCAACAACACCAGTTCCTACGTAC -CCAACAACACCAGTTCCTAGTGAC -CCAACAACACCAGTTCCTCTGTAG -CCAACAACACCAGTTCCTCCTAAG -CCAACAACACCAGTTCCTGTTCAG -CCAACAACACCAGTTCCTGCATAG -CCAACAACACCAGTTCCTGACAAG -CCAACAACACCAGTTCCTAAGCAG -CCAACAACACCAGTTCCTCGTCAA -CCAACAACACCAGTTCCTGCTGAA -CCAACAACACCAGTTCCTAGTACG -CCAACAACACCAGTTCCTATCCGA -CCAACAACACCAGTTCCTATGGGA -CCAACAACACCAGTTCCTGTGCAA -CCAACAACACCAGTTCCTGAGGAA -CCAACAACACCAGTTCCTCAGGTA -CCAACAACACCAGTTCCTGACTCT -CCAACAACACCAGTTCCTAGTCCT -CCAACAACACCAGTTCCTTAAGCC -CCAACAACACCAGTTCCTATAGCC -CCAACAACACCAGTTCCTTAACCG -CCAACAACACCAGTTCCTATGCCA -CCAACAACACCATTTCGGGGAAAC -CCAACAACACCATTTCGGAACACC -CCAACAACACCATTTCGGATCGAG -CCAACAACACCATTTCGGCTCCTT -CCAACAACACCATTTCGGCCTGTT -CCAACAACACCATTTCGGCGGTTT -CCAACAACACCATTTCGGGTGGTT -CCAACAACACCATTTCGGGCCTTT -CCAACAACACCATTTCGGGGTCTT -CCAACAACACCATTTCGGACGCTT -CCAACAACACCATTTCGGAGCGTT -CCAACAACACCATTTCGGTTCGTC -CCAACAACACCATTTCGGTCTCTC -CCAACAACACCATTTCGGTGGATC -CCAACAACACCATTTCGGCACTTC -CCAACAACACCATTTCGGGTACTC -CCAACAACACCATTTCGGGATGTC -CCAACAACACCATTTCGGACAGTC -CCAACAACACCATTTCGGTTGCTG -CCAACAACACCATTTCGGTCCATG -CCAACAACACCATTTCGGTGTGTG -CCAACAACACCATTTCGGCTAGTG -CCAACAACACCATTTCGGCATCTG -CCAACAACACCATTTCGGGAGTTG -CCAACAACACCATTTCGGAGACTG -CCAACAACACCATTTCGGTCGGTA -CCAACAACACCATTTCGGTGCCTA -CCAACAACACCATTTCGGCCACTA -CCAACAACACCATTTCGGGGAGTA -CCAACAACACCATTTCGGTCGTCT -CCAACAACACCATTTCGGTGCACT -CCAACAACACCATTTCGGCTGACT -CCAACAACACCATTTCGGCAACCT -CCAACAACACCATTTCGGGCTACT -CCAACAACACCATTTCGGGGATCT -CCAACAACACCATTTCGGAAGGCT -CCAACAACACCATTTCGGTCAACC -CCAACAACACCATTTCGGTGTTCC -CCAACAACACCATTTCGGATTCCC -CCAACAACACCATTTCGGTTCTCG -CCAACAACACCATTTCGGTAGACG -CCAACAACACCATTTCGGGTAACG -CCAACAACACCATTTCGGACTTCG -CCAACAACACCATTTCGGTACGCA -CCAACAACACCATTTCGGCTTGCA -CCAACAACACCATTTCGGCGAACA -CCAACAACACCATTTCGGCAGTCA -CCAACAACACCATTTCGGGATCCA -CCAACAACACCATTTCGGACGACA -CCAACAACACCATTTCGGAGCTCA -CCAACAACACCATTTCGGTCACGT -CCAACAACACCATTTCGGCGTAGT -CCAACAACACCATTTCGGGTCAGT -CCAACAACACCATTTCGGGAAGGT -CCAACAACACCATTTCGGAACCGT -CCAACAACACCATTTCGGTTGTGC -CCAACAACACCATTTCGGCTAAGC -CCAACAACACCATTTCGGACTAGC -CCAACAACACCATTTCGGAGATGC -CCAACAACACCATTTCGGTGAAGG -CCAACAACACCATTTCGGCAATGG -CCAACAACACCATTTCGGATGAGG -CCAACAACACCATTTCGGAATGGG -CCAACAACACCATTTCGGTCCTGA -CCAACAACACCATTTCGGTAGCGA -CCAACAACACCATTTCGGCACAGA -CCAACAACACCATTTCGGGCAAGA -CCAACAACACCATTTCGGGGTTGA -CCAACAACACCATTTCGGTCCGAT -CCAACAACACCATTTCGGTGGCAT -CCAACAACACCATTTCGGCGAGAT -CCAACAACACCATTTCGGTACCAC -CCAACAACACCATTTCGGCAGAAC -CCAACAACACCATTTCGGGTCTAC -CCAACAACACCATTTCGGACGTAC -CCAACAACACCATTTCGGAGTGAC -CCAACAACACCATTTCGGCTGTAG -CCAACAACACCATTTCGGCCTAAG -CCAACAACACCATTTCGGGTTCAG -CCAACAACACCATTTCGGGCATAG -CCAACAACACCATTTCGGGACAAG -CCAACAACACCATTTCGGAAGCAG -CCAACAACACCATTTCGGCGTCAA -CCAACAACACCATTTCGGGCTGAA -CCAACAACACCATTTCGGAGTACG -CCAACAACACCATTTCGGATCCGA -CCAACAACACCATTTCGGATGGGA -CCAACAACACCATTTCGGGTGCAA -CCAACAACACCATTTCGGGAGGAA -CCAACAACACCATTTCGGCAGGTA -CCAACAACACCATTTCGGGACTCT -CCAACAACACCATTTCGGAGTCCT -CCAACAACACCATTTCGGTAAGCC -CCAACAACACCATTTCGGATAGCC -CCAACAACACCATTTCGGTAACCG -CCAACAACACCATTTCGGATGCCA -CCAACAACACCAGTTGTGGGAAAC -CCAACAACACCAGTTGTGAACACC -CCAACAACACCAGTTGTGATCGAG -CCAACAACACCAGTTGTGCTCCTT -CCAACAACACCAGTTGTGCCTGTT -CCAACAACACCAGTTGTGCGGTTT -CCAACAACACCAGTTGTGGTGGTT -CCAACAACACCAGTTGTGGCCTTT -CCAACAACACCAGTTGTGGGTCTT -CCAACAACACCAGTTGTGACGCTT -CCAACAACACCAGTTGTGAGCGTT -CCAACAACACCAGTTGTGTTCGTC -CCAACAACACCAGTTGTGTCTCTC -CCAACAACACCAGTTGTGTGGATC -CCAACAACACCAGTTGTGCACTTC -CCAACAACACCAGTTGTGGTACTC -CCAACAACACCAGTTGTGGATGTC -CCAACAACACCAGTTGTGACAGTC -CCAACAACACCAGTTGTGTTGCTG -CCAACAACACCAGTTGTGTCCATG -CCAACAACACCAGTTGTGTGTGTG -CCAACAACACCAGTTGTGCTAGTG -CCAACAACACCAGTTGTGCATCTG -CCAACAACACCAGTTGTGGAGTTG -CCAACAACACCAGTTGTGAGACTG -CCAACAACACCAGTTGTGTCGGTA -CCAACAACACCAGTTGTGTGCCTA -CCAACAACACCAGTTGTGCCACTA -CCAACAACACCAGTTGTGGGAGTA -CCAACAACACCAGTTGTGTCGTCT -CCAACAACACCAGTTGTGTGCACT -CCAACAACACCAGTTGTGCTGACT -CCAACAACACCAGTTGTGCAACCT -CCAACAACACCAGTTGTGGCTACT -CCAACAACACCAGTTGTGGGATCT -CCAACAACACCAGTTGTGAAGGCT -CCAACAACACCAGTTGTGTCAACC -CCAACAACACCAGTTGTGTGTTCC -CCAACAACACCAGTTGTGATTCCC -CCAACAACACCAGTTGTGTTCTCG -CCAACAACACCAGTTGTGTAGACG -CCAACAACACCAGTTGTGGTAACG -CCAACAACACCAGTTGTGACTTCG -CCAACAACACCAGTTGTGTACGCA -CCAACAACACCAGTTGTGCTTGCA -CCAACAACACCAGTTGTGCGAACA -CCAACAACACCAGTTGTGCAGTCA -CCAACAACACCAGTTGTGGATCCA -CCAACAACACCAGTTGTGACGACA -CCAACAACACCAGTTGTGAGCTCA -CCAACAACACCAGTTGTGTCACGT -CCAACAACACCAGTTGTGCGTAGT -CCAACAACACCAGTTGTGGTCAGT -CCAACAACACCAGTTGTGGAAGGT -CCAACAACACCAGTTGTGAACCGT -CCAACAACACCAGTTGTGTTGTGC -CCAACAACACCAGTTGTGCTAAGC -CCAACAACACCAGTTGTGACTAGC -CCAACAACACCAGTTGTGAGATGC -CCAACAACACCAGTTGTGTGAAGG -CCAACAACACCAGTTGTGCAATGG -CCAACAACACCAGTTGTGATGAGG -CCAACAACACCAGTTGTGAATGGG -CCAACAACACCAGTTGTGTCCTGA -CCAACAACACCAGTTGTGTAGCGA -CCAACAACACCAGTTGTGCACAGA -CCAACAACACCAGTTGTGGCAAGA -CCAACAACACCAGTTGTGGGTTGA -CCAACAACACCAGTTGTGTCCGAT -CCAACAACACCAGTTGTGTGGCAT -CCAACAACACCAGTTGTGCGAGAT -CCAACAACACCAGTTGTGTACCAC -CCAACAACACCAGTTGTGCAGAAC -CCAACAACACCAGTTGTGGTCTAC -CCAACAACACCAGTTGTGACGTAC -CCAACAACACCAGTTGTGAGTGAC -CCAACAACACCAGTTGTGCTGTAG -CCAACAACACCAGTTGTGCCTAAG -CCAACAACACCAGTTGTGGTTCAG -CCAACAACACCAGTTGTGGCATAG -CCAACAACACCAGTTGTGGACAAG -CCAACAACACCAGTTGTGAAGCAG -CCAACAACACCAGTTGTGCGTCAA -CCAACAACACCAGTTGTGGCTGAA -CCAACAACACCAGTTGTGAGTACG -CCAACAACACCAGTTGTGATCCGA -CCAACAACACCAGTTGTGATGGGA -CCAACAACACCAGTTGTGGTGCAA -CCAACAACACCAGTTGTGGAGGAA -CCAACAACACCAGTTGTGCAGGTA -CCAACAACACCAGTTGTGGACTCT -CCAACAACACCAGTTGTGAGTCCT -CCAACAACACCAGTTGTGTAAGCC -CCAACAACACCAGTTGTGATAGCC -CCAACAACACCAGTTGTGTAACCG -CCAACAACACCAGTTGTGATGCCA -CCAACAACACCATTTGCCGGAAAC -CCAACAACACCATTTGCCAACACC -CCAACAACACCATTTGCCATCGAG -CCAACAACACCATTTGCCCTCCTT -CCAACAACACCATTTGCCCCTGTT -CCAACAACACCATTTGCCCGGTTT -CCAACAACACCATTTGCCGTGGTT -CCAACAACACCATTTGCCGCCTTT -CCAACAACACCATTTGCCGGTCTT -CCAACAACACCATTTGCCACGCTT -CCAACAACACCATTTGCCAGCGTT -CCAACAACACCATTTGCCTTCGTC -CCAACAACACCATTTGCCTCTCTC -CCAACAACACCATTTGCCTGGATC -CCAACAACACCATTTGCCCACTTC -CCAACAACACCATTTGCCGTACTC -CCAACAACACCATTTGCCGATGTC -CCAACAACACCATTTGCCACAGTC -CCAACAACACCATTTGCCTTGCTG -CCAACAACACCATTTGCCTCCATG -CCAACAACACCATTTGCCTGTGTG -CCAACAACACCATTTGCCCTAGTG -CCAACAACACCATTTGCCCATCTG -CCAACAACACCATTTGCCGAGTTG -CCAACAACACCATTTGCCAGACTG -CCAACAACACCATTTGCCTCGGTA -CCAACAACACCATTTGCCTGCCTA -CCAACAACACCATTTGCCCCACTA -CCAACAACACCATTTGCCGGAGTA -CCAACAACACCATTTGCCTCGTCT -CCAACAACACCATTTGCCTGCACT -CCAACAACACCATTTGCCCTGACT -CCAACAACACCATTTGCCCAACCT -CCAACAACACCATTTGCCGCTACT -CCAACAACACCATTTGCCGGATCT -CCAACAACACCATTTGCCAAGGCT -CCAACAACACCATTTGCCTCAACC -CCAACAACACCATTTGCCTGTTCC -CCAACAACACCATTTGCCATTCCC -CCAACAACACCATTTGCCTTCTCG -CCAACAACACCATTTGCCTAGACG -CCAACAACACCATTTGCCGTAACG -CCAACAACACCATTTGCCACTTCG -CCAACAACACCATTTGCCTACGCA -CCAACAACACCATTTGCCCTTGCA -CCAACAACACCATTTGCCCGAACA -CCAACAACACCATTTGCCCAGTCA -CCAACAACACCATTTGCCGATCCA -CCAACAACACCATTTGCCACGACA -CCAACAACACCATTTGCCAGCTCA -CCAACAACACCATTTGCCTCACGT -CCAACAACACCATTTGCCCGTAGT -CCAACAACACCATTTGCCGTCAGT -CCAACAACACCATTTGCCGAAGGT -CCAACAACACCATTTGCCAACCGT -CCAACAACACCATTTGCCTTGTGC -CCAACAACACCATTTGCCCTAAGC -CCAACAACACCATTTGCCACTAGC -CCAACAACACCATTTGCCAGATGC -CCAACAACACCATTTGCCTGAAGG -CCAACAACACCATTTGCCCAATGG -CCAACAACACCATTTGCCATGAGG -CCAACAACACCATTTGCCAATGGG -CCAACAACACCATTTGCCTCCTGA -CCAACAACACCATTTGCCTAGCGA -CCAACAACACCATTTGCCCACAGA -CCAACAACACCATTTGCCGCAAGA -CCAACAACACCATTTGCCGGTTGA -CCAACAACACCATTTGCCTCCGAT -CCAACAACACCATTTGCCTGGCAT -CCAACAACACCATTTGCCCGAGAT -CCAACAACACCATTTGCCTACCAC -CCAACAACACCATTTGCCCAGAAC -CCAACAACACCATTTGCCGTCTAC -CCAACAACACCATTTGCCACGTAC -CCAACAACACCATTTGCCAGTGAC -CCAACAACACCATTTGCCCTGTAG -CCAACAACACCATTTGCCCCTAAG -CCAACAACACCATTTGCCGTTCAG -CCAACAACACCATTTGCCGCATAG -CCAACAACACCATTTGCCGACAAG -CCAACAACACCATTTGCCAAGCAG -CCAACAACACCATTTGCCCGTCAA -CCAACAACACCATTTGCCGCTGAA -CCAACAACACCATTTGCCAGTACG -CCAACAACACCATTTGCCATCCGA -CCAACAACACCATTTGCCATGGGA -CCAACAACACCATTTGCCGTGCAA -CCAACAACACCATTTGCCGAGGAA -CCAACAACACCATTTGCCCAGGTA -CCAACAACACCATTTGCCGACTCT -CCAACAACACCATTTGCCAGTCCT -CCAACAACACCATTTGCCTAAGCC -CCAACAACACCATTTGCCATAGCC -CCAACAACACCATTTGCCTAACCG -CCAACAACACCATTTGCCATGCCA -CCAACAACACCACTTGGTGGAAAC -CCAACAACACCACTTGGTAACACC -CCAACAACACCACTTGGTATCGAG -CCAACAACACCACTTGGTCTCCTT -CCAACAACACCACTTGGTCCTGTT -CCAACAACACCACTTGGTCGGTTT -CCAACAACACCACTTGGTGTGGTT -CCAACAACACCACTTGGTGCCTTT -CCAACAACACCACTTGGTGGTCTT -CCAACAACACCACTTGGTACGCTT -CCAACAACACCACTTGGTAGCGTT -CCAACAACACCACTTGGTTTCGTC -CCAACAACACCACTTGGTTCTCTC -CCAACAACACCACTTGGTTGGATC -CCAACAACACCACTTGGTCACTTC -CCAACAACACCACTTGGTGTACTC -CCAACAACACCACTTGGTGATGTC -CCAACAACACCACTTGGTACAGTC -CCAACAACACCACTTGGTTTGCTG -CCAACAACACCACTTGGTTCCATG -CCAACAACACCACTTGGTTGTGTG -CCAACAACACCACTTGGTCTAGTG -CCAACAACACCACTTGGTCATCTG -CCAACAACACCACTTGGTGAGTTG -CCAACAACACCACTTGGTAGACTG -CCAACAACACCACTTGGTTCGGTA -CCAACAACACCACTTGGTTGCCTA -CCAACAACACCACTTGGTCCACTA -CCAACAACACCACTTGGTGGAGTA -CCAACAACACCACTTGGTTCGTCT -CCAACAACACCACTTGGTTGCACT -CCAACAACACCACTTGGTCTGACT -CCAACAACACCACTTGGTCAACCT -CCAACAACACCACTTGGTGCTACT -CCAACAACACCACTTGGTGGATCT -CCAACAACACCACTTGGTAAGGCT -CCAACAACACCACTTGGTTCAACC -CCAACAACACCACTTGGTTGTTCC -CCAACAACACCACTTGGTATTCCC -CCAACAACACCACTTGGTTTCTCG -CCAACAACACCACTTGGTTAGACG -CCAACAACACCACTTGGTGTAACG -CCAACAACACCACTTGGTACTTCG -CCAACAACACCACTTGGTTACGCA -CCAACAACACCACTTGGTCTTGCA -CCAACAACACCACTTGGTCGAACA -CCAACAACACCACTTGGTCAGTCA -CCAACAACACCACTTGGTGATCCA -CCAACAACACCACTTGGTACGACA -CCAACAACACCACTTGGTAGCTCA -CCAACAACACCACTTGGTTCACGT -CCAACAACACCACTTGGTCGTAGT -CCAACAACACCACTTGGTGTCAGT -CCAACAACACCACTTGGTGAAGGT -CCAACAACACCACTTGGTAACCGT -CCAACAACACCACTTGGTTTGTGC -CCAACAACACCACTTGGTCTAAGC -CCAACAACACCACTTGGTACTAGC -CCAACAACACCACTTGGTAGATGC -CCAACAACACCACTTGGTTGAAGG -CCAACAACACCACTTGGTCAATGG -CCAACAACACCACTTGGTATGAGG -CCAACAACACCACTTGGTAATGGG -CCAACAACACCACTTGGTTCCTGA -CCAACAACACCACTTGGTTAGCGA -CCAACAACACCACTTGGTCACAGA -CCAACAACACCACTTGGTGCAAGA -CCAACAACACCACTTGGTGGTTGA -CCAACAACACCACTTGGTTCCGAT -CCAACAACACCACTTGGTTGGCAT -CCAACAACACCACTTGGTCGAGAT -CCAACAACACCACTTGGTTACCAC -CCAACAACACCACTTGGTCAGAAC -CCAACAACACCACTTGGTGTCTAC -CCAACAACACCACTTGGTACGTAC -CCAACAACACCACTTGGTAGTGAC -CCAACAACACCACTTGGTCTGTAG -CCAACAACACCACTTGGTCCTAAG -CCAACAACACCACTTGGTGTTCAG -CCAACAACACCACTTGGTGCATAG -CCAACAACACCACTTGGTGACAAG -CCAACAACACCACTTGGTAAGCAG -CCAACAACACCACTTGGTCGTCAA -CCAACAACACCACTTGGTGCTGAA -CCAACAACACCACTTGGTAGTACG -CCAACAACACCACTTGGTATCCGA -CCAACAACACCACTTGGTATGGGA -CCAACAACACCACTTGGTGTGCAA -CCAACAACACCACTTGGTGAGGAA -CCAACAACACCACTTGGTCAGGTA -CCAACAACACCACTTGGTGACTCT -CCAACAACACCACTTGGTAGTCCT -CCAACAACACCACTTGGTTAAGCC -CCAACAACACCACTTGGTATAGCC -CCAACAACACCACTTGGTTAACCG -CCAACAACACCACTTGGTATGCCA -CCAACAACACCACTTACGGGAAAC -CCAACAACACCACTTACGAACACC -CCAACAACACCACTTACGATCGAG -CCAACAACACCACTTACGCTCCTT -CCAACAACACCACTTACGCCTGTT -CCAACAACACCACTTACGCGGTTT -CCAACAACACCACTTACGGTGGTT -CCAACAACACCACTTACGGCCTTT -CCAACAACACCACTTACGGGTCTT -CCAACAACACCACTTACGACGCTT -CCAACAACACCACTTACGAGCGTT -CCAACAACACCACTTACGTTCGTC -CCAACAACACCACTTACGTCTCTC -CCAACAACACCACTTACGTGGATC -CCAACAACACCACTTACGCACTTC -CCAACAACACCACTTACGGTACTC -CCAACAACACCACTTACGGATGTC -CCAACAACACCACTTACGACAGTC -CCAACAACACCACTTACGTTGCTG -CCAACAACACCACTTACGTCCATG -CCAACAACACCACTTACGTGTGTG -CCAACAACACCACTTACGCTAGTG -CCAACAACACCACTTACGCATCTG -CCAACAACACCACTTACGGAGTTG -CCAACAACACCACTTACGAGACTG -CCAACAACACCACTTACGTCGGTA -CCAACAACACCACTTACGTGCCTA -CCAACAACACCACTTACGCCACTA -CCAACAACACCACTTACGGGAGTA -CCAACAACACCACTTACGTCGTCT -CCAACAACACCACTTACGTGCACT -CCAACAACACCACTTACGCTGACT -CCAACAACACCACTTACGCAACCT -CCAACAACACCACTTACGGCTACT -CCAACAACACCACTTACGGGATCT -CCAACAACACCACTTACGAAGGCT -CCAACAACACCACTTACGTCAACC -CCAACAACACCACTTACGTGTTCC -CCAACAACACCACTTACGATTCCC -CCAACAACACCACTTACGTTCTCG -CCAACAACACCACTTACGTAGACG -CCAACAACACCACTTACGGTAACG -CCAACAACACCACTTACGACTTCG -CCAACAACACCACTTACGTACGCA -CCAACAACACCACTTACGCTTGCA -CCAACAACACCACTTACGCGAACA -CCAACAACACCACTTACGCAGTCA -CCAACAACACCACTTACGGATCCA -CCAACAACACCACTTACGACGACA -CCAACAACACCACTTACGAGCTCA -CCAACAACACCACTTACGTCACGT -CCAACAACACCACTTACGCGTAGT -CCAACAACACCACTTACGGTCAGT -CCAACAACACCACTTACGGAAGGT -CCAACAACACCACTTACGAACCGT -CCAACAACACCACTTACGTTGTGC -CCAACAACACCACTTACGCTAAGC -CCAACAACACCACTTACGACTAGC -CCAACAACACCACTTACGAGATGC -CCAACAACACCACTTACGTGAAGG -CCAACAACACCACTTACGCAATGG -CCAACAACACCACTTACGATGAGG -CCAACAACACCACTTACGAATGGG -CCAACAACACCACTTACGTCCTGA -CCAACAACACCACTTACGTAGCGA -CCAACAACACCACTTACGCACAGA -CCAACAACACCACTTACGGCAAGA -CCAACAACACCACTTACGGGTTGA -CCAACAACACCACTTACGTCCGAT -CCAACAACACCACTTACGTGGCAT -CCAACAACACCACTTACGCGAGAT -CCAACAACACCACTTACGTACCAC -CCAACAACACCACTTACGCAGAAC -CCAACAACACCACTTACGGTCTAC -CCAACAACACCACTTACGACGTAC -CCAACAACACCACTTACGAGTGAC -CCAACAACACCACTTACGCTGTAG -CCAACAACACCACTTACGCCTAAG -CCAACAACACCACTTACGGTTCAG -CCAACAACACCACTTACGGCATAG -CCAACAACACCACTTACGGACAAG -CCAACAACACCACTTACGAAGCAG -CCAACAACACCACTTACGCGTCAA -CCAACAACACCACTTACGGCTGAA -CCAACAACACCACTTACGAGTACG -CCAACAACACCACTTACGATCCGA -CCAACAACACCACTTACGATGGGA -CCAACAACACCACTTACGGTGCAA -CCAACAACACCACTTACGGAGGAA -CCAACAACACCACTTACGCAGGTA -CCAACAACACCACTTACGGACTCT -CCAACAACACCACTTACGAGTCCT -CCAACAACACCACTTACGTAAGCC -CCAACAACACCACTTACGATAGCC -CCAACAACACCACTTACGTAACCG -CCAACAACACCACTTACGATGCCA -CCAACAACACCAGTTAGCGGAAAC -CCAACAACACCAGTTAGCAACACC -CCAACAACACCAGTTAGCATCGAG -CCAACAACACCAGTTAGCCTCCTT -CCAACAACACCAGTTAGCCCTGTT -CCAACAACACCAGTTAGCCGGTTT -CCAACAACACCAGTTAGCGTGGTT -CCAACAACACCAGTTAGCGCCTTT -CCAACAACACCAGTTAGCGGTCTT -CCAACAACACCAGTTAGCACGCTT -CCAACAACACCAGTTAGCAGCGTT -CCAACAACACCAGTTAGCTTCGTC -CCAACAACACCAGTTAGCTCTCTC -CCAACAACACCAGTTAGCTGGATC -CCAACAACACCAGTTAGCCACTTC -CCAACAACACCAGTTAGCGTACTC -CCAACAACACCAGTTAGCGATGTC -CCAACAACACCAGTTAGCACAGTC -CCAACAACACCAGTTAGCTTGCTG -CCAACAACACCAGTTAGCTCCATG -CCAACAACACCAGTTAGCTGTGTG -CCAACAACACCAGTTAGCCTAGTG -CCAACAACACCAGTTAGCCATCTG -CCAACAACACCAGTTAGCGAGTTG -CCAACAACACCAGTTAGCAGACTG -CCAACAACACCAGTTAGCTCGGTA -CCAACAACACCAGTTAGCTGCCTA -CCAACAACACCAGTTAGCCCACTA -CCAACAACACCAGTTAGCGGAGTA -CCAACAACACCAGTTAGCTCGTCT -CCAACAACACCAGTTAGCTGCACT -CCAACAACACCAGTTAGCCTGACT -CCAACAACACCAGTTAGCCAACCT -CCAACAACACCAGTTAGCGCTACT -CCAACAACACCAGTTAGCGGATCT -CCAACAACACCAGTTAGCAAGGCT -CCAACAACACCAGTTAGCTCAACC -CCAACAACACCAGTTAGCTGTTCC -CCAACAACACCAGTTAGCATTCCC -CCAACAACACCAGTTAGCTTCTCG -CCAACAACACCAGTTAGCTAGACG -CCAACAACACCAGTTAGCGTAACG -CCAACAACACCAGTTAGCACTTCG -CCAACAACACCAGTTAGCTACGCA -CCAACAACACCAGTTAGCCTTGCA -CCAACAACACCAGTTAGCCGAACA -CCAACAACACCAGTTAGCCAGTCA -CCAACAACACCAGTTAGCGATCCA -CCAACAACACCAGTTAGCACGACA -CCAACAACACCAGTTAGCAGCTCA -CCAACAACACCAGTTAGCTCACGT -CCAACAACACCAGTTAGCCGTAGT -CCAACAACACCAGTTAGCGTCAGT -CCAACAACACCAGTTAGCGAAGGT -CCAACAACACCAGTTAGCAACCGT -CCAACAACACCAGTTAGCTTGTGC -CCAACAACACCAGTTAGCCTAAGC -CCAACAACACCAGTTAGCACTAGC -CCAACAACACCAGTTAGCAGATGC -CCAACAACACCAGTTAGCTGAAGG -CCAACAACACCAGTTAGCCAATGG -CCAACAACACCAGTTAGCATGAGG -CCAACAACACCAGTTAGCAATGGG -CCAACAACACCAGTTAGCTCCTGA -CCAACAACACCAGTTAGCTAGCGA -CCAACAACACCAGTTAGCCACAGA -CCAACAACACCAGTTAGCGCAAGA -CCAACAACACCAGTTAGCGGTTGA -CCAACAACACCAGTTAGCTCCGAT -CCAACAACACCAGTTAGCTGGCAT -CCAACAACACCAGTTAGCCGAGAT -CCAACAACACCAGTTAGCTACCAC -CCAACAACACCAGTTAGCCAGAAC -CCAACAACACCAGTTAGCGTCTAC -CCAACAACACCAGTTAGCACGTAC -CCAACAACACCAGTTAGCAGTGAC -CCAACAACACCAGTTAGCCTGTAG -CCAACAACACCAGTTAGCCCTAAG -CCAACAACACCAGTTAGCGTTCAG -CCAACAACACCAGTTAGCGCATAG -CCAACAACACCAGTTAGCGACAAG -CCAACAACACCAGTTAGCAAGCAG -CCAACAACACCAGTTAGCCGTCAA -CCAACAACACCAGTTAGCGCTGAA -CCAACAACACCAGTTAGCAGTACG -CCAACAACACCAGTTAGCATCCGA -CCAACAACACCAGTTAGCATGGGA -CCAACAACACCAGTTAGCGTGCAA -CCAACAACACCAGTTAGCGAGGAA -CCAACAACACCAGTTAGCCAGGTA -CCAACAACACCAGTTAGCGACTCT -CCAACAACACCAGTTAGCAGTCCT -CCAACAACACCAGTTAGCTAAGCC -CCAACAACACCAGTTAGCATAGCC -CCAACAACACCAGTTAGCTAACCG -CCAACAACACCAGTTAGCATGCCA -CCAACAACACCAGTCTTCGGAAAC -CCAACAACACCAGTCTTCAACACC -CCAACAACACCAGTCTTCATCGAG -CCAACAACACCAGTCTTCCTCCTT -CCAACAACACCAGTCTTCCCTGTT -CCAACAACACCAGTCTTCCGGTTT -CCAACAACACCAGTCTTCGTGGTT -CCAACAACACCAGTCTTCGCCTTT -CCAACAACACCAGTCTTCGGTCTT -CCAACAACACCAGTCTTCACGCTT -CCAACAACACCAGTCTTCAGCGTT -CCAACAACACCAGTCTTCTTCGTC -CCAACAACACCAGTCTTCTCTCTC -CCAACAACACCAGTCTTCTGGATC -CCAACAACACCAGTCTTCCACTTC -CCAACAACACCAGTCTTCGTACTC -CCAACAACACCAGTCTTCGATGTC -CCAACAACACCAGTCTTCACAGTC -CCAACAACACCAGTCTTCTTGCTG -CCAACAACACCAGTCTTCTCCATG -CCAACAACACCAGTCTTCTGTGTG -CCAACAACACCAGTCTTCCTAGTG -CCAACAACACCAGTCTTCCATCTG -CCAACAACACCAGTCTTCGAGTTG -CCAACAACACCAGTCTTCAGACTG -CCAACAACACCAGTCTTCTCGGTA -CCAACAACACCAGTCTTCTGCCTA -CCAACAACACCAGTCTTCCCACTA -CCAACAACACCAGTCTTCGGAGTA -CCAACAACACCAGTCTTCTCGTCT -CCAACAACACCAGTCTTCTGCACT -CCAACAACACCAGTCTTCCTGACT -CCAACAACACCAGTCTTCCAACCT -CCAACAACACCAGTCTTCGCTACT -CCAACAACACCAGTCTTCGGATCT -CCAACAACACCAGTCTTCAAGGCT -CCAACAACACCAGTCTTCTCAACC -CCAACAACACCAGTCTTCTGTTCC -CCAACAACACCAGTCTTCATTCCC -CCAACAACACCAGTCTTCTTCTCG -CCAACAACACCAGTCTTCTAGACG -CCAACAACACCAGTCTTCGTAACG -CCAACAACACCAGTCTTCACTTCG -CCAACAACACCAGTCTTCTACGCA -CCAACAACACCAGTCTTCCTTGCA -CCAACAACACCAGTCTTCCGAACA -CCAACAACACCAGTCTTCCAGTCA -CCAACAACACCAGTCTTCGATCCA -CCAACAACACCAGTCTTCACGACA -CCAACAACACCAGTCTTCAGCTCA -CCAACAACACCAGTCTTCTCACGT -CCAACAACACCAGTCTTCCGTAGT -CCAACAACACCAGTCTTCGTCAGT -CCAACAACACCAGTCTTCGAAGGT -CCAACAACACCAGTCTTCAACCGT -CCAACAACACCAGTCTTCTTGTGC -CCAACAACACCAGTCTTCCTAAGC -CCAACAACACCAGTCTTCACTAGC -CCAACAACACCAGTCTTCAGATGC -CCAACAACACCAGTCTTCTGAAGG -CCAACAACACCAGTCTTCCAATGG -CCAACAACACCAGTCTTCATGAGG -CCAACAACACCAGTCTTCAATGGG -CCAACAACACCAGTCTTCTCCTGA -CCAACAACACCAGTCTTCTAGCGA -CCAACAACACCAGTCTTCCACAGA -CCAACAACACCAGTCTTCGCAAGA -CCAACAACACCAGTCTTCGGTTGA -CCAACAACACCAGTCTTCTCCGAT -CCAACAACACCAGTCTTCTGGCAT -CCAACAACACCAGTCTTCCGAGAT -CCAACAACACCAGTCTTCTACCAC -CCAACAACACCAGTCTTCCAGAAC -CCAACAACACCAGTCTTCGTCTAC -CCAACAACACCAGTCTTCACGTAC -CCAACAACACCAGTCTTCAGTGAC -CCAACAACACCAGTCTTCCTGTAG -CCAACAACACCAGTCTTCCCTAAG -CCAACAACACCAGTCTTCGTTCAG -CCAACAACACCAGTCTTCGCATAG -CCAACAACACCAGTCTTCGACAAG -CCAACAACACCAGTCTTCAAGCAG -CCAACAACACCAGTCTTCCGTCAA -CCAACAACACCAGTCTTCGCTGAA -CCAACAACACCAGTCTTCAGTACG -CCAACAACACCAGTCTTCATCCGA -CCAACAACACCAGTCTTCATGGGA -CCAACAACACCAGTCTTCGTGCAA -CCAACAACACCAGTCTTCGAGGAA -CCAACAACACCAGTCTTCCAGGTA -CCAACAACACCAGTCTTCGACTCT -CCAACAACACCAGTCTTCAGTCCT -CCAACAACACCAGTCTTCTAAGCC -CCAACAACACCAGTCTTCATAGCC -CCAACAACACCAGTCTTCTAACCG -CCAACAACACCAGTCTTCATGCCA -CCAACAACACCACTCTCTGGAAAC -CCAACAACACCACTCTCTAACACC -CCAACAACACCACTCTCTATCGAG -CCAACAACACCACTCTCTCTCCTT -CCAACAACACCACTCTCTCCTGTT -CCAACAACACCACTCTCTCGGTTT -CCAACAACACCACTCTCTGTGGTT -CCAACAACACCACTCTCTGCCTTT -CCAACAACACCACTCTCTGGTCTT -CCAACAACACCACTCTCTACGCTT -CCAACAACACCACTCTCTAGCGTT -CCAACAACACCACTCTCTTTCGTC -CCAACAACACCACTCTCTTCTCTC -CCAACAACACCACTCTCTTGGATC -CCAACAACACCACTCTCTCACTTC -CCAACAACACCACTCTCTGTACTC -CCAACAACACCACTCTCTGATGTC -CCAACAACACCACTCTCTACAGTC -CCAACAACACCACTCTCTTTGCTG -CCAACAACACCACTCTCTTCCATG -CCAACAACACCACTCTCTTGTGTG -CCAACAACACCACTCTCTCTAGTG -CCAACAACACCACTCTCTCATCTG -CCAACAACACCACTCTCTGAGTTG -CCAACAACACCACTCTCTAGACTG -CCAACAACACCACTCTCTTCGGTA -CCAACAACACCACTCTCTTGCCTA -CCAACAACACCACTCTCTCCACTA -CCAACAACACCACTCTCTGGAGTA -CCAACAACACCACTCTCTTCGTCT -CCAACAACACCACTCTCTTGCACT -CCAACAACACCACTCTCTCTGACT -CCAACAACACCACTCTCTCAACCT -CCAACAACACCACTCTCTGCTACT -CCAACAACACCACTCTCTGGATCT -CCAACAACACCACTCTCTAAGGCT -CCAACAACACCACTCTCTTCAACC -CCAACAACACCACTCTCTTGTTCC -CCAACAACACCACTCTCTATTCCC -CCAACAACACCACTCTCTTTCTCG -CCAACAACACCACTCTCTTAGACG -CCAACAACACCACTCTCTGTAACG -CCAACAACACCACTCTCTACTTCG -CCAACAACACCACTCTCTTACGCA -CCAACAACACCACTCTCTCTTGCA -CCAACAACACCACTCTCTCGAACA -CCAACAACACCACTCTCTCAGTCA -CCAACAACACCACTCTCTGATCCA -CCAACAACACCACTCTCTACGACA -CCAACAACACCACTCTCTAGCTCA -CCAACAACACCACTCTCTTCACGT -CCAACAACACCACTCTCTCGTAGT -CCAACAACACCACTCTCTGTCAGT -CCAACAACACCACTCTCTGAAGGT -CCAACAACACCACTCTCTAACCGT -CCAACAACACCACTCTCTTTGTGC -CCAACAACACCACTCTCTCTAAGC -CCAACAACACCACTCTCTACTAGC -CCAACAACACCACTCTCTAGATGC -CCAACAACACCACTCTCTTGAAGG -CCAACAACACCACTCTCTCAATGG -CCAACAACACCACTCTCTATGAGG -CCAACAACACCACTCTCTAATGGG -CCAACAACACCACTCTCTTCCTGA -CCAACAACACCACTCTCTTAGCGA -CCAACAACACCACTCTCTCACAGA -CCAACAACACCACTCTCTGCAAGA -CCAACAACACCACTCTCTGGTTGA -CCAACAACACCACTCTCTTCCGAT -CCAACAACACCACTCTCTTGGCAT -CCAACAACACCACTCTCTCGAGAT -CCAACAACACCACTCTCTTACCAC -CCAACAACACCACTCTCTCAGAAC -CCAACAACACCACTCTCTGTCTAC -CCAACAACACCACTCTCTACGTAC -CCAACAACACCACTCTCTAGTGAC -CCAACAACACCACTCTCTCTGTAG -CCAACAACACCACTCTCTCCTAAG -CCAACAACACCACTCTCTGTTCAG -CCAACAACACCACTCTCTGCATAG -CCAACAACACCACTCTCTGACAAG -CCAACAACACCACTCTCTAAGCAG -CCAACAACACCACTCTCTCGTCAA -CCAACAACACCACTCTCTGCTGAA -CCAACAACACCACTCTCTAGTACG -CCAACAACACCACTCTCTATCCGA -CCAACAACACCACTCTCTATGGGA -CCAACAACACCACTCTCTGTGCAA -CCAACAACACCACTCTCTGAGGAA -CCAACAACACCACTCTCTCAGGTA -CCAACAACACCACTCTCTGACTCT -CCAACAACACCACTCTCTAGTCCT -CCAACAACACCACTCTCTTAAGCC -CCAACAACACCACTCTCTATAGCC -CCAACAACACCACTCTCTTAACCG -CCAACAACACCACTCTCTATGCCA -CCAACAACACCAATCTGGGGAAAC -CCAACAACACCAATCTGGAACACC -CCAACAACACCAATCTGGATCGAG -CCAACAACACCAATCTGGCTCCTT -CCAACAACACCAATCTGGCCTGTT -CCAACAACACCAATCTGGCGGTTT -CCAACAACACCAATCTGGGTGGTT -CCAACAACACCAATCTGGGCCTTT -CCAACAACACCAATCTGGGGTCTT -CCAACAACACCAATCTGGACGCTT -CCAACAACACCAATCTGGAGCGTT -CCAACAACACCAATCTGGTTCGTC -CCAACAACACCAATCTGGTCTCTC -CCAACAACACCAATCTGGTGGATC -CCAACAACACCAATCTGGCACTTC -CCAACAACACCAATCTGGGTACTC -CCAACAACACCAATCTGGGATGTC -CCAACAACACCAATCTGGACAGTC -CCAACAACACCAATCTGGTTGCTG -CCAACAACACCAATCTGGTCCATG -CCAACAACACCAATCTGGTGTGTG -CCAACAACACCAATCTGGCTAGTG -CCAACAACACCAATCTGGCATCTG -CCAACAACACCAATCTGGGAGTTG -CCAACAACACCAATCTGGAGACTG -CCAACAACACCAATCTGGTCGGTA -CCAACAACACCAATCTGGTGCCTA -CCAACAACACCAATCTGGCCACTA -CCAACAACACCAATCTGGGGAGTA -CCAACAACACCAATCTGGTCGTCT -CCAACAACACCAATCTGGTGCACT -CCAACAACACCAATCTGGCTGACT -CCAACAACACCAATCTGGCAACCT -CCAACAACACCAATCTGGGCTACT -CCAACAACACCAATCTGGGGATCT -CCAACAACACCAATCTGGAAGGCT -CCAACAACACCAATCTGGTCAACC -CCAACAACACCAATCTGGTGTTCC -CCAACAACACCAATCTGGATTCCC -CCAACAACACCAATCTGGTTCTCG -CCAACAACACCAATCTGGTAGACG -CCAACAACACCAATCTGGGTAACG -CCAACAACACCAATCTGGACTTCG -CCAACAACACCAATCTGGTACGCA -CCAACAACACCAATCTGGCTTGCA -CCAACAACACCAATCTGGCGAACA -CCAACAACACCAATCTGGCAGTCA -CCAACAACACCAATCTGGGATCCA -CCAACAACACCAATCTGGACGACA -CCAACAACACCAATCTGGAGCTCA -CCAACAACACCAATCTGGTCACGT -CCAACAACACCAATCTGGCGTAGT -CCAACAACACCAATCTGGGTCAGT -CCAACAACACCAATCTGGGAAGGT -CCAACAACACCAATCTGGAACCGT -CCAACAACACCAATCTGGTTGTGC -CCAACAACACCAATCTGGCTAAGC -CCAACAACACCAATCTGGACTAGC -CCAACAACACCAATCTGGAGATGC -CCAACAACACCAATCTGGTGAAGG -CCAACAACACCAATCTGGCAATGG -CCAACAACACCAATCTGGATGAGG -CCAACAACACCAATCTGGAATGGG -CCAACAACACCAATCTGGTCCTGA -CCAACAACACCAATCTGGTAGCGA -CCAACAACACCAATCTGGCACAGA -CCAACAACACCAATCTGGGCAAGA -CCAACAACACCAATCTGGGGTTGA -CCAACAACACCAATCTGGTCCGAT -CCAACAACACCAATCTGGTGGCAT -CCAACAACACCAATCTGGCGAGAT -CCAACAACACCAATCTGGTACCAC -CCAACAACACCAATCTGGCAGAAC -CCAACAACACCAATCTGGGTCTAC -CCAACAACACCAATCTGGACGTAC -CCAACAACACCAATCTGGAGTGAC -CCAACAACACCAATCTGGCTGTAG -CCAACAACACCAATCTGGCCTAAG -CCAACAACACCAATCTGGGTTCAG -CCAACAACACCAATCTGGGCATAG -CCAACAACACCAATCTGGGACAAG -CCAACAACACCAATCTGGAAGCAG -CCAACAACACCAATCTGGCGTCAA -CCAACAACACCAATCTGGGCTGAA -CCAACAACACCAATCTGGAGTACG -CCAACAACACCAATCTGGATCCGA -CCAACAACACCAATCTGGATGGGA -CCAACAACACCAATCTGGGTGCAA -CCAACAACACCAATCTGGGAGGAA -CCAACAACACCAATCTGGCAGGTA -CCAACAACACCAATCTGGGACTCT -CCAACAACACCAATCTGGAGTCCT -CCAACAACACCAATCTGGTAAGCC -CCAACAACACCAATCTGGATAGCC -CCAACAACACCAATCTGGTAACCG -CCAACAACACCAATCTGGATGCCA -CCAACAACACCATTCCACGGAAAC -CCAACAACACCATTCCACAACACC -CCAACAACACCATTCCACATCGAG -CCAACAACACCATTCCACCTCCTT -CCAACAACACCATTCCACCCTGTT -CCAACAACACCATTCCACCGGTTT -CCAACAACACCATTCCACGTGGTT -CCAACAACACCATTCCACGCCTTT -CCAACAACACCATTCCACGGTCTT -CCAACAACACCATTCCACACGCTT -CCAACAACACCATTCCACAGCGTT -CCAACAACACCATTCCACTTCGTC -CCAACAACACCATTCCACTCTCTC -CCAACAACACCATTCCACTGGATC -CCAACAACACCATTCCACCACTTC -CCAACAACACCATTCCACGTACTC -CCAACAACACCATTCCACGATGTC -CCAACAACACCATTCCACACAGTC -CCAACAACACCATTCCACTTGCTG -CCAACAACACCATTCCACTCCATG -CCAACAACACCATTCCACTGTGTG -CCAACAACACCATTCCACCTAGTG -CCAACAACACCATTCCACCATCTG -CCAACAACACCATTCCACGAGTTG -CCAACAACACCATTCCACAGACTG -CCAACAACACCATTCCACTCGGTA -CCAACAACACCATTCCACTGCCTA -CCAACAACACCATTCCACCCACTA -CCAACAACACCATTCCACGGAGTA -CCAACAACACCATTCCACTCGTCT -CCAACAACACCATTCCACTGCACT -CCAACAACACCATTCCACCTGACT -CCAACAACACCATTCCACCAACCT -CCAACAACACCATTCCACGCTACT -CCAACAACACCATTCCACGGATCT -CCAACAACACCATTCCACAAGGCT -CCAACAACACCATTCCACTCAACC -CCAACAACACCATTCCACTGTTCC -CCAACAACACCATTCCACATTCCC -CCAACAACACCATTCCACTTCTCG -CCAACAACACCATTCCACTAGACG -CCAACAACACCATTCCACGTAACG -CCAACAACACCATTCCACACTTCG -CCAACAACACCATTCCACTACGCA -CCAACAACACCATTCCACCTTGCA -CCAACAACACCATTCCACCGAACA -CCAACAACACCATTCCACCAGTCA -CCAACAACACCATTCCACGATCCA -CCAACAACACCATTCCACACGACA -CCAACAACACCATTCCACAGCTCA -CCAACAACACCATTCCACTCACGT -CCAACAACACCATTCCACCGTAGT -CCAACAACACCATTCCACGTCAGT -CCAACAACACCATTCCACGAAGGT -CCAACAACACCATTCCACAACCGT -CCAACAACACCATTCCACTTGTGC -CCAACAACACCATTCCACCTAAGC -CCAACAACACCATTCCACACTAGC -CCAACAACACCATTCCACAGATGC -CCAACAACACCATTCCACTGAAGG -CCAACAACACCATTCCACCAATGG -CCAACAACACCATTCCACATGAGG -CCAACAACACCATTCCACAATGGG -CCAACAACACCATTCCACTCCTGA -CCAACAACACCATTCCACTAGCGA -CCAACAACACCATTCCACCACAGA -CCAACAACACCATTCCACGCAAGA -CCAACAACACCATTCCACGGTTGA -CCAACAACACCATTCCACTCCGAT -CCAACAACACCATTCCACTGGCAT -CCAACAACACCATTCCACCGAGAT -CCAACAACACCATTCCACTACCAC -CCAACAACACCATTCCACCAGAAC -CCAACAACACCATTCCACGTCTAC -CCAACAACACCATTCCACACGTAC -CCAACAACACCATTCCACAGTGAC -CCAACAACACCATTCCACCTGTAG -CCAACAACACCATTCCACCCTAAG -CCAACAACACCATTCCACGTTCAG -CCAACAACACCATTCCACGCATAG -CCAACAACACCATTCCACGACAAG -CCAACAACACCATTCCACAAGCAG -CCAACAACACCATTCCACCGTCAA -CCAACAACACCATTCCACGCTGAA -CCAACAACACCATTCCACAGTACG -CCAACAACACCATTCCACATCCGA -CCAACAACACCATTCCACATGGGA -CCAACAACACCATTCCACGTGCAA -CCAACAACACCATTCCACGAGGAA -CCAACAACACCATTCCACCAGGTA -CCAACAACACCATTCCACGACTCT -CCAACAACACCATTCCACAGTCCT -CCAACAACACCATTCCACTAAGCC -CCAACAACACCATTCCACATAGCC -CCAACAACACCATTCCACTAACCG -CCAACAACACCATTCCACATGCCA -CCAACAACACCACTCGTAGGAAAC -CCAACAACACCACTCGTAAACACC -CCAACAACACCACTCGTAATCGAG -CCAACAACACCACTCGTACTCCTT -CCAACAACACCACTCGTACCTGTT -CCAACAACACCACTCGTACGGTTT -CCAACAACACCACTCGTAGTGGTT -CCAACAACACCACTCGTAGCCTTT -CCAACAACACCACTCGTAGGTCTT -CCAACAACACCACTCGTAACGCTT -CCAACAACACCACTCGTAAGCGTT -CCAACAACACCACTCGTATTCGTC -CCAACAACACCACTCGTATCTCTC -CCAACAACACCACTCGTATGGATC -CCAACAACACCACTCGTACACTTC -CCAACAACACCACTCGTAGTACTC -CCAACAACACCACTCGTAGATGTC -CCAACAACACCACTCGTAACAGTC -CCAACAACACCACTCGTATTGCTG -CCAACAACACCACTCGTATCCATG -CCAACAACACCACTCGTATGTGTG -CCAACAACACCACTCGTACTAGTG -CCAACAACACCACTCGTACATCTG -CCAACAACACCACTCGTAGAGTTG -CCAACAACACCACTCGTAAGACTG -CCAACAACACCACTCGTATCGGTA -CCAACAACACCACTCGTATGCCTA -CCAACAACACCACTCGTACCACTA -CCAACAACACCACTCGTAGGAGTA -CCAACAACACCACTCGTATCGTCT -CCAACAACACCACTCGTATGCACT -CCAACAACACCACTCGTACTGACT -CCAACAACACCACTCGTACAACCT -CCAACAACACCACTCGTAGCTACT -CCAACAACACCACTCGTAGGATCT -CCAACAACACCACTCGTAAAGGCT -CCAACAACACCACTCGTATCAACC -CCAACAACACCACTCGTATGTTCC -CCAACAACACCACTCGTAATTCCC -CCAACAACACCACTCGTATTCTCG -CCAACAACACCACTCGTATAGACG -CCAACAACACCACTCGTAGTAACG -CCAACAACACCACTCGTAACTTCG -CCAACAACACCACTCGTATACGCA -CCAACAACACCACTCGTACTTGCA -CCAACAACACCACTCGTACGAACA -CCAACAACACCACTCGTACAGTCA -CCAACAACACCACTCGTAGATCCA -CCAACAACACCACTCGTAACGACA -CCAACAACACCACTCGTAAGCTCA -CCAACAACACCACTCGTATCACGT -CCAACAACACCACTCGTACGTAGT -CCAACAACACCACTCGTAGTCAGT -CCAACAACACCACTCGTAGAAGGT -CCAACAACACCACTCGTAAACCGT -CCAACAACACCACTCGTATTGTGC -CCAACAACACCACTCGTACTAAGC -CCAACAACACCACTCGTAACTAGC -CCAACAACACCACTCGTAAGATGC -CCAACAACACCACTCGTATGAAGG -CCAACAACACCACTCGTACAATGG -CCAACAACACCACTCGTAATGAGG -CCAACAACACCACTCGTAAATGGG -CCAACAACACCACTCGTATCCTGA -CCAACAACACCACTCGTATAGCGA -CCAACAACACCACTCGTACACAGA -CCAACAACACCACTCGTAGCAAGA -CCAACAACACCACTCGTAGGTTGA -CCAACAACACCACTCGTATCCGAT -CCAACAACACCACTCGTATGGCAT -CCAACAACACCACTCGTACGAGAT -CCAACAACACCACTCGTATACCAC -CCAACAACACCACTCGTACAGAAC -CCAACAACACCACTCGTAGTCTAC -CCAACAACACCACTCGTAACGTAC -CCAACAACACCACTCGTAAGTGAC -CCAACAACACCACTCGTACTGTAG -CCAACAACACCACTCGTACCTAAG -CCAACAACACCACTCGTAGTTCAG -CCAACAACACCACTCGTAGCATAG -CCAACAACACCACTCGTAGACAAG -CCAACAACACCACTCGTAAAGCAG -CCAACAACACCACTCGTACGTCAA -CCAACAACACCACTCGTAGCTGAA -CCAACAACACCACTCGTAAGTACG -CCAACAACACCACTCGTAATCCGA -CCAACAACACCACTCGTAATGGGA -CCAACAACACCACTCGTAGTGCAA -CCAACAACACCACTCGTAGAGGAA -CCAACAACACCACTCGTACAGGTA -CCAACAACACCACTCGTAGACTCT -CCAACAACACCACTCGTAAGTCCT -CCAACAACACCACTCGTATAAGCC -CCAACAACACCACTCGTAATAGCC -CCAACAACACCACTCGTATAACCG -CCAACAACACCACTCGTAATGCCA -CCAACAACACCAGTCGATGGAAAC -CCAACAACACCAGTCGATAACACC -CCAACAACACCAGTCGATATCGAG -CCAACAACACCAGTCGATCTCCTT -CCAACAACACCAGTCGATCCTGTT -CCAACAACACCAGTCGATCGGTTT -CCAACAACACCAGTCGATGTGGTT -CCAACAACACCAGTCGATGCCTTT -CCAACAACACCAGTCGATGGTCTT -CCAACAACACCAGTCGATACGCTT -CCAACAACACCAGTCGATAGCGTT -CCAACAACACCAGTCGATTTCGTC -CCAACAACACCAGTCGATTCTCTC -CCAACAACACCAGTCGATTGGATC -CCAACAACACCAGTCGATCACTTC -CCAACAACACCAGTCGATGTACTC -CCAACAACACCAGTCGATGATGTC -CCAACAACACCAGTCGATACAGTC -CCAACAACACCAGTCGATTTGCTG -CCAACAACACCAGTCGATTCCATG -CCAACAACACCAGTCGATTGTGTG -CCAACAACACCAGTCGATCTAGTG -CCAACAACACCAGTCGATCATCTG -CCAACAACACCAGTCGATGAGTTG -CCAACAACACCAGTCGATAGACTG -CCAACAACACCAGTCGATTCGGTA -CCAACAACACCAGTCGATTGCCTA -CCAACAACACCAGTCGATCCACTA -CCAACAACACCAGTCGATGGAGTA -CCAACAACACCAGTCGATTCGTCT -CCAACAACACCAGTCGATTGCACT -CCAACAACACCAGTCGATCTGACT -CCAACAACACCAGTCGATCAACCT -CCAACAACACCAGTCGATGCTACT -CCAACAACACCAGTCGATGGATCT -CCAACAACACCAGTCGATAAGGCT -CCAACAACACCAGTCGATTCAACC -CCAACAACACCAGTCGATTGTTCC -CCAACAACACCAGTCGATATTCCC -CCAACAACACCAGTCGATTTCTCG -CCAACAACACCAGTCGATTAGACG -CCAACAACACCAGTCGATGTAACG -CCAACAACACCAGTCGATACTTCG -CCAACAACACCAGTCGATTACGCA -CCAACAACACCAGTCGATCTTGCA -CCAACAACACCAGTCGATCGAACA -CCAACAACACCAGTCGATCAGTCA -CCAACAACACCAGTCGATGATCCA -CCAACAACACCAGTCGATACGACA -CCAACAACACCAGTCGATAGCTCA -CCAACAACACCAGTCGATTCACGT -CCAACAACACCAGTCGATCGTAGT -CCAACAACACCAGTCGATGTCAGT -CCAACAACACCAGTCGATGAAGGT -CCAACAACACCAGTCGATAACCGT -CCAACAACACCAGTCGATTTGTGC -CCAACAACACCAGTCGATCTAAGC -CCAACAACACCAGTCGATACTAGC -CCAACAACACCAGTCGATAGATGC -CCAACAACACCAGTCGATTGAAGG -CCAACAACACCAGTCGATCAATGG -CCAACAACACCAGTCGATATGAGG -CCAACAACACCAGTCGATAATGGG -CCAACAACACCAGTCGATTCCTGA -CCAACAACACCAGTCGATTAGCGA -CCAACAACACCAGTCGATCACAGA -CCAACAACACCAGTCGATGCAAGA -CCAACAACACCAGTCGATGGTTGA -CCAACAACACCAGTCGATTCCGAT -CCAACAACACCAGTCGATTGGCAT -CCAACAACACCAGTCGATCGAGAT -CCAACAACACCAGTCGATTACCAC -CCAACAACACCAGTCGATCAGAAC -CCAACAACACCAGTCGATGTCTAC -CCAACAACACCAGTCGATACGTAC -CCAACAACACCAGTCGATAGTGAC -CCAACAACACCAGTCGATCTGTAG -CCAACAACACCAGTCGATCCTAAG -CCAACAACACCAGTCGATGTTCAG -CCAACAACACCAGTCGATGCATAG -CCAACAACACCAGTCGATGACAAG -CCAACAACACCAGTCGATAAGCAG -CCAACAACACCAGTCGATCGTCAA -CCAACAACACCAGTCGATGCTGAA -CCAACAACACCAGTCGATAGTACG -CCAACAACACCAGTCGATATCCGA -CCAACAACACCAGTCGATATGGGA -CCAACAACACCAGTCGATGTGCAA -CCAACAACACCAGTCGATGAGGAA -CCAACAACACCAGTCGATCAGGTA -CCAACAACACCAGTCGATGACTCT -CCAACAACACCAGTCGATAGTCCT -CCAACAACACCAGTCGATTAAGCC -CCAACAACACCAGTCGATATAGCC -CCAACAACACCAGTCGATTAACCG -CCAACAACACCAGTCGATATGCCA -CCAACAACACCAGTCACAGGAAAC -CCAACAACACCAGTCACAAACACC -CCAACAACACCAGTCACAATCGAG -CCAACAACACCAGTCACACTCCTT -CCAACAACACCAGTCACACCTGTT -CCAACAACACCAGTCACACGGTTT -CCAACAACACCAGTCACAGTGGTT -CCAACAACACCAGTCACAGCCTTT -CCAACAACACCAGTCACAGGTCTT -CCAACAACACCAGTCACAACGCTT -CCAACAACACCAGTCACAAGCGTT -CCAACAACACCAGTCACATTCGTC -CCAACAACACCAGTCACATCTCTC -CCAACAACACCAGTCACATGGATC -CCAACAACACCAGTCACACACTTC -CCAACAACACCAGTCACAGTACTC -CCAACAACACCAGTCACAGATGTC -CCAACAACACCAGTCACAACAGTC -CCAACAACACCAGTCACATTGCTG -CCAACAACACCAGTCACATCCATG -CCAACAACACCAGTCACATGTGTG -CCAACAACACCAGTCACACTAGTG -CCAACAACACCAGTCACACATCTG -CCAACAACACCAGTCACAGAGTTG -CCAACAACACCAGTCACAAGACTG -CCAACAACACCAGTCACATCGGTA -CCAACAACACCAGTCACATGCCTA -CCAACAACACCAGTCACACCACTA -CCAACAACACCAGTCACAGGAGTA -CCAACAACACCAGTCACATCGTCT -CCAACAACACCAGTCACATGCACT -CCAACAACACCAGTCACACTGACT -CCAACAACACCAGTCACACAACCT -CCAACAACACCAGTCACAGCTACT -CCAACAACACCAGTCACAGGATCT -CCAACAACACCAGTCACAAAGGCT -CCAACAACACCAGTCACATCAACC -CCAACAACACCAGTCACATGTTCC -CCAACAACACCAGTCACAATTCCC -CCAACAACACCAGTCACATTCTCG -CCAACAACACCAGTCACATAGACG -CCAACAACACCAGTCACAGTAACG -CCAACAACACCAGTCACAACTTCG -CCAACAACACCAGTCACATACGCA -CCAACAACACCAGTCACACTTGCA -CCAACAACACCAGTCACACGAACA -CCAACAACACCAGTCACACAGTCA -CCAACAACACCAGTCACAGATCCA -CCAACAACACCAGTCACAACGACA -CCAACAACACCAGTCACAAGCTCA -CCAACAACACCAGTCACATCACGT -CCAACAACACCAGTCACACGTAGT -CCAACAACACCAGTCACAGTCAGT -CCAACAACACCAGTCACAGAAGGT -CCAACAACACCAGTCACAAACCGT -CCAACAACACCAGTCACATTGTGC -CCAACAACACCAGTCACACTAAGC -CCAACAACACCAGTCACAACTAGC -CCAACAACACCAGTCACAAGATGC -CCAACAACACCAGTCACATGAAGG -CCAACAACACCAGTCACACAATGG -CCAACAACACCAGTCACAATGAGG -CCAACAACACCAGTCACAAATGGG -CCAACAACACCAGTCACATCCTGA -CCAACAACACCAGTCACATAGCGA -CCAACAACACCAGTCACACACAGA -CCAACAACACCAGTCACAGCAAGA -CCAACAACACCAGTCACAGGTTGA -CCAACAACACCAGTCACATCCGAT -CCAACAACACCAGTCACATGGCAT -CCAACAACACCAGTCACACGAGAT -CCAACAACACCAGTCACATACCAC -CCAACAACACCAGTCACACAGAAC -CCAACAACACCAGTCACAGTCTAC -CCAACAACACCAGTCACAACGTAC -CCAACAACACCAGTCACAAGTGAC -CCAACAACACCAGTCACACTGTAG -CCAACAACACCAGTCACACCTAAG -CCAACAACACCAGTCACAGTTCAG -CCAACAACACCAGTCACAGCATAG -CCAACAACACCAGTCACAGACAAG -CCAACAACACCAGTCACAAAGCAG -CCAACAACACCAGTCACACGTCAA -CCAACAACACCAGTCACAGCTGAA -CCAACAACACCAGTCACAAGTACG -CCAACAACACCAGTCACAATCCGA -CCAACAACACCAGTCACAATGGGA -CCAACAACACCAGTCACAGTGCAA -CCAACAACACCAGTCACAGAGGAA -CCAACAACACCAGTCACACAGGTA -CCAACAACACCAGTCACAGACTCT -CCAACAACACCAGTCACAAGTCCT -CCAACAACACCAGTCACATAAGCC -CCAACAACACCAGTCACAATAGCC -CCAACAACACCAGTCACATAACCG -CCAACAACACCAGTCACAATGCCA -CCAACAACACCACTGTTGGGAAAC -CCAACAACACCACTGTTGAACACC -CCAACAACACCACTGTTGATCGAG -CCAACAACACCACTGTTGCTCCTT -CCAACAACACCACTGTTGCCTGTT -CCAACAACACCACTGTTGCGGTTT -CCAACAACACCACTGTTGGTGGTT -CCAACAACACCACTGTTGGCCTTT -CCAACAACACCACTGTTGGGTCTT -CCAACAACACCACTGTTGACGCTT -CCAACAACACCACTGTTGAGCGTT -CCAACAACACCACTGTTGTTCGTC -CCAACAACACCACTGTTGTCTCTC -CCAACAACACCACTGTTGTGGATC -CCAACAACACCACTGTTGCACTTC -CCAACAACACCACTGTTGGTACTC -CCAACAACACCACTGTTGGATGTC -CCAACAACACCACTGTTGACAGTC -CCAACAACACCACTGTTGTTGCTG -CCAACAACACCACTGTTGTCCATG -CCAACAACACCACTGTTGTGTGTG -CCAACAACACCACTGTTGCTAGTG -CCAACAACACCACTGTTGCATCTG -CCAACAACACCACTGTTGGAGTTG -CCAACAACACCACTGTTGAGACTG -CCAACAACACCACTGTTGTCGGTA -CCAACAACACCACTGTTGTGCCTA -CCAACAACACCACTGTTGCCACTA -CCAACAACACCACTGTTGGGAGTA -CCAACAACACCACTGTTGTCGTCT -CCAACAACACCACTGTTGTGCACT -CCAACAACACCACTGTTGCTGACT -CCAACAACACCACTGTTGCAACCT -CCAACAACACCACTGTTGGCTACT -CCAACAACACCACTGTTGGGATCT -CCAACAACACCACTGTTGAAGGCT -CCAACAACACCACTGTTGTCAACC -CCAACAACACCACTGTTGTGTTCC -CCAACAACACCACTGTTGATTCCC -CCAACAACACCACTGTTGTTCTCG -CCAACAACACCACTGTTGTAGACG -CCAACAACACCACTGTTGGTAACG -CCAACAACACCACTGTTGACTTCG -CCAACAACACCACTGTTGTACGCA -CCAACAACACCACTGTTGCTTGCA -CCAACAACACCACTGTTGCGAACA -CCAACAACACCACTGTTGCAGTCA -CCAACAACACCACTGTTGGATCCA -CCAACAACACCACTGTTGACGACA -CCAACAACACCACTGTTGAGCTCA -CCAACAACACCACTGTTGTCACGT -CCAACAACACCACTGTTGCGTAGT -CCAACAACACCACTGTTGGTCAGT -CCAACAACACCACTGTTGGAAGGT -CCAACAACACCACTGTTGAACCGT -CCAACAACACCACTGTTGTTGTGC -CCAACAACACCACTGTTGCTAAGC -CCAACAACACCACTGTTGACTAGC -CCAACAACACCACTGTTGAGATGC -CCAACAACACCACTGTTGTGAAGG -CCAACAACACCACTGTTGCAATGG -CCAACAACACCACTGTTGATGAGG -CCAACAACACCACTGTTGAATGGG -CCAACAACACCACTGTTGTCCTGA -CCAACAACACCACTGTTGTAGCGA -CCAACAACACCACTGTTGCACAGA -CCAACAACACCACTGTTGGCAAGA -CCAACAACACCACTGTTGGGTTGA -CCAACAACACCACTGTTGTCCGAT -CCAACAACACCACTGTTGTGGCAT -CCAACAACACCACTGTTGCGAGAT -CCAACAACACCACTGTTGTACCAC -CCAACAACACCACTGTTGCAGAAC -CCAACAACACCACTGTTGGTCTAC -CCAACAACACCACTGTTGACGTAC -CCAACAACACCACTGTTGAGTGAC -CCAACAACACCACTGTTGCTGTAG -CCAACAACACCACTGTTGCCTAAG -CCAACAACACCACTGTTGGTTCAG -CCAACAACACCACTGTTGGCATAG -CCAACAACACCACTGTTGGACAAG -CCAACAACACCACTGTTGAAGCAG -CCAACAACACCACTGTTGCGTCAA -CCAACAACACCACTGTTGGCTGAA -CCAACAACACCACTGTTGAGTACG -CCAACAACACCACTGTTGATCCGA -CCAACAACACCACTGTTGATGGGA -CCAACAACACCACTGTTGGTGCAA -CCAACAACACCACTGTTGGAGGAA -CCAACAACACCACTGTTGCAGGTA -CCAACAACACCACTGTTGGACTCT -CCAACAACACCACTGTTGAGTCCT -CCAACAACACCACTGTTGTAAGCC -CCAACAACACCACTGTTGATAGCC -CCAACAACACCACTGTTGTAACCG -CCAACAACACCACTGTTGATGCCA -CCAACAACACCAATGTCCGGAAAC -CCAACAACACCAATGTCCAACACC -CCAACAACACCAATGTCCATCGAG -CCAACAACACCAATGTCCCTCCTT -CCAACAACACCAATGTCCCCTGTT -CCAACAACACCAATGTCCCGGTTT -CCAACAACACCAATGTCCGTGGTT -CCAACAACACCAATGTCCGCCTTT -CCAACAACACCAATGTCCGGTCTT -CCAACAACACCAATGTCCACGCTT -CCAACAACACCAATGTCCAGCGTT -CCAACAACACCAATGTCCTTCGTC -CCAACAACACCAATGTCCTCTCTC -CCAACAACACCAATGTCCTGGATC -CCAACAACACCAATGTCCCACTTC -CCAACAACACCAATGTCCGTACTC -CCAACAACACCAATGTCCGATGTC -CCAACAACACCAATGTCCACAGTC -CCAACAACACCAATGTCCTTGCTG -CCAACAACACCAATGTCCTCCATG -CCAACAACACCAATGTCCTGTGTG -CCAACAACACCAATGTCCCTAGTG -CCAACAACACCAATGTCCCATCTG -CCAACAACACCAATGTCCGAGTTG -CCAACAACACCAATGTCCAGACTG -CCAACAACACCAATGTCCTCGGTA -CCAACAACACCAATGTCCTGCCTA -CCAACAACACCAATGTCCCCACTA -CCAACAACACCAATGTCCGGAGTA -CCAACAACACCAATGTCCTCGTCT -CCAACAACACCAATGTCCTGCACT -CCAACAACACCAATGTCCCTGACT -CCAACAACACCAATGTCCCAACCT -CCAACAACACCAATGTCCGCTACT -CCAACAACACCAATGTCCGGATCT -CCAACAACACCAATGTCCAAGGCT -CCAACAACACCAATGTCCTCAACC -CCAACAACACCAATGTCCTGTTCC -CCAACAACACCAATGTCCATTCCC -CCAACAACACCAATGTCCTTCTCG -CCAACAACACCAATGTCCTAGACG -CCAACAACACCAATGTCCGTAACG -CCAACAACACCAATGTCCACTTCG -CCAACAACACCAATGTCCTACGCA -CCAACAACACCAATGTCCCTTGCA -CCAACAACACCAATGTCCCGAACA -CCAACAACACCAATGTCCCAGTCA -CCAACAACACCAATGTCCGATCCA -CCAACAACACCAATGTCCACGACA -CCAACAACACCAATGTCCAGCTCA -CCAACAACACCAATGTCCTCACGT -CCAACAACACCAATGTCCCGTAGT -CCAACAACACCAATGTCCGTCAGT -CCAACAACACCAATGTCCGAAGGT -CCAACAACACCAATGTCCAACCGT -CCAACAACACCAATGTCCTTGTGC -CCAACAACACCAATGTCCCTAAGC -CCAACAACACCAATGTCCACTAGC -CCAACAACACCAATGTCCAGATGC -CCAACAACACCAATGTCCTGAAGG -CCAACAACACCAATGTCCCAATGG -CCAACAACACCAATGTCCATGAGG -CCAACAACACCAATGTCCAATGGG -CCAACAACACCAATGTCCTCCTGA -CCAACAACACCAATGTCCTAGCGA -CCAACAACACCAATGTCCCACAGA -CCAACAACACCAATGTCCGCAAGA -CCAACAACACCAATGTCCGGTTGA -CCAACAACACCAATGTCCTCCGAT -CCAACAACACCAATGTCCTGGCAT -CCAACAACACCAATGTCCCGAGAT -CCAACAACACCAATGTCCTACCAC -CCAACAACACCAATGTCCCAGAAC -CCAACAACACCAATGTCCGTCTAC -CCAACAACACCAATGTCCACGTAC -CCAACAACACCAATGTCCAGTGAC -CCAACAACACCAATGTCCCTGTAG -CCAACAACACCAATGTCCCCTAAG -CCAACAACACCAATGTCCGTTCAG -CCAACAACACCAATGTCCGCATAG -CCAACAACACCAATGTCCGACAAG -CCAACAACACCAATGTCCAAGCAG -CCAACAACACCAATGTCCCGTCAA -CCAACAACACCAATGTCCGCTGAA -CCAACAACACCAATGTCCAGTACG -CCAACAACACCAATGTCCATCCGA -CCAACAACACCAATGTCCATGGGA -CCAACAACACCAATGTCCGTGCAA -CCAACAACACCAATGTCCGAGGAA -CCAACAACACCAATGTCCCAGGTA -CCAACAACACCAATGTCCGACTCT -CCAACAACACCAATGTCCAGTCCT -CCAACAACACCAATGTCCTAAGCC -CCAACAACACCAATGTCCATAGCC -CCAACAACACCAATGTCCTAACCG -CCAACAACACCAATGTCCATGCCA -CCAACAACACCAGTGTGTGGAAAC -CCAACAACACCAGTGTGTAACACC -CCAACAACACCAGTGTGTATCGAG -CCAACAACACCAGTGTGTCTCCTT -CCAACAACACCAGTGTGTCCTGTT -CCAACAACACCAGTGTGTCGGTTT -CCAACAACACCAGTGTGTGTGGTT -CCAACAACACCAGTGTGTGCCTTT -CCAACAACACCAGTGTGTGGTCTT -CCAACAACACCAGTGTGTACGCTT -CCAACAACACCAGTGTGTAGCGTT -CCAACAACACCAGTGTGTTTCGTC -CCAACAACACCAGTGTGTTCTCTC -CCAACAACACCAGTGTGTTGGATC -CCAACAACACCAGTGTGTCACTTC -CCAACAACACCAGTGTGTGTACTC -CCAACAACACCAGTGTGTGATGTC -CCAACAACACCAGTGTGTACAGTC -CCAACAACACCAGTGTGTTTGCTG -CCAACAACACCAGTGTGTTCCATG -CCAACAACACCAGTGTGTTGTGTG -CCAACAACACCAGTGTGTCTAGTG -CCAACAACACCAGTGTGTCATCTG -CCAACAACACCAGTGTGTGAGTTG -CCAACAACACCAGTGTGTAGACTG -CCAACAACACCAGTGTGTTCGGTA -CCAACAACACCAGTGTGTTGCCTA -CCAACAACACCAGTGTGTCCACTA -CCAACAACACCAGTGTGTGGAGTA -CCAACAACACCAGTGTGTTCGTCT -CCAACAACACCAGTGTGTTGCACT -CCAACAACACCAGTGTGTCTGACT -CCAACAACACCAGTGTGTCAACCT -CCAACAACACCAGTGTGTGCTACT -CCAACAACACCAGTGTGTGGATCT -CCAACAACACCAGTGTGTAAGGCT -CCAACAACACCAGTGTGTTCAACC -CCAACAACACCAGTGTGTTGTTCC -CCAACAACACCAGTGTGTATTCCC -CCAACAACACCAGTGTGTTTCTCG -CCAACAACACCAGTGTGTTAGACG -CCAACAACACCAGTGTGTGTAACG -CCAACAACACCAGTGTGTACTTCG -CCAACAACACCAGTGTGTTACGCA -CCAACAACACCAGTGTGTCTTGCA -CCAACAACACCAGTGTGTCGAACA -CCAACAACACCAGTGTGTCAGTCA -CCAACAACACCAGTGTGTGATCCA -CCAACAACACCAGTGTGTACGACA -CCAACAACACCAGTGTGTAGCTCA -CCAACAACACCAGTGTGTTCACGT -CCAACAACACCAGTGTGTCGTAGT -CCAACAACACCAGTGTGTGTCAGT -CCAACAACACCAGTGTGTGAAGGT -CCAACAACACCAGTGTGTAACCGT -CCAACAACACCAGTGTGTTTGTGC -CCAACAACACCAGTGTGTCTAAGC -CCAACAACACCAGTGTGTACTAGC -CCAACAACACCAGTGTGTAGATGC -CCAACAACACCAGTGTGTTGAAGG -CCAACAACACCAGTGTGTCAATGG -CCAACAACACCAGTGTGTATGAGG -CCAACAACACCAGTGTGTAATGGG -CCAACAACACCAGTGTGTTCCTGA -CCAACAACACCAGTGTGTTAGCGA -CCAACAACACCAGTGTGTCACAGA -CCAACAACACCAGTGTGTGCAAGA -CCAACAACACCAGTGTGTGGTTGA -CCAACAACACCAGTGTGTTCCGAT -CCAACAACACCAGTGTGTTGGCAT -CCAACAACACCAGTGTGTCGAGAT -CCAACAACACCAGTGTGTTACCAC -CCAACAACACCAGTGTGTCAGAAC -CCAACAACACCAGTGTGTGTCTAC -CCAACAACACCAGTGTGTACGTAC -CCAACAACACCAGTGTGTAGTGAC -CCAACAACACCAGTGTGTCTGTAG -CCAACAACACCAGTGTGTCCTAAG -CCAACAACACCAGTGTGTGTTCAG -CCAACAACACCAGTGTGTGCATAG -CCAACAACACCAGTGTGTGACAAG -CCAACAACACCAGTGTGTAAGCAG -CCAACAACACCAGTGTGTCGTCAA -CCAACAACACCAGTGTGTGCTGAA -CCAACAACACCAGTGTGTAGTACG -CCAACAACACCAGTGTGTATCCGA -CCAACAACACCAGTGTGTATGGGA -CCAACAACACCAGTGTGTGTGCAA -CCAACAACACCAGTGTGTGAGGAA -CCAACAACACCAGTGTGTCAGGTA -CCAACAACACCAGTGTGTGACTCT -CCAACAACACCAGTGTGTAGTCCT -CCAACAACACCAGTGTGTTAAGCC -CCAACAACACCAGTGTGTATAGCC -CCAACAACACCAGTGTGTTAACCG -CCAACAACACCAGTGTGTATGCCA -CCAACAACACCAGTGCTAGGAAAC -CCAACAACACCAGTGCTAAACACC -CCAACAACACCAGTGCTAATCGAG -CCAACAACACCAGTGCTACTCCTT -CCAACAACACCAGTGCTACCTGTT -CCAACAACACCAGTGCTACGGTTT -CCAACAACACCAGTGCTAGTGGTT -CCAACAACACCAGTGCTAGCCTTT -CCAACAACACCAGTGCTAGGTCTT -CCAACAACACCAGTGCTAACGCTT -CCAACAACACCAGTGCTAAGCGTT -CCAACAACACCAGTGCTATTCGTC -CCAACAACACCAGTGCTATCTCTC -CCAACAACACCAGTGCTATGGATC -CCAACAACACCAGTGCTACACTTC -CCAACAACACCAGTGCTAGTACTC -CCAACAACACCAGTGCTAGATGTC -CCAACAACACCAGTGCTAACAGTC -CCAACAACACCAGTGCTATTGCTG -CCAACAACACCAGTGCTATCCATG -CCAACAACACCAGTGCTATGTGTG -CCAACAACACCAGTGCTACTAGTG -CCAACAACACCAGTGCTACATCTG -CCAACAACACCAGTGCTAGAGTTG -CCAACAACACCAGTGCTAAGACTG -CCAACAACACCAGTGCTATCGGTA -CCAACAACACCAGTGCTATGCCTA -CCAACAACACCAGTGCTACCACTA -CCAACAACACCAGTGCTAGGAGTA -CCAACAACACCAGTGCTATCGTCT -CCAACAACACCAGTGCTATGCACT -CCAACAACACCAGTGCTACTGACT -CCAACAACACCAGTGCTACAACCT -CCAACAACACCAGTGCTAGCTACT -CCAACAACACCAGTGCTAGGATCT -CCAACAACACCAGTGCTAAAGGCT -CCAACAACACCAGTGCTATCAACC -CCAACAACACCAGTGCTATGTTCC -CCAACAACACCAGTGCTAATTCCC -CCAACAACACCAGTGCTATTCTCG -CCAACAACACCAGTGCTATAGACG -CCAACAACACCAGTGCTAGTAACG -CCAACAACACCAGTGCTAACTTCG -CCAACAACACCAGTGCTATACGCA -CCAACAACACCAGTGCTACTTGCA -CCAACAACACCAGTGCTACGAACA -CCAACAACACCAGTGCTACAGTCA -CCAACAACACCAGTGCTAGATCCA -CCAACAACACCAGTGCTAACGACA -CCAACAACACCAGTGCTAAGCTCA -CCAACAACACCAGTGCTATCACGT -CCAACAACACCAGTGCTACGTAGT -CCAACAACACCAGTGCTAGTCAGT -CCAACAACACCAGTGCTAGAAGGT -CCAACAACACCAGTGCTAAACCGT -CCAACAACACCAGTGCTATTGTGC -CCAACAACACCAGTGCTACTAAGC -CCAACAACACCAGTGCTAACTAGC -CCAACAACACCAGTGCTAAGATGC -CCAACAACACCAGTGCTATGAAGG -CCAACAACACCAGTGCTACAATGG -CCAACAACACCAGTGCTAATGAGG -CCAACAACACCAGTGCTAAATGGG -CCAACAACACCAGTGCTATCCTGA -CCAACAACACCAGTGCTATAGCGA -CCAACAACACCAGTGCTACACAGA -CCAACAACACCAGTGCTAGCAAGA -CCAACAACACCAGTGCTAGGTTGA -CCAACAACACCAGTGCTATCCGAT -CCAACAACACCAGTGCTATGGCAT -CCAACAACACCAGTGCTACGAGAT -CCAACAACACCAGTGCTATACCAC -CCAACAACACCAGTGCTACAGAAC -CCAACAACACCAGTGCTAGTCTAC -CCAACAACACCAGTGCTAACGTAC -CCAACAACACCAGTGCTAAGTGAC -CCAACAACACCAGTGCTACTGTAG -CCAACAACACCAGTGCTACCTAAG -CCAACAACACCAGTGCTAGTTCAG -CCAACAACACCAGTGCTAGCATAG -CCAACAACACCAGTGCTAGACAAG -CCAACAACACCAGTGCTAAAGCAG -CCAACAACACCAGTGCTACGTCAA -CCAACAACACCAGTGCTAGCTGAA -CCAACAACACCAGTGCTAAGTACG -CCAACAACACCAGTGCTAATCCGA -CCAACAACACCAGTGCTAATGGGA -CCAACAACACCAGTGCTAGTGCAA -CCAACAACACCAGTGCTAGAGGAA -CCAACAACACCAGTGCTACAGGTA -CCAACAACACCAGTGCTAGACTCT -CCAACAACACCAGTGCTAAGTCCT -CCAACAACACCAGTGCTATAAGCC -CCAACAACACCAGTGCTAATAGCC -CCAACAACACCAGTGCTATAACCG -CCAACAACACCAGTGCTAATGCCA -CCAACAACACCACTGCATGGAAAC -CCAACAACACCACTGCATAACACC -CCAACAACACCACTGCATATCGAG -CCAACAACACCACTGCATCTCCTT -CCAACAACACCACTGCATCCTGTT -CCAACAACACCACTGCATCGGTTT -CCAACAACACCACTGCATGTGGTT -CCAACAACACCACTGCATGCCTTT -CCAACAACACCACTGCATGGTCTT -CCAACAACACCACTGCATACGCTT -CCAACAACACCACTGCATAGCGTT -CCAACAACACCACTGCATTTCGTC -CCAACAACACCACTGCATTCTCTC -CCAACAACACCACTGCATTGGATC -CCAACAACACCACTGCATCACTTC -CCAACAACACCACTGCATGTACTC -CCAACAACACCACTGCATGATGTC -CCAACAACACCACTGCATACAGTC -CCAACAACACCACTGCATTTGCTG -CCAACAACACCACTGCATTCCATG -CCAACAACACCACTGCATTGTGTG -CCAACAACACCACTGCATCTAGTG -CCAACAACACCACTGCATCATCTG -CCAACAACACCACTGCATGAGTTG -CCAACAACACCACTGCATAGACTG -CCAACAACACCACTGCATTCGGTA -CCAACAACACCACTGCATTGCCTA -CCAACAACACCACTGCATCCACTA -CCAACAACACCACTGCATGGAGTA -CCAACAACACCACTGCATTCGTCT -CCAACAACACCACTGCATTGCACT -CCAACAACACCACTGCATCTGACT -CCAACAACACCACTGCATCAACCT -CCAACAACACCACTGCATGCTACT -CCAACAACACCACTGCATGGATCT -CCAACAACACCACTGCATAAGGCT -CCAACAACACCACTGCATTCAACC -CCAACAACACCACTGCATTGTTCC -CCAACAACACCACTGCATATTCCC -CCAACAACACCACTGCATTTCTCG -CCAACAACACCACTGCATTAGACG -CCAACAACACCACTGCATGTAACG -CCAACAACACCACTGCATACTTCG -CCAACAACACCACTGCATTACGCA -CCAACAACACCACTGCATCTTGCA -CCAACAACACCACTGCATCGAACA -CCAACAACACCACTGCATCAGTCA -CCAACAACACCACTGCATGATCCA -CCAACAACACCACTGCATACGACA -CCAACAACACCACTGCATAGCTCA -CCAACAACACCACTGCATTCACGT -CCAACAACACCACTGCATCGTAGT -CCAACAACACCACTGCATGTCAGT -CCAACAACACCACTGCATGAAGGT -CCAACAACACCACTGCATAACCGT -CCAACAACACCACTGCATTTGTGC -CCAACAACACCACTGCATCTAAGC -CCAACAACACCACTGCATACTAGC -CCAACAACACCACTGCATAGATGC -CCAACAACACCACTGCATTGAAGG -CCAACAACACCACTGCATCAATGG -CCAACAACACCACTGCATATGAGG -CCAACAACACCACTGCATAATGGG -CCAACAACACCACTGCATTCCTGA -CCAACAACACCACTGCATTAGCGA -CCAACAACACCACTGCATCACAGA -CCAACAACACCACTGCATGCAAGA -CCAACAACACCACTGCATGGTTGA -CCAACAACACCACTGCATTCCGAT -CCAACAACACCACTGCATTGGCAT -CCAACAACACCACTGCATCGAGAT -CCAACAACACCACTGCATTACCAC -CCAACAACACCACTGCATCAGAAC -CCAACAACACCACTGCATGTCTAC -CCAACAACACCACTGCATACGTAC -CCAACAACACCACTGCATAGTGAC -CCAACAACACCACTGCATCTGTAG -CCAACAACACCACTGCATCCTAAG -CCAACAACACCACTGCATGTTCAG -CCAACAACACCACTGCATGCATAG -CCAACAACACCACTGCATGACAAG -CCAACAACACCACTGCATAAGCAG -CCAACAACACCACTGCATCGTCAA -CCAACAACACCACTGCATGCTGAA -CCAACAACACCACTGCATAGTACG -CCAACAACACCACTGCATATCCGA -CCAACAACACCACTGCATATGGGA -CCAACAACACCACTGCATGTGCAA -CCAACAACACCACTGCATGAGGAA -CCAACAACACCACTGCATCAGGTA -CCAACAACACCACTGCATGACTCT -CCAACAACACCACTGCATAGTCCT -CCAACAACACCACTGCATTAAGCC -CCAACAACACCACTGCATATAGCC -CCAACAACACCACTGCATTAACCG -CCAACAACACCACTGCATATGCCA -CCAACAACACCATTGGAGGGAAAC -CCAACAACACCATTGGAGAACACC -CCAACAACACCATTGGAGATCGAG -CCAACAACACCATTGGAGCTCCTT -CCAACAACACCATTGGAGCCTGTT -CCAACAACACCATTGGAGCGGTTT -CCAACAACACCATTGGAGGTGGTT -CCAACAACACCATTGGAGGCCTTT -CCAACAACACCATTGGAGGGTCTT -CCAACAACACCATTGGAGACGCTT -CCAACAACACCATTGGAGAGCGTT -CCAACAACACCATTGGAGTTCGTC -CCAACAACACCATTGGAGTCTCTC -CCAACAACACCATTGGAGTGGATC -CCAACAACACCATTGGAGCACTTC -CCAACAACACCATTGGAGGTACTC -CCAACAACACCATTGGAGGATGTC -CCAACAACACCATTGGAGACAGTC -CCAACAACACCATTGGAGTTGCTG -CCAACAACACCATTGGAGTCCATG -CCAACAACACCATTGGAGTGTGTG -CCAACAACACCATTGGAGCTAGTG -CCAACAACACCATTGGAGCATCTG -CCAACAACACCATTGGAGGAGTTG -CCAACAACACCATTGGAGAGACTG -CCAACAACACCATTGGAGTCGGTA -CCAACAACACCATTGGAGTGCCTA -CCAACAACACCATTGGAGCCACTA -CCAACAACACCATTGGAGGGAGTA -CCAACAACACCATTGGAGTCGTCT -CCAACAACACCATTGGAGTGCACT -CCAACAACACCATTGGAGCTGACT -CCAACAACACCATTGGAGCAACCT -CCAACAACACCATTGGAGGCTACT -CCAACAACACCATTGGAGGGATCT -CCAACAACACCATTGGAGAAGGCT -CCAACAACACCATTGGAGTCAACC -CCAACAACACCATTGGAGTGTTCC -CCAACAACACCATTGGAGATTCCC -CCAACAACACCATTGGAGTTCTCG -CCAACAACACCATTGGAGTAGACG -CCAACAACACCATTGGAGGTAACG -CCAACAACACCATTGGAGACTTCG -CCAACAACACCATTGGAGTACGCA -CCAACAACACCATTGGAGCTTGCA -CCAACAACACCATTGGAGCGAACA -CCAACAACACCATTGGAGCAGTCA -CCAACAACACCATTGGAGGATCCA -CCAACAACACCATTGGAGACGACA -CCAACAACACCATTGGAGAGCTCA -CCAACAACACCATTGGAGTCACGT -CCAACAACACCATTGGAGCGTAGT -CCAACAACACCATTGGAGGTCAGT -CCAACAACACCATTGGAGGAAGGT -CCAACAACACCATTGGAGAACCGT -CCAACAACACCATTGGAGTTGTGC -CCAACAACACCATTGGAGCTAAGC -CCAACAACACCATTGGAGACTAGC -CCAACAACACCATTGGAGAGATGC -CCAACAACACCATTGGAGTGAAGG -CCAACAACACCATTGGAGCAATGG -CCAACAACACCATTGGAGATGAGG -CCAACAACACCATTGGAGAATGGG -CCAACAACACCATTGGAGTCCTGA -CCAACAACACCATTGGAGTAGCGA -CCAACAACACCATTGGAGCACAGA -CCAACAACACCATTGGAGGCAAGA -CCAACAACACCATTGGAGGGTTGA -CCAACAACACCATTGGAGTCCGAT -CCAACAACACCATTGGAGTGGCAT -CCAACAACACCATTGGAGCGAGAT -CCAACAACACCATTGGAGTACCAC -CCAACAACACCATTGGAGCAGAAC -CCAACAACACCATTGGAGGTCTAC -CCAACAACACCATTGGAGACGTAC -CCAACAACACCATTGGAGAGTGAC -CCAACAACACCATTGGAGCTGTAG -CCAACAACACCATTGGAGCCTAAG -CCAACAACACCATTGGAGGTTCAG -CCAACAACACCATTGGAGGCATAG -CCAACAACACCATTGGAGGACAAG -CCAACAACACCATTGGAGAAGCAG -CCAACAACACCATTGGAGCGTCAA -CCAACAACACCATTGGAGGCTGAA -CCAACAACACCATTGGAGAGTACG -CCAACAACACCATTGGAGATCCGA -CCAACAACACCATTGGAGATGGGA -CCAACAACACCATTGGAGGTGCAA -CCAACAACACCATTGGAGGAGGAA -CCAACAACACCATTGGAGCAGGTA -CCAACAACACCATTGGAGGACTCT -CCAACAACACCATTGGAGAGTCCT -CCAACAACACCATTGGAGTAAGCC -CCAACAACACCATTGGAGATAGCC -CCAACAACACCATTGGAGTAACCG -CCAACAACACCATTGGAGATGCCA -CCAACAACACCACTGAGAGGAAAC -CCAACAACACCACTGAGAAACACC -CCAACAACACCACTGAGAATCGAG -CCAACAACACCACTGAGACTCCTT -CCAACAACACCACTGAGACCTGTT -CCAACAACACCACTGAGACGGTTT -CCAACAACACCACTGAGAGTGGTT -CCAACAACACCACTGAGAGCCTTT -CCAACAACACCACTGAGAGGTCTT -CCAACAACACCACTGAGAACGCTT -CCAACAACACCACTGAGAAGCGTT -CCAACAACACCACTGAGATTCGTC -CCAACAACACCACTGAGATCTCTC -CCAACAACACCACTGAGATGGATC -CCAACAACACCACTGAGACACTTC -CCAACAACACCACTGAGAGTACTC -CCAACAACACCACTGAGAGATGTC -CCAACAACACCACTGAGAACAGTC -CCAACAACACCACTGAGATTGCTG -CCAACAACACCACTGAGATCCATG -CCAACAACACCACTGAGATGTGTG -CCAACAACACCACTGAGACTAGTG -CCAACAACACCACTGAGACATCTG -CCAACAACACCACTGAGAGAGTTG -CCAACAACACCACTGAGAAGACTG -CCAACAACACCACTGAGATCGGTA -CCAACAACACCACTGAGATGCCTA -CCAACAACACCACTGAGACCACTA -CCAACAACACCACTGAGAGGAGTA -CCAACAACACCACTGAGATCGTCT -CCAACAACACCACTGAGATGCACT -CCAACAACACCACTGAGACTGACT -CCAACAACACCACTGAGACAACCT -CCAACAACACCACTGAGAGCTACT -CCAACAACACCACTGAGAGGATCT -CCAACAACACCACTGAGAAAGGCT -CCAACAACACCACTGAGATCAACC -CCAACAACACCACTGAGATGTTCC -CCAACAACACCACTGAGAATTCCC -CCAACAACACCACTGAGATTCTCG -CCAACAACACCACTGAGATAGACG -CCAACAACACCACTGAGAGTAACG -CCAACAACACCACTGAGAACTTCG -CCAACAACACCACTGAGATACGCA -CCAACAACACCACTGAGACTTGCA -CCAACAACACCACTGAGACGAACA -CCAACAACACCACTGAGACAGTCA -CCAACAACACCACTGAGAGATCCA -CCAACAACACCACTGAGAACGACA -CCAACAACACCACTGAGAAGCTCA -CCAACAACACCACTGAGATCACGT -CCAACAACACCACTGAGACGTAGT -CCAACAACACCACTGAGAGTCAGT -CCAACAACACCACTGAGAGAAGGT -CCAACAACACCACTGAGAAACCGT -CCAACAACACCACTGAGATTGTGC -CCAACAACACCACTGAGACTAAGC -CCAACAACACCACTGAGAACTAGC -CCAACAACACCACTGAGAAGATGC -CCAACAACACCACTGAGATGAAGG -CCAACAACACCACTGAGACAATGG -CCAACAACACCACTGAGAATGAGG -CCAACAACACCACTGAGAAATGGG -CCAACAACACCACTGAGATCCTGA -CCAACAACACCACTGAGATAGCGA -CCAACAACACCACTGAGACACAGA -CCAACAACACCACTGAGAGCAAGA -CCAACAACACCACTGAGAGGTTGA -CCAACAACACCACTGAGATCCGAT -CCAACAACACCACTGAGATGGCAT -CCAACAACACCACTGAGACGAGAT -CCAACAACACCACTGAGATACCAC -CCAACAACACCACTGAGACAGAAC -CCAACAACACCACTGAGAGTCTAC -CCAACAACACCACTGAGAACGTAC -CCAACAACACCACTGAGAAGTGAC -CCAACAACACCACTGAGACTGTAG -CCAACAACACCACTGAGACCTAAG -CCAACAACACCACTGAGAGTTCAG -CCAACAACACCACTGAGAGCATAG -CCAACAACACCACTGAGAGACAAG -CCAACAACACCACTGAGAAAGCAG -CCAACAACACCACTGAGACGTCAA -CCAACAACACCACTGAGAGCTGAA -CCAACAACACCACTGAGAAGTACG -CCAACAACACCACTGAGAATCCGA -CCAACAACACCACTGAGAATGGGA -CCAACAACACCACTGAGAGTGCAA -CCAACAACACCACTGAGAGAGGAA -CCAACAACACCACTGAGACAGGTA -CCAACAACACCACTGAGAGACTCT -CCAACAACACCACTGAGAAGTCCT -CCAACAACACCACTGAGATAAGCC -CCAACAACACCACTGAGAATAGCC -CCAACAACACCACTGAGATAACCG -CCAACAACACCACTGAGAATGCCA -CCAACAACACCAGTATCGGGAAAC -CCAACAACACCAGTATCGAACACC -CCAACAACACCAGTATCGATCGAG -CCAACAACACCAGTATCGCTCCTT -CCAACAACACCAGTATCGCCTGTT -CCAACAACACCAGTATCGCGGTTT -CCAACAACACCAGTATCGGTGGTT -CCAACAACACCAGTATCGGCCTTT -CCAACAACACCAGTATCGGGTCTT -CCAACAACACCAGTATCGACGCTT -CCAACAACACCAGTATCGAGCGTT -CCAACAACACCAGTATCGTTCGTC -CCAACAACACCAGTATCGTCTCTC -CCAACAACACCAGTATCGTGGATC -CCAACAACACCAGTATCGCACTTC -CCAACAACACCAGTATCGGTACTC -CCAACAACACCAGTATCGGATGTC -CCAACAACACCAGTATCGACAGTC -CCAACAACACCAGTATCGTTGCTG -CCAACAACACCAGTATCGTCCATG -CCAACAACACCAGTATCGTGTGTG -CCAACAACACCAGTATCGCTAGTG -CCAACAACACCAGTATCGCATCTG -CCAACAACACCAGTATCGGAGTTG -CCAACAACACCAGTATCGAGACTG -CCAACAACACCAGTATCGTCGGTA -CCAACAACACCAGTATCGTGCCTA -CCAACAACACCAGTATCGCCACTA -CCAACAACACCAGTATCGGGAGTA -CCAACAACACCAGTATCGTCGTCT -CCAACAACACCAGTATCGTGCACT -CCAACAACACCAGTATCGCTGACT -CCAACAACACCAGTATCGCAACCT -CCAACAACACCAGTATCGGCTACT -CCAACAACACCAGTATCGGGATCT -CCAACAACACCAGTATCGAAGGCT -CCAACAACACCAGTATCGTCAACC -CCAACAACACCAGTATCGTGTTCC -CCAACAACACCAGTATCGATTCCC -CCAACAACACCAGTATCGTTCTCG -CCAACAACACCAGTATCGTAGACG -CCAACAACACCAGTATCGGTAACG -CCAACAACACCAGTATCGACTTCG -CCAACAACACCAGTATCGTACGCA -CCAACAACACCAGTATCGCTTGCA -CCAACAACACCAGTATCGCGAACA -CCAACAACACCAGTATCGCAGTCA -CCAACAACACCAGTATCGGATCCA -CCAACAACACCAGTATCGACGACA -CCAACAACACCAGTATCGAGCTCA -CCAACAACACCAGTATCGTCACGT -CCAACAACACCAGTATCGCGTAGT -CCAACAACACCAGTATCGGTCAGT -CCAACAACACCAGTATCGGAAGGT -CCAACAACACCAGTATCGAACCGT -CCAACAACACCAGTATCGTTGTGC -CCAACAACACCAGTATCGCTAAGC -CCAACAACACCAGTATCGACTAGC -CCAACAACACCAGTATCGAGATGC -CCAACAACACCAGTATCGTGAAGG -CCAACAACACCAGTATCGCAATGG -CCAACAACACCAGTATCGATGAGG -CCAACAACACCAGTATCGAATGGG -CCAACAACACCAGTATCGTCCTGA -CCAACAACACCAGTATCGTAGCGA -CCAACAACACCAGTATCGCACAGA -CCAACAACACCAGTATCGGCAAGA -CCAACAACACCAGTATCGGGTTGA -CCAACAACACCAGTATCGTCCGAT -CCAACAACACCAGTATCGTGGCAT -CCAACAACACCAGTATCGCGAGAT -CCAACAACACCAGTATCGTACCAC -CCAACAACACCAGTATCGCAGAAC -CCAACAACACCAGTATCGGTCTAC -CCAACAACACCAGTATCGACGTAC -CCAACAACACCAGTATCGAGTGAC -CCAACAACACCAGTATCGCTGTAG -CCAACAACACCAGTATCGCCTAAG -CCAACAACACCAGTATCGGTTCAG -CCAACAACACCAGTATCGGCATAG -CCAACAACACCAGTATCGGACAAG -CCAACAACACCAGTATCGAAGCAG -CCAACAACACCAGTATCGCGTCAA -CCAACAACACCAGTATCGGCTGAA -CCAACAACACCAGTATCGAGTACG -CCAACAACACCAGTATCGATCCGA -CCAACAACACCAGTATCGATGGGA -CCAACAACACCAGTATCGGTGCAA -CCAACAACACCAGTATCGGAGGAA -CCAACAACACCAGTATCGCAGGTA -CCAACAACACCAGTATCGGACTCT -CCAACAACACCAGTATCGAGTCCT -CCAACAACACCAGTATCGTAAGCC -CCAACAACACCAGTATCGATAGCC -CCAACAACACCAGTATCGTAACCG -CCAACAACACCAGTATCGATGCCA -CCAACAACACCACTATGCGGAAAC -CCAACAACACCACTATGCAACACC -CCAACAACACCACTATGCATCGAG -CCAACAACACCACTATGCCTCCTT -CCAACAACACCACTATGCCCTGTT -CCAACAACACCACTATGCCGGTTT -CCAACAACACCACTATGCGTGGTT -CCAACAACACCACTATGCGCCTTT -CCAACAACACCACTATGCGGTCTT -CCAACAACACCACTATGCACGCTT -CCAACAACACCACTATGCAGCGTT -CCAACAACACCACTATGCTTCGTC -CCAACAACACCACTATGCTCTCTC -CCAACAACACCACTATGCTGGATC -CCAACAACACCACTATGCCACTTC -CCAACAACACCACTATGCGTACTC -CCAACAACACCACTATGCGATGTC -CCAACAACACCACTATGCACAGTC -CCAACAACACCACTATGCTTGCTG -CCAACAACACCACTATGCTCCATG -CCAACAACACCACTATGCTGTGTG -CCAACAACACCACTATGCCTAGTG -CCAACAACACCACTATGCCATCTG -CCAACAACACCACTATGCGAGTTG -CCAACAACACCACTATGCAGACTG -CCAACAACACCACTATGCTCGGTA -CCAACAACACCACTATGCTGCCTA -CCAACAACACCACTATGCCCACTA -CCAACAACACCACTATGCGGAGTA -CCAACAACACCACTATGCTCGTCT -CCAACAACACCACTATGCTGCACT -CCAACAACACCACTATGCCTGACT -CCAACAACACCACTATGCCAACCT -CCAACAACACCACTATGCGCTACT -CCAACAACACCACTATGCGGATCT -CCAACAACACCACTATGCAAGGCT -CCAACAACACCACTATGCTCAACC -CCAACAACACCACTATGCTGTTCC -CCAACAACACCACTATGCATTCCC -CCAACAACACCACTATGCTTCTCG -CCAACAACACCACTATGCTAGACG -CCAACAACACCACTATGCGTAACG -CCAACAACACCACTATGCACTTCG -CCAACAACACCACTATGCTACGCA -CCAACAACACCACTATGCCTTGCA -CCAACAACACCACTATGCCGAACA -CCAACAACACCACTATGCCAGTCA -CCAACAACACCACTATGCGATCCA -CCAACAACACCACTATGCACGACA -CCAACAACACCACTATGCAGCTCA -CCAACAACACCACTATGCTCACGT -CCAACAACACCACTATGCCGTAGT -CCAACAACACCACTATGCGTCAGT -CCAACAACACCACTATGCGAAGGT -CCAACAACACCACTATGCAACCGT -CCAACAACACCACTATGCTTGTGC -CCAACAACACCACTATGCCTAAGC -CCAACAACACCACTATGCACTAGC -CCAACAACACCACTATGCAGATGC -CCAACAACACCACTATGCTGAAGG -CCAACAACACCACTATGCCAATGG -CCAACAACACCACTATGCATGAGG -CCAACAACACCACTATGCAATGGG -CCAACAACACCACTATGCTCCTGA -CCAACAACACCACTATGCTAGCGA -CCAACAACACCACTATGCCACAGA -CCAACAACACCACTATGCGCAAGA -CCAACAACACCACTATGCGGTTGA -CCAACAACACCACTATGCTCCGAT -CCAACAACACCACTATGCTGGCAT -CCAACAACACCACTATGCCGAGAT -CCAACAACACCACTATGCTACCAC -CCAACAACACCACTATGCCAGAAC -CCAACAACACCACTATGCGTCTAC -CCAACAACACCACTATGCACGTAC -CCAACAACACCACTATGCAGTGAC -CCAACAACACCACTATGCCTGTAG -CCAACAACACCACTATGCCCTAAG -CCAACAACACCACTATGCGTTCAG -CCAACAACACCACTATGCGCATAG -CCAACAACACCACTATGCGACAAG -CCAACAACACCACTATGCAAGCAG -CCAACAACACCACTATGCCGTCAA -CCAACAACACCACTATGCGCTGAA -CCAACAACACCACTATGCAGTACG -CCAACAACACCACTATGCATCCGA -CCAACAACACCACTATGCATGGGA -CCAACAACACCACTATGCGTGCAA -CCAACAACACCACTATGCGAGGAA -CCAACAACACCACTATGCCAGGTA -CCAACAACACCACTATGCGACTCT -CCAACAACACCACTATGCAGTCCT -CCAACAACACCACTATGCTAAGCC -CCAACAACACCACTATGCATAGCC -CCAACAACACCACTATGCTAACCG -CCAACAACACCACTATGCATGCCA -CCAACAACACCACTACCAGGAAAC -CCAACAACACCACTACCAAACACC -CCAACAACACCACTACCAATCGAG -CCAACAACACCACTACCACTCCTT -CCAACAACACCACTACCACCTGTT -CCAACAACACCACTACCACGGTTT -CCAACAACACCACTACCAGTGGTT -CCAACAACACCACTACCAGCCTTT -CCAACAACACCACTACCAGGTCTT -CCAACAACACCACTACCAACGCTT -CCAACAACACCACTACCAAGCGTT -CCAACAACACCACTACCATTCGTC -CCAACAACACCACTACCATCTCTC -CCAACAACACCACTACCATGGATC -CCAACAACACCACTACCACACTTC -CCAACAACACCACTACCAGTACTC -CCAACAACACCACTACCAGATGTC -CCAACAACACCACTACCAACAGTC -CCAACAACACCACTACCATTGCTG -CCAACAACACCACTACCATCCATG -CCAACAACACCACTACCATGTGTG -CCAACAACACCACTACCACTAGTG -CCAACAACACCACTACCACATCTG -CCAACAACACCACTACCAGAGTTG -CCAACAACACCACTACCAAGACTG -CCAACAACACCACTACCATCGGTA -CCAACAACACCACTACCATGCCTA -CCAACAACACCACTACCACCACTA -CCAACAACACCACTACCAGGAGTA -CCAACAACACCACTACCATCGTCT -CCAACAACACCACTACCATGCACT -CCAACAACACCACTACCACTGACT -CCAACAACACCACTACCACAACCT -CCAACAACACCACTACCAGCTACT -CCAACAACACCACTACCAGGATCT -CCAACAACACCACTACCAAAGGCT -CCAACAACACCACTACCATCAACC -CCAACAACACCACTACCATGTTCC -CCAACAACACCACTACCAATTCCC -CCAACAACACCACTACCATTCTCG -CCAACAACACCACTACCATAGACG -CCAACAACACCACTACCAGTAACG -CCAACAACACCACTACCAACTTCG -CCAACAACACCACTACCATACGCA -CCAACAACACCACTACCACTTGCA -CCAACAACACCACTACCACGAACA -CCAACAACACCACTACCACAGTCA -CCAACAACACCACTACCAGATCCA -CCAACAACACCACTACCAACGACA -CCAACAACACCACTACCAAGCTCA -CCAACAACACCACTACCATCACGT -CCAACAACACCACTACCACGTAGT -CCAACAACACCACTACCAGTCAGT -CCAACAACACCACTACCAGAAGGT -CCAACAACACCACTACCAAACCGT -CCAACAACACCACTACCATTGTGC -CCAACAACACCACTACCACTAAGC -CCAACAACACCACTACCAACTAGC -CCAACAACACCACTACCAAGATGC -CCAACAACACCACTACCATGAAGG -CCAACAACACCACTACCACAATGG -CCAACAACACCACTACCAATGAGG -CCAACAACACCACTACCAAATGGG -CCAACAACACCACTACCATCCTGA -CCAACAACACCACTACCATAGCGA -CCAACAACACCACTACCACACAGA -CCAACAACACCACTACCAGCAAGA -CCAACAACACCACTACCAGGTTGA -CCAACAACACCACTACCATCCGAT -CCAACAACACCACTACCATGGCAT -CCAACAACACCACTACCACGAGAT -CCAACAACACCACTACCATACCAC -CCAACAACACCACTACCACAGAAC -CCAACAACACCACTACCAGTCTAC -CCAACAACACCACTACCAACGTAC -CCAACAACACCACTACCAAGTGAC -CCAACAACACCACTACCACTGTAG -CCAACAACACCACTACCACCTAAG -CCAACAACACCACTACCAGTTCAG -CCAACAACACCACTACCAGCATAG -CCAACAACACCACTACCAGACAAG -CCAACAACACCACTACCAAAGCAG -CCAACAACACCACTACCACGTCAA -CCAACAACACCACTACCAGCTGAA -CCAACAACACCACTACCAAGTACG -CCAACAACACCACTACCAATCCGA -CCAACAACACCACTACCAATGGGA -CCAACAACACCACTACCAGTGCAA -CCAACAACACCACTACCAGAGGAA -CCAACAACACCACTACCACAGGTA -CCAACAACACCACTACCAGACTCT -CCAACAACACCACTACCAAGTCCT -CCAACAACACCACTACCATAAGCC -CCAACAACACCACTACCAATAGCC -CCAACAACACCACTACCATAACCG -CCAACAACACCACTACCAATGCCA -CCAACAACACCAGTAGGAGGAAAC -CCAACAACACCAGTAGGAAACACC -CCAACAACACCAGTAGGAATCGAG -CCAACAACACCAGTAGGACTCCTT -CCAACAACACCAGTAGGACCTGTT -CCAACAACACCAGTAGGACGGTTT -CCAACAACACCAGTAGGAGTGGTT -CCAACAACACCAGTAGGAGCCTTT -CCAACAACACCAGTAGGAGGTCTT -CCAACAACACCAGTAGGAACGCTT -CCAACAACACCAGTAGGAAGCGTT -CCAACAACACCAGTAGGATTCGTC -CCAACAACACCAGTAGGATCTCTC -CCAACAACACCAGTAGGATGGATC -CCAACAACACCAGTAGGACACTTC -CCAACAACACCAGTAGGAGTACTC -CCAACAACACCAGTAGGAGATGTC -CCAACAACACCAGTAGGAACAGTC -CCAACAACACCAGTAGGATTGCTG -CCAACAACACCAGTAGGATCCATG -CCAACAACACCAGTAGGATGTGTG -CCAACAACACCAGTAGGACTAGTG -CCAACAACACCAGTAGGACATCTG -CCAACAACACCAGTAGGAGAGTTG -CCAACAACACCAGTAGGAAGACTG -CCAACAACACCAGTAGGATCGGTA -CCAACAACACCAGTAGGATGCCTA -CCAACAACACCAGTAGGACCACTA -CCAACAACACCAGTAGGAGGAGTA -CCAACAACACCAGTAGGATCGTCT -CCAACAACACCAGTAGGATGCACT -CCAACAACACCAGTAGGACTGACT -CCAACAACACCAGTAGGACAACCT -CCAACAACACCAGTAGGAGCTACT -CCAACAACACCAGTAGGAGGATCT -CCAACAACACCAGTAGGAAAGGCT -CCAACAACACCAGTAGGATCAACC -CCAACAACACCAGTAGGATGTTCC -CCAACAACACCAGTAGGAATTCCC -CCAACAACACCAGTAGGATTCTCG -CCAACAACACCAGTAGGATAGACG -CCAACAACACCAGTAGGAGTAACG -CCAACAACACCAGTAGGAACTTCG -CCAACAACACCAGTAGGATACGCA -CCAACAACACCAGTAGGACTTGCA -CCAACAACACCAGTAGGACGAACA -CCAACAACACCAGTAGGACAGTCA -CCAACAACACCAGTAGGAGATCCA -CCAACAACACCAGTAGGAACGACA -CCAACAACACCAGTAGGAAGCTCA -CCAACAACACCAGTAGGATCACGT -CCAACAACACCAGTAGGACGTAGT -CCAACAACACCAGTAGGAGTCAGT -CCAACAACACCAGTAGGAGAAGGT -CCAACAACACCAGTAGGAAACCGT -CCAACAACACCAGTAGGATTGTGC -CCAACAACACCAGTAGGACTAAGC -CCAACAACACCAGTAGGAACTAGC -CCAACAACACCAGTAGGAAGATGC -CCAACAACACCAGTAGGATGAAGG -CCAACAACACCAGTAGGACAATGG -CCAACAACACCAGTAGGAATGAGG -CCAACAACACCAGTAGGAAATGGG -CCAACAACACCAGTAGGATCCTGA -CCAACAACACCAGTAGGATAGCGA -CCAACAACACCAGTAGGACACAGA -CCAACAACACCAGTAGGAGCAAGA -CCAACAACACCAGTAGGAGGTTGA -CCAACAACACCAGTAGGATCCGAT -CCAACAACACCAGTAGGATGGCAT -CCAACAACACCAGTAGGACGAGAT -CCAACAACACCAGTAGGATACCAC -CCAACAACACCAGTAGGACAGAAC -CCAACAACACCAGTAGGAGTCTAC -CCAACAACACCAGTAGGAACGTAC -CCAACAACACCAGTAGGAAGTGAC -CCAACAACACCAGTAGGACTGTAG -CCAACAACACCAGTAGGACCTAAG -CCAACAACACCAGTAGGAGTTCAG -CCAACAACACCAGTAGGAGCATAG -CCAACAACACCAGTAGGAGACAAG -CCAACAACACCAGTAGGAAAGCAG -CCAACAACACCAGTAGGACGTCAA -CCAACAACACCAGTAGGAGCTGAA -CCAACAACACCAGTAGGAAGTACG -CCAACAACACCAGTAGGAATCCGA -CCAACAACACCAGTAGGAATGGGA -CCAACAACACCAGTAGGAGTGCAA -CCAACAACACCAGTAGGAGAGGAA -CCAACAACACCAGTAGGACAGGTA -CCAACAACACCAGTAGGAGACTCT -CCAACAACACCAGTAGGAAGTCCT -CCAACAACACCAGTAGGATAAGCC -CCAACAACACCAGTAGGAATAGCC -CCAACAACACCAGTAGGATAACCG -CCAACAACACCAGTAGGAATGCCA -CCAACAACACCATCTTCGGGAAAC -CCAACAACACCATCTTCGAACACC -CCAACAACACCATCTTCGATCGAG -CCAACAACACCATCTTCGCTCCTT -CCAACAACACCATCTTCGCCTGTT -CCAACAACACCATCTTCGCGGTTT -CCAACAACACCATCTTCGGTGGTT -CCAACAACACCATCTTCGGCCTTT -CCAACAACACCATCTTCGGGTCTT -CCAACAACACCATCTTCGACGCTT -CCAACAACACCATCTTCGAGCGTT -CCAACAACACCATCTTCGTTCGTC -CCAACAACACCATCTTCGTCTCTC -CCAACAACACCATCTTCGTGGATC -CCAACAACACCATCTTCGCACTTC -CCAACAACACCATCTTCGGTACTC -CCAACAACACCATCTTCGGATGTC -CCAACAACACCATCTTCGACAGTC -CCAACAACACCATCTTCGTTGCTG -CCAACAACACCATCTTCGTCCATG -CCAACAACACCATCTTCGTGTGTG -CCAACAACACCATCTTCGCTAGTG -CCAACAACACCATCTTCGCATCTG -CCAACAACACCATCTTCGGAGTTG -CCAACAACACCATCTTCGAGACTG -CCAACAACACCATCTTCGTCGGTA -CCAACAACACCATCTTCGTGCCTA -CCAACAACACCATCTTCGCCACTA -CCAACAACACCATCTTCGGGAGTA -CCAACAACACCATCTTCGTCGTCT -CCAACAACACCATCTTCGTGCACT -CCAACAACACCATCTTCGCTGACT -CCAACAACACCATCTTCGCAACCT -CCAACAACACCATCTTCGGCTACT -CCAACAACACCATCTTCGGGATCT -CCAACAACACCATCTTCGAAGGCT -CCAACAACACCATCTTCGTCAACC -CCAACAACACCATCTTCGTGTTCC -CCAACAACACCATCTTCGATTCCC -CCAACAACACCATCTTCGTTCTCG -CCAACAACACCATCTTCGTAGACG -CCAACAACACCATCTTCGGTAACG -CCAACAACACCATCTTCGACTTCG -CCAACAACACCATCTTCGTACGCA -CCAACAACACCATCTTCGCTTGCA -CCAACAACACCATCTTCGCGAACA -CCAACAACACCATCTTCGCAGTCA -CCAACAACACCATCTTCGGATCCA -CCAACAACACCATCTTCGACGACA -CCAACAACACCATCTTCGAGCTCA -CCAACAACACCATCTTCGTCACGT -CCAACAACACCATCTTCGCGTAGT -CCAACAACACCATCTTCGGTCAGT -CCAACAACACCATCTTCGGAAGGT -CCAACAACACCATCTTCGAACCGT -CCAACAACACCATCTTCGTTGTGC -CCAACAACACCATCTTCGCTAAGC -CCAACAACACCATCTTCGACTAGC -CCAACAACACCATCTTCGAGATGC -CCAACAACACCATCTTCGTGAAGG -CCAACAACACCATCTTCGCAATGG -CCAACAACACCATCTTCGATGAGG -CCAACAACACCATCTTCGAATGGG -CCAACAACACCATCTTCGTCCTGA -CCAACAACACCATCTTCGTAGCGA -CCAACAACACCATCTTCGCACAGA -CCAACAACACCATCTTCGGCAAGA -CCAACAACACCATCTTCGGGTTGA -CCAACAACACCATCTTCGTCCGAT -CCAACAACACCATCTTCGTGGCAT -CCAACAACACCATCTTCGCGAGAT -CCAACAACACCATCTTCGTACCAC -CCAACAACACCATCTTCGCAGAAC -CCAACAACACCATCTTCGGTCTAC -CCAACAACACCATCTTCGACGTAC -CCAACAACACCATCTTCGAGTGAC -CCAACAACACCATCTTCGCTGTAG -CCAACAACACCATCTTCGCCTAAG -CCAACAACACCATCTTCGGTTCAG -CCAACAACACCATCTTCGGCATAG -CCAACAACACCATCTTCGGACAAG -CCAACAACACCATCTTCGAAGCAG -CCAACAACACCATCTTCGCGTCAA -CCAACAACACCATCTTCGGCTGAA -CCAACAACACCATCTTCGAGTACG -CCAACAACACCATCTTCGATCCGA -CCAACAACACCATCTTCGATGGGA -CCAACAACACCATCTTCGGTGCAA -CCAACAACACCATCTTCGGAGGAA -CCAACAACACCATCTTCGCAGGTA -CCAACAACACCATCTTCGGACTCT -CCAACAACACCATCTTCGAGTCCT -CCAACAACACCATCTTCGTAAGCC -CCAACAACACCATCTTCGATAGCC -CCAACAACACCATCTTCGTAACCG -CCAACAACACCATCTTCGATGCCA -CCAACAACACCAACTTGCGGAAAC -CCAACAACACCAACTTGCAACACC -CCAACAACACCAACTTGCATCGAG -CCAACAACACCAACTTGCCTCCTT -CCAACAACACCAACTTGCCCTGTT -CCAACAACACCAACTTGCCGGTTT -CCAACAACACCAACTTGCGTGGTT -CCAACAACACCAACTTGCGCCTTT -CCAACAACACCAACTTGCGGTCTT -CCAACAACACCAACTTGCACGCTT -CCAACAACACCAACTTGCAGCGTT -CCAACAACACCAACTTGCTTCGTC -CCAACAACACCAACTTGCTCTCTC -CCAACAACACCAACTTGCTGGATC -CCAACAACACCAACTTGCCACTTC -CCAACAACACCAACTTGCGTACTC -CCAACAACACCAACTTGCGATGTC -CCAACAACACCAACTTGCACAGTC -CCAACAACACCAACTTGCTTGCTG -CCAACAACACCAACTTGCTCCATG -CCAACAACACCAACTTGCTGTGTG -CCAACAACACCAACTTGCCTAGTG -CCAACAACACCAACTTGCCATCTG -CCAACAACACCAACTTGCGAGTTG -CCAACAACACCAACTTGCAGACTG -CCAACAACACCAACTTGCTCGGTA -CCAACAACACCAACTTGCTGCCTA -CCAACAACACCAACTTGCCCACTA -CCAACAACACCAACTTGCGGAGTA -CCAACAACACCAACTTGCTCGTCT -CCAACAACACCAACTTGCTGCACT -CCAACAACACCAACTTGCCTGACT -CCAACAACACCAACTTGCCAACCT -CCAACAACACCAACTTGCGCTACT -CCAACAACACCAACTTGCGGATCT -CCAACAACACCAACTTGCAAGGCT -CCAACAACACCAACTTGCTCAACC -CCAACAACACCAACTTGCTGTTCC -CCAACAACACCAACTTGCATTCCC -CCAACAACACCAACTTGCTTCTCG -CCAACAACACCAACTTGCTAGACG -CCAACAACACCAACTTGCGTAACG -CCAACAACACCAACTTGCACTTCG -CCAACAACACCAACTTGCTACGCA -CCAACAACACCAACTTGCCTTGCA -CCAACAACACCAACTTGCCGAACA -CCAACAACACCAACTTGCCAGTCA -CCAACAACACCAACTTGCGATCCA -CCAACAACACCAACTTGCACGACA -CCAACAACACCAACTTGCAGCTCA -CCAACAACACCAACTTGCTCACGT -CCAACAACACCAACTTGCCGTAGT -CCAACAACACCAACTTGCGTCAGT -CCAACAACACCAACTTGCGAAGGT -CCAACAACACCAACTTGCAACCGT -CCAACAACACCAACTTGCTTGTGC -CCAACAACACCAACTTGCCTAAGC -CCAACAACACCAACTTGCACTAGC -CCAACAACACCAACTTGCAGATGC -CCAACAACACCAACTTGCTGAAGG -CCAACAACACCAACTTGCCAATGG -CCAACAACACCAACTTGCATGAGG -CCAACAACACCAACTTGCAATGGG -CCAACAACACCAACTTGCTCCTGA -CCAACAACACCAACTTGCTAGCGA -CCAACAACACCAACTTGCCACAGA -CCAACAACACCAACTTGCGCAAGA -CCAACAACACCAACTTGCGGTTGA -CCAACAACACCAACTTGCTCCGAT -CCAACAACACCAACTTGCTGGCAT -CCAACAACACCAACTTGCCGAGAT -CCAACAACACCAACTTGCTACCAC -CCAACAACACCAACTTGCCAGAAC -CCAACAACACCAACTTGCGTCTAC -CCAACAACACCAACTTGCACGTAC -CCAACAACACCAACTTGCAGTGAC -CCAACAACACCAACTTGCCTGTAG -CCAACAACACCAACTTGCCCTAAG -CCAACAACACCAACTTGCGTTCAG -CCAACAACACCAACTTGCGCATAG -CCAACAACACCAACTTGCGACAAG -CCAACAACACCAACTTGCAAGCAG -CCAACAACACCAACTTGCCGTCAA -CCAACAACACCAACTTGCGCTGAA -CCAACAACACCAACTTGCAGTACG -CCAACAACACCAACTTGCATCCGA -CCAACAACACCAACTTGCATGGGA -CCAACAACACCAACTTGCGTGCAA -CCAACAACACCAACTTGCGAGGAA -CCAACAACACCAACTTGCCAGGTA -CCAACAACACCAACTTGCGACTCT -CCAACAACACCAACTTGCAGTCCT -CCAACAACACCAACTTGCTAAGCC -CCAACAACACCAACTTGCATAGCC -CCAACAACACCAACTTGCTAACCG -CCAACAACACCAACTTGCATGCCA -CCAACAACACCAACTCTGGGAAAC -CCAACAACACCAACTCTGAACACC -CCAACAACACCAACTCTGATCGAG -CCAACAACACCAACTCTGCTCCTT -CCAACAACACCAACTCTGCCTGTT -CCAACAACACCAACTCTGCGGTTT -CCAACAACACCAACTCTGGTGGTT -CCAACAACACCAACTCTGGCCTTT -CCAACAACACCAACTCTGGGTCTT -CCAACAACACCAACTCTGACGCTT -CCAACAACACCAACTCTGAGCGTT -CCAACAACACCAACTCTGTTCGTC -CCAACAACACCAACTCTGTCTCTC -CCAACAACACCAACTCTGTGGATC -CCAACAACACCAACTCTGCACTTC -CCAACAACACCAACTCTGGTACTC -CCAACAACACCAACTCTGGATGTC -CCAACAACACCAACTCTGACAGTC -CCAACAACACCAACTCTGTTGCTG -CCAACAACACCAACTCTGTCCATG -CCAACAACACCAACTCTGTGTGTG -CCAACAACACCAACTCTGCTAGTG -CCAACAACACCAACTCTGCATCTG -CCAACAACACCAACTCTGGAGTTG -CCAACAACACCAACTCTGAGACTG -CCAACAACACCAACTCTGTCGGTA -CCAACAACACCAACTCTGTGCCTA -CCAACAACACCAACTCTGCCACTA -CCAACAACACCAACTCTGGGAGTA -CCAACAACACCAACTCTGTCGTCT -CCAACAACACCAACTCTGTGCACT -CCAACAACACCAACTCTGCTGACT -CCAACAACACCAACTCTGCAACCT -CCAACAACACCAACTCTGGCTACT -CCAACAACACCAACTCTGGGATCT -CCAACAACACCAACTCTGAAGGCT -CCAACAACACCAACTCTGTCAACC -CCAACAACACCAACTCTGTGTTCC -CCAACAACACCAACTCTGATTCCC -CCAACAACACCAACTCTGTTCTCG -CCAACAACACCAACTCTGTAGACG -CCAACAACACCAACTCTGGTAACG -CCAACAACACCAACTCTGACTTCG -CCAACAACACCAACTCTGTACGCA -CCAACAACACCAACTCTGCTTGCA -CCAACAACACCAACTCTGCGAACA -CCAACAACACCAACTCTGCAGTCA -CCAACAACACCAACTCTGGATCCA -CCAACAACACCAACTCTGACGACA -CCAACAACACCAACTCTGAGCTCA -CCAACAACACCAACTCTGTCACGT -CCAACAACACCAACTCTGCGTAGT -CCAACAACACCAACTCTGGTCAGT -CCAACAACACCAACTCTGGAAGGT -CCAACAACACCAACTCTGAACCGT -CCAACAACACCAACTCTGTTGTGC -CCAACAACACCAACTCTGCTAAGC -CCAACAACACCAACTCTGACTAGC -CCAACAACACCAACTCTGAGATGC -CCAACAACACCAACTCTGTGAAGG -CCAACAACACCAACTCTGCAATGG -CCAACAACACCAACTCTGATGAGG -CCAACAACACCAACTCTGAATGGG -CCAACAACACCAACTCTGTCCTGA -CCAACAACACCAACTCTGTAGCGA -CCAACAACACCAACTCTGCACAGA -CCAACAACACCAACTCTGGCAAGA -CCAACAACACCAACTCTGGGTTGA -CCAACAACACCAACTCTGTCCGAT -CCAACAACACCAACTCTGTGGCAT -CCAACAACACCAACTCTGCGAGAT -CCAACAACACCAACTCTGTACCAC -CCAACAACACCAACTCTGCAGAAC -CCAACAACACCAACTCTGGTCTAC -CCAACAACACCAACTCTGACGTAC -CCAACAACACCAACTCTGAGTGAC -CCAACAACACCAACTCTGCTGTAG -CCAACAACACCAACTCTGCCTAAG -CCAACAACACCAACTCTGGTTCAG -CCAACAACACCAACTCTGGCATAG -CCAACAACACCAACTCTGGACAAG -CCAACAACACCAACTCTGAAGCAG -CCAACAACACCAACTCTGCGTCAA -CCAACAACACCAACTCTGGCTGAA -CCAACAACACCAACTCTGAGTACG -CCAACAACACCAACTCTGATCCGA -CCAACAACACCAACTCTGATGGGA -CCAACAACACCAACTCTGGTGCAA -CCAACAACACCAACTCTGGAGGAA -CCAACAACACCAACTCTGCAGGTA -CCAACAACACCAACTCTGGACTCT -CCAACAACACCAACTCTGAGTCCT -CCAACAACACCAACTCTGTAAGCC -CCAACAACACCAACTCTGATAGCC -CCAACAACACCAACTCTGTAACCG -CCAACAACACCAACTCTGATGCCA -CCAACAACACCACCTCAAGGAAAC -CCAACAACACCACCTCAAAACACC -CCAACAACACCACCTCAAATCGAG -CCAACAACACCACCTCAACTCCTT -CCAACAACACCACCTCAACCTGTT -CCAACAACACCACCTCAACGGTTT -CCAACAACACCACCTCAAGTGGTT -CCAACAACACCACCTCAAGCCTTT -CCAACAACACCACCTCAAGGTCTT -CCAACAACACCACCTCAAACGCTT -CCAACAACACCACCTCAAAGCGTT -CCAACAACACCACCTCAATTCGTC -CCAACAACACCACCTCAATCTCTC -CCAACAACACCACCTCAATGGATC -CCAACAACACCACCTCAACACTTC -CCAACAACACCACCTCAAGTACTC -CCAACAACACCACCTCAAGATGTC -CCAACAACACCACCTCAAACAGTC -CCAACAACACCACCTCAATTGCTG -CCAACAACACCACCTCAATCCATG -CCAACAACACCACCTCAATGTGTG -CCAACAACACCACCTCAACTAGTG -CCAACAACACCACCTCAACATCTG -CCAACAACACCACCTCAAGAGTTG -CCAACAACACCACCTCAAAGACTG -CCAACAACACCACCTCAATCGGTA -CCAACAACACCACCTCAATGCCTA -CCAACAACACCACCTCAACCACTA -CCAACAACACCACCTCAAGGAGTA -CCAACAACACCACCTCAATCGTCT -CCAACAACACCACCTCAATGCACT -CCAACAACACCACCTCAACTGACT -CCAACAACACCACCTCAACAACCT -CCAACAACACCACCTCAAGCTACT -CCAACAACACCACCTCAAGGATCT -CCAACAACACCACCTCAAAAGGCT -CCAACAACACCACCTCAATCAACC -CCAACAACACCACCTCAATGTTCC -CCAACAACACCACCTCAAATTCCC -CCAACAACACCACCTCAATTCTCG -CCAACAACACCACCTCAATAGACG -CCAACAACACCACCTCAAGTAACG -CCAACAACACCACCTCAAACTTCG -CCAACAACACCACCTCAATACGCA -CCAACAACACCACCTCAACTTGCA -CCAACAACACCACCTCAACGAACA -CCAACAACACCACCTCAACAGTCA -CCAACAACACCACCTCAAGATCCA -CCAACAACACCACCTCAAACGACA -CCAACAACACCACCTCAAAGCTCA -CCAACAACACCACCTCAATCACGT -CCAACAACACCACCTCAACGTAGT -CCAACAACACCACCTCAAGTCAGT -CCAACAACACCACCTCAAGAAGGT -CCAACAACACCACCTCAAAACCGT -CCAACAACACCACCTCAATTGTGC -CCAACAACACCACCTCAACTAAGC -CCAACAACACCACCTCAAACTAGC -CCAACAACACCACCTCAAAGATGC -CCAACAACACCACCTCAATGAAGG -CCAACAACACCACCTCAACAATGG -CCAACAACACCACCTCAAATGAGG -CCAACAACACCACCTCAAAATGGG -CCAACAACACCACCTCAATCCTGA -CCAACAACACCACCTCAATAGCGA -CCAACAACACCACCTCAACACAGA -CCAACAACACCACCTCAAGCAAGA -CCAACAACACCACCTCAAGGTTGA -CCAACAACACCACCTCAATCCGAT -CCAACAACACCACCTCAATGGCAT -CCAACAACACCACCTCAACGAGAT -CCAACAACACCACCTCAATACCAC -CCAACAACACCACCTCAACAGAAC -CCAACAACACCACCTCAAGTCTAC -CCAACAACACCACCTCAAACGTAC -CCAACAACACCACCTCAAAGTGAC -CCAACAACACCACCTCAACTGTAG -CCAACAACACCACCTCAACCTAAG -CCAACAACACCACCTCAAGTTCAG -CCAACAACACCACCTCAAGCATAG -CCAACAACACCACCTCAAGACAAG -CCAACAACACCACCTCAAAAGCAG -CCAACAACACCACCTCAACGTCAA -CCAACAACACCACCTCAAGCTGAA -CCAACAACACCACCTCAAAGTACG -CCAACAACACCACCTCAAATCCGA -CCAACAACACCACCTCAAATGGGA -CCAACAACACCACCTCAAGTGCAA -CCAACAACACCACCTCAAGAGGAA -CCAACAACACCACCTCAACAGGTA -CCAACAACACCACCTCAAGACTCT -CCAACAACACCACCTCAAAGTCCT -CCAACAACACCACCTCAATAAGCC -CCAACAACACCACCTCAAATAGCC -CCAACAACACCACCTCAATAACCG -CCAACAACACCACCTCAAATGCCA -CCAACAACACCAACTGCTGGAAAC -CCAACAACACCAACTGCTAACACC -CCAACAACACCAACTGCTATCGAG -CCAACAACACCAACTGCTCTCCTT -CCAACAACACCAACTGCTCCTGTT -CCAACAACACCAACTGCTCGGTTT -CCAACAACACCAACTGCTGTGGTT -CCAACAACACCAACTGCTGCCTTT -CCAACAACACCAACTGCTGGTCTT -CCAACAACACCAACTGCTACGCTT -CCAACAACACCAACTGCTAGCGTT -CCAACAACACCAACTGCTTTCGTC -CCAACAACACCAACTGCTTCTCTC -CCAACAACACCAACTGCTTGGATC -CCAACAACACCAACTGCTCACTTC -CCAACAACACCAACTGCTGTACTC -CCAACAACACCAACTGCTGATGTC -CCAACAACACCAACTGCTACAGTC -CCAACAACACCAACTGCTTTGCTG -CCAACAACACCAACTGCTTCCATG -CCAACAACACCAACTGCTTGTGTG -CCAACAACACCAACTGCTCTAGTG -CCAACAACACCAACTGCTCATCTG -CCAACAACACCAACTGCTGAGTTG -CCAACAACACCAACTGCTAGACTG -CCAACAACACCAACTGCTTCGGTA -CCAACAACACCAACTGCTTGCCTA -CCAACAACACCAACTGCTCCACTA -CCAACAACACCAACTGCTGGAGTA -CCAACAACACCAACTGCTTCGTCT -CCAACAACACCAACTGCTTGCACT -CCAACAACACCAACTGCTCTGACT -CCAACAACACCAACTGCTCAACCT -CCAACAACACCAACTGCTGCTACT -CCAACAACACCAACTGCTGGATCT -CCAACAACACCAACTGCTAAGGCT -CCAACAACACCAACTGCTTCAACC -CCAACAACACCAACTGCTTGTTCC -CCAACAACACCAACTGCTATTCCC -CCAACAACACCAACTGCTTTCTCG -CCAACAACACCAACTGCTTAGACG -CCAACAACACCAACTGCTGTAACG -CCAACAACACCAACTGCTACTTCG -CCAACAACACCAACTGCTTACGCA -CCAACAACACCAACTGCTCTTGCA -CCAACAACACCAACTGCTCGAACA -CCAACAACACCAACTGCTCAGTCA -CCAACAACACCAACTGCTGATCCA -CCAACAACACCAACTGCTACGACA -CCAACAACACCAACTGCTAGCTCA -CCAACAACACCAACTGCTTCACGT -CCAACAACACCAACTGCTCGTAGT -CCAACAACACCAACTGCTGTCAGT -CCAACAACACCAACTGCTGAAGGT -CCAACAACACCAACTGCTAACCGT -CCAACAACACCAACTGCTTTGTGC -CCAACAACACCAACTGCTCTAAGC -CCAACAACACCAACTGCTACTAGC -CCAACAACACCAACTGCTAGATGC -CCAACAACACCAACTGCTTGAAGG -CCAACAACACCAACTGCTCAATGG -CCAACAACACCAACTGCTATGAGG -CCAACAACACCAACTGCTAATGGG -CCAACAACACCAACTGCTTCCTGA -CCAACAACACCAACTGCTTAGCGA -CCAACAACACCAACTGCTCACAGA -CCAACAACACCAACTGCTGCAAGA -CCAACAACACCAACTGCTGGTTGA -CCAACAACACCAACTGCTTCCGAT -CCAACAACACCAACTGCTTGGCAT -CCAACAACACCAACTGCTCGAGAT -CCAACAACACCAACTGCTTACCAC -CCAACAACACCAACTGCTCAGAAC -CCAACAACACCAACTGCTGTCTAC -CCAACAACACCAACTGCTACGTAC -CCAACAACACCAACTGCTAGTGAC -CCAACAACACCAACTGCTCTGTAG -CCAACAACACCAACTGCTCCTAAG -CCAACAACACCAACTGCTGTTCAG -CCAACAACACCAACTGCTGCATAG -CCAACAACACCAACTGCTGACAAG -CCAACAACACCAACTGCTAAGCAG -CCAACAACACCAACTGCTCGTCAA -CCAACAACACCAACTGCTGCTGAA -CCAACAACACCAACTGCTAGTACG -CCAACAACACCAACTGCTATCCGA -CCAACAACACCAACTGCTATGGGA -CCAACAACACCAACTGCTGTGCAA -CCAACAACACCAACTGCTGAGGAA -CCAACAACACCAACTGCTCAGGTA -CCAACAACACCAACTGCTGACTCT -CCAACAACACCAACTGCTAGTCCT -CCAACAACACCAACTGCTTAAGCC -CCAACAACACCAACTGCTATAGCC -CCAACAACACCAACTGCTTAACCG -CCAACAACACCAACTGCTATGCCA -CCAACAACACCATCTGGAGGAAAC -CCAACAACACCATCTGGAAACACC -CCAACAACACCATCTGGAATCGAG -CCAACAACACCATCTGGACTCCTT -CCAACAACACCATCTGGACCTGTT -CCAACAACACCATCTGGACGGTTT -CCAACAACACCATCTGGAGTGGTT -CCAACAACACCATCTGGAGCCTTT -CCAACAACACCATCTGGAGGTCTT -CCAACAACACCATCTGGAACGCTT -CCAACAACACCATCTGGAAGCGTT -CCAACAACACCATCTGGATTCGTC -CCAACAACACCATCTGGATCTCTC -CCAACAACACCATCTGGATGGATC -CCAACAACACCATCTGGACACTTC -CCAACAACACCATCTGGAGTACTC -CCAACAACACCATCTGGAGATGTC -CCAACAACACCATCTGGAACAGTC -CCAACAACACCATCTGGATTGCTG -CCAACAACACCATCTGGATCCATG -CCAACAACACCATCTGGATGTGTG -CCAACAACACCATCTGGACTAGTG -CCAACAACACCATCTGGACATCTG -CCAACAACACCATCTGGAGAGTTG -CCAACAACACCATCTGGAAGACTG -CCAACAACACCATCTGGATCGGTA -CCAACAACACCATCTGGATGCCTA -CCAACAACACCATCTGGACCACTA -CCAACAACACCATCTGGAGGAGTA -CCAACAACACCATCTGGATCGTCT -CCAACAACACCATCTGGATGCACT -CCAACAACACCATCTGGACTGACT -CCAACAACACCATCTGGACAACCT -CCAACAACACCATCTGGAGCTACT -CCAACAACACCATCTGGAGGATCT -CCAACAACACCATCTGGAAAGGCT -CCAACAACACCATCTGGATCAACC -CCAACAACACCATCTGGATGTTCC -CCAACAACACCATCTGGAATTCCC -CCAACAACACCATCTGGATTCTCG -CCAACAACACCATCTGGATAGACG -CCAACAACACCATCTGGAGTAACG -CCAACAACACCATCTGGAACTTCG -CCAACAACACCATCTGGATACGCA -CCAACAACACCATCTGGACTTGCA -CCAACAACACCATCTGGACGAACA -CCAACAACACCATCTGGACAGTCA -CCAACAACACCATCTGGAGATCCA -CCAACAACACCATCTGGAACGACA -CCAACAACACCATCTGGAAGCTCA -CCAACAACACCATCTGGATCACGT -CCAACAACACCATCTGGACGTAGT -CCAACAACACCATCTGGAGTCAGT -CCAACAACACCATCTGGAGAAGGT -CCAACAACACCATCTGGAAACCGT -CCAACAACACCATCTGGATTGTGC -CCAACAACACCATCTGGACTAAGC -CCAACAACACCATCTGGAACTAGC -CCAACAACACCATCTGGAAGATGC -CCAACAACACCATCTGGATGAAGG -CCAACAACACCATCTGGACAATGG -CCAACAACACCATCTGGAATGAGG -CCAACAACACCATCTGGAAATGGG -CCAACAACACCATCTGGATCCTGA -CCAACAACACCATCTGGATAGCGA -CCAACAACACCATCTGGACACAGA -CCAACAACACCATCTGGAGCAAGA -CCAACAACACCATCTGGAGGTTGA -CCAACAACACCATCTGGATCCGAT -CCAACAACACCATCTGGATGGCAT -CCAACAACACCATCTGGACGAGAT -CCAACAACACCATCTGGATACCAC -CCAACAACACCATCTGGACAGAAC -CCAACAACACCATCTGGAGTCTAC -CCAACAACACCATCTGGAACGTAC -CCAACAACACCATCTGGAAGTGAC -CCAACAACACCATCTGGACTGTAG -CCAACAACACCATCTGGACCTAAG -CCAACAACACCATCTGGAGTTCAG -CCAACAACACCATCTGGAGCATAG -CCAACAACACCATCTGGAGACAAG -CCAACAACACCATCTGGAAAGCAG -CCAACAACACCATCTGGACGTCAA -CCAACAACACCATCTGGAGCTGAA -CCAACAACACCATCTGGAAGTACG -CCAACAACACCATCTGGAATCCGA -CCAACAACACCATCTGGAATGGGA -CCAACAACACCATCTGGAGTGCAA -CCAACAACACCATCTGGAGAGGAA -CCAACAACACCATCTGGACAGGTA -CCAACAACACCATCTGGAGACTCT -CCAACAACACCATCTGGAAGTCCT -CCAACAACACCATCTGGATAAGCC -CCAACAACACCATCTGGAATAGCC -CCAACAACACCATCTGGATAACCG -CCAACAACACCATCTGGAATGCCA -CCAACAACACCAGCTAAGGGAAAC -CCAACAACACCAGCTAAGAACACC -CCAACAACACCAGCTAAGATCGAG -CCAACAACACCAGCTAAGCTCCTT -CCAACAACACCAGCTAAGCCTGTT -CCAACAACACCAGCTAAGCGGTTT -CCAACAACACCAGCTAAGGTGGTT -CCAACAACACCAGCTAAGGCCTTT -CCAACAACACCAGCTAAGGGTCTT -CCAACAACACCAGCTAAGACGCTT -CCAACAACACCAGCTAAGAGCGTT -CCAACAACACCAGCTAAGTTCGTC -CCAACAACACCAGCTAAGTCTCTC -CCAACAACACCAGCTAAGTGGATC -CCAACAACACCAGCTAAGCACTTC -CCAACAACACCAGCTAAGGTACTC -CCAACAACACCAGCTAAGGATGTC -CCAACAACACCAGCTAAGACAGTC -CCAACAACACCAGCTAAGTTGCTG -CCAACAACACCAGCTAAGTCCATG -CCAACAACACCAGCTAAGTGTGTG -CCAACAACACCAGCTAAGCTAGTG -CCAACAACACCAGCTAAGCATCTG -CCAACAACACCAGCTAAGGAGTTG -CCAACAACACCAGCTAAGAGACTG -CCAACAACACCAGCTAAGTCGGTA -CCAACAACACCAGCTAAGTGCCTA -CCAACAACACCAGCTAAGCCACTA -CCAACAACACCAGCTAAGGGAGTA -CCAACAACACCAGCTAAGTCGTCT -CCAACAACACCAGCTAAGTGCACT -CCAACAACACCAGCTAAGCTGACT -CCAACAACACCAGCTAAGCAACCT -CCAACAACACCAGCTAAGGCTACT -CCAACAACACCAGCTAAGGGATCT -CCAACAACACCAGCTAAGAAGGCT -CCAACAACACCAGCTAAGTCAACC -CCAACAACACCAGCTAAGTGTTCC -CCAACAACACCAGCTAAGATTCCC -CCAACAACACCAGCTAAGTTCTCG -CCAACAACACCAGCTAAGTAGACG -CCAACAACACCAGCTAAGGTAACG -CCAACAACACCAGCTAAGACTTCG -CCAACAACACCAGCTAAGTACGCA -CCAACAACACCAGCTAAGCTTGCA -CCAACAACACCAGCTAAGCGAACA -CCAACAACACCAGCTAAGCAGTCA -CCAACAACACCAGCTAAGGATCCA -CCAACAACACCAGCTAAGACGACA -CCAACAACACCAGCTAAGAGCTCA -CCAACAACACCAGCTAAGTCACGT -CCAACAACACCAGCTAAGCGTAGT -CCAACAACACCAGCTAAGGTCAGT -CCAACAACACCAGCTAAGGAAGGT -CCAACAACACCAGCTAAGAACCGT -CCAACAACACCAGCTAAGTTGTGC -CCAACAACACCAGCTAAGCTAAGC -CCAACAACACCAGCTAAGACTAGC -CCAACAACACCAGCTAAGAGATGC -CCAACAACACCAGCTAAGTGAAGG -CCAACAACACCAGCTAAGCAATGG -CCAACAACACCAGCTAAGATGAGG -CCAACAACACCAGCTAAGAATGGG -CCAACAACACCAGCTAAGTCCTGA -CCAACAACACCAGCTAAGTAGCGA -CCAACAACACCAGCTAAGCACAGA -CCAACAACACCAGCTAAGGCAAGA -CCAACAACACCAGCTAAGGGTTGA -CCAACAACACCAGCTAAGTCCGAT -CCAACAACACCAGCTAAGTGGCAT -CCAACAACACCAGCTAAGCGAGAT -CCAACAACACCAGCTAAGTACCAC -CCAACAACACCAGCTAAGCAGAAC -CCAACAACACCAGCTAAGGTCTAC -CCAACAACACCAGCTAAGACGTAC -CCAACAACACCAGCTAAGAGTGAC -CCAACAACACCAGCTAAGCTGTAG -CCAACAACACCAGCTAAGCCTAAG -CCAACAACACCAGCTAAGGTTCAG -CCAACAACACCAGCTAAGGCATAG -CCAACAACACCAGCTAAGGACAAG -CCAACAACACCAGCTAAGAAGCAG -CCAACAACACCAGCTAAGCGTCAA -CCAACAACACCAGCTAAGGCTGAA -CCAACAACACCAGCTAAGAGTACG -CCAACAACACCAGCTAAGATCCGA -CCAACAACACCAGCTAAGATGGGA -CCAACAACACCAGCTAAGGTGCAA -CCAACAACACCAGCTAAGGAGGAA -CCAACAACACCAGCTAAGCAGGTA -CCAACAACACCAGCTAAGGACTCT -CCAACAACACCAGCTAAGAGTCCT -CCAACAACACCAGCTAAGTAAGCC -CCAACAACACCAGCTAAGATAGCC -CCAACAACACCAGCTAAGTAACCG -CCAACAACACCAGCTAAGATGCCA -CCAACAACACCAACCTCAGGAAAC -CCAACAACACCAACCTCAAACACC -CCAACAACACCAACCTCAATCGAG -CCAACAACACCAACCTCACTCCTT -CCAACAACACCAACCTCACCTGTT -CCAACAACACCAACCTCACGGTTT -CCAACAACACCAACCTCAGTGGTT -CCAACAACACCAACCTCAGCCTTT -CCAACAACACCAACCTCAGGTCTT -CCAACAACACCAACCTCAACGCTT -CCAACAACACCAACCTCAAGCGTT -CCAACAACACCAACCTCATTCGTC -CCAACAACACCAACCTCATCTCTC -CCAACAACACCAACCTCATGGATC -CCAACAACACCAACCTCACACTTC -CCAACAACACCAACCTCAGTACTC -CCAACAACACCAACCTCAGATGTC -CCAACAACACCAACCTCAACAGTC -CCAACAACACCAACCTCATTGCTG -CCAACAACACCAACCTCATCCATG -CCAACAACACCAACCTCATGTGTG -CCAACAACACCAACCTCACTAGTG -CCAACAACACCAACCTCACATCTG -CCAACAACACCAACCTCAGAGTTG -CCAACAACACCAACCTCAAGACTG -CCAACAACACCAACCTCATCGGTA -CCAACAACACCAACCTCATGCCTA -CCAACAACACCAACCTCACCACTA -CCAACAACACCAACCTCAGGAGTA -CCAACAACACCAACCTCATCGTCT -CCAACAACACCAACCTCATGCACT -CCAACAACACCAACCTCACTGACT -CCAACAACACCAACCTCACAACCT -CCAACAACACCAACCTCAGCTACT -CCAACAACACCAACCTCAGGATCT -CCAACAACACCAACCTCAAAGGCT -CCAACAACACCAACCTCATCAACC -CCAACAACACCAACCTCATGTTCC -CCAACAACACCAACCTCAATTCCC -CCAACAACACCAACCTCATTCTCG -CCAACAACACCAACCTCATAGACG -CCAACAACACCAACCTCAGTAACG -CCAACAACACCAACCTCAACTTCG -CCAACAACACCAACCTCATACGCA -CCAACAACACCAACCTCACTTGCA -CCAACAACACCAACCTCACGAACA -CCAACAACACCAACCTCACAGTCA -CCAACAACACCAACCTCAGATCCA -CCAACAACACCAACCTCAACGACA -CCAACAACACCAACCTCAAGCTCA -CCAACAACACCAACCTCATCACGT -CCAACAACACCAACCTCACGTAGT -CCAACAACACCAACCTCAGTCAGT -CCAACAACACCAACCTCAGAAGGT -CCAACAACACCAACCTCAAACCGT -CCAACAACACCAACCTCATTGTGC -CCAACAACACCAACCTCACTAAGC -CCAACAACACCAACCTCAACTAGC -CCAACAACACCAACCTCAAGATGC -CCAACAACACCAACCTCATGAAGG -CCAACAACACCAACCTCACAATGG -CCAACAACACCAACCTCAATGAGG -CCAACAACACCAACCTCAAATGGG -CCAACAACACCAACCTCATCCTGA -CCAACAACACCAACCTCATAGCGA -CCAACAACACCAACCTCACACAGA -CCAACAACACCAACCTCAGCAAGA -CCAACAACACCAACCTCAGGTTGA -CCAACAACACCAACCTCATCCGAT -CCAACAACACCAACCTCATGGCAT -CCAACAACACCAACCTCACGAGAT -CCAACAACACCAACCTCATACCAC -CCAACAACACCAACCTCACAGAAC -CCAACAACACCAACCTCAGTCTAC -CCAACAACACCAACCTCAACGTAC -CCAACAACACCAACCTCAAGTGAC -CCAACAACACCAACCTCACTGTAG -CCAACAACACCAACCTCACCTAAG -CCAACAACACCAACCTCAGTTCAG -CCAACAACACCAACCTCAGCATAG -CCAACAACACCAACCTCAGACAAG -CCAACAACACCAACCTCAAAGCAG -CCAACAACACCAACCTCACGTCAA -CCAACAACACCAACCTCAGCTGAA -CCAACAACACCAACCTCAAGTACG -CCAACAACACCAACCTCAATCCGA -CCAACAACACCAACCTCAATGGGA -CCAACAACACCAACCTCAGTGCAA -CCAACAACACCAACCTCAGAGGAA -CCAACAACACCAACCTCACAGGTA -CCAACAACACCAACCTCAGACTCT -CCAACAACACCAACCTCAAGTCCT -CCAACAACACCAACCTCATAAGCC -CCAACAACACCAACCTCAATAGCC -CCAACAACACCAACCTCATAACCG -CCAACAACACCAACCTCAATGCCA -CCAACAACACCATCCTGTGGAAAC -CCAACAACACCATCCTGTAACACC -CCAACAACACCATCCTGTATCGAG -CCAACAACACCATCCTGTCTCCTT -CCAACAACACCATCCTGTCCTGTT -CCAACAACACCATCCTGTCGGTTT -CCAACAACACCATCCTGTGTGGTT -CCAACAACACCATCCTGTGCCTTT -CCAACAACACCATCCTGTGGTCTT -CCAACAACACCATCCTGTACGCTT -CCAACAACACCATCCTGTAGCGTT -CCAACAACACCATCCTGTTTCGTC -CCAACAACACCATCCTGTTCTCTC -CCAACAACACCATCCTGTTGGATC -CCAACAACACCATCCTGTCACTTC -CCAACAACACCATCCTGTGTACTC -CCAACAACACCATCCTGTGATGTC -CCAACAACACCATCCTGTACAGTC -CCAACAACACCATCCTGTTTGCTG -CCAACAACACCATCCTGTTCCATG -CCAACAACACCATCCTGTTGTGTG -CCAACAACACCATCCTGTCTAGTG -CCAACAACACCATCCTGTCATCTG -CCAACAACACCATCCTGTGAGTTG -CCAACAACACCATCCTGTAGACTG -CCAACAACACCATCCTGTTCGGTA -CCAACAACACCATCCTGTTGCCTA -CCAACAACACCATCCTGTCCACTA -CCAACAACACCATCCTGTGGAGTA -CCAACAACACCATCCTGTTCGTCT -CCAACAACACCATCCTGTTGCACT -CCAACAACACCATCCTGTCTGACT -CCAACAACACCATCCTGTCAACCT -CCAACAACACCATCCTGTGCTACT -CCAACAACACCATCCTGTGGATCT -CCAACAACACCATCCTGTAAGGCT -CCAACAACACCATCCTGTTCAACC -CCAACAACACCATCCTGTTGTTCC -CCAACAACACCATCCTGTATTCCC -CCAACAACACCATCCTGTTTCTCG -CCAACAACACCATCCTGTTAGACG -CCAACAACACCATCCTGTGTAACG -CCAACAACACCATCCTGTACTTCG -CCAACAACACCATCCTGTTACGCA -CCAACAACACCATCCTGTCTTGCA -CCAACAACACCATCCTGTCGAACA -CCAACAACACCATCCTGTCAGTCA -CCAACAACACCATCCTGTGATCCA -CCAACAACACCATCCTGTACGACA -CCAACAACACCATCCTGTAGCTCA -CCAACAACACCATCCTGTTCACGT -CCAACAACACCATCCTGTCGTAGT -CCAACAACACCATCCTGTGTCAGT -CCAACAACACCATCCTGTGAAGGT -CCAACAACACCATCCTGTAACCGT -CCAACAACACCATCCTGTTTGTGC -CCAACAACACCATCCTGTCTAAGC -CCAACAACACCATCCTGTACTAGC -CCAACAACACCATCCTGTAGATGC -CCAACAACACCATCCTGTTGAAGG -CCAACAACACCATCCTGTCAATGG -CCAACAACACCATCCTGTATGAGG -CCAACAACACCATCCTGTAATGGG -CCAACAACACCATCCTGTTCCTGA -CCAACAACACCATCCTGTTAGCGA -CCAACAACACCATCCTGTCACAGA -CCAACAACACCATCCTGTGCAAGA -CCAACAACACCATCCTGTGGTTGA -CCAACAACACCATCCTGTTCCGAT -CCAACAACACCATCCTGTTGGCAT -CCAACAACACCATCCTGTCGAGAT -CCAACAACACCATCCTGTTACCAC -CCAACAACACCATCCTGTCAGAAC -CCAACAACACCATCCTGTGTCTAC -CCAACAACACCATCCTGTACGTAC -CCAACAACACCATCCTGTAGTGAC -CCAACAACACCATCCTGTCTGTAG -CCAACAACACCATCCTGTCCTAAG -CCAACAACACCATCCTGTGTTCAG -CCAACAACACCATCCTGTGCATAG -CCAACAACACCATCCTGTGACAAG -CCAACAACACCATCCTGTAAGCAG -CCAACAACACCATCCTGTCGTCAA -CCAACAACACCATCCTGTGCTGAA -CCAACAACACCATCCTGTAGTACG -CCAACAACACCATCCTGTATCCGA -CCAACAACACCATCCTGTATGGGA -CCAACAACACCATCCTGTGTGCAA -CCAACAACACCATCCTGTGAGGAA -CCAACAACACCATCCTGTCAGGTA -CCAACAACACCATCCTGTGACTCT -CCAACAACACCATCCTGTAGTCCT -CCAACAACACCATCCTGTTAAGCC -CCAACAACACCATCCTGTATAGCC -CCAACAACACCATCCTGTTAACCG -CCAACAACACCATCCTGTATGCCA -CCAACAACACCACCCATTGGAAAC -CCAACAACACCACCCATTAACACC -CCAACAACACCACCCATTATCGAG -CCAACAACACCACCCATTCTCCTT -CCAACAACACCACCCATTCCTGTT -CCAACAACACCACCCATTCGGTTT -CCAACAACACCACCCATTGTGGTT -CCAACAACACCACCCATTGCCTTT -CCAACAACACCACCCATTGGTCTT -CCAACAACACCACCCATTACGCTT -CCAACAACACCACCCATTAGCGTT -CCAACAACACCACCCATTTTCGTC -CCAACAACACCACCCATTTCTCTC -CCAACAACACCACCCATTTGGATC -CCAACAACACCACCCATTCACTTC -CCAACAACACCACCCATTGTACTC -CCAACAACACCACCCATTGATGTC -CCAACAACACCACCCATTACAGTC -CCAACAACACCACCCATTTTGCTG -CCAACAACACCACCCATTTCCATG -CCAACAACACCACCCATTTGTGTG -CCAACAACACCACCCATTCTAGTG -CCAACAACACCACCCATTCATCTG -CCAACAACACCACCCATTGAGTTG -CCAACAACACCACCCATTAGACTG -CCAACAACACCACCCATTTCGGTA -CCAACAACACCACCCATTTGCCTA -CCAACAACACCACCCATTCCACTA -CCAACAACACCACCCATTGGAGTA -CCAACAACACCACCCATTTCGTCT -CCAACAACACCACCCATTTGCACT -CCAACAACACCACCCATTCTGACT -CCAACAACACCACCCATTCAACCT -CCAACAACACCACCCATTGCTACT -CCAACAACACCACCCATTGGATCT -CCAACAACACCACCCATTAAGGCT -CCAACAACACCACCCATTTCAACC -CCAACAACACCACCCATTTGTTCC -CCAACAACACCACCCATTATTCCC -CCAACAACACCACCCATTTTCTCG -CCAACAACACCACCCATTTAGACG -CCAACAACACCACCCATTGTAACG -CCAACAACACCACCCATTACTTCG -CCAACAACACCACCCATTTACGCA -CCAACAACACCACCCATTCTTGCA -CCAACAACACCACCCATTCGAACA -CCAACAACACCACCCATTCAGTCA -CCAACAACACCACCCATTGATCCA -CCAACAACACCACCCATTACGACA -CCAACAACACCACCCATTAGCTCA -CCAACAACACCACCCATTTCACGT -CCAACAACACCACCCATTCGTAGT -CCAACAACACCACCCATTGTCAGT -CCAACAACACCACCCATTGAAGGT -CCAACAACACCACCCATTAACCGT -CCAACAACACCACCCATTTTGTGC -CCAACAACACCACCCATTCTAAGC -CCAACAACACCACCCATTACTAGC -CCAACAACACCACCCATTAGATGC -CCAACAACACCACCCATTTGAAGG -CCAACAACACCACCCATTCAATGG -CCAACAACACCACCCATTATGAGG -CCAACAACACCACCCATTAATGGG -CCAACAACACCACCCATTTCCTGA -CCAACAACACCACCCATTTAGCGA -CCAACAACACCACCCATTCACAGA -CCAACAACACCACCCATTGCAAGA -CCAACAACACCACCCATTGGTTGA -CCAACAACACCACCCATTTCCGAT -CCAACAACACCACCCATTTGGCAT -CCAACAACACCACCCATTCGAGAT -CCAACAACACCACCCATTTACCAC -CCAACAACACCACCCATTCAGAAC -CCAACAACACCACCCATTGTCTAC -CCAACAACACCACCCATTACGTAC -CCAACAACACCACCCATTAGTGAC -CCAACAACACCACCCATTCTGTAG -CCAACAACACCACCCATTCCTAAG -CCAACAACACCACCCATTGTTCAG -CCAACAACACCACCCATTGCATAG -CCAACAACACCACCCATTGACAAG -CCAACAACACCACCCATTAAGCAG -CCAACAACACCACCCATTCGTCAA -CCAACAACACCACCCATTGCTGAA -CCAACAACACCACCCATTAGTACG -CCAACAACACCACCCATTATCCGA -CCAACAACACCACCCATTATGGGA -CCAACAACACCACCCATTGTGCAA -CCAACAACACCACCCATTGAGGAA -CCAACAACACCACCCATTCAGGTA -CCAACAACACCACCCATTGACTCT -CCAACAACACCACCCATTAGTCCT -CCAACAACACCACCCATTTAAGCC -CCAACAACACCACCCATTATAGCC -CCAACAACACCACCCATTTAACCG -CCAACAACACCACCCATTATGCCA -CCAACAACACCATCGTTCGGAAAC -CCAACAACACCATCGTTCAACACC -CCAACAACACCATCGTTCATCGAG -CCAACAACACCATCGTTCCTCCTT -CCAACAACACCATCGTTCCCTGTT -CCAACAACACCATCGTTCCGGTTT -CCAACAACACCATCGTTCGTGGTT -CCAACAACACCATCGTTCGCCTTT -CCAACAACACCATCGTTCGGTCTT -CCAACAACACCATCGTTCACGCTT -CCAACAACACCATCGTTCAGCGTT -CCAACAACACCATCGTTCTTCGTC -CCAACAACACCATCGTTCTCTCTC -CCAACAACACCATCGTTCTGGATC -CCAACAACACCATCGTTCCACTTC -CCAACAACACCATCGTTCGTACTC -CCAACAACACCATCGTTCGATGTC -CCAACAACACCATCGTTCACAGTC -CCAACAACACCATCGTTCTTGCTG -CCAACAACACCATCGTTCTCCATG -CCAACAACACCATCGTTCTGTGTG -CCAACAACACCATCGTTCCTAGTG -CCAACAACACCATCGTTCCATCTG -CCAACAACACCATCGTTCGAGTTG -CCAACAACACCATCGTTCAGACTG -CCAACAACACCATCGTTCTCGGTA -CCAACAACACCATCGTTCTGCCTA -CCAACAACACCATCGTTCCCACTA -CCAACAACACCATCGTTCGGAGTA -CCAACAACACCATCGTTCTCGTCT -CCAACAACACCATCGTTCTGCACT -CCAACAACACCATCGTTCCTGACT -CCAACAACACCATCGTTCCAACCT -CCAACAACACCATCGTTCGCTACT -CCAACAACACCATCGTTCGGATCT -CCAACAACACCATCGTTCAAGGCT -CCAACAACACCATCGTTCTCAACC -CCAACAACACCATCGTTCTGTTCC -CCAACAACACCATCGTTCATTCCC -CCAACAACACCATCGTTCTTCTCG -CCAACAACACCATCGTTCTAGACG -CCAACAACACCATCGTTCGTAACG -CCAACAACACCATCGTTCACTTCG -CCAACAACACCATCGTTCTACGCA -CCAACAACACCATCGTTCCTTGCA -CCAACAACACCATCGTTCCGAACA -CCAACAACACCATCGTTCCAGTCA -CCAACAACACCATCGTTCGATCCA -CCAACAACACCATCGTTCACGACA -CCAACAACACCATCGTTCAGCTCA -CCAACAACACCATCGTTCTCACGT -CCAACAACACCATCGTTCCGTAGT -CCAACAACACCATCGTTCGTCAGT -CCAACAACACCATCGTTCGAAGGT -CCAACAACACCATCGTTCAACCGT -CCAACAACACCATCGTTCTTGTGC -CCAACAACACCATCGTTCCTAAGC -CCAACAACACCATCGTTCACTAGC -CCAACAACACCATCGTTCAGATGC -CCAACAACACCATCGTTCTGAAGG -CCAACAACACCATCGTTCCAATGG -CCAACAACACCATCGTTCATGAGG -CCAACAACACCATCGTTCAATGGG -CCAACAACACCATCGTTCTCCTGA -CCAACAACACCATCGTTCTAGCGA -CCAACAACACCATCGTTCCACAGA -CCAACAACACCATCGTTCGCAAGA -CCAACAACACCATCGTTCGGTTGA -CCAACAACACCATCGTTCTCCGAT -CCAACAACACCATCGTTCTGGCAT -CCAACAACACCATCGTTCCGAGAT -CCAACAACACCATCGTTCTACCAC -CCAACAACACCATCGTTCCAGAAC -CCAACAACACCATCGTTCGTCTAC -CCAACAACACCATCGTTCACGTAC -CCAACAACACCATCGTTCAGTGAC -CCAACAACACCATCGTTCCTGTAG -CCAACAACACCATCGTTCCCTAAG -CCAACAACACCATCGTTCGTTCAG -CCAACAACACCATCGTTCGCATAG -CCAACAACACCATCGTTCGACAAG -CCAACAACACCATCGTTCAAGCAG -CCAACAACACCATCGTTCCGTCAA -CCAACAACACCATCGTTCGCTGAA -CCAACAACACCATCGTTCAGTACG -CCAACAACACCATCGTTCATCCGA -CCAACAACACCATCGTTCATGGGA -CCAACAACACCATCGTTCGTGCAA -CCAACAACACCATCGTTCGAGGAA -CCAACAACACCATCGTTCCAGGTA -CCAACAACACCATCGTTCGACTCT -CCAACAACACCATCGTTCAGTCCT -CCAACAACACCATCGTTCTAAGCC -CCAACAACACCATCGTTCATAGCC -CCAACAACACCATCGTTCTAACCG -CCAACAACACCATCGTTCATGCCA -CCAACAACACCAACGTAGGGAAAC -CCAACAACACCAACGTAGAACACC -CCAACAACACCAACGTAGATCGAG -CCAACAACACCAACGTAGCTCCTT -CCAACAACACCAACGTAGCCTGTT -CCAACAACACCAACGTAGCGGTTT -CCAACAACACCAACGTAGGTGGTT -CCAACAACACCAACGTAGGCCTTT -CCAACAACACCAACGTAGGGTCTT -CCAACAACACCAACGTAGACGCTT -CCAACAACACCAACGTAGAGCGTT -CCAACAACACCAACGTAGTTCGTC -CCAACAACACCAACGTAGTCTCTC -CCAACAACACCAACGTAGTGGATC -CCAACAACACCAACGTAGCACTTC -CCAACAACACCAACGTAGGTACTC -CCAACAACACCAACGTAGGATGTC -CCAACAACACCAACGTAGACAGTC -CCAACAACACCAACGTAGTTGCTG -CCAACAACACCAACGTAGTCCATG -CCAACAACACCAACGTAGTGTGTG -CCAACAACACCAACGTAGCTAGTG -CCAACAACACCAACGTAGCATCTG -CCAACAACACCAACGTAGGAGTTG -CCAACAACACCAACGTAGAGACTG -CCAACAACACCAACGTAGTCGGTA -CCAACAACACCAACGTAGTGCCTA -CCAACAACACCAACGTAGCCACTA -CCAACAACACCAACGTAGGGAGTA -CCAACAACACCAACGTAGTCGTCT -CCAACAACACCAACGTAGTGCACT -CCAACAACACCAACGTAGCTGACT -CCAACAACACCAACGTAGCAACCT -CCAACAACACCAACGTAGGCTACT -CCAACAACACCAACGTAGGGATCT -CCAACAACACCAACGTAGAAGGCT -CCAACAACACCAACGTAGTCAACC -CCAACAACACCAACGTAGTGTTCC -CCAACAACACCAACGTAGATTCCC -CCAACAACACCAACGTAGTTCTCG -CCAACAACACCAACGTAGTAGACG -CCAACAACACCAACGTAGGTAACG -CCAACAACACCAACGTAGACTTCG -CCAACAACACCAACGTAGTACGCA -CCAACAACACCAACGTAGCTTGCA -CCAACAACACCAACGTAGCGAACA -CCAACAACACCAACGTAGCAGTCA -CCAACAACACCAACGTAGGATCCA -CCAACAACACCAACGTAGACGACA -CCAACAACACCAACGTAGAGCTCA -CCAACAACACCAACGTAGTCACGT -CCAACAACACCAACGTAGCGTAGT -CCAACAACACCAACGTAGGTCAGT -CCAACAACACCAACGTAGGAAGGT -CCAACAACACCAACGTAGAACCGT -CCAACAACACCAACGTAGTTGTGC -CCAACAACACCAACGTAGCTAAGC -CCAACAACACCAACGTAGACTAGC -CCAACAACACCAACGTAGAGATGC -CCAACAACACCAACGTAGTGAAGG -CCAACAACACCAACGTAGCAATGG -CCAACAACACCAACGTAGATGAGG -CCAACAACACCAACGTAGAATGGG -CCAACAACACCAACGTAGTCCTGA -CCAACAACACCAACGTAGTAGCGA -CCAACAACACCAACGTAGCACAGA -CCAACAACACCAACGTAGGCAAGA -CCAACAACACCAACGTAGGGTTGA -CCAACAACACCAACGTAGTCCGAT -CCAACAACACCAACGTAGTGGCAT -CCAACAACACCAACGTAGCGAGAT -CCAACAACACCAACGTAGTACCAC -CCAACAACACCAACGTAGCAGAAC -CCAACAACACCAACGTAGGTCTAC -CCAACAACACCAACGTAGACGTAC -CCAACAACACCAACGTAGAGTGAC -CCAACAACACCAACGTAGCTGTAG -CCAACAACACCAACGTAGCCTAAG -CCAACAACACCAACGTAGGTTCAG -CCAACAACACCAACGTAGGCATAG -CCAACAACACCAACGTAGGACAAG -CCAACAACACCAACGTAGAAGCAG -CCAACAACACCAACGTAGCGTCAA -CCAACAACACCAACGTAGGCTGAA -CCAACAACACCAACGTAGAGTACG -CCAACAACACCAACGTAGATCCGA -CCAACAACACCAACGTAGATGGGA -CCAACAACACCAACGTAGGTGCAA -CCAACAACACCAACGTAGGAGGAA -CCAACAACACCAACGTAGCAGGTA -CCAACAACACCAACGTAGGACTCT -CCAACAACACCAACGTAGAGTCCT -CCAACAACACCAACGTAGTAAGCC -CCAACAACACCAACGTAGATAGCC -CCAACAACACCAACGTAGTAACCG -CCAACAACACCAACGTAGATGCCA -CCAACAACACCAACGGTAGGAAAC -CCAACAACACCAACGGTAAACACC -CCAACAACACCAACGGTAATCGAG -CCAACAACACCAACGGTACTCCTT -CCAACAACACCAACGGTACCTGTT -CCAACAACACCAACGGTACGGTTT -CCAACAACACCAACGGTAGTGGTT -CCAACAACACCAACGGTAGCCTTT -CCAACAACACCAACGGTAGGTCTT -CCAACAACACCAACGGTAACGCTT -CCAACAACACCAACGGTAAGCGTT -CCAACAACACCAACGGTATTCGTC -CCAACAACACCAACGGTATCTCTC -CCAACAACACCAACGGTATGGATC -CCAACAACACCAACGGTACACTTC -CCAACAACACCAACGGTAGTACTC -CCAACAACACCAACGGTAGATGTC -CCAACAACACCAACGGTAACAGTC -CCAACAACACCAACGGTATTGCTG -CCAACAACACCAACGGTATCCATG -CCAACAACACCAACGGTATGTGTG -CCAACAACACCAACGGTACTAGTG -CCAACAACACCAACGGTACATCTG -CCAACAACACCAACGGTAGAGTTG -CCAACAACACCAACGGTAAGACTG -CCAACAACACCAACGGTATCGGTA -CCAACAACACCAACGGTATGCCTA -CCAACAACACCAACGGTACCACTA -CCAACAACACCAACGGTAGGAGTA -CCAACAACACCAACGGTATCGTCT -CCAACAACACCAACGGTATGCACT -CCAACAACACCAACGGTACTGACT -CCAACAACACCAACGGTACAACCT -CCAACAACACCAACGGTAGCTACT -CCAACAACACCAACGGTAGGATCT -CCAACAACACCAACGGTAAAGGCT -CCAACAACACCAACGGTATCAACC -CCAACAACACCAACGGTATGTTCC -CCAACAACACCAACGGTAATTCCC -CCAACAACACCAACGGTATTCTCG -CCAACAACACCAACGGTATAGACG -CCAACAACACCAACGGTAGTAACG -CCAACAACACCAACGGTAACTTCG -CCAACAACACCAACGGTATACGCA -CCAACAACACCAACGGTACTTGCA -CCAACAACACCAACGGTACGAACA -CCAACAACACCAACGGTACAGTCA -CCAACAACACCAACGGTAGATCCA -CCAACAACACCAACGGTAACGACA -CCAACAACACCAACGGTAAGCTCA -CCAACAACACCAACGGTATCACGT -CCAACAACACCAACGGTACGTAGT -CCAACAACACCAACGGTAGTCAGT -CCAACAACACCAACGGTAGAAGGT -CCAACAACACCAACGGTAAACCGT -CCAACAACACCAACGGTATTGTGC -CCAACAACACCAACGGTACTAAGC -CCAACAACACCAACGGTAACTAGC -CCAACAACACCAACGGTAAGATGC -CCAACAACACCAACGGTATGAAGG -CCAACAACACCAACGGTACAATGG -CCAACAACACCAACGGTAATGAGG -CCAACAACACCAACGGTAAATGGG -CCAACAACACCAACGGTATCCTGA -CCAACAACACCAACGGTATAGCGA -CCAACAACACCAACGGTACACAGA -CCAACAACACCAACGGTAGCAAGA -CCAACAACACCAACGGTAGGTTGA -CCAACAACACCAACGGTATCCGAT -CCAACAACACCAACGGTATGGCAT -CCAACAACACCAACGGTACGAGAT -CCAACAACACCAACGGTATACCAC -CCAACAACACCAACGGTACAGAAC -CCAACAACACCAACGGTAGTCTAC -CCAACAACACCAACGGTAACGTAC -CCAACAACACCAACGGTAAGTGAC -CCAACAACACCAACGGTACTGTAG -CCAACAACACCAACGGTACCTAAG -CCAACAACACCAACGGTAGTTCAG -CCAACAACACCAACGGTAGCATAG -CCAACAACACCAACGGTAGACAAG -CCAACAACACCAACGGTAAAGCAG -CCAACAACACCAACGGTACGTCAA -CCAACAACACCAACGGTAGCTGAA -CCAACAACACCAACGGTAAGTACG -CCAACAACACCAACGGTAATCCGA -CCAACAACACCAACGGTAATGGGA -CCAACAACACCAACGGTAGTGCAA -CCAACAACACCAACGGTAGAGGAA -CCAACAACACCAACGGTACAGGTA -CCAACAACACCAACGGTAGACTCT -CCAACAACACCAACGGTAAGTCCT -CCAACAACACCAACGGTATAAGCC -CCAACAACACCAACGGTAATAGCC -CCAACAACACCAACGGTATAACCG -CCAACAACACCAACGGTAATGCCA -CCAACAACACCATCGACTGGAAAC -CCAACAACACCATCGACTAACACC -CCAACAACACCATCGACTATCGAG -CCAACAACACCATCGACTCTCCTT -CCAACAACACCATCGACTCCTGTT -CCAACAACACCATCGACTCGGTTT -CCAACAACACCATCGACTGTGGTT -CCAACAACACCATCGACTGCCTTT -CCAACAACACCATCGACTGGTCTT -CCAACAACACCATCGACTACGCTT -CCAACAACACCATCGACTAGCGTT -CCAACAACACCATCGACTTTCGTC -CCAACAACACCATCGACTTCTCTC -CCAACAACACCATCGACTTGGATC -CCAACAACACCATCGACTCACTTC -CCAACAACACCATCGACTGTACTC -CCAACAACACCATCGACTGATGTC -CCAACAACACCATCGACTACAGTC -CCAACAACACCATCGACTTTGCTG -CCAACAACACCATCGACTTCCATG -CCAACAACACCATCGACTTGTGTG -CCAACAACACCATCGACTCTAGTG -CCAACAACACCATCGACTCATCTG -CCAACAACACCATCGACTGAGTTG -CCAACAACACCATCGACTAGACTG -CCAACAACACCATCGACTTCGGTA -CCAACAACACCATCGACTTGCCTA -CCAACAACACCATCGACTCCACTA -CCAACAACACCATCGACTGGAGTA -CCAACAACACCATCGACTTCGTCT -CCAACAACACCATCGACTTGCACT -CCAACAACACCATCGACTCTGACT -CCAACAACACCATCGACTCAACCT -CCAACAACACCATCGACTGCTACT -CCAACAACACCATCGACTGGATCT -CCAACAACACCATCGACTAAGGCT -CCAACAACACCATCGACTTCAACC -CCAACAACACCATCGACTTGTTCC -CCAACAACACCATCGACTATTCCC -CCAACAACACCATCGACTTTCTCG -CCAACAACACCATCGACTTAGACG -CCAACAACACCATCGACTGTAACG -CCAACAACACCATCGACTACTTCG -CCAACAACACCATCGACTTACGCA -CCAACAACACCATCGACTCTTGCA -CCAACAACACCATCGACTCGAACA -CCAACAACACCATCGACTCAGTCA -CCAACAACACCATCGACTGATCCA -CCAACAACACCATCGACTACGACA -CCAACAACACCATCGACTAGCTCA -CCAACAACACCATCGACTTCACGT -CCAACAACACCATCGACTCGTAGT -CCAACAACACCATCGACTGTCAGT -CCAACAACACCATCGACTGAAGGT -CCAACAACACCATCGACTAACCGT -CCAACAACACCATCGACTTTGTGC -CCAACAACACCATCGACTCTAAGC -CCAACAACACCATCGACTACTAGC -CCAACAACACCATCGACTAGATGC -CCAACAACACCATCGACTTGAAGG -CCAACAACACCATCGACTCAATGG -CCAACAACACCATCGACTATGAGG -CCAACAACACCATCGACTAATGGG -CCAACAACACCATCGACTTCCTGA -CCAACAACACCATCGACTTAGCGA -CCAACAACACCATCGACTCACAGA -CCAACAACACCATCGACTGCAAGA -CCAACAACACCATCGACTGGTTGA -CCAACAACACCATCGACTTCCGAT -CCAACAACACCATCGACTTGGCAT -CCAACAACACCATCGACTCGAGAT -CCAACAACACCATCGACTTACCAC -CCAACAACACCATCGACTCAGAAC -CCAACAACACCATCGACTGTCTAC -CCAACAACACCATCGACTACGTAC -CCAACAACACCATCGACTAGTGAC -CCAACAACACCATCGACTCTGTAG -CCAACAACACCATCGACTCCTAAG -CCAACAACACCATCGACTGTTCAG -CCAACAACACCATCGACTGCATAG -CCAACAACACCATCGACTGACAAG -CCAACAACACCATCGACTAAGCAG -CCAACAACACCATCGACTCGTCAA -CCAACAACACCATCGACTGCTGAA -CCAACAACACCATCGACTAGTACG -CCAACAACACCATCGACTATCCGA -CCAACAACACCATCGACTATGGGA -CCAACAACACCATCGACTGTGCAA -CCAACAACACCATCGACTGAGGAA -CCAACAACACCATCGACTCAGGTA -CCAACAACACCATCGACTGACTCT -CCAACAACACCATCGACTAGTCCT -CCAACAACACCATCGACTTAAGCC -CCAACAACACCATCGACTATAGCC -CCAACAACACCATCGACTTAACCG -CCAACAACACCATCGACTATGCCA -CCAACAACACCAGCATACGGAAAC -CCAACAACACCAGCATACAACACC -CCAACAACACCAGCATACATCGAG -CCAACAACACCAGCATACCTCCTT -CCAACAACACCAGCATACCCTGTT -CCAACAACACCAGCATACCGGTTT -CCAACAACACCAGCATACGTGGTT -CCAACAACACCAGCATACGCCTTT -CCAACAACACCAGCATACGGTCTT -CCAACAACACCAGCATACACGCTT -CCAACAACACCAGCATACAGCGTT -CCAACAACACCAGCATACTTCGTC -CCAACAACACCAGCATACTCTCTC -CCAACAACACCAGCATACTGGATC -CCAACAACACCAGCATACCACTTC -CCAACAACACCAGCATACGTACTC -CCAACAACACCAGCATACGATGTC -CCAACAACACCAGCATACACAGTC -CCAACAACACCAGCATACTTGCTG -CCAACAACACCAGCATACTCCATG -CCAACAACACCAGCATACTGTGTG -CCAACAACACCAGCATACCTAGTG -CCAACAACACCAGCATACCATCTG -CCAACAACACCAGCATACGAGTTG -CCAACAACACCAGCATACAGACTG -CCAACAACACCAGCATACTCGGTA -CCAACAACACCAGCATACTGCCTA -CCAACAACACCAGCATACCCACTA -CCAACAACACCAGCATACGGAGTA -CCAACAACACCAGCATACTCGTCT -CCAACAACACCAGCATACTGCACT -CCAACAACACCAGCATACCTGACT -CCAACAACACCAGCATACCAACCT -CCAACAACACCAGCATACGCTACT -CCAACAACACCAGCATACGGATCT -CCAACAACACCAGCATACAAGGCT -CCAACAACACCAGCATACTCAACC -CCAACAACACCAGCATACTGTTCC -CCAACAACACCAGCATACATTCCC -CCAACAACACCAGCATACTTCTCG -CCAACAACACCAGCATACTAGACG -CCAACAACACCAGCATACGTAACG -CCAACAACACCAGCATACACTTCG -CCAACAACACCAGCATACTACGCA -CCAACAACACCAGCATACCTTGCA -CCAACAACACCAGCATACCGAACA -CCAACAACACCAGCATACCAGTCA -CCAACAACACCAGCATACGATCCA -CCAACAACACCAGCATACACGACA -CCAACAACACCAGCATACAGCTCA -CCAACAACACCAGCATACTCACGT -CCAACAACACCAGCATACCGTAGT -CCAACAACACCAGCATACGTCAGT -CCAACAACACCAGCATACGAAGGT -CCAACAACACCAGCATACAACCGT -CCAACAACACCAGCATACTTGTGC -CCAACAACACCAGCATACCTAAGC -CCAACAACACCAGCATACACTAGC -CCAACAACACCAGCATACAGATGC -CCAACAACACCAGCATACTGAAGG -CCAACAACACCAGCATACCAATGG -CCAACAACACCAGCATACATGAGG -CCAACAACACCAGCATACAATGGG -CCAACAACACCAGCATACTCCTGA -CCAACAACACCAGCATACTAGCGA -CCAACAACACCAGCATACCACAGA -CCAACAACACCAGCATACGCAAGA -CCAACAACACCAGCATACGGTTGA -CCAACAACACCAGCATACTCCGAT -CCAACAACACCAGCATACTGGCAT -CCAACAACACCAGCATACCGAGAT -CCAACAACACCAGCATACTACCAC -CCAACAACACCAGCATACCAGAAC -CCAACAACACCAGCATACGTCTAC -CCAACAACACCAGCATACACGTAC -CCAACAACACCAGCATACAGTGAC -CCAACAACACCAGCATACCTGTAG -CCAACAACACCAGCATACCCTAAG -CCAACAACACCAGCATACGTTCAG -CCAACAACACCAGCATACGCATAG -CCAACAACACCAGCATACGACAAG -CCAACAACACCAGCATACAAGCAG -CCAACAACACCAGCATACCGTCAA -CCAACAACACCAGCATACGCTGAA -CCAACAACACCAGCATACAGTACG -CCAACAACACCAGCATACATCCGA -CCAACAACACCAGCATACATGGGA -CCAACAACACCAGCATACGTGCAA -CCAACAACACCAGCATACGAGGAA -CCAACAACACCAGCATACCAGGTA -CCAACAACACCAGCATACGACTCT -CCAACAACACCAGCATACAGTCCT -CCAACAACACCAGCATACTAAGCC -CCAACAACACCAGCATACATAGCC -CCAACAACACCAGCATACTAACCG -CCAACAACACCAGCATACATGCCA -CCAACAACACCAGCACTTGGAAAC -CCAACAACACCAGCACTTAACACC -CCAACAACACCAGCACTTATCGAG -CCAACAACACCAGCACTTCTCCTT -CCAACAACACCAGCACTTCCTGTT -CCAACAACACCAGCACTTCGGTTT -CCAACAACACCAGCACTTGTGGTT -CCAACAACACCAGCACTTGCCTTT -CCAACAACACCAGCACTTGGTCTT -CCAACAACACCAGCACTTACGCTT -CCAACAACACCAGCACTTAGCGTT -CCAACAACACCAGCACTTTTCGTC -CCAACAACACCAGCACTTTCTCTC -CCAACAACACCAGCACTTTGGATC -CCAACAACACCAGCACTTCACTTC -CCAACAACACCAGCACTTGTACTC -CCAACAACACCAGCACTTGATGTC -CCAACAACACCAGCACTTACAGTC -CCAACAACACCAGCACTTTTGCTG -CCAACAACACCAGCACTTTCCATG -CCAACAACACCAGCACTTTGTGTG -CCAACAACACCAGCACTTCTAGTG -CCAACAACACCAGCACTTCATCTG -CCAACAACACCAGCACTTGAGTTG -CCAACAACACCAGCACTTAGACTG -CCAACAACACCAGCACTTTCGGTA -CCAACAACACCAGCACTTTGCCTA -CCAACAACACCAGCACTTCCACTA -CCAACAACACCAGCACTTGGAGTA -CCAACAACACCAGCACTTTCGTCT -CCAACAACACCAGCACTTTGCACT -CCAACAACACCAGCACTTCTGACT -CCAACAACACCAGCACTTCAACCT -CCAACAACACCAGCACTTGCTACT -CCAACAACACCAGCACTTGGATCT -CCAACAACACCAGCACTTAAGGCT -CCAACAACACCAGCACTTTCAACC -CCAACAACACCAGCACTTTGTTCC -CCAACAACACCAGCACTTATTCCC -CCAACAACACCAGCACTTTTCTCG -CCAACAACACCAGCACTTTAGACG -CCAACAACACCAGCACTTGTAACG -CCAACAACACCAGCACTTACTTCG -CCAACAACACCAGCACTTTACGCA -CCAACAACACCAGCACTTCTTGCA -CCAACAACACCAGCACTTCGAACA -CCAACAACACCAGCACTTCAGTCA -CCAACAACACCAGCACTTGATCCA -CCAACAACACCAGCACTTACGACA -CCAACAACACCAGCACTTAGCTCA -CCAACAACACCAGCACTTTCACGT -CCAACAACACCAGCACTTCGTAGT -CCAACAACACCAGCACTTGTCAGT -CCAACAACACCAGCACTTGAAGGT -CCAACAACACCAGCACTTAACCGT -CCAACAACACCAGCACTTTTGTGC -CCAACAACACCAGCACTTCTAAGC -CCAACAACACCAGCACTTACTAGC -CCAACAACACCAGCACTTAGATGC -CCAACAACACCAGCACTTTGAAGG -CCAACAACACCAGCACTTCAATGG -CCAACAACACCAGCACTTATGAGG -CCAACAACACCAGCACTTAATGGG -CCAACAACACCAGCACTTTCCTGA -CCAACAACACCAGCACTTTAGCGA -CCAACAACACCAGCACTTCACAGA -CCAACAACACCAGCACTTGCAAGA -CCAACAACACCAGCACTTGGTTGA -CCAACAACACCAGCACTTTCCGAT -CCAACAACACCAGCACTTTGGCAT -CCAACAACACCAGCACTTCGAGAT -CCAACAACACCAGCACTTTACCAC -CCAACAACACCAGCACTTCAGAAC -CCAACAACACCAGCACTTGTCTAC -CCAACAACACCAGCACTTACGTAC -CCAACAACACCAGCACTTAGTGAC -CCAACAACACCAGCACTTCTGTAG -CCAACAACACCAGCACTTCCTAAG -CCAACAACACCAGCACTTGTTCAG -CCAACAACACCAGCACTTGCATAG -CCAACAACACCAGCACTTGACAAG -CCAACAACACCAGCACTTAAGCAG -CCAACAACACCAGCACTTCGTCAA -CCAACAACACCAGCACTTGCTGAA -CCAACAACACCAGCACTTAGTACG -CCAACAACACCAGCACTTATCCGA -CCAACAACACCAGCACTTATGGGA -CCAACAACACCAGCACTTGTGCAA -CCAACAACACCAGCACTTGAGGAA -CCAACAACACCAGCACTTCAGGTA -CCAACAACACCAGCACTTGACTCT -CCAACAACACCAGCACTTAGTCCT -CCAACAACACCAGCACTTTAAGCC -CCAACAACACCAGCACTTATAGCC -CCAACAACACCAGCACTTTAACCG -CCAACAACACCAGCACTTATGCCA -CCAACAACACCAACACGAGGAAAC -CCAACAACACCAACACGAAACACC -CCAACAACACCAACACGAATCGAG -CCAACAACACCAACACGACTCCTT -CCAACAACACCAACACGACCTGTT -CCAACAACACCAACACGACGGTTT -CCAACAACACCAACACGAGTGGTT -CCAACAACACCAACACGAGCCTTT -CCAACAACACCAACACGAGGTCTT -CCAACAACACCAACACGAACGCTT -CCAACAACACCAACACGAAGCGTT -CCAACAACACCAACACGATTCGTC -CCAACAACACCAACACGATCTCTC -CCAACAACACCAACACGATGGATC -CCAACAACACCAACACGACACTTC -CCAACAACACCAACACGAGTACTC -CCAACAACACCAACACGAGATGTC -CCAACAACACCAACACGAACAGTC -CCAACAACACCAACACGATTGCTG -CCAACAACACCAACACGATCCATG -CCAACAACACCAACACGATGTGTG -CCAACAACACCAACACGACTAGTG -CCAACAACACCAACACGACATCTG -CCAACAACACCAACACGAGAGTTG -CCAACAACACCAACACGAAGACTG -CCAACAACACCAACACGATCGGTA -CCAACAACACCAACACGATGCCTA -CCAACAACACCAACACGACCACTA -CCAACAACACCAACACGAGGAGTA -CCAACAACACCAACACGATCGTCT -CCAACAACACCAACACGATGCACT -CCAACAACACCAACACGACTGACT -CCAACAACACCAACACGACAACCT -CCAACAACACCAACACGAGCTACT -CCAACAACACCAACACGAGGATCT -CCAACAACACCAACACGAAAGGCT -CCAACAACACCAACACGATCAACC -CCAACAACACCAACACGATGTTCC -CCAACAACACCAACACGAATTCCC -CCAACAACACCAACACGATTCTCG -CCAACAACACCAACACGATAGACG -CCAACAACACCAACACGAGTAACG -CCAACAACACCAACACGAACTTCG -CCAACAACACCAACACGATACGCA -CCAACAACACCAACACGACTTGCA -CCAACAACACCAACACGACGAACA -CCAACAACACCAACACGACAGTCA -CCAACAACACCAACACGAGATCCA -CCAACAACACCAACACGAACGACA -CCAACAACACCAACACGAAGCTCA -CCAACAACACCAACACGATCACGT -CCAACAACACCAACACGACGTAGT -CCAACAACACCAACACGAGTCAGT -CCAACAACACCAACACGAGAAGGT -CCAACAACACCAACACGAAACCGT -CCAACAACACCAACACGATTGTGC -CCAACAACACCAACACGACTAAGC -CCAACAACACCAACACGAACTAGC -CCAACAACACCAACACGAAGATGC -CCAACAACACCAACACGATGAAGG -CCAACAACACCAACACGACAATGG -CCAACAACACCAACACGAATGAGG -CCAACAACACCAACACGAAATGGG -CCAACAACACCAACACGATCCTGA -CCAACAACACCAACACGATAGCGA -CCAACAACACCAACACGACACAGA -CCAACAACACCAACACGAGCAAGA -CCAACAACACCAACACGAGGTTGA -CCAACAACACCAACACGATCCGAT -CCAACAACACCAACACGATGGCAT -CCAACAACACCAACACGACGAGAT -CCAACAACACCAACACGATACCAC -CCAACAACACCAACACGACAGAAC -CCAACAACACCAACACGAGTCTAC -CCAACAACACCAACACGAACGTAC -CCAACAACACCAACACGAAGTGAC -CCAACAACACCAACACGACTGTAG -CCAACAACACCAACACGACCTAAG -CCAACAACACCAACACGAGTTCAG -CCAACAACACCAACACGAGCATAG -CCAACAACACCAACACGAGACAAG -CCAACAACACCAACACGAAAGCAG -CCAACAACACCAACACGACGTCAA -CCAACAACACCAACACGAGCTGAA -CCAACAACACCAACACGAAGTACG -CCAACAACACCAACACGAATCCGA -CCAACAACACCAACACGAATGGGA -CCAACAACACCAACACGAGTGCAA -CCAACAACACCAACACGAGAGGAA -CCAACAACACCAACACGACAGGTA -CCAACAACACCAACACGAGACTCT -CCAACAACACCAACACGAAGTCCT -CCAACAACACCAACACGATAAGCC -CCAACAACACCAACACGAATAGCC -CCAACAACACCAACACGATAACCG -CCAACAACACCAACACGAATGCCA -CCAACAACACCATCACAGGGAAAC -CCAACAACACCATCACAGAACACC -CCAACAACACCATCACAGATCGAG -CCAACAACACCATCACAGCTCCTT -CCAACAACACCATCACAGCCTGTT -CCAACAACACCATCACAGCGGTTT -CCAACAACACCATCACAGGTGGTT -CCAACAACACCATCACAGGCCTTT -CCAACAACACCATCACAGGGTCTT -CCAACAACACCATCACAGACGCTT -CCAACAACACCATCACAGAGCGTT -CCAACAACACCATCACAGTTCGTC -CCAACAACACCATCACAGTCTCTC -CCAACAACACCATCACAGTGGATC -CCAACAACACCATCACAGCACTTC -CCAACAACACCATCACAGGTACTC -CCAACAACACCATCACAGGATGTC -CCAACAACACCATCACAGACAGTC -CCAACAACACCATCACAGTTGCTG -CCAACAACACCATCACAGTCCATG -CCAACAACACCATCACAGTGTGTG -CCAACAACACCATCACAGCTAGTG -CCAACAACACCATCACAGCATCTG -CCAACAACACCATCACAGGAGTTG -CCAACAACACCATCACAGAGACTG -CCAACAACACCATCACAGTCGGTA -CCAACAACACCATCACAGTGCCTA -CCAACAACACCATCACAGCCACTA -CCAACAACACCATCACAGGGAGTA -CCAACAACACCATCACAGTCGTCT -CCAACAACACCATCACAGTGCACT -CCAACAACACCATCACAGCTGACT -CCAACAACACCATCACAGCAACCT -CCAACAACACCATCACAGGCTACT -CCAACAACACCATCACAGGGATCT -CCAACAACACCATCACAGAAGGCT -CCAACAACACCATCACAGTCAACC -CCAACAACACCATCACAGTGTTCC -CCAACAACACCATCACAGATTCCC -CCAACAACACCATCACAGTTCTCG -CCAACAACACCATCACAGTAGACG -CCAACAACACCATCACAGGTAACG -CCAACAACACCATCACAGACTTCG -CCAACAACACCATCACAGTACGCA -CCAACAACACCATCACAGCTTGCA -CCAACAACACCATCACAGCGAACA -CCAACAACACCATCACAGCAGTCA -CCAACAACACCATCACAGGATCCA -CCAACAACACCATCACAGACGACA -CCAACAACACCATCACAGAGCTCA -CCAACAACACCATCACAGTCACGT -CCAACAACACCATCACAGCGTAGT -CCAACAACACCATCACAGGTCAGT -CCAACAACACCATCACAGGAAGGT -CCAACAACACCATCACAGAACCGT -CCAACAACACCATCACAGTTGTGC -CCAACAACACCATCACAGCTAAGC -CCAACAACACCATCACAGACTAGC -CCAACAACACCATCACAGAGATGC -CCAACAACACCATCACAGTGAAGG -CCAACAACACCATCACAGCAATGG -CCAACAACACCATCACAGATGAGG -CCAACAACACCATCACAGAATGGG -CCAACAACACCATCACAGTCCTGA -CCAACAACACCATCACAGTAGCGA -CCAACAACACCATCACAGCACAGA -CCAACAACACCATCACAGGCAAGA -CCAACAACACCATCACAGGGTTGA -CCAACAACACCATCACAGTCCGAT -CCAACAACACCATCACAGTGGCAT -CCAACAACACCATCACAGCGAGAT -CCAACAACACCATCACAGTACCAC -CCAACAACACCATCACAGCAGAAC -CCAACAACACCATCACAGGTCTAC -CCAACAACACCATCACAGACGTAC -CCAACAACACCATCACAGAGTGAC -CCAACAACACCATCACAGCTGTAG -CCAACAACACCATCACAGCCTAAG -CCAACAACACCATCACAGGTTCAG -CCAACAACACCATCACAGGCATAG -CCAACAACACCATCACAGGACAAG -CCAACAACACCATCACAGAAGCAG -CCAACAACACCATCACAGCGTCAA -CCAACAACACCATCACAGGCTGAA -CCAACAACACCATCACAGAGTACG -CCAACAACACCATCACAGATCCGA -CCAACAACACCATCACAGATGGGA -CCAACAACACCATCACAGGTGCAA -CCAACAACACCATCACAGGAGGAA -CCAACAACACCATCACAGCAGGTA -CCAACAACACCATCACAGGACTCT -CCAACAACACCATCACAGAGTCCT -CCAACAACACCATCACAGTAAGCC -CCAACAACACCATCACAGATAGCC -CCAACAACACCATCACAGTAACCG -CCAACAACACCATCACAGATGCCA -CCAACAACACCACCAGATGGAAAC -CCAACAACACCACCAGATAACACC -CCAACAACACCACCAGATATCGAG -CCAACAACACCACCAGATCTCCTT -CCAACAACACCACCAGATCCTGTT -CCAACAACACCACCAGATCGGTTT -CCAACAACACCACCAGATGTGGTT -CCAACAACACCACCAGATGCCTTT -CCAACAACACCACCAGATGGTCTT -CCAACAACACCACCAGATACGCTT -CCAACAACACCACCAGATAGCGTT -CCAACAACACCACCAGATTTCGTC -CCAACAACACCACCAGATTCTCTC -CCAACAACACCACCAGATTGGATC -CCAACAACACCACCAGATCACTTC -CCAACAACACCACCAGATGTACTC -CCAACAACACCACCAGATGATGTC -CCAACAACACCACCAGATACAGTC -CCAACAACACCACCAGATTTGCTG -CCAACAACACCACCAGATTCCATG -CCAACAACACCACCAGATTGTGTG -CCAACAACACCACCAGATCTAGTG -CCAACAACACCACCAGATCATCTG -CCAACAACACCACCAGATGAGTTG -CCAACAACACCACCAGATAGACTG -CCAACAACACCACCAGATTCGGTA -CCAACAACACCACCAGATTGCCTA -CCAACAACACCACCAGATCCACTA -CCAACAACACCACCAGATGGAGTA -CCAACAACACCACCAGATTCGTCT -CCAACAACACCACCAGATTGCACT -CCAACAACACCACCAGATCTGACT -CCAACAACACCACCAGATCAACCT -CCAACAACACCACCAGATGCTACT -CCAACAACACCACCAGATGGATCT -CCAACAACACCACCAGATAAGGCT -CCAACAACACCACCAGATTCAACC -CCAACAACACCACCAGATTGTTCC -CCAACAACACCACCAGATATTCCC -CCAACAACACCACCAGATTTCTCG -CCAACAACACCACCAGATTAGACG -CCAACAACACCACCAGATGTAACG -CCAACAACACCACCAGATACTTCG -CCAACAACACCACCAGATTACGCA -CCAACAACACCACCAGATCTTGCA -CCAACAACACCACCAGATCGAACA -CCAACAACACCACCAGATCAGTCA -CCAACAACACCACCAGATGATCCA -CCAACAACACCACCAGATACGACA -CCAACAACACCACCAGATAGCTCA -CCAACAACACCACCAGATTCACGT -CCAACAACACCACCAGATCGTAGT -CCAACAACACCACCAGATGTCAGT -CCAACAACACCACCAGATGAAGGT -CCAACAACACCACCAGATAACCGT -CCAACAACACCACCAGATTTGTGC -CCAACAACACCACCAGATCTAAGC -CCAACAACACCACCAGATACTAGC -CCAACAACACCACCAGATAGATGC -CCAACAACACCACCAGATTGAAGG -CCAACAACACCACCAGATCAATGG -CCAACAACACCACCAGATATGAGG -CCAACAACACCACCAGATAATGGG -CCAACAACACCACCAGATTCCTGA -CCAACAACACCACCAGATTAGCGA -CCAACAACACCACCAGATCACAGA -CCAACAACACCACCAGATGCAAGA -CCAACAACACCACCAGATGGTTGA -CCAACAACACCACCAGATTCCGAT -CCAACAACACCACCAGATTGGCAT -CCAACAACACCACCAGATCGAGAT -CCAACAACACCACCAGATTACCAC -CCAACAACACCACCAGATCAGAAC -CCAACAACACCACCAGATGTCTAC -CCAACAACACCACCAGATACGTAC -CCAACAACACCACCAGATAGTGAC -CCAACAACACCACCAGATCTGTAG -CCAACAACACCACCAGATCCTAAG -CCAACAACACCACCAGATGTTCAG -CCAACAACACCACCAGATGCATAG -CCAACAACACCACCAGATGACAAG -CCAACAACACCACCAGATAAGCAG -CCAACAACACCACCAGATCGTCAA -CCAACAACACCACCAGATGCTGAA -CCAACAACACCACCAGATAGTACG -CCAACAACACCACCAGATATCCGA -CCAACAACACCACCAGATATGGGA -CCAACAACACCACCAGATGTGCAA -CCAACAACACCACCAGATGAGGAA -CCAACAACACCACCAGATCAGGTA -CCAACAACACCACCAGATGACTCT -CCAACAACACCACCAGATAGTCCT -CCAACAACACCACCAGATTAAGCC -CCAACAACACCACCAGATATAGCC -CCAACAACACCACCAGATTAACCG -CCAACAACACCACCAGATATGCCA -CCAACAACACCAACAACGGGAAAC -CCAACAACACCAACAACGAACACC -CCAACAACACCAACAACGATCGAG -CCAACAACACCAACAACGCTCCTT -CCAACAACACCAACAACGCCTGTT -CCAACAACACCAACAACGCGGTTT -CCAACAACACCAACAACGGTGGTT -CCAACAACACCAACAACGGCCTTT -CCAACAACACCAACAACGGGTCTT -CCAACAACACCAACAACGACGCTT -CCAACAACACCAACAACGAGCGTT -CCAACAACACCAACAACGTTCGTC -CCAACAACACCAACAACGTCTCTC -CCAACAACACCAACAACGTGGATC -CCAACAACACCAACAACGCACTTC -CCAACAACACCAACAACGGTACTC -CCAACAACACCAACAACGGATGTC -CCAACAACACCAACAACGACAGTC -CCAACAACACCAACAACGTTGCTG -CCAACAACACCAACAACGTCCATG -CCAACAACACCAACAACGTGTGTG -CCAACAACACCAACAACGCTAGTG -CCAACAACACCAACAACGCATCTG -CCAACAACACCAACAACGGAGTTG -CCAACAACACCAACAACGAGACTG -CCAACAACACCAACAACGTCGGTA -CCAACAACACCAACAACGTGCCTA -CCAACAACACCAACAACGCCACTA -CCAACAACACCAACAACGGGAGTA -CCAACAACACCAACAACGTCGTCT -CCAACAACACCAACAACGTGCACT -CCAACAACACCAACAACGCTGACT -CCAACAACACCAACAACGCAACCT -CCAACAACACCAACAACGGCTACT -CCAACAACACCAACAACGGGATCT -CCAACAACACCAACAACGAAGGCT -CCAACAACACCAACAACGTCAACC -CCAACAACACCAACAACGTGTTCC -CCAACAACACCAACAACGATTCCC -CCAACAACACCAACAACGTTCTCG -CCAACAACACCAACAACGTAGACG -CCAACAACACCAACAACGGTAACG -CCAACAACACCAACAACGACTTCG -CCAACAACACCAACAACGTACGCA -CCAACAACACCAACAACGCTTGCA -CCAACAACACCAACAACGCGAACA -CCAACAACACCAACAACGCAGTCA -CCAACAACACCAACAACGGATCCA -CCAACAACACCAACAACGACGACA -CCAACAACACCAACAACGAGCTCA -CCAACAACACCAACAACGTCACGT -CCAACAACACCAACAACGCGTAGT -CCAACAACACCAACAACGGTCAGT -CCAACAACACCAACAACGGAAGGT -CCAACAACACCAACAACGAACCGT -CCAACAACACCAACAACGTTGTGC -CCAACAACACCAACAACGCTAAGC -CCAACAACACCAACAACGACTAGC -CCAACAACACCAACAACGAGATGC -CCAACAACACCAACAACGTGAAGG -CCAACAACACCAACAACGCAATGG -CCAACAACACCAACAACGATGAGG -CCAACAACACCAACAACGAATGGG -CCAACAACACCAACAACGTCCTGA -CCAACAACACCAACAACGTAGCGA -CCAACAACACCAACAACGCACAGA -CCAACAACACCAACAACGGCAAGA -CCAACAACACCAACAACGGGTTGA -CCAACAACACCAACAACGTCCGAT -CCAACAACACCAACAACGTGGCAT -CCAACAACACCAACAACGCGAGAT -CCAACAACACCAACAACGTACCAC -CCAACAACACCAACAACGCAGAAC -CCAACAACACCAACAACGGTCTAC -CCAACAACACCAACAACGACGTAC -CCAACAACACCAACAACGAGTGAC -CCAACAACACCAACAACGCTGTAG -CCAACAACACCAACAACGCCTAAG -CCAACAACACCAACAACGGTTCAG -CCAACAACACCAACAACGGCATAG -CCAACAACACCAACAACGGACAAG -CCAACAACACCAACAACGAAGCAG -CCAACAACACCAACAACGCGTCAA -CCAACAACACCAACAACGGCTGAA -CCAACAACACCAACAACGAGTACG -CCAACAACACCAACAACGATCCGA -CCAACAACACCAACAACGATGGGA -CCAACAACACCAACAACGGTGCAA -CCAACAACACCAACAACGGAGGAA -CCAACAACACCAACAACGCAGGTA -CCAACAACACCAACAACGGACTCT -CCAACAACACCAACAACGAGTCCT -CCAACAACACCAACAACGTAAGCC -CCAACAACACCAACAACGATAGCC -CCAACAACACCAACAACGTAACCG -CCAACAACACCAACAACGATGCCA -CCAACAACACCATCAAGCGGAAAC -CCAACAACACCATCAAGCAACACC -CCAACAACACCATCAAGCATCGAG -CCAACAACACCATCAAGCCTCCTT -CCAACAACACCATCAAGCCCTGTT -CCAACAACACCATCAAGCCGGTTT -CCAACAACACCATCAAGCGTGGTT -CCAACAACACCATCAAGCGCCTTT -CCAACAACACCATCAAGCGGTCTT -CCAACAACACCATCAAGCACGCTT -CCAACAACACCATCAAGCAGCGTT -CCAACAACACCATCAAGCTTCGTC -CCAACAACACCATCAAGCTCTCTC -CCAACAACACCATCAAGCTGGATC -CCAACAACACCATCAAGCCACTTC -CCAACAACACCATCAAGCGTACTC -CCAACAACACCATCAAGCGATGTC -CCAACAACACCATCAAGCACAGTC -CCAACAACACCATCAAGCTTGCTG -CCAACAACACCATCAAGCTCCATG -CCAACAACACCATCAAGCTGTGTG -CCAACAACACCATCAAGCCTAGTG -CCAACAACACCATCAAGCCATCTG -CCAACAACACCATCAAGCGAGTTG -CCAACAACACCATCAAGCAGACTG -CCAACAACACCATCAAGCTCGGTA -CCAACAACACCATCAAGCTGCCTA -CCAACAACACCATCAAGCCCACTA -CCAACAACACCATCAAGCGGAGTA -CCAACAACACCATCAAGCTCGTCT -CCAACAACACCATCAAGCTGCACT -CCAACAACACCATCAAGCCTGACT -CCAACAACACCATCAAGCCAACCT -CCAACAACACCATCAAGCGCTACT -CCAACAACACCATCAAGCGGATCT -CCAACAACACCATCAAGCAAGGCT -CCAACAACACCATCAAGCTCAACC -CCAACAACACCATCAAGCTGTTCC -CCAACAACACCATCAAGCATTCCC -CCAACAACACCATCAAGCTTCTCG -CCAACAACACCATCAAGCTAGACG -CCAACAACACCATCAAGCGTAACG -CCAACAACACCATCAAGCACTTCG -CCAACAACACCATCAAGCTACGCA -CCAACAACACCATCAAGCCTTGCA -CCAACAACACCATCAAGCCGAACA -CCAACAACACCATCAAGCCAGTCA -CCAACAACACCATCAAGCGATCCA -CCAACAACACCATCAAGCACGACA -CCAACAACACCATCAAGCAGCTCA -CCAACAACACCATCAAGCTCACGT -CCAACAACACCATCAAGCCGTAGT -CCAACAACACCATCAAGCGTCAGT -CCAACAACACCATCAAGCGAAGGT -CCAACAACACCATCAAGCAACCGT -CCAACAACACCATCAAGCTTGTGC -CCAACAACACCATCAAGCCTAAGC -CCAACAACACCATCAAGCACTAGC -CCAACAACACCATCAAGCAGATGC -CCAACAACACCATCAAGCTGAAGG -CCAACAACACCATCAAGCCAATGG -CCAACAACACCATCAAGCATGAGG -CCAACAACACCATCAAGCAATGGG -CCAACAACACCATCAAGCTCCTGA -CCAACAACACCATCAAGCTAGCGA -CCAACAACACCATCAAGCCACAGA -CCAACAACACCATCAAGCGCAAGA -CCAACAACACCATCAAGCGGTTGA -CCAACAACACCATCAAGCTCCGAT -CCAACAACACCATCAAGCTGGCAT -CCAACAACACCATCAAGCCGAGAT -CCAACAACACCATCAAGCTACCAC -CCAACAACACCATCAAGCCAGAAC -CCAACAACACCATCAAGCGTCTAC -CCAACAACACCATCAAGCACGTAC -CCAACAACACCATCAAGCAGTGAC -CCAACAACACCATCAAGCCTGTAG -CCAACAACACCATCAAGCCCTAAG -CCAACAACACCATCAAGCGTTCAG -CCAACAACACCATCAAGCGCATAG -CCAACAACACCATCAAGCGACAAG -CCAACAACACCATCAAGCAAGCAG -CCAACAACACCATCAAGCCGTCAA -CCAACAACACCATCAAGCGCTGAA -CCAACAACACCATCAAGCAGTACG -CCAACAACACCATCAAGCATCCGA -CCAACAACACCATCAAGCATGGGA -CCAACAACACCATCAAGCGTGCAA -CCAACAACACCATCAAGCGAGGAA -CCAACAACACCATCAAGCCAGGTA -CCAACAACACCATCAAGCGACTCT -CCAACAACACCATCAAGCAGTCCT -CCAACAACACCATCAAGCTAAGCC -CCAACAACACCATCAAGCATAGCC -CCAACAACACCATCAAGCTAACCG -CCAACAACACCATCAAGCATGCCA -CCAACAACACCACGTTCAGGAAAC -CCAACAACACCACGTTCAAACACC -CCAACAACACCACGTTCAATCGAG -CCAACAACACCACGTTCACTCCTT -CCAACAACACCACGTTCACCTGTT -CCAACAACACCACGTTCACGGTTT -CCAACAACACCACGTTCAGTGGTT -CCAACAACACCACGTTCAGCCTTT -CCAACAACACCACGTTCAGGTCTT -CCAACAACACCACGTTCAACGCTT -CCAACAACACCACGTTCAAGCGTT -CCAACAACACCACGTTCATTCGTC -CCAACAACACCACGTTCATCTCTC -CCAACAACACCACGTTCATGGATC -CCAACAACACCACGTTCACACTTC -CCAACAACACCACGTTCAGTACTC -CCAACAACACCACGTTCAGATGTC -CCAACAACACCACGTTCAACAGTC -CCAACAACACCACGTTCATTGCTG -CCAACAACACCACGTTCATCCATG -CCAACAACACCACGTTCATGTGTG -CCAACAACACCACGTTCACTAGTG -CCAACAACACCACGTTCACATCTG -CCAACAACACCACGTTCAGAGTTG -CCAACAACACCACGTTCAAGACTG -CCAACAACACCACGTTCATCGGTA -CCAACAACACCACGTTCATGCCTA -CCAACAACACCACGTTCACCACTA -CCAACAACACCACGTTCAGGAGTA -CCAACAACACCACGTTCATCGTCT -CCAACAACACCACGTTCATGCACT -CCAACAACACCACGTTCACTGACT -CCAACAACACCACGTTCACAACCT -CCAACAACACCACGTTCAGCTACT -CCAACAACACCACGTTCAGGATCT -CCAACAACACCACGTTCAAAGGCT -CCAACAACACCACGTTCATCAACC -CCAACAACACCACGTTCATGTTCC -CCAACAACACCACGTTCAATTCCC -CCAACAACACCACGTTCATTCTCG -CCAACAACACCACGTTCATAGACG -CCAACAACACCACGTTCAGTAACG -CCAACAACACCACGTTCAACTTCG -CCAACAACACCACGTTCATACGCA -CCAACAACACCACGTTCACTTGCA -CCAACAACACCACGTTCACGAACA -CCAACAACACCACGTTCACAGTCA -CCAACAACACCACGTTCAGATCCA -CCAACAACACCACGTTCAACGACA -CCAACAACACCACGTTCAAGCTCA -CCAACAACACCACGTTCATCACGT -CCAACAACACCACGTTCACGTAGT -CCAACAACACCACGTTCAGTCAGT -CCAACAACACCACGTTCAGAAGGT -CCAACAACACCACGTTCAAACCGT -CCAACAACACCACGTTCATTGTGC -CCAACAACACCACGTTCACTAAGC -CCAACAACACCACGTTCAACTAGC -CCAACAACACCACGTTCAAGATGC -CCAACAACACCACGTTCATGAAGG -CCAACAACACCACGTTCACAATGG -CCAACAACACCACGTTCAATGAGG -CCAACAACACCACGTTCAAATGGG -CCAACAACACCACGTTCATCCTGA -CCAACAACACCACGTTCATAGCGA -CCAACAACACCACGTTCACACAGA -CCAACAACACCACGTTCAGCAAGA -CCAACAACACCACGTTCAGGTTGA -CCAACAACACCACGTTCATCCGAT -CCAACAACACCACGTTCATGGCAT -CCAACAACACCACGTTCACGAGAT -CCAACAACACCACGTTCATACCAC -CCAACAACACCACGTTCACAGAAC -CCAACAACACCACGTTCAGTCTAC -CCAACAACACCACGTTCAACGTAC -CCAACAACACCACGTTCAAGTGAC -CCAACAACACCACGTTCACTGTAG -CCAACAACACCACGTTCACCTAAG -CCAACAACACCACGTTCAGTTCAG -CCAACAACACCACGTTCAGCATAG -CCAACAACACCACGTTCAGACAAG -CCAACAACACCACGTTCAAAGCAG -CCAACAACACCACGTTCACGTCAA -CCAACAACACCACGTTCAGCTGAA -CCAACAACACCACGTTCAAGTACG -CCAACAACACCACGTTCAATCCGA -CCAACAACACCACGTTCAATGGGA -CCAACAACACCACGTTCAGTGCAA -CCAACAACACCACGTTCAGAGGAA -CCAACAACACCACGTTCACAGGTA -CCAACAACACCACGTTCAGACTCT -CCAACAACACCACGTTCAAGTCCT -CCAACAACACCACGTTCATAAGCC -CCAACAACACCACGTTCAATAGCC -CCAACAACACCACGTTCATAACCG -CCAACAACACCACGTTCAATGCCA -CCAACAACACCAAGTCGTGGAAAC -CCAACAACACCAAGTCGTAACACC -CCAACAACACCAAGTCGTATCGAG -CCAACAACACCAAGTCGTCTCCTT -CCAACAACACCAAGTCGTCCTGTT -CCAACAACACCAAGTCGTCGGTTT -CCAACAACACCAAGTCGTGTGGTT -CCAACAACACCAAGTCGTGCCTTT -CCAACAACACCAAGTCGTGGTCTT -CCAACAACACCAAGTCGTACGCTT -CCAACAACACCAAGTCGTAGCGTT -CCAACAACACCAAGTCGTTTCGTC -CCAACAACACCAAGTCGTTCTCTC -CCAACAACACCAAGTCGTTGGATC -CCAACAACACCAAGTCGTCACTTC -CCAACAACACCAAGTCGTGTACTC -CCAACAACACCAAGTCGTGATGTC -CCAACAACACCAAGTCGTACAGTC -CCAACAACACCAAGTCGTTTGCTG -CCAACAACACCAAGTCGTTCCATG -CCAACAACACCAAGTCGTTGTGTG -CCAACAACACCAAGTCGTCTAGTG -CCAACAACACCAAGTCGTCATCTG -CCAACAACACCAAGTCGTGAGTTG -CCAACAACACCAAGTCGTAGACTG -CCAACAACACCAAGTCGTTCGGTA -CCAACAACACCAAGTCGTTGCCTA -CCAACAACACCAAGTCGTCCACTA -CCAACAACACCAAGTCGTGGAGTA -CCAACAACACCAAGTCGTTCGTCT -CCAACAACACCAAGTCGTTGCACT -CCAACAACACCAAGTCGTCTGACT -CCAACAACACCAAGTCGTCAACCT -CCAACAACACCAAGTCGTGCTACT -CCAACAACACCAAGTCGTGGATCT -CCAACAACACCAAGTCGTAAGGCT -CCAACAACACCAAGTCGTTCAACC -CCAACAACACCAAGTCGTTGTTCC -CCAACAACACCAAGTCGTATTCCC -CCAACAACACCAAGTCGTTTCTCG -CCAACAACACCAAGTCGTTAGACG -CCAACAACACCAAGTCGTGTAACG -CCAACAACACCAAGTCGTACTTCG -CCAACAACACCAAGTCGTTACGCA -CCAACAACACCAAGTCGTCTTGCA -CCAACAACACCAAGTCGTCGAACA -CCAACAACACCAAGTCGTCAGTCA -CCAACAACACCAAGTCGTGATCCA -CCAACAACACCAAGTCGTACGACA -CCAACAACACCAAGTCGTAGCTCA -CCAACAACACCAAGTCGTTCACGT -CCAACAACACCAAGTCGTCGTAGT -CCAACAACACCAAGTCGTGTCAGT -CCAACAACACCAAGTCGTGAAGGT -CCAACAACACCAAGTCGTAACCGT -CCAACAACACCAAGTCGTTTGTGC -CCAACAACACCAAGTCGTCTAAGC -CCAACAACACCAAGTCGTACTAGC -CCAACAACACCAAGTCGTAGATGC -CCAACAACACCAAGTCGTTGAAGG -CCAACAACACCAAGTCGTCAATGG -CCAACAACACCAAGTCGTATGAGG -CCAACAACACCAAGTCGTAATGGG -CCAACAACACCAAGTCGTTCCTGA -CCAACAACACCAAGTCGTTAGCGA -CCAACAACACCAAGTCGTCACAGA -CCAACAACACCAAGTCGTGCAAGA -CCAACAACACCAAGTCGTGGTTGA -CCAACAACACCAAGTCGTTCCGAT -CCAACAACACCAAGTCGTTGGCAT -CCAACAACACCAAGTCGTCGAGAT -CCAACAACACCAAGTCGTTACCAC -CCAACAACACCAAGTCGTCAGAAC -CCAACAACACCAAGTCGTGTCTAC -CCAACAACACCAAGTCGTACGTAC -CCAACAACACCAAGTCGTAGTGAC -CCAACAACACCAAGTCGTCTGTAG -CCAACAACACCAAGTCGTCCTAAG -CCAACAACACCAAGTCGTGTTCAG -CCAACAACACCAAGTCGTGCATAG -CCAACAACACCAAGTCGTGACAAG -CCAACAACACCAAGTCGTAAGCAG -CCAACAACACCAAGTCGTCGTCAA -CCAACAACACCAAGTCGTGCTGAA -CCAACAACACCAAGTCGTAGTACG -CCAACAACACCAAGTCGTATCCGA -CCAACAACACCAAGTCGTATGGGA -CCAACAACACCAAGTCGTGTGCAA -CCAACAACACCAAGTCGTGAGGAA -CCAACAACACCAAGTCGTCAGGTA -CCAACAACACCAAGTCGTGACTCT -CCAACAACACCAAGTCGTAGTCCT -CCAACAACACCAAGTCGTTAAGCC -CCAACAACACCAAGTCGTATAGCC -CCAACAACACCAAGTCGTTAACCG -CCAACAACACCAAGTCGTATGCCA -CCAACAACACCAAGTGTCGGAAAC -CCAACAACACCAAGTGTCAACACC -CCAACAACACCAAGTGTCATCGAG -CCAACAACACCAAGTGTCCTCCTT -CCAACAACACCAAGTGTCCCTGTT -CCAACAACACCAAGTGTCCGGTTT -CCAACAACACCAAGTGTCGTGGTT -CCAACAACACCAAGTGTCGCCTTT -CCAACAACACCAAGTGTCGGTCTT -CCAACAACACCAAGTGTCACGCTT -CCAACAACACCAAGTGTCAGCGTT -CCAACAACACCAAGTGTCTTCGTC -CCAACAACACCAAGTGTCTCTCTC -CCAACAACACCAAGTGTCTGGATC -CCAACAACACCAAGTGTCCACTTC -CCAACAACACCAAGTGTCGTACTC -CCAACAACACCAAGTGTCGATGTC -CCAACAACACCAAGTGTCACAGTC -CCAACAACACCAAGTGTCTTGCTG -CCAACAACACCAAGTGTCTCCATG -CCAACAACACCAAGTGTCTGTGTG -CCAACAACACCAAGTGTCCTAGTG -CCAACAACACCAAGTGTCCATCTG -CCAACAACACCAAGTGTCGAGTTG -CCAACAACACCAAGTGTCAGACTG -CCAACAACACCAAGTGTCTCGGTA -CCAACAACACCAAGTGTCTGCCTA -CCAACAACACCAAGTGTCCCACTA -CCAACAACACCAAGTGTCGGAGTA -CCAACAACACCAAGTGTCTCGTCT -CCAACAACACCAAGTGTCTGCACT -CCAACAACACCAAGTGTCCTGACT -CCAACAACACCAAGTGTCCAACCT -CCAACAACACCAAGTGTCGCTACT -CCAACAACACCAAGTGTCGGATCT -CCAACAACACCAAGTGTCAAGGCT -CCAACAACACCAAGTGTCTCAACC -CCAACAACACCAAGTGTCTGTTCC -CCAACAACACCAAGTGTCATTCCC -CCAACAACACCAAGTGTCTTCTCG -CCAACAACACCAAGTGTCTAGACG -CCAACAACACCAAGTGTCGTAACG -CCAACAACACCAAGTGTCACTTCG -CCAACAACACCAAGTGTCTACGCA -CCAACAACACCAAGTGTCCTTGCA -CCAACAACACCAAGTGTCCGAACA -CCAACAACACCAAGTGTCCAGTCA -CCAACAACACCAAGTGTCGATCCA -CCAACAACACCAAGTGTCACGACA -CCAACAACACCAAGTGTCAGCTCA -CCAACAACACCAAGTGTCTCACGT -CCAACAACACCAAGTGTCCGTAGT -CCAACAACACCAAGTGTCGTCAGT -CCAACAACACCAAGTGTCGAAGGT -CCAACAACACCAAGTGTCAACCGT -CCAACAACACCAAGTGTCTTGTGC -CCAACAACACCAAGTGTCCTAAGC -CCAACAACACCAAGTGTCACTAGC -CCAACAACACCAAGTGTCAGATGC -CCAACAACACCAAGTGTCTGAAGG -CCAACAACACCAAGTGTCCAATGG -CCAACAACACCAAGTGTCATGAGG -CCAACAACACCAAGTGTCAATGGG -CCAACAACACCAAGTGTCTCCTGA -CCAACAACACCAAGTGTCTAGCGA -CCAACAACACCAAGTGTCCACAGA -CCAACAACACCAAGTGTCGCAAGA -CCAACAACACCAAGTGTCGGTTGA -CCAACAACACCAAGTGTCTCCGAT -CCAACAACACCAAGTGTCTGGCAT -CCAACAACACCAAGTGTCCGAGAT -CCAACAACACCAAGTGTCTACCAC -CCAACAACACCAAGTGTCCAGAAC -CCAACAACACCAAGTGTCGTCTAC -CCAACAACACCAAGTGTCACGTAC -CCAACAACACCAAGTGTCAGTGAC -CCAACAACACCAAGTGTCCTGTAG -CCAACAACACCAAGTGTCCCTAAG -CCAACAACACCAAGTGTCGTTCAG -CCAACAACACCAAGTGTCGCATAG -CCAACAACACCAAGTGTCGACAAG -CCAACAACACCAAGTGTCAAGCAG -CCAACAACACCAAGTGTCCGTCAA -CCAACAACACCAAGTGTCGCTGAA -CCAACAACACCAAGTGTCAGTACG -CCAACAACACCAAGTGTCATCCGA -CCAACAACACCAAGTGTCATGGGA -CCAACAACACCAAGTGTCGTGCAA -CCAACAACACCAAGTGTCGAGGAA -CCAACAACACCAAGTGTCCAGGTA -CCAACAACACCAAGTGTCGACTCT -CCAACAACACCAAGTGTCAGTCCT -CCAACAACACCAAGTGTCTAAGCC -CCAACAACACCAAGTGTCATAGCC -CCAACAACACCAAGTGTCTAACCG -CCAACAACACCAAGTGTCATGCCA -CCAACAACACCAGGTGAAGGAAAC -CCAACAACACCAGGTGAAAACACC -CCAACAACACCAGGTGAAATCGAG -CCAACAACACCAGGTGAACTCCTT -CCAACAACACCAGGTGAACCTGTT -CCAACAACACCAGGTGAACGGTTT -CCAACAACACCAGGTGAAGTGGTT -CCAACAACACCAGGTGAAGCCTTT -CCAACAACACCAGGTGAAGGTCTT -CCAACAACACCAGGTGAAACGCTT -CCAACAACACCAGGTGAAAGCGTT -CCAACAACACCAGGTGAATTCGTC -CCAACAACACCAGGTGAATCTCTC -CCAACAACACCAGGTGAATGGATC -CCAACAACACCAGGTGAACACTTC -CCAACAACACCAGGTGAAGTACTC -CCAACAACACCAGGTGAAGATGTC -CCAACAACACCAGGTGAAACAGTC -CCAACAACACCAGGTGAATTGCTG -CCAACAACACCAGGTGAATCCATG -CCAACAACACCAGGTGAATGTGTG -CCAACAACACCAGGTGAACTAGTG -CCAACAACACCAGGTGAACATCTG -CCAACAACACCAGGTGAAGAGTTG -CCAACAACACCAGGTGAAAGACTG -CCAACAACACCAGGTGAATCGGTA -CCAACAACACCAGGTGAATGCCTA -CCAACAACACCAGGTGAACCACTA -CCAACAACACCAGGTGAAGGAGTA -CCAACAACACCAGGTGAATCGTCT -CCAACAACACCAGGTGAATGCACT -CCAACAACACCAGGTGAACTGACT -CCAACAACACCAGGTGAACAACCT -CCAACAACACCAGGTGAAGCTACT -CCAACAACACCAGGTGAAGGATCT -CCAACAACACCAGGTGAAAAGGCT -CCAACAACACCAGGTGAATCAACC -CCAACAACACCAGGTGAATGTTCC -CCAACAACACCAGGTGAAATTCCC -CCAACAACACCAGGTGAATTCTCG -CCAACAACACCAGGTGAATAGACG -CCAACAACACCAGGTGAAGTAACG -CCAACAACACCAGGTGAAACTTCG -CCAACAACACCAGGTGAATACGCA -CCAACAACACCAGGTGAACTTGCA -CCAACAACACCAGGTGAACGAACA -CCAACAACACCAGGTGAACAGTCA -CCAACAACACCAGGTGAAGATCCA -CCAACAACACCAGGTGAAACGACA -CCAACAACACCAGGTGAAAGCTCA -CCAACAACACCAGGTGAATCACGT -CCAACAACACCAGGTGAACGTAGT -CCAACAACACCAGGTGAAGTCAGT -CCAACAACACCAGGTGAAGAAGGT -CCAACAACACCAGGTGAAAACCGT -CCAACAACACCAGGTGAATTGTGC -CCAACAACACCAGGTGAACTAAGC -CCAACAACACCAGGTGAAACTAGC -CCAACAACACCAGGTGAAAGATGC -CCAACAACACCAGGTGAATGAAGG -CCAACAACACCAGGTGAACAATGG -CCAACAACACCAGGTGAAATGAGG -CCAACAACACCAGGTGAAAATGGG -CCAACAACACCAGGTGAATCCTGA -CCAACAACACCAGGTGAATAGCGA -CCAACAACACCAGGTGAACACAGA -CCAACAACACCAGGTGAAGCAAGA -CCAACAACACCAGGTGAAGGTTGA -CCAACAACACCAGGTGAATCCGAT -CCAACAACACCAGGTGAATGGCAT -CCAACAACACCAGGTGAACGAGAT -CCAACAACACCAGGTGAATACCAC -CCAACAACACCAGGTGAACAGAAC -CCAACAACACCAGGTGAAGTCTAC -CCAACAACACCAGGTGAAACGTAC -CCAACAACACCAGGTGAAAGTGAC -CCAACAACACCAGGTGAACTGTAG -CCAACAACACCAGGTGAACCTAAG -CCAACAACACCAGGTGAAGTTCAG -CCAACAACACCAGGTGAAGCATAG -CCAACAACACCAGGTGAAGACAAG -CCAACAACACCAGGTGAAAAGCAG -CCAACAACACCAGGTGAACGTCAA -CCAACAACACCAGGTGAAGCTGAA -CCAACAACACCAGGTGAAAGTACG -CCAACAACACCAGGTGAAATCCGA -CCAACAACACCAGGTGAAATGGGA -CCAACAACACCAGGTGAAGTGCAA -CCAACAACACCAGGTGAAGAGGAA -CCAACAACACCAGGTGAACAGGTA -CCAACAACACCAGGTGAAGACTCT -CCAACAACACCAGGTGAAAGTCCT -CCAACAACACCAGGTGAATAAGCC -CCAACAACACCAGGTGAAATAGCC -CCAACAACACCAGGTGAATAACCG -CCAACAACACCAGGTGAAATGCCA -CCAACAACACCACGTAACGGAAAC -CCAACAACACCACGTAACAACACC -CCAACAACACCACGTAACATCGAG -CCAACAACACCACGTAACCTCCTT -CCAACAACACCACGTAACCCTGTT -CCAACAACACCACGTAACCGGTTT -CCAACAACACCACGTAACGTGGTT -CCAACAACACCACGTAACGCCTTT -CCAACAACACCACGTAACGGTCTT -CCAACAACACCACGTAACACGCTT -CCAACAACACCACGTAACAGCGTT -CCAACAACACCACGTAACTTCGTC -CCAACAACACCACGTAACTCTCTC -CCAACAACACCACGTAACTGGATC -CCAACAACACCACGTAACCACTTC -CCAACAACACCACGTAACGTACTC -CCAACAACACCACGTAACGATGTC -CCAACAACACCACGTAACACAGTC -CCAACAACACCACGTAACTTGCTG -CCAACAACACCACGTAACTCCATG -CCAACAACACCACGTAACTGTGTG -CCAACAACACCACGTAACCTAGTG -CCAACAACACCACGTAACCATCTG -CCAACAACACCACGTAACGAGTTG -CCAACAACACCACGTAACAGACTG -CCAACAACACCACGTAACTCGGTA -CCAACAACACCACGTAACTGCCTA -CCAACAACACCACGTAACCCACTA -CCAACAACACCACGTAACGGAGTA -CCAACAACACCACGTAACTCGTCT -CCAACAACACCACGTAACTGCACT -CCAACAACACCACGTAACCTGACT -CCAACAACACCACGTAACCAACCT -CCAACAACACCACGTAACGCTACT -CCAACAACACCACGTAACGGATCT -CCAACAACACCACGTAACAAGGCT -CCAACAACACCACGTAACTCAACC -CCAACAACACCACGTAACTGTTCC -CCAACAACACCACGTAACATTCCC -CCAACAACACCACGTAACTTCTCG -CCAACAACACCACGTAACTAGACG -CCAACAACACCACGTAACGTAACG -CCAACAACACCACGTAACACTTCG -CCAACAACACCACGTAACTACGCA -CCAACAACACCACGTAACCTTGCA -CCAACAACACCACGTAACCGAACA -CCAACAACACCACGTAACCAGTCA -CCAACAACACCACGTAACGATCCA -CCAACAACACCACGTAACACGACA -CCAACAACACCACGTAACAGCTCA -CCAACAACACCACGTAACTCACGT -CCAACAACACCACGTAACCGTAGT -CCAACAACACCACGTAACGTCAGT -CCAACAACACCACGTAACGAAGGT -CCAACAACACCACGTAACAACCGT -CCAACAACACCACGTAACTTGTGC -CCAACAACACCACGTAACCTAAGC -CCAACAACACCACGTAACACTAGC -CCAACAACACCACGTAACAGATGC -CCAACAACACCACGTAACTGAAGG -CCAACAACACCACGTAACCAATGG -CCAACAACACCACGTAACATGAGG -CCAACAACACCACGTAACAATGGG -CCAACAACACCACGTAACTCCTGA -CCAACAACACCACGTAACTAGCGA -CCAACAACACCACGTAACCACAGA -CCAACAACACCACGTAACGCAAGA -CCAACAACACCACGTAACGGTTGA -CCAACAACACCACGTAACTCCGAT -CCAACAACACCACGTAACTGGCAT -CCAACAACACCACGTAACCGAGAT -CCAACAACACCACGTAACTACCAC -CCAACAACACCACGTAACCAGAAC -CCAACAACACCACGTAACGTCTAC -CCAACAACACCACGTAACACGTAC -CCAACAACACCACGTAACAGTGAC -CCAACAACACCACGTAACCTGTAG -CCAACAACACCACGTAACCCTAAG -CCAACAACACCACGTAACGTTCAG -CCAACAACACCACGTAACGCATAG -CCAACAACACCACGTAACGACAAG -CCAACAACACCACGTAACAAGCAG -CCAACAACACCACGTAACCGTCAA -CCAACAACACCACGTAACGCTGAA -CCAACAACACCACGTAACAGTACG -CCAACAACACCACGTAACATCCGA -CCAACAACACCACGTAACATGGGA -CCAACAACACCACGTAACGTGCAA -CCAACAACACCACGTAACGAGGAA -CCAACAACACCACGTAACCAGGTA -CCAACAACACCACGTAACGACTCT -CCAACAACACCACGTAACAGTCCT -CCAACAACACCACGTAACTAAGCC -CCAACAACACCACGTAACATAGCC -CCAACAACACCACGTAACTAACCG -CCAACAACACCACGTAACATGCCA -CCAACAACACCATGCTTGGGAAAC -CCAACAACACCATGCTTGAACACC -CCAACAACACCATGCTTGATCGAG -CCAACAACACCATGCTTGCTCCTT -CCAACAACACCATGCTTGCCTGTT -CCAACAACACCATGCTTGCGGTTT -CCAACAACACCATGCTTGGTGGTT -CCAACAACACCATGCTTGGCCTTT -CCAACAACACCATGCTTGGGTCTT -CCAACAACACCATGCTTGACGCTT -CCAACAACACCATGCTTGAGCGTT -CCAACAACACCATGCTTGTTCGTC -CCAACAACACCATGCTTGTCTCTC -CCAACAACACCATGCTTGTGGATC -CCAACAACACCATGCTTGCACTTC -CCAACAACACCATGCTTGGTACTC -CCAACAACACCATGCTTGGATGTC -CCAACAACACCATGCTTGACAGTC -CCAACAACACCATGCTTGTTGCTG -CCAACAACACCATGCTTGTCCATG -CCAACAACACCATGCTTGTGTGTG -CCAACAACACCATGCTTGCTAGTG -CCAACAACACCATGCTTGCATCTG -CCAACAACACCATGCTTGGAGTTG -CCAACAACACCATGCTTGAGACTG -CCAACAACACCATGCTTGTCGGTA -CCAACAACACCATGCTTGTGCCTA -CCAACAACACCATGCTTGCCACTA -CCAACAACACCATGCTTGGGAGTA -CCAACAACACCATGCTTGTCGTCT -CCAACAACACCATGCTTGTGCACT -CCAACAACACCATGCTTGCTGACT -CCAACAACACCATGCTTGCAACCT -CCAACAACACCATGCTTGGCTACT -CCAACAACACCATGCTTGGGATCT -CCAACAACACCATGCTTGAAGGCT -CCAACAACACCATGCTTGTCAACC -CCAACAACACCATGCTTGTGTTCC -CCAACAACACCATGCTTGATTCCC -CCAACAACACCATGCTTGTTCTCG -CCAACAACACCATGCTTGTAGACG -CCAACAACACCATGCTTGGTAACG -CCAACAACACCATGCTTGACTTCG -CCAACAACACCATGCTTGTACGCA -CCAACAACACCATGCTTGCTTGCA -CCAACAACACCATGCTTGCGAACA -CCAACAACACCATGCTTGCAGTCA -CCAACAACACCATGCTTGGATCCA -CCAACAACACCATGCTTGACGACA -CCAACAACACCATGCTTGAGCTCA -CCAACAACACCATGCTTGTCACGT -CCAACAACACCATGCTTGCGTAGT -CCAACAACACCATGCTTGGTCAGT -CCAACAACACCATGCTTGGAAGGT -CCAACAACACCATGCTTGAACCGT -CCAACAACACCATGCTTGTTGTGC -CCAACAACACCATGCTTGCTAAGC -CCAACAACACCATGCTTGACTAGC -CCAACAACACCATGCTTGAGATGC -CCAACAACACCATGCTTGTGAAGG -CCAACAACACCATGCTTGCAATGG -CCAACAACACCATGCTTGATGAGG -CCAACAACACCATGCTTGAATGGG -CCAACAACACCATGCTTGTCCTGA -CCAACAACACCATGCTTGTAGCGA -CCAACAACACCATGCTTGCACAGA -CCAACAACACCATGCTTGGCAAGA -CCAACAACACCATGCTTGGGTTGA -CCAACAACACCATGCTTGTCCGAT -CCAACAACACCATGCTTGTGGCAT -CCAACAACACCATGCTTGCGAGAT -CCAACAACACCATGCTTGTACCAC -CCAACAACACCATGCTTGCAGAAC -CCAACAACACCATGCTTGGTCTAC -CCAACAACACCATGCTTGACGTAC -CCAACAACACCATGCTTGAGTGAC -CCAACAACACCATGCTTGCTGTAG -CCAACAACACCATGCTTGCCTAAG -CCAACAACACCATGCTTGGTTCAG -CCAACAACACCATGCTTGGCATAG -CCAACAACACCATGCTTGGACAAG -CCAACAACACCATGCTTGAAGCAG -CCAACAACACCATGCTTGCGTCAA -CCAACAACACCATGCTTGGCTGAA -CCAACAACACCATGCTTGAGTACG -CCAACAACACCATGCTTGATCCGA -CCAACAACACCATGCTTGATGGGA -CCAACAACACCATGCTTGGTGCAA -CCAACAACACCATGCTTGGAGGAA -CCAACAACACCATGCTTGCAGGTA -CCAACAACACCATGCTTGGACTCT -CCAACAACACCATGCTTGAGTCCT -CCAACAACACCATGCTTGTAAGCC -CCAACAACACCATGCTTGATAGCC -CCAACAACACCATGCTTGTAACCG -CCAACAACACCATGCTTGATGCCA -CCAACAACACCAAGCCTAGGAAAC -CCAACAACACCAAGCCTAAACACC -CCAACAACACCAAGCCTAATCGAG -CCAACAACACCAAGCCTACTCCTT -CCAACAACACCAAGCCTACCTGTT -CCAACAACACCAAGCCTACGGTTT -CCAACAACACCAAGCCTAGTGGTT -CCAACAACACCAAGCCTAGCCTTT -CCAACAACACCAAGCCTAGGTCTT -CCAACAACACCAAGCCTAACGCTT -CCAACAACACCAAGCCTAAGCGTT -CCAACAACACCAAGCCTATTCGTC -CCAACAACACCAAGCCTATCTCTC -CCAACAACACCAAGCCTATGGATC -CCAACAACACCAAGCCTACACTTC -CCAACAACACCAAGCCTAGTACTC -CCAACAACACCAAGCCTAGATGTC -CCAACAACACCAAGCCTAACAGTC -CCAACAACACCAAGCCTATTGCTG -CCAACAACACCAAGCCTATCCATG -CCAACAACACCAAGCCTATGTGTG -CCAACAACACCAAGCCTACTAGTG -CCAACAACACCAAGCCTACATCTG -CCAACAACACCAAGCCTAGAGTTG -CCAACAACACCAAGCCTAAGACTG -CCAACAACACCAAGCCTATCGGTA -CCAACAACACCAAGCCTATGCCTA -CCAACAACACCAAGCCTACCACTA -CCAACAACACCAAGCCTAGGAGTA -CCAACAACACCAAGCCTATCGTCT -CCAACAACACCAAGCCTATGCACT -CCAACAACACCAAGCCTACTGACT -CCAACAACACCAAGCCTACAACCT -CCAACAACACCAAGCCTAGCTACT -CCAACAACACCAAGCCTAGGATCT -CCAACAACACCAAGCCTAAAGGCT -CCAACAACACCAAGCCTATCAACC -CCAACAACACCAAGCCTATGTTCC -CCAACAACACCAAGCCTAATTCCC -CCAACAACACCAAGCCTATTCTCG -CCAACAACACCAAGCCTATAGACG -CCAACAACACCAAGCCTAGTAACG -CCAACAACACCAAGCCTAACTTCG -CCAACAACACCAAGCCTATACGCA -CCAACAACACCAAGCCTACTTGCA -CCAACAACACCAAGCCTACGAACA -CCAACAACACCAAGCCTACAGTCA -CCAACAACACCAAGCCTAGATCCA -CCAACAACACCAAGCCTAACGACA -CCAACAACACCAAGCCTAAGCTCA -CCAACAACACCAAGCCTATCACGT -CCAACAACACCAAGCCTACGTAGT -CCAACAACACCAAGCCTAGTCAGT -CCAACAACACCAAGCCTAGAAGGT -CCAACAACACCAAGCCTAAACCGT -CCAACAACACCAAGCCTATTGTGC -CCAACAACACCAAGCCTACTAAGC -CCAACAACACCAAGCCTAACTAGC -CCAACAACACCAAGCCTAAGATGC -CCAACAACACCAAGCCTATGAAGG -CCAACAACACCAAGCCTACAATGG -CCAACAACACCAAGCCTAATGAGG -CCAACAACACCAAGCCTAAATGGG -CCAACAACACCAAGCCTATCCTGA -CCAACAACACCAAGCCTATAGCGA -CCAACAACACCAAGCCTACACAGA -CCAACAACACCAAGCCTAGCAAGA -CCAACAACACCAAGCCTAGGTTGA -CCAACAACACCAAGCCTATCCGAT -CCAACAACACCAAGCCTATGGCAT -CCAACAACACCAAGCCTACGAGAT -CCAACAACACCAAGCCTATACCAC -CCAACAACACCAAGCCTACAGAAC -CCAACAACACCAAGCCTAGTCTAC -CCAACAACACCAAGCCTAACGTAC -CCAACAACACCAAGCCTAAGTGAC -CCAACAACACCAAGCCTACTGTAG -CCAACAACACCAAGCCTACCTAAG -CCAACAACACCAAGCCTAGTTCAG -CCAACAACACCAAGCCTAGCATAG -CCAACAACACCAAGCCTAGACAAG -CCAACAACACCAAGCCTAAAGCAG -CCAACAACACCAAGCCTACGTCAA -CCAACAACACCAAGCCTAGCTGAA -CCAACAACACCAAGCCTAAGTACG -CCAACAACACCAAGCCTAATCCGA -CCAACAACACCAAGCCTAATGGGA -CCAACAACACCAAGCCTAGTGCAA -CCAACAACACCAAGCCTAGAGGAA -CCAACAACACCAAGCCTACAGGTA -CCAACAACACCAAGCCTAGACTCT -CCAACAACACCAAGCCTAAGTCCT -CCAACAACACCAAGCCTATAAGCC -CCAACAACACCAAGCCTAATAGCC -CCAACAACACCAAGCCTATAACCG -CCAACAACACCAAGCCTAATGCCA -CCAACAACACCAAGCACTGGAAAC -CCAACAACACCAAGCACTAACACC -CCAACAACACCAAGCACTATCGAG -CCAACAACACCAAGCACTCTCCTT -CCAACAACACCAAGCACTCCTGTT -CCAACAACACCAAGCACTCGGTTT -CCAACAACACCAAGCACTGTGGTT -CCAACAACACCAAGCACTGCCTTT -CCAACAACACCAAGCACTGGTCTT -CCAACAACACCAAGCACTACGCTT -CCAACAACACCAAGCACTAGCGTT -CCAACAACACCAAGCACTTTCGTC -CCAACAACACCAAGCACTTCTCTC -CCAACAACACCAAGCACTTGGATC -CCAACAACACCAAGCACTCACTTC -CCAACAACACCAAGCACTGTACTC -CCAACAACACCAAGCACTGATGTC -CCAACAACACCAAGCACTACAGTC -CCAACAACACCAAGCACTTTGCTG -CCAACAACACCAAGCACTTCCATG -CCAACAACACCAAGCACTTGTGTG -CCAACAACACCAAGCACTCTAGTG -CCAACAACACCAAGCACTCATCTG -CCAACAACACCAAGCACTGAGTTG -CCAACAACACCAAGCACTAGACTG -CCAACAACACCAAGCACTTCGGTA -CCAACAACACCAAGCACTTGCCTA -CCAACAACACCAAGCACTCCACTA -CCAACAACACCAAGCACTGGAGTA -CCAACAACACCAAGCACTTCGTCT -CCAACAACACCAAGCACTTGCACT -CCAACAACACCAAGCACTCTGACT -CCAACAACACCAAGCACTCAACCT -CCAACAACACCAAGCACTGCTACT -CCAACAACACCAAGCACTGGATCT -CCAACAACACCAAGCACTAAGGCT -CCAACAACACCAAGCACTTCAACC -CCAACAACACCAAGCACTTGTTCC -CCAACAACACCAAGCACTATTCCC -CCAACAACACCAAGCACTTTCTCG -CCAACAACACCAAGCACTTAGACG -CCAACAACACCAAGCACTGTAACG -CCAACAACACCAAGCACTACTTCG -CCAACAACACCAAGCACTTACGCA -CCAACAACACCAAGCACTCTTGCA -CCAACAACACCAAGCACTCGAACA -CCAACAACACCAAGCACTCAGTCA -CCAACAACACCAAGCACTGATCCA -CCAACAACACCAAGCACTACGACA -CCAACAACACCAAGCACTAGCTCA -CCAACAACACCAAGCACTTCACGT -CCAACAACACCAAGCACTCGTAGT -CCAACAACACCAAGCACTGTCAGT -CCAACAACACCAAGCACTGAAGGT -CCAACAACACCAAGCACTAACCGT -CCAACAACACCAAGCACTTTGTGC -CCAACAACACCAAGCACTCTAAGC -CCAACAACACCAAGCACTACTAGC -CCAACAACACCAAGCACTAGATGC -CCAACAACACCAAGCACTTGAAGG -CCAACAACACCAAGCACTCAATGG -CCAACAACACCAAGCACTATGAGG -CCAACAACACCAAGCACTAATGGG -CCAACAACACCAAGCACTTCCTGA -CCAACAACACCAAGCACTTAGCGA -CCAACAACACCAAGCACTCACAGA -CCAACAACACCAAGCACTGCAAGA -CCAACAACACCAAGCACTGGTTGA -CCAACAACACCAAGCACTTCCGAT -CCAACAACACCAAGCACTTGGCAT -CCAACAACACCAAGCACTCGAGAT -CCAACAACACCAAGCACTTACCAC -CCAACAACACCAAGCACTCAGAAC -CCAACAACACCAAGCACTGTCTAC -CCAACAACACCAAGCACTACGTAC -CCAACAACACCAAGCACTAGTGAC -CCAACAACACCAAGCACTCTGTAG -CCAACAACACCAAGCACTCCTAAG -CCAACAACACCAAGCACTGTTCAG -CCAACAACACCAAGCACTGCATAG -CCAACAACACCAAGCACTGACAAG -CCAACAACACCAAGCACTAAGCAG -CCAACAACACCAAGCACTCGTCAA -CCAACAACACCAAGCACTGCTGAA -CCAACAACACCAAGCACTAGTACG -CCAACAACACCAAGCACTATCCGA -CCAACAACACCAAGCACTATGGGA -CCAACAACACCAAGCACTGTGCAA -CCAACAACACCAAGCACTGAGGAA -CCAACAACACCAAGCACTCAGGTA -CCAACAACACCAAGCACTGACTCT -CCAACAACACCAAGCACTAGTCCT -CCAACAACACCAAGCACTTAAGCC -CCAACAACACCAAGCACTATAGCC -CCAACAACACCAAGCACTTAACCG -CCAACAACACCAAGCACTATGCCA -CCAACAACACCATGCAGAGGAAAC -CCAACAACACCATGCAGAAACACC -CCAACAACACCATGCAGAATCGAG -CCAACAACACCATGCAGACTCCTT -CCAACAACACCATGCAGACCTGTT -CCAACAACACCATGCAGACGGTTT -CCAACAACACCATGCAGAGTGGTT -CCAACAACACCATGCAGAGCCTTT -CCAACAACACCATGCAGAGGTCTT -CCAACAACACCATGCAGAACGCTT -CCAACAACACCATGCAGAAGCGTT -CCAACAACACCATGCAGATTCGTC -CCAACAACACCATGCAGATCTCTC -CCAACAACACCATGCAGATGGATC -CCAACAACACCATGCAGACACTTC -CCAACAACACCATGCAGAGTACTC -CCAACAACACCATGCAGAGATGTC -CCAACAACACCATGCAGAACAGTC -CCAACAACACCATGCAGATTGCTG -CCAACAACACCATGCAGATCCATG -CCAACAACACCATGCAGATGTGTG -CCAACAACACCATGCAGACTAGTG -CCAACAACACCATGCAGACATCTG -CCAACAACACCATGCAGAGAGTTG -CCAACAACACCATGCAGAAGACTG -CCAACAACACCATGCAGATCGGTA -CCAACAACACCATGCAGATGCCTA -CCAACAACACCATGCAGACCACTA -CCAACAACACCATGCAGAGGAGTA -CCAACAACACCATGCAGATCGTCT -CCAACAACACCATGCAGATGCACT -CCAACAACACCATGCAGACTGACT -CCAACAACACCATGCAGACAACCT -CCAACAACACCATGCAGAGCTACT -CCAACAACACCATGCAGAGGATCT -CCAACAACACCATGCAGAAAGGCT -CCAACAACACCATGCAGATCAACC -CCAACAACACCATGCAGATGTTCC -CCAACAACACCATGCAGAATTCCC -CCAACAACACCATGCAGATTCTCG -CCAACAACACCATGCAGATAGACG -CCAACAACACCATGCAGAGTAACG -CCAACAACACCATGCAGAACTTCG -CCAACAACACCATGCAGATACGCA -CCAACAACACCATGCAGACTTGCA -CCAACAACACCATGCAGACGAACA -CCAACAACACCATGCAGACAGTCA -CCAACAACACCATGCAGAGATCCA -CCAACAACACCATGCAGAACGACA -CCAACAACACCATGCAGAAGCTCA -CCAACAACACCATGCAGATCACGT -CCAACAACACCATGCAGACGTAGT -CCAACAACACCATGCAGAGTCAGT -CCAACAACACCATGCAGAGAAGGT -CCAACAACACCATGCAGAAACCGT -CCAACAACACCATGCAGATTGTGC -CCAACAACACCATGCAGACTAAGC -CCAACAACACCATGCAGAACTAGC -CCAACAACACCATGCAGAAGATGC -CCAACAACACCATGCAGATGAAGG -CCAACAACACCATGCAGACAATGG -CCAACAACACCATGCAGAATGAGG -CCAACAACACCATGCAGAAATGGG -CCAACAACACCATGCAGATCCTGA -CCAACAACACCATGCAGATAGCGA -CCAACAACACCATGCAGACACAGA -CCAACAACACCATGCAGAGCAAGA -CCAACAACACCATGCAGAGGTTGA -CCAACAACACCATGCAGATCCGAT -CCAACAACACCATGCAGATGGCAT -CCAACAACACCATGCAGACGAGAT -CCAACAACACCATGCAGATACCAC -CCAACAACACCATGCAGACAGAAC -CCAACAACACCATGCAGAGTCTAC -CCAACAACACCATGCAGAACGTAC -CCAACAACACCATGCAGAAGTGAC -CCAACAACACCATGCAGACTGTAG -CCAACAACACCATGCAGACCTAAG -CCAACAACACCATGCAGAGTTCAG -CCAACAACACCATGCAGAGCATAG -CCAACAACACCATGCAGAGACAAG -CCAACAACACCATGCAGAAAGCAG -CCAACAACACCATGCAGACGTCAA -CCAACAACACCATGCAGAGCTGAA -CCAACAACACCATGCAGAAGTACG -CCAACAACACCATGCAGAATCCGA -CCAACAACACCATGCAGAATGGGA -CCAACAACACCATGCAGAGTGCAA -CCAACAACACCATGCAGAGAGGAA -CCAACAACACCATGCAGACAGGTA -CCAACAACACCATGCAGAGACTCT -CCAACAACACCATGCAGAAGTCCT -CCAACAACACCATGCAGATAAGCC -CCAACAACACCATGCAGAATAGCC -CCAACAACACCATGCAGATAACCG -CCAACAACACCATGCAGAATGCCA -CCAACAACACCAAGGTGAGGAAAC -CCAACAACACCAAGGTGAAACACC -CCAACAACACCAAGGTGAATCGAG -CCAACAACACCAAGGTGACTCCTT -CCAACAACACCAAGGTGACCTGTT -CCAACAACACCAAGGTGACGGTTT -CCAACAACACCAAGGTGAGTGGTT -CCAACAACACCAAGGTGAGCCTTT -CCAACAACACCAAGGTGAGGTCTT -CCAACAACACCAAGGTGAACGCTT -CCAACAACACCAAGGTGAAGCGTT -CCAACAACACCAAGGTGATTCGTC -CCAACAACACCAAGGTGATCTCTC -CCAACAACACCAAGGTGATGGATC -CCAACAACACCAAGGTGACACTTC -CCAACAACACCAAGGTGAGTACTC -CCAACAACACCAAGGTGAGATGTC -CCAACAACACCAAGGTGAACAGTC -CCAACAACACCAAGGTGATTGCTG -CCAACAACACCAAGGTGATCCATG -CCAACAACACCAAGGTGATGTGTG -CCAACAACACCAAGGTGACTAGTG -CCAACAACACCAAGGTGACATCTG -CCAACAACACCAAGGTGAGAGTTG -CCAACAACACCAAGGTGAAGACTG -CCAACAACACCAAGGTGATCGGTA -CCAACAACACCAAGGTGATGCCTA -CCAACAACACCAAGGTGACCACTA -CCAACAACACCAAGGTGAGGAGTA -CCAACAACACCAAGGTGATCGTCT -CCAACAACACCAAGGTGATGCACT -CCAACAACACCAAGGTGACTGACT -CCAACAACACCAAGGTGACAACCT -CCAACAACACCAAGGTGAGCTACT -CCAACAACACCAAGGTGAGGATCT -CCAACAACACCAAGGTGAAAGGCT -CCAACAACACCAAGGTGATCAACC -CCAACAACACCAAGGTGATGTTCC -CCAACAACACCAAGGTGAATTCCC -CCAACAACACCAAGGTGATTCTCG -CCAACAACACCAAGGTGATAGACG -CCAACAACACCAAGGTGAGTAACG -CCAACAACACCAAGGTGAACTTCG -CCAACAACACCAAGGTGATACGCA -CCAACAACACCAAGGTGACTTGCA -CCAACAACACCAAGGTGACGAACA -CCAACAACACCAAGGTGACAGTCA -CCAACAACACCAAGGTGAGATCCA -CCAACAACACCAAGGTGAACGACA -CCAACAACACCAAGGTGAAGCTCA -CCAACAACACCAAGGTGATCACGT -CCAACAACACCAAGGTGACGTAGT -CCAACAACACCAAGGTGAGTCAGT -CCAACAACACCAAGGTGAGAAGGT -CCAACAACACCAAGGTGAAACCGT -CCAACAACACCAAGGTGATTGTGC -CCAACAACACCAAGGTGACTAAGC -CCAACAACACCAAGGTGAACTAGC -CCAACAACACCAAGGTGAAGATGC -CCAACAACACCAAGGTGATGAAGG -CCAACAACACCAAGGTGACAATGG -CCAACAACACCAAGGTGAATGAGG -CCAACAACACCAAGGTGAAATGGG -CCAACAACACCAAGGTGATCCTGA -CCAACAACACCAAGGTGATAGCGA -CCAACAACACCAAGGTGACACAGA -CCAACAACACCAAGGTGAGCAAGA -CCAACAACACCAAGGTGAGGTTGA -CCAACAACACCAAGGTGATCCGAT -CCAACAACACCAAGGTGATGGCAT -CCAACAACACCAAGGTGACGAGAT -CCAACAACACCAAGGTGATACCAC -CCAACAACACCAAGGTGACAGAAC -CCAACAACACCAAGGTGAGTCTAC -CCAACAACACCAAGGTGAACGTAC -CCAACAACACCAAGGTGAAGTGAC -CCAACAACACCAAGGTGACTGTAG -CCAACAACACCAAGGTGACCTAAG -CCAACAACACCAAGGTGAGTTCAG -CCAACAACACCAAGGTGAGCATAG -CCAACAACACCAAGGTGAGACAAG -CCAACAACACCAAGGTGAAAGCAG -CCAACAACACCAAGGTGACGTCAA -CCAACAACACCAAGGTGAGCTGAA -CCAACAACACCAAGGTGAAGTACG -CCAACAACACCAAGGTGAATCCGA -CCAACAACACCAAGGTGAATGGGA -CCAACAACACCAAGGTGAGTGCAA -CCAACAACACCAAGGTGAGAGGAA -CCAACAACACCAAGGTGACAGGTA -CCAACAACACCAAGGTGAGACTCT -CCAACAACACCAAGGTGAAGTCCT -CCAACAACACCAAGGTGATAAGCC -CCAACAACACCAAGGTGAATAGCC -CCAACAACACCAAGGTGATAACCG -CCAACAACACCAAGGTGAATGCCA -CCAACAACACCATGGCAAGGAAAC -CCAACAACACCATGGCAAAACACC -CCAACAACACCATGGCAAATCGAG -CCAACAACACCATGGCAACTCCTT -CCAACAACACCATGGCAACCTGTT -CCAACAACACCATGGCAACGGTTT -CCAACAACACCATGGCAAGTGGTT -CCAACAACACCATGGCAAGCCTTT -CCAACAACACCATGGCAAGGTCTT -CCAACAACACCATGGCAAACGCTT -CCAACAACACCATGGCAAAGCGTT -CCAACAACACCATGGCAATTCGTC -CCAACAACACCATGGCAATCTCTC -CCAACAACACCATGGCAATGGATC -CCAACAACACCATGGCAACACTTC -CCAACAACACCATGGCAAGTACTC -CCAACAACACCATGGCAAGATGTC -CCAACAACACCATGGCAAACAGTC -CCAACAACACCATGGCAATTGCTG -CCAACAACACCATGGCAATCCATG -CCAACAACACCATGGCAATGTGTG -CCAACAACACCATGGCAACTAGTG -CCAACAACACCATGGCAACATCTG -CCAACAACACCATGGCAAGAGTTG -CCAACAACACCATGGCAAAGACTG -CCAACAACACCATGGCAATCGGTA -CCAACAACACCATGGCAATGCCTA -CCAACAACACCATGGCAACCACTA -CCAACAACACCATGGCAAGGAGTA -CCAACAACACCATGGCAATCGTCT -CCAACAACACCATGGCAATGCACT -CCAACAACACCATGGCAACTGACT -CCAACAACACCATGGCAACAACCT -CCAACAACACCATGGCAAGCTACT -CCAACAACACCATGGCAAGGATCT -CCAACAACACCATGGCAAAAGGCT -CCAACAACACCATGGCAATCAACC -CCAACAACACCATGGCAATGTTCC -CCAACAACACCATGGCAAATTCCC -CCAACAACACCATGGCAATTCTCG -CCAACAACACCATGGCAATAGACG -CCAACAACACCATGGCAAGTAACG -CCAACAACACCATGGCAAACTTCG -CCAACAACACCATGGCAATACGCA -CCAACAACACCATGGCAACTTGCA -CCAACAACACCATGGCAACGAACA -CCAACAACACCATGGCAACAGTCA -CCAACAACACCATGGCAAGATCCA -CCAACAACACCATGGCAAACGACA -CCAACAACACCATGGCAAAGCTCA -CCAACAACACCATGGCAATCACGT -CCAACAACACCATGGCAACGTAGT -CCAACAACACCATGGCAAGTCAGT -CCAACAACACCATGGCAAGAAGGT -CCAACAACACCATGGCAAAACCGT -CCAACAACACCATGGCAATTGTGC -CCAACAACACCATGGCAACTAAGC -CCAACAACACCATGGCAAACTAGC -CCAACAACACCATGGCAAAGATGC -CCAACAACACCATGGCAATGAAGG -CCAACAACACCATGGCAACAATGG -CCAACAACACCATGGCAAATGAGG -CCAACAACACCATGGCAAAATGGG -CCAACAACACCATGGCAATCCTGA -CCAACAACACCATGGCAATAGCGA -CCAACAACACCATGGCAACACAGA -CCAACAACACCATGGCAAGCAAGA -CCAACAACACCATGGCAAGGTTGA -CCAACAACACCATGGCAATCCGAT -CCAACAACACCATGGCAATGGCAT -CCAACAACACCATGGCAACGAGAT -CCAACAACACCATGGCAATACCAC -CCAACAACACCATGGCAACAGAAC -CCAACAACACCATGGCAAGTCTAC -CCAACAACACCATGGCAAACGTAC -CCAACAACACCATGGCAAAGTGAC -CCAACAACACCATGGCAACTGTAG -CCAACAACACCATGGCAACCTAAG -CCAACAACACCATGGCAAGTTCAG -CCAACAACACCATGGCAAGCATAG -CCAACAACACCATGGCAAGACAAG -CCAACAACACCATGGCAAAAGCAG -CCAACAACACCATGGCAACGTCAA -CCAACAACACCATGGCAAGCTGAA -CCAACAACACCATGGCAAAGTACG -CCAACAACACCATGGCAAATCCGA -CCAACAACACCATGGCAAATGGGA -CCAACAACACCATGGCAAGTGCAA -CCAACAACACCATGGCAAGAGGAA -CCAACAACACCATGGCAACAGGTA -CCAACAACACCATGGCAAGACTCT -CCAACAACACCATGGCAAAGTCCT -CCAACAACACCATGGCAATAAGCC -CCAACAACACCATGGCAAATAGCC -CCAACAACACCATGGCAATAACCG -CCAACAACACCATGGCAAATGCCA -CCAACAACACCAAGGATGGGAAAC -CCAACAACACCAAGGATGAACACC -CCAACAACACCAAGGATGATCGAG -CCAACAACACCAAGGATGCTCCTT -CCAACAACACCAAGGATGCCTGTT -CCAACAACACCAAGGATGCGGTTT -CCAACAACACCAAGGATGGTGGTT -CCAACAACACCAAGGATGGCCTTT -CCAACAACACCAAGGATGGGTCTT -CCAACAACACCAAGGATGACGCTT -CCAACAACACCAAGGATGAGCGTT -CCAACAACACCAAGGATGTTCGTC -CCAACAACACCAAGGATGTCTCTC -CCAACAACACCAAGGATGTGGATC -CCAACAACACCAAGGATGCACTTC -CCAACAACACCAAGGATGGTACTC -CCAACAACACCAAGGATGGATGTC -CCAACAACACCAAGGATGACAGTC -CCAACAACACCAAGGATGTTGCTG -CCAACAACACCAAGGATGTCCATG -CCAACAACACCAAGGATGTGTGTG -CCAACAACACCAAGGATGCTAGTG -CCAACAACACCAAGGATGCATCTG -CCAACAACACCAAGGATGGAGTTG -CCAACAACACCAAGGATGAGACTG -CCAACAACACCAAGGATGTCGGTA -CCAACAACACCAAGGATGTGCCTA -CCAACAACACCAAGGATGCCACTA -CCAACAACACCAAGGATGGGAGTA -CCAACAACACCAAGGATGTCGTCT -CCAACAACACCAAGGATGTGCACT -CCAACAACACCAAGGATGCTGACT -CCAACAACACCAAGGATGCAACCT -CCAACAACACCAAGGATGGCTACT -CCAACAACACCAAGGATGGGATCT -CCAACAACACCAAGGATGAAGGCT -CCAACAACACCAAGGATGTCAACC -CCAACAACACCAAGGATGTGTTCC -CCAACAACACCAAGGATGATTCCC -CCAACAACACCAAGGATGTTCTCG -CCAACAACACCAAGGATGTAGACG -CCAACAACACCAAGGATGGTAACG -CCAACAACACCAAGGATGACTTCG -CCAACAACACCAAGGATGTACGCA -CCAACAACACCAAGGATGCTTGCA -CCAACAACACCAAGGATGCGAACA -CCAACAACACCAAGGATGCAGTCA -CCAACAACACCAAGGATGGATCCA -CCAACAACACCAAGGATGACGACA -CCAACAACACCAAGGATGAGCTCA -CCAACAACACCAAGGATGTCACGT -CCAACAACACCAAGGATGCGTAGT -CCAACAACACCAAGGATGGTCAGT -CCAACAACACCAAGGATGGAAGGT -CCAACAACACCAAGGATGAACCGT -CCAACAACACCAAGGATGTTGTGC -CCAACAACACCAAGGATGCTAAGC -CCAACAACACCAAGGATGACTAGC -CCAACAACACCAAGGATGAGATGC -CCAACAACACCAAGGATGTGAAGG -CCAACAACACCAAGGATGCAATGG -CCAACAACACCAAGGATGATGAGG -CCAACAACACCAAGGATGAATGGG -CCAACAACACCAAGGATGTCCTGA -CCAACAACACCAAGGATGTAGCGA -CCAACAACACCAAGGATGCACAGA -CCAACAACACCAAGGATGGCAAGA -CCAACAACACCAAGGATGGGTTGA -CCAACAACACCAAGGATGTCCGAT -CCAACAACACCAAGGATGTGGCAT -CCAACAACACCAAGGATGCGAGAT -CCAACAACACCAAGGATGTACCAC -CCAACAACACCAAGGATGCAGAAC -CCAACAACACCAAGGATGGTCTAC -CCAACAACACCAAGGATGACGTAC -CCAACAACACCAAGGATGAGTGAC -CCAACAACACCAAGGATGCTGTAG -CCAACAACACCAAGGATGCCTAAG -CCAACAACACCAAGGATGGTTCAG -CCAACAACACCAAGGATGGCATAG -CCAACAACACCAAGGATGGACAAG -CCAACAACACCAAGGATGAAGCAG -CCAACAACACCAAGGATGCGTCAA -CCAACAACACCAAGGATGGCTGAA -CCAACAACACCAAGGATGAGTACG -CCAACAACACCAAGGATGATCCGA -CCAACAACACCAAGGATGATGGGA -CCAACAACACCAAGGATGGTGCAA -CCAACAACACCAAGGATGGAGGAA -CCAACAACACCAAGGATGCAGGTA -CCAACAACACCAAGGATGGACTCT -CCAACAACACCAAGGATGAGTCCT -CCAACAACACCAAGGATGTAAGCC -CCAACAACACCAAGGATGATAGCC -CCAACAACACCAAGGATGTAACCG -CCAACAACACCAAGGATGATGCCA -CCAACAACACCAGGGAATGGAAAC -CCAACAACACCAGGGAATAACACC -CCAACAACACCAGGGAATATCGAG -CCAACAACACCAGGGAATCTCCTT -CCAACAACACCAGGGAATCCTGTT -CCAACAACACCAGGGAATCGGTTT -CCAACAACACCAGGGAATGTGGTT -CCAACAACACCAGGGAATGCCTTT -CCAACAACACCAGGGAATGGTCTT -CCAACAACACCAGGGAATACGCTT -CCAACAACACCAGGGAATAGCGTT -CCAACAACACCAGGGAATTTCGTC -CCAACAACACCAGGGAATTCTCTC -CCAACAACACCAGGGAATTGGATC -CCAACAACACCAGGGAATCACTTC -CCAACAACACCAGGGAATGTACTC -CCAACAACACCAGGGAATGATGTC -CCAACAACACCAGGGAATACAGTC -CCAACAACACCAGGGAATTTGCTG -CCAACAACACCAGGGAATTCCATG -CCAACAACACCAGGGAATTGTGTG -CCAACAACACCAGGGAATCTAGTG -CCAACAACACCAGGGAATCATCTG -CCAACAACACCAGGGAATGAGTTG -CCAACAACACCAGGGAATAGACTG -CCAACAACACCAGGGAATTCGGTA -CCAACAACACCAGGGAATTGCCTA -CCAACAACACCAGGGAATCCACTA -CCAACAACACCAGGGAATGGAGTA -CCAACAACACCAGGGAATTCGTCT -CCAACAACACCAGGGAATTGCACT -CCAACAACACCAGGGAATCTGACT -CCAACAACACCAGGGAATCAACCT -CCAACAACACCAGGGAATGCTACT -CCAACAACACCAGGGAATGGATCT -CCAACAACACCAGGGAATAAGGCT -CCAACAACACCAGGGAATTCAACC -CCAACAACACCAGGGAATTGTTCC -CCAACAACACCAGGGAATATTCCC -CCAACAACACCAGGGAATTTCTCG -CCAACAACACCAGGGAATTAGACG -CCAACAACACCAGGGAATGTAACG -CCAACAACACCAGGGAATACTTCG -CCAACAACACCAGGGAATTACGCA -CCAACAACACCAGGGAATCTTGCA -CCAACAACACCAGGGAATCGAACA -CCAACAACACCAGGGAATCAGTCA -CCAACAACACCAGGGAATGATCCA -CCAACAACACCAGGGAATACGACA -CCAACAACACCAGGGAATAGCTCA -CCAACAACACCAGGGAATTCACGT -CCAACAACACCAGGGAATCGTAGT -CCAACAACACCAGGGAATGTCAGT -CCAACAACACCAGGGAATGAAGGT -CCAACAACACCAGGGAATAACCGT -CCAACAACACCAGGGAATTTGTGC -CCAACAACACCAGGGAATCTAAGC -CCAACAACACCAGGGAATACTAGC -CCAACAACACCAGGGAATAGATGC -CCAACAACACCAGGGAATTGAAGG -CCAACAACACCAGGGAATCAATGG -CCAACAACACCAGGGAATATGAGG -CCAACAACACCAGGGAATAATGGG -CCAACAACACCAGGGAATTCCTGA -CCAACAACACCAGGGAATTAGCGA -CCAACAACACCAGGGAATCACAGA -CCAACAACACCAGGGAATGCAAGA -CCAACAACACCAGGGAATGGTTGA -CCAACAACACCAGGGAATTCCGAT -CCAACAACACCAGGGAATTGGCAT -CCAACAACACCAGGGAATCGAGAT -CCAACAACACCAGGGAATTACCAC -CCAACAACACCAGGGAATCAGAAC -CCAACAACACCAGGGAATGTCTAC -CCAACAACACCAGGGAATACGTAC -CCAACAACACCAGGGAATAGTGAC -CCAACAACACCAGGGAATCTGTAG -CCAACAACACCAGGGAATCCTAAG -CCAACAACACCAGGGAATGTTCAG -CCAACAACACCAGGGAATGCATAG -CCAACAACACCAGGGAATGACAAG -CCAACAACACCAGGGAATAAGCAG -CCAACAACACCAGGGAATCGTCAA -CCAACAACACCAGGGAATGCTGAA -CCAACAACACCAGGGAATAGTACG -CCAACAACACCAGGGAATATCCGA -CCAACAACACCAGGGAATATGGGA -CCAACAACACCAGGGAATGTGCAA -CCAACAACACCAGGGAATGAGGAA -CCAACAACACCAGGGAATCAGGTA -CCAACAACACCAGGGAATGACTCT -CCAACAACACCAGGGAATAGTCCT -CCAACAACACCAGGGAATTAAGCC -CCAACAACACCAGGGAATATAGCC -CCAACAACACCAGGGAATTAACCG -CCAACAACACCAGGGAATATGCCA -CCAACAACACCATGATCCGGAAAC -CCAACAACACCATGATCCAACACC -CCAACAACACCATGATCCATCGAG -CCAACAACACCATGATCCCTCCTT -CCAACAACACCATGATCCCCTGTT -CCAACAACACCATGATCCCGGTTT -CCAACAACACCATGATCCGTGGTT -CCAACAACACCATGATCCGCCTTT -CCAACAACACCATGATCCGGTCTT -CCAACAACACCATGATCCACGCTT -CCAACAACACCATGATCCAGCGTT -CCAACAACACCATGATCCTTCGTC -CCAACAACACCATGATCCTCTCTC -CCAACAACACCATGATCCTGGATC -CCAACAACACCATGATCCCACTTC -CCAACAACACCATGATCCGTACTC -CCAACAACACCATGATCCGATGTC -CCAACAACACCATGATCCACAGTC -CCAACAACACCATGATCCTTGCTG -CCAACAACACCATGATCCTCCATG -CCAACAACACCATGATCCTGTGTG -CCAACAACACCATGATCCCTAGTG -CCAACAACACCATGATCCCATCTG -CCAACAACACCATGATCCGAGTTG -CCAACAACACCATGATCCAGACTG -CCAACAACACCATGATCCTCGGTA -CCAACAACACCATGATCCTGCCTA -CCAACAACACCATGATCCCCACTA -CCAACAACACCATGATCCGGAGTA -CCAACAACACCATGATCCTCGTCT -CCAACAACACCATGATCCTGCACT -CCAACAACACCATGATCCCTGACT -CCAACAACACCATGATCCCAACCT -CCAACAACACCATGATCCGCTACT -CCAACAACACCATGATCCGGATCT -CCAACAACACCATGATCCAAGGCT -CCAACAACACCATGATCCTCAACC -CCAACAACACCATGATCCTGTTCC -CCAACAACACCATGATCCATTCCC -CCAACAACACCATGATCCTTCTCG -CCAACAACACCATGATCCTAGACG -CCAACAACACCATGATCCGTAACG -CCAACAACACCATGATCCACTTCG -CCAACAACACCATGATCCTACGCA -CCAACAACACCATGATCCCTTGCA -CCAACAACACCATGATCCCGAACA -CCAACAACACCATGATCCCAGTCA -CCAACAACACCATGATCCGATCCA -CCAACAACACCATGATCCACGACA -CCAACAACACCATGATCCAGCTCA -CCAACAACACCATGATCCTCACGT -CCAACAACACCATGATCCCGTAGT -CCAACAACACCATGATCCGTCAGT -CCAACAACACCATGATCCGAAGGT -CCAACAACACCATGATCCAACCGT -CCAACAACACCATGATCCTTGTGC -CCAACAACACCATGATCCCTAAGC -CCAACAACACCATGATCCACTAGC -CCAACAACACCATGATCCAGATGC -CCAACAACACCATGATCCTGAAGG -CCAACAACACCATGATCCCAATGG -CCAACAACACCATGATCCATGAGG -CCAACAACACCATGATCCAATGGG -CCAACAACACCATGATCCTCCTGA -CCAACAACACCATGATCCTAGCGA -CCAACAACACCATGATCCCACAGA -CCAACAACACCATGATCCGCAAGA -CCAACAACACCATGATCCGGTTGA -CCAACAACACCATGATCCTCCGAT -CCAACAACACCATGATCCTGGCAT -CCAACAACACCATGATCCCGAGAT -CCAACAACACCATGATCCTACCAC -CCAACAACACCATGATCCCAGAAC -CCAACAACACCATGATCCGTCTAC -CCAACAACACCATGATCCACGTAC -CCAACAACACCATGATCCAGTGAC -CCAACAACACCATGATCCCTGTAG -CCAACAACACCATGATCCCCTAAG -CCAACAACACCATGATCCGTTCAG -CCAACAACACCATGATCCGCATAG -CCAACAACACCATGATCCGACAAG -CCAACAACACCATGATCCAAGCAG -CCAACAACACCATGATCCCGTCAA -CCAACAACACCATGATCCGCTGAA -CCAACAACACCATGATCCAGTACG -CCAACAACACCATGATCCATCCGA -CCAACAACACCATGATCCATGGGA -CCAACAACACCATGATCCGTGCAA -CCAACAACACCATGATCCGAGGAA -CCAACAACACCATGATCCCAGGTA -CCAACAACACCATGATCCGACTCT -CCAACAACACCATGATCCAGTCCT -CCAACAACACCATGATCCTAAGCC -CCAACAACACCATGATCCATAGCC -CCAACAACACCATGATCCTAACCG -CCAACAACACCATGATCCATGCCA -CCAACAACACCACGATAGGGAAAC -CCAACAACACCACGATAGAACACC -CCAACAACACCACGATAGATCGAG -CCAACAACACCACGATAGCTCCTT -CCAACAACACCACGATAGCCTGTT -CCAACAACACCACGATAGCGGTTT -CCAACAACACCACGATAGGTGGTT -CCAACAACACCACGATAGGCCTTT -CCAACAACACCACGATAGGGTCTT -CCAACAACACCACGATAGACGCTT -CCAACAACACCACGATAGAGCGTT -CCAACAACACCACGATAGTTCGTC -CCAACAACACCACGATAGTCTCTC -CCAACAACACCACGATAGTGGATC -CCAACAACACCACGATAGCACTTC -CCAACAACACCACGATAGGTACTC -CCAACAACACCACGATAGGATGTC -CCAACAACACCACGATAGACAGTC -CCAACAACACCACGATAGTTGCTG -CCAACAACACCACGATAGTCCATG -CCAACAACACCACGATAGTGTGTG -CCAACAACACCACGATAGCTAGTG -CCAACAACACCACGATAGCATCTG -CCAACAACACCACGATAGGAGTTG -CCAACAACACCACGATAGAGACTG -CCAACAACACCACGATAGTCGGTA -CCAACAACACCACGATAGTGCCTA -CCAACAACACCACGATAGCCACTA -CCAACAACACCACGATAGGGAGTA -CCAACAACACCACGATAGTCGTCT -CCAACAACACCACGATAGTGCACT -CCAACAACACCACGATAGCTGACT -CCAACAACACCACGATAGCAACCT -CCAACAACACCACGATAGGCTACT -CCAACAACACCACGATAGGGATCT -CCAACAACACCACGATAGAAGGCT -CCAACAACACCACGATAGTCAACC -CCAACAACACCACGATAGTGTTCC -CCAACAACACCACGATAGATTCCC -CCAACAACACCACGATAGTTCTCG -CCAACAACACCACGATAGTAGACG -CCAACAACACCACGATAGGTAACG -CCAACAACACCACGATAGACTTCG -CCAACAACACCACGATAGTACGCA -CCAACAACACCACGATAGCTTGCA -CCAACAACACCACGATAGCGAACA -CCAACAACACCACGATAGCAGTCA -CCAACAACACCACGATAGGATCCA -CCAACAACACCACGATAGACGACA -CCAACAACACCACGATAGAGCTCA -CCAACAACACCACGATAGTCACGT -CCAACAACACCACGATAGCGTAGT -CCAACAACACCACGATAGGTCAGT -CCAACAACACCACGATAGGAAGGT -CCAACAACACCACGATAGAACCGT -CCAACAACACCACGATAGTTGTGC -CCAACAACACCACGATAGCTAAGC -CCAACAACACCACGATAGACTAGC -CCAACAACACCACGATAGAGATGC -CCAACAACACCACGATAGTGAAGG -CCAACAACACCACGATAGCAATGG -CCAACAACACCACGATAGATGAGG -CCAACAACACCACGATAGAATGGG -CCAACAACACCACGATAGTCCTGA -CCAACAACACCACGATAGTAGCGA -CCAACAACACCACGATAGCACAGA -CCAACAACACCACGATAGGCAAGA -CCAACAACACCACGATAGGGTTGA -CCAACAACACCACGATAGTCCGAT -CCAACAACACCACGATAGTGGCAT -CCAACAACACCACGATAGCGAGAT -CCAACAACACCACGATAGTACCAC -CCAACAACACCACGATAGCAGAAC -CCAACAACACCACGATAGGTCTAC -CCAACAACACCACGATAGACGTAC -CCAACAACACCACGATAGAGTGAC -CCAACAACACCACGATAGCTGTAG -CCAACAACACCACGATAGCCTAAG -CCAACAACACCACGATAGGTTCAG -CCAACAACACCACGATAGGCATAG -CCAACAACACCACGATAGGACAAG -CCAACAACACCACGATAGAAGCAG -CCAACAACACCACGATAGCGTCAA -CCAACAACACCACGATAGGCTGAA -CCAACAACACCACGATAGAGTACG -CCAACAACACCACGATAGATCCGA -CCAACAACACCACGATAGATGGGA -CCAACAACACCACGATAGGTGCAA -CCAACAACACCACGATAGGAGGAA -CCAACAACACCACGATAGCAGGTA -CCAACAACACCACGATAGGACTCT -CCAACAACACCACGATAGAGTCCT -CCAACAACACCACGATAGTAAGCC -CCAACAACACCACGATAGATAGCC -CCAACAACACCACGATAGTAACCG -CCAACAACACCACGATAGATGCCA -CCAACAACACCAAGACACGGAAAC -CCAACAACACCAAGACACAACACC -CCAACAACACCAAGACACATCGAG -CCAACAACACCAAGACACCTCCTT -CCAACAACACCAAGACACCCTGTT -CCAACAACACCAAGACACCGGTTT -CCAACAACACCAAGACACGTGGTT -CCAACAACACCAAGACACGCCTTT -CCAACAACACCAAGACACGGTCTT -CCAACAACACCAAGACACACGCTT -CCAACAACACCAAGACACAGCGTT -CCAACAACACCAAGACACTTCGTC -CCAACAACACCAAGACACTCTCTC -CCAACAACACCAAGACACTGGATC -CCAACAACACCAAGACACCACTTC -CCAACAACACCAAGACACGTACTC -CCAACAACACCAAGACACGATGTC -CCAACAACACCAAGACACACAGTC -CCAACAACACCAAGACACTTGCTG -CCAACAACACCAAGACACTCCATG -CCAACAACACCAAGACACTGTGTG -CCAACAACACCAAGACACCTAGTG -CCAACAACACCAAGACACCATCTG -CCAACAACACCAAGACACGAGTTG -CCAACAACACCAAGACACAGACTG -CCAACAACACCAAGACACTCGGTA -CCAACAACACCAAGACACTGCCTA -CCAACAACACCAAGACACCCACTA -CCAACAACACCAAGACACGGAGTA -CCAACAACACCAAGACACTCGTCT -CCAACAACACCAAGACACTGCACT -CCAACAACACCAAGACACCTGACT -CCAACAACACCAAGACACCAACCT -CCAACAACACCAAGACACGCTACT -CCAACAACACCAAGACACGGATCT -CCAACAACACCAAGACACAAGGCT -CCAACAACACCAAGACACTCAACC -CCAACAACACCAAGACACTGTTCC -CCAACAACACCAAGACACATTCCC -CCAACAACACCAAGACACTTCTCG -CCAACAACACCAAGACACTAGACG -CCAACAACACCAAGACACGTAACG -CCAACAACACCAAGACACACTTCG -CCAACAACACCAAGACACTACGCA -CCAACAACACCAAGACACCTTGCA -CCAACAACACCAAGACACCGAACA -CCAACAACACCAAGACACCAGTCA -CCAACAACACCAAGACACGATCCA -CCAACAACACCAAGACACACGACA -CCAACAACACCAAGACACAGCTCA -CCAACAACACCAAGACACTCACGT -CCAACAACACCAAGACACCGTAGT -CCAACAACACCAAGACACGTCAGT -CCAACAACACCAAGACACGAAGGT -CCAACAACACCAAGACACAACCGT -CCAACAACACCAAGACACTTGTGC -CCAACAACACCAAGACACCTAAGC -CCAACAACACCAAGACACACTAGC -CCAACAACACCAAGACACAGATGC -CCAACAACACCAAGACACTGAAGG -CCAACAACACCAAGACACCAATGG -CCAACAACACCAAGACACATGAGG -CCAACAACACCAAGACACAATGGG -CCAACAACACCAAGACACTCCTGA -CCAACAACACCAAGACACTAGCGA -CCAACAACACCAAGACACCACAGA -CCAACAACACCAAGACACGCAAGA -CCAACAACACCAAGACACGGTTGA -CCAACAACACCAAGACACTCCGAT -CCAACAACACCAAGACACTGGCAT -CCAACAACACCAAGACACCGAGAT -CCAACAACACCAAGACACTACCAC -CCAACAACACCAAGACACCAGAAC -CCAACAACACCAAGACACGTCTAC -CCAACAACACCAAGACACACGTAC -CCAACAACACCAAGACACAGTGAC -CCAACAACACCAAGACACCTGTAG -CCAACAACACCAAGACACCCTAAG -CCAACAACACCAAGACACGTTCAG -CCAACAACACCAAGACACGCATAG -CCAACAACACCAAGACACGACAAG -CCAACAACACCAAGACACAAGCAG -CCAACAACACCAAGACACCGTCAA -CCAACAACACCAAGACACGCTGAA -CCAACAACACCAAGACACAGTACG -CCAACAACACCAAGACACATCCGA -CCAACAACACCAAGACACATGGGA -CCAACAACACCAAGACACGTGCAA -CCAACAACACCAAGACACGAGGAA -CCAACAACACCAAGACACCAGGTA -CCAACAACACCAAGACACGACTCT -CCAACAACACCAAGACACAGTCCT -CCAACAACACCAAGACACTAAGCC -CCAACAACACCAAGACACATAGCC -CCAACAACACCAAGACACTAACCG -CCAACAACACCAAGACACATGCCA -CCAACAACACCAAGAGCAGGAAAC -CCAACAACACCAAGAGCAAACACC -CCAACAACACCAAGAGCAATCGAG -CCAACAACACCAAGAGCACTCCTT -CCAACAACACCAAGAGCACCTGTT -CCAACAACACCAAGAGCACGGTTT -CCAACAACACCAAGAGCAGTGGTT -CCAACAACACCAAGAGCAGCCTTT -CCAACAACACCAAGAGCAGGTCTT -CCAACAACACCAAGAGCAACGCTT -CCAACAACACCAAGAGCAAGCGTT -CCAACAACACCAAGAGCATTCGTC -CCAACAACACCAAGAGCATCTCTC -CCAACAACACCAAGAGCATGGATC -CCAACAACACCAAGAGCACACTTC -CCAACAACACCAAGAGCAGTACTC -CCAACAACACCAAGAGCAGATGTC -CCAACAACACCAAGAGCAACAGTC -CCAACAACACCAAGAGCATTGCTG -CCAACAACACCAAGAGCATCCATG -CCAACAACACCAAGAGCATGTGTG -CCAACAACACCAAGAGCACTAGTG -CCAACAACACCAAGAGCACATCTG -CCAACAACACCAAGAGCAGAGTTG -CCAACAACACCAAGAGCAAGACTG -CCAACAACACCAAGAGCATCGGTA -CCAACAACACCAAGAGCATGCCTA -CCAACAACACCAAGAGCACCACTA -CCAACAACACCAAGAGCAGGAGTA -CCAACAACACCAAGAGCATCGTCT -CCAACAACACCAAGAGCATGCACT -CCAACAACACCAAGAGCACTGACT -CCAACAACACCAAGAGCACAACCT -CCAACAACACCAAGAGCAGCTACT -CCAACAACACCAAGAGCAGGATCT -CCAACAACACCAAGAGCAAAGGCT -CCAACAACACCAAGAGCATCAACC -CCAACAACACCAAGAGCATGTTCC -CCAACAACACCAAGAGCAATTCCC -CCAACAACACCAAGAGCATTCTCG -CCAACAACACCAAGAGCATAGACG -CCAACAACACCAAGAGCAGTAACG -CCAACAACACCAAGAGCAACTTCG -CCAACAACACCAAGAGCATACGCA -CCAACAACACCAAGAGCACTTGCA -CCAACAACACCAAGAGCACGAACA -CCAACAACACCAAGAGCACAGTCA -CCAACAACACCAAGAGCAGATCCA -CCAACAACACCAAGAGCAACGACA -CCAACAACACCAAGAGCAAGCTCA -CCAACAACACCAAGAGCATCACGT -CCAACAACACCAAGAGCACGTAGT -CCAACAACACCAAGAGCAGTCAGT -CCAACAACACCAAGAGCAGAAGGT -CCAACAACACCAAGAGCAAACCGT -CCAACAACACCAAGAGCATTGTGC -CCAACAACACCAAGAGCACTAAGC -CCAACAACACCAAGAGCAACTAGC -CCAACAACACCAAGAGCAAGATGC -CCAACAACACCAAGAGCATGAAGG -CCAACAACACCAAGAGCACAATGG -CCAACAACACCAAGAGCAATGAGG -CCAACAACACCAAGAGCAAATGGG -CCAACAACACCAAGAGCATCCTGA -CCAACAACACCAAGAGCATAGCGA -CCAACAACACCAAGAGCACACAGA -CCAACAACACCAAGAGCAGCAAGA -CCAACAACACCAAGAGCAGGTTGA -CCAACAACACCAAGAGCATCCGAT -CCAACAACACCAAGAGCATGGCAT -CCAACAACACCAAGAGCACGAGAT -CCAACAACACCAAGAGCATACCAC -CCAACAACACCAAGAGCACAGAAC -CCAACAACACCAAGAGCAGTCTAC -CCAACAACACCAAGAGCAACGTAC -CCAACAACACCAAGAGCAAGTGAC -CCAACAACACCAAGAGCACTGTAG -CCAACAACACCAAGAGCACCTAAG -CCAACAACACCAAGAGCAGTTCAG -CCAACAACACCAAGAGCAGCATAG -CCAACAACACCAAGAGCAGACAAG -CCAACAACACCAAGAGCAAAGCAG -CCAACAACACCAAGAGCACGTCAA -CCAACAACACCAAGAGCAGCTGAA -CCAACAACACCAAGAGCAAGTACG -CCAACAACACCAAGAGCAATCCGA -CCAACAACACCAAGAGCAATGGGA -CCAACAACACCAAGAGCAGTGCAA -CCAACAACACCAAGAGCAGAGGAA -CCAACAACACCAAGAGCACAGGTA -CCAACAACACCAAGAGCAGACTCT -CCAACAACACCAAGAGCAAGTCCT -CCAACAACACCAAGAGCATAAGCC -CCAACAACACCAAGAGCAATAGCC -CCAACAACACCAAGAGCATAACCG -CCAACAACACCAAGAGCAATGCCA -CCAACAACACCATGAGGTGGAAAC -CCAACAACACCATGAGGTAACACC -CCAACAACACCATGAGGTATCGAG -CCAACAACACCATGAGGTCTCCTT -CCAACAACACCATGAGGTCCTGTT -CCAACAACACCATGAGGTCGGTTT -CCAACAACACCATGAGGTGTGGTT -CCAACAACACCATGAGGTGCCTTT -CCAACAACACCATGAGGTGGTCTT -CCAACAACACCATGAGGTACGCTT -CCAACAACACCATGAGGTAGCGTT -CCAACAACACCATGAGGTTTCGTC -CCAACAACACCATGAGGTTCTCTC -CCAACAACACCATGAGGTTGGATC -CCAACAACACCATGAGGTCACTTC -CCAACAACACCATGAGGTGTACTC -CCAACAACACCATGAGGTGATGTC -CCAACAACACCATGAGGTACAGTC -CCAACAACACCATGAGGTTTGCTG -CCAACAACACCATGAGGTTCCATG -CCAACAACACCATGAGGTTGTGTG -CCAACAACACCATGAGGTCTAGTG -CCAACAACACCATGAGGTCATCTG -CCAACAACACCATGAGGTGAGTTG -CCAACAACACCATGAGGTAGACTG -CCAACAACACCATGAGGTTCGGTA -CCAACAACACCATGAGGTTGCCTA -CCAACAACACCATGAGGTCCACTA -CCAACAACACCATGAGGTGGAGTA -CCAACAACACCATGAGGTTCGTCT -CCAACAACACCATGAGGTTGCACT -CCAACAACACCATGAGGTCTGACT -CCAACAACACCATGAGGTCAACCT -CCAACAACACCATGAGGTGCTACT -CCAACAACACCATGAGGTGGATCT -CCAACAACACCATGAGGTAAGGCT -CCAACAACACCATGAGGTTCAACC -CCAACAACACCATGAGGTTGTTCC -CCAACAACACCATGAGGTATTCCC -CCAACAACACCATGAGGTTTCTCG -CCAACAACACCATGAGGTTAGACG -CCAACAACACCATGAGGTGTAACG -CCAACAACACCATGAGGTACTTCG -CCAACAACACCATGAGGTTACGCA -CCAACAACACCATGAGGTCTTGCA -CCAACAACACCATGAGGTCGAACA -CCAACAACACCATGAGGTCAGTCA -CCAACAACACCATGAGGTGATCCA -CCAACAACACCATGAGGTACGACA -CCAACAACACCATGAGGTAGCTCA -CCAACAACACCATGAGGTTCACGT -CCAACAACACCATGAGGTCGTAGT -CCAACAACACCATGAGGTGTCAGT -CCAACAACACCATGAGGTGAAGGT -CCAACAACACCATGAGGTAACCGT -CCAACAACACCATGAGGTTTGTGC -CCAACAACACCATGAGGTCTAAGC -CCAACAACACCATGAGGTACTAGC -CCAACAACACCATGAGGTAGATGC -CCAACAACACCATGAGGTTGAAGG -CCAACAACACCATGAGGTCAATGG -CCAACAACACCATGAGGTATGAGG -CCAACAACACCATGAGGTAATGGG -CCAACAACACCATGAGGTTCCTGA -CCAACAACACCATGAGGTTAGCGA -CCAACAACACCATGAGGTCACAGA -CCAACAACACCATGAGGTGCAAGA -CCAACAACACCATGAGGTGGTTGA -CCAACAACACCATGAGGTTCCGAT -CCAACAACACCATGAGGTTGGCAT -CCAACAACACCATGAGGTCGAGAT -CCAACAACACCATGAGGTTACCAC -CCAACAACACCATGAGGTCAGAAC -CCAACAACACCATGAGGTGTCTAC -CCAACAACACCATGAGGTACGTAC -CCAACAACACCATGAGGTAGTGAC -CCAACAACACCATGAGGTCTGTAG -CCAACAACACCATGAGGTCCTAAG -CCAACAACACCATGAGGTGTTCAG -CCAACAACACCATGAGGTGCATAG -CCAACAACACCATGAGGTGACAAG -CCAACAACACCATGAGGTAAGCAG -CCAACAACACCATGAGGTCGTCAA -CCAACAACACCATGAGGTGCTGAA -CCAACAACACCATGAGGTAGTACG -CCAACAACACCATGAGGTATCCGA -CCAACAACACCATGAGGTATGGGA -CCAACAACACCATGAGGTGTGCAA -CCAACAACACCATGAGGTGAGGAA -CCAACAACACCATGAGGTCAGGTA -CCAACAACACCATGAGGTGACTCT -CCAACAACACCATGAGGTAGTCCT -CCAACAACACCATGAGGTTAAGCC -CCAACAACACCATGAGGTATAGCC -CCAACAACACCATGAGGTTAACCG -CCAACAACACCATGAGGTATGCCA -CCAACAACACCAGATTCCGGAAAC -CCAACAACACCAGATTCCAACACC -CCAACAACACCAGATTCCATCGAG -CCAACAACACCAGATTCCCTCCTT -CCAACAACACCAGATTCCCCTGTT -CCAACAACACCAGATTCCCGGTTT -CCAACAACACCAGATTCCGTGGTT -CCAACAACACCAGATTCCGCCTTT -CCAACAACACCAGATTCCGGTCTT -CCAACAACACCAGATTCCACGCTT -CCAACAACACCAGATTCCAGCGTT -CCAACAACACCAGATTCCTTCGTC -CCAACAACACCAGATTCCTCTCTC -CCAACAACACCAGATTCCTGGATC -CCAACAACACCAGATTCCCACTTC -CCAACAACACCAGATTCCGTACTC -CCAACAACACCAGATTCCGATGTC -CCAACAACACCAGATTCCACAGTC -CCAACAACACCAGATTCCTTGCTG -CCAACAACACCAGATTCCTCCATG -CCAACAACACCAGATTCCTGTGTG -CCAACAACACCAGATTCCCTAGTG -CCAACAACACCAGATTCCCATCTG -CCAACAACACCAGATTCCGAGTTG -CCAACAACACCAGATTCCAGACTG -CCAACAACACCAGATTCCTCGGTA -CCAACAACACCAGATTCCTGCCTA -CCAACAACACCAGATTCCCCACTA -CCAACAACACCAGATTCCGGAGTA -CCAACAACACCAGATTCCTCGTCT -CCAACAACACCAGATTCCTGCACT -CCAACAACACCAGATTCCCTGACT -CCAACAACACCAGATTCCCAACCT -CCAACAACACCAGATTCCGCTACT -CCAACAACACCAGATTCCGGATCT -CCAACAACACCAGATTCCAAGGCT -CCAACAACACCAGATTCCTCAACC -CCAACAACACCAGATTCCTGTTCC -CCAACAACACCAGATTCCATTCCC -CCAACAACACCAGATTCCTTCTCG -CCAACAACACCAGATTCCTAGACG -CCAACAACACCAGATTCCGTAACG -CCAACAACACCAGATTCCACTTCG -CCAACAACACCAGATTCCTACGCA -CCAACAACACCAGATTCCCTTGCA -CCAACAACACCAGATTCCCGAACA -CCAACAACACCAGATTCCCAGTCA -CCAACAACACCAGATTCCGATCCA -CCAACAACACCAGATTCCACGACA -CCAACAACACCAGATTCCAGCTCA -CCAACAACACCAGATTCCTCACGT -CCAACAACACCAGATTCCCGTAGT -CCAACAACACCAGATTCCGTCAGT -CCAACAACACCAGATTCCGAAGGT -CCAACAACACCAGATTCCAACCGT -CCAACAACACCAGATTCCTTGTGC -CCAACAACACCAGATTCCCTAAGC -CCAACAACACCAGATTCCACTAGC -CCAACAACACCAGATTCCAGATGC -CCAACAACACCAGATTCCTGAAGG -CCAACAACACCAGATTCCCAATGG -CCAACAACACCAGATTCCATGAGG -CCAACAACACCAGATTCCAATGGG -CCAACAACACCAGATTCCTCCTGA -CCAACAACACCAGATTCCTAGCGA -CCAACAACACCAGATTCCCACAGA -CCAACAACACCAGATTCCGCAAGA -CCAACAACACCAGATTCCGGTTGA -CCAACAACACCAGATTCCTCCGAT -CCAACAACACCAGATTCCTGGCAT -CCAACAACACCAGATTCCCGAGAT -CCAACAACACCAGATTCCTACCAC -CCAACAACACCAGATTCCCAGAAC -CCAACAACACCAGATTCCGTCTAC -CCAACAACACCAGATTCCACGTAC -CCAACAACACCAGATTCCAGTGAC -CCAACAACACCAGATTCCCTGTAG -CCAACAACACCAGATTCCCCTAAG -CCAACAACACCAGATTCCGTTCAG -CCAACAACACCAGATTCCGCATAG -CCAACAACACCAGATTCCGACAAG -CCAACAACACCAGATTCCAAGCAG -CCAACAACACCAGATTCCCGTCAA -CCAACAACACCAGATTCCGCTGAA -CCAACAACACCAGATTCCAGTACG -CCAACAACACCAGATTCCATCCGA -CCAACAACACCAGATTCCATGGGA -CCAACAACACCAGATTCCGTGCAA -CCAACAACACCAGATTCCGAGGAA -CCAACAACACCAGATTCCCAGGTA -CCAACAACACCAGATTCCGACTCT -CCAACAACACCAGATTCCAGTCCT -CCAACAACACCAGATTCCTAAGCC -CCAACAACACCAGATTCCATAGCC -CCAACAACACCAGATTCCTAACCG -CCAACAACACCAGATTCCATGCCA -CCAACAACACCACATTGGGGAAAC -CCAACAACACCACATTGGAACACC -CCAACAACACCACATTGGATCGAG -CCAACAACACCACATTGGCTCCTT -CCAACAACACCACATTGGCCTGTT -CCAACAACACCACATTGGCGGTTT -CCAACAACACCACATTGGGTGGTT -CCAACAACACCACATTGGGCCTTT -CCAACAACACCACATTGGGGTCTT -CCAACAACACCACATTGGACGCTT -CCAACAACACCACATTGGAGCGTT -CCAACAACACCACATTGGTTCGTC -CCAACAACACCACATTGGTCTCTC -CCAACAACACCACATTGGTGGATC -CCAACAACACCACATTGGCACTTC -CCAACAACACCACATTGGGTACTC -CCAACAACACCACATTGGGATGTC -CCAACAACACCACATTGGACAGTC -CCAACAACACCACATTGGTTGCTG -CCAACAACACCACATTGGTCCATG -CCAACAACACCACATTGGTGTGTG -CCAACAACACCACATTGGCTAGTG -CCAACAACACCACATTGGCATCTG -CCAACAACACCACATTGGGAGTTG -CCAACAACACCACATTGGAGACTG -CCAACAACACCACATTGGTCGGTA -CCAACAACACCACATTGGTGCCTA -CCAACAACACCACATTGGCCACTA -CCAACAACACCACATTGGGGAGTA -CCAACAACACCACATTGGTCGTCT -CCAACAACACCACATTGGTGCACT -CCAACAACACCACATTGGCTGACT -CCAACAACACCACATTGGCAACCT -CCAACAACACCACATTGGGCTACT -CCAACAACACCACATTGGGGATCT -CCAACAACACCACATTGGAAGGCT -CCAACAACACCACATTGGTCAACC -CCAACAACACCACATTGGTGTTCC -CCAACAACACCACATTGGATTCCC -CCAACAACACCACATTGGTTCTCG -CCAACAACACCACATTGGTAGACG -CCAACAACACCACATTGGGTAACG -CCAACAACACCACATTGGACTTCG -CCAACAACACCACATTGGTACGCA -CCAACAACACCACATTGGCTTGCA -CCAACAACACCACATTGGCGAACA -CCAACAACACCACATTGGCAGTCA -CCAACAACACCACATTGGGATCCA -CCAACAACACCACATTGGACGACA -CCAACAACACCACATTGGAGCTCA -CCAACAACACCACATTGGTCACGT -CCAACAACACCACATTGGCGTAGT -CCAACAACACCACATTGGGTCAGT -CCAACAACACCACATTGGGAAGGT -CCAACAACACCACATTGGAACCGT -CCAACAACACCACATTGGTTGTGC -CCAACAACACCACATTGGCTAAGC -CCAACAACACCACATTGGACTAGC -CCAACAACACCACATTGGAGATGC -CCAACAACACCACATTGGTGAAGG -CCAACAACACCACATTGGCAATGG -CCAACAACACCACATTGGATGAGG -CCAACAACACCACATTGGAATGGG -CCAACAACACCACATTGGTCCTGA -CCAACAACACCACATTGGTAGCGA -CCAACAACACCACATTGGCACAGA -CCAACAACACCACATTGGGCAAGA -CCAACAACACCACATTGGGGTTGA -CCAACAACACCACATTGGTCCGAT -CCAACAACACCACATTGGTGGCAT -CCAACAACACCACATTGGCGAGAT -CCAACAACACCACATTGGTACCAC -CCAACAACACCACATTGGCAGAAC -CCAACAACACCACATTGGGTCTAC -CCAACAACACCACATTGGACGTAC -CCAACAACACCACATTGGAGTGAC -CCAACAACACCACATTGGCTGTAG -CCAACAACACCACATTGGCCTAAG -CCAACAACACCACATTGGGTTCAG -CCAACAACACCACATTGGGCATAG -CCAACAACACCACATTGGGACAAG -CCAACAACACCACATTGGAAGCAG -CCAACAACACCACATTGGCGTCAA -CCAACAACACCACATTGGGCTGAA -CCAACAACACCACATTGGAGTACG -CCAACAACACCACATTGGATCCGA -CCAACAACACCACATTGGATGGGA -CCAACAACACCACATTGGGTGCAA -CCAACAACACCACATTGGGAGGAA -CCAACAACACCACATTGGCAGGTA -CCAACAACACCACATTGGGACTCT -CCAACAACACCACATTGGAGTCCT -CCAACAACACCACATTGGTAAGCC -CCAACAACACCACATTGGATAGCC -CCAACAACACCACATTGGTAACCG -CCAACAACACCACATTGGATGCCA -CCAACAACACCAGATCGAGGAAAC -CCAACAACACCAGATCGAAACACC -CCAACAACACCAGATCGAATCGAG -CCAACAACACCAGATCGACTCCTT -CCAACAACACCAGATCGACCTGTT -CCAACAACACCAGATCGACGGTTT -CCAACAACACCAGATCGAGTGGTT -CCAACAACACCAGATCGAGCCTTT -CCAACAACACCAGATCGAGGTCTT -CCAACAACACCAGATCGAACGCTT -CCAACAACACCAGATCGAAGCGTT -CCAACAACACCAGATCGATTCGTC -CCAACAACACCAGATCGATCTCTC -CCAACAACACCAGATCGATGGATC -CCAACAACACCAGATCGACACTTC -CCAACAACACCAGATCGAGTACTC -CCAACAACACCAGATCGAGATGTC -CCAACAACACCAGATCGAACAGTC -CCAACAACACCAGATCGATTGCTG -CCAACAACACCAGATCGATCCATG -CCAACAACACCAGATCGATGTGTG -CCAACAACACCAGATCGACTAGTG -CCAACAACACCAGATCGACATCTG -CCAACAACACCAGATCGAGAGTTG -CCAACAACACCAGATCGAAGACTG -CCAACAACACCAGATCGATCGGTA -CCAACAACACCAGATCGATGCCTA -CCAACAACACCAGATCGACCACTA -CCAACAACACCAGATCGAGGAGTA -CCAACAACACCAGATCGATCGTCT -CCAACAACACCAGATCGATGCACT -CCAACAACACCAGATCGACTGACT -CCAACAACACCAGATCGACAACCT -CCAACAACACCAGATCGAGCTACT -CCAACAACACCAGATCGAGGATCT -CCAACAACACCAGATCGAAAGGCT -CCAACAACACCAGATCGATCAACC -CCAACAACACCAGATCGATGTTCC -CCAACAACACCAGATCGAATTCCC -CCAACAACACCAGATCGATTCTCG -CCAACAACACCAGATCGATAGACG -CCAACAACACCAGATCGAGTAACG -CCAACAACACCAGATCGAACTTCG -CCAACAACACCAGATCGATACGCA -CCAACAACACCAGATCGACTTGCA -CCAACAACACCAGATCGACGAACA -CCAACAACACCAGATCGACAGTCA -CCAACAACACCAGATCGAGATCCA -CCAACAACACCAGATCGAACGACA -CCAACAACACCAGATCGAAGCTCA -CCAACAACACCAGATCGATCACGT -CCAACAACACCAGATCGACGTAGT -CCAACAACACCAGATCGAGTCAGT -CCAACAACACCAGATCGAGAAGGT -CCAACAACACCAGATCGAAACCGT -CCAACAACACCAGATCGATTGTGC -CCAACAACACCAGATCGACTAAGC -CCAACAACACCAGATCGAACTAGC -CCAACAACACCAGATCGAAGATGC -CCAACAACACCAGATCGATGAAGG -CCAACAACACCAGATCGACAATGG -CCAACAACACCAGATCGAATGAGG -CCAACAACACCAGATCGAAATGGG -CCAACAACACCAGATCGATCCTGA -CCAACAACACCAGATCGATAGCGA -CCAACAACACCAGATCGACACAGA -CCAACAACACCAGATCGAGCAAGA -CCAACAACACCAGATCGAGGTTGA -CCAACAACACCAGATCGATCCGAT -CCAACAACACCAGATCGATGGCAT -CCAACAACACCAGATCGACGAGAT -CCAACAACACCAGATCGATACCAC -CCAACAACACCAGATCGACAGAAC -CCAACAACACCAGATCGAGTCTAC -CCAACAACACCAGATCGAACGTAC -CCAACAACACCAGATCGAAGTGAC -CCAACAACACCAGATCGACTGTAG -CCAACAACACCAGATCGACCTAAG -CCAACAACACCAGATCGAGTTCAG -CCAACAACACCAGATCGAGCATAG -CCAACAACACCAGATCGAGACAAG -CCAACAACACCAGATCGAAAGCAG -CCAACAACACCAGATCGACGTCAA -CCAACAACACCAGATCGAGCTGAA -CCAACAACACCAGATCGAAGTACG -CCAACAACACCAGATCGAATCCGA -CCAACAACACCAGATCGAATGGGA -CCAACAACACCAGATCGAGTGCAA -CCAACAACACCAGATCGAGAGGAA -CCAACAACACCAGATCGACAGGTA -CCAACAACACCAGATCGAGACTCT -CCAACAACACCAGATCGAAGTCCT -CCAACAACACCAGATCGATAAGCC -CCAACAACACCAGATCGAATAGCC -CCAACAACACCAGATCGATAACCG -CCAACAACACCAGATCGAATGCCA -CCAACAACACCACACTACGGAAAC -CCAACAACACCACACTACAACACC -CCAACAACACCACACTACATCGAG -CCAACAACACCACACTACCTCCTT -CCAACAACACCACACTACCCTGTT -CCAACAACACCACACTACCGGTTT -CCAACAACACCACACTACGTGGTT -CCAACAACACCACACTACGCCTTT -CCAACAACACCACACTACGGTCTT -CCAACAACACCACACTACACGCTT -CCAACAACACCACACTACAGCGTT -CCAACAACACCACACTACTTCGTC -CCAACAACACCACACTACTCTCTC -CCAACAACACCACACTACTGGATC -CCAACAACACCACACTACCACTTC -CCAACAACACCACACTACGTACTC -CCAACAACACCACACTACGATGTC -CCAACAACACCACACTACACAGTC -CCAACAACACCACACTACTTGCTG -CCAACAACACCACACTACTCCATG -CCAACAACACCACACTACTGTGTG -CCAACAACACCACACTACCTAGTG -CCAACAACACCACACTACCATCTG -CCAACAACACCACACTACGAGTTG -CCAACAACACCACACTACAGACTG -CCAACAACACCACACTACTCGGTA -CCAACAACACCACACTACTGCCTA -CCAACAACACCACACTACCCACTA -CCAACAACACCACACTACGGAGTA -CCAACAACACCACACTACTCGTCT -CCAACAACACCACACTACTGCACT -CCAACAACACCACACTACCTGACT -CCAACAACACCACACTACCAACCT -CCAACAACACCACACTACGCTACT -CCAACAACACCACACTACGGATCT -CCAACAACACCACACTACAAGGCT -CCAACAACACCACACTACTCAACC -CCAACAACACCACACTACTGTTCC -CCAACAACACCACACTACATTCCC -CCAACAACACCACACTACTTCTCG -CCAACAACACCACACTACTAGACG -CCAACAACACCACACTACGTAACG -CCAACAACACCACACTACACTTCG -CCAACAACACCACACTACTACGCA -CCAACAACACCACACTACCTTGCA -CCAACAACACCACACTACCGAACA -CCAACAACACCACACTACCAGTCA -CCAACAACACCACACTACGATCCA -CCAACAACACCACACTACACGACA -CCAACAACACCACACTACAGCTCA -CCAACAACACCACACTACTCACGT -CCAACAACACCACACTACCGTAGT -CCAACAACACCACACTACGTCAGT -CCAACAACACCACACTACGAAGGT -CCAACAACACCACACTACAACCGT -CCAACAACACCACACTACTTGTGC -CCAACAACACCACACTACCTAAGC -CCAACAACACCACACTACACTAGC -CCAACAACACCACACTACAGATGC -CCAACAACACCACACTACTGAAGG -CCAACAACACCACACTACCAATGG -CCAACAACACCACACTACATGAGG -CCAACAACACCACACTACAATGGG -CCAACAACACCACACTACTCCTGA -CCAACAACACCACACTACTAGCGA -CCAACAACACCACACTACCACAGA -CCAACAACACCACACTACGCAAGA -CCAACAACACCACACTACGGTTGA -CCAACAACACCACACTACTCCGAT -CCAACAACACCACACTACTGGCAT -CCAACAACACCACACTACCGAGAT -CCAACAACACCACACTACTACCAC -CCAACAACACCACACTACCAGAAC -CCAACAACACCACACTACGTCTAC -CCAACAACACCACACTACACGTAC -CCAACAACACCACACTACAGTGAC -CCAACAACACCACACTACCTGTAG -CCAACAACACCACACTACCCTAAG -CCAACAACACCACACTACGTTCAG -CCAACAACACCACACTACGCATAG -CCAACAACACCACACTACGACAAG -CCAACAACACCACACTACAAGCAG -CCAACAACACCACACTACCGTCAA -CCAACAACACCACACTACGCTGAA -CCAACAACACCACACTACAGTACG -CCAACAACACCACACTACATCCGA -CCAACAACACCACACTACATGGGA -CCAACAACACCACACTACGTGCAA -CCAACAACACCACACTACGAGGAA -CCAACAACACCACACTACCAGGTA -CCAACAACACCACACTACGACTCT -CCAACAACACCACACTACAGTCCT -CCAACAACACCACACTACTAAGCC -CCAACAACACCACACTACATAGCC -CCAACAACACCACACTACTAACCG -CCAACAACACCACACTACATGCCA -CCAACAACACCAAACCAGGGAAAC -CCAACAACACCAAACCAGAACACC -CCAACAACACCAAACCAGATCGAG -CCAACAACACCAAACCAGCTCCTT -CCAACAACACCAAACCAGCCTGTT -CCAACAACACCAAACCAGCGGTTT -CCAACAACACCAAACCAGGTGGTT -CCAACAACACCAAACCAGGCCTTT -CCAACAACACCAAACCAGGGTCTT -CCAACAACACCAAACCAGACGCTT -CCAACAACACCAAACCAGAGCGTT -CCAACAACACCAAACCAGTTCGTC -CCAACAACACCAAACCAGTCTCTC -CCAACAACACCAAACCAGTGGATC -CCAACAACACCAAACCAGCACTTC -CCAACAACACCAAACCAGGTACTC -CCAACAACACCAAACCAGGATGTC -CCAACAACACCAAACCAGACAGTC -CCAACAACACCAAACCAGTTGCTG -CCAACAACACCAAACCAGTCCATG -CCAACAACACCAAACCAGTGTGTG -CCAACAACACCAAACCAGCTAGTG -CCAACAACACCAAACCAGCATCTG -CCAACAACACCAAACCAGGAGTTG -CCAACAACACCAAACCAGAGACTG -CCAACAACACCAAACCAGTCGGTA -CCAACAACACCAAACCAGTGCCTA -CCAACAACACCAAACCAGCCACTA -CCAACAACACCAAACCAGGGAGTA -CCAACAACACCAAACCAGTCGTCT -CCAACAACACCAAACCAGTGCACT -CCAACAACACCAAACCAGCTGACT -CCAACAACACCAAACCAGCAACCT -CCAACAACACCAAACCAGGCTACT -CCAACAACACCAAACCAGGGATCT -CCAACAACACCAAACCAGAAGGCT -CCAACAACACCAAACCAGTCAACC -CCAACAACACCAAACCAGTGTTCC -CCAACAACACCAAACCAGATTCCC -CCAACAACACCAAACCAGTTCTCG -CCAACAACACCAAACCAGTAGACG -CCAACAACACCAAACCAGGTAACG -CCAACAACACCAAACCAGACTTCG -CCAACAACACCAAACCAGTACGCA -CCAACAACACCAAACCAGCTTGCA -CCAACAACACCAAACCAGCGAACA -CCAACAACACCAAACCAGCAGTCA -CCAACAACACCAAACCAGGATCCA -CCAACAACACCAAACCAGACGACA -CCAACAACACCAAACCAGAGCTCA -CCAACAACACCAAACCAGTCACGT -CCAACAACACCAAACCAGCGTAGT -CCAACAACACCAAACCAGGTCAGT -CCAACAACACCAAACCAGGAAGGT -CCAACAACACCAAACCAGAACCGT -CCAACAACACCAAACCAGTTGTGC -CCAACAACACCAAACCAGCTAAGC -CCAACAACACCAAACCAGACTAGC -CCAACAACACCAAACCAGAGATGC -CCAACAACACCAAACCAGTGAAGG -CCAACAACACCAAACCAGCAATGG -CCAACAACACCAAACCAGATGAGG -CCAACAACACCAAACCAGAATGGG -CCAACAACACCAAACCAGTCCTGA -CCAACAACACCAAACCAGTAGCGA -CCAACAACACCAAACCAGCACAGA -CCAACAACACCAAACCAGGCAAGA -CCAACAACACCAAACCAGGGTTGA -CCAACAACACCAAACCAGTCCGAT -CCAACAACACCAAACCAGTGGCAT -CCAACAACACCAAACCAGCGAGAT -CCAACAACACCAAACCAGTACCAC -CCAACAACACCAAACCAGCAGAAC -CCAACAACACCAAACCAGGTCTAC -CCAACAACACCAAACCAGACGTAC -CCAACAACACCAAACCAGAGTGAC -CCAACAACACCAAACCAGCTGTAG -CCAACAACACCAAACCAGCCTAAG -CCAACAACACCAAACCAGGTTCAG -CCAACAACACCAAACCAGGCATAG -CCAACAACACCAAACCAGGACAAG -CCAACAACACCAAACCAGAAGCAG -CCAACAACACCAAACCAGCGTCAA -CCAACAACACCAAACCAGGCTGAA -CCAACAACACCAAACCAGAGTACG -CCAACAACACCAAACCAGATCCGA -CCAACAACACCAAACCAGATGGGA -CCAACAACACCAAACCAGGTGCAA -CCAACAACACCAAACCAGGAGGAA -CCAACAACACCAAACCAGCAGGTA -CCAACAACACCAAACCAGGACTCT -CCAACAACACCAAACCAGAGTCCT -CCAACAACACCAAACCAGTAAGCC -CCAACAACACCAAACCAGATAGCC -CCAACAACACCAAACCAGTAACCG -CCAACAACACCAAACCAGATGCCA -CCAACAACACCATACGTCGGAAAC -CCAACAACACCATACGTCAACACC -CCAACAACACCATACGTCATCGAG -CCAACAACACCATACGTCCTCCTT -CCAACAACACCATACGTCCCTGTT -CCAACAACACCATACGTCCGGTTT -CCAACAACACCATACGTCGTGGTT -CCAACAACACCATACGTCGCCTTT -CCAACAACACCATACGTCGGTCTT -CCAACAACACCATACGTCACGCTT -CCAACAACACCATACGTCAGCGTT -CCAACAACACCATACGTCTTCGTC -CCAACAACACCATACGTCTCTCTC -CCAACAACACCATACGTCTGGATC -CCAACAACACCATACGTCCACTTC -CCAACAACACCATACGTCGTACTC -CCAACAACACCATACGTCGATGTC -CCAACAACACCATACGTCACAGTC -CCAACAACACCATACGTCTTGCTG -CCAACAACACCATACGTCTCCATG -CCAACAACACCATACGTCTGTGTG -CCAACAACACCATACGTCCTAGTG -CCAACAACACCATACGTCCATCTG -CCAACAACACCATACGTCGAGTTG -CCAACAACACCATACGTCAGACTG -CCAACAACACCATACGTCTCGGTA -CCAACAACACCATACGTCTGCCTA -CCAACAACACCATACGTCCCACTA -CCAACAACACCATACGTCGGAGTA -CCAACAACACCATACGTCTCGTCT -CCAACAACACCATACGTCTGCACT -CCAACAACACCATACGTCCTGACT -CCAACAACACCATACGTCCAACCT -CCAACAACACCATACGTCGCTACT -CCAACAACACCATACGTCGGATCT -CCAACAACACCATACGTCAAGGCT -CCAACAACACCATACGTCTCAACC -CCAACAACACCATACGTCTGTTCC -CCAACAACACCATACGTCATTCCC -CCAACAACACCATACGTCTTCTCG -CCAACAACACCATACGTCTAGACG -CCAACAACACCATACGTCGTAACG -CCAACAACACCATACGTCACTTCG -CCAACAACACCATACGTCTACGCA -CCAACAACACCATACGTCCTTGCA -CCAACAACACCATACGTCCGAACA -CCAACAACACCATACGTCCAGTCA -CCAACAACACCATACGTCGATCCA -CCAACAACACCATACGTCACGACA -CCAACAACACCATACGTCAGCTCA -CCAACAACACCATACGTCTCACGT -CCAACAACACCATACGTCCGTAGT -CCAACAACACCATACGTCGTCAGT -CCAACAACACCATACGTCGAAGGT -CCAACAACACCATACGTCAACCGT -CCAACAACACCATACGTCTTGTGC -CCAACAACACCATACGTCCTAAGC -CCAACAACACCATACGTCACTAGC -CCAACAACACCATACGTCAGATGC -CCAACAACACCATACGTCTGAAGG -CCAACAACACCATACGTCCAATGG -CCAACAACACCATACGTCATGAGG -CCAACAACACCATACGTCAATGGG -CCAACAACACCATACGTCTCCTGA -CCAACAACACCATACGTCTAGCGA -CCAACAACACCATACGTCCACAGA -CCAACAACACCATACGTCGCAAGA -CCAACAACACCATACGTCGGTTGA -CCAACAACACCATACGTCTCCGAT -CCAACAACACCATACGTCTGGCAT -CCAACAACACCATACGTCCGAGAT -CCAACAACACCATACGTCTACCAC -CCAACAACACCATACGTCCAGAAC -CCAACAACACCATACGTCGTCTAC -CCAACAACACCATACGTCACGTAC -CCAACAACACCATACGTCAGTGAC -CCAACAACACCATACGTCCTGTAG -CCAACAACACCATACGTCCCTAAG -CCAACAACACCATACGTCGTTCAG -CCAACAACACCATACGTCGCATAG -CCAACAACACCATACGTCGACAAG -CCAACAACACCATACGTCAAGCAG -CCAACAACACCATACGTCCGTCAA -CCAACAACACCATACGTCGCTGAA -CCAACAACACCATACGTCAGTACG -CCAACAACACCATACGTCATCCGA -CCAACAACACCATACGTCATGGGA -CCAACAACACCATACGTCGTGCAA -CCAACAACACCATACGTCGAGGAA -CCAACAACACCATACGTCCAGGTA -CCAACAACACCATACGTCGACTCT -CCAACAACACCATACGTCAGTCCT -CCAACAACACCATACGTCTAAGCC -CCAACAACACCATACGTCATAGCC -CCAACAACACCATACGTCTAACCG -CCAACAACACCATACGTCATGCCA -CCAACAACACCATACACGGGAAAC -CCAACAACACCATACACGAACACC -CCAACAACACCATACACGATCGAG -CCAACAACACCATACACGCTCCTT -CCAACAACACCATACACGCCTGTT -CCAACAACACCATACACGCGGTTT -CCAACAACACCATACACGGTGGTT -CCAACAACACCATACACGGCCTTT -CCAACAACACCATACACGGGTCTT -CCAACAACACCATACACGACGCTT -CCAACAACACCATACACGAGCGTT -CCAACAACACCATACACGTTCGTC -CCAACAACACCATACACGTCTCTC -CCAACAACACCATACACGTGGATC -CCAACAACACCATACACGCACTTC -CCAACAACACCATACACGGTACTC -CCAACAACACCATACACGGATGTC -CCAACAACACCATACACGACAGTC -CCAACAACACCATACACGTTGCTG -CCAACAACACCATACACGTCCATG -CCAACAACACCATACACGTGTGTG -CCAACAACACCATACACGCTAGTG -CCAACAACACCATACACGCATCTG -CCAACAACACCATACACGGAGTTG -CCAACAACACCATACACGAGACTG -CCAACAACACCATACACGTCGGTA -CCAACAACACCATACACGTGCCTA -CCAACAACACCATACACGCCACTA -CCAACAACACCATACACGGGAGTA -CCAACAACACCATACACGTCGTCT -CCAACAACACCATACACGTGCACT -CCAACAACACCATACACGCTGACT -CCAACAACACCATACACGCAACCT -CCAACAACACCATACACGGCTACT -CCAACAACACCATACACGGGATCT -CCAACAACACCATACACGAAGGCT -CCAACAACACCATACACGTCAACC -CCAACAACACCATACACGTGTTCC -CCAACAACACCATACACGATTCCC -CCAACAACACCATACACGTTCTCG -CCAACAACACCATACACGTAGACG -CCAACAACACCATACACGGTAACG -CCAACAACACCATACACGACTTCG -CCAACAACACCATACACGTACGCA -CCAACAACACCATACACGCTTGCA -CCAACAACACCATACACGCGAACA -CCAACAACACCATACACGCAGTCA -CCAACAACACCATACACGGATCCA -CCAACAACACCATACACGACGACA -CCAACAACACCATACACGAGCTCA -CCAACAACACCATACACGTCACGT -CCAACAACACCATACACGCGTAGT -CCAACAACACCATACACGGTCAGT -CCAACAACACCATACACGGAAGGT -CCAACAACACCATACACGAACCGT -CCAACAACACCATACACGTTGTGC -CCAACAACACCATACACGCTAAGC -CCAACAACACCATACACGACTAGC -CCAACAACACCATACACGAGATGC -CCAACAACACCATACACGTGAAGG -CCAACAACACCATACACGCAATGG -CCAACAACACCATACACGATGAGG -CCAACAACACCATACACGAATGGG -CCAACAACACCATACACGTCCTGA -CCAACAACACCATACACGTAGCGA -CCAACAACACCATACACGCACAGA -CCAACAACACCATACACGGCAAGA -CCAACAACACCATACACGGGTTGA -CCAACAACACCATACACGTCCGAT -CCAACAACACCATACACGTGGCAT -CCAACAACACCATACACGCGAGAT -CCAACAACACCATACACGTACCAC -CCAACAACACCATACACGCAGAAC -CCAACAACACCATACACGGTCTAC -CCAACAACACCATACACGACGTAC -CCAACAACACCATACACGAGTGAC -CCAACAACACCATACACGCTGTAG -CCAACAACACCATACACGCCTAAG -CCAACAACACCATACACGGTTCAG -CCAACAACACCATACACGGCATAG -CCAACAACACCATACACGGACAAG -CCAACAACACCATACACGAAGCAG -CCAACAACACCATACACGCGTCAA -CCAACAACACCATACACGGCTGAA -CCAACAACACCATACACGAGTACG -CCAACAACACCATACACGATCCGA -CCAACAACACCATACACGATGGGA -CCAACAACACCATACACGGTGCAA -CCAACAACACCATACACGGAGGAA -CCAACAACACCATACACGCAGGTA -CCAACAACACCATACACGGACTCT -CCAACAACACCATACACGAGTCCT -CCAACAACACCATACACGTAAGCC -CCAACAACACCATACACGATAGCC -CCAACAACACCATACACGTAACCG -CCAACAACACCATACACGATGCCA -CCAACAACACCAGACAGTGGAAAC -CCAACAACACCAGACAGTAACACC -CCAACAACACCAGACAGTATCGAG -CCAACAACACCAGACAGTCTCCTT -CCAACAACACCAGACAGTCCTGTT -CCAACAACACCAGACAGTCGGTTT -CCAACAACACCAGACAGTGTGGTT -CCAACAACACCAGACAGTGCCTTT -CCAACAACACCAGACAGTGGTCTT -CCAACAACACCAGACAGTACGCTT -CCAACAACACCAGACAGTAGCGTT -CCAACAACACCAGACAGTTTCGTC -CCAACAACACCAGACAGTTCTCTC -CCAACAACACCAGACAGTTGGATC -CCAACAACACCAGACAGTCACTTC -CCAACAACACCAGACAGTGTACTC -CCAACAACACCAGACAGTGATGTC -CCAACAACACCAGACAGTACAGTC -CCAACAACACCAGACAGTTTGCTG -CCAACAACACCAGACAGTTCCATG -CCAACAACACCAGACAGTTGTGTG -CCAACAACACCAGACAGTCTAGTG -CCAACAACACCAGACAGTCATCTG -CCAACAACACCAGACAGTGAGTTG -CCAACAACACCAGACAGTAGACTG -CCAACAACACCAGACAGTTCGGTA -CCAACAACACCAGACAGTTGCCTA -CCAACAACACCAGACAGTCCACTA -CCAACAACACCAGACAGTGGAGTA -CCAACAACACCAGACAGTTCGTCT -CCAACAACACCAGACAGTTGCACT -CCAACAACACCAGACAGTCTGACT -CCAACAACACCAGACAGTCAACCT -CCAACAACACCAGACAGTGCTACT -CCAACAACACCAGACAGTGGATCT -CCAACAACACCAGACAGTAAGGCT -CCAACAACACCAGACAGTTCAACC -CCAACAACACCAGACAGTTGTTCC -CCAACAACACCAGACAGTATTCCC -CCAACAACACCAGACAGTTTCTCG -CCAACAACACCAGACAGTTAGACG -CCAACAACACCAGACAGTGTAACG -CCAACAACACCAGACAGTACTTCG -CCAACAACACCAGACAGTTACGCA -CCAACAACACCAGACAGTCTTGCA -CCAACAACACCAGACAGTCGAACA -CCAACAACACCAGACAGTCAGTCA -CCAACAACACCAGACAGTGATCCA -CCAACAACACCAGACAGTACGACA -CCAACAACACCAGACAGTAGCTCA -CCAACAACACCAGACAGTTCACGT -CCAACAACACCAGACAGTCGTAGT -CCAACAACACCAGACAGTGTCAGT -CCAACAACACCAGACAGTGAAGGT -CCAACAACACCAGACAGTAACCGT -CCAACAACACCAGACAGTTTGTGC -CCAACAACACCAGACAGTCTAAGC -CCAACAACACCAGACAGTACTAGC -CCAACAACACCAGACAGTAGATGC -CCAACAACACCAGACAGTTGAAGG -CCAACAACACCAGACAGTCAATGG -CCAACAACACCAGACAGTATGAGG -CCAACAACACCAGACAGTAATGGG -CCAACAACACCAGACAGTTCCTGA -CCAACAACACCAGACAGTTAGCGA -CCAACAACACCAGACAGTCACAGA -CCAACAACACCAGACAGTGCAAGA -CCAACAACACCAGACAGTGGTTGA -CCAACAACACCAGACAGTTCCGAT -CCAACAACACCAGACAGTTGGCAT -CCAACAACACCAGACAGTCGAGAT -CCAACAACACCAGACAGTTACCAC -CCAACAACACCAGACAGTCAGAAC -CCAACAACACCAGACAGTGTCTAC -CCAACAACACCAGACAGTACGTAC -CCAACAACACCAGACAGTAGTGAC -CCAACAACACCAGACAGTCTGTAG -CCAACAACACCAGACAGTCCTAAG -CCAACAACACCAGACAGTGTTCAG -CCAACAACACCAGACAGTGCATAG -CCAACAACACCAGACAGTGACAAG -CCAACAACACCAGACAGTAAGCAG -CCAACAACACCAGACAGTCGTCAA -CCAACAACACCAGACAGTGCTGAA -CCAACAACACCAGACAGTAGTACG -CCAACAACACCAGACAGTATCCGA -CCAACAACACCAGACAGTATGGGA -CCAACAACACCAGACAGTGTGCAA -CCAACAACACCAGACAGTGAGGAA -CCAACAACACCAGACAGTCAGGTA -CCAACAACACCAGACAGTGACTCT -CCAACAACACCAGACAGTAGTCCT -CCAACAACACCAGACAGTTAAGCC -CCAACAACACCAGACAGTATAGCC -CCAACAACACCAGACAGTTAACCG -CCAACAACACCAGACAGTATGCCA -CCAACAACACCATAGCTGGGAAAC -CCAACAACACCATAGCTGAACACC -CCAACAACACCATAGCTGATCGAG -CCAACAACACCATAGCTGCTCCTT -CCAACAACACCATAGCTGCCTGTT -CCAACAACACCATAGCTGCGGTTT -CCAACAACACCATAGCTGGTGGTT -CCAACAACACCATAGCTGGCCTTT -CCAACAACACCATAGCTGGGTCTT -CCAACAACACCATAGCTGACGCTT -CCAACAACACCATAGCTGAGCGTT -CCAACAACACCATAGCTGTTCGTC -CCAACAACACCATAGCTGTCTCTC -CCAACAACACCATAGCTGTGGATC -CCAACAACACCATAGCTGCACTTC -CCAACAACACCATAGCTGGTACTC -CCAACAACACCATAGCTGGATGTC -CCAACAACACCATAGCTGACAGTC -CCAACAACACCATAGCTGTTGCTG -CCAACAACACCATAGCTGTCCATG -CCAACAACACCATAGCTGTGTGTG -CCAACAACACCATAGCTGCTAGTG -CCAACAACACCATAGCTGCATCTG -CCAACAACACCATAGCTGGAGTTG -CCAACAACACCATAGCTGAGACTG -CCAACAACACCATAGCTGTCGGTA -CCAACAACACCATAGCTGTGCCTA -CCAACAACACCATAGCTGCCACTA -CCAACAACACCATAGCTGGGAGTA -CCAACAACACCATAGCTGTCGTCT -CCAACAACACCATAGCTGTGCACT -CCAACAACACCATAGCTGCTGACT -CCAACAACACCATAGCTGCAACCT -CCAACAACACCATAGCTGGCTACT -CCAACAACACCATAGCTGGGATCT -CCAACAACACCATAGCTGAAGGCT -CCAACAACACCATAGCTGTCAACC -CCAACAACACCATAGCTGTGTTCC -CCAACAACACCATAGCTGATTCCC -CCAACAACACCATAGCTGTTCTCG -CCAACAACACCATAGCTGTAGACG -CCAACAACACCATAGCTGGTAACG -CCAACAACACCATAGCTGACTTCG -CCAACAACACCATAGCTGTACGCA -CCAACAACACCATAGCTGCTTGCA -CCAACAACACCATAGCTGCGAACA -CCAACAACACCATAGCTGCAGTCA -CCAACAACACCATAGCTGGATCCA -CCAACAACACCATAGCTGACGACA -CCAACAACACCATAGCTGAGCTCA -CCAACAACACCATAGCTGTCACGT -CCAACAACACCATAGCTGCGTAGT -CCAACAACACCATAGCTGGTCAGT -CCAACAACACCATAGCTGGAAGGT -CCAACAACACCATAGCTGAACCGT -CCAACAACACCATAGCTGTTGTGC -CCAACAACACCATAGCTGCTAAGC -CCAACAACACCATAGCTGACTAGC -CCAACAACACCATAGCTGAGATGC -CCAACAACACCATAGCTGTGAAGG -CCAACAACACCATAGCTGCAATGG -CCAACAACACCATAGCTGATGAGG -CCAACAACACCATAGCTGAATGGG -CCAACAACACCATAGCTGTCCTGA -CCAACAACACCATAGCTGTAGCGA -CCAACAACACCATAGCTGCACAGA -CCAACAACACCATAGCTGGCAAGA -CCAACAACACCATAGCTGGGTTGA -CCAACAACACCATAGCTGTCCGAT -CCAACAACACCATAGCTGTGGCAT -CCAACAACACCATAGCTGCGAGAT -CCAACAACACCATAGCTGTACCAC -CCAACAACACCATAGCTGCAGAAC -CCAACAACACCATAGCTGGTCTAC -CCAACAACACCATAGCTGACGTAC -CCAACAACACCATAGCTGAGTGAC -CCAACAACACCATAGCTGCTGTAG -CCAACAACACCATAGCTGCCTAAG -CCAACAACACCATAGCTGGTTCAG -CCAACAACACCATAGCTGGCATAG -CCAACAACACCATAGCTGGACAAG -CCAACAACACCATAGCTGAAGCAG -CCAACAACACCATAGCTGCGTCAA -CCAACAACACCATAGCTGGCTGAA -CCAACAACACCATAGCTGAGTACG -CCAACAACACCATAGCTGATCCGA -CCAACAACACCATAGCTGATGGGA -CCAACAACACCATAGCTGGTGCAA -CCAACAACACCATAGCTGGAGGAA -CCAACAACACCATAGCTGCAGGTA -CCAACAACACCATAGCTGGACTCT -CCAACAACACCATAGCTGAGTCCT -CCAACAACACCATAGCTGTAAGCC -CCAACAACACCATAGCTGATAGCC -CCAACAACACCATAGCTGTAACCG -CCAACAACACCATAGCTGATGCCA -CCAACAACACCAAAGCCTGGAAAC -CCAACAACACCAAAGCCTAACACC -CCAACAACACCAAAGCCTATCGAG -CCAACAACACCAAAGCCTCTCCTT -CCAACAACACCAAAGCCTCCTGTT -CCAACAACACCAAAGCCTCGGTTT -CCAACAACACCAAAGCCTGTGGTT -CCAACAACACCAAAGCCTGCCTTT -CCAACAACACCAAAGCCTGGTCTT -CCAACAACACCAAAGCCTACGCTT -CCAACAACACCAAAGCCTAGCGTT -CCAACAACACCAAAGCCTTTCGTC -CCAACAACACCAAAGCCTTCTCTC -CCAACAACACCAAAGCCTTGGATC -CCAACAACACCAAAGCCTCACTTC -CCAACAACACCAAAGCCTGTACTC -CCAACAACACCAAAGCCTGATGTC -CCAACAACACCAAAGCCTACAGTC -CCAACAACACCAAAGCCTTTGCTG -CCAACAACACCAAAGCCTTCCATG -CCAACAACACCAAAGCCTTGTGTG -CCAACAACACCAAAGCCTCTAGTG -CCAACAACACCAAAGCCTCATCTG -CCAACAACACCAAAGCCTGAGTTG -CCAACAACACCAAAGCCTAGACTG -CCAACAACACCAAAGCCTTCGGTA -CCAACAACACCAAAGCCTTGCCTA -CCAACAACACCAAAGCCTCCACTA -CCAACAACACCAAAGCCTGGAGTA -CCAACAACACCAAAGCCTTCGTCT -CCAACAACACCAAAGCCTTGCACT -CCAACAACACCAAAGCCTCTGACT -CCAACAACACCAAAGCCTCAACCT -CCAACAACACCAAAGCCTGCTACT -CCAACAACACCAAAGCCTGGATCT -CCAACAACACCAAAGCCTAAGGCT -CCAACAACACCAAAGCCTTCAACC -CCAACAACACCAAAGCCTTGTTCC -CCAACAACACCAAAGCCTATTCCC -CCAACAACACCAAAGCCTTTCTCG -CCAACAACACCAAAGCCTTAGACG -CCAACAACACCAAAGCCTGTAACG -CCAACAACACCAAAGCCTACTTCG -CCAACAACACCAAAGCCTTACGCA -CCAACAACACCAAAGCCTCTTGCA -CCAACAACACCAAAGCCTCGAACA -CCAACAACACCAAAGCCTCAGTCA -CCAACAACACCAAAGCCTGATCCA -CCAACAACACCAAAGCCTACGACA -CCAACAACACCAAAGCCTAGCTCA -CCAACAACACCAAAGCCTTCACGT -CCAACAACACCAAAGCCTCGTAGT -CCAACAACACCAAAGCCTGTCAGT -CCAACAACACCAAAGCCTGAAGGT -CCAACAACACCAAAGCCTAACCGT -CCAACAACACCAAAGCCTTTGTGC -CCAACAACACCAAAGCCTCTAAGC -CCAACAACACCAAAGCCTACTAGC -CCAACAACACCAAAGCCTAGATGC -CCAACAACACCAAAGCCTTGAAGG -CCAACAACACCAAAGCCTCAATGG -CCAACAACACCAAAGCCTATGAGG -CCAACAACACCAAAGCCTAATGGG -CCAACAACACCAAAGCCTTCCTGA -CCAACAACACCAAAGCCTTAGCGA -CCAACAACACCAAAGCCTCACAGA -CCAACAACACCAAAGCCTGCAAGA -CCAACAACACCAAAGCCTGGTTGA -CCAACAACACCAAAGCCTTCCGAT -CCAACAACACCAAAGCCTTGGCAT -CCAACAACACCAAAGCCTCGAGAT -CCAACAACACCAAAGCCTTACCAC -CCAACAACACCAAAGCCTCAGAAC -CCAACAACACCAAAGCCTGTCTAC -CCAACAACACCAAAGCCTACGTAC -CCAACAACACCAAAGCCTAGTGAC -CCAACAACACCAAAGCCTCTGTAG -CCAACAACACCAAAGCCTCCTAAG -CCAACAACACCAAAGCCTGTTCAG -CCAACAACACCAAAGCCTGCATAG -CCAACAACACCAAAGCCTGACAAG -CCAACAACACCAAAGCCTAAGCAG -CCAACAACACCAAAGCCTCGTCAA -CCAACAACACCAAAGCCTGCTGAA -CCAACAACACCAAAGCCTAGTACG -CCAACAACACCAAAGCCTATCCGA -CCAACAACACCAAAGCCTATGGGA -CCAACAACACCAAAGCCTGTGCAA -CCAACAACACCAAAGCCTGAGGAA -CCAACAACACCAAAGCCTCAGGTA -CCAACAACACCAAAGCCTGACTCT -CCAACAACACCAAAGCCTAGTCCT -CCAACAACACCAAAGCCTTAAGCC -CCAACAACACCAAAGCCTATAGCC -CCAACAACACCAAAGCCTTAACCG -CCAACAACACCAAAGCCTATGCCA -CCAACAACACCACAGGTTGGAAAC -CCAACAACACCACAGGTTAACACC -CCAACAACACCACAGGTTATCGAG -CCAACAACACCACAGGTTCTCCTT -CCAACAACACCACAGGTTCCTGTT -CCAACAACACCACAGGTTCGGTTT -CCAACAACACCACAGGTTGTGGTT -CCAACAACACCACAGGTTGCCTTT -CCAACAACACCACAGGTTGGTCTT -CCAACAACACCACAGGTTACGCTT -CCAACAACACCACAGGTTAGCGTT -CCAACAACACCACAGGTTTTCGTC -CCAACAACACCACAGGTTTCTCTC -CCAACAACACCACAGGTTTGGATC -CCAACAACACCACAGGTTCACTTC -CCAACAACACCACAGGTTGTACTC -CCAACAACACCACAGGTTGATGTC -CCAACAACACCACAGGTTACAGTC -CCAACAACACCACAGGTTTTGCTG -CCAACAACACCACAGGTTTCCATG -CCAACAACACCACAGGTTTGTGTG -CCAACAACACCACAGGTTCTAGTG -CCAACAACACCACAGGTTCATCTG -CCAACAACACCACAGGTTGAGTTG -CCAACAACACCACAGGTTAGACTG -CCAACAACACCACAGGTTTCGGTA -CCAACAACACCACAGGTTTGCCTA -CCAACAACACCACAGGTTCCACTA -CCAACAACACCACAGGTTGGAGTA -CCAACAACACCACAGGTTTCGTCT -CCAACAACACCACAGGTTTGCACT -CCAACAACACCACAGGTTCTGACT -CCAACAACACCACAGGTTCAACCT -CCAACAACACCACAGGTTGCTACT -CCAACAACACCACAGGTTGGATCT -CCAACAACACCACAGGTTAAGGCT -CCAACAACACCACAGGTTTCAACC -CCAACAACACCACAGGTTTGTTCC -CCAACAACACCACAGGTTATTCCC -CCAACAACACCACAGGTTTTCTCG -CCAACAACACCACAGGTTTAGACG -CCAACAACACCACAGGTTGTAACG -CCAACAACACCACAGGTTACTTCG -CCAACAACACCACAGGTTTACGCA -CCAACAACACCACAGGTTCTTGCA -CCAACAACACCACAGGTTCGAACA -CCAACAACACCACAGGTTCAGTCA -CCAACAACACCACAGGTTGATCCA -CCAACAACACCACAGGTTACGACA -CCAACAACACCACAGGTTAGCTCA -CCAACAACACCACAGGTTTCACGT -CCAACAACACCACAGGTTCGTAGT -CCAACAACACCACAGGTTGTCAGT -CCAACAACACCACAGGTTGAAGGT -CCAACAACACCACAGGTTAACCGT -CCAACAACACCACAGGTTTTGTGC -CCAACAACACCACAGGTTCTAAGC -CCAACAACACCACAGGTTACTAGC -CCAACAACACCACAGGTTAGATGC -CCAACAACACCACAGGTTTGAAGG -CCAACAACACCACAGGTTCAATGG -CCAACAACACCACAGGTTATGAGG -CCAACAACACCACAGGTTAATGGG -CCAACAACACCACAGGTTTCCTGA -CCAACAACACCACAGGTTTAGCGA -CCAACAACACCACAGGTTCACAGA -CCAACAACACCACAGGTTGCAAGA -CCAACAACACCACAGGTTGGTTGA -CCAACAACACCACAGGTTTCCGAT -CCAACAACACCACAGGTTTGGCAT -CCAACAACACCACAGGTTCGAGAT -CCAACAACACCACAGGTTTACCAC -CCAACAACACCACAGGTTCAGAAC -CCAACAACACCACAGGTTGTCTAC -CCAACAACACCACAGGTTACGTAC -CCAACAACACCACAGGTTAGTGAC -CCAACAACACCACAGGTTCTGTAG -CCAACAACACCACAGGTTCCTAAG -CCAACAACACCACAGGTTGTTCAG -CCAACAACACCACAGGTTGCATAG -CCAACAACACCACAGGTTGACAAG -CCAACAACACCACAGGTTAAGCAG -CCAACAACACCACAGGTTCGTCAA -CCAACAACACCACAGGTTGCTGAA -CCAACAACACCACAGGTTAGTACG -CCAACAACACCACAGGTTATCCGA -CCAACAACACCACAGGTTATGGGA -CCAACAACACCACAGGTTGTGCAA -CCAACAACACCACAGGTTGAGGAA -CCAACAACACCACAGGTTCAGGTA -CCAACAACACCACAGGTTGACTCT -CCAACAACACCACAGGTTAGTCCT -CCAACAACACCACAGGTTTAAGCC -CCAACAACACCACAGGTTATAGCC -CCAACAACACCACAGGTTTAACCG -CCAACAACACCACAGGTTATGCCA -CCAACAACACCATAGGCAGGAAAC -CCAACAACACCATAGGCAAACACC -CCAACAACACCATAGGCAATCGAG -CCAACAACACCATAGGCACTCCTT -CCAACAACACCATAGGCACCTGTT -CCAACAACACCATAGGCACGGTTT -CCAACAACACCATAGGCAGTGGTT -CCAACAACACCATAGGCAGCCTTT -CCAACAACACCATAGGCAGGTCTT -CCAACAACACCATAGGCAACGCTT -CCAACAACACCATAGGCAAGCGTT -CCAACAACACCATAGGCATTCGTC -CCAACAACACCATAGGCATCTCTC -CCAACAACACCATAGGCATGGATC -CCAACAACACCATAGGCACACTTC -CCAACAACACCATAGGCAGTACTC -CCAACAACACCATAGGCAGATGTC -CCAACAACACCATAGGCAACAGTC -CCAACAACACCATAGGCATTGCTG -CCAACAACACCATAGGCATCCATG -CCAACAACACCATAGGCATGTGTG -CCAACAACACCATAGGCACTAGTG -CCAACAACACCATAGGCACATCTG -CCAACAACACCATAGGCAGAGTTG -CCAACAACACCATAGGCAAGACTG -CCAACAACACCATAGGCATCGGTA -CCAACAACACCATAGGCATGCCTA -CCAACAACACCATAGGCACCACTA -CCAACAACACCATAGGCAGGAGTA -CCAACAACACCATAGGCATCGTCT -CCAACAACACCATAGGCATGCACT -CCAACAACACCATAGGCACTGACT -CCAACAACACCATAGGCACAACCT -CCAACAACACCATAGGCAGCTACT -CCAACAACACCATAGGCAGGATCT -CCAACAACACCATAGGCAAAGGCT -CCAACAACACCATAGGCATCAACC -CCAACAACACCATAGGCATGTTCC -CCAACAACACCATAGGCAATTCCC -CCAACAACACCATAGGCATTCTCG -CCAACAACACCATAGGCATAGACG -CCAACAACACCATAGGCAGTAACG -CCAACAACACCATAGGCAACTTCG -CCAACAACACCATAGGCATACGCA -CCAACAACACCATAGGCACTTGCA -CCAACAACACCATAGGCACGAACA -CCAACAACACCATAGGCACAGTCA -CCAACAACACCATAGGCAGATCCA -CCAACAACACCATAGGCAACGACA -CCAACAACACCATAGGCAAGCTCA -CCAACAACACCATAGGCATCACGT -CCAACAACACCATAGGCACGTAGT -CCAACAACACCATAGGCAGTCAGT -CCAACAACACCATAGGCAGAAGGT -CCAACAACACCATAGGCAAACCGT -CCAACAACACCATAGGCATTGTGC -CCAACAACACCATAGGCACTAAGC -CCAACAACACCATAGGCAACTAGC -CCAACAACACCATAGGCAAGATGC -CCAACAACACCATAGGCATGAAGG -CCAACAACACCATAGGCACAATGG -CCAACAACACCATAGGCAATGAGG -CCAACAACACCATAGGCAAATGGG -CCAACAACACCATAGGCATCCTGA -CCAACAACACCATAGGCATAGCGA -CCAACAACACCATAGGCACACAGA -CCAACAACACCATAGGCAGCAAGA -CCAACAACACCATAGGCAGGTTGA -CCAACAACACCATAGGCATCCGAT -CCAACAACACCATAGGCATGGCAT -CCAACAACACCATAGGCACGAGAT -CCAACAACACCATAGGCATACCAC -CCAACAACACCATAGGCACAGAAC -CCAACAACACCATAGGCAGTCTAC -CCAACAACACCATAGGCAACGTAC -CCAACAACACCATAGGCAAGTGAC -CCAACAACACCATAGGCACTGTAG -CCAACAACACCATAGGCACCTAAG -CCAACAACACCATAGGCAGTTCAG -CCAACAACACCATAGGCAGCATAG -CCAACAACACCATAGGCAGACAAG -CCAACAACACCATAGGCAAAGCAG -CCAACAACACCATAGGCACGTCAA -CCAACAACACCATAGGCAGCTGAA -CCAACAACACCATAGGCAAGTACG -CCAACAACACCATAGGCAATCCGA -CCAACAACACCATAGGCAATGGGA -CCAACAACACCATAGGCAGTGCAA -CCAACAACACCATAGGCAGAGGAA -CCAACAACACCATAGGCACAGGTA -CCAACAACACCATAGGCAGACTCT -CCAACAACACCATAGGCAAGTCCT -CCAACAACACCATAGGCATAAGCC -CCAACAACACCATAGGCAATAGCC -CCAACAACACCATAGGCATAACCG -CCAACAACACCATAGGCAATGCCA -CCAACAACACCAAAGGACGGAAAC -CCAACAACACCAAAGGACAACACC -CCAACAACACCAAAGGACATCGAG -CCAACAACACCAAAGGACCTCCTT -CCAACAACACCAAAGGACCCTGTT -CCAACAACACCAAAGGACCGGTTT -CCAACAACACCAAAGGACGTGGTT -CCAACAACACCAAAGGACGCCTTT -CCAACAACACCAAAGGACGGTCTT -CCAACAACACCAAAGGACACGCTT -CCAACAACACCAAAGGACAGCGTT -CCAACAACACCAAAGGACTTCGTC -CCAACAACACCAAAGGACTCTCTC -CCAACAACACCAAAGGACTGGATC -CCAACAACACCAAAGGACCACTTC -CCAACAACACCAAAGGACGTACTC -CCAACAACACCAAAGGACGATGTC -CCAACAACACCAAAGGACACAGTC -CCAACAACACCAAAGGACTTGCTG -CCAACAACACCAAAGGACTCCATG -CCAACAACACCAAAGGACTGTGTG -CCAACAACACCAAAGGACCTAGTG -CCAACAACACCAAAGGACCATCTG -CCAACAACACCAAAGGACGAGTTG -CCAACAACACCAAAGGACAGACTG -CCAACAACACCAAAGGACTCGGTA -CCAACAACACCAAAGGACTGCCTA -CCAACAACACCAAAGGACCCACTA -CCAACAACACCAAAGGACGGAGTA -CCAACAACACCAAAGGACTCGTCT -CCAACAACACCAAAGGACTGCACT -CCAACAACACCAAAGGACCTGACT -CCAACAACACCAAAGGACCAACCT -CCAACAACACCAAAGGACGCTACT -CCAACAACACCAAAGGACGGATCT -CCAACAACACCAAAGGACAAGGCT -CCAACAACACCAAAGGACTCAACC -CCAACAACACCAAAGGACTGTTCC -CCAACAACACCAAAGGACATTCCC -CCAACAACACCAAAGGACTTCTCG -CCAACAACACCAAAGGACTAGACG -CCAACAACACCAAAGGACGTAACG -CCAACAACACCAAAGGACACTTCG -CCAACAACACCAAAGGACTACGCA -CCAACAACACCAAAGGACCTTGCA -CCAACAACACCAAAGGACCGAACA -CCAACAACACCAAAGGACCAGTCA -CCAACAACACCAAAGGACGATCCA -CCAACAACACCAAAGGACACGACA -CCAACAACACCAAAGGACAGCTCA -CCAACAACACCAAAGGACTCACGT -CCAACAACACCAAAGGACCGTAGT -CCAACAACACCAAAGGACGTCAGT -CCAACAACACCAAAGGACGAAGGT -CCAACAACACCAAAGGACAACCGT -CCAACAACACCAAAGGACTTGTGC -CCAACAACACCAAAGGACCTAAGC -CCAACAACACCAAAGGACACTAGC -CCAACAACACCAAAGGACAGATGC -CCAACAACACCAAAGGACTGAAGG -CCAACAACACCAAAGGACCAATGG -CCAACAACACCAAAGGACATGAGG -CCAACAACACCAAAGGACAATGGG -CCAACAACACCAAAGGACTCCTGA -CCAACAACACCAAAGGACTAGCGA -CCAACAACACCAAAGGACCACAGA -CCAACAACACCAAAGGACGCAAGA -CCAACAACACCAAAGGACGGTTGA -CCAACAACACCAAAGGACTCCGAT -CCAACAACACCAAAGGACTGGCAT -CCAACAACACCAAAGGACCGAGAT -CCAACAACACCAAAGGACTACCAC -CCAACAACACCAAAGGACCAGAAC -CCAACAACACCAAAGGACGTCTAC -CCAACAACACCAAAGGACACGTAC -CCAACAACACCAAAGGACAGTGAC -CCAACAACACCAAAGGACCTGTAG -CCAACAACACCAAAGGACCCTAAG -CCAACAACACCAAAGGACGTTCAG -CCAACAACACCAAAGGACGCATAG -CCAACAACACCAAAGGACGACAAG -CCAACAACACCAAAGGACAAGCAG -CCAACAACACCAAAGGACCGTCAA -CCAACAACACCAAAGGACGCTGAA -CCAACAACACCAAAGGACAGTACG -CCAACAACACCAAAGGACATCCGA -CCAACAACACCAAAGGACATGGGA -CCAACAACACCAAAGGACGTGCAA -CCAACAACACCAAAGGACGAGGAA -CCAACAACACCAAAGGACCAGGTA -CCAACAACACCAAAGGACGACTCT -CCAACAACACCAAAGGACAGTCCT -CCAACAACACCAAAGGACTAAGCC -CCAACAACACCAAAGGACATAGCC -CCAACAACACCAAAGGACTAACCG -CCAACAACACCAAAGGACATGCCA -CCAACAACACCACAGAAGGGAAAC -CCAACAACACCACAGAAGAACACC -CCAACAACACCACAGAAGATCGAG -CCAACAACACCACAGAAGCTCCTT -CCAACAACACCACAGAAGCCTGTT -CCAACAACACCACAGAAGCGGTTT -CCAACAACACCACAGAAGGTGGTT -CCAACAACACCACAGAAGGCCTTT -CCAACAACACCACAGAAGGGTCTT -CCAACAACACCACAGAAGACGCTT -CCAACAACACCACAGAAGAGCGTT -CCAACAACACCACAGAAGTTCGTC -CCAACAACACCACAGAAGTCTCTC -CCAACAACACCACAGAAGTGGATC -CCAACAACACCACAGAAGCACTTC -CCAACAACACCACAGAAGGTACTC -CCAACAACACCACAGAAGGATGTC -CCAACAACACCACAGAAGACAGTC -CCAACAACACCACAGAAGTTGCTG -CCAACAACACCACAGAAGTCCATG -CCAACAACACCACAGAAGTGTGTG -CCAACAACACCACAGAAGCTAGTG -CCAACAACACCACAGAAGCATCTG -CCAACAACACCACAGAAGGAGTTG -CCAACAACACCACAGAAGAGACTG -CCAACAACACCACAGAAGTCGGTA -CCAACAACACCACAGAAGTGCCTA -CCAACAACACCACAGAAGCCACTA -CCAACAACACCACAGAAGGGAGTA -CCAACAACACCACAGAAGTCGTCT -CCAACAACACCACAGAAGTGCACT -CCAACAACACCACAGAAGCTGACT -CCAACAACACCACAGAAGCAACCT -CCAACAACACCACAGAAGGCTACT -CCAACAACACCACAGAAGGGATCT -CCAACAACACCACAGAAGAAGGCT -CCAACAACACCACAGAAGTCAACC -CCAACAACACCACAGAAGTGTTCC -CCAACAACACCACAGAAGATTCCC -CCAACAACACCACAGAAGTTCTCG -CCAACAACACCACAGAAGTAGACG -CCAACAACACCACAGAAGGTAACG -CCAACAACACCACAGAAGACTTCG -CCAACAACACCACAGAAGTACGCA -CCAACAACACCACAGAAGCTTGCA -CCAACAACACCACAGAAGCGAACA -CCAACAACACCACAGAAGCAGTCA -CCAACAACACCACAGAAGGATCCA -CCAACAACACCACAGAAGACGACA -CCAACAACACCACAGAAGAGCTCA -CCAACAACACCACAGAAGTCACGT -CCAACAACACCACAGAAGCGTAGT -CCAACAACACCACAGAAGGTCAGT -CCAACAACACCACAGAAGGAAGGT -CCAACAACACCACAGAAGAACCGT -CCAACAACACCACAGAAGTTGTGC -CCAACAACACCACAGAAGCTAAGC -CCAACAACACCACAGAAGACTAGC -CCAACAACACCACAGAAGAGATGC -CCAACAACACCACAGAAGTGAAGG -CCAACAACACCACAGAAGCAATGG -CCAACAACACCACAGAAGATGAGG -CCAACAACACCACAGAAGAATGGG -CCAACAACACCACAGAAGTCCTGA -CCAACAACACCACAGAAGTAGCGA -CCAACAACACCACAGAAGCACAGA -CCAACAACACCACAGAAGGCAAGA -CCAACAACACCACAGAAGGGTTGA -CCAACAACACCACAGAAGTCCGAT -CCAACAACACCACAGAAGTGGCAT -CCAACAACACCACAGAAGCGAGAT -CCAACAACACCACAGAAGTACCAC -CCAACAACACCACAGAAGCAGAAC -CCAACAACACCACAGAAGGTCTAC -CCAACAACACCACAGAAGACGTAC -CCAACAACACCACAGAAGAGTGAC -CCAACAACACCACAGAAGCTGTAG -CCAACAACACCACAGAAGCCTAAG -CCAACAACACCACAGAAGGTTCAG -CCAACAACACCACAGAAGGCATAG -CCAACAACACCACAGAAGGACAAG -CCAACAACACCACAGAAGAAGCAG -CCAACAACACCACAGAAGCGTCAA -CCAACAACACCACAGAAGGCTGAA -CCAACAACACCACAGAAGAGTACG -CCAACAACACCACAGAAGATCCGA -CCAACAACACCACAGAAGATGGGA -CCAACAACACCACAGAAGGTGCAA -CCAACAACACCACAGAAGGAGGAA -CCAACAACACCACAGAAGCAGGTA -CCAACAACACCACAGAAGGACTCT -CCAACAACACCACAGAAGAGTCCT -CCAACAACACCACAGAAGTAAGCC -CCAACAACACCACAGAAGATAGCC -CCAACAACACCACAGAAGTAACCG -CCAACAACACCACAGAAGATGCCA -CCAACAACACCACAACGTGGAAAC -CCAACAACACCACAACGTAACACC -CCAACAACACCACAACGTATCGAG -CCAACAACACCACAACGTCTCCTT -CCAACAACACCACAACGTCCTGTT -CCAACAACACCACAACGTCGGTTT -CCAACAACACCACAACGTGTGGTT -CCAACAACACCACAACGTGCCTTT -CCAACAACACCACAACGTGGTCTT -CCAACAACACCACAACGTACGCTT -CCAACAACACCACAACGTAGCGTT -CCAACAACACCACAACGTTTCGTC -CCAACAACACCACAACGTTCTCTC -CCAACAACACCACAACGTTGGATC -CCAACAACACCACAACGTCACTTC -CCAACAACACCACAACGTGTACTC -CCAACAACACCACAACGTGATGTC -CCAACAACACCACAACGTACAGTC -CCAACAACACCACAACGTTTGCTG -CCAACAACACCACAACGTTCCATG -CCAACAACACCACAACGTTGTGTG -CCAACAACACCACAACGTCTAGTG -CCAACAACACCACAACGTCATCTG -CCAACAACACCACAACGTGAGTTG -CCAACAACACCACAACGTAGACTG -CCAACAACACCACAACGTTCGGTA -CCAACAACACCACAACGTTGCCTA -CCAACAACACCACAACGTCCACTA -CCAACAACACCACAACGTGGAGTA -CCAACAACACCACAACGTTCGTCT -CCAACAACACCACAACGTTGCACT -CCAACAACACCACAACGTCTGACT -CCAACAACACCACAACGTCAACCT -CCAACAACACCACAACGTGCTACT -CCAACAACACCACAACGTGGATCT -CCAACAACACCACAACGTAAGGCT -CCAACAACACCACAACGTTCAACC -CCAACAACACCACAACGTTGTTCC -CCAACAACACCACAACGTATTCCC -CCAACAACACCACAACGTTTCTCG -CCAACAACACCACAACGTTAGACG -CCAACAACACCACAACGTGTAACG -CCAACAACACCACAACGTACTTCG -CCAACAACACCACAACGTTACGCA -CCAACAACACCACAACGTCTTGCA -CCAACAACACCACAACGTCGAACA -CCAACAACACCACAACGTCAGTCA -CCAACAACACCACAACGTGATCCA -CCAACAACACCACAACGTACGACA -CCAACAACACCACAACGTAGCTCA -CCAACAACACCACAACGTTCACGT -CCAACAACACCACAACGTCGTAGT -CCAACAACACCACAACGTGTCAGT -CCAACAACACCACAACGTGAAGGT -CCAACAACACCACAACGTAACCGT -CCAACAACACCACAACGTTTGTGC -CCAACAACACCACAACGTCTAAGC -CCAACAACACCACAACGTACTAGC -CCAACAACACCACAACGTAGATGC -CCAACAACACCACAACGTTGAAGG -CCAACAACACCACAACGTCAATGG -CCAACAACACCACAACGTATGAGG -CCAACAACACCACAACGTAATGGG -CCAACAACACCACAACGTTCCTGA -CCAACAACACCACAACGTTAGCGA -CCAACAACACCACAACGTCACAGA -CCAACAACACCACAACGTGCAAGA -CCAACAACACCACAACGTGGTTGA -CCAACAACACCACAACGTTCCGAT -CCAACAACACCACAACGTTGGCAT -CCAACAACACCACAACGTCGAGAT -CCAACAACACCACAACGTTACCAC -CCAACAACACCACAACGTCAGAAC -CCAACAACACCACAACGTGTCTAC -CCAACAACACCACAACGTACGTAC -CCAACAACACCACAACGTAGTGAC -CCAACAACACCACAACGTCTGTAG -CCAACAACACCACAACGTCCTAAG -CCAACAACACCACAACGTGTTCAG -CCAACAACACCACAACGTGCATAG -CCAACAACACCACAACGTGACAAG -CCAACAACACCACAACGTAAGCAG -CCAACAACACCACAACGTCGTCAA -CCAACAACACCACAACGTGCTGAA -CCAACAACACCACAACGTAGTACG -CCAACAACACCACAACGTATCCGA -CCAACAACACCACAACGTATGGGA -CCAACAACACCACAACGTGTGCAA -CCAACAACACCACAACGTGAGGAA -CCAACAACACCACAACGTCAGGTA -CCAACAACACCACAACGTGACTCT -CCAACAACACCACAACGTAGTCCT -CCAACAACACCACAACGTTAAGCC -CCAACAACACCACAACGTATAGCC -CCAACAACACCACAACGTTAACCG -CCAACAACACCACAACGTATGCCA -CCAACAACACCAGAAGCTGGAAAC -CCAACAACACCAGAAGCTAACACC -CCAACAACACCAGAAGCTATCGAG -CCAACAACACCAGAAGCTCTCCTT -CCAACAACACCAGAAGCTCCTGTT -CCAACAACACCAGAAGCTCGGTTT -CCAACAACACCAGAAGCTGTGGTT -CCAACAACACCAGAAGCTGCCTTT -CCAACAACACCAGAAGCTGGTCTT -CCAACAACACCAGAAGCTACGCTT -CCAACAACACCAGAAGCTAGCGTT -CCAACAACACCAGAAGCTTTCGTC -CCAACAACACCAGAAGCTTCTCTC -CCAACAACACCAGAAGCTTGGATC -CCAACAACACCAGAAGCTCACTTC -CCAACAACACCAGAAGCTGTACTC -CCAACAACACCAGAAGCTGATGTC -CCAACAACACCAGAAGCTACAGTC -CCAACAACACCAGAAGCTTTGCTG -CCAACAACACCAGAAGCTTCCATG -CCAACAACACCAGAAGCTTGTGTG -CCAACAACACCAGAAGCTCTAGTG -CCAACAACACCAGAAGCTCATCTG -CCAACAACACCAGAAGCTGAGTTG -CCAACAACACCAGAAGCTAGACTG -CCAACAACACCAGAAGCTTCGGTA -CCAACAACACCAGAAGCTTGCCTA -CCAACAACACCAGAAGCTCCACTA -CCAACAACACCAGAAGCTGGAGTA -CCAACAACACCAGAAGCTTCGTCT -CCAACAACACCAGAAGCTTGCACT -CCAACAACACCAGAAGCTCTGACT -CCAACAACACCAGAAGCTCAACCT -CCAACAACACCAGAAGCTGCTACT -CCAACAACACCAGAAGCTGGATCT -CCAACAACACCAGAAGCTAAGGCT -CCAACAACACCAGAAGCTTCAACC -CCAACAACACCAGAAGCTTGTTCC -CCAACAACACCAGAAGCTATTCCC -CCAACAACACCAGAAGCTTTCTCG -CCAACAACACCAGAAGCTTAGACG -CCAACAACACCAGAAGCTGTAACG -CCAACAACACCAGAAGCTACTTCG -CCAACAACACCAGAAGCTTACGCA -CCAACAACACCAGAAGCTCTTGCA -CCAACAACACCAGAAGCTCGAACA -CCAACAACACCAGAAGCTCAGTCA -CCAACAACACCAGAAGCTGATCCA -CCAACAACACCAGAAGCTACGACA -CCAACAACACCAGAAGCTAGCTCA -CCAACAACACCAGAAGCTTCACGT -CCAACAACACCAGAAGCTCGTAGT -CCAACAACACCAGAAGCTGTCAGT -CCAACAACACCAGAAGCTGAAGGT -CCAACAACACCAGAAGCTAACCGT -CCAACAACACCAGAAGCTTTGTGC -CCAACAACACCAGAAGCTCTAAGC -CCAACAACACCAGAAGCTACTAGC -CCAACAACACCAGAAGCTAGATGC -CCAACAACACCAGAAGCTTGAAGG -CCAACAACACCAGAAGCTCAATGG -CCAACAACACCAGAAGCTATGAGG -CCAACAACACCAGAAGCTAATGGG -CCAACAACACCAGAAGCTTCCTGA -CCAACAACACCAGAAGCTTAGCGA -CCAACAACACCAGAAGCTCACAGA -CCAACAACACCAGAAGCTGCAAGA -CCAACAACACCAGAAGCTGGTTGA -CCAACAACACCAGAAGCTTCCGAT -CCAACAACACCAGAAGCTTGGCAT -CCAACAACACCAGAAGCTCGAGAT -CCAACAACACCAGAAGCTTACCAC -CCAACAACACCAGAAGCTCAGAAC -CCAACAACACCAGAAGCTGTCTAC -CCAACAACACCAGAAGCTACGTAC -CCAACAACACCAGAAGCTAGTGAC -CCAACAACACCAGAAGCTCTGTAG -CCAACAACACCAGAAGCTCCTAAG -CCAACAACACCAGAAGCTGTTCAG -CCAACAACACCAGAAGCTGCATAG -CCAACAACACCAGAAGCTGACAAG -CCAACAACACCAGAAGCTAAGCAG -CCAACAACACCAGAAGCTCGTCAA -CCAACAACACCAGAAGCTGCTGAA -CCAACAACACCAGAAGCTAGTACG -CCAACAACACCAGAAGCTATCCGA -CCAACAACACCAGAAGCTATGGGA -CCAACAACACCAGAAGCTGTGCAA -CCAACAACACCAGAAGCTGAGGAA -CCAACAACACCAGAAGCTCAGGTA -CCAACAACACCAGAAGCTGACTCT -CCAACAACACCAGAAGCTAGTCCT -CCAACAACACCAGAAGCTTAAGCC -CCAACAACACCAGAAGCTATAGCC -CCAACAACACCAGAAGCTTAACCG -CCAACAACACCAGAAGCTATGCCA -CCAACAACACCAACGAGTGGAAAC -CCAACAACACCAACGAGTAACACC -CCAACAACACCAACGAGTATCGAG -CCAACAACACCAACGAGTCTCCTT -CCAACAACACCAACGAGTCCTGTT -CCAACAACACCAACGAGTCGGTTT -CCAACAACACCAACGAGTGTGGTT -CCAACAACACCAACGAGTGCCTTT -CCAACAACACCAACGAGTGGTCTT -CCAACAACACCAACGAGTACGCTT -CCAACAACACCAACGAGTAGCGTT -CCAACAACACCAACGAGTTTCGTC -CCAACAACACCAACGAGTTCTCTC -CCAACAACACCAACGAGTTGGATC -CCAACAACACCAACGAGTCACTTC -CCAACAACACCAACGAGTGTACTC -CCAACAACACCAACGAGTGATGTC -CCAACAACACCAACGAGTACAGTC -CCAACAACACCAACGAGTTTGCTG -CCAACAACACCAACGAGTTCCATG -CCAACAACACCAACGAGTTGTGTG -CCAACAACACCAACGAGTCTAGTG -CCAACAACACCAACGAGTCATCTG -CCAACAACACCAACGAGTGAGTTG -CCAACAACACCAACGAGTAGACTG -CCAACAACACCAACGAGTTCGGTA -CCAACAACACCAACGAGTTGCCTA -CCAACAACACCAACGAGTCCACTA -CCAACAACACCAACGAGTGGAGTA -CCAACAACACCAACGAGTTCGTCT -CCAACAACACCAACGAGTTGCACT -CCAACAACACCAACGAGTCTGACT -CCAACAACACCAACGAGTCAACCT -CCAACAACACCAACGAGTGCTACT -CCAACAACACCAACGAGTGGATCT -CCAACAACACCAACGAGTAAGGCT -CCAACAACACCAACGAGTTCAACC -CCAACAACACCAACGAGTTGTTCC -CCAACAACACCAACGAGTATTCCC -CCAACAACACCAACGAGTTTCTCG -CCAACAACACCAACGAGTTAGACG -CCAACAACACCAACGAGTGTAACG -CCAACAACACCAACGAGTACTTCG -CCAACAACACCAACGAGTTACGCA -CCAACAACACCAACGAGTCTTGCA -CCAACAACACCAACGAGTCGAACA -CCAACAACACCAACGAGTCAGTCA -CCAACAACACCAACGAGTGATCCA -CCAACAACACCAACGAGTACGACA -CCAACAACACCAACGAGTAGCTCA -CCAACAACACCAACGAGTTCACGT -CCAACAACACCAACGAGTCGTAGT -CCAACAACACCAACGAGTGTCAGT -CCAACAACACCAACGAGTGAAGGT -CCAACAACACCAACGAGTAACCGT -CCAACAACACCAACGAGTTTGTGC -CCAACAACACCAACGAGTCTAAGC -CCAACAACACCAACGAGTACTAGC -CCAACAACACCAACGAGTAGATGC -CCAACAACACCAACGAGTTGAAGG -CCAACAACACCAACGAGTCAATGG -CCAACAACACCAACGAGTATGAGG -CCAACAACACCAACGAGTAATGGG -CCAACAACACCAACGAGTTCCTGA -CCAACAACACCAACGAGTTAGCGA -CCAACAACACCAACGAGTCACAGA -CCAACAACACCAACGAGTGCAAGA -CCAACAACACCAACGAGTGGTTGA -CCAACAACACCAACGAGTTCCGAT -CCAACAACACCAACGAGTTGGCAT -CCAACAACACCAACGAGTCGAGAT -CCAACAACACCAACGAGTTACCAC -CCAACAACACCAACGAGTCAGAAC -CCAACAACACCAACGAGTGTCTAC -CCAACAACACCAACGAGTACGTAC -CCAACAACACCAACGAGTAGTGAC -CCAACAACACCAACGAGTCTGTAG -CCAACAACACCAACGAGTCCTAAG -CCAACAACACCAACGAGTGTTCAG -CCAACAACACCAACGAGTGCATAG -CCAACAACACCAACGAGTGACAAG -CCAACAACACCAACGAGTAAGCAG -CCAACAACACCAACGAGTCGTCAA -CCAACAACACCAACGAGTGCTGAA -CCAACAACACCAACGAGTAGTACG -CCAACAACACCAACGAGTATCCGA -CCAACAACACCAACGAGTATGGGA -CCAACAACACCAACGAGTGTGCAA -CCAACAACACCAACGAGTGAGGAA -CCAACAACACCAACGAGTCAGGTA -CCAACAACACCAACGAGTGACTCT -CCAACAACACCAACGAGTAGTCCT -CCAACAACACCAACGAGTTAAGCC -CCAACAACACCAACGAGTATAGCC -CCAACAACACCAACGAGTTAACCG -CCAACAACACCAACGAGTATGCCA -CCAACAACACCACGAATCGGAAAC -CCAACAACACCACGAATCAACACC -CCAACAACACCACGAATCATCGAG -CCAACAACACCACGAATCCTCCTT -CCAACAACACCACGAATCCCTGTT -CCAACAACACCACGAATCCGGTTT -CCAACAACACCACGAATCGTGGTT -CCAACAACACCACGAATCGCCTTT -CCAACAACACCACGAATCGGTCTT -CCAACAACACCACGAATCACGCTT -CCAACAACACCACGAATCAGCGTT -CCAACAACACCACGAATCTTCGTC -CCAACAACACCACGAATCTCTCTC -CCAACAACACCACGAATCTGGATC -CCAACAACACCACGAATCCACTTC -CCAACAACACCACGAATCGTACTC -CCAACAACACCACGAATCGATGTC -CCAACAACACCACGAATCACAGTC -CCAACAACACCACGAATCTTGCTG -CCAACAACACCACGAATCTCCATG -CCAACAACACCACGAATCTGTGTG -CCAACAACACCACGAATCCTAGTG -CCAACAACACCACGAATCCATCTG -CCAACAACACCACGAATCGAGTTG -CCAACAACACCACGAATCAGACTG -CCAACAACACCACGAATCTCGGTA -CCAACAACACCACGAATCTGCCTA -CCAACAACACCACGAATCCCACTA -CCAACAACACCACGAATCGGAGTA -CCAACAACACCACGAATCTCGTCT -CCAACAACACCACGAATCTGCACT -CCAACAACACCACGAATCCTGACT -CCAACAACACCACGAATCCAACCT -CCAACAACACCACGAATCGCTACT -CCAACAACACCACGAATCGGATCT -CCAACAACACCACGAATCAAGGCT -CCAACAACACCACGAATCTCAACC -CCAACAACACCACGAATCTGTTCC -CCAACAACACCACGAATCATTCCC -CCAACAACACCACGAATCTTCTCG -CCAACAACACCACGAATCTAGACG -CCAACAACACCACGAATCGTAACG -CCAACAACACCACGAATCACTTCG -CCAACAACACCACGAATCTACGCA -CCAACAACACCACGAATCCTTGCA -CCAACAACACCACGAATCCGAACA -CCAACAACACCACGAATCCAGTCA -CCAACAACACCACGAATCGATCCA -CCAACAACACCACGAATCACGACA -CCAACAACACCACGAATCAGCTCA -CCAACAACACCACGAATCTCACGT -CCAACAACACCACGAATCCGTAGT -CCAACAACACCACGAATCGTCAGT -CCAACAACACCACGAATCGAAGGT -CCAACAACACCACGAATCAACCGT -CCAACAACACCACGAATCTTGTGC -CCAACAACACCACGAATCCTAAGC -CCAACAACACCACGAATCACTAGC -CCAACAACACCACGAATCAGATGC -CCAACAACACCACGAATCTGAAGG -CCAACAACACCACGAATCCAATGG -CCAACAACACCACGAATCATGAGG -CCAACAACACCACGAATCAATGGG -CCAACAACACCACGAATCTCCTGA -CCAACAACACCACGAATCTAGCGA -CCAACAACACCACGAATCCACAGA -CCAACAACACCACGAATCGCAAGA -CCAACAACACCACGAATCGGTTGA -CCAACAACACCACGAATCTCCGAT -CCAACAACACCACGAATCTGGCAT -CCAACAACACCACGAATCCGAGAT -CCAACAACACCACGAATCTACCAC -CCAACAACACCACGAATCCAGAAC -CCAACAACACCACGAATCGTCTAC -CCAACAACACCACGAATCACGTAC -CCAACAACACCACGAATCAGTGAC -CCAACAACACCACGAATCCTGTAG -CCAACAACACCACGAATCCCTAAG -CCAACAACACCACGAATCGTTCAG -CCAACAACACCACGAATCGCATAG -CCAACAACACCACGAATCGACAAG -CCAACAACACCACGAATCAAGCAG -CCAACAACACCACGAATCCGTCAA -CCAACAACACCACGAATCGCTGAA -CCAACAACACCACGAATCAGTACG -CCAACAACACCACGAATCATCCGA -CCAACAACACCACGAATCATGGGA -CCAACAACACCACGAATCGTGCAA -CCAACAACACCACGAATCGAGGAA -CCAACAACACCACGAATCCAGGTA -CCAACAACACCACGAATCGACTCT -CCAACAACACCACGAATCAGTCCT -CCAACAACACCACGAATCTAAGCC -CCAACAACACCACGAATCATAGCC -CCAACAACACCACGAATCTAACCG -CCAACAACACCACGAATCATGCCA -CCAACAACACCAGGAATGGGAAAC -CCAACAACACCAGGAATGAACACC -CCAACAACACCAGGAATGATCGAG -CCAACAACACCAGGAATGCTCCTT -CCAACAACACCAGGAATGCCTGTT -CCAACAACACCAGGAATGCGGTTT -CCAACAACACCAGGAATGGTGGTT -CCAACAACACCAGGAATGGCCTTT -CCAACAACACCAGGAATGGGTCTT -CCAACAACACCAGGAATGACGCTT -CCAACAACACCAGGAATGAGCGTT -CCAACAACACCAGGAATGTTCGTC -CCAACAACACCAGGAATGTCTCTC -CCAACAACACCAGGAATGTGGATC -CCAACAACACCAGGAATGCACTTC -CCAACAACACCAGGAATGGTACTC -CCAACAACACCAGGAATGGATGTC -CCAACAACACCAGGAATGACAGTC -CCAACAACACCAGGAATGTTGCTG -CCAACAACACCAGGAATGTCCATG -CCAACAACACCAGGAATGTGTGTG -CCAACAACACCAGGAATGCTAGTG -CCAACAACACCAGGAATGCATCTG -CCAACAACACCAGGAATGGAGTTG -CCAACAACACCAGGAATGAGACTG -CCAACAACACCAGGAATGTCGGTA -CCAACAACACCAGGAATGTGCCTA -CCAACAACACCAGGAATGCCACTA -CCAACAACACCAGGAATGGGAGTA -CCAACAACACCAGGAATGTCGTCT -CCAACAACACCAGGAATGTGCACT -CCAACAACACCAGGAATGCTGACT -CCAACAACACCAGGAATGCAACCT -CCAACAACACCAGGAATGGCTACT -CCAACAACACCAGGAATGGGATCT -CCAACAACACCAGGAATGAAGGCT -CCAACAACACCAGGAATGTCAACC -CCAACAACACCAGGAATGTGTTCC -CCAACAACACCAGGAATGATTCCC -CCAACAACACCAGGAATGTTCTCG -CCAACAACACCAGGAATGTAGACG -CCAACAACACCAGGAATGGTAACG -CCAACAACACCAGGAATGACTTCG -CCAACAACACCAGGAATGTACGCA -CCAACAACACCAGGAATGCTTGCA -CCAACAACACCAGGAATGCGAACA -CCAACAACACCAGGAATGCAGTCA -CCAACAACACCAGGAATGGATCCA -CCAACAACACCAGGAATGACGACA -CCAACAACACCAGGAATGAGCTCA -CCAACAACACCAGGAATGTCACGT -CCAACAACACCAGGAATGCGTAGT -CCAACAACACCAGGAATGGTCAGT -CCAACAACACCAGGAATGGAAGGT -CCAACAACACCAGGAATGAACCGT -CCAACAACACCAGGAATGTTGTGC -CCAACAACACCAGGAATGCTAAGC -CCAACAACACCAGGAATGACTAGC -CCAACAACACCAGGAATGAGATGC -CCAACAACACCAGGAATGTGAAGG -CCAACAACACCAGGAATGCAATGG -CCAACAACACCAGGAATGATGAGG -CCAACAACACCAGGAATGAATGGG -CCAACAACACCAGGAATGTCCTGA -CCAACAACACCAGGAATGTAGCGA -CCAACAACACCAGGAATGCACAGA -CCAACAACACCAGGAATGGCAAGA -CCAACAACACCAGGAATGGGTTGA -CCAACAACACCAGGAATGTCCGAT -CCAACAACACCAGGAATGTGGCAT -CCAACAACACCAGGAATGCGAGAT -CCAACAACACCAGGAATGTACCAC -CCAACAACACCAGGAATGCAGAAC -CCAACAACACCAGGAATGGTCTAC -CCAACAACACCAGGAATGACGTAC -CCAACAACACCAGGAATGAGTGAC -CCAACAACACCAGGAATGCTGTAG -CCAACAACACCAGGAATGCCTAAG -CCAACAACACCAGGAATGGTTCAG -CCAACAACACCAGGAATGGCATAG -CCAACAACACCAGGAATGGACAAG -CCAACAACACCAGGAATGAAGCAG -CCAACAACACCAGGAATGCGTCAA -CCAACAACACCAGGAATGGCTGAA -CCAACAACACCAGGAATGAGTACG -CCAACAACACCAGGAATGATCCGA -CCAACAACACCAGGAATGATGGGA -CCAACAACACCAGGAATGGTGCAA -CCAACAACACCAGGAATGGAGGAA -CCAACAACACCAGGAATGCAGGTA -CCAACAACACCAGGAATGGACTCT -CCAACAACACCAGGAATGAGTCCT -CCAACAACACCAGGAATGTAAGCC -CCAACAACACCAGGAATGATAGCC -CCAACAACACCAGGAATGTAACCG -CCAACAACACCAGGAATGATGCCA -CCAACAACACCACAAGTGGGAAAC -CCAACAACACCACAAGTGAACACC -CCAACAACACCACAAGTGATCGAG -CCAACAACACCACAAGTGCTCCTT -CCAACAACACCACAAGTGCCTGTT -CCAACAACACCACAAGTGCGGTTT -CCAACAACACCACAAGTGGTGGTT -CCAACAACACCACAAGTGGCCTTT -CCAACAACACCACAAGTGGGTCTT -CCAACAACACCACAAGTGACGCTT -CCAACAACACCACAAGTGAGCGTT -CCAACAACACCACAAGTGTTCGTC -CCAACAACACCACAAGTGTCTCTC -CCAACAACACCACAAGTGTGGATC -CCAACAACACCACAAGTGCACTTC -CCAACAACACCACAAGTGGTACTC -CCAACAACACCACAAGTGGATGTC -CCAACAACACCACAAGTGACAGTC -CCAACAACACCACAAGTGTTGCTG -CCAACAACACCACAAGTGTCCATG -CCAACAACACCACAAGTGTGTGTG -CCAACAACACCACAAGTGCTAGTG -CCAACAACACCACAAGTGCATCTG -CCAACAACACCACAAGTGGAGTTG -CCAACAACACCACAAGTGAGACTG -CCAACAACACCACAAGTGTCGGTA -CCAACAACACCACAAGTGTGCCTA -CCAACAACACCACAAGTGCCACTA -CCAACAACACCACAAGTGGGAGTA -CCAACAACACCACAAGTGTCGTCT -CCAACAACACCACAAGTGTGCACT -CCAACAACACCACAAGTGCTGACT -CCAACAACACCACAAGTGCAACCT -CCAACAACACCACAAGTGGCTACT -CCAACAACACCACAAGTGGGATCT -CCAACAACACCACAAGTGAAGGCT -CCAACAACACCACAAGTGTCAACC -CCAACAACACCACAAGTGTGTTCC -CCAACAACACCACAAGTGATTCCC -CCAACAACACCACAAGTGTTCTCG -CCAACAACACCACAAGTGTAGACG -CCAACAACACCACAAGTGGTAACG -CCAACAACACCACAAGTGACTTCG -CCAACAACACCACAAGTGTACGCA -CCAACAACACCACAAGTGCTTGCA -CCAACAACACCACAAGTGCGAACA -CCAACAACACCACAAGTGCAGTCA -CCAACAACACCACAAGTGGATCCA -CCAACAACACCACAAGTGACGACA -CCAACAACACCACAAGTGAGCTCA -CCAACAACACCACAAGTGTCACGT -CCAACAACACCACAAGTGCGTAGT -CCAACAACACCACAAGTGGTCAGT -CCAACAACACCACAAGTGGAAGGT -CCAACAACACCACAAGTGAACCGT -CCAACAACACCACAAGTGTTGTGC -CCAACAACACCACAAGTGCTAAGC -CCAACAACACCACAAGTGACTAGC -CCAACAACACCACAAGTGAGATGC -CCAACAACACCACAAGTGTGAAGG -CCAACAACACCACAAGTGCAATGG -CCAACAACACCACAAGTGATGAGG -CCAACAACACCACAAGTGAATGGG -CCAACAACACCACAAGTGTCCTGA -CCAACAACACCACAAGTGTAGCGA -CCAACAACACCACAAGTGCACAGA -CCAACAACACCACAAGTGGCAAGA -CCAACAACACCACAAGTGGGTTGA -CCAACAACACCACAAGTGTCCGAT -CCAACAACACCACAAGTGTGGCAT -CCAACAACACCACAAGTGCGAGAT -CCAACAACACCACAAGTGTACCAC -CCAACAACACCACAAGTGCAGAAC -CCAACAACACCACAAGTGGTCTAC -CCAACAACACCACAAGTGACGTAC -CCAACAACACCACAAGTGAGTGAC -CCAACAACACCACAAGTGCTGTAG -CCAACAACACCACAAGTGCCTAAG -CCAACAACACCACAAGTGGTTCAG -CCAACAACACCACAAGTGGCATAG -CCAACAACACCACAAGTGGACAAG -CCAACAACACCACAAGTGAAGCAG -CCAACAACACCACAAGTGCGTCAA -CCAACAACACCACAAGTGGCTGAA -CCAACAACACCACAAGTGAGTACG -CCAACAACACCACAAGTGATCCGA -CCAACAACACCACAAGTGATGGGA -CCAACAACACCACAAGTGGTGCAA -CCAACAACACCACAAGTGGAGGAA -CCAACAACACCACAAGTGCAGGTA -CCAACAACACCACAAGTGGACTCT -CCAACAACACCACAAGTGAGTCCT -CCAACAACACCACAAGTGTAAGCC -CCAACAACACCACAAGTGATAGCC -CCAACAACACCACAAGTGTAACCG -CCAACAACACCACAAGTGATGCCA -CCAACAACACCAGAAGAGGGAAAC -CCAACAACACCAGAAGAGAACACC -CCAACAACACCAGAAGAGATCGAG -CCAACAACACCAGAAGAGCTCCTT -CCAACAACACCAGAAGAGCCTGTT -CCAACAACACCAGAAGAGCGGTTT -CCAACAACACCAGAAGAGGTGGTT -CCAACAACACCAGAAGAGGCCTTT -CCAACAACACCAGAAGAGGGTCTT -CCAACAACACCAGAAGAGACGCTT -CCAACAACACCAGAAGAGAGCGTT -CCAACAACACCAGAAGAGTTCGTC -CCAACAACACCAGAAGAGTCTCTC -CCAACAACACCAGAAGAGTGGATC -CCAACAACACCAGAAGAGCACTTC -CCAACAACACCAGAAGAGGTACTC -CCAACAACACCAGAAGAGGATGTC -CCAACAACACCAGAAGAGACAGTC -CCAACAACACCAGAAGAGTTGCTG -CCAACAACACCAGAAGAGTCCATG -CCAACAACACCAGAAGAGTGTGTG -CCAACAACACCAGAAGAGCTAGTG -CCAACAACACCAGAAGAGCATCTG -CCAACAACACCAGAAGAGGAGTTG -CCAACAACACCAGAAGAGAGACTG -CCAACAACACCAGAAGAGTCGGTA -CCAACAACACCAGAAGAGTGCCTA -CCAACAACACCAGAAGAGCCACTA -CCAACAACACCAGAAGAGGGAGTA -CCAACAACACCAGAAGAGTCGTCT -CCAACAACACCAGAAGAGTGCACT -CCAACAACACCAGAAGAGCTGACT -CCAACAACACCAGAAGAGCAACCT -CCAACAACACCAGAAGAGGCTACT -CCAACAACACCAGAAGAGGGATCT -CCAACAACACCAGAAGAGAAGGCT -CCAACAACACCAGAAGAGTCAACC -CCAACAACACCAGAAGAGTGTTCC -CCAACAACACCAGAAGAGATTCCC -CCAACAACACCAGAAGAGTTCTCG -CCAACAACACCAGAAGAGTAGACG -CCAACAACACCAGAAGAGGTAACG -CCAACAACACCAGAAGAGACTTCG -CCAACAACACCAGAAGAGTACGCA -CCAACAACACCAGAAGAGCTTGCA -CCAACAACACCAGAAGAGCGAACA -CCAACAACACCAGAAGAGCAGTCA -CCAACAACACCAGAAGAGGATCCA -CCAACAACACCAGAAGAGACGACA -CCAACAACACCAGAAGAGAGCTCA -CCAACAACACCAGAAGAGTCACGT -CCAACAACACCAGAAGAGCGTAGT -CCAACAACACCAGAAGAGGTCAGT -CCAACAACACCAGAAGAGGAAGGT -CCAACAACACCAGAAGAGAACCGT -CCAACAACACCAGAAGAGTTGTGC -CCAACAACACCAGAAGAGCTAAGC -CCAACAACACCAGAAGAGACTAGC -CCAACAACACCAGAAGAGAGATGC -CCAACAACACCAGAAGAGTGAAGG -CCAACAACACCAGAAGAGCAATGG -CCAACAACACCAGAAGAGATGAGG -CCAACAACACCAGAAGAGAATGGG -CCAACAACACCAGAAGAGTCCTGA -CCAACAACACCAGAAGAGTAGCGA -CCAACAACACCAGAAGAGCACAGA -CCAACAACACCAGAAGAGGCAAGA -CCAACAACACCAGAAGAGGGTTGA -CCAACAACACCAGAAGAGTCCGAT -CCAACAACACCAGAAGAGTGGCAT -CCAACAACACCAGAAGAGCGAGAT -CCAACAACACCAGAAGAGTACCAC -CCAACAACACCAGAAGAGCAGAAC -CCAACAACACCAGAAGAGGTCTAC -CCAACAACACCAGAAGAGACGTAC -CCAACAACACCAGAAGAGAGTGAC -CCAACAACACCAGAAGAGCTGTAG -CCAACAACACCAGAAGAGCCTAAG -CCAACAACACCAGAAGAGGTTCAG -CCAACAACACCAGAAGAGGCATAG -CCAACAACACCAGAAGAGGACAAG -CCAACAACACCAGAAGAGAAGCAG -CCAACAACACCAGAAGAGCGTCAA -CCAACAACACCAGAAGAGGCTGAA -CCAACAACACCAGAAGAGAGTACG -CCAACAACACCAGAAGAGATCCGA -CCAACAACACCAGAAGAGATGGGA -CCAACAACACCAGAAGAGGTGCAA -CCAACAACACCAGAAGAGGAGGAA -CCAACAACACCAGAAGAGCAGGTA -CCAACAACACCAGAAGAGGACTCT -CCAACAACACCAGAAGAGAGTCCT -CCAACAACACCAGAAGAGTAAGCC -CCAACAACACCAGAAGAGATAGCC -CCAACAACACCAGAAGAGTAACCG -CCAACAACACCAGAAGAGATGCCA -CCAACAACACCAGTACAGGGAAAC -CCAACAACACCAGTACAGAACACC -CCAACAACACCAGTACAGATCGAG -CCAACAACACCAGTACAGCTCCTT -CCAACAACACCAGTACAGCCTGTT -CCAACAACACCAGTACAGCGGTTT -CCAACAACACCAGTACAGGTGGTT -CCAACAACACCAGTACAGGCCTTT -CCAACAACACCAGTACAGGGTCTT -CCAACAACACCAGTACAGACGCTT -CCAACAACACCAGTACAGAGCGTT -CCAACAACACCAGTACAGTTCGTC -CCAACAACACCAGTACAGTCTCTC -CCAACAACACCAGTACAGTGGATC -CCAACAACACCAGTACAGCACTTC -CCAACAACACCAGTACAGGTACTC -CCAACAACACCAGTACAGGATGTC -CCAACAACACCAGTACAGACAGTC -CCAACAACACCAGTACAGTTGCTG -CCAACAACACCAGTACAGTCCATG -CCAACAACACCAGTACAGTGTGTG -CCAACAACACCAGTACAGCTAGTG -CCAACAACACCAGTACAGCATCTG -CCAACAACACCAGTACAGGAGTTG -CCAACAACACCAGTACAGAGACTG -CCAACAACACCAGTACAGTCGGTA -CCAACAACACCAGTACAGTGCCTA -CCAACAACACCAGTACAGCCACTA -CCAACAACACCAGTACAGGGAGTA -CCAACAACACCAGTACAGTCGTCT -CCAACAACACCAGTACAGTGCACT -CCAACAACACCAGTACAGCTGACT -CCAACAACACCAGTACAGCAACCT -CCAACAACACCAGTACAGGCTACT -CCAACAACACCAGTACAGGGATCT -CCAACAACACCAGTACAGAAGGCT -CCAACAACACCAGTACAGTCAACC -CCAACAACACCAGTACAGTGTTCC -CCAACAACACCAGTACAGATTCCC -CCAACAACACCAGTACAGTTCTCG -CCAACAACACCAGTACAGTAGACG -CCAACAACACCAGTACAGGTAACG -CCAACAACACCAGTACAGACTTCG -CCAACAACACCAGTACAGTACGCA -CCAACAACACCAGTACAGCTTGCA -CCAACAACACCAGTACAGCGAACA -CCAACAACACCAGTACAGCAGTCA -CCAACAACACCAGTACAGGATCCA -CCAACAACACCAGTACAGACGACA -CCAACAACACCAGTACAGAGCTCA -CCAACAACACCAGTACAGTCACGT -CCAACAACACCAGTACAGCGTAGT -CCAACAACACCAGTACAGGTCAGT -CCAACAACACCAGTACAGGAAGGT -CCAACAACACCAGTACAGAACCGT -CCAACAACACCAGTACAGTTGTGC -CCAACAACACCAGTACAGCTAAGC -CCAACAACACCAGTACAGACTAGC -CCAACAACACCAGTACAGAGATGC -CCAACAACACCAGTACAGTGAAGG -CCAACAACACCAGTACAGCAATGG -CCAACAACACCAGTACAGATGAGG -CCAACAACACCAGTACAGAATGGG -CCAACAACACCAGTACAGTCCTGA -CCAACAACACCAGTACAGTAGCGA -CCAACAACACCAGTACAGCACAGA -CCAACAACACCAGTACAGGCAAGA -CCAACAACACCAGTACAGGGTTGA -CCAACAACACCAGTACAGTCCGAT -CCAACAACACCAGTACAGTGGCAT -CCAACAACACCAGTACAGCGAGAT -CCAACAACACCAGTACAGTACCAC -CCAACAACACCAGTACAGCAGAAC -CCAACAACACCAGTACAGGTCTAC -CCAACAACACCAGTACAGACGTAC -CCAACAACACCAGTACAGAGTGAC -CCAACAACACCAGTACAGCTGTAG -CCAACAACACCAGTACAGCCTAAG -CCAACAACACCAGTACAGGTTCAG -CCAACAACACCAGTACAGGCATAG -CCAACAACACCAGTACAGGACAAG -CCAACAACACCAGTACAGAAGCAG -CCAACAACACCAGTACAGCGTCAA -CCAACAACACCAGTACAGGCTGAA -CCAACAACACCAGTACAGAGTACG -CCAACAACACCAGTACAGATCCGA -CCAACAACACCAGTACAGATGGGA -CCAACAACACCAGTACAGGTGCAA -CCAACAACACCAGTACAGGAGGAA -CCAACAACACCAGTACAGCAGGTA -CCAACAACACCAGTACAGGACTCT -CCAACAACACCAGTACAGAGTCCT -CCAACAACACCAGTACAGTAAGCC -CCAACAACACCAGTACAGATAGCC -CCAACAACACCAGTACAGTAACCG -CCAACAACACCAGTACAGATGCCA -CCAACAACACCATCTGACGGAAAC -CCAACAACACCATCTGACAACACC -CCAACAACACCATCTGACATCGAG -CCAACAACACCATCTGACCTCCTT -CCAACAACACCATCTGACCCTGTT -CCAACAACACCATCTGACCGGTTT -CCAACAACACCATCTGACGTGGTT -CCAACAACACCATCTGACGCCTTT -CCAACAACACCATCTGACGGTCTT -CCAACAACACCATCTGACACGCTT -CCAACAACACCATCTGACAGCGTT -CCAACAACACCATCTGACTTCGTC -CCAACAACACCATCTGACTCTCTC -CCAACAACACCATCTGACTGGATC -CCAACAACACCATCTGACCACTTC -CCAACAACACCATCTGACGTACTC -CCAACAACACCATCTGACGATGTC -CCAACAACACCATCTGACACAGTC -CCAACAACACCATCTGACTTGCTG -CCAACAACACCATCTGACTCCATG -CCAACAACACCATCTGACTGTGTG -CCAACAACACCATCTGACCTAGTG -CCAACAACACCATCTGACCATCTG -CCAACAACACCATCTGACGAGTTG -CCAACAACACCATCTGACAGACTG -CCAACAACACCATCTGACTCGGTA -CCAACAACACCATCTGACTGCCTA -CCAACAACACCATCTGACCCACTA -CCAACAACACCATCTGACGGAGTA -CCAACAACACCATCTGACTCGTCT -CCAACAACACCATCTGACTGCACT -CCAACAACACCATCTGACCTGACT -CCAACAACACCATCTGACCAACCT -CCAACAACACCATCTGACGCTACT -CCAACAACACCATCTGACGGATCT -CCAACAACACCATCTGACAAGGCT -CCAACAACACCATCTGACTCAACC -CCAACAACACCATCTGACTGTTCC -CCAACAACACCATCTGACATTCCC -CCAACAACACCATCTGACTTCTCG -CCAACAACACCATCTGACTAGACG -CCAACAACACCATCTGACGTAACG -CCAACAACACCATCTGACACTTCG -CCAACAACACCATCTGACTACGCA -CCAACAACACCATCTGACCTTGCA -CCAACAACACCATCTGACCGAACA -CCAACAACACCATCTGACCAGTCA -CCAACAACACCATCTGACGATCCA -CCAACAACACCATCTGACACGACA -CCAACAACACCATCTGACAGCTCA -CCAACAACACCATCTGACTCACGT -CCAACAACACCATCTGACCGTAGT -CCAACAACACCATCTGACGTCAGT -CCAACAACACCATCTGACGAAGGT -CCAACAACACCATCTGACAACCGT -CCAACAACACCATCTGACTTGTGC -CCAACAACACCATCTGACCTAAGC -CCAACAACACCATCTGACACTAGC -CCAACAACACCATCTGACAGATGC -CCAACAACACCATCTGACTGAAGG -CCAACAACACCATCTGACCAATGG -CCAACAACACCATCTGACATGAGG -CCAACAACACCATCTGACAATGGG -CCAACAACACCATCTGACTCCTGA -CCAACAACACCATCTGACTAGCGA -CCAACAACACCATCTGACCACAGA -CCAACAACACCATCTGACGCAAGA -CCAACAACACCATCTGACGGTTGA -CCAACAACACCATCTGACTCCGAT -CCAACAACACCATCTGACTGGCAT -CCAACAACACCATCTGACCGAGAT -CCAACAACACCATCTGACTACCAC -CCAACAACACCATCTGACCAGAAC -CCAACAACACCATCTGACGTCTAC -CCAACAACACCATCTGACACGTAC -CCAACAACACCATCTGACAGTGAC -CCAACAACACCATCTGACCTGTAG -CCAACAACACCATCTGACCCTAAG -CCAACAACACCATCTGACGTTCAG -CCAACAACACCATCTGACGCATAG -CCAACAACACCATCTGACGACAAG -CCAACAACACCATCTGACAAGCAG -CCAACAACACCATCTGACCGTCAA -CCAACAACACCATCTGACGCTGAA -CCAACAACACCATCTGACAGTACG -CCAACAACACCATCTGACATCCGA -CCAACAACACCATCTGACATGGGA -CCAACAACACCATCTGACGTGCAA -CCAACAACACCATCTGACGAGGAA -CCAACAACACCATCTGACCAGGTA -CCAACAACACCATCTGACGACTCT -CCAACAACACCATCTGACAGTCCT -CCAACAACACCATCTGACTAAGCC -CCAACAACACCATCTGACATAGCC -CCAACAACACCATCTGACTAACCG -CCAACAACACCATCTGACATGCCA -CCAACAACACCACCTAGTGGAAAC -CCAACAACACCACCTAGTAACACC -CCAACAACACCACCTAGTATCGAG -CCAACAACACCACCTAGTCTCCTT -CCAACAACACCACCTAGTCCTGTT -CCAACAACACCACCTAGTCGGTTT -CCAACAACACCACCTAGTGTGGTT -CCAACAACACCACCTAGTGCCTTT -CCAACAACACCACCTAGTGGTCTT -CCAACAACACCACCTAGTACGCTT -CCAACAACACCACCTAGTAGCGTT -CCAACAACACCACCTAGTTTCGTC -CCAACAACACCACCTAGTTCTCTC -CCAACAACACCACCTAGTTGGATC -CCAACAACACCACCTAGTCACTTC -CCAACAACACCACCTAGTGTACTC -CCAACAACACCACCTAGTGATGTC -CCAACAACACCACCTAGTACAGTC -CCAACAACACCACCTAGTTTGCTG -CCAACAACACCACCTAGTTCCATG -CCAACAACACCACCTAGTTGTGTG -CCAACAACACCACCTAGTCTAGTG -CCAACAACACCACCTAGTCATCTG -CCAACAACACCACCTAGTGAGTTG -CCAACAACACCACCTAGTAGACTG -CCAACAACACCACCTAGTTCGGTA -CCAACAACACCACCTAGTTGCCTA -CCAACAACACCACCTAGTCCACTA -CCAACAACACCACCTAGTGGAGTA -CCAACAACACCACCTAGTTCGTCT -CCAACAACACCACCTAGTTGCACT -CCAACAACACCACCTAGTCTGACT -CCAACAACACCACCTAGTCAACCT -CCAACAACACCACCTAGTGCTACT -CCAACAACACCACCTAGTGGATCT -CCAACAACACCACCTAGTAAGGCT -CCAACAACACCACCTAGTTCAACC -CCAACAACACCACCTAGTTGTTCC -CCAACAACACCACCTAGTATTCCC -CCAACAACACCACCTAGTTTCTCG -CCAACAACACCACCTAGTTAGACG -CCAACAACACCACCTAGTGTAACG -CCAACAACACCACCTAGTACTTCG -CCAACAACACCACCTAGTTACGCA -CCAACAACACCACCTAGTCTTGCA -CCAACAACACCACCTAGTCGAACA -CCAACAACACCACCTAGTCAGTCA -CCAACAACACCACCTAGTGATCCA -CCAACAACACCACCTAGTACGACA -CCAACAACACCACCTAGTAGCTCA -CCAACAACACCACCTAGTTCACGT -CCAACAACACCACCTAGTCGTAGT -CCAACAACACCACCTAGTGTCAGT -CCAACAACACCACCTAGTGAAGGT -CCAACAACACCACCTAGTAACCGT -CCAACAACACCACCTAGTTTGTGC -CCAACAACACCACCTAGTCTAAGC -CCAACAACACCACCTAGTACTAGC -CCAACAACACCACCTAGTAGATGC -CCAACAACACCACCTAGTTGAAGG -CCAACAACACCACCTAGTCAATGG -CCAACAACACCACCTAGTATGAGG -CCAACAACACCACCTAGTAATGGG -CCAACAACACCACCTAGTTCCTGA -CCAACAACACCACCTAGTTAGCGA -CCAACAACACCACCTAGTCACAGA -CCAACAACACCACCTAGTGCAAGA -CCAACAACACCACCTAGTGGTTGA -CCAACAACACCACCTAGTTCCGAT -CCAACAACACCACCTAGTTGGCAT -CCAACAACACCACCTAGTCGAGAT -CCAACAACACCACCTAGTTACCAC -CCAACAACACCACCTAGTCAGAAC -CCAACAACACCACCTAGTGTCTAC -CCAACAACACCACCTAGTACGTAC -CCAACAACACCACCTAGTAGTGAC -CCAACAACACCACCTAGTCTGTAG -CCAACAACACCACCTAGTCCTAAG -CCAACAACACCACCTAGTGTTCAG -CCAACAACACCACCTAGTGCATAG -CCAACAACACCACCTAGTGACAAG -CCAACAACACCACCTAGTAAGCAG -CCAACAACACCACCTAGTCGTCAA -CCAACAACACCACCTAGTGCTGAA -CCAACAACACCACCTAGTAGTACG -CCAACAACACCACCTAGTATCCGA -CCAACAACACCACCTAGTATGGGA -CCAACAACACCACCTAGTGTGCAA -CCAACAACACCACCTAGTGAGGAA -CCAACAACACCACCTAGTCAGGTA -CCAACAACACCACCTAGTGACTCT -CCAACAACACCACCTAGTAGTCCT -CCAACAACACCACCTAGTTAAGCC -CCAACAACACCACCTAGTATAGCC -CCAACAACACCACCTAGTTAACCG -CCAACAACACCACCTAGTATGCCA -CCAACAACACCAGCCTAAGGAAAC -CCAACAACACCAGCCTAAAACACC -CCAACAACACCAGCCTAAATCGAG -CCAACAACACCAGCCTAACTCCTT -CCAACAACACCAGCCTAACCTGTT -CCAACAACACCAGCCTAACGGTTT -CCAACAACACCAGCCTAAGTGGTT -CCAACAACACCAGCCTAAGCCTTT -CCAACAACACCAGCCTAAGGTCTT -CCAACAACACCAGCCTAAACGCTT -CCAACAACACCAGCCTAAAGCGTT -CCAACAACACCAGCCTAATTCGTC -CCAACAACACCAGCCTAATCTCTC -CCAACAACACCAGCCTAATGGATC -CCAACAACACCAGCCTAACACTTC -CCAACAACACCAGCCTAAGTACTC -CCAACAACACCAGCCTAAGATGTC -CCAACAACACCAGCCTAAACAGTC -CCAACAACACCAGCCTAATTGCTG -CCAACAACACCAGCCTAATCCATG -CCAACAACACCAGCCTAATGTGTG -CCAACAACACCAGCCTAACTAGTG -CCAACAACACCAGCCTAACATCTG -CCAACAACACCAGCCTAAGAGTTG -CCAACAACACCAGCCTAAAGACTG -CCAACAACACCAGCCTAATCGGTA -CCAACAACACCAGCCTAATGCCTA -CCAACAACACCAGCCTAACCACTA -CCAACAACACCAGCCTAAGGAGTA -CCAACAACACCAGCCTAATCGTCT -CCAACAACACCAGCCTAATGCACT -CCAACAACACCAGCCTAACTGACT -CCAACAACACCAGCCTAACAACCT -CCAACAACACCAGCCTAAGCTACT -CCAACAACACCAGCCTAAGGATCT -CCAACAACACCAGCCTAAAAGGCT -CCAACAACACCAGCCTAATCAACC -CCAACAACACCAGCCTAATGTTCC -CCAACAACACCAGCCTAAATTCCC -CCAACAACACCAGCCTAATTCTCG -CCAACAACACCAGCCTAATAGACG -CCAACAACACCAGCCTAAGTAACG -CCAACAACACCAGCCTAAACTTCG -CCAACAACACCAGCCTAATACGCA -CCAACAACACCAGCCTAACTTGCA -CCAACAACACCAGCCTAACGAACA -CCAACAACACCAGCCTAACAGTCA -CCAACAACACCAGCCTAAGATCCA -CCAACAACACCAGCCTAAACGACA -CCAACAACACCAGCCTAAAGCTCA -CCAACAACACCAGCCTAATCACGT -CCAACAACACCAGCCTAACGTAGT -CCAACAACACCAGCCTAAGTCAGT -CCAACAACACCAGCCTAAGAAGGT -CCAACAACACCAGCCTAAAACCGT -CCAACAACACCAGCCTAATTGTGC -CCAACAACACCAGCCTAACTAAGC -CCAACAACACCAGCCTAAACTAGC -CCAACAACACCAGCCTAAAGATGC -CCAACAACACCAGCCTAATGAAGG -CCAACAACACCAGCCTAACAATGG -CCAACAACACCAGCCTAAATGAGG -CCAACAACACCAGCCTAAAATGGG -CCAACAACACCAGCCTAATCCTGA -CCAACAACACCAGCCTAATAGCGA -CCAACAACACCAGCCTAACACAGA -CCAACAACACCAGCCTAAGCAAGA -CCAACAACACCAGCCTAAGGTTGA -CCAACAACACCAGCCTAATCCGAT -CCAACAACACCAGCCTAATGGCAT -CCAACAACACCAGCCTAACGAGAT -CCAACAACACCAGCCTAATACCAC -CCAACAACACCAGCCTAACAGAAC -CCAACAACACCAGCCTAAGTCTAC -CCAACAACACCAGCCTAAACGTAC -CCAACAACACCAGCCTAAAGTGAC -CCAACAACACCAGCCTAACTGTAG -CCAACAACACCAGCCTAACCTAAG -CCAACAACACCAGCCTAAGTTCAG -CCAACAACACCAGCCTAAGCATAG -CCAACAACACCAGCCTAAGACAAG -CCAACAACACCAGCCTAAAAGCAG -CCAACAACACCAGCCTAACGTCAA -CCAACAACACCAGCCTAAGCTGAA -CCAACAACACCAGCCTAAAGTACG -CCAACAACACCAGCCTAAATCCGA -CCAACAACACCAGCCTAAATGGGA -CCAACAACACCAGCCTAAGTGCAA -CCAACAACACCAGCCTAAGAGGAA -CCAACAACACCAGCCTAACAGGTA -CCAACAACACCAGCCTAAGACTCT -CCAACAACACCAGCCTAAAGTCCT -CCAACAACACCAGCCTAATAAGCC -CCAACAACACCAGCCTAAATAGCC -CCAACAACACCAGCCTAATAACCG -CCAACAACACCAGCCTAAATGCCA -CCAACAACACCAGCCATAGGAAAC -CCAACAACACCAGCCATAAACACC -CCAACAACACCAGCCATAATCGAG -CCAACAACACCAGCCATACTCCTT -CCAACAACACCAGCCATACCTGTT -CCAACAACACCAGCCATACGGTTT -CCAACAACACCAGCCATAGTGGTT -CCAACAACACCAGCCATAGCCTTT -CCAACAACACCAGCCATAGGTCTT -CCAACAACACCAGCCATAACGCTT -CCAACAACACCAGCCATAAGCGTT -CCAACAACACCAGCCATATTCGTC -CCAACAACACCAGCCATATCTCTC -CCAACAACACCAGCCATATGGATC -CCAACAACACCAGCCATACACTTC -CCAACAACACCAGCCATAGTACTC -CCAACAACACCAGCCATAGATGTC -CCAACAACACCAGCCATAACAGTC -CCAACAACACCAGCCATATTGCTG -CCAACAACACCAGCCATATCCATG -CCAACAACACCAGCCATATGTGTG -CCAACAACACCAGCCATACTAGTG -CCAACAACACCAGCCATACATCTG -CCAACAACACCAGCCATAGAGTTG -CCAACAACACCAGCCATAAGACTG -CCAACAACACCAGCCATATCGGTA -CCAACAACACCAGCCATATGCCTA -CCAACAACACCAGCCATACCACTA -CCAACAACACCAGCCATAGGAGTA -CCAACAACACCAGCCATATCGTCT -CCAACAACACCAGCCATATGCACT -CCAACAACACCAGCCATACTGACT -CCAACAACACCAGCCATACAACCT -CCAACAACACCAGCCATAGCTACT -CCAACAACACCAGCCATAGGATCT -CCAACAACACCAGCCATAAAGGCT -CCAACAACACCAGCCATATCAACC -CCAACAACACCAGCCATATGTTCC -CCAACAACACCAGCCATAATTCCC -CCAACAACACCAGCCATATTCTCG -CCAACAACACCAGCCATATAGACG -CCAACAACACCAGCCATAGTAACG -CCAACAACACCAGCCATAACTTCG -CCAACAACACCAGCCATATACGCA -CCAACAACACCAGCCATACTTGCA -CCAACAACACCAGCCATACGAACA -CCAACAACACCAGCCATACAGTCA -CCAACAACACCAGCCATAGATCCA -CCAACAACACCAGCCATAACGACA -CCAACAACACCAGCCATAAGCTCA -CCAACAACACCAGCCATATCACGT -CCAACAACACCAGCCATACGTAGT -CCAACAACACCAGCCATAGTCAGT -CCAACAACACCAGCCATAGAAGGT -CCAACAACACCAGCCATAAACCGT -CCAACAACACCAGCCATATTGTGC -CCAACAACACCAGCCATACTAAGC -CCAACAACACCAGCCATAACTAGC -CCAACAACACCAGCCATAAGATGC -CCAACAACACCAGCCATATGAAGG -CCAACAACACCAGCCATACAATGG -CCAACAACACCAGCCATAATGAGG -CCAACAACACCAGCCATAAATGGG -CCAACAACACCAGCCATATCCTGA -CCAACAACACCAGCCATATAGCGA -CCAACAACACCAGCCATACACAGA -CCAACAACACCAGCCATAGCAAGA -CCAACAACACCAGCCATAGGTTGA -CCAACAACACCAGCCATATCCGAT -CCAACAACACCAGCCATATGGCAT -CCAACAACACCAGCCATACGAGAT -CCAACAACACCAGCCATATACCAC -CCAACAACACCAGCCATACAGAAC -CCAACAACACCAGCCATAGTCTAC -CCAACAACACCAGCCATAACGTAC -CCAACAACACCAGCCATAAGTGAC -CCAACAACACCAGCCATACTGTAG -CCAACAACACCAGCCATACCTAAG -CCAACAACACCAGCCATAGTTCAG -CCAACAACACCAGCCATAGCATAG -CCAACAACACCAGCCATAGACAAG -CCAACAACACCAGCCATAAAGCAG -CCAACAACACCAGCCATACGTCAA -CCAACAACACCAGCCATAGCTGAA -CCAACAACACCAGCCATAAGTACG -CCAACAACACCAGCCATAATCCGA -CCAACAACACCAGCCATAATGGGA -CCAACAACACCAGCCATAGTGCAA -CCAACAACACCAGCCATAGAGGAA -CCAACAACACCAGCCATACAGGTA -CCAACAACACCAGCCATAGACTCT -CCAACAACACCAGCCATAAGTCCT -CCAACAACACCAGCCATATAAGCC -CCAACAACACCAGCCATAATAGCC -CCAACAACACCAGCCATATAACCG -CCAACAACACCAGCCATAATGCCA -CCAACAACACCACCGTAAGGAAAC -CCAACAACACCACCGTAAAACACC -CCAACAACACCACCGTAAATCGAG -CCAACAACACCACCGTAACTCCTT -CCAACAACACCACCGTAACCTGTT -CCAACAACACCACCGTAACGGTTT -CCAACAACACCACCGTAAGTGGTT -CCAACAACACCACCGTAAGCCTTT -CCAACAACACCACCGTAAGGTCTT -CCAACAACACCACCGTAAACGCTT -CCAACAACACCACCGTAAAGCGTT -CCAACAACACCACCGTAATTCGTC -CCAACAACACCACCGTAATCTCTC -CCAACAACACCACCGTAATGGATC -CCAACAACACCACCGTAACACTTC -CCAACAACACCACCGTAAGTACTC -CCAACAACACCACCGTAAGATGTC -CCAACAACACCACCGTAAACAGTC -CCAACAACACCACCGTAATTGCTG -CCAACAACACCACCGTAATCCATG -CCAACAACACCACCGTAATGTGTG -CCAACAACACCACCGTAACTAGTG -CCAACAACACCACCGTAACATCTG -CCAACAACACCACCGTAAGAGTTG -CCAACAACACCACCGTAAAGACTG -CCAACAACACCACCGTAATCGGTA -CCAACAACACCACCGTAATGCCTA -CCAACAACACCACCGTAACCACTA -CCAACAACACCACCGTAAGGAGTA -CCAACAACACCACCGTAATCGTCT -CCAACAACACCACCGTAATGCACT -CCAACAACACCACCGTAACTGACT -CCAACAACACCACCGTAACAACCT -CCAACAACACCACCGTAAGCTACT -CCAACAACACCACCGTAAGGATCT -CCAACAACACCACCGTAAAAGGCT -CCAACAACACCACCGTAATCAACC -CCAACAACACCACCGTAATGTTCC -CCAACAACACCACCGTAAATTCCC -CCAACAACACCACCGTAATTCTCG -CCAACAACACCACCGTAATAGACG -CCAACAACACCACCGTAAGTAACG -CCAACAACACCACCGTAAACTTCG -CCAACAACACCACCGTAATACGCA -CCAACAACACCACCGTAACTTGCA -CCAACAACACCACCGTAACGAACA -CCAACAACACCACCGTAACAGTCA -CCAACAACACCACCGTAAGATCCA -CCAACAACACCACCGTAAACGACA -CCAACAACACCACCGTAAAGCTCA -CCAACAACACCACCGTAATCACGT -CCAACAACACCACCGTAACGTAGT -CCAACAACACCACCGTAAGTCAGT -CCAACAACACCACCGTAAGAAGGT -CCAACAACACCACCGTAAAACCGT -CCAACAACACCACCGTAATTGTGC -CCAACAACACCACCGTAACTAAGC -CCAACAACACCACCGTAAACTAGC -CCAACAACACCACCGTAAAGATGC -CCAACAACACCACCGTAATGAAGG -CCAACAACACCACCGTAACAATGG -CCAACAACACCACCGTAAATGAGG -CCAACAACACCACCGTAAAATGGG -CCAACAACACCACCGTAATCCTGA -CCAACAACACCACCGTAATAGCGA -CCAACAACACCACCGTAACACAGA -CCAACAACACCACCGTAAGCAAGA -CCAACAACACCACCGTAAGGTTGA -CCAACAACACCACCGTAATCCGAT -CCAACAACACCACCGTAATGGCAT -CCAACAACACCACCGTAACGAGAT -CCAACAACACCACCGTAATACCAC -CCAACAACACCACCGTAACAGAAC -CCAACAACACCACCGTAAGTCTAC -CCAACAACACCACCGTAAACGTAC -CCAACAACACCACCGTAAAGTGAC -CCAACAACACCACCGTAACTGTAG -CCAACAACACCACCGTAACCTAAG -CCAACAACACCACCGTAAGTTCAG -CCAACAACACCACCGTAAGCATAG -CCAACAACACCACCGTAAGACAAG -CCAACAACACCACCGTAAAAGCAG -CCAACAACACCACCGTAACGTCAA -CCAACAACACCACCGTAAGCTGAA -CCAACAACACCACCGTAAAGTACG -CCAACAACACCACCGTAAATCCGA -CCAACAACACCACCGTAAATGGGA -CCAACAACACCACCGTAAGTGCAA -CCAACAACACCACCGTAAGAGGAA -CCAACAACACCACCGTAACAGGTA -CCAACAACACCACCGTAAGACTCT -CCAACAACACCACCGTAAAGTCCT -CCAACAACACCACCGTAATAAGCC -CCAACAACACCACCGTAAATAGCC -CCAACAACACCACCGTAATAACCG -CCAACAACACCACCGTAAATGCCA -CCAACAACACCACCAATGGGAAAC -CCAACAACACCACCAATGAACACC -CCAACAACACCACCAATGATCGAG -CCAACAACACCACCAATGCTCCTT -CCAACAACACCACCAATGCCTGTT -CCAACAACACCACCAATGCGGTTT -CCAACAACACCACCAATGGTGGTT -CCAACAACACCACCAATGGCCTTT -CCAACAACACCACCAATGGGTCTT -CCAACAACACCACCAATGACGCTT -CCAACAACACCACCAATGAGCGTT -CCAACAACACCACCAATGTTCGTC -CCAACAACACCACCAATGTCTCTC -CCAACAACACCACCAATGTGGATC -CCAACAACACCACCAATGCACTTC -CCAACAACACCACCAATGGTACTC -CCAACAACACCACCAATGGATGTC -CCAACAACACCACCAATGACAGTC -CCAACAACACCACCAATGTTGCTG -CCAACAACACCACCAATGTCCATG -CCAACAACACCACCAATGTGTGTG -CCAACAACACCACCAATGCTAGTG -CCAACAACACCACCAATGCATCTG -CCAACAACACCACCAATGGAGTTG -CCAACAACACCACCAATGAGACTG -CCAACAACACCACCAATGTCGGTA -CCAACAACACCACCAATGTGCCTA -CCAACAACACCACCAATGCCACTA -CCAACAACACCACCAATGGGAGTA -CCAACAACACCACCAATGTCGTCT -CCAACAACACCACCAATGTGCACT -CCAACAACACCACCAATGCTGACT -CCAACAACACCACCAATGCAACCT -CCAACAACACCACCAATGGCTACT -CCAACAACACCACCAATGGGATCT -CCAACAACACCACCAATGAAGGCT -CCAACAACACCACCAATGTCAACC -CCAACAACACCACCAATGTGTTCC -CCAACAACACCACCAATGATTCCC -CCAACAACACCACCAATGTTCTCG -CCAACAACACCACCAATGTAGACG -CCAACAACACCACCAATGGTAACG -CCAACAACACCACCAATGACTTCG -CCAACAACACCACCAATGTACGCA -CCAACAACACCACCAATGCTTGCA -CCAACAACACCACCAATGCGAACA -CCAACAACACCACCAATGCAGTCA -CCAACAACACCACCAATGGATCCA -CCAACAACACCACCAATGACGACA -CCAACAACACCACCAATGAGCTCA -CCAACAACACCACCAATGTCACGT -CCAACAACACCACCAATGCGTAGT -CCAACAACACCACCAATGGTCAGT -CCAACAACACCACCAATGGAAGGT -CCAACAACACCACCAATGAACCGT -CCAACAACACCACCAATGTTGTGC -CCAACAACACCACCAATGCTAAGC -CCAACAACACCACCAATGACTAGC -CCAACAACACCACCAATGAGATGC -CCAACAACACCACCAATGTGAAGG -CCAACAACACCACCAATGCAATGG -CCAACAACACCACCAATGATGAGG -CCAACAACACCACCAATGAATGGG -CCAACAACACCACCAATGTCCTGA -CCAACAACACCACCAATGTAGCGA -CCAACAACACCACCAATGCACAGA -CCAACAACACCACCAATGGCAAGA -CCAACAACACCACCAATGGGTTGA -CCAACAACACCACCAATGTCCGAT -CCAACAACACCACCAATGTGGCAT -CCAACAACACCACCAATGCGAGAT -CCAACAACACCACCAATGTACCAC -CCAACAACACCACCAATGCAGAAC -CCAACAACACCACCAATGGTCTAC -CCAACAACACCACCAATGACGTAC -CCAACAACACCACCAATGAGTGAC -CCAACAACACCACCAATGCTGTAG -CCAACAACACCACCAATGCCTAAG -CCAACAACACCACCAATGGTTCAG -CCAACAACACCACCAATGGCATAG -CCAACAACACCACCAATGGACAAG -CCAACAACACCACCAATGAAGCAG -CCAACAACACCACCAATGCGTCAA -CCAACAACACCACCAATGGCTGAA -CCAACAACACCACCAATGAGTACG -CCAACAACACCACCAATGATCCGA -CCAACAACACCACCAATGATGGGA -CCAACAACACCACCAATGGTGCAA -CCAACAACACCACCAATGGAGGAA -CCAACAACACCACCAATGCAGGTA -CCAACAACACCACCAATGGACTCT -CCAACAACACCACCAATGAGTCCT -CCAACAACACCACCAATGTAAGCC -CCAACAACACCACCAATGATAGCC -CCAACAACACCACCAATGTAACCG -CCAACAACACCACCAATGATGCCA -CCAACATCGAGAAACGGAGGAAAC -CCAACATCGAGAAACGGAAACACC -CCAACATCGAGAAACGGAATCGAG -CCAACATCGAGAAACGGACTCCTT -CCAACATCGAGAAACGGACCTGTT -CCAACATCGAGAAACGGACGGTTT -CCAACATCGAGAAACGGAGTGGTT -CCAACATCGAGAAACGGAGCCTTT -CCAACATCGAGAAACGGAGGTCTT -CCAACATCGAGAAACGGAACGCTT -CCAACATCGAGAAACGGAAGCGTT -CCAACATCGAGAAACGGATTCGTC -CCAACATCGAGAAACGGATCTCTC -CCAACATCGAGAAACGGATGGATC -CCAACATCGAGAAACGGACACTTC -CCAACATCGAGAAACGGAGTACTC -CCAACATCGAGAAACGGAGATGTC -CCAACATCGAGAAACGGAACAGTC -CCAACATCGAGAAACGGATTGCTG -CCAACATCGAGAAACGGATCCATG -CCAACATCGAGAAACGGATGTGTG -CCAACATCGAGAAACGGACTAGTG -CCAACATCGAGAAACGGACATCTG -CCAACATCGAGAAACGGAGAGTTG -CCAACATCGAGAAACGGAAGACTG -CCAACATCGAGAAACGGATCGGTA -CCAACATCGAGAAACGGATGCCTA -CCAACATCGAGAAACGGACCACTA -CCAACATCGAGAAACGGAGGAGTA -CCAACATCGAGAAACGGATCGTCT -CCAACATCGAGAAACGGATGCACT -CCAACATCGAGAAACGGACTGACT -CCAACATCGAGAAACGGACAACCT -CCAACATCGAGAAACGGAGCTACT -CCAACATCGAGAAACGGAGGATCT -CCAACATCGAGAAACGGAAAGGCT -CCAACATCGAGAAACGGATCAACC -CCAACATCGAGAAACGGATGTTCC -CCAACATCGAGAAACGGAATTCCC -CCAACATCGAGAAACGGATTCTCG -CCAACATCGAGAAACGGATAGACG -CCAACATCGAGAAACGGAGTAACG -CCAACATCGAGAAACGGAACTTCG -CCAACATCGAGAAACGGATACGCA -CCAACATCGAGAAACGGACTTGCA -CCAACATCGAGAAACGGACGAACA -CCAACATCGAGAAACGGACAGTCA -CCAACATCGAGAAACGGAGATCCA -CCAACATCGAGAAACGGAACGACA -CCAACATCGAGAAACGGAAGCTCA -CCAACATCGAGAAACGGATCACGT -CCAACATCGAGAAACGGACGTAGT -CCAACATCGAGAAACGGAGTCAGT -CCAACATCGAGAAACGGAGAAGGT -CCAACATCGAGAAACGGAAACCGT -CCAACATCGAGAAACGGATTGTGC -CCAACATCGAGAAACGGACTAAGC -CCAACATCGAGAAACGGAACTAGC -CCAACATCGAGAAACGGAAGATGC -CCAACATCGAGAAACGGATGAAGG -CCAACATCGAGAAACGGACAATGG -CCAACATCGAGAAACGGAATGAGG -CCAACATCGAGAAACGGAAATGGG -CCAACATCGAGAAACGGATCCTGA -CCAACATCGAGAAACGGATAGCGA -CCAACATCGAGAAACGGACACAGA -CCAACATCGAGAAACGGAGCAAGA -CCAACATCGAGAAACGGAGGTTGA -CCAACATCGAGAAACGGATCCGAT -CCAACATCGAGAAACGGATGGCAT -CCAACATCGAGAAACGGACGAGAT -CCAACATCGAGAAACGGATACCAC -CCAACATCGAGAAACGGACAGAAC -CCAACATCGAGAAACGGAGTCTAC -CCAACATCGAGAAACGGAACGTAC -CCAACATCGAGAAACGGAAGTGAC -CCAACATCGAGAAACGGACTGTAG -CCAACATCGAGAAACGGACCTAAG -CCAACATCGAGAAACGGAGTTCAG -CCAACATCGAGAAACGGAGCATAG -CCAACATCGAGAAACGGAGACAAG -CCAACATCGAGAAACGGAAAGCAG -CCAACATCGAGAAACGGACGTCAA -CCAACATCGAGAAACGGAGCTGAA -CCAACATCGAGAAACGGAAGTACG -CCAACATCGAGAAACGGAATCCGA -CCAACATCGAGAAACGGAATGGGA -CCAACATCGAGAAACGGAGTGCAA -CCAACATCGAGAAACGGAGAGGAA -CCAACATCGAGAAACGGACAGGTA -CCAACATCGAGAAACGGAGACTCT -CCAACATCGAGAAACGGAAGTCCT -CCAACATCGAGAAACGGATAAGCC -CCAACATCGAGAAACGGAATAGCC -CCAACATCGAGAAACGGATAACCG -CCAACATCGAGAAACGGAATGCCA -CCAACATCGAGAACCAACGGAAAC -CCAACATCGAGAACCAACAACACC -CCAACATCGAGAACCAACATCGAG -CCAACATCGAGAACCAACCTCCTT -CCAACATCGAGAACCAACCCTGTT -CCAACATCGAGAACCAACCGGTTT -CCAACATCGAGAACCAACGTGGTT -CCAACATCGAGAACCAACGCCTTT -CCAACATCGAGAACCAACGGTCTT -CCAACATCGAGAACCAACACGCTT -CCAACATCGAGAACCAACAGCGTT -CCAACATCGAGAACCAACTTCGTC -CCAACATCGAGAACCAACTCTCTC -CCAACATCGAGAACCAACTGGATC -CCAACATCGAGAACCAACCACTTC -CCAACATCGAGAACCAACGTACTC -CCAACATCGAGAACCAACGATGTC -CCAACATCGAGAACCAACACAGTC -CCAACATCGAGAACCAACTTGCTG -CCAACATCGAGAACCAACTCCATG -CCAACATCGAGAACCAACTGTGTG -CCAACATCGAGAACCAACCTAGTG -CCAACATCGAGAACCAACCATCTG -CCAACATCGAGAACCAACGAGTTG -CCAACATCGAGAACCAACAGACTG -CCAACATCGAGAACCAACTCGGTA -CCAACATCGAGAACCAACTGCCTA -CCAACATCGAGAACCAACCCACTA -CCAACATCGAGAACCAACGGAGTA -CCAACATCGAGAACCAACTCGTCT -CCAACATCGAGAACCAACTGCACT -CCAACATCGAGAACCAACCTGACT -CCAACATCGAGAACCAACCAACCT -CCAACATCGAGAACCAACGCTACT -CCAACATCGAGAACCAACGGATCT -CCAACATCGAGAACCAACAAGGCT -CCAACATCGAGAACCAACTCAACC -CCAACATCGAGAACCAACTGTTCC -CCAACATCGAGAACCAACATTCCC -CCAACATCGAGAACCAACTTCTCG -CCAACATCGAGAACCAACTAGACG -CCAACATCGAGAACCAACGTAACG -CCAACATCGAGAACCAACACTTCG -CCAACATCGAGAACCAACTACGCA -CCAACATCGAGAACCAACCTTGCA -CCAACATCGAGAACCAACCGAACA -CCAACATCGAGAACCAACCAGTCA -CCAACATCGAGAACCAACGATCCA -CCAACATCGAGAACCAACACGACA -CCAACATCGAGAACCAACAGCTCA -CCAACATCGAGAACCAACTCACGT -CCAACATCGAGAACCAACCGTAGT -CCAACATCGAGAACCAACGTCAGT -CCAACATCGAGAACCAACGAAGGT -CCAACATCGAGAACCAACAACCGT -CCAACATCGAGAACCAACTTGTGC -CCAACATCGAGAACCAACCTAAGC -CCAACATCGAGAACCAACACTAGC -CCAACATCGAGAACCAACAGATGC -CCAACATCGAGAACCAACTGAAGG -CCAACATCGAGAACCAACCAATGG -CCAACATCGAGAACCAACATGAGG -CCAACATCGAGAACCAACAATGGG -CCAACATCGAGAACCAACTCCTGA -CCAACATCGAGAACCAACTAGCGA -CCAACATCGAGAACCAACCACAGA -CCAACATCGAGAACCAACGCAAGA -CCAACATCGAGAACCAACGGTTGA -CCAACATCGAGAACCAACTCCGAT -CCAACATCGAGAACCAACTGGCAT -CCAACATCGAGAACCAACCGAGAT -CCAACATCGAGAACCAACTACCAC -CCAACATCGAGAACCAACCAGAAC -CCAACATCGAGAACCAACGTCTAC -CCAACATCGAGAACCAACACGTAC -CCAACATCGAGAACCAACAGTGAC -CCAACATCGAGAACCAACCTGTAG -CCAACATCGAGAACCAACCCTAAG -CCAACATCGAGAACCAACGTTCAG -CCAACATCGAGAACCAACGCATAG -CCAACATCGAGAACCAACGACAAG -CCAACATCGAGAACCAACAAGCAG -CCAACATCGAGAACCAACCGTCAA -CCAACATCGAGAACCAACGCTGAA -CCAACATCGAGAACCAACAGTACG -CCAACATCGAGAACCAACATCCGA -CCAACATCGAGAACCAACATGGGA -CCAACATCGAGAACCAACGTGCAA -CCAACATCGAGAACCAACGAGGAA -CCAACATCGAGAACCAACCAGGTA -CCAACATCGAGAACCAACGACTCT -CCAACATCGAGAACCAACAGTCCT -CCAACATCGAGAACCAACTAAGCC -CCAACATCGAGAACCAACATAGCC -CCAACATCGAGAACCAACTAACCG -CCAACATCGAGAACCAACATGCCA -CCAACATCGAGAGAGATCGGAAAC -CCAACATCGAGAGAGATCAACACC -CCAACATCGAGAGAGATCATCGAG -CCAACATCGAGAGAGATCCTCCTT -CCAACATCGAGAGAGATCCCTGTT -CCAACATCGAGAGAGATCCGGTTT -CCAACATCGAGAGAGATCGTGGTT -CCAACATCGAGAGAGATCGCCTTT -CCAACATCGAGAGAGATCGGTCTT -CCAACATCGAGAGAGATCACGCTT -CCAACATCGAGAGAGATCAGCGTT -CCAACATCGAGAGAGATCTTCGTC -CCAACATCGAGAGAGATCTCTCTC -CCAACATCGAGAGAGATCTGGATC -CCAACATCGAGAGAGATCCACTTC -CCAACATCGAGAGAGATCGTACTC -CCAACATCGAGAGAGATCGATGTC -CCAACATCGAGAGAGATCACAGTC -CCAACATCGAGAGAGATCTTGCTG -CCAACATCGAGAGAGATCTCCATG -CCAACATCGAGAGAGATCTGTGTG -CCAACATCGAGAGAGATCCTAGTG -CCAACATCGAGAGAGATCCATCTG -CCAACATCGAGAGAGATCGAGTTG -CCAACATCGAGAGAGATCAGACTG -CCAACATCGAGAGAGATCTCGGTA -CCAACATCGAGAGAGATCTGCCTA -CCAACATCGAGAGAGATCCCACTA -CCAACATCGAGAGAGATCGGAGTA -CCAACATCGAGAGAGATCTCGTCT -CCAACATCGAGAGAGATCTGCACT -CCAACATCGAGAGAGATCCTGACT -CCAACATCGAGAGAGATCCAACCT -CCAACATCGAGAGAGATCGCTACT -CCAACATCGAGAGAGATCGGATCT -CCAACATCGAGAGAGATCAAGGCT -CCAACATCGAGAGAGATCTCAACC -CCAACATCGAGAGAGATCTGTTCC -CCAACATCGAGAGAGATCATTCCC -CCAACATCGAGAGAGATCTTCTCG -CCAACATCGAGAGAGATCTAGACG -CCAACATCGAGAGAGATCGTAACG -CCAACATCGAGAGAGATCACTTCG -CCAACATCGAGAGAGATCTACGCA -CCAACATCGAGAGAGATCCTTGCA -CCAACATCGAGAGAGATCCGAACA -CCAACATCGAGAGAGATCCAGTCA -CCAACATCGAGAGAGATCGATCCA -CCAACATCGAGAGAGATCACGACA -CCAACATCGAGAGAGATCAGCTCA -CCAACATCGAGAGAGATCTCACGT -CCAACATCGAGAGAGATCCGTAGT -CCAACATCGAGAGAGATCGTCAGT -CCAACATCGAGAGAGATCGAAGGT -CCAACATCGAGAGAGATCAACCGT -CCAACATCGAGAGAGATCTTGTGC -CCAACATCGAGAGAGATCCTAAGC -CCAACATCGAGAGAGATCACTAGC -CCAACATCGAGAGAGATCAGATGC -CCAACATCGAGAGAGATCTGAAGG -CCAACATCGAGAGAGATCCAATGG -CCAACATCGAGAGAGATCATGAGG -CCAACATCGAGAGAGATCAATGGG -CCAACATCGAGAGAGATCTCCTGA -CCAACATCGAGAGAGATCTAGCGA -CCAACATCGAGAGAGATCCACAGA -CCAACATCGAGAGAGATCGCAAGA -CCAACATCGAGAGAGATCGGTTGA -CCAACATCGAGAGAGATCTCCGAT -CCAACATCGAGAGAGATCTGGCAT -CCAACATCGAGAGAGATCCGAGAT -CCAACATCGAGAGAGATCTACCAC -CCAACATCGAGAGAGATCCAGAAC -CCAACATCGAGAGAGATCGTCTAC -CCAACATCGAGAGAGATCACGTAC -CCAACATCGAGAGAGATCAGTGAC -CCAACATCGAGAGAGATCCTGTAG -CCAACATCGAGAGAGATCCCTAAG -CCAACATCGAGAGAGATCGTTCAG -CCAACATCGAGAGAGATCGCATAG -CCAACATCGAGAGAGATCGACAAG -CCAACATCGAGAGAGATCAAGCAG -CCAACATCGAGAGAGATCCGTCAA -CCAACATCGAGAGAGATCGCTGAA -CCAACATCGAGAGAGATCAGTACG -CCAACATCGAGAGAGATCATCCGA -CCAACATCGAGAGAGATCATGGGA -CCAACATCGAGAGAGATCGTGCAA -CCAACATCGAGAGAGATCGAGGAA -CCAACATCGAGAGAGATCCAGGTA -CCAACATCGAGAGAGATCGACTCT -CCAACATCGAGAGAGATCAGTCCT -CCAACATCGAGAGAGATCTAAGCC -CCAACATCGAGAGAGATCATAGCC -CCAACATCGAGAGAGATCTAACCG -CCAACATCGAGAGAGATCATGCCA -CCAACATCGAGACTTCTCGGAAAC -CCAACATCGAGACTTCTCAACACC -CCAACATCGAGACTTCTCATCGAG -CCAACATCGAGACTTCTCCTCCTT -CCAACATCGAGACTTCTCCCTGTT -CCAACATCGAGACTTCTCCGGTTT -CCAACATCGAGACTTCTCGTGGTT -CCAACATCGAGACTTCTCGCCTTT -CCAACATCGAGACTTCTCGGTCTT -CCAACATCGAGACTTCTCACGCTT -CCAACATCGAGACTTCTCAGCGTT -CCAACATCGAGACTTCTCTTCGTC -CCAACATCGAGACTTCTCTCTCTC -CCAACATCGAGACTTCTCTGGATC -CCAACATCGAGACTTCTCCACTTC -CCAACATCGAGACTTCTCGTACTC -CCAACATCGAGACTTCTCGATGTC -CCAACATCGAGACTTCTCACAGTC -CCAACATCGAGACTTCTCTTGCTG -CCAACATCGAGACTTCTCTCCATG -CCAACATCGAGACTTCTCTGTGTG -CCAACATCGAGACTTCTCCTAGTG -CCAACATCGAGACTTCTCCATCTG -CCAACATCGAGACTTCTCGAGTTG -CCAACATCGAGACTTCTCAGACTG -CCAACATCGAGACTTCTCTCGGTA -CCAACATCGAGACTTCTCTGCCTA -CCAACATCGAGACTTCTCCCACTA -CCAACATCGAGACTTCTCGGAGTA -CCAACATCGAGACTTCTCTCGTCT -CCAACATCGAGACTTCTCTGCACT -CCAACATCGAGACTTCTCCTGACT -CCAACATCGAGACTTCTCCAACCT -CCAACATCGAGACTTCTCGCTACT -CCAACATCGAGACTTCTCGGATCT -CCAACATCGAGACTTCTCAAGGCT -CCAACATCGAGACTTCTCTCAACC -CCAACATCGAGACTTCTCTGTTCC -CCAACATCGAGACTTCTCATTCCC -CCAACATCGAGACTTCTCTTCTCG -CCAACATCGAGACTTCTCTAGACG -CCAACATCGAGACTTCTCGTAACG -CCAACATCGAGACTTCTCACTTCG -CCAACATCGAGACTTCTCTACGCA -CCAACATCGAGACTTCTCCTTGCA -CCAACATCGAGACTTCTCCGAACA -CCAACATCGAGACTTCTCCAGTCA -CCAACATCGAGACTTCTCGATCCA -CCAACATCGAGACTTCTCACGACA -CCAACATCGAGACTTCTCAGCTCA -CCAACATCGAGACTTCTCTCACGT -CCAACATCGAGACTTCTCCGTAGT -CCAACATCGAGACTTCTCGTCAGT -CCAACATCGAGACTTCTCGAAGGT -CCAACATCGAGACTTCTCAACCGT -CCAACATCGAGACTTCTCTTGTGC -CCAACATCGAGACTTCTCCTAAGC -CCAACATCGAGACTTCTCACTAGC -CCAACATCGAGACTTCTCAGATGC -CCAACATCGAGACTTCTCTGAAGG -CCAACATCGAGACTTCTCCAATGG -CCAACATCGAGACTTCTCATGAGG -CCAACATCGAGACTTCTCAATGGG -CCAACATCGAGACTTCTCTCCTGA -CCAACATCGAGACTTCTCTAGCGA -CCAACATCGAGACTTCTCCACAGA -CCAACATCGAGACTTCTCGCAAGA -CCAACATCGAGACTTCTCGGTTGA -CCAACATCGAGACTTCTCTCCGAT -CCAACATCGAGACTTCTCTGGCAT -CCAACATCGAGACTTCTCCGAGAT -CCAACATCGAGACTTCTCTACCAC -CCAACATCGAGACTTCTCCAGAAC -CCAACATCGAGACTTCTCGTCTAC -CCAACATCGAGACTTCTCACGTAC -CCAACATCGAGACTTCTCAGTGAC -CCAACATCGAGACTTCTCCTGTAG -CCAACATCGAGACTTCTCCCTAAG -CCAACATCGAGACTTCTCGTTCAG -CCAACATCGAGACTTCTCGCATAG -CCAACATCGAGACTTCTCGACAAG -CCAACATCGAGACTTCTCAAGCAG -CCAACATCGAGACTTCTCCGTCAA -CCAACATCGAGACTTCTCGCTGAA -CCAACATCGAGACTTCTCAGTACG -CCAACATCGAGACTTCTCATCCGA -CCAACATCGAGACTTCTCATGGGA -CCAACATCGAGACTTCTCGTGCAA -CCAACATCGAGACTTCTCGAGGAA -CCAACATCGAGACTTCTCCAGGTA -CCAACATCGAGACTTCTCGACTCT -CCAACATCGAGACTTCTCAGTCCT -CCAACATCGAGACTTCTCTAAGCC -CCAACATCGAGACTTCTCATAGCC -CCAACATCGAGACTTCTCTAACCG -CCAACATCGAGACTTCTCATGCCA -CCAACATCGAGAGTTCCTGGAAAC -CCAACATCGAGAGTTCCTAACACC -CCAACATCGAGAGTTCCTATCGAG -CCAACATCGAGAGTTCCTCTCCTT -CCAACATCGAGAGTTCCTCCTGTT -CCAACATCGAGAGTTCCTCGGTTT -CCAACATCGAGAGTTCCTGTGGTT -CCAACATCGAGAGTTCCTGCCTTT -CCAACATCGAGAGTTCCTGGTCTT -CCAACATCGAGAGTTCCTACGCTT -CCAACATCGAGAGTTCCTAGCGTT -CCAACATCGAGAGTTCCTTTCGTC -CCAACATCGAGAGTTCCTTCTCTC -CCAACATCGAGAGTTCCTTGGATC -CCAACATCGAGAGTTCCTCACTTC -CCAACATCGAGAGTTCCTGTACTC -CCAACATCGAGAGTTCCTGATGTC -CCAACATCGAGAGTTCCTACAGTC -CCAACATCGAGAGTTCCTTTGCTG -CCAACATCGAGAGTTCCTTCCATG -CCAACATCGAGAGTTCCTTGTGTG -CCAACATCGAGAGTTCCTCTAGTG -CCAACATCGAGAGTTCCTCATCTG -CCAACATCGAGAGTTCCTGAGTTG -CCAACATCGAGAGTTCCTAGACTG -CCAACATCGAGAGTTCCTTCGGTA -CCAACATCGAGAGTTCCTTGCCTA -CCAACATCGAGAGTTCCTCCACTA -CCAACATCGAGAGTTCCTGGAGTA -CCAACATCGAGAGTTCCTTCGTCT -CCAACATCGAGAGTTCCTTGCACT -CCAACATCGAGAGTTCCTCTGACT -CCAACATCGAGAGTTCCTCAACCT -CCAACATCGAGAGTTCCTGCTACT -CCAACATCGAGAGTTCCTGGATCT -CCAACATCGAGAGTTCCTAAGGCT -CCAACATCGAGAGTTCCTTCAACC -CCAACATCGAGAGTTCCTTGTTCC -CCAACATCGAGAGTTCCTATTCCC -CCAACATCGAGAGTTCCTTTCTCG -CCAACATCGAGAGTTCCTTAGACG -CCAACATCGAGAGTTCCTGTAACG -CCAACATCGAGAGTTCCTACTTCG -CCAACATCGAGAGTTCCTTACGCA -CCAACATCGAGAGTTCCTCTTGCA -CCAACATCGAGAGTTCCTCGAACA -CCAACATCGAGAGTTCCTCAGTCA -CCAACATCGAGAGTTCCTGATCCA -CCAACATCGAGAGTTCCTACGACA -CCAACATCGAGAGTTCCTAGCTCA -CCAACATCGAGAGTTCCTTCACGT -CCAACATCGAGAGTTCCTCGTAGT -CCAACATCGAGAGTTCCTGTCAGT -CCAACATCGAGAGTTCCTGAAGGT -CCAACATCGAGAGTTCCTAACCGT -CCAACATCGAGAGTTCCTTTGTGC -CCAACATCGAGAGTTCCTCTAAGC -CCAACATCGAGAGTTCCTACTAGC -CCAACATCGAGAGTTCCTAGATGC -CCAACATCGAGAGTTCCTTGAAGG -CCAACATCGAGAGTTCCTCAATGG -CCAACATCGAGAGTTCCTATGAGG -CCAACATCGAGAGTTCCTAATGGG -CCAACATCGAGAGTTCCTTCCTGA -CCAACATCGAGAGTTCCTTAGCGA -CCAACATCGAGAGTTCCTCACAGA -CCAACATCGAGAGTTCCTGCAAGA -CCAACATCGAGAGTTCCTGGTTGA -CCAACATCGAGAGTTCCTTCCGAT -CCAACATCGAGAGTTCCTTGGCAT -CCAACATCGAGAGTTCCTCGAGAT -CCAACATCGAGAGTTCCTTACCAC -CCAACATCGAGAGTTCCTCAGAAC -CCAACATCGAGAGTTCCTGTCTAC -CCAACATCGAGAGTTCCTACGTAC -CCAACATCGAGAGTTCCTAGTGAC -CCAACATCGAGAGTTCCTCTGTAG -CCAACATCGAGAGTTCCTCCTAAG -CCAACATCGAGAGTTCCTGTTCAG -CCAACATCGAGAGTTCCTGCATAG -CCAACATCGAGAGTTCCTGACAAG -CCAACATCGAGAGTTCCTAAGCAG -CCAACATCGAGAGTTCCTCGTCAA -CCAACATCGAGAGTTCCTGCTGAA -CCAACATCGAGAGTTCCTAGTACG -CCAACATCGAGAGTTCCTATCCGA -CCAACATCGAGAGTTCCTATGGGA -CCAACATCGAGAGTTCCTGTGCAA -CCAACATCGAGAGTTCCTGAGGAA -CCAACATCGAGAGTTCCTCAGGTA -CCAACATCGAGAGTTCCTGACTCT -CCAACATCGAGAGTTCCTAGTCCT -CCAACATCGAGAGTTCCTTAAGCC -CCAACATCGAGAGTTCCTATAGCC -CCAACATCGAGAGTTCCTTAACCG -CCAACATCGAGAGTTCCTATGCCA -CCAACATCGAGATTTCGGGGAAAC -CCAACATCGAGATTTCGGAACACC -CCAACATCGAGATTTCGGATCGAG -CCAACATCGAGATTTCGGCTCCTT -CCAACATCGAGATTTCGGCCTGTT -CCAACATCGAGATTTCGGCGGTTT -CCAACATCGAGATTTCGGGTGGTT -CCAACATCGAGATTTCGGGCCTTT -CCAACATCGAGATTTCGGGGTCTT -CCAACATCGAGATTTCGGACGCTT -CCAACATCGAGATTTCGGAGCGTT -CCAACATCGAGATTTCGGTTCGTC -CCAACATCGAGATTTCGGTCTCTC -CCAACATCGAGATTTCGGTGGATC -CCAACATCGAGATTTCGGCACTTC -CCAACATCGAGATTTCGGGTACTC -CCAACATCGAGATTTCGGGATGTC -CCAACATCGAGATTTCGGACAGTC -CCAACATCGAGATTTCGGTTGCTG -CCAACATCGAGATTTCGGTCCATG -CCAACATCGAGATTTCGGTGTGTG -CCAACATCGAGATTTCGGCTAGTG -CCAACATCGAGATTTCGGCATCTG -CCAACATCGAGATTTCGGGAGTTG -CCAACATCGAGATTTCGGAGACTG -CCAACATCGAGATTTCGGTCGGTA -CCAACATCGAGATTTCGGTGCCTA -CCAACATCGAGATTTCGGCCACTA -CCAACATCGAGATTTCGGGGAGTA -CCAACATCGAGATTTCGGTCGTCT -CCAACATCGAGATTTCGGTGCACT -CCAACATCGAGATTTCGGCTGACT -CCAACATCGAGATTTCGGCAACCT -CCAACATCGAGATTTCGGGCTACT -CCAACATCGAGATTTCGGGGATCT -CCAACATCGAGATTTCGGAAGGCT -CCAACATCGAGATTTCGGTCAACC -CCAACATCGAGATTTCGGTGTTCC -CCAACATCGAGATTTCGGATTCCC -CCAACATCGAGATTTCGGTTCTCG -CCAACATCGAGATTTCGGTAGACG -CCAACATCGAGATTTCGGGTAACG -CCAACATCGAGATTTCGGACTTCG -CCAACATCGAGATTTCGGTACGCA -CCAACATCGAGATTTCGGCTTGCA -CCAACATCGAGATTTCGGCGAACA -CCAACATCGAGATTTCGGCAGTCA -CCAACATCGAGATTTCGGGATCCA -CCAACATCGAGATTTCGGACGACA -CCAACATCGAGATTTCGGAGCTCA -CCAACATCGAGATTTCGGTCACGT -CCAACATCGAGATTTCGGCGTAGT -CCAACATCGAGATTTCGGGTCAGT -CCAACATCGAGATTTCGGGAAGGT -CCAACATCGAGATTTCGGAACCGT -CCAACATCGAGATTTCGGTTGTGC -CCAACATCGAGATTTCGGCTAAGC -CCAACATCGAGATTTCGGACTAGC -CCAACATCGAGATTTCGGAGATGC -CCAACATCGAGATTTCGGTGAAGG -CCAACATCGAGATTTCGGCAATGG -CCAACATCGAGATTTCGGATGAGG -CCAACATCGAGATTTCGGAATGGG -CCAACATCGAGATTTCGGTCCTGA -CCAACATCGAGATTTCGGTAGCGA -CCAACATCGAGATTTCGGCACAGA -CCAACATCGAGATTTCGGGCAAGA -CCAACATCGAGATTTCGGGGTTGA -CCAACATCGAGATTTCGGTCCGAT -CCAACATCGAGATTTCGGTGGCAT -CCAACATCGAGATTTCGGCGAGAT -CCAACATCGAGATTTCGGTACCAC -CCAACATCGAGATTTCGGCAGAAC -CCAACATCGAGATTTCGGGTCTAC -CCAACATCGAGATTTCGGACGTAC -CCAACATCGAGATTTCGGAGTGAC -CCAACATCGAGATTTCGGCTGTAG -CCAACATCGAGATTTCGGCCTAAG -CCAACATCGAGATTTCGGGTTCAG -CCAACATCGAGATTTCGGGCATAG -CCAACATCGAGATTTCGGGACAAG -CCAACATCGAGATTTCGGAAGCAG -CCAACATCGAGATTTCGGCGTCAA -CCAACATCGAGATTTCGGGCTGAA -CCAACATCGAGATTTCGGAGTACG -CCAACATCGAGATTTCGGATCCGA -CCAACATCGAGATTTCGGATGGGA -CCAACATCGAGATTTCGGGTGCAA -CCAACATCGAGATTTCGGGAGGAA -CCAACATCGAGATTTCGGCAGGTA -CCAACATCGAGATTTCGGGACTCT -CCAACATCGAGATTTCGGAGTCCT -CCAACATCGAGATTTCGGTAAGCC -CCAACATCGAGATTTCGGATAGCC -CCAACATCGAGATTTCGGTAACCG -CCAACATCGAGATTTCGGATGCCA -CCAACATCGAGAGTTGTGGGAAAC -CCAACATCGAGAGTTGTGAACACC -CCAACATCGAGAGTTGTGATCGAG -CCAACATCGAGAGTTGTGCTCCTT -CCAACATCGAGAGTTGTGCCTGTT -CCAACATCGAGAGTTGTGCGGTTT -CCAACATCGAGAGTTGTGGTGGTT -CCAACATCGAGAGTTGTGGCCTTT -CCAACATCGAGAGTTGTGGGTCTT -CCAACATCGAGAGTTGTGACGCTT -CCAACATCGAGAGTTGTGAGCGTT -CCAACATCGAGAGTTGTGTTCGTC -CCAACATCGAGAGTTGTGTCTCTC -CCAACATCGAGAGTTGTGTGGATC -CCAACATCGAGAGTTGTGCACTTC -CCAACATCGAGAGTTGTGGTACTC -CCAACATCGAGAGTTGTGGATGTC -CCAACATCGAGAGTTGTGACAGTC -CCAACATCGAGAGTTGTGTTGCTG -CCAACATCGAGAGTTGTGTCCATG -CCAACATCGAGAGTTGTGTGTGTG -CCAACATCGAGAGTTGTGCTAGTG -CCAACATCGAGAGTTGTGCATCTG -CCAACATCGAGAGTTGTGGAGTTG -CCAACATCGAGAGTTGTGAGACTG -CCAACATCGAGAGTTGTGTCGGTA -CCAACATCGAGAGTTGTGTGCCTA -CCAACATCGAGAGTTGTGCCACTA -CCAACATCGAGAGTTGTGGGAGTA -CCAACATCGAGAGTTGTGTCGTCT -CCAACATCGAGAGTTGTGTGCACT -CCAACATCGAGAGTTGTGCTGACT -CCAACATCGAGAGTTGTGCAACCT -CCAACATCGAGAGTTGTGGCTACT -CCAACATCGAGAGTTGTGGGATCT -CCAACATCGAGAGTTGTGAAGGCT -CCAACATCGAGAGTTGTGTCAACC -CCAACATCGAGAGTTGTGTGTTCC -CCAACATCGAGAGTTGTGATTCCC -CCAACATCGAGAGTTGTGTTCTCG -CCAACATCGAGAGTTGTGTAGACG -CCAACATCGAGAGTTGTGGTAACG -CCAACATCGAGAGTTGTGACTTCG -CCAACATCGAGAGTTGTGTACGCA -CCAACATCGAGAGTTGTGCTTGCA -CCAACATCGAGAGTTGTGCGAACA -CCAACATCGAGAGTTGTGCAGTCA -CCAACATCGAGAGTTGTGGATCCA -CCAACATCGAGAGTTGTGACGACA -CCAACATCGAGAGTTGTGAGCTCA -CCAACATCGAGAGTTGTGTCACGT -CCAACATCGAGAGTTGTGCGTAGT -CCAACATCGAGAGTTGTGGTCAGT -CCAACATCGAGAGTTGTGGAAGGT -CCAACATCGAGAGTTGTGAACCGT -CCAACATCGAGAGTTGTGTTGTGC -CCAACATCGAGAGTTGTGCTAAGC -CCAACATCGAGAGTTGTGACTAGC -CCAACATCGAGAGTTGTGAGATGC -CCAACATCGAGAGTTGTGTGAAGG -CCAACATCGAGAGTTGTGCAATGG -CCAACATCGAGAGTTGTGATGAGG -CCAACATCGAGAGTTGTGAATGGG -CCAACATCGAGAGTTGTGTCCTGA -CCAACATCGAGAGTTGTGTAGCGA -CCAACATCGAGAGTTGTGCACAGA -CCAACATCGAGAGTTGTGGCAAGA -CCAACATCGAGAGTTGTGGGTTGA -CCAACATCGAGAGTTGTGTCCGAT -CCAACATCGAGAGTTGTGTGGCAT -CCAACATCGAGAGTTGTGCGAGAT -CCAACATCGAGAGTTGTGTACCAC -CCAACATCGAGAGTTGTGCAGAAC -CCAACATCGAGAGTTGTGGTCTAC -CCAACATCGAGAGTTGTGACGTAC -CCAACATCGAGAGTTGTGAGTGAC -CCAACATCGAGAGTTGTGCTGTAG -CCAACATCGAGAGTTGTGCCTAAG -CCAACATCGAGAGTTGTGGTTCAG -CCAACATCGAGAGTTGTGGCATAG -CCAACATCGAGAGTTGTGGACAAG -CCAACATCGAGAGTTGTGAAGCAG -CCAACATCGAGAGTTGTGCGTCAA -CCAACATCGAGAGTTGTGGCTGAA -CCAACATCGAGAGTTGTGAGTACG -CCAACATCGAGAGTTGTGATCCGA -CCAACATCGAGAGTTGTGATGGGA -CCAACATCGAGAGTTGTGGTGCAA -CCAACATCGAGAGTTGTGGAGGAA -CCAACATCGAGAGTTGTGCAGGTA -CCAACATCGAGAGTTGTGGACTCT -CCAACATCGAGAGTTGTGAGTCCT -CCAACATCGAGAGTTGTGTAAGCC -CCAACATCGAGAGTTGTGATAGCC -CCAACATCGAGAGTTGTGTAACCG -CCAACATCGAGAGTTGTGATGCCA -CCAACATCGAGATTTGCCGGAAAC -CCAACATCGAGATTTGCCAACACC -CCAACATCGAGATTTGCCATCGAG -CCAACATCGAGATTTGCCCTCCTT -CCAACATCGAGATTTGCCCCTGTT -CCAACATCGAGATTTGCCCGGTTT -CCAACATCGAGATTTGCCGTGGTT -CCAACATCGAGATTTGCCGCCTTT -CCAACATCGAGATTTGCCGGTCTT -CCAACATCGAGATTTGCCACGCTT -CCAACATCGAGATTTGCCAGCGTT -CCAACATCGAGATTTGCCTTCGTC -CCAACATCGAGATTTGCCTCTCTC -CCAACATCGAGATTTGCCTGGATC -CCAACATCGAGATTTGCCCACTTC -CCAACATCGAGATTTGCCGTACTC -CCAACATCGAGATTTGCCGATGTC -CCAACATCGAGATTTGCCACAGTC -CCAACATCGAGATTTGCCTTGCTG -CCAACATCGAGATTTGCCTCCATG -CCAACATCGAGATTTGCCTGTGTG -CCAACATCGAGATTTGCCCTAGTG -CCAACATCGAGATTTGCCCATCTG -CCAACATCGAGATTTGCCGAGTTG -CCAACATCGAGATTTGCCAGACTG -CCAACATCGAGATTTGCCTCGGTA -CCAACATCGAGATTTGCCTGCCTA -CCAACATCGAGATTTGCCCCACTA -CCAACATCGAGATTTGCCGGAGTA -CCAACATCGAGATTTGCCTCGTCT -CCAACATCGAGATTTGCCTGCACT -CCAACATCGAGATTTGCCCTGACT -CCAACATCGAGATTTGCCCAACCT -CCAACATCGAGATTTGCCGCTACT -CCAACATCGAGATTTGCCGGATCT -CCAACATCGAGATTTGCCAAGGCT -CCAACATCGAGATTTGCCTCAACC -CCAACATCGAGATTTGCCTGTTCC -CCAACATCGAGATTTGCCATTCCC -CCAACATCGAGATTTGCCTTCTCG -CCAACATCGAGATTTGCCTAGACG -CCAACATCGAGATTTGCCGTAACG -CCAACATCGAGATTTGCCACTTCG -CCAACATCGAGATTTGCCTACGCA -CCAACATCGAGATTTGCCCTTGCA -CCAACATCGAGATTTGCCCGAACA -CCAACATCGAGATTTGCCCAGTCA -CCAACATCGAGATTTGCCGATCCA -CCAACATCGAGATTTGCCACGACA -CCAACATCGAGATTTGCCAGCTCA -CCAACATCGAGATTTGCCTCACGT -CCAACATCGAGATTTGCCCGTAGT -CCAACATCGAGATTTGCCGTCAGT -CCAACATCGAGATTTGCCGAAGGT -CCAACATCGAGATTTGCCAACCGT -CCAACATCGAGATTTGCCTTGTGC -CCAACATCGAGATTTGCCCTAAGC -CCAACATCGAGATTTGCCACTAGC -CCAACATCGAGATTTGCCAGATGC -CCAACATCGAGATTTGCCTGAAGG -CCAACATCGAGATTTGCCCAATGG -CCAACATCGAGATTTGCCATGAGG -CCAACATCGAGATTTGCCAATGGG -CCAACATCGAGATTTGCCTCCTGA -CCAACATCGAGATTTGCCTAGCGA -CCAACATCGAGATTTGCCCACAGA -CCAACATCGAGATTTGCCGCAAGA -CCAACATCGAGATTTGCCGGTTGA -CCAACATCGAGATTTGCCTCCGAT -CCAACATCGAGATTTGCCTGGCAT -CCAACATCGAGATTTGCCCGAGAT -CCAACATCGAGATTTGCCTACCAC -CCAACATCGAGATTTGCCCAGAAC -CCAACATCGAGATTTGCCGTCTAC -CCAACATCGAGATTTGCCACGTAC -CCAACATCGAGATTTGCCAGTGAC -CCAACATCGAGATTTGCCCTGTAG -CCAACATCGAGATTTGCCCCTAAG -CCAACATCGAGATTTGCCGTTCAG -CCAACATCGAGATTTGCCGCATAG -CCAACATCGAGATTTGCCGACAAG -CCAACATCGAGATTTGCCAAGCAG -CCAACATCGAGATTTGCCCGTCAA -CCAACATCGAGATTTGCCGCTGAA -CCAACATCGAGATTTGCCAGTACG -CCAACATCGAGATTTGCCATCCGA -CCAACATCGAGATTTGCCATGGGA -CCAACATCGAGATTTGCCGTGCAA -CCAACATCGAGATTTGCCGAGGAA -CCAACATCGAGATTTGCCCAGGTA -CCAACATCGAGATTTGCCGACTCT -CCAACATCGAGATTTGCCAGTCCT -CCAACATCGAGATTTGCCTAAGCC -CCAACATCGAGATTTGCCATAGCC -CCAACATCGAGATTTGCCTAACCG -CCAACATCGAGATTTGCCATGCCA -CCAACATCGAGACTTGGTGGAAAC -CCAACATCGAGACTTGGTAACACC -CCAACATCGAGACTTGGTATCGAG -CCAACATCGAGACTTGGTCTCCTT -CCAACATCGAGACTTGGTCCTGTT -CCAACATCGAGACTTGGTCGGTTT -CCAACATCGAGACTTGGTGTGGTT -CCAACATCGAGACTTGGTGCCTTT -CCAACATCGAGACTTGGTGGTCTT -CCAACATCGAGACTTGGTACGCTT -CCAACATCGAGACTTGGTAGCGTT -CCAACATCGAGACTTGGTTTCGTC -CCAACATCGAGACTTGGTTCTCTC -CCAACATCGAGACTTGGTTGGATC -CCAACATCGAGACTTGGTCACTTC -CCAACATCGAGACTTGGTGTACTC -CCAACATCGAGACTTGGTGATGTC -CCAACATCGAGACTTGGTACAGTC -CCAACATCGAGACTTGGTTTGCTG -CCAACATCGAGACTTGGTTCCATG -CCAACATCGAGACTTGGTTGTGTG -CCAACATCGAGACTTGGTCTAGTG -CCAACATCGAGACTTGGTCATCTG -CCAACATCGAGACTTGGTGAGTTG -CCAACATCGAGACTTGGTAGACTG -CCAACATCGAGACTTGGTTCGGTA -CCAACATCGAGACTTGGTTGCCTA -CCAACATCGAGACTTGGTCCACTA -CCAACATCGAGACTTGGTGGAGTA -CCAACATCGAGACTTGGTTCGTCT -CCAACATCGAGACTTGGTTGCACT -CCAACATCGAGACTTGGTCTGACT -CCAACATCGAGACTTGGTCAACCT -CCAACATCGAGACTTGGTGCTACT -CCAACATCGAGACTTGGTGGATCT -CCAACATCGAGACTTGGTAAGGCT -CCAACATCGAGACTTGGTTCAACC -CCAACATCGAGACTTGGTTGTTCC -CCAACATCGAGACTTGGTATTCCC -CCAACATCGAGACTTGGTTTCTCG -CCAACATCGAGACTTGGTTAGACG -CCAACATCGAGACTTGGTGTAACG -CCAACATCGAGACTTGGTACTTCG -CCAACATCGAGACTTGGTTACGCA -CCAACATCGAGACTTGGTCTTGCA -CCAACATCGAGACTTGGTCGAACA -CCAACATCGAGACTTGGTCAGTCA -CCAACATCGAGACTTGGTGATCCA -CCAACATCGAGACTTGGTACGACA -CCAACATCGAGACTTGGTAGCTCA -CCAACATCGAGACTTGGTTCACGT -CCAACATCGAGACTTGGTCGTAGT -CCAACATCGAGACTTGGTGTCAGT -CCAACATCGAGACTTGGTGAAGGT -CCAACATCGAGACTTGGTAACCGT -CCAACATCGAGACTTGGTTTGTGC -CCAACATCGAGACTTGGTCTAAGC -CCAACATCGAGACTTGGTACTAGC -CCAACATCGAGACTTGGTAGATGC -CCAACATCGAGACTTGGTTGAAGG -CCAACATCGAGACTTGGTCAATGG -CCAACATCGAGACTTGGTATGAGG -CCAACATCGAGACTTGGTAATGGG -CCAACATCGAGACTTGGTTCCTGA -CCAACATCGAGACTTGGTTAGCGA -CCAACATCGAGACTTGGTCACAGA -CCAACATCGAGACTTGGTGCAAGA -CCAACATCGAGACTTGGTGGTTGA -CCAACATCGAGACTTGGTTCCGAT -CCAACATCGAGACTTGGTTGGCAT -CCAACATCGAGACTTGGTCGAGAT -CCAACATCGAGACTTGGTTACCAC -CCAACATCGAGACTTGGTCAGAAC -CCAACATCGAGACTTGGTGTCTAC -CCAACATCGAGACTTGGTACGTAC -CCAACATCGAGACTTGGTAGTGAC -CCAACATCGAGACTTGGTCTGTAG -CCAACATCGAGACTTGGTCCTAAG -CCAACATCGAGACTTGGTGTTCAG -CCAACATCGAGACTTGGTGCATAG -CCAACATCGAGACTTGGTGACAAG -CCAACATCGAGACTTGGTAAGCAG -CCAACATCGAGACTTGGTCGTCAA -CCAACATCGAGACTTGGTGCTGAA -CCAACATCGAGACTTGGTAGTACG -CCAACATCGAGACTTGGTATCCGA -CCAACATCGAGACTTGGTATGGGA -CCAACATCGAGACTTGGTGTGCAA -CCAACATCGAGACTTGGTGAGGAA -CCAACATCGAGACTTGGTCAGGTA -CCAACATCGAGACTTGGTGACTCT -CCAACATCGAGACTTGGTAGTCCT -CCAACATCGAGACTTGGTTAAGCC -CCAACATCGAGACTTGGTATAGCC -CCAACATCGAGACTTGGTTAACCG -CCAACATCGAGACTTGGTATGCCA -CCAACATCGAGACTTACGGGAAAC -CCAACATCGAGACTTACGAACACC -CCAACATCGAGACTTACGATCGAG -CCAACATCGAGACTTACGCTCCTT -CCAACATCGAGACTTACGCCTGTT -CCAACATCGAGACTTACGCGGTTT -CCAACATCGAGACTTACGGTGGTT -CCAACATCGAGACTTACGGCCTTT -CCAACATCGAGACTTACGGGTCTT -CCAACATCGAGACTTACGACGCTT -CCAACATCGAGACTTACGAGCGTT -CCAACATCGAGACTTACGTTCGTC -CCAACATCGAGACTTACGTCTCTC -CCAACATCGAGACTTACGTGGATC -CCAACATCGAGACTTACGCACTTC -CCAACATCGAGACTTACGGTACTC -CCAACATCGAGACTTACGGATGTC -CCAACATCGAGACTTACGACAGTC -CCAACATCGAGACTTACGTTGCTG -CCAACATCGAGACTTACGTCCATG -CCAACATCGAGACTTACGTGTGTG -CCAACATCGAGACTTACGCTAGTG -CCAACATCGAGACTTACGCATCTG -CCAACATCGAGACTTACGGAGTTG -CCAACATCGAGACTTACGAGACTG -CCAACATCGAGACTTACGTCGGTA -CCAACATCGAGACTTACGTGCCTA -CCAACATCGAGACTTACGCCACTA -CCAACATCGAGACTTACGGGAGTA -CCAACATCGAGACTTACGTCGTCT -CCAACATCGAGACTTACGTGCACT -CCAACATCGAGACTTACGCTGACT -CCAACATCGAGACTTACGCAACCT -CCAACATCGAGACTTACGGCTACT -CCAACATCGAGACTTACGGGATCT -CCAACATCGAGACTTACGAAGGCT -CCAACATCGAGACTTACGTCAACC -CCAACATCGAGACTTACGTGTTCC -CCAACATCGAGACTTACGATTCCC -CCAACATCGAGACTTACGTTCTCG -CCAACATCGAGACTTACGTAGACG -CCAACATCGAGACTTACGGTAACG -CCAACATCGAGACTTACGACTTCG -CCAACATCGAGACTTACGTACGCA -CCAACATCGAGACTTACGCTTGCA -CCAACATCGAGACTTACGCGAACA -CCAACATCGAGACTTACGCAGTCA -CCAACATCGAGACTTACGGATCCA -CCAACATCGAGACTTACGACGACA -CCAACATCGAGACTTACGAGCTCA -CCAACATCGAGACTTACGTCACGT -CCAACATCGAGACTTACGCGTAGT -CCAACATCGAGACTTACGGTCAGT -CCAACATCGAGACTTACGGAAGGT -CCAACATCGAGACTTACGAACCGT -CCAACATCGAGACTTACGTTGTGC -CCAACATCGAGACTTACGCTAAGC -CCAACATCGAGACTTACGACTAGC -CCAACATCGAGACTTACGAGATGC -CCAACATCGAGACTTACGTGAAGG -CCAACATCGAGACTTACGCAATGG -CCAACATCGAGACTTACGATGAGG -CCAACATCGAGACTTACGAATGGG -CCAACATCGAGACTTACGTCCTGA -CCAACATCGAGACTTACGTAGCGA -CCAACATCGAGACTTACGCACAGA -CCAACATCGAGACTTACGGCAAGA -CCAACATCGAGACTTACGGGTTGA -CCAACATCGAGACTTACGTCCGAT -CCAACATCGAGACTTACGTGGCAT -CCAACATCGAGACTTACGCGAGAT -CCAACATCGAGACTTACGTACCAC -CCAACATCGAGACTTACGCAGAAC -CCAACATCGAGACTTACGGTCTAC -CCAACATCGAGACTTACGACGTAC -CCAACATCGAGACTTACGAGTGAC -CCAACATCGAGACTTACGCTGTAG -CCAACATCGAGACTTACGCCTAAG -CCAACATCGAGACTTACGGTTCAG -CCAACATCGAGACTTACGGCATAG -CCAACATCGAGACTTACGGACAAG -CCAACATCGAGACTTACGAAGCAG -CCAACATCGAGACTTACGCGTCAA -CCAACATCGAGACTTACGGCTGAA -CCAACATCGAGACTTACGAGTACG -CCAACATCGAGACTTACGATCCGA -CCAACATCGAGACTTACGATGGGA -CCAACATCGAGACTTACGGTGCAA -CCAACATCGAGACTTACGGAGGAA -CCAACATCGAGACTTACGCAGGTA -CCAACATCGAGACTTACGGACTCT -CCAACATCGAGACTTACGAGTCCT -CCAACATCGAGACTTACGTAAGCC -CCAACATCGAGACTTACGATAGCC -CCAACATCGAGACTTACGTAACCG -CCAACATCGAGACTTACGATGCCA -CCAACATCGAGAGTTAGCGGAAAC -CCAACATCGAGAGTTAGCAACACC -CCAACATCGAGAGTTAGCATCGAG -CCAACATCGAGAGTTAGCCTCCTT -CCAACATCGAGAGTTAGCCCTGTT -CCAACATCGAGAGTTAGCCGGTTT -CCAACATCGAGAGTTAGCGTGGTT -CCAACATCGAGAGTTAGCGCCTTT -CCAACATCGAGAGTTAGCGGTCTT -CCAACATCGAGAGTTAGCACGCTT -CCAACATCGAGAGTTAGCAGCGTT -CCAACATCGAGAGTTAGCTTCGTC -CCAACATCGAGAGTTAGCTCTCTC -CCAACATCGAGAGTTAGCTGGATC -CCAACATCGAGAGTTAGCCACTTC -CCAACATCGAGAGTTAGCGTACTC -CCAACATCGAGAGTTAGCGATGTC -CCAACATCGAGAGTTAGCACAGTC -CCAACATCGAGAGTTAGCTTGCTG -CCAACATCGAGAGTTAGCTCCATG -CCAACATCGAGAGTTAGCTGTGTG -CCAACATCGAGAGTTAGCCTAGTG -CCAACATCGAGAGTTAGCCATCTG -CCAACATCGAGAGTTAGCGAGTTG -CCAACATCGAGAGTTAGCAGACTG -CCAACATCGAGAGTTAGCTCGGTA -CCAACATCGAGAGTTAGCTGCCTA -CCAACATCGAGAGTTAGCCCACTA -CCAACATCGAGAGTTAGCGGAGTA -CCAACATCGAGAGTTAGCTCGTCT -CCAACATCGAGAGTTAGCTGCACT -CCAACATCGAGAGTTAGCCTGACT -CCAACATCGAGAGTTAGCCAACCT -CCAACATCGAGAGTTAGCGCTACT -CCAACATCGAGAGTTAGCGGATCT -CCAACATCGAGAGTTAGCAAGGCT -CCAACATCGAGAGTTAGCTCAACC -CCAACATCGAGAGTTAGCTGTTCC -CCAACATCGAGAGTTAGCATTCCC -CCAACATCGAGAGTTAGCTTCTCG -CCAACATCGAGAGTTAGCTAGACG -CCAACATCGAGAGTTAGCGTAACG -CCAACATCGAGAGTTAGCACTTCG -CCAACATCGAGAGTTAGCTACGCA -CCAACATCGAGAGTTAGCCTTGCA -CCAACATCGAGAGTTAGCCGAACA -CCAACATCGAGAGTTAGCCAGTCA -CCAACATCGAGAGTTAGCGATCCA -CCAACATCGAGAGTTAGCACGACA -CCAACATCGAGAGTTAGCAGCTCA -CCAACATCGAGAGTTAGCTCACGT -CCAACATCGAGAGTTAGCCGTAGT -CCAACATCGAGAGTTAGCGTCAGT -CCAACATCGAGAGTTAGCGAAGGT -CCAACATCGAGAGTTAGCAACCGT -CCAACATCGAGAGTTAGCTTGTGC -CCAACATCGAGAGTTAGCCTAAGC -CCAACATCGAGAGTTAGCACTAGC -CCAACATCGAGAGTTAGCAGATGC -CCAACATCGAGAGTTAGCTGAAGG -CCAACATCGAGAGTTAGCCAATGG -CCAACATCGAGAGTTAGCATGAGG -CCAACATCGAGAGTTAGCAATGGG -CCAACATCGAGAGTTAGCTCCTGA -CCAACATCGAGAGTTAGCTAGCGA -CCAACATCGAGAGTTAGCCACAGA -CCAACATCGAGAGTTAGCGCAAGA -CCAACATCGAGAGTTAGCGGTTGA -CCAACATCGAGAGTTAGCTCCGAT -CCAACATCGAGAGTTAGCTGGCAT -CCAACATCGAGAGTTAGCCGAGAT -CCAACATCGAGAGTTAGCTACCAC -CCAACATCGAGAGTTAGCCAGAAC -CCAACATCGAGAGTTAGCGTCTAC -CCAACATCGAGAGTTAGCACGTAC -CCAACATCGAGAGTTAGCAGTGAC -CCAACATCGAGAGTTAGCCTGTAG -CCAACATCGAGAGTTAGCCCTAAG -CCAACATCGAGAGTTAGCGTTCAG -CCAACATCGAGAGTTAGCGCATAG -CCAACATCGAGAGTTAGCGACAAG -CCAACATCGAGAGTTAGCAAGCAG -CCAACATCGAGAGTTAGCCGTCAA -CCAACATCGAGAGTTAGCGCTGAA -CCAACATCGAGAGTTAGCAGTACG -CCAACATCGAGAGTTAGCATCCGA -CCAACATCGAGAGTTAGCATGGGA -CCAACATCGAGAGTTAGCGTGCAA -CCAACATCGAGAGTTAGCGAGGAA -CCAACATCGAGAGTTAGCCAGGTA -CCAACATCGAGAGTTAGCGACTCT -CCAACATCGAGAGTTAGCAGTCCT -CCAACATCGAGAGTTAGCTAAGCC -CCAACATCGAGAGTTAGCATAGCC -CCAACATCGAGAGTTAGCTAACCG -CCAACATCGAGAGTTAGCATGCCA -CCAACATCGAGAGTCTTCGGAAAC -CCAACATCGAGAGTCTTCAACACC -CCAACATCGAGAGTCTTCATCGAG -CCAACATCGAGAGTCTTCCTCCTT -CCAACATCGAGAGTCTTCCCTGTT -CCAACATCGAGAGTCTTCCGGTTT -CCAACATCGAGAGTCTTCGTGGTT -CCAACATCGAGAGTCTTCGCCTTT -CCAACATCGAGAGTCTTCGGTCTT -CCAACATCGAGAGTCTTCACGCTT -CCAACATCGAGAGTCTTCAGCGTT -CCAACATCGAGAGTCTTCTTCGTC -CCAACATCGAGAGTCTTCTCTCTC -CCAACATCGAGAGTCTTCTGGATC -CCAACATCGAGAGTCTTCCACTTC -CCAACATCGAGAGTCTTCGTACTC -CCAACATCGAGAGTCTTCGATGTC -CCAACATCGAGAGTCTTCACAGTC -CCAACATCGAGAGTCTTCTTGCTG -CCAACATCGAGAGTCTTCTCCATG -CCAACATCGAGAGTCTTCTGTGTG -CCAACATCGAGAGTCTTCCTAGTG -CCAACATCGAGAGTCTTCCATCTG -CCAACATCGAGAGTCTTCGAGTTG -CCAACATCGAGAGTCTTCAGACTG -CCAACATCGAGAGTCTTCTCGGTA -CCAACATCGAGAGTCTTCTGCCTA -CCAACATCGAGAGTCTTCCCACTA -CCAACATCGAGAGTCTTCGGAGTA -CCAACATCGAGAGTCTTCTCGTCT -CCAACATCGAGAGTCTTCTGCACT -CCAACATCGAGAGTCTTCCTGACT -CCAACATCGAGAGTCTTCCAACCT -CCAACATCGAGAGTCTTCGCTACT -CCAACATCGAGAGTCTTCGGATCT -CCAACATCGAGAGTCTTCAAGGCT -CCAACATCGAGAGTCTTCTCAACC -CCAACATCGAGAGTCTTCTGTTCC -CCAACATCGAGAGTCTTCATTCCC -CCAACATCGAGAGTCTTCTTCTCG -CCAACATCGAGAGTCTTCTAGACG -CCAACATCGAGAGTCTTCGTAACG -CCAACATCGAGAGTCTTCACTTCG -CCAACATCGAGAGTCTTCTACGCA -CCAACATCGAGAGTCTTCCTTGCA -CCAACATCGAGAGTCTTCCGAACA -CCAACATCGAGAGTCTTCCAGTCA -CCAACATCGAGAGTCTTCGATCCA -CCAACATCGAGAGTCTTCACGACA -CCAACATCGAGAGTCTTCAGCTCA -CCAACATCGAGAGTCTTCTCACGT -CCAACATCGAGAGTCTTCCGTAGT -CCAACATCGAGAGTCTTCGTCAGT -CCAACATCGAGAGTCTTCGAAGGT -CCAACATCGAGAGTCTTCAACCGT -CCAACATCGAGAGTCTTCTTGTGC -CCAACATCGAGAGTCTTCCTAAGC -CCAACATCGAGAGTCTTCACTAGC -CCAACATCGAGAGTCTTCAGATGC -CCAACATCGAGAGTCTTCTGAAGG -CCAACATCGAGAGTCTTCCAATGG -CCAACATCGAGAGTCTTCATGAGG -CCAACATCGAGAGTCTTCAATGGG -CCAACATCGAGAGTCTTCTCCTGA -CCAACATCGAGAGTCTTCTAGCGA -CCAACATCGAGAGTCTTCCACAGA -CCAACATCGAGAGTCTTCGCAAGA -CCAACATCGAGAGTCTTCGGTTGA -CCAACATCGAGAGTCTTCTCCGAT -CCAACATCGAGAGTCTTCTGGCAT -CCAACATCGAGAGTCTTCCGAGAT -CCAACATCGAGAGTCTTCTACCAC -CCAACATCGAGAGTCTTCCAGAAC -CCAACATCGAGAGTCTTCGTCTAC -CCAACATCGAGAGTCTTCACGTAC -CCAACATCGAGAGTCTTCAGTGAC -CCAACATCGAGAGTCTTCCTGTAG -CCAACATCGAGAGTCTTCCCTAAG -CCAACATCGAGAGTCTTCGTTCAG -CCAACATCGAGAGTCTTCGCATAG -CCAACATCGAGAGTCTTCGACAAG -CCAACATCGAGAGTCTTCAAGCAG -CCAACATCGAGAGTCTTCCGTCAA -CCAACATCGAGAGTCTTCGCTGAA -CCAACATCGAGAGTCTTCAGTACG -CCAACATCGAGAGTCTTCATCCGA -CCAACATCGAGAGTCTTCATGGGA -CCAACATCGAGAGTCTTCGTGCAA -CCAACATCGAGAGTCTTCGAGGAA -CCAACATCGAGAGTCTTCCAGGTA -CCAACATCGAGAGTCTTCGACTCT -CCAACATCGAGAGTCTTCAGTCCT -CCAACATCGAGAGTCTTCTAAGCC -CCAACATCGAGAGTCTTCATAGCC -CCAACATCGAGAGTCTTCTAACCG -CCAACATCGAGAGTCTTCATGCCA -CCAACATCGAGACTCTCTGGAAAC -CCAACATCGAGACTCTCTAACACC -CCAACATCGAGACTCTCTATCGAG -CCAACATCGAGACTCTCTCTCCTT -CCAACATCGAGACTCTCTCCTGTT -CCAACATCGAGACTCTCTCGGTTT -CCAACATCGAGACTCTCTGTGGTT -CCAACATCGAGACTCTCTGCCTTT -CCAACATCGAGACTCTCTGGTCTT -CCAACATCGAGACTCTCTACGCTT -CCAACATCGAGACTCTCTAGCGTT -CCAACATCGAGACTCTCTTTCGTC -CCAACATCGAGACTCTCTTCTCTC -CCAACATCGAGACTCTCTTGGATC -CCAACATCGAGACTCTCTCACTTC -CCAACATCGAGACTCTCTGTACTC -CCAACATCGAGACTCTCTGATGTC -CCAACATCGAGACTCTCTACAGTC -CCAACATCGAGACTCTCTTTGCTG -CCAACATCGAGACTCTCTTCCATG -CCAACATCGAGACTCTCTTGTGTG -CCAACATCGAGACTCTCTCTAGTG -CCAACATCGAGACTCTCTCATCTG -CCAACATCGAGACTCTCTGAGTTG -CCAACATCGAGACTCTCTAGACTG -CCAACATCGAGACTCTCTTCGGTA -CCAACATCGAGACTCTCTTGCCTA -CCAACATCGAGACTCTCTCCACTA -CCAACATCGAGACTCTCTGGAGTA -CCAACATCGAGACTCTCTTCGTCT -CCAACATCGAGACTCTCTTGCACT -CCAACATCGAGACTCTCTCTGACT -CCAACATCGAGACTCTCTCAACCT -CCAACATCGAGACTCTCTGCTACT -CCAACATCGAGACTCTCTGGATCT -CCAACATCGAGACTCTCTAAGGCT -CCAACATCGAGACTCTCTTCAACC -CCAACATCGAGACTCTCTTGTTCC -CCAACATCGAGACTCTCTATTCCC -CCAACATCGAGACTCTCTTTCTCG -CCAACATCGAGACTCTCTTAGACG -CCAACATCGAGACTCTCTGTAACG -CCAACATCGAGACTCTCTACTTCG -CCAACATCGAGACTCTCTTACGCA -CCAACATCGAGACTCTCTCTTGCA -CCAACATCGAGACTCTCTCGAACA -CCAACATCGAGACTCTCTCAGTCA -CCAACATCGAGACTCTCTGATCCA -CCAACATCGAGACTCTCTACGACA -CCAACATCGAGACTCTCTAGCTCA -CCAACATCGAGACTCTCTTCACGT -CCAACATCGAGACTCTCTCGTAGT -CCAACATCGAGACTCTCTGTCAGT -CCAACATCGAGACTCTCTGAAGGT -CCAACATCGAGACTCTCTAACCGT -CCAACATCGAGACTCTCTTTGTGC -CCAACATCGAGACTCTCTCTAAGC -CCAACATCGAGACTCTCTACTAGC -CCAACATCGAGACTCTCTAGATGC -CCAACATCGAGACTCTCTTGAAGG -CCAACATCGAGACTCTCTCAATGG -CCAACATCGAGACTCTCTATGAGG -CCAACATCGAGACTCTCTAATGGG -CCAACATCGAGACTCTCTTCCTGA -CCAACATCGAGACTCTCTTAGCGA -CCAACATCGAGACTCTCTCACAGA -CCAACATCGAGACTCTCTGCAAGA -CCAACATCGAGACTCTCTGGTTGA -CCAACATCGAGACTCTCTTCCGAT -CCAACATCGAGACTCTCTTGGCAT -CCAACATCGAGACTCTCTCGAGAT -CCAACATCGAGACTCTCTTACCAC -CCAACATCGAGACTCTCTCAGAAC -CCAACATCGAGACTCTCTGTCTAC -CCAACATCGAGACTCTCTACGTAC -CCAACATCGAGACTCTCTAGTGAC -CCAACATCGAGACTCTCTCTGTAG -CCAACATCGAGACTCTCTCCTAAG -CCAACATCGAGACTCTCTGTTCAG -CCAACATCGAGACTCTCTGCATAG -CCAACATCGAGACTCTCTGACAAG -CCAACATCGAGACTCTCTAAGCAG -CCAACATCGAGACTCTCTCGTCAA -CCAACATCGAGACTCTCTGCTGAA -CCAACATCGAGACTCTCTAGTACG -CCAACATCGAGACTCTCTATCCGA -CCAACATCGAGACTCTCTATGGGA -CCAACATCGAGACTCTCTGTGCAA -CCAACATCGAGACTCTCTGAGGAA -CCAACATCGAGACTCTCTCAGGTA -CCAACATCGAGACTCTCTGACTCT -CCAACATCGAGACTCTCTAGTCCT -CCAACATCGAGACTCTCTTAAGCC -CCAACATCGAGACTCTCTATAGCC -CCAACATCGAGACTCTCTTAACCG -CCAACATCGAGACTCTCTATGCCA -CCAACATCGAGAATCTGGGGAAAC -CCAACATCGAGAATCTGGAACACC -CCAACATCGAGAATCTGGATCGAG -CCAACATCGAGAATCTGGCTCCTT -CCAACATCGAGAATCTGGCCTGTT -CCAACATCGAGAATCTGGCGGTTT -CCAACATCGAGAATCTGGGTGGTT -CCAACATCGAGAATCTGGGCCTTT -CCAACATCGAGAATCTGGGGTCTT -CCAACATCGAGAATCTGGACGCTT -CCAACATCGAGAATCTGGAGCGTT -CCAACATCGAGAATCTGGTTCGTC -CCAACATCGAGAATCTGGTCTCTC -CCAACATCGAGAATCTGGTGGATC -CCAACATCGAGAATCTGGCACTTC -CCAACATCGAGAATCTGGGTACTC -CCAACATCGAGAATCTGGGATGTC -CCAACATCGAGAATCTGGACAGTC -CCAACATCGAGAATCTGGTTGCTG -CCAACATCGAGAATCTGGTCCATG -CCAACATCGAGAATCTGGTGTGTG -CCAACATCGAGAATCTGGCTAGTG -CCAACATCGAGAATCTGGCATCTG -CCAACATCGAGAATCTGGGAGTTG -CCAACATCGAGAATCTGGAGACTG -CCAACATCGAGAATCTGGTCGGTA -CCAACATCGAGAATCTGGTGCCTA -CCAACATCGAGAATCTGGCCACTA -CCAACATCGAGAATCTGGGGAGTA -CCAACATCGAGAATCTGGTCGTCT -CCAACATCGAGAATCTGGTGCACT -CCAACATCGAGAATCTGGCTGACT -CCAACATCGAGAATCTGGCAACCT -CCAACATCGAGAATCTGGGCTACT -CCAACATCGAGAATCTGGGGATCT -CCAACATCGAGAATCTGGAAGGCT -CCAACATCGAGAATCTGGTCAACC -CCAACATCGAGAATCTGGTGTTCC -CCAACATCGAGAATCTGGATTCCC -CCAACATCGAGAATCTGGTTCTCG -CCAACATCGAGAATCTGGTAGACG -CCAACATCGAGAATCTGGGTAACG -CCAACATCGAGAATCTGGACTTCG -CCAACATCGAGAATCTGGTACGCA -CCAACATCGAGAATCTGGCTTGCA -CCAACATCGAGAATCTGGCGAACA -CCAACATCGAGAATCTGGCAGTCA -CCAACATCGAGAATCTGGGATCCA -CCAACATCGAGAATCTGGACGACA -CCAACATCGAGAATCTGGAGCTCA -CCAACATCGAGAATCTGGTCACGT -CCAACATCGAGAATCTGGCGTAGT -CCAACATCGAGAATCTGGGTCAGT -CCAACATCGAGAATCTGGGAAGGT -CCAACATCGAGAATCTGGAACCGT -CCAACATCGAGAATCTGGTTGTGC -CCAACATCGAGAATCTGGCTAAGC -CCAACATCGAGAATCTGGACTAGC -CCAACATCGAGAATCTGGAGATGC -CCAACATCGAGAATCTGGTGAAGG -CCAACATCGAGAATCTGGCAATGG -CCAACATCGAGAATCTGGATGAGG -CCAACATCGAGAATCTGGAATGGG -CCAACATCGAGAATCTGGTCCTGA -CCAACATCGAGAATCTGGTAGCGA -CCAACATCGAGAATCTGGCACAGA -CCAACATCGAGAATCTGGGCAAGA -CCAACATCGAGAATCTGGGGTTGA -CCAACATCGAGAATCTGGTCCGAT -CCAACATCGAGAATCTGGTGGCAT -CCAACATCGAGAATCTGGCGAGAT -CCAACATCGAGAATCTGGTACCAC -CCAACATCGAGAATCTGGCAGAAC -CCAACATCGAGAATCTGGGTCTAC -CCAACATCGAGAATCTGGACGTAC -CCAACATCGAGAATCTGGAGTGAC -CCAACATCGAGAATCTGGCTGTAG -CCAACATCGAGAATCTGGCCTAAG -CCAACATCGAGAATCTGGGTTCAG -CCAACATCGAGAATCTGGGCATAG -CCAACATCGAGAATCTGGGACAAG -CCAACATCGAGAATCTGGAAGCAG -CCAACATCGAGAATCTGGCGTCAA -CCAACATCGAGAATCTGGGCTGAA -CCAACATCGAGAATCTGGAGTACG -CCAACATCGAGAATCTGGATCCGA -CCAACATCGAGAATCTGGATGGGA -CCAACATCGAGAATCTGGGTGCAA -CCAACATCGAGAATCTGGGAGGAA -CCAACATCGAGAATCTGGCAGGTA -CCAACATCGAGAATCTGGGACTCT -CCAACATCGAGAATCTGGAGTCCT -CCAACATCGAGAATCTGGTAAGCC -CCAACATCGAGAATCTGGATAGCC -CCAACATCGAGAATCTGGTAACCG -CCAACATCGAGAATCTGGATGCCA -CCAACATCGAGATTCCACGGAAAC -CCAACATCGAGATTCCACAACACC -CCAACATCGAGATTCCACATCGAG -CCAACATCGAGATTCCACCTCCTT -CCAACATCGAGATTCCACCCTGTT -CCAACATCGAGATTCCACCGGTTT -CCAACATCGAGATTCCACGTGGTT -CCAACATCGAGATTCCACGCCTTT -CCAACATCGAGATTCCACGGTCTT -CCAACATCGAGATTCCACACGCTT -CCAACATCGAGATTCCACAGCGTT -CCAACATCGAGATTCCACTTCGTC -CCAACATCGAGATTCCACTCTCTC -CCAACATCGAGATTCCACTGGATC -CCAACATCGAGATTCCACCACTTC -CCAACATCGAGATTCCACGTACTC -CCAACATCGAGATTCCACGATGTC -CCAACATCGAGATTCCACACAGTC -CCAACATCGAGATTCCACTTGCTG -CCAACATCGAGATTCCACTCCATG -CCAACATCGAGATTCCACTGTGTG -CCAACATCGAGATTCCACCTAGTG -CCAACATCGAGATTCCACCATCTG -CCAACATCGAGATTCCACGAGTTG -CCAACATCGAGATTCCACAGACTG -CCAACATCGAGATTCCACTCGGTA -CCAACATCGAGATTCCACTGCCTA -CCAACATCGAGATTCCACCCACTA -CCAACATCGAGATTCCACGGAGTA -CCAACATCGAGATTCCACTCGTCT -CCAACATCGAGATTCCACTGCACT -CCAACATCGAGATTCCACCTGACT -CCAACATCGAGATTCCACCAACCT -CCAACATCGAGATTCCACGCTACT -CCAACATCGAGATTCCACGGATCT -CCAACATCGAGATTCCACAAGGCT -CCAACATCGAGATTCCACTCAACC -CCAACATCGAGATTCCACTGTTCC -CCAACATCGAGATTCCACATTCCC -CCAACATCGAGATTCCACTTCTCG -CCAACATCGAGATTCCACTAGACG -CCAACATCGAGATTCCACGTAACG -CCAACATCGAGATTCCACACTTCG -CCAACATCGAGATTCCACTACGCA -CCAACATCGAGATTCCACCTTGCA -CCAACATCGAGATTCCACCGAACA -CCAACATCGAGATTCCACCAGTCA -CCAACATCGAGATTCCACGATCCA -CCAACATCGAGATTCCACACGACA -CCAACATCGAGATTCCACAGCTCA -CCAACATCGAGATTCCACTCACGT -CCAACATCGAGATTCCACCGTAGT -CCAACATCGAGATTCCACGTCAGT -CCAACATCGAGATTCCACGAAGGT -CCAACATCGAGATTCCACAACCGT -CCAACATCGAGATTCCACTTGTGC -CCAACATCGAGATTCCACCTAAGC -CCAACATCGAGATTCCACACTAGC -CCAACATCGAGATTCCACAGATGC -CCAACATCGAGATTCCACTGAAGG -CCAACATCGAGATTCCACCAATGG -CCAACATCGAGATTCCACATGAGG -CCAACATCGAGATTCCACAATGGG -CCAACATCGAGATTCCACTCCTGA -CCAACATCGAGATTCCACTAGCGA -CCAACATCGAGATTCCACCACAGA -CCAACATCGAGATTCCACGCAAGA -CCAACATCGAGATTCCACGGTTGA -CCAACATCGAGATTCCACTCCGAT -CCAACATCGAGATTCCACTGGCAT -CCAACATCGAGATTCCACCGAGAT -CCAACATCGAGATTCCACTACCAC -CCAACATCGAGATTCCACCAGAAC -CCAACATCGAGATTCCACGTCTAC -CCAACATCGAGATTCCACACGTAC -CCAACATCGAGATTCCACAGTGAC -CCAACATCGAGATTCCACCTGTAG -CCAACATCGAGATTCCACCCTAAG -CCAACATCGAGATTCCACGTTCAG -CCAACATCGAGATTCCACGCATAG -CCAACATCGAGATTCCACGACAAG -CCAACATCGAGATTCCACAAGCAG -CCAACATCGAGATTCCACCGTCAA -CCAACATCGAGATTCCACGCTGAA -CCAACATCGAGATTCCACAGTACG -CCAACATCGAGATTCCACATCCGA -CCAACATCGAGATTCCACATGGGA -CCAACATCGAGATTCCACGTGCAA -CCAACATCGAGATTCCACGAGGAA -CCAACATCGAGATTCCACCAGGTA -CCAACATCGAGATTCCACGACTCT -CCAACATCGAGATTCCACAGTCCT -CCAACATCGAGATTCCACTAAGCC -CCAACATCGAGATTCCACATAGCC -CCAACATCGAGATTCCACTAACCG -CCAACATCGAGATTCCACATGCCA -CCAACATCGAGACTCGTAGGAAAC -CCAACATCGAGACTCGTAAACACC -CCAACATCGAGACTCGTAATCGAG -CCAACATCGAGACTCGTACTCCTT -CCAACATCGAGACTCGTACCTGTT -CCAACATCGAGACTCGTACGGTTT -CCAACATCGAGACTCGTAGTGGTT -CCAACATCGAGACTCGTAGCCTTT -CCAACATCGAGACTCGTAGGTCTT -CCAACATCGAGACTCGTAACGCTT -CCAACATCGAGACTCGTAAGCGTT -CCAACATCGAGACTCGTATTCGTC -CCAACATCGAGACTCGTATCTCTC -CCAACATCGAGACTCGTATGGATC -CCAACATCGAGACTCGTACACTTC -CCAACATCGAGACTCGTAGTACTC -CCAACATCGAGACTCGTAGATGTC -CCAACATCGAGACTCGTAACAGTC -CCAACATCGAGACTCGTATTGCTG -CCAACATCGAGACTCGTATCCATG -CCAACATCGAGACTCGTATGTGTG -CCAACATCGAGACTCGTACTAGTG -CCAACATCGAGACTCGTACATCTG -CCAACATCGAGACTCGTAGAGTTG -CCAACATCGAGACTCGTAAGACTG -CCAACATCGAGACTCGTATCGGTA -CCAACATCGAGACTCGTATGCCTA -CCAACATCGAGACTCGTACCACTA -CCAACATCGAGACTCGTAGGAGTA -CCAACATCGAGACTCGTATCGTCT -CCAACATCGAGACTCGTATGCACT -CCAACATCGAGACTCGTACTGACT -CCAACATCGAGACTCGTACAACCT -CCAACATCGAGACTCGTAGCTACT -CCAACATCGAGACTCGTAGGATCT -CCAACATCGAGACTCGTAAAGGCT -CCAACATCGAGACTCGTATCAACC -CCAACATCGAGACTCGTATGTTCC -CCAACATCGAGACTCGTAATTCCC -CCAACATCGAGACTCGTATTCTCG -CCAACATCGAGACTCGTATAGACG -CCAACATCGAGACTCGTAGTAACG -CCAACATCGAGACTCGTAACTTCG -CCAACATCGAGACTCGTATACGCA -CCAACATCGAGACTCGTACTTGCA -CCAACATCGAGACTCGTACGAACA -CCAACATCGAGACTCGTACAGTCA -CCAACATCGAGACTCGTAGATCCA -CCAACATCGAGACTCGTAACGACA -CCAACATCGAGACTCGTAAGCTCA -CCAACATCGAGACTCGTATCACGT -CCAACATCGAGACTCGTACGTAGT -CCAACATCGAGACTCGTAGTCAGT -CCAACATCGAGACTCGTAGAAGGT -CCAACATCGAGACTCGTAAACCGT -CCAACATCGAGACTCGTATTGTGC -CCAACATCGAGACTCGTACTAAGC -CCAACATCGAGACTCGTAACTAGC -CCAACATCGAGACTCGTAAGATGC -CCAACATCGAGACTCGTATGAAGG -CCAACATCGAGACTCGTACAATGG -CCAACATCGAGACTCGTAATGAGG -CCAACATCGAGACTCGTAAATGGG -CCAACATCGAGACTCGTATCCTGA -CCAACATCGAGACTCGTATAGCGA -CCAACATCGAGACTCGTACACAGA -CCAACATCGAGACTCGTAGCAAGA -CCAACATCGAGACTCGTAGGTTGA -CCAACATCGAGACTCGTATCCGAT -CCAACATCGAGACTCGTATGGCAT -CCAACATCGAGACTCGTACGAGAT -CCAACATCGAGACTCGTATACCAC -CCAACATCGAGACTCGTACAGAAC -CCAACATCGAGACTCGTAGTCTAC -CCAACATCGAGACTCGTAACGTAC -CCAACATCGAGACTCGTAAGTGAC -CCAACATCGAGACTCGTACTGTAG -CCAACATCGAGACTCGTACCTAAG -CCAACATCGAGACTCGTAGTTCAG -CCAACATCGAGACTCGTAGCATAG -CCAACATCGAGACTCGTAGACAAG -CCAACATCGAGACTCGTAAAGCAG -CCAACATCGAGACTCGTACGTCAA -CCAACATCGAGACTCGTAGCTGAA -CCAACATCGAGACTCGTAAGTACG -CCAACATCGAGACTCGTAATCCGA -CCAACATCGAGACTCGTAATGGGA -CCAACATCGAGACTCGTAGTGCAA -CCAACATCGAGACTCGTAGAGGAA -CCAACATCGAGACTCGTACAGGTA -CCAACATCGAGACTCGTAGACTCT -CCAACATCGAGACTCGTAAGTCCT -CCAACATCGAGACTCGTATAAGCC -CCAACATCGAGACTCGTAATAGCC -CCAACATCGAGACTCGTATAACCG -CCAACATCGAGACTCGTAATGCCA -CCAACATCGAGAGTCGATGGAAAC -CCAACATCGAGAGTCGATAACACC -CCAACATCGAGAGTCGATATCGAG -CCAACATCGAGAGTCGATCTCCTT -CCAACATCGAGAGTCGATCCTGTT -CCAACATCGAGAGTCGATCGGTTT -CCAACATCGAGAGTCGATGTGGTT -CCAACATCGAGAGTCGATGCCTTT -CCAACATCGAGAGTCGATGGTCTT -CCAACATCGAGAGTCGATACGCTT -CCAACATCGAGAGTCGATAGCGTT -CCAACATCGAGAGTCGATTTCGTC -CCAACATCGAGAGTCGATTCTCTC -CCAACATCGAGAGTCGATTGGATC -CCAACATCGAGAGTCGATCACTTC -CCAACATCGAGAGTCGATGTACTC -CCAACATCGAGAGTCGATGATGTC -CCAACATCGAGAGTCGATACAGTC -CCAACATCGAGAGTCGATTTGCTG -CCAACATCGAGAGTCGATTCCATG -CCAACATCGAGAGTCGATTGTGTG -CCAACATCGAGAGTCGATCTAGTG -CCAACATCGAGAGTCGATCATCTG -CCAACATCGAGAGTCGATGAGTTG -CCAACATCGAGAGTCGATAGACTG -CCAACATCGAGAGTCGATTCGGTA -CCAACATCGAGAGTCGATTGCCTA -CCAACATCGAGAGTCGATCCACTA -CCAACATCGAGAGTCGATGGAGTA -CCAACATCGAGAGTCGATTCGTCT -CCAACATCGAGAGTCGATTGCACT -CCAACATCGAGAGTCGATCTGACT -CCAACATCGAGAGTCGATCAACCT -CCAACATCGAGAGTCGATGCTACT -CCAACATCGAGAGTCGATGGATCT -CCAACATCGAGAGTCGATAAGGCT -CCAACATCGAGAGTCGATTCAACC -CCAACATCGAGAGTCGATTGTTCC -CCAACATCGAGAGTCGATATTCCC -CCAACATCGAGAGTCGATTTCTCG -CCAACATCGAGAGTCGATTAGACG -CCAACATCGAGAGTCGATGTAACG -CCAACATCGAGAGTCGATACTTCG -CCAACATCGAGAGTCGATTACGCA -CCAACATCGAGAGTCGATCTTGCA -CCAACATCGAGAGTCGATCGAACA -CCAACATCGAGAGTCGATCAGTCA -CCAACATCGAGAGTCGATGATCCA -CCAACATCGAGAGTCGATACGACA -CCAACATCGAGAGTCGATAGCTCA -CCAACATCGAGAGTCGATTCACGT -CCAACATCGAGAGTCGATCGTAGT -CCAACATCGAGAGTCGATGTCAGT -CCAACATCGAGAGTCGATGAAGGT -CCAACATCGAGAGTCGATAACCGT -CCAACATCGAGAGTCGATTTGTGC -CCAACATCGAGAGTCGATCTAAGC -CCAACATCGAGAGTCGATACTAGC -CCAACATCGAGAGTCGATAGATGC -CCAACATCGAGAGTCGATTGAAGG -CCAACATCGAGAGTCGATCAATGG -CCAACATCGAGAGTCGATATGAGG -CCAACATCGAGAGTCGATAATGGG -CCAACATCGAGAGTCGATTCCTGA -CCAACATCGAGAGTCGATTAGCGA -CCAACATCGAGAGTCGATCACAGA -CCAACATCGAGAGTCGATGCAAGA -CCAACATCGAGAGTCGATGGTTGA -CCAACATCGAGAGTCGATTCCGAT -CCAACATCGAGAGTCGATTGGCAT -CCAACATCGAGAGTCGATCGAGAT -CCAACATCGAGAGTCGATTACCAC -CCAACATCGAGAGTCGATCAGAAC -CCAACATCGAGAGTCGATGTCTAC -CCAACATCGAGAGTCGATACGTAC -CCAACATCGAGAGTCGATAGTGAC -CCAACATCGAGAGTCGATCTGTAG -CCAACATCGAGAGTCGATCCTAAG -CCAACATCGAGAGTCGATGTTCAG -CCAACATCGAGAGTCGATGCATAG -CCAACATCGAGAGTCGATGACAAG -CCAACATCGAGAGTCGATAAGCAG -CCAACATCGAGAGTCGATCGTCAA -CCAACATCGAGAGTCGATGCTGAA -CCAACATCGAGAGTCGATAGTACG -CCAACATCGAGAGTCGATATCCGA -CCAACATCGAGAGTCGATATGGGA -CCAACATCGAGAGTCGATGTGCAA -CCAACATCGAGAGTCGATGAGGAA -CCAACATCGAGAGTCGATCAGGTA -CCAACATCGAGAGTCGATGACTCT -CCAACATCGAGAGTCGATAGTCCT -CCAACATCGAGAGTCGATTAAGCC -CCAACATCGAGAGTCGATATAGCC -CCAACATCGAGAGTCGATTAACCG -CCAACATCGAGAGTCGATATGCCA -CCAACATCGAGAGTCACAGGAAAC -CCAACATCGAGAGTCACAAACACC -CCAACATCGAGAGTCACAATCGAG -CCAACATCGAGAGTCACACTCCTT -CCAACATCGAGAGTCACACCTGTT -CCAACATCGAGAGTCACACGGTTT -CCAACATCGAGAGTCACAGTGGTT -CCAACATCGAGAGTCACAGCCTTT -CCAACATCGAGAGTCACAGGTCTT -CCAACATCGAGAGTCACAACGCTT -CCAACATCGAGAGTCACAAGCGTT -CCAACATCGAGAGTCACATTCGTC -CCAACATCGAGAGTCACATCTCTC -CCAACATCGAGAGTCACATGGATC -CCAACATCGAGAGTCACACACTTC -CCAACATCGAGAGTCACAGTACTC -CCAACATCGAGAGTCACAGATGTC -CCAACATCGAGAGTCACAACAGTC -CCAACATCGAGAGTCACATTGCTG -CCAACATCGAGAGTCACATCCATG -CCAACATCGAGAGTCACATGTGTG -CCAACATCGAGAGTCACACTAGTG -CCAACATCGAGAGTCACACATCTG -CCAACATCGAGAGTCACAGAGTTG -CCAACATCGAGAGTCACAAGACTG -CCAACATCGAGAGTCACATCGGTA -CCAACATCGAGAGTCACATGCCTA -CCAACATCGAGAGTCACACCACTA -CCAACATCGAGAGTCACAGGAGTA -CCAACATCGAGAGTCACATCGTCT -CCAACATCGAGAGTCACATGCACT -CCAACATCGAGAGTCACACTGACT -CCAACATCGAGAGTCACACAACCT -CCAACATCGAGAGTCACAGCTACT -CCAACATCGAGAGTCACAGGATCT -CCAACATCGAGAGTCACAAAGGCT -CCAACATCGAGAGTCACATCAACC -CCAACATCGAGAGTCACATGTTCC -CCAACATCGAGAGTCACAATTCCC -CCAACATCGAGAGTCACATTCTCG -CCAACATCGAGAGTCACATAGACG -CCAACATCGAGAGTCACAGTAACG -CCAACATCGAGAGTCACAACTTCG -CCAACATCGAGAGTCACATACGCA -CCAACATCGAGAGTCACACTTGCA -CCAACATCGAGAGTCACACGAACA -CCAACATCGAGAGTCACACAGTCA -CCAACATCGAGAGTCACAGATCCA -CCAACATCGAGAGTCACAACGACA -CCAACATCGAGAGTCACAAGCTCA -CCAACATCGAGAGTCACATCACGT -CCAACATCGAGAGTCACACGTAGT -CCAACATCGAGAGTCACAGTCAGT -CCAACATCGAGAGTCACAGAAGGT -CCAACATCGAGAGTCACAAACCGT -CCAACATCGAGAGTCACATTGTGC -CCAACATCGAGAGTCACACTAAGC -CCAACATCGAGAGTCACAACTAGC -CCAACATCGAGAGTCACAAGATGC -CCAACATCGAGAGTCACATGAAGG -CCAACATCGAGAGTCACACAATGG -CCAACATCGAGAGTCACAATGAGG -CCAACATCGAGAGTCACAAATGGG -CCAACATCGAGAGTCACATCCTGA -CCAACATCGAGAGTCACATAGCGA -CCAACATCGAGAGTCACACACAGA -CCAACATCGAGAGTCACAGCAAGA -CCAACATCGAGAGTCACAGGTTGA -CCAACATCGAGAGTCACATCCGAT -CCAACATCGAGAGTCACATGGCAT -CCAACATCGAGAGTCACACGAGAT -CCAACATCGAGAGTCACATACCAC -CCAACATCGAGAGTCACACAGAAC -CCAACATCGAGAGTCACAGTCTAC -CCAACATCGAGAGTCACAACGTAC -CCAACATCGAGAGTCACAAGTGAC -CCAACATCGAGAGTCACACTGTAG -CCAACATCGAGAGTCACACCTAAG -CCAACATCGAGAGTCACAGTTCAG -CCAACATCGAGAGTCACAGCATAG -CCAACATCGAGAGTCACAGACAAG -CCAACATCGAGAGTCACAAAGCAG -CCAACATCGAGAGTCACACGTCAA -CCAACATCGAGAGTCACAGCTGAA -CCAACATCGAGAGTCACAAGTACG -CCAACATCGAGAGTCACAATCCGA -CCAACATCGAGAGTCACAATGGGA -CCAACATCGAGAGTCACAGTGCAA -CCAACATCGAGAGTCACAGAGGAA -CCAACATCGAGAGTCACACAGGTA -CCAACATCGAGAGTCACAGACTCT -CCAACATCGAGAGTCACAAGTCCT -CCAACATCGAGAGTCACATAAGCC -CCAACATCGAGAGTCACAATAGCC -CCAACATCGAGAGTCACATAACCG -CCAACATCGAGAGTCACAATGCCA -CCAACATCGAGACTGTTGGGAAAC -CCAACATCGAGACTGTTGAACACC -CCAACATCGAGACTGTTGATCGAG -CCAACATCGAGACTGTTGCTCCTT -CCAACATCGAGACTGTTGCCTGTT -CCAACATCGAGACTGTTGCGGTTT -CCAACATCGAGACTGTTGGTGGTT -CCAACATCGAGACTGTTGGCCTTT -CCAACATCGAGACTGTTGGGTCTT -CCAACATCGAGACTGTTGACGCTT -CCAACATCGAGACTGTTGAGCGTT -CCAACATCGAGACTGTTGTTCGTC -CCAACATCGAGACTGTTGTCTCTC -CCAACATCGAGACTGTTGTGGATC -CCAACATCGAGACTGTTGCACTTC -CCAACATCGAGACTGTTGGTACTC -CCAACATCGAGACTGTTGGATGTC -CCAACATCGAGACTGTTGACAGTC -CCAACATCGAGACTGTTGTTGCTG -CCAACATCGAGACTGTTGTCCATG -CCAACATCGAGACTGTTGTGTGTG -CCAACATCGAGACTGTTGCTAGTG -CCAACATCGAGACTGTTGCATCTG -CCAACATCGAGACTGTTGGAGTTG -CCAACATCGAGACTGTTGAGACTG -CCAACATCGAGACTGTTGTCGGTA -CCAACATCGAGACTGTTGTGCCTA -CCAACATCGAGACTGTTGCCACTA -CCAACATCGAGACTGTTGGGAGTA -CCAACATCGAGACTGTTGTCGTCT -CCAACATCGAGACTGTTGTGCACT -CCAACATCGAGACTGTTGCTGACT -CCAACATCGAGACTGTTGCAACCT -CCAACATCGAGACTGTTGGCTACT -CCAACATCGAGACTGTTGGGATCT -CCAACATCGAGACTGTTGAAGGCT -CCAACATCGAGACTGTTGTCAACC -CCAACATCGAGACTGTTGTGTTCC -CCAACATCGAGACTGTTGATTCCC -CCAACATCGAGACTGTTGTTCTCG -CCAACATCGAGACTGTTGTAGACG -CCAACATCGAGACTGTTGGTAACG -CCAACATCGAGACTGTTGACTTCG -CCAACATCGAGACTGTTGTACGCA -CCAACATCGAGACTGTTGCTTGCA -CCAACATCGAGACTGTTGCGAACA -CCAACATCGAGACTGTTGCAGTCA -CCAACATCGAGACTGTTGGATCCA -CCAACATCGAGACTGTTGACGACA -CCAACATCGAGACTGTTGAGCTCA -CCAACATCGAGACTGTTGTCACGT -CCAACATCGAGACTGTTGCGTAGT -CCAACATCGAGACTGTTGGTCAGT -CCAACATCGAGACTGTTGGAAGGT -CCAACATCGAGACTGTTGAACCGT -CCAACATCGAGACTGTTGTTGTGC -CCAACATCGAGACTGTTGCTAAGC -CCAACATCGAGACTGTTGACTAGC -CCAACATCGAGACTGTTGAGATGC -CCAACATCGAGACTGTTGTGAAGG -CCAACATCGAGACTGTTGCAATGG -CCAACATCGAGACTGTTGATGAGG -CCAACATCGAGACTGTTGAATGGG -CCAACATCGAGACTGTTGTCCTGA -CCAACATCGAGACTGTTGTAGCGA -CCAACATCGAGACTGTTGCACAGA -CCAACATCGAGACTGTTGGCAAGA -CCAACATCGAGACTGTTGGGTTGA -CCAACATCGAGACTGTTGTCCGAT -CCAACATCGAGACTGTTGTGGCAT -CCAACATCGAGACTGTTGCGAGAT -CCAACATCGAGACTGTTGTACCAC -CCAACATCGAGACTGTTGCAGAAC -CCAACATCGAGACTGTTGGTCTAC -CCAACATCGAGACTGTTGACGTAC -CCAACATCGAGACTGTTGAGTGAC -CCAACATCGAGACTGTTGCTGTAG -CCAACATCGAGACTGTTGCCTAAG -CCAACATCGAGACTGTTGGTTCAG -CCAACATCGAGACTGTTGGCATAG -CCAACATCGAGACTGTTGGACAAG -CCAACATCGAGACTGTTGAAGCAG -CCAACATCGAGACTGTTGCGTCAA -CCAACATCGAGACTGTTGGCTGAA -CCAACATCGAGACTGTTGAGTACG -CCAACATCGAGACTGTTGATCCGA -CCAACATCGAGACTGTTGATGGGA -CCAACATCGAGACTGTTGGTGCAA -CCAACATCGAGACTGTTGGAGGAA -CCAACATCGAGACTGTTGCAGGTA -CCAACATCGAGACTGTTGGACTCT -CCAACATCGAGACTGTTGAGTCCT -CCAACATCGAGACTGTTGTAAGCC -CCAACATCGAGACTGTTGATAGCC -CCAACATCGAGACTGTTGTAACCG -CCAACATCGAGACTGTTGATGCCA -CCAACATCGAGAATGTCCGGAAAC -CCAACATCGAGAATGTCCAACACC -CCAACATCGAGAATGTCCATCGAG -CCAACATCGAGAATGTCCCTCCTT -CCAACATCGAGAATGTCCCCTGTT -CCAACATCGAGAATGTCCCGGTTT -CCAACATCGAGAATGTCCGTGGTT -CCAACATCGAGAATGTCCGCCTTT -CCAACATCGAGAATGTCCGGTCTT -CCAACATCGAGAATGTCCACGCTT -CCAACATCGAGAATGTCCAGCGTT -CCAACATCGAGAATGTCCTTCGTC -CCAACATCGAGAATGTCCTCTCTC -CCAACATCGAGAATGTCCTGGATC -CCAACATCGAGAATGTCCCACTTC -CCAACATCGAGAATGTCCGTACTC -CCAACATCGAGAATGTCCGATGTC -CCAACATCGAGAATGTCCACAGTC -CCAACATCGAGAATGTCCTTGCTG -CCAACATCGAGAATGTCCTCCATG -CCAACATCGAGAATGTCCTGTGTG -CCAACATCGAGAATGTCCCTAGTG -CCAACATCGAGAATGTCCCATCTG -CCAACATCGAGAATGTCCGAGTTG -CCAACATCGAGAATGTCCAGACTG -CCAACATCGAGAATGTCCTCGGTA -CCAACATCGAGAATGTCCTGCCTA -CCAACATCGAGAATGTCCCCACTA -CCAACATCGAGAATGTCCGGAGTA -CCAACATCGAGAATGTCCTCGTCT -CCAACATCGAGAATGTCCTGCACT -CCAACATCGAGAATGTCCCTGACT -CCAACATCGAGAATGTCCCAACCT -CCAACATCGAGAATGTCCGCTACT -CCAACATCGAGAATGTCCGGATCT -CCAACATCGAGAATGTCCAAGGCT -CCAACATCGAGAATGTCCTCAACC -CCAACATCGAGAATGTCCTGTTCC -CCAACATCGAGAATGTCCATTCCC -CCAACATCGAGAATGTCCTTCTCG -CCAACATCGAGAATGTCCTAGACG -CCAACATCGAGAATGTCCGTAACG -CCAACATCGAGAATGTCCACTTCG -CCAACATCGAGAATGTCCTACGCA -CCAACATCGAGAATGTCCCTTGCA -CCAACATCGAGAATGTCCCGAACA -CCAACATCGAGAATGTCCCAGTCA -CCAACATCGAGAATGTCCGATCCA -CCAACATCGAGAATGTCCACGACA -CCAACATCGAGAATGTCCAGCTCA -CCAACATCGAGAATGTCCTCACGT -CCAACATCGAGAATGTCCCGTAGT -CCAACATCGAGAATGTCCGTCAGT -CCAACATCGAGAATGTCCGAAGGT -CCAACATCGAGAATGTCCAACCGT -CCAACATCGAGAATGTCCTTGTGC -CCAACATCGAGAATGTCCCTAAGC -CCAACATCGAGAATGTCCACTAGC -CCAACATCGAGAATGTCCAGATGC -CCAACATCGAGAATGTCCTGAAGG -CCAACATCGAGAATGTCCCAATGG -CCAACATCGAGAATGTCCATGAGG -CCAACATCGAGAATGTCCAATGGG -CCAACATCGAGAATGTCCTCCTGA -CCAACATCGAGAATGTCCTAGCGA -CCAACATCGAGAATGTCCCACAGA -CCAACATCGAGAATGTCCGCAAGA -CCAACATCGAGAATGTCCGGTTGA -CCAACATCGAGAATGTCCTCCGAT -CCAACATCGAGAATGTCCTGGCAT -CCAACATCGAGAATGTCCCGAGAT -CCAACATCGAGAATGTCCTACCAC -CCAACATCGAGAATGTCCCAGAAC -CCAACATCGAGAATGTCCGTCTAC -CCAACATCGAGAATGTCCACGTAC -CCAACATCGAGAATGTCCAGTGAC -CCAACATCGAGAATGTCCCTGTAG -CCAACATCGAGAATGTCCCCTAAG -CCAACATCGAGAATGTCCGTTCAG -CCAACATCGAGAATGTCCGCATAG -CCAACATCGAGAATGTCCGACAAG -CCAACATCGAGAATGTCCAAGCAG -CCAACATCGAGAATGTCCCGTCAA -CCAACATCGAGAATGTCCGCTGAA -CCAACATCGAGAATGTCCAGTACG -CCAACATCGAGAATGTCCATCCGA -CCAACATCGAGAATGTCCATGGGA -CCAACATCGAGAATGTCCGTGCAA -CCAACATCGAGAATGTCCGAGGAA -CCAACATCGAGAATGTCCCAGGTA -CCAACATCGAGAATGTCCGACTCT -CCAACATCGAGAATGTCCAGTCCT -CCAACATCGAGAATGTCCTAAGCC -CCAACATCGAGAATGTCCATAGCC -CCAACATCGAGAATGTCCTAACCG -CCAACATCGAGAATGTCCATGCCA -CCAACATCGAGAGTGTGTGGAAAC -CCAACATCGAGAGTGTGTAACACC -CCAACATCGAGAGTGTGTATCGAG -CCAACATCGAGAGTGTGTCTCCTT -CCAACATCGAGAGTGTGTCCTGTT -CCAACATCGAGAGTGTGTCGGTTT -CCAACATCGAGAGTGTGTGTGGTT -CCAACATCGAGAGTGTGTGCCTTT -CCAACATCGAGAGTGTGTGGTCTT -CCAACATCGAGAGTGTGTACGCTT -CCAACATCGAGAGTGTGTAGCGTT -CCAACATCGAGAGTGTGTTTCGTC -CCAACATCGAGAGTGTGTTCTCTC -CCAACATCGAGAGTGTGTTGGATC -CCAACATCGAGAGTGTGTCACTTC -CCAACATCGAGAGTGTGTGTACTC -CCAACATCGAGAGTGTGTGATGTC -CCAACATCGAGAGTGTGTACAGTC -CCAACATCGAGAGTGTGTTTGCTG -CCAACATCGAGAGTGTGTTCCATG -CCAACATCGAGAGTGTGTTGTGTG -CCAACATCGAGAGTGTGTCTAGTG -CCAACATCGAGAGTGTGTCATCTG -CCAACATCGAGAGTGTGTGAGTTG -CCAACATCGAGAGTGTGTAGACTG -CCAACATCGAGAGTGTGTTCGGTA -CCAACATCGAGAGTGTGTTGCCTA -CCAACATCGAGAGTGTGTCCACTA -CCAACATCGAGAGTGTGTGGAGTA -CCAACATCGAGAGTGTGTTCGTCT -CCAACATCGAGAGTGTGTTGCACT -CCAACATCGAGAGTGTGTCTGACT -CCAACATCGAGAGTGTGTCAACCT -CCAACATCGAGAGTGTGTGCTACT -CCAACATCGAGAGTGTGTGGATCT -CCAACATCGAGAGTGTGTAAGGCT -CCAACATCGAGAGTGTGTTCAACC -CCAACATCGAGAGTGTGTTGTTCC -CCAACATCGAGAGTGTGTATTCCC -CCAACATCGAGAGTGTGTTTCTCG -CCAACATCGAGAGTGTGTTAGACG -CCAACATCGAGAGTGTGTGTAACG -CCAACATCGAGAGTGTGTACTTCG -CCAACATCGAGAGTGTGTTACGCA -CCAACATCGAGAGTGTGTCTTGCA -CCAACATCGAGAGTGTGTCGAACA -CCAACATCGAGAGTGTGTCAGTCA -CCAACATCGAGAGTGTGTGATCCA -CCAACATCGAGAGTGTGTACGACA -CCAACATCGAGAGTGTGTAGCTCA -CCAACATCGAGAGTGTGTTCACGT -CCAACATCGAGAGTGTGTCGTAGT -CCAACATCGAGAGTGTGTGTCAGT -CCAACATCGAGAGTGTGTGAAGGT -CCAACATCGAGAGTGTGTAACCGT -CCAACATCGAGAGTGTGTTTGTGC -CCAACATCGAGAGTGTGTCTAAGC -CCAACATCGAGAGTGTGTACTAGC -CCAACATCGAGAGTGTGTAGATGC -CCAACATCGAGAGTGTGTTGAAGG -CCAACATCGAGAGTGTGTCAATGG -CCAACATCGAGAGTGTGTATGAGG -CCAACATCGAGAGTGTGTAATGGG -CCAACATCGAGAGTGTGTTCCTGA -CCAACATCGAGAGTGTGTTAGCGA -CCAACATCGAGAGTGTGTCACAGA -CCAACATCGAGAGTGTGTGCAAGA -CCAACATCGAGAGTGTGTGGTTGA -CCAACATCGAGAGTGTGTTCCGAT -CCAACATCGAGAGTGTGTTGGCAT -CCAACATCGAGAGTGTGTCGAGAT -CCAACATCGAGAGTGTGTTACCAC -CCAACATCGAGAGTGTGTCAGAAC -CCAACATCGAGAGTGTGTGTCTAC -CCAACATCGAGAGTGTGTACGTAC -CCAACATCGAGAGTGTGTAGTGAC -CCAACATCGAGAGTGTGTCTGTAG -CCAACATCGAGAGTGTGTCCTAAG -CCAACATCGAGAGTGTGTGTTCAG -CCAACATCGAGAGTGTGTGCATAG -CCAACATCGAGAGTGTGTGACAAG -CCAACATCGAGAGTGTGTAAGCAG -CCAACATCGAGAGTGTGTCGTCAA -CCAACATCGAGAGTGTGTGCTGAA -CCAACATCGAGAGTGTGTAGTACG -CCAACATCGAGAGTGTGTATCCGA -CCAACATCGAGAGTGTGTATGGGA -CCAACATCGAGAGTGTGTGTGCAA -CCAACATCGAGAGTGTGTGAGGAA -CCAACATCGAGAGTGTGTCAGGTA -CCAACATCGAGAGTGTGTGACTCT -CCAACATCGAGAGTGTGTAGTCCT -CCAACATCGAGAGTGTGTTAAGCC -CCAACATCGAGAGTGTGTATAGCC -CCAACATCGAGAGTGTGTTAACCG -CCAACATCGAGAGTGTGTATGCCA -CCAACATCGAGAGTGCTAGGAAAC -CCAACATCGAGAGTGCTAAACACC -CCAACATCGAGAGTGCTAATCGAG -CCAACATCGAGAGTGCTACTCCTT -CCAACATCGAGAGTGCTACCTGTT -CCAACATCGAGAGTGCTACGGTTT -CCAACATCGAGAGTGCTAGTGGTT -CCAACATCGAGAGTGCTAGCCTTT -CCAACATCGAGAGTGCTAGGTCTT -CCAACATCGAGAGTGCTAACGCTT -CCAACATCGAGAGTGCTAAGCGTT -CCAACATCGAGAGTGCTATTCGTC -CCAACATCGAGAGTGCTATCTCTC -CCAACATCGAGAGTGCTATGGATC -CCAACATCGAGAGTGCTACACTTC -CCAACATCGAGAGTGCTAGTACTC -CCAACATCGAGAGTGCTAGATGTC -CCAACATCGAGAGTGCTAACAGTC -CCAACATCGAGAGTGCTATTGCTG -CCAACATCGAGAGTGCTATCCATG -CCAACATCGAGAGTGCTATGTGTG -CCAACATCGAGAGTGCTACTAGTG -CCAACATCGAGAGTGCTACATCTG -CCAACATCGAGAGTGCTAGAGTTG -CCAACATCGAGAGTGCTAAGACTG -CCAACATCGAGAGTGCTATCGGTA -CCAACATCGAGAGTGCTATGCCTA -CCAACATCGAGAGTGCTACCACTA -CCAACATCGAGAGTGCTAGGAGTA -CCAACATCGAGAGTGCTATCGTCT -CCAACATCGAGAGTGCTATGCACT -CCAACATCGAGAGTGCTACTGACT -CCAACATCGAGAGTGCTACAACCT -CCAACATCGAGAGTGCTAGCTACT -CCAACATCGAGAGTGCTAGGATCT -CCAACATCGAGAGTGCTAAAGGCT -CCAACATCGAGAGTGCTATCAACC -CCAACATCGAGAGTGCTATGTTCC -CCAACATCGAGAGTGCTAATTCCC -CCAACATCGAGAGTGCTATTCTCG -CCAACATCGAGAGTGCTATAGACG -CCAACATCGAGAGTGCTAGTAACG -CCAACATCGAGAGTGCTAACTTCG -CCAACATCGAGAGTGCTATACGCA -CCAACATCGAGAGTGCTACTTGCA -CCAACATCGAGAGTGCTACGAACA -CCAACATCGAGAGTGCTACAGTCA -CCAACATCGAGAGTGCTAGATCCA -CCAACATCGAGAGTGCTAACGACA -CCAACATCGAGAGTGCTAAGCTCA -CCAACATCGAGAGTGCTATCACGT -CCAACATCGAGAGTGCTACGTAGT -CCAACATCGAGAGTGCTAGTCAGT -CCAACATCGAGAGTGCTAGAAGGT -CCAACATCGAGAGTGCTAAACCGT -CCAACATCGAGAGTGCTATTGTGC -CCAACATCGAGAGTGCTACTAAGC -CCAACATCGAGAGTGCTAACTAGC -CCAACATCGAGAGTGCTAAGATGC -CCAACATCGAGAGTGCTATGAAGG -CCAACATCGAGAGTGCTACAATGG -CCAACATCGAGAGTGCTAATGAGG -CCAACATCGAGAGTGCTAAATGGG -CCAACATCGAGAGTGCTATCCTGA -CCAACATCGAGAGTGCTATAGCGA -CCAACATCGAGAGTGCTACACAGA -CCAACATCGAGAGTGCTAGCAAGA -CCAACATCGAGAGTGCTAGGTTGA -CCAACATCGAGAGTGCTATCCGAT -CCAACATCGAGAGTGCTATGGCAT -CCAACATCGAGAGTGCTACGAGAT -CCAACATCGAGAGTGCTATACCAC -CCAACATCGAGAGTGCTACAGAAC -CCAACATCGAGAGTGCTAGTCTAC -CCAACATCGAGAGTGCTAACGTAC -CCAACATCGAGAGTGCTAAGTGAC -CCAACATCGAGAGTGCTACTGTAG -CCAACATCGAGAGTGCTACCTAAG -CCAACATCGAGAGTGCTAGTTCAG -CCAACATCGAGAGTGCTAGCATAG -CCAACATCGAGAGTGCTAGACAAG -CCAACATCGAGAGTGCTAAAGCAG -CCAACATCGAGAGTGCTACGTCAA -CCAACATCGAGAGTGCTAGCTGAA -CCAACATCGAGAGTGCTAAGTACG -CCAACATCGAGAGTGCTAATCCGA -CCAACATCGAGAGTGCTAATGGGA -CCAACATCGAGAGTGCTAGTGCAA -CCAACATCGAGAGTGCTAGAGGAA -CCAACATCGAGAGTGCTACAGGTA -CCAACATCGAGAGTGCTAGACTCT -CCAACATCGAGAGTGCTAAGTCCT -CCAACATCGAGAGTGCTATAAGCC -CCAACATCGAGAGTGCTAATAGCC -CCAACATCGAGAGTGCTATAACCG -CCAACATCGAGAGTGCTAATGCCA -CCAACATCGAGACTGCATGGAAAC -CCAACATCGAGACTGCATAACACC -CCAACATCGAGACTGCATATCGAG -CCAACATCGAGACTGCATCTCCTT -CCAACATCGAGACTGCATCCTGTT -CCAACATCGAGACTGCATCGGTTT -CCAACATCGAGACTGCATGTGGTT -CCAACATCGAGACTGCATGCCTTT -CCAACATCGAGACTGCATGGTCTT -CCAACATCGAGACTGCATACGCTT -CCAACATCGAGACTGCATAGCGTT -CCAACATCGAGACTGCATTTCGTC -CCAACATCGAGACTGCATTCTCTC -CCAACATCGAGACTGCATTGGATC -CCAACATCGAGACTGCATCACTTC -CCAACATCGAGACTGCATGTACTC -CCAACATCGAGACTGCATGATGTC -CCAACATCGAGACTGCATACAGTC -CCAACATCGAGACTGCATTTGCTG -CCAACATCGAGACTGCATTCCATG -CCAACATCGAGACTGCATTGTGTG -CCAACATCGAGACTGCATCTAGTG -CCAACATCGAGACTGCATCATCTG -CCAACATCGAGACTGCATGAGTTG -CCAACATCGAGACTGCATAGACTG -CCAACATCGAGACTGCATTCGGTA -CCAACATCGAGACTGCATTGCCTA -CCAACATCGAGACTGCATCCACTA -CCAACATCGAGACTGCATGGAGTA -CCAACATCGAGACTGCATTCGTCT -CCAACATCGAGACTGCATTGCACT -CCAACATCGAGACTGCATCTGACT -CCAACATCGAGACTGCATCAACCT -CCAACATCGAGACTGCATGCTACT -CCAACATCGAGACTGCATGGATCT -CCAACATCGAGACTGCATAAGGCT -CCAACATCGAGACTGCATTCAACC -CCAACATCGAGACTGCATTGTTCC -CCAACATCGAGACTGCATATTCCC -CCAACATCGAGACTGCATTTCTCG -CCAACATCGAGACTGCATTAGACG -CCAACATCGAGACTGCATGTAACG -CCAACATCGAGACTGCATACTTCG -CCAACATCGAGACTGCATTACGCA -CCAACATCGAGACTGCATCTTGCA -CCAACATCGAGACTGCATCGAACA -CCAACATCGAGACTGCATCAGTCA -CCAACATCGAGACTGCATGATCCA -CCAACATCGAGACTGCATACGACA -CCAACATCGAGACTGCATAGCTCA -CCAACATCGAGACTGCATTCACGT -CCAACATCGAGACTGCATCGTAGT -CCAACATCGAGACTGCATGTCAGT -CCAACATCGAGACTGCATGAAGGT -CCAACATCGAGACTGCATAACCGT -CCAACATCGAGACTGCATTTGTGC -CCAACATCGAGACTGCATCTAAGC -CCAACATCGAGACTGCATACTAGC -CCAACATCGAGACTGCATAGATGC -CCAACATCGAGACTGCATTGAAGG -CCAACATCGAGACTGCATCAATGG -CCAACATCGAGACTGCATATGAGG -CCAACATCGAGACTGCATAATGGG -CCAACATCGAGACTGCATTCCTGA -CCAACATCGAGACTGCATTAGCGA -CCAACATCGAGACTGCATCACAGA -CCAACATCGAGACTGCATGCAAGA -CCAACATCGAGACTGCATGGTTGA -CCAACATCGAGACTGCATTCCGAT -CCAACATCGAGACTGCATTGGCAT -CCAACATCGAGACTGCATCGAGAT -CCAACATCGAGACTGCATTACCAC -CCAACATCGAGACTGCATCAGAAC -CCAACATCGAGACTGCATGTCTAC -CCAACATCGAGACTGCATACGTAC -CCAACATCGAGACTGCATAGTGAC -CCAACATCGAGACTGCATCTGTAG -CCAACATCGAGACTGCATCCTAAG -CCAACATCGAGACTGCATGTTCAG -CCAACATCGAGACTGCATGCATAG -CCAACATCGAGACTGCATGACAAG -CCAACATCGAGACTGCATAAGCAG -CCAACATCGAGACTGCATCGTCAA -CCAACATCGAGACTGCATGCTGAA -CCAACATCGAGACTGCATAGTACG -CCAACATCGAGACTGCATATCCGA -CCAACATCGAGACTGCATATGGGA -CCAACATCGAGACTGCATGTGCAA -CCAACATCGAGACTGCATGAGGAA -CCAACATCGAGACTGCATCAGGTA -CCAACATCGAGACTGCATGACTCT -CCAACATCGAGACTGCATAGTCCT -CCAACATCGAGACTGCATTAAGCC -CCAACATCGAGACTGCATATAGCC -CCAACATCGAGACTGCATTAACCG -CCAACATCGAGACTGCATATGCCA -CCAACATCGAGATTGGAGGGAAAC -CCAACATCGAGATTGGAGAACACC -CCAACATCGAGATTGGAGATCGAG -CCAACATCGAGATTGGAGCTCCTT -CCAACATCGAGATTGGAGCCTGTT -CCAACATCGAGATTGGAGCGGTTT -CCAACATCGAGATTGGAGGTGGTT -CCAACATCGAGATTGGAGGCCTTT -CCAACATCGAGATTGGAGGGTCTT -CCAACATCGAGATTGGAGACGCTT -CCAACATCGAGATTGGAGAGCGTT -CCAACATCGAGATTGGAGTTCGTC -CCAACATCGAGATTGGAGTCTCTC -CCAACATCGAGATTGGAGTGGATC -CCAACATCGAGATTGGAGCACTTC -CCAACATCGAGATTGGAGGTACTC -CCAACATCGAGATTGGAGGATGTC -CCAACATCGAGATTGGAGACAGTC -CCAACATCGAGATTGGAGTTGCTG -CCAACATCGAGATTGGAGTCCATG -CCAACATCGAGATTGGAGTGTGTG -CCAACATCGAGATTGGAGCTAGTG -CCAACATCGAGATTGGAGCATCTG -CCAACATCGAGATTGGAGGAGTTG -CCAACATCGAGATTGGAGAGACTG -CCAACATCGAGATTGGAGTCGGTA -CCAACATCGAGATTGGAGTGCCTA -CCAACATCGAGATTGGAGCCACTA -CCAACATCGAGATTGGAGGGAGTA -CCAACATCGAGATTGGAGTCGTCT -CCAACATCGAGATTGGAGTGCACT -CCAACATCGAGATTGGAGCTGACT -CCAACATCGAGATTGGAGCAACCT -CCAACATCGAGATTGGAGGCTACT -CCAACATCGAGATTGGAGGGATCT -CCAACATCGAGATTGGAGAAGGCT -CCAACATCGAGATTGGAGTCAACC -CCAACATCGAGATTGGAGTGTTCC -CCAACATCGAGATTGGAGATTCCC -CCAACATCGAGATTGGAGTTCTCG -CCAACATCGAGATTGGAGTAGACG -CCAACATCGAGATTGGAGGTAACG -CCAACATCGAGATTGGAGACTTCG -CCAACATCGAGATTGGAGTACGCA -CCAACATCGAGATTGGAGCTTGCA -CCAACATCGAGATTGGAGCGAACA -CCAACATCGAGATTGGAGCAGTCA -CCAACATCGAGATTGGAGGATCCA -CCAACATCGAGATTGGAGACGACA -CCAACATCGAGATTGGAGAGCTCA -CCAACATCGAGATTGGAGTCACGT -CCAACATCGAGATTGGAGCGTAGT -CCAACATCGAGATTGGAGGTCAGT -CCAACATCGAGATTGGAGGAAGGT -CCAACATCGAGATTGGAGAACCGT -CCAACATCGAGATTGGAGTTGTGC -CCAACATCGAGATTGGAGCTAAGC -CCAACATCGAGATTGGAGACTAGC -CCAACATCGAGATTGGAGAGATGC -CCAACATCGAGATTGGAGTGAAGG -CCAACATCGAGATTGGAGCAATGG -CCAACATCGAGATTGGAGATGAGG -CCAACATCGAGATTGGAGAATGGG -CCAACATCGAGATTGGAGTCCTGA -CCAACATCGAGATTGGAGTAGCGA -CCAACATCGAGATTGGAGCACAGA -CCAACATCGAGATTGGAGGCAAGA -CCAACATCGAGATTGGAGGGTTGA -CCAACATCGAGATTGGAGTCCGAT -CCAACATCGAGATTGGAGTGGCAT -CCAACATCGAGATTGGAGCGAGAT -CCAACATCGAGATTGGAGTACCAC -CCAACATCGAGATTGGAGCAGAAC -CCAACATCGAGATTGGAGGTCTAC -CCAACATCGAGATTGGAGACGTAC -CCAACATCGAGATTGGAGAGTGAC -CCAACATCGAGATTGGAGCTGTAG -CCAACATCGAGATTGGAGCCTAAG -CCAACATCGAGATTGGAGGTTCAG -CCAACATCGAGATTGGAGGCATAG -CCAACATCGAGATTGGAGGACAAG -CCAACATCGAGATTGGAGAAGCAG -CCAACATCGAGATTGGAGCGTCAA -CCAACATCGAGATTGGAGGCTGAA -CCAACATCGAGATTGGAGAGTACG -CCAACATCGAGATTGGAGATCCGA -CCAACATCGAGATTGGAGATGGGA -CCAACATCGAGATTGGAGGTGCAA -CCAACATCGAGATTGGAGGAGGAA -CCAACATCGAGATTGGAGCAGGTA -CCAACATCGAGATTGGAGGACTCT -CCAACATCGAGATTGGAGAGTCCT -CCAACATCGAGATTGGAGTAAGCC -CCAACATCGAGATTGGAGATAGCC -CCAACATCGAGATTGGAGTAACCG -CCAACATCGAGATTGGAGATGCCA -CCAACATCGAGACTGAGAGGAAAC -CCAACATCGAGACTGAGAAACACC -CCAACATCGAGACTGAGAATCGAG -CCAACATCGAGACTGAGACTCCTT -CCAACATCGAGACTGAGACCTGTT -CCAACATCGAGACTGAGACGGTTT -CCAACATCGAGACTGAGAGTGGTT -CCAACATCGAGACTGAGAGCCTTT -CCAACATCGAGACTGAGAGGTCTT -CCAACATCGAGACTGAGAACGCTT -CCAACATCGAGACTGAGAAGCGTT -CCAACATCGAGACTGAGATTCGTC -CCAACATCGAGACTGAGATCTCTC -CCAACATCGAGACTGAGATGGATC -CCAACATCGAGACTGAGACACTTC -CCAACATCGAGACTGAGAGTACTC -CCAACATCGAGACTGAGAGATGTC -CCAACATCGAGACTGAGAACAGTC -CCAACATCGAGACTGAGATTGCTG -CCAACATCGAGACTGAGATCCATG -CCAACATCGAGACTGAGATGTGTG -CCAACATCGAGACTGAGACTAGTG -CCAACATCGAGACTGAGACATCTG -CCAACATCGAGACTGAGAGAGTTG -CCAACATCGAGACTGAGAAGACTG -CCAACATCGAGACTGAGATCGGTA -CCAACATCGAGACTGAGATGCCTA -CCAACATCGAGACTGAGACCACTA -CCAACATCGAGACTGAGAGGAGTA -CCAACATCGAGACTGAGATCGTCT -CCAACATCGAGACTGAGATGCACT -CCAACATCGAGACTGAGACTGACT -CCAACATCGAGACTGAGACAACCT -CCAACATCGAGACTGAGAGCTACT -CCAACATCGAGACTGAGAGGATCT -CCAACATCGAGACTGAGAAAGGCT -CCAACATCGAGACTGAGATCAACC -CCAACATCGAGACTGAGATGTTCC -CCAACATCGAGACTGAGAATTCCC -CCAACATCGAGACTGAGATTCTCG -CCAACATCGAGACTGAGATAGACG -CCAACATCGAGACTGAGAGTAACG -CCAACATCGAGACTGAGAACTTCG -CCAACATCGAGACTGAGATACGCA -CCAACATCGAGACTGAGACTTGCA -CCAACATCGAGACTGAGACGAACA -CCAACATCGAGACTGAGACAGTCA -CCAACATCGAGACTGAGAGATCCA -CCAACATCGAGACTGAGAACGACA -CCAACATCGAGACTGAGAAGCTCA -CCAACATCGAGACTGAGATCACGT -CCAACATCGAGACTGAGACGTAGT -CCAACATCGAGACTGAGAGTCAGT -CCAACATCGAGACTGAGAGAAGGT -CCAACATCGAGACTGAGAAACCGT -CCAACATCGAGACTGAGATTGTGC -CCAACATCGAGACTGAGACTAAGC -CCAACATCGAGACTGAGAACTAGC -CCAACATCGAGACTGAGAAGATGC -CCAACATCGAGACTGAGATGAAGG -CCAACATCGAGACTGAGACAATGG -CCAACATCGAGACTGAGAATGAGG -CCAACATCGAGACTGAGAAATGGG -CCAACATCGAGACTGAGATCCTGA -CCAACATCGAGACTGAGATAGCGA -CCAACATCGAGACTGAGACACAGA -CCAACATCGAGACTGAGAGCAAGA -CCAACATCGAGACTGAGAGGTTGA -CCAACATCGAGACTGAGATCCGAT -CCAACATCGAGACTGAGATGGCAT -CCAACATCGAGACTGAGACGAGAT -CCAACATCGAGACTGAGATACCAC -CCAACATCGAGACTGAGACAGAAC -CCAACATCGAGACTGAGAGTCTAC -CCAACATCGAGACTGAGAACGTAC -CCAACATCGAGACTGAGAAGTGAC -CCAACATCGAGACTGAGACTGTAG -CCAACATCGAGACTGAGACCTAAG -CCAACATCGAGACTGAGAGTTCAG -CCAACATCGAGACTGAGAGCATAG -CCAACATCGAGACTGAGAGACAAG -CCAACATCGAGACTGAGAAAGCAG -CCAACATCGAGACTGAGACGTCAA -CCAACATCGAGACTGAGAGCTGAA -CCAACATCGAGACTGAGAAGTACG -CCAACATCGAGACTGAGAATCCGA -CCAACATCGAGACTGAGAATGGGA -CCAACATCGAGACTGAGAGTGCAA -CCAACATCGAGACTGAGAGAGGAA -CCAACATCGAGACTGAGACAGGTA -CCAACATCGAGACTGAGAGACTCT -CCAACATCGAGACTGAGAAGTCCT -CCAACATCGAGACTGAGATAAGCC -CCAACATCGAGACTGAGAATAGCC -CCAACATCGAGACTGAGATAACCG -CCAACATCGAGACTGAGAATGCCA -CCAACATCGAGAGTATCGGGAAAC -CCAACATCGAGAGTATCGAACACC -CCAACATCGAGAGTATCGATCGAG -CCAACATCGAGAGTATCGCTCCTT -CCAACATCGAGAGTATCGCCTGTT -CCAACATCGAGAGTATCGCGGTTT -CCAACATCGAGAGTATCGGTGGTT -CCAACATCGAGAGTATCGGCCTTT -CCAACATCGAGAGTATCGGGTCTT -CCAACATCGAGAGTATCGACGCTT -CCAACATCGAGAGTATCGAGCGTT -CCAACATCGAGAGTATCGTTCGTC -CCAACATCGAGAGTATCGTCTCTC -CCAACATCGAGAGTATCGTGGATC -CCAACATCGAGAGTATCGCACTTC -CCAACATCGAGAGTATCGGTACTC -CCAACATCGAGAGTATCGGATGTC -CCAACATCGAGAGTATCGACAGTC -CCAACATCGAGAGTATCGTTGCTG -CCAACATCGAGAGTATCGTCCATG -CCAACATCGAGAGTATCGTGTGTG -CCAACATCGAGAGTATCGCTAGTG -CCAACATCGAGAGTATCGCATCTG -CCAACATCGAGAGTATCGGAGTTG -CCAACATCGAGAGTATCGAGACTG -CCAACATCGAGAGTATCGTCGGTA -CCAACATCGAGAGTATCGTGCCTA -CCAACATCGAGAGTATCGCCACTA -CCAACATCGAGAGTATCGGGAGTA -CCAACATCGAGAGTATCGTCGTCT -CCAACATCGAGAGTATCGTGCACT -CCAACATCGAGAGTATCGCTGACT -CCAACATCGAGAGTATCGCAACCT -CCAACATCGAGAGTATCGGCTACT -CCAACATCGAGAGTATCGGGATCT -CCAACATCGAGAGTATCGAAGGCT -CCAACATCGAGAGTATCGTCAACC -CCAACATCGAGAGTATCGTGTTCC -CCAACATCGAGAGTATCGATTCCC -CCAACATCGAGAGTATCGTTCTCG -CCAACATCGAGAGTATCGTAGACG -CCAACATCGAGAGTATCGGTAACG -CCAACATCGAGAGTATCGACTTCG -CCAACATCGAGAGTATCGTACGCA -CCAACATCGAGAGTATCGCTTGCA -CCAACATCGAGAGTATCGCGAACA -CCAACATCGAGAGTATCGCAGTCA -CCAACATCGAGAGTATCGGATCCA -CCAACATCGAGAGTATCGACGACA -CCAACATCGAGAGTATCGAGCTCA -CCAACATCGAGAGTATCGTCACGT -CCAACATCGAGAGTATCGCGTAGT -CCAACATCGAGAGTATCGGTCAGT -CCAACATCGAGAGTATCGGAAGGT -CCAACATCGAGAGTATCGAACCGT -CCAACATCGAGAGTATCGTTGTGC -CCAACATCGAGAGTATCGCTAAGC -CCAACATCGAGAGTATCGACTAGC -CCAACATCGAGAGTATCGAGATGC -CCAACATCGAGAGTATCGTGAAGG -CCAACATCGAGAGTATCGCAATGG -CCAACATCGAGAGTATCGATGAGG -CCAACATCGAGAGTATCGAATGGG -CCAACATCGAGAGTATCGTCCTGA -CCAACATCGAGAGTATCGTAGCGA -CCAACATCGAGAGTATCGCACAGA -CCAACATCGAGAGTATCGGCAAGA -CCAACATCGAGAGTATCGGGTTGA -CCAACATCGAGAGTATCGTCCGAT -CCAACATCGAGAGTATCGTGGCAT -CCAACATCGAGAGTATCGCGAGAT -CCAACATCGAGAGTATCGTACCAC -CCAACATCGAGAGTATCGCAGAAC -CCAACATCGAGAGTATCGGTCTAC -CCAACATCGAGAGTATCGACGTAC -CCAACATCGAGAGTATCGAGTGAC -CCAACATCGAGAGTATCGCTGTAG -CCAACATCGAGAGTATCGCCTAAG -CCAACATCGAGAGTATCGGTTCAG -CCAACATCGAGAGTATCGGCATAG -CCAACATCGAGAGTATCGGACAAG -CCAACATCGAGAGTATCGAAGCAG -CCAACATCGAGAGTATCGCGTCAA -CCAACATCGAGAGTATCGGCTGAA -CCAACATCGAGAGTATCGAGTACG -CCAACATCGAGAGTATCGATCCGA -CCAACATCGAGAGTATCGATGGGA -CCAACATCGAGAGTATCGGTGCAA -CCAACATCGAGAGTATCGGAGGAA -CCAACATCGAGAGTATCGCAGGTA -CCAACATCGAGAGTATCGGACTCT -CCAACATCGAGAGTATCGAGTCCT -CCAACATCGAGAGTATCGTAAGCC -CCAACATCGAGAGTATCGATAGCC -CCAACATCGAGAGTATCGTAACCG -CCAACATCGAGAGTATCGATGCCA -CCAACATCGAGACTATGCGGAAAC -CCAACATCGAGACTATGCAACACC -CCAACATCGAGACTATGCATCGAG -CCAACATCGAGACTATGCCTCCTT -CCAACATCGAGACTATGCCCTGTT -CCAACATCGAGACTATGCCGGTTT -CCAACATCGAGACTATGCGTGGTT -CCAACATCGAGACTATGCGCCTTT -CCAACATCGAGACTATGCGGTCTT -CCAACATCGAGACTATGCACGCTT -CCAACATCGAGACTATGCAGCGTT -CCAACATCGAGACTATGCTTCGTC -CCAACATCGAGACTATGCTCTCTC -CCAACATCGAGACTATGCTGGATC -CCAACATCGAGACTATGCCACTTC -CCAACATCGAGACTATGCGTACTC -CCAACATCGAGACTATGCGATGTC -CCAACATCGAGACTATGCACAGTC -CCAACATCGAGACTATGCTTGCTG -CCAACATCGAGACTATGCTCCATG -CCAACATCGAGACTATGCTGTGTG -CCAACATCGAGACTATGCCTAGTG -CCAACATCGAGACTATGCCATCTG -CCAACATCGAGACTATGCGAGTTG -CCAACATCGAGACTATGCAGACTG -CCAACATCGAGACTATGCTCGGTA -CCAACATCGAGACTATGCTGCCTA -CCAACATCGAGACTATGCCCACTA -CCAACATCGAGACTATGCGGAGTA -CCAACATCGAGACTATGCTCGTCT -CCAACATCGAGACTATGCTGCACT -CCAACATCGAGACTATGCCTGACT -CCAACATCGAGACTATGCCAACCT -CCAACATCGAGACTATGCGCTACT -CCAACATCGAGACTATGCGGATCT -CCAACATCGAGACTATGCAAGGCT -CCAACATCGAGACTATGCTCAACC -CCAACATCGAGACTATGCTGTTCC -CCAACATCGAGACTATGCATTCCC -CCAACATCGAGACTATGCTTCTCG -CCAACATCGAGACTATGCTAGACG -CCAACATCGAGACTATGCGTAACG -CCAACATCGAGACTATGCACTTCG -CCAACATCGAGACTATGCTACGCA -CCAACATCGAGACTATGCCTTGCA -CCAACATCGAGACTATGCCGAACA -CCAACATCGAGACTATGCCAGTCA -CCAACATCGAGACTATGCGATCCA -CCAACATCGAGACTATGCACGACA -CCAACATCGAGACTATGCAGCTCA -CCAACATCGAGACTATGCTCACGT -CCAACATCGAGACTATGCCGTAGT -CCAACATCGAGACTATGCGTCAGT -CCAACATCGAGACTATGCGAAGGT -CCAACATCGAGACTATGCAACCGT -CCAACATCGAGACTATGCTTGTGC -CCAACATCGAGACTATGCCTAAGC -CCAACATCGAGACTATGCACTAGC -CCAACATCGAGACTATGCAGATGC -CCAACATCGAGACTATGCTGAAGG -CCAACATCGAGACTATGCCAATGG -CCAACATCGAGACTATGCATGAGG -CCAACATCGAGACTATGCAATGGG -CCAACATCGAGACTATGCTCCTGA -CCAACATCGAGACTATGCTAGCGA -CCAACATCGAGACTATGCCACAGA -CCAACATCGAGACTATGCGCAAGA -CCAACATCGAGACTATGCGGTTGA -CCAACATCGAGACTATGCTCCGAT -CCAACATCGAGACTATGCTGGCAT -CCAACATCGAGACTATGCCGAGAT -CCAACATCGAGACTATGCTACCAC -CCAACATCGAGACTATGCCAGAAC -CCAACATCGAGACTATGCGTCTAC -CCAACATCGAGACTATGCACGTAC -CCAACATCGAGACTATGCAGTGAC -CCAACATCGAGACTATGCCTGTAG -CCAACATCGAGACTATGCCCTAAG -CCAACATCGAGACTATGCGTTCAG -CCAACATCGAGACTATGCGCATAG -CCAACATCGAGACTATGCGACAAG -CCAACATCGAGACTATGCAAGCAG -CCAACATCGAGACTATGCCGTCAA -CCAACATCGAGACTATGCGCTGAA -CCAACATCGAGACTATGCAGTACG -CCAACATCGAGACTATGCATCCGA -CCAACATCGAGACTATGCATGGGA -CCAACATCGAGACTATGCGTGCAA -CCAACATCGAGACTATGCGAGGAA -CCAACATCGAGACTATGCCAGGTA -CCAACATCGAGACTATGCGACTCT -CCAACATCGAGACTATGCAGTCCT -CCAACATCGAGACTATGCTAAGCC -CCAACATCGAGACTATGCATAGCC -CCAACATCGAGACTATGCTAACCG -CCAACATCGAGACTATGCATGCCA -CCAACATCGAGACTACCAGGAAAC -CCAACATCGAGACTACCAAACACC -CCAACATCGAGACTACCAATCGAG -CCAACATCGAGACTACCACTCCTT -CCAACATCGAGACTACCACCTGTT -CCAACATCGAGACTACCACGGTTT -CCAACATCGAGACTACCAGTGGTT -CCAACATCGAGACTACCAGCCTTT -CCAACATCGAGACTACCAGGTCTT -CCAACATCGAGACTACCAACGCTT -CCAACATCGAGACTACCAAGCGTT -CCAACATCGAGACTACCATTCGTC -CCAACATCGAGACTACCATCTCTC -CCAACATCGAGACTACCATGGATC -CCAACATCGAGACTACCACACTTC -CCAACATCGAGACTACCAGTACTC -CCAACATCGAGACTACCAGATGTC -CCAACATCGAGACTACCAACAGTC -CCAACATCGAGACTACCATTGCTG -CCAACATCGAGACTACCATCCATG -CCAACATCGAGACTACCATGTGTG -CCAACATCGAGACTACCACTAGTG -CCAACATCGAGACTACCACATCTG -CCAACATCGAGACTACCAGAGTTG -CCAACATCGAGACTACCAAGACTG -CCAACATCGAGACTACCATCGGTA -CCAACATCGAGACTACCATGCCTA -CCAACATCGAGACTACCACCACTA -CCAACATCGAGACTACCAGGAGTA -CCAACATCGAGACTACCATCGTCT -CCAACATCGAGACTACCATGCACT -CCAACATCGAGACTACCACTGACT -CCAACATCGAGACTACCACAACCT -CCAACATCGAGACTACCAGCTACT -CCAACATCGAGACTACCAGGATCT -CCAACATCGAGACTACCAAAGGCT -CCAACATCGAGACTACCATCAACC -CCAACATCGAGACTACCATGTTCC -CCAACATCGAGACTACCAATTCCC -CCAACATCGAGACTACCATTCTCG -CCAACATCGAGACTACCATAGACG -CCAACATCGAGACTACCAGTAACG -CCAACATCGAGACTACCAACTTCG -CCAACATCGAGACTACCATACGCA -CCAACATCGAGACTACCACTTGCA -CCAACATCGAGACTACCACGAACA -CCAACATCGAGACTACCACAGTCA -CCAACATCGAGACTACCAGATCCA -CCAACATCGAGACTACCAACGACA -CCAACATCGAGACTACCAAGCTCA -CCAACATCGAGACTACCATCACGT -CCAACATCGAGACTACCACGTAGT -CCAACATCGAGACTACCAGTCAGT -CCAACATCGAGACTACCAGAAGGT -CCAACATCGAGACTACCAAACCGT -CCAACATCGAGACTACCATTGTGC -CCAACATCGAGACTACCACTAAGC -CCAACATCGAGACTACCAACTAGC -CCAACATCGAGACTACCAAGATGC -CCAACATCGAGACTACCATGAAGG -CCAACATCGAGACTACCACAATGG -CCAACATCGAGACTACCAATGAGG -CCAACATCGAGACTACCAAATGGG -CCAACATCGAGACTACCATCCTGA -CCAACATCGAGACTACCATAGCGA -CCAACATCGAGACTACCACACAGA -CCAACATCGAGACTACCAGCAAGA -CCAACATCGAGACTACCAGGTTGA -CCAACATCGAGACTACCATCCGAT -CCAACATCGAGACTACCATGGCAT -CCAACATCGAGACTACCACGAGAT -CCAACATCGAGACTACCATACCAC -CCAACATCGAGACTACCACAGAAC -CCAACATCGAGACTACCAGTCTAC -CCAACATCGAGACTACCAACGTAC -CCAACATCGAGACTACCAAGTGAC -CCAACATCGAGACTACCACTGTAG -CCAACATCGAGACTACCACCTAAG -CCAACATCGAGACTACCAGTTCAG -CCAACATCGAGACTACCAGCATAG -CCAACATCGAGACTACCAGACAAG -CCAACATCGAGACTACCAAAGCAG -CCAACATCGAGACTACCACGTCAA -CCAACATCGAGACTACCAGCTGAA -CCAACATCGAGACTACCAAGTACG -CCAACATCGAGACTACCAATCCGA -CCAACATCGAGACTACCAATGGGA -CCAACATCGAGACTACCAGTGCAA -CCAACATCGAGACTACCAGAGGAA -CCAACATCGAGACTACCACAGGTA -CCAACATCGAGACTACCAGACTCT -CCAACATCGAGACTACCAAGTCCT -CCAACATCGAGACTACCATAAGCC -CCAACATCGAGACTACCAATAGCC -CCAACATCGAGACTACCATAACCG -CCAACATCGAGACTACCAATGCCA -CCAACATCGAGAGTAGGAGGAAAC -CCAACATCGAGAGTAGGAAACACC -CCAACATCGAGAGTAGGAATCGAG -CCAACATCGAGAGTAGGACTCCTT -CCAACATCGAGAGTAGGACCTGTT -CCAACATCGAGAGTAGGACGGTTT -CCAACATCGAGAGTAGGAGTGGTT -CCAACATCGAGAGTAGGAGCCTTT -CCAACATCGAGAGTAGGAGGTCTT -CCAACATCGAGAGTAGGAACGCTT -CCAACATCGAGAGTAGGAAGCGTT -CCAACATCGAGAGTAGGATTCGTC -CCAACATCGAGAGTAGGATCTCTC -CCAACATCGAGAGTAGGATGGATC -CCAACATCGAGAGTAGGACACTTC -CCAACATCGAGAGTAGGAGTACTC -CCAACATCGAGAGTAGGAGATGTC -CCAACATCGAGAGTAGGAACAGTC -CCAACATCGAGAGTAGGATTGCTG -CCAACATCGAGAGTAGGATCCATG -CCAACATCGAGAGTAGGATGTGTG -CCAACATCGAGAGTAGGACTAGTG -CCAACATCGAGAGTAGGACATCTG -CCAACATCGAGAGTAGGAGAGTTG -CCAACATCGAGAGTAGGAAGACTG -CCAACATCGAGAGTAGGATCGGTA -CCAACATCGAGAGTAGGATGCCTA -CCAACATCGAGAGTAGGACCACTA -CCAACATCGAGAGTAGGAGGAGTA -CCAACATCGAGAGTAGGATCGTCT -CCAACATCGAGAGTAGGATGCACT -CCAACATCGAGAGTAGGACTGACT -CCAACATCGAGAGTAGGACAACCT -CCAACATCGAGAGTAGGAGCTACT -CCAACATCGAGAGTAGGAGGATCT -CCAACATCGAGAGTAGGAAAGGCT -CCAACATCGAGAGTAGGATCAACC -CCAACATCGAGAGTAGGATGTTCC -CCAACATCGAGAGTAGGAATTCCC -CCAACATCGAGAGTAGGATTCTCG -CCAACATCGAGAGTAGGATAGACG -CCAACATCGAGAGTAGGAGTAACG -CCAACATCGAGAGTAGGAACTTCG -CCAACATCGAGAGTAGGATACGCA -CCAACATCGAGAGTAGGACTTGCA -CCAACATCGAGAGTAGGACGAACA -CCAACATCGAGAGTAGGACAGTCA -CCAACATCGAGAGTAGGAGATCCA -CCAACATCGAGAGTAGGAACGACA -CCAACATCGAGAGTAGGAAGCTCA -CCAACATCGAGAGTAGGATCACGT -CCAACATCGAGAGTAGGACGTAGT -CCAACATCGAGAGTAGGAGTCAGT -CCAACATCGAGAGTAGGAGAAGGT -CCAACATCGAGAGTAGGAAACCGT -CCAACATCGAGAGTAGGATTGTGC -CCAACATCGAGAGTAGGACTAAGC -CCAACATCGAGAGTAGGAACTAGC -CCAACATCGAGAGTAGGAAGATGC -CCAACATCGAGAGTAGGATGAAGG -CCAACATCGAGAGTAGGACAATGG -CCAACATCGAGAGTAGGAATGAGG -CCAACATCGAGAGTAGGAAATGGG -CCAACATCGAGAGTAGGATCCTGA -CCAACATCGAGAGTAGGATAGCGA -CCAACATCGAGAGTAGGACACAGA -CCAACATCGAGAGTAGGAGCAAGA -CCAACATCGAGAGTAGGAGGTTGA -CCAACATCGAGAGTAGGATCCGAT -CCAACATCGAGAGTAGGATGGCAT -CCAACATCGAGAGTAGGACGAGAT -CCAACATCGAGAGTAGGATACCAC -CCAACATCGAGAGTAGGACAGAAC -CCAACATCGAGAGTAGGAGTCTAC -CCAACATCGAGAGTAGGAACGTAC -CCAACATCGAGAGTAGGAAGTGAC -CCAACATCGAGAGTAGGACTGTAG -CCAACATCGAGAGTAGGACCTAAG -CCAACATCGAGAGTAGGAGTTCAG -CCAACATCGAGAGTAGGAGCATAG -CCAACATCGAGAGTAGGAGACAAG -CCAACATCGAGAGTAGGAAAGCAG -CCAACATCGAGAGTAGGACGTCAA -CCAACATCGAGAGTAGGAGCTGAA -CCAACATCGAGAGTAGGAAGTACG -CCAACATCGAGAGTAGGAATCCGA -CCAACATCGAGAGTAGGAATGGGA -CCAACATCGAGAGTAGGAGTGCAA -CCAACATCGAGAGTAGGAGAGGAA -CCAACATCGAGAGTAGGACAGGTA -CCAACATCGAGAGTAGGAGACTCT -CCAACATCGAGAGTAGGAAGTCCT -CCAACATCGAGAGTAGGATAAGCC -CCAACATCGAGAGTAGGAATAGCC -CCAACATCGAGAGTAGGATAACCG -CCAACATCGAGAGTAGGAATGCCA -CCAACATCGAGATCTTCGGGAAAC -CCAACATCGAGATCTTCGAACACC -CCAACATCGAGATCTTCGATCGAG -CCAACATCGAGATCTTCGCTCCTT -CCAACATCGAGATCTTCGCCTGTT -CCAACATCGAGATCTTCGCGGTTT -CCAACATCGAGATCTTCGGTGGTT -CCAACATCGAGATCTTCGGCCTTT -CCAACATCGAGATCTTCGGGTCTT -CCAACATCGAGATCTTCGACGCTT -CCAACATCGAGATCTTCGAGCGTT -CCAACATCGAGATCTTCGTTCGTC -CCAACATCGAGATCTTCGTCTCTC -CCAACATCGAGATCTTCGTGGATC -CCAACATCGAGATCTTCGCACTTC -CCAACATCGAGATCTTCGGTACTC -CCAACATCGAGATCTTCGGATGTC -CCAACATCGAGATCTTCGACAGTC -CCAACATCGAGATCTTCGTTGCTG -CCAACATCGAGATCTTCGTCCATG -CCAACATCGAGATCTTCGTGTGTG -CCAACATCGAGATCTTCGCTAGTG -CCAACATCGAGATCTTCGCATCTG -CCAACATCGAGATCTTCGGAGTTG -CCAACATCGAGATCTTCGAGACTG -CCAACATCGAGATCTTCGTCGGTA -CCAACATCGAGATCTTCGTGCCTA -CCAACATCGAGATCTTCGCCACTA -CCAACATCGAGATCTTCGGGAGTA -CCAACATCGAGATCTTCGTCGTCT -CCAACATCGAGATCTTCGTGCACT -CCAACATCGAGATCTTCGCTGACT -CCAACATCGAGATCTTCGCAACCT -CCAACATCGAGATCTTCGGCTACT -CCAACATCGAGATCTTCGGGATCT -CCAACATCGAGATCTTCGAAGGCT -CCAACATCGAGATCTTCGTCAACC -CCAACATCGAGATCTTCGTGTTCC -CCAACATCGAGATCTTCGATTCCC -CCAACATCGAGATCTTCGTTCTCG -CCAACATCGAGATCTTCGTAGACG -CCAACATCGAGATCTTCGGTAACG -CCAACATCGAGATCTTCGACTTCG -CCAACATCGAGATCTTCGTACGCA -CCAACATCGAGATCTTCGCTTGCA -CCAACATCGAGATCTTCGCGAACA -CCAACATCGAGATCTTCGCAGTCA -CCAACATCGAGATCTTCGGATCCA -CCAACATCGAGATCTTCGACGACA -CCAACATCGAGATCTTCGAGCTCA -CCAACATCGAGATCTTCGTCACGT -CCAACATCGAGATCTTCGCGTAGT -CCAACATCGAGATCTTCGGTCAGT -CCAACATCGAGATCTTCGGAAGGT -CCAACATCGAGATCTTCGAACCGT -CCAACATCGAGATCTTCGTTGTGC -CCAACATCGAGATCTTCGCTAAGC -CCAACATCGAGATCTTCGACTAGC -CCAACATCGAGATCTTCGAGATGC -CCAACATCGAGATCTTCGTGAAGG -CCAACATCGAGATCTTCGCAATGG -CCAACATCGAGATCTTCGATGAGG -CCAACATCGAGATCTTCGAATGGG -CCAACATCGAGATCTTCGTCCTGA -CCAACATCGAGATCTTCGTAGCGA -CCAACATCGAGATCTTCGCACAGA -CCAACATCGAGATCTTCGGCAAGA -CCAACATCGAGATCTTCGGGTTGA -CCAACATCGAGATCTTCGTCCGAT -CCAACATCGAGATCTTCGTGGCAT -CCAACATCGAGATCTTCGCGAGAT -CCAACATCGAGATCTTCGTACCAC -CCAACATCGAGATCTTCGCAGAAC -CCAACATCGAGATCTTCGGTCTAC -CCAACATCGAGATCTTCGACGTAC -CCAACATCGAGATCTTCGAGTGAC -CCAACATCGAGATCTTCGCTGTAG -CCAACATCGAGATCTTCGCCTAAG -CCAACATCGAGATCTTCGGTTCAG -CCAACATCGAGATCTTCGGCATAG -CCAACATCGAGATCTTCGGACAAG -CCAACATCGAGATCTTCGAAGCAG -CCAACATCGAGATCTTCGCGTCAA -CCAACATCGAGATCTTCGGCTGAA -CCAACATCGAGATCTTCGAGTACG -CCAACATCGAGATCTTCGATCCGA -CCAACATCGAGATCTTCGATGGGA -CCAACATCGAGATCTTCGGTGCAA -CCAACATCGAGATCTTCGGAGGAA -CCAACATCGAGATCTTCGCAGGTA -CCAACATCGAGATCTTCGGACTCT -CCAACATCGAGATCTTCGAGTCCT -CCAACATCGAGATCTTCGTAAGCC -CCAACATCGAGATCTTCGATAGCC -CCAACATCGAGATCTTCGTAACCG -CCAACATCGAGATCTTCGATGCCA -CCAACATCGAGAACTTGCGGAAAC -CCAACATCGAGAACTTGCAACACC -CCAACATCGAGAACTTGCATCGAG -CCAACATCGAGAACTTGCCTCCTT -CCAACATCGAGAACTTGCCCTGTT -CCAACATCGAGAACTTGCCGGTTT -CCAACATCGAGAACTTGCGTGGTT -CCAACATCGAGAACTTGCGCCTTT -CCAACATCGAGAACTTGCGGTCTT -CCAACATCGAGAACTTGCACGCTT -CCAACATCGAGAACTTGCAGCGTT -CCAACATCGAGAACTTGCTTCGTC -CCAACATCGAGAACTTGCTCTCTC -CCAACATCGAGAACTTGCTGGATC -CCAACATCGAGAACTTGCCACTTC -CCAACATCGAGAACTTGCGTACTC -CCAACATCGAGAACTTGCGATGTC -CCAACATCGAGAACTTGCACAGTC -CCAACATCGAGAACTTGCTTGCTG -CCAACATCGAGAACTTGCTCCATG -CCAACATCGAGAACTTGCTGTGTG -CCAACATCGAGAACTTGCCTAGTG -CCAACATCGAGAACTTGCCATCTG -CCAACATCGAGAACTTGCGAGTTG -CCAACATCGAGAACTTGCAGACTG -CCAACATCGAGAACTTGCTCGGTA -CCAACATCGAGAACTTGCTGCCTA -CCAACATCGAGAACTTGCCCACTA -CCAACATCGAGAACTTGCGGAGTA -CCAACATCGAGAACTTGCTCGTCT -CCAACATCGAGAACTTGCTGCACT -CCAACATCGAGAACTTGCCTGACT -CCAACATCGAGAACTTGCCAACCT -CCAACATCGAGAACTTGCGCTACT -CCAACATCGAGAACTTGCGGATCT -CCAACATCGAGAACTTGCAAGGCT -CCAACATCGAGAACTTGCTCAACC -CCAACATCGAGAACTTGCTGTTCC -CCAACATCGAGAACTTGCATTCCC -CCAACATCGAGAACTTGCTTCTCG -CCAACATCGAGAACTTGCTAGACG -CCAACATCGAGAACTTGCGTAACG -CCAACATCGAGAACTTGCACTTCG -CCAACATCGAGAACTTGCTACGCA -CCAACATCGAGAACTTGCCTTGCA -CCAACATCGAGAACTTGCCGAACA -CCAACATCGAGAACTTGCCAGTCA -CCAACATCGAGAACTTGCGATCCA -CCAACATCGAGAACTTGCACGACA -CCAACATCGAGAACTTGCAGCTCA -CCAACATCGAGAACTTGCTCACGT -CCAACATCGAGAACTTGCCGTAGT -CCAACATCGAGAACTTGCGTCAGT -CCAACATCGAGAACTTGCGAAGGT -CCAACATCGAGAACTTGCAACCGT -CCAACATCGAGAACTTGCTTGTGC -CCAACATCGAGAACTTGCCTAAGC -CCAACATCGAGAACTTGCACTAGC -CCAACATCGAGAACTTGCAGATGC -CCAACATCGAGAACTTGCTGAAGG -CCAACATCGAGAACTTGCCAATGG -CCAACATCGAGAACTTGCATGAGG -CCAACATCGAGAACTTGCAATGGG -CCAACATCGAGAACTTGCTCCTGA -CCAACATCGAGAACTTGCTAGCGA -CCAACATCGAGAACTTGCCACAGA -CCAACATCGAGAACTTGCGCAAGA -CCAACATCGAGAACTTGCGGTTGA -CCAACATCGAGAACTTGCTCCGAT -CCAACATCGAGAACTTGCTGGCAT -CCAACATCGAGAACTTGCCGAGAT -CCAACATCGAGAACTTGCTACCAC -CCAACATCGAGAACTTGCCAGAAC -CCAACATCGAGAACTTGCGTCTAC -CCAACATCGAGAACTTGCACGTAC -CCAACATCGAGAACTTGCAGTGAC -CCAACATCGAGAACTTGCCTGTAG -CCAACATCGAGAACTTGCCCTAAG -CCAACATCGAGAACTTGCGTTCAG -CCAACATCGAGAACTTGCGCATAG -CCAACATCGAGAACTTGCGACAAG -CCAACATCGAGAACTTGCAAGCAG -CCAACATCGAGAACTTGCCGTCAA -CCAACATCGAGAACTTGCGCTGAA -CCAACATCGAGAACTTGCAGTACG -CCAACATCGAGAACTTGCATCCGA -CCAACATCGAGAACTTGCATGGGA -CCAACATCGAGAACTTGCGTGCAA -CCAACATCGAGAACTTGCGAGGAA -CCAACATCGAGAACTTGCCAGGTA -CCAACATCGAGAACTTGCGACTCT -CCAACATCGAGAACTTGCAGTCCT -CCAACATCGAGAACTTGCTAAGCC -CCAACATCGAGAACTTGCATAGCC -CCAACATCGAGAACTTGCTAACCG -CCAACATCGAGAACTTGCATGCCA -CCAACATCGAGAACTCTGGGAAAC -CCAACATCGAGAACTCTGAACACC -CCAACATCGAGAACTCTGATCGAG -CCAACATCGAGAACTCTGCTCCTT -CCAACATCGAGAACTCTGCCTGTT -CCAACATCGAGAACTCTGCGGTTT -CCAACATCGAGAACTCTGGTGGTT -CCAACATCGAGAACTCTGGCCTTT -CCAACATCGAGAACTCTGGGTCTT -CCAACATCGAGAACTCTGACGCTT -CCAACATCGAGAACTCTGAGCGTT -CCAACATCGAGAACTCTGTTCGTC -CCAACATCGAGAACTCTGTCTCTC -CCAACATCGAGAACTCTGTGGATC -CCAACATCGAGAACTCTGCACTTC -CCAACATCGAGAACTCTGGTACTC -CCAACATCGAGAACTCTGGATGTC -CCAACATCGAGAACTCTGACAGTC -CCAACATCGAGAACTCTGTTGCTG -CCAACATCGAGAACTCTGTCCATG -CCAACATCGAGAACTCTGTGTGTG -CCAACATCGAGAACTCTGCTAGTG -CCAACATCGAGAACTCTGCATCTG -CCAACATCGAGAACTCTGGAGTTG -CCAACATCGAGAACTCTGAGACTG -CCAACATCGAGAACTCTGTCGGTA -CCAACATCGAGAACTCTGTGCCTA -CCAACATCGAGAACTCTGCCACTA -CCAACATCGAGAACTCTGGGAGTA -CCAACATCGAGAACTCTGTCGTCT -CCAACATCGAGAACTCTGTGCACT -CCAACATCGAGAACTCTGCTGACT -CCAACATCGAGAACTCTGCAACCT -CCAACATCGAGAACTCTGGCTACT -CCAACATCGAGAACTCTGGGATCT -CCAACATCGAGAACTCTGAAGGCT -CCAACATCGAGAACTCTGTCAACC -CCAACATCGAGAACTCTGTGTTCC -CCAACATCGAGAACTCTGATTCCC -CCAACATCGAGAACTCTGTTCTCG -CCAACATCGAGAACTCTGTAGACG -CCAACATCGAGAACTCTGGTAACG -CCAACATCGAGAACTCTGACTTCG -CCAACATCGAGAACTCTGTACGCA -CCAACATCGAGAACTCTGCTTGCA -CCAACATCGAGAACTCTGCGAACA -CCAACATCGAGAACTCTGCAGTCA -CCAACATCGAGAACTCTGGATCCA -CCAACATCGAGAACTCTGACGACA -CCAACATCGAGAACTCTGAGCTCA -CCAACATCGAGAACTCTGTCACGT -CCAACATCGAGAACTCTGCGTAGT -CCAACATCGAGAACTCTGGTCAGT -CCAACATCGAGAACTCTGGAAGGT -CCAACATCGAGAACTCTGAACCGT -CCAACATCGAGAACTCTGTTGTGC -CCAACATCGAGAACTCTGCTAAGC -CCAACATCGAGAACTCTGACTAGC -CCAACATCGAGAACTCTGAGATGC -CCAACATCGAGAACTCTGTGAAGG -CCAACATCGAGAACTCTGCAATGG -CCAACATCGAGAACTCTGATGAGG -CCAACATCGAGAACTCTGAATGGG -CCAACATCGAGAACTCTGTCCTGA -CCAACATCGAGAACTCTGTAGCGA -CCAACATCGAGAACTCTGCACAGA -CCAACATCGAGAACTCTGGCAAGA -CCAACATCGAGAACTCTGGGTTGA -CCAACATCGAGAACTCTGTCCGAT -CCAACATCGAGAACTCTGTGGCAT -CCAACATCGAGAACTCTGCGAGAT -CCAACATCGAGAACTCTGTACCAC -CCAACATCGAGAACTCTGCAGAAC -CCAACATCGAGAACTCTGGTCTAC -CCAACATCGAGAACTCTGACGTAC -CCAACATCGAGAACTCTGAGTGAC -CCAACATCGAGAACTCTGCTGTAG -CCAACATCGAGAACTCTGCCTAAG -CCAACATCGAGAACTCTGGTTCAG -CCAACATCGAGAACTCTGGCATAG -CCAACATCGAGAACTCTGGACAAG -CCAACATCGAGAACTCTGAAGCAG -CCAACATCGAGAACTCTGCGTCAA -CCAACATCGAGAACTCTGGCTGAA -CCAACATCGAGAACTCTGAGTACG -CCAACATCGAGAACTCTGATCCGA -CCAACATCGAGAACTCTGATGGGA -CCAACATCGAGAACTCTGGTGCAA -CCAACATCGAGAACTCTGGAGGAA -CCAACATCGAGAACTCTGCAGGTA -CCAACATCGAGAACTCTGGACTCT -CCAACATCGAGAACTCTGAGTCCT -CCAACATCGAGAACTCTGTAAGCC -CCAACATCGAGAACTCTGATAGCC -CCAACATCGAGAACTCTGTAACCG -CCAACATCGAGAACTCTGATGCCA -CCAACATCGAGACCTCAAGGAAAC -CCAACATCGAGACCTCAAAACACC -CCAACATCGAGACCTCAAATCGAG -CCAACATCGAGACCTCAACTCCTT -CCAACATCGAGACCTCAACCTGTT -CCAACATCGAGACCTCAACGGTTT -CCAACATCGAGACCTCAAGTGGTT -CCAACATCGAGACCTCAAGCCTTT -CCAACATCGAGACCTCAAGGTCTT -CCAACATCGAGACCTCAAACGCTT -CCAACATCGAGACCTCAAAGCGTT -CCAACATCGAGACCTCAATTCGTC -CCAACATCGAGACCTCAATCTCTC -CCAACATCGAGACCTCAATGGATC -CCAACATCGAGACCTCAACACTTC -CCAACATCGAGACCTCAAGTACTC -CCAACATCGAGACCTCAAGATGTC -CCAACATCGAGACCTCAAACAGTC -CCAACATCGAGACCTCAATTGCTG -CCAACATCGAGACCTCAATCCATG -CCAACATCGAGACCTCAATGTGTG -CCAACATCGAGACCTCAACTAGTG -CCAACATCGAGACCTCAACATCTG -CCAACATCGAGACCTCAAGAGTTG -CCAACATCGAGACCTCAAAGACTG -CCAACATCGAGACCTCAATCGGTA -CCAACATCGAGACCTCAATGCCTA -CCAACATCGAGACCTCAACCACTA -CCAACATCGAGACCTCAAGGAGTA -CCAACATCGAGACCTCAATCGTCT -CCAACATCGAGACCTCAATGCACT -CCAACATCGAGACCTCAACTGACT -CCAACATCGAGACCTCAACAACCT -CCAACATCGAGACCTCAAGCTACT -CCAACATCGAGACCTCAAGGATCT -CCAACATCGAGACCTCAAAAGGCT -CCAACATCGAGACCTCAATCAACC -CCAACATCGAGACCTCAATGTTCC -CCAACATCGAGACCTCAAATTCCC -CCAACATCGAGACCTCAATTCTCG -CCAACATCGAGACCTCAATAGACG -CCAACATCGAGACCTCAAGTAACG -CCAACATCGAGACCTCAAACTTCG -CCAACATCGAGACCTCAATACGCA -CCAACATCGAGACCTCAACTTGCA -CCAACATCGAGACCTCAACGAACA -CCAACATCGAGACCTCAACAGTCA -CCAACATCGAGACCTCAAGATCCA -CCAACATCGAGACCTCAAACGACA -CCAACATCGAGACCTCAAAGCTCA -CCAACATCGAGACCTCAATCACGT -CCAACATCGAGACCTCAACGTAGT -CCAACATCGAGACCTCAAGTCAGT -CCAACATCGAGACCTCAAGAAGGT -CCAACATCGAGACCTCAAAACCGT -CCAACATCGAGACCTCAATTGTGC -CCAACATCGAGACCTCAACTAAGC -CCAACATCGAGACCTCAAACTAGC -CCAACATCGAGACCTCAAAGATGC -CCAACATCGAGACCTCAATGAAGG -CCAACATCGAGACCTCAACAATGG -CCAACATCGAGACCTCAAATGAGG -CCAACATCGAGACCTCAAAATGGG -CCAACATCGAGACCTCAATCCTGA -CCAACATCGAGACCTCAATAGCGA -CCAACATCGAGACCTCAACACAGA -CCAACATCGAGACCTCAAGCAAGA -CCAACATCGAGACCTCAAGGTTGA -CCAACATCGAGACCTCAATCCGAT -CCAACATCGAGACCTCAATGGCAT -CCAACATCGAGACCTCAACGAGAT -CCAACATCGAGACCTCAATACCAC -CCAACATCGAGACCTCAACAGAAC -CCAACATCGAGACCTCAAGTCTAC -CCAACATCGAGACCTCAAACGTAC -CCAACATCGAGACCTCAAAGTGAC -CCAACATCGAGACCTCAACTGTAG -CCAACATCGAGACCTCAACCTAAG -CCAACATCGAGACCTCAAGTTCAG -CCAACATCGAGACCTCAAGCATAG -CCAACATCGAGACCTCAAGACAAG -CCAACATCGAGACCTCAAAAGCAG -CCAACATCGAGACCTCAACGTCAA -CCAACATCGAGACCTCAAGCTGAA -CCAACATCGAGACCTCAAAGTACG -CCAACATCGAGACCTCAAATCCGA -CCAACATCGAGACCTCAAATGGGA -CCAACATCGAGACCTCAAGTGCAA -CCAACATCGAGACCTCAAGAGGAA -CCAACATCGAGACCTCAACAGGTA -CCAACATCGAGACCTCAAGACTCT -CCAACATCGAGACCTCAAAGTCCT -CCAACATCGAGACCTCAATAAGCC -CCAACATCGAGACCTCAAATAGCC -CCAACATCGAGACCTCAATAACCG -CCAACATCGAGACCTCAAATGCCA -CCAACATCGAGAACTGCTGGAAAC -CCAACATCGAGAACTGCTAACACC -CCAACATCGAGAACTGCTATCGAG -CCAACATCGAGAACTGCTCTCCTT -CCAACATCGAGAACTGCTCCTGTT -CCAACATCGAGAACTGCTCGGTTT -CCAACATCGAGAACTGCTGTGGTT -CCAACATCGAGAACTGCTGCCTTT -CCAACATCGAGAACTGCTGGTCTT -CCAACATCGAGAACTGCTACGCTT -CCAACATCGAGAACTGCTAGCGTT -CCAACATCGAGAACTGCTTTCGTC -CCAACATCGAGAACTGCTTCTCTC -CCAACATCGAGAACTGCTTGGATC -CCAACATCGAGAACTGCTCACTTC -CCAACATCGAGAACTGCTGTACTC -CCAACATCGAGAACTGCTGATGTC -CCAACATCGAGAACTGCTACAGTC -CCAACATCGAGAACTGCTTTGCTG -CCAACATCGAGAACTGCTTCCATG -CCAACATCGAGAACTGCTTGTGTG -CCAACATCGAGAACTGCTCTAGTG -CCAACATCGAGAACTGCTCATCTG -CCAACATCGAGAACTGCTGAGTTG -CCAACATCGAGAACTGCTAGACTG -CCAACATCGAGAACTGCTTCGGTA -CCAACATCGAGAACTGCTTGCCTA -CCAACATCGAGAACTGCTCCACTA -CCAACATCGAGAACTGCTGGAGTA -CCAACATCGAGAACTGCTTCGTCT -CCAACATCGAGAACTGCTTGCACT -CCAACATCGAGAACTGCTCTGACT -CCAACATCGAGAACTGCTCAACCT -CCAACATCGAGAACTGCTGCTACT -CCAACATCGAGAACTGCTGGATCT -CCAACATCGAGAACTGCTAAGGCT -CCAACATCGAGAACTGCTTCAACC -CCAACATCGAGAACTGCTTGTTCC -CCAACATCGAGAACTGCTATTCCC -CCAACATCGAGAACTGCTTTCTCG -CCAACATCGAGAACTGCTTAGACG -CCAACATCGAGAACTGCTGTAACG -CCAACATCGAGAACTGCTACTTCG -CCAACATCGAGAACTGCTTACGCA -CCAACATCGAGAACTGCTCTTGCA -CCAACATCGAGAACTGCTCGAACA -CCAACATCGAGAACTGCTCAGTCA -CCAACATCGAGAACTGCTGATCCA -CCAACATCGAGAACTGCTACGACA -CCAACATCGAGAACTGCTAGCTCA -CCAACATCGAGAACTGCTTCACGT -CCAACATCGAGAACTGCTCGTAGT -CCAACATCGAGAACTGCTGTCAGT -CCAACATCGAGAACTGCTGAAGGT -CCAACATCGAGAACTGCTAACCGT -CCAACATCGAGAACTGCTTTGTGC -CCAACATCGAGAACTGCTCTAAGC -CCAACATCGAGAACTGCTACTAGC -CCAACATCGAGAACTGCTAGATGC -CCAACATCGAGAACTGCTTGAAGG -CCAACATCGAGAACTGCTCAATGG -CCAACATCGAGAACTGCTATGAGG -CCAACATCGAGAACTGCTAATGGG -CCAACATCGAGAACTGCTTCCTGA -CCAACATCGAGAACTGCTTAGCGA -CCAACATCGAGAACTGCTCACAGA -CCAACATCGAGAACTGCTGCAAGA -CCAACATCGAGAACTGCTGGTTGA -CCAACATCGAGAACTGCTTCCGAT -CCAACATCGAGAACTGCTTGGCAT -CCAACATCGAGAACTGCTCGAGAT -CCAACATCGAGAACTGCTTACCAC -CCAACATCGAGAACTGCTCAGAAC -CCAACATCGAGAACTGCTGTCTAC -CCAACATCGAGAACTGCTACGTAC -CCAACATCGAGAACTGCTAGTGAC -CCAACATCGAGAACTGCTCTGTAG -CCAACATCGAGAACTGCTCCTAAG -CCAACATCGAGAACTGCTGTTCAG -CCAACATCGAGAACTGCTGCATAG -CCAACATCGAGAACTGCTGACAAG -CCAACATCGAGAACTGCTAAGCAG -CCAACATCGAGAACTGCTCGTCAA -CCAACATCGAGAACTGCTGCTGAA -CCAACATCGAGAACTGCTAGTACG -CCAACATCGAGAACTGCTATCCGA -CCAACATCGAGAACTGCTATGGGA -CCAACATCGAGAACTGCTGTGCAA -CCAACATCGAGAACTGCTGAGGAA -CCAACATCGAGAACTGCTCAGGTA -CCAACATCGAGAACTGCTGACTCT -CCAACATCGAGAACTGCTAGTCCT -CCAACATCGAGAACTGCTTAAGCC -CCAACATCGAGAACTGCTATAGCC -CCAACATCGAGAACTGCTTAACCG -CCAACATCGAGAACTGCTATGCCA -CCAACATCGAGATCTGGAGGAAAC -CCAACATCGAGATCTGGAAACACC -CCAACATCGAGATCTGGAATCGAG -CCAACATCGAGATCTGGACTCCTT -CCAACATCGAGATCTGGACCTGTT -CCAACATCGAGATCTGGACGGTTT -CCAACATCGAGATCTGGAGTGGTT -CCAACATCGAGATCTGGAGCCTTT -CCAACATCGAGATCTGGAGGTCTT -CCAACATCGAGATCTGGAACGCTT -CCAACATCGAGATCTGGAAGCGTT -CCAACATCGAGATCTGGATTCGTC -CCAACATCGAGATCTGGATCTCTC -CCAACATCGAGATCTGGATGGATC -CCAACATCGAGATCTGGACACTTC -CCAACATCGAGATCTGGAGTACTC -CCAACATCGAGATCTGGAGATGTC -CCAACATCGAGATCTGGAACAGTC -CCAACATCGAGATCTGGATTGCTG -CCAACATCGAGATCTGGATCCATG -CCAACATCGAGATCTGGATGTGTG -CCAACATCGAGATCTGGACTAGTG -CCAACATCGAGATCTGGACATCTG -CCAACATCGAGATCTGGAGAGTTG -CCAACATCGAGATCTGGAAGACTG -CCAACATCGAGATCTGGATCGGTA -CCAACATCGAGATCTGGATGCCTA -CCAACATCGAGATCTGGACCACTA -CCAACATCGAGATCTGGAGGAGTA -CCAACATCGAGATCTGGATCGTCT -CCAACATCGAGATCTGGATGCACT -CCAACATCGAGATCTGGACTGACT -CCAACATCGAGATCTGGACAACCT -CCAACATCGAGATCTGGAGCTACT -CCAACATCGAGATCTGGAGGATCT -CCAACATCGAGATCTGGAAAGGCT -CCAACATCGAGATCTGGATCAACC -CCAACATCGAGATCTGGATGTTCC -CCAACATCGAGATCTGGAATTCCC -CCAACATCGAGATCTGGATTCTCG -CCAACATCGAGATCTGGATAGACG -CCAACATCGAGATCTGGAGTAACG -CCAACATCGAGATCTGGAACTTCG -CCAACATCGAGATCTGGATACGCA -CCAACATCGAGATCTGGACTTGCA -CCAACATCGAGATCTGGACGAACA -CCAACATCGAGATCTGGACAGTCA -CCAACATCGAGATCTGGAGATCCA -CCAACATCGAGATCTGGAACGACA -CCAACATCGAGATCTGGAAGCTCA -CCAACATCGAGATCTGGATCACGT -CCAACATCGAGATCTGGACGTAGT -CCAACATCGAGATCTGGAGTCAGT -CCAACATCGAGATCTGGAGAAGGT -CCAACATCGAGATCTGGAAACCGT -CCAACATCGAGATCTGGATTGTGC -CCAACATCGAGATCTGGACTAAGC -CCAACATCGAGATCTGGAACTAGC -CCAACATCGAGATCTGGAAGATGC -CCAACATCGAGATCTGGATGAAGG -CCAACATCGAGATCTGGACAATGG -CCAACATCGAGATCTGGAATGAGG -CCAACATCGAGATCTGGAAATGGG -CCAACATCGAGATCTGGATCCTGA -CCAACATCGAGATCTGGATAGCGA -CCAACATCGAGATCTGGACACAGA -CCAACATCGAGATCTGGAGCAAGA -CCAACATCGAGATCTGGAGGTTGA -CCAACATCGAGATCTGGATCCGAT -CCAACATCGAGATCTGGATGGCAT -CCAACATCGAGATCTGGACGAGAT -CCAACATCGAGATCTGGATACCAC -CCAACATCGAGATCTGGACAGAAC -CCAACATCGAGATCTGGAGTCTAC -CCAACATCGAGATCTGGAACGTAC -CCAACATCGAGATCTGGAAGTGAC -CCAACATCGAGATCTGGACTGTAG -CCAACATCGAGATCTGGACCTAAG -CCAACATCGAGATCTGGAGTTCAG -CCAACATCGAGATCTGGAGCATAG -CCAACATCGAGATCTGGAGACAAG -CCAACATCGAGATCTGGAAAGCAG -CCAACATCGAGATCTGGACGTCAA -CCAACATCGAGATCTGGAGCTGAA -CCAACATCGAGATCTGGAAGTACG -CCAACATCGAGATCTGGAATCCGA -CCAACATCGAGATCTGGAATGGGA -CCAACATCGAGATCTGGAGTGCAA -CCAACATCGAGATCTGGAGAGGAA -CCAACATCGAGATCTGGACAGGTA -CCAACATCGAGATCTGGAGACTCT -CCAACATCGAGATCTGGAAGTCCT -CCAACATCGAGATCTGGATAAGCC -CCAACATCGAGATCTGGAATAGCC -CCAACATCGAGATCTGGATAACCG -CCAACATCGAGATCTGGAATGCCA -CCAACATCGAGAGCTAAGGGAAAC -CCAACATCGAGAGCTAAGAACACC -CCAACATCGAGAGCTAAGATCGAG -CCAACATCGAGAGCTAAGCTCCTT -CCAACATCGAGAGCTAAGCCTGTT -CCAACATCGAGAGCTAAGCGGTTT -CCAACATCGAGAGCTAAGGTGGTT -CCAACATCGAGAGCTAAGGCCTTT -CCAACATCGAGAGCTAAGGGTCTT -CCAACATCGAGAGCTAAGACGCTT -CCAACATCGAGAGCTAAGAGCGTT -CCAACATCGAGAGCTAAGTTCGTC -CCAACATCGAGAGCTAAGTCTCTC -CCAACATCGAGAGCTAAGTGGATC -CCAACATCGAGAGCTAAGCACTTC -CCAACATCGAGAGCTAAGGTACTC -CCAACATCGAGAGCTAAGGATGTC -CCAACATCGAGAGCTAAGACAGTC -CCAACATCGAGAGCTAAGTTGCTG -CCAACATCGAGAGCTAAGTCCATG -CCAACATCGAGAGCTAAGTGTGTG -CCAACATCGAGAGCTAAGCTAGTG -CCAACATCGAGAGCTAAGCATCTG -CCAACATCGAGAGCTAAGGAGTTG -CCAACATCGAGAGCTAAGAGACTG -CCAACATCGAGAGCTAAGTCGGTA -CCAACATCGAGAGCTAAGTGCCTA -CCAACATCGAGAGCTAAGCCACTA -CCAACATCGAGAGCTAAGGGAGTA -CCAACATCGAGAGCTAAGTCGTCT -CCAACATCGAGAGCTAAGTGCACT -CCAACATCGAGAGCTAAGCTGACT -CCAACATCGAGAGCTAAGCAACCT -CCAACATCGAGAGCTAAGGCTACT -CCAACATCGAGAGCTAAGGGATCT -CCAACATCGAGAGCTAAGAAGGCT -CCAACATCGAGAGCTAAGTCAACC -CCAACATCGAGAGCTAAGTGTTCC -CCAACATCGAGAGCTAAGATTCCC -CCAACATCGAGAGCTAAGTTCTCG -CCAACATCGAGAGCTAAGTAGACG -CCAACATCGAGAGCTAAGGTAACG -CCAACATCGAGAGCTAAGACTTCG -CCAACATCGAGAGCTAAGTACGCA -CCAACATCGAGAGCTAAGCTTGCA -CCAACATCGAGAGCTAAGCGAACA -CCAACATCGAGAGCTAAGCAGTCA -CCAACATCGAGAGCTAAGGATCCA -CCAACATCGAGAGCTAAGACGACA -CCAACATCGAGAGCTAAGAGCTCA -CCAACATCGAGAGCTAAGTCACGT -CCAACATCGAGAGCTAAGCGTAGT -CCAACATCGAGAGCTAAGGTCAGT -CCAACATCGAGAGCTAAGGAAGGT -CCAACATCGAGAGCTAAGAACCGT -CCAACATCGAGAGCTAAGTTGTGC -CCAACATCGAGAGCTAAGCTAAGC -CCAACATCGAGAGCTAAGACTAGC -CCAACATCGAGAGCTAAGAGATGC -CCAACATCGAGAGCTAAGTGAAGG -CCAACATCGAGAGCTAAGCAATGG -CCAACATCGAGAGCTAAGATGAGG -CCAACATCGAGAGCTAAGAATGGG -CCAACATCGAGAGCTAAGTCCTGA -CCAACATCGAGAGCTAAGTAGCGA -CCAACATCGAGAGCTAAGCACAGA -CCAACATCGAGAGCTAAGGCAAGA -CCAACATCGAGAGCTAAGGGTTGA -CCAACATCGAGAGCTAAGTCCGAT -CCAACATCGAGAGCTAAGTGGCAT -CCAACATCGAGAGCTAAGCGAGAT -CCAACATCGAGAGCTAAGTACCAC -CCAACATCGAGAGCTAAGCAGAAC -CCAACATCGAGAGCTAAGGTCTAC -CCAACATCGAGAGCTAAGACGTAC -CCAACATCGAGAGCTAAGAGTGAC -CCAACATCGAGAGCTAAGCTGTAG -CCAACATCGAGAGCTAAGCCTAAG -CCAACATCGAGAGCTAAGGTTCAG -CCAACATCGAGAGCTAAGGCATAG -CCAACATCGAGAGCTAAGGACAAG -CCAACATCGAGAGCTAAGAAGCAG -CCAACATCGAGAGCTAAGCGTCAA -CCAACATCGAGAGCTAAGGCTGAA -CCAACATCGAGAGCTAAGAGTACG -CCAACATCGAGAGCTAAGATCCGA -CCAACATCGAGAGCTAAGATGGGA -CCAACATCGAGAGCTAAGGTGCAA -CCAACATCGAGAGCTAAGGAGGAA -CCAACATCGAGAGCTAAGCAGGTA -CCAACATCGAGAGCTAAGGACTCT -CCAACATCGAGAGCTAAGAGTCCT -CCAACATCGAGAGCTAAGTAAGCC -CCAACATCGAGAGCTAAGATAGCC -CCAACATCGAGAGCTAAGTAACCG -CCAACATCGAGAGCTAAGATGCCA -CCAACATCGAGAACCTCAGGAAAC -CCAACATCGAGAACCTCAAACACC -CCAACATCGAGAACCTCAATCGAG -CCAACATCGAGAACCTCACTCCTT -CCAACATCGAGAACCTCACCTGTT -CCAACATCGAGAACCTCACGGTTT -CCAACATCGAGAACCTCAGTGGTT -CCAACATCGAGAACCTCAGCCTTT -CCAACATCGAGAACCTCAGGTCTT -CCAACATCGAGAACCTCAACGCTT -CCAACATCGAGAACCTCAAGCGTT -CCAACATCGAGAACCTCATTCGTC -CCAACATCGAGAACCTCATCTCTC -CCAACATCGAGAACCTCATGGATC -CCAACATCGAGAACCTCACACTTC -CCAACATCGAGAACCTCAGTACTC -CCAACATCGAGAACCTCAGATGTC -CCAACATCGAGAACCTCAACAGTC -CCAACATCGAGAACCTCATTGCTG -CCAACATCGAGAACCTCATCCATG -CCAACATCGAGAACCTCATGTGTG -CCAACATCGAGAACCTCACTAGTG -CCAACATCGAGAACCTCACATCTG -CCAACATCGAGAACCTCAGAGTTG -CCAACATCGAGAACCTCAAGACTG -CCAACATCGAGAACCTCATCGGTA -CCAACATCGAGAACCTCATGCCTA -CCAACATCGAGAACCTCACCACTA -CCAACATCGAGAACCTCAGGAGTA -CCAACATCGAGAACCTCATCGTCT -CCAACATCGAGAACCTCATGCACT -CCAACATCGAGAACCTCACTGACT -CCAACATCGAGAACCTCACAACCT -CCAACATCGAGAACCTCAGCTACT -CCAACATCGAGAACCTCAGGATCT -CCAACATCGAGAACCTCAAAGGCT -CCAACATCGAGAACCTCATCAACC -CCAACATCGAGAACCTCATGTTCC -CCAACATCGAGAACCTCAATTCCC -CCAACATCGAGAACCTCATTCTCG -CCAACATCGAGAACCTCATAGACG -CCAACATCGAGAACCTCAGTAACG -CCAACATCGAGAACCTCAACTTCG -CCAACATCGAGAACCTCATACGCA -CCAACATCGAGAACCTCACTTGCA -CCAACATCGAGAACCTCACGAACA -CCAACATCGAGAACCTCACAGTCA -CCAACATCGAGAACCTCAGATCCA -CCAACATCGAGAACCTCAACGACA -CCAACATCGAGAACCTCAAGCTCA -CCAACATCGAGAACCTCATCACGT -CCAACATCGAGAACCTCACGTAGT -CCAACATCGAGAACCTCAGTCAGT -CCAACATCGAGAACCTCAGAAGGT -CCAACATCGAGAACCTCAAACCGT -CCAACATCGAGAACCTCATTGTGC -CCAACATCGAGAACCTCACTAAGC -CCAACATCGAGAACCTCAACTAGC -CCAACATCGAGAACCTCAAGATGC -CCAACATCGAGAACCTCATGAAGG -CCAACATCGAGAACCTCACAATGG -CCAACATCGAGAACCTCAATGAGG -CCAACATCGAGAACCTCAAATGGG -CCAACATCGAGAACCTCATCCTGA -CCAACATCGAGAACCTCATAGCGA -CCAACATCGAGAACCTCACACAGA -CCAACATCGAGAACCTCAGCAAGA -CCAACATCGAGAACCTCAGGTTGA -CCAACATCGAGAACCTCATCCGAT -CCAACATCGAGAACCTCATGGCAT -CCAACATCGAGAACCTCACGAGAT -CCAACATCGAGAACCTCATACCAC -CCAACATCGAGAACCTCACAGAAC -CCAACATCGAGAACCTCAGTCTAC -CCAACATCGAGAACCTCAACGTAC -CCAACATCGAGAACCTCAAGTGAC -CCAACATCGAGAACCTCACTGTAG -CCAACATCGAGAACCTCACCTAAG -CCAACATCGAGAACCTCAGTTCAG -CCAACATCGAGAACCTCAGCATAG -CCAACATCGAGAACCTCAGACAAG -CCAACATCGAGAACCTCAAAGCAG -CCAACATCGAGAACCTCACGTCAA -CCAACATCGAGAACCTCAGCTGAA -CCAACATCGAGAACCTCAAGTACG -CCAACATCGAGAACCTCAATCCGA -CCAACATCGAGAACCTCAATGGGA -CCAACATCGAGAACCTCAGTGCAA -CCAACATCGAGAACCTCAGAGGAA -CCAACATCGAGAACCTCACAGGTA -CCAACATCGAGAACCTCAGACTCT -CCAACATCGAGAACCTCAAGTCCT -CCAACATCGAGAACCTCATAAGCC -CCAACATCGAGAACCTCAATAGCC -CCAACATCGAGAACCTCATAACCG -CCAACATCGAGAACCTCAATGCCA -CCAACATCGAGATCCTGTGGAAAC -CCAACATCGAGATCCTGTAACACC -CCAACATCGAGATCCTGTATCGAG -CCAACATCGAGATCCTGTCTCCTT -CCAACATCGAGATCCTGTCCTGTT -CCAACATCGAGATCCTGTCGGTTT -CCAACATCGAGATCCTGTGTGGTT -CCAACATCGAGATCCTGTGCCTTT -CCAACATCGAGATCCTGTGGTCTT -CCAACATCGAGATCCTGTACGCTT -CCAACATCGAGATCCTGTAGCGTT -CCAACATCGAGATCCTGTTTCGTC -CCAACATCGAGATCCTGTTCTCTC -CCAACATCGAGATCCTGTTGGATC -CCAACATCGAGATCCTGTCACTTC -CCAACATCGAGATCCTGTGTACTC -CCAACATCGAGATCCTGTGATGTC -CCAACATCGAGATCCTGTACAGTC -CCAACATCGAGATCCTGTTTGCTG -CCAACATCGAGATCCTGTTCCATG -CCAACATCGAGATCCTGTTGTGTG -CCAACATCGAGATCCTGTCTAGTG -CCAACATCGAGATCCTGTCATCTG -CCAACATCGAGATCCTGTGAGTTG -CCAACATCGAGATCCTGTAGACTG -CCAACATCGAGATCCTGTTCGGTA -CCAACATCGAGATCCTGTTGCCTA -CCAACATCGAGATCCTGTCCACTA -CCAACATCGAGATCCTGTGGAGTA -CCAACATCGAGATCCTGTTCGTCT -CCAACATCGAGATCCTGTTGCACT -CCAACATCGAGATCCTGTCTGACT -CCAACATCGAGATCCTGTCAACCT -CCAACATCGAGATCCTGTGCTACT -CCAACATCGAGATCCTGTGGATCT -CCAACATCGAGATCCTGTAAGGCT -CCAACATCGAGATCCTGTTCAACC -CCAACATCGAGATCCTGTTGTTCC -CCAACATCGAGATCCTGTATTCCC -CCAACATCGAGATCCTGTTTCTCG -CCAACATCGAGATCCTGTTAGACG -CCAACATCGAGATCCTGTGTAACG -CCAACATCGAGATCCTGTACTTCG -CCAACATCGAGATCCTGTTACGCA -CCAACATCGAGATCCTGTCTTGCA -CCAACATCGAGATCCTGTCGAACA -CCAACATCGAGATCCTGTCAGTCA -CCAACATCGAGATCCTGTGATCCA -CCAACATCGAGATCCTGTACGACA -CCAACATCGAGATCCTGTAGCTCA -CCAACATCGAGATCCTGTTCACGT -CCAACATCGAGATCCTGTCGTAGT -CCAACATCGAGATCCTGTGTCAGT -CCAACATCGAGATCCTGTGAAGGT -CCAACATCGAGATCCTGTAACCGT -CCAACATCGAGATCCTGTTTGTGC -CCAACATCGAGATCCTGTCTAAGC -CCAACATCGAGATCCTGTACTAGC -CCAACATCGAGATCCTGTAGATGC -CCAACATCGAGATCCTGTTGAAGG -CCAACATCGAGATCCTGTCAATGG -CCAACATCGAGATCCTGTATGAGG -CCAACATCGAGATCCTGTAATGGG -CCAACATCGAGATCCTGTTCCTGA -CCAACATCGAGATCCTGTTAGCGA -CCAACATCGAGATCCTGTCACAGA -CCAACATCGAGATCCTGTGCAAGA -CCAACATCGAGATCCTGTGGTTGA -CCAACATCGAGATCCTGTTCCGAT -CCAACATCGAGATCCTGTTGGCAT -CCAACATCGAGATCCTGTCGAGAT -CCAACATCGAGATCCTGTTACCAC -CCAACATCGAGATCCTGTCAGAAC -CCAACATCGAGATCCTGTGTCTAC -CCAACATCGAGATCCTGTACGTAC -CCAACATCGAGATCCTGTAGTGAC -CCAACATCGAGATCCTGTCTGTAG -CCAACATCGAGATCCTGTCCTAAG -CCAACATCGAGATCCTGTGTTCAG -CCAACATCGAGATCCTGTGCATAG -CCAACATCGAGATCCTGTGACAAG -CCAACATCGAGATCCTGTAAGCAG -CCAACATCGAGATCCTGTCGTCAA -CCAACATCGAGATCCTGTGCTGAA -CCAACATCGAGATCCTGTAGTACG -CCAACATCGAGATCCTGTATCCGA -CCAACATCGAGATCCTGTATGGGA -CCAACATCGAGATCCTGTGTGCAA -CCAACATCGAGATCCTGTGAGGAA -CCAACATCGAGATCCTGTCAGGTA -CCAACATCGAGATCCTGTGACTCT -CCAACATCGAGATCCTGTAGTCCT -CCAACATCGAGATCCTGTTAAGCC -CCAACATCGAGATCCTGTATAGCC -CCAACATCGAGATCCTGTTAACCG -CCAACATCGAGATCCTGTATGCCA -CCAACATCGAGACCCATTGGAAAC -CCAACATCGAGACCCATTAACACC -CCAACATCGAGACCCATTATCGAG -CCAACATCGAGACCCATTCTCCTT -CCAACATCGAGACCCATTCCTGTT -CCAACATCGAGACCCATTCGGTTT -CCAACATCGAGACCCATTGTGGTT -CCAACATCGAGACCCATTGCCTTT -CCAACATCGAGACCCATTGGTCTT -CCAACATCGAGACCCATTACGCTT -CCAACATCGAGACCCATTAGCGTT -CCAACATCGAGACCCATTTTCGTC -CCAACATCGAGACCCATTTCTCTC -CCAACATCGAGACCCATTTGGATC -CCAACATCGAGACCCATTCACTTC -CCAACATCGAGACCCATTGTACTC -CCAACATCGAGACCCATTGATGTC -CCAACATCGAGACCCATTACAGTC -CCAACATCGAGACCCATTTTGCTG -CCAACATCGAGACCCATTTCCATG -CCAACATCGAGACCCATTTGTGTG -CCAACATCGAGACCCATTCTAGTG -CCAACATCGAGACCCATTCATCTG -CCAACATCGAGACCCATTGAGTTG -CCAACATCGAGACCCATTAGACTG -CCAACATCGAGACCCATTTCGGTA -CCAACATCGAGACCCATTTGCCTA -CCAACATCGAGACCCATTCCACTA -CCAACATCGAGACCCATTGGAGTA -CCAACATCGAGACCCATTTCGTCT -CCAACATCGAGACCCATTTGCACT -CCAACATCGAGACCCATTCTGACT -CCAACATCGAGACCCATTCAACCT -CCAACATCGAGACCCATTGCTACT -CCAACATCGAGACCCATTGGATCT -CCAACATCGAGACCCATTAAGGCT -CCAACATCGAGACCCATTTCAACC -CCAACATCGAGACCCATTTGTTCC -CCAACATCGAGACCCATTATTCCC -CCAACATCGAGACCCATTTTCTCG -CCAACATCGAGACCCATTTAGACG -CCAACATCGAGACCCATTGTAACG -CCAACATCGAGACCCATTACTTCG -CCAACATCGAGACCCATTTACGCA -CCAACATCGAGACCCATTCTTGCA -CCAACATCGAGACCCATTCGAACA -CCAACATCGAGACCCATTCAGTCA -CCAACATCGAGACCCATTGATCCA -CCAACATCGAGACCCATTACGACA -CCAACATCGAGACCCATTAGCTCA -CCAACATCGAGACCCATTTCACGT -CCAACATCGAGACCCATTCGTAGT -CCAACATCGAGACCCATTGTCAGT -CCAACATCGAGACCCATTGAAGGT -CCAACATCGAGACCCATTAACCGT -CCAACATCGAGACCCATTTTGTGC -CCAACATCGAGACCCATTCTAAGC -CCAACATCGAGACCCATTACTAGC -CCAACATCGAGACCCATTAGATGC -CCAACATCGAGACCCATTTGAAGG -CCAACATCGAGACCCATTCAATGG -CCAACATCGAGACCCATTATGAGG -CCAACATCGAGACCCATTAATGGG -CCAACATCGAGACCCATTTCCTGA -CCAACATCGAGACCCATTTAGCGA -CCAACATCGAGACCCATTCACAGA -CCAACATCGAGACCCATTGCAAGA -CCAACATCGAGACCCATTGGTTGA -CCAACATCGAGACCCATTTCCGAT -CCAACATCGAGACCCATTTGGCAT -CCAACATCGAGACCCATTCGAGAT -CCAACATCGAGACCCATTTACCAC -CCAACATCGAGACCCATTCAGAAC -CCAACATCGAGACCCATTGTCTAC -CCAACATCGAGACCCATTACGTAC -CCAACATCGAGACCCATTAGTGAC -CCAACATCGAGACCCATTCTGTAG -CCAACATCGAGACCCATTCCTAAG -CCAACATCGAGACCCATTGTTCAG -CCAACATCGAGACCCATTGCATAG -CCAACATCGAGACCCATTGACAAG -CCAACATCGAGACCCATTAAGCAG -CCAACATCGAGACCCATTCGTCAA -CCAACATCGAGACCCATTGCTGAA -CCAACATCGAGACCCATTAGTACG -CCAACATCGAGACCCATTATCCGA -CCAACATCGAGACCCATTATGGGA -CCAACATCGAGACCCATTGTGCAA -CCAACATCGAGACCCATTGAGGAA -CCAACATCGAGACCCATTCAGGTA -CCAACATCGAGACCCATTGACTCT -CCAACATCGAGACCCATTAGTCCT -CCAACATCGAGACCCATTTAAGCC -CCAACATCGAGACCCATTATAGCC -CCAACATCGAGACCCATTTAACCG -CCAACATCGAGACCCATTATGCCA -CCAACATCGAGATCGTTCGGAAAC -CCAACATCGAGATCGTTCAACACC -CCAACATCGAGATCGTTCATCGAG -CCAACATCGAGATCGTTCCTCCTT -CCAACATCGAGATCGTTCCCTGTT -CCAACATCGAGATCGTTCCGGTTT -CCAACATCGAGATCGTTCGTGGTT -CCAACATCGAGATCGTTCGCCTTT -CCAACATCGAGATCGTTCGGTCTT -CCAACATCGAGATCGTTCACGCTT -CCAACATCGAGATCGTTCAGCGTT -CCAACATCGAGATCGTTCTTCGTC -CCAACATCGAGATCGTTCTCTCTC -CCAACATCGAGATCGTTCTGGATC -CCAACATCGAGATCGTTCCACTTC -CCAACATCGAGATCGTTCGTACTC -CCAACATCGAGATCGTTCGATGTC -CCAACATCGAGATCGTTCACAGTC -CCAACATCGAGATCGTTCTTGCTG -CCAACATCGAGATCGTTCTCCATG -CCAACATCGAGATCGTTCTGTGTG -CCAACATCGAGATCGTTCCTAGTG -CCAACATCGAGATCGTTCCATCTG -CCAACATCGAGATCGTTCGAGTTG -CCAACATCGAGATCGTTCAGACTG -CCAACATCGAGATCGTTCTCGGTA -CCAACATCGAGATCGTTCTGCCTA -CCAACATCGAGATCGTTCCCACTA -CCAACATCGAGATCGTTCGGAGTA -CCAACATCGAGATCGTTCTCGTCT -CCAACATCGAGATCGTTCTGCACT -CCAACATCGAGATCGTTCCTGACT -CCAACATCGAGATCGTTCCAACCT -CCAACATCGAGATCGTTCGCTACT -CCAACATCGAGATCGTTCGGATCT -CCAACATCGAGATCGTTCAAGGCT -CCAACATCGAGATCGTTCTCAACC -CCAACATCGAGATCGTTCTGTTCC -CCAACATCGAGATCGTTCATTCCC -CCAACATCGAGATCGTTCTTCTCG -CCAACATCGAGATCGTTCTAGACG -CCAACATCGAGATCGTTCGTAACG -CCAACATCGAGATCGTTCACTTCG -CCAACATCGAGATCGTTCTACGCA -CCAACATCGAGATCGTTCCTTGCA -CCAACATCGAGATCGTTCCGAACA -CCAACATCGAGATCGTTCCAGTCA -CCAACATCGAGATCGTTCGATCCA -CCAACATCGAGATCGTTCACGACA -CCAACATCGAGATCGTTCAGCTCA -CCAACATCGAGATCGTTCTCACGT -CCAACATCGAGATCGTTCCGTAGT -CCAACATCGAGATCGTTCGTCAGT -CCAACATCGAGATCGTTCGAAGGT -CCAACATCGAGATCGTTCAACCGT -CCAACATCGAGATCGTTCTTGTGC -CCAACATCGAGATCGTTCCTAAGC -CCAACATCGAGATCGTTCACTAGC -CCAACATCGAGATCGTTCAGATGC -CCAACATCGAGATCGTTCTGAAGG -CCAACATCGAGATCGTTCCAATGG -CCAACATCGAGATCGTTCATGAGG -CCAACATCGAGATCGTTCAATGGG -CCAACATCGAGATCGTTCTCCTGA -CCAACATCGAGATCGTTCTAGCGA -CCAACATCGAGATCGTTCCACAGA -CCAACATCGAGATCGTTCGCAAGA -CCAACATCGAGATCGTTCGGTTGA -CCAACATCGAGATCGTTCTCCGAT -CCAACATCGAGATCGTTCTGGCAT -CCAACATCGAGATCGTTCCGAGAT -CCAACATCGAGATCGTTCTACCAC -CCAACATCGAGATCGTTCCAGAAC -CCAACATCGAGATCGTTCGTCTAC -CCAACATCGAGATCGTTCACGTAC -CCAACATCGAGATCGTTCAGTGAC -CCAACATCGAGATCGTTCCTGTAG -CCAACATCGAGATCGTTCCCTAAG -CCAACATCGAGATCGTTCGTTCAG -CCAACATCGAGATCGTTCGCATAG -CCAACATCGAGATCGTTCGACAAG -CCAACATCGAGATCGTTCAAGCAG -CCAACATCGAGATCGTTCCGTCAA -CCAACATCGAGATCGTTCGCTGAA -CCAACATCGAGATCGTTCAGTACG -CCAACATCGAGATCGTTCATCCGA -CCAACATCGAGATCGTTCATGGGA -CCAACATCGAGATCGTTCGTGCAA -CCAACATCGAGATCGTTCGAGGAA -CCAACATCGAGATCGTTCCAGGTA -CCAACATCGAGATCGTTCGACTCT -CCAACATCGAGATCGTTCAGTCCT -CCAACATCGAGATCGTTCTAAGCC -CCAACATCGAGATCGTTCATAGCC -CCAACATCGAGATCGTTCTAACCG -CCAACATCGAGATCGTTCATGCCA -CCAACATCGAGAACGTAGGGAAAC -CCAACATCGAGAACGTAGAACACC -CCAACATCGAGAACGTAGATCGAG -CCAACATCGAGAACGTAGCTCCTT -CCAACATCGAGAACGTAGCCTGTT -CCAACATCGAGAACGTAGCGGTTT -CCAACATCGAGAACGTAGGTGGTT -CCAACATCGAGAACGTAGGCCTTT -CCAACATCGAGAACGTAGGGTCTT -CCAACATCGAGAACGTAGACGCTT -CCAACATCGAGAACGTAGAGCGTT -CCAACATCGAGAACGTAGTTCGTC -CCAACATCGAGAACGTAGTCTCTC -CCAACATCGAGAACGTAGTGGATC -CCAACATCGAGAACGTAGCACTTC -CCAACATCGAGAACGTAGGTACTC -CCAACATCGAGAACGTAGGATGTC -CCAACATCGAGAACGTAGACAGTC -CCAACATCGAGAACGTAGTTGCTG -CCAACATCGAGAACGTAGTCCATG -CCAACATCGAGAACGTAGTGTGTG -CCAACATCGAGAACGTAGCTAGTG -CCAACATCGAGAACGTAGCATCTG -CCAACATCGAGAACGTAGGAGTTG -CCAACATCGAGAACGTAGAGACTG -CCAACATCGAGAACGTAGTCGGTA -CCAACATCGAGAACGTAGTGCCTA -CCAACATCGAGAACGTAGCCACTA -CCAACATCGAGAACGTAGGGAGTA -CCAACATCGAGAACGTAGTCGTCT -CCAACATCGAGAACGTAGTGCACT -CCAACATCGAGAACGTAGCTGACT -CCAACATCGAGAACGTAGCAACCT -CCAACATCGAGAACGTAGGCTACT -CCAACATCGAGAACGTAGGGATCT -CCAACATCGAGAACGTAGAAGGCT -CCAACATCGAGAACGTAGTCAACC -CCAACATCGAGAACGTAGTGTTCC -CCAACATCGAGAACGTAGATTCCC -CCAACATCGAGAACGTAGTTCTCG -CCAACATCGAGAACGTAGTAGACG -CCAACATCGAGAACGTAGGTAACG -CCAACATCGAGAACGTAGACTTCG -CCAACATCGAGAACGTAGTACGCA -CCAACATCGAGAACGTAGCTTGCA -CCAACATCGAGAACGTAGCGAACA -CCAACATCGAGAACGTAGCAGTCA -CCAACATCGAGAACGTAGGATCCA -CCAACATCGAGAACGTAGACGACA -CCAACATCGAGAACGTAGAGCTCA -CCAACATCGAGAACGTAGTCACGT -CCAACATCGAGAACGTAGCGTAGT -CCAACATCGAGAACGTAGGTCAGT -CCAACATCGAGAACGTAGGAAGGT -CCAACATCGAGAACGTAGAACCGT -CCAACATCGAGAACGTAGTTGTGC -CCAACATCGAGAACGTAGCTAAGC -CCAACATCGAGAACGTAGACTAGC -CCAACATCGAGAACGTAGAGATGC -CCAACATCGAGAACGTAGTGAAGG -CCAACATCGAGAACGTAGCAATGG -CCAACATCGAGAACGTAGATGAGG -CCAACATCGAGAACGTAGAATGGG -CCAACATCGAGAACGTAGTCCTGA -CCAACATCGAGAACGTAGTAGCGA -CCAACATCGAGAACGTAGCACAGA -CCAACATCGAGAACGTAGGCAAGA -CCAACATCGAGAACGTAGGGTTGA -CCAACATCGAGAACGTAGTCCGAT -CCAACATCGAGAACGTAGTGGCAT -CCAACATCGAGAACGTAGCGAGAT -CCAACATCGAGAACGTAGTACCAC -CCAACATCGAGAACGTAGCAGAAC -CCAACATCGAGAACGTAGGTCTAC -CCAACATCGAGAACGTAGACGTAC -CCAACATCGAGAACGTAGAGTGAC -CCAACATCGAGAACGTAGCTGTAG -CCAACATCGAGAACGTAGCCTAAG -CCAACATCGAGAACGTAGGTTCAG -CCAACATCGAGAACGTAGGCATAG -CCAACATCGAGAACGTAGGACAAG -CCAACATCGAGAACGTAGAAGCAG -CCAACATCGAGAACGTAGCGTCAA -CCAACATCGAGAACGTAGGCTGAA -CCAACATCGAGAACGTAGAGTACG -CCAACATCGAGAACGTAGATCCGA -CCAACATCGAGAACGTAGATGGGA -CCAACATCGAGAACGTAGGTGCAA -CCAACATCGAGAACGTAGGAGGAA -CCAACATCGAGAACGTAGCAGGTA -CCAACATCGAGAACGTAGGACTCT -CCAACATCGAGAACGTAGAGTCCT -CCAACATCGAGAACGTAGTAAGCC -CCAACATCGAGAACGTAGATAGCC -CCAACATCGAGAACGTAGTAACCG -CCAACATCGAGAACGTAGATGCCA -CCAACATCGAGAACGGTAGGAAAC -CCAACATCGAGAACGGTAAACACC -CCAACATCGAGAACGGTAATCGAG -CCAACATCGAGAACGGTACTCCTT -CCAACATCGAGAACGGTACCTGTT -CCAACATCGAGAACGGTACGGTTT -CCAACATCGAGAACGGTAGTGGTT -CCAACATCGAGAACGGTAGCCTTT -CCAACATCGAGAACGGTAGGTCTT -CCAACATCGAGAACGGTAACGCTT -CCAACATCGAGAACGGTAAGCGTT -CCAACATCGAGAACGGTATTCGTC -CCAACATCGAGAACGGTATCTCTC -CCAACATCGAGAACGGTATGGATC -CCAACATCGAGAACGGTACACTTC -CCAACATCGAGAACGGTAGTACTC -CCAACATCGAGAACGGTAGATGTC -CCAACATCGAGAACGGTAACAGTC -CCAACATCGAGAACGGTATTGCTG -CCAACATCGAGAACGGTATCCATG -CCAACATCGAGAACGGTATGTGTG -CCAACATCGAGAACGGTACTAGTG -CCAACATCGAGAACGGTACATCTG -CCAACATCGAGAACGGTAGAGTTG -CCAACATCGAGAACGGTAAGACTG -CCAACATCGAGAACGGTATCGGTA -CCAACATCGAGAACGGTATGCCTA -CCAACATCGAGAACGGTACCACTA -CCAACATCGAGAACGGTAGGAGTA -CCAACATCGAGAACGGTATCGTCT -CCAACATCGAGAACGGTATGCACT -CCAACATCGAGAACGGTACTGACT -CCAACATCGAGAACGGTACAACCT -CCAACATCGAGAACGGTAGCTACT -CCAACATCGAGAACGGTAGGATCT -CCAACATCGAGAACGGTAAAGGCT -CCAACATCGAGAACGGTATCAACC -CCAACATCGAGAACGGTATGTTCC -CCAACATCGAGAACGGTAATTCCC -CCAACATCGAGAACGGTATTCTCG -CCAACATCGAGAACGGTATAGACG -CCAACATCGAGAACGGTAGTAACG -CCAACATCGAGAACGGTAACTTCG -CCAACATCGAGAACGGTATACGCA -CCAACATCGAGAACGGTACTTGCA -CCAACATCGAGAACGGTACGAACA -CCAACATCGAGAACGGTACAGTCA -CCAACATCGAGAACGGTAGATCCA -CCAACATCGAGAACGGTAACGACA -CCAACATCGAGAACGGTAAGCTCA -CCAACATCGAGAACGGTATCACGT -CCAACATCGAGAACGGTACGTAGT -CCAACATCGAGAACGGTAGTCAGT -CCAACATCGAGAACGGTAGAAGGT -CCAACATCGAGAACGGTAAACCGT -CCAACATCGAGAACGGTATTGTGC -CCAACATCGAGAACGGTACTAAGC -CCAACATCGAGAACGGTAACTAGC -CCAACATCGAGAACGGTAAGATGC -CCAACATCGAGAACGGTATGAAGG -CCAACATCGAGAACGGTACAATGG -CCAACATCGAGAACGGTAATGAGG -CCAACATCGAGAACGGTAAATGGG -CCAACATCGAGAACGGTATCCTGA -CCAACATCGAGAACGGTATAGCGA -CCAACATCGAGAACGGTACACAGA -CCAACATCGAGAACGGTAGCAAGA -CCAACATCGAGAACGGTAGGTTGA -CCAACATCGAGAACGGTATCCGAT -CCAACATCGAGAACGGTATGGCAT -CCAACATCGAGAACGGTACGAGAT -CCAACATCGAGAACGGTATACCAC -CCAACATCGAGAACGGTACAGAAC -CCAACATCGAGAACGGTAGTCTAC -CCAACATCGAGAACGGTAACGTAC -CCAACATCGAGAACGGTAAGTGAC -CCAACATCGAGAACGGTACTGTAG -CCAACATCGAGAACGGTACCTAAG -CCAACATCGAGAACGGTAGTTCAG -CCAACATCGAGAACGGTAGCATAG -CCAACATCGAGAACGGTAGACAAG -CCAACATCGAGAACGGTAAAGCAG -CCAACATCGAGAACGGTACGTCAA -CCAACATCGAGAACGGTAGCTGAA -CCAACATCGAGAACGGTAAGTACG -CCAACATCGAGAACGGTAATCCGA -CCAACATCGAGAACGGTAATGGGA -CCAACATCGAGAACGGTAGTGCAA -CCAACATCGAGAACGGTAGAGGAA -CCAACATCGAGAACGGTACAGGTA -CCAACATCGAGAACGGTAGACTCT -CCAACATCGAGAACGGTAAGTCCT -CCAACATCGAGAACGGTATAAGCC -CCAACATCGAGAACGGTAATAGCC -CCAACATCGAGAACGGTATAACCG -CCAACATCGAGAACGGTAATGCCA -CCAACATCGAGATCGACTGGAAAC -CCAACATCGAGATCGACTAACACC -CCAACATCGAGATCGACTATCGAG -CCAACATCGAGATCGACTCTCCTT -CCAACATCGAGATCGACTCCTGTT -CCAACATCGAGATCGACTCGGTTT -CCAACATCGAGATCGACTGTGGTT -CCAACATCGAGATCGACTGCCTTT -CCAACATCGAGATCGACTGGTCTT -CCAACATCGAGATCGACTACGCTT -CCAACATCGAGATCGACTAGCGTT -CCAACATCGAGATCGACTTTCGTC -CCAACATCGAGATCGACTTCTCTC -CCAACATCGAGATCGACTTGGATC -CCAACATCGAGATCGACTCACTTC -CCAACATCGAGATCGACTGTACTC -CCAACATCGAGATCGACTGATGTC -CCAACATCGAGATCGACTACAGTC -CCAACATCGAGATCGACTTTGCTG -CCAACATCGAGATCGACTTCCATG -CCAACATCGAGATCGACTTGTGTG -CCAACATCGAGATCGACTCTAGTG -CCAACATCGAGATCGACTCATCTG -CCAACATCGAGATCGACTGAGTTG -CCAACATCGAGATCGACTAGACTG -CCAACATCGAGATCGACTTCGGTA -CCAACATCGAGATCGACTTGCCTA -CCAACATCGAGATCGACTCCACTA -CCAACATCGAGATCGACTGGAGTA -CCAACATCGAGATCGACTTCGTCT -CCAACATCGAGATCGACTTGCACT -CCAACATCGAGATCGACTCTGACT -CCAACATCGAGATCGACTCAACCT -CCAACATCGAGATCGACTGCTACT -CCAACATCGAGATCGACTGGATCT -CCAACATCGAGATCGACTAAGGCT -CCAACATCGAGATCGACTTCAACC -CCAACATCGAGATCGACTTGTTCC -CCAACATCGAGATCGACTATTCCC -CCAACATCGAGATCGACTTTCTCG -CCAACATCGAGATCGACTTAGACG -CCAACATCGAGATCGACTGTAACG -CCAACATCGAGATCGACTACTTCG -CCAACATCGAGATCGACTTACGCA -CCAACATCGAGATCGACTCTTGCA -CCAACATCGAGATCGACTCGAACA -CCAACATCGAGATCGACTCAGTCA -CCAACATCGAGATCGACTGATCCA -CCAACATCGAGATCGACTACGACA -CCAACATCGAGATCGACTAGCTCA -CCAACATCGAGATCGACTTCACGT -CCAACATCGAGATCGACTCGTAGT -CCAACATCGAGATCGACTGTCAGT -CCAACATCGAGATCGACTGAAGGT -CCAACATCGAGATCGACTAACCGT -CCAACATCGAGATCGACTTTGTGC -CCAACATCGAGATCGACTCTAAGC -CCAACATCGAGATCGACTACTAGC -CCAACATCGAGATCGACTAGATGC -CCAACATCGAGATCGACTTGAAGG -CCAACATCGAGATCGACTCAATGG -CCAACATCGAGATCGACTATGAGG -CCAACATCGAGATCGACTAATGGG -CCAACATCGAGATCGACTTCCTGA -CCAACATCGAGATCGACTTAGCGA -CCAACATCGAGATCGACTCACAGA -CCAACATCGAGATCGACTGCAAGA -CCAACATCGAGATCGACTGGTTGA -CCAACATCGAGATCGACTTCCGAT -CCAACATCGAGATCGACTTGGCAT -CCAACATCGAGATCGACTCGAGAT -CCAACATCGAGATCGACTTACCAC -CCAACATCGAGATCGACTCAGAAC -CCAACATCGAGATCGACTGTCTAC -CCAACATCGAGATCGACTACGTAC -CCAACATCGAGATCGACTAGTGAC -CCAACATCGAGATCGACTCTGTAG -CCAACATCGAGATCGACTCCTAAG -CCAACATCGAGATCGACTGTTCAG -CCAACATCGAGATCGACTGCATAG -CCAACATCGAGATCGACTGACAAG -CCAACATCGAGATCGACTAAGCAG -CCAACATCGAGATCGACTCGTCAA -CCAACATCGAGATCGACTGCTGAA -CCAACATCGAGATCGACTAGTACG -CCAACATCGAGATCGACTATCCGA -CCAACATCGAGATCGACTATGGGA -CCAACATCGAGATCGACTGTGCAA -CCAACATCGAGATCGACTGAGGAA -CCAACATCGAGATCGACTCAGGTA -CCAACATCGAGATCGACTGACTCT -CCAACATCGAGATCGACTAGTCCT -CCAACATCGAGATCGACTTAAGCC -CCAACATCGAGATCGACTATAGCC -CCAACATCGAGATCGACTTAACCG -CCAACATCGAGATCGACTATGCCA -CCAACATCGAGAGCATACGGAAAC -CCAACATCGAGAGCATACAACACC -CCAACATCGAGAGCATACATCGAG -CCAACATCGAGAGCATACCTCCTT -CCAACATCGAGAGCATACCCTGTT -CCAACATCGAGAGCATACCGGTTT -CCAACATCGAGAGCATACGTGGTT -CCAACATCGAGAGCATACGCCTTT -CCAACATCGAGAGCATACGGTCTT -CCAACATCGAGAGCATACACGCTT -CCAACATCGAGAGCATACAGCGTT -CCAACATCGAGAGCATACTTCGTC -CCAACATCGAGAGCATACTCTCTC -CCAACATCGAGAGCATACTGGATC -CCAACATCGAGAGCATACCACTTC -CCAACATCGAGAGCATACGTACTC -CCAACATCGAGAGCATACGATGTC -CCAACATCGAGAGCATACACAGTC -CCAACATCGAGAGCATACTTGCTG -CCAACATCGAGAGCATACTCCATG -CCAACATCGAGAGCATACTGTGTG -CCAACATCGAGAGCATACCTAGTG -CCAACATCGAGAGCATACCATCTG -CCAACATCGAGAGCATACGAGTTG -CCAACATCGAGAGCATACAGACTG -CCAACATCGAGAGCATACTCGGTA -CCAACATCGAGAGCATACTGCCTA -CCAACATCGAGAGCATACCCACTA -CCAACATCGAGAGCATACGGAGTA -CCAACATCGAGAGCATACTCGTCT -CCAACATCGAGAGCATACTGCACT -CCAACATCGAGAGCATACCTGACT -CCAACATCGAGAGCATACCAACCT -CCAACATCGAGAGCATACGCTACT -CCAACATCGAGAGCATACGGATCT -CCAACATCGAGAGCATACAAGGCT -CCAACATCGAGAGCATACTCAACC -CCAACATCGAGAGCATACTGTTCC -CCAACATCGAGAGCATACATTCCC -CCAACATCGAGAGCATACTTCTCG -CCAACATCGAGAGCATACTAGACG -CCAACATCGAGAGCATACGTAACG -CCAACATCGAGAGCATACACTTCG -CCAACATCGAGAGCATACTACGCA -CCAACATCGAGAGCATACCTTGCA -CCAACATCGAGAGCATACCGAACA -CCAACATCGAGAGCATACCAGTCA -CCAACATCGAGAGCATACGATCCA -CCAACATCGAGAGCATACACGACA -CCAACATCGAGAGCATACAGCTCA -CCAACATCGAGAGCATACTCACGT -CCAACATCGAGAGCATACCGTAGT -CCAACATCGAGAGCATACGTCAGT -CCAACATCGAGAGCATACGAAGGT -CCAACATCGAGAGCATACAACCGT -CCAACATCGAGAGCATACTTGTGC -CCAACATCGAGAGCATACCTAAGC -CCAACATCGAGAGCATACACTAGC -CCAACATCGAGAGCATACAGATGC -CCAACATCGAGAGCATACTGAAGG -CCAACATCGAGAGCATACCAATGG -CCAACATCGAGAGCATACATGAGG -CCAACATCGAGAGCATACAATGGG -CCAACATCGAGAGCATACTCCTGA -CCAACATCGAGAGCATACTAGCGA -CCAACATCGAGAGCATACCACAGA -CCAACATCGAGAGCATACGCAAGA -CCAACATCGAGAGCATACGGTTGA -CCAACATCGAGAGCATACTCCGAT -CCAACATCGAGAGCATACTGGCAT -CCAACATCGAGAGCATACCGAGAT -CCAACATCGAGAGCATACTACCAC -CCAACATCGAGAGCATACCAGAAC -CCAACATCGAGAGCATACGTCTAC -CCAACATCGAGAGCATACACGTAC -CCAACATCGAGAGCATACAGTGAC -CCAACATCGAGAGCATACCTGTAG -CCAACATCGAGAGCATACCCTAAG -CCAACATCGAGAGCATACGTTCAG -CCAACATCGAGAGCATACGCATAG -CCAACATCGAGAGCATACGACAAG -CCAACATCGAGAGCATACAAGCAG -CCAACATCGAGAGCATACCGTCAA -CCAACATCGAGAGCATACGCTGAA -CCAACATCGAGAGCATACAGTACG -CCAACATCGAGAGCATACATCCGA -CCAACATCGAGAGCATACATGGGA -CCAACATCGAGAGCATACGTGCAA -CCAACATCGAGAGCATACGAGGAA -CCAACATCGAGAGCATACCAGGTA -CCAACATCGAGAGCATACGACTCT -CCAACATCGAGAGCATACAGTCCT -CCAACATCGAGAGCATACTAAGCC -CCAACATCGAGAGCATACATAGCC -CCAACATCGAGAGCATACTAACCG -CCAACATCGAGAGCATACATGCCA -CCAACATCGAGAGCACTTGGAAAC -CCAACATCGAGAGCACTTAACACC -CCAACATCGAGAGCACTTATCGAG -CCAACATCGAGAGCACTTCTCCTT -CCAACATCGAGAGCACTTCCTGTT -CCAACATCGAGAGCACTTCGGTTT -CCAACATCGAGAGCACTTGTGGTT -CCAACATCGAGAGCACTTGCCTTT -CCAACATCGAGAGCACTTGGTCTT -CCAACATCGAGAGCACTTACGCTT -CCAACATCGAGAGCACTTAGCGTT -CCAACATCGAGAGCACTTTTCGTC -CCAACATCGAGAGCACTTTCTCTC -CCAACATCGAGAGCACTTTGGATC -CCAACATCGAGAGCACTTCACTTC -CCAACATCGAGAGCACTTGTACTC -CCAACATCGAGAGCACTTGATGTC -CCAACATCGAGAGCACTTACAGTC -CCAACATCGAGAGCACTTTTGCTG -CCAACATCGAGAGCACTTTCCATG -CCAACATCGAGAGCACTTTGTGTG -CCAACATCGAGAGCACTTCTAGTG -CCAACATCGAGAGCACTTCATCTG -CCAACATCGAGAGCACTTGAGTTG -CCAACATCGAGAGCACTTAGACTG -CCAACATCGAGAGCACTTTCGGTA -CCAACATCGAGAGCACTTTGCCTA -CCAACATCGAGAGCACTTCCACTA -CCAACATCGAGAGCACTTGGAGTA -CCAACATCGAGAGCACTTTCGTCT -CCAACATCGAGAGCACTTTGCACT -CCAACATCGAGAGCACTTCTGACT -CCAACATCGAGAGCACTTCAACCT -CCAACATCGAGAGCACTTGCTACT -CCAACATCGAGAGCACTTGGATCT -CCAACATCGAGAGCACTTAAGGCT -CCAACATCGAGAGCACTTTCAACC -CCAACATCGAGAGCACTTTGTTCC -CCAACATCGAGAGCACTTATTCCC -CCAACATCGAGAGCACTTTTCTCG -CCAACATCGAGAGCACTTTAGACG -CCAACATCGAGAGCACTTGTAACG -CCAACATCGAGAGCACTTACTTCG -CCAACATCGAGAGCACTTTACGCA -CCAACATCGAGAGCACTTCTTGCA -CCAACATCGAGAGCACTTCGAACA -CCAACATCGAGAGCACTTCAGTCA -CCAACATCGAGAGCACTTGATCCA -CCAACATCGAGAGCACTTACGACA -CCAACATCGAGAGCACTTAGCTCA -CCAACATCGAGAGCACTTTCACGT -CCAACATCGAGAGCACTTCGTAGT -CCAACATCGAGAGCACTTGTCAGT -CCAACATCGAGAGCACTTGAAGGT -CCAACATCGAGAGCACTTAACCGT -CCAACATCGAGAGCACTTTTGTGC -CCAACATCGAGAGCACTTCTAAGC -CCAACATCGAGAGCACTTACTAGC -CCAACATCGAGAGCACTTAGATGC -CCAACATCGAGAGCACTTTGAAGG -CCAACATCGAGAGCACTTCAATGG -CCAACATCGAGAGCACTTATGAGG -CCAACATCGAGAGCACTTAATGGG -CCAACATCGAGAGCACTTTCCTGA -CCAACATCGAGAGCACTTTAGCGA -CCAACATCGAGAGCACTTCACAGA -CCAACATCGAGAGCACTTGCAAGA -CCAACATCGAGAGCACTTGGTTGA -CCAACATCGAGAGCACTTTCCGAT -CCAACATCGAGAGCACTTTGGCAT -CCAACATCGAGAGCACTTCGAGAT -CCAACATCGAGAGCACTTTACCAC -CCAACATCGAGAGCACTTCAGAAC -CCAACATCGAGAGCACTTGTCTAC -CCAACATCGAGAGCACTTACGTAC -CCAACATCGAGAGCACTTAGTGAC -CCAACATCGAGAGCACTTCTGTAG -CCAACATCGAGAGCACTTCCTAAG -CCAACATCGAGAGCACTTGTTCAG -CCAACATCGAGAGCACTTGCATAG -CCAACATCGAGAGCACTTGACAAG -CCAACATCGAGAGCACTTAAGCAG -CCAACATCGAGAGCACTTCGTCAA -CCAACATCGAGAGCACTTGCTGAA -CCAACATCGAGAGCACTTAGTACG -CCAACATCGAGAGCACTTATCCGA -CCAACATCGAGAGCACTTATGGGA -CCAACATCGAGAGCACTTGTGCAA -CCAACATCGAGAGCACTTGAGGAA -CCAACATCGAGAGCACTTCAGGTA -CCAACATCGAGAGCACTTGACTCT -CCAACATCGAGAGCACTTAGTCCT -CCAACATCGAGAGCACTTTAAGCC -CCAACATCGAGAGCACTTATAGCC -CCAACATCGAGAGCACTTTAACCG -CCAACATCGAGAGCACTTATGCCA -CCAACATCGAGAACACGAGGAAAC -CCAACATCGAGAACACGAAACACC -CCAACATCGAGAACACGAATCGAG -CCAACATCGAGAACACGACTCCTT -CCAACATCGAGAACACGACCTGTT -CCAACATCGAGAACACGACGGTTT -CCAACATCGAGAACACGAGTGGTT -CCAACATCGAGAACACGAGCCTTT -CCAACATCGAGAACACGAGGTCTT -CCAACATCGAGAACACGAACGCTT -CCAACATCGAGAACACGAAGCGTT -CCAACATCGAGAACACGATTCGTC -CCAACATCGAGAACACGATCTCTC -CCAACATCGAGAACACGATGGATC -CCAACATCGAGAACACGACACTTC -CCAACATCGAGAACACGAGTACTC -CCAACATCGAGAACACGAGATGTC -CCAACATCGAGAACACGAACAGTC -CCAACATCGAGAACACGATTGCTG -CCAACATCGAGAACACGATCCATG -CCAACATCGAGAACACGATGTGTG -CCAACATCGAGAACACGACTAGTG -CCAACATCGAGAACACGACATCTG -CCAACATCGAGAACACGAGAGTTG -CCAACATCGAGAACACGAAGACTG -CCAACATCGAGAACACGATCGGTA -CCAACATCGAGAACACGATGCCTA -CCAACATCGAGAACACGACCACTA -CCAACATCGAGAACACGAGGAGTA -CCAACATCGAGAACACGATCGTCT -CCAACATCGAGAACACGATGCACT -CCAACATCGAGAACACGACTGACT -CCAACATCGAGAACACGACAACCT -CCAACATCGAGAACACGAGCTACT -CCAACATCGAGAACACGAGGATCT -CCAACATCGAGAACACGAAAGGCT -CCAACATCGAGAACACGATCAACC -CCAACATCGAGAACACGATGTTCC -CCAACATCGAGAACACGAATTCCC -CCAACATCGAGAACACGATTCTCG -CCAACATCGAGAACACGATAGACG -CCAACATCGAGAACACGAGTAACG -CCAACATCGAGAACACGAACTTCG -CCAACATCGAGAACACGATACGCA -CCAACATCGAGAACACGACTTGCA -CCAACATCGAGAACACGACGAACA -CCAACATCGAGAACACGACAGTCA -CCAACATCGAGAACACGAGATCCA -CCAACATCGAGAACACGAACGACA -CCAACATCGAGAACACGAAGCTCA -CCAACATCGAGAACACGATCACGT -CCAACATCGAGAACACGACGTAGT -CCAACATCGAGAACACGAGTCAGT -CCAACATCGAGAACACGAGAAGGT -CCAACATCGAGAACACGAAACCGT -CCAACATCGAGAACACGATTGTGC -CCAACATCGAGAACACGACTAAGC -CCAACATCGAGAACACGAACTAGC -CCAACATCGAGAACACGAAGATGC -CCAACATCGAGAACACGATGAAGG -CCAACATCGAGAACACGACAATGG -CCAACATCGAGAACACGAATGAGG -CCAACATCGAGAACACGAAATGGG -CCAACATCGAGAACACGATCCTGA -CCAACATCGAGAACACGATAGCGA -CCAACATCGAGAACACGACACAGA -CCAACATCGAGAACACGAGCAAGA -CCAACATCGAGAACACGAGGTTGA -CCAACATCGAGAACACGATCCGAT -CCAACATCGAGAACACGATGGCAT -CCAACATCGAGAACACGACGAGAT -CCAACATCGAGAACACGATACCAC -CCAACATCGAGAACACGACAGAAC -CCAACATCGAGAACACGAGTCTAC -CCAACATCGAGAACACGAACGTAC -CCAACATCGAGAACACGAAGTGAC -CCAACATCGAGAACACGACTGTAG -CCAACATCGAGAACACGACCTAAG -CCAACATCGAGAACACGAGTTCAG -CCAACATCGAGAACACGAGCATAG -CCAACATCGAGAACACGAGACAAG -CCAACATCGAGAACACGAAAGCAG -CCAACATCGAGAACACGACGTCAA -CCAACATCGAGAACACGAGCTGAA -CCAACATCGAGAACACGAAGTACG -CCAACATCGAGAACACGAATCCGA -CCAACATCGAGAACACGAATGGGA -CCAACATCGAGAACACGAGTGCAA -CCAACATCGAGAACACGAGAGGAA -CCAACATCGAGAACACGACAGGTA -CCAACATCGAGAACACGAGACTCT -CCAACATCGAGAACACGAAGTCCT -CCAACATCGAGAACACGATAAGCC -CCAACATCGAGAACACGAATAGCC -CCAACATCGAGAACACGATAACCG -CCAACATCGAGAACACGAATGCCA -CCAACATCGAGATCACAGGGAAAC -CCAACATCGAGATCACAGAACACC -CCAACATCGAGATCACAGATCGAG -CCAACATCGAGATCACAGCTCCTT -CCAACATCGAGATCACAGCCTGTT -CCAACATCGAGATCACAGCGGTTT -CCAACATCGAGATCACAGGTGGTT -CCAACATCGAGATCACAGGCCTTT -CCAACATCGAGATCACAGGGTCTT -CCAACATCGAGATCACAGACGCTT -CCAACATCGAGATCACAGAGCGTT -CCAACATCGAGATCACAGTTCGTC -CCAACATCGAGATCACAGTCTCTC -CCAACATCGAGATCACAGTGGATC -CCAACATCGAGATCACAGCACTTC -CCAACATCGAGATCACAGGTACTC -CCAACATCGAGATCACAGGATGTC -CCAACATCGAGATCACAGACAGTC -CCAACATCGAGATCACAGTTGCTG -CCAACATCGAGATCACAGTCCATG -CCAACATCGAGATCACAGTGTGTG -CCAACATCGAGATCACAGCTAGTG -CCAACATCGAGATCACAGCATCTG -CCAACATCGAGATCACAGGAGTTG -CCAACATCGAGATCACAGAGACTG -CCAACATCGAGATCACAGTCGGTA -CCAACATCGAGATCACAGTGCCTA -CCAACATCGAGATCACAGCCACTA -CCAACATCGAGATCACAGGGAGTA -CCAACATCGAGATCACAGTCGTCT -CCAACATCGAGATCACAGTGCACT -CCAACATCGAGATCACAGCTGACT -CCAACATCGAGATCACAGCAACCT -CCAACATCGAGATCACAGGCTACT -CCAACATCGAGATCACAGGGATCT -CCAACATCGAGATCACAGAAGGCT -CCAACATCGAGATCACAGTCAACC -CCAACATCGAGATCACAGTGTTCC -CCAACATCGAGATCACAGATTCCC -CCAACATCGAGATCACAGTTCTCG -CCAACATCGAGATCACAGTAGACG -CCAACATCGAGATCACAGGTAACG -CCAACATCGAGATCACAGACTTCG -CCAACATCGAGATCACAGTACGCA -CCAACATCGAGATCACAGCTTGCA -CCAACATCGAGATCACAGCGAACA -CCAACATCGAGATCACAGCAGTCA -CCAACATCGAGATCACAGGATCCA -CCAACATCGAGATCACAGACGACA -CCAACATCGAGATCACAGAGCTCA -CCAACATCGAGATCACAGTCACGT -CCAACATCGAGATCACAGCGTAGT -CCAACATCGAGATCACAGGTCAGT -CCAACATCGAGATCACAGGAAGGT -CCAACATCGAGATCACAGAACCGT -CCAACATCGAGATCACAGTTGTGC -CCAACATCGAGATCACAGCTAAGC -CCAACATCGAGATCACAGACTAGC -CCAACATCGAGATCACAGAGATGC -CCAACATCGAGATCACAGTGAAGG -CCAACATCGAGATCACAGCAATGG -CCAACATCGAGATCACAGATGAGG -CCAACATCGAGATCACAGAATGGG -CCAACATCGAGATCACAGTCCTGA -CCAACATCGAGATCACAGTAGCGA -CCAACATCGAGATCACAGCACAGA -CCAACATCGAGATCACAGGCAAGA -CCAACATCGAGATCACAGGGTTGA -CCAACATCGAGATCACAGTCCGAT -CCAACATCGAGATCACAGTGGCAT -CCAACATCGAGATCACAGCGAGAT -CCAACATCGAGATCACAGTACCAC -CCAACATCGAGATCACAGCAGAAC -CCAACATCGAGATCACAGGTCTAC -CCAACATCGAGATCACAGACGTAC -CCAACATCGAGATCACAGAGTGAC -CCAACATCGAGATCACAGCTGTAG -CCAACATCGAGATCACAGCCTAAG -CCAACATCGAGATCACAGGTTCAG -CCAACATCGAGATCACAGGCATAG -CCAACATCGAGATCACAGGACAAG -CCAACATCGAGATCACAGAAGCAG -CCAACATCGAGATCACAGCGTCAA -CCAACATCGAGATCACAGGCTGAA -CCAACATCGAGATCACAGAGTACG -CCAACATCGAGATCACAGATCCGA -CCAACATCGAGATCACAGATGGGA -CCAACATCGAGATCACAGGTGCAA -CCAACATCGAGATCACAGGAGGAA -CCAACATCGAGATCACAGCAGGTA -CCAACATCGAGATCACAGGACTCT -CCAACATCGAGATCACAGAGTCCT -CCAACATCGAGATCACAGTAAGCC -CCAACATCGAGATCACAGATAGCC -CCAACATCGAGATCACAGTAACCG -CCAACATCGAGATCACAGATGCCA -CCAACATCGAGACCAGATGGAAAC -CCAACATCGAGACCAGATAACACC -CCAACATCGAGACCAGATATCGAG -CCAACATCGAGACCAGATCTCCTT -CCAACATCGAGACCAGATCCTGTT -CCAACATCGAGACCAGATCGGTTT -CCAACATCGAGACCAGATGTGGTT -CCAACATCGAGACCAGATGCCTTT -CCAACATCGAGACCAGATGGTCTT -CCAACATCGAGACCAGATACGCTT -CCAACATCGAGACCAGATAGCGTT -CCAACATCGAGACCAGATTTCGTC -CCAACATCGAGACCAGATTCTCTC -CCAACATCGAGACCAGATTGGATC -CCAACATCGAGACCAGATCACTTC -CCAACATCGAGACCAGATGTACTC -CCAACATCGAGACCAGATGATGTC -CCAACATCGAGACCAGATACAGTC -CCAACATCGAGACCAGATTTGCTG -CCAACATCGAGACCAGATTCCATG -CCAACATCGAGACCAGATTGTGTG -CCAACATCGAGACCAGATCTAGTG -CCAACATCGAGACCAGATCATCTG -CCAACATCGAGACCAGATGAGTTG -CCAACATCGAGACCAGATAGACTG -CCAACATCGAGACCAGATTCGGTA -CCAACATCGAGACCAGATTGCCTA -CCAACATCGAGACCAGATCCACTA -CCAACATCGAGACCAGATGGAGTA -CCAACATCGAGACCAGATTCGTCT -CCAACATCGAGACCAGATTGCACT -CCAACATCGAGACCAGATCTGACT -CCAACATCGAGACCAGATCAACCT -CCAACATCGAGACCAGATGCTACT -CCAACATCGAGACCAGATGGATCT -CCAACATCGAGACCAGATAAGGCT -CCAACATCGAGACCAGATTCAACC -CCAACATCGAGACCAGATTGTTCC -CCAACATCGAGACCAGATATTCCC -CCAACATCGAGACCAGATTTCTCG -CCAACATCGAGACCAGATTAGACG -CCAACATCGAGACCAGATGTAACG -CCAACATCGAGACCAGATACTTCG -CCAACATCGAGACCAGATTACGCA -CCAACATCGAGACCAGATCTTGCA -CCAACATCGAGACCAGATCGAACA -CCAACATCGAGACCAGATCAGTCA -CCAACATCGAGACCAGATGATCCA -CCAACATCGAGACCAGATACGACA -CCAACATCGAGACCAGATAGCTCA -CCAACATCGAGACCAGATTCACGT -CCAACATCGAGACCAGATCGTAGT -CCAACATCGAGACCAGATGTCAGT -CCAACATCGAGACCAGATGAAGGT -CCAACATCGAGACCAGATAACCGT -CCAACATCGAGACCAGATTTGTGC -CCAACATCGAGACCAGATCTAAGC -CCAACATCGAGACCAGATACTAGC -CCAACATCGAGACCAGATAGATGC -CCAACATCGAGACCAGATTGAAGG -CCAACATCGAGACCAGATCAATGG -CCAACATCGAGACCAGATATGAGG -CCAACATCGAGACCAGATAATGGG -CCAACATCGAGACCAGATTCCTGA -CCAACATCGAGACCAGATTAGCGA -CCAACATCGAGACCAGATCACAGA -CCAACATCGAGACCAGATGCAAGA -CCAACATCGAGACCAGATGGTTGA -CCAACATCGAGACCAGATTCCGAT -CCAACATCGAGACCAGATTGGCAT -CCAACATCGAGACCAGATCGAGAT -CCAACATCGAGACCAGATTACCAC -CCAACATCGAGACCAGATCAGAAC -CCAACATCGAGACCAGATGTCTAC -CCAACATCGAGACCAGATACGTAC -CCAACATCGAGACCAGATAGTGAC -CCAACATCGAGACCAGATCTGTAG -CCAACATCGAGACCAGATCCTAAG -CCAACATCGAGACCAGATGTTCAG -CCAACATCGAGACCAGATGCATAG -CCAACATCGAGACCAGATGACAAG -CCAACATCGAGACCAGATAAGCAG -CCAACATCGAGACCAGATCGTCAA -CCAACATCGAGACCAGATGCTGAA -CCAACATCGAGACCAGATAGTACG -CCAACATCGAGACCAGATATCCGA -CCAACATCGAGACCAGATATGGGA -CCAACATCGAGACCAGATGTGCAA -CCAACATCGAGACCAGATGAGGAA -CCAACATCGAGACCAGATCAGGTA -CCAACATCGAGACCAGATGACTCT -CCAACATCGAGACCAGATAGTCCT -CCAACATCGAGACCAGATTAAGCC -CCAACATCGAGACCAGATATAGCC -CCAACATCGAGACCAGATTAACCG -CCAACATCGAGACCAGATATGCCA -CCAACATCGAGAACAACGGGAAAC -CCAACATCGAGAACAACGAACACC -CCAACATCGAGAACAACGATCGAG -CCAACATCGAGAACAACGCTCCTT -CCAACATCGAGAACAACGCCTGTT -CCAACATCGAGAACAACGCGGTTT -CCAACATCGAGAACAACGGTGGTT -CCAACATCGAGAACAACGGCCTTT -CCAACATCGAGAACAACGGGTCTT -CCAACATCGAGAACAACGACGCTT -CCAACATCGAGAACAACGAGCGTT -CCAACATCGAGAACAACGTTCGTC -CCAACATCGAGAACAACGTCTCTC -CCAACATCGAGAACAACGTGGATC -CCAACATCGAGAACAACGCACTTC -CCAACATCGAGAACAACGGTACTC -CCAACATCGAGAACAACGGATGTC -CCAACATCGAGAACAACGACAGTC -CCAACATCGAGAACAACGTTGCTG -CCAACATCGAGAACAACGTCCATG -CCAACATCGAGAACAACGTGTGTG -CCAACATCGAGAACAACGCTAGTG -CCAACATCGAGAACAACGCATCTG -CCAACATCGAGAACAACGGAGTTG -CCAACATCGAGAACAACGAGACTG -CCAACATCGAGAACAACGTCGGTA -CCAACATCGAGAACAACGTGCCTA -CCAACATCGAGAACAACGCCACTA -CCAACATCGAGAACAACGGGAGTA -CCAACATCGAGAACAACGTCGTCT -CCAACATCGAGAACAACGTGCACT -CCAACATCGAGAACAACGCTGACT -CCAACATCGAGAACAACGCAACCT -CCAACATCGAGAACAACGGCTACT -CCAACATCGAGAACAACGGGATCT -CCAACATCGAGAACAACGAAGGCT -CCAACATCGAGAACAACGTCAACC -CCAACATCGAGAACAACGTGTTCC -CCAACATCGAGAACAACGATTCCC -CCAACATCGAGAACAACGTTCTCG -CCAACATCGAGAACAACGTAGACG -CCAACATCGAGAACAACGGTAACG -CCAACATCGAGAACAACGACTTCG -CCAACATCGAGAACAACGTACGCA -CCAACATCGAGAACAACGCTTGCA -CCAACATCGAGAACAACGCGAACA -CCAACATCGAGAACAACGCAGTCA -CCAACATCGAGAACAACGGATCCA -CCAACATCGAGAACAACGACGACA -CCAACATCGAGAACAACGAGCTCA -CCAACATCGAGAACAACGTCACGT -CCAACATCGAGAACAACGCGTAGT -CCAACATCGAGAACAACGGTCAGT -CCAACATCGAGAACAACGGAAGGT -CCAACATCGAGAACAACGAACCGT -CCAACATCGAGAACAACGTTGTGC -CCAACATCGAGAACAACGCTAAGC -CCAACATCGAGAACAACGACTAGC -CCAACATCGAGAACAACGAGATGC -CCAACATCGAGAACAACGTGAAGG -CCAACATCGAGAACAACGCAATGG -CCAACATCGAGAACAACGATGAGG -CCAACATCGAGAACAACGAATGGG -CCAACATCGAGAACAACGTCCTGA -CCAACATCGAGAACAACGTAGCGA -CCAACATCGAGAACAACGCACAGA -CCAACATCGAGAACAACGGCAAGA -CCAACATCGAGAACAACGGGTTGA -CCAACATCGAGAACAACGTCCGAT -CCAACATCGAGAACAACGTGGCAT -CCAACATCGAGAACAACGCGAGAT -CCAACATCGAGAACAACGTACCAC -CCAACATCGAGAACAACGCAGAAC -CCAACATCGAGAACAACGGTCTAC -CCAACATCGAGAACAACGACGTAC -CCAACATCGAGAACAACGAGTGAC -CCAACATCGAGAACAACGCTGTAG -CCAACATCGAGAACAACGCCTAAG -CCAACATCGAGAACAACGGTTCAG -CCAACATCGAGAACAACGGCATAG -CCAACATCGAGAACAACGGACAAG -CCAACATCGAGAACAACGAAGCAG -CCAACATCGAGAACAACGCGTCAA -CCAACATCGAGAACAACGGCTGAA -CCAACATCGAGAACAACGAGTACG -CCAACATCGAGAACAACGATCCGA -CCAACATCGAGAACAACGATGGGA -CCAACATCGAGAACAACGGTGCAA -CCAACATCGAGAACAACGGAGGAA -CCAACATCGAGAACAACGCAGGTA -CCAACATCGAGAACAACGGACTCT -CCAACATCGAGAACAACGAGTCCT -CCAACATCGAGAACAACGTAAGCC -CCAACATCGAGAACAACGATAGCC -CCAACATCGAGAACAACGTAACCG -CCAACATCGAGAACAACGATGCCA -CCAACATCGAGATCAAGCGGAAAC -CCAACATCGAGATCAAGCAACACC -CCAACATCGAGATCAAGCATCGAG -CCAACATCGAGATCAAGCCTCCTT -CCAACATCGAGATCAAGCCCTGTT -CCAACATCGAGATCAAGCCGGTTT -CCAACATCGAGATCAAGCGTGGTT -CCAACATCGAGATCAAGCGCCTTT -CCAACATCGAGATCAAGCGGTCTT -CCAACATCGAGATCAAGCACGCTT -CCAACATCGAGATCAAGCAGCGTT -CCAACATCGAGATCAAGCTTCGTC -CCAACATCGAGATCAAGCTCTCTC -CCAACATCGAGATCAAGCTGGATC -CCAACATCGAGATCAAGCCACTTC -CCAACATCGAGATCAAGCGTACTC -CCAACATCGAGATCAAGCGATGTC -CCAACATCGAGATCAAGCACAGTC -CCAACATCGAGATCAAGCTTGCTG -CCAACATCGAGATCAAGCTCCATG -CCAACATCGAGATCAAGCTGTGTG -CCAACATCGAGATCAAGCCTAGTG -CCAACATCGAGATCAAGCCATCTG -CCAACATCGAGATCAAGCGAGTTG -CCAACATCGAGATCAAGCAGACTG -CCAACATCGAGATCAAGCTCGGTA -CCAACATCGAGATCAAGCTGCCTA -CCAACATCGAGATCAAGCCCACTA -CCAACATCGAGATCAAGCGGAGTA -CCAACATCGAGATCAAGCTCGTCT -CCAACATCGAGATCAAGCTGCACT -CCAACATCGAGATCAAGCCTGACT -CCAACATCGAGATCAAGCCAACCT -CCAACATCGAGATCAAGCGCTACT -CCAACATCGAGATCAAGCGGATCT -CCAACATCGAGATCAAGCAAGGCT -CCAACATCGAGATCAAGCTCAACC -CCAACATCGAGATCAAGCTGTTCC -CCAACATCGAGATCAAGCATTCCC -CCAACATCGAGATCAAGCTTCTCG -CCAACATCGAGATCAAGCTAGACG -CCAACATCGAGATCAAGCGTAACG -CCAACATCGAGATCAAGCACTTCG -CCAACATCGAGATCAAGCTACGCA -CCAACATCGAGATCAAGCCTTGCA -CCAACATCGAGATCAAGCCGAACA -CCAACATCGAGATCAAGCCAGTCA -CCAACATCGAGATCAAGCGATCCA -CCAACATCGAGATCAAGCACGACA -CCAACATCGAGATCAAGCAGCTCA -CCAACATCGAGATCAAGCTCACGT -CCAACATCGAGATCAAGCCGTAGT -CCAACATCGAGATCAAGCGTCAGT -CCAACATCGAGATCAAGCGAAGGT -CCAACATCGAGATCAAGCAACCGT -CCAACATCGAGATCAAGCTTGTGC -CCAACATCGAGATCAAGCCTAAGC -CCAACATCGAGATCAAGCACTAGC -CCAACATCGAGATCAAGCAGATGC -CCAACATCGAGATCAAGCTGAAGG -CCAACATCGAGATCAAGCCAATGG -CCAACATCGAGATCAAGCATGAGG -CCAACATCGAGATCAAGCAATGGG -CCAACATCGAGATCAAGCTCCTGA -CCAACATCGAGATCAAGCTAGCGA -CCAACATCGAGATCAAGCCACAGA -CCAACATCGAGATCAAGCGCAAGA -CCAACATCGAGATCAAGCGGTTGA -CCAACATCGAGATCAAGCTCCGAT -CCAACATCGAGATCAAGCTGGCAT -CCAACATCGAGATCAAGCCGAGAT -CCAACATCGAGATCAAGCTACCAC -CCAACATCGAGATCAAGCCAGAAC -CCAACATCGAGATCAAGCGTCTAC -CCAACATCGAGATCAAGCACGTAC -CCAACATCGAGATCAAGCAGTGAC -CCAACATCGAGATCAAGCCTGTAG -CCAACATCGAGATCAAGCCCTAAG -CCAACATCGAGATCAAGCGTTCAG -CCAACATCGAGATCAAGCGCATAG -CCAACATCGAGATCAAGCGACAAG -CCAACATCGAGATCAAGCAAGCAG -CCAACATCGAGATCAAGCCGTCAA -CCAACATCGAGATCAAGCGCTGAA -CCAACATCGAGATCAAGCAGTACG -CCAACATCGAGATCAAGCATCCGA -CCAACATCGAGATCAAGCATGGGA -CCAACATCGAGATCAAGCGTGCAA -CCAACATCGAGATCAAGCGAGGAA -CCAACATCGAGATCAAGCCAGGTA -CCAACATCGAGATCAAGCGACTCT -CCAACATCGAGATCAAGCAGTCCT -CCAACATCGAGATCAAGCTAAGCC -CCAACATCGAGATCAAGCATAGCC -CCAACATCGAGATCAAGCTAACCG -CCAACATCGAGATCAAGCATGCCA -CCAACATCGAGACGTTCAGGAAAC -CCAACATCGAGACGTTCAAACACC -CCAACATCGAGACGTTCAATCGAG -CCAACATCGAGACGTTCACTCCTT -CCAACATCGAGACGTTCACCTGTT -CCAACATCGAGACGTTCACGGTTT -CCAACATCGAGACGTTCAGTGGTT -CCAACATCGAGACGTTCAGCCTTT -CCAACATCGAGACGTTCAGGTCTT -CCAACATCGAGACGTTCAACGCTT -CCAACATCGAGACGTTCAAGCGTT -CCAACATCGAGACGTTCATTCGTC -CCAACATCGAGACGTTCATCTCTC -CCAACATCGAGACGTTCATGGATC -CCAACATCGAGACGTTCACACTTC -CCAACATCGAGACGTTCAGTACTC -CCAACATCGAGACGTTCAGATGTC -CCAACATCGAGACGTTCAACAGTC -CCAACATCGAGACGTTCATTGCTG -CCAACATCGAGACGTTCATCCATG -CCAACATCGAGACGTTCATGTGTG -CCAACATCGAGACGTTCACTAGTG -CCAACATCGAGACGTTCACATCTG -CCAACATCGAGACGTTCAGAGTTG -CCAACATCGAGACGTTCAAGACTG -CCAACATCGAGACGTTCATCGGTA -CCAACATCGAGACGTTCATGCCTA -CCAACATCGAGACGTTCACCACTA -CCAACATCGAGACGTTCAGGAGTA -CCAACATCGAGACGTTCATCGTCT -CCAACATCGAGACGTTCATGCACT -CCAACATCGAGACGTTCACTGACT -CCAACATCGAGACGTTCACAACCT -CCAACATCGAGACGTTCAGCTACT -CCAACATCGAGACGTTCAGGATCT -CCAACATCGAGACGTTCAAAGGCT -CCAACATCGAGACGTTCATCAACC -CCAACATCGAGACGTTCATGTTCC -CCAACATCGAGACGTTCAATTCCC -CCAACATCGAGACGTTCATTCTCG -CCAACATCGAGACGTTCATAGACG -CCAACATCGAGACGTTCAGTAACG -CCAACATCGAGACGTTCAACTTCG -CCAACATCGAGACGTTCATACGCA -CCAACATCGAGACGTTCACTTGCA -CCAACATCGAGACGTTCACGAACA -CCAACATCGAGACGTTCACAGTCA -CCAACATCGAGACGTTCAGATCCA -CCAACATCGAGACGTTCAACGACA -CCAACATCGAGACGTTCAAGCTCA -CCAACATCGAGACGTTCATCACGT -CCAACATCGAGACGTTCACGTAGT -CCAACATCGAGACGTTCAGTCAGT -CCAACATCGAGACGTTCAGAAGGT -CCAACATCGAGACGTTCAAACCGT -CCAACATCGAGACGTTCATTGTGC -CCAACATCGAGACGTTCACTAAGC -CCAACATCGAGACGTTCAACTAGC -CCAACATCGAGACGTTCAAGATGC -CCAACATCGAGACGTTCATGAAGG -CCAACATCGAGACGTTCACAATGG -CCAACATCGAGACGTTCAATGAGG -CCAACATCGAGACGTTCAAATGGG -CCAACATCGAGACGTTCATCCTGA -CCAACATCGAGACGTTCATAGCGA -CCAACATCGAGACGTTCACACAGA -CCAACATCGAGACGTTCAGCAAGA -CCAACATCGAGACGTTCAGGTTGA -CCAACATCGAGACGTTCATCCGAT -CCAACATCGAGACGTTCATGGCAT -CCAACATCGAGACGTTCACGAGAT -CCAACATCGAGACGTTCATACCAC -CCAACATCGAGACGTTCACAGAAC -CCAACATCGAGACGTTCAGTCTAC -CCAACATCGAGACGTTCAACGTAC -CCAACATCGAGACGTTCAAGTGAC -CCAACATCGAGACGTTCACTGTAG -CCAACATCGAGACGTTCACCTAAG -CCAACATCGAGACGTTCAGTTCAG -CCAACATCGAGACGTTCAGCATAG -CCAACATCGAGACGTTCAGACAAG -CCAACATCGAGACGTTCAAAGCAG -CCAACATCGAGACGTTCACGTCAA -CCAACATCGAGACGTTCAGCTGAA -CCAACATCGAGACGTTCAAGTACG -CCAACATCGAGACGTTCAATCCGA -CCAACATCGAGACGTTCAATGGGA -CCAACATCGAGACGTTCAGTGCAA -CCAACATCGAGACGTTCAGAGGAA -CCAACATCGAGACGTTCACAGGTA -CCAACATCGAGACGTTCAGACTCT -CCAACATCGAGACGTTCAAGTCCT -CCAACATCGAGACGTTCATAAGCC -CCAACATCGAGACGTTCAATAGCC -CCAACATCGAGACGTTCATAACCG -CCAACATCGAGACGTTCAATGCCA -CCAACATCGAGAAGTCGTGGAAAC -CCAACATCGAGAAGTCGTAACACC -CCAACATCGAGAAGTCGTATCGAG -CCAACATCGAGAAGTCGTCTCCTT -CCAACATCGAGAAGTCGTCCTGTT -CCAACATCGAGAAGTCGTCGGTTT -CCAACATCGAGAAGTCGTGTGGTT -CCAACATCGAGAAGTCGTGCCTTT -CCAACATCGAGAAGTCGTGGTCTT -CCAACATCGAGAAGTCGTACGCTT -CCAACATCGAGAAGTCGTAGCGTT -CCAACATCGAGAAGTCGTTTCGTC -CCAACATCGAGAAGTCGTTCTCTC -CCAACATCGAGAAGTCGTTGGATC -CCAACATCGAGAAGTCGTCACTTC -CCAACATCGAGAAGTCGTGTACTC -CCAACATCGAGAAGTCGTGATGTC -CCAACATCGAGAAGTCGTACAGTC -CCAACATCGAGAAGTCGTTTGCTG -CCAACATCGAGAAGTCGTTCCATG -CCAACATCGAGAAGTCGTTGTGTG -CCAACATCGAGAAGTCGTCTAGTG -CCAACATCGAGAAGTCGTCATCTG -CCAACATCGAGAAGTCGTGAGTTG -CCAACATCGAGAAGTCGTAGACTG -CCAACATCGAGAAGTCGTTCGGTA -CCAACATCGAGAAGTCGTTGCCTA -CCAACATCGAGAAGTCGTCCACTA -CCAACATCGAGAAGTCGTGGAGTA -CCAACATCGAGAAGTCGTTCGTCT -CCAACATCGAGAAGTCGTTGCACT -CCAACATCGAGAAGTCGTCTGACT -CCAACATCGAGAAGTCGTCAACCT -CCAACATCGAGAAGTCGTGCTACT -CCAACATCGAGAAGTCGTGGATCT -CCAACATCGAGAAGTCGTAAGGCT -CCAACATCGAGAAGTCGTTCAACC -CCAACATCGAGAAGTCGTTGTTCC -CCAACATCGAGAAGTCGTATTCCC -CCAACATCGAGAAGTCGTTTCTCG -CCAACATCGAGAAGTCGTTAGACG -CCAACATCGAGAAGTCGTGTAACG -CCAACATCGAGAAGTCGTACTTCG -CCAACATCGAGAAGTCGTTACGCA -CCAACATCGAGAAGTCGTCTTGCA -CCAACATCGAGAAGTCGTCGAACA -CCAACATCGAGAAGTCGTCAGTCA -CCAACATCGAGAAGTCGTGATCCA -CCAACATCGAGAAGTCGTACGACA -CCAACATCGAGAAGTCGTAGCTCA -CCAACATCGAGAAGTCGTTCACGT -CCAACATCGAGAAGTCGTCGTAGT -CCAACATCGAGAAGTCGTGTCAGT -CCAACATCGAGAAGTCGTGAAGGT -CCAACATCGAGAAGTCGTAACCGT -CCAACATCGAGAAGTCGTTTGTGC -CCAACATCGAGAAGTCGTCTAAGC -CCAACATCGAGAAGTCGTACTAGC -CCAACATCGAGAAGTCGTAGATGC -CCAACATCGAGAAGTCGTTGAAGG -CCAACATCGAGAAGTCGTCAATGG -CCAACATCGAGAAGTCGTATGAGG -CCAACATCGAGAAGTCGTAATGGG -CCAACATCGAGAAGTCGTTCCTGA -CCAACATCGAGAAGTCGTTAGCGA -CCAACATCGAGAAGTCGTCACAGA -CCAACATCGAGAAGTCGTGCAAGA -CCAACATCGAGAAGTCGTGGTTGA -CCAACATCGAGAAGTCGTTCCGAT -CCAACATCGAGAAGTCGTTGGCAT -CCAACATCGAGAAGTCGTCGAGAT -CCAACATCGAGAAGTCGTTACCAC -CCAACATCGAGAAGTCGTCAGAAC -CCAACATCGAGAAGTCGTGTCTAC -CCAACATCGAGAAGTCGTACGTAC -CCAACATCGAGAAGTCGTAGTGAC -CCAACATCGAGAAGTCGTCTGTAG -CCAACATCGAGAAGTCGTCCTAAG -CCAACATCGAGAAGTCGTGTTCAG -CCAACATCGAGAAGTCGTGCATAG -CCAACATCGAGAAGTCGTGACAAG -CCAACATCGAGAAGTCGTAAGCAG -CCAACATCGAGAAGTCGTCGTCAA -CCAACATCGAGAAGTCGTGCTGAA -CCAACATCGAGAAGTCGTAGTACG -CCAACATCGAGAAGTCGTATCCGA -CCAACATCGAGAAGTCGTATGGGA -CCAACATCGAGAAGTCGTGTGCAA -CCAACATCGAGAAGTCGTGAGGAA -CCAACATCGAGAAGTCGTCAGGTA -CCAACATCGAGAAGTCGTGACTCT -CCAACATCGAGAAGTCGTAGTCCT -CCAACATCGAGAAGTCGTTAAGCC -CCAACATCGAGAAGTCGTATAGCC -CCAACATCGAGAAGTCGTTAACCG -CCAACATCGAGAAGTCGTATGCCA -CCAACATCGAGAAGTGTCGGAAAC -CCAACATCGAGAAGTGTCAACACC -CCAACATCGAGAAGTGTCATCGAG -CCAACATCGAGAAGTGTCCTCCTT -CCAACATCGAGAAGTGTCCCTGTT -CCAACATCGAGAAGTGTCCGGTTT -CCAACATCGAGAAGTGTCGTGGTT -CCAACATCGAGAAGTGTCGCCTTT -CCAACATCGAGAAGTGTCGGTCTT -CCAACATCGAGAAGTGTCACGCTT -CCAACATCGAGAAGTGTCAGCGTT -CCAACATCGAGAAGTGTCTTCGTC -CCAACATCGAGAAGTGTCTCTCTC -CCAACATCGAGAAGTGTCTGGATC -CCAACATCGAGAAGTGTCCACTTC -CCAACATCGAGAAGTGTCGTACTC -CCAACATCGAGAAGTGTCGATGTC -CCAACATCGAGAAGTGTCACAGTC -CCAACATCGAGAAGTGTCTTGCTG -CCAACATCGAGAAGTGTCTCCATG -CCAACATCGAGAAGTGTCTGTGTG -CCAACATCGAGAAGTGTCCTAGTG -CCAACATCGAGAAGTGTCCATCTG -CCAACATCGAGAAGTGTCGAGTTG -CCAACATCGAGAAGTGTCAGACTG -CCAACATCGAGAAGTGTCTCGGTA -CCAACATCGAGAAGTGTCTGCCTA -CCAACATCGAGAAGTGTCCCACTA -CCAACATCGAGAAGTGTCGGAGTA -CCAACATCGAGAAGTGTCTCGTCT -CCAACATCGAGAAGTGTCTGCACT -CCAACATCGAGAAGTGTCCTGACT -CCAACATCGAGAAGTGTCCAACCT -CCAACATCGAGAAGTGTCGCTACT -CCAACATCGAGAAGTGTCGGATCT -CCAACATCGAGAAGTGTCAAGGCT -CCAACATCGAGAAGTGTCTCAACC -CCAACATCGAGAAGTGTCTGTTCC -CCAACATCGAGAAGTGTCATTCCC -CCAACATCGAGAAGTGTCTTCTCG -CCAACATCGAGAAGTGTCTAGACG -CCAACATCGAGAAGTGTCGTAACG -CCAACATCGAGAAGTGTCACTTCG -CCAACATCGAGAAGTGTCTACGCA -CCAACATCGAGAAGTGTCCTTGCA -CCAACATCGAGAAGTGTCCGAACA -CCAACATCGAGAAGTGTCCAGTCA -CCAACATCGAGAAGTGTCGATCCA -CCAACATCGAGAAGTGTCACGACA -CCAACATCGAGAAGTGTCAGCTCA -CCAACATCGAGAAGTGTCTCACGT -CCAACATCGAGAAGTGTCCGTAGT -CCAACATCGAGAAGTGTCGTCAGT -CCAACATCGAGAAGTGTCGAAGGT -CCAACATCGAGAAGTGTCAACCGT -CCAACATCGAGAAGTGTCTTGTGC -CCAACATCGAGAAGTGTCCTAAGC -CCAACATCGAGAAGTGTCACTAGC -CCAACATCGAGAAGTGTCAGATGC -CCAACATCGAGAAGTGTCTGAAGG -CCAACATCGAGAAGTGTCCAATGG -CCAACATCGAGAAGTGTCATGAGG -CCAACATCGAGAAGTGTCAATGGG -CCAACATCGAGAAGTGTCTCCTGA -CCAACATCGAGAAGTGTCTAGCGA -CCAACATCGAGAAGTGTCCACAGA -CCAACATCGAGAAGTGTCGCAAGA -CCAACATCGAGAAGTGTCGGTTGA -CCAACATCGAGAAGTGTCTCCGAT -CCAACATCGAGAAGTGTCTGGCAT -CCAACATCGAGAAGTGTCCGAGAT -CCAACATCGAGAAGTGTCTACCAC -CCAACATCGAGAAGTGTCCAGAAC -CCAACATCGAGAAGTGTCGTCTAC -CCAACATCGAGAAGTGTCACGTAC -CCAACATCGAGAAGTGTCAGTGAC -CCAACATCGAGAAGTGTCCTGTAG -CCAACATCGAGAAGTGTCCCTAAG -CCAACATCGAGAAGTGTCGTTCAG -CCAACATCGAGAAGTGTCGCATAG -CCAACATCGAGAAGTGTCGACAAG -CCAACATCGAGAAGTGTCAAGCAG -CCAACATCGAGAAGTGTCCGTCAA -CCAACATCGAGAAGTGTCGCTGAA -CCAACATCGAGAAGTGTCAGTACG -CCAACATCGAGAAGTGTCATCCGA -CCAACATCGAGAAGTGTCATGGGA -CCAACATCGAGAAGTGTCGTGCAA -CCAACATCGAGAAGTGTCGAGGAA -CCAACATCGAGAAGTGTCCAGGTA -CCAACATCGAGAAGTGTCGACTCT -CCAACATCGAGAAGTGTCAGTCCT -CCAACATCGAGAAGTGTCTAAGCC -CCAACATCGAGAAGTGTCATAGCC -CCAACATCGAGAAGTGTCTAACCG -CCAACATCGAGAAGTGTCATGCCA -CCAACATCGAGAGGTGAAGGAAAC -CCAACATCGAGAGGTGAAAACACC -CCAACATCGAGAGGTGAAATCGAG -CCAACATCGAGAGGTGAACTCCTT -CCAACATCGAGAGGTGAACCTGTT -CCAACATCGAGAGGTGAACGGTTT -CCAACATCGAGAGGTGAAGTGGTT -CCAACATCGAGAGGTGAAGCCTTT -CCAACATCGAGAGGTGAAGGTCTT -CCAACATCGAGAGGTGAAACGCTT -CCAACATCGAGAGGTGAAAGCGTT -CCAACATCGAGAGGTGAATTCGTC -CCAACATCGAGAGGTGAATCTCTC -CCAACATCGAGAGGTGAATGGATC -CCAACATCGAGAGGTGAACACTTC -CCAACATCGAGAGGTGAAGTACTC -CCAACATCGAGAGGTGAAGATGTC -CCAACATCGAGAGGTGAAACAGTC -CCAACATCGAGAGGTGAATTGCTG -CCAACATCGAGAGGTGAATCCATG -CCAACATCGAGAGGTGAATGTGTG -CCAACATCGAGAGGTGAACTAGTG -CCAACATCGAGAGGTGAACATCTG -CCAACATCGAGAGGTGAAGAGTTG -CCAACATCGAGAGGTGAAAGACTG -CCAACATCGAGAGGTGAATCGGTA -CCAACATCGAGAGGTGAATGCCTA -CCAACATCGAGAGGTGAACCACTA -CCAACATCGAGAGGTGAAGGAGTA -CCAACATCGAGAGGTGAATCGTCT -CCAACATCGAGAGGTGAATGCACT -CCAACATCGAGAGGTGAACTGACT -CCAACATCGAGAGGTGAACAACCT -CCAACATCGAGAGGTGAAGCTACT -CCAACATCGAGAGGTGAAGGATCT -CCAACATCGAGAGGTGAAAAGGCT -CCAACATCGAGAGGTGAATCAACC -CCAACATCGAGAGGTGAATGTTCC -CCAACATCGAGAGGTGAAATTCCC -CCAACATCGAGAGGTGAATTCTCG -CCAACATCGAGAGGTGAATAGACG -CCAACATCGAGAGGTGAAGTAACG -CCAACATCGAGAGGTGAAACTTCG -CCAACATCGAGAGGTGAATACGCA -CCAACATCGAGAGGTGAACTTGCA -CCAACATCGAGAGGTGAACGAACA -CCAACATCGAGAGGTGAACAGTCA -CCAACATCGAGAGGTGAAGATCCA -CCAACATCGAGAGGTGAAACGACA -CCAACATCGAGAGGTGAAAGCTCA -CCAACATCGAGAGGTGAATCACGT -CCAACATCGAGAGGTGAACGTAGT -CCAACATCGAGAGGTGAAGTCAGT -CCAACATCGAGAGGTGAAGAAGGT -CCAACATCGAGAGGTGAAAACCGT -CCAACATCGAGAGGTGAATTGTGC -CCAACATCGAGAGGTGAACTAAGC -CCAACATCGAGAGGTGAAACTAGC -CCAACATCGAGAGGTGAAAGATGC -CCAACATCGAGAGGTGAATGAAGG -CCAACATCGAGAGGTGAACAATGG -CCAACATCGAGAGGTGAAATGAGG -CCAACATCGAGAGGTGAAAATGGG -CCAACATCGAGAGGTGAATCCTGA -CCAACATCGAGAGGTGAATAGCGA -CCAACATCGAGAGGTGAACACAGA -CCAACATCGAGAGGTGAAGCAAGA -CCAACATCGAGAGGTGAAGGTTGA -CCAACATCGAGAGGTGAATCCGAT -CCAACATCGAGAGGTGAATGGCAT -CCAACATCGAGAGGTGAACGAGAT -CCAACATCGAGAGGTGAATACCAC -CCAACATCGAGAGGTGAACAGAAC -CCAACATCGAGAGGTGAAGTCTAC -CCAACATCGAGAGGTGAAACGTAC -CCAACATCGAGAGGTGAAAGTGAC -CCAACATCGAGAGGTGAACTGTAG -CCAACATCGAGAGGTGAACCTAAG -CCAACATCGAGAGGTGAAGTTCAG -CCAACATCGAGAGGTGAAGCATAG -CCAACATCGAGAGGTGAAGACAAG -CCAACATCGAGAGGTGAAAAGCAG -CCAACATCGAGAGGTGAACGTCAA -CCAACATCGAGAGGTGAAGCTGAA -CCAACATCGAGAGGTGAAAGTACG -CCAACATCGAGAGGTGAAATCCGA -CCAACATCGAGAGGTGAAATGGGA -CCAACATCGAGAGGTGAAGTGCAA -CCAACATCGAGAGGTGAAGAGGAA -CCAACATCGAGAGGTGAACAGGTA -CCAACATCGAGAGGTGAAGACTCT -CCAACATCGAGAGGTGAAAGTCCT -CCAACATCGAGAGGTGAATAAGCC -CCAACATCGAGAGGTGAAATAGCC -CCAACATCGAGAGGTGAATAACCG -CCAACATCGAGAGGTGAAATGCCA -CCAACATCGAGACGTAACGGAAAC -CCAACATCGAGACGTAACAACACC -CCAACATCGAGACGTAACATCGAG -CCAACATCGAGACGTAACCTCCTT -CCAACATCGAGACGTAACCCTGTT -CCAACATCGAGACGTAACCGGTTT -CCAACATCGAGACGTAACGTGGTT -CCAACATCGAGACGTAACGCCTTT -CCAACATCGAGACGTAACGGTCTT -CCAACATCGAGACGTAACACGCTT -CCAACATCGAGACGTAACAGCGTT -CCAACATCGAGACGTAACTTCGTC -CCAACATCGAGACGTAACTCTCTC -CCAACATCGAGACGTAACTGGATC -CCAACATCGAGACGTAACCACTTC -CCAACATCGAGACGTAACGTACTC -CCAACATCGAGACGTAACGATGTC -CCAACATCGAGACGTAACACAGTC -CCAACATCGAGACGTAACTTGCTG -CCAACATCGAGACGTAACTCCATG -CCAACATCGAGACGTAACTGTGTG -CCAACATCGAGACGTAACCTAGTG -CCAACATCGAGACGTAACCATCTG -CCAACATCGAGACGTAACGAGTTG -CCAACATCGAGACGTAACAGACTG -CCAACATCGAGACGTAACTCGGTA -CCAACATCGAGACGTAACTGCCTA -CCAACATCGAGACGTAACCCACTA -CCAACATCGAGACGTAACGGAGTA -CCAACATCGAGACGTAACTCGTCT -CCAACATCGAGACGTAACTGCACT -CCAACATCGAGACGTAACCTGACT -CCAACATCGAGACGTAACCAACCT -CCAACATCGAGACGTAACGCTACT -CCAACATCGAGACGTAACGGATCT -CCAACATCGAGACGTAACAAGGCT -CCAACATCGAGACGTAACTCAACC -CCAACATCGAGACGTAACTGTTCC -CCAACATCGAGACGTAACATTCCC -CCAACATCGAGACGTAACTTCTCG -CCAACATCGAGACGTAACTAGACG -CCAACATCGAGACGTAACGTAACG -CCAACATCGAGACGTAACACTTCG -CCAACATCGAGACGTAACTACGCA -CCAACATCGAGACGTAACCTTGCA -CCAACATCGAGACGTAACCGAACA -CCAACATCGAGACGTAACCAGTCA -CCAACATCGAGACGTAACGATCCA -CCAACATCGAGACGTAACACGACA -CCAACATCGAGACGTAACAGCTCA -CCAACATCGAGACGTAACTCACGT -CCAACATCGAGACGTAACCGTAGT -CCAACATCGAGACGTAACGTCAGT -CCAACATCGAGACGTAACGAAGGT -CCAACATCGAGACGTAACAACCGT -CCAACATCGAGACGTAACTTGTGC -CCAACATCGAGACGTAACCTAAGC -CCAACATCGAGACGTAACACTAGC -CCAACATCGAGACGTAACAGATGC -CCAACATCGAGACGTAACTGAAGG -CCAACATCGAGACGTAACCAATGG -CCAACATCGAGACGTAACATGAGG -CCAACATCGAGACGTAACAATGGG -CCAACATCGAGACGTAACTCCTGA -CCAACATCGAGACGTAACTAGCGA -CCAACATCGAGACGTAACCACAGA -CCAACATCGAGACGTAACGCAAGA -CCAACATCGAGACGTAACGGTTGA -CCAACATCGAGACGTAACTCCGAT -CCAACATCGAGACGTAACTGGCAT -CCAACATCGAGACGTAACCGAGAT -CCAACATCGAGACGTAACTACCAC -CCAACATCGAGACGTAACCAGAAC -CCAACATCGAGACGTAACGTCTAC -CCAACATCGAGACGTAACACGTAC -CCAACATCGAGACGTAACAGTGAC -CCAACATCGAGACGTAACCTGTAG -CCAACATCGAGACGTAACCCTAAG -CCAACATCGAGACGTAACGTTCAG -CCAACATCGAGACGTAACGCATAG -CCAACATCGAGACGTAACGACAAG -CCAACATCGAGACGTAACAAGCAG -CCAACATCGAGACGTAACCGTCAA -CCAACATCGAGACGTAACGCTGAA -CCAACATCGAGACGTAACAGTACG -CCAACATCGAGACGTAACATCCGA -CCAACATCGAGACGTAACATGGGA -CCAACATCGAGACGTAACGTGCAA -CCAACATCGAGACGTAACGAGGAA -CCAACATCGAGACGTAACCAGGTA -CCAACATCGAGACGTAACGACTCT -CCAACATCGAGACGTAACAGTCCT -CCAACATCGAGACGTAACTAAGCC -CCAACATCGAGACGTAACATAGCC -CCAACATCGAGACGTAACTAACCG -CCAACATCGAGACGTAACATGCCA -CCAACATCGAGATGCTTGGGAAAC -CCAACATCGAGATGCTTGAACACC -CCAACATCGAGATGCTTGATCGAG -CCAACATCGAGATGCTTGCTCCTT -CCAACATCGAGATGCTTGCCTGTT -CCAACATCGAGATGCTTGCGGTTT -CCAACATCGAGATGCTTGGTGGTT -CCAACATCGAGATGCTTGGCCTTT -CCAACATCGAGATGCTTGGGTCTT -CCAACATCGAGATGCTTGACGCTT -CCAACATCGAGATGCTTGAGCGTT -CCAACATCGAGATGCTTGTTCGTC -CCAACATCGAGATGCTTGTCTCTC -CCAACATCGAGATGCTTGTGGATC -CCAACATCGAGATGCTTGCACTTC -CCAACATCGAGATGCTTGGTACTC -CCAACATCGAGATGCTTGGATGTC -CCAACATCGAGATGCTTGACAGTC -CCAACATCGAGATGCTTGTTGCTG -CCAACATCGAGATGCTTGTCCATG -CCAACATCGAGATGCTTGTGTGTG -CCAACATCGAGATGCTTGCTAGTG -CCAACATCGAGATGCTTGCATCTG -CCAACATCGAGATGCTTGGAGTTG -CCAACATCGAGATGCTTGAGACTG -CCAACATCGAGATGCTTGTCGGTA -CCAACATCGAGATGCTTGTGCCTA -CCAACATCGAGATGCTTGCCACTA -CCAACATCGAGATGCTTGGGAGTA -CCAACATCGAGATGCTTGTCGTCT -CCAACATCGAGATGCTTGTGCACT -CCAACATCGAGATGCTTGCTGACT -CCAACATCGAGATGCTTGCAACCT -CCAACATCGAGATGCTTGGCTACT -CCAACATCGAGATGCTTGGGATCT -CCAACATCGAGATGCTTGAAGGCT -CCAACATCGAGATGCTTGTCAACC -CCAACATCGAGATGCTTGTGTTCC -CCAACATCGAGATGCTTGATTCCC -CCAACATCGAGATGCTTGTTCTCG -CCAACATCGAGATGCTTGTAGACG -CCAACATCGAGATGCTTGGTAACG -CCAACATCGAGATGCTTGACTTCG -CCAACATCGAGATGCTTGTACGCA -CCAACATCGAGATGCTTGCTTGCA -CCAACATCGAGATGCTTGCGAACA -CCAACATCGAGATGCTTGCAGTCA -CCAACATCGAGATGCTTGGATCCA -CCAACATCGAGATGCTTGACGACA -CCAACATCGAGATGCTTGAGCTCA -CCAACATCGAGATGCTTGTCACGT -CCAACATCGAGATGCTTGCGTAGT -CCAACATCGAGATGCTTGGTCAGT -CCAACATCGAGATGCTTGGAAGGT -CCAACATCGAGATGCTTGAACCGT -CCAACATCGAGATGCTTGTTGTGC -CCAACATCGAGATGCTTGCTAAGC -CCAACATCGAGATGCTTGACTAGC -CCAACATCGAGATGCTTGAGATGC -CCAACATCGAGATGCTTGTGAAGG -CCAACATCGAGATGCTTGCAATGG -CCAACATCGAGATGCTTGATGAGG -CCAACATCGAGATGCTTGAATGGG -CCAACATCGAGATGCTTGTCCTGA -CCAACATCGAGATGCTTGTAGCGA -CCAACATCGAGATGCTTGCACAGA -CCAACATCGAGATGCTTGGCAAGA -CCAACATCGAGATGCTTGGGTTGA -CCAACATCGAGATGCTTGTCCGAT -CCAACATCGAGATGCTTGTGGCAT -CCAACATCGAGATGCTTGCGAGAT -CCAACATCGAGATGCTTGTACCAC -CCAACATCGAGATGCTTGCAGAAC -CCAACATCGAGATGCTTGGTCTAC -CCAACATCGAGATGCTTGACGTAC -CCAACATCGAGATGCTTGAGTGAC -CCAACATCGAGATGCTTGCTGTAG -CCAACATCGAGATGCTTGCCTAAG -CCAACATCGAGATGCTTGGTTCAG -CCAACATCGAGATGCTTGGCATAG -CCAACATCGAGATGCTTGGACAAG -CCAACATCGAGATGCTTGAAGCAG -CCAACATCGAGATGCTTGCGTCAA -CCAACATCGAGATGCTTGGCTGAA -CCAACATCGAGATGCTTGAGTACG -CCAACATCGAGATGCTTGATCCGA -CCAACATCGAGATGCTTGATGGGA -CCAACATCGAGATGCTTGGTGCAA -CCAACATCGAGATGCTTGGAGGAA -CCAACATCGAGATGCTTGCAGGTA -CCAACATCGAGATGCTTGGACTCT -CCAACATCGAGATGCTTGAGTCCT -CCAACATCGAGATGCTTGTAAGCC -CCAACATCGAGATGCTTGATAGCC -CCAACATCGAGATGCTTGTAACCG -CCAACATCGAGATGCTTGATGCCA -CCAACATCGAGAAGCCTAGGAAAC -CCAACATCGAGAAGCCTAAACACC -CCAACATCGAGAAGCCTAATCGAG -CCAACATCGAGAAGCCTACTCCTT -CCAACATCGAGAAGCCTACCTGTT -CCAACATCGAGAAGCCTACGGTTT -CCAACATCGAGAAGCCTAGTGGTT -CCAACATCGAGAAGCCTAGCCTTT -CCAACATCGAGAAGCCTAGGTCTT -CCAACATCGAGAAGCCTAACGCTT -CCAACATCGAGAAGCCTAAGCGTT -CCAACATCGAGAAGCCTATTCGTC -CCAACATCGAGAAGCCTATCTCTC -CCAACATCGAGAAGCCTATGGATC -CCAACATCGAGAAGCCTACACTTC -CCAACATCGAGAAGCCTAGTACTC -CCAACATCGAGAAGCCTAGATGTC -CCAACATCGAGAAGCCTAACAGTC -CCAACATCGAGAAGCCTATTGCTG -CCAACATCGAGAAGCCTATCCATG -CCAACATCGAGAAGCCTATGTGTG -CCAACATCGAGAAGCCTACTAGTG -CCAACATCGAGAAGCCTACATCTG -CCAACATCGAGAAGCCTAGAGTTG -CCAACATCGAGAAGCCTAAGACTG -CCAACATCGAGAAGCCTATCGGTA -CCAACATCGAGAAGCCTATGCCTA -CCAACATCGAGAAGCCTACCACTA -CCAACATCGAGAAGCCTAGGAGTA -CCAACATCGAGAAGCCTATCGTCT -CCAACATCGAGAAGCCTATGCACT -CCAACATCGAGAAGCCTACTGACT -CCAACATCGAGAAGCCTACAACCT -CCAACATCGAGAAGCCTAGCTACT -CCAACATCGAGAAGCCTAGGATCT -CCAACATCGAGAAGCCTAAAGGCT -CCAACATCGAGAAGCCTATCAACC -CCAACATCGAGAAGCCTATGTTCC -CCAACATCGAGAAGCCTAATTCCC -CCAACATCGAGAAGCCTATTCTCG -CCAACATCGAGAAGCCTATAGACG -CCAACATCGAGAAGCCTAGTAACG -CCAACATCGAGAAGCCTAACTTCG -CCAACATCGAGAAGCCTATACGCA -CCAACATCGAGAAGCCTACTTGCA -CCAACATCGAGAAGCCTACGAACA -CCAACATCGAGAAGCCTACAGTCA -CCAACATCGAGAAGCCTAGATCCA -CCAACATCGAGAAGCCTAACGACA -CCAACATCGAGAAGCCTAAGCTCA -CCAACATCGAGAAGCCTATCACGT -CCAACATCGAGAAGCCTACGTAGT -CCAACATCGAGAAGCCTAGTCAGT -CCAACATCGAGAAGCCTAGAAGGT -CCAACATCGAGAAGCCTAAACCGT -CCAACATCGAGAAGCCTATTGTGC -CCAACATCGAGAAGCCTACTAAGC -CCAACATCGAGAAGCCTAACTAGC -CCAACATCGAGAAGCCTAAGATGC -CCAACATCGAGAAGCCTATGAAGG -CCAACATCGAGAAGCCTACAATGG -CCAACATCGAGAAGCCTAATGAGG -CCAACATCGAGAAGCCTAAATGGG -CCAACATCGAGAAGCCTATCCTGA -CCAACATCGAGAAGCCTATAGCGA -CCAACATCGAGAAGCCTACACAGA -CCAACATCGAGAAGCCTAGCAAGA -CCAACATCGAGAAGCCTAGGTTGA -CCAACATCGAGAAGCCTATCCGAT -CCAACATCGAGAAGCCTATGGCAT -CCAACATCGAGAAGCCTACGAGAT -CCAACATCGAGAAGCCTATACCAC -CCAACATCGAGAAGCCTACAGAAC -CCAACATCGAGAAGCCTAGTCTAC -CCAACATCGAGAAGCCTAACGTAC -CCAACATCGAGAAGCCTAAGTGAC -CCAACATCGAGAAGCCTACTGTAG -CCAACATCGAGAAGCCTACCTAAG -CCAACATCGAGAAGCCTAGTTCAG -CCAACATCGAGAAGCCTAGCATAG -CCAACATCGAGAAGCCTAGACAAG -CCAACATCGAGAAGCCTAAAGCAG -CCAACATCGAGAAGCCTACGTCAA -CCAACATCGAGAAGCCTAGCTGAA -CCAACATCGAGAAGCCTAAGTACG -CCAACATCGAGAAGCCTAATCCGA -CCAACATCGAGAAGCCTAATGGGA -CCAACATCGAGAAGCCTAGTGCAA -CCAACATCGAGAAGCCTAGAGGAA -CCAACATCGAGAAGCCTACAGGTA -CCAACATCGAGAAGCCTAGACTCT -CCAACATCGAGAAGCCTAAGTCCT -CCAACATCGAGAAGCCTATAAGCC -CCAACATCGAGAAGCCTAATAGCC -CCAACATCGAGAAGCCTATAACCG -CCAACATCGAGAAGCCTAATGCCA -CCAACATCGAGAAGCACTGGAAAC -CCAACATCGAGAAGCACTAACACC -CCAACATCGAGAAGCACTATCGAG -CCAACATCGAGAAGCACTCTCCTT -CCAACATCGAGAAGCACTCCTGTT -CCAACATCGAGAAGCACTCGGTTT -CCAACATCGAGAAGCACTGTGGTT -CCAACATCGAGAAGCACTGCCTTT -CCAACATCGAGAAGCACTGGTCTT -CCAACATCGAGAAGCACTACGCTT -CCAACATCGAGAAGCACTAGCGTT -CCAACATCGAGAAGCACTTTCGTC -CCAACATCGAGAAGCACTTCTCTC -CCAACATCGAGAAGCACTTGGATC -CCAACATCGAGAAGCACTCACTTC -CCAACATCGAGAAGCACTGTACTC -CCAACATCGAGAAGCACTGATGTC -CCAACATCGAGAAGCACTACAGTC -CCAACATCGAGAAGCACTTTGCTG -CCAACATCGAGAAGCACTTCCATG -CCAACATCGAGAAGCACTTGTGTG -CCAACATCGAGAAGCACTCTAGTG -CCAACATCGAGAAGCACTCATCTG -CCAACATCGAGAAGCACTGAGTTG -CCAACATCGAGAAGCACTAGACTG -CCAACATCGAGAAGCACTTCGGTA -CCAACATCGAGAAGCACTTGCCTA -CCAACATCGAGAAGCACTCCACTA -CCAACATCGAGAAGCACTGGAGTA -CCAACATCGAGAAGCACTTCGTCT -CCAACATCGAGAAGCACTTGCACT -CCAACATCGAGAAGCACTCTGACT -CCAACATCGAGAAGCACTCAACCT -CCAACATCGAGAAGCACTGCTACT -CCAACATCGAGAAGCACTGGATCT -CCAACATCGAGAAGCACTAAGGCT -CCAACATCGAGAAGCACTTCAACC -CCAACATCGAGAAGCACTTGTTCC -CCAACATCGAGAAGCACTATTCCC -CCAACATCGAGAAGCACTTTCTCG -CCAACATCGAGAAGCACTTAGACG -CCAACATCGAGAAGCACTGTAACG -CCAACATCGAGAAGCACTACTTCG -CCAACATCGAGAAGCACTTACGCA -CCAACATCGAGAAGCACTCTTGCA -CCAACATCGAGAAGCACTCGAACA -CCAACATCGAGAAGCACTCAGTCA -CCAACATCGAGAAGCACTGATCCA -CCAACATCGAGAAGCACTACGACA -CCAACATCGAGAAGCACTAGCTCA -CCAACATCGAGAAGCACTTCACGT -CCAACATCGAGAAGCACTCGTAGT -CCAACATCGAGAAGCACTGTCAGT -CCAACATCGAGAAGCACTGAAGGT -CCAACATCGAGAAGCACTAACCGT -CCAACATCGAGAAGCACTTTGTGC -CCAACATCGAGAAGCACTCTAAGC -CCAACATCGAGAAGCACTACTAGC -CCAACATCGAGAAGCACTAGATGC -CCAACATCGAGAAGCACTTGAAGG -CCAACATCGAGAAGCACTCAATGG -CCAACATCGAGAAGCACTATGAGG -CCAACATCGAGAAGCACTAATGGG -CCAACATCGAGAAGCACTTCCTGA -CCAACATCGAGAAGCACTTAGCGA -CCAACATCGAGAAGCACTCACAGA -CCAACATCGAGAAGCACTGCAAGA -CCAACATCGAGAAGCACTGGTTGA -CCAACATCGAGAAGCACTTCCGAT -CCAACATCGAGAAGCACTTGGCAT -CCAACATCGAGAAGCACTCGAGAT -CCAACATCGAGAAGCACTTACCAC -CCAACATCGAGAAGCACTCAGAAC -CCAACATCGAGAAGCACTGTCTAC -CCAACATCGAGAAGCACTACGTAC -CCAACATCGAGAAGCACTAGTGAC -CCAACATCGAGAAGCACTCTGTAG -CCAACATCGAGAAGCACTCCTAAG -CCAACATCGAGAAGCACTGTTCAG -CCAACATCGAGAAGCACTGCATAG -CCAACATCGAGAAGCACTGACAAG -CCAACATCGAGAAGCACTAAGCAG -CCAACATCGAGAAGCACTCGTCAA -CCAACATCGAGAAGCACTGCTGAA -CCAACATCGAGAAGCACTAGTACG -CCAACATCGAGAAGCACTATCCGA -CCAACATCGAGAAGCACTATGGGA -CCAACATCGAGAAGCACTGTGCAA -CCAACATCGAGAAGCACTGAGGAA -CCAACATCGAGAAGCACTCAGGTA -CCAACATCGAGAAGCACTGACTCT -CCAACATCGAGAAGCACTAGTCCT -CCAACATCGAGAAGCACTTAAGCC -CCAACATCGAGAAGCACTATAGCC -CCAACATCGAGAAGCACTTAACCG -CCAACATCGAGAAGCACTATGCCA -CCAACATCGAGATGCAGAGGAAAC -CCAACATCGAGATGCAGAAACACC -CCAACATCGAGATGCAGAATCGAG -CCAACATCGAGATGCAGACTCCTT -CCAACATCGAGATGCAGACCTGTT -CCAACATCGAGATGCAGACGGTTT -CCAACATCGAGATGCAGAGTGGTT -CCAACATCGAGATGCAGAGCCTTT -CCAACATCGAGATGCAGAGGTCTT -CCAACATCGAGATGCAGAACGCTT -CCAACATCGAGATGCAGAAGCGTT -CCAACATCGAGATGCAGATTCGTC -CCAACATCGAGATGCAGATCTCTC -CCAACATCGAGATGCAGATGGATC -CCAACATCGAGATGCAGACACTTC -CCAACATCGAGATGCAGAGTACTC -CCAACATCGAGATGCAGAGATGTC -CCAACATCGAGATGCAGAACAGTC -CCAACATCGAGATGCAGATTGCTG -CCAACATCGAGATGCAGATCCATG -CCAACATCGAGATGCAGATGTGTG -CCAACATCGAGATGCAGACTAGTG -CCAACATCGAGATGCAGACATCTG -CCAACATCGAGATGCAGAGAGTTG -CCAACATCGAGATGCAGAAGACTG -CCAACATCGAGATGCAGATCGGTA -CCAACATCGAGATGCAGATGCCTA -CCAACATCGAGATGCAGACCACTA -CCAACATCGAGATGCAGAGGAGTA -CCAACATCGAGATGCAGATCGTCT -CCAACATCGAGATGCAGATGCACT -CCAACATCGAGATGCAGACTGACT -CCAACATCGAGATGCAGACAACCT -CCAACATCGAGATGCAGAGCTACT -CCAACATCGAGATGCAGAGGATCT -CCAACATCGAGATGCAGAAAGGCT -CCAACATCGAGATGCAGATCAACC -CCAACATCGAGATGCAGATGTTCC -CCAACATCGAGATGCAGAATTCCC -CCAACATCGAGATGCAGATTCTCG -CCAACATCGAGATGCAGATAGACG -CCAACATCGAGATGCAGAGTAACG -CCAACATCGAGATGCAGAACTTCG -CCAACATCGAGATGCAGATACGCA -CCAACATCGAGATGCAGACTTGCA -CCAACATCGAGATGCAGACGAACA -CCAACATCGAGATGCAGACAGTCA -CCAACATCGAGATGCAGAGATCCA -CCAACATCGAGATGCAGAACGACA -CCAACATCGAGATGCAGAAGCTCA -CCAACATCGAGATGCAGATCACGT -CCAACATCGAGATGCAGACGTAGT -CCAACATCGAGATGCAGAGTCAGT -CCAACATCGAGATGCAGAGAAGGT -CCAACATCGAGATGCAGAAACCGT -CCAACATCGAGATGCAGATTGTGC -CCAACATCGAGATGCAGACTAAGC -CCAACATCGAGATGCAGAACTAGC -CCAACATCGAGATGCAGAAGATGC -CCAACATCGAGATGCAGATGAAGG -CCAACATCGAGATGCAGACAATGG -CCAACATCGAGATGCAGAATGAGG -CCAACATCGAGATGCAGAAATGGG -CCAACATCGAGATGCAGATCCTGA -CCAACATCGAGATGCAGATAGCGA -CCAACATCGAGATGCAGACACAGA -CCAACATCGAGATGCAGAGCAAGA -CCAACATCGAGATGCAGAGGTTGA -CCAACATCGAGATGCAGATCCGAT -CCAACATCGAGATGCAGATGGCAT -CCAACATCGAGATGCAGACGAGAT -CCAACATCGAGATGCAGATACCAC -CCAACATCGAGATGCAGACAGAAC -CCAACATCGAGATGCAGAGTCTAC -CCAACATCGAGATGCAGAACGTAC -CCAACATCGAGATGCAGAAGTGAC -CCAACATCGAGATGCAGACTGTAG -CCAACATCGAGATGCAGACCTAAG -CCAACATCGAGATGCAGAGTTCAG -CCAACATCGAGATGCAGAGCATAG -CCAACATCGAGATGCAGAGACAAG -CCAACATCGAGATGCAGAAAGCAG -CCAACATCGAGATGCAGACGTCAA -CCAACATCGAGATGCAGAGCTGAA -CCAACATCGAGATGCAGAAGTACG -CCAACATCGAGATGCAGAATCCGA -CCAACATCGAGATGCAGAATGGGA -CCAACATCGAGATGCAGAGTGCAA -CCAACATCGAGATGCAGAGAGGAA -CCAACATCGAGATGCAGACAGGTA -CCAACATCGAGATGCAGAGACTCT -CCAACATCGAGATGCAGAAGTCCT -CCAACATCGAGATGCAGATAAGCC -CCAACATCGAGATGCAGAATAGCC -CCAACATCGAGATGCAGATAACCG -CCAACATCGAGATGCAGAATGCCA -CCAACATCGAGAAGGTGAGGAAAC -CCAACATCGAGAAGGTGAAACACC -CCAACATCGAGAAGGTGAATCGAG -CCAACATCGAGAAGGTGACTCCTT -CCAACATCGAGAAGGTGACCTGTT -CCAACATCGAGAAGGTGACGGTTT -CCAACATCGAGAAGGTGAGTGGTT -CCAACATCGAGAAGGTGAGCCTTT -CCAACATCGAGAAGGTGAGGTCTT -CCAACATCGAGAAGGTGAACGCTT -CCAACATCGAGAAGGTGAAGCGTT -CCAACATCGAGAAGGTGATTCGTC -CCAACATCGAGAAGGTGATCTCTC -CCAACATCGAGAAGGTGATGGATC -CCAACATCGAGAAGGTGACACTTC -CCAACATCGAGAAGGTGAGTACTC -CCAACATCGAGAAGGTGAGATGTC -CCAACATCGAGAAGGTGAACAGTC -CCAACATCGAGAAGGTGATTGCTG -CCAACATCGAGAAGGTGATCCATG -CCAACATCGAGAAGGTGATGTGTG -CCAACATCGAGAAGGTGACTAGTG -CCAACATCGAGAAGGTGACATCTG -CCAACATCGAGAAGGTGAGAGTTG -CCAACATCGAGAAGGTGAAGACTG -CCAACATCGAGAAGGTGATCGGTA -CCAACATCGAGAAGGTGATGCCTA -CCAACATCGAGAAGGTGACCACTA -CCAACATCGAGAAGGTGAGGAGTA -CCAACATCGAGAAGGTGATCGTCT -CCAACATCGAGAAGGTGATGCACT -CCAACATCGAGAAGGTGACTGACT -CCAACATCGAGAAGGTGACAACCT -CCAACATCGAGAAGGTGAGCTACT -CCAACATCGAGAAGGTGAGGATCT -CCAACATCGAGAAGGTGAAAGGCT -CCAACATCGAGAAGGTGATCAACC -CCAACATCGAGAAGGTGATGTTCC -CCAACATCGAGAAGGTGAATTCCC -CCAACATCGAGAAGGTGATTCTCG -CCAACATCGAGAAGGTGATAGACG -CCAACATCGAGAAGGTGAGTAACG -CCAACATCGAGAAGGTGAACTTCG -CCAACATCGAGAAGGTGATACGCA -CCAACATCGAGAAGGTGACTTGCA -CCAACATCGAGAAGGTGACGAACA -CCAACATCGAGAAGGTGACAGTCA -CCAACATCGAGAAGGTGAGATCCA -CCAACATCGAGAAGGTGAACGACA -CCAACATCGAGAAGGTGAAGCTCA -CCAACATCGAGAAGGTGATCACGT -CCAACATCGAGAAGGTGACGTAGT -CCAACATCGAGAAGGTGAGTCAGT -CCAACATCGAGAAGGTGAGAAGGT -CCAACATCGAGAAGGTGAAACCGT -CCAACATCGAGAAGGTGATTGTGC -CCAACATCGAGAAGGTGACTAAGC -CCAACATCGAGAAGGTGAACTAGC -CCAACATCGAGAAGGTGAAGATGC -CCAACATCGAGAAGGTGATGAAGG -CCAACATCGAGAAGGTGACAATGG -CCAACATCGAGAAGGTGAATGAGG -CCAACATCGAGAAGGTGAAATGGG -CCAACATCGAGAAGGTGATCCTGA -CCAACATCGAGAAGGTGATAGCGA -CCAACATCGAGAAGGTGACACAGA -CCAACATCGAGAAGGTGAGCAAGA -CCAACATCGAGAAGGTGAGGTTGA -CCAACATCGAGAAGGTGATCCGAT -CCAACATCGAGAAGGTGATGGCAT -CCAACATCGAGAAGGTGACGAGAT -CCAACATCGAGAAGGTGATACCAC -CCAACATCGAGAAGGTGACAGAAC -CCAACATCGAGAAGGTGAGTCTAC -CCAACATCGAGAAGGTGAACGTAC -CCAACATCGAGAAGGTGAAGTGAC -CCAACATCGAGAAGGTGACTGTAG -CCAACATCGAGAAGGTGACCTAAG -CCAACATCGAGAAGGTGAGTTCAG -CCAACATCGAGAAGGTGAGCATAG -CCAACATCGAGAAGGTGAGACAAG -CCAACATCGAGAAGGTGAAAGCAG -CCAACATCGAGAAGGTGACGTCAA -CCAACATCGAGAAGGTGAGCTGAA -CCAACATCGAGAAGGTGAAGTACG -CCAACATCGAGAAGGTGAATCCGA -CCAACATCGAGAAGGTGAATGGGA -CCAACATCGAGAAGGTGAGTGCAA -CCAACATCGAGAAGGTGAGAGGAA -CCAACATCGAGAAGGTGACAGGTA -CCAACATCGAGAAGGTGAGACTCT -CCAACATCGAGAAGGTGAAGTCCT -CCAACATCGAGAAGGTGATAAGCC -CCAACATCGAGAAGGTGAATAGCC -CCAACATCGAGAAGGTGATAACCG -CCAACATCGAGAAGGTGAATGCCA -CCAACATCGAGATGGCAAGGAAAC -CCAACATCGAGATGGCAAAACACC -CCAACATCGAGATGGCAAATCGAG -CCAACATCGAGATGGCAACTCCTT -CCAACATCGAGATGGCAACCTGTT -CCAACATCGAGATGGCAACGGTTT -CCAACATCGAGATGGCAAGTGGTT -CCAACATCGAGATGGCAAGCCTTT -CCAACATCGAGATGGCAAGGTCTT -CCAACATCGAGATGGCAAACGCTT -CCAACATCGAGATGGCAAAGCGTT -CCAACATCGAGATGGCAATTCGTC -CCAACATCGAGATGGCAATCTCTC -CCAACATCGAGATGGCAATGGATC -CCAACATCGAGATGGCAACACTTC -CCAACATCGAGATGGCAAGTACTC -CCAACATCGAGATGGCAAGATGTC -CCAACATCGAGATGGCAAACAGTC -CCAACATCGAGATGGCAATTGCTG -CCAACATCGAGATGGCAATCCATG -CCAACATCGAGATGGCAATGTGTG -CCAACATCGAGATGGCAACTAGTG -CCAACATCGAGATGGCAACATCTG -CCAACATCGAGATGGCAAGAGTTG -CCAACATCGAGATGGCAAAGACTG -CCAACATCGAGATGGCAATCGGTA -CCAACATCGAGATGGCAATGCCTA -CCAACATCGAGATGGCAACCACTA -CCAACATCGAGATGGCAAGGAGTA -CCAACATCGAGATGGCAATCGTCT -CCAACATCGAGATGGCAATGCACT -CCAACATCGAGATGGCAACTGACT -CCAACATCGAGATGGCAACAACCT -CCAACATCGAGATGGCAAGCTACT -CCAACATCGAGATGGCAAGGATCT -CCAACATCGAGATGGCAAAAGGCT -CCAACATCGAGATGGCAATCAACC -CCAACATCGAGATGGCAATGTTCC -CCAACATCGAGATGGCAAATTCCC -CCAACATCGAGATGGCAATTCTCG -CCAACATCGAGATGGCAATAGACG -CCAACATCGAGATGGCAAGTAACG -CCAACATCGAGATGGCAAACTTCG -CCAACATCGAGATGGCAATACGCA -CCAACATCGAGATGGCAACTTGCA -CCAACATCGAGATGGCAACGAACA -CCAACATCGAGATGGCAACAGTCA -CCAACATCGAGATGGCAAGATCCA -CCAACATCGAGATGGCAAACGACA -CCAACATCGAGATGGCAAAGCTCA -CCAACATCGAGATGGCAATCACGT -CCAACATCGAGATGGCAACGTAGT -CCAACATCGAGATGGCAAGTCAGT -CCAACATCGAGATGGCAAGAAGGT -CCAACATCGAGATGGCAAAACCGT -CCAACATCGAGATGGCAATTGTGC -CCAACATCGAGATGGCAACTAAGC -CCAACATCGAGATGGCAAACTAGC -CCAACATCGAGATGGCAAAGATGC -CCAACATCGAGATGGCAATGAAGG -CCAACATCGAGATGGCAACAATGG -CCAACATCGAGATGGCAAATGAGG -CCAACATCGAGATGGCAAAATGGG -CCAACATCGAGATGGCAATCCTGA -CCAACATCGAGATGGCAATAGCGA -CCAACATCGAGATGGCAACACAGA -CCAACATCGAGATGGCAAGCAAGA -CCAACATCGAGATGGCAAGGTTGA -CCAACATCGAGATGGCAATCCGAT -CCAACATCGAGATGGCAATGGCAT -CCAACATCGAGATGGCAACGAGAT -CCAACATCGAGATGGCAATACCAC -CCAACATCGAGATGGCAACAGAAC -CCAACATCGAGATGGCAAGTCTAC -CCAACATCGAGATGGCAAACGTAC -CCAACATCGAGATGGCAAAGTGAC -CCAACATCGAGATGGCAACTGTAG -CCAACATCGAGATGGCAACCTAAG -CCAACATCGAGATGGCAAGTTCAG -CCAACATCGAGATGGCAAGCATAG -CCAACATCGAGATGGCAAGACAAG -CCAACATCGAGATGGCAAAAGCAG -CCAACATCGAGATGGCAACGTCAA -CCAACATCGAGATGGCAAGCTGAA -CCAACATCGAGATGGCAAAGTACG -CCAACATCGAGATGGCAAATCCGA -CCAACATCGAGATGGCAAATGGGA -CCAACATCGAGATGGCAAGTGCAA -CCAACATCGAGATGGCAAGAGGAA -CCAACATCGAGATGGCAACAGGTA -CCAACATCGAGATGGCAAGACTCT -CCAACATCGAGATGGCAAAGTCCT -CCAACATCGAGATGGCAATAAGCC -CCAACATCGAGATGGCAAATAGCC -CCAACATCGAGATGGCAATAACCG -CCAACATCGAGATGGCAAATGCCA -CCAACATCGAGAAGGATGGGAAAC -CCAACATCGAGAAGGATGAACACC -CCAACATCGAGAAGGATGATCGAG -CCAACATCGAGAAGGATGCTCCTT -CCAACATCGAGAAGGATGCCTGTT -CCAACATCGAGAAGGATGCGGTTT -CCAACATCGAGAAGGATGGTGGTT -CCAACATCGAGAAGGATGGCCTTT -CCAACATCGAGAAGGATGGGTCTT -CCAACATCGAGAAGGATGACGCTT -CCAACATCGAGAAGGATGAGCGTT -CCAACATCGAGAAGGATGTTCGTC -CCAACATCGAGAAGGATGTCTCTC -CCAACATCGAGAAGGATGTGGATC -CCAACATCGAGAAGGATGCACTTC -CCAACATCGAGAAGGATGGTACTC -CCAACATCGAGAAGGATGGATGTC -CCAACATCGAGAAGGATGACAGTC -CCAACATCGAGAAGGATGTTGCTG -CCAACATCGAGAAGGATGTCCATG -CCAACATCGAGAAGGATGTGTGTG -CCAACATCGAGAAGGATGCTAGTG -CCAACATCGAGAAGGATGCATCTG -CCAACATCGAGAAGGATGGAGTTG -CCAACATCGAGAAGGATGAGACTG -CCAACATCGAGAAGGATGTCGGTA -CCAACATCGAGAAGGATGTGCCTA -CCAACATCGAGAAGGATGCCACTA -CCAACATCGAGAAGGATGGGAGTA -CCAACATCGAGAAGGATGTCGTCT -CCAACATCGAGAAGGATGTGCACT -CCAACATCGAGAAGGATGCTGACT -CCAACATCGAGAAGGATGCAACCT -CCAACATCGAGAAGGATGGCTACT -CCAACATCGAGAAGGATGGGATCT -CCAACATCGAGAAGGATGAAGGCT -CCAACATCGAGAAGGATGTCAACC -CCAACATCGAGAAGGATGTGTTCC -CCAACATCGAGAAGGATGATTCCC -CCAACATCGAGAAGGATGTTCTCG -CCAACATCGAGAAGGATGTAGACG -CCAACATCGAGAAGGATGGTAACG -CCAACATCGAGAAGGATGACTTCG -CCAACATCGAGAAGGATGTACGCA -CCAACATCGAGAAGGATGCTTGCA -CCAACATCGAGAAGGATGCGAACA -CCAACATCGAGAAGGATGCAGTCA -CCAACATCGAGAAGGATGGATCCA -CCAACATCGAGAAGGATGACGACA -CCAACATCGAGAAGGATGAGCTCA -CCAACATCGAGAAGGATGTCACGT -CCAACATCGAGAAGGATGCGTAGT -CCAACATCGAGAAGGATGGTCAGT -CCAACATCGAGAAGGATGGAAGGT -CCAACATCGAGAAGGATGAACCGT -CCAACATCGAGAAGGATGTTGTGC -CCAACATCGAGAAGGATGCTAAGC -CCAACATCGAGAAGGATGACTAGC -CCAACATCGAGAAGGATGAGATGC -CCAACATCGAGAAGGATGTGAAGG -CCAACATCGAGAAGGATGCAATGG -CCAACATCGAGAAGGATGATGAGG -CCAACATCGAGAAGGATGAATGGG -CCAACATCGAGAAGGATGTCCTGA -CCAACATCGAGAAGGATGTAGCGA -CCAACATCGAGAAGGATGCACAGA -CCAACATCGAGAAGGATGGCAAGA -CCAACATCGAGAAGGATGGGTTGA -CCAACATCGAGAAGGATGTCCGAT -CCAACATCGAGAAGGATGTGGCAT -CCAACATCGAGAAGGATGCGAGAT -CCAACATCGAGAAGGATGTACCAC -CCAACATCGAGAAGGATGCAGAAC -CCAACATCGAGAAGGATGGTCTAC -CCAACATCGAGAAGGATGACGTAC -CCAACATCGAGAAGGATGAGTGAC -CCAACATCGAGAAGGATGCTGTAG -CCAACATCGAGAAGGATGCCTAAG -CCAACATCGAGAAGGATGGTTCAG -CCAACATCGAGAAGGATGGCATAG -CCAACATCGAGAAGGATGGACAAG -CCAACATCGAGAAGGATGAAGCAG -CCAACATCGAGAAGGATGCGTCAA -CCAACATCGAGAAGGATGGCTGAA -CCAACATCGAGAAGGATGAGTACG -CCAACATCGAGAAGGATGATCCGA -CCAACATCGAGAAGGATGATGGGA -CCAACATCGAGAAGGATGGTGCAA -CCAACATCGAGAAGGATGGAGGAA -CCAACATCGAGAAGGATGCAGGTA -CCAACATCGAGAAGGATGGACTCT -CCAACATCGAGAAGGATGAGTCCT -CCAACATCGAGAAGGATGTAAGCC -CCAACATCGAGAAGGATGATAGCC -CCAACATCGAGAAGGATGTAACCG -CCAACATCGAGAAGGATGATGCCA -CCAACATCGAGAGGGAATGGAAAC -CCAACATCGAGAGGGAATAACACC -CCAACATCGAGAGGGAATATCGAG -CCAACATCGAGAGGGAATCTCCTT -CCAACATCGAGAGGGAATCCTGTT -CCAACATCGAGAGGGAATCGGTTT -CCAACATCGAGAGGGAATGTGGTT -CCAACATCGAGAGGGAATGCCTTT -CCAACATCGAGAGGGAATGGTCTT -CCAACATCGAGAGGGAATACGCTT -CCAACATCGAGAGGGAATAGCGTT -CCAACATCGAGAGGGAATTTCGTC -CCAACATCGAGAGGGAATTCTCTC -CCAACATCGAGAGGGAATTGGATC -CCAACATCGAGAGGGAATCACTTC -CCAACATCGAGAGGGAATGTACTC -CCAACATCGAGAGGGAATGATGTC -CCAACATCGAGAGGGAATACAGTC -CCAACATCGAGAGGGAATTTGCTG -CCAACATCGAGAGGGAATTCCATG -CCAACATCGAGAGGGAATTGTGTG -CCAACATCGAGAGGGAATCTAGTG -CCAACATCGAGAGGGAATCATCTG -CCAACATCGAGAGGGAATGAGTTG -CCAACATCGAGAGGGAATAGACTG -CCAACATCGAGAGGGAATTCGGTA -CCAACATCGAGAGGGAATTGCCTA -CCAACATCGAGAGGGAATCCACTA -CCAACATCGAGAGGGAATGGAGTA -CCAACATCGAGAGGGAATTCGTCT -CCAACATCGAGAGGGAATTGCACT -CCAACATCGAGAGGGAATCTGACT -CCAACATCGAGAGGGAATCAACCT -CCAACATCGAGAGGGAATGCTACT -CCAACATCGAGAGGGAATGGATCT -CCAACATCGAGAGGGAATAAGGCT -CCAACATCGAGAGGGAATTCAACC -CCAACATCGAGAGGGAATTGTTCC -CCAACATCGAGAGGGAATATTCCC -CCAACATCGAGAGGGAATTTCTCG -CCAACATCGAGAGGGAATTAGACG -CCAACATCGAGAGGGAATGTAACG -CCAACATCGAGAGGGAATACTTCG -CCAACATCGAGAGGGAATTACGCA -CCAACATCGAGAGGGAATCTTGCA -CCAACATCGAGAGGGAATCGAACA -CCAACATCGAGAGGGAATCAGTCA -CCAACATCGAGAGGGAATGATCCA -CCAACATCGAGAGGGAATACGACA -CCAACATCGAGAGGGAATAGCTCA -CCAACATCGAGAGGGAATTCACGT -CCAACATCGAGAGGGAATCGTAGT -CCAACATCGAGAGGGAATGTCAGT -CCAACATCGAGAGGGAATGAAGGT -CCAACATCGAGAGGGAATAACCGT -CCAACATCGAGAGGGAATTTGTGC -CCAACATCGAGAGGGAATCTAAGC -CCAACATCGAGAGGGAATACTAGC -CCAACATCGAGAGGGAATAGATGC -CCAACATCGAGAGGGAATTGAAGG -CCAACATCGAGAGGGAATCAATGG -CCAACATCGAGAGGGAATATGAGG -CCAACATCGAGAGGGAATAATGGG -CCAACATCGAGAGGGAATTCCTGA -CCAACATCGAGAGGGAATTAGCGA -CCAACATCGAGAGGGAATCACAGA -CCAACATCGAGAGGGAATGCAAGA -CCAACATCGAGAGGGAATGGTTGA -CCAACATCGAGAGGGAATTCCGAT -CCAACATCGAGAGGGAATTGGCAT -CCAACATCGAGAGGGAATCGAGAT -CCAACATCGAGAGGGAATTACCAC -CCAACATCGAGAGGGAATCAGAAC -CCAACATCGAGAGGGAATGTCTAC -CCAACATCGAGAGGGAATACGTAC -CCAACATCGAGAGGGAATAGTGAC -CCAACATCGAGAGGGAATCTGTAG -CCAACATCGAGAGGGAATCCTAAG -CCAACATCGAGAGGGAATGTTCAG -CCAACATCGAGAGGGAATGCATAG -CCAACATCGAGAGGGAATGACAAG -CCAACATCGAGAGGGAATAAGCAG -CCAACATCGAGAGGGAATCGTCAA -CCAACATCGAGAGGGAATGCTGAA -CCAACATCGAGAGGGAATAGTACG -CCAACATCGAGAGGGAATATCCGA -CCAACATCGAGAGGGAATATGGGA -CCAACATCGAGAGGGAATGTGCAA -CCAACATCGAGAGGGAATGAGGAA -CCAACATCGAGAGGGAATCAGGTA -CCAACATCGAGAGGGAATGACTCT -CCAACATCGAGAGGGAATAGTCCT -CCAACATCGAGAGGGAATTAAGCC -CCAACATCGAGAGGGAATATAGCC -CCAACATCGAGAGGGAATTAACCG -CCAACATCGAGAGGGAATATGCCA -CCAACATCGAGATGATCCGGAAAC -CCAACATCGAGATGATCCAACACC -CCAACATCGAGATGATCCATCGAG -CCAACATCGAGATGATCCCTCCTT -CCAACATCGAGATGATCCCCTGTT -CCAACATCGAGATGATCCCGGTTT -CCAACATCGAGATGATCCGTGGTT -CCAACATCGAGATGATCCGCCTTT -CCAACATCGAGATGATCCGGTCTT -CCAACATCGAGATGATCCACGCTT -CCAACATCGAGATGATCCAGCGTT -CCAACATCGAGATGATCCTTCGTC -CCAACATCGAGATGATCCTCTCTC -CCAACATCGAGATGATCCTGGATC -CCAACATCGAGATGATCCCACTTC -CCAACATCGAGATGATCCGTACTC -CCAACATCGAGATGATCCGATGTC -CCAACATCGAGATGATCCACAGTC -CCAACATCGAGATGATCCTTGCTG -CCAACATCGAGATGATCCTCCATG -CCAACATCGAGATGATCCTGTGTG -CCAACATCGAGATGATCCCTAGTG -CCAACATCGAGATGATCCCATCTG -CCAACATCGAGATGATCCGAGTTG -CCAACATCGAGATGATCCAGACTG -CCAACATCGAGATGATCCTCGGTA -CCAACATCGAGATGATCCTGCCTA -CCAACATCGAGATGATCCCCACTA -CCAACATCGAGATGATCCGGAGTA -CCAACATCGAGATGATCCTCGTCT -CCAACATCGAGATGATCCTGCACT -CCAACATCGAGATGATCCCTGACT -CCAACATCGAGATGATCCCAACCT -CCAACATCGAGATGATCCGCTACT -CCAACATCGAGATGATCCGGATCT -CCAACATCGAGATGATCCAAGGCT -CCAACATCGAGATGATCCTCAACC -CCAACATCGAGATGATCCTGTTCC -CCAACATCGAGATGATCCATTCCC -CCAACATCGAGATGATCCTTCTCG -CCAACATCGAGATGATCCTAGACG -CCAACATCGAGATGATCCGTAACG -CCAACATCGAGATGATCCACTTCG -CCAACATCGAGATGATCCTACGCA -CCAACATCGAGATGATCCCTTGCA -CCAACATCGAGATGATCCCGAACA -CCAACATCGAGATGATCCCAGTCA -CCAACATCGAGATGATCCGATCCA -CCAACATCGAGATGATCCACGACA -CCAACATCGAGATGATCCAGCTCA -CCAACATCGAGATGATCCTCACGT -CCAACATCGAGATGATCCCGTAGT -CCAACATCGAGATGATCCGTCAGT -CCAACATCGAGATGATCCGAAGGT -CCAACATCGAGATGATCCAACCGT -CCAACATCGAGATGATCCTTGTGC -CCAACATCGAGATGATCCCTAAGC -CCAACATCGAGATGATCCACTAGC -CCAACATCGAGATGATCCAGATGC -CCAACATCGAGATGATCCTGAAGG -CCAACATCGAGATGATCCCAATGG -CCAACATCGAGATGATCCATGAGG -CCAACATCGAGATGATCCAATGGG -CCAACATCGAGATGATCCTCCTGA -CCAACATCGAGATGATCCTAGCGA -CCAACATCGAGATGATCCCACAGA -CCAACATCGAGATGATCCGCAAGA -CCAACATCGAGATGATCCGGTTGA -CCAACATCGAGATGATCCTCCGAT -CCAACATCGAGATGATCCTGGCAT -CCAACATCGAGATGATCCCGAGAT -CCAACATCGAGATGATCCTACCAC -CCAACATCGAGATGATCCCAGAAC -CCAACATCGAGATGATCCGTCTAC -CCAACATCGAGATGATCCACGTAC -CCAACATCGAGATGATCCAGTGAC -CCAACATCGAGATGATCCCTGTAG -CCAACATCGAGATGATCCCCTAAG -CCAACATCGAGATGATCCGTTCAG -CCAACATCGAGATGATCCGCATAG -CCAACATCGAGATGATCCGACAAG -CCAACATCGAGATGATCCAAGCAG -CCAACATCGAGATGATCCCGTCAA -CCAACATCGAGATGATCCGCTGAA -CCAACATCGAGATGATCCAGTACG -CCAACATCGAGATGATCCATCCGA -CCAACATCGAGATGATCCATGGGA -CCAACATCGAGATGATCCGTGCAA -CCAACATCGAGATGATCCGAGGAA -CCAACATCGAGATGATCCCAGGTA -CCAACATCGAGATGATCCGACTCT -CCAACATCGAGATGATCCAGTCCT -CCAACATCGAGATGATCCTAAGCC -CCAACATCGAGATGATCCATAGCC -CCAACATCGAGATGATCCTAACCG -CCAACATCGAGATGATCCATGCCA -CCAACATCGAGACGATAGGGAAAC -CCAACATCGAGACGATAGAACACC -CCAACATCGAGACGATAGATCGAG -CCAACATCGAGACGATAGCTCCTT -CCAACATCGAGACGATAGCCTGTT -CCAACATCGAGACGATAGCGGTTT -CCAACATCGAGACGATAGGTGGTT -CCAACATCGAGACGATAGGCCTTT -CCAACATCGAGACGATAGGGTCTT -CCAACATCGAGACGATAGACGCTT -CCAACATCGAGACGATAGAGCGTT -CCAACATCGAGACGATAGTTCGTC -CCAACATCGAGACGATAGTCTCTC -CCAACATCGAGACGATAGTGGATC -CCAACATCGAGACGATAGCACTTC -CCAACATCGAGACGATAGGTACTC -CCAACATCGAGACGATAGGATGTC -CCAACATCGAGACGATAGACAGTC -CCAACATCGAGACGATAGTTGCTG -CCAACATCGAGACGATAGTCCATG -CCAACATCGAGACGATAGTGTGTG -CCAACATCGAGACGATAGCTAGTG -CCAACATCGAGACGATAGCATCTG -CCAACATCGAGACGATAGGAGTTG -CCAACATCGAGACGATAGAGACTG -CCAACATCGAGACGATAGTCGGTA -CCAACATCGAGACGATAGTGCCTA -CCAACATCGAGACGATAGCCACTA -CCAACATCGAGACGATAGGGAGTA -CCAACATCGAGACGATAGTCGTCT -CCAACATCGAGACGATAGTGCACT -CCAACATCGAGACGATAGCTGACT -CCAACATCGAGACGATAGCAACCT -CCAACATCGAGACGATAGGCTACT -CCAACATCGAGACGATAGGGATCT -CCAACATCGAGACGATAGAAGGCT -CCAACATCGAGACGATAGTCAACC -CCAACATCGAGACGATAGTGTTCC -CCAACATCGAGACGATAGATTCCC -CCAACATCGAGACGATAGTTCTCG -CCAACATCGAGACGATAGTAGACG -CCAACATCGAGACGATAGGTAACG -CCAACATCGAGACGATAGACTTCG -CCAACATCGAGACGATAGTACGCA -CCAACATCGAGACGATAGCTTGCA -CCAACATCGAGACGATAGCGAACA -CCAACATCGAGACGATAGCAGTCA -CCAACATCGAGACGATAGGATCCA -CCAACATCGAGACGATAGACGACA -CCAACATCGAGACGATAGAGCTCA -CCAACATCGAGACGATAGTCACGT -CCAACATCGAGACGATAGCGTAGT -CCAACATCGAGACGATAGGTCAGT -CCAACATCGAGACGATAGGAAGGT -CCAACATCGAGACGATAGAACCGT -CCAACATCGAGACGATAGTTGTGC -CCAACATCGAGACGATAGCTAAGC -CCAACATCGAGACGATAGACTAGC -CCAACATCGAGACGATAGAGATGC -CCAACATCGAGACGATAGTGAAGG -CCAACATCGAGACGATAGCAATGG -CCAACATCGAGACGATAGATGAGG -CCAACATCGAGACGATAGAATGGG -CCAACATCGAGACGATAGTCCTGA -CCAACATCGAGACGATAGTAGCGA -CCAACATCGAGACGATAGCACAGA -CCAACATCGAGACGATAGGCAAGA -CCAACATCGAGACGATAGGGTTGA -CCAACATCGAGACGATAGTCCGAT -CCAACATCGAGACGATAGTGGCAT -CCAACATCGAGACGATAGCGAGAT -CCAACATCGAGACGATAGTACCAC -CCAACATCGAGACGATAGCAGAAC -CCAACATCGAGACGATAGGTCTAC -CCAACATCGAGACGATAGACGTAC -CCAACATCGAGACGATAGAGTGAC -CCAACATCGAGACGATAGCTGTAG -CCAACATCGAGACGATAGCCTAAG -CCAACATCGAGACGATAGGTTCAG -CCAACATCGAGACGATAGGCATAG -CCAACATCGAGACGATAGGACAAG -CCAACATCGAGACGATAGAAGCAG -CCAACATCGAGACGATAGCGTCAA -CCAACATCGAGACGATAGGCTGAA -CCAACATCGAGACGATAGAGTACG -CCAACATCGAGACGATAGATCCGA -CCAACATCGAGACGATAGATGGGA -CCAACATCGAGACGATAGGTGCAA -CCAACATCGAGACGATAGGAGGAA -CCAACATCGAGACGATAGCAGGTA -CCAACATCGAGACGATAGGACTCT -CCAACATCGAGACGATAGAGTCCT -CCAACATCGAGACGATAGTAAGCC -CCAACATCGAGACGATAGATAGCC -CCAACATCGAGACGATAGTAACCG -CCAACATCGAGACGATAGATGCCA -CCAACATCGAGAAGACACGGAAAC -CCAACATCGAGAAGACACAACACC -CCAACATCGAGAAGACACATCGAG -CCAACATCGAGAAGACACCTCCTT -CCAACATCGAGAAGACACCCTGTT -CCAACATCGAGAAGACACCGGTTT -CCAACATCGAGAAGACACGTGGTT -CCAACATCGAGAAGACACGCCTTT -CCAACATCGAGAAGACACGGTCTT -CCAACATCGAGAAGACACACGCTT -CCAACATCGAGAAGACACAGCGTT -CCAACATCGAGAAGACACTTCGTC -CCAACATCGAGAAGACACTCTCTC -CCAACATCGAGAAGACACTGGATC -CCAACATCGAGAAGACACCACTTC -CCAACATCGAGAAGACACGTACTC -CCAACATCGAGAAGACACGATGTC -CCAACATCGAGAAGACACACAGTC -CCAACATCGAGAAGACACTTGCTG -CCAACATCGAGAAGACACTCCATG -CCAACATCGAGAAGACACTGTGTG -CCAACATCGAGAAGACACCTAGTG -CCAACATCGAGAAGACACCATCTG -CCAACATCGAGAAGACACGAGTTG -CCAACATCGAGAAGACACAGACTG -CCAACATCGAGAAGACACTCGGTA -CCAACATCGAGAAGACACTGCCTA -CCAACATCGAGAAGACACCCACTA -CCAACATCGAGAAGACACGGAGTA -CCAACATCGAGAAGACACTCGTCT -CCAACATCGAGAAGACACTGCACT -CCAACATCGAGAAGACACCTGACT -CCAACATCGAGAAGACACCAACCT -CCAACATCGAGAAGACACGCTACT -CCAACATCGAGAAGACACGGATCT -CCAACATCGAGAAGACACAAGGCT -CCAACATCGAGAAGACACTCAACC -CCAACATCGAGAAGACACTGTTCC -CCAACATCGAGAAGACACATTCCC -CCAACATCGAGAAGACACTTCTCG -CCAACATCGAGAAGACACTAGACG -CCAACATCGAGAAGACACGTAACG -CCAACATCGAGAAGACACACTTCG -CCAACATCGAGAAGACACTACGCA -CCAACATCGAGAAGACACCTTGCA -CCAACATCGAGAAGACACCGAACA -CCAACATCGAGAAGACACCAGTCA -CCAACATCGAGAAGACACGATCCA -CCAACATCGAGAAGACACACGACA -CCAACATCGAGAAGACACAGCTCA -CCAACATCGAGAAGACACTCACGT -CCAACATCGAGAAGACACCGTAGT -CCAACATCGAGAAGACACGTCAGT -CCAACATCGAGAAGACACGAAGGT -CCAACATCGAGAAGACACAACCGT -CCAACATCGAGAAGACACTTGTGC -CCAACATCGAGAAGACACCTAAGC -CCAACATCGAGAAGACACACTAGC -CCAACATCGAGAAGACACAGATGC -CCAACATCGAGAAGACACTGAAGG -CCAACATCGAGAAGACACCAATGG -CCAACATCGAGAAGACACATGAGG -CCAACATCGAGAAGACACAATGGG -CCAACATCGAGAAGACACTCCTGA -CCAACATCGAGAAGACACTAGCGA -CCAACATCGAGAAGACACCACAGA -CCAACATCGAGAAGACACGCAAGA -CCAACATCGAGAAGACACGGTTGA -CCAACATCGAGAAGACACTCCGAT -CCAACATCGAGAAGACACTGGCAT -CCAACATCGAGAAGACACCGAGAT -CCAACATCGAGAAGACACTACCAC -CCAACATCGAGAAGACACCAGAAC -CCAACATCGAGAAGACACGTCTAC -CCAACATCGAGAAGACACACGTAC -CCAACATCGAGAAGACACAGTGAC -CCAACATCGAGAAGACACCTGTAG -CCAACATCGAGAAGACACCCTAAG -CCAACATCGAGAAGACACGTTCAG -CCAACATCGAGAAGACACGCATAG -CCAACATCGAGAAGACACGACAAG -CCAACATCGAGAAGACACAAGCAG -CCAACATCGAGAAGACACCGTCAA -CCAACATCGAGAAGACACGCTGAA -CCAACATCGAGAAGACACAGTACG -CCAACATCGAGAAGACACATCCGA -CCAACATCGAGAAGACACATGGGA -CCAACATCGAGAAGACACGTGCAA -CCAACATCGAGAAGACACGAGGAA -CCAACATCGAGAAGACACCAGGTA -CCAACATCGAGAAGACACGACTCT -CCAACATCGAGAAGACACAGTCCT -CCAACATCGAGAAGACACTAAGCC -CCAACATCGAGAAGACACATAGCC -CCAACATCGAGAAGACACTAACCG -CCAACATCGAGAAGACACATGCCA -CCAACATCGAGAAGAGCAGGAAAC -CCAACATCGAGAAGAGCAAACACC -CCAACATCGAGAAGAGCAATCGAG -CCAACATCGAGAAGAGCACTCCTT -CCAACATCGAGAAGAGCACCTGTT -CCAACATCGAGAAGAGCACGGTTT -CCAACATCGAGAAGAGCAGTGGTT -CCAACATCGAGAAGAGCAGCCTTT -CCAACATCGAGAAGAGCAGGTCTT -CCAACATCGAGAAGAGCAACGCTT -CCAACATCGAGAAGAGCAAGCGTT -CCAACATCGAGAAGAGCATTCGTC -CCAACATCGAGAAGAGCATCTCTC -CCAACATCGAGAAGAGCATGGATC -CCAACATCGAGAAGAGCACACTTC -CCAACATCGAGAAGAGCAGTACTC -CCAACATCGAGAAGAGCAGATGTC -CCAACATCGAGAAGAGCAACAGTC -CCAACATCGAGAAGAGCATTGCTG -CCAACATCGAGAAGAGCATCCATG -CCAACATCGAGAAGAGCATGTGTG -CCAACATCGAGAAGAGCACTAGTG -CCAACATCGAGAAGAGCACATCTG -CCAACATCGAGAAGAGCAGAGTTG -CCAACATCGAGAAGAGCAAGACTG -CCAACATCGAGAAGAGCATCGGTA -CCAACATCGAGAAGAGCATGCCTA -CCAACATCGAGAAGAGCACCACTA -CCAACATCGAGAAGAGCAGGAGTA -CCAACATCGAGAAGAGCATCGTCT -CCAACATCGAGAAGAGCATGCACT -CCAACATCGAGAAGAGCACTGACT -CCAACATCGAGAAGAGCACAACCT -CCAACATCGAGAAGAGCAGCTACT -CCAACATCGAGAAGAGCAGGATCT -CCAACATCGAGAAGAGCAAAGGCT -CCAACATCGAGAAGAGCATCAACC -CCAACATCGAGAAGAGCATGTTCC -CCAACATCGAGAAGAGCAATTCCC -CCAACATCGAGAAGAGCATTCTCG -CCAACATCGAGAAGAGCATAGACG -CCAACATCGAGAAGAGCAGTAACG -CCAACATCGAGAAGAGCAACTTCG -CCAACATCGAGAAGAGCATACGCA -CCAACATCGAGAAGAGCACTTGCA -CCAACATCGAGAAGAGCACGAACA -CCAACATCGAGAAGAGCACAGTCA -CCAACATCGAGAAGAGCAGATCCA -CCAACATCGAGAAGAGCAACGACA -CCAACATCGAGAAGAGCAAGCTCA -CCAACATCGAGAAGAGCATCACGT -CCAACATCGAGAAGAGCACGTAGT -CCAACATCGAGAAGAGCAGTCAGT -CCAACATCGAGAAGAGCAGAAGGT -CCAACATCGAGAAGAGCAAACCGT -CCAACATCGAGAAGAGCATTGTGC -CCAACATCGAGAAGAGCACTAAGC -CCAACATCGAGAAGAGCAACTAGC -CCAACATCGAGAAGAGCAAGATGC -CCAACATCGAGAAGAGCATGAAGG -CCAACATCGAGAAGAGCACAATGG -CCAACATCGAGAAGAGCAATGAGG -CCAACATCGAGAAGAGCAAATGGG -CCAACATCGAGAAGAGCATCCTGA -CCAACATCGAGAAGAGCATAGCGA -CCAACATCGAGAAGAGCACACAGA -CCAACATCGAGAAGAGCAGCAAGA -CCAACATCGAGAAGAGCAGGTTGA -CCAACATCGAGAAGAGCATCCGAT -CCAACATCGAGAAGAGCATGGCAT -CCAACATCGAGAAGAGCACGAGAT -CCAACATCGAGAAGAGCATACCAC -CCAACATCGAGAAGAGCACAGAAC -CCAACATCGAGAAGAGCAGTCTAC -CCAACATCGAGAAGAGCAACGTAC -CCAACATCGAGAAGAGCAAGTGAC -CCAACATCGAGAAGAGCACTGTAG -CCAACATCGAGAAGAGCACCTAAG -CCAACATCGAGAAGAGCAGTTCAG -CCAACATCGAGAAGAGCAGCATAG -CCAACATCGAGAAGAGCAGACAAG -CCAACATCGAGAAGAGCAAAGCAG -CCAACATCGAGAAGAGCACGTCAA -CCAACATCGAGAAGAGCAGCTGAA -CCAACATCGAGAAGAGCAAGTACG -CCAACATCGAGAAGAGCAATCCGA -CCAACATCGAGAAGAGCAATGGGA -CCAACATCGAGAAGAGCAGTGCAA -CCAACATCGAGAAGAGCAGAGGAA -CCAACATCGAGAAGAGCACAGGTA -CCAACATCGAGAAGAGCAGACTCT -CCAACATCGAGAAGAGCAAGTCCT -CCAACATCGAGAAGAGCATAAGCC -CCAACATCGAGAAGAGCAATAGCC -CCAACATCGAGAAGAGCATAACCG -CCAACATCGAGAAGAGCAATGCCA -CCAACATCGAGATGAGGTGGAAAC -CCAACATCGAGATGAGGTAACACC -CCAACATCGAGATGAGGTATCGAG -CCAACATCGAGATGAGGTCTCCTT -CCAACATCGAGATGAGGTCCTGTT -CCAACATCGAGATGAGGTCGGTTT -CCAACATCGAGATGAGGTGTGGTT -CCAACATCGAGATGAGGTGCCTTT -CCAACATCGAGATGAGGTGGTCTT -CCAACATCGAGATGAGGTACGCTT -CCAACATCGAGATGAGGTAGCGTT -CCAACATCGAGATGAGGTTTCGTC -CCAACATCGAGATGAGGTTCTCTC -CCAACATCGAGATGAGGTTGGATC -CCAACATCGAGATGAGGTCACTTC -CCAACATCGAGATGAGGTGTACTC -CCAACATCGAGATGAGGTGATGTC -CCAACATCGAGATGAGGTACAGTC -CCAACATCGAGATGAGGTTTGCTG -CCAACATCGAGATGAGGTTCCATG -CCAACATCGAGATGAGGTTGTGTG -CCAACATCGAGATGAGGTCTAGTG -CCAACATCGAGATGAGGTCATCTG -CCAACATCGAGATGAGGTGAGTTG -CCAACATCGAGATGAGGTAGACTG -CCAACATCGAGATGAGGTTCGGTA -CCAACATCGAGATGAGGTTGCCTA -CCAACATCGAGATGAGGTCCACTA -CCAACATCGAGATGAGGTGGAGTA -CCAACATCGAGATGAGGTTCGTCT -CCAACATCGAGATGAGGTTGCACT -CCAACATCGAGATGAGGTCTGACT -CCAACATCGAGATGAGGTCAACCT -CCAACATCGAGATGAGGTGCTACT -CCAACATCGAGATGAGGTGGATCT -CCAACATCGAGATGAGGTAAGGCT -CCAACATCGAGATGAGGTTCAACC -CCAACATCGAGATGAGGTTGTTCC -CCAACATCGAGATGAGGTATTCCC -CCAACATCGAGATGAGGTTTCTCG -CCAACATCGAGATGAGGTTAGACG -CCAACATCGAGATGAGGTGTAACG -CCAACATCGAGATGAGGTACTTCG -CCAACATCGAGATGAGGTTACGCA -CCAACATCGAGATGAGGTCTTGCA -CCAACATCGAGATGAGGTCGAACA -CCAACATCGAGATGAGGTCAGTCA -CCAACATCGAGATGAGGTGATCCA -CCAACATCGAGATGAGGTACGACA -CCAACATCGAGATGAGGTAGCTCA -CCAACATCGAGATGAGGTTCACGT -CCAACATCGAGATGAGGTCGTAGT -CCAACATCGAGATGAGGTGTCAGT -CCAACATCGAGATGAGGTGAAGGT -CCAACATCGAGATGAGGTAACCGT -CCAACATCGAGATGAGGTTTGTGC -CCAACATCGAGATGAGGTCTAAGC -CCAACATCGAGATGAGGTACTAGC -CCAACATCGAGATGAGGTAGATGC -CCAACATCGAGATGAGGTTGAAGG -CCAACATCGAGATGAGGTCAATGG -CCAACATCGAGATGAGGTATGAGG -CCAACATCGAGATGAGGTAATGGG -CCAACATCGAGATGAGGTTCCTGA -CCAACATCGAGATGAGGTTAGCGA -CCAACATCGAGATGAGGTCACAGA -CCAACATCGAGATGAGGTGCAAGA -CCAACATCGAGATGAGGTGGTTGA -CCAACATCGAGATGAGGTTCCGAT -CCAACATCGAGATGAGGTTGGCAT -CCAACATCGAGATGAGGTCGAGAT -CCAACATCGAGATGAGGTTACCAC -CCAACATCGAGATGAGGTCAGAAC -CCAACATCGAGATGAGGTGTCTAC -CCAACATCGAGATGAGGTACGTAC -CCAACATCGAGATGAGGTAGTGAC -CCAACATCGAGATGAGGTCTGTAG -CCAACATCGAGATGAGGTCCTAAG -CCAACATCGAGATGAGGTGTTCAG -CCAACATCGAGATGAGGTGCATAG -CCAACATCGAGATGAGGTGACAAG -CCAACATCGAGATGAGGTAAGCAG -CCAACATCGAGATGAGGTCGTCAA -CCAACATCGAGATGAGGTGCTGAA -CCAACATCGAGATGAGGTAGTACG -CCAACATCGAGATGAGGTATCCGA -CCAACATCGAGATGAGGTATGGGA -CCAACATCGAGATGAGGTGTGCAA -CCAACATCGAGATGAGGTGAGGAA -CCAACATCGAGATGAGGTCAGGTA -CCAACATCGAGATGAGGTGACTCT -CCAACATCGAGATGAGGTAGTCCT -CCAACATCGAGATGAGGTTAAGCC -CCAACATCGAGATGAGGTATAGCC -CCAACATCGAGATGAGGTTAACCG -CCAACATCGAGATGAGGTATGCCA -CCAACATCGAGAGATTCCGGAAAC -CCAACATCGAGAGATTCCAACACC -CCAACATCGAGAGATTCCATCGAG -CCAACATCGAGAGATTCCCTCCTT -CCAACATCGAGAGATTCCCCTGTT -CCAACATCGAGAGATTCCCGGTTT -CCAACATCGAGAGATTCCGTGGTT -CCAACATCGAGAGATTCCGCCTTT -CCAACATCGAGAGATTCCGGTCTT -CCAACATCGAGAGATTCCACGCTT -CCAACATCGAGAGATTCCAGCGTT -CCAACATCGAGAGATTCCTTCGTC -CCAACATCGAGAGATTCCTCTCTC -CCAACATCGAGAGATTCCTGGATC -CCAACATCGAGAGATTCCCACTTC -CCAACATCGAGAGATTCCGTACTC -CCAACATCGAGAGATTCCGATGTC -CCAACATCGAGAGATTCCACAGTC -CCAACATCGAGAGATTCCTTGCTG -CCAACATCGAGAGATTCCTCCATG -CCAACATCGAGAGATTCCTGTGTG -CCAACATCGAGAGATTCCCTAGTG -CCAACATCGAGAGATTCCCATCTG -CCAACATCGAGAGATTCCGAGTTG -CCAACATCGAGAGATTCCAGACTG -CCAACATCGAGAGATTCCTCGGTA -CCAACATCGAGAGATTCCTGCCTA -CCAACATCGAGAGATTCCCCACTA -CCAACATCGAGAGATTCCGGAGTA -CCAACATCGAGAGATTCCTCGTCT -CCAACATCGAGAGATTCCTGCACT -CCAACATCGAGAGATTCCCTGACT -CCAACATCGAGAGATTCCCAACCT -CCAACATCGAGAGATTCCGCTACT -CCAACATCGAGAGATTCCGGATCT -CCAACATCGAGAGATTCCAAGGCT -CCAACATCGAGAGATTCCTCAACC -CCAACATCGAGAGATTCCTGTTCC -CCAACATCGAGAGATTCCATTCCC -CCAACATCGAGAGATTCCTTCTCG -CCAACATCGAGAGATTCCTAGACG -CCAACATCGAGAGATTCCGTAACG -CCAACATCGAGAGATTCCACTTCG -CCAACATCGAGAGATTCCTACGCA -CCAACATCGAGAGATTCCCTTGCA -CCAACATCGAGAGATTCCCGAACA -CCAACATCGAGAGATTCCCAGTCA -CCAACATCGAGAGATTCCGATCCA -CCAACATCGAGAGATTCCACGACA -CCAACATCGAGAGATTCCAGCTCA -CCAACATCGAGAGATTCCTCACGT -CCAACATCGAGAGATTCCCGTAGT -CCAACATCGAGAGATTCCGTCAGT -CCAACATCGAGAGATTCCGAAGGT -CCAACATCGAGAGATTCCAACCGT -CCAACATCGAGAGATTCCTTGTGC -CCAACATCGAGAGATTCCCTAAGC -CCAACATCGAGAGATTCCACTAGC -CCAACATCGAGAGATTCCAGATGC -CCAACATCGAGAGATTCCTGAAGG -CCAACATCGAGAGATTCCCAATGG -CCAACATCGAGAGATTCCATGAGG -CCAACATCGAGAGATTCCAATGGG -CCAACATCGAGAGATTCCTCCTGA -CCAACATCGAGAGATTCCTAGCGA -CCAACATCGAGAGATTCCCACAGA -CCAACATCGAGAGATTCCGCAAGA -CCAACATCGAGAGATTCCGGTTGA -CCAACATCGAGAGATTCCTCCGAT -CCAACATCGAGAGATTCCTGGCAT -CCAACATCGAGAGATTCCCGAGAT -CCAACATCGAGAGATTCCTACCAC -CCAACATCGAGAGATTCCCAGAAC -CCAACATCGAGAGATTCCGTCTAC -CCAACATCGAGAGATTCCACGTAC -CCAACATCGAGAGATTCCAGTGAC -CCAACATCGAGAGATTCCCTGTAG -CCAACATCGAGAGATTCCCCTAAG -CCAACATCGAGAGATTCCGTTCAG -CCAACATCGAGAGATTCCGCATAG -CCAACATCGAGAGATTCCGACAAG -CCAACATCGAGAGATTCCAAGCAG -CCAACATCGAGAGATTCCCGTCAA -CCAACATCGAGAGATTCCGCTGAA -CCAACATCGAGAGATTCCAGTACG -CCAACATCGAGAGATTCCATCCGA -CCAACATCGAGAGATTCCATGGGA -CCAACATCGAGAGATTCCGTGCAA -CCAACATCGAGAGATTCCGAGGAA -CCAACATCGAGAGATTCCCAGGTA -CCAACATCGAGAGATTCCGACTCT -CCAACATCGAGAGATTCCAGTCCT -CCAACATCGAGAGATTCCTAAGCC -CCAACATCGAGAGATTCCATAGCC -CCAACATCGAGAGATTCCTAACCG -CCAACATCGAGAGATTCCATGCCA -CCAACATCGAGACATTGGGGAAAC -CCAACATCGAGACATTGGAACACC -CCAACATCGAGACATTGGATCGAG -CCAACATCGAGACATTGGCTCCTT -CCAACATCGAGACATTGGCCTGTT -CCAACATCGAGACATTGGCGGTTT -CCAACATCGAGACATTGGGTGGTT -CCAACATCGAGACATTGGGCCTTT -CCAACATCGAGACATTGGGGTCTT -CCAACATCGAGACATTGGACGCTT -CCAACATCGAGACATTGGAGCGTT -CCAACATCGAGACATTGGTTCGTC -CCAACATCGAGACATTGGTCTCTC -CCAACATCGAGACATTGGTGGATC -CCAACATCGAGACATTGGCACTTC -CCAACATCGAGACATTGGGTACTC -CCAACATCGAGACATTGGGATGTC -CCAACATCGAGACATTGGACAGTC -CCAACATCGAGACATTGGTTGCTG -CCAACATCGAGACATTGGTCCATG -CCAACATCGAGACATTGGTGTGTG -CCAACATCGAGACATTGGCTAGTG -CCAACATCGAGACATTGGCATCTG -CCAACATCGAGACATTGGGAGTTG -CCAACATCGAGACATTGGAGACTG -CCAACATCGAGACATTGGTCGGTA -CCAACATCGAGACATTGGTGCCTA -CCAACATCGAGACATTGGCCACTA -CCAACATCGAGACATTGGGGAGTA -CCAACATCGAGACATTGGTCGTCT -CCAACATCGAGACATTGGTGCACT -CCAACATCGAGACATTGGCTGACT -CCAACATCGAGACATTGGCAACCT -CCAACATCGAGACATTGGGCTACT -CCAACATCGAGACATTGGGGATCT -CCAACATCGAGACATTGGAAGGCT -CCAACATCGAGACATTGGTCAACC -CCAACATCGAGACATTGGTGTTCC -CCAACATCGAGACATTGGATTCCC -CCAACATCGAGACATTGGTTCTCG -CCAACATCGAGACATTGGTAGACG -CCAACATCGAGACATTGGGTAACG -CCAACATCGAGACATTGGACTTCG -CCAACATCGAGACATTGGTACGCA -CCAACATCGAGACATTGGCTTGCA -CCAACATCGAGACATTGGCGAACA -CCAACATCGAGACATTGGCAGTCA -CCAACATCGAGACATTGGGATCCA -CCAACATCGAGACATTGGACGACA -CCAACATCGAGACATTGGAGCTCA -CCAACATCGAGACATTGGTCACGT -CCAACATCGAGACATTGGCGTAGT -CCAACATCGAGACATTGGGTCAGT -CCAACATCGAGACATTGGGAAGGT -CCAACATCGAGACATTGGAACCGT -CCAACATCGAGACATTGGTTGTGC -CCAACATCGAGACATTGGCTAAGC -CCAACATCGAGACATTGGACTAGC -CCAACATCGAGACATTGGAGATGC -CCAACATCGAGACATTGGTGAAGG -CCAACATCGAGACATTGGCAATGG -CCAACATCGAGACATTGGATGAGG -CCAACATCGAGACATTGGAATGGG -CCAACATCGAGACATTGGTCCTGA -CCAACATCGAGACATTGGTAGCGA -CCAACATCGAGACATTGGCACAGA -CCAACATCGAGACATTGGGCAAGA -CCAACATCGAGACATTGGGGTTGA -CCAACATCGAGACATTGGTCCGAT -CCAACATCGAGACATTGGTGGCAT -CCAACATCGAGACATTGGCGAGAT -CCAACATCGAGACATTGGTACCAC -CCAACATCGAGACATTGGCAGAAC -CCAACATCGAGACATTGGGTCTAC -CCAACATCGAGACATTGGACGTAC -CCAACATCGAGACATTGGAGTGAC -CCAACATCGAGACATTGGCTGTAG -CCAACATCGAGACATTGGCCTAAG -CCAACATCGAGACATTGGGTTCAG -CCAACATCGAGACATTGGGCATAG -CCAACATCGAGACATTGGGACAAG -CCAACATCGAGACATTGGAAGCAG -CCAACATCGAGACATTGGCGTCAA -CCAACATCGAGACATTGGGCTGAA -CCAACATCGAGACATTGGAGTACG -CCAACATCGAGACATTGGATCCGA -CCAACATCGAGACATTGGATGGGA -CCAACATCGAGACATTGGGTGCAA -CCAACATCGAGACATTGGGAGGAA -CCAACATCGAGACATTGGCAGGTA -CCAACATCGAGACATTGGGACTCT -CCAACATCGAGACATTGGAGTCCT -CCAACATCGAGACATTGGTAAGCC -CCAACATCGAGACATTGGATAGCC -CCAACATCGAGACATTGGTAACCG -CCAACATCGAGACATTGGATGCCA -CCAACATCGAGAGATCGAGGAAAC -CCAACATCGAGAGATCGAAACACC -CCAACATCGAGAGATCGAATCGAG -CCAACATCGAGAGATCGACTCCTT -CCAACATCGAGAGATCGACCTGTT -CCAACATCGAGAGATCGACGGTTT -CCAACATCGAGAGATCGAGTGGTT -CCAACATCGAGAGATCGAGCCTTT -CCAACATCGAGAGATCGAGGTCTT -CCAACATCGAGAGATCGAACGCTT -CCAACATCGAGAGATCGAAGCGTT -CCAACATCGAGAGATCGATTCGTC -CCAACATCGAGAGATCGATCTCTC -CCAACATCGAGAGATCGATGGATC -CCAACATCGAGAGATCGACACTTC -CCAACATCGAGAGATCGAGTACTC -CCAACATCGAGAGATCGAGATGTC -CCAACATCGAGAGATCGAACAGTC -CCAACATCGAGAGATCGATTGCTG -CCAACATCGAGAGATCGATCCATG -CCAACATCGAGAGATCGATGTGTG -CCAACATCGAGAGATCGACTAGTG -CCAACATCGAGAGATCGACATCTG -CCAACATCGAGAGATCGAGAGTTG -CCAACATCGAGAGATCGAAGACTG -CCAACATCGAGAGATCGATCGGTA -CCAACATCGAGAGATCGATGCCTA -CCAACATCGAGAGATCGACCACTA -CCAACATCGAGAGATCGAGGAGTA -CCAACATCGAGAGATCGATCGTCT -CCAACATCGAGAGATCGATGCACT -CCAACATCGAGAGATCGACTGACT -CCAACATCGAGAGATCGACAACCT -CCAACATCGAGAGATCGAGCTACT -CCAACATCGAGAGATCGAGGATCT -CCAACATCGAGAGATCGAAAGGCT -CCAACATCGAGAGATCGATCAACC -CCAACATCGAGAGATCGATGTTCC -CCAACATCGAGAGATCGAATTCCC -CCAACATCGAGAGATCGATTCTCG -CCAACATCGAGAGATCGATAGACG -CCAACATCGAGAGATCGAGTAACG -CCAACATCGAGAGATCGAACTTCG -CCAACATCGAGAGATCGATACGCA -CCAACATCGAGAGATCGACTTGCA -CCAACATCGAGAGATCGACGAACA -CCAACATCGAGAGATCGACAGTCA -CCAACATCGAGAGATCGAGATCCA -CCAACATCGAGAGATCGAACGACA -CCAACATCGAGAGATCGAAGCTCA -CCAACATCGAGAGATCGATCACGT -CCAACATCGAGAGATCGACGTAGT -CCAACATCGAGAGATCGAGTCAGT -CCAACATCGAGAGATCGAGAAGGT -CCAACATCGAGAGATCGAAACCGT -CCAACATCGAGAGATCGATTGTGC -CCAACATCGAGAGATCGACTAAGC -CCAACATCGAGAGATCGAACTAGC -CCAACATCGAGAGATCGAAGATGC -CCAACATCGAGAGATCGATGAAGG -CCAACATCGAGAGATCGACAATGG -CCAACATCGAGAGATCGAATGAGG -CCAACATCGAGAGATCGAAATGGG -CCAACATCGAGAGATCGATCCTGA -CCAACATCGAGAGATCGATAGCGA -CCAACATCGAGAGATCGACACAGA -CCAACATCGAGAGATCGAGCAAGA -CCAACATCGAGAGATCGAGGTTGA -CCAACATCGAGAGATCGATCCGAT -CCAACATCGAGAGATCGATGGCAT -CCAACATCGAGAGATCGACGAGAT -CCAACATCGAGAGATCGATACCAC -CCAACATCGAGAGATCGACAGAAC -CCAACATCGAGAGATCGAGTCTAC -CCAACATCGAGAGATCGAACGTAC -CCAACATCGAGAGATCGAAGTGAC -CCAACATCGAGAGATCGACTGTAG -CCAACATCGAGAGATCGACCTAAG -CCAACATCGAGAGATCGAGTTCAG -CCAACATCGAGAGATCGAGCATAG -CCAACATCGAGAGATCGAGACAAG -CCAACATCGAGAGATCGAAAGCAG -CCAACATCGAGAGATCGACGTCAA -CCAACATCGAGAGATCGAGCTGAA -CCAACATCGAGAGATCGAAGTACG -CCAACATCGAGAGATCGAATCCGA -CCAACATCGAGAGATCGAATGGGA -CCAACATCGAGAGATCGAGTGCAA -CCAACATCGAGAGATCGAGAGGAA -CCAACATCGAGAGATCGACAGGTA -CCAACATCGAGAGATCGAGACTCT -CCAACATCGAGAGATCGAAGTCCT -CCAACATCGAGAGATCGATAAGCC -CCAACATCGAGAGATCGAATAGCC -CCAACATCGAGAGATCGATAACCG -CCAACATCGAGAGATCGAATGCCA -CCAACATCGAGACACTACGGAAAC -CCAACATCGAGACACTACAACACC -CCAACATCGAGACACTACATCGAG -CCAACATCGAGACACTACCTCCTT -CCAACATCGAGACACTACCCTGTT -CCAACATCGAGACACTACCGGTTT -CCAACATCGAGACACTACGTGGTT -CCAACATCGAGACACTACGCCTTT -CCAACATCGAGACACTACGGTCTT -CCAACATCGAGACACTACACGCTT -CCAACATCGAGACACTACAGCGTT -CCAACATCGAGACACTACTTCGTC -CCAACATCGAGACACTACTCTCTC -CCAACATCGAGACACTACTGGATC -CCAACATCGAGACACTACCACTTC -CCAACATCGAGACACTACGTACTC -CCAACATCGAGACACTACGATGTC -CCAACATCGAGACACTACACAGTC -CCAACATCGAGACACTACTTGCTG -CCAACATCGAGACACTACTCCATG -CCAACATCGAGACACTACTGTGTG -CCAACATCGAGACACTACCTAGTG -CCAACATCGAGACACTACCATCTG -CCAACATCGAGACACTACGAGTTG -CCAACATCGAGACACTACAGACTG -CCAACATCGAGACACTACTCGGTA -CCAACATCGAGACACTACTGCCTA -CCAACATCGAGACACTACCCACTA -CCAACATCGAGACACTACGGAGTA -CCAACATCGAGACACTACTCGTCT -CCAACATCGAGACACTACTGCACT -CCAACATCGAGACACTACCTGACT -CCAACATCGAGACACTACCAACCT -CCAACATCGAGACACTACGCTACT -CCAACATCGAGACACTACGGATCT -CCAACATCGAGACACTACAAGGCT -CCAACATCGAGACACTACTCAACC -CCAACATCGAGACACTACTGTTCC -CCAACATCGAGACACTACATTCCC -CCAACATCGAGACACTACTTCTCG -CCAACATCGAGACACTACTAGACG -CCAACATCGAGACACTACGTAACG -CCAACATCGAGACACTACACTTCG -CCAACATCGAGACACTACTACGCA -CCAACATCGAGACACTACCTTGCA -CCAACATCGAGACACTACCGAACA -CCAACATCGAGACACTACCAGTCA -CCAACATCGAGACACTACGATCCA -CCAACATCGAGACACTACACGACA -CCAACATCGAGACACTACAGCTCA -CCAACATCGAGACACTACTCACGT -CCAACATCGAGACACTACCGTAGT -CCAACATCGAGACACTACGTCAGT -CCAACATCGAGACACTACGAAGGT -CCAACATCGAGACACTACAACCGT -CCAACATCGAGACACTACTTGTGC -CCAACATCGAGACACTACCTAAGC -CCAACATCGAGACACTACACTAGC -CCAACATCGAGACACTACAGATGC -CCAACATCGAGACACTACTGAAGG -CCAACATCGAGACACTACCAATGG -CCAACATCGAGACACTACATGAGG -CCAACATCGAGACACTACAATGGG -CCAACATCGAGACACTACTCCTGA -CCAACATCGAGACACTACTAGCGA -CCAACATCGAGACACTACCACAGA -CCAACATCGAGACACTACGCAAGA -CCAACATCGAGACACTACGGTTGA -CCAACATCGAGACACTACTCCGAT -CCAACATCGAGACACTACTGGCAT -CCAACATCGAGACACTACCGAGAT -CCAACATCGAGACACTACTACCAC -CCAACATCGAGACACTACCAGAAC -CCAACATCGAGACACTACGTCTAC -CCAACATCGAGACACTACACGTAC -CCAACATCGAGACACTACAGTGAC -CCAACATCGAGACACTACCTGTAG -CCAACATCGAGACACTACCCTAAG -CCAACATCGAGACACTACGTTCAG -CCAACATCGAGACACTACGCATAG -CCAACATCGAGACACTACGACAAG -CCAACATCGAGACACTACAAGCAG -CCAACATCGAGACACTACCGTCAA -CCAACATCGAGACACTACGCTGAA -CCAACATCGAGACACTACAGTACG -CCAACATCGAGACACTACATCCGA -CCAACATCGAGACACTACATGGGA -CCAACATCGAGACACTACGTGCAA -CCAACATCGAGACACTACGAGGAA -CCAACATCGAGACACTACCAGGTA -CCAACATCGAGACACTACGACTCT -CCAACATCGAGACACTACAGTCCT -CCAACATCGAGACACTACTAAGCC -CCAACATCGAGACACTACATAGCC -CCAACATCGAGACACTACTAACCG -CCAACATCGAGACACTACATGCCA -CCAACATCGAGAAACCAGGGAAAC -CCAACATCGAGAAACCAGAACACC -CCAACATCGAGAAACCAGATCGAG -CCAACATCGAGAAACCAGCTCCTT -CCAACATCGAGAAACCAGCCTGTT -CCAACATCGAGAAACCAGCGGTTT -CCAACATCGAGAAACCAGGTGGTT -CCAACATCGAGAAACCAGGCCTTT -CCAACATCGAGAAACCAGGGTCTT -CCAACATCGAGAAACCAGACGCTT -CCAACATCGAGAAACCAGAGCGTT -CCAACATCGAGAAACCAGTTCGTC -CCAACATCGAGAAACCAGTCTCTC -CCAACATCGAGAAACCAGTGGATC -CCAACATCGAGAAACCAGCACTTC -CCAACATCGAGAAACCAGGTACTC -CCAACATCGAGAAACCAGGATGTC -CCAACATCGAGAAACCAGACAGTC -CCAACATCGAGAAACCAGTTGCTG -CCAACATCGAGAAACCAGTCCATG -CCAACATCGAGAAACCAGTGTGTG -CCAACATCGAGAAACCAGCTAGTG -CCAACATCGAGAAACCAGCATCTG -CCAACATCGAGAAACCAGGAGTTG -CCAACATCGAGAAACCAGAGACTG -CCAACATCGAGAAACCAGTCGGTA -CCAACATCGAGAAACCAGTGCCTA -CCAACATCGAGAAACCAGCCACTA -CCAACATCGAGAAACCAGGGAGTA -CCAACATCGAGAAACCAGTCGTCT -CCAACATCGAGAAACCAGTGCACT -CCAACATCGAGAAACCAGCTGACT -CCAACATCGAGAAACCAGCAACCT -CCAACATCGAGAAACCAGGCTACT -CCAACATCGAGAAACCAGGGATCT -CCAACATCGAGAAACCAGAAGGCT -CCAACATCGAGAAACCAGTCAACC -CCAACATCGAGAAACCAGTGTTCC -CCAACATCGAGAAACCAGATTCCC -CCAACATCGAGAAACCAGTTCTCG -CCAACATCGAGAAACCAGTAGACG -CCAACATCGAGAAACCAGGTAACG -CCAACATCGAGAAACCAGACTTCG -CCAACATCGAGAAACCAGTACGCA -CCAACATCGAGAAACCAGCTTGCA -CCAACATCGAGAAACCAGCGAACA -CCAACATCGAGAAACCAGCAGTCA -CCAACATCGAGAAACCAGGATCCA -CCAACATCGAGAAACCAGACGACA -CCAACATCGAGAAACCAGAGCTCA -CCAACATCGAGAAACCAGTCACGT -CCAACATCGAGAAACCAGCGTAGT -CCAACATCGAGAAACCAGGTCAGT -CCAACATCGAGAAACCAGGAAGGT -CCAACATCGAGAAACCAGAACCGT -CCAACATCGAGAAACCAGTTGTGC -CCAACATCGAGAAACCAGCTAAGC -CCAACATCGAGAAACCAGACTAGC -CCAACATCGAGAAACCAGAGATGC -CCAACATCGAGAAACCAGTGAAGG -CCAACATCGAGAAACCAGCAATGG -CCAACATCGAGAAACCAGATGAGG -CCAACATCGAGAAACCAGAATGGG -CCAACATCGAGAAACCAGTCCTGA -CCAACATCGAGAAACCAGTAGCGA -CCAACATCGAGAAACCAGCACAGA -CCAACATCGAGAAACCAGGCAAGA -CCAACATCGAGAAACCAGGGTTGA -CCAACATCGAGAAACCAGTCCGAT -CCAACATCGAGAAACCAGTGGCAT -CCAACATCGAGAAACCAGCGAGAT -CCAACATCGAGAAACCAGTACCAC -CCAACATCGAGAAACCAGCAGAAC -CCAACATCGAGAAACCAGGTCTAC -CCAACATCGAGAAACCAGACGTAC -CCAACATCGAGAAACCAGAGTGAC -CCAACATCGAGAAACCAGCTGTAG -CCAACATCGAGAAACCAGCCTAAG -CCAACATCGAGAAACCAGGTTCAG -CCAACATCGAGAAACCAGGCATAG -CCAACATCGAGAAACCAGGACAAG -CCAACATCGAGAAACCAGAAGCAG -CCAACATCGAGAAACCAGCGTCAA -CCAACATCGAGAAACCAGGCTGAA -CCAACATCGAGAAACCAGAGTACG -CCAACATCGAGAAACCAGATCCGA -CCAACATCGAGAAACCAGATGGGA -CCAACATCGAGAAACCAGGTGCAA -CCAACATCGAGAAACCAGGAGGAA -CCAACATCGAGAAACCAGCAGGTA -CCAACATCGAGAAACCAGGACTCT -CCAACATCGAGAAACCAGAGTCCT -CCAACATCGAGAAACCAGTAAGCC -CCAACATCGAGAAACCAGATAGCC -CCAACATCGAGAAACCAGTAACCG -CCAACATCGAGAAACCAGATGCCA -CCAACATCGAGATACGTCGGAAAC -CCAACATCGAGATACGTCAACACC -CCAACATCGAGATACGTCATCGAG -CCAACATCGAGATACGTCCTCCTT -CCAACATCGAGATACGTCCCTGTT -CCAACATCGAGATACGTCCGGTTT -CCAACATCGAGATACGTCGTGGTT -CCAACATCGAGATACGTCGCCTTT -CCAACATCGAGATACGTCGGTCTT -CCAACATCGAGATACGTCACGCTT -CCAACATCGAGATACGTCAGCGTT -CCAACATCGAGATACGTCTTCGTC -CCAACATCGAGATACGTCTCTCTC -CCAACATCGAGATACGTCTGGATC -CCAACATCGAGATACGTCCACTTC -CCAACATCGAGATACGTCGTACTC -CCAACATCGAGATACGTCGATGTC -CCAACATCGAGATACGTCACAGTC -CCAACATCGAGATACGTCTTGCTG -CCAACATCGAGATACGTCTCCATG -CCAACATCGAGATACGTCTGTGTG -CCAACATCGAGATACGTCCTAGTG -CCAACATCGAGATACGTCCATCTG -CCAACATCGAGATACGTCGAGTTG -CCAACATCGAGATACGTCAGACTG -CCAACATCGAGATACGTCTCGGTA -CCAACATCGAGATACGTCTGCCTA -CCAACATCGAGATACGTCCCACTA -CCAACATCGAGATACGTCGGAGTA -CCAACATCGAGATACGTCTCGTCT -CCAACATCGAGATACGTCTGCACT -CCAACATCGAGATACGTCCTGACT -CCAACATCGAGATACGTCCAACCT -CCAACATCGAGATACGTCGCTACT -CCAACATCGAGATACGTCGGATCT -CCAACATCGAGATACGTCAAGGCT -CCAACATCGAGATACGTCTCAACC -CCAACATCGAGATACGTCTGTTCC -CCAACATCGAGATACGTCATTCCC -CCAACATCGAGATACGTCTTCTCG -CCAACATCGAGATACGTCTAGACG -CCAACATCGAGATACGTCGTAACG -CCAACATCGAGATACGTCACTTCG -CCAACATCGAGATACGTCTACGCA -CCAACATCGAGATACGTCCTTGCA -CCAACATCGAGATACGTCCGAACA -CCAACATCGAGATACGTCCAGTCA -CCAACATCGAGATACGTCGATCCA -CCAACATCGAGATACGTCACGACA -CCAACATCGAGATACGTCAGCTCA -CCAACATCGAGATACGTCTCACGT -CCAACATCGAGATACGTCCGTAGT -CCAACATCGAGATACGTCGTCAGT -CCAACATCGAGATACGTCGAAGGT -CCAACATCGAGATACGTCAACCGT -CCAACATCGAGATACGTCTTGTGC -CCAACATCGAGATACGTCCTAAGC -CCAACATCGAGATACGTCACTAGC -CCAACATCGAGATACGTCAGATGC -CCAACATCGAGATACGTCTGAAGG -CCAACATCGAGATACGTCCAATGG -CCAACATCGAGATACGTCATGAGG -CCAACATCGAGATACGTCAATGGG -CCAACATCGAGATACGTCTCCTGA -CCAACATCGAGATACGTCTAGCGA -CCAACATCGAGATACGTCCACAGA -CCAACATCGAGATACGTCGCAAGA -CCAACATCGAGATACGTCGGTTGA -CCAACATCGAGATACGTCTCCGAT -CCAACATCGAGATACGTCTGGCAT -CCAACATCGAGATACGTCCGAGAT -CCAACATCGAGATACGTCTACCAC -CCAACATCGAGATACGTCCAGAAC -CCAACATCGAGATACGTCGTCTAC -CCAACATCGAGATACGTCACGTAC -CCAACATCGAGATACGTCAGTGAC -CCAACATCGAGATACGTCCTGTAG -CCAACATCGAGATACGTCCCTAAG -CCAACATCGAGATACGTCGTTCAG -CCAACATCGAGATACGTCGCATAG -CCAACATCGAGATACGTCGACAAG -CCAACATCGAGATACGTCAAGCAG -CCAACATCGAGATACGTCCGTCAA -CCAACATCGAGATACGTCGCTGAA -CCAACATCGAGATACGTCAGTACG -CCAACATCGAGATACGTCATCCGA -CCAACATCGAGATACGTCATGGGA -CCAACATCGAGATACGTCGTGCAA -CCAACATCGAGATACGTCGAGGAA -CCAACATCGAGATACGTCCAGGTA -CCAACATCGAGATACGTCGACTCT -CCAACATCGAGATACGTCAGTCCT -CCAACATCGAGATACGTCTAAGCC -CCAACATCGAGATACGTCATAGCC -CCAACATCGAGATACGTCTAACCG -CCAACATCGAGATACGTCATGCCA -CCAACATCGAGATACACGGGAAAC -CCAACATCGAGATACACGAACACC -CCAACATCGAGATACACGATCGAG -CCAACATCGAGATACACGCTCCTT -CCAACATCGAGATACACGCCTGTT -CCAACATCGAGATACACGCGGTTT -CCAACATCGAGATACACGGTGGTT -CCAACATCGAGATACACGGCCTTT -CCAACATCGAGATACACGGGTCTT -CCAACATCGAGATACACGACGCTT -CCAACATCGAGATACACGAGCGTT -CCAACATCGAGATACACGTTCGTC -CCAACATCGAGATACACGTCTCTC -CCAACATCGAGATACACGTGGATC -CCAACATCGAGATACACGCACTTC -CCAACATCGAGATACACGGTACTC -CCAACATCGAGATACACGGATGTC -CCAACATCGAGATACACGACAGTC -CCAACATCGAGATACACGTTGCTG -CCAACATCGAGATACACGTCCATG -CCAACATCGAGATACACGTGTGTG -CCAACATCGAGATACACGCTAGTG -CCAACATCGAGATACACGCATCTG -CCAACATCGAGATACACGGAGTTG -CCAACATCGAGATACACGAGACTG -CCAACATCGAGATACACGTCGGTA -CCAACATCGAGATACACGTGCCTA -CCAACATCGAGATACACGCCACTA -CCAACATCGAGATACACGGGAGTA -CCAACATCGAGATACACGTCGTCT -CCAACATCGAGATACACGTGCACT -CCAACATCGAGATACACGCTGACT -CCAACATCGAGATACACGCAACCT -CCAACATCGAGATACACGGCTACT -CCAACATCGAGATACACGGGATCT -CCAACATCGAGATACACGAAGGCT -CCAACATCGAGATACACGTCAACC -CCAACATCGAGATACACGTGTTCC -CCAACATCGAGATACACGATTCCC -CCAACATCGAGATACACGTTCTCG -CCAACATCGAGATACACGTAGACG -CCAACATCGAGATACACGGTAACG -CCAACATCGAGATACACGACTTCG -CCAACATCGAGATACACGTACGCA -CCAACATCGAGATACACGCTTGCA -CCAACATCGAGATACACGCGAACA -CCAACATCGAGATACACGCAGTCA -CCAACATCGAGATACACGGATCCA -CCAACATCGAGATACACGACGACA -CCAACATCGAGATACACGAGCTCA -CCAACATCGAGATACACGTCACGT -CCAACATCGAGATACACGCGTAGT -CCAACATCGAGATACACGGTCAGT -CCAACATCGAGATACACGGAAGGT -CCAACATCGAGATACACGAACCGT -CCAACATCGAGATACACGTTGTGC -CCAACATCGAGATACACGCTAAGC -CCAACATCGAGATACACGACTAGC -CCAACATCGAGATACACGAGATGC -CCAACATCGAGATACACGTGAAGG -CCAACATCGAGATACACGCAATGG -CCAACATCGAGATACACGATGAGG -CCAACATCGAGATACACGAATGGG -CCAACATCGAGATACACGTCCTGA -CCAACATCGAGATACACGTAGCGA -CCAACATCGAGATACACGCACAGA -CCAACATCGAGATACACGGCAAGA -CCAACATCGAGATACACGGGTTGA -CCAACATCGAGATACACGTCCGAT -CCAACATCGAGATACACGTGGCAT -CCAACATCGAGATACACGCGAGAT -CCAACATCGAGATACACGTACCAC -CCAACATCGAGATACACGCAGAAC -CCAACATCGAGATACACGGTCTAC -CCAACATCGAGATACACGACGTAC -CCAACATCGAGATACACGAGTGAC -CCAACATCGAGATACACGCTGTAG -CCAACATCGAGATACACGCCTAAG -CCAACATCGAGATACACGGTTCAG -CCAACATCGAGATACACGGCATAG -CCAACATCGAGATACACGGACAAG -CCAACATCGAGATACACGAAGCAG -CCAACATCGAGATACACGCGTCAA -CCAACATCGAGATACACGGCTGAA -CCAACATCGAGATACACGAGTACG -CCAACATCGAGATACACGATCCGA -CCAACATCGAGATACACGATGGGA -CCAACATCGAGATACACGGTGCAA -CCAACATCGAGATACACGGAGGAA -CCAACATCGAGATACACGCAGGTA -CCAACATCGAGATACACGGACTCT -CCAACATCGAGATACACGAGTCCT -CCAACATCGAGATACACGTAAGCC -CCAACATCGAGATACACGATAGCC -CCAACATCGAGATACACGTAACCG -CCAACATCGAGATACACGATGCCA -CCAACATCGAGAGACAGTGGAAAC -CCAACATCGAGAGACAGTAACACC -CCAACATCGAGAGACAGTATCGAG -CCAACATCGAGAGACAGTCTCCTT -CCAACATCGAGAGACAGTCCTGTT -CCAACATCGAGAGACAGTCGGTTT -CCAACATCGAGAGACAGTGTGGTT -CCAACATCGAGAGACAGTGCCTTT -CCAACATCGAGAGACAGTGGTCTT -CCAACATCGAGAGACAGTACGCTT -CCAACATCGAGAGACAGTAGCGTT -CCAACATCGAGAGACAGTTTCGTC -CCAACATCGAGAGACAGTTCTCTC -CCAACATCGAGAGACAGTTGGATC -CCAACATCGAGAGACAGTCACTTC -CCAACATCGAGAGACAGTGTACTC -CCAACATCGAGAGACAGTGATGTC -CCAACATCGAGAGACAGTACAGTC -CCAACATCGAGAGACAGTTTGCTG -CCAACATCGAGAGACAGTTCCATG -CCAACATCGAGAGACAGTTGTGTG -CCAACATCGAGAGACAGTCTAGTG -CCAACATCGAGAGACAGTCATCTG -CCAACATCGAGAGACAGTGAGTTG -CCAACATCGAGAGACAGTAGACTG -CCAACATCGAGAGACAGTTCGGTA -CCAACATCGAGAGACAGTTGCCTA -CCAACATCGAGAGACAGTCCACTA -CCAACATCGAGAGACAGTGGAGTA -CCAACATCGAGAGACAGTTCGTCT -CCAACATCGAGAGACAGTTGCACT -CCAACATCGAGAGACAGTCTGACT -CCAACATCGAGAGACAGTCAACCT -CCAACATCGAGAGACAGTGCTACT -CCAACATCGAGAGACAGTGGATCT -CCAACATCGAGAGACAGTAAGGCT -CCAACATCGAGAGACAGTTCAACC -CCAACATCGAGAGACAGTTGTTCC -CCAACATCGAGAGACAGTATTCCC -CCAACATCGAGAGACAGTTTCTCG -CCAACATCGAGAGACAGTTAGACG -CCAACATCGAGAGACAGTGTAACG -CCAACATCGAGAGACAGTACTTCG -CCAACATCGAGAGACAGTTACGCA -CCAACATCGAGAGACAGTCTTGCA -CCAACATCGAGAGACAGTCGAACA -CCAACATCGAGAGACAGTCAGTCA -CCAACATCGAGAGACAGTGATCCA -CCAACATCGAGAGACAGTACGACA -CCAACATCGAGAGACAGTAGCTCA -CCAACATCGAGAGACAGTTCACGT -CCAACATCGAGAGACAGTCGTAGT -CCAACATCGAGAGACAGTGTCAGT -CCAACATCGAGAGACAGTGAAGGT -CCAACATCGAGAGACAGTAACCGT -CCAACATCGAGAGACAGTTTGTGC -CCAACATCGAGAGACAGTCTAAGC -CCAACATCGAGAGACAGTACTAGC -CCAACATCGAGAGACAGTAGATGC -CCAACATCGAGAGACAGTTGAAGG -CCAACATCGAGAGACAGTCAATGG -CCAACATCGAGAGACAGTATGAGG -CCAACATCGAGAGACAGTAATGGG -CCAACATCGAGAGACAGTTCCTGA -CCAACATCGAGAGACAGTTAGCGA -CCAACATCGAGAGACAGTCACAGA -CCAACATCGAGAGACAGTGCAAGA -CCAACATCGAGAGACAGTGGTTGA -CCAACATCGAGAGACAGTTCCGAT -CCAACATCGAGAGACAGTTGGCAT -CCAACATCGAGAGACAGTCGAGAT -CCAACATCGAGAGACAGTTACCAC -CCAACATCGAGAGACAGTCAGAAC -CCAACATCGAGAGACAGTGTCTAC -CCAACATCGAGAGACAGTACGTAC -CCAACATCGAGAGACAGTAGTGAC -CCAACATCGAGAGACAGTCTGTAG -CCAACATCGAGAGACAGTCCTAAG -CCAACATCGAGAGACAGTGTTCAG -CCAACATCGAGAGACAGTGCATAG -CCAACATCGAGAGACAGTGACAAG -CCAACATCGAGAGACAGTAAGCAG -CCAACATCGAGAGACAGTCGTCAA -CCAACATCGAGAGACAGTGCTGAA -CCAACATCGAGAGACAGTAGTACG -CCAACATCGAGAGACAGTATCCGA -CCAACATCGAGAGACAGTATGGGA -CCAACATCGAGAGACAGTGTGCAA -CCAACATCGAGAGACAGTGAGGAA -CCAACATCGAGAGACAGTCAGGTA -CCAACATCGAGAGACAGTGACTCT -CCAACATCGAGAGACAGTAGTCCT -CCAACATCGAGAGACAGTTAAGCC -CCAACATCGAGAGACAGTATAGCC -CCAACATCGAGAGACAGTTAACCG -CCAACATCGAGAGACAGTATGCCA -CCAACATCGAGATAGCTGGGAAAC -CCAACATCGAGATAGCTGAACACC -CCAACATCGAGATAGCTGATCGAG -CCAACATCGAGATAGCTGCTCCTT -CCAACATCGAGATAGCTGCCTGTT -CCAACATCGAGATAGCTGCGGTTT -CCAACATCGAGATAGCTGGTGGTT -CCAACATCGAGATAGCTGGCCTTT -CCAACATCGAGATAGCTGGGTCTT -CCAACATCGAGATAGCTGACGCTT -CCAACATCGAGATAGCTGAGCGTT -CCAACATCGAGATAGCTGTTCGTC -CCAACATCGAGATAGCTGTCTCTC -CCAACATCGAGATAGCTGTGGATC -CCAACATCGAGATAGCTGCACTTC -CCAACATCGAGATAGCTGGTACTC -CCAACATCGAGATAGCTGGATGTC -CCAACATCGAGATAGCTGACAGTC -CCAACATCGAGATAGCTGTTGCTG -CCAACATCGAGATAGCTGTCCATG -CCAACATCGAGATAGCTGTGTGTG -CCAACATCGAGATAGCTGCTAGTG -CCAACATCGAGATAGCTGCATCTG -CCAACATCGAGATAGCTGGAGTTG -CCAACATCGAGATAGCTGAGACTG -CCAACATCGAGATAGCTGTCGGTA -CCAACATCGAGATAGCTGTGCCTA -CCAACATCGAGATAGCTGCCACTA -CCAACATCGAGATAGCTGGGAGTA -CCAACATCGAGATAGCTGTCGTCT -CCAACATCGAGATAGCTGTGCACT -CCAACATCGAGATAGCTGCTGACT -CCAACATCGAGATAGCTGCAACCT -CCAACATCGAGATAGCTGGCTACT -CCAACATCGAGATAGCTGGGATCT -CCAACATCGAGATAGCTGAAGGCT -CCAACATCGAGATAGCTGTCAACC -CCAACATCGAGATAGCTGTGTTCC -CCAACATCGAGATAGCTGATTCCC -CCAACATCGAGATAGCTGTTCTCG -CCAACATCGAGATAGCTGTAGACG -CCAACATCGAGATAGCTGGTAACG -CCAACATCGAGATAGCTGACTTCG -CCAACATCGAGATAGCTGTACGCA -CCAACATCGAGATAGCTGCTTGCA -CCAACATCGAGATAGCTGCGAACA -CCAACATCGAGATAGCTGCAGTCA -CCAACATCGAGATAGCTGGATCCA -CCAACATCGAGATAGCTGACGACA -CCAACATCGAGATAGCTGAGCTCA -CCAACATCGAGATAGCTGTCACGT -CCAACATCGAGATAGCTGCGTAGT -CCAACATCGAGATAGCTGGTCAGT -CCAACATCGAGATAGCTGGAAGGT -CCAACATCGAGATAGCTGAACCGT -CCAACATCGAGATAGCTGTTGTGC -CCAACATCGAGATAGCTGCTAAGC -CCAACATCGAGATAGCTGACTAGC -CCAACATCGAGATAGCTGAGATGC -CCAACATCGAGATAGCTGTGAAGG -CCAACATCGAGATAGCTGCAATGG -CCAACATCGAGATAGCTGATGAGG -CCAACATCGAGATAGCTGAATGGG -CCAACATCGAGATAGCTGTCCTGA -CCAACATCGAGATAGCTGTAGCGA -CCAACATCGAGATAGCTGCACAGA -CCAACATCGAGATAGCTGGCAAGA -CCAACATCGAGATAGCTGGGTTGA -CCAACATCGAGATAGCTGTCCGAT -CCAACATCGAGATAGCTGTGGCAT -CCAACATCGAGATAGCTGCGAGAT -CCAACATCGAGATAGCTGTACCAC -CCAACATCGAGATAGCTGCAGAAC -CCAACATCGAGATAGCTGGTCTAC -CCAACATCGAGATAGCTGACGTAC -CCAACATCGAGATAGCTGAGTGAC -CCAACATCGAGATAGCTGCTGTAG -CCAACATCGAGATAGCTGCCTAAG -CCAACATCGAGATAGCTGGTTCAG -CCAACATCGAGATAGCTGGCATAG -CCAACATCGAGATAGCTGGACAAG -CCAACATCGAGATAGCTGAAGCAG -CCAACATCGAGATAGCTGCGTCAA -CCAACATCGAGATAGCTGGCTGAA -CCAACATCGAGATAGCTGAGTACG -CCAACATCGAGATAGCTGATCCGA -CCAACATCGAGATAGCTGATGGGA -CCAACATCGAGATAGCTGGTGCAA -CCAACATCGAGATAGCTGGAGGAA -CCAACATCGAGATAGCTGCAGGTA -CCAACATCGAGATAGCTGGACTCT -CCAACATCGAGATAGCTGAGTCCT -CCAACATCGAGATAGCTGTAAGCC -CCAACATCGAGATAGCTGATAGCC -CCAACATCGAGATAGCTGTAACCG -CCAACATCGAGATAGCTGATGCCA -CCAACATCGAGAAAGCCTGGAAAC -CCAACATCGAGAAAGCCTAACACC -CCAACATCGAGAAAGCCTATCGAG -CCAACATCGAGAAAGCCTCTCCTT -CCAACATCGAGAAAGCCTCCTGTT -CCAACATCGAGAAAGCCTCGGTTT -CCAACATCGAGAAAGCCTGTGGTT -CCAACATCGAGAAAGCCTGCCTTT -CCAACATCGAGAAAGCCTGGTCTT -CCAACATCGAGAAAGCCTACGCTT -CCAACATCGAGAAAGCCTAGCGTT -CCAACATCGAGAAAGCCTTTCGTC -CCAACATCGAGAAAGCCTTCTCTC -CCAACATCGAGAAAGCCTTGGATC -CCAACATCGAGAAAGCCTCACTTC -CCAACATCGAGAAAGCCTGTACTC -CCAACATCGAGAAAGCCTGATGTC -CCAACATCGAGAAAGCCTACAGTC -CCAACATCGAGAAAGCCTTTGCTG -CCAACATCGAGAAAGCCTTCCATG -CCAACATCGAGAAAGCCTTGTGTG -CCAACATCGAGAAAGCCTCTAGTG -CCAACATCGAGAAAGCCTCATCTG -CCAACATCGAGAAAGCCTGAGTTG -CCAACATCGAGAAAGCCTAGACTG -CCAACATCGAGAAAGCCTTCGGTA -CCAACATCGAGAAAGCCTTGCCTA -CCAACATCGAGAAAGCCTCCACTA -CCAACATCGAGAAAGCCTGGAGTA -CCAACATCGAGAAAGCCTTCGTCT -CCAACATCGAGAAAGCCTTGCACT -CCAACATCGAGAAAGCCTCTGACT -CCAACATCGAGAAAGCCTCAACCT -CCAACATCGAGAAAGCCTGCTACT -CCAACATCGAGAAAGCCTGGATCT -CCAACATCGAGAAAGCCTAAGGCT -CCAACATCGAGAAAGCCTTCAACC -CCAACATCGAGAAAGCCTTGTTCC -CCAACATCGAGAAAGCCTATTCCC -CCAACATCGAGAAAGCCTTTCTCG -CCAACATCGAGAAAGCCTTAGACG -CCAACATCGAGAAAGCCTGTAACG -CCAACATCGAGAAAGCCTACTTCG -CCAACATCGAGAAAGCCTTACGCA -CCAACATCGAGAAAGCCTCTTGCA -CCAACATCGAGAAAGCCTCGAACA -CCAACATCGAGAAAGCCTCAGTCA -CCAACATCGAGAAAGCCTGATCCA -CCAACATCGAGAAAGCCTACGACA -CCAACATCGAGAAAGCCTAGCTCA -CCAACATCGAGAAAGCCTTCACGT -CCAACATCGAGAAAGCCTCGTAGT -CCAACATCGAGAAAGCCTGTCAGT -CCAACATCGAGAAAGCCTGAAGGT -CCAACATCGAGAAAGCCTAACCGT -CCAACATCGAGAAAGCCTTTGTGC -CCAACATCGAGAAAGCCTCTAAGC -CCAACATCGAGAAAGCCTACTAGC -CCAACATCGAGAAAGCCTAGATGC -CCAACATCGAGAAAGCCTTGAAGG -CCAACATCGAGAAAGCCTCAATGG -CCAACATCGAGAAAGCCTATGAGG -CCAACATCGAGAAAGCCTAATGGG -CCAACATCGAGAAAGCCTTCCTGA -CCAACATCGAGAAAGCCTTAGCGA -CCAACATCGAGAAAGCCTCACAGA -CCAACATCGAGAAAGCCTGCAAGA -CCAACATCGAGAAAGCCTGGTTGA -CCAACATCGAGAAAGCCTTCCGAT -CCAACATCGAGAAAGCCTTGGCAT -CCAACATCGAGAAAGCCTCGAGAT -CCAACATCGAGAAAGCCTTACCAC -CCAACATCGAGAAAGCCTCAGAAC -CCAACATCGAGAAAGCCTGTCTAC -CCAACATCGAGAAAGCCTACGTAC -CCAACATCGAGAAAGCCTAGTGAC -CCAACATCGAGAAAGCCTCTGTAG -CCAACATCGAGAAAGCCTCCTAAG -CCAACATCGAGAAAGCCTGTTCAG -CCAACATCGAGAAAGCCTGCATAG -CCAACATCGAGAAAGCCTGACAAG -CCAACATCGAGAAAGCCTAAGCAG -CCAACATCGAGAAAGCCTCGTCAA -CCAACATCGAGAAAGCCTGCTGAA -CCAACATCGAGAAAGCCTAGTACG -CCAACATCGAGAAAGCCTATCCGA -CCAACATCGAGAAAGCCTATGGGA -CCAACATCGAGAAAGCCTGTGCAA -CCAACATCGAGAAAGCCTGAGGAA -CCAACATCGAGAAAGCCTCAGGTA -CCAACATCGAGAAAGCCTGACTCT -CCAACATCGAGAAAGCCTAGTCCT -CCAACATCGAGAAAGCCTTAAGCC -CCAACATCGAGAAAGCCTATAGCC -CCAACATCGAGAAAGCCTTAACCG -CCAACATCGAGAAAGCCTATGCCA -CCAACATCGAGACAGGTTGGAAAC -CCAACATCGAGACAGGTTAACACC -CCAACATCGAGACAGGTTATCGAG -CCAACATCGAGACAGGTTCTCCTT -CCAACATCGAGACAGGTTCCTGTT -CCAACATCGAGACAGGTTCGGTTT -CCAACATCGAGACAGGTTGTGGTT -CCAACATCGAGACAGGTTGCCTTT -CCAACATCGAGACAGGTTGGTCTT -CCAACATCGAGACAGGTTACGCTT -CCAACATCGAGACAGGTTAGCGTT -CCAACATCGAGACAGGTTTTCGTC -CCAACATCGAGACAGGTTTCTCTC -CCAACATCGAGACAGGTTTGGATC -CCAACATCGAGACAGGTTCACTTC -CCAACATCGAGACAGGTTGTACTC -CCAACATCGAGACAGGTTGATGTC -CCAACATCGAGACAGGTTACAGTC -CCAACATCGAGACAGGTTTTGCTG -CCAACATCGAGACAGGTTTCCATG -CCAACATCGAGACAGGTTTGTGTG -CCAACATCGAGACAGGTTCTAGTG -CCAACATCGAGACAGGTTCATCTG -CCAACATCGAGACAGGTTGAGTTG -CCAACATCGAGACAGGTTAGACTG -CCAACATCGAGACAGGTTTCGGTA -CCAACATCGAGACAGGTTTGCCTA -CCAACATCGAGACAGGTTCCACTA -CCAACATCGAGACAGGTTGGAGTA -CCAACATCGAGACAGGTTTCGTCT -CCAACATCGAGACAGGTTTGCACT -CCAACATCGAGACAGGTTCTGACT -CCAACATCGAGACAGGTTCAACCT -CCAACATCGAGACAGGTTGCTACT -CCAACATCGAGACAGGTTGGATCT -CCAACATCGAGACAGGTTAAGGCT -CCAACATCGAGACAGGTTTCAACC -CCAACATCGAGACAGGTTTGTTCC -CCAACATCGAGACAGGTTATTCCC -CCAACATCGAGACAGGTTTTCTCG -CCAACATCGAGACAGGTTTAGACG -CCAACATCGAGACAGGTTGTAACG -CCAACATCGAGACAGGTTACTTCG -CCAACATCGAGACAGGTTTACGCA -CCAACATCGAGACAGGTTCTTGCA -CCAACATCGAGACAGGTTCGAACA -CCAACATCGAGACAGGTTCAGTCA -CCAACATCGAGACAGGTTGATCCA -CCAACATCGAGACAGGTTACGACA -CCAACATCGAGACAGGTTAGCTCA -CCAACATCGAGACAGGTTTCACGT -CCAACATCGAGACAGGTTCGTAGT -CCAACATCGAGACAGGTTGTCAGT -CCAACATCGAGACAGGTTGAAGGT -CCAACATCGAGACAGGTTAACCGT -CCAACATCGAGACAGGTTTTGTGC -CCAACATCGAGACAGGTTCTAAGC -CCAACATCGAGACAGGTTACTAGC -CCAACATCGAGACAGGTTAGATGC -CCAACATCGAGACAGGTTTGAAGG -CCAACATCGAGACAGGTTCAATGG -CCAACATCGAGACAGGTTATGAGG -CCAACATCGAGACAGGTTAATGGG -CCAACATCGAGACAGGTTTCCTGA -CCAACATCGAGACAGGTTTAGCGA -CCAACATCGAGACAGGTTCACAGA -CCAACATCGAGACAGGTTGCAAGA -CCAACATCGAGACAGGTTGGTTGA -CCAACATCGAGACAGGTTTCCGAT -CCAACATCGAGACAGGTTTGGCAT -CCAACATCGAGACAGGTTCGAGAT -CCAACATCGAGACAGGTTTACCAC -CCAACATCGAGACAGGTTCAGAAC -CCAACATCGAGACAGGTTGTCTAC -CCAACATCGAGACAGGTTACGTAC -CCAACATCGAGACAGGTTAGTGAC -CCAACATCGAGACAGGTTCTGTAG -CCAACATCGAGACAGGTTCCTAAG -CCAACATCGAGACAGGTTGTTCAG -CCAACATCGAGACAGGTTGCATAG -CCAACATCGAGACAGGTTGACAAG -CCAACATCGAGACAGGTTAAGCAG -CCAACATCGAGACAGGTTCGTCAA -CCAACATCGAGACAGGTTGCTGAA -CCAACATCGAGACAGGTTAGTACG -CCAACATCGAGACAGGTTATCCGA -CCAACATCGAGACAGGTTATGGGA -CCAACATCGAGACAGGTTGTGCAA -CCAACATCGAGACAGGTTGAGGAA -CCAACATCGAGACAGGTTCAGGTA -CCAACATCGAGACAGGTTGACTCT -CCAACATCGAGACAGGTTAGTCCT -CCAACATCGAGACAGGTTTAAGCC -CCAACATCGAGACAGGTTATAGCC -CCAACATCGAGACAGGTTTAACCG -CCAACATCGAGACAGGTTATGCCA -CCAACATCGAGATAGGCAGGAAAC -CCAACATCGAGATAGGCAAACACC -CCAACATCGAGATAGGCAATCGAG -CCAACATCGAGATAGGCACTCCTT -CCAACATCGAGATAGGCACCTGTT -CCAACATCGAGATAGGCACGGTTT -CCAACATCGAGATAGGCAGTGGTT -CCAACATCGAGATAGGCAGCCTTT -CCAACATCGAGATAGGCAGGTCTT -CCAACATCGAGATAGGCAACGCTT -CCAACATCGAGATAGGCAAGCGTT -CCAACATCGAGATAGGCATTCGTC -CCAACATCGAGATAGGCATCTCTC -CCAACATCGAGATAGGCATGGATC -CCAACATCGAGATAGGCACACTTC -CCAACATCGAGATAGGCAGTACTC -CCAACATCGAGATAGGCAGATGTC -CCAACATCGAGATAGGCAACAGTC -CCAACATCGAGATAGGCATTGCTG -CCAACATCGAGATAGGCATCCATG -CCAACATCGAGATAGGCATGTGTG -CCAACATCGAGATAGGCACTAGTG -CCAACATCGAGATAGGCACATCTG -CCAACATCGAGATAGGCAGAGTTG -CCAACATCGAGATAGGCAAGACTG -CCAACATCGAGATAGGCATCGGTA -CCAACATCGAGATAGGCATGCCTA -CCAACATCGAGATAGGCACCACTA -CCAACATCGAGATAGGCAGGAGTA -CCAACATCGAGATAGGCATCGTCT -CCAACATCGAGATAGGCATGCACT -CCAACATCGAGATAGGCACTGACT -CCAACATCGAGATAGGCACAACCT -CCAACATCGAGATAGGCAGCTACT -CCAACATCGAGATAGGCAGGATCT -CCAACATCGAGATAGGCAAAGGCT -CCAACATCGAGATAGGCATCAACC -CCAACATCGAGATAGGCATGTTCC -CCAACATCGAGATAGGCAATTCCC -CCAACATCGAGATAGGCATTCTCG -CCAACATCGAGATAGGCATAGACG -CCAACATCGAGATAGGCAGTAACG -CCAACATCGAGATAGGCAACTTCG -CCAACATCGAGATAGGCATACGCA -CCAACATCGAGATAGGCACTTGCA -CCAACATCGAGATAGGCACGAACA -CCAACATCGAGATAGGCACAGTCA -CCAACATCGAGATAGGCAGATCCA -CCAACATCGAGATAGGCAACGACA -CCAACATCGAGATAGGCAAGCTCA -CCAACATCGAGATAGGCATCACGT -CCAACATCGAGATAGGCACGTAGT -CCAACATCGAGATAGGCAGTCAGT -CCAACATCGAGATAGGCAGAAGGT -CCAACATCGAGATAGGCAAACCGT -CCAACATCGAGATAGGCATTGTGC -CCAACATCGAGATAGGCACTAAGC -CCAACATCGAGATAGGCAACTAGC -CCAACATCGAGATAGGCAAGATGC -CCAACATCGAGATAGGCATGAAGG -CCAACATCGAGATAGGCACAATGG -CCAACATCGAGATAGGCAATGAGG -CCAACATCGAGATAGGCAAATGGG -CCAACATCGAGATAGGCATCCTGA -CCAACATCGAGATAGGCATAGCGA -CCAACATCGAGATAGGCACACAGA -CCAACATCGAGATAGGCAGCAAGA -CCAACATCGAGATAGGCAGGTTGA -CCAACATCGAGATAGGCATCCGAT -CCAACATCGAGATAGGCATGGCAT -CCAACATCGAGATAGGCACGAGAT -CCAACATCGAGATAGGCATACCAC -CCAACATCGAGATAGGCACAGAAC -CCAACATCGAGATAGGCAGTCTAC -CCAACATCGAGATAGGCAACGTAC -CCAACATCGAGATAGGCAAGTGAC -CCAACATCGAGATAGGCACTGTAG -CCAACATCGAGATAGGCACCTAAG -CCAACATCGAGATAGGCAGTTCAG -CCAACATCGAGATAGGCAGCATAG -CCAACATCGAGATAGGCAGACAAG -CCAACATCGAGATAGGCAAAGCAG -CCAACATCGAGATAGGCACGTCAA -CCAACATCGAGATAGGCAGCTGAA -CCAACATCGAGATAGGCAAGTACG -CCAACATCGAGATAGGCAATCCGA -CCAACATCGAGATAGGCAATGGGA -CCAACATCGAGATAGGCAGTGCAA -CCAACATCGAGATAGGCAGAGGAA -CCAACATCGAGATAGGCACAGGTA -CCAACATCGAGATAGGCAGACTCT -CCAACATCGAGATAGGCAAGTCCT -CCAACATCGAGATAGGCATAAGCC -CCAACATCGAGATAGGCAATAGCC -CCAACATCGAGATAGGCATAACCG -CCAACATCGAGATAGGCAATGCCA -CCAACATCGAGAAAGGACGGAAAC -CCAACATCGAGAAAGGACAACACC -CCAACATCGAGAAAGGACATCGAG -CCAACATCGAGAAAGGACCTCCTT -CCAACATCGAGAAAGGACCCTGTT -CCAACATCGAGAAAGGACCGGTTT -CCAACATCGAGAAAGGACGTGGTT -CCAACATCGAGAAAGGACGCCTTT -CCAACATCGAGAAAGGACGGTCTT -CCAACATCGAGAAAGGACACGCTT -CCAACATCGAGAAAGGACAGCGTT -CCAACATCGAGAAAGGACTTCGTC -CCAACATCGAGAAAGGACTCTCTC -CCAACATCGAGAAAGGACTGGATC -CCAACATCGAGAAAGGACCACTTC -CCAACATCGAGAAAGGACGTACTC -CCAACATCGAGAAAGGACGATGTC -CCAACATCGAGAAAGGACACAGTC -CCAACATCGAGAAAGGACTTGCTG -CCAACATCGAGAAAGGACTCCATG -CCAACATCGAGAAAGGACTGTGTG -CCAACATCGAGAAAGGACCTAGTG -CCAACATCGAGAAAGGACCATCTG -CCAACATCGAGAAAGGACGAGTTG -CCAACATCGAGAAAGGACAGACTG -CCAACATCGAGAAAGGACTCGGTA -CCAACATCGAGAAAGGACTGCCTA -CCAACATCGAGAAAGGACCCACTA -CCAACATCGAGAAAGGACGGAGTA -CCAACATCGAGAAAGGACTCGTCT -CCAACATCGAGAAAGGACTGCACT -CCAACATCGAGAAAGGACCTGACT -CCAACATCGAGAAAGGACCAACCT -CCAACATCGAGAAAGGACGCTACT -CCAACATCGAGAAAGGACGGATCT -CCAACATCGAGAAAGGACAAGGCT -CCAACATCGAGAAAGGACTCAACC -CCAACATCGAGAAAGGACTGTTCC -CCAACATCGAGAAAGGACATTCCC -CCAACATCGAGAAAGGACTTCTCG -CCAACATCGAGAAAGGACTAGACG -CCAACATCGAGAAAGGACGTAACG -CCAACATCGAGAAAGGACACTTCG -CCAACATCGAGAAAGGACTACGCA -CCAACATCGAGAAAGGACCTTGCA -CCAACATCGAGAAAGGACCGAACA -CCAACATCGAGAAAGGACCAGTCA -CCAACATCGAGAAAGGACGATCCA -CCAACATCGAGAAAGGACACGACA -CCAACATCGAGAAAGGACAGCTCA -CCAACATCGAGAAAGGACTCACGT -CCAACATCGAGAAAGGACCGTAGT -CCAACATCGAGAAAGGACGTCAGT -CCAACATCGAGAAAGGACGAAGGT -CCAACATCGAGAAAGGACAACCGT -CCAACATCGAGAAAGGACTTGTGC -CCAACATCGAGAAAGGACCTAAGC -CCAACATCGAGAAAGGACACTAGC -CCAACATCGAGAAAGGACAGATGC -CCAACATCGAGAAAGGACTGAAGG -CCAACATCGAGAAAGGACCAATGG -CCAACATCGAGAAAGGACATGAGG -CCAACATCGAGAAAGGACAATGGG -CCAACATCGAGAAAGGACTCCTGA -CCAACATCGAGAAAGGACTAGCGA -CCAACATCGAGAAAGGACCACAGA -CCAACATCGAGAAAGGACGCAAGA -CCAACATCGAGAAAGGACGGTTGA -CCAACATCGAGAAAGGACTCCGAT -CCAACATCGAGAAAGGACTGGCAT -CCAACATCGAGAAAGGACCGAGAT -CCAACATCGAGAAAGGACTACCAC -CCAACATCGAGAAAGGACCAGAAC -CCAACATCGAGAAAGGACGTCTAC -CCAACATCGAGAAAGGACACGTAC -CCAACATCGAGAAAGGACAGTGAC -CCAACATCGAGAAAGGACCTGTAG -CCAACATCGAGAAAGGACCCTAAG -CCAACATCGAGAAAGGACGTTCAG -CCAACATCGAGAAAGGACGCATAG -CCAACATCGAGAAAGGACGACAAG -CCAACATCGAGAAAGGACAAGCAG -CCAACATCGAGAAAGGACCGTCAA -CCAACATCGAGAAAGGACGCTGAA -CCAACATCGAGAAAGGACAGTACG -CCAACATCGAGAAAGGACATCCGA -CCAACATCGAGAAAGGACATGGGA -CCAACATCGAGAAAGGACGTGCAA -CCAACATCGAGAAAGGACGAGGAA -CCAACATCGAGAAAGGACCAGGTA -CCAACATCGAGAAAGGACGACTCT -CCAACATCGAGAAAGGACAGTCCT -CCAACATCGAGAAAGGACTAAGCC -CCAACATCGAGAAAGGACATAGCC -CCAACATCGAGAAAGGACTAACCG -CCAACATCGAGAAAGGACATGCCA -CCAACATCGAGACAGAAGGGAAAC -CCAACATCGAGACAGAAGAACACC -CCAACATCGAGACAGAAGATCGAG -CCAACATCGAGACAGAAGCTCCTT -CCAACATCGAGACAGAAGCCTGTT -CCAACATCGAGACAGAAGCGGTTT -CCAACATCGAGACAGAAGGTGGTT -CCAACATCGAGACAGAAGGCCTTT -CCAACATCGAGACAGAAGGGTCTT -CCAACATCGAGACAGAAGACGCTT -CCAACATCGAGACAGAAGAGCGTT -CCAACATCGAGACAGAAGTTCGTC -CCAACATCGAGACAGAAGTCTCTC -CCAACATCGAGACAGAAGTGGATC -CCAACATCGAGACAGAAGCACTTC -CCAACATCGAGACAGAAGGTACTC -CCAACATCGAGACAGAAGGATGTC -CCAACATCGAGACAGAAGACAGTC -CCAACATCGAGACAGAAGTTGCTG -CCAACATCGAGACAGAAGTCCATG -CCAACATCGAGACAGAAGTGTGTG -CCAACATCGAGACAGAAGCTAGTG -CCAACATCGAGACAGAAGCATCTG -CCAACATCGAGACAGAAGGAGTTG -CCAACATCGAGACAGAAGAGACTG -CCAACATCGAGACAGAAGTCGGTA -CCAACATCGAGACAGAAGTGCCTA -CCAACATCGAGACAGAAGCCACTA -CCAACATCGAGACAGAAGGGAGTA -CCAACATCGAGACAGAAGTCGTCT -CCAACATCGAGACAGAAGTGCACT -CCAACATCGAGACAGAAGCTGACT -CCAACATCGAGACAGAAGCAACCT -CCAACATCGAGACAGAAGGCTACT -CCAACATCGAGACAGAAGGGATCT -CCAACATCGAGACAGAAGAAGGCT -CCAACATCGAGACAGAAGTCAACC -CCAACATCGAGACAGAAGTGTTCC -CCAACATCGAGACAGAAGATTCCC -CCAACATCGAGACAGAAGTTCTCG -CCAACATCGAGACAGAAGTAGACG -CCAACATCGAGACAGAAGGTAACG -CCAACATCGAGACAGAAGACTTCG -CCAACATCGAGACAGAAGTACGCA -CCAACATCGAGACAGAAGCTTGCA -CCAACATCGAGACAGAAGCGAACA -CCAACATCGAGACAGAAGCAGTCA -CCAACATCGAGACAGAAGGATCCA -CCAACATCGAGACAGAAGACGACA -CCAACATCGAGACAGAAGAGCTCA -CCAACATCGAGACAGAAGTCACGT -CCAACATCGAGACAGAAGCGTAGT -CCAACATCGAGACAGAAGGTCAGT -CCAACATCGAGACAGAAGGAAGGT -CCAACATCGAGACAGAAGAACCGT -CCAACATCGAGACAGAAGTTGTGC -CCAACATCGAGACAGAAGCTAAGC -CCAACATCGAGACAGAAGACTAGC -CCAACATCGAGACAGAAGAGATGC -CCAACATCGAGACAGAAGTGAAGG -CCAACATCGAGACAGAAGCAATGG -CCAACATCGAGACAGAAGATGAGG -CCAACATCGAGACAGAAGAATGGG -CCAACATCGAGACAGAAGTCCTGA -CCAACATCGAGACAGAAGTAGCGA -CCAACATCGAGACAGAAGCACAGA -CCAACATCGAGACAGAAGGCAAGA -CCAACATCGAGACAGAAGGGTTGA -CCAACATCGAGACAGAAGTCCGAT -CCAACATCGAGACAGAAGTGGCAT -CCAACATCGAGACAGAAGCGAGAT -CCAACATCGAGACAGAAGTACCAC -CCAACATCGAGACAGAAGCAGAAC -CCAACATCGAGACAGAAGGTCTAC -CCAACATCGAGACAGAAGACGTAC -CCAACATCGAGACAGAAGAGTGAC -CCAACATCGAGACAGAAGCTGTAG -CCAACATCGAGACAGAAGCCTAAG -CCAACATCGAGACAGAAGGTTCAG -CCAACATCGAGACAGAAGGCATAG -CCAACATCGAGACAGAAGGACAAG -CCAACATCGAGACAGAAGAAGCAG -CCAACATCGAGACAGAAGCGTCAA -CCAACATCGAGACAGAAGGCTGAA -CCAACATCGAGACAGAAGAGTACG -CCAACATCGAGACAGAAGATCCGA -CCAACATCGAGACAGAAGATGGGA -CCAACATCGAGACAGAAGGTGCAA -CCAACATCGAGACAGAAGGAGGAA -CCAACATCGAGACAGAAGCAGGTA -CCAACATCGAGACAGAAGGACTCT -CCAACATCGAGACAGAAGAGTCCT -CCAACATCGAGACAGAAGTAAGCC -CCAACATCGAGACAGAAGATAGCC -CCAACATCGAGACAGAAGTAACCG -CCAACATCGAGACAGAAGATGCCA -CCAACATCGAGACAACGTGGAAAC -CCAACATCGAGACAACGTAACACC -CCAACATCGAGACAACGTATCGAG -CCAACATCGAGACAACGTCTCCTT -CCAACATCGAGACAACGTCCTGTT -CCAACATCGAGACAACGTCGGTTT -CCAACATCGAGACAACGTGTGGTT -CCAACATCGAGACAACGTGCCTTT -CCAACATCGAGACAACGTGGTCTT -CCAACATCGAGACAACGTACGCTT -CCAACATCGAGACAACGTAGCGTT -CCAACATCGAGACAACGTTTCGTC -CCAACATCGAGACAACGTTCTCTC -CCAACATCGAGACAACGTTGGATC -CCAACATCGAGACAACGTCACTTC -CCAACATCGAGACAACGTGTACTC -CCAACATCGAGACAACGTGATGTC -CCAACATCGAGACAACGTACAGTC -CCAACATCGAGACAACGTTTGCTG -CCAACATCGAGACAACGTTCCATG -CCAACATCGAGACAACGTTGTGTG -CCAACATCGAGACAACGTCTAGTG -CCAACATCGAGACAACGTCATCTG -CCAACATCGAGACAACGTGAGTTG -CCAACATCGAGACAACGTAGACTG -CCAACATCGAGACAACGTTCGGTA -CCAACATCGAGACAACGTTGCCTA -CCAACATCGAGACAACGTCCACTA -CCAACATCGAGACAACGTGGAGTA -CCAACATCGAGACAACGTTCGTCT -CCAACATCGAGACAACGTTGCACT -CCAACATCGAGACAACGTCTGACT -CCAACATCGAGACAACGTCAACCT -CCAACATCGAGACAACGTGCTACT -CCAACATCGAGACAACGTGGATCT -CCAACATCGAGACAACGTAAGGCT -CCAACATCGAGACAACGTTCAACC -CCAACATCGAGACAACGTTGTTCC -CCAACATCGAGACAACGTATTCCC -CCAACATCGAGACAACGTTTCTCG -CCAACATCGAGACAACGTTAGACG -CCAACATCGAGACAACGTGTAACG -CCAACATCGAGACAACGTACTTCG -CCAACATCGAGACAACGTTACGCA -CCAACATCGAGACAACGTCTTGCA -CCAACATCGAGACAACGTCGAACA -CCAACATCGAGACAACGTCAGTCA -CCAACATCGAGACAACGTGATCCA -CCAACATCGAGACAACGTACGACA -CCAACATCGAGACAACGTAGCTCA -CCAACATCGAGACAACGTTCACGT -CCAACATCGAGACAACGTCGTAGT -CCAACATCGAGACAACGTGTCAGT -CCAACATCGAGACAACGTGAAGGT -CCAACATCGAGACAACGTAACCGT -CCAACATCGAGACAACGTTTGTGC -CCAACATCGAGACAACGTCTAAGC -CCAACATCGAGACAACGTACTAGC -CCAACATCGAGACAACGTAGATGC -CCAACATCGAGACAACGTTGAAGG -CCAACATCGAGACAACGTCAATGG -CCAACATCGAGACAACGTATGAGG -CCAACATCGAGACAACGTAATGGG -CCAACATCGAGACAACGTTCCTGA -CCAACATCGAGACAACGTTAGCGA -CCAACATCGAGACAACGTCACAGA -CCAACATCGAGACAACGTGCAAGA -CCAACATCGAGACAACGTGGTTGA -CCAACATCGAGACAACGTTCCGAT -CCAACATCGAGACAACGTTGGCAT -CCAACATCGAGACAACGTCGAGAT -CCAACATCGAGACAACGTTACCAC -CCAACATCGAGACAACGTCAGAAC -CCAACATCGAGACAACGTGTCTAC -CCAACATCGAGACAACGTACGTAC -CCAACATCGAGACAACGTAGTGAC -CCAACATCGAGACAACGTCTGTAG -CCAACATCGAGACAACGTCCTAAG -CCAACATCGAGACAACGTGTTCAG -CCAACATCGAGACAACGTGCATAG -CCAACATCGAGACAACGTGACAAG -CCAACATCGAGACAACGTAAGCAG -CCAACATCGAGACAACGTCGTCAA -CCAACATCGAGACAACGTGCTGAA -CCAACATCGAGACAACGTAGTACG -CCAACATCGAGACAACGTATCCGA -CCAACATCGAGACAACGTATGGGA -CCAACATCGAGACAACGTGTGCAA -CCAACATCGAGACAACGTGAGGAA -CCAACATCGAGACAACGTCAGGTA -CCAACATCGAGACAACGTGACTCT -CCAACATCGAGACAACGTAGTCCT -CCAACATCGAGACAACGTTAAGCC -CCAACATCGAGACAACGTATAGCC -CCAACATCGAGACAACGTTAACCG -CCAACATCGAGACAACGTATGCCA -CCAACATCGAGAGAAGCTGGAAAC -CCAACATCGAGAGAAGCTAACACC -CCAACATCGAGAGAAGCTATCGAG -CCAACATCGAGAGAAGCTCTCCTT -CCAACATCGAGAGAAGCTCCTGTT -CCAACATCGAGAGAAGCTCGGTTT -CCAACATCGAGAGAAGCTGTGGTT -CCAACATCGAGAGAAGCTGCCTTT -CCAACATCGAGAGAAGCTGGTCTT -CCAACATCGAGAGAAGCTACGCTT -CCAACATCGAGAGAAGCTAGCGTT -CCAACATCGAGAGAAGCTTTCGTC -CCAACATCGAGAGAAGCTTCTCTC -CCAACATCGAGAGAAGCTTGGATC -CCAACATCGAGAGAAGCTCACTTC -CCAACATCGAGAGAAGCTGTACTC -CCAACATCGAGAGAAGCTGATGTC -CCAACATCGAGAGAAGCTACAGTC -CCAACATCGAGAGAAGCTTTGCTG -CCAACATCGAGAGAAGCTTCCATG -CCAACATCGAGAGAAGCTTGTGTG -CCAACATCGAGAGAAGCTCTAGTG -CCAACATCGAGAGAAGCTCATCTG -CCAACATCGAGAGAAGCTGAGTTG -CCAACATCGAGAGAAGCTAGACTG -CCAACATCGAGAGAAGCTTCGGTA -CCAACATCGAGAGAAGCTTGCCTA -CCAACATCGAGAGAAGCTCCACTA -CCAACATCGAGAGAAGCTGGAGTA -CCAACATCGAGAGAAGCTTCGTCT -CCAACATCGAGAGAAGCTTGCACT -CCAACATCGAGAGAAGCTCTGACT -CCAACATCGAGAGAAGCTCAACCT -CCAACATCGAGAGAAGCTGCTACT -CCAACATCGAGAGAAGCTGGATCT -CCAACATCGAGAGAAGCTAAGGCT -CCAACATCGAGAGAAGCTTCAACC -CCAACATCGAGAGAAGCTTGTTCC -CCAACATCGAGAGAAGCTATTCCC -CCAACATCGAGAGAAGCTTTCTCG -CCAACATCGAGAGAAGCTTAGACG -CCAACATCGAGAGAAGCTGTAACG -CCAACATCGAGAGAAGCTACTTCG -CCAACATCGAGAGAAGCTTACGCA -CCAACATCGAGAGAAGCTCTTGCA -CCAACATCGAGAGAAGCTCGAACA -CCAACATCGAGAGAAGCTCAGTCA -CCAACATCGAGAGAAGCTGATCCA -CCAACATCGAGAGAAGCTACGACA -CCAACATCGAGAGAAGCTAGCTCA -CCAACATCGAGAGAAGCTTCACGT -CCAACATCGAGAGAAGCTCGTAGT -CCAACATCGAGAGAAGCTGTCAGT -CCAACATCGAGAGAAGCTGAAGGT -CCAACATCGAGAGAAGCTAACCGT -CCAACATCGAGAGAAGCTTTGTGC -CCAACATCGAGAGAAGCTCTAAGC -CCAACATCGAGAGAAGCTACTAGC -CCAACATCGAGAGAAGCTAGATGC -CCAACATCGAGAGAAGCTTGAAGG -CCAACATCGAGAGAAGCTCAATGG -CCAACATCGAGAGAAGCTATGAGG -CCAACATCGAGAGAAGCTAATGGG -CCAACATCGAGAGAAGCTTCCTGA -CCAACATCGAGAGAAGCTTAGCGA -CCAACATCGAGAGAAGCTCACAGA -CCAACATCGAGAGAAGCTGCAAGA -CCAACATCGAGAGAAGCTGGTTGA -CCAACATCGAGAGAAGCTTCCGAT -CCAACATCGAGAGAAGCTTGGCAT -CCAACATCGAGAGAAGCTCGAGAT -CCAACATCGAGAGAAGCTTACCAC -CCAACATCGAGAGAAGCTCAGAAC -CCAACATCGAGAGAAGCTGTCTAC -CCAACATCGAGAGAAGCTACGTAC -CCAACATCGAGAGAAGCTAGTGAC -CCAACATCGAGAGAAGCTCTGTAG -CCAACATCGAGAGAAGCTCCTAAG -CCAACATCGAGAGAAGCTGTTCAG -CCAACATCGAGAGAAGCTGCATAG -CCAACATCGAGAGAAGCTGACAAG -CCAACATCGAGAGAAGCTAAGCAG -CCAACATCGAGAGAAGCTCGTCAA -CCAACATCGAGAGAAGCTGCTGAA -CCAACATCGAGAGAAGCTAGTACG -CCAACATCGAGAGAAGCTATCCGA -CCAACATCGAGAGAAGCTATGGGA -CCAACATCGAGAGAAGCTGTGCAA -CCAACATCGAGAGAAGCTGAGGAA -CCAACATCGAGAGAAGCTCAGGTA -CCAACATCGAGAGAAGCTGACTCT -CCAACATCGAGAGAAGCTAGTCCT -CCAACATCGAGAGAAGCTTAAGCC -CCAACATCGAGAGAAGCTATAGCC -CCAACATCGAGAGAAGCTTAACCG -CCAACATCGAGAGAAGCTATGCCA -CCAACATCGAGAACGAGTGGAAAC -CCAACATCGAGAACGAGTAACACC -CCAACATCGAGAACGAGTATCGAG -CCAACATCGAGAACGAGTCTCCTT -CCAACATCGAGAACGAGTCCTGTT -CCAACATCGAGAACGAGTCGGTTT -CCAACATCGAGAACGAGTGTGGTT -CCAACATCGAGAACGAGTGCCTTT -CCAACATCGAGAACGAGTGGTCTT -CCAACATCGAGAACGAGTACGCTT -CCAACATCGAGAACGAGTAGCGTT -CCAACATCGAGAACGAGTTTCGTC -CCAACATCGAGAACGAGTTCTCTC -CCAACATCGAGAACGAGTTGGATC -CCAACATCGAGAACGAGTCACTTC -CCAACATCGAGAACGAGTGTACTC -CCAACATCGAGAACGAGTGATGTC -CCAACATCGAGAACGAGTACAGTC -CCAACATCGAGAACGAGTTTGCTG -CCAACATCGAGAACGAGTTCCATG -CCAACATCGAGAACGAGTTGTGTG -CCAACATCGAGAACGAGTCTAGTG -CCAACATCGAGAACGAGTCATCTG -CCAACATCGAGAACGAGTGAGTTG -CCAACATCGAGAACGAGTAGACTG -CCAACATCGAGAACGAGTTCGGTA -CCAACATCGAGAACGAGTTGCCTA -CCAACATCGAGAACGAGTCCACTA -CCAACATCGAGAACGAGTGGAGTA -CCAACATCGAGAACGAGTTCGTCT -CCAACATCGAGAACGAGTTGCACT -CCAACATCGAGAACGAGTCTGACT -CCAACATCGAGAACGAGTCAACCT -CCAACATCGAGAACGAGTGCTACT -CCAACATCGAGAACGAGTGGATCT -CCAACATCGAGAACGAGTAAGGCT -CCAACATCGAGAACGAGTTCAACC -CCAACATCGAGAACGAGTTGTTCC -CCAACATCGAGAACGAGTATTCCC -CCAACATCGAGAACGAGTTTCTCG -CCAACATCGAGAACGAGTTAGACG -CCAACATCGAGAACGAGTGTAACG -CCAACATCGAGAACGAGTACTTCG -CCAACATCGAGAACGAGTTACGCA -CCAACATCGAGAACGAGTCTTGCA -CCAACATCGAGAACGAGTCGAACA -CCAACATCGAGAACGAGTCAGTCA -CCAACATCGAGAACGAGTGATCCA -CCAACATCGAGAACGAGTACGACA -CCAACATCGAGAACGAGTAGCTCA -CCAACATCGAGAACGAGTTCACGT -CCAACATCGAGAACGAGTCGTAGT -CCAACATCGAGAACGAGTGTCAGT -CCAACATCGAGAACGAGTGAAGGT -CCAACATCGAGAACGAGTAACCGT -CCAACATCGAGAACGAGTTTGTGC -CCAACATCGAGAACGAGTCTAAGC -CCAACATCGAGAACGAGTACTAGC -CCAACATCGAGAACGAGTAGATGC -CCAACATCGAGAACGAGTTGAAGG -CCAACATCGAGAACGAGTCAATGG -CCAACATCGAGAACGAGTATGAGG -CCAACATCGAGAACGAGTAATGGG -CCAACATCGAGAACGAGTTCCTGA -CCAACATCGAGAACGAGTTAGCGA -CCAACATCGAGAACGAGTCACAGA -CCAACATCGAGAACGAGTGCAAGA -CCAACATCGAGAACGAGTGGTTGA -CCAACATCGAGAACGAGTTCCGAT -CCAACATCGAGAACGAGTTGGCAT -CCAACATCGAGAACGAGTCGAGAT -CCAACATCGAGAACGAGTTACCAC -CCAACATCGAGAACGAGTCAGAAC -CCAACATCGAGAACGAGTGTCTAC -CCAACATCGAGAACGAGTACGTAC -CCAACATCGAGAACGAGTAGTGAC -CCAACATCGAGAACGAGTCTGTAG -CCAACATCGAGAACGAGTCCTAAG -CCAACATCGAGAACGAGTGTTCAG -CCAACATCGAGAACGAGTGCATAG -CCAACATCGAGAACGAGTGACAAG -CCAACATCGAGAACGAGTAAGCAG -CCAACATCGAGAACGAGTCGTCAA -CCAACATCGAGAACGAGTGCTGAA -CCAACATCGAGAACGAGTAGTACG -CCAACATCGAGAACGAGTATCCGA -CCAACATCGAGAACGAGTATGGGA -CCAACATCGAGAACGAGTGTGCAA -CCAACATCGAGAACGAGTGAGGAA -CCAACATCGAGAACGAGTCAGGTA -CCAACATCGAGAACGAGTGACTCT -CCAACATCGAGAACGAGTAGTCCT -CCAACATCGAGAACGAGTTAAGCC -CCAACATCGAGAACGAGTATAGCC -CCAACATCGAGAACGAGTTAACCG -CCAACATCGAGAACGAGTATGCCA -CCAACATCGAGACGAATCGGAAAC -CCAACATCGAGACGAATCAACACC -CCAACATCGAGACGAATCATCGAG -CCAACATCGAGACGAATCCTCCTT -CCAACATCGAGACGAATCCCTGTT -CCAACATCGAGACGAATCCGGTTT -CCAACATCGAGACGAATCGTGGTT -CCAACATCGAGACGAATCGCCTTT -CCAACATCGAGACGAATCGGTCTT -CCAACATCGAGACGAATCACGCTT -CCAACATCGAGACGAATCAGCGTT -CCAACATCGAGACGAATCTTCGTC -CCAACATCGAGACGAATCTCTCTC -CCAACATCGAGACGAATCTGGATC -CCAACATCGAGACGAATCCACTTC -CCAACATCGAGACGAATCGTACTC -CCAACATCGAGACGAATCGATGTC -CCAACATCGAGACGAATCACAGTC -CCAACATCGAGACGAATCTTGCTG -CCAACATCGAGACGAATCTCCATG -CCAACATCGAGACGAATCTGTGTG -CCAACATCGAGACGAATCCTAGTG -CCAACATCGAGACGAATCCATCTG -CCAACATCGAGACGAATCGAGTTG -CCAACATCGAGACGAATCAGACTG -CCAACATCGAGACGAATCTCGGTA -CCAACATCGAGACGAATCTGCCTA -CCAACATCGAGACGAATCCCACTA -CCAACATCGAGACGAATCGGAGTA -CCAACATCGAGACGAATCTCGTCT -CCAACATCGAGACGAATCTGCACT -CCAACATCGAGACGAATCCTGACT -CCAACATCGAGACGAATCCAACCT -CCAACATCGAGACGAATCGCTACT -CCAACATCGAGACGAATCGGATCT -CCAACATCGAGACGAATCAAGGCT -CCAACATCGAGACGAATCTCAACC -CCAACATCGAGACGAATCTGTTCC -CCAACATCGAGACGAATCATTCCC -CCAACATCGAGACGAATCTTCTCG -CCAACATCGAGACGAATCTAGACG -CCAACATCGAGACGAATCGTAACG -CCAACATCGAGACGAATCACTTCG -CCAACATCGAGACGAATCTACGCA -CCAACATCGAGACGAATCCTTGCA -CCAACATCGAGACGAATCCGAACA -CCAACATCGAGACGAATCCAGTCA -CCAACATCGAGACGAATCGATCCA -CCAACATCGAGACGAATCACGACA -CCAACATCGAGACGAATCAGCTCA -CCAACATCGAGACGAATCTCACGT -CCAACATCGAGACGAATCCGTAGT -CCAACATCGAGACGAATCGTCAGT -CCAACATCGAGACGAATCGAAGGT -CCAACATCGAGACGAATCAACCGT -CCAACATCGAGACGAATCTTGTGC -CCAACATCGAGACGAATCCTAAGC -CCAACATCGAGACGAATCACTAGC -CCAACATCGAGACGAATCAGATGC -CCAACATCGAGACGAATCTGAAGG -CCAACATCGAGACGAATCCAATGG -CCAACATCGAGACGAATCATGAGG -CCAACATCGAGACGAATCAATGGG -CCAACATCGAGACGAATCTCCTGA -CCAACATCGAGACGAATCTAGCGA -CCAACATCGAGACGAATCCACAGA -CCAACATCGAGACGAATCGCAAGA -CCAACATCGAGACGAATCGGTTGA -CCAACATCGAGACGAATCTCCGAT -CCAACATCGAGACGAATCTGGCAT -CCAACATCGAGACGAATCCGAGAT -CCAACATCGAGACGAATCTACCAC -CCAACATCGAGACGAATCCAGAAC -CCAACATCGAGACGAATCGTCTAC -CCAACATCGAGACGAATCACGTAC -CCAACATCGAGACGAATCAGTGAC -CCAACATCGAGACGAATCCTGTAG -CCAACATCGAGACGAATCCCTAAG -CCAACATCGAGACGAATCGTTCAG -CCAACATCGAGACGAATCGCATAG -CCAACATCGAGACGAATCGACAAG -CCAACATCGAGACGAATCAAGCAG -CCAACATCGAGACGAATCCGTCAA -CCAACATCGAGACGAATCGCTGAA -CCAACATCGAGACGAATCAGTACG -CCAACATCGAGACGAATCATCCGA -CCAACATCGAGACGAATCATGGGA -CCAACATCGAGACGAATCGTGCAA -CCAACATCGAGACGAATCGAGGAA -CCAACATCGAGACGAATCCAGGTA -CCAACATCGAGACGAATCGACTCT -CCAACATCGAGACGAATCAGTCCT -CCAACATCGAGACGAATCTAAGCC -CCAACATCGAGACGAATCATAGCC -CCAACATCGAGACGAATCTAACCG -CCAACATCGAGACGAATCATGCCA -CCAACATCGAGAGGAATGGGAAAC -CCAACATCGAGAGGAATGAACACC -CCAACATCGAGAGGAATGATCGAG -CCAACATCGAGAGGAATGCTCCTT -CCAACATCGAGAGGAATGCCTGTT -CCAACATCGAGAGGAATGCGGTTT -CCAACATCGAGAGGAATGGTGGTT -CCAACATCGAGAGGAATGGCCTTT -CCAACATCGAGAGGAATGGGTCTT -CCAACATCGAGAGGAATGACGCTT -CCAACATCGAGAGGAATGAGCGTT -CCAACATCGAGAGGAATGTTCGTC -CCAACATCGAGAGGAATGTCTCTC -CCAACATCGAGAGGAATGTGGATC -CCAACATCGAGAGGAATGCACTTC -CCAACATCGAGAGGAATGGTACTC -CCAACATCGAGAGGAATGGATGTC -CCAACATCGAGAGGAATGACAGTC -CCAACATCGAGAGGAATGTTGCTG -CCAACATCGAGAGGAATGTCCATG -CCAACATCGAGAGGAATGTGTGTG -CCAACATCGAGAGGAATGCTAGTG -CCAACATCGAGAGGAATGCATCTG -CCAACATCGAGAGGAATGGAGTTG -CCAACATCGAGAGGAATGAGACTG -CCAACATCGAGAGGAATGTCGGTA -CCAACATCGAGAGGAATGTGCCTA -CCAACATCGAGAGGAATGCCACTA -CCAACATCGAGAGGAATGGGAGTA -CCAACATCGAGAGGAATGTCGTCT -CCAACATCGAGAGGAATGTGCACT -CCAACATCGAGAGGAATGCTGACT -CCAACATCGAGAGGAATGCAACCT -CCAACATCGAGAGGAATGGCTACT -CCAACATCGAGAGGAATGGGATCT -CCAACATCGAGAGGAATGAAGGCT -CCAACATCGAGAGGAATGTCAACC -CCAACATCGAGAGGAATGTGTTCC -CCAACATCGAGAGGAATGATTCCC -CCAACATCGAGAGGAATGTTCTCG -CCAACATCGAGAGGAATGTAGACG -CCAACATCGAGAGGAATGGTAACG -CCAACATCGAGAGGAATGACTTCG -CCAACATCGAGAGGAATGTACGCA -CCAACATCGAGAGGAATGCTTGCA -CCAACATCGAGAGGAATGCGAACA -CCAACATCGAGAGGAATGCAGTCA -CCAACATCGAGAGGAATGGATCCA -CCAACATCGAGAGGAATGACGACA -CCAACATCGAGAGGAATGAGCTCA -CCAACATCGAGAGGAATGTCACGT -CCAACATCGAGAGGAATGCGTAGT -CCAACATCGAGAGGAATGGTCAGT -CCAACATCGAGAGGAATGGAAGGT -CCAACATCGAGAGGAATGAACCGT -CCAACATCGAGAGGAATGTTGTGC -CCAACATCGAGAGGAATGCTAAGC -CCAACATCGAGAGGAATGACTAGC -CCAACATCGAGAGGAATGAGATGC -CCAACATCGAGAGGAATGTGAAGG -CCAACATCGAGAGGAATGCAATGG -CCAACATCGAGAGGAATGATGAGG -CCAACATCGAGAGGAATGAATGGG -CCAACATCGAGAGGAATGTCCTGA -CCAACATCGAGAGGAATGTAGCGA -CCAACATCGAGAGGAATGCACAGA -CCAACATCGAGAGGAATGGCAAGA -CCAACATCGAGAGGAATGGGTTGA -CCAACATCGAGAGGAATGTCCGAT -CCAACATCGAGAGGAATGTGGCAT -CCAACATCGAGAGGAATGCGAGAT -CCAACATCGAGAGGAATGTACCAC -CCAACATCGAGAGGAATGCAGAAC -CCAACATCGAGAGGAATGGTCTAC -CCAACATCGAGAGGAATGACGTAC -CCAACATCGAGAGGAATGAGTGAC -CCAACATCGAGAGGAATGCTGTAG -CCAACATCGAGAGGAATGCCTAAG -CCAACATCGAGAGGAATGGTTCAG -CCAACATCGAGAGGAATGGCATAG -CCAACATCGAGAGGAATGGACAAG -CCAACATCGAGAGGAATGAAGCAG -CCAACATCGAGAGGAATGCGTCAA -CCAACATCGAGAGGAATGGCTGAA -CCAACATCGAGAGGAATGAGTACG -CCAACATCGAGAGGAATGATCCGA -CCAACATCGAGAGGAATGATGGGA -CCAACATCGAGAGGAATGGTGCAA -CCAACATCGAGAGGAATGGAGGAA -CCAACATCGAGAGGAATGCAGGTA -CCAACATCGAGAGGAATGGACTCT -CCAACATCGAGAGGAATGAGTCCT -CCAACATCGAGAGGAATGTAAGCC -CCAACATCGAGAGGAATGATAGCC -CCAACATCGAGAGGAATGTAACCG -CCAACATCGAGAGGAATGATGCCA -CCAACATCGAGACAAGTGGGAAAC -CCAACATCGAGACAAGTGAACACC -CCAACATCGAGACAAGTGATCGAG -CCAACATCGAGACAAGTGCTCCTT -CCAACATCGAGACAAGTGCCTGTT -CCAACATCGAGACAAGTGCGGTTT -CCAACATCGAGACAAGTGGTGGTT -CCAACATCGAGACAAGTGGCCTTT -CCAACATCGAGACAAGTGGGTCTT -CCAACATCGAGACAAGTGACGCTT -CCAACATCGAGACAAGTGAGCGTT -CCAACATCGAGACAAGTGTTCGTC -CCAACATCGAGACAAGTGTCTCTC -CCAACATCGAGACAAGTGTGGATC -CCAACATCGAGACAAGTGCACTTC -CCAACATCGAGACAAGTGGTACTC -CCAACATCGAGACAAGTGGATGTC -CCAACATCGAGACAAGTGACAGTC -CCAACATCGAGACAAGTGTTGCTG -CCAACATCGAGACAAGTGTCCATG -CCAACATCGAGACAAGTGTGTGTG -CCAACATCGAGACAAGTGCTAGTG -CCAACATCGAGACAAGTGCATCTG -CCAACATCGAGACAAGTGGAGTTG -CCAACATCGAGACAAGTGAGACTG -CCAACATCGAGACAAGTGTCGGTA -CCAACATCGAGACAAGTGTGCCTA -CCAACATCGAGACAAGTGCCACTA -CCAACATCGAGACAAGTGGGAGTA -CCAACATCGAGACAAGTGTCGTCT -CCAACATCGAGACAAGTGTGCACT -CCAACATCGAGACAAGTGCTGACT -CCAACATCGAGACAAGTGCAACCT -CCAACATCGAGACAAGTGGCTACT -CCAACATCGAGACAAGTGGGATCT -CCAACATCGAGACAAGTGAAGGCT -CCAACATCGAGACAAGTGTCAACC -CCAACATCGAGACAAGTGTGTTCC -CCAACATCGAGACAAGTGATTCCC -CCAACATCGAGACAAGTGTTCTCG -CCAACATCGAGACAAGTGTAGACG -CCAACATCGAGACAAGTGGTAACG -CCAACATCGAGACAAGTGACTTCG -CCAACATCGAGACAAGTGTACGCA -CCAACATCGAGACAAGTGCTTGCA -CCAACATCGAGACAAGTGCGAACA -CCAACATCGAGACAAGTGCAGTCA -CCAACATCGAGACAAGTGGATCCA -CCAACATCGAGACAAGTGACGACA -CCAACATCGAGACAAGTGAGCTCA -CCAACATCGAGACAAGTGTCACGT -CCAACATCGAGACAAGTGCGTAGT -CCAACATCGAGACAAGTGGTCAGT -CCAACATCGAGACAAGTGGAAGGT -CCAACATCGAGACAAGTGAACCGT -CCAACATCGAGACAAGTGTTGTGC -CCAACATCGAGACAAGTGCTAAGC -CCAACATCGAGACAAGTGACTAGC -CCAACATCGAGACAAGTGAGATGC -CCAACATCGAGACAAGTGTGAAGG -CCAACATCGAGACAAGTGCAATGG -CCAACATCGAGACAAGTGATGAGG -CCAACATCGAGACAAGTGAATGGG -CCAACATCGAGACAAGTGTCCTGA -CCAACATCGAGACAAGTGTAGCGA -CCAACATCGAGACAAGTGCACAGA -CCAACATCGAGACAAGTGGCAAGA -CCAACATCGAGACAAGTGGGTTGA -CCAACATCGAGACAAGTGTCCGAT -CCAACATCGAGACAAGTGTGGCAT -CCAACATCGAGACAAGTGCGAGAT -CCAACATCGAGACAAGTGTACCAC -CCAACATCGAGACAAGTGCAGAAC -CCAACATCGAGACAAGTGGTCTAC -CCAACATCGAGACAAGTGACGTAC -CCAACATCGAGACAAGTGAGTGAC -CCAACATCGAGACAAGTGCTGTAG -CCAACATCGAGACAAGTGCCTAAG -CCAACATCGAGACAAGTGGTTCAG -CCAACATCGAGACAAGTGGCATAG -CCAACATCGAGACAAGTGGACAAG -CCAACATCGAGACAAGTGAAGCAG -CCAACATCGAGACAAGTGCGTCAA -CCAACATCGAGACAAGTGGCTGAA -CCAACATCGAGACAAGTGAGTACG -CCAACATCGAGACAAGTGATCCGA -CCAACATCGAGACAAGTGATGGGA -CCAACATCGAGACAAGTGGTGCAA -CCAACATCGAGACAAGTGGAGGAA -CCAACATCGAGACAAGTGCAGGTA -CCAACATCGAGACAAGTGGACTCT -CCAACATCGAGACAAGTGAGTCCT -CCAACATCGAGACAAGTGTAAGCC -CCAACATCGAGACAAGTGATAGCC -CCAACATCGAGACAAGTGTAACCG -CCAACATCGAGACAAGTGATGCCA -CCAACATCGAGAGAAGAGGGAAAC -CCAACATCGAGAGAAGAGAACACC -CCAACATCGAGAGAAGAGATCGAG -CCAACATCGAGAGAAGAGCTCCTT -CCAACATCGAGAGAAGAGCCTGTT -CCAACATCGAGAGAAGAGCGGTTT -CCAACATCGAGAGAAGAGGTGGTT -CCAACATCGAGAGAAGAGGCCTTT -CCAACATCGAGAGAAGAGGGTCTT -CCAACATCGAGAGAAGAGACGCTT -CCAACATCGAGAGAAGAGAGCGTT -CCAACATCGAGAGAAGAGTTCGTC -CCAACATCGAGAGAAGAGTCTCTC -CCAACATCGAGAGAAGAGTGGATC -CCAACATCGAGAGAAGAGCACTTC -CCAACATCGAGAGAAGAGGTACTC -CCAACATCGAGAGAAGAGGATGTC -CCAACATCGAGAGAAGAGACAGTC -CCAACATCGAGAGAAGAGTTGCTG -CCAACATCGAGAGAAGAGTCCATG -CCAACATCGAGAGAAGAGTGTGTG -CCAACATCGAGAGAAGAGCTAGTG -CCAACATCGAGAGAAGAGCATCTG -CCAACATCGAGAGAAGAGGAGTTG -CCAACATCGAGAGAAGAGAGACTG -CCAACATCGAGAGAAGAGTCGGTA -CCAACATCGAGAGAAGAGTGCCTA -CCAACATCGAGAGAAGAGCCACTA -CCAACATCGAGAGAAGAGGGAGTA -CCAACATCGAGAGAAGAGTCGTCT -CCAACATCGAGAGAAGAGTGCACT -CCAACATCGAGAGAAGAGCTGACT -CCAACATCGAGAGAAGAGCAACCT -CCAACATCGAGAGAAGAGGCTACT -CCAACATCGAGAGAAGAGGGATCT -CCAACATCGAGAGAAGAGAAGGCT -CCAACATCGAGAGAAGAGTCAACC -CCAACATCGAGAGAAGAGTGTTCC -CCAACATCGAGAGAAGAGATTCCC -CCAACATCGAGAGAAGAGTTCTCG -CCAACATCGAGAGAAGAGTAGACG -CCAACATCGAGAGAAGAGGTAACG -CCAACATCGAGAGAAGAGACTTCG -CCAACATCGAGAGAAGAGTACGCA -CCAACATCGAGAGAAGAGCTTGCA -CCAACATCGAGAGAAGAGCGAACA -CCAACATCGAGAGAAGAGCAGTCA -CCAACATCGAGAGAAGAGGATCCA -CCAACATCGAGAGAAGAGACGACA -CCAACATCGAGAGAAGAGAGCTCA -CCAACATCGAGAGAAGAGTCACGT -CCAACATCGAGAGAAGAGCGTAGT -CCAACATCGAGAGAAGAGGTCAGT -CCAACATCGAGAGAAGAGGAAGGT -CCAACATCGAGAGAAGAGAACCGT -CCAACATCGAGAGAAGAGTTGTGC -CCAACATCGAGAGAAGAGCTAAGC -CCAACATCGAGAGAAGAGACTAGC -CCAACATCGAGAGAAGAGAGATGC -CCAACATCGAGAGAAGAGTGAAGG -CCAACATCGAGAGAAGAGCAATGG -CCAACATCGAGAGAAGAGATGAGG -CCAACATCGAGAGAAGAGAATGGG -CCAACATCGAGAGAAGAGTCCTGA -CCAACATCGAGAGAAGAGTAGCGA -CCAACATCGAGAGAAGAGCACAGA -CCAACATCGAGAGAAGAGGCAAGA -CCAACATCGAGAGAAGAGGGTTGA -CCAACATCGAGAGAAGAGTCCGAT -CCAACATCGAGAGAAGAGTGGCAT -CCAACATCGAGAGAAGAGCGAGAT -CCAACATCGAGAGAAGAGTACCAC -CCAACATCGAGAGAAGAGCAGAAC -CCAACATCGAGAGAAGAGGTCTAC -CCAACATCGAGAGAAGAGACGTAC -CCAACATCGAGAGAAGAGAGTGAC -CCAACATCGAGAGAAGAGCTGTAG -CCAACATCGAGAGAAGAGCCTAAG -CCAACATCGAGAGAAGAGGTTCAG -CCAACATCGAGAGAAGAGGCATAG -CCAACATCGAGAGAAGAGGACAAG -CCAACATCGAGAGAAGAGAAGCAG -CCAACATCGAGAGAAGAGCGTCAA -CCAACATCGAGAGAAGAGGCTGAA -CCAACATCGAGAGAAGAGAGTACG -CCAACATCGAGAGAAGAGATCCGA -CCAACATCGAGAGAAGAGATGGGA -CCAACATCGAGAGAAGAGGTGCAA -CCAACATCGAGAGAAGAGGAGGAA -CCAACATCGAGAGAAGAGCAGGTA -CCAACATCGAGAGAAGAGGACTCT -CCAACATCGAGAGAAGAGAGTCCT -CCAACATCGAGAGAAGAGTAAGCC -CCAACATCGAGAGAAGAGATAGCC -CCAACATCGAGAGAAGAGTAACCG -CCAACATCGAGAGAAGAGATGCCA -CCAACATCGAGAGTACAGGGAAAC -CCAACATCGAGAGTACAGAACACC -CCAACATCGAGAGTACAGATCGAG -CCAACATCGAGAGTACAGCTCCTT -CCAACATCGAGAGTACAGCCTGTT -CCAACATCGAGAGTACAGCGGTTT -CCAACATCGAGAGTACAGGTGGTT -CCAACATCGAGAGTACAGGCCTTT -CCAACATCGAGAGTACAGGGTCTT -CCAACATCGAGAGTACAGACGCTT -CCAACATCGAGAGTACAGAGCGTT -CCAACATCGAGAGTACAGTTCGTC -CCAACATCGAGAGTACAGTCTCTC -CCAACATCGAGAGTACAGTGGATC -CCAACATCGAGAGTACAGCACTTC -CCAACATCGAGAGTACAGGTACTC -CCAACATCGAGAGTACAGGATGTC -CCAACATCGAGAGTACAGACAGTC -CCAACATCGAGAGTACAGTTGCTG -CCAACATCGAGAGTACAGTCCATG -CCAACATCGAGAGTACAGTGTGTG -CCAACATCGAGAGTACAGCTAGTG -CCAACATCGAGAGTACAGCATCTG -CCAACATCGAGAGTACAGGAGTTG -CCAACATCGAGAGTACAGAGACTG -CCAACATCGAGAGTACAGTCGGTA -CCAACATCGAGAGTACAGTGCCTA -CCAACATCGAGAGTACAGCCACTA -CCAACATCGAGAGTACAGGGAGTA -CCAACATCGAGAGTACAGTCGTCT -CCAACATCGAGAGTACAGTGCACT -CCAACATCGAGAGTACAGCTGACT -CCAACATCGAGAGTACAGCAACCT -CCAACATCGAGAGTACAGGCTACT -CCAACATCGAGAGTACAGGGATCT -CCAACATCGAGAGTACAGAAGGCT -CCAACATCGAGAGTACAGTCAACC -CCAACATCGAGAGTACAGTGTTCC -CCAACATCGAGAGTACAGATTCCC -CCAACATCGAGAGTACAGTTCTCG -CCAACATCGAGAGTACAGTAGACG -CCAACATCGAGAGTACAGGTAACG -CCAACATCGAGAGTACAGACTTCG -CCAACATCGAGAGTACAGTACGCA -CCAACATCGAGAGTACAGCTTGCA -CCAACATCGAGAGTACAGCGAACA -CCAACATCGAGAGTACAGCAGTCA -CCAACATCGAGAGTACAGGATCCA -CCAACATCGAGAGTACAGACGACA -CCAACATCGAGAGTACAGAGCTCA -CCAACATCGAGAGTACAGTCACGT -CCAACATCGAGAGTACAGCGTAGT -CCAACATCGAGAGTACAGGTCAGT -CCAACATCGAGAGTACAGGAAGGT -CCAACATCGAGAGTACAGAACCGT -CCAACATCGAGAGTACAGTTGTGC -CCAACATCGAGAGTACAGCTAAGC -CCAACATCGAGAGTACAGACTAGC -CCAACATCGAGAGTACAGAGATGC -CCAACATCGAGAGTACAGTGAAGG -CCAACATCGAGAGTACAGCAATGG -CCAACATCGAGAGTACAGATGAGG -CCAACATCGAGAGTACAGAATGGG -CCAACATCGAGAGTACAGTCCTGA -CCAACATCGAGAGTACAGTAGCGA -CCAACATCGAGAGTACAGCACAGA -CCAACATCGAGAGTACAGGCAAGA -CCAACATCGAGAGTACAGGGTTGA -CCAACATCGAGAGTACAGTCCGAT -CCAACATCGAGAGTACAGTGGCAT -CCAACATCGAGAGTACAGCGAGAT -CCAACATCGAGAGTACAGTACCAC -CCAACATCGAGAGTACAGCAGAAC -CCAACATCGAGAGTACAGGTCTAC -CCAACATCGAGAGTACAGACGTAC -CCAACATCGAGAGTACAGAGTGAC -CCAACATCGAGAGTACAGCTGTAG -CCAACATCGAGAGTACAGCCTAAG -CCAACATCGAGAGTACAGGTTCAG -CCAACATCGAGAGTACAGGCATAG -CCAACATCGAGAGTACAGGACAAG -CCAACATCGAGAGTACAGAAGCAG -CCAACATCGAGAGTACAGCGTCAA -CCAACATCGAGAGTACAGGCTGAA -CCAACATCGAGAGTACAGAGTACG -CCAACATCGAGAGTACAGATCCGA -CCAACATCGAGAGTACAGATGGGA -CCAACATCGAGAGTACAGGTGCAA -CCAACATCGAGAGTACAGGAGGAA -CCAACATCGAGAGTACAGCAGGTA -CCAACATCGAGAGTACAGGACTCT -CCAACATCGAGAGTACAGAGTCCT -CCAACATCGAGAGTACAGTAAGCC -CCAACATCGAGAGTACAGATAGCC -CCAACATCGAGAGTACAGTAACCG -CCAACATCGAGAGTACAGATGCCA -CCAACATCGAGATCTGACGGAAAC -CCAACATCGAGATCTGACAACACC -CCAACATCGAGATCTGACATCGAG -CCAACATCGAGATCTGACCTCCTT -CCAACATCGAGATCTGACCCTGTT -CCAACATCGAGATCTGACCGGTTT -CCAACATCGAGATCTGACGTGGTT -CCAACATCGAGATCTGACGCCTTT -CCAACATCGAGATCTGACGGTCTT -CCAACATCGAGATCTGACACGCTT -CCAACATCGAGATCTGACAGCGTT -CCAACATCGAGATCTGACTTCGTC -CCAACATCGAGATCTGACTCTCTC -CCAACATCGAGATCTGACTGGATC -CCAACATCGAGATCTGACCACTTC -CCAACATCGAGATCTGACGTACTC -CCAACATCGAGATCTGACGATGTC -CCAACATCGAGATCTGACACAGTC -CCAACATCGAGATCTGACTTGCTG -CCAACATCGAGATCTGACTCCATG -CCAACATCGAGATCTGACTGTGTG -CCAACATCGAGATCTGACCTAGTG -CCAACATCGAGATCTGACCATCTG -CCAACATCGAGATCTGACGAGTTG -CCAACATCGAGATCTGACAGACTG -CCAACATCGAGATCTGACTCGGTA -CCAACATCGAGATCTGACTGCCTA -CCAACATCGAGATCTGACCCACTA -CCAACATCGAGATCTGACGGAGTA -CCAACATCGAGATCTGACTCGTCT -CCAACATCGAGATCTGACTGCACT -CCAACATCGAGATCTGACCTGACT -CCAACATCGAGATCTGACCAACCT -CCAACATCGAGATCTGACGCTACT -CCAACATCGAGATCTGACGGATCT -CCAACATCGAGATCTGACAAGGCT -CCAACATCGAGATCTGACTCAACC -CCAACATCGAGATCTGACTGTTCC -CCAACATCGAGATCTGACATTCCC -CCAACATCGAGATCTGACTTCTCG -CCAACATCGAGATCTGACTAGACG -CCAACATCGAGATCTGACGTAACG -CCAACATCGAGATCTGACACTTCG -CCAACATCGAGATCTGACTACGCA -CCAACATCGAGATCTGACCTTGCA -CCAACATCGAGATCTGACCGAACA -CCAACATCGAGATCTGACCAGTCA -CCAACATCGAGATCTGACGATCCA -CCAACATCGAGATCTGACACGACA -CCAACATCGAGATCTGACAGCTCA -CCAACATCGAGATCTGACTCACGT -CCAACATCGAGATCTGACCGTAGT -CCAACATCGAGATCTGACGTCAGT -CCAACATCGAGATCTGACGAAGGT -CCAACATCGAGATCTGACAACCGT -CCAACATCGAGATCTGACTTGTGC -CCAACATCGAGATCTGACCTAAGC -CCAACATCGAGATCTGACACTAGC -CCAACATCGAGATCTGACAGATGC -CCAACATCGAGATCTGACTGAAGG -CCAACATCGAGATCTGACCAATGG -CCAACATCGAGATCTGACATGAGG -CCAACATCGAGATCTGACAATGGG -CCAACATCGAGATCTGACTCCTGA -CCAACATCGAGATCTGACTAGCGA -CCAACATCGAGATCTGACCACAGA -CCAACATCGAGATCTGACGCAAGA -CCAACATCGAGATCTGACGGTTGA -CCAACATCGAGATCTGACTCCGAT -CCAACATCGAGATCTGACTGGCAT -CCAACATCGAGATCTGACCGAGAT -CCAACATCGAGATCTGACTACCAC -CCAACATCGAGATCTGACCAGAAC -CCAACATCGAGATCTGACGTCTAC -CCAACATCGAGATCTGACACGTAC -CCAACATCGAGATCTGACAGTGAC -CCAACATCGAGATCTGACCTGTAG -CCAACATCGAGATCTGACCCTAAG -CCAACATCGAGATCTGACGTTCAG -CCAACATCGAGATCTGACGCATAG -CCAACATCGAGATCTGACGACAAG -CCAACATCGAGATCTGACAAGCAG -CCAACATCGAGATCTGACCGTCAA -CCAACATCGAGATCTGACGCTGAA -CCAACATCGAGATCTGACAGTACG -CCAACATCGAGATCTGACATCCGA -CCAACATCGAGATCTGACATGGGA -CCAACATCGAGATCTGACGTGCAA -CCAACATCGAGATCTGACGAGGAA -CCAACATCGAGATCTGACCAGGTA -CCAACATCGAGATCTGACGACTCT -CCAACATCGAGATCTGACAGTCCT -CCAACATCGAGATCTGACTAAGCC -CCAACATCGAGATCTGACATAGCC -CCAACATCGAGATCTGACTAACCG -CCAACATCGAGATCTGACATGCCA -CCAACATCGAGACCTAGTGGAAAC -CCAACATCGAGACCTAGTAACACC -CCAACATCGAGACCTAGTATCGAG -CCAACATCGAGACCTAGTCTCCTT -CCAACATCGAGACCTAGTCCTGTT -CCAACATCGAGACCTAGTCGGTTT -CCAACATCGAGACCTAGTGTGGTT -CCAACATCGAGACCTAGTGCCTTT -CCAACATCGAGACCTAGTGGTCTT -CCAACATCGAGACCTAGTACGCTT -CCAACATCGAGACCTAGTAGCGTT -CCAACATCGAGACCTAGTTTCGTC -CCAACATCGAGACCTAGTTCTCTC -CCAACATCGAGACCTAGTTGGATC -CCAACATCGAGACCTAGTCACTTC -CCAACATCGAGACCTAGTGTACTC -CCAACATCGAGACCTAGTGATGTC -CCAACATCGAGACCTAGTACAGTC -CCAACATCGAGACCTAGTTTGCTG -CCAACATCGAGACCTAGTTCCATG -CCAACATCGAGACCTAGTTGTGTG -CCAACATCGAGACCTAGTCTAGTG -CCAACATCGAGACCTAGTCATCTG -CCAACATCGAGACCTAGTGAGTTG -CCAACATCGAGACCTAGTAGACTG -CCAACATCGAGACCTAGTTCGGTA -CCAACATCGAGACCTAGTTGCCTA -CCAACATCGAGACCTAGTCCACTA -CCAACATCGAGACCTAGTGGAGTA -CCAACATCGAGACCTAGTTCGTCT -CCAACATCGAGACCTAGTTGCACT -CCAACATCGAGACCTAGTCTGACT -CCAACATCGAGACCTAGTCAACCT -CCAACATCGAGACCTAGTGCTACT -CCAACATCGAGACCTAGTGGATCT -CCAACATCGAGACCTAGTAAGGCT -CCAACATCGAGACCTAGTTCAACC -CCAACATCGAGACCTAGTTGTTCC -CCAACATCGAGACCTAGTATTCCC -CCAACATCGAGACCTAGTTTCTCG -CCAACATCGAGACCTAGTTAGACG -CCAACATCGAGACCTAGTGTAACG -CCAACATCGAGACCTAGTACTTCG -CCAACATCGAGACCTAGTTACGCA -CCAACATCGAGACCTAGTCTTGCA -CCAACATCGAGACCTAGTCGAACA -CCAACATCGAGACCTAGTCAGTCA -CCAACATCGAGACCTAGTGATCCA -CCAACATCGAGACCTAGTACGACA -CCAACATCGAGACCTAGTAGCTCA -CCAACATCGAGACCTAGTTCACGT -CCAACATCGAGACCTAGTCGTAGT -CCAACATCGAGACCTAGTGTCAGT -CCAACATCGAGACCTAGTGAAGGT -CCAACATCGAGACCTAGTAACCGT -CCAACATCGAGACCTAGTTTGTGC -CCAACATCGAGACCTAGTCTAAGC -CCAACATCGAGACCTAGTACTAGC -CCAACATCGAGACCTAGTAGATGC -CCAACATCGAGACCTAGTTGAAGG -CCAACATCGAGACCTAGTCAATGG -CCAACATCGAGACCTAGTATGAGG -CCAACATCGAGACCTAGTAATGGG -CCAACATCGAGACCTAGTTCCTGA -CCAACATCGAGACCTAGTTAGCGA -CCAACATCGAGACCTAGTCACAGA -CCAACATCGAGACCTAGTGCAAGA -CCAACATCGAGACCTAGTGGTTGA -CCAACATCGAGACCTAGTTCCGAT -CCAACATCGAGACCTAGTTGGCAT -CCAACATCGAGACCTAGTCGAGAT -CCAACATCGAGACCTAGTTACCAC -CCAACATCGAGACCTAGTCAGAAC -CCAACATCGAGACCTAGTGTCTAC -CCAACATCGAGACCTAGTACGTAC -CCAACATCGAGACCTAGTAGTGAC -CCAACATCGAGACCTAGTCTGTAG -CCAACATCGAGACCTAGTCCTAAG -CCAACATCGAGACCTAGTGTTCAG -CCAACATCGAGACCTAGTGCATAG -CCAACATCGAGACCTAGTGACAAG -CCAACATCGAGACCTAGTAAGCAG -CCAACATCGAGACCTAGTCGTCAA -CCAACATCGAGACCTAGTGCTGAA -CCAACATCGAGACCTAGTAGTACG -CCAACATCGAGACCTAGTATCCGA -CCAACATCGAGACCTAGTATGGGA -CCAACATCGAGACCTAGTGTGCAA -CCAACATCGAGACCTAGTGAGGAA -CCAACATCGAGACCTAGTCAGGTA -CCAACATCGAGACCTAGTGACTCT -CCAACATCGAGACCTAGTAGTCCT -CCAACATCGAGACCTAGTTAAGCC -CCAACATCGAGACCTAGTATAGCC -CCAACATCGAGACCTAGTTAACCG -CCAACATCGAGACCTAGTATGCCA -CCAACATCGAGAGCCTAAGGAAAC -CCAACATCGAGAGCCTAAAACACC -CCAACATCGAGAGCCTAAATCGAG -CCAACATCGAGAGCCTAACTCCTT -CCAACATCGAGAGCCTAACCTGTT -CCAACATCGAGAGCCTAACGGTTT -CCAACATCGAGAGCCTAAGTGGTT -CCAACATCGAGAGCCTAAGCCTTT -CCAACATCGAGAGCCTAAGGTCTT -CCAACATCGAGAGCCTAAACGCTT -CCAACATCGAGAGCCTAAAGCGTT -CCAACATCGAGAGCCTAATTCGTC -CCAACATCGAGAGCCTAATCTCTC -CCAACATCGAGAGCCTAATGGATC -CCAACATCGAGAGCCTAACACTTC -CCAACATCGAGAGCCTAAGTACTC -CCAACATCGAGAGCCTAAGATGTC -CCAACATCGAGAGCCTAAACAGTC -CCAACATCGAGAGCCTAATTGCTG -CCAACATCGAGAGCCTAATCCATG -CCAACATCGAGAGCCTAATGTGTG -CCAACATCGAGAGCCTAACTAGTG -CCAACATCGAGAGCCTAACATCTG -CCAACATCGAGAGCCTAAGAGTTG -CCAACATCGAGAGCCTAAAGACTG -CCAACATCGAGAGCCTAATCGGTA -CCAACATCGAGAGCCTAATGCCTA -CCAACATCGAGAGCCTAACCACTA -CCAACATCGAGAGCCTAAGGAGTA -CCAACATCGAGAGCCTAATCGTCT -CCAACATCGAGAGCCTAATGCACT -CCAACATCGAGAGCCTAACTGACT -CCAACATCGAGAGCCTAACAACCT -CCAACATCGAGAGCCTAAGCTACT -CCAACATCGAGAGCCTAAGGATCT -CCAACATCGAGAGCCTAAAAGGCT -CCAACATCGAGAGCCTAATCAACC -CCAACATCGAGAGCCTAATGTTCC -CCAACATCGAGAGCCTAAATTCCC -CCAACATCGAGAGCCTAATTCTCG -CCAACATCGAGAGCCTAATAGACG -CCAACATCGAGAGCCTAAGTAACG -CCAACATCGAGAGCCTAAACTTCG -CCAACATCGAGAGCCTAATACGCA -CCAACATCGAGAGCCTAACTTGCA -CCAACATCGAGAGCCTAACGAACA -CCAACATCGAGAGCCTAACAGTCA -CCAACATCGAGAGCCTAAGATCCA -CCAACATCGAGAGCCTAAACGACA -CCAACATCGAGAGCCTAAAGCTCA -CCAACATCGAGAGCCTAATCACGT -CCAACATCGAGAGCCTAACGTAGT -CCAACATCGAGAGCCTAAGTCAGT -CCAACATCGAGAGCCTAAGAAGGT -CCAACATCGAGAGCCTAAAACCGT -CCAACATCGAGAGCCTAATTGTGC -CCAACATCGAGAGCCTAACTAAGC -CCAACATCGAGAGCCTAAACTAGC -CCAACATCGAGAGCCTAAAGATGC -CCAACATCGAGAGCCTAATGAAGG -CCAACATCGAGAGCCTAACAATGG -CCAACATCGAGAGCCTAAATGAGG -CCAACATCGAGAGCCTAAAATGGG -CCAACATCGAGAGCCTAATCCTGA -CCAACATCGAGAGCCTAATAGCGA -CCAACATCGAGAGCCTAACACAGA -CCAACATCGAGAGCCTAAGCAAGA -CCAACATCGAGAGCCTAAGGTTGA -CCAACATCGAGAGCCTAATCCGAT -CCAACATCGAGAGCCTAATGGCAT -CCAACATCGAGAGCCTAACGAGAT -CCAACATCGAGAGCCTAATACCAC -CCAACATCGAGAGCCTAACAGAAC -CCAACATCGAGAGCCTAAGTCTAC -CCAACATCGAGAGCCTAAACGTAC -CCAACATCGAGAGCCTAAAGTGAC -CCAACATCGAGAGCCTAACTGTAG -CCAACATCGAGAGCCTAACCTAAG -CCAACATCGAGAGCCTAAGTTCAG -CCAACATCGAGAGCCTAAGCATAG -CCAACATCGAGAGCCTAAGACAAG -CCAACATCGAGAGCCTAAAAGCAG -CCAACATCGAGAGCCTAACGTCAA -CCAACATCGAGAGCCTAAGCTGAA -CCAACATCGAGAGCCTAAAGTACG -CCAACATCGAGAGCCTAAATCCGA -CCAACATCGAGAGCCTAAATGGGA -CCAACATCGAGAGCCTAAGTGCAA -CCAACATCGAGAGCCTAAGAGGAA -CCAACATCGAGAGCCTAACAGGTA -CCAACATCGAGAGCCTAAGACTCT -CCAACATCGAGAGCCTAAAGTCCT -CCAACATCGAGAGCCTAATAAGCC -CCAACATCGAGAGCCTAAATAGCC -CCAACATCGAGAGCCTAATAACCG -CCAACATCGAGAGCCTAAATGCCA -CCAACATCGAGAGCCATAGGAAAC -CCAACATCGAGAGCCATAAACACC -CCAACATCGAGAGCCATAATCGAG -CCAACATCGAGAGCCATACTCCTT -CCAACATCGAGAGCCATACCTGTT -CCAACATCGAGAGCCATACGGTTT -CCAACATCGAGAGCCATAGTGGTT -CCAACATCGAGAGCCATAGCCTTT -CCAACATCGAGAGCCATAGGTCTT -CCAACATCGAGAGCCATAACGCTT -CCAACATCGAGAGCCATAAGCGTT -CCAACATCGAGAGCCATATTCGTC -CCAACATCGAGAGCCATATCTCTC -CCAACATCGAGAGCCATATGGATC -CCAACATCGAGAGCCATACACTTC -CCAACATCGAGAGCCATAGTACTC -CCAACATCGAGAGCCATAGATGTC -CCAACATCGAGAGCCATAACAGTC -CCAACATCGAGAGCCATATTGCTG -CCAACATCGAGAGCCATATCCATG -CCAACATCGAGAGCCATATGTGTG -CCAACATCGAGAGCCATACTAGTG -CCAACATCGAGAGCCATACATCTG -CCAACATCGAGAGCCATAGAGTTG -CCAACATCGAGAGCCATAAGACTG -CCAACATCGAGAGCCATATCGGTA -CCAACATCGAGAGCCATATGCCTA -CCAACATCGAGAGCCATACCACTA -CCAACATCGAGAGCCATAGGAGTA -CCAACATCGAGAGCCATATCGTCT -CCAACATCGAGAGCCATATGCACT -CCAACATCGAGAGCCATACTGACT -CCAACATCGAGAGCCATACAACCT -CCAACATCGAGAGCCATAGCTACT -CCAACATCGAGAGCCATAGGATCT -CCAACATCGAGAGCCATAAAGGCT -CCAACATCGAGAGCCATATCAACC -CCAACATCGAGAGCCATATGTTCC -CCAACATCGAGAGCCATAATTCCC -CCAACATCGAGAGCCATATTCTCG -CCAACATCGAGAGCCATATAGACG -CCAACATCGAGAGCCATAGTAACG -CCAACATCGAGAGCCATAACTTCG -CCAACATCGAGAGCCATATACGCA -CCAACATCGAGAGCCATACTTGCA -CCAACATCGAGAGCCATACGAACA -CCAACATCGAGAGCCATACAGTCA -CCAACATCGAGAGCCATAGATCCA -CCAACATCGAGAGCCATAACGACA -CCAACATCGAGAGCCATAAGCTCA -CCAACATCGAGAGCCATATCACGT -CCAACATCGAGAGCCATACGTAGT -CCAACATCGAGAGCCATAGTCAGT -CCAACATCGAGAGCCATAGAAGGT -CCAACATCGAGAGCCATAAACCGT -CCAACATCGAGAGCCATATTGTGC -CCAACATCGAGAGCCATACTAAGC -CCAACATCGAGAGCCATAACTAGC -CCAACATCGAGAGCCATAAGATGC -CCAACATCGAGAGCCATATGAAGG -CCAACATCGAGAGCCATACAATGG -CCAACATCGAGAGCCATAATGAGG -CCAACATCGAGAGCCATAAATGGG -CCAACATCGAGAGCCATATCCTGA -CCAACATCGAGAGCCATATAGCGA -CCAACATCGAGAGCCATACACAGA -CCAACATCGAGAGCCATAGCAAGA -CCAACATCGAGAGCCATAGGTTGA -CCAACATCGAGAGCCATATCCGAT -CCAACATCGAGAGCCATATGGCAT -CCAACATCGAGAGCCATACGAGAT -CCAACATCGAGAGCCATATACCAC -CCAACATCGAGAGCCATACAGAAC -CCAACATCGAGAGCCATAGTCTAC -CCAACATCGAGAGCCATAACGTAC -CCAACATCGAGAGCCATAAGTGAC -CCAACATCGAGAGCCATACTGTAG -CCAACATCGAGAGCCATACCTAAG -CCAACATCGAGAGCCATAGTTCAG -CCAACATCGAGAGCCATAGCATAG -CCAACATCGAGAGCCATAGACAAG -CCAACATCGAGAGCCATAAAGCAG -CCAACATCGAGAGCCATACGTCAA -CCAACATCGAGAGCCATAGCTGAA -CCAACATCGAGAGCCATAAGTACG -CCAACATCGAGAGCCATAATCCGA -CCAACATCGAGAGCCATAATGGGA -CCAACATCGAGAGCCATAGTGCAA -CCAACATCGAGAGCCATAGAGGAA -CCAACATCGAGAGCCATACAGGTA -CCAACATCGAGAGCCATAGACTCT -CCAACATCGAGAGCCATAAGTCCT -CCAACATCGAGAGCCATATAAGCC -CCAACATCGAGAGCCATAATAGCC -CCAACATCGAGAGCCATATAACCG -CCAACATCGAGAGCCATAATGCCA -CCAACATCGAGACCGTAAGGAAAC -CCAACATCGAGACCGTAAAACACC -CCAACATCGAGACCGTAAATCGAG -CCAACATCGAGACCGTAACTCCTT -CCAACATCGAGACCGTAACCTGTT -CCAACATCGAGACCGTAACGGTTT -CCAACATCGAGACCGTAAGTGGTT -CCAACATCGAGACCGTAAGCCTTT -CCAACATCGAGACCGTAAGGTCTT -CCAACATCGAGACCGTAAACGCTT -CCAACATCGAGACCGTAAAGCGTT -CCAACATCGAGACCGTAATTCGTC -CCAACATCGAGACCGTAATCTCTC -CCAACATCGAGACCGTAATGGATC -CCAACATCGAGACCGTAACACTTC -CCAACATCGAGACCGTAAGTACTC -CCAACATCGAGACCGTAAGATGTC -CCAACATCGAGACCGTAAACAGTC -CCAACATCGAGACCGTAATTGCTG -CCAACATCGAGACCGTAATCCATG -CCAACATCGAGACCGTAATGTGTG -CCAACATCGAGACCGTAACTAGTG -CCAACATCGAGACCGTAACATCTG -CCAACATCGAGACCGTAAGAGTTG -CCAACATCGAGACCGTAAAGACTG -CCAACATCGAGACCGTAATCGGTA -CCAACATCGAGACCGTAATGCCTA -CCAACATCGAGACCGTAACCACTA -CCAACATCGAGACCGTAAGGAGTA -CCAACATCGAGACCGTAATCGTCT -CCAACATCGAGACCGTAATGCACT -CCAACATCGAGACCGTAACTGACT -CCAACATCGAGACCGTAACAACCT -CCAACATCGAGACCGTAAGCTACT -CCAACATCGAGACCGTAAGGATCT -CCAACATCGAGACCGTAAAAGGCT -CCAACATCGAGACCGTAATCAACC -CCAACATCGAGACCGTAATGTTCC -CCAACATCGAGACCGTAAATTCCC -CCAACATCGAGACCGTAATTCTCG -CCAACATCGAGACCGTAATAGACG -CCAACATCGAGACCGTAAGTAACG -CCAACATCGAGACCGTAAACTTCG -CCAACATCGAGACCGTAATACGCA -CCAACATCGAGACCGTAACTTGCA -CCAACATCGAGACCGTAACGAACA -CCAACATCGAGACCGTAACAGTCA -CCAACATCGAGACCGTAAGATCCA -CCAACATCGAGACCGTAAACGACA -CCAACATCGAGACCGTAAAGCTCA -CCAACATCGAGACCGTAATCACGT -CCAACATCGAGACCGTAACGTAGT -CCAACATCGAGACCGTAAGTCAGT -CCAACATCGAGACCGTAAGAAGGT -CCAACATCGAGACCGTAAAACCGT -CCAACATCGAGACCGTAATTGTGC -CCAACATCGAGACCGTAACTAAGC -CCAACATCGAGACCGTAAACTAGC -CCAACATCGAGACCGTAAAGATGC -CCAACATCGAGACCGTAATGAAGG -CCAACATCGAGACCGTAACAATGG -CCAACATCGAGACCGTAAATGAGG -CCAACATCGAGACCGTAAAATGGG -CCAACATCGAGACCGTAATCCTGA -CCAACATCGAGACCGTAATAGCGA -CCAACATCGAGACCGTAACACAGA -CCAACATCGAGACCGTAAGCAAGA -CCAACATCGAGACCGTAAGGTTGA -CCAACATCGAGACCGTAATCCGAT -CCAACATCGAGACCGTAATGGCAT -CCAACATCGAGACCGTAACGAGAT -CCAACATCGAGACCGTAATACCAC -CCAACATCGAGACCGTAACAGAAC -CCAACATCGAGACCGTAAGTCTAC -CCAACATCGAGACCGTAAACGTAC -CCAACATCGAGACCGTAAAGTGAC -CCAACATCGAGACCGTAACTGTAG -CCAACATCGAGACCGTAACCTAAG -CCAACATCGAGACCGTAAGTTCAG -CCAACATCGAGACCGTAAGCATAG -CCAACATCGAGACCGTAAGACAAG -CCAACATCGAGACCGTAAAAGCAG -CCAACATCGAGACCGTAACGTCAA -CCAACATCGAGACCGTAAGCTGAA -CCAACATCGAGACCGTAAAGTACG -CCAACATCGAGACCGTAAATCCGA -CCAACATCGAGACCGTAAATGGGA -CCAACATCGAGACCGTAAGTGCAA -CCAACATCGAGACCGTAAGAGGAA -CCAACATCGAGACCGTAACAGGTA -CCAACATCGAGACCGTAAGACTCT -CCAACATCGAGACCGTAAAGTCCT -CCAACATCGAGACCGTAATAAGCC -CCAACATCGAGACCGTAAATAGCC -CCAACATCGAGACCGTAATAACCG -CCAACATCGAGACCGTAAATGCCA -CCAACATCGAGACCAATGGGAAAC -CCAACATCGAGACCAATGAACACC -CCAACATCGAGACCAATGATCGAG -CCAACATCGAGACCAATGCTCCTT -CCAACATCGAGACCAATGCCTGTT -CCAACATCGAGACCAATGCGGTTT -CCAACATCGAGACCAATGGTGGTT -CCAACATCGAGACCAATGGCCTTT -CCAACATCGAGACCAATGGGTCTT -CCAACATCGAGACCAATGACGCTT -CCAACATCGAGACCAATGAGCGTT -CCAACATCGAGACCAATGTTCGTC -CCAACATCGAGACCAATGTCTCTC -CCAACATCGAGACCAATGTGGATC -CCAACATCGAGACCAATGCACTTC -CCAACATCGAGACCAATGGTACTC -CCAACATCGAGACCAATGGATGTC -CCAACATCGAGACCAATGACAGTC -CCAACATCGAGACCAATGTTGCTG -CCAACATCGAGACCAATGTCCATG -CCAACATCGAGACCAATGTGTGTG -CCAACATCGAGACCAATGCTAGTG -CCAACATCGAGACCAATGCATCTG -CCAACATCGAGACCAATGGAGTTG -CCAACATCGAGACCAATGAGACTG -CCAACATCGAGACCAATGTCGGTA -CCAACATCGAGACCAATGTGCCTA -CCAACATCGAGACCAATGCCACTA -CCAACATCGAGACCAATGGGAGTA -CCAACATCGAGACCAATGTCGTCT -CCAACATCGAGACCAATGTGCACT -CCAACATCGAGACCAATGCTGACT -CCAACATCGAGACCAATGCAACCT -CCAACATCGAGACCAATGGCTACT -CCAACATCGAGACCAATGGGATCT -CCAACATCGAGACCAATGAAGGCT -CCAACATCGAGACCAATGTCAACC -CCAACATCGAGACCAATGTGTTCC -CCAACATCGAGACCAATGATTCCC -CCAACATCGAGACCAATGTTCTCG -CCAACATCGAGACCAATGTAGACG -CCAACATCGAGACCAATGGTAACG -CCAACATCGAGACCAATGACTTCG -CCAACATCGAGACCAATGTACGCA -CCAACATCGAGACCAATGCTTGCA -CCAACATCGAGACCAATGCGAACA -CCAACATCGAGACCAATGCAGTCA -CCAACATCGAGACCAATGGATCCA -CCAACATCGAGACCAATGACGACA -CCAACATCGAGACCAATGAGCTCA -CCAACATCGAGACCAATGTCACGT -CCAACATCGAGACCAATGCGTAGT -CCAACATCGAGACCAATGGTCAGT -CCAACATCGAGACCAATGGAAGGT -CCAACATCGAGACCAATGAACCGT -CCAACATCGAGACCAATGTTGTGC -CCAACATCGAGACCAATGCTAAGC -CCAACATCGAGACCAATGACTAGC -CCAACATCGAGACCAATGAGATGC -CCAACATCGAGACCAATGTGAAGG -CCAACATCGAGACCAATGCAATGG -CCAACATCGAGACCAATGATGAGG -CCAACATCGAGACCAATGAATGGG -CCAACATCGAGACCAATGTCCTGA -CCAACATCGAGACCAATGTAGCGA -CCAACATCGAGACCAATGCACAGA -CCAACATCGAGACCAATGGCAAGA -CCAACATCGAGACCAATGGGTTGA -CCAACATCGAGACCAATGTCCGAT -CCAACATCGAGACCAATGTGGCAT -CCAACATCGAGACCAATGCGAGAT -CCAACATCGAGACCAATGTACCAC -CCAACATCGAGACCAATGCAGAAC -CCAACATCGAGACCAATGGTCTAC -CCAACATCGAGACCAATGACGTAC -CCAACATCGAGACCAATGAGTGAC -CCAACATCGAGACCAATGCTGTAG -CCAACATCGAGACCAATGCCTAAG -CCAACATCGAGACCAATGGTTCAG -CCAACATCGAGACCAATGGCATAG -CCAACATCGAGACCAATGGACAAG -CCAACATCGAGACCAATGAAGCAG -CCAACATCGAGACCAATGCGTCAA -CCAACATCGAGACCAATGGCTGAA -CCAACATCGAGACCAATGAGTACG -CCAACATCGAGACCAATGATCCGA -CCAACATCGAGACCAATGATGGGA -CCAACATCGAGACCAATGGTGCAA -CCAACATCGAGACCAATGGAGGAA -CCAACATCGAGACCAATGCAGGTA -CCAACATCGAGACCAATGGACTCT -CCAACATCGAGACCAATGAGTCCT -CCAACATCGAGACCAATGTAAGCC -CCAACATCGAGACCAATGATAGCC -CCAACATCGAGACCAATGTAACCG -CCAACATCGAGACCAATGATGCCA -CCAACATCCTTCAACGGAGGAAAC -CCAACATCCTTCAACGGAAACACC -CCAACATCCTTCAACGGAATCGAG -CCAACATCCTTCAACGGACTCCTT -CCAACATCCTTCAACGGACCTGTT -CCAACATCCTTCAACGGACGGTTT -CCAACATCCTTCAACGGAGTGGTT -CCAACATCCTTCAACGGAGCCTTT -CCAACATCCTTCAACGGAGGTCTT -CCAACATCCTTCAACGGAACGCTT -CCAACATCCTTCAACGGAAGCGTT -CCAACATCCTTCAACGGATTCGTC -CCAACATCCTTCAACGGATCTCTC -CCAACATCCTTCAACGGATGGATC -CCAACATCCTTCAACGGACACTTC -CCAACATCCTTCAACGGAGTACTC -CCAACATCCTTCAACGGAGATGTC -CCAACATCCTTCAACGGAACAGTC -CCAACATCCTTCAACGGATTGCTG -CCAACATCCTTCAACGGATCCATG -CCAACATCCTTCAACGGATGTGTG -CCAACATCCTTCAACGGACTAGTG -CCAACATCCTTCAACGGACATCTG -CCAACATCCTTCAACGGAGAGTTG -CCAACATCCTTCAACGGAAGACTG -CCAACATCCTTCAACGGATCGGTA -CCAACATCCTTCAACGGATGCCTA -CCAACATCCTTCAACGGACCACTA -CCAACATCCTTCAACGGAGGAGTA -CCAACATCCTTCAACGGATCGTCT -CCAACATCCTTCAACGGATGCACT -CCAACATCCTTCAACGGACTGACT -CCAACATCCTTCAACGGACAACCT -CCAACATCCTTCAACGGAGCTACT -CCAACATCCTTCAACGGAGGATCT -CCAACATCCTTCAACGGAAAGGCT -CCAACATCCTTCAACGGATCAACC -CCAACATCCTTCAACGGATGTTCC -CCAACATCCTTCAACGGAATTCCC -CCAACATCCTTCAACGGATTCTCG -CCAACATCCTTCAACGGATAGACG -CCAACATCCTTCAACGGAGTAACG -CCAACATCCTTCAACGGAACTTCG -CCAACATCCTTCAACGGATACGCA -CCAACATCCTTCAACGGACTTGCA -CCAACATCCTTCAACGGACGAACA -CCAACATCCTTCAACGGACAGTCA -CCAACATCCTTCAACGGAGATCCA -CCAACATCCTTCAACGGAACGACA -CCAACATCCTTCAACGGAAGCTCA -CCAACATCCTTCAACGGATCACGT -CCAACATCCTTCAACGGACGTAGT -CCAACATCCTTCAACGGAGTCAGT -CCAACATCCTTCAACGGAGAAGGT -CCAACATCCTTCAACGGAAACCGT -CCAACATCCTTCAACGGATTGTGC -CCAACATCCTTCAACGGACTAAGC -CCAACATCCTTCAACGGAACTAGC -CCAACATCCTTCAACGGAAGATGC -CCAACATCCTTCAACGGATGAAGG -CCAACATCCTTCAACGGACAATGG -CCAACATCCTTCAACGGAATGAGG -CCAACATCCTTCAACGGAAATGGG -CCAACATCCTTCAACGGATCCTGA -CCAACATCCTTCAACGGATAGCGA -CCAACATCCTTCAACGGACACAGA -CCAACATCCTTCAACGGAGCAAGA -CCAACATCCTTCAACGGAGGTTGA -CCAACATCCTTCAACGGATCCGAT -CCAACATCCTTCAACGGATGGCAT -CCAACATCCTTCAACGGACGAGAT -CCAACATCCTTCAACGGATACCAC -CCAACATCCTTCAACGGACAGAAC -CCAACATCCTTCAACGGAGTCTAC -CCAACATCCTTCAACGGAACGTAC -CCAACATCCTTCAACGGAAGTGAC -CCAACATCCTTCAACGGACTGTAG -CCAACATCCTTCAACGGACCTAAG -CCAACATCCTTCAACGGAGTTCAG -CCAACATCCTTCAACGGAGCATAG -CCAACATCCTTCAACGGAGACAAG -CCAACATCCTTCAACGGAAAGCAG -CCAACATCCTTCAACGGACGTCAA -CCAACATCCTTCAACGGAGCTGAA -CCAACATCCTTCAACGGAAGTACG -CCAACATCCTTCAACGGAATCCGA -CCAACATCCTTCAACGGAATGGGA -CCAACATCCTTCAACGGAGTGCAA -CCAACATCCTTCAACGGAGAGGAA -CCAACATCCTTCAACGGACAGGTA -CCAACATCCTTCAACGGAGACTCT -CCAACATCCTTCAACGGAAGTCCT -CCAACATCCTTCAACGGATAAGCC -CCAACATCCTTCAACGGAATAGCC -CCAACATCCTTCAACGGATAACCG -CCAACATCCTTCAACGGAATGCCA -CCAACATCCTTCACCAACGGAAAC -CCAACATCCTTCACCAACAACACC -CCAACATCCTTCACCAACATCGAG -CCAACATCCTTCACCAACCTCCTT -CCAACATCCTTCACCAACCCTGTT -CCAACATCCTTCACCAACCGGTTT -CCAACATCCTTCACCAACGTGGTT -CCAACATCCTTCACCAACGCCTTT -CCAACATCCTTCACCAACGGTCTT -CCAACATCCTTCACCAACACGCTT -CCAACATCCTTCACCAACAGCGTT -CCAACATCCTTCACCAACTTCGTC -CCAACATCCTTCACCAACTCTCTC -CCAACATCCTTCACCAACTGGATC -CCAACATCCTTCACCAACCACTTC -CCAACATCCTTCACCAACGTACTC -CCAACATCCTTCACCAACGATGTC -CCAACATCCTTCACCAACACAGTC -CCAACATCCTTCACCAACTTGCTG -CCAACATCCTTCACCAACTCCATG -CCAACATCCTTCACCAACTGTGTG -CCAACATCCTTCACCAACCTAGTG -CCAACATCCTTCACCAACCATCTG -CCAACATCCTTCACCAACGAGTTG -CCAACATCCTTCACCAACAGACTG -CCAACATCCTTCACCAACTCGGTA -CCAACATCCTTCACCAACTGCCTA -CCAACATCCTTCACCAACCCACTA -CCAACATCCTTCACCAACGGAGTA -CCAACATCCTTCACCAACTCGTCT -CCAACATCCTTCACCAACTGCACT -CCAACATCCTTCACCAACCTGACT -CCAACATCCTTCACCAACCAACCT -CCAACATCCTTCACCAACGCTACT -CCAACATCCTTCACCAACGGATCT -CCAACATCCTTCACCAACAAGGCT -CCAACATCCTTCACCAACTCAACC -CCAACATCCTTCACCAACTGTTCC -CCAACATCCTTCACCAACATTCCC -CCAACATCCTTCACCAACTTCTCG -CCAACATCCTTCACCAACTAGACG -CCAACATCCTTCACCAACGTAACG -CCAACATCCTTCACCAACACTTCG -CCAACATCCTTCACCAACTACGCA -CCAACATCCTTCACCAACCTTGCA -CCAACATCCTTCACCAACCGAACA -CCAACATCCTTCACCAACCAGTCA -CCAACATCCTTCACCAACGATCCA -CCAACATCCTTCACCAACACGACA -CCAACATCCTTCACCAACAGCTCA -CCAACATCCTTCACCAACTCACGT -CCAACATCCTTCACCAACCGTAGT -CCAACATCCTTCACCAACGTCAGT -CCAACATCCTTCACCAACGAAGGT -CCAACATCCTTCACCAACAACCGT -CCAACATCCTTCACCAACTTGTGC -CCAACATCCTTCACCAACCTAAGC -CCAACATCCTTCACCAACACTAGC -CCAACATCCTTCACCAACAGATGC -CCAACATCCTTCACCAACTGAAGG -CCAACATCCTTCACCAACCAATGG -CCAACATCCTTCACCAACATGAGG -CCAACATCCTTCACCAACAATGGG -CCAACATCCTTCACCAACTCCTGA -CCAACATCCTTCACCAACTAGCGA -CCAACATCCTTCACCAACCACAGA -CCAACATCCTTCACCAACGCAAGA -CCAACATCCTTCACCAACGGTTGA -CCAACATCCTTCACCAACTCCGAT -CCAACATCCTTCACCAACTGGCAT -CCAACATCCTTCACCAACCGAGAT -CCAACATCCTTCACCAACTACCAC -CCAACATCCTTCACCAACCAGAAC -CCAACATCCTTCACCAACGTCTAC -CCAACATCCTTCACCAACACGTAC -CCAACATCCTTCACCAACAGTGAC -CCAACATCCTTCACCAACCTGTAG -CCAACATCCTTCACCAACCCTAAG -CCAACATCCTTCACCAACGTTCAG -CCAACATCCTTCACCAACGCATAG -CCAACATCCTTCACCAACGACAAG -CCAACATCCTTCACCAACAAGCAG -CCAACATCCTTCACCAACCGTCAA -CCAACATCCTTCACCAACGCTGAA -CCAACATCCTTCACCAACAGTACG -CCAACATCCTTCACCAACATCCGA -CCAACATCCTTCACCAACATGGGA -CCAACATCCTTCACCAACGTGCAA -CCAACATCCTTCACCAACGAGGAA -CCAACATCCTTCACCAACCAGGTA -CCAACATCCTTCACCAACGACTCT -CCAACATCCTTCACCAACAGTCCT -CCAACATCCTTCACCAACTAAGCC -CCAACATCCTTCACCAACATAGCC -CCAACATCCTTCACCAACTAACCG -CCAACATCCTTCACCAACATGCCA -CCAACATCCTTCGAGATCGGAAAC -CCAACATCCTTCGAGATCAACACC -CCAACATCCTTCGAGATCATCGAG -CCAACATCCTTCGAGATCCTCCTT -CCAACATCCTTCGAGATCCCTGTT -CCAACATCCTTCGAGATCCGGTTT -CCAACATCCTTCGAGATCGTGGTT -CCAACATCCTTCGAGATCGCCTTT -CCAACATCCTTCGAGATCGGTCTT -CCAACATCCTTCGAGATCACGCTT -CCAACATCCTTCGAGATCAGCGTT -CCAACATCCTTCGAGATCTTCGTC -CCAACATCCTTCGAGATCTCTCTC -CCAACATCCTTCGAGATCTGGATC -CCAACATCCTTCGAGATCCACTTC -CCAACATCCTTCGAGATCGTACTC -CCAACATCCTTCGAGATCGATGTC -CCAACATCCTTCGAGATCACAGTC -CCAACATCCTTCGAGATCTTGCTG -CCAACATCCTTCGAGATCTCCATG -CCAACATCCTTCGAGATCTGTGTG -CCAACATCCTTCGAGATCCTAGTG -CCAACATCCTTCGAGATCCATCTG -CCAACATCCTTCGAGATCGAGTTG -CCAACATCCTTCGAGATCAGACTG -CCAACATCCTTCGAGATCTCGGTA -CCAACATCCTTCGAGATCTGCCTA -CCAACATCCTTCGAGATCCCACTA -CCAACATCCTTCGAGATCGGAGTA -CCAACATCCTTCGAGATCTCGTCT -CCAACATCCTTCGAGATCTGCACT -CCAACATCCTTCGAGATCCTGACT -CCAACATCCTTCGAGATCCAACCT -CCAACATCCTTCGAGATCGCTACT -CCAACATCCTTCGAGATCGGATCT -CCAACATCCTTCGAGATCAAGGCT -CCAACATCCTTCGAGATCTCAACC -CCAACATCCTTCGAGATCTGTTCC -CCAACATCCTTCGAGATCATTCCC -CCAACATCCTTCGAGATCTTCTCG -CCAACATCCTTCGAGATCTAGACG -CCAACATCCTTCGAGATCGTAACG -CCAACATCCTTCGAGATCACTTCG -CCAACATCCTTCGAGATCTACGCA -CCAACATCCTTCGAGATCCTTGCA -CCAACATCCTTCGAGATCCGAACA -CCAACATCCTTCGAGATCCAGTCA -CCAACATCCTTCGAGATCGATCCA -CCAACATCCTTCGAGATCACGACA -CCAACATCCTTCGAGATCAGCTCA -CCAACATCCTTCGAGATCTCACGT -CCAACATCCTTCGAGATCCGTAGT -CCAACATCCTTCGAGATCGTCAGT -CCAACATCCTTCGAGATCGAAGGT -CCAACATCCTTCGAGATCAACCGT -CCAACATCCTTCGAGATCTTGTGC -CCAACATCCTTCGAGATCCTAAGC -CCAACATCCTTCGAGATCACTAGC -CCAACATCCTTCGAGATCAGATGC -CCAACATCCTTCGAGATCTGAAGG -CCAACATCCTTCGAGATCCAATGG -CCAACATCCTTCGAGATCATGAGG -CCAACATCCTTCGAGATCAATGGG -CCAACATCCTTCGAGATCTCCTGA -CCAACATCCTTCGAGATCTAGCGA -CCAACATCCTTCGAGATCCACAGA -CCAACATCCTTCGAGATCGCAAGA -CCAACATCCTTCGAGATCGGTTGA -CCAACATCCTTCGAGATCTCCGAT -CCAACATCCTTCGAGATCTGGCAT -CCAACATCCTTCGAGATCCGAGAT -CCAACATCCTTCGAGATCTACCAC -CCAACATCCTTCGAGATCCAGAAC -CCAACATCCTTCGAGATCGTCTAC -CCAACATCCTTCGAGATCACGTAC -CCAACATCCTTCGAGATCAGTGAC -CCAACATCCTTCGAGATCCTGTAG -CCAACATCCTTCGAGATCCCTAAG -CCAACATCCTTCGAGATCGTTCAG -CCAACATCCTTCGAGATCGCATAG -CCAACATCCTTCGAGATCGACAAG -CCAACATCCTTCGAGATCAAGCAG -CCAACATCCTTCGAGATCCGTCAA -CCAACATCCTTCGAGATCGCTGAA -CCAACATCCTTCGAGATCAGTACG -CCAACATCCTTCGAGATCATCCGA -CCAACATCCTTCGAGATCATGGGA -CCAACATCCTTCGAGATCGTGCAA -CCAACATCCTTCGAGATCGAGGAA -CCAACATCCTTCGAGATCCAGGTA -CCAACATCCTTCGAGATCGACTCT -CCAACATCCTTCGAGATCAGTCCT -CCAACATCCTTCGAGATCTAAGCC -CCAACATCCTTCGAGATCATAGCC -CCAACATCCTTCGAGATCTAACCG -CCAACATCCTTCGAGATCATGCCA -CCAACATCCTTCCTTCTCGGAAAC -CCAACATCCTTCCTTCTCAACACC -CCAACATCCTTCCTTCTCATCGAG -CCAACATCCTTCCTTCTCCTCCTT -CCAACATCCTTCCTTCTCCCTGTT -CCAACATCCTTCCTTCTCCGGTTT -CCAACATCCTTCCTTCTCGTGGTT -CCAACATCCTTCCTTCTCGCCTTT -CCAACATCCTTCCTTCTCGGTCTT -CCAACATCCTTCCTTCTCACGCTT -CCAACATCCTTCCTTCTCAGCGTT -CCAACATCCTTCCTTCTCTTCGTC -CCAACATCCTTCCTTCTCTCTCTC -CCAACATCCTTCCTTCTCTGGATC -CCAACATCCTTCCTTCTCCACTTC -CCAACATCCTTCCTTCTCGTACTC -CCAACATCCTTCCTTCTCGATGTC -CCAACATCCTTCCTTCTCACAGTC -CCAACATCCTTCCTTCTCTTGCTG -CCAACATCCTTCCTTCTCTCCATG -CCAACATCCTTCCTTCTCTGTGTG -CCAACATCCTTCCTTCTCCTAGTG -CCAACATCCTTCCTTCTCCATCTG -CCAACATCCTTCCTTCTCGAGTTG -CCAACATCCTTCCTTCTCAGACTG -CCAACATCCTTCCTTCTCTCGGTA -CCAACATCCTTCCTTCTCTGCCTA -CCAACATCCTTCCTTCTCCCACTA -CCAACATCCTTCCTTCTCGGAGTA -CCAACATCCTTCCTTCTCTCGTCT -CCAACATCCTTCCTTCTCTGCACT -CCAACATCCTTCCTTCTCCTGACT -CCAACATCCTTCCTTCTCCAACCT -CCAACATCCTTCCTTCTCGCTACT -CCAACATCCTTCCTTCTCGGATCT -CCAACATCCTTCCTTCTCAAGGCT -CCAACATCCTTCCTTCTCTCAACC -CCAACATCCTTCCTTCTCTGTTCC -CCAACATCCTTCCTTCTCATTCCC -CCAACATCCTTCCTTCTCTTCTCG -CCAACATCCTTCCTTCTCTAGACG -CCAACATCCTTCCTTCTCGTAACG -CCAACATCCTTCCTTCTCACTTCG -CCAACATCCTTCCTTCTCTACGCA -CCAACATCCTTCCTTCTCCTTGCA -CCAACATCCTTCCTTCTCCGAACA -CCAACATCCTTCCTTCTCCAGTCA -CCAACATCCTTCCTTCTCGATCCA -CCAACATCCTTCCTTCTCACGACA -CCAACATCCTTCCTTCTCAGCTCA -CCAACATCCTTCCTTCTCTCACGT -CCAACATCCTTCCTTCTCCGTAGT -CCAACATCCTTCCTTCTCGTCAGT -CCAACATCCTTCCTTCTCGAAGGT -CCAACATCCTTCCTTCTCAACCGT -CCAACATCCTTCCTTCTCTTGTGC -CCAACATCCTTCCTTCTCCTAAGC -CCAACATCCTTCCTTCTCACTAGC -CCAACATCCTTCCTTCTCAGATGC -CCAACATCCTTCCTTCTCTGAAGG -CCAACATCCTTCCTTCTCCAATGG -CCAACATCCTTCCTTCTCATGAGG -CCAACATCCTTCCTTCTCAATGGG -CCAACATCCTTCCTTCTCTCCTGA -CCAACATCCTTCCTTCTCTAGCGA -CCAACATCCTTCCTTCTCCACAGA -CCAACATCCTTCCTTCTCGCAAGA -CCAACATCCTTCCTTCTCGGTTGA -CCAACATCCTTCCTTCTCTCCGAT -CCAACATCCTTCCTTCTCTGGCAT -CCAACATCCTTCCTTCTCCGAGAT -CCAACATCCTTCCTTCTCTACCAC -CCAACATCCTTCCTTCTCCAGAAC -CCAACATCCTTCCTTCTCGTCTAC -CCAACATCCTTCCTTCTCACGTAC -CCAACATCCTTCCTTCTCAGTGAC -CCAACATCCTTCCTTCTCCTGTAG -CCAACATCCTTCCTTCTCCCTAAG -CCAACATCCTTCCTTCTCGTTCAG -CCAACATCCTTCCTTCTCGCATAG -CCAACATCCTTCCTTCTCGACAAG -CCAACATCCTTCCTTCTCAAGCAG -CCAACATCCTTCCTTCTCCGTCAA -CCAACATCCTTCCTTCTCGCTGAA -CCAACATCCTTCCTTCTCAGTACG -CCAACATCCTTCCTTCTCATCCGA -CCAACATCCTTCCTTCTCATGGGA -CCAACATCCTTCCTTCTCGTGCAA -CCAACATCCTTCCTTCTCGAGGAA -CCAACATCCTTCCTTCTCCAGGTA -CCAACATCCTTCCTTCTCGACTCT -CCAACATCCTTCCTTCTCAGTCCT -CCAACATCCTTCCTTCTCTAAGCC -CCAACATCCTTCCTTCTCATAGCC -CCAACATCCTTCCTTCTCTAACCG -CCAACATCCTTCCTTCTCATGCCA -CCAACATCCTTCGTTCCTGGAAAC -CCAACATCCTTCGTTCCTAACACC -CCAACATCCTTCGTTCCTATCGAG -CCAACATCCTTCGTTCCTCTCCTT -CCAACATCCTTCGTTCCTCCTGTT -CCAACATCCTTCGTTCCTCGGTTT -CCAACATCCTTCGTTCCTGTGGTT -CCAACATCCTTCGTTCCTGCCTTT -CCAACATCCTTCGTTCCTGGTCTT -CCAACATCCTTCGTTCCTACGCTT -CCAACATCCTTCGTTCCTAGCGTT -CCAACATCCTTCGTTCCTTTCGTC -CCAACATCCTTCGTTCCTTCTCTC -CCAACATCCTTCGTTCCTTGGATC -CCAACATCCTTCGTTCCTCACTTC -CCAACATCCTTCGTTCCTGTACTC -CCAACATCCTTCGTTCCTGATGTC -CCAACATCCTTCGTTCCTACAGTC -CCAACATCCTTCGTTCCTTTGCTG -CCAACATCCTTCGTTCCTTCCATG -CCAACATCCTTCGTTCCTTGTGTG -CCAACATCCTTCGTTCCTCTAGTG -CCAACATCCTTCGTTCCTCATCTG -CCAACATCCTTCGTTCCTGAGTTG -CCAACATCCTTCGTTCCTAGACTG -CCAACATCCTTCGTTCCTTCGGTA -CCAACATCCTTCGTTCCTTGCCTA -CCAACATCCTTCGTTCCTCCACTA -CCAACATCCTTCGTTCCTGGAGTA -CCAACATCCTTCGTTCCTTCGTCT -CCAACATCCTTCGTTCCTTGCACT -CCAACATCCTTCGTTCCTCTGACT -CCAACATCCTTCGTTCCTCAACCT -CCAACATCCTTCGTTCCTGCTACT -CCAACATCCTTCGTTCCTGGATCT -CCAACATCCTTCGTTCCTAAGGCT -CCAACATCCTTCGTTCCTTCAACC -CCAACATCCTTCGTTCCTTGTTCC -CCAACATCCTTCGTTCCTATTCCC -CCAACATCCTTCGTTCCTTTCTCG -CCAACATCCTTCGTTCCTTAGACG -CCAACATCCTTCGTTCCTGTAACG -CCAACATCCTTCGTTCCTACTTCG -CCAACATCCTTCGTTCCTTACGCA -CCAACATCCTTCGTTCCTCTTGCA -CCAACATCCTTCGTTCCTCGAACA -CCAACATCCTTCGTTCCTCAGTCA -CCAACATCCTTCGTTCCTGATCCA -CCAACATCCTTCGTTCCTACGACA -CCAACATCCTTCGTTCCTAGCTCA -CCAACATCCTTCGTTCCTTCACGT -CCAACATCCTTCGTTCCTCGTAGT -CCAACATCCTTCGTTCCTGTCAGT -CCAACATCCTTCGTTCCTGAAGGT -CCAACATCCTTCGTTCCTAACCGT -CCAACATCCTTCGTTCCTTTGTGC -CCAACATCCTTCGTTCCTCTAAGC -CCAACATCCTTCGTTCCTACTAGC -CCAACATCCTTCGTTCCTAGATGC -CCAACATCCTTCGTTCCTTGAAGG -CCAACATCCTTCGTTCCTCAATGG -CCAACATCCTTCGTTCCTATGAGG -CCAACATCCTTCGTTCCTAATGGG -CCAACATCCTTCGTTCCTTCCTGA -CCAACATCCTTCGTTCCTTAGCGA -CCAACATCCTTCGTTCCTCACAGA -CCAACATCCTTCGTTCCTGCAAGA -CCAACATCCTTCGTTCCTGGTTGA -CCAACATCCTTCGTTCCTTCCGAT -CCAACATCCTTCGTTCCTTGGCAT -CCAACATCCTTCGTTCCTCGAGAT -CCAACATCCTTCGTTCCTTACCAC -CCAACATCCTTCGTTCCTCAGAAC -CCAACATCCTTCGTTCCTGTCTAC -CCAACATCCTTCGTTCCTACGTAC -CCAACATCCTTCGTTCCTAGTGAC -CCAACATCCTTCGTTCCTCTGTAG -CCAACATCCTTCGTTCCTCCTAAG -CCAACATCCTTCGTTCCTGTTCAG -CCAACATCCTTCGTTCCTGCATAG -CCAACATCCTTCGTTCCTGACAAG -CCAACATCCTTCGTTCCTAAGCAG -CCAACATCCTTCGTTCCTCGTCAA -CCAACATCCTTCGTTCCTGCTGAA -CCAACATCCTTCGTTCCTAGTACG -CCAACATCCTTCGTTCCTATCCGA -CCAACATCCTTCGTTCCTATGGGA -CCAACATCCTTCGTTCCTGTGCAA -CCAACATCCTTCGTTCCTGAGGAA -CCAACATCCTTCGTTCCTCAGGTA -CCAACATCCTTCGTTCCTGACTCT -CCAACATCCTTCGTTCCTAGTCCT -CCAACATCCTTCGTTCCTTAAGCC -CCAACATCCTTCGTTCCTATAGCC -CCAACATCCTTCGTTCCTTAACCG -CCAACATCCTTCGTTCCTATGCCA -CCAACATCCTTCTTTCGGGGAAAC -CCAACATCCTTCTTTCGGAACACC -CCAACATCCTTCTTTCGGATCGAG -CCAACATCCTTCTTTCGGCTCCTT -CCAACATCCTTCTTTCGGCCTGTT -CCAACATCCTTCTTTCGGCGGTTT -CCAACATCCTTCTTTCGGGTGGTT -CCAACATCCTTCTTTCGGGCCTTT -CCAACATCCTTCTTTCGGGGTCTT -CCAACATCCTTCTTTCGGACGCTT -CCAACATCCTTCTTTCGGAGCGTT -CCAACATCCTTCTTTCGGTTCGTC -CCAACATCCTTCTTTCGGTCTCTC -CCAACATCCTTCTTTCGGTGGATC -CCAACATCCTTCTTTCGGCACTTC -CCAACATCCTTCTTTCGGGTACTC -CCAACATCCTTCTTTCGGGATGTC -CCAACATCCTTCTTTCGGACAGTC -CCAACATCCTTCTTTCGGTTGCTG -CCAACATCCTTCTTTCGGTCCATG -CCAACATCCTTCTTTCGGTGTGTG -CCAACATCCTTCTTTCGGCTAGTG -CCAACATCCTTCTTTCGGCATCTG -CCAACATCCTTCTTTCGGGAGTTG -CCAACATCCTTCTTTCGGAGACTG -CCAACATCCTTCTTTCGGTCGGTA -CCAACATCCTTCTTTCGGTGCCTA -CCAACATCCTTCTTTCGGCCACTA -CCAACATCCTTCTTTCGGGGAGTA -CCAACATCCTTCTTTCGGTCGTCT -CCAACATCCTTCTTTCGGTGCACT -CCAACATCCTTCTTTCGGCTGACT -CCAACATCCTTCTTTCGGCAACCT -CCAACATCCTTCTTTCGGGCTACT -CCAACATCCTTCTTTCGGGGATCT -CCAACATCCTTCTTTCGGAAGGCT -CCAACATCCTTCTTTCGGTCAACC -CCAACATCCTTCTTTCGGTGTTCC -CCAACATCCTTCTTTCGGATTCCC -CCAACATCCTTCTTTCGGTTCTCG -CCAACATCCTTCTTTCGGTAGACG -CCAACATCCTTCTTTCGGGTAACG -CCAACATCCTTCTTTCGGACTTCG -CCAACATCCTTCTTTCGGTACGCA -CCAACATCCTTCTTTCGGCTTGCA -CCAACATCCTTCTTTCGGCGAACA -CCAACATCCTTCTTTCGGCAGTCA -CCAACATCCTTCTTTCGGGATCCA -CCAACATCCTTCTTTCGGACGACA -CCAACATCCTTCTTTCGGAGCTCA -CCAACATCCTTCTTTCGGTCACGT -CCAACATCCTTCTTTCGGCGTAGT -CCAACATCCTTCTTTCGGGTCAGT -CCAACATCCTTCTTTCGGGAAGGT -CCAACATCCTTCTTTCGGAACCGT -CCAACATCCTTCTTTCGGTTGTGC -CCAACATCCTTCTTTCGGCTAAGC -CCAACATCCTTCTTTCGGACTAGC -CCAACATCCTTCTTTCGGAGATGC -CCAACATCCTTCTTTCGGTGAAGG -CCAACATCCTTCTTTCGGCAATGG -CCAACATCCTTCTTTCGGATGAGG -CCAACATCCTTCTTTCGGAATGGG -CCAACATCCTTCTTTCGGTCCTGA -CCAACATCCTTCTTTCGGTAGCGA -CCAACATCCTTCTTTCGGCACAGA -CCAACATCCTTCTTTCGGGCAAGA -CCAACATCCTTCTTTCGGGGTTGA -CCAACATCCTTCTTTCGGTCCGAT -CCAACATCCTTCTTTCGGTGGCAT -CCAACATCCTTCTTTCGGCGAGAT -CCAACATCCTTCTTTCGGTACCAC -CCAACATCCTTCTTTCGGCAGAAC -CCAACATCCTTCTTTCGGGTCTAC -CCAACATCCTTCTTTCGGACGTAC -CCAACATCCTTCTTTCGGAGTGAC -CCAACATCCTTCTTTCGGCTGTAG -CCAACATCCTTCTTTCGGCCTAAG -CCAACATCCTTCTTTCGGGTTCAG -CCAACATCCTTCTTTCGGGCATAG -CCAACATCCTTCTTTCGGGACAAG -CCAACATCCTTCTTTCGGAAGCAG -CCAACATCCTTCTTTCGGCGTCAA -CCAACATCCTTCTTTCGGGCTGAA -CCAACATCCTTCTTTCGGAGTACG -CCAACATCCTTCTTTCGGATCCGA -CCAACATCCTTCTTTCGGATGGGA -CCAACATCCTTCTTTCGGGTGCAA -CCAACATCCTTCTTTCGGGAGGAA -CCAACATCCTTCTTTCGGCAGGTA -CCAACATCCTTCTTTCGGGACTCT -CCAACATCCTTCTTTCGGAGTCCT -CCAACATCCTTCTTTCGGTAAGCC -CCAACATCCTTCTTTCGGATAGCC -CCAACATCCTTCTTTCGGTAACCG -CCAACATCCTTCTTTCGGATGCCA -CCAACATCCTTCGTTGTGGGAAAC -CCAACATCCTTCGTTGTGAACACC -CCAACATCCTTCGTTGTGATCGAG -CCAACATCCTTCGTTGTGCTCCTT -CCAACATCCTTCGTTGTGCCTGTT -CCAACATCCTTCGTTGTGCGGTTT -CCAACATCCTTCGTTGTGGTGGTT -CCAACATCCTTCGTTGTGGCCTTT -CCAACATCCTTCGTTGTGGGTCTT -CCAACATCCTTCGTTGTGACGCTT -CCAACATCCTTCGTTGTGAGCGTT -CCAACATCCTTCGTTGTGTTCGTC -CCAACATCCTTCGTTGTGTCTCTC -CCAACATCCTTCGTTGTGTGGATC -CCAACATCCTTCGTTGTGCACTTC -CCAACATCCTTCGTTGTGGTACTC -CCAACATCCTTCGTTGTGGATGTC -CCAACATCCTTCGTTGTGACAGTC -CCAACATCCTTCGTTGTGTTGCTG -CCAACATCCTTCGTTGTGTCCATG -CCAACATCCTTCGTTGTGTGTGTG -CCAACATCCTTCGTTGTGCTAGTG -CCAACATCCTTCGTTGTGCATCTG -CCAACATCCTTCGTTGTGGAGTTG -CCAACATCCTTCGTTGTGAGACTG -CCAACATCCTTCGTTGTGTCGGTA -CCAACATCCTTCGTTGTGTGCCTA -CCAACATCCTTCGTTGTGCCACTA -CCAACATCCTTCGTTGTGGGAGTA -CCAACATCCTTCGTTGTGTCGTCT -CCAACATCCTTCGTTGTGTGCACT -CCAACATCCTTCGTTGTGCTGACT -CCAACATCCTTCGTTGTGCAACCT -CCAACATCCTTCGTTGTGGCTACT -CCAACATCCTTCGTTGTGGGATCT -CCAACATCCTTCGTTGTGAAGGCT -CCAACATCCTTCGTTGTGTCAACC -CCAACATCCTTCGTTGTGTGTTCC -CCAACATCCTTCGTTGTGATTCCC -CCAACATCCTTCGTTGTGTTCTCG -CCAACATCCTTCGTTGTGTAGACG -CCAACATCCTTCGTTGTGGTAACG -CCAACATCCTTCGTTGTGACTTCG -CCAACATCCTTCGTTGTGTACGCA -CCAACATCCTTCGTTGTGCTTGCA -CCAACATCCTTCGTTGTGCGAACA -CCAACATCCTTCGTTGTGCAGTCA -CCAACATCCTTCGTTGTGGATCCA -CCAACATCCTTCGTTGTGACGACA -CCAACATCCTTCGTTGTGAGCTCA -CCAACATCCTTCGTTGTGTCACGT -CCAACATCCTTCGTTGTGCGTAGT -CCAACATCCTTCGTTGTGGTCAGT -CCAACATCCTTCGTTGTGGAAGGT -CCAACATCCTTCGTTGTGAACCGT -CCAACATCCTTCGTTGTGTTGTGC -CCAACATCCTTCGTTGTGCTAAGC -CCAACATCCTTCGTTGTGACTAGC -CCAACATCCTTCGTTGTGAGATGC -CCAACATCCTTCGTTGTGTGAAGG -CCAACATCCTTCGTTGTGCAATGG -CCAACATCCTTCGTTGTGATGAGG -CCAACATCCTTCGTTGTGAATGGG -CCAACATCCTTCGTTGTGTCCTGA -CCAACATCCTTCGTTGTGTAGCGA -CCAACATCCTTCGTTGTGCACAGA -CCAACATCCTTCGTTGTGGCAAGA -CCAACATCCTTCGTTGTGGGTTGA -CCAACATCCTTCGTTGTGTCCGAT -CCAACATCCTTCGTTGTGTGGCAT -CCAACATCCTTCGTTGTGCGAGAT -CCAACATCCTTCGTTGTGTACCAC -CCAACATCCTTCGTTGTGCAGAAC -CCAACATCCTTCGTTGTGGTCTAC -CCAACATCCTTCGTTGTGACGTAC -CCAACATCCTTCGTTGTGAGTGAC -CCAACATCCTTCGTTGTGCTGTAG -CCAACATCCTTCGTTGTGCCTAAG -CCAACATCCTTCGTTGTGGTTCAG -CCAACATCCTTCGTTGTGGCATAG -CCAACATCCTTCGTTGTGGACAAG -CCAACATCCTTCGTTGTGAAGCAG -CCAACATCCTTCGTTGTGCGTCAA -CCAACATCCTTCGTTGTGGCTGAA -CCAACATCCTTCGTTGTGAGTACG -CCAACATCCTTCGTTGTGATCCGA -CCAACATCCTTCGTTGTGATGGGA -CCAACATCCTTCGTTGTGGTGCAA -CCAACATCCTTCGTTGTGGAGGAA -CCAACATCCTTCGTTGTGCAGGTA -CCAACATCCTTCGTTGTGGACTCT -CCAACATCCTTCGTTGTGAGTCCT -CCAACATCCTTCGTTGTGTAAGCC -CCAACATCCTTCGTTGTGATAGCC -CCAACATCCTTCGTTGTGTAACCG -CCAACATCCTTCGTTGTGATGCCA -CCAACATCCTTCTTTGCCGGAAAC -CCAACATCCTTCTTTGCCAACACC -CCAACATCCTTCTTTGCCATCGAG -CCAACATCCTTCTTTGCCCTCCTT -CCAACATCCTTCTTTGCCCCTGTT -CCAACATCCTTCTTTGCCCGGTTT -CCAACATCCTTCTTTGCCGTGGTT -CCAACATCCTTCTTTGCCGCCTTT -CCAACATCCTTCTTTGCCGGTCTT -CCAACATCCTTCTTTGCCACGCTT -CCAACATCCTTCTTTGCCAGCGTT -CCAACATCCTTCTTTGCCTTCGTC -CCAACATCCTTCTTTGCCTCTCTC -CCAACATCCTTCTTTGCCTGGATC -CCAACATCCTTCTTTGCCCACTTC -CCAACATCCTTCTTTGCCGTACTC -CCAACATCCTTCTTTGCCGATGTC -CCAACATCCTTCTTTGCCACAGTC -CCAACATCCTTCTTTGCCTTGCTG -CCAACATCCTTCTTTGCCTCCATG -CCAACATCCTTCTTTGCCTGTGTG -CCAACATCCTTCTTTGCCCTAGTG -CCAACATCCTTCTTTGCCCATCTG -CCAACATCCTTCTTTGCCGAGTTG -CCAACATCCTTCTTTGCCAGACTG -CCAACATCCTTCTTTGCCTCGGTA -CCAACATCCTTCTTTGCCTGCCTA -CCAACATCCTTCTTTGCCCCACTA -CCAACATCCTTCTTTGCCGGAGTA -CCAACATCCTTCTTTGCCTCGTCT -CCAACATCCTTCTTTGCCTGCACT -CCAACATCCTTCTTTGCCCTGACT -CCAACATCCTTCTTTGCCCAACCT -CCAACATCCTTCTTTGCCGCTACT -CCAACATCCTTCTTTGCCGGATCT -CCAACATCCTTCTTTGCCAAGGCT -CCAACATCCTTCTTTGCCTCAACC -CCAACATCCTTCTTTGCCTGTTCC -CCAACATCCTTCTTTGCCATTCCC -CCAACATCCTTCTTTGCCTTCTCG -CCAACATCCTTCTTTGCCTAGACG -CCAACATCCTTCTTTGCCGTAACG -CCAACATCCTTCTTTGCCACTTCG -CCAACATCCTTCTTTGCCTACGCA -CCAACATCCTTCTTTGCCCTTGCA -CCAACATCCTTCTTTGCCCGAACA -CCAACATCCTTCTTTGCCCAGTCA -CCAACATCCTTCTTTGCCGATCCA -CCAACATCCTTCTTTGCCACGACA -CCAACATCCTTCTTTGCCAGCTCA -CCAACATCCTTCTTTGCCTCACGT -CCAACATCCTTCTTTGCCCGTAGT -CCAACATCCTTCTTTGCCGTCAGT -CCAACATCCTTCTTTGCCGAAGGT -CCAACATCCTTCTTTGCCAACCGT -CCAACATCCTTCTTTGCCTTGTGC -CCAACATCCTTCTTTGCCCTAAGC -CCAACATCCTTCTTTGCCACTAGC -CCAACATCCTTCTTTGCCAGATGC -CCAACATCCTTCTTTGCCTGAAGG -CCAACATCCTTCTTTGCCCAATGG -CCAACATCCTTCTTTGCCATGAGG -CCAACATCCTTCTTTGCCAATGGG -CCAACATCCTTCTTTGCCTCCTGA -CCAACATCCTTCTTTGCCTAGCGA -CCAACATCCTTCTTTGCCCACAGA -CCAACATCCTTCTTTGCCGCAAGA -CCAACATCCTTCTTTGCCGGTTGA -CCAACATCCTTCTTTGCCTCCGAT -CCAACATCCTTCTTTGCCTGGCAT -CCAACATCCTTCTTTGCCCGAGAT -CCAACATCCTTCTTTGCCTACCAC -CCAACATCCTTCTTTGCCCAGAAC -CCAACATCCTTCTTTGCCGTCTAC -CCAACATCCTTCTTTGCCACGTAC -CCAACATCCTTCTTTGCCAGTGAC -CCAACATCCTTCTTTGCCCTGTAG -CCAACATCCTTCTTTGCCCCTAAG -CCAACATCCTTCTTTGCCGTTCAG -CCAACATCCTTCTTTGCCGCATAG -CCAACATCCTTCTTTGCCGACAAG -CCAACATCCTTCTTTGCCAAGCAG -CCAACATCCTTCTTTGCCCGTCAA -CCAACATCCTTCTTTGCCGCTGAA -CCAACATCCTTCTTTGCCAGTACG -CCAACATCCTTCTTTGCCATCCGA -CCAACATCCTTCTTTGCCATGGGA -CCAACATCCTTCTTTGCCGTGCAA -CCAACATCCTTCTTTGCCGAGGAA -CCAACATCCTTCTTTGCCCAGGTA -CCAACATCCTTCTTTGCCGACTCT -CCAACATCCTTCTTTGCCAGTCCT -CCAACATCCTTCTTTGCCTAAGCC -CCAACATCCTTCTTTGCCATAGCC -CCAACATCCTTCTTTGCCTAACCG -CCAACATCCTTCTTTGCCATGCCA -CCAACATCCTTCCTTGGTGGAAAC -CCAACATCCTTCCTTGGTAACACC -CCAACATCCTTCCTTGGTATCGAG -CCAACATCCTTCCTTGGTCTCCTT -CCAACATCCTTCCTTGGTCCTGTT -CCAACATCCTTCCTTGGTCGGTTT -CCAACATCCTTCCTTGGTGTGGTT -CCAACATCCTTCCTTGGTGCCTTT -CCAACATCCTTCCTTGGTGGTCTT -CCAACATCCTTCCTTGGTACGCTT -CCAACATCCTTCCTTGGTAGCGTT -CCAACATCCTTCCTTGGTTTCGTC -CCAACATCCTTCCTTGGTTCTCTC -CCAACATCCTTCCTTGGTTGGATC -CCAACATCCTTCCTTGGTCACTTC -CCAACATCCTTCCTTGGTGTACTC -CCAACATCCTTCCTTGGTGATGTC -CCAACATCCTTCCTTGGTACAGTC -CCAACATCCTTCCTTGGTTTGCTG -CCAACATCCTTCCTTGGTTCCATG -CCAACATCCTTCCTTGGTTGTGTG -CCAACATCCTTCCTTGGTCTAGTG -CCAACATCCTTCCTTGGTCATCTG -CCAACATCCTTCCTTGGTGAGTTG -CCAACATCCTTCCTTGGTAGACTG -CCAACATCCTTCCTTGGTTCGGTA -CCAACATCCTTCCTTGGTTGCCTA -CCAACATCCTTCCTTGGTCCACTA -CCAACATCCTTCCTTGGTGGAGTA -CCAACATCCTTCCTTGGTTCGTCT -CCAACATCCTTCCTTGGTTGCACT -CCAACATCCTTCCTTGGTCTGACT -CCAACATCCTTCCTTGGTCAACCT -CCAACATCCTTCCTTGGTGCTACT -CCAACATCCTTCCTTGGTGGATCT -CCAACATCCTTCCTTGGTAAGGCT -CCAACATCCTTCCTTGGTTCAACC -CCAACATCCTTCCTTGGTTGTTCC -CCAACATCCTTCCTTGGTATTCCC -CCAACATCCTTCCTTGGTTTCTCG -CCAACATCCTTCCTTGGTTAGACG -CCAACATCCTTCCTTGGTGTAACG -CCAACATCCTTCCTTGGTACTTCG -CCAACATCCTTCCTTGGTTACGCA -CCAACATCCTTCCTTGGTCTTGCA -CCAACATCCTTCCTTGGTCGAACA -CCAACATCCTTCCTTGGTCAGTCA -CCAACATCCTTCCTTGGTGATCCA -CCAACATCCTTCCTTGGTACGACA -CCAACATCCTTCCTTGGTAGCTCA -CCAACATCCTTCCTTGGTTCACGT -CCAACATCCTTCCTTGGTCGTAGT -CCAACATCCTTCCTTGGTGTCAGT -CCAACATCCTTCCTTGGTGAAGGT -CCAACATCCTTCCTTGGTAACCGT -CCAACATCCTTCCTTGGTTTGTGC -CCAACATCCTTCCTTGGTCTAAGC -CCAACATCCTTCCTTGGTACTAGC -CCAACATCCTTCCTTGGTAGATGC -CCAACATCCTTCCTTGGTTGAAGG -CCAACATCCTTCCTTGGTCAATGG -CCAACATCCTTCCTTGGTATGAGG -CCAACATCCTTCCTTGGTAATGGG -CCAACATCCTTCCTTGGTTCCTGA -CCAACATCCTTCCTTGGTTAGCGA -CCAACATCCTTCCTTGGTCACAGA -CCAACATCCTTCCTTGGTGCAAGA -CCAACATCCTTCCTTGGTGGTTGA -CCAACATCCTTCCTTGGTTCCGAT -CCAACATCCTTCCTTGGTTGGCAT -CCAACATCCTTCCTTGGTCGAGAT -CCAACATCCTTCCTTGGTTACCAC -CCAACATCCTTCCTTGGTCAGAAC -CCAACATCCTTCCTTGGTGTCTAC -CCAACATCCTTCCTTGGTACGTAC -CCAACATCCTTCCTTGGTAGTGAC -CCAACATCCTTCCTTGGTCTGTAG -CCAACATCCTTCCTTGGTCCTAAG -CCAACATCCTTCCTTGGTGTTCAG -CCAACATCCTTCCTTGGTGCATAG -CCAACATCCTTCCTTGGTGACAAG -CCAACATCCTTCCTTGGTAAGCAG -CCAACATCCTTCCTTGGTCGTCAA -CCAACATCCTTCCTTGGTGCTGAA -CCAACATCCTTCCTTGGTAGTACG -CCAACATCCTTCCTTGGTATCCGA -CCAACATCCTTCCTTGGTATGGGA -CCAACATCCTTCCTTGGTGTGCAA -CCAACATCCTTCCTTGGTGAGGAA -CCAACATCCTTCCTTGGTCAGGTA -CCAACATCCTTCCTTGGTGACTCT -CCAACATCCTTCCTTGGTAGTCCT -CCAACATCCTTCCTTGGTTAAGCC -CCAACATCCTTCCTTGGTATAGCC -CCAACATCCTTCCTTGGTTAACCG -CCAACATCCTTCCTTGGTATGCCA -CCAACATCCTTCCTTACGGGAAAC -CCAACATCCTTCCTTACGAACACC -CCAACATCCTTCCTTACGATCGAG -CCAACATCCTTCCTTACGCTCCTT -CCAACATCCTTCCTTACGCCTGTT -CCAACATCCTTCCTTACGCGGTTT -CCAACATCCTTCCTTACGGTGGTT -CCAACATCCTTCCTTACGGCCTTT -CCAACATCCTTCCTTACGGGTCTT -CCAACATCCTTCCTTACGACGCTT -CCAACATCCTTCCTTACGAGCGTT -CCAACATCCTTCCTTACGTTCGTC -CCAACATCCTTCCTTACGTCTCTC -CCAACATCCTTCCTTACGTGGATC -CCAACATCCTTCCTTACGCACTTC -CCAACATCCTTCCTTACGGTACTC -CCAACATCCTTCCTTACGGATGTC -CCAACATCCTTCCTTACGACAGTC -CCAACATCCTTCCTTACGTTGCTG -CCAACATCCTTCCTTACGTCCATG -CCAACATCCTTCCTTACGTGTGTG -CCAACATCCTTCCTTACGCTAGTG -CCAACATCCTTCCTTACGCATCTG -CCAACATCCTTCCTTACGGAGTTG -CCAACATCCTTCCTTACGAGACTG -CCAACATCCTTCCTTACGTCGGTA -CCAACATCCTTCCTTACGTGCCTA -CCAACATCCTTCCTTACGCCACTA -CCAACATCCTTCCTTACGGGAGTA -CCAACATCCTTCCTTACGTCGTCT -CCAACATCCTTCCTTACGTGCACT -CCAACATCCTTCCTTACGCTGACT -CCAACATCCTTCCTTACGCAACCT -CCAACATCCTTCCTTACGGCTACT -CCAACATCCTTCCTTACGGGATCT -CCAACATCCTTCCTTACGAAGGCT -CCAACATCCTTCCTTACGTCAACC -CCAACATCCTTCCTTACGTGTTCC -CCAACATCCTTCCTTACGATTCCC -CCAACATCCTTCCTTACGTTCTCG -CCAACATCCTTCCTTACGTAGACG -CCAACATCCTTCCTTACGGTAACG -CCAACATCCTTCCTTACGACTTCG -CCAACATCCTTCCTTACGTACGCA -CCAACATCCTTCCTTACGCTTGCA -CCAACATCCTTCCTTACGCGAACA -CCAACATCCTTCCTTACGCAGTCA -CCAACATCCTTCCTTACGGATCCA -CCAACATCCTTCCTTACGACGACA -CCAACATCCTTCCTTACGAGCTCA -CCAACATCCTTCCTTACGTCACGT -CCAACATCCTTCCTTACGCGTAGT -CCAACATCCTTCCTTACGGTCAGT -CCAACATCCTTCCTTACGGAAGGT -CCAACATCCTTCCTTACGAACCGT -CCAACATCCTTCCTTACGTTGTGC -CCAACATCCTTCCTTACGCTAAGC -CCAACATCCTTCCTTACGACTAGC -CCAACATCCTTCCTTACGAGATGC -CCAACATCCTTCCTTACGTGAAGG -CCAACATCCTTCCTTACGCAATGG -CCAACATCCTTCCTTACGATGAGG -CCAACATCCTTCCTTACGAATGGG -CCAACATCCTTCCTTACGTCCTGA -CCAACATCCTTCCTTACGTAGCGA -CCAACATCCTTCCTTACGCACAGA -CCAACATCCTTCCTTACGGCAAGA -CCAACATCCTTCCTTACGGGTTGA -CCAACATCCTTCCTTACGTCCGAT -CCAACATCCTTCCTTACGTGGCAT -CCAACATCCTTCCTTACGCGAGAT -CCAACATCCTTCCTTACGTACCAC -CCAACATCCTTCCTTACGCAGAAC -CCAACATCCTTCCTTACGGTCTAC -CCAACATCCTTCCTTACGACGTAC -CCAACATCCTTCCTTACGAGTGAC -CCAACATCCTTCCTTACGCTGTAG -CCAACATCCTTCCTTACGCCTAAG -CCAACATCCTTCCTTACGGTTCAG -CCAACATCCTTCCTTACGGCATAG -CCAACATCCTTCCTTACGGACAAG -CCAACATCCTTCCTTACGAAGCAG -CCAACATCCTTCCTTACGCGTCAA -CCAACATCCTTCCTTACGGCTGAA -CCAACATCCTTCCTTACGAGTACG -CCAACATCCTTCCTTACGATCCGA -CCAACATCCTTCCTTACGATGGGA -CCAACATCCTTCCTTACGGTGCAA -CCAACATCCTTCCTTACGGAGGAA -CCAACATCCTTCCTTACGCAGGTA -CCAACATCCTTCCTTACGGACTCT -CCAACATCCTTCCTTACGAGTCCT -CCAACATCCTTCCTTACGTAAGCC -CCAACATCCTTCCTTACGATAGCC -CCAACATCCTTCCTTACGTAACCG -CCAACATCCTTCCTTACGATGCCA -CCAACATCCTTCGTTAGCGGAAAC -CCAACATCCTTCGTTAGCAACACC -CCAACATCCTTCGTTAGCATCGAG -CCAACATCCTTCGTTAGCCTCCTT -CCAACATCCTTCGTTAGCCCTGTT -CCAACATCCTTCGTTAGCCGGTTT -CCAACATCCTTCGTTAGCGTGGTT -CCAACATCCTTCGTTAGCGCCTTT -CCAACATCCTTCGTTAGCGGTCTT -CCAACATCCTTCGTTAGCACGCTT -CCAACATCCTTCGTTAGCAGCGTT -CCAACATCCTTCGTTAGCTTCGTC -CCAACATCCTTCGTTAGCTCTCTC -CCAACATCCTTCGTTAGCTGGATC -CCAACATCCTTCGTTAGCCACTTC -CCAACATCCTTCGTTAGCGTACTC -CCAACATCCTTCGTTAGCGATGTC -CCAACATCCTTCGTTAGCACAGTC -CCAACATCCTTCGTTAGCTTGCTG -CCAACATCCTTCGTTAGCTCCATG -CCAACATCCTTCGTTAGCTGTGTG -CCAACATCCTTCGTTAGCCTAGTG -CCAACATCCTTCGTTAGCCATCTG -CCAACATCCTTCGTTAGCGAGTTG -CCAACATCCTTCGTTAGCAGACTG -CCAACATCCTTCGTTAGCTCGGTA -CCAACATCCTTCGTTAGCTGCCTA -CCAACATCCTTCGTTAGCCCACTA -CCAACATCCTTCGTTAGCGGAGTA -CCAACATCCTTCGTTAGCTCGTCT -CCAACATCCTTCGTTAGCTGCACT -CCAACATCCTTCGTTAGCCTGACT -CCAACATCCTTCGTTAGCCAACCT -CCAACATCCTTCGTTAGCGCTACT -CCAACATCCTTCGTTAGCGGATCT -CCAACATCCTTCGTTAGCAAGGCT -CCAACATCCTTCGTTAGCTCAACC -CCAACATCCTTCGTTAGCTGTTCC -CCAACATCCTTCGTTAGCATTCCC -CCAACATCCTTCGTTAGCTTCTCG -CCAACATCCTTCGTTAGCTAGACG -CCAACATCCTTCGTTAGCGTAACG -CCAACATCCTTCGTTAGCACTTCG -CCAACATCCTTCGTTAGCTACGCA -CCAACATCCTTCGTTAGCCTTGCA -CCAACATCCTTCGTTAGCCGAACA -CCAACATCCTTCGTTAGCCAGTCA -CCAACATCCTTCGTTAGCGATCCA -CCAACATCCTTCGTTAGCACGACA -CCAACATCCTTCGTTAGCAGCTCA -CCAACATCCTTCGTTAGCTCACGT -CCAACATCCTTCGTTAGCCGTAGT -CCAACATCCTTCGTTAGCGTCAGT -CCAACATCCTTCGTTAGCGAAGGT -CCAACATCCTTCGTTAGCAACCGT -CCAACATCCTTCGTTAGCTTGTGC -CCAACATCCTTCGTTAGCCTAAGC -CCAACATCCTTCGTTAGCACTAGC -CCAACATCCTTCGTTAGCAGATGC -CCAACATCCTTCGTTAGCTGAAGG -CCAACATCCTTCGTTAGCCAATGG -CCAACATCCTTCGTTAGCATGAGG -CCAACATCCTTCGTTAGCAATGGG -CCAACATCCTTCGTTAGCTCCTGA -CCAACATCCTTCGTTAGCTAGCGA -CCAACATCCTTCGTTAGCCACAGA -CCAACATCCTTCGTTAGCGCAAGA -CCAACATCCTTCGTTAGCGGTTGA -CCAACATCCTTCGTTAGCTCCGAT -CCAACATCCTTCGTTAGCTGGCAT -CCAACATCCTTCGTTAGCCGAGAT -CCAACATCCTTCGTTAGCTACCAC -CCAACATCCTTCGTTAGCCAGAAC -CCAACATCCTTCGTTAGCGTCTAC -CCAACATCCTTCGTTAGCACGTAC -CCAACATCCTTCGTTAGCAGTGAC -CCAACATCCTTCGTTAGCCTGTAG -CCAACATCCTTCGTTAGCCCTAAG -CCAACATCCTTCGTTAGCGTTCAG -CCAACATCCTTCGTTAGCGCATAG -CCAACATCCTTCGTTAGCGACAAG -CCAACATCCTTCGTTAGCAAGCAG -CCAACATCCTTCGTTAGCCGTCAA -CCAACATCCTTCGTTAGCGCTGAA -CCAACATCCTTCGTTAGCAGTACG -CCAACATCCTTCGTTAGCATCCGA -CCAACATCCTTCGTTAGCATGGGA -CCAACATCCTTCGTTAGCGTGCAA -CCAACATCCTTCGTTAGCGAGGAA -CCAACATCCTTCGTTAGCCAGGTA -CCAACATCCTTCGTTAGCGACTCT -CCAACATCCTTCGTTAGCAGTCCT -CCAACATCCTTCGTTAGCTAAGCC -CCAACATCCTTCGTTAGCATAGCC -CCAACATCCTTCGTTAGCTAACCG -CCAACATCCTTCGTTAGCATGCCA -CCAACATCCTTCGTCTTCGGAAAC -CCAACATCCTTCGTCTTCAACACC -CCAACATCCTTCGTCTTCATCGAG -CCAACATCCTTCGTCTTCCTCCTT -CCAACATCCTTCGTCTTCCCTGTT -CCAACATCCTTCGTCTTCCGGTTT -CCAACATCCTTCGTCTTCGTGGTT -CCAACATCCTTCGTCTTCGCCTTT -CCAACATCCTTCGTCTTCGGTCTT -CCAACATCCTTCGTCTTCACGCTT -CCAACATCCTTCGTCTTCAGCGTT -CCAACATCCTTCGTCTTCTTCGTC -CCAACATCCTTCGTCTTCTCTCTC -CCAACATCCTTCGTCTTCTGGATC -CCAACATCCTTCGTCTTCCACTTC -CCAACATCCTTCGTCTTCGTACTC -CCAACATCCTTCGTCTTCGATGTC -CCAACATCCTTCGTCTTCACAGTC -CCAACATCCTTCGTCTTCTTGCTG -CCAACATCCTTCGTCTTCTCCATG -CCAACATCCTTCGTCTTCTGTGTG -CCAACATCCTTCGTCTTCCTAGTG -CCAACATCCTTCGTCTTCCATCTG -CCAACATCCTTCGTCTTCGAGTTG -CCAACATCCTTCGTCTTCAGACTG -CCAACATCCTTCGTCTTCTCGGTA -CCAACATCCTTCGTCTTCTGCCTA -CCAACATCCTTCGTCTTCCCACTA -CCAACATCCTTCGTCTTCGGAGTA -CCAACATCCTTCGTCTTCTCGTCT -CCAACATCCTTCGTCTTCTGCACT -CCAACATCCTTCGTCTTCCTGACT -CCAACATCCTTCGTCTTCCAACCT -CCAACATCCTTCGTCTTCGCTACT -CCAACATCCTTCGTCTTCGGATCT -CCAACATCCTTCGTCTTCAAGGCT -CCAACATCCTTCGTCTTCTCAACC -CCAACATCCTTCGTCTTCTGTTCC -CCAACATCCTTCGTCTTCATTCCC -CCAACATCCTTCGTCTTCTTCTCG -CCAACATCCTTCGTCTTCTAGACG -CCAACATCCTTCGTCTTCGTAACG -CCAACATCCTTCGTCTTCACTTCG -CCAACATCCTTCGTCTTCTACGCA -CCAACATCCTTCGTCTTCCTTGCA -CCAACATCCTTCGTCTTCCGAACA -CCAACATCCTTCGTCTTCCAGTCA -CCAACATCCTTCGTCTTCGATCCA -CCAACATCCTTCGTCTTCACGACA -CCAACATCCTTCGTCTTCAGCTCA -CCAACATCCTTCGTCTTCTCACGT -CCAACATCCTTCGTCTTCCGTAGT -CCAACATCCTTCGTCTTCGTCAGT -CCAACATCCTTCGTCTTCGAAGGT -CCAACATCCTTCGTCTTCAACCGT -CCAACATCCTTCGTCTTCTTGTGC -CCAACATCCTTCGTCTTCCTAAGC -CCAACATCCTTCGTCTTCACTAGC -CCAACATCCTTCGTCTTCAGATGC -CCAACATCCTTCGTCTTCTGAAGG -CCAACATCCTTCGTCTTCCAATGG -CCAACATCCTTCGTCTTCATGAGG -CCAACATCCTTCGTCTTCAATGGG -CCAACATCCTTCGTCTTCTCCTGA -CCAACATCCTTCGTCTTCTAGCGA -CCAACATCCTTCGTCTTCCACAGA -CCAACATCCTTCGTCTTCGCAAGA -CCAACATCCTTCGTCTTCGGTTGA -CCAACATCCTTCGTCTTCTCCGAT -CCAACATCCTTCGTCTTCTGGCAT -CCAACATCCTTCGTCTTCCGAGAT -CCAACATCCTTCGTCTTCTACCAC -CCAACATCCTTCGTCTTCCAGAAC -CCAACATCCTTCGTCTTCGTCTAC -CCAACATCCTTCGTCTTCACGTAC -CCAACATCCTTCGTCTTCAGTGAC -CCAACATCCTTCGTCTTCCTGTAG -CCAACATCCTTCGTCTTCCCTAAG -CCAACATCCTTCGTCTTCGTTCAG -CCAACATCCTTCGTCTTCGCATAG -CCAACATCCTTCGTCTTCGACAAG -CCAACATCCTTCGTCTTCAAGCAG -CCAACATCCTTCGTCTTCCGTCAA -CCAACATCCTTCGTCTTCGCTGAA -CCAACATCCTTCGTCTTCAGTACG -CCAACATCCTTCGTCTTCATCCGA -CCAACATCCTTCGTCTTCATGGGA -CCAACATCCTTCGTCTTCGTGCAA -CCAACATCCTTCGTCTTCGAGGAA -CCAACATCCTTCGTCTTCCAGGTA -CCAACATCCTTCGTCTTCGACTCT -CCAACATCCTTCGTCTTCAGTCCT -CCAACATCCTTCGTCTTCTAAGCC -CCAACATCCTTCGTCTTCATAGCC -CCAACATCCTTCGTCTTCTAACCG -CCAACATCCTTCGTCTTCATGCCA -CCAACATCCTTCCTCTCTGGAAAC -CCAACATCCTTCCTCTCTAACACC -CCAACATCCTTCCTCTCTATCGAG -CCAACATCCTTCCTCTCTCTCCTT -CCAACATCCTTCCTCTCTCCTGTT -CCAACATCCTTCCTCTCTCGGTTT -CCAACATCCTTCCTCTCTGTGGTT -CCAACATCCTTCCTCTCTGCCTTT -CCAACATCCTTCCTCTCTGGTCTT -CCAACATCCTTCCTCTCTACGCTT -CCAACATCCTTCCTCTCTAGCGTT -CCAACATCCTTCCTCTCTTTCGTC -CCAACATCCTTCCTCTCTTCTCTC -CCAACATCCTTCCTCTCTTGGATC -CCAACATCCTTCCTCTCTCACTTC -CCAACATCCTTCCTCTCTGTACTC -CCAACATCCTTCCTCTCTGATGTC -CCAACATCCTTCCTCTCTACAGTC -CCAACATCCTTCCTCTCTTTGCTG -CCAACATCCTTCCTCTCTTCCATG -CCAACATCCTTCCTCTCTTGTGTG -CCAACATCCTTCCTCTCTCTAGTG -CCAACATCCTTCCTCTCTCATCTG -CCAACATCCTTCCTCTCTGAGTTG -CCAACATCCTTCCTCTCTAGACTG -CCAACATCCTTCCTCTCTTCGGTA -CCAACATCCTTCCTCTCTTGCCTA -CCAACATCCTTCCTCTCTCCACTA -CCAACATCCTTCCTCTCTGGAGTA -CCAACATCCTTCCTCTCTTCGTCT -CCAACATCCTTCCTCTCTTGCACT -CCAACATCCTTCCTCTCTCTGACT -CCAACATCCTTCCTCTCTCAACCT -CCAACATCCTTCCTCTCTGCTACT -CCAACATCCTTCCTCTCTGGATCT -CCAACATCCTTCCTCTCTAAGGCT -CCAACATCCTTCCTCTCTTCAACC -CCAACATCCTTCCTCTCTTGTTCC -CCAACATCCTTCCTCTCTATTCCC -CCAACATCCTTCCTCTCTTTCTCG -CCAACATCCTTCCTCTCTTAGACG -CCAACATCCTTCCTCTCTGTAACG -CCAACATCCTTCCTCTCTACTTCG -CCAACATCCTTCCTCTCTTACGCA -CCAACATCCTTCCTCTCTCTTGCA -CCAACATCCTTCCTCTCTCGAACA -CCAACATCCTTCCTCTCTCAGTCA -CCAACATCCTTCCTCTCTGATCCA -CCAACATCCTTCCTCTCTACGACA -CCAACATCCTTCCTCTCTAGCTCA -CCAACATCCTTCCTCTCTTCACGT -CCAACATCCTTCCTCTCTCGTAGT -CCAACATCCTTCCTCTCTGTCAGT -CCAACATCCTTCCTCTCTGAAGGT -CCAACATCCTTCCTCTCTAACCGT -CCAACATCCTTCCTCTCTTTGTGC -CCAACATCCTTCCTCTCTCTAAGC -CCAACATCCTTCCTCTCTACTAGC -CCAACATCCTTCCTCTCTAGATGC -CCAACATCCTTCCTCTCTTGAAGG -CCAACATCCTTCCTCTCTCAATGG -CCAACATCCTTCCTCTCTATGAGG -CCAACATCCTTCCTCTCTAATGGG -CCAACATCCTTCCTCTCTTCCTGA -CCAACATCCTTCCTCTCTTAGCGA -CCAACATCCTTCCTCTCTCACAGA -CCAACATCCTTCCTCTCTGCAAGA -CCAACATCCTTCCTCTCTGGTTGA -CCAACATCCTTCCTCTCTTCCGAT -CCAACATCCTTCCTCTCTTGGCAT -CCAACATCCTTCCTCTCTCGAGAT -CCAACATCCTTCCTCTCTTACCAC -CCAACATCCTTCCTCTCTCAGAAC -CCAACATCCTTCCTCTCTGTCTAC -CCAACATCCTTCCTCTCTACGTAC -CCAACATCCTTCCTCTCTAGTGAC -CCAACATCCTTCCTCTCTCTGTAG -CCAACATCCTTCCTCTCTCCTAAG -CCAACATCCTTCCTCTCTGTTCAG -CCAACATCCTTCCTCTCTGCATAG -CCAACATCCTTCCTCTCTGACAAG -CCAACATCCTTCCTCTCTAAGCAG -CCAACATCCTTCCTCTCTCGTCAA -CCAACATCCTTCCTCTCTGCTGAA -CCAACATCCTTCCTCTCTAGTACG -CCAACATCCTTCCTCTCTATCCGA -CCAACATCCTTCCTCTCTATGGGA -CCAACATCCTTCCTCTCTGTGCAA -CCAACATCCTTCCTCTCTGAGGAA -CCAACATCCTTCCTCTCTCAGGTA -CCAACATCCTTCCTCTCTGACTCT -CCAACATCCTTCCTCTCTAGTCCT -CCAACATCCTTCCTCTCTTAAGCC -CCAACATCCTTCCTCTCTATAGCC -CCAACATCCTTCCTCTCTTAACCG -CCAACATCCTTCCTCTCTATGCCA -CCAACATCCTTCATCTGGGGAAAC -CCAACATCCTTCATCTGGAACACC -CCAACATCCTTCATCTGGATCGAG -CCAACATCCTTCATCTGGCTCCTT -CCAACATCCTTCATCTGGCCTGTT -CCAACATCCTTCATCTGGCGGTTT -CCAACATCCTTCATCTGGGTGGTT -CCAACATCCTTCATCTGGGCCTTT -CCAACATCCTTCATCTGGGGTCTT -CCAACATCCTTCATCTGGACGCTT -CCAACATCCTTCATCTGGAGCGTT -CCAACATCCTTCATCTGGTTCGTC -CCAACATCCTTCATCTGGTCTCTC -CCAACATCCTTCATCTGGTGGATC -CCAACATCCTTCATCTGGCACTTC -CCAACATCCTTCATCTGGGTACTC -CCAACATCCTTCATCTGGGATGTC -CCAACATCCTTCATCTGGACAGTC -CCAACATCCTTCATCTGGTTGCTG -CCAACATCCTTCATCTGGTCCATG -CCAACATCCTTCATCTGGTGTGTG -CCAACATCCTTCATCTGGCTAGTG -CCAACATCCTTCATCTGGCATCTG -CCAACATCCTTCATCTGGGAGTTG -CCAACATCCTTCATCTGGAGACTG -CCAACATCCTTCATCTGGTCGGTA -CCAACATCCTTCATCTGGTGCCTA -CCAACATCCTTCATCTGGCCACTA -CCAACATCCTTCATCTGGGGAGTA -CCAACATCCTTCATCTGGTCGTCT -CCAACATCCTTCATCTGGTGCACT -CCAACATCCTTCATCTGGCTGACT -CCAACATCCTTCATCTGGCAACCT -CCAACATCCTTCATCTGGGCTACT -CCAACATCCTTCATCTGGGGATCT -CCAACATCCTTCATCTGGAAGGCT -CCAACATCCTTCATCTGGTCAACC -CCAACATCCTTCATCTGGTGTTCC -CCAACATCCTTCATCTGGATTCCC -CCAACATCCTTCATCTGGTTCTCG -CCAACATCCTTCATCTGGTAGACG -CCAACATCCTTCATCTGGGTAACG -CCAACATCCTTCATCTGGACTTCG -CCAACATCCTTCATCTGGTACGCA -CCAACATCCTTCATCTGGCTTGCA -CCAACATCCTTCATCTGGCGAACA -CCAACATCCTTCATCTGGCAGTCA -CCAACATCCTTCATCTGGGATCCA -CCAACATCCTTCATCTGGACGACA -CCAACATCCTTCATCTGGAGCTCA -CCAACATCCTTCATCTGGTCACGT -CCAACATCCTTCATCTGGCGTAGT -CCAACATCCTTCATCTGGGTCAGT -CCAACATCCTTCATCTGGGAAGGT -CCAACATCCTTCATCTGGAACCGT -CCAACATCCTTCATCTGGTTGTGC -CCAACATCCTTCATCTGGCTAAGC -CCAACATCCTTCATCTGGACTAGC -CCAACATCCTTCATCTGGAGATGC -CCAACATCCTTCATCTGGTGAAGG -CCAACATCCTTCATCTGGCAATGG -CCAACATCCTTCATCTGGATGAGG -CCAACATCCTTCATCTGGAATGGG -CCAACATCCTTCATCTGGTCCTGA -CCAACATCCTTCATCTGGTAGCGA -CCAACATCCTTCATCTGGCACAGA -CCAACATCCTTCATCTGGGCAAGA -CCAACATCCTTCATCTGGGGTTGA -CCAACATCCTTCATCTGGTCCGAT -CCAACATCCTTCATCTGGTGGCAT -CCAACATCCTTCATCTGGCGAGAT -CCAACATCCTTCATCTGGTACCAC -CCAACATCCTTCATCTGGCAGAAC -CCAACATCCTTCATCTGGGTCTAC -CCAACATCCTTCATCTGGACGTAC -CCAACATCCTTCATCTGGAGTGAC -CCAACATCCTTCATCTGGCTGTAG -CCAACATCCTTCATCTGGCCTAAG -CCAACATCCTTCATCTGGGTTCAG -CCAACATCCTTCATCTGGGCATAG -CCAACATCCTTCATCTGGGACAAG -CCAACATCCTTCATCTGGAAGCAG -CCAACATCCTTCATCTGGCGTCAA -CCAACATCCTTCATCTGGGCTGAA -CCAACATCCTTCATCTGGAGTACG -CCAACATCCTTCATCTGGATCCGA -CCAACATCCTTCATCTGGATGGGA -CCAACATCCTTCATCTGGGTGCAA -CCAACATCCTTCATCTGGGAGGAA -CCAACATCCTTCATCTGGCAGGTA -CCAACATCCTTCATCTGGGACTCT -CCAACATCCTTCATCTGGAGTCCT -CCAACATCCTTCATCTGGTAAGCC -CCAACATCCTTCATCTGGATAGCC -CCAACATCCTTCATCTGGTAACCG -CCAACATCCTTCATCTGGATGCCA -CCAACATCCTTCTTCCACGGAAAC -CCAACATCCTTCTTCCACAACACC -CCAACATCCTTCTTCCACATCGAG -CCAACATCCTTCTTCCACCTCCTT -CCAACATCCTTCTTCCACCCTGTT -CCAACATCCTTCTTCCACCGGTTT -CCAACATCCTTCTTCCACGTGGTT -CCAACATCCTTCTTCCACGCCTTT -CCAACATCCTTCTTCCACGGTCTT -CCAACATCCTTCTTCCACACGCTT -CCAACATCCTTCTTCCACAGCGTT -CCAACATCCTTCTTCCACTTCGTC -CCAACATCCTTCTTCCACTCTCTC -CCAACATCCTTCTTCCACTGGATC -CCAACATCCTTCTTCCACCACTTC -CCAACATCCTTCTTCCACGTACTC -CCAACATCCTTCTTCCACGATGTC -CCAACATCCTTCTTCCACACAGTC -CCAACATCCTTCTTCCACTTGCTG -CCAACATCCTTCTTCCACTCCATG -CCAACATCCTTCTTCCACTGTGTG -CCAACATCCTTCTTCCACCTAGTG -CCAACATCCTTCTTCCACCATCTG -CCAACATCCTTCTTCCACGAGTTG -CCAACATCCTTCTTCCACAGACTG -CCAACATCCTTCTTCCACTCGGTA -CCAACATCCTTCTTCCACTGCCTA -CCAACATCCTTCTTCCACCCACTA -CCAACATCCTTCTTCCACGGAGTA -CCAACATCCTTCTTCCACTCGTCT -CCAACATCCTTCTTCCACTGCACT -CCAACATCCTTCTTCCACCTGACT -CCAACATCCTTCTTCCACCAACCT -CCAACATCCTTCTTCCACGCTACT -CCAACATCCTTCTTCCACGGATCT -CCAACATCCTTCTTCCACAAGGCT -CCAACATCCTTCTTCCACTCAACC -CCAACATCCTTCTTCCACTGTTCC -CCAACATCCTTCTTCCACATTCCC -CCAACATCCTTCTTCCACTTCTCG -CCAACATCCTTCTTCCACTAGACG -CCAACATCCTTCTTCCACGTAACG -CCAACATCCTTCTTCCACACTTCG -CCAACATCCTTCTTCCACTACGCA -CCAACATCCTTCTTCCACCTTGCA -CCAACATCCTTCTTCCACCGAACA -CCAACATCCTTCTTCCACCAGTCA -CCAACATCCTTCTTCCACGATCCA -CCAACATCCTTCTTCCACACGACA -CCAACATCCTTCTTCCACAGCTCA -CCAACATCCTTCTTCCACTCACGT -CCAACATCCTTCTTCCACCGTAGT -CCAACATCCTTCTTCCACGTCAGT -CCAACATCCTTCTTCCACGAAGGT -CCAACATCCTTCTTCCACAACCGT -CCAACATCCTTCTTCCACTTGTGC -CCAACATCCTTCTTCCACCTAAGC -CCAACATCCTTCTTCCACACTAGC -CCAACATCCTTCTTCCACAGATGC -CCAACATCCTTCTTCCACTGAAGG -CCAACATCCTTCTTCCACCAATGG -CCAACATCCTTCTTCCACATGAGG -CCAACATCCTTCTTCCACAATGGG -CCAACATCCTTCTTCCACTCCTGA -CCAACATCCTTCTTCCACTAGCGA -CCAACATCCTTCTTCCACCACAGA -CCAACATCCTTCTTCCACGCAAGA -CCAACATCCTTCTTCCACGGTTGA -CCAACATCCTTCTTCCACTCCGAT -CCAACATCCTTCTTCCACTGGCAT -CCAACATCCTTCTTCCACCGAGAT -CCAACATCCTTCTTCCACTACCAC -CCAACATCCTTCTTCCACCAGAAC -CCAACATCCTTCTTCCACGTCTAC -CCAACATCCTTCTTCCACACGTAC -CCAACATCCTTCTTCCACAGTGAC -CCAACATCCTTCTTCCACCTGTAG -CCAACATCCTTCTTCCACCCTAAG -CCAACATCCTTCTTCCACGTTCAG -CCAACATCCTTCTTCCACGCATAG -CCAACATCCTTCTTCCACGACAAG -CCAACATCCTTCTTCCACAAGCAG -CCAACATCCTTCTTCCACCGTCAA -CCAACATCCTTCTTCCACGCTGAA -CCAACATCCTTCTTCCACAGTACG -CCAACATCCTTCTTCCACATCCGA -CCAACATCCTTCTTCCACATGGGA -CCAACATCCTTCTTCCACGTGCAA -CCAACATCCTTCTTCCACGAGGAA -CCAACATCCTTCTTCCACCAGGTA -CCAACATCCTTCTTCCACGACTCT -CCAACATCCTTCTTCCACAGTCCT -CCAACATCCTTCTTCCACTAAGCC -CCAACATCCTTCTTCCACATAGCC -CCAACATCCTTCTTCCACTAACCG -CCAACATCCTTCTTCCACATGCCA -CCAACATCCTTCCTCGTAGGAAAC -CCAACATCCTTCCTCGTAAACACC -CCAACATCCTTCCTCGTAATCGAG -CCAACATCCTTCCTCGTACTCCTT -CCAACATCCTTCCTCGTACCTGTT -CCAACATCCTTCCTCGTACGGTTT -CCAACATCCTTCCTCGTAGTGGTT -CCAACATCCTTCCTCGTAGCCTTT -CCAACATCCTTCCTCGTAGGTCTT -CCAACATCCTTCCTCGTAACGCTT -CCAACATCCTTCCTCGTAAGCGTT -CCAACATCCTTCCTCGTATTCGTC -CCAACATCCTTCCTCGTATCTCTC -CCAACATCCTTCCTCGTATGGATC -CCAACATCCTTCCTCGTACACTTC -CCAACATCCTTCCTCGTAGTACTC -CCAACATCCTTCCTCGTAGATGTC -CCAACATCCTTCCTCGTAACAGTC -CCAACATCCTTCCTCGTATTGCTG -CCAACATCCTTCCTCGTATCCATG -CCAACATCCTTCCTCGTATGTGTG -CCAACATCCTTCCTCGTACTAGTG -CCAACATCCTTCCTCGTACATCTG -CCAACATCCTTCCTCGTAGAGTTG -CCAACATCCTTCCTCGTAAGACTG -CCAACATCCTTCCTCGTATCGGTA -CCAACATCCTTCCTCGTATGCCTA -CCAACATCCTTCCTCGTACCACTA -CCAACATCCTTCCTCGTAGGAGTA -CCAACATCCTTCCTCGTATCGTCT -CCAACATCCTTCCTCGTATGCACT -CCAACATCCTTCCTCGTACTGACT -CCAACATCCTTCCTCGTACAACCT -CCAACATCCTTCCTCGTAGCTACT -CCAACATCCTTCCTCGTAGGATCT -CCAACATCCTTCCTCGTAAAGGCT -CCAACATCCTTCCTCGTATCAACC -CCAACATCCTTCCTCGTATGTTCC -CCAACATCCTTCCTCGTAATTCCC -CCAACATCCTTCCTCGTATTCTCG -CCAACATCCTTCCTCGTATAGACG -CCAACATCCTTCCTCGTAGTAACG -CCAACATCCTTCCTCGTAACTTCG -CCAACATCCTTCCTCGTATACGCA -CCAACATCCTTCCTCGTACTTGCA -CCAACATCCTTCCTCGTACGAACA -CCAACATCCTTCCTCGTACAGTCA -CCAACATCCTTCCTCGTAGATCCA -CCAACATCCTTCCTCGTAACGACA -CCAACATCCTTCCTCGTAAGCTCA -CCAACATCCTTCCTCGTATCACGT -CCAACATCCTTCCTCGTACGTAGT -CCAACATCCTTCCTCGTAGTCAGT -CCAACATCCTTCCTCGTAGAAGGT -CCAACATCCTTCCTCGTAAACCGT -CCAACATCCTTCCTCGTATTGTGC -CCAACATCCTTCCTCGTACTAAGC -CCAACATCCTTCCTCGTAACTAGC -CCAACATCCTTCCTCGTAAGATGC -CCAACATCCTTCCTCGTATGAAGG -CCAACATCCTTCCTCGTACAATGG -CCAACATCCTTCCTCGTAATGAGG -CCAACATCCTTCCTCGTAAATGGG -CCAACATCCTTCCTCGTATCCTGA -CCAACATCCTTCCTCGTATAGCGA -CCAACATCCTTCCTCGTACACAGA -CCAACATCCTTCCTCGTAGCAAGA -CCAACATCCTTCCTCGTAGGTTGA -CCAACATCCTTCCTCGTATCCGAT -CCAACATCCTTCCTCGTATGGCAT -CCAACATCCTTCCTCGTACGAGAT -CCAACATCCTTCCTCGTATACCAC -CCAACATCCTTCCTCGTACAGAAC -CCAACATCCTTCCTCGTAGTCTAC -CCAACATCCTTCCTCGTAACGTAC -CCAACATCCTTCCTCGTAAGTGAC -CCAACATCCTTCCTCGTACTGTAG -CCAACATCCTTCCTCGTACCTAAG -CCAACATCCTTCCTCGTAGTTCAG -CCAACATCCTTCCTCGTAGCATAG -CCAACATCCTTCCTCGTAGACAAG -CCAACATCCTTCCTCGTAAAGCAG -CCAACATCCTTCCTCGTACGTCAA -CCAACATCCTTCCTCGTAGCTGAA -CCAACATCCTTCCTCGTAAGTACG -CCAACATCCTTCCTCGTAATCCGA -CCAACATCCTTCCTCGTAATGGGA -CCAACATCCTTCCTCGTAGTGCAA -CCAACATCCTTCCTCGTAGAGGAA -CCAACATCCTTCCTCGTACAGGTA -CCAACATCCTTCCTCGTAGACTCT -CCAACATCCTTCCTCGTAAGTCCT -CCAACATCCTTCCTCGTATAAGCC -CCAACATCCTTCCTCGTAATAGCC -CCAACATCCTTCCTCGTATAACCG -CCAACATCCTTCCTCGTAATGCCA -CCAACATCCTTCGTCGATGGAAAC -CCAACATCCTTCGTCGATAACACC -CCAACATCCTTCGTCGATATCGAG -CCAACATCCTTCGTCGATCTCCTT -CCAACATCCTTCGTCGATCCTGTT -CCAACATCCTTCGTCGATCGGTTT -CCAACATCCTTCGTCGATGTGGTT -CCAACATCCTTCGTCGATGCCTTT -CCAACATCCTTCGTCGATGGTCTT -CCAACATCCTTCGTCGATACGCTT -CCAACATCCTTCGTCGATAGCGTT -CCAACATCCTTCGTCGATTTCGTC -CCAACATCCTTCGTCGATTCTCTC -CCAACATCCTTCGTCGATTGGATC -CCAACATCCTTCGTCGATCACTTC -CCAACATCCTTCGTCGATGTACTC -CCAACATCCTTCGTCGATGATGTC -CCAACATCCTTCGTCGATACAGTC -CCAACATCCTTCGTCGATTTGCTG -CCAACATCCTTCGTCGATTCCATG -CCAACATCCTTCGTCGATTGTGTG -CCAACATCCTTCGTCGATCTAGTG -CCAACATCCTTCGTCGATCATCTG -CCAACATCCTTCGTCGATGAGTTG -CCAACATCCTTCGTCGATAGACTG -CCAACATCCTTCGTCGATTCGGTA -CCAACATCCTTCGTCGATTGCCTA -CCAACATCCTTCGTCGATCCACTA -CCAACATCCTTCGTCGATGGAGTA -CCAACATCCTTCGTCGATTCGTCT -CCAACATCCTTCGTCGATTGCACT -CCAACATCCTTCGTCGATCTGACT -CCAACATCCTTCGTCGATCAACCT -CCAACATCCTTCGTCGATGCTACT -CCAACATCCTTCGTCGATGGATCT -CCAACATCCTTCGTCGATAAGGCT -CCAACATCCTTCGTCGATTCAACC -CCAACATCCTTCGTCGATTGTTCC -CCAACATCCTTCGTCGATATTCCC -CCAACATCCTTCGTCGATTTCTCG -CCAACATCCTTCGTCGATTAGACG -CCAACATCCTTCGTCGATGTAACG -CCAACATCCTTCGTCGATACTTCG -CCAACATCCTTCGTCGATTACGCA -CCAACATCCTTCGTCGATCTTGCA -CCAACATCCTTCGTCGATCGAACA -CCAACATCCTTCGTCGATCAGTCA -CCAACATCCTTCGTCGATGATCCA -CCAACATCCTTCGTCGATACGACA -CCAACATCCTTCGTCGATAGCTCA -CCAACATCCTTCGTCGATTCACGT -CCAACATCCTTCGTCGATCGTAGT -CCAACATCCTTCGTCGATGTCAGT -CCAACATCCTTCGTCGATGAAGGT -CCAACATCCTTCGTCGATAACCGT -CCAACATCCTTCGTCGATTTGTGC -CCAACATCCTTCGTCGATCTAAGC -CCAACATCCTTCGTCGATACTAGC -CCAACATCCTTCGTCGATAGATGC -CCAACATCCTTCGTCGATTGAAGG -CCAACATCCTTCGTCGATCAATGG -CCAACATCCTTCGTCGATATGAGG -CCAACATCCTTCGTCGATAATGGG -CCAACATCCTTCGTCGATTCCTGA -CCAACATCCTTCGTCGATTAGCGA -CCAACATCCTTCGTCGATCACAGA -CCAACATCCTTCGTCGATGCAAGA -CCAACATCCTTCGTCGATGGTTGA -CCAACATCCTTCGTCGATTCCGAT -CCAACATCCTTCGTCGATTGGCAT -CCAACATCCTTCGTCGATCGAGAT -CCAACATCCTTCGTCGATTACCAC -CCAACATCCTTCGTCGATCAGAAC -CCAACATCCTTCGTCGATGTCTAC -CCAACATCCTTCGTCGATACGTAC -CCAACATCCTTCGTCGATAGTGAC -CCAACATCCTTCGTCGATCTGTAG -CCAACATCCTTCGTCGATCCTAAG -CCAACATCCTTCGTCGATGTTCAG -CCAACATCCTTCGTCGATGCATAG -CCAACATCCTTCGTCGATGACAAG -CCAACATCCTTCGTCGATAAGCAG -CCAACATCCTTCGTCGATCGTCAA -CCAACATCCTTCGTCGATGCTGAA -CCAACATCCTTCGTCGATAGTACG -CCAACATCCTTCGTCGATATCCGA -CCAACATCCTTCGTCGATATGGGA -CCAACATCCTTCGTCGATGTGCAA -CCAACATCCTTCGTCGATGAGGAA -CCAACATCCTTCGTCGATCAGGTA -CCAACATCCTTCGTCGATGACTCT -CCAACATCCTTCGTCGATAGTCCT -CCAACATCCTTCGTCGATTAAGCC -CCAACATCCTTCGTCGATATAGCC -CCAACATCCTTCGTCGATTAACCG -CCAACATCCTTCGTCGATATGCCA -CCAACATCCTTCGTCACAGGAAAC -CCAACATCCTTCGTCACAAACACC -CCAACATCCTTCGTCACAATCGAG -CCAACATCCTTCGTCACACTCCTT -CCAACATCCTTCGTCACACCTGTT -CCAACATCCTTCGTCACACGGTTT -CCAACATCCTTCGTCACAGTGGTT -CCAACATCCTTCGTCACAGCCTTT -CCAACATCCTTCGTCACAGGTCTT -CCAACATCCTTCGTCACAACGCTT -CCAACATCCTTCGTCACAAGCGTT -CCAACATCCTTCGTCACATTCGTC -CCAACATCCTTCGTCACATCTCTC -CCAACATCCTTCGTCACATGGATC -CCAACATCCTTCGTCACACACTTC -CCAACATCCTTCGTCACAGTACTC -CCAACATCCTTCGTCACAGATGTC -CCAACATCCTTCGTCACAACAGTC -CCAACATCCTTCGTCACATTGCTG -CCAACATCCTTCGTCACATCCATG -CCAACATCCTTCGTCACATGTGTG -CCAACATCCTTCGTCACACTAGTG -CCAACATCCTTCGTCACACATCTG -CCAACATCCTTCGTCACAGAGTTG -CCAACATCCTTCGTCACAAGACTG -CCAACATCCTTCGTCACATCGGTA -CCAACATCCTTCGTCACATGCCTA -CCAACATCCTTCGTCACACCACTA -CCAACATCCTTCGTCACAGGAGTA -CCAACATCCTTCGTCACATCGTCT -CCAACATCCTTCGTCACATGCACT -CCAACATCCTTCGTCACACTGACT -CCAACATCCTTCGTCACACAACCT -CCAACATCCTTCGTCACAGCTACT -CCAACATCCTTCGTCACAGGATCT -CCAACATCCTTCGTCACAAAGGCT -CCAACATCCTTCGTCACATCAACC -CCAACATCCTTCGTCACATGTTCC -CCAACATCCTTCGTCACAATTCCC -CCAACATCCTTCGTCACATTCTCG -CCAACATCCTTCGTCACATAGACG -CCAACATCCTTCGTCACAGTAACG -CCAACATCCTTCGTCACAACTTCG -CCAACATCCTTCGTCACATACGCA -CCAACATCCTTCGTCACACTTGCA -CCAACATCCTTCGTCACACGAACA -CCAACATCCTTCGTCACACAGTCA -CCAACATCCTTCGTCACAGATCCA -CCAACATCCTTCGTCACAACGACA -CCAACATCCTTCGTCACAAGCTCA -CCAACATCCTTCGTCACATCACGT -CCAACATCCTTCGTCACACGTAGT -CCAACATCCTTCGTCACAGTCAGT -CCAACATCCTTCGTCACAGAAGGT -CCAACATCCTTCGTCACAAACCGT -CCAACATCCTTCGTCACATTGTGC -CCAACATCCTTCGTCACACTAAGC -CCAACATCCTTCGTCACAACTAGC -CCAACATCCTTCGTCACAAGATGC -CCAACATCCTTCGTCACATGAAGG -CCAACATCCTTCGTCACACAATGG -CCAACATCCTTCGTCACAATGAGG -CCAACATCCTTCGTCACAAATGGG -CCAACATCCTTCGTCACATCCTGA -CCAACATCCTTCGTCACATAGCGA -CCAACATCCTTCGTCACACACAGA -CCAACATCCTTCGTCACAGCAAGA -CCAACATCCTTCGTCACAGGTTGA -CCAACATCCTTCGTCACATCCGAT -CCAACATCCTTCGTCACATGGCAT -CCAACATCCTTCGTCACACGAGAT -CCAACATCCTTCGTCACATACCAC -CCAACATCCTTCGTCACACAGAAC -CCAACATCCTTCGTCACAGTCTAC -CCAACATCCTTCGTCACAACGTAC -CCAACATCCTTCGTCACAAGTGAC -CCAACATCCTTCGTCACACTGTAG -CCAACATCCTTCGTCACACCTAAG -CCAACATCCTTCGTCACAGTTCAG -CCAACATCCTTCGTCACAGCATAG -CCAACATCCTTCGTCACAGACAAG -CCAACATCCTTCGTCACAAAGCAG -CCAACATCCTTCGTCACACGTCAA -CCAACATCCTTCGTCACAGCTGAA -CCAACATCCTTCGTCACAAGTACG -CCAACATCCTTCGTCACAATCCGA -CCAACATCCTTCGTCACAATGGGA -CCAACATCCTTCGTCACAGTGCAA -CCAACATCCTTCGTCACAGAGGAA -CCAACATCCTTCGTCACACAGGTA -CCAACATCCTTCGTCACAGACTCT -CCAACATCCTTCGTCACAAGTCCT -CCAACATCCTTCGTCACATAAGCC -CCAACATCCTTCGTCACAATAGCC -CCAACATCCTTCGTCACATAACCG -CCAACATCCTTCGTCACAATGCCA -CCAACATCCTTCCTGTTGGGAAAC -CCAACATCCTTCCTGTTGAACACC -CCAACATCCTTCCTGTTGATCGAG -CCAACATCCTTCCTGTTGCTCCTT -CCAACATCCTTCCTGTTGCCTGTT -CCAACATCCTTCCTGTTGCGGTTT -CCAACATCCTTCCTGTTGGTGGTT -CCAACATCCTTCCTGTTGGCCTTT -CCAACATCCTTCCTGTTGGGTCTT -CCAACATCCTTCCTGTTGACGCTT -CCAACATCCTTCCTGTTGAGCGTT -CCAACATCCTTCCTGTTGTTCGTC -CCAACATCCTTCCTGTTGTCTCTC -CCAACATCCTTCCTGTTGTGGATC -CCAACATCCTTCCTGTTGCACTTC -CCAACATCCTTCCTGTTGGTACTC -CCAACATCCTTCCTGTTGGATGTC -CCAACATCCTTCCTGTTGACAGTC -CCAACATCCTTCCTGTTGTTGCTG -CCAACATCCTTCCTGTTGTCCATG -CCAACATCCTTCCTGTTGTGTGTG -CCAACATCCTTCCTGTTGCTAGTG -CCAACATCCTTCCTGTTGCATCTG -CCAACATCCTTCCTGTTGGAGTTG -CCAACATCCTTCCTGTTGAGACTG -CCAACATCCTTCCTGTTGTCGGTA -CCAACATCCTTCCTGTTGTGCCTA -CCAACATCCTTCCTGTTGCCACTA -CCAACATCCTTCCTGTTGGGAGTA -CCAACATCCTTCCTGTTGTCGTCT -CCAACATCCTTCCTGTTGTGCACT -CCAACATCCTTCCTGTTGCTGACT -CCAACATCCTTCCTGTTGCAACCT -CCAACATCCTTCCTGTTGGCTACT -CCAACATCCTTCCTGTTGGGATCT -CCAACATCCTTCCTGTTGAAGGCT -CCAACATCCTTCCTGTTGTCAACC -CCAACATCCTTCCTGTTGTGTTCC -CCAACATCCTTCCTGTTGATTCCC -CCAACATCCTTCCTGTTGTTCTCG -CCAACATCCTTCCTGTTGTAGACG -CCAACATCCTTCCTGTTGGTAACG -CCAACATCCTTCCTGTTGACTTCG -CCAACATCCTTCCTGTTGTACGCA -CCAACATCCTTCCTGTTGCTTGCA -CCAACATCCTTCCTGTTGCGAACA -CCAACATCCTTCCTGTTGCAGTCA -CCAACATCCTTCCTGTTGGATCCA -CCAACATCCTTCCTGTTGACGACA -CCAACATCCTTCCTGTTGAGCTCA -CCAACATCCTTCCTGTTGTCACGT -CCAACATCCTTCCTGTTGCGTAGT -CCAACATCCTTCCTGTTGGTCAGT -CCAACATCCTTCCTGTTGGAAGGT -CCAACATCCTTCCTGTTGAACCGT -CCAACATCCTTCCTGTTGTTGTGC -CCAACATCCTTCCTGTTGCTAAGC -CCAACATCCTTCCTGTTGACTAGC -CCAACATCCTTCCTGTTGAGATGC -CCAACATCCTTCCTGTTGTGAAGG -CCAACATCCTTCCTGTTGCAATGG -CCAACATCCTTCCTGTTGATGAGG -CCAACATCCTTCCTGTTGAATGGG -CCAACATCCTTCCTGTTGTCCTGA -CCAACATCCTTCCTGTTGTAGCGA -CCAACATCCTTCCTGTTGCACAGA -CCAACATCCTTCCTGTTGGCAAGA -CCAACATCCTTCCTGTTGGGTTGA -CCAACATCCTTCCTGTTGTCCGAT -CCAACATCCTTCCTGTTGTGGCAT -CCAACATCCTTCCTGTTGCGAGAT -CCAACATCCTTCCTGTTGTACCAC -CCAACATCCTTCCTGTTGCAGAAC -CCAACATCCTTCCTGTTGGTCTAC -CCAACATCCTTCCTGTTGACGTAC -CCAACATCCTTCCTGTTGAGTGAC -CCAACATCCTTCCTGTTGCTGTAG -CCAACATCCTTCCTGTTGCCTAAG -CCAACATCCTTCCTGTTGGTTCAG -CCAACATCCTTCCTGTTGGCATAG -CCAACATCCTTCCTGTTGGACAAG -CCAACATCCTTCCTGTTGAAGCAG -CCAACATCCTTCCTGTTGCGTCAA -CCAACATCCTTCCTGTTGGCTGAA -CCAACATCCTTCCTGTTGAGTACG -CCAACATCCTTCCTGTTGATCCGA -CCAACATCCTTCCTGTTGATGGGA -CCAACATCCTTCCTGTTGGTGCAA -CCAACATCCTTCCTGTTGGAGGAA -CCAACATCCTTCCTGTTGCAGGTA -CCAACATCCTTCCTGTTGGACTCT -CCAACATCCTTCCTGTTGAGTCCT -CCAACATCCTTCCTGTTGTAAGCC -CCAACATCCTTCCTGTTGATAGCC -CCAACATCCTTCCTGTTGTAACCG -CCAACATCCTTCCTGTTGATGCCA -CCAACATCCTTCATGTCCGGAAAC -CCAACATCCTTCATGTCCAACACC -CCAACATCCTTCATGTCCATCGAG -CCAACATCCTTCATGTCCCTCCTT -CCAACATCCTTCATGTCCCCTGTT -CCAACATCCTTCATGTCCCGGTTT -CCAACATCCTTCATGTCCGTGGTT -CCAACATCCTTCATGTCCGCCTTT -CCAACATCCTTCATGTCCGGTCTT -CCAACATCCTTCATGTCCACGCTT -CCAACATCCTTCATGTCCAGCGTT -CCAACATCCTTCATGTCCTTCGTC -CCAACATCCTTCATGTCCTCTCTC -CCAACATCCTTCATGTCCTGGATC -CCAACATCCTTCATGTCCCACTTC -CCAACATCCTTCATGTCCGTACTC -CCAACATCCTTCATGTCCGATGTC -CCAACATCCTTCATGTCCACAGTC -CCAACATCCTTCATGTCCTTGCTG -CCAACATCCTTCATGTCCTCCATG -CCAACATCCTTCATGTCCTGTGTG -CCAACATCCTTCATGTCCCTAGTG -CCAACATCCTTCATGTCCCATCTG -CCAACATCCTTCATGTCCGAGTTG -CCAACATCCTTCATGTCCAGACTG -CCAACATCCTTCATGTCCTCGGTA -CCAACATCCTTCATGTCCTGCCTA -CCAACATCCTTCATGTCCCCACTA -CCAACATCCTTCATGTCCGGAGTA -CCAACATCCTTCATGTCCTCGTCT -CCAACATCCTTCATGTCCTGCACT -CCAACATCCTTCATGTCCCTGACT -CCAACATCCTTCATGTCCCAACCT -CCAACATCCTTCATGTCCGCTACT -CCAACATCCTTCATGTCCGGATCT -CCAACATCCTTCATGTCCAAGGCT -CCAACATCCTTCATGTCCTCAACC -CCAACATCCTTCATGTCCTGTTCC -CCAACATCCTTCATGTCCATTCCC -CCAACATCCTTCATGTCCTTCTCG -CCAACATCCTTCATGTCCTAGACG -CCAACATCCTTCATGTCCGTAACG -CCAACATCCTTCATGTCCACTTCG -CCAACATCCTTCATGTCCTACGCA -CCAACATCCTTCATGTCCCTTGCA -CCAACATCCTTCATGTCCCGAACA -CCAACATCCTTCATGTCCCAGTCA -CCAACATCCTTCATGTCCGATCCA -CCAACATCCTTCATGTCCACGACA -CCAACATCCTTCATGTCCAGCTCA -CCAACATCCTTCATGTCCTCACGT -CCAACATCCTTCATGTCCCGTAGT -CCAACATCCTTCATGTCCGTCAGT -CCAACATCCTTCATGTCCGAAGGT -CCAACATCCTTCATGTCCAACCGT -CCAACATCCTTCATGTCCTTGTGC -CCAACATCCTTCATGTCCCTAAGC -CCAACATCCTTCATGTCCACTAGC -CCAACATCCTTCATGTCCAGATGC -CCAACATCCTTCATGTCCTGAAGG -CCAACATCCTTCATGTCCCAATGG -CCAACATCCTTCATGTCCATGAGG -CCAACATCCTTCATGTCCAATGGG -CCAACATCCTTCATGTCCTCCTGA -CCAACATCCTTCATGTCCTAGCGA -CCAACATCCTTCATGTCCCACAGA -CCAACATCCTTCATGTCCGCAAGA -CCAACATCCTTCATGTCCGGTTGA -CCAACATCCTTCATGTCCTCCGAT -CCAACATCCTTCATGTCCTGGCAT -CCAACATCCTTCATGTCCCGAGAT -CCAACATCCTTCATGTCCTACCAC -CCAACATCCTTCATGTCCCAGAAC -CCAACATCCTTCATGTCCGTCTAC -CCAACATCCTTCATGTCCACGTAC -CCAACATCCTTCATGTCCAGTGAC -CCAACATCCTTCATGTCCCTGTAG -CCAACATCCTTCATGTCCCCTAAG -CCAACATCCTTCATGTCCGTTCAG -CCAACATCCTTCATGTCCGCATAG -CCAACATCCTTCATGTCCGACAAG -CCAACATCCTTCATGTCCAAGCAG -CCAACATCCTTCATGTCCCGTCAA -CCAACATCCTTCATGTCCGCTGAA -CCAACATCCTTCATGTCCAGTACG -CCAACATCCTTCATGTCCATCCGA -CCAACATCCTTCATGTCCATGGGA -CCAACATCCTTCATGTCCGTGCAA -CCAACATCCTTCATGTCCGAGGAA -CCAACATCCTTCATGTCCCAGGTA -CCAACATCCTTCATGTCCGACTCT -CCAACATCCTTCATGTCCAGTCCT -CCAACATCCTTCATGTCCTAAGCC -CCAACATCCTTCATGTCCATAGCC -CCAACATCCTTCATGTCCTAACCG -CCAACATCCTTCATGTCCATGCCA -CCAACATCCTTCGTGTGTGGAAAC -CCAACATCCTTCGTGTGTAACACC -CCAACATCCTTCGTGTGTATCGAG -CCAACATCCTTCGTGTGTCTCCTT -CCAACATCCTTCGTGTGTCCTGTT -CCAACATCCTTCGTGTGTCGGTTT -CCAACATCCTTCGTGTGTGTGGTT -CCAACATCCTTCGTGTGTGCCTTT -CCAACATCCTTCGTGTGTGGTCTT -CCAACATCCTTCGTGTGTACGCTT -CCAACATCCTTCGTGTGTAGCGTT -CCAACATCCTTCGTGTGTTTCGTC -CCAACATCCTTCGTGTGTTCTCTC -CCAACATCCTTCGTGTGTTGGATC -CCAACATCCTTCGTGTGTCACTTC -CCAACATCCTTCGTGTGTGTACTC -CCAACATCCTTCGTGTGTGATGTC -CCAACATCCTTCGTGTGTACAGTC -CCAACATCCTTCGTGTGTTTGCTG -CCAACATCCTTCGTGTGTTCCATG -CCAACATCCTTCGTGTGTTGTGTG -CCAACATCCTTCGTGTGTCTAGTG -CCAACATCCTTCGTGTGTCATCTG -CCAACATCCTTCGTGTGTGAGTTG -CCAACATCCTTCGTGTGTAGACTG -CCAACATCCTTCGTGTGTTCGGTA -CCAACATCCTTCGTGTGTTGCCTA -CCAACATCCTTCGTGTGTCCACTA -CCAACATCCTTCGTGTGTGGAGTA -CCAACATCCTTCGTGTGTTCGTCT -CCAACATCCTTCGTGTGTTGCACT -CCAACATCCTTCGTGTGTCTGACT -CCAACATCCTTCGTGTGTCAACCT -CCAACATCCTTCGTGTGTGCTACT -CCAACATCCTTCGTGTGTGGATCT -CCAACATCCTTCGTGTGTAAGGCT -CCAACATCCTTCGTGTGTTCAACC -CCAACATCCTTCGTGTGTTGTTCC -CCAACATCCTTCGTGTGTATTCCC -CCAACATCCTTCGTGTGTTTCTCG -CCAACATCCTTCGTGTGTTAGACG -CCAACATCCTTCGTGTGTGTAACG -CCAACATCCTTCGTGTGTACTTCG -CCAACATCCTTCGTGTGTTACGCA -CCAACATCCTTCGTGTGTCTTGCA -CCAACATCCTTCGTGTGTCGAACA -CCAACATCCTTCGTGTGTCAGTCA -CCAACATCCTTCGTGTGTGATCCA -CCAACATCCTTCGTGTGTACGACA -CCAACATCCTTCGTGTGTAGCTCA -CCAACATCCTTCGTGTGTTCACGT -CCAACATCCTTCGTGTGTCGTAGT -CCAACATCCTTCGTGTGTGTCAGT -CCAACATCCTTCGTGTGTGAAGGT -CCAACATCCTTCGTGTGTAACCGT -CCAACATCCTTCGTGTGTTTGTGC -CCAACATCCTTCGTGTGTCTAAGC -CCAACATCCTTCGTGTGTACTAGC -CCAACATCCTTCGTGTGTAGATGC -CCAACATCCTTCGTGTGTTGAAGG -CCAACATCCTTCGTGTGTCAATGG -CCAACATCCTTCGTGTGTATGAGG -CCAACATCCTTCGTGTGTAATGGG -CCAACATCCTTCGTGTGTTCCTGA -CCAACATCCTTCGTGTGTTAGCGA -CCAACATCCTTCGTGTGTCACAGA -CCAACATCCTTCGTGTGTGCAAGA -CCAACATCCTTCGTGTGTGGTTGA -CCAACATCCTTCGTGTGTTCCGAT -CCAACATCCTTCGTGTGTTGGCAT -CCAACATCCTTCGTGTGTCGAGAT -CCAACATCCTTCGTGTGTTACCAC -CCAACATCCTTCGTGTGTCAGAAC -CCAACATCCTTCGTGTGTGTCTAC -CCAACATCCTTCGTGTGTACGTAC -CCAACATCCTTCGTGTGTAGTGAC -CCAACATCCTTCGTGTGTCTGTAG -CCAACATCCTTCGTGTGTCCTAAG -CCAACATCCTTCGTGTGTGTTCAG -CCAACATCCTTCGTGTGTGCATAG -CCAACATCCTTCGTGTGTGACAAG -CCAACATCCTTCGTGTGTAAGCAG -CCAACATCCTTCGTGTGTCGTCAA -CCAACATCCTTCGTGTGTGCTGAA -CCAACATCCTTCGTGTGTAGTACG -CCAACATCCTTCGTGTGTATCCGA -CCAACATCCTTCGTGTGTATGGGA -CCAACATCCTTCGTGTGTGTGCAA -CCAACATCCTTCGTGTGTGAGGAA -CCAACATCCTTCGTGTGTCAGGTA -CCAACATCCTTCGTGTGTGACTCT -CCAACATCCTTCGTGTGTAGTCCT -CCAACATCCTTCGTGTGTTAAGCC -CCAACATCCTTCGTGTGTATAGCC -CCAACATCCTTCGTGTGTTAACCG -CCAACATCCTTCGTGTGTATGCCA -CCAACATCCTTCGTGCTAGGAAAC -CCAACATCCTTCGTGCTAAACACC -CCAACATCCTTCGTGCTAATCGAG -CCAACATCCTTCGTGCTACTCCTT -CCAACATCCTTCGTGCTACCTGTT -CCAACATCCTTCGTGCTACGGTTT -CCAACATCCTTCGTGCTAGTGGTT -CCAACATCCTTCGTGCTAGCCTTT -CCAACATCCTTCGTGCTAGGTCTT -CCAACATCCTTCGTGCTAACGCTT -CCAACATCCTTCGTGCTAAGCGTT -CCAACATCCTTCGTGCTATTCGTC -CCAACATCCTTCGTGCTATCTCTC -CCAACATCCTTCGTGCTATGGATC -CCAACATCCTTCGTGCTACACTTC -CCAACATCCTTCGTGCTAGTACTC -CCAACATCCTTCGTGCTAGATGTC -CCAACATCCTTCGTGCTAACAGTC -CCAACATCCTTCGTGCTATTGCTG -CCAACATCCTTCGTGCTATCCATG -CCAACATCCTTCGTGCTATGTGTG -CCAACATCCTTCGTGCTACTAGTG -CCAACATCCTTCGTGCTACATCTG -CCAACATCCTTCGTGCTAGAGTTG -CCAACATCCTTCGTGCTAAGACTG -CCAACATCCTTCGTGCTATCGGTA -CCAACATCCTTCGTGCTATGCCTA -CCAACATCCTTCGTGCTACCACTA -CCAACATCCTTCGTGCTAGGAGTA -CCAACATCCTTCGTGCTATCGTCT -CCAACATCCTTCGTGCTATGCACT -CCAACATCCTTCGTGCTACTGACT -CCAACATCCTTCGTGCTACAACCT -CCAACATCCTTCGTGCTAGCTACT -CCAACATCCTTCGTGCTAGGATCT -CCAACATCCTTCGTGCTAAAGGCT -CCAACATCCTTCGTGCTATCAACC -CCAACATCCTTCGTGCTATGTTCC -CCAACATCCTTCGTGCTAATTCCC -CCAACATCCTTCGTGCTATTCTCG -CCAACATCCTTCGTGCTATAGACG -CCAACATCCTTCGTGCTAGTAACG -CCAACATCCTTCGTGCTAACTTCG -CCAACATCCTTCGTGCTATACGCA -CCAACATCCTTCGTGCTACTTGCA -CCAACATCCTTCGTGCTACGAACA -CCAACATCCTTCGTGCTACAGTCA -CCAACATCCTTCGTGCTAGATCCA -CCAACATCCTTCGTGCTAACGACA -CCAACATCCTTCGTGCTAAGCTCA -CCAACATCCTTCGTGCTATCACGT -CCAACATCCTTCGTGCTACGTAGT -CCAACATCCTTCGTGCTAGTCAGT -CCAACATCCTTCGTGCTAGAAGGT -CCAACATCCTTCGTGCTAAACCGT -CCAACATCCTTCGTGCTATTGTGC -CCAACATCCTTCGTGCTACTAAGC -CCAACATCCTTCGTGCTAACTAGC -CCAACATCCTTCGTGCTAAGATGC -CCAACATCCTTCGTGCTATGAAGG -CCAACATCCTTCGTGCTACAATGG -CCAACATCCTTCGTGCTAATGAGG -CCAACATCCTTCGTGCTAAATGGG -CCAACATCCTTCGTGCTATCCTGA -CCAACATCCTTCGTGCTATAGCGA -CCAACATCCTTCGTGCTACACAGA -CCAACATCCTTCGTGCTAGCAAGA -CCAACATCCTTCGTGCTAGGTTGA -CCAACATCCTTCGTGCTATCCGAT -CCAACATCCTTCGTGCTATGGCAT -CCAACATCCTTCGTGCTACGAGAT -CCAACATCCTTCGTGCTATACCAC -CCAACATCCTTCGTGCTACAGAAC -CCAACATCCTTCGTGCTAGTCTAC -CCAACATCCTTCGTGCTAACGTAC -CCAACATCCTTCGTGCTAAGTGAC -CCAACATCCTTCGTGCTACTGTAG -CCAACATCCTTCGTGCTACCTAAG -CCAACATCCTTCGTGCTAGTTCAG -CCAACATCCTTCGTGCTAGCATAG -CCAACATCCTTCGTGCTAGACAAG -CCAACATCCTTCGTGCTAAAGCAG -CCAACATCCTTCGTGCTACGTCAA -CCAACATCCTTCGTGCTAGCTGAA -CCAACATCCTTCGTGCTAAGTACG -CCAACATCCTTCGTGCTAATCCGA -CCAACATCCTTCGTGCTAATGGGA -CCAACATCCTTCGTGCTAGTGCAA -CCAACATCCTTCGTGCTAGAGGAA -CCAACATCCTTCGTGCTACAGGTA -CCAACATCCTTCGTGCTAGACTCT -CCAACATCCTTCGTGCTAAGTCCT -CCAACATCCTTCGTGCTATAAGCC -CCAACATCCTTCGTGCTAATAGCC -CCAACATCCTTCGTGCTATAACCG -CCAACATCCTTCGTGCTAATGCCA -CCAACATCCTTCCTGCATGGAAAC -CCAACATCCTTCCTGCATAACACC -CCAACATCCTTCCTGCATATCGAG -CCAACATCCTTCCTGCATCTCCTT -CCAACATCCTTCCTGCATCCTGTT -CCAACATCCTTCCTGCATCGGTTT -CCAACATCCTTCCTGCATGTGGTT -CCAACATCCTTCCTGCATGCCTTT -CCAACATCCTTCCTGCATGGTCTT -CCAACATCCTTCCTGCATACGCTT -CCAACATCCTTCCTGCATAGCGTT -CCAACATCCTTCCTGCATTTCGTC -CCAACATCCTTCCTGCATTCTCTC -CCAACATCCTTCCTGCATTGGATC -CCAACATCCTTCCTGCATCACTTC -CCAACATCCTTCCTGCATGTACTC -CCAACATCCTTCCTGCATGATGTC -CCAACATCCTTCCTGCATACAGTC -CCAACATCCTTCCTGCATTTGCTG -CCAACATCCTTCCTGCATTCCATG -CCAACATCCTTCCTGCATTGTGTG -CCAACATCCTTCCTGCATCTAGTG -CCAACATCCTTCCTGCATCATCTG -CCAACATCCTTCCTGCATGAGTTG -CCAACATCCTTCCTGCATAGACTG -CCAACATCCTTCCTGCATTCGGTA -CCAACATCCTTCCTGCATTGCCTA -CCAACATCCTTCCTGCATCCACTA -CCAACATCCTTCCTGCATGGAGTA -CCAACATCCTTCCTGCATTCGTCT -CCAACATCCTTCCTGCATTGCACT -CCAACATCCTTCCTGCATCTGACT -CCAACATCCTTCCTGCATCAACCT -CCAACATCCTTCCTGCATGCTACT -CCAACATCCTTCCTGCATGGATCT -CCAACATCCTTCCTGCATAAGGCT -CCAACATCCTTCCTGCATTCAACC -CCAACATCCTTCCTGCATTGTTCC -CCAACATCCTTCCTGCATATTCCC -CCAACATCCTTCCTGCATTTCTCG -CCAACATCCTTCCTGCATTAGACG -CCAACATCCTTCCTGCATGTAACG -CCAACATCCTTCCTGCATACTTCG -CCAACATCCTTCCTGCATTACGCA -CCAACATCCTTCCTGCATCTTGCA -CCAACATCCTTCCTGCATCGAACA -CCAACATCCTTCCTGCATCAGTCA -CCAACATCCTTCCTGCATGATCCA -CCAACATCCTTCCTGCATACGACA -CCAACATCCTTCCTGCATAGCTCA -CCAACATCCTTCCTGCATTCACGT -CCAACATCCTTCCTGCATCGTAGT -CCAACATCCTTCCTGCATGTCAGT -CCAACATCCTTCCTGCATGAAGGT -CCAACATCCTTCCTGCATAACCGT -CCAACATCCTTCCTGCATTTGTGC -CCAACATCCTTCCTGCATCTAAGC -CCAACATCCTTCCTGCATACTAGC -CCAACATCCTTCCTGCATAGATGC -CCAACATCCTTCCTGCATTGAAGG -CCAACATCCTTCCTGCATCAATGG -CCAACATCCTTCCTGCATATGAGG -CCAACATCCTTCCTGCATAATGGG -CCAACATCCTTCCTGCATTCCTGA -CCAACATCCTTCCTGCATTAGCGA -CCAACATCCTTCCTGCATCACAGA -CCAACATCCTTCCTGCATGCAAGA -CCAACATCCTTCCTGCATGGTTGA -CCAACATCCTTCCTGCATTCCGAT -CCAACATCCTTCCTGCATTGGCAT -CCAACATCCTTCCTGCATCGAGAT -CCAACATCCTTCCTGCATTACCAC -CCAACATCCTTCCTGCATCAGAAC -CCAACATCCTTCCTGCATGTCTAC -CCAACATCCTTCCTGCATACGTAC -CCAACATCCTTCCTGCATAGTGAC -CCAACATCCTTCCTGCATCTGTAG -CCAACATCCTTCCTGCATCCTAAG -CCAACATCCTTCCTGCATGTTCAG -CCAACATCCTTCCTGCATGCATAG -CCAACATCCTTCCTGCATGACAAG -CCAACATCCTTCCTGCATAAGCAG -CCAACATCCTTCCTGCATCGTCAA -CCAACATCCTTCCTGCATGCTGAA -CCAACATCCTTCCTGCATAGTACG -CCAACATCCTTCCTGCATATCCGA -CCAACATCCTTCCTGCATATGGGA -CCAACATCCTTCCTGCATGTGCAA -CCAACATCCTTCCTGCATGAGGAA -CCAACATCCTTCCTGCATCAGGTA -CCAACATCCTTCCTGCATGACTCT -CCAACATCCTTCCTGCATAGTCCT -CCAACATCCTTCCTGCATTAAGCC -CCAACATCCTTCCTGCATATAGCC -CCAACATCCTTCCTGCATTAACCG -CCAACATCCTTCCTGCATATGCCA -CCAACATCCTTCTTGGAGGGAAAC -CCAACATCCTTCTTGGAGAACACC -CCAACATCCTTCTTGGAGATCGAG -CCAACATCCTTCTTGGAGCTCCTT -CCAACATCCTTCTTGGAGCCTGTT -CCAACATCCTTCTTGGAGCGGTTT -CCAACATCCTTCTTGGAGGTGGTT -CCAACATCCTTCTTGGAGGCCTTT -CCAACATCCTTCTTGGAGGGTCTT -CCAACATCCTTCTTGGAGACGCTT -CCAACATCCTTCTTGGAGAGCGTT -CCAACATCCTTCTTGGAGTTCGTC -CCAACATCCTTCTTGGAGTCTCTC -CCAACATCCTTCTTGGAGTGGATC -CCAACATCCTTCTTGGAGCACTTC -CCAACATCCTTCTTGGAGGTACTC -CCAACATCCTTCTTGGAGGATGTC -CCAACATCCTTCTTGGAGACAGTC -CCAACATCCTTCTTGGAGTTGCTG -CCAACATCCTTCTTGGAGTCCATG -CCAACATCCTTCTTGGAGTGTGTG -CCAACATCCTTCTTGGAGCTAGTG -CCAACATCCTTCTTGGAGCATCTG -CCAACATCCTTCTTGGAGGAGTTG -CCAACATCCTTCTTGGAGAGACTG -CCAACATCCTTCTTGGAGTCGGTA -CCAACATCCTTCTTGGAGTGCCTA -CCAACATCCTTCTTGGAGCCACTA -CCAACATCCTTCTTGGAGGGAGTA -CCAACATCCTTCTTGGAGTCGTCT -CCAACATCCTTCTTGGAGTGCACT -CCAACATCCTTCTTGGAGCTGACT -CCAACATCCTTCTTGGAGCAACCT -CCAACATCCTTCTTGGAGGCTACT -CCAACATCCTTCTTGGAGGGATCT -CCAACATCCTTCTTGGAGAAGGCT -CCAACATCCTTCTTGGAGTCAACC -CCAACATCCTTCTTGGAGTGTTCC -CCAACATCCTTCTTGGAGATTCCC -CCAACATCCTTCTTGGAGTTCTCG -CCAACATCCTTCTTGGAGTAGACG -CCAACATCCTTCTTGGAGGTAACG -CCAACATCCTTCTTGGAGACTTCG -CCAACATCCTTCTTGGAGTACGCA -CCAACATCCTTCTTGGAGCTTGCA -CCAACATCCTTCTTGGAGCGAACA -CCAACATCCTTCTTGGAGCAGTCA -CCAACATCCTTCTTGGAGGATCCA -CCAACATCCTTCTTGGAGACGACA -CCAACATCCTTCTTGGAGAGCTCA -CCAACATCCTTCTTGGAGTCACGT -CCAACATCCTTCTTGGAGCGTAGT -CCAACATCCTTCTTGGAGGTCAGT -CCAACATCCTTCTTGGAGGAAGGT -CCAACATCCTTCTTGGAGAACCGT -CCAACATCCTTCTTGGAGTTGTGC -CCAACATCCTTCTTGGAGCTAAGC -CCAACATCCTTCTTGGAGACTAGC -CCAACATCCTTCTTGGAGAGATGC -CCAACATCCTTCTTGGAGTGAAGG -CCAACATCCTTCTTGGAGCAATGG -CCAACATCCTTCTTGGAGATGAGG -CCAACATCCTTCTTGGAGAATGGG -CCAACATCCTTCTTGGAGTCCTGA -CCAACATCCTTCTTGGAGTAGCGA -CCAACATCCTTCTTGGAGCACAGA -CCAACATCCTTCTTGGAGGCAAGA -CCAACATCCTTCTTGGAGGGTTGA -CCAACATCCTTCTTGGAGTCCGAT -CCAACATCCTTCTTGGAGTGGCAT -CCAACATCCTTCTTGGAGCGAGAT -CCAACATCCTTCTTGGAGTACCAC -CCAACATCCTTCTTGGAGCAGAAC -CCAACATCCTTCTTGGAGGTCTAC -CCAACATCCTTCTTGGAGACGTAC -CCAACATCCTTCTTGGAGAGTGAC -CCAACATCCTTCTTGGAGCTGTAG -CCAACATCCTTCTTGGAGCCTAAG -CCAACATCCTTCTTGGAGGTTCAG -CCAACATCCTTCTTGGAGGCATAG -CCAACATCCTTCTTGGAGGACAAG -CCAACATCCTTCTTGGAGAAGCAG -CCAACATCCTTCTTGGAGCGTCAA -CCAACATCCTTCTTGGAGGCTGAA -CCAACATCCTTCTTGGAGAGTACG -CCAACATCCTTCTTGGAGATCCGA -CCAACATCCTTCTTGGAGATGGGA -CCAACATCCTTCTTGGAGGTGCAA -CCAACATCCTTCTTGGAGGAGGAA -CCAACATCCTTCTTGGAGCAGGTA -CCAACATCCTTCTTGGAGGACTCT -CCAACATCCTTCTTGGAGAGTCCT -CCAACATCCTTCTTGGAGTAAGCC -CCAACATCCTTCTTGGAGATAGCC -CCAACATCCTTCTTGGAGTAACCG -CCAACATCCTTCTTGGAGATGCCA -CCAACATCCTTCCTGAGAGGAAAC -CCAACATCCTTCCTGAGAAACACC -CCAACATCCTTCCTGAGAATCGAG -CCAACATCCTTCCTGAGACTCCTT -CCAACATCCTTCCTGAGACCTGTT -CCAACATCCTTCCTGAGACGGTTT -CCAACATCCTTCCTGAGAGTGGTT -CCAACATCCTTCCTGAGAGCCTTT -CCAACATCCTTCCTGAGAGGTCTT -CCAACATCCTTCCTGAGAACGCTT -CCAACATCCTTCCTGAGAAGCGTT -CCAACATCCTTCCTGAGATTCGTC -CCAACATCCTTCCTGAGATCTCTC -CCAACATCCTTCCTGAGATGGATC -CCAACATCCTTCCTGAGACACTTC -CCAACATCCTTCCTGAGAGTACTC -CCAACATCCTTCCTGAGAGATGTC -CCAACATCCTTCCTGAGAACAGTC -CCAACATCCTTCCTGAGATTGCTG -CCAACATCCTTCCTGAGATCCATG -CCAACATCCTTCCTGAGATGTGTG -CCAACATCCTTCCTGAGACTAGTG -CCAACATCCTTCCTGAGACATCTG -CCAACATCCTTCCTGAGAGAGTTG -CCAACATCCTTCCTGAGAAGACTG -CCAACATCCTTCCTGAGATCGGTA -CCAACATCCTTCCTGAGATGCCTA -CCAACATCCTTCCTGAGACCACTA -CCAACATCCTTCCTGAGAGGAGTA -CCAACATCCTTCCTGAGATCGTCT -CCAACATCCTTCCTGAGATGCACT -CCAACATCCTTCCTGAGACTGACT -CCAACATCCTTCCTGAGACAACCT -CCAACATCCTTCCTGAGAGCTACT -CCAACATCCTTCCTGAGAGGATCT -CCAACATCCTTCCTGAGAAAGGCT -CCAACATCCTTCCTGAGATCAACC -CCAACATCCTTCCTGAGATGTTCC -CCAACATCCTTCCTGAGAATTCCC -CCAACATCCTTCCTGAGATTCTCG -CCAACATCCTTCCTGAGATAGACG -CCAACATCCTTCCTGAGAGTAACG -CCAACATCCTTCCTGAGAACTTCG -CCAACATCCTTCCTGAGATACGCA -CCAACATCCTTCCTGAGACTTGCA -CCAACATCCTTCCTGAGACGAACA -CCAACATCCTTCCTGAGACAGTCA -CCAACATCCTTCCTGAGAGATCCA -CCAACATCCTTCCTGAGAACGACA -CCAACATCCTTCCTGAGAAGCTCA -CCAACATCCTTCCTGAGATCACGT -CCAACATCCTTCCTGAGACGTAGT -CCAACATCCTTCCTGAGAGTCAGT -CCAACATCCTTCCTGAGAGAAGGT -CCAACATCCTTCCTGAGAAACCGT -CCAACATCCTTCCTGAGATTGTGC -CCAACATCCTTCCTGAGACTAAGC -CCAACATCCTTCCTGAGAACTAGC -CCAACATCCTTCCTGAGAAGATGC -CCAACATCCTTCCTGAGATGAAGG -CCAACATCCTTCCTGAGACAATGG -CCAACATCCTTCCTGAGAATGAGG -CCAACATCCTTCCTGAGAAATGGG -CCAACATCCTTCCTGAGATCCTGA -CCAACATCCTTCCTGAGATAGCGA -CCAACATCCTTCCTGAGACACAGA -CCAACATCCTTCCTGAGAGCAAGA -CCAACATCCTTCCTGAGAGGTTGA -CCAACATCCTTCCTGAGATCCGAT -CCAACATCCTTCCTGAGATGGCAT -CCAACATCCTTCCTGAGACGAGAT -CCAACATCCTTCCTGAGATACCAC -CCAACATCCTTCCTGAGACAGAAC -CCAACATCCTTCCTGAGAGTCTAC -CCAACATCCTTCCTGAGAACGTAC -CCAACATCCTTCCTGAGAAGTGAC -CCAACATCCTTCCTGAGACTGTAG -CCAACATCCTTCCTGAGACCTAAG -CCAACATCCTTCCTGAGAGTTCAG -CCAACATCCTTCCTGAGAGCATAG -CCAACATCCTTCCTGAGAGACAAG -CCAACATCCTTCCTGAGAAAGCAG -CCAACATCCTTCCTGAGACGTCAA -CCAACATCCTTCCTGAGAGCTGAA -CCAACATCCTTCCTGAGAAGTACG -CCAACATCCTTCCTGAGAATCCGA -CCAACATCCTTCCTGAGAATGGGA -CCAACATCCTTCCTGAGAGTGCAA -CCAACATCCTTCCTGAGAGAGGAA -CCAACATCCTTCCTGAGACAGGTA -CCAACATCCTTCCTGAGAGACTCT -CCAACATCCTTCCTGAGAAGTCCT -CCAACATCCTTCCTGAGATAAGCC -CCAACATCCTTCCTGAGAATAGCC -CCAACATCCTTCCTGAGATAACCG -CCAACATCCTTCCTGAGAATGCCA -CCAACATCCTTCGTATCGGGAAAC -CCAACATCCTTCGTATCGAACACC -CCAACATCCTTCGTATCGATCGAG -CCAACATCCTTCGTATCGCTCCTT -CCAACATCCTTCGTATCGCCTGTT -CCAACATCCTTCGTATCGCGGTTT -CCAACATCCTTCGTATCGGTGGTT -CCAACATCCTTCGTATCGGCCTTT -CCAACATCCTTCGTATCGGGTCTT -CCAACATCCTTCGTATCGACGCTT -CCAACATCCTTCGTATCGAGCGTT -CCAACATCCTTCGTATCGTTCGTC -CCAACATCCTTCGTATCGTCTCTC -CCAACATCCTTCGTATCGTGGATC -CCAACATCCTTCGTATCGCACTTC -CCAACATCCTTCGTATCGGTACTC -CCAACATCCTTCGTATCGGATGTC -CCAACATCCTTCGTATCGACAGTC -CCAACATCCTTCGTATCGTTGCTG -CCAACATCCTTCGTATCGTCCATG -CCAACATCCTTCGTATCGTGTGTG -CCAACATCCTTCGTATCGCTAGTG -CCAACATCCTTCGTATCGCATCTG -CCAACATCCTTCGTATCGGAGTTG -CCAACATCCTTCGTATCGAGACTG -CCAACATCCTTCGTATCGTCGGTA -CCAACATCCTTCGTATCGTGCCTA -CCAACATCCTTCGTATCGCCACTA -CCAACATCCTTCGTATCGGGAGTA -CCAACATCCTTCGTATCGTCGTCT -CCAACATCCTTCGTATCGTGCACT -CCAACATCCTTCGTATCGCTGACT -CCAACATCCTTCGTATCGCAACCT -CCAACATCCTTCGTATCGGCTACT -CCAACATCCTTCGTATCGGGATCT -CCAACATCCTTCGTATCGAAGGCT -CCAACATCCTTCGTATCGTCAACC -CCAACATCCTTCGTATCGTGTTCC -CCAACATCCTTCGTATCGATTCCC -CCAACATCCTTCGTATCGTTCTCG -CCAACATCCTTCGTATCGTAGACG -CCAACATCCTTCGTATCGGTAACG -CCAACATCCTTCGTATCGACTTCG -CCAACATCCTTCGTATCGTACGCA -CCAACATCCTTCGTATCGCTTGCA -CCAACATCCTTCGTATCGCGAACA -CCAACATCCTTCGTATCGCAGTCA -CCAACATCCTTCGTATCGGATCCA -CCAACATCCTTCGTATCGACGACA -CCAACATCCTTCGTATCGAGCTCA -CCAACATCCTTCGTATCGTCACGT -CCAACATCCTTCGTATCGCGTAGT -CCAACATCCTTCGTATCGGTCAGT -CCAACATCCTTCGTATCGGAAGGT -CCAACATCCTTCGTATCGAACCGT -CCAACATCCTTCGTATCGTTGTGC -CCAACATCCTTCGTATCGCTAAGC -CCAACATCCTTCGTATCGACTAGC -CCAACATCCTTCGTATCGAGATGC -CCAACATCCTTCGTATCGTGAAGG -CCAACATCCTTCGTATCGCAATGG -CCAACATCCTTCGTATCGATGAGG -CCAACATCCTTCGTATCGAATGGG -CCAACATCCTTCGTATCGTCCTGA -CCAACATCCTTCGTATCGTAGCGA -CCAACATCCTTCGTATCGCACAGA -CCAACATCCTTCGTATCGGCAAGA -CCAACATCCTTCGTATCGGGTTGA -CCAACATCCTTCGTATCGTCCGAT -CCAACATCCTTCGTATCGTGGCAT -CCAACATCCTTCGTATCGCGAGAT -CCAACATCCTTCGTATCGTACCAC -CCAACATCCTTCGTATCGCAGAAC -CCAACATCCTTCGTATCGGTCTAC -CCAACATCCTTCGTATCGACGTAC -CCAACATCCTTCGTATCGAGTGAC -CCAACATCCTTCGTATCGCTGTAG -CCAACATCCTTCGTATCGCCTAAG -CCAACATCCTTCGTATCGGTTCAG -CCAACATCCTTCGTATCGGCATAG -CCAACATCCTTCGTATCGGACAAG -CCAACATCCTTCGTATCGAAGCAG -CCAACATCCTTCGTATCGCGTCAA -CCAACATCCTTCGTATCGGCTGAA -CCAACATCCTTCGTATCGAGTACG -CCAACATCCTTCGTATCGATCCGA -CCAACATCCTTCGTATCGATGGGA -CCAACATCCTTCGTATCGGTGCAA -CCAACATCCTTCGTATCGGAGGAA -CCAACATCCTTCGTATCGCAGGTA -CCAACATCCTTCGTATCGGACTCT -CCAACATCCTTCGTATCGAGTCCT -CCAACATCCTTCGTATCGTAAGCC -CCAACATCCTTCGTATCGATAGCC -CCAACATCCTTCGTATCGTAACCG -CCAACATCCTTCGTATCGATGCCA -CCAACATCCTTCCTATGCGGAAAC -CCAACATCCTTCCTATGCAACACC -CCAACATCCTTCCTATGCATCGAG -CCAACATCCTTCCTATGCCTCCTT -CCAACATCCTTCCTATGCCCTGTT -CCAACATCCTTCCTATGCCGGTTT -CCAACATCCTTCCTATGCGTGGTT -CCAACATCCTTCCTATGCGCCTTT -CCAACATCCTTCCTATGCGGTCTT -CCAACATCCTTCCTATGCACGCTT -CCAACATCCTTCCTATGCAGCGTT -CCAACATCCTTCCTATGCTTCGTC -CCAACATCCTTCCTATGCTCTCTC -CCAACATCCTTCCTATGCTGGATC -CCAACATCCTTCCTATGCCACTTC -CCAACATCCTTCCTATGCGTACTC -CCAACATCCTTCCTATGCGATGTC -CCAACATCCTTCCTATGCACAGTC -CCAACATCCTTCCTATGCTTGCTG -CCAACATCCTTCCTATGCTCCATG -CCAACATCCTTCCTATGCTGTGTG -CCAACATCCTTCCTATGCCTAGTG -CCAACATCCTTCCTATGCCATCTG -CCAACATCCTTCCTATGCGAGTTG -CCAACATCCTTCCTATGCAGACTG -CCAACATCCTTCCTATGCTCGGTA -CCAACATCCTTCCTATGCTGCCTA -CCAACATCCTTCCTATGCCCACTA -CCAACATCCTTCCTATGCGGAGTA -CCAACATCCTTCCTATGCTCGTCT -CCAACATCCTTCCTATGCTGCACT -CCAACATCCTTCCTATGCCTGACT -CCAACATCCTTCCTATGCCAACCT -CCAACATCCTTCCTATGCGCTACT -CCAACATCCTTCCTATGCGGATCT -CCAACATCCTTCCTATGCAAGGCT -CCAACATCCTTCCTATGCTCAACC -CCAACATCCTTCCTATGCTGTTCC -CCAACATCCTTCCTATGCATTCCC -CCAACATCCTTCCTATGCTTCTCG -CCAACATCCTTCCTATGCTAGACG -CCAACATCCTTCCTATGCGTAACG -CCAACATCCTTCCTATGCACTTCG -CCAACATCCTTCCTATGCTACGCA -CCAACATCCTTCCTATGCCTTGCA -CCAACATCCTTCCTATGCCGAACA -CCAACATCCTTCCTATGCCAGTCA -CCAACATCCTTCCTATGCGATCCA -CCAACATCCTTCCTATGCACGACA -CCAACATCCTTCCTATGCAGCTCA -CCAACATCCTTCCTATGCTCACGT -CCAACATCCTTCCTATGCCGTAGT -CCAACATCCTTCCTATGCGTCAGT -CCAACATCCTTCCTATGCGAAGGT -CCAACATCCTTCCTATGCAACCGT -CCAACATCCTTCCTATGCTTGTGC -CCAACATCCTTCCTATGCCTAAGC -CCAACATCCTTCCTATGCACTAGC -CCAACATCCTTCCTATGCAGATGC -CCAACATCCTTCCTATGCTGAAGG -CCAACATCCTTCCTATGCCAATGG -CCAACATCCTTCCTATGCATGAGG -CCAACATCCTTCCTATGCAATGGG -CCAACATCCTTCCTATGCTCCTGA -CCAACATCCTTCCTATGCTAGCGA -CCAACATCCTTCCTATGCCACAGA -CCAACATCCTTCCTATGCGCAAGA -CCAACATCCTTCCTATGCGGTTGA -CCAACATCCTTCCTATGCTCCGAT -CCAACATCCTTCCTATGCTGGCAT -CCAACATCCTTCCTATGCCGAGAT -CCAACATCCTTCCTATGCTACCAC -CCAACATCCTTCCTATGCCAGAAC -CCAACATCCTTCCTATGCGTCTAC -CCAACATCCTTCCTATGCACGTAC -CCAACATCCTTCCTATGCAGTGAC -CCAACATCCTTCCTATGCCTGTAG -CCAACATCCTTCCTATGCCCTAAG -CCAACATCCTTCCTATGCGTTCAG -CCAACATCCTTCCTATGCGCATAG -CCAACATCCTTCCTATGCGACAAG -CCAACATCCTTCCTATGCAAGCAG -CCAACATCCTTCCTATGCCGTCAA -CCAACATCCTTCCTATGCGCTGAA -CCAACATCCTTCCTATGCAGTACG -CCAACATCCTTCCTATGCATCCGA -CCAACATCCTTCCTATGCATGGGA -CCAACATCCTTCCTATGCGTGCAA -CCAACATCCTTCCTATGCGAGGAA -CCAACATCCTTCCTATGCCAGGTA -CCAACATCCTTCCTATGCGACTCT -CCAACATCCTTCCTATGCAGTCCT -CCAACATCCTTCCTATGCTAAGCC -CCAACATCCTTCCTATGCATAGCC -CCAACATCCTTCCTATGCTAACCG -CCAACATCCTTCCTATGCATGCCA -CCAACATCCTTCCTACCAGGAAAC -CCAACATCCTTCCTACCAAACACC -CCAACATCCTTCCTACCAATCGAG -CCAACATCCTTCCTACCACTCCTT -CCAACATCCTTCCTACCACCTGTT -CCAACATCCTTCCTACCACGGTTT -CCAACATCCTTCCTACCAGTGGTT -CCAACATCCTTCCTACCAGCCTTT -CCAACATCCTTCCTACCAGGTCTT -CCAACATCCTTCCTACCAACGCTT -CCAACATCCTTCCTACCAAGCGTT -CCAACATCCTTCCTACCATTCGTC -CCAACATCCTTCCTACCATCTCTC -CCAACATCCTTCCTACCATGGATC -CCAACATCCTTCCTACCACACTTC -CCAACATCCTTCCTACCAGTACTC -CCAACATCCTTCCTACCAGATGTC -CCAACATCCTTCCTACCAACAGTC -CCAACATCCTTCCTACCATTGCTG -CCAACATCCTTCCTACCATCCATG -CCAACATCCTTCCTACCATGTGTG -CCAACATCCTTCCTACCACTAGTG -CCAACATCCTTCCTACCACATCTG -CCAACATCCTTCCTACCAGAGTTG -CCAACATCCTTCCTACCAAGACTG -CCAACATCCTTCCTACCATCGGTA -CCAACATCCTTCCTACCATGCCTA -CCAACATCCTTCCTACCACCACTA -CCAACATCCTTCCTACCAGGAGTA -CCAACATCCTTCCTACCATCGTCT -CCAACATCCTTCCTACCATGCACT -CCAACATCCTTCCTACCACTGACT -CCAACATCCTTCCTACCACAACCT -CCAACATCCTTCCTACCAGCTACT -CCAACATCCTTCCTACCAGGATCT -CCAACATCCTTCCTACCAAAGGCT -CCAACATCCTTCCTACCATCAACC -CCAACATCCTTCCTACCATGTTCC -CCAACATCCTTCCTACCAATTCCC -CCAACATCCTTCCTACCATTCTCG -CCAACATCCTTCCTACCATAGACG -CCAACATCCTTCCTACCAGTAACG -CCAACATCCTTCCTACCAACTTCG -CCAACATCCTTCCTACCATACGCA -CCAACATCCTTCCTACCACTTGCA -CCAACATCCTTCCTACCACGAACA -CCAACATCCTTCCTACCACAGTCA -CCAACATCCTTCCTACCAGATCCA -CCAACATCCTTCCTACCAACGACA -CCAACATCCTTCCTACCAAGCTCA -CCAACATCCTTCCTACCATCACGT -CCAACATCCTTCCTACCACGTAGT -CCAACATCCTTCCTACCAGTCAGT -CCAACATCCTTCCTACCAGAAGGT -CCAACATCCTTCCTACCAAACCGT -CCAACATCCTTCCTACCATTGTGC -CCAACATCCTTCCTACCACTAAGC -CCAACATCCTTCCTACCAACTAGC -CCAACATCCTTCCTACCAAGATGC -CCAACATCCTTCCTACCATGAAGG -CCAACATCCTTCCTACCACAATGG -CCAACATCCTTCCTACCAATGAGG -CCAACATCCTTCCTACCAAATGGG -CCAACATCCTTCCTACCATCCTGA -CCAACATCCTTCCTACCATAGCGA -CCAACATCCTTCCTACCACACAGA -CCAACATCCTTCCTACCAGCAAGA -CCAACATCCTTCCTACCAGGTTGA -CCAACATCCTTCCTACCATCCGAT -CCAACATCCTTCCTACCATGGCAT -CCAACATCCTTCCTACCACGAGAT -CCAACATCCTTCCTACCATACCAC -CCAACATCCTTCCTACCACAGAAC -CCAACATCCTTCCTACCAGTCTAC -CCAACATCCTTCCTACCAACGTAC -CCAACATCCTTCCTACCAAGTGAC -CCAACATCCTTCCTACCACTGTAG -CCAACATCCTTCCTACCACCTAAG -CCAACATCCTTCCTACCAGTTCAG -CCAACATCCTTCCTACCAGCATAG -CCAACATCCTTCCTACCAGACAAG -CCAACATCCTTCCTACCAAAGCAG -CCAACATCCTTCCTACCACGTCAA -CCAACATCCTTCCTACCAGCTGAA -CCAACATCCTTCCTACCAAGTACG -CCAACATCCTTCCTACCAATCCGA -CCAACATCCTTCCTACCAATGGGA -CCAACATCCTTCCTACCAGTGCAA -CCAACATCCTTCCTACCAGAGGAA -CCAACATCCTTCCTACCACAGGTA -CCAACATCCTTCCTACCAGACTCT -CCAACATCCTTCCTACCAAGTCCT -CCAACATCCTTCCTACCATAAGCC -CCAACATCCTTCCTACCAATAGCC -CCAACATCCTTCCTACCATAACCG -CCAACATCCTTCCTACCAATGCCA -CCAACATCCTTCGTAGGAGGAAAC -CCAACATCCTTCGTAGGAAACACC -CCAACATCCTTCGTAGGAATCGAG -CCAACATCCTTCGTAGGACTCCTT -CCAACATCCTTCGTAGGACCTGTT -CCAACATCCTTCGTAGGACGGTTT -CCAACATCCTTCGTAGGAGTGGTT -CCAACATCCTTCGTAGGAGCCTTT -CCAACATCCTTCGTAGGAGGTCTT -CCAACATCCTTCGTAGGAACGCTT -CCAACATCCTTCGTAGGAAGCGTT -CCAACATCCTTCGTAGGATTCGTC -CCAACATCCTTCGTAGGATCTCTC -CCAACATCCTTCGTAGGATGGATC -CCAACATCCTTCGTAGGACACTTC -CCAACATCCTTCGTAGGAGTACTC -CCAACATCCTTCGTAGGAGATGTC -CCAACATCCTTCGTAGGAACAGTC -CCAACATCCTTCGTAGGATTGCTG -CCAACATCCTTCGTAGGATCCATG -CCAACATCCTTCGTAGGATGTGTG -CCAACATCCTTCGTAGGACTAGTG -CCAACATCCTTCGTAGGACATCTG -CCAACATCCTTCGTAGGAGAGTTG -CCAACATCCTTCGTAGGAAGACTG -CCAACATCCTTCGTAGGATCGGTA -CCAACATCCTTCGTAGGATGCCTA -CCAACATCCTTCGTAGGACCACTA -CCAACATCCTTCGTAGGAGGAGTA -CCAACATCCTTCGTAGGATCGTCT -CCAACATCCTTCGTAGGATGCACT -CCAACATCCTTCGTAGGACTGACT -CCAACATCCTTCGTAGGACAACCT -CCAACATCCTTCGTAGGAGCTACT -CCAACATCCTTCGTAGGAGGATCT -CCAACATCCTTCGTAGGAAAGGCT -CCAACATCCTTCGTAGGATCAACC -CCAACATCCTTCGTAGGATGTTCC -CCAACATCCTTCGTAGGAATTCCC -CCAACATCCTTCGTAGGATTCTCG -CCAACATCCTTCGTAGGATAGACG -CCAACATCCTTCGTAGGAGTAACG -CCAACATCCTTCGTAGGAACTTCG -CCAACATCCTTCGTAGGATACGCA -CCAACATCCTTCGTAGGACTTGCA -CCAACATCCTTCGTAGGACGAACA -CCAACATCCTTCGTAGGACAGTCA -CCAACATCCTTCGTAGGAGATCCA -CCAACATCCTTCGTAGGAACGACA -CCAACATCCTTCGTAGGAAGCTCA -CCAACATCCTTCGTAGGATCACGT -CCAACATCCTTCGTAGGACGTAGT -CCAACATCCTTCGTAGGAGTCAGT -CCAACATCCTTCGTAGGAGAAGGT -CCAACATCCTTCGTAGGAAACCGT -CCAACATCCTTCGTAGGATTGTGC -CCAACATCCTTCGTAGGACTAAGC -CCAACATCCTTCGTAGGAACTAGC -CCAACATCCTTCGTAGGAAGATGC -CCAACATCCTTCGTAGGATGAAGG -CCAACATCCTTCGTAGGACAATGG -CCAACATCCTTCGTAGGAATGAGG -CCAACATCCTTCGTAGGAAATGGG -CCAACATCCTTCGTAGGATCCTGA -CCAACATCCTTCGTAGGATAGCGA -CCAACATCCTTCGTAGGACACAGA -CCAACATCCTTCGTAGGAGCAAGA -CCAACATCCTTCGTAGGAGGTTGA -CCAACATCCTTCGTAGGATCCGAT -CCAACATCCTTCGTAGGATGGCAT -CCAACATCCTTCGTAGGACGAGAT -CCAACATCCTTCGTAGGATACCAC -CCAACATCCTTCGTAGGACAGAAC -CCAACATCCTTCGTAGGAGTCTAC -CCAACATCCTTCGTAGGAACGTAC -CCAACATCCTTCGTAGGAAGTGAC -CCAACATCCTTCGTAGGACTGTAG -CCAACATCCTTCGTAGGACCTAAG -CCAACATCCTTCGTAGGAGTTCAG -CCAACATCCTTCGTAGGAGCATAG -CCAACATCCTTCGTAGGAGACAAG -CCAACATCCTTCGTAGGAAAGCAG -CCAACATCCTTCGTAGGACGTCAA -CCAACATCCTTCGTAGGAGCTGAA -CCAACATCCTTCGTAGGAAGTACG -CCAACATCCTTCGTAGGAATCCGA -CCAACATCCTTCGTAGGAATGGGA -CCAACATCCTTCGTAGGAGTGCAA -CCAACATCCTTCGTAGGAGAGGAA -CCAACATCCTTCGTAGGACAGGTA -CCAACATCCTTCGTAGGAGACTCT -CCAACATCCTTCGTAGGAAGTCCT -CCAACATCCTTCGTAGGATAAGCC -CCAACATCCTTCGTAGGAATAGCC -CCAACATCCTTCGTAGGATAACCG -CCAACATCCTTCGTAGGAATGCCA -CCAACATCCTTCTCTTCGGGAAAC -CCAACATCCTTCTCTTCGAACACC -CCAACATCCTTCTCTTCGATCGAG -CCAACATCCTTCTCTTCGCTCCTT -CCAACATCCTTCTCTTCGCCTGTT -CCAACATCCTTCTCTTCGCGGTTT -CCAACATCCTTCTCTTCGGTGGTT -CCAACATCCTTCTCTTCGGCCTTT -CCAACATCCTTCTCTTCGGGTCTT -CCAACATCCTTCTCTTCGACGCTT -CCAACATCCTTCTCTTCGAGCGTT -CCAACATCCTTCTCTTCGTTCGTC -CCAACATCCTTCTCTTCGTCTCTC -CCAACATCCTTCTCTTCGTGGATC -CCAACATCCTTCTCTTCGCACTTC -CCAACATCCTTCTCTTCGGTACTC -CCAACATCCTTCTCTTCGGATGTC -CCAACATCCTTCTCTTCGACAGTC -CCAACATCCTTCTCTTCGTTGCTG -CCAACATCCTTCTCTTCGTCCATG -CCAACATCCTTCTCTTCGTGTGTG -CCAACATCCTTCTCTTCGCTAGTG -CCAACATCCTTCTCTTCGCATCTG -CCAACATCCTTCTCTTCGGAGTTG -CCAACATCCTTCTCTTCGAGACTG -CCAACATCCTTCTCTTCGTCGGTA -CCAACATCCTTCTCTTCGTGCCTA -CCAACATCCTTCTCTTCGCCACTA -CCAACATCCTTCTCTTCGGGAGTA -CCAACATCCTTCTCTTCGTCGTCT -CCAACATCCTTCTCTTCGTGCACT -CCAACATCCTTCTCTTCGCTGACT -CCAACATCCTTCTCTTCGCAACCT -CCAACATCCTTCTCTTCGGCTACT -CCAACATCCTTCTCTTCGGGATCT -CCAACATCCTTCTCTTCGAAGGCT -CCAACATCCTTCTCTTCGTCAACC -CCAACATCCTTCTCTTCGTGTTCC -CCAACATCCTTCTCTTCGATTCCC -CCAACATCCTTCTCTTCGTTCTCG -CCAACATCCTTCTCTTCGTAGACG -CCAACATCCTTCTCTTCGGTAACG -CCAACATCCTTCTCTTCGACTTCG -CCAACATCCTTCTCTTCGTACGCA -CCAACATCCTTCTCTTCGCTTGCA -CCAACATCCTTCTCTTCGCGAACA -CCAACATCCTTCTCTTCGCAGTCA -CCAACATCCTTCTCTTCGGATCCA -CCAACATCCTTCTCTTCGACGACA -CCAACATCCTTCTCTTCGAGCTCA -CCAACATCCTTCTCTTCGTCACGT -CCAACATCCTTCTCTTCGCGTAGT -CCAACATCCTTCTCTTCGGTCAGT -CCAACATCCTTCTCTTCGGAAGGT -CCAACATCCTTCTCTTCGAACCGT -CCAACATCCTTCTCTTCGTTGTGC -CCAACATCCTTCTCTTCGCTAAGC -CCAACATCCTTCTCTTCGACTAGC -CCAACATCCTTCTCTTCGAGATGC -CCAACATCCTTCTCTTCGTGAAGG -CCAACATCCTTCTCTTCGCAATGG -CCAACATCCTTCTCTTCGATGAGG -CCAACATCCTTCTCTTCGAATGGG -CCAACATCCTTCTCTTCGTCCTGA -CCAACATCCTTCTCTTCGTAGCGA -CCAACATCCTTCTCTTCGCACAGA -CCAACATCCTTCTCTTCGGCAAGA -CCAACATCCTTCTCTTCGGGTTGA -CCAACATCCTTCTCTTCGTCCGAT -CCAACATCCTTCTCTTCGTGGCAT -CCAACATCCTTCTCTTCGCGAGAT -CCAACATCCTTCTCTTCGTACCAC -CCAACATCCTTCTCTTCGCAGAAC -CCAACATCCTTCTCTTCGGTCTAC -CCAACATCCTTCTCTTCGACGTAC -CCAACATCCTTCTCTTCGAGTGAC -CCAACATCCTTCTCTTCGCTGTAG -CCAACATCCTTCTCTTCGCCTAAG -CCAACATCCTTCTCTTCGGTTCAG -CCAACATCCTTCTCTTCGGCATAG -CCAACATCCTTCTCTTCGGACAAG -CCAACATCCTTCTCTTCGAAGCAG -CCAACATCCTTCTCTTCGCGTCAA -CCAACATCCTTCTCTTCGGCTGAA -CCAACATCCTTCTCTTCGAGTACG -CCAACATCCTTCTCTTCGATCCGA -CCAACATCCTTCTCTTCGATGGGA -CCAACATCCTTCTCTTCGGTGCAA -CCAACATCCTTCTCTTCGGAGGAA -CCAACATCCTTCTCTTCGCAGGTA -CCAACATCCTTCTCTTCGGACTCT -CCAACATCCTTCTCTTCGAGTCCT -CCAACATCCTTCTCTTCGTAAGCC -CCAACATCCTTCTCTTCGATAGCC -CCAACATCCTTCTCTTCGTAACCG -CCAACATCCTTCTCTTCGATGCCA -CCAACATCCTTCACTTGCGGAAAC -CCAACATCCTTCACTTGCAACACC -CCAACATCCTTCACTTGCATCGAG -CCAACATCCTTCACTTGCCTCCTT -CCAACATCCTTCACTTGCCCTGTT -CCAACATCCTTCACTTGCCGGTTT -CCAACATCCTTCACTTGCGTGGTT -CCAACATCCTTCACTTGCGCCTTT -CCAACATCCTTCACTTGCGGTCTT -CCAACATCCTTCACTTGCACGCTT -CCAACATCCTTCACTTGCAGCGTT -CCAACATCCTTCACTTGCTTCGTC -CCAACATCCTTCACTTGCTCTCTC -CCAACATCCTTCACTTGCTGGATC -CCAACATCCTTCACTTGCCACTTC -CCAACATCCTTCACTTGCGTACTC -CCAACATCCTTCACTTGCGATGTC -CCAACATCCTTCACTTGCACAGTC -CCAACATCCTTCACTTGCTTGCTG -CCAACATCCTTCACTTGCTCCATG -CCAACATCCTTCACTTGCTGTGTG -CCAACATCCTTCACTTGCCTAGTG -CCAACATCCTTCACTTGCCATCTG -CCAACATCCTTCACTTGCGAGTTG -CCAACATCCTTCACTTGCAGACTG -CCAACATCCTTCACTTGCTCGGTA -CCAACATCCTTCACTTGCTGCCTA -CCAACATCCTTCACTTGCCCACTA -CCAACATCCTTCACTTGCGGAGTA -CCAACATCCTTCACTTGCTCGTCT -CCAACATCCTTCACTTGCTGCACT -CCAACATCCTTCACTTGCCTGACT -CCAACATCCTTCACTTGCCAACCT -CCAACATCCTTCACTTGCGCTACT -CCAACATCCTTCACTTGCGGATCT -CCAACATCCTTCACTTGCAAGGCT -CCAACATCCTTCACTTGCTCAACC -CCAACATCCTTCACTTGCTGTTCC -CCAACATCCTTCACTTGCATTCCC -CCAACATCCTTCACTTGCTTCTCG -CCAACATCCTTCACTTGCTAGACG -CCAACATCCTTCACTTGCGTAACG -CCAACATCCTTCACTTGCACTTCG -CCAACATCCTTCACTTGCTACGCA -CCAACATCCTTCACTTGCCTTGCA -CCAACATCCTTCACTTGCCGAACA -CCAACATCCTTCACTTGCCAGTCA -CCAACATCCTTCACTTGCGATCCA -CCAACATCCTTCACTTGCACGACA -CCAACATCCTTCACTTGCAGCTCA -CCAACATCCTTCACTTGCTCACGT -CCAACATCCTTCACTTGCCGTAGT -CCAACATCCTTCACTTGCGTCAGT -CCAACATCCTTCACTTGCGAAGGT -CCAACATCCTTCACTTGCAACCGT -CCAACATCCTTCACTTGCTTGTGC -CCAACATCCTTCACTTGCCTAAGC -CCAACATCCTTCACTTGCACTAGC -CCAACATCCTTCACTTGCAGATGC -CCAACATCCTTCACTTGCTGAAGG -CCAACATCCTTCACTTGCCAATGG -CCAACATCCTTCACTTGCATGAGG -CCAACATCCTTCACTTGCAATGGG -CCAACATCCTTCACTTGCTCCTGA -CCAACATCCTTCACTTGCTAGCGA -CCAACATCCTTCACTTGCCACAGA -CCAACATCCTTCACTTGCGCAAGA -CCAACATCCTTCACTTGCGGTTGA -CCAACATCCTTCACTTGCTCCGAT -CCAACATCCTTCACTTGCTGGCAT -CCAACATCCTTCACTTGCCGAGAT -CCAACATCCTTCACTTGCTACCAC -CCAACATCCTTCACTTGCCAGAAC -CCAACATCCTTCACTTGCGTCTAC -CCAACATCCTTCACTTGCACGTAC -CCAACATCCTTCACTTGCAGTGAC -CCAACATCCTTCACTTGCCTGTAG -CCAACATCCTTCACTTGCCCTAAG -CCAACATCCTTCACTTGCGTTCAG -CCAACATCCTTCACTTGCGCATAG -CCAACATCCTTCACTTGCGACAAG -CCAACATCCTTCACTTGCAAGCAG -CCAACATCCTTCACTTGCCGTCAA -CCAACATCCTTCACTTGCGCTGAA -CCAACATCCTTCACTTGCAGTACG -CCAACATCCTTCACTTGCATCCGA -CCAACATCCTTCACTTGCATGGGA -CCAACATCCTTCACTTGCGTGCAA -CCAACATCCTTCACTTGCGAGGAA -CCAACATCCTTCACTTGCCAGGTA -CCAACATCCTTCACTTGCGACTCT -CCAACATCCTTCACTTGCAGTCCT -CCAACATCCTTCACTTGCTAAGCC -CCAACATCCTTCACTTGCATAGCC -CCAACATCCTTCACTTGCTAACCG -CCAACATCCTTCACTTGCATGCCA -CCAACATCCTTCACTCTGGGAAAC -CCAACATCCTTCACTCTGAACACC -CCAACATCCTTCACTCTGATCGAG -CCAACATCCTTCACTCTGCTCCTT -CCAACATCCTTCACTCTGCCTGTT -CCAACATCCTTCACTCTGCGGTTT -CCAACATCCTTCACTCTGGTGGTT -CCAACATCCTTCACTCTGGCCTTT -CCAACATCCTTCACTCTGGGTCTT -CCAACATCCTTCACTCTGACGCTT -CCAACATCCTTCACTCTGAGCGTT -CCAACATCCTTCACTCTGTTCGTC -CCAACATCCTTCACTCTGTCTCTC -CCAACATCCTTCACTCTGTGGATC -CCAACATCCTTCACTCTGCACTTC -CCAACATCCTTCACTCTGGTACTC -CCAACATCCTTCACTCTGGATGTC -CCAACATCCTTCACTCTGACAGTC -CCAACATCCTTCACTCTGTTGCTG -CCAACATCCTTCACTCTGTCCATG -CCAACATCCTTCACTCTGTGTGTG -CCAACATCCTTCACTCTGCTAGTG -CCAACATCCTTCACTCTGCATCTG -CCAACATCCTTCACTCTGGAGTTG -CCAACATCCTTCACTCTGAGACTG -CCAACATCCTTCACTCTGTCGGTA -CCAACATCCTTCACTCTGTGCCTA -CCAACATCCTTCACTCTGCCACTA -CCAACATCCTTCACTCTGGGAGTA -CCAACATCCTTCACTCTGTCGTCT -CCAACATCCTTCACTCTGTGCACT -CCAACATCCTTCACTCTGCTGACT -CCAACATCCTTCACTCTGCAACCT -CCAACATCCTTCACTCTGGCTACT -CCAACATCCTTCACTCTGGGATCT -CCAACATCCTTCACTCTGAAGGCT -CCAACATCCTTCACTCTGTCAACC -CCAACATCCTTCACTCTGTGTTCC -CCAACATCCTTCACTCTGATTCCC -CCAACATCCTTCACTCTGTTCTCG -CCAACATCCTTCACTCTGTAGACG -CCAACATCCTTCACTCTGGTAACG -CCAACATCCTTCACTCTGACTTCG -CCAACATCCTTCACTCTGTACGCA -CCAACATCCTTCACTCTGCTTGCA -CCAACATCCTTCACTCTGCGAACA -CCAACATCCTTCACTCTGCAGTCA -CCAACATCCTTCACTCTGGATCCA -CCAACATCCTTCACTCTGACGACA -CCAACATCCTTCACTCTGAGCTCA -CCAACATCCTTCACTCTGTCACGT -CCAACATCCTTCACTCTGCGTAGT -CCAACATCCTTCACTCTGGTCAGT -CCAACATCCTTCACTCTGGAAGGT -CCAACATCCTTCACTCTGAACCGT -CCAACATCCTTCACTCTGTTGTGC -CCAACATCCTTCACTCTGCTAAGC -CCAACATCCTTCACTCTGACTAGC -CCAACATCCTTCACTCTGAGATGC -CCAACATCCTTCACTCTGTGAAGG -CCAACATCCTTCACTCTGCAATGG -CCAACATCCTTCACTCTGATGAGG -CCAACATCCTTCACTCTGAATGGG -CCAACATCCTTCACTCTGTCCTGA -CCAACATCCTTCACTCTGTAGCGA -CCAACATCCTTCACTCTGCACAGA -CCAACATCCTTCACTCTGGCAAGA -CCAACATCCTTCACTCTGGGTTGA -CCAACATCCTTCACTCTGTCCGAT -CCAACATCCTTCACTCTGTGGCAT -CCAACATCCTTCACTCTGCGAGAT -CCAACATCCTTCACTCTGTACCAC -CCAACATCCTTCACTCTGCAGAAC -CCAACATCCTTCACTCTGGTCTAC -CCAACATCCTTCACTCTGACGTAC -CCAACATCCTTCACTCTGAGTGAC -CCAACATCCTTCACTCTGCTGTAG -CCAACATCCTTCACTCTGCCTAAG -CCAACATCCTTCACTCTGGTTCAG -CCAACATCCTTCACTCTGGCATAG -CCAACATCCTTCACTCTGGACAAG -CCAACATCCTTCACTCTGAAGCAG -CCAACATCCTTCACTCTGCGTCAA -CCAACATCCTTCACTCTGGCTGAA -CCAACATCCTTCACTCTGAGTACG -CCAACATCCTTCACTCTGATCCGA -CCAACATCCTTCACTCTGATGGGA -CCAACATCCTTCACTCTGGTGCAA -CCAACATCCTTCACTCTGGAGGAA -CCAACATCCTTCACTCTGCAGGTA -CCAACATCCTTCACTCTGGACTCT -CCAACATCCTTCACTCTGAGTCCT -CCAACATCCTTCACTCTGTAAGCC -CCAACATCCTTCACTCTGATAGCC -CCAACATCCTTCACTCTGTAACCG -CCAACATCCTTCACTCTGATGCCA -CCAACATCCTTCCCTCAAGGAAAC -CCAACATCCTTCCCTCAAAACACC -CCAACATCCTTCCCTCAAATCGAG -CCAACATCCTTCCCTCAACTCCTT -CCAACATCCTTCCCTCAACCTGTT -CCAACATCCTTCCCTCAACGGTTT -CCAACATCCTTCCCTCAAGTGGTT -CCAACATCCTTCCCTCAAGCCTTT -CCAACATCCTTCCCTCAAGGTCTT -CCAACATCCTTCCCTCAAACGCTT -CCAACATCCTTCCCTCAAAGCGTT -CCAACATCCTTCCCTCAATTCGTC -CCAACATCCTTCCCTCAATCTCTC -CCAACATCCTTCCCTCAATGGATC -CCAACATCCTTCCCTCAACACTTC -CCAACATCCTTCCCTCAAGTACTC -CCAACATCCTTCCCTCAAGATGTC -CCAACATCCTTCCCTCAAACAGTC -CCAACATCCTTCCCTCAATTGCTG -CCAACATCCTTCCCTCAATCCATG -CCAACATCCTTCCCTCAATGTGTG -CCAACATCCTTCCCTCAACTAGTG -CCAACATCCTTCCCTCAACATCTG -CCAACATCCTTCCCTCAAGAGTTG -CCAACATCCTTCCCTCAAAGACTG -CCAACATCCTTCCCTCAATCGGTA -CCAACATCCTTCCCTCAATGCCTA -CCAACATCCTTCCCTCAACCACTA -CCAACATCCTTCCCTCAAGGAGTA -CCAACATCCTTCCCTCAATCGTCT -CCAACATCCTTCCCTCAATGCACT -CCAACATCCTTCCCTCAACTGACT -CCAACATCCTTCCCTCAACAACCT -CCAACATCCTTCCCTCAAGCTACT -CCAACATCCTTCCCTCAAGGATCT -CCAACATCCTTCCCTCAAAAGGCT -CCAACATCCTTCCCTCAATCAACC -CCAACATCCTTCCCTCAATGTTCC -CCAACATCCTTCCCTCAAATTCCC -CCAACATCCTTCCCTCAATTCTCG -CCAACATCCTTCCCTCAATAGACG -CCAACATCCTTCCCTCAAGTAACG -CCAACATCCTTCCCTCAAACTTCG -CCAACATCCTTCCCTCAATACGCA -CCAACATCCTTCCCTCAACTTGCA -CCAACATCCTTCCCTCAACGAACA -CCAACATCCTTCCCTCAACAGTCA -CCAACATCCTTCCCTCAAGATCCA -CCAACATCCTTCCCTCAAACGACA -CCAACATCCTTCCCTCAAAGCTCA -CCAACATCCTTCCCTCAATCACGT -CCAACATCCTTCCCTCAACGTAGT -CCAACATCCTTCCCTCAAGTCAGT -CCAACATCCTTCCCTCAAGAAGGT -CCAACATCCTTCCCTCAAAACCGT -CCAACATCCTTCCCTCAATTGTGC -CCAACATCCTTCCCTCAACTAAGC -CCAACATCCTTCCCTCAAACTAGC -CCAACATCCTTCCCTCAAAGATGC -CCAACATCCTTCCCTCAATGAAGG -CCAACATCCTTCCCTCAACAATGG -CCAACATCCTTCCCTCAAATGAGG -CCAACATCCTTCCCTCAAAATGGG -CCAACATCCTTCCCTCAATCCTGA -CCAACATCCTTCCCTCAATAGCGA -CCAACATCCTTCCCTCAACACAGA -CCAACATCCTTCCCTCAAGCAAGA -CCAACATCCTTCCCTCAAGGTTGA -CCAACATCCTTCCCTCAATCCGAT -CCAACATCCTTCCCTCAATGGCAT -CCAACATCCTTCCCTCAACGAGAT -CCAACATCCTTCCCTCAATACCAC -CCAACATCCTTCCCTCAACAGAAC -CCAACATCCTTCCCTCAAGTCTAC -CCAACATCCTTCCCTCAAACGTAC -CCAACATCCTTCCCTCAAAGTGAC -CCAACATCCTTCCCTCAACTGTAG -CCAACATCCTTCCCTCAACCTAAG -CCAACATCCTTCCCTCAAGTTCAG -CCAACATCCTTCCCTCAAGCATAG -CCAACATCCTTCCCTCAAGACAAG -CCAACATCCTTCCCTCAAAAGCAG -CCAACATCCTTCCCTCAACGTCAA -CCAACATCCTTCCCTCAAGCTGAA -CCAACATCCTTCCCTCAAAGTACG -CCAACATCCTTCCCTCAAATCCGA -CCAACATCCTTCCCTCAAATGGGA -CCAACATCCTTCCCTCAAGTGCAA -CCAACATCCTTCCCTCAAGAGGAA -CCAACATCCTTCCCTCAACAGGTA -CCAACATCCTTCCCTCAAGACTCT -CCAACATCCTTCCCTCAAAGTCCT -CCAACATCCTTCCCTCAATAAGCC -CCAACATCCTTCCCTCAAATAGCC -CCAACATCCTTCCCTCAATAACCG -CCAACATCCTTCCCTCAAATGCCA -CCAACATCCTTCACTGCTGGAAAC -CCAACATCCTTCACTGCTAACACC -CCAACATCCTTCACTGCTATCGAG -CCAACATCCTTCACTGCTCTCCTT -CCAACATCCTTCACTGCTCCTGTT -CCAACATCCTTCACTGCTCGGTTT -CCAACATCCTTCACTGCTGTGGTT -CCAACATCCTTCACTGCTGCCTTT -CCAACATCCTTCACTGCTGGTCTT -CCAACATCCTTCACTGCTACGCTT -CCAACATCCTTCACTGCTAGCGTT -CCAACATCCTTCACTGCTTTCGTC -CCAACATCCTTCACTGCTTCTCTC -CCAACATCCTTCACTGCTTGGATC -CCAACATCCTTCACTGCTCACTTC -CCAACATCCTTCACTGCTGTACTC -CCAACATCCTTCACTGCTGATGTC -CCAACATCCTTCACTGCTACAGTC -CCAACATCCTTCACTGCTTTGCTG -CCAACATCCTTCACTGCTTCCATG -CCAACATCCTTCACTGCTTGTGTG -CCAACATCCTTCACTGCTCTAGTG -CCAACATCCTTCACTGCTCATCTG -CCAACATCCTTCACTGCTGAGTTG -CCAACATCCTTCACTGCTAGACTG -CCAACATCCTTCACTGCTTCGGTA -CCAACATCCTTCACTGCTTGCCTA -CCAACATCCTTCACTGCTCCACTA -CCAACATCCTTCACTGCTGGAGTA -CCAACATCCTTCACTGCTTCGTCT -CCAACATCCTTCACTGCTTGCACT -CCAACATCCTTCACTGCTCTGACT -CCAACATCCTTCACTGCTCAACCT -CCAACATCCTTCACTGCTGCTACT -CCAACATCCTTCACTGCTGGATCT -CCAACATCCTTCACTGCTAAGGCT -CCAACATCCTTCACTGCTTCAACC -CCAACATCCTTCACTGCTTGTTCC -CCAACATCCTTCACTGCTATTCCC -CCAACATCCTTCACTGCTTTCTCG -CCAACATCCTTCACTGCTTAGACG -CCAACATCCTTCACTGCTGTAACG -CCAACATCCTTCACTGCTACTTCG -CCAACATCCTTCACTGCTTACGCA -CCAACATCCTTCACTGCTCTTGCA -CCAACATCCTTCACTGCTCGAACA -CCAACATCCTTCACTGCTCAGTCA -CCAACATCCTTCACTGCTGATCCA -CCAACATCCTTCACTGCTACGACA -CCAACATCCTTCACTGCTAGCTCA -CCAACATCCTTCACTGCTTCACGT -CCAACATCCTTCACTGCTCGTAGT -CCAACATCCTTCACTGCTGTCAGT -CCAACATCCTTCACTGCTGAAGGT -CCAACATCCTTCACTGCTAACCGT -CCAACATCCTTCACTGCTTTGTGC -CCAACATCCTTCACTGCTCTAAGC -CCAACATCCTTCACTGCTACTAGC -CCAACATCCTTCACTGCTAGATGC -CCAACATCCTTCACTGCTTGAAGG -CCAACATCCTTCACTGCTCAATGG -CCAACATCCTTCACTGCTATGAGG -CCAACATCCTTCACTGCTAATGGG -CCAACATCCTTCACTGCTTCCTGA -CCAACATCCTTCACTGCTTAGCGA -CCAACATCCTTCACTGCTCACAGA -CCAACATCCTTCACTGCTGCAAGA -CCAACATCCTTCACTGCTGGTTGA -CCAACATCCTTCACTGCTTCCGAT -CCAACATCCTTCACTGCTTGGCAT -CCAACATCCTTCACTGCTCGAGAT -CCAACATCCTTCACTGCTTACCAC -CCAACATCCTTCACTGCTCAGAAC -CCAACATCCTTCACTGCTGTCTAC -CCAACATCCTTCACTGCTACGTAC -CCAACATCCTTCACTGCTAGTGAC -CCAACATCCTTCACTGCTCTGTAG -CCAACATCCTTCACTGCTCCTAAG -CCAACATCCTTCACTGCTGTTCAG -CCAACATCCTTCACTGCTGCATAG -CCAACATCCTTCACTGCTGACAAG -CCAACATCCTTCACTGCTAAGCAG -CCAACATCCTTCACTGCTCGTCAA -CCAACATCCTTCACTGCTGCTGAA -CCAACATCCTTCACTGCTAGTACG -CCAACATCCTTCACTGCTATCCGA -CCAACATCCTTCACTGCTATGGGA -CCAACATCCTTCACTGCTGTGCAA -CCAACATCCTTCACTGCTGAGGAA -CCAACATCCTTCACTGCTCAGGTA -CCAACATCCTTCACTGCTGACTCT -CCAACATCCTTCACTGCTAGTCCT -CCAACATCCTTCACTGCTTAAGCC -CCAACATCCTTCACTGCTATAGCC -CCAACATCCTTCACTGCTTAACCG -CCAACATCCTTCACTGCTATGCCA -CCAACATCCTTCTCTGGAGGAAAC -CCAACATCCTTCTCTGGAAACACC -CCAACATCCTTCTCTGGAATCGAG -CCAACATCCTTCTCTGGACTCCTT -CCAACATCCTTCTCTGGACCTGTT -CCAACATCCTTCTCTGGACGGTTT -CCAACATCCTTCTCTGGAGTGGTT -CCAACATCCTTCTCTGGAGCCTTT -CCAACATCCTTCTCTGGAGGTCTT -CCAACATCCTTCTCTGGAACGCTT -CCAACATCCTTCTCTGGAAGCGTT -CCAACATCCTTCTCTGGATTCGTC -CCAACATCCTTCTCTGGATCTCTC -CCAACATCCTTCTCTGGATGGATC -CCAACATCCTTCTCTGGACACTTC -CCAACATCCTTCTCTGGAGTACTC -CCAACATCCTTCTCTGGAGATGTC -CCAACATCCTTCTCTGGAACAGTC -CCAACATCCTTCTCTGGATTGCTG -CCAACATCCTTCTCTGGATCCATG -CCAACATCCTTCTCTGGATGTGTG -CCAACATCCTTCTCTGGACTAGTG -CCAACATCCTTCTCTGGACATCTG -CCAACATCCTTCTCTGGAGAGTTG -CCAACATCCTTCTCTGGAAGACTG -CCAACATCCTTCTCTGGATCGGTA -CCAACATCCTTCTCTGGATGCCTA -CCAACATCCTTCTCTGGACCACTA -CCAACATCCTTCTCTGGAGGAGTA -CCAACATCCTTCTCTGGATCGTCT -CCAACATCCTTCTCTGGATGCACT -CCAACATCCTTCTCTGGACTGACT -CCAACATCCTTCTCTGGACAACCT -CCAACATCCTTCTCTGGAGCTACT -CCAACATCCTTCTCTGGAGGATCT -CCAACATCCTTCTCTGGAAAGGCT -CCAACATCCTTCTCTGGATCAACC -CCAACATCCTTCTCTGGATGTTCC -CCAACATCCTTCTCTGGAATTCCC -CCAACATCCTTCTCTGGATTCTCG -CCAACATCCTTCTCTGGATAGACG -CCAACATCCTTCTCTGGAGTAACG -CCAACATCCTTCTCTGGAACTTCG -CCAACATCCTTCTCTGGATACGCA -CCAACATCCTTCTCTGGACTTGCA -CCAACATCCTTCTCTGGACGAACA -CCAACATCCTTCTCTGGACAGTCA -CCAACATCCTTCTCTGGAGATCCA -CCAACATCCTTCTCTGGAACGACA -CCAACATCCTTCTCTGGAAGCTCA -CCAACATCCTTCTCTGGATCACGT -CCAACATCCTTCTCTGGACGTAGT -CCAACATCCTTCTCTGGAGTCAGT -CCAACATCCTTCTCTGGAGAAGGT -CCAACATCCTTCTCTGGAAACCGT -CCAACATCCTTCTCTGGATTGTGC -CCAACATCCTTCTCTGGACTAAGC -CCAACATCCTTCTCTGGAACTAGC -CCAACATCCTTCTCTGGAAGATGC -CCAACATCCTTCTCTGGATGAAGG -CCAACATCCTTCTCTGGACAATGG -CCAACATCCTTCTCTGGAATGAGG -CCAACATCCTTCTCTGGAAATGGG -CCAACATCCTTCTCTGGATCCTGA -CCAACATCCTTCTCTGGATAGCGA -CCAACATCCTTCTCTGGACACAGA -CCAACATCCTTCTCTGGAGCAAGA -CCAACATCCTTCTCTGGAGGTTGA -CCAACATCCTTCTCTGGATCCGAT -CCAACATCCTTCTCTGGATGGCAT -CCAACATCCTTCTCTGGACGAGAT -CCAACATCCTTCTCTGGATACCAC -CCAACATCCTTCTCTGGACAGAAC -CCAACATCCTTCTCTGGAGTCTAC -CCAACATCCTTCTCTGGAACGTAC -CCAACATCCTTCTCTGGAAGTGAC -CCAACATCCTTCTCTGGACTGTAG -CCAACATCCTTCTCTGGACCTAAG -CCAACATCCTTCTCTGGAGTTCAG -CCAACATCCTTCTCTGGAGCATAG -CCAACATCCTTCTCTGGAGACAAG -CCAACATCCTTCTCTGGAAAGCAG -CCAACATCCTTCTCTGGACGTCAA -CCAACATCCTTCTCTGGAGCTGAA -CCAACATCCTTCTCTGGAAGTACG -CCAACATCCTTCTCTGGAATCCGA -CCAACATCCTTCTCTGGAATGGGA -CCAACATCCTTCTCTGGAGTGCAA -CCAACATCCTTCTCTGGAGAGGAA -CCAACATCCTTCTCTGGACAGGTA -CCAACATCCTTCTCTGGAGACTCT -CCAACATCCTTCTCTGGAAGTCCT -CCAACATCCTTCTCTGGATAAGCC -CCAACATCCTTCTCTGGAATAGCC -CCAACATCCTTCTCTGGATAACCG -CCAACATCCTTCTCTGGAATGCCA -CCAACATCCTTCGCTAAGGGAAAC -CCAACATCCTTCGCTAAGAACACC -CCAACATCCTTCGCTAAGATCGAG -CCAACATCCTTCGCTAAGCTCCTT -CCAACATCCTTCGCTAAGCCTGTT -CCAACATCCTTCGCTAAGCGGTTT -CCAACATCCTTCGCTAAGGTGGTT -CCAACATCCTTCGCTAAGGCCTTT -CCAACATCCTTCGCTAAGGGTCTT -CCAACATCCTTCGCTAAGACGCTT -CCAACATCCTTCGCTAAGAGCGTT -CCAACATCCTTCGCTAAGTTCGTC -CCAACATCCTTCGCTAAGTCTCTC -CCAACATCCTTCGCTAAGTGGATC -CCAACATCCTTCGCTAAGCACTTC -CCAACATCCTTCGCTAAGGTACTC -CCAACATCCTTCGCTAAGGATGTC -CCAACATCCTTCGCTAAGACAGTC -CCAACATCCTTCGCTAAGTTGCTG -CCAACATCCTTCGCTAAGTCCATG -CCAACATCCTTCGCTAAGTGTGTG -CCAACATCCTTCGCTAAGCTAGTG -CCAACATCCTTCGCTAAGCATCTG -CCAACATCCTTCGCTAAGGAGTTG -CCAACATCCTTCGCTAAGAGACTG -CCAACATCCTTCGCTAAGTCGGTA -CCAACATCCTTCGCTAAGTGCCTA -CCAACATCCTTCGCTAAGCCACTA -CCAACATCCTTCGCTAAGGGAGTA -CCAACATCCTTCGCTAAGTCGTCT -CCAACATCCTTCGCTAAGTGCACT -CCAACATCCTTCGCTAAGCTGACT -CCAACATCCTTCGCTAAGCAACCT -CCAACATCCTTCGCTAAGGCTACT -CCAACATCCTTCGCTAAGGGATCT -CCAACATCCTTCGCTAAGAAGGCT -CCAACATCCTTCGCTAAGTCAACC -CCAACATCCTTCGCTAAGTGTTCC -CCAACATCCTTCGCTAAGATTCCC -CCAACATCCTTCGCTAAGTTCTCG -CCAACATCCTTCGCTAAGTAGACG -CCAACATCCTTCGCTAAGGTAACG -CCAACATCCTTCGCTAAGACTTCG -CCAACATCCTTCGCTAAGTACGCA -CCAACATCCTTCGCTAAGCTTGCA -CCAACATCCTTCGCTAAGCGAACA -CCAACATCCTTCGCTAAGCAGTCA -CCAACATCCTTCGCTAAGGATCCA -CCAACATCCTTCGCTAAGACGACA -CCAACATCCTTCGCTAAGAGCTCA -CCAACATCCTTCGCTAAGTCACGT -CCAACATCCTTCGCTAAGCGTAGT -CCAACATCCTTCGCTAAGGTCAGT -CCAACATCCTTCGCTAAGGAAGGT -CCAACATCCTTCGCTAAGAACCGT -CCAACATCCTTCGCTAAGTTGTGC -CCAACATCCTTCGCTAAGCTAAGC -CCAACATCCTTCGCTAAGACTAGC -CCAACATCCTTCGCTAAGAGATGC -CCAACATCCTTCGCTAAGTGAAGG -CCAACATCCTTCGCTAAGCAATGG -CCAACATCCTTCGCTAAGATGAGG -CCAACATCCTTCGCTAAGAATGGG -CCAACATCCTTCGCTAAGTCCTGA -CCAACATCCTTCGCTAAGTAGCGA -CCAACATCCTTCGCTAAGCACAGA -CCAACATCCTTCGCTAAGGCAAGA -CCAACATCCTTCGCTAAGGGTTGA -CCAACATCCTTCGCTAAGTCCGAT -CCAACATCCTTCGCTAAGTGGCAT -CCAACATCCTTCGCTAAGCGAGAT -CCAACATCCTTCGCTAAGTACCAC -CCAACATCCTTCGCTAAGCAGAAC -CCAACATCCTTCGCTAAGGTCTAC -CCAACATCCTTCGCTAAGACGTAC -CCAACATCCTTCGCTAAGAGTGAC -CCAACATCCTTCGCTAAGCTGTAG -CCAACATCCTTCGCTAAGCCTAAG -CCAACATCCTTCGCTAAGGTTCAG -CCAACATCCTTCGCTAAGGCATAG -CCAACATCCTTCGCTAAGGACAAG -CCAACATCCTTCGCTAAGAAGCAG -CCAACATCCTTCGCTAAGCGTCAA -CCAACATCCTTCGCTAAGGCTGAA -CCAACATCCTTCGCTAAGAGTACG -CCAACATCCTTCGCTAAGATCCGA -CCAACATCCTTCGCTAAGATGGGA -CCAACATCCTTCGCTAAGGTGCAA -CCAACATCCTTCGCTAAGGAGGAA -CCAACATCCTTCGCTAAGCAGGTA -CCAACATCCTTCGCTAAGGACTCT -CCAACATCCTTCGCTAAGAGTCCT -CCAACATCCTTCGCTAAGTAAGCC -CCAACATCCTTCGCTAAGATAGCC -CCAACATCCTTCGCTAAGTAACCG -CCAACATCCTTCGCTAAGATGCCA -CCAACATCCTTCACCTCAGGAAAC -CCAACATCCTTCACCTCAAACACC -CCAACATCCTTCACCTCAATCGAG -CCAACATCCTTCACCTCACTCCTT -CCAACATCCTTCACCTCACCTGTT -CCAACATCCTTCACCTCACGGTTT -CCAACATCCTTCACCTCAGTGGTT -CCAACATCCTTCACCTCAGCCTTT -CCAACATCCTTCACCTCAGGTCTT -CCAACATCCTTCACCTCAACGCTT -CCAACATCCTTCACCTCAAGCGTT -CCAACATCCTTCACCTCATTCGTC -CCAACATCCTTCACCTCATCTCTC -CCAACATCCTTCACCTCATGGATC -CCAACATCCTTCACCTCACACTTC -CCAACATCCTTCACCTCAGTACTC -CCAACATCCTTCACCTCAGATGTC -CCAACATCCTTCACCTCAACAGTC -CCAACATCCTTCACCTCATTGCTG -CCAACATCCTTCACCTCATCCATG -CCAACATCCTTCACCTCATGTGTG -CCAACATCCTTCACCTCACTAGTG -CCAACATCCTTCACCTCACATCTG -CCAACATCCTTCACCTCAGAGTTG -CCAACATCCTTCACCTCAAGACTG -CCAACATCCTTCACCTCATCGGTA -CCAACATCCTTCACCTCATGCCTA -CCAACATCCTTCACCTCACCACTA -CCAACATCCTTCACCTCAGGAGTA -CCAACATCCTTCACCTCATCGTCT -CCAACATCCTTCACCTCATGCACT -CCAACATCCTTCACCTCACTGACT -CCAACATCCTTCACCTCACAACCT -CCAACATCCTTCACCTCAGCTACT -CCAACATCCTTCACCTCAGGATCT -CCAACATCCTTCACCTCAAAGGCT -CCAACATCCTTCACCTCATCAACC -CCAACATCCTTCACCTCATGTTCC -CCAACATCCTTCACCTCAATTCCC -CCAACATCCTTCACCTCATTCTCG -CCAACATCCTTCACCTCATAGACG -CCAACATCCTTCACCTCAGTAACG -CCAACATCCTTCACCTCAACTTCG -CCAACATCCTTCACCTCATACGCA -CCAACATCCTTCACCTCACTTGCA -CCAACATCCTTCACCTCACGAACA -CCAACATCCTTCACCTCACAGTCA -CCAACATCCTTCACCTCAGATCCA -CCAACATCCTTCACCTCAACGACA -CCAACATCCTTCACCTCAAGCTCA -CCAACATCCTTCACCTCATCACGT -CCAACATCCTTCACCTCACGTAGT -CCAACATCCTTCACCTCAGTCAGT -CCAACATCCTTCACCTCAGAAGGT -CCAACATCCTTCACCTCAAACCGT -CCAACATCCTTCACCTCATTGTGC -CCAACATCCTTCACCTCACTAAGC -CCAACATCCTTCACCTCAACTAGC -CCAACATCCTTCACCTCAAGATGC -CCAACATCCTTCACCTCATGAAGG -CCAACATCCTTCACCTCACAATGG -CCAACATCCTTCACCTCAATGAGG -CCAACATCCTTCACCTCAAATGGG -CCAACATCCTTCACCTCATCCTGA -CCAACATCCTTCACCTCATAGCGA -CCAACATCCTTCACCTCACACAGA -CCAACATCCTTCACCTCAGCAAGA -CCAACATCCTTCACCTCAGGTTGA -CCAACATCCTTCACCTCATCCGAT -CCAACATCCTTCACCTCATGGCAT -CCAACATCCTTCACCTCACGAGAT -CCAACATCCTTCACCTCATACCAC -CCAACATCCTTCACCTCACAGAAC -CCAACATCCTTCACCTCAGTCTAC -CCAACATCCTTCACCTCAACGTAC -CCAACATCCTTCACCTCAAGTGAC -CCAACATCCTTCACCTCACTGTAG -CCAACATCCTTCACCTCACCTAAG -CCAACATCCTTCACCTCAGTTCAG -CCAACATCCTTCACCTCAGCATAG -CCAACATCCTTCACCTCAGACAAG -CCAACATCCTTCACCTCAAAGCAG -CCAACATCCTTCACCTCACGTCAA -CCAACATCCTTCACCTCAGCTGAA -CCAACATCCTTCACCTCAAGTACG -CCAACATCCTTCACCTCAATCCGA -CCAACATCCTTCACCTCAATGGGA -CCAACATCCTTCACCTCAGTGCAA -CCAACATCCTTCACCTCAGAGGAA -CCAACATCCTTCACCTCACAGGTA -CCAACATCCTTCACCTCAGACTCT -CCAACATCCTTCACCTCAAGTCCT -CCAACATCCTTCACCTCATAAGCC -CCAACATCCTTCACCTCAATAGCC -CCAACATCCTTCACCTCATAACCG -CCAACATCCTTCACCTCAATGCCA -CCAACATCCTTCTCCTGTGGAAAC -CCAACATCCTTCTCCTGTAACACC -CCAACATCCTTCTCCTGTATCGAG -CCAACATCCTTCTCCTGTCTCCTT -CCAACATCCTTCTCCTGTCCTGTT -CCAACATCCTTCTCCTGTCGGTTT -CCAACATCCTTCTCCTGTGTGGTT -CCAACATCCTTCTCCTGTGCCTTT -CCAACATCCTTCTCCTGTGGTCTT -CCAACATCCTTCTCCTGTACGCTT -CCAACATCCTTCTCCTGTAGCGTT -CCAACATCCTTCTCCTGTTTCGTC -CCAACATCCTTCTCCTGTTCTCTC -CCAACATCCTTCTCCTGTTGGATC -CCAACATCCTTCTCCTGTCACTTC -CCAACATCCTTCTCCTGTGTACTC -CCAACATCCTTCTCCTGTGATGTC -CCAACATCCTTCTCCTGTACAGTC -CCAACATCCTTCTCCTGTTTGCTG -CCAACATCCTTCTCCTGTTCCATG -CCAACATCCTTCTCCTGTTGTGTG -CCAACATCCTTCTCCTGTCTAGTG -CCAACATCCTTCTCCTGTCATCTG -CCAACATCCTTCTCCTGTGAGTTG -CCAACATCCTTCTCCTGTAGACTG -CCAACATCCTTCTCCTGTTCGGTA -CCAACATCCTTCTCCTGTTGCCTA -CCAACATCCTTCTCCTGTCCACTA -CCAACATCCTTCTCCTGTGGAGTA -CCAACATCCTTCTCCTGTTCGTCT -CCAACATCCTTCTCCTGTTGCACT -CCAACATCCTTCTCCTGTCTGACT -CCAACATCCTTCTCCTGTCAACCT -CCAACATCCTTCTCCTGTGCTACT -CCAACATCCTTCTCCTGTGGATCT -CCAACATCCTTCTCCTGTAAGGCT -CCAACATCCTTCTCCTGTTCAACC -CCAACATCCTTCTCCTGTTGTTCC -CCAACATCCTTCTCCTGTATTCCC -CCAACATCCTTCTCCTGTTTCTCG -CCAACATCCTTCTCCTGTTAGACG -CCAACATCCTTCTCCTGTGTAACG -CCAACATCCTTCTCCTGTACTTCG -CCAACATCCTTCTCCTGTTACGCA -CCAACATCCTTCTCCTGTCTTGCA -CCAACATCCTTCTCCTGTCGAACA -CCAACATCCTTCTCCTGTCAGTCA -CCAACATCCTTCTCCTGTGATCCA -CCAACATCCTTCTCCTGTACGACA -CCAACATCCTTCTCCTGTAGCTCA -CCAACATCCTTCTCCTGTTCACGT -CCAACATCCTTCTCCTGTCGTAGT -CCAACATCCTTCTCCTGTGTCAGT -CCAACATCCTTCTCCTGTGAAGGT -CCAACATCCTTCTCCTGTAACCGT -CCAACATCCTTCTCCTGTTTGTGC -CCAACATCCTTCTCCTGTCTAAGC -CCAACATCCTTCTCCTGTACTAGC -CCAACATCCTTCTCCTGTAGATGC -CCAACATCCTTCTCCTGTTGAAGG -CCAACATCCTTCTCCTGTCAATGG -CCAACATCCTTCTCCTGTATGAGG -CCAACATCCTTCTCCTGTAATGGG -CCAACATCCTTCTCCTGTTCCTGA -CCAACATCCTTCTCCTGTTAGCGA -CCAACATCCTTCTCCTGTCACAGA -CCAACATCCTTCTCCTGTGCAAGA -CCAACATCCTTCTCCTGTGGTTGA -CCAACATCCTTCTCCTGTTCCGAT -CCAACATCCTTCTCCTGTTGGCAT -CCAACATCCTTCTCCTGTCGAGAT -CCAACATCCTTCTCCTGTTACCAC -CCAACATCCTTCTCCTGTCAGAAC -CCAACATCCTTCTCCTGTGTCTAC -CCAACATCCTTCTCCTGTACGTAC -CCAACATCCTTCTCCTGTAGTGAC -CCAACATCCTTCTCCTGTCTGTAG -CCAACATCCTTCTCCTGTCCTAAG -CCAACATCCTTCTCCTGTGTTCAG -CCAACATCCTTCTCCTGTGCATAG -CCAACATCCTTCTCCTGTGACAAG -CCAACATCCTTCTCCTGTAAGCAG -CCAACATCCTTCTCCTGTCGTCAA -CCAACATCCTTCTCCTGTGCTGAA -CCAACATCCTTCTCCTGTAGTACG -CCAACATCCTTCTCCTGTATCCGA -CCAACATCCTTCTCCTGTATGGGA -CCAACATCCTTCTCCTGTGTGCAA -CCAACATCCTTCTCCTGTGAGGAA -CCAACATCCTTCTCCTGTCAGGTA -CCAACATCCTTCTCCTGTGACTCT -CCAACATCCTTCTCCTGTAGTCCT -CCAACATCCTTCTCCTGTTAAGCC -CCAACATCCTTCTCCTGTATAGCC -CCAACATCCTTCTCCTGTTAACCG -CCAACATCCTTCTCCTGTATGCCA -CCAACATCCTTCCCCATTGGAAAC -CCAACATCCTTCCCCATTAACACC -CCAACATCCTTCCCCATTATCGAG -CCAACATCCTTCCCCATTCTCCTT -CCAACATCCTTCCCCATTCCTGTT -CCAACATCCTTCCCCATTCGGTTT -CCAACATCCTTCCCCATTGTGGTT -CCAACATCCTTCCCCATTGCCTTT -CCAACATCCTTCCCCATTGGTCTT -CCAACATCCTTCCCCATTACGCTT -CCAACATCCTTCCCCATTAGCGTT -CCAACATCCTTCCCCATTTTCGTC -CCAACATCCTTCCCCATTTCTCTC -CCAACATCCTTCCCCATTTGGATC -CCAACATCCTTCCCCATTCACTTC -CCAACATCCTTCCCCATTGTACTC -CCAACATCCTTCCCCATTGATGTC -CCAACATCCTTCCCCATTACAGTC -CCAACATCCTTCCCCATTTTGCTG -CCAACATCCTTCCCCATTTCCATG -CCAACATCCTTCCCCATTTGTGTG -CCAACATCCTTCCCCATTCTAGTG -CCAACATCCTTCCCCATTCATCTG -CCAACATCCTTCCCCATTGAGTTG -CCAACATCCTTCCCCATTAGACTG -CCAACATCCTTCCCCATTTCGGTA -CCAACATCCTTCCCCATTTGCCTA -CCAACATCCTTCCCCATTCCACTA -CCAACATCCTTCCCCATTGGAGTA -CCAACATCCTTCCCCATTTCGTCT -CCAACATCCTTCCCCATTTGCACT -CCAACATCCTTCCCCATTCTGACT -CCAACATCCTTCCCCATTCAACCT -CCAACATCCTTCCCCATTGCTACT -CCAACATCCTTCCCCATTGGATCT -CCAACATCCTTCCCCATTAAGGCT -CCAACATCCTTCCCCATTTCAACC -CCAACATCCTTCCCCATTTGTTCC -CCAACATCCTTCCCCATTATTCCC -CCAACATCCTTCCCCATTTTCTCG -CCAACATCCTTCCCCATTTAGACG -CCAACATCCTTCCCCATTGTAACG -CCAACATCCTTCCCCATTACTTCG -CCAACATCCTTCCCCATTTACGCA -CCAACATCCTTCCCCATTCTTGCA -CCAACATCCTTCCCCATTCGAACA -CCAACATCCTTCCCCATTCAGTCA -CCAACATCCTTCCCCATTGATCCA -CCAACATCCTTCCCCATTACGACA -CCAACATCCTTCCCCATTAGCTCA -CCAACATCCTTCCCCATTTCACGT -CCAACATCCTTCCCCATTCGTAGT -CCAACATCCTTCCCCATTGTCAGT -CCAACATCCTTCCCCATTGAAGGT -CCAACATCCTTCCCCATTAACCGT -CCAACATCCTTCCCCATTTTGTGC -CCAACATCCTTCCCCATTCTAAGC -CCAACATCCTTCCCCATTACTAGC -CCAACATCCTTCCCCATTAGATGC -CCAACATCCTTCCCCATTTGAAGG -CCAACATCCTTCCCCATTCAATGG -CCAACATCCTTCCCCATTATGAGG -CCAACATCCTTCCCCATTAATGGG -CCAACATCCTTCCCCATTTCCTGA -CCAACATCCTTCCCCATTTAGCGA -CCAACATCCTTCCCCATTCACAGA -CCAACATCCTTCCCCATTGCAAGA -CCAACATCCTTCCCCATTGGTTGA -CCAACATCCTTCCCCATTTCCGAT -CCAACATCCTTCCCCATTTGGCAT -CCAACATCCTTCCCCATTCGAGAT -CCAACATCCTTCCCCATTTACCAC -CCAACATCCTTCCCCATTCAGAAC -CCAACATCCTTCCCCATTGTCTAC -CCAACATCCTTCCCCATTACGTAC -CCAACATCCTTCCCCATTAGTGAC -CCAACATCCTTCCCCATTCTGTAG -CCAACATCCTTCCCCATTCCTAAG -CCAACATCCTTCCCCATTGTTCAG -CCAACATCCTTCCCCATTGCATAG -CCAACATCCTTCCCCATTGACAAG -CCAACATCCTTCCCCATTAAGCAG -CCAACATCCTTCCCCATTCGTCAA -CCAACATCCTTCCCCATTGCTGAA -CCAACATCCTTCCCCATTAGTACG -CCAACATCCTTCCCCATTATCCGA -CCAACATCCTTCCCCATTATGGGA -CCAACATCCTTCCCCATTGTGCAA -CCAACATCCTTCCCCATTGAGGAA -CCAACATCCTTCCCCATTCAGGTA -CCAACATCCTTCCCCATTGACTCT -CCAACATCCTTCCCCATTAGTCCT -CCAACATCCTTCCCCATTTAAGCC -CCAACATCCTTCCCCATTATAGCC -CCAACATCCTTCCCCATTTAACCG -CCAACATCCTTCCCCATTATGCCA -CCAACATCCTTCTCGTTCGGAAAC -CCAACATCCTTCTCGTTCAACACC -CCAACATCCTTCTCGTTCATCGAG -CCAACATCCTTCTCGTTCCTCCTT -CCAACATCCTTCTCGTTCCCTGTT -CCAACATCCTTCTCGTTCCGGTTT -CCAACATCCTTCTCGTTCGTGGTT -CCAACATCCTTCTCGTTCGCCTTT -CCAACATCCTTCTCGTTCGGTCTT -CCAACATCCTTCTCGTTCACGCTT -CCAACATCCTTCTCGTTCAGCGTT -CCAACATCCTTCTCGTTCTTCGTC -CCAACATCCTTCTCGTTCTCTCTC -CCAACATCCTTCTCGTTCTGGATC -CCAACATCCTTCTCGTTCCACTTC -CCAACATCCTTCTCGTTCGTACTC -CCAACATCCTTCTCGTTCGATGTC -CCAACATCCTTCTCGTTCACAGTC -CCAACATCCTTCTCGTTCTTGCTG -CCAACATCCTTCTCGTTCTCCATG -CCAACATCCTTCTCGTTCTGTGTG -CCAACATCCTTCTCGTTCCTAGTG -CCAACATCCTTCTCGTTCCATCTG -CCAACATCCTTCTCGTTCGAGTTG -CCAACATCCTTCTCGTTCAGACTG -CCAACATCCTTCTCGTTCTCGGTA -CCAACATCCTTCTCGTTCTGCCTA -CCAACATCCTTCTCGTTCCCACTA -CCAACATCCTTCTCGTTCGGAGTA -CCAACATCCTTCTCGTTCTCGTCT -CCAACATCCTTCTCGTTCTGCACT -CCAACATCCTTCTCGTTCCTGACT -CCAACATCCTTCTCGTTCCAACCT -CCAACATCCTTCTCGTTCGCTACT -CCAACATCCTTCTCGTTCGGATCT -CCAACATCCTTCTCGTTCAAGGCT -CCAACATCCTTCTCGTTCTCAACC -CCAACATCCTTCTCGTTCTGTTCC -CCAACATCCTTCTCGTTCATTCCC -CCAACATCCTTCTCGTTCTTCTCG -CCAACATCCTTCTCGTTCTAGACG -CCAACATCCTTCTCGTTCGTAACG -CCAACATCCTTCTCGTTCACTTCG -CCAACATCCTTCTCGTTCTACGCA -CCAACATCCTTCTCGTTCCTTGCA -CCAACATCCTTCTCGTTCCGAACA -CCAACATCCTTCTCGTTCCAGTCA -CCAACATCCTTCTCGTTCGATCCA -CCAACATCCTTCTCGTTCACGACA -CCAACATCCTTCTCGTTCAGCTCA -CCAACATCCTTCTCGTTCTCACGT -CCAACATCCTTCTCGTTCCGTAGT -CCAACATCCTTCTCGTTCGTCAGT -CCAACATCCTTCTCGTTCGAAGGT -CCAACATCCTTCTCGTTCAACCGT -CCAACATCCTTCTCGTTCTTGTGC -CCAACATCCTTCTCGTTCCTAAGC -CCAACATCCTTCTCGTTCACTAGC -CCAACATCCTTCTCGTTCAGATGC -CCAACATCCTTCTCGTTCTGAAGG -CCAACATCCTTCTCGTTCCAATGG -CCAACATCCTTCTCGTTCATGAGG -CCAACATCCTTCTCGTTCAATGGG -CCAACATCCTTCTCGTTCTCCTGA -CCAACATCCTTCTCGTTCTAGCGA -CCAACATCCTTCTCGTTCCACAGA -CCAACATCCTTCTCGTTCGCAAGA -CCAACATCCTTCTCGTTCGGTTGA -CCAACATCCTTCTCGTTCTCCGAT -CCAACATCCTTCTCGTTCTGGCAT -CCAACATCCTTCTCGTTCCGAGAT -CCAACATCCTTCTCGTTCTACCAC -CCAACATCCTTCTCGTTCCAGAAC -CCAACATCCTTCTCGTTCGTCTAC -CCAACATCCTTCTCGTTCACGTAC -CCAACATCCTTCTCGTTCAGTGAC -CCAACATCCTTCTCGTTCCTGTAG -CCAACATCCTTCTCGTTCCCTAAG -CCAACATCCTTCTCGTTCGTTCAG -CCAACATCCTTCTCGTTCGCATAG -CCAACATCCTTCTCGTTCGACAAG -CCAACATCCTTCTCGTTCAAGCAG -CCAACATCCTTCTCGTTCCGTCAA -CCAACATCCTTCTCGTTCGCTGAA -CCAACATCCTTCTCGTTCAGTACG -CCAACATCCTTCTCGTTCATCCGA -CCAACATCCTTCTCGTTCATGGGA -CCAACATCCTTCTCGTTCGTGCAA -CCAACATCCTTCTCGTTCGAGGAA -CCAACATCCTTCTCGTTCCAGGTA -CCAACATCCTTCTCGTTCGACTCT -CCAACATCCTTCTCGTTCAGTCCT -CCAACATCCTTCTCGTTCTAAGCC -CCAACATCCTTCTCGTTCATAGCC -CCAACATCCTTCTCGTTCTAACCG -CCAACATCCTTCTCGTTCATGCCA -CCAACATCCTTCACGTAGGGAAAC -CCAACATCCTTCACGTAGAACACC -CCAACATCCTTCACGTAGATCGAG -CCAACATCCTTCACGTAGCTCCTT -CCAACATCCTTCACGTAGCCTGTT -CCAACATCCTTCACGTAGCGGTTT -CCAACATCCTTCACGTAGGTGGTT -CCAACATCCTTCACGTAGGCCTTT -CCAACATCCTTCACGTAGGGTCTT -CCAACATCCTTCACGTAGACGCTT -CCAACATCCTTCACGTAGAGCGTT -CCAACATCCTTCACGTAGTTCGTC -CCAACATCCTTCACGTAGTCTCTC -CCAACATCCTTCACGTAGTGGATC -CCAACATCCTTCACGTAGCACTTC -CCAACATCCTTCACGTAGGTACTC -CCAACATCCTTCACGTAGGATGTC -CCAACATCCTTCACGTAGACAGTC -CCAACATCCTTCACGTAGTTGCTG -CCAACATCCTTCACGTAGTCCATG -CCAACATCCTTCACGTAGTGTGTG -CCAACATCCTTCACGTAGCTAGTG -CCAACATCCTTCACGTAGCATCTG -CCAACATCCTTCACGTAGGAGTTG -CCAACATCCTTCACGTAGAGACTG -CCAACATCCTTCACGTAGTCGGTA -CCAACATCCTTCACGTAGTGCCTA -CCAACATCCTTCACGTAGCCACTA -CCAACATCCTTCACGTAGGGAGTA -CCAACATCCTTCACGTAGTCGTCT -CCAACATCCTTCACGTAGTGCACT -CCAACATCCTTCACGTAGCTGACT -CCAACATCCTTCACGTAGCAACCT -CCAACATCCTTCACGTAGGCTACT -CCAACATCCTTCACGTAGGGATCT -CCAACATCCTTCACGTAGAAGGCT -CCAACATCCTTCACGTAGTCAACC -CCAACATCCTTCACGTAGTGTTCC -CCAACATCCTTCACGTAGATTCCC -CCAACATCCTTCACGTAGTTCTCG -CCAACATCCTTCACGTAGTAGACG -CCAACATCCTTCACGTAGGTAACG -CCAACATCCTTCACGTAGACTTCG -CCAACATCCTTCACGTAGTACGCA -CCAACATCCTTCACGTAGCTTGCA -CCAACATCCTTCACGTAGCGAACA -CCAACATCCTTCACGTAGCAGTCA -CCAACATCCTTCACGTAGGATCCA -CCAACATCCTTCACGTAGACGACA -CCAACATCCTTCACGTAGAGCTCA -CCAACATCCTTCACGTAGTCACGT -CCAACATCCTTCACGTAGCGTAGT -CCAACATCCTTCACGTAGGTCAGT -CCAACATCCTTCACGTAGGAAGGT -CCAACATCCTTCACGTAGAACCGT -CCAACATCCTTCACGTAGTTGTGC -CCAACATCCTTCACGTAGCTAAGC -CCAACATCCTTCACGTAGACTAGC -CCAACATCCTTCACGTAGAGATGC -CCAACATCCTTCACGTAGTGAAGG -CCAACATCCTTCACGTAGCAATGG -CCAACATCCTTCACGTAGATGAGG -CCAACATCCTTCACGTAGAATGGG -CCAACATCCTTCACGTAGTCCTGA -CCAACATCCTTCACGTAGTAGCGA -CCAACATCCTTCACGTAGCACAGA -CCAACATCCTTCACGTAGGCAAGA -CCAACATCCTTCACGTAGGGTTGA -CCAACATCCTTCACGTAGTCCGAT -CCAACATCCTTCACGTAGTGGCAT -CCAACATCCTTCACGTAGCGAGAT -CCAACATCCTTCACGTAGTACCAC -CCAACATCCTTCACGTAGCAGAAC -CCAACATCCTTCACGTAGGTCTAC -CCAACATCCTTCACGTAGACGTAC -CCAACATCCTTCACGTAGAGTGAC -CCAACATCCTTCACGTAGCTGTAG -CCAACATCCTTCACGTAGCCTAAG -CCAACATCCTTCACGTAGGTTCAG -CCAACATCCTTCACGTAGGCATAG -CCAACATCCTTCACGTAGGACAAG -CCAACATCCTTCACGTAGAAGCAG -CCAACATCCTTCACGTAGCGTCAA -CCAACATCCTTCACGTAGGCTGAA -CCAACATCCTTCACGTAGAGTACG -CCAACATCCTTCACGTAGATCCGA -CCAACATCCTTCACGTAGATGGGA -CCAACATCCTTCACGTAGGTGCAA -CCAACATCCTTCACGTAGGAGGAA -CCAACATCCTTCACGTAGCAGGTA -CCAACATCCTTCACGTAGGACTCT -CCAACATCCTTCACGTAGAGTCCT -CCAACATCCTTCACGTAGTAAGCC -CCAACATCCTTCACGTAGATAGCC -CCAACATCCTTCACGTAGTAACCG -CCAACATCCTTCACGTAGATGCCA -CCAACATCCTTCACGGTAGGAAAC -CCAACATCCTTCACGGTAAACACC -CCAACATCCTTCACGGTAATCGAG -CCAACATCCTTCACGGTACTCCTT -CCAACATCCTTCACGGTACCTGTT -CCAACATCCTTCACGGTACGGTTT -CCAACATCCTTCACGGTAGTGGTT -CCAACATCCTTCACGGTAGCCTTT -CCAACATCCTTCACGGTAGGTCTT -CCAACATCCTTCACGGTAACGCTT -CCAACATCCTTCACGGTAAGCGTT -CCAACATCCTTCACGGTATTCGTC -CCAACATCCTTCACGGTATCTCTC -CCAACATCCTTCACGGTATGGATC -CCAACATCCTTCACGGTACACTTC -CCAACATCCTTCACGGTAGTACTC -CCAACATCCTTCACGGTAGATGTC -CCAACATCCTTCACGGTAACAGTC -CCAACATCCTTCACGGTATTGCTG -CCAACATCCTTCACGGTATCCATG -CCAACATCCTTCACGGTATGTGTG -CCAACATCCTTCACGGTACTAGTG -CCAACATCCTTCACGGTACATCTG -CCAACATCCTTCACGGTAGAGTTG -CCAACATCCTTCACGGTAAGACTG -CCAACATCCTTCACGGTATCGGTA -CCAACATCCTTCACGGTATGCCTA -CCAACATCCTTCACGGTACCACTA -CCAACATCCTTCACGGTAGGAGTA -CCAACATCCTTCACGGTATCGTCT -CCAACATCCTTCACGGTATGCACT -CCAACATCCTTCACGGTACTGACT -CCAACATCCTTCACGGTACAACCT -CCAACATCCTTCACGGTAGCTACT -CCAACATCCTTCACGGTAGGATCT -CCAACATCCTTCACGGTAAAGGCT -CCAACATCCTTCACGGTATCAACC -CCAACATCCTTCACGGTATGTTCC -CCAACATCCTTCACGGTAATTCCC -CCAACATCCTTCACGGTATTCTCG -CCAACATCCTTCACGGTATAGACG -CCAACATCCTTCACGGTAGTAACG -CCAACATCCTTCACGGTAACTTCG -CCAACATCCTTCACGGTATACGCA -CCAACATCCTTCACGGTACTTGCA -CCAACATCCTTCACGGTACGAACA -CCAACATCCTTCACGGTACAGTCA -CCAACATCCTTCACGGTAGATCCA -CCAACATCCTTCACGGTAACGACA -CCAACATCCTTCACGGTAAGCTCA -CCAACATCCTTCACGGTATCACGT -CCAACATCCTTCACGGTACGTAGT -CCAACATCCTTCACGGTAGTCAGT -CCAACATCCTTCACGGTAGAAGGT -CCAACATCCTTCACGGTAAACCGT -CCAACATCCTTCACGGTATTGTGC -CCAACATCCTTCACGGTACTAAGC -CCAACATCCTTCACGGTAACTAGC -CCAACATCCTTCACGGTAAGATGC -CCAACATCCTTCACGGTATGAAGG -CCAACATCCTTCACGGTACAATGG -CCAACATCCTTCACGGTAATGAGG -CCAACATCCTTCACGGTAAATGGG -CCAACATCCTTCACGGTATCCTGA -CCAACATCCTTCACGGTATAGCGA -CCAACATCCTTCACGGTACACAGA -CCAACATCCTTCACGGTAGCAAGA -CCAACATCCTTCACGGTAGGTTGA -CCAACATCCTTCACGGTATCCGAT -CCAACATCCTTCACGGTATGGCAT -CCAACATCCTTCACGGTACGAGAT -CCAACATCCTTCACGGTATACCAC -CCAACATCCTTCACGGTACAGAAC -CCAACATCCTTCACGGTAGTCTAC -CCAACATCCTTCACGGTAACGTAC -CCAACATCCTTCACGGTAAGTGAC -CCAACATCCTTCACGGTACTGTAG -CCAACATCCTTCACGGTACCTAAG -CCAACATCCTTCACGGTAGTTCAG -CCAACATCCTTCACGGTAGCATAG -CCAACATCCTTCACGGTAGACAAG -CCAACATCCTTCACGGTAAAGCAG -CCAACATCCTTCACGGTACGTCAA -CCAACATCCTTCACGGTAGCTGAA -CCAACATCCTTCACGGTAAGTACG -CCAACATCCTTCACGGTAATCCGA -CCAACATCCTTCACGGTAATGGGA -CCAACATCCTTCACGGTAGTGCAA -CCAACATCCTTCACGGTAGAGGAA -CCAACATCCTTCACGGTACAGGTA -CCAACATCCTTCACGGTAGACTCT -CCAACATCCTTCACGGTAAGTCCT -CCAACATCCTTCACGGTATAAGCC -CCAACATCCTTCACGGTAATAGCC -CCAACATCCTTCACGGTATAACCG -CCAACATCCTTCACGGTAATGCCA -CCAACATCCTTCTCGACTGGAAAC -CCAACATCCTTCTCGACTAACACC -CCAACATCCTTCTCGACTATCGAG -CCAACATCCTTCTCGACTCTCCTT -CCAACATCCTTCTCGACTCCTGTT -CCAACATCCTTCTCGACTCGGTTT -CCAACATCCTTCTCGACTGTGGTT -CCAACATCCTTCTCGACTGCCTTT -CCAACATCCTTCTCGACTGGTCTT -CCAACATCCTTCTCGACTACGCTT -CCAACATCCTTCTCGACTAGCGTT -CCAACATCCTTCTCGACTTTCGTC -CCAACATCCTTCTCGACTTCTCTC -CCAACATCCTTCTCGACTTGGATC -CCAACATCCTTCTCGACTCACTTC -CCAACATCCTTCTCGACTGTACTC -CCAACATCCTTCTCGACTGATGTC -CCAACATCCTTCTCGACTACAGTC -CCAACATCCTTCTCGACTTTGCTG -CCAACATCCTTCTCGACTTCCATG -CCAACATCCTTCTCGACTTGTGTG -CCAACATCCTTCTCGACTCTAGTG -CCAACATCCTTCTCGACTCATCTG -CCAACATCCTTCTCGACTGAGTTG -CCAACATCCTTCTCGACTAGACTG -CCAACATCCTTCTCGACTTCGGTA -CCAACATCCTTCTCGACTTGCCTA -CCAACATCCTTCTCGACTCCACTA -CCAACATCCTTCTCGACTGGAGTA -CCAACATCCTTCTCGACTTCGTCT -CCAACATCCTTCTCGACTTGCACT -CCAACATCCTTCTCGACTCTGACT -CCAACATCCTTCTCGACTCAACCT -CCAACATCCTTCTCGACTGCTACT -CCAACATCCTTCTCGACTGGATCT -CCAACATCCTTCTCGACTAAGGCT -CCAACATCCTTCTCGACTTCAACC -CCAACATCCTTCTCGACTTGTTCC -CCAACATCCTTCTCGACTATTCCC -CCAACATCCTTCTCGACTTTCTCG -CCAACATCCTTCTCGACTTAGACG -CCAACATCCTTCTCGACTGTAACG -CCAACATCCTTCTCGACTACTTCG -CCAACATCCTTCTCGACTTACGCA -CCAACATCCTTCTCGACTCTTGCA -CCAACATCCTTCTCGACTCGAACA -CCAACATCCTTCTCGACTCAGTCA -CCAACATCCTTCTCGACTGATCCA -CCAACATCCTTCTCGACTACGACA -CCAACATCCTTCTCGACTAGCTCA -CCAACATCCTTCTCGACTTCACGT -CCAACATCCTTCTCGACTCGTAGT -CCAACATCCTTCTCGACTGTCAGT -CCAACATCCTTCTCGACTGAAGGT -CCAACATCCTTCTCGACTAACCGT -CCAACATCCTTCTCGACTTTGTGC -CCAACATCCTTCTCGACTCTAAGC -CCAACATCCTTCTCGACTACTAGC -CCAACATCCTTCTCGACTAGATGC -CCAACATCCTTCTCGACTTGAAGG -CCAACATCCTTCTCGACTCAATGG -CCAACATCCTTCTCGACTATGAGG -CCAACATCCTTCTCGACTAATGGG -CCAACATCCTTCTCGACTTCCTGA -CCAACATCCTTCTCGACTTAGCGA -CCAACATCCTTCTCGACTCACAGA -CCAACATCCTTCTCGACTGCAAGA -CCAACATCCTTCTCGACTGGTTGA -CCAACATCCTTCTCGACTTCCGAT -CCAACATCCTTCTCGACTTGGCAT -CCAACATCCTTCTCGACTCGAGAT -CCAACATCCTTCTCGACTTACCAC -CCAACATCCTTCTCGACTCAGAAC -CCAACATCCTTCTCGACTGTCTAC -CCAACATCCTTCTCGACTACGTAC -CCAACATCCTTCTCGACTAGTGAC -CCAACATCCTTCTCGACTCTGTAG -CCAACATCCTTCTCGACTCCTAAG -CCAACATCCTTCTCGACTGTTCAG -CCAACATCCTTCTCGACTGCATAG -CCAACATCCTTCTCGACTGACAAG -CCAACATCCTTCTCGACTAAGCAG -CCAACATCCTTCTCGACTCGTCAA -CCAACATCCTTCTCGACTGCTGAA -CCAACATCCTTCTCGACTAGTACG -CCAACATCCTTCTCGACTATCCGA -CCAACATCCTTCTCGACTATGGGA -CCAACATCCTTCTCGACTGTGCAA -CCAACATCCTTCTCGACTGAGGAA -CCAACATCCTTCTCGACTCAGGTA -CCAACATCCTTCTCGACTGACTCT -CCAACATCCTTCTCGACTAGTCCT -CCAACATCCTTCTCGACTTAAGCC -CCAACATCCTTCTCGACTATAGCC -CCAACATCCTTCTCGACTTAACCG -CCAACATCCTTCTCGACTATGCCA -CCAACATCCTTCGCATACGGAAAC -CCAACATCCTTCGCATACAACACC -CCAACATCCTTCGCATACATCGAG -CCAACATCCTTCGCATACCTCCTT -CCAACATCCTTCGCATACCCTGTT -CCAACATCCTTCGCATACCGGTTT -CCAACATCCTTCGCATACGTGGTT -CCAACATCCTTCGCATACGCCTTT -CCAACATCCTTCGCATACGGTCTT -CCAACATCCTTCGCATACACGCTT -CCAACATCCTTCGCATACAGCGTT -CCAACATCCTTCGCATACTTCGTC -CCAACATCCTTCGCATACTCTCTC -CCAACATCCTTCGCATACTGGATC -CCAACATCCTTCGCATACCACTTC -CCAACATCCTTCGCATACGTACTC -CCAACATCCTTCGCATACGATGTC -CCAACATCCTTCGCATACACAGTC -CCAACATCCTTCGCATACTTGCTG -CCAACATCCTTCGCATACTCCATG -CCAACATCCTTCGCATACTGTGTG -CCAACATCCTTCGCATACCTAGTG -CCAACATCCTTCGCATACCATCTG -CCAACATCCTTCGCATACGAGTTG -CCAACATCCTTCGCATACAGACTG -CCAACATCCTTCGCATACTCGGTA -CCAACATCCTTCGCATACTGCCTA -CCAACATCCTTCGCATACCCACTA -CCAACATCCTTCGCATACGGAGTA -CCAACATCCTTCGCATACTCGTCT -CCAACATCCTTCGCATACTGCACT -CCAACATCCTTCGCATACCTGACT -CCAACATCCTTCGCATACCAACCT -CCAACATCCTTCGCATACGCTACT -CCAACATCCTTCGCATACGGATCT -CCAACATCCTTCGCATACAAGGCT -CCAACATCCTTCGCATACTCAACC -CCAACATCCTTCGCATACTGTTCC -CCAACATCCTTCGCATACATTCCC -CCAACATCCTTCGCATACTTCTCG -CCAACATCCTTCGCATACTAGACG -CCAACATCCTTCGCATACGTAACG -CCAACATCCTTCGCATACACTTCG -CCAACATCCTTCGCATACTACGCA -CCAACATCCTTCGCATACCTTGCA -CCAACATCCTTCGCATACCGAACA -CCAACATCCTTCGCATACCAGTCA -CCAACATCCTTCGCATACGATCCA -CCAACATCCTTCGCATACACGACA -CCAACATCCTTCGCATACAGCTCA -CCAACATCCTTCGCATACTCACGT -CCAACATCCTTCGCATACCGTAGT -CCAACATCCTTCGCATACGTCAGT -CCAACATCCTTCGCATACGAAGGT -CCAACATCCTTCGCATACAACCGT -CCAACATCCTTCGCATACTTGTGC -CCAACATCCTTCGCATACCTAAGC -CCAACATCCTTCGCATACACTAGC -CCAACATCCTTCGCATACAGATGC -CCAACATCCTTCGCATACTGAAGG -CCAACATCCTTCGCATACCAATGG -CCAACATCCTTCGCATACATGAGG -CCAACATCCTTCGCATACAATGGG -CCAACATCCTTCGCATACTCCTGA -CCAACATCCTTCGCATACTAGCGA -CCAACATCCTTCGCATACCACAGA -CCAACATCCTTCGCATACGCAAGA -CCAACATCCTTCGCATACGGTTGA -CCAACATCCTTCGCATACTCCGAT -CCAACATCCTTCGCATACTGGCAT -CCAACATCCTTCGCATACCGAGAT -CCAACATCCTTCGCATACTACCAC -CCAACATCCTTCGCATACCAGAAC -CCAACATCCTTCGCATACGTCTAC -CCAACATCCTTCGCATACACGTAC -CCAACATCCTTCGCATACAGTGAC -CCAACATCCTTCGCATACCTGTAG -CCAACATCCTTCGCATACCCTAAG -CCAACATCCTTCGCATACGTTCAG -CCAACATCCTTCGCATACGCATAG -CCAACATCCTTCGCATACGACAAG -CCAACATCCTTCGCATACAAGCAG -CCAACATCCTTCGCATACCGTCAA -CCAACATCCTTCGCATACGCTGAA -CCAACATCCTTCGCATACAGTACG -CCAACATCCTTCGCATACATCCGA -CCAACATCCTTCGCATACATGGGA -CCAACATCCTTCGCATACGTGCAA -CCAACATCCTTCGCATACGAGGAA -CCAACATCCTTCGCATACCAGGTA -CCAACATCCTTCGCATACGACTCT -CCAACATCCTTCGCATACAGTCCT -CCAACATCCTTCGCATACTAAGCC -CCAACATCCTTCGCATACATAGCC -CCAACATCCTTCGCATACTAACCG -CCAACATCCTTCGCATACATGCCA -CCAACATCCTTCGCACTTGGAAAC -CCAACATCCTTCGCACTTAACACC -CCAACATCCTTCGCACTTATCGAG -CCAACATCCTTCGCACTTCTCCTT -CCAACATCCTTCGCACTTCCTGTT -CCAACATCCTTCGCACTTCGGTTT -CCAACATCCTTCGCACTTGTGGTT -CCAACATCCTTCGCACTTGCCTTT -CCAACATCCTTCGCACTTGGTCTT -CCAACATCCTTCGCACTTACGCTT -CCAACATCCTTCGCACTTAGCGTT -CCAACATCCTTCGCACTTTTCGTC -CCAACATCCTTCGCACTTTCTCTC -CCAACATCCTTCGCACTTTGGATC -CCAACATCCTTCGCACTTCACTTC -CCAACATCCTTCGCACTTGTACTC -CCAACATCCTTCGCACTTGATGTC -CCAACATCCTTCGCACTTACAGTC -CCAACATCCTTCGCACTTTTGCTG -CCAACATCCTTCGCACTTTCCATG -CCAACATCCTTCGCACTTTGTGTG -CCAACATCCTTCGCACTTCTAGTG -CCAACATCCTTCGCACTTCATCTG -CCAACATCCTTCGCACTTGAGTTG -CCAACATCCTTCGCACTTAGACTG -CCAACATCCTTCGCACTTTCGGTA -CCAACATCCTTCGCACTTTGCCTA -CCAACATCCTTCGCACTTCCACTA -CCAACATCCTTCGCACTTGGAGTA -CCAACATCCTTCGCACTTTCGTCT -CCAACATCCTTCGCACTTTGCACT -CCAACATCCTTCGCACTTCTGACT -CCAACATCCTTCGCACTTCAACCT -CCAACATCCTTCGCACTTGCTACT -CCAACATCCTTCGCACTTGGATCT -CCAACATCCTTCGCACTTAAGGCT -CCAACATCCTTCGCACTTTCAACC -CCAACATCCTTCGCACTTTGTTCC -CCAACATCCTTCGCACTTATTCCC -CCAACATCCTTCGCACTTTTCTCG -CCAACATCCTTCGCACTTTAGACG -CCAACATCCTTCGCACTTGTAACG -CCAACATCCTTCGCACTTACTTCG -CCAACATCCTTCGCACTTTACGCA -CCAACATCCTTCGCACTTCTTGCA -CCAACATCCTTCGCACTTCGAACA -CCAACATCCTTCGCACTTCAGTCA -CCAACATCCTTCGCACTTGATCCA -CCAACATCCTTCGCACTTACGACA -CCAACATCCTTCGCACTTAGCTCA -CCAACATCCTTCGCACTTTCACGT -CCAACATCCTTCGCACTTCGTAGT -CCAACATCCTTCGCACTTGTCAGT -CCAACATCCTTCGCACTTGAAGGT -CCAACATCCTTCGCACTTAACCGT -CCAACATCCTTCGCACTTTTGTGC -CCAACATCCTTCGCACTTCTAAGC -CCAACATCCTTCGCACTTACTAGC -CCAACATCCTTCGCACTTAGATGC -CCAACATCCTTCGCACTTTGAAGG -CCAACATCCTTCGCACTTCAATGG -CCAACATCCTTCGCACTTATGAGG -CCAACATCCTTCGCACTTAATGGG -CCAACATCCTTCGCACTTTCCTGA -CCAACATCCTTCGCACTTTAGCGA -CCAACATCCTTCGCACTTCACAGA -CCAACATCCTTCGCACTTGCAAGA -CCAACATCCTTCGCACTTGGTTGA -CCAACATCCTTCGCACTTTCCGAT -CCAACATCCTTCGCACTTTGGCAT -CCAACATCCTTCGCACTTCGAGAT -CCAACATCCTTCGCACTTTACCAC -CCAACATCCTTCGCACTTCAGAAC -CCAACATCCTTCGCACTTGTCTAC -CCAACATCCTTCGCACTTACGTAC -CCAACATCCTTCGCACTTAGTGAC -CCAACATCCTTCGCACTTCTGTAG -CCAACATCCTTCGCACTTCCTAAG -CCAACATCCTTCGCACTTGTTCAG -CCAACATCCTTCGCACTTGCATAG -CCAACATCCTTCGCACTTGACAAG -CCAACATCCTTCGCACTTAAGCAG -CCAACATCCTTCGCACTTCGTCAA -CCAACATCCTTCGCACTTGCTGAA -CCAACATCCTTCGCACTTAGTACG -CCAACATCCTTCGCACTTATCCGA -CCAACATCCTTCGCACTTATGGGA -CCAACATCCTTCGCACTTGTGCAA -CCAACATCCTTCGCACTTGAGGAA -CCAACATCCTTCGCACTTCAGGTA -CCAACATCCTTCGCACTTGACTCT -CCAACATCCTTCGCACTTAGTCCT -CCAACATCCTTCGCACTTTAAGCC -CCAACATCCTTCGCACTTATAGCC -CCAACATCCTTCGCACTTTAACCG -CCAACATCCTTCGCACTTATGCCA -CCAACATCCTTCACACGAGGAAAC -CCAACATCCTTCACACGAAACACC -CCAACATCCTTCACACGAATCGAG -CCAACATCCTTCACACGACTCCTT -CCAACATCCTTCACACGACCTGTT -CCAACATCCTTCACACGACGGTTT -CCAACATCCTTCACACGAGTGGTT -CCAACATCCTTCACACGAGCCTTT -CCAACATCCTTCACACGAGGTCTT -CCAACATCCTTCACACGAACGCTT -CCAACATCCTTCACACGAAGCGTT -CCAACATCCTTCACACGATTCGTC -CCAACATCCTTCACACGATCTCTC -CCAACATCCTTCACACGATGGATC -CCAACATCCTTCACACGACACTTC -CCAACATCCTTCACACGAGTACTC -CCAACATCCTTCACACGAGATGTC -CCAACATCCTTCACACGAACAGTC -CCAACATCCTTCACACGATTGCTG -CCAACATCCTTCACACGATCCATG -CCAACATCCTTCACACGATGTGTG -CCAACATCCTTCACACGACTAGTG -CCAACATCCTTCACACGACATCTG -CCAACATCCTTCACACGAGAGTTG -CCAACATCCTTCACACGAAGACTG -CCAACATCCTTCACACGATCGGTA -CCAACATCCTTCACACGATGCCTA -CCAACATCCTTCACACGACCACTA -CCAACATCCTTCACACGAGGAGTA -CCAACATCCTTCACACGATCGTCT -CCAACATCCTTCACACGATGCACT -CCAACATCCTTCACACGACTGACT -CCAACATCCTTCACACGACAACCT -CCAACATCCTTCACACGAGCTACT -CCAACATCCTTCACACGAGGATCT -CCAACATCCTTCACACGAAAGGCT -CCAACATCCTTCACACGATCAACC -CCAACATCCTTCACACGATGTTCC -CCAACATCCTTCACACGAATTCCC -CCAACATCCTTCACACGATTCTCG -CCAACATCCTTCACACGATAGACG -CCAACATCCTTCACACGAGTAACG -CCAACATCCTTCACACGAACTTCG -CCAACATCCTTCACACGATACGCA -CCAACATCCTTCACACGACTTGCA -CCAACATCCTTCACACGACGAACA -CCAACATCCTTCACACGACAGTCA -CCAACATCCTTCACACGAGATCCA -CCAACATCCTTCACACGAACGACA -CCAACATCCTTCACACGAAGCTCA -CCAACATCCTTCACACGATCACGT -CCAACATCCTTCACACGACGTAGT -CCAACATCCTTCACACGAGTCAGT -CCAACATCCTTCACACGAGAAGGT -CCAACATCCTTCACACGAAACCGT -CCAACATCCTTCACACGATTGTGC -CCAACATCCTTCACACGACTAAGC -CCAACATCCTTCACACGAACTAGC -CCAACATCCTTCACACGAAGATGC -CCAACATCCTTCACACGATGAAGG -CCAACATCCTTCACACGACAATGG -CCAACATCCTTCACACGAATGAGG -CCAACATCCTTCACACGAAATGGG -CCAACATCCTTCACACGATCCTGA -CCAACATCCTTCACACGATAGCGA -CCAACATCCTTCACACGACACAGA -CCAACATCCTTCACACGAGCAAGA -CCAACATCCTTCACACGAGGTTGA -CCAACATCCTTCACACGATCCGAT -CCAACATCCTTCACACGATGGCAT -CCAACATCCTTCACACGACGAGAT -CCAACATCCTTCACACGATACCAC -CCAACATCCTTCACACGACAGAAC -CCAACATCCTTCACACGAGTCTAC -CCAACATCCTTCACACGAACGTAC -CCAACATCCTTCACACGAAGTGAC -CCAACATCCTTCACACGACTGTAG -CCAACATCCTTCACACGACCTAAG -CCAACATCCTTCACACGAGTTCAG -CCAACATCCTTCACACGAGCATAG -CCAACATCCTTCACACGAGACAAG -CCAACATCCTTCACACGAAAGCAG -CCAACATCCTTCACACGACGTCAA -CCAACATCCTTCACACGAGCTGAA -CCAACATCCTTCACACGAAGTACG -CCAACATCCTTCACACGAATCCGA -CCAACATCCTTCACACGAATGGGA -CCAACATCCTTCACACGAGTGCAA -CCAACATCCTTCACACGAGAGGAA -CCAACATCCTTCACACGACAGGTA -CCAACATCCTTCACACGAGACTCT -CCAACATCCTTCACACGAAGTCCT -CCAACATCCTTCACACGATAAGCC -CCAACATCCTTCACACGAATAGCC -CCAACATCCTTCACACGATAACCG -CCAACATCCTTCACACGAATGCCA -CCAACATCCTTCTCACAGGGAAAC -CCAACATCCTTCTCACAGAACACC -CCAACATCCTTCTCACAGATCGAG -CCAACATCCTTCTCACAGCTCCTT -CCAACATCCTTCTCACAGCCTGTT -CCAACATCCTTCTCACAGCGGTTT -CCAACATCCTTCTCACAGGTGGTT -CCAACATCCTTCTCACAGGCCTTT -CCAACATCCTTCTCACAGGGTCTT -CCAACATCCTTCTCACAGACGCTT -CCAACATCCTTCTCACAGAGCGTT -CCAACATCCTTCTCACAGTTCGTC -CCAACATCCTTCTCACAGTCTCTC -CCAACATCCTTCTCACAGTGGATC -CCAACATCCTTCTCACAGCACTTC -CCAACATCCTTCTCACAGGTACTC -CCAACATCCTTCTCACAGGATGTC -CCAACATCCTTCTCACAGACAGTC -CCAACATCCTTCTCACAGTTGCTG -CCAACATCCTTCTCACAGTCCATG -CCAACATCCTTCTCACAGTGTGTG -CCAACATCCTTCTCACAGCTAGTG -CCAACATCCTTCTCACAGCATCTG -CCAACATCCTTCTCACAGGAGTTG -CCAACATCCTTCTCACAGAGACTG -CCAACATCCTTCTCACAGTCGGTA -CCAACATCCTTCTCACAGTGCCTA -CCAACATCCTTCTCACAGCCACTA -CCAACATCCTTCTCACAGGGAGTA -CCAACATCCTTCTCACAGTCGTCT -CCAACATCCTTCTCACAGTGCACT -CCAACATCCTTCTCACAGCTGACT -CCAACATCCTTCTCACAGCAACCT -CCAACATCCTTCTCACAGGCTACT -CCAACATCCTTCTCACAGGGATCT -CCAACATCCTTCTCACAGAAGGCT -CCAACATCCTTCTCACAGTCAACC -CCAACATCCTTCTCACAGTGTTCC -CCAACATCCTTCTCACAGATTCCC -CCAACATCCTTCTCACAGTTCTCG -CCAACATCCTTCTCACAGTAGACG -CCAACATCCTTCTCACAGGTAACG -CCAACATCCTTCTCACAGACTTCG -CCAACATCCTTCTCACAGTACGCA -CCAACATCCTTCTCACAGCTTGCA -CCAACATCCTTCTCACAGCGAACA -CCAACATCCTTCTCACAGCAGTCA -CCAACATCCTTCTCACAGGATCCA -CCAACATCCTTCTCACAGACGACA -CCAACATCCTTCTCACAGAGCTCA -CCAACATCCTTCTCACAGTCACGT -CCAACATCCTTCTCACAGCGTAGT -CCAACATCCTTCTCACAGGTCAGT -CCAACATCCTTCTCACAGGAAGGT -CCAACATCCTTCTCACAGAACCGT -CCAACATCCTTCTCACAGTTGTGC -CCAACATCCTTCTCACAGCTAAGC -CCAACATCCTTCTCACAGACTAGC -CCAACATCCTTCTCACAGAGATGC -CCAACATCCTTCTCACAGTGAAGG -CCAACATCCTTCTCACAGCAATGG -CCAACATCCTTCTCACAGATGAGG -CCAACATCCTTCTCACAGAATGGG -CCAACATCCTTCTCACAGTCCTGA -CCAACATCCTTCTCACAGTAGCGA -CCAACATCCTTCTCACAGCACAGA -CCAACATCCTTCTCACAGGCAAGA -CCAACATCCTTCTCACAGGGTTGA -CCAACATCCTTCTCACAGTCCGAT -CCAACATCCTTCTCACAGTGGCAT -CCAACATCCTTCTCACAGCGAGAT -CCAACATCCTTCTCACAGTACCAC -CCAACATCCTTCTCACAGCAGAAC -CCAACATCCTTCTCACAGGTCTAC -CCAACATCCTTCTCACAGACGTAC -CCAACATCCTTCTCACAGAGTGAC -CCAACATCCTTCTCACAGCTGTAG -CCAACATCCTTCTCACAGCCTAAG -CCAACATCCTTCTCACAGGTTCAG -CCAACATCCTTCTCACAGGCATAG -CCAACATCCTTCTCACAGGACAAG -CCAACATCCTTCTCACAGAAGCAG -CCAACATCCTTCTCACAGCGTCAA -CCAACATCCTTCTCACAGGCTGAA -CCAACATCCTTCTCACAGAGTACG -CCAACATCCTTCTCACAGATCCGA -CCAACATCCTTCTCACAGATGGGA -CCAACATCCTTCTCACAGGTGCAA -CCAACATCCTTCTCACAGGAGGAA -CCAACATCCTTCTCACAGCAGGTA -CCAACATCCTTCTCACAGGACTCT -CCAACATCCTTCTCACAGAGTCCT -CCAACATCCTTCTCACAGTAAGCC -CCAACATCCTTCTCACAGATAGCC -CCAACATCCTTCTCACAGTAACCG -CCAACATCCTTCTCACAGATGCCA -CCAACATCCTTCCCAGATGGAAAC -CCAACATCCTTCCCAGATAACACC -CCAACATCCTTCCCAGATATCGAG -CCAACATCCTTCCCAGATCTCCTT -CCAACATCCTTCCCAGATCCTGTT -CCAACATCCTTCCCAGATCGGTTT -CCAACATCCTTCCCAGATGTGGTT -CCAACATCCTTCCCAGATGCCTTT -CCAACATCCTTCCCAGATGGTCTT -CCAACATCCTTCCCAGATACGCTT -CCAACATCCTTCCCAGATAGCGTT -CCAACATCCTTCCCAGATTTCGTC -CCAACATCCTTCCCAGATTCTCTC -CCAACATCCTTCCCAGATTGGATC -CCAACATCCTTCCCAGATCACTTC -CCAACATCCTTCCCAGATGTACTC -CCAACATCCTTCCCAGATGATGTC -CCAACATCCTTCCCAGATACAGTC -CCAACATCCTTCCCAGATTTGCTG -CCAACATCCTTCCCAGATTCCATG -CCAACATCCTTCCCAGATTGTGTG -CCAACATCCTTCCCAGATCTAGTG -CCAACATCCTTCCCAGATCATCTG -CCAACATCCTTCCCAGATGAGTTG -CCAACATCCTTCCCAGATAGACTG -CCAACATCCTTCCCAGATTCGGTA -CCAACATCCTTCCCAGATTGCCTA -CCAACATCCTTCCCAGATCCACTA -CCAACATCCTTCCCAGATGGAGTA -CCAACATCCTTCCCAGATTCGTCT -CCAACATCCTTCCCAGATTGCACT -CCAACATCCTTCCCAGATCTGACT -CCAACATCCTTCCCAGATCAACCT -CCAACATCCTTCCCAGATGCTACT -CCAACATCCTTCCCAGATGGATCT -CCAACATCCTTCCCAGATAAGGCT -CCAACATCCTTCCCAGATTCAACC -CCAACATCCTTCCCAGATTGTTCC -CCAACATCCTTCCCAGATATTCCC -CCAACATCCTTCCCAGATTTCTCG -CCAACATCCTTCCCAGATTAGACG -CCAACATCCTTCCCAGATGTAACG -CCAACATCCTTCCCAGATACTTCG -CCAACATCCTTCCCAGATTACGCA -CCAACATCCTTCCCAGATCTTGCA -CCAACATCCTTCCCAGATCGAACA -CCAACATCCTTCCCAGATCAGTCA -CCAACATCCTTCCCAGATGATCCA -CCAACATCCTTCCCAGATACGACA -CCAACATCCTTCCCAGATAGCTCA -CCAACATCCTTCCCAGATTCACGT -CCAACATCCTTCCCAGATCGTAGT -CCAACATCCTTCCCAGATGTCAGT -CCAACATCCTTCCCAGATGAAGGT -CCAACATCCTTCCCAGATAACCGT -CCAACATCCTTCCCAGATTTGTGC -CCAACATCCTTCCCAGATCTAAGC -CCAACATCCTTCCCAGATACTAGC -CCAACATCCTTCCCAGATAGATGC -CCAACATCCTTCCCAGATTGAAGG -CCAACATCCTTCCCAGATCAATGG -CCAACATCCTTCCCAGATATGAGG -CCAACATCCTTCCCAGATAATGGG -CCAACATCCTTCCCAGATTCCTGA -CCAACATCCTTCCCAGATTAGCGA -CCAACATCCTTCCCAGATCACAGA -CCAACATCCTTCCCAGATGCAAGA -CCAACATCCTTCCCAGATGGTTGA -CCAACATCCTTCCCAGATTCCGAT -CCAACATCCTTCCCAGATTGGCAT -CCAACATCCTTCCCAGATCGAGAT -CCAACATCCTTCCCAGATTACCAC -CCAACATCCTTCCCAGATCAGAAC -CCAACATCCTTCCCAGATGTCTAC -CCAACATCCTTCCCAGATACGTAC -CCAACATCCTTCCCAGATAGTGAC -CCAACATCCTTCCCAGATCTGTAG -CCAACATCCTTCCCAGATCCTAAG -CCAACATCCTTCCCAGATGTTCAG -CCAACATCCTTCCCAGATGCATAG -CCAACATCCTTCCCAGATGACAAG -CCAACATCCTTCCCAGATAAGCAG -CCAACATCCTTCCCAGATCGTCAA -CCAACATCCTTCCCAGATGCTGAA -CCAACATCCTTCCCAGATAGTACG -CCAACATCCTTCCCAGATATCCGA -CCAACATCCTTCCCAGATATGGGA -CCAACATCCTTCCCAGATGTGCAA -CCAACATCCTTCCCAGATGAGGAA -CCAACATCCTTCCCAGATCAGGTA -CCAACATCCTTCCCAGATGACTCT -CCAACATCCTTCCCAGATAGTCCT -CCAACATCCTTCCCAGATTAAGCC -CCAACATCCTTCCCAGATATAGCC -CCAACATCCTTCCCAGATTAACCG -CCAACATCCTTCCCAGATATGCCA -CCAACATCCTTCACAACGGGAAAC -CCAACATCCTTCACAACGAACACC -CCAACATCCTTCACAACGATCGAG -CCAACATCCTTCACAACGCTCCTT -CCAACATCCTTCACAACGCCTGTT -CCAACATCCTTCACAACGCGGTTT -CCAACATCCTTCACAACGGTGGTT -CCAACATCCTTCACAACGGCCTTT -CCAACATCCTTCACAACGGGTCTT -CCAACATCCTTCACAACGACGCTT -CCAACATCCTTCACAACGAGCGTT -CCAACATCCTTCACAACGTTCGTC -CCAACATCCTTCACAACGTCTCTC -CCAACATCCTTCACAACGTGGATC -CCAACATCCTTCACAACGCACTTC -CCAACATCCTTCACAACGGTACTC -CCAACATCCTTCACAACGGATGTC -CCAACATCCTTCACAACGACAGTC -CCAACATCCTTCACAACGTTGCTG -CCAACATCCTTCACAACGTCCATG -CCAACATCCTTCACAACGTGTGTG -CCAACATCCTTCACAACGCTAGTG -CCAACATCCTTCACAACGCATCTG -CCAACATCCTTCACAACGGAGTTG -CCAACATCCTTCACAACGAGACTG -CCAACATCCTTCACAACGTCGGTA -CCAACATCCTTCACAACGTGCCTA -CCAACATCCTTCACAACGCCACTA -CCAACATCCTTCACAACGGGAGTA -CCAACATCCTTCACAACGTCGTCT -CCAACATCCTTCACAACGTGCACT -CCAACATCCTTCACAACGCTGACT -CCAACATCCTTCACAACGCAACCT -CCAACATCCTTCACAACGGCTACT -CCAACATCCTTCACAACGGGATCT -CCAACATCCTTCACAACGAAGGCT -CCAACATCCTTCACAACGTCAACC -CCAACATCCTTCACAACGTGTTCC -CCAACATCCTTCACAACGATTCCC -CCAACATCCTTCACAACGTTCTCG -CCAACATCCTTCACAACGTAGACG -CCAACATCCTTCACAACGGTAACG -CCAACATCCTTCACAACGACTTCG -CCAACATCCTTCACAACGTACGCA -CCAACATCCTTCACAACGCTTGCA -CCAACATCCTTCACAACGCGAACA -CCAACATCCTTCACAACGCAGTCA -CCAACATCCTTCACAACGGATCCA -CCAACATCCTTCACAACGACGACA -CCAACATCCTTCACAACGAGCTCA -CCAACATCCTTCACAACGTCACGT -CCAACATCCTTCACAACGCGTAGT -CCAACATCCTTCACAACGGTCAGT -CCAACATCCTTCACAACGGAAGGT -CCAACATCCTTCACAACGAACCGT -CCAACATCCTTCACAACGTTGTGC -CCAACATCCTTCACAACGCTAAGC -CCAACATCCTTCACAACGACTAGC -CCAACATCCTTCACAACGAGATGC -CCAACATCCTTCACAACGTGAAGG -CCAACATCCTTCACAACGCAATGG -CCAACATCCTTCACAACGATGAGG -CCAACATCCTTCACAACGAATGGG -CCAACATCCTTCACAACGTCCTGA -CCAACATCCTTCACAACGTAGCGA -CCAACATCCTTCACAACGCACAGA -CCAACATCCTTCACAACGGCAAGA -CCAACATCCTTCACAACGGGTTGA -CCAACATCCTTCACAACGTCCGAT -CCAACATCCTTCACAACGTGGCAT -CCAACATCCTTCACAACGCGAGAT -CCAACATCCTTCACAACGTACCAC -CCAACATCCTTCACAACGCAGAAC -CCAACATCCTTCACAACGGTCTAC -CCAACATCCTTCACAACGACGTAC -CCAACATCCTTCACAACGAGTGAC -CCAACATCCTTCACAACGCTGTAG -CCAACATCCTTCACAACGCCTAAG -CCAACATCCTTCACAACGGTTCAG -CCAACATCCTTCACAACGGCATAG -CCAACATCCTTCACAACGGACAAG -CCAACATCCTTCACAACGAAGCAG -CCAACATCCTTCACAACGCGTCAA -CCAACATCCTTCACAACGGCTGAA -CCAACATCCTTCACAACGAGTACG -CCAACATCCTTCACAACGATCCGA -CCAACATCCTTCACAACGATGGGA -CCAACATCCTTCACAACGGTGCAA -CCAACATCCTTCACAACGGAGGAA -CCAACATCCTTCACAACGCAGGTA -CCAACATCCTTCACAACGGACTCT -CCAACATCCTTCACAACGAGTCCT -CCAACATCCTTCACAACGTAAGCC -CCAACATCCTTCACAACGATAGCC -CCAACATCCTTCACAACGTAACCG -CCAACATCCTTCACAACGATGCCA -CCAACATCCTTCTCAAGCGGAAAC -CCAACATCCTTCTCAAGCAACACC -CCAACATCCTTCTCAAGCATCGAG -CCAACATCCTTCTCAAGCCTCCTT -CCAACATCCTTCTCAAGCCCTGTT -CCAACATCCTTCTCAAGCCGGTTT -CCAACATCCTTCTCAAGCGTGGTT -CCAACATCCTTCTCAAGCGCCTTT -CCAACATCCTTCTCAAGCGGTCTT -CCAACATCCTTCTCAAGCACGCTT -CCAACATCCTTCTCAAGCAGCGTT -CCAACATCCTTCTCAAGCTTCGTC -CCAACATCCTTCTCAAGCTCTCTC -CCAACATCCTTCTCAAGCTGGATC -CCAACATCCTTCTCAAGCCACTTC -CCAACATCCTTCTCAAGCGTACTC -CCAACATCCTTCTCAAGCGATGTC -CCAACATCCTTCTCAAGCACAGTC -CCAACATCCTTCTCAAGCTTGCTG -CCAACATCCTTCTCAAGCTCCATG -CCAACATCCTTCTCAAGCTGTGTG -CCAACATCCTTCTCAAGCCTAGTG -CCAACATCCTTCTCAAGCCATCTG -CCAACATCCTTCTCAAGCGAGTTG -CCAACATCCTTCTCAAGCAGACTG -CCAACATCCTTCTCAAGCTCGGTA -CCAACATCCTTCTCAAGCTGCCTA -CCAACATCCTTCTCAAGCCCACTA -CCAACATCCTTCTCAAGCGGAGTA -CCAACATCCTTCTCAAGCTCGTCT -CCAACATCCTTCTCAAGCTGCACT -CCAACATCCTTCTCAAGCCTGACT -CCAACATCCTTCTCAAGCCAACCT -CCAACATCCTTCTCAAGCGCTACT -CCAACATCCTTCTCAAGCGGATCT -CCAACATCCTTCTCAAGCAAGGCT -CCAACATCCTTCTCAAGCTCAACC -CCAACATCCTTCTCAAGCTGTTCC -CCAACATCCTTCTCAAGCATTCCC -CCAACATCCTTCTCAAGCTTCTCG -CCAACATCCTTCTCAAGCTAGACG -CCAACATCCTTCTCAAGCGTAACG -CCAACATCCTTCTCAAGCACTTCG -CCAACATCCTTCTCAAGCTACGCA -CCAACATCCTTCTCAAGCCTTGCA -CCAACATCCTTCTCAAGCCGAACA -CCAACATCCTTCTCAAGCCAGTCA -CCAACATCCTTCTCAAGCGATCCA -CCAACATCCTTCTCAAGCACGACA -CCAACATCCTTCTCAAGCAGCTCA -CCAACATCCTTCTCAAGCTCACGT -CCAACATCCTTCTCAAGCCGTAGT -CCAACATCCTTCTCAAGCGTCAGT -CCAACATCCTTCTCAAGCGAAGGT -CCAACATCCTTCTCAAGCAACCGT -CCAACATCCTTCTCAAGCTTGTGC -CCAACATCCTTCTCAAGCCTAAGC -CCAACATCCTTCTCAAGCACTAGC -CCAACATCCTTCTCAAGCAGATGC -CCAACATCCTTCTCAAGCTGAAGG -CCAACATCCTTCTCAAGCCAATGG -CCAACATCCTTCTCAAGCATGAGG -CCAACATCCTTCTCAAGCAATGGG -CCAACATCCTTCTCAAGCTCCTGA -CCAACATCCTTCTCAAGCTAGCGA -CCAACATCCTTCTCAAGCCACAGA -CCAACATCCTTCTCAAGCGCAAGA -CCAACATCCTTCTCAAGCGGTTGA -CCAACATCCTTCTCAAGCTCCGAT -CCAACATCCTTCTCAAGCTGGCAT -CCAACATCCTTCTCAAGCCGAGAT -CCAACATCCTTCTCAAGCTACCAC -CCAACATCCTTCTCAAGCCAGAAC -CCAACATCCTTCTCAAGCGTCTAC -CCAACATCCTTCTCAAGCACGTAC -CCAACATCCTTCTCAAGCAGTGAC -CCAACATCCTTCTCAAGCCTGTAG -CCAACATCCTTCTCAAGCCCTAAG -CCAACATCCTTCTCAAGCGTTCAG -CCAACATCCTTCTCAAGCGCATAG -CCAACATCCTTCTCAAGCGACAAG -CCAACATCCTTCTCAAGCAAGCAG -CCAACATCCTTCTCAAGCCGTCAA -CCAACATCCTTCTCAAGCGCTGAA -CCAACATCCTTCTCAAGCAGTACG -CCAACATCCTTCTCAAGCATCCGA -CCAACATCCTTCTCAAGCATGGGA -CCAACATCCTTCTCAAGCGTGCAA -CCAACATCCTTCTCAAGCGAGGAA -CCAACATCCTTCTCAAGCCAGGTA -CCAACATCCTTCTCAAGCGACTCT -CCAACATCCTTCTCAAGCAGTCCT -CCAACATCCTTCTCAAGCTAAGCC -CCAACATCCTTCTCAAGCATAGCC -CCAACATCCTTCTCAAGCTAACCG -CCAACATCCTTCTCAAGCATGCCA -CCAACATCCTTCCGTTCAGGAAAC -CCAACATCCTTCCGTTCAAACACC -CCAACATCCTTCCGTTCAATCGAG -CCAACATCCTTCCGTTCACTCCTT -CCAACATCCTTCCGTTCACCTGTT -CCAACATCCTTCCGTTCACGGTTT -CCAACATCCTTCCGTTCAGTGGTT -CCAACATCCTTCCGTTCAGCCTTT -CCAACATCCTTCCGTTCAGGTCTT -CCAACATCCTTCCGTTCAACGCTT -CCAACATCCTTCCGTTCAAGCGTT -CCAACATCCTTCCGTTCATTCGTC -CCAACATCCTTCCGTTCATCTCTC -CCAACATCCTTCCGTTCATGGATC -CCAACATCCTTCCGTTCACACTTC -CCAACATCCTTCCGTTCAGTACTC -CCAACATCCTTCCGTTCAGATGTC -CCAACATCCTTCCGTTCAACAGTC -CCAACATCCTTCCGTTCATTGCTG -CCAACATCCTTCCGTTCATCCATG -CCAACATCCTTCCGTTCATGTGTG -CCAACATCCTTCCGTTCACTAGTG -CCAACATCCTTCCGTTCACATCTG -CCAACATCCTTCCGTTCAGAGTTG -CCAACATCCTTCCGTTCAAGACTG -CCAACATCCTTCCGTTCATCGGTA -CCAACATCCTTCCGTTCATGCCTA -CCAACATCCTTCCGTTCACCACTA -CCAACATCCTTCCGTTCAGGAGTA -CCAACATCCTTCCGTTCATCGTCT -CCAACATCCTTCCGTTCATGCACT -CCAACATCCTTCCGTTCACTGACT -CCAACATCCTTCCGTTCACAACCT -CCAACATCCTTCCGTTCAGCTACT -CCAACATCCTTCCGTTCAGGATCT -CCAACATCCTTCCGTTCAAAGGCT -CCAACATCCTTCCGTTCATCAACC -CCAACATCCTTCCGTTCATGTTCC -CCAACATCCTTCCGTTCAATTCCC -CCAACATCCTTCCGTTCATTCTCG -CCAACATCCTTCCGTTCATAGACG -CCAACATCCTTCCGTTCAGTAACG -CCAACATCCTTCCGTTCAACTTCG -CCAACATCCTTCCGTTCATACGCA -CCAACATCCTTCCGTTCACTTGCA -CCAACATCCTTCCGTTCACGAACA -CCAACATCCTTCCGTTCACAGTCA -CCAACATCCTTCCGTTCAGATCCA -CCAACATCCTTCCGTTCAACGACA -CCAACATCCTTCCGTTCAAGCTCA -CCAACATCCTTCCGTTCATCACGT -CCAACATCCTTCCGTTCACGTAGT -CCAACATCCTTCCGTTCAGTCAGT -CCAACATCCTTCCGTTCAGAAGGT -CCAACATCCTTCCGTTCAAACCGT -CCAACATCCTTCCGTTCATTGTGC -CCAACATCCTTCCGTTCACTAAGC -CCAACATCCTTCCGTTCAACTAGC -CCAACATCCTTCCGTTCAAGATGC -CCAACATCCTTCCGTTCATGAAGG -CCAACATCCTTCCGTTCACAATGG -CCAACATCCTTCCGTTCAATGAGG -CCAACATCCTTCCGTTCAAATGGG -CCAACATCCTTCCGTTCATCCTGA -CCAACATCCTTCCGTTCATAGCGA -CCAACATCCTTCCGTTCACACAGA -CCAACATCCTTCCGTTCAGCAAGA -CCAACATCCTTCCGTTCAGGTTGA -CCAACATCCTTCCGTTCATCCGAT -CCAACATCCTTCCGTTCATGGCAT -CCAACATCCTTCCGTTCACGAGAT -CCAACATCCTTCCGTTCATACCAC -CCAACATCCTTCCGTTCACAGAAC -CCAACATCCTTCCGTTCAGTCTAC -CCAACATCCTTCCGTTCAACGTAC -CCAACATCCTTCCGTTCAAGTGAC -CCAACATCCTTCCGTTCACTGTAG -CCAACATCCTTCCGTTCACCTAAG -CCAACATCCTTCCGTTCAGTTCAG -CCAACATCCTTCCGTTCAGCATAG -CCAACATCCTTCCGTTCAGACAAG -CCAACATCCTTCCGTTCAAAGCAG -CCAACATCCTTCCGTTCACGTCAA -CCAACATCCTTCCGTTCAGCTGAA -CCAACATCCTTCCGTTCAAGTACG -CCAACATCCTTCCGTTCAATCCGA -CCAACATCCTTCCGTTCAATGGGA -CCAACATCCTTCCGTTCAGTGCAA -CCAACATCCTTCCGTTCAGAGGAA -CCAACATCCTTCCGTTCACAGGTA -CCAACATCCTTCCGTTCAGACTCT -CCAACATCCTTCCGTTCAAGTCCT -CCAACATCCTTCCGTTCATAAGCC -CCAACATCCTTCCGTTCAATAGCC -CCAACATCCTTCCGTTCATAACCG -CCAACATCCTTCCGTTCAATGCCA -CCAACATCCTTCAGTCGTGGAAAC -CCAACATCCTTCAGTCGTAACACC -CCAACATCCTTCAGTCGTATCGAG -CCAACATCCTTCAGTCGTCTCCTT -CCAACATCCTTCAGTCGTCCTGTT -CCAACATCCTTCAGTCGTCGGTTT -CCAACATCCTTCAGTCGTGTGGTT -CCAACATCCTTCAGTCGTGCCTTT -CCAACATCCTTCAGTCGTGGTCTT -CCAACATCCTTCAGTCGTACGCTT -CCAACATCCTTCAGTCGTAGCGTT -CCAACATCCTTCAGTCGTTTCGTC -CCAACATCCTTCAGTCGTTCTCTC -CCAACATCCTTCAGTCGTTGGATC -CCAACATCCTTCAGTCGTCACTTC -CCAACATCCTTCAGTCGTGTACTC -CCAACATCCTTCAGTCGTGATGTC -CCAACATCCTTCAGTCGTACAGTC -CCAACATCCTTCAGTCGTTTGCTG -CCAACATCCTTCAGTCGTTCCATG -CCAACATCCTTCAGTCGTTGTGTG -CCAACATCCTTCAGTCGTCTAGTG -CCAACATCCTTCAGTCGTCATCTG -CCAACATCCTTCAGTCGTGAGTTG -CCAACATCCTTCAGTCGTAGACTG -CCAACATCCTTCAGTCGTTCGGTA -CCAACATCCTTCAGTCGTTGCCTA -CCAACATCCTTCAGTCGTCCACTA -CCAACATCCTTCAGTCGTGGAGTA -CCAACATCCTTCAGTCGTTCGTCT -CCAACATCCTTCAGTCGTTGCACT -CCAACATCCTTCAGTCGTCTGACT -CCAACATCCTTCAGTCGTCAACCT -CCAACATCCTTCAGTCGTGCTACT -CCAACATCCTTCAGTCGTGGATCT -CCAACATCCTTCAGTCGTAAGGCT -CCAACATCCTTCAGTCGTTCAACC -CCAACATCCTTCAGTCGTTGTTCC -CCAACATCCTTCAGTCGTATTCCC -CCAACATCCTTCAGTCGTTTCTCG -CCAACATCCTTCAGTCGTTAGACG -CCAACATCCTTCAGTCGTGTAACG -CCAACATCCTTCAGTCGTACTTCG -CCAACATCCTTCAGTCGTTACGCA -CCAACATCCTTCAGTCGTCTTGCA -CCAACATCCTTCAGTCGTCGAACA -CCAACATCCTTCAGTCGTCAGTCA -CCAACATCCTTCAGTCGTGATCCA -CCAACATCCTTCAGTCGTACGACA -CCAACATCCTTCAGTCGTAGCTCA -CCAACATCCTTCAGTCGTTCACGT -CCAACATCCTTCAGTCGTCGTAGT -CCAACATCCTTCAGTCGTGTCAGT -CCAACATCCTTCAGTCGTGAAGGT -CCAACATCCTTCAGTCGTAACCGT -CCAACATCCTTCAGTCGTTTGTGC -CCAACATCCTTCAGTCGTCTAAGC -CCAACATCCTTCAGTCGTACTAGC -CCAACATCCTTCAGTCGTAGATGC -CCAACATCCTTCAGTCGTTGAAGG -CCAACATCCTTCAGTCGTCAATGG -CCAACATCCTTCAGTCGTATGAGG -CCAACATCCTTCAGTCGTAATGGG -CCAACATCCTTCAGTCGTTCCTGA -CCAACATCCTTCAGTCGTTAGCGA -CCAACATCCTTCAGTCGTCACAGA -CCAACATCCTTCAGTCGTGCAAGA -CCAACATCCTTCAGTCGTGGTTGA -CCAACATCCTTCAGTCGTTCCGAT -CCAACATCCTTCAGTCGTTGGCAT -CCAACATCCTTCAGTCGTCGAGAT -CCAACATCCTTCAGTCGTTACCAC -CCAACATCCTTCAGTCGTCAGAAC -CCAACATCCTTCAGTCGTGTCTAC -CCAACATCCTTCAGTCGTACGTAC -CCAACATCCTTCAGTCGTAGTGAC -CCAACATCCTTCAGTCGTCTGTAG -CCAACATCCTTCAGTCGTCCTAAG -CCAACATCCTTCAGTCGTGTTCAG -CCAACATCCTTCAGTCGTGCATAG -CCAACATCCTTCAGTCGTGACAAG -CCAACATCCTTCAGTCGTAAGCAG -CCAACATCCTTCAGTCGTCGTCAA -CCAACATCCTTCAGTCGTGCTGAA -CCAACATCCTTCAGTCGTAGTACG -CCAACATCCTTCAGTCGTATCCGA -CCAACATCCTTCAGTCGTATGGGA -CCAACATCCTTCAGTCGTGTGCAA -CCAACATCCTTCAGTCGTGAGGAA -CCAACATCCTTCAGTCGTCAGGTA -CCAACATCCTTCAGTCGTGACTCT -CCAACATCCTTCAGTCGTAGTCCT -CCAACATCCTTCAGTCGTTAAGCC -CCAACATCCTTCAGTCGTATAGCC -CCAACATCCTTCAGTCGTTAACCG -CCAACATCCTTCAGTCGTATGCCA -CCAACATCCTTCAGTGTCGGAAAC -CCAACATCCTTCAGTGTCAACACC -CCAACATCCTTCAGTGTCATCGAG -CCAACATCCTTCAGTGTCCTCCTT -CCAACATCCTTCAGTGTCCCTGTT -CCAACATCCTTCAGTGTCCGGTTT -CCAACATCCTTCAGTGTCGTGGTT -CCAACATCCTTCAGTGTCGCCTTT -CCAACATCCTTCAGTGTCGGTCTT -CCAACATCCTTCAGTGTCACGCTT -CCAACATCCTTCAGTGTCAGCGTT -CCAACATCCTTCAGTGTCTTCGTC -CCAACATCCTTCAGTGTCTCTCTC -CCAACATCCTTCAGTGTCTGGATC -CCAACATCCTTCAGTGTCCACTTC -CCAACATCCTTCAGTGTCGTACTC -CCAACATCCTTCAGTGTCGATGTC -CCAACATCCTTCAGTGTCACAGTC -CCAACATCCTTCAGTGTCTTGCTG -CCAACATCCTTCAGTGTCTCCATG -CCAACATCCTTCAGTGTCTGTGTG -CCAACATCCTTCAGTGTCCTAGTG -CCAACATCCTTCAGTGTCCATCTG -CCAACATCCTTCAGTGTCGAGTTG -CCAACATCCTTCAGTGTCAGACTG -CCAACATCCTTCAGTGTCTCGGTA -CCAACATCCTTCAGTGTCTGCCTA -CCAACATCCTTCAGTGTCCCACTA -CCAACATCCTTCAGTGTCGGAGTA -CCAACATCCTTCAGTGTCTCGTCT -CCAACATCCTTCAGTGTCTGCACT -CCAACATCCTTCAGTGTCCTGACT -CCAACATCCTTCAGTGTCCAACCT -CCAACATCCTTCAGTGTCGCTACT -CCAACATCCTTCAGTGTCGGATCT -CCAACATCCTTCAGTGTCAAGGCT -CCAACATCCTTCAGTGTCTCAACC -CCAACATCCTTCAGTGTCTGTTCC -CCAACATCCTTCAGTGTCATTCCC -CCAACATCCTTCAGTGTCTTCTCG -CCAACATCCTTCAGTGTCTAGACG -CCAACATCCTTCAGTGTCGTAACG -CCAACATCCTTCAGTGTCACTTCG -CCAACATCCTTCAGTGTCTACGCA -CCAACATCCTTCAGTGTCCTTGCA -CCAACATCCTTCAGTGTCCGAACA -CCAACATCCTTCAGTGTCCAGTCA -CCAACATCCTTCAGTGTCGATCCA -CCAACATCCTTCAGTGTCACGACA -CCAACATCCTTCAGTGTCAGCTCA -CCAACATCCTTCAGTGTCTCACGT -CCAACATCCTTCAGTGTCCGTAGT -CCAACATCCTTCAGTGTCGTCAGT -CCAACATCCTTCAGTGTCGAAGGT -CCAACATCCTTCAGTGTCAACCGT -CCAACATCCTTCAGTGTCTTGTGC -CCAACATCCTTCAGTGTCCTAAGC -CCAACATCCTTCAGTGTCACTAGC -CCAACATCCTTCAGTGTCAGATGC -CCAACATCCTTCAGTGTCTGAAGG -CCAACATCCTTCAGTGTCCAATGG -CCAACATCCTTCAGTGTCATGAGG -CCAACATCCTTCAGTGTCAATGGG -CCAACATCCTTCAGTGTCTCCTGA -CCAACATCCTTCAGTGTCTAGCGA -CCAACATCCTTCAGTGTCCACAGA -CCAACATCCTTCAGTGTCGCAAGA -CCAACATCCTTCAGTGTCGGTTGA -CCAACATCCTTCAGTGTCTCCGAT -CCAACATCCTTCAGTGTCTGGCAT -CCAACATCCTTCAGTGTCCGAGAT -CCAACATCCTTCAGTGTCTACCAC -CCAACATCCTTCAGTGTCCAGAAC -CCAACATCCTTCAGTGTCGTCTAC -CCAACATCCTTCAGTGTCACGTAC -CCAACATCCTTCAGTGTCAGTGAC -CCAACATCCTTCAGTGTCCTGTAG -CCAACATCCTTCAGTGTCCCTAAG -CCAACATCCTTCAGTGTCGTTCAG -CCAACATCCTTCAGTGTCGCATAG -CCAACATCCTTCAGTGTCGACAAG -CCAACATCCTTCAGTGTCAAGCAG -CCAACATCCTTCAGTGTCCGTCAA -CCAACATCCTTCAGTGTCGCTGAA -CCAACATCCTTCAGTGTCAGTACG -CCAACATCCTTCAGTGTCATCCGA -CCAACATCCTTCAGTGTCATGGGA -CCAACATCCTTCAGTGTCGTGCAA -CCAACATCCTTCAGTGTCGAGGAA -CCAACATCCTTCAGTGTCCAGGTA -CCAACATCCTTCAGTGTCGACTCT -CCAACATCCTTCAGTGTCAGTCCT -CCAACATCCTTCAGTGTCTAAGCC -CCAACATCCTTCAGTGTCATAGCC -CCAACATCCTTCAGTGTCTAACCG -CCAACATCCTTCAGTGTCATGCCA -CCAACATCCTTCGGTGAAGGAAAC -CCAACATCCTTCGGTGAAAACACC -CCAACATCCTTCGGTGAAATCGAG -CCAACATCCTTCGGTGAACTCCTT -CCAACATCCTTCGGTGAACCTGTT -CCAACATCCTTCGGTGAACGGTTT -CCAACATCCTTCGGTGAAGTGGTT -CCAACATCCTTCGGTGAAGCCTTT -CCAACATCCTTCGGTGAAGGTCTT -CCAACATCCTTCGGTGAAACGCTT -CCAACATCCTTCGGTGAAAGCGTT -CCAACATCCTTCGGTGAATTCGTC -CCAACATCCTTCGGTGAATCTCTC -CCAACATCCTTCGGTGAATGGATC -CCAACATCCTTCGGTGAACACTTC -CCAACATCCTTCGGTGAAGTACTC -CCAACATCCTTCGGTGAAGATGTC -CCAACATCCTTCGGTGAAACAGTC -CCAACATCCTTCGGTGAATTGCTG -CCAACATCCTTCGGTGAATCCATG -CCAACATCCTTCGGTGAATGTGTG -CCAACATCCTTCGGTGAACTAGTG -CCAACATCCTTCGGTGAACATCTG -CCAACATCCTTCGGTGAAGAGTTG -CCAACATCCTTCGGTGAAAGACTG -CCAACATCCTTCGGTGAATCGGTA -CCAACATCCTTCGGTGAATGCCTA -CCAACATCCTTCGGTGAACCACTA -CCAACATCCTTCGGTGAAGGAGTA -CCAACATCCTTCGGTGAATCGTCT -CCAACATCCTTCGGTGAATGCACT -CCAACATCCTTCGGTGAACTGACT -CCAACATCCTTCGGTGAACAACCT -CCAACATCCTTCGGTGAAGCTACT -CCAACATCCTTCGGTGAAGGATCT -CCAACATCCTTCGGTGAAAAGGCT -CCAACATCCTTCGGTGAATCAACC -CCAACATCCTTCGGTGAATGTTCC -CCAACATCCTTCGGTGAAATTCCC -CCAACATCCTTCGGTGAATTCTCG -CCAACATCCTTCGGTGAATAGACG -CCAACATCCTTCGGTGAAGTAACG -CCAACATCCTTCGGTGAAACTTCG -CCAACATCCTTCGGTGAATACGCA -CCAACATCCTTCGGTGAACTTGCA -CCAACATCCTTCGGTGAACGAACA -CCAACATCCTTCGGTGAACAGTCA -CCAACATCCTTCGGTGAAGATCCA -CCAACATCCTTCGGTGAAACGACA -CCAACATCCTTCGGTGAAAGCTCA -CCAACATCCTTCGGTGAATCACGT -CCAACATCCTTCGGTGAACGTAGT -CCAACATCCTTCGGTGAAGTCAGT -CCAACATCCTTCGGTGAAGAAGGT -CCAACATCCTTCGGTGAAAACCGT -CCAACATCCTTCGGTGAATTGTGC -CCAACATCCTTCGGTGAACTAAGC -CCAACATCCTTCGGTGAAACTAGC -CCAACATCCTTCGGTGAAAGATGC -CCAACATCCTTCGGTGAATGAAGG -CCAACATCCTTCGGTGAACAATGG -CCAACATCCTTCGGTGAAATGAGG -CCAACATCCTTCGGTGAAAATGGG -CCAACATCCTTCGGTGAATCCTGA -CCAACATCCTTCGGTGAATAGCGA -CCAACATCCTTCGGTGAACACAGA -CCAACATCCTTCGGTGAAGCAAGA -CCAACATCCTTCGGTGAAGGTTGA -CCAACATCCTTCGGTGAATCCGAT -CCAACATCCTTCGGTGAATGGCAT -CCAACATCCTTCGGTGAACGAGAT -CCAACATCCTTCGGTGAATACCAC -CCAACATCCTTCGGTGAACAGAAC -CCAACATCCTTCGGTGAAGTCTAC -CCAACATCCTTCGGTGAAACGTAC -CCAACATCCTTCGGTGAAAGTGAC -CCAACATCCTTCGGTGAACTGTAG -CCAACATCCTTCGGTGAACCTAAG -CCAACATCCTTCGGTGAAGTTCAG -CCAACATCCTTCGGTGAAGCATAG -CCAACATCCTTCGGTGAAGACAAG -CCAACATCCTTCGGTGAAAAGCAG -CCAACATCCTTCGGTGAACGTCAA -CCAACATCCTTCGGTGAAGCTGAA -CCAACATCCTTCGGTGAAAGTACG -CCAACATCCTTCGGTGAAATCCGA -CCAACATCCTTCGGTGAAATGGGA -CCAACATCCTTCGGTGAAGTGCAA -CCAACATCCTTCGGTGAAGAGGAA -CCAACATCCTTCGGTGAACAGGTA -CCAACATCCTTCGGTGAAGACTCT -CCAACATCCTTCGGTGAAAGTCCT -CCAACATCCTTCGGTGAATAAGCC -CCAACATCCTTCGGTGAAATAGCC -CCAACATCCTTCGGTGAATAACCG -CCAACATCCTTCGGTGAAATGCCA -CCAACATCCTTCCGTAACGGAAAC -CCAACATCCTTCCGTAACAACACC -CCAACATCCTTCCGTAACATCGAG -CCAACATCCTTCCGTAACCTCCTT -CCAACATCCTTCCGTAACCCTGTT -CCAACATCCTTCCGTAACCGGTTT -CCAACATCCTTCCGTAACGTGGTT -CCAACATCCTTCCGTAACGCCTTT -CCAACATCCTTCCGTAACGGTCTT -CCAACATCCTTCCGTAACACGCTT -CCAACATCCTTCCGTAACAGCGTT -CCAACATCCTTCCGTAACTTCGTC -CCAACATCCTTCCGTAACTCTCTC -CCAACATCCTTCCGTAACTGGATC -CCAACATCCTTCCGTAACCACTTC -CCAACATCCTTCCGTAACGTACTC -CCAACATCCTTCCGTAACGATGTC -CCAACATCCTTCCGTAACACAGTC -CCAACATCCTTCCGTAACTTGCTG -CCAACATCCTTCCGTAACTCCATG -CCAACATCCTTCCGTAACTGTGTG -CCAACATCCTTCCGTAACCTAGTG -CCAACATCCTTCCGTAACCATCTG -CCAACATCCTTCCGTAACGAGTTG -CCAACATCCTTCCGTAACAGACTG -CCAACATCCTTCCGTAACTCGGTA -CCAACATCCTTCCGTAACTGCCTA -CCAACATCCTTCCGTAACCCACTA -CCAACATCCTTCCGTAACGGAGTA -CCAACATCCTTCCGTAACTCGTCT -CCAACATCCTTCCGTAACTGCACT -CCAACATCCTTCCGTAACCTGACT -CCAACATCCTTCCGTAACCAACCT -CCAACATCCTTCCGTAACGCTACT -CCAACATCCTTCCGTAACGGATCT -CCAACATCCTTCCGTAACAAGGCT -CCAACATCCTTCCGTAACTCAACC -CCAACATCCTTCCGTAACTGTTCC -CCAACATCCTTCCGTAACATTCCC -CCAACATCCTTCCGTAACTTCTCG -CCAACATCCTTCCGTAACTAGACG -CCAACATCCTTCCGTAACGTAACG -CCAACATCCTTCCGTAACACTTCG -CCAACATCCTTCCGTAACTACGCA -CCAACATCCTTCCGTAACCTTGCA -CCAACATCCTTCCGTAACCGAACA -CCAACATCCTTCCGTAACCAGTCA -CCAACATCCTTCCGTAACGATCCA -CCAACATCCTTCCGTAACACGACA -CCAACATCCTTCCGTAACAGCTCA -CCAACATCCTTCCGTAACTCACGT -CCAACATCCTTCCGTAACCGTAGT -CCAACATCCTTCCGTAACGTCAGT -CCAACATCCTTCCGTAACGAAGGT -CCAACATCCTTCCGTAACAACCGT -CCAACATCCTTCCGTAACTTGTGC -CCAACATCCTTCCGTAACCTAAGC -CCAACATCCTTCCGTAACACTAGC -CCAACATCCTTCCGTAACAGATGC -CCAACATCCTTCCGTAACTGAAGG -CCAACATCCTTCCGTAACCAATGG -CCAACATCCTTCCGTAACATGAGG -CCAACATCCTTCCGTAACAATGGG -CCAACATCCTTCCGTAACTCCTGA -CCAACATCCTTCCGTAACTAGCGA -CCAACATCCTTCCGTAACCACAGA -CCAACATCCTTCCGTAACGCAAGA -CCAACATCCTTCCGTAACGGTTGA -CCAACATCCTTCCGTAACTCCGAT -CCAACATCCTTCCGTAACTGGCAT -CCAACATCCTTCCGTAACCGAGAT -CCAACATCCTTCCGTAACTACCAC -CCAACATCCTTCCGTAACCAGAAC -CCAACATCCTTCCGTAACGTCTAC -CCAACATCCTTCCGTAACACGTAC -CCAACATCCTTCCGTAACAGTGAC -CCAACATCCTTCCGTAACCTGTAG -CCAACATCCTTCCGTAACCCTAAG -CCAACATCCTTCCGTAACGTTCAG -CCAACATCCTTCCGTAACGCATAG -CCAACATCCTTCCGTAACGACAAG -CCAACATCCTTCCGTAACAAGCAG -CCAACATCCTTCCGTAACCGTCAA -CCAACATCCTTCCGTAACGCTGAA -CCAACATCCTTCCGTAACAGTACG -CCAACATCCTTCCGTAACATCCGA -CCAACATCCTTCCGTAACATGGGA -CCAACATCCTTCCGTAACGTGCAA -CCAACATCCTTCCGTAACGAGGAA -CCAACATCCTTCCGTAACCAGGTA -CCAACATCCTTCCGTAACGACTCT -CCAACATCCTTCCGTAACAGTCCT -CCAACATCCTTCCGTAACTAAGCC -CCAACATCCTTCCGTAACATAGCC -CCAACATCCTTCCGTAACTAACCG -CCAACATCCTTCCGTAACATGCCA -CCAACATCCTTCTGCTTGGGAAAC -CCAACATCCTTCTGCTTGAACACC -CCAACATCCTTCTGCTTGATCGAG -CCAACATCCTTCTGCTTGCTCCTT -CCAACATCCTTCTGCTTGCCTGTT -CCAACATCCTTCTGCTTGCGGTTT -CCAACATCCTTCTGCTTGGTGGTT -CCAACATCCTTCTGCTTGGCCTTT -CCAACATCCTTCTGCTTGGGTCTT -CCAACATCCTTCTGCTTGACGCTT -CCAACATCCTTCTGCTTGAGCGTT -CCAACATCCTTCTGCTTGTTCGTC -CCAACATCCTTCTGCTTGTCTCTC -CCAACATCCTTCTGCTTGTGGATC -CCAACATCCTTCTGCTTGCACTTC -CCAACATCCTTCTGCTTGGTACTC -CCAACATCCTTCTGCTTGGATGTC -CCAACATCCTTCTGCTTGACAGTC -CCAACATCCTTCTGCTTGTTGCTG -CCAACATCCTTCTGCTTGTCCATG -CCAACATCCTTCTGCTTGTGTGTG -CCAACATCCTTCTGCTTGCTAGTG -CCAACATCCTTCTGCTTGCATCTG -CCAACATCCTTCTGCTTGGAGTTG -CCAACATCCTTCTGCTTGAGACTG -CCAACATCCTTCTGCTTGTCGGTA -CCAACATCCTTCTGCTTGTGCCTA -CCAACATCCTTCTGCTTGCCACTA -CCAACATCCTTCTGCTTGGGAGTA -CCAACATCCTTCTGCTTGTCGTCT -CCAACATCCTTCTGCTTGTGCACT -CCAACATCCTTCTGCTTGCTGACT -CCAACATCCTTCTGCTTGCAACCT -CCAACATCCTTCTGCTTGGCTACT -CCAACATCCTTCTGCTTGGGATCT -CCAACATCCTTCTGCTTGAAGGCT -CCAACATCCTTCTGCTTGTCAACC -CCAACATCCTTCTGCTTGTGTTCC -CCAACATCCTTCTGCTTGATTCCC -CCAACATCCTTCTGCTTGTTCTCG -CCAACATCCTTCTGCTTGTAGACG -CCAACATCCTTCTGCTTGGTAACG -CCAACATCCTTCTGCTTGACTTCG -CCAACATCCTTCTGCTTGTACGCA -CCAACATCCTTCTGCTTGCTTGCA -CCAACATCCTTCTGCTTGCGAACA -CCAACATCCTTCTGCTTGCAGTCA -CCAACATCCTTCTGCTTGGATCCA -CCAACATCCTTCTGCTTGACGACA -CCAACATCCTTCTGCTTGAGCTCA -CCAACATCCTTCTGCTTGTCACGT -CCAACATCCTTCTGCTTGCGTAGT -CCAACATCCTTCTGCTTGGTCAGT -CCAACATCCTTCTGCTTGGAAGGT -CCAACATCCTTCTGCTTGAACCGT -CCAACATCCTTCTGCTTGTTGTGC -CCAACATCCTTCTGCTTGCTAAGC -CCAACATCCTTCTGCTTGACTAGC -CCAACATCCTTCTGCTTGAGATGC -CCAACATCCTTCTGCTTGTGAAGG -CCAACATCCTTCTGCTTGCAATGG -CCAACATCCTTCTGCTTGATGAGG -CCAACATCCTTCTGCTTGAATGGG -CCAACATCCTTCTGCTTGTCCTGA -CCAACATCCTTCTGCTTGTAGCGA -CCAACATCCTTCTGCTTGCACAGA -CCAACATCCTTCTGCTTGGCAAGA -CCAACATCCTTCTGCTTGGGTTGA -CCAACATCCTTCTGCTTGTCCGAT -CCAACATCCTTCTGCTTGTGGCAT -CCAACATCCTTCTGCTTGCGAGAT -CCAACATCCTTCTGCTTGTACCAC -CCAACATCCTTCTGCTTGCAGAAC -CCAACATCCTTCTGCTTGGTCTAC -CCAACATCCTTCTGCTTGACGTAC -CCAACATCCTTCTGCTTGAGTGAC -CCAACATCCTTCTGCTTGCTGTAG -CCAACATCCTTCTGCTTGCCTAAG -CCAACATCCTTCTGCTTGGTTCAG -CCAACATCCTTCTGCTTGGCATAG -CCAACATCCTTCTGCTTGGACAAG -CCAACATCCTTCTGCTTGAAGCAG -CCAACATCCTTCTGCTTGCGTCAA -CCAACATCCTTCTGCTTGGCTGAA -CCAACATCCTTCTGCTTGAGTACG -CCAACATCCTTCTGCTTGATCCGA -CCAACATCCTTCTGCTTGATGGGA -CCAACATCCTTCTGCTTGGTGCAA -CCAACATCCTTCTGCTTGGAGGAA -CCAACATCCTTCTGCTTGCAGGTA -CCAACATCCTTCTGCTTGGACTCT -CCAACATCCTTCTGCTTGAGTCCT -CCAACATCCTTCTGCTTGTAAGCC -CCAACATCCTTCTGCTTGATAGCC -CCAACATCCTTCTGCTTGTAACCG -CCAACATCCTTCTGCTTGATGCCA -CCAACATCCTTCAGCCTAGGAAAC -CCAACATCCTTCAGCCTAAACACC -CCAACATCCTTCAGCCTAATCGAG -CCAACATCCTTCAGCCTACTCCTT -CCAACATCCTTCAGCCTACCTGTT -CCAACATCCTTCAGCCTACGGTTT -CCAACATCCTTCAGCCTAGTGGTT -CCAACATCCTTCAGCCTAGCCTTT -CCAACATCCTTCAGCCTAGGTCTT -CCAACATCCTTCAGCCTAACGCTT -CCAACATCCTTCAGCCTAAGCGTT -CCAACATCCTTCAGCCTATTCGTC -CCAACATCCTTCAGCCTATCTCTC -CCAACATCCTTCAGCCTATGGATC -CCAACATCCTTCAGCCTACACTTC -CCAACATCCTTCAGCCTAGTACTC -CCAACATCCTTCAGCCTAGATGTC -CCAACATCCTTCAGCCTAACAGTC -CCAACATCCTTCAGCCTATTGCTG -CCAACATCCTTCAGCCTATCCATG -CCAACATCCTTCAGCCTATGTGTG -CCAACATCCTTCAGCCTACTAGTG -CCAACATCCTTCAGCCTACATCTG -CCAACATCCTTCAGCCTAGAGTTG -CCAACATCCTTCAGCCTAAGACTG -CCAACATCCTTCAGCCTATCGGTA -CCAACATCCTTCAGCCTATGCCTA -CCAACATCCTTCAGCCTACCACTA -CCAACATCCTTCAGCCTAGGAGTA -CCAACATCCTTCAGCCTATCGTCT -CCAACATCCTTCAGCCTATGCACT -CCAACATCCTTCAGCCTACTGACT -CCAACATCCTTCAGCCTACAACCT -CCAACATCCTTCAGCCTAGCTACT -CCAACATCCTTCAGCCTAGGATCT -CCAACATCCTTCAGCCTAAAGGCT -CCAACATCCTTCAGCCTATCAACC -CCAACATCCTTCAGCCTATGTTCC -CCAACATCCTTCAGCCTAATTCCC -CCAACATCCTTCAGCCTATTCTCG -CCAACATCCTTCAGCCTATAGACG -CCAACATCCTTCAGCCTAGTAACG -CCAACATCCTTCAGCCTAACTTCG -CCAACATCCTTCAGCCTATACGCA -CCAACATCCTTCAGCCTACTTGCA -CCAACATCCTTCAGCCTACGAACA -CCAACATCCTTCAGCCTACAGTCA -CCAACATCCTTCAGCCTAGATCCA -CCAACATCCTTCAGCCTAACGACA -CCAACATCCTTCAGCCTAAGCTCA -CCAACATCCTTCAGCCTATCACGT -CCAACATCCTTCAGCCTACGTAGT -CCAACATCCTTCAGCCTAGTCAGT -CCAACATCCTTCAGCCTAGAAGGT -CCAACATCCTTCAGCCTAAACCGT -CCAACATCCTTCAGCCTATTGTGC -CCAACATCCTTCAGCCTACTAAGC -CCAACATCCTTCAGCCTAACTAGC -CCAACATCCTTCAGCCTAAGATGC -CCAACATCCTTCAGCCTATGAAGG -CCAACATCCTTCAGCCTACAATGG -CCAACATCCTTCAGCCTAATGAGG -CCAACATCCTTCAGCCTAAATGGG -CCAACATCCTTCAGCCTATCCTGA -CCAACATCCTTCAGCCTATAGCGA -CCAACATCCTTCAGCCTACACAGA -CCAACATCCTTCAGCCTAGCAAGA -CCAACATCCTTCAGCCTAGGTTGA -CCAACATCCTTCAGCCTATCCGAT -CCAACATCCTTCAGCCTATGGCAT -CCAACATCCTTCAGCCTACGAGAT -CCAACATCCTTCAGCCTATACCAC -CCAACATCCTTCAGCCTACAGAAC -CCAACATCCTTCAGCCTAGTCTAC -CCAACATCCTTCAGCCTAACGTAC -CCAACATCCTTCAGCCTAAGTGAC -CCAACATCCTTCAGCCTACTGTAG -CCAACATCCTTCAGCCTACCTAAG -CCAACATCCTTCAGCCTAGTTCAG -CCAACATCCTTCAGCCTAGCATAG -CCAACATCCTTCAGCCTAGACAAG -CCAACATCCTTCAGCCTAAAGCAG -CCAACATCCTTCAGCCTACGTCAA -CCAACATCCTTCAGCCTAGCTGAA -CCAACATCCTTCAGCCTAAGTACG -CCAACATCCTTCAGCCTAATCCGA -CCAACATCCTTCAGCCTAATGGGA -CCAACATCCTTCAGCCTAGTGCAA -CCAACATCCTTCAGCCTAGAGGAA -CCAACATCCTTCAGCCTACAGGTA -CCAACATCCTTCAGCCTAGACTCT -CCAACATCCTTCAGCCTAAGTCCT -CCAACATCCTTCAGCCTATAAGCC -CCAACATCCTTCAGCCTAATAGCC -CCAACATCCTTCAGCCTATAACCG -CCAACATCCTTCAGCCTAATGCCA -CCAACATCCTTCAGCACTGGAAAC -CCAACATCCTTCAGCACTAACACC -CCAACATCCTTCAGCACTATCGAG -CCAACATCCTTCAGCACTCTCCTT -CCAACATCCTTCAGCACTCCTGTT -CCAACATCCTTCAGCACTCGGTTT -CCAACATCCTTCAGCACTGTGGTT -CCAACATCCTTCAGCACTGCCTTT -CCAACATCCTTCAGCACTGGTCTT -CCAACATCCTTCAGCACTACGCTT -CCAACATCCTTCAGCACTAGCGTT -CCAACATCCTTCAGCACTTTCGTC -CCAACATCCTTCAGCACTTCTCTC -CCAACATCCTTCAGCACTTGGATC -CCAACATCCTTCAGCACTCACTTC -CCAACATCCTTCAGCACTGTACTC -CCAACATCCTTCAGCACTGATGTC -CCAACATCCTTCAGCACTACAGTC -CCAACATCCTTCAGCACTTTGCTG -CCAACATCCTTCAGCACTTCCATG -CCAACATCCTTCAGCACTTGTGTG -CCAACATCCTTCAGCACTCTAGTG -CCAACATCCTTCAGCACTCATCTG -CCAACATCCTTCAGCACTGAGTTG -CCAACATCCTTCAGCACTAGACTG -CCAACATCCTTCAGCACTTCGGTA -CCAACATCCTTCAGCACTTGCCTA -CCAACATCCTTCAGCACTCCACTA -CCAACATCCTTCAGCACTGGAGTA -CCAACATCCTTCAGCACTTCGTCT -CCAACATCCTTCAGCACTTGCACT -CCAACATCCTTCAGCACTCTGACT -CCAACATCCTTCAGCACTCAACCT -CCAACATCCTTCAGCACTGCTACT -CCAACATCCTTCAGCACTGGATCT -CCAACATCCTTCAGCACTAAGGCT -CCAACATCCTTCAGCACTTCAACC -CCAACATCCTTCAGCACTTGTTCC -CCAACATCCTTCAGCACTATTCCC -CCAACATCCTTCAGCACTTTCTCG -CCAACATCCTTCAGCACTTAGACG -CCAACATCCTTCAGCACTGTAACG -CCAACATCCTTCAGCACTACTTCG -CCAACATCCTTCAGCACTTACGCA -CCAACATCCTTCAGCACTCTTGCA -CCAACATCCTTCAGCACTCGAACA -CCAACATCCTTCAGCACTCAGTCA -CCAACATCCTTCAGCACTGATCCA -CCAACATCCTTCAGCACTACGACA -CCAACATCCTTCAGCACTAGCTCA -CCAACATCCTTCAGCACTTCACGT -CCAACATCCTTCAGCACTCGTAGT -CCAACATCCTTCAGCACTGTCAGT -CCAACATCCTTCAGCACTGAAGGT -CCAACATCCTTCAGCACTAACCGT -CCAACATCCTTCAGCACTTTGTGC -CCAACATCCTTCAGCACTCTAAGC -CCAACATCCTTCAGCACTACTAGC -CCAACATCCTTCAGCACTAGATGC -CCAACATCCTTCAGCACTTGAAGG -CCAACATCCTTCAGCACTCAATGG -CCAACATCCTTCAGCACTATGAGG -CCAACATCCTTCAGCACTAATGGG -CCAACATCCTTCAGCACTTCCTGA -CCAACATCCTTCAGCACTTAGCGA -CCAACATCCTTCAGCACTCACAGA -CCAACATCCTTCAGCACTGCAAGA -CCAACATCCTTCAGCACTGGTTGA -CCAACATCCTTCAGCACTTCCGAT -CCAACATCCTTCAGCACTTGGCAT -CCAACATCCTTCAGCACTCGAGAT -CCAACATCCTTCAGCACTTACCAC -CCAACATCCTTCAGCACTCAGAAC -CCAACATCCTTCAGCACTGTCTAC -CCAACATCCTTCAGCACTACGTAC -CCAACATCCTTCAGCACTAGTGAC -CCAACATCCTTCAGCACTCTGTAG -CCAACATCCTTCAGCACTCCTAAG -CCAACATCCTTCAGCACTGTTCAG -CCAACATCCTTCAGCACTGCATAG -CCAACATCCTTCAGCACTGACAAG -CCAACATCCTTCAGCACTAAGCAG -CCAACATCCTTCAGCACTCGTCAA -CCAACATCCTTCAGCACTGCTGAA -CCAACATCCTTCAGCACTAGTACG -CCAACATCCTTCAGCACTATCCGA -CCAACATCCTTCAGCACTATGGGA -CCAACATCCTTCAGCACTGTGCAA -CCAACATCCTTCAGCACTGAGGAA -CCAACATCCTTCAGCACTCAGGTA -CCAACATCCTTCAGCACTGACTCT -CCAACATCCTTCAGCACTAGTCCT -CCAACATCCTTCAGCACTTAAGCC -CCAACATCCTTCAGCACTATAGCC -CCAACATCCTTCAGCACTTAACCG -CCAACATCCTTCAGCACTATGCCA -CCAACATCCTTCTGCAGAGGAAAC -CCAACATCCTTCTGCAGAAACACC -CCAACATCCTTCTGCAGAATCGAG -CCAACATCCTTCTGCAGACTCCTT -CCAACATCCTTCTGCAGACCTGTT -CCAACATCCTTCTGCAGACGGTTT -CCAACATCCTTCTGCAGAGTGGTT -CCAACATCCTTCTGCAGAGCCTTT -CCAACATCCTTCTGCAGAGGTCTT -CCAACATCCTTCTGCAGAACGCTT -CCAACATCCTTCTGCAGAAGCGTT -CCAACATCCTTCTGCAGATTCGTC -CCAACATCCTTCTGCAGATCTCTC -CCAACATCCTTCTGCAGATGGATC -CCAACATCCTTCTGCAGACACTTC -CCAACATCCTTCTGCAGAGTACTC -CCAACATCCTTCTGCAGAGATGTC -CCAACATCCTTCTGCAGAACAGTC -CCAACATCCTTCTGCAGATTGCTG -CCAACATCCTTCTGCAGATCCATG -CCAACATCCTTCTGCAGATGTGTG -CCAACATCCTTCTGCAGACTAGTG -CCAACATCCTTCTGCAGACATCTG -CCAACATCCTTCTGCAGAGAGTTG -CCAACATCCTTCTGCAGAAGACTG -CCAACATCCTTCTGCAGATCGGTA -CCAACATCCTTCTGCAGATGCCTA -CCAACATCCTTCTGCAGACCACTA -CCAACATCCTTCTGCAGAGGAGTA -CCAACATCCTTCTGCAGATCGTCT -CCAACATCCTTCTGCAGATGCACT -CCAACATCCTTCTGCAGACTGACT -CCAACATCCTTCTGCAGACAACCT -CCAACATCCTTCTGCAGAGCTACT -CCAACATCCTTCTGCAGAGGATCT -CCAACATCCTTCTGCAGAAAGGCT -CCAACATCCTTCTGCAGATCAACC -CCAACATCCTTCTGCAGATGTTCC -CCAACATCCTTCTGCAGAATTCCC -CCAACATCCTTCTGCAGATTCTCG -CCAACATCCTTCTGCAGATAGACG -CCAACATCCTTCTGCAGAGTAACG -CCAACATCCTTCTGCAGAACTTCG -CCAACATCCTTCTGCAGATACGCA -CCAACATCCTTCTGCAGACTTGCA -CCAACATCCTTCTGCAGACGAACA -CCAACATCCTTCTGCAGACAGTCA -CCAACATCCTTCTGCAGAGATCCA -CCAACATCCTTCTGCAGAACGACA -CCAACATCCTTCTGCAGAAGCTCA -CCAACATCCTTCTGCAGATCACGT -CCAACATCCTTCTGCAGACGTAGT -CCAACATCCTTCTGCAGAGTCAGT -CCAACATCCTTCTGCAGAGAAGGT -CCAACATCCTTCTGCAGAAACCGT -CCAACATCCTTCTGCAGATTGTGC -CCAACATCCTTCTGCAGACTAAGC -CCAACATCCTTCTGCAGAACTAGC -CCAACATCCTTCTGCAGAAGATGC -CCAACATCCTTCTGCAGATGAAGG -CCAACATCCTTCTGCAGACAATGG -CCAACATCCTTCTGCAGAATGAGG -CCAACATCCTTCTGCAGAAATGGG -CCAACATCCTTCTGCAGATCCTGA -CCAACATCCTTCTGCAGATAGCGA -CCAACATCCTTCTGCAGACACAGA -CCAACATCCTTCTGCAGAGCAAGA -CCAACATCCTTCTGCAGAGGTTGA -CCAACATCCTTCTGCAGATCCGAT -CCAACATCCTTCTGCAGATGGCAT -CCAACATCCTTCTGCAGACGAGAT -CCAACATCCTTCTGCAGATACCAC -CCAACATCCTTCTGCAGACAGAAC -CCAACATCCTTCTGCAGAGTCTAC -CCAACATCCTTCTGCAGAACGTAC -CCAACATCCTTCTGCAGAAGTGAC -CCAACATCCTTCTGCAGACTGTAG -CCAACATCCTTCTGCAGACCTAAG -CCAACATCCTTCTGCAGAGTTCAG -CCAACATCCTTCTGCAGAGCATAG -CCAACATCCTTCTGCAGAGACAAG -CCAACATCCTTCTGCAGAAAGCAG -CCAACATCCTTCTGCAGACGTCAA -CCAACATCCTTCTGCAGAGCTGAA -CCAACATCCTTCTGCAGAAGTACG -CCAACATCCTTCTGCAGAATCCGA -CCAACATCCTTCTGCAGAATGGGA -CCAACATCCTTCTGCAGAGTGCAA -CCAACATCCTTCTGCAGAGAGGAA -CCAACATCCTTCTGCAGACAGGTA -CCAACATCCTTCTGCAGAGACTCT -CCAACATCCTTCTGCAGAAGTCCT -CCAACATCCTTCTGCAGATAAGCC -CCAACATCCTTCTGCAGAATAGCC -CCAACATCCTTCTGCAGATAACCG -CCAACATCCTTCTGCAGAATGCCA -CCAACATCCTTCAGGTGAGGAAAC -CCAACATCCTTCAGGTGAAACACC -CCAACATCCTTCAGGTGAATCGAG -CCAACATCCTTCAGGTGACTCCTT -CCAACATCCTTCAGGTGACCTGTT -CCAACATCCTTCAGGTGACGGTTT -CCAACATCCTTCAGGTGAGTGGTT -CCAACATCCTTCAGGTGAGCCTTT -CCAACATCCTTCAGGTGAGGTCTT -CCAACATCCTTCAGGTGAACGCTT -CCAACATCCTTCAGGTGAAGCGTT -CCAACATCCTTCAGGTGATTCGTC -CCAACATCCTTCAGGTGATCTCTC -CCAACATCCTTCAGGTGATGGATC -CCAACATCCTTCAGGTGACACTTC -CCAACATCCTTCAGGTGAGTACTC -CCAACATCCTTCAGGTGAGATGTC -CCAACATCCTTCAGGTGAACAGTC -CCAACATCCTTCAGGTGATTGCTG -CCAACATCCTTCAGGTGATCCATG -CCAACATCCTTCAGGTGATGTGTG -CCAACATCCTTCAGGTGACTAGTG -CCAACATCCTTCAGGTGACATCTG -CCAACATCCTTCAGGTGAGAGTTG -CCAACATCCTTCAGGTGAAGACTG -CCAACATCCTTCAGGTGATCGGTA -CCAACATCCTTCAGGTGATGCCTA -CCAACATCCTTCAGGTGACCACTA -CCAACATCCTTCAGGTGAGGAGTA -CCAACATCCTTCAGGTGATCGTCT -CCAACATCCTTCAGGTGATGCACT -CCAACATCCTTCAGGTGACTGACT -CCAACATCCTTCAGGTGACAACCT -CCAACATCCTTCAGGTGAGCTACT -CCAACATCCTTCAGGTGAGGATCT -CCAACATCCTTCAGGTGAAAGGCT -CCAACATCCTTCAGGTGATCAACC -CCAACATCCTTCAGGTGATGTTCC -CCAACATCCTTCAGGTGAATTCCC -CCAACATCCTTCAGGTGATTCTCG -CCAACATCCTTCAGGTGATAGACG -CCAACATCCTTCAGGTGAGTAACG -CCAACATCCTTCAGGTGAACTTCG -CCAACATCCTTCAGGTGATACGCA -CCAACATCCTTCAGGTGACTTGCA -CCAACATCCTTCAGGTGACGAACA -CCAACATCCTTCAGGTGACAGTCA -CCAACATCCTTCAGGTGAGATCCA -CCAACATCCTTCAGGTGAACGACA -CCAACATCCTTCAGGTGAAGCTCA -CCAACATCCTTCAGGTGATCACGT -CCAACATCCTTCAGGTGACGTAGT -CCAACATCCTTCAGGTGAGTCAGT -CCAACATCCTTCAGGTGAGAAGGT -CCAACATCCTTCAGGTGAAACCGT -CCAACATCCTTCAGGTGATTGTGC -CCAACATCCTTCAGGTGACTAAGC -CCAACATCCTTCAGGTGAACTAGC -CCAACATCCTTCAGGTGAAGATGC -CCAACATCCTTCAGGTGATGAAGG -CCAACATCCTTCAGGTGACAATGG -CCAACATCCTTCAGGTGAATGAGG -CCAACATCCTTCAGGTGAAATGGG -CCAACATCCTTCAGGTGATCCTGA -CCAACATCCTTCAGGTGATAGCGA -CCAACATCCTTCAGGTGACACAGA -CCAACATCCTTCAGGTGAGCAAGA -CCAACATCCTTCAGGTGAGGTTGA -CCAACATCCTTCAGGTGATCCGAT -CCAACATCCTTCAGGTGATGGCAT -CCAACATCCTTCAGGTGACGAGAT -CCAACATCCTTCAGGTGATACCAC -CCAACATCCTTCAGGTGACAGAAC -CCAACATCCTTCAGGTGAGTCTAC -CCAACATCCTTCAGGTGAACGTAC -CCAACATCCTTCAGGTGAAGTGAC -CCAACATCCTTCAGGTGACTGTAG -CCAACATCCTTCAGGTGACCTAAG -CCAACATCCTTCAGGTGAGTTCAG -CCAACATCCTTCAGGTGAGCATAG -CCAACATCCTTCAGGTGAGACAAG -CCAACATCCTTCAGGTGAAAGCAG -CCAACATCCTTCAGGTGACGTCAA -CCAACATCCTTCAGGTGAGCTGAA -CCAACATCCTTCAGGTGAAGTACG -CCAACATCCTTCAGGTGAATCCGA -CCAACATCCTTCAGGTGAATGGGA -CCAACATCCTTCAGGTGAGTGCAA -CCAACATCCTTCAGGTGAGAGGAA -CCAACATCCTTCAGGTGACAGGTA -CCAACATCCTTCAGGTGAGACTCT -CCAACATCCTTCAGGTGAAGTCCT -CCAACATCCTTCAGGTGATAAGCC -CCAACATCCTTCAGGTGAATAGCC -CCAACATCCTTCAGGTGATAACCG -CCAACATCCTTCAGGTGAATGCCA -CCAACATCCTTCTGGCAAGGAAAC -CCAACATCCTTCTGGCAAAACACC -CCAACATCCTTCTGGCAAATCGAG -CCAACATCCTTCTGGCAACTCCTT -CCAACATCCTTCTGGCAACCTGTT -CCAACATCCTTCTGGCAACGGTTT -CCAACATCCTTCTGGCAAGTGGTT -CCAACATCCTTCTGGCAAGCCTTT -CCAACATCCTTCTGGCAAGGTCTT -CCAACATCCTTCTGGCAAACGCTT -CCAACATCCTTCTGGCAAAGCGTT -CCAACATCCTTCTGGCAATTCGTC -CCAACATCCTTCTGGCAATCTCTC -CCAACATCCTTCTGGCAATGGATC -CCAACATCCTTCTGGCAACACTTC -CCAACATCCTTCTGGCAAGTACTC -CCAACATCCTTCTGGCAAGATGTC -CCAACATCCTTCTGGCAAACAGTC -CCAACATCCTTCTGGCAATTGCTG -CCAACATCCTTCTGGCAATCCATG -CCAACATCCTTCTGGCAATGTGTG -CCAACATCCTTCTGGCAACTAGTG -CCAACATCCTTCTGGCAACATCTG -CCAACATCCTTCTGGCAAGAGTTG -CCAACATCCTTCTGGCAAAGACTG -CCAACATCCTTCTGGCAATCGGTA -CCAACATCCTTCTGGCAATGCCTA -CCAACATCCTTCTGGCAACCACTA -CCAACATCCTTCTGGCAAGGAGTA -CCAACATCCTTCTGGCAATCGTCT -CCAACATCCTTCTGGCAATGCACT -CCAACATCCTTCTGGCAACTGACT -CCAACATCCTTCTGGCAACAACCT -CCAACATCCTTCTGGCAAGCTACT -CCAACATCCTTCTGGCAAGGATCT -CCAACATCCTTCTGGCAAAAGGCT -CCAACATCCTTCTGGCAATCAACC -CCAACATCCTTCTGGCAATGTTCC -CCAACATCCTTCTGGCAAATTCCC -CCAACATCCTTCTGGCAATTCTCG -CCAACATCCTTCTGGCAATAGACG -CCAACATCCTTCTGGCAAGTAACG -CCAACATCCTTCTGGCAAACTTCG -CCAACATCCTTCTGGCAATACGCA -CCAACATCCTTCTGGCAACTTGCA -CCAACATCCTTCTGGCAACGAACA -CCAACATCCTTCTGGCAACAGTCA -CCAACATCCTTCTGGCAAGATCCA -CCAACATCCTTCTGGCAAACGACA -CCAACATCCTTCTGGCAAAGCTCA -CCAACATCCTTCTGGCAATCACGT -CCAACATCCTTCTGGCAACGTAGT -CCAACATCCTTCTGGCAAGTCAGT -CCAACATCCTTCTGGCAAGAAGGT -CCAACATCCTTCTGGCAAAACCGT -CCAACATCCTTCTGGCAATTGTGC -CCAACATCCTTCTGGCAACTAAGC -CCAACATCCTTCTGGCAAACTAGC -CCAACATCCTTCTGGCAAAGATGC -CCAACATCCTTCTGGCAATGAAGG -CCAACATCCTTCTGGCAACAATGG -CCAACATCCTTCTGGCAAATGAGG -CCAACATCCTTCTGGCAAAATGGG -CCAACATCCTTCTGGCAATCCTGA -CCAACATCCTTCTGGCAATAGCGA -CCAACATCCTTCTGGCAACACAGA -CCAACATCCTTCTGGCAAGCAAGA -CCAACATCCTTCTGGCAAGGTTGA -CCAACATCCTTCTGGCAATCCGAT -CCAACATCCTTCTGGCAATGGCAT -CCAACATCCTTCTGGCAACGAGAT -CCAACATCCTTCTGGCAATACCAC -CCAACATCCTTCTGGCAACAGAAC -CCAACATCCTTCTGGCAAGTCTAC -CCAACATCCTTCTGGCAAACGTAC -CCAACATCCTTCTGGCAAAGTGAC -CCAACATCCTTCTGGCAACTGTAG -CCAACATCCTTCTGGCAACCTAAG -CCAACATCCTTCTGGCAAGTTCAG -CCAACATCCTTCTGGCAAGCATAG -CCAACATCCTTCTGGCAAGACAAG -CCAACATCCTTCTGGCAAAAGCAG -CCAACATCCTTCTGGCAACGTCAA -CCAACATCCTTCTGGCAAGCTGAA -CCAACATCCTTCTGGCAAAGTACG -CCAACATCCTTCTGGCAAATCCGA -CCAACATCCTTCTGGCAAATGGGA -CCAACATCCTTCTGGCAAGTGCAA -CCAACATCCTTCTGGCAAGAGGAA -CCAACATCCTTCTGGCAACAGGTA -CCAACATCCTTCTGGCAAGACTCT -CCAACATCCTTCTGGCAAAGTCCT -CCAACATCCTTCTGGCAATAAGCC -CCAACATCCTTCTGGCAAATAGCC -CCAACATCCTTCTGGCAATAACCG -CCAACATCCTTCTGGCAAATGCCA -CCAACATCCTTCAGGATGGGAAAC -CCAACATCCTTCAGGATGAACACC -CCAACATCCTTCAGGATGATCGAG -CCAACATCCTTCAGGATGCTCCTT -CCAACATCCTTCAGGATGCCTGTT -CCAACATCCTTCAGGATGCGGTTT -CCAACATCCTTCAGGATGGTGGTT -CCAACATCCTTCAGGATGGCCTTT -CCAACATCCTTCAGGATGGGTCTT -CCAACATCCTTCAGGATGACGCTT -CCAACATCCTTCAGGATGAGCGTT -CCAACATCCTTCAGGATGTTCGTC -CCAACATCCTTCAGGATGTCTCTC -CCAACATCCTTCAGGATGTGGATC -CCAACATCCTTCAGGATGCACTTC -CCAACATCCTTCAGGATGGTACTC -CCAACATCCTTCAGGATGGATGTC -CCAACATCCTTCAGGATGACAGTC -CCAACATCCTTCAGGATGTTGCTG -CCAACATCCTTCAGGATGTCCATG -CCAACATCCTTCAGGATGTGTGTG -CCAACATCCTTCAGGATGCTAGTG -CCAACATCCTTCAGGATGCATCTG -CCAACATCCTTCAGGATGGAGTTG -CCAACATCCTTCAGGATGAGACTG -CCAACATCCTTCAGGATGTCGGTA -CCAACATCCTTCAGGATGTGCCTA -CCAACATCCTTCAGGATGCCACTA -CCAACATCCTTCAGGATGGGAGTA -CCAACATCCTTCAGGATGTCGTCT -CCAACATCCTTCAGGATGTGCACT -CCAACATCCTTCAGGATGCTGACT -CCAACATCCTTCAGGATGCAACCT -CCAACATCCTTCAGGATGGCTACT -CCAACATCCTTCAGGATGGGATCT -CCAACATCCTTCAGGATGAAGGCT -CCAACATCCTTCAGGATGTCAACC -CCAACATCCTTCAGGATGTGTTCC -CCAACATCCTTCAGGATGATTCCC -CCAACATCCTTCAGGATGTTCTCG -CCAACATCCTTCAGGATGTAGACG -CCAACATCCTTCAGGATGGTAACG -CCAACATCCTTCAGGATGACTTCG -CCAACATCCTTCAGGATGTACGCA -CCAACATCCTTCAGGATGCTTGCA -CCAACATCCTTCAGGATGCGAACA -CCAACATCCTTCAGGATGCAGTCA -CCAACATCCTTCAGGATGGATCCA -CCAACATCCTTCAGGATGACGACA -CCAACATCCTTCAGGATGAGCTCA -CCAACATCCTTCAGGATGTCACGT -CCAACATCCTTCAGGATGCGTAGT -CCAACATCCTTCAGGATGGTCAGT -CCAACATCCTTCAGGATGGAAGGT -CCAACATCCTTCAGGATGAACCGT -CCAACATCCTTCAGGATGTTGTGC -CCAACATCCTTCAGGATGCTAAGC -CCAACATCCTTCAGGATGACTAGC -CCAACATCCTTCAGGATGAGATGC -CCAACATCCTTCAGGATGTGAAGG -CCAACATCCTTCAGGATGCAATGG -CCAACATCCTTCAGGATGATGAGG -CCAACATCCTTCAGGATGAATGGG -CCAACATCCTTCAGGATGTCCTGA -CCAACATCCTTCAGGATGTAGCGA -CCAACATCCTTCAGGATGCACAGA -CCAACATCCTTCAGGATGGCAAGA -CCAACATCCTTCAGGATGGGTTGA -CCAACATCCTTCAGGATGTCCGAT -CCAACATCCTTCAGGATGTGGCAT -CCAACATCCTTCAGGATGCGAGAT -CCAACATCCTTCAGGATGTACCAC -CCAACATCCTTCAGGATGCAGAAC -CCAACATCCTTCAGGATGGTCTAC -CCAACATCCTTCAGGATGACGTAC -CCAACATCCTTCAGGATGAGTGAC -CCAACATCCTTCAGGATGCTGTAG -CCAACATCCTTCAGGATGCCTAAG -CCAACATCCTTCAGGATGGTTCAG -CCAACATCCTTCAGGATGGCATAG -CCAACATCCTTCAGGATGGACAAG -CCAACATCCTTCAGGATGAAGCAG -CCAACATCCTTCAGGATGCGTCAA -CCAACATCCTTCAGGATGGCTGAA -CCAACATCCTTCAGGATGAGTACG -CCAACATCCTTCAGGATGATCCGA -CCAACATCCTTCAGGATGATGGGA -CCAACATCCTTCAGGATGGTGCAA -CCAACATCCTTCAGGATGGAGGAA -CCAACATCCTTCAGGATGCAGGTA -CCAACATCCTTCAGGATGGACTCT -CCAACATCCTTCAGGATGAGTCCT -CCAACATCCTTCAGGATGTAAGCC -CCAACATCCTTCAGGATGATAGCC -CCAACATCCTTCAGGATGTAACCG -CCAACATCCTTCAGGATGATGCCA -CCAACATCCTTCGGGAATGGAAAC -CCAACATCCTTCGGGAATAACACC -CCAACATCCTTCGGGAATATCGAG -CCAACATCCTTCGGGAATCTCCTT -CCAACATCCTTCGGGAATCCTGTT -CCAACATCCTTCGGGAATCGGTTT -CCAACATCCTTCGGGAATGTGGTT -CCAACATCCTTCGGGAATGCCTTT -CCAACATCCTTCGGGAATGGTCTT -CCAACATCCTTCGGGAATACGCTT -CCAACATCCTTCGGGAATAGCGTT -CCAACATCCTTCGGGAATTTCGTC -CCAACATCCTTCGGGAATTCTCTC -CCAACATCCTTCGGGAATTGGATC -CCAACATCCTTCGGGAATCACTTC -CCAACATCCTTCGGGAATGTACTC -CCAACATCCTTCGGGAATGATGTC -CCAACATCCTTCGGGAATACAGTC -CCAACATCCTTCGGGAATTTGCTG -CCAACATCCTTCGGGAATTCCATG -CCAACATCCTTCGGGAATTGTGTG -CCAACATCCTTCGGGAATCTAGTG -CCAACATCCTTCGGGAATCATCTG -CCAACATCCTTCGGGAATGAGTTG -CCAACATCCTTCGGGAATAGACTG -CCAACATCCTTCGGGAATTCGGTA -CCAACATCCTTCGGGAATTGCCTA -CCAACATCCTTCGGGAATCCACTA -CCAACATCCTTCGGGAATGGAGTA -CCAACATCCTTCGGGAATTCGTCT -CCAACATCCTTCGGGAATTGCACT -CCAACATCCTTCGGGAATCTGACT -CCAACATCCTTCGGGAATCAACCT -CCAACATCCTTCGGGAATGCTACT -CCAACATCCTTCGGGAATGGATCT -CCAACATCCTTCGGGAATAAGGCT -CCAACATCCTTCGGGAATTCAACC -CCAACATCCTTCGGGAATTGTTCC -CCAACATCCTTCGGGAATATTCCC -CCAACATCCTTCGGGAATTTCTCG -CCAACATCCTTCGGGAATTAGACG -CCAACATCCTTCGGGAATGTAACG -CCAACATCCTTCGGGAATACTTCG -CCAACATCCTTCGGGAATTACGCA -CCAACATCCTTCGGGAATCTTGCA -CCAACATCCTTCGGGAATCGAACA -CCAACATCCTTCGGGAATCAGTCA -CCAACATCCTTCGGGAATGATCCA -CCAACATCCTTCGGGAATACGACA -CCAACATCCTTCGGGAATAGCTCA -CCAACATCCTTCGGGAATTCACGT -CCAACATCCTTCGGGAATCGTAGT -CCAACATCCTTCGGGAATGTCAGT -CCAACATCCTTCGGGAATGAAGGT -CCAACATCCTTCGGGAATAACCGT -CCAACATCCTTCGGGAATTTGTGC -CCAACATCCTTCGGGAATCTAAGC -CCAACATCCTTCGGGAATACTAGC -CCAACATCCTTCGGGAATAGATGC -CCAACATCCTTCGGGAATTGAAGG -CCAACATCCTTCGGGAATCAATGG -CCAACATCCTTCGGGAATATGAGG -CCAACATCCTTCGGGAATAATGGG -CCAACATCCTTCGGGAATTCCTGA -CCAACATCCTTCGGGAATTAGCGA -CCAACATCCTTCGGGAATCACAGA -CCAACATCCTTCGGGAATGCAAGA -CCAACATCCTTCGGGAATGGTTGA -CCAACATCCTTCGGGAATTCCGAT -CCAACATCCTTCGGGAATTGGCAT -CCAACATCCTTCGGGAATCGAGAT -CCAACATCCTTCGGGAATTACCAC -CCAACATCCTTCGGGAATCAGAAC -CCAACATCCTTCGGGAATGTCTAC -CCAACATCCTTCGGGAATACGTAC -CCAACATCCTTCGGGAATAGTGAC -CCAACATCCTTCGGGAATCTGTAG -CCAACATCCTTCGGGAATCCTAAG -CCAACATCCTTCGGGAATGTTCAG -CCAACATCCTTCGGGAATGCATAG -CCAACATCCTTCGGGAATGACAAG -CCAACATCCTTCGGGAATAAGCAG -CCAACATCCTTCGGGAATCGTCAA -CCAACATCCTTCGGGAATGCTGAA -CCAACATCCTTCGGGAATAGTACG -CCAACATCCTTCGGGAATATCCGA -CCAACATCCTTCGGGAATATGGGA -CCAACATCCTTCGGGAATGTGCAA -CCAACATCCTTCGGGAATGAGGAA -CCAACATCCTTCGGGAATCAGGTA -CCAACATCCTTCGGGAATGACTCT -CCAACATCCTTCGGGAATAGTCCT -CCAACATCCTTCGGGAATTAAGCC -CCAACATCCTTCGGGAATATAGCC -CCAACATCCTTCGGGAATTAACCG -CCAACATCCTTCGGGAATATGCCA -CCAACATCCTTCTGATCCGGAAAC -CCAACATCCTTCTGATCCAACACC -CCAACATCCTTCTGATCCATCGAG -CCAACATCCTTCTGATCCCTCCTT -CCAACATCCTTCTGATCCCCTGTT -CCAACATCCTTCTGATCCCGGTTT -CCAACATCCTTCTGATCCGTGGTT -CCAACATCCTTCTGATCCGCCTTT -CCAACATCCTTCTGATCCGGTCTT -CCAACATCCTTCTGATCCACGCTT -CCAACATCCTTCTGATCCAGCGTT -CCAACATCCTTCTGATCCTTCGTC -CCAACATCCTTCTGATCCTCTCTC -CCAACATCCTTCTGATCCTGGATC -CCAACATCCTTCTGATCCCACTTC -CCAACATCCTTCTGATCCGTACTC -CCAACATCCTTCTGATCCGATGTC -CCAACATCCTTCTGATCCACAGTC -CCAACATCCTTCTGATCCTTGCTG -CCAACATCCTTCTGATCCTCCATG -CCAACATCCTTCTGATCCTGTGTG -CCAACATCCTTCTGATCCCTAGTG -CCAACATCCTTCTGATCCCATCTG -CCAACATCCTTCTGATCCGAGTTG -CCAACATCCTTCTGATCCAGACTG -CCAACATCCTTCTGATCCTCGGTA -CCAACATCCTTCTGATCCTGCCTA -CCAACATCCTTCTGATCCCCACTA -CCAACATCCTTCTGATCCGGAGTA -CCAACATCCTTCTGATCCTCGTCT -CCAACATCCTTCTGATCCTGCACT -CCAACATCCTTCTGATCCCTGACT -CCAACATCCTTCTGATCCCAACCT -CCAACATCCTTCTGATCCGCTACT -CCAACATCCTTCTGATCCGGATCT -CCAACATCCTTCTGATCCAAGGCT -CCAACATCCTTCTGATCCTCAACC -CCAACATCCTTCTGATCCTGTTCC -CCAACATCCTTCTGATCCATTCCC -CCAACATCCTTCTGATCCTTCTCG -CCAACATCCTTCTGATCCTAGACG -CCAACATCCTTCTGATCCGTAACG -CCAACATCCTTCTGATCCACTTCG -CCAACATCCTTCTGATCCTACGCA -CCAACATCCTTCTGATCCCTTGCA -CCAACATCCTTCTGATCCCGAACA -CCAACATCCTTCTGATCCCAGTCA -CCAACATCCTTCTGATCCGATCCA -CCAACATCCTTCTGATCCACGACA -CCAACATCCTTCTGATCCAGCTCA -CCAACATCCTTCTGATCCTCACGT -CCAACATCCTTCTGATCCCGTAGT -CCAACATCCTTCTGATCCGTCAGT -CCAACATCCTTCTGATCCGAAGGT -CCAACATCCTTCTGATCCAACCGT -CCAACATCCTTCTGATCCTTGTGC -CCAACATCCTTCTGATCCCTAAGC -CCAACATCCTTCTGATCCACTAGC -CCAACATCCTTCTGATCCAGATGC -CCAACATCCTTCTGATCCTGAAGG -CCAACATCCTTCTGATCCCAATGG -CCAACATCCTTCTGATCCATGAGG -CCAACATCCTTCTGATCCAATGGG -CCAACATCCTTCTGATCCTCCTGA -CCAACATCCTTCTGATCCTAGCGA -CCAACATCCTTCTGATCCCACAGA -CCAACATCCTTCTGATCCGCAAGA -CCAACATCCTTCTGATCCGGTTGA -CCAACATCCTTCTGATCCTCCGAT -CCAACATCCTTCTGATCCTGGCAT -CCAACATCCTTCTGATCCCGAGAT -CCAACATCCTTCTGATCCTACCAC -CCAACATCCTTCTGATCCCAGAAC -CCAACATCCTTCTGATCCGTCTAC -CCAACATCCTTCTGATCCACGTAC -CCAACATCCTTCTGATCCAGTGAC -CCAACATCCTTCTGATCCCTGTAG -CCAACATCCTTCTGATCCCCTAAG -CCAACATCCTTCTGATCCGTTCAG -CCAACATCCTTCTGATCCGCATAG -CCAACATCCTTCTGATCCGACAAG -CCAACATCCTTCTGATCCAAGCAG -CCAACATCCTTCTGATCCCGTCAA -CCAACATCCTTCTGATCCGCTGAA -CCAACATCCTTCTGATCCAGTACG -CCAACATCCTTCTGATCCATCCGA -CCAACATCCTTCTGATCCATGGGA -CCAACATCCTTCTGATCCGTGCAA -CCAACATCCTTCTGATCCGAGGAA -CCAACATCCTTCTGATCCCAGGTA -CCAACATCCTTCTGATCCGACTCT -CCAACATCCTTCTGATCCAGTCCT -CCAACATCCTTCTGATCCTAAGCC -CCAACATCCTTCTGATCCATAGCC -CCAACATCCTTCTGATCCTAACCG -CCAACATCCTTCTGATCCATGCCA -CCAACATCCTTCCGATAGGGAAAC -CCAACATCCTTCCGATAGAACACC -CCAACATCCTTCCGATAGATCGAG -CCAACATCCTTCCGATAGCTCCTT -CCAACATCCTTCCGATAGCCTGTT -CCAACATCCTTCCGATAGCGGTTT -CCAACATCCTTCCGATAGGTGGTT -CCAACATCCTTCCGATAGGCCTTT -CCAACATCCTTCCGATAGGGTCTT -CCAACATCCTTCCGATAGACGCTT -CCAACATCCTTCCGATAGAGCGTT -CCAACATCCTTCCGATAGTTCGTC -CCAACATCCTTCCGATAGTCTCTC -CCAACATCCTTCCGATAGTGGATC -CCAACATCCTTCCGATAGCACTTC -CCAACATCCTTCCGATAGGTACTC -CCAACATCCTTCCGATAGGATGTC -CCAACATCCTTCCGATAGACAGTC -CCAACATCCTTCCGATAGTTGCTG -CCAACATCCTTCCGATAGTCCATG -CCAACATCCTTCCGATAGTGTGTG -CCAACATCCTTCCGATAGCTAGTG -CCAACATCCTTCCGATAGCATCTG -CCAACATCCTTCCGATAGGAGTTG -CCAACATCCTTCCGATAGAGACTG -CCAACATCCTTCCGATAGTCGGTA -CCAACATCCTTCCGATAGTGCCTA -CCAACATCCTTCCGATAGCCACTA -CCAACATCCTTCCGATAGGGAGTA -CCAACATCCTTCCGATAGTCGTCT -CCAACATCCTTCCGATAGTGCACT -CCAACATCCTTCCGATAGCTGACT -CCAACATCCTTCCGATAGCAACCT -CCAACATCCTTCCGATAGGCTACT -CCAACATCCTTCCGATAGGGATCT -CCAACATCCTTCCGATAGAAGGCT -CCAACATCCTTCCGATAGTCAACC -CCAACATCCTTCCGATAGTGTTCC -CCAACATCCTTCCGATAGATTCCC -CCAACATCCTTCCGATAGTTCTCG -CCAACATCCTTCCGATAGTAGACG -CCAACATCCTTCCGATAGGTAACG -CCAACATCCTTCCGATAGACTTCG -CCAACATCCTTCCGATAGTACGCA -CCAACATCCTTCCGATAGCTTGCA -CCAACATCCTTCCGATAGCGAACA -CCAACATCCTTCCGATAGCAGTCA -CCAACATCCTTCCGATAGGATCCA -CCAACATCCTTCCGATAGACGACA -CCAACATCCTTCCGATAGAGCTCA -CCAACATCCTTCCGATAGTCACGT -CCAACATCCTTCCGATAGCGTAGT -CCAACATCCTTCCGATAGGTCAGT -CCAACATCCTTCCGATAGGAAGGT -CCAACATCCTTCCGATAGAACCGT -CCAACATCCTTCCGATAGTTGTGC -CCAACATCCTTCCGATAGCTAAGC -CCAACATCCTTCCGATAGACTAGC -CCAACATCCTTCCGATAGAGATGC -CCAACATCCTTCCGATAGTGAAGG -CCAACATCCTTCCGATAGCAATGG -CCAACATCCTTCCGATAGATGAGG -CCAACATCCTTCCGATAGAATGGG -CCAACATCCTTCCGATAGTCCTGA -CCAACATCCTTCCGATAGTAGCGA -CCAACATCCTTCCGATAGCACAGA -CCAACATCCTTCCGATAGGCAAGA -CCAACATCCTTCCGATAGGGTTGA -CCAACATCCTTCCGATAGTCCGAT -CCAACATCCTTCCGATAGTGGCAT -CCAACATCCTTCCGATAGCGAGAT -CCAACATCCTTCCGATAGTACCAC -CCAACATCCTTCCGATAGCAGAAC -CCAACATCCTTCCGATAGGTCTAC -CCAACATCCTTCCGATAGACGTAC -CCAACATCCTTCCGATAGAGTGAC -CCAACATCCTTCCGATAGCTGTAG -CCAACATCCTTCCGATAGCCTAAG -CCAACATCCTTCCGATAGGTTCAG -CCAACATCCTTCCGATAGGCATAG -CCAACATCCTTCCGATAGGACAAG -CCAACATCCTTCCGATAGAAGCAG -CCAACATCCTTCCGATAGCGTCAA -CCAACATCCTTCCGATAGGCTGAA -CCAACATCCTTCCGATAGAGTACG -CCAACATCCTTCCGATAGATCCGA -CCAACATCCTTCCGATAGATGGGA -CCAACATCCTTCCGATAGGTGCAA -CCAACATCCTTCCGATAGGAGGAA -CCAACATCCTTCCGATAGCAGGTA -CCAACATCCTTCCGATAGGACTCT -CCAACATCCTTCCGATAGAGTCCT -CCAACATCCTTCCGATAGTAAGCC -CCAACATCCTTCCGATAGATAGCC -CCAACATCCTTCCGATAGTAACCG -CCAACATCCTTCCGATAGATGCCA -CCAACATCCTTCAGACACGGAAAC -CCAACATCCTTCAGACACAACACC -CCAACATCCTTCAGACACATCGAG -CCAACATCCTTCAGACACCTCCTT -CCAACATCCTTCAGACACCCTGTT -CCAACATCCTTCAGACACCGGTTT -CCAACATCCTTCAGACACGTGGTT -CCAACATCCTTCAGACACGCCTTT -CCAACATCCTTCAGACACGGTCTT -CCAACATCCTTCAGACACACGCTT -CCAACATCCTTCAGACACAGCGTT -CCAACATCCTTCAGACACTTCGTC -CCAACATCCTTCAGACACTCTCTC -CCAACATCCTTCAGACACTGGATC -CCAACATCCTTCAGACACCACTTC -CCAACATCCTTCAGACACGTACTC -CCAACATCCTTCAGACACGATGTC -CCAACATCCTTCAGACACACAGTC -CCAACATCCTTCAGACACTTGCTG -CCAACATCCTTCAGACACTCCATG -CCAACATCCTTCAGACACTGTGTG -CCAACATCCTTCAGACACCTAGTG -CCAACATCCTTCAGACACCATCTG -CCAACATCCTTCAGACACGAGTTG -CCAACATCCTTCAGACACAGACTG -CCAACATCCTTCAGACACTCGGTA -CCAACATCCTTCAGACACTGCCTA -CCAACATCCTTCAGACACCCACTA -CCAACATCCTTCAGACACGGAGTA -CCAACATCCTTCAGACACTCGTCT -CCAACATCCTTCAGACACTGCACT -CCAACATCCTTCAGACACCTGACT -CCAACATCCTTCAGACACCAACCT -CCAACATCCTTCAGACACGCTACT -CCAACATCCTTCAGACACGGATCT -CCAACATCCTTCAGACACAAGGCT -CCAACATCCTTCAGACACTCAACC -CCAACATCCTTCAGACACTGTTCC -CCAACATCCTTCAGACACATTCCC -CCAACATCCTTCAGACACTTCTCG -CCAACATCCTTCAGACACTAGACG -CCAACATCCTTCAGACACGTAACG -CCAACATCCTTCAGACACACTTCG -CCAACATCCTTCAGACACTACGCA -CCAACATCCTTCAGACACCTTGCA -CCAACATCCTTCAGACACCGAACA -CCAACATCCTTCAGACACCAGTCA -CCAACATCCTTCAGACACGATCCA -CCAACATCCTTCAGACACACGACA -CCAACATCCTTCAGACACAGCTCA -CCAACATCCTTCAGACACTCACGT -CCAACATCCTTCAGACACCGTAGT -CCAACATCCTTCAGACACGTCAGT -CCAACATCCTTCAGACACGAAGGT -CCAACATCCTTCAGACACAACCGT -CCAACATCCTTCAGACACTTGTGC -CCAACATCCTTCAGACACCTAAGC -CCAACATCCTTCAGACACACTAGC -CCAACATCCTTCAGACACAGATGC -CCAACATCCTTCAGACACTGAAGG -CCAACATCCTTCAGACACCAATGG -CCAACATCCTTCAGACACATGAGG -CCAACATCCTTCAGACACAATGGG -CCAACATCCTTCAGACACTCCTGA -CCAACATCCTTCAGACACTAGCGA -CCAACATCCTTCAGACACCACAGA -CCAACATCCTTCAGACACGCAAGA -CCAACATCCTTCAGACACGGTTGA -CCAACATCCTTCAGACACTCCGAT -CCAACATCCTTCAGACACTGGCAT -CCAACATCCTTCAGACACCGAGAT -CCAACATCCTTCAGACACTACCAC -CCAACATCCTTCAGACACCAGAAC -CCAACATCCTTCAGACACGTCTAC -CCAACATCCTTCAGACACACGTAC -CCAACATCCTTCAGACACAGTGAC -CCAACATCCTTCAGACACCTGTAG -CCAACATCCTTCAGACACCCTAAG -CCAACATCCTTCAGACACGTTCAG -CCAACATCCTTCAGACACGCATAG -CCAACATCCTTCAGACACGACAAG -CCAACATCCTTCAGACACAAGCAG -CCAACATCCTTCAGACACCGTCAA -CCAACATCCTTCAGACACGCTGAA -CCAACATCCTTCAGACACAGTACG -CCAACATCCTTCAGACACATCCGA -CCAACATCCTTCAGACACATGGGA -CCAACATCCTTCAGACACGTGCAA -CCAACATCCTTCAGACACGAGGAA -CCAACATCCTTCAGACACCAGGTA -CCAACATCCTTCAGACACGACTCT -CCAACATCCTTCAGACACAGTCCT -CCAACATCCTTCAGACACTAAGCC -CCAACATCCTTCAGACACATAGCC -CCAACATCCTTCAGACACTAACCG -CCAACATCCTTCAGACACATGCCA -CCAACATCCTTCAGAGCAGGAAAC -CCAACATCCTTCAGAGCAAACACC -CCAACATCCTTCAGAGCAATCGAG -CCAACATCCTTCAGAGCACTCCTT -CCAACATCCTTCAGAGCACCTGTT -CCAACATCCTTCAGAGCACGGTTT -CCAACATCCTTCAGAGCAGTGGTT -CCAACATCCTTCAGAGCAGCCTTT -CCAACATCCTTCAGAGCAGGTCTT -CCAACATCCTTCAGAGCAACGCTT -CCAACATCCTTCAGAGCAAGCGTT -CCAACATCCTTCAGAGCATTCGTC -CCAACATCCTTCAGAGCATCTCTC -CCAACATCCTTCAGAGCATGGATC -CCAACATCCTTCAGAGCACACTTC -CCAACATCCTTCAGAGCAGTACTC -CCAACATCCTTCAGAGCAGATGTC -CCAACATCCTTCAGAGCAACAGTC -CCAACATCCTTCAGAGCATTGCTG -CCAACATCCTTCAGAGCATCCATG -CCAACATCCTTCAGAGCATGTGTG -CCAACATCCTTCAGAGCACTAGTG -CCAACATCCTTCAGAGCACATCTG -CCAACATCCTTCAGAGCAGAGTTG -CCAACATCCTTCAGAGCAAGACTG -CCAACATCCTTCAGAGCATCGGTA -CCAACATCCTTCAGAGCATGCCTA -CCAACATCCTTCAGAGCACCACTA -CCAACATCCTTCAGAGCAGGAGTA -CCAACATCCTTCAGAGCATCGTCT -CCAACATCCTTCAGAGCATGCACT -CCAACATCCTTCAGAGCACTGACT -CCAACATCCTTCAGAGCACAACCT -CCAACATCCTTCAGAGCAGCTACT -CCAACATCCTTCAGAGCAGGATCT -CCAACATCCTTCAGAGCAAAGGCT -CCAACATCCTTCAGAGCATCAACC -CCAACATCCTTCAGAGCATGTTCC -CCAACATCCTTCAGAGCAATTCCC -CCAACATCCTTCAGAGCATTCTCG -CCAACATCCTTCAGAGCATAGACG -CCAACATCCTTCAGAGCAGTAACG -CCAACATCCTTCAGAGCAACTTCG -CCAACATCCTTCAGAGCATACGCA -CCAACATCCTTCAGAGCACTTGCA -CCAACATCCTTCAGAGCACGAACA -CCAACATCCTTCAGAGCACAGTCA -CCAACATCCTTCAGAGCAGATCCA -CCAACATCCTTCAGAGCAACGACA -CCAACATCCTTCAGAGCAAGCTCA -CCAACATCCTTCAGAGCATCACGT -CCAACATCCTTCAGAGCACGTAGT -CCAACATCCTTCAGAGCAGTCAGT -CCAACATCCTTCAGAGCAGAAGGT -CCAACATCCTTCAGAGCAAACCGT -CCAACATCCTTCAGAGCATTGTGC -CCAACATCCTTCAGAGCACTAAGC -CCAACATCCTTCAGAGCAACTAGC -CCAACATCCTTCAGAGCAAGATGC -CCAACATCCTTCAGAGCATGAAGG -CCAACATCCTTCAGAGCACAATGG -CCAACATCCTTCAGAGCAATGAGG -CCAACATCCTTCAGAGCAAATGGG -CCAACATCCTTCAGAGCATCCTGA -CCAACATCCTTCAGAGCATAGCGA -CCAACATCCTTCAGAGCACACAGA -CCAACATCCTTCAGAGCAGCAAGA -CCAACATCCTTCAGAGCAGGTTGA -CCAACATCCTTCAGAGCATCCGAT -CCAACATCCTTCAGAGCATGGCAT -CCAACATCCTTCAGAGCACGAGAT -CCAACATCCTTCAGAGCATACCAC -CCAACATCCTTCAGAGCACAGAAC -CCAACATCCTTCAGAGCAGTCTAC -CCAACATCCTTCAGAGCAACGTAC -CCAACATCCTTCAGAGCAAGTGAC -CCAACATCCTTCAGAGCACTGTAG -CCAACATCCTTCAGAGCACCTAAG -CCAACATCCTTCAGAGCAGTTCAG -CCAACATCCTTCAGAGCAGCATAG -CCAACATCCTTCAGAGCAGACAAG -CCAACATCCTTCAGAGCAAAGCAG -CCAACATCCTTCAGAGCACGTCAA -CCAACATCCTTCAGAGCAGCTGAA -CCAACATCCTTCAGAGCAAGTACG -CCAACATCCTTCAGAGCAATCCGA -CCAACATCCTTCAGAGCAATGGGA -CCAACATCCTTCAGAGCAGTGCAA -CCAACATCCTTCAGAGCAGAGGAA -CCAACATCCTTCAGAGCACAGGTA -CCAACATCCTTCAGAGCAGACTCT -CCAACATCCTTCAGAGCAAGTCCT -CCAACATCCTTCAGAGCATAAGCC -CCAACATCCTTCAGAGCAATAGCC -CCAACATCCTTCAGAGCATAACCG -CCAACATCCTTCAGAGCAATGCCA -CCAACATCCTTCTGAGGTGGAAAC -CCAACATCCTTCTGAGGTAACACC -CCAACATCCTTCTGAGGTATCGAG -CCAACATCCTTCTGAGGTCTCCTT -CCAACATCCTTCTGAGGTCCTGTT -CCAACATCCTTCTGAGGTCGGTTT -CCAACATCCTTCTGAGGTGTGGTT -CCAACATCCTTCTGAGGTGCCTTT -CCAACATCCTTCTGAGGTGGTCTT -CCAACATCCTTCTGAGGTACGCTT -CCAACATCCTTCTGAGGTAGCGTT -CCAACATCCTTCTGAGGTTTCGTC -CCAACATCCTTCTGAGGTTCTCTC -CCAACATCCTTCTGAGGTTGGATC -CCAACATCCTTCTGAGGTCACTTC -CCAACATCCTTCTGAGGTGTACTC -CCAACATCCTTCTGAGGTGATGTC -CCAACATCCTTCTGAGGTACAGTC -CCAACATCCTTCTGAGGTTTGCTG -CCAACATCCTTCTGAGGTTCCATG -CCAACATCCTTCTGAGGTTGTGTG -CCAACATCCTTCTGAGGTCTAGTG -CCAACATCCTTCTGAGGTCATCTG -CCAACATCCTTCTGAGGTGAGTTG -CCAACATCCTTCTGAGGTAGACTG -CCAACATCCTTCTGAGGTTCGGTA -CCAACATCCTTCTGAGGTTGCCTA -CCAACATCCTTCTGAGGTCCACTA -CCAACATCCTTCTGAGGTGGAGTA -CCAACATCCTTCTGAGGTTCGTCT -CCAACATCCTTCTGAGGTTGCACT -CCAACATCCTTCTGAGGTCTGACT -CCAACATCCTTCTGAGGTCAACCT -CCAACATCCTTCTGAGGTGCTACT -CCAACATCCTTCTGAGGTGGATCT -CCAACATCCTTCTGAGGTAAGGCT -CCAACATCCTTCTGAGGTTCAACC -CCAACATCCTTCTGAGGTTGTTCC -CCAACATCCTTCTGAGGTATTCCC -CCAACATCCTTCTGAGGTTTCTCG -CCAACATCCTTCTGAGGTTAGACG -CCAACATCCTTCTGAGGTGTAACG -CCAACATCCTTCTGAGGTACTTCG -CCAACATCCTTCTGAGGTTACGCA -CCAACATCCTTCTGAGGTCTTGCA -CCAACATCCTTCTGAGGTCGAACA -CCAACATCCTTCTGAGGTCAGTCA -CCAACATCCTTCTGAGGTGATCCA -CCAACATCCTTCTGAGGTACGACA -CCAACATCCTTCTGAGGTAGCTCA -CCAACATCCTTCTGAGGTTCACGT -CCAACATCCTTCTGAGGTCGTAGT -CCAACATCCTTCTGAGGTGTCAGT -CCAACATCCTTCTGAGGTGAAGGT -CCAACATCCTTCTGAGGTAACCGT -CCAACATCCTTCTGAGGTTTGTGC -CCAACATCCTTCTGAGGTCTAAGC -CCAACATCCTTCTGAGGTACTAGC -CCAACATCCTTCTGAGGTAGATGC -CCAACATCCTTCTGAGGTTGAAGG -CCAACATCCTTCTGAGGTCAATGG -CCAACATCCTTCTGAGGTATGAGG -CCAACATCCTTCTGAGGTAATGGG -CCAACATCCTTCTGAGGTTCCTGA -CCAACATCCTTCTGAGGTTAGCGA -CCAACATCCTTCTGAGGTCACAGA -CCAACATCCTTCTGAGGTGCAAGA -CCAACATCCTTCTGAGGTGGTTGA -CCAACATCCTTCTGAGGTTCCGAT -CCAACATCCTTCTGAGGTTGGCAT -CCAACATCCTTCTGAGGTCGAGAT -CCAACATCCTTCTGAGGTTACCAC -CCAACATCCTTCTGAGGTCAGAAC -CCAACATCCTTCTGAGGTGTCTAC -CCAACATCCTTCTGAGGTACGTAC -CCAACATCCTTCTGAGGTAGTGAC -CCAACATCCTTCTGAGGTCTGTAG -CCAACATCCTTCTGAGGTCCTAAG -CCAACATCCTTCTGAGGTGTTCAG -CCAACATCCTTCTGAGGTGCATAG -CCAACATCCTTCTGAGGTGACAAG -CCAACATCCTTCTGAGGTAAGCAG -CCAACATCCTTCTGAGGTCGTCAA -CCAACATCCTTCTGAGGTGCTGAA -CCAACATCCTTCTGAGGTAGTACG -CCAACATCCTTCTGAGGTATCCGA -CCAACATCCTTCTGAGGTATGGGA -CCAACATCCTTCTGAGGTGTGCAA -CCAACATCCTTCTGAGGTGAGGAA -CCAACATCCTTCTGAGGTCAGGTA -CCAACATCCTTCTGAGGTGACTCT -CCAACATCCTTCTGAGGTAGTCCT -CCAACATCCTTCTGAGGTTAAGCC -CCAACATCCTTCTGAGGTATAGCC -CCAACATCCTTCTGAGGTTAACCG -CCAACATCCTTCTGAGGTATGCCA -CCAACATCCTTCGATTCCGGAAAC -CCAACATCCTTCGATTCCAACACC -CCAACATCCTTCGATTCCATCGAG -CCAACATCCTTCGATTCCCTCCTT -CCAACATCCTTCGATTCCCCTGTT -CCAACATCCTTCGATTCCCGGTTT -CCAACATCCTTCGATTCCGTGGTT -CCAACATCCTTCGATTCCGCCTTT -CCAACATCCTTCGATTCCGGTCTT -CCAACATCCTTCGATTCCACGCTT -CCAACATCCTTCGATTCCAGCGTT -CCAACATCCTTCGATTCCTTCGTC -CCAACATCCTTCGATTCCTCTCTC -CCAACATCCTTCGATTCCTGGATC -CCAACATCCTTCGATTCCCACTTC -CCAACATCCTTCGATTCCGTACTC -CCAACATCCTTCGATTCCGATGTC -CCAACATCCTTCGATTCCACAGTC -CCAACATCCTTCGATTCCTTGCTG -CCAACATCCTTCGATTCCTCCATG -CCAACATCCTTCGATTCCTGTGTG -CCAACATCCTTCGATTCCCTAGTG -CCAACATCCTTCGATTCCCATCTG -CCAACATCCTTCGATTCCGAGTTG -CCAACATCCTTCGATTCCAGACTG -CCAACATCCTTCGATTCCTCGGTA -CCAACATCCTTCGATTCCTGCCTA -CCAACATCCTTCGATTCCCCACTA -CCAACATCCTTCGATTCCGGAGTA -CCAACATCCTTCGATTCCTCGTCT -CCAACATCCTTCGATTCCTGCACT -CCAACATCCTTCGATTCCCTGACT -CCAACATCCTTCGATTCCCAACCT -CCAACATCCTTCGATTCCGCTACT -CCAACATCCTTCGATTCCGGATCT -CCAACATCCTTCGATTCCAAGGCT -CCAACATCCTTCGATTCCTCAACC -CCAACATCCTTCGATTCCTGTTCC -CCAACATCCTTCGATTCCATTCCC -CCAACATCCTTCGATTCCTTCTCG -CCAACATCCTTCGATTCCTAGACG -CCAACATCCTTCGATTCCGTAACG -CCAACATCCTTCGATTCCACTTCG -CCAACATCCTTCGATTCCTACGCA -CCAACATCCTTCGATTCCCTTGCA -CCAACATCCTTCGATTCCCGAACA -CCAACATCCTTCGATTCCCAGTCA -CCAACATCCTTCGATTCCGATCCA -CCAACATCCTTCGATTCCACGACA -CCAACATCCTTCGATTCCAGCTCA -CCAACATCCTTCGATTCCTCACGT -CCAACATCCTTCGATTCCCGTAGT -CCAACATCCTTCGATTCCGTCAGT -CCAACATCCTTCGATTCCGAAGGT -CCAACATCCTTCGATTCCAACCGT -CCAACATCCTTCGATTCCTTGTGC -CCAACATCCTTCGATTCCCTAAGC -CCAACATCCTTCGATTCCACTAGC -CCAACATCCTTCGATTCCAGATGC -CCAACATCCTTCGATTCCTGAAGG -CCAACATCCTTCGATTCCCAATGG -CCAACATCCTTCGATTCCATGAGG -CCAACATCCTTCGATTCCAATGGG -CCAACATCCTTCGATTCCTCCTGA -CCAACATCCTTCGATTCCTAGCGA -CCAACATCCTTCGATTCCCACAGA -CCAACATCCTTCGATTCCGCAAGA -CCAACATCCTTCGATTCCGGTTGA -CCAACATCCTTCGATTCCTCCGAT -CCAACATCCTTCGATTCCTGGCAT -CCAACATCCTTCGATTCCCGAGAT -CCAACATCCTTCGATTCCTACCAC -CCAACATCCTTCGATTCCCAGAAC -CCAACATCCTTCGATTCCGTCTAC -CCAACATCCTTCGATTCCACGTAC -CCAACATCCTTCGATTCCAGTGAC -CCAACATCCTTCGATTCCCTGTAG -CCAACATCCTTCGATTCCCCTAAG -CCAACATCCTTCGATTCCGTTCAG -CCAACATCCTTCGATTCCGCATAG -CCAACATCCTTCGATTCCGACAAG -CCAACATCCTTCGATTCCAAGCAG -CCAACATCCTTCGATTCCCGTCAA -CCAACATCCTTCGATTCCGCTGAA -CCAACATCCTTCGATTCCAGTACG -CCAACATCCTTCGATTCCATCCGA -CCAACATCCTTCGATTCCATGGGA -CCAACATCCTTCGATTCCGTGCAA -CCAACATCCTTCGATTCCGAGGAA -CCAACATCCTTCGATTCCCAGGTA -CCAACATCCTTCGATTCCGACTCT -CCAACATCCTTCGATTCCAGTCCT -CCAACATCCTTCGATTCCTAAGCC -CCAACATCCTTCGATTCCATAGCC -CCAACATCCTTCGATTCCTAACCG -CCAACATCCTTCGATTCCATGCCA -CCAACATCCTTCCATTGGGGAAAC -CCAACATCCTTCCATTGGAACACC -CCAACATCCTTCCATTGGATCGAG -CCAACATCCTTCCATTGGCTCCTT -CCAACATCCTTCCATTGGCCTGTT -CCAACATCCTTCCATTGGCGGTTT -CCAACATCCTTCCATTGGGTGGTT -CCAACATCCTTCCATTGGGCCTTT -CCAACATCCTTCCATTGGGGTCTT -CCAACATCCTTCCATTGGACGCTT -CCAACATCCTTCCATTGGAGCGTT -CCAACATCCTTCCATTGGTTCGTC -CCAACATCCTTCCATTGGTCTCTC -CCAACATCCTTCCATTGGTGGATC -CCAACATCCTTCCATTGGCACTTC -CCAACATCCTTCCATTGGGTACTC -CCAACATCCTTCCATTGGGATGTC -CCAACATCCTTCCATTGGACAGTC -CCAACATCCTTCCATTGGTTGCTG -CCAACATCCTTCCATTGGTCCATG -CCAACATCCTTCCATTGGTGTGTG -CCAACATCCTTCCATTGGCTAGTG -CCAACATCCTTCCATTGGCATCTG -CCAACATCCTTCCATTGGGAGTTG -CCAACATCCTTCCATTGGAGACTG -CCAACATCCTTCCATTGGTCGGTA -CCAACATCCTTCCATTGGTGCCTA -CCAACATCCTTCCATTGGCCACTA -CCAACATCCTTCCATTGGGGAGTA -CCAACATCCTTCCATTGGTCGTCT -CCAACATCCTTCCATTGGTGCACT -CCAACATCCTTCCATTGGCTGACT -CCAACATCCTTCCATTGGCAACCT -CCAACATCCTTCCATTGGGCTACT -CCAACATCCTTCCATTGGGGATCT -CCAACATCCTTCCATTGGAAGGCT -CCAACATCCTTCCATTGGTCAACC -CCAACATCCTTCCATTGGTGTTCC -CCAACATCCTTCCATTGGATTCCC -CCAACATCCTTCCATTGGTTCTCG -CCAACATCCTTCCATTGGTAGACG -CCAACATCCTTCCATTGGGTAACG -CCAACATCCTTCCATTGGACTTCG -CCAACATCCTTCCATTGGTACGCA -CCAACATCCTTCCATTGGCTTGCA -CCAACATCCTTCCATTGGCGAACA -CCAACATCCTTCCATTGGCAGTCA -CCAACATCCTTCCATTGGGATCCA -CCAACATCCTTCCATTGGACGACA -CCAACATCCTTCCATTGGAGCTCA -CCAACATCCTTCCATTGGTCACGT -CCAACATCCTTCCATTGGCGTAGT -CCAACATCCTTCCATTGGGTCAGT -CCAACATCCTTCCATTGGGAAGGT -CCAACATCCTTCCATTGGAACCGT -CCAACATCCTTCCATTGGTTGTGC -CCAACATCCTTCCATTGGCTAAGC -CCAACATCCTTCCATTGGACTAGC -CCAACATCCTTCCATTGGAGATGC -CCAACATCCTTCCATTGGTGAAGG -CCAACATCCTTCCATTGGCAATGG -CCAACATCCTTCCATTGGATGAGG -CCAACATCCTTCCATTGGAATGGG -CCAACATCCTTCCATTGGTCCTGA -CCAACATCCTTCCATTGGTAGCGA -CCAACATCCTTCCATTGGCACAGA -CCAACATCCTTCCATTGGGCAAGA -CCAACATCCTTCCATTGGGGTTGA -CCAACATCCTTCCATTGGTCCGAT -CCAACATCCTTCCATTGGTGGCAT -CCAACATCCTTCCATTGGCGAGAT -CCAACATCCTTCCATTGGTACCAC -CCAACATCCTTCCATTGGCAGAAC -CCAACATCCTTCCATTGGGTCTAC -CCAACATCCTTCCATTGGACGTAC -CCAACATCCTTCCATTGGAGTGAC -CCAACATCCTTCCATTGGCTGTAG -CCAACATCCTTCCATTGGCCTAAG -CCAACATCCTTCCATTGGGTTCAG -CCAACATCCTTCCATTGGGCATAG -CCAACATCCTTCCATTGGGACAAG -CCAACATCCTTCCATTGGAAGCAG -CCAACATCCTTCCATTGGCGTCAA -CCAACATCCTTCCATTGGGCTGAA -CCAACATCCTTCCATTGGAGTACG -CCAACATCCTTCCATTGGATCCGA -CCAACATCCTTCCATTGGATGGGA -CCAACATCCTTCCATTGGGTGCAA -CCAACATCCTTCCATTGGGAGGAA -CCAACATCCTTCCATTGGCAGGTA -CCAACATCCTTCCATTGGGACTCT -CCAACATCCTTCCATTGGAGTCCT -CCAACATCCTTCCATTGGTAAGCC -CCAACATCCTTCCATTGGATAGCC -CCAACATCCTTCCATTGGTAACCG -CCAACATCCTTCCATTGGATGCCA -CCAACATCCTTCGATCGAGGAAAC -CCAACATCCTTCGATCGAAACACC -CCAACATCCTTCGATCGAATCGAG -CCAACATCCTTCGATCGACTCCTT -CCAACATCCTTCGATCGACCTGTT -CCAACATCCTTCGATCGACGGTTT -CCAACATCCTTCGATCGAGTGGTT -CCAACATCCTTCGATCGAGCCTTT -CCAACATCCTTCGATCGAGGTCTT -CCAACATCCTTCGATCGAACGCTT -CCAACATCCTTCGATCGAAGCGTT -CCAACATCCTTCGATCGATTCGTC -CCAACATCCTTCGATCGATCTCTC -CCAACATCCTTCGATCGATGGATC -CCAACATCCTTCGATCGACACTTC -CCAACATCCTTCGATCGAGTACTC -CCAACATCCTTCGATCGAGATGTC -CCAACATCCTTCGATCGAACAGTC -CCAACATCCTTCGATCGATTGCTG -CCAACATCCTTCGATCGATCCATG -CCAACATCCTTCGATCGATGTGTG -CCAACATCCTTCGATCGACTAGTG -CCAACATCCTTCGATCGACATCTG -CCAACATCCTTCGATCGAGAGTTG -CCAACATCCTTCGATCGAAGACTG -CCAACATCCTTCGATCGATCGGTA -CCAACATCCTTCGATCGATGCCTA -CCAACATCCTTCGATCGACCACTA -CCAACATCCTTCGATCGAGGAGTA -CCAACATCCTTCGATCGATCGTCT -CCAACATCCTTCGATCGATGCACT -CCAACATCCTTCGATCGACTGACT -CCAACATCCTTCGATCGACAACCT -CCAACATCCTTCGATCGAGCTACT -CCAACATCCTTCGATCGAGGATCT -CCAACATCCTTCGATCGAAAGGCT -CCAACATCCTTCGATCGATCAACC -CCAACATCCTTCGATCGATGTTCC -CCAACATCCTTCGATCGAATTCCC -CCAACATCCTTCGATCGATTCTCG -CCAACATCCTTCGATCGATAGACG -CCAACATCCTTCGATCGAGTAACG -CCAACATCCTTCGATCGAACTTCG -CCAACATCCTTCGATCGATACGCA -CCAACATCCTTCGATCGACTTGCA -CCAACATCCTTCGATCGACGAACA -CCAACATCCTTCGATCGACAGTCA -CCAACATCCTTCGATCGAGATCCA -CCAACATCCTTCGATCGAACGACA -CCAACATCCTTCGATCGAAGCTCA -CCAACATCCTTCGATCGATCACGT -CCAACATCCTTCGATCGACGTAGT -CCAACATCCTTCGATCGAGTCAGT -CCAACATCCTTCGATCGAGAAGGT -CCAACATCCTTCGATCGAAACCGT -CCAACATCCTTCGATCGATTGTGC -CCAACATCCTTCGATCGACTAAGC -CCAACATCCTTCGATCGAACTAGC -CCAACATCCTTCGATCGAAGATGC -CCAACATCCTTCGATCGATGAAGG -CCAACATCCTTCGATCGACAATGG -CCAACATCCTTCGATCGAATGAGG -CCAACATCCTTCGATCGAAATGGG -CCAACATCCTTCGATCGATCCTGA -CCAACATCCTTCGATCGATAGCGA -CCAACATCCTTCGATCGACACAGA -CCAACATCCTTCGATCGAGCAAGA -CCAACATCCTTCGATCGAGGTTGA -CCAACATCCTTCGATCGATCCGAT -CCAACATCCTTCGATCGATGGCAT -CCAACATCCTTCGATCGACGAGAT -CCAACATCCTTCGATCGATACCAC -CCAACATCCTTCGATCGACAGAAC -CCAACATCCTTCGATCGAGTCTAC -CCAACATCCTTCGATCGAACGTAC -CCAACATCCTTCGATCGAAGTGAC -CCAACATCCTTCGATCGACTGTAG -CCAACATCCTTCGATCGACCTAAG -CCAACATCCTTCGATCGAGTTCAG -CCAACATCCTTCGATCGAGCATAG -CCAACATCCTTCGATCGAGACAAG -CCAACATCCTTCGATCGAAAGCAG -CCAACATCCTTCGATCGACGTCAA -CCAACATCCTTCGATCGAGCTGAA -CCAACATCCTTCGATCGAAGTACG -CCAACATCCTTCGATCGAATCCGA -CCAACATCCTTCGATCGAATGGGA -CCAACATCCTTCGATCGAGTGCAA -CCAACATCCTTCGATCGAGAGGAA -CCAACATCCTTCGATCGACAGGTA -CCAACATCCTTCGATCGAGACTCT -CCAACATCCTTCGATCGAAGTCCT -CCAACATCCTTCGATCGATAAGCC -CCAACATCCTTCGATCGAATAGCC -CCAACATCCTTCGATCGATAACCG -CCAACATCCTTCGATCGAATGCCA -CCAACATCCTTCCACTACGGAAAC -CCAACATCCTTCCACTACAACACC -CCAACATCCTTCCACTACATCGAG -CCAACATCCTTCCACTACCTCCTT -CCAACATCCTTCCACTACCCTGTT -CCAACATCCTTCCACTACCGGTTT -CCAACATCCTTCCACTACGTGGTT -CCAACATCCTTCCACTACGCCTTT -CCAACATCCTTCCACTACGGTCTT -CCAACATCCTTCCACTACACGCTT -CCAACATCCTTCCACTACAGCGTT -CCAACATCCTTCCACTACTTCGTC -CCAACATCCTTCCACTACTCTCTC -CCAACATCCTTCCACTACTGGATC -CCAACATCCTTCCACTACCACTTC -CCAACATCCTTCCACTACGTACTC -CCAACATCCTTCCACTACGATGTC -CCAACATCCTTCCACTACACAGTC -CCAACATCCTTCCACTACTTGCTG -CCAACATCCTTCCACTACTCCATG -CCAACATCCTTCCACTACTGTGTG -CCAACATCCTTCCACTACCTAGTG -CCAACATCCTTCCACTACCATCTG -CCAACATCCTTCCACTACGAGTTG -CCAACATCCTTCCACTACAGACTG -CCAACATCCTTCCACTACTCGGTA -CCAACATCCTTCCACTACTGCCTA -CCAACATCCTTCCACTACCCACTA -CCAACATCCTTCCACTACGGAGTA -CCAACATCCTTCCACTACTCGTCT -CCAACATCCTTCCACTACTGCACT -CCAACATCCTTCCACTACCTGACT -CCAACATCCTTCCACTACCAACCT -CCAACATCCTTCCACTACGCTACT -CCAACATCCTTCCACTACGGATCT -CCAACATCCTTCCACTACAAGGCT -CCAACATCCTTCCACTACTCAACC -CCAACATCCTTCCACTACTGTTCC -CCAACATCCTTCCACTACATTCCC -CCAACATCCTTCCACTACTTCTCG -CCAACATCCTTCCACTACTAGACG -CCAACATCCTTCCACTACGTAACG -CCAACATCCTTCCACTACACTTCG -CCAACATCCTTCCACTACTACGCA -CCAACATCCTTCCACTACCTTGCA -CCAACATCCTTCCACTACCGAACA -CCAACATCCTTCCACTACCAGTCA -CCAACATCCTTCCACTACGATCCA -CCAACATCCTTCCACTACACGACA -CCAACATCCTTCCACTACAGCTCA -CCAACATCCTTCCACTACTCACGT -CCAACATCCTTCCACTACCGTAGT -CCAACATCCTTCCACTACGTCAGT -CCAACATCCTTCCACTACGAAGGT -CCAACATCCTTCCACTACAACCGT -CCAACATCCTTCCACTACTTGTGC -CCAACATCCTTCCACTACCTAAGC -CCAACATCCTTCCACTACACTAGC -CCAACATCCTTCCACTACAGATGC -CCAACATCCTTCCACTACTGAAGG -CCAACATCCTTCCACTACCAATGG -CCAACATCCTTCCACTACATGAGG -CCAACATCCTTCCACTACAATGGG -CCAACATCCTTCCACTACTCCTGA -CCAACATCCTTCCACTACTAGCGA -CCAACATCCTTCCACTACCACAGA -CCAACATCCTTCCACTACGCAAGA -CCAACATCCTTCCACTACGGTTGA -CCAACATCCTTCCACTACTCCGAT -CCAACATCCTTCCACTACTGGCAT -CCAACATCCTTCCACTACCGAGAT -CCAACATCCTTCCACTACTACCAC -CCAACATCCTTCCACTACCAGAAC -CCAACATCCTTCCACTACGTCTAC -CCAACATCCTTCCACTACACGTAC -CCAACATCCTTCCACTACAGTGAC -CCAACATCCTTCCACTACCTGTAG -CCAACATCCTTCCACTACCCTAAG -CCAACATCCTTCCACTACGTTCAG -CCAACATCCTTCCACTACGCATAG -CCAACATCCTTCCACTACGACAAG -CCAACATCCTTCCACTACAAGCAG -CCAACATCCTTCCACTACCGTCAA -CCAACATCCTTCCACTACGCTGAA -CCAACATCCTTCCACTACAGTACG -CCAACATCCTTCCACTACATCCGA -CCAACATCCTTCCACTACATGGGA -CCAACATCCTTCCACTACGTGCAA -CCAACATCCTTCCACTACGAGGAA -CCAACATCCTTCCACTACCAGGTA -CCAACATCCTTCCACTACGACTCT -CCAACATCCTTCCACTACAGTCCT -CCAACATCCTTCCACTACTAAGCC -CCAACATCCTTCCACTACATAGCC -CCAACATCCTTCCACTACTAACCG -CCAACATCCTTCCACTACATGCCA -CCAACATCCTTCAACCAGGGAAAC -CCAACATCCTTCAACCAGAACACC -CCAACATCCTTCAACCAGATCGAG -CCAACATCCTTCAACCAGCTCCTT -CCAACATCCTTCAACCAGCCTGTT -CCAACATCCTTCAACCAGCGGTTT -CCAACATCCTTCAACCAGGTGGTT -CCAACATCCTTCAACCAGGCCTTT -CCAACATCCTTCAACCAGGGTCTT -CCAACATCCTTCAACCAGACGCTT -CCAACATCCTTCAACCAGAGCGTT -CCAACATCCTTCAACCAGTTCGTC -CCAACATCCTTCAACCAGTCTCTC -CCAACATCCTTCAACCAGTGGATC -CCAACATCCTTCAACCAGCACTTC -CCAACATCCTTCAACCAGGTACTC -CCAACATCCTTCAACCAGGATGTC -CCAACATCCTTCAACCAGACAGTC -CCAACATCCTTCAACCAGTTGCTG -CCAACATCCTTCAACCAGTCCATG -CCAACATCCTTCAACCAGTGTGTG -CCAACATCCTTCAACCAGCTAGTG -CCAACATCCTTCAACCAGCATCTG -CCAACATCCTTCAACCAGGAGTTG -CCAACATCCTTCAACCAGAGACTG -CCAACATCCTTCAACCAGTCGGTA -CCAACATCCTTCAACCAGTGCCTA -CCAACATCCTTCAACCAGCCACTA -CCAACATCCTTCAACCAGGGAGTA -CCAACATCCTTCAACCAGTCGTCT -CCAACATCCTTCAACCAGTGCACT -CCAACATCCTTCAACCAGCTGACT -CCAACATCCTTCAACCAGCAACCT -CCAACATCCTTCAACCAGGCTACT -CCAACATCCTTCAACCAGGGATCT -CCAACATCCTTCAACCAGAAGGCT -CCAACATCCTTCAACCAGTCAACC -CCAACATCCTTCAACCAGTGTTCC -CCAACATCCTTCAACCAGATTCCC -CCAACATCCTTCAACCAGTTCTCG -CCAACATCCTTCAACCAGTAGACG -CCAACATCCTTCAACCAGGTAACG -CCAACATCCTTCAACCAGACTTCG -CCAACATCCTTCAACCAGTACGCA -CCAACATCCTTCAACCAGCTTGCA -CCAACATCCTTCAACCAGCGAACA -CCAACATCCTTCAACCAGCAGTCA -CCAACATCCTTCAACCAGGATCCA -CCAACATCCTTCAACCAGACGACA -CCAACATCCTTCAACCAGAGCTCA -CCAACATCCTTCAACCAGTCACGT -CCAACATCCTTCAACCAGCGTAGT -CCAACATCCTTCAACCAGGTCAGT -CCAACATCCTTCAACCAGGAAGGT -CCAACATCCTTCAACCAGAACCGT -CCAACATCCTTCAACCAGTTGTGC -CCAACATCCTTCAACCAGCTAAGC -CCAACATCCTTCAACCAGACTAGC -CCAACATCCTTCAACCAGAGATGC -CCAACATCCTTCAACCAGTGAAGG -CCAACATCCTTCAACCAGCAATGG -CCAACATCCTTCAACCAGATGAGG -CCAACATCCTTCAACCAGAATGGG -CCAACATCCTTCAACCAGTCCTGA -CCAACATCCTTCAACCAGTAGCGA -CCAACATCCTTCAACCAGCACAGA -CCAACATCCTTCAACCAGGCAAGA -CCAACATCCTTCAACCAGGGTTGA -CCAACATCCTTCAACCAGTCCGAT -CCAACATCCTTCAACCAGTGGCAT -CCAACATCCTTCAACCAGCGAGAT -CCAACATCCTTCAACCAGTACCAC -CCAACATCCTTCAACCAGCAGAAC -CCAACATCCTTCAACCAGGTCTAC -CCAACATCCTTCAACCAGACGTAC -CCAACATCCTTCAACCAGAGTGAC -CCAACATCCTTCAACCAGCTGTAG -CCAACATCCTTCAACCAGCCTAAG -CCAACATCCTTCAACCAGGTTCAG -CCAACATCCTTCAACCAGGCATAG -CCAACATCCTTCAACCAGGACAAG -CCAACATCCTTCAACCAGAAGCAG -CCAACATCCTTCAACCAGCGTCAA -CCAACATCCTTCAACCAGGCTGAA -CCAACATCCTTCAACCAGAGTACG -CCAACATCCTTCAACCAGATCCGA -CCAACATCCTTCAACCAGATGGGA -CCAACATCCTTCAACCAGGTGCAA -CCAACATCCTTCAACCAGGAGGAA -CCAACATCCTTCAACCAGCAGGTA -CCAACATCCTTCAACCAGGACTCT -CCAACATCCTTCAACCAGAGTCCT -CCAACATCCTTCAACCAGTAAGCC -CCAACATCCTTCAACCAGATAGCC -CCAACATCCTTCAACCAGTAACCG -CCAACATCCTTCAACCAGATGCCA -CCAACATCCTTCTACGTCGGAAAC -CCAACATCCTTCTACGTCAACACC -CCAACATCCTTCTACGTCATCGAG -CCAACATCCTTCTACGTCCTCCTT -CCAACATCCTTCTACGTCCCTGTT -CCAACATCCTTCTACGTCCGGTTT -CCAACATCCTTCTACGTCGTGGTT -CCAACATCCTTCTACGTCGCCTTT -CCAACATCCTTCTACGTCGGTCTT -CCAACATCCTTCTACGTCACGCTT -CCAACATCCTTCTACGTCAGCGTT -CCAACATCCTTCTACGTCTTCGTC -CCAACATCCTTCTACGTCTCTCTC -CCAACATCCTTCTACGTCTGGATC -CCAACATCCTTCTACGTCCACTTC -CCAACATCCTTCTACGTCGTACTC -CCAACATCCTTCTACGTCGATGTC -CCAACATCCTTCTACGTCACAGTC -CCAACATCCTTCTACGTCTTGCTG -CCAACATCCTTCTACGTCTCCATG -CCAACATCCTTCTACGTCTGTGTG -CCAACATCCTTCTACGTCCTAGTG -CCAACATCCTTCTACGTCCATCTG -CCAACATCCTTCTACGTCGAGTTG -CCAACATCCTTCTACGTCAGACTG -CCAACATCCTTCTACGTCTCGGTA -CCAACATCCTTCTACGTCTGCCTA -CCAACATCCTTCTACGTCCCACTA -CCAACATCCTTCTACGTCGGAGTA -CCAACATCCTTCTACGTCTCGTCT -CCAACATCCTTCTACGTCTGCACT -CCAACATCCTTCTACGTCCTGACT -CCAACATCCTTCTACGTCCAACCT -CCAACATCCTTCTACGTCGCTACT -CCAACATCCTTCTACGTCGGATCT -CCAACATCCTTCTACGTCAAGGCT -CCAACATCCTTCTACGTCTCAACC -CCAACATCCTTCTACGTCTGTTCC -CCAACATCCTTCTACGTCATTCCC -CCAACATCCTTCTACGTCTTCTCG -CCAACATCCTTCTACGTCTAGACG -CCAACATCCTTCTACGTCGTAACG -CCAACATCCTTCTACGTCACTTCG -CCAACATCCTTCTACGTCTACGCA -CCAACATCCTTCTACGTCCTTGCA -CCAACATCCTTCTACGTCCGAACA -CCAACATCCTTCTACGTCCAGTCA -CCAACATCCTTCTACGTCGATCCA -CCAACATCCTTCTACGTCACGACA -CCAACATCCTTCTACGTCAGCTCA -CCAACATCCTTCTACGTCTCACGT -CCAACATCCTTCTACGTCCGTAGT -CCAACATCCTTCTACGTCGTCAGT -CCAACATCCTTCTACGTCGAAGGT -CCAACATCCTTCTACGTCAACCGT -CCAACATCCTTCTACGTCTTGTGC -CCAACATCCTTCTACGTCCTAAGC -CCAACATCCTTCTACGTCACTAGC -CCAACATCCTTCTACGTCAGATGC -CCAACATCCTTCTACGTCTGAAGG -CCAACATCCTTCTACGTCCAATGG -CCAACATCCTTCTACGTCATGAGG -CCAACATCCTTCTACGTCAATGGG -CCAACATCCTTCTACGTCTCCTGA -CCAACATCCTTCTACGTCTAGCGA -CCAACATCCTTCTACGTCCACAGA -CCAACATCCTTCTACGTCGCAAGA -CCAACATCCTTCTACGTCGGTTGA -CCAACATCCTTCTACGTCTCCGAT -CCAACATCCTTCTACGTCTGGCAT -CCAACATCCTTCTACGTCCGAGAT -CCAACATCCTTCTACGTCTACCAC -CCAACATCCTTCTACGTCCAGAAC -CCAACATCCTTCTACGTCGTCTAC -CCAACATCCTTCTACGTCACGTAC -CCAACATCCTTCTACGTCAGTGAC -CCAACATCCTTCTACGTCCTGTAG -CCAACATCCTTCTACGTCCCTAAG -CCAACATCCTTCTACGTCGTTCAG -CCAACATCCTTCTACGTCGCATAG -CCAACATCCTTCTACGTCGACAAG -CCAACATCCTTCTACGTCAAGCAG -CCAACATCCTTCTACGTCCGTCAA -CCAACATCCTTCTACGTCGCTGAA -CCAACATCCTTCTACGTCAGTACG -CCAACATCCTTCTACGTCATCCGA -CCAACATCCTTCTACGTCATGGGA -CCAACATCCTTCTACGTCGTGCAA -CCAACATCCTTCTACGTCGAGGAA -CCAACATCCTTCTACGTCCAGGTA -CCAACATCCTTCTACGTCGACTCT -CCAACATCCTTCTACGTCAGTCCT -CCAACATCCTTCTACGTCTAAGCC -CCAACATCCTTCTACGTCATAGCC -CCAACATCCTTCTACGTCTAACCG -CCAACATCCTTCTACGTCATGCCA -CCAACATCCTTCTACACGGGAAAC -CCAACATCCTTCTACACGAACACC -CCAACATCCTTCTACACGATCGAG -CCAACATCCTTCTACACGCTCCTT -CCAACATCCTTCTACACGCCTGTT -CCAACATCCTTCTACACGCGGTTT -CCAACATCCTTCTACACGGTGGTT -CCAACATCCTTCTACACGGCCTTT -CCAACATCCTTCTACACGGGTCTT -CCAACATCCTTCTACACGACGCTT -CCAACATCCTTCTACACGAGCGTT -CCAACATCCTTCTACACGTTCGTC -CCAACATCCTTCTACACGTCTCTC -CCAACATCCTTCTACACGTGGATC -CCAACATCCTTCTACACGCACTTC -CCAACATCCTTCTACACGGTACTC -CCAACATCCTTCTACACGGATGTC -CCAACATCCTTCTACACGACAGTC -CCAACATCCTTCTACACGTTGCTG -CCAACATCCTTCTACACGTCCATG -CCAACATCCTTCTACACGTGTGTG -CCAACATCCTTCTACACGCTAGTG -CCAACATCCTTCTACACGCATCTG -CCAACATCCTTCTACACGGAGTTG -CCAACATCCTTCTACACGAGACTG -CCAACATCCTTCTACACGTCGGTA -CCAACATCCTTCTACACGTGCCTA -CCAACATCCTTCTACACGCCACTA -CCAACATCCTTCTACACGGGAGTA -CCAACATCCTTCTACACGTCGTCT -CCAACATCCTTCTACACGTGCACT -CCAACATCCTTCTACACGCTGACT -CCAACATCCTTCTACACGCAACCT -CCAACATCCTTCTACACGGCTACT -CCAACATCCTTCTACACGGGATCT -CCAACATCCTTCTACACGAAGGCT -CCAACATCCTTCTACACGTCAACC -CCAACATCCTTCTACACGTGTTCC -CCAACATCCTTCTACACGATTCCC -CCAACATCCTTCTACACGTTCTCG -CCAACATCCTTCTACACGTAGACG -CCAACATCCTTCTACACGGTAACG -CCAACATCCTTCTACACGACTTCG -CCAACATCCTTCTACACGTACGCA -CCAACATCCTTCTACACGCTTGCA -CCAACATCCTTCTACACGCGAACA -CCAACATCCTTCTACACGCAGTCA -CCAACATCCTTCTACACGGATCCA -CCAACATCCTTCTACACGACGACA -CCAACATCCTTCTACACGAGCTCA -CCAACATCCTTCTACACGTCACGT -CCAACATCCTTCTACACGCGTAGT -CCAACATCCTTCTACACGGTCAGT -CCAACATCCTTCTACACGGAAGGT -CCAACATCCTTCTACACGAACCGT -CCAACATCCTTCTACACGTTGTGC -CCAACATCCTTCTACACGCTAAGC -CCAACATCCTTCTACACGACTAGC -CCAACATCCTTCTACACGAGATGC -CCAACATCCTTCTACACGTGAAGG -CCAACATCCTTCTACACGCAATGG -CCAACATCCTTCTACACGATGAGG -CCAACATCCTTCTACACGAATGGG -CCAACATCCTTCTACACGTCCTGA -CCAACATCCTTCTACACGTAGCGA -CCAACATCCTTCTACACGCACAGA -CCAACATCCTTCTACACGGCAAGA -CCAACATCCTTCTACACGGGTTGA -CCAACATCCTTCTACACGTCCGAT -CCAACATCCTTCTACACGTGGCAT -CCAACATCCTTCTACACGCGAGAT -CCAACATCCTTCTACACGTACCAC -CCAACATCCTTCTACACGCAGAAC -CCAACATCCTTCTACACGGTCTAC -CCAACATCCTTCTACACGACGTAC -CCAACATCCTTCTACACGAGTGAC -CCAACATCCTTCTACACGCTGTAG -CCAACATCCTTCTACACGCCTAAG -CCAACATCCTTCTACACGGTTCAG -CCAACATCCTTCTACACGGCATAG -CCAACATCCTTCTACACGGACAAG -CCAACATCCTTCTACACGAAGCAG -CCAACATCCTTCTACACGCGTCAA -CCAACATCCTTCTACACGGCTGAA -CCAACATCCTTCTACACGAGTACG -CCAACATCCTTCTACACGATCCGA -CCAACATCCTTCTACACGATGGGA -CCAACATCCTTCTACACGGTGCAA -CCAACATCCTTCTACACGGAGGAA -CCAACATCCTTCTACACGCAGGTA -CCAACATCCTTCTACACGGACTCT -CCAACATCCTTCTACACGAGTCCT -CCAACATCCTTCTACACGTAAGCC -CCAACATCCTTCTACACGATAGCC -CCAACATCCTTCTACACGTAACCG -CCAACATCCTTCTACACGATGCCA -CCAACATCCTTCGACAGTGGAAAC -CCAACATCCTTCGACAGTAACACC -CCAACATCCTTCGACAGTATCGAG -CCAACATCCTTCGACAGTCTCCTT -CCAACATCCTTCGACAGTCCTGTT -CCAACATCCTTCGACAGTCGGTTT -CCAACATCCTTCGACAGTGTGGTT -CCAACATCCTTCGACAGTGCCTTT -CCAACATCCTTCGACAGTGGTCTT -CCAACATCCTTCGACAGTACGCTT -CCAACATCCTTCGACAGTAGCGTT -CCAACATCCTTCGACAGTTTCGTC -CCAACATCCTTCGACAGTTCTCTC -CCAACATCCTTCGACAGTTGGATC -CCAACATCCTTCGACAGTCACTTC -CCAACATCCTTCGACAGTGTACTC -CCAACATCCTTCGACAGTGATGTC -CCAACATCCTTCGACAGTACAGTC -CCAACATCCTTCGACAGTTTGCTG -CCAACATCCTTCGACAGTTCCATG -CCAACATCCTTCGACAGTTGTGTG -CCAACATCCTTCGACAGTCTAGTG -CCAACATCCTTCGACAGTCATCTG -CCAACATCCTTCGACAGTGAGTTG -CCAACATCCTTCGACAGTAGACTG -CCAACATCCTTCGACAGTTCGGTA -CCAACATCCTTCGACAGTTGCCTA -CCAACATCCTTCGACAGTCCACTA -CCAACATCCTTCGACAGTGGAGTA -CCAACATCCTTCGACAGTTCGTCT -CCAACATCCTTCGACAGTTGCACT -CCAACATCCTTCGACAGTCTGACT -CCAACATCCTTCGACAGTCAACCT -CCAACATCCTTCGACAGTGCTACT -CCAACATCCTTCGACAGTGGATCT -CCAACATCCTTCGACAGTAAGGCT -CCAACATCCTTCGACAGTTCAACC -CCAACATCCTTCGACAGTTGTTCC -CCAACATCCTTCGACAGTATTCCC -CCAACATCCTTCGACAGTTTCTCG -CCAACATCCTTCGACAGTTAGACG -CCAACATCCTTCGACAGTGTAACG -CCAACATCCTTCGACAGTACTTCG -CCAACATCCTTCGACAGTTACGCA -CCAACATCCTTCGACAGTCTTGCA -CCAACATCCTTCGACAGTCGAACA -CCAACATCCTTCGACAGTCAGTCA -CCAACATCCTTCGACAGTGATCCA -CCAACATCCTTCGACAGTACGACA -CCAACATCCTTCGACAGTAGCTCA -CCAACATCCTTCGACAGTTCACGT -CCAACATCCTTCGACAGTCGTAGT -CCAACATCCTTCGACAGTGTCAGT -CCAACATCCTTCGACAGTGAAGGT -CCAACATCCTTCGACAGTAACCGT -CCAACATCCTTCGACAGTTTGTGC -CCAACATCCTTCGACAGTCTAAGC -CCAACATCCTTCGACAGTACTAGC -CCAACATCCTTCGACAGTAGATGC -CCAACATCCTTCGACAGTTGAAGG -CCAACATCCTTCGACAGTCAATGG -CCAACATCCTTCGACAGTATGAGG -CCAACATCCTTCGACAGTAATGGG -CCAACATCCTTCGACAGTTCCTGA -CCAACATCCTTCGACAGTTAGCGA -CCAACATCCTTCGACAGTCACAGA -CCAACATCCTTCGACAGTGCAAGA -CCAACATCCTTCGACAGTGGTTGA -CCAACATCCTTCGACAGTTCCGAT -CCAACATCCTTCGACAGTTGGCAT -CCAACATCCTTCGACAGTCGAGAT -CCAACATCCTTCGACAGTTACCAC -CCAACATCCTTCGACAGTCAGAAC -CCAACATCCTTCGACAGTGTCTAC -CCAACATCCTTCGACAGTACGTAC -CCAACATCCTTCGACAGTAGTGAC -CCAACATCCTTCGACAGTCTGTAG -CCAACATCCTTCGACAGTCCTAAG -CCAACATCCTTCGACAGTGTTCAG -CCAACATCCTTCGACAGTGCATAG -CCAACATCCTTCGACAGTGACAAG -CCAACATCCTTCGACAGTAAGCAG -CCAACATCCTTCGACAGTCGTCAA -CCAACATCCTTCGACAGTGCTGAA -CCAACATCCTTCGACAGTAGTACG -CCAACATCCTTCGACAGTATCCGA -CCAACATCCTTCGACAGTATGGGA -CCAACATCCTTCGACAGTGTGCAA -CCAACATCCTTCGACAGTGAGGAA -CCAACATCCTTCGACAGTCAGGTA -CCAACATCCTTCGACAGTGACTCT -CCAACATCCTTCGACAGTAGTCCT -CCAACATCCTTCGACAGTTAAGCC -CCAACATCCTTCGACAGTATAGCC -CCAACATCCTTCGACAGTTAACCG -CCAACATCCTTCGACAGTATGCCA -CCAACATCCTTCTAGCTGGGAAAC -CCAACATCCTTCTAGCTGAACACC -CCAACATCCTTCTAGCTGATCGAG -CCAACATCCTTCTAGCTGCTCCTT -CCAACATCCTTCTAGCTGCCTGTT -CCAACATCCTTCTAGCTGCGGTTT -CCAACATCCTTCTAGCTGGTGGTT -CCAACATCCTTCTAGCTGGCCTTT -CCAACATCCTTCTAGCTGGGTCTT -CCAACATCCTTCTAGCTGACGCTT -CCAACATCCTTCTAGCTGAGCGTT -CCAACATCCTTCTAGCTGTTCGTC -CCAACATCCTTCTAGCTGTCTCTC -CCAACATCCTTCTAGCTGTGGATC -CCAACATCCTTCTAGCTGCACTTC -CCAACATCCTTCTAGCTGGTACTC -CCAACATCCTTCTAGCTGGATGTC -CCAACATCCTTCTAGCTGACAGTC -CCAACATCCTTCTAGCTGTTGCTG -CCAACATCCTTCTAGCTGTCCATG -CCAACATCCTTCTAGCTGTGTGTG -CCAACATCCTTCTAGCTGCTAGTG -CCAACATCCTTCTAGCTGCATCTG -CCAACATCCTTCTAGCTGGAGTTG -CCAACATCCTTCTAGCTGAGACTG -CCAACATCCTTCTAGCTGTCGGTA -CCAACATCCTTCTAGCTGTGCCTA -CCAACATCCTTCTAGCTGCCACTA -CCAACATCCTTCTAGCTGGGAGTA -CCAACATCCTTCTAGCTGTCGTCT -CCAACATCCTTCTAGCTGTGCACT -CCAACATCCTTCTAGCTGCTGACT -CCAACATCCTTCTAGCTGCAACCT -CCAACATCCTTCTAGCTGGCTACT -CCAACATCCTTCTAGCTGGGATCT -CCAACATCCTTCTAGCTGAAGGCT -CCAACATCCTTCTAGCTGTCAACC -CCAACATCCTTCTAGCTGTGTTCC -CCAACATCCTTCTAGCTGATTCCC -CCAACATCCTTCTAGCTGTTCTCG -CCAACATCCTTCTAGCTGTAGACG -CCAACATCCTTCTAGCTGGTAACG -CCAACATCCTTCTAGCTGACTTCG -CCAACATCCTTCTAGCTGTACGCA -CCAACATCCTTCTAGCTGCTTGCA -CCAACATCCTTCTAGCTGCGAACA -CCAACATCCTTCTAGCTGCAGTCA -CCAACATCCTTCTAGCTGGATCCA -CCAACATCCTTCTAGCTGACGACA -CCAACATCCTTCTAGCTGAGCTCA -CCAACATCCTTCTAGCTGTCACGT -CCAACATCCTTCTAGCTGCGTAGT -CCAACATCCTTCTAGCTGGTCAGT -CCAACATCCTTCTAGCTGGAAGGT -CCAACATCCTTCTAGCTGAACCGT -CCAACATCCTTCTAGCTGTTGTGC -CCAACATCCTTCTAGCTGCTAAGC -CCAACATCCTTCTAGCTGACTAGC -CCAACATCCTTCTAGCTGAGATGC -CCAACATCCTTCTAGCTGTGAAGG -CCAACATCCTTCTAGCTGCAATGG -CCAACATCCTTCTAGCTGATGAGG -CCAACATCCTTCTAGCTGAATGGG -CCAACATCCTTCTAGCTGTCCTGA -CCAACATCCTTCTAGCTGTAGCGA -CCAACATCCTTCTAGCTGCACAGA -CCAACATCCTTCTAGCTGGCAAGA -CCAACATCCTTCTAGCTGGGTTGA -CCAACATCCTTCTAGCTGTCCGAT -CCAACATCCTTCTAGCTGTGGCAT -CCAACATCCTTCTAGCTGCGAGAT -CCAACATCCTTCTAGCTGTACCAC -CCAACATCCTTCTAGCTGCAGAAC -CCAACATCCTTCTAGCTGGTCTAC -CCAACATCCTTCTAGCTGACGTAC -CCAACATCCTTCTAGCTGAGTGAC -CCAACATCCTTCTAGCTGCTGTAG -CCAACATCCTTCTAGCTGCCTAAG -CCAACATCCTTCTAGCTGGTTCAG -CCAACATCCTTCTAGCTGGCATAG -CCAACATCCTTCTAGCTGGACAAG -CCAACATCCTTCTAGCTGAAGCAG -CCAACATCCTTCTAGCTGCGTCAA -CCAACATCCTTCTAGCTGGCTGAA -CCAACATCCTTCTAGCTGAGTACG -CCAACATCCTTCTAGCTGATCCGA -CCAACATCCTTCTAGCTGATGGGA -CCAACATCCTTCTAGCTGGTGCAA -CCAACATCCTTCTAGCTGGAGGAA -CCAACATCCTTCTAGCTGCAGGTA -CCAACATCCTTCTAGCTGGACTCT -CCAACATCCTTCTAGCTGAGTCCT -CCAACATCCTTCTAGCTGTAAGCC -CCAACATCCTTCTAGCTGATAGCC -CCAACATCCTTCTAGCTGTAACCG -CCAACATCCTTCTAGCTGATGCCA -CCAACATCCTTCAAGCCTGGAAAC -CCAACATCCTTCAAGCCTAACACC -CCAACATCCTTCAAGCCTATCGAG -CCAACATCCTTCAAGCCTCTCCTT -CCAACATCCTTCAAGCCTCCTGTT -CCAACATCCTTCAAGCCTCGGTTT -CCAACATCCTTCAAGCCTGTGGTT -CCAACATCCTTCAAGCCTGCCTTT -CCAACATCCTTCAAGCCTGGTCTT -CCAACATCCTTCAAGCCTACGCTT -CCAACATCCTTCAAGCCTAGCGTT -CCAACATCCTTCAAGCCTTTCGTC -CCAACATCCTTCAAGCCTTCTCTC -CCAACATCCTTCAAGCCTTGGATC -CCAACATCCTTCAAGCCTCACTTC -CCAACATCCTTCAAGCCTGTACTC -CCAACATCCTTCAAGCCTGATGTC -CCAACATCCTTCAAGCCTACAGTC -CCAACATCCTTCAAGCCTTTGCTG -CCAACATCCTTCAAGCCTTCCATG -CCAACATCCTTCAAGCCTTGTGTG -CCAACATCCTTCAAGCCTCTAGTG -CCAACATCCTTCAAGCCTCATCTG -CCAACATCCTTCAAGCCTGAGTTG -CCAACATCCTTCAAGCCTAGACTG -CCAACATCCTTCAAGCCTTCGGTA -CCAACATCCTTCAAGCCTTGCCTA -CCAACATCCTTCAAGCCTCCACTA -CCAACATCCTTCAAGCCTGGAGTA -CCAACATCCTTCAAGCCTTCGTCT -CCAACATCCTTCAAGCCTTGCACT -CCAACATCCTTCAAGCCTCTGACT -CCAACATCCTTCAAGCCTCAACCT -CCAACATCCTTCAAGCCTGCTACT -CCAACATCCTTCAAGCCTGGATCT -CCAACATCCTTCAAGCCTAAGGCT -CCAACATCCTTCAAGCCTTCAACC -CCAACATCCTTCAAGCCTTGTTCC -CCAACATCCTTCAAGCCTATTCCC -CCAACATCCTTCAAGCCTTTCTCG -CCAACATCCTTCAAGCCTTAGACG -CCAACATCCTTCAAGCCTGTAACG -CCAACATCCTTCAAGCCTACTTCG -CCAACATCCTTCAAGCCTTACGCA -CCAACATCCTTCAAGCCTCTTGCA -CCAACATCCTTCAAGCCTCGAACA -CCAACATCCTTCAAGCCTCAGTCA -CCAACATCCTTCAAGCCTGATCCA -CCAACATCCTTCAAGCCTACGACA -CCAACATCCTTCAAGCCTAGCTCA -CCAACATCCTTCAAGCCTTCACGT -CCAACATCCTTCAAGCCTCGTAGT -CCAACATCCTTCAAGCCTGTCAGT -CCAACATCCTTCAAGCCTGAAGGT -CCAACATCCTTCAAGCCTAACCGT -CCAACATCCTTCAAGCCTTTGTGC -CCAACATCCTTCAAGCCTCTAAGC -CCAACATCCTTCAAGCCTACTAGC -CCAACATCCTTCAAGCCTAGATGC -CCAACATCCTTCAAGCCTTGAAGG -CCAACATCCTTCAAGCCTCAATGG -CCAACATCCTTCAAGCCTATGAGG -CCAACATCCTTCAAGCCTAATGGG -CCAACATCCTTCAAGCCTTCCTGA -CCAACATCCTTCAAGCCTTAGCGA -CCAACATCCTTCAAGCCTCACAGA -CCAACATCCTTCAAGCCTGCAAGA -CCAACATCCTTCAAGCCTGGTTGA -CCAACATCCTTCAAGCCTTCCGAT -CCAACATCCTTCAAGCCTTGGCAT -CCAACATCCTTCAAGCCTCGAGAT -CCAACATCCTTCAAGCCTTACCAC -CCAACATCCTTCAAGCCTCAGAAC -CCAACATCCTTCAAGCCTGTCTAC -CCAACATCCTTCAAGCCTACGTAC -CCAACATCCTTCAAGCCTAGTGAC -CCAACATCCTTCAAGCCTCTGTAG -CCAACATCCTTCAAGCCTCCTAAG -CCAACATCCTTCAAGCCTGTTCAG -CCAACATCCTTCAAGCCTGCATAG -CCAACATCCTTCAAGCCTGACAAG -CCAACATCCTTCAAGCCTAAGCAG -CCAACATCCTTCAAGCCTCGTCAA -CCAACATCCTTCAAGCCTGCTGAA -CCAACATCCTTCAAGCCTAGTACG -CCAACATCCTTCAAGCCTATCCGA -CCAACATCCTTCAAGCCTATGGGA -CCAACATCCTTCAAGCCTGTGCAA -CCAACATCCTTCAAGCCTGAGGAA -CCAACATCCTTCAAGCCTCAGGTA -CCAACATCCTTCAAGCCTGACTCT -CCAACATCCTTCAAGCCTAGTCCT -CCAACATCCTTCAAGCCTTAAGCC -CCAACATCCTTCAAGCCTATAGCC -CCAACATCCTTCAAGCCTTAACCG -CCAACATCCTTCAAGCCTATGCCA -CCAACATCCTTCCAGGTTGGAAAC -CCAACATCCTTCCAGGTTAACACC -CCAACATCCTTCCAGGTTATCGAG -CCAACATCCTTCCAGGTTCTCCTT -CCAACATCCTTCCAGGTTCCTGTT -CCAACATCCTTCCAGGTTCGGTTT -CCAACATCCTTCCAGGTTGTGGTT -CCAACATCCTTCCAGGTTGCCTTT -CCAACATCCTTCCAGGTTGGTCTT -CCAACATCCTTCCAGGTTACGCTT -CCAACATCCTTCCAGGTTAGCGTT -CCAACATCCTTCCAGGTTTTCGTC -CCAACATCCTTCCAGGTTTCTCTC -CCAACATCCTTCCAGGTTTGGATC -CCAACATCCTTCCAGGTTCACTTC -CCAACATCCTTCCAGGTTGTACTC -CCAACATCCTTCCAGGTTGATGTC -CCAACATCCTTCCAGGTTACAGTC -CCAACATCCTTCCAGGTTTTGCTG -CCAACATCCTTCCAGGTTTCCATG -CCAACATCCTTCCAGGTTTGTGTG -CCAACATCCTTCCAGGTTCTAGTG -CCAACATCCTTCCAGGTTCATCTG -CCAACATCCTTCCAGGTTGAGTTG -CCAACATCCTTCCAGGTTAGACTG -CCAACATCCTTCCAGGTTTCGGTA -CCAACATCCTTCCAGGTTTGCCTA -CCAACATCCTTCCAGGTTCCACTA -CCAACATCCTTCCAGGTTGGAGTA -CCAACATCCTTCCAGGTTTCGTCT -CCAACATCCTTCCAGGTTTGCACT -CCAACATCCTTCCAGGTTCTGACT -CCAACATCCTTCCAGGTTCAACCT -CCAACATCCTTCCAGGTTGCTACT -CCAACATCCTTCCAGGTTGGATCT -CCAACATCCTTCCAGGTTAAGGCT -CCAACATCCTTCCAGGTTTCAACC -CCAACATCCTTCCAGGTTTGTTCC -CCAACATCCTTCCAGGTTATTCCC -CCAACATCCTTCCAGGTTTTCTCG -CCAACATCCTTCCAGGTTTAGACG -CCAACATCCTTCCAGGTTGTAACG -CCAACATCCTTCCAGGTTACTTCG -CCAACATCCTTCCAGGTTTACGCA -CCAACATCCTTCCAGGTTCTTGCA -CCAACATCCTTCCAGGTTCGAACA -CCAACATCCTTCCAGGTTCAGTCA -CCAACATCCTTCCAGGTTGATCCA -CCAACATCCTTCCAGGTTACGACA -CCAACATCCTTCCAGGTTAGCTCA -CCAACATCCTTCCAGGTTTCACGT -CCAACATCCTTCCAGGTTCGTAGT -CCAACATCCTTCCAGGTTGTCAGT -CCAACATCCTTCCAGGTTGAAGGT -CCAACATCCTTCCAGGTTAACCGT -CCAACATCCTTCCAGGTTTTGTGC -CCAACATCCTTCCAGGTTCTAAGC -CCAACATCCTTCCAGGTTACTAGC -CCAACATCCTTCCAGGTTAGATGC -CCAACATCCTTCCAGGTTTGAAGG -CCAACATCCTTCCAGGTTCAATGG -CCAACATCCTTCCAGGTTATGAGG -CCAACATCCTTCCAGGTTAATGGG -CCAACATCCTTCCAGGTTTCCTGA -CCAACATCCTTCCAGGTTTAGCGA -CCAACATCCTTCCAGGTTCACAGA -CCAACATCCTTCCAGGTTGCAAGA -CCAACATCCTTCCAGGTTGGTTGA -CCAACATCCTTCCAGGTTTCCGAT -CCAACATCCTTCCAGGTTTGGCAT -CCAACATCCTTCCAGGTTCGAGAT -CCAACATCCTTCCAGGTTTACCAC -CCAACATCCTTCCAGGTTCAGAAC -CCAACATCCTTCCAGGTTGTCTAC -CCAACATCCTTCCAGGTTACGTAC -CCAACATCCTTCCAGGTTAGTGAC -CCAACATCCTTCCAGGTTCTGTAG -CCAACATCCTTCCAGGTTCCTAAG -CCAACATCCTTCCAGGTTGTTCAG -CCAACATCCTTCCAGGTTGCATAG -CCAACATCCTTCCAGGTTGACAAG -CCAACATCCTTCCAGGTTAAGCAG -CCAACATCCTTCCAGGTTCGTCAA -CCAACATCCTTCCAGGTTGCTGAA -CCAACATCCTTCCAGGTTAGTACG -CCAACATCCTTCCAGGTTATCCGA -CCAACATCCTTCCAGGTTATGGGA -CCAACATCCTTCCAGGTTGTGCAA -CCAACATCCTTCCAGGTTGAGGAA -CCAACATCCTTCCAGGTTCAGGTA -CCAACATCCTTCCAGGTTGACTCT -CCAACATCCTTCCAGGTTAGTCCT -CCAACATCCTTCCAGGTTTAAGCC -CCAACATCCTTCCAGGTTATAGCC -CCAACATCCTTCCAGGTTTAACCG -CCAACATCCTTCCAGGTTATGCCA -CCAACATCCTTCTAGGCAGGAAAC -CCAACATCCTTCTAGGCAAACACC -CCAACATCCTTCTAGGCAATCGAG -CCAACATCCTTCTAGGCACTCCTT -CCAACATCCTTCTAGGCACCTGTT -CCAACATCCTTCTAGGCACGGTTT -CCAACATCCTTCTAGGCAGTGGTT -CCAACATCCTTCTAGGCAGCCTTT -CCAACATCCTTCTAGGCAGGTCTT -CCAACATCCTTCTAGGCAACGCTT -CCAACATCCTTCTAGGCAAGCGTT -CCAACATCCTTCTAGGCATTCGTC -CCAACATCCTTCTAGGCATCTCTC -CCAACATCCTTCTAGGCATGGATC -CCAACATCCTTCTAGGCACACTTC -CCAACATCCTTCTAGGCAGTACTC -CCAACATCCTTCTAGGCAGATGTC -CCAACATCCTTCTAGGCAACAGTC -CCAACATCCTTCTAGGCATTGCTG -CCAACATCCTTCTAGGCATCCATG -CCAACATCCTTCTAGGCATGTGTG -CCAACATCCTTCTAGGCACTAGTG -CCAACATCCTTCTAGGCACATCTG -CCAACATCCTTCTAGGCAGAGTTG -CCAACATCCTTCTAGGCAAGACTG -CCAACATCCTTCTAGGCATCGGTA -CCAACATCCTTCTAGGCATGCCTA -CCAACATCCTTCTAGGCACCACTA -CCAACATCCTTCTAGGCAGGAGTA -CCAACATCCTTCTAGGCATCGTCT -CCAACATCCTTCTAGGCATGCACT -CCAACATCCTTCTAGGCACTGACT -CCAACATCCTTCTAGGCACAACCT -CCAACATCCTTCTAGGCAGCTACT -CCAACATCCTTCTAGGCAGGATCT -CCAACATCCTTCTAGGCAAAGGCT -CCAACATCCTTCTAGGCATCAACC -CCAACATCCTTCTAGGCATGTTCC -CCAACATCCTTCTAGGCAATTCCC -CCAACATCCTTCTAGGCATTCTCG -CCAACATCCTTCTAGGCATAGACG -CCAACATCCTTCTAGGCAGTAACG -CCAACATCCTTCTAGGCAACTTCG -CCAACATCCTTCTAGGCATACGCA -CCAACATCCTTCTAGGCACTTGCA -CCAACATCCTTCTAGGCACGAACA -CCAACATCCTTCTAGGCACAGTCA -CCAACATCCTTCTAGGCAGATCCA -CCAACATCCTTCTAGGCAACGACA -CCAACATCCTTCTAGGCAAGCTCA -CCAACATCCTTCTAGGCATCACGT -CCAACATCCTTCTAGGCACGTAGT -CCAACATCCTTCTAGGCAGTCAGT -CCAACATCCTTCTAGGCAGAAGGT -CCAACATCCTTCTAGGCAAACCGT -CCAACATCCTTCTAGGCATTGTGC -CCAACATCCTTCTAGGCACTAAGC -CCAACATCCTTCTAGGCAACTAGC -CCAACATCCTTCTAGGCAAGATGC -CCAACATCCTTCTAGGCATGAAGG -CCAACATCCTTCTAGGCACAATGG -CCAACATCCTTCTAGGCAATGAGG -CCAACATCCTTCTAGGCAAATGGG -CCAACATCCTTCTAGGCATCCTGA -CCAACATCCTTCTAGGCATAGCGA -CCAACATCCTTCTAGGCACACAGA -CCAACATCCTTCTAGGCAGCAAGA -CCAACATCCTTCTAGGCAGGTTGA -CCAACATCCTTCTAGGCATCCGAT -CCAACATCCTTCTAGGCATGGCAT -CCAACATCCTTCTAGGCACGAGAT -CCAACATCCTTCTAGGCATACCAC -CCAACATCCTTCTAGGCACAGAAC -CCAACATCCTTCTAGGCAGTCTAC -CCAACATCCTTCTAGGCAACGTAC -CCAACATCCTTCTAGGCAAGTGAC -CCAACATCCTTCTAGGCACTGTAG -CCAACATCCTTCTAGGCACCTAAG -CCAACATCCTTCTAGGCAGTTCAG -CCAACATCCTTCTAGGCAGCATAG -CCAACATCCTTCTAGGCAGACAAG -CCAACATCCTTCTAGGCAAAGCAG -CCAACATCCTTCTAGGCACGTCAA -CCAACATCCTTCTAGGCAGCTGAA -CCAACATCCTTCTAGGCAAGTACG -CCAACATCCTTCTAGGCAATCCGA -CCAACATCCTTCTAGGCAATGGGA -CCAACATCCTTCTAGGCAGTGCAA -CCAACATCCTTCTAGGCAGAGGAA -CCAACATCCTTCTAGGCACAGGTA -CCAACATCCTTCTAGGCAGACTCT -CCAACATCCTTCTAGGCAAGTCCT -CCAACATCCTTCTAGGCATAAGCC -CCAACATCCTTCTAGGCAATAGCC -CCAACATCCTTCTAGGCATAACCG -CCAACATCCTTCTAGGCAATGCCA -CCAACATCCTTCAAGGACGGAAAC -CCAACATCCTTCAAGGACAACACC -CCAACATCCTTCAAGGACATCGAG -CCAACATCCTTCAAGGACCTCCTT -CCAACATCCTTCAAGGACCCTGTT -CCAACATCCTTCAAGGACCGGTTT -CCAACATCCTTCAAGGACGTGGTT -CCAACATCCTTCAAGGACGCCTTT -CCAACATCCTTCAAGGACGGTCTT -CCAACATCCTTCAAGGACACGCTT -CCAACATCCTTCAAGGACAGCGTT -CCAACATCCTTCAAGGACTTCGTC -CCAACATCCTTCAAGGACTCTCTC -CCAACATCCTTCAAGGACTGGATC -CCAACATCCTTCAAGGACCACTTC -CCAACATCCTTCAAGGACGTACTC -CCAACATCCTTCAAGGACGATGTC -CCAACATCCTTCAAGGACACAGTC -CCAACATCCTTCAAGGACTTGCTG -CCAACATCCTTCAAGGACTCCATG -CCAACATCCTTCAAGGACTGTGTG -CCAACATCCTTCAAGGACCTAGTG -CCAACATCCTTCAAGGACCATCTG -CCAACATCCTTCAAGGACGAGTTG -CCAACATCCTTCAAGGACAGACTG -CCAACATCCTTCAAGGACTCGGTA -CCAACATCCTTCAAGGACTGCCTA -CCAACATCCTTCAAGGACCCACTA -CCAACATCCTTCAAGGACGGAGTA -CCAACATCCTTCAAGGACTCGTCT -CCAACATCCTTCAAGGACTGCACT -CCAACATCCTTCAAGGACCTGACT -CCAACATCCTTCAAGGACCAACCT -CCAACATCCTTCAAGGACGCTACT -CCAACATCCTTCAAGGACGGATCT -CCAACATCCTTCAAGGACAAGGCT -CCAACATCCTTCAAGGACTCAACC -CCAACATCCTTCAAGGACTGTTCC -CCAACATCCTTCAAGGACATTCCC -CCAACATCCTTCAAGGACTTCTCG -CCAACATCCTTCAAGGACTAGACG -CCAACATCCTTCAAGGACGTAACG -CCAACATCCTTCAAGGACACTTCG -CCAACATCCTTCAAGGACTACGCA -CCAACATCCTTCAAGGACCTTGCA -CCAACATCCTTCAAGGACCGAACA -CCAACATCCTTCAAGGACCAGTCA -CCAACATCCTTCAAGGACGATCCA -CCAACATCCTTCAAGGACACGACA -CCAACATCCTTCAAGGACAGCTCA -CCAACATCCTTCAAGGACTCACGT -CCAACATCCTTCAAGGACCGTAGT -CCAACATCCTTCAAGGACGTCAGT -CCAACATCCTTCAAGGACGAAGGT -CCAACATCCTTCAAGGACAACCGT -CCAACATCCTTCAAGGACTTGTGC -CCAACATCCTTCAAGGACCTAAGC -CCAACATCCTTCAAGGACACTAGC -CCAACATCCTTCAAGGACAGATGC -CCAACATCCTTCAAGGACTGAAGG -CCAACATCCTTCAAGGACCAATGG -CCAACATCCTTCAAGGACATGAGG -CCAACATCCTTCAAGGACAATGGG -CCAACATCCTTCAAGGACTCCTGA -CCAACATCCTTCAAGGACTAGCGA -CCAACATCCTTCAAGGACCACAGA -CCAACATCCTTCAAGGACGCAAGA -CCAACATCCTTCAAGGACGGTTGA -CCAACATCCTTCAAGGACTCCGAT -CCAACATCCTTCAAGGACTGGCAT -CCAACATCCTTCAAGGACCGAGAT -CCAACATCCTTCAAGGACTACCAC -CCAACATCCTTCAAGGACCAGAAC -CCAACATCCTTCAAGGACGTCTAC -CCAACATCCTTCAAGGACACGTAC -CCAACATCCTTCAAGGACAGTGAC -CCAACATCCTTCAAGGACCTGTAG -CCAACATCCTTCAAGGACCCTAAG -CCAACATCCTTCAAGGACGTTCAG -CCAACATCCTTCAAGGACGCATAG -CCAACATCCTTCAAGGACGACAAG -CCAACATCCTTCAAGGACAAGCAG -CCAACATCCTTCAAGGACCGTCAA -CCAACATCCTTCAAGGACGCTGAA -CCAACATCCTTCAAGGACAGTACG -CCAACATCCTTCAAGGACATCCGA -CCAACATCCTTCAAGGACATGGGA -CCAACATCCTTCAAGGACGTGCAA -CCAACATCCTTCAAGGACGAGGAA -CCAACATCCTTCAAGGACCAGGTA -CCAACATCCTTCAAGGACGACTCT -CCAACATCCTTCAAGGACAGTCCT -CCAACATCCTTCAAGGACTAAGCC -CCAACATCCTTCAAGGACATAGCC -CCAACATCCTTCAAGGACTAACCG -CCAACATCCTTCAAGGACATGCCA -CCAACATCCTTCCAGAAGGGAAAC -CCAACATCCTTCCAGAAGAACACC -CCAACATCCTTCCAGAAGATCGAG -CCAACATCCTTCCAGAAGCTCCTT -CCAACATCCTTCCAGAAGCCTGTT -CCAACATCCTTCCAGAAGCGGTTT -CCAACATCCTTCCAGAAGGTGGTT -CCAACATCCTTCCAGAAGGCCTTT -CCAACATCCTTCCAGAAGGGTCTT -CCAACATCCTTCCAGAAGACGCTT -CCAACATCCTTCCAGAAGAGCGTT -CCAACATCCTTCCAGAAGTTCGTC -CCAACATCCTTCCAGAAGTCTCTC -CCAACATCCTTCCAGAAGTGGATC -CCAACATCCTTCCAGAAGCACTTC -CCAACATCCTTCCAGAAGGTACTC -CCAACATCCTTCCAGAAGGATGTC -CCAACATCCTTCCAGAAGACAGTC -CCAACATCCTTCCAGAAGTTGCTG -CCAACATCCTTCCAGAAGTCCATG -CCAACATCCTTCCAGAAGTGTGTG -CCAACATCCTTCCAGAAGCTAGTG -CCAACATCCTTCCAGAAGCATCTG -CCAACATCCTTCCAGAAGGAGTTG -CCAACATCCTTCCAGAAGAGACTG -CCAACATCCTTCCAGAAGTCGGTA -CCAACATCCTTCCAGAAGTGCCTA -CCAACATCCTTCCAGAAGCCACTA -CCAACATCCTTCCAGAAGGGAGTA -CCAACATCCTTCCAGAAGTCGTCT -CCAACATCCTTCCAGAAGTGCACT -CCAACATCCTTCCAGAAGCTGACT -CCAACATCCTTCCAGAAGCAACCT -CCAACATCCTTCCAGAAGGCTACT -CCAACATCCTTCCAGAAGGGATCT -CCAACATCCTTCCAGAAGAAGGCT -CCAACATCCTTCCAGAAGTCAACC -CCAACATCCTTCCAGAAGTGTTCC -CCAACATCCTTCCAGAAGATTCCC -CCAACATCCTTCCAGAAGTTCTCG -CCAACATCCTTCCAGAAGTAGACG -CCAACATCCTTCCAGAAGGTAACG -CCAACATCCTTCCAGAAGACTTCG -CCAACATCCTTCCAGAAGTACGCA -CCAACATCCTTCCAGAAGCTTGCA -CCAACATCCTTCCAGAAGCGAACA -CCAACATCCTTCCAGAAGCAGTCA -CCAACATCCTTCCAGAAGGATCCA -CCAACATCCTTCCAGAAGACGACA -CCAACATCCTTCCAGAAGAGCTCA -CCAACATCCTTCCAGAAGTCACGT -CCAACATCCTTCCAGAAGCGTAGT -CCAACATCCTTCCAGAAGGTCAGT -CCAACATCCTTCCAGAAGGAAGGT -CCAACATCCTTCCAGAAGAACCGT -CCAACATCCTTCCAGAAGTTGTGC -CCAACATCCTTCCAGAAGCTAAGC -CCAACATCCTTCCAGAAGACTAGC -CCAACATCCTTCCAGAAGAGATGC -CCAACATCCTTCCAGAAGTGAAGG -CCAACATCCTTCCAGAAGCAATGG -CCAACATCCTTCCAGAAGATGAGG -CCAACATCCTTCCAGAAGAATGGG -CCAACATCCTTCCAGAAGTCCTGA -CCAACATCCTTCCAGAAGTAGCGA -CCAACATCCTTCCAGAAGCACAGA -CCAACATCCTTCCAGAAGGCAAGA -CCAACATCCTTCCAGAAGGGTTGA -CCAACATCCTTCCAGAAGTCCGAT -CCAACATCCTTCCAGAAGTGGCAT -CCAACATCCTTCCAGAAGCGAGAT -CCAACATCCTTCCAGAAGTACCAC -CCAACATCCTTCCAGAAGCAGAAC -CCAACATCCTTCCAGAAGGTCTAC -CCAACATCCTTCCAGAAGACGTAC -CCAACATCCTTCCAGAAGAGTGAC -CCAACATCCTTCCAGAAGCTGTAG -CCAACATCCTTCCAGAAGCCTAAG -CCAACATCCTTCCAGAAGGTTCAG -CCAACATCCTTCCAGAAGGCATAG -CCAACATCCTTCCAGAAGGACAAG -CCAACATCCTTCCAGAAGAAGCAG -CCAACATCCTTCCAGAAGCGTCAA -CCAACATCCTTCCAGAAGGCTGAA -CCAACATCCTTCCAGAAGAGTACG -CCAACATCCTTCCAGAAGATCCGA -CCAACATCCTTCCAGAAGATGGGA -CCAACATCCTTCCAGAAGGTGCAA -CCAACATCCTTCCAGAAGGAGGAA -CCAACATCCTTCCAGAAGCAGGTA -CCAACATCCTTCCAGAAGGACTCT -CCAACATCCTTCCAGAAGAGTCCT -CCAACATCCTTCCAGAAGTAAGCC -CCAACATCCTTCCAGAAGATAGCC -CCAACATCCTTCCAGAAGTAACCG -CCAACATCCTTCCAGAAGATGCCA -CCAACATCCTTCCAACGTGGAAAC -CCAACATCCTTCCAACGTAACACC -CCAACATCCTTCCAACGTATCGAG -CCAACATCCTTCCAACGTCTCCTT -CCAACATCCTTCCAACGTCCTGTT -CCAACATCCTTCCAACGTCGGTTT -CCAACATCCTTCCAACGTGTGGTT -CCAACATCCTTCCAACGTGCCTTT -CCAACATCCTTCCAACGTGGTCTT -CCAACATCCTTCCAACGTACGCTT -CCAACATCCTTCCAACGTAGCGTT -CCAACATCCTTCCAACGTTTCGTC -CCAACATCCTTCCAACGTTCTCTC -CCAACATCCTTCCAACGTTGGATC -CCAACATCCTTCCAACGTCACTTC -CCAACATCCTTCCAACGTGTACTC -CCAACATCCTTCCAACGTGATGTC -CCAACATCCTTCCAACGTACAGTC -CCAACATCCTTCCAACGTTTGCTG -CCAACATCCTTCCAACGTTCCATG -CCAACATCCTTCCAACGTTGTGTG -CCAACATCCTTCCAACGTCTAGTG -CCAACATCCTTCCAACGTCATCTG -CCAACATCCTTCCAACGTGAGTTG -CCAACATCCTTCCAACGTAGACTG -CCAACATCCTTCCAACGTTCGGTA -CCAACATCCTTCCAACGTTGCCTA -CCAACATCCTTCCAACGTCCACTA -CCAACATCCTTCCAACGTGGAGTA -CCAACATCCTTCCAACGTTCGTCT -CCAACATCCTTCCAACGTTGCACT -CCAACATCCTTCCAACGTCTGACT -CCAACATCCTTCCAACGTCAACCT -CCAACATCCTTCCAACGTGCTACT -CCAACATCCTTCCAACGTGGATCT -CCAACATCCTTCCAACGTAAGGCT -CCAACATCCTTCCAACGTTCAACC -CCAACATCCTTCCAACGTTGTTCC -CCAACATCCTTCCAACGTATTCCC -CCAACATCCTTCCAACGTTTCTCG -CCAACATCCTTCCAACGTTAGACG -CCAACATCCTTCCAACGTGTAACG -CCAACATCCTTCCAACGTACTTCG -CCAACATCCTTCCAACGTTACGCA -CCAACATCCTTCCAACGTCTTGCA -CCAACATCCTTCCAACGTCGAACA -CCAACATCCTTCCAACGTCAGTCA -CCAACATCCTTCCAACGTGATCCA -CCAACATCCTTCCAACGTACGACA -CCAACATCCTTCCAACGTAGCTCA -CCAACATCCTTCCAACGTTCACGT -CCAACATCCTTCCAACGTCGTAGT -CCAACATCCTTCCAACGTGTCAGT -CCAACATCCTTCCAACGTGAAGGT -CCAACATCCTTCCAACGTAACCGT -CCAACATCCTTCCAACGTTTGTGC -CCAACATCCTTCCAACGTCTAAGC -CCAACATCCTTCCAACGTACTAGC -CCAACATCCTTCCAACGTAGATGC -CCAACATCCTTCCAACGTTGAAGG -CCAACATCCTTCCAACGTCAATGG -CCAACATCCTTCCAACGTATGAGG -CCAACATCCTTCCAACGTAATGGG -CCAACATCCTTCCAACGTTCCTGA -CCAACATCCTTCCAACGTTAGCGA -CCAACATCCTTCCAACGTCACAGA -CCAACATCCTTCCAACGTGCAAGA -CCAACATCCTTCCAACGTGGTTGA -CCAACATCCTTCCAACGTTCCGAT -CCAACATCCTTCCAACGTTGGCAT -CCAACATCCTTCCAACGTCGAGAT -CCAACATCCTTCCAACGTTACCAC -CCAACATCCTTCCAACGTCAGAAC -CCAACATCCTTCCAACGTGTCTAC -CCAACATCCTTCCAACGTACGTAC -CCAACATCCTTCCAACGTAGTGAC -CCAACATCCTTCCAACGTCTGTAG -CCAACATCCTTCCAACGTCCTAAG -CCAACATCCTTCCAACGTGTTCAG -CCAACATCCTTCCAACGTGCATAG -CCAACATCCTTCCAACGTGACAAG -CCAACATCCTTCCAACGTAAGCAG -CCAACATCCTTCCAACGTCGTCAA -CCAACATCCTTCCAACGTGCTGAA -CCAACATCCTTCCAACGTAGTACG -CCAACATCCTTCCAACGTATCCGA -CCAACATCCTTCCAACGTATGGGA -CCAACATCCTTCCAACGTGTGCAA -CCAACATCCTTCCAACGTGAGGAA -CCAACATCCTTCCAACGTCAGGTA -CCAACATCCTTCCAACGTGACTCT -CCAACATCCTTCCAACGTAGTCCT -CCAACATCCTTCCAACGTTAAGCC -CCAACATCCTTCCAACGTATAGCC -CCAACATCCTTCCAACGTTAACCG -CCAACATCCTTCCAACGTATGCCA -CCAACATCCTTCGAAGCTGGAAAC -CCAACATCCTTCGAAGCTAACACC -CCAACATCCTTCGAAGCTATCGAG -CCAACATCCTTCGAAGCTCTCCTT -CCAACATCCTTCGAAGCTCCTGTT -CCAACATCCTTCGAAGCTCGGTTT -CCAACATCCTTCGAAGCTGTGGTT -CCAACATCCTTCGAAGCTGCCTTT -CCAACATCCTTCGAAGCTGGTCTT -CCAACATCCTTCGAAGCTACGCTT -CCAACATCCTTCGAAGCTAGCGTT -CCAACATCCTTCGAAGCTTTCGTC -CCAACATCCTTCGAAGCTTCTCTC -CCAACATCCTTCGAAGCTTGGATC -CCAACATCCTTCGAAGCTCACTTC -CCAACATCCTTCGAAGCTGTACTC -CCAACATCCTTCGAAGCTGATGTC -CCAACATCCTTCGAAGCTACAGTC -CCAACATCCTTCGAAGCTTTGCTG -CCAACATCCTTCGAAGCTTCCATG -CCAACATCCTTCGAAGCTTGTGTG -CCAACATCCTTCGAAGCTCTAGTG -CCAACATCCTTCGAAGCTCATCTG -CCAACATCCTTCGAAGCTGAGTTG -CCAACATCCTTCGAAGCTAGACTG -CCAACATCCTTCGAAGCTTCGGTA -CCAACATCCTTCGAAGCTTGCCTA -CCAACATCCTTCGAAGCTCCACTA -CCAACATCCTTCGAAGCTGGAGTA -CCAACATCCTTCGAAGCTTCGTCT -CCAACATCCTTCGAAGCTTGCACT -CCAACATCCTTCGAAGCTCTGACT -CCAACATCCTTCGAAGCTCAACCT -CCAACATCCTTCGAAGCTGCTACT -CCAACATCCTTCGAAGCTGGATCT -CCAACATCCTTCGAAGCTAAGGCT -CCAACATCCTTCGAAGCTTCAACC -CCAACATCCTTCGAAGCTTGTTCC -CCAACATCCTTCGAAGCTATTCCC -CCAACATCCTTCGAAGCTTTCTCG -CCAACATCCTTCGAAGCTTAGACG -CCAACATCCTTCGAAGCTGTAACG -CCAACATCCTTCGAAGCTACTTCG -CCAACATCCTTCGAAGCTTACGCA -CCAACATCCTTCGAAGCTCTTGCA -CCAACATCCTTCGAAGCTCGAACA -CCAACATCCTTCGAAGCTCAGTCA -CCAACATCCTTCGAAGCTGATCCA -CCAACATCCTTCGAAGCTACGACA -CCAACATCCTTCGAAGCTAGCTCA -CCAACATCCTTCGAAGCTTCACGT -CCAACATCCTTCGAAGCTCGTAGT -CCAACATCCTTCGAAGCTGTCAGT -CCAACATCCTTCGAAGCTGAAGGT -CCAACATCCTTCGAAGCTAACCGT -CCAACATCCTTCGAAGCTTTGTGC -CCAACATCCTTCGAAGCTCTAAGC -CCAACATCCTTCGAAGCTACTAGC -CCAACATCCTTCGAAGCTAGATGC -CCAACATCCTTCGAAGCTTGAAGG -CCAACATCCTTCGAAGCTCAATGG -CCAACATCCTTCGAAGCTATGAGG -CCAACATCCTTCGAAGCTAATGGG -CCAACATCCTTCGAAGCTTCCTGA -CCAACATCCTTCGAAGCTTAGCGA -CCAACATCCTTCGAAGCTCACAGA -CCAACATCCTTCGAAGCTGCAAGA -CCAACATCCTTCGAAGCTGGTTGA -CCAACATCCTTCGAAGCTTCCGAT -CCAACATCCTTCGAAGCTTGGCAT -CCAACATCCTTCGAAGCTCGAGAT -CCAACATCCTTCGAAGCTTACCAC -CCAACATCCTTCGAAGCTCAGAAC -CCAACATCCTTCGAAGCTGTCTAC -CCAACATCCTTCGAAGCTACGTAC -CCAACATCCTTCGAAGCTAGTGAC -CCAACATCCTTCGAAGCTCTGTAG -CCAACATCCTTCGAAGCTCCTAAG -CCAACATCCTTCGAAGCTGTTCAG -CCAACATCCTTCGAAGCTGCATAG -CCAACATCCTTCGAAGCTGACAAG -CCAACATCCTTCGAAGCTAAGCAG -CCAACATCCTTCGAAGCTCGTCAA -CCAACATCCTTCGAAGCTGCTGAA -CCAACATCCTTCGAAGCTAGTACG -CCAACATCCTTCGAAGCTATCCGA -CCAACATCCTTCGAAGCTATGGGA -CCAACATCCTTCGAAGCTGTGCAA -CCAACATCCTTCGAAGCTGAGGAA -CCAACATCCTTCGAAGCTCAGGTA -CCAACATCCTTCGAAGCTGACTCT -CCAACATCCTTCGAAGCTAGTCCT -CCAACATCCTTCGAAGCTTAAGCC -CCAACATCCTTCGAAGCTATAGCC -CCAACATCCTTCGAAGCTTAACCG -CCAACATCCTTCGAAGCTATGCCA -CCAACATCCTTCACGAGTGGAAAC -CCAACATCCTTCACGAGTAACACC -CCAACATCCTTCACGAGTATCGAG -CCAACATCCTTCACGAGTCTCCTT -CCAACATCCTTCACGAGTCCTGTT -CCAACATCCTTCACGAGTCGGTTT -CCAACATCCTTCACGAGTGTGGTT -CCAACATCCTTCACGAGTGCCTTT -CCAACATCCTTCACGAGTGGTCTT -CCAACATCCTTCACGAGTACGCTT -CCAACATCCTTCACGAGTAGCGTT -CCAACATCCTTCACGAGTTTCGTC -CCAACATCCTTCACGAGTTCTCTC -CCAACATCCTTCACGAGTTGGATC -CCAACATCCTTCACGAGTCACTTC -CCAACATCCTTCACGAGTGTACTC -CCAACATCCTTCACGAGTGATGTC -CCAACATCCTTCACGAGTACAGTC -CCAACATCCTTCACGAGTTTGCTG -CCAACATCCTTCACGAGTTCCATG -CCAACATCCTTCACGAGTTGTGTG -CCAACATCCTTCACGAGTCTAGTG -CCAACATCCTTCACGAGTCATCTG -CCAACATCCTTCACGAGTGAGTTG -CCAACATCCTTCACGAGTAGACTG -CCAACATCCTTCACGAGTTCGGTA -CCAACATCCTTCACGAGTTGCCTA -CCAACATCCTTCACGAGTCCACTA -CCAACATCCTTCACGAGTGGAGTA -CCAACATCCTTCACGAGTTCGTCT -CCAACATCCTTCACGAGTTGCACT -CCAACATCCTTCACGAGTCTGACT -CCAACATCCTTCACGAGTCAACCT -CCAACATCCTTCACGAGTGCTACT -CCAACATCCTTCACGAGTGGATCT -CCAACATCCTTCACGAGTAAGGCT -CCAACATCCTTCACGAGTTCAACC -CCAACATCCTTCACGAGTTGTTCC -CCAACATCCTTCACGAGTATTCCC -CCAACATCCTTCACGAGTTTCTCG -CCAACATCCTTCACGAGTTAGACG -CCAACATCCTTCACGAGTGTAACG -CCAACATCCTTCACGAGTACTTCG -CCAACATCCTTCACGAGTTACGCA -CCAACATCCTTCACGAGTCTTGCA -CCAACATCCTTCACGAGTCGAACA -CCAACATCCTTCACGAGTCAGTCA -CCAACATCCTTCACGAGTGATCCA -CCAACATCCTTCACGAGTACGACA -CCAACATCCTTCACGAGTAGCTCA -CCAACATCCTTCACGAGTTCACGT -CCAACATCCTTCACGAGTCGTAGT -CCAACATCCTTCACGAGTGTCAGT -CCAACATCCTTCACGAGTGAAGGT -CCAACATCCTTCACGAGTAACCGT -CCAACATCCTTCACGAGTTTGTGC -CCAACATCCTTCACGAGTCTAAGC -CCAACATCCTTCACGAGTACTAGC -CCAACATCCTTCACGAGTAGATGC -CCAACATCCTTCACGAGTTGAAGG -CCAACATCCTTCACGAGTCAATGG -CCAACATCCTTCACGAGTATGAGG -CCAACATCCTTCACGAGTAATGGG -CCAACATCCTTCACGAGTTCCTGA -CCAACATCCTTCACGAGTTAGCGA -CCAACATCCTTCACGAGTCACAGA -CCAACATCCTTCACGAGTGCAAGA -CCAACATCCTTCACGAGTGGTTGA -CCAACATCCTTCACGAGTTCCGAT -CCAACATCCTTCACGAGTTGGCAT -CCAACATCCTTCACGAGTCGAGAT -CCAACATCCTTCACGAGTTACCAC -CCAACATCCTTCACGAGTCAGAAC -CCAACATCCTTCACGAGTGTCTAC -CCAACATCCTTCACGAGTACGTAC -CCAACATCCTTCACGAGTAGTGAC -CCAACATCCTTCACGAGTCTGTAG -CCAACATCCTTCACGAGTCCTAAG -CCAACATCCTTCACGAGTGTTCAG -CCAACATCCTTCACGAGTGCATAG -CCAACATCCTTCACGAGTGACAAG -CCAACATCCTTCACGAGTAAGCAG -CCAACATCCTTCACGAGTCGTCAA -CCAACATCCTTCACGAGTGCTGAA -CCAACATCCTTCACGAGTAGTACG -CCAACATCCTTCACGAGTATCCGA -CCAACATCCTTCACGAGTATGGGA -CCAACATCCTTCACGAGTGTGCAA -CCAACATCCTTCACGAGTGAGGAA -CCAACATCCTTCACGAGTCAGGTA -CCAACATCCTTCACGAGTGACTCT -CCAACATCCTTCACGAGTAGTCCT -CCAACATCCTTCACGAGTTAAGCC -CCAACATCCTTCACGAGTATAGCC -CCAACATCCTTCACGAGTTAACCG -CCAACATCCTTCACGAGTATGCCA -CCAACATCCTTCCGAATCGGAAAC -CCAACATCCTTCCGAATCAACACC -CCAACATCCTTCCGAATCATCGAG -CCAACATCCTTCCGAATCCTCCTT -CCAACATCCTTCCGAATCCCTGTT -CCAACATCCTTCCGAATCCGGTTT -CCAACATCCTTCCGAATCGTGGTT -CCAACATCCTTCCGAATCGCCTTT -CCAACATCCTTCCGAATCGGTCTT -CCAACATCCTTCCGAATCACGCTT -CCAACATCCTTCCGAATCAGCGTT -CCAACATCCTTCCGAATCTTCGTC -CCAACATCCTTCCGAATCTCTCTC -CCAACATCCTTCCGAATCTGGATC -CCAACATCCTTCCGAATCCACTTC -CCAACATCCTTCCGAATCGTACTC -CCAACATCCTTCCGAATCGATGTC -CCAACATCCTTCCGAATCACAGTC -CCAACATCCTTCCGAATCTTGCTG -CCAACATCCTTCCGAATCTCCATG -CCAACATCCTTCCGAATCTGTGTG -CCAACATCCTTCCGAATCCTAGTG -CCAACATCCTTCCGAATCCATCTG -CCAACATCCTTCCGAATCGAGTTG -CCAACATCCTTCCGAATCAGACTG -CCAACATCCTTCCGAATCTCGGTA -CCAACATCCTTCCGAATCTGCCTA -CCAACATCCTTCCGAATCCCACTA -CCAACATCCTTCCGAATCGGAGTA -CCAACATCCTTCCGAATCTCGTCT -CCAACATCCTTCCGAATCTGCACT -CCAACATCCTTCCGAATCCTGACT -CCAACATCCTTCCGAATCCAACCT -CCAACATCCTTCCGAATCGCTACT -CCAACATCCTTCCGAATCGGATCT -CCAACATCCTTCCGAATCAAGGCT -CCAACATCCTTCCGAATCTCAACC -CCAACATCCTTCCGAATCTGTTCC -CCAACATCCTTCCGAATCATTCCC -CCAACATCCTTCCGAATCTTCTCG -CCAACATCCTTCCGAATCTAGACG -CCAACATCCTTCCGAATCGTAACG -CCAACATCCTTCCGAATCACTTCG -CCAACATCCTTCCGAATCTACGCA -CCAACATCCTTCCGAATCCTTGCA -CCAACATCCTTCCGAATCCGAACA -CCAACATCCTTCCGAATCCAGTCA -CCAACATCCTTCCGAATCGATCCA -CCAACATCCTTCCGAATCACGACA -CCAACATCCTTCCGAATCAGCTCA -CCAACATCCTTCCGAATCTCACGT -CCAACATCCTTCCGAATCCGTAGT -CCAACATCCTTCCGAATCGTCAGT -CCAACATCCTTCCGAATCGAAGGT -CCAACATCCTTCCGAATCAACCGT -CCAACATCCTTCCGAATCTTGTGC -CCAACATCCTTCCGAATCCTAAGC -CCAACATCCTTCCGAATCACTAGC -CCAACATCCTTCCGAATCAGATGC -CCAACATCCTTCCGAATCTGAAGG -CCAACATCCTTCCGAATCCAATGG -CCAACATCCTTCCGAATCATGAGG -CCAACATCCTTCCGAATCAATGGG -CCAACATCCTTCCGAATCTCCTGA -CCAACATCCTTCCGAATCTAGCGA -CCAACATCCTTCCGAATCCACAGA -CCAACATCCTTCCGAATCGCAAGA -CCAACATCCTTCCGAATCGGTTGA -CCAACATCCTTCCGAATCTCCGAT -CCAACATCCTTCCGAATCTGGCAT -CCAACATCCTTCCGAATCCGAGAT -CCAACATCCTTCCGAATCTACCAC -CCAACATCCTTCCGAATCCAGAAC -CCAACATCCTTCCGAATCGTCTAC -CCAACATCCTTCCGAATCACGTAC -CCAACATCCTTCCGAATCAGTGAC -CCAACATCCTTCCGAATCCTGTAG -CCAACATCCTTCCGAATCCCTAAG -CCAACATCCTTCCGAATCGTTCAG -CCAACATCCTTCCGAATCGCATAG -CCAACATCCTTCCGAATCGACAAG -CCAACATCCTTCCGAATCAAGCAG -CCAACATCCTTCCGAATCCGTCAA -CCAACATCCTTCCGAATCGCTGAA -CCAACATCCTTCCGAATCAGTACG -CCAACATCCTTCCGAATCATCCGA -CCAACATCCTTCCGAATCATGGGA -CCAACATCCTTCCGAATCGTGCAA -CCAACATCCTTCCGAATCGAGGAA -CCAACATCCTTCCGAATCCAGGTA -CCAACATCCTTCCGAATCGACTCT -CCAACATCCTTCCGAATCAGTCCT -CCAACATCCTTCCGAATCTAAGCC -CCAACATCCTTCCGAATCATAGCC -CCAACATCCTTCCGAATCTAACCG -CCAACATCCTTCCGAATCATGCCA -CCAACATCCTTCGGAATGGGAAAC -CCAACATCCTTCGGAATGAACACC -CCAACATCCTTCGGAATGATCGAG -CCAACATCCTTCGGAATGCTCCTT -CCAACATCCTTCGGAATGCCTGTT -CCAACATCCTTCGGAATGCGGTTT -CCAACATCCTTCGGAATGGTGGTT -CCAACATCCTTCGGAATGGCCTTT -CCAACATCCTTCGGAATGGGTCTT -CCAACATCCTTCGGAATGACGCTT -CCAACATCCTTCGGAATGAGCGTT -CCAACATCCTTCGGAATGTTCGTC -CCAACATCCTTCGGAATGTCTCTC -CCAACATCCTTCGGAATGTGGATC -CCAACATCCTTCGGAATGCACTTC -CCAACATCCTTCGGAATGGTACTC -CCAACATCCTTCGGAATGGATGTC -CCAACATCCTTCGGAATGACAGTC -CCAACATCCTTCGGAATGTTGCTG -CCAACATCCTTCGGAATGTCCATG -CCAACATCCTTCGGAATGTGTGTG -CCAACATCCTTCGGAATGCTAGTG -CCAACATCCTTCGGAATGCATCTG -CCAACATCCTTCGGAATGGAGTTG -CCAACATCCTTCGGAATGAGACTG -CCAACATCCTTCGGAATGTCGGTA -CCAACATCCTTCGGAATGTGCCTA -CCAACATCCTTCGGAATGCCACTA -CCAACATCCTTCGGAATGGGAGTA -CCAACATCCTTCGGAATGTCGTCT -CCAACATCCTTCGGAATGTGCACT -CCAACATCCTTCGGAATGCTGACT -CCAACATCCTTCGGAATGCAACCT -CCAACATCCTTCGGAATGGCTACT -CCAACATCCTTCGGAATGGGATCT -CCAACATCCTTCGGAATGAAGGCT -CCAACATCCTTCGGAATGTCAACC -CCAACATCCTTCGGAATGTGTTCC -CCAACATCCTTCGGAATGATTCCC -CCAACATCCTTCGGAATGTTCTCG -CCAACATCCTTCGGAATGTAGACG -CCAACATCCTTCGGAATGGTAACG -CCAACATCCTTCGGAATGACTTCG -CCAACATCCTTCGGAATGTACGCA -CCAACATCCTTCGGAATGCTTGCA -CCAACATCCTTCGGAATGCGAACA -CCAACATCCTTCGGAATGCAGTCA -CCAACATCCTTCGGAATGGATCCA -CCAACATCCTTCGGAATGACGACA -CCAACATCCTTCGGAATGAGCTCA -CCAACATCCTTCGGAATGTCACGT -CCAACATCCTTCGGAATGCGTAGT -CCAACATCCTTCGGAATGGTCAGT -CCAACATCCTTCGGAATGGAAGGT -CCAACATCCTTCGGAATGAACCGT -CCAACATCCTTCGGAATGTTGTGC -CCAACATCCTTCGGAATGCTAAGC -CCAACATCCTTCGGAATGACTAGC -CCAACATCCTTCGGAATGAGATGC -CCAACATCCTTCGGAATGTGAAGG -CCAACATCCTTCGGAATGCAATGG -CCAACATCCTTCGGAATGATGAGG -CCAACATCCTTCGGAATGAATGGG -CCAACATCCTTCGGAATGTCCTGA -CCAACATCCTTCGGAATGTAGCGA -CCAACATCCTTCGGAATGCACAGA -CCAACATCCTTCGGAATGGCAAGA -CCAACATCCTTCGGAATGGGTTGA -CCAACATCCTTCGGAATGTCCGAT -CCAACATCCTTCGGAATGTGGCAT -CCAACATCCTTCGGAATGCGAGAT -CCAACATCCTTCGGAATGTACCAC -CCAACATCCTTCGGAATGCAGAAC -CCAACATCCTTCGGAATGGTCTAC -CCAACATCCTTCGGAATGACGTAC -CCAACATCCTTCGGAATGAGTGAC -CCAACATCCTTCGGAATGCTGTAG -CCAACATCCTTCGGAATGCCTAAG -CCAACATCCTTCGGAATGGTTCAG -CCAACATCCTTCGGAATGGCATAG -CCAACATCCTTCGGAATGGACAAG -CCAACATCCTTCGGAATGAAGCAG -CCAACATCCTTCGGAATGCGTCAA -CCAACATCCTTCGGAATGGCTGAA -CCAACATCCTTCGGAATGAGTACG -CCAACATCCTTCGGAATGATCCGA -CCAACATCCTTCGGAATGATGGGA -CCAACATCCTTCGGAATGGTGCAA -CCAACATCCTTCGGAATGGAGGAA -CCAACATCCTTCGGAATGCAGGTA -CCAACATCCTTCGGAATGGACTCT -CCAACATCCTTCGGAATGAGTCCT -CCAACATCCTTCGGAATGTAAGCC -CCAACATCCTTCGGAATGATAGCC -CCAACATCCTTCGGAATGTAACCG -CCAACATCCTTCGGAATGATGCCA -CCAACATCCTTCCAAGTGGGAAAC -CCAACATCCTTCCAAGTGAACACC -CCAACATCCTTCCAAGTGATCGAG -CCAACATCCTTCCAAGTGCTCCTT -CCAACATCCTTCCAAGTGCCTGTT -CCAACATCCTTCCAAGTGCGGTTT -CCAACATCCTTCCAAGTGGTGGTT -CCAACATCCTTCCAAGTGGCCTTT -CCAACATCCTTCCAAGTGGGTCTT -CCAACATCCTTCCAAGTGACGCTT -CCAACATCCTTCCAAGTGAGCGTT -CCAACATCCTTCCAAGTGTTCGTC -CCAACATCCTTCCAAGTGTCTCTC -CCAACATCCTTCCAAGTGTGGATC -CCAACATCCTTCCAAGTGCACTTC -CCAACATCCTTCCAAGTGGTACTC -CCAACATCCTTCCAAGTGGATGTC -CCAACATCCTTCCAAGTGACAGTC -CCAACATCCTTCCAAGTGTTGCTG -CCAACATCCTTCCAAGTGTCCATG -CCAACATCCTTCCAAGTGTGTGTG -CCAACATCCTTCCAAGTGCTAGTG -CCAACATCCTTCCAAGTGCATCTG -CCAACATCCTTCCAAGTGGAGTTG -CCAACATCCTTCCAAGTGAGACTG -CCAACATCCTTCCAAGTGTCGGTA -CCAACATCCTTCCAAGTGTGCCTA -CCAACATCCTTCCAAGTGCCACTA -CCAACATCCTTCCAAGTGGGAGTA -CCAACATCCTTCCAAGTGTCGTCT -CCAACATCCTTCCAAGTGTGCACT -CCAACATCCTTCCAAGTGCTGACT -CCAACATCCTTCCAAGTGCAACCT -CCAACATCCTTCCAAGTGGCTACT -CCAACATCCTTCCAAGTGGGATCT -CCAACATCCTTCCAAGTGAAGGCT -CCAACATCCTTCCAAGTGTCAACC -CCAACATCCTTCCAAGTGTGTTCC -CCAACATCCTTCCAAGTGATTCCC -CCAACATCCTTCCAAGTGTTCTCG -CCAACATCCTTCCAAGTGTAGACG -CCAACATCCTTCCAAGTGGTAACG -CCAACATCCTTCCAAGTGACTTCG -CCAACATCCTTCCAAGTGTACGCA -CCAACATCCTTCCAAGTGCTTGCA -CCAACATCCTTCCAAGTGCGAACA -CCAACATCCTTCCAAGTGCAGTCA -CCAACATCCTTCCAAGTGGATCCA -CCAACATCCTTCCAAGTGACGACA -CCAACATCCTTCCAAGTGAGCTCA -CCAACATCCTTCCAAGTGTCACGT -CCAACATCCTTCCAAGTGCGTAGT -CCAACATCCTTCCAAGTGGTCAGT -CCAACATCCTTCCAAGTGGAAGGT -CCAACATCCTTCCAAGTGAACCGT -CCAACATCCTTCCAAGTGTTGTGC -CCAACATCCTTCCAAGTGCTAAGC -CCAACATCCTTCCAAGTGACTAGC -CCAACATCCTTCCAAGTGAGATGC -CCAACATCCTTCCAAGTGTGAAGG -CCAACATCCTTCCAAGTGCAATGG -CCAACATCCTTCCAAGTGATGAGG -CCAACATCCTTCCAAGTGAATGGG -CCAACATCCTTCCAAGTGTCCTGA -CCAACATCCTTCCAAGTGTAGCGA -CCAACATCCTTCCAAGTGCACAGA -CCAACATCCTTCCAAGTGGCAAGA -CCAACATCCTTCCAAGTGGGTTGA -CCAACATCCTTCCAAGTGTCCGAT -CCAACATCCTTCCAAGTGTGGCAT -CCAACATCCTTCCAAGTGCGAGAT -CCAACATCCTTCCAAGTGTACCAC -CCAACATCCTTCCAAGTGCAGAAC -CCAACATCCTTCCAAGTGGTCTAC -CCAACATCCTTCCAAGTGACGTAC -CCAACATCCTTCCAAGTGAGTGAC -CCAACATCCTTCCAAGTGCTGTAG -CCAACATCCTTCCAAGTGCCTAAG -CCAACATCCTTCCAAGTGGTTCAG -CCAACATCCTTCCAAGTGGCATAG -CCAACATCCTTCCAAGTGGACAAG -CCAACATCCTTCCAAGTGAAGCAG -CCAACATCCTTCCAAGTGCGTCAA -CCAACATCCTTCCAAGTGGCTGAA -CCAACATCCTTCCAAGTGAGTACG -CCAACATCCTTCCAAGTGATCCGA -CCAACATCCTTCCAAGTGATGGGA -CCAACATCCTTCCAAGTGGTGCAA -CCAACATCCTTCCAAGTGGAGGAA -CCAACATCCTTCCAAGTGCAGGTA -CCAACATCCTTCCAAGTGGACTCT -CCAACATCCTTCCAAGTGAGTCCT -CCAACATCCTTCCAAGTGTAAGCC -CCAACATCCTTCCAAGTGATAGCC -CCAACATCCTTCCAAGTGTAACCG -CCAACATCCTTCCAAGTGATGCCA -CCAACATCCTTCGAAGAGGGAAAC -CCAACATCCTTCGAAGAGAACACC -CCAACATCCTTCGAAGAGATCGAG -CCAACATCCTTCGAAGAGCTCCTT -CCAACATCCTTCGAAGAGCCTGTT -CCAACATCCTTCGAAGAGCGGTTT -CCAACATCCTTCGAAGAGGTGGTT -CCAACATCCTTCGAAGAGGCCTTT -CCAACATCCTTCGAAGAGGGTCTT -CCAACATCCTTCGAAGAGACGCTT -CCAACATCCTTCGAAGAGAGCGTT -CCAACATCCTTCGAAGAGTTCGTC -CCAACATCCTTCGAAGAGTCTCTC -CCAACATCCTTCGAAGAGTGGATC -CCAACATCCTTCGAAGAGCACTTC -CCAACATCCTTCGAAGAGGTACTC -CCAACATCCTTCGAAGAGGATGTC -CCAACATCCTTCGAAGAGACAGTC -CCAACATCCTTCGAAGAGTTGCTG -CCAACATCCTTCGAAGAGTCCATG -CCAACATCCTTCGAAGAGTGTGTG -CCAACATCCTTCGAAGAGCTAGTG -CCAACATCCTTCGAAGAGCATCTG -CCAACATCCTTCGAAGAGGAGTTG -CCAACATCCTTCGAAGAGAGACTG -CCAACATCCTTCGAAGAGTCGGTA -CCAACATCCTTCGAAGAGTGCCTA -CCAACATCCTTCGAAGAGCCACTA -CCAACATCCTTCGAAGAGGGAGTA -CCAACATCCTTCGAAGAGTCGTCT -CCAACATCCTTCGAAGAGTGCACT -CCAACATCCTTCGAAGAGCTGACT -CCAACATCCTTCGAAGAGCAACCT -CCAACATCCTTCGAAGAGGCTACT -CCAACATCCTTCGAAGAGGGATCT -CCAACATCCTTCGAAGAGAAGGCT -CCAACATCCTTCGAAGAGTCAACC -CCAACATCCTTCGAAGAGTGTTCC -CCAACATCCTTCGAAGAGATTCCC -CCAACATCCTTCGAAGAGTTCTCG -CCAACATCCTTCGAAGAGTAGACG -CCAACATCCTTCGAAGAGGTAACG -CCAACATCCTTCGAAGAGACTTCG -CCAACATCCTTCGAAGAGTACGCA -CCAACATCCTTCGAAGAGCTTGCA -CCAACATCCTTCGAAGAGCGAACA -CCAACATCCTTCGAAGAGCAGTCA -CCAACATCCTTCGAAGAGGATCCA -CCAACATCCTTCGAAGAGACGACA -CCAACATCCTTCGAAGAGAGCTCA -CCAACATCCTTCGAAGAGTCACGT -CCAACATCCTTCGAAGAGCGTAGT -CCAACATCCTTCGAAGAGGTCAGT -CCAACATCCTTCGAAGAGGAAGGT -CCAACATCCTTCGAAGAGAACCGT -CCAACATCCTTCGAAGAGTTGTGC -CCAACATCCTTCGAAGAGCTAAGC -CCAACATCCTTCGAAGAGACTAGC -CCAACATCCTTCGAAGAGAGATGC -CCAACATCCTTCGAAGAGTGAAGG -CCAACATCCTTCGAAGAGCAATGG -CCAACATCCTTCGAAGAGATGAGG -CCAACATCCTTCGAAGAGAATGGG -CCAACATCCTTCGAAGAGTCCTGA -CCAACATCCTTCGAAGAGTAGCGA -CCAACATCCTTCGAAGAGCACAGA -CCAACATCCTTCGAAGAGGCAAGA -CCAACATCCTTCGAAGAGGGTTGA -CCAACATCCTTCGAAGAGTCCGAT -CCAACATCCTTCGAAGAGTGGCAT -CCAACATCCTTCGAAGAGCGAGAT -CCAACATCCTTCGAAGAGTACCAC -CCAACATCCTTCGAAGAGCAGAAC -CCAACATCCTTCGAAGAGGTCTAC -CCAACATCCTTCGAAGAGACGTAC -CCAACATCCTTCGAAGAGAGTGAC -CCAACATCCTTCGAAGAGCTGTAG -CCAACATCCTTCGAAGAGCCTAAG -CCAACATCCTTCGAAGAGGTTCAG -CCAACATCCTTCGAAGAGGCATAG -CCAACATCCTTCGAAGAGGACAAG -CCAACATCCTTCGAAGAGAAGCAG -CCAACATCCTTCGAAGAGCGTCAA -CCAACATCCTTCGAAGAGGCTGAA -CCAACATCCTTCGAAGAGAGTACG -CCAACATCCTTCGAAGAGATCCGA -CCAACATCCTTCGAAGAGATGGGA -CCAACATCCTTCGAAGAGGTGCAA -CCAACATCCTTCGAAGAGGAGGAA -CCAACATCCTTCGAAGAGCAGGTA -CCAACATCCTTCGAAGAGGACTCT -CCAACATCCTTCGAAGAGAGTCCT -CCAACATCCTTCGAAGAGTAAGCC -CCAACATCCTTCGAAGAGATAGCC -CCAACATCCTTCGAAGAGTAACCG -CCAACATCCTTCGAAGAGATGCCA -CCAACATCCTTCGTACAGGGAAAC -CCAACATCCTTCGTACAGAACACC -CCAACATCCTTCGTACAGATCGAG -CCAACATCCTTCGTACAGCTCCTT -CCAACATCCTTCGTACAGCCTGTT -CCAACATCCTTCGTACAGCGGTTT -CCAACATCCTTCGTACAGGTGGTT -CCAACATCCTTCGTACAGGCCTTT -CCAACATCCTTCGTACAGGGTCTT -CCAACATCCTTCGTACAGACGCTT -CCAACATCCTTCGTACAGAGCGTT -CCAACATCCTTCGTACAGTTCGTC -CCAACATCCTTCGTACAGTCTCTC -CCAACATCCTTCGTACAGTGGATC -CCAACATCCTTCGTACAGCACTTC -CCAACATCCTTCGTACAGGTACTC -CCAACATCCTTCGTACAGGATGTC -CCAACATCCTTCGTACAGACAGTC -CCAACATCCTTCGTACAGTTGCTG -CCAACATCCTTCGTACAGTCCATG -CCAACATCCTTCGTACAGTGTGTG -CCAACATCCTTCGTACAGCTAGTG -CCAACATCCTTCGTACAGCATCTG -CCAACATCCTTCGTACAGGAGTTG -CCAACATCCTTCGTACAGAGACTG -CCAACATCCTTCGTACAGTCGGTA -CCAACATCCTTCGTACAGTGCCTA -CCAACATCCTTCGTACAGCCACTA -CCAACATCCTTCGTACAGGGAGTA -CCAACATCCTTCGTACAGTCGTCT -CCAACATCCTTCGTACAGTGCACT -CCAACATCCTTCGTACAGCTGACT -CCAACATCCTTCGTACAGCAACCT -CCAACATCCTTCGTACAGGCTACT -CCAACATCCTTCGTACAGGGATCT -CCAACATCCTTCGTACAGAAGGCT -CCAACATCCTTCGTACAGTCAACC -CCAACATCCTTCGTACAGTGTTCC -CCAACATCCTTCGTACAGATTCCC -CCAACATCCTTCGTACAGTTCTCG -CCAACATCCTTCGTACAGTAGACG -CCAACATCCTTCGTACAGGTAACG -CCAACATCCTTCGTACAGACTTCG -CCAACATCCTTCGTACAGTACGCA -CCAACATCCTTCGTACAGCTTGCA -CCAACATCCTTCGTACAGCGAACA -CCAACATCCTTCGTACAGCAGTCA -CCAACATCCTTCGTACAGGATCCA -CCAACATCCTTCGTACAGACGACA -CCAACATCCTTCGTACAGAGCTCA -CCAACATCCTTCGTACAGTCACGT -CCAACATCCTTCGTACAGCGTAGT -CCAACATCCTTCGTACAGGTCAGT -CCAACATCCTTCGTACAGGAAGGT -CCAACATCCTTCGTACAGAACCGT -CCAACATCCTTCGTACAGTTGTGC -CCAACATCCTTCGTACAGCTAAGC -CCAACATCCTTCGTACAGACTAGC -CCAACATCCTTCGTACAGAGATGC -CCAACATCCTTCGTACAGTGAAGG -CCAACATCCTTCGTACAGCAATGG -CCAACATCCTTCGTACAGATGAGG -CCAACATCCTTCGTACAGAATGGG -CCAACATCCTTCGTACAGTCCTGA -CCAACATCCTTCGTACAGTAGCGA -CCAACATCCTTCGTACAGCACAGA -CCAACATCCTTCGTACAGGCAAGA -CCAACATCCTTCGTACAGGGTTGA -CCAACATCCTTCGTACAGTCCGAT -CCAACATCCTTCGTACAGTGGCAT -CCAACATCCTTCGTACAGCGAGAT -CCAACATCCTTCGTACAGTACCAC -CCAACATCCTTCGTACAGCAGAAC -CCAACATCCTTCGTACAGGTCTAC -CCAACATCCTTCGTACAGACGTAC -CCAACATCCTTCGTACAGAGTGAC -CCAACATCCTTCGTACAGCTGTAG -CCAACATCCTTCGTACAGCCTAAG -CCAACATCCTTCGTACAGGTTCAG -CCAACATCCTTCGTACAGGCATAG -CCAACATCCTTCGTACAGGACAAG -CCAACATCCTTCGTACAGAAGCAG -CCAACATCCTTCGTACAGCGTCAA -CCAACATCCTTCGTACAGGCTGAA -CCAACATCCTTCGTACAGAGTACG -CCAACATCCTTCGTACAGATCCGA -CCAACATCCTTCGTACAGATGGGA -CCAACATCCTTCGTACAGGTGCAA -CCAACATCCTTCGTACAGGAGGAA -CCAACATCCTTCGTACAGCAGGTA -CCAACATCCTTCGTACAGGACTCT -CCAACATCCTTCGTACAGAGTCCT -CCAACATCCTTCGTACAGTAAGCC -CCAACATCCTTCGTACAGATAGCC -CCAACATCCTTCGTACAGTAACCG -CCAACATCCTTCGTACAGATGCCA -CCAACATCCTTCTCTGACGGAAAC -CCAACATCCTTCTCTGACAACACC -CCAACATCCTTCTCTGACATCGAG -CCAACATCCTTCTCTGACCTCCTT -CCAACATCCTTCTCTGACCCTGTT -CCAACATCCTTCTCTGACCGGTTT -CCAACATCCTTCTCTGACGTGGTT -CCAACATCCTTCTCTGACGCCTTT -CCAACATCCTTCTCTGACGGTCTT -CCAACATCCTTCTCTGACACGCTT -CCAACATCCTTCTCTGACAGCGTT -CCAACATCCTTCTCTGACTTCGTC -CCAACATCCTTCTCTGACTCTCTC -CCAACATCCTTCTCTGACTGGATC -CCAACATCCTTCTCTGACCACTTC -CCAACATCCTTCTCTGACGTACTC -CCAACATCCTTCTCTGACGATGTC -CCAACATCCTTCTCTGACACAGTC -CCAACATCCTTCTCTGACTTGCTG -CCAACATCCTTCTCTGACTCCATG -CCAACATCCTTCTCTGACTGTGTG -CCAACATCCTTCTCTGACCTAGTG -CCAACATCCTTCTCTGACCATCTG -CCAACATCCTTCTCTGACGAGTTG -CCAACATCCTTCTCTGACAGACTG -CCAACATCCTTCTCTGACTCGGTA -CCAACATCCTTCTCTGACTGCCTA -CCAACATCCTTCTCTGACCCACTA -CCAACATCCTTCTCTGACGGAGTA -CCAACATCCTTCTCTGACTCGTCT -CCAACATCCTTCTCTGACTGCACT -CCAACATCCTTCTCTGACCTGACT -CCAACATCCTTCTCTGACCAACCT -CCAACATCCTTCTCTGACGCTACT -CCAACATCCTTCTCTGACGGATCT -CCAACATCCTTCTCTGACAAGGCT -CCAACATCCTTCTCTGACTCAACC -CCAACATCCTTCTCTGACTGTTCC -CCAACATCCTTCTCTGACATTCCC -CCAACATCCTTCTCTGACTTCTCG -CCAACATCCTTCTCTGACTAGACG -CCAACATCCTTCTCTGACGTAACG -CCAACATCCTTCTCTGACACTTCG -CCAACATCCTTCTCTGACTACGCA -CCAACATCCTTCTCTGACCTTGCA -CCAACATCCTTCTCTGACCGAACA -CCAACATCCTTCTCTGACCAGTCA -CCAACATCCTTCTCTGACGATCCA -CCAACATCCTTCTCTGACACGACA -CCAACATCCTTCTCTGACAGCTCA -CCAACATCCTTCTCTGACTCACGT -CCAACATCCTTCTCTGACCGTAGT -CCAACATCCTTCTCTGACGTCAGT -CCAACATCCTTCTCTGACGAAGGT -CCAACATCCTTCTCTGACAACCGT -CCAACATCCTTCTCTGACTTGTGC -CCAACATCCTTCTCTGACCTAAGC -CCAACATCCTTCTCTGACACTAGC -CCAACATCCTTCTCTGACAGATGC -CCAACATCCTTCTCTGACTGAAGG -CCAACATCCTTCTCTGACCAATGG -CCAACATCCTTCTCTGACATGAGG -CCAACATCCTTCTCTGACAATGGG -CCAACATCCTTCTCTGACTCCTGA -CCAACATCCTTCTCTGACTAGCGA -CCAACATCCTTCTCTGACCACAGA -CCAACATCCTTCTCTGACGCAAGA -CCAACATCCTTCTCTGACGGTTGA -CCAACATCCTTCTCTGACTCCGAT -CCAACATCCTTCTCTGACTGGCAT -CCAACATCCTTCTCTGACCGAGAT -CCAACATCCTTCTCTGACTACCAC -CCAACATCCTTCTCTGACCAGAAC -CCAACATCCTTCTCTGACGTCTAC -CCAACATCCTTCTCTGACACGTAC -CCAACATCCTTCTCTGACAGTGAC -CCAACATCCTTCTCTGACCTGTAG -CCAACATCCTTCTCTGACCCTAAG -CCAACATCCTTCTCTGACGTTCAG -CCAACATCCTTCTCTGACGCATAG -CCAACATCCTTCTCTGACGACAAG -CCAACATCCTTCTCTGACAAGCAG -CCAACATCCTTCTCTGACCGTCAA -CCAACATCCTTCTCTGACGCTGAA -CCAACATCCTTCTCTGACAGTACG -CCAACATCCTTCTCTGACATCCGA -CCAACATCCTTCTCTGACATGGGA -CCAACATCCTTCTCTGACGTGCAA -CCAACATCCTTCTCTGACGAGGAA -CCAACATCCTTCTCTGACCAGGTA -CCAACATCCTTCTCTGACGACTCT -CCAACATCCTTCTCTGACAGTCCT -CCAACATCCTTCTCTGACTAAGCC -CCAACATCCTTCTCTGACATAGCC -CCAACATCCTTCTCTGACTAACCG -CCAACATCCTTCTCTGACATGCCA -CCAACATCCTTCCCTAGTGGAAAC -CCAACATCCTTCCCTAGTAACACC -CCAACATCCTTCCCTAGTATCGAG -CCAACATCCTTCCCTAGTCTCCTT -CCAACATCCTTCCCTAGTCCTGTT -CCAACATCCTTCCCTAGTCGGTTT -CCAACATCCTTCCCTAGTGTGGTT -CCAACATCCTTCCCTAGTGCCTTT -CCAACATCCTTCCCTAGTGGTCTT -CCAACATCCTTCCCTAGTACGCTT -CCAACATCCTTCCCTAGTAGCGTT -CCAACATCCTTCCCTAGTTTCGTC -CCAACATCCTTCCCTAGTTCTCTC -CCAACATCCTTCCCTAGTTGGATC -CCAACATCCTTCCCTAGTCACTTC -CCAACATCCTTCCCTAGTGTACTC -CCAACATCCTTCCCTAGTGATGTC -CCAACATCCTTCCCTAGTACAGTC -CCAACATCCTTCCCTAGTTTGCTG -CCAACATCCTTCCCTAGTTCCATG -CCAACATCCTTCCCTAGTTGTGTG -CCAACATCCTTCCCTAGTCTAGTG -CCAACATCCTTCCCTAGTCATCTG -CCAACATCCTTCCCTAGTGAGTTG -CCAACATCCTTCCCTAGTAGACTG -CCAACATCCTTCCCTAGTTCGGTA -CCAACATCCTTCCCTAGTTGCCTA -CCAACATCCTTCCCTAGTCCACTA -CCAACATCCTTCCCTAGTGGAGTA -CCAACATCCTTCCCTAGTTCGTCT -CCAACATCCTTCCCTAGTTGCACT -CCAACATCCTTCCCTAGTCTGACT -CCAACATCCTTCCCTAGTCAACCT -CCAACATCCTTCCCTAGTGCTACT -CCAACATCCTTCCCTAGTGGATCT -CCAACATCCTTCCCTAGTAAGGCT -CCAACATCCTTCCCTAGTTCAACC -CCAACATCCTTCCCTAGTTGTTCC -CCAACATCCTTCCCTAGTATTCCC -CCAACATCCTTCCCTAGTTTCTCG -CCAACATCCTTCCCTAGTTAGACG -CCAACATCCTTCCCTAGTGTAACG -CCAACATCCTTCCCTAGTACTTCG -CCAACATCCTTCCCTAGTTACGCA -CCAACATCCTTCCCTAGTCTTGCA -CCAACATCCTTCCCTAGTCGAACA -CCAACATCCTTCCCTAGTCAGTCA -CCAACATCCTTCCCTAGTGATCCA -CCAACATCCTTCCCTAGTACGACA -CCAACATCCTTCCCTAGTAGCTCA -CCAACATCCTTCCCTAGTTCACGT -CCAACATCCTTCCCTAGTCGTAGT -CCAACATCCTTCCCTAGTGTCAGT -CCAACATCCTTCCCTAGTGAAGGT -CCAACATCCTTCCCTAGTAACCGT -CCAACATCCTTCCCTAGTTTGTGC -CCAACATCCTTCCCTAGTCTAAGC -CCAACATCCTTCCCTAGTACTAGC -CCAACATCCTTCCCTAGTAGATGC -CCAACATCCTTCCCTAGTTGAAGG -CCAACATCCTTCCCTAGTCAATGG -CCAACATCCTTCCCTAGTATGAGG -CCAACATCCTTCCCTAGTAATGGG -CCAACATCCTTCCCTAGTTCCTGA -CCAACATCCTTCCCTAGTTAGCGA -CCAACATCCTTCCCTAGTCACAGA -CCAACATCCTTCCCTAGTGCAAGA -CCAACATCCTTCCCTAGTGGTTGA -CCAACATCCTTCCCTAGTTCCGAT -CCAACATCCTTCCCTAGTTGGCAT -CCAACATCCTTCCCTAGTCGAGAT -CCAACATCCTTCCCTAGTTACCAC -CCAACATCCTTCCCTAGTCAGAAC -CCAACATCCTTCCCTAGTGTCTAC -CCAACATCCTTCCCTAGTACGTAC -CCAACATCCTTCCCTAGTAGTGAC -CCAACATCCTTCCCTAGTCTGTAG -CCAACATCCTTCCCTAGTCCTAAG -CCAACATCCTTCCCTAGTGTTCAG -CCAACATCCTTCCCTAGTGCATAG -CCAACATCCTTCCCTAGTGACAAG -CCAACATCCTTCCCTAGTAAGCAG -CCAACATCCTTCCCTAGTCGTCAA -CCAACATCCTTCCCTAGTGCTGAA -CCAACATCCTTCCCTAGTAGTACG -CCAACATCCTTCCCTAGTATCCGA -CCAACATCCTTCCCTAGTATGGGA -CCAACATCCTTCCCTAGTGTGCAA -CCAACATCCTTCCCTAGTGAGGAA -CCAACATCCTTCCCTAGTCAGGTA -CCAACATCCTTCCCTAGTGACTCT -CCAACATCCTTCCCTAGTAGTCCT -CCAACATCCTTCCCTAGTTAAGCC -CCAACATCCTTCCCTAGTATAGCC -CCAACATCCTTCCCTAGTTAACCG -CCAACATCCTTCCCTAGTATGCCA -CCAACATCCTTCGCCTAAGGAAAC -CCAACATCCTTCGCCTAAAACACC -CCAACATCCTTCGCCTAAATCGAG -CCAACATCCTTCGCCTAACTCCTT -CCAACATCCTTCGCCTAACCTGTT -CCAACATCCTTCGCCTAACGGTTT -CCAACATCCTTCGCCTAAGTGGTT -CCAACATCCTTCGCCTAAGCCTTT -CCAACATCCTTCGCCTAAGGTCTT -CCAACATCCTTCGCCTAAACGCTT -CCAACATCCTTCGCCTAAAGCGTT -CCAACATCCTTCGCCTAATTCGTC -CCAACATCCTTCGCCTAATCTCTC -CCAACATCCTTCGCCTAATGGATC -CCAACATCCTTCGCCTAACACTTC -CCAACATCCTTCGCCTAAGTACTC -CCAACATCCTTCGCCTAAGATGTC -CCAACATCCTTCGCCTAAACAGTC -CCAACATCCTTCGCCTAATTGCTG -CCAACATCCTTCGCCTAATCCATG -CCAACATCCTTCGCCTAATGTGTG -CCAACATCCTTCGCCTAACTAGTG -CCAACATCCTTCGCCTAACATCTG -CCAACATCCTTCGCCTAAGAGTTG -CCAACATCCTTCGCCTAAAGACTG -CCAACATCCTTCGCCTAATCGGTA -CCAACATCCTTCGCCTAATGCCTA -CCAACATCCTTCGCCTAACCACTA -CCAACATCCTTCGCCTAAGGAGTA -CCAACATCCTTCGCCTAATCGTCT -CCAACATCCTTCGCCTAATGCACT -CCAACATCCTTCGCCTAACTGACT -CCAACATCCTTCGCCTAACAACCT -CCAACATCCTTCGCCTAAGCTACT -CCAACATCCTTCGCCTAAGGATCT -CCAACATCCTTCGCCTAAAAGGCT -CCAACATCCTTCGCCTAATCAACC -CCAACATCCTTCGCCTAATGTTCC -CCAACATCCTTCGCCTAAATTCCC -CCAACATCCTTCGCCTAATTCTCG -CCAACATCCTTCGCCTAATAGACG -CCAACATCCTTCGCCTAAGTAACG -CCAACATCCTTCGCCTAAACTTCG -CCAACATCCTTCGCCTAATACGCA -CCAACATCCTTCGCCTAACTTGCA -CCAACATCCTTCGCCTAACGAACA -CCAACATCCTTCGCCTAACAGTCA -CCAACATCCTTCGCCTAAGATCCA -CCAACATCCTTCGCCTAAACGACA -CCAACATCCTTCGCCTAAAGCTCA -CCAACATCCTTCGCCTAATCACGT -CCAACATCCTTCGCCTAACGTAGT -CCAACATCCTTCGCCTAAGTCAGT -CCAACATCCTTCGCCTAAGAAGGT -CCAACATCCTTCGCCTAAAACCGT -CCAACATCCTTCGCCTAATTGTGC -CCAACATCCTTCGCCTAACTAAGC -CCAACATCCTTCGCCTAAACTAGC -CCAACATCCTTCGCCTAAAGATGC -CCAACATCCTTCGCCTAATGAAGG -CCAACATCCTTCGCCTAACAATGG -CCAACATCCTTCGCCTAAATGAGG -CCAACATCCTTCGCCTAAAATGGG -CCAACATCCTTCGCCTAATCCTGA -CCAACATCCTTCGCCTAATAGCGA -CCAACATCCTTCGCCTAACACAGA -CCAACATCCTTCGCCTAAGCAAGA -CCAACATCCTTCGCCTAAGGTTGA -CCAACATCCTTCGCCTAATCCGAT -CCAACATCCTTCGCCTAATGGCAT -CCAACATCCTTCGCCTAACGAGAT -CCAACATCCTTCGCCTAATACCAC -CCAACATCCTTCGCCTAACAGAAC -CCAACATCCTTCGCCTAAGTCTAC -CCAACATCCTTCGCCTAAACGTAC -CCAACATCCTTCGCCTAAAGTGAC -CCAACATCCTTCGCCTAACTGTAG -CCAACATCCTTCGCCTAACCTAAG -CCAACATCCTTCGCCTAAGTTCAG -CCAACATCCTTCGCCTAAGCATAG -CCAACATCCTTCGCCTAAGACAAG -CCAACATCCTTCGCCTAAAAGCAG -CCAACATCCTTCGCCTAACGTCAA -CCAACATCCTTCGCCTAAGCTGAA -CCAACATCCTTCGCCTAAAGTACG -CCAACATCCTTCGCCTAAATCCGA -CCAACATCCTTCGCCTAAATGGGA -CCAACATCCTTCGCCTAAGTGCAA -CCAACATCCTTCGCCTAAGAGGAA -CCAACATCCTTCGCCTAACAGGTA -CCAACATCCTTCGCCTAAGACTCT -CCAACATCCTTCGCCTAAAGTCCT -CCAACATCCTTCGCCTAATAAGCC -CCAACATCCTTCGCCTAAATAGCC -CCAACATCCTTCGCCTAATAACCG -CCAACATCCTTCGCCTAAATGCCA -CCAACATCCTTCGCCATAGGAAAC -CCAACATCCTTCGCCATAAACACC -CCAACATCCTTCGCCATAATCGAG -CCAACATCCTTCGCCATACTCCTT -CCAACATCCTTCGCCATACCTGTT -CCAACATCCTTCGCCATACGGTTT -CCAACATCCTTCGCCATAGTGGTT -CCAACATCCTTCGCCATAGCCTTT -CCAACATCCTTCGCCATAGGTCTT -CCAACATCCTTCGCCATAACGCTT -CCAACATCCTTCGCCATAAGCGTT -CCAACATCCTTCGCCATATTCGTC -CCAACATCCTTCGCCATATCTCTC -CCAACATCCTTCGCCATATGGATC -CCAACATCCTTCGCCATACACTTC -CCAACATCCTTCGCCATAGTACTC -CCAACATCCTTCGCCATAGATGTC -CCAACATCCTTCGCCATAACAGTC -CCAACATCCTTCGCCATATTGCTG -CCAACATCCTTCGCCATATCCATG -CCAACATCCTTCGCCATATGTGTG -CCAACATCCTTCGCCATACTAGTG -CCAACATCCTTCGCCATACATCTG -CCAACATCCTTCGCCATAGAGTTG -CCAACATCCTTCGCCATAAGACTG -CCAACATCCTTCGCCATATCGGTA -CCAACATCCTTCGCCATATGCCTA -CCAACATCCTTCGCCATACCACTA -CCAACATCCTTCGCCATAGGAGTA -CCAACATCCTTCGCCATATCGTCT -CCAACATCCTTCGCCATATGCACT -CCAACATCCTTCGCCATACTGACT -CCAACATCCTTCGCCATACAACCT -CCAACATCCTTCGCCATAGCTACT -CCAACATCCTTCGCCATAGGATCT -CCAACATCCTTCGCCATAAAGGCT -CCAACATCCTTCGCCATATCAACC -CCAACATCCTTCGCCATATGTTCC -CCAACATCCTTCGCCATAATTCCC -CCAACATCCTTCGCCATATTCTCG -CCAACATCCTTCGCCATATAGACG -CCAACATCCTTCGCCATAGTAACG -CCAACATCCTTCGCCATAACTTCG -CCAACATCCTTCGCCATATACGCA -CCAACATCCTTCGCCATACTTGCA -CCAACATCCTTCGCCATACGAACA -CCAACATCCTTCGCCATACAGTCA -CCAACATCCTTCGCCATAGATCCA -CCAACATCCTTCGCCATAACGACA -CCAACATCCTTCGCCATAAGCTCA -CCAACATCCTTCGCCATATCACGT -CCAACATCCTTCGCCATACGTAGT -CCAACATCCTTCGCCATAGTCAGT -CCAACATCCTTCGCCATAGAAGGT -CCAACATCCTTCGCCATAAACCGT -CCAACATCCTTCGCCATATTGTGC -CCAACATCCTTCGCCATACTAAGC -CCAACATCCTTCGCCATAACTAGC -CCAACATCCTTCGCCATAAGATGC -CCAACATCCTTCGCCATATGAAGG -CCAACATCCTTCGCCATACAATGG -CCAACATCCTTCGCCATAATGAGG -CCAACATCCTTCGCCATAAATGGG -CCAACATCCTTCGCCATATCCTGA -CCAACATCCTTCGCCATATAGCGA -CCAACATCCTTCGCCATACACAGA -CCAACATCCTTCGCCATAGCAAGA -CCAACATCCTTCGCCATAGGTTGA -CCAACATCCTTCGCCATATCCGAT -CCAACATCCTTCGCCATATGGCAT -CCAACATCCTTCGCCATACGAGAT -CCAACATCCTTCGCCATATACCAC -CCAACATCCTTCGCCATACAGAAC -CCAACATCCTTCGCCATAGTCTAC -CCAACATCCTTCGCCATAACGTAC -CCAACATCCTTCGCCATAAGTGAC -CCAACATCCTTCGCCATACTGTAG -CCAACATCCTTCGCCATACCTAAG -CCAACATCCTTCGCCATAGTTCAG -CCAACATCCTTCGCCATAGCATAG -CCAACATCCTTCGCCATAGACAAG -CCAACATCCTTCGCCATAAAGCAG -CCAACATCCTTCGCCATACGTCAA -CCAACATCCTTCGCCATAGCTGAA -CCAACATCCTTCGCCATAAGTACG -CCAACATCCTTCGCCATAATCCGA -CCAACATCCTTCGCCATAATGGGA -CCAACATCCTTCGCCATAGTGCAA -CCAACATCCTTCGCCATAGAGGAA -CCAACATCCTTCGCCATACAGGTA -CCAACATCCTTCGCCATAGACTCT -CCAACATCCTTCGCCATAAGTCCT -CCAACATCCTTCGCCATATAAGCC -CCAACATCCTTCGCCATAATAGCC -CCAACATCCTTCGCCATATAACCG -CCAACATCCTTCGCCATAATGCCA -CCAACATCCTTCCCGTAAGGAAAC -CCAACATCCTTCCCGTAAAACACC -CCAACATCCTTCCCGTAAATCGAG -CCAACATCCTTCCCGTAACTCCTT -CCAACATCCTTCCCGTAACCTGTT -CCAACATCCTTCCCGTAACGGTTT -CCAACATCCTTCCCGTAAGTGGTT -CCAACATCCTTCCCGTAAGCCTTT -CCAACATCCTTCCCGTAAGGTCTT -CCAACATCCTTCCCGTAAACGCTT -CCAACATCCTTCCCGTAAAGCGTT -CCAACATCCTTCCCGTAATTCGTC -CCAACATCCTTCCCGTAATCTCTC -CCAACATCCTTCCCGTAATGGATC -CCAACATCCTTCCCGTAACACTTC -CCAACATCCTTCCCGTAAGTACTC -CCAACATCCTTCCCGTAAGATGTC -CCAACATCCTTCCCGTAAACAGTC -CCAACATCCTTCCCGTAATTGCTG -CCAACATCCTTCCCGTAATCCATG -CCAACATCCTTCCCGTAATGTGTG -CCAACATCCTTCCCGTAACTAGTG -CCAACATCCTTCCCGTAACATCTG -CCAACATCCTTCCCGTAAGAGTTG -CCAACATCCTTCCCGTAAAGACTG -CCAACATCCTTCCCGTAATCGGTA -CCAACATCCTTCCCGTAATGCCTA -CCAACATCCTTCCCGTAACCACTA -CCAACATCCTTCCCGTAAGGAGTA -CCAACATCCTTCCCGTAATCGTCT -CCAACATCCTTCCCGTAATGCACT -CCAACATCCTTCCCGTAACTGACT -CCAACATCCTTCCCGTAACAACCT -CCAACATCCTTCCCGTAAGCTACT -CCAACATCCTTCCCGTAAGGATCT -CCAACATCCTTCCCGTAAAAGGCT -CCAACATCCTTCCCGTAATCAACC -CCAACATCCTTCCCGTAATGTTCC -CCAACATCCTTCCCGTAAATTCCC -CCAACATCCTTCCCGTAATTCTCG -CCAACATCCTTCCCGTAATAGACG -CCAACATCCTTCCCGTAAGTAACG -CCAACATCCTTCCCGTAAACTTCG -CCAACATCCTTCCCGTAATACGCA -CCAACATCCTTCCCGTAACTTGCA -CCAACATCCTTCCCGTAACGAACA -CCAACATCCTTCCCGTAACAGTCA -CCAACATCCTTCCCGTAAGATCCA -CCAACATCCTTCCCGTAAACGACA -CCAACATCCTTCCCGTAAAGCTCA -CCAACATCCTTCCCGTAATCACGT -CCAACATCCTTCCCGTAACGTAGT -CCAACATCCTTCCCGTAAGTCAGT -CCAACATCCTTCCCGTAAGAAGGT -CCAACATCCTTCCCGTAAAACCGT -CCAACATCCTTCCCGTAATTGTGC -CCAACATCCTTCCCGTAACTAAGC -CCAACATCCTTCCCGTAAACTAGC -CCAACATCCTTCCCGTAAAGATGC -CCAACATCCTTCCCGTAATGAAGG -CCAACATCCTTCCCGTAACAATGG -CCAACATCCTTCCCGTAAATGAGG -CCAACATCCTTCCCGTAAAATGGG -CCAACATCCTTCCCGTAATCCTGA -CCAACATCCTTCCCGTAATAGCGA -CCAACATCCTTCCCGTAACACAGA -CCAACATCCTTCCCGTAAGCAAGA -CCAACATCCTTCCCGTAAGGTTGA -CCAACATCCTTCCCGTAATCCGAT -CCAACATCCTTCCCGTAATGGCAT -CCAACATCCTTCCCGTAACGAGAT -CCAACATCCTTCCCGTAATACCAC -CCAACATCCTTCCCGTAACAGAAC -CCAACATCCTTCCCGTAAGTCTAC -CCAACATCCTTCCCGTAAACGTAC -CCAACATCCTTCCCGTAAAGTGAC -CCAACATCCTTCCCGTAACTGTAG -CCAACATCCTTCCCGTAACCTAAG -CCAACATCCTTCCCGTAAGTTCAG -CCAACATCCTTCCCGTAAGCATAG -CCAACATCCTTCCCGTAAGACAAG -CCAACATCCTTCCCGTAAAAGCAG -CCAACATCCTTCCCGTAACGTCAA -CCAACATCCTTCCCGTAAGCTGAA -CCAACATCCTTCCCGTAAAGTACG -CCAACATCCTTCCCGTAAATCCGA -CCAACATCCTTCCCGTAAATGGGA -CCAACATCCTTCCCGTAAGTGCAA -CCAACATCCTTCCCGTAAGAGGAA -CCAACATCCTTCCCGTAACAGGTA -CCAACATCCTTCCCGTAAGACTCT -CCAACATCCTTCCCGTAAAGTCCT -CCAACATCCTTCCCGTAATAAGCC -CCAACATCCTTCCCGTAAATAGCC -CCAACATCCTTCCCGTAATAACCG -CCAACATCCTTCCCGTAAATGCCA -CCAACATCCTTCCCAATGGGAAAC -CCAACATCCTTCCCAATGAACACC -CCAACATCCTTCCCAATGATCGAG -CCAACATCCTTCCCAATGCTCCTT -CCAACATCCTTCCCAATGCCTGTT -CCAACATCCTTCCCAATGCGGTTT -CCAACATCCTTCCCAATGGTGGTT -CCAACATCCTTCCCAATGGCCTTT -CCAACATCCTTCCCAATGGGTCTT -CCAACATCCTTCCCAATGACGCTT -CCAACATCCTTCCCAATGAGCGTT -CCAACATCCTTCCCAATGTTCGTC -CCAACATCCTTCCCAATGTCTCTC -CCAACATCCTTCCCAATGTGGATC -CCAACATCCTTCCCAATGCACTTC -CCAACATCCTTCCCAATGGTACTC -CCAACATCCTTCCCAATGGATGTC -CCAACATCCTTCCCAATGACAGTC -CCAACATCCTTCCCAATGTTGCTG -CCAACATCCTTCCCAATGTCCATG -CCAACATCCTTCCCAATGTGTGTG -CCAACATCCTTCCCAATGCTAGTG -CCAACATCCTTCCCAATGCATCTG -CCAACATCCTTCCCAATGGAGTTG -CCAACATCCTTCCCAATGAGACTG -CCAACATCCTTCCCAATGTCGGTA -CCAACATCCTTCCCAATGTGCCTA -CCAACATCCTTCCCAATGCCACTA -CCAACATCCTTCCCAATGGGAGTA -CCAACATCCTTCCCAATGTCGTCT -CCAACATCCTTCCCAATGTGCACT -CCAACATCCTTCCCAATGCTGACT -CCAACATCCTTCCCAATGCAACCT -CCAACATCCTTCCCAATGGCTACT -CCAACATCCTTCCCAATGGGATCT -CCAACATCCTTCCCAATGAAGGCT -CCAACATCCTTCCCAATGTCAACC -CCAACATCCTTCCCAATGTGTTCC -CCAACATCCTTCCCAATGATTCCC -CCAACATCCTTCCCAATGTTCTCG -CCAACATCCTTCCCAATGTAGACG -CCAACATCCTTCCCAATGGTAACG -CCAACATCCTTCCCAATGACTTCG -CCAACATCCTTCCCAATGTACGCA -CCAACATCCTTCCCAATGCTTGCA -CCAACATCCTTCCCAATGCGAACA -CCAACATCCTTCCCAATGCAGTCA -CCAACATCCTTCCCAATGGATCCA -CCAACATCCTTCCCAATGACGACA -CCAACATCCTTCCCAATGAGCTCA -CCAACATCCTTCCCAATGTCACGT -CCAACATCCTTCCCAATGCGTAGT -CCAACATCCTTCCCAATGGTCAGT -CCAACATCCTTCCCAATGGAAGGT -CCAACATCCTTCCCAATGAACCGT -CCAACATCCTTCCCAATGTTGTGC -CCAACATCCTTCCCAATGCTAAGC -CCAACATCCTTCCCAATGACTAGC -CCAACATCCTTCCCAATGAGATGC -CCAACATCCTTCCCAATGTGAAGG -CCAACATCCTTCCCAATGCAATGG -CCAACATCCTTCCCAATGATGAGG -CCAACATCCTTCCCAATGAATGGG -CCAACATCCTTCCCAATGTCCTGA -CCAACATCCTTCCCAATGTAGCGA -CCAACATCCTTCCCAATGCACAGA -CCAACATCCTTCCCAATGGCAAGA -CCAACATCCTTCCCAATGGGTTGA -CCAACATCCTTCCCAATGTCCGAT -CCAACATCCTTCCCAATGTGGCAT -CCAACATCCTTCCCAATGCGAGAT -CCAACATCCTTCCCAATGTACCAC -CCAACATCCTTCCCAATGCAGAAC -CCAACATCCTTCCCAATGGTCTAC -CCAACATCCTTCCCAATGACGTAC -CCAACATCCTTCCCAATGAGTGAC -CCAACATCCTTCCCAATGCTGTAG -CCAACATCCTTCCCAATGCCTAAG -CCAACATCCTTCCCAATGGTTCAG -CCAACATCCTTCCCAATGGCATAG -CCAACATCCTTCCCAATGGACAAG -CCAACATCCTTCCCAATGAAGCAG -CCAACATCCTTCCCAATGCGTCAA -CCAACATCCTTCCCAATGGCTGAA -CCAACATCCTTCCCAATGAGTACG -CCAACATCCTTCCCAATGATCCGA -CCAACATCCTTCCCAATGATGGGA -CCAACATCCTTCCCAATGGTGCAA -CCAACATCCTTCCCAATGGAGGAA -CCAACATCCTTCCCAATGCAGGTA -CCAACATCCTTCCCAATGGACTCT -CCAACATCCTTCCCAATGAGTCCT -CCAACATCCTTCCCAATGTAAGCC -CCAACATCCTTCCCAATGATAGCC -CCAACATCCTTCCCAATGTAACCG -CCAACATCCTTCCCAATGATGCCA -CCAACACTGTTCAACGGAGGAAAC -CCAACACTGTTCAACGGAAACACC -CCAACACTGTTCAACGGAATCGAG -CCAACACTGTTCAACGGACTCCTT -CCAACACTGTTCAACGGACCTGTT -CCAACACTGTTCAACGGACGGTTT -CCAACACTGTTCAACGGAGTGGTT -CCAACACTGTTCAACGGAGCCTTT -CCAACACTGTTCAACGGAGGTCTT -CCAACACTGTTCAACGGAACGCTT -CCAACACTGTTCAACGGAAGCGTT -CCAACACTGTTCAACGGATTCGTC -CCAACACTGTTCAACGGATCTCTC -CCAACACTGTTCAACGGATGGATC -CCAACACTGTTCAACGGACACTTC -CCAACACTGTTCAACGGAGTACTC -CCAACACTGTTCAACGGAGATGTC -CCAACACTGTTCAACGGAACAGTC -CCAACACTGTTCAACGGATTGCTG -CCAACACTGTTCAACGGATCCATG -CCAACACTGTTCAACGGATGTGTG -CCAACACTGTTCAACGGACTAGTG -CCAACACTGTTCAACGGACATCTG -CCAACACTGTTCAACGGAGAGTTG -CCAACACTGTTCAACGGAAGACTG -CCAACACTGTTCAACGGATCGGTA -CCAACACTGTTCAACGGATGCCTA -CCAACACTGTTCAACGGACCACTA -CCAACACTGTTCAACGGAGGAGTA -CCAACACTGTTCAACGGATCGTCT -CCAACACTGTTCAACGGATGCACT -CCAACACTGTTCAACGGACTGACT -CCAACACTGTTCAACGGACAACCT -CCAACACTGTTCAACGGAGCTACT -CCAACACTGTTCAACGGAGGATCT -CCAACACTGTTCAACGGAAAGGCT -CCAACACTGTTCAACGGATCAACC -CCAACACTGTTCAACGGATGTTCC -CCAACACTGTTCAACGGAATTCCC -CCAACACTGTTCAACGGATTCTCG -CCAACACTGTTCAACGGATAGACG -CCAACACTGTTCAACGGAGTAACG -CCAACACTGTTCAACGGAACTTCG -CCAACACTGTTCAACGGATACGCA -CCAACACTGTTCAACGGACTTGCA -CCAACACTGTTCAACGGACGAACA -CCAACACTGTTCAACGGACAGTCA -CCAACACTGTTCAACGGAGATCCA -CCAACACTGTTCAACGGAACGACA -CCAACACTGTTCAACGGAAGCTCA -CCAACACTGTTCAACGGATCACGT -CCAACACTGTTCAACGGACGTAGT -CCAACACTGTTCAACGGAGTCAGT -CCAACACTGTTCAACGGAGAAGGT -CCAACACTGTTCAACGGAAACCGT -CCAACACTGTTCAACGGATTGTGC -CCAACACTGTTCAACGGACTAAGC -CCAACACTGTTCAACGGAACTAGC -CCAACACTGTTCAACGGAAGATGC -CCAACACTGTTCAACGGATGAAGG -CCAACACTGTTCAACGGACAATGG -CCAACACTGTTCAACGGAATGAGG -CCAACACTGTTCAACGGAAATGGG -CCAACACTGTTCAACGGATCCTGA -CCAACACTGTTCAACGGATAGCGA -CCAACACTGTTCAACGGACACAGA -CCAACACTGTTCAACGGAGCAAGA -CCAACACTGTTCAACGGAGGTTGA -CCAACACTGTTCAACGGATCCGAT -CCAACACTGTTCAACGGATGGCAT -CCAACACTGTTCAACGGACGAGAT -CCAACACTGTTCAACGGATACCAC -CCAACACTGTTCAACGGACAGAAC -CCAACACTGTTCAACGGAGTCTAC -CCAACACTGTTCAACGGAACGTAC -CCAACACTGTTCAACGGAAGTGAC -CCAACACTGTTCAACGGACTGTAG -CCAACACTGTTCAACGGACCTAAG -CCAACACTGTTCAACGGAGTTCAG -CCAACACTGTTCAACGGAGCATAG -CCAACACTGTTCAACGGAGACAAG -CCAACACTGTTCAACGGAAAGCAG -CCAACACTGTTCAACGGACGTCAA -CCAACACTGTTCAACGGAGCTGAA -CCAACACTGTTCAACGGAAGTACG -CCAACACTGTTCAACGGAATCCGA -CCAACACTGTTCAACGGAATGGGA -CCAACACTGTTCAACGGAGTGCAA -CCAACACTGTTCAACGGAGAGGAA -CCAACACTGTTCAACGGACAGGTA -CCAACACTGTTCAACGGAGACTCT -CCAACACTGTTCAACGGAAGTCCT -CCAACACTGTTCAACGGATAAGCC -CCAACACTGTTCAACGGAATAGCC -CCAACACTGTTCAACGGATAACCG -CCAACACTGTTCAACGGAATGCCA -CCAACACTGTTCACCAACGGAAAC -CCAACACTGTTCACCAACAACACC -CCAACACTGTTCACCAACATCGAG -CCAACACTGTTCACCAACCTCCTT -CCAACACTGTTCACCAACCCTGTT -CCAACACTGTTCACCAACCGGTTT -CCAACACTGTTCACCAACGTGGTT -CCAACACTGTTCACCAACGCCTTT -CCAACACTGTTCACCAACGGTCTT -CCAACACTGTTCACCAACACGCTT -CCAACACTGTTCACCAACAGCGTT -CCAACACTGTTCACCAACTTCGTC -CCAACACTGTTCACCAACTCTCTC -CCAACACTGTTCACCAACTGGATC -CCAACACTGTTCACCAACCACTTC -CCAACACTGTTCACCAACGTACTC -CCAACACTGTTCACCAACGATGTC -CCAACACTGTTCACCAACACAGTC -CCAACACTGTTCACCAACTTGCTG -CCAACACTGTTCACCAACTCCATG -CCAACACTGTTCACCAACTGTGTG -CCAACACTGTTCACCAACCTAGTG -CCAACACTGTTCACCAACCATCTG -CCAACACTGTTCACCAACGAGTTG -CCAACACTGTTCACCAACAGACTG -CCAACACTGTTCACCAACTCGGTA -CCAACACTGTTCACCAACTGCCTA -CCAACACTGTTCACCAACCCACTA -CCAACACTGTTCACCAACGGAGTA -CCAACACTGTTCACCAACTCGTCT -CCAACACTGTTCACCAACTGCACT -CCAACACTGTTCACCAACCTGACT -CCAACACTGTTCACCAACCAACCT -CCAACACTGTTCACCAACGCTACT -CCAACACTGTTCACCAACGGATCT -CCAACACTGTTCACCAACAAGGCT -CCAACACTGTTCACCAACTCAACC -CCAACACTGTTCACCAACTGTTCC -CCAACACTGTTCACCAACATTCCC -CCAACACTGTTCACCAACTTCTCG -CCAACACTGTTCACCAACTAGACG -CCAACACTGTTCACCAACGTAACG -CCAACACTGTTCACCAACACTTCG -CCAACACTGTTCACCAACTACGCA -CCAACACTGTTCACCAACCTTGCA -CCAACACTGTTCACCAACCGAACA -CCAACACTGTTCACCAACCAGTCA -CCAACACTGTTCACCAACGATCCA -CCAACACTGTTCACCAACACGACA -CCAACACTGTTCACCAACAGCTCA -CCAACACTGTTCACCAACTCACGT -CCAACACTGTTCACCAACCGTAGT -CCAACACTGTTCACCAACGTCAGT -CCAACACTGTTCACCAACGAAGGT -CCAACACTGTTCACCAACAACCGT -CCAACACTGTTCACCAACTTGTGC -CCAACACTGTTCACCAACCTAAGC -CCAACACTGTTCACCAACACTAGC -CCAACACTGTTCACCAACAGATGC -CCAACACTGTTCACCAACTGAAGG -CCAACACTGTTCACCAACCAATGG -CCAACACTGTTCACCAACATGAGG -CCAACACTGTTCACCAACAATGGG -CCAACACTGTTCACCAACTCCTGA -CCAACACTGTTCACCAACTAGCGA -CCAACACTGTTCACCAACCACAGA -CCAACACTGTTCACCAACGCAAGA -CCAACACTGTTCACCAACGGTTGA -CCAACACTGTTCACCAACTCCGAT -CCAACACTGTTCACCAACTGGCAT -CCAACACTGTTCACCAACCGAGAT -CCAACACTGTTCACCAACTACCAC -CCAACACTGTTCACCAACCAGAAC -CCAACACTGTTCACCAACGTCTAC -CCAACACTGTTCACCAACACGTAC -CCAACACTGTTCACCAACAGTGAC -CCAACACTGTTCACCAACCTGTAG -CCAACACTGTTCACCAACCCTAAG -CCAACACTGTTCACCAACGTTCAG -CCAACACTGTTCACCAACGCATAG -CCAACACTGTTCACCAACGACAAG -CCAACACTGTTCACCAACAAGCAG -CCAACACTGTTCACCAACCGTCAA -CCAACACTGTTCACCAACGCTGAA -CCAACACTGTTCACCAACAGTACG -CCAACACTGTTCACCAACATCCGA -CCAACACTGTTCACCAACATGGGA -CCAACACTGTTCACCAACGTGCAA -CCAACACTGTTCACCAACGAGGAA -CCAACACTGTTCACCAACCAGGTA -CCAACACTGTTCACCAACGACTCT -CCAACACTGTTCACCAACAGTCCT -CCAACACTGTTCACCAACTAAGCC -CCAACACTGTTCACCAACATAGCC -CCAACACTGTTCACCAACTAACCG -CCAACACTGTTCACCAACATGCCA -CCAACACTGTTCGAGATCGGAAAC -CCAACACTGTTCGAGATCAACACC -CCAACACTGTTCGAGATCATCGAG -CCAACACTGTTCGAGATCCTCCTT -CCAACACTGTTCGAGATCCCTGTT -CCAACACTGTTCGAGATCCGGTTT -CCAACACTGTTCGAGATCGTGGTT -CCAACACTGTTCGAGATCGCCTTT -CCAACACTGTTCGAGATCGGTCTT -CCAACACTGTTCGAGATCACGCTT -CCAACACTGTTCGAGATCAGCGTT -CCAACACTGTTCGAGATCTTCGTC -CCAACACTGTTCGAGATCTCTCTC -CCAACACTGTTCGAGATCTGGATC -CCAACACTGTTCGAGATCCACTTC -CCAACACTGTTCGAGATCGTACTC -CCAACACTGTTCGAGATCGATGTC -CCAACACTGTTCGAGATCACAGTC -CCAACACTGTTCGAGATCTTGCTG -CCAACACTGTTCGAGATCTCCATG -CCAACACTGTTCGAGATCTGTGTG -CCAACACTGTTCGAGATCCTAGTG -CCAACACTGTTCGAGATCCATCTG -CCAACACTGTTCGAGATCGAGTTG -CCAACACTGTTCGAGATCAGACTG -CCAACACTGTTCGAGATCTCGGTA -CCAACACTGTTCGAGATCTGCCTA -CCAACACTGTTCGAGATCCCACTA -CCAACACTGTTCGAGATCGGAGTA -CCAACACTGTTCGAGATCTCGTCT -CCAACACTGTTCGAGATCTGCACT -CCAACACTGTTCGAGATCCTGACT -CCAACACTGTTCGAGATCCAACCT -CCAACACTGTTCGAGATCGCTACT -CCAACACTGTTCGAGATCGGATCT -CCAACACTGTTCGAGATCAAGGCT -CCAACACTGTTCGAGATCTCAACC -CCAACACTGTTCGAGATCTGTTCC -CCAACACTGTTCGAGATCATTCCC -CCAACACTGTTCGAGATCTTCTCG -CCAACACTGTTCGAGATCTAGACG -CCAACACTGTTCGAGATCGTAACG -CCAACACTGTTCGAGATCACTTCG -CCAACACTGTTCGAGATCTACGCA -CCAACACTGTTCGAGATCCTTGCA -CCAACACTGTTCGAGATCCGAACA -CCAACACTGTTCGAGATCCAGTCA -CCAACACTGTTCGAGATCGATCCA -CCAACACTGTTCGAGATCACGACA -CCAACACTGTTCGAGATCAGCTCA -CCAACACTGTTCGAGATCTCACGT -CCAACACTGTTCGAGATCCGTAGT -CCAACACTGTTCGAGATCGTCAGT -CCAACACTGTTCGAGATCGAAGGT -CCAACACTGTTCGAGATCAACCGT -CCAACACTGTTCGAGATCTTGTGC -CCAACACTGTTCGAGATCCTAAGC -CCAACACTGTTCGAGATCACTAGC -CCAACACTGTTCGAGATCAGATGC -CCAACACTGTTCGAGATCTGAAGG -CCAACACTGTTCGAGATCCAATGG -CCAACACTGTTCGAGATCATGAGG -CCAACACTGTTCGAGATCAATGGG -CCAACACTGTTCGAGATCTCCTGA -CCAACACTGTTCGAGATCTAGCGA -CCAACACTGTTCGAGATCCACAGA -CCAACACTGTTCGAGATCGCAAGA -CCAACACTGTTCGAGATCGGTTGA -CCAACACTGTTCGAGATCTCCGAT -CCAACACTGTTCGAGATCTGGCAT -CCAACACTGTTCGAGATCCGAGAT -CCAACACTGTTCGAGATCTACCAC -CCAACACTGTTCGAGATCCAGAAC -CCAACACTGTTCGAGATCGTCTAC -CCAACACTGTTCGAGATCACGTAC -CCAACACTGTTCGAGATCAGTGAC -CCAACACTGTTCGAGATCCTGTAG -CCAACACTGTTCGAGATCCCTAAG -CCAACACTGTTCGAGATCGTTCAG -CCAACACTGTTCGAGATCGCATAG -CCAACACTGTTCGAGATCGACAAG -CCAACACTGTTCGAGATCAAGCAG -CCAACACTGTTCGAGATCCGTCAA -CCAACACTGTTCGAGATCGCTGAA -CCAACACTGTTCGAGATCAGTACG -CCAACACTGTTCGAGATCATCCGA -CCAACACTGTTCGAGATCATGGGA -CCAACACTGTTCGAGATCGTGCAA -CCAACACTGTTCGAGATCGAGGAA -CCAACACTGTTCGAGATCCAGGTA -CCAACACTGTTCGAGATCGACTCT -CCAACACTGTTCGAGATCAGTCCT -CCAACACTGTTCGAGATCTAAGCC -CCAACACTGTTCGAGATCATAGCC -CCAACACTGTTCGAGATCTAACCG -CCAACACTGTTCGAGATCATGCCA -CCAACACTGTTCCTTCTCGGAAAC -CCAACACTGTTCCTTCTCAACACC -CCAACACTGTTCCTTCTCATCGAG -CCAACACTGTTCCTTCTCCTCCTT -CCAACACTGTTCCTTCTCCCTGTT -CCAACACTGTTCCTTCTCCGGTTT -CCAACACTGTTCCTTCTCGTGGTT -CCAACACTGTTCCTTCTCGCCTTT -CCAACACTGTTCCTTCTCGGTCTT -CCAACACTGTTCCTTCTCACGCTT -CCAACACTGTTCCTTCTCAGCGTT -CCAACACTGTTCCTTCTCTTCGTC -CCAACACTGTTCCTTCTCTCTCTC -CCAACACTGTTCCTTCTCTGGATC -CCAACACTGTTCCTTCTCCACTTC -CCAACACTGTTCCTTCTCGTACTC -CCAACACTGTTCCTTCTCGATGTC -CCAACACTGTTCCTTCTCACAGTC -CCAACACTGTTCCTTCTCTTGCTG -CCAACACTGTTCCTTCTCTCCATG -CCAACACTGTTCCTTCTCTGTGTG -CCAACACTGTTCCTTCTCCTAGTG -CCAACACTGTTCCTTCTCCATCTG -CCAACACTGTTCCTTCTCGAGTTG -CCAACACTGTTCCTTCTCAGACTG -CCAACACTGTTCCTTCTCTCGGTA -CCAACACTGTTCCTTCTCTGCCTA -CCAACACTGTTCCTTCTCCCACTA -CCAACACTGTTCCTTCTCGGAGTA -CCAACACTGTTCCTTCTCTCGTCT -CCAACACTGTTCCTTCTCTGCACT -CCAACACTGTTCCTTCTCCTGACT -CCAACACTGTTCCTTCTCCAACCT -CCAACACTGTTCCTTCTCGCTACT -CCAACACTGTTCCTTCTCGGATCT -CCAACACTGTTCCTTCTCAAGGCT -CCAACACTGTTCCTTCTCTCAACC -CCAACACTGTTCCTTCTCTGTTCC -CCAACACTGTTCCTTCTCATTCCC -CCAACACTGTTCCTTCTCTTCTCG -CCAACACTGTTCCTTCTCTAGACG -CCAACACTGTTCCTTCTCGTAACG -CCAACACTGTTCCTTCTCACTTCG -CCAACACTGTTCCTTCTCTACGCA -CCAACACTGTTCCTTCTCCTTGCA -CCAACACTGTTCCTTCTCCGAACA -CCAACACTGTTCCTTCTCCAGTCA -CCAACACTGTTCCTTCTCGATCCA -CCAACACTGTTCCTTCTCACGACA -CCAACACTGTTCCTTCTCAGCTCA -CCAACACTGTTCCTTCTCTCACGT -CCAACACTGTTCCTTCTCCGTAGT -CCAACACTGTTCCTTCTCGTCAGT -CCAACACTGTTCCTTCTCGAAGGT -CCAACACTGTTCCTTCTCAACCGT -CCAACACTGTTCCTTCTCTTGTGC -CCAACACTGTTCCTTCTCCTAAGC -CCAACACTGTTCCTTCTCACTAGC -CCAACACTGTTCCTTCTCAGATGC -CCAACACTGTTCCTTCTCTGAAGG -CCAACACTGTTCCTTCTCCAATGG -CCAACACTGTTCCTTCTCATGAGG -CCAACACTGTTCCTTCTCAATGGG -CCAACACTGTTCCTTCTCTCCTGA -CCAACACTGTTCCTTCTCTAGCGA -CCAACACTGTTCCTTCTCCACAGA -CCAACACTGTTCCTTCTCGCAAGA -CCAACACTGTTCCTTCTCGGTTGA -CCAACACTGTTCCTTCTCTCCGAT -CCAACACTGTTCCTTCTCTGGCAT -CCAACACTGTTCCTTCTCCGAGAT -CCAACACTGTTCCTTCTCTACCAC -CCAACACTGTTCCTTCTCCAGAAC -CCAACACTGTTCCTTCTCGTCTAC -CCAACACTGTTCCTTCTCACGTAC -CCAACACTGTTCCTTCTCAGTGAC -CCAACACTGTTCCTTCTCCTGTAG -CCAACACTGTTCCTTCTCCCTAAG -CCAACACTGTTCCTTCTCGTTCAG -CCAACACTGTTCCTTCTCGCATAG -CCAACACTGTTCCTTCTCGACAAG -CCAACACTGTTCCTTCTCAAGCAG -CCAACACTGTTCCTTCTCCGTCAA -CCAACACTGTTCCTTCTCGCTGAA -CCAACACTGTTCCTTCTCAGTACG -CCAACACTGTTCCTTCTCATCCGA -CCAACACTGTTCCTTCTCATGGGA -CCAACACTGTTCCTTCTCGTGCAA -CCAACACTGTTCCTTCTCGAGGAA -CCAACACTGTTCCTTCTCCAGGTA -CCAACACTGTTCCTTCTCGACTCT -CCAACACTGTTCCTTCTCAGTCCT -CCAACACTGTTCCTTCTCTAAGCC -CCAACACTGTTCCTTCTCATAGCC -CCAACACTGTTCCTTCTCTAACCG -CCAACACTGTTCCTTCTCATGCCA -CCAACACTGTTCGTTCCTGGAAAC -CCAACACTGTTCGTTCCTAACACC -CCAACACTGTTCGTTCCTATCGAG -CCAACACTGTTCGTTCCTCTCCTT -CCAACACTGTTCGTTCCTCCTGTT -CCAACACTGTTCGTTCCTCGGTTT -CCAACACTGTTCGTTCCTGTGGTT -CCAACACTGTTCGTTCCTGCCTTT -CCAACACTGTTCGTTCCTGGTCTT -CCAACACTGTTCGTTCCTACGCTT -CCAACACTGTTCGTTCCTAGCGTT -CCAACACTGTTCGTTCCTTTCGTC -CCAACACTGTTCGTTCCTTCTCTC -CCAACACTGTTCGTTCCTTGGATC -CCAACACTGTTCGTTCCTCACTTC -CCAACACTGTTCGTTCCTGTACTC -CCAACACTGTTCGTTCCTGATGTC -CCAACACTGTTCGTTCCTACAGTC -CCAACACTGTTCGTTCCTTTGCTG -CCAACACTGTTCGTTCCTTCCATG -CCAACACTGTTCGTTCCTTGTGTG -CCAACACTGTTCGTTCCTCTAGTG -CCAACACTGTTCGTTCCTCATCTG -CCAACACTGTTCGTTCCTGAGTTG -CCAACACTGTTCGTTCCTAGACTG -CCAACACTGTTCGTTCCTTCGGTA -CCAACACTGTTCGTTCCTTGCCTA -CCAACACTGTTCGTTCCTCCACTA -CCAACACTGTTCGTTCCTGGAGTA -CCAACACTGTTCGTTCCTTCGTCT -CCAACACTGTTCGTTCCTTGCACT -CCAACACTGTTCGTTCCTCTGACT -CCAACACTGTTCGTTCCTCAACCT -CCAACACTGTTCGTTCCTGCTACT -CCAACACTGTTCGTTCCTGGATCT -CCAACACTGTTCGTTCCTAAGGCT -CCAACACTGTTCGTTCCTTCAACC -CCAACACTGTTCGTTCCTTGTTCC -CCAACACTGTTCGTTCCTATTCCC -CCAACACTGTTCGTTCCTTTCTCG -CCAACACTGTTCGTTCCTTAGACG -CCAACACTGTTCGTTCCTGTAACG -CCAACACTGTTCGTTCCTACTTCG -CCAACACTGTTCGTTCCTTACGCA -CCAACACTGTTCGTTCCTCTTGCA -CCAACACTGTTCGTTCCTCGAACA -CCAACACTGTTCGTTCCTCAGTCA -CCAACACTGTTCGTTCCTGATCCA -CCAACACTGTTCGTTCCTACGACA -CCAACACTGTTCGTTCCTAGCTCA -CCAACACTGTTCGTTCCTTCACGT -CCAACACTGTTCGTTCCTCGTAGT -CCAACACTGTTCGTTCCTGTCAGT -CCAACACTGTTCGTTCCTGAAGGT -CCAACACTGTTCGTTCCTAACCGT -CCAACACTGTTCGTTCCTTTGTGC -CCAACACTGTTCGTTCCTCTAAGC -CCAACACTGTTCGTTCCTACTAGC -CCAACACTGTTCGTTCCTAGATGC -CCAACACTGTTCGTTCCTTGAAGG -CCAACACTGTTCGTTCCTCAATGG -CCAACACTGTTCGTTCCTATGAGG -CCAACACTGTTCGTTCCTAATGGG -CCAACACTGTTCGTTCCTTCCTGA -CCAACACTGTTCGTTCCTTAGCGA -CCAACACTGTTCGTTCCTCACAGA -CCAACACTGTTCGTTCCTGCAAGA -CCAACACTGTTCGTTCCTGGTTGA -CCAACACTGTTCGTTCCTTCCGAT -CCAACACTGTTCGTTCCTTGGCAT -CCAACACTGTTCGTTCCTCGAGAT -CCAACACTGTTCGTTCCTTACCAC -CCAACACTGTTCGTTCCTCAGAAC -CCAACACTGTTCGTTCCTGTCTAC -CCAACACTGTTCGTTCCTACGTAC -CCAACACTGTTCGTTCCTAGTGAC -CCAACACTGTTCGTTCCTCTGTAG -CCAACACTGTTCGTTCCTCCTAAG -CCAACACTGTTCGTTCCTGTTCAG -CCAACACTGTTCGTTCCTGCATAG -CCAACACTGTTCGTTCCTGACAAG -CCAACACTGTTCGTTCCTAAGCAG -CCAACACTGTTCGTTCCTCGTCAA -CCAACACTGTTCGTTCCTGCTGAA -CCAACACTGTTCGTTCCTAGTACG -CCAACACTGTTCGTTCCTATCCGA -CCAACACTGTTCGTTCCTATGGGA -CCAACACTGTTCGTTCCTGTGCAA -CCAACACTGTTCGTTCCTGAGGAA -CCAACACTGTTCGTTCCTCAGGTA -CCAACACTGTTCGTTCCTGACTCT -CCAACACTGTTCGTTCCTAGTCCT -CCAACACTGTTCGTTCCTTAAGCC -CCAACACTGTTCGTTCCTATAGCC -CCAACACTGTTCGTTCCTTAACCG -CCAACACTGTTCGTTCCTATGCCA -CCAACACTGTTCTTTCGGGGAAAC -CCAACACTGTTCTTTCGGAACACC -CCAACACTGTTCTTTCGGATCGAG -CCAACACTGTTCTTTCGGCTCCTT -CCAACACTGTTCTTTCGGCCTGTT -CCAACACTGTTCTTTCGGCGGTTT -CCAACACTGTTCTTTCGGGTGGTT -CCAACACTGTTCTTTCGGGCCTTT -CCAACACTGTTCTTTCGGGGTCTT -CCAACACTGTTCTTTCGGACGCTT -CCAACACTGTTCTTTCGGAGCGTT -CCAACACTGTTCTTTCGGTTCGTC -CCAACACTGTTCTTTCGGTCTCTC -CCAACACTGTTCTTTCGGTGGATC -CCAACACTGTTCTTTCGGCACTTC -CCAACACTGTTCTTTCGGGTACTC -CCAACACTGTTCTTTCGGGATGTC -CCAACACTGTTCTTTCGGACAGTC -CCAACACTGTTCTTTCGGTTGCTG -CCAACACTGTTCTTTCGGTCCATG -CCAACACTGTTCTTTCGGTGTGTG -CCAACACTGTTCTTTCGGCTAGTG -CCAACACTGTTCTTTCGGCATCTG -CCAACACTGTTCTTTCGGGAGTTG -CCAACACTGTTCTTTCGGAGACTG -CCAACACTGTTCTTTCGGTCGGTA -CCAACACTGTTCTTTCGGTGCCTA -CCAACACTGTTCTTTCGGCCACTA -CCAACACTGTTCTTTCGGGGAGTA -CCAACACTGTTCTTTCGGTCGTCT -CCAACACTGTTCTTTCGGTGCACT -CCAACACTGTTCTTTCGGCTGACT -CCAACACTGTTCTTTCGGCAACCT -CCAACACTGTTCTTTCGGGCTACT -CCAACACTGTTCTTTCGGGGATCT -CCAACACTGTTCTTTCGGAAGGCT -CCAACACTGTTCTTTCGGTCAACC -CCAACACTGTTCTTTCGGTGTTCC -CCAACACTGTTCTTTCGGATTCCC -CCAACACTGTTCTTTCGGTTCTCG -CCAACACTGTTCTTTCGGTAGACG -CCAACACTGTTCTTTCGGGTAACG -CCAACACTGTTCTTTCGGACTTCG -CCAACACTGTTCTTTCGGTACGCA -CCAACACTGTTCTTTCGGCTTGCA -CCAACACTGTTCTTTCGGCGAACA -CCAACACTGTTCTTTCGGCAGTCA -CCAACACTGTTCTTTCGGGATCCA -CCAACACTGTTCTTTCGGACGACA -CCAACACTGTTCTTTCGGAGCTCA -CCAACACTGTTCTTTCGGTCACGT -CCAACACTGTTCTTTCGGCGTAGT -CCAACACTGTTCTTTCGGGTCAGT -CCAACACTGTTCTTTCGGGAAGGT -CCAACACTGTTCTTTCGGAACCGT -CCAACACTGTTCTTTCGGTTGTGC -CCAACACTGTTCTTTCGGCTAAGC -CCAACACTGTTCTTTCGGACTAGC -CCAACACTGTTCTTTCGGAGATGC -CCAACACTGTTCTTTCGGTGAAGG -CCAACACTGTTCTTTCGGCAATGG -CCAACACTGTTCTTTCGGATGAGG -CCAACACTGTTCTTTCGGAATGGG -CCAACACTGTTCTTTCGGTCCTGA -CCAACACTGTTCTTTCGGTAGCGA -CCAACACTGTTCTTTCGGCACAGA -CCAACACTGTTCTTTCGGGCAAGA -CCAACACTGTTCTTTCGGGGTTGA -CCAACACTGTTCTTTCGGTCCGAT -CCAACACTGTTCTTTCGGTGGCAT -CCAACACTGTTCTTTCGGCGAGAT -CCAACACTGTTCTTTCGGTACCAC -CCAACACTGTTCTTTCGGCAGAAC -CCAACACTGTTCTTTCGGGTCTAC -CCAACACTGTTCTTTCGGACGTAC -CCAACACTGTTCTTTCGGAGTGAC -CCAACACTGTTCTTTCGGCTGTAG -CCAACACTGTTCTTTCGGCCTAAG -CCAACACTGTTCTTTCGGGTTCAG -CCAACACTGTTCTTTCGGGCATAG -CCAACACTGTTCTTTCGGGACAAG -CCAACACTGTTCTTTCGGAAGCAG -CCAACACTGTTCTTTCGGCGTCAA -CCAACACTGTTCTTTCGGGCTGAA -CCAACACTGTTCTTTCGGAGTACG -CCAACACTGTTCTTTCGGATCCGA -CCAACACTGTTCTTTCGGATGGGA -CCAACACTGTTCTTTCGGGTGCAA -CCAACACTGTTCTTTCGGGAGGAA -CCAACACTGTTCTTTCGGCAGGTA -CCAACACTGTTCTTTCGGGACTCT -CCAACACTGTTCTTTCGGAGTCCT -CCAACACTGTTCTTTCGGTAAGCC -CCAACACTGTTCTTTCGGATAGCC -CCAACACTGTTCTTTCGGTAACCG -CCAACACTGTTCTTTCGGATGCCA -CCAACACTGTTCGTTGTGGGAAAC -CCAACACTGTTCGTTGTGAACACC -CCAACACTGTTCGTTGTGATCGAG -CCAACACTGTTCGTTGTGCTCCTT -CCAACACTGTTCGTTGTGCCTGTT -CCAACACTGTTCGTTGTGCGGTTT -CCAACACTGTTCGTTGTGGTGGTT -CCAACACTGTTCGTTGTGGCCTTT -CCAACACTGTTCGTTGTGGGTCTT -CCAACACTGTTCGTTGTGACGCTT -CCAACACTGTTCGTTGTGAGCGTT -CCAACACTGTTCGTTGTGTTCGTC -CCAACACTGTTCGTTGTGTCTCTC -CCAACACTGTTCGTTGTGTGGATC -CCAACACTGTTCGTTGTGCACTTC -CCAACACTGTTCGTTGTGGTACTC -CCAACACTGTTCGTTGTGGATGTC -CCAACACTGTTCGTTGTGACAGTC -CCAACACTGTTCGTTGTGTTGCTG -CCAACACTGTTCGTTGTGTCCATG -CCAACACTGTTCGTTGTGTGTGTG -CCAACACTGTTCGTTGTGCTAGTG -CCAACACTGTTCGTTGTGCATCTG -CCAACACTGTTCGTTGTGGAGTTG -CCAACACTGTTCGTTGTGAGACTG -CCAACACTGTTCGTTGTGTCGGTA -CCAACACTGTTCGTTGTGTGCCTA -CCAACACTGTTCGTTGTGCCACTA -CCAACACTGTTCGTTGTGGGAGTA -CCAACACTGTTCGTTGTGTCGTCT -CCAACACTGTTCGTTGTGTGCACT -CCAACACTGTTCGTTGTGCTGACT -CCAACACTGTTCGTTGTGCAACCT -CCAACACTGTTCGTTGTGGCTACT -CCAACACTGTTCGTTGTGGGATCT -CCAACACTGTTCGTTGTGAAGGCT -CCAACACTGTTCGTTGTGTCAACC -CCAACACTGTTCGTTGTGTGTTCC -CCAACACTGTTCGTTGTGATTCCC -CCAACACTGTTCGTTGTGTTCTCG -CCAACACTGTTCGTTGTGTAGACG -CCAACACTGTTCGTTGTGGTAACG -CCAACACTGTTCGTTGTGACTTCG -CCAACACTGTTCGTTGTGTACGCA -CCAACACTGTTCGTTGTGCTTGCA -CCAACACTGTTCGTTGTGCGAACA -CCAACACTGTTCGTTGTGCAGTCA -CCAACACTGTTCGTTGTGGATCCA -CCAACACTGTTCGTTGTGACGACA -CCAACACTGTTCGTTGTGAGCTCA -CCAACACTGTTCGTTGTGTCACGT -CCAACACTGTTCGTTGTGCGTAGT -CCAACACTGTTCGTTGTGGTCAGT -CCAACACTGTTCGTTGTGGAAGGT -CCAACACTGTTCGTTGTGAACCGT -CCAACACTGTTCGTTGTGTTGTGC -CCAACACTGTTCGTTGTGCTAAGC -CCAACACTGTTCGTTGTGACTAGC -CCAACACTGTTCGTTGTGAGATGC -CCAACACTGTTCGTTGTGTGAAGG -CCAACACTGTTCGTTGTGCAATGG -CCAACACTGTTCGTTGTGATGAGG -CCAACACTGTTCGTTGTGAATGGG -CCAACACTGTTCGTTGTGTCCTGA -CCAACACTGTTCGTTGTGTAGCGA -CCAACACTGTTCGTTGTGCACAGA -CCAACACTGTTCGTTGTGGCAAGA -CCAACACTGTTCGTTGTGGGTTGA -CCAACACTGTTCGTTGTGTCCGAT -CCAACACTGTTCGTTGTGTGGCAT -CCAACACTGTTCGTTGTGCGAGAT -CCAACACTGTTCGTTGTGTACCAC -CCAACACTGTTCGTTGTGCAGAAC -CCAACACTGTTCGTTGTGGTCTAC -CCAACACTGTTCGTTGTGACGTAC -CCAACACTGTTCGTTGTGAGTGAC -CCAACACTGTTCGTTGTGCTGTAG -CCAACACTGTTCGTTGTGCCTAAG -CCAACACTGTTCGTTGTGGTTCAG -CCAACACTGTTCGTTGTGGCATAG -CCAACACTGTTCGTTGTGGACAAG -CCAACACTGTTCGTTGTGAAGCAG -CCAACACTGTTCGTTGTGCGTCAA -CCAACACTGTTCGTTGTGGCTGAA -CCAACACTGTTCGTTGTGAGTACG -CCAACACTGTTCGTTGTGATCCGA -CCAACACTGTTCGTTGTGATGGGA -CCAACACTGTTCGTTGTGGTGCAA -CCAACACTGTTCGTTGTGGAGGAA -CCAACACTGTTCGTTGTGCAGGTA -CCAACACTGTTCGTTGTGGACTCT -CCAACACTGTTCGTTGTGAGTCCT -CCAACACTGTTCGTTGTGTAAGCC -CCAACACTGTTCGTTGTGATAGCC -CCAACACTGTTCGTTGTGTAACCG -CCAACACTGTTCGTTGTGATGCCA -CCAACACTGTTCTTTGCCGGAAAC -CCAACACTGTTCTTTGCCAACACC -CCAACACTGTTCTTTGCCATCGAG -CCAACACTGTTCTTTGCCCTCCTT -CCAACACTGTTCTTTGCCCCTGTT -CCAACACTGTTCTTTGCCCGGTTT -CCAACACTGTTCTTTGCCGTGGTT -CCAACACTGTTCTTTGCCGCCTTT -CCAACACTGTTCTTTGCCGGTCTT -CCAACACTGTTCTTTGCCACGCTT -CCAACACTGTTCTTTGCCAGCGTT -CCAACACTGTTCTTTGCCTTCGTC -CCAACACTGTTCTTTGCCTCTCTC -CCAACACTGTTCTTTGCCTGGATC -CCAACACTGTTCTTTGCCCACTTC -CCAACACTGTTCTTTGCCGTACTC -CCAACACTGTTCTTTGCCGATGTC -CCAACACTGTTCTTTGCCACAGTC -CCAACACTGTTCTTTGCCTTGCTG -CCAACACTGTTCTTTGCCTCCATG -CCAACACTGTTCTTTGCCTGTGTG -CCAACACTGTTCTTTGCCCTAGTG -CCAACACTGTTCTTTGCCCATCTG -CCAACACTGTTCTTTGCCGAGTTG -CCAACACTGTTCTTTGCCAGACTG -CCAACACTGTTCTTTGCCTCGGTA -CCAACACTGTTCTTTGCCTGCCTA -CCAACACTGTTCTTTGCCCCACTA -CCAACACTGTTCTTTGCCGGAGTA -CCAACACTGTTCTTTGCCTCGTCT -CCAACACTGTTCTTTGCCTGCACT -CCAACACTGTTCTTTGCCCTGACT -CCAACACTGTTCTTTGCCCAACCT -CCAACACTGTTCTTTGCCGCTACT -CCAACACTGTTCTTTGCCGGATCT -CCAACACTGTTCTTTGCCAAGGCT -CCAACACTGTTCTTTGCCTCAACC -CCAACACTGTTCTTTGCCTGTTCC -CCAACACTGTTCTTTGCCATTCCC -CCAACACTGTTCTTTGCCTTCTCG -CCAACACTGTTCTTTGCCTAGACG -CCAACACTGTTCTTTGCCGTAACG -CCAACACTGTTCTTTGCCACTTCG -CCAACACTGTTCTTTGCCTACGCA -CCAACACTGTTCTTTGCCCTTGCA -CCAACACTGTTCTTTGCCCGAACA -CCAACACTGTTCTTTGCCCAGTCA -CCAACACTGTTCTTTGCCGATCCA -CCAACACTGTTCTTTGCCACGACA -CCAACACTGTTCTTTGCCAGCTCA -CCAACACTGTTCTTTGCCTCACGT -CCAACACTGTTCTTTGCCCGTAGT -CCAACACTGTTCTTTGCCGTCAGT -CCAACACTGTTCTTTGCCGAAGGT -CCAACACTGTTCTTTGCCAACCGT -CCAACACTGTTCTTTGCCTTGTGC -CCAACACTGTTCTTTGCCCTAAGC -CCAACACTGTTCTTTGCCACTAGC -CCAACACTGTTCTTTGCCAGATGC -CCAACACTGTTCTTTGCCTGAAGG -CCAACACTGTTCTTTGCCCAATGG -CCAACACTGTTCTTTGCCATGAGG -CCAACACTGTTCTTTGCCAATGGG -CCAACACTGTTCTTTGCCTCCTGA -CCAACACTGTTCTTTGCCTAGCGA -CCAACACTGTTCTTTGCCCACAGA -CCAACACTGTTCTTTGCCGCAAGA -CCAACACTGTTCTTTGCCGGTTGA -CCAACACTGTTCTTTGCCTCCGAT -CCAACACTGTTCTTTGCCTGGCAT -CCAACACTGTTCTTTGCCCGAGAT -CCAACACTGTTCTTTGCCTACCAC -CCAACACTGTTCTTTGCCCAGAAC -CCAACACTGTTCTTTGCCGTCTAC -CCAACACTGTTCTTTGCCACGTAC -CCAACACTGTTCTTTGCCAGTGAC -CCAACACTGTTCTTTGCCCTGTAG -CCAACACTGTTCTTTGCCCCTAAG -CCAACACTGTTCTTTGCCGTTCAG -CCAACACTGTTCTTTGCCGCATAG -CCAACACTGTTCTTTGCCGACAAG -CCAACACTGTTCTTTGCCAAGCAG -CCAACACTGTTCTTTGCCCGTCAA -CCAACACTGTTCTTTGCCGCTGAA -CCAACACTGTTCTTTGCCAGTACG -CCAACACTGTTCTTTGCCATCCGA -CCAACACTGTTCTTTGCCATGGGA -CCAACACTGTTCTTTGCCGTGCAA -CCAACACTGTTCTTTGCCGAGGAA -CCAACACTGTTCTTTGCCCAGGTA -CCAACACTGTTCTTTGCCGACTCT -CCAACACTGTTCTTTGCCAGTCCT -CCAACACTGTTCTTTGCCTAAGCC -CCAACACTGTTCTTTGCCATAGCC -CCAACACTGTTCTTTGCCTAACCG -CCAACACTGTTCTTTGCCATGCCA -CCAACACTGTTCCTTGGTGGAAAC -CCAACACTGTTCCTTGGTAACACC -CCAACACTGTTCCTTGGTATCGAG -CCAACACTGTTCCTTGGTCTCCTT -CCAACACTGTTCCTTGGTCCTGTT -CCAACACTGTTCCTTGGTCGGTTT -CCAACACTGTTCCTTGGTGTGGTT -CCAACACTGTTCCTTGGTGCCTTT -CCAACACTGTTCCTTGGTGGTCTT -CCAACACTGTTCCTTGGTACGCTT -CCAACACTGTTCCTTGGTAGCGTT -CCAACACTGTTCCTTGGTTTCGTC -CCAACACTGTTCCTTGGTTCTCTC -CCAACACTGTTCCTTGGTTGGATC -CCAACACTGTTCCTTGGTCACTTC -CCAACACTGTTCCTTGGTGTACTC -CCAACACTGTTCCTTGGTGATGTC -CCAACACTGTTCCTTGGTACAGTC -CCAACACTGTTCCTTGGTTTGCTG -CCAACACTGTTCCTTGGTTCCATG -CCAACACTGTTCCTTGGTTGTGTG -CCAACACTGTTCCTTGGTCTAGTG -CCAACACTGTTCCTTGGTCATCTG -CCAACACTGTTCCTTGGTGAGTTG -CCAACACTGTTCCTTGGTAGACTG -CCAACACTGTTCCTTGGTTCGGTA -CCAACACTGTTCCTTGGTTGCCTA -CCAACACTGTTCCTTGGTCCACTA -CCAACACTGTTCCTTGGTGGAGTA -CCAACACTGTTCCTTGGTTCGTCT -CCAACACTGTTCCTTGGTTGCACT -CCAACACTGTTCCTTGGTCTGACT -CCAACACTGTTCCTTGGTCAACCT -CCAACACTGTTCCTTGGTGCTACT -CCAACACTGTTCCTTGGTGGATCT -CCAACACTGTTCCTTGGTAAGGCT -CCAACACTGTTCCTTGGTTCAACC -CCAACACTGTTCCTTGGTTGTTCC -CCAACACTGTTCCTTGGTATTCCC -CCAACACTGTTCCTTGGTTTCTCG -CCAACACTGTTCCTTGGTTAGACG -CCAACACTGTTCCTTGGTGTAACG -CCAACACTGTTCCTTGGTACTTCG -CCAACACTGTTCCTTGGTTACGCA -CCAACACTGTTCCTTGGTCTTGCA -CCAACACTGTTCCTTGGTCGAACA -CCAACACTGTTCCTTGGTCAGTCA -CCAACACTGTTCCTTGGTGATCCA -CCAACACTGTTCCTTGGTACGACA -CCAACACTGTTCCTTGGTAGCTCA -CCAACACTGTTCCTTGGTTCACGT -CCAACACTGTTCCTTGGTCGTAGT -CCAACACTGTTCCTTGGTGTCAGT -CCAACACTGTTCCTTGGTGAAGGT -CCAACACTGTTCCTTGGTAACCGT -CCAACACTGTTCCTTGGTTTGTGC -CCAACACTGTTCCTTGGTCTAAGC -CCAACACTGTTCCTTGGTACTAGC -CCAACACTGTTCCTTGGTAGATGC -CCAACACTGTTCCTTGGTTGAAGG -CCAACACTGTTCCTTGGTCAATGG -CCAACACTGTTCCTTGGTATGAGG -CCAACACTGTTCCTTGGTAATGGG -CCAACACTGTTCCTTGGTTCCTGA -CCAACACTGTTCCTTGGTTAGCGA -CCAACACTGTTCCTTGGTCACAGA -CCAACACTGTTCCTTGGTGCAAGA -CCAACACTGTTCCTTGGTGGTTGA -CCAACACTGTTCCTTGGTTCCGAT -CCAACACTGTTCCTTGGTTGGCAT -CCAACACTGTTCCTTGGTCGAGAT -CCAACACTGTTCCTTGGTTACCAC -CCAACACTGTTCCTTGGTCAGAAC -CCAACACTGTTCCTTGGTGTCTAC -CCAACACTGTTCCTTGGTACGTAC -CCAACACTGTTCCTTGGTAGTGAC -CCAACACTGTTCCTTGGTCTGTAG -CCAACACTGTTCCTTGGTCCTAAG -CCAACACTGTTCCTTGGTGTTCAG -CCAACACTGTTCCTTGGTGCATAG -CCAACACTGTTCCTTGGTGACAAG -CCAACACTGTTCCTTGGTAAGCAG -CCAACACTGTTCCTTGGTCGTCAA -CCAACACTGTTCCTTGGTGCTGAA -CCAACACTGTTCCTTGGTAGTACG -CCAACACTGTTCCTTGGTATCCGA -CCAACACTGTTCCTTGGTATGGGA -CCAACACTGTTCCTTGGTGTGCAA -CCAACACTGTTCCTTGGTGAGGAA -CCAACACTGTTCCTTGGTCAGGTA -CCAACACTGTTCCTTGGTGACTCT -CCAACACTGTTCCTTGGTAGTCCT -CCAACACTGTTCCTTGGTTAAGCC -CCAACACTGTTCCTTGGTATAGCC -CCAACACTGTTCCTTGGTTAACCG -CCAACACTGTTCCTTGGTATGCCA -CCAACACTGTTCCTTACGGGAAAC -CCAACACTGTTCCTTACGAACACC -CCAACACTGTTCCTTACGATCGAG -CCAACACTGTTCCTTACGCTCCTT -CCAACACTGTTCCTTACGCCTGTT -CCAACACTGTTCCTTACGCGGTTT -CCAACACTGTTCCTTACGGTGGTT -CCAACACTGTTCCTTACGGCCTTT -CCAACACTGTTCCTTACGGGTCTT -CCAACACTGTTCCTTACGACGCTT -CCAACACTGTTCCTTACGAGCGTT -CCAACACTGTTCCTTACGTTCGTC -CCAACACTGTTCCTTACGTCTCTC -CCAACACTGTTCCTTACGTGGATC -CCAACACTGTTCCTTACGCACTTC -CCAACACTGTTCCTTACGGTACTC -CCAACACTGTTCCTTACGGATGTC -CCAACACTGTTCCTTACGACAGTC -CCAACACTGTTCCTTACGTTGCTG -CCAACACTGTTCCTTACGTCCATG -CCAACACTGTTCCTTACGTGTGTG -CCAACACTGTTCCTTACGCTAGTG -CCAACACTGTTCCTTACGCATCTG -CCAACACTGTTCCTTACGGAGTTG -CCAACACTGTTCCTTACGAGACTG -CCAACACTGTTCCTTACGTCGGTA -CCAACACTGTTCCTTACGTGCCTA -CCAACACTGTTCCTTACGCCACTA -CCAACACTGTTCCTTACGGGAGTA -CCAACACTGTTCCTTACGTCGTCT -CCAACACTGTTCCTTACGTGCACT -CCAACACTGTTCCTTACGCTGACT -CCAACACTGTTCCTTACGCAACCT -CCAACACTGTTCCTTACGGCTACT -CCAACACTGTTCCTTACGGGATCT -CCAACACTGTTCCTTACGAAGGCT -CCAACACTGTTCCTTACGTCAACC -CCAACACTGTTCCTTACGTGTTCC -CCAACACTGTTCCTTACGATTCCC -CCAACACTGTTCCTTACGTTCTCG -CCAACACTGTTCCTTACGTAGACG -CCAACACTGTTCCTTACGGTAACG -CCAACACTGTTCCTTACGACTTCG -CCAACACTGTTCCTTACGTACGCA -CCAACACTGTTCCTTACGCTTGCA -CCAACACTGTTCCTTACGCGAACA -CCAACACTGTTCCTTACGCAGTCA -CCAACACTGTTCCTTACGGATCCA -CCAACACTGTTCCTTACGACGACA -CCAACACTGTTCCTTACGAGCTCA -CCAACACTGTTCCTTACGTCACGT -CCAACACTGTTCCTTACGCGTAGT -CCAACACTGTTCCTTACGGTCAGT -CCAACACTGTTCCTTACGGAAGGT -CCAACACTGTTCCTTACGAACCGT -CCAACACTGTTCCTTACGTTGTGC -CCAACACTGTTCCTTACGCTAAGC -CCAACACTGTTCCTTACGACTAGC -CCAACACTGTTCCTTACGAGATGC -CCAACACTGTTCCTTACGTGAAGG -CCAACACTGTTCCTTACGCAATGG -CCAACACTGTTCCTTACGATGAGG -CCAACACTGTTCCTTACGAATGGG -CCAACACTGTTCCTTACGTCCTGA -CCAACACTGTTCCTTACGTAGCGA -CCAACACTGTTCCTTACGCACAGA -CCAACACTGTTCCTTACGGCAAGA -CCAACACTGTTCCTTACGGGTTGA -CCAACACTGTTCCTTACGTCCGAT -CCAACACTGTTCCTTACGTGGCAT -CCAACACTGTTCCTTACGCGAGAT -CCAACACTGTTCCTTACGTACCAC -CCAACACTGTTCCTTACGCAGAAC -CCAACACTGTTCCTTACGGTCTAC -CCAACACTGTTCCTTACGACGTAC -CCAACACTGTTCCTTACGAGTGAC -CCAACACTGTTCCTTACGCTGTAG -CCAACACTGTTCCTTACGCCTAAG -CCAACACTGTTCCTTACGGTTCAG -CCAACACTGTTCCTTACGGCATAG -CCAACACTGTTCCTTACGGACAAG -CCAACACTGTTCCTTACGAAGCAG -CCAACACTGTTCCTTACGCGTCAA -CCAACACTGTTCCTTACGGCTGAA -CCAACACTGTTCCTTACGAGTACG -CCAACACTGTTCCTTACGATCCGA -CCAACACTGTTCCTTACGATGGGA -CCAACACTGTTCCTTACGGTGCAA -CCAACACTGTTCCTTACGGAGGAA -CCAACACTGTTCCTTACGCAGGTA -CCAACACTGTTCCTTACGGACTCT -CCAACACTGTTCCTTACGAGTCCT -CCAACACTGTTCCTTACGTAAGCC -CCAACACTGTTCCTTACGATAGCC -CCAACACTGTTCCTTACGTAACCG -CCAACACTGTTCCTTACGATGCCA -CCAACACTGTTCGTTAGCGGAAAC -CCAACACTGTTCGTTAGCAACACC -CCAACACTGTTCGTTAGCATCGAG -CCAACACTGTTCGTTAGCCTCCTT -CCAACACTGTTCGTTAGCCCTGTT -CCAACACTGTTCGTTAGCCGGTTT -CCAACACTGTTCGTTAGCGTGGTT -CCAACACTGTTCGTTAGCGCCTTT -CCAACACTGTTCGTTAGCGGTCTT -CCAACACTGTTCGTTAGCACGCTT -CCAACACTGTTCGTTAGCAGCGTT -CCAACACTGTTCGTTAGCTTCGTC -CCAACACTGTTCGTTAGCTCTCTC -CCAACACTGTTCGTTAGCTGGATC -CCAACACTGTTCGTTAGCCACTTC -CCAACACTGTTCGTTAGCGTACTC -CCAACACTGTTCGTTAGCGATGTC -CCAACACTGTTCGTTAGCACAGTC -CCAACACTGTTCGTTAGCTTGCTG -CCAACACTGTTCGTTAGCTCCATG -CCAACACTGTTCGTTAGCTGTGTG -CCAACACTGTTCGTTAGCCTAGTG -CCAACACTGTTCGTTAGCCATCTG -CCAACACTGTTCGTTAGCGAGTTG -CCAACACTGTTCGTTAGCAGACTG -CCAACACTGTTCGTTAGCTCGGTA -CCAACACTGTTCGTTAGCTGCCTA -CCAACACTGTTCGTTAGCCCACTA -CCAACACTGTTCGTTAGCGGAGTA -CCAACACTGTTCGTTAGCTCGTCT -CCAACACTGTTCGTTAGCTGCACT -CCAACACTGTTCGTTAGCCTGACT -CCAACACTGTTCGTTAGCCAACCT -CCAACACTGTTCGTTAGCGCTACT -CCAACACTGTTCGTTAGCGGATCT -CCAACACTGTTCGTTAGCAAGGCT -CCAACACTGTTCGTTAGCTCAACC -CCAACACTGTTCGTTAGCTGTTCC -CCAACACTGTTCGTTAGCATTCCC -CCAACACTGTTCGTTAGCTTCTCG -CCAACACTGTTCGTTAGCTAGACG -CCAACACTGTTCGTTAGCGTAACG -CCAACACTGTTCGTTAGCACTTCG -CCAACACTGTTCGTTAGCTACGCA -CCAACACTGTTCGTTAGCCTTGCA -CCAACACTGTTCGTTAGCCGAACA -CCAACACTGTTCGTTAGCCAGTCA -CCAACACTGTTCGTTAGCGATCCA -CCAACACTGTTCGTTAGCACGACA -CCAACACTGTTCGTTAGCAGCTCA -CCAACACTGTTCGTTAGCTCACGT -CCAACACTGTTCGTTAGCCGTAGT -CCAACACTGTTCGTTAGCGTCAGT -CCAACACTGTTCGTTAGCGAAGGT -CCAACACTGTTCGTTAGCAACCGT -CCAACACTGTTCGTTAGCTTGTGC -CCAACACTGTTCGTTAGCCTAAGC -CCAACACTGTTCGTTAGCACTAGC -CCAACACTGTTCGTTAGCAGATGC -CCAACACTGTTCGTTAGCTGAAGG -CCAACACTGTTCGTTAGCCAATGG -CCAACACTGTTCGTTAGCATGAGG -CCAACACTGTTCGTTAGCAATGGG -CCAACACTGTTCGTTAGCTCCTGA -CCAACACTGTTCGTTAGCTAGCGA -CCAACACTGTTCGTTAGCCACAGA -CCAACACTGTTCGTTAGCGCAAGA -CCAACACTGTTCGTTAGCGGTTGA -CCAACACTGTTCGTTAGCTCCGAT -CCAACACTGTTCGTTAGCTGGCAT -CCAACACTGTTCGTTAGCCGAGAT -CCAACACTGTTCGTTAGCTACCAC -CCAACACTGTTCGTTAGCCAGAAC -CCAACACTGTTCGTTAGCGTCTAC -CCAACACTGTTCGTTAGCACGTAC -CCAACACTGTTCGTTAGCAGTGAC -CCAACACTGTTCGTTAGCCTGTAG -CCAACACTGTTCGTTAGCCCTAAG -CCAACACTGTTCGTTAGCGTTCAG -CCAACACTGTTCGTTAGCGCATAG -CCAACACTGTTCGTTAGCGACAAG -CCAACACTGTTCGTTAGCAAGCAG -CCAACACTGTTCGTTAGCCGTCAA -CCAACACTGTTCGTTAGCGCTGAA -CCAACACTGTTCGTTAGCAGTACG -CCAACACTGTTCGTTAGCATCCGA -CCAACACTGTTCGTTAGCATGGGA -CCAACACTGTTCGTTAGCGTGCAA -CCAACACTGTTCGTTAGCGAGGAA -CCAACACTGTTCGTTAGCCAGGTA -CCAACACTGTTCGTTAGCGACTCT -CCAACACTGTTCGTTAGCAGTCCT -CCAACACTGTTCGTTAGCTAAGCC -CCAACACTGTTCGTTAGCATAGCC -CCAACACTGTTCGTTAGCTAACCG -CCAACACTGTTCGTTAGCATGCCA -CCAACACTGTTCGTCTTCGGAAAC -CCAACACTGTTCGTCTTCAACACC -CCAACACTGTTCGTCTTCATCGAG -CCAACACTGTTCGTCTTCCTCCTT -CCAACACTGTTCGTCTTCCCTGTT -CCAACACTGTTCGTCTTCCGGTTT -CCAACACTGTTCGTCTTCGTGGTT -CCAACACTGTTCGTCTTCGCCTTT -CCAACACTGTTCGTCTTCGGTCTT -CCAACACTGTTCGTCTTCACGCTT -CCAACACTGTTCGTCTTCAGCGTT -CCAACACTGTTCGTCTTCTTCGTC -CCAACACTGTTCGTCTTCTCTCTC -CCAACACTGTTCGTCTTCTGGATC -CCAACACTGTTCGTCTTCCACTTC -CCAACACTGTTCGTCTTCGTACTC -CCAACACTGTTCGTCTTCGATGTC -CCAACACTGTTCGTCTTCACAGTC -CCAACACTGTTCGTCTTCTTGCTG -CCAACACTGTTCGTCTTCTCCATG -CCAACACTGTTCGTCTTCTGTGTG -CCAACACTGTTCGTCTTCCTAGTG -CCAACACTGTTCGTCTTCCATCTG -CCAACACTGTTCGTCTTCGAGTTG -CCAACACTGTTCGTCTTCAGACTG -CCAACACTGTTCGTCTTCTCGGTA -CCAACACTGTTCGTCTTCTGCCTA -CCAACACTGTTCGTCTTCCCACTA -CCAACACTGTTCGTCTTCGGAGTA -CCAACACTGTTCGTCTTCTCGTCT -CCAACACTGTTCGTCTTCTGCACT -CCAACACTGTTCGTCTTCCTGACT -CCAACACTGTTCGTCTTCCAACCT -CCAACACTGTTCGTCTTCGCTACT -CCAACACTGTTCGTCTTCGGATCT -CCAACACTGTTCGTCTTCAAGGCT -CCAACACTGTTCGTCTTCTCAACC -CCAACACTGTTCGTCTTCTGTTCC -CCAACACTGTTCGTCTTCATTCCC -CCAACACTGTTCGTCTTCTTCTCG -CCAACACTGTTCGTCTTCTAGACG -CCAACACTGTTCGTCTTCGTAACG -CCAACACTGTTCGTCTTCACTTCG -CCAACACTGTTCGTCTTCTACGCA -CCAACACTGTTCGTCTTCCTTGCA -CCAACACTGTTCGTCTTCCGAACA -CCAACACTGTTCGTCTTCCAGTCA -CCAACACTGTTCGTCTTCGATCCA -CCAACACTGTTCGTCTTCACGACA -CCAACACTGTTCGTCTTCAGCTCA -CCAACACTGTTCGTCTTCTCACGT -CCAACACTGTTCGTCTTCCGTAGT -CCAACACTGTTCGTCTTCGTCAGT -CCAACACTGTTCGTCTTCGAAGGT -CCAACACTGTTCGTCTTCAACCGT -CCAACACTGTTCGTCTTCTTGTGC -CCAACACTGTTCGTCTTCCTAAGC -CCAACACTGTTCGTCTTCACTAGC -CCAACACTGTTCGTCTTCAGATGC -CCAACACTGTTCGTCTTCTGAAGG -CCAACACTGTTCGTCTTCCAATGG -CCAACACTGTTCGTCTTCATGAGG -CCAACACTGTTCGTCTTCAATGGG -CCAACACTGTTCGTCTTCTCCTGA -CCAACACTGTTCGTCTTCTAGCGA -CCAACACTGTTCGTCTTCCACAGA -CCAACACTGTTCGTCTTCGCAAGA -CCAACACTGTTCGTCTTCGGTTGA -CCAACACTGTTCGTCTTCTCCGAT -CCAACACTGTTCGTCTTCTGGCAT -CCAACACTGTTCGTCTTCCGAGAT -CCAACACTGTTCGTCTTCTACCAC -CCAACACTGTTCGTCTTCCAGAAC -CCAACACTGTTCGTCTTCGTCTAC -CCAACACTGTTCGTCTTCACGTAC -CCAACACTGTTCGTCTTCAGTGAC -CCAACACTGTTCGTCTTCCTGTAG -CCAACACTGTTCGTCTTCCCTAAG -CCAACACTGTTCGTCTTCGTTCAG -CCAACACTGTTCGTCTTCGCATAG -CCAACACTGTTCGTCTTCGACAAG -CCAACACTGTTCGTCTTCAAGCAG -CCAACACTGTTCGTCTTCCGTCAA -CCAACACTGTTCGTCTTCGCTGAA -CCAACACTGTTCGTCTTCAGTACG -CCAACACTGTTCGTCTTCATCCGA -CCAACACTGTTCGTCTTCATGGGA -CCAACACTGTTCGTCTTCGTGCAA -CCAACACTGTTCGTCTTCGAGGAA -CCAACACTGTTCGTCTTCCAGGTA -CCAACACTGTTCGTCTTCGACTCT -CCAACACTGTTCGTCTTCAGTCCT -CCAACACTGTTCGTCTTCTAAGCC -CCAACACTGTTCGTCTTCATAGCC -CCAACACTGTTCGTCTTCTAACCG -CCAACACTGTTCGTCTTCATGCCA -CCAACACTGTTCCTCTCTGGAAAC -CCAACACTGTTCCTCTCTAACACC -CCAACACTGTTCCTCTCTATCGAG -CCAACACTGTTCCTCTCTCTCCTT -CCAACACTGTTCCTCTCTCCTGTT -CCAACACTGTTCCTCTCTCGGTTT -CCAACACTGTTCCTCTCTGTGGTT -CCAACACTGTTCCTCTCTGCCTTT -CCAACACTGTTCCTCTCTGGTCTT -CCAACACTGTTCCTCTCTACGCTT -CCAACACTGTTCCTCTCTAGCGTT -CCAACACTGTTCCTCTCTTTCGTC -CCAACACTGTTCCTCTCTTCTCTC -CCAACACTGTTCCTCTCTTGGATC -CCAACACTGTTCCTCTCTCACTTC -CCAACACTGTTCCTCTCTGTACTC -CCAACACTGTTCCTCTCTGATGTC -CCAACACTGTTCCTCTCTACAGTC -CCAACACTGTTCCTCTCTTTGCTG -CCAACACTGTTCCTCTCTTCCATG -CCAACACTGTTCCTCTCTTGTGTG -CCAACACTGTTCCTCTCTCTAGTG -CCAACACTGTTCCTCTCTCATCTG -CCAACACTGTTCCTCTCTGAGTTG -CCAACACTGTTCCTCTCTAGACTG -CCAACACTGTTCCTCTCTTCGGTA -CCAACACTGTTCCTCTCTTGCCTA -CCAACACTGTTCCTCTCTCCACTA -CCAACACTGTTCCTCTCTGGAGTA -CCAACACTGTTCCTCTCTTCGTCT -CCAACACTGTTCCTCTCTTGCACT -CCAACACTGTTCCTCTCTCTGACT -CCAACACTGTTCCTCTCTCAACCT -CCAACACTGTTCCTCTCTGCTACT -CCAACACTGTTCCTCTCTGGATCT -CCAACACTGTTCCTCTCTAAGGCT -CCAACACTGTTCCTCTCTTCAACC -CCAACACTGTTCCTCTCTTGTTCC -CCAACACTGTTCCTCTCTATTCCC -CCAACACTGTTCCTCTCTTTCTCG -CCAACACTGTTCCTCTCTTAGACG -CCAACACTGTTCCTCTCTGTAACG -CCAACACTGTTCCTCTCTACTTCG -CCAACACTGTTCCTCTCTTACGCA -CCAACACTGTTCCTCTCTCTTGCA -CCAACACTGTTCCTCTCTCGAACA -CCAACACTGTTCCTCTCTCAGTCA -CCAACACTGTTCCTCTCTGATCCA -CCAACACTGTTCCTCTCTACGACA -CCAACACTGTTCCTCTCTAGCTCA -CCAACACTGTTCCTCTCTTCACGT -CCAACACTGTTCCTCTCTCGTAGT -CCAACACTGTTCCTCTCTGTCAGT -CCAACACTGTTCCTCTCTGAAGGT -CCAACACTGTTCCTCTCTAACCGT -CCAACACTGTTCCTCTCTTTGTGC -CCAACACTGTTCCTCTCTCTAAGC -CCAACACTGTTCCTCTCTACTAGC -CCAACACTGTTCCTCTCTAGATGC -CCAACACTGTTCCTCTCTTGAAGG -CCAACACTGTTCCTCTCTCAATGG -CCAACACTGTTCCTCTCTATGAGG -CCAACACTGTTCCTCTCTAATGGG -CCAACACTGTTCCTCTCTTCCTGA -CCAACACTGTTCCTCTCTTAGCGA -CCAACACTGTTCCTCTCTCACAGA -CCAACACTGTTCCTCTCTGCAAGA -CCAACACTGTTCCTCTCTGGTTGA -CCAACACTGTTCCTCTCTTCCGAT -CCAACACTGTTCCTCTCTTGGCAT -CCAACACTGTTCCTCTCTCGAGAT -CCAACACTGTTCCTCTCTTACCAC -CCAACACTGTTCCTCTCTCAGAAC -CCAACACTGTTCCTCTCTGTCTAC -CCAACACTGTTCCTCTCTACGTAC -CCAACACTGTTCCTCTCTAGTGAC -CCAACACTGTTCCTCTCTCTGTAG -CCAACACTGTTCCTCTCTCCTAAG -CCAACACTGTTCCTCTCTGTTCAG -CCAACACTGTTCCTCTCTGCATAG -CCAACACTGTTCCTCTCTGACAAG -CCAACACTGTTCCTCTCTAAGCAG -CCAACACTGTTCCTCTCTCGTCAA -CCAACACTGTTCCTCTCTGCTGAA -CCAACACTGTTCCTCTCTAGTACG -CCAACACTGTTCCTCTCTATCCGA -CCAACACTGTTCCTCTCTATGGGA -CCAACACTGTTCCTCTCTGTGCAA -CCAACACTGTTCCTCTCTGAGGAA -CCAACACTGTTCCTCTCTCAGGTA -CCAACACTGTTCCTCTCTGACTCT -CCAACACTGTTCCTCTCTAGTCCT -CCAACACTGTTCCTCTCTTAAGCC -CCAACACTGTTCCTCTCTATAGCC -CCAACACTGTTCCTCTCTTAACCG -CCAACACTGTTCCTCTCTATGCCA -CCAACACTGTTCATCTGGGGAAAC -CCAACACTGTTCATCTGGAACACC -CCAACACTGTTCATCTGGATCGAG -CCAACACTGTTCATCTGGCTCCTT -CCAACACTGTTCATCTGGCCTGTT -CCAACACTGTTCATCTGGCGGTTT -CCAACACTGTTCATCTGGGTGGTT -CCAACACTGTTCATCTGGGCCTTT -CCAACACTGTTCATCTGGGGTCTT -CCAACACTGTTCATCTGGACGCTT -CCAACACTGTTCATCTGGAGCGTT -CCAACACTGTTCATCTGGTTCGTC -CCAACACTGTTCATCTGGTCTCTC -CCAACACTGTTCATCTGGTGGATC -CCAACACTGTTCATCTGGCACTTC -CCAACACTGTTCATCTGGGTACTC -CCAACACTGTTCATCTGGGATGTC -CCAACACTGTTCATCTGGACAGTC -CCAACACTGTTCATCTGGTTGCTG -CCAACACTGTTCATCTGGTCCATG -CCAACACTGTTCATCTGGTGTGTG -CCAACACTGTTCATCTGGCTAGTG -CCAACACTGTTCATCTGGCATCTG -CCAACACTGTTCATCTGGGAGTTG -CCAACACTGTTCATCTGGAGACTG -CCAACACTGTTCATCTGGTCGGTA -CCAACACTGTTCATCTGGTGCCTA -CCAACACTGTTCATCTGGCCACTA -CCAACACTGTTCATCTGGGGAGTA -CCAACACTGTTCATCTGGTCGTCT -CCAACACTGTTCATCTGGTGCACT -CCAACACTGTTCATCTGGCTGACT -CCAACACTGTTCATCTGGCAACCT -CCAACACTGTTCATCTGGGCTACT -CCAACACTGTTCATCTGGGGATCT -CCAACACTGTTCATCTGGAAGGCT -CCAACACTGTTCATCTGGTCAACC -CCAACACTGTTCATCTGGTGTTCC -CCAACACTGTTCATCTGGATTCCC -CCAACACTGTTCATCTGGTTCTCG -CCAACACTGTTCATCTGGTAGACG -CCAACACTGTTCATCTGGGTAACG -CCAACACTGTTCATCTGGACTTCG -CCAACACTGTTCATCTGGTACGCA -CCAACACTGTTCATCTGGCTTGCA -CCAACACTGTTCATCTGGCGAACA -CCAACACTGTTCATCTGGCAGTCA -CCAACACTGTTCATCTGGGATCCA -CCAACACTGTTCATCTGGACGACA -CCAACACTGTTCATCTGGAGCTCA -CCAACACTGTTCATCTGGTCACGT -CCAACACTGTTCATCTGGCGTAGT -CCAACACTGTTCATCTGGGTCAGT -CCAACACTGTTCATCTGGGAAGGT -CCAACACTGTTCATCTGGAACCGT -CCAACACTGTTCATCTGGTTGTGC -CCAACACTGTTCATCTGGCTAAGC -CCAACACTGTTCATCTGGACTAGC -CCAACACTGTTCATCTGGAGATGC -CCAACACTGTTCATCTGGTGAAGG -CCAACACTGTTCATCTGGCAATGG -CCAACACTGTTCATCTGGATGAGG -CCAACACTGTTCATCTGGAATGGG -CCAACACTGTTCATCTGGTCCTGA -CCAACACTGTTCATCTGGTAGCGA -CCAACACTGTTCATCTGGCACAGA -CCAACACTGTTCATCTGGGCAAGA -CCAACACTGTTCATCTGGGGTTGA -CCAACACTGTTCATCTGGTCCGAT -CCAACACTGTTCATCTGGTGGCAT -CCAACACTGTTCATCTGGCGAGAT -CCAACACTGTTCATCTGGTACCAC -CCAACACTGTTCATCTGGCAGAAC -CCAACACTGTTCATCTGGGTCTAC -CCAACACTGTTCATCTGGACGTAC -CCAACACTGTTCATCTGGAGTGAC -CCAACACTGTTCATCTGGCTGTAG -CCAACACTGTTCATCTGGCCTAAG -CCAACACTGTTCATCTGGGTTCAG -CCAACACTGTTCATCTGGGCATAG -CCAACACTGTTCATCTGGGACAAG -CCAACACTGTTCATCTGGAAGCAG -CCAACACTGTTCATCTGGCGTCAA -CCAACACTGTTCATCTGGGCTGAA -CCAACACTGTTCATCTGGAGTACG -CCAACACTGTTCATCTGGATCCGA -CCAACACTGTTCATCTGGATGGGA -CCAACACTGTTCATCTGGGTGCAA -CCAACACTGTTCATCTGGGAGGAA -CCAACACTGTTCATCTGGCAGGTA -CCAACACTGTTCATCTGGGACTCT -CCAACACTGTTCATCTGGAGTCCT -CCAACACTGTTCATCTGGTAAGCC -CCAACACTGTTCATCTGGATAGCC -CCAACACTGTTCATCTGGTAACCG -CCAACACTGTTCATCTGGATGCCA -CCAACACTGTTCTTCCACGGAAAC -CCAACACTGTTCTTCCACAACACC -CCAACACTGTTCTTCCACATCGAG -CCAACACTGTTCTTCCACCTCCTT -CCAACACTGTTCTTCCACCCTGTT -CCAACACTGTTCTTCCACCGGTTT -CCAACACTGTTCTTCCACGTGGTT -CCAACACTGTTCTTCCACGCCTTT -CCAACACTGTTCTTCCACGGTCTT -CCAACACTGTTCTTCCACACGCTT -CCAACACTGTTCTTCCACAGCGTT -CCAACACTGTTCTTCCACTTCGTC -CCAACACTGTTCTTCCACTCTCTC -CCAACACTGTTCTTCCACTGGATC -CCAACACTGTTCTTCCACCACTTC -CCAACACTGTTCTTCCACGTACTC -CCAACACTGTTCTTCCACGATGTC -CCAACACTGTTCTTCCACACAGTC -CCAACACTGTTCTTCCACTTGCTG -CCAACACTGTTCTTCCACTCCATG -CCAACACTGTTCTTCCACTGTGTG -CCAACACTGTTCTTCCACCTAGTG -CCAACACTGTTCTTCCACCATCTG -CCAACACTGTTCTTCCACGAGTTG -CCAACACTGTTCTTCCACAGACTG -CCAACACTGTTCTTCCACTCGGTA -CCAACACTGTTCTTCCACTGCCTA -CCAACACTGTTCTTCCACCCACTA -CCAACACTGTTCTTCCACGGAGTA -CCAACACTGTTCTTCCACTCGTCT -CCAACACTGTTCTTCCACTGCACT -CCAACACTGTTCTTCCACCTGACT -CCAACACTGTTCTTCCACCAACCT -CCAACACTGTTCTTCCACGCTACT -CCAACACTGTTCTTCCACGGATCT -CCAACACTGTTCTTCCACAAGGCT -CCAACACTGTTCTTCCACTCAACC -CCAACACTGTTCTTCCACTGTTCC -CCAACACTGTTCTTCCACATTCCC -CCAACACTGTTCTTCCACTTCTCG -CCAACACTGTTCTTCCACTAGACG -CCAACACTGTTCTTCCACGTAACG -CCAACACTGTTCTTCCACACTTCG -CCAACACTGTTCTTCCACTACGCA -CCAACACTGTTCTTCCACCTTGCA -CCAACACTGTTCTTCCACCGAACA -CCAACACTGTTCTTCCACCAGTCA -CCAACACTGTTCTTCCACGATCCA -CCAACACTGTTCTTCCACACGACA -CCAACACTGTTCTTCCACAGCTCA -CCAACACTGTTCTTCCACTCACGT -CCAACACTGTTCTTCCACCGTAGT -CCAACACTGTTCTTCCACGTCAGT -CCAACACTGTTCTTCCACGAAGGT -CCAACACTGTTCTTCCACAACCGT -CCAACACTGTTCTTCCACTTGTGC -CCAACACTGTTCTTCCACCTAAGC -CCAACACTGTTCTTCCACACTAGC -CCAACACTGTTCTTCCACAGATGC -CCAACACTGTTCTTCCACTGAAGG -CCAACACTGTTCTTCCACCAATGG -CCAACACTGTTCTTCCACATGAGG -CCAACACTGTTCTTCCACAATGGG -CCAACACTGTTCTTCCACTCCTGA -CCAACACTGTTCTTCCACTAGCGA -CCAACACTGTTCTTCCACCACAGA -CCAACACTGTTCTTCCACGCAAGA -CCAACACTGTTCTTCCACGGTTGA -CCAACACTGTTCTTCCACTCCGAT -CCAACACTGTTCTTCCACTGGCAT -CCAACACTGTTCTTCCACCGAGAT -CCAACACTGTTCTTCCACTACCAC -CCAACACTGTTCTTCCACCAGAAC -CCAACACTGTTCTTCCACGTCTAC -CCAACACTGTTCTTCCACACGTAC -CCAACACTGTTCTTCCACAGTGAC -CCAACACTGTTCTTCCACCTGTAG -CCAACACTGTTCTTCCACCCTAAG -CCAACACTGTTCTTCCACGTTCAG -CCAACACTGTTCTTCCACGCATAG -CCAACACTGTTCTTCCACGACAAG -CCAACACTGTTCTTCCACAAGCAG -CCAACACTGTTCTTCCACCGTCAA -CCAACACTGTTCTTCCACGCTGAA -CCAACACTGTTCTTCCACAGTACG -CCAACACTGTTCTTCCACATCCGA -CCAACACTGTTCTTCCACATGGGA -CCAACACTGTTCTTCCACGTGCAA -CCAACACTGTTCTTCCACGAGGAA -CCAACACTGTTCTTCCACCAGGTA -CCAACACTGTTCTTCCACGACTCT -CCAACACTGTTCTTCCACAGTCCT -CCAACACTGTTCTTCCACTAAGCC -CCAACACTGTTCTTCCACATAGCC -CCAACACTGTTCTTCCACTAACCG -CCAACACTGTTCTTCCACATGCCA -CCAACACTGTTCCTCGTAGGAAAC -CCAACACTGTTCCTCGTAAACACC -CCAACACTGTTCCTCGTAATCGAG -CCAACACTGTTCCTCGTACTCCTT -CCAACACTGTTCCTCGTACCTGTT -CCAACACTGTTCCTCGTACGGTTT -CCAACACTGTTCCTCGTAGTGGTT -CCAACACTGTTCCTCGTAGCCTTT -CCAACACTGTTCCTCGTAGGTCTT -CCAACACTGTTCCTCGTAACGCTT -CCAACACTGTTCCTCGTAAGCGTT -CCAACACTGTTCCTCGTATTCGTC -CCAACACTGTTCCTCGTATCTCTC -CCAACACTGTTCCTCGTATGGATC -CCAACACTGTTCCTCGTACACTTC -CCAACACTGTTCCTCGTAGTACTC -CCAACACTGTTCCTCGTAGATGTC -CCAACACTGTTCCTCGTAACAGTC -CCAACACTGTTCCTCGTATTGCTG -CCAACACTGTTCCTCGTATCCATG -CCAACACTGTTCCTCGTATGTGTG -CCAACACTGTTCCTCGTACTAGTG -CCAACACTGTTCCTCGTACATCTG -CCAACACTGTTCCTCGTAGAGTTG -CCAACACTGTTCCTCGTAAGACTG -CCAACACTGTTCCTCGTATCGGTA -CCAACACTGTTCCTCGTATGCCTA -CCAACACTGTTCCTCGTACCACTA -CCAACACTGTTCCTCGTAGGAGTA -CCAACACTGTTCCTCGTATCGTCT -CCAACACTGTTCCTCGTATGCACT -CCAACACTGTTCCTCGTACTGACT -CCAACACTGTTCCTCGTACAACCT -CCAACACTGTTCCTCGTAGCTACT -CCAACACTGTTCCTCGTAGGATCT -CCAACACTGTTCCTCGTAAAGGCT -CCAACACTGTTCCTCGTATCAACC -CCAACACTGTTCCTCGTATGTTCC -CCAACACTGTTCCTCGTAATTCCC -CCAACACTGTTCCTCGTATTCTCG -CCAACACTGTTCCTCGTATAGACG -CCAACACTGTTCCTCGTAGTAACG -CCAACACTGTTCCTCGTAACTTCG -CCAACACTGTTCCTCGTATACGCA -CCAACACTGTTCCTCGTACTTGCA -CCAACACTGTTCCTCGTACGAACA -CCAACACTGTTCCTCGTACAGTCA -CCAACACTGTTCCTCGTAGATCCA -CCAACACTGTTCCTCGTAACGACA -CCAACACTGTTCCTCGTAAGCTCA -CCAACACTGTTCCTCGTATCACGT -CCAACACTGTTCCTCGTACGTAGT -CCAACACTGTTCCTCGTAGTCAGT -CCAACACTGTTCCTCGTAGAAGGT -CCAACACTGTTCCTCGTAAACCGT -CCAACACTGTTCCTCGTATTGTGC -CCAACACTGTTCCTCGTACTAAGC -CCAACACTGTTCCTCGTAACTAGC -CCAACACTGTTCCTCGTAAGATGC -CCAACACTGTTCCTCGTATGAAGG -CCAACACTGTTCCTCGTACAATGG -CCAACACTGTTCCTCGTAATGAGG -CCAACACTGTTCCTCGTAAATGGG -CCAACACTGTTCCTCGTATCCTGA -CCAACACTGTTCCTCGTATAGCGA -CCAACACTGTTCCTCGTACACAGA -CCAACACTGTTCCTCGTAGCAAGA -CCAACACTGTTCCTCGTAGGTTGA -CCAACACTGTTCCTCGTATCCGAT -CCAACACTGTTCCTCGTATGGCAT -CCAACACTGTTCCTCGTACGAGAT -CCAACACTGTTCCTCGTATACCAC -CCAACACTGTTCCTCGTACAGAAC -CCAACACTGTTCCTCGTAGTCTAC -CCAACACTGTTCCTCGTAACGTAC -CCAACACTGTTCCTCGTAAGTGAC -CCAACACTGTTCCTCGTACTGTAG -CCAACACTGTTCCTCGTACCTAAG -CCAACACTGTTCCTCGTAGTTCAG -CCAACACTGTTCCTCGTAGCATAG -CCAACACTGTTCCTCGTAGACAAG -CCAACACTGTTCCTCGTAAAGCAG -CCAACACTGTTCCTCGTACGTCAA -CCAACACTGTTCCTCGTAGCTGAA -CCAACACTGTTCCTCGTAAGTACG -CCAACACTGTTCCTCGTAATCCGA -CCAACACTGTTCCTCGTAATGGGA -CCAACACTGTTCCTCGTAGTGCAA -CCAACACTGTTCCTCGTAGAGGAA -CCAACACTGTTCCTCGTACAGGTA -CCAACACTGTTCCTCGTAGACTCT -CCAACACTGTTCCTCGTAAGTCCT -CCAACACTGTTCCTCGTATAAGCC -CCAACACTGTTCCTCGTAATAGCC -CCAACACTGTTCCTCGTATAACCG -CCAACACTGTTCCTCGTAATGCCA -CCAACACTGTTCGTCGATGGAAAC -CCAACACTGTTCGTCGATAACACC -CCAACACTGTTCGTCGATATCGAG -CCAACACTGTTCGTCGATCTCCTT -CCAACACTGTTCGTCGATCCTGTT -CCAACACTGTTCGTCGATCGGTTT -CCAACACTGTTCGTCGATGTGGTT -CCAACACTGTTCGTCGATGCCTTT -CCAACACTGTTCGTCGATGGTCTT -CCAACACTGTTCGTCGATACGCTT -CCAACACTGTTCGTCGATAGCGTT -CCAACACTGTTCGTCGATTTCGTC -CCAACACTGTTCGTCGATTCTCTC -CCAACACTGTTCGTCGATTGGATC -CCAACACTGTTCGTCGATCACTTC -CCAACACTGTTCGTCGATGTACTC -CCAACACTGTTCGTCGATGATGTC -CCAACACTGTTCGTCGATACAGTC -CCAACACTGTTCGTCGATTTGCTG -CCAACACTGTTCGTCGATTCCATG -CCAACACTGTTCGTCGATTGTGTG -CCAACACTGTTCGTCGATCTAGTG -CCAACACTGTTCGTCGATCATCTG -CCAACACTGTTCGTCGATGAGTTG -CCAACACTGTTCGTCGATAGACTG -CCAACACTGTTCGTCGATTCGGTA -CCAACACTGTTCGTCGATTGCCTA -CCAACACTGTTCGTCGATCCACTA -CCAACACTGTTCGTCGATGGAGTA -CCAACACTGTTCGTCGATTCGTCT -CCAACACTGTTCGTCGATTGCACT -CCAACACTGTTCGTCGATCTGACT -CCAACACTGTTCGTCGATCAACCT -CCAACACTGTTCGTCGATGCTACT -CCAACACTGTTCGTCGATGGATCT -CCAACACTGTTCGTCGATAAGGCT -CCAACACTGTTCGTCGATTCAACC -CCAACACTGTTCGTCGATTGTTCC -CCAACACTGTTCGTCGATATTCCC -CCAACACTGTTCGTCGATTTCTCG -CCAACACTGTTCGTCGATTAGACG -CCAACACTGTTCGTCGATGTAACG -CCAACACTGTTCGTCGATACTTCG -CCAACACTGTTCGTCGATTACGCA -CCAACACTGTTCGTCGATCTTGCA -CCAACACTGTTCGTCGATCGAACA -CCAACACTGTTCGTCGATCAGTCA -CCAACACTGTTCGTCGATGATCCA -CCAACACTGTTCGTCGATACGACA -CCAACACTGTTCGTCGATAGCTCA -CCAACACTGTTCGTCGATTCACGT -CCAACACTGTTCGTCGATCGTAGT -CCAACACTGTTCGTCGATGTCAGT -CCAACACTGTTCGTCGATGAAGGT -CCAACACTGTTCGTCGATAACCGT -CCAACACTGTTCGTCGATTTGTGC -CCAACACTGTTCGTCGATCTAAGC -CCAACACTGTTCGTCGATACTAGC -CCAACACTGTTCGTCGATAGATGC -CCAACACTGTTCGTCGATTGAAGG -CCAACACTGTTCGTCGATCAATGG -CCAACACTGTTCGTCGATATGAGG -CCAACACTGTTCGTCGATAATGGG -CCAACACTGTTCGTCGATTCCTGA -CCAACACTGTTCGTCGATTAGCGA -CCAACACTGTTCGTCGATCACAGA -CCAACACTGTTCGTCGATGCAAGA -CCAACACTGTTCGTCGATGGTTGA -CCAACACTGTTCGTCGATTCCGAT -CCAACACTGTTCGTCGATTGGCAT -CCAACACTGTTCGTCGATCGAGAT -CCAACACTGTTCGTCGATTACCAC -CCAACACTGTTCGTCGATCAGAAC -CCAACACTGTTCGTCGATGTCTAC -CCAACACTGTTCGTCGATACGTAC -CCAACACTGTTCGTCGATAGTGAC -CCAACACTGTTCGTCGATCTGTAG -CCAACACTGTTCGTCGATCCTAAG -CCAACACTGTTCGTCGATGTTCAG -CCAACACTGTTCGTCGATGCATAG -CCAACACTGTTCGTCGATGACAAG -CCAACACTGTTCGTCGATAAGCAG -CCAACACTGTTCGTCGATCGTCAA -CCAACACTGTTCGTCGATGCTGAA -CCAACACTGTTCGTCGATAGTACG -CCAACACTGTTCGTCGATATCCGA -CCAACACTGTTCGTCGATATGGGA -CCAACACTGTTCGTCGATGTGCAA -CCAACACTGTTCGTCGATGAGGAA -CCAACACTGTTCGTCGATCAGGTA -CCAACACTGTTCGTCGATGACTCT -CCAACACTGTTCGTCGATAGTCCT -CCAACACTGTTCGTCGATTAAGCC -CCAACACTGTTCGTCGATATAGCC -CCAACACTGTTCGTCGATTAACCG -CCAACACTGTTCGTCGATATGCCA -CCAACACTGTTCGTCACAGGAAAC -CCAACACTGTTCGTCACAAACACC -CCAACACTGTTCGTCACAATCGAG -CCAACACTGTTCGTCACACTCCTT -CCAACACTGTTCGTCACACCTGTT -CCAACACTGTTCGTCACACGGTTT -CCAACACTGTTCGTCACAGTGGTT -CCAACACTGTTCGTCACAGCCTTT -CCAACACTGTTCGTCACAGGTCTT -CCAACACTGTTCGTCACAACGCTT -CCAACACTGTTCGTCACAAGCGTT -CCAACACTGTTCGTCACATTCGTC -CCAACACTGTTCGTCACATCTCTC -CCAACACTGTTCGTCACATGGATC -CCAACACTGTTCGTCACACACTTC -CCAACACTGTTCGTCACAGTACTC -CCAACACTGTTCGTCACAGATGTC -CCAACACTGTTCGTCACAACAGTC -CCAACACTGTTCGTCACATTGCTG -CCAACACTGTTCGTCACATCCATG -CCAACACTGTTCGTCACATGTGTG -CCAACACTGTTCGTCACACTAGTG -CCAACACTGTTCGTCACACATCTG -CCAACACTGTTCGTCACAGAGTTG -CCAACACTGTTCGTCACAAGACTG -CCAACACTGTTCGTCACATCGGTA -CCAACACTGTTCGTCACATGCCTA -CCAACACTGTTCGTCACACCACTA -CCAACACTGTTCGTCACAGGAGTA -CCAACACTGTTCGTCACATCGTCT -CCAACACTGTTCGTCACATGCACT -CCAACACTGTTCGTCACACTGACT -CCAACACTGTTCGTCACACAACCT -CCAACACTGTTCGTCACAGCTACT -CCAACACTGTTCGTCACAGGATCT -CCAACACTGTTCGTCACAAAGGCT -CCAACACTGTTCGTCACATCAACC -CCAACACTGTTCGTCACATGTTCC -CCAACACTGTTCGTCACAATTCCC -CCAACACTGTTCGTCACATTCTCG -CCAACACTGTTCGTCACATAGACG -CCAACACTGTTCGTCACAGTAACG -CCAACACTGTTCGTCACAACTTCG -CCAACACTGTTCGTCACATACGCA -CCAACACTGTTCGTCACACTTGCA -CCAACACTGTTCGTCACACGAACA -CCAACACTGTTCGTCACACAGTCA -CCAACACTGTTCGTCACAGATCCA -CCAACACTGTTCGTCACAACGACA -CCAACACTGTTCGTCACAAGCTCA -CCAACACTGTTCGTCACATCACGT -CCAACACTGTTCGTCACACGTAGT -CCAACACTGTTCGTCACAGTCAGT -CCAACACTGTTCGTCACAGAAGGT -CCAACACTGTTCGTCACAAACCGT -CCAACACTGTTCGTCACATTGTGC -CCAACACTGTTCGTCACACTAAGC -CCAACACTGTTCGTCACAACTAGC -CCAACACTGTTCGTCACAAGATGC -CCAACACTGTTCGTCACATGAAGG -CCAACACTGTTCGTCACACAATGG -CCAACACTGTTCGTCACAATGAGG -CCAACACTGTTCGTCACAAATGGG -CCAACACTGTTCGTCACATCCTGA -CCAACACTGTTCGTCACATAGCGA -CCAACACTGTTCGTCACACACAGA -CCAACACTGTTCGTCACAGCAAGA -CCAACACTGTTCGTCACAGGTTGA -CCAACACTGTTCGTCACATCCGAT -CCAACACTGTTCGTCACATGGCAT -CCAACACTGTTCGTCACACGAGAT -CCAACACTGTTCGTCACATACCAC -CCAACACTGTTCGTCACACAGAAC -CCAACACTGTTCGTCACAGTCTAC -CCAACACTGTTCGTCACAACGTAC -CCAACACTGTTCGTCACAAGTGAC -CCAACACTGTTCGTCACACTGTAG -CCAACACTGTTCGTCACACCTAAG -CCAACACTGTTCGTCACAGTTCAG -CCAACACTGTTCGTCACAGCATAG -CCAACACTGTTCGTCACAGACAAG -CCAACACTGTTCGTCACAAAGCAG -CCAACACTGTTCGTCACACGTCAA -CCAACACTGTTCGTCACAGCTGAA -CCAACACTGTTCGTCACAAGTACG -CCAACACTGTTCGTCACAATCCGA -CCAACACTGTTCGTCACAATGGGA -CCAACACTGTTCGTCACAGTGCAA -CCAACACTGTTCGTCACAGAGGAA -CCAACACTGTTCGTCACACAGGTA -CCAACACTGTTCGTCACAGACTCT -CCAACACTGTTCGTCACAAGTCCT -CCAACACTGTTCGTCACATAAGCC -CCAACACTGTTCGTCACAATAGCC -CCAACACTGTTCGTCACATAACCG -CCAACACTGTTCGTCACAATGCCA -CCAACACTGTTCCTGTTGGGAAAC -CCAACACTGTTCCTGTTGAACACC -CCAACACTGTTCCTGTTGATCGAG -CCAACACTGTTCCTGTTGCTCCTT -CCAACACTGTTCCTGTTGCCTGTT -CCAACACTGTTCCTGTTGCGGTTT -CCAACACTGTTCCTGTTGGTGGTT -CCAACACTGTTCCTGTTGGCCTTT -CCAACACTGTTCCTGTTGGGTCTT -CCAACACTGTTCCTGTTGACGCTT -CCAACACTGTTCCTGTTGAGCGTT -CCAACACTGTTCCTGTTGTTCGTC -CCAACACTGTTCCTGTTGTCTCTC -CCAACACTGTTCCTGTTGTGGATC -CCAACACTGTTCCTGTTGCACTTC -CCAACACTGTTCCTGTTGGTACTC -CCAACACTGTTCCTGTTGGATGTC -CCAACACTGTTCCTGTTGACAGTC -CCAACACTGTTCCTGTTGTTGCTG -CCAACACTGTTCCTGTTGTCCATG -CCAACACTGTTCCTGTTGTGTGTG -CCAACACTGTTCCTGTTGCTAGTG -CCAACACTGTTCCTGTTGCATCTG -CCAACACTGTTCCTGTTGGAGTTG -CCAACACTGTTCCTGTTGAGACTG -CCAACACTGTTCCTGTTGTCGGTA -CCAACACTGTTCCTGTTGTGCCTA -CCAACACTGTTCCTGTTGCCACTA -CCAACACTGTTCCTGTTGGGAGTA -CCAACACTGTTCCTGTTGTCGTCT -CCAACACTGTTCCTGTTGTGCACT -CCAACACTGTTCCTGTTGCTGACT -CCAACACTGTTCCTGTTGCAACCT -CCAACACTGTTCCTGTTGGCTACT -CCAACACTGTTCCTGTTGGGATCT -CCAACACTGTTCCTGTTGAAGGCT -CCAACACTGTTCCTGTTGTCAACC -CCAACACTGTTCCTGTTGTGTTCC -CCAACACTGTTCCTGTTGATTCCC -CCAACACTGTTCCTGTTGTTCTCG -CCAACACTGTTCCTGTTGTAGACG -CCAACACTGTTCCTGTTGGTAACG -CCAACACTGTTCCTGTTGACTTCG -CCAACACTGTTCCTGTTGTACGCA -CCAACACTGTTCCTGTTGCTTGCA -CCAACACTGTTCCTGTTGCGAACA -CCAACACTGTTCCTGTTGCAGTCA -CCAACACTGTTCCTGTTGGATCCA -CCAACACTGTTCCTGTTGACGACA -CCAACACTGTTCCTGTTGAGCTCA -CCAACACTGTTCCTGTTGTCACGT -CCAACACTGTTCCTGTTGCGTAGT -CCAACACTGTTCCTGTTGGTCAGT -CCAACACTGTTCCTGTTGGAAGGT -CCAACACTGTTCCTGTTGAACCGT -CCAACACTGTTCCTGTTGTTGTGC -CCAACACTGTTCCTGTTGCTAAGC -CCAACACTGTTCCTGTTGACTAGC -CCAACACTGTTCCTGTTGAGATGC -CCAACACTGTTCCTGTTGTGAAGG -CCAACACTGTTCCTGTTGCAATGG -CCAACACTGTTCCTGTTGATGAGG -CCAACACTGTTCCTGTTGAATGGG -CCAACACTGTTCCTGTTGTCCTGA -CCAACACTGTTCCTGTTGTAGCGA -CCAACACTGTTCCTGTTGCACAGA -CCAACACTGTTCCTGTTGGCAAGA -CCAACACTGTTCCTGTTGGGTTGA -CCAACACTGTTCCTGTTGTCCGAT -CCAACACTGTTCCTGTTGTGGCAT -CCAACACTGTTCCTGTTGCGAGAT -CCAACACTGTTCCTGTTGTACCAC -CCAACACTGTTCCTGTTGCAGAAC -CCAACACTGTTCCTGTTGGTCTAC -CCAACACTGTTCCTGTTGACGTAC -CCAACACTGTTCCTGTTGAGTGAC -CCAACACTGTTCCTGTTGCTGTAG -CCAACACTGTTCCTGTTGCCTAAG -CCAACACTGTTCCTGTTGGTTCAG -CCAACACTGTTCCTGTTGGCATAG -CCAACACTGTTCCTGTTGGACAAG -CCAACACTGTTCCTGTTGAAGCAG -CCAACACTGTTCCTGTTGCGTCAA -CCAACACTGTTCCTGTTGGCTGAA -CCAACACTGTTCCTGTTGAGTACG -CCAACACTGTTCCTGTTGATCCGA -CCAACACTGTTCCTGTTGATGGGA -CCAACACTGTTCCTGTTGGTGCAA -CCAACACTGTTCCTGTTGGAGGAA -CCAACACTGTTCCTGTTGCAGGTA -CCAACACTGTTCCTGTTGGACTCT -CCAACACTGTTCCTGTTGAGTCCT -CCAACACTGTTCCTGTTGTAAGCC -CCAACACTGTTCCTGTTGATAGCC -CCAACACTGTTCCTGTTGTAACCG -CCAACACTGTTCCTGTTGATGCCA -CCAACACTGTTCATGTCCGGAAAC -CCAACACTGTTCATGTCCAACACC -CCAACACTGTTCATGTCCATCGAG -CCAACACTGTTCATGTCCCTCCTT -CCAACACTGTTCATGTCCCCTGTT -CCAACACTGTTCATGTCCCGGTTT -CCAACACTGTTCATGTCCGTGGTT -CCAACACTGTTCATGTCCGCCTTT -CCAACACTGTTCATGTCCGGTCTT -CCAACACTGTTCATGTCCACGCTT -CCAACACTGTTCATGTCCAGCGTT -CCAACACTGTTCATGTCCTTCGTC -CCAACACTGTTCATGTCCTCTCTC -CCAACACTGTTCATGTCCTGGATC -CCAACACTGTTCATGTCCCACTTC -CCAACACTGTTCATGTCCGTACTC -CCAACACTGTTCATGTCCGATGTC -CCAACACTGTTCATGTCCACAGTC -CCAACACTGTTCATGTCCTTGCTG -CCAACACTGTTCATGTCCTCCATG -CCAACACTGTTCATGTCCTGTGTG -CCAACACTGTTCATGTCCCTAGTG -CCAACACTGTTCATGTCCCATCTG -CCAACACTGTTCATGTCCGAGTTG -CCAACACTGTTCATGTCCAGACTG -CCAACACTGTTCATGTCCTCGGTA -CCAACACTGTTCATGTCCTGCCTA -CCAACACTGTTCATGTCCCCACTA -CCAACACTGTTCATGTCCGGAGTA -CCAACACTGTTCATGTCCTCGTCT -CCAACACTGTTCATGTCCTGCACT -CCAACACTGTTCATGTCCCTGACT -CCAACACTGTTCATGTCCCAACCT -CCAACACTGTTCATGTCCGCTACT -CCAACACTGTTCATGTCCGGATCT -CCAACACTGTTCATGTCCAAGGCT -CCAACACTGTTCATGTCCTCAACC -CCAACACTGTTCATGTCCTGTTCC -CCAACACTGTTCATGTCCATTCCC -CCAACACTGTTCATGTCCTTCTCG -CCAACACTGTTCATGTCCTAGACG -CCAACACTGTTCATGTCCGTAACG -CCAACACTGTTCATGTCCACTTCG -CCAACACTGTTCATGTCCTACGCA -CCAACACTGTTCATGTCCCTTGCA -CCAACACTGTTCATGTCCCGAACA -CCAACACTGTTCATGTCCCAGTCA -CCAACACTGTTCATGTCCGATCCA -CCAACACTGTTCATGTCCACGACA -CCAACACTGTTCATGTCCAGCTCA -CCAACACTGTTCATGTCCTCACGT -CCAACACTGTTCATGTCCCGTAGT -CCAACACTGTTCATGTCCGTCAGT -CCAACACTGTTCATGTCCGAAGGT -CCAACACTGTTCATGTCCAACCGT -CCAACACTGTTCATGTCCTTGTGC -CCAACACTGTTCATGTCCCTAAGC -CCAACACTGTTCATGTCCACTAGC -CCAACACTGTTCATGTCCAGATGC -CCAACACTGTTCATGTCCTGAAGG -CCAACACTGTTCATGTCCCAATGG -CCAACACTGTTCATGTCCATGAGG -CCAACACTGTTCATGTCCAATGGG -CCAACACTGTTCATGTCCTCCTGA -CCAACACTGTTCATGTCCTAGCGA -CCAACACTGTTCATGTCCCACAGA -CCAACACTGTTCATGTCCGCAAGA -CCAACACTGTTCATGTCCGGTTGA -CCAACACTGTTCATGTCCTCCGAT -CCAACACTGTTCATGTCCTGGCAT -CCAACACTGTTCATGTCCCGAGAT -CCAACACTGTTCATGTCCTACCAC -CCAACACTGTTCATGTCCCAGAAC -CCAACACTGTTCATGTCCGTCTAC -CCAACACTGTTCATGTCCACGTAC -CCAACACTGTTCATGTCCAGTGAC -CCAACACTGTTCATGTCCCTGTAG -CCAACACTGTTCATGTCCCCTAAG -CCAACACTGTTCATGTCCGTTCAG -CCAACACTGTTCATGTCCGCATAG -CCAACACTGTTCATGTCCGACAAG -CCAACACTGTTCATGTCCAAGCAG -CCAACACTGTTCATGTCCCGTCAA -CCAACACTGTTCATGTCCGCTGAA -CCAACACTGTTCATGTCCAGTACG -CCAACACTGTTCATGTCCATCCGA -CCAACACTGTTCATGTCCATGGGA -CCAACACTGTTCATGTCCGTGCAA -CCAACACTGTTCATGTCCGAGGAA -CCAACACTGTTCATGTCCCAGGTA -CCAACACTGTTCATGTCCGACTCT -CCAACACTGTTCATGTCCAGTCCT -CCAACACTGTTCATGTCCTAAGCC -CCAACACTGTTCATGTCCATAGCC -CCAACACTGTTCATGTCCTAACCG -CCAACACTGTTCATGTCCATGCCA -CCAACACTGTTCGTGTGTGGAAAC -CCAACACTGTTCGTGTGTAACACC -CCAACACTGTTCGTGTGTATCGAG -CCAACACTGTTCGTGTGTCTCCTT -CCAACACTGTTCGTGTGTCCTGTT -CCAACACTGTTCGTGTGTCGGTTT -CCAACACTGTTCGTGTGTGTGGTT -CCAACACTGTTCGTGTGTGCCTTT -CCAACACTGTTCGTGTGTGGTCTT -CCAACACTGTTCGTGTGTACGCTT -CCAACACTGTTCGTGTGTAGCGTT -CCAACACTGTTCGTGTGTTTCGTC -CCAACACTGTTCGTGTGTTCTCTC -CCAACACTGTTCGTGTGTTGGATC -CCAACACTGTTCGTGTGTCACTTC -CCAACACTGTTCGTGTGTGTACTC -CCAACACTGTTCGTGTGTGATGTC -CCAACACTGTTCGTGTGTACAGTC -CCAACACTGTTCGTGTGTTTGCTG -CCAACACTGTTCGTGTGTTCCATG -CCAACACTGTTCGTGTGTTGTGTG -CCAACACTGTTCGTGTGTCTAGTG -CCAACACTGTTCGTGTGTCATCTG -CCAACACTGTTCGTGTGTGAGTTG -CCAACACTGTTCGTGTGTAGACTG -CCAACACTGTTCGTGTGTTCGGTA -CCAACACTGTTCGTGTGTTGCCTA -CCAACACTGTTCGTGTGTCCACTA -CCAACACTGTTCGTGTGTGGAGTA -CCAACACTGTTCGTGTGTTCGTCT -CCAACACTGTTCGTGTGTTGCACT -CCAACACTGTTCGTGTGTCTGACT -CCAACACTGTTCGTGTGTCAACCT -CCAACACTGTTCGTGTGTGCTACT -CCAACACTGTTCGTGTGTGGATCT -CCAACACTGTTCGTGTGTAAGGCT -CCAACACTGTTCGTGTGTTCAACC -CCAACACTGTTCGTGTGTTGTTCC -CCAACACTGTTCGTGTGTATTCCC -CCAACACTGTTCGTGTGTTTCTCG -CCAACACTGTTCGTGTGTTAGACG -CCAACACTGTTCGTGTGTGTAACG -CCAACACTGTTCGTGTGTACTTCG -CCAACACTGTTCGTGTGTTACGCA -CCAACACTGTTCGTGTGTCTTGCA -CCAACACTGTTCGTGTGTCGAACA -CCAACACTGTTCGTGTGTCAGTCA -CCAACACTGTTCGTGTGTGATCCA -CCAACACTGTTCGTGTGTACGACA -CCAACACTGTTCGTGTGTAGCTCA -CCAACACTGTTCGTGTGTTCACGT -CCAACACTGTTCGTGTGTCGTAGT -CCAACACTGTTCGTGTGTGTCAGT -CCAACACTGTTCGTGTGTGAAGGT -CCAACACTGTTCGTGTGTAACCGT -CCAACACTGTTCGTGTGTTTGTGC -CCAACACTGTTCGTGTGTCTAAGC -CCAACACTGTTCGTGTGTACTAGC -CCAACACTGTTCGTGTGTAGATGC -CCAACACTGTTCGTGTGTTGAAGG -CCAACACTGTTCGTGTGTCAATGG -CCAACACTGTTCGTGTGTATGAGG -CCAACACTGTTCGTGTGTAATGGG -CCAACACTGTTCGTGTGTTCCTGA -CCAACACTGTTCGTGTGTTAGCGA -CCAACACTGTTCGTGTGTCACAGA -CCAACACTGTTCGTGTGTGCAAGA -CCAACACTGTTCGTGTGTGGTTGA -CCAACACTGTTCGTGTGTTCCGAT -CCAACACTGTTCGTGTGTTGGCAT -CCAACACTGTTCGTGTGTCGAGAT -CCAACACTGTTCGTGTGTTACCAC -CCAACACTGTTCGTGTGTCAGAAC -CCAACACTGTTCGTGTGTGTCTAC -CCAACACTGTTCGTGTGTACGTAC -CCAACACTGTTCGTGTGTAGTGAC -CCAACACTGTTCGTGTGTCTGTAG -CCAACACTGTTCGTGTGTCCTAAG -CCAACACTGTTCGTGTGTGTTCAG -CCAACACTGTTCGTGTGTGCATAG -CCAACACTGTTCGTGTGTGACAAG -CCAACACTGTTCGTGTGTAAGCAG -CCAACACTGTTCGTGTGTCGTCAA -CCAACACTGTTCGTGTGTGCTGAA -CCAACACTGTTCGTGTGTAGTACG -CCAACACTGTTCGTGTGTATCCGA -CCAACACTGTTCGTGTGTATGGGA -CCAACACTGTTCGTGTGTGTGCAA -CCAACACTGTTCGTGTGTGAGGAA -CCAACACTGTTCGTGTGTCAGGTA -CCAACACTGTTCGTGTGTGACTCT -CCAACACTGTTCGTGTGTAGTCCT -CCAACACTGTTCGTGTGTTAAGCC -CCAACACTGTTCGTGTGTATAGCC -CCAACACTGTTCGTGTGTTAACCG -CCAACACTGTTCGTGTGTATGCCA -CCAACACTGTTCGTGCTAGGAAAC -CCAACACTGTTCGTGCTAAACACC -CCAACACTGTTCGTGCTAATCGAG -CCAACACTGTTCGTGCTACTCCTT -CCAACACTGTTCGTGCTACCTGTT -CCAACACTGTTCGTGCTACGGTTT -CCAACACTGTTCGTGCTAGTGGTT -CCAACACTGTTCGTGCTAGCCTTT -CCAACACTGTTCGTGCTAGGTCTT -CCAACACTGTTCGTGCTAACGCTT -CCAACACTGTTCGTGCTAAGCGTT -CCAACACTGTTCGTGCTATTCGTC -CCAACACTGTTCGTGCTATCTCTC -CCAACACTGTTCGTGCTATGGATC -CCAACACTGTTCGTGCTACACTTC -CCAACACTGTTCGTGCTAGTACTC -CCAACACTGTTCGTGCTAGATGTC -CCAACACTGTTCGTGCTAACAGTC -CCAACACTGTTCGTGCTATTGCTG -CCAACACTGTTCGTGCTATCCATG -CCAACACTGTTCGTGCTATGTGTG -CCAACACTGTTCGTGCTACTAGTG -CCAACACTGTTCGTGCTACATCTG -CCAACACTGTTCGTGCTAGAGTTG -CCAACACTGTTCGTGCTAAGACTG -CCAACACTGTTCGTGCTATCGGTA -CCAACACTGTTCGTGCTATGCCTA -CCAACACTGTTCGTGCTACCACTA -CCAACACTGTTCGTGCTAGGAGTA -CCAACACTGTTCGTGCTATCGTCT -CCAACACTGTTCGTGCTATGCACT -CCAACACTGTTCGTGCTACTGACT -CCAACACTGTTCGTGCTACAACCT -CCAACACTGTTCGTGCTAGCTACT -CCAACACTGTTCGTGCTAGGATCT -CCAACACTGTTCGTGCTAAAGGCT -CCAACACTGTTCGTGCTATCAACC -CCAACACTGTTCGTGCTATGTTCC -CCAACACTGTTCGTGCTAATTCCC -CCAACACTGTTCGTGCTATTCTCG -CCAACACTGTTCGTGCTATAGACG -CCAACACTGTTCGTGCTAGTAACG -CCAACACTGTTCGTGCTAACTTCG -CCAACACTGTTCGTGCTATACGCA -CCAACACTGTTCGTGCTACTTGCA -CCAACACTGTTCGTGCTACGAACA -CCAACACTGTTCGTGCTACAGTCA -CCAACACTGTTCGTGCTAGATCCA -CCAACACTGTTCGTGCTAACGACA -CCAACACTGTTCGTGCTAAGCTCA -CCAACACTGTTCGTGCTATCACGT -CCAACACTGTTCGTGCTACGTAGT -CCAACACTGTTCGTGCTAGTCAGT -CCAACACTGTTCGTGCTAGAAGGT -CCAACACTGTTCGTGCTAAACCGT -CCAACACTGTTCGTGCTATTGTGC -CCAACACTGTTCGTGCTACTAAGC -CCAACACTGTTCGTGCTAACTAGC -CCAACACTGTTCGTGCTAAGATGC -CCAACACTGTTCGTGCTATGAAGG -CCAACACTGTTCGTGCTACAATGG -CCAACACTGTTCGTGCTAATGAGG -CCAACACTGTTCGTGCTAAATGGG -CCAACACTGTTCGTGCTATCCTGA -CCAACACTGTTCGTGCTATAGCGA -CCAACACTGTTCGTGCTACACAGA -CCAACACTGTTCGTGCTAGCAAGA -CCAACACTGTTCGTGCTAGGTTGA -CCAACACTGTTCGTGCTATCCGAT -CCAACACTGTTCGTGCTATGGCAT -CCAACACTGTTCGTGCTACGAGAT -CCAACACTGTTCGTGCTATACCAC -CCAACACTGTTCGTGCTACAGAAC -CCAACACTGTTCGTGCTAGTCTAC -CCAACACTGTTCGTGCTAACGTAC -CCAACACTGTTCGTGCTAAGTGAC -CCAACACTGTTCGTGCTACTGTAG -CCAACACTGTTCGTGCTACCTAAG -CCAACACTGTTCGTGCTAGTTCAG -CCAACACTGTTCGTGCTAGCATAG -CCAACACTGTTCGTGCTAGACAAG -CCAACACTGTTCGTGCTAAAGCAG -CCAACACTGTTCGTGCTACGTCAA -CCAACACTGTTCGTGCTAGCTGAA -CCAACACTGTTCGTGCTAAGTACG -CCAACACTGTTCGTGCTAATCCGA -CCAACACTGTTCGTGCTAATGGGA -CCAACACTGTTCGTGCTAGTGCAA -CCAACACTGTTCGTGCTAGAGGAA -CCAACACTGTTCGTGCTACAGGTA -CCAACACTGTTCGTGCTAGACTCT -CCAACACTGTTCGTGCTAAGTCCT -CCAACACTGTTCGTGCTATAAGCC -CCAACACTGTTCGTGCTAATAGCC -CCAACACTGTTCGTGCTATAACCG -CCAACACTGTTCGTGCTAATGCCA -CCAACACTGTTCCTGCATGGAAAC -CCAACACTGTTCCTGCATAACACC -CCAACACTGTTCCTGCATATCGAG -CCAACACTGTTCCTGCATCTCCTT -CCAACACTGTTCCTGCATCCTGTT -CCAACACTGTTCCTGCATCGGTTT -CCAACACTGTTCCTGCATGTGGTT -CCAACACTGTTCCTGCATGCCTTT -CCAACACTGTTCCTGCATGGTCTT -CCAACACTGTTCCTGCATACGCTT -CCAACACTGTTCCTGCATAGCGTT -CCAACACTGTTCCTGCATTTCGTC -CCAACACTGTTCCTGCATTCTCTC -CCAACACTGTTCCTGCATTGGATC -CCAACACTGTTCCTGCATCACTTC -CCAACACTGTTCCTGCATGTACTC -CCAACACTGTTCCTGCATGATGTC -CCAACACTGTTCCTGCATACAGTC -CCAACACTGTTCCTGCATTTGCTG -CCAACACTGTTCCTGCATTCCATG -CCAACACTGTTCCTGCATTGTGTG -CCAACACTGTTCCTGCATCTAGTG -CCAACACTGTTCCTGCATCATCTG -CCAACACTGTTCCTGCATGAGTTG -CCAACACTGTTCCTGCATAGACTG -CCAACACTGTTCCTGCATTCGGTA -CCAACACTGTTCCTGCATTGCCTA -CCAACACTGTTCCTGCATCCACTA -CCAACACTGTTCCTGCATGGAGTA -CCAACACTGTTCCTGCATTCGTCT -CCAACACTGTTCCTGCATTGCACT -CCAACACTGTTCCTGCATCTGACT -CCAACACTGTTCCTGCATCAACCT -CCAACACTGTTCCTGCATGCTACT -CCAACACTGTTCCTGCATGGATCT -CCAACACTGTTCCTGCATAAGGCT -CCAACACTGTTCCTGCATTCAACC -CCAACACTGTTCCTGCATTGTTCC -CCAACACTGTTCCTGCATATTCCC -CCAACACTGTTCCTGCATTTCTCG -CCAACACTGTTCCTGCATTAGACG -CCAACACTGTTCCTGCATGTAACG -CCAACACTGTTCCTGCATACTTCG -CCAACACTGTTCCTGCATTACGCA -CCAACACTGTTCCTGCATCTTGCA -CCAACACTGTTCCTGCATCGAACA -CCAACACTGTTCCTGCATCAGTCA -CCAACACTGTTCCTGCATGATCCA -CCAACACTGTTCCTGCATACGACA -CCAACACTGTTCCTGCATAGCTCA -CCAACACTGTTCCTGCATTCACGT -CCAACACTGTTCCTGCATCGTAGT -CCAACACTGTTCCTGCATGTCAGT -CCAACACTGTTCCTGCATGAAGGT -CCAACACTGTTCCTGCATAACCGT -CCAACACTGTTCCTGCATTTGTGC -CCAACACTGTTCCTGCATCTAAGC -CCAACACTGTTCCTGCATACTAGC -CCAACACTGTTCCTGCATAGATGC -CCAACACTGTTCCTGCATTGAAGG -CCAACACTGTTCCTGCATCAATGG -CCAACACTGTTCCTGCATATGAGG -CCAACACTGTTCCTGCATAATGGG -CCAACACTGTTCCTGCATTCCTGA -CCAACACTGTTCCTGCATTAGCGA -CCAACACTGTTCCTGCATCACAGA -CCAACACTGTTCCTGCATGCAAGA -CCAACACTGTTCCTGCATGGTTGA -CCAACACTGTTCCTGCATTCCGAT -CCAACACTGTTCCTGCATTGGCAT -CCAACACTGTTCCTGCATCGAGAT -CCAACACTGTTCCTGCATTACCAC -CCAACACTGTTCCTGCATCAGAAC -CCAACACTGTTCCTGCATGTCTAC -CCAACACTGTTCCTGCATACGTAC -CCAACACTGTTCCTGCATAGTGAC -CCAACACTGTTCCTGCATCTGTAG -CCAACACTGTTCCTGCATCCTAAG -CCAACACTGTTCCTGCATGTTCAG -CCAACACTGTTCCTGCATGCATAG -CCAACACTGTTCCTGCATGACAAG -CCAACACTGTTCCTGCATAAGCAG -CCAACACTGTTCCTGCATCGTCAA -CCAACACTGTTCCTGCATGCTGAA -CCAACACTGTTCCTGCATAGTACG -CCAACACTGTTCCTGCATATCCGA -CCAACACTGTTCCTGCATATGGGA -CCAACACTGTTCCTGCATGTGCAA -CCAACACTGTTCCTGCATGAGGAA -CCAACACTGTTCCTGCATCAGGTA -CCAACACTGTTCCTGCATGACTCT -CCAACACTGTTCCTGCATAGTCCT -CCAACACTGTTCCTGCATTAAGCC -CCAACACTGTTCCTGCATATAGCC -CCAACACTGTTCCTGCATTAACCG -CCAACACTGTTCCTGCATATGCCA -CCAACACTGTTCTTGGAGGGAAAC -CCAACACTGTTCTTGGAGAACACC -CCAACACTGTTCTTGGAGATCGAG -CCAACACTGTTCTTGGAGCTCCTT -CCAACACTGTTCTTGGAGCCTGTT -CCAACACTGTTCTTGGAGCGGTTT -CCAACACTGTTCTTGGAGGTGGTT -CCAACACTGTTCTTGGAGGCCTTT -CCAACACTGTTCTTGGAGGGTCTT -CCAACACTGTTCTTGGAGACGCTT -CCAACACTGTTCTTGGAGAGCGTT -CCAACACTGTTCTTGGAGTTCGTC -CCAACACTGTTCTTGGAGTCTCTC -CCAACACTGTTCTTGGAGTGGATC -CCAACACTGTTCTTGGAGCACTTC -CCAACACTGTTCTTGGAGGTACTC -CCAACACTGTTCTTGGAGGATGTC -CCAACACTGTTCTTGGAGACAGTC -CCAACACTGTTCTTGGAGTTGCTG -CCAACACTGTTCTTGGAGTCCATG -CCAACACTGTTCTTGGAGTGTGTG -CCAACACTGTTCTTGGAGCTAGTG -CCAACACTGTTCTTGGAGCATCTG -CCAACACTGTTCTTGGAGGAGTTG -CCAACACTGTTCTTGGAGAGACTG -CCAACACTGTTCTTGGAGTCGGTA -CCAACACTGTTCTTGGAGTGCCTA -CCAACACTGTTCTTGGAGCCACTA -CCAACACTGTTCTTGGAGGGAGTA -CCAACACTGTTCTTGGAGTCGTCT -CCAACACTGTTCTTGGAGTGCACT -CCAACACTGTTCTTGGAGCTGACT -CCAACACTGTTCTTGGAGCAACCT -CCAACACTGTTCTTGGAGGCTACT -CCAACACTGTTCTTGGAGGGATCT -CCAACACTGTTCTTGGAGAAGGCT -CCAACACTGTTCTTGGAGTCAACC -CCAACACTGTTCTTGGAGTGTTCC -CCAACACTGTTCTTGGAGATTCCC -CCAACACTGTTCTTGGAGTTCTCG -CCAACACTGTTCTTGGAGTAGACG -CCAACACTGTTCTTGGAGGTAACG -CCAACACTGTTCTTGGAGACTTCG -CCAACACTGTTCTTGGAGTACGCA -CCAACACTGTTCTTGGAGCTTGCA -CCAACACTGTTCTTGGAGCGAACA -CCAACACTGTTCTTGGAGCAGTCA -CCAACACTGTTCTTGGAGGATCCA -CCAACACTGTTCTTGGAGACGACA -CCAACACTGTTCTTGGAGAGCTCA -CCAACACTGTTCTTGGAGTCACGT -CCAACACTGTTCTTGGAGCGTAGT -CCAACACTGTTCTTGGAGGTCAGT -CCAACACTGTTCTTGGAGGAAGGT -CCAACACTGTTCTTGGAGAACCGT -CCAACACTGTTCTTGGAGTTGTGC -CCAACACTGTTCTTGGAGCTAAGC -CCAACACTGTTCTTGGAGACTAGC -CCAACACTGTTCTTGGAGAGATGC -CCAACACTGTTCTTGGAGTGAAGG -CCAACACTGTTCTTGGAGCAATGG -CCAACACTGTTCTTGGAGATGAGG -CCAACACTGTTCTTGGAGAATGGG -CCAACACTGTTCTTGGAGTCCTGA -CCAACACTGTTCTTGGAGTAGCGA -CCAACACTGTTCTTGGAGCACAGA -CCAACACTGTTCTTGGAGGCAAGA -CCAACACTGTTCTTGGAGGGTTGA -CCAACACTGTTCTTGGAGTCCGAT -CCAACACTGTTCTTGGAGTGGCAT -CCAACACTGTTCTTGGAGCGAGAT -CCAACACTGTTCTTGGAGTACCAC -CCAACACTGTTCTTGGAGCAGAAC -CCAACACTGTTCTTGGAGGTCTAC -CCAACACTGTTCTTGGAGACGTAC -CCAACACTGTTCTTGGAGAGTGAC -CCAACACTGTTCTTGGAGCTGTAG -CCAACACTGTTCTTGGAGCCTAAG -CCAACACTGTTCTTGGAGGTTCAG -CCAACACTGTTCTTGGAGGCATAG -CCAACACTGTTCTTGGAGGACAAG -CCAACACTGTTCTTGGAGAAGCAG -CCAACACTGTTCTTGGAGCGTCAA -CCAACACTGTTCTTGGAGGCTGAA -CCAACACTGTTCTTGGAGAGTACG -CCAACACTGTTCTTGGAGATCCGA -CCAACACTGTTCTTGGAGATGGGA -CCAACACTGTTCTTGGAGGTGCAA -CCAACACTGTTCTTGGAGGAGGAA -CCAACACTGTTCTTGGAGCAGGTA -CCAACACTGTTCTTGGAGGACTCT -CCAACACTGTTCTTGGAGAGTCCT -CCAACACTGTTCTTGGAGTAAGCC -CCAACACTGTTCTTGGAGATAGCC -CCAACACTGTTCTTGGAGTAACCG -CCAACACTGTTCTTGGAGATGCCA -CCAACACTGTTCCTGAGAGGAAAC -CCAACACTGTTCCTGAGAAACACC -CCAACACTGTTCCTGAGAATCGAG -CCAACACTGTTCCTGAGACTCCTT -CCAACACTGTTCCTGAGACCTGTT -CCAACACTGTTCCTGAGACGGTTT -CCAACACTGTTCCTGAGAGTGGTT -CCAACACTGTTCCTGAGAGCCTTT -CCAACACTGTTCCTGAGAGGTCTT -CCAACACTGTTCCTGAGAACGCTT -CCAACACTGTTCCTGAGAAGCGTT -CCAACACTGTTCCTGAGATTCGTC -CCAACACTGTTCCTGAGATCTCTC -CCAACACTGTTCCTGAGATGGATC -CCAACACTGTTCCTGAGACACTTC -CCAACACTGTTCCTGAGAGTACTC -CCAACACTGTTCCTGAGAGATGTC -CCAACACTGTTCCTGAGAACAGTC -CCAACACTGTTCCTGAGATTGCTG -CCAACACTGTTCCTGAGATCCATG -CCAACACTGTTCCTGAGATGTGTG -CCAACACTGTTCCTGAGACTAGTG -CCAACACTGTTCCTGAGACATCTG -CCAACACTGTTCCTGAGAGAGTTG -CCAACACTGTTCCTGAGAAGACTG -CCAACACTGTTCCTGAGATCGGTA -CCAACACTGTTCCTGAGATGCCTA -CCAACACTGTTCCTGAGACCACTA -CCAACACTGTTCCTGAGAGGAGTA -CCAACACTGTTCCTGAGATCGTCT -CCAACACTGTTCCTGAGATGCACT -CCAACACTGTTCCTGAGACTGACT -CCAACACTGTTCCTGAGACAACCT -CCAACACTGTTCCTGAGAGCTACT -CCAACACTGTTCCTGAGAGGATCT -CCAACACTGTTCCTGAGAAAGGCT -CCAACACTGTTCCTGAGATCAACC -CCAACACTGTTCCTGAGATGTTCC -CCAACACTGTTCCTGAGAATTCCC -CCAACACTGTTCCTGAGATTCTCG -CCAACACTGTTCCTGAGATAGACG -CCAACACTGTTCCTGAGAGTAACG -CCAACACTGTTCCTGAGAACTTCG -CCAACACTGTTCCTGAGATACGCA -CCAACACTGTTCCTGAGACTTGCA -CCAACACTGTTCCTGAGACGAACA -CCAACACTGTTCCTGAGACAGTCA -CCAACACTGTTCCTGAGAGATCCA -CCAACACTGTTCCTGAGAACGACA -CCAACACTGTTCCTGAGAAGCTCA -CCAACACTGTTCCTGAGATCACGT -CCAACACTGTTCCTGAGACGTAGT -CCAACACTGTTCCTGAGAGTCAGT -CCAACACTGTTCCTGAGAGAAGGT -CCAACACTGTTCCTGAGAAACCGT -CCAACACTGTTCCTGAGATTGTGC -CCAACACTGTTCCTGAGACTAAGC -CCAACACTGTTCCTGAGAACTAGC -CCAACACTGTTCCTGAGAAGATGC -CCAACACTGTTCCTGAGATGAAGG -CCAACACTGTTCCTGAGACAATGG -CCAACACTGTTCCTGAGAATGAGG -CCAACACTGTTCCTGAGAAATGGG -CCAACACTGTTCCTGAGATCCTGA -CCAACACTGTTCCTGAGATAGCGA -CCAACACTGTTCCTGAGACACAGA -CCAACACTGTTCCTGAGAGCAAGA -CCAACACTGTTCCTGAGAGGTTGA -CCAACACTGTTCCTGAGATCCGAT -CCAACACTGTTCCTGAGATGGCAT -CCAACACTGTTCCTGAGACGAGAT -CCAACACTGTTCCTGAGATACCAC -CCAACACTGTTCCTGAGACAGAAC -CCAACACTGTTCCTGAGAGTCTAC -CCAACACTGTTCCTGAGAACGTAC -CCAACACTGTTCCTGAGAAGTGAC -CCAACACTGTTCCTGAGACTGTAG -CCAACACTGTTCCTGAGACCTAAG -CCAACACTGTTCCTGAGAGTTCAG -CCAACACTGTTCCTGAGAGCATAG -CCAACACTGTTCCTGAGAGACAAG -CCAACACTGTTCCTGAGAAAGCAG -CCAACACTGTTCCTGAGACGTCAA -CCAACACTGTTCCTGAGAGCTGAA -CCAACACTGTTCCTGAGAAGTACG -CCAACACTGTTCCTGAGAATCCGA -CCAACACTGTTCCTGAGAATGGGA -CCAACACTGTTCCTGAGAGTGCAA -CCAACACTGTTCCTGAGAGAGGAA -CCAACACTGTTCCTGAGACAGGTA -CCAACACTGTTCCTGAGAGACTCT -CCAACACTGTTCCTGAGAAGTCCT -CCAACACTGTTCCTGAGATAAGCC -CCAACACTGTTCCTGAGAATAGCC -CCAACACTGTTCCTGAGATAACCG -CCAACACTGTTCCTGAGAATGCCA -CCAACACTGTTCGTATCGGGAAAC -CCAACACTGTTCGTATCGAACACC -CCAACACTGTTCGTATCGATCGAG -CCAACACTGTTCGTATCGCTCCTT -CCAACACTGTTCGTATCGCCTGTT -CCAACACTGTTCGTATCGCGGTTT -CCAACACTGTTCGTATCGGTGGTT -CCAACACTGTTCGTATCGGCCTTT -CCAACACTGTTCGTATCGGGTCTT -CCAACACTGTTCGTATCGACGCTT -CCAACACTGTTCGTATCGAGCGTT -CCAACACTGTTCGTATCGTTCGTC -CCAACACTGTTCGTATCGTCTCTC -CCAACACTGTTCGTATCGTGGATC -CCAACACTGTTCGTATCGCACTTC -CCAACACTGTTCGTATCGGTACTC -CCAACACTGTTCGTATCGGATGTC -CCAACACTGTTCGTATCGACAGTC -CCAACACTGTTCGTATCGTTGCTG -CCAACACTGTTCGTATCGTCCATG -CCAACACTGTTCGTATCGTGTGTG -CCAACACTGTTCGTATCGCTAGTG -CCAACACTGTTCGTATCGCATCTG -CCAACACTGTTCGTATCGGAGTTG -CCAACACTGTTCGTATCGAGACTG -CCAACACTGTTCGTATCGTCGGTA -CCAACACTGTTCGTATCGTGCCTA -CCAACACTGTTCGTATCGCCACTA -CCAACACTGTTCGTATCGGGAGTA -CCAACACTGTTCGTATCGTCGTCT -CCAACACTGTTCGTATCGTGCACT -CCAACACTGTTCGTATCGCTGACT -CCAACACTGTTCGTATCGCAACCT -CCAACACTGTTCGTATCGGCTACT -CCAACACTGTTCGTATCGGGATCT -CCAACACTGTTCGTATCGAAGGCT -CCAACACTGTTCGTATCGTCAACC -CCAACACTGTTCGTATCGTGTTCC -CCAACACTGTTCGTATCGATTCCC -CCAACACTGTTCGTATCGTTCTCG -CCAACACTGTTCGTATCGTAGACG -CCAACACTGTTCGTATCGGTAACG -CCAACACTGTTCGTATCGACTTCG -CCAACACTGTTCGTATCGTACGCA -CCAACACTGTTCGTATCGCTTGCA -CCAACACTGTTCGTATCGCGAACA -CCAACACTGTTCGTATCGCAGTCA -CCAACACTGTTCGTATCGGATCCA -CCAACACTGTTCGTATCGACGACA -CCAACACTGTTCGTATCGAGCTCA -CCAACACTGTTCGTATCGTCACGT -CCAACACTGTTCGTATCGCGTAGT -CCAACACTGTTCGTATCGGTCAGT -CCAACACTGTTCGTATCGGAAGGT -CCAACACTGTTCGTATCGAACCGT -CCAACACTGTTCGTATCGTTGTGC -CCAACACTGTTCGTATCGCTAAGC -CCAACACTGTTCGTATCGACTAGC -CCAACACTGTTCGTATCGAGATGC -CCAACACTGTTCGTATCGTGAAGG -CCAACACTGTTCGTATCGCAATGG -CCAACACTGTTCGTATCGATGAGG -CCAACACTGTTCGTATCGAATGGG -CCAACACTGTTCGTATCGTCCTGA -CCAACACTGTTCGTATCGTAGCGA -CCAACACTGTTCGTATCGCACAGA -CCAACACTGTTCGTATCGGCAAGA -CCAACACTGTTCGTATCGGGTTGA -CCAACACTGTTCGTATCGTCCGAT -CCAACACTGTTCGTATCGTGGCAT -CCAACACTGTTCGTATCGCGAGAT -CCAACACTGTTCGTATCGTACCAC -CCAACACTGTTCGTATCGCAGAAC -CCAACACTGTTCGTATCGGTCTAC -CCAACACTGTTCGTATCGACGTAC -CCAACACTGTTCGTATCGAGTGAC -CCAACACTGTTCGTATCGCTGTAG -CCAACACTGTTCGTATCGCCTAAG -CCAACACTGTTCGTATCGGTTCAG -CCAACACTGTTCGTATCGGCATAG -CCAACACTGTTCGTATCGGACAAG -CCAACACTGTTCGTATCGAAGCAG -CCAACACTGTTCGTATCGCGTCAA -CCAACACTGTTCGTATCGGCTGAA -CCAACACTGTTCGTATCGAGTACG -CCAACACTGTTCGTATCGATCCGA -CCAACACTGTTCGTATCGATGGGA -CCAACACTGTTCGTATCGGTGCAA -CCAACACTGTTCGTATCGGAGGAA -CCAACACTGTTCGTATCGCAGGTA -CCAACACTGTTCGTATCGGACTCT -CCAACACTGTTCGTATCGAGTCCT -CCAACACTGTTCGTATCGTAAGCC -CCAACACTGTTCGTATCGATAGCC -CCAACACTGTTCGTATCGTAACCG -CCAACACTGTTCGTATCGATGCCA -CCAACACTGTTCCTATGCGGAAAC -CCAACACTGTTCCTATGCAACACC -CCAACACTGTTCCTATGCATCGAG -CCAACACTGTTCCTATGCCTCCTT -CCAACACTGTTCCTATGCCCTGTT -CCAACACTGTTCCTATGCCGGTTT -CCAACACTGTTCCTATGCGTGGTT -CCAACACTGTTCCTATGCGCCTTT -CCAACACTGTTCCTATGCGGTCTT -CCAACACTGTTCCTATGCACGCTT -CCAACACTGTTCCTATGCAGCGTT -CCAACACTGTTCCTATGCTTCGTC -CCAACACTGTTCCTATGCTCTCTC -CCAACACTGTTCCTATGCTGGATC -CCAACACTGTTCCTATGCCACTTC -CCAACACTGTTCCTATGCGTACTC -CCAACACTGTTCCTATGCGATGTC -CCAACACTGTTCCTATGCACAGTC -CCAACACTGTTCCTATGCTTGCTG -CCAACACTGTTCCTATGCTCCATG -CCAACACTGTTCCTATGCTGTGTG -CCAACACTGTTCCTATGCCTAGTG -CCAACACTGTTCCTATGCCATCTG -CCAACACTGTTCCTATGCGAGTTG -CCAACACTGTTCCTATGCAGACTG -CCAACACTGTTCCTATGCTCGGTA -CCAACACTGTTCCTATGCTGCCTA -CCAACACTGTTCCTATGCCCACTA -CCAACACTGTTCCTATGCGGAGTA -CCAACACTGTTCCTATGCTCGTCT -CCAACACTGTTCCTATGCTGCACT -CCAACACTGTTCCTATGCCTGACT -CCAACACTGTTCCTATGCCAACCT -CCAACACTGTTCCTATGCGCTACT -CCAACACTGTTCCTATGCGGATCT -CCAACACTGTTCCTATGCAAGGCT -CCAACACTGTTCCTATGCTCAACC -CCAACACTGTTCCTATGCTGTTCC -CCAACACTGTTCCTATGCATTCCC -CCAACACTGTTCCTATGCTTCTCG -CCAACACTGTTCCTATGCTAGACG -CCAACACTGTTCCTATGCGTAACG -CCAACACTGTTCCTATGCACTTCG -CCAACACTGTTCCTATGCTACGCA -CCAACACTGTTCCTATGCCTTGCA -CCAACACTGTTCCTATGCCGAACA -CCAACACTGTTCCTATGCCAGTCA -CCAACACTGTTCCTATGCGATCCA -CCAACACTGTTCCTATGCACGACA -CCAACACTGTTCCTATGCAGCTCA -CCAACACTGTTCCTATGCTCACGT -CCAACACTGTTCCTATGCCGTAGT -CCAACACTGTTCCTATGCGTCAGT -CCAACACTGTTCCTATGCGAAGGT -CCAACACTGTTCCTATGCAACCGT -CCAACACTGTTCCTATGCTTGTGC -CCAACACTGTTCCTATGCCTAAGC -CCAACACTGTTCCTATGCACTAGC -CCAACACTGTTCCTATGCAGATGC -CCAACACTGTTCCTATGCTGAAGG -CCAACACTGTTCCTATGCCAATGG -CCAACACTGTTCCTATGCATGAGG -CCAACACTGTTCCTATGCAATGGG -CCAACACTGTTCCTATGCTCCTGA -CCAACACTGTTCCTATGCTAGCGA -CCAACACTGTTCCTATGCCACAGA -CCAACACTGTTCCTATGCGCAAGA -CCAACACTGTTCCTATGCGGTTGA -CCAACACTGTTCCTATGCTCCGAT -CCAACACTGTTCCTATGCTGGCAT -CCAACACTGTTCCTATGCCGAGAT -CCAACACTGTTCCTATGCTACCAC -CCAACACTGTTCCTATGCCAGAAC -CCAACACTGTTCCTATGCGTCTAC -CCAACACTGTTCCTATGCACGTAC -CCAACACTGTTCCTATGCAGTGAC -CCAACACTGTTCCTATGCCTGTAG -CCAACACTGTTCCTATGCCCTAAG -CCAACACTGTTCCTATGCGTTCAG -CCAACACTGTTCCTATGCGCATAG -CCAACACTGTTCCTATGCGACAAG -CCAACACTGTTCCTATGCAAGCAG -CCAACACTGTTCCTATGCCGTCAA -CCAACACTGTTCCTATGCGCTGAA -CCAACACTGTTCCTATGCAGTACG -CCAACACTGTTCCTATGCATCCGA -CCAACACTGTTCCTATGCATGGGA -CCAACACTGTTCCTATGCGTGCAA -CCAACACTGTTCCTATGCGAGGAA -CCAACACTGTTCCTATGCCAGGTA -CCAACACTGTTCCTATGCGACTCT -CCAACACTGTTCCTATGCAGTCCT -CCAACACTGTTCCTATGCTAAGCC -CCAACACTGTTCCTATGCATAGCC -CCAACACTGTTCCTATGCTAACCG -CCAACACTGTTCCTATGCATGCCA -CCAACACTGTTCCTACCAGGAAAC -CCAACACTGTTCCTACCAAACACC -CCAACACTGTTCCTACCAATCGAG -CCAACACTGTTCCTACCACTCCTT -CCAACACTGTTCCTACCACCTGTT -CCAACACTGTTCCTACCACGGTTT -CCAACACTGTTCCTACCAGTGGTT -CCAACACTGTTCCTACCAGCCTTT -CCAACACTGTTCCTACCAGGTCTT -CCAACACTGTTCCTACCAACGCTT -CCAACACTGTTCCTACCAAGCGTT -CCAACACTGTTCCTACCATTCGTC -CCAACACTGTTCCTACCATCTCTC -CCAACACTGTTCCTACCATGGATC -CCAACACTGTTCCTACCACACTTC -CCAACACTGTTCCTACCAGTACTC -CCAACACTGTTCCTACCAGATGTC -CCAACACTGTTCCTACCAACAGTC -CCAACACTGTTCCTACCATTGCTG -CCAACACTGTTCCTACCATCCATG -CCAACACTGTTCCTACCATGTGTG -CCAACACTGTTCCTACCACTAGTG -CCAACACTGTTCCTACCACATCTG -CCAACACTGTTCCTACCAGAGTTG -CCAACACTGTTCCTACCAAGACTG -CCAACACTGTTCCTACCATCGGTA -CCAACACTGTTCCTACCATGCCTA -CCAACACTGTTCCTACCACCACTA -CCAACACTGTTCCTACCAGGAGTA -CCAACACTGTTCCTACCATCGTCT -CCAACACTGTTCCTACCATGCACT -CCAACACTGTTCCTACCACTGACT -CCAACACTGTTCCTACCACAACCT -CCAACACTGTTCCTACCAGCTACT -CCAACACTGTTCCTACCAGGATCT -CCAACACTGTTCCTACCAAAGGCT -CCAACACTGTTCCTACCATCAACC -CCAACACTGTTCCTACCATGTTCC -CCAACACTGTTCCTACCAATTCCC -CCAACACTGTTCCTACCATTCTCG -CCAACACTGTTCCTACCATAGACG -CCAACACTGTTCCTACCAGTAACG -CCAACACTGTTCCTACCAACTTCG -CCAACACTGTTCCTACCATACGCA -CCAACACTGTTCCTACCACTTGCA -CCAACACTGTTCCTACCACGAACA -CCAACACTGTTCCTACCACAGTCA -CCAACACTGTTCCTACCAGATCCA -CCAACACTGTTCCTACCAACGACA -CCAACACTGTTCCTACCAAGCTCA -CCAACACTGTTCCTACCATCACGT -CCAACACTGTTCCTACCACGTAGT -CCAACACTGTTCCTACCAGTCAGT -CCAACACTGTTCCTACCAGAAGGT -CCAACACTGTTCCTACCAAACCGT -CCAACACTGTTCCTACCATTGTGC -CCAACACTGTTCCTACCACTAAGC -CCAACACTGTTCCTACCAACTAGC -CCAACACTGTTCCTACCAAGATGC -CCAACACTGTTCCTACCATGAAGG -CCAACACTGTTCCTACCACAATGG -CCAACACTGTTCCTACCAATGAGG -CCAACACTGTTCCTACCAAATGGG -CCAACACTGTTCCTACCATCCTGA -CCAACACTGTTCCTACCATAGCGA -CCAACACTGTTCCTACCACACAGA -CCAACACTGTTCCTACCAGCAAGA -CCAACACTGTTCCTACCAGGTTGA -CCAACACTGTTCCTACCATCCGAT -CCAACACTGTTCCTACCATGGCAT -CCAACACTGTTCCTACCACGAGAT -CCAACACTGTTCCTACCATACCAC -CCAACACTGTTCCTACCACAGAAC -CCAACACTGTTCCTACCAGTCTAC -CCAACACTGTTCCTACCAACGTAC -CCAACACTGTTCCTACCAAGTGAC -CCAACACTGTTCCTACCACTGTAG -CCAACACTGTTCCTACCACCTAAG -CCAACACTGTTCCTACCAGTTCAG -CCAACACTGTTCCTACCAGCATAG -CCAACACTGTTCCTACCAGACAAG -CCAACACTGTTCCTACCAAAGCAG -CCAACACTGTTCCTACCACGTCAA -CCAACACTGTTCCTACCAGCTGAA -CCAACACTGTTCCTACCAAGTACG -CCAACACTGTTCCTACCAATCCGA -CCAACACTGTTCCTACCAATGGGA -CCAACACTGTTCCTACCAGTGCAA -CCAACACTGTTCCTACCAGAGGAA -CCAACACTGTTCCTACCACAGGTA -CCAACACTGTTCCTACCAGACTCT -CCAACACTGTTCCTACCAAGTCCT -CCAACACTGTTCCTACCATAAGCC -CCAACACTGTTCCTACCAATAGCC -CCAACACTGTTCCTACCATAACCG -CCAACACTGTTCCTACCAATGCCA -CCAACACTGTTCGTAGGAGGAAAC -CCAACACTGTTCGTAGGAAACACC -CCAACACTGTTCGTAGGAATCGAG -CCAACACTGTTCGTAGGACTCCTT -CCAACACTGTTCGTAGGACCTGTT -CCAACACTGTTCGTAGGACGGTTT -CCAACACTGTTCGTAGGAGTGGTT -CCAACACTGTTCGTAGGAGCCTTT -CCAACACTGTTCGTAGGAGGTCTT -CCAACACTGTTCGTAGGAACGCTT -CCAACACTGTTCGTAGGAAGCGTT -CCAACACTGTTCGTAGGATTCGTC -CCAACACTGTTCGTAGGATCTCTC -CCAACACTGTTCGTAGGATGGATC -CCAACACTGTTCGTAGGACACTTC -CCAACACTGTTCGTAGGAGTACTC -CCAACACTGTTCGTAGGAGATGTC -CCAACACTGTTCGTAGGAACAGTC -CCAACACTGTTCGTAGGATTGCTG -CCAACACTGTTCGTAGGATCCATG -CCAACACTGTTCGTAGGATGTGTG -CCAACACTGTTCGTAGGACTAGTG -CCAACACTGTTCGTAGGACATCTG -CCAACACTGTTCGTAGGAGAGTTG -CCAACACTGTTCGTAGGAAGACTG -CCAACACTGTTCGTAGGATCGGTA -CCAACACTGTTCGTAGGATGCCTA -CCAACACTGTTCGTAGGACCACTA -CCAACACTGTTCGTAGGAGGAGTA -CCAACACTGTTCGTAGGATCGTCT -CCAACACTGTTCGTAGGATGCACT -CCAACACTGTTCGTAGGACTGACT -CCAACACTGTTCGTAGGACAACCT -CCAACACTGTTCGTAGGAGCTACT -CCAACACTGTTCGTAGGAGGATCT -CCAACACTGTTCGTAGGAAAGGCT -CCAACACTGTTCGTAGGATCAACC -CCAACACTGTTCGTAGGATGTTCC -CCAACACTGTTCGTAGGAATTCCC -CCAACACTGTTCGTAGGATTCTCG -CCAACACTGTTCGTAGGATAGACG -CCAACACTGTTCGTAGGAGTAACG -CCAACACTGTTCGTAGGAACTTCG -CCAACACTGTTCGTAGGATACGCA -CCAACACTGTTCGTAGGACTTGCA -CCAACACTGTTCGTAGGACGAACA -CCAACACTGTTCGTAGGACAGTCA -CCAACACTGTTCGTAGGAGATCCA -CCAACACTGTTCGTAGGAACGACA -CCAACACTGTTCGTAGGAAGCTCA -CCAACACTGTTCGTAGGATCACGT -CCAACACTGTTCGTAGGACGTAGT -CCAACACTGTTCGTAGGAGTCAGT -CCAACACTGTTCGTAGGAGAAGGT -CCAACACTGTTCGTAGGAAACCGT -CCAACACTGTTCGTAGGATTGTGC -CCAACACTGTTCGTAGGACTAAGC -CCAACACTGTTCGTAGGAACTAGC -CCAACACTGTTCGTAGGAAGATGC -CCAACACTGTTCGTAGGATGAAGG -CCAACACTGTTCGTAGGACAATGG -CCAACACTGTTCGTAGGAATGAGG -CCAACACTGTTCGTAGGAAATGGG -CCAACACTGTTCGTAGGATCCTGA -CCAACACTGTTCGTAGGATAGCGA -CCAACACTGTTCGTAGGACACAGA -CCAACACTGTTCGTAGGAGCAAGA -CCAACACTGTTCGTAGGAGGTTGA -CCAACACTGTTCGTAGGATCCGAT -CCAACACTGTTCGTAGGATGGCAT -CCAACACTGTTCGTAGGACGAGAT -CCAACACTGTTCGTAGGATACCAC -CCAACACTGTTCGTAGGACAGAAC -CCAACACTGTTCGTAGGAGTCTAC -CCAACACTGTTCGTAGGAACGTAC -CCAACACTGTTCGTAGGAAGTGAC -CCAACACTGTTCGTAGGACTGTAG -CCAACACTGTTCGTAGGACCTAAG -CCAACACTGTTCGTAGGAGTTCAG -CCAACACTGTTCGTAGGAGCATAG -CCAACACTGTTCGTAGGAGACAAG -CCAACACTGTTCGTAGGAAAGCAG -CCAACACTGTTCGTAGGACGTCAA -CCAACACTGTTCGTAGGAGCTGAA -CCAACACTGTTCGTAGGAAGTACG -CCAACACTGTTCGTAGGAATCCGA -CCAACACTGTTCGTAGGAATGGGA -CCAACACTGTTCGTAGGAGTGCAA -CCAACACTGTTCGTAGGAGAGGAA -CCAACACTGTTCGTAGGACAGGTA -CCAACACTGTTCGTAGGAGACTCT -CCAACACTGTTCGTAGGAAGTCCT -CCAACACTGTTCGTAGGATAAGCC -CCAACACTGTTCGTAGGAATAGCC -CCAACACTGTTCGTAGGATAACCG -CCAACACTGTTCGTAGGAATGCCA -CCAACACTGTTCTCTTCGGGAAAC -CCAACACTGTTCTCTTCGAACACC -CCAACACTGTTCTCTTCGATCGAG -CCAACACTGTTCTCTTCGCTCCTT -CCAACACTGTTCTCTTCGCCTGTT -CCAACACTGTTCTCTTCGCGGTTT -CCAACACTGTTCTCTTCGGTGGTT -CCAACACTGTTCTCTTCGGCCTTT -CCAACACTGTTCTCTTCGGGTCTT -CCAACACTGTTCTCTTCGACGCTT -CCAACACTGTTCTCTTCGAGCGTT -CCAACACTGTTCTCTTCGTTCGTC -CCAACACTGTTCTCTTCGTCTCTC -CCAACACTGTTCTCTTCGTGGATC -CCAACACTGTTCTCTTCGCACTTC -CCAACACTGTTCTCTTCGGTACTC -CCAACACTGTTCTCTTCGGATGTC -CCAACACTGTTCTCTTCGACAGTC -CCAACACTGTTCTCTTCGTTGCTG -CCAACACTGTTCTCTTCGTCCATG -CCAACACTGTTCTCTTCGTGTGTG -CCAACACTGTTCTCTTCGCTAGTG -CCAACACTGTTCTCTTCGCATCTG -CCAACACTGTTCTCTTCGGAGTTG -CCAACACTGTTCTCTTCGAGACTG -CCAACACTGTTCTCTTCGTCGGTA -CCAACACTGTTCTCTTCGTGCCTA -CCAACACTGTTCTCTTCGCCACTA -CCAACACTGTTCTCTTCGGGAGTA -CCAACACTGTTCTCTTCGTCGTCT -CCAACACTGTTCTCTTCGTGCACT -CCAACACTGTTCTCTTCGCTGACT -CCAACACTGTTCTCTTCGCAACCT -CCAACACTGTTCTCTTCGGCTACT -CCAACACTGTTCTCTTCGGGATCT -CCAACACTGTTCTCTTCGAAGGCT -CCAACACTGTTCTCTTCGTCAACC -CCAACACTGTTCTCTTCGTGTTCC -CCAACACTGTTCTCTTCGATTCCC -CCAACACTGTTCTCTTCGTTCTCG -CCAACACTGTTCTCTTCGTAGACG -CCAACACTGTTCTCTTCGGTAACG -CCAACACTGTTCTCTTCGACTTCG -CCAACACTGTTCTCTTCGTACGCA -CCAACACTGTTCTCTTCGCTTGCA -CCAACACTGTTCTCTTCGCGAACA -CCAACACTGTTCTCTTCGCAGTCA -CCAACACTGTTCTCTTCGGATCCA -CCAACACTGTTCTCTTCGACGACA -CCAACACTGTTCTCTTCGAGCTCA -CCAACACTGTTCTCTTCGTCACGT -CCAACACTGTTCTCTTCGCGTAGT -CCAACACTGTTCTCTTCGGTCAGT -CCAACACTGTTCTCTTCGGAAGGT -CCAACACTGTTCTCTTCGAACCGT -CCAACACTGTTCTCTTCGTTGTGC -CCAACACTGTTCTCTTCGCTAAGC -CCAACACTGTTCTCTTCGACTAGC -CCAACACTGTTCTCTTCGAGATGC -CCAACACTGTTCTCTTCGTGAAGG -CCAACACTGTTCTCTTCGCAATGG -CCAACACTGTTCTCTTCGATGAGG -CCAACACTGTTCTCTTCGAATGGG -CCAACACTGTTCTCTTCGTCCTGA -CCAACACTGTTCTCTTCGTAGCGA -CCAACACTGTTCTCTTCGCACAGA -CCAACACTGTTCTCTTCGGCAAGA -CCAACACTGTTCTCTTCGGGTTGA -CCAACACTGTTCTCTTCGTCCGAT -CCAACACTGTTCTCTTCGTGGCAT -CCAACACTGTTCTCTTCGCGAGAT -CCAACACTGTTCTCTTCGTACCAC -CCAACACTGTTCTCTTCGCAGAAC -CCAACACTGTTCTCTTCGGTCTAC -CCAACACTGTTCTCTTCGACGTAC -CCAACACTGTTCTCTTCGAGTGAC -CCAACACTGTTCTCTTCGCTGTAG -CCAACACTGTTCTCTTCGCCTAAG -CCAACACTGTTCTCTTCGGTTCAG -CCAACACTGTTCTCTTCGGCATAG -CCAACACTGTTCTCTTCGGACAAG -CCAACACTGTTCTCTTCGAAGCAG -CCAACACTGTTCTCTTCGCGTCAA -CCAACACTGTTCTCTTCGGCTGAA -CCAACACTGTTCTCTTCGAGTACG -CCAACACTGTTCTCTTCGATCCGA -CCAACACTGTTCTCTTCGATGGGA -CCAACACTGTTCTCTTCGGTGCAA -CCAACACTGTTCTCTTCGGAGGAA -CCAACACTGTTCTCTTCGCAGGTA -CCAACACTGTTCTCTTCGGACTCT -CCAACACTGTTCTCTTCGAGTCCT -CCAACACTGTTCTCTTCGTAAGCC -CCAACACTGTTCTCTTCGATAGCC -CCAACACTGTTCTCTTCGTAACCG -CCAACACTGTTCTCTTCGATGCCA -CCAACACTGTTCACTTGCGGAAAC -CCAACACTGTTCACTTGCAACACC -CCAACACTGTTCACTTGCATCGAG -CCAACACTGTTCACTTGCCTCCTT -CCAACACTGTTCACTTGCCCTGTT -CCAACACTGTTCACTTGCCGGTTT -CCAACACTGTTCACTTGCGTGGTT -CCAACACTGTTCACTTGCGCCTTT -CCAACACTGTTCACTTGCGGTCTT -CCAACACTGTTCACTTGCACGCTT -CCAACACTGTTCACTTGCAGCGTT -CCAACACTGTTCACTTGCTTCGTC -CCAACACTGTTCACTTGCTCTCTC -CCAACACTGTTCACTTGCTGGATC -CCAACACTGTTCACTTGCCACTTC -CCAACACTGTTCACTTGCGTACTC -CCAACACTGTTCACTTGCGATGTC -CCAACACTGTTCACTTGCACAGTC -CCAACACTGTTCACTTGCTTGCTG -CCAACACTGTTCACTTGCTCCATG -CCAACACTGTTCACTTGCTGTGTG -CCAACACTGTTCACTTGCCTAGTG -CCAACACTGTTCACTTGCCATCTG -CCAACACTGTTCACTTGCGAGTTG -CCAACACTGTTCACTTGCAGACTG -CCAACACTGTTCACTTGCTCGGTA -CCAACACTGTTCACTTGCTGCCTA -CCAACACTGTTCACTTGCCCACTA -CCAACACTGTTCACTTGCGGAGTA -CCAACACTGTTCACTTGCTCGTCT -CCAACACTGTTCACTTGCTGCACT -CCAACACTGTTCACTTGCCTGACT -CCAACACTGTTCACTTGCCAACCT -CCAACACTGTTCACTTGCGCTACT -CCAACACTGTTCACTTGCGGATCT -CCAACACTGTTCACTTGCAAGGCT -CCAACACTGTTCACTTGCTCAACC -CCAACACTGTTCACTTGCTGTTCC -CCAACACTGTTCACTTGCATTCCC -CCAACACTGTTCACTTGCTTCTCG -CCAACACTGTTCACTTGCTAGACG -CCAACACTGTTCACTTGCGTAACG -CCAACACTGTTCACTTGCACTTCG -CCAACACTGTTCACTTGCTACGCA -CCAACACTGTTCACTTGCCTTGCA -CCAACACTGTTCACTTGCCGAACA -CCAACACTGTTCACTTGCCAGTCA -CCAACACTGTTCACTTGCGATCCA -CCAACACTGTTCACTTGCACGACA -CCAACACTGTTCACTTGCAGCTCA -CCAACACTGTTCACTTGCTCACGT -CCAACACTGTTCACTTGCCGTAGT -CCAACACTGTTCACTTGCGTCAGT -CCAACACTGTTCACTTGCGAAGGT -CCAACACTGTTCACTTGCAACCGT -CCAACACTGTTCACTTGCTTGTGC -CCAACACTGTTCACTTGCCTAAGC -CCAACACTGTTCACTTGCACTAGC -CCAACACTGTTCACTTGCAGATGC -CCAACACTGTTCACTTGCTGAAGG -CCAACACTGTTCACTTGCCAATGG -CCAACACTGTTCACTTGCATGAGG -CCAACACTGTTCACTTGCAATGGG -CCAACACTGTTCACTTGCTCCTGA -CCAACACTGTTCACTTGCTAGCGA -CCAACACTGTTCACTTGCCACAGA -CCAACACTGTTCACTTGCGCAAGA -CCAACACTGTTCACTTGCGGTTGA -CCAACACTGTTCACTTGCTCCGAT -CCAACACTGTTCACTTGCTGGCAT -CCAACACTGTTCACTTGCCGAGAT -CCAACACTGTTCACTTGCTACCAC -CCAACACTGTTCACTTGCCAGAAC -CCAACACTGTTCACTTGCGTCTAC -CCAACACTGTTCACTTGCACGTAC -CCAACACTGTTCACTTGCAGTGAC -CCAACACTGTTCACTTGCCTGTAG -CCAACACTGTTCACTTGCCCTAAG -CCAACACTGTTCACTTGCGTTCAG -CCAACACTGTTCACTTGCGCATAG -CCAACACTGTTCACTTGCGACAAG -CCAACACTGTTCACTTGCAAGCAG -CCAACACTGTTCACTTGCCGTCAA -CCAACACTGTTCACTTGCGCTGAA -CCAACACTGTTCACTTGCAGTACG -CCAACACTGTTCACTTGCATCCGA -CCAACACTGTTCACTTGCATGGGA -CCAACACTGTTCACTTGCGTGCAA -CCAACACTGTTCACTTGCGAGGAA -CCAACACTGTTCACTTGCCAGGTA -CCAACACTGTTCACTTGCGACTCT -CCAACACTGTTCACTTGCAGTCCT -CCAACACTGTTCACTTGCTAAGCC -CCAACACTGTTCACTTGCATAGCC -CCAACACTGTTCACTTGCTAACCG -CCAACACTGTTCACTTGCATGCCA -CCAACACTGTTCACTCTGGGAAAC -CCAACACTGTTCACTCTGAACACC -CCAACACTGTTCACTCTGATCGAG -CCAACACTGTTCACTCTGCTCCTT -CCAACACTGTTCACTCTGCCTGTT -CCAACACTGTTCACTCTGCGGTTT -CCAACACTGTTCACTCTGGTGGTT -CCAACACTGTTCACTCTGGCCTTT -CCAACACTGTTCACTCTGGGTCTT -CCAACACTGTTCACTCTGACGCTT -CCAACACTGTTCACTCTGAGCGTT -CCAACACTGTTCACTCTGTTCGTC -CCAACACTGTTCACTCTGTCTCTC -CCAACACTGTTCACTCTGTGGATC -CCAACACTGTTCACTCTGCACTTC -CCAACACTGTTCACTCTGGTACTC -CCAACACTGTTCACTCTGGATGTC -CCAACACTGTTCACTCTGACAGTC -CCAACACTGTTCACTCTGTTGCTG -CCAACACTGTTCACTCTGTCCATG -CCAACACTGTTCACTCTGTGTGTG -CCAACACTGTTCACTCTGCTAGTG -CCAACACTGTTCACTCTGCATCTG -CCAACACTGTTCACTCTGGAGTTG -CCAACACTGTTCACTCTGAGACTG -CCAACACTGTTCACTCTGTCGGTA -CCAACACTGTTCACTCTGTGCCTA -CCAACACTGTTCACTCTGCCACTA -CCAACACTGTTCACTCTGGGAGTA -CCAACACTGTTCACTCTGTCGTCT -CCAACACTGTTCACTCTGTGCACT -CCAACACTGTTCACTCTGCTGACT -CCAACACTGTTCACTCTGCAACCT -CCAACACTGTTCACTCTGGCTACT -CCAACACTGTTCACTCTGGGATCT -CCAACACTGTTCACTCTGAAGGCT -CCAACACTGTTCACTCTGTCAACC -CCAACACTGTTCACTCTGTGTTCC -CCAACACTGTTCACTCTGATTCCC -CCAACACTGTTCACTCTGTTCTCG -CCAACACTGTTCACTCTGTAGACG -CCAACACTGTTCACTCTGGTAACG -CCAACACTGTTCACTCTGACTTCG -CCAACACTGTTCACTCTGTACGCA -CCAACACTGTTCACTCTGCTTGCA -CCAACACTGTTCACTCTGCGAACA -CCAACACTGTTCACTCTGCAGTCA -CCAACACTGTTCACTCTGGATCCA -CCAACACTGTTCACTCTGACGACA -CCAACACTGTTCACTCTGAGCTCA -CCAACACTGTTCACTCTGTCACGT -CCAACACTGTTCACTCTGCGTAGT -CCAACACTGTTCACTCTGGTCAGT -CCAACACTGTTCACTCTGGAAGGT -CCAACACTGTTCACTCTGAACCGT -CCAACACTGTTCACTCTGTTGTGC -CCAACACTGTTCACTCTGCTAAGC -CCAACACTGTTCACTCTGACTAGC -CCAACACTGTTCACTCTGAGATGC -CCAACACTGTTCACTCTGTGAAGG -CCAACACTGTTCACTCTGCAATGG -CCAACACTGTTCACTCTGATGAGG -CCAACACTGTTCACTCTGAATGGG -CCAACACTGTTCACTCTGTCCTGA -CCAACACTGTTCACTCTGTAGCGA -CCAACACTGTTCACTCTGCACAGA -CCAACACTGTTCACTCTGGCAAGA -CCAACACTGTTCACTCTGGGTTGA -CCAACACTGTTCACTCTGTCCGAT -CCAACACTGTTCACTCTGTGGCAT -CCAACACTGTTCACTCTGCGAGAT -CCAACACTGTTCACTCTGTACCAC -CCAACACTGTTCACTCTGCAGAAC -CCAACACTGTTCACTCTGGTCTAC -CCAACACTGTTCACTCTGACGTAC -CCAACACTGTTCACTCTGAGTGAC -CCAACACTGTTCACTCTGCTGTAG -CCAACACTGTTCACTCTGCCTAAG -CCAACACTGTTCACTCTGGTTCAG -CCAACACTGTTCACTCTGGCATAG -CCAACACTGTTCACTCTGGACAAG -CCAACACTGTTCACTCTGAAGCAG -CCAACACTGTTCACTCTGCGTCAA -CCAACACTGTTCACTCTGGCTGAA -CCAACACTGTTCACTCTGAGTACG -CCAACACTGTTCACTCTGATCCGA -CCAACACTGTTCACTCTGATGGGA -CCAACACTGTTCACTCTGGTGCAA -CCAACACTGTTCACTCTGGAGGAA -CCAACACTGTTCACTCTGCAGGTA -CCAACACTGTTCACTCTGGACTCT -CCAACACTGTTCACTCTGAGTCCT -CCAACACTGTTCACTCTGTAAGCC -CCAACACTGTTCACTCTGATAGCC -CCAACACTGTTCACTCTGTAACCG -CCAACACTGTTCACTCTGATGCCA -CCAACACTGTTCCCTCAAGGAAAC -CCAACACTGTTCCCTCAAAACACC -CCAACACTGTTCCCTCAAATCGAG -CCAACACTGTTCCCTCAACTCCTT -CCAACACTGTTCCCTCAACCTGTT -CCAACACTGTTCCCTCAACGGTTT -CCAACACTGTTCCCTCAAGTGGTT -CCAACACTGTTCCCTCAAGCCTTT -CCAACACTGTTCCCTCAAGGTCTT -CCAACACTGTTCCCTCAAACGCTT -CCAACACTGTTCCCTCAAAGCGTT -CCAACACTGTTCCCTCAATTCGTC -CCAACACTGTTCCCTCAATCTCTC -CCAACACTGTTCCCTCAATGGATC -CCAACACTGTTCCCTCAACACTTC -CCAACACTGTTCCCTCAAGTACTC -CCAACACTGTTCCCTCAAGATGTC -CCAACACTGTTCCCTCAAACAGTC -CCAACACTGTTCCCTCAATTGCTG -CCAACACTGTTCCCTCAATCCATG -CCAACACTGTTCCCTCAATGTGTG -CCAACACTGTTCCCTCAACTAGTG -CCAACACTGTTCCCTCAACATCTG -CCAACACTGTTCCCTCAAGAGTTG -CCAACACTGTTCCCTCAAAGACTG -CCAACACTGTTCCCTCAATCGGTA -CCAACACTGTTCCCTCAATGCCTA -CCAACACTGTTCCCTCAACCACTA -CCAACACTGTTCCCTCAAGGAGTA -CCAACACTGTTCCCTCAATCGTCT -CCAACACTGTTCCCTCAATGCACT -CCAACACTGTTCCCTCAACTGACT -CCAACACTGTTCCCTCAACAACCT -CCAACACTGTTCCCTCAAGCTACT -CCAACACTGTTCCCTCAAGGATCT -CCAACACTGTTCCCTCAAAAGGCT -CCAACACTGTTCCCTCAATCAACC -CCAACACTGTTCCCTCAATGTTCC -CCAACACTGTTCCCTCAAATTCCC -CCAACACTGTTCCCTCAATTCTCG -CCAACACTGTTCCCTCAATAGACG -CCAACACTGTTCCCTCAAGTAACG -CCAACACTGTTCCCTCAAACTTCG -CCAACACTGTTCCCTCAATACGCA -CCAACACTGTTCCCTCAACTTGCA -CCAACACTGTTCCCTCAACGAACA -CCAACACTGTTCCCTCAACAGTCA -CCAACACTGTTCCCTCAAGATCCA -CCAACACTGTTCCCTCAAACGACA -CCAACACTGTTCCCTCAAAGCTCA -CCAACACTGTTCCCTCAATCACGT -CCAACACTGTTCCCTCAACGTAGT -CCAACACTGTTCCCTCAAGTCAGT -CCAACACTGTTCCCTCAAGAAGGT -CCAACACTGTTCCCTCAAAACCGT -CCAACACTGTTCCCTCAATTGTGC -CCAACACTGTTCCCTCAACTAAGC -CCAACACTGTTCCCTCAAACTAGC -CCAACACTGTTCCCTCAAAGATGC -CCAACACTGTTCCCTCAATGAAGG -CCAACACTGTTCCCTCAACAATGG -CCAACACTGTTCCCTCAAATGAGG -CCAACACTGTTCCCTCAAAATGGG -CCAACACTGTTCCCTCAATCCTGA -CCAACACTGTTCCCTCAATAGCGA -CCAACACTGTTCCCTCAACACAGA -CCAACACTGTTCCCTCAAGCAAGA -CCAACACTGTTCCCTCAAGGTTGA -CCAACACTGTTCCCTCAATCCGAT -CCAACACTGTTCCCTCAATGGCAT -CCAACACTGTTCCCTCAACGAGAT -CCAACACTGTTCCCTCAATACCAC -CCAACACTGTTCCCTCAACAGAAC -CCAACACTGTTCCCTCAAGTCTAC -CCAACACTGTTCCCTCAAACGTAC -CCAACACTGTTCCCTCAAAGTGAC -CCAACACTGTTCCCTCAACTGTAG -CCAACACTGTTCCCTCAACCTAAG -CCAACACTGTTCCCTCAAGTTCAG -CCAACACTGTTCCCTCAAGCATAG -CCAACACTGTTCCCTCAAGACAAG -CCAACACTGTTCCCTCAAAAGCAG -CCAACACTGTTCCCTCAACGTCAA -CCAACACTGTTCCCTCAAGCTGAA -CCAACACTGTTCCCTCAAAGTACG -CCAACACTGTTCCCTCAAATCCGA -CCAACACTGTTCCCTCAAATGGGA -CCAACACTGTTCCCTCAAGTGCAA -CCAACACTGTTCCCTCAAGAGGAA -CCAACACTGTTCCCTCAACAGGTA -CCAACACTGTTCCCTCAAGACTCT -CCAACACTGTTCCCTCAAAGTCCT -CCAACACTGTTCCCTCAATAAGCC -CCAACACTGTTCCCTCAAATAGCC -CCAACACTGTTCCCTCAATAACCG -CCAACACTGTTCCCTCAAATGCCA -CCAACACTGTTCACTGCTGGAAAC -CCAACACTGTTCACTGCTAACACC -CCAACACTGTTCACTGCTATCGAG -CCAACACTGTTCACTGCTCTCCTT -CCAACACTGTTCACTGCTCCTGTT -CCAACACTGTTCACTGCTCGGTTT -CCAACACTGTTCACTGCTGTGGTT -CCAACACTGTTCACTGCTGCCTTT -CCAACACTGTTCACTGCTGGTCTT -CCAACACTGTTCACTGCTACGCTT -CCAACACTGTTCACTGCTAGCGTT -CCAACACTGTTCACTGCTTTCGTC -CCAACACTGTTCACTGCTTCTCTC -CCAACACTGTTCACTGCTTGGATC -CCAACACTGTTCACTGCTCACTTC -CCAACACTGTTCACTGCTGTACTC -CCAACACTGTTCACTGCTGATGTC -CCAACACTGTTCACTGCTACAGTC -CCAACACTGTTCACTGCTTTGCTG -CCAACACTGTTCACTGCTTCCATG -CCAACACTGTTCACTGCTTGTGTG -CCAACACTGTTCACTGCTCTAGTG -CCAACACTGTTCACTGCTCATCTG -CCAACACTGTTCACTGCTGAGTTG -CCAACACTGTTCACTGCTAGACTG -CCAACACTGTTCACTGCTTCGGTA -CCAACACTGTTCACTGCTTGCCTA -CCAACACTGTTCACTGCTCCACTA -CCAACACTGTTCACTGCTGGAGTA -CCAACACTGTTCACTGCTTCGTCT -CCAACACTGTTCACTGCTTGCACT -CCAACACTGTTCACTGCTCTGACT -CCAACACTGTTCACTGCTCAACCT -CCAACACTGTTCACTGCTGCTACT -CCAACACTGTTCACTGCTGGATCT -CCAACACTGTTCACTGCTAAGGCT -CCAACACTGTTCACTGCTTCAACC -CCAACACTGTTCACTGCTTGTTCC -CCAACACTGTTCACTGCTATTCCC -CCAACACTGTTCACTGCTTTCTCG -CCAACACTGTTCACTGCTTAGACG -CCAACACTGTTCACTGCTGTAACG -CCAACACTGTTCACTGCTACTTCG -CCAACACTGTTCACTGCTTACGCA -CCAACACTGTTCACTGCTCTTGCA -CCAACACTGTTCACTGCTCGAACA -CCAACACTGTTCACTGCTCAGTCA -CCAACACTGTTCACTGCTGATCCA -CCAACACTGTTCACTGCTACGACA -CCAACACTGTTCACTGCTAGCTCA -CCAACACTGTTCACTGCTTCACGT -CCAACACTGTTCACTGCTCGTAGT -CCAACACTGTTCACTGCTGTCAGT -CCAACACTGTTCACTGCTGAAGGT -CCAACACTGTTCACTGCTAACCGT -CCAACACTGTTCACTGCTTTGTGC -CCAACACTGTTCACTGCTCTAAGC -CCAACACTGTTCACTGCTACTAGC -CCAACACTGTTCACTGCTAGATGC -CCAACACTGTTCACTGCTTGAAGG -CCAACACTGTTCACTGCTCAATGG -CCAACACTGTTCACTGCTATGAGG -CCAACACTGTTCACTGCTAATGGG -CCAACACTGTTCACTGCTTCCTGA -CCAACACTGTTCACTGCTTAGCGA -CCAACACTGTTCACTGCTCACAGA -CCAACACTGTTCACTGCTGCAAGA -CCAACACTGTTCACTGCTGGTTGA -CCAACACTGTTCACTGCTTCCGAT -CCAACACTGTTCACTGCTTGGCAT -CCAACACTGTTCACTGCTCGAGAT -CCAACACTGTTCACTGCTTACCAC -CCAACACTGTTCACTGCTCAGAAC -CCAACACTGTTCACTGCTGTCTAC -CCAACACTGTTCACTGCTACGTAC -CCAACACTGTTCACTGCTAGTGAC -CCAACACTGTTCACTGCTCTGTAG -CCAACACTGTTCACTGCTCCTAAG -CCAACACTGTTCACTGCTGTTCAG -CCAACACTGTTCACTGCTGCATAG -CCAACACTGTTCACTGCTGACAAG -CCAACACTGTTCACTGCTAAGCAG -CCAACACTGTTCACTGCTCGTCAA -CCAACACTGTTCACTGCTGCTGAA -CCAACACTGTTCACTGCTAGTACG -CCAACACTGTTCACTGCTATCCGA -CCAACACTGTTCACTGCTATGGGA -CCAACACTGTTCACTGCTGTGCAA -CCAACACTGTTCACTGCTGAGGAA -CCAACACTGTTCACTGCTCAGGTA -CCAACACTGTTCACTGCTGACTCT -CCAACACTGTTCACTGCTAGTCCT -CCAACACTGTTCACTGCTTAAGCC -CCAACACTGTTCACTGCTATAGCC -CCAACACTGTTCACTGCTTAACCG -CCAACACTGTTCACTGCTATGCCA -CCAACACTGTTCTCTGGAGGAAAC -CCAACACTGTTCTCTGGAAACACC -CCAACACTGTTCTCTGGAATCGAG -CCAACACTGTTCTCTGGACTCCTT -CCAACACTGTTCTCTGGACCTGTT -CCAACACTGTTCTCTGGACGGTTT -CCAACACTGTTCTCTGGAGTGGTT -CCAACACTGTTCTCTGGAGCCTTT -CCAACACTGTTCTCTGGAGGTCTT -CCAACACTGTTCTCTGGAACGCTT -CCAACACTGTTCTCTGGAAGCGTT -CCAACACTGTTCTCTGGATTCGTC -CCAACACTGTTCTCTGGATCTCTC -CCAACACTGTTCTCTGGATGGATC -CCAACACTGTTCTCTGGACACTTC -CCAACACTGTTCTCTGGAGTACTC -CCAACACTGTTCTCTGGAGATGTC -CCAACACTGTTCTCTGGAACAGTC -CCAACACTGTTCTCTGGATTGCTG -CCAACACTGTTCTCTGGATCCATG -CCAACACTGTTCTCTGGATGTGTG -CCAACACTGTTCTCTGGACTAGTG -CCAACACTGTTCTCTGGACATCTG -CCAACACTGTTCTCTGGAGAGTTG -CCAACACTGTTCTCTGGAAGACTG -CCAACACTGTTCTCTGGATCGGTA -CCAACACTGTTCTCTGGATGCCTA -CCAACACTGTTCTCTGGACCACTA -CCAACACTGTTCTCTGGAGGAGTA -CCAACACTGTTCTCTGGATCGTCT -CCAACACTGTTCTCTGGATGCACT -CCAACACTGTTCTCTGGACTGACT -CCAACACTGTTCTCTGGACAACCT -CCAACACTGTTCTCTGGAGCTACT -CCAACACTGTTCTCTGGAGGATCT -CCAACACTGTTCTCTGGAAAGGCT -CCAACACTGTTCTCTGGATCAACC -CCAACACTGTTCTCTGGATGTTCC -CCAACACTGTTCTCTGGAATTCCC -CCAACACTGTTCTCTGGATTCTCG -CCAACACTGTTCTCTGGATAGACG -CCAACACTGTTCTCTGGAGTAACG -CCAACACTGTTCTCTGGAACTTCG -CCAACACTGTTCTCTGGATACGCA -CCAACACTGTTCTCTGGACTTGCA -CCAACACTGTTCTCTGGACGAACA -CCAACACTGTTCTCTGGACAGTCA -CCAACACTGTTCTCTGGAGATCCA -CCAACACTGTTCTCTGGAACGACA -CCAACACTGTTCTCTGGAAGCTCA -CCAACACTGTTCTCTGGATCACGT -CCAACACTGTTCTCTGGACGTAGT -CCAACACTGTTCTCTGGAGTCAGT -CCAACACTGTTCTCTGGAGAAGGT -CCAACACTGTTCTCTGGAAACCGT -CCAACACTGTTCTCTGGATTGTGC -CCAACACTGTTCTCTGGACTAAGC -CCAACACTGTTCTCTGGAACTAGC -CCAACACTGTTCTCTGGAAGATGC -CCAACACTGTTCTCTGGATGAAGG -CCAACACTGTTCTCTGGACAATGG -CCAACACTGTTCTCTGGAATGAGG -CCAACACTGTTCTCTGGAAATGGG -CCAACACTGTTCTCTGGATCCTGA -CCAACACTGTTCTCTGGATAGCGA -CCAACACTGTTCTCTGGACACAGA -CCAACACTGTTCTCTGGAGCAAGA -CCAACACTGTTCTCTGGAGGTTGA -CCAACACTGTTCTCTGGATCCGAT -CCAACACTGTTCTCTGGATGGCAT -CCAACACTGTTCTCTGGACGAGAT -CCAACACTGTTCTCTGGATACCAC -CCAACACTGTTCTCTGGACAGAAC -CCAACACTGTTCTCTGGAGTCTAC -CCAACACTGTTCTCTGGAACGTAC -CCAACACTGTTCTCTGGAAGTGAC -CCAACACTGTTCTCTGGACTGTAG -CCAACACTGTTCTCTGGACCTAAG -CCAACACTGTTCTCTGGAGTTCAG -CCAACACTGTTCTCTGGAGCATAG -CCAACACTGTTCTCTGGAGACAAG -CCAACACTGTTCTCTGGAAAGCAG -CCAACACTGTTCTCTGGACGTCAA -CCAACACTGTTCTCTGGAGCTGAA -CCAACACTGTTCTCTGGAAGTACG -CCAACACTGTTCTCTGGAATCCGA -CCAACACTGTTCTCTGGAATGGGA -CCAACACTGTTCTCTGGAGTGCAA -CCAACACTGTTCTCTGGAGAGGAA -CCAACACTGTTCTCTGGACAGGTA -CCAACACTGTTCTCTGGAGACTCT -CCAACACTGTTCTCTGGAAGTCCT -CCAACACTGTTCTCTGGATAAGCC -CCAACACTGTTCTCTGGAATAGCC -CCAACACTGTTCTCTGGATAACCG -CCAACACTGTTCTCTGGAATGCCA -CCAACACTGTTCGCTAAGGGAAAC -CCAACACTGTTCGCTAAGAACACC -CCAACACTGTTCGCTAAGATCGAG -CCAACACTGTTCGCTAAGCTCCTT -CCAACACTGTTCGCTAAGCCTGTT -CCAACACTGTTCGCTAAGCGGTTT -CCAACACTGTTCGCTAAGGTGGTT -CCAACACTGTTCGCTAAGGCCTTT -CCAACACTGTTCGCTAAGGGTCTT -CCAACACTGTTCGCTAAGACGCTT -CCAACACTGTTCGCTAAGAGCGTT -CCAACACTGTTCGCTAAGTTCGTC -CCAACACTGTTCGCTAAGTCTCTC -CCAACACTGTTCGCTAAGTGGATC -CCAACACTGTTCGCTAAGCACTTC -CCAACACTGTTCGCTAAGGTACTC -CCAACACTGTTCGCTAAGGATGTC -CCAACACTGTTCGCTAAGACAGTC -CCAACACTGTTCGCTAAGTTGCTG -CCAACACTGTTCGCTAAGTCCATG -CCAACACTGTTCGCTAAGTGTGTG -CCAACACTGTTCGCTAAGCTAGTG -CCAACACTGTTCGCTAAGCATCTG -CCAACACTGTTCGCTAAGGAGTTG -CCAACACTGTTCGCTAAGAGACTG -CCAACACTGTTCGCTAAGTCGGTA -CCAACACTGTTCGCTAAGTGCCTA -CCAACACTGTTCGCTAAGCCACTA -CCAACACTGTTCGCTAAGGGAGTA -CCAACACTGTTCGCTAAGTCGTCT -CCAACACTGTTCGCTAAGTGCACT -CCAACACTGTTCGCTAAGCTGACT -CCAACACTGTTCGCTAAGCAACCT -CCAACACTGTTCGCTAAGGCTACT -CCAACACTGTTCGCTAAGGGATCT -CCAACACTGTTCGCTAAGAAGGCT -CCAACACTGTTCGCTAAGTCAACC -CCAACACTGTTCGCTAAGTGTTCC -CCAACACTGTTCGCTAAGATTCCC -CCAACACTGTTCGCTAAGTTCTCG -CCAACACTGTTCGCTAAGTAGACG -CCAACACTGTTCGCTAAGGTAACG -CCAACACTGTTCGCTAAGACTTCG -CCAACACTGTTCGCTAAGTACGCA -CCAACACTGTTCGCTAAGCTTGCA -CCAACACTGTTCGCTAAGCGAACA -CCAACACTGTTCGCTAAGCAGTCA -CCAACACTGTTCGCTAAGGATCCA -CCAACACTGTTCGCTAAGACGACA -CCAACACTGTTCGCTAAGAGCTCA -CCAACACTGTTCGCTAAGTCACGT -CCAACACTGTTCGCTAAGCGTAGT -CCAACACTGTTCGCTAAGGTCAGT -CCAACACTGTTCGCTAAGGAAGGT -CCAACACTGTTCGCTAAGAACCGT -CCAACACTGTTCGCTAAGTTGTGC -CCAACACTGTTCGCTAAGCTAAGC -CCAACACTGTTCGCTAAGACTAGC -CCAACACTGTTCGCTAAGAGATGC -CCAACACTGTTCGCTAAGTGAAGG -CCAACACTGTTCGCTAAGCAATGG -CCAACACTGTTCGCTAAGATGAGG -CCAACACTGTTCGCTAAGAATGGG -CCAACACTGTTCGCTAAGTCCTGA -CCAACACTGTTCGCTAAGTAGCGA -CCAACACTGTTCGCTAAGCACAGA -CCAACACTGTTCGCTAAGGCAAGA -CCAACACTGTTCGCTAAGGGTTGA -CCAACACTGTTCGCTAAGTCCGAT -CCAACACTGTTCGCTAAGTGGCAT -CCAACACTGTTCGCTAAGCGAGAT -CCAACACTGTTCGCTAAGTACCAC -CCAACACTGTTCGCTAAGCAGAAC -CCAACACTGTTCGCTAAGGTCTAC -CCAACACTGTTCGCTAAGACGTAC -CCAACACTGTTCGCTAAGAGTGAC -CCAACACTGTTCGCTAAGCTGTAG -CCAACACTGTTCGCTAAGCCTAAG -CCAACACTGTTCGCTAAGGTTCAG -CCAACACTGTTCGCTAAGGCATAG -CCAACACTGTTCGCTAAGGACAAG -CCAACACTGTTCGCTAAGAAGCAG -CCAACACTGTTCGCTAAGCGTCAA -CCAACACTGTTCGCTAAGGCTGAA -CCAACACTGTTCGCTAAGAGTACG -CCAACACTGTTCGCTAAGATCCGA -CCAACACTGTTCGCTAAGATGGGA -CCAACACTGTTCGCTAAGGTGCAA -CCAACACTGTTCGCTAAGGAGGAA -CCAACACTGTTCGCTAAGCAGGTA -CCAACACTGTTCGCTAAGGACTCT -CCAACACTGTTCGCTAAGAGTCCT -CCAACACTGTTCGCTAAGTAAGCC -CCAACACTGTTCGCTAAGATAGCC -CCAACACTGTTCGCTAAGTAACCG -CCAACACTGTTCGCTAAGATGCCA -CCAACACTGTTCACCTCAGGAAAC -CCAACACTGTTCACCTCAAACACC -CCAACACTGTTCACCTCAATCGAG -CCAACACTGTTCACCTCACTCCTT -CCAACACTGTTCACCTCACCTGTT -CCAACACTGTTCACCTCACGGTTT -CCAACACTGTTCACCTCAGTGGTT -CCAACACTGTTCACCTCAGCCTTT -CCAACACTGTTCACCTCAGGTCTT -CCAACACTGTTCACCTCAACGCTT -CCAACACTGTTCACCTCAAGCGTT -CCAACACTGTTCACCTCATTCGTC -CCAACACTGTTCACCTCATCTCTC -CCAACACTGTTCACCTCATGGATC -CCAACACTGTTCACCTCACACTTC -CCAACACTGTTCACCTCAGTACTC -CCAACACTGTTCACCTCAGATGTC -CCAACACTGTTCACCTCAACAGTC -CCAACACTGTTCACCTCATTGCTG -CCAACACTGTTCACCTCATCCATG -CCAACACTGTTCACCTCATGTGTG -CCAACACTGTTCACCTCACTAGTG -CCAACACTGTTCACCTCACATCTG -CCAACACTGTTCACCTCAGAGTTG -CCAACACTGTTCACCTCAAGACTG -CCAACACTGTTCACCTCATCGGTA -CCAACACTGTTCACCTCATGCCTA -CCAACACTGTTCACCTCACCACTA -CCAACACTGTTCACCTCAGGAGTA -CCAACACTGTTCACCTCATCGTCT -CCAACACTGTTCACCTCATGCACT -CCAACACTGTTCACCTCACTGACT -CCAACACTGTTCACCTCACAACCT -CCAACACTGTTCACCTCAGCTACT -CCAACACTGTTCACCTCAGGATCT -CCAACACTGTTCACCTCAAAGGCT -CCAACACTGTTCACCTCATCAACC -CCAACACTGTTCACCTCATGTTCC -CCAACACTGTTCACCTCAATTCCC -CCAACACTGTTCACCTCATTCTCG -CCAACACTGTTCACCTCATAGACG -CCAACACTGTTCACCTCAGTAACG -CCAACACTGTTCACCTCAACTTCG -CCAACACTGTTCACCTCATACGCA -CCAACACTGTTCACCTCACTTGCA -CCAACACTGTTCACCTCACGAACA -CCAACACTGTTCACCTCACAGTCA -CCAACACTGTTCACCTCAGATCCA -CCAACACTGTTCACCTCAACGACA -CCAACACTGTTCACCTCAAGCTCA -CCAACACTGTTCACCTCATCACGT -CCAACACTGTTCACCTCACGTAGT -CCAACACTGTTCACCTCAGTCAGT -CCAACACTGTTCACCTCAGAAGGT -CCAACACTGTTCACCTCAAACCGT -CCAACACTGTTCACCTCATTGTGC -CCAACACTGTTCACCTCACTAAGC -CCAACACTGTTCACCTCAACTAGC -CCAACACTGTTCACCTCAAGATGC -CCAACACTGTTCACCTCATGAAGG -CCAACACTGTTCACCTCACAATGG -CCAACACTGTTCACCTCAATGAGG -CCAACACTGTTCACCTCAAATGGG -CCAACACTGTTCACCTCATCCTGA -CCAACACTGTTCACCTCATAGCGA -CCAACACTGTTCACCTCACACAGA -CCAACACTGTTCACCTCAGCAAGA -CCAACACTGTTCACCTCAGGTTGA -CCAACACTGTTCACCTCATCCGAT -CCAACACTGTTCACCTCATGGCAT -CCAACACTGTTCACCTCACGAGAT -CCAACACTGTTCACCTCATACCAC -CCAACACTGTTCACCTCACAGAAC -CCAACACTGTTCACCTCAGTCTAC -CCAACACTGTTCACCTCAACGTAC -CCAACACTGTTCACCTCAAGTGAC -CCAACACTGTTCACCTCACTGTAG -CCAACACTGTTCACCTCACCTAAG -CCAACACTGTTCACCTCAGTTCAG -CCAACACTGTTCACCTCAGCATAG -CCAACACTGTTCACCTCAGACAAG -CCAACACTGTTCACCTCAAAGCAG -CCAACACTGTTCACCTCACGTCAA -CCAACACTGTTCACCTCAGCTGAA -CCAACACTGTTCACCTCAAGTACG -CCAACACTGTTCACCTCAATCCGA -CCAACACTGTTCACCTCAATGGGA -CCAACACTGTTCACCTCAGTGCAA -CCAACACTGTTCACCTCAGAGGAA -CCAACACTGTTCACCTCACAGGTA -CCAACACTGTTCACCTCAGACTCT -CCAACACTGTTCACCTCAAGTCCT -CCAACACTGTTCACCTCATAAGCC -CCAACACTGTTCACCTCAATAGCC -CCAACACTGTTCACCTCATAACCG -CCAACACTGTTCACCTCAATGCCA -CCAACACTGTTCTCCTGTGGAAAC -CCAACACTGTTCTCCTGTAACACC -CCAACACTGTTCTCCTGTATCGAG -CCAACACTGTTCTCCTGTCTCCTT -CCAACACTGTTCTCCTGTCCTGTT -CCAACACTGTTCTCCTGTCGGTTT -CCAACACTGTTCTCCTGTGTGGTT -CCAACACTGTTCTCCTGTGCCTTT -CCAACACTGTTCTCCTGTGGTCTT -CCAACACTGTTCTCCTGTACGCTT -CCAACACTGTTCTCCTGTAGCGTT -CCAACACTGTTCTCCTGTTTCGTC -CCAACACTGTTCTCCTGTTCTCTC -CCAACACTGTTCTCCTGTTGGATC -CCAACACTGTTCTCCTGTCACTTC -CCAACACTGTTCTCCTGTGTACTC -CCAACACTGTTCTCCTGTGATGTC -CCAACACTGTTCTCCTGTACAGTC -CCAACACTGTTCTCCTGTTTGCTG -CCAACACTGTTCTCCTGTTCCATG -CCAACACTGTTCTCCTGTTGTGTG -CCAACACTGTTCTCCTGTCTAGTG -CCAACACTGTTCTCCTGTCATCTG -CCAACACTGTTCTCCTGTGAGTTG -CCAACACTGTTCTCCTGTAGACTG -CCAACACTGTTCTCCTGTTCGGTA -CCAACACTGTTCTCCTGTTGCCTA -CCAACACTGTTCTCCTGTCCACTA -CCAACACTGTTCTCCTGTGGAGTA -CCAACACTGTTCTCCTGTTCGTCT -CCAACACTGTTCTCCTGTTGCACT -CCAACACTGTTCTCCTGTCTGACT -CCAACACTGTTCTCCTGTCAACCT -CCAACACTGTTCTCCTGTGCTACT -CCAACACTGTTCTCCTGTGGATCT -CCAACACTGTTCTCCTGTAAGGCT -CCAACACTGTTCTCCTGTTCAACC -CCAACACTGTTCTCCTGTTGTTCC -CCAACACTGTTCTCCTGTATTCCC -CCAACACTGTTCTCCTGTTTCTCG -CCAACACTGTTCTCCTGTTAGACG -CCAACACTGTTCTCCTGTGTAACG -CCAACACTGTTCTCCTGTACTTCG -CCAACACTGTTCTCCTGTTACGCA -CCAACACTGTTCTCCTGTCTTGCA -CCAACACTGTTCTCCTGTCGAACA -CCAACACTGTTCTCCTGTCAGTCA -CCAACACTGTTCTCCTGTGATCCA -CCAACACTGTTCTCCTGTACGACA -CCAACACTGTTCTCCTGTAGCTCA -CCAACACTGTTCTCCTGTTCACGT -CCAACACTGTTCTCCTGTCGTAGT -CCAACACTGTTCTCCTGTGTCAGT -CCAACACTGTTCTCCTGTGAAGGT -CCAACACTGTTCTCCTGTAACCGT -CCAACACTGTTCTCCTGTTTGTGC -CCAACACTGTTCTCCTGTCTAAGC -CCAACACTGTTCTCCTGTACTAGC -CCAACACTGTTCTCCTGTAGATGC -CCAACACTGTTCTCCTGTTGAAGG -CCAACACTGTTCTCCTGTCAATGG -CCAACACTGTTCTCCTGTATGAGG -CCAACACTGTTCTCCTGTAATGGG -CCAACACTGTTCTCCTGTTCCTGA -CCAACACTGTTCTCCTGTTAGCGA -CCAACACTGTTCTCCTGTCACAGA -CCAACACTGTTCTCCTGTGCAAGA -CCAACACTGTTCTCCTGTGGTTGA -CCAACACTGTTCTCCTGTTCCGAT -CCAACACTGTTCTCCTGTTGGCAT -CCAACACTGTTCTCCTGTCGAGAT -CCAACACTGTTCTCCTGTTACCAC -CCAACACTGTTCTCCTGTCAGAAC -CCAACACTGTTCTCCTGTGTCTAC -CCAACACTGTTCTCCTGTACGTAC -CCAACACTGTTCTCCTGTAGTGAC -CCAACACTGTTCTCCTGTCTGTAG -CCAACACTGTTCTCCTGTCCTAAG -CCAACACTGTTCTCCTGTGTTCAG -CCAACACTGTTCTCCTGTGCATAG -CCAACACTGTTCTCCTGTGACAAG -CCAACACTGTTCTCCTGTAAGCAG -CCAACACTGTTCTCCTGTCGTCAA -CCAACACTGTTCTCCTGTGCTGAA -CCAACACTGTTCTCCTGTAGTACG -CCAACACTGTTCTCCTGTATCCGA -CCAACACTGTTCTCCTGTATGGGA -CCAACACTGTTCTCCTGTGTGCAA -CCAACACTGTTCTCCTGTGAGGAA -CCAACACTGTTCTCCTGTCAGGTA -CCAACACTGTTCTCCTGTGACTCT -CCAACACTGTTCTCCTGTAGTCCT -CCAACACTGTTCTCCTGTTAAGCC -CCAACACTGTTCTCCTGTATAGCC -CCAACACTGTTCTCCTGTTAACCG -CCAACACTGTTCTCCTGTATGCCA -CCAACACTGTTCCCCATTGGAAAC -CCAACACTGTTCCCCATTAACACC -CCAACACTGTTCCCCATTATCGAG -CCAACACTGTTCCCCATTCTCCTT -CCAACACTGTTCCCCATTCCTGTT -CCAACACTGTTCCCCATTCGGTTT -CCAACACTGTTCCCCATTGTGGTT -CCAACACTGTTCCCCATTGCCTTT -CCAACACTGTTCCCCATTGGTCTT -CCAACACTGTTCCCCATTACGCTT -CCAACACTGTTCCCCATTAGCGTT -CCAACACTGTTCCCCATTTTCGTC -CCAACACTGTTCCCCATTTCTCTC -CCAACACTGTTCCCCATTTGGATC -CCAACACTGTTCCCCATTCACTTC -CCAACACTGTTCCCCATTGTACTC -CCAACACTGTTCCCCATTGATGTC -CCAACACTGTTCCCCATTACAGTC -CCAACACTGTTCCCCATTTTGCTG -CCAACACTGTTCCCCATTTCCATG -CCAACACTGTTCCCCATTTGTGTG -CCAACACTGTTCCCCATTCTAGTG -CCAACACTGTTCCCCATTCATCTG -CCAACACTGTTCCCCATTGAGTTG -CCAACACTGTTCCCCATTAGACTG -CCAACACTGTTCCCCATTTCGGTA -CCAACACTGTTCCCCATTTGCCTA -CCAACACTGTTCCCCATTCCACTA -CCAACACTGTTCCCCATTGGAGTA -CCAACACTGTTCCCCATTTCGTCT -CCAACACTGTTCCCCATTTGCACT -CCAACACTGTTCCCCATTCTGACT -CCAACACTGTTCCCCATTCAACCT -CCAACACTGTTCCCCATTGCTACT -CCAACACTGTTCCCCATTGGATCT -CCAACACTGTTCCCCATTAAGGCT -CCAACACTGTTCCCCATTTCAACC -CCAACACTGTTCCCCATTTGTTCC -CCAACACTGTTCCCCATTATTCCC -CCAACACTGTTCCCCATTTTCTCG -CCAACACTGTTCCCCATTTAGACG -CCAACACTGTTCCCCATTGTAACG -CCAACACTGTTCCCCATTACTTCG -CCAACACTGTTCCCCATTTACGCA -CCAACACTGTTCCCCATTCTTGCA -CCAACACTGTTCCCCATTCGAACA -CCAACACTGTTCCCCATTCAGTCA -CCAACACTGTTCCCCATTGATCCA -CCAACACTGTTCCCCATTACGACA -CCAACACTGTTCCCCATTAGCTCA -CCAACACTGTTCCCCATTTCACGT -CCAACACTGTTCCCCATTCGTAGT -CCAACACTGTTCCCCATTGTCAGT -CCAACACTGTTCCCCATTGAAGGT -CCAACACTGTTCCCCATTAACCGT -CCAACACTGTTCCCCATTTTGTGC -CCAACACTGTTCCCCATTCTAAGC -CCAACACTGTTCCCCATTACTAGC -CCAACACTGTTCCCCATTAGATGC -CCAACACTGTTCCCCATTTGAAGG -CCAACACTGTTCCCCATTCAATGG -CCAACACTGTTCCCCATTATGAGG -CCAACACTGTTCCCCATTAATGGG -CCAACACTGTTCCCCATTTCCTGA -CCAACACTGTTCCCCATTTAGCGA -CCAACACTGTTCCCCATTCACAGA -CCAACACTGTTCCCCATTGCAAGA -CCAACACTGTTCCCCATTGGTTGA -CCAACACTGTTCCCCATTTCCGAT -CCAACACTGTTCCCCATTTGGCAT -CCAACACTGTTCCCCATTCGAGAT -CCAACACTGTTCCCCATTTACCAC -CCAACACTGTTCCCCATTCAGAAC -CCAACACTGTTCCCCATTGTCTAC -CCAACACTGTTCCCCATTACGTAC -CCAACACTGTTCCCCATTAGTGAC -CCAACACTGTTCCCCATTCTGTAG -CCAACACTGTTCCCCATTCCTAAG -CCAACACTGTTCCCCATTGTTCAG -CCAACACTGTTCCCCATTGCATAG -CCAACACTGTTCCCCATTGACAAG -CCAACACTGTTCCCCATTAAGCAG -CCAACACTGTTCCCCATTCGTCAA -CCAACACTGTTCCCCATTGCTGAA -CCAACACTGTTCCCCATTAGTACG -CCAACACTGTTCCCCATTATCCGA -CCAACACTGTTCCCCATTATGGGA -CCAACACTGTTCCCCATTGTGCAA -CCAACACTGTTCCCCATTGAGGAA -CCAACACTGTTCCCCATTCAGGTA -CCAACACTGTTCCCCATTGACTCT -CCAACACTGTTCCCCATTAGTCCT -CCAACACTGTTCCCCATTTAAGCC -CCAACACTGTTCCCCATTATAGCC -CCAACACTGTTCCCCATTTAACCG -CCAACACTGTTCCCCATTATGCCA -CCAACACTGTTCTCGTTCGGAAAC -CCAACACTGTTCTCGTTCAACACC -CCAACACTGTTCTCGTTCATCGAG -CCAACACTGTTCTCGTTCCTCCTT -CCAACACTGTTCTCGTTCCCTGTT -CCAACACTGTTCTCGTTCCGGTTT -CCAACACTGTTCTCGTTCGTGGTT -CCAACACTGTTCTCGTTCGCCTTT -CCAACACTGTTCTCGTTCGGTCTT -CCAACACTGTTCTCGTTCACGCTT -CCAACACTGTTCTCGTTCAGCGTT -CCAACACTGTTCTCGTTCTTCGTC -CCAACACTGTTCTCGTTCTCTCTC -CCAACACTGTTCTCGTTCTGGATC -CCAACACTGTTCTCGTTCCACTTC -CCAACACTGTTCTCGTTCGTACTC -CCAACACTGTTCTCGTTCGATGTC -CCAACACTGTTCTCGTTCACAGTC -CCAACACTGTTCTCGTTCTTGCTG -CCAACACTGTTCTCGTTCTCCATG -CCAACACTGTTCTCGTTCTGTGTG -CCAACACTGTTCTCGTTCCTAGTG -CCAACACTGTTCTCGTTCCATCTG -CCAACACTGTTCTCGTTCGAGTTG -CCAACACTGTTCTCGTTCAGACTG -CCAACACTGTTCTCGTTCTCGGTA -CCAACACTGTTCTCGTTCTGCCTA -CCAACACTGTTCTCGTTCCCACTA -CCAACACTGTTCTCGTTCGGAGTA -CCAACACTGTTCTCGTTCTCGTCT -CCAACACTGTTCTCGTTCTGCACT -CCAACACTGTTCTCGTTCCTGACT -CCAACACTGTTCTCGTTCCAACCT -CCAACACTGTTCTCGTTCGCTACT -CCAACACTGTTCTCGTTCGGATCT -CCAACACTGTTCTCGTTCAAGGCT -CCAACACTGTTCTCGTTCTCAACC -CCAACACTGTTCTCGTTCTGTTCC -CCAACACTGTTCTCGTTCATTCCC -CCAACACTGTTCTCGTTCTTCTCG -CCAACACTGTTCTCGTTCTAGACG -CCAACACTGTTCTCGTTCGTAACG -CCAACACTGTTCTCGTTCACTTCG -CCAACACTGTTCTCGTTCTACGCA -CCAACACTGTTCTCGTTCCTTGCA -CCAACACTGTTCTCGTTCCGAACA -CCAACACTGTTCTCGTTCCAGTCA -CCAACACTGTTCTCGTTCGATCCA -CCAACACTGTTCTCGTTCACGACA -CCAACACTGTTCTCGTTCAGCTCA -CCAACACTGTTCTCGTTCTCACGT -CCAACACTGTTCTCGTTCCGTAGT -CCAACACTGTTCTCGTTCGTCAGT -CCAACACTGTTCTCGTTCGAAGGT -CCAACACTGTTCTCGTTCAACCGT -CCAACACTGTTCTCGTTCTTGTGC -CCAACACTGTTCTCGTTCCTAAGC -CCAACACTGTTCTCGTTCACTAGC -CCAACACTGTTCTCGTTCAGATGC -CCAACACTGTTCTCGTTCTGAAGG -CCAACACTGTTCTCGTTCCAATGG -CCAACACTGTTCTCGTTCATGAGG -CCAACACTGTTCTCGTTCAATGGG -CCAACACTGTTCTCGTTCTCCTGA -CCAACACTGTTCTCGTTCTAGCGA -CCAACACTGTTCTCGTTCCACAGA -CCAACACTGTTCTCGTTCGCAAGA -CCAACACTGTTCTCGTTCGGTTGA -CCAACACTGTTCTCGTTCTCCGAT -CCAACACTGTTCTCGTTCTGGCAT -CCAACACTGTTCTCGTTCCGAGAT -CCAACACTGTTCTCGTTCTACCAC -CCAACACTGTTCTCGTTCCAGAAC -CCAACACTGTTCTCGTTCGTCTAC -CCAACACTGTTCTCGTTCACGTAC -CCAACACTGTTCTCGTTCAGTGAC -CCAACACTGTTCTCGTTCCTGTAG -CCAACACTGTTCTCGTTCCCTAAG -CCAACACTGTTCTCGTTCGTTCAG -CCAACACTGTTCTCGTTCGCATAG -CCAACACTGTTCTCGTTCGACAAG -CCAACACTGTTCTCGTTCAAGCAG -CCAACACTGTTCTCGTTCCGTCAA -CCAACACTGTTCTCGTTCGCTGAA -CCAACACTGTTCTCGTTCAGTACG -CCAACACTGTTCTCGTTCATCCGA -CCAACACTGTTCTCGTTCATGGGA -CCAACACTGTTCTCGTTCGTGCAA -CCAACACTGTTCTCGTTCGAGGAA -CCAACACTGTTCTCGTTCCAGGTA -CCAACACTGTTCTCGTTCGACTCT -CCAACACTGTTCTCGTTCAGTCCT -CCAACACTGTTCTCGTTCTAAGCC -CCAACACTGTTCTCGTTCATAGCC -CCAACACTGTTCTCGTTCTAACCG -CCAACACTGTTCTCGTTCATGCCA -CCAACACTGTTCACGTAGGGAAAC -CCAACACTGTTCACGTAGAACACC -CCAACACTGTTCACGTAGATCGAG -CCAACACTGTTCACGTAGCTCCTT -CCAACACTGTTCACGTAGCCTGTT -CCAACACTGTTCACGTAGCGGTTT -CCAACACTGTTCACGTAGGTGGTT -CCAACACTGTTCACGTAGGCCTTT -CCAACACTGTTCACGTAGGGTCTT -CCAACACTGTTCACGTAGACGCTT -CCAACACTGTTCACGTAGAGCGTT -CCAACACTGTTCACGTAGTTCGTC -CCAACACTGTTCACGTAGTCTCTC -CCAACACTGTTCACGTAGTGGATC -CCAACACTGTTCACGTAGCACTTC -CCAACACTGTTCACGTAGGTACTC -CCAACACTGTTCACGTAGGATGTC -CCAACACTGTTCACGTAGACAGTC -CCAACACTGTTCACGTAGTTGCTG -CCAACACTGTTCACGTAGTCCATG -CCAACACTGTTCACGTAGTGTGTG -CCAACACTGTTCACGTAGCTAGTG -CCAACACTGTTCACGTAGCATCTG -CCAACACTGTTCACGTAGGAGTTG -CCAACACTGTTCACGTAGAGACTG -CCAACACTGTTCACGTAGTCGGTA -CCAACACTGTTCACGTAGTGCCTA -CCAACACTGTTCACGTAGCCACTA -CCAACACTGTTCACGTAGGGAGTA -CCAACACTGTTCACGTAGTCGTCT -CCAACACTGTTCACGTAGTGCACT -CCAACACTGTTCACGTAGCTGACT -CCAACACTGTTCACGTAGCAACCT -CCAACACTGTTCACGTAGGCTACT -CCAACACTGTTCACGTAGGGATCT -CCAACACTGTTCACGTAGAAGGCT -CCAACACTGTTCACGTAGTCAACC -CCAACACTGTTCACGTAGTGTTCC -CCAACACTGTTCACGTAGATTCCC -CCAACACTGTTCACGTAGTTCTCG -CCAACACTGTTCACGTAGTAGACG -CCAACACTGTTCACGTAGGTAACG -CCAACACTGTTCACGTAGACTTCG -CCAACACTGTTCACGTAGTACGCA -CCAACACTGTTCACGTAGCTTGCA -CCAACACTGTTCACGTAGCGAACA -CCAACACTGTTCACGTAGCAGTCA -CCAACACTGTTCACGTAGGATCCA -CCAACACTGTTCACGTAGACGACA -CCAACACTGTTCACGTAGAGCTCA -CCAACACTGTTCACGTAGTCACGT -CCAACACTGTTCACGTAGCGTAGT -CCAACACTGTTCACGTAGGTCAGT -CCAACACTGTTCACGTAGGAAGGT -CCAACACTGTTCACGTAGAACCGT -CCAACACTGTTCACGTAGTTGTGC -CCAACACTGTTCACGTAGCTAAGC -CCAACACTGTTCACGTAGACTAGC -CCAACACTGTTCACGTAGAGATGC -CCAACACTGTTCACGTAGTGAAGG -CCAACACTGTTCACGTAGCAATGG -CCAACACTGTTCACGTAGATGAGG -CCAACACTGTTCACGTAGAATGGG -CCAACACTGTTCACGTAGTCCTGA -CCAACACTGTTCACGTAGTAGCGA -CCAACACTGTTCACGTAGCACAGA -CCAACACTGTTCACGTAGGCAAGA -CCAACACTGTTCACGTAGGGTTGA -CCAACACTGTTCACGTAGTCCGAT -CCAACACTGTTCACGTAGTGGCAT -CCAACACTGTTCACGTAGCGAGAT -CCAACACTGTTCACGTAGTACCAC -CCAACACTGTTCACGTAGCAGAAC -CCAACACTGTTCACGTAGGTCTAC -CCAACACTGTTCACGTAGACGTAC -CCAACACTGTTCACGTAGAGTGAC -CCAACACTGTTCACGTAGCTGTAG -CCAACACTGTTCACGTAGCCTAAG -CCAACACTGTTCACGTAGGTTCAG -CCAACACTGTTCACGTAGGCATAG -CCAACACTGTTCACGTAGGACAAG -CCAACACTGTTCACGTAGAAGCAG -CCAACACTGTTCACGTAGCGTCAA -CCAACACTGTTCACGTAGGCTGAA -CCAACACTGTTCACGTAGAGTACG -CCAACACTGTTCACGTAGATCCGA -CCAACACTGTTCACGTAGATGGGA -CCAACACTGTTCACGTAGGTGCAA -CCAACACTGTTCACGTAGGAGGAA -CCAACACTGTTCACGTAGCAGGTA -CCAACACTGTTCACGTAGGACTCT -CCAACACTGTTCACGTAGAGTCCT -CCAACACTGTTCACGTAGTAAGCC -CCAACACTGTTCACGTAGATAGCC -CCAACACTGTTCACGTAGTAACCG -CCAACACTGTTCACGTAGATGCCA -CCAACACTGTTCACGGTAGGAAAC -CCAACACTGTTCACGGTAAACACC -CCAACACTGTTCACGGTAATCGAG -CCAACACTGTTCACGGTACTCCTT -CCAACACTGTTCACGGTACCTGTT -CCAACACTGTTCACGGTACGGTTT -CCAACACTGTTCACGGTAGTGGTT -CCAACACTGTTCACGGTAGCCTTT -CCAACACTGTTCACGGTAGGTCTT -CCAACACTGTTCACGGTAACGCTT -CCAACACTGTTCACGGTAAGCGTT -CCAACACTGTTCACGGTATTCGTC -CCAACACTGTTCACGGTATCTCTC -CCAACACTGTTCACGGTATGGATC -CCAACACTGTTCACGGTACACTTC -CCAACACTGTTCACGGTAGTACTC -CCAACACTGTTCACGGTAGATGTC -CCAACACTGTTCACGGTAACAGTC -CCAACACTGTTCACGGTATTGCTG -CCAACACTGTTCACGGTATCCATG -CCAACACTGTTCACGGTATGTGTG -CCAACACTGTTCACGGTACTAGTG -CCAACACTGTTCACGGTACATCTG -CCAACACTGTTCACGGTAGAGTTG -CCAACACTGTTCACGGTAAGACTG -CCAACACTGTTCACGGTATCGGTA -CCAACACTGTTCACGGTATGCCTA -CCAACACTGTTCACGGTACCACTA -CCAACACTGTTCACGGTAGGAGTA -CCAACACTGTTCACGGTATCGTCT -CCAACACTGTTCACGGTATGCACT -CCAACACTGTTCACGGTACTGACT -CCAACACTGTTCACGGTACAACCT -CCAACACTGTTCACGGTAGCTACT -CCAACACTGTTCACGGTAGGATCT -CCAACACTGTTCACGGTAAAGGCT -CCAACACTGTTCACGGTATCAACC -CCAACACTGTTCACGGTATGTTCC -CCAACACTGTTCACGGTAATTCCC -CCAACACTGTTCACGGTATTCTCG -CCAACACTGTTCACGGTATAGACG -CCAACACTGTTCACGGTAGTAACG -CCAACACTGTTCACGGTAACTTCG -CCAACACTGTTCACGGTATACGCA -CCAACACTGTTCACGGTACTTGCA -CCAACACTGTTCACGGTACGAACA -CCAACACTGTTCACGGTACAGTCA -CCAACACTGTTCACGGTAGATCCA -CCAACACTGTTCACGGTAACGACA -CCAACACTGTTCACGGTAAGCTCA -CCAACACTGTTCACGGTATCACGT -CCAACACTGTTCACGGTACGTAGT -CCAACACTGTTCACGGTAGTCAGT -CCAACACTGTTCACGGTAGAAGGT -CCAACACTGTTCACGGTAAACCGT -CCAACACTGTTCACGGTATTGTGC -CCAACACTGTTCACGGTACTAAGC -CCAACACTGTTCACGGTAACTAGC -CCAACACTGTTCACGGTAAGATGC -CCAACACTGTTCACGGTATGAAGG -CCAACACTGTTCACGGTACAATGG -CCAACACTGTTCACGGTAATGAGG -CCAACACTGTTCACGGTAAATGGG -CCAACACTGTTCACGGTATCCTGA -CCAACACTGTTCACGGTATAGCGA -CCAACACTGTTCACGGTACACAGA -CCAACACTGTTCACGGTAGCAAGA -CCAACACTGTTCACGGTAGGTTGA -CCAACACTGTTCACGGTATCCGAT -CCAACACTGTTCACGGTATGGCAT -CCAACACTGTTCACGGTACGAGAT -CCAACACTGTTCACGGTATACCAC -CCAACACTGTTCACGGTACAGAAC -CCAACACTGTTCACGGTAGTCTAC -CCAACACTGTTCACGGTAACGTAC -CCAACACTGTTCACGGTAAGTGAC -CCAACACTGTTCACGGTACTGTAG -CCAACACTGTTCACGGTACCTAAG -CCAACACTGTTCACGGTAGTTCAG -CCAACACTGTTCACGGTAGCATAG -CCAACACTGTTCACGGTAGACAAG -CCAACACTGTTCACGGTAAAGCAG -CCAACACTGTTCACGGTACGTCAA -CCAACACTGTTCACGGTAGCTGAA -CCAACACTGTTCACGGTAAGTACG -CCAACACTGTTCACGGTAATCCGA -CCAACACTGTTCACGGTAATGGGA -CCAACACTGTTCACGGTAGTGCAA -CCAACACTGTTCACGGTAGAGGAA -CCAACACTGTTCACGGTACAGGTA -CCAACACTGTTCACGGTAGACTCT -CCAACACTGTTCACGGTAAGTCCT -CCAACACTGTTCACGGTATAAGCC -CCAACACTGTTCACGGTAATAGCC -CCAACACTGTTCACGGTATAACCG -CCAACACTGTTCACGGTAATGCCA -CCAACACTGTTCTCGACTGGAAAC -CCAACACTGTTCTCGACTAACACC -CCAACACTGTTCTCGACTATCGAG -CCAACACTGTTCTCGACTCTCCTT -CCAACACTGTTCTCGACTCCTGTT -CCAACACTGTTCTCGACTCGGTTT -CCAACACTGTTCTCGACTGTGGTT -CCAACACTGTTCTCGACTGCCTTT -CCAACACTGTTCTCGACTGGTCTT -CCAACACTGTTCTCGACTACGCTT -CCAACACTGTTCTCGACTAGCGTT -CCAACACTGTTCTCGACTTTCGTC -CCAACACTGTTCTCGACTTCTCTC -CCAACACTGTTCTCGACTTGGATC -CCAACACTGTTCTCGACTCACTTC -CCAACACTGTTCTCGACTGTACTC -CCAACACTGTTCTCGACTGATGTC -CCAACACTGTTCTCGACTACAGTC -CCAACACTGTTCTCGACTTTGCTG -CCAACACTGTTCTCGACTTCCATG -CCAACACTGTTCTCGACTTGTGTG -CCAACACTGTTCTCGACTCTAGTG -CCAACACTGTTCTCGACTCATCTG -CCAACACTGTTCTCGACTGAGTTG -CCAACACTGTTCTCGACTAGACTG -CCAACACTGTTCTCGACTTCGGTA -CCAACACTGTTCTCGACTTGCCTA -CCAACACTGTTCTCGACTCCACTA -CCAACACTGTTCTCGACTGGAGTA -CCAACACTGTTCTCGACTTCGTCT -CCAACACTGTTCTCGACTTGCACT -CCAACACTGTTCTCGACTCTGACT -CCAACACTGTTCTCGACTCAACCT -CCAACACTGTTCTCGACTGCTACT -CCAACACTGTTCTCGACTGGATCT -CCAACACTGTTCTCGACTAAGGCT -CCAACACTGTTCTCGACTTCAACC -CCAACACTGTTCTCGACTTGTTCC -CCAACACTGTTCTCGACTATTCCC -CCAACACTGTTCTCGACTTTCTCG -CCAACACTGTTCTCGACTTAGACG -CCAACACTGTTCTCGACTGTAACG -CCAACACTGTTCTCGACTACTTCG -CCAACACTGTTCTCGACTTACGCA -CCAACACTGTTCTCGACTCTTGCA -CCAACACTGTTCTCGACTCGAACA -CCAACACTGTTCTCGACTCAGTCA -CCAACACTGTTCTCGACTGATCCA -CCAACACTGTTCTCGACTACGACA -CCAACACTGTTCTCGACTAGCTCA -CCAACACTGTTCTCGACTTCACGT -CCAACACTGTTCTCGACTCGTAGT -CCAACACTGTTCTCGACTGTCAGT -CCAACACTGTTCTCGACTGAAGGT -CCAACACTGTTCTCGACTAACCGT -CCAACACTGTTCTCGACTTTGTGC -CCAACACTGTTCTCGACTCTAAGC -CCAACACTGTTCTCGACTACTAGC -CCAACACTGTTCTCGACTAGATGC -CCAACACTGTTCTCGACTTGAAGG -CCAACACTGTTCTCGACTCAATGG -CCAACACTGTTCTCGACTATGAGG -CCAACACTGTTCTCGACTAATGGG -CCAACACTGTTCTCGACTTCCTGA -CCAACACTGTTCTCGACTTAGCGA -CCAACACTGTTCTCGACTCACAGA -CCAACACTGTTCTCGACTGCAAGA -CCAACACTGTTCTCGACTGGTTGA -CCAACACTGTTCTCGACTTCCGAT -CCAACACTGTTCTCGACTTGGCAT -CCAACACTGTTCTCGACTCGAGAT -CCAACACTGTTCTCGACTTACCAC -CCAACACTGTTCTCGACTCAGAAC -CCAACACTGTTCTCGACTGTCTAC -CCAACACTGTTCTCGACTACGTAC -CCAACACTGTTCTCGACTAGTGAC -CCAACACTGTTCTCGACTCTGTAG -CCAACACTGTTCTCGACTCCTAAG -CCAACACTGTTCTCGACTGTTCAG -CCAACACTGTTCTCGACTGCATAG -CCAACACTGTTCTCGACTGACAAG -CCAACACTGTTCTCGACTAAGCAG -CCAACACTGTTCTCGACTCGTCAA -CCAACACTGTTCTCGACTGCTGAA -CCAACACTGTTCTCGACTAGTACG -CCAACACTGTTCTCGACTATCCGA -CCAACACTGTTCTCGACTATGGGA -CCAACACTGTTCTCGACTGTGCAA -CCAACACTGTTCTCGACTGAGGAA -CCAACACTGTTCTCGACTCAGGTA -CCAACACTGTTCTCGACTGACTCT -CCAACACTGTTCTCGACTAGTCCT -CCAACACTGTTCTCGACTTAAGCC -CCAACACTGTTCTCGACTATAGCC -CCAACACTGTTCTCGACTTAACCG -CCAACACTGTTCTCGACTATGCCA -CCAACACTGTTCGCATACGGAAAC -CCAACACTGTTCGCATACAACACC -CCAACACTGTTCGCATACATCGAG -CCAACACTGTTCGCATACCTCCTT -CCAACACTGTTCGCATACCCTGTT -CCAACACTGTTCGCATACCGGTTT -CCAACACTGTTCGCATACGTGGTT -CCAACACTGTTCGCATACGCCTTT -CCAACACTGTTCGCATACGGTCTT -CCAACACTGTTCGCATACACGCTT -CCAACACTGTTCGCATACAGCGTT -CCAACACTGTTCGCATACTTCGTC -CCAACACTGTTCGCATACTCTCTC -CCAACACTGTTCGCATACTGGATC -CCAACACTGTTCGCATACCACTTC -CCAACACTGTTCGCATACGTACTC -CCAACACTGTTCGCATACGATGTC -CCAACACTGTTCGCATACACAGTC -CCAACACTGTTCGCATACTTGCTG -CCAACACTGTTCGCATACTCCATG -CCAACACTGTTCGCATACTGTGTG -CCAACACTGTTCGCATACCTAGTG -CCAACACTGTTCGCATACCATCTG -CCAACACTGTTCGCATACGAGTTG -CCAACACTGTTCGCATACAGACTG -CCAACACTGTTCGCATACTCGGTA -CCAACACTGTTCGCATACTGCCTA -CCAACACTGTTCGCATACCCACTA -CCAACACTGTTCGCATACGGAGTA -CCAACACTGTTCGCATACTCGTCT -CCAACACTGTTCGCATACTGCACT -CCAACACTGTTCGCATACCTGACT -CCAACACTGTTCGCATACCAACCT -CCAACACTGTTCGCATACGCTACT -CCAACACTGTTCGCATACGGATCT -CCAACACTGTTCGCATACAAGGCT -CCAACACTGTTCGCATACTCAACC -CCAACACTGTTCGCATACTGTTCC -CCAACACTGTTCGCATACATTCCC -CCAACACTGTTCGCATACTTCTCG -CCAACACTGTTCGCATACTAGACG -CCAACACTGTTCGCATACGTAACG -CCAACACTGTTCGCATACACTTCG -CCAACACTGTTCGCATACTACGCA -CCAACACTGTTCGCATACCTTGCA -CCAACACTGTTCGCATACCGAACA -CCAACACTGTTCGCATACCAGTCA -CCAACACTGTTCGCATACGATCCA -CCAACACTGTTCGCATACACGACA -CCAACACTGTTCGCATACAGCTCA -CCAACACTGTTCGCATACTCACGT -CCAACACTGTTCGCATACCGTAGT -CCAACACTGTTCGCATACGTCAGT -CCAACACTGTTCGCATACGAAGGT -CCAACACTGTTCGCATACAACCGT -CCAACACTGTTCGCATACTTGTGC -CCAACACTGTTCGCATACCTAAGC -CCAACACTGTTCGCATACACTAGC -CCAACACTGTTCGCATACAGATGC -CCAACACTGTTCGCATACTGAAGG -CCAACACTGTTCGCATACCAATGG -CCAACACTGTTCGCATACATGAGG -CCAACACTGTTCGCATACAATGGG -CCAACACTGTTCGCATACTCCTGA -CCAACACTGTTCGCATACTAGCGA -CCAACACTGTTCGCATACCACAGA -CCAACACTGTTCGCATACGCAAGA -CCAACACTGTTCGCATACGGTTGA -CCAACACTGTTCGCATACTCCGAT -CCAACACTGTTCGCATACTGGCAT -CCAACACTGTTCGCATACCGAGAT -CCAACACTGTTCGCATACTACCAC -CCAACACTGTTCGCATACCAGAAC -CCAACACTGTTCGCATACGTCTAC -CCAACACTGTTCGCATACACGTAC -CCAACACTGTTCGCATACAGTGAC -CCAACACTGTTCGCATACCTGTAG -CCAACACTGTTCGCATACCCTAAG -CCAACACTGTTCGCATACGTTCAG -CCAACACTGTTCGCATACGCATAG -CCAACACTGTTCGCATACGACAAG -CCAACACTGTTCGCATACAAGCAG -CCAACACTGTTCGCATACCGTCAA -CCAACACTGTTCGCATACGCTGAA -CCAACACTGTTCGCATACAGTACG -CCAACACTGTTCGCATACATCCGA -CCAACACTGTTCGCATACATGGGA -CCAACACTGTTCGCATACGTGCAA -CCAACACTGTTCGCATACGAGGAA -CCAACACTGTTCGCATACCAGGTA -CCAACACTGTTCGCATACGACTCT -CCAACACTGTTCGCATACAGTCCT -CCAACACTGTTCGCATACTAAGCC -CCAACACTGTTCGCATACATAGCC -CCAACACTGTTCGCATACTAACCG -CCAACACTGTTCGCATACATGCCA -CCAACACTGTTCGCACTTGGAAAC -CCAACACTGTTCGCACTTAACACC -CCAACACTGTTCGCACTTATCGAG -CCAACACTGTTCGCACTTCTCCTT -CCAACACTGTTCGCACTTCCTGTT -CCAACACTGTTCGCACTTCGGTTT -CCAACACTGTTCGCACTTGTGGTT -CCAACACTGTTCGCACTTGCCTTT -CCAACACTGTTCGCACTTGGTCTT -CCAACACTGTTCGCACTTACGCTT -CCAACACTGTTCGCACTTAGCGTT -CCAACACTGTTCGCACTTTTCGTC -CCAACACTGTTCGCACTTTCTCTC -CCAACACTGTTCGCACTTTGGATC -CCAACACTGTTCGCACTTCACTTC -CCAACACTGTTCGCACTTGTACTC -CCAACACTGTTCGCACTTGATGTC -CCAACACTGTTCGCACTTACAGTC -CCAACACTGTTCGCACTTTTGCTG -CCAACACTGTTCGCACTTTCCATG -CCAACACTGTTCGCACTTTGTGTG -CCAACACTGTTCGCACTTCTAGTG -CCAACACTGTTCGCACTTCATCTG -CCAACACTGTTCGCACTTGAGTTG -CCAACACTGTTCGCACTTAGACTG -CCAACACTGTTCGCACTTTCGGTA -CCAACACTGTTCGCACTTTGCCTA -CCAACACTGTTCGCACTTCCACTA -CCAACACTGTTCGCACTTGGAGTA -CCAACACTGTTCGCACTTTCGTCT -CCAACACTGTTCGCACTTTGCACT -CCAACACTGTTCGCACTTCTGACT -CCAACACTGTTCGCACTTCAACCT -CCAACACTGTTCGCACTTGCTACT -CCAACACTGTTCGCACTTGGATCT -CCAACACTGTTCGCACTTAAGGCT -CCAACACTGTTCGCACTTTCAACC -CCAACACTGTTCGCACTTTGTTCC -CCAACACTGTTCGCACTTATTCCC -CCAACACTGTTCGCACTTTTCTCG -CCAACACTGTTCGCACTTTAGACG -CCAACACTGTTCGCACTTGTAACG -CCAACACTGTTCGCACTTACTTCG -CCAACACTGTTCGCACTTTACGCA -CCAACACTGTTCGCACTTCTTGCA -CCAACACTGTTCGCACTTCGAACA -CCAACACTGTTCGCACTTCAGTCA -CCAACACTGTTCGCACTTGATCCA -CCAACACTGTTCGCACTTACGACA -CCAACACTGTTCGCACTTAGCTCA -CCAACACTGTTCGCACTTTCACGT -CCAACACTGTTCGCACTTCGTAGT -CCAACACTGTTCGCACTTGTCAGT -CCAACACTGTTCGCACTTGAAGGT -CCAACACTGTTCGCACTTAACCGT -CCAACACTGTTCGCACTTTTGTGC -CCAACACTGTTCGCACTTCTAAGC -CCAACACTGTTCGCACTTACTAGC -CCAACACTGTTCGCACTTAGATGC -CCAACACTGTTCGCACTTTGAAGG -CCAACACTGTTCGCACTTCAATGG -CCAACACTGTTCGCACTTATGAGG -CCAACACTGTTCGCACTTAATGGG -CCAACACTGTTCGCACTTTCCTGA -CCAACACTGTTCGCACTTTAGCGA -CCAACACTGTTCGCACTTCACAGA -CCAACACTGTTCGCACTTGCAAGA -CCAACACTGTTCGCACTTGGTTGA -CCAACACTGTTCGCACTTTCCGAT -CCAACACTGTTCGCACTTTGGCAT -CCAACACTGTTCGCACTTCGAGAT -CCAACACTGTTCGCACTTTACCAC -CCAACACTGTTCGCACTTCAGAAC -CCAACACTGTTCGCACTTGTCTAC -CCAACACTGTTCGCACTTACGTAC -CCAACACTGTTCGCACTTAGTGAC -CCAACACTGTTCGCACTTCTGTAG -CCAACACTGTTCGCACTTCCTAAG -CCAACACTGTTCGCACTTGTTCAG -CCAACACTGTTCGCACTTGCATAG -CCAACACTGTTCGCACTTGACAAG -CCAACACTGTTCGCACTTAAGCAG -CCAACACTGTTCGCACTTCGTCAA -CCAACACTGTTCGCACTTGCTGAA -CCAACACTGTTCGCACTTAGTACG -CCAACACTGTTCGCACTTATCCGA -CCAACACTGTTCGCACTTATGGGA -CCAACACTGTTCGCACTTGTGCAA -CCAACACTGTTCGCACTTGAGGAA -CCAACACTGTTCGCACTTCAGGTA -CCAACACTGTTCGCACTTGACTCT -CCAACACTGTTCGCACTTAGTCCT -CCAACACTGTTCGCACTTTAAGCC -CCAACACTGTTCGCACTTATAGCC -CCAACACTGTTCGCACTTTAACCG -CCAACACTGTTCGCACTTATGCCA -CCAACACTGTTCACACGAGGAAAC -CCAACACTGTTCACACGAAACACC -CCAACACTGTTCACACGAATCGAG -CCAACACTGTTCACACGACTCCTT -CCAACACTGTTCACACGACCTGTT -CCAACACTGTTCACACGACGGTTT -CCAACACTGTTCACACGAGTGGTT -CCAACACTGTTCACACGAGCCTTT -CCAACACTGTTCACACGAGGTCTT -CCAACACTGTTCACACGAACGCTT -CCAACACTGTTCACACGAAGCGTT -CCAACACTGTTCACACGATTCGTC -CCAACACTGTTCACACGATCTCTC -CCAACACTGTTCACACGATGGATC -CCAACACTGTTCACACGACACTTC -CCAACACTGTTCACACGAGTACTC -CCAACACTGTTCACACGAGATGTC -CCAACACTGTTCACACGAACAGTC -CCAACACTGTTCACACGATTGCTG -CCAACACTGTTCACACGATCCATG -CCAACACTGTTCACACGATGTGTG -CCAACACTGTTCACACGACTAGTG -CCAACACTGTTCACACGACATCTG -CCAACACTGTTCACACGAGAGTTG -CCAACACTGTTCACACGAAGACTG -CCAACACTGTTCACACGATCGGTA -CCAACACTGTTCACACGATGCCTA -CCAACACTGTTCACACGACCACTA -CCAACACTGTTCACACGAGGAGTA -CCAACACTGTTCACACGATCGTCT -CCAACACTGTTCACACGATGCACT -CCAACACTGTTCACACGACTGACT -CCAACACTGTTCACACGACAACCT -CCAACACTGTTCACACGAGCTACT -CCAACACTGTTCACACGAGGATCT -CCAACACTGTTCACACGAAAGGCT -CCAACACTGTTCACACGATCAACC -CCAACACTGTTCACACGATGTTCC -CCAACACTGTTCACACGAATTCCC -CCAACACTGTTCACACGATTCTCG -CCAACACTGTTCACACGATAGACG -CCAACACTGTTCACACGAGTAACG -CCAACACTGTTCACACGAACTTCG -CCAACACTGTTCACACGATACGCA -CCAACACTGTTCACACGACTTGCA -CCAACACTGTTCACACGACGAACA -CCAACACTGTTCACACGACAGTCA -CCAACACTGTTCACACGAGATCCA -CCAACACTGTTCACACGAACGACA -CCAACACTGTTCACACGAAGCTCA -CCAACACTGTTCACACGATCACGT -CCAACACTGTTCACACGACGTAGT -CCAACACTGTTCACACGAGTCAGT -CCAACACTGTTCACACGAGAAGGT -CCAACACTGTTCACACGAAACCGT -CCAACACTGTTCACACGATTGTGC -CCAACACTGTTCACACGACTAAGC -CCAACACTGTTCACACGAACTAGC -CCAACACTGTTCACACGAAGATGC -CCAACACTGTTCACACGATGAAGG -CCAACACTGTTCACACGACAATGG -CCAACACTGTTCACACGAATGAGG -CCAACACTGTTCACACGAAATGGG -CCAACACTGTTCACACGATCCTGA -CCAACACTGTTCACACGATAGCGA -CCAACACTGTTCACACGACACAGA -CCAACACTGTTCACACGAGCAAGA -CCAACACTGTTCACACGAGGTTGA -CCAACACTGTTCACACGATCCGAT -CCAACACTGTTCACACGATGGCAT -CCAACACTGTTCACACGACGAGAT -CCAACACTGTTCACACGATACCAC -CCAACACTGTTCACACGACAGAAC -CCAACACTGTTCACACGAGTCTAC -CCAACACTGTTCACACGAACGTAC -CCAACACTGTTCACACGAAGTGAC -CCAACACTGTTCACACGACTGTAG -CCAACACTGTTCACACGACCTAAG -CCAACACTGTTCACACGAGTTCAG -CCAACACTGTTCACACGAGCATAG -CCAACACTGTTCACACGAGACAAG -CCAACACTGTTCACACGAAAGCAG -CCAACACTGTTCACACGACGTCAA -CCAACACTGTTCACACGAGCTGAA -CCAACACTGTTCACACGAAGTACG -CCAACACTGTTCACACGAATCCGA -CCAACACTGTTCACACGAATGGGA -CCAACACTGTTCACACGAGTGCAA -CCAACACTGTTCACACGAGAGGAA -CCAACACTGTTCACACGACAGGTA -CCAACACTGTTCACACGAGACTCT -CCAACACTGTTCACACGAAGTCCT -CCAACACTGTTCACACGATAAGCC -CCAACACTGTTCACACGAATAGCC -CCAACACTGTTCACACGATAACCG -CCAACACTGTTCACACGAATGCCA -CCAACACTGTTCTCACAGGGAAAC -CCAACACTGTTCTCACAGAACACC -CCAACACTGTTCTCACAGATCGAG -CCAACACTGTTCTCACAGCTCCTT -CCAACACTGTTCTCACAGCCTGTT -CCAACACTGTTCTCACAGCGGTTT -CCAACACTGTTCTCACAGGTGGTT -CCAACACTGTTCTCACAGGCCTTT -CCAACACTGTTCTCACAGGGTCTT -CCAACACTGTTCTCACAGACGCTT -CCAACACTGTTCTCACAGAGCGTT -CCAACACTGTTCTCACAGTTCGTC -CCAACACTGTTCTCACAGTCTCTC -CCAACACTGTTCTCACAGTGGATC -CCAACACTGTTCTCACAGCACTTC -CCAACACTGTTCTCACAGGTACTC -CCAACACTGTTCTCACAGGATGTC -CCAACACTGTTCTCACAGACAGTC -CCAACACTGTTCTCACAGTTGCTG -CCAACACTGTTCTCACAGTCCATG -CCAACACTGTTCTCACAGTGTGTG -CCAACACTGTTCTCACAGCTAGTG -CCAACACTGTTCTCACAGCATCTG -CCAACACTGTTCTCACAGGAGTTG -CCAACACTGTTCTCACAGAGACTG -CCAACACTGTTCTCACAGTCGGTA -CCAACACTGTTCTCACAGTGCCTA -CCAACACTGTTCTCACAGCCACTA -CCAACACTGTTCTCACAGGGAGTA -CCAACACTGTTCTCACAGTCGTCT -CCAACACTGTTCTCACAGTGCACT -CCAACACTGTTCTCACAGCTGACT -CCAACACTGTTCTCACAGCAACCT -CCAACACTGTTCTCACAGGCTACT -CCAACACTGTTCTCACAGGGATCT -CCAACACTGTTCTCACAGAAGGCT -CCAACACTGTTCTCACAGTCAACC -CCAACACTGTTCTCACAGTGTTCC -CCAACACTGTTCTCACAGATTCCC -CCAACACTGTTCTCACAGTTCTCG -CCAACACTGTTCTCACAGTAGACG -CCAACACTGTTCTCACAGGTAACG -CCAACACTGTTCTCACAGACTTCG -CCAACACTGTTCTCACAGTACGCA -CCAACACTGTTCTCACAGCTTGCA -CCAACACTGTTCTCACAGCGAACA -CCAACACTGTTCTCACAGCAGTCA -CCAACACTGTTCTCACAGGATCCA -CCAACACTGTTCTCACAGACGACA -CCAACACTGTTCTCACAGAGCTCA -CCAACACTGTTCTCACAGTCACGT -CCAACACTGTTCTCACAGCGTAGT -CCAACACTGTTCTCACAGGTCAGT -CCAACACTGTTCTCACAGGAAGGT -CCAACACTGTTCTCACAGAACCGT -CCAACACTGTTCTCACAGTTGTGC -CCAACACTGTTCTCACAGCTAAGC -CCAACACTGTTCTCACAGACTAGC -CCAACACTGTTCTCACAGAGATGC -CCAACACTGTTCTCACAGTGAAGG -CCAACACTGTTCTCACAGCAATGG -CCAACACTGTTCTCACAGATGAGG -CCAACACTGTTCTCACAGAATGGG -CCAACACTGTTCTCACAGTCCTGA -CCAACACTGTTCTCACAGTAGCGA -CCAACACTGTTCTCACAGCACAGA -CCAACACTGTTCTCACAGGCAAGA -CCAACACTGTTCTCACAGGGTTGA -CCAACACTGTTCTCACAGTCCGAT -CCAACACTGTTCTCACAGTGGCAT -CCAACACTGTTCTCACAGCGAGAT -CCAACACTGTTCTCACAGTACCAC -CCAACACTGTTCTCACAGCAGAAC -CCAACACTGTTCTCACAGGTCTAC -CCAACACTGTTCTCACAGACGTAC -CCAACACTGTTCTCACAGAGTGAC -CCAACACTGTTCTCACAGCTGTAG -CCAACACTGTTCTCACAGCCTAAG -CCAACACTGTTCTCACAGGTTCAG -CCAACACTGTTCTCACAGGCATAG -CCAACACTGTTCTCACAGGACAAG -CCAACACTGTTCTCACAGAAGCAG -CCAACACTGTTCTCACAGCGTCAA -CCAACACTGTTCTCACAGGCTGAA -CCAACACTGTTCTCACAGAGTACG -CCAACACTGTTCTCACAGATCCGA -CCAACACTGTTCTCACAGATGGGA -CCAACACTGTTCTCACAGGTGCAA -CCAACACTGTTCTCACAGGAGGAA -CCAACACTGTTCTCACAGCAGGTA -CCAACACTGTTCTCACAGGACTCT -CCAACACTGTTCTCACAGAGTCCT -CCAACACTGTTCTCACAGTAAGCC -CCAACACTGTTCTCACAGATAGCC -CCAACACTGTTCTCACAGTAACCG -CCAACACTGTTCTCACAGATGCCA -CCAACACTGTTCCCAGATGGAAAC -CCAACACTGTTCCCAGATAACACC -CCAACACTGTTCCCAGATATCGAG -CCAACACTGTTCCCAGATCTCCTT -CCAACACTGTTCCCAGATCCTGTT -CCAACACTGTTCCCAGATCGGTTT -CCAACACTGTTCCCAGATGTGGTT -CCAACACTGTTCCCAGATGCCTTT -CCAACACTGTTCCCAGATGGTCTT -CCAACACTGTTCCCAGATACGCTT -CCAACACTGTTCCCAGATAGCGTT -CCAACACTGTTCCCAGATTTCGTC -CCAACACTGTTCCCAGATTCTCTC -CCAACACTGTTCCCAGATTGGATC -CCAACACTGTTCCCAGATCACTTC -CCAACACTGTTCCCAGATGTACTC -CCAACACTGTTCCCAGATGATGTC -CCAACACTGTTCCCAGATACAGTC -CCAACACTGTTCCCAGATTTGCTG -CCAACACTGTTCCCAGATTCCATG -CCAACACTGTTCCCAGATTGTGTG -CCAACACTGTTCCCAGATCTAGTG -CCAACACTGTTCCCAGATCATCTG -CCAACACTGTTCCCAGATGAGTTG -CCAACACTGTTCCCAGATAGACTG -CCAACACTGTTCCCAGATTCGGTA -CCAACACTGTTCCCAGATTGCCTA -CCAACACTGTTCCCAGATCCACTA -CCAACACTGTTCCCAGATGGAGTA -CCAACACTGTTCCCAGATTCGTCT -CCAACACTGTTCCCAGATTGCACT -CCAACACTGTTCCCAGATCTGACT -CCAACACTGTTCCCAGATCAACCT -CCAACACTGTTCCCAGATGCTACT -CCAACACTGTTCCCAGATGGATCT -CCAACACTGTTCCCAGATAAGGCT -CCAACACTGTTCCCAGATTCAACC -CCAACACTGTTCCCAGATTGTTCC -CCAACACTGTTCCCAGATATTCCC -CCAACACTGTTCCCAGATTTCTCG -CCAACACTGTTCCCAGATTAGACG -CCAACACTGTTCCCAGATGTAACG -CCAACACTGTTCCCAGATACTTCG -CCAACACTGTTCCCAGATTACGCA -CCAACACTGTTCCCAGATCTTGCA -CCAACACTGTTCCCAGATCGAACA -CCAACACTGTTCCCAGATCAGTCA -CCAACACTGTTCCCAGATGATCCA -CCAACACTGTTCCCAGATACGACA -CCAACACTGTTCCCAGATAGCTCA -CCAACACTGTTCCCAGATTCACGT -CCAACACTGTTCCCAGATCGTAGT -CCAACACTGTTCCCAGATGTCAGT -CCAACACTGTTCCCAGATGAAGGT -CCAACACTGTTCCCAGATAACCGT -CCAACACTGTTCCCAGATTTGTGC -CCAACACTGTTCCCAGATCTAAGC -CCAACACTGTTCCCAGATACTAGC -CCAACACTGTTCCCAGATAGATGC -CCAACACTGTTCCCAGATTGAAGG -CCAACACTGTTCCCAGATCAATGG -CCAACACTGTTCCCAGATATGAGG -CCAACACTGTTCCCAGATAATGGG -CCAACACTGTTCCCAGATTCCTGA -CCAACACTGTTCCCAGATTAGCGA -CCAACACTGTTCCCAGATCACAGA -CCAACACTGTTCCCAGATGCAAGA -CCAACACTGTTCCCAGATGGTTGA -CCAACACTGTTCCCAGATTCCGAT -CCAACACTGTTCCCAGATTGGCAT -CCAACACTGTTCCCAGATCGAGAT -CCAACACTGTTCCCAGATTACCAC -CCAACACTGTTCCCAGATCAGAAC -CCAACACTGTTCCCAGATGTCTAC -CCAACACTGTTCCCAGATACGTAC -CCAACACTGTTCCCAGATAGTGAC -CCAACACTGTTCCCAGATCTGTAG -CCAACACTGTTCCCAGATCCTAAG -CCAACACTGTTCCCAGATGTTCAG -CCAACACTGTTCCCAGATGCATAG -CCAACACTGTTCCCAGATGACAAG -CCAACACTGTTCCCAGATAAGCAG -CCAACACTGTTCCCAGATCGTCAA -CCAACACTGTTCCCAGATGCTGAA -CCAACACTGTTCCCAGATAGTACG -CCAACACTGTTCCCAGATATCCGA -CCAACACTGTTCCCAGATATGGGA -CCAACACTGTTCCCAGATGTGCAA -CCAACACTGTTCCCAGATGAGGAA -CCAACACTGTTCCCAGATCAGGTA -CCAACACTGTTCCCAGATGACTCT -CCAACACTGTTCCCAGATAGTCCT -CCAACACTGTTCCCAGATTAAGCC -CCAACACTGTTCCCAGATATAGCC -CCAACACTGTTCCCAGATTAACCG -CCAACACTGTTCCCAGATATGCCA -CCAACACTGTTCACAACGGGAAAC -CCAACACTGTTCACAACGAACACC -CCAACACTGTTCACAACGATCGAG -CCAACACTGTTCACAACGCTCCTT -CCAACACTGTTCACAACGCCTGTT -CCAACACTGTTCACAACGCGGTTT -CCAACACTGTTCACAACGGTGGTT -CCAACACTGTTCACAACGGCCTTT -CCAACACTGTTCACAACGGGTCTT -CCAACACTGTTCACAACGACGCTT -CCAACACTGTTCACAACGAGCGTT -CCAACACTGTTCACAACGTTCGTC -CCAACACTGTTCACAACGTCTCTC -CCAACACTGTTCACAACGTGGATC -CCAACACTGTTCACAACGCACTTC -CCAACACTGTTCACAACGGTACTC -CCAACACTGTTCACAACGGATGTC -CCAACACTGTTCACAACGACAGTC -CCAACACTGTTCACAACGTTGCTG -CCAACACTGTTCACAACGTCCATG -CCAACACTGTTCACAACGTGTGTG -CCAACACTGTTCACAACGCTAGTG -CCAACACTGTTCACAACGCATCTG -CCAACACTGTTCACAACGGAGTTG -CCAACACTGTTCACAACGAGACTG -CCAACACTGTTCACAACGTCGGTA -CCAACACTGTTCACAACGTGCCTA -CCAACACTGTTCACAACGCCACTA -CCAACACTGTTCACAACGGGAGTA -CCAACACTGTTCACAACGTCGTCT -CCAACACTGTTCACAACGTGCACT -CCAACACTGTTCACAACGCTGACT -CCAACACTGTTCACAACGCAACCT -CCAACACTGTTCACAACGGCTACT -CCAACACTGTTCACAACGGGATCT -CCAACACTGTTCACAACGAAGGCT -CCAACACTGTTCACAACGTCAACC -CCAACACTGTTCACAACGTGTTCC -CCAACACTGTTCACAACGATTCCC -CCAACACTGTTCACAACGTTCTCG -CCAACACTGTTCACAACGTAGACG -CCAACACTGTTCACAACGGTAACG -CCAACACTGTTCACAACGACTTCG -CCAACACTGTTCACAACGTACGCA -CCAACACTGTTCACAACGCTTGCA -CCAACACTGTTCACAACGCGAACA -CCAACACTGTTCACAACGCAGTCA -CCAACACTGTTCACAACGGATCCA -CCAACACTGTTCACAACGACGACA -CCAACACTGTTCACAACGAGCTCA -CCAACACTGTTCACAACGTCACGT -CCAACACTGTTCACAACGCGTAGT -CCAACACTGTTCACAACGGTCAGT -CCAACACTGTTCACAACGGAAGGT -CCAACACTGTTCACAACGAACCGT -CCAACACTGTTCACAACGTTGTGC -CCAACACTGTTCACAACGCTAAGC -CCAACACTGTTCACAACGACTAGC -CCAACACTGTTCACAACGAGATGC -CCAACACTGTTCACAACGTGAAGG -CCAACACTGTTCACAACGCAATGG -CCAACACTGTTCACAACGATGAGG -CCAACACTGTTCACAACGAATGGG -CCAACACTGTTCACAACGTCCTGA -CCAACACTGTTCACAACGTAGCGA -CCAACACTGTTCACAACGCACAGA -CCAACACTGTTCACAACGGCAAGA -CCAACACTGTTCACAACGGGTTGA -CCAACACTGTTCACAACGTCCGAT -CCAACACTGTTCACAACGTGGCAT -CCAACACTGTTCACAACGCGAGAT -CCAACACTGTTCACAACGTACCAC -CCAACACTGTTCACAACGCAGAAC -CCAACACTGTTCACAACGGTCTAC -CCAACACTGTTCACAACGACGTAC -CCAACACTGTTCACAACGAGTGAC -CCAACACTGTTCACAACGCTGTAG -CCAACACTGTTCACAACGCCTAAG -CCAACACTGTTCACAACGGTTCAG -CCAACACTGTTCACAACGGCATAG -CCAACACTGTTCACAACGGACAAG -CCAACACTGTTCACAACGAAGCAG -CCAACACTGTTCACAACGCGTCAA -CCAACACTGTTCACAACGGCTGAA -CCAACACTGTTCACAACGAGTACG -CCAACACTGTTCACAACGATCCGA -CCAACACTGTTCACAACGATGGGA -CCAACACTGTTCACAACGGTGCAA -CCAACACTGTTCACAACGGAGGAA -CCAACACTGTTCACAACGCAGGTA -CCAACACTGTTCACAACGGACTCT -CCAACACTGTTCACAACGAGTCCT -CCAACACTGTTCACAACGTAAGCC -CCAACACTGTTCACAACGATAGCC -CCAACACTGTTCACAACGTAACCG -CCAACACTGTTCACAACGATGCCA -CCAACACTGTTCTCAAGCGGAAAC -CCAACACTGTTCTCAAGCAACACC -CCAACACTGTTCTCAAGCATCGAG -CCAACACTGTTCTCAAGCCTCCTT -CCAACACTGTTCTCAAGCCCTGTT -CCAACACTGTTCTCAAGCCGGTTT -CCAACACTGTTCTCAAGCGTGGTT -CCAACACTGTTCTCAAGCGCCTTT -CCAACACTGTTCTCAAGCGGTCTT -CCAACACTGTTCTCAAGCACGCTT -CCAACACTGTTCTCAAGCAGCGTT -CCAACACTGTTCTCAAGCTTCGTC -CCAACACTGTTCTCAAGCTCTCTC -CCAACACTGTTCTCAAGCTGGATC -CCAACACTGTTCTCAAGCCACTTC -CCAACACTGTTCTCAAGCGTACTC -CCAACACTGTTCTCAAGCGATGTC -CCAACACTGTTCTCAAGCACAGTC -CCAACACTGTTCTCAAGCTTGCTG -CCAACACTGTTCTCAAGCTCCATG -CCAACACTGTTCTCAAGCTGTGTG -CCAACACTGTTCTCAAGCCTAGTG -CCAACACTGTTCTCAAGCCATCTG -CCAACACTGTTCTCAAGCGAGTTG -CCAACACTGTTCTCAAGCAGACTG -CCAACACTGTTCTCAAGCTCGGTA -CCAACACTGTTCTCAAGCTGCCTA -CCAACACTGTTCTCAAGCCCACTA -CCAACACTGTTCTCAAGCGGAGTA -CCAACACTGTTCTCAAGCTCGTCT -CCAACACTGTTCTCAAGCTGCACT -CCAACACTGTTCTCAAGCCTGACT -CCAACACTGTTCTCAAGCCAACCT -CCAACACTGTTCTCAAGCGCTACT -CCAACACTGTTCTCAAGCGGATCT -CCAACACTGTTCTCAAGCAAGGCT -CCAACACTGTTCTCAAGCTCAACC -CCAACACTGTTCTCAAGCTGTTCC -CCAACACTGTTCTCAAGCATTCCC -CCAACACTGTTCTCAAGCTTCTCG -CCAACACTGTTCTCAAGCTAGACG -CCAACACTGTTCTCAAGCGTAACG -CCAACACTGTTCTCAAGCACTTCG -CCAACACTGTTCTCAAGCTACGCA -CCAACACTGTTCTCAAGCCTTGCA -CCAACACTGTTCTCAAGCCGAACA -CCAACACTGTTCTCAAGCCAGTCA -CCAACACTGTTCTCAAGCGATCCA -CCAACACTGTTCTCAAGCACGACA -CCAACACTGTTCTCAAGCAGCTCA -CCAACACTGTTCTCAAGCTCACGT -CCAACACTGTTCTCAAGCCGTAGT -CCAACACTGTTCTCAAGCGTCAGT -CCAACACTGTTCTCAAGCGAAGGT -CCAACACTGTTCTCAAGCAACCGT -CCAACACTGTTCTCAAGCTTGTGC -CCAACACTGTTCTCAAGCCTAAGC -CCAACACTGTTCTCAAGCACTAGC -CCAACACTGTTCTCAAGCAGATGC -CCAACACTGTTCTCAAGCTGAAGG -CCAACACTGTTCTCAAGCCAATGG -CCAACACTGTTCTCAAGCATGAGG -CCAACACTGTTCTCAAGCAATGGG -CCAACACTGTTCTCAAGCTCCTGA -CCAACACTGTTCTCAAGCTAGCGA -CCAACACTGTTCTCAAGCCACAGA -CCAACACTGTTCTCAAGCGCAAGA -CCAACACTGTTCTCAAGCGGTTGA -CCAACACTGTTCTCAAGCTCCGAT -CCAACACTGTTCTCAAGCTGGCAT -CCAACACTGTTCTCAAGCCGAGAT -CCAACACTGTTCTCAAGCTACCAC -CCAACACTGTTCTCAAGCCAGAAC -CCAACACTGTTCTCAAGCGTCTAC -CCAACACTGTTCTCAAGCACGTAC -CCAACACTGTTCTCAAGCAGTGAC -CCAACACTGTTCTCAAGCCTGTAG -CCAACACTGTTCTCAAGCCCTAAG -CCAACACTGTTCTCAAGCGTTCAG -CCAACACTGTTCTCAAGCGCATAG -CCAACACTGTTCTCAAGCGACAAG -CCAACACTGTTCTCAAGCAAGCAG -CCAACACTGTTCTCAAGCCGTCAA -CCAACACTGTTCTCAAGCGCTGAA -CCAACACTGTTCTCAAGCAGTACG -CCAACACTGTTCTCAAGCATCCGA -CCAACACTGTTCTCAAGCATGGGA -CCAACACTGTTCTCAAGCGTGCAA -CCAACACTGTTCTCAAGCGAGGAA -CCAACACTGTTCTCAAGCCAGGTA -CCAACACTGTTCTCAAGCGACTCT -CCAACACTGTTCTCAAGCAGTCCT -CCAACACTGTTCTCAAGCTAAGCC -CCAACACTGTTCTCAAGCATAGCC -CCAACACTGTTCTCAAGCTAACCG -CCAACACTGTTCTCAAGCATGCCA -CCAACACTGTTCCGTTCAGGAAAC -CCAACACTGTTCCGTTCAAACACC -CCAACACTGTTCCGTTCAATCGAG -CCAACACTGTTCCGTTCACTCCTT -CCAACACTGTTCCGTTCACCTGTT -CCAACACTGTTCCGTTCACGGTTT -CCAACACTGTTCCGTTCAGTGGTT -CCAACACTGTTCCGTTCAGCCTTT -CCAACACTGTTCCGTTCAGGTCTT -CCAACACTGTTCCGTTCAACGCTT -CCAACACTGTTCCGTTCAAGCGTT -CCAACACTGTTCCGTTCATTCGTC -CCAACACTGTTCCGTTCATCTCTC -CCAACACTGTTCCGTTCATGGATC -CCAACACTGTTCCGTTCACACTTC -CCAACACTGTTCCGTTCAGTACTC -CCAACACTGTTCCGTTCAGATGTC -CCAACACTGTTCCGTTCAACAGTC -CCAACACTGTTCCGTTCATTGCTG -CCAACACTGTTCCGTTCATCCATG -CCAACACTGTTCCGTTCATGTGTG -CCAACACTGTTCCGTTCACTAGTG -CCAACACTGTTCCGTTCACATCTG -CCAACACTGTTCCGTTCAGAGTTG -CCAACACTGTTCCGTTCAAGACTG -CCAACACTGTTCCGTTCATCGGTA -CCAACACTGTTCCGTTCATGCCTA -CCAACACTGTTCCGTTCACCACTA -CCAACACTGTTCCGTTCAGGAGTA -CCAACACTGTTCCGTTCATCGTCT -CCAACACTGTTCCGTTCATGCACT -CCAACACTGTTCCGTTCACTGACT -CCAACACTGTTCCGTTCACAACCT -CCAACACTGTTCCGTTCAGCTACT -CCAACACTGTTCCGTTCAGGATCT -CCAACACTGTTCCGTTCAAAGGCT -CCAACACTGTTCCGTTCATCAACC -CCAACACTGTTCCGTTCATGTTCC -CCAACACTGTTCCGTTCAATTCCC -CCAACACTGTTCCGTTCATTCTCG -CCAACACTGTTCCGTTCATAGACG -CCAACACTGTTCCGTTCAGTAACG -CCAACACTGTTCCGTTCAACTTCG -CCAACACTGTTCCGTTCATACGCA -CCAACACTGTTCCGTTCACTTGCA -CCAACACTGTTCCGTTCACGAACA -CCAACACTGTTCCGTTCACAGTCA -CCAACACTGTTCCGTTCAGATCCA -CCAACACTGTTCCGTTCAACGACA -CCAACACTGTTCCGTTCAAGCTCA -CCAACACTGTTCCGTTCATCACGT -CCAACACTGTTCCGTTCACGTAGT -CCAACACTGTTCCGTTCAGTCAGT -CCAACACTGTTCCGTTCAGAAGGT -CCAACACTGTTCCGTTCAAACCGT -CCAACACTGTTCCGTTCATTGTGC -CCAACACTGTTCCGTTCACTAAGC -CCAACACTGTTCCGTTCAACTAGC -CCAACACTGTTCCGTTCAAGATGC -CCAACACTGTTCCGTTCATGAAGG -CCAACACTGTTCCGTTCACAATGG -CCAACACTGTTCCGTTCAATGAGG -CCAACACTGTTCCGTTCAAATGGG -CCAACACTGTTCCGTTCATCCTGA -CCAACACTGTTCCGTTCATAGCGA -CCAACACTGTTCCGTTCACACAGA -CCAACACTGTTCCGTTCAGCAAGA -CCAACACTGTTCCGTTCAGGTTGA -CCAACACTGTTCCGTTCATCCGAT -CCAACACTGTTCCGTTCATGGCAT -CCAACACTGTTCCGTTCACGAGAT -CCAACACTGTTCCGTTCATACCAC -CCAACACTGTTCCGTTCACAGAAC -CCAACACTGTTCCGTTCAGTCTAC -CCAACACTGTTCCGTTCAACGTAC -CCAACACTGTTCCGTTCAAGTGAC -CCAACACTGTTCCGTTCACTGTAG -CCAACACTGTTCCGTTCACCTAAG -CCAACACTGTTCCGTTCAGTTCAG -CCAACACTGTTCCGTTCAGCATAG -CCAACACTGTTCCGTTCAGACAAG -CCAACACTGTTCCGTTCAAAGCAG -CCAACACTGTTCCGTTCACGTCAA -CCAACACTGTTCCGTTCAGCTGAA -CCAACACTGTTCCGTTCAAGTACG -CCAACACTGTTCCGTTCAATCCGA -CCAACACTGTTCCGTTCAATGGGA -CCAACACTGTTCCGTTCAGTGCAA -CCAACACTGTTCCGTTCAGAGGAA -CCAACACTGTTCCGTTCACAGGTA -CCAACACTGTTCCGTTCAGACTCT -CCAACACTGTTCCGTTCAAGTCCT -CCAACACTGTTCCGTTCATAAGCC -CCAACACTGTTCCGTTCAATAGCC -CCAACACTGTTCCGTTCATAACCG -CCAACACTGTTCCGTTCAATGCCA -CCAACACTGTTCAGTCGTGGAAAC -CCAACACTGTTCAGTCGTAACACC -CCAACACTGTTCAGTCGTATCGAG -CCAACACTGTTCAGTCGTCTCCTT -CCAACACTGTTCAGTCGTCCTGTT -CCAACACTGTTCAGTCGTCGGTTT -CCAACACTGTTCAGTCGTGTGGTT -CCAACACTGTTCAGTCGTGCCTTT -CCAACACTGTTCAGTCGTGGTCTT -CCAACACTGTTCAGTCGTACGCTT -CCAACACTGTTCAGTCGTAGCGTT -CCAACACTGTTCAGTCGTTTCGTC -CCAACACTGTTCAGTCGTTCTCTC -CCAACACTGTTCAGTCGTTGGATC -CCAACACTGTTCAGTCGTCACTTC -CCAACACTGTTCAGTCGTGTACTC -CCAACACTGTTCAGTCGTGATGTC -CCAACACTGTTCAGTCGTACAGTC -CCAACACTGTTCAGTCGTTTGCTG -CCAACACTGTTCAGTCGTTCCATG -CCAACACTGTTCAGTCGTTGTGTG -CCAACACTGTTCAGTCGTCTAGTG -CCAACACTGTTCAGTCGTCATCTG -CCAACACTGTTCAGTCGTGAGTTG -CCAACACTGTTCAGTCGTAGACTG -CCAACACTGTTCAGTCGTTCGGTA -CCAACACTGTTCAGTCGTTGCCTA -CCAACACTGTTCAGTCGTCCACTA -CCAACACTGTTCAGTCGTGGAGTA -CCAACACTGTTCAGTCGTTCGTCT -CCAACACTGTTCAGTCGTTGCACT -CCAACACTGTTCAGTCGTCTGACT -CCAACACTGTTCAGTCGTCAACCT -CCAACACTGTTCAGTCGTGCTACT -CCAACACTGTTCAGTCGTGGATCT -CCAACACTGTTCAGTCGTAAGGCT -CCAACACTGTTCAGTCGTTCAACC -CCAACACTGTTCAGTCGTTGTTCC -CCAACACTGTTCAGTCGTATTCCC -CCAACACTGTTCAGTCGTTTCTCG -CCAACACTGTTCAGTCGTTAGACG -CCAACACTGTTCAGTCGTGTAACG -CCAACACTGTTCAGTCGTACTTCG -CCAACACTGTTCAGTCGTTACGCA -CCAACACTGTTCAGTCGTCTTGCA -CCAACACTGTTCAGTCGTCGAACA -CCAACACTGTTCAGTCGTCAGTCA -CCAACACTGTTCAGTCGTGATCCA -CCAACACTGTTCAGTCGTACGACA -CCAACACTGTTCAGTCGTAGCTCA -CCAACACTGTTCAGTCGTTCACGT -CCAACACTGTTCAGTCGTCGTAGT -CCAACACTGTTCAGTCGTGTCAGT -CCAACACTGTTCAGTCGTGAAGGT -CCAACACTGTTCAGTCGTAACCGT -CCAACACTGTTCAGTCGTTTGTGC -CCAACACTGTTCAGTCGTCTAAGC -CCAACACTGTTCAGTCGTACTAGC -CCAACACTGTTCAGTCGTAGATGC -CCAACACTGTTCAGTCGTTGAAGG -CCAACACTGTTCAGTCGTCAATGG -CCAACACTGTTCAGTCGTATGAGG -CCAACACTGTTCAGTCGTAATGGG -CCAACACTGTTCAGTCGTTCCTGA -CCAACACTGTTCAGTCGTTAGCGA -CCAACACTGTTCAGTCGTCACAGA -CCAACACTGTTCAGTCGTGCAAGA -CCAACACTGTTCAGTCGTGGTTGA -CCAACACTGTTCAGTCGTTCCGAT -CCAACACTGTTCAGTCGTTGGCAT -CCAACACTGTTCAGTCGTCGAGAT -CCAACACTGTTCAGTCGTTACCAC -CCAACACTGTTCAGTCGTCAGAAC -CCAACACTGTTCAGTCGTGTCTAC -CCAACACTGTTCAGTCGTACGTAC -CCAACACTGTTCAGTCGTAGTGAC -CCAACACTGTTCAGTCGTCTGTAG -CCAACACTGTTCAGTCGTCCTAAG -CCAACACTGTTCAGTCGTGTTCAG -CCAACACTGTTCAGTCGTGCATAG -CCAACACTGTTCAGTCGTGACAAG -CCAACACTGTTCAGTCGTAAGCAG -CCAACACTGTTCAGTCGTCGTCAA -CCAACACTGTTCAGTCGTGCTGAA -CCAACACTGTTCAGTCGTAGTACG -CCAACACTGTTCAGTCGTATCCGA -CCAACACTGTTCAGTCGTATGGGA -CCAACACTGTTCAGTCGTGTGCAA -CCAACACTGTTCAGTCGTGAGGAA -CCAACACTGTTCAGTCGTCAGGTA -CCAACACTGTTCAGTCGTGACTCT -CCAACACTGTTCAGTCGTAGTCCT -CCAACACTGTTCAGTCGTTAAGCC -CCAACACTGTTCAGTCGTATAGCC -CCAACACTGTTCAGTCGTTAACCG -CCAACACTGTTCAGTCGTATGCCA -CCAACACTGTTCAGTGTCGGAAAC -CCAACACTGTTCAGTGTCAACACC -CCAACACTGTTCAGTGTCATCGAG -CCAACACTGTTCAGTGTCCTCCTT -CCAACACTGTTCAGTGTCCCTGTT -CCAACACTGTTCAGTGTCCGGTTT -CCAACACTGTTCAGTGTCGTGGTT -CCAACACTGTTCAGTGTCGCCTTT -CCAACACTGTTCAGTGTCGGTCTT -CCAACACTGTTCAGTGTCACGCTT -CCAACACTGTTCAGTGTCAGCGTT -CCAACACTGTTCAGTGTCTTCGTC -CCAACACTGTTCAGTGTCTCTCTC -CCAACACTGTTCAGTGTCTGGATC -CCAACACTGTTCAGTGTCCACTTC -CCAACACTGTTCAGTGTCGTACTC -CCAACACTGTTCAGTGTCGATGTC -CCAACACTGTTCAGTGTCACAGTC -CCAACACTGTTCAGTGTCTTGCTG -CCAACACTGTTCAGTGTCTCCATG -CCAACACTGTTCAGTGTCTGTGTG -CCAACACTGTTCAGTGTCCTAGTG -CCAACACTGTTCAGTGTCCATCTG -CCAACACTGTTCAGTGTCGAGTTG -CCAACACTGTTCAGTGTCAGACTG -CCAACACTGTTCAGTGTCTCGGTA -CCAACACTGTTCAGTGTCTGCCTA -CCAACACTGTTCAGTGTCCCACTA -CCAACACTGTTCAGTGTCGGAGTA -CCAACACTGTTCAGTGTCTCGTCT -CCAACACTGTTCAGTGTCTGCACT -CCAACACTGTTCAGTGTCCTGACT -CCAACACTGTTCAGTGTCCAACCT -CCAACACTGTTCAGTGTCGCTACT -CCAACACTGTTCAGTGTCGGATCT -CCAACACTGTTCAGTGTCAAGGCT -CCAACACTGTTCAGTGTCTCAACC -CCAACACTGTTCAGTGTCTGTTCC -CCAACACTGTTCAGTGTCATTCCC -CCAACACTGTTCAGTGTCTTCTCG -CCAACACTGTTCAGTGTCTAGACG -CCAACACTGTTCAGTGTCGTAACG -CCAACACTGTTCAGTGTCACTTCG -CCAACACTGTTCAGTGTCTACGCA -CCAACACTGTTCAGTGTCCTTGCA -CCAACACTGTTCAGTGTCCGAACA -CCAACACTGTTCAGTGTCCAGTCA -CCAACACTGTTCAGTGTCGATCCA -CCAACACTGTTCAGTGTCACGACA -CCAACACTGTTCAGTGTCAGCTCA -CCAACACTGTTCAGTGTCTCACGT -CCAACACTGTTCAGTGTCCGTAGT -CCAACACTGTTCAGTGTCGTCAGT -CCAACACTGTTCAGTGTCGAAGGT -CCAACACTGTTCAGTGTCAACCGT -CCAACACTGTTCAGTGTCTTGTGC -CCAACACTGTTCAGTGTCCTAAGC -CCAACACTGTTCAGTGTCACTAGC -CCAACACTGTTCAGTGTCAGATGC -CCAACACTGTTCAGTGTCTGAAGG -CCAACACTGTTCAGTGTCCAATGG -CCAACACTGTTCAGTGTCATGAGG -CCAACACTGTTCAGTGTCAATGGG -CCAACACTGTTCAGTGTCTCCTGA -CCAACACTGTTCAGTGTCTAGCGA -CCAACACTGTTCAGTGTCCACAGA -CCAACACTGTTCAGTGTCGCAAGA -CCAACACTGTTCAGTGTCGGTTGA -CCAACACTGTTCAGTGTCTCCGAT -CCAACACTGTTCAGTGTCTGGCAT -CCAACACTGTTCAGTGTCCGAGAT -CCAACACTGTTCAGTGTCTACCAC -CCAACACTGTTCAGTGTCCAGAAC -CCAACACTGTTCAGTGTCGTCTAC -CCAACACTGTTCAGTGTCACGTAC -CCAACACTGTTCAGTGTCAGTGAC -CCAACACTGTTCAGTGTCCTGTAG -CCAACACTGTTCAGTGTCCCTAAG -CCAACACTGTTCAGTGTCGTTCAG -CCAACACTGTTCAGTGTCGCATAG -CCAACACTGTTCAGTGTCGACAAG -CCAACACTGTTCAGTGTCAAGCAG -CCAACACTGTTCAGTGTCCGTCAA -CCAACACTGTTCAGTGTCGCTGAA -CCAACACTGTTCAGTGTCAGTACG -CCAACACTGTTCAGTGTCATCCGA -CCAACACTGTTCAGTGTCATGGGA -CCAACACTGTTCAGTGTCGTGCAA -CCAACACTGTTCAGTGTCGAGGAA -CCAACACTGTTCAGTGTCCAGGTA -CCAACACTGTTCAGTGTCGACTCT -CCAACACTGTTCAGTGTCAGTCCT -CCAACACTGTTCAGTGTCTAAGCC -CCAACACTGTTCAGTGTCATAGCC -CCAACACTGTTCAGTGTCTAACCG -CCAACACTGTTCAGTGTCATGCCA -CCAACACTGTTCGGTGAAGGAAAC -CCAACACTGTTCGGTGAAAACACC -CCAACACTGTTCGGTGAAATCGAG -CCAACACTGTTCGGTGAACTCCTT -CCAACACTGTTCGGTGAACCTGTT -CCAACACTGTTCGGTGAACGGTTT -CCAACACTGTTCGGTGAAGTGGTT -CCAACACTGTTCGGTGAAGCCTTT -CCAACACTGTTCGGTGAAGGTCTT -CCAACACTGTTCGGTGAAACGCTT -CCAACACTGTTCGGTGAAAGCGTT -CCAACACTGTTCGGTGAATTCGTC -CCAACACTGTTCGGTGAATCTCTC -CCAACACTGTTCGGTGAATGGATC -CCAACACTGTTCGGTGAACACTTC -CCAACACTGTTCGGTGAAGTACTC -CCAACACTGTTCGGTGAAGATGTC -CCAACACTGTTCGGTGAAACAGTC -CCAACACTGTTCGGTGAATTGCTG -CCAACACTGTTCGGTGAATCCATG -CCAACACTGTTCGGTGAATGTGTG -CCAACACTGTTCGGTGAACTAGTG -CCAACACTGTTCGGTGAACATCTG -CCAACACTGTTCGGTGAAGAGTTG -CCAACACTGTTCGGTGAAAGACTG -CCAACACTGTTCGGTGAATCGGTA -CCAACACTGTTCGGTGAATGCCTA -CCAACACTGTTCGGTGAACCACTA -CCAACACTGTTCGGTGAAGGAGTA -CCAACACTGTTCGGTGAATCGTCT -CCAACACTGTTCGGTGAATGCACT -CCAACACTGTTCGGTGAACTGACT -CCAACACTGTTCGGTGAACAACCT -CCAACACTGTTCGGTGAAGCTACT -CCAACACTGTTCGGTGAAGGATCT -CCAACACTGTTCGGTGAAAAGGCT -CCAACACTGTTCGGTGAATCAACC -CCAACACTGTTCGGTGAATGTTCC -CCAACACTGTTCGGTGAAATTCCC -CCAACACTGTTCGGTGAATTCTCG -CCAACACTGTTCGGTGAATAGACG -CCAACACTGTTCGGTGAAGTAACG -CCAACACTGTTCGGTGAAACTTCG -CCAACACTGTTCGGTGAATACGCA -CCAACACTGTTCGGTGAACTTGCA -CCAACACTGTTCGGTGAACGAACA -CCAACACTGTTCGGTGAACAGTCA -CCAACACTGTTCGGTGAAGATCCA -CCAACACTGTTCGGTGAAACGACA -CCAACACTGTTCGGTGAAAGCTCA -CCAACACTGTTCGGTGAATCACGT -CCAACACTGTTCGGTGAACGTAGT -CCAACACTGTTCGGTGAAGTCAGT -CCAACACTGTTCGGTGAAGAAGGT -CCAACACTGTTCGGTGAAAACCGT -CCAACACTGTTCGGTGAATTGTGC -CCAACACTGTTCGGTGAACTAAGC -CCAACACTGTTCGGTGAAACTAGC -CCAACACTGTTCGGTGAAAGATGC -CCAACACTGTTCGGTGAATGAAGG -CCAACACTGTTCGGTGAACAATGG -CCAACACTGTTCGGTGAAATGAGG -CCAACACTGTTCGGTGAAAATGGG -CCAACACTGTTCGGTGAATCCTGA -CCAACACTGTTCGGTGAATAGCGA -CCAACACTGTTCGGTGAACACAGA -CCAACACTGTTCGGTGAAGCAAGA -CCAACACTGTTCGGTGAAGGTTGA -CCAACACTGTTCGGTGAATCCGAT -CCAACACTGTTCGGTGAATGGCAT -CCAACACTGTTCGGTGAACGAGAT -CCAACACTGTTCGGTGAATACCAC -CCAACACTGTTCGGTGAACAGAAC -CCAACACTGTTCGGTGAAGTCTAC -CCAACACTGTTCGGTGAAACGTAC -CCAACACTGTTCGGTGAAAGTGAC -CCAACACTGTTCGGTGAACTGTAG -CCAACACTGTTCGGTGAACCTAAG -CCAACACTGTTCGGTGAAGTTCAG -CCAACACTGTTCGGTGAAGCATAG -CCAACACTGTTCGGTGAAGACAAG -CCAACACTGTTCGGTGAAAAGCAG -CCAACACTGTTCGGTGAACGTCAA -CCAACACTGTTCGGTGAAGCTGAA -CCAACACTGTTCGGTGAAAGTACG -CCAACACTGTTCGGTGAAATCCGA -CCAACACTGTTCGGTGAAATGGGA -CCAACACTGTTCGGTGAAGTGCAA -CCAACACTGTTCGGTGAAGAGGAA -CCAACACTGTTCGGTGAACAGGTA -CCAACACTGTTCGGTGAAGACTCT -CCAACACTGTTCGGTGAAAGTCCT -CCAACACTGTTCGGTGAATAAGCC -CCAACACTGTTCGGTGAAATAGCC -CCAACACTGTTCGGTGAATAACCG -CCAACACTGTTCGGTGAAATGCCA -CCAACACTGTTCCGTAACGGAAAC -CCAACACTGTTCCGTAACAACACC -CCAACACTGTTCCGTAACATCGAG -CCAACACTGTTCCGTAACCTCCTT -CCAACACTGTTCCGTAACCCTGTT -CCAACACTGTTCCGTAACCGGTTT -CCAACACTGTTCCGTAACGTGGTT -CCAACACTGTTCCGTAACGCCTTT -CCAACACTGTTCCGTAACGGTCTT -CCAACACTGTTCCGTAACACGCTT -CCAACACTGTTCCGTAACAGCGTT -CCAACACTGTTCCGTAACTTCGTC -CCAACACTGTTCCGTAACTCTCTC -CCAACACTGTTCCGTAACTGGATC -CCAACACTGTTCCGTAACCACTTC -CCAACACTGTTCCGTAACGTACTC -CCAACACTGTTCCGTAACGATGTC -CCAACACTGTTCCGTAACACAGTC -CCAACACTGTTCCGTAACTTGCTG -CCAACACTGTTCCGTAACTCCATG -CCAACACTGTTCCGTAACTGTGTG -CCAACACTGTTCCGTAACCTAGTG -CCAACACTGTTCCGTAACCATCTG -CCAACACTGTTCCGTAACGAGTTG -CCAACACTGTTCCGTAACAGACTG -CCAACACTGTTCCGTAACTCGGTA -CCAACACTGTTCCGTAACTGCCTA -CCAACACTGTTCCGTAACCCACTA -CCAACACTGTTCCGTAACGGAGTA -CCAACACTGTTCCGTAACTCGTCT -CCAACACTGTTCCGTAACTGCACT -CCAACACTGTTCCGTAACCTGACT -CCAACACTGTTCCGTAACCAACCT -CCAACACTGTTCCGTAACGCTACT -CCAACACTGTTCCGTAACGGATCT -CCAACACTGTTCCGTAACAAGGCT -CCAACACTGTTCCGTAACTCAACC -CCAACACTGTTCCGTAACTGTTCC -CCAACACTGTTCCGTAACATTCCC -CCAACACTGTTCCGTAACTTCTCG -CCAACACTGTTCCGTAACTAGACG -CCAACACTGTTCCGTAACGTAACG -CCAACACTGTTCCGTAACACTTCG -CCAACACTGTTCCGTAACTACGCA -CCAACACTGTTCCGTAACCTTGCA -CCAACACTGTTCCGTAACCGAACA -CCAACACTGTTCCGTAACCAGTCA -CCAACACTGTTCCGTAACGATCCA -CCAACACTGTTCCGTAACACGACA -CCAACACTGTTCCGTAACAGCTCA -CCAACACTGTTCCGTAACTCACGT -CCAACACTGTTCCGTAACCGTAGT -CCAACACTGTTCCGTAACGTCAGT -CCAACACTGTTCCGTAACGAAGGT -CCAACACTGTTCCGTAACAACCGT -CCAACACTGTTCCGTAACTTGTGC -CCAACACTGTTCCGTAACCTAAGC -CCAACACTGTTCCGTAACACTAGC -CCAACACTGTTCCGTAACAGATGC -CCAACACTGTTCCGTAACTGAAGG -CCAACACTGTTCCGTAACCAATGG -CCAACACTGTTCCGTAACATGAGG -CCAACACTGTTCCGTAACAATGGG -CCAACACTGTTCCGTAACTCCTGA -CCAACACTGTTCCGTAACTAGCGA -CCAACACTGTTCCGTAACCACAGA -CCAACACTGTTCCGTAACGCAAGA -CCAACACTGTTCCGTAACGGTTGA -CCAACACTGTTCCGTAACTCCGAT -CCAACACTGTTCCGTAACTGGCAT -CCAACACTGTTCCGTAACCGAGAT -CCAACACTGTTCCGTAACTACCAC -CCAACACTGTTCCGTAACCAGAAC -CCAACACTGTTCCGTAACGTCTAC -CCAACACTGTTCCGTAACACGTAC -CCAACACTGTTCCGTAACAGTGAC -CCAACACTGTTCCGTAACCTGTAG -CCAACACTGTTCCGTAACCCTAAG -CCAACACTGTTCCGTAACGTTCAG -CCAACACTGTTCCGTAACGCATAG -CCAACACTGTTCCGTAACGACAAG -CCAACACTGTTCCGTAACAAGCAG -CCAACACTGTTCCGTAACCGTCAA -CCAACACTGTTCCGTAACGCTGAA -CCAACACTGTTCCGTAACAGTACG -CCAACACTGTTCCGTAACATCCGA -CCAACACTGTTCCGTAACATGGGA -CCAACACTGTTCCGTAACGTGCAA -CCAACACTGTTCCGTAACGAGGAA -CCAACACTGTTCCGTAACCAGGTA -CCAACACTGTTCCGTAACGACTCT -CCAACACTGTTCCGTAACAGTCCT -CCAACACTGTTCCGTAACTAAGCC -CCAACACTGTTCCGTAACATAGCC -CCAACACTGTTCCGTAACTAACCG -CCAACACTGTTCCGTAACATGCCA -CCAACACTGTTCTGCTTGGGAAAC -CCAACACTGTTCTGCTTGAACACC -CCAACACTGTTCTGCTTGATCGAG -CCAACACTGTTCTGCTTGCTCCTT -CCAACACTGTTCTGCTTGCCTGTT -CCAACACTGTTCTGCTTGCGGTTT -CCAACACTGTTCTGCTTGGTGGTT -CCAACACTGTTCTGCTTGGCCTTT -CCAACACTGTTCTGCTTGGGTCTT -CCAACACTGTTCTGCTTGACGCTT -CCAACACTGTTCTGCTTGAGCGTT -CCAACACTGTTCTGCTTGTTCGTC -CCAACACTGTTCTGCTTGTCTCTC -CCAACACTGTTCTGCTTGTGGATC -CCAACACTGTTCTGCTTGCACTTC -CCAACACTGTTCTGCTTGGTACTC -CCAACACTGTTCTGCTTGGATGTC -CCAACACTGTTCTGCTTGACAGTC -CCAACACTGTTCTGCTTGTTGCTG -CCAACACTGTTCTGCTTGTCCATG -CCAACACTGTTCTGCTTGTGTGTG -CCAACACTGTTCTGCTTGCTAGTG -CCAACACTGTTCTGCTTGCATCTG -CCAACACTGTTCTGCTTGGAGTTG -CCAACACTGTTCTGCTTGAGACTG -CCAACACTGTTCTGCTTGTCGGTA -CCAACACTGTTCTGCTTGTGCCTA -CCAACACTGTTCTGCTTGCCACTA -CCAACACTGTTCTGCTTGGGAGTA -CCAACACTGTTCTGCTTGTCGTCT -CCAACACTGTTCTGCTTGTGCACT -CCAACACTGTTCTGCTTGCTGACT -CCAACACTGTTCTGCTTGCAACCT -CCAACACTGTTCTGCTTGGCTACT -CCAACACTGTTCTGCTTGGGATCT -CCAACACTGTTCTGCTTGAAGGCT -CCAACACTGTTCTGCTTGTCAACC -CCAACACTGTTCTGCTTGTGTTCC -CCAACACTGTTCTGCTTGATTCCC -CCAACACTGTTCTGCTTGTTCTCG -CCAACACTGTTCTGCTTGTAGACG -CCAACACTGTTCTGCTTGGTAACG -CCAACACTGTTCTGCTTGACTTCG -CCAACACTGTTCTGCTTGTACGCA -CCAACACTGTTCTGCTTGCTTGCA -CCAACACTGTTCTGCTTGCGAACA -CCAACACTGTTCTGCTTGCAGTCA -CCAACACTGTTCTGCTTGGATCCA -CCAACACTGTTCTGCTTGACGACA -CCAACACTGTTCTGCTTGAGCTCA -CCAACACTGTTCTGCTTGTCACGT -CCAACACTGTTCTGCTTGCGTAGT -CCAACACTGTTCTGCTTGGTCAGT -CCAACACTGTTCTGCTTGGAAGGT -CCAACACTGTTCTGCTTGAACCGT -CCAACACTGTTCTGCTTGTTGTGC -CCAACACTGTTCTGCTTGCTAAGC -CCAACACTGTTCTGCTTGACTAGC -CCAACACTGTTCTGCTTGAGATGC -CCAACACTGTTCTGCTTGTGAAGG -CCAACACTGTTCTGCTTGCAATGG -CCAACACTGTTCTGCTTGATGAGG -CCAACACTGTTCTGCTTGAATGGG -CCAACACTGTTCTGCTTGTCCTGA -CCAACACTGTTCTGCTTGTAGCGA -CCAACACTGTTCTGCTTGCACAGA -CCAACACTGTTCTGCTTGGCAAGA -CCAACACTGTTCTGCTTGGGTTGA -CCAACACTGTTCTGCTTGTCCGAT -CCAACACTGTTCTGCTTGTGGCAT -CCAACACTGTTCTGCTTGCGAGAT -CCAACACTGTTCTGCTTGTACCAC -CCAACACTGTTCTGCTTGCAGAAC -CCAACACTGTTCTGCTTGGTCTAC -CCAACACTGTTCTGCTTGACGTAC -CCAACACTGTTCTGCTTGAGTGAC -CCAACACTGTTCTGCTTGCTGTAG -CCAACACTGTTCTGCTTGCCTAAG -CCAACACTGTTCTGCTTGGTTCAG -CCAACACTGTTCTGCTTGGCATAG -CCAACACTGTTCTGCTTGGACAAG -CCAACACTGTTCTGCTTGAAGCAG -CCAACACTGTTCTGCTTGCGTCAA -CCAACACTGTTCTGCTTGGCTGAA -CCAACACTGTTCTGCTTGAGTACG -CCAACACTGTTCTGCTTGATCCGA -CCAACACTGTTCTGCTTGATGGGA -CCAACACTGTTCTGCTTGGTGCAA -CCAACACTGTTCTGCTTGGAGGAA -CCAACACTGTTCTGCTTGCAGGTA -CCAACACTGTTCTGCTTGGACTCT -CCAACACTGTTCTGCTTGAGTCCT -CCAACACTGTTCTGCTTGTAAGCC -CCAACACTGTTCTGCTTGATAGCC -CCAACACTGTTCTGCTTGTAACCG -CCAACACTGTTCTGCTTGATGCCA -CCAACACTGTTCAGCCTAGGAAAC -CCAACACTGTTCAGCCTAAACACC -CCAACACTGTTCAGCCTAATCGAG -CCAACACTGTTCAGCCTACTCCTT -CCAACACTGTTCAGCCTACCTGTT -CCAACACTGTTCAGCCTACGGTTT -CCAACACTGTTCAGCCTAGTGGTT -CCAACACTGTTCAGCCTAGCCTTT -CCAACACTGTTCAGCCTAGGTCTT -CCAACACTGTTCAGCCTAACGCTT -CCAACACTGTTCAGCCTAAGCGTT -CCAACACTGTTCAGCCTATTCGTC -CCAACACTGTTCAGCCTATCTCTC -CCAACACTGTTCAGCCTATGGATC -CCAACACTGTTCAGCCTACACTTC -CCAACACTGTTCAGCCTAGTACTC -CCAACACTGTTCAGCCTAGATGTC -CCAACACTGTTCAGCCTAACAGTC -CCAACACTGTTCAGCCTATTGCTG -CCAACACTGTTCAGCCTATCCATG -CCAACACTGTTCAGCCTATGTGTG -CCAACACTGTTCAGCCTACTAGTG -CCAACACTGTTCAGCCTACATCTG -CCAACACTGTTCAGCCTAGAGTTG -CCAACACTGTTCAGCCTAAGACTG -CCAACACTGTTCAGCCTATCGGTA -CCAACACTGTTCAGCCTATGCCTA -CCAACACTGTTCAGCCTACCACTA -CCAACACTGTTCAGCCTAGGAGTA -CCAACACTGTTCAGCCTATCGTCT -CCAACACTGTTCAGCCTATGCACT -CCAACACTGTTCAGCCTACTGACT -CCAACACTGTTCAGCCTACAACCT -CCAACACTGTTCAGCCTAGCTACT -CCAACACTGTTCAGCCTAGGATCT -CCAACACTGTTCAGCCTAAAGGCT -CCAACACTGTTCAGCCTATCAACC -CCAACACTGTTCAGCCTATGTTCC -CCAACACTGTTCAGCCTAATTCCC -CCAACACTGTTCAGCCTATTCTCG -CCAACACTGTTCAGCCTATAGACG -CCAACACTGTTCAGCCTAGTAACG -CCAACACTGTTCAGCCTAACTTCG -CCAACACTGTTCAGCCTATACGCA -CCAACACTGTTCAGCCTACTTGCA -CCAACACTGTTCAGCCTACGAACA -CCAACACTGTTCAGCCTACAGTCA -CCAACACTGTTCAGCCTAGATCCA -CCAACACTGTTCAGCCTAACGACA -CCAACACTGTTCAGCCTAAGCTCA -CCAACACTGTTCAGCCTATCACGT -CCAACACTGTTCAGCCTACGTAGT -CCAACACTGTTCAGCCTAGTCAGT -CCAACACTGTTCAGCCTAGAAGGT -CCAACACTGTTCAGCCTAAACCGT -CCAACACTGTTCAGCCTATTGTGC -CCAACACTGTTCAGCCTACTAAGC -CCAACACTGTTCAGCCTAACTAGC -CCAACACTGTTCAGCCTAAGATGC -CCAACACTGTTCAGCCTATGAAGG -CCAACACTGTTCAGCCTACAATGG -CCAACACTGTTCAGCCTAATGAGG -CCAACACTGTTCAGCCTAAATGGG -CCAACACTGTTCAGCCTATCCTGA -CCAACACTGTTCAGCCTATAGCGA -CCAACACTGTTCAGCCTACACAGA -CCAACACTGTTCAGCCTAGCAAGA -CCAACACTGTTCAGCCTAGGTTGA -CCAACACTGTTCAGCCTATCCGAT -CCAACACTGTTCAGCCTATGGCAT -CCAACACTGTTCAGCCTACGAGAT -CCAACACTGTTCAGCCTATACCAC -CCAACACTGTTCAGCCTACAGAAC -CCAACACTGTTCAGCCTAGTCTAC -CCAACACTGTTCAGCCTAACGTAC -CCAACACTGTTCAGCCTAAGTGAC -CCAACACTGTTCAGCCTACTGTAG -CCAACACTGTTCAGCCTACCTAAG -CCAACACTGTTCAGCCTAGTTCAG -CCAACACTGTTCAGCCTAGCATAG -CCAACACTGTTCAGCCTAGACAAG -CCAACACTGTTCAGCCTAAAGCAG -CCAACACTGTTCAGCCTACGTCAA -CCAACACTGTTCAGCCTAGCTGAA -CCAACACTGTTCAGCCTAAGTACG -CCAACACTGTTCAGCCTAATCCGA -CCAACACTGTTCAGCCTAATGGGA -CCAACACTGTTCAGCCTAGTGCAA -CCAACACTGTTCAGCCTAGAGGAA -CCAACACTGTTCAGCCTACAGGTA -CCAACACTGTTCAGCCTAGACTCT -CCAACACTGTTCAGCCTAAGTCCT -CCAACACTGTTCAGCCTATAAGCC -CCAACACTGTTCAGCCTAATAGCC -CCAACACTGTTCAGCCTATAACCG -CCAACACTGTTCAGCCTAATGCCA -CCAACACTGTTCAGCACTGGAAAC -CCAACACTGTTCAGCACTAACACC -CCAACACTGTTCAGCACTATCGAG -CCAACACTGTTCAGCACTCTCCTT -CCAACACTGTTCAGCACTCCTGTT -CCAACACTGTTCAGCACTCGGTTT -CCAACACTGTTCAGCACTGTGGTT -CCAACACTGTTCAGCACTGCCTTT -CCAACACTGTTCAGCACTGGTCTT -CCAACACTGTTCAGCACTACGCTT -CCAACACTGTTCAGCACTAGCGTT -CCAACACTGTTCAGCACTTTCGTC -CCAACACTGTTCAGCACTTCTCTC -CCAACACTGTTCAGCACTTGGATC -CCAACACTGTTCAGCACTCACTTC -CCAACACTGTTCAGCACTGTACTC -CCAACACTGTTCAGCACTGATGTC -CCAACACTGTTCAGCACTACAGTC -CCAACACTGTTCAGCACTTTGCTG -CCAACACTGTTCAGCACTTCCATG -CCAACACTGTTCAGCACTTGTGTG -CCAACACTGTTCAGCACTCTAGTG -CCAACACTGTTCAGCACTCATCTG -CCAACACTGTTCAGCACTGAGTTG -CCAACACTGTTCAGCACTAGACTG -CCAACACTGTTCAGCACTTCGGTA -CCAACACTGTTCAGCACTTGCCTA -CCAACACTGTTCAGCACTCCACTA -CCAACACTGTTCAGCACTGGAGTA -CCAACACTGTTCAGCACTTCGTCT -CCAACACTGTTCAGCACTTGCACT -CCAACACTGTTCAGCACTCTGACT -CCAACACTGTTCAGCACTCAACCT -CCAACACTGTTCAGCACTGCTACT -CCAACACTGTTCAGCACTGGATCT -CCAACACTGTTCAGCACTAAGGCT -CCAACACTGTTCAGCACTTCAACC -CCAACACTGTTCAGCACTTGTTCC -CCAACACTGTTCAGCACTATTCCC -CCAACACTGTTCAGCACTTTCTCG -CCAACACTGTTCAGCACTTAGACG -CCAACACTGTTCAGCACTGTAACG -CCAACACTGTTCAGCACTACTTCG -CCAACACTGTTCAGCACTTACGCA -CCAACACTGTTCAGCACTCTTGCA -CCAACACTGTTCAGCACTCGAACA -CCAACACTGTTCAGCACTCAGTCA -CCAACACTGTTCAGCACTGATCCA -CCAACACTGTTCAGCACTACGACA -CCAACACTGTTCAGCACTAGCTCA -CCAACACTGTTCAGCACTTCACGT -CCAACACTGTTCAGCACTCGTAGT -CCAACACTGTTCAGCACTGTCAGT -CCAACACTGTTCAGCACTGAAGGT -CCAACACTGTTCAGCACTAACCGT -CCAACACTGTTCAGCACTTTGTGC -CCAACACTGTTCAGCACTCTAAGC -CCAACACTGTTCAGCACTACTAGC -CCAACACTGTTCAGCACTAGATGC -CCAACACTGTTCAGCACTTGAAGG -CCAACACTGTTCAGCACTCAATGG -CCAACACTGTTCAGCACTATGAGG -CCAACACTGTTCAGCACTAATGGG -CCAACACTGTTCAGCACTTCCTGA -CCAACACTGTTCAGCACTTAGCGA -CCAACACTGTTCAGCACTCACAGA -CCAACACTGTTCAGCACTGCAAGA -CCAACACTGTTCAGCACTGGTTGA -CCAACACTGTTCAGCACTTCCGAT -CCAACACTGTTCAGCACTTGGCAT -CCAACACTGTTCAGCACTCGAGAT -CCAACACTGTTCAGCACTTACCAC -CCAACACTGTTCAGCACTCAGAAC -CCAACACTGTTCAGCACTGTCTAC -CCAACACTGTTCAGCACTACGTAC -CCAACACTGTTCAGCACTAGTGAC -CCAACACTGTTCAGCACTCTGTAG -CCAACACTGTTCAGCACTCCTAAG -CCAACACTGTTCAGCACTGTTCAG -CCAACACTGTTCAGCACTGCATAG -CCAACACTGTTCAGCACTGACAAG -CCAACACTGTTCAGCACTAAGCAG -CCAACACTGTTCAGCACTCGTCAA -CCAACACTGTTCAGCACTGCTGAA -CCAACACTGTTCAGCACTAGTACG -CCAACACTGTTCAGCACTATCCGA -CCAACACTGTTCAGCACTATGGGA -CCAACACTGTTCAGCACTGTGCAA -CCAACACTGTTCAGCACTGAGGAA -CCAACACTGTTCAGCACTCAGGTA -CCAACACTGTTCAGCACTGACTCT -CCAACACTGTTCAGCACTAGTCCT -CCAACACTGTTCAGCACTTAAGCC -CCAACACTGTTCAGCACTATAGCC -CCAACACTGTTCAGCACTTAACCG -CCAACACTGTTCAGCACTATGCCA -CCAACACTGTTCTGCAGAGGAAAC -CCAACACTGTTCTGCAGAAACACC -CCAACACTGTTCTGCAGAATCGAG -CCAACACTGTTCTGCAGACTCCTT -CCAACACTGTTCTGCAGACCTGTT -CCAACACTGTTCTGCAGACGGTTT -CCAACACTGTTCTGCAGAGTGGTT -CCAACACTGTTCTGCAGAGCCTTT -CCAACACTGTTCTGCAGAGGTCTT -CCAACACTGTTCTGCAGAACGCTT -CCAACACTGTTCTGCAGAAGCGTT -CCAACACTGTTCTGCAGATTCGTC -CCAACACTGTTCTGCAGATCTCTC -CCAACACTGTTCTGCAGATGGATC -CCAACACTGTTCTGCAGACACTTC -CCAACACTGTTCTGCAGAGTACTC -CCAACACTGTTCTGCAGAGATGTC -CCAACACTGTTCTGCAGAACAGTC -CCAACACTGTTCTGCAGATTGCTG -CCAACACTGTTCTGCAGATCCATG -CCAACACTGTTCTGCAGATGTGTG -CCAACACTGTTCTGCAGACTAGTG -CCAACACTGTTCTGCAGACATCTG -CCAACACTGTTCTGCAGAGAGTTG -CCAACACTGTTCTGCAGAAGACTG -CCAACACTGTTCTGCAGATCGGTA -CCAACACTGTTCTGCAGATGCCTA -CCAACACTGTTCTGCAGACCACTA -CCAACACTGTTCTGCAGAGGAGTA -CCAACACTGTTCTGCAGATCGTCT -CCAACACTGTTCTGCAGATGCACT -CCAACACTGTTCTGCAGACTGACT -CCAACACTGTTCTGCAGACAACCT -CCAACACTGTTCTGCAGAGCTACT -CCAACACTGTTCTGCAGAGGATCT -CCAACACTGTTCTGCAGAAAGGCT -CCAACACTGTTCTGCAGATCAACC -CCAACACTGTTCTGCAGATGTTCC -CCAACACTGTTCTGCAGAATTCCC -CCAACACTGTTCTGCAGATTCTCG -CCAACACTGTTCTGCAGATAGACG -CCAACACTGTTCTGCAGAGTAACG -CCAACACTGTTCTGCAGAACTTCG -CCAACACTGTTCTGCAGATACGCA -CCAACACTGTTCTGCAGACTTGCA -CCAACACTGTTCTGCAGACGAACA -CCAACACTGTTCTGCAGACAGTCA -CCAACACTGTTCTGCAGAGATCCA -CCAACACTGTTCTGCAGAACGACA -CCAACACTGTTCTGCAGAAGCTCA -CCAACACTGTTCTGCAGATCACGT -CCAACACTGTTCTGCAGACGTAGT -CCAACACTGTTCTGCAGAGTCAGT -CCAACACTGTTCTGCAGAGAAGGT -CCAACACTGTTCTGCAGAAACCGT -CCAACACTGTTCTGCAGATTGTGC -CCAACACTGTTCTGCAGACTAAGC -CCAACACTGTTCTGCAGAACTAGC -CCAACACTGTTCTGCAGAAGATGC -CCAACACTGTTCTGCAGATGAAGG -CCAACACTGTTCTGCAGACAATGG -CCAACACTGTTCTGCAGAATGAGG -CCAACACTGTTCTGCAGAAATGGG -CCAACACTGTTCTGCAGATCCTGA -CCAACACTGTTCTGCAGATAGCGA -CCAACACTGTTCTGCAGACACAGA -CCAACACTGTTCTGCAGAGCAAGA -CCAACACTGTTCTGCAGAGGTTGA -CCAACACTGTTCTGCAGATCCGAT -CCAACACTGTTCTGCAGATGGCAT -CCAACACTGTTCTGCAGACGAGAT -CCAACACTGTTCTGCAGATACCAC -CCAACACTGTTCTGCAGACAGAAC -CCAACACTGTTCTGCAGAGTCTAC -CCAACACTGTTCTGCAGAACGTAC -CCAACACTGTTCTGCAGAAGTGAC -CCAACACTGTTCTGCAGACTGTAG -CCAACACTGTTCTGCAGACCTAAG -CCAACACTGTTCTGCAGAGTTCAG -CCAACACTGTTCTGCAGAGCATAG -CCAACACTGTTCTGCAGAGACAAG -CCAACACTGTTCTGCAGAAAGCAG -CCAACACTGTTCTGCAGACGTCAA -CCAACACTGTTCTGCAGAGCTGAA -CCAACACTGTTCTGCAGAAGTACG -CCAACACTGTTCTGCAGAATCCGA -CCAACACTGTTCTGCAGAATGGGA -CCAACACTGTTCTGCAGAGTGCAA -CCAACACTGTTCTGCAGAGAGGAA -CCAACACTGTTCTGCAGACAGGTA -CCAACACTGTTCTGCAGAGACTCT -CCAACACTGTTCTGCAGAAGTCCT -CCAACACTGTTCTGCAGATAAGCC -CCAACACTGTTCTGCAGAATAGCC -CCAACACTGTTCTGCAGATAACCG -CCAACACTGTTCTGCAGAATGCCA -CCAACACTGTTCAGGTGAGGAAAC -CCAACACTGTTCAGGTGAAACACC -CCAACACTGTTCAGGTGAATCGAG -CCAACACTGTTCAGGTGACTCCTT -CCAACACTGTTCAGGTGACCTGTT -CCAACACTGTTCAGGTGACGGTTT -CCAACACTGTTCAGGTGAGTGGTT -CCAACACTGTTCAGGTGAGCCTTT -CCAACACTGTTCAGGTGAGGTCTT -CCAACACTGTTCAGGTGAACGCTT -CCAACACTGTTCAGGTGAAGCGTT -CCAACACTGTTCAGGTGATTCGTC -CCAACACTGTTCAGGTGATCTCTC -CCAACACTGTTCAGGTGATGGATC -CCAACACTGTTCAGGTGACACTTC -CCAACACTGTTCAGGTGAGTACTC -CCAACACTGTTCAGGTGAGATGTC -CCAACACTGTTCAGGTGAACAGTC -CCAACACTGTTCAGGTGATTGCTG -CCAACACTGTTCAGGTGATCCATG -CCAACACTGTTCAGGTGATGTGTG -CCAACACTGTTCAGGTGACTAGTG -CCAACACTGTTCAGGTGACATCTG -CCAACACTGTTCAGGTGAGAGTTG -CCAACACTGTTCAGGTGAAGACTG -CCAACACTGTTCAGGTGATCGGTA -CCAACACTGTTCAGGTGATGCCTA -CCAACACTGTTCAGGTGACCACTA -CCAACACTGTTCAGGTGAGGAGTA -CCAACACTGTTCAGGTGATCGTCT -CCAACACTGTTCAGGTGATGCACT -CCAACACTGTTCAGGTGACTGACT -CCAACACTGTTCAGGTGACAACCT -CCAACACTGTTCAGGTGAGCTACT -CCAACACTGTTCAGGTGAGGATCT -CCAACACTGTTCAGGTGAAAGGCT -CCAACACTGTTCAGGTGATCAACC -CCAACACTGTTCAGGTGATGTTCC -CCAACACTGTTCAGGTGAATTCCC -CCAACACTGTTCAGGTGATTCTCG -CCAACACTGTTCAGGTGATAGACG -CCAACACTGTTCAGGTGAGTAACG -CCAACACTGTTCAGGTGAACTTCG -CCAACACTGTTCAGGTGATACGCA -CCAACACTGTTCAGGTGACTTGCA -CCAACACTGTTCAGGTGACGAACA -CCAACACTGTTCAGGTGACAGTCA -CCAACACTGTTCAGGTGAGATCCA -CCAACACTGTTCAGGTGAACGACA -CCAACACTGTTCAGGTGAAGCTCA -CCAACACTGTTCAGGTGATCACGT -CCAACACTGTTCAGGTGACGTAGT -CCAACACTGTTCAGGTGAGTCAGT -CCAACACTGTTCAGGTGAGAAGGT -CCAACACTGTTCAGGTGAAACCGT -CCAACACTGTTCAGGTGATTGTGC -CCAACACTGTTCAGGTGACTAAGC -CCAACACTGTTCAGGTGAACTAGC -CCAACACTGTTCAGGTGAAGATGC -CCAACACTGTTCAGGTGATGAAGG -CCAACACTGTTCAGGTGACAATGG -CCAACACTGTTCAGGTGAATGAGG -CCAACACTGTTCAGGTGAAATGGG -CCAACACTGTTCAGGTGATCCTGA -CCAACACTGTTCAGGTGATAGCGA -CCAACACTGTTCAGGTGACACAGA -CCAACACTGTTCAGGTGAGCAAGA -CCAACACTGTTCAGGTGAGGTTGA -CCAACACTGTTCAGGTGATCCGAT -CCAACACTGTTCAGGTGATGGCAT -CCAACACTGTTCAGGTGACGAGAT -CCAACACTGTTCAGGTGATACCAC -CCAACACTGTTCAGGTGACAGAAC -CCAACACTGTTCAGGTGAGTCTAC -CCAACACTGTTCAGGTGAACGTAC -CCAACACTGTTCAGGTGAAGTGAC -CCAACACTGTTCAGGTGACTGTAG -CCAACACTGTTCAGGTGACCTAAG -CCAACACTGTTCAGGTGAGTTCAG -CCAACACTGTTCAGGTGAGCATAG -CCAACACTGTTCAGGTGAGACAAG -CCAACACTGTTCAGGTGAAAGCAG -CCAACACTGTTCAGGTGACGTCAA -CCAACACTGTTCAGGTGAGCTGAA -CCAACACTGTTCAGGTGAAGTACG -CCAACACTGTTCAGGTGAATCCGA -CCAACACTGTTCAGGTGAATGGGA -CCAACACTGTTCAGGTGAGTGCAA -CCAACACTGTTCAGGTGAGAGGAA -CCAACACTGTTCAGGTGACAGGTA -CCAACACTGTTCAGGTGAGACTCT -CCAACACTGTTCAGGTGAAGTCCT -CCAACACTGTTCAGGTGATAAGCC -CCAACACTGTTCAGGTGAATAGCC -CCAACACTGTTCAGGTGATAACCG -CCAACACTGTTCAGGTGAATGCCA -CCAACACTGTTCTGGCAAGGAAAC -CCAACACTGTTCTGGCAAAACACC -CCAACACTGTTCTGGCAAATCGAG -CCAACACTGTTCTGGCAACTCCTT -CCAACACTGTTCTGGCAACCTGTT -CCAACACTGTTCTGGCAACGGTTT -CCAACACTGTTCTGGCAAGTGGTT -CCAACACTGTTCTGGCAAGCCTTT -CCAACACTGTTCTGGCAAGGTCTT -CCAACACTGTTCTGGCAAACGCTT -CCAACACTGTTCTGGCAAAGCGTT -CCAACACTGTTCTGGCAATTCGTC -CCAACACTGTTCTGGCAATCTCTC -CCAACACTGTTCTGGCAATGGATC -CCAACACTGTTCTGGCAACACTTC -CCAACACTGTTCTGGCAAGTACTC -CCAACACTGTTCTGGCAAGATGTC -CCAACACTGTTCTGGCAAACAGTC -CCAACACTGTTCTGGCAATTGCTG -CCAACACTGTTCTGGCAATCCATG -CCAACACTGTTCTGGCAATGTGTG -CCAACACTGTTCTGGCAACTAGTG -CCAACACTGTTCTGGCAACATCTG -CCAACACTGTTCTGGCAAGAGTTG -CCAACACTGTTCTGGCAAAGACTG -CCAACACTGTTCTGGCAATCGGTA -CCAACACTGTTCTGGCAATGCCTA -CCAACACTGTTCTGGCAACCACTA -CCAACACTGTTCTGGCAAGGAGTA -CCAACACTGTTCTGGCAATCGTCT -CCAACACTGTTCTGGCAATGCACT -CCAACACTGTTCTGGCAACTGACT -CCAACACTGTTCTGGCAACAACCT -CCAACACTGTTCTGGCAAGCTACT -CCAACACTGTTCTGGCAAGGATCT -CCAACACTGTTCTGGCAAAAGGCT -CCAACACTGTTCTGGCAATCAACC -CCAACACTGTTCTGGCAATGTTCC -CCAACACTGTTCTGGCAAATTCCC -CCAACACTGTTCTGGCAATTCTCG -CCAACACTGTTCTGGCAATAGACG -CCAACACTGTTCTGGCAAGTAACG -CCAACACTGTTCTGGCAAACTTCG -CCAACACTGTTCTGGCAATACGCA -CCAACACTGTTCTGGCAACTTGCA -CCAACACTGTTCTGGCAACGAACA -CCAACACTGTTCTGGCAACAGTCA -CCAACACTGTTCTGGCAAGATCCA -CCAACACTGTTCTGGCAAACGACA -CCAACACTGTTCTGGCAAAGCTCA -CCAACACTGTTCTGGCAATCACGT -CCAACACTGTTCTGGCAACGTAGT -CCAACACTGTTCTGGCAAGTCAGT -CCAACACTGTTCTGGCAAGAAGGT -CCAACACTGTTCTGGCAAAACCGT -CCAACACTGTTCTGGCAATTGTGC -CCAACACTGTTCTGGCAACTAAGC -CCAACACTGTTCTGGCAAACTAGC -CCAACACTGTTCTGGCAAAGATGC -CCAACACTGTTCTGGCAATGAAGG -CCAACACTGTTCTGGCAACAATGG -CCAACACTGTTCTGGCAAATGAGG -CCAACACTGTTCTGGCAAAATGGG -CCAACACTGTTCTGGCAATCCTGA -CCAACACTGTTCTGGCAATAGCGA -CCAACACTGTTCTGGCAACACAGA -CCAACACTGTTCTGGCAAGCAAGA -CCAACACTGTTCTGGCAAGGTTGA -CCAACACTGTTCTGGCAATCCGAT -CCAACACTGTTCTGGCAATGGCAT -CCAACACTGTTCTGGCAACGAGAT -CCAACACTGTTCTGGCAATACCAC -CCAACACTGTTCTGGCAACAGAAC -CCAACACTGTTCTGGCAAGTCTAC -CCAACACTGTTCTGGCAAACGTAC -CCAACACTGTTCTGGCAAAGTGAC -CCAACACTGTTCTGGCAACTGTAG -CCAACACTGTTCTGGCAACCTAAG -CCAACACTGTTCTGGCAAGTTCAG -CCAACACTGTTCTGGCAAGCATAG -CCAACACTGTTCTGGCAAGACAAG -CCAACACTGTTCTGGCAAAAGCAG -CCAACACTGTTCTGGCAACGTCAA -CCAACACTGTTCTGGCAAGCTGAA -CCAACACTGTTCTGGCAAAGTACG -CCAACACTGTTCTGGCAAATCCGA -CCAACACTGTTCTGGCAAATGGGA -CCAACACTGTTCTGGCAAGTGCAA -CCAACACTGTTCTGGCAAGAGGAA -CCAACACTGTTCTGGCAACAGGTA -CCAACACTGTTCTGGCAAGACTCT -CCAACACTGTTCTGGCAAAGTCCT -CCAACACTGTTCTGGCAATAAGCC -CCAACACTGTTCTGGCAAATAGCC -CCAACACTGTTCTGGCAATAACCG -CCAACACTGTTCTGGCAAATGCCA -CCAACACTGTTCAGGATGGGAAAC -CCAACACTGTTCAGGATGAACACC -CCAACACTGTTCAGGATGATCGAG -CCAACACTGTTCAGGATGCTCCTT -CCAACACTGTTCAGGATGCCTGTT -CCAACACTGTTCAGGATGCGGTTT -CCAACACTGTTCAGGATGGTGGTT -CCAACACTGTTCAGGATGGCCTTT -CCAACACTGTTCAGGATGGGTCTT -CCAACACTGTTCAGGATGACGCTT -CCAACACTGTTCAGGATGAGCGTT -CCAACACTGTTCAGGATGTTCGTC -CCAACACTGTTCAGGATGTCTCTC -CCAACACTGTTCAGGATGTGGATC -CCAACACTGTTCAGGATGCACTTC -CCAACACTGTTCAGGATGGTACTC -CCAACACTGTTCAGGATGGATGTC -CCAACACTGTTCAGGATGACAGTC -CCAACACTGTTCAGGATGTTGCTG -CCAACACTGTTCAGGATGTCCATG -CCAACACTGTTCAGGATGTGTGTG -CCAACACTGTTCAGGATGCTAGTG -CCAACACTGTTCAGGATGCATCTG -CCAACACTGTTCAGGATGGAGTTG -CCAACACTGTTCAGGATGAGACTG -CCAACACTGTTCAGGATGTCGGTA -CCAACACTGTTCAGGATGTGCCTA -CCAACACTGTTCAGGATGCCACTA -CCAACACTGTTCAGGATGGGAGTA -CCAACACTGTTCAGGATGTCGTCT -CCAACACTGTTCAGGATGTGCACT -CCAACACTGTTCAGGATGCTGACT -CCAACACTGTTCAGGATGCAACCT -CCAACACTGTTCAGGATGGCTACT -CCAACACTGTTCAGGATGGGATCT -CCAACACTGTTCAGGATGAAGGCT -CCAACACTGTTCAGGATGTCAACC -CCAACACTGTTCAGGATGTGTTCC -CCAACACTGTTCAGGATGATTCCC -CCAACACTGTTCAGGATGTTCTCG -CCAACACTGTTCAGGATGTAGACG -CCAACACTGTTCAGGATGGTAACG -CCAACACTGTTCAGGATGACTTCG -CCAACACTGTTCAGGATGTACGCA -CCAACACTGTTCAGGATGCTTGCA -CCAACACTGTTCAGGATGCGAACA -CCAACACTGTTCAGGATGCAGTCA -CCAACACTGTTCAGGATGGATCCA -CCAACACTGTTCAGGATGACGACA -CCAACACTGTTCAGGATGAGCTCA -CCAACACTGTTCAGGATGTCACGT -CCAACACTGTTCAGGATGCGTAGT -CCAACACTGTTCAGGATGGTCAGT -CCAACACTGTTCAGGATGGAAGGT -CCAACACTGTTCAGGATGAACCGT -CCAACACTGTTCAGGATGTTGTGC -CCAACACTGTTCAGGATGCTAAGC -CCAACACTGTTCAGGATGACTAGC -CCAACACTGTTCAGGATGAGATGC -CCAACACTGTTCAGGATGTGAAGG -CCAACACTGTTCAGGATGCAATGG -CCAACACTGTTCAGGATGATGAGG -CCAACACTGTTCAGGATGAATGGG -CCAACACTGTTCAGGATGTCCTGA -CCAACACTGTTCAGGATGTAGCGA -CCAACACTGTTCAGGATGCACAGA -CCAACACTGTTCAGGATGGCAAGA -CCAACACTGTTCAGGATGGGTTGA -CCAACACTGTTCAGGATGTCCGAT -CCAACACTGTTCAGGATGTGGCAT -CCAACACTGTTCAGGATGCGAGAT -CCAACACTGTTCAGGATGTACCAC -CCAACACTGTTCAGGATGCAGAAC -CCAACACTGTTCAGGATGGTCTAC -CCAACACTGTTCAGGATGACGTAC -CCAACACTGTTCAGGATGAGTGAC -CCAACACTGTTCAGGATGCTGTAG -CCAACACTGTTCAGGATGCCTAAG -CCAACACTGTTCAGGATGGTTCAG -CCAACACTGTTCAGGATGGCATAG -CCAACACTGTTCAGGATGGACAAG -CCAACACTGTTCAGGATGAAGCAG -CCAACACTGTTCAGGATGCGTCAA -CCAACACTGTTCAGGATGGCTGAA -CCAACACTGTTCAGGATGAGTACG -CCAACACTGTTCAGGATGATCCGA -CCAACACTGTTCAGGATGATGGGA -CCAACACTGTTCAGGATGGTGCAA -CCAACACTGTTCAGGATGGAGGAA -CCAACACTGTTCAGGATGCAGGTA -CCAACACTGTTCAGGATGGACTCT -CCAACACTGTTCAGGATGAGTCCT -CCAACACTGTTCAGGATGTAAGCC -CCAACACTGTTCAGGATGATAGCC -CCAACACTGTTCAGGATGTAACCG -CCAACACTGTTCAGGATGATGCCA -CCAACACTGTTCGGGAATGGAAAC -CCAACACTGTTCGGGAATAACACC -CCAACACTGTTCGGGAATATCGAG -CCAACACTGTTCGGGAATCTCCTT -CCAACACTGTTCGGGAATCCTGTT -CCAACACTGTTCGGGAATCGGTTT -CCAACACTGTTCGGGAATGTGGTT -CCAACACTGTTCGGGAATGCCTTT -CCAACACTGTTCGGGAATGGTCTT -CCAACACTGTTCGGGAATACGCTT -CCAACACTGTTCGGGAATAGCGTT -CCAACACTGTTCGGGAATTTCGTC -CCAACACTGTTCGGGAATTCTCTC -CCAACACTGTTCGGGAATTGGATC -CCAACACTGTTCGGGAATCACTTC -CCAACACTGTTCGGGAATGTACTC -CCAACACTGTTCGGGAATGATGTC -CCAACACTGTTCGGGAATACAGTC -CCAACACTGTTCGGGAATTTGCTG -CCAACACTGTTCGGGAATTCCATG -CCAACACTGTTCGGGAATTGTGTG -CCAACACTGTTCGGGAATCTAGTG -CCAACACTGTTCGGGAATCATCTG -CCAACACTGTTCGGGAATGAGTTG -CCAACACTGTTCGGGAATAGACTG -CCAACACTGTTCGGGAATTCGGTA -CCAACACTGTTCGGGAATTGCCTA -CCAACACTGTTCGGGAATCCACTA -CCAACACTGTTCGGGAATGGAGTA -CCAACACTGTTCGGGAATTCGTCT -CCAACACTGTTCGGGAATTGCACT -CCAACACTGTTCGGGAATCTGACT -CCAACACTGTTCGGGAATCAACCT -CCAACACTGTTCGGGAATGCTACT -CCAACACTGTTCGGGAATGGATCT -CCAACACTGTTCGGGAATAAGGCT -CCAACACTGTTCGGGAATTCAACC -CCAACACTGTTCGGGAATTGTTCC -CCAACACTGTTCGGGAATATTCCC -CCAACACTGTTCGGGAATTTCTCG -CCAACACTGTTCGGGAATTAGACG -CCAACACTGTTCGGGAATGTAACG -CCAACACTGTTCGGGAATACTTCG -CCAACACTGTTCGGGAATTACGCA -CCAACACTGTTCGGGAATCTTGCA -CCAACACTGTTCGGGAATCGAACA -CCAACACTGTTCGGGAATCAGTCA -CCAACACTGTTCGGGAATGATCCA -CCAACACTGTTCGGGAATACGACA -CCAACACTGTTCGGGAATAGCTCA -CCAACACTGTTCGGGAATTCACGT -CCAACACTGTTCGGGAATCGTAGT -CCAACACTGTTCGGGAATGTCAGT -CCAACACTGTTCGGGAATGAAGGT -CCAACACTGTTCGGGAATAACCGT -CCAACACTGTTCGGGAATTTGTGC -CCAACACTGTTCGGGAATCTAAGC -CCAACACTGTTCGGGAATACTAGC -CCAACACTGTTCGGGAATAGATGC -CCAACACTGTTCGGGAATTGAAGG -CCAACACTGTTCGGGAATCAATGG -CCAACACTGTTCGGGAATATGAGG -CCAACACTGTTCGGGAATAATGGG -CCAACACTGTTCGGGAATTCCTGA -CCAACACTGTTCGGGAATTAGCGA -CCAACACTGTTCGGGAATCACAGA -CCAACACTGTTCGGGAATGCAAGA -CCAACACTGTTCGGGAATGGTTGA -CCAACACTGTTCGGGAATTCCGAT -CCAACACTGTTCGGGAATTGGCAT -CCAACACTGTTCGGGAATCGAGAT -CCAACACTGTTCGGGAATTACCAC -CCAACACTGTTCGGGAATCAGAAC -CCAACACTGTTCGGGAATGTCTAC -CCAACACTGTTCGGGAATACGTAC -CCAACACTGTTCGGGAATAGTGAC -CCAACACTGTTCGGGAATCTGTAG -CCAACACTGTTCGGGAATCCTAAG -CCAACACTGTTCGGGAATGTTCAG -CCAACACTGTTCGGGAATGCATAG -CCAACACTGTTCGGGAATGACAAG -CCAACACTGTTCGGGAATAAGCAG -CCAACACTGTTCGGGAATCGTCAA -CCAACACTGTTCGGGAATGCTGAA -CCAACACTGTTCGGGAATAGTACG -CCAACACTGTTCGGGAATATCCGA -CCAACACTGTTCGGGAATATGGGA -CCAACACTGTTCGGGAATGTGCAA -CCAACACTGTTCGGGAATGAGGAA -CCAACACTGTTCGGGAATCAGGTA -CCAACACTGTTCGGGAATGACTCT -CCAACACTGTTCGGGAATAGTCCT -CCAACACTGTTCGGGAATTAAGCC -CCAACACTGTTCGGGAATATAGCC -CCAACACTGTTCGGGAATTAACCG -CCAACACTGTTCGGGAATATGCCA -CCAACACTGTTCTGATCCGGAAAC -CCAACACTGTTCTGATCCAACACC -CCAACACTGTTCTGATCCATCGAG -CCAACACTGTTCTGATCCCTCCTT -CCAACACTGTTCTGATCCCCTGTT -CCAACACTGTTCTGATCCCGGTTT -CCAACACTGTTCTGATCCGTGGTT -CCAACACTGTTCTGATCCGCCTTT -CCAACACTGTTCTGATCCGGTCTT -CCAACACTGTTCTGATCCACGCTT -CCAACACTGTTCTGATCCAGCGTT -CCAACACTGTTCTGATCCTTCGTC -CCAACACTGTTCTGATCCTCTCTC -CCAACACTGTTCTGATCCTGGATC -CCAACACTGTTCTGATCCCACTTC -CCAACACTGTTCTGATCCGTACTC -CCAACACTGTTCTGATCCGATGTC -CCAACACTGTTCTGATCCACAGTC -CCAACACTGTTCTGATCCTTGCTG -CCAACACTGTTCTGATCCTCCATG -CCAACACTGTTCTGATCCTGTGTG -CCAACACTGTTCTGATCCCTAGTG -CCAACACTGTTCTGATCCCATCTG -CCAACACTGTTCTGATCCGAGTTG -CCAACACTGTTCTGATCCAGACTG -CCAACACTGTTCTGATCCTCGGTA -CCAACACTGTTCTGATCCTGCCTA -CCAACACTGTTCTGATCCCCACTA -CCAACACTGTTCTGATCCGGAGTA -CCAACACTGTTCTGATCCTCGTCT -CCAACACTGTTCTGATCCTGCACT -CCAACACTGTTCTGATCCCTGACT -CCAACACTGTTCTGATCCCAACCT -CCAACACTGTTCTGATCCGCTACT -CCAACACTGTTCTGATCCGGATCT -CCAACACTGTTCTGATCCAAGGCT -CCAACACTGTTCTGATCCTCAACC -CCAACACTGTTCTGATCCTGTTCC -CCAACACTGTTCTGATCCATTCCC -CCAACACTGTTCTGATCCTTCTCG -CCAACACTGTTCTGATCCTAGACG -CCAACACTGTTCTGATCCGTAACG -CCAACACTGTTCTGATCCACTTCG -CCAACACTGTTCTGATCCTACGCA -CCAACACTGTTCTGATCCCTTGCA -CCAACACTGTTCTGATCCCGAACA -CCAACACTGTTCTGATCCCAGTCA -CCAACACTGTTCTGATCCGATCCA -CCAACACTGTTCTGATCCACGACA -CCAACACTGTTCTGATCCAGCTCA -CCAACACTGTTCTGATCCTCACGT -CCAACACTGTTCTGATCCCGTAGT -CCAACACTGTTCTGATCCGTCAGT -CCAACACTGTTCTGATCCGAAGGT -CCAACACTGTTCTGATCCAACCGT -CCAACACTGTTCTGATCCTTGTGC -CCAACACTGTTCTGATCCCTAAGC -CCAACACTGTTCTGATCCACTAGC -CCAACACTGTTCTGATCCAGATGC -CCAACACTGTTCTGATCCTGAAGG -CCAACACTGTTCTGATCCCAATGG -CCAACACTGTTCTGATCCATGAGG -CCAACACTGTTCTGATCCAATGGG -CCAACACTGTTCTGATCCTCCTGA -CCAACACTGTTCTGATCCTAGCGA -CCAACACTGTTCTGATCCCACAGA -CCAACACTGTTCTGATCCGCAAGA -CCAACACTGTTCTGATCCGGTTGA -CCAACACTGTTCTGATCCTCCGAT -CCAACACTGTTCTGATCCTGGCAT -CCAACACTGTTCTGATCCCGAGAT -CCAACACTGTTCTGATCCTACCAC -CCAACACTGTTCTGATCCCAGAAC -CCAACACTGTTCTGATCCGTCTAC -CCAACACTGTTCTGATCCACGTAC -CCAACACTGTTCTGATCCAGTGAC -CCAACACTGTTCTGATCCCTGTAG -CCAACACTGTTCTGATCCCCTAAG -CCAACACTGTTCTGATCCGTTCAG -CCAACACTGTTCTGATCCGCATAG -CCAACACTGTTCTGATCCGACAAG -CCAACACTGTTCTGATCCAAGCAG -CCAACACTGTTCTGATCCCGTCAA -CCAACACTGTTCTGATCCGCTGAA -CCAACACTGTTCTGATCCAGTACG -CCAACACTGTTCTGATCCATCCGA -CCAACACTGTTCTGATCCATGGGA -CCAACACTGTTCTGATCCGTGCAA -CCAACACTGTTCTGATCCGAGGAA -CCAACACTGTTCTGATCCCAGGTA -CCAACACTGTTCTGATCCGACTCT -CCAACACTGTTCTGATCCAGTCCT -CCAACACTGTTCTGATCCTAAGCC -CCAACACTGTTCTGATCCATAGCC -CCAACACTGTTCTGATCCTAACCG -CCAACACTGTTCTGATCCATGCCA -CCAACACTGTTCCGATAGGGAAAC -CCAACACTGTTCCGATAGAACACC -CCAACACTGTTCCGATAGATCGAG -CCAACACTGTTCCGATAGCTCCTT -CCAACACTGTTCCGATAGCCTGTT -CCAACACTGTTCCGATAGCGGTTT -CCAACACTGTTCCGATAGGTGGTT -CCAACACTGTTCCGATAGGCCTTT -CCAACACTGTTCCGATAGGGTCTT -CCAACACTGTTCCGATAGACGCTT -CCAACACTGTTCCGATAGAGCGTT -CCAACACTGTTCCGATAGTTCGTC -CCAACACTGTTCCGATAGTCTCTC -CCAACACTGTTCCGATAGTGGATC -CCAACACTGTTCCGATAGCACTTC -CCAACACTGTTCCGATAGGTACTC -CCAACACTGTTCCGATAGGATGTC -CCAACACTGTTCCGATAGACAGTC -CCAACACTGTTCCGATAGTTGCTG -CCAACACTGTTCCGATAGTCCATG -CCAACACTGTTCCGATAGTGTGTG -CCAACACTGTTCCGATAGCTAGTG -CCAACACTGTTCCGATAGCATCTG -CCAACACTGTTCCGATAGGAGTTG -CCAACACTGTTCCGATAGAGACTG -CCAACACTGTTCCGATAGTCGGTA -CCAACACTGTTCCGATAGTGCCTA -CCAACACTGTTCCGATAGCCACTA -CCAACACTGTTCCGATAGGGAGTA -CCAACACTGTTCCGATAGTCGTCT -CCAACACTGTTCCGATAGTGCACT -CCAACACTGTTCCGATAGCTGACT -CCAACACTGTTCCGATAGCAACCT -CCAACACTGTTCCGATAGGCTACT -CCAACACTGTTCCGATAGGGATCT -CCAACACTGTTCCGATAGAAGGCT -CCAACACTGTTCCGATAGTCAACC -CCAACACTGTTCCGATAGTGTTCC -CCAACACTGTTCCGATAGATTCCC -CCAACACTGTTCCGATAGTTCTCG -CCAACACTGTTCCGATAGTAGACG -CCAACACTGTTCCGATAGGTAACG -CCAACACTGTTCCGATAGACTTCG -CCAACACTGTTCCGATAGTACGCA -CCAACACTGTTCCGATAGCTTGCA -CCAACACTGTTCCGATAGCGAACA -CCAACACTGTTCCGATAGCAGTCA -CCAACACTGTTCCGATAGGATCCA -CCAACACTGTTCCGATAGACGACA -CCAACACTGTTCCGATAGAGCTCA -CCAACACTGTTCCGATAGTCACGT -CCAACACTGTTCCGATAGCGTAGT -CCAACACTGTTCCGATAGGTCAGT -CCAACACTGTTCCGATAGGAAGGT -CCAACACTGTTCCGATAGAACCGT -CCAACACTGTTCCGATAGTTGTGC -CCAACACTGTTCCGATAGCTAAGC -CCAACACTGTTCCGATAGACTAGC -CCAACACTGTTCCGATAGAGATGC -CCAACACTGTTCCGATAGTGAAGG -CCAACACTGTTCCGATAGCAATGG -CCAACACTGTTCCGATAGATGAGG -CCAACACTGTTCCGATAGAATGGG -CCAACACTGTTCCGATAGTCCTGA -CCAACACTGTTCCGATAGTAGCGA -CCAACACTGTTCCGATAGCACAGA -CCAACACTGTTCCGATAGGCAAGA -CCAACACTGTTCCGATAGGGTTGA -CCAACACTGTTCCGATAGTCCGAT -CCAACACTGTTCCGATAGTGGCAT -CCAACACTGTTCCGATAGCGAGAT -CCAACACTGTTCCGATAGTACCAC -CCAACACTGTTCCGATAGCAGAAC -CCAACACTGTTCCGATAGGTCTAC -CCAACACTGTTCCGATAGACGTAC -CCAACACTGTTCCGATAGAGTGAC -CCAACACTGTTCCGATAGCTGTAG -CCAACACTGTTCCGATAGCCTAAG -CCAACACTGTTCCGATAGGTTCAG -CCAACACTGTTCCGATAGGCATAG -CCAACACTGTTCCGATAGGACAAG -CCAACACTGTTCCGATAGAAGCAG -CCAACACTGTTCCGATAGCGTCAA -CCAACACTGTTCCGATAGGCTGAA -CCAACACTGTTCCGATAGAGTACG -CCAACACTGTTCCGATAGATCCGA -CCAACACTGTTCCGATAGATGGGA -CCAACACTGTTCCGATAGGTGCAA -CCAACACTGTTCCGATAGGAGGAA -CCAACACTGTTCCGATAGCAGGTA -CCAACACTGTTCCGATAGGACTCT -CCAACACTGTTCCGATAGAGTCCT -CCAACACTGTTCCGATAGTAAGCC -CCAACACTGTTCCGATAGATAGCC -CCAACACTGTTCCGATAGTAACCG -CCAACACTGTTCCGATAGATGCCA -CCAACACTGTTCAGACACGGAAAC -CCAACACTGTTCAGACACAACACC -CCAACACTGTTCAGACACATCGAG -CCAACACTGTTCAGACACCTCCTT -CCAACACTGTTCAGACACCCTGTT -CCAACACTGTTCAGACACCGGTTT -CCAACACTGTTCAGACACGTGGTT -CCAACACTGTTCAGACACGCCTTT -CCAACACTGTTCAGACACGGTCTT -CCAACACTGTTCAGACACACGCTT -CCAACACTGTTCAGACACAGCGTT -CCAACACTGTTCAGACACTTCGTC -CCAACACTGTTCAGACACTCTCTC -CCAACACTGTTCAGACACTGGATC -CCAACACTGTTCAGACACCACTTC -CCAACACTGTTCAGACACGTACTC -CCAACACTGTTCAGACACGATGTC -CCAACACTGTTCAGACACACAGTC -CCAACACTGTTCAGACACTTGCTG -CCAACACTGTTCAGACACTCCATG -CCAACACTGTTCAGACACTGTGTG -CCAACACTGTTCAGACACCTAGTG -CCAACACTGTTCAGACACCATCTG -CCAACACTGTTCAGACACGAGTTG -CCAACACTGTTCAGACACAGACTG -CCAACACTGTTCAGACACTCGGTA -CCAACACTGTTCAGACACTGCCTA -CCAACACTGTTCAGACACCCACTA -CCAACACTGTTCAGACACGGAGTA -CCAACACTGTTCAGACACTCGTCT -CCAACACTGTTCAGACACTGCACT -CCAACACTGTTCAGACACCTGACT -CCAACACTGTTCAGACACCAACCT -CCAACACTGTTCAGACACGCTACT -CCAACACTGTTCAGACACGGATCT -CCAACACTGTTCAGACACAAGGCT -CCAACACTGTTCAGACACTCAACC -CCAACACTGTTCAGACACTGTTCC -CCAACACTGTTCAGACACATTCCC -CCAACACTGTTCAGACACTTCTCG -CCAACACTGTTCAGACACTAGACG -CCAACACTGTTCAGACACGTAACG -CCAACACTGTTCAGACACACTTCG -CCAACACTGTTCAGACACTACGCA -CCAACACTGTTCAGACACCTTGCA -CCAACACTGTTCAGACACCGAACA -CCAACACTGTTCAGACACCAGTCA -CCAACACTGTTCAGACACGATCCA -CCAACACTGTTCAGACACACGACA -CCAACACTGTTCAGACACAGCTCA -CCAACACTGTTCAGACACTCACGT -CCAACACTGTTCAGACACCGTAGT -CCAACACTGTTCAGACACGTCAGT -CCAACACTGTTCAGACACGAAGGT -CCAACACTGTTCAGACACAACCGT -CCAACACTGTTCAGACACTTGTGC -CCAACACTGTTCAGACACCTAAGC -CCAACACTGTTCAGACACACTAGC -CCAACACTGTTCAGACACAGATGC -CCAACACTGTTCAGACACTGAAGG -CCAACACTGTTCAGACACCAATGG -CCAACACTGTTCAGACACATGAGG -CCAACACTGTTCAGACACAATGGG -CCAACACTGTTCAGACACTCCTGA -CCAACACTGTTCAGACACTAGCGA -CCAACACTGTTCAGACACCACAGA -CCAACACTGTTCAGACACGCAAGA -CCAACACTGTTCAGACACGGTTGA -CCAACACTGTTCAGACACTCCGAT -CCAACACTGTTCAGACACTGGCAT -CCAACACTGTTCAGACACCGAGAT -CCAACACTGTTCAGACACTACCAC -CCAACACTGTTCAGACACCAGAAC -CCAACACTGTTCAGACACGTCTAC -CCAACACTGTTCAGACACACGTAC -CCAACACTGTTCAGACACAGTGAC -CCAACACTGTTCAGACACCTGTAG -CCAACACTGTTCAGACACCCTAAG -CCAACACTGTTCAGACACGTTCAG -CCAACACTGTTCAGACACGCATAG -CCAACACTGTTCAGACACGACAAG -CCAACACTGTTCAGACACAAGCAG -CCAACACTGTTCAGACACCGTCAA -CCAACACTGTTCAGACACGCTGAA -CCAACACTGTTCAGACACAGTACG -CCAACACTGTTCAGACACATCCGA -CCAACACTGTTCAGACACATGGGA -CCAACACTGTTCAGACACGTGCAA -CCAACACTGTTCAGACACGAGGAA -CCAACACTGTTCAGACACCAGGTA -CCAACACTGTTCAGACACGACTCT -CCAACACTGTTCAGACACAGTCCT -CCAACACTGTTCAGACACTAAGCC -CCAACACTGTTCAGACACATAGCC -CCAACACTGTTCAGACACTAACCG -CCAACACTGTTCAGACACATGCCA -CCAACACTGTTCAGAGCAGGAAAC -CCAACACTGTTCAGAGCAAACACC -CCAACACTGTTCAGAGCAATCGAG -CCAACACTGTTCAGAGCACTCCTT -CCAACACTGTTCAGAGCACCTGTT -CCAACACTGTTCAGAGCACGGTTT -CCAACACTGTTCAGAGCAGTGGTT -CCAACACTGTTCAGAGCAGCCTTT -CCAACACTGTTCAGAGCAGGTCTT -CCAACACTGTTCAGAGCAACGCTT -CCAACACTGTTCAGAGCAAGCGTT -CCAACACTGTTCAGAGCATTCGTC -CCAACACTGTTCAGAGCATCTCTC -CCAACACTGTTCAGAGCATGGATC -CCAACACTGTTCAGAGCACACTTC -CCAACACTGTTCAGAGCAGTACTC -CCAACACTGTTCAGAGCAGATGTC -CCAACACTGTTCAGAGCAACAGTC -CCAACACTGTTCAGAGCATTGCTG -CCAACACTGTTCAGAGCATCCATG -CCAACACTGTTCAGAGCATGTGTG -CCAACACTGTTCAGAGCACTAGTG -CCAACACTGTTCAGAGCACATCTG -CCAACACTGTTCAGAGCAGAGTTG -CCAACACTGTTCAGAGCAAGACTG -CCAACACTGTTCAGAGCATCGGTA -CCAACACTGTTCAGAGCATGCCTA -CCAACACTGTTCAGAGCACCACTA -CCAACACTGTTCAGAGCAGGAGTA -CCAACACTGTTCAGAGCATCGTCT -CCAACACTGTTCAGAGCATGCACT -CCAACACTGTTCAGAGCACTGACT -CCAACACTGTTCAGAGCACAACCT -CCAACACTGTTCAGAGCAGCTACT -CCAACACTGTTCAGAGCAGGATCT -CCAACACTGTTCAGAGCAAAGGCT -CCAACACTGTTCAGAGCATCAACC -CCAACACTGTTCAGAGCATGTTCC -CCAACACTGTTCAGAGCAATTCCC -CCAACACTGTTCAGAGCATTCTCG -CCAACACTGTTCAGAGCATAGACG -CCAACACTGTTCAGAGCAGTAACG -CCAACACTGTTCAGAGCAACTTCG -CCAACACTGTTCAGAGCATACGCA -CCAACACTGTTCAGAGCACTTGCA -CCAACACTGTTCAGAGCACGAACA -CCAACACTGTTCAGAGCACAGTCA -CCAACACTGTTCAGAGCAGATCCA -CCAACACTGTTCAGAGCAACGACA -CCAACACTGTTCAGAGCAAGCTCA -CCAACACTGTTCAGAGCATCACGT -CCAACACTGTTCAGAGCACGTAGT -CCAACACTGTTCAGAGCAGTCAGT -CCAACACTGTTCAGAGCAGAAGGT -CCAACACTGTTCAGAGCAAACCGT -CCAACACTGTTCAGAGCATTGTGC -CCAACACTGTTCAGAGCACTAAGC -CCAACACTGTTCAGAGCAACTAGC -CCAACACTGTTCAGAGCAAGATGC -CCAACACTGTTCAGAGCATGAAGG -CCAACACTGTTCAGAGCACAATGG -CCAACACTGTTCAGAGCAATGAGG -CCAACACTGTTCAGAGCAAATGGG -CCAACACTGTTCAGAGCATCCTGA -CCAACACTGTTCAGAGCATAGCGA -CCAACACTGTTCAGAGCACACAGA -CCAACACTGTTCAGAGCAGCAAGA -CCAACACTGTTCAGAGCAGGTTGA -CCAACACTGTTCAGAGCATCCGAT -CCAACACTGTTCAGAGCATGGCAT -CCAACACTGTTCAGAGCACGAGAT -CCAACACTGTTCAGAGCATACCAC -CCAACACTGTTCAGAGCACAGAAC -CCAACACTGTTCAGAGCAGTCTAC -CCAACACTGTTCAGAGCAACGTAC -CCAACACTGTTCAGAGCAAGTGAC -CCAACACTGTTCAGAGCACTGTAG -CCAACACTGTTCAGAGCACCTAAG -CCAACACTGTTCAGAGCAGTTCAG -CCAACACTGTTCAGAGCAGCATAG -CCAACACTGTTCAGAGCAGACAAG -CCAACACTGTTCAGAGCAAAGCAG -CCAACACTGTTCAGAGCACGTCAA -CCAACACTGTTCAGAGCAGCTGAA -CCAACACTGTTCAGAGCAAGTACG -CCAACACTGTTCAGAGCAATCCGA -CCAACACTGTTCAGAGCAATGGGA -CCAACACTGTTCAGAGCAGTGCAA -CCAACACTGTTCAGAGCAGAGGAA -CCAACACTGTTCAGAGCACAGGTA -CCAACACTGTTCAGAGCAGACTCT -CCAACACTGTTCAGAGCAAGTCCT -CCAACACTGTTCAGAGCATAAGCC -CCAACACTGTTCAGAGCAATAGCC -CCAACACTGTTCAGAGCATAACCG -CCAACACTGTTCAGAGCAATGCCA -CCAACACTGTTCTGAGGTGGAAAC -CCAACACTGTTCTGAGGTAACACC -CCAACACTGTTCTGAGGTATCGAG -CCAACACTGTTCTGAGGTCTCCTT -CCAACACTGTTCTGAGGTCCTGTT -CCAACACTGTTCTGAGGTCGGTTT -CCAACACTGTTCTGAGGTGTGGTT -CCAACACTGTTCTGAGGTGCCTTT -CCAACACTGTTCTGAGGTGGTCTT -CCAACACTGTTCTGAGGTACGCTT -CCAACACTGTTCTGAGGTAGCGTT -CCAACACTGTTCTGAGGTTTCGTC -CCAACACTGTTCTGAGGTTCTCTC -CCAACACTGTTCTGAGGTTGGATC -CCAACACTGTTCTGAGGTCACTTC -CCAACACTGTTCTGAGGTGTACTC -CCAACACTGTTCTGAGGTGATGTC -CCAACACTGTTCTGAGGTACAGTC -CCAACACTGTTCTGAGGTTTGCTG -CCAACACTGTTCTGAGGTTCCATG -CCAACACTGTTCTGAGGTTGTGTG -CCAACACTGTTCTGAGGTCTAGTG -CCAACACTGTTCTGAGGTCATCTG -CCAACACTGTTCTGAGGTGAGTTG -CCAACACTGTTCTGAGGTAGACTG -CCAACACTGTTCTGAGGTTCGGTA -CCAACACTGTTCTGAGGTTGCCTA -CCAACACTGTTCTGAGGTCCACTA -CCAACACTGTTCTGAGGTGGAGTA -CCAACACTGTTCTGAGGTTCGTCT -CCAACACTGTTCTGAGGTTGCACT -CCAACACTGTTCTGAGGTCTGACT -CCAACACTGTTCTGAGGTCAACCT -CCAACACTGTTCTGAGGTGCTACT -CCAACACTGTTCTGAGGTGGATCT -CCAACACTGTTCTGAGGTAAGGCT -CCAACACTGTTCTGAGGTTCAACC -CCAACACTGTTCTGAGGTTGTTCC -CCAACACTGTTCTGAGGTATTCCC -CCAACACTGTTCTGAGGTTTCTCG -CCAACACTGTTCTGAGGTTAGACG -CCAACACTGTTCTGAGGTGTAACG -CCAACACTGTTCTGAGGTACTTCG -CCAACACTGTTCTGAGGTTACGCA -CCAACACTGTTCTGAGGTCTTGCA -CCAACACTGTTCTGAGGTCGAACA -CCAACACTGTTCTGAGGTCAGTCA -CCAACACTGTTCTGAGGTGATCCA -CCAACACTGTTCTGAGGTACGACA -CCAACACTGTTCTGAGGTAGCTCA -CCAACACTGTTCTGAGGTTCACGT -CCAACACTGTTCTGAGGTCGTAGT -CCAACACTGTTCTGAGGTGTCAGT -CCAACACTGTTCTGAGGTGAAGGT -CCAACACTGTTCTGAGGTAACCGT -CCAACACTGTTCTGAGGTTTGTGC -CCAACACTGTTCTGAGGTCTAAGC -CCAACACTGTTCTGAGGTACTAGC -CCAACACTGTTCTGAGGTAGATGC -CCAACACTGTTCTGAGGTTGAAGG -CCAACACTGTTCTGAGGTCAATGG -CCAACACTGTTCTGAGGTATGAGG -CCAACACTGTTCTGAGGTAATGGG -CCAACACTGTTCTGAGGTTCCTGA -CCAACACTGTTCTGAGGTTAGCGA -CCAACACTGTTCTGAGGTCACAGA -CCAACACTGTTCTGAGGTGCAAGA -CCAACACTGTTCTGAGGTGGTTGA -CCAACACTGTTCTGAGGTTCCGAT -CCAACACTGTTCTGAGGTTGGCAT -CCAACACTGTTCTGAGGTCGAGAT -CCAACACTGTTCTGAGGTTACCAC -CCAACACTGTTCTGAGGTCAGAAC -CCAACACTGTTCTGAGGTGTCTAC -CCAACACTGTTCTGAGGTACGTAC -CCAACACTGTTCTGAGGTAGTGAC -CCAACACTGTTCTGAGGTCTGTAG -CCAACACTGTTCTGAGGTCCTAAG -CCAACACTGTTCTGAGGTGTTCAG -CCAACACTGTTCTGAGGTGCATAG -CCAACACTGTTCTGAGGTGACAAG -CCAACACTGTTCTGAGGTAAGCAG -CCAACACTGTTCTGAGGTCGTCAA -CCAACACTGTTCTGAGGTGCTGAA -CCAACACTGTTCTGAGGTAGTACG -CCAACACTGTTCTGAGGTATCCGA -CCAACACTGTTCTGAGGTATGGGA -CCAACACTGTTCTGAGGTGTGCAA -CCAACACTGTTCTGAGGTGAGGAA -CCAACACTGTTCTGAGGTCAGGTA -CCAACACTGTTCTGAGGTGACTCT -CCAACACTGTTCTGAGGTAGTCCT -CCAACACTGTTCTGAGGTTAAGCC -CCAACACTGTTCTGAGGTATAGCC -CCAACACTGTTCTGAGGTTAACCG -CCAACACTGTTCTGAGGTATGCCA -CCAACACTGTTCGATTCCGGAAAC -CCAACACTGTTCGATTCCAACACC -CCAACACTGTTCGATTCCATCGAG -CCAACACTGTTCGATTCCCTCCTT -CCAACACTGTTCGATTCCCCTGTT -CCAACACTGTTCGATTCCCGGTTT -CCAACACTGTTCGATTCCGTGGTT -CCAACACTGTTCGATTCCGCCTTT -CCAACACTGTTCGATTCCGGTCTT -CCAACACTGTTCGATTCCACGCTT -CCAACACTGTTCGATTCCAGCGTT -CCAACACTGTTCGATTCCTTCGTC -CCAACACTGTTCGATTCCTCTCTC -CCAACACTGTTCGATTCCTGGATC -CCAACACTGTTCGATTCCCACTTC -CCAACACTGTTCGATTCCGTACTC -CCAACACTGTTCGATTCCGATGTC -CCAACACTGTTCGATTCCACAGTC -CCAACACTGTTCGATTCCTTGCTG -CCAACACTGTTCGATTCCTCCATG -CCAACACTGTTCGATTCCTGTGTG -CCAACACTGTTCGATTCCCTAGTG -CCAACACTGTTCGATTCCCATCTG -CCAACACTGTTCGATTCCGAGTTG -CCAACACTGTTCGATTCCAGACTG -CCAACACTGTTCGATTCCTCGGTA -CCAACACTGTTCGATTCCTGCCTA -CCAACACTGTTCGATTCCCCACTA -CCAACACTGTTCGATTCCGGAGTA -CCAACACTGTTCGATTCCTCGTCT -CCAACACTGTTCGATTCCTGCACT -CCAACACTGTTCGATTCCCTGACT -CCAACACTGTTCGATTCCCAACCT -CCAACACTGTTCGATTCCGCTACT -CCAACACTGTTCGATTCCGGATCT -CCAACACTGTTCGATTCCAAGGCT -CCAACACTGTTCGATTCCTCAACC -CCAACACTGTTCGATTCCTGTTCC -CCAACACTGTTCGATTCCATTCCC -CCAACACTGTTCGATTCCTTCTCG -CCAACACTGTTCGATTCCTAGACG -CCAACACTGTTCGATTCCGTAACG -CCAACACTGTTCGATTCCACTTCG -CCAACACTGTTCGATTCCTACGCA -CCAACACTGTTCGATTCCCTTGCA -CCAACACTGTTCGATTCCCGAACA -CCAACACTGTTCGATTCCCAGTCA -CCAACACTGTTCGATTCCGATCCA -CCAACACTGTTCGATTCCACGACA -CCAACACTGTTCGATTCCAGCTCA -CCAACACTGTTCGATTCCTCACGT -CCAACACTGTTCGATTCCCGTAGT -CCAACACTGTTCGATTCCGTCAGT -CCAACACTGTTCGATTCCGAAGGT -CCAACACTGTTCGATTCCAACCGT -CCAACACTGTTCGATTCCTTGTGC -CCAACACTGTTCGATTCCCTAAGC -CCAACACTGTTCGATTCCACTAGC -CCAACACTGTTCGATTCCAGATGC -CCAACACTGTTCGATTCCTGAAGG -CCAACACTGTTCGATTCCCAATGG -CCAACACTGTTCGATTCCATGAGG -CCAACACTGTTCGATTCCAATGGG -CCAACACTGTTCGATTCCTCCTGA -CCAACACTGTTCGATTCCTAGCGA -CCAACACTGTTCGATTCCCACAGA -CCAACACTGTTCGATTCCGCAAGA -CCAACACTGTTCGATTCCGGTTGA -CCAACACTGTTCGATTCCTCCGAT -CCAACACTGTTCGATTCCTGGCAT -CCAACACTGTTCGATTCCCGAGAT -CCAACACTGTTCGATTCCTACCAC -CCAACACTGTTCGATTCCCAGAAC -CCAACACTGTTCGATTCCGTCTAC -CCAACACTGTTCGATTCCACGTAC -CCAACACTGTTCGATTCCAGTGAC -CCAACACTGTTCGATTCCCTGTAG -CCAACACTGTTCGATTCCCCTAAG -CCAACACTGTTCGATTCCGTTCAG -CCAACACTGTTCGATTCCGCATAG -CCAACACTGTTCGATTCCGACAAG -CCAACACTGTTCGATTCCAAGCAG -CCAACACTGTTCGATTCCCGTCAA -CCAACACTGTTCGATTCCGCTGAA -CCAACACTGTTCGATTCCAGTACG -CCAACACTGTTCGATTCCATCCGA -CCAACACTGTTCGATTCCATGGGA -CCAACACTGTTCGATTCCGTGCAA -CCAACACTGTTCGATTCCGAGGAA -CCAACACTGTTCGATTCCCAGGTA -CCAACACTGTTCGATTCCGACTCT -CCAACACTGTTCGATTCCAGTCCT -CCAACACTGTTCGATTCCTAAGCC -CCAACACTGTTCGATTCCATAGCC -CCAACACTGTTCGATTCCTAACCG -CCAACACTGTTCGATTCCATGCCA -CCAACACTGTTCCATTGGGGAAAC -CCAACACTGTTCCATTGGAACACC -CCAACACTGTTCCATTGGATCGAG -CCAACACTGTTCCATTGGCTCCTT -CCAACACTGTTCCATTGGCCTGTT -CCAACACTGTTCCATTGGCGGTTT -CCAACACTGTTCCATTGGGTGGTT -CCAACACTGTTCCATTGGGCCTTT -CCAACACTGTTCCATTGGGGTCTT -CCAACACTGTTCCATTGGACGCTT -CCAACACTGTTCCATTGGAGCGTT -CCAACACTGTTCCATTGGTTCGTC -CCAACACTGTTCCATTGGTCTCTC -CCAACACTGTTCCATTGGTGGATC -CCAACACTGTTCCATTGGCACTTC -CCAACACTGTTCCATTGGGTACTC -CCAACACTGTTCCATTGGGATGTC -CCAACACTGTTCCATTGGACAGTC -CCAACACTGTTCCATTGGTTGCTG -CCAACACTGTTCCATTGGTCCATG -CCAACACTGTTCCATTGGTGTGTG -CCAACACTGTTCCATTGGCTAGTG -CCAACACTGTTCCATTGGCATCTG -CCAACACTGTTCCATTGGGAGTTG -CCAACACTGTTCCATTGGAGACTG -CCAACACTGTTCCATTGGTCGGTA -CCAACACTGTTCCATTGGTGCCTA -CCAACACTGTTCCATTGGCCACTA -CCAACACTGTTCCATTGGGGAGTA -CCAACACTGTTCCATTGGTCGTCT -CCAACACTGTTCCATTGGTGCACT -CCAACACTGTTCCATTGGCTGACT -CCAACACTGTTCCATTGGCAACCT -CCAACACTGTTCCATTGGGCTACT -CCAACACTGTTCCATTGGGGATCT -CCAACACTGTTCCATTGGAAGGCT -CCAACACTGTTCCATTGGTCAACC -CCAACACTGTTCCATTGGTGTTCC -CCAACACTGTTCCATTGGATTCCC -CCAACACTGTTCCATTGGTTCTCG -CCAACACTGTTCCATTGGTAGACG -CCAACACTGTTCCATTGGGTAACG -CCAACACTGTTCCATTGGACTTCG -CCAACACTGTTCCATTGGTACGCA -CCAACACTGTTCCATTGGCTTGCA -CCAACACTGTTCCATTGGCGAACA -CCAACACTGTTCCATTGGCAGTCA -CCAACACTGTTCCATTGGGATCCA -CCAACACTGTTCCATTGGACGACA -CCAACACTGTTCCATTGGAGCTCA -CCAACACTGTTCCATTGGTCACGT -CCAACACTGTTCCATTGGCGTAGT -CCAACACTGTTCCATTGGGTCAGT -CCAACACTGTTCCATTGGGAAGGT -CCAACACTGTTCCATTGGAACCGT -CCAACACTGTTCCATTGGTTGTGC -CCAACACTGTTCCATTGGCTAAGC -CCAACACTGTTCCATTGGACTAGC -CCAACACTGTTCCATTGGAGATGC -CCAACACTGTTCCATTGGTGAAGG -CCAACACTGTTCCATTGGCAATGG -CCAACACTGTTCCATTGGATGAGG -CCAACACTGTTCCATTGGAATGGG -CCAACACTGTTCCATTGGTCCTGA -CCAACACTGTTCCATTGGTAGCGA -CCAACACTGTTCCATTGGCACAGA -CCAACACTGTTCCATTGGGCAAGA -CCAACACTGTTCCATTGGGGTTGA -CCAACACTGTTCCATTGGTCCGAT -CCAACACTGTTCCATTGGTGGCAT -CCAACACTGTTCCATTGGCGAGAT -CCAACACTGTTCCATTGGTACCAC -CCAACACTGTTCCATTGGCAGAAC -CCAACACTGTTCCATTGGGTCTAC -CCAACACTGTTCCATTGGACGTAC -CCAACACTGTTCCATTGGAGTGAC -CCAACACTGTTCCATTGGCTGTAG -CCAACACTGTTCCATTGGCCTAAG -CCAACACTGTTCCATTGGGTTCAG -CCAACACTGTTCCATTGGGCATAG -CCAACACTGTTCCATTGGGACAAG -CCAACACTGTTCCATTGGAAGCAG -CCAACACTGTTCCATTGGCGTCAA -CCAACACTGTTCCATTGGGCTGAA -CCAACACTGTTCCATTGGAGTACG -CCAACACTGTTCCATTGGATCCGA -CCAACACTGTTCCATTGGATGGGA -CCAACACTGTTCCATTGGGTGCAA -CCAACACTGTTCCATTGGGAGGAA -CCAACACTGTTCCATTGGCAGGTA -CCAACACTGTTCCATTGGGACTCT -CCAACACTGTTCCATTGGAGTCCT -CCAACACTGTTCCATTGGTAAGCC -CCAACACTGTTCCATTGGATAGCC -CCAACACTGTTCCATTGGTAACCG -CCAACACTGTTCCATTGGATGCCA -CCAACACTGTTCGATCGAGGAAAC -CCAACACTGTTCGATCGAAACACC -CCAACACTGTTCGATCGAATCGAG -CCAACACTGTTCGATCGACTCCTT -CCAACACTGTTCGATCGACCTGTT -CCAACACTGTTCGATCGACGGTTT -CCAACACTGTTCGATCGAGTGGTT -CCAACACTGTTCGATCGAGCCTTT -CCAACACTGTTCGATCGAGGTCTT -CCAACACTGTTCGATCGAACGCTT -CCAACACTGTTCGATCGAAGCGTT -CCAACACTGTTCGATCGATTCGTC -CCAACACTGTTCGATCGATCTCTC -CCAACACTGTTCGATCGATGGATC -CCAACACTGTTCGATCGACACTTC -CCAACACTGTTCGATCGAGTACTC -CCAACACTGTTCGATCGAGATGTC -CCAACACTGTTCGATCGAACAGTC -CCAACACTGTTCGATCGATTGCTG -CCAACACTGTTCGATCGATCCATG -CCAACACTGTTCGATCGATGTGTG -CCAACACTGTTCGATCGACTAGTG -CCAACACTGTTCGATCGACATCTG -CCAACACTGTTCGATCGAGAGTTG -CCAACACTGTTCGATCGAAGACTG -CCAACACTGTTCGATCGATCGGTA -CCAACACTGTTCGATCGATGCCTA -CCAACACTGTTCGATCGACCACTA -CCAACACTGTTCGATCGAGGAGTA -CCAACACTGTTCGATCGATCGTCT -CCAACACTGTTCGATCGATGCACT -CCAACACTGTTCGATCGACTGACT -CCAACACTGTTCGATCGACAACCT -CCAACACTGTTCGATCGAGCTACT -CCAACACTGTTCGATCGAGGATCT -CCAACACTGTTCGATCGAAAGGCT -CCAACACTGTTCGATCGATCAACC -CCAACACTGTTCGATCGATGTTCC -CCAACACTGTTCGATCGAATTCCC -CCAACACTGTTCGATCGATTCTCG -CCAACACTGTTCGATCGATAGACG -CCAACACTGTTCGATCGAGTAACG -CCAACACTGTTCGATCGAACTTCG -CCAACACTGTTCGATCGATACGCA -CCAACACTGTTCGATCGACTTGCA -CCAACACTGTTCGATCGACGAACA -CCAACACTGTTCGATCGACAGTCA -CCAACACTGTTCGATCGAGATCCA -CCAACACTGTTCGATCGAACGACA -CCAACACTGTTCGATCGAAGCTCA -CCAACACTGTTCGATCGATCACGT -CCAACACTGTTCGATCGACGTAGT -CCAACACTGTTCGATCGAGTCAGT -CCAACACTGTTCGATCGAGAAGGT -CCAACACTGTTCGATCGAAACCGT -CCAACACTGTTCGATCGATTGTGC -CCAACACTGTTCGATCGACTAAGC -CCAACACTGTTCGATCGAACTAGC -CCAACACTGTTCGATCGAAGATGC -CCAACACTGTTCGATCGATGAAGG -CCAACACTGTTCGATCGACAATGG -CCAACACTGTTCGATCGAATGAGG -CCAACACTGTTCGATCGAAATGGG -CCAACACTGTTCGATCGATCCTGA -CCAACACTGTTCGATCGATAGCGA -CCAACACTGTTCGATCGACACAGA -CCAACACTGTTCGATCGAGCAAGA -CCAACACTGTTCGATCGAGGTTGA -CCAACACTGTTCGATCGATCCGAT -CCAACACTGTTCGATCGATGGCAT -CCAACACTGTTCGATCGACGAGAT -CCAACACTGTTCGATCGATACCAC -CCAACACTGTTCGATCGACAGAAC -CCAACACTGTTCGATCGAGTCTAC -CCAACACTGTTCGATCGAACGTAC -CCAACACTGTTCGATCGAAGTGAC -CCAACACTGTTCGATCGACTGTAG -CCAACACTGTTCGATCGACCTAAG -CCAACACTGTTCGATCGAGTTCAG -CCAACACTGTTCGATCGAGCATAG -CCAACACTGTTCGATCGAGACAAG -CCAACACTGTTCGATCGAAAGCAG -CCAACACTGTTCGATCGACGTCAA -CCAACACTGTTCGATCGAGCTGAA -CCAACACTGTTCGATCGAAGTACG -CCAACACTGTTCGATCGAATCCGA -CCAACACTGTTCGATCGAATGGGA -CCAACACTGTTCGATCGAGTGCAA -CCAACACTGTTCGATCGAGAGGAA -CCAACACTGTTCGATCGACAGGTA -CCAACACTGTTCGATCGAGACTCT -CCAACACTGTTCGATCGAAGTCCT -CCAACACTGTTCGATCGATAAGCC -CCAACACTGTTCGATCGAATAGCC -CCAACACTGTTCGATCGATAACCG -CCAACACTGTTCGATCGAATGCCA -CCAACACTGTTCCACTACGGAAAC -CCAACACTGTTCCACTACAACACC -CCAACACTGTTCCACTACATCGAG -CCAACACTGTTCCACTACCTCCTT -CCAACACTGTTCCACTACCCTGTT -CCAACACTGTTCCACTACCGGTTT -CCAACACTGTTCCACTACGTGGTT -CCAACACTGTTCCACTACGCCTTT -CCAACACTGTTCCACTACGGTCTT -CCAACACTGTTCCACTACACGCTT -CCAACACTGTTCCACTACAGCGTT -CCAACACTGTTCCACTACTTCGTC -CCAACACTGTTCCACTACTCTCTC -CCAACACTGTTCCACTACTGGATC -CCAACACTGTTCCACTACCACTTC -CCAACACTGTTCCACTACGTACTC -CCAACACTGTTCCACTACGATGTC -CCAACACTGTTCCACTACACAGTC -CCAACACTGTTCCACTACTTGCTG -CCAACACTGTTCCACTACTCCATG -CCAACACTGTTCCACTACTGTGTG -CCAACACTGTTCCACTACCTAGTG -CCAACACTGTTCCACTACCATCTG -CCAACACTGTTCCACTACGAGTTG -CCAACACTGTTCCACTACAGACTG -CCAACACTGTTCCACTACTCGGTA -CCAACACTGTTCCACTACTGCCTA -CCAACACTGTTCCACTACCCACTA -CCAACACTGTTCCACTACGGAGTA -CCAACACTGTTCCACTACTCGTCT -CCAACACTGTTCCACTACTGCACT -CCAACACTGTTCCACTACCTGACT -CCAACACTGTTCCACTACCAACCT -CCAACACTGTTCCACTACGCTACT -CCAACACTGTTCCACTACGGATCT -CCAACACTGTTCCACTACAAGGCT -CCAACACTGTTCCACTACTCAACC -CCAACACTGTTCCACTACTGTTCC -CCAACACTGTTCCACTACATTCCC -CCAACACTGTTCCACTACTTCTCG -CCAACACTGTTCCACTACTAGACG -CCAACACTGTTCCACTACGTAACG -CCAACACTGTTCCACTACACTTCG -CCAACACTGTTCCACTACTACGCA -CCAACACTGTTCCACTACCTTGCA -CCAACACTGTTCCACTACCGAACA -CCAACACTGTTCCACTACCAGTCA -CCAACACTGTTCCACTACGATCCA -CCAACACTGTTCCACTACACGACA -CCAACACTGTTCCACTACAGCTCA -CCAACACTGTTCCACTACTCACGT -CCAACACTGTTCCACTACCGTAGT -CCAACACTGTTCCACTACGTCAGT -CCAACACTGTTCCACTACGAAGGT -CCAACACTGTTCCACTACAACCGT -CCAACACTGTTCCACTACTTGTGC -CCAACACTGTTCCACTACCTAAGC -CCAACACTGTTCCACTACACTAGC -CCAACACTGTTCCACTACAGATGC -CCAACACTGTTCCACTACTGAAGG -CCAACACTGTTCCACTACCAATGG -CCAACACTGTTCCACTACATGAGG -CCAACACTGTTCCACTACAATGGG -CCAACACTGTTCCACTACTCCTGA -CCAACACTGTTCCACTACTAGCGA -CCAACACTGTTCCACTACCACAGA -CCAACACTGTTCCACTACGCAAGA -CCAACACTGTTCCACTACGGTTGA -CCAACACTGTTCCACTACTCCGAT -CCAACACTGTTCCACTACTGGCAT -CCAACACTGTTCCACTACCGAGAT -CCAACACTGTTCCACTACTACCAC -CCAACACTGTTCCACTACCAGAAC -CCAACACTGTTCCACTACGTCTAC -CCAACACTGTTCCACTACACGTAC -CCAACACTGTTCCACTACAGTGAC -CCAACACTGTTCCACTACCTGTAG -CCAACACTGTTCCACTACCCTAAG -CCAACACTGTTCCACTACGTTCAG -CCAACACTGTTCCACTACGCATAG -CCAACACTGTTCCACTACGACAAG -CCAACACTGTTCCACTACAAGCAG -CCAACACTGTTCCACTACCGTCAA -CCAACACTGTTCCACTACGCTGAA -CCAACACTGTTCCACTACAGTACG -CCAACACTGTTCCACTACATCCGA -CCAACACTGTTCCACTACATGGGA -CCAACACTGTTCCACTACGTGCAA -CCAACACTGTTCCACTACGAGGAA -CCAACACTGTTCCACTACCAGGTA -CCAACACTGTTCCACTACGACTCT -CCAACACTGTTCCACTACAGTCCT -CCAACACTGTTCCACTACTAAGCC -CCAACACTGTTCCACTACATAGCC -CCAACACTGTTCCACTACTAACCG -CCAACACTGTTCCACTACATGCCA -CCAACACTGTTCAACCAGGGAAAC -CCAACACTGTTCAACCAGAACACC -CCAACACTGTTCAACCAGATCGAG -CCAACACTGTTCAACCAGCTCCTT -CCAACACTGTTCAACCAGCCTGTT -CCAACACTGTTCAACCAGCGGTTT -CCAACACTGTTCAACCAGGTGGTT -CCAACACTGTTCAACCAGGCCTTT -CCAACACTGTTCAACCAGGGTCTT -CCAACACTGTTCAACCAGACGCTT -CCAACACTGTTCAACCAGAGCGTT -CCAACACTGTTCAACCAGTTCGTC -CCAACACTGTTCAACCAGTCTCTC -CCAACACTGTTCAACCAGTGGATC -CCAACACTGTTCAACCAGCACTTC -CCAACACTGTTCAACCAGGTACTC -CCAACACTGTTCAACCAGGATGTC -CCAACACTGTTCAACCAGACAGTC -CCAACACTGTTCAACCAGTTGCTG -CCAACACTGTTCAACCAGTCCATG -CCAACACTGTTCAACCAGTGTGTG -CCAACACTGTTCAACCAGCTAGTG -CCAACACTGTTCAACCAGCATCTG -CCAACACTGTTCAACCAGGAGTTG -CCAACACTGTTCAACCAGAGACTG -CCAACACTGTTCAACCAGTCGGTA -CCAACACTGTTCAACCAGTGCCTA -CCAACACTGTTCAACCAGCCACTA -CCAACACTGTTCAACCAGGGAGTA -CCAACACTGTTCAACCAGTCGTCT -CCAACACTGTTCAACCAGTGCACT -CCAACACTGTTCAACCAGCTGACT -CCAACACTGTTCAACCAGCAACCT -CCAACACTGTTCAACCAGGCTACT -CCAACACTGTTCAACCAGGGATCT -CCAACACTGTTCAACCAGAAGGCT -CCAACACTGTTCAACCAGTCAACC -CCAACACTGTTCAACCAGTGTTCC -CCAACACTGTTCAACCAGATTCCC -CCAACACTGTTCAACCAGTTCTCG -CCAACACTGTTCAACCAGTAGACG -CCAACACTGTTCAACCAGGTAACG -CCAACACTGTTCAACCAGACTTCG -CCAACACTGTTCAACCAGTACGCA -CCAACACTGTTCAACCAGCTTGCA -CCAACACTGTTCAACCAGCGAACA -CCAACACTGTTCAACCAGCAGTCA -CCAACACTGTTCAACCAGGATCCA -CCAACACTGTTCAACCAGACGACA -CCAACACTGTTCAACCAGAGCTCA -CCAACACTGTTCAACCAGTCACGT -CCAACACTGTTCAACCAGCGTAGT -CCAACACTGTTCAACCAGGTCAGT -CCAACACTGTTCAACCAGGAAGGT -CCAACACTGTTCAACCAGAACCGT -CCAACACTGTTCAACCAGTTGTGC -CCAACACTGTTCAACCAGCTAAGC -CCAACACTGTTCAACCAGACTAGC -CCAACACTGTTCAACCAGAGATGC -CCAACACTGTTCAACCAGTGAAGG -CCAACACTGTTCAACCAGCAATGG -CCAACACTGTTCAACCAGATGAGG -CCAACACTGTTCAACCAGAATGGG -CCAACACTGTTCAACCAGTCCTGA -CCAACACTGTTCAACCAGTAGCGA -CCAACACTGTTCAACCAGCACAGA -CCAACACTGTTCAACCAGGCAAGA -CCAACACTGTTCAACCAGGGTTGA -CCAACACTGTTCAACCAGTCCGAT -CCAACACTGTTCAACCAGTGGCAT -CCAACACTGTTCAACCAGCGAGAT -CCAACACTGTTCAACCAGTACCAC -CCAACACTGTTCAACCAGCAGAAC -CCAACACTGTTCAACCAGGTCTAC -CCAACACTGTTCAACCAGACGTAC -CCAACACTGTTCAACCAGAGTGAC -CCAACACTGTTCAACCAGCTGTAG -CCAACACTGTTCAACCAGCCTAAG -CCAACACTGTTCAACCAGGTTCAG -CCAACACTGTTCAACCAGGCATAG -CCAACACTGTTCAACCAGGACAAG -CCAACACTGTTCAACCAGAAGCAG -CCAACACTGTTCAACCAGCGTCAA -CCAACACTGTTCAACCAGGCTGAA -CCAACACTGTTCAACCAGAGTACG -CCAACACTGTTCAACCAGATCCGA -CCAACACTGTTCAACCAGATGGGA -CCAACACTGTTCAACCAGGTGCAA -CCAACACTGTTCAACCAGGAGGAA -CCAACACTGTTCAACCAGCAGGTA -CCAACACTGTTCAACCAGGACTCT -CCAACACTGTTCAACCAGAGTCCT -CCAACACTGTTCAACCAGTAAGCC -CCAACACTGTTCAACCAGATAGCC -CCAACACTGTTCAACCAGTAACCG -CCAACACTGTTCAACCAGATGCCA -CCAACACTGTTCTACGTCGGAAAC -CCAACACTGTTCTACGTCAACACC -CCAACACTGTTCTACGTCATCGAG -CCAACACTGTTCTACGTCCTCCTT -CCAACACTGTTCTACGTCCCTGTT -CCAACACTGTTCTACGTCCGGTTT -CCAACACTGTTCTACGTCGTGGTT -CCAACACTGTTCTACGTCGCCTTT -CCAACACTGTTCTACGTCGGTCTT -CCAACACTGTTCTACGTCACGCTT -CCAACACTGTTCTACGTCAGCGTT -CCAACACTGTTCTACGTCTTCGTC -CCAACACTGTTCTACGTCTCTCTC -CCAACACTGTTCTACGTCTGGATC -CCAACACTGTTCTACGTCCACTTC -CCAACACTGTTCTACGTCGTACTC -CCAACACTGTTCTACGTCGATGTC -CCAACACTGTTCTACGTCACAGTC -CCAACACTGTTCTACGTCTTGCTG -CCAACACTGTTCTACGTCTCCATG -CCAACACTGTTCTACGTCTGTGTG -CCAACACTGTTCTACGTCCTAGTG -CCAACACTGTTCTACGTCCATCTG -CCAACACTGTTCTACGTCGAGTTG -CCAACACTGTTCTACGTCAGACTG -CCAACACTGTTCTACGTCTCGGTA -CCAACACTGTTCTACGTCTGCCTA -CCAACACTGTTCTACGTCCCACTA -CCAACACTGTTCTACGTCGGAGTA -CCAACACTGTTCTACGTCTCGTCT -CCAACACTGTTCTACGTCTGCACT -CCAACACTGTTCTACGTCCTGACT -CCAACACTGTTCTACGTCCAACCT -CCAACACTGTTCTACGTCGCTACT -CCAACACTGTTCTACGTCGGATCT -CCAACACTGTTCTACGTCAAGGCT -CCAACACTGTTCTACGTCTCAACC -CCAACACTGTTCTACGTCTGTTCC -CCAACACTGTTCTACGTCATTCCC -CCAACACTGTTCTACGTCTTCTCG -CCAACACTGTTCTACGTCTAGACG -CCAACACTGTTCTACGTCGTAACG -CCAACACTGTTCTACGTCACTTCG -CCAACACTGTTCTACGTCTACGCA -CCAACACTGTTCTACGTCCTTGCA -CCAACACTGTTCTACGTCCGAACA -CCAACACTGTTCTACGTCCAGTCA -CCAACACTGTTCTACGTCGATCCA -CCAACACTGTTCTACGTCACGACA -CCAACACTGTTCTACGTCAGCTCA -CCAACACTGTTCTACGTCTCACGT -CCAACACTGTTCTACGTCCGTAGT -CCAACACTGTTCTACGTCGTCAGT -CCAACACTGTTCTACGTCGAAGGT -CCAACACTGTTCTACGTCAACCGT -CCAACACTGTTCTACGTCTTGTGC -CCAACACTGTTCTACGTCCTAAGC -CCAACACTGTTCTACGTCACTAGC -CCAACACTGTTCTACGTCAGATGC -CCAACACTGTTCTACGTCTGAAGG -CCAACACTGTTCTACGTCCAATGG -CCAACACTGTTCTACGTCATGAGG -CCAACACTGTTCTACGTCAATGGG -CCAACACTGTTCTACGTCTCCTGA -CCAACACTGTTCTACGTCTAGCGA -CCAACACTGTTCTACGTCCACAGA -CCAACACTGTTCTACGTCGCAAGA -CCAACACTGTTCTACGTCGGTTGA -CCAACACTGTTCTACGTCTCCGAT -CCAACACTGTTCTACGTCTGGCAT -CCAACACTGTTCTACGTCCGAGAT -CCAACACTGTTCTACGTCTACCAC -CCAACACTGTTCTACGTCCAGAAC -CCAACACTGTTCTACGTCGTCTAC -CCAACACTGTTCTACGTCACGTAC -CCAACACTGTTCTACGTCAGTGAC -CCAACACTGTTCTACGTCCTGTAG -CCAACACTGTTCTACGTCCCTAAG -CCAACACTGTTCTACGTCGTTCAG -CCAACACTGTTCTACGTCGCATAG -CCAACACTGTTCTACGTCGACAAG -CCAACACTGTTCTACGTCAAGCAG -CCAACACTGTTCTACGTCCGTCAA -CCAACACTGTTCTACGTCGCTGAA -CCAACACTGTTCTACGTCAGTACG -CCAACACTGTTCTACGTCATCCGA -CCAACACTGTTCTACGTCATGGGA -CCAACACTGTTCTACGTCGTGCAA -CCAACACTGTTCTACGTCGAGGAA -CCAACACTGTTCTACGTCCAGGTA -CCAACACTGTTCTACGTCGACTCT -CCAACACTGTTCTACGTCAGTCCT -CCAACACTGTTCTACGTCTAAGCC -CCAACACTGTTCTACGTCATAGCC -CCAACACTGTTCTACGTCTAACCG -CCAACACTGTTCTACGTCATGCCA -CCAACACTGTTCTACACGGGAAAC -CCAACACTGTTCTACACGAACACC -CCAACACTGTTCTACACGATCGAG -CCAACACTGTTCTACACGCTCCTT -CCAACACTGTTCTACACGCCTGTT -CCAACACTGTTCTACACGCGGTTT -CCAACACTGTTCTACACGGTGGTT -CCAACACTGTTCTACACGGCCTTT -CCAACACTGTTCTACACGGGTCTT -CCAACACTGTTCTACACGACGCTT -CCAACACTGTTCTACACGAGCGTT -CCAACACTGTTCTACACGTTCGTC -CCAACACTGTTCTACACGTCTCTC -CCAACACTGTTCTACACGTGGATC -CCAACACTGTTCTACACGCACTTC -CCAACACTGTTCTACACGGTACTC -CCAACACTGTTCTACACGGATGTC -CCAACACTGTTCTACACGACAGTC -CCAACACTGTTCTACACGTTGCTG -CCAACACTGTTCTACACGTCCATG -CCAACACTGTTCTACACGTGTGTG -CCAACACTGTTCTACACGCTAGTG -CCAACACTGTTCTACACGCATCTG -CCAACACTGTTCTACACGGAGTTG -CCAACACTGTTCTACACGAGACTG -CCAACACTGTTCTACACGTCGGTA -CCAACACTGTTCTACACGTGCCTA -CCAACACTGTTCTACACGCCACTA -CCAACACTGTTCTACACGGGAGTA -CCAACACTGTTCTACACGTCGTCT -CCAACACTGTTCTACACGTGCACT -CCAACACTGTTCTACACGCTGACT -CCAACACTGTTCTACACGCAACCT -CCAACACTGTTCTACACGGCTACT -CCAACACTGTTCTACACGGGATCT -CCAACACTGTTCTACACGAAGGCT -CCAACACTGTTCTACACGTCAACC -CCAACACTGTTCTACACGTGTTCC -CCAACACTGTTCTACACGATTCCC -CCAACACTGTTCTACACGTTCTCG -CCAACACTGTTCTACACGTAGACG -CCAACACTGTTCTACACGGTAACG -CCAACACTGTTCTACACGACTTCG -CCAACACTGTTCTACACGTACGCA -CCAACACTGTTCTACACGCTTGCA -CCAACACTGTTCTACACGCGAACA -CCAACACTGTTCTACACGCAGTCA -CCAACACTGTTCTACACGGATCCA -CCAACACTGTTCTACACGACGACA -CCAACACTGTTCTACACGAGCTCA -CCAACACTGTTCTACACGTCACGT -CCAACACTGTTCTACACGCGTAGT -CCAACACTGTTCTACACGGTCAGT -CCAACACTGTTCTACACGGAAGGT -CCAACACTGTTCTACACGAACCGT -CCAACACTGTTCTACACGTTGTGC -CCAACACTGTTCTACACGCTAAGC -CCAACACTGTTCTACACGACTAGC -CCAACACTGTTCTACACGAGATGC -CCAACACTGTTCTACACGTGAAGG -CCAACACTGTTCTACACGCAATGG -CCAACACTGTTCTACACGATGAGG -CCAACACTGTTCTACACGAATGGG -CCAACACTGTTCTACACGTCCTGA -CCAACACTGTTCTACACGTAGCGA -CCAACACTGTTCTACACGCACAGA -CCAACACTGTTCTACACGGCAAGA -CCAACACTGTTCTACACGGGTTGA -CCAACACTGTTCTACACGTCCGAT -CCAACACTGTTCTACACGTGGCAT -CCAACACTGTTCTACACGCGAGAT -CCAACACTGTTCTACACGTACCAC -CCAACACTGTTCTACACGCAGAAC -CCAACACTGTTCTACACGGTCTAC -CCAACACTGTTCTACACGACGTAC -CCAACACTGTTCTACACGAGTGAC -CCAACACTGTTCTACACGCTGTAG -CCAACACTGTTCTACACGCCTAAG -CCAACACTGTTCTACACGGTTCAG -CCAACACTGTTCTACACGGCATAG -CCAACACTGTTCTACACGGACAAG -CCAACACTGTTCTACACGAAGCAG -CCAACACTGTTCTACACGCGTCAA -CCAACACTGTTCTACACGGCTGAA -CCAACACTGTTCTACACGAGTACG -CCAACACTGTTCTACACGATCCGA -CCAACACTGTTCTACACGATGGGA -CCAACACTGTTCTACACGGTGCAA -CCAACACTGTTCTACACGGAGGAA -CCAACACTGTTCTACACGCAGGTA -CCAACACTGTTCTACACGGACTCT -CCAACACTGTTCTACACGAGTCCT -CCAACACTGTTCTACACGTAAGCC -CCAACACTGTTCTACACGATAGCC -CCAACACTGTTCTACACGTAACCG -CCAACACTGTTCTACACGATGCCA -CCAACACTGTTCGACAGTGGAAAC -CCAACACTGTTCGACAGTAACACC -CCAACACTGTTCGACAGTATCGAG -CCAACACTGTTCGACAGTCTCCTT -CCAACACTGTTCGACAGTCCTGTT -CCAACACTGTTCGACAGTCGGTTT -CCAACACTGTTCGACAGTGTGGTT -CCAACACTGTTCGACAGTGCCTTT -CCAACACTGTTCGACAGTGGTCTT -CCAACACTGTTCGACAGTACGCTT -CCAACACTGTTCGACAGTAGCGTT -CCAACACTGTTCGACAGTTTCGTC -CCAACACTGTTCGACAGTTCTCTC -CCAACACTGTTCGACAGTTGGATC -CCAACACTGTTCGACAGTCACTTC -CCAACACTGTTCGACAGTGTACTC -CCAACACTGTTCGACAGTGATGTC -CCAACACTGTTCGACAGTACAGTC -CCAACACTGTTCGACAGTTTGCTG -CCAACACTGTTCGACAGTTCCATG -CCAACACTGTTCGACAGTTGTGTG -CCAACACTGTTCGACAGTCTAGTG -CCAACACTGTTCGACAGTCATCTG -CCAACACTGTTCGACAGTGAGTTG -CCAACACTGTTCGACAGTAGACTG -CCAACACTGTTCGACAGTTCGGTA -CCAACACTGTTCGACAGTTGCCTA -CCAACACTGTTCGACAGTCCACTA -CCAACACTGTTCGACAGTGGAGTA -CCAACACTGTTCGACAGTTCGTCT -CCAACACTGTTCGACAGTTGCACT -CCAACACTGTTCGACAGTCTGACT -CCAACACTGTTCGACAGTCAACCT -CCAACACTGTTCGACAGTGCTACT -CCAACACTGTTCGACAGTGGATCT -CCAACACTGTTCGACAGTAAGGCT -CCAACACTGTTCGACAGTTCAACC -CCAACACTGTTCGACAGTTGTTCC -CCAACACTGTTCGACAGTATTCCC -CCAACACTGTTCGACAGTTTCTCG -CCAACACTGTTCGACAGTTAGACG -CCAACACTGTTCGACAGTGTAACG -CCAACACTGTTCGACAGTACTTCG -CCAACACTGTTCGACAGTTACGCA -CCAACACTGTTCGACAGTCTTGCA -CCAACACTGTTCGACAGTCGAACA -CCAACACTGTTCGACAGTCAGTCA -CCAACACTGTTCGACAGTGATCCA -CCAACACTGTTCGACAGTACGACA -CCAACACTGTTCGACAGTAGCTCA -CCAACACTGTTCGACAGTTCACGT -CCAACACTGTTCGACAGTCGTAGT -CCAACACTGTTCGACAGTGTCAGT -CCAACACTGTTCGACAGTGAAGGT -CCAACACTGTTCGACAGTAACCGT -CCAACACTGTTCGACAGTTTGTGC -CCAACACTGTTCGACAGTCTAAGC -CCAACACTGTTCGACAGTACTAGC -CCAACACTGTTCGACAGTAGATGC -CCAACACTGTTCGACAGTTGAAGG -CCAACACTGTTCGACAGTCAATGG -CCAACACTGTTCGACAGTATGAGG -CCAACACTGTTCGACAGTAATGGG -CCAACACTGTTCGACAGTTCCTGA -CCAACACTGTTCGACAGTTAGCGA -CCAACACTGTTCGACAGTCACAGA -CCAACACTGTTCGACAGTGCAAGA -CCAACACTGTTCGACAGTGGTTGA -CCAACACTGTTCGACAGTTCCGAT -CCAACACTGTTCGACAGTTGGCAT -CCAACACTGTTCGACAGTCGAGAT -CCAACACTGTTCGACAGTTACCAC -CCAACACTGTTCGACAGTCAGAAC -CCAACACTGTTCGACAGTGTCTAC -CCAACACTGTTCGACAGTACGTAC -CCAACACTGTTCGACAGTAGTGAC -CCAACACTGTTCGACAGTCTGTAG -CCAACACTGTTCGACAGTCCTAAG -CCAACACTGTTCGACAGTGTTCAG -CCAACACTGTTCGACAGTGCATAG -CCAACACTGTTCGACAGTGACAAG -CCAACACTGTTCGACAGTAAGCAG -CCAACACTGTTCGACAGTCGTCAA -CCAACACTGTTCGACAGTGCTGAA -CCAACACTGTTCGACAGTAGTACG -CCAACACTGTTCGACAGTATCCGA -CCAACACTGTTCGACAGTATGGGA -CCAACACTGTTCGACAGTGTGCAA -CCAACACTGTTCGACAGTGAGGAA -CCAACACTGTTCGACAGTCAGGTA -CCAACACTGTTCGACAGTGACTCT -CCAACACTGTTCGACAGTAGTCCT -CCAACACTGTTCGACAGTTAAGCC -CCAACACTGTTCGACAGTATAGCC -CCAACACTGTTCGACAGTTAACCG -CCAACACTGTTCGACAGTATGCCA -CCAACACTGTTCTAGCTGGGAAAC -CCAACACTGTTCTAGCTGAACACC -CCAACACTGTTCTAGCTGATCGAG -CCAACACTGTTCTAGCTGCTCCTT -CCAACACTGTTCTAGCTGCCTGTT -CCAACACTGTTCTAGCTGCGGTTT -CCAACACTGTTCTAGCTGGTGGTT -CCAACACTGTTCTAGCTGGCCTTT -CCAACACTGTTCTAGCTGGGTCTT -CCAACACTGTTCTAGCTGACGCTT -CCAACACTGTTCTAGCTGAGCGTT -CCAACACTGTTCTAGCTGTTCGTC -CCAACACTGTTCTAGCTGTCTCTC -CCAACACTGTTCTAGCTGTGGATC -CCAACACTGTTCTAGCTGCACTTC -CCAACACTGTTCTAGCTGGTACTC -CCAACACTGTTCTAGCTGGATGTC -CCAACACTGTTCTAGCTGACAGTC -CCAACACTGTTCTAGCTGTTGCTG -CCAACACTGTTCTAGCTGTCCATG -CCAACACTGTTCTAGCTGTGTGTG -CCAACACTGTTCTAGCTGCTAGTG -CCAACACTGTTCTAGCTGCATCTG -CCAACACTGTTCTAGCTGGAGTTG -CCAACACTGTTCTAGCTGAGACTG -CCAACACTGTTCTAGCTGTCGGTA -CCAACACTGTTCTAGCTGTGCCTA -CCAACACTGTTCTAGCTGCCACTA -CCAACACTGTTCTAGCTGGGAGTA -CCAACACTGTTCTAGCTGTCGTCT -CCAACACTGTTCTAGCTGTGCACT -CCAACACTGTTCTAGCTGCTGACT -CCAACACTGTTCTAGCTGCAACCT -CCAACACTGTTCTAGCTGGCTACT -CCAACACTGTTCTAGCTGGGATCT -CCAACACTGTTCTAGCTGAAGGCT -CCAACACTGTTCTAGCTGTCAACC -CCAACACTGTTCTAGCTGTGTTCC -CCAACACTGTTCTAGCTGATTCCC -CCAACACTGTTCTAGCTGTTCTCG -CCAACACTGTTCTAGCTGTAGACG -CCAACACTGTTCTAGCTGGTAACG -CCAACACTGTTCTAGCTGACTTCG -CCAACACTGTTCTAGCTGTACGCA -CCAACACTGTTCTAGCTGCTTGCA -CCAACACTGTTCTAGCTGCGAACA -CCAACACTGTTCTAGCTGCAGTCA -CCAACACTGTTCTAGCTGGATCCA -CCAACACTGTTCTAGCTGACGACA -CCAACACTGTTCTAGCTGAGCTCA -CCAACACTGTTCTAGCTGTCACGT -CCAACACTGTTCTAGCTGCGTAGT -CCAACACTGTTCTAGCTGGTCAGT -CCAACACTGTTCTAGCTGGAAGGT -CCAACACTGTTCTAGCTGAACCGT -CCAACACTGTTCTAGCTGTTGTGC -CCAACACTGTTCTAGCTGCTAAGC -CCAACACTGTTCTAGCTGACTAGC -CCAACACTGTTCTAGCTGAGATGC -CCAACACTGTTCTAGCTGTGAAGG -CCAACACTGTTCTAGCTGCAATGG -CCAACACTGTTCTAGCTGATGAGG -CCAACACTGTTCTAGCTGAATGGG -CCAACACTGTTCTAGCTGTCCTGA -CCAACACTGTTCTAGCTGTAGCGA -CCAACACTGTTCTAGCTGCACAGA -CCAACACTGTTCTAGCTGGCAAGA -CCAACACTGTTCTAGCTGGGTTGA -CCAACACTGTTCTAGCTGTCCGAT -CCAACACTGTTCTAGCTGTGGCAT -CCAACACTGTTCTAGCTGCGAGAT -CCAACACTGTTCTAGCTGTACCAC -CCAACACTGTTCTAGCTGCAGAAC -CCAACACTGTTCTAGCTGGTCTAC -CCAACACTGTTCTAGCTGACGTAC -CCAACACTGTTCTAGCTGAGTGAC -CCAACACTGTTCTAGCTGCTGTAG -CCAACACTGTTCTAGCTGCCTAAG -CCAACACTGTTCTAGCTGGTTCAG -CCAACACTGTTCTAGCTGGCATAG -CCAACACTGTTCTAGCTGGACAAG -CCAACACTGTTCTAGCTGAAGCAG -CCAACACTGTTCTAGCTGCGTCAA -CCAACACTGTTCTAGCTGGCTGAA -CCAACACTGTTCTAGCTGAGTACG -CCAACACTGTTCTAGCTGATCCGA -CCAACACTGTTCTAGCTGATGGGA -CCAACACTGTTCTAGCTGGTGCAA -CCAACACTGTTCTAGCTGGAGGAA -CCAACACTGTTCTAGCTGCAGGTA -CCAACACTGTTCTAGCTGGACTCT -CCAACACTGTTCTAGCTGAGTCCT -CCAACACTGTTCTAGCTGTAAGCC -CCAACACTGTTCTAGCTGATAGCC -CCAACACTGTTCTAGCTGTAACCG -CCAACACTGTTCTAGCTGATGCCA -CCAACACTGTTCAAGCCTGGAAAC -CCAACACTGTTCAAGCCTAACACC -CCAACACTGTTCAAGCCTATCGAG -CCAACACTGTTCAAGCCTCTCCTT -CCAACACTGTTCAAGCCTCCTGTT -CCAACACTGTTCAAGCCTCGGTTT -CCAACACTGTTCAAGCCTGTGGTT -CCAACACTGTTCAAGCCTGCCTTT -CCAACACTGTTCAAGCCTGGTCTT -CCAACACTGTTCAAGCCTACGCTT -CCAACACTGTTCAAGCCTAGCGTT -CCAACACTGTTCAAGCCTTTCGTC -CCAACACTGTTCAAGCCTTCTCTC -CCAACACTGTTCAAGCCTTGGATC -CCAACACTGTTCAAGCCTCACTTC -CCAACACTGTTCAAGCCTGTACTC -CCAACACTGTTCAAGCCTGATGTC -CCAACACTGTTCAAGCCTACAGTC -CCAACACTGTTCAAGCCTTTGCTG -CCAACACTGTTCAAGCCTTCCATG -CCAACACTGTTCAAGCCTTGTGTG -CCAACACTGTTCAAGCCTCTAGTG -CCAACACTGTTCAAGCCTCATCTG -CCAACACTGTTCAAGCCTGAGTTG -CCAACACTGTTCAAGCCTAGACTG -CCAACACTGTTCAAGCCTTCGGTA -CCAACACTGTTCAAGCCTTGCCTA -CCAACACTGTTCAAGCCTCCACTA -CCAACACTGTTCAAGCCTGGAGTA -CCAACACTGTTCAAGCCTTCGTCT -CCAACACTGTTCAAGCCTTGCACT -CCAACACTGTTCAAGCCTCTGACT -CCAACACTGTTCAAGCCTCAACCT -CCAACACTGTTCAAGCCTGCTACT -CCAACACTGTTCAAGCCTGGATCT -CCAACACTGTTCAAGCCTAAGGCT -CCAACACTGTTCAAGCCTTCAACC -CCAACACTGTTCAAGCCTTGTTCC -CCAACACTGTTCAAGCCTATTCCC -CCAACACTGTTCAAGCCTTTCTCG -CCAACACTGTTCAAGCCTTAGACG -CCAACACTGTTCAAGCCTGTAACG -CCAACACTGTTCAAGCCTACTTCG -CCAACACTGTTCAAGCCTTACGCA -CCAACACTGTTCAAGCCTCTTGCA -CCAACACTGTTCAAGCCTCGAACA -CCAACACTGTTCAAGCCTCAGTCA -CCAACACTGTTCAAGCCTGATCCA -CCAACACTGTTCAAGCCTACGACA -CCAACACTGTTCAAGCCTAGCTCA -CCAACACTGTTCAAGCCTTCACGT -CCAACACTGTTCAAGCCTCGTAGT -CCAACACTGTTCAAGCCTGTCAGT -CCAACACTGTTCAAGCCTGAAGGT -CCAACACTGTTCAAGCCTAACCGT -CCAACACTGTTCAAGCCTTTGTGC -CCAACACTGTTCAAGCCTCTAAGC -CCAACACTGTTCAAGCCTACTAGC -CCAACACTGTTCAAGCCTAGATGC -CCAACACTGTTCAAGCCTTGAAGG -CCAACACTGTTCAAGCCTCAATGG -CCAACACTGTTCAAGCCTATGAGG -CCAACACTGTTCAAGCCTAATGGG -CCAACACTGTTCAAGCCTTCCTGA -CCAACACTGTTCAAGCCTTAGCGA -CCAACACTGTTCAAGCCTCACAGA -CCAACACTGTTCAAGCCTGCAAGA -CCAACACTGTTCAAGCCTGGTTGA -CCAACACTGTTCAAGCCTTCCGAT -CCAACACTGTTCAAGCCTTGGCAT -CCAACACTGTTCAAGCCTCGAGAT -CCAACACTGTTCAAGCCTTACCAC -CCAACACTGTTCAAGCCTCAGAAC -CCAACACTGTTCAAGCCTGTCTAC -CCAACACTGTTCAAGCCTACGTAC -CCAACACTGTTCAAGCCTAGTGAC -CCAACACTGTTCAAGCCTCTGTAG -CCAACACTGTTCAAGCCTCCTAAG -CCAACACTGTTCAAGCCTGTTCAG -CCAACACTGTTCAAGCCTGCATAG -CCAACACTGTTCAAGCCTGACAAG -CCAACACTGTTCAAGCCTAAGCAG -CCAACACTGTTCAAGCCTCGTCAA -CCAACACTGTTCAAGCCTGCTGAA -CCAACACTGTTCAAGCCTAGTACG -CCAACACTGTTCAAGCCTATCCGA -CCAACACTGTTCAAGCCTATGGGA -CCAACACTGTTCAAGCCTGTGCAA -CCAACACTGTTCAAGCCTGAGGAA -CCAACACTGTTCAAGCCTCAGGTA -CCAACACTGTTCAAGCCTGACTCT -CCAACACTGTTCAAGCCTAGTCCT -CCAACACTGTTCAAGCCTTAAGCC -CCAACACTGTTCAAGCCTATAGCC -CCAACACTGTTCAAGCCTTAACCG -CCAACACTGTTCAAGCCTATGCCA -CCAACACTGTTCCAGGTTGGAAAC -CCAACACTGTTCCAGGTTAACACC -CCAACACTGTTCCAGGTTATCGAG -CCAACACTGTTCCAGGTTCTCCTT -CCAACACTGTTCCAGGTTCCTGTT -CCAACACTGTTCCAGGTTCGGTTT -CCAACACTGTTCCAGGTTGTGGTT -CCAACACTGTTCCAGGTTGCCTTT -CCAACACTGTTCCAGGTTGGTCTT -CCAACACTGTTCCAGGTTACGCTT -CCAACACTGTTCCAGGTTAGCGTT -CCAACACTGTTCCAGGTTTTCGTC -CCAACACTGTTCCAGGTTTCTCTC -CCAACACTGTTCCAGGTTTGGATC -CCAACACTGTTCCAGGTTCACTTC -CCAACACTGTTCCAGGTTGTACTC -CCAACACTGTTCCAGGTTGATGTC -CCAACACTGTTCCAGGTTACAGTC -CCAACACTGTTCCAGGTTTTGCTG -CCAACACTGTTCCAGGTTTCCATG -CCAACACTGTTCCAGGTTTGTGTG -CCAACACTGTTCCAGGTTCTAGTG -CCAACACTGTTCCAGGTTCATCTG -CCAACACTGTTCCAGGTTGAGTTG -CCAACACTGTTCCAGGTTAGACTG -CCAACACTGTTCCAGGTTTCGGTA -CCAACACTGTTCCAGGTTTGCCTA -CCAACACTGTTCCAGGTTCCACTA -CCAACACTGTTCCAGGTTGGAGTA -CCAACACTGTTCCAGGTTTCGTCT -CCAACACTGTTCCAGGTTTGCACT -CCAACACTGTTCCAGGTTCTGACT -CCAACACTGTTCCAGGTTCAACCT -CCAACACTGTTCCAGGTTGCTACT -CCAACACTGTTCCAGGTTGGATCT -CCAACACTGTTCCAGGTTAAGGCT -CCAACACTGTTCCAGGTTTCAACC -CCAACACTGTTCCAGGTTTGTTCC -CCAACACTGTTCCAGGTTATTCCC -CCAACACTGTTCCAGGTTTTCTCG -CCAACACTGTTCCAGGTTTAGACG -CCAACACTGTTCCAGGTTGTAACG -CCAACACTGTTCCAGGTTACTTCG -CCAACACTGTTCCAGGTTTACGCA -CCAACACTGTTCCAGGTTCTTGCA -CCAACACTGTTCCAGGTTCGAACA -CCAACACTGTTCCAGGTTCAGTCA -CCAACACTGTTCCAGGTTGATCCA -CCAACACTGTTCCAGGTTACGACA -CCAACACTGTTCCAGGTTAGCTCA -CCAACACTGTTCCAGGTTTCACGT -CCAACACTGTTCCAGGTTCGTAGT -CCAACACTGTTCCAGGTTGTCAGT -CCAACACTGTTCCAGGTTGAAGGT -CCAACACTGTTCCAGGTTAACCGT -CCAACACTGTTCCAGGTTTTGTGC -CCAACACTGTTCCAGGTTCTAAGC -CCAACACTGTTCCAGGTTACTAGC -CCAACACTGTTCCAGGTTAGATGC -CCAACACTGTTCCAGGTTTGAAGG -CCAACACTGTTCCAGGTTCAATGG -CCAACACTGTTCCAGGTTATGAGG -CCAACACTGTTCCAGGTTAATGGG -CCAACACTGTTCCAGGTTTCCTGA -CCAACACTGTTCCAGGTTTAGCGA -CCAACACTGTTCCAGGTTCACAGA -CCAACACTGTTCCAGGTTGCAAGA -CCAACACTGTTCCAGGTTGGTTGA -CCAACACTGTTCCAGGTTTCCGAT -CCAACACTGTTCCAGGTTTGGCAT -CCAACACTGTTCCAGGTTCGAGAT -CCAACACTGTTCCAGGTTTACCAC -CCAACACTGTTCCAGGTTCAGAAC -CCAACACTGTTCCAGGTTGTCTAC -CCAACACTGTTCCAGGTTACGTAC -CCAACACTGTTCCAGGTTAGTGAC -CCAACACTGTTCCAGGTTCTGTAG -CCAACACTGTTCCAGGTTCCTAAG -CCAACACTGTTCCAGGTTGTTCAG -CCAACACTGTTCCAGGTTGCATAG -CCAACACTGTTCCAGGTTGACAAG -CCAACACTGTTCCAGGTTAAGCAG -CCAACACTGTTCCAGGTTCGTCAA -CCAACACTGTTCCAGGTTGCTGAA -CCAACACTGTTCCAGGTTAGTACG -CCAACACTGTTCCAGGTTATCCGA -CCAACACTGTTCCAGGTTATGGGA -CCAACACTGTTCCAGGTTGTGCAA -CCAACACTGTTCCAGGTTGAGGAA -CCAACACTGTTCCAGGTTCAGGTA -CCAACACTGTTCCAGGTTGACTCT -CCAACACTGTTCCAGGTTAGTCCT -CCAACACTGTTCCAGGTTTAAGCC -CCAACACTGTTCCAGGTTATAGCC -CCAACACTGTTCCAGGTTTAACCG -CCAACACTGTTCCAGGTTATGCCA -CCAACACTGTTCTAGGCAGGAAAC -CCAACACTGTTCTAGGCAAACACC -CCAACACTGTTCTAGGCAATCGAG -CCAACACTGTTCTAGGCACTCCTT -CCAACACTGTTCTAGGCACCTGTT -CCAACACTGTTCTAGGCACGGTTT -CCAACACTGTTCTAGGCAGTGGTT -CCAACACTGTTCTAGGCAGCCTTT -CCAACACTGTTCTAGGCAGGTCTT -CCAACACTGTTCTAGGCAACGCTT -CCAACACTGTTCTAGGCAAGCGTT -CCAACACTGTTCTAGGCATTCGTC -CCAACACTGTTCTAGGCATCTCTC -CCAACACTGTTCTAGGCATGGATC -CCAACACTGTTCTAGGCACACTTC -CCAACACTGTTCTAGGCAGTACTC -CCAACACTGTTCTAGGCAGATGTC -CCAACACTGTTCTAGGCAACAGTC -CCAACACTGTTCTAGGCATTGCTG -CCAACACTGTTCTAGGCATCCATG -CCAACACTGTTCTAGGCATGTGTG -CCAACACTGTTCTAGGCACTAGTG -CCAACACTGTTCTAGGCACATCTG -CCAACACTGTTCTAGGCAGAGTTG -CCAACACTGTTCTAGGCAAGACTG -CCAACACTGTTCTAGGCATCGGTA -CCAACACTGTTCTAGGCATGCCTA -CCAACACTGTTCTAGGCACCACTA -CCAACACTGTTCTAGGCAGGAGTA -CCAACACTGTTCTAGGCATCGTCT -CCAACACTGTTCTAGGCATGCACT -CCAACACTGTTCTAGGCACTGACT -CCAACACTGTTCTAGGCACAACCT -CCAACACTGTTCTAGGCAGCTACT -CCAACACTGTTCTAGGCAGGATCT -CCAACACTGTTCTAGGCAAAGGCT -CCAACACTGTTCTAGGCATCAACC -CCAACACTGTTCTAGGCATGTTCC -CCAACACTGTTCTAGGCAATTCCC -CCAACACTGTTCTAGGCATTCTCG -CCAACACTGTTCTAGGCATAGACG -CCAACACTGTTCTAGGCAGTAACG -CCAACACTGTTCTAGGCAACTTCG -CCAACACTGTTCTAGGCATACGCA -CCAACACTGTTCTAGGCACTTGCA -CCAACACTGTTCTAGGCACGAACA -CCAACACTGTTCTAGGCACAGTCA -CCAACACTGTTCTAGGCAGATCCA -CCAACACTGTTCTAGGCAACGACA -CCAACACTGTTCTAGGCAAGCTCA -CCAACACTGTTCTAGGCATCACGT -CCAACACTGTTCTAGGCACGTAGT -CCAACACTGTTCTAGGCAGTCAGT -CCAACACTGTTCTAGGCAGAAGGT -CCAACACTGTTCTAGGCAAACCGT -CCAACACTGTTCTAGGCATTGTGC -CCAACACTGTTCTAGGCACTAAGC -CCAACACTGTTCTAGGCAACTAGC -CCAACACTGTTCTAGGCAAGATGC -CCAACACTGTTCTAGGCATGAAGG -CCAACACTGTTCTAGGCACAATGG -CCAACACTGTTCTAGGCAATGAGG -CCAACACTGTTCTAGGCAAATGGG -CCAACACTGTTCTAGGCATCCTGA -CCAACACTGTTCTAGGCATAGCGA -CCAACACTGTTCTAGGCACACAGA -CCAACACTGTTCTAGGCAGCAAGA -CCAACACTGTTCTAGGCAGGTTGA -CCAACACTGTTCTAGGCATCCGAT -CCAACACTGTTCTAGGCATGGCAT -CCAACACTGTTCTAGGCACGAGAT -CCAACACTGTTCTAGGCATACCAC -CCAACACTGTTCTAGGCACAGAAC -CCAACACTGTTCTAGGCAGTCTAC -CCAACACTGTTCTAGGCAACGTAC -CCAACACTGTTCTAGGCAAGTGAC -CCAACACTGTTCTAGGCACTGTAG -CCAACACTGTTCTAGGCACCTAAG -CCAACACTGTTCTAGGCAGTTCAG -CCAACACTGTTCTAGGCAGCATAG -CCAACACTGTTCTAGGCAGACAAG -CCAACACTGTTCTAGGCAAAGCAG -CCAACACTGTTCTAGGCACGTCAA -CCAACACTGTTCTAGGCAGCTGAA -CCAACACTGTTCTAGGCAAGTACG -CCAACACTGTTCTAGGCAATCCGA -CCAACACTGTTCTAGGCAATGGGA -CCAACACTGTTCTAGGCAGTGCAA -CCAACACTGTTCTAGGCAGAGGAA -CCAACACTGTTCTAGGCACAGGTA -CCAACACTGTTCTAGGCAGACTCT -CCAACACTGTTCTAGGCAAGTCCT -CCAACACTGTTCTAGGCATAAGCC -CCAACACTGTTCTAGGCAATAGCC -CCAACACTGTTCTAGGCATAACCG -CCAACACTGTTCTAGGCAATGCCA -CCAACACTGTTCAAGGACGGAAAC -CCAACACTGTTCAAGGACAACACC -CCAACACTGTTCAAGGACATCGAG -CCAACACTGTTCAAGGACCTCCTT -CCAACACTGTTCAAGGACCCTGTT -CCAACACTGTTCAAGGACCGGTTT -CCAACACTGTTCAAGGACGTGGTT -CCAACACTGTTCAAGGACGCCTTT -CCAACACTGTTCAAGGACGGTCTT -CCAACACTGTTCAAGGACACGCTT -CCAACACTGTTCAAGGACAGCGTT -CCAACACTGTTCAAGGACTTCGTC -CCAACACTGTTCAAGGACTCTCTC -CCAACACTGTTCAAGGACTGGATC -CCAACACTGTTCAAGGACCACTTC -CCAACACTGTTCAAGGACGTACTC -CCAACACTGTTCAAGGACGATGTC -CCAACACTGTTCAAGGACACAGTC -CCAACACTGTTCAAGGACTTGCTG -CCAACACTGTTCAAGGACTCCATG -CCAACACTGTTCAAGGACTGTGTG -CCAACACTGTTCAAGGACCTAGTG -CCAACACTGTTCAAGGACCATCTG -CCAACACTGTTCAAGGACGAGTTG -CCAACACTGTTCAAGGACAGACTG -CCAACACTGTTCAAGGACTCGGTA -CCAACACTGTTCAAGGACTGCCTA -CCAACACTGTTCAAGGACCCACTA -CCAACACTGTTCAAGGACGGAGTA -CCAACACTGTTCAAGGACTCGTCT -CCAACACTGTTCAAGGACTGCACT -CCAACACTGTTCAAGGACCTGACT -CCAACACTGTTCAAGGACCAACCT -CCAACACTGTTCAAGGACGCTACT -CCAACACTGTTCAAGGACGGATCT -CCAACACTGTTCAAGGACAAGGCT -CCAACACTGTTCAAGGACTCAACC -CCAACACTGTTCAAGGACTGTTCC -CCAACACTGTTCAAGGACATTCCC -CCAACACTGTTCAAGGACTTCTCG -CCAACACTGTTCAAGGACTAGACG -CCAACACTGTTCAAGGACGTAACG -CCAACACTGTTCAAGGACACTTCG -CCAACACTGTTCAAGGACTACGCA -CCAACACTGTTCAAGGACCTTGCA -CCAACACTGTTCAAGGACCGAACA -CCAACACTGTTCAAGGACCAGTCA -CCAACACTGTTCAAGGACGATCCA -CCAACACTGTTCAAGGACACGACA -CCAACACTGTTCAAGGACAGCTCA -CCAACACTGTTCAAGGACTCACGT -CCAACACTGTTCAAGGACCGTAGT -CCAACACTGTTCAAGGACGTCAGT -CCAACACTGTTCAAGGACGAAGGT -CCAACACTGTTCAAGGACAACCGT -CCAACACTGTTCAAGGACTTGTGC -CCAACACTGTTCAAGGACCTAAGC -CCAACACTGTTCAAGGACACTAGC -CCAACACTGTTCAAGGACAGATGC -CCAACACTGTTCAAGGACTGAAGG -CCAACACTGTTCAAGGACCAATGG -CCAACACTGTTCAAGGACATGAGG -CCAACACTGTTCAAGGACAATGGG -CCAACACTGTTCAAGGACTCCTGA -CCAACACTGTTCAAGGACTAGCGA -CCAACACTGTTCAAGGACCACAGA -CCAACACTGTTCAAGGACGCAAGA -CCAACACTGTTCAAGGACGGTTGA -CCAACACTGTTCAAGGACTCCGAT -CCAACACTGTTCAAGGACTGGCAT -CCAACACTGTTCAAGGACCGAGAT -CCAACACTGTTCAAGGACTACCAC -CCAACACTGTTCAAGGACCAGAAC -CCAACACTGTTCAAGGACGTCTAC -CCAACACTGTTCAAGGACACGTAC -CCAACACTGTTCAAGGACAGTGAC -CCAACACTGTTCAAGGACCTGTAG -CCAACACTGTTCAAGGACCCTAAG -CCAACACTGTTCAAGGACGTTCAG -CCAACACTGTTCAAGGACGCATAG -CCAACACTGTTCAAGGACGACAAG -CCAACACTGTTCAAGGACAAGCAG -CCAACACTGTTCAAGGACCGTCAA -CCAACACTGTTCAAGGACGCTGAA -CCAACACTGTTCAAGGACAGTACG -CCAACACTGTTCAAGGACATCCGA -CCAACACTGTTCAAGGACATGGGA -CCAACACTGTTCAAGGACGTGCAA -CCAACACTGTTCAAGGACGAGGAA -CCAACACTGTTCAAGGACCAGGTA -CCAACACTGTTCAAGGACGACTCT -CCAACACTGTTCAAGGACAGTCCT -CCAACACTGTTCAAGGACTAAGCC -CCAACACTGTTCAAGGACATAGCC -CCAACACTGTTCAAGGACTAACCG -CCAACACTGTTCAAGGACATGCCA -CCAACACTGTTCCAGAAGGGAAAC -CCAACACTGTTCCAGAAGAACACC -CCAACACTGTTCCAGAAGATCGAG -CCAACACTGTTCCAGAAGCTCCTT -CCAACACTGTTCCAGAAGCCTGTT -CCAACACTGTTCCAGAAGCGGTTT -CCAACACTGTTCCAGAAGGTGGTT -CCAACACTGTTCCAGAAGGCCTTT -CCAACACTGTTCCAGAAGGGTCTT -CCAACACTGTTCCAGAAGACGCTT -CCAACACTGTTCCAGAAGAGCGTT -CCAACACTGTTCCAGAAGTTCGTC -CCAACACTGTTCCAGAAGTCTCTC -CCAACACTGTTCCAGAAGTGGATC -CCAACACTGTTCCAGAAGCACTTC -CCAACACTGTTCCAGAAGGTACTC -CCAACACTGTTCCAGAAGGATGTC -CCAACACTGTTCCAGAAGACAGTC -CCAACACTGTTCCAGAAGTTGCTG -CCAACACTGTTCCAGAAGTCCATG -CCAACACTGTTCCAGAAGTGTGTG -CCAACACTGTTCCAGAAGCTAGTG -CCAACACTGTTCCAGAAGCATCTG -CCAACACTGTTCCAGAAGGAGTTG -CCAACACTGTTCCAGAAGAGACTG -CCAACACTGTTCCAGAAGTCGGTA -CCAACACTGTTCCAGAAGTGCCTA -CCAACACTGTTCCAGAAGCCACTA -CCAACACTGTTCCAGAAGGGAGTA -CCAACACTGTTCCAGAAGTCGTCT -CCAACACTGTTCCAGAAGTGCACT -CCAACACTGTTCCAGAAGCTGACT -CCAACACTGTTCCAGAAGCAACCT -CCAACACTGTTCCAGAAGGCTACT -CCAACACTGTTCCAGAAGGGATCT -CCAACACTGTTCCAGAAGAAGGCT -CCAACACTGTTCCAGAAGTCAACC -CCAACACTGTTCCAGAAGTGTTCC -CCAACACTGTTCCAGAAGATTCCC -CCAACACTGTTCCAGAAGTTCTCG -CCAACACTGTTCCAGAAGTAGACG -CCAACACTGTTCCAGAAGGTAACG -CCAACACTGTTCCAGAAGACTTCG -CCAACACTGTTCCAGAAGTACGCA -CCAACACTGTTCCAGAAGCTTGCA -CCAACACTGTTCCAGAAGCGAACA -CCAACACTGTTCCAGAAGCAGTCA -CCAACACTGTTCCAGAAGGATCCA -CCAACACTGTTCCAGAAGACGACA -CCAACACTGTTCCAGAAGAGCTCA -CCAACACTGTTCCAGAAGTCACGT -CCAACACTGTTCCAGAAGCGTAGT -CCAACACTGTTCCAGAAGGTCAGT -CCAACACTGTTCCAGAAGGAAGGT -CCAACACTGTTCCAGAAGAACCGT -CCAACACTGTTCCAGAAGTTGTGC -CCAACACTGTTCCAGAAGCTAAGC -CCAACACTGTTCCAGAAGACTAGC -CCAACACTGTTCCAGAAGAGATGC -CCAACACTGTTCCAGAAGTGAAGG -CCAACACTGTTCCAGAAGCAATGG -CCAACACTGTTCCAGAAGATGAGG -CCAACACTGTTCCAGAAGAATGGG -CCAACACTGTTCCAGAAGTCCTGA -CCAACACTGTTCCAGAAGTAGCGA -CCAACACTGTTCCAGAAGCACAGA -CCAACACTGTTCCAGAAGGCAAGA -CCAACACTGTTCCAGAAGGGTTGA -CCAACACTGTTCCAGAAGTCCGAT -CCAACACTGTTCCAGAAGTGGCAT -CCAACACTGTTCCAGAAGCGAGAT -CCAACACTGTTCCAGAAGTACCAC -CCAACACTGTTCCAGAAGCAGAAC -CCAACACTGTTCCAGAAGGTCTAC -CCAACACTGTTCCAGAAGACGTAC -CCAACACTGTTCCAGAAGAGTGAC -CCAACACTGTTCCAGAAGCTGTAG -CCAACACTGTTCCAGAAGCCTAAG -CCAACACTGTTCCAGAAGGTTCAG -CCAACACTGTTCCAGAAGGCATAG -CCAACACTGTTCCAGAAGGACAAG -CCAACACTGTTCCAGAAGAAGCAG -CCAACACTGTTCCAGAAGCGTCAA -CCAACACTGTTCCAGAAGGCTGAA -CCAACACTGTTCCAGAAGAGTACG -CCAACACTGTTCCAGAAGATCCGA -CCAACACTGTTCCAGAAGATGGGA -CCAACACTGTTCCAGAAGGTGCAA -CCAACACTGTTCCAGAAGGAGGAA -CCAACACTGTTCCAGAAGCAGGTA -CCAACACTGTTCCAGAAGGACTCT -CCAACACTGTTCCAGAAGAGTCCT -CCAACACTGTTCCAGAAGTAAGCC -CCAACACTGTTCCAGAAGATAGCC -CCAACACTGTTCCAGAAGTAACCG -CCAACACTGTTCCAGAAGATGCCA -CCAACACTGTTCCAACGTGGAAAC -CCAACACTGTTCCAACGTAACACC -CCAACACTGTTCCAACGTATCGAG -CCAACACTGTTCCAACGTCTCCTT -CCAACACTGTTCCAACGTCCTGTT -CCAACACTGTTCCAACGTCGGTTT -CCAACACTGTTCCAACGTGTGGTT -CCAACACTGTTCCAACGTGCCTTT -CCAACACTGTTCCAACGTGGTCTT -CCAACACTGTTCCAACGTACGCTT -CCAACACTGTTCCAACGTAGCGTT -CCAACACTGTTCCAACGTTTCGTC -CCAACACTGTTCCAACGTTCTCTC -CCAACACTGTTCCAACGTTGGATC -CCAACACTGTTCCAACGTCACTTC -CCAACACTGTTCCAACGTGTACTC -CCAACACTGTTCCAACGTGATGTC -CCAACACTGTTCCAACGTACAGTC -CCAACACTGTTCCAACGTTTGCTG -CCAACACTGTTCCAACGTTCCATG -CCAACACTGTTCCAACGTTGTGTG -CCAACACTGTTCCAACGTCTAGTG -CCAACACTGTTCCAACGTCATCTG -CCAACACTGTTCCAACGTGAGTTG -CCAACACTGTTCCAACGTAGACTG -CCAACACTGTTCCAACGTTCGGTA -CCAACACTGTTCCAACGTTGCCTA -CCAACACTGTTCCAACGTCCACTA -CCAACACTGTTCCAACGTGGAGTA -CCAACACTGTTCCAACGTTCGTCT -CCAACACTGTTCCAACGTTGCACT -CCAACACTGTTCCAACGTCTGACT -CCAACACTGTTCCAACGTCAACCT -CCAACACTGTTCCAACGTGCTACT -CCAACACTGTTCCAACGTGGATCT -CCAACACTGTTCCAACGTAAGGCT -CCAACACTGTTCCAACGTTCAACC -CCAACACTGTTCCAACGTTGTTCC -CCAACACTGTTCCAACGTATTCCC -CCAACACTGTTCCAACGTTTCTCG -CCAACACTGTTCCAACGTTAGACG -CCAACACTGTTCCAACGTGTAACG -CCAACACTGTTCCAACGTACTTCG -CCAACACTGTTCCAACGTTACGCA -CCAACACTGTTCCAACGTCTTGCA -CCAACACTGTTCCAACGTCGAACA -CCAACACTGTTCCAACGTCAGTCA -CCAACACTGTTCCAACGTGATCCA -CCAACACTGTTCCAACGTACGACA -CCAACACTGTTCCAACGTAGCTCA -CCAACACTGTTCCAACGTTCACGT -CCAACACTGTTCCAACGTCGTAGT -CCAACACTGTTCCAACGTGTCAGT -CCAACACTGTTCCAACGTGAAGGT -CCAACACTGTTCCAACGTAACCGT -CCAACACTGTTCCAACGTTTGTGC -CCAACACTGTTCCAACGTCTAAGC -CCAACACTGTTCCAACGTACTAGC -CCAACACTGTTCCAACGTAGATGC -CCAACACTGTTCCAACGTTGAAGG -CCAACACTGTTCCAACGTCAATGG -CCAACACTGTTCCAACGTATGAGG -CCAACACTGTTCCAACGTAATGGG -CCAACACTGTTCCAACGTTCCTGA -CCAACACTGTTCCAACGTTAGCGA -CCAACACTGTTCCAACGTCACAGA -CCAACACTGTTCCAACGTGCAAGA -CCAACACTGTTCCAACGTGGTTGA -CCAACACTGTTCCAACGTTCCGAT -CCAACACTGTTCCAACGTTGGCAT -CCAACACTGTTCCAACGTCGAGAT -CCAACACTGTTCCAACGTTACCAC -CCAACACTGTTCCAACGTCAGAAC -CCAACACTGTTCCAACGTGTCTAC -CCAACACTGTTCCAACGTACGTAC -CCAACACTGTTCCAACGTAGTGAC -CCAACACTGTTCCAACGTCTGTAG -CCAACACTGTTCCAACGTCCTAAG -CCAACACTGTTCCAACGTGTTCAG -CCAACACTGTTCCAACGTGCATAG -CCAACACTGTTCCAACGTGACAAG -CCAACACTGTTCCAACGTAAGCAG -CCAACACTGTTCCAACGTCGTCAA -CCAACACTGTTCCAACGTGCTGAA -CCAACACTGTTCCAACGTAGTACG -CCAACACTGTTCCAACGTATCCGA -CCAACACTGTTCCAACGTATGGGA -CCAACACTGTTCCAACGTGTGCAA -CCAACACTGTTCCAACGTGAGGAA -CCAACACTGTTCCAACGTCAGGTA -CCAACACTGTTCCAACGTGACTCT -CCAACACTGTTCCAACGTAGTCCT -CCAACACTGTTCCAACGTTAAGCC -CCAACACTGTTCCAACGTATAGCC -CCAACACTGTTCCAACGTTAACCG -CCAACACTGTTCCAACGTATGCCA -CCAACACTGTTCGAAGCTGGAAAC -CCAACACTGTTCGAAGCTAACACC -CCAACACTGTTCGAAGCTATCGAG -CCAACACTGTTCGAAGCTCTCCTT -CCAACACTGTTCGAAGCTCCTGTT -CCAACACTGTTCGAAGCTCGGTTT -CCAACACTGTTCGAAGCTGTGGTT -CCAACACTGTTCGAAGCTGCCTTT -CCAACACTGTTCGAAGCTGGTCTT -CCAACACTGTTCGAAGCTACGCTT -CCAACACTGTTCGAAGCTAGCGTT -CCAACACTGTTCGAAGCTTTCGTC -CCAACACTGTTCGAAGCTTCTCTC -CCAACACTGTTCGAAGCTTGGATC -CCAACACTGTTCGAAGCTCACTTC -CCAACACTGTTCGAAGCTGTACTC -CCAACACTGTTCGAAGCTGATGTC -CCAACACTGTTCGAAGCTACAGTC -CCAACACTGTTCGAAGCTTTGCTG -CCAACACTGTTCGAAGCTTCCATG -CCAACACTGTTCGAAGCTTGTGTG -CCAACACTGTTCGAAGCTCTAGTG -CCAACACTGTTCGAAGCTCATCTG -CCAACACTGTTCGAAGCTGAGTTG -CCAACACTGTTCGAAGCTAGACTG -CCAACACTGTTCGAAGCTTCGGTA -CCAACACTGTTCGAAGCTTGCCTA -CCAACACTGTTCGAAGCTCCACTA -CCAACACTGTTCGAAGCTGGAGTA -CCAACACTGTTCGAAGCTTCGTCT -CCAACACTGTTCGAAGCTTGCACT -CCAACACTGTTCGAAGCTCTGACT -CCAACACTGTTCGAAGCTCAACCT -CCAACACTGTTCGAAGCTGCTACT -CCAACACTGTTCGAAGCTGGATCT -CCAACACTGTTCGAAGCTAAGGCT -CCAACACTGTTCGAAGCTTCAACC -CCAACACTGTTCGAAGCTTGTTCC -CCAACACTGTTCGAAGCTATTCCC -CCAACACTGTTCGAAGCTTTCTCG -CCAACACTGTTCGAAGCTTAGACG -CCAACACTGTTCGAAGCTGTAACG -CCAACACTGTTCGAAGCTACTTCG -CCAACACTGTTCGAAGCTTACGCA -CCAACACTGTTCGAAGCTCTTGCA -CCAACACTGTTCGAAGCTCGAACA -CCAACACTGTTCGAAGCTCAGTCA -CCAACACTGTTCGAAGCTGATCCA -CCAACACTGTTCGAAGCTACGACA -CCAACACTGTTCGAAGCTAGCTCA -CCAACACTGTTCGAAGCTTCACGT -CCAACACTGTTCGAAGCTCGTAGT -CCAACACTGTTCGAAGCTGTCAGT -CCAACACTGTTCGAAGCTGAAGGT -CCAACACTGTTCGAAGCTAACCGT -CCAACACTGTTCGAAGCTTTGTGC -CCAACACTGTTCGAAGCTCTAAGC -CCAACACTGTTCGAAGCTACTAGC -CCAACACTGTTCGAAGCTAGATGC -CCAACACTGTTCGAAGCTTGAAGG -CCAACACTGTTCGAAGCTCAATGG -CCAACACTGTTCGAAGCTATGAGG -CCAACACTGTTCGAAGCTAATGGG -CCAACACTGTTCGAAGCTTCCTGA -CCAACACTGTTCGAAGCTTAGCGA -CCAACACTGTTCGAAGCTCACAGA -CCAACACTGTTCGAAGCTGCAAGA -CCAACACTGTTCGAAGCTGGTTGA -CCAACACTGTTCGAAGCTTCCGAT -CCAACACTGTTCGAAGCTTGGCAT -CCAACACTGTTCGAAGCTCGAGAT -CCAACACTGTTCGAAGCTTACCAC -CCAACACTGTTCGAAGCTCAGAAC -CCAACACTGTTCGAAGCTGTCTAC -CCAACACTGTTCGAAGCTACGTAC -CCAACACTGTTCGAAGCTAGTGAC -CCAACACTGTTCGAAGCTCTGTAG -CCAACACTGTTCGAAGCTCCTAAG -CCAACACTGTTCGAAGCTGTTCAG -CCAACACTGTTCGAAGCTGCATAG -CCAACACTGTTCGAAGCTGACAAG -CCAACACTGTTCGAAGCTAAGCAG -CCAACACTGTTCGAAGCTCGTCAA -CCAACACTGTTCGAAGCTGCTGAA -CCAACACTGTTCGAAGCTAGTACG -CCAACACTGTTCGAAGCTATCCGA -CCAACACTGTTCGAAGCTATGGGA -CCAACACTGTTCGAAGCTGTGCAA -CCAACACTGTTCGAAGCTGAGGAA -CCAACACTGTTCGAAGCTCAGGTA -CCAACACTGTTCGAAGCTGACTCT -CCAACACTGTTCGAAGCTAGTCCT -CCAACACTGTTCGAAGCTTAAGCC -CCAACACTGTTCGAAGCTATAGCC -CCAACACTGTTCGAAGCTTAACCG -CCAACACTGTTCGAAGCTATGCCA -CCAACACTGTTCACGAGTGGAAAC -CCAACACTGTTCACGAGTAACACC -CCAACACTGTTCACGAGTATCGAG -CCAACACTGTTCACGAGTCTCCTT -CCAACACTGTTCACGAGTCCTGTT -CCAACACTGTTCACGAGTCGGTTT -CCAACACTGTTCACGAGTGTGGTT -CCAACACTGTTCACGAGTGCCTTT -CCAACACTGTTCACGAGTGGTCTT -CCAACACTGTTCACGAGTACGCTT -CCAACACTGTTCACGAGTAGCGTT -CCAACACTGTTCACGAGTTTCGTC -CCAACACTGTTCACGAGTTCTCTC -CCAACACTGTTCACGAGTTGGATC -CCAACACTGTTCACGAGTCACTTC -CCAACACTGTTCACGAGTGTACTC -CCAACACTGTTCACGAGTGATGTC -CCAACACTGTTCACGAGTACAGTC -CCAACACTGTTCACGAGTTTGCTG -CCAACACTGTTCACGAGTTCCATG -CCAACACTGTTCACGAGTTGTGTG -CCAACACTGTTCACGAGTCTAGTG -CCAACACTGTTCACGAGTCATCTG -CCAACACTGTTCACGAGTGAGTTG -CCAACACTGTTCACGAGTAGACTG -CCAACACTGTTCACGAGTTCGGTA -CCAACACTGTTCACGAGTTGCCTA -CCAACACTGTTCACGAGTCCACTA -CCAACACTGTTCACGAGTGGAGTA -CCAACACTGTTCACGAGTTCGTCT -CCAACACTGTTCACGAGTTGCACT -CCAACACTGTTCACGAGTCTGACT -CCAACACTGTTCACGAGTCAACCT -CCAACACTGTTCACGAGTGCTACT -CCAACACTGTTCACGAGTGGATCT -CCAACACTGTTCACGAGTAAGGCT -CCAACACTGTTCACGAGTTCAACC -CCAACACTGTTCACGAGTTGTTCC -CCAACACTGTTCACGAGTATTCCC -CCAACACTGTTCACGAGTTTCTCG -CCAACACTGTTCACGAGTTAGACG -CCAACACTGTTCACGAGTGTAACG -CCAACACTGTTCACGAGTACTTCG -CCAACACTGTTCACGAGTTACGCA -CCAACACTGTTCACGAGTCTTGCA -CCAACACTGTTCACGAGTCGAACA -CCAACACTGTTCACGAGTCAGTCA -CCAACACTGTTCACGAGTGATCCA -CCAACACTGTTCACGAGTACGACA -CCAACACTGTTCACGAGTAGCTCA -CCAACACTGTTCACGAGTTCACGT -CCAACACTGTTCACGAGTCGTAGT -CCAACACTGTTCACGAGTGTCAGT -CCAACACTGTTCACGAGTGAAGGT -CCAACACTGTTCACGAGTAACCGT -CCAACACTGTTCACGAGTTTGTGC -CCAACACTGTTCACGAGTCTAAGC -CCAACACTGTTCACGAGTACTAGC -CCAACACTGTTCACGAGTAGATGC -CCAACACTGTTCACGAGTTGAAGG -CCAACACTGTTCACGAGTCAATGG -CCAACACTGTTCACGAGTATGAGG -CCAACACTGTTCACGAGTAATGGG -CCAACACTGTTCACGAGTTCCTGA -CCAACACTGTTCACGAGTTAGCGA -CCAACACTGTTCACGAGTCACAGA -CCAACACTGTTCACGAGTGCAAGA -CCAACACTGTTCACGAGTGGTTGA -CCAACACTGTTCACGAGTTCCGAT -CCAACACTGTTCACGAGTTGGCAT -CCAACACTGTTCACGAGTCGAGAT -CCAACACTGTTCACGAGTTACCAC -CCAACACTGTTCACGAGTCAGAAC -CCAACACTGTTCACGAGTGTCTAC -CCAACACTGTTCACGAGTACGTAC -CCAACACTGTTCACGAGTAGTGAC -CCAACACTGTTCACGAGTCTGTAG -CCAACACTGTTCACGAGTCCTAAG -CCAACACTGTTCACGAGTGTTCAG -CCAACACTGTTCACGAGTGCATAG -CCAACACTGTTCACGAGTGACAAG -CCAACACTGTTCACGAGTAAGCAG -CCAACACTGTTCACGAGTCGTCAA -CCAACACTGTTCACGAGTGCTGAA -CCAACACTGTTCACGAGTAGTACG -CCAACACTGTTCACGAGTATCCGA -CCAACACTGTTCACGAGTATGGGA -CCAACACTGTTCACGAGTGTGCAA -CCAACACTGTTCACGAGTGAGGAA -CCAACACTGTTCACGAGTCAGGTA -CCAACACTGTTCACGAGTGACTCT -CCAACACTGTTCACGAGTAGTCCT -CCAACACTGTTCACGAGTTAAGCC -CCAACACTGTTCACGAGTATAGCC -CCAACACTGTTCACGAGTTAACCG -CCAACACTGTTCACGAGTATGCCA -CCAACACTGTTCCGAATCGGAAAC -CCAACACTGTTCCGAATCAACACC -CCAACACTGTTCCGAATCATCGAG -CCAACACTGTTCCGAATCCTCCTT -CCAACACTGTTCCGAATCCCTGTT -CCAACACTGTTCCGAATCCGGTTT -CCAACACTGTTCCGAATCGTGGTT -CCAACACTGTTCCGAATCGCCTTT -CCAACACTGTTCCGAATCGGTCTT -CCAACACTGTTCCGAATCACGCTT -CCAACACTGTTCCGAATCAGCGTT -CCAACACTGTTCCGAATCTTCGTC -CCAACACTGTTCCGAATCTCTCTC -CCAACACTGTTCCGAATCTGGATC -CCAACACTGTTCCGAATCCACTTC -CCAACACTGTTCCGAATCGTACTC -CCAACACTGTTCCGAATCGATGTC -CCAACACTGTTCCGAATCACAGTC -CCAACACTGTTCCGAATCTTGCTG -CCAACACTGTTCCGAATCTCCATG -CCAACACTGTTCCGAATCTGTGTG -CCAACACTGTTCCGAATCCTAGTG -CCAACACTGTTCCGAATCCATCTG -CCAACACTGTTCCGAATCGAGTTG -CCAACACTGTTCCGAATCAGACTG -CCAACACTGTTCCGAATCTCGGTA -CCAACACTGTTCCGAATCTGCCTA -CCAACACTGTTCCGAATCCCACTA -CCAACACTGTTCCGAATCGGAGTA -CCAACACTGTTCCGAATCTCGTCT -CCAACACTGTTCCGAATCTGCACT -CCAACACTGTTCCGAATCCTGACT -CCAACACTGTTCCGAATCCAACCT -CCAACACTGTTCCGAATCGCTACT -CCAACACTGTTCCGAATCGGATCT -CCAACACTGTTCCGAATCAAGGCT -CCAACACTGTTCCGAATCTCAACC -CCAACACTGTTCCGAATCTGTTCC -CCAACACTGTTCCGAATCATTCCC -CCAACACTGTTCCGAATCTTCTCG -CCAACACTGTTCCGAATCTAGACG -CCAACACTGTTCCGAATCGTAACG -CCAACACTGTTCCGAATCACTTCG -CCAACACTGTTCCGAATCTACGCA -CCAACACTGTTCCGAATCCTTGCA -CCAACACTGTTCCGAATCCGAACA -CCAACACTGTTCCGAATCCAGTCA -CCAACACTGTTCCGAATCGATCCA -CCAACACTGTTCCGAATCACGACA -CCAACACTGTTCCGAATCAGCTCA -CCAACACTGTTCCGAATCTCACGT -CCAACACTGTTCCGAATCCGTAGT -CCAACACTGTTCCGAATCGTCAGT -CCAACACTGTTCCGAATCGAAGGT -CCAACACTGTTCCGAATCAACCGT -CCAACACTGTTCCGAATCTTGTGC -CCAACACTGTTCCGAATCCTAAGC -CCAACACTGTTCCGAATCACTAGC -CCAACACTGTTCCGAATCAGATGC -CCAACACTGTTCCGAATCTGAAGG -CCAACACTGTTCCGAATCCAATGG -CCAACACTGTTCCGAATCATGAGG -CCAACACTGTTCCGAATCAATGGG -CCAACACTGTTCCGAATCTCCTGA -CCAACACTGTTCCGAATCTAGCGA -CCAACACTGTTCCGAATCCACAGA -CCAACACTGTTCCGAATCGCAAGA -CCAACACTGTTCCGAATCGGTTGA -CCAACACTGTTCCGAATCTCCGAT -CCAACACTGTTCCGAATCTGGCAT -CCAACACTGTTCCGAATCCGAGAT -CCAACACTGTTCCGAATCTACCAC -CCAACACTGTTCCGAATCCAGAAC -CCAACACTGTTCCGAATCGTCTAC -CCAACACTGTTCCGAATCACGTAC -CCAACACTGTTCCGAATCAGTGAC -CCAACACTGTTCCGAATCCTGTAG -CCAACACTGTTCCGAATCCCTAAG -CCAACACTGTTCCGAATCGTTCAG -CCAACACTGTTCCGAATCGCATAG -CCAACACTGTTCCGAATCGACAAG -CCAACACTGTTCCGAATCAAGCAG -CCAACACTGTTCCGAATCCGTCAA -CCAACACTGTTCCGAATCGCTGAA -CCAACACTGTTCCGAATCAGTACG -CCAACACTGTTCCGAATCATCCGA -CCAACACTGTTCCGAATCATGGGA -CCAACACTGTTCCGAATCGTGCAA -CCAACACTGTTCCGAATCGAGGAA -CCAACACTGTTCCGAATCCAGGTA -CCAACACTGTTCCGAATCGACTCT -CCAACACTGTTCCGAATCAGTCCT -CCAACACTGTTCCGAATCTAAGCC -CCAACACTGTTCCGAATCATAGCC -CCAACACTGTTCCGAATCTAACCG -CCAACACTGTTCCGAATCATGCCA -CCAACACTGTTCGGAATGGGAAAC -CCAACACTGTTCGGAATGAACACC -CCAACACTGTTCGGAATGATCGAG -CCAACACTGTTCGGAATGCTCCTT -CCAACACTGTTCGGAATGCCTGTT -CCAACACTGTTCGGAATGCGGTTT -CCAACACTGTTCGGAATGGTGGTT -CCAACACTGTTCGGAATGGCCTTT -CCAACACTGTTCGGAATGGGTCTT -CCAACACTGTTCGGAATGACGCTT -CCAACACTGTTCGGAATGAGCGTT -CCAACACTGTTCGGAATGTTCGTC -CCAACACTGTTCGGAATGTCTCTC -CCAACACTGTTCGGAATGTGGATC -CCAACACTGTTCGGAATGCACTTC -CCAACACTGTTCGGAATGGTACTC -CCAACACTGTTCGGAATGGATGTC -CCAACACTGTTCGGAATGACAGTC -CCAACACTGTTCGGAATGTTGCTG -CCAACACTGTTCGGAATGTCCATG -CCAACACTGTTCGGAATGTGTGTG -CCAACACTGTTCGGAATGCTAGTG -CCAACACTGTTCGGAATGCATCTG -CCAACACTGTTCGGAATGGAGTTG -CCAACACTGTTCGGAATGAGACTG -CCAACACTGTTCGGAATGTCGGTA -CCAACACTGTTCGGAATGTGCCTA -CCAACACTGTTCGGAATGCCACTA -CCAACACTGTTCGGAATGGGAGTA -CCAACACTGTTCGGAATGTCGTCT -CCAACACTGTTCGGAATGTGCACT -CCAACACTGTTCGGAATGCTGACT -CCAACACTGTTCGGAATGCAACCT -CCAACACTGTTCGGAATGGCTACT -CCAACACTGTTCGGAATGGGATCT -CCAACACTGTTCGGAATGAAGGCT -CCAACACTGTTCGGAATGTCAACC -CCAACACTGTTCGGAATGTGTTCC -CCAACACTGTTCGGAATGATTCCC -CCAACACTGTTCGGAATGTTCTCG -CCAACACTGTTCGGAATGTAGACG -CCAACACTGTTCGGAATGGTAACG -CCAACACTGTTCGGAATGACTTCG -CCAACACTGTTCGGAATGTACGCA -CCAACACTGTTCGGAATGCTTGCA -CCAACACTGTTCGGAATGCGAACA -CCAACACTGTTCGGAATGCAGTCA -CCAACACTGTTCGGAATGGATCCA -CCAACACTGTTCGGAATGACGACA -CCAACACTGTTCGGAATGAGCTCA -CCAACACTGTTCGGAATGTCACGT -CCAACACTGTTCGGAATGCGTAGT -CCAACACTGTTCGGAATGGTCAGT -CCAACACTGTTCGGAATGGAAGGT -CCAACACTGTTCGGAATGAACCGT -CCAACACTGTTCGGAATGTTGTGC -CCAACACTGTTCGGAATGCTAAGC -CCAACACTGTTCGGAATGACTAGC -CCAACACTGTTCGGAATGAGATGC -CCAACACTGTTCGGAATGTGAAGG -CCAACACTGTTCGGAATGCAATGG -CCAACACTGTTCGGAATGATGAGG -CCAACACTGTTCGGAATGAATGGG -CCAACACTGTTCGGAATGTCCTGA -CCAACACTGTTCGGAATGTAGCGA -CCAACACTGTTCGGAATGCACAGA -CCAACACTGTTCGGAATGGCAAGA -CCAACACTGTTCGGAATGGGTTGA -CCAACACTGTTCGGAATGTCCGAT -CCAACACTGTTCGGAATGTGGCAT -CCAACACTGTTCGGAATGCGAGAT -CCAACACTGTTCGGAATGTACCAC -CCAACACTGTTCGGAATGCAGAAC -CCAACACTGTTCGGAATGGTCTAC -CCAACACTGTTCGGAATGACGTAC -CCAACACTGTTCGGAATGAGTGAC -CCAACACTGTTCGGAATGCTGTAG -CCAACACTGTTCGGAATGCCTAAG -CCAACACTGTTCGGAATGGTTCAG -CCAACACTGTTCGGAATGGCATAG -CCAACACTGTTCGGAATGGACAAG -CCAACACTGTTCGGAATGAAGCAG -CCAACACTGTTCGGAATGCGTCAA -CCAACACTGTTCGGAATGGCTGAA -CCAACACTGTTCGGAATGAGTACG -CCAACACTGTTCGGAATGATCCGA -CCAACACTGTTCGGAATGATGGGA -CCAACACTGTTCGGAATGGTGCAA -CCAACACTGTTCGGAATGGAGGAA -CCAACACTGTTCGGAATGCAGGTA -CCAACACTGTTCGGAATGGACTCT -CCAACACTGTTCGGAATGAGTCCT -CCAACACTGTTCGGAATGTAAGCC -CCAACACTGTTCGGAATGATAGCC -CCAACACTGTTCGGAATGTAACCG -CCAACACTGTTCGGAATGATGCCA -CCAACACTGTTCCAAGTGGGAAAC -CCAACACTGTTCCAAGTGAACACC -CCAACACTGTTCCAAGTGATCGAG -CCAACACTGTTCCAAGTGCTCCTT -CCAACACTGTTCCAAGTGCCTGTT -CCAACACTGTTCCAAGTGCGGTTT -CCAACACTGTTCCAAGTGGTGGTT -CCAACACTGTTCCAAGTGGCCTTT -CCAACACTGTTCCAAGTGGGTCTT -CCAACACTGTTCCAAGTGACGCTT -CCAACACTGTTCCAAGTGAGCGTT -CCAACACTGTTCCAAGTGTTCGTC -CCAACACTGTTCCAAGTGTCTCTC -CCAACACTGTTCCAAGTGTGGATC -CCAACACTGTTCCAAGTGCACTTC -CCAACACTGTTCCAAGTGGTACTC -CCAACACTGTTCCAAGTGGATGTC -CCAACACTGTTCCAAGTGACAGTC -CCAACACTGTTCCAAGTGTTGCTG -CCAACACTGTTCCAAGTGTCCATG -CCAACACTGTTCCAAGTGTGTGTG -CCAACACTGTTCCAAGTGCTAGTG -CCAACACTGTTCCAAGTGCATCTG -CCAACACTGTTCCAAGTGGAGTTG -CCAACACTGTTCCAAGTGAGACTG -CCAACACTGTTCCAAGTGTCGGTA -CCAACACTGTTCCAAGTGTGCCTA -CCAACACTGTTCCAAGTGCCACTA -CCAACACTGTTCCAAGTGGGAGTA -CCAACACTGTTCCAAGTGTCGTCT -CCAACACTGTTCCAAGTGTGCACT -CCAACACTGTTCCAAGTGCTGACT -CCAACACTGTTCCAAGTGCAACCT -CCAACACTGTTCCAAGTGGCTACT -CCAACACTGTTCCAAGTGGGATCT -CCAACACTGTTCCAAGTGAAGGCT -CCAACACTGTTCCAAGTGTCAACC -CCAACACTGTTCCAAGTGTGTTCC -CCAACACTGTTCCAAGTGATTCCC -CCAACACTGTTCCAAGTGTTCTCG -CCAACACTGTTCCAAGTGTAGACG -CCAACACTGTTCCAAGTGGTAACG -CCAACACTGTTCCAAGTGACTTCG -CCAACACTGTTCCAAGTGTACGCA -CCAACACTGTTCCAAGTGCTTGCA -CCAACACTGTTCCAAGTGCGAACA -CCAACACTGTTCCAAGTGCAGTCA -CCAACACTGTTCCAAGTGGATCCA -CCAACACTGTTCCAAGTGACGACA -CCAACACTGTTCCAAGTGAGCTCA -CCAACACTGTTCCAAGTGTCACGT -CCAACACTGTTCCAAGTGCGTAGT -CCAACACTGTTCCAAGTGGTCAGT -CCAACACTGTTCCAAGTGGAAGGT -CCAACACTGTTCCAAGTGAACCGT -CCAACACTGTTCCAAGTGTTGTGC -CCAACACTGTTCCAAGTGCTAAGC -CCAACACTGTTCCAAGTGACTAGC -CCAACACTGTTCCAAGTGAGATGC -CCAACACTGTTCCAAGTGTGAAGG -CCAACACTGTTCCAAGTGCAATGG -CCAACACTGTTCCAAGTGATGAGG -CCAACACTGTTCCAAGTGAATGGG -CCAACACTGTTCCAAGTGTCCTGA -CCAACACTGTTCCAAGTGTAGCGA -CCAACACTGTTCCAAGTGCACAGA -CCAACACTGTTCCAAGTGGCAAGA -CCAACACTGTTCCAAGTGGGTTGA -CCAACACTGTTCCAAGTGTCCGAT -CCAACACTGTTCCAAGTGTGGCAT -CCAACACTGTTCCAAGTGCGAGAT -CCAACACTGTTCCAAGTGTACCAC -CCAACACTGTTCCAAGTGCAGAAC -CCAACACTGTTCCAAGTGGTCTAC -CCAACACTGTTCCAAGTGACGTAC -CCAACACTGTTCCAAGTGAGTGAC -CCAACACTGTTCCAAGTGCTGTAG -CCAACACTGTTCCAAGTGCCTAAG -CCAACACTGTTCCAAGTGGTTCAG -CCAACACTGTTCCAAGTGGCATAG -CCAACACTGTTCCAAGTGGACAAG -CCAACACTGTTCCAAGTGAAGCAG -CCAACACTGTTCCAAGTGCGTCAA -CCAACACTGTTCCAAGTGGCTGAA -CCAACACTGTTCCAAGTGAGTACG -CCAACACTGTTCCAAGTGATCCGA -CCAACACTGTTCCAAGTGATGGGA -CCAACACTGTTCCAAGTGGTGCAA -CCAACACTGTTCCAAGTGGAGGAA -CCAACACTGTTCCAAGTGCAGGTA -CCAACACTGTTCCAAGTGGACTCT -CCAACACTGTTCCAAGTGAGTCCT -CCAACACTGTTCCAAGTGTAAGCC -CCAACACTGTTCCAAGTGATAGCC -CCAACACTGTTCCAAGTGTAACCG -CCAACACTGTTCCAAGTGATGCCA -CCAACACTGTTCGAAGAGGGAAAC -CCAACACTGTTCGAAGAGAACACC -CCAACACTGTTCGAAGAGATCGAG -CCAACACTGTTCGAAGAGCTCCTT -CCAACACTGTTCGAAGAGCCTGTT -CCAACACTGTTCGAAGAGCGGTTT -CCAACACTGTTCGAAGAGGTGGTT -CCAACACTGTTCGAAGAGGCCTTT -CCAACACTGTTCGAAGAGGGTCTT -CCAACACTGTTCGAAGAGACGCTT -CCAACACTGTTCGAAGAGAGCGTT -CCAACACTGTTCGAAGAGTTCGTC -CCAACACTGTTCGAAGAGTCTCTC -CCAACACTGTTCGAAGAGTGGATC -CCAACACTGTTCGAAGAGCACTTC -CCAACACTGTTCGAAGAGGTACTC -CCAACACTGTTCGAAGAGGATGTC -CCAACACTGTTCGAAGAGACAGTC -CCAACACTGTTCGAAGAGTTGCTG -CCAACACTGTTCGAAGAGTCCATG -CCAACACTGTTCGAAGAGTGTGTG -CCAACACTGTTCGAAGAGCTAGTG -CCAACACTGTTCGAAGAGCATCTG -CCAACACTGTTCGAAGAGGAGTTG -CCAACACTGTTCGAAGAGAGACTG -CCAACACTGTTCGAAGAGTCGGTA -CCAACACTGTTCGAAGAGTGCCTA -CCAACACTGTTCGAAGAGCCACTA -CCAACACTGTTCGAAGAGGGAGTA -CCAACACTGTTCGAAGAGTCGTCT -CCAACACTGTTCGAAGAGTGCACT -CCAACACTGTTCGAAGAGCTGACT -CCAACACTGTTCGAAGAGCAACCT -CCAACACTGTTCGAAGAGGCTACT -CCAACACTGTTCGAAGAGGGATCT -CCAACACTGTTCGAAGAGAAGGCT -CCAACACTGTTCGAAGAGTCAACC -CCAACACTGTTCGAAGAGTGTTCC -CCAACACTGTTCGAAGAGATTCCC -CCAACACTGTTCGAAGAGTTCTCG -CCAACACTGTTCGAAGAGTAGACG -CCAACACTGTTCGAAGAGGTAACG -CCAACACTGTTCGAAGAGACTTCG -CCAACACTGTTCGAAGAGTACGCA -CCAACACTGTTCGAAGAGCTTGCA -CCAACACTGTTCGAAGAGCGAACA -CCAACACTGTTCGAAGAGCAGTCA -CCAACACTGTTCGAAGAGGATCCA -CCAACACTGTTCGAAGAGACGACA -CCAACACTGTTCGAAGAGAGCTCA -CCAACACTGTTCGAAGAGTCACGT -CCAACACTGTTCGAAGAGCGTAGT -CCAACACTGTTCGAAGAGGTCAGT -CCAACACTGTTCGAAGAGGAAGGT -CCAACACTGTTCGAAGAGAACCGT -CCAACACTGTTCGAAGAGTTGTGC -CCAACACTGTTCGAAGAGCTAAGC -CCAACACTGTTCGAAGAGACTAGC -CCAACACTGTTCGAAGAGAGATGC -CCAACACTGTTCGAAGAGTGAAGG -CCAACACTGTTCGAAGAGCAATGG -CCAACACTGTTCGAAGAGATGAGG -CCAACACTGTTCGAAGAGAATGGG -CCAACACTGTTCGAAGAGTCCTGA -CCAACACTGTTCGAAGAGTAGCGA -CCAACACTGTTCGAAGAGCACAGA -CCAACACTGTTCGAAGAGGCAAGA -CCAACACTGTTCGAAGAGGGTTGA -CCAACACTGTTCGAAGAGTCCGAT -CCAACACTGTTCGAAGAGTGGCAT -CCAACACTGTTCGAAGAGCGAGAT -CCAACACTGTTCGAAGAGTACCAC -CCAACACTGTTCGAAGAGCAGAAC -CCAACACTGTTCGAAGAGGTCTAC -CCAACACTGTTCGAAGAGACGTAC -CCAACACTGTTCGAAGAGAGTGAC -CCAACACTGTTCGAAGAGCTGTAG -CCAACACTGTTCGAAGAGCCTAAG -CCAACACTGTTCGAAGAGGTTCAG -CCAACACTGTTCGAAGAGGCATAG -CCAACACTGTTCGAAGAGGACAAG -CCAACACTGTTCGAAGAGAAGCAG -CCAACACTGTTCGAAGAGCGTCAA -CCAACACTGTTCGAAGAGGCTGAA -CCAACACTGTTCGAAGAGAGTACG -CCAACACTGTTCGAAGAGATCCGA -CCAACACTGTTCGAAGAGATGGGA -CCAACACTGTTCGAAGAGGTGCAA -CCAACACTGTTCGAAGAGGAGGAA -CCAACACTGTTCGAAGAGCAGGTA -CCAACACTGTTCGAAGAGGACTCT -CCAACACTGTTCGAAGAGAGTCCT -CCAACACTGTTCGAAGAGTAAGCC -CCAACACTGTTCGAAGAGATAGCC -CCAACACTGTTCGAAGAGTAACCG -CCAACACTGTTCGAAGAGATGCCA -CCAACACTGTTCGTACAGGGAAAC -CCAACACTGTTCGTACAGAACACC -CCAACACTGTTCGTACAGATCGAG -CCAACACTGTTCGTACAGCTCCTT -CCAACACTGTTCGTACAGCCTGTT -CCAACACTGTTCGTACAGCGGTTT -CCAACACTGTTCGTACAGGTGGTT -CCAACACTGTTCGTACAGGCCTTT -CCAACACTGTTCGTACAGGGTCTT -CCAACACTGTTCGTACAGACGCTT -CCAACACTGTTCGTACAGAGCGTT -CCAACACTGTTCGTACAGTTCGTC -CCAACACTGTTCGTACAGTCTCTC -CCAACACTGTTCGTACAGTGGATC -CCAACACTGTTCGTACAGCACTTC -CCAACACTGTTCGTACAGGTACTC -CCAACACTGTTCGTACAGGATGTC -CCAACACTGTTCGTACAGACAGTC -CCAACACTGTTCGTACAGTTGCTG -CCAACACTGTTCGTACAGTCCATG -CCAACACTGTTCGTACAGTGTGTG -CCAACACTGTTCGTACAGCTAGTG -CCAACACTGTTCGTACAGCATCTG -CCAACACTGTTCGTACAGGAGTTG -CCAACACTGTTCGTACAGAGACTG -CCAACACTGTTCGTACAGTCGGTA -CCAACACTGTTCGTACAGTGCCTA -CCAACACTGTTCGTACAGCCACTA -CCAACACTGTTCGTACAGGGAGTA -CCAACACTGTTCGTACAGTCGTCT -CCAACACTGTTCGTACAGTGCACT -CCAACACTGTTCGTACAGCTGACT -CCAACACTGTTCGTACAGCAACCT -CCAACACTGTTCGTACAGGCTACT -CCAACACTGTTCGTACAGGGATCT -CCAACACTGTTCGTACAGAAGGCT -CCAACACTGTTCGTACAGTCAACC -CCAACACTGTTCGTACAGTGTTCC -CCAACACTGTTCGTACAGATTCCC -CCAACACTGTTCGTACAGTTCTCG -CCAACACTGTTCGTACAGTAGACG -CCAACACTGTTCGTACAGGTAACG -CCAACACTGTTCGTACAGACTTCG -CCAACACTGTTCGTACAGTACGCA -CCAACACTGTTCGTACAGCTTGCA -CCAACACTGTTCGTACAGCGAACA -CCAACACTGTTCGTACAGCAGTCA -CCAACACTGTTCGTACAGGATCCA -CCAACACTGTTCGTACAGACGACA -CCAACACTGTTCGTACAGAGCTCA -CCAACACTGTTCGTACAGTCACGT -CCAACACTGTTCGTACAGCGTAGT -CCAACACTGTTCGTACAGGTCAGT -CCAACACTGTTCGTACAGGAAGGT -CCAACACTGTTCGTACAGAACCGT -CCAACACTGTTCGTACAGTTGTGC -CCAACACTGTTCGTACAGCTAAGC -CCAACACTGTTCGTACAGACTAGC -CCAACACTGTTCGTACAGAGATGC -CCAACACTGTTCGTACAGTGAAGG -CCAACACTGTTCGTACAGCAATGG -CCAACACTGTTCGTACAGATGAGG -CCAACACTGTTCGTACAGAATGGG -CCAACACTGTTCGTACAGTCCTGA -CCAACACTGTTCGTACAGTAGCGA -CCAACACTGTTCGTACAGCACAGA -CCAACACTGTTCGTACAGGCAAGA -CCAACACTGTTCGTACAGGGTTGA -CCAACACTGTTCGTACAGTCCGAT -CCAACACTGTTCGTACAGTGGCAT -CCAACACTGTTCGTACAGCGAGAT -CCAACACTGTTCGTACAGTACCAC -CCAACACTGTTCGTACAGCAGAAC -CCAACACTGTTCGTACAGGTCTAC -CCAACACTGTTCGTACAGACGTAC -CCAACACTGTTCGTACAGAGTGAC -CCAACACTGTTCGTACAGCTGTAG -CCAACACTGTTCGTACAGCCTAAG -CCAACACTGTTCGTACAGGTTCAG -CCAACACTGTTCGTACAGGCATAG -CCAACACTGTTCGTACAGGACAAG -CCAACACTGTTCGTACAGAAGCAG -CCAACACTGTTCGTACAGCGTCAA -CCAACACTGTTCGTACAGGCTGAA -CCAACACTGTTCGTACAGAGTACG -CCAACACTGTTCGTACAGATCCGA -CCAACACTGTTCGTACAGATGGGA -CCAACACTGTTCGTACAGGTGCAA -CCAACACTGTTCGTACAGGAGGAA -CCAACACTGTTCGTACAGCAGGTA -CCAACACTGTTCGTACAGGACTCT -CCAACACTGTTCGTACAGAGTCCT -CCAACACTGTTCGTACAGTAAGCC -CCAACACTGTTCGTACAGATAGCC -CCAACACTGTTCGTACAGTAACCG -CCAACACTGTTCGTACAGATGCCA -CCAACACTGTTCTCTGACGGAAAC -CCAACACTGTTCTCTGACAACACC -CCAACACTGTTCTCTGACATCGAG -CCAACACTGTTCTCTGACCTCCTT -CCAACACTGTTCTCTGACCCTGTT -CCAACACTGTTCTCTGACCGGTTT -CCAACACTGTTCTCTGACGTGGTT -CCAACACTGTTCTCTGACGCCTTT -CCAACACTGTTCTCTGACGGTCTT -CCAACACTGTTCTCTGACACGCTT -CCAACACTGTTCTCTGACAGCGTT -CCAACACTGTTCTCTGACTTCGTC -CCAACACTGTTCTCTGACTCTCTC -CCAACACTGTTCTCTGACTGGATC -CCAACACTGTTCTCTGACCACTTC -CCAACACTGTTCTCTGACGTACTC -CCAACACTGTTCTCTGACGATGTC -CCAACACTGTTCTCTGACACAGTC -CCAACACTGTTCTCTGACTTGCTG -CCAACACTGTTCTCTGACTCCATG -CCAACACTGTTCTCTGACTGTGTG -CCAACACTGTTCTCTGACCTAGTG -CCAACACTGTTCTCTGACCATCTG -CCAACACTGTTCTCTGACGAGTTG -CCAACACTGTTCTCTGACAGACTG -CCAACACTGTTCTCTGACTCGGTA -CCAACACTGTTCTCTGACTGCCTA -CCAACACTGTTCTCTGACCCACTA -CCAACACTGTTCTCTGACGGAGTA -CCAACACTGTTCTCTGACTCGTCT -CCAACACTGTTCTCTGACTGCACT -CCAACACTGTTCTCTGACCTGACT -CCAACACTGTTCTCTGACCAACCT -CCAACACTGTTCTCTGACGCTACT -CCAACACTGTTCTCTGACGGATCT -CCAACACTGTTCTCTGACAAGGCT -CCAACACTGTTCTCTGACTCAACC -CCAACACTGTTCTCTGACTGTTCC -CCAACACTGTTCTCTGACATTCCC -CCAACACTGTTCTCTGACTTCTCG -CCAACACTGTTCTCTGACTAGACG -CCAACACTGTTCTCTGACGTAACG -CCAACACTGTTCTCTGACACTTCG -CCAACACTGTTCTCTGACTACGCA -CCAACACTGTTCTCTGACCTTGCA -CCAACACTGTTCTCTGACCGAACA -CCAACACTGTTCTCTGACCAGTCA -CCAACACTGTTCTCTGACGATCCA -CCAACACTGTTCTCTGACACGACA -CCAACACTGTTCTCTGACAGCTCA -CCAACACTGTTCTCTGACTCACGT -CCAACACTGTTCTCTGACCGTAGT -CCAACACTGTTCTCTGACGTCAGT -CCAACACTGTTCTCTGACGAAGGT -CCAACACTGTTCTCTGACAACCGT -CCAACACTGTTCTCTGACTTGTGC -CCAACACTGTTCTCTGACCTAAGC -CCAACACTGTTCTCTGACACTAGC -CCAACACTGTTCTCTGACAGATGC -CCAACACTGTTCTCTGACTGAAGG -CCAACACTGTTCTCTGACCAATGG -CCAACACTGTTCTCTGACATGAGG -CCAACACTGTTCTCTGACAATGGG -CCAACACTGTTCTCTGACTCCTGA -CCAACACTGTTCTCTGACTAGCGA -CCAACACTGTTCTCTGACCACAGA -CCAACACTGTTCTCTGACGCAAGA -CCAACACTGTTCTCTGACGGTTGA -CCAACACTGTTCTCTGACTCCGAT -CCAACACTGTTCTCTGACTGGCAT -CCAACACTGTTCTCTGACCGAGAT -CCAACACTGTTCTCTGACTACCAC -CCAACACTGTTCTCTGACCAGAAC -CCAACACTGTTCTCTGACGTCTAC -CCAACACTGTTCTCTGACACGTAC -CCAACACTGTTCTCTGACAGTGAC -CCAACACTGTTCTCTGACCTGTAG -CCAACACTGTTCTCTGACCCTAAG -CCAACACTGTTCTCTGACGTTCAG -CCAACACTGTTCTCTGACGCATAG -CCAACACTGTTCTCTGACGACAAG -CCAACACTGTTCTCTGACAAGCAG -CCAACACTGTTCTCTGACCGTCAA -CCAACACTGTTCTCTGACGCTGAA -CCAACACTGTTCTCTGACAGTACG -CCAACACTGTTCTCTGACATCCGA -CCAACACTGTTCTCTGACATGGGA -CCAACACTGTTCTCTGACGTGCAA -CCAACACTGTTCTCTGACGAGGAA -CCAACACTGTTCTCTGACCAGGTA -CCAACACTGTTCTCTGACGACTCT -CCAACACTGTTCTCTGACAGTCCT -CCAACACTGTTCTCTGACTAAGCC -CCAACACTGTTCTCTGACATAGCC -CCAACACTGTTCTCTGACTAACCG -CCAACACTGTTCTCTGACATGCCA -CCAACACTGTTCCCTAGTGGAAAC -CCAACACTGTTCCCTAGTAACACC -CCAACACTGTTCCCTAGTATCGAG -CCAACACTGTTCCCTAGTCTCCTT -CCAACACTGTTCCCTAGTCCTGTT -CCAACACTGTTCCCTAGTCGGTTT -CCAACACTGTTCCCTAGTGTGGTT -CCAACACTGTTCCCTAGTGCCTTT -CCAACACTGTTCCCTAGTGGTCTT -CCAACACTGTTCCCTAGTACGCTT -CCAACACTGTTCCCTAGTAGCGTT -CCAACACTGTTCCCTAGTTTCGTC -CCAACACTGTTCCCTAGTTCTCTC -CCAACACTGTTCCCTAGTTGGATC -CCAACACTGTTCCCTAGTCACTTC -CCAACACTGTTCCCTAGTGTACTC -CCAACACTGTTCCCTAGTGATGTC -CCAACACTGTTCCCTAGTACAGTC -CCAACACTGTTCCCTAGTTTGCTG -CCAACACTGTTCCCTAGTTCCATG -CCAACACTGTTCCCTAGTTGTGTG -CCAACACTGTTCCCTAGTCTAGTG -CCAACACTGTTCCCTAGTCATCTG -CCAACACTGTTCCCTAGTGAGTTG -CCAACACTGTTCCCTAGTAGACTG -CCAACACTGTTCCCTAGTTCGGTA -CCAACACTGTTCCCTAGTTGCCTA -CCAACACTGTTCCCTAGTCCACTA -CCAACACTGTTCCCTAGTGGAGTA -CCAACACTGTTCCCTAGTTCGTCT -CCAACACTGTTCCCTAGTTGCACT -CCAACACTGTTCCCTAGTCTGACT -CCAACACTGTTCCCTAGTCAACCT -CCAACACTGTTCCCTAGTGCTACT -CCAACACTGTTCCCTAGTGGATCT -CCAACACTGTTCCCTAGTAAGGCT -CCAACACTGTTCCCTAGTTCAACC -CCAACACTGTTCCCTAGTTGTTCC -CCAACACTGTTCCCTAGTATTCCC -CCAACACTGTTCCCTAGTTTCTCG -CCAACACTGTTCCCTAGTTAGACG -CCAACACTGTTCCCTAGTGTAACG -CCAACACTGTTCCCTAGTACTTCG -CCAACACTGTTCCCTAGTTACGCA -CCAACACTGTTCCCTAGTCTTGCA -CCAACACTGTTCCCTAGTCGAACA -CCAACACTGTTCCCTAGTCAGTCA -CCAACACTGTTCCCTAGTGATCCA -CCAACACTGTTCCCTAGTACGACA -CCAACACTGTTCCCTAGTAGCTCA -CCAACACTGTTCCCTAGTTCACGT -CCAACACTGTTCCCTAGTCGTAGT -CCAACACTGTTCCCTAGTGTCAGT -CCAACACTGTTCCCTAGTGAAGGT -CCAACACTGTTCCCTAGTAACCGT -CCAACACTGTTCCCTAGTTTGTGC -CCAACACTGTTCCCTAGTCTAAGC -CCAACACTGTTCCCTAGTACTAGC -CCAACACTGTTCCCTAGTAGATGC -CCAACACTGTTCCCTAGTTGAAGG -CCAACACTGTTCCCTAGTCAATGG -CCAACACTGTTCCCTAGTATGAGG -CCAACACTGTTCCCTAGTAATGGG -CCAACACTGTTCCCTAGTTCCTGA -CCAACACTGTTCCCTAGTTAGCGA -CCAACACTGTTCCCTAGTCACAGA -CCAACACTGTTCCCTAGTGCAAGA -CCAACACTGTTCCCTAGTGGTTGA -CCAACACTGTTCCCTAGTTCCGAT -CCAACACTGTTCCCTAGTTGGCAT -CCAACACTGTTCCCTAGTCGAGAT -CCAACACTGTTCCCTAGTTACCAC -CCAACACTGTTCCCTAGTCAGAAC -CCAACACTGTTCCCTAGTGTCTAC -CCAACACTGTTCCCTAGTACGTAC -CCAACACTGTTCCCTAGTAGTGAC -CCAACACTGTTCCCTAGTCTGTAG -CCAACACTGTTCCCTAGTCCTAAG -CCAACACTGTTCCCTAGTGTTCAG -CCAACACTGTTCCCTAGTGCATAG -CCAACACTGTTCCCTAGTGACAAG -CCAACACTGTTCCCTAGTAAGCAG -CCAACACTGTTCCCTAGTCGTCAA -CCAACACTGTTCCCTAGTGCTGAA -CCAACACTGTTCCCTAGTAGTACG -CCAACACTGTTCCCTAGTATCCGA -CCAACACTGTTCCCTAGTATGGGA -CCAACACTGTTCCCTAGTGTGCAA -CCAACACTGTTCCCTAGTGAGGAA -CCAACACTGTTCCCTAGTCAGGTA -CCAACACTGTTCCCTAGTGACTCT -CCAACACTGTTCCCTAGTAGTCCT -CCAACACTGTTCCCTAGTTAAGCC -CCAACACTGTTCCCTAGTATAGCC -CCAACACTGTTCCCTAGTTAACCG -CCAACACTGTTCCCTAGTATGCCA -CCAACACTGTTCGCCTAAGGAAAC -CCAACACTGTTCGCCTAAAACACC -CCAACACTGTTCGCCTAAATCGAG -CCAACACTGTTCGCCTAACTCCTT -CCAACACTGTTCGCCTAACCTGTT -CCAACACTGTTCGCCTAACGGTTT -CCAACACTGTTCGCCTAAGTGGTT -CCAACACTGTTCGCCTAAGCCTTT -CCAACACTGTTCGCCTAAGGTCTT -CCAACACTGTTCGCCTAAACGCTT -CCAACACTGTTCGCCTAAAGCGTT -CCAACACTGTTCGCCTAATTCGTC -CCAACACTGTTCGCCTAATCTCTC -CCAACACTGTTCGCCTAATGGATC -CCAACACTGTTCGCCTAACACTTC -CCAACACTGTTCGCCTAAGTACTC -CCAACACTGTTCGCCTAAGATGTC -CCAACACTGTTCGCCTAAACAGTC -CCAACACTGTTCGCCTAATTGCTG -CCAACACTGTTCGCCTAATCCATG -CCAACACTGTTCGCCTAATGTGTG -CCAACACTGTTCGCCTAACTAGTG -CCAACACTGTTCGCCTAACATCTG -CCAACACTGTTCGCCTAAGAGTTG -CCAACACTGTTCGCCTAAAGACTG -CCAACACTGTTCGCCTAATCGGTA -CCAACACTGTTCGCCTAATGCCTA -CCAACACTGTTCGCCTAACCACTA -CCAACACTGTTCGCCTAAGGAGTA -CCAACACTGTTCGCCTAATCGTCT -CCAACACTGTTCGCCTAATGCACT -CCAACACTGTTCGCCTAACTGACT -CCAACACTGTTCGCCTAACAACCT -CCAACACTGTTCGCCTAAGCTACT -CCAACACTGTTCGCCTAAGGATCT -CCAACACTGTTCGCCTAAAAGGCT -CCAACACTGTTCGCCTAATCAACC -CCAACACTGTTCGCCTAATGTTCC -CCAACACTGTTCGCCTAAATTCCC -CCAACACTGTTCGCCTAATTCTCG -CCAACACTGTTCGCCTAATAGACG -CCAACACTGTTCGCCTAAGTAACG -CCAACACTGTTCGCCTAAACTTCG -CCAACACTGTTCGCCTAATACGCA -CCAACACTGTTCGCCTAACTTGCA -CCAACACTGTTCGCCTAACGAACA -CCAACACTGTTCGCCTAACAGTCA -CCAACACTGTTCGCCTAAGATCCA -CCAACACTGTTCGCCTAAACGACA -CCAACACTGTTCGCCTAAAGCTCA -CCAACACTGTTCGCCTAATCACGT -CCAACACTGTTCGCCTAACGTAGT -CCAACACTGTTCGCCTAAGTCAGT -CCAACACTGTTCGCCTAAGAAGGT -CCAACACTGTTCGCCTAAAACCGT -CCAACACTGTTCGCCTAATTGTGC -CCAACACTGTTCGCCTAACTAAGC -CCAACACTGTTCGCCTAAACTAGC -CCAACACTGTTCGCCTAAAGATGC -CCAACACTGTTCGCCTAATGAAGG -CCAACACTGTTCGCCTAACAATGG -CCAACACTGTTCGCCTAAATGAGG -CCAACACTGTTCGCCTAAAATGGG -CCAACACTGTTCGCCTAATCCTGA -CCAACACTGTTCGCCTAATAGCGA -CCAACACTGTTCGCCTAACACAGA -CCAACACTGTTCGCCTAAGCAAGA -CCAACACTGTTCGCCTAAGGTTGA -CCAACACTGTTCGCCTAATCCGAT -CCAACACTGTTCGCCTAATGGCAT -CCAACACTGTTCGCCTAACGAGAT -CCAACACTGTTCGCCTAATACCAC -CCAACACTGTTCGCCTAACAGAAC -CCAACACTGTTCGCCTAAGTCTAC -CCAACACTGTTCGCCTAAACGTAC -CCAACACTGTTCGCCTAAAGTGAC -CCAACACTGTTCGCCTAACTGTAG -CCAACACTGTTCGCCTAACCTAAG -CCAACACTGTTCGCCTAAGTTCAG -CCAACACTGTTCGCCTAAGCATAG -CCAACACTGTTCGCCTAAGACAAG -CCAACACTGTTCGCCTAAAAGCAG -CCAACACTGTTCGCCTAACGTCAA -CCAACACTGTTCGCCTAAGCTGAA -CCAACACTGTTCGCCTAAAGTACG -CCAACACTGTTCGCCTAAATCCGA -CCAACACTGTTCGCCTAAATGGGA -CCAACACTGTTCGCCTAAGTGCAA -CCAACACTGTTCGCCTAAGAGGAA -CCAACACTGTTCGCCTAACAGGTA -CCAACACTGTTCGCCTAAGACTCT -CCAACACTGTTCGCCTAAAGTCCT -CCAACACTGTTCGCCTAATAAGCC -CCAACACTGTTCGCCTAAATAGCC -CCAACACTGTTCGCCTAATAACCG -CCAACACTGTTCGCCTAAATGCCA -CCAACACTGTTCGCCATAGGAAAC -CCAACACTGTTCGCCATAAACACC -CCAACACTGTTCGCCATAATCGAG -CCAACACTGTTCGCCATACTCCTT -CCAACACTGTTCGCCATACCTGTT -CCAACACTGTTCGCCATACGGTTT -CCAACACTGTTCGCCATAGTGGTT -CCAACACTGTTCGCCATAGCCTTT -CCAACACTGTTCGCCATAGGTCTT -CCAACACTGTTCGCCATAACGCTT -CCAACACTGTTCGCCATAAGCGTT -CCAACACTGTTCGCCATATTCGTC -CCAACACTGTTCGCCATATCTCTC -CCAACACTGTTCGCCATATGGATC -CCAACACTGTTCGCCATACACTTC -CCAACACTGTTCGCCATAGTACTC -CCAACACTGTTCGCCATAGATGTC -CCAACACTGTTCGCCATAACAGTC -CCAACACTGTTCGCCATATTGCTG -CCAACACTGTTCGCCATATCCATG -CCAACACTGTTCGCCATATGTGTG -CCAACACTGTTCGCCATACTAGTG -CCAACACTGTTCGCCATACATCTG -CCAACACTGTTCGCCATAGAGTTG -CCAACACTGTTCGCCATAAGACTG -CCAACACTGTTCGCCATATCGGTA -CCAACACTGTTCGCCATATGCCTA -CCAACACTGTTCGCCATACCACTA -CCAACACTGTTCGCCATAGGAGTA -CCAACACTGTTCGCCATATCGTCT -CCAACACTGTTCGCCATATGCACT -CCAACACTGTTCGCCATACTGACT -CCAACACTGTTCGCCATACAACCT -CCAACACTGTTCGCCATAGCTACT -CCAACACTGTTCGCCATAGGATCT -CCAACACTGTTCGCCATAAAGGCT -CCAACACTGTTCGCCATATCAACC -CCAACACTGTTCGCCATATGTTCC -CCAACACTGTTCGCCATAATTCCC -CCAACACTGTTCGCCATATTCTCG -CCAACACTGTTCGCCATATAGACG -CCAACACTGTTCGCCATAGTAACG -CCAACACTGTTCGCCATAACTTCG -CCAACACTGTTCGCCATATACGCA -CCAACACTGTTCGCCATACTTGCA -CCAACACTGTTCGCCATACGAACA -CCAACACTGTTCGCCATACAGTCA -CCAACACTGTTCGCCATAGATCCA -CCAACACTGTTCGCCATAACGACA -CCAACACTGTTCGCCATAAGCTCA -CCAACACTGTTCGCCATATCACGT -CCAACACTGTTCGCCATACGTAGT -CCAACACTGTTCGCCATAGTCAGT -CCAACACTGTTCGCCATAGAAGGT -CCAACACTGTTCGCCATAAACCGT -CCAACACTGTTCGCCATATTGTGC -CCAACACTGTTCGCCATACTAAGC -CCAACACTGTTCGCCATAACTAGC -CCAACACTGTTCGCCATAAGATGC -CCAACACTGTTCGCCATATGAAGG -CCAACACTGTTCGCCATACAATGG -CCAACACTGTTCGCCATAATGAGG -CCAACACTGTTCGCCATAAATGGG -CCAACACTGTTCGCCATATCCTGA -CCAACACTGTTCGCCATATAGCGA -CCAACACTGTTCGCCATACACAGA -CCAACACTGTTCGCCATAGCAAGA -CCAACACTGTTCGCCATAGGTTGA -CCAACACTGTTCGCCATATCCGAT -CCAACACTGTTCGCCATATGGCAT -CCAACACTGTTCGCCATACGAGAT -CCAACACTGTTCGCCATATACCAC -CCAACACTGTTCGCCATACAGAAC -CCAACACTGTTCGCCATAGTCTAC -CCAACACTGTTCGCCATAACGTAC -CCAACACTGTTCGCCATAAGTGAC -CCAACACTGTTCGCCATACTGTAG -CCAACACTGTTCGCCATACCTAAG -CCAACACTGTTCGCCATAGTTCAG -CCAACACTGTTCGCCATAGCATAG -CCAACACTGTTCGCCATAGACAAG -CCAACACTGTTCGCCATAAAGCAG -CCAACACTGTTCGCCATACGTCAA -CCAACACTGTTCGCCATAGCTGAA -CCAACACTGTTCGCCATAAGTACG -CCAACACTGTTCGCCATAATCCGA -CCAACACTGTTCGCCATAATGGGA -CCAACACTGTTCGCCATAGTGCAA -CCAACACTGTTCGCCATAGAGGAA -CCAACACTGTTCGCCATACAGGTA -CCAACACTGTTCGCCATAGACTCT -CCAACACTGTTCGCCATAAGTCCT -CCAACACTGTTCGCCATATAAGCC -CCAACACTGTTCGCCATAATAGCC -CCAACACTGTTCGCCATATAACCG -CCAACACTGTTCGCCATAATGCCA -CCAACACTGTTCCCGTAAGGAAAC -CCAACACTGTTCCCGTAAAACACC -CCAACACTGTTCCCGTAAATCGAG -CCAACACTGTTCCCGTAACTCCTT -CCAACACTGTTCCCGTAACCTGTT -CCAACACTGTTCCCGTAACGGTTT -CCAACACTGTTCCCGTAAGTGGTT -CCAACACTGTTCCCGTAAGCCTTT -CCAACACTGTTCCCGTAAGGTCTT -CCAACACTGTTCCCGTAAACGCTT -CCAACACTGTTCCCGTAAAGCGTT -CCAACACTGTTCCCGTAATTCGTC -CCAACACTGTTCCCGTAATCTCTC -CCAACACTGTTCCCGTAATGGATC -CCAACACTGTTCCCGTAACACTTC -CCAACACTGTTCCCGTAAGTACTC -CCAACACTGTTCCCGTAAGATGTC -CCAACACTGTTCCCGTAAACAGTC -CCAACACTGTTCCCGTAATTGCTG -CCAACACTGTTCCCGTAATCCATG -CCAACACTGTTCCCGTAATGTGTG -CCAACACTGTTCCCGTAACTAGTG -CCAACACTGTTCCCGTAACATCTG -CCAACACTGTTCCCGTAAGAGTTG -CCAACACTGTTCCCGTAAAGACTG -CCAACACTGTTCCCGTAATCGGTA -CCAACACTGTTCCCGTAATGCCTA -CCAACACTGTTCCCGTAACCACTA -CCAACACTGTTCCCGTAAGGAGTA -CCAACACTGTTCCCGTAATCGTCT -CCAACACTGTTCCCGTAATGCACT -CCAACACTGTTCCCGTAACTGACT -CCAACACTGTTCCCGTAACAACCT -CCAACACTGTTCCCGTAAGCTACT -CCAACACTGTTCCCGTAAGGATCT -CCAACACTGTTCCCGTAAAAGGCT -CCAACACTGTTCCCGTAATCAACC -CCAACACTGTTCCCGTAATGTTCC -CCAACACTGTTCCCGTAAATTCCC -CCAACACTGTTCCCGTAATTCTCG -CCAACACTGTTCCCGTAATAGACG -CCAACACTGTTCCCGTAAGTAACG -CCAACACTGTTCCCGTAAACTTCG -CCAACACTGTTCCCGTAATACGCA -CCAACACTGTTCCCGTAACTTGCA -CCAACACTGTTCCCGTAACGAACA -CCAACACTGTTCCCGTAACAGTCA -CCAACACTGTTCCCGTAAGATCCA -CCAACACTGTTCCCGTAAACGACA -CCAACACTGTTCCCGTAAAGCTCA -CCAACACTGTTCCCGTAATCACGT -CCAACACTGTTCCCGTAACGTAGT -CCAACACTGTTCCCGTAAGTCAGT -CCAACACTGTTCCCGTAAGAAGGT -CCAACACTGTTCCCGTAAAACCGT -CCAACACTGTTCCCGTAATTGTGC -CCAACACTGTTCCCGTAACTAAGC -CCAACACTGTTCCCGTAAACTAGC -CCAACACTGTTCCCGTAAAGATGC -CCAACACTGTTCCCGTAATGAAGG -CCAACACTGTTCCCGTAACAATGG -CCAACACTGTTCCCGTAAATGAGG -CCAACACTGTTCCCGTAAAATGGG -CCAACACTGTTCCCGTAATCCTGA -CCAACACTGTTCCCGTAATAGCGA -CCAACACTGTTCCCGTAACACAGA -CCAACACTGTTCCCGTAAGCAAGA -CCAACACTGTTCCCGTAAGGTTGA -CCAACACTGTTCCCGTAATCCGAT -CCAACACTGTTCCCGTAATGGCAT -CCAACACTGTTCCCGTAACGAGAT -CCAACACTGTTCCCGTAATACCAC -CCAACACTGTTCCCGTAACAGAAC -CCAACACTGTTCCCGTAAGTCTAC -CCAACACTGTTCCCGTAAACGTAC -CCAACACTGTTCCCGTAAAGTGAC -CCAACACTGTTCCCGTAACTGTAG -CCAACACTGTTCCCGTAACCTAAG -CCAACACTGTTCCCGTAAGTTCAG -CCAACACTGTTCCCGTAAGCATAG -CCAACACTGTTCCCGTAAGACAAG -CCAACACTGTTCCCGTAAAAGCAG -CCAACACTGTTCCCGTAACGTCAA -CCAACACTGTTCCCGTAAGCTGAA -CCAACACTGTTCCCGTAAAGTACG -CCAACACTGTTCCCGTAAATCCGA -CCAACACTGTTCCCGTAAATGGGA -CCAACACTGTTCCCGTAAGTGCAA -CCAACACTGTTCCCGTAAGAGGAA -CCAACACTGTTCCCGTAACAGGTA -CCAACACTGTTCCCGTAAGACTCT -CCAACACTGTTCCCGTAAAGTCCT -CCAACACTGTTCCCGTAATAAGCC -CCAACACTGTTCCCGTAAATAGCC -CCAACACTGTTCCCGTAATAACCG -CCAACACTGTTCCCGTAAATGCCA -CCAACACTGTTCCCAATGGGAAAC -CCAACACTGTTCCCAATGAACACC -CCAACACTGTTCCCAATGATCGAG -CCAACACTGTTCCCAATGCTCCTT -CCAACACTGTTCCCAATGCCTGTT -CCAACACTGTTCCCAATGCGGTTT -CCAACACTGTTCCCAATGGTGGTT -CCAACACTGTTCCCAATGGCCTTT -CCAACACTGTTCCCAATGGGTCTT -CCAACACTGTTCCCAATGACGCTT -CCAACACTGTTCCCAATGAGCGTT -CCAACACTGTTCCCAATGTTCGTC -CCAACACTGTTCCCAATGTCTCTC -CCAACACTGTTCCCAATGTGGATC -CCAACACTGTTCCCAATGCACTTC -CCAACACTGTTCCCAATGGTACTC -CCAACACTGTTCCCAATGGATGTC -CCAACACTGTTCCCAATGACAGTC -CCAACACTGTTCCCAATGTTGCTG -CCAACACTGTTCCCAATGTCCATG -CCAACACTGTTCCCAATGTGTGTG -CCAACACTGTTCCCAATGCTAGTG -CCAACACTGTTCCCAATGCATCTG -CCAACACTGTTCCCAATGGAGTTG -CCAACACTGTTCCCAATGAGACTG -CCAACACTGTTCCCAATGTCGGTA -CCAACACTGTTCCCAATGTGCCTA -CCAACACTGTTCCCAATGCCACTA -CCAACACTGTTCCCAATGGGAGTA -CCAACACTGTTCCCAATGTCGTCT -CCAACACTGTTCCCAATGTGCACT -CCAACACTGTTCCCAATGCTGACT -CCAACACTGTTCCCAATGCAACCT -CCAACACTGTTCCCAATGGCTACT -CCAACACTGTTCCCAATGGGATCT -CCAACACTGTTCCCAATGAAGGCT -CCAACACTGTTCCCAATGTCAACC -CCAACACTGTTCCCAATGTGTTCC -CCAACACTGTTCCCAATGATTCCC -CCAACACTGTTCCCAATGTTCTCG -CCAACACTGTTCCCAATGTAGACG -CCAACACTGTTCCCAATGGTAACG -CCAACACTGTTCCCAATGACTTCG -CCAACACTGTTCCCAATGTACGCA -CCAACACTGTTCCCAATGCTTGCA -CCAACACTGTTCCCAATGCGAACA -CCAACACTGTTCCCAATGCAGTCA -CCAACACTGTTCCCAATGGATCCA -CCAACACTGTTCCCAATGACGACA -CCAACACTGTTCCCAATGAGCTCA -CCAACACTGTTCCCAATGTCACGT -CCAACACTGTTCCCAATGCGTAGT -CCAACACTGTTCCCAATGGTCAGT -CCAACACTGTTCCCAATGGAAGGT -CCAACACTGTTCCCAATGAACCGT -CCAACACTGTTCCCAATGTTGTGC -CCAACACTGTTCCCAATGCTAAGC -CCAACACTGTTCCCAATGACTAGC -CCAACACTGTTCCCAATGAGATGC -CCAACACTGTTCCCAATGTGAAGG -CCAACACTGTTCCCAATGCAATGG -CCAACACTGTTCCCAATGATGAGG -CCAACACTGTTCCCAATGAATGGG -CCAACACTGTTCCCAATGTCCTGA -CCAACACTGTTCCCAATGTAGCGA -CCAACACTGTTCCCAATGCACAGA -CCAACACTGTTCCCAATGGCAAGA -CCAACACTGTTCCCAATGGGTTGA -CCAACACTGTTCCCAATGTCCGAT -CCAACACTGTTCCCAATGTGGCAT -CCAACACTGTTCCCAATGCGAGAT -CCAACACTGTTCCCAATGTACCAC -CCAACACTGTTCCCAATGCAGAAC -CCAACACTGTTCCCAATGGTCTAC -CCAACACTGTTCCCAATGACGTAC -CCAACACTGTTCCCAATGAGTGAC -CCAACACTGTTCCCAATGCTGTAG -CCAACACTGTTCCCAATGCCTAAG -CCAACACTGTTCCCAATGGTTCAG -CCAACACTGTTCCCAATGGCATAG -CCAACACTGTTCCCAATGGACAAG -CCAACACTGTTCCCAATGAAGCAG -CCAACACTGTTCCCAATGCGTCAA -CCAACACTGTTCCCAATGGCTGAA -CCAACACTGTTCCCAATGAGTACG -CCAACACTGTTCCCAATGATCCGA -CCAACACTGTTCCCAATGATGGGA -CCAACACTGTTCCCAATGGTGCAA -CCAACACTGTTCCCAATGGAGGAA -CCAACACTGTTCCCAATGCAGGTA -CCAACACTGTTCCCAATGGACTCT -CCAACACTGTTCCCAATGAGTCCT -CCAACACTGTTCCCAATGTAAGCC -CCAACACTGTTCCCAATGATAGCC -CCAACACTGTTCCCAATGTAACCG -CCAACACTGTTCCCAATGATGCCA -CCAACAGGTTTCAACGGAGGAAAC -CCAACAGGTTTCAACGGAAACACC -CCAACAGGTTTCAACGGAATCGAG -CCAACAGGTTTCAACGGACTCCTT -CCAACAGGTTTCAACGGACCTGTT -CCAACAGGTTTCAACGGACGGTTT -CCAACAGGTTTCAACGGAGTGGTT -CCAACAGGTTTCAACGGAGCCTTT -CCAACAGGTTTCAACGGAGGTCTT -CCAACAGGTTTCAACGGAACGCTT -CCAACAGGTTTCAACGGAAGCGTT -CCAACAGGTTTCAACGGATTCGTC -CCAACAGGTTTCAACGGATCTCTC -CCAACAGGTTTCAACGGATGGATC -CCAACAGGTTTCAACGGACACTTC -CCAACAGGTTTCAACGGAGTACTC -CCAACAGGTTTCAACGGAGATGTC -CCAACAGGTTTCAACGGAACAGTC -CCAACAGGTTTCAACGGATTGCTG -CCAACAGGTTTCAACGGATCCATG -CCAACAGGTTTCAACGGATGTGTG -CCAACAGGTTTCAACGGACTAGTG -CCAACAGGTTTCAACGGACATCTG -CCAACAGGTTTCAACGGAGAGTTG -CCAACAGGTTTCAACGGAAGACTG -CCAACAGGTTTCAACGGATCGGTA -CCAACAGGTTTCAACGGATGCCTA -CCAACAGGTTTCAACGGACCACTA -CCAACAGGTTTCAACGGAGGAGTA -CCAACAGGTTTCAACGGATCGTCT -CCAACAGGTTTCAACGGATGCACT -CCAACAGGTTTCAACGGACTGACT -CCAACAGGTTTCAACGGACAACCT -CCAACAGGTTTCAACGGAGCTACT -CCAACAGGTTTCAACGGAGGATCT -CCAACAGGTTTCAACGGAAAGGCT -CCAACAGGTTTCAACGGATCAACC -CCAACAGGTTTCAACGGATGTTCC -CCAACAGGTTTCAACGGAATTCCC -CCAACAGGTTTCAACGGATTCTCG -CCAACAGGTTTCAACGGATAGACG -CCAACAGGTTTCAACGGAGTAACG -CCAACAGGTTTCAACGGAACTTCG -CCAACAGGTTTCAACGGATACGCA -CCAACAGGTTTCAACGGACTTGCA -CCAACAGGTTTCAACGGACGAACA -CCAACAGGTTTCAACGGACAGTCA -CCAACAGGTTTCAACGGAGATCCA -CCAACAGGTTTCAACGGAACGACA -CCAACAGGTTTCAACGGAAGCTCA -CCAACAGGTTTCAACGGATCACGT -CCAACAGGTTTCAACGGACGTAGT -CCAACAGGTTTCAACGGAGTCAGT -CCAACAGGTTTCAACGGAGAAGGT -CCAACAGGTTTCAACGGAAACCGT -CCAACAGGTTTCAACGGATTGTGC -CCAACAGGTTTCAACGGACTAAGC -CCAACAGGTTTCAACGGAACTAGC -CCAACAGGTTTCAACGGAAGATGC -CCAACAGGTTTCAACGGATGAAGG -CCAACAGGTTTCAACGGACAATGG -CCAACAGGTTTCAACGGAATGAGG -CCAACAGGTTTCAACGGAAATGGG -CCAACAGGTTTCAACGGATCCTGA -CCAACAGGTTTCAACGGATAGCGA -CCAACAGGTTTCAACGGACACAGA -CCAACAGGTTTCAACGGAGCAAGA -CCAACAGGTTTCAACGGAGGTTGA -CCAACAGGTTTCAACGGATCCGAT -CCAACAGGTTTCAACGGATGGCAT -CCAACAGGTTTCAACGGACGAGAT -CCAACAGGTTTCAACGGATACCAC -CCAACAGGTTTCAACGGACAGAAC -CCAACAGGTTTCAACGGAGTCTAC -CCAACAGGTTTCAACGGAACGTAC -CCAACAGGTTTCAACGGAAGTGAC -CCAACAGGTTTCAACGGACTGTAG -CCAACAGGTTTCAACGGACCTAAG -CCAACAGGTTTCAACGGAGTTCAG -CCAACAGGTTTCAACGGAGCATAG -CCAACAGGTTTCAACGGAGACAAG -CCAACAGGTTTCAACGGAAAGCAG -CCAACAGGTTTCAACGGACGTCAA -CCAACAGGTTTCAACGGAGCTGAA -CCAACAGGTTTCAACGGAAGTACG -CCAACAGGTTTCAACGGAATCCGA -CCAACAGGTTTCAACGGAATGGGA -CCAACAGGTTTCAACGGAGTGCAA -CCAACAGGTTTCAACGGAGAGGAA -CCAACAGGTTTCAACGGACAGGTA -CCAACAGGTTTCAACGGAGACTCT -CCAACAGGTTTCAACGGAAGTCCT -CCAACAGGTTTCAACGGATAAGCC -CCAACAGGTTTCAACGGAATAGCC -CCAACAGGTTTCAACGGATAACCG -CCAACAGGTTTCAACGGAATGCCA -CCAACAGGTTTCACCAACGGAAAC -CCAACAGGTTTCACCAACAACACC -CCAACAGGTTTCACCAACATCGAG -CCAACAGGTTTCACCAACCTCCTT -CCAACAGGTTTCACCAACCCTGTT -CCAACAGGTTTCACCAACCGGTTT -CCAACAGGTTTCACCAACGTGGTT -CCAACAGGTTTCACCAACGCCTTT -CCAACAGGTTTCACCAACGGTCTT -CCAACAGGTTTCACCAACACGCTT -CCAACAGGTTTCACCAACAGCGTT -CCAACAGGTTTCACCAACTTCGTC -CCAACAGGTTTCACCAACTCTCTC -CCAACAGGTTTCACCAACTGGATC -CCAACAGGTTTCACCAACCACTTC -CCAACAGGTTTCACCAACGTACTC -CCAACAGGTTTCACCAACGATGTC -CCAACAGGTTTCACCAACACAGTC -CCAACAGGTTTCACCAACTTGCTG -CCAACAGGTTTCACCAACTCCATG -CCAACAGGTTTCACCAACTGTGTG -CCAACAGGTTTCACCAACCTAGTG -CCAACAGGTTTCACCAACCATCTG -CCAACAGGTTTCACCAACGAGTTG -CCAACAGGTTTCACCAACAGACTG -CCAACAGGTTTCACCAACTCGGTA -CCAACAGGTTTCACCAACTGCCTA -CCAACAGGTTTCACCAACCCACTA -CCAACAGGTTTCACCAACGGAGTA -CCAACAGGTTTCACCAACTCGTCT -CCAACAGGTTTCACCAACTGCACT -CCAACAGGTTTCACCAACCTGACT -CCAACAGGTTTCACCAACCAACCT -CCAACAGGTTTCACCAACGCTACT -CCAACAGGTTTCACCAACGGATCT -CCAACAGGTTTCACCAACAAGGCT -CCAACAGGTTTCACCAACTCAACC -CCAACAGGTTTCACCAACTGTTCC -CCAACAGGTTTCACCAACATTCCC -CCAACAGGTTTCACCAACTTCTCG -CCAACAGGTTTCACCAACTAGACG -CCAACAGGTTTCACCAACGTAACG -CCAACAGGTTTCACCAACACTTCG -CCAACAGGTTTCACCAACTACGCA -CCAACAGGTTTCACCAACCTTGCA -CCAACAGGTTTCACCAACCGAACA -CCAACAGGTTTCACCAACCAGTCA -CCAACAGGTTTCACCAACGATCCA -CCAACAGGTTTCACCAACACGACA -CCAACAGGTTTCACCAACAGCTCA -CCAACAGGTTTCACCAACTCACGT -CCAACAGGTTTCACCAACCGTAGT -CCAACAGGTTTCACCAACGTCAGT -CCAACAGGTTTCACCAACGAAGGT -CCAACAGGTTTCACCAACAACCGT -CCAACAGGTTTCACCAACTTGTGC -CCAACAGGTTTCACCAACCTAAGC -CCAACAGGTTTCACCAACACTAGC -CCAACAGGTTTCACCAACAGATGC -CCAACAGGTTTCACCAACTGAAGG -CCAACAGGTTTCACCAACCAATGG -CCAACAGGTTTCACCAACATGAGG -CCAACAGGTTTCACCAACAATGGG -CCAACAGGTTTCACCAACTCCTGA -CCAACAGGTTTCACCAACTAGCGA -CCAACAGGTTTCACCAACCACAGA -CCAACAGGTTTCACCAACGCAAGA -CCAACAGGTTTCACCAACGGTTGA -CCAACAGGTTTCACCAACTCCGAT -CCAACAGGTTTCACCAACTGGCAT -CCAACAGGTTTCACCAACCGAGAT -CCAACAGGTTTCACCAACTACCAC -CCAACAGGTTTCACCAACCAGAAC -CCAACAGGTTTCACCAACGTCTAC -CCAACAGGTTTCACCAACACGTAC -CCAACAGGTTTCACCAACAGTGAC -CCAACAGGTTTCACCAACCTGTAG -CCAACAGGTTTCACCAACCCTAAG -CCAACAGGTTTCACCAACGTTCAG -CCAACAGGTTTCACCAACGCATAG -CCAACAGGTTTCACCAACGACAAG -CCAACAGGTTTCACCAACAAGCAG -CCAACAGGTTTCACCAACCGTCAA -CCAACAGGTTTCACCAACGCTGAA -CCAACAGGTTTCACCAACAGTACG -CCAACAGGTTTCACCAACATCCGA -CCAACAGGTTTCACCAACATGGGA -CCAACAGGTTTCACCAACGTGCAA -CCAACAGGTTTCACCAACGAGGAA -CCAACAGGTTTCACCAACCAGGTA -CCAACAGGTTTCACCAACGACTCT -CCAACAGGTTTCACCAACAGTCCT -CCAACAGGTTTCACCAACTAAGCC -CCAACAGGTTTCACCAACATAGCC -CCAACAGGTTTCACCAACTAACCG -CCAACAGGTTTCACCAACATGCCA -CCAACAGGTTTCGAGATCGGAAAC -CCAACAGGTTTCGAGATCAACACC -CCAACAGGTTTCGAGATCATCGAG -CCAACAGGTTTCGAGATCCTCCTT -CCAACAGGTTTCGAGATCCCTGTT -CCAACAGGTTTCGAGATCCGGTTT -CCAACAGGTTTCGAGATCGTGGTT -CCAACAGGTTTCGAGATCGCCTTT -CCAACAGGTTTCGAGATCGGTCTT -CCAACAGGTTTCGAGATCACGCTT -CCAACAGGTTTCGAGATCAGCGTT -CCAACAGGTTTCGAGATCTTCGTC -CCAACAGGTTTCGAGATCTCTCTC -CCAACAGGTTTCGAGATCTGGATC -CCAACAGGTTTCGAGATCCACTTC -CCAACAGGTTTCGAGATCGTACTC -CCAACAGGTTTCGAGATCGATGTC -CCAACAGGTTTCGAGATCACAGTC -CCAACAGGTTTCGAGATCTTGCTG -CCAACAGGTTTCGAGATCTCCATG -CCAACAGGTTTCGAGATCTGTGTG -CCAACAGGTTTCGAGATCCTAGTG -CCAACAGGTTTCGAGATCCATCTG -CCAACAGGTTTCGAGATCGAGTTG -CCAACAGGTTTCGAGATCAGACTG -CCAACAGGTTTCGAGATCTCGGTA -CCAACAGGTTTCGAGATCTGCCTA -CCAACAGGTTTCGAGATCCCACTA -CCAACAGGTTTCGAGATCGGAGTA -CCAACAGGTTTCGAGATCTCGTCT -CCAACAGGTTTCGAGATCTGCACT -CCAACAGGTTTCGAGATCCTGACT -CCAACAGGTTTCGAGATCCAACCT -CCAACAGGTTTCGAGATCGCTACT -CCAACAGGTTTCGAGATCGGATCT -CCAACAGGTTTCGAGATCAAGGCT -CCAACAGGTTTCGAGATCTCAACC -CCAACAGGTTTCGAGATCTGTTCC -CCAACAGGTTTCGAGATCATTCCC -CCAACAGGTTTCGAGATCTTCTCG -CCAACAGGTTTCGAGATCTAGACG -CCAACAGGTTTCGAGATCGTAACG -CCAACAGGTTTCGAGATCACTTCG -CCAACAGGTTTCGAGATCTACGCA -CCAACAGGTTTCGAGATCCTTGCA -CCAACAGGTTTCGAGATCCGAACA -CCAACAGGTTTCGAGATCCAGTCA -CCAACAGGTTTCGAGATCGATCCA -CCAACAGGTTTCGAGATCACGACA -CCAACAGGTTTCGAGATCAGCTCA -CCAACAGGTTTCGAGATCTCACGT -CCAACAGGTTTCGAGATCCGTAGT -CCAACAGGTTTCGAGATCGTCAGT -CCAACAGGTTTCGAGATCGAAGGT -CCAACAGGTTTCGAGATCAACCGT -CCAACAGGTTTCGAGATCTTGTGC -CCAACAGGTTTCGAGATCCTAAGC -CCAACAGGTTTCGAGATCACTAGC -CCAACAGGTTTCGAGATCAGATGC -CCAACAGGTTTCGAGATCTGAAGG -CCAACAGGTTTCGAGATCCAATGG -CCAACAGGTTTCGAGATCATGAGG -CCAACAGGTTTCGAGATCAATGGG -CCAACAGGTTTCGAGATCTCCTGA -CCAACAGGTTTCGAGATCTAGCGA -CCAACAGGTTTCGAGATCCACAGA -CCAACAGGTTTCGAGATCGCAAGA -CCAACAGGTTTCGAGATCGGTTGA -CCAACAGGTTTCGAGATCTCCGAT -CCAACAGGTTTCGAGATCTGGCAT -CCAACAGGTTTCGAGATCCGAGAT -CCAACAGGTTTCGAGATCTACCAC -CCAACAGGTTTCGAGATCCAGAAC -CCAACAGGTTTCGAGATCGTCTAC -CCAACAGGTTTCGAGATCACGTAC -CCAACAGGTTTCGAGATCAGTGAC -CCAACAGGTTTCGAGATCCTGTAG -CCAACAGGTTTCGAGATCCCTAAG -CCAACAGGTTTCGAGATCGTTCAG -CCAACAGGTTTCGAGATCGCATAG -CCAACAGGTTTCGAGATCGACAAG -CCAACAGGTTTCGAGATCAAGCAG -CCAACAGGTTTCGAGATCCGTCAA -CCAACAGGTTTCGAGATCGCTGAA -CCAACAGGTTTCGAGATCAGTACG -CCAACAGGTTTCGAGATCATCCGA -CCAACAGGTTTCGAGATCATGGGA -CCAACAGGTTTCGAGATCGTGCAA -CCAACAGGTTTCGAGATCGAGGAA -CCAACAGGTTTCGAGATCCAGGTA -CCAACAGGTTTCGAGATCGACTCT -CCAACAGGTTTCGAGATCAGTCCT -CCAACAGGTTTCGAGATCTAAGCC -CCAACAGGTTTCGAGATCATAGCC -CCAACAGGTTTCGAGATCTAACCG -CCAACAGGTTTCGAGATCATGCCA -CCAACAGGTTTCCTTCTCGGAAAC -CCAACAGGTTTCCTTCTCAACACC -CCAACAGGTTTCCTTCTCATCGAG -CCAACAGGTTTCCTTCTCCTCCTT -CCAACAGGTTTCCTTCTCCCTGTT -CCAACAGGTTTCCTTCTCCGGTTT -CCAACAGGTTTCCTTCTCGTGGTT -CCAACAGGTTTCCTTCTCGCCTTT -CCAACAGGTTTCCTTCTCGGTCTT -CCAACAGGTTTCCTTCTCACGCTT -CCAACAGGTTTCCTTCTCAGCGTT -CCAACAGGTTTCCTTCTCTTCGTC -CCAACAGGTTTCCTTCTCTCTCTC -CCAACAGGTTTCCTTCTCTGGATC -CCAACAGGTTTCCTTCTCCACTTC -CCAACAGGTTTCCTTCTCGTACTC -CCAACAGGTTTCCTTCTCGATGTC -CCAACAGGTTTCCTTCTCACAGTC -CCAACAGGTTTCCTTCTCTTGCTG -CCAACAGGTTTCCTTCTCTCCATG -CCAACAGGTTTCCTTCTCTGTGTG -CCAACAGGTTTCCTTCTCCTAGTG -CCAACAGGTTTCCTTCTCCATCTG -CCAACAGGTTTCCTTCTCGAGTTG -CCAACAGGTTTCCTTCTCAGACTG -CCAACAGGTTTCCTTCTCTCGGTA -CCAACAGGTTTCCTTCTCTGCCTA -CCAACAGGTTTCCTTCTCCCACTA -CCAACAGGTTTCCTTCTCGGAGTA -CCAACAGGTTTCCTTCTCTCGTCT -CCAACAGGTTTCCTTCTCTGCACT -CCAACAGGTTTCCTTCTCCTGACT -CCAACAGGTTTCCTTCTCCAACCT -CCAACAGGTTTCCTTCTCGCTACT -CCAACAGGTTTCCTTCTCGGATCT -CCAACAGGTTTCCTTCTCAAGGCT -CCAACAGGTTTCCTTCTCTCAACC -CCAACAGGTTTCCTTCTCTGTTCC -CCAACAGGTTTCCTTCTCATTCCC -CCAACAGGTTTCCTTCTCTTCTCG -CCAACAGGTTTCCTTCTCTAGACG -CCAACAGGTTTCCTTCTCGTAACG -CCAACAGGTTTCCTTCTCACTTCG -CCAACAGGTTTCCTTCTCTACGCA -CCAACAGGTTTCCTTCTCCTTGCA -CCAACAGGTTTCCTTCTCCGAACA -CCAACAGGTTTCCTTCTCCAGTCA -CCAACAGGTTTCCTTCTCGATCCA -CCAACAGGTTTCCTTCTCACGACA -CCAACAGGTTTCCTTCTCAGCTCA -CCAACAGGTTTCCTTCTCTCACGT -CCAACAGGTTTCCTTCTCCGTAGT -CCAACAGGTTTCCTTCTCGTCAGT -CCAACAGGTTTCCTTCTCGAAGGT -CCAACAGGTTTCCTTCTCAACCGT -CCAACAGGTTTCCTTCTCTTGTGC -CCAACAGGTTTCCTTCTCCTAAGC -CCAACAGGTTTCCTTCTCACTAGC -CCAACAGGTTTCCTTCTCAGATGC -CCAACAGGTTTCCTTCTCTGAAGG -CCAACAGGTTTCCTTCTCCAATGG -CCAACAGGTTTCCTTCTCATGAGG -CCAACAGGTTTCCTTCTCAATGGG -CCAACAGGTTTCCTTCTCTCCTGA -CCAACAGGTTTCCTTCTCTAGCGA -CCAACAGGTTTCCTTCTCCACAGA -CCAACAGGTTTCCTTCTCGCAAGA -CCAACAGGTTTCCTTCTCGGTTGA -CCAACAGGTTTCCTTCTCTCCGAT -CCAACAGGTTTCCTTCTCTGGCAT -CCAACAGGTTTCCTTCTCCGAGAT -CCAACAGGTTTCCTTCTCTACCAC -CCAACAGGTTTCCTTCTCCAGAAC -CCAACAGGTTTCCTTCTCGTCTAC -CCAACAGGTTTCCTTCTCACGTAC -CCAACAGGTTTCCTTCTCAGTGAC -CCAACAGGTTTCCTTCTCCTGTAG -CCAACAGGTTTCCTTCTCCCTAAG -CCAACAGGTTTCCTTCTCGTTCAG -CCAACAGGTTTCCTTCTCGCATAG -CCAACAGGTTTCCTTCTCGACAAG -CCAACAGGTTTCCTTCTCAAGCAG -CCAACAGGTTTCCTTCTCCGTCAA -CCAACAGGTTTCCTTCTCGCTGAA -CCAACAGGTTTCCTTCTCAGTACG -CCAACAGGTTTCCTTCTCATCCGA -CCAACAGGTTTCCTTCTCATGGGA -CCAACAGGTTTCCTTCTCGTGCAA -CCAACAGGTTTCCTTCTCGAGGAA -CCAACAGGTTTCCTTCTCCAGGTA -CCAACAGGTTTCCTTCTCGACTCT -CCAACAGGTTTCCTTCTCAGTCCT -CCAACAGGTTTCCTTCTCTAAGCC -CCAACAGGTTTCCTTCTCATAGCC -CCAACAGGTTTCCTTCTCTAACCG -CCAACAGGTTTCCTTCTCATGCCA -CCAACAGGTTTCGTTCCTGGAAAC -CCAACAGGTTTCGTTCCTAACACC -CCAACAGGTTTCGTTCCTATCGAG -CCAACAGGTTTCGTTCCTCTCCTT -CCAACAGGTTTCGTTCCTCCTGTT -CCAACAGGTTTCGTTCCTCGGTTT -CCAACAGGTTTCGTTCCTGTGGTT -CCAACAGGTTTCGTTCCTGCCTTT -CCAACAGGTTTCGTTCCTGGTCTT -CCAACAGGTTTCGTTCCTACGCTT -CCAACAGGTTTCGTTCCTAGCGTT -CCAACAGGTTTCGTTCCTTTCGTC -CCAACAGGTTTCGTTCCTTCTCTC -CCAACAGGTTTCGTTCCTTGGATC -CCAACAGGTTTCGTTCCTCACTTC -CCAACAGGTTTCGTTCCTGTACTC -CCAACAGGTTTCGTTCCTGATGTC -CCAACAGGTTTCGTTCCTACAGTC -CCAACAGGTTTCGTTCCTTTGCTG -CCAACAGGTTTCGTTCCTTCCATG -CCAACAGGTTTCGTTCCTTGTGTG -CCAACAGGTTTCGTTCCTCTAGTG -CCAACAGGTTTCGTTCCTCATCTG -CCAACAGGTTTCGTTCCTGAGTTG -CCAACAGGTTTCGTTCCTAGACTG -CCAACAGGTTTCGTTCCTTCGGTA -CCAACAGGTTTCGTTCCTTGCCTA -CCAACAGGTTTCGTTCCTCCACTA -CCAACAGGTTTCGTTCCTGGAGTA -CCAACAGGTTTCGTTCCTTCGTCT -CCAACAGGTTTCGTTCCTTGCACT -CCAACAGGTTTCGTTCCTCTGACT -CCAACAGGTTTCGTTCCTCAACCT -CCAACAGGTTTCGTTCCTGCTACT -CCAACAGGTTTCGTTCCTGGATCT -CCAACAGGTTTCGTTCCTAAGGCT -CCAACAGGTTTCGTTCCTTCAACC -CCAACAGGTTTCGTTCCTTGTTCC -CCAACAGGTTTCGTTCCTATTCCC -CCAACAGGTTTCGTTCCTTTCTCG -CCAACAGGTTTCGTTCCTTAGACG -CCAACAGGTTTCGTTCCTGTAACG -CCAACAGGTTTCGTTCCTACTTCG -CCAACAGGTTTCGTTCCTTACGCA -CCAACAGGTTTCGTTCCTCTTGCA -CCAACAGGTTTCGTTCCTCGAACA -CCAACAGGTTTCGTTCCTCAGTCA -CCAACAGGTTTCGTTCCTGATCCA -CCAACAGGTTTCGTTCCTACGACA -CCAACAGGTTTCGTTCCTAGCTCA -CCAACAGGTTTCGTTCCTTCACGT -CCAACAGGTTTCGTTCCTCGTAGT -CCAACAGGTTTCGTTCCTGTCAGT -CCAACAGGTTTCGTTCCTGAAGGT -CCAACAGGTTTCGTTCCTAACCGT -CCAACAGGTTTCGTTCCTTTGTGC -CCAACAGGTTTCGTTCCTCTAAGC -CCAACAGGTTTCGTTCCTACTAGC -CCAACAGGTTTCGTTCCTAGATGC -CCAACAGGTTTCGTTCCTTGAAGG -CCAACAGGTTTCGTTCCTCAATGG -CCAACAGGTTTCGTTCCTATGAGG -CCAACAGGTTTCGTTCCTAATGGG -CCAACAGGTTTCGTTCCTTCCTGA -CCAACAGGTTTCGTTCCTTAGCGA -CCAACAGGTTTCGTTCCTCACAGA -CCAACAGGTTTCGTTCCTGCAAGA -CCAACAGGTTTCGTTCCTGGTTGA -CCAACAGGTTTCGTTCCTTCCGAT -CCAACAGGTTTCGTTCCTTGGCAT -CCAACAGGTTTCGTTCCTCGAGAT -CCAACAGGTTTCGTTCCTTACCAC -CCAACAGGTTTCGTTCCTCAGAAC -CCAACAGGTTTCGTTCCTGTCTAC -CCAACAGGTTTCGTTCCTACGTAC -CCAACAGGTTTCGTTCCTAGTGAC -CCAACAGGTTTCGTTCCTCTGTAG -CCAACAGGTTTCGTTCCTCCTAAG -CCAACAGGTTTCGTTCCTGTTCAG -CCAACAGGTTTCGTTCCTGCATAG -CCAACAGGTTTCGTTCCTGACAAG -CCAACAGGTTTCGTTCCTAAGCAG -CCAACAGGTTTCGTTCCTCGTCAA -CCAACAGGTTTCGTTCCTGCTGAA -CCAACAGGTTTCGTTCCTAGTACG -CCAACAGGTTTCGTTCCTATCCGA -CCAACAGGTTTCGTTCCTATGGGA -CCAACAGGTTTCGTTCCTGTGCAA -CCAACAGGTTTCGTTCCTGAGGAA -CCAACAGGTTTCGTTCCTCAGGTA -CCAACAGGTTTCGTTCCTGACTCT -CCAACAGGTTTCGTTCCTAGTCCT -CCAACAGGTTTCGTTCCTTAAGCC -CCAACAGGTTTCGTTCCTATAGCC -CCAACAGGTTTCGTTCCTTAACCG -CCAACAGGTTTCGTTCCTATGCCA -CCAACAGGTTTCTTTCGGGGAAAC -CCAACAGGTTTCTTTCGGAACACC -CCAACAGGTTTCTTTCGGATCGAG -CCAACAGGTTTCTTTCGGCTCCTT -CCAACAGGTTTCTTTCGGCCTGTT -CCAACAGGTTTCTTTCGGCGGTTT -CCAACAGGTTTCTTTCGGGTGGTT -CCAACAGGTTTCTTTCGGGCCTTT -CCAACAGGTTTCTTTCGGGGTCTT -CCAACAGGTTTCTTTCGGACGCTT -CCAACAGGTTTCTTTCGGAGCGTT -CCAACAGGTTTCTTTCGGTTCGTC -CCAACAGGTTTCTTTCGGTCTCTC -CCAACAGGTTTCTTTCGGTGGATC -CCAACAGGTTTCTTTCGGCACTTC -CCAACAGGTTTCTTTCGGGTACTC -CCAACAGGTTTCTTTCGGGATGTC -CCAACAGGTTTCTTTCGGACAGTC -CCAACAGGTTTCTTTCGGTTGCTG -CCAACAGGTTTCTTTCGGTCCATG -CCAACAGGTTTCTTTCGGTGTGTG -CCAACAGGTTTCTTTCGGCTAGTG -CCAACAGGTTTCTTTCGGCATCTG -CCAACAGGTTTCTTTCGGGAGTTG -CCAACAGGTTTCTTTCGGAGACTG -CCAACAGGTTTCTTTCGGTCGGTA -CCAACAGGTTTCTTTCGGTGCCTA -CCAACAGGTTTCTTTCGGCCACTA -CCAACAGGTTTCTTTCGGGGAGTA -CCAACAGGTTTCTTTCGGTCGTCT -CCAACAGGTTTCTTTCGGTGCACT -CCAACAGGTTTCTTTCGGCTGACT -CCAACAGGTTTCTTTCGGCAACCT -CCAACAGGTTTCTTTCGGGCTACT -CCAACAGGTTTCTTTCGGGGATCT -CCAACAGGTTTCTTTCGGAAGGCT -CCAACAGGTTTCTTTCGGTCAACC -CCAACAGGTTTCTTTCGGTGTTCC -CCAACAGGTTTCTTTCGGATTCCC -CCAACAGGTTTCTTTCGGTTCTCG -CCAACAGGTTTCTTTCGGTAGACG -CCAACAGGTTTCTTTCGGGTAACG -CCAACAGGTTTCTTTCGGACTTCG -CCAACAGGTTTCTTTCGGTACGCA -CCAACAGGTTTCTTTCGGCTTGCA -CCAACAGGTTTCTTTCGGCGAACA -CCAACAGGTTTCTTTCGGCAGTCA -CCAACAGGTTTCTTTCGGGATCCA -CCAACAGGTTTCTTTCGGACGACA -CCAACAGGTTTCTTTCGGAGCTCA -CCAACAGGTTTCTTTCGGTCACGT -CCAACAGGTTTCTTTCGGCGTAGT -CCAACAGGTTTCTTTCGGGTCAGT -CCAACAGGTTTCTTTCGGGAAGGT -CCAACAGGTTTCTTTCGGAACCGT -CCAACAGGTTTCTTTCGGTTGTGC -CCAACAGGTTTCTTTCGGCTAAGC -CCAACAGGTTTCTTTCGGACTAGC -CCAACAGGTTTCTTTCGGAGATGC -CCAACAGGTTTCTTTCGGTGAAGG -CCAACAGGTTTCTTTCGGCAATGG -CCAACAGGTTTCTTTCGGATGAGG -CCAACAGGTTTCTTTCGGAATGGG -CCAACAGGTTTCTTTCGGTCCTGA -CCAACAGGTTTCTTTCGGTAGCGA -CCAACAGGTTTCTTTCGGCACAGA -CCAACAGGTTTCTTTCGGGCAAGA -CCAACAGGTTTCTTTCGGGGTTGA -CCAACAGGTTTCTTTCGGTCCGAT -CCAACAGGTTTCTTTCGGTGGCAT -CCAACAGGTTTCTTTCGGCGAGAT -CCAACAGGTTTCTTTCGGTACCAC -CCAACAGGTTTCTTTCGGCAGAAC -CCAACAGGTTTCTTTCGGGTCTAC -CCAACAGGTTTCTTTCGGACGTAC -CCAACAGGTTTCTTTCGGAGTGAC -CCAACAGGTTTCTTTCGGCTGTAG -CCAACAGGTTTCTTTCGGCCTAAG -CCAACAGGTTTCTTTCGGGTTCAG -CCAACAGGTTTCTTTCGGGCATAG -CCAACAGGTTTCTTTCGGGACAAG -CCAACAGGTTTCTTTCGGAAGCAG -CCAACAGGTTTCTTTCGGCGTCAA -CCAACAGGTTTCTTTCGGGCTGAA -CCAACAGGTTTCTTTCGGAGTACG -CCAACAGGTTTCTTTCGGATCCGA -CCAACAGGTTTCTTTCGGATGGGA -CCAACAGGTTTCTTTCGGGTGCAA -CCAACAGGTTTCTTTCGGGAGGAA -CCAACAGGTTTCTTTCGGCAGGTA -CCAACAGGTTTCTTTCGGGACTCT -CCAACAGGTTTCTTTCGGAGTCCT -CCAACAGGTTTCTTTCGGTAAGCC -CCAACAGGTTTCTTTCGGATAGCC -CCAACAGGTTTCTTTCGGTAACCG -CCAACAGGTTTCTTTCGGATGCCA -CCAACAGGTTTCGTTGTGGGAAAC -CCAACAGGTTTCGTTGTGAACACC -CCAACAGGTTTCGTTGTGATCGAG -CCAACAGGTTTCGTTGTGCTCCTT -CCAACAGGTTTCGTTGTGCCTGTT -CCAACAGGTTTCGTTGTGCGGTTT -CCAACAGGTTTCGTTGTGGTGGTT -CCAACAGGTTTCGTTGTGGCCTTT -CCAACAGGTTTCGTTGTGGGTCTT -CCAACAGGTTTCGTTGTGACGCTT -CCAACAGGTTTCGTTGTGAGCGTT -CCAACAGGTTTCGTTGTGTTCGTC -CCAACAGGTTTCGTTGTGTCTCTC -CCAACAGGTTTCGTTGTGTGGATC -CCAACAGGTTTCGTTGTGCACTTC -CCAACAGGTTTCGTTGTGGTACTC -CCAACAGGTTTCGTTGTGGATGTC -CCAACAGGTTTCGTTGTGACAGTC -CCAACAGGTTTCGTTGTGTTGCTG -CCAACAGGTTTCGTTGTGTCCATG -CCAACAGGTTTCGTTGTGTGTGTG -CCAACAGGTTTCGTTGTGCTAGTG -CCAACAGGTTTCGTTGTGCATCTG -CCAACAGGTTTCGTTGTGGAGTTG -CCAACAGGTTTCGTTGTGAGACTG -CCAACAGGTTTCGTTGTGTCGGTA -CCAACAGGTTTCGTTGTGTGCCTA -CCAACAGGTTTCGTTGTGCCACTA -CCAACAGGTTTCGTTGTGGGAGTA -CCAACAGGTTTCGTTGTGTCGTCT -CCAACAGGTTTCGTTGTGTGCACT -CCAACAGGTTTCGTTGTGCTGACT -CCAACAGGTTTCGTTGTGCAACCT -CCAACAGGTTTCGTTGTGGCTACT -CCAACAGGTTTCGTTGTGGGATCT -CCAACAGGTTTCGTTGTGAAGGCT -CCAACAGGTTTCGTTGTGTCAACC -CCAACAGGTTTCGTTGTGTGTTCC -CCAACAGGTTTCGTTGTGATTCCC -CCAACAGGTTTCGTTGTGTTCTCG -CCAACAGGTTTCGTTGTGTAGACG -CCAACAGGTTTCGTTGTGGTAACG -CCAACAGGTTTCGTTGTGACTTCG -CCAACAGGTTTCGTTGTGTACGCA -CCAACAGGTTTCGTTGTGCTTGCA -CCAACAGGTTTCGTTGTGCGAACA -CCAACAGGTTTCGTTGTGCAGTCA -CCAACAGGTTTCGTTGTGGATCCA -CCAACAGGTTTCGTTGTGACGACA -CCAACAGGTTTCGTTGTGAGCTCA -CCAACAGGTTTCGTTGTGTCACGT -CCAACAGGTTTCGTTGTGCGTAGT -CCAACAGGTTTCGTTGTGGTCAGT -CCAACAGGTTTCGTTGTGGAAGGT -CCAACAGGTTTCGTTGTGAACCGT -CCAACAGGTTTCGTTGTGTTGTGC -CCAACAGGTTTCGTTGTGCTAAGC -CCAACAGGTTTCGTTGTGACTAGC -CCAACAGGTTTCGTTGTGAGATGC -CCAACAGGTTTCGTTGTGTGAAGG -CCAACAGGTTTCGTTGTGCAATGG -CCAACAGGTTTCGTTGTGATGAGG -CCAACAGGTTTCGTTGTGAATGGG -CCAACAGGTTTCGTTGTGTCCTGA -CCAACAGGTTTCGTTGTGTAGCGA -CCAACAGGTTTCGTTGTGCACAGA -CCAACAGGTTTCGTTGTGGCAAGA -CCAACAGGTTTCGTTGTGGGTTGA -CCAACAGGTTTCGTTGTGTCCGAT -CCAACAGGTTTCGTTGTGTGGCAT -CCAACAGGTTTCGTTGTGCGAGAT -CCAACAGGTTTCGTTGTGTACCAC -CCAACAGGTTTCGTTGTGCAGAAC -CCAACAGGTTTCGTTGTGGTCTAC -CCAACAGGTTTCGTTGTGACGTAC -CCAACAGGTTTCGTTGTGAGTGAC -CCAACAGGTTTCGTTGTGCTGTAG -CCAACAGGTTTCGTTGTGCCTAAG -CCAACAGGTTTCGTTGTGGTTCAG -CCAACAGGTTTCGTTGTGGCATAG -CCAACAGGTTTCGTTGTGGACAAG -CCAACAGGTTTCGTTGTGAAGCAG -CCAACAGGTTTCGTTGTGCGTCAA -CCAACAGGTTTCGTTGTGGCTGAA -CCAACAGGTTTCGTTGTGAGTACG -CCAACAGGTTTCGTTGTGATCCGA -CCAACAGGTTTCGTTGTGATGGGA -CCAACAGGTTTCGTTGTGGTGCAA -CCAACAGGTTTCGTTGTGGAGGAA -CCAACAGGTTTCGTTGTGCAGGTA -CCAACAGGTTTCGTTGTGGACTCT -CCAACAGGTTTCGTTGTGAGTCCT -CCAACAGGTTTCGTTGTGTAAGCC -CCAACAGGTTTCGTTGTGATAGCC -CCAACAGGTTTCGTTGTGTAACCG -CCAACAGGTTTCGTTGTGATGCCA -CCAACAGGTTTCTTTGCCGGAAAC -CCAACAGGTTTCTTTGCCAACACC -CCAACAGGTTTCTTTGCCATCGAG -CCAACAGGTTTCTTTGCCCTCCTT -CCAACAGGTTTCTTTGCCCCTGTT -CCAACAGGTTTCTTTGCCCGGTTT -CCAACAGGTTTCTTTGCCGTGGTT -CCAACAGGTTTCTTTGCCGCCTTT -CCAACAGGTTTCTTTGCCGGTCTT -CCAACAGGTTTCTTTGCCACGCTT -CCAACAGGTTTCTTTGCCAGCGTT -CCAACAGGTTTCTTTGCCTTCGTC -CCAACAGGTTTCTTTGCCTCTCTC -CCAACAGGTTTCTTTGCCTGGATC -CCAACAGGTTTCTTTGCCCACTTC -CCAACAGGTTTCTTTGCCGTACTC -CCAACAGGTTTCTTTGCCGATGTC -CCAACAGGTTTCTTTGCCACAGTC -CCAACAGGTTTCTTTGCCTTGCTG -CCAACAGGTTTCTTTGCCTCCATG -CCAACAGGTTTCTTTGCCTGTGTG -CCAACAGGTTTCTTTGCCCTAGTG -CCAACAGGTTTCTTTGCCCATCTG -CCAACAGGTTTCTTTGCCGAGTTG -CCAACAGGTTTCTTTGCCAGACTG -CCAACAGGTTTCTTTGCCTCGGTA -CCAACAGGTTTCTTTGCCTGCCTA -CCAACAGGTTTCTTTGCCCCACTA -CCAACAGGTTTCTTTGCCGGAGTA -CCAACAGGTTTCTTTGCCTCGTCT -CCAACAGGTTTCTTTGCCTGCACT -CCAACAGGTTTCTTTGCCCTGACT -CCAACAGGTTTCTTTGCCCAACCT -CCAACAGGTTTCTTTGCCGCTACT -CCAACAGGTTTCTTTGCCGGATCT -CCAACAGGTTTCTTTGCCAAGGCT -CCAACAGGTTTCTTTGCCTCAACC -CCAACAGGTTTCTTTGCCTGTTCC -CCAACAGGTTTCTTTGCCATTCCC -CCAACAGGTTTCTTTGCCTTCTCG -CCAACAGGTTTCTTTGCCTAGACG -CCAACAGGTTTCTTTGCCGTAACG -CCAACAGGTTTCTTTGCCACTTCG -CCAACAGGTTTCTTTGCCTACGCA -CCAACAGGTTTCTTTGCCCTTGCA -CCAACAGGTTTCTTTGCCCGAACA -CCAACAGGTTTCTTTGCCCAGTCA -CCAACAGGTTTCTTTGCCGATCCA -CCAACAGGTTTCTTTGCCACGACA -CCAACAGGTTTCTTTGCCAGCTCA -CCAACAGGTTTCTTTGCCTCACGT -CCAACAGGTTTCTTTGCCCGTAGT -CCAACAGGTTTCTTTGCCGTCAGT -CCAACAGGTTTCTTTGCCGAAGGT -CCAACAGGTTTCTTTGCCAACCGT -CCAACAGGTTTCTTTGCCTTGTGC -CCAACAGGTTTCTTTGCCCTAAGC -CCAACAGGTTTCTTTGCCACTAGC -CCAACAGGTTTCTTTGCCAGATGC -CCAACAGGTTTCTTTGCCTGAAGG -CCAACAGGTTTCTTTGCCCAATGG -CCAACAGGTTTCTTTGCCATGAGG -CCAACAGGTTTCTTTGCCAATGGG -CCAACAGGTTTCTTTGCCTCCTGA -CCAACAGGTTTCTTTGCCTAGCGA -CCAACAGGTTTCTTTGCCCACAGA -CCAACAGGTTTCTTTGCCGCAAGA -CCAACAGGTTTCTTTGCCGGTTGA -CCAACAGGTTTCTTTGCCTCCGAT -CCAACAGGTTTCTTTGCCTGGCAT -CCAACAGGTTTCTTTGCCCGAGAT -CCAACAGGTTTCTTTGCCTACCAC -CCAACAGGTTTCTTTGCCCAGAAC -CCAACAGGTTTCTTTGCCGTCTAC -CCAACAGGTTTCTTTGCCACGTAC -CCAACAGGTTTCTTTGCCAGTGAC -CCAACAGGTTTCTTTGCCCTGTAG -CCAACAGGTTTCTTTGCCCCTAAG -CCAACAGGTTTCTTTGCCGTTCAG -CCAACAGGTTTCTTTGCCGCATAG -CCAACAGGTTTCTTTGCCGACAAG -CCAACAGGTTTCTTTGCCAAGCAG -CCAACAGGTTTCTTTGCCCGTCAA -CCAACAGGTTTCTTTGCCGCTGAA -CCAACAGGTTTCTTTGCCAGTACG -CCAACAGGTTTCTTTGCCATCCGA -CCAACAGGTTTCTTTGCCATGGGA -CCAACAGGTTTCTTTGCCGTGCAA -CCAACAGGTTTCTTTGCCGAGGAA -CCAACAGGTTTCTTTGCCCAGGTA -CCAACAGGTTTCTTTGCCGACTCT -CCAACAGGTTTCTTTGCCAGTCCT -CCAACAGGTTTCTTTGCCTAAGCC -CCAACAGGTTTCTTTGCCATAGCC -CCAACAGGTTTCTTTGCCTAACCG -CCAACAGGTTTCTTTGCCATGCCA -CCAACAGGTTTCCTTGGTGGAAAC -CCAACAGGTTTCCTTGGTAACACC -CCAACAGGTTTCCTTGGTATCGAG -CCAACAGGTTTCCTTGGTCTCCTT -CCAACAGGTTTCCTTGGTCCTGTT -CCAACAGGTTTCCTTGGTCGGTTT -CCAACAGGTTTCCTTGGTGTGGTT -CCAACAGGTTTCCTTGGTGCCTTT -CCAACAGGTTTCCTTGGTGGTCTT -CCAACAGGTTTCCTTGGTACGCTT -CCAACAGGTTTCCTTGGTAGCGTT -CCAACAGGTTTCCTTGGTTTCGTC -CCAACAGGTTTCCTTGGTTCTCTC -CCAACAGGTTTCCTTGGTTGGATC -CCAACAGGTTTCCTTGGTCACTTC -CCAACAGGTTTCCTTGGTGTACTC -CCAACAGGTTTCCTTGGTGATGTC -CCAACAGGTTTCCTTGGTACAGTC -CCAACAGGTTTCCTTGGTTTGCTG -CCAACAGGTTTCCTTGGTTCCATG -CCAACAGGTTTCCTTGGTTGTGTG -CCAACAGGTTTCCTTGGTCTAGTG -CCAACAGGTTTCCTTGGTCATCTG -CCAACAGGTTTCCTTGGTGAGTTG -CCAACAGGTTTCCTTGGTAGACTG -CCAACAGGTTTCCTTGGTTCGGTA -CCAACAGGTTTCCTTGGTTGCCTA -CCAACAGGTTTCCTTGGTCCACTA -CCAACAGGTTTCCTTGGTGGAGTA -CCAACAGGTTTCCTTGGTTCGTCT -CCAACAGGTTTCCTTGGTTGCACT -CCAACAGGTTTCCTTGGTCTGACT -CCAACAGGTTTCCTTGGTCAACCT -CCAACAGGTTTCCTTGGTGCTACT -CCAACAGGTTTCCTTGGTGGATCT -CCAACAGGTTTCCTTGGTAAGGCT -CCAACAGGTTTCCTTGGTTCAACC -CCAACAGGTTTCCTTGGTTGTTCC -CCAACAGGTTTCCTTGGTATTCCC -CCAACAGGTTTCCTTGGTTTCTCG -CCAACAGGTTTCCTTGGTTAGACG -CCAACAGGTTTCCTTGGTGTAACG -CCAACAGGTTTCCTTGGTACTTCG -CCAACAGGTTTCCTTGGTTACGCA -CCAACAGGTTTCCTTGGTCTTGCA -CCAACAGGTTTCCTTGGTCGAACA -CCAACAGGTTTCCTTGGTCAGTCA -CCAACAGGTTTCCTTGGTGATCCA -CCAACAGGTTTCCTTGGTACGACA -CCAACAGGTTTCCTTGGTAGCTCA -CCAACAGGTTTCCTTGGTTCACGT -CCAACAGGTTTCCTTGGTCGTAGT -CCAACAGGTTTCCTTGGTGTCAGT -CCAACAGGTTTCCTTGGTGAAGGT -CCAACAGGTTTCCTTGGTAACCGT -CCAACAGGTTTCCTTGGTTTGTGC -CCAACAGGTTTCCTTGGTCTAAGC -CCAACAGGTTTCCTTGGTACTAGC -CCAACAGGTTTCCTTGGTAGATGC -CCAACAGGTTTCCTTGGTTGAAGG -CCAACAGGTTTCCTTGGTCAATGG -CCAACAGGTTTCCTTGGTATGAGG -CCAACAGGTTTCCTTGGTAATGGG -CCAACAGGTTTCCTTGGTTCCTGA -CCAACAGGTTTCCTTGGTTAGCGA -CCAACAGGTTTCCTTGGTCACAGA -CCAACAGGTTTCCTTGGTGCAAGA -CCAACAGGTTTCCTTGGTGGTTGA -CCAACAGGTTTCCTTGGTTCCGAT -CCAACAGGTTTCCTTGGTTGGCAT -CCAACAGGTTTCCTTGGTCGAGAT -CCAACAGGTTTCCTTGGTTACCAC -CCAACAGGTTTCCTTGGTCAGAAC -CCAACAGGTTTCCTTGGTGTCTAC -CCAACAGGTTTCCTTGGTACGTAC -CCAACAGGTTTCCTTGGTAGTGAC -CCAACAGGTTTCCTTGGTCTGTAG -CCAACAGGTTTCCTTGGTCCTAAG -CCAACAGGTTTCCTTGGTGTTCAG -CCAACAGGTTTCCTTGGTGCATAG -CCAACAGGTTTCCTTGGTGACAAG -CCAACAGGTTTCCTTGGTAAGCAG -CCAACAGGTTTCCTTGGTCGTCAA -CCAACAGGTTTCCTTGGTGCTGAA -CCAACAGGTTTCCTTGGTAGTACG -CCAACAGGTTTCCTTGGTATCCGA -CCAACAGGTTTCCTTGGTATGGGA -CCAACAGGTTTCCTTGGTGTGCAA -CCAACAGGTTTCCTTGGTGAGGAA -CCAACAGGTTTCCTTGGTCAGGTA -CCAACAGGTTTCCTTGGTGACTCT -CCAACAGGTTTCCTTGGTAGTCCT -CCAACAGGTTTCCTTGGTTAAGCC -CCAACAGGTTTCCTTGGTATAGCC -CCAACAGGTTTCCTTGGTTAACCG -CCAACAGGTTTCCTTGGTATGCCA -CCAACAGGTTTCCTTACGGGAAAC -CCAACAGGTTTCCTTACGAACACC -CCAACAGGTTTCCTTACGATCGAG -CCAACAGGTTTCCTTACGCTCCTT -CCAACAGGTTTCCTTACGCCTGTT -CCAACAGGTTTCCTTACGCGGTTT -CCAACAGGTTTCCTTACGGTGGTT -CCAACAGGTTTCCTTACGGCCTTT -CCAACAGGTTTCCTTACGGGTCTT -CCAACAGGTTTCCTTACGACGCTT -CCAACAGGTTTCCTTACGAGCGTT -CCAACAGGTTTCCTTACGTTCGTC -CCAACAGGTTTCCTTACGTCTCTC -CCAACAGGTTTCCTTACGTGGATC -CCAACAGGTTTCCTTACGCACTTC -CCAACAGGTTTCCTTACGGTACTC -CCAACAGGTTTCCTTACGGATGTC -CCAACAGGTTTCCTTACGACAGTC -CCAACAGGTTTCCTTACGTTGCTG -CCAACAGGTTTCCTTACGTCCATG -CCAACAGGTTTCCTTACGTGTGTG -CCAACAGGTTTCCTTACGCTAGTG -CCAACAGGTTTCCTTACGCATCTG -CCAACAGGTTTCCTTACGGAGTTG -CCAACAGGTTTCCTTACGAGACTG -CCAACAGGTTTCCTTACGTCGGTA -CCAACAGGTTTCCTTACGTGCCTA -CCAACAGGTTTCCTTACGCCACTA -CCAACAGGTTTCCTTACGGGAGTA -CCAACAGGTTTCCTTACGTCGTCT -CCAACAGGTTTCCTTACGTGCACT -CCAACAGGTTTCCTTACGCTGACT -CCAACAGGTTTCCTTACGCAACCT -CCAACAGGTTTCCTTACGGCTACT -CCAACAGGTTTCCTTACGGGATCT -CCAACAGGTTTCCTTACGAAGGCT -CCAACAGGTTTCCTTACGTCAACC -CCAACAGGTTTCCTTACGTGTTCC -CCAACAGGTTTCCTTACGATTCCC -CCAACAGGTTTCCTTACGTTCTCG -CCAACAGGTTTCCTTACGTAGACG -CCAACAGGTTTCCTTACGGTAACG -CCAACAGGTTTCCTTACGACTTCG -CCAACAGGTTTCCTTACGTACGCA -CCAACAGGTTTCCTTACGCTTGCA -CCAACAGGTTTCCTTACGCGAACA -CCAACAGGTTTCCTTACGCAGTCA -CCAACAGGTTTCCTTACGGATCCA -CCAACAGGTTTCCTTACGACGACA -CCAACAGGTTTCCTTACGAGCTCA -CCAACAGGTTTCCTTACGTCACGT -CCAACAGGTTTCCTTACGCGTAGT -CCAACAGGTTTCCTTACGGTCAGT -CCAACAGGTTTCCTTACGGAAGGT -CCAACAGGTTTCCTTACGAACCGT -CCAACAGGTTTCCTTACGTTGTGC -CCAACAGGTTTCCTTACGCTAAGC -CCAACAGGTTTCCTTACGACTAGC -CCAACAGGTTTCCTTACGAGATGC -CCAACAGGTTTCCTTACGTGAAGG -CCAACAGGTTTCCTTACGCAATGG -CCAACAGGTTTCCTTACGATGAGG -CCAACAGGTTTCCTTACGAATGGG -CCAACAGGTTTCCTTACGTCCTGA -CCAACAGGTTTCCTTACGTAGCGA -CCAACAGGTTTCCTTACGCACAGA -CCAACAGGTTTCCTTACGGCAAGA -CCAACAGGTTTCCTTACGGGTTGA -CCAACAGGTTTCCTTACGTCCGAT -CCAACAGGTTTCCTTACGTGGCAT -CCAACAGGTTTCCTTACGCGAGAT -CCAACAGGTTTCCTTACGTACCAC -CCAACAGGTTTCCTTACGCAGAAC -CCAACAGGTTTCCTTACGGTCTAC -CCAACAGGTTTCCTTACGACGTAC -CCAACAGGTTTCCTTACGAGTGAC -CCAACAGGTTTCCTTACGCTGTAG -CCAACAGGTTTCCTTACGCCTAAG -CCAACAGGTTTCCTTACGGTTCAG -CCAACAGGTTTCCTTACGGCATAG -CCAACAGGTTTCCTTACGGACAAG -CCAACAGGTTTCCTTACGAAGCAG -CCAACAGGTTTCCTTACGCGTCAA -CCAACAGGTTTCCTTACGGCTGAA -CCAACAGGTTTCCTTACGAGTACG -CCAACAGGTTTCCTTACGATCCGA -CCAACAGGTTTCCTTACGATGGGA -CCAACAGGTTTCCTTACGGTGCAA -CCAACAGGTTTCCTTACGGAGGAA -CCAACAGGTTTCCTTACGCAGGTA -CCAACAGGTTTCCTTACGGACTCT -CCAACAGGTTTCCTTACGAGTCCT -CCAACAGGTTTCCTTACGTAAGCC -CCAACAGGTTTCCTTACGATAGCC -CCAACAGGTTTCCTTACGTAACCG -CCAACAGGTTTCCTTACGATGCCA -CCAACAGGTTTCGTTAGCGGAAAC -CCAACAGGTTTCGTTAGCAACACC -CCAACAGGTTTCGTTAGCATCGAG -CCAACAGGTTTCGTTAGCCTCCTT -CCAACAGGTTTCGTTAGCCCTGTT -CCAACAGGTTTCGTTAGCCGGTTT -CCAACAGGTTTCGTTAGCGTGGTT -CCAACAGGTTTCGTTAGCGCCTTT -CCAACAGGTTTCGTTAGCGGTCTT -CCAACAGGTTTCGTTAGCACGCTT -CCAACAGGTTTCGTTAGCAGCGTT -CCAACAGGTTTCGTTAGCTTCGTC -CCAACAGGTTTCGTTAGCTCTCTC -CCAACAGGTTTCGTTAGCTGGATC -CCAACAGGTTTCGTTAGCCACTTC -CCAACAGGTTTCGTTAGCGTACTC -CCAACAGGTTTCGTTAGCGATGTC -CCAACAGGTTTCGTTAGCACAGTC -CCAACAGGTTTCGTTAGCTTGCTG -CCAACAGGTTTCGTTAGCTCCATG -CCAACAGGTTTCGTTAGCTGTGTG -CCAACAGGTTTCGTTAGCCTAGTG -CCAACAGGTTTCGTTAGCCATCTG -CCAACAGGTTTCGTTAGCGAGTTG -CCAACAGGTTTCGTTAGCAGACTG -CCAACAGGTTTCGTTAGCTCGGTA -CCAACAGGTTTCGTTAGCTGCCTA -CCAACAGGTTTCGTTAGCCCACTA -CCAACAGGTTTCGTTAGCGGAGTA -CCAACAGGTTTCGTTAGCTCGTCT -CCAACAGGTTTCGTTAGCTGCACT -CCAACAGGTTTCGTTAGCCTGACT -CCAACAGGTTTCGTTAGCCAACCT -CCAACAGGTTTCGTTAGCGCTACT -CCAACAGGTTTCGTTAGCGGATCT -CCAACAGGTTTCGTTAGCAAGGCT -CCAACAGGTTTCGTTAGCTCAACC -CCAACAGGTTTCGTTAGCTGTTCC -CCAACAGGTTTCGTTAGCATTCCC -CCAACAGGTTTCGTTAGCTTCTCG -CCAACAGGTTTCGTTAGCTAGACG -CCAACAGGTTTCGTTAGCGTAACG -CCAACAGGTTTCGTTAGCACTTCG -CCAACAGGTTTCGTTAGCTACGCA -CCAACAGGTTTCGTTAGCCTTGCA -CCAACAGGTTTCGTTAGCCGAACA -CCAACAGGTTTCGTTAGCCAGTCA -CCAACAGGTTTCGTTAGCGATCCA -CCAACAGGTTTCGTTAGCACGACA -CCAACAGGTTTCGTTAGCAGCTCA -CCAACAGGTTTCGTTAGCTCACGT -CCAACAGGTTTCGTTAGCCGTAGT -CCAACAGGTTTCGTTAGCGTCAGT -CCAACAGGTTTCGTTAGCGAAGGT -CCAACAGGTTTCGTTAGCAACCGT -CCAACAGGTTTCGTTAGCTTGTGC -CCAACAGGTTTCGTTAGCCTAAGC -CCAACAGGTTTCGTTAGCACTAGC -CCAACAGGTTTCGTTAGCAGATGC -CCAACAGGTTTCGTTAGCTGAAGG -CCAACAGGTTTCGTTAGCCAATGG -CCAACAGGTTTCGTTAGCATGAGG -CCAACAGGTTTCGTTAGCAATGGG -CCAACAGGTTTCGTTAGCTCCTGA -CCAACAGGTTTCGTTAGCTAGCGA -CCAACAGGTTTCGTTAGCCACAGA -CCAACAGGTTTCGTTAGCGCAAGA -CCAACAGGTTTCGTTAGCGGTTGA -CCAACAGGTTTCGTTAGCTCCGAT -CCAACAGGTTTCGTTAGCTGGCAT -CCAACAGGTTTCGTTAGCCGAGAT -CCAACAGGTTTCGTTAGCTACCAC -CCAACAGGTTTCGTTAGCCAGAAC -CCAACAGGTTTCGTTAGCGTCTAC -CCAACAGGTTTCGTTAGCACGTAC -CCAACAGGTTTCGTTAGCAGTGAC -CCAACAGGTTTCGTTAGCCTGTAG -CCAACAGGTTTCGTTAGCCCTAAG -CCAACAGGTTTCGTTAGCGTTCAG -CCAACAGGTTTCGTTAGCGCATAG -CCAACAGGTTTCGTTAGCGACAAG -CCAACAGGTTTCGTTAGCAAGCAG -CCAACAGGTTTCGTTAGCCGTCAA -CCAACAGGTTTCGTTAGCGCTGAA -CCAACAGGTTTCGTTAGCAGTACG -CCAACAGGTTTCGTTAGCATCCGA -CCAACAGGTTTCGTTAGCATGGGA -CCAACAGGTTTCGTTAGCGTGCAA -CCAACAGGTTTCGTTAGCGAGGAA -CCAACAGGTTTCGTTAGCCAGGTA -CCAACAGGTTTCGTTAGCGACTCT -CCAACAGGTTTCGTTAGCAGTCCT -CCAACAGGTTTCGTTAGCTAAGCC -CCAACAGGTTTCGTTAGCATAGCC -CCAACAGGTTTCGTTAGCTAACCG -CCAACAGGTTTCGTTAGCATGCCA -CCAACAGGTTTCGTCTTCGGAAAC -CCAACAGGTTTCGTCTTCAACACC -CCAACAGGTTTCGTCTTCATCGAG -CCAACAGGTTTCGTCTTCCTCCTT -CCAACAGGTTTCGTCTTCCCTGTT -CCAACAGGTTTCGTCTTCCGGTTT -CCAACAGGTTTCGTCTTCGTGGTT -CCAACAGGTTTCGTCTTCGCCTTT -CCAACAGGTTTCGTCTTCGGTCTT -CCAACAGGTTTCGTCTTCACGCTT -CCAACAGGTTTCGTCTTCAGCGTT -CCAACAGGTTTCGTCTTCTTCGTC -CCAACAGGTTTCGTCTTCTCTCTC -CCAACAGGTTTCGTCTTCTGGATC -CCAACAGGTTTCGTCTTCCACTTC -CCAACAGGTTTCGTCTTCGTACTC -CCAACAGGTTTCGTCTTCGATGTC -CCAACAGGTTTCGTCTTCACAGTC -CCAACAGGTTTCGTCTTCTTGCTG -CCAACAGGTTTCGTCTTCTCCATG -CCAACAGGTTTCGTCTTCTGTGTG -CCAACAGGTTTCGTCTTCCTAGTG -CCAACAGGTTTCGTCTTCCATCTG -CCAACAGGTTTCGTCTTCGAGTTG -CCAACAGGTTTCGTCTTCAGACTG -CCAACAGGTTTCGTCTTCTCGGTA -CCAACAGGTTTCGTCTTCTGCCTA -CCAACAGGTTTCGTCTTCCCACTA -CCAACAGGTTTCGTCTTCGGAGTA -CCAACAGGTTTCGTCTTCTCGTCT -CCAACAGGTTTCGTCTTCTGCACT -CCAACAGGTTTCGTCTTCCTGACT -CCAACAGGTTTCGTCTTCCAACCT -CCAACAGGTTTCGTCTTCGCTACT -CCAACAGGTTTCGTCTTCGGATCT -CCAACAGGTTTCGTCTTCAAGGCT -CCAACAGGTTTCGTCTTCTCAACC -CCAACAGGTTTCGTCTTCTGTTCC -CCAACAGGTTTCGTCTTCATTCCC -CCAACAGGTTTCGTCTTCTTCTCG -CCAACAGGTTTCGTCTTCTAGACG -CCAACAGGTTTCGTCTTCGTAACG -CCAACAGGTTTCGTCTTCACTTCG -CCAACAGGTTTCGTCTTCTACGCA -CCAACAGGTTTCGTCTTCCTTGCA -CCAACAGGTTTCGTCTTCCGAACA -CCAACAGGTTTCGTCTTCCAGTCA -CCAACAGGTTTCGTCTTCGATCCA -CCAACAGGTTTCGTCTTCACGACA -CCAACAGGTTTCGTCTTCAGCTCA -CCAACAGGTTTCGTCTTCTCACGT -CCAACAGGTTTCGTCTTCCGTAGT -CCAACAGGTTTCGTCTTCGTCAGT -CCAACAGGTTTCGTCTTCGAAGGT -CCAACAGGTTTCGTCTTCAACCGT -CCAACAGGTTTCGTCTTCTTGTGC -CCAACAGGTTTCGTCTTCCTAAGC -CCAACAGGTTTCGTCTTCACTAGC -CCAACAGGTTTCGTCTTCAGATGC -CCAACAGGTTTCGTCTTCTGAAGG -CCAACAGGTTTCGTCTTCCAATGG -CCAACAGGTTTCGTCTTCATGAGG -CCAACAGGTTTCGTCTTCAATGGG -CCAACAGGTTTCGTCTTCTCCTGA -CCAACAGGTTTCGTCTTCTAGCGA -CCAACAGGTTTCGTCTTCCACAGA -CCAACAGGTTTCGTCTTCGCAAGA -CCAACAGGTTTCGTCTTCGGTTGA -CCAACAGGTTTCGTCTTCTCCGAT -CCAACAGGTTTCGTCTTCTGGCAT -CCAACAGGTTTCGTCTTCCGAGAT -CCAACAGGTTTCGTCTTCTACCAC -CCAACAGGTTTCGTCTTCCAGAAC -CCAACAGGTTTCGTCTTCGTCTAC -CCAACAGGTTTCGTCTTCACGTAC -CCAACAGGTTTCGTCTTCAGTGAC -CCAACAGGTTTCGTCTTCCTGTAG -CCAACAGGTTTCGTCTTCCCTAAG -CCAACAGGTTTCGTCTTCGTTCAG -CCAACAGGTTTCGTCTTCGCATAG -CCAACAGGTTTCGTCTTCGACAAG -CCAACAGGTTTCGTCTTCAAGCAG -CCAACAGGTTTCGTCTTCCGTCAA -CCAACAGGTTTCGTCTTCGCTGAA -CCAACAGGTTTCGTCTTCAGTACG -CCAACAGGTTTCGTCTTCATCCGA -CCAACAGGTTTCGTCTTCATGGGA -CCAACAGGTTTCGTCTTCGTGCAA -CCAACAGGTTTCGTCTTCGAGGAA -CCAACAGGTTTCGTCTTCCAGGTA -CCAACAGGTTTCGTCTTCGACTCT -CCAACAGGTTTCGTCTTCAGTCCT -CCAACAGGTTTCGTCTTCTAAGCC -CCAACAGGTTTCGTCTTCATAGCC -CCAACAGGTTTCGTCTTCTAACCG -CCAACAGGTTTCGTCTTCATGCCA -CCAACAGGTTTCCTCTCTGGAAAC -CCAACAGGTTTCCTCTCTAACACC -CCAACAGGTTTCCTCTCTATCGAG -CCAACAGGTTTCCTCTCTCTCCTT -CCAACAGGTTTCCTCTCTCCTGTT -CCAACAGGTTTCCTCTCTCGGTTT -CCAACAGGTTTCCTCTCTGTGGTT -CCAACAGGTTTCCTCTCTGCCTTT -CCAACAGGTTTCCTCTCTGGTCTT -CCAACAGGTTTCCTCTCTACGCTT -CCAACAGGTTTCCTCTCTAGCGTT -CCAACAGGTTTCCTCTCTTTCGTC -CCAACAGGTTTCCTCTCTTCTCTC -CCAACAGGTTTCCTCTCTTGGATC -CCAACAGGTTTCCTCTCTCACTTC -CCAACAGGTTTCCTCTCTGTACTC -CCAACAGGTTTCCTCTCTGATGTC -CCAACAGGTTTCCTCTCTACAGTC -CCAACAGGTTTCCTCTCTTTGCTG -CCAACAGGTTTCCTCTCTTCCATG -CCAACAGGTTTCCTCTCTTGTGTG -CCAACAGGTTTCCTCTCTCTAGTG -CCAACAGGTTTCCTCTCTCATCTG -CCAACAGGTTTCCTCTCTGAGTTG -CCAACAGGTTTCCTCTCTAGACTG -CCAACAGGTTTCCTCTCTTCGGTA -CCAACAGGTTTCCTCTCTTGCCTA -CCAACAGGTTTCCTCTCTCCACTA -CCAACAGGTTTCCTCTCTGGAGTA -CCAACAGGTTTCCTCTCTTCGTCT -CCAACAGGTTTCCTCTCTTGCACT -CCAACAGGTTTCCTCTCTCTGACT -CCAACAGGTTTCCTCTCTCAACCT -CCAACAGGTTTCCTCTCTGCTACT -CCAACAGGTTTCCTCTCTGGATCT -CCAACAGGTTTCCTCTCTAAGGCT -CCAACAGGTTTCCTCTCTTCAACC -CCAACAGGTTTCCTCTCTTGTTCC -CCAACAGGTTTCCTCTCTATTCCC -CCAACAGGTTTCCTCTCTTTCTCG -CCAACAGGTTTCCTCTCTTAGACG -CCAACAGGTTTCCTCTCTGTAACG -CCAACAGGTTTCCTCTCTACTTCG -CCAACAGGTTTCCTCTCTTACGCA -CCAACAGGTTTCCTCTCTCTTGCA -CCAACAGGTTTCCTCTCTCGAACA -CCAACAGGTTTCCTCTCTCAGTCA -CCAACAGGTTTCCTCTCTGATCCA -CCAACAGGTTTCCTCTCTACGACA -CCAACAGGTTTCCTCTCTAGCTCA -CCAACAGGTTTCCTCTCTTCACGT -CCAACAGGTTTCCTCTCTCGTAGT -CCAACAGGTTTCCTCTCTGTCAGT -CCAACAGGTTTCCTCTCTGAAGGT -CCAACAGGTTTCCTCTCTAACCGT -CCAACAGGTTTCCTCTCTTTGTGC -CCAACAGGTTTCCTCTCTCTAAGC -CCAACAGGTTTCCTCTCTACTAGC -CCAACAGGTTTCCTCTCTAGATGC -CCAACAGGTTTCCTCTCTTGAAGG -CCAACAGGTTTCCTCTCTCAATGG -CCAACAGGTTTCCTCTCTATGAGG -CCAACAGGTTTCCTCTCTAATGGG -CCAACAGGTTTCCTCTCTTCCTGA -CCAACAGGTTTCCTCTCTTAGCGA -CCAACAGGTTTCCTCTCTCACAGA -CCAACAGGTTTCCTCTCTGCAAGA -CCAACAGGTTTCCTCTCTGGTTGA -CCAACAGGTTTCCTCTCTTCCGAT -CCAACAGGTTTCCTCTCTTGGCAT -CCAACAGGTTTCCTCTCTCGAGAT -CCAACAGGTTTCCTCTCTTACCAC -CCAACAGGTTTCCTCTCTCAGAAC -CCAACAGGTTTCCTCTCTGTCTAC -CCAACAGGTTTCCTCTCTACGTAC -CCAACAGGTTTCCTCTCTAGTGAC -CCAACAGGTTTCCTCTCTCTGTAG -CCAACAGGTTTCCTCTCTCCTAAG -CCAACAGGTTTCCTCTCTGTTCAG -CCAACAGGTTTCCTCTCTGCATAG -CCAACAGGTTTCCTCTCTGACAAG -CCAACAGGTTTCCTCTCTAAGCAG -CCAACAGGTTTCCTCTCTCGTCAA -CCAACAGGTTTCCTCTCTGCTGAA -CCAACAGGTTTCCTCTCTAGTACG -CCAACAGGTTTCCTCTCTATCCGA -CCAACAGGTTTCCTCTCTATGGGA -CCAACAGGTTTCCTCTCTGTGCAA -CCAACAGGTTTCCTCTCTGAGGAA -CCAACAGGTTTCCTCTCTCAGGTA -CCAACAGGTTTCCTCTCTGACTCT -CCAACAGGTTTCCTCTCTAGTCCT -CCAACAGGTTTCCTCTCTTAAGCC -CCAACAGGTTTCCTCTCTATAGCC -CCAACAGGTTTCCTCTCTTAACCG -CCAACAGGTTTCCTCTCTATGCCA -CCAACAGGTTTCATCTGGGGAAAC -CCAACAGGTTTCATCTGGAACACC -CCAACAGGTTTCATCTGGATCGAG -CCAACAGGTTTCATCTGGCTCCTT -CCAACAGGTTTCATCTGGCCTGTT -CCAACAGGTTTCATCTGGCGGTTT -CCAACAGGTTTCATCTGGGTGGTT -CCAACAGGTTTCATCTGGGCCTTT -CCAACAGGTTTCATCTGGGGTCTT -CCAACAGGTTTCATCTGGACGCTT -CCAACAGGTTTCATCTGGAGCGTT -CCAACAGGTTTCATCTGGTTCGTC -CCAACAGGTTTCATCTGGTCTCTC -CCAACAGGTTTCATCTGGTGGATC -CCAACAGGTTTCATCTGGCACTTC -CCAACAGGTTTCATCTGGGTACTC -CCAACAGGTTTCATCTGGGATGTC -CCAACAGGTTTCATCTGGACAGTC -CCAACAGGTTTCATCTGGTTGCTG -CCAACAGGTTTCATCTGGTCCATG -CCAACAGGTTTCATCTGGTGTGTG -CCAACAGGTTTCATCTGGCTAGTG -CCAACAGGTTTCATCTGGCATCTG -CCAACAGGTTTCATCTGGGAGTTG -CCAACAGGTTTCATCTGGAGACTG -CCAACAGGTTTCATCTGGTCGGTA -CCAACAGGTTTCATCTGGTGCCTA -CCAACAGGTTTCATCTGGCCACTA -CCAACAGGTTTCATCTGGGGAGTA -CCAACAGGTTTCATCTGGTCGTCT -CCAACAGGTTTCATCTGGTGCACT -CCAACAGGTTTCATCTGGCTGACT -CCAACAGGTTTCATCTGGCAACCT -CCAACAGGTTTCATCTGGGCTACT -CCAACAGGTTTCATCTGGGGATCT -CCAACAGGTTTCATCTGGAAGGCT -CCAACAGGTTTCATCTGGTCAACC -CCAACAGGTTTCATCTGGTGTTCC -CCAACAGGTTTCATCTGGATTCCC -CCAACAGGTTTCATCTGGTTCTCG -CCAACAGGTTTCATCTGGTAGACG -CCAACAGGTTTCATCTGGGTAACG -CCAACAGGTTTCATCTGGACTTCG -CCAACAGGTTTCATCTGGTACGCA -CCAACAGGTTTCATCTGGCTTGCA -CCAACAGGTTTCATCTGGCGAACA -CCAACAGGTTTCATCTGGCAGTCA -CCAACAGGTTTCATCTGGGATCCA -CCAACAGGTTTCATCTGGACGACA -CCAACAGGTTTCATCTGGAGCTCA -CCAACAGGTTTCATCTGGTCACGT -CCAACAGGTTTCATCTGGCGTAGT -CCAACAGGTTTCATCTGGGTCAGT -CCAACAGGTTTCATCTGGGAAGGT -CCAACAGGTTTCATCTGGAACCGT -CCAACAGGTTTCATCTGGTTGTGC -CCAACAGGTTTCATCTGGCTAAGC -CCAACAGGTTTCATCTGGACTAGC -CCAACAGGTTTCATCTGGAGATGC -CCAACAGGTTTCATCTGGTGAAGG -CCAACAGGTTTCATCTGGCAATGG -CCAACAGGTTTCATCTGGATGAGG -CCAACAGGTTTCATCTGGAATGGG -CCAACAGGTTTCATCTGGTCCTGA -CCAACAGGTTTCATCTGGTAGCGA -CCAACAGGTTTCATCTGGCACAGA -CCAACAGGTTTCATCTGGGCAAGA -CCAACAGGTTTCATCTGGGGTTGA -CCAACAGGTTTCATCTGGTCCGAT -CCAACAGGTTTCATCTGGTGGCAT -CCAACAGGTTTCATCTGGCGAGAT -CCAACAGGTTTCATCTGGTACCAC -CCAACAGGTTTCATCTGGCAGAAC -CCAACAGGTTTCATCTGGGTCTAC -CCAACAGGTTTCATCTGGACGTAC -CCAACAGGTTTCATCTGGAGTGAC -CCAACAGGTTTCATCTGGCTGTAG -CCAACAGGTTTCATCTGGCCTAAG -CCAACAGGTTTCATCTGGGTTCAG -CCAACAGGTTTCATCTGGGCATAG -CCAACAGGTTTCATCTGGGACAAG -CCAACAGGTTTCATCTGGAAGCAG -CCAACAGGTTTCATCTGGCGTCAA -CCAACAGGTTTCATCTGGGCTGAA -CCAACAGGTTTCATCTGGAGTACG -CCAACAGGTTTCATCTGGATCCGA -CCAACAGGTTTCATCTGGATGGGA -CCAACAGGTTTCATCTGGGTGCAA -CCAACAGGTTTCATCTGGGAGGAA -CCAACAGGTTTCATCTGGCAGGTA -CCAACAGGTTTCATCTGGGACTCT -CCAACAGGTTTCATCTGGAGTCCT -CCAACAGGTTTCATCTGGTAAGCC -CCAACAGGTTTCATCTGGATAGCC -CCAACAGGTTTCATCTGGTAACCG -CCAACAGGTTTCATCTGGATGCCA -CCAACAGGTTTCTTCCACGGAAAC -CCAACAGGTTTCTTCCACAACACC -CCAACAGGTTTCTTCCACATCGAG -CCAACAGGTTTCTTCCACCTCCTT -CCAACAGGTTTCTTCCACCCTGTT -CCAACAGGTTTCTTCCACCGGTTT -CCAACAGGTTTCTTCCACGTGGTT -CCAACAGGTTTCTTCCACGCCTTT -CCAACAGGTTTCTTCCACGGTCTT -CCAACAGGTTTCTTCCACACGCTT -CCAACAGGTTTCTTCCACAGCGTT -CCAACAGGTTTCTTCCACTTCGTC -CCAACAGGTTTCTTCCACTCTCTC -CCAACAGGTTTCTTCCACTGGATC -CCAACAGGTTTCTTCCACCACTTC -CCAACAGGTTTCTTCCACGTACTC -CCAACAGGTTTCTTCCACGATGTC -CCAACAGGTTTCTTCCACACAGTC -CCAACAGGTTTCTTCCACTTGCTG -CCAACAGGTTTCTTCCACTCCATG -CCAACAGGTTTCTTCCACTGTGTG -CCAACAGGTTTCTTCCACCTAGTG -CCAACAGGTTTCTTCCACCATCTG -CCAACAGGTTTCTTCCACGAGTTG -CCAACAGGTTTCTTCCACAGACTG -CCAACAGGTTTCTTCCACTCGGTA -CCAACAGGTTTCTTCCACTGCCTA -CCAACAGGTTTCTTCCACCCACTA -CCAACAGGTTTCTTCCACGGAGTA -CCAACAGGTTTCTTCCACTCGTCT -CCAACAGGTTTCTTCCACTGCACT -CCAACAGGTTTCTTCCACCTGACT -CCAACAGGTTTCTTCCACCAACCT -CCAACAGGTTTCTTCCACGCTACT -CCAACAGGTTTCTTCCACGGATCT -CCAACAGGTTTCTTCCACAAGGCT -CCAACAGGTTTCTTCCACTCAACC -CCAACAGGTTTCTTCCACTGTTCC -CCAACAGGTTTCTTCCACATTCCC -CCAACAGGTTTCTTCCACTTCTCG -CCAACAGGTTTCTTCCACTAGACG -CCAACAGGTTTCTTCCACGTAACG -CCAACAGGTTTCTTCCACACTTCG -CCAACAGGTTTCTTCCACTACGCA -CCAACAGGTTTCTTCCACCTTGCA -CCAACAGGTTTCTTCCACCGAACA -CCAACAGGTTTCTTCCACCAGTCA -CCAACAGGTTTCTTCCACGATCCA -CCAACAGGTTTCTTCCACACGACA -CCAACAGGTTTCTTCCACAGCTCA -CCAACAGGTTTCTTCCACTCACGT -CCAACAGGTTTCTTCCACCGTAGT -CCAACAGGTTTCTTCCACGTCAGT -CCAACAGGTTTCTTCCACGAAGGT -CCAACAGGTTTCTTCCACAACCGT -CCAACAGGTTTCTTCCACTTGTGC -CCAACAGGTTTCTTCCACCTAAGC -CCAACAGGTTTCTTCCACACTAGC -CCAACAGGTTTCTTCCACAGATGC -CCAACAGGTTTCTTCCACTGAAGG -CCAACAGGTTTCTTCCACCAATGG -CCAACAGGTTTCTTCCACATGAGG -CCAACAGGTTTCTTCCACAATGGG -CCAACAGGTTTCTTCCACTCCTGA -CCAACAGGTTTCTTCCACTAGCGA -CCAACAGGTTTCTTCCACCACAGA -CCAACAGGTTTCTTCCACGCAAGA -CCAACAGGTTTCTTCCACGGTTGA -CCAACAGGTTTCTTCCACTCCGAT -CCAACAGGTTTCTTCCACTGGCAT -CCAACAGGTTTCTTCCACCGAGAT -CCAACAGGTTTCTTCCACTACCAC -CCAACAGGTTTCTTCCACCAGAAC -CCAACAGGTTTCTTCCACGTCTAC -CCAACAGGTTTCTTCCACACGTAC -CCAACAGGTTTCTTCCACAGTGAC -CCAACAGGTTTCTTCCACCTGTAG -CCAACAGGTTTCTTCCACCCTAAG -CCAACAGGTTTCTTCCACGTTCAG -CCAACAGGTTTCTTCCACGCATAG -CCAACAGGTTTCTTCCACGACAAG -CCAACAGGTTTCTTCCACAAGCAG -CCAACAGGTTTCTTCCACCGTCAA -CCAACAGGTTTCTTCCACGCTGAA -CCAACAGGTTTCTTCCACAGTACG -CCAACAGGTTTCTTCCACATCCGA -CCAACAGGTTTCTTCCACATGGGA -CCAACAGGTTTCTTCCACGTGCAA -CCAACAGGTTTCTTCCACGAGGAA -CCAACAGGTTTCTTCCACCAGGTA -CCAACAGGTTTCTTCCACGACTCT -CCAACAGGTTTCTTCCACAGTCCT -CCAACAGGTTTCTTCCACTAAGCC -CCAACAGGTTTCTTCCACATAGCC -CCAACAGGTTTCTTCCACTAACCG -CCAACAGGTTTCTTCCACATGCCA -CCAACAGGTTTCCTCGTAGGAAAC -CCAACAGGTTTCCTCGTAAACACC -CCAACAGGTTTCCTCGTAATCGAG -CCAACAGGTTTCCTCGTACTCCTT -CCAACAGGTTTCCTCGTACCTGTT -CCAACAGGTTTCCTCGTACGGTTT -CCAACAGGTTTCCTCGTAGTGGTT -CCAACAGGTTTCCTCGTAGCCTTT -CCAACAGGTTTCCTCGTAGGTCTT -CCAACAGGTTTCCTCGTAACGCTT -CCAACAGGTTTCCTCGTAAGCGTT -CCAACAGGTTTCCTCGTATTCGTC -CCAACAGGTTTCCTCGTATCTCTC -CCAACAGGTTTCCTCGTATGGATC -CCAACAGGTTTCCTCGTACACTTC -CCAACAGGTTTCCTCGTAGTACTC -CCAACAGGTTTCCTCGTAGATGTC -CCAACAGGTTTCCTCGTAACAGTC -CCAACAGGTTTCCTCGTATTGCTG -CCAACAGGTTTCCTCGTATCCATG -CCAACAGGTTTCCTCGTATGTGTG -CCAACAGGTTTCCTCGTACTAGTG -CCAACAGGTTTCCTCGTACATCTG -CCAACAGGTTTCCTCGTAGAGTTG -CCAACAGGTTTCCTCGTAAGACTG -CCAACAGGTTTCCTCGTATCGGTA -CCAACAGGTTTCCTCGTATGCCTA -CCAACAGGTTTCCTCGTACCACTA -CCAACAGGTTTCCTCGTAGGAGTA -CCAACAGGTTTCCTCGTATCGTCT -CCAACAGGTTTCCTCGTATGCACT -CCAACAGGTTTCCTCGTACTGACT -CCAACAGGTTTCCTCGTACAACCT -CCAACAGGTTTCCTCGTAGCTACT -CCAACAGGTTTCCTCGTAGGATCT -CCAACAGGTTTCCTCGTAAAGGCT -CCAACAGGTTTCCTCGTATCAACC -CCAACAGGTTTCCTCGTATGTTCC -CCAACAGGTTTCCTCGTAATTCCC -CCAACAGGTTTCCTCGTATTCTCG -CCAACAGGTTTCCTCGTATAGACG -CCAACAGGTTTCCTCGTAGTAACG -CCAACAGGTTTCCTCGTAACTTCG -CCAACAGGTTTCCTCGTATACGCA -CCAACAGGTTTCCTCGTACTTGCA -CCAACAGGTTTCCTCGTACGAACA -CCAACAGGTTTCCTCGTACAGTCA -CCAACAGGTTTCCTCGTAGATCCA -CCAACAGGTTTCCTCGTAACGACA -CCAACAGGTTTCCTCGTAAGCTCA -CCAACAGGTTTCCTCGTATCACGT -CCAACAGGTTTCCTCGTACGTAGT -CCAACAGGTTTCCTCGTAGTCAGT -CCAACAGGTTTCCTCGTAGAAGGT -CCAACAGGTTTCCTCGTAAACCGT -CCAACAGGTTTCCTCGTATTGTGC -CCAACAGGTTTCCTCGTACTAAGC -CCAACAGGTTTCCTCGTAACTAGC -CCAACAGGTTTCCTCGTAAGATGC -CCAACAGGTTTCCTCGTATGAAGG -CCAACAGGTTTCCTCGTACAATGG -CCAACAGGTTTCCTCGTAATGAGG -CCAACAGGTTTCCTCGTAAATGGG -CCAACAGGTTTCCTCGTATCCTGA -CCAACAGGTTTCCTCGTATAGCGA -CCAACAGGTTTCCTCGTACACAGA -CCAACAGGTTTCCTCGTAGCAAGA -CCAACAGGTTTCCTCGTAGGTTGA -CCAACAGGTTTCCTCGTATCCGAT -CCAACAGGTTTCCTCGTATGGCAT -CCAACAGGTTTCCTCGTACGAGAT -CCAACAGGTTTCCTCGTATACCAC -CCAACAGGTTTCCTCGTACAGAAC -CCAACAGGTTTCCTCGTAGTCTAC -CCAACAGGTTTCCTCGTAACGTAC -CCAACAGGTTTCCTCGTAAGTGAC -CCAACAGGTTTCCTCGTACTGTAG -CCAACAGGTTTCCTCGTACCTAAG -CCAACAGGTTTCCTCGTAGTTCAG -CCAACAGGTTTCCTCGTAGCATAG -CCAACAGGTTTCCTCGTAGACAAG -CCAACAGGTTTCCTCGTAAAGCAG -CCAACAGGTTTCCTCGTACGTCAA -CCAACAGGTTTCCTCGTAGCTGAA -CCAACAGGTTTCCTCGTAAGTACG -CCAACAGGTTTCCTCGTAATCCGA -CCAACAGGTTTCCTCGTAATGGGA -CCAACAGGTTTCCTCGTAGTGCAA -CCAACAGGTTTCCTCGTAGAGGAA -CCAACAGGTTTCCTCGTACAGGTA -CCAACAGGTTTCCTCGTAGACTCT -CCAACAGGTTTCCTCGTAAGTCCT -CCAACAGGTTTCCTCGTATAAGCC -CCAACAGGTTTCCTCGTAATAGCC -CCAACAGGTTTCCTCGTATAACCG -CCAACAGGTTTCCTCGTAATGCCA -CCAACAGGTTTCGTCGATGGAAAC -CCAACAGGTTTCGTCGATAACACC -CCAACAGGTTTCGTCGATATCGAG -CCAACAGGTTTCGTCGATCTCCTT -CCAACAGGTTTCGTCGATCCTGTT -CCAACAGGTTTCGTCGATCGGTTT -CCAACAGGTTTCGTCGATGTGGTT -CCAACAGGTTTCGTCGATGCCTTT -CCAACAGGTTTCGTCGATGGTCTT -CCAACAGGTTTCGTCGATACGCTT -CCAACAGGTTTCGTCGATAGCGTT -CCAACAGGTTTCGTCGATTTCGTC -CCAACAGGTTTCGTCGATTCTCTC -CCAACAGGTTTCGTCGATTGGATC -CCAACAGGTTTCGTCGATCACTTC -CCAACAGGTTTCGTCGATGTACTC -CCAACAGGTTTCGTCGATGATGTC -CCAACAGGTTTCGTCGATACAGTC -CCAACAGGTTTCGTCGATTTGCTG -CCAACAGGTTTCGTCGATTCCATG -CCAACAGGTTTCGTCGATTGTGTG -CCAACAGGTTTCGTCGATCTAGTG -CCAACAGGTTTCGTCGATCATCTG -CCAACAGGTTTCGTCGATGAGTTG -CCAACAGGTTTCGTCGATAGACTG -CCAACAGGTTTCGTCGATTCGGTA -CCAACAGGTTTCGTCGATTGCCTA -CCAACAGGTTTCGTCGATCCACTA -CCAACAGGTTTCGTCGATGGAGTA -CCAACAGGTTTCGTCGATTCGTCT -CCAACAGGTTTCGTCGATTGCACT -CCAACAGGTTTCGTCGATCTGACT -CCAACAGGTTTCGTCGATCAACCT -CCAACAGGTTTCGTCGATGCTACT -CCAACAGGTTTCGTCGATGGATCT -CCAACAGGTTTCGTCGATAAGGCT -CCAACAGGTTTCGTCGATTCAACC -CCAACAGGTTTCGTCGATTGTTCC -CCAACAGGTTTCGTCGATATTCCC -CCAACAGGTTTCGTCGATTTCTCG -CCAACAGGTTTCGTCGATTAGACG -CCAACAGGTTTCGTCGATGTAACG -CCAACAGGTTTCGTCGATACTTCG -CCAACAGGTTTCGTCGATTACGCA -CCAACAGGTTTCGTCGATCTTGCA -CCAACAGGTTTCGTCGATCGAACA -CCAACAGGTTTCGTCGATCAGTCA -CCAACAGGTTTCGTCGATGATCCA -CCAACAGGTTTCGTCGATACGACA -CCAACAGGTTTCGTCGATAGCTCA -CCAACAGGTTTCGTCGATTCACGT -CCAACAGGTTTCGTCGATCGTAGT -CCAACAGGTTTCGTCGATGTCAGT -CCAACAGGTTTCGTCGATGAAGGT -CCAACAGGTTTCGTCGATAACCGT -CCAACAGGTTTCGTCGATTTGTGC -CCAACAGGTTTCGTCGATCTAAGC -CCAACAGGTTTCGTCGATACTAGC -CCAACAGGTTTCGTCGATAGATGC -CCAACAGGTTTCGTCGATTGAAGG -CCAACAGGTTTCGTCGATCAATGG -CCAACAGGTTTCGTCGATATGAGG -CCAACAGGTTTCGTCGATAATGGG -CCAACAGGTTTCGTCGATTCCTGA -CCAACAGGTTTCGTCGATTAGCGA -CCAACAGGTTTCGTCGATCACAGA -CCAACAGGTTTCGTCGATGCAAGA -CCAACAGGTTTCGTCGATGGTTGA -CCAACAGGTTTCGTCGATTCCGAT -CCAACAGGTTTCGTCGATTGGCAT -CCAACAGGTTTCGTCGATCGAGAT -CCAACAGGTTTCGTCGATTACCAC -CCAACAGGTTTCGTCGATCAGAAC -CCAACAGGTTTCGTCGATGTCTAC -CCAACAGGTTTCGTCGATACGTAC -CCAACAGGTTTCGTCGATAGTGAC -CCAACAGGTTTCGTCGATCTGTAG -CCAACAGGTTTCGTCGATCCTAAG -CCAACAGGTTTCGTCGATGTTCAG -CCAACAGGTTTCGTCGATGCATAG -CCAACAGGTTTCGTCGATGACAAG -CCAACAGGTTTCGTCGATAAGCAG -CCAACAGGTTTCGTCGATCGTCAA -CCAACAGGTTTCGTCGATGCTGAA -CCAACAGGTTTCGTCGATAGTACG -CCAACAGGTTTCGTCGATATCCGA -CCAACAGGTTTCGTCGATATGGGA -CCAACAGGTTTCGTCGATGTGCAA -CCAACAGGTTTCGTCGATGAGGAA -CCAACAGGTTTCGTCGATCAGGTA -CCAACAGGTTTCGTCGATGACTCT -CCAACAGGTTTCGTCGATAGTCCT -CCAACAGGTTTCGTCGATTAAGCC -CCAACAGGTTTCGTCGATATAGCC -CCAACAGGTTTCGTCGATTAACCG -CCAACAGGTTTCGTCGATATGCCA -CCAACAGGTTTCGTCACAGGAAAC -CCAACAGGTTTCGTCACAAACACC -CCAACAGGTTTCGTCACAATCGAG -CCAACAGGTTTCGTCACACTCCTT -CCAACAGGTTTCGTCACACCTGTT -CCAACAGGTTTCGTCACACGGTTT -CCAACAGGTTTCGTCACAGTGGTT -CCAACAGGTTTCGTCACAGCCTTT -CCAACAGGTTTCGTCACAGGTCTT -CCAACAGGTTTCGTCACAACGCTT -CCAACAGGTTTCGTCACAAGCGTT -CCAACAGGTTTCGTCACATTCGTC -CCAACAGGTTTCGTCACATCTCTC -CCAACAGGTTTCGTCACATGGATC -CCAACAGGTTTCGTCACACACTTC -CCAACAGGTTTCGTCACAGTACTC -CCAACAGGTTTCGTCACAGATGTC -CCAACAGGTTTCGTCACAACAGTC -CCAACAGGTTTCGTCACATTGCTG -CCAACAGGTTTCGTCACATCCATG -CCAACAGGTTTCGTCACATGTGTG -CCAACAGGTTTCGTCACACTAGTG -CCAACAGGTTTCGTCACACATCTG -CCAACAGGTTTCGTCACAGAGTTG -CCAACAGGTTTCGTCACAAGACTG -CCAACAGGTTTCGTCACATCGGTA -CCAACAGGTTTCGTCACATGCCTA -CCAACAGGTTTCGTCACACCACTA -CCAACAGGTTTCGTCACAGGAGTA -CCAACAGGTTTCGTCACATCGTCT -CCAACAGGTTTCGTCACATGCACT -CCAACAGGTTTCGTCACACTGACT -CCAACAGGTTTCGTCACACAACCT -CCAACAGGTTTCGTCACAGCTACT -CCAACAGGTTTCGTCACAGGATCT -CCAACAGGTTTCGTCACAAAGGCT -CCAACAGGTTTCGTCACATCAACC -CCAACAGGTTTCGTCACATGTTCC -CCAACAGGTTTCGTCACAATTCCC -CCAACAGGTTTCGTCACATTCTCG -CCAACAGGTTTCGTCACATAGACG -CCAACAGGTTTCGTCACAGTAACG -CCAACAGGTTTCGTCACAACTTCG -CCAACAGGTTTCGTCACATACGCA -CCAACAGGTTTCGTCACACTTGCA -CCAACAGGTTTCGTCACACGAACA -CCAACAGGTTTCGTCACACAGTCA -CCAACAGGTTTCGTCACAGATCCA -CCAACAGGTTTCGTCACAACGACA -CCAACAGGTTTCGTCACAAGCTCA -CCAACAGGTTTCGTCACATCACGT -CCAACAGGTTTCGTCACACGTAGT -CCAACAGGTTTCGTCACAGTCAGT -CCAACAGGTTTCGTCACAGAAGGT -CCAACAGGTTTCGTCACAAACCGT -CCAACAGGTTTCGTCACATTGTGC -CCAACAGGTTTCGTCACACTAAGC -CCAACAGGTTTCGTCACAACTAGC -CCAACAGGTTTCGTCACAAGATGC -CCAACAGGTTTCGTCACATGAAGG -CCAACAGGTTTCGTCACACAATGG -CCAACAGGTTTCGTCACAATGAGG -CCAACAGGTTTCGTCACAAATGGG -CCAACAGGTTTCGTCACATCCTGA -CCAACAGGTTTCGTCACATAGCGA -CCAACAGGTTTCGTCACACACAGA -CCAACAGGTTTCGTCACAGCAAGA -CCAACAGGTTTCGTCACAGGTTGA -CCAACAGGTTTCGTCACATCCGAT -CCAACAGGTTTCGTCACATGGCAT -CCAACAGGTTTCGTCACACGAGAT -CCAACAGGTTTCGTCACATACCAC -CCAACAGGTTTCGTCACACAGAAC -CCAACAGGTTTCGTCACAGTCTAC -CCAACAGGTTTCGTCACAACGTAC -CCAACAGGTTTCGTCACAAGTGAC -CCAACAGGTTTCGTCACACTGTAG -CCAACAGGTTTCGTCACACCTAAG -CCAACAGGTTTCGTCACAGTTCAG -CCAACAGGTTTCGTCACAGCATAG -CCAACAGGTTTCGTCACAGACAAG -CCAACAGGTTTCGTCACAAAGCAG -CCAACAGGTTTCGTCACACGTCAA -CCAACAGGTTTCGTCACAGCTGAA -CCAACAGGTTTCGTCACAAGTACG -CCAACAGGTTTCGTCACAATCCGA -CCAACAGGTTTCGTCACAATGGGA -CCAACAGGTTTCGTCACAGTGCAA -CCAACAGGTTTCGTCACAGAGGAA -CCAACAGGTTTCGTCACACAGGTA -CCAACAGGTTTCGTCACAGACTCT -CCAACAGGTTTCGTCACAAGTCCT -CCAACAGGTTTCGTCACATAAGCC -CCAACAGGTTTCGTCACAATAGCC -CCAACAGGTTTCGTCACATAACCG -CCAACAGGTTTCGTCACAATGCCA -CCAACAGGTTTCCTGTTGGGAAAC -CCAACAGGTTTCCTGTTGAACACC -CCAACAGGTTTCCTGTTGATCGAG -CCAACAGGTTTCCTGTTGCTCCTT -CCAACAGGTTTCCTGTTGCCTGTT -CCAACAGGTTTCCTGTTGCGGTTT -CCAACAGGTTTCCTGTTGGTGGTT -CCAACAGGTTTCCTGTTGGCCTTT -CCAACAGGTTTCCTGTTGGGTCTT -CCAACAGGTTTCCTGTTGACGCTT -CCAACAGGTTTCCTGTTGAGCGTT -CCAACAGGTTTCCTGTTGTTCGTC -CCAACAGGTTTCCTGTTGTCTCTC -CCAACAGGTTTCCTGTTGTGGATC -CCAACAGGTTTCCTGTTGCACTTC -CCAACAGGTTTCCTGTTGGTACTC -CCAACAGGTTTCCTGTTGGATGTC -CCAACAGGTTTCCTGTTGACAGTC -CCAACAGGTTTCCTGTTGTTGCTG -CCAACAGGTTTCCTGTTGTCCATG -CCAACAGGTTTCCTGTTGTGTGTG -CCAACAGGTTTCCTGTTGCTAGTG -CCAACAGGTTTCCTGTTGCATCTG -CCAACAGGTTTCCTGTTGGAGTTG -CCAACAGGTTTCCTGTTGAGACTG -CCAACAGGTTTCCTGTTGTCGGTA -CCAACAGGTTTCCTGTTGTGCCTA -CCAACAGGTTTCCTGTTGCCACTA -CCAACAGGTTTCCTGTTGGGAGTA -CCAACAGGTTTCCTGTTGTCGTCT -CCAACAGGTTTCCTGTTGTGCACT -CCAACAGGTTTCCTGTTGCTGACT -CCAACAGGTTTCCTGTTGCAACCT -CCAACAGGTTTCCTGTTGGCTACT -CCAACAGGTTTCCTGTTGGGATCT -CCAACAGGTTTCCTGTTGAAGGCT -CCAACAGGTTTCCTGTTGTCAACC -CCAACAGGTTTCCTGTTGTGTTCC -CCAACAGGTTTCCTGTTGATTCCC -CCAACAGGTTTCCTGTTGTTCTCG -CCAACAGGTTTCCTGTTGTAGACG -CCAACAGGTTTCCTGTTGGTAACG -CCAACAGGTTTCCTGTTGACTTCG -CCAACAGGTTTCCTGTTGTACGCA -CCAACAGGTTTCCTGTTGCTTGCA -CCAACAGGTTTCCTGTTGCGAACA -CCAACAGGTTTCCTGTTGCAGTCA -CCAACAGGTTTCCTGTTGGATCCA -CCAACAGGTTTCCTGTTGACGACA -CCAACAGGTTTCCTGTTGAGCTCA -CCAACAGGTTTCCTGTTGTCACGT -CCAACAGGTTTCCTGTTGCGTAGT -CCAACAGGTTTCCTGTTGGTCAGT -CCAACAGGTTTCCTGTTGGAAGGT -CCAACAGGTTTCCTGTTGAACCGT -CCAACAGGTTTCCTGTTGTTGTGC -CCAACAGGTTTCCTGTTGCTAAGC -CCAACAGGTTTCCTGTTGACTAGC -CCAACAGGTTTCCTGTTGAGATGC -CCAACAGGTTTCCTGTTGTGAAGG -CCAACAGGTTTCCTGTTGCAATGG -CCAACAGGTTTCCTGTTGATGAGG -CCAACAGGTTTCCTGTTGAATGGG -CCAACAGGTTTCCTGTTGTCCTGA -CCAACAGGTTTCCTGTTGTAGCGA -CCAACAGGTTTCCTGTTGCACAGA -CCAACAGGTTTCCTGTTGGCAAGA -CCAACAGGTTTCCTGTTGGGTTGA -CCAACAGGTTTCCTGTTGTCCGAT -CCAACAGGTTTCCTGTTGTGGCAT -CCAACAGGTTTCCTGTTGCGAGAT -CCAACAGGTTTCCTGTTGTACCAC -CCAACAGGTTTCCTGTTGCAGAAC -CCAACAGGTTTCCTGTTGGTCTAC -CCAACAGGTTTCCTGTTGACGTAC -CCAACAGGTTTCCTGTTGAGTGAC -CCAACAGGTTTCCTGTTGCTGTAG -CCAACAGGTTTCCTGTTGCCTAAG -CCAACAGGTTTCCTGTTGGTTCAG -CCAACAGGTTTCCTGTTGGCATAG -CCAACAGGTTTCCTGTTGGACAAG -CCAACAGGTTTCCTGTTGAAGCAG -CCAACAGGTTTCCTGTTGCGTCAA -CCAACAGGTTTCCTGTTGGCTGAA -CCAACAGGTTTCCTGTTGAGTACG -CCAACAGGTTTCCTGTTGATCCGA -CCAACAGGTTTCCTGTTGATGGGA -CCAACAGGTTTCCTGTTGGTGCAA -CCAACAGGTTTCCTGTTGGAGGAA -CCAACAGGTTTCCTGTTGCAGGTA -CCAACAGGTTTCCTGTTGGACTCT -CCAACAGGTTTCCTGTTGAGTCCT -CCAACAGGTTTCCTGTTGTAAGCC -CCAACAGGTTTCCTGTTGATAGCC -CCAACAGGTTTCCTGTTGTAACCG -CCAACAGGTTTCCTGTTGATGCCA -CCAACAGGTTTCATGTCCGGAAAC -CCAACAGGTTTCATGTCCAACACC -CCAACAGGTTTCATGTCCATCGAG -CCAACAGGTTTCATGTCCCTCCTT -CCAACAGGTTTCATGTCCCCTGTT -CCAACAGGTTTCATGTCCCGGTTT -CCAACAGGTTTCATGTCCGTGGTT -CCAACAGGTTTCATGTCCGCCTTT -CCAACAGGTTTCATGTCCGGTCTT -CCAACAGGTTTCATGTCCACGCTT -CCAACAGGTTTCATGTCCAGCGTT -CCAACAGGTTTCATGTCCTTCGTC -CCAACAGGTTTCATGTCCTCTCTC -CCAACAGGTTTCATGTCCTGGATC -CCAACAGGTTTCATGTCCCACTTC -CCAACAGGTTTCATGTCCGTACTC -CCAACAGGTTTCATGTCCGATGTC -CCAACAGGTTTCATGTCCACAGTC -CCAACAGGTTTCATGTCCTTGCTG -CCAACAGGTTTCATGTCCTCCATG -CCAACAGGTTTCATGTCCTGTGTG -CCAACAGGTTTCATGTCCCTAGTG -CCAACAGGTTTCATGTCCCATCTG -CCAACAGGTTTCATGTCCGAGTTG -CCAACAGGTTTCATGTCCAGACTG -CCAACAGGTTTCATGTCCTCGGTA -CCAACAGGTTTCATGTCCTGCCTA -CCAACAGGTTTCATGTCCCCACTA -CCAACAGGTTTCATGTCCGGAGTA -CCAACAGGTTTCATGTCCTCGTCT -CCAACAGGTTTCATGTCCTGCACT -CCAACAGGTTTCATGTCCCTGACT -CCAACAGGTTTCATGTCCCAACCT -CCAACAGGTTTCATGTCCGCTACT -CCAACAGGTTTCATGTCCGGATCT -CCAACAGGTTTCATGTCCAAGGCT -CCAACAGGTTTCATGTCCTCAACC -CCAACAGGTTTCATGTCCTGTTCC -CCAACAGGTTTCATGTCCATTCCC -CCAACAGGTTTCATGTCCTTCTCG -CCAACAGGTTTCATGTCCTAGACG -CCAACAGGTTTCATGTCCGTAACG -CCAACAGGTTTCATGTCCACTTCG -CCAACAGGTTTCATGTCCTACGCA -CCAACAGGTTTCATGTCCCTTGCA -CCAACAGGTTTCATGTCCCGAACA -CCAACAGGTTTCATGTCCCAGTCA -CCAACAGGTTTCATGTCCGATCCA -CCAACAGGTTTCATGTCCACGACA -CCAACAGGTTTCATGTCCAGCTCA -CCAACAGGTTTCATGTCCTCACGT -CCAACAGGTTTCATGTCCCGTAGT -CCAACAGGTTTCATGTCCGTCAGT -CCAACAGGTTTCATGTCCGAAGGT -CCAACAGGTTTCATGTCCAACCGT -CCAACAGGTTTCATGTCCTTGTGC -CCAACAGGTTTCATGTCCCTAAGC -CCAACAGGTTTCATGTCCACTAGC -CCAACAGGTTTCATGTCCAGATGC -CCAACAGGTTTCATGTCCTGAAGG -CCAACAGGTTTCATGTCCCAATGG -CCAACAGGTTTCATGTCCATGAGG -CCAACAGGTTTCATGTCCAATGGG -CCAACAGGTTTCATGTCCTCCTGA -CCAACAGGTTTCATGTCCTAGCGA -CCAACAGGTTTCATGTCCCACAGA -CCAACAGGTTTCATGTCCGCAAGA -CCAACAGGTTTCATGTCCGGTTGA -CCAACAGGTTTCATGTCCTCCGAT -CCAACAGGTTTCATGTCCTGGCAT -CCAACAGGTTTCATGTCCCGAGAT -CCAACAGGTTTCATGTCCTACCAC -CCAACAGGTTTCATGTCCCAGAAC -CCAACAGGTTTCATGTCCGTCTAC -CCAACAGGTTTCATGTCCACGTAC -CCAACAGGTTTCATGTCCAGTGAC -CCAACAGGTTTCATGTCCCTGTAG -CCAACAGGTTTCATGTCCCCTAAG -CCAACAGGTTTCATGTCCGTTCAG -CCAACAGGTTTCATGTCCGCATAG -CCAACAGGTTTCATGTCCGACAAG -CCAACAGGTTTCATGTCCAAGCAG -CCAACAGGTTTCATGTCCCGTCAA -CCAACAGGTTTCATGTCCGCTGAA -CCAACAGGTTTCATGTCCAGTACG -CCAACAGGTTTCATGTCCATCCGA -CCAACAGGTTTCATGTCCATGGGA -CCAACAGGTTTCATGTCCGTGCAA -CCAACAGGTTTCATGTCCGAGGAA -CCAACAGGTTTCATGTCCCAGGTA -CCAACAGGTTTCATGTCCGACTCT -CCAACAGGTTTCATGTCCAGTCCT -CCAACAGGTTTCATGTCCTAAGCC -CCAACAGGTTTCATGTCCATAGCC -CCAACAGGTTTCATGTCCTAACCG -CCAACAGGTTTCATGTCCATGCCA -CCAACAGGTTTCGTGTGTGGAAAC -CCAACAGGTTTCGTGTGTAACACC -CCAACAGGTTTCGTGTGTATCGAG -CCAACAGGTTTCGTGTGTCTCCTT -CCAACAGGTTTCGTGTGTCCTGTT -CCAACAGGTTTCGTGTGTCGGTTT -CCAACAGGTTTCGTGTGTGTGGTT -CCAACAGGTTTCGTGTGTGCCTTT -CCAACAGGTTTCGTGTGTGGTCTT -CCAACAGGTTTCGTGTGTACGCTT -CCAACAGGTTTCGTGTGTAGCGTT -CCAACAGGTTTCGTGTGTTTCGTC -CCAACAGGTTTCGTGTGTTCTCTC -CCAACAGGTTTCGTGTGTTGGATC -CCAACAGGTTTCGTGTGTCACTTC -CCAACAGGTTTCGTGTGTGTACTC -CCAACAGGTTTCGTGTGTGATGTC -CCAACAGGTTTCGTGTGTACAGTC -CCAACAGGTTTCGTGTGTTTGCTG -CCAACAGGTTTCGTGTGTTCCATG -CCAACAGGTTTCGTGTGTTGTGTG -CCAACAGGTTTCGTGTGTCTAGTG -CCAACAGGTTTCGTGTGTCATCTG -CCAACAGGTTTCGTGTGTGAGTTG -CCAACAGGTTTCGTGTGTAGACTG -CCAACAGGTTTCGTGTGTTCGGTA -CCAACAGGTTTCGTGTGTTGCCTA -CCAACAGGTTTCGTGTGTCCACTA -CCAACAGGTTTCGTGTGTGGAGTA -CCAACAGGTTTCGTGTGTTCGTCT -CCAACAGGTTTCGTGTGTTGCACT -CCAACAGGTTTCGTGTGTCTGACT -CCAACAGGTTTCGTGTGTCAACCT -CCAACAGGTTTCGTGTGTGCTACT -CCAACAGGTTTCGTGTGTGGATCT -CCAACAGGTTTCGTGTGTAAGGCT -CCAACAGGTTTCGTGTGTTCAACC -CCAACAGGTTTCGTGTGTTGTTCC -CCAACAGGTTTCGTGTGTATTCCC -CCAACAGGTTTCGTGTGTTTCTCG -CCAACAGGTTTCGTGTGTTAGACG -CCAACAGGTTTCGTGTGTGTAACG -CCAACAGGTTTCGTGTGTACTTCG -CCAACAGGTTTCGTGTGTTACGCA -CCAACAGGTTTCGTGTGTCTTGCA -CCAACAGGTTTCGTGTGTCGAACA -CCAACAGGTTTCGTGTGTCAGTCA -CCAACAGGTTTCGTGTGTGATCCA -CCAACAGGTTTCGTGTGTACGACA -CCAACAGGTTTCGTGTGTAGCTCA -CCAACAGGTTTCGTGTGTTCACGT -CCAACAGGTTTCGTGTGTCGTAGT -CCAACAGGTTTCGTGTGTGTCAGT -CCAACAGGTTTCGTGTGTGAAGGT -CCAACAGGTTTCGTGTGTAACCGT -CCAACAGGTTTCGTGTGTTTGTGC -CCAACAGGTTTCGTGTGTCTAAGC -CCAACAGGTTTCGTGTGTACTAGC -CCAACAGGTTTCGTGTGTAGATGC -CCAACAGGTTTCGTGTGTTGAAGG -CCAACAGGTTTCGTGTGTCAATGG -CCAACAGGTTTCGTGTGTATGAGG -CCAACAGGTTTCGTGTGTAATGGG -CCAACAGGTTTCGTGTGTTCCTGA -CCAACAGGTTTCGTGTGTTAGCGA -CCAACAGGTTTCGTGTGTCACAGA -CCAACAGGTTTCGTGTGTGCAAGA -CCAACAGGTTTCGTGTGTGGTTGA -CCAACAGGTTTCGTGTGTTCCGAT -CCAACAGGTTTCGTGTGTTGGCAT -CCAACAGGTTTCGTGTGTCGAGAT -CCAACAGGTTTCGTGTGTTACCAC -CCAACAGGTTTCGTGTGTCAGAAC -CCAACAGGTTTCGTGTGTGTCTAC -CCAACAGGTTTCGTGTGTACGTAC -CCAACAGGTTTCGTGTGTAGTGAC -CCAACAGGTTTCGTGTGTCTGTAG -CCAACAGGTTTCGTGTGTCCTAAG -CCAACAGGTTTCGTGTGTGTTCAG -CCAACAGGTTTCGTGTGTGCATAG -CCAACAGGTTTCGTGTGTGACAAG -CCAACAGGTTTCGTGTGTAAGCAG -CCAACAGGTTTCGTGTGTCGTCAA -CCAACAGGTTTCGTGTGTGCTGAA -CCAACAGGTTTCGTGTGTAGTACG -CCAACAGGTTTCGTGTGTATCCGA -CCAACAGGTTTCGTGTGTATGGGA -CCAACAGGTTTCGTGTGTGTGCAA -CCAACAGGTTTCGTGTGTGAGGAA -CCAACAGGTTTCGTGTGTCAGGTA -CCAACAGGTTTCGTGTGTGACTCT -CCAACAGGTTTCGTGTGTAGTCCT -CCAACAGGTTTCGTGTGTTAAGCC -CCAACAGGTTTCGTGTGTATAGCC -CCAACAGGTTTCGTGTGTTAACCG -CCAACAGGTTTCGTGTGTATGCCA -CCAACAGGTTTCGTGCTAGGAAAC -CCAACAGGTTTCGTGCTAAACACC -CCAACAGGTTTCGTGCTAATCGAG -CCAACAGGTTTCGTGCTACTCCTT -CCAACAGGTTTCGTGCTACCTGTT -CCAACAGGTTTCGTGCTACGGTTT -CCAACAGGTTTCGTGCTAGTGGTT -CCAACAGGTTTCGTGCTAGCCTTT -CCAACAGGTTTCGTGCTAGGTCTT -CCAACAGGTTTCGTGCTAACGCTT -CCAACAGGTTTCGTGCTAAGCGTT -CCAACAGGTTTCGTGCTATTCGTC -CCAACAGGTTTCGTGCTATCTCTC -CCAACAGGTTTCGTGCTATGGATC -CCAACAGGTTTCGTGCTACACTTC -CCAACAGGTTTCGTGCTAGTACTC -CCAACAGGTTTCGTGCTAGATGTC -CCAACAGGTTTCGTGCTAACAGTC -CCAACAGGTTTCGTGCTATTGCTG -CCAACAGGTTTCGTGCTATCCATG -CCAACAGGTTTCGTGCTATGTGTG -CCAACAGGTTTCGTGCTACTAGTG -CCAACAGGTTTCGTGCTACATCTG -CCAACAGGTTTCGTGCTAGAGTTG -CCAACAGGTTTCGTGCTAAGACTG -CCAACAGGTTTCGTGCTATCGGTA -CCAACAGGTTTCGTGCTATGCCTA -CCAACAGGTTTCGTGCTACCACTA -CCAACAGGTTTCGTGCTAGGAGTA -CCAACAGGTTTCGTGCTATCGTCT -CCAACAGGTTTCGTGCTATGCACT -CCAACAGGTTTCGTGCTACTGACT -CCAACAGGTTTCGTGCTACAACCT -CCAACAGGTTTCGTGCTAGCTACT -CCAACAGGTTTCGTGCTAGGATCT -CCAACAGGTTTCGTGCTAAAGGCT -CCAACAGGTTTCGTGCTATCAACC -CCAACAGGTTTCGTGCTATGTTCC -CCAACAGGTTTCGTGCTAATTCCC -CCAACAGGTTTCGTGCTATTCTCG -CCAACAGGTTTCGTGCTATAGACG -CCAACAGGTTTCGTGCTAGTAACG -CCAACAGGTTTCGTGCTAACTTCG -CCAACAGGTTTCGTGCTATACGCA -CCAACAGGTTTCGTGCTACTTGCA -CCAACAGGTTTCGTGCTACGAACA -CCAACAGGTTTCGTGCTACAGTCA -CCAACAGGTTTCGTGCTAGATCCA -CCAACAGGTTTCGTGCTAACGACA -CCAACAGGTTTCGTGCTAAGCTCA -CCAACAGGTTTCGTGCTATCACGT -CCAACAGGTTTCGTGCTACGTAGT -CCAACAGGTTTCGTGCTAGTCAGT -CCAACAGGTTTCGTGCTAGAAGGT -CCAACAGGTTTCGTGCTAAACCGT -CCAACAGGTTTCGTGCTATTGTGC -CCAACAGGTTTCGTGCTACTAAGC -CCAACAGGTTTCGTGCTAACTAGC -CCAACAGGTTTCGTGCTAAGATGC -CCAACAGGTTTCGTGCTATGAAGG -CCAACAGGTTTCGTGCTACAATGG -CCAACAGGTTTCGTGCTAATGAGG -CCAACAGGTTTCGTGCTAAATGGG -CCAACAGGTTTCGTGCTATCCTGA -CCAACAGGTTTCGTGCTATAGCGA -CCAACAGGTTTCGTGCTACACAGA -CCAACAGGTTTCGTGCTAGCAAGA -CCAACAGGTTTCGTGCTAGGTTGA -CCAACAGGTTTCGTGCTATCCGAT -CCAACAGGTTTCGTGCTATGGCAT -CCAACAGGTTTCGTGCTACGAGAT -CCAACAGGTTTCGTGCTATACCAC -CCAACAGGTTTCGTGCTACAGAAC -CCAACAGGTTTCGTGCTAGTCTAC -CCAACAGGTTTCGTGCTAACGTAC -CCAACAGGTTTCGTGCTAAGTGAC -CCAACAGGTTTCGTGCTACTGTAG -CCAACAGGTTTCGTGCTACCTAAG -CCAACAGGTTTCGTGCTAGTTCAG -CCAACAGGTTTCGTGCTAGCATAG -CCAACAGGTTTCGTGCTAGACAAG -CCAACAGGTTTCGTGCTAAAGCAG -CCAACAGGTTTCGTGCTACGTCAA -CCAACAGGTTTCGTGCTAGCTGAA -CCAACAGGTTTCGTGCTAAGTACG -CCAACAGGTTTCGTGCTAATCCGA -CCAACAGGTTTCGTGCTAATGGGA -CCAACAGGTTTCGTGCTAGTGCAA -CCAACAGGTTTCGTGCTAGAGGAA -CCAACAGGTTTCGTGCTACAGGTA -CCAACAGGTTTCGTGCTAGACTCT -CCAACAGGTTTCGTGCTAAGTCCT -CCAACAGGTTTCGTGCTATAAGCC -CCAACAGGTTTCGTGCTAATAGCC -CCAACAGGTTTCGTGCTATAACCG -CCAACAGGTTTCGTGCTAATGCCA -CCAACAGGTTTCCTGCATGGAAAC -CCAACAGGTTTCCTGCATAACACC -CCAACAGGTTTCCTGCATATCGAG -CCAACAGGTTTCCTGCATCTCCTT -CCAACAGGTTTCCTGCATCCTGTT -CCAACAGGTTTCCTGCATCGGTTT -CCAACAGGTTTCCTGCATGTGGTT -CCAACAGGTTTCCTGCATGCCTTT -CCAACAGGTTTCCTGCATGGTCTT -CCAACAGGTTTCCTGCATACGCTT -CCAACAGGTTTCCTGCATAGCGTT -CCAACAGGTTTCCTGCATTTCGTC -CCAACAGGTTTCCTGCATTCTCTC -CCAACAGGTTTCCTGCATTGGATC -CCAACAGGTTTCCTGCATCACTTC -CCAACAGGTTTCCTGCATGTACTC -CCAACAGGTTTCCTGCATGATGTC -CCAACAGGTTTCCTGCATACAGTC -CCAACAGGTTTCCTGCATTTGCTG -CCAACAGGTTTCCTGCATTCCATG -CCAACAGGTTTCCTGCATTGTGTG -CCAACAGGTTTCCTGCATCTAGTG -CCAACAGGTTTCCTGCATCATCTG -CCAACAGGTTTCCTGCATGAGTTG -CCAACAGGTTTCCTGCATAGACTG -CCAACAGGTTTCCTGCATTCGGTA -CCAACAGGTTTCCTGCATTGCCTA -CCAACAGGTTTCCTGCATCCACTA -CCAACAGGTTTCCTGCATGGAGTA -CCAACAGGTTTCCTGCATTCGTCT -CCAACAGGTTTCCTGCATTGCACT -CCAACAGGTTTCCTGCATCTGACT -CCAACAGGTTTCCTGCATCAACCT -CCAACAGGTTTCCTGCATGCTACT -CCAACAGGTTTCCTGCATGGATCT -CCAACAGGTTTCCTGCATAAGGCT -CCAACAGGTTTCCTGCATTCAACC -CCAACAGGTTTCCTGCATTGTTCC -CCAACAGGTTTCCTGCATATTCCC -CCAACAGGTTTCCTGCATTTCTCG -CCAACAGGTTTCCTGCATTAGACG -CCAACAGGTTTCCTGCATGTAACG -CCAACAGGTTTCCTGCATACTTCG -CCAACAGGTTTCCTGCATTACGCA -CCAACAGGTTTCCTGCATCTTGCA -CCAACAGGTTTCCTGCATCGAACA -CCAACAGGTTTCCTGCATCAGTCA -CCAACAGGTTTCCTGCATGATCCA -CCAACAGGTTTCCTGCATACGACA -CCAACAGGTTTCCTGCATAGCTCA -CCAACAGGTTTCCTGCATTCACGT -CCAACAGGTTTCCTGCATCGTAGT -CCAACAGGTTTCCTGCATGTCAGT -CCAACAGGTTTCCTGCATGAAGGT -CCAACAGGTTTCCTGCATAACCGT -CCAACAGGTTTCCTGCATTTGTGC -CCAACAGGTTTCCTGCATCTAAGC -CCAACAGGTTTCCTGCATACTAGC -CCAACAGGTTTCCTGCATAGATGC -CCAACAGGTTTCCTGCATTGAAGG -CCAACAGGTTTCCTGCATCAATGG -CCAACAGGTTTCCTGCATATGAGG -CCAACAGGTTTCCTGCATAATGGG -CCAACAGGTTTCCTGCATTCCTGA -CCAACAGGTTTCCTGCATTAGCGA -CCAACAGGTTTCCTGCATCACAGA -CCAACAGGTTTCCTGCATGCAAGA -CCAACAGGTTTCCTGCATGGTTGA -CCAACAGGTTTCCTGCATTCCGAT -CCAACAGGTTTCCTGCATTGGCAT -CCAACAGGTTTCCTGCATCGAGAT -CCAACAGGTTTCCTGCATTACCAC -CCAACAGGTTTCCTGCATCAGAAC -CCAACAGGTTTCCTGCATGTCTAC -CCAACAGGTTTCCTGCATACGTAC -CCAACAGGTTTCCTGCATAGTGAC -CCAACAGGTTTCCTGCATCTGTAG -CCAACAGGTTTCCTGCATCCTAAG -CCAACAGGTTTCCTGCATGTTCAG -CCAACAGGTTTCCTGCATGCATAG -CCAACAGGTTTCCTGCATGACAAG -CCAACAGGTTTCCTGCATAAGCAG -CCAACAGGTTTCCTGCATCGTCAA -CCAACAGGTTTCCTGCATGCTGAA -CCAACAGGTTTCCTGCATAGTACG -CCAACAGGTTTCCTGCATATCCGA -CCAACAGGTTTCCTGCATATGGGA -CCAACAGGTTTCCTGCATGTGCAA -CCAACAGGTTTCCTGCATGAGGAA -CCAACAGGTTTCCTGCATCAGGTA -CCAACAGGTTTCCTGCATGACTCT -CCAACAGGTTTCCTGCATAGTCCT -CCAACAGGTTTCCTGCATTAAGCC -CCAACAGGTTTCCTGCATATAGCC -CCAACAGGTTTCCTGCATTAACCG -CCAACAGGTTTCCTGCATATGCCA -CCAACAGGTTTCTTGGAGGGAAAC -CCAACAGGTTTCTTGGAGAACACC -CCAACAGGTTTCTTGGAGATCGAG -CCAACAGGTTTCTTGGAGCTCCTT -CCAACAGGTTTCTTGGAGCCTGTT -CCAACAGGTTTCTTGGAGCGGTTT -CCAACAGGTTTCTTGGAGGTGGTT -CCAACAGGTTTCTTGGAGGCCTTT -CCAACAGGTTTCTTGGAGGGTCTT -CCAACAGGTTTCTTGGAGACGCTT -CCAACAGGTTTCTTGGAGAGCGTT -CCAACAGGTTTCTTGGAGTTCGTC -CCAACAGGTTTCTTGGAGTCTCTC -CCAACAGGTTTCTTGGAGTGGATC -CCAACAGGTTTCTTGGAGCACTTC -CCAACAGGTTTCTTGGAGGTACTC -CCAACAGGTTTCTTGGAGGATGTC -CCAACAGGTTTCTTGGAGACAGTC -CCAACAGGTTTCTTGGAGTTGCTG -CCAACAGGTTTCTTGGAGTCCATG -CCAACAGGTTTCTTGGAGTGTGTG -CCAACAGGTTTCTTGGAGCTAGTG -CCAACAGGTTTCTTGGAGCATCTG -CCAACAGGTTTCTTGGAGGAGTTG -CCAACAGGTTTCTTGGAGAGACTG -CCAACAGGTTTCTTGGAGTCGGTA -CCAACAGGTTTCTTGGAGTGCCTA -CCAACAGGTTTCTTGGAGCCACTA -CCAACAGGTTTCTTGGAGGGAGTA -CCAACAGGTTTCTTGGAGTCGTCT -CCAACAGGTTTCTTGGAGTGCACT -CCAACAGGTTTCTTGGAGCTGACT -CCAACAGGTTTCTTGGAGCAACCT -CCAACAGGTTTCTTGGAGGCTACT -CCAACAGGTTTCTTGGAGGGATCT -CCAACAGGTTTCTTGGAGAAGGCT -CCAACAGGTTTCTTGGAGTCAACC -CCAACAGGTTTCTTGGAGTGTTCC -CCAACAGGTTTCTTGGAGATTCCC -CCAACAGGTTTCTTGGAGTTCTCG -CCAACAGGTTTCTTGGAGTAGACG -CCAACAGGTTTCTTGGAGGTAACG -CCAACAGGTTTCTTGGAGACTTCG -CCAACAGGTTTCTTGGAGTACGCA -CCAACAGGTTTCTTGGAGCTTGCA -CCAACAGGTTTCTTGGAGCGAACA -CCAACAGGTTTCTTGGAGCAGTCA -CCAACAGGTTTCTTGGAGGATCCA -CCAACAGGTTTCTTGGAGACGACA -CCAACAGGTTTCTTGGAGAGCTCA -CCAACAGGTTTCTTGGAGTCACGT -CCAACAGGTTTCTTGGAGCGTAGT -CCAACAGGTTTCTTGGAGGTCAGT -CCAACAGGTTTCTTGGAGGAAGGT -CCAACAGGTTTCTTGGAGAACCGT -CCAACAGGTTTCTTGGAGTTGTGC -CCAACAGGTTTCTTGGAGCTAAGC -CCAACAGGTTTCTTGGAGACTAGC -CCAACAGGTTTCTTGGAGAGATGC -CCAACAGGTTTCTTGGAGTGAAGG -CCAACAGGTTTCTTGGAGCAATGG -CCAACAGGTTTCTTGGAGATGAGG -CCAACAGGTTTCTTGGAGAATGGG -CCAACAGGTTTCTTGGAGTCCTGA -CCAACAGGTTTCTTGGAGTAGCGA -CCAACAGGTTTCTTGGAGCACAGA -CCAACAGGTTTCTTGGAGGCAAGA -CCAACAGGTTTCTTGGAGGGTTGA -CCAACAGGTTTCTTGGAGTCCGAT -CCAACAGGTTTCTTGGAGTGGCAT -CCAACAGGTTTCTTGGAGCGAGAT -CCAACAGGTTTCTTGGAGTACCAC -CCAACAGGTTTCTTGGAGCAGAAC -CCAACAGGTTTCTTGGAGGTCTAC -CCAACAGGTTTCTTGGAGACGTAC -CCAACAGGTTTCTTGGAGAGTGAC -CCAACAGGTTTCTTGGAGCTGTAG -CCAACAGGTTTCTTGGAGCCTAAG -CCAACAGGTTTCTTGGAGGTTCAG -CCAACAGGTTTCTTGGAGGCATAG -CCAACAGGTTTCTTGGAGGACAAG -CCAACAGGTTTCTTGGAGAAGCAG -CCAACAGGTTTCTTGGAGCGTCAA -CCAACAGGTTTCTTGGAGGCTGAA -CCAACAGGTTTCTTGGAGAGTACG -CCAACAGGTTTCTTGGAGATCCGA -CCAACAGGTTTCTTGGAGATGGGA -CCAACAGGTTTCTTGGAGGTGCAA -CCAACAGGTTTCTTGGAGGAGGAA -CCAACAGGTTTCTTGGAGCAGGTA -CCAACAGGTTTCTTGGAGGACTCT -CCAACAGGTTTCTTGGAGAGTCCT -CCAACAGGTTTCTTGGAGTAAGCC -CCAACAGGTTTCTTGGAGATAGCC -CCAACAGGTTTCTTGGAGTAACCG -CCAACAGGTTTCTTGGAGATGCCA -CCAACAGGTTTCCTGAGAGGAAAC -CCAACAGGTTTCCTGAGAAACACC -CCAACAGGTTTCCTGAGAATCGAG -CCAACAGGTTTCCTGAGACTCCTT -CCAACAGGTTTCCTGAGACCTGTT -CCAACAGGTTTCCTGAGACGGTTT -CCAACAGGTTTCCTGAGAGTGGTT -CCAACAGGTTTCCTGAGAGCCTTT -CCAACAGGTTTCCTGAGAGGTCTT -CCAACAGGTTTCCTGAGAACGCTT -CCAACAGGTTTCCTGAGAAGCGTT -CCAACAGGTTTCCTGAGATTCGTC -CCAACAGGTTTCCTGAGATCTCTC -CCAACAGGTTTCCTGAGATGGATC -CCAACAGGTTTCCTGAGACACTTC -CCAACAGGTTTCCTGAGAGTACTC -CCAACAGGTTTCCTGAGAGATGTC -CCAACAGGTTTCCTGAGAACAGTC -CCAACAGGTTTCCTGAGATTGCTG -CCAACAGGTTTCCTGAGATCCATG -CCAACAGGTTTCCTGAGATGTGTG -CCAACAGGTTTCCTGAGACTAGTG -CCAACAGGTTTCCTGAGACATCTG -CCAACAGGTTTCCTGAGAGAGTTG -CCAACAGGTTTCCTGAGAAGACTG -CCAACAGGTTTCCTGAGATCGGTA -CCAACAGGTTTCCTGAGATGCCTA -CCAACAGGTTTCCTGAGACCACTA -CCAACAGGTTTCCTGAGAGGAGTA -CCAACAGGTTTCCTGAGATCGTCT -CCAACAGGTTTCCTGAGATGCACT -CCAACAGGTTTCCTGAGACTGACT -CCAACAGGTTTCCTGAGACAACCT -CCAACAGGTTTCCTGAGAGCTACT -CCAACAGGTTTCCTGAGAGGATCT -CCAACAGGTTTCCTGAGAAAGGCT -CCAACAGGTTTCCTGAGATCAACC -CCAACAGGTTTCCTGAGATGTTCC -CCAACAGGTTTCCTGAGAATTCCC -CCAACAGGTTTCCTGAGATTCTCG -CCAACAGGTTTCCTGAGATAGACG -CCAACAGGTTTCCTGAGAGTAACG -CCAACAGGTTTCCTGAGAACTTCG -CCAACAGGTTTCCTGAGATACGCA -CCAACAGGTTTCCTGAGACTTGCA -CCAACAGGTTTCCTGAGACGAACA -CCAACAGGTTTCCTGAGACAGTCA -CCAACAGGTTTCCTGAGAGATCCA -CCAACAGGTTTCCTGAGAACGACA -CCAACAGGTTTCCTGAGAAGCTCA -CCAACAGGTTTCCTGAGATCACGT -CCAACAGGTTTCCTGAGACGTAGT -CCAACAGGTTTCCTGAGAGTCAGT -CCAACAGGTTTCCTGAGAGAAGGT -CCAACAGGTTTCCTGAGAAACCGT -CCAACAGGTTTCCTGAGATTGTGC -CCAACAGGTTTCCTGAGACTAAGC -CCAACAGGTTTCCTGAGAACTAGC -CCAACAGGTTTCCTGAGAAGATGC -CCAACAGGTTTCCTGAGATGAAGG -CCAACAGGTTTCCTGAGACAATGG -CCAACAGGTTTCCTGAGAATGAGG -CCAACAGGTTTCCTGAGAAATGGG -CCAACAGGTTTCCTGAGATCCTGA -CCAACAGGTTTCCTGAGATAGCGA -CCAACAGGTTTCCTGAGACACAGA -CCAACAGGTTTCCTGAGAGCAAGA -CCAACAGGTTTCCTGAGAGGTTGA -CCAACAGGTTTCCTGAGATCCGAT -CCAACAGGTTTCCTGAGATGGCAT -CCAACAGGTTTCCTGAGACGAGAT -CCAACAGGTTTCCTGAGATACCAC -CCAACAGGTTTCCTGAGACAGAAC -CCAACAGGTTTCCTGAGAGTCTAC -CCAACAGGTTTCCTGAGAACGTAC -CCAACAGGTTTCCTGAGAAGTGAC -CCAACAGGTTTCCTGAGACTGTAG -CCAACAGGTTTCCTGAGACCTAAG -CCAACAGGTTTCCTGAGAGTTCAG -CCAACAGGTTTCCTGAGAGCATAG -CCAACAGGTTTCCTGAGAGACAAG -CCAACAGGTTTCCTGAGAAAGCAG -CCAACAGGTTTCCTGAGACGTCAA -CCAACAGGTTTCCTGAGAGCTGAA -CCAACAGGTTTCCTGAGAAGTACG -CCAACAGGTTTCCTGAGAATCCGA -CCAACAGGTTTCCTGAGAATGGGA -CCAACAGGTTTCCTGAGAGTGCAA -CCAACAGGTTTCCTGAGAGAGGAA -CCAACAGGTTTCCTGAGACAGGTA -CCAACAGGTTTCCTGAGAGACTCT -CCAACAGGTTTCCTGAGAAGTCCT -CCAACAGGTTTCCTGAGATAAGCC -CCAACAGGTTTCCTGAGAATAGCC -CCAACAGGTTTCCTGAGATAACCG -CCAACAGGTTTCCTGAGAATGCCA -CCAACAGGTTTCGTATCGGGAAAC -CCAACAGGTTTCGTATCGAACACC -CCAACAGGTTTCGTATCGATCGAG -CCAACAGGTTTCGTATCGCTCCTT -CCAACAGGTTTCGTATCGCCTGTT -CCAACAGGTTTCGTATCGCGGTTT -CCAACAGGTTTCGTATCGGTGGTT -CCAACAGGTTTCGTATCGGCCTTT -CCAACAGGTTTCGTATCGGGTCTT -CCAACAGGTTTCGTATCGACGCTT -CCAACAGGTTTCGTATCGAGCGTT -CCAACAGGTTTCGTATCGTTCGTC -CCAACAGGTTTCGTATCGTCTCTC -CCAACAGGTTTCGTATCGTGGATC -CCAACAGGTTTCGTATCGCACTTC -CCAACAGGTTTCGTATCGGTACTC -CCAACAGGTTTCGTATCGGATGTC -CCAACAGGTTTCGTATCGACAGTC -CCAACAGGTTTCGTATCGTTGCTG -CCAACAGGTTTCGTATCGTCCATG -CCAACAGGTTTCGTATCGTGTGTG -CCAACAGGTTTCGTATCGCTAGTG -CCAACAGGTTTCGTATCGCATCTG -CCAACAGGTTTCGTATCGGAGTTG -CCAACAGGTTTCGTATCGAGACTG -CCAACAGGTTTCGTATCGTCGGTA -CCAACAGGTTTCGTATCGTGCCTA -CCAACAGGTTTCGTATCGCCACTA -CCAACAGGTTTCGTATCGGGAGTA -CCAACAGGTTTCGTATCGTCGTCT -CCAACAGGTTTCGTATCGTGCACT -CCAACAGGTTTCGTATCGCTGACT -CCAACAGGTTTCGTATCGCAACCT -CCAACAGGTTTCGTATCGGCTACT -CCAACAGGTTTCGTATCGGGATCT -CCAACAGGTTTCGTATCGAAGGCT -CCAACAGGTTTCGTATCGTCAACC -CCAACAGGTTTCGTATCGTGTTCC -CCAACAGGTTTCGTATCGATTCCC -CCAACAGGTTTCGTATCGTTCTCG -CCAACAGGTTTCGTATCGTAGACG -CCAACAGGTTTCGTATCGGTAACG -CCAACAGGTTTCGTATCGACTTCG -CCAACAGGTTTCGTATCGTACGCA -CCAACAGGTTTCGTATCGCTTGCA -CCAACAGGTTTCGTATCGCGAACA -CCAACAGGTTTCGTATCGCAGTCA -CCAACAGGTTTCGTATCGGATCCA -CCAACAGGTTTCGTATCGACGACA -CCAACAGGTTTCGTATCGAGCTCA -CCAACAGGTTTCGTATCGTCACGT -CCAACAGGTTTCGTATCGCGTAGT -CCAACAGGTTTCGTATCGGTCAGT -CCAACAGGTTTCGTATCGGAAGGT -CCAACAGGTTTCGTATCGAACCGT -CCAACAGGTTTCGTATCGTTGTGC -CCAACAGGTTTCGTATCGCTAAGC -CCAACAGGTTTCGTATCGACTAGC -CCAACAGGTTTCGTATCGAGATGC -CCAACAGGTTTCGTATCGTGAAGG -CCAACAGGTTTCGTATCGCAATGG -CCAACAGGTTTCGTATCGATGAGG -CCAACAGGTTTCGTATCGAATGGG -CCAACAGGTTTCGTATCGTCCTGA -CCAACAGGTTTCGTATCGTAGCGA -CCAACAGGTTTCGTATCGCACAGA -CCAACAGGTTTCGTATCGGCAAGA -CCAACAGGTTTCGTATCGGGTTGA -CCAACAGGTTTCGTATCGTCCGAT -CCAACAGGTTTCGTATCGTGGCAT -CCAACAGGTTTCGTATCGCGAGAT -CCAACAGGTTTCGTATCGTACCAC -CCAACAGGTTTCGTATCGCAGAAC -CCAACAGGTTTCGTATCGGTCTAC -CCAACAGGTTTCGTATCGACGTAC -CCAACAGGTTTCGTATCGAGTGAC -CCAACAGGTTTCGTATCGCTGTAG -CCAACAGGTTTCGTATCGCCTAAG -CCAACAGGTTTCGTATCGGTTCAG -CCAACAGGTTTCGTATCGGCATAG -CCAACAGGTTTCGTATCGGACAAG -CCAACAGGTTTCGTATCGAAGCAG -CCAACAGGTTTCGTATCGCGTCAA -CCAACAGGTTTCGTATCGGCTGAA -CCAACAGGTTTCGTATCGAGTACG -CCAACAGGTTTCGTATCGATCCGA -CCAACAGGTTTCGTATCGATGGGA -CCAACAGGTTTCGTATCGGTGCAA -CCAACAGGTTTCGTATCGGAGGAA -CCAACAGGTTTCGTATCGCAGGTA -CCAACAGGTTTCGTATCGGACTCT -CCAACAGGTTTCGTATCGAGTCCT -CCAACAGGTTTCGTATCGTAAGCC -CCAACAGGTTTCGTATCGATAGCC -CCAACAGGTTTCGTATCGTAACCG -CCAACAGGTTTCGTATCGATGCCA -CCAACAGGTTTCCTATGCGGAAAC -CCAACAGGTTTCCTATGCAACACC -CCAACAGGTTTCCTATGCATCGAG -CCAACAGGTTTCCTATGCCTCCTT -CCAACAGGTTTCCTATGCCCTGTT -CCAACAGGTTTCCTATGCCGGTTT -CCAACAGGTTTCCTATGCGTGGTT -CCAACAGGTTTCCTATGCGCCTTT -CCAACAGGTTTCCTATGCGGTCTT -CCAACAGGTTTCCTATGCACGCTT -CCAACAGGTTTCCTATGCAGCGTT -CCAACAGGTTTCCTATGCTTCGTC -CCAACAGGTTTCCTATGCTCTCTC -CCAACAGGTTTCCTATGCTGGATC -CCAACAGGTTTCCTATGCCACTTC -CCAACAGGTTTCCTATGCGTACTC -CCAACAGGTTTCCTATGCGATGTC -CCAACAGGTTTCCTATGCACAGTC -CCAACAGGTTTCCTATGCTTGCTG -CCAACAGGTTTCCTATGCTCCATG -CCAACAGGTTTCCTATGCTGTGTG -CCAACAGGTTTCCTATGCCTAGTG -CCAACAGGTTTCCTATGCCATCTG -CCAACAGGTTTCCTATGCGAGTTG -CCAACAGGTTTCCTATGCAGACTG -CCAACAGGTTTCCTATGCTCGGTA -CCAACAGGTTTCCTATGCTGCCTA -CCAACAGGTTTCCTATGCCCACTA -CCAACAGGTTTCCTATGCGGAGTA -CCAACAGGTTTCCTATGCTCGTCT -CCAACAGGTTTCCTATGCTGCACT -CCAACAGGTTTCCTATGCCTGACT -CCAACAGGTTTCCTATGCCAACCT -CCAACAGGTTTCCTATGCGCTACT -CCAACAGGTTTCCTATGCGGATCT -CCAACAGGTTTCCTATGCAAGGCT -CCAACAGGTTTCCTATGCTCAACC -CCAACAGGTTTCCTATGCTGTTCC -CCAACAGGTTTCCTATGCATTCCC -CCAACAGGTTTCCTATGCTTCTCG -CCAACAGGTTTCCTATGCTAGACG -CCAACAGGTTTCCTATGCGTAACG -CCAACAGGTTTCCTATGCACTTCG -CCAACAGGTTTCCTATGCTACGCA -CCAACAGGTTTCCTATGCCTTGCA -CCAACAGGTTTCCTATGCCGAACA -CCAACAGGTTTCCTATGCCAGTCA -CCAACAGGTTTCCTATGCGATCCA -CCAACAGGTTTCCTATGCACGACA -CCAACAGGTTTCCTATGCAGCTCA -CCAACAGGTTTCCTATGCTCACGT -CCAACAGGTTTCCTATGCCGTAGT -CCAACAGGTTTCCTATGCGTCAGT -CCAACAGGTTTCCTATGCGAAGGT -CCAACAGGTTTCCTATGCAACCGT -CCAACAGGTTTCCTATGCTTGTGC -CCAACAGGTTTCCTATGCCTAAGC -CCAACAGGTTTCCTATGCACTAGC -CCAACAGGTTTCCTATGCAGATGC -CCAACAGGTTTCCTATGCTGAAGG -CCAACAGGTTTCCTATGCCAATGG -CCAACAGGTTTCCTATGCATGAGG -CCAACAGGTTTCCTATGCAATGGG -CCAACAGGTTTCCTATGCTCCTGA -CCAACAGGTTTCCTATGCTAGCGA -CCAACAGGTTTCCTATGCCACAGA -CCAACAGGTTTCCTATGCGCAAGA -CCAACAGGTTTCCTATGCGGTTGA -CCAACAGGTTTCCTATGCTCCGAT -CCAACAGGTTTCCTATGCTGGCAT -CCAACAGGTTTCCTATGCCGAGAT -CCAACAGGTTTCCTATGCTACCAC -CCAACAGGTTTCCTATGCCAGAAC -CCAACAGGTTTCCTATGCGTCTAC -CCAACAGGTTTCCTATGCACGTAC -CCAACAGGTTTCCTATGCAGTGAC -CCAACAGGTTTCCTATGCCTGTAG -CCAACAGGTTTCCTATGCCCTAAG -CCAACAGGTTTCCTATGCGTTCAG -CCAACAGGTTTCCTATGCGCATAG -CCAACAGGTTTCCTATGCGACAAG -CCAACAGGTTTCCTATGCAAGCAG -CCAACAGGTTTCCTATGCCGTCAA -CCAACAGGTTTCCTATGCGCTGAA -CCAACAGGTTTCCTATGCAGTACG -CCAACAGGTTTCCTATGCATCCGA -CCAACAGGTTTCCTATGCATGGGA -CCAACAGGTTTCCTATGCGTGCAA -CCAACAGGTTTCCTATGCGAGGAA -CCAACAGGTTTCCTATGCCAGGTA -CCAACAGGTTTCCTATGCGACTCT -CCAACAGGTTTCCTATGCAGTCCT -CCAACAGGTTTCCTATGCTAAGCC -CCAACAGGTTTCCTATGCATAGCC -CCAACAGGTTTCCTATGCTAACCG -CCAACAGGTTTCCTATGCATGCCA -CCAACAGGTTTCCTACCAGGAAAC -CCAACAGGTTTCCTACCAAACACC -CCAACAGGTTTCCTACCAATCGAG -CCAACAGGTTTCCTACCACTCCTT -CCAACAGGTTTCCTACCACCTGTT -CCAACAGGTTTCCTACCACGGTTT -CCAACAGGTTTCCTACCAGTGGTT -CCAACAGGTTTCCTACCAGCCTTT -CCAACAGGTTTCCTACCAGGTCTT -CCAACAGGTTTCCTACCAACGCTT -CCAACAGGTTTCCTACCAAGCGTT -CCAACAGGTTTCCTACCATTCGTC -CCAACAGGTTTCCTACCATCTCTC -CCAACAGGTTTCCTACCATGGATC -CCAACAGGTTTCCTACCACACTTC -CCAACAGGTTTCCTACCAGTACTC -CCAACAGGTTTCCTACCAGATGTC -CCAACAGGTTTCCTACCAACAGTC -CCAACAGGTTTCCTACCATTGCTG -CCAACAGGTTTCCTACCATCCATG -CCAACAGGTTTCCTACCATGTGTG -CCAACAGGTTTCCTACCACTAGTG -CCAACAGGTTTCCTACCACATCTG -CCAACAGGTTTCCTACCAGAGTTG -CCAACAGGTTTCCTACCAAGACTG -CCAACAGGTTTCCTACCATCGGTA -CCAACAGGTTTCCTACCATGCCTA -CCAACAGGTTTCCTACCACCACTA -CCAACAGGTTTCCTACCAGGAGTA -CCAACAGGTTTCCTACCATCGTCT -CCAACAGGTTTCCTACCATGCACT -CCAACAGGTTTCCTACCACTGACT -CCAACAGGTTTCCTACCACAACCT -CCAACAGGTTTCCTACCAGCTACT -CCAACAGGTTTCCTACCAGGATCT -CCAACAGGTTTCCTACCAAAGGCT -CCAACAGGTTTCCTACCATCAACC -CCAACAGGTTTCCTACCATGTTCC -CCAACAGGTTTCCTACCAATTCCC -CCAACAGGTTTCCTACCATTCTCG -CCAACAGGTTTCCTACCATAGACG -CCAACAGGTTTCCTACCAGTAACG -CCAACAGGTTTCCTACCAACTTCG -CCAACAGGTTTCCTACCATACGCA -CCAACAGGTTTCCTACCACTTGCA -CCAACAGGTTTCCTACCACGAACA -CCAACAGGTTTCCTACCACAGTCA -CCAACAGGTTTCCTACCAGATCCA -CCAACAGGTTTCCTACCAACGACA -CCAACAGGTTTCCTACCAAGCTCA -CCAACAGGTTTCCTACCATCACGT -CCAACAGGTTTCCTACCACGTAGT -CCAACAGGTTTCCTACCAGTCAGT -CCAACAGGTTTCCTACCAGAAGGT -CCAACAGGTTTCCTACCAAACCGT -CCAACAGGTTTCCTACCATTGTGC -CCAACAGGTTTCCTACCACTAAGC -CCAACAGGTTTCCTACCAACTAGC -CCAACAGGTTTCCTACCAAGATGC -CCAACAGGTTTCCTACCATGAAGG -CCAACAGGTTTCCTACCACAATGG -CCAACAGGTTTCCTACCAATGAGG -CCAACAGGTTTCCTACCAAATGGG -CCAACAGGTTTCCTACCATCCTGA -CCAACAGGTTTCCTACCATAGCGA -CCAACAGGTTTCCTACCACACAGA -CCAACAGGTTTCCTACCAGCAAGA -CCAACAGGTTTCCTACCAGGTTGA -CCAACAGGTTTCCTACCATCCGAT -CCAACAGGTTTCCTACCATGGCAT -CCAACAGGTTTCCTACCACGAGAT -CCAACAGGTTTCCTACCATACCAC -CCAACAGGTTTCCTACCACAGAAC -CCAACAGGTTTCCTACCAGTCTAC -CCAACAGGTTTCCTACCAACGTAC -CCAACAGGTTTCCTACCAAGTGAC -CCAACAGGTTTCCTACCACTGTAG -CCAACAGGTTTCCTACCACCTAAG -CCAACAGGTTTCCTACCAGTTCAG -CCAACAGGTTTCCTACCAGCATAG -CCAACAGGTTTCCTACCAGACAAG -CCAACAGGTTTCCTACCAAAGCAG -CCAACAGGTTTCCTACCACGTCAA -CCAACAGGTTTCCTACCAGCTGAA -CCAACAGGTTTCCTACCAAGTACG -CCAACAGGTTTCCTACCAATCCGA -CCAACAGGTTTCCTACCAATGGGA -CCAACAGGTTTCCTACCAGTGCAA -CCAACAGGTTTCCTACCAGAGGAA -CCAACAGGTTTCCTACCACAGGTA -CCAACAGGTTTCCTACCAGACTCT -CCAACAGGTTTCCTACCAAGTCCT -CCAACAGGTTTCCTACCATAAGCC -CCAACAGGTTTCCTACCAATAGCC -CCAACAGGTTTCCTACCATAACCG -CCAACAGGTTTCCTACCAATGCCA -CCAACAGGTTTCGTAGGAGGAAAC -CCAACAGGTTTCGTAGGAAACACC -CCAACAGGTTTCGTAGGAATCGAG -CCAACAGGTTTCGTAGGACTCCTT -CCAACAGGTTTCGTAGGACCTGTT -CCAACAGGTTTCGTAGGACGGTTT -CCAACAGGTTTCGTAGGAGTGGTT -CCAACAGGTTTCGTAGGAGCCTTT -CCAACAGGTTTCGTAGGAGGTCTT -CCAACAGGTTTCGTAGGAACGCTT -CCAACAGGTTTCGTAGGAAGCGTT -CCAACAGGTTTCGTAGGATTCGTC -CCAACAGGTTTCGTAGGATCTCTC -CCAACAGGTTTCGTAGGATGGATC -CCAACAGGTTTCGTAGGACACTTC -CCAACAGGTTTCGTAGGAGTACTC -CCAACAGGTTTCGTAGGAGATGTC -CCAACAGGTTTCGTAGGAACAGTC -CCAACAGGTTTCGTAGGATTGCTG -CCAACAGGTTTCGTAGGATCCATG -CCAACAGGTTTCGTAGGATGTGTG -CCAACAGGTTTCGTAGGACTAGTG -CCAACAGGTTTCGTAGGACATCTG -CCAACAGGTTTCGTAGGAGAGTTG -CCAACAGGTTTCGTAGGAAGACTG -CCAACAGGTTTCGTAGGATCGGTA -CCAACAGGTTTCGTAGGATGCCTA -CCAACAGGTTTCGTAGGACCACTA -CCAACAGGTTTCGTAGGAGGAGTA -CCAACAGGTTTCGTAGGATCGTCT -CCAACAGGTTTCGTAGGATGCACT -CCAACAGGTTTCGTAGGACTGACT -CCAACAGGTTTCGTAGGACAACCT -CCAACAGGTTTCGTAGGAGCTACT -CCAACAGGTTTCGTAGGAGGATCT -CCAACAGGTTTCGTAGGAAAGGCT -CCAACAGGTTTCGTAGGATCAACC -CCAACAGGTTTCGTAGGATGTTCC -CCAACAGGTTTCGTAGGAATTCCC -CCAACAGGTTTCGTAGGATTCTCG -CCAACAGGTTTCGTAGGATAGACG -CCAACAGGTTTCGTAGGAGTAACG -CCAACAGGTTTCGTAGGAACTTCG -CCAACAGGTTTCGTAGGATACGCA -CCAACAGGTTTCGTAGGACTTGCA -CCAACAGGTTTCGTAGGACGAACA -CCAACAGGTTTCGTAGGACAGTCA -CCAACAGGTTTCGTAGGAGATCCA -CCAACAGGTTTCGTAGGAACGACA -CCAACAGGTTTCGTAGGAAGCTCA -CCAACAGGTTTCGTAGGATCACGT -CCAACAGGTTTCGTAGGACGTAGT -CCAACAGGTTTCGTAGGAGTCAGT -CCAACAGGTTTCGTAGGAGAAGGT -CCAACAGGTTTCGTAGGAAACCGT -CCAACAGGTTTCGTAGGATTGTGC -CCAACAGGTTTCGTAGGACTAAGC -CCAACAGGTTTCGTAGGAACTAGC -CCAACAGGTTTCGTAGGAAGATGC -CCAACAGGTTTCGTAGGATGAAGG -CCAACAGGTTTCGTAGGACAATGG -CCAACAGGTTTCGTAGGAATGAGG -CCAACAGGTTTCGTAGGAAATGGG -CCAACAGGTTTCGTAGGATCCTGA -CCAACAGGTTTCGTAGGATAGCGA -CCAACAGGTTTCGTAGGACACAGA -CCAACAGGTTTCGTAGGAGCAAGA -CCAACAGGTTTCGTAGGAGGTTGA -CCAACAGGTTTCGTAGGATCCGAT -CCAACAGGTTTCGTAGGATGGCAT -CCAACAGGTTTCGTAGGACGAGAT -CCAACAGGTTTCGTAGGATACCAC -CCAACAGGTTTCGTAGGACAGAAC -CCAACAGGTTTCGTAGGAGTCTAC -CCAACAGGTTTCGTAGGAACGTAC -CCAACAGGTTTCGTAGGAAGTGAC -CCAACAGGTTTCGTAGGACTGTAG -CCAACAGGTTTCGTAGGACCTAAG -CCAACAGGTTTCGTAGGAGTTCAG -CCAACAGGTTTCGTAGGAGCATAG -CCAACAGGTTTCGTAGGAGACAAG -CCAACAGGTTTCGTAGGAAAGCAG -CCAACAGGTTTCGTAGGACGTCAA -CCAACAGGTTTCGTAGGAGCTGAA -CCAACAGGTTTCGTAGGAAGTACG -CCAACAGGTTTCGTAGGAATCCGA -CCAACAGGTTTCGTAGGAATGGGA -CCAACAGGTTTCGTAGGAGTGCAA -CCAACAGGTTTCGTAGGAGAGGAA -CCAACAGGTTTCGTAGGACAGGTA -CCAACAGGTTTCGTAGGAGACTCT -CCAACAGGTTTCGTAGGAAGTCCT -CCAACAGGTTTCGTAGGATAAGCC -CCAACAGGTTTCGTAGGAATAGCC -CCAACAGGTTTCGTAGGATAACCG -CCAACAGGTTTCGTAGGAATGCCA -CCAACAGGTTTCTCTTCGGGAAAC -CCAACAGGTTTCTCTTCGAACACC -CCAACAGGTTTCTCTTCGATCGAG -CCAACAGGTTTCTCTTCGCTCCTT -CCAACAGGTTTCTCTTCGCCTGTT -CCAACAGGTTTCTCTTCGCGGTTT -CCAACAGGTTTCTCTTCGGTGGTT -CCAACAGGTTTCTCTTCGGCCTTT -CCAACAGGTTTCTCTTCGGGTCTT -CCAACAGGTTTCTCTTCGACGCTT -CCAACAGGTTTCTCTTCGAGCGTT -CCAACAGGTTTCTCTTCGTTCGTC -CCAACAGGTTTCTCTTCGTCTCTC -CCAACAGGTTTCTCTTCGTGGATC -CCAACAGGTTTCTCTTCGCACTTC -CCAACAGGTTTCTCTTCGGTACTC -CCAACAGGTTTCTCTTCGGATGTC -CCAACAGGTTTCTCTTCGACAGTC -CCAACAGGTTTCTCTTCGTTGCTG -CCAACAGGTTTCTCTTCGTCCATG -CCAACAGGTTTCTCTTCGTGTGTG -CCAACAGGTTTCTCTTCGCTAGTG -CCAACAGGTTTCTCTTCGCATCTG -CCAACAGGTTTCTCTTCGGAGTTG -CCAACAGGTTTCTCTTCGAGACTG -CCAACAGGTTTCTCTTCGTCGGTA -CCAACAGGTTTCTCTTCGTGCCTA -CCAACAGGTTTCTCTTCGCCACTA -CCAACAGGTTTCTCTTCGGGAGTA -CCAACAGGTTTCTCTTCGTCGTCT -CCAACAGGTTTCTCTTCGTGCACT -CCAACAGGTTTCTCTTCGCTGACT -CCAACAGGTTTCTCTTCGCAACCT -CCAACAGGTTTCTCTTCGGCTACT -CCAACAGGTTTCTCTTCGGGATCT -CCAACAGGTTTCTCTTCGAAGGCT -CCAACAGGTTTCTCTTCGTCAACC -CCAACAGGTTTCTCTTCGTGTTCC -CCAACAGGTTTCTCTTCGATTCCC -CCAACAGGTTTCTCTTCGTTCTCG -CCAACAGGTTTCTCTTCGTAGACG -CCAACAGGTTTCTCTTCGGTAACG -CCAACAGGTTTCTCTTCGACTTCG -CCAACAGGTTTCTCTTCGTACGCA -CCAACAGGTTTCTCTTCGCTTGCA -CCAACAGGTTTCTCTTCGCGAACA -CCAACAGGTTTCTCTTCGCAGTCA -CCAACAGGTTTCTCTTCGGATCCA -CCAACAGGTTTCTCTTCGACGACA -CCAACAGGTTTCTCTTCGAGCTCA -CCAACAGGTTTCTCTTCGTCACGT -CCAACAGGTTTCTCTTCGCGTAGT -CCAACAGGTTTCTCTTCGGTCAGT -CCAACAGGTTTCTCTTCGGAAGGT -CCAACAGGTTTCTCTTCGAACCGT -CCAACAGGTTTCTCTTCGTTGTGC -CCAACAGGTTTCTCTTCGCTAAGC -CCAACAGGTTTCTCTTCGACTAGC -CCAACAGGTTTCTCTTCGAGATGC -CCAACAGGTTTCTCTTCGTGAAGG -CCAACAGGTTTCTCTTCGCAATGG -CCAACAGGTTTCTCTTCGATGAGG -CCAACAGGTTTCTCTTCGAATGGG -CCAACAGGTTTCTCTTCGTCCTGA -CCAACAGGTTTCTCTTCGTAGCGA -CCAACAGGTTTCTCTTCGCACAGA -CCAACAGGTTTCTCTTCGGCAAGA -CCAACAGGTTTCTCTTCGGGTTGA -CCAACAGGTTTCTCTTCGTCCGAT -CCAACAGGTTTCTCTTCGTGGCAT -CCAACAGGTTTCTCTTCGCGAGAT -CCAACAGGTTTCTCTTCGTACCAC -CCAACAGGTTTCTCTTCGCAGAAC -CCAACAGGTTTCTCTTCGGTCTAC -CCAACAGGTTTCTCTTCGACGTAC -CCAACAGGTTTCTCTTCGAGTGAC -CCAACAGGTTTCTCTTCGCTGTAG -CCAACAGGTTTCTCTTCGCCTAAG -CCAACAGGTTTCTCTTCGGTTCAG -CCAACAGGTTTCTCTTCGGCATAG -CCAACAGGTTTCTCTTCGGACAAG -CCAACAGGTTTCTCTTCGAAGCAG -CCAACAGGTTTCTCTTCGCGTCAA -CCAACAGGTTTCTCTTCGGCTGAA -CCAACAGGTTTCTCTTCGAGTACG -CCAACAGGTTTCTCTTCGATCCGA -CCAACAGGTTTCTCTTCGATGGGA -CCAACAGGTTTCTCTTCGGTGCAA -CCAACAGGTTTCTCTTCGGAGGAA -CCAACAGGTTTCTCTTCGCAGGTA -CCAACAGGTTTCTCTTCGGACTCT -CCAACAGGTTTCTCTTCGAGTCCT -CCAACAGGTTTCTCTTCGTAAGCC -CCAACAGGTTTCTCTTCGATAGCC -CCAACAGGTTTCTCTTCGTAACCG -CCAACAGGTTTCTCTTCGATGCCA -CCAACAGGTTTCACTTGCGGAAAC -CCAACAGGTTTCACTTGCAACACC -CCAACAGGTTTCACTTGCATCGAG -CCAACAGGTTTCACTTGCCTCCTT -CCAACAGGTTTCACTTGCCCTGTT -CCAACAGGTTTCACTTGCCGGTTT -CCAACAGGTTTCACTTGCGTGGTT -CCAACAGGTTTCACTTGCGCCTTT -CCAACAGGTTTCACTTGCGGTCTT -CCAACAGGTTTCACTTGCACGCTT -CCAACAGGTTTCACTTGCAGCGTT -CCAACAGGTTTCACTTGCTTCGTC -CCAACAGGTTTCACTTGCTCTCTC -CCAACAGGTTTCACTTGCTGGATC -CCAACAGGTTTCACTTGCCACTTC -CCAACAGGTTTCACTTGCGTACTC -CCAACAGGTTTCACTTGCGATGTC -CCAACAGGTTTCACTTGCACAGTC -CCAACAGGTTTCACTTGCTTGCTG -CCAACAGGTTTCACTTGCTCCATG -CCAACAGGTTTCACTTGCTGTGTG -CCAACAGGTTTCACTTGCCTAGTG -CCAACAGGTTTCACTTGCCATCTG -CCAACAGGTTTCACTTGCGAGTTG -CCAACAGGTTTCACTTGCAGACTG -CCAACAGGTTTCACTTGCTCGGTA -CCAACAGGTTTCACTTGCTGCCTA -CCAACAGGTTTCACTTGCCCACTA -CCAACAGGTTTCACTTGCGGAGTA -CCAACAGGTTTCACTTGCTCGTCT -CCAACAGGTTTCACTTGCTGCACT -CCAACAGGTTTCACTTGCCTGACT -CCAACAGGTTTCACTTGCCAACCT -CCAACAGGTTTCACTTGCGCTACT -CCAACAGGTTTCACTTGCGGATCT -CCAACAGGTTTCACTTGCAAGGCT -CCAACAGGTTTCACTTGCTCAACC -CCAACAGGTTTCACTTGCTGTTCC -CCAACAGGTTTCACTTGCATTCCC -CCAACAGGTTTCACTTGCTTCTCG -CCAACAGGTTTCACTTGCTAGACG -CCAACAGGTTTCACTTGCGTAACG -CCAACAGGTTTCACTTGCACTTCG -CCAACAGGTTTCACTTGCTACGCA -CCAACAGGTTTCACTTGCCTTGCA -CCAACAGGTTTCACTTGCCGAACA -CCAACAGGTTTCACTTGCCAGTCA -CCAACAGGTTTCACTTGCGATCCA -CCAACAGGTTTCACTTGCACGACA -CCAACAGGTTTCACTTGCAGCTCA -CCAACAGGTTTCACTTGCTCACGT -CCAACAGGTTTCACTTGCCGTAGT -CCAACAGGTTTCACTTGCGTCAGT -CCAACAGGTTTCACTTGCGAAGGT -CCAACAGGTTTCACTTGCAACCGT -CCAACAGGTTTCACTTGCTTGTGC -CCAACAGGTTTCACTTGCCTAAGC -CCAACAGGTTTCACTTGCACTAGC -CCAACAGGTTTCACTTGCAGATGC -CCAACAGGTTTCACTTGCTGAAGG -CCAACAGGTTTCACTTGCCAATGG -CCAACAGGTTTCACTTGCATGAGG -CCAACAGGTTTCACTTGCAATGGG -CCAACAGGTTTCACTTGCTCCTGA -CCAACAGGTTTCACTTGCTAGCGA -CCAACAGGTTTCACTTGCCACAGA -CCAACAGGTTTCACTTGCGCAAGA -CCAACAGGTTTCACTTGCGGTTGA -CCAACAGGTTTCACTTGCTCCGAT -CCAACAGGTTTCACTTGCTGGCAT -CCAACAGGTTTCACTTGCCGAGAT -CCAACAGGTTTCACTTGCTACCAC -CCAACAGGTTTCACTTGCCAGAAC -CCAACAGGTTTCACTTGCGTCTAC -CCAACAGGTTTCACTTGCACGTAC -CCAACAGGTTTCACTTGCAGTGAC -CCAACAGGTTTCACTTGCCTGTAG -CCAACAGGTTTCACTTGCCCTAAG -CCAACAGGTTTCACTTGCGTTCAG -CCAACAGGTTTCACTTGCGCATAG -CCAACAGGTTTCACTTGCGACAAG -CCAACAGGTTTCACTTGCAAGCAG -CCAACAGGTTTCACTTGCCGTCAA -CCAACAGGTTTCACTTGCGCTGAA -CCAACAGGTTTCACTTGCAGTACG -CCAACAGGTTTCACTTGCATCCGA -CCAACAGGTTTCACTTGCATGGGA -CCAACAGGTTTCACTTGCGTGCAA -CCAACAGGTTTCACTTGCGAGGAA -CCAACAGGTTTCACTTGCCAGGTA -CCAACAGGTTTCACTTGCGACTCT -CCAACAGGTTTCACTTGCAGTCCT -CCAACAGGTTTCACTTGCTAAGCC -CCAACAGGTTTCACTTGCATAGCC -CCAACAGGTTTCACTTGCTAACCG -CCAACAGGTTTCACTTGCATGCCA -CCAACAGGTTTCACTCTGGGAAAC -CCAACAGGTTTCACTCTGAACACC -CCAACAGGTTTCACTCTGATCGAG -CCAACAGGTTTCACTCTGCTCCTT -CCAACAGGTTTCACTCTGCCTGTT -CCAACAGGTTTCACTCTGCGGTTT -CCAACAGGTTTCACTCTGGTGGTT -CCAACAGGTTTCACTCTGGCCTTT -CCAACAGGTTTCACTCTGGGTCTT -CCAACAGGTTTCACTCTGACGCTT -CCAACAGGTTTCACTCTGAGCGTT -CCAACAGGTTTCACTCTGTTCGTC -CCAACAGGTTTCACTCTGTCTCTC -CCAACAGGTTTCACTCTGTGGATC -CCAACAGGTTTCACTCTGCACTTC -CCAACAGGTTTCACTCTGGTACTC -CCAACAGGTTTCACTCTGGATGTC -CCAACAGGTTTCACTCTGACAGTC -CCAACAGGTTTCACTCTGTTGCTG -CCAACAGGTTTCACTCTGTCCATG -CCAACAGGTTTCACTCTGTGTGTG -CCAACAGGTTTCACTCTGCTAGTG -CCAACAGGTTTCACTCTGCATCTG -CCAACAGGTTTCACTCTGGAGTTG -CCAACAGGTTTCACTCTGAGACTG -CCAACAGGTTTCACTCTGTCGGTA -CCAACAGGTTTCACTCTGTGCCTA -CCAACAGGTTTCACTCTGCCACTA -CCAACAGGTTTCACTCTGGGAGTA -CCAACAGGTTTCACTCTGTCGTCT -CCAACAGGTTTCACTCTGTGCACT -CCAACAGGTTTCACTCTGCTGACT -CCAACAGGTTTCACTCTGCAACCT -CCAACAGGTTTCACTCTGGCTACT -CCAACAGGTTTCACTCTGGGATCT -CCAACAGGTTTCACTCTGAAGGCT -CCAACAGGTTTCACTCTGTCAACC -CCAACAGGTTTCACTCTGTGTTCC -CCAACAGGTTTCACTCTGATTCCC -CCAACAGGTTTCACTCTGTTCTCG -CCAACAGGTTTCACTCTGTAGACG -CCAACAGGTTTCACTCTGGTAACG -CCAACAGGTTTCACTCTGACTTCG -CCAACAGGTTTCACTCTGTACGCA -CCAACAGGTTTCACTCTGCTTGCA -CCAACAGGTTTCACTCTGCGAACA -CCAACAGGTTTCACTCTGCAGTCA -CCAACAGGTTTCACTCTGGATCCA -CCAACAGGTTTCACTCTGACGACA -CCAACAGGTTTCACTCTGAGCTCA -CCAACAGGTTTCACTCTGTCACGT -CCAACAGGTTTCACTCTGCGTAGT -CCAACAGGTTTCACTCTGGTCAGT -CCAACAGGTTTCACTCTGGAAGGT -CCAACAGGTTTCACTCTGAACCGT -CCAACAGGTTTCACTCTGTTGTGC -CCAACAGGTTTCACTCTGCTAAGC -CCAACAGGTTTCACTCTGACTAGC -CCAACAGGTTTCACTCTGAGATGC -CCAACAGGTTTCACTCTGTGAAGG -CCAACAGGTTTCACTCTGCAATGG -CCAACAGGTTTCACTCTGATGAGG -CCAACAGGTTTCACTCTGAATGGG -CCAACAGGTTTCACTCTGTCCTGA -CCAACAGGTTTCACTCTGTAGCGA -CCAACAGGTTTCACTCTGCACAGA -CCAACAGGTTTCACTCTGGCAAGA -CCAACAGGTTTCACTCTGGGTTGA -CCAACAGGTTTCACTCTGTCCGAT -CCAACAGGTTTCACTCTGTGGCAT -CCAACAGGTTTCACTCTGCGAGAT -CCAACAGGTTTCACTCTGTACCAC -CCAACAGGTTTCACTCTGCAGAAC -CCAACAGGTTTCACTCTGGTCTAC -CCAACAGGTTTCACTCTGACGTAC -CCAACAGGTTTCACTCTGAGTGAC -CCAACAGGTTTCACTCTGCTGTAG -CCAACAGGTTTCACTCTGCCTAAG -CCAACAGGTTTCACTCTGGTTCAG -CCAACAGGTTTCACTCTGGCATAG -CCAACAGGTTTCACTCTGGACAAG -CCAACAGGTTTCACTCTGAAGCAG -CCAACAGGTTTCACTCTGCGTCAA -CCAACAGGTTTCACTCTGGCTGAA -CCAACAGGTTTCACTCTGAGTACG -CCAACAGGTTTCACTCTGATCCGA -CCAACAGGTTTCACTCTGATGGGA -CCAACAGGTTTCACTCTGGTGCAA -CCAACAGGTTTCACTCTGGAGGAA -CCAACAGGTTTCACTCTGCAGGTA -CCAACAGGTTTCACTCTGGACTCT -CCAACAGGTTTCACTCTGAGTCCT -CCAACAGGTTTCACTCTGTAAGCC -CCAACAGGTTTCACTCTGATAGCC -CCAACAGGTTTCACTCTGTAACCG -CCAACAGGTTTCACTCTGATGCCA -CCAACAGGTTTCCCTCAAGGAAAC -CCAACAGGTTTCCCTCAAAACACC -CCAACAGGTTTCCCTCAAATCGAG -CCAACAGGTTTCCCTCAACTCCTT -CCAACAGGTTTCCCTCAACCTGTT -CCAACAGGTTTCCCTCAACGGTTT -CCAACAGGTTTCCCTCAAGTGGTT -CCAACAGGTTTCCCTCAAGCCTTT -CCAACAGGTTTCCCTCAAGGTCTT -CCAACAGGTTTCCCTCAAACGCTT -CCAACAGGTTTCCCTCAAAGCGTT -CCAACAGGTTTCCCTCAATTCGTC -CCAACAGGTTTCCCTCAATCTCTC -CCAACAGGTTTCCCTCAATGGATC -CCAACAGGTTTCCCTCAACACTTC -CCAACAGGTTTCCCTCAAGTACTC -CCAACAGGTTTCCCTCAAGATGTC -CCAACAGGTTTCCCTCAAACAGTC -CCAACAGGTTTCCCTCAATTGCTG -CCAACAGGTTTCCCTCAATCCATG -CCAACAGGTTTCCCTCAATGTGTG -CCAACAGGTTTCCCTCAACTAGTG -CCAACAGGTTTCCCTCAACATCTG -CCAACAGGTTTCCCTCAAGAGTTG -CCAACAGGTTTCCCTCAAAGACTG -CCAACAGGTTTCCCTCAATCGGTA -CCAACAGGTTTCCCTCAATGCCTA -CCAACAGGTTTCCCTCAACCACTA -CCAACAGGTTTCCCTCAAGGAGTA -CCAACAGGTTTCCCTCAATCGTCT -CCAACAGGTTTCCCTCAATGCACT -CCAACAGGTTTCCCTCAACTGACT -CCAACAGGTTTCCCTCAACAACCT -CCAACAGGTTTCCCTCAAGCTACT -CCAACAGGTTTCCCTCAAGGATCT -CCAACAGGTTTCCCTCAAAAGGCT -CCAACAGGTTTCCCTCAATCAACC -CCAACAGGTTTCCCTCAATGTTCC -CCAACAGGTTTCCCTCAAATTCCC -CCAACAGGTTTCCCTCAATTCTCG -CCAACAGGTTTCCCTCAATAGACG -CCAACAGGTTTCCCTCAAGTAACG -CCAACAGGTTTCCCTCAAACTTCG -CCAACAGGTTTCCCTCAATACGCA -CCAACAGGTTTCCCTCAACTTGCA -CCAACAGGTTTCCCTCAACGAACA -CCAACAGGTTTCCCTCAACAGTCA -CCAACAGGTTTCCCTCAAGATCCA -CCAACAGGTTTCCCTCAAACGACA -CCAACAGGTTTCCCTCAAAGCTCA -CCAACAGGTTTCCCTCAATCACGT -CCAACAGGTTTCCCTCAACGTAGT -CCAACAGGTTTCCCTCAAGTCAGT -CCAACAGGTTTCCCTCAAGAAGGT -CCAACAGGTTTCCCTCAAAACCGT -CCAACAGGTTTCCCTCAATTGTGC -CCAACAGGTTTCCCTCAACTAAGC -CCAACAGGTTTCCCTCAAACTAGC -CCAACAGGTTTCCCTCAAAGATGC -CCAACAGGTTTCCCTCAATGAAGG -CCAACAGGTTTCCCTCAACAATGG -CCAACAGGTTTCCCTCAAATGAGG -CCAACAGGTTTCCCTCAAAATGGG -CCAACAGGTTTCCCTCAATCCTGA -CCAACAGGTTTCCCTCAATAGCGA -CCAACAGGTTTCCCTCAACACAGA -CCAACAGGTTTCCCTCAAGCAAGA -CCAACAGGTTTCCCTCAAGGTTGA -CCAACAGGTTTCCCTCAATCCGAT -CCAACAGGTTTCCCTCAATGGCAT -CCAACAGGTTTCCCTCAACGAGAT -CCAACAGGTTTCCCTCAATACCAC -CCAACAGGTTTCCCTCAACAGAAC -CCAACAGGTTTCCCTCAAGTCTAC -CCAACAGGTTTCCCTCAAACGTAC -CCAACAGGTTTCCCTCAAAGTGAC -CCAACAGGTTTCCCTCAACTGTAG -CCAACAGGTTTCCCTCAACCTAAG -CCAACAGGTTTCCCTCAAGTTCAG -CCAACAGGTTTCCCTCAAGCATAG -CCAACAGGTTTCCCTCAAGACAAG -CCAACAGGTTTCCCTCAAAAGCAG -CCAACAGGTTTCCCTCAACGTCAA -CCAACAGGTTTCCCTCAAGCTGAA -CCAACAGGTTTCCCTCAAAGTACG -CCAACAGGTTTCCCTCAAATCCGA -CCAACAGGTTTCCCTCAAATGGGA -CCAACAGGTTTCCCTCAAGTGCAA -CCAACAGGTTTCCCTCAAGAGGAA -CCAACAGGTTTCCCTCAACAGGTA -CCAACAGGTTTCCCTCAAGACTCT -CCAACAGGTTTCCCTCAAAGTCCT -CCAACAGGTTTCCCTCAATAAGCC -CCAACAGGTTTCCCTCAAATAGCC -CCAACAGGTTTCCCTCAATAACCG -CCAACAGGTTTCCCTCAAATGCCA -CCAACAGGTTTCACTGCTGGAAAC -CCAACAGGTTTCACTGCTAACACC -CCAACAGGTTTCACTGCTATCGAG -CCAACAGGTTTCACTGCTCTCCTT -CCAACAGGTTTCACTGCTCCTGTT -CCAACAGGTTTCACTGCTCGGTTT -CCAACAGGTTTCACTGCTGTGGTT -CCAACAGGTTTCACTGCTGCCTTT -CCAACAGGTTTCACTGCTGGTCTT -CCAACAGGTTTCACTGCTACGCTT -CCAACAGGTTTCACTGCTAGCGTT -CCAACAGGTTTCACTGCTTTCGTC -CCAACAGGTTTCACTGCTTCTCTC -CCAACAGGTTTCACTGCTTGGATC -CCAACAGGTTTCACTGCTCACTTC -CCAACAGGTTTCACTGCTGTACTC -CCAACAGGTTTCACTGCTGATGTC -CCAACAGGTTTCACTGCTACAGTC -CCAACAGGTTTCACTGCTTTGCTG -CCAACAGGTTTCACTGCTTCCATG -CCAACAGGTTTCACTGCTTGTGTG -CCAACAGGTTTCACTGCTCTAGTG -CCAACAGGTTTCACTGCTCATCTG -CCAACAGGTTTCACTGCTGAGTTG -CCAACAGGTTTCACTGCTAGACTG -CCAACAGGTTTCACTGCTTCGGTA -CCAACAGGTTTCACTGCTTGCCTA -CCAACAGGTTTCACTGCTCCACTA -CCAACAGGTTTCACTGCTGGAGTA -CCAACAGGTTTCACTGCTTCGTCT -CCAACAGGTTTCACTGCTTGCACT -CCAACAGGTTTCACTGCTCTGACT -CCAACAGGTTTCACTGCTCAACCT -CCAACAGGTTTCACTGCTGCTACT -CCAACAGGTTTCACTGCTGGATCT -CCAACAGGTTTCACTGCTAAGGCT -CCAACAGGTTTCACTGCTTCAACC -CCAACAGGTTTCACTGCTTGTTCC -CCAACAGGTTTCACTGCTATTCCC -CCAACAGGTTTCACTGCTTTCTCG -CCAACAGGTTTCACTGCTTAGACG -CCAACAGGTTTCACTGCTGTAACG -CCAACAGGTTTCACTGCTACTTCG -CCAACAGGTTTCACTGCTTACGCA -CCAACAGGTTTCACTGCTCTTGCA -CCAACAGGTTTCACTGCTCGAACA -CCAACAGGTTTCACTGCTCAGTCA -CCAACAGGTTTCACTGCTGATCCA -CCAACAGGTTTCACTGCTACGACA -CCAACAGGTTTCACTGCTAGCTCA -CCAACAGGTTTCACTGCTTCACGT -CCAACAGGTTTCACTGCTCGTAGT -CCAACAGGTTTCACTGCTGTCAGT -CCAACAGGTTTCACTGCTGAAGGT -CCAACAGGTTTCACTGCTAACCGT -CCAACAGGTTTCACTGCTTTGTGC -CCAACAGGTTTCACTGCTCTAAGC -CCAACAGGTTTCACTGCTACTAGC -CCAACAGGTTTCACTGCTAGATGC -CCAACAGGTTTCACTGCTTGAAGG -CCAACAGGTTTCACTGCTCAATGG -CCAACAGGTTTCACTGCTATGAGG -CCAACAGGTTTCACTGCTAATGGG -CCAACAGGTTTCACTGCTTCCTGA -CCAACAGGTTTCACTGCTTAGCGA -CCAACAGGTTTCACTGCTCACAGA -CCAACAGGTTTCACTGCTGCAAGA -CCAACAGGTTTCACTGCTGGTTGA -CCAACAGGTTTCACTGCTTCCGAT -CCAACAGGTTTCACTGCTTGGCAT -CCAACAGGTTTCACTGCTCGAGAT -CCAACAGGTTTCACTGCTTACCAC -CCAACAGGTTTCACTGCTCAGAAC -CCAACAGGTTTCACTGCTGTCTAC -CCAACAGGTTTCACTGCTACGTAC -CCAACAGGTTTCACTGCTAGTGAC -CCAACAGGTTTCACTGCTCTGTAG -CCAACAGGTTTCACTGCTCCTAAG -CCAACAGGTTTCACTGCTGTTCAG -CCAACAGGTTTCACTGCTGCATAG -CCAACAGGTTTCACTGCTGACAAG -CCAACAGGTTTCACTGCTAAGCAG -CCAACAGGTTTCACTGCTCGTCAA -CCAACAGGTTTCACTGCTGCTGAA -CCAACAGGTTTCACTGCTAGTACG -CCAACAGGTTTCACTGCTATCCGA -CCAACAGGTTTCACTGCTATGGGA -CCAACAGGTTTCACTGCTGTGCAA -CCAACAGGTTTCACTGCTGAGGAA -CCAACAGGTTTCACTGCTCAGGTA -CCAACAGGTTTCACTGCTGACTCT -CCAACAGGTTTCACTGCTAGTCCT -CCAACAGGTTTCACTGCTTAAGCC -CCAACAGGTTTCACTGCTATAGCC -CCAACAGGTTTCACTGCTTAACCG -CCAACAGGTTTCACTGCTATGCCA -CCAACAGGTTTCTCTGGAGGAAAC -CCAACAGGTTTCTCTGGAAACACC -CCAACAGGTTTCTCTGGAATCGAG -CCAACAGGTTTCTCTGGACTCCTT -CCAACAGGTTTCTCTGGACCTGTT -CCAACAGGTTTCTCTGGACGGTTT -CCAACAGGTTTCTCTGGAGTGGTT -CCAACAGGTTTCTCTGGAGCCTTT -CCAACAGGTTTCTCTGGAGGTCTT -CCAACAGGTTTCTCTGGAACGCTT -CCAACAGGTTTCTCTGGAAGCGTT -CCAACAGGTTTCTCTGGATTCGTC -CCAACAGGTTTCTCTGGATCTCTC -CCAACAGGTTTCTCTGGATGGATC -CCAACAGGTTTCTCTGGACACTTC -CCAACAGGTTTCTCTGGAGTACTC -CCAACAGGTTTCTCTGGAGATGTC -CCAACAGGTTTCTCTGGAACAGTC -CCAACAGGTTTCTCTGGATTGCTG -CCAACAGGTTTCTCTGGATCCATG -CCAACAGGTTTCTCTGGATGTGTG -CCAACAGGTTTCTCTGGACTAGTG -CCAACAGGTTTCTCTGGACATCTG -CCAACAGGTTTCTCTGGAGAGTTG -CCAACAGGTTTCTCTGGAAGACTG -CCAACAGGTTTCTCTGGATCGGTA -CCAACAGGTTTCTCTGGATGCCTA -CCAACAGGTTTCTCTGGACCACTA -CCAACAGGTTTCTCTGGAGGAGTA -CCAACAGGTTTCTCTGGATCGTCT -CCAACAGGTTTCTCTGGATGCACT -CCAACAGGTTTCTCTGGACTGACT -CCAACAGGTTTCTCTGGACAACCT -CCAACAGGTTTCTCTGGAGCTACT -CCAACAGGTTTCTCTGGAGGATCT -CCAACAGGTTTCTCTGGAAAGGCT -CCAACAGGTTTCTCTGGATCAACC -CCAACAGGTTTCTCTGGATGTTCC -CCAACAGGTTTCTCTGGAATTCCC -CCAACAGGTTTCTCTGGATTCTCG -CCAACAGGTTTCTCTGGATAGACG -CCAACAGGTTTCTCTGGAGTAACG -CCAACAGGTTTCTCTGGAACTTCG -CCAACAGGTTTCTCTGGATACGCA -CCAACAGGTTTCTCTGGACTTGCA -CCAACAGGTTTCTCTGGACGAACA -CCAACAGGTTTCTCTGGACAGTCA -CCAACAGGTTTCTCTGGAGATCCA -CCAACAGGTTTCTCTGGAACGACA -CCAACAGGTTTCTCTGGAAGCTCA -CCAACAGGTTTCTCTGGATCACGT -CCAACAGGTTTCTCTGGACGTAGT -CCAACAGGTTTCTCTGGAGTCAGT -CCAACAGGTTTCTCTGGAGAAGGT -CCAACAGGTTTCTCTGGAAACCGT -CCAACAGGTTTCTCTGGATTGTGC -CCAACAGGTTTCTCTGGACTAAGC -CCAACAGGTTTCTCTGGAACTAGC -CCAACAGGTTTCTCTGGAAGATGC -CCAACAGGTTTCTCTGGATGAAGG -CCAACAGGTTTCTCTGGACAATGG -CCAACAGGTTTCTCTGGAATGAGG -CCAACAGGTTTCTCTGGAAATGGG -CCAACAGGTTTCTCTGGATCCTGA -CCAACAGGTTTCTCTGGATAGCGA -CCAACAGGTTTCTCTGGACACAGA -CCAACAGGTTTCTCTGGAGCAAGA -CCAACAGGTTTCTCTGGAGGTTGA -CCAACAGGTTTCTCTGGATCCGAT -CCAACAGGTTTCTCTGGATGGCAT -CCAACAGGTTTCTCTGGACGAGAT -CCAACAGGTTTCTCTGGATACCAC -CCAACAGGTTTCTCTGGACAGAAC -CCAACAGGTTTCTCTGGAGTCTAC -CCAACAGGTTTCTCTGGAACGTAC -CCAACAGGTTTCTCTGGAAGTGAC -CCAACAGGTTTCTCTGGACTGTAG -CCAACAGGTTTCTCTGGACCTAAG -CCAACAGGTTTCTCTGGAGTTCAG -CCAACAGGTTTCTCTGGAGCATAG -CCAACAGGTTTCTCTGGAGACAAG -CCAACAGGTTTCTCTGGAAAGCAG -CCAACAGGTTTCTCTGGACGTCAA -CCAACAGGTTTCTCTGGAGCTGAA -CCAACAGGTTTCTCTGGAAGTACG -CCAACAGGTTTCTCTGGAATCCGA -CCAACAGGTTTCTCTGGAATGGGA -CCAACAGGTTTCTCTGGAGTGCAA -CCAACAGGTTTCTCTGGAGAGGAA -CCAACAGGTTTCTCTGGACAGGTA -CCAACAGGTTTCTCTGGAGACTCT -CCAACAGGTTTCTCTGGAAGTCCT -CCAACAGGTTTCTCTGGATAAGCC -CCAACAGGTTTCTCTGGAATAGCC -CCAACAGGTTTCTCTGGATAACCG -CCAACAGGTTTCTCTGGAATGCCA -CCAACAGGTTTCGCTAAGGGAAAC -CCAACAGGTTTCGCTAAGAACACC -CCAACAGGTTTCGCTAAGATCGAG -CCAACAGGTTTCGCTAAGCTCCTT -CCAACAGGTTTCGCTAAGCCTGTT -CCAACAGGTTTCGCTAAGCGGTTT -CCAACAGGTTTCGCTAAGGTGGTT -CCAACAGGTTTCGCTAAGGCCTTT -CCAACAGGTTTCGCTAAGGGTCTT -CCAACAGGTTTCGCTAAGACGCTT -CCAACAGGTTTCGCTAAGAGCGTT -CCAACAGGTTTCGCTAAGTTCGTC -CCAACAGGTTTCGCTAAGTCTCTC -CCAACAGGTTTCGCTAAGTGGATC -CCAACAGGTTTCGCTAAGCACTTC -CCAACAGGTTTCGCTAAGGTACTC -CCAACAGGTTTCGCTAAGGATGTC -CCAACAGGTTTCGCTAAGACAGTC -CCAACAGGTTTCGCTAAGTTGCTG -CCAACAGGTTTCGCTAAGTCCATG -CCAACAGGTTTCGCTAAGTGTGTG -CCAACAGGTTTCGCTAAGCTAGTG -CCAACAGGTTTCGCTAAGCATCTG -CCAACAGGTTTCGCTAAGGAGTTG -CCAACAGGTTTCGCTAAGAGACTG -CCAACAGGTTTCGCTAAGTCGGTA -CCAACAGGTTTCGCTAAGTGCCTA -CCAACAGGTTTCGCTAAGCCACTA -CCAACAGGTTTCGCTAAGGGAGTA -CCAACAGGTTTCGCTAAGTCGTCT -CCAACAGGTTTCGCTAAGTGCACT -CCAACAGGTTTCGCTAAGCTGACT -CCAACAGGTTTCGCTAAGCAACCT -CCAACAGGTTTCGCTAAGGCTACT -CCAACAGGTTTCGCTAAGGGATCT -CCAACAGGTTTCGCTAAGAAGGCT -CCAACAGGTTTCGCTAAGTCAACC -CCAACAGGTTTCGCTAAGTGTTCC -CCAACAGGTTTCGCTAAGATTCCC -CCAACAGGTTTCGCTAAGTTCTCG -CCAACAGGTTTCGCTAAGTAGACG -CCAACAGGTTTCGCTAAGGTAACG -CCAACAGGTTTCGCTAAGACTTCG -CCAACAGGTTTCGCTAAGTACGCA -CCAACAGGTTTCGCTAAGCTTGCA -CCAACAGGTTTCGCTAAGCGAACA -CCAACAGGTTTCGCTAAGCAGTCA -CCAACAGGTTTCGCTAAGGATCCA -CCAACAGGTTTCGCTAAGACGACA -CCAACAGGTTTCGCTAAGAGCTCA -CCAACAGGTTTCGCTAAGTCACGT -CCAACAGGTTTCGCTAAGCGTAGT -CCAACAGGTTTCGCTAAGGTCAGT -CCAACAGGTTTCGCTAAGGAAGGT -CCAACAGGTTTCGCTAAGAACCGT -CCAACAGGTTTCGCTAAGTTGTGC -CCAACAGGTTTCGCTAAGCTAAGC -CCAACAGGTTTCGCTAAGACTAGC -CCAACAGGTTTCGCTAAGAGATGC -CCAACAGGTTTCGCTAAGTGAAGG -CCAACAGGTTTCGCTAAGCAATGG -CCAACAGGTTTCGCTAAGATGAGG -CCAACAGGTTTCGCTAAGAATGGG -CCAACAGGTTTCGCTAAGTCCTGA -CCAACAGGTTTCGCTAAGTAGCGA -CCAACAGGTTTCGCTAAGCACAGA -CCAACAGGTTTCGCTAAGGCAAGA -CCAACAGGTTTCGCTAAGGGTTGA -CCAACAGGTTTCGCTAAGTCCGAT -CCAACAGGTTTCGCTAAGTGGCAT -CCAACAGGTTTCGCTAAGCGAGAT -CCAACAGGTTTCGCTAAGTACCAC -CCAACAGGTTTCGCTAAGCAGAAC -CCAACAGGTTTCGCTAAGGTCTAC -CCAACAGGTTTCGCTAAGACGTAC -CCAACAGGTTTCGCTAAGAGTGAC -CCAACAGGTTTCGCTAAGCTGTAG -CCAACAGGTTTCGCTAAGCCTAAG -CCAACAGGTTTCGCTAAGGTTCAG -CCAACAGGTTTCGCTAAGGCATAG -CCAACAGGTTTCGCTAAGGACAAG -CCAACAGGTTTCGCTAAGAAGCAG -CCAACAGGTTTCGCTAAGCGTCAA -CCAACAGGTTTCGCTAAGGCTGAA -CCAACAGGTTTCGCTAAGAGTACG -CCAACAGGTTTCGCTAAGATCCGA -CCAACAGGTTTCGCTAAGATGGGA -CCAACAGGTTTCGCTAAGGTGCAA -CCAACAGGTTTCGCTAAGGAGGAA -CCAACAGGTTTCGCTAAGCAGGTA -CCAACAGGTTTCGCTAAGGACTCT -CCAACAGGTTTCGCTAAGAGTCCT -CCAACAGGTTTCGCTAAGTAAGCC -CCAACAGGTTTCGCTAAGATAGCC -CCAACAGGTTTCGCTAAGTAACCG -CCAACAGGTTTCGCTAAGATGCCA -CCAACAGGTTTCACCTCAGGAAAC -CCAACAGGTTTCACCTCAAACACC -CCAACAGGTTTCACCTCAATCGAG -CCAACAGGTTTCACCTCACTCCTT -CCAACAGGTTTCACCTCACCTGTT -CCAACAGGTTTCACCTCACGGTTT -CCAACAGGTTTCACCTCAGTGGTT -CCAACAGGTTTCACCTCAGCCTTT -CCAACAGGTTTCACCTCAGGTCTT -CCAACAGGTTTCACCTCAACGCTT -CCAACAGGTTTCACCTCAAGCGTT -CCAACAGGTTTCACCTCATTCGTC -CCAACAGGTTTCACCTCATCTCTC -CCAACAGGTTTCACCTCATGGATC -CCAACAGGTTTCACCTCACACTTC -CCAACAGGTTTCACCTCAGTACTC -CCAACAGGTTTCACCTCAGATGTC -CCAACAGGTTTCACCTCAACAGTC -CCAACAGGTTTCACCTCATTGCTG -CCAACAGGTTTCACCTCATCCATG -CCAACAGGTTTCACCTCATGTGTG -CCAACAGGTTTCACCTCACTAGTG -CCAACAGGTTTCACCTCACATCTG -CCAACAGGTTTCACCTCAGAGTTG -CCAACAGGTTTCACCTCAAGACTG -CCAACAGGTTTCACCTCATCGGTA -CCAACAGGTTTCACCTCATGCCTA -CCAACAGGTTTCACCTCACCACTA -CCAACAGGTTTCACCTCAGGAGTA -CCAACAGGTTTCACCTCATCGTCT -CCAACAGGTTTCACCTCATGCACT -CCAACAGGTTTCACCTCACTGACT -CCAACAGGTTTCACCTCACAACCT -CCAACAGGTTTCACCTCAGCTACT -CCAACAGGTTTCACCTCAGGATCT -CCAACAGGTTTCACCTCAAAGGCT -CCAACAGGTTTCACCTCATCAACC -CCAACAGGTTTCACCTCATGTTCC -CCAACAGGTTTCACCTCAATTCCC -CCAACAGGTTTCACCTCATTCTCG -CCAACAGGTTTCACCTCATAGACG -CCAACAGGTTTCACCTCAGTAACG -CCAACAGGTTTCACCTCAACTTCG -CCAACAGGTTTCACCTCATACGCA -CCAACAGGTTTCACCTCACTTGCA -CCAACAGGTTTCACCTCACGAACA -CCAACAGGTTTCACCTCACAGTCA -CCAACAGGTTTCACCTCAGATCCA -CCAACAGGTTTCACCTCAACGACA -CCAACAGGTTTCACCTCAAGCTCA -CCAACAGGTTTCACCTCATCACGT -CCAACAGGTTTCACCTCACGTAGT -CCAACAGGTTTCACCTCAGTCAGT -CCAACAGGTTTCACCTCAGAAGGT -CCAACAGGTTTCACCTCAAACCGT -CCAACAGGTTTCACCTCATTGTGC -CCAACAGGTTTCACCTCACTAAGC -CCAACAGGTTTCACCTCAACTAGC -CCAACAGGTTTCACCTCAAGATGC -CCAACAGGTTTCACCTCATGAAGG -CCAACAGGTTTCACCTCACAATGG -CCAACAGGTTTCACCTCAATGAGG -CCAACAGGTTTCACCTCAAATGGG -CCAACAGGTTTCACCTCATCCTGA -CCAACAGGTTTCACCTCATAGCGA -CCAACAGGTTTCACCTCACACAGA -CCAACAGGTTTCACCTCAGCAAGA -CCAACAGGTTTCACCTCAGGTTGA -CCAACAGGTTTCACCTCATCCGAT -CCAACAGGTTTCACCTCATGGCAT -CCAACAGGTTTCACCTCACGAGAT -CCAACAGGTTTCACCTCATACCAC -CCAACAGGTTTCACCTCACAGAAC -CCAACAGGTTTCACCTCAGTCTAC -CCAACAGGTTTCACCTCAACGTAC -CCAACAGGTTTCACCTCAAGTGAC -CCAACAGGTTTCACCTCACTGTAG -CCAACAGGTTTCACCTCACCTAAG -CCAACAGGTTTCACCTCAGTTCAG -CCAACAGGTTTCACCTCAGCATAG -CCAACAGGTTTCACCTCAGACAAG -CCAACAGGTTTCACCTCAAAGCAG -CCAACAGGTTTCACCTCACGTCAA -CCAACAGGTTTCACCTCAGCTGAA -CCAACAGGTTTCACCTCAAGTACG -CCAACAGGTTTCACCTCAATCCGA -CCAACAGGTTTCACCTCAATGGGA -CCAACAGGTTTCACCTCAGTGCAA -CCAACAGGTTTCACCTCAGAGGAA -CCAACAGGTTTCACCTCACAGGTA -CCAACAGGTTTCACCTCAGACTCT -CCAACAGGTTTCACCTCAAGTCCT -CCAACAGGTTTCACCTCATAAGCC -CCAACAGGTTTCACCTCAATAGCC -CCAACAGGTTTCACCTCATAACCG -CCAACAGGTTTCACCTCAATGCCA -CCAACAGGTTTCTCCTGTGGAAAC -CCAACAGGTTTCTCCTGTAACACC -CCAACAGGTTTCTCCTGTATCGAG -CCAACAGGTTTCTCCTGTCTCCTT -CCAACAGGTTTCTCCTGTCCTGTT -CCAACAGGTTTCTCCTGTCGGTTT -CCAACAGGTTTCTCCTGTGTGGTT -CCAACAGGTTTCTCCTGTGCCTTT -CCAACAGGTTTCTCCTGTGGTCTT -CCAACAGGTTTCTCCTGTACGCTT -CCAACAGGTTTCTCCTGTAGCGTT -CCAACAGGTTTCTCCTGTTTCGTC -CCAACAGGTTTCTCCTGTTCTCTC -CCAACAGGTTTCTCCTGTTGGATC -CCAACAGGTTTCTCCTGTCACTTC -CCAACAGGTTTCTCCTGTGTACTC -CCAACAGGTTTCTCCTGTGATGTC -CCAACAGGTTTCTCCTGTACAGTC -CCAACAGGTTTCTCCTGTTTGCTG -CCAACAGGTTTCTCCTGTTCCATG -CCAACAGGTTTCTCCTGTTGTGTG -CCAACAGGTTTCTCCTGTCTAGTG -CCAACAGGTTTCTCCTGTCATCTG -CCAACAGGTTTCTCCTGTGAGTTG -CCAACAGGTTTCTCCTGTAGACTG -CCAACAGGTTTCTCCTGTTCGGTA -CCAACAGGTTTCTCCTGTTGCCTA -CCAACAGGTTTCTCCTGTCCACTA -CCAACAGGTTTCTCCTGTGGAGTA -CCAACAGGTTTCTCCTGTTCGTCT -CCAACAGGTTTCTCCTGTTGCACT -CCAACAGGTTTCTCCTGTCTGACT -CCAACAGGTTTCTCCTGTCAACCT -CCAACAGGTTTCTCCTGTGCTACT -CCAACAGGTTTCTCCTGTGGATCT -CCAACAGGTTTCTCCTGTAAGGCT -CCAACAGGTTTCTCCTGTTCAACC -CCAACAGGTTTCTCCTGTTGTTCC -CCAACAGGTTTCTCCTGTATTCCC -CCAACAGGTTTCTCCTGTTTCTCG -CCAACAGGTTTCTCCTGTTAGACG -CCAACAGGTTTCTCCTGTGTAACG -CCAACAGGTTTCTCCTGTACTTCG -CCAACAGGTTTCTCCTGTTACGCA -CCAACAGGTTTCTCCTGTCTTGCA -CCAACAGGTTTCTCCTGTCGAACA -CCAACAGGTTTCTCCTGTCAGTCA -CCAACAGGTTTCTCCTGTGATCCA -CCAACAGGTTTCTCCTGTACGACA -CCAACAGGTTTCTCCTGTAGCTCA -CCAACAGGTTTCTCCTGTTCACGT -CCAACAGGTTTCTCCTGTCGTAGT -CCAACAGGTTTCTCCTGTGTCAGT -CCAACAGGTTTCTCCTGTGAAGGT -CCAACAGGTTTCTCCTGTAACCGT -CCAACAGGTTTCTCCTGTTTGTGC -CCAACAGGTTTCTCCTGTCTAAGC -CCAACAGGTTTCTCCTGTACTAGC -CCAACAGGTTTCTCCTGTAGATGC -CCAACAGGTTTCTCCTGTTGAAGG -CCAACAGGTTTCTCCTGTCAATGG -CCAACAGGTTTCTCCTGTATGAGG -CCAACAGGTTTCTCCTGTAATGGG -CCAACAGGTTTCTCCTGTTCCTGA -CCAACAGGTTTCTCCTGTTAGCGA -CCAACAGGTTTCTCCTGTCACAGA -CCAACAGGTTTCTCCTGTGCAAGA -CCAACAGGTTTCTCCTGTGGTTGA -CCAACAGGTTTCTCCTGTTCCGAT -CCAACAGGTTTCTCCTGTTGGCAT -CCAACAGGTTTCTCCTGTCGAGAT -CCAACAGGTTTCTCCTGTTACCAC -CCAACAGGTTTCTCCTGTCAGAAC -CCAACAGGTTTCTCCTGTGTCTAC -CCAACAGGTTTCTCCTGTACGTAC -CCAACAGGTTTCTCCTGTAGTGAC -CCAACAGGTTTCTCCTGTCTGTAG -CCAACAGGTTTCTCCTGTCCTAAG -CCAACAGGTTTCTCCTGTGTTCAG -CCAACAGGTTTCTCCTGTGCATAG -CCAACAGGTTTCTCCTGTGACAAG -CCAACAGGTTTCTCCTGTAAGCAG -CCAACAGGTTTCTCCTGTCGTCAA -CCAACAGGTTTCTCCTGTGCTGAA -CCAACAGGTTTCTCCTGTAGTACG -CCAACAGGTTTCTCCTGTATCCGA -CCAACAGGTTTCTCCTGTATGGGA -CCAACAGGTTTCTCCTGTGTGCAA -CCAACAGGTTTCTCCTGTGAGGAA -CCAACAGGTTTCTCCTGTCAGGTA -CCAACAGGTTTCTCCTGTGACTCT -CCAACAGGTTTCTCCTGTAGTCCT -CCAACAGGTTTCTCCTGTTAAGCC -CCAACAGGTTTCTCCTGTATAGCC -CCAACAGGTTTCTCCTGTTAACCG -CCAACAGGTTTCTCCTGTATGCCA -CCAACAGGTTTCCCCATTGGAAAC -CCAACAGGTTTCCCCATTAACACC -CCAACAGGTTTCCCCATTATCGAG -CCAACAGGTTTCCCCATTCTCCTT -CCAACAGGTTTCCCCATTCCTGTT -CCAACAGGTTTCCCCATTCGGTTT -CCAACAGGTTTCCCCATTGTGGTT -CCAACAGGTTTCCCCATTGCCTTT -CCAACAGGTTTCCCCATTGGTCTT -CCAACAGGTTTCCCCATTACGCTT -CCAACAGGTTTCCCCATTAGCGTT -CCAACAGGTTTCCCCATTTTCGTC -CCAACAGGTTTCCCCATTTCTCTC -CCAACAGGTTTCCCCATTTGGATC -CCAACAGGTTTCCCCATTCACTTC -CCAACAGGTTTCCCCATTGTACTC -CCAACAGGTTTCCCCATTGATGTC -CCAACAGGTTTCCCCATTACAGTC -CCAACAGGTTTCCCCATTTTGCTG -CCAACAGGTTTCCCCATTTCCATG -CCAACAGGTTTCCCCATTTGTGTG -CCAACAGGTTTCCCCATTCTAGTG -CCAACAGGTTTCCCCATTCATCTG -CCAACAGGTTTCCCCATTGAGTTG -CCAACAGGTTTCCCCATTAGACTG -CCAACAGGTTTCCCCATTTCGGTA -CCAACAGGTTTCCCCATTTGCCTA -CCAACAGGTTTCCCCATTCCACTA -CCAACAGGTTTCCCCATTGGAGTA -CCAACAGGTTTCCCCATTTCGTCT -CCAACAGGTTTCCCCATTTGCACT -CCAACAGGTTTCCCCATTCTGACT -CCAACAGGTTTCCCCATTCAACCT -CCAACAGGTTTCCCCATTGCTACT -CCAACAGGTTTCCCCATTGGATCT -CCAACAGGTTTCCCCATTAAGGCT -CCAACAGGTTTCCCCATTTCAACC -CCAACAGGTTTCCCCATTTGTTCC -CCAACAGGTTTCCCCATTATTCCC -CCAACAGGTTTCCCCATTTTCTCG -CCAACAGGTTTCCCCATTTAGACG -CCAACAGGTTTCCCCATTGTAACG -CCAACAGGTTTCCCCATTACTTCG -CCAACAGGTTTCCCCATTTACGCA -CCAACAGGTTTCCCCATTCTTGCA -CCAACAGGTTTCCCCATTCGAACA -CCAACAGGTTTCCCCATTCAGTCA -CCAACAGGTTTCCCCATTGATCCA -CCAACAGGTTTCCCCATTACGACA -CCAACAGGTTTCCCCATTAGCTCA -CCAACAGGTTTCCCCATTTCACGT -CCAACAGGTTTCCCCATTCGTAGT -CCAACAGGTTTCCCCATTGTCAGT -CCAACAGGTTTCCCCATTGAAGGT -CCAACAGGTTTCCCCATTAACCGT -CCAACAGGTTTCCCCATTTTGTGC -CCAACAGGTTTCCCCATTCTAAGC -CCAACAGGTTTCCCCATTACTAGC -CCAACAGGTTTCCCCATTAGATGC -CCAACAGGTTTCCCCATTTGAAGG -CCAACAGGTTTCCCCATTCAATGG -CCAACAGGTTTCCCCATTATGAGG -CCAACAGGTTTCCCCATTAATGGG -CCAACAGGTTTCCCCATTTCCTGA -CCAACAGGTTTCCCCATTTAGCGA -CCAACAGGTTTCCCCATTCACAGA -CCAACAGGTTTCCCCATTGCAAGA -CCAACAGGTTTCCCCATTGGTTGA -CCAACAGGTTTCCCCATTTCCGAT -CCAACAGGTTTCCCCATTTGGCAT -CCAACAGGTTTCCCCATTCGAGAT -CCAACAGGTTTCCCCATTTACCAC -CCAACAGGTTTCCCCATTCAGAAC -CCAACAGGTTTCCCCATTGTCTAC -CCAACAGGTTTCCCCATTACGTAC -CCAACAGGTTTCCCCATTAGTGAC -CCAACAGGTTTCCCCATTCTGTAG -CCAACAGGTTTCCCCATTCCTAAG -CCAACAGGTTTCCCCATTGTTCAG -CCAACAGGTTTCCCCATTGCATAG -CCAACAGGTTTCCCCATTGACAAG -CCAACAGGTTTCCCCATTAAGCAG -CCAACAGGTTTCCCCATTCGTCAA -CCAACAGGTTTCCCCATTGCTGAA -CCAACAGGTTTCCCCATTAGTACG -CCAACAGGTTTCCCCATTATCCGA -CCAACAGGTTTCCCCATTATGGGA -CCAACAGGTTTCCCCATTGTGCAA -CCAACAGGTTTCCCCATTGAGGAA -CCAACAGGTTTCCCCATTCAGGTA -CCAACAGGTTTCCCCATTGACTCT -CCAACAGGTTTCCCCATTAGTCCT -CCAACAGGTTTCCCCATTTAAGCC -CCAACAGGTTTCCCCATTATAGCC -CCAACAGGTTTCCCCATTTAACCG -CCAACAGGTTTCCCCATTATGCCA -CCAACAGGTTTCTCGTTCGGAAAC -CCAACAGGTTTCTCGTTCAACACC -CCAACAGGTTTCTCGTTCATCGAG -CCAACAGGTTTCTCGTTCCTCCTT -CCAACAGGTTTCTCGTTCCCTGTT -CCAACAGGTTTCTCGTTCCGGTTT -CCAACAGGTTTCTCGTTCGTGGTT -CCAACAGGTTTCTCGTTCGCCTTT -CCAACAGGTTTCTCGTTCGGTCTT -CCAACAGGTTTCTCGTTCACGCTT -CCAACAGGTTTCTCGTTCAGCGTT -CCAACAGGTTTCTCGTTCTTCGTC -CCAACAGGTTTCTCGTTCTCTCTC -CCAACAGGTTTCTCGTTCTGGATC -CCAACAGGTTTCTCGTTCCACTTC -CCAACAGGTTTCTCGTTCGTACTC -CCAACAGGTTTCTCGTTCGATGTC -CCAACAGGTTTCTCGTTCACAGTC -CCAACAGGTTTCTCGTTCTTGCTG -CCAACAGGTTTCTCGTTCTCCATG -CCAACAGGTTTCTCGTTCTGTGTG -CCAACAGGTTTCTCGTTCCTAGTG -CCAACAGGTTTCTCGTTCCATCTG -CCAACAGGTTTCTCGTTCGAGTTG -CCAACAGGTTTCTCGTTCAGACTG -CCAACAGGTTTCTCGTTCTCGGTA -CCAACAGGTTTCTCGTTCTGCCTA -CCAACAGGTTTCTCGTTCCCACTA -CCAACAGGTTTCTCGTTCGGAGTA -CCAACAGGTTTCTCGTTCTCGTCT -CCAACAGGTTTCTCGTTCTGCACT -CCAACAGGTTTCTCGTTCCTGACT -CCAACAGGTTTCTCGTTCCAACCT -CCAACAGGTTTCTCGTTCGCTACT -CCAACAGGTTTCTCGTTCGGATCT -CCAACAGGTTTCTCGTTCAAGGCT -CCAACAGGTTTCTCGTTCTCAACC -CCAACAGGTTTCTCGTTCTGTTCC -CCAACAGGTTTCTCGTTCATTCCC -CCAACAGGTTTCTCGTTCTTCTCG -CCAACAGGTTTCTCGTTCTAGACG -CCAACAGGTTTCTCGTTCGTAACG -CCAACAGGTTTCTCGTTCACTTCG -CCAACAGGTTTCTCGTTCTACGCA -CCAACAGGTTTCTCGTTCCTTGCA -CCAACAGGTTTCTCGTTCCGAACA -CCAACAGGTTTCTCGTTCCAGTCA -CCAACAGGTTTCTCGTTCGATCCA -CCAACAGGTTTCTCGTTCACGACA -CCAACAGGTTTCTCGTTCAGCTCA -CCAACAGGTTTCTCGTTCTCACGT -CCAACAGGTTTCTCGTTCCGTAGT -CCAACAGGTTTCTCGTTCGTCAGT -CCAACAGGTTTCTCGTTCGAAGGT -CCAACAGGTTTCTCGTTCAACCGT -CCAACAGGTTTCTCGTTCTTGTGC -CCAACAGGTTTCTCGTTCCTAAGC -CCAACAGGTTTCTCGTTCACTAGC -CCAACAGGTTTCTCGTTCAGATGC -CCAACAGGTTTCTCGTTCTGAAGG -CCAACAGGTTTCTCGTTCCAATGG -CCAACAGGTTTCTCGTTCATGAGG -CCAACAGGTTTCTCGTTCAATGGG -CCAACAGGTTTCTCGTTCTCCTGA -CCAACAGGTTTCTCGTTCTAGCGA -CCAACAGGTTTCTCGTTCCACAGA -CCAACAGGTTTCTCGTTCGCAAGA -CCAACAGGTTTCTCGTTCGGTTGA -CCAACAGGTTTCTCGTTCTCCGAT -CCAACAGGTTTCTCGTTCTGGCAT -CCAACAGGTTTCTCGTTCCGAGAT -CCAACAGGTTTCTCGTTCTACCAC -CCAACAGGTTTCTCGTTCCAGAAC -CCAACAGGTTTCTCGTTCGTCTAC -CCAACAGGTTTCTCGTTCACGTAC -CCAACAGGTTTCTCGTTCAGTGAC -CCAACAGGTTTCTCGTTCCTGTAG -CCAACAGGTTTCTCGTTCCCTAAG -CCAACAGGTTTCTCGTTCGTTCAG -CCAACAGGTTTCTCGTTCGCATAG -CCAACAGGTTTCTCGTTCGACAAG -CCAACAGGTTTCTCGTTCAAGCAG -CCAACAGGTTTCTCGTTCCGTCAA -CCAACAGGTTTCTCGTTCGCTGAA -CCAACAGGTTTCTCGTTCAGTACG -CCAACAGGTTTCTCGTTCATCCGA -CCAACAGGTTTCTCGTTCATGGGA -CCAACAGGTTTCTCGTTCGTGCAA -CCAACAGGTTTCTCGTTCGAGGAA -CCAACAGGTTTCTCGTTCCAGGTA -CCAACAGGTTTCTCGTTCGACTCT -CCAACAGGTTTCTCGTTCAGTCCT -CCAACAGGTTTCTCGTTCTAAGCC -CCAACAGGTTTCTCGTTCATAGCC -CCAACAGGTTTCTCGTTCTAACCG -CCAACAGGTTTCTCGTTCATGCCA -CCAACAGGTTTCACGTAGGGAAAC -CCAACAGGTTTCACGTAGAACACC -CCAACAGGTTTCACGTAGATCGAG -CCAACAGGTTTCACGTAGCTCCTT -CCAACAGGTTTCACGTAGCCTGTT -CCAACAGGTTTCACGTAGCGGTTT -CCAACAGGTTTCACGTAGGTGGTT -CCAACAGGTTTCACGTAGGCCTTT -CCAACAGGTTTCACGTAGGGTCTT -CCAACAGGTTTCACGTAGACGCTT -CCAACAGGTTTCACGTAGAGCGTT -CCAACAGGTTTCACGTAGTTCGTC -CCAACAGGTTTCACGTAGTCTCTC -CCAACAGGTTTCACGTAGTGGATC -CCAACAGGTTTCACGTAGCACTTC -CCAACAGGTTTCACGTAGGTACTC -CCAACAGGTTTCACGTAGGATGTC -CCAACAGGTTTCACGTAGACAGTC -CCAACAGGTTTCACGTAGTTGCTG -CCAACAGGTTTCACGTAGTCCATG -CCAACAGGTTTCACGTAGTGTGTG -CCAACAGGTTTCACGTAGCTAGTG -CCAACAGGTTTCACGTAGCATCTG -CCAACAGGTTTCACGTAGGAGTTG -CCAACAGGTTTCACGTAGAGACTG -CCAACAGGTTTCACGTAGTCGGTA -CCAACAGGTTTCACGTAGTGCCTA -CCAACAGGTTTCACGTAGCCACTA -CCAACAGGTTTCACGTAGGGAGTA -CCAACAGGTTTCACGTAGTCGTCT -CCAACAGGTTTCACGTAGTGCACT -CCAACAGGTTTCACGTAGCTGACT -CCAACAGGTTTCACGTAGCAACCT -CCAACAGGTTTCACGTAGGCTACT -CCAACAGGTTTCACGTAGGGATCT -CCAACAGGTTTCACGTAGAAGGCT -CCAACAGGTTTCACGTAGTCAACC -CCAACAGGTTTCACGTAGTGTTCC -CCAACAGGTTTCACGTAGATTCCC -CCAACAGGTTTCACGTAGTTCTCG -CCAACAGGTTTCACGTAGTAGACG -CCAACAGGTTTCACGTAGGTAACG -CCAACAGGTTTCACGTAGACTTCG -CCAACAGGTTTCACGTAGTACGCA -CCAACAGGTTTCACGTAGCTTGCA -CCAACAGGTTTCACGTAGCGAACA -CCAACAGGTTTCACGTAGCAGTCA -CCAACAGGTTTCACGTAGGATCCA -CCAACAGGTTTCACGTAGACGACA -CCAACAGGTTTCACGTAGAGCTCA -CCAACAGGTTTCACGTAGTCACGT -CCAACAGGTTTCACGTAGCGTAGT -CCAACAGGTTTCACGTAGGTCAGT -CCAACAGGTTTCACGTAGGAAGGT -CCAACAGGTTTCACGTAGAACCGT -CCAACAGGTTTCACGTAGTTGTGC -CCAACAGGTTTCACGTAGCTAAGC -CCAACAGGTTTCACGTAGACTAGC -CCAACAGGTTTCACGTAGAGATGC -CCAACAGGTTTCACGTAGTGAAGG -CCAACAGGTTTCACGTAGCAATGG -CCAACAGGTTTCACGTAGATGAGG -CCAACAGGTTTCACGTAGAATGGG -CCAACAGGTTTCACGTAGTCCTGA -CCAACAGGTTTCACGTAGTAGCGA -CCAACAGGTTTCACGTAGCACAGA -CCAACAGGTTTCACGTAGGCAAGA -CCAACAGGTTTCACGTAGGGTTGA -CCAACAGGTTTCACGTAGTCCGAT -CCAACAGGTTTCACGTAGTGGCAT -CCAACAGGTTTCACGTAGCGAGAT -CCAACAGGTTTCACGTAGTACCAC -CCAACAGGTTTCACGTAGCAGAAC -CCAACAGGTTTCACGTAGGTCTAC -CCAACAGGTTTCACGTAGACGTAC -CCAACAGGTTTCACGTAGAGTGAC -CCAACAGGTTTCACGTAGCTGTAG -CCAACAGGTTTCACGTAGCCTAAG -CCAACAGGTTTCACGTAGGTTCAG -CCAACAGGTTTCACGTAGGCATAG -CCAACAGGTTTCACGTAGGACAAG -CCAACAGGTTTCACGTAGAAGCAG -CCAACAGGTTTCACGTAGCGTCAA -CCAACAGGTTTCACGTAGGCTGAA -CCAACAGGTTTCACGTAGAGTACG -CCAACAGGTTTCACGTAGATCCGA -CCAACAGGTTTCACGTAGATGGGA -CCAACAGGTTTCACGTAGGTGCAA -CCAACAGGTTTCACGTAGGAGGAA -CCAACAGGTTTCACGTAGCAGGTA -CCAACAGGTTTCACGTAGGACTCT -CCAACAGGTTTCACGTAGAGTCCT -CCAACAGGTTTCACGTAGTAAGCC -CCAACAGGTTTCACGTAGATAGCC -CCAACAGGTTTCACGTAGTAACCG -CCAACAGGTTTCACGTAGATGCCA -CCAACAGGTTTCACGGTAGGAAAC -CCAACAGGTTTCACGGTAAACACC -CCAACAGGTTTCACGGTAATCGAG -CCAACAGGTTTCACGGTACTCCTT -CCAACAGGTTTCACGGTACCTGTT -CCAACAGGTTTCACGGTACGGTTT -CCAACAGGTTTCACGGTAGTGGTT -CCAACAGGTTTCACGGTAGCCTTT -CCAACAGGTTTCACGGTAGGTCTT -CCAACAGGTTTCACGGTAACGCTT -CCAACAGGTTTCACGGTAAGCGTT -CCAACAGGTTTCACGGTATTCGTC -CCAACAGGTTTCACGGTATCTCTC -CCAACAGGTTTCACGGTATGGATC -CCAACAGGTTTCACGGTACACTTC -CCAACAGGTTTCACGGTAGTACTC -CCAACAGGTTTCACGGTAGATGTC -CCAACAGGTTTCACGGTAACAGTC -CCAACAGGTTTCACGGTATTGCTG -CCAACAGGTTTCACGGTATCCATG -CCAACAGGTTTCACGGTATGTGTG -CCAACAGGTTTCACGGTACTAGTG -CCAACAGGTTTCACGGTACATCTG -CCAACAGGTTTCACGGTAGAGTTG -CCAACAGGTTTCACGGTAAGACTG -CCAACAGGTTTCACGGTATCGGTA -CCAACAGGTTTCACGGTATGCCTA -CCAACAGGTTTCACGGTACCACTA -CCAACAGGTTTCACGGTAGGAGTA -CCAACAGGTTTCACGGTATCGTCT -CCAACAGGTTTCACGGTATGCACT -CCAACAGGTTTCACGGTACTGACT -CCAACAGGTTTCACGGTACAACCT -CCAACAGGTTTCACGGTAGCTACT -CCAACAGGTTTCACGGTAGGATCT -CCAACAGGTTTCACGGTAAAGGCT -CCAACAGGTTTCACGGTATCAACC -CCAACAGGTTTCACGGTATGTTCC -CCAACAGGTTTCACGGTAATTCCC -CCAACAGGTTTCACGGTATTCTCG -CCAACAGGTTTCACGGTATAGACG -CCAACAGGTTTCACGGTAGTAACG -CCAACAGGTTTCACGGTAACTTCG -CCAACAGGTTTCACGGTATACGCA -CCAACAGGTTTCACGGTACTTGCA -CCAACAGGTTTCACGGTACGAACA -CCAACAGGTTTCACGGTACAGTCA -CCAACAGGTTTCACGGTAGATCCA -CCAACAGGTTTCACGGTAACGACA -CCAACAGGTTTCACGGTAAGCTCA -CCAACAGGTTTCACGGTATCACGT -CCAACAGGTTTCACGGTACGTAGT -CCAACAGGTTTCACGGTAGTCAGT -CCAACAGGTTTCACGGTAGAAGGT -CCAACAGGTTTCACGGTAAACCGT -CCAACAGGTTTCACGGTATTGTGC -CCAACAGGTTTCACGGTACTAAGC -CCAACAGGTTTCACGGTAACTAGC -CCAACAGGTTTCACGGTAAGATGC -CCAACAGGTTTCACGGTATGAAGG -CCAACAGGTTTCACGGTACAATGG -CCAACAGGTTTCACGGTAATGAGG -CCAACAGGTTTCACGGTAAATGGG -CCAACAGGTTTCACGGTATCCTGA -CCAACAGGTTTCACGGTATAGCGA -CCAACAGGTTTCACGGTACACAGA -CCAACAGGTTTCACGGTAGCAAGA -CCAACAGGTTTCACGGTAGGTTGA -CCAACAGGTTTCACGGTATCCGAT -CCAACAGGTTTCACGGTATGGCAT -CCAACAGGTTTCACGGTACGAGAT -CCAACAGGTTTCACGGTATACCAC -CCAACAGGTTTCACGGTACAGAAC -CCAACAGGTTTCACGGTAGTCTAC -CCAACAGGTTTCACGGTAACGTAC -CCAACAGGTTTCACGGTAAGTGAC -CCAACAGGTTTCACGGTACTGTAG -CCAACAGGTTTCACGGTACCTAAG -CCAACAGGTTTCACGGTAGTTCAG -CCAACAGGTTTCACGGTAGCATAG -CCAACAGGTTTCACGGTAGACAAG -CCAACAGGTTTCACGGTAAAGCAG -CCAACAGGTTTCACGGTACGTCAA -CCAACAGGTTTCACGGTAGCTGAA -CCAACAGGTTTCACGGTAAGTACG -CCAACAGGTTTCACGGTAATCCGA -CCAACAGGTTTCACGGTAATGGGA -CCAACAGGTTTCACGGTAGTGCAA -CCAACAGGTTTCACGGTAGAGGAA -CCAACAGGTTTCACGGTACAGGTA -CCAACAGGTTTCACGGTAGACTCT -CCAACAGGTTTCACGGTAAGTCCT -CCAACAGGTTTCACGGTATAAGCC -CCAACAGGTTTCACGGTAATAGCC -CCAACAGGTTTCACGGTATAACCG -CCAACAGGTTTCACGGTAATGCCA -CCAACAGGTTTCTCGACTGGAAAC -CCAACAGGTTTCTCGACTAACACC -CCAACAGGTTTCTCGACTATCGAG -CCAACAGGTTTCTCGACTCTCCTT -CCAACAGGTTTCTCGACTCCTGTT -CCAACAGGTTTCTCGACTCGGTTT -CCAACAGGTTTCTCGACTGTGGTT -CCAACAGGTTTCTCGACTGCCTTT -CCAACAGGTTTCTCGACTGGTCTT -CCAACAGGTTTCTCGACTACGCTT -CCAACAGGTTTCTCGACTAGCGTT -CCAACAGGTTTCTCGACTTTCGTC -CCAACAGGTTTCTCGACTTCTCTC -CCAACAGGTTTCTCGACTTGGATC -CCAACAGGTTTCTCGACTCACTTC -CCAACAGGTTTCTCGACTGTACTC -CCAACAGGTTTCTCGACTGATGTC -CCAACAGGTTTCTCGACTACAGTC -CCAACAGGTTTCTCGACTTTGCTG -CCAACAGGTTTCTCGACTTCCATG -CCAACAGGTTTCTCGACTTGTGTG -CCAACAGGTTTCTCGACTCTAGTG -CCAACAGGTTTCTCGACTCATCTG -CCAACAGGTTTCTCGACTGAGTTG -CCAACAGGTTTCTCGACTAGACTG -CCAACAGGTTTCTCGACTTCGGTA -CCAACAGGTTTCTCGACTTGCCTA -CCAACAGGTTTCTCGACTCCACTA -CCAACAGGTTTCTCGACTGGAGTA -CCAACAGGTTTCTCGACTTCGTCT -CCAACAGGTTTCTCGACTTGCACT -CCAACAGGTTTCTCGACTCTGACT -CCAACAGGTTTCTCGACTCAACCT -CCAACAGGTTTCTCGACTGCTACT -CCAACAGGTTTCTCGACTGGATCT -CCAACAGGTTTCTCGACTAAGGCT -CCAACAGGTTTCTCGACTTCAACC -CCAACAGGTTTCTCGACTTGTTCC -CCAACAGGTTTCTCGACTATTCCC -CCAACAGGTTTCTCGACTTTCTCG -CCAACAGGTTTCTCGACTTAGACG -CCAACAGGTTTCTCGACTGTAACG -CCAACAGGTTTCTCGACTACTTCG -CCAACAGGTTTCTCGACTTACGCA -CCAACAGGTTTCTCGACTCTTGCA -CCAACAGGTTTCTCGACTCGAACA -CCAACAGGTTTCTCGACTCAGTCA -CCAACAGGTTTCTCGACTGATCCA -CCAACAGGTTTCTCGACTACGACA -CCAACAGGTTTCTCGACTAGCTCA -CCAACAGGTTTCTCGACTTCACGT -CCAACAGGTTTCTCGACTCGTAGT -CCAACAGGTTTCTCGACTGTCAGT -CCAACAGGTTTCTCGACTGAAGGT -CCAACAGGTTTCTCGACTAACCGT -CCAACAGGTTTCTCGACTTTGTGC -CCAACAGGTTTCTCGACTCTAAGC -CCAACAGGTTTCTCGACTACTAGC -CCAACAGGTTTCTCGACTAGATGC -CCAACAGGTTTCTCGACTTGAAGG -CCAACAGGTTTCTCGACTCAATGG -CCAACAGGTTTCTCGACTATGAGG -CCAACAGGTTTCTCGACTAATGGG -CCAACAGGTTTCTCGACTTCCTGA -CCAACAGGTTTCTCGACTTAGCGA -CCAACAGGTTTCTCGACTCACAGA -CCAACAGGTTTCTCGACTGCAAGA -CCAACAGGTTTCTCGACTGGTTGA -CCAACAGGTTTCTCGACTTCCGAT -CCAACAGGTTTCTCGACTTGGCAT -CCAACAGGTTTCTCGACTCGAGAT -CCAACAGGTTTCTCGACTTACCAC -CCAACAGGTTTCTCGACTCAGAAC -CCAACAGGTTTCTCGACTGTCTAC -CCAACAGGTTTCTCGACTACGTAC -CCAACAGGTTTCTCGACTAGTGAC -CCAACAGGTTTCTCGACTCTGTAG -CCAACAGGTTTCTCGACTCCTAAG -CCAACAGGTTTCTCGACTGTTCAG -CCAACAGGTTTCTCGACTGCATAG -CCAACAGGTTTCTCGACTGACAAG -CCAACAGGTTTCTCGACTAAGCAG -CCAACAGGTTTCTCGACTCGTCAA -CCAACAGGTTTCTCGACTGCTGAA -CCAACAGGTTTCTCGACTAGTACG -CCAACAGGTTTCTCGACTATCCGA -CCAACAGGTTTCTCGACTATGGGA -CCAACAGGTTTCTCGACTGTGCAA -CCAACAGGTTTCTCGACTGAGGAA -CCAACAGGTTTCTCGACTCAGGTA -CCAACAGGTTTCTCGACTGACTCT -CCAACAGGTTTCTCGACTAGTCCT -CCAACAGGTTTCTCGACTTAAGCC -CCAACAGGTTTCTCGACTATAGCC -CCAACAGGTTTCTCGACTTAACCG -CCAACAGGTTTCTCGACTATGCCA -CCAACAGGTTTCGCATACGGAAAC -CCAACAGGTTTCGCATACAACACC -CCAACAGGTTTCGCATACATCGAG -CCAACAGGTTTCGCATACCTCCTT -CCAACAGGTTTCGCATACCCTGTT -CCAACAGGTTTCGCATACCGGTTT -CCAACAGGTTTCGCATACGTGGTT -CCAACAGGTTTCGCATACGCCTTT -CCAACAGGTTTCGCATACGGTCTT -CCAACAGGTTTCGCATACACGCTT -CCAACAGGTTTCGCATACAGCGTT -CCAACAGGTTTCGCATACTTCGTC -CCAACAGGTTTCGCATACTCTCTC -CCAACAGGTTTCGCATACTGGATC -CCAACAGGTTTCGCATACCACTTC -CCAACAGGTTTCGCATACGTACTC -CCAACAGGTTTCGCATACGATGTC -CCAACAGGTTTCGCATACACAGTC -CCAACAGGTTTCGCATACTTGCTG -CCAACAGGTTTCGCATACTCCATG -CCAACAGGTTTCGCATACTGTGTG -CCAACAGGTTTCGCATACCTAGTG -CCAACAGGTTTCGCATACCATCTG -CCAACAGGTTTCGCATACGAGTTG -CCAACAGGTTTCGCATACAGACTG -CCAACAGGTTTCGCATACTCGGTA -CCAACAGGTTTCGCATACTGCCTA -CCAACAGGTTTCGCATACCCACTA -CCAACAGGTTTCGCATACGGAGTA -CCAACAGGTTTCGCATACTCGTCT -CCAACAGGTTTCGCATACTGCACT -CCAACAGGTTTCGCATACCTGACT -CCAACAGGTTTCGCATACCAACCT -CCAACAGGTTTCGCATACGCTACT -CCAACAGGTTTCGCATACGGATCT -CCAACAGGTTTCGCATACAAGGCT -CCAACAGGTTTCGCATACTCAACC -CCAACAGGTTTCGCATACTGTTCC -CCAACAGGTTTCGCATACATTCCC -CCAACAGGTTTCGCATACTTCTCG -CCAACAGGTTTCGCATACTAGACG -CCAACAGGTTTCGCATACGTAACG -CCAACAGGTTTCGCATACACTTCG -CCAACAGGTTTCGCATACTACGCA -CCAACAGGTTTCGCATACCTTGCA -CCAACAGGTTTCGCATACCGAACA -CCAACAGGTTTCGCATACCAGTCA -CCAACAGGTTTCGCATACGATCCA -CCAACAGGTTTCGCATACACGACA -CCAACAGGTTTCGCATACAGCTCA -CCAACAGGTTTCGCATACTCACGT -CCAACAGGTTTCGCATACCGTAGT -CCAACAGGTTTCGCATACGTCAGT -CCAACAGGTTTCGCATACGAAGGT -CCAACAGGTTTCGCATACAACCGT -CCAACAGGTTTCGCATACTTGTGC -CCAACAGGTTTCGCATACCTAAGC -CCAACAGGTTTCGCATACACTAGC -CCAACAGGTTTCGCATACAGATGC -CCAACAGGTTTCGCATACTGAAGG -CCAACAGGTTTCGCATACCAATGG -CCAACAGGTTTCGCATACATGAGG -CCAACAGGTTTCGCATACAATGGG -CCAACAGGTTTCGCATACTCCTGA -CCAACAGGTTTCGCATACTAGCGA -CCAACAGGTTTCGCATACCACAGA -CCAACAGGTTTCGCATACGCAAGA -CCAACAGGTTTCGCATACGGTTGA -CCAACAGGTTTCGCATACTCCGAT -CCAACAGGTTTCGCATACTGGCAT -CCAACAGGTTTCGCATACCGAGAT -CCAACAGGTTTCGCATACTACCAC -CCAACAGGTTTCGCATACCAGAAC -CCAACAGGTTTCGCATACGTCTAC -CCAACAGGTTTCGCATACACGTAC -CCAACAGGTTTCGCATACAGTGAC -CCAACAGGTTTCGCATACCTGTAG -CCAACAGGTTTCGCATACCCTAAG -CCAACAGGTTTCGCATACGTTCAG -CCAACAGGTTTCGCATACGCATAG -CCAACAGGTTTCGCATACGACAAG -CCAACAGGTTTCGCATACAAGCAG -CCAACAGGTTTCGCATACCGTCAA -CCAACAGGTTTCGCATACGCTGAA -CCAACAGGTTTCGCATACAGTACG -CCAACAGGTTTCGCATACATCCGA -CCAACAGGTTTCGCATACATGGGA -CCAACAGGTTTCGCATACGTGCAA -CCAACAGGTTTCGCATACGAGGAA -CCAACAGGTTTCGCATACCAGGTA -CCAACAGGTTTCGCATACGACTCT -CCAACAGGTTTCGCATACAGTCCT -CCAACAGGTTTCGCATACTAAGCC -CCAACAGGTTTCGCATACATAGCC -CCAACAGGTTTCGCATACTAACCG -CCAACAGGTTTCGCATACATGCCA -CCAACAGGTTTCGCACTTGGAAAC -CCAACAGGTTTCGCACTTAACACC -CCAACAGGTTTCGCACTTATCGAG -CCAACAGGTTTCGCACTTCTCCTT -CCAACAGGTTTCGCACTTCCTGTT -CCAACAGGTTTCGCACTTCGGTTT -CCAACAGGTTTCGCACTTGTGGTT -CCAACAGGTTTCGCACTTGCCTTT -CCAACAGGTTTCGCACTTGGTCTT -CCAACAGGTTTCGCACTTACGCTT -CCAACAGGTTTCGCACTTAGCGTT -CCAACAGGTTTCGCACTTTTCGTC -CCAACAGGTTTCGCACTTTCTCTC -CCAACAGGTTTCGCACTTTGGATC -CCAACAGGTTTCGCACTTCACTTC -CCAACAGGTTTCGCACTTGTACTC -CCAACAGGTTTCGCACTTGATGTC -CCAACAGGTTTCGCACTTACAGTC -CCAACAGGTTTCGCACTTTTGCTG -CCAACAGGTTTCGCACTTTCCATG -CCAACAGGTTTCGCACTTTGTGTG -CCAACAGGTTTCGCACTTCTAGTG -CCAACAGGTTTCGCACTTCATCTG -CCAACAGGTTTCGCACTTGAGTTG -CCAACAGGTTTCGCACTTAGACTG -CCAACAGGTTTCGCACTTTCGGTA -CCAACAGGTTTCGCACTTTGCCTA -CCAACAGGTTTCGCACTTCCACTA -CCAACAGGTTTCGCACTTGGAGTA -CCAACAGGTTTCGCACTTTCGTCT -CCAACAGGTTTCGCACTTTGCACT -CCAACAGGTTTCGCACTTCTGACT -CCAACAGGTTTCGCACTTCAACCT -CCAACAGGTTTCGCACTTGCTACT -CCAACAGGTTTCGCACTTGGATCT -CCAACAGGTTTCGCACTTAAGGCT -CCAACAGGTTTCGCACTTTCAACC -CCAACAGGTTTCGCACTTTGTTCC -CCAACAGGTTTCGCACTTATTCCC -CCAACAGGTTTCGCACTTTTCTCG -CCAACAGGTTTCGCACTTTAGACG -CCAACAGGTTTCGCACTTGTAACG -CCAACAGGTTTCGCACTTACTTCG -CCAACAGGTTTCGCACTTTACGCA -CCAACAGGTTTCGCACTTCTTGCA -CCAACAGGTTTCGCACTTCGAACA -CCAACAGGTTTCGCACTTCAGTCA -CCAACAGGTTTCGCACTTGATCCA -CCAACAGGTTTCGCACTTACGACA -CCAACAGGTTTCGCACTTAGCTCA -CCAACAGGTTTCGCACTTTCACGT -CCAACAGGTTTCGCACTTCGTAGT -CCAACAGGTTTCGCACTTGTCAGT -CCAACAGGTTTCGCACTTGAAGGT -CCAACAGGTTTCGCACTTAACCGT -CCAACAGGTTTCGCACTTTTGTGC -CCAACAGGTTTCGCACTTCTAAGC -CCAACAGGTTTCGCACTTACTAGC -CCAACAGGTTTCGCACTTAGATGC -CCAACAGGTTTCGCACTTTGAAGG -CCAACAGGTTTCGCACTTCAATGG -CCAACAGGTTTCGCACTTATGAGG -CCAACAGGTTTCGCACTTAATGGG -CCAACAGGTTTCGCACTTTCCTGA -CCAACAGGTTTCGCACTTTAGCGA -CCAACAGGTTTCGCACTTCACAGA -CCAACAGGTTTCGCACTTGCAAGA -CCAACAGGTTTCGCACTTGGTTGA -CCAACAGGTTTCGCACTTTCCGAT -CCAACAGGTTTCGCACTTTGGCAT -CCAACAGGTTTCGCACTTCGAGAT -CCAACAGGTTTCGCACTTTACCAC -CCAACAGGTTTCGCACTTCAGAAC -CCAACAGGTTTCGCACTTGTCTAC -CCAACAGGTTTCGCACTTACGTAC -CCAACAGGTTTCGCACTTAGTGAC -CCAACAGGTTTCGCACTTCTGTAG -CCAACAGGTTTCGCACTTCCTAAG -CCAACAGGTTTCGCACTTGTTCAG -CCAACAGGTTTCGCACTTGCATAG -CCAACAGGTTTCGCACTTGACAAG -CCAACAGGTTTCGCACTTAAGCAG -CCAACAGGTTTCGCACTTCGTCAA -CCAACAGGTTTCGCACTTGCTGAA -CCAACAGGTTTCGCACTTAGTACG -CCAACAGGTTTCGCACTTATCCGA -CCAACAGGTTTCGCACTTATGGGA -CCAACAGGTTTCGCACTTGTGCAA -CCAACAGGTTTCGCACTTGAGGAA -CCAACAGGTTTCGCACTTCAGGTA -CCAACAGGTTTCGCACTTGACTCT -CCAACAGGTTTCGCACTTAGTCCT -CCAACAGGTTTCGCACTTTAAGCC -CCAACAGGTTTCGCACTTATAGCC -CCAACAGGTTTCGCACTTTAACCG -CCAACAGGTTTCGCACTTATGCCA -CCAACAGGTTTCACACGAGGAAAC -CCAACAGGTTTCACACGAAACACC -CCAACAGGTTTCACACGAATCGAG -CCAACAGGTTTCACACGACTCCTT -CCAACAGGTTTCACACGACCTGTT -CCAACAGGTTTCACACGACGGTTT -CCAACAGGTTTCACACGAGTGGTT -CCAACAGGTTTCACACGAGCCTTT -CCAACAGGTTTCACACGAGGTCTT -CCAACAGGTTTCACACGAACGCTT -CCAACAGGTTTCACACGAAGCGTT -CCAACAGGTTTCACACGATTCGTC -CCAACAGGTTTCACACGATCTCTC -CCAACAGGTTTCACACGATGGATC -CCAACAGGTTTCACACGACACTTC -CCAACAGGTTTCACACGAGTACTC -CCAACAGGTTTCACACGAGATGTC -CCAACAGGTTTCACACGAACAGTC -CCAACAGGTTTCACACGATTGCTG -CCAACAGGTTTCACACGATCCATG -CCAACAGGTTTCACACGATGTGTG -CCAACAGGTTTCACACGACTAGTG -CCAACAGGTTTCACACGACATCTG -CCAACAGGTTTCACACGAGAGTTG -CCAACAGGTTTCACACGAAGACTG -CCAACAGGTTTCACACGATCGGTA -CCAACAGGTTTCACACGATGCCTA -CCAACAGGTTTCACACGACCACTA -CCAACAGGTTTCACACGAGGAGTA -CCAACAGGTTTCACACGATCGTCT -CCAACAGGTTTCACACGATGCACT -CCAACAGGTTTCACACGACTGACT -CCAACAGGTTTCACACGACAACCT -CCAACAGGTTTCACACGAGCTACT -CCAACAGGTTTCACACGAGGATCT -CCAACAGGTTTCACACGAAAGGCT -CCAACAGGTTTCACACGATCAACC -CCAACAGGTTTCACACGATGTTCC -CCAACAGGTTTCACACGAATTCCC -CCAACAGGTTTCACACGATTCTCG -CCAACAGGTTTCACACGATAGACG -CCAACAGGTTTCACACGAGTAACG -CCAACAGGTTTCACACGAACTTCG -CCAACAGGTTTCACACGATACGCA -CCAACAGGTTTCACACGACTTGCA -CCAACAGGTTTCACACGACGAACA -CCAACAGGTTTCACACGACAGTCA -CCAACAGGTTTCACACGAGATCCA -CCAACAGGTTTCACACGAACGACA -CCAACAGGTTTCACACGAAGCTCA -CCAACAGGTTTCACACGATCACGT -CCAACAGGTTTCACACGACGTAGT -CCAACAGGTTTCACACGAGTCAGT -CCAACAGGTTTCACACGAGAAGGT -CCAACAGGTTTCACACGAAACCGT -CCAACAGGTTTCACACGATTGTGC -CCAACAGGTTTCACACGACTAAGC -CCAACAGGTTTCACACGAACTAGC -CCAACAGGTTTCACACGAAGATGC -CCAACAGGTTTCACACGATGAAGG -CCAACAGGTTTCACACGACAATGG -CCAACAGGTTTCACACGAATGAGG -CCAACAGGTTTCACACGAAATGGG -CCAACAGGTTTCACACGATCCTGA -CCAACAGGTTTCACACGATAGCGA -CCAACAGGTTTCACACGACACAGA -CCAACAGGTTTCACACGAGCAAGA -CCAACAGGTTTCACACGAGGTTGA -CCAACAGGTTTCACACGATCCGAT -CCAACAGGTTTCACACGATGGCAT -CCAACAGGTTTCACACGACGAGAT -CCAACAGGTTTCACACGATACCAC -CCAACAGGTTTCACACGACAGAAC -CCAACAGGTTTCACACGAGTCTAC -CCAACAGGTTTCACACGAACGTAC -CCAACAGGTTTCACACGAAGTGAC -CCAACAGGTTTCACACGACTGTAG -CCAACAGGTTTCACACGACCTAAG -CCAACAGGTTTCACACGAGTTCAG -CCAACAGGTTTCACACGAGCATAG -CCAACAGGTTTCACACGAGACAAG -CCAACAGGTTTCACACGAAAGCAG -CCAACAGGTTTCACACGACGTCAA -CCAACAGGTTTCACACGAGCTGAA -CCAACAGGTTTCACACGAAGTACG -CCAACAGGTTTCACACGAATCCGA -CCAACAGGTTTCACACGAATGGGA -CCAACAGGTTTCACACGAGTGCAA -CCAACAGGTTTCACACGAGAGGAA -CCAACAGGTTTCACACGACAGGTA -CCAACAGGTTTCACACGAGACTCT -CCAACAGGTTTCACACGAAGTCCT -CCAACAGGTTTCACACGATAAGCC -CCAACAGGTTTCACACGAATAGCC -CCAACAGGTTTCACACGATAACCG -CCAACAGGTTTCACACGAATGCCA -CCAACAGGTTTCTCACAGGGAAAC -CCAACAGGTTTCTCACAGAACACC -CCAACAGGTTTCTCACAGATCGAG -CCAACAGGTTTCTCACAGCTCCTT -CCAACAGGTTTCTCACAGCCTGTT -CCAACAGGTTTCTCACAGCGGTTT -CCAACAGGTTTCTCACAGGTGGTT -CCAACAGGTTTCTCACAGGCCTTT -CCAACAGGTTTCTCACAGGGTCTT -CCAACAGGTTTCTCACAGACGCTT -CCAACAGGTTTCTCACAGAGCGTT -CCAACAGGTTTCTCACAGTTCGTC -CCAACAGGTTTCTCACAGTCTCTC -CCAACAGGTTTCTCACAGTGGATC -CCAACAGGTTTCTCACAGCACTTC -CCAACAGGTTTCTCACAGGTACTC -CCAACAGGTTTCTCACAGGATGTC -CCAACAGGTTTCTCACAGACAGTC -CCAACAGGTTTCTCACAGTTGCTG -CCAACAGGTTTCTCACAGTCCATG -CCAACAGGTTTCTCACAGTGTGTG -CCAACAGGTTTCTCACAGCTAGTG -CCAACAGGTTTCTCACAGCATCTG -CCAACAGGTTTCTCACAGGAGTTG -CCAACAGGTTTCTCACAGAGACTG -CCAACAGGTTTCTCACAGTCGGTA -CCAACAGGTTTCTCACAGTGCCTA -CCAACAGGTTTCTCACAGCCACTA -CCAACAGGTTTCTCACAGGGAGTA -CCAACAGGTTTCTCACAGTCGTCT -CCAACAGGTTTCTCACAGTGCACT -CCAACAGGTTTCTCACAGCTGACT -CCAACAGGTTTCTCACAGCAACCT -CCAACAGGTTTCTCACAGGCTACT -CCAACAGGTTTCTCACAGGGATCT -CCAACAGGTTTCTCACAGAAGGCT -CCAACAGGTTTCTCACAGTCAACC -CCAACAGGTTTCTCACAGTGTTCC -CCAACAGGTTTCTCACAGATTCCC -CCAACAGGTTTCTCACAGTTCTCG -CCAACAGGTTTCTCACAGTAGACG -CCAACAGGTTTCTCACAGGTAACG -CCAACAGGTTTCTCACAGACTTCG -CCAACAGGTTTCTCACAGTACGCA -CCAACAGGTTTCTCACAGCTTGCA -CCAACAGGTTTCTCACAGCGAACA -CCAACAGGTTTCTCACAGCAGTCA -CCAACAGGTTTCTCACAGGATCCA -CCAACAGGTTTCTCACAGACGACA -CCAACAGGTTTCTCACAGAGCTCA -CCAACAGGTTTCTCACAGTCACGT -CCAACAGGTTTCTCACAGCGTAGT -CCAACAGGTTTCTCACAGGTCAGT -CCAACAGGTTTCTCACAGGAAGGT -CCAACAGGTTTCTCACAGAACCGT -CCAACAGGTTTCTCACAGTTGTGC -CCAACAGGTTTCTCACAGCTAAGC -CCAACAGGTTTCTCACAGACTAGC -CCAACAGGTTTCTCACAGAGATGC -CCAACAGGTTTCTCACAGTGAAGG -CCAACAGGTTTCTCACAGCAATGG -CCAACAGGTTTCTCACAGATGAGG -CCAACAGGTTTCTCACAGAATGGG -CCAACAGGTTTCTCACAGTCCTGA -CCAACAGGTTTCTCACAGTAGCGA -CCAACAGGTTTCTCACAGCACAGA -CCAACAGGTTTCTCACAGGCAAGA -CCAACAGGTTTCTCACAGGGTTGA -CCAACAGGTTTCTCACAGTCCGAT -CCAACAGGTTTCTCACAGTGGCAT -CCAACAGGTTTCTCACAGCGAGAT -CCAACAGGTTTCTCACAGTACCAC -CCAACAGGTTTCTCACAGCAGAAC -CCAACAGGTTTCTCACAGGTCTAC -CCAACAGGTTTCTCACAGACGTAC -CCAACAGGTTTCTCACAGAGTGAC -CCAACAGGTTTCTCACAGCTGTAG -CCAACAGGTTTCTCACAGCCTAAG -CCAACAGGTTTCTCACAGGTTCAG -CCAACAGGTTTCTCACAGGCATAG -CCAACAGGTTTCTCACAGGACAAG -CCAACAGGTTTCTCACAGAAGCAG -CCAACAGGTTTCTCACAGCGTCAA -CCAACAGGTTTCTCACAGGCTGAA -CCAACAGGTTTCTCACAGAGTACG -CCAACAGGTTTCTCACAGATCCGA -CCAACAGGTTTCTCACAGATGGGA -CCAACAGGTTTCTCACAGGTGCAA -CCAACAGGTTTCTCACAGGAGGAA -CCAACAGGTTTCTCACAGCAGGTA -CCAACAGGTTTCTCACAGGACTCT -CCAACAGGTTTCTCACAGAGTCCT -CCAACAGGTTTCTCACAGTAAGCC -CCAACAGGTTTCTCACAGATAGCC -CCAACAGGTTTCTCACAGTAACCG -CCAACAGGTTTCTCACAGATGCCA -CCAACAGGTTTCCCAGATGGAAAC -CCAACAGGTTTCCCAGATAACACC -CCAACAGGTTTCCCAGATATCGAG -CCAACAGGTTTCCCAGATCTCCTT -CCAACAGGTTTCCCAGATCCTGTT -CCAACAGGTTTCCCAGATCGGTTT -CCAACAGGTTTCCCAGATGTGGTT -CCAACAGGTTTCCCAGATGCCTTT -CCAACAGGTTTCCCAGATGGTCTT -CCAACAGGTTTCCCAGATACGCTT -CCAACAGGTTTCCCAGATAGCGTT -CCAACAGGTTTCCCAGATTTCGTC -CCAACAGGTTTCCCAGATTCTCTC -CCAACAGGTTTCCCAGATTGGATC -CCAACAGGTTTCCCAGATCACTTC -CCAACAGGTTTCCCAGATGTACTC -CCAACAGGTTTCCCAGATGATGTC -CCAACAGGTTTCCCAGATACAGTC -CCAACAGGTTTCCCAGATTTGCTG -CCAACAGGTTTCCCAGATTCCATG -CCAACAGGTTTCCCAGATTGTGTG -CCAACAGGTTTCCCAGATCTAGTG -CCAACAGGTTTCCCAGATCATCTG -CCAACAGGTTTCCCAGATGAGTTG -CCAACAGGTTTCCCAGATAGACTG -CCAACAGGTTTCCCAGATTCGGTA -CCAACAGGTTTCCCAGATTGCCTA -CCAACAGGTTTCCCAGATCCACTA -CCAACAGGTTTCCCAGATGGAGTA -CCAACAGGTTTCCCAGATTCGTCT -CCAACAGGTTTCCCAGATTGCACT -CCAACAGGTTTCCCAGATCTGACT -CCAACAGGTTTCCCAGATCAACCT -CCAACAGGTTTCCCAGATGCTACT -CCAACAGGTTTCCCAGATGGATCT -CCAACAGGTTTCCCAGATAAGGCT -CCAACAGGTTTCCCAGATTCAACC -CCAACAGGTTTCCCAGATTGTTCC -CCAACAGGTTTCCCAGATATTCCC -CCAACAGGTTTCCCAGATTTCTCG -CCAACAGGTTTCCCAGATTAGACG -CCAACAGGTTTCCCAGATGTAACG -CCAACAGGTTTCCCAGATACTTCG -CCAACAGGTTTCCCAGATTACGCA -CCAACAGGTTTCCCAGATCTTGCA -CCAACAGGTTTCCCAGATCGAACA -CCAACAGGTTTCCCAGATCAGTCA -CCAACAGGTTTCCCAGATGATCCA -CCAACAGGTTTCCCAGATACGACA -CCAACAGGTTTCCCAGATAGCTCA -CCAACAGGTTTCCCAGATTCACGT -CCAACAGGTTTCCCAGATCGTAGT -CCAACAGGTTTCCCAGATGTCAGT -CCAACAGGTTTCCCAGATGAAGGT -CCAACAGGTTTCCCAGATAACCGT -CCAACAGGTTTCCCAGATTTGTGC -CCAACAGGTTTCCCAGATCTAAGC -CCAACAGGTTTCCCAGATACTAGC -CCAACAGGTTTCCCAGATAGATGC -CCAACAGGTTTCCCAGATTGAAGG -CCAACAGGTTTCCCAGATCAATGG -CCAACAGGTTTCCCAGATATGAGG -CCAACAGGTTTCCCAGATAATGGG -CCAACAGGTTTCCCAGATTCCTGA -CCAACAGGTTTCCCAGATTAGCGA -CCAACAGGTTTCCCAGATCACAGA -CCAACAGGTTTCCCAGATGCAAGA -CCAACAGGTTTCCCAGATGGTTGA -CCAACAGGTTTCCCAGATTCCGAT -CCAACAGGTTTCCCAGATTGGCAT -CCAACAGGTTTCCCAGATCGAGAT -CCAACAGGTTTCCCAGATTACCAC -CCAACAGGTTTCCCAGATCAGAAC -CCAACAGGTTTCCCAGATGTCTAC -CCAACAGGTTTCCCAGATACGTAC -CCAACAGGTTTCCCAGATAGTGAC -CCAACAGGTTTCCCAGATCTGTAG -CCAACAGGTTTCCCAGATCCTAAG -CCAACAGGTTTCCCAGATGTTCAG -CCAACAGGTTTCCCAGATGCATAG -CCAACAGGTTTCCCAGATGACAAG -CCAACAGGTTTCCCAGATAAGCAG -CCAACAGGTTTCCCAGATCGTCAA -CCAACAGGTTTCCCAGATGCTGAA -CCAACAGGTTTCCCAGATAGTACG -CCAACAGGTTTCCCAGATATCCGA -CCAACAGGTTTCCCAGATATGGGA -CCAACAGGTTTCCCAGATGTGCAA -CCAACAGGTTTCCCAGATGAGGAA -CCAACAGGTTTCCCAGATCAGGTA -CCAACAGGTTTCCCAGATGACTCT -CCAACAGGTTTCCCAGATAGTCCT -CCAACAGGTTTCCCAGATTAAGCC -CCAACAGGTTTCCCAGATATAGCC -CCAACAGGTTTCCCAGATTAACCG -CCAACAGGTTTCCCAGATATGCCA -CCAACAGGTTTCACAACGGGAAAC -CCAACAGGTTTCACAACGAACACC -CCAACAGGTTTCACAACGATCGAG -CCAACAGGTTTCACAACGCTCCTT -CCAACAGGTTTCACAACGCCTGTT -CCAACAGGTTTCACAACGCGGTTT -CCAACAGGTTTCACAACGGTGGTT -CCAACAGGTTTCACAACGGCCTTT -CCAACAGGTTTCACAACGGGTCTT -CCAACAGGTTTCACAACGACGCTT -CCAACAGGTTTCACAACGAGCGTT -CCAACAGGTTTCACAACGTTCGTC -CCAACAGGTTTCACAACGTCTCTC -CCAACAGGTTTCACAACGTGGATC -CCAACAGGTTTCACAACGCACTTC -CCAACAGGTTTCACAACGGTACTC -CCAACAGGTTTCACAACGGATGTC -CCAACAGGTTTCACAACGACAGTC -CCAACAGGTTTCACAACGTTGCTG -CCAACAGGTTTCACAACGTCCATG -CCAACAGGTTTCACAACGTGTGTG -CCAACAGGTTTCACAACGCTAGTG -CCAACAGGTTTCACAACGCATCTG -CCAACAGGTTTCACAACGGAGTTG -CCAACAGGTTTCACAACGAGACTG -CCAACAGGTTTCACAACGTCGGTA -CCAACAGGTTTCACAACGTGCCTA -CCAACAGGTTTCACAACGCCACTA -CCAACAGGTTTCACAACGGGAGTA -CCAACAGGTTTCACAACGTCGTCT -CCAACAGGTTTCACAACGTGCACT -CCAACAGGTTTCACAACGCTGACT -CCAACAGGTTTCACAACGCAACCT -CCAACAGGTTTCACAACGGCTACT -CCAACAGGTTTCACAACGGGATCT -CCAACAGGTTTCACAACGAAGGCT -CCAACAGGTTTCACAACGTCAACC -CCAACAGGTTTCACAACGTGTTCC -CCAACAGGTTTCACAACGATTCCC -CCAACAGGTTTCACAACGTTCTCG -CCAACAGGTTTCACAACGTAGACG -CCAACAGGTTTCACAACGGTAACG -CCAACAGGTTTCACAACGACTTCG -CCAACAGGTTTCACAACGTACGCA -CCAACAGGTTTCACAACGCTTGCA -CCAACAGGTTTCACAACGCGAACA -CCAACAGGTTTCACAACGCAGTCA -CCAACAGGTTTCACAACGGATCCA -CCAACAGGTTTCACAACGACGACA -CCAACAGGTTTCACAACGAGCTCA -CCAACAGGTTTCACAACGTCACGT -CCAACAGGTTTCACAACGCGTAGT -CCAACAGGTTTCACAACGGTCAGT -CCAACAGGTTTCACAACGGAAGGT -CCAACAGGTTTCACAACGAACCGT -CCAACAGGTTTCACAACGTTGTGC -CCAACAGGTTTCACAACGCTAAGC -CCAACAGGTTTCACAACGACTAGC -CCAACAGGTTTCACAACGAGATGC -CCAACAGGTTTCACAACGTGAAGG -CCAACAGGTTTCACAACGCAATGG -CCAACAGGTTTCACAACGATGAGG -CCAACAGGTTTCACAACGAATGGG -CCAACAGGTTTCACAACGTCCTGA -CCAACAGGTTTCACAACGTAGCGA -CCAACAGGTTTCACAACGCACAGA -CCAACAGGTTTCACAACGGCAAGA -CCAACAGGTTTCACAACGGGTTGA -CCAACAGGTTTCACAACGTCCGAT -CCAACAGGTTTCACAACGTGGCAT -CCAACAGGTTTCACAACGCGAGAT -CCAACAGGTTTCACAACGTACCAC -CCAACAGGTTTCACAACGCAGAAC -CCAACAGGTTTCACAACGGTCTAC -CCAACAGGTTTCACAACGACGTAC -CCAACAGGTTTCACAACGAGTGAC -CCAACAGGTTTCACAACGCTGTAG -CCAACAGGTTTCACAACGCCTAAG -CCAACAGGTTTCACAACGGTTCAG -CCAACAGGTTTCACAACGGCATAG -CCAACAGGTTTCACAACGGACAAG -CCAACAGGTTTCACAACGAAGCAG -CCAACAGGTTTCACAACGCGTCAA -CCAACAGGTTTCACAACGGCTGAA -CCAACAGGTTTCACAACGAGTACG -CCAACAGGTTTCACAACGATCCGA -CCAACAGGTTTCACAACGATGGGA -CCAACAGGTTTCACAACGGTGCAA -CCAACAGGTTTCACAACGGAGGAA -CCAACAGGTTTCACAACGCAGGTA -CCAACAGGTTTCACAACGGACTCT -CCAACAGGTTTCACAACGAGTCCT -CCAACAGGTTTCACAACGTAAGCC -CCAACAGGTTTCACAACGATAGCC -CCAACAGGTTTCACAACGTAACCG -CCAACAGGTTTCACAACGATGCCA -CCAACAGGTTTCTCAAGCGGAAAC -CCAACAGGTTTCTCAAGCAACACC -CCAACAGGTTTCTCAAGCATCGAG -CCAACAGGTTTCTCAAGCCTCCTT -CCAACAGGTTTCTCAAGCCCTGTT -CCAACAGGTTTCTCAAGCCGGTTT -CCAACAGGTTTCTCAAGCGTGGTT -CCAACAGGTTTCTCAAGCGCCTTT -CCAACAGGTTTCTCAAGCGGTCTT -CCAACAGGTTTCTCAAGCACGCTT -CCAACAGGTTTCTCAAGCAGCGTT -CCAACAGGTTTCTCAAGCTTCGTC -CCAACAGGTTTCTCAAGCTCTCTC -CCAACAGGTTTCTCAAGCTGGATC -CCAACAGGTTTCTCAAGCCACTTC -CCAACAGGTTTCTCAAGCGTACTC -CCAACAGGTTTCTCAAGCGATGTC -CCAACAGGTTTCTCAAGCACAGTC -CCAACAGGTTTCTCAAGCTTGCTG -CCAACAGGTTTCTCAAGCTCCATG -CCAACAGGTTTCTCAAGCTGTGTG -CCAACAGGTTTCTCAAGCCTAGTG -CCAACAGGTTTCTCAAGCCATCTG -CCAACAGGTTTCTCAAGCGAGTTG -CCAACAGGTTTCTCAAGCAGACTG -CCAACAGGTTTCTCAAGCTCGGTA -CCAACAGGTTTCTCAAGCTGCCTA -CCAACAGGTTTCTCAAGCCCACTA -CCAACAGGTTTCTCAAGCGGAGTA -CCAACAGGTTTCTCAAGCTCGTCT -CCAACAGGTTTCTCAAGCTGCACT -CCAACAGGTTTCTCAAGCCTGACT -CCAACAGGTTTCTCAAGCCAACCT -CCAACAGGTTTCTCAAGCGCTACT -CCAACAGGTTTCTCAAGCGGATCT -CCAACAGGTTTCTCAAGCAAGGCT -CCAACAGGTTTCTCAAGCTCAACC -CCAACAGGTTTCTCAAGCTGTTCC -CCAACAGGTTTCTCAAGCATTCCC -CCAACAGGTTTCTCAAGCTTCTCG -CCAACAGGTTTCTCAAGCTAGACG -CCAACAGGTTTCTCAAGCGTAACG -CCAACAGGTTTCTCAAGCACTTCG -CCAACAGGTTTCTCAAGCTACGCA -CCAACAGGTTTCTCAAGCCTTGCA -CCAACAGGTTTCTCAAGCCGAACA -CCAACAGGTTTCTCAAGCCAGTCA -CCAACAGGTTTCTCAAGCGATCCA -CCAACAGGTTTCTCAAGCACGACA -CCAACAGGTTTCTCAAGCAGCTCA -CCAACAGGTTTCTCAAGCTCACGT -CCAACAGGTTTCTCAAGCCGTAGT -CCAACAGGTTTCTCAAGCGTCAGT -CCAACAGGTTTCTCAAGCGAAGGT -CCAACAGGTTTCTCAAGCAACCGT -CCAACAGGTTTCTCAAGCTTGTGC -CCAACAGGTTTCTCAAGCCTAAGC -CCAACAGGTTTCTCAAGCACTAGC -CCAACAGGTTTCTCAAGCAGATGC -CCAACAGGTTTCTCAAGCTGAAGG -CCAACAGGTTTCTCAAGCCAATGG -CCAACAGGTTTCTCAAGCATGAGG -CCAACAGGTTTCTCAAGCAATGGG -CCAACAGGTTTCTCAAGCTCCTGA -CCAACAGGTTTCTCAAGCTAGCGA -CCAACAGGTTTCTCAAGCCACAGA -CCAACAGGTTTCTCAAGCGCAAGA -CCAACAGGTTTCTCAAGCGGTTGA -CCAACAGGTTTCTCAAGCTCCGAT -CCAACAGGTTTCTCAAGCTGGCAT -CCAACAGGTTTCTCAAGCCGAGAT -CCAACAGGTTTCTCAAGCTACCAC -CCAACAGGTTTCTCAAGCCAGAAC -CCAACAGGTTTCTCAAGCGTCTAC -CCAACAGGTTTCTCAAGCACGTAC -CCAACAGGTTTCTCAAGCAGTGAC -CCAACAGGTTTCTCAAGCCTGTAG -CCAACAGGTTTCTCAAGCCCTAAG -CCAACAGGTTTCTCAAGCGTTCAG -CCAACAGGTTTCTCAAGCGCATAG -CCAACAGGTTTCTCAAGCGACAAG -CCAACAGGTTTCTCAAGCAAGCAG -CCAACAGGTTTCTCAAGCCGTCAA -CCAACAGGTTTCTCAAGCGCTGAA -CCAACAGGTTTCTCAAGCAGTACG -CCAACAGGTTTCTCAAGCATCCGA -CCAACAGGTTTCTCAAGCATGGGA -CCAACAGGTTTCTCAAGCGTGCAA -CCAACAGGTTTCTCAAGCGAGGAA -CCAACAGGTTTCTCAAGCCAGGTA -CCAACAGGTTTCTCAAGCGACTCT -CCAACAGGTTTCTCAAGCAGTCCT -CCAACAGGTTTCTCAAGCTAAGCC -CCAACAGGTTTCTCAAGCATAGCC -CCAACAGGTTTCTCAAGCTAACCG -CCAACAGGTTTCTCAAGCATGCCA -CCAACAGGTTTCCGTTCAGGAAAC -CCAACAGGTTTCCGTTCAAACACC -CCAACAGGTTTCCGTTCAATCGAG -CCAACAGGTTTCCGTTCACTCCTT -CCAACAGGTTTCCGTTCACCTGTT -CCAACAGGTTTCCGTTCACGGTTT -CCAACAGGTTTCCGTTCAGTGGTT -CCAACAGGTTTCCGTTCAGCCTTT -CCAACAGGTTTCCGTTCAGGTCTT -CCAACAGGTTTCCGTTCAACGCTT -CCAACAGGTTTCCGTTCAAGCGTT -CCAACAGGTTTCCGTTCATTCGTC -CCAACAGGTTTCCGTTCATCTCTC -CCAACAGGTTTCCGTTCATGGATC -CCAACAGGTTTCCGTTCACACTTC -CCAACAGGTTTCCGTTCAGTACTC -CCAACAGGTTTCCGTTCAGATGTC -CCAACAGGTTTCCGTTCAACAGTC -CCAACAGGTTTCCGTTCATTGCTG -CCAACAGGTTTCCGTTCATCCATG -CCAACAGGTTTCCGTTCATGTGTG -CCAACAGGTTTCCGTTCACTAGTG -CCAACAGGTTTCCGTTCACATCTG -CCAACAGGTTTCCGTTCAGAGTTG -CCAACAGGTTTCCGTTCAAGACTG -CCAACAGGTTTCCGTTCATCGGTA -CCAACAGGTTTCCGTTCATGCCTA -CCAACAGGTTTCCGTTCACCACTA -CCAACAGGTTTCCGTTCAGGAGTA -CCAACAGGTTTCCGTTCATCGTCT -CCAACAGGTTTCCGTTCATGCACT -CCAACAGGTTTCCGTTCACTGACT -CCAACAGGTTTCCGTTCACAACCT -CCAACAGGTTTCCGTTCAGCTACT -CCAACAGGTTTCCGTTCAGGATCT -CCAACAGGTTTCCGTTCAAAGGCT -CCAACAGGTTTCCGTTCATCAACC -CCAACAGGTTTCCGTTCATGTTCC -CCAACAGGTTTCCGTTCAATTCCC -CCAACAGGTTTCCGTTCATTCTCG -CCAACAGGTTTCCGTTCATAGACG -CCAACAGGTTTCCGTTCAGTAACG -CCAACAGGTTTCCGTTCAACTTCG -CCAACAGGTTTCCGTTCATACGCA -CCAACAGGTTTCCGTTCACTTGCA -CCAACAGGTTTCCGTTCACGAACA -CCAACAGGTTTCCGTTCACAGTCA -CCAACAGGTTTCCGTTCAGATCCA -CCAACAGGTTTCCGTTCAACGACA -CCAACAGGTTTCCGTTCAAGCTCA -CCAACAGGTTTCCGTTCATCACGT -CCAACAGGTTTCCGTTCACGTAGT -CCAACAGGTTTCCGTTCAGTCAGT -CCAACAGGTTTCCGTTCAGAAGGT -CCAACAGGTTTCCGTTCAAACCGT -CCAACAGGTTTCCGTTCATTGTGC -CCAACAGGTTTCCGTTCACTAAGC -CCAACAGGTTTCCGTTCAACTAGC -CCAACAGGTTTCCGTTCAAGATGC -CCAACAGGTTTCCGTTCATGAAGG -CCAACAGGTTTCCGTTCACAATGG -CCAACAGGTTTCCGTTCAATGAGG -CCAACAGGTTTCCGTTCAAATGGG -CCAACAGGTTTCCGTTCATCCTGA -CCAACAGGTTTCCGTTCATAGCGA -CCAACAGGTTTCCGTTCACACAGA -CCAACAGGTTTCCGTTCAGCAAGA -CCAACAGGTTTCCGTTCAGGTTGA -CCAACAGGTTTCCGTTCATCCGAT -CCAACAGGTTTCCGTTCATGGCAT -CCAACAGGTTTCCGTTCACGAGAT -CCAACAGGTTTCCGTTCATACCAC -CCAACAGGTTTCCGTTCACAGAAC -CCAACAGGTTTCCGTTCAGTCTAC -CCAACAGGTTTCCGTTCAACGTAC -CCAACAGGTTTCCGTTCAAGTGAC -CCAACAGGTTTCCGTTCACTGTAG -CCAACAGGTTTCCGTTCACCTAAG -CCAACAGGTTTCCGTTCAGTTCAG -CCAACAGGTTTCCGTTCAGCATAG -CCAACAGGTTTCCGTTCAGACAAG -CCAACAGGTTTCCGTTCAAAGCAG -CCAACAGGTTTCCGTTCACGTCAA -CCAACAGGTTTCCGTTCAGCTGAA -CCAACAGGTTTCCGTTCAAGTACG -CCAACAGGTTTCCGTTCAATCCGA -CCAACAGGTTTCCGTTCAATGGGA -CCAACAGGTTTCCGTTCAGTGCAA -CCAACAGGTTTCCGTTCAGAGGAA -CCAACAGGTTTCCGTTCACAGGTA -CCAACAGGTTTCCGTTCAGACTCT -CCAACAGGTTTCCGTTCAAGTCCT -CCAACAGGTTTCCGTTCATAAGCC -CCAACAGGTTTCCGTTCAATAGCC -CCAACAGGTTTCCGTTCATAACCG -CCAACAGGTTTCCGTTCAATGCCA -CCAACAGGTTTCAGTCGTGGAAAC -CCAACAGGTTTCAGTCGTAACACC -CCAACAGGTTTCAGTCGTATCGAG -CCAACAGGTTTCAGTCGTCTCCTT -CCAACAGGTTTCAGTCGTCCTGTT -CCAACAGGTTTCAGTCGTCGGTTT -CCAACAGGTTTCAGTCGTGTGGTT -CCAACAGGTTTCAGTCGTGCCTTT -CCAACAGGTTTCAGTCGTGGTCTT -CCAACAGGTTTCAGTCGTACGCTT -CCAACAGGTTTCAGTCGTAGCGTT -CCAACAGGTTTCAGTCGTTTCGTC -CCAACAGGTTTCAGTCGTTCTCTC -CCAACAGGTTTCAGTCGTTGGATC -CCAACAGGTTTCAGTCGTCACTTC -CCAACAGGTTTCAGTCGTGTACTC -CCAACAGGTTTCAGTCGTGATGTC -CCAACAGGTTTCAGTCGTACAGTC -CCAACAGGTTTCAGTCGTTTGCTG -CCAACAGGTTTCAGTCGTTCCATG -CCAACAGGTTTCAGTCGTTGTGTG -CCAACAGGTTTCAGTCGTCTAGTG -CCAACAGGTTTCAGTCGTCATCTG -CCAACAGGTTTCAGTCGTGAGTTG -CCAACAGGTTTCAGTCGTAGACTG -CCAACAGGTTTCAGTCGTTCGGTA -CCAACAGGTTTCAGTCGTTGCCTA -CCAACAGGTTTCAGTCGTCCACTA -CCAACAGGTTTCAGTCGTGGAGTA -CCAACAGGTTTCAGTCGTTCGTCT -CCAACAGGTTTCAGTCGTTGCACT -CCAACAGGTTTCAGTCGTCTGACT -CCAACAGGTTTCAGTCGTCAACCT -CCAACAGGTTTCAGTCGTGCTACT -CCAACAGGTTTCAGTCGTGGATCT -CCAACAGGTTTCAGTCGTAAGGCT -CCAACAGGTTTCAGTCGTTCAACC -CCAACAGGTTTCAGTCGTTGTTCC -CCAACAGGTTTCAGTCGTATTCCC -CCAACAGGTTTCAGTCGTTTCTCG -CCAACAGGTTTCAGTCGTTAGACG -CCAACAGGTTTCAGTCGTGTAACG -CCAACAGGTTTCAGTCGTACTTCG -CCAACAGGTTTCAGTCGTTACGCA -CCAACAGGTTTCAGTCGTCTTGCA -CCAACAGGTTTCAGTCGTCGAACA -CCAACAGGTTTCAGTCGTCAGTCA -CCAACAGGTTTCAGTCGTGATCCA -CCAACAGGTTTCAGTCGTACGACA -CCAACAGGTTTCAGTCGTAGCTCA -CCAACAGGTTTCAGTCGTTCACGT -CCAACAGGTTTCAGTCGTCGTAGT -CCAACAGGTTTCAGTCGTGTCAGT -CCAACAGGTTTCAGTCGTGAAGGT -CCAACAGGTTTCAGTCGTAACCGT -CCAACAGGTTTCAGTCGTTTGTGC -CCAACAGGTTTCAGTCGTCTAAGC -CCAACAGGTTTCAGTCGTACTAGC -CCAACAGGTTTCAGTCGTAGATGC -CCAACAGGTTTCAGTCGTTGAAGG -CCAACAGGTTTCAGTCGTCAATGG -CCAACAGGTTTCAGTCGTATGAGG -CCAACAGGTTTCAGTCGTAATGGG -CCAACAGGTTTCAGTCGTTCCTGA -CCAACAGGTTTCAGTCGTTAGCGA -CCAACAGGTTTCAGTCGTCACAGA -CCAACAGGTTTCAGTCGTGCAAGA -CCAACAGGTTTCAGTCGTGGTTGA -CCAACAGGTTTCAGTCGTTCCGAT -CCAACAGGTTTCAGTCGTTGGCAT -CCAACAGGTTTCAGTCGTCGAGAT -CCAACAGGTTTCAGTCGTTACCAC -CCAACAGGTTTCAGTCGTCAGAAC -CCAACAGGTTTCAGTCGTGTCTAC -CCAACAGGTTTCAGTCGTACGTAC -CCAACAGGTTTCAGTCGTAGTGAC -CCAACAGGTTTCAGTCGTCTGTAG -CCAACAGGTTTCAGTCGTCCTAAG -CCAACAGGTTTCAGTCGTGTTCAG -CCAACAGGTTTCAGTCGTGCATAG -CCAACAGGTTTCAGTCGTGACAAG -CCAACAGGTTTCAGTCGTAAGCAG -CCAACAGGTTTCAGTCGTCGTCAA -CCAACAGGTTTCAGTCGTGCTGAA -CCAACAGGTTTCAGTCGTAGTACG -CCAACAGGTTTCAGTCGTATCCGA -CCAACAGGTTTCAGTCGTATGGGA -CCAACAGGTTTCAGTCGTGTGCAA -CCAACAGGTTTCAGTCGTGAGGAA -CCAACAGGTTTCAGTCGTCAGGTA -CCAACAGGTTTCAGTCGTGACTCT -CCAACAGGTTTCAGTCGTAGTCCT -CCAACAGGTTTCAGTCGTTAAGCC -CCAACAGGTTTCAGTCGTATAGCC -CCAACAGGTTTCAGTCGTTAACCG -CCAACAGGTTTCAGTCGTATGCCA -CCAACAGGTTTCAGTGTCGGAAAC -CCAACAGGTTTCAGTGTCAACACC -CCAACAGGTTTCAGTGTCATCGAG -CCAACAGGTTTCAGTGTCCTCCTT -CCAACAGGTTTCAGTGTCCCTGTT -CCAACAGGTTTCAGTGTCCGGTTT -CCAACAGGTTTCAGTGTCGTGGTT -CCAACAGGTTTCAGTGTCGCCTTT -CCAACAGGTTTCAGTGTCGGTCTT -CCAACAGGTTTCAGTGTCACGCTT -CCAACAGGTTTCAGTGTCAGCGTT -CCAACAGGTTTCAGTGTCTTCGTC -CCAACAGGTTTCAGTGTCTCTCTC -CCAACAGGTTTCAGTGTCTGGATC -CCAACAGGTTTCAGTGTCCACTTC -CCAACAGGTTTCAGTGTCGTACTC -CCAACAGGTTTCAGTGTCGATGTC -CCAACAGGTTTCAGTGTCACAGTC -CCAACAGGTTTCAGTGTCTTGCTG -CCAACAGGTTTCAGTGTCTCCATG -CCAACAGGTTTCAGTGTCTGTGTG -CCAACAGGTTTCAGTGTCCTAGTG -CCAACAGGTTTCAGTGTCCATCTG -CCAACAGGTTTCAGTGTCGAGTTG -CCAACAGGTTTCAGTGTCAGACTG -CCAACAGGTTTCAGTGTCTCGGTA -CCAACAGGTTTCAGTGTCTGCCTA -CCAACAGGTTTCAGTGTCCCACTA -CCAACAGGTTTCAGTGTCGGAGTA -CCAACAGGTTTCAGTGTCTCGTCT -CCAACAGGTTTCAGTGTCTGCACT -CCAACAGGTTTCAGTGTCCTGACT -CCAACAGGTTTCAGTGTCCAACCT -CCAACAGGTTTCAGTGTCGCTACT -CCAACAGGTTTCAGTGTCGGATCT -CCAACAGGTTTCAGTGTCAAGGCT -CCAACAGGTTTCAGTGTCTCAACC -CCAACAGGTTTCAGTGTCTGTTCC -CCAACAGGTTTCAGTGTCATTCCC -CCAACAGGTTTCAGTGTCTTCTCG -CCAACAGGTTTCAGTGTCTAGACG -CCAACAGGTTTCAGTGTCGTAACG -CCAACAGGTTTCAGTGTCACTTCG -CCAACAGGTTTCAGTGTCTACGCA -CCAACAGGTTTCAGTGTCCTTGCA -CCAACAGGTTTCAGTGTCCGAACA -CCAACAGGTTTCAGTGTCCAGTCA -CCAACAGGTTTCAGTGTCGATCCA -CCAACAGGTTTCAGTGTCACGACA -CCAACAGGTTTCAGTGTCAGCTCA -CCAACAGGTTTCAGTGTCTCACGT -CCAACAGGTTTCAGTGTCCGTAGT -CCAACAGGTTTCAGTGTCGTCAGT -CCAACAGGTTTCAGTGTCGAAGGT -CCAACAGGTTTCAGTGTCAACCGT -CCAACAGGTTTCAGTGTCTTGTGC -CCAACAGGTTTCAGTGTCCTAAGC -CCAACAGGTTTCAGTGTCACTAGC -CCAACAGGTTTCAGTGTCAGATGC -CCAACAGGTTTCAGTGTCTGAAGG -CCAACAGGTTTCAGTGTCCAATGG -CCAACAGGTTTCAGTGTCATGAGG -CCAACAGGTTTCAGTGTCAATGGG -CCAACAGGTTTCAGTGTCTCCTGA -CCAACAGGTTTCAGTGTCTAGCGA -CCAACAGGTTTCAGTGTCCACAGA -CCAACAGGTTTCAGTGTCGCAAGA -CCAACAGGTTTCAGTGTCGGTTGA -CCAACAGGTTTCAGTGTCTCCGAT -CCAACAGGTTTCAGTGTCTGGCAT -CCAACAGGTTTCAGTGTCCGAGAT -CCAACAGGTTTCAGTGTCTACCAC -CCAACAGGTTTCAGTGTCCAGAAC -CCAACAGGTTTCAGTGTCGTCTAC -CCAACAGGTTTCAGTGTCACGTAC -CCAACAGGTTTCAGTGTCAGTGAC -CCAACAGGTTTCAGTGTCCTGTAG -CCAACAGGTTTCAGTGTCCCTAAG -CCAACAGGTTTCAGTGTCGTTCAG -CCAACAGGTTTCAGTGTCGCATAG -CCAACAGGTTTCAGTGTCGACAAG -CCAACAGGTTTCAGTGTCAAGCAG -CCAACAGGTTTCAGTGTCCGTCAA -CCAACAGGTTTCAGTGTCGCTGAA -CCAACAGGTTTCAGTGTCAGTACG -CCAACAGGTTTCAGTGTCATCCGA -CCAACAGGTTTCAGTGTCATGGGA -CCAACAGGTTTCAGTGTCGTGCAA -CCAACAGGTTTCAGTGTCGAGGAA -CCAACAGGTTTCAGTGTCCAGGTA -CCAACAGGTTTCAGTGTCGACTCT -CCAACAGGTTTCAGTGTCAGTCCT -CCAACAGGTTTCAGTGTCTAAGCC -CCAACAGGTTTCAGTGTCATAGCC -CCAACAGGTTTCAGTGTCTAACCG -CCAACAGGTTTCAGTGTCATGCCA -CCAACAGGTTTCGGTGAAGGAAAC -CCAACAGGTTTCGGTGAAAACACC -CCAACAGGTTTCGGTGAAATCGAG -CCAACAGGTTTCGGTGAACTCCTT -CCAACAGGTTTCGGTGAACCTGTT -CCAACAGGTTTCGGTGAACGGTTT -CCAACAGGTTTCGGTGAAGTGGTT -CCAACAGGTTTCGGTGAAGCCTTT -CCAACAGGTTTCGGTGAAGGTCTT -CCAACAGGTTTCGGTGAAACGCTT -CCAACAGGTTTCGGTGAAAGCGTT -CCAACAGGTTTCGGTGAATTCGTC -CCAACAGGTTTCGGTGAATCTCTC -CCAACAGGTTTCGGTGAATGGATC -CCAACAGGTTTCGGTGAACACTTC -CCAACAGGTTTCGGTGAAGTACTC -CCAACAGGTTTCGGTGAAGATGTC -CCAACAGGTTTCGGTGAAACAGTC -CCAACAGGTTTCGGTGAATTGCTG -CCAACAGGTTTCGGTGAATCCATG -CCAACAGGTTTCGGTGAATGTGTG -CCAACAGGTTTCGGTGAACTAGTG -CCAACAGGTTTCGGTGAACATCTG -CCAACAGGTTTCGGTGAAGAGTTG -CCAACAGGTTTCGGTGAAAGACTG -CCAACAGGTTTCGGTGAATCGGTA -CCAACAGGTTTCGGTGAATGCCTA -CCAACAGGTTTCGGTGAACCACTA -CCAACAGGTTTCGGTGAAGGAGTA -CCAACAGGTTTCGGTGAATCGTCT -CCAACAGGTTTCGGTGAATGCACT -CCAACAGGTTTCGGTGAACTGACT -CCAACAGGTTTCGGTGAACAACCT -CCAACAGGTTTCGGTGAAGCTACT -CCAACAGGTTTCGGTGAAGGATCT -CCAACAGGTTTCGGTGAAAAGGCT -CCAACAGGTTTCGGTGAATCAACC -CCAACAGGTTTCGGTGAATGTTCC -CCAACAGGTTTCGGTGAAATTCCC -CCAACAGGTTTCGGTGAATTCTCG -CCAACAGGTTTCGGTGAATAGACG -CCAACAGGTTTCGGTGAAGTAACG -CCAACAGGTTTCGGTGAAACTTCG -CCAACAGGTTTCGGTGAATACGCA -CCAACAGGTTTCGGTGAACTTGCA -CCAACAGGTTTCGGTGAACGAACA -CCAACAGGTTTCGGTGAACAGTCA -CCAACAGGTTTCGGTGAAGATCCA -CCAACAGGTTTCGGTGAAACGACA -CCAACAGGTTTCGGTGAAAGCTCA -CCAACAGGTTTCGGTGAATCACGT -CCAACAGGTTTCGGTGAACGTAGT -CCAACAGGTTTCGGTGAAGTCAGT -CCAACAGGTTTCGGTGAAGAAGGT -CCAACAGGTTTCGGTGAAAACCGT -CCAACAGGTTTCGGTGAATTGTGC -CCAACAGGTTTCGGTGAACTAAGC -CCAACAGGTTTCGGTGAAACTAGC -CCAACAGGTTTCGGTGAAAGATGC -CCAACAGGTTTCGGTGAATGAAGG -CCAACAGGTTTCGGTGAACAATGG -CCAACAGGTTTCGGTGAAATGAGG -CCAACAGGTTTCGGTGAAAATGGG -CCAACAGGTTTCGGTGAATCCTGA -CCAACAGGTTTCGGTGAATAGCGA -CCAACAGGTTTCGGTGAACACAGA -CCAACAGGTTTCGGTGAAGCAAGA -CCAACAGGTTTCGGTGAAGGTTGA -CCAACAGGTTTCGGTGAATCCGAT -CCAACAGGTTTCGGTGAATGGCAT -CCAACAGGTTTCGGTGAACGAGAT -CCAACAGGTTTCGGTGAATACCAC -CCAACAGGTTTCGGTGAACAGAAC -CCAACAGGTTTCGGTGAAGTCTAC -CCAACAGGTTTCGGTGAAACGTAC -CCAACAGGTTTCGGTGAAAGTGAC -CCAACAGGTTTCGGTGAACTGTAG -CCAACAGGTTTCGGTGAACCTAAG -CCAACAGGTTTCGGTGAAGTTCAG -CCAACAGGTTTCGGTGAAGCATAG -CCAACAGGTTTCGGTGAAGACAAG -CCAACAGGTTTCGGTGAAAAGCAG -CCAACAGGTTTCGGTGAACGTCAA -CCAACAGGTTTCGGTGAAGCTGAA -CCAACAGGTTTCGGTGAAAGTACG -CCAACAGGTTTCGGTGAAATCCGA -CCAACAGGTTTCGGTGAAATGGGA -CCAACAGGTTTCGGTGAAGTGCAA -CCAACAGGTTTCGGTGAAGAGGAA -CCAACAGGTTTCGGTGAACAGGTA -CCAACAGGTTTCGGTGAAGACTCT -CCAACAGGTTTCGGTGAAAGTCCT -CCAACAGGTTTCGGTGAATAAGCC -CCAACAGGTTTCGGTGAAATAGCC -CCAACAGGTTTCGGTGAATAACCG -CCAACAGGTTTCGGTGAAATGCCA -CCAACAGGTTTCCGTAACGGAAAC -CCAACAGGTTTCCGTAACAACACC -CCAACAGGTTTCCGTAACATCGAG -CCAACAGGTTTCCGTAACCTCCTT -CCAACAGGTTTCCGTAACCCTGTT -CCAACAGGTTTCCGTAACCGGTTT -CCAACAGGTTTCCGTAACGTGGTT -CCAACAGGTTTCCGTAACGCCTTT -CCAACAGGTTTCCGTAACGGTCTT -CCAACAGGTTTCCGTAACACGCTT -CCAACAGGTTTCCGTAACAGCGTT -CCAACAGGTTTCCGTAACTTCGTC -CCAACAGGTTTCCGTAACTCTCTC -CCAACAGGTTTCCGTAACTGGATC -CCAACAGGTTTCCGTAACCACTTC -CCAACAGGTTTCCGTAACGTACTC -CCAACAGGTTTCCGTAACGATGTC -CCAACAGGTTTCCGTAACACAGTC -CCAACAGGTTTCCGTAACTTGCTG -CCAACAGGTTTCCGTAACTCCATG -CCAACAGGTTTCCGTAACTGTGTG -CCAACAGGTTTCCGTAACCTAGTG -CCAACAGGTTTCCGTAACCATCTG -CCAACAGGTTTCCGTAACGAGTTG -CCAACAGGTTTCCGTAACAGACTG -CCAACAGGTTTCCGTAACTCGGTA -CCAACAGGTTTCCGTAACTGCCTA -CCAACAGGTTTCCGTAACCCACTA -CCAACAGGTTTCCGTAACGGAGTA -CCAACAGGTTTCCGTAACTCGTCT -CCAACAGGTTTCCGTAACTGCACT -CCAACAGGTTTCCGTAACCTGACT -CCAACAGGTTTCCGTAACCAACCT -CCAACAGGTTTCCGTAACGCTACT -CCAACAGGTTTCCGTAACGGATCT -CCAACAGGTTTCCGTAACAAGGCT -CCAACAGGTTTCCGTAACTCAACC -CCAACAGGTTTCCGTAACTGTTCC -CCAACAGGTTTCCGTAACATTCCC -CCAACAGGTTTCCGTAACTTCTCG -CCAACAGGTTTCCGTAACTAGACG -CCAACAGGTTTCCGTAACGTAACG -CCAACAGGTTTCCGTAACACTTCG -CCAACAGGTTTCCGTAACTACGCA -CCAACAGGTTTCCGTAACCTTGCA -CCAACAGGTTTCCGTAACCGAACA -CCAACAGGTTTCCGTAACCAGTCA -CCAACAGGTTTCCGTAACGATCCA -CCAACAGGTTTCCGTAACACGACA -CCAACAGGTTTCCGTAACAGCTCA -CCAACAGGTTTCCGTAACTCACGT -CCAACAGGTTTCCGTAACCGTAGT -CCAACAGGTTTCCGTAACGTCAGT -CCAACAGGTTTCCGTAACGAAGGT -CCAACAGGTTTCCGTAACAACCGT -CCAACAGGTTTCCGTAACTTGTGC -CCAACAGGTTTCCGTAACCTAAGC -CCAACAGGTTTCCGTAACACTAGC -CCAACAGGTTTCCGTAACAGATGC -CCAACAGGTTTCCGTAACTGAAGG -CCAACAGGTTTCCGTAACCAATGG -CCAACAGGTTTCCGTAACATGAGG -CCAACAGGTTTCCGTAACAATGGG -CCAACAGGTTTCCGTAACTCCTGA -CCAACAGGTTTCCGTAACTAGCGA -CCAACAGGTTTCCGTAACCACAGA -CCAACAGGTTTCCGTAACGCAAGA -CCAACAGGTTTCCGTAACGGTTGA -CCAACAGGTTTCCGTAACTCCGAT -CCAACAGGTTTCCGTAACTGGCAT -CCAACAGGTTTCCGTAACCGAGAT -CCAACAGGTTTCCGTAACTACCAC -CCAACAGGTTTCCGTAACCAGAAC -CCAACAGGTTTCCGTAACGTCTAC -CCAACAGGTTTCCGTAACACGTAC -CCAACAGGTTTCCGTAACAGTGAC -CCAACAGGTTTCCGTAACCTGTAG -CCAACAGGTTTCCGTAACCCTAAG -CCAACAGGTTTCCGTAACGTTCAG -CCAACAGGTTTCCGTAACGCATAG -CCAACAGGTTTCCGTAACGACAAG -CCAACAGGTTTCCGTAACAAGCAG -CCAACAGGTTTCCGTAACCGTCAA -CCAACAGGTTTCCGTAACGCTGAA -CCAACAGGTTTCCGTAACAGTACG -CCAACAGGTTTCCGTAACATCCGA -CCAACAGGTTTCCGTAACATGGGA -CCAACAGGTTTCCGTAACGTGCAA -CCAACAGGTTTCCGTAACGAGGAA -CCAACAGGTTTCCGTAACCAGGTA -CCAACAGGTTTCCGTAACGACTCT -CCAACAGGTTTCCGTAACAGTCCT -CCAACAGGTTTCCGTAACTAAGCC -CCAACAGGTTTCCGTAACATAGCC -CCAACAGGTTTCCGTAACTAACCG -CCAACAGGTTTCCGTAACATGCCA -CCAACAGGTTTCTGCTTGGGAAAC -CCAACAGGTTTCTGCTTGAACACC -CCAACAGGTTTCTGCTTGATCGAG -CCAACAGGTTTCTGCTTGCTCCTT -CCAACAGGTTTCTGCTTGCCTGTT -CCAACAGGTTTCTGCTTGCGGTTT -CCAACAGGTTTCTGCTTGGTGGTT -CCAACAGGTTTCTGCTTGGCCTTT -CCAACAGGTTTCTGCTTGGGTCTT -CCAACAGGTTTCTGCTTGACGCTT -CCAACAGGTTTCTGCTTGAGCGTT -CCAACAGGTTTCTGCTTGTTCGTC -CCAACAGGTTTCTGCTTGTCTCTC -CCAACAGGTTTCTGCTTGTGGATC -CCAACAGGTTTCTGCTTGCACTTC -CCAACAGGTTTCTGCTTGGTACTC -CCAACAGGTTTCTGCTTGGATGTC -CCAACAGGTTTCTGCTTGACAGTC -CCAACAGGTTTCTGCTTGTTGCTG -CCAACAGGTTTCTGCTTGTCCATG -CCAACAGGTTTCTGCTTGTGTGTG -CCAACAGGTTTCTGCTTGCTAGTG -CCAACAGGTTTCTGCTTGCATCTG -CCAACAGGTTTCTGCTTGGAGTTG -CCAACAGGTTTCTGCTTGAGACTG -CCAACAGGTTTCTGCTTGTCGGTA -CCAACAGGTTTCTGCTTGTGCCTA -CCAACAGGTTTCTGCTTGCCACTA -CCAACAGGTTTCTGCTTGGGAGTA -CCAACAGGTTTCTGCTTGTCGTCT -CCAACAGGTTTCTGCTTGTGCACT -CCAACAGGTTTCTGCTTGCTGACT -CCAACAGGTTTCTGCTTGCAACCT -CCAACAGGTTTCTGCTTGGCTACT -CCAACAGGTTTCTGCTTGGGATCT -CCAACAGGTTTCTGCTTGAAGGCT -CCAACAGGTTTCTGCTTGTCAACC -CCAACAGGTTTCTGCTTGTGTTCC -CCAACAGGTTTCTGCTTGATTCCC -CCAACAGGTTTCTGCTTGTTCTCG -CCAACAGGTTTCTGCTTGTAGACG -CCAACAGGTTTCTGCTTGGTAACG -CCAACAGGTTTCTGCTTGACTTCG -CCAACAGGTTTCTGCTTGTACGCA -CCAACAGGTTTCTGCTTGCTTGCA -CCAACAGGTTTCTGCTTGCGAACA -CCAACAGGTTTCTGCTTGCAGTCA -CCAACAGGTTTCTGCTTGGATCCA -CCAACAGGTTTCTGCTTGACGACA -CCAACAGGTTTCTGCTTGAGCTCA -CCAACAGGTTTCTGCTTGTCACGT -CCAACAGGTTTCTGCTTGCGTAGT -CCAACAGGTTTCTGCTTGGTCAGT -CCAACAGGTTTCTGCTTGGAAGGT -CCAACAGGTTTCTGCTTGAACCGT -CCAACAGGTTTCTGCTTGTTGTGC -CCAACAGGTTTCTGCTTGCTAAGC -CCAACAGGTTTCTGCTTGACTAGC -CCAACAGGTTTCTGCTTGAGATGC -CCAACAGGTTTCTGCTTGTGAAGG -CCAACAGGTTTCTGCTTGCAATGG -CCAACAGGTTTCTGCTTGATGAGG -CCAACAGGTTTCTGCTTGAATGGG -CCAACAGGTTTCTGCTTGTCCTGA -CCAACAGGTTTCTGCTTGTAGCGA -CCAACAGGTTTCTGCTTGCACAGA -CCAACAGGTTTCTGCTTGGCAAGA -CCAACAGGTTTCTGCTTGGGTTGA -CCAACAGGTTTCTGCTTGTCCGAT -CCAACAGGTTTCTGCTTGTGGCAT -CCAACAGGTTTCTGCTTGCGAGAT -CCAACAGGTTTCTGCTTGTACCAC -CCAACAGGTTTCTGCTTGCAGAAC -CCAACAGGTTTCTGCTTGGTCTAC -CCAACAGGTTTCTGCTTGACGTAC -CCAACAGGTTTCTGCTTGAGTGAC -CCAACAGGTTTCTGCTTGCTGTAG -CCAACAGGTTTCTGCTTGCCTAAG -CCAACAGGTTTCTGCTTGGTTCAG -CCAACAGGTTTCTGCTTGGCATAG -CCAACAGGTTTCTGCTTGGACAAG -CCAACAGGTTTCTGCTTGAAGCAG -CCAACAGGTTTCTGCTTGCGTCAA -CCAACAGGTTTCTGCTTGGCTGAA -CCAACAGGTTTCTGCTTGAGTACG -CCAACAGGTTTCTGCTTGATCCGA -CCAACAGGTTTCTGCTTGATGGGA -CCAACAGGTTTCTGCTTGGTGCAA -CCAACAGGTTTCTGCTTGGAGGAA -CCAACAGGTTTCTGCTTGCAGGTA -CCAACAGGTTTCTGCTTGGACTCT -CCAACAGGTTTCTGCTTGAGTCCT -CCAACAGGTTTCTGCTTGTAAGCC -CCAACAGGTTTCTGCTTGATAGCC -CCAACAGGTTTCTGCTTGTAACCG -CCAACAGGTTTCTGCTTGATGCCA -CCAACAGGTTTCAGCCTAGGAAAC -CCAACAGGTTTCAGCCTAAACACC -CCAACAGGTTTCAGCCTAATCGAG -CCAACAGGTTTCAGCCTACTCCTT -CCAACAGGTTTCAGCCTACCTGTT -CCAACAGGTTTCAGCCTACGGTTT -CCAACAGGTTTCAGCCTAGTGGTT -CCAACAGGTTTCAGCCTAGCCTTT -CCAACAGGTTTCAGCCTAGGTCTT -CCAACAGGTTTCAGCCTAACGCTT -CCAACAGGTTTCAGCCTAAGCGTT -CCAACAGGTTTCAGCCTATTCGTC -CCAACAGGTTTCAGCCTATCTCTC -CCAACAGGTTTCAGCCTATGGATC -CCAACAGGTTTCAGCCTACACTTC -CCAACAGGTTTCAGCCTAGTACTC -CCAACAGGTTTCAGCCTAGATGTC -CCAACAGGTTTCAGCCTAACAGTC -CCAACAGGTTTCAGCCTATTGCTG -CCAACAGGTTTCAGCCTATCCATG -CCAACAGGTTTCAGCCTATGTGTG -CCAACAGGTTTCAGCCTACTAGTG -CCAACAGGTTTCAGCCTACATCTG -CCAACAGGTTTCAGCCTAGAGTTG -CCAACAGGTTTCAGCCTAAGACTG -CCAACAGGTTTCAGCCTATCGGTA -CCAACAGGTTTCAGCCTATGCCTA -CCAACAGGTTTCAGCCTACCACTA -CCAACAGGTTTCAGCCTAGGAGTA -CCAACAGGTTTCAGCCTATCGTCT -CCAACAGGTTTCAGCCTATGCACT -CCAACAGGTTTCAGCCTACTGACT -CCAACAGGTTTCAGCCTACAACCT -CCAACAGGTTTCAGCCTAGCTACT -CCAACAGGTTTCAGCCTAGGATCT -CCAACAGGTTTCAGCCTAAAGGCT -CCAACAGGTTTCAGCCTATCAACC -CCAACAGGTTTCAGCCTATGTTCC -CCAACAGGTTTCAGCCTAATTCCC -CCAACAGGTTTCAGCCTATTCTCG -CCAACAGGTTTCAGCCTATAGACG -CCAACAGGTTTCAGCCTAGTAACG -CCAACAGGTTTCAGCCTAACTTCG -CCAACAGGTTTCAGCCTATACGCA -CCAACAGGTTTCAGCCTACTTGCA -CCAACAGGTTTCAGCCTACGAACA -CCAACAGGTTTCAGCCTACAGTCA -CCAACAGGTTTCAGCCTAGATCCA -CCAACAGGTTTCAGCCTAACGACA -CCAACAGGTTTCAGCCTAAGCTCA -CCAACAGGTTTCAGCCTATCACGT -CCAACAGGTTTCAGCCTACGTAGT -CCAACAGGTTTCAGCCTAGTCAGT -CCAACAGGTTTCAGCCTAGAAGGT -CCAACAGGTTTCAGCCTAAACCGT -CCAACAGGTTTCAGCCTATTGTGC -CCAACAGGTTTCAGCCTACTAAGC -CCAACAGGTTTCAGCCTAACTAGC -CCAACAGGTTTCAGCCTAAGATGC -CCAACAGGTTTCAGCCTATGAAGG -CCAACAGGTTTCAGCCTACAATGG -CCAACAGGTTTCAGCCTAATGAGG -CCAACAGGTTTCAGCCTAAATGGG -CCAACAGGTTTCAGCCTATCCTGA -CCAACAGGTTTCAGCCTATAGCGA -CCAACAGGTTTCAGCCTACACAGA -CCAACAGGTTTCAGCCTAGCAAGA -CCAACAGGTTTCAGCCTAGGTTGA -CCAACAGGTTTCAGCCTATCCGAT -CCAACAGGTTTCAGCCTATGGCAT -CCAACAGGTTTCAGCCTACGAGAT -CCAACAGGTTTCAGCCTATACCAC -CCAACAGGTTTCAGCCTACAGAAC -CCAACAGGTTTCAGCCTAGTCTAC -CCAACAGGTTTCAGCCTAACGTAC -CCAACAGGTTTCAGCCTAAGTGAC -CCAACAGGTTTCAGCCTACTGTAG -CCAACAGGTTTCAGCCTACCTAAG -CCAACAGGTTTCAGCCTAGTTCAG -CCAACAGGTTTCAGCCTAGCATAG -CCAACAGGTTTCAGCCTAGACAAG -CCAACAGGTTTCAGCCTAAAGCAG -CCAACAGGTTTCAGCCTACGTCAA -CCAACAGGTTTCAGCCTAGCTGAA -CCAACAGGTTTCAGCCTAAGTACG -CCAACAGGTTTCAGCCTAATCCGA -CCAACAGGTTTCAGCCTAATGGGA -CCAACAGGTTTCAGCCTAGTGCAA -CCAACAGGTTTCAGCCTAGAGGAA -CCAACAGGTTTCAGCCTACAGGTA -CCAACAGGTTTCAGCCTAGACTCT -CCAACAGGTTTCAGCCTAAGTCCT -CCAACAGGTTTCAGCCTATAAGCC -CCAACAGGTTTCAGCCTAATAGCC -CCAACAGGTTTCAGCCTATAACCG -CCAACAGGTTTCAGCCTAATGCCA -CCAACAGGTTTCAGCACTGGAAAC -CCAACAGGTTTCAGCACTAACACC -CCAACAGGTTTCAGCACTATCGAG -CCAACAGGTTTCAGCACTCTCCTT -CCAACAGGTTTCAGCACTCCTGTT -CCAACAGGTTTCAGCACTCGGTTT -CCAACAGGTTTCAGCACTGTGGTT -CCAACAGGTTTCAGCACTGCCTTT -CCAACAGGTTTCAGCACTGGTCTT -CCAACAGGTTTCAGCACTACGCTT -CCAACAGGTTTCAGCACTAGCGTT -CCAACAGGTTTCAGCACTTTCGTC -CCAACAGGTTTCAGCACTTCTCTC -CCAACAGGTTTCAGCACTTGGATC -CCAACAGGTTTCAGCACTCACTTC -CCAACAGGTTTCAGCACTGTACTC -CCAACAGGTTTCAGCACTGATGTC -CCAACAGGTTTCAGCACTACAGTC -CCAACAGGTTTCAGCACTTTGCTG -CCAACAGGTTTCAGCACTTCCATG -CCAACAGGTTTCAGCACTTGTGTG -CCAACAGGTTTCAGCACTCTAGTG -CCAACAGGTTTCAGCACTCATCTG -CCAACAGGTTTCAGCACTGAGTTG -CCAACAGGTTTCAGCACTAGACTG -CCAACAGGTTTCAGCACTTCGGTA -CCAACAGGTTTCAGCACTTGCCTA -CCAACAGGTTTCAGCACTCCACTA -CCAACAGGTTTCAGCACTGGAGTA -CCAACAGGTTTCAGCACTTCGTCT -CCAACAGGTTTCAGCACTTGCACT -CCAACAGGTTTCAGCACTCTGACT -CCAACAGGTTTCAGCACTCAACCT -CCAACAGGTTTCAGCACTGCTACT -CCAACAGGTTTCAGCACTGGATCT -CCAACAGGTTTCAGCACTAAGGCT -CCAACAGGTTTCAGCACTTCAACC -CCAACAGGTTTCAGCACTTGTTCC -CCAACAGGTTTCAGCACTATTCCC -CCAACAGGTTTCAGCACTTTCTCG -CCAACAGGTTTCAGCACTTAGACG -CCAACAGGTTTCAGCACTGTAACG -CCAACAGGTTTCAGCACTACTTCG -CCAACAGGTTTCAGCACTTACGCA -CCAACAGGTTTCAGCACTCTTGCA -CCAACAGGTTTCAGCACTCGAACA -CCAACAGGTTTCAGCACTCAGTCA -CCAACAGGTTTCAGCACTGATCCA -CCAACAGGTTTCAGCACTACGACA -CCAACAGGTTTCAGCACTAGCTCA -CCAACAGGTTTCAGCACTTCACGT -CCAACAGGTTTCAGCACTCGTAGT -CCAACAGGTTTCAGCACTGTCAGT -CCAACAGGTTTCAGCACTGAAGGT -CCAACAGGTTTCAGCACTAACCGT -CCAACAGGTTTCAGCACTTTGTGC -CCAACAGGTTTCAGCACTCTAAGC -CCAACAGGTTTCAGCACTACTAGC -CCAACAGGTTTCAGCACTAGATGC -CCAACAGGTTTCAGCACTTGAAGG -CCAACAGGTTTCAGCACTCAATGG -CCAACAGGTTTCAGCACTATGAGG -CCAACAGGTTTCAGCACTAATGGG -CCAACAGGTTTCAGCACTTCCTGA -CCAACAGGTTTCAGCACTTAGCGA -CCAACAGGTTTCAGCACTCACAGA -CCAACAGGTTTCAGCACTGCAAGA -CCAACAGGTTTCAGCACTGGTTGA -CCAACAGGTTTCAGCACTTCCGAT -CCAACAGGTTTCAGCACTTGGCAT -CCAACAGGTTTCAGCACTCGAGAT -CCAACAGGTTTCAGCACTTACCAC -CCAACAGGTTTCAGCACTCAGAAC -CCAACAGGTTTCAGCACTGTCTAC -CCAACAGGTTTCAGCACTACGTAC -CCAACAGGTTTCAGCACTAGTGAC -CCAACAGGTTTCAGCACTCTGTAG -CCAACAGGTTTCAGCACTCCTAAG -CCAACAGGTTTCAGCACTGTTCAG -CCAACAGGTTTCAGCACTGCATAG -CCAACAGGTTTCAGCACTGACAAG -CCAACAGGTTTCAGCACTAAGCAG -CCAACAGGTTTCAGCACTCGTCAA -CCAACAGGTTTCAGCACTGCTGAA -CCAACAGGTTTCAGCACTAGTACG -CCAACAGGTTTCAGCACTATCCGA -CCAACAGGTTTCAGCACTATGGGA -CCAACAGGTTTCAGCACTGTGCAA -CCAACAGGTTTCAGCACTGAGGAA -CCAACAGGTTTCAGCACTCAGGTA -CCAACAGGTTTCAGCACTGACTCT -CCAACAGGTTTCAGCACTAGTCCT -CCAACAGGTTTCAGCACTTAAGCC -CCAACAGGTTTCAGCACTATAGCC -CCAACAGGTTTCAGCACTTAACCG -CCAACAGGTTTCAGCACTATGCCA -CCAACAGGTTTCTGCAGAGGAAAC -CCAACAGGTTTCTGCAGAAACACC -CCAACAGGTTTCTGCAGAATCGAG -CCAACAGGTTTCTGCAGACTCCTT -CCAACAGGTTTCTGCAGACCTGTT -CCAACAGGTTTCTGCAGACGGTTT -CCAACAGGTTTCTGCAGAGTGGTT -CCAACAGGTTTCTGCAGAGCCTTT -CCAACAGGTTTCTGCAGAGGTCTT -CCAACAGGTTTCTGCAGAACGCTT -CCAACAGGTTTCTGCAGAAGCGTT -CCAACAGGTTTCTGCAGATTCGTC -CCAACAGGTTTCTGCAGATCTCTC -CCAACAGGTTTCTGCAGATGGATC -CCAACAGGTTTCTGCAGACACTTC -CCAACAGGTTTCTGCAGAGTACTC -CCAACAGGTTTCTGCAGAGATGTC -CCAACAGGTTTCTGCAGAACAGTC -CCAACAGGTTTCTGCAGATTGCTG -CCAACAGGTTTCTGCAGATCCATG -CCAACAGGTTTCTGCAGATGTGTG -CCAACAGGTTTCTGCAGACTAGTG -CCAACAGGTTTCTGCAGACATCTG -CCAACAGGTTTCTGCAGAGAGTTG -CCAACAGGTTTCTGCAGAAGACTG -CCAACAGGTTTCTGCAGATCGGTA -CCAACAGGTTTCTGCAGATGCCTA -CCAACAGGTTTCTGCAGACCACTA -CCAACAGGTTTCTGCAGAGGAGTA -CCAACAGGTTTCTGCAGATCGTCT -CCAACAGGTTTCTGCAGATGCACT -CCAACAGGTTTCTGCAGACTGACT -CCAACAGGTTTCTGCAGACAACCT -CCAACAGGTTTCTGCAGAGCTACT -CCAACAGGTTTCTGCAGAGGATCT -CCAACAGGTTTCTGCAGAAAGGCT -CCAACAGGTTTCTGCAGATCAACC -CCAACAGGTTTCTGCAGATGTTCC -CCAACAGGTTTCTGCAGAATTCCC -CCAACAGGTTTCTGCAGATTCTCG -CCAACAGGTTTCTGCAGATAGACG -CCAACAGGTTTCTGCAGAGTAACG -CCAACAGGTTTCTGCAGAACTTCG -CCAACAGGTTTCTGCAGATACGCA -CCAACAGGTTTCTGCAGACTTGCA -CCAACAGGTTTCTGCAGACGAACA -CCAACAGGTTTCTGCAGACAGTCA -CCAACAGGTTTCTGCAGAGATCCA -CCAACAGGTTTCTGCAGAACGACA -CCAACAGGTTTCTGCAGAAGCTCA -CCAACAGGTTTCTGCAGATCACGT -CCAACAGGTTTCTGCAGACGTAGT -CCAACAGGTTTCTGCAGAGTCAGT -CCAACAGGTTTCTGCAGAGAAGGT -CCAACAGGTTTCTGCAGAAACCGT -CCAACAGGTTTCTGCAGATTGTGC -CCAACAGGTTTCTGCAGACTAAGC -CCAACAGGTTTCTGCAGAACTAGC -CCAACAGGTTTCTGCAGAAGATGC -CCAACAGGTTTCTGCAGATGAAGG -CCAACAGGTTTCTGCAGACAATGG -CCAACAGGTTTCTGCAGAATGAGG -CCAACAGGTTTCTGCAGAAATGGG -CCAACAGGTTTCTGCAGATCCTGA -CCAACAGGTTTCTGCAGATAGCGA -CCAACAGGTTTCTGCAGACACAGA -CCAACAGGTTTCTGCAGAGCAAGA -CCAACAGGTTTCTGCAGAGGTTGA -CCAACAGGTTTCTGCAGATCCGAT -CCAACAGGTTTCTGCAGATGGCAT -CCAACAGGTTTCTGCAGACGAGAT -CCAACAGGTTTCTGCAGATACCAC -CCAACAGGTTTCTGCAGACAGAAC -CCAACAGGTTTCTGCAGAGTCTAC -CCAACAGGTTTCTGCAGAACGTAC -CCAACAGGTTTCTGCAGAAGTGAC -CCAACAGGTTTCTGCAGACTGTAG -CCAACAGGTTTCTGCAGACCTAAG -CCAACAGGTTTCTGCAGAGTTCAG -CCAACAGGTTTCTGCAGAGCATAG -CCAACAGGTTTCTGCAGAGACAAG -CCAACAGGTTTCTGCAGAAAGCAG -CCAACAGGTTTCTGCAGACGTCAA -CCAACAGGTTTCTGCAGAGCTGAA -CCAACAGGTTTCTGCAGAAGTACG -CCAACAGGTTTCTGCAGAATCCGA -CCAACAGGTTTCTGCAGAATGGGA -CCAACAGGTTTCTGCAGAGTGCAA -CCAACAGGTTTCTGCAGAGAGGAA -CCAACAGGTTTCTGCAGACAGGTA -CCAACAGGTTTCTGCAGAGACTCT -CCAACAGGTTTCTGCAGAAGTCCT -CCAACAGGTTTCTGCAGATAAGCC -CCAACAGGTTTCTGCAGAATAGCC -CCAACAGGTTTCTGCAGATAACCG -CCAACAGGTTTCTGCAGAATGCCA -CCAACAGGTTTCAGGTGAGGAAAC -CCAACAGGTTTCAGGTGAAACACC -CCAACAGGTTTCAGGTGAATCGAG -CCAACAGGTTTCAGGTGACTCCTT -CCAACAGGTTTCAGGTGACCTGTT -CCAACAGGTTTCAGGTGACGGTTT -CCAACAGGTTTCAGGTGAGTGGTT -CCAACAGGTTTCAGGTGAGCCTTT -CCAACAGGTTTCAGGTGAGGTCTT -CCAACAGGTTTCAGGTGAACGCTT -CCAACAGGTTTCAGGTGAAGCGTT -CCAACAGGTTTCAGGTGATTCGTC -CCAACAGGTTTCAGGTGATCTCTC -CCAACAGGTTTCAGGTGATGGATC -CCAACAGGTTTCAGGTGACACTTC -CCAACAGGTTTCAGGTGAGTACTC -CCAACAGGTTTCAGGTGAGATGTC -CCAACAGGTTTCAGGTGAACAGTC -CCAACAGGTTTCAGGTGATTGCTG -CCAACAGGTTTCAGGTGATCCATG -CCAACAGGTTTCAGGTGATGTGTG -CCAACAGGTTTCAGGTGACTAGTG -CCAACAGGTTTCAGGTGACATCTG -CCAACAGGTTTCAGGTGAGAGTTG -CCAACAGGTTTCAGGTGAAGACTG -CCAACAGGTTTCAGGTGATCGGTA -CCAACAGGTTTCAGGTGATGCCTA -CCAACAGGTTTCAGGTGACCACTA -CCAACAGGTTTCAGGTGAGGAGTA -CCAACAGGTTTCAGGTGATCGTCT -CCAACAGGTTTCAGGTGATGCACT -CCAACAGGTTTCAGGTGACTGACT -CCAACAGGTTTCAGGTGACAACCT -CCAACAGGTTTCAGGTGAGCTACT -CCAACAGGTTTCAGGTGAGGATCT -CCAACAGGTTTCAGGTGAAAGGCT -CCAACAGGTTTCAGGTGATCAACC -CCAACAGGTTTCAGGTGATGTTCC -CCAACAGGTTTCAGGTGAATTCCC -CCAACAGGTTTCAGGTGATTCTCG -CCAACAGGTTTCAGGTGATAGACG -CCAACAGGTTTCAGGTGAGTAACG -CCAACAGGTTTCAGGTGAACTTCG -CCAACAGGTTTCAGGTGATACGCA -CCAACAGGTTTCAGGTGACTTGCA -CCAACAGGTTTCAGGTGACGAACA -CCAACAGGTTTCAGGTGACAGTCA -CCAACAGGTTTCAGGTGAGATCCA -CCAACAGGTTTCAGGTGAACGACA -CCAACAGGTTTCAGGTGAAGCTCA -CCAACAGGTTTCAGGTGATCACGT -CCAACAGGTTTCAGGTGACGTAGT -CCAACAGGTTTCAGGTGAGTCAGT -CCAACAGGTTTCAGGTGAGAAGGT -CCAACAGGTTTCAGGTGAAACCGT -CCAACAGGTTTCAGGTGATTGTGC -CCAACAGGTTTCAGGTGACTAAGC -CCAACAGGTTTCAGGTGAACTAGC -CCAACAGGTTTCAGGTGAAGATGC -CCAACAGGTTTCAGGTGATGAAGG -CCAACAGGTTTCAGGTGACAATGG -CCAACAGGTTTCAGGTGAATGAGG -CCAACAGGTTTCAGGTGAAATGGG -CCAACAGGTTTCAGGTGATCCTGA -CCAACAGGTTTCAGGTGATAGCGA -CCAACAGGTTTCAGGTGACACAGA -CCAACAGGTTTCAGGTGAGCAAGA -CCAACAGGTTTCAGGTGAGGTTGA -CCAACAGGTTTCAGGTGATCCGAT -CCAACAGGTTTCAGGTGATGGCAT -CCAACAGGTTTCAGGTGACGAGAT -CCAACAGGTTTCAGGTGATACCAC -CCAACAGGTTTCAGGTGACAGAAC -CCAACAGGTTTCAGGTGAGTCTAC -CCAACAGGTTTCAGGTGAACGTAC -CCAACAGGTTTCAGGTGAAGTGAC -CCAACAGGTTTCAGGTGACTGTAG -CCAACAGGTTTCAGGTGACCTAAG -CCAACAGGTTTCAGGTGAGTTCAG -CCAACAGGTTTCAGGTGAGCATAG -CCAACAGGTTTCAGGTGAGACAAG -CCAACAGGTTTCAGGTGAAAGCAG -CCAACAGGTTTCAGGTGACGTCAA -CCAACAGGTTTCAGGTGAGCTGAA -CCAACAGGTTTCAGGTGAAGTACG -CCAACAGGTTTCAGGTGAATCCGA -CCAACAGGTTTCAGGTGAATGGGA -CCAACAGGTTTCAGGTGAGTGCAA -CCAACAGGTTTCAGGTGAGAGGAA -CCAACAGGTTTCAGGTGACAGGTA -CCAACAGGTTTCAGGTGAGACTCT -CCAACAGGTTTCAGGTGAAGTCCT -CCAACAGGTTTCAGGTGATAAGCC -CCAACAGGTTTCAGGTGAATAGCC -CCAACAGGTTTCAGGTGATAACCG -CCAACAGGTTTCAGGTGAATGCCA -CCAACAGGTTTCTGGCAAGGAAAC -CCAACAGGTTTCTGGCAAAACACC -CCAACAGGTTTCTGGCAAATCGAG -CCAACAGGTTTCTGGCAACTCCTT -CCAACAGGTTTCTGGCAACCTGTT -CCAACAGGTTTCTGGCAACGGTTT -CCAACAGGTTTCTGGCAAGTGGTT -CCAACAGGTTTCTGGCAAGCCTTT -CCAACAGGTTTCTGGCAAGGTCTT -CCAACAGGTTTCTGGCAAACGCTT -CCAACAGGTTTCTGGCAAAGCGTT -CCAACAGGTTTCTGGCAATTCGTC -CCAACAGGTTTCTGGCAATCTCTC -CCAACAGGTTTCTGGCAATGGATC -CCAACAGGTTTCTGGCAACACTTC -CCAACAGGTTTCTGGCAAGTACTC -CCAACAGGTTTCTGGCAAGATGTC -CCAACAGGTTTCTGGCAAACAGTC -CCAACAGGTTTCTGGCAATTGCTG -CCAACAGGTTTCTGGCAATCCATG -CCAACAGGTTTCTGGCAATGTGTG -CCAACAGGTTTCTGGCAACTAGTG -CCAACAGGTTTCTGGCAACATCTG -CCAACAGGTTTCTGGCAAGAGTTG -CCAACAGGTTTCTGGCAAAGACTG -CCAACAGGTTTCTGGCAATCGGTA -CCAACAGGTTTCTGGCAATGCCTA -CCAACAGGTTTCTGGCAACCACTA -CCAACAGGTTTCTGGCAAGGAGTA -CCAACAGGTTTCTGGCAATCGTCT -CCAACAGGTTTCTGGCAATGCACT -CCAACAGGTTTCTGGCAACTGACT -CCAACAGGTTTCTGGCAACAACCT -CCAACAGGTTTCTGGCAAGCTACT -CCAACAGGTTTCTGGCAAGGATCT -CCAACAGGTTTCTGGCAAAAGGCT -CCAACAGGTTTCTGGCAATCAACC -CCAACAGGTTTCTGGCAATGTTCC -CCAACAGGTTTCTGGCAAATTCCC -CCAACAGGTTTCTGGCAATTCTCG -CCAACAGGTTTCTGGCAATAGACG -CCAACAGGTTTCTGGCAAGTAACG -CCAACAGGTTTCTGGCAAACTTCG -CCAACAGGTTTCTGGCAATACGCA -CCAACAGGTTTCTGGCAACTTGCA -CCAACAGGTTTCTGGCAACGAACA -CCAACAGGTTTCTGGCAACAGTCA -CCAACAGGTTTCTGGCAAGATCCA -CCAACAGGTTTCTGGCAAACGACA -CCAACAGGTTTCTGGCAAAGCTCA -CCAACAGGTTTCTGGCAATCACGT -CCAACAGGTTTCTGGCAACGTAGT -CCAACAGGTTTCTGGCAAGTCAGT -CCAACAGGTTTCTGGCAAGAAGGT -CCAACAGGTTTCTGGCAAAACCGT -CCAACAGGTTTCTGGCAATTGTGC -CCAACAGGTTTCTGGCAACTAAGC -CCAACAGGTTTCTGGCAAACTAGC -CCAACAGGTTTCTGGCAAAGATGC -CCAACAGGTTTCTGGCAATGAAGG -CCAACAGGTTTCTGGCAACAATGG -CCAACAGGTTTCTGGCAAATGAGG -CCAACAGGTTTCTGGCAAAATGGG -CCAACAGGTTTCTGGCAATCCTGA -CCAACAGGTTTCTGGCAATAGCGA -CCAACAGGTTTCTGGCAACACAGA -CCAACAGGTTTCTGGCAAGCAAGA -CCAACAGGTTTCTGGCAAGGTTGA -CCAACAGGTTTCTGGCAATCCGAT -CCAACAGGTTTCTGGCAATGGCAT -CCAACAGGTTTCTGGCAACGAGAT -CCAACAGGTTTCTGGCAATACCAC -CCAACAGGTTTCTGGCAACAGAAC -CCAACAGGTTTCTGGCAAGTCTAC -CCAACAGGTTTCTGGCAAACGTAC -CCAACAGGTTTCTGGCAAAGTGAC -CCAACAGGTTTCTGGCAACTGTAG -CCAACAGGTTTCTGGCAACCTAAG -CCAACAGGTTTCTGGCAAGTTCAG -CCAACAGGTTTCTGGCAAGCATAG -CCAACAGGTTTCTGGCAAGACAAG -CCAACAGGTTTCTGGCAAAAGCAG -CCAACAGGTTTCTGGCAACGTCAA -CCAACAGGTTTCTGGCAAGCTGAA -CCAACAGGTTTCTGGCAAAGTACG -CCAACAGGTTTCTGGCAAATCCGA -CCAACAGGTTTCTGGCAAATGGGA -CCAACAGGTTTCTGGCAAGTGCAA -CCAACAGGTTTCTGGCAAGAGGAA -CCAACAGGTTTCTGGCAACAGGTA -CCAACAGGTTTCTGGCAAGACTCT -CCAACAGGTTTCTGGCAAAGTCCT -CCAACAGGTTTCTGGCAATAAGCC -CCAACAGGTTTCTGGCAAATAGCC -CCAACAGGTTTCTGGCAATAACCG -CCAACAGGTTTCTGGCAAATGCCA -CCAACAGGTTTCAGGATGGGAAAC -CCAACAGGTTTCAGGATGAACACC -CCAACAGGTTTCAGGATGATCGAG -CCAACAGGTTTCAGGATGCTCCTT -CCAACAGGTTTCAGGATGCCTGTT -CCAACAGGTTTCAGGATGCGGTTT -CCAACAGGTTTCAGGATGGTGGTT -CCAACAGGTTTCAGGATGGCCTTT -CCAACAGGTTTCAGGATGGGTCTT -CCAACAGGTTTCAGGATGACGCTT -CCAACAGGTTTCAGGATGAGCGTT -CCAACAGGTTTCAGGATGTTCGTC -CCAACAGGTTTCAGGATGTCTCTC -CCAACAGGTTTCAGGATGTGGATC -CCAACAGGTTTCAGGATGCACTTC -CCAACAGGTTTCAGGATGGTACTC -CCAACAGGTTTCAGGATGGATGTC -CCAACAGGTTTCAGGATGACAGTC -CCAACAGGTTTCAGGATGTTGCTG -CCAACAGGTTTCAGGATGTCCATG -CCAACAGGTTTCAGGATGTGTGTG -CCAACAGGTTTCAGGATGCTAGTG -CCAACAGGTTTCAGGATGCATCTG -CCAACAGGTTTCAGGATGGAGTTG -CCAACAGGTTTCAGGATGAGACTG -CCAACAGGTTTCAGGATGTCGGTA -CCAACAGGTTTCAGGATGTGCCTA -CCAACAGGTTTCAGGATGCCACTA -CCAACAGGTTTCAGGATGGGAGTA -CCAACAGGTTTCAGGATGTCGTCT -CCAACAGGTTTCAGGATGTGCACT -CCAACAGGTTTCAGGATGCTGACT -CCAACAGGTTTCAGGATGCAACCT -CCAACAGGTTTCAGGATGGCTACT -CCAACAGGTTTCAGGATGGGATCT -CCAACAGGTTTCAGGATGAAGGCT -CCAACAGGTTTCAGGATGTCAACC -CCAACAGGTTTCAGGATGTGTTCC -CCAACAGGTTTCAGGATGATTCCC -CCAACAGGTTTCAGGATGTTCTCG -CCAACAGGTTTCAGGATGTAGACG -CCAACAGGTTTCAGGATGGTAACG -CCAACAGGTTTCAGGATGACTTCG -CCAACAGGTTTCAGGATGTACGCA -CCAACAGGTTTCAGGATGCTTGCA -CCAACAGGTTTCAGGATGCGAACA -CCAACAGGTTTCAGGATGCAGTCA -CCAACAGGTTTCAGGATGGATCCA -CCAACAGGTTTCAGGATGACGACA -CCAACAGGTTTCAGGATGAGCTCA -CCAACAGGTTTCAGGATGTCACGT -CCAACAGGTTTCAGGATGCGTAGT -CCAACAGGTTTCAGGATGGTCAGT -CCAACAGGTTTCAGGATGGAAGGT -CCAACAGGTTTCAGGATGAACCGT -CCAACAGGTTTCAGGATGTTGTGC -CCAACAGGTTTCAGGATGCTAAGC -CCAACAGGTTTCAGGATGACTAGC -CCAACAGGTTTCAGGATGAGATGC -CCAACAGGTTTCAGGATGTGAAGG -CCAACAGGTTTCAGGATGCAATGG -CCAACAGGTTTCAGGATGATGAGG -CCAACAGGTTTCAGGATGAATGGG -CCAACAGGTTTCAGGATGTCCTGA -CCAACAGGTTTCAGGATGTAGCGA -CCAACAGGTTTCAGGATGCACAGA -CCAACAGGTTTCAGGATGGCAAGA -CCAACAGGTTTCAGGATGGGTTGA -CCAACAGGTTTCAGGATGTCCGAT -CCAACAGGTTTCAGGATGTGGCAT -CCAACAGGTTTCAGGATGCGAGAT -CCAACAGGTTTCAGGATGTACCAC -CCAACAGGTTTCAGGATGCAGAAC -CCAACAGGTTTCAGGATGGTCTAC -CCAACAGGTTTCAGGATGACGTAC -CCAACAGGTTTCAGGATGAGTGAC -CCAACAGGTTTCAGGATGCTGTAG -CCAACAGGTTTCAGGATGCCTAAG -CCAACAGGTTTCAGGATGGTTCAG -CCAACAGGTTTCAGGATGGCATAG -CCAACAGGTTTCAGGATGGACAAG -CCAACAGGTTTCAGGATGAAGCAG -CCAACAGGTTTCAGGATGCGTCAA -CCAACAGGTTTCAGGATGGCTGAA -CCAACAGGTTTCAGGATGAGTACG -CCAACAGGTTTCAGGATGATCCGA -CCAACAGGTTTCAGGATGATGGGA -CCAACAGGTTTCAGGATGGTGCAA -CCAACAGGTTTCAGGATGGAGGAA -CCAACAGGTTTCAGGATGCAGGTA -CCAACAGGTTTCAGGATGGACTCT -CCAACAGGTTTCAGGATGAGTCCT -CCAACAGGTTTCAGGATGTAAGCC -CCAACAGGTTTCAGGATGATAGCC -CCAACAGGTTTCAGGATGTAACCG -CCAACAGGTTTCAGGATGATGCCA -CCAACAGGTTTCGGGAATGGAAAC -CCAACAGGTTTCGGGAATAACACC -CCAACAGGTTTCGGGAATATCGAG -CCAACAGGTTTCGGGAATCTCCTT -CCAACAGGTTTCGGGAATCCTGTT -CCAACAGGTTTCGGGAATCGGTTT -CCAACAGGTTTCGGGAATGTGGTT -CCAACAGGTTTCGGGAATGCCTTT -CCAACAGGTTTCGGGAATGGTCTT -CCAACAGGTTTCGGGAATACGCTT -CCAACAGGTTTCGGGAATAGCGTT -CCAACAGGTTTCGGGAATTTCGTC -CCAACAGGTTTCGGGAATTCTCTC -CCAACAGGTTTCGGGAATTGGATC -CCAACAGGTTTCGGGAATCACTTC -CCAACAGGTTTCGGGAATGTACTC -CCAACAGGTTTCGGGAATGATGTC -CCAACAGGTTTCGGGAATACAGTC -CCAACAGGTTTCGGGAATTTGCTG -CCAACAGGTTTCGGGAATTCCATG -CCAACAGGTTTCGGGAATTGTGTG -CCAACAGGTTTCGGGAATCTAGTG -CCAACAGGTTTCGGGAATCATCTG -CCAACAGGTTTCGGGAATGAGTTG -CCAACAGGTTTCGGGAATAGACTG -CCAACAGGTTTCGGGAATTCGGTA -CCAACAGGTTTCGGGAATTGCCTA -CCAACAGGTTTCGGGAATCCACTA -CCAACAGGTTTCGGGAATGGAGTA -CCAACAGGTTTCGGGAATTCGTCT -CCAACAGGTTTCGGGAATTGCACT -CCAACAGGTTTCGGGAATCTGACT -CCAACAGGTTTCGGGAATCAACCT -CCAACAGGTTTCGGGAATGCTACT -CCAACAGGTTTCGGGAATGGATCT -CCAACAGGTTTCGGGAATAAGGCT -CCAACAGGTTTCGGGAATTCAACC -CCAACAGGTTTCGGGAATTGTTCC -CCAACAGGTTTCGGGAATATTCCC -CCAACAGGTTTCGGGAATTTCTCG -CCAACAGGTTTCGGGAATTAGACG -CCAACAGGTTTCGGGAATGTAACG -CCAACAGGTTTCGGGAATACTTCG -CCAACAGGTTTCGGGAATTACGCA -CCAACAGGTTTCGGGAATCTTGCA -CCAACAGGTTTCGGGAATCGAACA -CCAACAGGTTTCGGGAATCAGTCA -CCAACAGGTTTCGGGAATGATCCA -CCAACAGGTTTCGGGAATACGACA -CCAACAGGTTTCGGGAATAGCTCA -CCAACAGGTTTCGGGAATTCACGT -CCAACAGGTTTCGGGAATCGTAGT -CCAACAGGTTTCGGGAATGTCAGT -CCAACAGGTTTCGGGAATGAAGGT -CCAACAGGTTTCGGGAATAACCGT -CCAACAGGTTTCGGGAATTTGTGC -CCAACAGGTTTCGGGAATCTAAGC -CCAACAGGTTTCGGGAATACTAGC -CCAACAGGTTTCGGGAATAGATGC -CCAACAGGTTTCGGGAATTGAAGG -CCAACAGGTTTCGGGAATCAATGG -CCAACAGGTTTCGGGAATATGAGG -CCAACAGGTTTCGGGAATAATGGG -CCAACAGGTTTCGGGAATTCCTGA -CCAACAGGTTTCGGGAATTAGCGA -CCAACAGGTTTCGGGAATCACAGA -CCAACAGGTTTCGGGAATGCAAGA -CCAACAGGTTTCGGGAATGGTTGA -CCAACAGGTTTCGGGAATTCCGAT -CCAACAGGTTTCGGGAATTGGCAT -CCAACAGGTTTCGGGAATCGAGAT -CCAACAGGTTTCGGGAATTACCAC -CCAACAGGTTTCGGGAATCAGAAC -CCAACAGGTTTCGGGAATGTCTAC -CCAACAGGTTTCGGGAATACGTAC -CCAACAGGTTTCGGGAATAGTGAC -CCAACAGGTTTCGGGAATCTGTAG -CCAACAGGTTTCGGGAATCCTAAG -CCAACAGGTTTCGGGAATGTTCAG -CCAACAGGTTTCGGGAATGCATAG -CCAACAGGTTTCGGGAATGACAAG -CCAACAGGTTTCGGGAATAAGCAG -CCAACAGGTTTCGGGAATCGTCAA -CCAACAGGTTTCGGGAATGCTGAA -CCAACAGGTTTCGGGAATAGTACG -CCAACAGGTTTCGGGAATATCCGA -CCAACAGGTTTCGGGAATATGGGA -CCAACAGGTTTCGGGAATGTGCAA -CCAACAGGTTTCGGGAATGAGGAA -CCAACAGGTTTCGGGAATCAGGTA -CCAACAGGTTTCGGGAATGACTCT -CCAACAGGTTTCGGGAATAGTCCT -CCAACAGGTTTCGGGAATTAAGCC -CCAACAGGTTTCGGGAATATAGCC -CCAACAGGTTTCGGGAATTAACCG -CCAACAGGTTTCGGGAATATGCCA -CCAACAGGTTTCTGATCCGGAAAC -CCAACAGGTTTCTGATCCAACACC -CCAACAGGTTTCTGATCCATCGAG -CCAACAGGTTTCTGATCCCTCCTT -CCAACAGGTTTCTGATCCCCTGTT -CCAACAGGTTTCTGATCCCGGTTT -CCAACAGGTTTCTGATCCGTGGTT -CCAACAGGTTTCTGATCCGCCTTT -CCAACAGGTTTCTGATCCGGTCTT -CCAACAGGTTTCTGATCCACGCTT -CCAACAGGTTTCTGATCCAGCGTT -CCAACAGGTTTCTGATCCTTCGTC -CCAACAGGTTTCTGATCCTCTCTC -CCAACAGGTTTCTGATCCTGGATC -CCAACAGGTTTCTGATCCCACTTC -CCAACAGGTTTCTGATCCGTACTC -CCAACAGGTTTCTGATCCGATGTC -CCAACAGGTTTCTGATCCACAGTC -CCAACAGGTTTCTGATCCTTGCTG -CCAACAGGTTTCTGATCCTCCATG -CCAACAGGTTTCTGATCCTGTGTG -CCAACAGGTTTCTGATCCCTAGTG -CCAACAGGTTTCTGATCCCATCTG -CCAACAGGTTTCTGATCCGAGTTG -CCAACAGGTTTCTGATCCAGACTG -CCAACAGGTTTCTGATCCTCGGTA -CCAACAGGTTTCTGATCCTGCCTA -CCAACAGGTTTCTGATCCCCACTA -CCAACAGGTTTCTGATCCGGAGTA -CCAACAGGTTTCTGATCCTCGTCT -CCAACAGGTTTCTGATCCTGCACT -CCAACAGGTTTCTGATCCCTGACT -CCAACAGGTTTCTGATCCCAACCT -CCAACAGGTTTCTGATCCGCTACT -CCAACAGGTTTCTGATCCGGATCT -CCAACAGGTTTCTGATCCAAGGCT -CCAACAGGTTTCTGATCCTCAACC -CCAACAGGTTTCTGATCCTGTTCC -CCAACAGGTTTCTGATCCATTCCC -CCAACAGGTTTCTGATCCTTCTCG -CCAACAGGTTTCTGATCCTAGACG -CCAACAGGTTTCTGATCCGTAACG -CCAACAGGTTTCTGATCCACTTCG -CCAACAGGTTTCTGATCCTACGCA -CCAACAGGTTTCTGATCCCTTGCA -CCAACAGGTTTCTGATCCCGAACA -CCAACAGGTTTCTGATCCCAGTCA -CCAACAGGTTTCTGATCCGATCCA -CCAACAGGTTTCTGATCCACGACA -CCAACAGGTTTCTGATCCAGCTCA -CCAACAGGTTTCTGATCCTCACGT -CCAACAGGTTTCTGATCCCGTAGT -CCAACAGGTTTCTGATCCGTCAGT -CCAACAGGTTTCTGATCCGAAGGT -CCAACAGGTTTCTGATCCAACCGT -CCAACAGGTTTCTGATCCTTGTGC -CCAACAGGTTTCTGATCCCTAAGC -CCAACAGGTTTCTGATCCACTAGC -CCAACAGGTTTCTGATCCAGATGC -CCAACAGGTTTCTGATCCTGAAGG -CCAACAGGTTTCTGATCCCAATGG -CCAACAGGTTTCTGATCCATGAGG -CCAACAGGTTTCTGATCCAATGGG -CCAACAGGTTTCTGATCCTCCTGA -CCAACAGGTTTCTGATCCTAGCGA -CCAACAGGTTTCTGATCCCACAGA -CCAACAGGTTTCTGATCCGCAAGA -CCAACAGGTTTCTGATCCGGTTGA -CCAACAGGTTTCTGATCCTCCGAT -CCAACAGGTTTCTGATCCTGGCAT -CCAACAGGTTTCTGATCCCGAGAT -CCAACAGGTTTCTGATCCTACCAC -CCAACAGGTTTCTGATCCCAGAAC -CCAACAGGTTTCTGATCCGTCTAC -CCAACAGGTTTCTGATCCACGTAC -CCAACAGGTTTCTGATCCAGTGAC -CCAACAGGTTTCTGATCCCTGTAG -CCAACAGGTTTCTGATCCCCTAAG -CCAACAGGTTTCTGATCCGTTCAG -CCAACAGGTTTCTGATCCGCATAG -CCAACAGGTTTCTGATCCGACAAG -CCAACAGGTTTCTGATCCAAGCAG -CCAACAGGTTTCTGATCCCGTCAA -CCAACAGGTTTCTGATCCGCTGAA -CCAACAGGTTTCTGATCCAGTACG -CCAACAGGTTTCTGATCCATCCGA -CCAACAGGTTTCTGATCCATGGGA -CCAACAGGTTTCTGATCCGTGCAA -CCAACAGGTTTCTGATCCGAGGAA -CCAACAGGTTTCTGATCCCAGGTA -CCAACAGGTTTCTGATCCGACTCT -CCAACAGGTTTCTGATCCAGTCCT -CCAACAGGTTTCTGATCCTAAGCC -CCAACAGGTTTCTGATCCATAGCC -CCAACAGGTTTCTGATCCTAACCG -CCAACAGGTTTCTGATCCATGCCA -CCAACAGGTTTCCGATAGGGAAAC -CCAACAGGTTTCCGATAGAACACC -CCAACAGGTTTCCGATAGATCGAG -CCAACAGGTTTCCGATAGCTCCTT -CCAACAGGTTTCCGATAGCCTGTT -CCAACAGGTTTCCGATAGCGGTTT -CCAACAGGTTTCCGATAGGTGGTT -CCAACAGGTTTCCGATAGGCCTTT -CCAACAGGTTTCCGATAGGGTCTT -CCAACAGGTTTCCGATAGACGCTT -CCAACAGGTTTCCGATAGAGCGTT -CCAACAGGTTTCCGATAGTTCGTC -CCAACAGGTTTCCGATAGTCTCTC -CCAACAGGTTTCCGATAGTGGATC -CCAACAGGTTTCCGATAGCACTTC -CCAACAGGTTTCCGATAGGTACTC -CCAACAGGTTTCCGATAGGATGTC -CCAACAGGTTTCCGATAGACAGTC -CCAACAGGTTTCCGATAGTTGCTG -CCAACAGGTTTCCGATAGTCCATG -CCAACAGGTTTCCGATAGTGTGTG -CCAACAGGTTTCCGATAGCTAGTG -CCAACAGGTTTCCGATAGCATCTG -CCAACAGGTTTCCGATAGGAGTTG -CCAACAGGTTTCCGATAGAGACTG -CCAACAGGTTTCCGATAGTCGGTA -CCAACAGGTTTCCGATAGTGCCTA -CCAACAGGTTTCCGATAGCCACTA -CCAACAGGTTTCCGATAGGGAGTA -CCAACAGGTTTCCGATAGTCGTCT -CCAACAGGTTTCCGATAGTGCACT -CCAACAGGTTTCCGATAGCTGACT -CCAACAGGTTTCCGATAGCAACCT -CCAACAGGTTTCCGATAGGCTACT -CCAACAGGTTTCCGATAGGGATCT -CCAACAGGTTTCCGATAGAAGGCT -CCAACAGGTTTCCGATAGTCAACC -CCAACAGGTTTCCGATAGTGTTCC -CCAACAGGTTTCCGATAGATTCCC -CCAACAGGTTTCCGATAGTTCTCG -CCAACAGGTTTCCGATAGTAGACG -CCAACAGGTTTCCGATAGGTAACG -CCAACAGGTTTCCGATAGACTTCG -CCAACAGGTTTCCGATAGTACGCA -CCAACAGGTTTCCGATAGCTTGCA -CCAACAGGTTTCCGATAGCGAACA -CCAACAGGTTTCCGATAGCAGTCA -CCAACAGGTTTCCGATAGGATCCA -CCAACAGGTTTCCGATAGACGACA -CCAACAGGTTTCCGATAGAGCTCA -CCAACAGGTTTCCGATAGTCACGT -CCAACAGGTTTCCGATAGCGTAGT -CCAACAGGTTTCCGATAGGTCAGT -CCAACAGGTTTCCGATAGGAAGGT -CCAACAGGTTTCCGATAGAACCGT -CCAACAGGTTTCCGATAGTTGTGC -CCAACAGGTTTCCGATAGCTAAGC -CCAACAGGTTTCCGATAGACTAGC -CCAACAGGTTTCCGATAGAGATGC -CCAACAGGTTTCCGATAGTGAAGG -CCAACAGGTTTCCGATAGCAATGG -CCAACAGGTTTCCGATAGATGAGG -CCAACAGGTTTCCGATAGAATGGG -CCAACAGGTTTCCGATAGTCCTGA -CCAACAGGTTTCCGATAGTAGCGA -CCAACAGGTTTCCGATAGCACAGA -CCAACAGGTTTCCGATAGGCAAGA -CCAACAGGTTTCCGATAGGGTTGA -CCAACAGGTTTCCGATAGTCCGAT -CCAACAGGTTTCCGATAGTGGCAT -CCAACAGGTTTCCGATAGCGAGAT -CCAACAGGTTTCCGATAGTACCAC -CCAACAGGTTTCCGATAGCAGAAC -CCAACAGGTTTCCGATAGGTCTAC -CCAACAGGTTTCCGATAGACGTAC -CCAACAGGTTTCCGATAGAGTGAC -CCAACAGGTTTCCGATAGCTGTAG -CCAACAGGTTTCCGATAGCCTAAG -CCAACAGGTTTCCGATAGGTTCAG -CCAACAGGTTTCCGATAGGCATAG -CCAACAGGTTTCCGATAGGACAAG -CCAACAGGTTTCCGATAGAAGCAG -CCAACAGGTTTCCGATAGCGTCAA -CCAACAGGTTTCCGATAGGCTGAA -CCAACAGGTTTCCGATAGAGTACG -CCAACAGGTTTCCGATAGATCCGA -CCAACAGGTTTCCGATAGATGGGA -CCAACAGGTTTCCGATAGGTGCAA -CCAACAGGTTTCCGATAGGAGGAA -CCAACAGGTTTCCGATAGCAGGTA -CCAACAGGTTTCCGATAGGACTCT -CCAACAGGTTTCCGATAGAGTCCT -CCAACAGGTTTCCGATAGTAAGCC -CCAACAGGTTTCCGATAGATAGCC -CCAACAGGTTTCCGATAGTAACCG -CCAACAGGTTTCCGATAGATGCCA -CCAACAGGTTTCAGACACGGAAAC -CCAACAGGTTTCAGACACAACACC -CCAACAGGTTTCAGACACATCGAG -CCAACAGGTTTCAGACACCTCCTT -CCAACAGGTTTCAGACACCCTGTT -CCAACAGGTTTCAGACACCGGTTT -CCAACAGGTTTCAGACACGTGGTT -CCAACAGGTTTCAGACACGCCTTT -CCAACAGGTTTCAGACACGGTCTT -CCAACAGGTTTCAGACACACGCTT -CCAACAGGTTTCAGACACAGCGTT -CCAACAGGTTTCAGACACTTCGTC -CCAACAGGTTTCAGACACTCTCTC -CCAACAGGTTTCAGACACTGGATC -CCAACAGGTTTCAGACACCACTTC -CCAACAGGTTTCAGACACGTACTC -CCAACAGGTTTCAGACACGATGTC -CCAACAGGTTTCAGACACACAGTC -CCAACAGGTTTCAGACACTTGCTG -CCAACAGGTTTCAGACACTCCATG -CCAACAGGTTTCAGACACTGTGTG -CCAACAGGTTTCAGACACCTAGTG -CCAACAGGTTTCAGACACCATCTG -CCAACAGGTTTCAGACACGAGTTG -CCAACAGGTTTCAGACACAGACTG -CCAACAGGTTTCAGACACTCGGTA -CCAACAGGTTTCAGACACTGCCTA -CCAACAGGTTTCAGACACCCACTA -CCAACAGGTTTCAGACACGGAGTA -CCAACAGGTTTCAGACACTCGTCT -CCAACAGGTTTCAGACACTGCACT -CCAACAGGTTTCAGACACCTGACT -CCAACAGGTTTCAGACACCAACCT -CCAACAGGTTTCAGACACGCTACT -CCAACAGGTTTCAGACACGGATCT -CCAACAGGTTTCAGACACAAGGCT -CCAACAGGTTTCAGACACTCAACC -CCAACAGGTTTCAGACACTGTTCC -CCAACAGGTTTCAGACACATTCCC -CCAACAGGTTTCAGACACTTCTCG -CCAACAGGTTTCAGACACTAGACG -CCAACAGGTTTCAGACACGTAACG -CCAACAGGTTTCAGACACACTTCG -CCAACAGGTTTCAGACACTACGCA -CCAACAGGTTTCAGACACCTTGCA -CCAACAGGTTTCAGACACCGAACA -CCAACAGGTTTCAGACACCAGTCA -CCAACAGGTTTCAGACACGATCCA -CCAACAGGTTTCAGACACACGACA -CCAACAGGTTTCAGACACAGCTCA -CCAACAGGTTTCAGACACTCACGT -CCAACAGGTTTCAGACACCGTAGT -CCAACAGGTTTCAGACACGTCAGT -CCAACAGGTTTCAGACACGAAGGT -CCAACAGGTTTCAGACACAACCGT -CCAACAGGTTTCAGACACTTGTGC -CCAACAGGTTTCAGACACCTAAGC -CCAACAGGTTTCAGACACACTAGC -CCAACAGGTTTCAGACACAGATGC -CCAACAGGTTTCAGACACTGAAGG -CCAACAGGTTTCAGACACCAATGG -CCAACAGGTTTCAGACACATGAGG -CCAACAGGTTTCAGACACAATGGG -CCAACAGGTTTCAGACACTCCTGA -CCAACAGGTTTCAGACACTAGCGA -CCAACAGGTTTCAGACACCACAGA -CCAACAGGTTTCAGACACGCAAGA -CCAACAGGTTTCAGACACGGTTGA -CCAACAGGTTTCAGACACTCCGAT -CCAACAGGTTTCAGACACTGGCAT -CCAACAGGTTTCAGACACCGAGAT -CCAACAGGTTTCAGACACTACCAC -CCAACAGGTTTCAGACACCAGAAC -CCAACAGGTTTCAGACACGTCTAC -CCAACAGGTTTCAGACACACGTAC -CCAACAGGTTTCAGACACAGTGAC -CCAACAGGTTTCAGACACCTGTAG -CCAACAGGTTTCAGACACCCTAAG -CCAACAGGTTTCAGACACGTTCAG -CCAACAGGTTTCAGACACGCATAG -CCAACAGGTTTCAGACACGACAAG -CCAACAGGTTTCAGACACAAGCAG -CCAACAGGTTTCAGACACCGTCAA -CCAACAGGTTTCAGACACGCTGAA -CCAACAGGTTTCAGACACAGTACG -CCAACAGGTTTCAGACACATCCGA -CCAACAGGTTTCAGACACATGGGA -CCAACAGGTTTCAGACACGTGCAA -CCAACAGGTTTCAGACACGAGGAA -CCAACAGGTTTCAGACACCAGGTA -CCAACAGGTTTCAGACACGACTCT -CCAACAGGTTTCAGACACAGTCCT -CCAACAGGTTTCAGACACTAAGCC -CCAACAGGTTTCAGACACATAGCC -CCAACAGGTTTCAGACACTAACCG -CCAACAGGTTTCAGACACATGCCA -CCAACAGGTTTCAGAGCAGGAAAC -CCAACAGGTTTCAGAGCAAACACC -CCAACAGGTTTCAGAGCAATCGAG -CCAACAGGTTTCAGAGCACTCCTT -CCAACAGGTTTCAGAGCACCTGTT -CCAACAGGTTTCAGAGCACGGTTT -CCAACAGGTTTCAGAGCAGTGGTT -CCAACAGGTTTCAGAGCAGCCTTT -CCAACAGGTTTCAGAGCAGGTCTT -CCAACAGGTTTCAGAGCAACGCTT -CCAACAGGTTTCAGAGCAAGCGTT -CCAACAGGTTTCAGAGCATTCGTC -CCAACAGGTTTCAGAGCATCTCTC -CCAACAGGTTTCAGAGCATGGATC -CCAACAGGTTTCAGAGCACACTTC -CCAACAGGTTTCAGAGCAGTACTC -CCAACAGGTTTCAGAGCAGATGTC -CCAACAGGTTTCAGAGCAACAGTC -CCAACAGGTTTCAGAGCATTGCTG -CCAACAGGTTTCAGAGCATCCATG -CCAACAGGTTTCAGAGCATGTGTG -CCAACAGGTTTCAGAGCACTAGTG -CCAACAGGTTTCAGAGCACATCTG -CCAACAGGTTTCAGAGCAGAGTTG -CCAACAGGTTTCAGAGCAAGACTG -CCAACAGGTTTCAGAGCATCGGTA -CCAACAGGTTTCAGAGCATGCCTA -CCAACAGGTTTCAGAGCACCACTA -CCAACAGGTTTCAGAGCAGGAGTA -CCAACAGGTTTCAGAGCATCGTCT -CCAACAGGTTTCAGAGCATGCACT -CCAACAGGTTTCAGAGCACTGACT -CCAACAGGTTTCAGAGCACAACCT -CCAACAGGTTTCAGAGCAGCTACT -CCAACAGGTTTCAGAGCAGGATCT -CCAACAGGTTTCAGAGCAAAGGCT -CCAACAGGTTTCAGAGCATCAACC -CCAACAGGTTTCAGAGCATGTTCC -CCAACAGGTTTCAGAGCAATTCCC -CCAACAGGTTTCAGAGCATTCTCG -CCAACAGGTTTCAGAGCATAGACG -CCAACAGGTTTCAGAGCAGTAACG -CCAACAGGTTTCAGAGCAACTTCG -CCAACAGGTTTCAGAGCATACGCA -CCAACAGGTTTCAGAGCACTTGCA -CCAACAGGTTTCAGAGCACGAACA -CCAACAGGTTTCAGAGCACAGTCA -CCAACAGGTTTCAGAGCAGATCCA -CCAACAGGTTTCAGAGCAACGACA -CCAACAGGTTTCAGAGCAAGCTCA -CCAACAGGTTTCAGAGCATCACGT -CCAACAGGTTTCAGAGCACGTAGT -CCAACAGGTTTCAGAGCAGTCAGT -CCAACAGGTTTCAGAGCAGAAGGT -CCAACAGGTTTCAGAGCAAACCGT -CCAACAGGTTTCAGAGCATTGTGC -CCAACAGGTTTCAGAGCACTAAGC -CCAACAGGTTTCAGAGCAACTAGC -CCAACAGGTTTCAGAGCAAGATGC -CCAACAGGTTTCAGAGCATGAAGG -CCAACAGGTTTCAGAGCACAATGG -CCAACAGGTTTCAGAGCAATGAGG -CCAACAGGTTTCAGAGCAAATGGG -CCAACAGGTTTCAGAGCATCCTGA -CCAACAGGTTTCAGAGCATAGCGA -CCAACAGGTTTCAGAGCACACAGA -CCAACAGGTTTCAGAGCAGCAAGA -CCAACAGGTTTCAGAGCAGGTTGA -CCAACAGGTTTCAGAGCATCCGAT -CCAACAGGTTTCAGAGCATGGCAT -CCAACAGGTTTCAGAGCACGAGAT -CCAACAGGTTTCAGAGCATACCAC -CCAACAGGTTTCAGAGCACAGAAC -CCAACAGGTTTCAGAGCAGTCTAC -CCAACAGGTTTCAGAGCAACGTAC -CCAACAGGTTTCAGAGCAAGTGAC -CCAACAGGTTTCAGAGCACTGTAG -CCAACAGGTTTCAGAGCACCTAAG -CCAACAGGTTTCAGAGCAGTTCAG -CCAACAGGTTTCAGAGCAGCATAG -CCAACAGGTTTCAGAGCAGACAAG -CCAACAGGTTTCAGAGCAAAGCAG -CCAACAGGTTTCAGAGCACGTCAA -CCAACAGGTTTCAGAGCAGCTGAA -CCAACAGGTTTCAGAGCAAGTACG -CCAACAGGTTTCAGAGCAATCCGA -CCAACAGGTTTCAGAGCAATGGGA -CCAACAGGTTTCAGAGCAGTGCAA -CCAACAGGTTTCAGAGCAGAGGAA -CCAACAGGTTTCAGAGCACAGGTA -CCAACAGGTTTCAGAGCAGACTCT -CCAACAGGTTTCAGAGCAAGTCCT -CCAACAGGTTTCAGAGCATAAGCC -CCAACAGGTTTCAGAGCAATAGCC -CCAACAGGTTTCAGAGCATAACCG -CCAACAGGTTTCAGAGCAATGCCA -CCAACAGGTTTCTGAGGTGGAAAC -CCAACAGGTTTCTGAGGTAACACC -CCAACAGGTTTCTGAGGTATCGAG -CCAACAGGTTTCTGAGGTCTCCTT -CCAACAGGTTTCTGAGGTCCTGTT -CCAACAGGTTTCTGAGGTCGGTTT -CCAACAGGTTTCTGAGGTGTGGTT -CCAACAGGTTTCTGAGGTGCCTTT -CCAACAGGTTTCTGAGGTGGTCTT -CCAACAGGTTTCTGAGGTACGCTT -CCAACAGGTTTCTGAGGTAGCGTT -CCAACAGGTTTCTGAGGTTTCGTC -CCAACAGGTTTCTGAGGTTCTCTC -CCAACAGGTTTCTGAGGTTGGATC -CCAACAGGTTTCTGAGGTCACTTC -CCAACAGGTTTCTGAGGTGTACTC -CCAACAGGTTTCTGAGGTGATGTC -CCAACAGGTTTCTGAGGTACAGTC -CCAACAGGTTTCTGAGGTTTGCTG -CCAACAGGTTTCTGAGGTTCCATG -CCAACAGGTTTCTGAGGTTGTGTG -CCAACAGGTTTCTGAGGTCTAGTG -CCAACAGGTTTCTGAGGTCATCTG -CCAACAGGTTTCTGAGGTGAGTTG -CCAACAGGTTTCTGAGGTAGACTG -CCAACAGGTTTCTGAGGTTCGGTA -CCAACAGGTTTCTGAGGTTGCCTA -CCAACAGGTTTCTGAGGTCCACTA -CCAACAGGTTTCTGAGGTGGAGTA -CCAACAGGTTTCTGAGGTTCGTCT -CCAACAGGTTTCTGAGGTTGCACT -CCAACAGGTTTCTGAGGTCTGACT -CCAACAGGTTTCTGAGGTCAACCT -CCAACAGGTTTCTGAGGTGCTACT -CCAACAGGTTTCTGAGGTGGATCT -CCAACAGGTTTCTGAGGTAAGGCT -CCAACAGGTTTCTGAGGTTCAACC -CCAACAGGTTTCTGAGGTTGTTCC -CCAACAGGTTTCTGAGGTATTCCC -CCAACAGGTTTCTGAGGTTTCTCG -CCAACAGGTTTCTGAGGTTAGACG -CCAACAGGTTTCTGAGGTGTAACG -CCAACAGGTTTCTGAGGTACTTCG -CCAACAGGTTTCTGAGGTTACGCA -CCAACAGGTTTCTGAGGTCTTGCA -CCAACAGGTTTCTGAGGTCGAACA -CCAACAGGTTTCTGAGGTCAGTCA -CCAACAGGTTTCTGAGGTGATCCA -CCAACAGGTTTCTGAGGTACGACA -CCAACAGGTTTCTGAGGTAGCTCA -CCAACAGGTTTCTGAGGTTCACGT -CCAACAGGTTTCTGAGGTCGTAGT -CCAACAGGTTTCTGAGGTGTCAGT -CCAACAGGTTTCTGAGGTGAAGGT -CCAACAGGTTTCTGAGGTAACCGT -CCAACAGGTTTCTGAGGTTTGTGC -CCAACAGGTTTCTGAGGTCTAAGC -CCAACAGGTTTCTGAGGTACTAGC -CCAACAGGTTTCTGAGGTAGATGC -CCAACAGGTTTCTGAGGTTGAAGG -CCAACAGGTTTCTGAGGTCAATGG -CCAACAGGTTTCTGAGGTATGAGG -CCAACAGGTTTCTGAGGTAATGGG -CCAACAGGTTTCTGAGGTTCCTGA -CCAACAGGTTTCTGAGGTTAGCGA -CCAACAGGTTTCTGAGGTCACAGA -CCAACAGGTTTCTGAGGTGCAAGA -CCAACAGGTTTCTGAGGTGGTTGA -CCAACAGGTTTCTGAGGTTCCGAT -CCAACAGGTTTCTGAGGTTGGCAT -CCAACAGGTTTCTGAGGTCGAGAT -CCAACAGGTTTCTGAGGTTACCAC -CCAACAGGTTTCTGAGGTCAGAAC -CCAACAGGTTTCTGAGGTGTCTAC -CCAACAGGTTTCTGAGGTACGTAC -CCAACAGGTTTCTGAGGTAGTGAC -CCAACAGGTTTCTGAGGTCTGTAG -CCAACAGGTTTCTGAGGTCCTAAG -CCAACAGGTTTCTGAGGTGTTCAG -CCAACAGGTTTCTGAGGTGCATAG -CCAACAGGTTTCTGAGGTGACAAG -CCAACAGGTTTCTGAGGTAAGCAG -CCAACAGGTTTCTGAGGTCGTCAA -CCAACAGGTTTCTGAGGTGCTGAA -CCAACAGGTTTCTGAGGTAGTACG -CCAACAGGTTTCTGAGGTATCCGA -CCAACAGGTTTCTGAGGTATGGGA -CCAACAGGTTTCTGAGGTGTGCAA -CCAACAGGTTTCTGAGGTGAGGAA -CCAACAGGTTTCTGAGGTCAGGTA -CCAACAGGTTTCTGAGGTGACTCT -CCAACAGGTTTCTGAGGTAGTCCT -CCAACAGGTTTCTGAGGTTAAGCC -CCAACAGGTTTCTGAGGTATAGCC -CCAACAGGTTTCTGAGGTTAACCG -CCAACAGGTTTCTGAGGTATGCCA -CCAACAGGTTTCGATTCCGGAAAC -CCAACAGGTTTCGATTCCAACACC -CCAACAGGTTTCGATTCCATCGAG -CCAACAGGTTTCGATTCCCTCCTT -CCAACAGGTTTCGATTCCCCTGTT -CCAACAGGTTTCGATTCCCGGTTT -CCAACAGGTTTCGATTCCGTGGTT -CCAACAGGTTTCGATTCCGCCTTT -CCAACAGGTTTCGATTCCGGTCTT -CCAACAGGTTTCGATTCCACGCTT -CCAACAGGTTTCGATTCCAGCGTT -CCAACAGGTTTCGATTCCTTCGTC -CCAACAGGTTTCGATTCCTCTCTC -CCAACAGGTTTCGATTCCTGGATC -CCAACAGGTTTCGATTCCCACTTC -CCAACAGGTTTCGATTCCGTACTC -CCAACAGGTTTCGATTCCGATGTC -CCAACAGGTTTCGATTCCACAGTC -CCAACAGGTTTCGATTCCTTGCTG -CCAACAGGTTTCGATTCCTCCATG -CCAACAGGTTTCGATTCCTGTGTG -CCAACAGGTTTCGATTCCCTAGTG -CCAACAGGTTTCGATTCCCATCTG -CCAACAGGTTTCGATTCCGAGTTG -CCAACAGGTTTCGATTCCAGACTG -CCAACAGGTTTCGATTCCTCGGTA -CCAACAGGTTTCGATTCCTGCCTA -CCAACAGGTTTCGATTCCCCACTA -CCAACAGGTTTCGATTCCGGAGTA -CCAACAGGTTTCGATTCCTCGTCT -CCAACAGGTTTCGATTCCTGCACT -CCAACAGGTTTCGATTCCCTGACT -CCAACAGGTTTCGATTCCCAACCT -CCAACAGGTTTCGATTCCGCTACT -CCAACAGGTTTCGATTCCGGATCT -CCAACAGGTTTCGATTCCAAGGCT -CCAACAGGTTTCGATTCCTCAACC -CCAACAGGTTTCGATTCCTGTTCC -CCAACAGGTTTCGATTCCATTCCC -CCAACAGGTTTCGATTCCTTCTCG -CCAACAGGTTTCGATTCCTAGACG -CCAACAGGTTTCGATTCCGTAACG -CCAACAGGTTTCGATTCCACTTCG -CCAACAGGTTTCGATTCCTACGCA -CCAACAGGTTTCGATTCCCTTGCA -CCAACAGGTTTCGATTCCCGAACA -CCAACAGGTTTCGATTCCCAGTCA -CCAACAGGTTTCGATTCCGATCCA -CCAACAGGTTTCGATTCCACGACA -CCAACAGGTTTCGATTCCAGCTCA -CCAACAGGTTTCGATTCCTCACGT -CCAACAGGTTTCGATTCCCGTAGT -CCAACAGGTTTCGATTCCGTCAGT -CCAACAGGTTTCGATTCCGAAGGT -CCAACAGGTTTCGATTCCAACCGT -CCAACAGGTTTCGATTCCTTGTGC -CCAACAGGTTTCGATTCCCTAAGC -CCAACAGGTTTCGATTCCACTAGC -CCAACAGGTTTCGATTCCAGATGC -CCAACAGGTTTCGATTCCTGAAGG -CCAACAGGTTTCGATTCCCAATGG -CCAACAGGTTTCGATTCCATGAGG -CCAACAGGTTTCGATTCCAATGGG -CCAACAGGTTTCGATTCCTCCTGA -CCAACAGGTTTCGATTCCTAGCGA -CCAACAGGTTTCGATTCCCACAGA -CCAACAGGTTTCGATTCCGCAAGA -CCAACAGGTTTCGATTCCGGTTGA -CCAACAGGTTTCGATTCCTCCGAT -CCAACAGGTTTCGATTCCTGGCAT -CCAACAGGTTTCGATTCCCGAGAT -CCAACAGGTTTCGATTCCTACCAC -CCAACAGGTTTCGATTCCCAGAAC -CCAACAGGTTTCGATTCCGTCTAC -CCAACAGGTTTCGATTCCACGTAC -CCAACAGGTTTCGATTCCAGTGAC -CCAACAGGTTTCGATTCCCTGTAG -CCAACAGGTTTCGATTCCCCTAAG -CCAACAGGTTTCGATTCCGTTCAG -CCAACAGGTTTCGATTCCGCATAG -CCAACAGGTTTCGATTCCGACAAG -CCAACAGGTTTCGATTCCAAGCAG -CCAACAGGTTTCGATTCCCGTCAA -CCAACAGGTTTCGATTCCGCTGAA -CCAACAGGTTTCGATTCCAGTACG -CCAACAGGTTTCGATTCCATCCGA -CCAACAGGTTTCGATTCCATGGGA -CCAACAGGTTTCGATTCCGTGCAA -CCAACAGGTTTCGATTCCGAGGAA -CCAACAGGTTTCGATTCCCAGGTA -CCAACAGGTTTCGATTCCGACTCT -CCAACAGGTTTCGATTCCAGTCCT -CCAACAGGTTTCGATTCCTAAGCC -CCAACAGGTTTCGATTCCATAGCC -CCAACAGGTTTCGATTCCTAACCG -CCAACAGGTTTCGATTCCATGCCA -CCAACAGGTTTCCATTGGGGAAAC -CCAACAGGTTTCCATTGGAACACC -CCAACAGGTTTCCATTGGATCGAG -CCAACAGGTTTCCATTGGCTCCTT -CCAACAGGTTTCCATTGGCCTGTT -CCAACAGGTTTCCATTGGCGGTTT -CCAACAGGTTTCCATTGGGTGGTT -CCAACAGGTTTCCATTGGGCCTTT -CCAACAGGTTTCCATTGGGGTCTT -CCAACAGGTTTCCATTGGACGCTT -CCAACAGGTTTCCATTGGAGCGTT -CCAACAGGTTTCCATTGGTTCGTC -CCAACAGGTTTCCATTGGTCTCTC -CCAACAGGTTTCCATTGGTGGATC -CCAACAGGTTTCCATTGGCACTTC -CCAACAGGTTTCCATTGGGTACTC -CCAACAGGTTTCCATTGGGATGTC -CCAACAGGTTTCCATTGGACAGTC -CCAACAGGTTTCCATTGGTTGCTG -CCAACAGGTTTCCATTGGTCCATG -CCAACAGGTTTCCATTGGTGTGTG -CCAACAGGTTTCCATTGGCTAGTG -CCAACAGGTTTCCATTGGCATCTG -CCAACAGGTTTCCATTGGGAGTTG -CCAACAGGTTTCCATTGGAGACTG -CCAACAGGTTTCCATTGGTCGGTA -CCAACAGGTTTCCATTGGTGCCTA -CCAACAGGTTTCCATTGGCCACTA -CCAACAGGTTTCCATTGGGGAGTA -CCAACAGGTTTCCATTGGTCGTCT -CCAACAGGTTTCCATTGGTGCACT -CCAACAGGTTTCCATTGGCTGACT -CCAACAGGTTTCCATTGGCAACCT -CCAACAGGTTTCCATTGGGCTACT -CCAACAGGTTTCCATTGGGGATCT -CCAACAGGTTTCCATTGGAAGGCT -CCAACAGGTTTCCATTGGTCAACC -CCAACAGGTTTCCATTGGTGTTCC -CCAACAGGTTTCCATTGGATTCCC -CCAACAGGTTTCCATTGGTTCTCG -CCAACAGGTTTCCATTGGTAGACG -CCAACAGGTTTCCATTGGGTAACG -CCAACAGGTTTCCATTGGACTTCG -CCAACAGGTTTCCATTGGTACGCA -CCAACAGGTTTCCATTGGCTTGCA -CCAACAGGTTTCCATTGGCGAACA -CCAACAGGTTTCCATTGGCAGTCA -CCAACAGGTTTCCATTGGGATCCA -CCAACAGGTTTCCATTGGACGACA -CCAACAGGTTTCCATTGGAGCTCA -CCAACAGGTTTCCATTGGTCACGT -CCAACAGGTTTCCATTGGCGTAGT -CCAACAGGTTTCCATTGGGTCAGT -CCAACAGGTTTCCATTGGGAAGGT -CCAACAGGTTTCCATTGGAACCGT -CCAACAGGTTTCCATTGGTTGTGC -CCAACAGGTTTCCATTGGCTAAGC -CCAACAGGTTTCCATTGGACTAGC -CCAACAGGTTTCCATTGGAGATGC -CCAACAGGTTTCCATTGGTGAAGG -CCAACAGGTTTCCATTGGCAATGG -CCAACAGGTTTCCATTGGATGAGG -CCAACAGGTTTCCATTGGAATGGG -CCAACAGGTTTCCATTGGTCCTGA -CCAACAGGTTTCCATTGGTAGCGA -CCAACAGGTTTCCATTGGCACAGA -CCAACAGGTTTCCATTGGGCAAGA -CCAACAGGTTTCCATTGGGGTTGA -CCAACAGGTTTCCATTGGTCCGAT -CCAACAGGTTTCCATTGGTGGCAT -CCAACAGGTTTCCATTGGCGAGAT -CCAACAGGTTTCCATTGGTACCAC -CCAACAGGTTTCCATTGGCAGAAC -CCAACAGGTTTCCATTGGGTCTAC -CCAACAGGTTTCCATTGGACGTAC -CCAACAGGTTTCCATTGGAGTGAC -CCAACAGGTTTCCATTGGCTGTAG -CCAACAGGTTTCCATTGGCCTAAG -CCAACAGGTTTCCATTGGGTTCAG -CCAACAGGTTTCCATTGGGCATAG -CCAACAGGTTTCCATTGGGACAAG -CCAACAGGTTTCCATTGGAAGCAG -CCAACAGGTTTCCATTGGCGTCAA -CCAACAGGTTTCCATTGGGCTGAA -CCAACAGGTTTCCATTGGAGTACG -CCAACAGGTTTCCATTGGATCCGA -CCAACAGGTTTCCATTGGATGGGA -CCAACAGGTTTCCATTGGGTGCAA -CCAACAGGTTTCCATTGGGAGGAA -CCAACAGGTTTCCATTGGCAGGTA -CCAACAGGTTTCCATTGGGACTCT -CCAACAGGTTTCCATTGGAGTCCT -CCAACAGGTTTCCATTGGTAAGCC -CCAACAGGTTTCCATTGGATAGCC -CCAACAGGTTTCCATTGGTAACCG -CCAACAGGTTTCCATTGGATGCCA -CCAACAGGTTTCGATCGAGGAAAC -CCAACAGGTTTCGATCGAAACACC -CCAACAGGTTTCGATCGAATCGAG -CCAACAGGTTTCGATCGACTCCTT -CCAACAGGTTTCGATCGACCTGTT -CCAACAGGTTTCGATCGACGGTTT -CCAACAGGTTTCGATCGAGTGGTT -CCAACAGGTTTCGATCGAGCCTTT -CCAACAGGTTTCGATCGAGGTCTT -CCAACAGGTTTCGATCGAACGCTT -CCAACAGGTTTCGATCGAAGCGTT -CCAACAGGTTTCGATCGATTCGTC -CCAACAGGTTTCGATCGATCTCTC -CCAACAGGTTTCGATCGATGGATC -CCAACAGGTTTCGATCGACACTTC -CCAACAGGTTTCGATCGAGTACTC -CCAACAGGTTTCGATCGAGATGTC -CCAACAGGTTTCGATCGAACAGTC -CCAACAGGTTTCGATCGATTGCTG -CCAACAGGTTTCGATCGATCCATG -CCAACAGGTTTCGATCGATGTGTG -CCAACAGGTTTCGATCGACTAGTG -CCAACAGGTTTCGATCGACATCTG -CCAACAGGTTTCGATCGAGAGTTG -CCAACAGGTTTCGATCGAAGACTG -CCAACAGGTTTCGATCGATCGGTA -CCAACAGGTTTCGATCGATGCCTA -CCAACAGGTTTCGATCGACCACTA -CCAACAGGTTTCGATCGAGGAGTA -CCAACAGGTTTCGATCGATCGTCT -CCAACAGGTTTCGATCGATGCACT -CCAACAGGTTTCGATCGACTGACT -CCAACAGGTTTCGATCGACAACCT -CCAACAGGTTTCGATCGAGCTACT -CCAACAGGTTTCGATCGAGGATCT -CCAACAGGTTTCGATCGAAAGGCT -CCAACAGGTTTCGATCGATCAACC -CCAACAGGTTTCGATCGATGTTCC -CCAACAGGTTTCGATCGAATTCCC -CCAACAGGTTTCGATCGATTCTCG -CCAACAGGTTTCGATCGATAGACG -CCAACAGGTTTCGATCGAGTAACG -CCAACAGGTTTCGATCGAACTTCG -CCAACAGGTTTCGATCGATACGCA -CCAACAGGTTTCGATCGACTTGCA -CCAACAGGTTTCGATCGACGAACA -CCAACAGGTTTCGATCGACAGTCA -CCAACAGGTTTCGATCGAGATCCA -CCAACAGGTTTCGATCGAACGACA -CCAACAGGTTTCGATCGAAGCTCA -CCAACAGGTTTCGATCGATCACGT -CCAACAGGTTTCGATCGACGTAGT -CCAACAGGTTTCGATCGAGTCAGT -CCAACAGGTTTCGATCGAGAAGGT -CCAACAGGTTTCGATCGAAACCGT -CCAACAGGTTTCGATCGATTGTGC -CCAACAGGTTTCGATCGACTAAGC -CCAACAGGTTTCGATCGAACTAGC -CCAACAGGTTTCGATCGAAGATGC -CCAACAGGTTTCGATCGATGAAGG -CCAACAGGTTTCGATCGACAATGG -CCAACAGGTTTCGATCGAATGAGG -CCAACAGGTTTCGATCGAAATGGG -CCAACAGGTTTCGATCGATCCTGA -CCAACAGGTTTCGATCGATAGCGA -CCAACAGGTTTCGATCGACACAGA -CCAACAGGTTTCGATCGAGCAAGA -CCAACAGGTTTCGATCGAGGTTGA -CCAACAGGTTTCGATCGATCCGAT -CCAACAGGTTTCGATCGATGGCAT -CCAACAGGTTTCGATCGACGAGAT -CCAACAGGTTTCGATCGATACCAC -CCAACAGGTTTCGATCGACAGAAC -CCAACAGGTTTCGATCGAGTCTAC -CCAACAGGTTTCGATCGAACGTAC -CCAACAGGTTTCGATCGAAGTGAC -CCAACAGGTTTCGATCGACTGTAG -CCAACAGGTTTCGATCGACCTAAG -CCAACAGGTTTCGATCGAGTTCAG -CCAACAGGTTTCGATCGAGCATAG -CCAACAGGTTTCGATCGAGACAAG -CCAACAGGTTTCGATCGAAAGCAG -CCAACAGGTTTCGATCGACGTCAA -CCAACAGGTTTCGATCGAGCTGAA -CCAACAGGTTTCGATCGAAGTACG -CCAACAGGTTTCGATCGAATCCGA -CCAACAGGTTTCGATCGAATGGGA -CCAACAGGTTTCGATCGAGTGCAA -CCAACAGGTTTCGATCGAGAGGAA -CCAACAGGTTTCGATCGACAGGTA -CCAACAGGTTTCGATCGAGACTCT -CCAACAGGTTTCGATCGAAGTCCT -CCAACAGGTTTCGATCGATAAGCC -CCAACAGGTTTCGATCGAATAGCC -CCAACAGGTTTCGATCGATAACCG -CCAACAGGTTTCGATCGAATGCCA -CCAACAGGTTTCCACTACGGAAAC -CCAACAGGTTTCCACTACAACACC -CCAACAGGTTTCCACTACATCGAG -CCAACAGGTTTCCACTACCTCCTT -CCAACAGGTTTCCACTACCCTGTT -CCAACAGGTTTCCACTACCGGTTT -CCAACAGGTTTCCACTACGTGGTT -CCAACAGGTTTCCACTACGCCTTT -CCAACAGGTTTCCACTACGGTCTT -CCAACAGGTTTCCACTACACGCTT -CCAACAGGTTTCCACTACAGCGTT -CCAACAGGTTTCCACTACTTCGTC -CCAACAGGTTTCCACTACTCTCTC -CCAACAGGTTTCCACTACTGGATC -CCAACAGGTTTCCACTACCACTTC -CCAACAGGTTTCCACTACGTACTC -CCAACAGGTTTCCACTACGATGTC -CCAACAGGTTTCCACTACACAGTC -CCAACAGGTTTCCACTACTTGCTG -CCAACAGGTTTCCACTACTCCATG -CCAACAGGTTTCCACTACTGTGTG -CCAACAGGTTTCCACTACCTAGTG -CCAACAGGTTTCCACTACCATCTG -CCAACAGGTTTCCACTACGAGTTG -CCAACAGGTTTCCACTACAGACTG -CCAACAGGTTTCCACTACTCGGTA -CCAACAGGTTTCCACTACTGCCTA -CCAACAGGTTTCCACTACCCACTA -CCAACAGGTTTCCACTACGGAGTA -CCAACAGGTTTCCACTACTCGTCT -CCAACAGGTTTCCACTACTGCACT -CCAACAGGTTTCCACTACCTGACT -CCAACAGGTTTCCACTACCAACCT -CCAACAGGTTTCCACTACGCTACT -CCAACAGGTTTCCACTACGGATCT -CCAACAGGTTTCCACTACAAGGCT -CCAACAGGTTTCCACTACTCAACC -CCAACAGGTTTCCACTACTGTTCC -CCAACAGGTTTCCACTACATTCCC -CCAACAGGTTTCCACTACTTCTCG -CCAACAGGTTTCCACTACTAGACG -CCAACAGGTTTCCACTACGTAACG -CCAACAGGTTTCCACTACACTTCG -CCAACAGGTTTCCACTACTACGCA -CCAACAGGTTTCCACTACCTTGCA -CCAACAGGTTTCCACTACCGAACA -CCAACAGGTTTCCACTACCAGTCA -CCAACAGGTTTCCACTACGATCCA -CCAACAGGTTTCCACTACACGACA -CCAACAGGTTTCCACTACAGCTCA -CCAACAGGTTTCCACTACTCACGT -CCAACAGGTTTCCACTACCGTAGT -CCAACAGGTTTCCACTACGTCAGT -CCAACAGGTTTCCACTACGAAGGT -CCAACAGGTTTCCACTACAACCGT -CCAACAGGTTTCCACTACTTGTGC -CCAACAGGTTTCCACTACCTAAGC -CCAACAGGTTTCCACTACACTAGC -CCAACAGGTTTCCACTACAGATGC -CCAACAGGTTTCCACTACTGAAGG -CCAACAGGTTTCCACTACCAATGG -CCAACAGGTTTCCACTACATGAGG -CCAACAGGTTTCCACTACAATGGG -CCAACAGGTTTCCACTACTCCTGA -CCAACAGGTTTCCACTACTAGCGA -CCAACAGGTTTCCACTACCACAGA -CCAACAGGTTTCCACTACGCAAGA -CCAACAGGTTTCCACTACGGTTGA -CCAACAGGTTTCCACTACTCCGAT -CCAACAGGTTTCCACTACTGGCAT -CCAACAGGTTTCCACTACCGAGAT -CCAACAGGTTTCCACTACTACCAC -CCAACAGGTTTCCACTACCAGAAC -CCAACAGGTTTCCACTACGTCTAC -CCAACAGGTTTCCACTACACGTAC -CCAACAGGTTTCCACTACAGTGAC -CCAACAGGTTTCCACTACCTGTAG -CCAACAGGTTTCCACTACCCTAAG -CCAACAGGTTTCCACTACGTTCAG -CCAACAGGTTTCCACTACGCATAG -CCAACAGGTTTCCACTACGACAAG -CCAACAGGTTTCCACTACAAGCAG -CCAACAGGTTTCCACTACCGTCAA -CCAACAGGTTTCCACTACGCTGAA -CCAACAGGTTTCCACTACAGTACG -CCAACAGGTTTCCACTACATCCGA -CCAACAGGTTTCCACTACATGGGA -CCAACAGGTTTCCACTACGTGCAA -CCAACAGGTTTCCACTACGAGGAA -CCAACAGGTTTCCACTACCAGGTA -CCAACAGGTTTCCACTACGACTCT -CCAACAGGTTTCCACTACAGTCCT -CCAACAGGTTTCCACTACTAAGCC -CCAACAGGTTTCCACTACATAGCC -CCAACAGGTTTCCACTACTAACCG -CCAACAGGTTTCCACTACATGCCA -CCAACAGGTTTCAACCAGGGAAAC -CCAACAGGTTTCAACCAGAACACC -CCAACAGGTTTCAACCAGATCGAG -CCAACAGGTTTCAACCAGCTCCTT -CCAACAGGTTTCAACCAGCCTGTT -CCAACAGGTTTCAACCAGCGGTTT -CCAACAGGTTTCAACCAGGTGGTT -CCAACAGGTTTCAACCAGGCCTTT -CCAACAGGTTTCAACCAGGGTCTT -CCAACAGGTTTCAACCAGACGCTT -CCAACAGGTTTCAACCAGAGCGTT -CCAACAGGTTTCAACCAGTTCGTC -CCAACAGGTTTCAACCAGTCTCTC -CCAACAGGTTTCAACCAGTGGATC -CCAACAGGTTTCAACCAGCACTTC -CCAACAGGTTTCAACCAGGTACTC -CCAACAGGTTTCAACCAGGATGTC -CCAACAGGTTTCAACCAGACAGTC -CCAACAGGTTTCAACCAGTTGCTG -CCAACAGGTTTCAACCAGTCCATG -CCAACAGGTTTCAACCAGTGTGTG -CCAACAGGTTTCAACCAGCTAGTG -CCAACAGGTTTCAACCAGCATCTG -CCAACAGGTTTCAACCAGGAGTTG -CCAACAGGTTTCAACCAGAGACTG -CCAACAGGTTTCAACCAGTCGGTA -CCAACAGGTTTCAACCAGTGCCTA -CCAACAGGTTTCAACCAGCCACTA -CCAACAGGTTTCAACCAGGGAGTA -CCAACAGGTTTCAACCAGTCGTCT -CCAACAGGTTTCAACCAGTGCACT -CCAACAGGTTTCAACCAGCTGACT -CCAACAGGTTTCAACCAGCAACCT -CCAACAGGTTTCAACCAGGCTACT -CCAACAGGTTTCAACCAGGGATCT -CCAACAGGTTTCAACCAGAAGGCT -CCAACAGGTTTCAACCAGTCAACC -CCAACAGGTTTCAACCAGTGTTCC -CCAACAGGTTTCAACCAGATTCCC -CCAACAGGTTTCAACCAGTTCTCG -CCAACAGGTTTCAACCAGTAGACG -CCAACAGGTTTCAACCAGGTAACG -CCAACAGGTTTCAACCAGACTTCG -CCAACAGGTTTCAACCAGTACGCA -CCAACAGGTTTCAACCAGCTTGCA -CCAACAGGTTTCAACCAGCGAACA -CCAACAGGTTTCAACCAGCAGTCA -CCAACAGGTTTCAACCAGGATCCA -CCAACAGGTTTCAACCAGACGACA -CCAACAGGTTTCAACCAGAGCTCA -CCAACAGGTTTCAACCAGTCACGT -CCAACAGGTTTCAACCAGCGTAGT -CCAACAGGTTTCAACCAGGTCAGT -CCAACAGGTTTCAACCAGGAAGGT -CCAACAGGTTTCAACCAGAACCGT -CCAACAGGTTTCAACCAGTTGTGC -CCAACAGGTTTCAACCAGCTAAGC -CCAACAGGTTTCAACCAGACTAGC -CCAACAGGTTTCAACCAGAGATGC -CCAACAGGTTTCAACCAGTGAAGG -CCAACAGGTTTCAACCAGCAATGG -CCAACAGGTTTCAACCAGATGAGG -CCAACAGGTTTCAACCAGAATGGG -CCAACAGGTTTCAACCAGTCCTGA -CCAACAGGTTTCAACCAGTAGCGA -CCAACAGGTTTCAACCAGCACAGA -CCAACAGGTTTCAACCAGGCAAGA -CCAACAGGTTTCAACCAGGGTTGA -CCAACAGGTTTCAACCAGTCCGAT -CCAACAGGTTTCAACCAGTGGCAT -CCAACAGGTTTCAACCAGCGAGAT -CCAACAGGTTTCAACCAGTACCAC -CCAACAGGTTTCAACCAGCAGAAC -CCAACAGGTTTCAACCAGGTCTAC -CCAACAGGTTTCAACCAGACGTAC -CCAACAGGTTTCAACCAGAGTGAC -CCAACAGGTTTCAACCAGCTGTAG -CCAACAGGTTTCAACCAGCCTAAG -CCAACAGGTTTCAACCAGGTTCAG -CCAACAGGTTTCAACCAGGCATAG -CCAACAGGTTTCAACCAGGACAAG -CCAACAGGTTTCAACCAGAAGCAG -CCAACAGGTTTCAACCAGCGTCAA -CCAACAGGTTTCAACCAGGCTGAA -CCAACAGGTTTCAACCAGAGTACG -CCAACAGGTTTCAACCAGATCCGA -CCAACAGGTTTCAACCAGATGGGA -CCAACAGGTTTCAACCAGGTGCAA -CCAACAGGTTTCAACCAGGAGGAA -CCAACAGGTTTCAACCAGCAGGTA -CCAACAGGTTTCAACCAGGACTCT -CCAACAGGTTTCAACCAGAGTCCT -CCAACAGGTTTCAACCAGTAAGCC -CCAACAGGTTTCAACCAGATAGCC -CCAACAGGTTTCAACCAGTAACCG -CCAACAGGTTTCAACCAGATGCCA -CCAACAGGTTTCTACGTCGGAAAC -CCAACAGGTTTCTACGTCAACACC -CCAACAGGTTTCTACGTCATCGAG -CCAACAGGTTTCTACGTCCTCCTT -CCAACAGGTTTCTACGTCCCTGTT -CCAACAGGTTTCTACGTCCGGTTT -CCAACAGGTTTCTACGTCGTGGTT -CCAACAGGTTTCTACGTCGCCTTT -CCAACAGGTTTCTACGTCGGTCTT -CCAACAGGTTTCTACGTCACGCTT -CCAACAGGTTTCTACGTCAGCGTT -CCAACAGGTTTCTACGTCTTCGTC -CCAACAGGTTTCTACGTCTCTCTC -CCAACAGGTTTCTACGTCTGGATC -CCAACAGGTTTCTACGTCCACTTC -CCAACAGGTTTCTACGTCGTACTC -CCAACAGGTTTCTACGTCGATGTC -CCAACAGGTTTCTACGTCACAGTC -CCAACAGGTTTCTACGTCTTGCTG -CCAACAGGTTTCTACGTCTCCATG -CCAACAGGTTTCTACGTCTGTGTG -CCAACAGGTTTCTACGTCCTAGTG -CCAACAGGTTTCTACGTCCATCTG -CCAACAGGTTTCTACGTCGAGTTG -CCAACAGGTTTCTACGTCAGACTG -CCAACAGGTTTCTACGTCTCGGTA -CCAACAGGTTTCTACGTCTGCCTA -CCAACAGGTTTCTACGTCCCACTA -CCAACAGGTTTCTACGTCGGAGTA -CCAACAGGTTTCTACGTCTCGTCT -CCAACAGGTTTCTACGTCTGCACT -CCAACAGGTTTCTACGTCCTGACT -CCAACAGGTTTCTACGTCCAACCT -CCAACAGGTTTCTACGTCGCTACT -CCAACAGGTTTCTACGTCGGATCT -CCAACAGGTTTCTACGTCAAGGCT -CCAACAGGTTTCTACGTCTCAACC -CCAACAGGTTTCTACGTCTGTTCC -CCAACAGGTTTCTACGTCATTCCC -CCAACAGGTTTCTACGTCTTCTCG -CCAACAGGTTTCTACGTCTAGACG -CCAACAGGTTTCTACGTCGTAACG -CCAACAGGTTTCTACGTCACTTCG -CCAACAGGTTTCTACGTCTACGCA -CCAACAGGTTTCTACGTCCTTGCA -CCAACAGGTTTCTACGTCCGAACA -CCAACAGGTTTCTACGTCCAGTCA -CCAACAGGTTTCTACGTCGATCCA -CCAACAGGTTTCTACGTCACGACA -CCAACAGGTTTCTACGTCAGCTCA -CCAACAGGTTTCTACGTCTCACGT -CCAACAGGTTTCTACGTCCGTAGT -CCAACAGGTTTCTACGTCGTCAGT -CCAACAGGTTTCTACGTCGAAGGT -CCAACAGGTTTCTACGTCAACCGT -CCAACAGGTTTCTACGTCTTGTGC -CCAACAGGTTTCTACGTCCTAAGC -CCAACAGGTTTCTACGTCACTAGC -CCAACAGGTTTCTACGTCAGATGC -CCAACAGGTTTCTACGTCTGAAGG -CCAACAGGTTTCTACGTCCAATGG -CCAACAGGTTTCTACGTCATGAGG -CCAACAGGTTTCTACGTCAATGGG -CCAACAGGTTTCTACGTCTCCTGA -CCAACAGGTTTCTACGTCTAGCGA -CCAACAGGTTTCTACGTCCACAGA -CCAACAGGTTTCTACGTCGCAAGA -CCAACAGGTTTCTACGTCGGTTGA -CCAACAGGTTTCTACGTCTCCGAT -CCAACAGGTTTCTACGTCTGGCAT -CCAACAGGTTTCTACGTCCGAGAT -CCAACAGGTTTCTACGTCTACCAC -CCAACAGGTTTCTACGTCCAGAAC -CCAACAGGTTTCTACGTCGTCTAC -CCAACAGGTTTCTACGTCACGTAC -CCAACAGGTTTCTACGTCAGTGAC -CCAACAGGTTTCTACGTCCTGTAG -CCAACAGGTTTCTACGTCCCTAAG -CCAACAGGTTTCTACGTCGTTCAG -CCAACAGGTTTCTACGTCGCATAG -CCAACAGGTTTCTACGTCGACAAG -CCAACAGGTTTCTACGTCAAGCAG -CCAACAGGTTTCTACGTCCGTCAA -CCAACAGGTTTCTACGTCGCTGAA -CCAACAGGTTTCTACGTCAGTACG -CCAACAGGTTTCTACGTCATCCGA -CCAACAGGTTTCTACGTCATGGGA -CCAACAGGTTTCTACGTCGTGCAA -CCAACAGGTTTCTACGTCGAGGAA -CCAACAGGTTTCTACGTCCAGGTA -CCAACAGGTTTCTACGTCGACTCT -CCAACAGGTTTCTACGTCAGTCCT -CCAACAGGTTTCTACGTCTAAGCC -CCAACAGGTTTCTACGTCATAGCC -CCAACAGGTTTCTACGTCTAACCG -CCAACAGGTTTCTACGTCATGCCA -CCAACAGGTTTCTACACGGGAAAC -CCAACAGGTTTCTACACGAACACC -CCAACAGGTTTCTACACGATCGAG -CCAACAGGTTTCTACACGCTCCTT -CCAACAGGTTTCTACACGCCTGTT -CCAACAGGTTTCTACACGCGGTTT -CCAACAGGTTTCTACACGGTGGTT -CCAACAGGTTTCTACACGGCCTTT -CCAACAGGTTTCTACACGGGTCTT -CCAACAGGTTTCTACACGACGCTT -CCAACAGGTTTCTACACGAGCGTT -CCAACAGGTTTCTACACGTTCGTC -CCAACAGGTTTCTACACGTCTCTC -CCAACAGGTTTCTACACGTGGATC -CCAACAGGTTTCTACACGCACTTC -CCAACAGGTTTCTACACGGTACTC -CCAACAGGTTTCTACACGGATGTC -CCAACAGGTTTCTACACGACAGTC -CCAACAGGTTTCTACACGTTGCTG -CCAACAGGTTTCTACACGTCCATG -CCAACAGGTTTCTACACGTGTGTG -CCAACAGGTTTCTACACGCTAGTG -CCAACAGGTTTCTACACGCATCTG -CCAACAGGTTTCTACACGGAGTTG -CCAACAGGTTTCTACACGAGACTG -CCAACAGGTTTCTACACGTCGGTA -CCAACAGGTTTCTACACGTGCCTA -CCAACAGGTTTCTACACGCCACTA -CCAACAGGTTTCTACACGGGAGTA -CCAACAGGTTTCTACACGTCGTCT -CCAACAGGTTTCTACACGTGCACT -CCAACAGGTTTCTACACGCTGACT -CCAACAGGTTTCTACACGCAACCT -CCAACAGGTTTCTACACGGCTACT -CCAACAGGTTTCTACACGGGATCT -CCAACAGGTTTCTACACGAAGGCT -CCAACAGGTTTCTACACGTCAACC -CCAACAGGTTTCTACACGTGTTCC -CCAACAGGTTTCTACACGATTCCC -CCAACAGGTTTCTACACGTTCTCG -CCAACAGGTTTCTACACGTAGACG -CCAACAGGTTTCTACACGGTAACG -CCAACAGGTTTCTACACGACTTCG -CCAACAGGTTTCTACACGTACGCA -CCAACAGGTTTCTACACGCTTGCA -CCAACAGGTTTCTACACGCGAACA -CCAACAGGTTTCTACACGCAGTCA -CCAACAGGTTTCTACACGGATCCA -CCAACAGGTTTCTACACGACGACA -CCAACAGGTTTCTACACGAGCTCA -CCAACAGGTTTCTACACGTCACGT -CCAACAGGTTTCTACACGCGTAGT -CCAACAGGTTTCTACACGGTCAGT -CCAACAGGTTTCTACACGGAAGGT -CCAACAGGTTTCTACACGAACCGT -CCAACAGGTTTCTACACGTTGTGC -CCAACAGGTTTCTACACGCTAAGC -CCAACAGGTTTCTACACGACTAGC -CCAACAGGTTTCTACACGAGATGC -CCAACAGGTTTCTACACGTGAAGG -CCAACAGGTTTCTACACGCAATGG -CCAACAGGTTTCTACACGATGAGG -CCAACAGGTTTCTACACGAATGGG -CCAACAGGTTTCTACACGTCCTGA -CCAACAGGTTTCTACACGTAGCGA -CCAACAGGTTTCTACACGCACAGA -CCAACAGGTTTCTACACGGCAAGA -CCAACAGGTTTCTACACGGGTTGA -CCAACAGGTTTCTACACGTCCGAT -CCAACAGGTTTCTACACGTGGCAT -CCAACAGGTTTCTACACGCGAGAT -CCAACAGGTTTCTACACGTACCAC -CCAACAGGTTTCTACACGCAGAAC -CCAACAGGTTTCTACACGGTCTAC -CCAACAGGTTTCTACACGACGTAC -CCAACAGGTTTCTACACGAGTGAC -CCAACAGGTTTCTACACGCTGTAG -CCAACAGGTTTCTACACGCCTAAG -CCAACAGGTTTCTACACGGTTCAG -CCAACAGGTTTCTACACGGCATAG -CCAACAGGTTTCTACACGGACAAG -CCAACAGGTTTCTACACGAAGCAG -CCAACAGGTTTCTACACGCGTCAA -CCAACAGGTTTCTACACGGCTGAA -CCAACAGGTTTCTACACGAGTACG -CCAACAGGTTTCTACACGATCCGA -CCAACAGGTTTCTACACGATGGGA -CCAACAGGTTTCTACACGGTGCAA -CCAACAGGTTTCTACACGGAGGAA -CCAACAGGTTTCTACACGCAGGTA -CCAACAGGTTTCTACACGGACTCT -CCAACAGGTTTCTACACGAGTCCT -CCAACAGGTTTCTACACGTAAGCC -CCAACAGGTTTCTACACGATAGCC -CCAACAGGTTTCTACACGTAACCG -CCAACAGGTTTCTACACGATGCCA -CCAACAGGTTTCGACAGTGGAAAC -CCAACAGGTTTCGACAGTAACACC -CCAACAGGTTTCGACAGTATCGAG -CCAACAGGTTTCGACAGTCTCCTT -CCAACAGGTTTCGACAGTCCTGTT -CCAACAGGTTTCGACAGTCGGTTT -CCAACAGGTTTCGACAGTGTGGTT -CCAACAGGTTTCGACAGTGCCTTT -CCAACAGGTTTCGACAGTGGTCTT -CCAACAGGTTTCGACAGTACGCTT -CCAACAGGTTTCGACAGTAGCGTT -CCAACAGGTTTCGACAGTTTCGTC -CCAACAGGTTTCGACAGTTCTCTC -CCAACAGGTTTCGACAGTTGGATC -CCAACAGGTTTCGACAGTCACTTC -CCAACAGGTTTCGACAGTGTACTC -CCAACAGGTTTCGACAGTGATGTC -CCAACAGGTTTCGACAGTACAGTC -CCAACAGGTTTCGACAGTTTGCTG -CCAACAGGTTTCGACAGTTCCATG -CCAACAGGTTTCGACAGTTGTGTG -CCAACAGGTTTCGACAGTCTAGTG -CCAACAGGTTTCGACAGTCATCTG -CCAACAGGTTTCGACAGTGAGTTG -CCAACAGGTTTCGACAGTAGACTG -CCAACAGGTTTCGACAGTTCGGTA -CCAACAGGTTTCGACAGTTGCCTA -CCAACAGGTTTCGACAGTCCACTA -CCAACAGGTTTCGACAGTGGAGTA -CCAACAGGTTTCGACAGTTCGTCT -CCAACAGGTTTCGACAGTTGCACT -CCAACAGGTTTCGACAGTCTGACT -CCAACAGGTTTCGACAGTCAACCT -CCAACAGGTTTCGACAGTGCTACT -CCAACAGGTTTCGACAGTGGATCT -CCAACAGGTTTCGACAGTAAGGCT -CCAACAGGTTTCGACAGTTCAACC -CCAACAGGTTTCGACAGTTGTTCC -CCAACAGGTTTCGACAGTATTCCC -CCAACAGGTTTCGACAGTTTCTCG -CCAACAGGTTTCGACAGTTAGACG -CCAACAGGTTTCGACAGTGTAACG -CCAACAGGTTTCGACAGTACTTCG -CCAACAGGTTTCGACAGTTACGCA -CCAACAGGTTTCGACAGTCTTGCA -CCAACAGGTTTCGACAGTCGAACA -CCAACAGGTTTCGACAGTCAGTCA -CCAACAGGTTTCGACAGTGATCCA -CCAACAGGTTTCGACAGTACGACA -CCAACAGGTTTCGACAGTAGCTCA -CCAACAGGTTTCGACAGTTCACGT -CCAACAGGTTTCGACAGTCGTAGT -CCAACAGGTTTCGACAGTGTCAGT -CCAACAGGTTTCGACAGTGAAGGT -CCAACAGGTTTCGACAGTAACCGT -CCAACAGGTTTCGACAGTTTGTGC -CCAACAGGTTTCGACAGTCTAAGC -CCAACAGGTTTCGACAGTACTAGC -CCAACAGGTTTCGACAGTAGATGC -CCAACAGGTTTCGACAGTTGAAGG -CCAACAGGTTTCGACAGTCAATGG -CCAACAGGTTTCGACAGTATGAGG -CCAACAGGTTTCGACAGTAATGGG -CCAACAGGTTTCGACAGTTCCTGA -CCAACAGGTTTCGACAGTTAGCGA -CCAACAGGTTTCGACAGTCACAGA -CCAACAGGTTTCGACAGTGCAAGA -CCAACAGGTTTCGACAGTGGTTGA -CCAACAGGTTTCGACAGTTCCGAT -CCAACAGGTTTCGACAGTTGGCAT -CCAACAGGTTTCGACAGTCGAGAT -CCAACAGGTTTCGACAGTTACCAC -CCAACAGGTTTCGACAGTCAGAAC -CCAACAGGTTTCGACAGTGTCTAC -CCAACAGGTTTCGACAGTACGTAC -CCAACAGGTTTCGACAGTAGTGAC -CCAACAGGTTTCGACAGTCTGTAG -CCAACAGGTTTCGACAGTCCTAAG -CCAACAGGTTTCGACAGTGTTCAG -CCAACAGGTTTCGACAGTGCATAG -CCAACAGGTTTCGACAGTGACAAG -CCAACAGGTTTCGACAGTAAGCAG -CCAACAGGTTTCGACAGTCGTCAA -CCAACAGGTTTCGACAGTGCTGAA -CCAACAGGTTTCGACAGTAGTACG -CCAACAGGTTTCGACAGTATCCGA -CCAACAGGTTTCGACAGTATGGGA -CCAACAGGTTTCGACAGTGTGCAA -CCAACAGGTTTCGACAGTGAGGAA -CCAACAGGTTTCGACAGTCAGGTA -CCAACAGGTTTCGACAGTGACTCT -CCAACAGGTTTCGACAGTAGTCCT -CCAACAGGTTTCGACAGTTAAGCC -CCAACAGGTTTCGACAGTATAGCC -CCAACAGGTTTCGACAGTTAACCG -CCAACAGGTTTCGACAGTATGCCA -CCAACAGGTTTCTAGCTGGGAAAC -CCAACAGGTTTCTAGCTGAACACC -CCAACAGGTTTCTAGCTGATCGAG -CCAACAGGTTTCTAGCTGCTCCTT -CCAACAGGTTTCTAGCTGCCTGTT -CCAACAGGTTTCTAGCTGCGGTTT -CCAACAGGTTTCTAGCTGGTGGTT -CCAACAGGTTTCTAGCTGGCCTTT -CCAACAGGTTTCTAGCTGGGTCTT -CCAACAGGTTTCTAGCTGACGCTT -CCAACAGGTTTCTAGCTGAGCGTT -CCAACAGGTTTCTAGCTGTTCGTC -CCAACAGGTTTCTAGCTGTCTCTC -CCAACAGGTTTCTAGCTGTGGATC -CCAACAGGTTTCTAGCTGCACTTC -CCAACAGGTTTCTAGCTGGTACTC -CCAACAGGTTTCTAGCTGGATGTC -CCAACAGGTTTCTAGCTGACAGTC -CCAACAGGTTTCTAGCTGTTGCTG -CCAACAGGTTTCTAGCTGTCCATG -CCAACAGGTTTCTAGCTGTGTGTG -CCAACAGGTTTCTAGCTGCTAGTG -CCAACAGGTTTCTAGCTGCATCTG -CCAACAGGTTTCTAGCTGGAGTTG -CCAACAGGTTTCTAGCTGAGACTG -CCAACAGGTTTCTAGCTGTCGGTA -CCAACAGGTTTCTAGCTGTGCCTA -CCAACAGGTTTCTAGCTGCCACTA -CCAACAGGTTTCTAGCTGGGAGTA -CCAACAGGTTTCTAGCTGTCGTCT -CCAACAGGTTTCTAGCTGTGCACT -CCAACAGGTTTCTAGCTGCTGACT -CCAACAGGTTTCTAGCTGCAACCT -CCAACAGGTTTCTAGCTGGCTACT -CCAACAGGTTTCTAGCTGGGATCT -CCAACAGGTTTCTAGCTGAAGGCT -CCAACAGGTTTCTAGCTGTCAACC -CCAACAGGTTTCTAGCTGTGTTCC -CCAACAGGTTTCTAGCTGATTCCC -CCAACAGGTTTCTAGCTGTTCTCG -CCAACAGGTTTCTAGCTGTAGACG -CCAACAGGTTTCTAGCTGGTAACG -CCAACAGGTTTCTAGCTGACTTCG -CCAACAGGTTTCTAGCTGTACGCA -CCAACAGGTTTCTAGCTGCTTGCA -CCAACAGGTTTCTAGCTGCGAACA -CCAACAGGTTTCTAGCTGCAGTCA -CCAACAGGTTTCTAGCTGGATCCA -CCAACAGGTTTCTAGCTGACGACA -CCAACAGGTTTCTAGCTGAGCTCA -CCAACAGGTTTCTAGCTGTCACGT -CCAACAGGTTTCTAGCTGCGTAGT -CCAACAGGTTTCTAGCTGGTCAGT -CCAACAGGTTTCTAGCTGGAAGGT -CCAACAGGTTTCTAGCTGAACCGT -CCAACAGGTTTCTAGCTGTTGTGC -CCAACAGGTTTCTAGCTGCTAAGC -CCAACAGGTTTCTAGCTGACTAGC -CCAACAGGTTTCTAGCTGAGATGC -CCAACAGGTTTCTAGCTGTGAAGG -CCAACAGGTTTCTAGCTGCAATGG -CCAACAGGTTTCTAGCTGATGAGG -CCAACAGGTTTCTAGCTGAATGGG -CCAACAGGTTTCTAGCTGTCCTGA -CCAACAGGTTTCTAGCTGTAGCGA -CCAACAGGTTTCTAGCTGCACAGA -CCAACAGGTTTCTAGCTGGCAAGA -CCAACAGGTTTCTAGCTGGGTTGA -CCAACAGGTTTCTAGCTGTCCGAT -CCAACAGGTTTCTAGCTGTGGCAT -CCAACAGGTTTCTAGCTGCGAGAT -CCAACAGGTTTCTAGCTGTACCAC -CCAACAGGTTTCTAGCTGCAGAAC -CCAACAGGTTTCTAGCTGGTCTAC -CCAACAGGTTTCTAGCTGACGTAC -CCAACAGGTTTCTAGCTGAGTGAC -CCAACAGGTTTCTAGCTGCTGTAG -CCAACAGGTTTCTAGCTGCCTAAG -CCAACAGGTTTCTAGCTGGTTCAG -CCAACAGGTTTCTAGCTGGCATAG -CCAACAGGTTTCTAGCTGGACAAG -CCAACAGGTTTCTAGCTGAAGCAG -CCAACAGGTTTCTAGCTGCGTCAA -CCAACAGGTTTCTAGCTGGCTGAA -CCAACAGGTTTCTAGCTGAGTACG -CCAACAGGTTTCTAGCTGATCCGA -CCAACAGGTTTCTAGCTGATGGGA -CCAACAGGTTTCTAGCTGGTGCAA -CCAACAGGTTTCTAGCTGGAGGAA -CCAACAGGTTTCTAGCTGCAGGTA -CCAACAGGTTTCTAGCTGGACTCT -CCAACAGGTTTCTAGCTGAGTCCT -CCAACAGGTTTCTAGCTGTAAGCC -CCAACAGGTTTCTAGCTGATAGCC -CCAACAGGTTTCTAGCTGTAACCG -CCAACAGGTTTCTAGCTGATGCCA -CCAACAGGTTTCAAGCCTGGAAAC -CCAACAGGTTTCAAGCCTAACACC -CCAACAGGTTTCAAGCCTATCGAG -CCAACAGGTTTCAAGCCTCTCCTT -CCAACAGGTTTCAAGCCTCCTGTT -CCAACAGGTTTCAAGCCTCGGTTT -CCAACAGGTTTCAAGCCTGTGGTT -CCAACAGGTTTCAAGCCTGCCTTT -CCAACAGGTTTCAAGCCTGGTCTT -CCAACAGGTTTCAAGCCTACGCTT -CCAACAGGTTTCAAGCCTAGCGTT -CCAACAGGTTTCAAGCCTTTCGTC -CCAACAGGTTTCAAGCCTTCTCTC -CCAACAGGTTTCAAGCCTTGGATC -CCAACAGGTTTCAAGCCTCACTTC -CCAACAGGTTTCAAGCCTGTACTC -CCAACAGGTTTCAAGCCTGATGTC -CCAACAGGTTTCAAGCCTACAGTC -CCAACAGGTTTCAAGCCTTTGCTG -CCAACAGGTTTCAAGCCTTCCATG -CCAACAGGTTTCAAGCCTTGTGTG -CCAACAGGTTTCAAGCCTCTAGTG -CCAACAGGTTTCAAGCCTCATCTG -CCAACAGGTTTCAAGCCTGAGTTG -CCAACAGGTTTCAAGCCTAGACTG -CCAACAGGTTTCAAGCCTTCGGTA -CCAACAGGTTTCAAGCCTTGCCTA -CCAACAGGTTTCAAGCCTCCACTA -CCAACAGGTTTCAAGCCTGGAGTA -CCAACAGGTTTCAAGCCTTCGTCT -CCAACAGGTTTCAAGCCTTGCACT -CCAACAGGTTTCAAGCCTCTGACT -CCAACAGGTTTCAAGCCTCAACCT -CCAACAGGTTTCAAGCCTGCTACT -CCAACAGGTTTCAAGCCTGGATCT -CCAACAGGTTTCAAGCCTAAGGCT -CCAACAGGTTTCAAGCCTTCAACC -CCAACAGGTTTCAAGCCTTGTTCC -CCAACAGGTTTCAAGCCTATTCCC -CCAACAGGTTTCAAGCCTTTCTCG -CCAACAGGTTTCAAGCCTTAGACG -CCAACAGGTTTCAAGCCTGTAACG -CCAACAGGTTTCAAGCCTACTTCG -CCAACAGGTTTCAAGCCTTACGCA -CCAACAGGTTTCAAGCCTCTTGCA -CCAACAGGTTTCAAGCCTCGAACA -CCAACAGGTTTCAAGCCTCAGTCA -CCAACAGGTTTCAAGCCTGATCCA -CCAACAGGTTTCAAGCCTACGACA -CCAACAGGTTTCAAGCCTAGCTCA -CCAACAGGTTTCAAGCCTTCACGT -CCAACAGGTTTCAAGCCTCGTAGT -CCAACAGGTTTCAAGCCTGTCAGT -CCAACAGGTTTCAAGCCTGAAGGT -CCAACAGGTTTCAAGCCTAACCGT -CCAACAGGTTTCAAGCCTTTGTGC -CCAACAGGTTTCAAGCCTCTAAGC -CCAACAGGTTTCAAGCCTACTAGC -CCAACAGGTTTCAAGCCTAGATGC -CCAACAGGTTTCAAGCCTTGAAGG -CCAACAGGTTTCAAGCCTCAATGG -CCAACAGGTTTCAAGCCTATGAGG -CCAACAGGTTTCAAGCCTAATGGG -CCAACAGGTTTCAAGCCTTCCTGA -CCAACAGGTTTCAAGCCTTAGCGA -CCAACAGGTTTCAAGCCTCACAGA -CCAACAGGTTTCAAGCCTGCAAGA -CCAACAGGTTTCAAGCCTGGTTGA -CCAACAGGTTTCAAGCCTTCCGAT -CCAACAGGTTTCAAGCCTTGGCAT -CCAACAGGTTTCAAGCCTCGAGAT -CCAACAGGTTTCAAGCCTTACCAC -CCAACAGGTTTCAAGCCTCAGAAC -CCAACAGGTTTCAAGCCTGTCTAC -CCAACAGGTTTCAAGCCTACGTAC -CCAACAGGTTTCAAGCCTAGTGAC -CCAACAGGTTTCAAGCCTCTGTAG -CCAACAGGTTTCAAGCCTCCTAAG -CCAACAGGTTTCAAGCCTGTTCAG -CCAACAGGTTTCAAGCCTGCATAG -CCAACAGGTTTCAAGCCTGACAAG -CCAACAGGTTTCAAGCCTAAGCAG -CCAACAGGTTTCAAGCCTCGTCAA -CCAACAGGTTTCAAGCCTGCTGAA -CCAACAGGTTTCAAGCCTAGTACG -CCAACAGGTTTCAAGCCTATCCGA -CCAACAGGTTTCAAGCCTATGGGA -CCAACAGGTTTCAAGCCTGTGCAA -CCAACAGGTTTCAAGCCTGAGGAA -CCAACAGGTTTCAAGCCTCAGGTA -CCAACAGGTTTCAAGCCTGACTCT -CCAACAGGTTTCAAGCCTAGTCCT -CCAACAGGTTTCAAGCCTTAAGCC -CCAACAGGTTTCAAGCCTATAGCC -CCAACAGGTTTCAAGCCTTAACCG -CCAACAGGTTTCAAGCCTATGCCA -CCAACAGGTTTCCAGGTTGGAAAC -CCAACAGGTTTCCAGGTTAACACC -CCAACAGGTTTCCAGGTTATCGAG -CCAACAGGTTTCCAGGTTCTCCTT -CCAACAGGTTTCCAGGTTCCTGTT -CCAACAGGTTTCCAGGTTCGGTTT -CCAACAGGTTTCCAGGTTGTGGTT -CCAACAGGTTTCCAGGTTGCCTTT -CCAACAGGTTTCCAGGTTGGTCTT -CCAACAGGTTTCCAGGTTACGCTT -CCAACAGGTTTCCAGGTTAGCGTT -CCAACAGGTTTCCAGGTTTTCGTC -CCAACAGGTTTCCAGGTTTCTCTC -CCAACAGGTTTCCAGGTTTGGATC -CCAACAGGTTTCCAGGTTCACTTC -CCAACAGGTTTCCAGGTTGTACTC -CCAACAGGTTTCCAGGTTGATGTC -CCAACAGGTTTCCAGGTTACAGTC -CCAACAGGTTTCCAGGTTTTGCTG -CCAACAGGTTTCCAGGTTTCCATG -CCAACAGGTTTCCAGGTTTGTGTG -CCAACAGGTTTCCAGGTTCTAGTG -CCAACAGGTTTCCAGGTTCATCTG -CCAACAGGTTTCCAGGTTGAGTTG -CCAACAGGTTTCCAGGTTAGACTG -CCAACAGGTTTCCAGGTTTCGGTA -CCAACAGGTTTCCAGGTTTGCCTA -CCAACAGGTTTCCAGGTTCCACTA -CCAACAGGTTTCCAGGTTGGAGTA -CCAACAGGTTTCCAGGTTTCGTCT -CCAACAGGTTTCCAGGTTTGCACT -CCAACAGGTTTCCAGGTTCTGACT -CCAACAGGTTTCCAGGTTCAACCT -CCAACAGGTTTCCAGGTTGCTACT -CCAACAGGTTTCCAGGTTGGATCT -CCAACAGGTTTCCAGGTTAAGGCT -CCAACAGGTTTCCAGGTTTCAACC -CCAACAGGTTTCCAGGTTTGTTCC -CCAACAGGTTTCCAGGTTATTCCC -CCAACAGGTTTCCAGGTTTTCTCG -CCAACAGGTTTCCAGGTTTAGACG -CCAACAGGTTTCCAGGTTGTAACG -CCAACAGGTTTCCAGGTTACTTCG -CCAACAGGTTTCCAGGTTTACGCA -CCAACAGGTTTCCAGGTTCTTGCA -CCAACAGGTTTCCAGGTTCGAACA -CCAACAGGTTTCCAGGTTCAGTCA -CCAACAGGTTTCCAGGTTGATCCA -CCAACAGGTTTCCAGGTTACGACA -CCAACAGGTTTCCAGGTTAGCTCA -CCAACAGGTTTCCAGGTTTCACGT -CCAACAGGTTTCCAGGTTCGTAGT -CCAACAGGTTTCCAGGTTGTCAGT -CCAACAGGTTTCCAGGTTGAAGGT -CCAACAGGTTTCCAGGTTAACCGT -CCAACAGGTTTCCAGGTTTTGTGC -CCAACAGGTTTCCAGGTTCTAAGC -CCAACAGGTTTCCAGGTTACTAGC -CCAACAGGTTTCCAGGTTAGATGC -CCAACAGGTTTCCAGGTTTGAAGG -CCAACAGGTTTCCAGGTTCAATGG -CCAACAGGTTTCCAGGTTATGAGG -CCAACAGGTTTCCAGGTTAATGGG -CCAACAGGTTTCCAGGTTTCCTGA -CCAACAGGTTTCCAGGTTTAGCGA -CCAACAGGTTTCCAGGTTCACAGA -CCAACAGGTTTCCAGGTTGCAAGA -CCAACAGGTTTCCAGGTTGGTTGA -CCAACAGGTTTCCAGGTTTCCGAT -CCAACAGGTTTCCAGGTTTGGCAT -CCAACAGGTTTCCAGGTTCGAGAT -CCAACAGGTTTCCAGGTTTACCAC -CCAACAGGTTTCCAGGTTCAGAAC -CCAACAGGTTTCCAGGTTGTCTAC -CCAACAGGTTTCCAGGTTACGTAC -CCAACAGGTTTCCAGGTTAGTGAC -CCAACAGGTTTCCAGGTTCTGTAG -CCAACAGGTTTCCAGGTTCCTAAG -CCAACAGGTTTCCAGGTTGTTCAG -CCAACAGGTTTCCAGGTTGCATAG -CCAACAGGTTTCCAGGTTGACAAG -CCAACAGGTTTCCAGGTTAAGCAG -CCAACAGGTTTCCAGGTTCGTCAA -CCAACAGGTTTCCAGGTTGCTGAA -CCAACAGGTTTCCAGGTTAGTACG -CCAACAGGTTTCCAGGTTATCCGA -CCAACAGGTTTCCAGGTTATGGGA -CCAACAGGTTTCCAGGTTGTGCAA -CCAACAGGTTTCCAGGTTGAGGAA -CCAACAGGTTTCCAGGTTCAGGTA -CCAACAGGTTTCCAGGTTGACTCT -CCAACAGGTTTCCAGGTTAGTCCT -CCAACAGGTTTCCAGGTTTAAGCC -CCAACAGGTTTCCAGGTTATAGCC -CCAACAGGTTTCCAGGTTTAACCG -CCAACAGGTTTCCAGGTTATGCCA -CCAACAGGTTTCTAGGCAGGAAAC -CCAACAGGTTTCTAGGCAAACACC -CCAACAGGTTTCTAGGCAATCGAG -CCAACAGGTTTCTAGGCACTCCTT -CCAACAGGTTTCTAGGCACCTGTT -CCAACAGGTTTCTAGGCACGGTTT -CCAACAGGTTTCTAGGCAGTGGTT -CCAACAGGTTTCTAGGCAGCCTTT -CCAACAGGTTTCTAGGCAGGTCTT -CCAACAGGTTTCTAGGCAACGCTT -CCAACAGGTTTCTAGGCAAGCGTT -CCAACAGGTTTCTAGGCATTCGTC -CCAACAGGTTTCTAGGCATCTCTC -CCAACAGGTTTCTAGGCATGGATC -CCAACAGGTTTCTAGGCACACTTC -CCAACAGGTTTCTAGGCAGTACTC -CCAACAGGTTTCTAGGCAGATGTC -CCAACAGGTTTCTAGGCAACAGTC -CCAACAGGTTTCTAGGCATTGCTG -CCAACAGGTTTCTAGGCATCCATG -CCAACAGGTTTCTAGGCATGTGTG -CCAACAGGTTTCTAGGCACTAGTG -CCAACAGGTTTCTAGGCACATCTG -CCAACAGGTTTCTAGGCAGAGTTG -CCAACAGGTTTCTAGGCAAGACTG -CCAACAGGTTTCTAGGCATCGGTA -CCAACAGGTTTCTAGGCATGCCTA -CCAACAGGTTTCTAGGCACCACTA -CCAACAGGTTTCTAGGCAGGAGTA -CCAACAGGTTTCTAGGCATCGTCT -CCAACAGGTTTCTAGGCATGCACT -CCAACAGGTTTCTAGGCACTGACT -CCAACAGGTTTCTAGGCACAACCT -CCAACAGGTTTCTAGGCAGCTACT -CCAACAGGTTTCTAGGCAGGATCT -CCAACAGGTTTCTAGGCAAAGGCT -CCAACAGGTTTCTAGGCATCAACC -CCAACAGGTTTCTAGGCATGTTCC -CCAACAGGTTTCTAGGCAATTCCC -CCAACAGGTTTCTAGGCATTCTCG -CCAACAGGTTTCTAGGCATAGACG -CCAACAGGTTTCTAGGCAGTAACG -CCAACAGGTTTCTAGGCAACTTCG -CCAACAGGTTTCTAGGCATACGCA -CCAACAGGTTTCTAGGCACTTGCA -CCAACAGGTTTCTAGGCACGAACA -CCAACAGGTTTCTAGGCACAGTCA -CCAACAGGTTTCTAGGCAGATCCA -CCAACAGGTTTCTAGGCAACGACA -CCAACAGGTTTCTAGGCAAGCTCA -CCAACAGGTTTCTAGGCATCACGT -CCAACAGGTTTCTAGGCACGTAGT -CCAACAGGTTTCTAGGCAGTCAGT -CCAACAGGTTTCTAGGCAGAAGGT -CCAACAGGTTTCTAGGCAAACCGT -CCAACAGGTTTCTAGGCATTGTGC -CCAACAGGTTTCTAGGCACTAAGC -CCAACAGGTTTCTAGGCAACTAGC -CCAACAGGTTTCTAGGCAAGATGC -CCAACAGGTTTCTAGGCATGAAGG -CCAACAGGTTTCTAGGCACAATGG -CCAACAGGTTTCTAGGCAATGAGG -CCAACAGGTTTCTAGGCAAATGGG -CCAACAGGTTTCTAGGCATCCTGA -CCAACAGGTTTCTAGGCATAGCGA -CCAACAGGTTTCTAGGCACACAGA -CCAACAGGTTTCTAGGCAGCAAGA -CCAACAGGTTTCTAGGCAGGTTGA -CCAACAGGTTTCTAGGCATCCGAT -CCAACAGGTTTCTAGGCATGGCAT -CCAACAGGTTTCTAGGCACGAGAT -CCAACAGGTTTCTAGGCATACCAC -CCAACAGGTTTCTAGGCACAGAAC -CCAACAGGTTTCTAGGCAGTCTAC -CCAACAGGTTTCTAGGCAACGTAC -CCAACAGGTTTCTAGGCAAGTGAC -CCAACAGGTTTCTAGGCACTGTAG -CCAACAGGTTTCTAGGCACCTAAG -CCAACAGGTTTCTAGGCAGTTCAG -CCAACAGGTTTCTAGGCAGCATAG -CCAACAGGTTTCTAGGCAGACAAG -CCAACAGGTTTCTAGGCAAAGCAG -CCAACAGGTTTCTAGGCACGTCAA -CCAACAGGTTTCTAGGCAGCTGAA -CCAACAGGTTTCTAGGCAAGTACG -CCAACAGGTTTCTAGGCAATCCGA -CCAACAGGTTTCTAGGCAATGGGA -CCAACAGGTTTCTAGGCAGTGCAA -CCAACAGGTTTCTAGGCAGAGGAA -CCAACAGGTTTCTAGGCACAGGTA -CCAACAGGTTTCTAGGCAGACTCT -CCAACAGGTTTCTAGGCAAGTCCT -CCAACAGGTTTCTAGGCATAAGCC -CCAACAGGTTTCTAGGCAATAGCC -CCAACAGGTTTCTAGGCATAACCG -CCAACAGGTTTCTAGGCAATGCCA -CCAACAGGTTTCAAGGACGGAAAC -CCAACAGGTTTCAAGGACAACACC -CCAACAGGTTTCAAGGACATCGAG -CCAACAGGTTTCAAGGACCTCCTT -CCAACAGGTTTCAAGGACCCTGTT -CCAACAGGTTTCAAGGACCGGTTT -CCAACAGGTTTCAAGGACGTGGTT -CCAACAGGTTTCAAGGACGCCTTT -CCAACAGGTTTCAAGGACGGTCTT -CCAACAGGTTTCAAGGACACGCTT -CCAACAGGTTTCAAGGACAGCGTT -CCAACAGGTTTCAAGGACTTCGTC -CCAACAGGTTTCAAGGACTCTCTC -CCAACAGGTTTCAAGGACTGGATC -CCAACAGGTTTCAAGGACCACTTC -CCAACAGGTTTCAAGGACGTACTC -CCAACAGGTTTCAAGGACGATGTC -CCAACAGGTTTCAAGGACACAGTC -CCAACAGGTTTCAAGGACTTGCTG -CCAACAGGTTTCAAGGACTCCATG -CCAACAGGTTTCAAGGACTGTGTG -CCAACAGGTTTCAAGGACCTAGTG -CCAACAGGTTTCAAGGACCATCTG -CCAACAGGTTTCAAGGACGAGTTG -CCAACAGGTTTCAAGGACAGACTG -CCAACAGGTTTCAAGGACTCGGTA -CCAACAGGTTTCAAGGACTGCCTA -CCAACAGGTTTCAAGGACCCACTA -CCAACAGGTTTCAAGGACGGAGTA -CCAACAGGTTTCAAGGACTCGTCT -CCAACAGGTTTCAAGGACTGCACT -CCAACAGGTTTCAAGGACCTGACT -CCAACAGGTTTCAAGGACCAACCT -CCAACAGGTTTCAAGGACGCTACT -CCAACAGGTTTCAAGGACGGATCT -CCAACAGGTTTCAAGGACAAGGCT -CCAACAGGTTTCAAGGACTCAACC -CCAACAGGTTTCAAGGACTGTTCC -CCAACAGGTTTCAAGGACATTCCC -CCAACAGGTTTCAAGGACTTCTCG -CCAACAGGTTTCAAGGACTAGACG -CCAACAGGTTTCAAGGACGTAACG -CCAACAGGTTTCAAGGACACTTCG -CCAACAGGTTTCAAGGACTACGCA -CCAACAGGTTTCAAGGACCTTGCA -CCAACAGGTTTCAAGGACCGAACA -CCAACAGGTTTCAAGGACCAGTCA -CCAACAGGTTTCAAGGACGATCCA -CCAACAGGTTTCAAGGACACGACA -CCAACAGGTTTCAAGGACAGCTCA -CCAACAGGTTTCAAGGACTCACGT -CCAACAGGTTTCAAGGACCGTAGT -CCAACAGGTTTCAAGGACGTCAGT -CCAACAGGTTTCAAGGACGAAGGT -CCAACAGGTTTCAAGGACAACCGT -CCAACAGGTTTCAAGGACTTGTGC -CCAACAGGTTTCAAGGACCTAAGC -CCAACAGGTTTCAAGGACACTAGC -CCAACAGGTTTCAAGGACAGATGC -CCAACAGGTTTCAAGGACTGAAGG -CCAACAGGTTTCAAGGACCAATGG -CCAACAGGTTTCAAGGACATGAGG -CCAACAGGTTTCAAGGACAATGGG -CCAACAGGTTTCAAGGACTCCTGA -CCAACAGGTTTCAAGGACTAGCGA -CCAACAGGTTTCAAGGACCACAGA -CCAACAGGTTTCAAGGACGCAAGA -CCAACAGGTTTCAAGGACGGTTGA -CCAACAGGTTTCAAGGACTCCGAT -CCAACAGGTTTCAAGGACTGGCAT -CCAACAGGTTTCAAGGACCGAGAT -CCAACAGGTTTCAAGGACTACCAC -CCAACAGGTTTCAAGGACCAGAAC -CCAACAGGTTTCAAGGACGTCTAC -CCAACAGGTTTCAAGGACACGTAC -CCAACAGGTTTCAAGGACAGTGAC -CCAACAGGTTTCAAGGACCTGTAG -CCAACAGGTTTCAAGGACCCTAAG -CCAACAGGTTTCAAGGACGTTCAG -CCAACAGGTTTCAAGGACGCATAG -CCAACAGGTTTCAAGGACGACAAG -CCAACAGGTTTCAAGGACAAGCAG -CCAACAGGTTTCAAGGACCGTCAA -CCAACAGGTTTCAAGGACGCTGAA -CCAACAGGTTTCAAGGACAGTACG -CCAACAGGTTTCAAGGACATCCGA -CCAACAGGTTTCAAGGACATGGGA -CCAACAGGTTTCAAGGACGTGCAA -CCAACAGGTTTCAAGGACGAGGAA -CCAACAGGTTTCAAGGACCAGGTA -CCAACAGGTTTCAAGGACGACTCT -CCAACAGGTTTCAAGGACAGTCCT -CCAACAGGTTTCAAGGACTAAGCC -CCAACAGGTTTCAAGGACATAGCC -CCAACAGGTTTCAAGGACTAACCG -CCAACAGGTTTCAAGGACATGCCA -CCAACAGGTTTCCAGAAGGGAAAC -CCAACAGGTTTCCAGAAGAACACC -CCAACAGGTTTCCAGAAGATCGAG -CCAACAGGTTTCCAGAAGCTCCTT -CCAACAGGTTTCCAGAAGCCTGTT -CCAACAGGTTTCCAGAAGCGGTTT -CCAACAGGTTTCCAGAAGGTGGTT -CCAACAGGTTTCCAGAAGGCCTTT -CCAACAGGTTTCCAGAAGGGTCTT -CCAACAGGTTTCCAGAAGACGCTT -CCAACAGGTTTCCAGAAGAGCGTT -CCAACAGGTTTCCAGAAGTTCGTC -CCAACAGGTTTCCAGAAGTCTCTC -CCAACAGGTTTCCAGAAGTGGATC -CCAACAGGTTTCCAGAAGCACTTC -CCAACAGGTTTCCAGAAGGTACTC -CCAACAGGTTTCCAGAAGGATGTC -CCAACAGGTTTCCAGAAGACAGTC -CCAACAGGTTTCCAGAAGTTGCTG -CCAACAGGTTTCCAGAAGTCCATG -CCAACAGGTTTCCAGAAGTGTGTG -CCAACAGGTTTCCAGAAGCTAGTG -CCAACAGGTTTCCAGAAGCATCTG -CCAACAGGTTTCCAGAAGGAGTTG -CCAACAGGTTTCCAGAAGAGACTG -CCAACAGGTTTCCAGAAGTCGGTA -CCAACAGGTTTCCAGAAGTGCCTA -CCAACAGGTTTCCAGAAGCCACTA -CCAACAGGTTTCCAGAAGGGAGTA -CCAACAGGTTTCCAGAAGTCGTCT -CCAACAGGTTTCCAGAAGTGCACT -CCAACAGGTTTCCAGAAGCTGACT -CCAACAGGTTTCCAGAAGCAACCT -CCAACAGGTTTCCAGAAGGCTACT -CCAACAGGTTTCCAGAAGGGATCT -CCAACAGGTTTCCAGAAGAAGGCT -CCAACAGGTTTCCAGAAGTCAACC -CCAACAGGTTTCCAGAAGTGTTCC -CCAACAGGTTTCCAGAAGATTCCC -CCAACAGGTTTCCAGAAGTTCTCG -CCAACAGGTTTCCAGAAGTAGACG -CCAACAGGTTTCCAGAAGGTAACG -CCAACAGGTTTCCAGAAGACTTCG -CCAACAGGTTTCCAGAAGTACGCA -CCAACAGGTTTCCAGAAGCTTGCA -CCAACAGGTTTCCAGAAGCGAACA -CCAACAGGTTTCCAGAAGCAGTCA -CCAACAGGTTTCCAGAAGGATCCA -CCAACAGGTTTCCAGAAGACGACA -CCAACAGGTTTCCAGAAGAGCTCA -CCAACAGGTTTCCAGAAGTCACGT -CCAACAGGTTTCCAGAAGCGTAGT -CCAACAGGTTTCCAGAAGGTCAGT -CCAACAGGTTTCCAGAAGGAAGGT -CCAACAGGTTTCCAGAAGAACCGT -CCAACAGGTTTCCAGAAGTTGTGC -CCAACAGGTTTCCAGAAGCTAAGC -CCAACAGGTTTCCAGAAGACTAGC -CCAACAGGTTTCCAGAAGAGATGC -CCAACAGGTTTCCAGAAGTGAAGG -CCAACAGGTTTCCAGAAGCAATGG -CCAACAGGTTTCCAGAAGATGAGG -CCAACAGGTTTCCAGAAGAATGGG -CCAACAGGTTTCCAGAAGTCCTGA -CCAACAGGTTTCCAGAAGTAGCGA -CCAACAGGTTTCCAGAAGCACAGA -CCAACAGGTTTCCAGAAGGCAAGA -CCAACAGGTTTCCAGAAGGGTTGA -CCAACAGGTTTCCAGAAGTCCGAT -CCAACAGGTTTCCAGAAGTGGCAT -CCAACAGGTTTCCAGAAGCGAGAT -CCAACAGGTTTCCAGAAGTACCAC -CCAACAGGTTTCCAGAAGCAGAAC -CCAACAGGTTTCCAGAAGGTCTAC -CCAACAGGTTTCCAGAAGACGTAC -CCAACAGGTTTCCAGAAGAGTGAC -CCAACAGGTTTCCAGAAGCTGTAG -CCAACAGGTTTCCAGAAGCCTAAG -CCAACAGGTTTCCAGAAGGTTCAG -CCAACAGGTTTCCAGAAGGCATAG -CCAACAGGTTTCCAGAAGGACAAG -CCAACAGGTTTCCAGAAGAAGCAG -CCAACAGGTTTCCAGAAGCGTCAA -CCAACAGGTTTCCAGAAGGCTGAA -CCAACAGGTTTCCAGAAGAGTACG -CCAACAGGTTTCCAGAAGATCCGA -CCAACAGGTTTCCAGAAGATGGGA -CCAACAGGTTTCCAGAAGGTGCAA -CCAACAGGTTTCCAGAAGGAGGAA -CCAACAGGTTTCCAGAAGCAGGTA -CCAACAGGTTTCCAGAAGGACTCT -CCAACAGGTTTCCAGAAGAGTCCT -CCAACAGGTTTCCAGAAGTAAGCC -CCAACAGGTTTCCAGAAGATAGCC -CCAACAGGTTTCCAGAAGTAACCG -CCAACAGGTTTCCAGAAGATGCCA -CCAACAGGTTTCCAACGTGGAAAC -CCAACAGGTTTCCAACGTAACACC -CCAACAGGTTTCCAACGTATCGAG -CCAACAGGTTTCCAACGTCTCCTT -CCAACAGGTTTCCAACGTCCTGTT -CCAACAGGTTTCCAACGTCGGTTT -CCAACAGGTTTCCAACGTGTGGTT -CCAACAGGTTTCCAACGTGCCTTT -CCAACAGGTTTCCAACGTGGTCTT -CCAACAGGTTTCCAACGTACGCTT -CCAACAGGTTTCCAACGTAGCGTT -CCAACAGGTTTCCAACGTTTCGTC -CCAACAGGTTTCCAACGTTCTCTC -CCAACAGGTTTCCAACGTTGGATC -CCAACAGGTTTCCAACGTCACTTC -CCAACAGGTTTCCAACGTGTACTC -CCAACAGGTTTCCAACGTGATGTC -CCAACAGGTTTCCAACGTACAGTC -CCAACAGGTTTCCAACGTTTGCTG -CCAACAGGTTTCCAACGTTCCATG -CCAACAGGTTTCCAACGTTGTGTG -CCAACAGGTTTCCAACGTCTAGTG -CCAACAGGTTTCCAACGTCATCTG -CCAACAGGTTTCCAACGTGAGTTG -CCAACAGGTTTCCAACGTAGACTG -CCAACAGGTTTCCAACGTTCGGTA -CCAACAGGTTTCCAACGTTGCCTA -CCAACAGGTTTCCAACGTCCACTA -CCAACAGGTTTCCAACGTGGAGTA -CCAACAGGTTTCCAACGTTCGTCT -CCAACAGGTTTCCAACGTTGCACT -CCAACAGGTTTCCAACGTCTGACT -CCAACAGGTTTCCAACGTCAACCT -CCAACAGGTTTCCAACGTGCTACT -CCAACAGGTTTCCAACGTGGATCT -CCAACAGGTTTCCAACGTAAGGCT -CCAACAGGTTTCCAACGTTCAACC -CCAACAGGTTTCCAACGTTGTTCC -CCAACAGGTTTCCAACGTATTCCC -CCAACAGGTTTCCAACGTTTCTCG -CCAACAGGTTTCCAACGTTAGACG -CCAACAGGTTTCCAACGTGTAACG -CCAACAGGTTTCCAACGTACTTCG -CCAACAGGTTTCCAACGTTACGCA -CCAACAGGTTTCCAACGTCTTGCA -CCAACAGGTTTCCAACGTCGAACA -CCAACAGGTTTCCAACGTCAGTCA -CCAACAGGTTTCCAACGTGATCCA -CCAACAGGTTTCCAACGTACGACA -CCAACAGGTTTCCAACGTAGCTCA -CCAACAGGTTTCCAACGTTCACGT -CCAACAGGTTTCCAACGTCGTAGT -CCAACAGGTTTCCAACGTGTCAGT -CCAACAGGTTTCCAACGTGAAGGT -CCAACAGGTTTCCAACGTAACCGT -CCAACAGGTTTCCAACGTTTGTGC -CCAACAGGTTTCCAACGTCTAAGC -CCAACAGGTTTCCAACGTACTAGC -CCAACAGGTTTCCAACGTAGATGC -CCAACAGGTTTCCAACGTTGAAGG -CCAACAGGTTTCCAACGTCAATGG -CCAACAGGTTTCCAACGTATGAGG -CCAACAGGTTTCCAACGTAATGGG -CCAACAGGTTTCCAACGTTCCTGA -CCAACAGGTTTCCAACGTTAGCGA -CCAACAGGTTTCCAACGTCACAGA -CCAACAGGTTTCCAACGTGCAAGA -CCAACAGGTTTCCAACGTGGTTGA -CCAACAGGTTTCCAACGTTCCGAT -CCAACAGGTTTCCAACGTTGGCAT -CCAACAGGTTTCCAACGTCGAGAT -CCAACAGGTTTCCAACGTTACCAC -CCAACAGGTTTCCAACGTCAGAAC -CCAACAGGTTTCCAACGTGTCTAC -CCAACAGGTTTCCAACGTACGTAC -CCAACAGGTTTCCAACGTAGTGAC -CCAACAGGTTTCCAACGTCTGTAG -CCAACAGGTTTCCAACGTCCTAAG -CCAACAGGTTTCCAACGTGTTCAG -CCAACAGGTTTCCAACGTGCATAG -CCAACAGGTTTCCAACGTGACAAG -CCAACAGGTTTCCAACGTAAGCAG -CCAACAGGTTTCCAACGTCGTCAA -CCAACAGGTTTCCAACGTGCTGAA -CCAACAGGTTTCCAACGTAGTACG -CCAACAGGTTTCCAACGTATCCGA -CCAACAGGTTTCCAACGTATGGGA -CCAACAGGTTTCCAACGTGTGCAA -CCAACAGGTTTCCAACGTGAGGAA -CCAACAGGTTTCCAACGTCAGGTA -CCAACAGGTTTCCAACGTGACTCT -CCAACAGGTTTCCAACGTAGTCCT -CCAACAGGTTTCCAACGTTAAGCC -CCAACAGGTTTCCAACGTATAGCC -CCAACAGGTTTCCAACGTTAACCG -CCAACAGGTTTCCAACGTATGCCA -CCAACAGGTTTCGAAGCTGGAAAC -CCAACAGGTTTCGAAGCTAACACC -CCAACAGGTTTCGAAGCTATCGAG -CCAACAGGTTTCGAAGCTCTCCTT -CCAACAGGTTTCGAAGCTCCTGTT -CCAACAGGTTTCGAAGCTCGGTTT -CCAACAGGTTTCGAAGCTGTGGTT -CCAACAGGTTTCGAAGCTGCCTTT -CCAACAGGTTTCGAAGCTGGTCTT -CCAACAGGTTTCGAAGCTACGCTT -CCAACAGGTTTCGAAGCTAGCGTT -CCAACAGGTTTCGAAGCTTTCGTC -CCAACAGGTTTCGAAGCTTCTCTC -CCAACAGGTTTCGAAGCTTGGATC -CCAACAGGTTTCGAAGCTCACTTC -CCAACAGGTTTCGAAGCTGTACTC -CCAACAGGTTTCGAAGCTGATGTC -CCAACAGGTTTCGAAGCTACAGTC -CCAACAGGTTTCGAAGCTTTGCTG -CCAACAGGTTTCGAAGCTTCCATG -CCAACAGGTTTCGAAGCTTGTGTG -CCAACAGGTTTCGAAGCTCTAGTG -CCAACAGGTTTCGAAGCTCATCTG -CCAACAGGTTTCGAAGCTGAGTTG -CCAACAGGTTTCGAAGCTAGACTG -CCAACAGGTTTCGAAGCTTCGGTA -CCAACAGGTTTCGAAGCTTGCCTA -CCAACAGGTTTCGAAGCTCCACTA -CCAACAGGTTTCGAAGCTGGAGTA -CCAACAGGTTTCGAAGCTTCGTCT -CCAACAGGTTTCGAAGCTTGCACT -CCAACAGGTTTCGAAGCTCTGACT -CCAACAGGTTTCGAAGCTCAACCT -CCAACAGGTTTCGAAGCTGCTACT -CCAACAGGTTTCGAAGCTGGATCT -CCAACAGGTTTCGAAGCTAAGGCT -CCAACAGGTTTCGAAGCTTCAACC -CCAACAGGTTTCGAAGCTTGTTCC -CCAACAGGTTTCGAAGCTATTCCC -CCAACAGGTTTCGAAGCTTTCTCG -CCAACAGGTTTCGAAGCTTAGACG -CCAACAGGTTTCGAAGCTGTAACG -CCAACAGGTTTCGAAGCTACTTCG -CCAACAGGTTTCGAAGCTTACGCA -CCAACAGGTTTCGAAGCTCTTGCA -CCAACAGGTTTCGAAGCTCGAACA -CCAACAGGTTTCGAAGCTCAGTCA -CCAACAGGTTTCGAAGCTGATCCA -CCAACAGGTTTCGAAGCTACGACA -CCAACAGGTTTCGAAGCTAGCTCA -CCAACAGGTTTCGAAGCTTCACGT -CCAACAGGTTTCGAAGCTCGTAGT -CCAACAGGTTTCGAAGCTGTCAGT -CCAACAGGTTTCGAAGCTGAAGGT -CCAACAGGTTTCGAAGCTAACCGT -CCAACAGGTTTCGAAGCTTTGTGC -CCAACAGGTTTCGAAGCTCTAAGC -CCAACAGGTTTCGAAGCTACTAGC -CCAACAGGTTTCGAAGCTAGATGC -CCAACAGGTTTCGAAGCTTGAAGG -CCAACAGGTTTCGAAGCTCAATGG -CCAACAGGTTTCGAAGCTATGAGG -CCAACAGGTTTCGAAGCTAATGGG -CCAACAGGTTTCGAAGCTTCCTGA -CCAACAGGTTTCGAAGCTTAGCGA -CCAACAGGTTTCGAAGCTCACAGA -CCAACAGGTTTCGAAGCTGCAAGA -CCAACAGGTTTCGAAGCTGGTTGA -CCAACAGGTTTCGAAGCTTCCGAT -CCAACAGGTTTCGAAGCTTGGCAT -CCAACAGGTTTCGAAGCTCGAGAT -CCAACAGGTTTCGAAGCTTACCAC -CCAACAGGTTTCGAAGCTCAGAAC -CCAACAGGTTTCGAAGCTGTCTAC -CCAACAGGTTTCGAAGCTACGTAC -CCAACAGGTTTCGAAGCTAGTGAC -CCAACAGGTTTCGAAGCTCTGTAG -CCAACAGGTTTCGAAGCTCCTAAG -CCAACAGGTTTCGAAGCTGTTCAG -CCAACAGGTTTCGAAGCTGCATAG -CCAACAGGTTTCGAAGCTGACAAG -CCAACAGGTTTCGAAGCTAAGCAG -CCAACAGGTTTCGAAGCTCGTCAA -CCAACAGGTTTCGAAGCTGCTGAA -CCAACAGGTTTCGAAGCTAGTACG -CCAACAGGTTTCGAAGCTATCCGA -CCAACAGGTTTCGAAGCTATGGGA -CCAACAGGTTTCGAAGCTGTGCAA -CCAACAGGTTTCGAAGCTGAGGAA -CCAACAGGTTTCGAAGCTCAGGTA -CCAACAGGTTTCGAAGCTGACTCT -CCAACAGGTTTCGAAGCTAGTCCT -CCAACAGGTTTCGAAGCTTAAGCC -CCAACAGGTTTCGAAGCTATAGCC -CCAACAGGTTTCGAAGCTTAACCG -CCAACAGGTTTCGAAGCTATGCCA -CCAACAGGTTTCACGAGTGGAAAC -CCAACAGGTTTCACGAGTAACACC -CCAACAGGTTTCACGAGTATCGAG -CCAACAGGTTTCACGAGTCTCCTT -CCAACAGGTTTCACGAGTCCTGTT -CCAACAGGTTTCACGAGTCGGTTT -CCAACAGGTTTCACGAGTGTGGTT -CCAACAGGTTTCACGAGTGCCTTT -CCAACAGGTTTCACGAGTGGTCTT -CCAACAGGTTTCACGAGTACGCTT -CCAACAGGTTTCACGAGTAGCGTT -CCAACAGGTTTCACGAGTTTCGTC -CCAACAGGTTTCACGAGTTCTCTC -CCAACAGGTTTCACGAGTTGGATC -CCAACAGGTTTCACGAGTCACTTC -CCAACAGGTTTCACGAGTGTACTC -CCAACAGGTTTCACGAGTGATGTC -CCAACAGGTTTCACGAGTACAGTC -CCAACAGGTTTCACGAGTTTGCTG -CCAACAGGTTTCACGAGTTCCATG -CCAACAGGTTTCACGAGTTGTGTG -CCAACAGGTTTCACGAGTCTAGTG -CCAACAGGTTTCACGAGTCATCTG -CCAACAGGTTTCACGAGTGAGTTG -CCAACAGGTTTCACGAGTAGACTG -CCAACAGGTTTCACGAGTTCGGTA -CCAACAGGTTTCACGAGTTGCCTA -CCAACAGGTTTCACGAGTCCACTA -CCAACAGGTTTCACGAGTGGAGTA -CCAACAGGTTTCACGAGTTCGTCT -CCAACAGGTTTCACGAGTTGCACT -CCAACAGGTTTCACGAGTCTGACT -CCAACAGGTTTCACGAGTCAACCT -CCAACAGGTTTCACGAGTGCTACT -CCAACAGGTTTCACGAGTGGATCT -CCAACAGGTTTCACGAGTAAGGCT -CCAACAGGTTTCACGAGTTCAACC -CCAACAGGTTTCACGAGTTGTTCC -CCAACAGGTTTCACGAGTATTCCC -CCAACAGGTTTCACGAGTTTCTCG -CCAACAGGTTTCACGAGTTAGACG -CCAACAGGTTTCACGAGTGTAACG -CCAACAGGTTTCACGAGTACTTCG -CCAACAGGTTTCACGAGTTACGCA -CCAACAGGTTTCACGAGTCTTGCA -CCAACAGGTTTCACGAGTCGAACA -CCAACAGGTTTCACGAGTCAGTCA -CCAACAGGTTTCACGAGTGATCCA -CCAACAGGTTTCACGAGTACGACA -CCAACAGGTTTCACGAGTAGCTCA -CCAACAGGTTTCACGAGTTCACGT -CCAACAGGTTTCACGAGTCGTAGT -CCAACAGGTTTCACGAGTGTCAGT -CCAACAGGTTTCACGAGTGAAGGT -CCAACAGGTTTCACGAGTAACCGT -CCAACAGGTTTCACGAGTTTGTGC -CCAACAGGTTTCACGAGTCTAAGC -CCAACAGGTTTCACGAGTACTAGC -CCAACAGGTTTCACGAGTAGATGC -CCAACAGGTTTCACGAGTTGAAGG -CCAACAGGTTTCACGAGTCAATGG -CCAACAGGTTTCACGAGTATGAGG -CCAACAGGTTTCACGAGTAATGGG -CCAACAGGTTTCACGAGTTCCTGA -CCAACAGGTTTCACGAGTTAGCGA -CCAACAGGTTTCACGAGTCACAGA -CCAACAGGTTTCACGAGTGCAAGA -CCAACAGGTTTCACGAGTGGTTGA -CCAACAGGTTTCACGAGTTCCGAT -CCAACAGGTTTCACGAGTTGGCAT -CCAACAGGTTTCACGAGTCGAGAT -CCAACAGGTTTCACGAGTTACCAC -CCAACAGGTTTCACGAGTCAGAAC -CCAACAGGTTTCACGAGTGTCTAC -CCAACAGGTTTCACGAGTACGTAC -CCAACAGGTTTCACGAGTAGTGAC -CCAACAGGTTTCACGAGTCTGTAG -CCAACAGGTTTCACGAGTCCTAAG -CCAACAGGTTTCACGAGTGTTCAG -CCAACAGGTTTCACGAGTGCATAG -CCAACAGGTTTCACGAGTGACAAG -CCAACAGGTTTCACGAGTAAGCAG -CCAACAGGTTTCACGAGTCGTCAA -CCAACAGGTTTCACGAGTGCTGAA -CCAACAGGTTTCACGAGTAGTACG -CCAACAGGTTTCACGAGTATCCGA -CCAACAGGTTTCACGAGTATGGGA -CCAACAGGTTTCACGAGTGTGCAA -CCAACAGGTTTCACGAGTGAGGAA -CCAACAGGTTTCACGAGTCAGGTA -CCAACAGGTTTCACGAGTGACTCT -CCAACAGGTTTCACGAGTAGTCCT -CCAACAGGTTTCACGAGTTAAGCC -CCAACAGGTTTCACGAGTATAGCC -CCAACAGGTTTCACGAGTTAACCG -CCAACAGGTTTCACGAGTATGCCA -CCAACAGGTTTCCGAATCGGAAAC -CCAACAGGTTTCCGAATCAACACC -CCAACAGGTTTCCGAATCATCGAG -CCAACAGGTTTCCGAATCCTCCTT -CCAACAGGTTTCCGAATCCCTGTT -CCAACAGGTTTCCGAATCCGGTTT -CCAACAGGTTTCCGAATCGTGGTT -CCAACAGGTTTCCGAATCGCCTTT -CCAACAGGTTTCCGAATCGGTCTT -CCAACAGGTTTCCGAATCACGCTT -CCAACAGGTTTCCGAATCAGCGTT -CCAACAGGTTTCCGAATCTTCGTC -CCAACAGGTTTCCGAATCTCTCTC -CCAACAGGTTTCCGAATCTGGATC -CCAACAGGTTTCCGAATCCACTTC -CCAACAGGTTTCCGAATCGTACTC -CCAACAGGTTTCCGAATCGATGTC -CCAACAGGTTTCCGAATCACAGTC -CCAACAGGTTTCCGAATCTTGCTG -CCAACAGGTTTCCGAATCTCCATG -CCAACAGGTTTCCGAATCTGTGTG -CCAACAGGTTTCCGAATCCTAGTG -CCAACAGGTTTCCGAATCCATCTG -CCAACAGGTTTCCGAATCGAGTTG -CCAACAGGTTTCCGAATCAGACTG -CCAACAGGTTTCCGAATCTCGGTA -CCAACAGGTTTCCGAATCTGCCTA -CCAACAGGTTTCCGAATCCCACTA -CCAACAGGTTTCCGAATCGGAGTA -CCAACAGGTTTCCGAATCTCGTCT -CCAACAGGTTTCCGAATCTGCACT -CCAACAGGTTTCCGAATCCTGACT -CCAACAGGTTTCCGAATCCAACCT -CCAACAGGTTTCCGAATCGCTACT -CCAACAGGTTTCCGAATCGGATCT -CCAACAGGTTTCCGAATCAAGGCT -CCAACAGGTTTCCGAATCTCAACC -CCAACAGGTTTCCGAATCTGTTCC -CCAACAGGTTTCCGAATCATTCCC -CCAACAGGTTTCCGAATCTTCTCG -CCAACAGGTTTCCGAATCTAGACG -CCAACAGGTTTCCGAATCGTAACG -CCAACAGGTTTCCGAATCACTTCG -CCAACAGGTTTCCGAATCTACGCA -CCAACAGGTTTCCGAATCCTTGCA -CCAACAGGTTTCCGAATCCGAACA -CCAACAGGTTTCCGAATCCAGTCA -CCAACAGGTTTCCGAATCGATCCA -CCAACAGGTTTCCGAATCACGACA -CCAACAGGTTTCCGAATCAGCTCA -CCAACAGGTTTCCGAATCTCACGT -CCAACAGGTTTCCGAATCCGTAGT -CCAACAGGTTTCCGAATCGTCAGT -CCAACAGGTTTCCGAATCGAAGGT -CCAACAGGTTTCCGAATCAACCGT -CCAACAGGTTTCCGAATCTTGTGC -CCAACAGGTTTCCGAATCCTAAGC -CCAACAGGTTTCCGAATCACTAGC -CCAACAGGTTTCCGAATCAGATGC -CCAACAGGTTTCCGAATCTGAAGG -CCAACAGGTTTCCGAATCCAATGG -CCAACAGGTTTCCGAATCATGAGG -CCAACAGGTTTCCGAATCAATGGG -CCAACAGGTTTCCGAATCTCCTGA -CCAACAGGTTTCCGAATCTAGCGA -CCAACAGGTTTCCGAATCCACAGA -CCAACAGGTTTCCGAATCGCAAGA -CCAACAGGTTTCCGAATCGGTTGA -CCAACAGGTTTCCGAATCTCCGAT -CCAACAGGTTTCCGAATCTGGCAT -CCAACAGGTTTCCGAATCCGAGAT -CCAACAGGTTTCCGAATCTACCAC -CCAACAGGTTTCCGAATCCAGAAC -CCAACAGGTTTCCGAATCGTCTAC -CCAACAGGTTTCCGAATCACGTAC -CCAACAGGTTTCCGAATCAGTGAC -CCAACAGGTTTCCGAATCCTGTAG -CCAACAGGTTTCCGAATCCCTAAG -CCAACAGGTTTCCGAATCGTTCAG -CCAACAGGTTTCCGAATCGCATAG -CCAACAGGTTTCCGAATCGACAAG -CCAACAGGTTTCCGAATCAAGCAG -CCAACAGGTTTCCGAATCCGTCAA -CCAACAGGTTTCCGAATCGCTGAA -CCAACAGGTTTCCGAATCAGTACG -CCAACAGGTTTCCGAATCATCCGA -CCAACAGGTTTCCGAATCATGGGA -CCAACAGGTTTCCGAATCGTGCAA -CCAACAGGTTTCCGAATCGAGGAA -CCAACAGGTTTCCGAATCCAGGTA -CCAACAGGTTTCCGAATCGACTCT -CCAACAGGTTTCCGAATCAGTCCT -CCAACAGGTTTCCGAATCTAAGCC -CCAACAGGTTTCCGAATCATAGCC -CCAACAGGTTTCCGAATCTAACCG -CCAACAGGTTTCCGAATCATGCCA -CCAACAGGTTTCGGAATGGGAAAC -CCAACAGGTTTCGGAATGAACACC -CCAACAGGTTTCGGAATGATCGAG -CCAACAGGTTTCGGAATGCTCCTT -CCAACAGGTTTCGGAATGCCTGTT -CCAACAGGTTTCGGAATGCGGTTT -CCAACAGGTTTCGGAATGGTGGTT -CCAACAGGTTTCGGAATGGCCTTT -CCAACAGGTTTCGGAATGGGTCTT -CCAACAGGTTTCGGAATGACGCTT -CCAACAGGTTTCGGAATGAGCGTT -CCAACAGGTTTCGGAATGTTCGTC -CCAACAGGTTTCGGAATGTCTCTC -CCAACAGGTTTCGGAATGTGGATC -CCAACAGGTTTCGGAATGCACTTC -CCAACAGGTTTCGGAATGGTACTC -CCAACAGGTTTCGGAATGGATGTC -CCAACAGGTTTCGGAATGACAGTC -CCAACAGGTTTCGGAATGTTGCTG -CCAACAGGTTTCGGAATGTCCATG -CCAACAGGTTTCGGAATGTGTGTG -CCAACAGGTTTCGGAATGCTAGTG -CCAACAGGTTTCGGAATGCATCTG -CCAACAGGTTTCGGAATGGAGTTG -CCAACAGGTTTCGGAATGAGACTG -CCAACAGGTTTCGGAATGTCGGTA -CCAACAGGTTTCGGAATGTGCCTA -CCAACAGGTTTCGGAATGCCACTA -CCAACAGGTTTCGGAATGGGAGTA -CCAACAGGTTTCGGAATGTCGTCT -CCAACAGGTTTCGGAATGTGCACT -CCAACAGGTTTCGGAATGCTGACT -CCAACAGGTTTCGGAATGCAACCT -CCAACAGGTTTCGGAATGGCTACT -CCAACAGGTTTCGGAATGGGATCT -CCAACAGGTTTCGGAATGAAGGCT -CCAACAGGTTTCGGAATGTCAACC -CCAACAGGTTTCGGAATGTGTTCC -CCAACAGGTTTCGGAATGATTCCC -CCAACAGGTTTCGGAATGTTCTCG -CCAACAGGTTTCGGAATGTAGACG -CCAACAGGTTTCGGAATGGTAACG -CCAACAGGTTTCGGAATGACTTCG -CCAACAGGTTTCGGAATGTACGCA -CCAACAGGTTTCGGAATGCTTGCA -CCAACAGGTTTCGGAATGCGAACA -CCAACAGGTTTCGGAATGCAGTCA -CCAACAGGTTTCGGAATGGATCCA -CCAACAGGTTTCGGAATGACGACA -CCAACAGGTTTCGGAATGAGCTCA -CCAACAGGTTTCGGAATGTCACGT -CCAACAGGTTTCGGAATGCGTAGT -CCAACAGGTTTCGGAATGGTCAGT -CCAACAGGTTTCGGAATGGAAGGT -CCAACAGGTTTCGGAATGAACCGT -CCAACAGGTTTCGGAATGTTGTGC -CCAACAGGTTTCGGAATGCTAAGC -CCAACAGGTTTCGGAATGACTAGC -CCAACAGGTTTCGGAATGAGATGC -CCAACAGGTTTCGGAATGTGAAGG -CCAACAGGTTTCGGAATGCAATGG -CCAACAGGTTTCGGAATGATGAGG -CCAACAGGTTTCGGAATGAATGGG -CCAACAGGTTTCGGAATGTCCTGA -CCAACAGGTTTCGGAATGTAGCGA -CCAACAGGTTTCGGAATGCACAGA -CCAACAGGTTTCGGAATGGCAAGA -CCAACAGGTTTCGGAATGGGTTGA -CCAACAGGTTTCGGAATGTCCGAT -CCAACAGGTTTCGGAATGTGGCAT -CCAACAGGTTTCGGAATGCGAGAT -CCAACAGGTTTCGGAATGTACCAC -CCAACAGGTTTCGGAATGCAGAAC -CCAACAGGTTTCGGAATGGTCTAC -CCAACAGGTTTCGGAATGACGTAC -CCAACAGGTTTCGGAATGAGTGAC -CCAACAGGTTTCGGAATGCTGTAG -CCAACAGGTTTCGGAATGCCTAAG -CCAACAGGTTTCGGAATGGTTCAG -CCAACAGGTTTCGGAATGGCATAG -CCAACAGGTTTCGGAATGGACAAG -CCAACAGGTTTCGGAATGAAGCAG -CCAACAGGTTTCGGAATGCGTCAA -CCAACAGGTTTCGGAATGGCTGAA -CCAACAGGTTTCGGAATGAGTACG -CCAACAGGTTTCGGAATGATCCGA -CCAACAGGTTTCGGAATGATGGGA -CCAACAGGTTTCGGAATGGTGCAA -CCAACAGGTTTCGGAATGGAGGAA -CCAACAGGTTTCGGAATGCAGGTA -CCAACAGGTTTCGGAATGGACTCT -CCAACAGGTTTCGGAATGAGTCCT -CCAACAGGTTTCGGAATGTAAGCC -CCAACAGGTTTCGGAATGATAGCC -CCAACAGGTTTCGGAATGTAACCG -CCAACAGGTTTCGGAATGATGCCA -CCAACAGGTTTCCAAGTGGGAAAC -CCAACAGGTTTCCAAGTGAACACC -CCAACAGGTTTCCAAGTGATCGAG -CCAACAGGTTTCCAAGTGCTCCTT -CCAACAGGTTTCCAAGTGCCTGTT -CCAACAGGTTTCCAAGTGCGGTTT -CCAACAGGTTTCCAAGTGGTGGTT -CCAACAGGTTTCCAAGTGGCCTTT -CCAACAGGTTTCCAAGTGGGTCTT -CCAACAGGTTTCCAAGTGACGCTT -CCAACAGGTTTCCAAGTGAGCGTT -CCAACAGGTTTCCAAGTGTTCGTC -CCAACAGGTTTCCAAGTGTCTCTC -CCAACAGGTTTCCAAGTGTGGATC -CCAACAGGTTTCCAAGTGCACTTC -CCAACAGGTTTCCAAGTGGTACTC -CCAACAGGTTTCCAAGTGGATGTC -CCAACAGGTTTCCAAGTGACAGTC -CCAACAGGTTTCCAAGTGTTGCTG -CCAACAGGTTTCCAAGTGTCCATG -CCAACAGGTTTCCAAGTGTGTGTG -CCAACAGGTTTCCAAGTGCTAGTG -CCAACAGGTTTCCAAGTGCATCTG -CCAACAGGTTTCCAAGTGGAGTTG -CCAACAGGTTTCCAAGTGAGACTG -CCAACAGGTTTCCAAGTGTCGGTA -CCAACAGGTTTCCAAGTGTGCCTA -CCAACAGGTTTCCAAGTGCCACTA -CCAACAGGTTTCCAAGTGGGAGTA -CCAACAGGTTTCCAAGTGTCGTCT -CCAACAGGTTTCCAAGTGTGCACT -CCAACAGGTTTCCAAGTGCTGACT -CCAACAGGTTTCCAAGTGCAACCT -CCAACAGGTTTCCAAGTGGCTACT -CCAACAGGTTTCCAAGTGGGATCT -CCAACAGGTTTCCAAGTGAAGGCT -CCAACAGGTTTCCAAGTGTCAACC -CCAACAGGTTTCCAAGTGTGTTCC -CCAACAGGTTTCCAAGTGATTCCC -CCAACAGGTTTCCAAGTGTTCTCG -CCAACAGGTTTCCAAGTGTAGACG -CCAACAGGTTTCCAAGTGGTAACG -CCAACAGGTTTCCAAGTGACTTCG -CCAACAGGTTTCCAAGTGTACGCA -CCAACAGGTTTCCAAGTGCTTGCA -CCAACAGGTTTCCAAGTGCGAACA -CCAACAGGTTTCCAAGTGCAGTCA -CCAACAGGTTTCCAAGTGGATCCA -CCAACAGGTTTCCAAGTGACGACA -CCAACAGGTTTCCAAGTGAGCTCA -CCAACAGGTTTCCAAGTGTCACGT -CCAACAGGTTTCCAAGTGCGTAGT -CCAACAGGTTTCCAAGTGGTCAGT -CCAACAGGTTTCCAAGTGGAAGGT -CCAACAGGTTTCCAAGTGAACCGT -CCAACAGGTTTCCAAGTGTTGTGC -CCAACAGGTTTCCAAGTGCTAAGC -CCAACAGGTTTCCAAGTGACTAGC -CCAACAGGTTTCCAAGTGAGATGC -CCAACAGGTTTCCAAGTGTGAAGG -CCAACAGGTTTCCAAGTGCAATGG -CCAACAGGTTTCCAAGTGATGAGG -CCAACAGGTTTCCAAGTGAATGGG -CCAACAGGTTTCCAAGTGTCCTGA -CCAACAGGTTTCCAAGTGTAGCGA -CCAACAGGTTTCCAAGTGCACAGA -CCAACAGGTTTCCAAGTGGCAAGA -CCAACAGGTTTCCAAGTGGGTTGA -CCAACAGGTTTCCAAGTGTCCGAT -CCAACAGGTTTCCAAGTGTGGCAT -CCAACAGGTTTCCAAGTGCGAGAT -CCAACAGGTTTCCAAGTGTACCAC -CCAACAGGTTTCCAAGTGCAGAAC -CCAACAGGTTTCCAAGTGGTCTAC -CCAACAGGTTTCCAAGTGACGTAC -CCAACAGGTTTCCAAGTGAGTGAC -CCAACAGGTTTCCAAGTGCTGTAG -CCAACAGGTTTCCAAGTGCCTAAG -CCAACAGGTTTCCAAGTGGTTCAG -CCAACAGGTTTCCAAGTGGCATAG -CCAACAGGTTTCCAAGTGGACAAG -CCAACAGGTTTCCAAGTGAAGCAG -CCAACAGGTTTCCAAGTGCGTCAA -CCAACAGGTTTCCAAGTGGCTGAA -CCAACAGGTTTCCAAGTGAGTACG -CCAACAGGTTTCCAAGTGATCCGA -CCAACAGGTTTCCAAGTGATGGGA -CCAACAGGTTTCCAAGTGGTGCAA -CCAACAGGTTTCCAAGTGGAGGAA -CCAACAGGTTTCCAAGTGCAGGTA -CCAACAGGTTTCCAAGTGGACTCT -CCAACAGGTTTCCAAGTGAGTCCT -CCAACAGGTTTCCAAGTGTAAGCC -CCAACAGGTTTCCAAGTGATAGCC -CCAACAGGTTTCCAAGTGTAACCG -CCAACAGGTTTCCAAGTGATGCCA -CCAACAGGTTTCGAAGAGGGAAAC -CCAACAGGTTTCGAAGAGAACACC -CCAACAGGTTTCGAAGAGATCGAG -CCAACAGGTTTCGAAGAGCTCCTT -CCAACAGGTTTCGAAGAGCCTGTT -CCAACAGGTTTCGAAGAGCGGTTT -CCAACAGGTTTCGAAGAGGTGGTT -CCAACAGGTTTCGAAGAGGCCTTT -CCAACAGGTTTCGAAGAGGGTCTT -CCAACAGGTTTCGAAGAGACGCTT -CCAACAGGTTTCGAAGAGAGCGTT -CCAACAGGTTTCGAAGAGTTCGTC -CCAACAGGTTTCGAAGAGTCTCTC -CCAACAGGTTTCGAAGAGTGGATC -CCAACAGGTTTCGAAGAGCACTTC -CCAACAGGTTTCGAAGAGGTACTC -CCAACAGGTTTCGAAGAGGATGTC -CCAACAGGTTTCGAAGAGACAGTC -CCAACAGGTTTCGAAGAGTTGCTG -CCAACAGGTTTCGAAGAGTCCATG -CCAACAGGTTTCGAAGAGTGTGTG -CCAACAGGTTTCGAAGAGCTAGTG -CCAACAGGTTTCGAAGAGCATCTG -CCAACAGGTTTCGAAGAGGAGTTG -CCAACAGGTTTCGAAGAGAGACTG -CCAACAGGTTTCGAAGAGTCGGTA -CCAACAGGTTTCGAAGAGTGCCTA -CCAACAGGTTTCGAAGAGCCACTA -CCAACAGGTTTCGAAGAGGGAGTA -CCAACAGGTTTCGAAGAGTCGTCT -CCAACAGGTTTCGAAGAGTGCACT -CCAACAGGTTTCGAAGAGCTGACT -CCAACAGGTTTCGAAGAGCAACCT -CCAACAGGTTTCGAAGAGGCTACT -CCAACAGGTTTCGAAGAGGGATCT -CCAACAGGTTTCGAAGAGAAGGCT -CCAACAGGTTTCGAAGAGTCAACC -CCAACAGGTTTCGAAGAGTGTTCC -CCAACAGGTTTCGAAGAGATTCCC -CCAACAGGTTTCGAAGAGTTCTCG -CCAACAGGTTTCGAAGAGTAGACG -CCAACAGGTTTCGAAGAGGTAACG -CCAACAGGTTTCGAAGAGACTTCG -CCAACAGGTTTCGAAGAGTACGCA -CCAACAGGTTTCGAAGAGCTTGCA -CCAACAGGTTTCGAAGAGCGAACA -CCAACAGGTTTCGAAGAGCAGTCA -CCAACAGGTTTCGAAGAGGATCCA -CCAACAGGTTTCGAAGAGACGACA -CCAACAGGTTTCGAAGAGAGCTCA -CCAACAGGTTTCGAAGAGTCACGT -CCAACAGGTTTCGAAGAGCGTAGT -CCAACAGGTTTCGAAGAGGTCAGT -CCAACAGGTTTCGAAGAGGAAGGT -CCAACAGGTTTCGAAGAGAACCGT -CCAACAGGTTTCGAAGAGTTGTGC -CCAACAGGTTTCGAAGAGCTAAGC -CCAACAGGTTTCGAAGAGACTAGC -CCAACAGGTTTCGAAGAGAGATGC -CCAACAGGTTTCGAAGAGTGAAGG -CCAACAGGTTTCGAAGAGCAATGG -CCAACAGGTTTCGAAGAGATGAGG -CCAACAGGTTTCGAAGAGAATGGG -CCAACAGGTTTCGAAGAGTCCTGA -CCAACAGGTTTCGAAGAGTAGCGA -CCAACAGGTTTCGAAGAGCACAGA -CCAACAGGTTTCGAAGAGGCAAGA -CCAACAGGTTTCGAAGAGGGTTGA -CCAACAGGTTTCGAAGAGTCCGAT -CCAACAGGTTTCGAAGAGTGGCAT -CCAACAGGTTTCGAAGAGCGAGAT -CCAACAGGTTTCGAAGAGTACCAC -CCAACAGGTTTCGAAGAGCAGAAC -CCAACAGGTTTCGAAGAGGTCTAC -CCAACAGGTTTCGAAGAGACGTAC -CCAACAGGTTTCGAAGAGAGTGAC -CCAACAGGTTTCGAAGAGCTGTAG -CCAACAGGTTTCGAAGAGCCTAAG -CCAACAGGTTTCGAAGAGGTTCAG -CCAACAGGTTTCGAAGAGGCATAG -CCAACAGGTTTCGAAGAGGACAAG -CCAACAGGTTTCGAAGAGAAGCAG -CCAACAGGTTTCGAAGAGCGTCAA -CCAACAGGTTTCGAAGAGGCTGAA -CCAACAGGTTTCGAAGAGAGTACG -CCAACAGGTTTCGAAGAGATCCGA -CCAACAGGTTTCGAAGAGATGGGA -CCAACAGGTTTCGAAGAGGTGCAA -CCAACAGGTTTCGAAGAGGAGGAA -CCAACAGGTTTCGAAGAGCAGGTA -CCAACAGGTTTCGAAGAGGACTCT -CCAACAGGTTTCGAAGAGAGTCCT -CCAACAGGTTTCGAAGAGTAAGCC -CCAACAGGTTTCGAAGAGATAGCC -CCAACAGGTTTCGAAGAGTAACCG -CCAACAGGTTTCGAAGAGATGCCA -CCAACAGGTTTCGTACAGGGAAAC -CCAACAGGTTTCGTACAGAACACC -CCAACAGGTTTCGTACAGATCGAG -CCAACAGGTTTCGTACAGCTCCTT -CCAACAGGTTTCGTACAGCCTGTT -CCAACAGGTTTCGTACAGCGGTTT -CCAACAGGTTTCGTACAGGTGGTT -CCAACAGGTTTCGTACAGGCCTTT -CCAACAGGTTTCGTACAGGGTCTT -CCAACAGGTTTCGTACAGACGCTT -CCAACAGGTTTCGTACAGAGCGTT -CCAACAGGTTTCGTACAGTTCGTC -CCAACAGGTTTCGTACAGTCTCTC -CCAACAGGTTTCGTACAGTGGATC -CCAACAGGTTTCGTACAGCACTTC -CCAACAGGTTTCGTACAGGTACTC -CCAACAGGTTTCGTACAGGATGTC -CCAACAGGTTTCGTACAGACAGTC -CCAACAGGTTTCGTACAGTTGCTG -CCAACAGGTTTCGTACAGTCCATG -CCAACAGGTTTCGTACAGTGTGTG -CCAACAGGTTTCGTACAGCTAGTG -CCAACAGGTTTCGTACAGCATCTG -CCAACAGGTTTCGTACAGGAGTTG -CCAACAGGTTTCGTACAGAGACTG -CCAACAGGTTTCGTACAGTCGGTA -CCAACAGGTTTCGTACAGTGCCTA -CCAACAGGTTTCGTACAGCCACTA -CCAACAGGTTTCGTACAGGGAGTA -CCAACAGGTTTCGTACAGTCGTCT -CCAACAGGTTTCGTACAGTGCACT -CCAACAGGTTTCGTACAGCTGACT -CCAACAGGTTTCGTACAGCAACCT -CCAACAGGTTTCGTACAGGCTACT -CCAACAGGTTTCGTACAGGGATCT -CCAACAGGTTTCGTACAGAAGGCT -CCAACAGGTTTCGTACAGTCAACC -CCAACAGGTTTCGTACAGTGTTCC -CCAACAGGTTTCGTACAGATTCCC -CCAACAGGTTTCGTACAGTTCTCG -CCAACAGGTTTCGTACAGTAGACG -CCAACAGGTTTCGTACAGGTAACG -CCAACAGGTTTCGTACAGACTTCG -CCAACAGGTTTCGTACAGTACGCA -CCAACAGGTTTCGTACAGCTTGCA -CCAACAGGTTTCGTACAGCGAACA -CCAACAGGTTTCGTACAGCAGTCA -CCAACAGGTTTCGTACAGGATCCA -CCAACAGGTTTCGTACAGACGACA -CCAACAGGTTTCGTACAGAGCTCA -CCAACAGGTTTCGTACAGTCACGT -CCAACAGGTTTCGTACAGCGTAGT -CCAACAGGTTTCGTACAGGTCAGT -CCAACAGGTTTCGTACAGGAAGGT -CCAACAGGTTTCGTACAGAACCGT -CCAACAGGTTTCGTACAGTTGTGC -CCAACAGGTTTCGTACAGCTAAGC -CCAACAGGTTTCGTACAGACTAGC -CCAACAGGTTTCGTACAGAGATGC -CCAACAGGTTTCGTACAGTGAAGG -CCAACAGGTTTCGTACAGCAATGG -CCAACAGGTTTCGTACAGATGAGG -CCAACAGGTTTCGTACAGAATGGG -CCAACAGGTTTCGTACAGTCCTGA -CCAACAGGTTTCGTACAGTAGCGA -CCAACAGGTTTCGTACAGCACAGA -CCAACAGGTTTCGTACAGGCAAGA -CCAACAGGTTTCGTACAGGGTTGA -CCAACAGGTTTCGTACAGTCCGAT -CCAACAGGTTTCGTACAGTGGCAT -CCAACAGGTTTCGTACAGCGAGAT -CCAACAGGTTTCGTACAGTACCAC -CCAACAGGTTTCGTACAGCAGAAC -CCAACAGGTTTCGTACAGGTCTAC -CCAACAGGTTTCGTACAGACGTAC -CCAACAGGTTTCGTACAGAGTGAC -CCAACAGGTTTCGTACAGCTGTAG -CCAACAGGTTTCGTACAGCCTAAG -CCAACAGGTTTCGTACAGGTTCAG -CCAACAGGTTTCGTACAGGCATAG -CCAACAGGTTTCGTACAGGACAAG -CCAACAGGTTTCGTACAGAAGCAG -CCAACAGGTTTCGTACAGCGTCAA -CCAACAGGTTTCGTACAGGCTGAA -CCAACAGGTTTCGTACAGAGTACG -CCAACAGGTTTCGTACAGATCCGA -CCAACAGGTTTCGTACAGATGGGA -CCAACAGGTTTCGTACAGGTGCAA -CCAACAGGTTTCGTACAGGAGGAA -CCAACAGGTTTCGTACAGCAGGTA -CCAACAGGTTTCGTACAGGACTCT -CCAACAGGTTTCGTACAGAGTCCT -CCAACAGGTTTCGTACAGTAAGCC -CCAACAGGTTTCGTACAGATAGCC -CCAACAGGTTTCGTACAGTAACCG -CCAACAGGTTTCGTACAGATGCCA -CCAACAGGTTTCTCTGACGGAAAC -CCAACAGGTTTCTCTGACAACACC -CCAACAGGTTTCTCTGACATCGAG -CCAACAGGTTTCTCTGACCTCCTT -CCAACAGGTTTCTCTGACCCTGTT -CCAACAGGTTTCTCTGACCGGTTT -CCAACAGGTTTCTCTGACGTGGTT -CCAACAGGTTTCTCTGACGCCTTT -CCAACAGGTTTCTCTGACGGTCTT -CCAACAGGTTTCTCTGACACGCTT -CCAACAGGTTTCTCTGACAGCGTT -CCAACAGGTTTCTCTGACTTCGTC -CCAACAGGTTTCTCTGACTCTCTC -CCAACAGGTTTCTCTGACTGGATC -CCAACAGGTTTCTCTGACCACTTC -CCAACAGGTTTCTCTGACGTACTC -CCAACAGGTTTCTCTGACGATGTC -CCAACAGGTTTCTCTGACACAGTC -CCAACAGGTTTCTCTGACTTGCTG -CCAACAGGTTTCTCTGACTCCATG -CCAACAGGTTTCTCTGACTGTGTG -CCAACAGGTTTCTCTGACCTAGTG -CCAACAGGTTTCTCTGACCATCTG -CCAACAGGTTTCTCTGACGAGTTG -CCAACAGGTTTCTCTGACAGACTG -CCAACAGGTTTCTCTGACTCGGTA -CCAACAGGTTTCTCTGACTGCCTA -CCAACAGGTTTCTCTGACCCACTA -CCAACAGGTTTCTCTGACGGAGTA -CCAACAGGTTTCTCTGACTCGTCT -CCAACAGGTTTCTCTGACTGCACT -CCAACAGGTTTCTCTGACCTGACT -CCAACAGGTTTCTCTGACCAACCT -CCAACAGGTTTCTCTGACGCTACT -CCAACAGGTTTCTCTGACGGATCT -CCAACAGGTTTCTCTGACAAGGCT -CCAACAGGTTTCTCTGACTCAACC -CCAACAGGTTTCTCTGACTGTTCC -CCAACAGGTTTCTCTGACATTCCC -CCAACAGGTTTCTCTGACTTCTCG -CCAACAGGTTTCTCTGACTAGACG -CCAACAGGTTTCTCTGACGTAACG -CCAACAGGTTTCTCTGACACTTCG -CCAACAGGTTTCTCTGACTACGCA -CCAACAGGTTTCTCTGACCTTGCA -CCAACAGGTTTCTCTGACCGAACA -CCAACAGGTTTCTCTGACCAGTCA -CCAACAGGTTTCTCTGACGATCCA -CCAACAGGTTTCTCTGACACGACA -CCAACAGGTTTCTCTGACAGCTCA -CCAACAGGTTTCTCTGACTCACGT -CCAACAGGTTTCTCTGACCGTAGT -CCAACAGGTTTCTCTGACGTCAGT -CCAACAGGTTTCTCTGACGAAGGT -CCAACAGGTTTCTCTGACAACCGT -CCAACAGGTTTCTCTGACTTGTGC -CCAACAGGTTTCTCTGACCTAAGC -CCAACAGGTTTCTCTGACACTAGC -CCAACAGGTTTCTCTGACAGATGC -CCAACAGGTTTCTCTGACTGAAGG -CCAACAGGTTTCTCTGACCAATGG -CCAACAGGTTTCTCTGACATGAGG -CCAACAGGTTTCTCTGACAATGGG -CCAACAGGTTTCTCTGACTCCTGA -CCAACAGGTTTCTCTGACTAGCGA -CCAACAGGTTTCTCTGACCACAGA -CCAACAGGTTTCTCTGACGCAAGA -CCAACAGGTTTCTCTGACGGTTGA -CCAACAGGTTTCTCTGACTCCGAT -CCAACAGGTTTCTCTGACTGGCAT -CCAACAGGTTTCTCTGACCGAGAT -CCAACAGGTTTCTCTGACTACCAC -CCAACAGGTTTCTCTGACCAGAAC -CCAACAGGTTTCTCTGACGTCTAC -CCAACAGGTTTCTCTGACACGTAC -CCAACAGGTTTCTCTGACAGTGAC -CCAACAGGTTTCTCTGACCTGTAG -CCAACAGGTTTCTCTGACCCTAAG -CCAACAGGTTTCTCTGACGTTCAG -CCAACAGGTTTCTCTGACGCATAG -CCAACAGGTTTCTCTGACGACAAG -CCAACAGGTTTCTCTGACAAGCAG -CCAACAGGTTTCTCTGACCGTCAA -CCAACAGGTTTCTCTGACGCTGAA -CCAACAGGTTTCTCTGACAGTACG -CCAACAGGTTTCTCTGACATCCGA -CCAACAGGTTTCTCTGACATGGGA -CCAACAGGTTTCTCTGACGTGCAA -CCAACAGGTTTCTCTGACGAGGAA -CCAACAGGTTTCTCTGACCAGGTA -CCAACAGGTTTCTCTGACGACTCT -CCAACAGGTTTCTCTGACAGTCCT -CCAACAGGTTTCTCTGACTAAGCC -CCAACAGGTTTCTCTGACATAGCC -CCAACAGGTTTCTCTGACTAACCG -CCAACAGGTTTCTCTGACATGCCA -CCAACAGGTTTCCCTAGTGGAAAC -CCAACAGGTTTCCCTAGTAACACC -CCAACAGGTTTCCCTAGTATCGAG -CCAACAGGTTTCCCTAGTCTCCTT -CCAACAGGTTTCCCTAGTCCTGTT -CCAACAGGTTTCCCTAGTCGGTTT -CCAACAGGTTTCCCTAGTGTGGTT -CCAACAGGTTTCCCTAGTGCCTTT -CCAACAGGTTTCCCTAGTGGTCTT -CCAACAGGTTTCCCTAGTACGCTT -CCAACAGGTTTCCCTAGTAGCGTT -CCAACAGGTTTCCCTAGTTTCGTC -CCAACAGGTTTCCCTAGTTCTCTC -CCAACAGGTTTCCCTAGTTGGATC -CCAACAGGTTTCCCTAGTCACTTC -CCAACAGGTTTCCCTAGTGTACTC -CCAACAGGTTTCCCTAGTGATGTC -CCAACAGGTTTCCCTAGTACAGTC -CCAACAGGTTTCCCTAGTTTGCTG -CCAACAGGTTTCCCTAGTTCCATG -CCAACAGGTTTCCCTAGTTGTGTG -CCAACAGGTTTCCCTAGTCTAGTG -CCAACAGGTTTCCCTAGTCATCTG -CCAACAGGTTTCCCTAGTGAGTTG -CCAACAGGTTTCCCTAGTAGACTG -CCAACAGGTTTCCCTAGTTCGGTA -CCAACAGGTTTCCCTAGTTGCCTA -CCAACAGGTTTCCCTAGTCCACTA -CCAACAGGTTTCCCTAGTGGAGTA -CCAACAGGTTTCCCTAGTTCGTCT -CCAACAGGTTTCCCTAGTTGCACT -CCAACAGGTTTCCCTAGTCTGACT -CCAACAGGTTTCCCTAGTCAACCT -CCAACAGGTTTCCCTAGTGCTACT -CCAACAGGTTTCCCTAGTGGATCT -CCAACAGGTTTCCCTAGTAAGGCT -CCAACAGGTTTCCCTAGTTCAACC -CCAACAGGTTTCCCTAGTTGTTCC -CCAACAGGTTTCCCTAGTATTCCC -CCAACAGGTTTCCCTAGTTTCTCG -CCAACAGGTTTCCCTAGTTAGACG -CCAACAGGTTTCCCTAGTGTAACG -CCAACAGGTTTCCCTAGTACTTCG -CCAACAGGTTTCCCTAGTTACGCA -CCAACAGGTTTCCCTAGTCTTGCA -CCAACAGGTTTCCCTAGTCGAACA -CCAACAGGTTTCCCTAGTCAGTCA -CCAACAGGTTTCCCTAGTGATCCA -CCAACAGGTTTCCCTAGTACGACA -CCAACAGGTTTCCCTAGTAGCTCA -CCAACAGGTTTCCCTAGTTCACGT -CCAACAGGTTTCCCTAGTCGTAGT -CCAACAGGTTTCCCTAGTGTCAGT -CCAACAGGTTTCCCTAGTGAAGGT -CCAACAGGTTTCCCTAGTAACCGT -CCAACAGGTTTCCCTAGTTTGTGC -CCAACAGGTTTCCCTAGTCTAAGC -CCAACAGGTTTCCCTAGTACTAGC -CCAACAGGTTTCCCTAGTAGATGC -CCAACAGGTTTCCCTAGTTGAAGG -CCAACAGGTTTCCCTAGTCAATGG -CCAACAGGTTTCCCTAGTATGAGG -CCAACAGGTTTCCCTAGTAATGGG -CCAACAGGTTTCCCTAGTTCCTGA -CCAACAGGTTTCCCTAGTTAGCGA -CCAACAGGTTTCCCTAGTCACAGA -CCAACAGGTTTCCCTAGTGCAAGA -CCAACAGGTTTCCCTAGTGGTTGA -CCAACAGGTTTCCCTAGTTCCGAT -CCAACAGGTTTCCCTAGTTGGCAT -CCAACAGGTTTCCCTAGTCGAGAT -CCAACAGGTTTCCCTAGTTACCAC -CCAACAGGTTTCCCTAGTCAGAAC -CCAACAGGTTTCCCTAGTGTCTAC -CCAACAGGTTTCCCTAGTACGTAC -CCAACAGGTTTCCCTAGTAGTGAC -CCAACAGGTTTCCCTAGTCTGTAG -CCAACAGGTTTCCCTAGTCCTAAG -CCAACAGGTTTCCCTAGTGTTCAG -CCAACAGGTTTCCCTAGTGCATAG -CCAACAGGTTTCCCTAGTGACAAG -CCAACAGGTTTCCCTAGTAAGCAG -CCAACAGGTTTCCCTAGTCGTCAA -CCAACAGGTTTCCCTAGTGCTGAA -CCAACAGGTTTCCCTAGTAGTACG -CCAACAGGTTTCCCTAGTATCCGA -CCAACAGGTTTCCCTAGTATGGGA -CCAACAGGTTTCCCTAGTGTGCAA -CCAACAGGTTTCCCTAGTGAGGAA -CCAACAGGTTTCCCTAGTCAGGTA -CCAACAGGTTTCCCTAGTGACTCT -CCAACAGGTTTCCCTAGTAGTCCT -CCAACAGGTTTCCCTAGTTAAGCC -CCAACAGGTTTCCCTAGTATAGCC -CCAACAGGTTTCCCTAGTTAACCG -CCAACAGGTTTCCCTAGTATGCCA -CCAACAGGTTTCGCCTAAGGAAAC -CCAACAGGTTTCGCCTAAAACACC -CCAACAGGTTTCGCCTAAATCGAG -CCAACAGGTTTCGCCTAACTCCTT -CCAACAGGTTTCGCCTAACCTGTT -CCAACAGGTTTCGCCTAACGGTTT -CCAACAGGTTTCGCCTAAGTGGTT -CCAACAGGTTTCGCCTAAGCCTTT -CCAACAGGTTTCGCCTAAGGTCTT -CCAACAGGTTTCGCCTAAACGCTT -CCAACAGGTTTCGCCTAAAGCGTT -CCAACAGGTTTCGCCTAATTCGTC -CCAACAGGTTTCGCCTAATCTCTC -CCAACAGGTTTCGCCTAATGGATC -CCAACAGGTTTCGCCTAACACTTC -CCAACAGGTTTCGCCTAAGTACTC -CCAACAGGTTTCGCCTAAGATGTC -CCAACAGGTTTCGCCTAAACAGTC -CCAACAGGTTTCGCCTAATTGCTG -CCAACAGGTTTCGCCTAATCCATG -CCAACAGGTTTCGCCTAATGTGTG -CCAACAGGTTTCGCCTAACTAGTG -CCAACAGGTTTCGCCTAACATCTG -CCAACAGGTTTCGCCTAAGAGTTG -CCAACAGGTTTCGCCTAAAGACTG -CCAACAGGTTTCGCCTAATCGGTA -CCAACAGGTTTCGCCTAATGCCTA -CCAACAGGTTTCGCCTAACCACTA -CCAACAGGTTTCGCCTAAGGAGTA -CCAACAGGTTTCGCCTAATCGTCT -CCAACAGGTTTCGCCTAATGCACT -CCAACAGGTTTCGCCTAACTGACT -CCAACAGGTTTCGCCTAACAACCT -CCAACAGGTTTCGCCTAAGCTACT -CCAACAGGTTTCGCCTAAGGATCT -CCAACAGGTTTCGCCTAAAAGGCT -CCAACAGGTTTCGCCTAATCAACC -CCAACAGGTTTCGCCTAATGTTCC -CCAACAGGTTTCGCCTAAATTCCC -CCAACAGGTTTCGCCTAATTCTCG -CCAACAGGTTTCGCCTAATAGACG -CCAACAGGTTTCGCCTAAGTAACG -CCAACAGGTTTCGCCTAAACTTCG -CCAACAGGTTTCGCCTAATACGCA -CCAACAGGTTTCGCCTAACTTGCA -CCAACAGGTTTCGCCTAACGAACA -CCAACAGGTTTCGCCTAACAGTCA -CCAACAGGTTTCGCCTAAGATCCA -CCAACAGGTTTCGCCTAAACGACA -CCAACAGGTTTCGCCTAAAGCTCA -CCAACAGGTTTCGCCTAATCACGT -CCAACAGGTTTCGCCTAACGTAGT -CCAACAGGTTTCGCCTAAGTCAGT -CCAACAGGTTTCGCCTAAGAAGGT -CCAACAGGTTTCGCCTAAAACCGT -CCAACAGGTTTCGCCTAATTGTGC -CCAACAGGTTTCGCCTAACTAAGC -CCAACAGGTTTCGCCTAAACTAGC -CCAACAGGTTTCGCCTAAAGATGC -CCAACAGGTTTCGCCTAATGAAGG -CCAACAGGTTTCGCCTAACAATGG -CCAACAGGTTTCGCCTAAATGAGG -CCAACAGGTTTCGCCTAAAATGGG -CCAACAGGTTTCGCCTAATCCTGA -CCAACAGGTTTCGCCTAATAGCGA -CCAACAGGTTTCGCCTAACACAGA -CCAACAGGTTTCGCCTAAGCAAGA -CCAACAGGTTTCGCCTAAGGTTGA -CCAACAGGTTTCGCCTAATCCGAT -CCAACAGGTTTCGCCTAATGGCAT -CCAACAGGTTTCGCCTAACGAGAT -CCAACAGGTTTCGCCTAATACCAC -CCAACAGGTTTCGCCTAACAGAAC -CCAACAGGTTTCGCCTAAGTCTAC -CCAACAGGTTTCGCCTAAACGTAC -CCAACAGGTTTCGCCTAAAGTGAC -CCAACAGGTTTCGCCTAACTGTAG -CCAACAGGTTTCGCCTAACCTAAG -CCAACAGGTTTCGCCTAAGTTCAG -CCAACAGGTTTCGCCTAAGCATAG -CCAACAGGTTTCGCCTAAGACAAG -CCAACAGGTTTCGCCTAAAAGCAG -CCAACAGGTTTCGCCTAACGTCAA -CCAACAGGTTTCGCCTAAGCTGAA -CCAACAGGTTTCGCCTAAAGTACG -CCAACAGGTTTCGCCTAAATCCGA -CCAACAGGTTTCGCCTAAATGGGA -CCAACAGGTTTCGCCTAAGTGCAA -CCAACAGGTTTCGCCTAAGAGGAA -CCAACAGGTTTCGCCTAACAGGTA -CCAACAGGTTTCGCCTAAGACTCT -CCAACAGGTTTCGCCTAAAGTCCT -CCAACAGGTTTCGCCTAATAAGCC -CCAACAGGTTTCGCCTAAATAGCC -CCAACAGGTTTCGCCTAATAACCG -CCAACAGGTTTCGCCTAAATGCCA -CCAACAGGTTTCGCCATAGGAAAC -CCAACAGGTTTCGCCATAAACACC -CCAACAGGTTTCGCCATAATCGAG -CCAACAGGTTTCGCCATACTCCTT -CCAACAGGTTTCGCCATACCTGTT -CCAACAGGTTTCGCCATACGGTTT -CCAACAGGTTTCGCCATAGTGGTT -CCAACAGGTTTCGCCATAGCCTTT -CCAACAGGTTTCGCCATAGGTCTT -CCAACAGGTTTCGCCATAACGCTT -CCAACAGGTTTCGCCATAAGCGTT -CCAACAGGTTTCGCCATATTCGTC -CCAACAGGTTTCGCCATATCTCTC -CCAACAGGTTTCGCCATATGGATC -CCAACAGGTTTCGCCATACACTTC -CCAACAGGTTTCGCCATAGTACTC -CCAACAGGTTTCGCCATAGATGTC -CCAACAGGTTTCGCCATAACAGTC -CCAACAGGTTTCGCCATATTGCTG -CCAACAGGTTTCGCCATATCCATG -CCAACAGGTTTCGCCATATGTGTG -CCAACAGGTTTCGCCATACTAGTG -CCAACAGGTTTCGCCATACATCTG -CCAACAGGTTTCGCCATAGAGTTG -CCAACAGGTTTCGCCATAAGACTG -CCAACAGGTTTCGCCATATCGGTA -CCAACAGGTTTCGCCATATGCCTA -CCAACAGGTTTCGCCATACCACTA -CCAACAGGTTTCGCCATAGGAGTA -CCAACAGGTTTCGCCATATCGTCT -CCAACAGGTTTCGCCATATGCACT -CCAACAGGTTTCGCCATACTGACT -CCAACAGGTTTCGCCATACAACCT -CCAACAGGTTTCGCCATAGCTACT -CCAACAGGTTTCGCCATAGGATCT -CCAACAGGTTTCGCCATAAAGGCT -CCAACAGGTTTCGCCATATCAACC -CCAACAGGTTTCGCCATATGTTCC -CCAACAGGTTTCGCCATAATTCCC -CCAACAGGTTTCGCCATATTCTCG -CCAACAGGTTTCGCCATATAGACG -CCAACAGGTTTCGCCATAGTAACG -CCAACAGGTTTCGCCATAACTTCG -CCAACAGGTTTCGCCATATACGCA -CCAACAGGTTTCGCCATACTTGCA -CCAACAGGTTTCGCCATACGAACA -CCAACAGGTTTCGCCATACAGTCA -CCAACAGGTTTCGCCATAGATCCA -CCAACAGGTTTCGCCATAACGACA -CCAACAGGTTTCGCCATAAGCTCA -CCAACAGGTTTCGCCATATCACGT -CCAACAGGTTTCGCCATACGTAGT -CCAACAGGTTTCGCCATAGTCAGT -CCAACAGGTTTCGCCATAGAAGGT -CCAACAGGTTTCGCCATAAACCGT -CCAACAGGTTTCGCCATATTGTGC -CCAACAGGTTTCGCCATACTAAGC -CCAACAGGTTTCGCCATAACTAGC -CCAACAGGTTTCGCCATAAGATGC -CCAACAGGTTTCGCCATATGAAGG -CCAACAGGTTTCGCCATACAATGG -CCAACAGGTTTCGCCATAATGAGG -CCAACAGGTTTCGCCATAAATGGG -CCAACAGGTTTCGCCATATCCTGA -CCAACAGGTTTCGCCATATAGCGA -CCAACAGGTTTCGCCATACACAGA -CCAACAGGTTTCGCCATAGCAAGA -CCAACAGGTTTCGCCATAGGTTGA -CCAACAGGTTTCGCCATATCCGAT -CCAACAGGTTTCGCCATATGGCAT -CCAACAGGTTTCGCCATACGAGAT -CCAACAGGTTTCGCCATATACCAC -CCAACAGGTTTCGCCATACAGAAC -CCAACAGGTTTCGCCATAGTCTAC -CCAACAGGTTTCGCCATAACGTAC -CCAACAGGTTTCGCCATAAGTGAC -CCAACAGGTTTCGCCATACTGTAG -CCAACAGGTTTCGCCATACCTAAG -CCAACAGGTTTCGCCATAGTTCAG -CCAACAGGTTTCGCCATAGCATAG -CCAACAGGTTTCGCCATAGACAAG -CCAACAGGTTTCGCCATAAAGCAG -CCAACAGGTTTCGCCATACGTCAA -CCAACAGGTTTCGCCATAGCTGAA -CCAACAGGTTTCGCCATAAGTACG -CCAACAGGTTTCGCCATAATCCGA -CCAACAGGTTTCGCCATAATGGGA -CCAACAGGTTTCGCCATAGTGCAA -CCAACAGGTTTCGCCATAGAGGAA -CCAACAGGTTTCGCCATACAGGTA -CCAACAGGTTTCGCCATAGACTCT -CCAACAGGTTTCGCCATAAGTCCT -CCAACAGGTTTCGCCATATAAGCC -CCAACAGGTTTCGCCATAATAGCC -CCAACAGGTTTCGCCATATAACCG -CCAACAGGTTTCGCCATAATGCCA -CCAACAGGTTTCCCGTAAGGAAAC -CCAACAGGTTTCCCGTAAAACACC -CCAACAGGTTTCCCGTAAATCGAG -CCAACAGGTTTCCCGTAACTCCTT -CCAACAGGTTTCCCGTAACCTGTT -CCAACAGGTTTCCCGTAACGGTTT -CCAACAGGTTTCCCGTAAGTGGTT -CCAACAGGTTTCCCGTAAGCCTTT -CCAACAGGTTTCCCGTAAGGTCTT -CCAACAGGTTTCCCGTAAACGCTT -CCAACAGGTTTCCCGTAAAGCGTT -CCAACAGGTTTCCCGTAATTCGTC -CCAACAGGTTTCCCGTAATCTCTC -CCAACAGGTTTCCCGTAATGGATC -CCAACAGGTTTCCCGTAACACTTC -CCAACAGGTTTCCCGTAAGTACTC -CCAACAGGTTTCCCGTAAGATGTC -CCAACAGGTTTCCCGTAAACAGTC -CCAACAGGTTTCCCGTAATTGCTG -CCAACAGGTTTCCCGTAATCCATG -CCAACAGGTTTCCCGTAATGTGTG -CCAACAGGTTTCCCGTAACTAGTG -CCAACAGGTTTCCCGTAACATCTG -CCAACAGGTTTCCCGTAAGAGTTG -CCAACAGGTTTCCCGTAAAGACTG -CCAACAGGTTTCCCGTAATCGGTA -CCAACAGGTTTCCCGTAATGCCTA -CCAACAGGTTTCCCGTAACCACTA -CCAACAGGTTTCCCGTAAGGAGTA -CCAACAGGTTTCCCGTAATCGTCT -CCAACAGGTTTCCCGTAATGCACT -CCAACAGGTTTCCCGTAACTGACT -CCAACAGGTTTCCCGTAACAACCT -CCAACAGGTTTCCCGTAAGCTACT -CCAACAGGTTTCCCGTAAGGATCT -CCAACAGGTTTCCCGTAAAAGGCT -CCAACAGGTTTCCCGTAATCAACC -CCAACAGGTTTCCCGTAATGTTCC -CCAACAGGTTTCCCGTAAATTCCC -CCAACAGGTTTCCCGTAATTCTCG -CCAACAGGTTTCCCGTAATAGACG -CCAACAGGTTTCCCGTAAGTAACG -CCAACAGGTTTCCCGTAAACTTCG -CCAACAGGTTTCCCGTAATACGCA -CCAACAGGTTTCCCGTAACTTGCA -CCAACAGGTTTCCCGTAACGAACA -CCAACAGGTTTCCCGTAACAGTCA -CCAACAGGTTTCCCGTAAGATCCA -CCAACAGGTTTCCCGTAAACGACA -CCAACAGGTTTCCCGTAAAGCTCA -CCAACAGGTTTCCCGTAATCACGT -CCAACAGGTTTCCCGTAACGTAGT -CCAACAGGTTTCCCGTAAGTCAGT -CCAACAGGTTTCCCGTAAGAAGGT -CCAACAGGTTTCCCGTAAAACCGT -CCAACAGGTTTCCCGTAATTGTGC -CCAACAGGTTTCCCGTAACTAAGC -CCAACAGGTTTCCCGTAAACTAGC -CCAACAGGTTTCCCGTAAAGATGC -CCAACAGGTTTCCCGTAATGAAGG -CCAACAGGTTTCCCGTAACAATGG -CCAACAGGTTTCCCGTAAATGAGG -CCAACAGGTTTCCCGTAAAATGGG -CCAACAGGTTTCCCGTAATCCTGA -CCAACAGGTTTCCCGTAATAGCGA -CCAACAGGTTTCCCGTAACACAGA -CCAACAGGTTTCCCGTAAGCAAGA -CCAACAGGTTTCCCGTAAGGTTGA -CCAACAGGTTTCCCGTAATCCGAT -CCAACAGGTTTCCCGTAATGGCAT -CCAACAGGTTTCCCGTAACGAGAT -CCAACAGGTTTCCCGTAATACCAC -CCAACAGGTTTCCCGTAACAGAAC -CCAACAGGTTTCCCGTAAGTCTAC -CCAACAGGTTTCCCGTAAACGTAC -CCAACAGGTTTCCCGTAAAGTGAC -CCAACAGGTTTCCCGTAACTGTAG -CCAACAGGTTTCCCGTAACCTAAG -CCAACAGGTTTCCCGTAAGTTCAG -CCAACAGGTTTCCCGTAAGCATAG -CCAACAGGTTTCCCGTAAGACAAG -CCAACAGGTTTCCCGTAAAAGCAG -CCAACAGGTTTCCCGTAACGTCAA -CCAACAGGTTTCCCGTAAGCTGAA -CCAACAGGTTTCCCGTAAAGTACG -CCAACAGGTTTCCCGTAAATCCGA -CCAACAGGTTTCCCGTAAATGGGA -CCAACAGGTTTCCCGTAAGTGCAA -CCAACAGGTTTCCCGTAAGAGGAA -CCAACAGGTTTCCCGTAACAGGTA -CCAACAGGTTTCCCGTAAGACTCT -CCAACAGGTTTCCCGTAAAGTCCT -CCAACAGGTTTCCCGTAATAAGCC -CCAACAGGTTTCCCGTAAATAGCC -CCAACAGGTTTCCCGTAATAACCG -CCAACAGGTTTCCCGTAAATGCCA -CCAACAGGTTTCCCAATGGGAAAC -CCAACAGGTTTCCCAATGAACACC -CCAACAGGTTTCCCAATGATCGAG -CCAACAGGTTTCCCAATGCTCCTT -CCAACAGGTTTCCCAATGCCTGTT -CCAACAGGTTTCCCAATGCGGTTT -CCAACAGGTTTCCCAATGGTGGTT -CCAACAGGTTTCCCAATGGCCTTT -CCAACAGGTTTCCCAATGGGTCTT -CCAACAGGTTTCCCAATGACGCTT -CCAACAGGTTTCCCAATGAGCGTT -CCAACAGGTTTCCCAATGTTCGTC -CCAACAGGTTTCCCAATGTCTCTC -CCAACAGGTTTCCCAATGTGGATC -CCAACAGGTTTCCCAATGCACTTC -CCAACAGGTTTCCCAATGGTACTC -CCAACAGGTTTCCCAATGGATGTC -CCAACAGGTTTCCCAATGACAGTC -CCAACAGGTTTCCCAATGTTGCTG -CCAACAGGTTTCCCAATGTCCATG -CCAACAGGTTTCCCAATGTGTGTG -CCAACAGGTTTCCCAATGCTAGTG -CCAACAGGTTTCCCAATGCATCTG -CCAACAGGTTTCCCAATGGAGTTG -CCAACAGGTTTCCCAATGAGACTG -CCAACAGGTTTCCCAATGTCGGTA -CCAACAGGTTTCCCAATGTGCCTA -CCAACAGGTTTCCCAATGCCACTA -CCAACAGGTTTCCCAATGGGAGTA -CCAACAGGTTTCCCAATGTCGTCT -CCAACAGGTTTCCCAATGTGCACT -CCAACAGGTTTCCCAATGCTGACT -CCAACAGGTTTCCCAATGCAACCT -CCAACAGGTTTCCCAATGGCTACT -CCAACAGGTTTCCCAATGGGATCT -CCAACAGGTTTCCCAATGAAGGCT -CCAACAGGTTTCCCAATGTCAACC -CCAACAGGTTTCCCAATGTGTTCC -CCAACAGGTTTCCCAATGATTCCC -CCAACAGGTTTCCCAATGTTCTCG -CCAACAGGTTTCCCAATGTAGACG -CCAACAGGTTTCCCAATGGTAACG -CCAACAGGTTTCCCAATGACTTCG -CCAACAGGTTTCCCAATGTACGCA -CCAACAGGTTTCCCAATGCTTGCA -CCAACAGGTTTCCCAATGCGAACA -CCAACAGGTTTCCCAATGCAGTCA -CCAACAGGTTTCCCAATGGATCCA -CCAACAGGTTTCCCAATGACGACA -CCAACAGGTTTCCCAATGAGCTCA -CCAACAGGTTTCCCAATGTCACGT -CCAACAGGTTTCCCAATGCGTAGT -CCAACAGGTTTCCCAATGGTCAGT -CCAACAGGTTTCCCAATGGAAGGT -CCAACAGGTTTCCCAATGAACCGT -CCAACAGGTTTCCCAATGTTGTGC -CCAACAGGTTTCCCAATGCTAAGC -CCAACAGGTTTCCCAATGACTAGC -CCAACAGGTTTCCCAATGAGATGC -CCAACAGGTTTCCCAATGTGAAGG -CCAACAGGTTTCCCAATGCAATGG -CCAACAGGTTTCCCAATGATGAGG -CCAACAGGTTTCCCAATGAATGGG -CCAACAGGTTTCCCAATGTCCTGA -CCAACAGGTTTCCCAATGTAGCGA -CCAACAGGTTTCCCAATGCACAGA -CCAACAGGTTTCCCAATGGCAAGA -CCAACAGGTTTCCCAATGGGTTGA -CCAACAGGTTTCCCAATGTCCGAT -CCAACAGGTTTCCCAATGTGGCAT -CCAACAGGTTTCCCAATGCGAGAT -CCAACAGGTTTCCCAATGTACCAC -CCAACAGGTTTCCCAATGCAGAAC -CCAACAGGTTTCCCAATGGTCTAC -CCAACAGGTTTCCCAATGACGTAC -CCAACAGGTTTCCCAATGAGTGAC -CCAACAGGTTTCCCAATGCTGTAG -CCAACAGGTTTCCCAATGCCTAAG -CCAACAGGTTTCCCAATGGTTCAG -CCAACAGGTTTCCCAATGGCATAG -CCAACAGGTTTCCCAATGGACAAG -CCAACAGGTTTCCCAATGAAGCAG -CCAACAGGTTTCCCAATGCGTCAA -CCAACAGGTTTCCCAATGGCTGAA -CCAACAGGTTTCCCAATGAGTACG -CCAACAGGTTTCCCAATGATCCGA -CCAACAGGTTTCCCAATGATGGGA -CCAACAGGTTTCCCAATGGTGCAA -CCAACAGGTTTCCCAATGGAGGAA -CCAACAGGTTTCCCAATGCAGGTA -CCAACAGGTTTCCCAATGGACTCT -CCAACAGGTTTCCCAATGAGTCCT -CCAACAGGTTTCCCAATGTAAGCC -CCAACAGGTTTCCCAATGATAGCC -CCAACAGGTTTCCCAATGTAACCG -CCAACAGGTTTCCCAATGATGCCA -CCAACATGGTTGAACGGAGGAAAC -CCAACATGGTTGAACGGAAACACC -CCAACATGGTTGAACGGAATCGAG -CCAACATGGTTGAACGGACTCCTT -CCAACATGGTTGAACGGACCTGTT -CCAACATGGTTGAACGGACGGTTT -CCAACATGGTTGAACGGAGTGGTT -CCAACATGGTTGAACGGAGCCTTT -CCAACATGGTTGAACGGAGGTCTT -CCAACATGGTTGAACGGAACGCTT -CCAACATGGTTGAACGGAAGCGTT -CCAACATGGTTGAACGGATTCGTC -CCAACATGGTTGAACGGATCTCTC -CCAACATGGTTGAACGGATGGATC -CCAACATGGTTGAACGGACACTTC -CCAACATGGTTGAACGGAGTACTC -CCAACATGGTTGAACGGAGATGTC -CCAACATGGTTGAACGGAACAGTC -CCAACATGGTTGAACGGATTGCTG -CCAACATGGTTGAACGGATCCATG -CCAACATGGTTGAACGGATGTGTG -CCAACATGGTTGAACGGACTAGTG -CCAACATGGTTGAACGGACATCTG -CCAACATGGTTGAACGGAGAGTTG -CCAACATGGTTGAACGGAAGACTG -CCAACATGGTTGAACGGATCGGTA -CCAACATGGTTGAACGGATGCCTA -CCAACATGGTTGAACGGACCACTA -CCAACATGGTTGAACGGAGGAGTA -CCAACATGGTTGAACGGATCGTCT -CCAACATGGTTGAACGGATGCACT -CCAACATGGTTGAACGGACTGACT -CCAACATGGTTGAACGGACAACCT -CCAACATGGTTGAACGGAGCTACT -CCAACATGGTTGAACGGAGGATCT -CCAACATGGTTGAACGGAAAGGCT -CCAACATGGTTGAACGGATCAACC -CCAACATGGTTGAACGGATGTTCC -CCAACATGGTTGAACGGAATTCCC -CCAACATGGTTGAACGGATTCTCG -CCAACATGGTTGAACGGATAGACG -CCAACATGGTTGAACGGAGTAACG -CCAACATGGTTGAACGGAACTTCG -CCAACATGGTTGAACGGATACGCA -CCAACATGGTTGAACGGACTTGCA -CCAACATGGTTGAACGGACGAACA -CCAACATGGTTGAACGGACAGTCA -CCAACATGGTTGAACGGAGATCCA -CCAACATGGTTGAACGGAACGACA -CCAACATGGTTGAACGGAAGCTCA -CCAACATGGTTGAACGGATCACGT -CCAACATGGTTGAACGGACGTAGT -CCAACATGGTTGAACGGAGTCAGT -CCAACATGGTTGAACGGAGAAGGT -CCAACATGGTTGAACGGAAACCGT -CCAACATGGTTGAACGGATTGTGC -CCAACATGGTTGAACGGACTAAGC -CCAACATGGTTGAACGGAACTAGC -CCAACATGGTTGAACGGAAGATGC -CCAACATGGTTGAACGGATGAAGG -CCAACATGGTTGAACGGACAATGG -CCAACATGGTTGAACGGAATGAGG -CCAACATGGTTGAACGGAAATGGG -CCAACATGGTTGAACGGATCCTGA -CCAACATGGTTGAACGGATAGCGA -CCAACATGGTTGAACGGACACAGA -CCAACATGGTTGAACGGAGCAAGA -CCAACATGGTTGAACGGAGGTTGA -CCAACATGGTTGAACGGATCCGAT -CCAACATGGTTGAACGGATGGCAT -CCAACATGGTTGAACGGACGAGAT -CCAACATGGTTGAACGGATACCAC -CCAACATGGTTGAACGGACAGAAC -CCAACATGGTTGAACGGAGTCTAC -CCAACATGGTTGAACGGAACGTAC -CCAACATGGTTGAACGGAAGTGAC -CCAACATGGTTGAACGGACTGTAG -CCAACATGGTTGAACGGACCTAAG -CCAACATGGTTGAACGGAGTTCAG -CCAACATGGTTGAACGGAGCATAG -CCAACATGGTTGAACGGAGACAAG -CCAACATGGTTGAACGGAAAGCAG -CCAACATGGTTGAACGGACGTCAA -CCAACATGGTTGAACGGAGCTGAA -CCAACATGGTTGAACGGAAGTACG -CCAACATGGTTGAACGGAATCCGA -CCAACATGGTTGAACGGAATGGGA -CCAACATGGTTGAACGGAGTGCAA -CCAACATGGTTGAACGGAGAGGAA -CCAACATGGTTGAACGGACAGGTA -CCAACATGGTTGAACGGAGACTCT -CCAACATGGTTGAACGGAAGTCCT -CCAACATGGTTGAACGGATAAGCC -CCAACATGGTTGAACGGAATAGCC -CCAACATGGTTGAACGGATAACCG -CCAACATGGTTGAACGGAATGCCA -CCAACATGGTTGACCAACGGAAAC -CCAACATGGTTGACCAACAACACC -CCAACATGGTTGACCAACATCGAG -CCAACATGGTTGACCAACCTCCTT -CCAACATGGTTGACCAACCCTGTT -CCAACATGGTTGACCAACCGGTTT -CCAACATGGTTGACCAACGTGGTT -CCAACATGGTTGACCAACGCCTTT -CCAACATGGTTGACCAACGGTCTT -CCAACATGGTTGACCAACACGCTT -CCAACATGGTTGACCAACAGCGTT -CCAACATGGTTGACCAACTTCGTC -CCAACATGGTTGACCAACTCTCTC -CCAACATGGTTGACCAACTGGATC -CCAACATGGTTGACCAACCACTTC -CCAACATGGTTGACCAACGTACTC -CCAACATGGTTGACCAACGATGTC -CCAACATGGTTGACCAACACAGTC -CCAACATGGTTGACCAACTTGCTG -CCAACATGGTTGACCAACTCCATG -CCAACATGGTTGACCAACTGTGTG -CCAACATGGTTGACCAACCTAGTG -CCAACATGGTTGACCAACCATCTG -CCAACATGGTTGACCAACGAGTTG -CCAACATGGTTGACCAACAGACTG -CCAACATGGTTGACCAACTCGGTA -CCAACATGGTTGACCAACTGCCTA -CCAACATGGTTGACCAACCCACTA -CCAACATGGTTGACCAACGGAGTA -CCAACATGGTTGACCAACTCGTCT -CCAACATGGTTGACCAACTGCACT -CCAACATGGTTGACCAACCTGACT -CCAACATGGTTGACCAACCAACCT -CCAACATGGTTGACCAACGCTACT -CCAACATGGTTGACCAACGGATCT -CCAACATGGTTGACCAACAAGGCT -CCAACATGGTTGACCAACTCAACC -CCAACATGGTTGACCAACTGTTCC -CCAACATGGTTGACCAACATTCCC -CCAACATGGTTGACCAACTTCTCG -CCAACATGGTTGACCAACTAGACG -CCAACATGGTTGACCAACGTAACG -CCAACATGGTTGACCAACACTTCG -CCAACATGGTTGACCAACTACGCA -CCAACATGGTTGACCAACCTTGCA -CCAACATGGTTGACCAACCGAACA -CCAACATGGTTGACCAACCAGTCA -CCAACATGGTTGACCAACGATCCA -CCAACATGGTTGACCAACACGACA -CCAACATGGTTGACCAACAGCTCA -CCAACATGGTTGACCAACTCACGT -CCAACATGGTTGACCAACCGTAGT -CCAACATGGTTGACCAACGTCAGT -CCAACATGGTTGACCAACGAAGGT -CCAACATGGTTGACCAACAACCGT -CCAACATGGTTGACCAACTTGTGC -CCAACATGGTTGACCAACCTAAGC -CCAACATGGTTGACCAACACTAGC -CCAACATGGTTGACCAACAGATGC -CCAACATGGTTGACCAACTGAAGG -CCAACATGGTTGACCAACCAATGG -CCAACATGGTTGACCAACATGAGG -CCAACATGGTTGACCAACAATGGG -CCAACATGGTTGACCAACTCCTGA -CCAACATGGTTGACCAACTAGCGA -CCAACATGGTTGACCAACCACAGA -CCAACATGGTTGACCAACGCAAGA -CCAACATGGTTGACCAACGGTTGA -CCAACATGGTTGACCAACTCCGAT -CCAACATGGTTGACCAACTGGCAT -CCAACATGGTTGACCAACCGAGAT -CCAACATGGTTGACCAACTACCAC -CCAACATGGTTGACCAACCAGAAC -CCAACATGGTTGACCAACGTCTAC -CCAACATGGTTGACCAACACGTAC -CCAACATGGTTGACCAACAGTGAC -CCAACATGGTTGACCAACCTGTAG -CCAACATGGTTGACCAACCCTAAG -CCAACATGGTTGACCAACGTTCAG -CCAACATGGTTGACCAACGCATAG -CCAACATGGTTGACCAACGACAAG -CCAACATGGTTGACCAACAAGCAG -CCAACATGGTTGACCAACCGTCAA -CCAACATGGTTGACCAACGCTGAA -CCAACATGGTTGACCAACAGTACG -CCAACATGGTTGACCAACATCCGA -CCAACATGGTTGACCAACATGGGA -CCAACATGGTTGACCAACGTGCAA -CCAACATGGTTGACCAACGAGGAA -CCAACATGGTTGACCAACCAGGTA -CCAACATGGTTGACCAACGACTCT -CCAACATGGTTGACCAACAGTCCT -CCAACATGGTTGACCAACTAAGCC -CCAACATGGTTGACCAACATAGCC -CCAACATGGTTGACCAACTAACCG -CCAACATGGTTGACCAACATGCCA -CCAACATGGTTGGAGATCGGAAAC -CCAACATGGTTGGAGATCAACACC -CCAACATGGTTGGAGATCATCGAG -CCAACATGGTTGGAGATCCTCCTT -CCAACATGGTTGGAGATCCCTGTT -CCAACATGGTTGGAGATCCGGTTT -CCAACATGGTTGGAGATCGTGGTT -CCAACATGGTTGGAGATCGCCTTT -CCAACATGGTTGGAGATCGGTCTT -CCAACATGGTTGGAGATCACGCTT -CCAACATGGTTGGAGATCAGCGTT -CCAACATGGTTGGAGATCTTCGTC -CCAACATGGTTGGAGATCTCTCTC -CCAACATGGTTGGAGATCTGGATC -CCAACATGGTTGGAGATCCACTTC -CCAACATGGTTGGAGATCGTACTC -CCAACATGGTTGGAGATCGATGTC -CCAACATGGTTGGAGATCACAGTC -CCAACATGGTTGGAGATCTTGCTG -CCAACATGGTTGGAGATCTCCATG -CCAACATGGTTGGAGATCTGTGTG -CCAACATGGTTGGAGATCCTAGTG -CCAACATGGTTGGAGATCCATCTG -CCAACATGGTTGGAGATCGAGTTG -CCAACATGGTTGGAGATCAGACTG -CCAACATGGTTGGAGATCTCGGTA -CCAACATGGTTGGAGATCTGCCTA -CCAACATGGTTGGAGATCCCACTA -CCAACATGGTTGGAGATCGGAGTA -CCAACATGGTTGGAGATCTCGTCT -CCAACATGGTTGGAGATCTGCACT -CCAACATGGTTGGAGATCCTGACT -CCAACATGGTTGGAGATCCAACCT -CCAACATGGTTGGAGATCGCTACT -CCAACATGGTTGGAGATCGGATCT -CCAACATGGTTGGAGATCAAGGCT -CCAACATGGTTGGAGATCTCAACC -CCAACATGGTTGGAGATCTGTTCC -CCAACATGGTTGGAGATCATTCCC -CCAACATGGTTGGAGATCTTCTCG -CCAACATGGTTGGAGATCTAGACG -CCAACATGGTTGGAGATCGTAACG -CCAACATGGTTGGAGATCACTTCG -CCAACATGGTTGGAGATCTACGCA -CCAACATGGTTGGAGATCCTTGCA -CCAACATGGTTGGAGATCCGAACA -CCAACATGGTTGGAGATCCAGTCA -CCAACATGGTTGGAGATCGATCCA -CCAACATGGTTGGAGATCACGACA -CCAACATGGTTGGAGATCAGCTCA -CCAACATGGTTGGAGATCTCACGT -CCAACATGGTTGGAGATCCGTAGT -CCAACATGGTTGGAGATCGTCAGT -CCAACATGGTTGGAGATCGAAGGT -CCAACATGGTTGGAGATCAACCGT -CCAACATGGTTGGAGATCTTGTGC -CCAACATGGTTGGAGATCCTAAGC -CCAACATGGTTGGAGATCACTAGC -CCAACATGGTTGGAGATCAGATGC -CCAACATGGTTGGAGATCTGAAGG -CCAACATGGTTGGAGATCCAATGG -CCAACATGGTTGGAGATCATGAGG -CCAACATGGTTGGAGATCAATGGG -CCAACATGGTTGGAGATCTCCTGA -CCAACATGGTTGGAGATCTAGCGA -CCAACATGGTTGGAGATCCACAGA -CCAACATGGTTGGAGATCGCAAGA -CCAACATGGTTGGAGATCGGTTGA -CCAACATGGTTGGAGATCTCCGAT -CCAACATGGTTGGAGATCTGGCAT -CCAACATGGTTGGAGATCCGAGAT -CCAACATGGTTGGAGATCTACCAC -CCAACATGGTTGGAGATCCAGAAC -CCAACATGGTTGGAGATCGTCTAC -CCAACATGGTTGGAGATCACGTAC -CCAACATGGTTGGAGATCAGTGAC -CCAACATGGTTGGAGATCCTGTAG -CCAACATGGTTGGAGATCCCTAAG -CCAACATGGTTGGAGATCGTTCAG -CCAACATGGTTGGAGATCGCATAG -CCAACATGGTTGGAGATCGACAAG -CCAACATGGTTGGAGATCAAGCAG -CCAACATGGTTGGAGATCCGTCAA -CCAACATGGTTGGAGATCGCTGAA -CCAACATGGTTGGAGATCAGTACG -CCAACATGGTTGGAGATCATCCGA -CCAACATGGTTGGAGATCATGGGA -CCAACATGGTTGGAGATCGTGCAA -CCAACATGGTTGGAGATCGAGGAA -CCAACATGGTTGGAGATCCAGGTA -CCAACATGGTTGGAGATCGACTCT -CCAACATGGTTGGAGATCAGTCCT -CCAACATGGTTGGAGATCTAAGCC -CCAACATGGTTGGAGATCATAGCC -CCAACATGGTTGGAGATCTAACCG -CCAACATGGTTGGAGATCATGCCA -CCAACATGGTTGCTTCTCGGAAAC -CCAACATGGTTGCTTCTCAACACC -CCAACATGGTTGCTTCTCATCGAG -CCAACATGGTTGCTTCTCCTCCTT -CCAACATGGTTGCTTCTCCCTGTT -CCAACATGGTTGCTTCTCCGGTTT -CCAACATGGTTGCTTCTCGTGGTT -CCAACATGGTTGCTTCTCGCCTTT -CCAACATGGTTGCTTCTCGGTCTT -CCAACATGGTTGCTTCTCACGCTT -CCAACATGGTTGCTTCTCAGCGTT -CCAACATGGTTGCTTCTCTTCGTC -CCAACATGGTTGCTTCTCTCTCTC -CCAACATGGTTGCTTCTCTGGATC -CCAACATGGTTGCTTCTCCACTTC -CCAACATGGTTGCTTCTCGTACTC -CCAACATGGTTGCTTCTCGATGTC -CCAACATGGTTGCTTCTCACAGTC -CCAACATGGTTGCTTCTCTTGCTG -CCAACATGGTTGCTTCTCTCCATG -CCAACATGGTTGCTTCTCTGTGTG -CCAACATGGTTGCTTCTCCTAGTG -CCAACATGGTTGCTTCTCCATCTG -CCAACATGGTTGCTTCTCGAGTTG -CCAACATGGTTGCTTCTCAGACTG -CCAACATGGTTGCTTCTCTCGGTA -CCAACATGGTTGCTTCTCTGCCTA -CCAACATGGTTGCTTCTCCCACTA -CCAACATGGTTGCTTCTCGGAGTA -CCAACATGGTTGCTTCTCTCGTCT -CCAACATGGTTGCTTCTCTGCACT -CCAACATGGTTGCTTCTCCTGACT -CCAACATGGTTGCTTCTCCAACCT -CCAACATGGTTGCTTCTCGCTACT -CCAACATGGTTGCTTCTCGGATCT -CCAACATGGTTGCTTCTCAAGGCT -CCAACATGGTTGCTTCTCTCAACC -CCAACATGGTTGCTTCTCTGTTCC -CCAACATGGTTGCTTCTCATTCCC -CCAACATGGTTGCTTCTCTTCTCG -CCAACATGGTTGCTTCTCTAGACG -CCAACATGGTTGCTTCTCGTAACG -CCAACATGGTTGCTTCTCACTTCG -CCAACATGGTTGCTTCTCTACGCA -CCAACATGGTTGCTTCTCCTTGCA -CCAACATGGTTGCTTCTCCGAACA -CCAACATGGTTGCTTCTCCAGTCA -CCAACATGGTTGCTTCTCGATCCA -CCAACATGGTTGCTTCTCACGACA -CCAACATGGTTGCTTCTCAGCTCA -CCAACATGGTTGCTTCTCTCACGT -CCAACATGGTTGCTTCTCCGTAGT -CCAACATGGTTGCTTCTCGTCAGT -CCAACATGGTTGCTTCTCGAAGGT -CCAACATGGTTGCTTCTCAACCGT -CCAACATGGTTGCTTCTCTTGTGC -CCAACATGGTTGCTTCTCCTAAGC -CCAACATGGTTGCTTCTCACTAGC -CCAACATGGTTGCTTCTCAGATGC -CCAACATGGTTGCTTCTCTGAAGG -CCAACATGGTTGCTTCTCCAATGG -CCAACATGGTTGCTTCTCATGAGG -CCAACATGGTTGCTTCTCAATGGG -CCAACATGGTTGCTTCTCTCCTGA -CCAACATGGTTGCTTCTCTAGCGA -CCAACATGGTTGCTTCTCCACAGA -CCAACATGGTTGCTTCTCGCAAGA -CCAACATGGTTGCTTCTCGGTTGA -CCAACATGGTTGCTTCTCTCCGAT -CCAACATGGTTGCTTCTCTGGCAT -CCAACATGGTTGCTTCTCCGAGAT -CCAACATGGTTGCTTCTCTACCAC -CCAACATGGTTGCTTCTCCAGAAC -CCAACATGGTTGCTTCTCGTCTAC -CCAACATGGTTGCTTCTCACGTAC -CCAACATGGTTGCTTCTCAGTGAC -CCAACATGGTTGCTTCTCCTGTAG -CCAACATGGTTGCTTCTCCCTAAG -CCAACATGGTTGCTTCTCGTTCAG -CCAACATGGTTGCTTCTCGCATAG -CCAACATGGTTGCTTCTCGACAAG -CCAACATGGTTGCTTCTCAAGCAG -CCAACATGGTTGCTTCTCCGTCAA -CCAACATGGTTGCTTCTCGCTGAA -CCAACATGGTTGCTTCTCAGTACG -CCAACATGGTTGCTTCTCATCCGA -CCAACATGGTTGCTTCTCATGGGA -CCAACATGGTTGCTTCTCGTGCAA -CCAACATGGTTGCTTCTCGAGGAA -CCAACATGGTTGCTTCTCCAGGTA -CCAACATGGTTGCTTCTCGACTCT -CCAACATGGTTGCTTCTCAGTCCT -CCAACATGGTTGCTTCTCTAAGCC -CCAACATGGTTGCTTCTCATAGCC -CCAACATGGTTGCTTCTCTAACCG -CCAACATGGTTGCTTCTCATGCCA -CCAACATGGTTGGTTCCTGGAAAC -CCAACATGGTTGGTTCCTAACACC -CCAACATGGTTGGTTCCTATCGAG -CCAACATGGTTGGTTCCTCTCCTT -CCAACATGGTTGGTTCCTCCTGTT -CCAACATGGTTGGTTCCTCGGTTT -CCAACATGGTTGGTTCCTGTGGTT -CCAACATGGTTGGTTCCTGCCTTT -CCAACATGGTTGGTTCCTGGTCTT -CCAACATGGTTGGTTCCTACGCTT -CCAACATGGTTGGTTCCTAGCGTT -CCAACATGGTTGGTTCCTTTCGTC -CCAACATGGTTGGTTCCTTCTCTC -CCAACATGGTTGGTTCCTTGGATC -CCAACATGGTTGGTTCCTCACTTC -CCAACATGGTTGGTTCCTGTACTC -CCAACATGGTTGGTTCCTGATGTC -CCAACATGGTTGGTTCCTACAGTC -CCAACATGGTTGGTTCCTTTGCTG -CCAACATGGTTGGTTCCTTCCATG -CCAACATGGTTGGTTCCTTGTGTG -CCAACATGGTTGGTTCCTCTAGTG -CCAACATGGTTGGTTCCTCATCTG -CCAACATGGTTGGTTCCTGAGTTG -CCAACATGGTTGGTTCCTAGACTG -CCAACATGGTTGGTTCCTTCGGTA -CCAACATGGTTGGTTCCTTGCCTA -CCAACATGGTTGGTTCCTCCACTA -CCAACATGGTTGGTTCCTGGAGTA -CCAACATGGTTGGTTCCTTCGTCT -CCAACATGGTTGGTTCCTTGCACT -CCAACATGGTTGGTTCCTCTGACT -CCAACATGGTTGGTTCCTCAACCT -CCAACATGGTTGGTTCCTGCTACT -CCAACATGGTTGGTTCCTGGATCT -CCAACATGGTTGGTTCCTAAGGCT -CCAACATGGTTGGTTCCTTCAACC -CCAACATGGTTGGTTCCTTGTTCC -CCAACATGGTTGGTTCCTATTCCC -CCAACATGGTTGGTTCCTTTCTCG -CCAACATGGTTGGTTCCTTAGACG -CCAACATGGTTGGTTCCTGTAACG -CCAACATGGTTGGTTCCTACTTCG -CCAACATGGTTGGTTCCTTACGCA -CCAACATGGTTGGTTCCTCTTGCA -CCAACATGGTTGGTTCCTCGAACA -CCAACATGGTTGGTTCCTCAGTCA -CCAACATGGTTGGTTCCTGATCCA -CCAACATGGTTGGTTCCTACGACA -CCAACATGGTTGGTTCCTAGCTCA -CCAACATGGTTGGTTCCTTCACGT -CCAACATGGTTGGTTCCTCGTAGT -CCAACATGGTTGGTTCCTGTCAGT -CCAACATGGTTGGTTCCTGAAGGT -CCAACATGGTTGGTTCCTAACCGT -CCAACATGGTTGGTTCCTTTGTGC -CCAACATGGTTGGTTCCTCTAAGC -CCAACATGGTTGGTTCCTACTAGC -CCAACATGGTTGGTTCCTAGATGC -CCAACATGGTTGGTTCCTTGAAGG -CCAACATGGTTGGTTCCTCAATGG -CCAACATGGTTGGTTCCTATGAGG -CCAACATGGTTGGTTCCTAATGGG -CCAACATGGTTGGTTCCTTCCTGA -CCAACATGGTTGGTTCCTTAGCGA -CCAACATGGTTGGTTCCTCACAGA -CCAACATGGTTGGTTCCTGCAAGA -CCAACATGGTTGGTTCCTGGTTGA -CCAACATGGTTGGTTCCTTCCGAT -CCAACATGGTTGGTTCCTTGGCAT -CCAACATGGTTGGTTCCTCGAGAT -CCAACATGGTTGGTTCCTTACCAC -CCAACATGGTTGGTTCCTCAGAAC -CCAACATGGTTGGTTCCTGTCTAC -CCAACATGGTTGGTTCCTACGTAC -CCAACATGGTTGGTTCCTAGTGAC -CCAACATGGTTGGTTCCTCTGTAG -CCAACATGGTTGGTTCCTCCTAAG -CCAACATGGTTGGTTCCTGTTCAG -CCAACATGGTTGGTTCCTGCATAG -CCAACATGGTTGGTTCCTGACAAG -CCAACATGGTTGGTTCCTAAGCAG -CCAACATGGTTGGTTCCTCGTCAA -CCAACATGGTTGGTTCCTGCTGAA -CCAACATGGTTGGTTCCTAGTACG -CCAACATGGTTGGTTCCTATCCGA -CCAACATGGTTGGTTCCTATGGGA -CCAACATGGTTGGTTCCTGTGCAA -CCAACATGGTTGGTTCCTGAGGAA -CCAACATGGTTGGTTCCTCAGGTA -CCAACATGGTTGGTTCCTGACTCT -CCAACATGGTTGGTTCCTAGTCCT -CCAACATGGTTGGTTCCTTAAGCC -CCAACATGGTTGGTTCCTATAGCC -CCAACATGGTTGGTTCCTTAACCG -CCAACATGGTTGGTTCCTATGCCA -CCAACATGGTTGTTTCGGGGAAAC -CCAACATGGTTGTTTCGGAACACC -CCAACATGGTTGTTTCGGATCGAG -CCAACATGGTTGTTTCGGCTCCTT -CCAACATGGTTGTTTCGGCCTGTT -CCAACATGGTTGTTTCGGCGGTTT -CCAACATGGTTGTTTCGGGTGGTT -CCAACATGGTTGTTTCGGGCCTTT -CCAACATGGTTGTTTCGGGGTCTT -CCAACATGGTTGTTTCGGACGCTT -CCAACATGGTTGTTTCGGAGCGTT -CCAACATGGTTGTTTCGGTTCGTC -CCAACATGGTTGTTTCGGTCTCTC -CCAACATGGTTGTTTCGGTGGATC -CCAACATGGTTGTTTCGGCACTTC -CCAACATGGTTGTTTCGGGTACTC -CCAACATGGTTGTTTCGGGATGTC -CCAACATGGTTGTTTCGGACAGTC -CCAACATGGTTGTTTCGGTTGCTG -CCAACATGGTTGTTTCGGTCCATG -CCAACATGGTTGTTTCGGTGTGTG -CCAACATGGTTGTTTCGGCTAGTG -CCAACATGGTTGTTTCGGCATCTG -CCAACATGGTTGTTTCGGGAGTTG -CCAACATGGTTGTTTCGGAGACTG -CCAACATGGTTGTTTCGGTCGGTA -CCAACATGGTTGTTTCGGTGCCTA -CCAACATGGTTGTTTCGGCCACTA -CCAACATGGTTGTTTCGGGGAGTA -CCAACATGGTTGTTTCGGTCGTCT -CCAACATGGTTGTTTCGGTGCACT -CCAACATGGTTGTTTCGGCTGACT -CCAACATGGTTGTTTCGGCAACCT -CCAACATGGTTGTTTCGGGCTACT -CCAACATGGTTGTTTCGGGGATCT -CCAACATGGTTGTTTCGGAAGGCT -CCAACATGGTTGTTTCGGTCAACC -CCAACATGGTTGTTTCGGTGTTCC -CCAACATGGTTGTTTCGGATTCCC -CCAACATGGTTGTTTCGGTTCTCG -CCAACATGGTTGTTTCGGTAGACG -CCAACATGGTTGTTTCGGGTAACG -CCAACATGGTTGTTTCGGACTTCG -CCAACATGGTTGTTTCGGTACGCA -CCAACATGGTTGTTTCGGCTTGCA -CCAACATGGTTGTTTCGGCGAACA -CCAACATGGTTGTTTCGGCAGTCA -CCAACATGGTTGTTTCGGGATCCA -CCAACATGGTTGTTTCGGACGACA -CCAACATGGTTGTTTCGGAGCTCA -CCAACATGGTTGTTTCGGTCACGT -CCAACATGGTTGTTTCGGCGTAGT -CCAACATGGTTGTTTCGGGTCAGT -CCAACATGGTTGTTTCGGGAAGGT -CCAACATGGTTGTTTCGGAACCGT -CCAACATGGTTGTTTCGGTTGTGC -CCAACATGGTTGTTTCGGCTAAGC -CCAACATGGTTGTTTCGGACTAGC -CCAACATGGTTGTTTCGGAGATGC -CCAACATGGTTGTTTCGGTGAAGG -CCAACATGGTTGTTTCGGCAATGG -CCAACATGGTTGTTTCGGATGAGG -CCAACATGGTTGTTTCGGAATGGG -CCAACATGGTTGTTTCGGTCCTGA -CCAACATGGTTGTTTCGGTAGCGA -CCAACATGGTTGTTTCGGCACAGA -CCAACATGGTTGTTTCGGGCAAGA -CCAACATGGTTGTTTCGGGGTTGA -CCAACATGGTTGTTTCGGTCCGAT -CCAACATGGTTGTTTCGGTGGCAT -CCAACATGGTTGTTTCGGCGAGAT -CCAACATGGTTGTTTCGGTACCAC -CCAACATGGTTGTTTCGGCAGAAC -CCAACATGGTTGTTTCGGGTCTAC -CCAACATGGTTGTTTCGGACGTAC -CCAACATGGTTGTTTCGGAGTGAC -CCAACATGGTTGTTTCGGCTGTAG -CCAACATGGTTGTTTCGGCCTAAG -CCAACATGGTTGTTTCGGGTTCAG -CCAACATGGTTGTTTCGGGCATAG -CCAACATGGTTGTTTCGGGACAAG -CCAACATGGTTGTTTCGGAAGCAG -CCAACATGGTTGTTTCGGCGTCAA -CCAACATGGTTGTTTCGGGCTGAA -CCAACATGGTTGTTTCGGAGTACG -CCAACATGGTTGTTTCGGATCCGA -CCAACATGGTTGTTTCGGATGGGA -CCAACATGGTTGTTTCGGGTGCAA -CCAACATGGTTGTTTCGGGAGGAA -CCAACATGGTTGTTTCGGCAGGTA -CCAACATGGTTGTTTCGGGACTCT -CCAACATGGTTGTTTCGGAGTCCT -CCAACATGGTTGTTTCGGTAAGCC -CCAACATGGTTGTTTCGGATAGCC -CCAACATGGTTGTTTCGGTAACCG -CCAACATGGTTGTTTCGGATGCCA -CCAACATGGTTGGTTGTGGGAAAC -CCAACATGGTTGGTTGTGAACACC -CCAACATGGTTGGTTGTGATCGAG -CCAACATGGTTGGTTGTGCTCCTT -CCAACATGGTTGGTTGTGCCTGTT -CCAACATGGTTGGTTGTGCGGTTT -CCAACATGGTTGGTTGTGGTGGTT -CCAACATGGTTGGTTGTGGCCTTT -CCAACATGGTTGGTTGTGGGTCTT -CCAACATGGTTGGTTGTGACGCTT -CCAACATGGTTGGTTGTGAGCGTT -CCAACATGGTTGGTTGTGTTCGTC -CCAACATGGTTGGTTGTGTCTCTC -CCAACATGGTTGGTTGTGTGGATC -CCAACATGGTTGGTTGTGCACTTC -CCAACATGGTTGGTTGTGGTACTC -CCAACATGGTTGGTTGTGGATGTC -CCAACATGGTTGGTTGTGACAGTC -CCAACATGGTTGGTTGTGTTGCTG -CCAACATGGTTGGTTGTGTCCATG -CCAACATGGTTGGTTGTGTGTGTG -CCAACATGGTTGGTTGTGCTAGTG -CCAACATGGTTGGTTGTGCATCTG -CCAACATGGTTGGTTGTGGAGTTG -CCAACATGGTTGGTTGTGAGACTG -CCAACATGGTTGGTTGTGTCGGTA -CCAACATGGTTGGTTGTGTGCCTA -CCAACATGGTTGGTTGTGCCACTA -CCAACATGGTTGGTTGTGGGAGTA -CCAACATGGTTGGTTGTGTCGTCT -CCAACATGGTTGGTTGTGTGCACT -CCAACATGGTTGGTTGTGCTGACT -CCAACATGGTTGGTTGTGCAACCT -CCAACATGGTTGGTTGTGGCTACT -CCAACATGGTTGGTTGTGGGATCT -CCAACATGGTTGGTTGTGAAGGCT -CCAACATGGTTGGTTGTGTCAACC -CCAACATGGTTGGTTGTGTGTTCC -CCAACATGGTTGGTTGTGATTCCC -CCAACATGGTTGGTTGTGTTCTCG -CCAACATGGTTGGTTGTGTAGACG -CCAACATGGTTGGTTGTGGTAACG -CCAACATGGTTGGTTGTGACTTCG -CCAACATGGTTGGTTGTGTACGCA -CCAACATGGTTGGTTGTGCTTGCA -CCAACATGGTTGGTTGTGCGAACA -CCAACATGGTTGGTTGTGCAGTCA -CCAACATGGTTGGTTGTGGATCCA -CCAACATGGTTGGTTGTGACGACA -CCAACATGGTTGGTTGTGAGCTCA -CCAACATGGTTGGTTGTGTCACGT -CCAACATGGTTGGTTGTGCGTAGT -CCAACATGGTTGGTTGTGGTCAGT -CCAACATGGTTGGTTGTGGAAGGT -CCAACATGGTTGGTTGTGAACCGT -CCAACATGGTTGGTTGTGTTGTGC -CCAACATGGTTGGTTGTGCTAAGC -CCAACATGGTTGGTTGTGACTAGC -CCAACATGGTTGGTTGTGAGATGC -CCAACATGGTTGGTTGTGTGAAGG -CCAACATGGTTGGTTGTGCAATGG -CCAACATGGTTGGTTGTGATGAGG -CCAACATGGTTGGTTGTGAATGGG -CCAACATGGTTGGTTGTGTCCTGA -CCAACATGGTTGGTTGTGTAGCGA -CCAACATGGTTGGTTGTGCACAGA -CCAACATGGTTGGTTGTGGCAAGA -CCAACATGGTTGGTTGTGGGTTGA -CCAACATGGTTGGTTGTGTCCGAT -CCAACATGGTTGGTTGTGTGGCAT -CCAACATGGTTGGTTGTGCGAGAT -CCAACATGGTTGGTTGTGTACCAC -CCAACATGGTTGGTTGTGCAGAAC -CCAACATGGTTGGTTGTGGTCTAC -CCAACATGGTTGGTTGTGACGTAC -CCAACATGGTTGGTTGTGAGTGAC -CCAACATGGTTGGTTGTGCTGTAG -CCAACATGGTTGGTTGTGCCTAAG -CCAACATGGTTGGTTGTGGTTCAG -CCAACATGGTTGGTTGTGGCATAG -CCAACATGGTTGGTTGTGGACAAG -CCAACATGGTTGGTTGTGAAGCAG -CCAACATGGTTGGTTGTGCGTCAA -CCAACATGGTTGGTTGTGGCTGAA -CCAACATGGTTGGTTGTGAGTACG -CCAACATGGTTGGTTGTGATCCGA -CCAACATGGTTGGTTGTGATGGGA -CCAACATGGTTGGTTGTGGTGCAA -CCAACATGGTTGGTTGTGGAGGAA -CCAACATGGTTGGTTGTGCAGGTA -CCAACATGGTTGGTTGTGGACTCT -CCAACATGGTTGGTTGTGAGTCCT -CCAACATGGTTGGTTGTGTAAGCC -CCAACATGGTTGGTTGTGATAGCC -CCAACATGGTTGGTTGTGTAACCG -CCAACATGGTTGGTTGTGATGCCA -CCAACATGGTTGTTTGCCGGAAAC -CCAACATGGTTGTTTGCCAACACC -CCAACATGGTTGTTTGCCATCGAG -CCAACATGGTTGTTTGCCCTCCTT -CCAACATGGTTGTTTGCCCCTGTT -CCAACATGGTTGTTTGCCCGGTTT -CCAACATGGTTGTTTGCCGTGGTT -CCAACATGGTTGTTTGCCGCCTTT -CCAACATGGTTGTTTGCCGGTCTT -CCAACATGGTTGTTTGCCACGCTT -CCAACATGGTTGTTTGCCAGCGTT -CCAACATGGTTGTTTGCCTTCGTC -CCAACATGGTTGTTTGCCTCTCTC -CCAACATGGTTGTTTGCCTGGATC -CCAACATGGTTGTTTGCCCACTTC -CCAACATGGTTGTTTGCCGTACTC -CCAACATGGTTGTTTGCCGATGTC -CCAACATGGTTGTTTGCCACAGTC -CCAACATGGTTGTTTGCCTTGCTG -CCAACATGGTTGTTTGCCTCCATG -CCAACATGGTTGTTTGCCTGTGTG -CCAACATGGTTGTTTGCCCTAGTG -CCAACATGGTTGTTTGCCCATCTG -CCAACATGGTTGTTTGCCGAGTTG -CCAACATGGTTGTTTGCCAGACTG -CCAACATGGTTGTTTGCCTCGGTA -CCAACATGGTTGTTTGCCTGCCTA -CCAACATGGTTGTTTGCCCCACTA -CCAACATGGTTGTTTGCCGGAGTA -CCAACATGGTTGTTTGCCTCGTCT -CCAACATGGTTGTTTGCCTGCACT -CCAACATGGTTGTTTGCCCTGACT -CCAACATGGTTGTTTGCCCAACCT -CCAACATGGTTGTTTGCCGCTACT -CCAACATGGTTGTTTGCCGGATCT -CCAACATGGTTGTTTGCCAAGGCT -CCAACATGGTTGTTTGCCTCAACC -CCAACATGGTTGTTTGCCTGTTCC -CCAACATGGTTGTTTGCCATTCCC -CCAACATGGTTGTTTGCCTTCTCG -CCAACATGGTTGTTTGCCTAGACG -CCAACATGGTTGTTTGCCGTAACG -CCAACATGGTTGTTTGCCACTTCG -CCAACATGGTTGTTTGCCTACGCA -CCAACATGGTTGTTTGCCCTTGCA -CCAACATGGTTGTTTGCCCGAACA -CCAACATGGTTGTTTGCCCAGTCA -CCAACATGGTTGTTTGCCGATCCA -CCAACATGGTTGTTTGCCACGACA -CCAACATGGTTGTTTGCCAGCTCA -CCAACATGGTTGTTTGCCTCACGT -CCAACATGGTTGTTTGCCCGTAGT -CCAACATGGTTGTTTGCCGTCAGT -CCAACATGGTTGTTTGCCGAAGGT -CCAACATGGTTGTTTGCCAACCGT -CCAACATGGTTGTTTGCCTTGTGC -CCAACATGGTTGTTTGCCCTAAGC -CCAACATGGTTGTTTGCCACTAGC -CCAACATGGTTGTTTGCCAGATGC -CCAACATGGTTGTTTGCCTGAAGG -CCAACATGGTTGTTTGCCCAATGG -CCAACATGGTTGTTTGCCATGAGG -CCAACATGGTTGTTTGCCAATGGG -CCAACATGGTTGTTTGCCTCCTGA -CCAACATGGTTGTTTGCCTAGCGA -CCAACATGGTTGTTTGCCCACAGA -CCAACATGGTTGTTTGCCGCAAGA -CCAACATGGTTGTTTGCCGGTTGA -CCAACATGGTTGTTTGCCTCCGAT -CCAACATGGTTGTTTGCCTGGCAT -CCAACATGGTTGTTTGCCCGAGAT -CCAACATGGTTGTTTGCCTACCAC -CCAACATGGTTGTTTGCCCAGAAC -CCAACATGGTTGTTTGCCGTCTAC -CCAACATGGTTGTTTGCCACGTAC -CCAACATGGTTGTTTGCCAGTGAC -CCAACATGGTTGTTTGCCCTGTAG -CCAACATGGTTGTTTGCCCCTAAG -CCAACATGGTTGTTTGCCGTTCAG -CCAACATGGTTGTTTGCCGCATAG -CCAACATGGTTGTTTGCCGACAAG -CCAACATGGTTGTTTGCCAAGCAG -CCAACATGGTTGTTTGCCCGTCAA -CCAACATGGTTGTTTGCCGCTGAA -CCAACATGGTTGTTTGCCAGTACG -CCAACATGGTTGTTTGCCATCCGA -CCAACATGGTTGTTTGCCATGGGA -CCAACATGGTTGTTTGCCGTGCAA -CCAACATGGTTGTTTGCCGAGGAA -CCAACATGGTTGTTTGCCCAGGTA -CCAACATGGTTGTTTGCCGACTCT -CCAACATGGTTGTTTGCCAGTCCT -CCAACATGGTTGTTTGCCTAAGCC -CCAACATGGTTGTTTGCCATAGCC -CCAACATGGTTGTTTGCCTAACCG -CCAACATGGTTGTTTGCCATGCCA -CCAACATGGTTGCTTGGTGGAAAC -CCAACATGGTTGCTTGGTAACACC -CCAACATGGTTGCTTGGTATCGAG -CCAACATGGTTGCTTGGTCTCCTT -CCAACATGGTTGCTTGGTCCTGTT -CCAACATGGTTGCTTGGTCGGTTT -CCAACATGGTTGCTTGGTGTGGTT -CCAACATGGTTGCTTGGTGCCTTT -CCAACATGGTTGCTTGGTGGTCTT -CCAACATGGTTGCTTGGTACGCTT -CCAACATGGTTGCTTGGTAGCGTT -CCAACATGGTTGCTTGGTTTCGTC -CCAACATGGTTGCTTGGTTCTCTC -CCAACATGGTTGCTTGGTTGGATC -CCAACATGGTTGCTTGGTCACTTC -CCAACATGGTTGCTTGGTGTACTC -CCAACATGGTTGCTTGGTGATGTC -CCAACATGGTTGCTTGGTACAGTC -CCAACATGGTTGCTTGGTTTGCTG -CCAACATGGTTGCTTGGTTCCATG -CCAACATGGTTGCTTGGTTGTGTG -CCAACATGGTTGCTTGGTCTAGTG -CCAACATGGTTGCTTGGTCATCTG -CCAACATGGTTGCTTGGTGAGTTG -CCAACATGGTTGCTTGGTAGACTG -CCAACATGGTTGCTTGGTTCGGTA -CCAACATGGTTGCTTGGTTGCCTA -CCAACATGGTTGCTTGGTCCACTA -CCAACATGGTTGCTTGGTGGAGTA -CCAACATGGTTGCTTGGTTCGTCT -CCAACATGGTTGCTTGGTTGCACT -CCAACATGGTTGCTTGGTCTGACT -CCAACATGGTTGCTTGGTCAACCT -CCAACATGGTTGCTTGGTGCTACT -CCAACATGGTTGCTTGGTGGATCT -CCAACATGGTTGCTTGGTAAGGCT -CCAACATGGTTGCTTGGTTCAACC -CCAACATGGTTGCTTGGTTGTTCC -CCAACATGGTTGCTTGGTATTCCC -CCAACATGGTTGCTTGGTTTCTCG -CCAACATGGTTGCTTGGTTAGACG -CCAACATGGTTGCTTGGTGTAACG -CCAACATGGTTGCTTGGTACTTCG -CCAACATGGTTGCTTGGTTACGCA -CCAACATGGTTGCTTGGTCTTGCA -CCAACATGGTTGCTTGGTCGAACA -CCAACATGGTTGCTTGGTCAGTCA -CCAACATGGTTGCTTGGTGATCCA -CCAACATGGTTGCTTGGTACGACA -CCAACATGGTTGCTTGGTAGCTCA -CCAACATGGTTGCTTGGTTCACGT -CCAACATGGTTGCTTGGTCGTAGT -CCAACATGGTTGCTTGGTGTCAGT -CCAACATGGTTGCTTGGTGAAGGT -CCAACATGGTTGCTTGGTAACCGT -CCAACATGGTTGCTTGGTTTGTGC -CCAACATGGTTGCTTGGTCTAAGC -CCAACATGGTTGCTTGGTACTAGC -CCAACATGGTTGCTTGGTAGATGC -CCAACATGGTTGCTTGGTTGAAGG -CCAACATGGTTGCTTGGTCAATGG -CCAACATGGTTGCTTGGTATGAGG -CCAACATGGTTGCTTGGTAATGGG -CCAACATGGTTGCTTGGTTCCTGA -CCAACATGGTTGCTTGGTTAGCGA -CCAACATGGTTGCTTGGTCACAGA -CCAACATGGTTGCTTGGTGCAAGA -CCAACATGGTTGCTTGGTGGTTGA -CCAACATGGTTGCTTGGTTCCGAT -CCAACATGGTTGCTTGGTTGGCAT -CCAACATGGTTGCTTGGTCGAGAT -CCAACATGGTTGCTTGGTTACCAC -CCAACATGGTTGCTTGGTCAGAAC -CCAACATGGTTGCTTGGTGTCTAC -CCAACATGGTTGCTTGGTACGTAC -CCAACATGGTTGCTTGGTAGTGAC -CCAACATGGTTGCTTGGTCTGTAG -CCAACATGGTTGCTTGGTCCTAAG -CCAACATGGTTGCTTGGTGTTCAG -CCAACATGGTTGCTTGGTGCATAG -CCAACATGGTTGCTTGGTGACAAG -CCAACATGGTTGCTTGGTAAGCAG -CCAACATGGTTGCTTGGTCGTCAA -CCAACATGGTTGCTTGGTGCTGAA -CCAACATGGTTGCTTGGTAGTACG -CCAACATGGTTGCTTGGTATCCGA -CCAACATGGTTGCTTGGTATGGGA -CCAACATGGTTGCTTGGTGTGCAA -CCAACATGGTTGCTTGGTGAGGAA -CCAACATGGTTGCTTGGTCAGGTA -CCAACATGGTTGCTTGGTGACTCT -CCAACATGGTTGCTTGGTAGTCCT -CCAACATGGTTGCTTGGTTAAGCC -CCAACATGGTTGCTTGGTATAGCC -CCAACATGGTTGCTTGGTTAACCG -CCAACATGGTTGCTTGGTATGCCA -CCAACATGGTTGCTTACGGGAAAC -CCAACATGGTTGCTTACGAACACC -CCAACATGGTTGCTTACGATCGAG -CCAACATGGTTGCTTACGCTCCTT -CCAACATGGTTGCTTACGCCTGTT -CCAACATGGTTGCTTACGCGGTTT -CCAACATGGTTGCTTACGGTGGTT -CCAACATGGTTGCTTACGGCCTTT -CCAACATGGTTGCTTACGGGTCTT -CCAACATGGTTGCTTACGACGCTT -CCAACATGGTTGCTTACGAGCGTT -CCAACATGGTTGCTTACGTTCGTC -CCAACATGGTTGCTTACGTCTCTC -CCAACATGGTTGCTTACGTGGATC -CCAACATGGTTGCTTACGCACTTC -CCAACATGGTTGCTTACGGTACTC -CCAACATGGTTGCTTACGGATGTC -CCAACATGGTTGCTTACGACAGTC -CCAACATGGTTGCTTACGTTGCTG -CCAACATGGTTGCTTACGTCCATG -CCAACATGGTTGCTTACGTGTGTG -CCAACATGGTTGCTTACGCTAGTG -CCAACATGGTTGCTTACGCATCTG -CCAACATGGTTGCTTACGGAGTTG -CCAACATGGTTGCTTACGAGACTG -CCAACATGGTTGCTTACGTCGGTA -CCAACATGGTTGCTTACGTGCCTA -CCAACATGGTTGCTTACGCCACTA -CCAACATGGTTGCTTACGGGAGTA -CCAACATGGTTGCTTACGTCGTCT -CCAACATGGTTGCTTACGTGCACT -CCAACATGGTTGCTTACGCTGACT -CCAACATGGTTGCTTACGCAACCT -CCAACATGGTTGCTTACGGCTACT -CCAACATGGTTGCTTACGGGATCT -CCAACATGGTTGCTTACGAAGGCT -CCAACATGGTTGCTTACGTCAACC -CCAACATGGTTGCTTACGTGTTCC -CCAACATGGTTGCTTACGATTCCC -CCAACATGGTTGCTTACGTTCTCG -CCAACATGGTTGCTTACGTAGACG -CCAACATGGTTGCTTACGGTAACG -CCAACATGGTTGCTTACGACTTCG -CCAACATGGTTGCTTACGTACGCA -CCAACATGGTTGCTTACGCTTGCA -CCAACATGGTTGCTTACGCGAACA -CCAACATGGTTGCTTACGCAGTCA -CCAACATGGTTGCTTACGGATCCA -CCAACATGGTTGCTTACGACGACA -CCAACATGGTTGCTTACGAGCTCA -CCAACATGGTTGCTTACGTCACGT -CCAACATGGTTGCTTACGCGTAGT -CCAACATGGTTGCTTACGGTCAGT -CCAACATGGTTGCTTACGGAAGGT -CCAACATGGTTGCTTACGAACCGT -CCAACATGGTTGCTTACGTTGTGC -CCAACATGGTTGCTTACGCTAAGC -CCAACATGGTTGCTTACGACTAGC -CCAACATGGTTGCTTACGAGATGC -CCAACATGGTTGCTTACGTGAAGG -CCAACATGGTTGCTTACGCAATGG -CCAACATGGTTGCTTACGATGAGG -CCAACATGGTTGCTTACGAATGGG -CCAACATGGTTGCTTACGTCCTGA -CCAACATGGTTGCTTACGTAGCGA -CCAACATGGTTGCTTACGCACAGA -CCAACATGGTTGCTTACGGCAAGA -CCAACATGGTTGCTTACGGGTTGA -CCAACATGGTTGCTTACGTCCGAT -CCAACATGGTTGCTTACGTGGCAT -CCAACATGGTTGCTTACGCGAGAT -CCAACATGGTTGCTTACGTACCAC -CCAACATGGTTGCTTACGCAGAAC -CCAACATGGTTGCTTACGGTCTAC -CCAACATGGTTGCTTACGACGTAC -CCAACATGGTTGCTTACGAGTGAC -CCAACATGGTTGCTTACGCTGTAG -CCAACATGGTTGCTTACGCCTAAG -CCAACATGGTTGCTTACGGTTCAG -CCAACATGGTTGCTTACGGCATAG -CCAACATGGTTGCTTACGGACAAG -CCAACATGGTTGCTTACGAAGCAG -CCAACATGGTTGCTTACGCGTCAA -CCAACATGGTTGCTTACGGCTGAA -CCAACATGGTTGCTTACGAGTACG -CCAACATGGTTGCTTACGATCCGA -CCAACATGGTTGCTTACGATGGGA -CCAACATGGTTGCTTACGGTGCAA -CCAACATGGTTGCTTACGGAGGAA -CCAACATGGTTGCTTACGCAGGTA -CCAACATGGTTGCTTACGGACTCT -CCAACATGGTTGCTTACGAGTCCT -CCAACATGGTTGCTTACGTAAGCC -CCAACATGGTTGCTTACGATAGCC -CCAACATGGTTGCTTACGTAACCG -CCAACATGGTTGCTTACGATGCCA -CCAACATGGTTGGTTAGCGGAAAC -CCAACATGGTTGGTTAGCAACACC -CCAACATGGTTGGTTAGCATCGAG -CCAACATGGTTGGTTAGCCTCCTT -CCAACATGGTTGGTTAGCCCTGTT -CCAACATGGTTGGTTAGCCGGTTT -CCAACATGGTTGGTTAGCGTGGTT -CCAACATGGTTGGTTAGCGCCTTT -CCAACATGGTTGGTTAGCGGTCTT -CCAACATGGTTGGTTAGCACGCTT -CCAACATGGTTGGTTAGCAGCGTT -CCAACATGGTTGGTTAGCTTCGTC -CCAACATGGTTGGTTAGCTCTCTC -CCAACATGGTTGGTTAGCTGGATC -CCAACATGGTTGGTTAGCCACTTC -CCAACATGGTTGGTTAGCGTACTC -CCAACATGGTTGGTTAGCGATGTC -CCAACATGGTTGGTTAGCACAGTC -CCAACATGGTTGGTTAGCTTGCTG -CCAACATGGTTGGTTAGCTCCATG -CCAACATGGTTGGTTAGCTGTGTG -CCAACATGGTTGGTTAGCCTAGTG -CCAACATGGTTGGTTAGCCATCTG -CCAACATGGTTGGTTAGCGAGTTG -CCAACATGGTTGGTTAGCAGACTG -CCAACATGGTTGGTTAGCTCGGTA -CCAACATGGTTGGTTAGCTGCCTA -CCAACATGGTTGGTTAGCCCACTA -CCAACATGGTTGGTTAGCGGAGTA -CCAACATGGTTGGTTAGCTCGTCT -CCAACATGGTTGGTTAGCTGCACT -CCAACATGGTTGGTTAGCCTGACT -CCAACATGGTTGGTTAGCCAACCT -CCAACATGGTTGGTTAGCGCTACT -CCAACATGGTTGGTTAGCGGATCT -CCAACATGGTTGGTTAGCAAGGCT -CCAACATGGTTGGTTAGCTCAACC -CCAACATGGTTGGTTAGCTGTTCC -CCAACATGGTTGGTTAGCATTCCC -CCAACATGGTTGGTTAGCTTCTCG -CCAACATGGTTGGTTAGCTAGACG -CCAACATGGTTGGTTAGCGTAACG -CCAACATGGTTGGTTAGCACTTCG -CCAACATGGTTGGTTAGCTACGCA -CCAACATGGTTGGTTAGCCTTGCA -CCAACATGGTTGGTTAGCCGAACA -CCAACATGGTTGGTTAGCCAGTCA -CCAACATGGTTGGTTAGCGATCCA -CCAACATGGTTGGTTAGCACGACA -CCAACATGGTTGGTTAGCAGCTCA -CCAACATGGTTGGTTAGCTCACGT -CCAACATGGTTGGTTAGCCGTAGT -CCAACATGGTTGGTTAGCGTCAGT -CCAACATGGTTGGTTAGCGAAGGT -CCAACATGGTTGGTTAGCAACCGT -CCAACATGGTTGGTTAGCTTGTGC -CCAACATGGTTGGTTAGCCTAAGC -CCAACATGGTTGGTTAGCACTAGC -CCAACATGGTTGGTTAGCAGATGC -CCAACATGGTTGGTTAGCTGAAGG -CCAACATGGTTGGTTAGCCAATGG -CCAACATGGTTGGTTAGCATGAGG -CCAACATGGTTGGTTAGCAATGGG -CCAACATGGTTGGTTAGCTCCTGA -CCAACATGGTTGGTTAGCTAGCGA -CCAACATGGTTGGTTAGCCACAGA -CCAACATGGTTGGTTAGCGCAAGA -CCAACATGGTTGGTTAGCGGTTGA -CCAACATGGTTGGTTAGCTCCGAT -CCAACATGGTTGGTTAGCTGGCAT -CCAACATGGTTGGTTAGCCGAGAT -CCAACATGGTTGGTTAGCTACCAC -CCAACATGGTTGGTTAGCCAGAAC -CCAACATGGTTGGTTAGCGTCTAC -CCAACATGGTTGGTTAGCACGTAC -CCAACATGGTTGGTTAGCAGTGAC -CCAACATGGTTGGTTAGCCTGTAG -CCAACATGGTTGGTTAGCCCTAAG -CCAACATGGTTGGTTAGCGTTCAG -CCAACATGGTTGGTTAGCGCATAG -CCAACATGGTTGGTTAGCGACAAG -CCAACATGGTTGGTTAGCAAGCAG -CCAACATGGTTGGTTAGCCGTCAA -CCAACATGGTTGGTTAGCGCTGAA -CCAACATGGTTGGTTAGCAGTACG -CCAACATGGTTGGTTAGCATCCGA -CCAACATGGTTGGTTAGCATGGGA -CCAACATGGTTGGTTAGCGTGCAA -CCAACATGGTTGGTTAGCGAGGAA -CCAACATGGTTGGTTAGCCAGGTA -CCAACATGGTTGGTTAGCGACTCT -CCAACATGGTTGGTTAGCAGTCCT -CCAACATGGTTGGTTAGCTAAGCC -CCAACATGGTTGGTTAGCATAGCC -CCAACATGGTTGGTTAGCTAACCG -CCAACATGGTTGGTTAGCATGCCA -CCAACATGGTTGGTCTTCGGAAAC -CCAACATGGTTGGTCTTCAACACC -CCAACATGGTTGGTCTTCATCGAG -CCAACATGGTTGGTCTTCCTCCTT -CCAACATGGTTGGTCTTCCCTGTT -CCAACATGGTTGGTCTTCCGGTTT -CCAACATGGTTGGTCTTCGTGGTT -CCAACATGGTTGGTCTTCGCCTTT -CCAACATGGTTGGTCTTCGGTCTT -CCAACATGGTTGGTCTTCACGCTT -CCAACATGGTTGGTCTTCAGCGTT -CCAACATGGTTGGTCTTCTTCGTC -CCAACATGGTTGGTCTTCTCTCTC -CCAACATGGTTGGTCTTCTGGATC -CCAACATGGTTGGTCTTCCACTTC -CCAACATGGTTGGTCTTCGTACTC -CCAACATGGTTGGTCTTCGATGTC -CCAACATGGTTGGTCTTCACAGTC -CCAACATGGTTGGTCTTCTTGCTG -CCAACATGGTTGGTCTTCTCCATG -CCAACATGGTTGGTCTTCTGTGTG -CCAACATGGTTGGTCTTCCTAGTG -CCAACATGGTTGGTCTTCCATCTG -CCAACATGGTTGGTCTTCGAGTTG -CCAACATGGTTGGTCTTCAGACTG -CCAACATGGTTGGTCTTCTCGGTA -CCAACATGGTTGGTCTTCTGCCTA -CCAACATGGTTGGTCTTCCCACTA -CCAACATGGTTGGTCTTCGGAGTA -CCAACATGGTTGGTCTTCTCGTCT -CCAACATGGTTGGTCTTCTGCACT -CCAACATGGTTGGTCTTCCTGACT -CCAACATGGTTGGTCTTCCAACCT -CCAACATGGTTGGTCTTCGCTACT -CCAACATGGTTGGTCTTCGGATCT -CCAACATGGTTGGTCTTCAAGGCT -CCAACATGGTTGGTCTTCTCAACC -CCAACATGGTTGGTCTTCTGTTCC -CCAACATGGTTGGTCTTCATTCCC -CCAACATGGTTGGTCTTCTTCTCG -CCAACATGGTTGGTCTTCTAGACG -CCAACATGGTTGGTCTTCGTAACG -CCAACATGGTTGGTCTTCACTTCG -CCAACATGGTTGGTCTTCTACGCA -CCAACATGGTTGGTCTTCCTTGCA -CCAACATGGTTGGTCTTCCGAACA -CCAACATGGTTGGTCTTCCAGTCA -CCAACATGGTTGGTCTTCGATCCA -CCAACATGGTTGGTCTTCACGACA -CCAACATGGTTGGTCTTCAGCTCA -CCAACATGGTTGGTCTTCTCACGT -CCAACATGGTTGGTCTTCCGTAGT -CCAACATGGTTGGTCTTCGTCAGT -CCAACATGGTTGGTCTTCGAAGGT -CCAACATGGTTGGTCTTCAACCGT -CCAACATGGTTGGTCTTCTTGTGC -CCAACATGGTTGGTCTTCCTAAGC -CCAACATGGTTGGTCTTCACTAGC -CCAACATGGTTGGTCTTCAGATGC -CCAACATGGTTGGTCTTCTGAAGG -CCAACATGGTTGGTCTTCCAATGG -CCAACATGGTTGGTCTTCATGAGG -CCAACATGGTTGGTCTTCAATGGG -CCAACATGGTTGGTCTTCTCCTGA -CCAACATGGTTGGTCTTCTAGCGA -CCAACATGGTTGGTCTTCCACAGA -CCAACATGGTTGGTCTTCGCAAGA -CCAACATGGTTGGTCTTCGGTTGA -CCAACATGGTTGGTCTTCTCCGAT -CCAACATGGTTGGTCTTCTGGCAT -CCAACATGGTTGGTCTTCCGAGAT -CCAACATGGTTGGTCTTCTACCAC -CCAACATGGTTGGTCTTCCAGAAC -CCAACATGGTTGGTCTTCGTCTAC -CCAACATGGTTGGTCTTCACGTAC -CCAACATGGTTGGTCTTCAGTGAC -CCAACATGGTTGGTCTTCCTGTAG -CCAACATGGTTGGTCTTCCCTAAG -CCAACATGGTTGGTCTTCGTTCAG -CCAACATGGTTGGTCTTCGCATAG -CCAACATGGTTGGTCTTCGACAAG -CCAACATGGTTGGTCTTCAAGCAG -CCAACATGGTTGGTCTTCCGTCAA -CCAACATGGTTGGTCTTCGCTGAA -CCAACATGGTTGGTCTTCAGTACG -CCAACATGGTTGGTCTTCATCCGA -CCAACATGGTTGGTCTTCATGGGA -CCAACATGGTTGGTCTTCGTGCAA -CCAACATGGTTGGTCTTCGAGGAA -CCAACATGGTTGGTCTTCCAGGTA -CCAACATGGTTGGTCTTCGACTCT -CCAACATGGTTGGTCTTCAGTCCT -CCAACATGGTTGGTCTTCTAAGCC -CCAACATGGTTGGTCTTCATAGCC -CCAACATGGTTGGTCTTCTAACCG -CCAACATGGTTGGTCTTCATGCCA -CCAACATGGTTGCTCTCTGGAAAC -CCAACATGGTTGCTCTCTAACACC -CCAACATGGTTGCTCTCTATCGAG -CCAACATGGTTGCTCTCTCTCCTT -CCAACATGGTTGCTCTCTCCTGTT -CCAACATGGTTGCTCTCTCGGTTT -CCAACATGGTTGCTCTCTGTGGTT -CCAACATGGTTGCTCTCTGCCTTT -CCAACATGGTTGCTCTCTGGTCTT -CCAACATGGTTGCTCTCTACGCTT -CCAACATGGTTGCTCTCTAGCGTT -CCAACATGGTTGCTCTCTTTCGTC -CCAACATGGTTGCTCTCTTCTCTC -CCAACATGGTTGCTCTCTTGGATC -CCAACATGGTTGCTCTCTCACTTC -CCAACATGGTTGCTCTCTGTACTC -CCAACATGGTTGCTCTCTGATGTC -CCAACATGGTTGCTCTCTACAGTC -CCAACATGGTTGCTCTCTTTGCTG -CCAACATGGTTGCTCTCTTCCATG -CCAACATGGTTGCTCTCTTGTGTG -CCAACATGGTTGCTCTCTCTAGTG -CCAACATGGTTGCTCTCTCATCTG -CCAACATGGTTGCTCTCTGAGTTG -CCAACATGGTTGCTCTCTAGACTG -CCAACATGGTTGCTCTCTTCGGTA -CCAACATGGTTGCTCTCTTGCCTA -CCAACATGGTTGCTCTCTCCACTA -CCAACATGGTTGCTCTCTGGAGTA -CCAACATGGTTGCTCTCTTCGTCT -CCAACATGGTTGCTCTCTTGCACT -CCAACATGGTTGCTCTCTCTGACT -CCAACATGGTTGCTCTCTCAACCT -CCAACATGGTTGCTCTCTGCTACT -CCAACATGGTTGCTCTCTGGATCT -CCAACATGGTTGCTCTCTAAGGCT -CCAACATGGTTGCTCTCTTCAACC -CCAACATGGTTGCTCTCTTGTTCC -CCAACATGGTTGCTCTCTATTCCC -CCAACATGGTTGCTCTCTTTCTCG -CCAACATGGTTGCTCTCTTAGACG -CCAACATGGTTGCTCTCTGTAACG -CCAACATGGTTGCTCTCTACTTCG -CCAACATGGTTGCTCTCTTACGCA -CCAACATGGTTGCTCTCTCTTGCA -CCAACATGGTTGCTCTCTCGAACA -CCAACATGGTTGCTCTCTCAGTCA -CCAACATGGTTGCTCTCTGATCCA -CCAACATGGTTGCTCTCTACGACA -CCAACATGGTTGCTCTCTAGCTCA -CCAACATGGTTGCTCTCTTCACGT -CCAACATGGTTGCTCTCTCGTAGT -CCAACATGGTTGCTCTCTGTCAGT -CCAACATGGTTGCTCTCTGAAGGT -CCAACATGGTTGCTCTCTAACCGT -CCAACATGGTTGCTCTCTTTGTGC -CCAACATGGTTGCTCTCTCTAAGC -CCAACATGGTTGCTCTCTACTAGC -CCAACATGGTTGCTCTCTAGATGC -CCAACATGGTTGCTCTCTTGAAGG -CCAACATGGTTGCTCTCTCAATGG -CCAACATGGTTGCTCTCTATGAGG -CCAACATGGTTGCTCTCTAATGGG -CCAACATGGTTGCTCTCTTCCTGA -CCAACATGGTTGCTCTCTTAGCGA -CCAACATGGTTGCTCTCTCACAGA -CCAACATGGTTGCTCTCTGCAAGA -CCAACATGGTTGCTCTCTGGTTGA -CCAACATGGTTGCTCTCTTCCGAT -CCAACATGGTTGCTCTCTTGGCAT -CCAACATGGTTGCTCTCTCGAGAT -CCAACATGGTTGCTCTCTTACCAC -CCAACATGGTTGCTCTCTCAGAAC -CCAACATGGTTGCTCTCTGTCTAC -CCAACATGGTTGCTCTCTACGTAC -CCAACATGGTTGCTCTCTAGTGAC -CCAACATGGTTGCTCTCTCTGTAG -CCAACATGGTTGCTCTCTCCTAAG -CCAACATGGTTGCTCTCTGTTCAG -CCAACATGGTTGCTCTCTGCATAG -CCAACATGGTTGCTCTCTGACAAG -CCAACATGGTTGCTCTCTAAGCAG -CCAACATGGTTGCTCTCTCGTCAA -CCAACATGGTTGCTCTCTGCTGAA -CCAACATGGTTGCTCTCTAGTACG -CCAACATGGTTGCTCTCTATCCGA -CCAACATGGTTGCTCTCTATGGGA -CCAACATGGTTGCTCTCTGTGCAA -CCAACATGGTTGCTCTCTGAGGAA -CCAACATGGTTGCTCTCTCAGGTA -CCAACATGGTTGCTCTCTGACTCT -CCAACATGGTTGCTCTCTAGTCCT -CCAACATGGTTGCTCTCTTAAGCC -CCAACATGGTTGCTCTCTATAGCC -CCAACATGGTTGCTCTCTTAACCG -CCAACATGGTTGCTCTCTATGCCA -CCAACATGGTTGATCTGGGGAAAC -CCAACATGGTTGATCTGGAACACC -CCAACATGGTTGATCTGGATCGAG -CCAACATGGTTGATCTGGCTCCTT -CCAACATGGTTGATCTGGCCTGTT -CCAACATGGTTGATCTGGCGGTTT -CCAACATGGTTGATCTGGGTGGTT -CCAACATGGTTGATCTGGGCCTTT -CCAACATGGTTGATCTGGGGTCTT -CCAACATGGTTGATCTGGACGCTT -CCAACATGGTTGATCTGGAGCGTT -CCAACATGGTTGATCTGGTTCGTC -CCAACATGGTTGATCTGGTCTCTC -CCAACATGGTTGATCTGGTGGATC -CCAACATGGTTGATCTGGCACTTC -CCAACATGGTTGATCTGGGTACTC -CCAACATGGTTGATCTGGGATGTC -CCAACATGGTTGATCTGGACAGTC -CCAACATGGTTGATCTGGTTGCTG -CCAACATGGTTGATCTGGTCCATG -CCAACATGGTTGATCTGGTGTGTG -CCAACATGGTTGATCTGGCTAGTG -CCAACATGGTTGATCTGGCATCTG -CCAACATGGTTGATCTGGGAGTTG -CCAACATGGTTGATCTGGAGACTG -CCAACATGGTTGATCTGGTCGGTA -CCAACATGGTTGATCTGGTGCCTA -CCAACATGGTTGATCTGGCCACTA -CCAACATGGTTGATCTGGGGAGTA -CCAACATGGTTGATCTGGTCGTCT -CCAACATGGTTGATCTGGTGCACT -CCAACATGGTTGATCTGGCTGACT -CCAACATGGTTGATCTGGCAACCT -CCAACATGGTTGATCTGGGCTACT -CCAACATGGTTGATCTGGGGATCT -CCAACATGGTTGATCTGGAAGGCT -CCAACATGGTTGATCTGGTCAACC -CCAACATGGTTGATCTGGTGTTCC -CCAACATGGTTGATCTGGATTCCC -CCAACATGGTTGATCTGGTTCTCG -CCAACATGGTTGATCTGGTAGACG -CCAACATGGTTGATCTGGGTAACG -CCAACATGGTTGATCTGGACTTCG -CCAACATGGTTGATCTGGTACGCA -CCAACATGGTTGATCTGGCTTGCA -CCAACATGGTTGATCTGGCGAACA -CCAACATGGTTGATCTGGCAGTCA -CCAACATGGTTGATCTGGGATCCA -CCAACATGGTTGATCTGGACGACA -CCAACATGGTTGATCTGGAGCTCA -CCAACATGGTTGATCTGGTCACGT -CCAACATGGTTGATCTGGCGTAGT -CCAACATGGTTGATCTGGGTCAGT -CCAACATGGTTGATCTGGGAAGGT -CCAACATGGTTGATCTGGAACCGT -CCAACATGGTTGATCTGGTTGTGC -CCAACATGGTTGATCTGGCTAAGC -CCAACATGGTTGATCTGGACTAGC -CCAACATGGTTGATCTGGAGATGC -CCAACATGGTTGATCTGGTGAAGG -CCAACATGGTTGATCTGGCAATGG -CCAACATGGTTGATCTGGATGAGG -CCAACATGGTTGATCTGGAATGGG -CCAACATGGTTGATCTGGTCCTGA -CCAACATGGTTGATCTGGTAGCGA -CCAACATGGTTGATCTGGCACAGA -CCAACATGGTTGATCTGGGCAAGA -CCAACATGGTTGATCTGGGGTTGA -CCAACATGGTTGATCTGGTCCGAT -CCAACATGGTTGATCTGGTGGCAT -CCAACATGGTTGATCTGGCGAGAT -CCAACATGGTTGATCTGGTACCAC -CCAACATGGTTGATCTGGCAGAAC -CCAACATGGTTGATCTGGGTCTAC -CCAACATGGTTGATCTGGACGTAC -CCAACATGGTTGATCTGGAGTGAC -CCAACATGGTTGATCTGGCTGTAG -CCAACATGGTTGATCTGGCCTAAG -CCAACATGGTTGATCTGGGTTCAG -CCAACATGGTTGATCTGGGCATAG -CCAACATGGTTGATCTGGGACAAG -CCAACATGGTTGATCTGGAAGCAG -CCAACATGGTTGATCTGGCGTCAA -CCAACATGGTTGATCTGGGCTGAA -CCAACATGGTTGATCTGGAGTACG -CCAACATGGTTGATCTGGATCCGA -CCAACATGGTTGATCTGGATGGGA -CCAACATGGTTGATCTGGGTGCAA -CCAACATGGTTGATCTGGGAGGAA -CCAACATGGTTGATCTGGCAGGTA -CCAACATGGTTGATCTGGGACTCT -CCAACATGGTTGATCTGGAGTCCT -CCAACATGGTTGATCTGGTAAGCC -CCAACATGGTTGATCTGGATAGCC -CCAACATGGTTGATCTGGTAACCG -CCAACATGGTTGATCTGGATGCCA -CCAACATGGTTGTTCCACGGAAAC -CCAACATGGTTGTTCCACAACACC -CCAACATGGTTGTTCCACATCGAG -CCAACATGGTTGTTCCACCTCCTT -CCAACATGGTTGTTCCACCCTGTT -CCAACATGGTTGTTCCACCGGTTT -CCAACATGGTTGTTCCACGTGGTT -CCAACATGGTTGTTCCACGCCTTT -CCAACATGGTTGTTCCACGGTCTT -CCAACATGGTTGTTCCACACGCTT -CCAACATGGTTGTTCCACAGCGTT -CCAACATGGTTGTTCCACTTCGTC -CCAACATGGTTGTTCCACTCTCTC -CCAACATGGTTGTTCCACTGGATC -CCAACATGGTTGTTCCACCACTTC -CCAACATGGTTGTTCCACGTACTC -CCAACATGGTTGTTCCACGATGTC -CCAACATGGTTGTTCCACACAGTC -CCAACATGGTTGTTCCACTTGCTG -CCAACATGGTTGTTCCACTCCATG -CCAACATGGTTGTTCCACTGTGTG -CCAACATGGTTGTTCCACCTAGTG -CCAACATGGTTGTTCCACCATCTG -CCAACATGGTTGTTCCACGAGTTG -CCAACATGGTTGTTCCACAGACTG -CCAACATGGTTGTTCCACTCGGTA -CCAACATGGTTGTTCCACTGCCTA -CCAACATGGTTGTTCCACCCACTA -CCAACATGGTTGTTCCACGGAGTA -CCAACATGGTTGTTCCACTCGTCT -CCAACATGGTTGTTCCACTGCACT -CCAACATGGTTGTTCCACCTGACT -CCAACATGGTTGTTCCACCAACCT -CCAACATGGTTGTTCCACGCTACT -CCAACATGGTTGTTCCACGGATCT -CCAACATGGTTGTTCCACAAGGCT -CCAACATGGTTGTTCCACTCAACC -CCAACATGGTTGTTCCACTGTTCC -CCAACATGGTTGTTCCACATTCCC -CCAACATGGTTGTTCCACTTCTCG -CCAACATGGTTGTTCCACTAGACG -CCAACATGGTTGTTCCACGTAACG -CCAACATGGTTGTTCCACACTTCG -CCAACATGGTTGTTCCACTACGCA -CCAACATGGTTGTTCCACCTTGCA -CCAACATGGTTGTTCCACCGAACA -CCAACATGGTTGTTCCACCAGTCA -CCAACATGGTTGTTCCACGATCCA -CCAACATGGTTGTTCCACACGACA -CCAACATGGTTGTTCCACAGCTCA -CCAACATGGTTGTTCCACTCACGT -CCAACATGGTTGTTCCACCGTAGT -CCAACATGGTTGTTCCACGTCAGT -CCAACATGGTTGTTCCACGAAGGT -CCAACATGGTTGTTCCACAACCGT -CCAACATGGTTGTTCCACTTGTGC -CCAACATGGTTGTTCCACCTAAGC -CCAACATGGTTGTTCCACACTAGC -CCAACATGGTTGTTCCACAGATGC -CCAACATGGTTGTTCCACTGAAGG -CCAACATGGTTGTTCCACCAATGG -CCAACATGGTTGTTCCACATGAGG -CCAACATGGTTGTTCCACAATGGG -CCAACATGGTTGTTCCACTCCTGA -CCAACATGGTTGTTCCACTAGCGA -CCAACATGGTTGTTCCACCACAGA -CCAACATGGTTGTTCCACGCAAGA -CCAACATGGTTGTTCCACGGTTGA -CCAACATGGTTGTTCCACTCCGAT -CCAACATGGTTGTTCCACTGGCAT -CCAACATGGTTGTTCCACCGAGAT -CCAACATGGTTGTTCCACTACCAC -CCAACATGGTTGTTCCACCAGAAC -CCAACATGGTTGTTCCACGTCTAC -CCAACATGGTTGTTCCACACGTAC -CCAACATGGTTGTTCCACAGTGAC -CCAACATGGTTGTTCCACCTGTAG -CCAACATGGTTGTTCCACCCTAAG -CCAACATGGTTGTTCCACGTTCAG -CCAACATGGTTGTTCCACGCATAG -CCAACATGGTTGTTCCACGACAAG -CCAACATGGTTGTTCCACAAGCAG -CCAACATGGTTGTTCCACCGTCAA -CCAACATGGTTGTTCCACGCTGAA -CCAACATGGTTGTTCCACAGTACG -CCAACATGGTTGTTCCACATCCGA -CCAACATGGTTGTTCCACATGGGA -CCAACATGGTTGTTCCACGTGCAA -CCAACATGGTTGTTCCACGAGGAA -CCAACATGGTTGTTCCACCAGGTA -CCAACATGGTTGTTCCACGACTCT -CCAACATGGTTGTTCCACAGTCCT -CCAACATGGTTGTTCCACTAAGCC -CCAACATGGTTGTTCCACATAGCC -CCAACATGGTTGTTCCACTAACCG -CCAACATGGTTGTTCCACATGCCA -CCAACATGGTTGCTCGTAGGAAAC -CCAACATGGTTGCTCGTAAACACC -CCAACATGGTTGCTCGTAATCGAG -CCAACATGGTTGCTCGTACTCCTT -CCAACATGGTTGCTCGTACCTGTT -CCAACATGGTTGCTCGTACGGTTT -CCAACATGGTTGCTCGTAGTGGTT -CCAACATGGTTGCTCGTAGCCTTT -CCAACATGGTTGCTCGTAGGTCTT -CCAACATGGTTGCTCGTAACGCTT -CCAACATGGTTGCTCGTAAGCGTT -CCAACATGGTTGCTCGTATTCGTC -CCAACATGGTTGCTCGTATCTCTC -CCAACATGGTTGCTCGTATGGATC -CCAACATGGTTGCTCGTACACTTC -CCAACATGGTTGCTCGTAGTACTC -CCAACATGGTTGCTCGTAGATGTC -CCAACATGGTTGCTCGTAACAGTC -CCAACATGGTTGCTCGTATTGCTG -CCAACATGGTTGCTCGTATCCATG -CCAACATGGTTGCTCGTATGTGTG -CCAACATGGTTGCTCGTACTAGTG -CCAACATGGTTGCTCGTACATCTG -CCAACATGGTTGCTCGTAGAGTTG -CCAACATGGTTGCTCGTAAGACTG -CCAACATGGTTGCTCGTATCGGTA -CCAACATGGTTGCTCGTATGCCTA -CCAACATGGTTGCTCGTACCACTA -CCAACATGGTTGCTCGTAGGAGTA -CCAACATGGTTGCTCGTATCGTCT -CCAACATGGTTGCTCGTATGCACT -CCAACATGGTTGCTCGTACTGACT -CCAACATGGTTGCTCGTACAACCT -CCAACATGGTTGCTCGTAGCTACT -CCAACATGGTTGCTCGTAGGATCT -CCAACATGGTTGCTCGTAAAGGCT -CCAACATGGTTGCTCGTATCAACC -CCAACATGGTTGCTCGTATGTTCC -CCAACATGGTTGCTCGTAATTCCC -CCAACATGGTTGCTCGTATTCTCG -CCAACATGGTTGCTCGTATAGACG -CCAACATGGTTGCTCGTAGTAACG -CCAACATGGTTGCTCGTAACTTCG -CCAACATGGTTGCTCGTATACGCA -CCAACATGGTTGCTCGTACTTGCA -CCAACATGGTTGCTCGTACGAACA -CCAACATGGTTGCTCGTACAGTCA -CCAACATGGTTGCTCGTAGATCCA -CCAACATGGTTGCTCGTAACGACA -CCAACATGGTTGCTCGTAAGCTCA -CCAACATGGTTGCTCGTATCACGT -CCAACATGGTTGCTCGTACGTAGT -CCAACATGGTTGCTCGTAGTCAGT -CCAACATGGTTGCTCGTAGAAGGT -CCAACATGGTTGCTCGTAAACCGT -CCAACATGGTTGCTCGTATTGTGC -CCAACATGGTTGCTCGTACTAAGC -CCAACATGGTTGCTCGTAACTAGC -CCAACATGGTTGCTCGTAAGATGC -CCAACATGGTTGCTCGTATGAAGG -CCAACATGGTTGCTCGTACAATGG -CCAACATGGTTGCTCGTAATGAGG -CCAACATGGTTGCTCGTAAATGGG -CCAACATGGTTGCTCGTATCCTGA -CCAACATGGTTGCTCGTATAGCGA -CCAACATGGTTGCTCGTACACAGA -CCAACATGGTTGCTCGTAGCAAGA -CCAACATGGTTGCTCGTAGGTTGA -CCAACATGGTTGCTCGTATCCGAT -CCAACATGGTTGCTCGTATGGCAT -CCAACATGGTTGCTCGTACGAGAT -CCAACATGGTTGCTCGTATACCAC -CCAACATGGTTGCTCGTACAGAAC -CCAACATGGTTGCTCGTAGTCTAC -CCAACATGGTTGCTCGTAACGTAC -CCAACATGGTTGCTCGTAAGTGAC -CCAACATGGTTGCTCGTACTGTAG -CCAACATGGTTGCTCGTACCTAAG -CCAACATGGTTGCTCGTAGTTCAG -CCAACATGGTTGCTCGTAGCATAG -CCAACATGGTTGCTCGTAGACAAG -CCAACATGGTTGCTCGTAAAGCAG -CCAACATGGTTGCTCGTACGTCAA -CCAACATGGTTGCTCGTAGCTGAA -CCAACATGGTTGCTCGTAAGTACG -CCAACATGGTTGCTCGTAATCCGA -CCAACATGGTTGCTCGTAATGGGA -CCAACATGGTTGCTCGTAGTGCAA -CCAACATGGTTGCTCGTAGAGGAA -CCAACATGGTTGCTCGTACAGGTA -CCAACATGGTTGCTCGTAGACTCT -CCAACATGGTTGCTCGTAAGTCCT -CCAACATGGTTGCTCGTATAAGCC -CCAACATGGTTGCTCGTAATAGCC -CCAACATGGTTGCTCGTATAACCG -CCAACATGGTTGCTCGTAATGCCA -CCAACATGGTTGGTCGATGGAAAC -CCAACATGGTTGGTCGATAACACC -CCAACATGGTTGGTCGATATCGAG -CCAACATGGTTGGTCGATCTCCTT -CCAACATGGTTGGTCGATCCTGTT -CCAACATGGTTGGTCGATCGGTTT -CCAACATGGTTGGTCGATGTGGTT -CCAACATGGTTGGTCGATGCCTTT -CCAACATGGTTGGTCGATGGTCTT -CCAACATGGTTGGTCGATACGCTT -CCAACATGGTTGGTCGATAGCGTT -CCAACATGGTTGGTCGATTTCGTC -CCAACATGGTTGGTCGATTCTCTC -CCAACATGGTTGGTCGATTGGATC -CCAACATGGTTGGTCGATCACTTC -CCAACATGGTTGGTCGATGTACTC -CCAACATGGTTGGTCGATGATGTC -CCAACATGGTTGGTCGATACAGTC -CCAACATGGTTGGTCGATTTGCTG -CCAACATGGTTGGTCGATTCCATG -CCAACATGGTTGGTCGATTGTGTG -CCAACATGGTTGGTCGATCTAGTG -CCAACATGGTTGGTCGATCATCTG -CCAACATGGTTGGTCGATGAGTTG -CCAACATGGTTGGTCGATAGACTG -CCAACATGGTTGGTCGATTCGGTA -CCAACATGGTTGGTCGATTGCCTA -CCAACATGGTTGGTCGATCCACTA -CCAACATGGTTGGTCGATGGAGTA -CCAACATGGTTGGTCGATTCGTCT -CCAACATGGTTGGTCGATTGCACT -CCAACATGGTTGGTCGATCTGACT -CCAACATGGTTGGTCGATCAACCT -CCAACATGGTTGGTCGATGCTACT -CCAACATGGTTGGTCGATGGATCT -CCAACATGGTTGGTCGATAAGGCT -CCAACATGGTTGGTCGATTCAACC -CCAACATGGTTGGTCGATTGTTCC -CCAACATGGTTGGTCGATATTCCC -CCAACATGGTTGGTCGATTTCTCG -CCAACATGGTTGGTCGATTAGACG -CCAACATGGTTGGTCGATGTAACG -CCAACATGGTTGGTCGATACTTCG -CCAACATGGTTGGTCGATTACGCA -CCAACATGGTTGGTCGATCTTGCA -CCAACATGGTTGGTCGATCGAACA -CCAACATGGTTGGTCGATCAGTCA -CCAACATGGTTGGTCGATGATCCA -CCAACATGGTTGGTCGATACGACA -CCAACATGGTTGGTCGATAGCTCA -CCAACATGGTTGGTCGATTCACGT -CCAACATGGTTGGTCGATCGTAGT -CCAACATGGTTGGTCGATGTCAGT -CCAACATGGTTGGTCGATGAAGGT -CCAACATGGTTGGTCGATAACCGT -CCAACATGGTTGGTCGATTTGTGC -CCAACATGGTTGGTCGATCTAAGC -CCAACATGGTTGGTCGATACTAGC -CCAACATGGTTGGTCGATAGATGC -CCAACATGGTTGGTCGATTGAAGG -CCAACATGGTTGGTCGATCAATGG -CCAACATGGTTGGTCGATATGAGG -CCAACATGGTTGGTCGATAATGGG -CCAACATGGTTGGTCGATTCCTGA -CCAACATGGTTGGTCGATTAGCGA -CCAACATGGTTGGTCGATCACAGA -CCAACATGGTTGGTCGATGCAAGA -CCAACATGGTTGGTCGATGGTTGA -CCAACATGGTTGGTCGATTCCGAT -CCAACATGGTTGGTCGATTGGCAT -CCAACATGGTTGGTCGATCGAGAT -CCAACATGGTTGGTCGATTACCAC -CCAACATGGTTGGTCGATCAGAAC -CCAACATGGTTGGTCGATGTCTAC -CCAACATGGTTGGTCGATACGTAC -CCAACATGGTTGGTCGATAGTGAC -CCAACATGGTTGGTCGATCTGTAG -CCAACATGGTTGGTCGATCCTAAG -CCAACATGGTTGGTCGATGTTCAG -CCAACATGGTTGGTCGATGCATAG -CCAACATGGTTGGTCGATGACAAG -CCAACATGGTTGGTCGATAAGCAG -CCAACATGGTTGGTCGATCGTCAA -CCAACATGGTTGGTCGATGCTGAA -CCAACATGGTTGGTCGATAGTACG -CCAACATGGTTGGTCGATATCCGA -CCAACATGGTTGGTCGATATGGGA -CCAACATGGTTGGTCGATGTGCAA -CCAACATGGTTGGTCGATGAGGAA -CCAACATGGTTGGTCGATCAGGTA -CCAACATGGTTGGTCGATGACTCT -CCAACATGGTTGGTCGATAGTCCT -CCAACATGGTTGGTCGATTAAGCC -CCAACATGGTTGGTCGATATAGCC -CCAACATGGTTGGTCGATTAACCG -CCAACATGGTTGGTCGATATGCCA -CCAACATGGTTGGTCACAGGAAAC -CCAACATGGTTGGTCACAAACACC -CCAACATGGTTGGTCACAATCGAG -CCAACATGGTTGGTCACACTCCTT -CCAACATGGTTGGTCACACCTGTT -CCAACATGGTTGGTCACACGGTTT -CCAACATGGTTGGTCACAGTGGTT -CCAACATGGTTGGTCACAGCCTTT -CCAACATGGTTGGTCACAGGTCTT -CCAACATGGTTGGTCACAACGCTT -CCAACATGGTTGGTCACAAGCGTT -CCAACATGGTTGGTCACATTCGTC -CCAACATGGTTGGTCACATCTCTC -CCAACATGGTTGGTCACATGGATC -CCAACATGGTTGGTCACACACTTC -CCAACATGGTTGGTCACAGTACTC -CCAACATGGTTGGTCACAGATGTC -CCAACATGGTTGGTCACAACAGTC -CCAACATGGTTGGTCACATTGCTG -CCAACATGGTTGGTCACATCCATG -CCAACATGGTTGGTCACATGTGTG -CCAACATGGTTGGTCACACTAGTG -CCAACATGGTTGGTCACACATCTG -CCAACATGGTTGGTCACAGAGTTG -CCAACATGGTTGGTCACAAGACTG -CCAACATGGTTGGTCACATCGGTA -CCAACATGGTTGGTCACATGCCTA -CCAACATGGTTGGTCACACCACTA -CCAACATGGTTGGTCACAGGAGTA -CCAACATGGTTGGTCACATCGTCT -CCAACATGGTTGGTCACATGCACT -CCAACATGGTTGGTCACACTGACT -CCAACATGGTTGGTCACACAACCT -CCAACATGGTTGGTCACAGCTACT -CCAACATGGTTGGTCACAGGATCT -CCAACATGGTTGGTCACAAAGGCT -CCAACATGGTTGGTCACATCAACC -CCAACATGGTTGGTCACATGTTCC -CCAACATGGTTGGTCACAATTCCC -CCAACATGGTTGGTCACATTCTCG -CCAACATGGTTGGTCACATAGACG -CCAACATGGTTGGTCACAGTAACG -CCAACATGGTTGGTCACAACTTCG -CCAACATGGTTGGTCACATACGCA -CCAACATGGTTGGTCACACTTGCA -CCAACATGGTTGGTCACACGAACA -CCAACATGGTTGGTCACACAGTCA -CCAACATGGTTGGTCACAGATCCA -CCAACATGGTTGGTCACAACGACA -CCAACATGGTTGGTCACAAGCTCA -CCAACATGGTTGGTCACATCACGT -CCAACATGGTTGGTCACACGTAGT -CCAACATGGTTGGTCACAGTCAGT -CCAACATGGTTGGTCACAGAAGGT -CCAACATGGTTGGTCACAAACCGT -CCAACATGGTTGGTCACATTGTGC -CCAACATGGTTGGTCACACTAAGC -CCAACATGGTTGGTCACAACTAGC -CCAACATGGTTGGTCACAAGATGC -CCAACATGGTTGGTCACATGAAGG -CCAACATGGTTGGTCACACAATGG -CCAACATGGTTGGTCACAATGAGG -CCAACATGGTTGGTCACAAATGGG -CCAACATGGTTGGTCACATCCTGA -CCAACATGGTTGGTCACATAGCGA -CCAACATGGTTGGTCACACACAGA -CCAACATGGTTGGTCACAGCAAGA -CCAACATGGTTGGTCACAGGTTGA -CCAACATGGTTGGTCACATCCGAT -CCAACATGGTTGGTCACATGGCAT -CCAACATGGTTGGTCACACGAGAT -CCAACATGGTTGGTCACATACCAC -CCAACATGGTTGGTCACACAGAAC -CCAACATGGTTGGTCACAGTCTAC -CCAACATGGTTGGTCACAACGTAC -CCAACATGGTTGGTCACAAGTGAC -CCAACATGGTTGGTCACACTGTAG -CCAACATGGTTGGTCACACCTAAG -CCAACATGGTTGGTCACAGTTCAG -CCAACATGGTTGGTCACAGCATAG -CCAACATGGTTGGTCACAGACAAG -CCAACATGGTTGGTCACAAAGCAG -CCAACATGGTTGGTCACACGTCAA -CCAACATGGTTGGTCACAGCTGAA -CCAACATGGTTGGTCACAAGTACG -CCAACATGGTTGGTCACAATCCGA -CCAACATGGTTGGTCACAATGGGA -CCAACATGGTTGGTCACAGTGCAA -CCAACATGGTTGGTCACAGAGGAA -CCAACATGGTTGGTCACACAGGTA -CCAACATGGTTGGTCACAGACTCT -CCAACATGGTTGGTCACAAGTCCT -CCAACATGGTTGGTCACATAAGCC -CCAACATGGTTGGTCACAATAGCC -CCAACATGGTTGGTCACATAACCG -CCAACATGGTTGGTCACAATGCCA -CCAACATGGTTGCTGTTGGGAAAC -CCAACATGGTTGCTGTTGAACACC -CCAACATGGTTGCTGTTGATCGAG -CCAACATGGTTGCTGTTGCTCCTT -CCAACATGGTTGCTGTTGCCTGTT -CCAACATGGTTGCTGTTGCGGTTT -CCAACATGGTTGCTGTTGGTGGTT -CCAACATGGTTGCTGTTGGCCTTT -CCAACATGGTTGCTGTTGGGTCTT -CCAACATGGTTGCTGTTGACGCTT -CCAACATGGTTGCTGTTGAGCGTT -CCAACATGGTTGCTGTTGTTCGTC -CCAACATGGTTGCTGTTGTCTCTC -CCAACATGGTTGCTGTTGTGGATC -CCAACATGGTTGCTGTTGCACTTC -CCAACATGGTTGCTGTTGGTACTC -CCAACATGGTTGCTGTTGGATGTC -CCAACATGGTTGCTGTTGACAGTC -CCAACATGGTTGCTGTTGTTGCTG -CCAACATGGTTGCTGTTGTCCATG -CCAACATGGTTGCTGTTGTGTGTG -CCAACATGGTTGCTGTTGCTAGTG -CCAACATGGTTGCTGTTGCATCTG -CCAACATGGTTGCTGTTGGAGTTG -CCAACATGGTTGCTGTTGAGACTG -CCAACATGGTTGCTGTTGTCGGTA -CCAACATGGTTGCTGTTGTGCCTA -CCAACATGGTTGCTGTTGCCACTA -CCAACATGGTTGCTGTTGGGAGTA -CCAACATGGTTGCTGTTGTCGTCT -CCAACATGGTTGCTGTTGTGCACT -CCAACATGGTTGCTGTTGCTGACT -CCAACATGGTTGCTGTTGCAACCT -CCAACATGGTTGCTGTTGGCTACT -CCAACATGGTTGCTGTTGGGATCT -CCAACATGGTTGCTGTTGAAGGCT -CCAACATGGTTGCTGTTGTCAACC -CCAACATGGTTGCTGTTGTGTTCC -CCAACATGGTTGCTGTTGATTCCC -CCAACATGGTTGCTGTTGTTCTCG -CCAACATGGTTGCTGTTGTAGACG -CCAACATGGTTGCTGTTGGTAACG -CCAACATGGTTGCTGTTGACTTCG -CCAACATGGTTGCTGTTGTACGCA -CCAACATGGTTGCTGTTGCTTGCA -CCAACATGGTTGCTGTTGCGAACA -CCAACATGGTTGCTGTTGCAGTCA -CCAACATGGTTGCTGTTGGATCCA -CCAACATGGTTGCTGTTGACGACA -CCAACATGGTTGCTGTTGAGCTCA -CCAACATGGTTGCTGTTGTCACGT -CCAACATGGTTGCTGTTGCGTAGT -CCAACATGGTTGCTGTTGGTCAGT -CCAACATGGTTGCTGTTGGAAGGT -CCAACATGGTTGCTGTTGAACCGT -CCAACATGGTTGCTGTTGTTGTGC -CCAACATGGTTGCTGTTGCTAAGC -CCAACATGGTTGCTGTTGACTAGC -CCAACATGGTTGCTGTTGAGATGC -CCAACATGGTTGCTGTTGTGAAGG -CCAACATGGTTGCTGTTGCAATGG -CCAACATGGTTGCTGTTGATGAGG -CCAACATGGTTGCTGTTGAATGGG -CCAACATGGTTGCTGTTGTCCTGA -CCAACATGGTTGCTGTTGTAGCGA -CCAACATGGTTGCTGTTGCACAGA -CCAACATGGTTGCTGTTGGCAAGA -CCAACATGGTTGCTGTTGGGTTGA -CCAACATGGTTGCTGTTGTCCGAT -CCAACATGGTTGCTGTTGTGGCAT -CCAACATGGTTGCTGTTGCGAGAT -CCAACATGGTTGCTGTTGTACCAC -CCAACATGGTTGCTGTTGCAGAAC -CCAACATGGTTGCTGTTGGTCTAC -CCAACATGGTTGCTGTTGACGTAC -CCAACATGGTTGCTGTTGAGTGAC -CCAACATGGTTGCTGTTGCTGTAG -CCAACATGGTTGCTGTTGCCTAAG -CCAACATGGTTGCTGTTGGTTCAG -CCAACATGGTTGCTGTTGGCATAG -CCAACATGGTTGCTGTTGGACAAG -CCAACATGGTTGCTGTTGAAGCAG -CCAACATGGTTGCTGTTGCGTCAA -CCAACATGGTTGCTGTTGGCTGAA -CCAACATGGTTGCTGTTGAGTACG -CCAACATGGTTGCTGTTGATCCGA -CCAACATGGTTGCTGTTGATGGGA -CCAACATGGTTGCTGTTGGTGCAA -CCAACATGGTTGCTGTTGGAGGAA -CCAACATGGTTGCTGTTGCAGGTA -CCAACATGGTTGCTGTTGGACTCT -CCAACATGGTTGCTGTTGAGTCCT -CCAACATGGTTGCTGTTGTAAGCC -CCAACATGGTTGCTGTTGATAGCC -CCAACATGGTTGCTGTTGTAACCG -CCAACATGGTTGCTGTTGATGCCA -CCAACATGGTTGATGTCCGGAAAC -CCAACATGGTTGATGTCCAACACC -CCAACATGGTTGATGTCCATCGAG -CCAACATGGTTGATGTCCCTCCTT -CCAACATGGTTGATGTCCCCTGTT -CCAACATGGTTGATGTCCCGGTTT -CCAACATGGTTGATGTCCGTGGTT -CCAACATGGTTGATGTCCGCCTTT -CCAACATGGTTGATGTCCGGTCTT -CCAACATGGTTGATGTCCACGCTT -CCAACATGGTTGATGTCCAGCGTT -CCAACATGGTTGATGTCCTTCGTC -CCAACATGGTTGATGTCCTCTCTC -CCAACATGGTTGATGTCCTGGATC -CCAACATGGTTGATGTCCCACTTC -CCAACATGGTTGATGTCCGTACTC -CCAACATGGTTGATGTCCGATGTC -CCAACATGGTTGATGTCCACAGTC -CCAACATGGTTGATGTCCTTGCTG -CCAACATGGTTGATGTCCTCCATG -CCAACATGGTTGATGTCCTGTGTG -CCAACATGGTTGATGTCCCTAGTG -CCAACATGGTTGATGTCCCATCTG -CCAACATGGTTGATGTCCGAGTTG -CCAACATGGTTGATGTCCAGACTG -CCAACATGGTTGATGTCCTCGGTA -CCAACATGGTTGATGTCCTGCCTA -CCAACATGGTTGATGTCCCCACTA -CCAACATGGTTGATGTCCGGAGTA -CCAACATGGTTGATGTCCTCGTCT -CCAACATGGTTGATGTCCTGCACT -CCAACATGGTTGATGTCCCTGACT -CCAACATGGTTGATGTCCCAACCT -CCAACATGGTTGATGTCCGCTACT -CCAACATGGTTGATGTCCGGATCT -CCAACATGGTTGATGTCCAAGGCT -CCAACATGGTTGATGTCCTCAACC -CCAACATGGTTGATGTCCTGTTCC -CCAACATGGTTGATGTCCATTCCC -CCAACATGGTTGATGTCCTTCTCG -CCAACATGGTTGATGTCCTAGACG -CCAACATGGTTGATGTCCGTAACG -CCAACATGGTTGATGTCCACTTCG -CCAACATGGTTGATGTCCTACGCA -CCAACATGGTTGATGTCCCTTGCA -CCAACATGGTTGATGTCCCGAACA -CCAACATGGTTGATGTCCCAGTCA -CCAACATGGTTGATGTCCGATCCA -CCAACATGGTTGATGTCCACGACA -CCAACATGGTTGATGTCCAGCTCA -CCAACATGGTTGATGTCCTCACGT -CCAACATGGTTGATGTCCCGTAGT -CCAACATGGTTGATGTCCGTCAGT -CCAACATGGTTGATGTCCGAAGGT -CCAACATGGTTGATGTCCAACCGT -CCAACATGGTTGATGTCCTTGTGC -CCAACATGGTTGATGTCCCTAAGC -CCAACATGGTTGATGTCCACTAGC -CCAACATGGTTGATGTCCAGATGC -CCAACATGGTTGATGTCCTGAAGG -CCAACATGGTTGATGTCCCAATGG -CCAACATGGTTGATGTCCATGAGG -CCAACATGGTTGATGTCCAATGGG -CCAACATGGTTGATGTCCTCCTGA -CCAACATGGTTGATGTCCTAGCGA -CCAACATGGTTGATGTCCCACAGA -CCAACATGGTTGATGTCCGCAAGA -CCAACATGGTTGATGTCCGGTTGA -CCAACATGGTTGATGTCCTCCGAT -CCAACATGGTTGATGTCCTGGCAT -CCAACATGGTTGATGTCCCGAGAT -CCAACATGGTTGATGTCCTACCAC -CCAACATGGTTGATGTCCCAGAAC -CCAACATGGTTGATGTCCGTCTAC -CCAACATGGTTGATGTCCACGTAC -CCAACATGGTTGATGTCCAGTGAC -CCAACATGGTTGATGTCCCTGTAG -CCAACATGGTTGATGTCCCCTAAG -CCAACATGGTTGATGTCCGTTCAG -CCAACATGGTTGATGTCCGCATAG -CCAACATGGTTGATGTCCGACAAG -CCAACATGGTTGATGTCCAAGCAG -CCAACATGGTTGATGTCCCGTCAA -CCAACATGGTTGATGTCCGCTGAA -CCAACATGGTTGATGTCCAGTACG -CCAACATGGTTGATGTCCATCCGA -CCAACATGGTTGATGTCCATGGGA -CCAACATGGTTGATGTCCGTGCAA -CCAACATGGTTGATGTCCGAGGAA -CCAACATGGTTGATGTCCCAGGTA -CCAACATGGTTGATGTCCGACTCT -CCAACATGGTTGATGTCCAGTCCT -CCAACATGGTTGATGTCCTAAGCC -CCAACATGGTTGATGTCCATAGCC -CCAACATGGTTGATGTCCTAACCG -CCAACATGGTTGATGTCCATGCCA -CCAACATGGTTGGTGTGTGGAAAC -CCAACATGGTTGGTGTGTAACACC -CCAACATGGTTGGTGTGTATCGAG -CCAACATGGTTGGTGTGTCTCCTT -CCAACATGGTTGGTGTGTCCTGTT -CCAACATGGTTGGTGTGTCGGTTT -CCAACATGGTTGGTGTGTGTGGTT -CCAACATGGTTGGTGTGTGCCTTT -CCAACATGGTTGGTGTGTGGTCTT -CCAACATGGTTGGTGTGTACGCTT -CCAACATGGTTGGTGTGTAGCGTT -CCAACATGGTTGGTGTGTTTCGTC -CCAACATGGTTGGTGTGTTCTCTC -CCAACATGGTTGGTGTGTTGGATC -CCAACATGGTTGGTGTGTCACTTC -CCAACATGGTTGGTGTGTGTACTC -CCAACATGGTTGGTGTGTGATGTC -CCAACATGGTTGGTGTGTACAGTC -CCAACATGGTTGGTGTGTTTGCTG -CCAACATGGTTGGTGTGTTCCATG -CCAACATGGTTGGTGTGTTGTGTG -CCAACATGGTTGGTGTGTCTAGTG -CCAACATGGTTGGTGTGTCATCTG -CCAACATGGTTGGTGTGTGAGTTG -CCAACATGGTTGGTGTGTAGACTG -CCAACATGGTTGGTGTGTTCGGTA -CCAACATGGTTGGTGTGTTGCCTA -CCAACATGGTTGGTGTGTCCACTA -CCAACATGGTTGGTGTGTGGAGTA -CCAACATGGTTGGTGTGTTCGTCT -CCAACATGGTTGGTGTGTTGCACT -CCAACATGGTTGGTGTGTCTGACT -CCAACATGGTTGGTGTGTCAACCT -CCAACATGGTTGGTGTGTGCTACT -CCAACATGGTTGGTGTGTGGATCT -CCAACATGGTTGGTGTGTAAGGCT -CCAACATGGTTGGTGTGTTCAACC -CCAACATGGTTGGTGTGTTGTTCC -CCAACATGGTTGGTGTGTATTCCC -CCAACATGGTTGGTGTGTTTCTCG -CCAACATGGTTGGTGTGTTAGACG -CCAACATGGTTGGTGTGTGTAACG -CCAACATGGTTGGTGTGTACTTCG -CCAACATGGTTGGTGTGTTACGCA -CCAACATGGTTGGTGTGTCTTGCA -CCAACATGGTTGGTGTGTCGAACA -CCAACATGGTTGGTGTGTCAGTCA -CCAACATGGTTGGTGTGTGATCCA -CCAACATGGTTGGTGTGTACGACA -CCAACATGGTTGGTGTGTAGCTCA -CCAACATGGTTGGTGTGTTCACGT -CCAACATGGTTGGTGTGTCGTAGT -CCAACATGGTTGGTGTGTGTCAGT -CCAACATGGTTGGTGTGTGAAGGT -CCAACATGGTTGGTGTGTAACCGT -CCAACATGGTTGGTGTGTTTGTGC -CCAACATGGTTGGTGTGTCTAAGC -CCAACATGGTTGGTGTGTACTAGC -CCAACATGGTTGGTGTGTAGATGC -CCAACATGGTTGGTGTGTTGAAGG -CCAACATGGTTGGTGTGTCAATGG -CCAACATGGTTGGTGTGTATGAGG -CCAACATGGTTGGTGTGTAATGGG -CCAACATGGTTGGTGTGTTCCTGA -CCAACATGGTTGGTGTGTTAGCGA -CCAACATGGTTGGTGTGTCACAGA -CCAACATGGTTGGTGTGTGCAAGA -CCAACATGGTTGGTGTGTGGTTGA -CCAACATGGTTGGTGTGTTCCGAT -CCAACATGGTTGGTGTGTTGGCAT -CCAACATGGTTGGTGTGTCGAGAT -CCAACATGGTTGGTGTGTTACCAC -CCAACATGGTTGGTGTGTCAGAAC -CCAACATGGTTGGTGTGTGTCTAC -CCAACATGGTTGGTGTGTACGTAC -CCAACATGGTTGGTGTGTAGTGAC -CCAACATGGTTGGTGTGTCTGTAG -CCAACATGGTTGGTGTGTCCTAAG -CCAACATGGTTGGTGTGTGTTCAG -CCAACATGGTTGGTGTGTGCATAG -CCAACATGGTTGGTGTGTGACAAG -CCAACATGGTTGGTGTGTAAGCAG -CCAACATGGTTGGTGTGTCGTCAA -CCAACATGGTTGGTGTGTGCTGAA -CCAACATGGTTGGTGTGTAGTACG -CCAACATGGTTGGTGTGTATCCGA -CCAACATGGTTGGTGTGTATGGGA -CCAACATGGTTGGTGTGTGTGCAA -CCAACATGGTTGGTGTGTGAGGAA -CCAACATGGTTGGTGTGTCAGGTA -CCAACATGGTTGGTGTGTGACTCT -CCAACATGGTTGGTGTGTAGTCCT -CCAACATGGTTGGTGTGTTAAGCC -CCAACATGGTTGGTGTGTATAGCC -CCAACATGGTTGGTGTGTTAACCG -CCAACATGGTTGGTGTGTATGCCA -CCAACATGGTTGGTGCTAGGAAAC -CCAACATGGTTGGTGCTAAACACC -CCAACATGGTTGGTGCTAATCGAG -CCAACATGGTTGGTGCTACTCCTT -CCAACATGGTTGGTGCTACCTGTT -CCAACATGGTTGGTGCTACGGTTT -CCAACATGGTTGGTGCTAGTGGTT -CCAACATGGTTGGTGCTAGCCTTT -CCAACATGGTTGGTGCTAGGTCTT -CCAACATGGTTGGTGCTAACGCTT -CCAACATGGTTGGTGCTAAGCGTT -CCAACATGGTTGGTGCTATTCGTC -CCAACATGGTTGGTGCTATCTCTC -CCAACATGGTTGGTGCTATGGATC -CCAACATGGTTGGTGCTACACTTC -CCAACATGGTTGGTGCTAGTACTC -CCAACATGGTTGGTGCTAGATGTC -CCAACATGGTTGGTGCTAACAGTC -CCAACATGGTTGGTGCTATTGCTG -CCAACATGGTTGGTGCTATCCATG -CCAACATGGTTGGTGCTATGTGTG -CCAACATGGTTGGTGCTACTAGTG -CCAACATGGTTGGTGCTACATCTG -CCAACATGGTTGGTGCTAGAGTTG -CCAACATGGTTGGTGCTAAGACTG -CCAACATGGTTGGTGCTATCGGTA -CCAACATGGTTGGTGCTATGCCTA -CCAACATGGTTGGTGCTACCACTA -CCAACATGGTTGGTGCTAGGAGTA -CCAACATGGTTGGTGCTATCGTCT -CCAACATGGTTGGTGCTATGCACT -CCAACATGGTTGGTGCTACTGACT -CCAACATGGTTGGTGCTACAACCT -CCAACATGGTTGGTGCTAGCTACT -CCAACATGGTTGGTGCTAGGATCT -CCAACATGGTTGGTGCTAAAGGCT -CCAACATGGTTGGTGCTATCAACC -CCAACATGGTTGGTGCTATGTTCC -CCAACATGGTTGGTGCTAATTCCC -CCAACATGGTTGGTGCTATTCTCG -CCAACATGGTTGGTGCTATAGACG -CCAACATGGTTGGTGCTAGTAACG -CCAACATGGTTGGTGCTAACTTCG -CCAACATGGTTGGTGCTATACGCA -CCAACATGGTTGGTGCTACTTGCA -CCAACATGGTTGGTGCTACGAACA -CCAACATGGTTGGTGCTACAGTCA -CCAACATGGTTGGTGCTAGATCCA -CCAACATGGTTGGTGCTAACGACA -CCAACATGGTTGGTGCTAAGCTCA -CCAACATGGTTGGTGCTATCACGT -CCAACATGGTTGGTGCTACGTAGT -CCAACATGGTTGGTGCTAGTCAGT -CCAACATGGTTGGTGCTAGAAGGT -CCAACATGGTTGGTGCTAAACCGT -CCAACATGGTTGGTGCTATTGTGC -CCAACATGGTTGGTGCTACTAAGC -CCAACATGGTTGGTGCTAACTAGC -CCAACATGGTTGGTGCTAAGATGC -CCAACATGGTTGGTGCTATGAAGG -CCAACATGGTTGGTGCTACAATGG -CCAACATGGTTGGTGCTAATGAGG -CCAACATGGTTGGTGCTAAATGGG -CCAACATGGTTGGTGCTATCCTGA -CCAACATGGTTGGTGCTATAGCGA -CCAACATGGTTGGTGCTACACAGA -CCAACATGGTTGGTGCTAGCAAGA -CCAACATGGTTGGTGCTAGGTTGA -CCAACATGGTTGGTGCTATCCGAT -CCAACATGGTTGGTGCTATGGCAT -CCAACATGGTTGGTGCTACGAGAT -CCAACATGGTTGGTGCTATACCAC -CCAACATGGTTGGTGCTACAGAAC -CCAACATGGTTGGTGCTAGTCTAC -CCAACATGGTTGGTGCTAACGTAC -CCAACATGGTTGGTGCTAAGTGAC -CCAACATGGTTGGTGCTACTGTAG -CCAACATGGTTGGTGCTACCTAAG -CCAACATGGTTGGTGCTAGTTCAG -CCAACATGGTTGGTGCTAGCATAG -CCAACATGGTTGGTGCTAGACAAG -CCAACATGGTTGGTGCTAAAGCAG -CCAACATGGTTGGTGCTACGTCAA -CCAACATGGTTGGTGCTAGCTGAA -CCAACATGGTTGGTGCTAAGTACG -CCAACATGGTTGGTGCTAATCCGA -CCAACATGGTTGGTGCTAATGGGA -CCAACATGGTTGGTGCTAGTGCAA -CCAACATGGTTGGTGCTAGAGGAA -CCAACATGGTTGGTGCTACAGGTA -CCAACATGGTTGGTGCTAGACTCT -CCAACATGGTTGGTGCTAAGTCCT -CCAACATGGTTGGTGCTATAAGCC -CCAACATGGTTGGTGCTAATAGCC -CCAACATGGTTGGTGCTATAACCG -CCAACATGGTTGGTGCTAATGCCA -CCAACATGGTTGCTGCATGGAAAC -CCAACATGGTTGCTGCATAACACC -CCAACATGGTTGCTGCATATCGAG -CCAACATGGTTGCTGCATCTCCTT -CCAACATGGTTGCTGCATCCTGTT -CCAACATGGTTGCTGCATCGGTTT -CCAACATGGTTGCTGCATGTGGTT -CCAACATGGTTGCTGCATGCCTTT -CCAACATGGTTGCTGCATGGTCTT -CCAACATGGTTGCTGCATACGCTT -CCAACATGGTTGCTGCATAGCGTT -CCAACATGGTTGCTGCATTTCGTC -CCAACATGGTTGCTGCATTCTCTC -CCAACATGGTTGCTGCATTGGATC -CCAACATGGTTGCTGCATCACTTC -CCAACATGGTTGCTGCATGTACTC -CCAACATGGTTGCTGCATGATGTC -CCAACATGGTTGCTGCATACAGTC -CCAACATGGTTGCTGCATTTGCTG -CCAACATGGTTGCTGCATTCCATG -CCAACATGGTTGCTGCATTGTGTG -CCAACATGGTTGCTGCATCTAGTG -CCAACATGGTTGCTGCATCATCTG -CCAACATGGTTGCTGCATGAGTTG -CCAACATGGTTGCTGCATAGACTG -CCAACATGGTTGCTGCATTCGGTA -CCAACATGGTTGCTGCATTGCCTA -CCAACATGGTTGCTGCATCCACTA -CCAACATGGTTGCTGCATGGAGTA -CCAACATGGTTGCTGCATTCGTCT -CCAACATGGTTGCTGCATTGCACT -CCAACATGGTTGCTGCATCTGACT -CCAACATGGTTGCTGCATCAACCT -CCAACATGGTTGCTGCATGCTACT -CCAACATGGTTGCTGCATGGATCT -CCAACATGGTTGCTGCATAAGGCT -CCAACATGGTTGCTGCATTCAACC -CCAACATGGTTGCTGCATTGTTCC -CCAACATGGTTGCTGCATATTCCC -CCAACATGGTTGCTGCATTTCTCG -CCAACATGGTTGCTGCATTAGACG -CCAACATGGTTGCTGCATGTAACG -CCAACATGGTTGCTGCATACTTCG -CCAACATGGTTGCTGCATTACGCA -CCAACATGGTTGCTGCATCTTGCA -CCAACATGGTTGCTGCATCGAACA -CCAACATGGTTGCTGCATCAGTCA -CCAACATGGTTGCTGCATGATCCA -CCAACATGGTTGCTGCATACGACA -CCAACATGGTTGCTGCATAGCTCA -CCAACATGGTTGCTGCATTCACGT -CCAACATGGTTGCTGCATCGTAGT -CCAACATGGTTGCTGCATGTCAGT -CCAACATGGTTGCTGCATGAAGGT -CCAACATGGTTGCTGCATAACCGT -CCAACATGGTTGCTGCATTTGTGC -CCAACATGGTTGCTGCATCTAAGC -CCAACATGGTTGCTGCATACTAGC -CCAACATGGTTGCTGCATAGATGC -CCAACATGGTTGCTGCATTGAAGG -CCAACATGGTTGCTGCATCAATGG -CCAACATGGTTGCTGCATATGAGG -CCAACATGGTTGCTGCATAATGGG -CCAACATGGTTGCTGCATTCCTGA -CCAACATGGTTGCTGCATTAGCGA -CCAACATGGTTGCTGCATCACAGA -CCAACATGGTTGCTGCATGCAAGA -CCAACATGGTTGCTGCATGGTTGA -CCAACATGGTTGCTGCATTCCGAT -CCAACATGGTTGCTGCATTGGCAT -CCAACATGGTTGCTGCATCGAGAT -CCAACATGGTTGCTGCATTACCAC -CCAACATGGTTGCTGCATCAGAAC -CCAACATGGTTGCTGCATGTCTAC -CCAACATGGTTGCTGCATACGTAC -CCAACATGGTTGCTGCATAGTGAC -CCAACATGGTTGCTGCATCTGTAG -CCAACATGGTTGCTGCATCCTAAG -CCAACATGGTTGCTGCATGTTCAG -CCAACATGGTTGCTGCATGCATAG -CCAACATGGTTGCTGCATGACAAG -CCAACATGGTTGCTGCATAAGCAG -CCAACATGGTTGCTGCATCGTCAA -CCAACATGGTTGCTGCATGCTGAA -CCAACATGGTTGCTGCATAGTACG -CCAACATGGTTGCTGCATATCCGA -CCAACATGGTTGCTGCATATGGGA -CCAACATGGTTGCTGCATGTGCAA -CCAACATGGTTGCTGCATGAGGAA -CCAACATGGTTGCTGCATCAGGTA -CCAACATGGTTGCTGCATGACTCT -CCAACATGGTTGCTGCATAGTCCT -CCAACATGGTTGCTGCATTAAGCC -CCAACATGGTTGCTGCATATAGCC -CCAACATGGTTGCTGCATTAACCG -CCAACATGGTTGCTGCATATGCCA -CCAACATGGTTGTTGGAGGGAAAC -CCAACATGGTTGTTGGAGAACACC -CCAACATGGTTGTTGGAGATCGAG -CCAACATGGTTGTTGGAGCTCCTT -CCAACATGGTTGTTGGAGCCTGTT -CCAACATGGTTGTTGGAGCGGTTT -CCAACATGGTTGTTGGAGGTGGTT -CCAACATGGTTGTTGGAGGCCTTT -CCAACATGGTTGTTGGAGGGTCTT -CCAACATGGTTGTTGGAGACGCTT -CCAACATGGTTGTTGGAGAGCGTT -CCAACATGGTTGTTGGAGTTCGTC -CCAACATGGTTGTTGGAGTCTCTC -CCAACATGGTTGTTGGAGTGGATC -CCAACATGGTTGTTGGAGCACTTC -CCAACATGGTTGTTGGAGGTACTC -CCAACATGGTTGTTGGAGGATGTC -CCAACATGGTTGTTGGAGACAGTC -CCAACATGGTTGTTGGAGTTGCTG -CCAACATGGTTGTTGGAGTCCATG -CCAACATGGTTGTTGGAGTGTGTG -CCAACATGGTTGTTGGAGCTAGTG -CCAACATGGTTGTTGGAGCATCTG -CCAACATGGTTGTTGGAGGAGTTG -CCAACATGGTTGTTGGAGAGACTG -CCAACATGGTTGTTGGAGTCGGTA -CCAACATGGTTGTTGGAGTGCCTA -CCAACATGGTTGTTGGAGCCACTA -CCAACATGGTTGTTGGAGGGAGTA -CCAACATGGTTGTTGGAGTCGTCT -CCAACATGGTTGTTGGAGTGCACT -CCAACATGGTTGTTGGAGCTGACT -CCAACATGGTTGTTGGAGCAACCT -CCAACATGGTTGTTGGAGGCTACT -CCAACATGGTTGTTGGAGGGATCT -CCAACATGGTTGTTGGAGAAGGCT -CCAACATGGTTGTTGGAGTCAACC -CCAACATGGTTGTTGGAGTGTTCC -CCAACATGGTTGTTGGAGATTCCC -CCAACATGGTTGTTGGAGTTCTCG -CCAACATGGTTGTTGGAGTAGACG -CCAACATGGTTGTTGGAGGTAACG -CCAACATGGTTGTTGGAGACTTCG -CCAACATGGTTGTTGGAGTACGCA -CCAACATGGTTGTTGGAGCTTGCA -CCAACATGGTTGTTGGAGCGAACA -CCAACATGGTTGTTGGAGCAGTCA -CCAACATGGTTGTTGGAGGATCCA -CCAACATGGTTGTTGGAGACGACA -CCAACATGGTTGTTGGAGAGCTCA -CCAACATGGTTGTTGGAGTCACGT -CCAACATGGTTGTTGGAGCGTAGT -CCAACATGGTTGTTGGAGGTCAGT -CCAACATGGTTGTTGGAGGAAGGT -CCAACATGGTTGTTGGAGAACCGT -CCAACATGGTTGTTGGAGTTGTGC -CCAACATGGTTGTTGGAGCTAAGC -CCAACATGGTTGTTGGAGACTAGC -CCAACATGGTTGTTGGAGAGATGC -CCAACATGGTTGTTGGAGTGAAGG -CCAACATGGTTGTTGGAGCAATGG -CCAACATGGTTGTTGGAGATGAGG -CCAACATGGTTGTTGGAGAATGGG -CCAACATGGTTGTTGGAGTCCTGA -CCAACATGGTTGTTGGAGTAGCGA -CCAACATGGTTGTTGGAGCACAGA -CCAACATGGTTGTTGGAGGCAAGA -CCAACATGGTTGTTGGAGGGTTGA -CCAACATGGTTGTTGGAGTCCGAT -CCAACATGGTTGTTGGAGTGGCAT -CCAACATGGTTGTTGGAGCGAGAT -CCAACATGGTTGTTGGAGTACCAC -CCAACATGGTTGTTGGAGCAGAAC -CCAACATGGTTGTTGGAGGTCTAC -CCAACATGGTTGTTGGAGACGTAC -CCAACATGGTTGTTGGAGAGTGAC -CCAACATGGTTGTTGGAGCTGTAG -CCAACATGGTTGTTGGAGCCTAAG -CCAACATGGTTGTTGGAGGTTCAG -CCAACATGGTTGTTGGAGGCATAG -CCAACATGGTTGTTGGAGGACAAG -CCAACATGGTTGTTGGAGAAGCAG -CCAACATGGTTGTTGGAGCGTCAA -CCAACATGGTTGTTGGAGGCTGAA -CCAACATGGTTGTTGGAGAGTACG -CCAACATGGTTGTTGGAGATCCGA -CCAACATGGTTGTTGGAGATGGGA -CCAACATGGTTGTTGGAGGTGCAA -CCAACATGGTTGTTGGAGGAGGAA -CCAACATGGTTGTTGGAGCAGGTA -CCAACATGGTTGTTGGAGGACTCT -CCAACATGGTTGTTGGAGAGTCCT -CCAACATGGTTGTTGGAGTAAGCC -CCAACATGGTTGTTGGAGATAGCC -CCAACATGGTTGTTGGAGTAACCG -CCAACATGGTTGTTGGAGATGCCA -CCAACATGGTTGCTGAGAGGAAAC -CCAACATGGTTGCTGAGAAACACC -CCAACATGGTTGCTGAGAATCGAG -CCAACATGGTTGCTGAGACTCCTT -CCAACATGGTTGCTGAGACCTGTT -CCAACATGGTTGCTGAGACGGTTT -CCAACATGGTTGCTGAGAGTGGTT -CCAACATGGTTGCTGAGAGCCTTT -CCAACATGGTTGCTGAGAGGTCTT -CCAACATGGTTGCTGAGAACGCTT -CCAACATGGTTGCTGAGAAGCGTT -CCAACATGGTTGCTGAGATTCGTC -CCAACATGGTTGCTGAGATCTCTC -CCAACATGGTTGCTGAGATGGATC -CCAACATGGTTGCTGAGACACTTC -CCAACATGGTTGCTGAGAGTACTC -CCAACATGGTTGCTGAGAGATGTC -CCAACATGGTTGCTGAGAACAGTC -CCAACATGGTTGCTGAGATTGCTG -CCAACATGGTTGCTGAGATCCATG -CCAACATGGTTGCTGAGATGTGTG -CCAACATGGTTGCTGAGACTAGTG -CCAACATGGTTGCTGAGACATCTG -CCAACATGGTTGCTGAGAGAGTTG -CCAACATGGTTGCTGAGAAGACTG -CCAACATGGTTGCTGAGATCGGTA -CCAACATGGTTGCTGAGATGCCTA -CCAACATGGTTGCTGAGACCACTA -CCAACATGGTTGCTGAGAGGAGTA -CCAACATGGTTGCTGAGATCGTCT -CCAACATGGTTGCTGAGATGCACT -CCAACATGGTTGCTGAGACTGACT -CCAACATGGTTGCTGAGACAACCT -CCAACATGGTTGCTGAGAGCTACT -CCAACATGGTTGCTGAGAGGATCT -CCAACATGGTTGCTGAGAAAGGCT -CCAACATGGTTGCTGAGATCAACC -CCAACATGGTTGCTGAGATGTTCC -CCAACATGGTTGCTGAGAATTCCC -CCAACATGGTTGCTGAGATTCTCG -CCAACATGGTTGCTGAGATAGACG -CCAACATGGTTGCTGAGAGTAACG -CCAACATGGTTGCTGAGAACTTCG -CCAACATGGTTGCTGAGATACGCA -CCAACATGGTTGCTGAGACTTGCA -CCAACATGGTTGCTGAGACGAACA -CCAACATGGTTGCTGAGACAGTCA -CCAACATGGTTGCTGAGAGATCCA -CCAACATGGTTGCTGAGAACGACA -CCAACATGGTTGCTGAGAAGCTCA -CCAACATGGTTGCTGAGATCACGT -CCAACATGGTTGCTGAGACGTAGT -CCAACATGGTTGCTGAGAGTCAGT -CCAACATGGTTGCTGAGAGAAGGT -CCAACATGGTTGCTGAGAAACCGT -CCAACATGGTTGCTGAGATTGTGC -CCAACATGGTTGCTGAGACTAAGC -CCAACATGGTTGCTGAGAACTAGC -CCAACATGGTTGCTGAGAAGATGC -CCAACATGGTTGCTGAGATGAAGG -CCAACATGGTTGCTGAGACAATGG -CCAACATGGTTGCTGAGAATGAGG -CCAACATGGTTGCTGAGAAATGGG -CCAACATGGTTGCTGAGATCCTGA -CCAACATGGTTGCTGAGATAGCGA -CCAACATGGTTGCTGAGACACAGA -CCAACATGGTTGCTGAGAGCAAGA -CCAACATGGTTGCTGAGAGGTTGA -CCAACATGGTTGCTGAGATCCGAT -CCAACATGGTTGCTGAGATGGCAT -CCAACATGGTTGCTGAGACGAGAT -CCAACATGGTTGCTGAGATACCAC -CCAACATGGTTGCTGAGACAGAAC -CCAACATGGTTGCTGAGAGTCTAC -CCAACATGGTTGCTGAGAACGTAC -CCAACATGGTTGCTGAGAAGTGAC -CCAACATGGTTGCTGAGACTGTAG -CCAACATGGTTGCTGAGACCTAAG -CCAACATGGTTGCTGAGAGTTCAG -CCAACATGGTTGCTGAGAGCATAG -CCAACATGGTTGCTGAGAGACAAG -CCAACATGGTTGCTGAGAAAGCAG -CCAACATGGTTGCTGAGACGTCAA -CCAACATGGTTGCTGAGAGCTGAA -CCAACATGGTTGCTGAGAAGTACG -CCAACATGGTTGCTGAGAATCCGA -CCAACATGGTTGCTGAGAATGGGA -CCAACATGGTTGCTGAGAGTGCAA -CCAACATGGTTGCTGAGAGAGGAA -CCAACATGGTTGCTGAGACAGGTA -CCAACATGGTTGCTGAGAGACTCT -CCAACATGGTTGCTGAGAAGTCCT -CCAACATGGTTGCTGAGATAAGCC -CCAACATGGTTGCTGAGAATAGCC -CCAACATGGTTGCTGAGATAACCG -CCAACATGGTTGCTGAGAATGCCA -CCAACATGGTTGGTATCGGGAAAC -CCAACATGGTTGGTATCGAACACC -CCAACATGGTTGGTATCGATCGAG -CCAACATGGTTGGTATCGCTCCTT -CCAACATGGTTGGTATCGCCTGTT -CCAACATGGTTGGTATCGCGGTTT -CCAACATGGTTGGTATCGGTGGTT -CCAACATGGTTGGTATCGGCCTTT -CCAACATGGTTGGTATCGGGTCTT -CCAACATGGTTGGTATCGACGCTT -CCAACATGGTTGGTATCGAGCGTT -CCAACATGGTTGGTATCGTTCGTC -CCAACATGGTTGGTATCGTCTCTC -CCAACATGGTTGGTATCGTGGATC -CCAACATGGTTGGTATCGCACTTC -CCAACATGGTTGGTATCGGTACTC -CCAACATGGTTGGTATCGGATGTC -CCAACATGGTTGGTATCGACAGTC -CCAACATGGTTGGTATCGTTGCTG -CCAACATGGTTGGTATCGTCCATG -CCAACATGGTTGGTATCGTGTGTG -CCAACATGGTTGGTATCGCTAGTG -CCAACATGGTTGGTATCGCATCTG -CCAACATGGTTGGTATCGGAGTTG -CCAACATGGTTGGTATCGAGACTG -CCAACATGGTTGGTATCGTCGGTA -CCAACATGGTTGGTATCGTGCCTA -CCAACATGGTTGGTATCGCCACTA -CCAACATGGTTGGTATCGGGAGTA -CCAACATGGTTGGTATCGTCGTCT -CCAACATGGTTGGTATCGTGCACT -CCAACATGGTTGGTATCGCTGACT -CCAACATGGTTGGTATCGCAACCT -CCAACATGGTTGGTATCGGCTACT -CCAACATGGTTGGTATCGGGATCT -CCAACATGGTTGGTATCGAAGGCT -CCAACATGGTTGGTATCGTCAACC -CCAACATGGTTGGTATCGTGTTCC -CCAACATGGTTGGTATCGATTCCC -CCAACATGGTTGGTATCGTTCTCG -CCAACATGGTTGGTATCGTAGACG -CCAACATGGTTGGTATCGGTAACG -CCAACATGGTTGGTATCGACTTCG -CCAACATGGTTGGTATCGTACGCA -CCAACATGGTTGGTATCGCTTGCA -CCAACATGGTTGGTATCGCGAACA -CCAACATGGTTGGTATCGCAGTCA -CCAACATGGTTGGTATCGGATCCA -CCAACATGGTTGGTATCGACGACA -CCAACATGGTTGGTATCGAGCTCA -CCAACATGGTTGGTATCGTCACGT -CCAACATGGTTGGTATCGCGTAGT -CCAACATGGTTGGTATCGGTCAGT -CCAACATGGTTGGTATCGGAAGGT -CCAACATGGTTGGTATCGAACCGT -CCAACATGGTTGGTATCGTTGTGC -CCAACATGGTTGGTATCGCTAAGC -CCAACATGGTTGGTATCGACTAGC -CCAACATGGTTGGTATCGAGATGC -CCAACATGGTTGGTATCGTGAAGG -CCAACATGGTTGGTATCGCAATGG -CCAACATGGTTGGTATCGATGAGG -CCAACATGGTTGGTATCGAATGGG -CCAACATGGTTGGTATCGTCCTGA -CCAACATGGTTGGTATCGTAGCGA -CCAACATGGTTGGTATCGCACAGA -CCAACATGGTTGGTATCGGCAAGA -CCAACATGGTTGGTATCGGGTTGA -CCAACATGGTTGGTATCGTCCGAT -CCAACATGGTTGGTATCGTGGCAT -CCAACATGGTTGGTATCGCGAGAT -CCAACATGGTTGGTATCGTACCAC -CCAACATGGTTGGTATCGCAGAAC -CCAACATGGTTGGTATCGGTCTAC -CCAACATGGTTGGTATCGACGTAC -CCAACATGGTTGGTATCGAGTGAC -CCAACATGGTTGGTATCGCTGTAG -CCAACATGGTTGGTATCGCCTAAG -CCAACATGGTTGGTATCGGTTCAG -CCAACATGGTTGGTATCGGCATAG -CCAACATGGTTGGTATCGGACAAG -CCAACATGGTTGGTATCGAAGCAG -CCAACATGGTTGGTATCGCGTCAA -CCAACATGGTTGGTATCGGCTGAA -CCAACATGGTTGGTATCGAGTACG -CCAACATGGTTGGTATCGATCCGA -CCAACATGGTTGGTATCGATGGGA -CCAACATGGTTGGTATCGGTGCAA -CCAACATGGTTGGTATCGGAGGAA -CCAACATGGTTGGTATCGCAGGTA -CCAACATGGTTGGTATCGGACTCT -CCAACATGGTTGGTATCGAGTCCT -CCAACATGGTTGGTATCGTAAGCC -CCAACATGGTTGGTATCGATAGCC -CCAACATGGTTGGTATCGTAACCG -CCAACATGGTTGGTATCGATGCCA -CCAACATGGTTGCTATGCGGAAAC -CCAACATGGTTGCTATGCAACACC -CCAACATGGTTGCTATGCATCGAG -CCAACATGGTTGCTATGCCTCCTT -CCAACATGGTTGCTATGCCCTGTT -CCAACATGGTTGCTATGCCGGTTT -CCAACATGGTTGCTATGCGTGGTT -CCAACATGGTTGCTATGCGCCTTT -CCAACATGGTTGCTATGCGGTCTT -CCAACATGGTTGCTATGCACGCTT -CCAACATGGTTGCTATGCAGCGTT -CCAACATGGTTGCTATGCTTCGTC -CCAACATGGTTGCTATGCTCTCTC -CCAACATGGTTGCTATGCTGGATC -CCAACATGGTTGCTATGCCACTTC -CCAACATGGTTGCTATGCGTACTC -CCAACATGGTTGCTATGCGATGTC -CCAACATGGTTGCTATGCACAGTC -CCAACATGGTTGCTATGCTTGCTG -CCAACATGGTTGCTATGCTCCATG -CCAACATGGTTGCTATGCTGTGTG -CCAACATGGTTGCTATGCCTAGTG -CCAACATGGTTGCTATGCCATCTG -CCAACATGGTTGCTATGCGAGTTG -CCAACATGGTTGCTATGCAGACTG -CCAACATGGTTGCTATGCTCGGTA -CCAACATGGTTGCTATGCTGCCTA -CCAACATGGTTGCTATGCCCACTA -CCAACATGGTTGCTATGCGGAGTA -CCAACATGGTTGCTATGCTCGTCT -CCAACATGGTTGCTATGCTGCACT -CCAACATGGTTGCTATGCCTGACT -CCAACATGGTTGCTATGCCAACCT -CCAACATGGTTGCTATGCGCTACT -CCAACATGGTTGCTATGCGGATCT -CCAACATGGTTGCTATGCAAGGCT -CCAACATGGTTGCTATGCTCAACC -CCAACATGGTTGCTATGCTGTTCC -CCAACATGGTTGCTATGCATTCCC -CCAACATGGTTGCTATGCTTCTCG -CCAACATGGTTGCTATGCTAGACG -CCAACATGGTTGCTATGCGTAACG -CCAACATGGTTGCTATGCACTTCG -CCAACATGGTTGCTATGCTACGCA -CCAACATGGTTGCTATGCCTTGCA -CCAACATGGTTGCTATGCCGAACA -CCAACATGGTTGCTATGCCAGTCA -CCAACATGGTTGCTATGCGATCCA -CCAACATGGTTGCTATGCACGACA -CCAACATGGTTGCTATGCAGCTCA -CCAACATGGTTGCTATGCTCACGT -CCAACATGGTTGCTATGCCGTAGT -CCAACATGGTTGCTATGCGTCAGT -CCAACATGGTTGCTATGCGAAGGT -CCAACATGGTTGCTATGCAACCGT -CCAACATGGTTGCTATGCTTGTGC -CCAACATGGTTGCTATGCCTAAGC -CCAACATGGTTGCTATGCACTAGC -CCAACATGGTTGCTATGCAGATGC -CCAACATGGTTGCTATGCTGAAGG -CCAACATGGTTGCTATGCCAATGG -CCAACATGGTTGCTATGCATGAGG -CCAACATGGTTGCTATGCAATGGG -CCAACATGGTTGCTATGCTCCTGA -CCAACATGGTTGCTATGCTAGCGA -CCAACATGGTTGCTATGCCACAGA -CCAACATGGTTGCTATGCGCAAGA -CCAACATGGTTGCTATGCGGTTGA -CCAACATGGTTGCTATGCTCCGAT -CCAACATGGTTGCTATGCTGGCAT -CCAACATGGTTGCTATGCCGAGAT -CCAACATGGTTGCTATGCTACCAC -CCAACATGGTTGCTATGCCAGAAC -CCAACATGGTTGCTATGCGTCTAC -CCAACATGGTTGCTATGCACGTAC -CCAACATGGTTGCTATGCAGTGAC -CCAACATGGTTGCTATGCCTGTAG -CCAACATGGTTGCTATGCCCTAAG -CCAACATGGTTGCTATGCGTTCAG -CCAACATGGTTGCTATGCGCATAG -CCAACATGGTTGCTATGCGACAAG -CCAACATGGTTGCTATGCAAGCAG -CCAACATGGTTGCTATGCCGTCAA -CCAACATGGTTGCTATGCGCTGAA -CCAACATGGTTGCTATGCAGTACG -CCAACATGGTTGCTATGCATCCGA -CCAACATGGTTGCTATGCATGGGA -CCAACATGGTTGCTATGCGTGCAA -CCAACATGGTTGCTATGCGAGGAA -CCAACATGGTTGCTATGCCAGGTA -CCAACATGGTTGCTATGCGACTCT -CCAACATGGTTGCTATGCAGTCCT -CCAACATGGTTGCTATGCTAAGCC -CCAACATGGTTGCTATGCATAGCC -CCAACATGGTTGCTATGCTAACCG -CCAACATGGTTGCTATGCATGCCA -CCAACATGGTTGCTACCAGGAAAC -CCAACATGGTTGCTACCAAACACC -CCAACATGGTTGCTACCAATCGAG -CCAACATGGTTGCTACCACTCCTT -CCAACATGGTTGCTACCACCTGTT -CCAACATGGTTGCTACCACGGTTT -CCAACATGGTTGCTACCAGTGGTT -CCAACATGGTTGCTACCAGCCTTT -CCAACATGGTTGCTACCAGGTCTT -CCAACATGGTTGCTACCAACGCTT -CCAACATGGTTGCTACCAAGCGTT -CCAACATGGTTGCTACCATTCGTC -CCAACATGGTTGCTACCATCTCTC -CCAACATGGTTGCTACCATGGATC -CCAACATGGTTGCTACCACACTTC -CCAACATGGTTGCTACCAGTACTC -CCAACATGGTTGCTACCAGATGTC -CCAACATGGTTGCTACCAACAGTC -CCAACATGGTTGCTACCATTGCTG -CCAACATGGTTGCTACCATCCATG -CCAACATGGTTGCTACCATGTGTG -CCAACATGGTTGCTACCACTAGTG -CCAACATGGTTGCTACCACATCTG -CCAACATGGTTGCTACCAGAGTTG -CCAACATGGTTGCTACCAAGACTG -CCAACATGGTTGCTACCATCGGTA -CCAACATGGTTGCTACCATGCCTA -CCAACATGGTTGCTACCACCACTA -CCAACATGGTTGCTACCAGGAGTA -CCAACATGGTTGCTACCATCGTCT -CCAACATGGTTGCTACCATGCACT -CCAACATGGTTGCTACCACTGACT -CCAACATGGTTGCTACCACAACCT -CCAACATGGTTGCTACCAGCTACT -CCAACATGGTTGCTACCAGGATCT -CCAACATGGTTGCTACCAAAGGCT -CCAACATGGTTGCTACCATCAACC -CCAACATGGTTGCTACCATGTTCC -CCAACATGGTTGCTACCAATTCCC -CCAACATGGTTGCTACCATTCTCG -CCAACATGGTTGCTACCATAGACG -CCAACATGGTTGCTACCAGTAACG -CCAACATGGTTGCTACCAACTTCG -CCAACATGGTTGCTACCATACGCA -CCAACATGGTTGCTACCACTTGCA -CCAACATGGTTGCTACCACGAACA -CCAACATGGTTGCTACCACAGTCA -CCAACATGGTTGCTACCAGATCCA -CCAACATGGTTGCTACCAACGACA -CCAACATGGTTGCTACCAAGCTCA -CCAACATGGTTGCTACCATCACGT -CCAACATGGTTGCTACCACGTAGT -CCAACATGGTTGCTACCAGTCAGT -CCAACATGGTTGCTACCAGAAGGT -CCAACATGGTTGCTACCAAACCGT -CCAACATGGTTGCTACCATTGTGC -CCAACATGGTTGCTACCACTAAGC -CCAACATGGTTGCTACCAACTAGC -CCAACATGGTTGCTACCAAGATGC -CCAACATGGTTGCTACCATGAAGG -CCAACATGGTTGCTACCACAATGG -CCAACATGGTTGCTACCAATGAGG -CCAACATGGTTGCTACCAAATGGG -CCAACATGGTTGCTACCATCCTGA -CCAACATGGTTGCTACCATAGCGA -CCAACATGGTTGCTACCACACAGA -CCAACATGGTTGCTACCAGCAAGA -CCAACATGGTTGCTACCAGGTTGA -CCAACATGGTTGCTACCATCCGAT -CCAACATGGTTGCTACCATGGCAT -CCAACATGGTTGCTACCACGAGAT -CCAACATGGTTGCTACCATACCAC -CCAACATGGTTGCTACCACAGAAC -CCAACATGGTTGCTACCAGTCTAC -CCAACATGGTTGCTACCAACGTAC -CCAACATGGTTGCTACCAAGTGAC -CCAACATGGTTGCTACCACTGTAG -CCAACATGGTTGCTACCACCTAAG -CCAACATGGTTGCTACCAGTTCAG -CCAACATGGTTGCTACCAGCATAG -CCAACATGGTTGCTACCAGACAAG -CCAACATGGTTGCTACCAAAGCAG -CCAACATGGTTGCTACCACGTCAA -CCAACATGGTTGCTACCAGCTGAA -CCAACATGGTTGCTACCAAGTACG -CCAACATGGTTGCTACCAATCCGA -CCAACATGGTTGCTACCAATGGGA -CCAACATGGTTGCTACCAGTGCAA -CCAACATGGTTGCTACCAGAGGAA -CCAACATGGTTGCTACCACAGGTA -CCAACATGGTTGCTACCAGACTCT -CCAACATGGTTGCTACCAAGTCCT -CCAACATGGTTGCTACCATAAGCC -CCAACATGGTTGCTACCAATAGCC -CCAACATGGTTGCTACCATAACCG -CCAACATGGTTGCTACCAATGCCA -CCAACATGGTTGGTAGGAGGAAAC -CCAACATGGTTGGTAGGAAACACC -CCAACATGGTTGGTAGGAATCGAG -CCAACATGGTTGGTAGGACTCCTT -CCAACATGGTTGGTAGGACCTGTT -CCAACATGGTTGGTAGGACGGTTT -CCAACATGGTTGGTAGGAGTGGTT -CCAACATGGTTGGTAGGAGCCTTT -CCAACATGGTTGGTAGGAGGTCTT -CCAACATGGTTGGTAGGAACGCTT -CCAACATGGTTGGTAGGAAGCGTT -CCAACATGGTTGGTAGGATTCGTC -CCAACATGGTTGGTAGGATCTCTC -CCAACATGGTTGGTAGGATGGATC -CCAACATGGTTGGTAGGACACTTC -CCAACATGGTTGGTAGGAGTACTC -CCAACATGGTTGGTAGGAGATGTC -CCAACATGGTTGGTAGGAACAGTC -CCAACATGGTTGGTAGGATTGCTG -CCAACATGGTTGGTAGGATCCATG -CCAACATGGTTGGTAGGATGTGTG -CCAACATGGTTGGTAGGACTAGTG -CCAACATGGTTGGTAGGACATCTG -CCAACATGGTTGGTAGGAGAGTTG -CCAACATGGTTGGTAGGAAGACTG -CCAACATGGTTGGTAGGATCGGTA -CCAACATGGTTGGTAGGATGCCTA -CCAACATGGTTGGTAGGACCACTA -CCAACATGGTTGGTAGGAGGAGTA -CCAACATGGTTGGTAGGATCGTCT -CCAACATGGTTGGTAGGATGCACT -CCAACATGGTTGGTAGGACTGACT -CCAACATGGTTGGTAGGACAACCT -CCAACATGGTTGGTAGGAGCTACT -CCAACATGGTTGGTAGGAGGATCT -CCAACATGGTTGGTAGGAAAGGCT -CCAACATGGTTGGTAGGATCAACC -CCAACATGGTTGGTAGGATGTTCC -CCAACATGGTTGGTAGGAATTCCC -CCAACATGGTTGGTAGGATTCTCG -CCAACATGGTTGGTAGGATAGACG -CCAACATGGTTGGTAGGAGTAACG -CCAACATGGTTGGTAGGAACTTCG -CCAACATGGTTGGTAGGATACGCA -CCAACATGGTTGGTAGGACTTGCA -CCAACATGGTTGGTAGGACGAACA -CCAACATGGTTGGTAGGACAGTCA -CCAACATGGTTGGTAGGAGATCCA -CCAACATGGTTGGTAGGAACGACA -CCAACATGGTTGGTAGGAAGCTCA -CCAACATGGTTGGTAGGATCACGT -CCAACATGGTTGGTAGGACGTAGT -CCAACATGGTTGGTAGGAGTCAGT -CCAACATGGTTGGTAGGAGAAGGT -CCAACATGGTTGGTAGGAAACCGT -CCAACATGGTTGGTAGGATTGTGC -CCAACATGGTTGGTAGGACTAAGC -CCAACATGGTTGGTAGGAACTAGC -CCAACATGGTTGGTAGGAAGATGC -CCAACATGGTTGGTAGGATGAAGG -CCAACATGGTTGGTAGGACAATGG -CCAACATGGTTGGTAGGAATGAGG -CCAACATGGTTGGTAGGAAATGGG -CCAACATGGTTGGTAGGATCCTGA -CCAACATGGTTGGTAGGATAGCGA -CCAACATGGTTGGTAGGACACAGA -CCAACATGGTTGGTAGGAGCAAGA -CCAACATGGTTGGTAGGAGGTTGA -CCAACATGGTTGGTAGGATCCGAT -CCAACATGGTTGGTAGGATGGCAT -CCAACATGGTTGGTAGGACGAGAT -CCAACATGGTTGGTAGGATACCAC -CCAACATGGTTGGTAGGACAGAAC -CCAACATGGTTGGTAGGAGTCTAC -CCAACATGGTTGGTAGGAACGTAC -CCAACATGGTTGGTAGGAAGTGAC -CCAACATGGTTGGTAGGACTGTAG -CCAACATGGTTGGTAGGACCTAAG -CCAACATGGTTGGTAGGAGTTCAG -CCAACATGGTTGGTAGGAGCATAG -CCAACATGGTTGGTAGGAGACAAG -CCAACATGGTTGGTAGGAAAGCAG -CCAACATGGTTGGTAGGACGTCAA -CCAACATGGTTGGTAGGAGCTGAA -CCAACATGGTTGGTAGGAAGTACG -CCAACATGGTTGGTAGGAATCCGA -CCAACATGGTTGGTAGGAATGGGA -CCAACATGGTTGGTAGGAGTGCAA -CCAACATGGTTGGTAGGAGAGGAA -CCAACATGGTTGGTAGGACAGGTA -CCAACATGGTTGGTAGGAGACTCT -CCAACATGGTTGGTAGGAAGTCCT -CCAACATGGTTGGTAGGATAAGCC -CCAACATGGTTGGTAGGAATAGCC -CCAACATGGTTGGTAGGATAACCG -CCAACATGGTTGGTAGGAATGCCA -CCAACATGGTTGTCTTCGGGAAAC -CCAACATGGTTGTCTTCGAACACC -CCAACATGGTTGTCTTCGATCGAG -CCAACATGGTTGTCTTCGCTCCTT -CCAACATGGTTGTCTTCGCCTGTT -CCAACATGGTTGTCTTCGCGGTTT -CCAACATGGTTGTCTTCGGTGGTT -CCAACATGGTTGTCTTCGGCCTTT -CCAACATGGTTGTCTTCGGGTCTT -CCAACATGGTTGTCTTCGACGCTT -CCAACATGGTTGTCTTCGAGCGTT -CCAACATGGTTGTCTTCGTTCGTC -CCAACATGGTTGTCTTCGTCTCTC -CCAACATGGTTGTCTTCGTGGATC -CCAACATGGTTGTCTTCGCACTTC -CCAACATGGTTGTCTTCGGTACTC -CCAACATGGTTGTCTTCGGATGTC -CCAACATGGTTGTCTTCGACAGTC -CCAACATGGTTGTCTTCGTTGCTG -CCAACATGGTTGTCTTCGTCCATG -CCAACATGGTTGTCTTCGTGTGTG -CCAACATGGTTGTCTTCGCTAGTG -CCAACATGGTTGTCTTCGCATCTG -CCAACATGGTTGTCTTCGGAGTTG -CCAACATGGTTGTCTTCGAGACTG -CCAACATGGTTGTCTTCGTCGGTA -CCAACATGGTTGTCTTCGTGCCTA -CCAACATGGTTGTCTTCGCCACTA -CCAACATGGTTGTCTTCGGGAGTA -CCAACATGGTTGTCTTCGTCGTCT -CCAACATGGTTGTCTTCGTGCACT -CCAACATGGTTGTCTTCGCTGACT -CCAACATGGTTGTCTTCGCAACCT -CCAACATGGTTGTCTTCGGCTACT -CCAACATGGTTGTCTTCGGGATCT -CCAACATGGTTGTCTTCGAAGGCT -CCAACATGGTTGTCTTCGTCAACC -CCAACATGGTTGTCTTCGTGTTCC -CCAACATGGTTGTCTTCGATTCCC -CCAACATGGTTGTCTTCGTTCTCG -CCAACATGGTTGTCTTCGTAGACG -CCAACATGGTTGTCTTCGGTAACG -CCAACATGGTTGTCTTCGACTTCG -CCAACATGGTTGTCTTCGTACGCA -CCAACATGGTTGTCTTCGCTTGCA -CCAACATGGTTGTCTTCGCGAACA -CCAACATGGTTGTCTTCGCAGTCA -CCAACATGGTTGTCTTCGGATCCA -CCAACATGGTTGTCTTCGACGACA -CCAACATGGTTGTCTTCGAGCTCA -CCAACATGGTTGTCTTCGTCACGT -CCAACATGGTTGTCTTCGCGTAGT -CCAACATGGTTGTCTTCGGTCAGT -CCAACATGGTTGTCTTCGGAAGGT -CCAACATGGTTGTCTTCGAACCGT -CCAACATGGTTGTCTTCGTTGTGC -CCAACATGGTTGTCTTCGCTAAGC -CCAACATGGTTGTCTTCGACTAGC -CCAACATGGTTGTCTTCGAGATGC -CCAACATGGTTGTCTTCGTGAAGG -CCAACATGGTTGTCTTCGCAATGG -CCAACATGGTTGTCTTCGATGAGG -CCAACATGGTTGTCTTCGAATGGG -CCAACATGGTTGTCTTCGTCCTGA -CCAACATGGTTGTCTTCGTAGCGA -CCAACATGGTTGTCTTCGCACAGA -CCAACATGGTTGTCTTCGGCAAGA -CCAACATGGTTGTCTTCGGGTTGA -CCAACATGGTTGTCTTCGTCCGAT -CCAACATGGTTGTCTTCGTGGCAT -CCAACATGGTTGTCTTCGCGAGAT -CCAACATGGTTGTCTTCGTACCAC -CCAACATGGTTGTCTTCGCAGAAC -CCAACATGGTTGTCTTCGGTCTAC -CCAACATGGTTGTCTTCGACGTAC -CCAACATGGTTGTCTTCGAGTGAC -CCAACATGGTTGTCTTCGCTGTAG -CCAACATGGTTGTCTTCGCCTAAG -CCAACATGGTTGTCTTCGGTTCAG -CCAACATGGTTGTCTTCGGCATAG -CCAACATGGTTGTCTTCGGACAAG -CCAACATGGTTGTCTTCGAAGCAG -CCAACATGGTTGTCTTCGCGTCAA -CCAACATGGTTGTCTTCGGCTGAA -CCAACATGGTTGTCTTCGAGTACG -CCAACATGGTTGTCTTCGATCCGA -CCAACATGGTTGTCTTCGATGGGA -CCAACATGGTTGTCTTCGGTGCAA -CCAACATGGTTGTCTTCGGAGGAA -CCAACATGGTTGTCTTCGCAGGTA -CCAACATGGTTGTCTTCGGACTCT -CCAACATGGTTGTCTTCGAGTCCT -CCAACATGGTTGTCTTCGTAAGCC -CCAACATGGTTGTCTTCGATAGCC -CCAACATGGTTGTCTTCGTAACCG -CCAACATGGTTGTCTTCGATGCCA -CCAACATGGTTGACTTGCGGAAAC -CCAACATGGTTGACTTGCAACACC -CCAACATGGTTGACTTGCATCGAG -CCAACATGGTTGACTTGCCTCCTT -CCAACATGGTTGACTTGCCCTGTT -CCAACATGGTTGACTTGCCGGTTT -CCAACATGGTTGACTTGCGTGGTT -CCAACATGGTTGACTTGCGCCTTT -CCAACATGGTTGACTTGCGGTCTT -CCAACATGGTTGACTTGCACGCTT -CCAACATGGTTGACTTGCAGCGTT -CCAACATGGTTGACTTGCTTCGTC -CCAACATGGTTGACTTGCTCTCTC -CCAACATGGTTGACTTGCTGGATC -CCAACATGGTTGACTTGCCACTTC -CCAACATGGTTGACTTGCGTACTC -CCAACATGGTTGACTTGCGATGTC -CCAACATGGTTGACTTGCACAGTC -CCAACATGGTTGACTTGCTTGCTG -CCAACATGGTTGACTTGCTCCATG -CCAACATGGTTGACTTGCTGTGTG -CCAACATGGTTGACTTGCCTAGTG -CCAACATGGTTGACTTGCCATCTG -CCAACATGGTTGACTTGCGAGTTG -CCAACATGGTTGACTTGCAGACTG -CCAACATGGTTGACTTGCTCGGTA -CCAACATGGTTGACTTGCTGCCTA -CCAACATGGTTGACTTGCCCACTA -CCAACATGGTTGACTTGCGGAGTA -CCAACATGGTTGACTTGCTCGTCT -CCAACATGGTTGACTTGCTGCACT -CCAACATGGTTGACTTGCCTGACT -CCAACATGGTTGACTTGCCAACCT -CCAACATGGTTGACTTGCGCTACT -CCAACATGGTTGACTTGCGGATCT -CCAACATGGTTGACTTGCAAGGCT -CCAACATGGTTGACTTGCTCAACC -CCAACATGGTTGACTTGCTGTTCC -CCAACATGGTTGACTTGCATTCCC -CCAACATGGTTGACTTGCTTCTCG -CCAACATGGTTGACTTGCTAGACG -CCAACATGGTTGACTTGCGTAACG -CCAACATGGTTGACTTGCACTTCG -CCAACATGGTTGACTTGCTACGCA -CCAACATGGTTGACTTGCCTTGCA -CCAACATGGTTGACTTGCCGAACA -CCAACATGGTTGACTTGCCAGTCA -CCAACATGGTTGACTTGCGATCCA -CCAACATGGTTGACTTGCACGACA -CCAACATGGTTGACTTGCAGCTCA -CCAACATGGTTGACTTGCTCACGT -CCAACATGGTTGACTTGCCGTAGT -CCAACATGGTTGACTTGCGTCAGT -CCAACATGGTTGACTTGCGAAGGT -CCAACATGGTTGACTTGCAACCGT -CCAACATGGTTGACTTGCTTGTGC -CCAACATGGTTGACTTGCCTAAGC -CCAACATGGTTGACTTGCACTAGC -CCAACATGGTTGACTTGCAGATGC -CCAACATGGTTGACTTGCTGAAGG -CCAACATGGTTGACTTGCCAATGG -CCAACATGGTTGACTTGCATGAGG -CCAACATGGTTGACTTGCAATGGG -CCAACATGGTTGACTTGCTCCTGA -CCAACATGGTTGACTTGCTAGCGA -CCAACATGGTTGACTTGCCACAGA -CCAACATGGTTGACTTGCGCAAGA -CCAACATGGTTGACTTGCGGTTGA -CCAACATGGTTGACTTGCTCCGAT -CCAACATGGTTGACTTGCTGGCAT -CCAACATGGTTGACTTGCCGAGAT -CCAACATGGTTGACTTGCTACCAC -CCAACATGGTTGACTTGCCAGAAC -CCAACATGGTTGACTTGCGTCTAC -CCAACATGGTTGACTTGCACGTAC -CCAACATGGTTGACTTGCAGTGAC -CCAACATGGTTGACTTGCCTGTAG -CCAACATGGTTGACTTGCCCTAAG -CCAACATGGTTGACTTGCGTTCAG -CCAACATGGTTGACTTGCGCATAG -CCAACATGGTTGACTTGCGACAAG -CCAACATGGTTGACTTGCAAGCAG -CCAACATGGTTGACTTGCCGTCAA -CCAACATGGTTGACTTGCGCTGAA -CCAACATGGTTGACTTGCAGTACG -CCAACATGGTTGACTTGCATCCGA -CCAACATGGTTGACTTGCATGGGA -CCAACATGGTTGACTTGCGTGCAA -CCAACATGGTTGACTTGCGAGGAA -CCAACATGGTTGACTTGCCAGGTA -CCAACATGGTTGACTTGCGACTCT -CCAACATGGTTGACTTGCAGTCCT -CCAACATGGTTGACTTGCTAAGCC -CCAACATGGTTGACTTGCATAGCC -CCAACATGGTTGACTTGCTAACCG -CCAACATGGTTGACTTGCATGCCA -CCAACATGGTTGACTCTGGGAAAC -CCAACATGGTTGACTCTGAACACC -CCAACATGGTTGACTCTGATCGAG -CCAACATGGTTGACTCTGCTCCTT -CCAACATGGTTGACTCTGCCTGTT -CCAACATGGTTGACTCTGCGGTTT -CCAACATGGTTGACTCTGGTGGTT -CCAACATGGTTGACTCTGGCCTTT -CCAACATGGTTGACTCTGGGTCTT -CCAACATGGTTGACTCTGACGCTT -CCAACATGGTTGACTCTGAGCGTT -CCAACATGGTTGACTCTGTTCGTC -CCAACATGGTTGACTCTGTCTCTC -CCAACATGGTTGACTCTGTGGATC -CCAACATGGTTGACTCTGCACTTC -CCAACATGGTTGACTCTGGTACTC -CCAACATGGTTGACTCTGGATGTC -CCAACATGGTTGACTCTGACAGTC -CCAACATGGTTGACTCTGTTGCTG -CCAACATGGTTGACTCTGTCCATG -CCAACATGGTTGACTCTGTGTGTG -CCAACATGGTTGACTCTGCTAGTG -CCAACATGGTTGACTCTGCATCTG -CCAACATGGTTGACTCTGGAGTTG -CCAACATGGTTGACTCTGAGACTG -CCAACATGGTTGACTCTGTCGGTA -CCAACATGGTTGACTCTGTGCCTA -CCAACATGGTTGACTCTGCCACTA -CCAACATGGTTGACTCTGGGAGTA -CCAACATGGTTGACTCTGTCGTCT -CCAACATGGTTGACTCTGTGCACT -CCAACATGGTTGACTCTGCTGACT -CCAACATGGTTGACTCTGCAACCT -CCAACATGGTTGACTCTGGCTACT -CCAACATGGTTGACTCTGGGATCT -CCAACATGGTTGACTCTGAAGGCT -CCAACATGGTTGACTCTGTCAACC -CCAACATGGTTGACTCTGTGTTCC -CCAACATGGTTGACTCTGATTCCC -CCAACATGGTTGACTCTGTTCTCG -CCAACATGGTTGACTCTGTAGACG -CCAACATGGTTGACTCTGGTAACG -CCAACATGGTTGACTCTGACTTCG -CCAACATGGTTGACTCTGTACGCA -CCAACATGGTTGACTCTGCTTGCA -CCAACATGGTTGACTCTGCGAACA -CCAACATGGTTGACTCTGCAGTCA -CCAACATGGTTGACTCTGGATCCA -CCAACATGGTTGACTCTGACGACA -CCAACATGGTTGACTCTGAGCTCA -CCAACATGGTTGACTCTGTCACGT -CCAACATGGTTGACTCTGCGTAGT -CCAACATGGTTGACTCTGGTCAGT -CCAACATGGTTGACTCTGGAAGGT -CCAACATGGTTGACTCTGAACCGT -CCAACATGGTTGACTCTGTTGTGC -CCAACATGGTTGACTCTGCTAAGC -CCAACATGGTTGACTCTGACTAGC -CCAACATGGTTGACTCTGAGATGC -CCAACATGGTTGACTCTGTGAAGG -CCAACATGGTTGACTCTGCAATGG -CCAACATGGTTGACTCTGATGAGG -CCAACATGGTTGACTCTGAATGGG -CCAACATGGTTGACTCTGTCCTGA -CCAACATGGTTGACTCTGTAGCGA -CCAACATGGTTGACTCTGCACAGA -CCAACATGGTTGACTCTGGCAAGA -CCAACATGGTTGACTCTGGGTTGA -CCAACATGGTTGACTCTGTCCGAT -CCAACATGGTTGACTCTGTGGCAT -CCAACATGGTTGACTCTGCGAGAT -CCAACATGGTTGACTCTGTACCAC -CCAACATGGTTGACTCTGCAGAAC -CCAACATGGTTGACTCTGGTCTAC -CCAACATGGTTGACTCTGACGTAC -CCAACATGGTTGACTCTGAGTGAC -CCAACATGGTTGACTCTGCTGTAG -CCAACATGGTTGACTCTGCCTAAG -CCAACATGGTTGACTCTGGTTCAG -CCAACATGGTTGACTCTGGCATAG -CCAACATGGTTGACTCTGGACAAG -CCAACATGGTTGACTCTGAAGCAG -CCAACATGGTTGACTCTGCGTCAA -CCAACATGGTTGACTCTGGCTGAA -CCAACATGGTTGACTCTGAGTACG -CCAACATGGTTGACTCTGATCCGA -CCAACATGGTTGACTCTGATGGGA -CCAACATGGTTGACTCTGGTGCAA -CCAACATGGTTGACTCTGGAGGAA -CCAACATGGTTGACTCTGCAGGTA -CCAACATGGTTGACTCTGGACTCT -CCAACATGGTTGACTCTGAGTCCT -CCAACATGGTTGACTCTGTAAGCC -CCAACATGGTTGACTCTGATAGCC -CCAACATGGTTGACTCTGTAACCG -CCAACATGGTTGACTCTGATGCCA -CCAACATGGTTGCCTCAAGGAAAC -CCAACATGGTTGCCTCAAAACACC -CCAACATGGTTGCCTCAAATCGAG -CCAACATGGTTGCCTCAACTCCTT -CCAACATGGTTGCCTCAACCTGTT -CCAACATGGTTGCCTCAACGGTTT -CCAACATGGTTGCCTCAAGTGGTT -CCAACATGGTTGCCTCAAGCCTTT -CCAACATGGTTGCCTCAAGGTCTT -CCAACATGGTTGCCTCAAACGCTT -CCAACATGGTTGCCTCAAAGCGTT -CCAACATGGTTGCCTCAATTCGTC -CCAACATGGTTGCCTCAATCTCTC -CCAACATGGTTGCCTCAATGGATC -CCAACATGGTTGCCTCAACACTTC -CCAACATGGTTGCCTCAAGTACTC -CCAACATGGTTGCCTCAAGATGTC -CCAACATGGTTGCCTCAAACAGTC -CCAACATGGTTGCCTCAATTGCTG -CCAACATGGTTGCCTCAATCCATG -CCAACATGGTTGCCTCAATGTGTG -CCAACATGGTTGCCTCAACTAGTG -CCAACATGGTTGCCTCAACATCTG -CCAACATGGTTGCCTCAAGAGTTG -CCAACATGGTTGCCTCAAAGACTG -CCAACATGGTTGCCTCAATCGGTA -CCAACATGGTTGCCTCAATGCCTA -CCAACATGGTTGCCTCAACCACTA -CCAACATGGTTGCCTCAAGGAGTA -CCAACATGGTTGCCTCAATCGTCT -CCAACATGGTTGCCTCAATGCACT -CCAACATGGTTGCCTCAACTGACT -CCAACATGGTTGCCTCAACAACCT -CCAACATGGTTGCCTCAAGCTACT -CCAACATGGTTGCCTCAAGGATCT -CCAACATGGTTGCCTCAAAAGGCT -CCAACATGGTTGCCTCAATCAACC -CCAACATGGTTGCCTCAATGTTCC -CCAACATGGTTGCCTCAAATTCCC -CCAACATGGTTGCCTCAATTCTCG -CCAACATGGTTGCCTCAATAGACG -CCAACATGGTTGCCTCAAGTAACG -CCAACATGGTTGCCTCAAACTTCG -CCAACATGGTTGCCTCAATACGCA -CCAACATGGTTGCCTCAACTTGCA -CCAACATGGTTGCCTCAACGAACA -CCAACATGGTTGCCTCAACAGTCA -CCAACATGGTTGCCTCAAGATCCA -CCAACATGGTTGCCTCAAACGACA -CCAACATGGTTGCCTCAAAGCTCA -CCAACATGGTTGCCTCAATCACGT -CCAACATGGTTGCCTCAACGTAGT -CCAACATGGTTGCCTCAAGTCAGT -CCAACATGGTTGCCTCAAGAAGGT -CCAACATGGTTGCCTCAAAACCGT -CCAACATGGTTGCCTCAATTGTGC -CCAACATGGTTGCCTCAACTAAGC -CCAACATGGTTGCCTCAAACTAGC -CCAACATGGTTGCCTCAAAGATGC -CCAACATGGTTGCCTCAATGAAGG -CCAACATGGTTGCCTCAACAATGG -CCAACATGGTTGCCTCAAATGAGG -CCAACATGGTTGCCTCAAAATGGG -CCAACATGGTTGCCTCAATCCTGA -CCAACATGGTTGCCTCAATAGCGA -CCAACATGGTTGCCTCAACACAGA -CCAACATGGTTGCCTCAAGCAAGA -CCAACATGGTTGCCTCAAGGTTGA -CCAACATGGTTGCCTCAATCCGAT -CCAACATGGTTGCCTCAATGGCAT -CCAACATGGTTGCCTCAACGAGAT -CCAACATGGTTGCCTCAATACCAC -CCAACATGGTTGCCTCAACAGAAC -CCAACATGGTTGCCTCAAGTCTAC -CCAACATGGTTGCCTCAAACGTAC -CCAACATGGTTGCCTCAAAGTGAC -CCAACATGGTTGCCTCAACTGTAG -CCAACATGGTTGCCTCAACCTAAG -CCAACATGGTTGCCTCAAGTTCAG -CCAACATGGTTGCCTCAAGCATAG -CCAACATGGTTGCCTCAAGACAAG -CCAACATGGTTGCCTCAAAAGCAG -CCAACATGGTTGCCTCAACGTCAA -CCAACATGGTTGCCTCAAGCTGAA -CCAACATGGTTGCCTCAAAGTACG -CCAACATGGTTGCCTCAAATCCGA -CCAACATGGTTGCCTCAAATGGGA -CCAACATGGTTGCCTCAAGTGCAA -CCAACATGGTTGCCTCAAGAGGAA -CCAACATGGTTGCCTCAACAGGTA -CCAACATGGTTGCCTCAAGACTCT -CCAACATGGTTGCCTCAAAGTCCT -CCAACATGGTTGCCTCAATAAGCC -CCAACATGGTTGCCTCAAATAGCC -CCAACATGGTTGCCTCAATAACCG -CCAACATGGTTGCCTCAAATGCCA -CCAACATGGTTGACTGCTGGAAAC -CCAACATGGTTGACTGCTAACACC -CCAACATGGTTGACTGCTATCGAG -CCAACATGGTTGACTGCTCTCCTT -CCAACATGGTTGACTGCTCCTGTT -CCAACATGGTTGACTGCTCGGTTT -CCAACATGGTTGACTGCTGTGGTT -CCAACATGGTTGACTGCTGCCTTT -CCAACATGGTTGACTGCTGGTCTT -CCAACATGGTTGACTGCTACGCTT -CCAACATGGTTGACTGCTAGCGTT -CCAACATGGTTGACTGCTTTCGTC -CCAACATGGTTGACTGCTTCTCTC -CCAACATGGTTGACTGCTTGGATC -CCAACATGGTTGACTGCTCACTTC -CCAACATGGTTGACTGCTGTACTC -CCAACATGGTTGACTGCTGATGTC -CCAACATGGTTGACTGCTACAGTC -CCAACATGGTTGACTGCTTTGCTG -CCAACATGGTTGACTGCTTCCATG -CCAACATGGTTGACTGCTTGTGTG -CCAACATGGTTGACTGCTCTAGTG -CCAACATGGTTGACTGCTCATCTG -CCAACATGGTTGACTGCTGAGTTG -CCAACATGGTTGACTGCTAGACTG -CCAACATGGTTGACTGCTTCGGTA -CCAACATGGTTGACTGCTTGCCTA -CCAACATGGTTGACTGCTCCACTA -CCAACATGGTTGACTGCTGGAGTA -CCAACATGGTTGACTGCTTCGTCT -CCAACATGGTTGACTGCTTGCACT -CCAACATGGTTGACTGCTCTGACT -CCAACATGGTTGACTGCTCAACCT -CCAACATGGTTGACTGCTGCTACT -CCAACATGGTTGACTGCTGGATCT -CCAACATGGTTGACTGCTAAGGCT -CCAACATGGTTGACTGCTTCAACC -CCAACATGGTTGACTGCTTGTTCC -CCAACATGGTTGACTGCTATTCCC -CCAACATGGTTGACTGCTTTCTCG -CCAACATGGTTGACTGCTTAGACG -CCAACATGGTTGACTGCTGTAACG -CCAACATGGTTGACTGCTACTTCG -CCAACATGGTTGACTGCTTACGCA -CCAACATGGTTGACTGCTCTTGCA -CCAACATGGTTGACTGCTCGAACA -CCAACATGGTTGACTGCTCAGTCA -CCAACATGGTTGACTGCTGATCCA -CCAACATGGTTGACTGCTACGACA -CCAACATGGTTGACTGCTAGCTCA -CCAACATGGTTGACTGCTTCACGT -CCAACATGGTTGACTGCTCGTAGT -CCAACATGGTTGACTGCTGTCAGT -CCAACATGGTTGACTGCTGAAGGT -CCAACATGGTTGACTGCTAACCGT -CCAACATGGTTGACTGCTTTGTGC -CCAACATGGTTGACTGCTCTAAGC -CCAACATGGTTGACTGCTACTAGC -CCAACATGGTTGACTGCTAGATGC -CCAACATGGTTGACTGCTTGAAGG -CCAACATGGTTGACTGCTCAATGG -CCAACATGGTTGACTGCTATGAGG -CCAACATGGTTGACTGCTAATGGG -CCAACATGGTTGACTGCTTCCTGA -CCAACATGGTTGACTGCTTAGCGA -CCAACATGGTTGACTGCTCACAGA -CCAACATGGTTGACTGCTGCAAGA -CCAACATGGTTGACTGCTGGTTGA -CCAACATGGTTGACTGCTTCCGAT -CCAACATGGTTGACTGCTTGGCAT -CCAACATGGTTGACTGCTCGAGAT -CCAACATGGTTGACTGCTTACCAC -CCAACATGGTTGACTGCTCAGAAC -CCAACATGGTTGACTGCTGTCTAC -CCAACATGGTTGACTGCTACGTAC -CCAACATGGTTGACTGCTAGTGAC -CCAACATGGTTGACTGCTCTGTAG -CCAACATGGTTGACTGCTCCTAAG -CCAACATGGTTGACTGCTGTTCAG -CCAACATGGTTGACTGCTGCATAG -CCAACATGGTTGACTGCTGACAAG -CCAACATGGTTGACTGCTAAGCAG -CCAACATGGTTGACTGCTCGTCAA -CCAACATGGTTGACTGCTGCTGAA -CCAACATGGTTGACTGCTAGTACG -CCAACATGGTTGACTGCTATCCGA -CCAACATGGTTGACTGCTATGGGA -CCAACATGGTTGACTGCTGTGCAA -CCAACATGGTTGACTGCTGAGGAA -CCAACATGGTTGACTGCTCAGGTA -CCAACATGGTTGACTGCTGACTCT -CCAACATGGTTGACTGCTAGTCCT -CCAACATGGTTGACTGCTTAAGCC -CCAACATGGTTGACTGCTATAGCC -CCAACATGGTTGACTGCTTAACCG -CCAACATGGTTGACTGCTATGCCA -CCAACATGGTTGTCTGGAGGAAAC -CCAACATGGTTGTCTGGAAACACC -CCAACATGGTTGTCTGGAATCGAG -CCAACATGGTTGTCTGGACTCCTT -CCAACATGGTTGTCTGGACCTGTT -CCAACATGGTTGTCTGGACGGTTT -CCAACATGGTTGTCTGGAGTGGTT -CCAACATGGTTGTCTGGAGCCTTT -CCAACATGGTTGTCTGGAGGTCTT -CCAACATGGTTGTCTGGAACGCTT -CCAACATGGTTGTCTGGAAGCGTT -CCAACATGGTTGTCTGGATTCGTC -CCAACATGGTTGTCTGGATCTCTC -CCAACATGGTTGTCTGGATGGATC -CCAACATGGTTGTCTGGACACTTC -CCAACATGGTTGTCTGGAGTACTC -CCAACATGGTTGTCTGGAGATGTC -CCAACATGGTTGTCTGGAACAGTC -CCAACATGGTTGTCTGGATTGCTG -CCAACATGGTTGTCTGGATCCATG -CCAACATGGTTGTCTGGATGTGTG -CCAACATGGTTGTCTGGACTAGTG -CCAACATGGTTGTCTGGACATCTG -CCAACATGGTTGTCTGGAGAGTTG -CCAACATGGTTGTCTGGAAGACTG -CCAACATGGTTGTCTGGATCGGTA -CCAACATGGTTGTCTGGATGCCTA -CCAACATGGTTGTCTGGACCACTA -CCAACATGGTTGTCTGGAGGAGTA -CCAACATGGTTGTCTGGATCGTCT -CCAACATGGTTGTCTGGATGCACT -CCAACATGGTTGTCTGGACTGACT -CCAACATGGTTGTCTGGACAACCT -CCAACATGGTTGTCTGGAGCTACT -CCAACATGGTTGTCTGGAGGATCT -CCAACATGGTTGTCTGGAAAGGCT -CCAACATGGTTGTCTGGATCAACC -CCAACATGGTTGTCTGGATGTTCC -CCAACATGGTTGTCTGGAATTCCC -CCAACATGGTTGTCTGGATTCTCG -CCAACATGGTTGTCTGGATAGACG -CCAACATGGTTGTCTGGAGTAACG -CCAACATGGTTGTCTGGAACTTCG -CCAACATGGTTGTCTGGATACGCA -CCAACATGGTTGTCTGGACTTGCA -CCAACATGGTTGTCTGGACGAACA -CCAACATGGTTGTCTGGACAGTCA -CCAACATGGTTGTCTGGAGATCCA -CCAACATGGTTGTCTGGAACGACA -CCAACATGGTTGTCTGGAAGCTCA -CCAACATGGTTGTCTGGATCACGT -CCAACATGGTTGTCTGGACGTAGT -CCAACATGGTTGTCTGGAGTCAGT -CCAACATGGTTGTCTGGAGAAGGT -CCAACATGGTTGTCTGGAAACCGT -CCAACATGGTTGTCTGGATTGTGC -CCAACATGGTTGTCTGGACTAAGC -CCAACATGGTTGTCTGGAACTAGC -CCAACATGGTTGTCTGGAAGATGC -CCAACATGGTTGTCTGGATGAAGG -CCAACATGGTTGTCTGGACAATGG -CCAACATGGTTGTCTGGAATGAGG -CCAACATGGTTGTCTGGAAATGGG -CCAACATGGTTGTCTGGATCCTGA -CCAACATGGTTGTCTGGATAGCGA -CCAACATGGTTGTCTGGACACAGA -CCAACATGGTTGTCTGGAGCAAGA -CCAACATGGTTGTCTGGAGGTTGA -CCAACATGGTTGTCTGGATCCGAT -CCAACATGGTTGTCTGGATGGCAT -CCAACATGGTTGTCTGGACGAGAT -CCAACATGGTTGTCTGGATACCAC -CCAACATGGTTGTCTGGACAGAAC -CCAACATGGTTGTCTGGAGTCTAC -CCAACATGGTTGTCTGGAACGTAC -CCAACATGGTTGTCTGGAAGTGAC -CCAACATGGTTGTCTGGACTGTAG -CCAACATGGTTGTCTGGACCTAAG -CCAACATGGTTGTCTGGAGTTCAG -CCAACATGGTTGTCTGGAGCATAG -CCAACATGGTTGTCTGGAGACAAG -CCAACATGGTTGTCTGGAAAGCAG -CCAACATGGTTGTCTGGACGTCAA -CCAACATGGTTGTCTGGAGCTGAA -CCAACATGGTTGTCTGGAAGTACG -CCAACATGGTTGTCTGGAATCCGA -CCAACATGGTTGTCTGGAATGGGA -CCAACATGGTTGTCTGGAGTGCAA -CCAACATGGTTGTCTGGAGAGGAA -CCAACATGGTTGTCTGGACAGGTA -CCAACATGGTTGTCTGGAGACTCT -CCAACATGGTTGTCTGGAAGTCCT -CCAACATGGTTGTCTGGATAAGCC -CCAACATGGTTGTCTGGAATAGCC -CCAACATGGTTGTCTGGATAACCG -CCAACATGGTTGTCTGGAATGCCA -CCAACATGGTTGGCTAAGGGAAAC -CCAACATGGTTGGCTAAGAACACC -CCAACATGGTTGGCTAAGATCGAG -CCAACATGGTTGGCTAAGCTCCTT -CCAACATGGTTGGCTAAGCCTGTT -CCAACATGGTTGGCTAAGCGGTTT -CCAACATGGTTGGCTAAGGTGGTT -CCAACATGGTTGGCTAAGGCCTTT -CCAACATGGTTGGCTAAGGGTCTT -CCAACATGGTTGGCTAAGACGCTT -CCAACATGGTTGGCTAAGAGCGTT -CCAACATGGTTGGCTAAGTTCGTC -CCAACATGGTTGGCTAAGTCTCTC -CCAACATGGTTGGCTAAGTGGATC -CCAACATGGTTGGCTAAGCACTTC -CCAACATGGTTGGCTAAGGTACTC -CCAACATGGTTGGCTAAGGATGTC -CCAACATGGTTGGCTAAGACAGTC -CCAACATGGTTGGCTAAGTTGCTG -CCAACATGGTTGGCTAAGTCCATG -CCAACATGGTTGGCTAAGTGTGTG -CCAACATGGTTGGCTAAGCTAGTG -CCAACATGGTTGGCTAAGCATCTG -CCAACATGGTTGGCTAAGGAGTTG -CCAACATGGTTGGCTAAGAGACTG -CCAACATGGTTGGCTAAGTCGGTA -CCAACATGGTTGGCTAAGTGCCTA -CCAACATGGTTGGCTAAGCCACTA -CCAACATGGTTGGCTAAGGGAGTA -CCAACATGGTTGGCTAAGTCGTCT -CCAACATGGTTGGCTAAGTGCACT -CCAACATGGTTGGCTAAGCTGACT -CCAACATGGTTGGCTAAGCAACCT -CCAACATGGTTGGCTAAGGCTACT -CCAACATGGTTGGCTAAGGGATCT -CCAACATGGTTGGCTAAGAAGGCT -CCAACATGGTTGGCTAAGTCAACC -CCAACATGGTTGGCTAAGTGTTCC -CCAACATGGTTGGCTAAGATTCCC -CCAACATGGTTGGCTAAGTTCTCG -CCAACATGGTTGGCTAAGTAGACG -CCAACATGGTTGGCTAAGGTAACG -CCAACATGGTTGGCTAAGACTTCG -CCAACATGGTTGGCTAAGTACGCA -CCAACATGGTTGGCTAAGCTTGCA -CCAACATGGTTGGCTAAGCGAACA -CCAACATGGTTGGCTAAGCAGTCA -CCAACATGGTTGGCTAAGGATCCA -CCAACATGGTTGGCTAAGACGACA -CCAACATGGTTGGCTAAGAGCTCA -CCAACATGGTTGGCTAAGTCACGT -CCAACATGGTTGGCTAAGCGTAGT -CCAACATGGTTGGCTAAGGTCAGT -CCAACATGGTTGGCTAAGGAAGGT -CCAACATGGTTGGCTAAGAACCGT -CCAACATGGTTGGCTAAGTTGTGC -CCAACATGGTTGGCTAAGCTAAGC -CCAACATGGTTGGCTAAGACTAGC -CCAACATGGTTGGCTAAGAGATGC -CCAACATGGTTGGCTAAGTGAAGG -CCAACATGGTTGGCTAAGCAATGG -CCAACATGGTTGGCTAAGATGAGG -CCAACATGGTTGGCTAAGAATGGG -CCAACATGGTTGGCTAAGTCCTGA -CCAACATGGTTGGCTAAGTAGCGA -CCAACATGGTTGGCTAAGCACAGA -CCAACATGGTTGGCTAAGGCAAGA -CCAACATGGTTGGCTAAGGGTTGA -CCAACATGGTTGGCTAAGTCCGAT -CCAACATGGTTGGCTAAGTGGCAT -CCAACATGGTTGGCTAAGCGAGAT -CCAACATGGTTGGCTAAGTACCAC -CCAACATGGTTGGCTAAGCAGAAC -CCAACATGGTTGGCTAAGGTCTAC -CCAACATGGTTGGCTAAGACGTAC -CCAACATGGTTGGCTAAGAGTGAC -CCAACATGGTTGGCTAAGCTGTAG -CCAACATGGTTGGCTAAGCCTAAG -CCAACATGGTTGGCTAAGGTTCAG -CCAACATGGTTGGCTAAGGCATAG -CCAACATGGTTGGCTAAGGACAAG -CCAACATGGTTGGCTAAGAAGCAG -CCAACATGGTTGGCTAAGCGTCAA -CCAACATGGTTGGCTAAGGCTGAA -CCAACATGGTTGGCTAAGAGTACG -CCAACATGGTTGGCTAAGATCCGA -CCAACATGGTTGGCTAAGATGGGA -CCAACATGGTTGGCTAAGGTGCAA -CCAACATGGTTGGCTAAGGAGGAA -CCAACATGGTTGGCTAAGCAGGTA -CCAACATGGTTGGCTAAGGACTCT -CCAACATGGTTGGCTAAGAGTCCT -CCAACATGGTTGGCTAAGTAAGCC -CCAACATGGTTGGCTAAGATAGCC -CCAACATGGTTGGCTAAGTAACCG -CCAACATGGTTGGCTAAGATGCCA -CCAACATGGTTGACCTCAGGAAAC -CCAACATGGTTGACCTCAAACACC -CCAACATGGTTGACCTCAATCGAG -CCAACATGGTTGACCTCACTCCTT -CCAACATGGTTGACCTCACCTGTT -CCAACATGGTTGACCTCACGGTTT -CCAACATGGTTGACCTCAGTGGTT -CCAACATGGTTGACCTCAGCCTTT -CCAACATGGTTGACCTCAGGTCTT -CCAACATGGTTGACCTCAACGCTT -CCAACATGGTTGACCTCAAGCGTT -CCAACATGGTTGACCTCATTCGTC -CCAACATGGTTGACCTCATCTCTC -CCAACATGGTTGACCTCATGGATC -CCAACATGGTTGACCTCACACTTC -CCAACATGGTTGACCTCAGTACTC -CCAACATGGTTGACCTCAGATGTC -CCAACATGGTTGACCTCAACAGTC -CCAACATGGTTGACCTCATTGCTG -CCAACATGGTTGACCTCATCCATG -CCAACATGGTTGACCTCATGTGTG -CCAACATGGTTGACCTCACTAGTG -CCAACATGGTTGACCTCACATCTG -CCAACATGGTTGACCTCAGAGTTG -CCAACATGGTTGACCTCAAGACTG -CCAACATGGTTGACCTCATCGGTA -CCAACATGGTTGACCTCATGCCTA -CCAACATGGTTGACCTCACCACTA -CCAACATGGTTGACCTCAGGAGTA -CCAACATGGTTGACCTCATCGTCT -CCAACATGGTTGACCTCATGCACT -CCAACATGGTTGACCTCACTGACT -CCAACATGGTTGACCTCACAACCT -CCAACATGGTTGACCTCAGCTACT -CCAACATGGTTGACCTCAGGATCT -CCAACATGGTTGACCTCAAAGGCT -CCAACATGGTTGACCTCATCAACC -CCAACATGGTTGACCTCATGTTCC -CCAACATGGTTGACCTCAATTCCC -CCAACATGGTTGACCTCATTCTCG -CCAACATGGTTGACCTCATAGACG -CCAACATGGTTGACCTCAGTAACG -CCAACATGGTTGACCTCAACTTCG -CCAACATGGTTGACCTCATACGCA -CCAACATGGTTGACCTCACTTGCA -CCAACATGGTTGACCTCACGAACA -CCAACATGGTTGACCTCACAGTCA -CCAACATGGTTGACCTCAGATCCA -CCAACATGGTTGACCTCAACGACA -CCAACATGGTTGACCTCAAGCTCA -CCAACATGGTTGACCTCATCACGT -CCAACATGGTTGACCTCACGTAGT -CCAACATGGTTGACCTCAGTCAGT -CCAACATGGTTGACCTCAGAAGGT -CCAACATGGTTGACCTCAAACCGT -CCAACATGGTTGACCTCATTGTGC -CCAACATGGTTGACCTCACTAAGC -CCAACATGGTTGACCTCAACTAGC -CCAACATGGTTGACCTCAAGATGC -CCAACATGGTTGACCTCATGAAGG -CCAACATGGTTGACCTCACAATGG -CCAACATGGTTGACCTCAATGAGG -CCAACATGGTTGACCTCAAATGGG -CCAACATGGTTGACCTCATCCTGA -CCAACATGGTTGACCTCATAGCGA -CCAACATGGTTGACCTCACACAGA -CCAACATGGTTGACCTCAGCAAGA -CCAACATGGTTGACCTCAGGTTGA -CCAACATGGTTGACCTCATCCGAT -CCAACATGGTTGACCTCATGGCAT -CCAACATGGTTGACCTCACGAGAT -CCAACATGGTTGACCTCATACCAC -CCAACATGGTTGACCTCACAGAAC -CCAACATGGTTGACCTCAGTCTAC -CCAACATGGTTGACCTCAACGTAC -CCAACATGGTTGACCTCAAGTGAC -CCAACATGGTTGACCTCACTGTAG -CCAACATGGTTGACCTCACCTAAG -CCAACATGGTTGACCTCAGTTCAG -CCAACATGGTTGACCTCAGCATAG -CCAACATGGTTGACCTCAGACAAG -CCAACATGGTTGACCTCAAAGCAG -CCAACATGGTTGACCTCACGTCAA -CCAACATGGTTGACCTCAGCTGAA -CCAACATGGTTGACCTCAAGTACG -CCAACATGGTTGACCTCAATCCGA -CCAACATGGTTGACCTCAATGGGA -CCAACATGGTTGACCTCAGTGCAA -CCAACATGGTTGACCTCAGAGGAA -CCAACATGGTTGACCTCACAGGTA -CCAACATGGTTGACCTCAGACTCT -CCAACATGGTTGACCTCAAGTCCT -CCAACATGGTTGACCTCATAAGCC -CCAACATGGTTGACCTCAATAGCC -CCAACATGGTTGACCTCATAACCG -CCAACATGGTTGACCTCAATGCCA -CCAACATGGTTGTCCTGTGGAAAC -CCAACATGGTTGTCCTGTAACACC -CCAACATGGTTGTCCTGTATCGAG -CCAACATGGTTGTCCTGTCTCCTT -CCAACATGGTTGTCCTGTCCTGTT -CCAACATGGTTGTCCTGTCGGTTT -CCAACATGGTTGTCCTGTGTGGTT -CCAACATGGTTGTCCTGTGCCTTT -CCAACATGGTTGTCCTGTGGTCTT -CCAACATGGTTGTCCTGTACGCTT -CCAACATGGTTGTCCTGTAGCGTT -CCAACATGGTTGTCCTGTTTCGTC -CCAACATGGTTGTCCTGTTCTCTC -CCAACATGGTTGTCCTGTTGGATC -CCAACATGGTTGTCCTGTCACTTC -CCAACATGGTTGTCCTGTGTACTC -CCAACATGGTTGTCCTGTGATGTC -CCAACATGGTTGTCCTGTACAGTC -CCAACATGGTTGTCCTGTTTGCTG -CCAACATGGTTGTCCTGTTCCATG -CCAACATGGTTGTCCTGTTGTGTG -CCAACATGGTTGTCCTGTCTAGTG -CCAACATGGTTGTCCTGTCATCTG -CCAACATGGTTGTCCTGTGAGTTG -CCAACATGGTTGTCCTGTAGACTG -CCAACATGGTTGTCCTGTTCGGTA -CCAACATGGTTGTCCTGTTGCCTA -CCAACATGGTTGTCCTGTCCACTA -CCAACATGGTTGTCCTGTGGAGTA -CCAACATGGTTGTCCTGTTCGTCT -CCAACATGGTTGTCCTGTTGCACT -CCAACATGGTTGTCCTGTCTGACT -CCAACATGGTTGTCCTGTCAACCT -CCAACATGGTTGTCCTGTGCTACT -CCAACATGGTTGTCCTGTGGATCT -CCAACATGGTTGTCCTGTAAGGCT -CCAACATGGTTGTCCTGTTCAACC -CCAACATGGTTGTCCTGTTGTTCC -CCAACATGGTTGTCCTGTATTCCC -CCAACATGGTTGTCCTGTTTCTCG -CCAACATGGTTGTCCTGTTAGACG -CCAACATGGTTGTCCTGTGTAACG -CCAACATGGTTGTCCTGTACTTCG -CCAACATGGTTGTCCTGTTACGCA -CCAACATGGTTGTCCTGTCTTGCA -CCAACATGGTTGTCCTGTCGAACA -CCAACATGGTTGTCCTGTCAGTCA -CCAACATGGTTGTCCTGTGATCCA -CCAACATGGTTGTCCTGTACGACA -CCAACATGGTTGTCCTGTAGCTCA -CCAACATGGTTGTCCTGTTCACGT -CCAACATGGTTGTCCTGTCGTAGT -CCAACATGGTTGTCCTGTGTCAGT -CCAACATGGTTGTCCTGTGAAGGT -CCAACATGGTTGTCCTGTAACCGT -CCAACATGGTTGTCCTGTTTGTGC -CCAACATGGTTGTCCTGTCTAAGC -CCAACATGGTTGTCCTGTACTAGC -CCAACATGGTTGTCCTGTAGATGC -CCAACATGGTTGTCCTGTTGAAGG -CCAACATGGTTGTCCTGTCAATGG -CCAACATGGTTGTCCTGTATGAGG -CCAACATGGTTGTCCTGTAATGGG -CCAACATGGTTGTCCTGTTCCTGA -CCAACATGGTTGTCCTGTTAGCGA -CCAACATGGTTGTCCTGTCACAGA -CCAACATGGTTGTCCTGTGCAAGA -CCAACATGGTTGTCCTGTGGTTGA -CCAACATGGTTGTCCTGTTCCGAT -CCAACATGGTTGTCCTGTTGGCAT -CCAACATGGTTGTCCTGTCGAGAT -CCAACATGGTTGTCCTGTTACCAC -CCAACATGGTTGTCCTGTCAGAAC -CCAACATGGTTGTCCTGTGTCTAC -CCAACATGGTTGTCCTGTACGTAC -CCAACATGGTTGTCCTGTAGTGAC -CCAACATGGTTGTCCTGTCTGTAG -CCAACATGGTTGTCCTGTCCTAAG -CCAACATGGTTGTCCTGTGTTCAG -CCAACATGGTTGTCCTGTGCATAG -CCAACATGGTTGTCCTGTGACAAG -CCAACATGGTTGTCCTGTAAGCAG -CCAACATGGTTGTCCTGTCGTCAA -CCAACATGGTTGTCCTGTGCTGAA -CCAACATGGTTGTCCTGTAGTACG -CCAACATGGTTGTCCTGTATCCGA -CCAACATGGTTGTCCTGTATGGGA -CCAACATGGTTGTCCTGTGTGCAA -CCAACATGGTTGTCCTGTGAGGAA -CCAACATGGTTGTCCTGTCAGGTA -CCAACATGGTTGTCCTGTGACTCT -CCAACATGGTTGTCCTGTAGTCCT -CCAACATGGTTGTCCTGTTAAGCC -CCAACATGGTTGTCCTGTATAGCC -CCAACATGGTTGTCCTGTTAACCG -CCAACATGGTTGTCCTGTATGCCA -CCAACATGGTTGCCCATTGGAAAC -CCAACATGGTTGCCCATTAACACC -CCAACATGGTTGCCCATTATCGAG -CCAACATGGTTGCCCATTCTCCTT -CCAACATGGTTGCCCATTCCTGTT -CCAACATGGTTGCCCATTCGGTTT -CCAACATGGTTGCCCATTGTGGTT -CCAACATGGTTGCCCATTGCCTTT -CCAACATGGTTGCCCATTGGTCTT -CCAACATGGTTGCCCATTACGCTT -CCAACATGGTTGCCCATTAGCGTT -CCAACATGGTTGCCCATTTTCGTC -CCAACATGGTTGCCCATTTCTCTC -CCAACATGGTTGCCCATTTGGATC -CCAACATGGTTGCCCATTCACTTC -CCAACATGGTTGCCCATTGTACTC -CCAACATGGTTGCCCATTGATGTC -CCAACATGGTTGCCCATTACAGTC -CCAACATGGTTGCCCATTTTGCTG -CCAACATGGTTGCCCATTTCCATG -CCAACATGGTTGCCCATTTGTGTG -CCAACATGGTTGCCCATTCTAGTG -CCAACATGGTTGCCCATTCATCTG -CCAACATGGTTGCCCATTGAGTTG -CCAACATGGTTGCCCATTAGACTG -CCAACATGGTTGCCCATTTCGGTA -CCAACATGGTTGCCCATTTGCCTA -CCAACATGGTTGCCCATTCCACTA -CCAACATGGTTGCCCATTGGAGTA -CCAACATGGTTGCCCATTTCGTCT -CCAACATGGTTGCCCATTTGCACT -CCAACATGGTTGCCCATTCTGACT -CCAACATGGTTGCCCATTCAACCT -CCAACATGGTTGCCCATTGCTACT -CCAACATGGTTGCCCATTGGATCT -CCAACATGGTTGCCCATTAAGGCT -CCAACATGGTTGCCCATTTCAACC -CCAACATGGTTGCCCATTTGTTCC -CCAACATGGTTGCCCATTATTCCC -CCAACATGGTTGCCCATTTTCTCG -CCAACATGGTTGCCCATTTAGACG -CCAACATGGTTGCCCATTGTAACG -CCAACATGGTTGCCCATTACTTCG -CCAACATGGTTGCCCATTTACGCA -CCAACATGGTTGCCCATTCTTGCA -CCAACATGGTTGCCCATTCGAACA -CCAACATGGTTGCCCATTCAGTCA -CCAACATGGTTGCCCATTGATCCA -CCAACATGGTTGCCCATTACGACA -CCAACATGGTTGCCCATTAGCTCA -CCAACATGGTTGCCCATTTCACGT -CCAACATGGTTGCCCATTCGTAGT -CCAACATGGTTGCCCATTGTCAGT -CCAACATGGTTGCCCATTGAAGGT -CCAACATGGTTGCCCATTAACCGT -CCAACATGGTTGCCCATTTTGTGC -CCAACATGGTTGCCCATTCTAAGC -CCAACATGGTTGCCCATTACTAGC -CCAACATGGTTGCCCATTAGATGC -CCAACATGGTTGCCCATTTGAAGG -CCAACATGGTTGCCCATTCAATGG -CCAACATGGTTGCCCATTATGAGG -CCAACATGGTTGCCCATTAATGGG -CCAACATGGTTGCCCATTTCCTGA -CCAACATGGTTGCCCATTTAGCGA -CCAACATGGTTGCCCATTCACAGA -CCAACATGGTTGCCCATTGCAAGA -CCAACATGGTTGCCCATTGGTTGA -CCAACATGGTTGCCCATTTCCGAT -CCAACATGGTTGCCCATTTGGCAT -CCAACATGGTTGCCCATTCGAGAT -CCAACATGGTTGCCCATTTACCAC -CCAACATGGTTGCCCATTCAGAAC -CCAACATGGTTGCCCATTGTCTAC -CCAACATGGTTGCCCATTACGTAC -CCAACATGGTTGCCCATTAGTGAC -CCAACATGGTTGCCCATTCTGTAG -CCAACATGGTTGCCCATTCCTAAG -CCAACATGGTTGCCCATTGTTCAG -CCAACATGGTTGCCCATTGCATAG -CCAACATGGTTGCCCATTGACAAG -CCAACATGGTTGCCCATTAAGCAG -CCAACATGGTTGCCCATTCGTCAA -CCAACATGGTTGCCCATTGCTGAA -CCAACATGGTTGCCCATTAGTACG -CCAACATGGTTGCCCATTATCCGA -CCAACATGGTTGCCCATTATGGGA -CCAACATGGTTGCCCATTGTGCAA -CCAACATGGTTGCCCATTGAGGAA -CCAACATGGTTGCCCATTCAGGTA -CCAACATGGTTGCCCATTGACTCT -CCAACATGGTTGCCCATTAGTCCT -CCAACATGGTTGCCCATTTAAGCC -CCAACATGGTTGCCCATTATAGCC -CCAACATGGTTGCCCATTTAACCG -CCAACATGGTTGCCCATTATGCCA -CCAACATGGTTGTCGTTCGGAAAC -CCAACATGGTTGTCGTTCAACACC -CCAACATGGTTGTCGTTCATCGAG -CCAACATGGTTGTCGTTCCTCCTT -CCAACATGGTTGTCGTTCCCTGTT -CCAACATGGTTGTCGTTCCGGTTT -CCAACATGGTTGTCGTTCGTGGTT -CCAACATGGTTGTCGTTCGCCTTT -CCAACATGGTTGTCGTTCGGTCTT -CCAACATGGTTGTCGTTCACGCTT -CCAACATGGTTGTCGTTCAGCGTT -CCAACATGGTTGTCGTTCTTCGTC -CCAACATGGTTGTCGTTCTCTCTC -CCAACATGGTTGTCGTTCTGGATC -CCAACATGGTTGTCGTTCCACTTC -CCAACATGGTTGTCGTTCGTACTC -CCAACATGGTTGTCGTTCGATGTC -CCAACATGGTTGTCGTTCACAGTC -CCAACATGGTTGTCGTTCTTGCTG -CCAACATGGTTGTCGTTCTCCATG -CCAACATGGTTGTCGTTCTGTGTG -CCAACATGGTTGTCGTTCCTAGTG -CCAACATGGTTGTCGTTCCATCTG -CCAACATGGTTGTCGTTCGAGTTG -CCAACATGGTTGTCGTTCAGACTG -CCAACATGGTTGTCGTTCTCGGTA -CCAACATGGTTGTCGTTCTGCCTA -CCAACATGGTTGTCGTTCCCACTA -CCAACATGGTTGTCGTTCGGAGTA -CCAACATGGTTGTCGTTCTCGTCT -CCAACATGGTTGTCGTTCTGCACT -CCAACATGGTTGTCGTTCCTGACT -CCAACATGGTTGTCGTTCCAACCT -CCAACATGGTTGTCGTTCGCTACT -CCAACATGGTTGTCGTTCGGATCT -CCAACATGGTTGTCGTTCAAGGCT -CCAACATGGTTGTCGTTCTCAACC -CCAACATGGTTGTCGTTCTGTTCC -CCAACATGGTTGTCGTTCATTCCC -CCAACATGGTTGTCGTTCTTCTCG -CCAACATGGTTGTCGTTCTAGACG -CCAACATGGTTGTCGTTCGTAACG -CCAACATGGTTGTCGTTCACTTCG -CCAACATGGTTGTCGTTCTACGCA -CCAACATGGTTGTCGTTCCTTGCA -CCAACATGGTTGTCGTTCCGAACA -CCAACATGGTTGTCGTTCCAGTCA -CCAACATGGTTGTCGTTCGATCCA -CCAACATGGTTGTCGTTCACGACA -CCAACATGGTTGTCGTTCAGCTCA -CCAACATGGTTGTCGTTCTCACGT -CCAACATGGTTGTCGTTCCGTAGT -CCAACATGGTTGTCGTTCGTCAGT -CCAACATGGTTGTCGTTCGAAGGT -CCAACATGGTTGTCGTTCAACCGT -CCAACATGGTTGTCGTTCTTGTGC -CCAACATGGTTGTCGTTCCTAAGC -CCAACATGGTTGTCGTTCACTAGC -CCAACATGGTTGTCGTTCAGATGC -CCAACATGGTTGTCGTTCTGAAGG -CCAACATGGTTGTCGTTCCAATGG -CCAACATGGTTGTCGTTCATGAGG -CCAACATGGTTGTCGTTCAATGGG -CCAACATGGTTGTCGTTCTCCTGA -CCAACATGGTTGTCGTTCTAGCGA -CCAACATGGTTGTCGTTCCACAGA -CCAACATGGTTGTCGTTCGCAAGA -CCAACATGGTTGTCGTTCGGTTGA -CCAACATGGTTGTCGTTCTCCGAT -CCAACATGGTTGTCGTTCTGGCAT -CCAACATGGTTGTCGTTCCGAGAT -CCAACATGGTTGTCGTTCTACCAC -CCAACATGGTTGTCGTTCCAGAAC -CCAACATGGTTGTCGTTCGTCTAC -CCAACATGGTTGTCGTTCACGTAC -CCAACATGGTTGTCGTTCAGTGAC -CCAACATGGTTGTCGTTCCTGTAG -CCAACATGGTTGTCGTTCCCTAAG -CCAACATGGTTGTCGTTCGTTCAG -CCAACATGGTTGTCGTTCGCATAG -CCAACATGGTTGTCGTTCGACAAG -CCAACATGGTTGTCGTTCAAGCAG -CCAACATGGTTGTCGTTCCGTCAA -CCAACATGGTTGTCGTTCGCTGAA -CCAACATGGTTGTCGTTCAGTACG -CCAACATGGTTGTCGTTCATCCGA -CCAACATGGTTGTCGTTCATGGGA -CCAACATGGTTGTCGTTCGTGCAA -CCAACATGGTTGTCGTTCGAGGAA -CCAACATGGTTGTCGTTCCAGGTA -CCAACATGGTTGTCGTTCGACTCT -CCAACATGGTTGTCGTTCAGTCCT -CCAACATGGTTGTCGTTCTAAGCC -CCAACATGGTTGTCGTTCATAGCC -CCAACATGGTTGTCGTTCTAACCG -CCAACATGGTTGTCGTTCATGCCA -CCAACATGGTTGACGTAGGGAAAC -CCAACATGGTTGACGTAGAACACC -CCAACATGGTTGACGTAGATCGAG -CCAACATGGTTGACGTAGCTCCTT -CCAACATGGTTGACGTAGCCTGTT -CCAACATGGTTGACGTAGCGGTTT -CCAACATGGTTGACGTAGGTGGTT -CCAACATGGTTGACGTAGGCCTTT -CCAACATGGTTGACGTAGGGTCTT -CCAACATGGTTGACGTAGACGCTT -CCAACATGGTTGACGTAGAGCGTT -CCAACATGGTTGACGTAGTTCGTC -CCAACATGGTTGACGTAGTCTCTC -CCAACATGGTTGACGTAGTGGATC -CCAACATGGTTGACGTAGCACTTC -CCAACATGGTTGACGTAGGTACTC -CCAACATGGTTGACGTAGGATGTC -CCAACATGGTTGACGTAGACAGTC -CCAACATGGTTGACGTAGTTGCTG -CCAACATGGTTGACGTAGTCCATG -CCAACATGGTTGACGTAGTGTGTG -CCAACATGGTTGACGTAGCTAGTG -CCAACATGGTTGACGTAGCATCTG -CCAACATGGTTGACGTAGGAGTTG -CCAACATGGTTGACGTAGAGACTG -CCAACATGGTTGACGTAGTCGGTA -CCAACATGGTTGACGTAGTGCCTA -CCAACATGGTTGACGTAGCCACTA -CCAACATGGTTGACGTAGGGAGTA -CCAACATGGTTGACGTAGTCGTCT -CCAACATGGTTGACGTAGTGCACT -CCAACATGGTTGACGTAGCTGACT -CCAACATGGTTGACGTAGCAACCT -CCAACATGGTTGACGTAGGCTACT -CCAACATGGTTGACGTAGGGATCT -CCAACATGGTTGACGTAGAAGGCT -CCAACATGGTTGACGTAGTCAACC -CCAACATGGTTGACGTAGTGTTCC -CCAACATGGTTGACGTAGATTCCC -CCAACATGGTTGACGTAGTTCTCG -CCAACATGGTTGACGTAGTAGACG -CCAACATGGTTGACGTAGGTAACG -CCAACATGGTTGACGTAGACTTCG -CCAACATGGTTGACGTAGTACGCA -CCAACATGGTTGACGTAGCTTGCA -CCAACATGGTTGACGTAGCGAACA -CCAACATGGTTGACGTAGCAGTCA -CCAACATGGTTGACGTAGGATCCA -CCAACATGGTTGACGTAGACGACA -CCAACATGGTTGACGTAGAGCTCA -CCAACATGGTTGACGTAGTCACGT -CCAACATGGTTGACGTAGCGTAGT -CCAACATGGTTGACGTAGGTCAGT -CCAACATGGTTGACGTAGGAAGGT -CCAACATGGTTGACGTAGAACCGT -CCAACATGGTTGACGTAGTTGTGC -CCAACATGGTTGACGTAGCTAAGC -CCAACATGGTTGACGTAGACTAGC -CCAACATGGTTGACGTAGAGATGC -CCAACATGGTTGACGTAGTGAAGG -CCAACATGGTTGACGTAGCAATGG -CCAACATGGTTGACGTAGATGAGG -CCAACATGGTTGACGTAGAATGGG -CCAACATGGTTGACGTAGTCCTGA -CCAACATGGTTGACGTAGTAGCGA -CCAACATGGTTGACGTAGCACAGA -CCAACATGGTTGACGTAGGCAAGA -CCAACATGGTTGACGTAGGGTTGA -CCAACATGGTTGACGTAGTCCGAT -CCAACATGGTTGACGTAGTGGCAT -CCAACATGGTTGACGTAGCGAGAT -CCAACATGGTTGACGTAGTACCAC -CCAACATGGTTGACGTAGCAGAAC -CCAACATGGTTGACGTAGGTCTAC -CCAACATGGTTGACGTAGACGTAC -CCAACATGGTTGACGTAGAGTGAC -CCAACATGGTTGACGTAGCTGTAG -CCAACATGGTTGACGTAGCCTAAG -CCAACATGGTTGACGTAGGTTCAG -CCAACATGGTTGACGTAGGCATAG -CCAACATGGTTGACGTAGGACAAG -CCAACATGGTTGACGTAGAAGCAG -CCAACATGGTTGACGTAGCGTCAA -CCAACATGGTTGACGTAGGCTGAA -CCAACATGGTTGACGTAGAGTACG -CCAACATGGTTGACGTAGATCCGA -CCAACATGGTTGACGTAGATGGGA -CCAACATGGTTGACGTAGGTGCAA -CCAACATGGTTGACGTAGGAGGAA -CCAACATGGTTGACGTAGCAGGTA -CCAACATGGTTGACGTAGGACTCT -CCAACATGGTTGACGTAGAGTCCT -CCAACATGGTTGACGTAGTAAGCC -CCAACATGGTTGACGTAGATAGCC -CCAACATGGTTGACGTAGTAACCG -CCAACATGGTTGACGTAGATGCCA -CCAACATGGTTGACGGTAGGAAAC -CCAACATGGTTGACGGTAAACACC -CCAACATGGTTGACGGTAATCGAG -CCAACATGGTTGACGGTACTCCTT -CCAACATGGTTGACGGTACCTGTT -CCAACATGGTTGACGGTACGGTTT -CCAACATGGTTGACGGTAGTGGTT -CCAACATGGTTGACGGTAGCCTTT -CCAACATGGTTGACGGTAGGTCTT -CCAACATGGTTGACGGTAACGCTT -CCAACATGGTTGACGGTAAGCGTT -CCAACATGGTTGACGGTATTCGTC -CCAACATGGTTGACGGTATCTCTC -CCAACATGGTTGACGGTATGGATC -CCAACATGGTTGACGGTACACTTC -CCAACATGGTTGACGGTAGTACTC -CCAACATGGTTGACGGTAGATGTC -CCAACATGGTTGACGGTAACAGTC -CCAACATGGTTGACGGTATTGCTG -CCAACATGGTTGACGGTATCCATG -CCAACATGGTTGACGGTATGTGTG -CCAACATGGTTGACGGTACTAGTG -CCAACATGGTTGACGGTACATCTG -CCAACATGGTTGACGGTAGAGTTG -CCAACATGGTTGACGGTAAGACTG -CCAACATGGTTGACGGTATCGGTA -CCAACATGGTTGACGGTATGCCTA -CCAACATGGTTGACGGTACCACTA -CCAACATGGTTGACGGTAGGAGTA -CCAACATGGTTGACGGTATCGTCT -CCAACATGGTTGACGGTATGCACT -CCAACATGGTTGACGGTACTGACT -CCAACATGGTTGACGGTACAACCT -CCAACATGGTTGACGGTAGCTACT -CCAACATGGTTGACGGTAGGATCT -CCAACATGGTTGACGGTAAAGGCT -CCAACATGGTTGACGGTATCAACC -CCAACATGGTTGACGGTATGTTCC -CCAACATGGTTGACGGTAATTCCC -CCAACATGGTTGACGGTATTCTCG -CCAACATGGTTGACGGTATAGACG -CCAACATGGTTGACGGTAGTAACG -CCAACATGGTTGACGGTAACTTCG -CCAACATGGTTGACGGTATACGCA -CCAACATGGTTGACGGTACTTGCA -CCAACATGGTTGACGGTACGAACA -CCAACATGGTTGACGGTACAGTCA -CCAACATGGTTGACGGTAGATCCA -CCAACATGGTTGACGGTAACGACA -CCAACATGGTTGACGGTAAGCTCA -CCAACATGGTTGACGGTATCACGT -CCAACATGGTTGACGGTACGTAGT -CCAACATGGTTGACGGTAGTCAGT -CCAACATGGTTGACGGTAGAAGGT -CCAACATGGTTGACGGTAAACCGT -CCAACATGGTTGACGGTATTGTGC -CCAACATGGTTGACGGTACTAAGC -CCAACATGGTTGACGGTAACTAGC -CCAACATGGTTGACGGTAAGATGC -CCAACATGGTTGACGGTATGAAGG -CCAACATGGTTGACGGTACAATGG -CCAACATGGTTGACGGTAATGAGG -CCAACATGGTTGACGGTAAATGGG -CCAACATGGTTGACGGTATCCTGA -CCAACATGGTTGACGGTATAGCGA -CCAACATGGTTGACGGTACACAGA -CCAACATGGTTGACGGTAGCAAGA -CCAACATGGTTGACGGTAGGTTGA -CCAACATGGTTGACGGTATCCGAT -CCAACATGGTTGACGGTATGGCAT -CCAACATGGTTGACGGTACGAGAT -CCAACATGGTTGACGGTATACCAC -CCAACATGGTTGACGGTACAGAAC -CCAACATGGTTGACGGTAGTCTAC -CCAACATGGTTGACGGTAACGTAC -CCAACATGGTTGACGGTAAGTGAC -CCAACATGGTTGACGGTACTGTAG -CCAACATGGTTGACGGTACCTAAG -CCAACATGGTTGACGGTAGTTCAG -CCAACATGGTTGACGGTAGCATAG -CCAACATGGTTGACGGTAGACAAG -CCAACATGGTTGACGGTAAAGCAG -CCAACATGGTTGACGGTACGTCAA -CCAACATGGTTGACGGTAGCTGAA -CCAACATGGTTGACGGTAAGTACG -CCAACATGGTTGACGGTAATCCGA -CCAACATGGTTGACGGTAATGGGA -CCAACATGGTTGACGGTAGTGCAA -CCAACATGGTTGACGGTAGAGGAA -CCAACATGGTTGACGGTACAGGTA -CCAACATGGTTGACGGTAGACTCT -CCAACATGGTTGACGGTAAGTCCT -CCAACATGGTTGACGGTATAAGCC -CCAACATGGTTGACGGTAATAGCC -CCAACATGGTTGACGGTATAACCG -CCAACATGGTTGACGGTAATGCCA -CCAACATGGTTGTCGACTGGAAAC -CCAACATGGTTGTCGACTAACACC -CCAACATGGTTGTCGACTATCGAG -CCAACATGGTTGTCGACTCTCCTT -CCAACATGGTTGTCGACTCCTGTT -CCAACATGGTTGTCGACTCGGTTT -CCAACATGGTTGTCGACTGTGGTT -CCAACATGGTTGTCGACTGCCTTT -CCAACATGGTTGTCGACTGGTCTT -CCAACATGGTTGTCGACTACGCTT -CCAACATGGTTGTCGACTAGCGTT -CCAACATGGTTGTCGACTTTCGTC -CCAACATGGTTGTCGACTTCTCTC -CCAACATGGTTGTCGACTTGGATC -CCAACATGGTTGTCGACTCACTTC -CCAACATGGTTGTCGACTGTACTC -CCAACATGGTTGTCGACTGATGTC -CCAACATGGTTGTCGACTACAGTC -CCAACATGGTTGTCGACTTTGCTG -CCAACATGGTTGTCGACTTCCATG -CCAACATGGTTGTCGACTTGTGTG -CCAACATGGTTGTCGACTCTAGTG -CCAACATGGTTGTCGACTCATCTG -CCAACATGGTTGTCGACTGAGTTG -CCAACATGGTTGTCGACTAGACTG -CCAACATGGTTGTCGACTTCGGTA -CCAACATGGTTGTCGACTTGCCTA -CCAACATGGTTGTCGACTCCACTA -CCAACATGGTTGTCGACTGGAGTA -CCAACATGGTTGTCGACTTCGTCT -CCAACATGGTTGTCGACTTGCACT -CCAACATGGTTGTCGACTCTGACT -CCAACATGGTTGTCGACTCAACCT -CCAACATGGTTGTCGACTGCTACT -CCAACATGGTTGTCGACTGGATCT -CCAACATGGTTGTCGACTAAGGCT -CCAACATGGTTGTCGACTTCAACC -CCAACATGGTTGTCGACTTGTTCC -CCAACATGGTTGTCGACTATTCCC -CCAACATGGTTGTCGACTTTCTCG -CCAACATGGTTGTCGACTTAGACG -CCAACATGGTTGTCGACTGTAACG -CCAACATGGTTGTCGACTACTTCG -CCAACATGGTTGTCGACTTACGCA -CCAACATGGTTGTCGACTCTTGCA -CCAACATGGTTGTCGACTCGAACA -CCAACATGGTTGTCGACTCAGTCA -CCAACATGGTTGTCGACTGATCCA -CCAACATGGTTGTCGACTACGACA -CCAACATGGTTGTCGACTAGCTCA -CCAACATGGTTGTCGACTTCACGT -CCAACATGGTTGTCGACTCGTAGT -CCAACATGGTTGTCGACTGTCAGT -CCAACATGGTTGTCGACTGAAGGT -CCAACATGGTTGTCGACTAACCGT -CCAACATGGTTGTCGACTTTGTGC -CCAACATGGTTGTCGACTCTAAGC -CCAACATGGTTGTCGACTACTAGC -CCAACATGGTTGTCGACTAGATGC -CCAACATGGTTGTCGACTTGAAGG -CCAACATGGTTGTCGACTCAATGG -CCAACATGGTTGTCGACTATGAGG -CCAACATGGTTGTCGACTAATGGG -CCAACATGGTTGTCGACTTCCTGA -CCAACATGGTTGTCGACTTAGCGA -CCAACATGGTTGTCGACTCACAGA -CCAACATGGTTGTCGACTGCAAGA -CCAACATGGTTGTCGACTGGTTGA -CCAACATGGTTGTCGACTTCCGAT -CCAACATGGTTGTCGACTTGGCAT -CCAACATGGTTGTCGACTCGAGAT -CCAACATGGTTGTCGACTTACCAC -CCAACATGGTTGTCGACTCAGAAC -CCAACATGGTTGTCGACTGTCTAC -CCAACATGGTTGTCGACTACGTAC -CCAACATGGTTGTCGACTAGTGAC -CCAACATGGTTGTCGACTCTGTAG -CCAACATGGTTGTCGACTCCTAAG -CCAACATGGTTGTCGACTGTTCAG -CCAACATGGTTGTCGACTGCATAG -CCAACATGGTTGTCGACTGACAAG -CCAACATGGTTGTCGACTAAGCAG -CCAACATGGTTGTCGACTCGTCAA -CCAACATGGTTGTCGACTGCTGAA -CCAACATGGTTGTCGACTAGTACG -CCAACATGGTTGTCGACTATCCGA -CCAACATGGTTGTCGACTATGGGA -CCAACATGGTTGTCGACTGTGCAA -CCAACATGGTTGTCGACTGAGGAA -CCAACATGGTTGTCGACTCAGGTA -CCAACATGGTTGTCGACTGACTCT -CCAACATGGTTGTCGACTAGTCCT -CCAACATGGTTGTCGACTTAAGCC -CCAACATGGTTGTCGACTATAGCC -CCAACATGGTTGTCGACTTAACCG -CCAACATGGTTGTCGACTATGCCA -CCAACATGGTTGGCATACGGAAAC -CCAACATGGTTGGCATACAACACC -CCAACATGGTTGGCATACATCGAG -CCAACATGGTTGGCATACCTCCTT -CCAACATGGTTGGCATACCCTGTT -CCAACATGGTTGGCATACCGGTTT -CCAACATGGTTGGCATACGTGGTT -CCAACATGGTTGGCATACGCCTTT -CCAACATGGTTGGCATACGGTCTT -CCAACATGGTTGGCATACACGCTT -CCAACATGGTTGGCATACAGCGTT -CCAACATGGTTGGCATACTTCGTC -CCAACATGGTTGGCATACTCTCTC -CCAACATGGTTGGCATACTGGATC -CCAACATGGTTGGCATACCACTTC -CCAACATGGTTGGCATACGTACTC -CCAACATGGTTGGCATACGATGTC -CCAACATGGTTGGCATACACAGTC -CCAACATGGTTGGCATACTTGCTG -CCAACATGGTTGGCATACTCCATG -CCAACATGGTTGGCATACTGTGTG -CCAACATGGTTGGCATACCTAGTG -CCAACATGGTTGGCATACCATCTG -CCAACATGGTTGGCATACGAGTTG -CCAACATGGTTGGCATACAGACTG -CCAACATGGTTGGCATACTCGGTA -CCAACATGGTTGGCATACTGCCTA -CCAACATGGTTGGCATACCCACTA -CCAACATGGTTGGCATACGGAGTA -CCAACATGGTTGGCATACTCGTCT -CCAACATGGTTGGCATACTGCACT -CCAACATGGTTGGCATACCTGACT -CCAACATGGTTGGCATACCAACCT -CCAACATGGTTGGCATACGCTACT -CCAACATGGTTGGCATACGGATCT -CCAACATGGTTGGCATACAAGGCT -CCAACATGGTTGGCATACTCAACC -CCAACATGGTTGGCATACTGTTCC -CCAACATGGTTGGCATACATTCCC -CCAACATGGTTGGCATACTTCTCG -CCAACATGGTTGGCATACTAGACG -CCAACATGGTTGGCATACGTAACG -CCAACATGGTTGGCATACACTTCG -CCAACATGGTTGGCATACTACGCA -CCAACATGGTTGGCATACCTTGCA -CCAACATGGTTGGCATACCGAACA -CCAACATGGTTGGCATACCAGTCA -CCAACATGGTTGGCATACGATCCA -CCAACATGGTTGGCATACACGACA -CCAACATGGTTGGCATACAGCTCA -CCAACATGGTTGGCATACTCACGT -CCAACATGGTTGGCATACCGTAGT -CCAACATGGTTGGCATACGTCAGT -CCAACATGGTTGGCATACGAAGGT -CCAACATGGTTGGCATACAACCGT -CCAACATGGTTGGCATACTTGTGC -CCAACATGGTTGGCATACCTAAGC -CCAACATGGTTGGCATACACTAGC -CCAACATGGTTGGCATACAGATGC -CCAACATGGTTGGCATACTGAAGG -CCAACATGGTTGGCATACCAATGG -CCAACATGGTTGGCATACATGAGG -CCAACATGGTTGGCATACAATGGG -CCAACATGGTTGGCATACTCCTGA -CCAACATGGTTGGCATACTAGCGA -CCAACATGGTTGGCATACCACAGA -CCAACATGGTTGGCATACGCAAGA -CCAACATGGTTGGCATACGGTTGA -CCAACATGGTTGGCATACTCCGAT -CCAACATGGTTGGCATACTGGCAT -CCAACATGGTTGGCATACCGAGAT -CCAACATGGTTGGCATACTACCAC -CCAACATGGTTGGCATACCAGAAC -CCAACATGGTTGGCATACGTCTAC -CCAACATGGTTGGCATACACGTAC -CCAACATGGTTGGCATACAGTGAC -CCAACATGGTTGGCATACCTGTAG -CCAACATGGTTGGCATACCCTAAG -CCAACATGGTTGGCATACGTTCAG -CCAACATGGTTGGCATACGCATAG -CCAACATGGTTGGCATACGACAAG -CCAACATGGTTGGCATACAAGCAG -CCAACATGGTTGGCATACCGTCAA -CCAACATGGTTGGCATACGCTGAA -CCAACATGGTTGGCATACAGTACG -CCAACATGGTTGGCATACATCCGA -CCAACATGGTTGGCATACATGGGA -CCAACATGGTTGGCATACGTGCAA -CCAACATGGTTGGCATACGAGGAA -CCAACATGGTTGGCATACCAGGTA -CCAACATGGTTGGCATACGACTCT -CCAACATGGTTGGCATACAGTCCT -CCAACATGGTTGGCATACTAAGCC -CCAACATGGTTGGCATACATAGCC -CCAACATGGTTGGCATACTAACCG -CCAACATGGTTGGCATACATGCCA -CCAACATGGTTGGCACTTGGAAAC -CCAACATGGTTGGCACTTAACACC -CCAACATGGTTGGCACTTATCGAG -CCAACATGGTTGGCACTTCTCCTT -CCAACATGGTTGGCACTTCCTGTT -CCAACATGGTTGGCACTTCGGTTT -CCAACATGGTTGGCACTTGTGGTT -CCAACATGGTTGGCACTTGCCTTT -CCAACATGGTTGGCACTTGGTCTT -CCAACATGGTTGGCACTTACGCTT -CCAACATGGTTGGCACTTAGCGTT -CCAACATGGTTGGCACTTTTCGTC -CCAACATGGTTGGCACTTTCTCTC -CCAACATGGTTGGCACTTTGGATC -CCAACATGGTTGGCACTTCACTTC -CCAACATGGTTGGCACTTGTACTC -CCAACATGGTTGGCACTTGATGTC -CCAACATGGTTGGCACTTACAGTC -CCAACATGGTTGGCACTTTTGCTG -CCAACATGGTTGGCACTTTCCATG -CCAACATGGTTGGCACTTTGTGTG -CCAACATGGTTGGCACTTCTAGTG -CCAACATGGTTGGCACTTCATCTG -CCAACATGGTTGGCACTTGAGTTG -CCAACATGGTTGGCACTTAGACTG -CCAACATGGTTGGCACTTTCGGTA -CCAACATGGTTGGCACTTTGCCTA -CCAACATGGTTGGCACTTCCACTA -CCAACATGGTTGGCACTTGGAGTA -CCAACATGGTTGGCACTTTCGTCT -CCAACATGGTTGGCACTTTGCACT -CCAACATGGTTGGCACTTCTGACT -CCAACATGGTTGGCACTTCAACCT -CCAACATGGTTGGCACTTGCTACT -CCAACATGGTTGGCACTTGGATCT -CCAACATGGTTGGCACTTAAGGCT -CCAACATGGTTGGCACTTTCAACC -CCAACATGGTTGGCACTTTGTTCC -CCAACATGGTTGGCACTTATTCCC -CCAACATGGTTGGCACTTTTCTCG -CCAACATGGTTGGCACTTTAGACG -CCAACATGGTTGGCACTTGTAACG -CCAACATGGTTGGCACTTACTTCG -CCAACATGGTTGGCACTTTACGCA -CCAACATGGTTGGCACTTCTTGCA -CCAACATGGTTGGCACTTCGAACA -CCAACATGGTTGGCACTTCAGTCA -CCAACATGGTTGGCACTTGATCCA -CCAACATGGTTGGCACTTACGACA -CCAACATGGTTGGCACTTAGCTCA -CCAACATGGTTGGCACTTTCACGT -CCAACATGGTTGGCACTTCGTAGT -CCAACATGGTTGGCACTTGTCAGT -CCAACATGGTTGGCACTTGAAGGT -CCAACATGGTTGGCACTTAACCGT -CCAACATGGTTGGCACTTTTGTGC -CCAACATGGTTGGCACTTCTAAGC -CCAACATGGTTGGCACTTACTAGC -CCAACATGGTTGGCACTTAGATGC -CCAACATGGTTGGCACTTTGAAGG -CCAACATGGTTGGCACTTCAATGG -CCAACATGGTTGGCACTTATGAGG -CCAACATGGTTGGCACTTAATGGG -CCAACATGGTTGGCACTTTCCTGA -CCAACATGGTTGGCACTTTAGCGA -CCAACATGGTTGGCACTTCACAGA -CCAACATGGTTGGCACTTGCAAGA -CCAACATGGTTGGCACTTGGTTGA -CCAACATGGTTGGCACTTTCCGAT -CCAACATGGTTGGCACTTTGGCAT -CCAACATGGTTGGCACTTCGAGAT -CCAACATGGTTGGCACTTTACCAC -CCAACATGGTTGGCACTTCAGAAC -CCAACATGGTTGGCACTTGTCTAC -CCAACATGGTTGGCACTTACGTAC -CCAACATGGTTGGCACTTAGTGAC -CCAACATGGTTGGCACTTCTGTAG -CCAACATGGTTGGCACTTCCTAAG -CCAACATGGTTGGCACTTGTTCAG -CCAACATGGTTGGCACTTGCATAG -CCAACATGGTTGGCACTTGACAAG -CCAACATGGTTGGCACTTAAGCAG -CCAACATGGTTGGCACTTCGTCAA -CCAACATGGTTGGCACTTGCTGAA -CCAACATGGTTGGCACTTAGTACG -CCAACATGGTTGGCACTTATCCGA -CCAACATGGTTGGCACTTATGGGA -CCAACATGGTTGGCACTTGTGCAA -CCAACATGGTTGGCACTTGAGGAA -CCAACATGGTTGGCACTTCAGGTA -CCAACATGGTTGGCACTTGACTCT -CCAACATGGTTGGCACTTAGTCCT -CCAACATGGTTGGCACTTTAAGCC -CCAACATGGTTGGCACTTATAGCC -CCAACATGGTTGGCACTTTAACCG -CCAACATGGTTGGCACTTATGCCA -CCAACATGGTTGACACGAGGAAAC -CCAACATGGTTGACACGAAACACC -CCAACATGGTTGACACGAATCGAG -CCAACATGGTTGACACGACTCCTT -CCAACATGGTTGACACGACCTGTT -CCAACATGGTTGACACGACGGTTT -CCAACATGGTTGACACGAGTGGTT -CCAACATGGTTGACACGAGCCTTT -CCAACATGGTTGACACGAGGTCTT -CCAACATGGTTGACACGAACGCTT -CCAACATGGTTGACACGAAGCGTT -CCAACATGGTTGACACGATTCGTC -CCAACATGGTTGACACGATCTCTC -CCAACATGGTTGACACGATGGATC -CCAACATGGTTGACACGACACTTC -CCAACATGGTTGACACGAGTACTC -CCAACATGGTTGACACGAGATGTC -CCAACATGGTTGACACGAACAGTC -CCAACATGGTTGACACGATTGCTG -CCAACATGGTTGACACGATCCATG -CCAACATGGTTGACACGATGTGTG -CCAACATGGTTGACACGACTAGTG -CCAACATGGTTGACACGACATCTG -CCAACATGGTTGACACGAGAGTTG -CCAACATGGTTGACACGAAGACTG -CCAACATGGTTGACACGATCGGTA -CCAACATGGTTGACACGATGCCTA -CCAACATGGTTGACACGACCACTA -CCAACATGGTTGACACGAGGAGTA -CCAACATGGTTGACACGATCGTCT -CCAACATGGTTGACACGATGCACT -CCAACATGGTTGACACGACTGACT -CCAACATGGTTGACACGACAACCT -CCAACATGGTTGACACGAGCTACT -CCAACATGGTTGACACGAGGATCT -CCAACATGGTTGACACGAAAGGCT -CCAACATGGTTGACACGATCAACC -CCAACATGGTTGACACGATGTTCC -CCAACATGGTTGACACGAATTCCC -CCAACATGGTTGACACGATTCTCG -CCAACATGGTTGACACGATAGACG -CCAACATGGTTGACACGAGTAACG -CCAACATGGTTGACACGAACTTCG -CCAACATGGTTGACACGATACGCA -CCAACATGGTTGACACGACTTGCA -CCAACATGGTTGACACGACGAACA -CCAACATGGTTGACACGACAGTCA -CCAACATGGTTGACACGAGATCCA -CCAACATGGTTGACACGAACGACA -CCAACATGGTTGACACGAAGCTCA -CCAACATGGTTGACACGATCACGT -CCAACATGGTTGACACGACGTAGT -CCAACATGGTTGACACGAGTCAGT -CCAACATGGTTGACACGAGAAGGT -CCAACATGGTTGACACGAAACCGT -CCAACATGGTTGACACGATTGTGC -CCAACATGGTTGACACGACTAAGC -CCAACATGGTTGACACGAACTAGC -CCAACATGGTTGACACGAAGATGC -CCAACATGGTTGACACGATGAAGG -CCAACATGGTTGACACGACAATGG -CCAACATGGTTGACACGAATGAGG -CCAACATGGTTGACACGAAATGGG -CCAACATGGTTGACACGATCCTGA -CCAACATGGTTGACACGATAGCGA -CCAACATGGTTGACACGACACAGA -CCAACATGGTTGACACGAGCAAGA -CCAACATGGTTGACACGAGGTTGA -CCAACATGGTTGACACGATCCGAT -CCAACATGGTTGACACGATGGCAT -CCAACATGGTTGACACGACGAGAT -CCAACATGGTTGACACGATACCAC -CCAACATGGTTGACACGACAGAAC -CCAACATGGTTGACACGAGTCTAC -CCAACATGGTTGACACGAACGTAC -CCAACATGGTTGACACGAAGTGAC -CCAACATGGTTGACACGACTGTAG -CCAACATGGTTGACACGACCTAAG -CCAACATGGTTGACACGAGTTCAG -CCAACATGGTTGACACGAGCATAG -CCAACATGGTTGACACGAGACAAG -CCAACATGGTTGACACGAAAGCAG -CCAACATGGTTGACACGACGTCAA -CCAACATGGTTGACACGAGCTGAA -CCAACATGGTTGACACGAAGTACG -CCAACATGGTTGACACGAATCCGA -CCAACATGGTTGACACGAATGGGA -CCAACATGGTTGACACGAGTGCAA -CCAACATGGTTGACACGAGAGGAA -CCAACATGGTTGACACGACAGGTA -CCAACATGGTTGACACGAGACTCT -CCAACATGGTTGACACGAAGTCCT -CCAACATGGTTGACACGATAAGCC -CCAACATGGTTGACACGAATAGCC -CCAACATGGTTGACACGATAACCG -CCAACATGGTTGACACGAATGCCA -CCAACATGGTTGTCACAGGGAAAC -CCAACATGGTTGTCACAGAACACC -CCAACATGGTTGTCACAGATCGAG -CCAACATGGTTGTCACAGCTCCTT -CCAACATGGTTGTCACAGCCTGTT -CCAACATGGTTGTCACAGCGGTTT -CCAACATGGTTGTCACAGGTGGTT -CCAACATGGTTGTCACAGGCCTTT -CCAACATGGTTGTCACAGGGTCTT -CCAACATGGTTGTCACAGACGCTT -CCAACATGGTTGTCACAGAGCGTT -CCAACATGGTTGTCACAGTTCGTC -CCAACATGGTTGTCACAGTCTCTC -CCAACATGGTTGTCACAGTGGATC -CCAACATGGTTGTCACAGCACTTC -CCAACATGGTTGTCACAGGTACTC -CCAACATGGTTGTCACAGGATGTC -CCAACATGGTTGTCACAGACAGTC -CCAACATGGTTGTCACAGTTGCTG -CCAACATGGTTGTCACAGTCCATG -CCAACATGGTTGTCACAGTGTGTG -CCAACATGGTTGTCACAGCTAGTG -CCAACATGGTTGTCACAGCATCTG -CCAACATGGTTGTCACAGGAGTTG -CCAACATGGTTGTCACAGAGACTG -CCAACATGGTTGTCACAGTCGGTA -CCAACATGGTTGTCACAGTGCCTA -CCAACATGGTTGTCACAGCCACTA -CCAACATGGTTGTCACAGGGAGTA -CCAACATGGTTGTCACAGTCGTCT -CCAACATGGTTGTCACAGTGCACT -CCAACATGGTTGTCACAGCTGACT -CCAACATGGTTGTCACAGCAACCT -CCAACATGGTTGTCACAGGCTACT -CCAACATGGTTGTCACAGGGATCT -CCAACATGGTTGTCACAGAAGGCT -CCAACATGGTTGTCACAGTCAACC -CCAACATGGTTGTCACAGTGTTCC -CCAACATGGTTGTCACAGATTCCC -CCAACATGGTTGTCACAGTTCTCG -CCAACATGGTTGTCACAGTAGACG -CCAACATGGTTGTCACAGGTAACG -CCAACATGGTTGTCACAGACTTCG -CCAACATGGTTGTCACAGTACGCA -CCAACATGGTTGTCACAGCTTGCA -CCAACATGGTTGTCACAGCGAACA -CCAACATGGTTGTCACAGCAGTCA -CCAACATGGTTGTCACAGGATCCA -CCAACATGGTTGTCACAGACGACA -CCAACATGGTTGTCACAGAGCTCA -CCAACATGGTTGTCACAGTCACGT -CCAACATGGTTGTCACAGCGTAGT -CCAACATGGTTGTCACAGGTCAGT -CCAACATGGTTGTCACAGGAAGGT -CCAACATGGTTGTCACAGAACCGT -CCAACATGGTTGTCACAGTTGTGC -CCAACATGGTTGTCACAGCTAAGC -CCAACATGGTTGTCACAGACTAGC -CCAACATGGTTGTCACAGAGATGC -CCAACATGGTTGTCACAGTGAAGG -CCAACATGGTTGTCACAGCAATGG -CCAACATGGTTGTCACAGATGAGG -CCAACATGGTTGTCACAGAATGGG -CCAACATGGTTGTCACAGTCCTGA -CCAACATGGTTGTCACAGTAGCGA -CCAACATGGTTGTCACAGCACAGA -CCAACATGGTTGTCACAGGCAAGA -CCAACATGGTTGTCACAGGGTTGA -CCAACATGGTTGTCACAGTCCGAT -CCAACATGGTTGTCACAGTGGCAT -CCAACATGGTTGTCACAGCGAGAT -CCAACATGGTTGTCACAGTACCAC -CCAACATGGTTGTCACAGCAGAAC -CCAACATGGTTGTCACAGGTCTAC -CCAACATGGTTGTCACAGACGTAC -CCAACATGGTTGTCACAGAGTGAC -CCAACATGGTTGTCACAGCTGTAG -CCAACATGGTTGTCACAGCCTAAG -CCAACATGGTTGTCACAGGTTCAG -CCAACATGGTTGTCACAGGCATAG -CCAACATGGTTGTCACAGGACAAG -CCAACATGGTTGTCACAGAAGCAG -CCAACATGGTTGTCACAGCGTCAA -CCAACATGGTTGTCACAGGCTGAA -CCAACATGGTTGTCACAGAGTACG -CCAACATGGTTGTCACAGATCCGA -CCAACATGGTTGTCACAGATGGGA -CCAACATGGTTGTCACAGGTGCAA -CCAACATGGTTGTCACAGGAGGAA -CCAACATGGTTGTCACAGCAGGTA -CCAACATGGTTGTCACAGGACTCT -CCAACATGGTTGTCACAGAGTCCT -CCAACATGGTTGTCACAGTAAGCC -CCAACATGGTTGTCACAGATAGCC -CCAACATGGTTGTCACAGTAACCG -CCAACATGGTTGTCACAGATGCCA -CCAACATGGTTGCCAGATGGAAAC -CCAACATGGTTGCCAGATAACACC -CCAACATGGTTGCCAGATATCGAG -CCAACATGGTTGCCAGATCTCCTT -CCAACATGGTTGCCAGATCCTGTT -CCAACATGGTTGCCAGATCGGTTT -CCAACATGGTTGCCAGATGTGGTT -CCAACATGGTTGCCAGATGCCTTT -CCAACATGGTTGCCAGATGGTCTT -CCAACATGGTTGCCAGATACGCTT -CCAACATGGTTGCCAGATAGCGTT -CCAACATGGTTGCCAGATTTCGTC -CCAACATGGTTGCCAGATTCTCTC -CCAACATGGTTGCCAGATTGGATC -CCAACATGGTTGCCAGATCACTTC -CCAACATGGTTGCCAGATGTACTC -CCAACATGGTTGCCAGATGATGTC -CCAACATGGTTGCCAGATACAGTC -CCAACATGGTTGCCAGATTTGCTG -CCAACATGGTTGCCAGATTCCATG -CCAACATGGTTGCCAGATTGTGTG -CCAACATGGTTGCCAGATCTAGTG -CCAACATGGTTGCCAGATCATCTG -CCAACATGGTTGCCAGATGAGTTG -CCAACATGGTTGCCAGATAGACTG -CCAACATGGTTGCCAGATTCGGTA -CCAACATGGTTGCCAGATTGCCTA -CCAACATGGTTGCCAGATCCACTA -CCAACATGGTTGCCAGATGGAGTA -CCAACATGGTTGCCAGATTCGTCT -CCAACATGGTTGCCAGATTGCACT -CCAACATGGTTGCCAGATCTGACT -CCAACATGGTTGCCAGATCAACCT -CCAACATGGTTGCCAGATGCTACT -CCAACATGGTTGCCAGATGGATCT -CCAACATGGTTGCCAGATAAGGCT -CCAACATGGTTGCCAGATTCAACC -CCAACATGGTTGCCAGATTGTTCC -CCAACATGGTTGCCAGATATTCCC -CCAACATGGTTGCCAGATTTCTCG -CCAACATGGTTGCCAGATTAGACG -CCAACATGGTTGCCAGATGTAACG -CCAACATGGTTGCCAGATACTTCG -CCAACATGGTTGCCAGATTACGCA -CCAACATGGTTGCCAGATCTTGCA -CCAACATGGTTGCCAGATCGAACA -CCAACATGGTTGCCAGATCAGTCA -CCAACATGGTTGCCAGATGATCCA -CCAACATGGTTGCCAGATACGACA -CCAACATGGTTGCCAGATAGCTCA -CCAACATGGTTGCCAGATTCACGT -CCAACATGGTTGCCAGATCGTAGT -CCAACATGGTTGCCAGATGTCAGT -CCAACATGGTTGCCAGATGAAGGT -CCAACATGGTTGCCAGATAACCGT -CCAACATGGTTGCCAGATTTGTGC -CCAACATGGTTGCCAGATCTAAGC -CCAACATGGTTGCCAGATACTAGC -CCAACATGGTTGCCAGATAGATGC -CCAACATGGTTGCCAGATTGAAGG -CCAACATGGTTGCCAGATCAATGG -CCAACATGGTTGCCAGATATGAGG -CCAACATGGTTGCCAGATAATGGG -CCAACATGGTTGCCAGATTCCTGA -CCAACATGGTTGCCAGATTAGCGA -CCAACATGGTTGCCAGATCACAGA -CCAACATGGTTGCCAGATGCAAGA -CCAACATGGTTGCCAGATGGTTGA -CCAACATGGTTGCCAGATTCCGAT -CCAACATGGTTGCCAGATTGGCAT -CCAACATGGTTGCCAGATCGAGAT -CCAACATGGTTGCCAGATTACCAC -CCAACATGGTTGCCAGATCAGAAC -CCAACATGGTTGCCAGATGTCTAC -CCAACATGGTTGCCAGATACGTAC -CCAACATGGTTGCCAGATAGTGAC -CCAACATGGTTGCCAGATCTGTAG -CCAACATGGTTGCCAGATCCTAAG -CCAACATGGTTGCCAGATGTTCAG -CCAACATGGTTGCCAGATGCATAG -CCAACATGGTTGCCAGATGACAAG -CCAACATGGTTGCCAGATAAGCAG -CCAACATGGTTGCCAGATCGTCAA -CCAACATGGTTGCCAGATGCTGAA -CCAACATGGTTGCCAGATAGTACG -CCAACATGGTTGCCAGATATCCGA -CCAACATGGTTGCCAGATATGGGA -CCAACATGGTTGCCAGATGTGCAA -CCAACATGGTTGCCAGATGAGGAA -CCAACATGGTTGCCAGATCAGGTA -CCAACATGGTTGCCAGATGACTCT -CCAACATGGTTGCCAGATAGTCCT -CCAACATGGTTGCCAGATTAAGCC -CCAACATGGTTGCCAGATATAGCC -CCAACATGGTTGCCAGATTAACCG -CCAACATGGTTGCCAGATATGCCA -CCAACATGGTTGACAACGGGAAAC -CCAACATGGTTGACAACGAACACC -CCAACATGGTTGACAACGATCGAG -CCAACATGGTTGACAACGCTCCTT -CCAACATGGTTGACAACGCCTGTT -CCAACATGGTTGACAACGCGGTTT -CCAACATGGTTGACAACGGTGGTT -CCAACATGGTTGACAACGGCCTTT -CCAACATGGTTGACAACGGGTCTT -CCAACATGGTTGACAACGACGCTT -CCAACATGGTTGACAACGAGCGTT -CCAACATGGTTGACAACGTTCGTC -CCAACATGGTTGACAACGTCTCTC -CCAACATGGTTGACAACGTGGATC -CCAACATGGTTGACAACGCACTTC -CCAACATGGTTGACAACGGTACTC -CCAACATGGTTGACAACGGATGTC -CCAACATGGTTGACAACGACAGTC -CCAACATGGTTGACAACGTTGCTG -CCAACATGGTTGACAACGTCCATG -CCAACATGGTTGACAACGTGTGTG -CCAACATGGTTGACAACGCTAGTG -CCAACATGGTTGACAACGCATCTG -CCAACATGGTTGACAACGGAGTTG -CCAACATGGTTGACAACGAGACTG -CCAACATGGTTGACAACGTCGGTA -CCAACATGGTTGACAACGTGCCTA -CCAACATGGTTGACAACGCCACTA -CCAACATGGTTGACAACGGGAGTA -CCAACATGGTTGACAACGTCGTCT -CCAACATGGTTGACAACGTGCACT -CCAACATGGTTGACAACGCTGACT -CCAACATGGTTGACAACGCAACCT -CCAACATGGTTGACAACGGCTACT -CCAACATGGTTGACAACGGGATCT -CCAACATGGTTGACAACGAAGGCT -CCAACATGGTTGACAACGTCAACC -CCAACATGGTTGACAACGTGTTCC -CCAACATGGTTGACAACGATTCCC -CCAACATGGTTGACAACGTTCTCG -CCAACATGGTTGACAACGTAGACG -CCAACATGGTTGACAACGGTAACG -CCAACATGGTTGACAACGACTTCG -CCAACATGGTTGACAACGTACGCA -CCAACATGGTTGACAACGCTTGCA -CCAACATGGTTGACAACGCGAACA -CCAACATGGTTGACAACGCAGTCA -CCAACATGGTTGACAACGGATCCA -CCAACATGGTTGACAACGACGACA -CCAACATGGTTGACAACGAGCTCA -CCAACATGGTTGACAACGTCACGT -CCAACATGGTTGACAACGCGTAGT -CCAACATGGTTGACAACGGTCAGT -CCAACATGGTTGACAACGGAAGGT -CCAACATGGTTGACAACGAACCGT -CCAACATGGTTGACAACGTTGTGC -CCAACATGGTTGACAACGCTAAGC -CCAACATGGTTGACAACGACTAGC -CCAACATGGTTGACAACGAGATGC -CCAACATGGTTGACAACGTGAAGG -CCAACATGGTTGACAACGCAATGG -CCAACATGGTTGACAACGATGAGG -CCAACATGGTTGACAACGAATGGG -CCAACATGGTTGACAACGTCCTGA -CCAACATGGTTGACAACGTAGCGA -CCAACATGGTTGACAACGCACAGA -CCAACATGGTTGACAACGGCAAGA -CCAACATGGTTGACAACGGGTTGA -CCAACATGGTTGACAACGTCCGAT -CCAACATGGTTGACAACGTGGCAT -CCAACATGGTTGACAACGCGAGAT -CCAACATGGTTGACAACGTACCAC -CCAACATGGTTGACAACGCAGAAC -CCAACATGGTTGACAACGGTCTAC -CCAACATGGTTGACAACGACGTAC -CCAACATGGTTGACAACGAGTGAC -CCAACATGGTTGACAACGCTGTAG -CCAACATGGTTGACAACGCCTAAG -CCAACATGGTTGACAACGGTTCAG -CCAACATGGTTGACAACGGCATAG -CCAACATGGTTGACAACGGACAAG -CCAACATGGTTGACAACGAAGCAG -CCAACATGGTTGACAACGCGTCAA -CCAACATGGTTGACAACGGCTGAA -CCAACATGGTTGACAACGAGTACG -CCAACATGGTTGACAACGATCCGA -CCAACATGGTTGACAACGATGGGA -CCAACATGGTTGACAACGGTGCAA -CCAACATGGTTGACAACGGAGGAA -CCAACATGGTTGACAACGCAGGTA -CCAACATGGTTGACAACGGACTCT -CCAACATGGTTGACAACGAGTCCT -CCAACATGGTTGACAACGTAAGCC -CCAACATGGTTGACAACGATAGCC -CCAACATGGTTGACAACGTAACCG -CCAACATGGTTGACAACGATGCCA -CCAACATGGTTGTCAAGCGGAAAC -CCAACATGGTTGTCAAGCAACACC -CCAACATGGTTGTCAAGCATCGAG -CCAACATGGTTGTCAAGCCTCCTT -CCAACATGGTTGTCAAGCCCTGTT -CCAACATGGTTGTCAAGCCGGTTT -CCAACATGGTTGTCAAGCGTGGTT -CCAACATGGTTGTCAAGCGCCTTT -CCAACATGGTTGTCAAGCGGTCTT -CCAACATGGTTGTCAAGCACGCTT -CCAACATGGTTGTCAAGCAGCGTT -CCAACATGGTTGTCAAGCTTCGTC -CCAACATGGTTGTCAAGCTCTCTC -CCAACATGGTTGTCAAGCTGGATC -CCAACATGGTTGTCAAGCCACTTC -CCAACATGGTTGTCAAGCGTACTC -CCAACATGGTTGTCAAGCGATGTC -CCAACATGGTTGTCAAGCACAGTC -CCAACATGGTTGTCAAGCTTGCTG -CCAACATGGTTGTCAAGCTCCATG -CCAACATGGTTGTCAAGCTGTGTG -CCAACATGGTTGTCAAGCCTAGTG -CCAACATGGTTGTCAAGCCATCTG -CCAACATGGTTGTCAAGCGAGTTG -CCAACATGGTTGTCAAGCAGACTG -CCAACATGGTTGTCAAGCTCGGTA -CCAACATGGTTGTCAAGCTGCCTA -CCAACATGGTTGTCAAGCCCACTA -CCAACATGGTTGTCAAGCGGAGTA -CCAACATGGTTGTCAAGCTCGTCT -CCAACATGGTTGTCAAGCTGCACT -CCAACATGGTTGTCAAGCCTGACT -CCAACATGGTTGTCAAGCCAACCT -CCAACATGGTTGTCAAGCGCTACT -CCAACATGGTTGTCAAGCGGATCT -CCAACATGGTTGTCAAGCAAGGCT -CCAACATGGTTGTCAAGCTCAACC -CCAACATGGTTGTCAAGCTGTTCC -CCAACATGGTTGTCAAGCATTCCC -CCAACATGGTTGTCAAGCTTCTCG -CCAACATGGTTGTCAAGCTAGACG -CCAACATGGTTGTCAAGCGTAACG -CCAACATGGTTGTCAAGCACTTCG -CCAACATGGTTGTCAAGCTACGCA -CCAACATGGTTGTCAAGCCTTGCA -CCAACATGGTTGTCAAGCCGAACA -CCAACATGGTTGTCAAGCCAGTCA -CCAACATGGTTGTCAAGCGATCCA -CCAACATGGTTGTCAAGCACGACA -CCAACATGGTTGTCAAGCAGCTCA -CCAACATGGTTGTCAAGCTCACGT -CCAACATGGTTGTCAAGCCGTAGT -CCAACATGGTTGTCAAGCGTCAGT -CCAACATGGTTGTCAAGCGAAGGT -CCAACATGGTTGTCAAGCAACCGT -CCAACATGGTTGTCAAGCTTGTGC -CCAACATGGTTGTCAAGCCTAAGC -CCAACATGGTTGTCAAGCACTAGC -CCAACATGGTTGTCAAGCAGATGC -CCAACATGGTTGTCAAGCTGAAGG -CCAACATGGTTGTCAAGCCAATGG -CCAACATGGTTGTCAAGCATGAGG -CCAACATGGTTGTCAAGCAATGGG -CCAACATGGTTGTCAAGCTCCTGA -CCAACATGGTTGTCAAGCTAGCGA -CCAACATGGTTGTCAAGCCACAGA -CCAACATGGTTGTCAAGCGCAAGA -CCAACATGGTTGTCAAGCGGTTGA -CCAACATGGTTGTCAAGCTCCGAT -CCAACATGGTTGTCAAGCTGGCAT -CCAACATGGTTGTCAAGCCGAGAT -CCAACATGGTTGTCAAGCTACCAC -CCAACATGGTTGTCAAGCCAGAAC -CCAACATGGTTGTCAAGCGTCTAC -CCAACATGGTTGTCAAGCACGTAC -CCAACATGGTTGTCAAGCAGTGAC -CCAACATGGTTGTCAAGCCTGTAG -CCAACATGGTTGTCAAGCCCTAAG -CCAACATGGTTGTCAAGCGTTCAG -CCAACATGGTTGTCAAGCGCATAG -CCAACATGGTTGTCAAGCGACAAG -CCAACATGGTTGTCAAGCAAGCAG -CCAACATGGTTGTCAAGCCGTCAA -CCAACATGGTTGTCAAGCGCTGAA -CCAACATGGTTGTCAAGCAGTACG -CCAACATGGTTGTCAAGCATCCGA -CCAACATGGTTGTCAAGCATGGGA -CCAACATGGTTGTCAAGCGTGCAA -CCAACATGGTTGTCAAGCGAGGAA -CCAACATGGTTGTCAAGCCAGGTA -CCAACATGGTTGTCAAGCGACTCT -CCAACATGGTTGTCAAGCAGTCCT -CCAACATGGTTGTCAAGCTAAGCC -CCAACATGGTTGTCAAGCATAGCC -CCAACATGGTTGTCAAGCTAACCG -CCAACATGGTTGTCAAGCATGCCA -CCAACATGGTTGCGTTCAGGAAAC -CCAACATGGTTGCGTTCAAACACC -CCAACATGGTTGCGTTCAATCGAG -CCAACATGGTTGCGTTCACTCCTT -CCAACATGGTTGCGTTCACCTGTT -CCAACATGGTTGCGTTCACGGTTT -CCAACATGGTTGCGTTCAGTGGTT -CCAACATGGTTGCGTTCAGCCTTT -CCAACATGGTTGCGTTCAGGTCTT -CCAACATGGTTGCGTTCAACGCTT -CCAACATGGTTGCGTTCAAGCGTT -CCAACATGGTTGCGTTCATTCGTC -CCAACATGGTTGCGTTCATCTCTC -CCAACATGGTTGCGTTCATGGATC -CCAACATGGTTGCGTTCACACTTC -CCAACATGGTTGCGTTCAGTACTC -CCAACATGGTTGCGTTCAGATGTC -CCAACATGGTTGCGTTCAACAGTC -CCAACATGGTTGCGTTCATTGCTG -CCAACATGGTTGCGTTCATCCATG -CCAACATGGTTGCGTTCATGTGTG -CCAACATGGTTGCGTTCACTAGTG -CCAACATGGTTGCGTTCACATCTG -CCAACATGGTTGCGTTCAGAGTTG -CCAACATGGTTGCGTTCAAGACTG -CCAACATGGTTGCGTTCATCGGTA -CCAACATGGTTGCGTTCATGCCTA -CCAACATGGTTGCGTTCACCACTA -CCAACATGGTTGCGTTCAGGAGTA -CCAACATGGTTGCGTTCATCGTCT -CCAACATGGTTGCGTTCATGCACT -CCAACATGGTTGCGTTCACTGACT -CCAACATGGTTGCGTTCACAACCT -CCAACATGGTTGCGTTCAGCTACT -CCAACATGGTTGCGTTCAGGATCT -CCAACATGGTTGCGTTCAAAGGCT -CCAACATGGTTGCGTTCATCAACC -CCAACATGGTTGCGTTCATGTTCC -CCAACATGGTTGCGTTCAATTCCC -CCAACATGGTTGCGTTCATTCTCG -CCAACATGGTTGCGTTCATAGACG -CCAACATGGTTGCGTTCAGTAACG -CCAACATGGTTGCGTTCAACTTCG -CCAACATGGTTGCGTTCATACGCA -CCAACATGGTTGCGTTCACTTGCA -CCAACATGGTTGCGTTCACGAACA -CCAACATGGTTGCGTTCACAGTCA -CCAACATGGTTGCGTTCAGATCCA -CCAACATGGTTGCGTTCAACGACA -CCAACATGGTTGCGTTCAAGCTCA -CCAACATGGTTGCGTTCATCACGT -CCAACATGGTTGCGTTCACGTAGT -CCAACATGGTTGCGTTCAGTCAGT -CCAACATGGTTGCGTTCAGAAGGT -CCAACATGGTTGCGTTCAAACCGT -CCAACATGGTTGCGTTCATTGTGC -CCAACATGGTTGCGTTCACTAAGC -CCAACATGGTTGCGTTCAACTAGC -CCAACATGGTTGCGTTCAAGATGC -CCAACATGGTTGCGTTCATGAAGG -CCAACATGGTTGCGTTCACAATGG -CCAACATGGTTGCGTTCAATGAGG -CCAACATGGTTGCGTTCAAATGGG -CCAACATGGTTGCGTTCATCCTGA -CCAACATGGTTGCGTTCATAGCGA -CCAACATGGTTGCGTTCACACAGA -CCAACATGGTTGCGTTCAGCAAGA -CCAACATGGTTGCGTTCAGGTTGA -CCAACATGGTTGCGTTCATCCGAT -CCAACATGGTTGCGTTCATGGCAT -CCAACATGGTTGCGTTCACGAGAT -CCAACATGGTTGCGTTCATACCAC -CCAACATGGTTGCGTTCACAGAAC -CCAACATGGTTGCGTTCAGTCTAC -CCAACATGGTTGCGTTCAACGTAC -CCAACATGGTTGCGTTCAAGTGAC -CCAACATGGTTGCGTTCACTGTAG -CCAACATGGTTGCGTTCACCTAAG -CCAACATGGTTGCGTTCAGTTCAG -CCAACATGGTTGCGTTCAGCATAG -CCAACATGGTTGCGTTCAGACAAG -CCAACATGGTTGCGTTCAAAGCAG -CCAACATGGTTGCGTTCACGTCAA -CCAACATGGTTGCGTTCAGCTGAA -CCAACATGGTTGCGTTCAAGTACG -CCAACATGGTTGCGTTCAATCCGA -CCAACATGGTTGCGTTCAATGGGA -CCAACATGGTTGCGTTCAGTGCAA -CCAACATGGTTGCGTTCAGAGGAA -CCAACATGGTTGCGTTCACAGGTA -CCAACATGGTTGCGTTCAGACTCT -CCAACATGGTTGCGTTCAAGTCCT -CCAACATGGTTGCGTTCATAAGCC -CCAACATGGTTGCGTTCAATAGCC -CCAACATGGTTGCGTTCATAACCG -CCAACATGGTTGCGTTCAATGCCA -CCAACATGGTTGAGTCGTGGAAAC -CCAACATGGTTGAGTCGTAACACC -CCAACATGGTTGAGTCGTATCGAG -CCAACATGGTTGAGTCGTCTCCTT -CCAACATGGTTGAGTCGTCCTGTT -CCAACATGGTTGAGTCGTCGGTTT -CCAACATGGTTGAGTCGTGTGGTT -CCAACATGGTTGAGTCGTGCCTTT -CCAACATGGTTGAGTCGTGGTCTT -CCAACATGGTTGAGTCGTACGCTT -CCAACATGGTTGAGTCGTAGCGTT -CCAACATGGTTGAGTCGTTTCGTC -CCAACATGGTTGAGTCGTTCTCTC -CCAACATGGTTGAGTCGTTGGATC -CCAACATGGTTGAGTCGTCACTTC -CCAACATGGTTGAGTCGTGTACTC -CCAACATGGTTGAGTCGTGATGTC -CCAACATGGTTGAGTCGTACAGTC -CCAACATGGTTGAGTCGTTTGCTG -CCAACATGGTTGAGTCGTTCCATG -CCAACATGGTTGAGTCGTTGTGTG -CCAACATGGTTGAGTCGTCTAGTG -CCAACATGGTTGAGTCGTCATCTG -CCAACATGGTTGAGTCGTGAGTTG -CCAACATGGTTGAGTCGTAGACTG -CCAACATGGTTGAGTCGTTCGGTA -CCAACATGGTTGAGTCGTTGCCTA -CCAACATGGTTGAGTCGTCCACTA -CCAACATGGTTGAGTCGTGGAGTA -CCAACATGGTTGAGTCGTTCGTCT -CCAACATGGTTGAGTCGTTGCACT -CCAACATGGTTGAGTCGTCTGACT -CCAACATGGTTGAGTCGTCAACCT -CCAACATGGTTGAGTCGTGCTACT -CCAACATGGTTGAGTCGTGGATCT -CCAACATGGTTGAGTCGTAAGGCT -CCAACATGGTTGAGTCGTTCAACC -CCAACATGGTTGAGTCGTTGTTCC -CCAACATGGTTGAGTCGTATTCCC -CCAACATGGTTGAGTCGTTTCTCG -CCAACATGGTTGAGTCGTTAGACG -CCAACATGGTTGAGTCGTGTAACG -CCAACATGGTTGAGTCGTACTTCG -CCAACATGGTTGAGTCGTTACGCA -CCAACATGGTTGAGTCGTCTTGCA -CCAACATGGTTGAGTCGTCGAACA -CCAACATGGTTGAGTCGTCAGTCA -CCAACATGGTTGAGTCGTGATCCA -CCAACATGGTTGAGTCGTACGACA -CCAACATGGTTGAGTCGTAGCTCA -CCAACATGGTTGAGTCGTTCACGT -CCAACATGGTTGAGTCGTCGTAGT -CCAACATGGTTGAGTCGTGTCAGT -CCAACATGGTTGAGTCGTGAAGGT -CCAACATGGTTGAGTCGTAACCGT -CCAACATGGTTGAGTCGTTTGTGC -CCAACATGGTTGAGTCGTCTAAGC -CCAACATGGTTGAGTCGTACTAGC -CCAACATGGTTGAGTCGTAGATGC -CCAACATGGTTGAGTCGTTGAAGG -CCAACATGGTTGAGTCGTCAATGG -CCAACATGGTTGAGTCGTATGAGG -CCAACATGGTTGAGTCGTAATGGG -CCAACATGGTTGAGTCGTTCCTGA -CCAACATGGTTGAGTCGTTAGCGA -CCAACATGGTTGAGTCGTCACAGA -CCAACATGGTTGAGTCGTGCAAGA -CCAACATGGTTGAGTCGTGGTTGA -CCAACATGGTTGAGTCGTTCCGAT -CCAACATGGTTGAGTCGTTGGCAT -CCAACATGGTTGAGTCGTCGAGAT -CCAACATGGTTGAGTCGTTACCAC -CCAACATGGTTGAGTCGTCAGAAC -CCAACATGGTTGAGTCGTGTCTAC -CCAACATGGTTGAGTCGTACGTAC -CCAACATGGTTGAGTCGTAGTGAC -CCAACATGGTTGAGTCGTCTGTAG -CCAACATGGTTGAGTCGTCCTAAG -CCAACATGGTTGAGTCGTGTTCAG -CCAACATGGTTGAGTCGTGCATAG -CCAACATGGTTGAGTCGTGACAAG -CCAACATGGTTGAGTCGTAAGCAG -CCAACATGGTTGAGTCGTCGTCAA -CCAACATGGTTGAGTCGTGCTGAA -CCAACATGGTTGAGTCGTAGTACG -CCAACATGGTTGAGTCGTATCCGA -CCAACATGGTTGAGTCGTATGGGA -CCAACATGGTTGAGTCGTGTGCAA -CCAACATGGTTGAGTCGTGAGGAA -CCAACATGGTTGAGTCGTCAGGTA -CCAACATGGTTGAGTCGTGACTCT -CCAACATGGTTGAGTCGTAGTCCT -CCAACATGGTTGAGTCGTTAAGCC -CCAACATGGTTGAGTCGTATAGCC -CCAACATGGTTGAGTCGTTAACCG -CCAACATGGTTGAGTCGTATGCCA -CCAACATGGTTGAGTGTCGGAAAC -CCAACATGGTTGAGTGTCAACACC -CCAACATGGTTGAGTGTCATCGAG -CCAACATGGTTGAGTGTCCTCCTT -CCAACATGGTTGAGTGTCCCTGTT -CCAACATGGTTGAGTGTCCGGTTT -CCAACATGGTTGAGTGTCGTGGTT -CCAACATGGTTGAGTGTCGCCTTT -CCAACATGGTTGAGTGTCGGTCTT -CCAACATGGTTGAGTGTCACGCTT -CCAACATGGTTGAGTGTCAGCGTT -CCAACATGGTTGAGTGTCTTCGTC -CCAACATGGTTGAGTGTCTCTCTC -CCAACATGGTTGAGTGTCTGGATC -CCAACATGGTTGAGTGTCCACTTC -CCAACATGGTTGAGTGTCGTACTC -CCAACATGGTTGAGTGTCGATGTC -CCAACATGGTTGAGTGTCACAGTC -CCAACATGGTTGAGTGTCTTGCTG -CCAACATGGTTGAGTGTCTCCATG -CCAACATGGTTGAGTGTCTGTGTG -CCAACATGGTTGAGTGTCCTAGTG -CCAACATGGTTGAGTGTCCATCTG -CCAACATGGTTGAGTGTCGAGTTG -CCAACATGGTTGAGTGTCAGACTG -CCAACATGGTTGAGTGTCTCGGTA -CCAACATGGTTGAGTGTCTGCCTA -CCAACATGGTTGAGTGTCCCACTA -CCAACATGGTTGAGTGTCGGAGTA -CCAACATGGTTGAGTGTCTCGTCT -CCAACATGGTTGAGTGTCTGCACT -CCAACATGGTTGAGTGTCCTGACT -CCAACATGGTTGAGTGTCCAACCT -CCAACATGGTTGAGTGTCGCTACT -CCAACATGGTTGAGTGTCGGATCT -CCAACATGGTTGAGTGTCAAGGCT -CCAACATGGTTGAGTGTCTCAACC -CCAACATGGTTGAGTGTCTGTTCC -CCAACATGGTTGAGTGTCATTCCC -CCAACATGGTTGAGTGTCTTCTCG -CCAACATGGTTGAGTGTCTAGACG -CCAACATGGTTGAGTGTCGTAACG -CCAACATGGTTGAGTGTCACTTCG -CCAACATGGTTGAGTGTCTACGCA -CCAACATGGTTGAGTGTCCTTGCA -CCAACATGGTTGAGTGTCCGAACA -CCAACATGGTTGAGTGTCCAGTCA -CCAACATGGTTGAGTGTCGATCCA -CCAACATGGTTGAGTGTCACGACA -CCAACATGGTTGAGTGTCAGCTCA -CCAACATGGTTGAGTGTCTCACGT -CCAACATGGTTGAGTGTCCGTAGT -CCAACATGGTTGAGTGTCGTCAGT -CCAACATGGTTGAGTGTCGAAGGT -CCAACATGGTTGAGTGTCAACCGT -CCAACATGGTTGAGTGTCTTGTGC -CCAACATGGTTGAGTGTCCTAAGC -CCAACATGGTTGAGTGTCACTAGC -CCAACATGGTTGAGTGTCAGATGC -CCAACATGGTTGAGTGTCTGAAGG -CCAACATGGTTGAGTGTCCAATGG -CCAACATGGTTGAGTGTCATGAGG -CCAACATGGTTGAGTGTCAATGGG -CCAACATGGTTGAGTGTCTCCTGA -CCAACATGGTTGAGTGTCTAGCGA -CCAACATGGTTGAGTGTCCACAGA -CCAACATGGTTGAGTGTCGCAAGA -CCAACATGGTTGAGTGTCGGTTGA -CCAACATGGTTGAGTGTCTCCGAT -CCAACATGGTTGAGTGTCTGGCAT -CCAACATGGTTGAGTGTCCGAGAT -CCAACATGGTTGAGTGTCTACCAC -CCAACATGGTTGAGTGTCCAGAAC -CCAACATGGTTGAGTGTCGTCTAC -CCAACATGGTTGAGTGTCACGTAC -CCAACATGGTTGAGTGTCAGTGAC -CCAACATGGTTGAGTGTCCTGTAG -CCAACATGGTTGAGTGTCCCTAAG -CCAACATGGTTGAGTGTCGTTCAG -CCAACATGGTTGAGTGTCGCATAG -CCAACATGGTTGAGTGTCGACAAG -CCAACATGGTTGAGTGTCAAGCAG -CCAACATGGTTGAGTGTCCGTCAA -CCAACATGGTTGAGTGTCGCTGAA -CCAACATGGTTGAGTGTCAGTACG -CCAACATGGTTGAGTGTCATCCGA -CCAACATGGTTGAGTGTCATGGGA -CCAACATGGTTGAGTGTCGTGCAA -CCAACATGGTTGAGTGTCGAGGAA -CCAACATGGTTGAGTGTCCAGGTA -CCAACATGGTTGAGTGTCGACTCT -CCAACATGGTTGAGTGTCAGTCCT -CCAACATGGTTGAGTGTCTAAGCC -CCAACATGGTTGAGTGTCATAGCC -CCAACATGGTTGAGTGTCTAACCG -CCAACATGGTTGAGTGTCATGCCA -CCAACATGGTTGGGTGAAGGAAAC -CCAACATGGTTGGGTGAAAACACC -CCAACATGGTTGGGTGAAATCGAG -CCAACATGGTTGGGTGAACTCCTT -CCAACATGGTTGGGTGAACCTGTT -CCAACATGGTTGGGTGAACGGTTT -CCAACATGGTTGGGTGAAGTGGTT -CCAACATGGTTGGGTGAAGCCTTT -CCAACATGGTTGGGTGAAGGTCTT -CCAACATGGTTGGGTGAAACGCTT -CCAACATGGTTGGGTGAAAGCGTT -CCAACATGGTTGGGTGAATTCGTC -CCAACATGGTTGGGTGAATCTCTC -CCAACATGGTTGGGTGAATGGATC -CCAACATGGTTGGGTGAACACTTC -CCAACATGGTTGGGTGAAGTACTC -CCAACATGGTTGGGTGAAGATGTC -CCAACATGGTTGGGTGAAACAGTC -CCAACATGGTTGGGTGAATTGCTG -CCAACATGGTTGGGTGAATCCATG -CCAACATGGTTGGGTGAATGTGTG -CCAACATGGTTGGGTGAACTAGTG -CCAACATGGTTGGGTGAACATCTG -CCAACATGGTTGGGTGAAGAGTTG -CCAACATGGTTGGGTGAAAGACTG -CCAACATGGTTGGGTGAATCGGTA -CCAACATGGTTGGGTGAATGCCTA -CCAACATGGTTGGGTGAACCACTA -CCAACATGGTTGGGTGAAGGAGTA -CCAACATGGTTGGGTGAATCGTCT -CCAACATGGTTGGGTGAATGCACT -CCAACATGGTTGGGTGAACTGACT -CCAACATGGTTGGGTGAACAACCT -CCAACATGGTTGGGTGAAGCTACT -CCAACATGGTTGGGTGAAGGATCT -CCAACATGGTTGGGTGAAAAGGCT -CCAACATGGTTGGGTGAATCAACC -CCAACATGGTTGGGTGAATGTTCC -CCAACATGGTTGGGTGAAATTCCC -CCAACATGGTTGGGTGAATTCTCG -CCAACATGGTTGGGTGAATAGACG -CCAACATGGTTGGGTGAAGTAACG -CCAACATGGTTGGGTGAAACTTCG -CCAACATGGTTGGGTGAATACGCA -CCAACATGGTTGGGTGAACTTGCA -CCAACATGGTTGGGTGAACGAACA -CCAACATGGTTGGGTGAACAGTCA -CCAACATGGTTGGGTGAAGATCCA -CCAACATGGTTGGGTGAAACGACA -CCAACATGGTTGGGTGAAAGCTCA -CCAACATGGTTGGGTGAATCACGT -CCAACATGGTTGGGTGAACGTAGT -CCAACATGGTTGGGTGAAGTCAGT -CCAACATGGTTGGGTGAAGAAGGT -CCAACATGGTTGGGTGAAAACCGT -CCAACATGGTTGGGTGAATTGTGC -CCAACATGGTTGGGTGAACTAAGC -CCAACATGGTTGGGTGAAACTAGC -CCAACATGGTTGGGTGAAAGATGC -CCAACATGGTTGGGTGAATGAAGG -CCAACATGGTTGGGTGAACAATGG -CCAACATGGTTGGGTGAAATGAGG -CCAACATGGTTGGGTGAAAATGGG -CCAACATGGTTGGGTGAATCCTGA -CCAACATGGTTGGGTGAATAGCGA -CCAACATGGTTGGGTGAACACAGA -CCAACATGGTTGGGTGAAGCAAGA -CCAACATGGTTGGGTGAAGGTTGA -CCAACATGGTTGGGTGAATCCGAT -CCAACATGGTTGGGTGAATGGCAT -CCAACATGGTTGGGTGAACGAGAT -CCAACATGGTTGGGTGAATACCAC -CCAACATGGTTGGGTGAACAGAAC -CCAACATGGTTGGGTGAAGTCTAC -CCAACATGGTTGGGTGAAACGTAC -CCAACATGGTTGGGTGAAAGTGAC -CCAACATGGTTGGGTGAACTGTAG -CCAACATGGTTGGGTGAACCTAAG -CCAACATGGTTGGGTGAAGTTCAG -CCAACATGGTTGGGTGAAGCATAG -CCAACATGGTTGGGTGAAGACAAG -CCAACATGGTTGGGTGAAAAGCAG -CCAACATGGTTGGGTGAACGTCAA -CCAACATGGTTGGGTGAAGCTGAA -CCAACATGGTTGGGTGAAAGTACG -CCAACATGGTTGGGTGAAATCCGA -CCAACATGGTTGGGTGAAATGGGA -CCAACATGGTTGGGTGAAGTGCAA -CCAACATGGTTGGGTGAAGAGGAA -CCAACATGGTTGGGTGAACAGGTA -CCAACATGGTTGGGTGAAGACTCT -CCAACATGGTTGGGTGAAAGTCCT -CCAACATGGTTGGGTGAATAAGCC -CCAACATGGTTGGGTGAAATAGCC -CCAACATGGTTGGGTGAATAACCG -CCAACATGGTTGGGTGAAATGCCA -CCAACATGGTTGCGTAACGGAAAC -CCAACATGGTTGCGTAACAACACC -CCAACATGGTTGCGTAACATCGAG -CCAACATGGTTGCGTAACCTCCTT -CCAACATGGTTGCGTAACCCTGTT -CCAACATGGTTGCGTAACCGGTTT -CCAACATGGTTGCGTAACGTGGTT -CCAACATGGTTGCGTAACGCCTTT -CCAACATGGTTGCGTAACGGTCTT -CCAACATGGTTGCGTAACACGCTT -CCAACATGGTTGCGTAACAGCGTT -CCAACATGGTTGCGTAACTTCGTC -CCAACATGGTTGCGTAACTCTCTC -CCAACATGGTTGCGTAACTGGATC -CCAACATGGTTGCGTAACCACTTC -CCAACATGGTTGCGTAACGTACTC -CCAACATGGTTGCGTAACGATGTC -CCAACATGGTTGCGTAACACAGTC -CCAACATGGTTGCGTAACTTGCTG -CCAACATGGTTGCGTAACTCCATG -CCAACATGGTTGCGTAACTGTGTG -CCAACATGGTTGCGTAACCTAGTG -CCAACATGGTTGCGTAACCATCTG -CCAACATGGTTGCGTAACGAGTTG -CCAACATGGTTGCGTAACAGACTG -CCAACATGGTTGCGTAACTCGGTA -CCAACATGGTTGCGTAACTGCCTA -CCAACATGGTTGCGTAACCCACTA -CCAACATGGTTGCGTAACGGAGTA -CCAACATGGTTGCGTAACTCGTCT -CCAACATGGTTGCGTAACTGCACT -CCAACATGGTTGCGTAACCTGACT -CCAACATGGTTGCGTAACCAACCT -CCAACATGGTTGCGTAACGCTACT -CCAACATGGTTGCGTAACGGATCT -CCAACATGGTTGCGTAACAAGGCT -CCAACATGGTTGCGTAACTCAACC -CCAACATGGTTGCGTAACTGTTCC -CCAACATGGTTGCGTAACATTCCC -CCAACATGGTTGCGTAACTTCTCG -CCAACATGGTTGCGTAACTAGACG -CCAACATGGTTGCGTAACGTAACG -CCAACATGGTTGCGTAACACTTCG -CCAACATGGTTGCGTAACTACGCA -CCAACATGGTTGCGTAACCTTGCA -CCAACATGGTTGCGTAACCGAACA -CCAACATGGTTGCGTAACCAGTCA -CCAACATGGTTGCGTAACGATCCA -CCAACATGGTTGCGTAACACGACA -CCAACATGGTTGCGTAACAGCTCA -CCAACATGGTTGCGTAACTCACGT -CCAACATGGTTGCGTAACCGTAGT -CCAACATGGTTGCGTAACGTCAGT -CCAACATGGTTGCGTAACGAAGGT -CCAACATGGTTGCGTAACAACCGT -CCAACATGGTTGCGTAACTTGTGC -CCAACATGGTTGCGTAACCTAAGC -CCAACATGGTTGCGTAACACTAGC -CCAACATGGTTGCGTAACAGATGC -CCAACATGGTTGCGTAACTGAAGG -CCAACATGGTTGCGTAACCAATGG -CCAACATGGTTGCGTAACATGAGG -CCAACATGGTTGCGTAACAATGGG -CCAACATGGTTGCGTAACTCCTGA -CCAACATGGTTGCGTAACTAGCGA -CCAACATGGTTGCGTAACCACAGA -CCAACATGGTTGCGTAACGCAAGA -CCAACATGGTTGCGTAACGGTTGA -CCAACATGGTTGCGTAACTCCGAT -CCAACATGGTTGCGTAACTGGCAT -CCAACATGGTTGCGTAACCGAGAT -CCAACATGGTTGCGTAACTACCAC -CCAACATGGTTGCGTAACCAGAAC -CCAACATGGTTGCGTAACGTCTAC -CCAACATGGTTGCGTAACACGTAC -CCAACATGGTTGCGTAACAGTGAC -CCAACATGGTTGCGTAACCTGTAG -CCAACATGGTTGCGTAACCCTAAG -CCAACATGGTTGCGTAACGTTCAG -CCAACATGGTTGCGTAACGCATAG -CCAACATGGTTGCGTAACGACAAG -CCAACATGGTTGCGTAACAAGCAG -CCAACATGGTTGCGTAACCGTCAA -CCAACATGGTTGCGTAACGCTGAA -CCAACATGGTTGCGTAACAGTACG -CCAACATGGTTGCGTAACATCCGA -CCAACATGGTTGCGTAACATGGGA -CCAACATGGTTGCGTAACGTGCAA -CCAACATGGTTGCGTAACGAGGAA -CCAACATGGTTGCGTAACCAGGTA -CCAACATGGTTGCGTAACGACTCT -CCAACATGGTTGCGTAACAGTCCT -CCAACATGGTTGCGTAACTAAGCC -CCAACATGGTTGCGTAACATAGCC -CCAACATGGTTGCGTAACTAACCG -CCAACATGGTTGCGTAACATGCCA -CCAACATGGTTGTGCTTGGGAAAC -CCAACATGGTTGTGCTTGAACACC -CCAACATGGTTGTGCTTGATCGAG -CCAACATGGTTGTGCTTGCTCCTT -CCAACATGGTTGTGCTTGCCTGTT -CCAACATGGTTGTGCTTGCGGTTT -CCAACATGGTTGTGCTTGGTGGTT -CCAACATGGTTGTGCTTGGCCTTT -CCAACATGGTTGTGCTTGGGTCTT -CCAACATGGTTGTGCTTGACGCTT -CCAACATGGTTGTGCTTGAGCGTT -CCAACATGGTTGTGCTTGTTCGTC -CCAACATGGTTGTGCTTGTCTCTC -CCAACATGGTTGTGCTTGTGGATC -CCAACATGGTTGTGCTTGCACTTC -CCAACATGGTTGTGCTTGGTACTC -CCAACATGGTTGTGCTTGGATGTC -CCAACATGGTTGTGCTTGACAGTC -CCAACATGGTTGTGCTTGTTGCTG -CCAACATGGTTGTGCTTGTCCATG -CCAACATGGTTGTGCTTGTGTGTG -CCAACATGGTTGTGCTTGCTAGTG -CCAACATGGTTGTGCTTGCATCTG -CCAACATGGTTGTGCTTGGAGTTG -CCAACATGGTTGTGCTTGAGACTG -CCAACATGGTTGTGCTTGTCGGTA -CCAACATGGTTGTGCTTGTGCCTA -CCAACATGGTTGTGCTTGCCACTA -CCAACATGGTTGTGCTTGGGAGTA -CCAACATGGTTGTGCTTGTCGTCT -CCAACATGGTTGTGCTTGTGCACT -CCAACATGGTTGTGCTTGCTGACT -CCAACATGGTTGTGCTTGCAACCT -CCAACATGGTTGTGCTTGGCTACT -CCAACATGGTTGTGCTTGGGATCT -CCAACATGGTTGTGCTTGAAGGCT -CCAACATGGTTGTGCTTGTCAACC -CCAACATGGTTGTGCTTGTGTTCC -CCAACATGGTTGTGCTTGATTCCC -CCAACATGGTTGTGCTTGTTCTCG -CCAACATGGTTGTGCTTGTAGACG -CCAACATGGTTGTGCTTGGTAACG -CCAACATGGTTGTGCTTGACTTCG -CCAACATGGTTGTGCTTGTACGCA -CCAACATGGTTGTGCTTGCTTGCA -CCAACATGGTTGTGCTTGCGAACA -CCAACATGGTTGTGCTTGCAGTCA -CCAACATGGTTGTGCTTGGATCCA -CCAACATGGTTGTGCTTGACGACA -CCAACATGGTTGTGCTTGAGCTCA -CCAACATGGTTGTGCTTGTCACGT -CCAACATGGTTGTGCTTGCGTAGT -CCAACATGGTTGTGCTTGGTCAGT -CCAACATGGTTGTGCTTGGAAGGT -CCAACATGGTTGTGCTTGAACCGT -CCAACATGGTTGTGCTTGTTGTGC -CCAACATGGTTGTGCTTGCTAAGC -CCAACATGGTTGTGCTTGACTAGC -CCAACATGGTTGTGCTTGAGATGC -CCAACATGGTTGTGCTTGTGAAGG -CCAACATGGTTGTGCTTGCAATGG -CCAACATGGTTGTGCTTGATGAGG -CCAACATGGTTGTGCTTGAATGGG -CCAACATGGTTGTGCTTGTCCTGA -CCAACATGGTTGTGCTTGTAGCGA -CCAACATGGTTGTGCTTGCACAGA -CCAACATGGTTGTGCTTGGCAAGA -CCAACATGGTTGTGCTTGGGTTGA -CCAACATGGTTGTGCTTGTCCGAT -CCAACATGGTTGTGCTTGTGGCAT -CCAACATGGTTGTGCTTGCGAGAT -CCAACATGGTTGTGCTTGTACCAC -CCAACATGGTTGTGCTTGCAGAAC -CCAACATGGTTGTGCTTGGTCTAC -CCAACATGGTTGTGCTTGACGTAC -CCAACATGGTTGTGCTTGAGTGAC -CCAACATGGTTGTGCTTGCTGTAG -CCAACATGGTTGTGCTTGCCTAAG -CCAACATGGTTGTGCTTGGTTCAG -CCAACATGGTTGTGCTTGGCATAG -CCAACATGGTTGTGCTTGGACAAG -CCAACATGGTTGTGCTTGAAGCAG -CCAACATGGTTGTGCTTGCGTCAA -CCAACATGGTTGTGCTTGGCTGAA -CCAACATGGTTGTGCTTGAGTACG -CCAACATGGTTGTGCTTGATCCGA -CCAACATGGTTGTGCTTGATGGGA -CCAACATGGTTGTGCTTGGTGCAA -CCAACATGGTTGTGCTTGGAGGAA -CCAACATGGTTGTGCTTGCAGGTA -CCAACATGGTTGTGCTTGGACTCT -CCAACATGGTTGTGCTTGAGTCCT -CCAACATGGTTGTGCTTGTAAGCC -CCAACATGGTTGTGCTTGATAGCC -CCAACATGGTTGTGCTTGTAACCG -CCAACATGGTTGTGCTTGATGCCA -CCAACATGGTTGAGCCTAGGAAAC -CCAACATGGTTGAGCCTAAACACC -CCAACATGGTTGAGCCTAATCGAG -CCAACATGGTTGAGCCTACTCCTT -CCAACATGGTTGAGCCTACCTGTT -CCAACATGGTTGAGCCTACGGTTT -CCAACATGGTTGAGCCTAGTGGTT -CCAACATGGTTGAGCCTAGCCTTT -CCAACATGGTTGAGCCTAGGTCTT -CCAACATGGTTGAGCCTAACGCTT -CCAACATGGTTGAGCCTAAGCGTT -CCAACATGGTTGAGCCTATTCGTC -CCAACATGGTTGAGCCTATCTCTC -CCAACATGGTTGAGCCTATGGATC -CCAACATGGTTGAGCCTACACTTC -CCAACATGGTTGAGCCTAGTACTC -CCAACATGGTTGAGCCTAGATGTC -CCAACATGGTTGAGCCTAACAGTC -CCAACATGGTTGAGCCTATTGCTG -CCAACATGGTTGAGCCTATCCATG -CCAACATGGTTGAGCCTATGTGTG -CCAACATGGTTGAGCCTACTAGTG -CCAACATGGTTGAGCCTACATCTG -CCAACATGGTTGAGCCTAGAGTTG -CCAACATGGTTGAGCCTAAGACTG -CCAACATGGTTGAGCCTATCGGTA -CCAACATGGTTGAGCCTATGCCTA -CCAACATGGTTGAGCCTACCACTA -CCAACATGGTTGAGCCTAGGAGTA -CCAACATGGTTGAGCCTATCGTCT -CCAACATGGTTGAGCCTATGCACT -CCAACATGGTTGAGCCTACTGACT -CCAACATGGTTGAGCCTACAACCT -CCAACATGGTTGAGCCTAGCTACT -CCAACATGGTTGAGCCTAGGATCT -CCAACATGGTTGAGCCTAAAGGCT -CCAACATGGTTGAGCCTATCAACC -CCAACATGGTTGAGCCTATGTTCC -CCAACATGGTTGAGCCTAATTCCC -CCAACATGGTTGAGCCTATTCTCG -CCAACATGGTTGAGCCTATAGACG -CCAACATGGTTGAGCCTAGTAACG -CCAACATGGTTGAGCCTAACTTCG -CCAACATGGTTGAGCCTATACGCA -CCAACATGGTTGAGCCTACTTGCA -CCAACATGGTTGAGCCTACGAACA -CCAACATGGTTGAGCCTACAGTCA -CCAACATGGTTGAGCCTAGATCCA -CCAACATGGTTGAGCCTAACGACA -CCAACATGGTTGAGCCTAAGCTCA -CCAACATGGTTGAGCCTATCACGT -CCAACATGGTTGAGCCTACGTAGT -CCAACATGGTTGAGCCTAGTCAGT -CCAACATGGTTGAGCCTAGAAGGT -CCAACATGGTTGAGCCTAAACCGT -CCAACATGGTTGAGCCTATTGTGC -CCAACATGGTTGAGCCTACTAAGC -CCAACATGGTTGAGCCTAACTAGC -CCAACATGGTTGAGCCTAAGATGC -CCAACATGGTTGAGCCTATGAAGG -CCAACATGGTTGAGCCTACAATGG -CCAACATGGTTGAGCCTAATGAGG -CCAACATGGTTGAGCCTAAATGGG -CCAACATGGTTGAGCCTATCCTGA -CCAACATGGTTGAGCCTATAGCGA -CCAACATGGTTGAGCCTACACAGA -CCAACATGGTTGAGCCTAGCAAGA -CCAACATGGTTGAGCCTAGGTTGA -CCAACATGGTTGAGCCTATCCGAT -CCAACATGGTTGAGCCTATGGCAT -CCAACATGGTTGAGCCTACGAGAT -CCAACATGGTTGAGCCTATACCAC -CCAACATGGTTGAGCCTACAGAAC -CCAACATGGTTGAGCCTAGTCTAC -CCAACATGGTTGAGCCTAACGTAC -CCAACATGGTTGAGCCTAAGTGAC -CCAACATGGTTGAGCCTACTGTAG -CCAACATGGTTGAGCCTACCTAAG -CCAACATGGTTGAGCCTAGTTCAG -CCAACATGGTTGAGCCTAGCATAG -CCAACATGGTTGAGCCTAGACAAG -CCAACATGGTTGAGCCTAAAGCAG -CCAACATGGTTGAGCCTACGTCAA -CCAACATGGTTGAGCCTAGCTGAA -CCAACATGGTTGAGCCTAAGTACG -CCAACATGGTTGAGCCTAATCCGA -CCAACATGGTTGAGCCTAATGGGA -CCAACATGGTTGAGCCTAGTGCAA -CCAACATGGTTGAGCCTAGAGGAA -CCAACATGGTTGAGCCTACAGGTA -CCAACATGGTTGAGCCTAGACTCT -CCAACATGGTTGAGCCTAAGTCCT -CCAACATGGTTGAGCCTATAAGCC -CCAACATGGTTGAGCCTAATAGCC -CCAACATGGTTGAGCCTATAACCG -CCAACATGGTTGAGCCTAATGCCA -CCAACATGGTTGAGCACTGGAAAC -CCAACATGGTTGAGCACTAACACC -CCAACATGGTTGAGCACTATCGAG -CCAACATGGTTGAGCACTCTCCTT -CCAACATGGTTGAGCACTCCTGTT -CCAACATGGTTGAGCACTCGGTTT -CCAACATGGTTGAGCACTGTGGTT -CCAACATGGTTGAGCACTGCCTTT -CCAACATGGTTGAGCACTGGTCTT -CCAACATGGTTGAGCACTACGCTT -CCAACATGGTTGAGCACTAGCGTT -CCAACATGGTTGAGCACTTTCGTC -CCAACATGGTTGAGCACTTCTCTC -CCAACATGGTTGAGCACTTGGATC -CCAACATGGTTGAGCACTCACTTC -CCAACATGGTTGAGCACTGTACTC -CCAACATGGTTGAGCACTGATGTC -CCAACATGGTTGAGCACTACAGTC -CCAACATGGTTGAGCACTTTGCTG -CCAACATGGTTGAGCACTTCCATG -CCAACATGGTTGAGCACTTGTGTG -CCAACATGGTTGAGCACTCTAGTG -CCAACATGGTTGAGCACTCATCTG -CCAACATGGTTGAGCACTGAGTTG -CCAACATGGTTGAGCACTAGACTG -CCAACATGGTTGAGCACTTCGGTA -CCAACATGGTTGAGCACTTGCCTA -CCAACATGGTTGAGCACTCCACTA -CCAACATGGTTGAGCACTGGAGTA -CCAACATGGTTGAGCACTTCGTCT -CCAACATGGTTGAGCACTTGCACT -CCAACATGGTTGAGCACTCTGACT -CCAACATGGTTGAGCACTCAACCT -CCAACATGGTTGAGCACTGCTACT -CCAACATGGTTGAGCACTGGATCT -CCAACATGGTTGAGCACTAAGGCT -CCAACATGGTTGAGCACTTCAACC -CCAACATGGTTGAGCACTTGTTCC -CCAACATGGTTGAGCACTATTCCC -CCAACATGGTTGAGCACTTTCTCG -CCAACATGGTTGAGCACTTAGACG -CCAACATGGTTGAGCACTGTAACG -CCAACATGGTTGAGCACTACTTCG -CCAACATGGTTGAGCACTTACGCA -CCAACATGGTTGAGCACTCTTGCA -CCAACATGGTTGAGCACTCGAACA -CCAACATGGTTGAGCACTCAGTCA -CCAACATGGTTGAGCACTGATCCA -CCAACATGGTTGAGCACTACGACA -CCAACATGGTTGAGCACTAGCTCA -CCAACATGGTTGAGCACTTCACGT -CCAACATGGTTGAGCACTCGTAGT -CCAACATGGTTGAGCACTGTCAGT -CCAACATGGTTGAGCACTGAAGGT -CCAACATGGTTGAGCACTAACCGT -CCAACATGGTTGAGCACTTTGTGC -CCAACATGGTTGAGCACTCTAAGC -CCAACATGGTTGAGCACTACTAGC -CCAACATGGTTGAGCACTAGATGC -CCAACATGGTTGAGCACTTGAAGG -CCAACATGGTTGAGCACTCAATGG -CCAACATGGTTGAGCACTATGAGG -CCAACATGGTTGAGCACTAATGGG -CCAACATGGTTGAGCACTTCCTGA -CCAACATGGTTGAGCACTTAGCGA -CCAACATGGTTGAGCACTCACAGA -CCAACATGGTTGAGCACTGCAAGA -CCAACATGGTTGAGCACTGGTTGA -CCAACATGGTTGAGCACTTCCGAT -CCAACATGGTTGAGCACTTGGCAT -CCAACATGGTTGAGCACTCGAGAT -CCAACATGGTTGAGCACTTACCAC -CCAACATGGTTGAGCACTCAGAAC -CCAACATGGTTGAGCACTGTCTAC -CCAACATGGTTGAGCACTACGTAC -CCAACATGGTTGAGCACTAGTGAC -CCAACATGGTTGAGCACTCTGTAG -CCAACATGGTTGAGCACTCCTAAG -CCAACATGGTTGAGCACTGTTCAG -CCAACATGGTTGAGCACTGCATAG -CCAACATGGTTGAGCACTGACAAG -CCAACATGGTTGAGCACTAAGCAG -CCAACATGGTTGAGCACTCGTCAA -CCAACATGGTTGAGCACTGCTGAA -CCAACATGGTTGAGCACTAGTACG -CCAACATGGTTGAGCACTATCCGA -CCAACATGGTTGAGCACTATGGGA -CCAACATGGTTGAGCACTGTGCAA -CCAACATGGTTGAGCACTGAGGAA -CCAACATGGTTGAGCACTCAGGTA -CCAACATGGTTGAGCACTGACTCT -CCAACATGGTTGAGCACTAGTCCT -CCAACATGGTTGAGCACTTAAGCC -CCAACATGGTTGAGCACTATAGCC -CCAACATGGTTGAGCACTTAACCG -CCAACATGGTTGAGCACTATGCCA -CCAACATGGTTGTGCAGAGGAAAC -CCAACATGGTTGTGCAGAAACACC -CCAACATGGTTGTGCAGAATCGAG -CCAACATGGTTGTGCAGACTCCTT -CCAACATGGTTGTGCAGACCTGTT -CCAACATGGTTGTGCAGACGGTTT -CCAACATGGTTGTGCAGAGTGGTT -CCAACATGGTTGTGCAGAGCCTTT -CCAACATGGTTGTGCAGAGGTCTT -CCAACATGGTTGTGCAGAACGCTT -CCAACATGGTTGTGCAGAAGCGTT -CCAACATGGTTGTGCAGATTCGTC -CCAACATGGTTGTGCAGATCTCTC -CCAACATGGTTGTGCAGATGGATC -CCAACATGGTTGTGCAGACACTTC -CCAACATGGTTGTGCAGAGTACTC -CCAACATGGTTGTGCAGAGATGTC -CCAACATGGTTGTGCAGAACAGTC -CCAACATGGTTGTGCAGATTGCTG -CCAACATGGTTGTGCAGATCCATG -CCAACATGGTTGTGCAGATGTGTG -CCAACATGGTTGTGCAGACTAGTG -CCAACATGGTTGTGCAGACATCTG -CCAACATGGTTGTGCAGAGAGTTG -CCAACATGGTTGTGCAGAAGACTG -CCAACATGGTTGTGCAGATCGGTA -CCAACATGGTTGTGCAGATGCCTA -CCAACATGGTTGTGCAGACCACTA -CCAACATGGTTGTGCAGAGGAGTA -CCAACATGGTTGTGCAGATCGTCT -CCAACATGGTTGTGCAGATGCACT -CCAACATGGTTGTGCAGACTGACT -CCAACATGGTTGTGCAGACAACCT -CCAACATGGTTGTGCAGAGCTACT -CCAACATGGTTGTGCAGAGGATCT -CCAACATGGTTGTGCAGAAAGGCT -CCAACATGGTTGTGCAGATCAACC -CCAACATGGTTGTGCAGATGTTCC -CCAACATGGTTGTGCAGAATTCCC -CCAACATGGTTGTGCAGATTCTCG -CCAACATGGTTGTGCAGATAGACG -CCAACATGGTTGTGCAGAGTAACG -CCAACATGGTTGTGCAGAACTTCG -CCAACATGGTTGTGCAGATACGCA -CCAACATGGTTGTGCAGACTTGCA -CCAACATGGTTGTGCAGACGAACA -CCAACATGGTTGTGCAGACAGTCA -CCAACATGGTTGTGCAGAGATCCA -CCAACATGGTTGTGCAGAACGACA -CCAACATGGTTGTGCAGAAGCTCA -CCAACATGGTTGTGCAGATCACGT -CCAACATGGTTGTGCAGACGTAGT -CCAACATGGTTGTGCAGAGTCAGT -CCAACATGGTTGTGCAGAGAAGGT -CCAACATGGTTGTGCAGAAACCGT -CCAACATGGTTGTGCAGATTGTGC -CCAACATGGTTGTGCAGACTAAGC -CCAACATGGTTGTGCAGAACTAGC -CCAACATGGTTGTGCAGAAGATGC -CCAACATGGTTGTGCAGATGAAGG -CCAACATGGTTGTGCAGACAATGG -CCAACATGGTTGTGCAGAATGAGG -CCAACATGGTTGTGCAGAAATGGG -CCAACATGGTTGTGCAGATCCTGA -CCAACATGGTTGTGCAGATAGCGA -CCAACATGGTTGTGCAGACACAGA -CCAACATGGTTGTGCAGAGCAAGA -CCAACATGGTTGTGCAGAGGTTGA -CCAACATGGTTGTGCAGATCCGAT -CCAACATGGTTGTGCAGATGGCAT -CCAACATGGTTGTGCAGACGAGAT -CCAACATGGTTGTGCAGATACCAC -CCAACATGGTTGTGCAGACAGAAC -CCAACATGGTTGTGCAGAGTCTAC -CCAACATGGTTGTGCAGAACGTAC -CCAACATGGTTGTGCAGAAGTGAC -CCAACATGGTTGTGCAGACTGTAG -CCAACATGGTTGTGCAGACCTAAG -CCAACATGGTTGTGCAGAGTTCAG -CCAACATGGTTGTGCAGAGCATAG -CCAACATGGTTGTGCAGAGACAAG -CCAACATGGTTGTGCAGAAAGCAG -CCAACATGGTTGTGCAGACGTCAA -CCAACATGGTTGTGCAGAGCTGAA -CCAACATGGTTGTGCAGAAGTACG -CCAACATGGTTGTGCAGAATCCGA -CCAACATGGTTGTGCAGAATGGGA -CCAACATGGTTGTGCAGAGTGCAA -CCAACATGGTTGTGCAGAGAGGAA -CCAACATGGTTGTGCAGACAGGTA -CCAACATGGTTGTGCAGAGACTCT -CCAACATGGTTGTGCAGAAGTCCT -CCAACATGGTTGTGCAGATAAGCC -CCAACATGGTTGTGCAGAATAGCC -CCAACATGGTTGTGCAGATAACCG -CCAACATGGTTGTGCAGAATGCCA -CCAACATGGTTGAGGTGAGGAAAC -CCAACATGGTTGAGGTGAAACACC -CCAACATGGTTGAGGTGAATCGAG -CCAACATGGTTGAGGTGACTCCTT -CCAACATGGTTGAGGTGACCTGTT -CCAACATGGTTGAGGTGACGGTTT -CCAACATGGTTGAGGTGAGTGGTT -CCAACATGGTTGAGGTGAGCCTTT -CCAACATGGTTGAGGTGAGGTCTT -CCAACATGGTTGAGGTGAACGCTT -CCAACATGGTTGAGGTGAAGCGTT -CCAACATGGTTGAGGTGATTCGTC -CCAACATGGTTGAGGTGATCTCTC -CCAACATGGTTGAGGTGATGGATC -CCAACATGGTTGAGGTGACACTTC -CCAACATGGTTGAGGTGAGTACTC -CCAACATGGTTGAGGTGAGATGTC -CCAACATGGTTGAGGTGAACAGTC -CCAACATGGTTGAGGTGATTGCTG -CCAACATGGTTGAGGTGATCCATG -CCAACATGGTTGAGGTGATGTGTG -CCAACATGGTTGAGGTGACTAGTG -CCAACATGGTTGAGGTGACATCTG -CCAACATGGTTGAGGTGAGAGTTG -CCAACATGGTTGAGGTGAAGACTG -CCAACATGGTTGAGGTGATCGGTA -CCAACATGGTTGAGGTGATGCCTA -CCAACATGGTTGAGGTGACCACTA -CCAACATGGTTGAGGTGAGGAGTA -CCAACATGGTTGAGGTGATCGTCT -CCAACATGGTTGAGGTGATGCACT -CCAACATGGTTGAGGTGACTGACT -CCAACATGGTTGAGGTGACAACCT -CCAACATGGTTGAGGTGAGCTACT -CCAACATGGTTGAGGTGAGGATCT -CCAACATGGTTGAGGTGAAAGGCT -CCAACATGGTTGAGGTGATCAACC -CCAACATGGTTGAGGTGATGTTCC -CCAACATGGTTGAGGTGAATTCCC -CCAACATGGTTGAGGTGATTCTCG -CCAACATGGTTGAGGTGATAGACG -CCAACATGGTTGAGGTGAGTAACG -CCAACATGGTTGAGGTGAACTTCG -CCAACATGGTTGAGGTGATACGCA -CCAACATGGTTGAGGTGACTTGCA -CCAACATGGTTGAGGTGACGAACA -CCAACATGGTTGAGGTGACAGTCA -CCAACATGGTTGAGGTGAGATCCA -CCAACATGGTTGAGGTGAACGACA -CCAACATGGTTGAGGTGAAGCTCA -CCAACATGGTTGAGGTGATCACGT -CCAACATGGTTGAGGTGACGTAGT -CCAACATGGTTGAGGTGAGTCAGT -CCAACATGGTTGAGGTGAGAAGGT -CCAACATGGTTGAGGTGAAACCGT -CCAACATGGTTGAGGTGATTGTGC -CCAACATGGTTGAGGTGACTAAGC -CCAACATGGTTGAGGTGAACTAGC -CCAACATGGTTGAGGTGAAGATGC -CCAACATGGTTGAGGTGATGAAGG -CCAACATGGTTGAGGTGACAATGG -CCAACATGGTTGAGGTGAATGAGG -CCAACATGGTTGAGGTGAAATGGG -CCAACATGGTTGAGGTGATCCTGA -CCAACATGGTTGAGGTGATAGCGA -CCAACATGGTTGAGGTGACACAGA -CCAACATGGTTGAGGTGAGCAAGA -CCAACATGGTTGAGGTGAGGTTGA -CCAACATGGTTGAGGTGATCCGAT -CCAACATGGTTGAGGTGATGGCAT -CCAACATGGTTGAGGTGACGAGAT -CCAACATGGTTGAGGTGATACCAC -CCAACATGGTTGAGGTGACAGAAC -CCAACATGGTTGAGGTGAGTCTAC -CCAACATGGTTGAGGTGAACGTAC -CCAACATGGTTGAGGTGAAGTGAC -CCAACATGGTTGAGGTGACTGTAG -CCAACATGGTTGAGGTGACCTAAG -CCAACATGGTTGAGGTGAGTTCAG -CCAACATGGTTGAGGTGAGCATAG -CCAACATGGTTGAGGTGAGACAAG -CCAACATGGTTGAGGTGAAAGCAG -CCAACATGGTTGAGGTGACGTCAA -CCAACATGGTTGAGGTGAGCTGAA -CCAACATGGTTGAGGTGAAGTACG -CCAACATGGTTGAGGTGAATCCGA -CCAACATGGTTGAGGTGAATGGGA -CCAACATGGTTGAGGTGAGTGCAA -CCAACATGGTTGAGGTGAGAGGAA -CCAACATGGTTGAGGTGACAGGTA -CCAACATGGTTGAGGTGAGACTCT -CCAACATGGTTGAGGTGAAGTCCT -CCAACATGGTTGAGGTGATAAGCC -CCAACATGGTTGAGGTGAATAGCC -CCAACATGGTTGAGGTGATAACCG -CCAACATGGTTGAGGTGAATGCCA -CCAACATGGTTGTGGCAAGGAAAC -CCAACATGGTTGTGGCAAAACACC -CCAACATGGTTGTGGCAAATCGAG -CCAACATGGTTGTGGCAACTCCTT -CCAACATGGTTGTGGCAACCTGTT -CCAACATGGTTGTGGCAACGGTTT -CCAACATGGTTGTGGCAAGTGGTT -CCAACATGGTTGTGGCAAGCCTTT -CCAACATGGTTGTGGCAAGGTCTT -CCAACATGGTTGTGGCAAACGCTT -CCAACATGGTTGTGGCAAAGCGTT -CCAACATGGTTGTGGCAATTCGTC -CCAACATGGTTGTGGCAATCTCTC -CCAACATGGTTGTGGCAATGGATC -CCAACATGGTTGTGGCAACACTTC -CCAACATGGTTGTGGCAAGTACTC -CCAACATGGTTGTGGCAAGATGTC -CCAACATGGTTGTGGCAAACAGTC -CCAACATGGTTGTGGCAATTGCTG -CCAACATGGTTGTGGCAATCCATG -CCAACATGGTTGTGGCAATGTGTG -CCAACATGGTTGTGGCAACTAGTG -CCAACATGGTTGTGGCAACATCTG -CCAACATGGTTGTGGCAAGAGTTG -CCAACATGGTTGTGGCAAAGACTG -CCAACATGGTTGTGGCAATCGGTA -CCAACATGGTTGTGGCAATGCCTA -CCAACATGGTTGTGGCAACCACTA -CCAACATGGTTGTGGCAAGGAGTA -CCAACATGGTTGTGGCAATCGTCT -CCAACATGGTTGTGGCAATGCACT -CCAACATGGTTGTGGCAACTGACT -CCAACATGGTTGTGGCAACAACCT -CCAACATGGTTGTGGCAAGCTACT -CCAACATGGTTGTGGCAAGGATCT -CCAACATGGTTGTGGCAAAAGGCT -CCAACATGGTTGTGGCAATCAACC -CCAACATGGTTGTGGCAATGTTCC -CCAACATGGTTGTGGCAAATTCCC -CCAACATGGTTGTGGCAATTCTCG -CCAACATGGTTGTGGCAATAGACG -CCAACATGGTTGTGGCAAGTAACG -CCAACATGGTTGTGGCAAACTTCG -CCAACATGGTTGTGGCAATACGCA -CCAACATGGTTGTGGCAACTTGCA -CCAACATGGTTGTGGCAACGAACA -CCAACATGGTTGTGGCAACAGTCA -CCAACATGGTTGTGGCAAGATCCA -CCAACATGGTTGTGGCAAACGACA -CCAACATGGTTGTGGCAAAGCTCA -CCAACATGGTTGTGGCAATCACGT -CCAACATGGTTGTGGCAACGTAGT -CCAACATGGTTGTGGCAAGTCAGT -CCAACATGGTTGTGGCAAGAAGGT -CCAACATGGTTGTGGCAAAACCGT -CCAACATGGTTGTGGCAATTGTGC -CCAACATGGTTGTGGCAACTAAGC -CCAACATGGTTGTGGCAAACTAGC -CCAACATGGTTGTGGCAAAGATGC -CCAACATGGTTGTGGCAATGAAGG -CCAACATGGTTGTGGCAACAATGG -CCAACATGGTTGTGGCAAATGAGG -CCAACATGGTTGTGGCAAAATGGG -CCAACATGGTTGTGGCAATCCTGA -CCAACATGGTTGTGGCAATAGCGA -CCAACATGGTTGTGGCAACACAGA -CCAACATGGTTGTGGCAAGCAAGA -CCAACATGGTTGTGGCAAGGTTGA -CCAACATGGTTGTGGCAATCCGAT -CCAACATGGTTGTGGCAATGGCAT -CCAACATGGTTGTGGCAACGAGAT -CCAACATGGTTGTGGCAATACCAC -CCAACATGGTTGTGGCAACAGAAC -CCAACATGGTTGTGGCAAGTCTAC -CCAACATGGTTGTGGCAAACGTAC -CCAACATGGTTGTGGCAAAGTGAC -CCAACATGGTTGTGGCAACTGTAG -CCAACATGGTTGTGGCAACCTAAG -CCAACATGGTTGTGGCAAGTTCAG -CCAACATGGTTGTGGCAAGCATAG -CCAACATGGTTGTGGCAAGACAAG -CCAACATGGTTGTGGCAAAAGCAG -CCAACATGGTTGTGGCAACGTCAA -CCAACATGGTTGTGGCAAGCTGAA -CCAACATGGTTGTGGCAAAGTACG -CCAACATGGTTGTGGCAAATCCGA -CCAACATGGTTGTGGCAAATGGGA -CCAACATGGTTGTGGCAAGTGCAA -CCAACATGGTTGTGGCAAGAGGAA -CCAACATGGTTGTGGCAACAGGTA -CCAACATGGTTGTGGCAAGACTCT -CCAACATGGTTGTGGCAAAGTCCT -CCAACATGGTTGTGGCAATAAGCC -CCAACATGGTTGTGGCAAATAGCC -CCAACATGGTTGTGGCAATAACCG -CCAACATGGTTGTGGCAAATGCCA -CCAACATGGTTGAGGATGGGAAAC -CCAACATGGTTGAGGATGAACACC -CCAACATGGTTGAGGATGATCGAG -CCAACATGGTTGAGGATGCTCCTT -CCAACATGGTTGAGGATGCCTGTT -CCAACATGGTTGAGGATGCGGTTT -CCAACATGGTTGAGGATGGTGGTT -CCAACATGGTTGAGGATGGCCTTT -CCAACATGGTTGAGGATGGGTCTT -CCAACATGGTTGAGGATGACGCTT -CCAACATGGTTGAGGATGAGCGTT -CCAACATGGTTGAGGATGTTCGTC -CCAACATGGTTGAGGATGTCTCTC -CCAACATGGTTGAGGATGTGGATC -CCAACATGGTTGAGGATGCACTTC -CCAACATGGTTGAGGATGGTACTC -CCAACATGGTTGAGGATGGATGTC -CCAACATGGTTGAGGATGACAGTC -CCAACATGGTTGAGGATGTTGCTG -CCAACATGGTTGAGGATGTCCATG -CCAACATGGTTGAGGATGTGTGTG -CCAACATGGTTGAGGATGCTAGTG -CCAACATGGTTGAGGATGCATCTG -CCAACATGGTTGAGGATGGAGTTG -CCAACATGGTTGAGGATGAGACTG -CCAACATGGTTGAGGATGTCGGTA -CCAACATGGTTGAGGATGTGCCTA -CCAACATGGTTGAGGATGCCACTA -CCAACATGGTTGAGGATGGGAGTA -CCAACATGGTTGAGGATGTCGTCT -CCAACATGGTTGAGGATGTGCACT -CCAACATGGTTGAGGATGCTGACT -CCAACATGGTTGAGGATGCAACCT -CCAACATGGTTGAGGATGGCTACT -CCAACATGGTTGAGGATGGGATCT -CCAACATGGTTGAGGATGAAGGCT -CCAACATGGTTGAGGATGTCAACC -CCAACATGGTTGAGGATGTGTTCC -CCAACATGGTTGAGGATGATTCCC -CCAACATGGTTGAGGATGTTCTCG -CCAACATGGTTGAGGATGTAGACG -CCAACATGGTTGAGGATGGTAACG -CCAACATGGTTGAGGATGACTTCG -CCAACATGGTTGAGGATGTACGCA -CCAACATGGTTGAGGATGCTTGCA -CCAACATGGTTGAGGATGCGAACA -CCAACATGGTTGAGGATGCAGTCA -CCAACATGGTTGAGGATGGATCCA -CCAACATGGTTGAGGATGACGACA -CCAACATGGTTGAGGATGAGCTCA -CCAACATGGTTGAGGATGTCACGT -CCAACATGGTTGAGGATGCGTAGT -CCAACATGGTTGAGGATGGTCAGT -CCAACATGGTTGAGGATGGAAGGT -CCAACATGGTTGAGGATGAACCGT -CCAACATGGTTGAGGATGTTGTGC -CCAACATGGTTGAGGATGCTAAGC -CCAACATGGTTGAGGATGACTAGC -CCAACATGGTTGAGGATGAGATGC -CCAACATGGTTGAGGATGTGAAGG -CCAACATGGTTGAGGATGCAATGG -CCAACATGGTTGAGGATGATGAGG -CCAACATGGTTGAGGATGAATGGG -CCAACATGGTTGAGGATGTCCTGA -CCAACATGGTTGAGGATGTAGCGA -CCAACATGGTTGAGGATGCACAGA -CCAACATGGTTGAGGATGGCAAGA -CCAACATGGTTGAGGATGGGTTGA -CCAACATGGTTGAGGATGTCCGAT -CCAACATGGTTGAGGATGTGGCAT -CCAACATGGTTGAGGATGCGAGAT -CCAACATGGTTGAGGATGTACCAC -CCAACATGGTTGAGGATGCAGAAC -CCAACATGGTTGAGGATGGTCTAC -CCAACATGGTTGAGGATGACGTAC -CCAACATGGTTGAGGATGAGTGAC -CCAACATGGTTGAGGATGCTGTAG -CCAACATGGTTGAGGATGCCTAAG -CCAACATGGTTGAGGATGGTTCAG -CCAACATGGTTGAGGATGGCATAG -CCAACATGGTTGAGGATGGACAAG -CCAACATGGTTGAGGATGAAGCAG -CCAACATGGTTGAGGATGCGTCAA -CCAACATGGTTGAGGATGGCTGAA -CCAACATGGTTGAGGATGAGTACG -CCAACATGGTTGAGGATGATCCGA -CCAACATGGTTGAGGATGATGGGA -CCAACATGGTTGAGGATGGTGCAA -CCAACATGGTTGAGGATGGAGGAA -CCAACATGGTTGAGGATGCAGGTA -CCAACATGGTTGAGGATGGACTCT -CCAACATGGTTGAGGATGAGTCCT -CCAACATGGTTGAGGATGTAAGCC -CCAACATGGTTGAGGATGATAGCC -CCAACATGGTTGAGGATGTAACCG -CCAACATGGTTGAGGATGATGCCA -CCAACATGGTTGGGGAATGGAAAC -CCAACATGGTTGGGGAATAACACC -CCAACATGGTTGGGGAATATCGAG -CCAACATGGTTGGGGAATCTCCTT -CCAACATGGTTGGGGAATCCTGTT -CCAACATGGTTGGGGAATCGGTTT -CCAACATGGTTGGGGAATGTGGTT -CCAACATGGTTGGGGAATGCCTTT -CCAACATGGTTGGGGAATGGTCTT -CCAACATGGTTGGGGAATACGCTT -CCAACATGGTTGGGGAATAGCGTT -CCAACATGGTTGGGGAATTTCGTC -CCAACATGGTTGGGGAATTCTCTC -CCAACATGGTTGGGGAATTGGATC -CCAACATGGTTGGGGAATCACTTC -CCAACATGGTTGGGGAATGTACTC -CCAACATGGTTGGGGAATGATGTC -CCAACATGGTTGGGGAATACAGTC -CCAACATGGTTGGGGAATTTGCTG -CCAACATGGTTGGGGAATTCCATG -CCAACATGGTTGGGGAATTGTGTG -CCAACATGGTTGGGGAATCTAGTG -CCAACATGGTTGGGGAATCATCTG -CCAACATGGTTGGGGAATGAGTTG -CCAACATGGTTGGGGAATAGACTG -CCAACATGGTTGGGGAATTCGGTA -CCAACATGGTTGGGGAATTGCCTA -CCAACATGGTTGGGGAATCCACTA -CCAACATGGTTGGGGAATGGAGTA -CCAACATGGTTGGGGAATTCGTCT -CCAACATGGTTGGGGAATTGCACT -CCAACATGGTTGGGGAATCTGACT -CCAACATGGTTGGGGAATCAACCT -CCAACATGGTTGGGGAATGCTACT -CCAACATGGTTGGGGAATGGATCT -CCAACATGGTTGGGGAATAAGGCT -CCAACATGGTTGGGGAATTCAACC -CCAACATGGTTGGGGAATTGTTCC -CCAACATGGTTGGGGAATATTCCC -CCAACATGGTTGGGGAATTTCTCG -CCAACATGGTTGGGGAATTAGACG -CCAACATGGTTGGGGAATGTAACG -CCAACATGGTTGGGGAATACTTCG -CCAACATGGTTGGGGAATTACGCA -CCAACATGGTTGGGGAATCTTGCA -CCAACATGGTTGGGGAATCGAACA -CCAACATGGTTGGGGAATCAGTCA -CCAACATGGTTGGGGAATGATCCA -CCAACATGGTTGGGGAATACGACA -CCAACATGGTTGGGGAATAGCTCA -CCAACATGGTTGGGGAATTCACGT -CCAACATGGTTGGGGAATCGTAGT -CCAACATGGTTGGGGAATGTCAGT -CCAACATGGTTGGGGAATGAAGGT -CCAACATGGTTGGGGAATAACCGT -CCAACATGGTTGGGGAATTTGTGC -CCAACATGGTTGGGGAATCTAAGC -CCAACATGGTTGGGGAATACTAGC -CCAACATGGTTGGGGAATAGATGC -CCAACATGGTTGGGGAATTGAAGG -CCAACATGGTTGGGGAATCAATGG -CCAACATGGTTGGGGAATATGAGG -CCAACATGGTTGGGGAATAATGGG -CCAACATGGTTGGGGAATTCCTGA -CCAACATGGTTGGGGAATTAGCGA -CCAACATGGTTGGGGAATCACAGA -CCAACATGGTTGGGGAATGCAAGA -CCAACATGGTTGGGGAATGGTTGA -CCAACATGGTTGGGGAATTCCGAT -CCAACATGGTTGGGGAATTGGCAT -CCAACATGGTTGGGGAATCGAGAT -CCAACATGGTTGGGGAATTACCAC -CCAACATGGTTGGGGAATCAGAAC -CCAACATGGTTGGGGAATGTCTAC -CCAACATGGTTGGGGAATACGTAC -CCAACATGGTTGGGGAATAGTGAC -CCAACATGGTTGGGGAATCTGTAG -CCAACATGGTTGGGGAATCCTAAG -CCAACATGGTTGGGGAATGTTCAG -CCAACATGGTTGGGGAATGCATAG -CCAACATGGTTGGGGAATGACAAG -CCAACATGGTTGGGGAATAAGCAG -CCAACATGGTTGGGGAATCGTCAA -CCAACATGGTTGGGGAATGCTGAA -CCAACATGGTTGGGGAATAGTACG -CCAACATGGTTGGGGAATATCCGA -CCAACATGGTTGGGGAATATGGGA -CCAACATGGTTGGGGAATGTGCAA -CCAACATGGTTGGGGAATGAGGAA -CCAACATGGTTGGGGAATCAGGTA -CCAACATGGTTGGGGAATGACTCT -CCAACATGGTTGGGGAATAGTCCT -CCAACATGGTTGGGGAATTAAGCC -CCAACATGGTTGGGGAATATAGCC -CCAACATGGTTGGGGAATTAACCG -CCAACATGGTTGGGGAATATGCCA -CCAACATGGTTGTGATCCGGAAAC -CCAACATGGTTGTGATCCAACACC -CCAACATGGTTGTGATCCATCGAG -CCAACATGGTTGTGATCCCTCCTT -CCAACATGGTTGTGATCCCCTGTT -CCAACATGGTTGTGATCCCGGTTT -CCAACATGGTTGTGATCCGTGGTT -CCAACATGGTTGTGATCCGCCTTT -CCAACATGGTTGTGATCCGGTCTT -CCAACATGGTTGTGATCCACGCTT -CCAACATGGTTGTGATCCAGCGTT -CCAACATGGTTGTGATCCTTCGTC -CCAACATGGTTGTGATCCTCTCTC -CCAACATGGTTGTGATCCTGGATC -CCAACATGGTTGTGATCCCACTTC -CCAACATGGTTGTGATCCGTACTC -CCAACATGGTTGTGATCCGATGTC -CCAACATGGTTGTGATCCACAGTC -CCAACATGGTTGTGATCCTTGCTG -CCAACATGGTTGTGATCCTCCATG -CCAACATGGTTGTGATCCTGTGTG -CCAACATGGTTGTGATCCCTAGTG -CCAACATGGTTGTGATCCCATCTG -CCAACATGGTTGTGATCCGAGTTG -CCAACATGGTTGTGATCCAGACTG -CCAACATGGTTGTGATCCTCGGTA -CCAACATGGTTGTGATCCTGCCTA -CCAACATGGTTGTGATCCCCACTA -CCAACATGGTTGTGATCCGGAGTA -CCAACATGGTTGTGATCCTCGTCT -CCAACATGGTTGTGATCCTGCACT -CCAACATGGTTGTGATCCCTGACT -CCAACATGGTTGTGATCCCAACCT -CCAACATGGTTGTGATCCGCTACT -CCAACATGGTTGTGATCCGGATCT -CCAACATGGTTGTGATCCAAGGCT -CCAACATGGTTGTGATCCTCAACC -CCAACATGGTTGTGATCCTGTTCC -CCAACATGGTTGTGATCCATTCCC -CCAACATGGTTGTGATCCTTCTCG -CCAACATGGTTGTGATCCTAGACG -CCAACATGGTTGTGATCCGTAACG -CCAACATGGTTGTGATCCACTTCG -CCAACATGGTTGTGATCCTACGCA -CCAACATGGTTGTGATCCCTTGCA -CCAACATGGTTGTGATCCCGAACA -CCAACATGGTTGTGATCCCAGTCA -CCAACATGGTTGTGATCCGATCCA -CCAACATGGTTGTGATCCACGACA -CCAACATGGTTGTGATCCAGCTCA -CCAACATGGTTGTGATCCTCACGT -CCAACATGGTTGTGATCCCGTAGT -CCAACATGGTTGTGATCCGTCAGT -CCAACATGGTTGTGATCCGAAGGT -CCAACATGGTTGTGATCCAACCGT -CCAACATGGTTGTGATCCTTGTGC -CCAACATGGTTGTGATCCCTAAGC -CCAACATGGTTGTGATCCACTAGC -CCAACATGGTTGTGATCCAGATGC -CCAACATGGTTGTGATCCTGAAGG -CCAACATGGTTGTGATCCCAATGG -CCAACATGGTTGTGATCCATGAGG -CCAACATGGTTGTGATCCAATGGG -CCAACATGGTTGTGATCCTCCTGA -CCAACATGGTTGTGATCCTAGCGA -CCAACATGGTTGTGATCCCACAGA -CCAACATGGTTGTGATCCGCAAGA -CCAACATGGTTGTGATCCGGTTGA -CCAACATGGTTGTGATCCTCCGAT -CCAACATGGTTGTGATCCTGGCAT -CCAACATGGTTGTGATCCCGAGAT -CCAACATGGTTGTGATCCTACCAC -CCAACATGGTTGTGATCCCAGAAC -CCAACATGGTTGTGATCCGTCTAC -CCAACATGGTTGTGATCCACGTAC -CCAACATGGTTGTGATCCAGTGAC -CCAACATGGTTGTGATCCCTGTAG -CCAACATGGTTGTGATCCCCTAAG -CCAACATGGTTGTGATCCGTTCAG -CCAACATGGTTGTGATCCGCATAG -CCAACATGGTTGTGATCCGACAAG -CCAACATGGTTGTGATCCAAGCAG -CCAACATGGTTGTGATCCCGTCAA -CCAACATGGTTGTGATCCGCTGAA -CCAACATGGTTGTGATCCAGTACG -CCAACATGGTTGTGATCCATCCGA -CCAACATGGTTGTGATCCATGGGA -CCAACATGGTTGTGATCCGTGCAA -CCAACATGGTTGTGATCCGAGGAA -CCAACATGGTTGTGATCCCAGGTA -CCAACATGGTTGTGATCCGACTCT -CCAACATGGTTGTGATCCAGTCCT -CCAACATGGTTGTGATCCTAAGCC -CCAACATGGTTGTGATCCATAGCC -CCAACATGGTTGTGATCCTAACCG -CCAACATGGTTGTGATCCATGCCA -CCAACATGGTTGCGATAGGGAAAC -CCAACATGGTTGCGATAGAACACC -CCAACATGGTTGCGATAGATCGAG -CCAACATGGTTGCGATAGCTCCTT -CCAACATGGTTGCGATAGCCTGTT -CCAACATGGTTGCGATAGCGGTTT -CCAACATGGTTGCGATAGGTGGTT -CCAACATGGTTGCGATAGGCCTTT -CCAACATGGTTGCGATAGGGTCTT -CCAACATGGTTGCGATAGACGCTT -CCAACATGGTTGCGATAGAGCGTT -CCAACATGGTTGCGATAGTTCGTC -CCAACATGGTTGCGATAGTCTCTC -CCAACATGGTTGCGATAGTGGATC -CCAACATGGTTGCGATAGCACTTC -CCAACATGGTTGCGATAGGTACTC -CCAACATGGTTGCGATAGGATGTC -CCAACATGGTTGCGATAGACAGTC -CCAACATGGTTGCGATAGTTGCTG -CCAACATGGTTGCGATAGTCCATG -CCAACATGGTTGCGATAGTGTGTG -CCAACATGGTTGCGATAGCTAGTG -CCAACATGGTTGCGATAGCATCTG -CCAACATGGTTGCGATAGGAGTTG -CCAACATGGTTGCGATAGAGACTG -CCAACATGGTTGCGATAGTCGGTA -CCAACATGGTTGCGATAGTGCCTA -CCAACATGGTTGCGATAGCCACTA -CCAACATGGTTGCGATAGGGAGTA -CCAACATGGTTGCGATAGTCGTCT -CCAACATGGTTGCGATAGTGCACT -CCAACATGGTTGCGATAGCTGACT -CCAACATGGTTGCGATAGCAACCT -CCAACATGGTTGCGATAGGCTACT -CCAACATGGTTGCGATAGGGATCT -CCAACATGGTTGCGATAGAAGGCT -CCAACATGGTTGCGATAGTCAACC -CCAACATGGTTGCGATAGTGTTCC -CCAACATGGTTGCGATAGATTCCC -CCAACATGGTTGCGATAGTTCTCG -CCAACATGGTTGCGATAGTAGACG -CCAACATGGTTGCGATAGGTAACG -CCAACATGGTTGCGATAGACTTCG -CCAACATGGTTGCGATAGTACGCA -CCAACATGGTTGCGATAGCTTGCA -CCAACATGGTTGCGATAGCGAACA -CCAACATGGTTGCGATAGCAGTCA -CCAACATGGTTGCGATAGGATCCA -CCAACATGGTTGCGATAGACGACA -CCAACATGGTTGCGATAGAGCTCA -CCAACATGGTTGCGATAGTCACGT -CCAACATGGTTGCGATAGCGTAGT -CCAACATGGTTGCGATAGGTCAGT -CCAACATGGTTGCGATAGGAAGGT -CCAACATGGTTGCGATAGAACCGT -CCAACATGGTTGCGATAGTTGTGC -CCAACATGGTTGCGATAGCTAAGC -CCAACATGGTTGCGATAGACTAGC -CCAACATGGTTGCGATAGAGATGC -CCAACATGGTTGCGATAGTGAAGG -CCAACATGGTTGCGATAGCAATGG -CCAACATGGTTGCGATAGATGAGG -CCAACATGGTTGCGATAGAATGGG -CCAACATGGTTGCGATAGTCCTGA -CCAACATGGTTGCGATAGTAGCGA -CCAACATGGTTGCGATAGCACAGA -CCAACATGGTTGCGATAGGCAAGA -CCAACATGGTTGCGATAGGGTTGA -CCAACATGGTTGCGATAGTCCGAT -CCAACATGGTTGCGATAGTGGCAT -CCAACATGGTTGCGATAGCGAGAT -CCAACATGGTTGCGATAGTACCAC -CCAACATGGTTGCGATAGCAGAAC -CCAACATGGTTGCGATAGGTCTAC -CCAACATGGTTGCGATAGACGTAC -CCAACATGGTTGCGATAGAGTGAC -CCAACATGGTTGCGATAGCTGTAG -CCAACATGGTTGCGATAGCCTAAG -CCAACATGGTTGCGATAGGTTCAG -CCAACATGGTTGCGATAGGCATAG -CCAACATGGTTGCGATAGGACAAG -CCAACATGGTTGCGATAGAAGCAG -CCAACATGGTTGCGATAGCGTCAA -CCAACATGGTTGCGATAGGCTGAA -CCAACATGGTTGCGATAGAGTACG -CCAACATGGTTGCGATAGATCCGA -CCAACATGGTTGCGATAGATGGGA -CCAACATGGTTGCGATAGGTGCAA -CCAACATGGTTGCGATAGGAGGAA -CCAACATGGTTGCGATAGCAGGTA -CCAACATGGTTGCGATAGGACTCT -CCAACATGGTTGCGATAGAGTCCT -CCAACATGGTTGCGATAGTAAGCC -CCAACATGGTTGCGATAGATAGCC -CCAACATGGTTGCGATAGTAACCG -CCAACATGGTTGCGATAGATGCCA -CCAACATGGTTGAGACACGGAAAC -CCAACATGGTTGAGACACAACACC -CCAACATGGTTGAGACACATCGAG -CCAACATGGTTGAGACACCTCCTT -CCAACATGGTTGAGACACCCTGTT -CCAACATGGTTGAGACACCGGTTT -CCAACATGGTTGAGACACGTGGTT -CCAACATGGTTGAGACACGCCTTT -CCAACATGGTTGAGACACGGTCTT -CCAACATGGTTGAGACACACGCTT -CCAACATGGTTGAGACACAGCGTT -CCAACATGGTTGAGACACTTCGTC -CCAACATGGTTGAGACACTCTCTC -CCAACATGGTTGAGACACTGGATC -CCAACATGGTTGAGACACCACTTC -CCAACATGGTTGAGACACGTACTC -CCAACATGGTTGAGACACGATGTC -CCAACATGGTTGAGACACACAGTC -CCAACATGGTTGAGACACTTGCTG -CCAACATGGTTGAGACACTCCATG -CCAACATGGTTGAGACACTGTGTG -CCAACATGGTTGAGACACCTAGTG -CCAACATGGTTGAGACACCATCTG -CCAACATGGTTGAGACACGAGTTG -CCAACATGGTTGAGACACAGACTG -CCAACATGGTTGAGACACTCGGTA -CCAACATGGTTGAGACACTGCCTA -CCAACATGGTTGAGACACCCACTA -CCAACATGGTTGAGACACGGAGTA -CCAACATGGTTGAGACACTCGTCT -CCAACATGGTTGAGACACTGCACT -CCAACATGGTTGAGACACCTGACT -CCAACATGGTTGAGACACCAACCT -CCAACATGGTTGAGACACGCTACT -CCAACATGGTTGAGACACGGATCT -CCAACATGGTTGAGACACAAGGCT -CCAACATGGTTGAGACACTCAACC -CCAACATGGTTGAGACACTGTTCC -CCAACATGGTTGAGACACATTCCC -CCAACATGGTTGAGACACTTCTCG -CCAACATGGTTGAGACACTAGACG -CCAACATGGTTGAGACACGTAACG -CCAACATGGTTGAGACACACTTCG -CCAACATGGTTGAGACACTACGCA -CCAACATGGTTGAGACACCTTGCA -CCAACATGGTTGAGACACCGAACA -CCAACATGGTTGAGACACCAGTCA -CCAACATGGTTGAGACACGATCCA -CCAACATGGTTGAGACACACGACA -CCAACATGGTTGAGACACAGCTCA -CCAACATGGTTGAGACACTCACGT -CCAACATGGTTGAGACACCGTAGT -CCAACATGGTTGAGACACGTCAGT -CCAACATGGTTGAGACACGAAGGT -CCAACATGGTTGAGACACAACCGT -CCAACATGGTTGAGACACTTGTGC -CCAACATGGTTGAGACACCTAAGC -CCAACATGGTTGAGACACACTAGC -CCAACATGGTTGAGACACAGATGC -CCAACATGGTTGAGACACTGAAGG -CCAACATGGTTGAGACACCAATGG -CCAACATGGTTGAGACACATGAGG -CCAACATGGTTGAGACACAATGGG -CCAACATGGTTGAGACACTCCTGA -CCAACATGGTTGAGACACTAGCGA -CCAACATGGTTGAGACACCACAGA -CCAACATGGTTGAGACACGCAAGA -CCAACATGGTTGAGACACGGTTGA -CCAACATGGTTGAGACACTCCGAT -CCAACATGGTTGAGACACTGGCAT -CCAACATGGTTGAGACACCGAGAT -CCAACATGGTTGAGACACTACCAC -CCAACATGGTTGAGACACCAGAAC -CCAACATGGTTGAGACACGTCTAC -CCAACATGGTTGAGACACACGTAC -CCAACATGGTTGAGACACAGTGAC -CCAACATGGTTGAGACACCTGTAG -CCAACATGGTTGAGACACCCTAAG -CCAACATGGTTGAGACACGTTCAG -CCAACATGGTTGAGACACGCATAG -CCAACATGGTTGAGACACGACAAG -CCAACATGGTTGAGACACAAGCAG -CCAACATGGTTGAGACACCGTCAA -CCAACATGGTTGAGACACGCTGAA -CCAACATGGTTGAGACACAGTACG -CCAACATGGTTGAGACACATCCGA -CCAACATGGTTGAGACACATGGGA -CCAACATGGTTGAGACACGTGCAA -CCAACATGGTTGAGACACGAGGAA -CCAACATGGTTGAGACACCAGGTA -CCAACATGGTTGAGACACGACTCT -CCAACATGGTTGAGACACAGTCCT -CCAACATGGTTGAGACACTAAGCC -CCAACATGGTTGAGACACATAGCC -CCAACATGGTTGAGACACTAACCG -CCAACATGGTTGAGACACATGCCA -CCAACATGGTTGAGAGCAGGAAAC -CCAACATGGTTGAGAGCAAACACC -CCAACATGGTTGAGAGCAATCGAG -CCAACATGGTTGAGAGCACTCCTT -CCAACATGGTTGAGAGCACCTGTT -CCAACATGGTTGAGAGCACGGTTT -CCAACATGGTTGAGAGCAGTGGTT -CCAACATGGTTGAGAGCAGCCTTT -CCAACATGGTTGAGAGCAGGTCTT -CCAACATGGTTGAGAGCAACGCTT -CCAACATGGTTGAGAGCAAGCGTT -CCAACATGGTTGAGAGCATTCGTC -CCAACATGGTTGAGAGCATCTCTC -CCAACATGGTTGAGAGCATGGATC -CCAACATGGTTGAGAGCACACTTC -CCAACATGGTTGAGAGCAGTACTC -CCAACATGGTTGAGAGCAGATGTC -CCAACATGGTTGAGAGCAACAGTC -CCAACATGGTTGAGAGCATTGCTG -CCAACATGGTTGAGAGCATCCATG -CCAACATGGTTGAGAGCATGTGTG -CCAACATGGTTGAGAGCACTAGTG -CCAACATGGTTGAGAGCACATCTG -CCAACATGGTTGAGAGCAGAGTTG -CCAACATGGTTGAGAGCAAGACTG -CCAACATGGTTGAGAGCATCGGTA -CCAACATGGTTGAGAGCATGCCTA -CCAACATGGTTGAGAGCACCACTA -CCAACATGGTTGAGAGCAGGAGTA -CCAACATGGTTGAGAGCATCGTCT -CCAACATGGTTGAGAGCATGCACT -CCAACATGGTTGAGAGCACTGACT -CCAACATGGTTGAGAGCACAACCT -CCAACATGGTTGAGAGCAGCTACT -CCAACATGGTTGAGAGCAGGATCT -CCAACATGGTTGAGAGCAAAGGCT -CCAACATGGTTGAGAGCATCAACC -CCAACATGGTTGAGAGCATGTTCC -CCAACATGGTTGAGAGCAATTCCC -CCAACATGGTTGAGAGCATTCTCG -CCAACATGGTTGAGAGCATAGACG -CCAACATGGTTGAGAGCAGTAACG -CCAACATGGTTGAGAGCAACTTCG -CCAACATGGTTGAGAGCATACGCA -CCAACATGGTTGAGAGCACTTGCA -CCAACATGGTTGAGAGCACGAACA -CCAACATGGTTGAGAGCACAGTCA -CCAACATGGTTGAGAGCAGATCCA -CCAACATGGTTGAGAGCAACGACA -CCAACATGGTTGAGAGCAAGCTCA -CCAACATGGTTGAGAGCATCACGT -CCAACATGGTTGAGAGCACGTAGT -CCAACATGGTTGAGAGCAGTCAGT -CCAACATGGTTGAGAGCAGAAGGT -CCAACATGGTTGAGAGCAAACCGT -CCAACATGGTTGAGAGCATTGTGC -CCAACATGGTTGAGAGCACTAAGC -CCAACATGGTTGAGAGCAACTAGC -CCAACATGGTTGAGAGCAAGATGC -CCAACATGGTTGAGAGCATGAAGG -CCAACATGGTTGAGAGCACAATGG -CCAACATGGTTGAGAGCAATGAGG -CCAACATGGTTGAGAGCAAATGGG -CCAACATGGTTGAGAGCATCCTGA -CCAACATGGTTGAGAGCATAGCGA -CCAACATGGTTGAGAGCACACAGA -CCAACATGGTTGAGAGCAGCAAGA -CCAACATGGTTGAGAGCAGGTTGA -CCAACATGGTTGAGAGCATCCGAT -CCAACATGGTTGAGAGCATGGCAT -CCAACATGGTTGAGAGCACGAGAT -CCAACATGGTTGAGAGCATACCAC -CCAACATGGTTGAGAGCACAGAAC -CCAACATGGTTGAGAGCAGTCTAC -CCAACATGGTTGAGAGCAACGTAC -CCAACATGGTTGAGAGCAAGTGAC -CCAACATGGTTGAGAGCACTGTAG -CCAACATGGTTGAGAGCACCTAAG -CCAACATGGTTGAGAGCAGTTCAG -CCAACATGGTTGAGAGCAGCATAG -CCAACATGGTTGAGAGCAGACAAG -CCAACATGGTTGAGAGCAAAGCAG -CCAACATGGTTGAGAGCACGTCAA -CCAACATGGTTGAGAGCAGCTGAA -CCAACATGGTTGAGAGCAAGTACG -CCAACATGGTTGAGAGCAATCCGA -CCAACATGGTTGAGAGCAATGGGA -CCAACATGGTTGAGAGCAGTGCAA -CCAACATGGTTGAGAGCAGAGGAA -CCAACATGGTTGAGAGCACAGGTA -CCAACATGGTTGAGAGCAGACTCT -CCAACATGGTTGAGAGCAAGTCCT -CCAACATGGTTGAGAGCATAAGCC -CCAACATGGTTGAGAGCAATAGCC -CCAACATGGTTGAGAGCATAACCG -CCAACATGGTTGAGAGCAATGCCA -CCAACATGGTTGTGAGGTGGAAAC -CCAACATGGTTGTGAGGTAACACC -CCAACATGGTTGTGAGGTATCGAG -CCAACATGGTTGTGAGGTCTCCTT -CCAACATGGTTGTGAGGTCCTGTT -CCAACATGGTTGTGAGGTCGGTTT -CCAACATGGTTGTGAGGTGTGGTT -CCAACATGGTTGTGAGGTGCCTTT -CCAACATGGTTGTGAGGTGGTCTT -CCAACATGGTTGTGAGGTACGCTT -CCAACATGGTTGTGAGGTAGCGTT -CCAACATGGTTGTGAGGTTTCGTC -CCAACATGGTTGTGAGGTTCTCTC -CCAACATGGTTGTGAGGTTGGATC -CCAACATGGTTGTGAGGTCACTTC -CCAACATGGTTGTGAGGTGTACTC -CCAACATGGTTGTGAGGTGATGTC -CCAACATGGTTGTGAGGTACAGTC -CCAACATGGTTGTGAGGTTTGCTG -CCAACATGGTTGTGAGGTTCCATG -CCAACATGGTTGTGAGGTTGTGTG -CCAACATGGTTGTGAGGTCTAGTG -CCAACATGGTTGTGAGGTCATCTG -CCAACATGGTTGTGAGGTGAGTTG -CCAACATGGTTGTGAGGTAGACTG -CCAACATGGTTGTGAGGTTCGGTA -CCAACATGGTTGTGAGGTTGCCTA -CCAACATGGTTGTGAGGTCCACTA -CCAACATGGTTGTGAGGTGGAGTA -CCAACATGGTTGTGAGGTTCGTCT -CCAACATGGTTGTGAGGTTGCACT -CCAACATGGTTGTGAGGTCTGACT -CCAACATGGTTGTGAGGTCAACCT -CCAACATGGTTGTGAGGTGCTACT -CCAACATGGTTGTGAGGTGGATCT -CCAACATGGTTGTGAGGTAAGGCT -CCAACATGGTTGTGAGGTTCAACC -CCAACATGGTTGTGAGGTTGTTCC -CCAACATGGTTGTGAGGTATTCCC -CCAACATGGTTGTGAGGTTTCTCG -CCAACATGGTTGTGAGGTTAGACG -CCAACATGGTTGTGAGGTGTAACG -CCAACATGGTTGTGAGGTACTTCG -CCAACATGGTTGTGAGGTTACGCA -CCAACATGGTTGTGAGGTCTTGCA -CCAACATGGTTGTGAGGTCGAACA -CCAACATGGTTGTGAGGTCAGTCA -CCAACATGGTTGTGAGGTGATCCA -CCAACATGGTTGTGAGGTACGACA -CCAACATGGTTGTGAGGTAGCTCA -CCAACATGGTTGTGAGGTTCACGT -CCAACATGGTTGTGAGGTCGTAGT -CCAACATGGTTGTGAGGTGTCAGT -CCAACATGGTTGTGAGGTGAAGGT -CCAACATGGTTGTGAGGTAACCGT -CCAACATGGTTGTGAGGTTTGTGC -CCAACATGGTTGTGAGGTCTAAGC -CCAACATGGTTGTGAGGTACTAGC -CCAACATGGTTGTGAGGTAGATGC -CCAACATGGTTGTGAGGTTGAAGG -CCAACATGGTTGTGAGGTCAATGG -CCAACATGGTTGTGAGGTATGAGG -CCAACATGGTTGTGAGGTAATGGG -CCAACATGGTTGTGAGGTTCCTGA -CCAACATGGTTGTGAGGTTAGCGA -CCAACATGGTTGTGAGGTCACAGA -CCAACATGGTTGTGAGGTGCAAGA -CCAACATGGTTGTGAGGTGGTTGA -CCAACATGGTTGTGAGGTTCCGAT -CCAACATGGTTGTGAGGTTGGCAT -CCAACATGGTTGTGAGGTCGAGAT -CCAACATGGTTGTGAGGTTACCAC -CCAACATGGTTGTGAGGTCAGAAC -CCAACATGGTTGTGAGGTGTCTAC -CCAACATGGTTGTGAGGTACGTAC -CCAACATGGTTGTGAGGTAGTGAC -CCAACATGGTTGTGAGGTCTGTAG -CCAACATGGTTGTGAGGTCCTAAG -CCAACATGGTTGTGAGGTGTTCAG -CCAACATGGTTGTGAGGTGCATAG -CCAACATGGTTGTGAGGTGACAAG -CCAACATGGTTGTGAGGTAAGCAG -CCAACATGGTTGTGAGGTCGTCAA -CCAACATGGTTGTGAGGTGCTGAA -CCAACATGGTTGTGAGGTAGTACG -CCAACATGGTTGTGAGGTATCCGA -CCAACATGGTTGTGAGGTATGGGA -CCAACATGGTTGTGAGGTGTGCAA -CCAACATGGTTGTGAGGTGAGGAA -CCAACATGGTTGTGAGGTCAGGTA -CCAACATGGTTGTGAGGTGACTCT -CCAACATGGTTGTGAGGTAGTCCT -CCAACATGGTTGTGAGGTTAAGCC -CCAACATGGTTGTGAGGTATAGCC -CCAACATGGTTGTGAGGTTAACCG -CCAACATGGTTGTGAGGTATGCCA -CCAACATGGTTGGATTCCGGAAAC -CCAACATGGTTGGATTCCAACACC -CCAACATGGTTGGATTCCATCGAG -CCAACATGGTTGGATTCCCTCCTT -CCAACATGGTTGGATTCCCCTGTT -CCAACATGGTTGGATTCCCGGTTT -CCAACATGGTTGGATTCCGTGGTT -CCAACATGGTTGGATTCCGCCTTT -CCAACATGGTTGGATTCCGGTCTT -CCAACATGGTTGGATTCCACGCTT -CCAACATGGTTGGATTCCAGCGTT -CCAACATGGTTGGATTCCTTCGTC -CCAACATGGTTGGATTCCTCTCTC -CCAACATGGTTGGATTCCTGGATC -CCAACATGGTTGGATTCCCACTTC -CCAACATGGTTGGATTCCGTACTC -CCAACATGGTTGGATTCCGATGTC -CCAACATGGTTGGATTCCACAGTC -CCAACATGGTTGGATTCCTTGCTG -CCAACATGGTTGGATTCCTCCATG -CCAACATGGTTGGATTCCTGTGTG -CCAACATGGTTGGATTCCCTAGTG -CCAACATGGTTGGATTCCCATCTG -CCAACATGGTTGGATTCCGAGTTG -CCAACATGGTTGGATTCCAGACTG -CCAACATGGTTGGATTCCTCGGTA -CCAACATGGTTGGATTCCTGCCTA -CCAACATGGTTGGATTCCCCACTA -CCAACATGGTTGGATTCCGGAGTA -CCAACATGGTTGGATTCCTCGTCT -CCAACATGGTTGGATTCCTGCACT -CCAACATGGTTGGATTCCCTGACT -CCAACATGGTTGGATTCCCAACCT -CCAACATGGTTGGATTCCGCTACT -CCAACATGGTTGGATTCCGGATCT -CCAACATGGTTGGATTCCAAGGCT -CCAACATGGTTGGATTCCTCAACC -CCAACATGGTTGGATTCCTGTTCC -CCAACATGGTTGGATTCCATTCCC -CCAACATGGTTGGATTCCTTCTCG -CCAACATGGTTGGATTCCTAGACG -CCAACATGGTTGGATTCCGTAACG -CCAACATGGTTGGATTCCACTTCG -CCAACATGGTTGGATTCCTACGCA -CCAACATGGTTGGATTCCCTTGCA -CCAACATGGTTGGATTCCCGAACA -CCAACATGGTTGGATTCCCAGTCA -CCAACATGGTTGGATTCCGATCCA -CCAACATGGTTGGATTCCACGACA -CCAACATGGTTGGATTCCAGCTCA -CCAACATGGTTGGATTCCTCACGT -CCAACATGGTTGGATTCCCGTAGT -CCAACATGGTTGGATTCCGTCAGT -CCAACATGGTTGGATTCCGAAGGT -CCAACATGGTTGGATTCCAACCGT -CCAACATGGTTGGATTCCTTGTGC -CCAACATGGTTGGATTCCCTAAGC -CCAACATGGTTGGATTCCACTAGC -CCAACATGGTTGGATTCCAGATGC -CCAACATGGTTGGATTCCTGAAGG -CCAACATGGTTGGATTCCCAATGG -CCAACATGGTTGGATTCCATGAGG -CCAACATGGTTGGATTCCAATGGG -CCAACATGGTTGGATTCCTCCTGA -CCAACATGGTTGGATTCCTAGCGA -CCAACATGGTTGGATTCCCACAGA -CCAACATGGTTGGATTCCGCAAGA -CCAACATGGTTGGATTCCGGTTGA -CCAACATGGTTGGATTCCTCCGAT -CCAACATGGTTGGATTCCTGGCAT -CCAACATGGTTGGATTCCCGAGAT -CCAACATGGTTGGATTCCTACCAC -CCAACATGGTTGGATTCCCAGAAC -CCAACATGGTTGGATTCCGTCTAC -CCAACATGGTTGGATTCCACGTAC -CCAACATGGTTGGATTCCAGTGAC -CCAACATGGTTGGATTCCCTGTAG -CCAACATGGTTGGATTCCCCTAAG -CCAACATGGTTGGATTCCGTTCAG -CCAACATGGTTGGATTCCGCATAG -CCAACATGGTTGGATTCCGACAAG -CCAACATGGTTGGATTCCAAGCAG -CCAACATGGTTGGATTCCCGTCAA -CCAACATGGTTGGATTCCGCTGAA -CCAACATGGTTGGATTCCAGTACG -CCAACATGGTTGGATTCCATCCGA -CCAACATGGTTGGATTCCATGGGA -CCAACATGGTTGGATTCCGTGCAA -CCAACATGGTTGGATTCCGAGGAA -CCAACATGGTTGGATTCCCAGGTA -CCAACATGGTTGGATTCCGACTCT -CCAACATGGTTGGATTCCAGTCCT -CCAACATGGTTGGATTCCTAAGCC -CCAACATGGTTGGATTCCATAGCC -CCAACATGGTTGGATTCCTAACCG -CCAACATGGTTGGATTCCATGCCA -CCAACATGGTTGCATTGGGGAAAC -CCAACATGGTTGCATTGGAACACC -CCAACATGGTTGCATTGGATCGAG -CCAACATGGTTGCATTGGCTCCTT -CCAACATGGTTGCATTGGCCTGTT -CCAACATGGTTGCATTGGCGGTTT -CCAACATGGTTGCATTGGGTGGTT -CCAACATGGTTGCATTGGGCCTTT -CCAACATGGTTGCATTGGGGTCTT -CCAACATGGTTGCATTGGACGCTT -CCAACATGGTTGCATTGGAGCGTT -CCAACATGGTTGCATTGGTTCGTC -CCAACATGGTTGCATTGGTCTCTC -CCAACATGGTTGCATTGGTGGATC -CCAACATGGTTGCATTGGCACTTC -CCAACATGGTTGCATTGGGTACTC -CCAACATGGTTGCATTGGGATGTC -CCAACATGGTTGCATTGGACAGTC -CCAACATGGTTGCATTGGTTGCTG -CCAACATGGTTGCATTGGTCCATG -CCAACATGGTTGCATTGGTGTGTG -CCAACATGGTTGCATTGGCTAGTG -CCAACATGGTTGCATTGGCATCTG -CCAACATGGTTGCATTGGGAGTTG -CCAACATGGTTGCATTGGAGACTG -CCAACATGGTTGCATTGGTCGGTA -CCAACATGGTTGCATTGGTGCCTA -CCAACATGGTTGCATTGGCCACTA -CCAACATGGTTGCATTGGGGAGTA -CCAACATGGTTGCATTGGTCGTCT -CCAACATGGTTGCATTGGTGCACT -CCAACATGGTTGCATTGGCTGACT -CCAACATGGTTGCATTGGCAACCT -CCAACATGGTTGCATTGGGCTACT -CCAACATGGTTGCATTGGGGATCT -CCAACATGGTTGCATTGGAAGGCT -CCAACATGGTTGCATTGGTCAACC -CCAACATGGTTGCATTGGTGTTCC -CCAACATGGTTGCATTGGATTCCC -CCAACATGGTTGCATTGGTTCTCG -CCAACATGGTTGCATTGGTAGACG -CCAACATGGTTGCATTGGGTAACG -CCAACATGGTTGCATTGGACTTCG -CCAACATGGTTGCATTGGTACGCA -CCAACATGGTTGCATTGGCTTGCA -CCAACATGGTTGCATTGGCGAACA -CCAACATGGTTGCATTGGCAGTCA -CCAACATGGTTGCATTGGGATCCA -CCAACATGGTTGCATTGGACGACA -CCAACATGGTTGCATTGGAGCTCA -CCAACATGGTTGCATTGGTCACGT -CCAACATGGTTGCATTGGCGTAGT -CCAACATGGTTGCATTGGGTCAGT -CCAACATGGTTGCATTGGGAAGGT -CCAACATGGTTGCATTGGAACCGT -CCAACATGGTTGCATTGGTTGTGC -CCAACATGGTTGCATTGGCTAAGC -CCAACATGGTTGCATTGGACTAGC -CCAACATGGTTGCATTGGAGATGC -CCAACATGGTTGCATTGGTGAAGG -CCAACATGGTTGCATTGGCAATGG -CCAACATGGTTGCATTGGATGAGG -CCAACATGGTTGCATTGGAATGGG -CCAACATGGTTGCATTGGTCCTGA -CCAACATGGTTGCATTGGTAGCGA -CCAACATGGTTGCATTGGCACAGA -CCAACATGGTTGCATTGGGCAAGA -CCAACATGGTTGCATTGGGGTTGA -CCAACATGGTTGCATTGGTCCGAT -CCAACATGGTTGCATTGGTGGCAT -CCAACATGGTTGCATTGGCGAGAT -CCAACATGGTTGCATTGGTACCAC -CCAACATGGTTGCATTGGCAGAAC -CCAACATGGTTGCATTGGGTCTAC -CCAACATGGTTGCATTGGACGTAC -CCAACATGGTTGCATTGGAGTGAC -CCAACATGGTTGCATTGGCTGTAG -CCAACATGGTTGCATTGGCCTAAG -CCAACATGGTTGCATTGGGTTCAG -CCAACATGGTTGCATTGGGCATAG -CCAACATGGTTGCATTGGGACAAG -CCAACATGGTTGCATTGGAAGCAG -CCAACATGGTTGCATTGGCGTCAA -CCAACATGGTTGCATTGGGCTGAA -CCAACATGGTTGCATTGGAGTACG -CCAACATGGTTGCATTGGATCCGA -CCAACATGGTTGCATTGGATGGGA -CCAACATGGTTGCATTGGGTGCAA -CCAACATGGTTGCATTGGGAGGAA -CCAACATGGTTGCATTGGCAGGTA -CCAACATGGTTGCATTGGGACTCT -CCAACATGGTTGCATTGGAGTCCT -CCAACATGGTTGCATTGGTAAGCC -CCAACATGGTTGCATTGGATAGCC -CCAACATGGTTGCATTGGTAACCG -CCAACATGGTTGCATTGGATGCCA -CCAACATGGTTGGATCGAGGAAAC -CCAACATGGTTGGATCGAAACACC -CCAACATGGTTGGATCGAATCGAG -CCAACATGGTTGGATCGACTCCTT -CCAACATGGTTGGATCGACCTGTT -CCAACATGGTTGGATCGACGGTTT -CCAACATGGTTGGATCGAGTGGTT -CCAACATGGTTGGATCGAGCCTTT -CCAACATGGTTGGATCGAGGTCTT -CCAACATGGTTGGATCGAACGCTT -CCAACATGGTTGGATCGAAGCGTT -CCAACATGGTTGGATCGATTCGTC -CCAACATGGTTGGATCGATCTCTC -CCAACATGGTTGGATCGATGGATC -CCAACATGGTTGGATCGACACTTC -CCAACATGGTTGGATCGAGTACTC -CCAACATGGTTGGATCGAGATGTC -CCAACATGGTTGGATCGAACAGTC -CCAACATGGTTGGATCGATTGCTG -CCAACATGGTTGGATCGATCCATG -CCAACATGGTTGGATCGATGTGTG -CCAACATGGTTGGATCGACTAGTG -CCAACATGGTTGGATCGACATCTG -CCAACATGGTTGGATCGAGAGTTG -CCAACATGGTTGGATCGAAGACTG -CCAACATGGTTGGATCGATCGGTA -CCAACATGGTTGGATCGATGCCTA -CCAACATGGTTGGATCGACCACTA -CCAACATGGTTGGATCGAGGAGTA -CCAACATGGTTGGATCGATCGTCT -CCAACATGGTTGGATCGATGCACT -CCAACATGGTTGGATCGACTGACT -CCAACATGGTTGGATCGACAACCT -CCAACATGGTTGGATCGAGCTACT -CCAACATGGTTGGATCGAGGATCT -CCAACATGGTTGGATCGAAAGGCT -CCAACATGGTTGGATCGATCAACC -CCAACATGGTTGGATCGATGTTCC -CCAACATGGTTGGATCGAATTCCC -CCAACATGGTTGGATCGATTCTCG -CCAACATGGTTGGATCGATAGACG -CCAACATGGTTGGATCGAGTAACG -CCAACATGGTTGGATCGAACTTCG -CCAACATGGTTGGATCGATACGCA -CCAACATGGTTGGATCGACTTGCA -CCAACATGGTTGGATCGACGAACA -CCAACATGGTTGGATCGACAGTCA -CCAACATGGTTGGATCGAGATCCA -CCAACATGGTTGGATCGAACGACA -CCAACATGGTTGGATCGAAGCTCA -CCAACATGGTTGGATCGATCACGT -CCAACATGGTTGGATCGACGTAGT -CCAACATGGTTGGATCGAGTCAGT -CCAACATGGTTGGATCGAGAAGGT -CCAACATGGTTGGATCGAAACCGT -CCAACATGGTTGGATCGATTGTGC -CCAACATGGTTGGATCGACTAAGC -CCAACATGGTTGGATCGAACTAGC -CCAACATGGTTGGATCGAAGATGC -CCAACATGGTTGGATCGATGAAGG -CCAACATGGTTGGATCGACAATGG -CCAACATGGTTGGATCGAATGAGG -CCAACATGGTTGGATCGAAATGGG -CCAACATGGTTGGATCGATCCTGA -CCAACATGGTTGGATCGATAGCGA -CCAACATGGTTGGATCGACACAGA -CCAACATGGTTGGATCGAGCAAGA -CCAACATGGTTGGATCGAGGTTGA -CCAACATGGTTGGATCGATCCGAT -CCAACATGGTTGGATCGATGGCAT -CCAACATGGTTGGATCGACGAGAT -CCAACATGGTTGGATCGATACCAC -CCAACATGGTTGGATCGACAGAAC -CCAACATGGTTGGATCGAGTCTAC -CCAACATGGTTGGATCGAACGTAC -CCAACATGGTTGGATCGAAGTGAC -CCAACATGGTTGGATCGACTGTAG -CCAACATGGTTGGATCGACCTAAG -CCAACATGGTTGGATCGAGTTCAG -CCAACATGGTTGGATCGAGCATAG -CCAACATGGTTGGATCGAGACAAG -CCAACATGGTTGGATCGAAAGCAG -CCAACATGGTTGGATCGACGTCAA -CCAACATGGTTGGATCGAGCTGAA -CCAACATGGTTGGATCGAAGTACG -CCAACATGGTTGGATCGAATCCGA -CCAACATGGTTGGATCGAATGGGA -CCAACATGGTTGGATCGAGTGCAA -CCAACATGGTTGGATCGAGAGGAA -CCAACATGGTTGGATCGACAGGTA -CCAACATGGTTGGATCGAGACTCT -CCAACATGGTTGGATCGAAGTCCT -CCAACATGGTTGGATCGATAAGCC -CCAACATGGTTGGATCGAATAGCC -CCAACATGGTTGGATCGATAACCG -CCAACATGGTTGGATCGAATGCCA -CCAACATGGTTGCACTACGGAAAC -CCAACATGGTTGCACTACAACACC -CCAACATGGTTGCACTACATCGAG -CCAACATGGTTGCACTACCTCCTT -CCAACATGGTTGCACTACCCTGTT -CCAACATGGTTGCACTACCGGTTT -CCAACATGGTTGCACTACGTGGTT -CCAACATGGTTGCACTACGCCTTT -CCAACATGGTTGCACTACGGTCTT -CCAACATGGTTGCACTACACGCTT -CCAACATGGTTGCACTACAGCGTT -CCAACATGGTTGCACTACTTCGTC -CCAACATGGTTGCACTACTCTCTC -CCAACATGGTTGCACTACTGGATC -CCAACATGGTTGCACTACCACTTC -CCAACATGGTTGCACTACGTACTC -CCAACATGGTTGCACTACGATGTC -CCAACATGGTTGCACTACACAGTC -CCAACATGGTTGCACTACTTGCTG -CCAACATGGTTGCACTACTCCATG -CCAACATGGTTGCACTACTGTGTG -CCAACATGGTTGCACTACCTAGTG -CCAACATGGTTGCACTACCATCTG -CCAACATGGTTGCACTACGAGTTG -CCAACATGGTTGCACTACAGACTG -CCAACATGGTTGCACTACTCGGTA -CCAACATGGTTGCACTACTGCCTA -CCAACATGGTTGCACTACCCACTA -CCAACATGGTTGCACTACGGAGTA -CCAACATGGTTGCACTACTCGTCT -CCAACATGGTTGCACTACTGCACT -CCAACATGGTTGCACTACCTGACT -CCAACATGGTTGCACTACCAACCT -CCAACATGGTTGCACTACGCTACT -CCAACATGGTTGCACTACGGATCT -CCAACATGGTTGCACTACAAGGCT -CCAACATGGTTGCACTACTCAACC -CCAACATGGTTGCACTACTGTTCC -CCAACATGGTTGCACTACATTCCC -CCAACATGGTTGCACTACTTCTCG -CCAACATGGTTGCACTACTAGACG -CCAACATGGTTGCACTACGTAACG -CCAACATGGTTGCACTACACTTCG -CCAACATGGTTGCACTACTACGCA -CCAACATGGTTGCACTACCTTGCA -CCAACATGGTTGCACTACCGAACA -CCAACATGGTTGCACTACCAGTCA -CCAACATGGTTGCACTACGATCCA -CCAACATGGTTGCACTACACGACA -CCAACATGGTTGCACTACAGCTCA -CCAACATGGTTGCACTACTCACGT -CCAACATGGTTGCACTACCGTAGT -CCAACATGGTTGCACTACGTCAGT -CCAACATGGTTGCACTACGAAGGT -CCAACATGGTTGCACTACAACCGT -CCAACATGGTTGCACTACTTGTGC -CCAACATGGTTGCACTACCTAAGC -CCAACATGGTTGCACTACACTAGC -CCAACATGGTTGCACTACAGATGC -CCAACATGGTTGCACTACTGAAGG -CCAACATGGTTGCACTACCAATGG -CCAACATGGTTGCACTACATGAGG -CCAACATGGTTGCACTACAATGGG -CCAACATGGTTGCACTACTCCTGA -CCAACATGGTTGCACTACTAGCGA -CCAACATGGTTGCACTACCACAGA -CCAACATGGTTGCACTACGCAAGA -CCAACATGGTTGCACTACGGTTGA -CCAACATGGTTGCACTACTCCGAT -CCAACATGGTTGCACTACTGGCAT -CCAACATGGTTGCACTACCGAGAT -CCAACATGGTTGCACTACTACCAC -CCAACATGGTTGCACTACCAGAAC -CCAACATGGTTGCACTACGTCTAC -CCAACATGGTTGCACTACACGTAC -CCAACATGGTTGCACTACAGTGAC -CCAACATGGTTGCACTACCTGTAG -CCAACATGGTTGCACTACCCTAAG -CCAACATGGTTGCACTACGTTCAG -CCAACATGGTTGCACTACGCATAG -CCAACATGGTTGCACTACGACAAG -CCAACATGGTTGCACTACAAGCAG -CCAACATGGTTGCACTACCGTCAA -CCAACATGGTTGCACTACGCTGAA -CCAACATGGTTGCACTACAGTACG -CCAACATGGTTGCACTACATCCGA -CCAACATGGTTGCACTACATGGGA -CCAACATGGTTGCACTACGTGCAA -CCAACATGGTTGCACTACGAGGAA -CCAACATGGTTGCACTACCAGGTA -CCAACATGGTTGCACTACGACTCT -CCAACATGGTTGCACTACAGTCCT -CCAACATGGTTGCACTACTAAGCC -CCAACATGGTTGCACTACATAGCC -CCAACATGGTTGCACTACTAACCG -CCAACATGGTTGCACTACATGCCA -CCAACATGGTTGAACCAGGGAAAC -CCAACATGGTTGAACCAGAACACC -CCAACATGGTTGAACCAGATCGAG -CCAACATGGTTGAACCAGCTCCTT -CCAACATGGTTGAACCAGCCTGTT -CCAACATGGTTGAACCAGCGGTTT -CCAACATGGTTGAACCAGGTGGTT -CCAACATGGTTGAACCAGGCCTTT -CCAACATGGTTGAACCAGGGTCTT -CCAACATGGTTGAACCAGACGCTT -CCAACATGGTTGAACCAGAGCGTT -CCAACATGGTTGAACCAGTTCGTC -CCAACATGGTTGAACCAGTCTCTC -CCAACATGGTTGAACCAGTGGATC -CCAACATGGTTGAACCAGCACTTC -CCAACATGGTTGAACCAGGTACTC -CCAACATGGTTGAACCAGGATGTC -CCAACATGGTTGAACCAGACAGTC -CCAACATGGTTGAACCAGTTGCTG -CCAACATGGTTGAACCAGTCCATG -CCAACATGGTTGAACCAGTGTGTG -CCAACATGGTTGAACCAGCTAGTG -CCAACATGGTTGAACCAGCATCTG -CCAACATGGTTGAACCAGGAGTTG -CCAACATGGTTGAACCAGAGACTG -CCAACATGGTTGAACCAGTCGGTA -CCAACATGGTTGAACCAGTGCCTA -CCAACATGGTTGAACCAGCCACTA -CCAACATGGTTGAACCAGGGAGTA -CCAACATGGTTGAACCAGTCGTCT -CCAACATGGTTGAACCAGTGCACT -CCAACATGGTTGAACCAGCTGACT -CCAACATGGTTGAACCAGCAACCT -CCAACATGGTTGAACCAGGCTACT -CCAACATGGTTGAACCAGGGATCT -CCAACATGGTTGAACCAGAAGGCT -CCAACATGGTTGAACCAGTCAACC -CCAACATGGTTGAACCAGTGTTCC -CCAACATGGTTGAACCAGATTCCC -CCAACATGGTTGAACCAGTTCTCG -CCAACATGGTTGAACCAGTAGACG -CCAACATGGTTGAACCAGGTAACG -CCAACATGGTTGAACCAGACTTCG -CCAACATGGTTGAACCAGTACGCA -CCAACATGGTTGAACCAGCTTGCA -CCAACATGGTTGAACCAGCGAACA -CCAACATGGTTGAACCAGCAGTCA -CCAACATGGTTGAACCAGGATCCA -CCAACATGGTTGAACCAGACGACA -CCAACATGGTTGAACCAGAGCTCA -CCAACATGGTTGAACCAGTCACGT -CCAACATGGTTGAACCAGCGTAGT -CCAACATGGTTGAACCAGGTCAGT -CCAACATGGTTGAACCAGGAAGGT -CCAACATGGTTGAACCAGAACCGT -CCAACATGGTTGAACCAGTTGTGC -CCAACATGGTTGAACCAGCTAAGC -CCAACATGGTTGAACCAGACTAGC -CCAACATGGTTGAACCAGAGATGC -CCAACATGGTTGAACCAGTGAAGG -CCAACATGGTTGAACCAGCAATGG -CCAACATGGTTGAACCAGATGAGG -CCAACATGGTTGAACCAGAATGGG -CCAACATGGTTGAACCAGTCCTGA -CCAACATGGTTGAACCAGTAGCGA -CCAACATGGTTGAACCAGCACAGA -CCAACATGGTTGAACCAGGCAAGA -CCAACATGGTTGAACCAGGGTTGA -CCAACATGGTTGAACCAGTCCGAT -CCAACATGGTTGAACCAGTGGCAT -CCAACATGGTTGAACCAGCGAGAT -CCAACATGGTTGAACCAGTACCAC -CCAACATGGTTGAACCAGCAGAAC -CCAACATGGTTGAACCAGGTCTAC -CCAACATGGTTGAACCAGACGTAC -CCAACATGGTTGAACCAGAGTGAC -CCAACATGGTTGAACCAGCTGTAG -CCAACATGGTTGAACCAGCCTAAG -CCAACATGGTTGAACCAGGTTCAG -CCAACATGGTTGAACCAGGCATAG -CCAACATGGTTGAACCAGGACAAG -CCAACATGGTTGAACCAGAAGCAG -CCAACATGGTTGAACCAGCGTCAA -CCAACATGGTTGAACCAGGCTGAA -CCAACATGGTTGAACCAGAGTACG -CCAACATGGTTGAACCAGATCCGA -CCAACATGGTTGAACCAGATGGGA -CCAACATGGTTGAACCAGGTGCAA -CCAACATGGTTGAACCAGGAGGAA -CCAACATGGTTGAACCAGCAGGTA -CCAACATGGTTGAACCAGGACTCT -CCAACATGGTTGAACCAGAGTCCT -CCAACATGGTTGAACCAGTAAGCC -CCAACATGGTTGAACCAGATAGCC -CCAACATGGTTGAACCAGTAACCG -CCAACATGGTTGAACCAGATGCCA -CCAACATGGTTGTACGTCGGAAAC -CCAACATGGTTGTACGTCAACACC -CCAACATGGTTGTACGTCATCGAG -CCAACATGGTTGTACGTCCTCCTT -CCAACATGGTTGTACGTCCCTGTT -CCAACATGGTTGTACGTCCGGTTT -CCAACATGGTTGTACGTCGTGGTT -CCAACATGGTTGTACGTCGCCTTT -CCAACATGGTTGTACGTCGGTCTT -CCAACATGGTTGTACGTCACGCTT -CCAACATGGTTGTACGTCAGCGTT -CCAACATGGTTGTACGTCTTCGTC -CCAACATGGTTGTACGTCTCTCTC -CCAACATGGTTGTACGTCTGGATC -CCAACATGGTTGTACGTCCACTTC -CCAACATGGTTGTACGTCGTACTC -CCAACATGGTTGTACGTCGATGTC -CCAACATGGTTGTACGTCACAGTC -CCAACATGGTTGTACGTCTTGCTG -CCAACATGGTTGTACGTCTCCATG -CCAACATGGTTGTACGTCTGTGTG -CCAACATGGTTGTACGTCCTAGTG -CCAACATGGTTGTACGTCCATCTG -CCAACATGGTTGTACGTCGAGTTG -CCAACATGGTTGTACGTCAGACTG -CCAACATGGTTGTACGTCTCGGTA -CCAACATGGTTGTACGTCTGCCTA -CCAACATGGTTGTACGTCCCACTA -CCAACATGGTTGTACGTCGGAGTA -CCAACATGGTTGTACGTCTCGTCT -CCAACATGGTTGTACGTCTGCACT -CCAACATGGTTGTACGTCCTGACT -CCAACATGGTTGTACGTCCAACCT -CCAACATGGTTGTACGTCGCTACT -CCAACATGGTTGTACGTCGGATCT -CCAACATGGTTGTACGTCAAGGCT -CCAACATGGTTGTACGTCTCAACC -CCAACATGGTTGTACGTCTGTTCC -CCAACATGGTTGTACGTCATTCCC -CCAACATGGTTGTACGTCTTCTCG -CCAACATGGTTGTACGTCTAGACG -CCAACATGGTTGTACGTCGTAACG -CCAACATGGTTGTACGTCACTTCG -CCAACATGGTTGTACGTCTACGCA -CCAACATGGTTGTACGTCCTTGCA -CCAACATGGTTGTACGTCCGAACA -CCAACATGGTTGTACGTCCAGTCA -CCAACATGGTTGTACGTCGATCCA -CCAACATGGTTGTACGTCACGACA -CCAACATGGTTGTACGTCAGCTCA -CCAACATGGTTGTACGTCTCACGT -CCAACATGGTTGTACGTCCGTAGT -CCAACATGGTTGTACGTCGTCAGT -CCAACATGGTTGTACGTCGAAGGT -CCAACATGGTTGTACGTCAACCGT -CCAACATGGTTGTACGTCTTGTGC -CCAACATGGTTGTACGTCCTAAGC -CCAACATGGTTGTACGTCACTAGC -CCAACATGGTTGTACGTCAGATGC -CCAACATGGTTGTACGTCTGAAGG -CCAACATGGTTGTACGTCCAATGG -CCAACATGGTTGTACGTCATGAGG -CCAACATGGTTGTACGTCAATGGG -CCAACATGGTTGTACGTCTCCTGA -CCAACATGGTTGTACGTCTAGCGA -CCAACATGGTTGTACGTCCACAGA -CCAACATGGTTGTACGTCGCAAGA -CCAACATGGTTGTACGTCGGTTGA -CCAACATGGTTGTACGTCTCCGAT -CCAACATGGTTGTACGTCTGGCAT -CCAACATGGTTGTACGTCCGAGAT -CCAACATGGTTGTACGTCTACCAC -CCAACATGGTTGTACGTCCAGAAC -CCAACATGGTTGTACGTCGTCTAC -CCAACATGGTTGTACGTCACGTAC -CCAACATGGTTGTACGTCAGTGAC -CCAACATGGTTGTACGTCCTGTAG -CCAACATGGTTGTACGTCCCTAAG -CCAACATGGTTGTACGTCGTTCAG -CCAACATGGTTGTACGTCGCATAG -CCAACATGGTTGTACGTCGACAAG -CCAACATGGTTGTACGTCAAGCAG -CCAACATGGTTGTACGTCCGTCAA -CCAACATGGTTGTACGTCGCTGAA -CCAACATGGTTGTACGTCAGTACG -CCAACATGGTTGTACGTCATCCGA -CCAACATGGTTGTACGTCATGGGA -CCAACATGGTTGTACGTCGTGCAA -CCAACATGGTTGTACGTCGAGGAA -CCAACATGGTTGTACGTCCAGGTA -CCAACATGGTTGTACGTCGACTCT -CCAACATGGTTGTACGTCAGTCCT -CCAACATGGTTGTACGTCTAAGCC -CCAACATGGTTGTACGTCATAGCC -CCAACATGGTTGTACGTCTAACCG -CCAACATGGTTGTACGTCATGCCA -CCAACATGGTTGTACACGGGAAAC -CCAACATGGTTGTACACGAACACC -CCAACATGGTTGTACACGATCGAG -CCAACATGGTTGTACACGCTCCTT -CCAACATGGTTGTACACGCCTGTT -CCAACATGGTTGTACACGCGGTTT -CCAACATGGTTGTACACGGTGGTT -CCAACATGGTTGTACACGGCCTTT -CCAACATGGTTGTACACGGGTCTT -CCAACATGGTTGTACACGACGCTT -CCAACATGGTTGTACACGAGCGTT -CCAACATGGTTGTACACGTTCGTC -CCAACATGGTTGTACACGTCTCTC -CCAACATGGTTGTACACGTGGATC -CCAACATGGTTGTACACGCACTTC -CCAACATGGTTGTACACGGTACTC -CCAACATGGTTGTACACGGATGTC -CCAACATGGTTGTACACGACAGTC -CCAACATGGTTGTACACGTTGCTG -CCAACATGGTTGTACACGTCCATG -CCAACATGGTTGTACACGTGTGTG -CCAACATGGTTGTACACGCTAGTG -CCAACATGGTTGTACACGCATCTG -CCAACATGGTTGTACACGGAGTTG -CCAACATGGTTGTACACGAGACTG -CCAACATGGTTGTACACGTCGGTA -CCAACATGGTTGTACACGTGCCTA -CCAACATGGTTGTACACGCCACTA -CCAACATGGTTGTACACGGGAGTA -CCAACATGGTTGTACACGTCGTCT -CCAACATGGTTGTACACGTGCACT -CCAACATGGTTGTACACGCTGACT -CCAACATGGTTGTACACGCAACCT -CCAACATGGTTGTACACGGCTACT -CCAACATGGTTGTACACGGGATCT -CCAACATGGTTGTACACGAAGGCT -CCAACATGGTTGTACACGTCAACC -CCAACATGGTTGTACACGTGTTCC -CCAACATGGTTGTACACGATTCCC -CCAACATGGTTGTACACGTTCTCG -CCAACATGGTTGTACACGTAGACG -CCAACATGGTTGTACACGGTAACG -CCAACATGGTTGTACACGACTTCG -CCAACATGGTTGTACACGTACGCA -CCAACATGGTTGTACACGCTTGCA -CCAACATGGTTGTACACGCGAACA -CCAACATGGTTGTACACGCAGTCA -CCAACATGGTTGTACACGGATCCA -CCAACATGGTTGTACACGACGACA -CCAACATGGTTGTACACGAGCTCA -CCAACATGGTTGTACACGTCACGT -CCAACATGGTTGTACACGCGTAGT -CCAACATGGTTGTACACGGTCAGT -CCAACATGGTTGTACACGGAAGGT -CCAACATGGTTGTACACGAACCGT -CCAACATGGTTGTACACGTTGTGC -CCAACATGGTTGTACACGCTAAGC -CCAACATGGTTGTACACGACTAGC -CCAACATGGTTGTACACGAGATGC -CCAACATGGTTGTACACGTGAAGG -CCAACATGGTTGTACACGCAATGG -CCAACATGGTTGTACACGATGAGG -CCAACATGGTTGTACACGAATGGG -CCAACATGGTTGTACACGTCCTGA -CCAACATGGTTGTACACGTAGCGA -CCAACATGGTTGTACACGCACAGA -CCAACATGGTTGTACACGGCAAGA -CCAACATGGTTGTACACGGGTTGA -CCAACATGGTTGTACACGTCCGAT -CCAACATGGTTGTACACGTGGCAT -CCAACATGGTTGTACACGCGAGAT -CCAACATGGTTGTACACGTACCAC -CCAACATGGTTGTACACGCAGAAC -CCAACATGGTTGTACACGGTCTAC -CCAACATGGTTGTACACGACGTAC -CCAACATGGTTGTACACGAGTGAC -CCAACATGGTTGTACACGCTGTAG -CCAACATGGTTGTACACGCCTAAG -CCAACATGGTTGTACACGGTTCAG -CCAACATGGTTGTACACGGCATAG -CCAACATGGTTGTACACGGACAAG -CCAACATGGTTGTACACGAAGCAG -CCAACATGGTTGTACACGCGTCAA -CCAACATGGTTGTACACGGCTGAA -CCAACATGGTTGTACACGAGTACG -CCAACATGGTTGTACACGATCCGA -CCAACATGGTTGTACACGATGGGA -CCAACATGGTTGTACACGGTGCAA -CCAACATGGTTGTACACGGAGGAA -CCAACATGGTTGTACACGCAGGTA -CCAACATGGTTGTACACGGACTCT -CCAACATGGTTGTACACGAGTCCT -CCAACATGGTTGTACACGTAAGCC -CCAACATGGTTGTACACGATAGCC -CCAACATGGTTGTACACGTAACCG -CCAACATGGTTGTACACGATGCCA -CCAACATGGTTGGACAGTGGAAAC -CCAACATGGTTGGACAGTAACACC -CCAACATGGTTGGACAGTATCGAG -CCAACATGGTTGGACAGTCTCCTT -CCAACATGGTTGGACAGTCCTGTT -CCAACATGGTTGGACAGTCGGTTT -CCAACATGGTTGGACAGTGTGGTT -CCAACATGGTTGGACAGTGCCTTT -CCAACATGGTTGGACAGTGGTCTT -CCAACATGGTTGGACAGTACGCTT -CCAACATGGTTGGACAGTAGCGTT -CCAACATGGTTGGACAGTTTCGTC -CCAACATGGTTGGACAGTTCTCTC -CCAACATGGTTGGACAGTTGGATC -CCAACATGGTTGGACAGTCACTTC -CCAACATGGTTGGACAGTGTACTC -CCAACATGGTTGGACAGTGATGTC -CCAACATGGTTGGACAGTACAGTC -CCAACATGGTTGGACAGTTTGCTG -CCAACATGGTTGGACAGTTCCATG -CCAACATGGTTGGACAGTTGTGTG -CCAACATGGTTGGACAGTCTAGTG -CCAACATGGTTGGACAGTCATCTG -CCAACATGGTTGGACAGTGAGTTG -CCAACATGGTTGGACAGTAGACTG -CCAACATGGTTGGACAGTTCGGTA -CCAACATGGTTGGACAGTTGCCTA -CCAACATGGTTGGACAGTCCACTA -CCAACATGGTTGGACAGTGGAGTA -CCAACATGGTTGGACAGTTCGTCT -CCAACATGGTTGGACAGTTGCACT -CCAACATGGTTGGACAGTCTGACT -CCAACATGGTTGGACAGTCAACCT -CCAACATGGTTGGACAGTGCTACT -CCAACATGGTTGGACAGTGGATCT -CCAACATGGTTGGACAGTAAGGCT -CCAACATGGTTGGACAGTTCAACC -CCAACATGGTTGGACAGTTGTTCC -CCAACATGGTTGGACAGTATTCCC -CCAACATGGTTGGACAGTTTCTCG -CCAACATGGTTGGACAGTTAGACG -CCAACATGGTTGGACAGTGTAACG -CCAACATGGTTGGACAGTACTTCG -CCAACATGGTTGGACAGTTACGCA -CCAACATGGTTGGACAGTCTTGCA -CCAACATGGTTGGACAGTCGAACA -CCAACATGGTTGGACAGTCAGTCA -CCAACATGGTTGGACAGTGATCCA -CCAACATGGTTGGACAGTACGACA -CCAACATGGTTGGACAGTAGCTCA -CCAACATGGTTGGACAGTTCACGT -CCAACATGGTTGGACAGTCGTAGT -CCAACATGGTTGGACAGTGTCAGT -CCAACATGGTTGGACAGTGAAGGT -CCAACATGGTTGGACAGTAACCGT -CCAACATGGTTGGACAGTTTGTGC -CCAACATGGTTGGACAGTCTAAGC -CCAACATGGTTGGACAGTACTAGC -CCAACATGGTTGGACAGTAGATGC -CCAACATGGTTGGACAGTTGAAGG -CCAACATGGTTGGACAGTCAATGG -CCAACATGGTTGGACAGTATGAGG -CCAACATGGTTGGACAGTAATGGG -CCAACATGGTTGGACAGTTCCTGA -CCAACATGGTTGGACAGTTAGCGA -CCAACATGGTTGGACAGTCACAGA -CCAACATGGTTGGACAGTGCAAGA -CCAACATGGTTGGACAGTGGTTGA -CCAACATGGTTGGACAGTTCCGAT -CCAACATGGTTGGACAGTTGGCAT -CCAACATGGTTGGACAGTCGAGAT -CCAACATGGTTGGACAGTTACCAC -CCAACATGGTTGGACAGTCAGAAC -CCAACATGGTTGGACAGTGTCTAC -CCAACATGGTTGGACAGTACGTAC -CCAACATGGTTGGACAGTAGTGAC -CCAACATGGTTGGACAGTCTGTAG -CCAACATGGTTGGACAGTCCTAAG -CCAACATGGTTGGACAGTGTTCAG -CCAACATGGTTGGACAGTGCATAG -CCAACATGGTTGGACAGTGACAAG -CCAACATGGTTGGACAGTAAGCAG -CCAACATGGTTGGACAGTCGTCAA -CCAACATGGTTGGACAGTGCTGAA -CCAACATGGTTGGACAGTAGTACG -CCAACATGGTTGGACAGTATCCGA -CCAACATGGTTGGACAGTATGGGA -CCAACATGGTTGGACAGTGTGCAA -CCAACATGGTTGGACAGTGAGGAA -CCAACATGGTTGGACAGTCAGGTA -CCAACATGGTTGGACAGTGACTCT -CCAACATGGTTGGACAGTAGTCCT -CCAACATGGTTGGACAGTTAAGCC -CCAACATGGTTGGACAGTATAGCC -CCAACATGGTTGGACAGTTAACCG -CCAACATGGTTGGACAGTATGCCA -CCAACATGGTTGTAGCTGGGAAAC -CCAACATGGTTGTAGCTGAACACC -CCAACATGGTTGTAGCTGATCGAG -CCAACATGGTTGTAGCTGCTCCTT -CCAACATGGTTGTAGCTGCCTGTT -CCAACATGGTTGTAGCTGCGGTTT -CCAACATGGTTGTAGCTGGTGGTT -CCAACATGGTTGTAGCTGGCCTTT -CCAACATGGTTGTAGCTGGGTCTT -CCAACATGGTTGTAGCTGACGCTT -CCAACATGGTTGTAGCTGAGCGTT -CCAACATGGTTGTAGCTGTTCGTC -CCAACATGGTTGTAGCTGTCTCTC -CCAACATGGTTGTAGCTGTGGATC -CCAACATGGTTGTAGCTGCACTTC -CCAACATGGTTGTAGCTGGTACTC -CCAACATGGTTGTAGCTGGATGTC -CCAACATGGTTGTAGCTGACAGTC -CCAACATGGTTGTAGCTGTTGCTG -CCAACATGGTTGTAGCTGTCCATG -CCAACATGGTTGTAGCTGTGTGTG -CCAACATGGTTGTAGCTGCTAGTG -CCAACATGGTTGTAGCTGCATCTG -CCAACATGGTTGTAGCTGGAGTTG -CCAACATGGTTGTAGCTGAGACTG -CCAACATGGTTGTAGCTGTCGGTA -CCAACATGGTTGTAGCTGTGCCTA -CCAACATGGTTGTAGCTGCCACTA -CCAACATGGTTGTAGCTGGGAGTA -CCAACATGGTTGTAGCTGTCGTCT -CCAACATGGTTGTAGCTGTGCACT -CCAACATGGTTGTAGCTGCTGACT -CCAACATGGTTGTAGCTGCAACCT -CCAACATGGTTGTAGCTGGCTACT -CCAACATGGTTGTAGCTGGGATCT -CCAACATGGTTGTAGCTGAAGGCT -CCAACATGGTTGTAGCTGTCAACC -CCAACATGGTTGTAGCTGTGTTCC -CCAACATGGTTGTAGCTGATTCCC -CCAACATGGTTGTAGCTGTTCTCG -CCAACATGGTTGTAGCTGTAGACG -CCAACATGGTTGTAGCTGGTAACG -CCAACATGGTTGTAGCTGACTTCG -CCAACATGGTTGTAGCTGTACGCA -CCAACATGGTTGTAGCTGCTTGCA -CCAACATGGTTGTAGCTGCGAACA -CCAACATGGTTGTAGCTGCAGTCA -CCAACATGGTTGTAGCTGGATCCA -CCAACATGGTTGTAGCTGACGACA -CCAACATGGTTGTAGCTGAGCTCA -CCAACATGGTTGTAGCTGTCACGT -CCAACATGGTTGTAGCTGCGTAGT -CCAACATGGTTGTAGCTGGTCAGT -CCAACATGGTTGTAGCTGGAAGGT -CCAACATGGTTGTAGCTGAACCGT -CCAACATGGTTGTAGCTGTTGTGC -CCAACATGGTTGTAGCTGCTAAGC -CCAACATGGTTGTAGCTGACTAGC -CCAACATGGTTGTAGCTGAGATGC -CCAACATGGTTGTAGCTGTGAAGG -CCAACATGGTTGTAGCTGCAATGG -CCAACATGGTTGTAGCTGATGAGG -CCAACATGGTTGTAGCTGAATGGG -CCAACATGGTTGTAGCTGTCCTGA -CCAACATGGTTGTAGCTGTAGCGA -CCAACATGGTTGTAGCTGCACAGA -CCAACATGGTTGTAGCTGGCAAGA -CCAACATGGTTGTAGCTGGGTTGA -CCAACATGGTTGTAGCTGTCCGAT -CCAACATGGTTGTAGCTGTGGCAT -CCAACATGGTTGTAGCTGCGAGAT -CCAACATGGTTGTAGCTGTACCAC -CCAACATGGTTGTAGCTGCAGAAC -CCAACATGGTTGTAGCTGGTCTAC -CCAACATGGTTGTAGCTGACGTAC -CCAACATGGTTGTAGCTGAGTGAC -CCAACATGGTTGTAGCTGCTGTAG -CCAACATGGTTGTAGCTGCCTAAG -CCAACATGGTTGTAGCTGGTTCAG -CCAACATGGTTGTAGCTGGCATAG -CCAACATGGTTGTAGCTGGACAAG -CCAACATGGTTGTAGCTGAAGCAG -CCAACATGGTTGTAGCTGCGTCAA -CCAACATGGTTGTAGCTGGCTGAA -CCAACATGGTTGTAGCTGAGTACG -CCAACATGGTTGTAGCTGATCCGA -CCAACATGGTTGTAGCTGATGGGA -CCAACATGGTTGTAGCTGGTGCAA -CCAACATGGTTGTAGCTGGAGGAA -CCAACATGGTTGTAGCTGCAGGTA -CCAACATGGTTGTAGCTGGACTCT -CCAACATGGTTGTAGCTGAGTCCT -CCAACATGGTTGTAGCTGTAAGCC -CCAACATGGTTGTAGCTGATAGCC -CCAACATGGTTGTAGCTGTAACCG -CCAACATGGTTGTAGCTGATGCCA -CCAACATGGTTGAAGCCTGGAAAC -CCAACATGGTTGAAGCCTAACACC -CCAACATGGTTGAAGCCTATCGAG -CCAACATGGTTGAAGCCTCTCCTT -CCAACATGGTTGAAGCCTCCTGTT -CCAACATGGTTGAAGCCTCGGTTT -CCAACATGGTTGAAGCCTGTGGTT -CCAACATGGTTGAAGCCTGCCTTT -CCAACATGGTTGAAGCCTGGTCTT -CCAACATGGTTGAAGCCTACGCTT -CCAACATGGTTGAAGCCTAGCGTT -CCAACATGGTTGAAGCCTTTCGTC -CCAACATGGTTGAAGCCTTCTCTC -CCAACATGGTTGAAGCCTTGGATC -CCAACATGGTTGAAGCCTCACTTC -CCAACATGGTTGAAGCCTGTACTC -CCAACATGGTTGAAGCCTGATGTC -CCAACATGGTTGAAGCCTACAGTC -CCAACATGGTTGAAGCCTTTGCTG -CCAACATGGTTGAAGCCTTCCATG -CCAACATGGTTGAAGCCTTGTGTG -CCAACATGGTTGAAGCCTCTAGTG -CCAACATGGTTGAAGCCTCATCTG -CCAACATGGTTGAAGCCTGAGTTG -CCAACATGGTTGAAGCCTAGACTG -CCAACATGGTTGAAGCCTTCGGTA -CCAACATGGTTGAAGCCTTGCCTA -CCAACATGGTTGAAGCCTCCACTA -CCAACATGGTTGAAGCCTGGAGTA -CCAACATGGTTGAAGCCTTCGTCT -CCAACATGGTTGAAGCCTTGCACT -CCAACATGGTTGAAGCCTCTGACT -CCAACATGGTTGAAGCCTCAACCT -CCAACATGGTTGAAGCCTGCTACT -CCAACATGGTTGAAGCCTGGATCT -CCAACATGGTTGAAGCCTAAGGCT -CCAACATGGTTGAAGCCTTCAACC -CCAACATGGTTGAAGCCTTGTTCC -CCAACATGGTTGAAGCCTATTCCC -CCAACATGGTTGAAGCCTTTCTCG -CCAACATGGTTGAAGCCTTAGACG -CCAACATGGTTGAAGCCTGTAACG -CCAACATGGTTGAAGCCTACTTCG -CCAACATGGTTGAAGCCTTACGCA -CCAACATGGTTGAAGCCTCTTGCA -CCAACATGGTTGAAGCCTCGAACA -CCAACATGGTTGAAGCCTCAGTCA -CCAACATGGTTGAAGCCTGATCCA -CCAACATGGTTGAAGCCTACGACA -CCAACATGGTTGAAGCCTAGCTCA -CCAACATGGTTGAAGCCTTCACGT -CCAACATGGTTGAAGCCTCGTAGT -CCAACATGGTTGAAGCCTGTCAGT -CCAACATGGTTGAAGCCTGAAGGT -CCAACATGGTTGAAGCCTAACCGT -CCAACATGGTTGAAGCCTTTGTGC -CCAACATGGTTGAAGCCTCTAAGC -CCAACATGGTTGAAGCCTACTAGC -CCAACATGGTTGAAGCCTAGATGC -CCAACATGGTTGAAGCCTTGAAGG -CCAACATGGTTGAAGCCTCAATGG -CCAACATGGTTGAAGCCTATGAGG -CCAACATGGTTGAAGCCTAATGGG -CCAACATGGTTGAAGCCTTCCTGA -CCAACATGGTTGAAGCCTTAGCGA -CCAACATGGTTGAAGCCTCACAGA -CCAACATGGTTGAAGCCTGCAAGA -CCAACATGGTTGAAGCCTGGTTGA -CCAACATGGTTGAAGCCTTCCGAT -CCAACATGGTTGAAGCCTTGGCAT -CCAACATGGTTGAAGCCTCGAGAT -CCAACATGGTTGAAGCCTTACCAC -CCAACATGGTTGAAGCCTCAGAAC -CCAACATGGTTGAAGCCTGTCTAC -CCAACATGGTTGAAGCCTACGTAC -CCAACATGGTTGAAGCCTAGTGAC -CCAACATGGTTGAAGCCTCTGTAG -CCAACATGGTTGAAGCCTCCTAAG -CCAACATGGTTGAAGCCTGTTCAG -CCAACATGGTTGAAGCCTGCATAG -CCAACATGGTTGAAGCCTGACAAG -CCAACATGGTTGAAGCCTAAGCAG -CCAACATGGTTGAAGCCTCGTCAA -CCAACATGGTTGAAGCCTGCTGAA -CCAACATGGTTGAAGCCTAGTACG -CCAACATGGTTGAAGCCTATCCGA -CCAACATGGTTGAAGCCTATGGGA -CCAACATGGTTGAAGCCTGTGCAA -CCAACATGGTTGAAGCCTGAGGAA -CCAACATGGTTGAAGCCTCAGGTA -CCAACATGGTTGAAGCCTGACTCT -CCAACATGGTTGAAGCCTAGTCCT -CCAACATGGTTGAAGCCTTAAGCC -CCAACATGGTTGAAGCCTATAGCC -CCAACATGGTTGAAGCCTTAACCG -CCAACATGGTTGAAGCCTATGCCA -CCAACATGGTTGCAGGTTGGAAAC -CCAACATGGTTGCAGGTTAACACC -CCAACATGGTTGCAGGTTATCGAG -CCAACATGGTTGCAGGTTCTCCTT -CCAACATGGTTGCAGGTTCCTGTT -CCAACATGGTTGCAGGTTCGGTTT -CCAACATGGTTGCAGGTTGTGGTT -CCAACATGGTTGCAGGTTGCCTTT -CCAACATGGTTGCAGGTTGGTCTT -CCAACATGGTTGCAGGTTACGCTT -CCAACATGGTTGCAGGTTAGCGTT -CCAACATGGTTGCAGGTTTTCGTC -CCAACATGGTTGCAGGTTTCTCTC -CCAACATGGTTGCAGGTTTGGATC -CCAACATGGTTGCAGGTTCACTTC -CCAACATGGTTGCAGGTTGTACTC -CCAACATGGTTGCAGGTTGATGTC -CCAACATGGTTGCAGGTTACAGTC -CCAACATGGTTGCAGGTTTTGCTG -CCAACATGGTTGCAGGTTTCCATG -CCAACATGGTTGCAGGTTTGTGTG -CCAACATGGTTGCAGGTTCTAGTG -CCAACATGGTTGCAGGTTCATCTG -CCAACATGGTTGCAGGTTGAGTTG -CCAACATGGTTGCAGGTTAGACTG -CCAACATGGTTGCAGGTTTCGGTA -CCAACATGGTTGCAGGTTTGCCTA -CCAACATGGTTGCAGGTTCCACTA -CCAACATGGTTGCAGGTTGGAGTA -CCAACATGGTTGCAGGTTTCGTCT -CCAACATGGTTGCAGGTTTGCACT -CCAACATGGTTGCAGGTTCTGACT -CCAACATGGTTGCAGGTTCAACCT -CCAACATGGTTGCAGGTTGCTACT -CCAACATGGTTGCAGGTTGGATCT -CCAACATGGTTGCAGGTTAAGGCT -CCAACATGGTTGCAGGTTTCAACC -CCAACATGGTTGCAGGTTTGTTCC -CCAACATGGTTGCAGGTTATTCCC -CCAACATGGTTGCAGGTTTTCTCG -CCAACATGGTTGCAGGTTTAGACG -CCAACATGGTTGCAGGTTGTAACG -CCAACATGGTTGCAGGTTACTTCG -CCAACATGGTTGCAGGTTTACGCA -CCAACATGGTTGCAGGTTCTTGCA -CCAACATGGTTGCAGGTTCGAACA -CCAACATGGTTGCAGGTTCAGTCA -CCAACATGGTTGCAGGTTGATCCA -CCAACATGGTTGCAGGTTACGACA -CCAACATGGTTGCAGGTTAGCTCA -CCAACATGGTTGCAGGTTTCACGT -CCAACATGGTTGCAGGTTCGTAGT -CCAACATGGTTGCAGGTTGTCAGT -CCAACATGGTTGCAGGTTGAAGGT -CCAACATGGTTGCAGGTTAACCGT -CCAACATGGTTGCAGGTTTTGTGC -CCAACATGGTTGCAGGTTCTAAGC -CCAACATGGTTGCAGGTTACTAGC -CCAACATGGTTGCAGGTTAGATGC -CCAACATGGTTGCAGGTTTGAAGG -CCAACATGGTTGCAGGTTCAATGG -CCAACATGGTTGCAGGTTATGAGG -CCAACATGGTTGCAGGTTAATGGG -CCAACATGGTTGCAGGTTTCCTGA -CCAACATGGTTGCAGGTTTAGCGA -CCAACATGGTTGCAGGTTCACAGA -CCAACATGGTTGCAGGTTGCAAGA -CCAACATGGTTGCAGGTTGGTTGA -CCAACATGGTTGCAGGTTTCCGAT -CCAACATGGTTGCAGGTTTGGCAT -CCAACATGGTTGCAGGTTCGAGAT -CCAACATGGTTGCAGGTTTACCAC -CCAACATGGTTGCAGGTTCAGAAC -CCAACATGGTTGCAGGTTGTCTAC -CCAACATGGTTGCAGGTTACGTAC -CCAACATGGTTGCAGGTTAGTGAC -CCAACATGGTTGCAGGTTCTGTAG -CCAACATGGTTGCAGGTTCCTAAG -CCAACATGGTTGCAGGTTGTTCAG -CCAACATGGTTGCAGGTTGCATAG -CCAACATGGTTGCAGGTTGACAAG -CCAACATGGTTGCAGGTTAAGCAG -CCAACATGGTTGCAGGTTCGTCAA -CCAACATGGTTGCAGGTTGCTGAA -CCAACATGGTTGCAGGTTAGTACG -CCAACATGGTTGCAGGTTATCCGA -CCAACATGGTTGCAGGTTATGGGA -CCAACATGGTTGCAGGTTGTGCAA -CCAACATGGTTGCAGGTTGAGGAA -CCAACATGGTTGCAGGTTCAGGTA -CCAACATGGTTGCAGGTTGACTCT -CCAACATGGTTGCAGGTTAGTCCT -CCAACATGGTTGCAGGTTTAAGCC -CCAACATGGTTGCAGGTTATAGCC -CCAACATGGTTGCAGGTTTAACCG -CCAACATGGTTGCAGGTTATGCCA -CCAACATGGTTGTAGGCAGGAAAC -CCAACATGGTTGTAGGCAAACACC -CCAACATGGTTGTAGGCAATCGAG -CCAACATGGTTGTAGGCACTCCTT -CCAACATGGTTGTAGGCACCTGTT -CCAACATGGTTGTAGGCACGGTTT -CCAACATGGTTGTAGGCAGTGGTT -CCAACATGGTTGTAGGCAGCCTTT -CCAACATGGTTGTAGGCAGGTCTT -CCAACATGGTTGTAGGCAACGCTT -CCAACATGGTTGTAGGCAAGCGTT -CCAACATGGTTGTAGGCATTCGTC -CCAACATGGTTGTAGGCATCTCTC -CCAACATGGTTGTAGGCATGGATC -CCAACATGGTTGTAGGCACACTTC -CCAACATGGTTGTAGGCAGTACTC -CCAACATGGTTGTAGGCAGATGTC -CCAACATGGTTGTAGGCAACAGTC -CCAACATGGTTGTAGGCATTGCTG -CCAACATGGTTGTAGGCATCCATG -CCAACATGGTTGTAGGCATGTGTG -CCAACATGGTTGTAGGCACTAGTG -CCAACATGGTTGTAGGCACATCTG -CCAACATGGTTGTAGGCAGAGTTG -CCAACATGGTTGTAGGCAAGACTG -CCAACATGGTTGTAGGCATCGGTA -CCAACATGGTTGTAGGCATGCCTA -CCAACATGGTTGTAGGCACCACTA -CCAACATGGTTGTAGGCAGGAGTA -CCAACATGGTTGTAGGCATCGTCT -CCAACATGGTTGTAGGCATGCACT -CCAACATGGTTGTAGGCACTGACT -CCAACATGGTTGTAGGCACAACCT -CCAACATGGTTGTAGGCAGCTACT -CCAACATGGTTGTAGGCAGGATCT -CCAACATGGTTGTAGGCAAAGGCT -CCAACATGGTTGTAGGCATCAACC -CCAACATGGTTGTAGGCATGTTCC -CCAACATGGTTGTAGGCAATTCCC -CCAACATGGTTGTAGGCATTCTCG -CCAACATGGTTGTAGGCATAGACG -CCAACATGGTTGTAGGCAGTAACG -CCAACATGGTTGTAGGCAACTTCG -CCAACATGGTTGTAGGCATACGCA -CCAACATGGTTGTAGGCACTTGCA -CCAACATGGTTGTAGGCACGAACA -CCAACATGGTTGTAGGCACAGTCA -CCAACATGGTTGTAGGCAGATCCA -CCAACATGGTTGTAGGCAACGACA -CCAACATGGTTGTAGGCAAGCTCA -CCAACATGGTTGTAGGCATCACGT -CCAACATGGTTGTAGGCACGTAGT -CCAACATGGTTGTAGGCAGTCAGT -CCAACATGGTTGTAGGCAGAAGGT -CCAACATGGTTGTAGGCAAACCGT -CCAACATGGTTGTAGGCATTGTGC -CCAACATGGTTGTAGGCACTAAGC -CCAACATGGTTGTAGGCAACTAGC -CCAACATGGTTGTAGGCAAGATGC -CCAACATGGTTGTAGGCATGAAGG -CCAACATGGTTGTAGGCACAATGG -CCAACATGGTTGTAGGCAATGAGG -CCAACATGGTTGTAGGCAAATGGG -CCAACATGGTTGTAGGCATCCTGA -CCAACATGGTTGTAGGCATAGCGA -CCAACATGGTTGTAGGCACACAGA -CCAACATGGTTGTAGGCAGCAAGA -CCAACATGGTTGTAGGCAGGTTGA -CCAACATGGTTGTAGGCATCCGAT -CCAACATGGTTGTAGGCATGGCAT -CCAACATGGTTGTAGGCACGAGAT -CCAACATGGTTGTAGGCATACCAC -CCAACATGGTTGTAGGCACAGAAC -CCAACATGGTTGTAGGCAGTCTAC -CCAACATGGTTGTAGGCAACGTAC -CCAACATGGTTGTAGGCAAGTGAC -CCAACATGGTTGTAGGCACTGTAG -CCAACATGGTTGTAGGCACCTAAG -CCAACATGGTTGTAGGCAGTTCAG -CCAACATGGTTGTAGGCAGCATAG -CCAACATGGTTGTAGGCAGACAAG -CCAACATGGTTGTAGGCAAAGCAG -CCAACATGGTTGTAGGCACGTCAA -CCAACATGGTTGTAGGCAGCTGAA -CCAACATGGTTGTAGGCAAGTACG -CCAACATGGTTGTAGGCAATCCGA -CCAACATGGTTGTAGGCAATGGGA -CCAACATGGTTGTAGGCAGTGCAA -CCAACATGGTTGTAGGCAGAGGAA -CCAACATGGTTGTAGGCACAGGTA -CCAACATGGTTGTAGGCAGACTCT -CCAACATGGTTGTAGGCAAGTCCT -CCAACATGGTTGTAGGCATAAGCC -CCAACATGGTTGTAGGCAATAGCC -CCAACATGGTTGTAGGCATAACCG -CCAACATGGTTGTAGGCAATGCCA -CCAACATGGTTGAAGGACGGAAAC -CCAACATGGTTGAAGGACAACACC -CCAACATGGTTGAAGGACATCGAG -CCAACATGGTTGAAGGACCTCCTT -CCAACATGGTTGAAGGACCCTGTT -CCAACATGGTTGAAGGACCGGTTT -CCAACATGGTTGAAGGACGTGGTT -CCAACATGGTTGAAGGACGCCTTT -CCAACATGGTTGAAGGACGGTCTT -CCAACATGGTTGAAGGACACGCTT -CCAACATGGTTGAAGGACAGCGTT -CCAACATGGTTGAAGGACTTCGTC -CCAACATGGTTGAAGGACTCTCTC -CCAACATGGTTGAAGGACTGGATC -CCAACATGGTTGAAGGACCACTTC -CCAACATGGTTGAAGGACGTACTC -CCAACATGGTTGAAGGACGATGTC -CCAACATGGTTGAAGGACACAGTC -CCAACATGGTTGAAGGACTTGCTG -CCAACATGGTTGAAGGACTCCATG -CCAACATGGTTGAAGGACTGTGTG -CCAACATGGTTGAAGGACCTAGTG -CCAACATGGTTGAAGGACCATCTG -CCAACATGGTTGAAGGACGAGTTG -CCAACATGGTTGAAGGACAGACTG -CCAACATGGTTGAAGGACTCGGTA -CCAACATGGTTGAAGGACTGCCTA -CCAACATGGTTGAAGGACCCACTA -CCAACATGGTTGAAGGACGGAGTA -CCAACATGGTTGAAGGACTCGTCT -CCAACATGGTTGAAGGACTGCACT -CCAACATGGTTGAAGGACCTGACT -CCAACATGGTTGAAGGACCAACCT -CCAACATGGTTGAAGGACGCTACT -CCAACATGGTTGAAGGACGGATCT -CCAACATGGTTGAAGGACAAGGCT -CCAACATGGTTGAAGGACTCAACC -CCAACATGGTTGAAGGACTGTTCC -CCAACATGGTTGAAGGACATTCCC -CCAACATGGTTGAAGGACTTCTCG -CCAACATGGTTGAAGGACTAGACG -CCAACATGGTTGAAGGACGTAACG -CCAACATGGTTGAAGGACACTTCG -CCAACATGGTTGAAGGACTACGCA -CCAACATGGTTGAAGGACCTTGCA -CCAACATGGTTGAAGGACCGAACA -CCAACATGGTTGAAGGACCAGTCA -CCAACATGGTTGAAGGACGATCCA -CCAACATGGTTGAAGGACACGACA -CCAACATGGTTGAAGGACAGCTCA -CCAACATGGTTGAAGGACTCACGT -CCAACATGGTTGAAGGACCGTAGT -CCAACATGGTTGAAGGACGTCAGT -CCAACATGGTTGAAGGACGAAGGT -CCAACATGGTTGAAGGACAACCGT -CCAACATGGTTGAAGGACTTGTGC -CCAACATGGTTGAAGGACCTAAGC -CCAACATGGTTGAAGGACACTAGC -CCAACATGGTTGAAGGACAGATGC -CCAACATGGTTGAAGGACTGAAGG -CCAACATGGTTGAAGGACCAATGG -CCAACATGGTTGAAGGACATGAGG -CCAACATGGTTGAAGGACAATGGG -CCAACATGGTTGAAGGACTCCTGA -CCAACATGGTTGAAGGACTAGCGA -CCAACATGGTTGAAGGACCACAGA -CCAACATGGTTGAAGGACGCAAGA -CCAACATGGTTGAAGGACGGTTGA -CCAACATGGTTGAAGGACTCCGAT -CCAACATGGTTGAAGGACTGGCAT -CCAACATGGTTGAAGGACCGAGAT -CCAACATGGTTGAAGGACTACCAC -CCAACATGGTTGAAGGACCAGAAC -CCAACATGGTTGAAGGACGTCTAC -CCAACATGGTTGAAGGACACGTAC -CCAACATGGTTGAAGGACAGTGAC -CCAACATGGTTGAAGGACCTGTAG -CCAACATGGTTGAAGGACCCTAAG -CCAACATGGTTGAAGGACGTTCAG -CCAACATGGTTGAAGGACGCATAG -CCAACATGGTTGAAGGACGACAAG -CCAACATGGTTGAAGGACAAGCAG -CCAACATGGTTGAAGGACCGTCAA -CCAACATGGTTGAAGGACGCTGAA -CCAACATGGTTGAAGGACAGTACG -CCAACATGGTTGAAGGACATCCGA -CCAACATGGTTGAAGGACATGGGA -CCAACATGGTTGAAGGACGTGCAA -CCAACATGGTTGAAGGACGAGGAA -CCAACATGGTTGAAGGACCAGGTA -CCAACATGGTTGAAGGACGACTCT -CCAACATGGTTGAAGGACAGTCCT -CCAACATGGTTGAAGGACTAAGCC -CCAACATGGTTGAAGGACATAGCC -CCAACATGGTTGAAGGACTAACCG -CCAACATGGTTGAAGGACATGCCA -CCAACATGGTTGCAGAAGGGAAAC -CCAACATGGTTGCAGAAGAACACC -CCAACATGGTTGCAGAAGATCGAG -CCAACATGGTTGCAGAAGCTCCTT -CCAACATGGTTGCAGAAGCCTGTT -CCAACATGGTTGCAGAAGCGGTTT -CCAACATGGTTGCAGAAGGTGGTT -CCAACATGGTTGCAGAAGGCCTTT -CCAACATGGTTGCAGAAGGGTCTT -CCAACATGGTTGCAGAAGACGCTT -CCAACATGGTTGCAGAAGAGCGTT -CCAACATGGTTGCAGAAGTTCGTC -CCAACATGGTTGCAGAAGTCTCTC -CCAACATGGTTGCAGAAGTGGATC -CCAACATGGTTGCAGAAGCACTTC -CCAACATGGTTGCAGAAGGTACTC -CCAACATGGTTGCAGAAGGATGTC -CCAACATGGTTGCAGAAGACAGTC -CCAACATGGTTGCAGAAGTTGCTG -CCAACATGGTTGCAGAAGTCCATG -CCAACATGGTTGCAGAAGTGTGTG -CCAACATGGTTGCAGAAGCTAGTG -CCAACATGGTTGCAGAAGCATCTG -CCAACATGGTTGCAGAAGGAGTTG -CCAACATGGTTGCAGAAGAGACTG -CCAACATGGTTGCAGAAGTCGGTA -CCAACATGGTTGCAGAAGTGCCTA -CCAACATGGTTGCAGAAGCCACTA -CCAACATGGTTGCAGAAGGGAGTA -CCAACATGGTTGCAGAAGTCGTCT -CCAACATGGTTGCAGAAGTGCACT -CCAACATGGTTGCAGAAGCTGACT -CCAACATGGTTGCAGAAGCAACCT -CCAACATGGTTGCAGAAGGCTACT -CCAACATGGTTGCAGAAGGGATCT -CCAACATGGTTGCAGAAGAAGGCT -CCAACATGGTTGCAGAAGTCAACC -CCAACATGGTTGCAGAAGTGTTCC -CCAACATGGTTGCAGAAGATTCCC -CCAACATGGTTGCAGAAGTTCTCG -CCAACATGGTTGCAGAAGTAGACG -CCAACATGGTTGCAGAAGGTAACG -CCAACATGGTTGCAGAAGACTTCG -CCAACATGGTTGCAGAAGTACGCA -CCAACATGGTTGCAGAAGCTTGCA -CCAACATGGTTGCAGAAGCGAACA -CCAACATGGTTGCAGAAGCAGTCA -CCAACATGGTTGCAGAAGGATCCA -CCAACATGGTTGCAGAAGACGACA -CCAACATGGTTGCAGAAGAGCTCA -CCAACATGGTTGCAGAAGTCACGT -CCAACATGGTTGCAGAAGCGTAGT -CCAACATGGTTGCAGAAGGTCAGT -CCAACATGGTTGCAGAAGGAAGGT -CCAACATGGTTGCAGAAGAACCGT -CCAACATGGTTGCAGAAGTTGTGC -CCAACATGGTTGCAGAAGCTAAGC -CCAACATGGTTGCAGAAGACTAGC -CCAACATGGTTGCAGAAGAGATGC -CCAACATGGTTGCAGAAGTGAAGG -CCAACATGGTTGCAGAAGCAATGG -CCAACATGGTTGCAGAAGATGAGG -CCAACATGGTTGCAGAAGAATGGG -CCAACATGGTTGCAGAAGTCCTGA -CCAACATGGTTGCAGAAGTAGCGA -CCAACATGGTTGCAGAAGCACAGA -CCAACATGGTTGCAGAAGGCAAGA -CCAACATGGTTGCAGAAGGGTTGA -CCAACATGGTTGCAGAAGTCCGAT -CCAACATGGTTGCAGAAGTGGCAT -CCAACATGGTTGCAGAAGCGAGAT -CCAACATGGTTGCAGAAGTACCAC -CCAACATGGTTGCAGAAGCAGAAC -CCAACATGGTTGCAGAAGGTCTAC -CCAACATGGTTGCAGAAGACGTAC -CCAACATGGTTGCAGAAGAGTGAC -CCAACATGGTTGCAGAAGCTGTAG -CCAACATGGTTGCAGAAGCCTAAG -CCAACATGGTTGCAGAAGGTTCAG -CCAACATGGTTGCAGAAGGCATAG -CCAACATGGTTGCAGAAGGACAAG -CCAACATGGTTGCAGAAGAAGCAG -CCAACATGGTTGCAGAAGCGTCAA -CCAACATGGTTGCAGAAGGCTGAA -CCAACATGGTTGCAGAAGAGTACG -CCAACATGGTTGCAGAAGATCCGA -CCAACATGGTTGCAGAAGATGGGA -CCAACATGGTTGCAGAAGGTGCAA -CCAACATGGTTGCAGAAGGAGGAA -CCAACATGGTTGCAGAAGCAGGTA -CCAACATGGTTGCAGAAGGACTCT -CCAACATGGTTGCAGAAGAGTCCT -CCAACATGGTTGCAGAAGTAAGCC -CCAACATGGTTGCAGAAGATAGCC -CCAACATGGTTGCAGAAGTAACCG -CCAACATGGTTGCAGAAGATGCCA -CCAACATGGTTGCAACGTGGAAAC -CCAACATGGTTGCAACGTAACACC -CCAACATGGTTGCAACGTATCGAG -CCAACATGGTTGCAACGTCTCCTT -CCAACATGGTTGCAACGTCCTGTT -CCAACATGGTTGCAACGTCGGTTT -CCAACATGGTTGCAACGTGTGGTT -CCAACATGGTTGCAACGTGCCTTT -CCAACATGGTTGCAACGTGGTCTT -CCAACATGGTTGCAACGTACGCTT -CCAACATGGTTGCAACGTAGCGTT -CCAACATGGTTGCAACGTTTCGTC -CCAACATGGTTGCAACGTTCTCTC -CCAACATGGTTGCAACGTTGGATC -CCAACATGGTTGCAACGTCACTTC -CCAACATGGTTGCAACGTGTACTC -CCAACATGGTTGCAACGTGATGTC -CCAACATGGTTGCAACGTACAGTC -CCAACATGGTTGCAACGTTTGCTG -CCAACATGGTTGCAACGTTCCATG -CCAACATGGTTGCAACGTTGTGTG -CCAACATGGTTGCAACGTCTAGTG -CCAACATGGTTGCAACGTCATCTG -CCAACATGGTTGCAACGTGAGTTG -CCAACATGGTTGCAACGTAGACTG -CCAACATGGTTGCAACGTTCGGTA -CCAACATGGTTGCAACGTTGCCTA -CCAACATGGTTGCAACGTCCACTA -CCAACATGGTTGCAACGTGGAGTA -CCAACATGGTTGCAACGTTCGTCT -CCAACATGGTTGCAACGTTGCACT -CCAACATGGTTGCAACGTCTGACT -CCAACATGGTTGCAACGTCAACCT -CCAACATGGTTGCAACGTGCTACT -CCAACATGGTTGCAACGTGGATCT -CCAACATGGTTGCAACGTAAGGCT -CCAACATGGTTGCAACGTTCAACC -CCAACATGGTTGCAACGTTGTTCC -CCAACATGGTTGCAACGTATTCCC -CCAACATGGTTGCAACGTTTCTCG -CCAACATGGTTGCAACGTTAGACG -CCAACATGGTTGCAACGTGTAACG -CCAACATGGTTGCAACGTACTTCG -CCAACATGGTTGCAACGTTACGCA -CCAACATGGTTGCAACGTCTTGCA -CCAACATGGTTGCAACGTCGAACA -CCAACATGGTTGCAACGTCAGTCA -CCAACATGGTTGCAACGTGATCCA -CCAACATGGTTGCAACGTACGACA -CCAACATGGTTGCAACGTAGCTCA -CCAACATGGTTGCAACGTTCACGT -CCAACATGGTTGCAACGTCGTAGT -CCAACATGGTTGCAACGTGTCAGT -CCAACATGGTTGCAACGTGAAGGT -CCAACATGGTTGCAACGTAACCGT -CCAACATGGTTGCAACGTTTGTGC -CCAACATGGTTGCAACGTCTAAGC -CCAACATGGTTGCAACGTACTAGC -CCAACATGGTTGCAACGTAGATGC -CCAACATGGTTGCAACGTTGAAGG -CCAACATGGTTGCAACGTCAATGG -CCAACATGGTTGCAACGTATGAGG -CCAACATGGTTGCAACGTAATGGG -CCAACATGGTTGCAACGTTCCTGA -CCAACATGGTTGCAACGTTAGCGA -CCAACATGGTTGCAACGTCACAGA -CCAACATGGTTGCAACGTGCAAGA -CCAACATGGTTGCAACGTGGTTGA -CCAACATGGTTGCAACGTTCCGAT -CCAACATGGTTGCAACGTTGGCAT -CCAACATGGTTGCAACGTCGAGAT -CCAACATGGTTGCAACGTTACCAC -CCAACATGGTTGCAACGTCAGAAC -CCAACATGGTTGCAACGTGTCTAC -CCAACATGGTTGCAACGTACGTAC -CCAACATGGTTGCAACGTAGTGAC -CCAACATGGTTGCAACGTCTGTAG -CCAACATGGTTGCAACGTCCTAAG -CCAACATGGTTGCAACGTGTTCAG -CCAACATGGTTGCAACGTGCATAG -CCAACATGGTTGCAACGTGACAAG -CCAACATGGTTGCAACGTAAGCAG -CCAACATGGTTGCAACGTCGTCAA -CCAACATGGTTGCAACGTGCTGAA -CCAACATGGTTGCAACGTAGTACG -CCAACATGGTTGCAACGTATCCGA -CCAACATGGTTGCAACGTATGGGA -CCAACATGGTTGCAACGTGTGCAA -CCAACATGGTTGCAACGTGAGGAA -CCAACATGGTTGCAACGTCAGGTA -CCAACATGGTTGCAACGTGACTCT -CCAACATGGTTGCAACGTAGTCCT -CCAACATGGTTGCAACGTTAAGCC -CCAACATGGTTGCAACGTATAGCC -CCAACATGGTTGCAACGTTAACCG -CCAACATGGTTGCAACGTATGCCA -CCAACATGGTTGGAAGCTGGAAAC -CCAACATGGTTGGAAGCTAACACC -CCAACATGGTTGGAAGCTATCGAG -CCAACATGGTTGGAAGCTCTCCTT -CCAACATGGTTGGAAGCTCCTGTT -CCAACATGGTTGGAAGCTCGGTTT -CCAACATGGTTGGAAGCTGTGGTT -CCAACATGGTTGGAAGCTGCCTTT -CCAACATGGTTGGAAGCTGGTCTT -CCAACATGGTTGGAAGCTACGCTT -CCAACATGGTTGGAAGCTAGCGTT -CCAACATGGTTGGAAGCTTTCGTC -CCAACATGGTTGGAAGCTTCTCTC -CCAACATGGTTGGAAGCTTGGATC -CCAACATGGTTGGAAGCTCACTTC -CCAACATGGTTGGAAGCTGTACTC -CCAACATGGTTGGAAGCTGATGTC -CCAACATGGTTGGAAGCTACAGTC -CCAACATGGTTGGAAGCTTTGCTG -CCAACATGGTTGGAAGCTTCCATG -CCAACATGGTTGGAAGCTTGTGTG -CCAACATGGTTGGAAGCTCTAGTG -CCAACATGGTTGGAAGCTCATCTG -CCAACATGGTTGGAAGCTGAGTTG -CCAACATGGTTGGAAGCTAGACTG -CCAACATGGTTGGAAGCTTCGGTA -CCAACATGGTTGGAAGCTTGCCTA -CCAACATGGTTGGAAGCTCCACTA -CCAACATGGTTGGAAGCTGGAGTA -CCAACATGGTTGGAAGCTTCGTCT -CCAACATGGTTGGAAGCTTGCACT -CCAACATGGTTGGAAGCTCTGACT -CCAACATGGTTGGAAGCTCAACCT -CCAACATGGTTGGAAGCTGCTACT -CCAACATGGTTGGAAGCTGGATCT -CCAACATGGTTGGAAGCTAAGGCT -CCAACATGGTTGGAAGCTTCAACC -CCAACATGGTTGGAAGCTTGTTCC -CCAACATGGTTGGAAGCTATTCCC -CCAACATGGTTGGAAGCTTTCTCG -CCAACATGGTTGGAAGCTTAGACG -CCAACATGGTTGGAAGCTGTAACG -CCAACATGGTTGGAAGCTACTTCG -CCAACATGGTTGGAAGCTTACGCA -CCAACATGGTTGGAAGCTCTTGCA -CCAACATGGTTGGAAGCTCGAACA -CCAACATGGTTGGAAGCTCAGTCA -CCAACATGGTTGGAAGCTGATCCA -CCAACATGGTTGGAAGCTACGACA -CCAACATGGTTGGAAGCTAGCTCA -CCAACATGGTTGGAAGCTTCACGT -CCAACATGGTTGGAAGCTCGTAGT -CCAACATGGTTGGAAGCTGTCAGT -CCAACATGGTTGGAAGCTGAAGGT -CCAACATGGTTGGAAGCTAACCGT -CCAACATGGTTGGAAGCTTTGTGC -CCAACATGGTTGGAAGCTCTAAGC -CCAACATGGTTGGAAGCTACTAGC -CCAACATGGTTGGAAGCTAGATGC -CCAACATGGTTGGAAGCTTGAAGG -CCAACATGGTTGGAAGCTCAATGG -CCAACATGGTTGGAAGCTATGAGG -CCAACATGGTTGGAAGCTAATGGG -CCAACATGGTTGGAAGCTTCCTGA -CCAACATGGTTGGAAGCTTAGCGA -CCAACATGGTTGGAAGCTCACAGA -CCAACATGGTTGGAAGCTGCAAGA -CCAACATGGTTGGAAGCTGGTTGA -CCAACATGGTTGGAAGCTTCCGAT -CCAACATGGTTGGAAGCTTGGCAT -CCAACATGGTTGGAAGCTCGAGAT -CCAACATGGTTGGAAGCTTACCAC -CCAACATGGTTGGAAGCTCAGAAC -CCAACATGGTTGGAAGCTGTCTAC -CCAACATGGTTGGAAGCTACGTAC -CCAACATGGTTGGAAGCTAGTGAC -CCAACATGGTTGGAAGCTCTGTAG -CCAACATGGTTGGAAGCTCCTAAG -CCAACATGGTTGGAAGCTGTTCAG -CCAACATGGTTGGAAGCTGCATAG -CCAACATGGTTGGAAGCTGACAAG -CCAACATGGTTGGAAGCTAAGCAG -CCAACATGGTTGGAAGCTCGTCAA -CCAACATGGTTGGAAGCTGCTGAA -CCAACATGGTTGGAAGCTAGTACG -CCAACATGGTTGGAAGCTATCCGA -CCAACATGGTTGGAAGCTATGGGA -CCAACATGGTTGGAAGCTGTGCAA -CCAACATGGTTGGAAGCTGAGGAA -CCAACATGGTTGGAAGCTCAGGTA -CCAACATGGTTGGAAGCTGACTCT -CCAACATGGTTGGAAGCTAGTCCT -CCAACATGGTTGGAAGCTTAAGCC -CCAACATGGTTGGAAGCTATAGCC -CCAACATGGTTGGAAGCTTAACCG -CCAACATGGTTGGAAGCTATGCCA -CCAACATGGTTGACGAGTGGAAAC -CCAACATGGTTGACGAGTAACACC -CCAACATGGTTGACGAGTATCGAG -CCAACATGGTTGACGAGTCTCCTT -CCAACATGGTTGACGAGTCCTGTT -CCAACATGGTTGACGAGTCGGTTT -CCAACATGGTTGACGAGTGTGGTT -CCAACATGGTTGACGAGTGCCTTT -CCAACATGGTTGACGAGTGGTCTT -CCAACATGGTTGACGAGTACGCTT -CCAACATGGTTGACGAGTAGCGTT -CCAACATGGTTGACGAGTTTCGTC -CCAACATGGTTGACGAGTTCTCTC -CCAACATGGTTGACGAGTTGGATC -CCAACATGGTTGACGAGTCACTTC -CCAACATGGTTGACGAGTGTACTC -CCAACATGGTTGACGAGTGATGTC -CCAACATGGTTGACGAGTACAGTC -CCAACATGGTTGACGAGTTTGCTG -CCAACATGGTTGACGAGTTCCATG -CCAACATGGTTGACGAGTTGTGTG -CCAACATGGTTGACGAGTCTAGTG -CCAACATGGTTGACGAGTCATCTG -CCAACATGGTTGACGAGTGAGTTG -CCAACATGGTTGACGAGTAGACTG -CCAACATGGTTGACGAGTTCGGTA -CCAACATGGTTGACGAGTTGCCTA -CCAACATGGTTGACGAGTCCACTA -CCAACATGGTTGACGAGTGGAGTA -CCAACATGGTTGACGAGTTCGTCT -CCAACATGGTTGACGAGTTGCACT -CCAACATGGTTGACGAGTCTGACT -CCAACATGGTTGACGAGTCAACCT -CCAACATGGTTGACGAGTGCTACT -CCAACATGGTTGACGAGTGGATCT -CCAACATGGTTGACGAGTAAGGCT -CCAACATGGTTGACGAGTTCAACC -CCAACATGGTTGACGAGTTGTTCC -CCAACATGGTTGACGAGTATTCCC -CCAACATGGTTGACGAGTTTCTCG -CCAACATGGTTGACGAGTTAGACG -CCAACATGGTTGACGAGTGTAACG -CCAACATGGTTGACGAGTACTTCG -CCAACATGGTTGACGAGTTACGCA -CCAACATGGTTGACGAGTCTTGCA -CCAACATGGTTGACGAGTCGAACA -CCAACATGGTTGACGAGTCAGTCA -CCAACATGGTTGACGAGTGATCCA -CCAACATGGTTGACGAGTACGACA -CCAACATGGTTGACGAGTAGCTCA -CCAACATGGTTGACGAGTTCACGT -CCAACATGGTTGACGAGTCGTAGT -CCAACATGGTTGACGAGTGTCAGT -CCAACATGGTTGACGAGTGAAGGT -CCAACATGGTTGACGAGTAACCGT -CCAACATGGTTGACGAGTTTGTGC -CCAACATGGTTGACGAGTCTAAGC -CCAACATGGTTGACGAGTACTAGC -CCAACATGGTTGACGAGTAGATGC -CCAACATGGTTGACGAGTTGAAGG -CCAACATGGTTGACGAGTCAATGG -CCAACATGGTTGACGAGTATGAGG -CCAACATGGTTGACGAGTAATGGG -CCAACATGGTTGACGAGTTCCTGA -CCAACATGGTTGACGAGTTAGCGA -CCAACATGGTTGACGAGTCACAGA -CCAACATGGTTGACGAGTGCAAGA -CCAACATGGTTGACGAGTGGTTGA -CCAACATGGTTGACGAGTTCCGAT -CCAACATGGTTGACGAGTTGGCAT -CCAACATGGTTGACGAGTCGAGAT -CCAACATGGTTGACGAGTTACCAC -CCAACATGGTTGACGAGTCAGAAC -CCAACATGGTTGACGAGTGTCTAC -CCAACATGGTTGACGAGTACGTAC -CCAACATGGTTGACGAGTAGTGAC -CCAACATGGTTGACGAGTCTGTAG -CCAACATGGTTGACGAGTCCTAAG -CCAACATGGTTGACGAGTGTTCAG -CCAACATGGTTGACGAGTGCATAG -CCAACATGGTTGACGAGTGACAAG -CCAACATGGTTGACGAGTAAGCAG -CCAACATGGTTGACGAGTCGTCAA -CCAACATGGTTGACGAGTGCTGAA -CCAACATGGTTGACGAGTAGTACG -CCAACATGGTTGACGAGTATCCGA -CCAACATGGTTGACGAGTATGGGA -CCAACATGGTTGACGAGTGTGCAA -CCAACATGGTTGACGAGTGAGGAA -CCAACATGGTTGACGAGTCAGGTA -CCAACATGGTTGACGAGTGACTCT -CCAACATGGTTGACGAGTAGTCCT -CCAACATGGTTGACGAGTTAAGCC -CCAACATGGTTGACGAGTATAGCC -CCAACATGGTTGACGAGTTAACCG -CCAACATGGTTGACGAGTATGCCA -CCAACATGGTTGCGAATCGGAAAC -CCAACATGGTTGCGAATCAACACC -CCAACATGGTTGCGAATCATCGAG -CCAACATGGTTGCGAATCCTCCTT -CCAACATGGTTGCGAATCCCTGTT -CCAACATGGTTGCGAATCCGGTTT -CCAACATGGTTGCGAATCGTGGTT -CCAACATGGTTGCGAATCGCCTTT -CCAACATGGTTGCGAATCGGTCTT -CCAACATGGTTGCGAATCACGCTT -CCAACATGGTTGCGAATCAGCGTT -CCAACATGGTTGCGAATCTTCGTC -CCAACATGGTTGCGAATCTCTCTC -CCAACATGGTTGCGAATCTGGATC -CCAACATGGTTGCGAATCCACTTC -CCAACATGGTTGCGAATCGTACTC -CCAACATGGTTGCGAATCGATGTC -CCAACATGGTTGCGAATCACAGTC -CCAACATGGTTGCGAATCTTGCTG -CCAACATGGTTGCGAATCTCCATG -CCAACATGGTTGCGAATCTGTGTG -CCAACATGGTTGCGAATCCTAGTG -CCAACATGGTTGCGAATCCATCTG -CCAACATGGTTGCGAATCGAGTTG -CCAACATGGTTGCGAATCAGACTG -CCAACATGGTTGCGAATCTCGGTA -CCAACATGGTTGCGAATCTGCCTA -CCAACATGGTTGCGAATCCCACTA -CCAACATGGTTGCGAATCGGAGTA -CCAACATGGTTGCGAATCTCGTCT -CCAACATGGTTGCGAATCTGCACT -CCAACATGGTTGCGAATCCTGACT -CCAACATGGTTGCGAATCCAACCT -CCAACATGGTTGCGAATCGCTACT -CCAACATGGTTGCGAATCGGATCT -CCAACATGGTTGCGAATCAAGGCT -CCAACATGGTTGCGAATCTCAACC -CCAACATGGTTGCGAATCTGTTCC -CCAACATGGTTGCGAATCATTCCC -CCAACATGGTTGCGAATCTTCTCG -CCAACATGGTTGCGAATCTAGACG -CCAACATGGTTGCGAATCGTAACG -CCAACATGGTTGCGAATCACTTCG -CCAACATGGTTGCGAATCTACGCA -CCAACATGGTTGCGAATCCTTGCA -CCAACATGGTTGCGAATCCGAACA -CCAACATGGTTGCGAATCCAGTCA -CCAACATGGTTGCGAATCGATCCA -CCAACATGGTTGCGAATCACGACA -CCAACATGGTTGCGAATCAGCTCA -CCAACATGGTTGCGAATCTCACGT -CCAACATGGTTGCGAATCCGTAGT -CCAACATGGTTGCGAATCGTCAGT -CCAACATGGTTGCGAATCGAAGGT -CCAACATGGTTGCGAATCAACCGT -CCAACATGGTTGCGAATCTTGTGC -CCAACATGGTTGCGAATCCTAAGC -CCAACATGGTTGCGAATCACTAGC -CCAACATGGTTGCGAATCAGATGC -CCAACATGGTTGCGAATCTGAAGG -CCAACATGGTTGCGAATCCAATGG -CCAACATGGTTGCGAATCATGAGG -CCAACATGGTTGCGAATCAATGGG -CCAACATGGTTGCGAATCTCCTGA -CCAACATGGTTGCGAATCTAGCGA -CCAACATGGTTGCGAATCCACAGA -CCAACATGGTTGCGAATCGCAAGA -CCAACATGGTTGCGAATCGGTTGA -CCAACATGGTTGCGAATCTCCGAT -CCAACATGGTTGCGAATCTGGCAT -CCAACATGGTTGCGAATCCGAGAT -CCAACATGGTTGCGAATCTACCAC -CCAACATGGTTGCGAATCCAGAAC -CCAACATGGTTGCGAATCGTCTAC -CCAACATGGTTGCGAATCACGTAC -CCAACATGGTTGCGAATCAGTGAC -CCAACATGGTTGCGAATCCTGTAG -CCAACATGGTTGCGAATCCCTAAG -CCAACATGGTTGCGAATCGTTCAG -CCAACATGGTTGCGAATCGCATAG -CCAACATGGTTGCGAATCGACAAG -CCAACATGGTTGCGAATCAAGCAG -CCAACATGGTTGCGAATCCGTCAA -CCAACATGGTTGCGAATCGCTGAA -CCAACATGGTTGCGAATCAGTACG -CCAACATGGTTGCGAATCATCCGA -CCAACATGGTTGCGAATCATGGGA -CCAACATGGTTGCGAATCGTGCAA -CCAACATGGTTGCGAATCGAGGAA -CCAACATGGTTGCGAATCCAGGTA -CCAACATGGTTGCGAATCGACTCT -CCAACATGGTTGCGAATCAGTCCT -CCAACATGGTTGCGAATCTAAGCC -CCAACATGGTTGCGAATCATAGCC -CCAACATGGTTGCGAATCTAACCG -CCAACATGGTTGCGAATCATGCCA -CCAACATGGTTGGGAATGGGAAAC -CCAACATGGTTGGGAATGAACACC -CCAACATGGTTGGGAATGATCGAG -CCAACATGGTTGGGAATGCTCCTT -CCAACATGGTTGGGAATGCCTGTT -CCAACATGGTTGGGAATGCGGTTT -CCAACATGGTTGGGAATGGTGGTT -CCAACATGGTTGGGAATGGCCTTT -CCAACATGGTTGGGAATGGGTCTT -CCAACATGGTTGGGAATGACGCTT -CCAACATGGTTGGGAATGAGCGTT -CCAACATGGTTGGGAATGTTCGTC -CCAACATGGTTGGGAATGTCTCTC -CCAACATGGTTGGGAATGTGGATC -CCAACATGGTTGGGAATGCACTTC -CCAACATGGTTGGGAATGGTACTC -CCAACATGGTTGGGAATGGATGTC -CCAACATGGTTGGGAATGACAGTC -CCAACATGGTTGGGAATGTTGCTG -CCAACATGGTTGGGAATGTCCATG -CCAACATGGTTGGGAATGTGTGTG -CCAACATGGTTGGGAATGCTAGTG -CCAACATGGTTGGGAATGCATCTG -CCAACATGGTTGGGAATGGAGTTG -CCAACATGGTTGGGAATGAGACTG -CCAACATGGTTGGGAATGTCGGTA -CCAACATGGTTGGGAATGTGCCTA -CCAACATGGTTGGGAATGCCACTA -CCAACATGGTTGGGAATGGGAGTA -CCAACATGGTTGGGAATGTCGTCT -CCAACATGGTTGGGAATGTGCACT -CCAACATGGTTGGGAATGCTGACT -CCAACATGGTTGGGAATGCAACCT -CCAACATGGTTGGGAATGGCTACT -CCAACATGGTTGGGAATGGGATCT -CCAACATGGTTGGGAATGAAGGCT -CCAACATGGTTGGGAATGTCAACC -CCAACATGGTTGGGAATGTGTTCC -CCAACATGGTTGGGAATGATTCCC -CCAACATGGTTGGGAATGTTCTCG -CCAACATGGTTGGGAATGTAGACG -CCAACATGGTTGGGAATGGTAACG -CCAACATGGTTGGGAATGACTTCG -CCAACATGGTTGGGAATGTACGCA -CCAACATGGTTGGGAATGCTTGCA -CCAACATGGTTGGGAATGCGAACA -CCAACATGGTTGGGAATGCAGTCA -CCAACATGGTTGGGAATGGATCCA -CCAACATGGTTGGGAATGACGACA -CCAACATGGTTGGGAATGAGCTCA -CCAACATGGTTGGGAATGTCACGT -CCAACATGGTTGGGAATGCGTAGT -CCAACATGGTTGGGAATGGTCAGT -CCAACATGGTTGGGAATGGAAGGT -CCAACATGGTTGGGAATGAACCGT -CCAACATGGTTGGGAATGTTGTGC -CCAACATGGTTGGGAATGCTAAGC -CCAACATGGTTGGGAATGACTAGC -CCAACATGGTTGGGAATGAGATGC -CCAACATGGTTGGGAATGTGAAGG -CCAACATGGTTGGGAATGCAATGG -CCAACATGGTTGGGAATGATGAGG -CCAACATGGTTGGGAATGAATGGG -CCAACATGGTTGGGAATGTCCTGA -CCAACATGGTTGGGAATGTAGCGA -CCAACATGGTTGGGAATGCACAGA -CCAACATGGTTGGGAATGGCAAGA -CCAACATGGTTGGGAATGGGTTGA -CCAACATGGTTGGGAATGTCCGAT -CCAACATGGTTGGGAATGTGGCAT -CCAACATGGTTGGGAATGCGAGAT -CCAACATGGTTGGGAATGTACCAC -CCAACATGGTTGGGAATGCAGAAC -CCAACATGGTTGGGAATGGTCTAC -CCAACATGGTTGGGAATGACGTAC -CCAACATGGTTGGGAATGAGTGAC -CCAACATGGTTGGGAATGCTGTAG -CCAACATGGTTGGGAATGCCTAAG -CCAACATGGTTGGGAATGGTTCAG -CCAACATGGTTGGGAATGGCATAG -CCAACATGGTTGGGAATGGACAAG -CCAACATGGTTGGGAATGAAGCAG -CCAACATGGTTGGGAATGCGTCAA -CCAACATGGTTGGGAATGGCTGAA -CCAACATGGTTGGGAATGAGTACG -CCAACATGGTTGGGAATGATCCGA -CCAACATGGTTGGGAATGATGGGA -CCAACATGGTTGGGAATGGTGCAA -CCAACATGGTTGGGAATGGAGGAA -CCAACATGGTTGGGAATGCAGGTA -CCAACATGGTTGGGAATGGACTCT -CCAACATGGTTGGGAATGAGTCCT -CCAACATGGTTGGGAATGTAAGCC -CCAACATGGTTGGGAATGATAGCC -CCAACATGGTTGGGAATGTAACCG -CCAACATGGTTGGGAATGATGCCA -CCAACATGGTTGCAAGTGGGAAAC -CCAACATGGTTGCAAGTGAACACC -CCAACATGGTTGCAAGTGATCGAG -CCAACATGGTTGCAAGTGCTCCTT -CCAACATGGTTGCAAGTGCCTGTT -CCAACATGGTTGCAAGTGCGGTTT -CCAACATGGTTGCAAGTGGTGGTT -CCAACATGGTTGCAAGTGGCCTTT -CCAACATGGTTGCAAGTGGGTCTT -CCAACATGGTTGCAAGTGACGCTT -CCAACATGGTTGCAAGTGAGCGTT -CCAACATGGTTGCAAGTGTTCGTC -CCAACATGGTTGCAAGTGTCTCTC -CCAACATGGTTGCAAGTGTGGATC -CCAACATGGTTGCAAGTGCACTTC -CCAACATGGTTGCAAGTGGTACTC -CCAACATGGTTGCAAGTGGATGTC -CCAACATGGTTGCAAGTGACAGTC -CCAACATGGTTGCAAGTGTTGCTG -CCAACATGGTTGCAAGTGTCCATG -CCAACATGGTTGCAAGTGTGTGTG -CCAACATGGTTGCAAGTGCTAGTG -CCAACATGGTTGCAAGTGCATCTG -CCAACATGGTTGCAAGTGGAGTTG -CCAACATGGTTGCAAGTGAGACTG -CCAACATGGTTGCAAGTGTCGGTA -CCAACATGGTTGCAAGTGTGCCTA -CCAACATGGTTGCAAGTGCCACTA -CCAACATGGTTGCAAGTGGGAGTA -CCAACATGGTTGCAAGTGTCGTCT -CCAACATGGTTGCAAGTGTGCACT -CCAACATGGTTGCAAGTGCTGACT -CCAACATGGTTGCAAGTGCAACCT -CCAACATGGTTGCAAGTGGCTACT -CCAACATGGTTGCAAGTGGGATCT -CCAACATGGTTGCAAGTGAAGGCT -CCAACATGGTTGCAAGTGTCAACC -CCAACATGGTTGCAAGTGTGTTCC -CCAACATGGTTGCAAGTGATTCCC -CCAACATGGTTGCAAGTGTTCTCG -CCAACATGGTTGCAAGTGTAGACG -CCAACATGGTTGCAAGTGGTAACG -CCAACATGGTTGCAAGTGACTTCG -CCAACATGGTTGCAAGTGTACGCA -CCAACATGGTTGCAAGTGCTTGCA -CCAACATGGTTGCAAGTGCGAACA -CCAACATGGTTGCAAGTGCAGTCA -CCAACATGGTTGCAAGTGGATCCA -CCAACATGGTTGCAAGTGACGACA -CCAACATGGTTGCAAGTGAGCTCA -CCAACATGGTTGCAAGTGTCACGT -CCAACATGGTTGCAAGTGCGTAGT -CCAACATGGTTGCAAGTGGTCAGT -CCAACATGGTTGCAAGTGGAAGGT -CCAACATGGTTGCAAGTGAACCGT -CCAACATGGTTGCAAGTGTTGTGC -CCAACATGGTTGCAAGTGCTAAGC -CCAACATGGTTGCAAGTGACTAGC -CCAACATGGTTGCAAGTGAGATGC -CCAACATGGTTGCAAGTGTGAAGG -CCAACATGGTTGCAAGTGCAATGG -CCAACATGGTTGCAAGTGATGAGG -CCAACATGGTTGCAAGTGAATGGG -CCAACATGGTTGCAAGTGTCCTGA -CCAACATGGTTGCAAGTGTAGCGA -CCAACATGGTTGCAAGTGCACAGA -CCAACATGGTTGCAAGTGGCAAGA -CCAACATGGTTGCAAGTGGGTTGA -CCAACATGGTTGCAAGTGTCCGAT -CCAACATGGTTGCAAGTGTGGCAT -CCAACATGGTTGCAAGTGCGAGAT -CCAACATGGTTGCAAGTGTACCAC -CCAACATGGTTGCAAGTGCAGAAC -CCAACATGGTTGCAAGTGGTCTAC -CCAACATGGTTGCAAGTGACGTAC -CCAACATGGTTGCAAGTGAGTGAC -CCAACATGGTTGCAAGTGCTGTAG -CCAACATGGTTGCAAGTGCCTAAG -CCAACATGGTTGCAAGTGGTTCAG -CCAACATGGTTGCAAGTGGCATAG -CCAACATGGTTGCAAGTGGACAAG -CCAACATGGTTGCAAGTGAAGCAG -CCAACATGGTTGCAAGTGCGTCAA -CCAACATGGTTGCAAGTGGCTGAA -CCAACATGGTTGCAAGTGAGTACG -CCAACATGGTTGCAAGTGATCCGA -CCAACATGGTTGCAAGTGATGGGA -CCAACATGGTTGCAAGTGGTGCAA -CCAACATGGTTGCAAGTGGAGGAA -CCAACATGGTTGCAAGTGCAGGTA -CCAACATGGTTGCAAGTGGACTCT -CCAACATGGTTGCAAGTGAGTCCT -CCAACATGGTTGCAAGTGTAAGCC -CCAACATGGTTGCAAGTGATAGCC -CCAACATGGTTGCAAGTGTAACCG -CCAACATGGTTGCAAGTGATGCCA -CCAACATGGTTGGAAGAGGGAAAC -CCAACATGGTTGGAAGAGAACACC -CCAACATGGTTGGAAGAGATCGAG -CCAACATGGTTGGAAGAGCTCCTT -CCAACATGGTTGGAAGAGCCTGTT -CCAACATGGTTGGAAGAGCGGTTT -CCAACATGGTTGGAAGAGGTGGTT -CCAACATGGTTGGAAGAGGCCTTT -CCAACATGGTTGGAAGAGGGTCTT -CCAACATGGTTGGAAGAGACGCTT -CCAACATGGTTGGAAGAGAGCGTT -CCAACATGGTTGGAAGAGTTCGTC -CCAACATGGTTGGAAGAGTCTCTC -CCAACATGGTTGGAAGAGTGGATC -CCAACATGGTTGGAAGAGCACTTC -CCAACATGGTTGGAAGAGGTACTC -CCAACATGGTTGGAAGAGGATGTC -CCAACATGGTTGGAAGAGACAGTC -CCAACATGGTTGGAAGAGTTGCTG -CCAACATGGTTGGAAGAGTCCATG -CCAACATGGTTGGAAGAGTGTGTG -CCAACATGGTTGGAAGAGCTAGTG -CCAACATGGTTGGAAGAGCATCTG -CCAACATGGTTGGAAGAGGAGTTG -CCAACATGGTTGGAAGAGAGACTG -CCAACATGGTTGGAAGAGTCGGTA -CCAACATGGTTGGAAGAGTGCCTA -CCAACATGGTTGGAAGAGCCACTA -CCAACATGGTTGGAAGAGGGAGTA -CCAACATGGTTGGAAGAGTCGTCT -CCAACATGGTTGGAAGAGTGCACT -CCAACATGGTTGGAAGAGCTGACT -CCAACATGGTTGGAAGAGCAACCT -CCAACATGGTTGGAAGAGGCTACT -CCAACATGGTTGGAAGAGGGATCT -CCAACATGGTTGGAAGAGAAGGCT -CCAACATGGTTGGAAGAGTCAACC -CCAACATGGTTGGAAGAGTGTTCC -CCAACATGGTTGGAAGAGATTCCC -CCAACATGGTTGGAAGAGTTCTCG -CCAACATGGTTGGAAGAGTAGACG -CCAACATGGTTGGAAGAGGTAACG -CCAACATGGTTGGAAGAGACTTCG -CCAACATGGTTGGAAGAGTACGCA -CCAACATGGTTGGAAGAGCTTGCA -CCAACATGGTTGGAAGAGCGAACA -CCAACATGGTTGGAAGAGCAGTCA -CCAACATGGTTGGAAGAGGATCCA -CCAACATGGTTGGAAGAGACGACA -CCAACATGGTTGGAAGAGAGCTCA -CCAACATGGTTGGAAGAGTCACGT -CCAACATGGTTGGAAGAGCGTAGT -CCAACATGGTTGGAAGAGGTCAGT -CCAACATGGTTGGAAGAGGAAGGT -CCAACATGGTTGGAAGAGAACCGT -CCAACATGGTTGGAAGAGTTGTGC -CCAACATGGTTGGAAGAGCTAAGC -CCAACATGGTTGGAAGAGACTAGC -CCAACATGGTTGGAAGAGAGATGC -CCAACATGGTTGGAAGAGTGAAGG -CCAACATGGTTGGAAGAGCAATGG -CCAACATGGTTGGAAGAGATGAGG -CCAACATGGTTGGAAGAGAATGGG -CCAACATGGTTGGAAGAGTCCTGA -CCAACATGGTTGGAAGAGTAGCGA -CCAACATGGTTGGAAGAGCACAGA -CCAACATGGTTGGAAGAGGCAAGA -CCAACATGGTTGGAAGAGGGTTGA -CCAACATGGTTGGAAGAGTCCGAT -CCAACATGGTTGGAAGAGTGGCAT -CCAACATGGTTGGAAGAGCGAGAT -CCAACATGGTTGGAAGAGTACCAC -CCAACATGGTTGGAAGAGCAGAAC -CCAACATGGTTGGAAGAGGTCTAC -CCAACATGGTTGGAAGAGACGTAC -CCAACATGGTTGGAAGAGAGTGAC -CCAACATGGTTGGAAGAGCTGTAG -CCAACATGGTTGGAAGAGCCTAAG -CCAACATGGTTGGAAGAGGTTCAG -CCAACATGGTTGGAAGAGGCATAG -CCAACATGGTTGGAAGAGGACAAG -CCAACATGGTTGGAAGAGAAGCAG -CCAACATGGTTGGAAGAGCGTCAA -CCAACATGGTTGGAAGAGGCTGAA -CCAACATGGTTGGAAGAGAGTACG -CCAACATGGTTGGAAGAGATCCGA -CCAACATGGTTGGAAGAGATGGGA -CCAACATGGTTGGAAGAGGTGCAA -CCAACATGGTTGGAAGAGGAGGAA -CCAACATGGTTGGAAGAGCAGGTA -CCAACATGGTTGGAAGAGGACTCT -CCAACATGGTTGGAAGAGAGTCCT -CCAACATGGTTGGAAGAGTAAGCC -CCAACATGGTTGGAAGAGATAGCC -CCAACATGGTTGGAAGAGTAACCG -CCAACATGGTTGGAAGAGATGCCA -CCAACATGGTTGGTACAGGGAAAC -CCAACATGGTTGGTACAGAACACC -CCAACATGGTTGGTACAGATCGAG -CCAACATGGTTGGTACAGCTCCTT -CCAACATGGTTGGTACAGCCTGTT -CCAACATGGTTGGTACAGCGGTTT -CCAACATGGTTGGTACAGGTGGTT -CCAACATGGTTGGTACAGGCCTTT -CCAACATGGTTGGTACAGGGTCTT -CCAACATGGTTGGTACAGACGCTT -CCAACATGGTTGGTACAGAGCGTT -CCAACATGGTTGGTACAGTTCGTC -CCAACATGGTTGGTACAGTCTCTC -CCAACATGGTTGGTACAGTGGATC -CCAACATGGTTGGTACAGCACTTC -CCAACATGGTTGGTACAGGTACTC -CCAACATGGTTGGTACAGGATGTC -CCAACATGGTTGGTACAGACAGTC -CCAACATGGTTGGTACAGTTGCTG -CCAACATGGTTGGTACAGTCCATG -CCAACATGGTTGGTACAGTGTGTG -CCAACATGGTTGGTACAGCTAGTG -CCAACATGGTTGGTACAGCATCTG -CCAACATGGTTGGTACAGGAGTTG -CCAACATGGTTGGTACAGAGACTG -CCAACATGGTTGGTACAGTCGGTA -CCAACATGGTTGGTACAGTGCCTA -CCAACATGGTTGGTACAGCCACTA -CCAACATGGTTGGTACAGGGAGTA -CCAACATGGTTGGTACAGTCGTCT -CCAACATGGTTGGTACAGTGCACT -CCAACATGGTTGGTACAGCTGACT -CCAACATGGTTGGTACAGCAACCT -CCAACATGGTTGGTACAGGCTACT -CCAACATGGTTGGTACAGGGATCT -CCAACATGGTTGGTACAGAAGGCT -CCAACATGGTTGGTACAGTCAACC -CCAACATGGTTGGTACAGTGTTCC -CCAACATGGTTGGTACAGATTCCC -CCAACATGGTTGGTACAGTTCTCG -CCAACATGGTTGGTACAGTAGACG -CCAACATGGTTGGTACAGGTAACG -CCAACATGGTTGGTACAGACTTCG -CCAACATGGTTGGTACAGTACGCA -CCAACATGGTTGGTACAGCTTGCA -CCAACATGGTTGGTACAGCGAACA -CCAACATGGTTGGTACAGCAGTCA -CCAACATGGTTGGTACAGGATCCA -CCAACATGGTTGGTACAGACGACA -CCAACATGGTTGGTACAGAGCTCA -CCAACATGGTTGGTACAGTCACGT -CCAACATGGTTGGTACAGCGTAGT -CCAACATGGTTGGTACAGGTCAGT -CCAACATGGTTGGTACAGGAAGGT -CCAACATGGTTGGTACAGAACCGT -CCAACATGGTTGGTACAGTTGTGC -CCAACATGGTTGGTACAGCTAAGC -CCAACATGGTTGGTACAGACTAGC -CCAACATGGTTGGTACAGAGATGC -CCAACATGGTTGGTACAGTGAAGG -CCAACATGGTTGGTACAGCAATGG -CCAACATGGTTGGTACAGATGAGG -CCAACATGGTTGGTACAGAATGGG -CCAACATGGTTGGTACAGTCCTGA -CCAACATGGTTGGTACAGTAGCGA -CCAACATGGTTGGTACAGCACAGA -CCAACATGGTTGGTACAGGCAAGA -CCAACATGGTTGGTACAGGGTTGA -CCAACATGGTTGGTACAGTCCGAT -CCAACATGGTTGGTACAGTGGCAT -CCAACATGGTTGGTACAGCGAGAT -CCAACATGGTTGGTACAGTACCAC -CCAACATGGTTGGTACAGCAGAAC -CCAACATGGTTGGTACAGGTCTAC -CCAACATGGTTGGTACAGACGTAC -CCAACATGGTTGGTACAGAGTGAC -CCAACATGGTTGGTACAGCTGTAG -CCAACATGGTTGGTACAGCCTAAG -CCAACATGGTTGGTACAGGTTCAG -CCAACATGGTTGGTACAGGCATAG -CCAACATGGTTGGTACAGGACAAG -CCAACATGGTTGGTACAGAAGCAG -CCAACATGGTTGGTACAGCGTCAA -CCAACATGGTTGGTACAGGCTGAA -CCAACATGGTTGGTACAGAGTACG -CCAACATGGTTGGTACAGATCCGA -CCAACATGGTTGGTACAGATGGGA -CCAACATGGTTGGTACAGGTGCAA -CCAACATGGTTGGTACAGGAGGAA -CCAACATGGTTGGTACAGCAGGTA -CCAACATGGTTGGTACAGGACTCT -CCAACATGGTTGGTACAGAGTCCT -CCAACATGGTTGGTACAGTAAGCC -CCAACATGGTTGGTACAGATAGCC -CCAACATGGTTGGTACAGTAACCG -CCAACATGGTTGGTACAGATGCCA -CCAACATGGTTGTCTGACGGAAAC -CCAACATGGTTGTCTGACAACACC -CCAACATGGTTGTCTGACATCGAG -CCAACATGGTTGTCTGACCTCCTT -CCAACATGGTTGTCTGACCCTGTT -CCAACATGGTTGTCTGACCGGTTT -CCAACATGGTTGTCTGACGTGGTT -CCAACATGGTTGTCTGACGCCTTT -CCAACATGGTTGTCTGACGGTCTT -CCAACATGGTTGTCTGACACGCTT -CCAACATGGTTGTCTGACAGCGTT -CCAACATGGTTGTCTGACTTCGTC -CCAACATGGTTGTCTGACTCTCTC -CCAACATGGTTGTCTGACTGGATC -CCAACATGGTTGTCTGACCACTTC -CCAACATGGTTGTCTGACGTACTC -CCAACATGGTTGTCTGACGATGTC -CCAACATGGTTGTCTGACACAGTC -CCAACATGGTTGTCTGACTTGCTG -CCAACATGGTTGTCTGACTCCATG -CCAACATGGTTGTCTGACTGTGTG -CCAACATGGTTGTCTGACCTAGTG -CCAACATGGTTGTCTGACCATCTG -CCAACATGGTTGTCTGACGAGTTG -CCAACATGGTTGTCTGACAGACTG -CCAACATGGTTGTCTGACTCGGTA -CCAACATGGTTGTCTGACTGCCTA -CCAACATGGTTGTCTGACCCACTA -CCAACATGGTTGTCTGACGGAGTA -CCAACATGGTTGTCTGACTCGTCT -CCAACATGGTTGTCTGACTGCACT -CCAACATGGTTGTCTGACCTGACT -CCAACATGGTTGTCTGACCAACCT -CCAACATGGTTGTCTGACGCTACT -CCAACATGGTTGTCTGACGGATCT -CCAACATGGTTGTCTGACAAGGCT -CCAACATGGTTGTCTGACTCAACC -CCAACATGGTTGTCTGACTGTTCC -CCAACATGGTTGTCTGACATTCCC -CCAACATGGTTGTCTGACTTCTCG -CCAACATGGTTGTCTGACTAGACG -CCAACATGGTTGTCTGACGTAACG -CCAACATGGTTGTCTGACACTTCG -CCAACATGGTTGTCTGACTACGCA -CCAACATGGTTGTCTGACCTTGCA -CCAACATGGTTGTCTGACCGAACA -CCAACATGGTTGTCTGACCAGTCA -CCAACATGGTTGTCTGACGATCCA -CCAACATGGTTGTCTGACACGACA -CCAACATGGTTGTCTGACAGCTCA -CCAACATGGTTGTCTGACTCACGT -CCAACATGGTTGTCTGACCGTAGT -CCAACATGGTTGTCTGACGTCAGT -CCAACATGGTTGTCTGACGAAGGT -CCAACATGGTTGTCTGACAACCGT -CCAACATGGTTGTCTGACTTGTGC -CCAACATGGTTGTCTGACCTAAGC -CCAACATGGTTGTCTGACACTAGC -CCAACATGGTTGTCTGACAGATGC -CCAACATGGTTGTCTGACTGAAGG -CCAACATGGTTGTCTGACCAATGG -CCAACATGGTTGTCTGACATGAGG -CCAACATGGTTGTCTGACAATGGG -CCAACATGGTTGTCTGACTCCTGA -CCAACATGGTTGTCTGACTAGCGA -CCAACATGGTTGTCTGACCACAGA -CCAACATGGTTGTCTGACGCAAGA -CCAACATGGTTGTCTGACGGTTGA -CCAACATGGTTGTCTGACTCCGAT -CCAACATGGTTGTCTGACTGGCAT -CCAACATGGTTGTCTGACCGAGAT -CCAACATGGTTGTCTGACTACCAC -CCAACATGGTTGTCTGACCAGAAC -CCAACATGGTTGTCTGACGTCTAC -CCAACATGGTTGTCTGACACGTAC -CCAACATGGTTGTCTGACAGTGAC -CCAACATGGTTGTCTGACCTGTAG -CCAACATGGTTGTCTGACCCTAAG -CCAACATGGTTGTCTGACGTTCAG -CCAACATGGTTGTCTGACGCATAG -CCAACATGGTTGTCTGACGACAAG -CCAACATGGTTGTCTGACAAGCAG -CCAACATGGTTGTCTGACCGTCAA -CCAACATGGTTGTCTGACGCTGAA -CCAACATGGTTGTCTGACAGTACG -CCAACATGGTTGTCTGACATCCGA -CCAACATGGTTGTCTGACATGGGA -CCAACATGGTTGTCTGACGTGCAA -CCAACATGGTTGTCTGACGAGGAA -CCAACATGGTTGTCTGACCAGGTA -CCAACATGGTTGTCTGACGACTCT -CCAACATGGTTGTCTGACAGTCCT -CCAACATGGTTGTCTGACTAAGCC -CCAACATGGTTGTCTGACATAGCC -CCAACATGGTTGTCTGACTAACCG -CCAACATGGTTGTCTGACATGCCA -CCAACATGGTTGCCTAGTGGAAAC -CCAACATGGTTGCCTAGTAACACC -CCAACATGGTTGCCTAGTATCGAG -CCAACATGGTTGCCTAGTCTCCTT -CCAACATGGTTGCCTAGTCCTGTT -CCAACATGGTTGCCTAGTCGGTTT -CCAACATGGTTGCCTAGTGTGGTT -CCAACATGGTTGCCTAGTGCCTTT -CCAACATGGTTGCCTAGTGGTCTT -CCAACATGGTTGCCTAGTACGCTT -CCAACATGGTTGCCTAGTAGCGTT -CCAACATGGTTGCCTAGTTTCGTC -CCAACATGGTTGCCTAGTTCTCTC -CCAACATGGTTGCCTAGTTGGATC -CCAACATGGTTGCCTAGTCACTTC -CCAACATGGTTGCCTAGTGTACTC -CCAACATGGTTGCCTAGTGATGTC -CCAACATGGTTGCCTAGTACAGTC -CCAACATGGTTGCCTAGTTTGCTG -CCAACATGGTTGCCTAGTTCCATG -CCAACATGGTTGCCTAGTTGTGTG -CCAACATGGTTGCCTAGTCTAGTG -CCAACATGGTTGCCTAGTCATCTG -CCAACATGGTTGCCTAGTGAGTTG -CCAACATGGTTGCCTAGTAGACTG -CCAACATGGTTGCCTAGTTCGGTA -CCAACATGGTTGCCTAGTTGCCTA -CCAACATGGTTGCCTAGTCCACTA -CCAACATGGTTGCCTAGTGGAGTA -CCAACATGGTTGCCTAGTTCGTCT -CCAACATGGTTGCCTAGTTGCACT -CCAACATGGTTGCCTAGTCTGACT -CCAACATGGTTGCCTAGTCAACCT -CCAACATGGTTGCCTAGTGCTACT -CCAACATGGTTGCCTAGTGGATCT -CCAACATGGTTGCCTAGTAAGGCT -CCAACATGGTTGCCTAGTTCAACC -CCAACATGGTTGCCTAGTTGTTCC -CCAACATGGTTGCCTAGTATTCCC -CCAACATGGTTGCCTAGTTTCTCG -CCAACATGGTTGCCTAGTTAGACG -CCAACATGGTTGCCTAGTGTAACG -CCAACATGGTTGCCTAGTACTTCG -CCAACATGGTTGCCTAGTTACGCA -CCAACATGGTTGCCTAGTCTTGCA -CCAACATGGTTGCCTAGTCGAACA -CCAACATGGTTGCCTAGTCAGTCA -CCAACATGGTTGCCTAGTGATCCA -CCAACATGGTTGCCTAGTACGACA -CCAACATGGTTGCCTAGTAGCTCA -CCAACATGGTTGCCTAGTTCACGT -CCAACATGGTTGCCTAGTCGTAGT -CCAACATGGTTGCCTAGTGTCAGT -CCAACATGGTTGCCTAGTGAAGGT -CCAACATGGTTGCCTAGTAACCGT -CCAACATGGTTGCCTAGTTTGTGC -CCAACATGGTTGCCTAGTCTAAGC -CCAACATGGTTGCCTAGTACTAGC -CCAACATGGTTGCCTAGTAGATGC -CCAACATGGTTGCCTAGTTGAAGG -CCAACATGGTTGCCTAGTCAATGG -CCAACATGGTTGCCTAGTATGAGG -CCAACATGGTTGCCTAGTAATGGG -CCAACATGGTTGCCTAGTTCCTGA -CCAACATGGTTGCCTAGTTAGCGA -CCAACATGGTTGCCTAGTCACAGA -CCAACATGGTTGCCTAGTGCAAGA -CCAACATGGTTGCCTAGTGGTTGA -CCAACATGGTTGCCTAGTTCCGAT -CCAACATGGTTGCCTAGTTGGCAT -CCAACATGGTTGCCTAGTCGAGAT -CCAACATGGTTGCCTAGTTACCAC -CCAACATGGTTGCCTAGTCAGAAC -CCAACATGGTTGCCTAGTGTCTAC -CCAACATGGTTGCCTAGTACGTAC -CCAACATGGTTGCCTAGTAGTGAC -CCAACATGGTTGCCTAGTCTGTAG -CCAACATGGTTGCCTAGTCCTAAG -CCAACATGGTTGCCTAGTGTTCAG -CCAACATGGTTGCCTAGTGCATAG -CCAACATGGTTGCCTAGTGACAAG -CCAACATGGTTGCCTAGTAAGCAG -CCAACATGGTTGCCTAGTCGTCAA -CCAACATGGTTGCCTAGTGCTGAA -CCAACATGGTTGCCTAGTAGTACG -CCAACATGGTTGCCTAGTATCCGA -CCAACATGGTTGCCTAGTATGGGA -CCAACATGGTTGCCTAGTGTGCAA -CCAACATGGTTGCCTAGTGAGGAA -CCAACATGGTTGCCTAGTCAGGTA -CCAACATGGTTGCCTAGTGACTCT -CCAACATGGTTGCCTAGTAGTCCT -CCAACATGGTTGCCTAGTTAAGCC -CCAACATGGTTGCCTAGTATAGCC -CCAACATGGTTGCCTAGTTAACCG -CCAACATGGTTGCCTAGTATGCCA -CCAACATGGTTGGCCTAAGGAAAC -CCAACATGGTTGGCCTAAAACACC -CCAACATGGTTGGCCTAAATCGAG -CCAACATGGTTGGCCTAACTCCTT -CCAACATGGTTGGCCTAACCTGTT -CCAACATGGTTGGCCTAACGGTTT -CCAACATGGTTGGCCTAAGTGGTT -CCAACATGGTTGGCCTAAGCCTTT -CCAACATGGTTGGCCTAAGGTCTT -CCAACATGGTTGGCCTAAACGCTT -CCAACATGGTTGGCCTAAAGCGTT -CCAACATGGTTGGCCTAATTCGTC -CCAACATGGTTGGCCTAATCTCTC -CCAACATGGTTGGCCTAATGGATC -CCAACATGGTTGGCCTAACACTTC -CCAACATGGTTGGCCTAAGTACTC -CCAACATGGTTGGCCTAAGATGTC -CCAACATGGTTGGCCTAAACAGTC -CCAACATGGTTGGCCTAATTGCTG -CCAACATGGTTGGCCTAATCCATG -CCAACATGGTTGGCCTAATGTGTG -CCAACATGGTTGGCCTAACTAGTG -CCAACATGGTTGGCCTAACATCTG -CCAACATGGTTGGCCTAAGAGTTG -CCAACATGGTTGGCCTAAAGACTG -CCAACATGGTTGGCCTAATCGGTA -CCAACATGGTTGGCCTAATGCCTA -CCAACATGGTTGGCCTAACCACTA -CCAACATGGTTGGCCTAAGGAGTA -CCAACATGGTTGGCCTAATCGTCT -CCAACATGGTTGGCCTAATGCACT -CCAACATGGTTGGCCTAACTGACT -CCAACATGGTTGGCCTAACAACCT -CCAACATGGTTGGCCTAAGCTACT -CCAACATGGTTGGCCTAAGGATCT -CCAACATGGTTGGCCTAAAAGGCT -CCAACATGGTTGGCCTAATCAACC -CCAACATGGTTGGCCTAATGTTCC -CCAACATGGTTGGCCTAAATTCCC -CCAACATGGTTGGCCTAATTCTCG -CCAACATGGTTGGCCTAATAGACG -CCAACATGGTTGGCCTAAGTAACG -CCAACATGGTTGGCCTAAACTTCG -CCAACATGGTTGGCCTAATACGCA -CCAACATGGTTGGCCTAACTTGCA -CCAACATGGTTGGCCTAACGAACA -CCAACATGGTTGGCCTAACAGTCA -CCAACATGGTTGGCCTAAGATCCA -CCAACATGGTTGGCCTAAACGACA -CCAACATGGTTGGCCTAAAGCTCA -CCAACATGGTTGGCCTAATCACGT -CCAACATGGTTGGCCTAACGTAGT -CCAACATGGTTGGCCTAAGTCAGT -CCAACATGGTTGGCCTAAGAAGGT -CCAACATGGTTGGCCTAAAACCGT -CCAACATGGTTGGCCTAATTGTGC -CCAACATGGTTGGCCTAACTAAGC -CCAACATGGTTGGCCTAAACTAGC -CCAACATGGTTGGCCTAAAGATGC -CCAACATGGTTGGCCTAATGAAGG -CCAACATGGTTGGCCTAACAATGG -CCAACATGGTTGGCCTAAATGAGG -CCAACATGGTTGGCCTAAAATGGG -CCAACATGGTTGGCCTAATCCTGA -CCAACATGGTTGGCCTAATAGCGA -CCAACATGGTTGGCCTAACACAGA -CCAACATGGTTGGCCTAAGCAAGA -CCAACATGGTTGGCCTAAGGTTGA -CCAACATGGTTGGCCTAATCCGAT -CCAACATGGTTGGCCTAATGGCAT -CCAACATGGTTGGCCTAACGAGAT -CCAACATGGTTGGCCTAATACCAC -CCAACATGGTTGGCCTAACAGAAC -CCAACATGGTTGGCCTAAGTCTAC -CCAACATGGTTGGCCTAAACGTAC -CCAACATGGTTGGCCTAAAGTGAC -CCAACATGGTTGGCCTAACTGTAG -CCAACATGGTTGGCCTAACCTAAG -CCAACATGGTTGGCCTAAGTTCAG -CCAACATGGTTGGCCTAAGCATAG -CCAACATGGTTGGCCTAAGACAAG -CCAACATGGTTGGCCTAAAAGCAG -CCAACATGGTTGGCCTAACGTCAA -CCAACATGGTTGGCCTAAGCTGAA -CCAACATGGTTGGCCTAAAGTACG -CCAACATGGTTGGCCTAAATCCGA -CCAACATGGTTGGCCTAAATGGGA -CCAACATGGTTGGCCTAAGTGCAA -CCAACATGGTTGGCCTAAGAGGAA -CCAACATGGTTGGCCTAACAGGTA -CCAACATGGTTGGCCTAAGACTCT -CCAACATGGTTGGCCTAAAGTCCT -CCAACATGGTTGGCCTAATAAGCC -CCAACATGGTTGGCCTAAATAGCC -CCAACATGGTTGGCCTAATAACCG -CCAACATGGTTGGCCTAAATGCCA -CCAACATGGTTGGCCATAGGAAAC -CCAACATGGTTGGCCATAAACACC -CCAACATGGTTGGCCATAATCGAG -CCAACATGGTTGGCCATACTCCTT -CCAACATGGTTGGCCATACCTGTT -CCAACATGGTTGGCCATACGGTTT -CCAACATGGTTGGCCATAGTGGTT -CCAACATGGTTGGCCATAGCCTTT -CCAACATGGTTGGCCATAGGTCTT -CCAACATGGTTGGCCATAACGCTT -CCAACATGGTTGGCCATAAGCGTT -CCAACATGGTTGGCCATATTCGTC -CCAACATGGTTGGCCATATCTCTC -CCAACATGGTTGGCCATATGGATC -CCAACATGGTTGGCCATACACTTC -CCAACATGGTTGGCCATAGTACTC -CCAACATGGTTGGCCATAGATGTC -CCAACATGGTTGGCCATAACAGTC -CCAACATGGTTGGCCATATTGCTG -CCAACATGGTTGGCCATATCCATG -CCAACATGGTTGGCCATATGTGTG -CCAACATGGTTGGCCATACTAGTG -CCAACATGGTTGGCCATACATCTG -CCAACATGGTTGGCCATAGAGTTG -CCAACATGGTTGGCCATAAGACTG -CCAACATGGTTGGCCATATCGGTA -CCAACATGGTTGGCCATATGCCTA -CCAACATGGTTGGCCATACCACTA -CCAACATGGTTGGCCATAGGAGTA -CCAACATGGTTGGCCATATCGTCT -CCAACATGGTTGGCCATATGCACT -CCAACATGGTTGGCCATACTGACT -CCAACATGGTTGGCCATACAACCT -CCAACATGGTTGGCCATAGCTACT -CCAACATGGTTGGCCATAGGATCT -CCAACATGGTTGGCCATAAAGGCT -CCAACATGGTTGGCCATATCAACC -CCAACATGGTTGGCCATATGTTCC -CCAACATGGTTGGCCATAATTCCC -CCAACATGGTTGGCCATATTCTCG -CCAACATGGTTGGCCATATAGACG -CCAACATGGTTGGCCATAGTAACG -CCAACATGGTTGGCCATAACTTCG -CCAACATGGTTGGCCATATACGCA -CCAACATGGTTGGCCATACTTGCA -CCAACATGGTTGGCCATACGAACA -CCAACATGGTTGGCCATACAGTCA -CCAACATGGTTGGCCATAGATCCA -CCAACATGGTTGGCCATAACGACA -CCAACATGGTTGGCCATAAGCTCA -CCAACATGGTTGGCCATATCACGT -CCAACATGGTTGGCCATACGTAGT -CCAACATGGTTGGCCATAGTCAGT -CCAACATGGTTGGCCATAGAAGGT -CCAACATGGTTGGCCATAAACCGT -CCAACATGGTTGGCCATATTGTGC -CCAACATGGTTGGCCATACTAAGC -CCAACATGGTTGGCCATAACTAGC -CCAACATGGTTGGCCATAAGATGC -CCAACATGGTTGGCCATATGAAGG -CCAACATGGTTGGCCATACAATGG -CCAACATGGTTGGCCATAATGAGG -CCAACATGGTTGGCCATAAATGGG -CCAACATGGTTGGCCATATCCTGA -CCAACATGGTTGGCCATATAGCGA -CCAACATGGTTGGCCATACACAGA -CCAACATGGTTGGCCATAGCAAGA -CCAACATGGTTGGCCATAGGTTGA -CCAACATGGTTGGCCATATCCGAT -CCAACATGGTTGGCCATATGGCAT -CCAACATGGTTGGCCATACGAGAT -CCAACATGGTTGGCCATATACCAC -CCAACATGGTTGGCCATACAGAAC -CCAACATGGTTGGCCATAGTCTAC -CCAACATGGTTGGCCATAACGTAC -CCAACATGGTTGGCCATAAGTGAC -CCAACATGGTTGGCCATACTGTAG -CCAACATGGTTGGCCATACCTAAG -CCAACATGGTTGGCCATAGTTCAG -CCAACATGGTTGGCCATAGCATAG -CCAACATGGTTGGCCATAGACAAG -CCAACATGGTTGGCCATAAAGCAG -CCAACATGGTTGGCCATACGTCAA -CCAACATGGTTGGCCATAGCTGAA -CCAACATGGTTGGCCATAAGTACG -CCAACATGGTTGGCCATAATCCGA -CCAACATGGTTGGCCATAATGGGA -CCAACATGGTTGGCCATAGTGCAA -CCAACATGGTTGGCCATAGAGGAA -CCAACATGGTTGGCCATACAGGTA -CCAACATGGTTGGCCATAGACTCT -CCAACATGGTTGGCCATAAGTCCT -CCAACATGGTTGGCCATATAAGCC -CCAACATGGTTGGCCATAATAGCC -CCAACATGGTTGGCCATATAACCG -CCAACATGGTTGGCCATAATGCCA -CCAACATGGTTGCCGTAAGGAAAC -CCAACATGGTTGCCGTAAAACACC -CCAACATGGTTGCCGTAAATCGAG -CCAACATGGTTGCCGTAACTCCTT -CCAACATGGTTGCCGTAACCTGTT -CCAACATGGTTGCCGTAACGGTTT -CCAACATGGTTGCCGTAAGTGGTT -CCAACATGGTTGCCGTAAGCCTTT -CCAACATGGTTGCCGTAAGGTCTT -CCAACATGGTTGCCGTAAACGCTT -CCAACATGGTTGCCGTAAAGCGTT -CCAACATGGTTGCCGTAATTCGTC -CCAACATGGTTGCCGTAATCTCTC -CCAACATGGTTGCCGTAATGGATC -CCAACATGGTTGCCGTAACACTTC -CCAACATGGTTGCCGTAAGTACTC -CCAACATGGTTGCCGTAAGATGTC -CCAACATGGTTGCCGTAAACAGTC -CCAACATGGTTGCCGTAATTGCTG -CCAACATGGTTGCCGTAATCCATG -CCAACATGGTTGCCGTAATGTGTG -CCAACATGGTTGCCGTAACTAGTG -CCAACATGGTTGCCGTAACATCTG -CCAACATGGTTGCCGTAAGAGTTG -CCAACATGGTTGCCGTAAAGACTG -CCAACATGGTTGCCGTAATCGGTA -CCAACATGGTTGCCGTAATGCCTA -CCAACATGGTTGCCGTAACCACTA -CCAACATGGTTGCCGTAAGGAGTA -CCAACATGGTTGCCGTAATCGTCT -CCAACATGGTTGCCGTAATGCACT -CCAACATGGTTGCCGTAACTGACT -CCAACATGGTTGCCGTAACAACCT -CCAACATGGTTGCCGTAAGCTACT -CCAACATGGTTGCCGTAAGGATCT -CCAACATGGTTGCCGTAAAAGGCT -CCAACATGGTTGCCGTAATCAACC -CCAACATGGTTGCCGTAATGTTCC -CCAACATGGTTGCCGTAAATTCCC -CCAACATGGTTGCCGTAATTCTCG -CCAACATGGTTGCCGTAATAGACG -CCAACATGGTTGCCGTAAGTAACG -CCAACATGGTTGCCGTAAACTTCG -CCAACATGGTTGCCGTAATACGCA -CCAACATGGTTGCCGTAACTTGCA -CCAACATGGTTGCCGTAACGAACA -CCAACATGGTTGCCGTAACAGTCA -CCAACATGGTTGCCGTAAGATCCA -CCAACATGGTTGCCGTAAACGACA -CCAACATGGTTGCCGTAAAGCTCA -CCAACATGGTTGCCGTAATCACGT -CCAACATGGTTGCCGTAACGTAGT -CCAACATGGTTGCCGTAAGTCAGT -CCAACATGGTTGCCGTAAGAAGGT -CCAACATGGTTGCCGTAAAACCGT -CCAACATGGTTGCCGTAATTGTGC -CCAACATGGTTGCCGTAACTAAGC -CCAACATGGTTGCCGTAAACTAGC -CCAACATGGTTGCCGTAAAGATGC -CCAACATGGTTGCCGTAATGAAGG -CCAACATGGTTGCCGTAACAATGG -CCAACATGGTTGCCGTAAATGAGG -CCAACATGGTTGCCGTAAAATGGG -CCAACATGGTTGCCGTAATCCTGA -CCAACATGGTTGCCGTAATAGCGA -CCAACATGGTTGCCGTAACACAGA -CCAACATGGTTGCCGTAAGCAAGA -CCAACATGGTTGCCGTAAGGTTGA -CCAACATGGTTGCCGTAATCCGAT -CCAACATGGTTGCCGTAATGGCAT -CCAACATGGTTGCCGTAACGAGAT -CCAACATGGTTGCCGTAATACCAC -CCAACATGGTTGCCGTAACAGAAC -CCAACATGGTTGCCGTAAGTCTAC -CCAACATGGTTGCCGTAAACGTAC -CCAACATGGTTGCCGTAAAGTGAC -CCAACATGGTTGCCGTAACTGTAG -CCAACATGGTTGCCGTAACCTAAG -CCAACATGGTTGCCGTAAGTTCAG -CCAACATGGTTGCCGTAAGCATAG -CCAACATGGTTGCCGTAAGACAAG -CCAACATGGTTGCCGTAAAAGCAG -CCAACATGGTTGCCGTAACGTCAA -CCAACATGGTTGCCGTAAGCTGAA -CCAACATGGTTGCCGTAAAGTACG -CCAACATGGTTGCCGTAAATCCGA -CCAACATGGTTGCCGTAAATGGGA -CCAACATGGTTGCCGTAAGTGCAA -CCAACATGGTTGCCGTAAGAGGAA -CCAACATGGTTGCCGTAACAGGTA -CCAACATGGTTGCCGTAAGACTCT -CCAACATGGTTGCCGTAAAGTCCT -CCAACATGGTTGCCGTAATAAGCC -CCAACATGGTTGCCGTAAATAGCC -CCAACATGGTTGCCGTAATAACCG -CCAACATGGTTGCCGTAAATGCCA -CCAACATGGTTGCCAATGGGAAAC -CCAACATGGTTGCCAATGAACACC -CCAACATGGTTGCCAATGATCGAG -CCAACATGGTTGCCAATGCTCCTT -CCAACATGGTTGCCAATGCCTGTT -CCAACATGGTTGCCAATGCGGTTT -CCAACATGGTTGCCAATGGTGGTT -CCAACATGGTTGCCAATGGCCTTT -CCAACATGGTTGCCAATGGGTCTT -CCAACATGGTTGCCAATGACGCTT -CCAACATGGTTGCCAATGAGCGTT -CCAACATGGTTGCCAATGTTCGTC -CCAACATGGTTGCCAATGTCTCTC -CCAACATGGTTGCCAATGTGGATC -CCAACATGGTTGCCAATGCACTTC -CCAACATGGTTGCCAATGGTACTC -CCAACATGGTTGCCAATGGATGTC -CCAACATGGTTGCCAATGACAGTC -CCAACATGGTTGCCAATGTTGCTG -CCAACATGGTTGCCAATGTCCATG -CCAACATGGTTGCCAATGTGTGTG -CCAACATGGTTGCCAATGCTAGTG -CCAACATGGTTGCCAATGCATCTG -CCAACATGGTTGCCAATGGAGTTG -CCAACATGGTTGCCAATGAGACTG -CCAACATGGTTGCCAATGTCGGTA -CCAACATGGTTGCCAATGTGCCTA -CCAACATGGTTGCCAATGCCACTA -CCAACATGGTTGCCAATGGGAGTA -CCAACATGGTTGCCAATGTCGTCT -CCAACATGGTTGCCAATGTGCACT -CCAACATGGTTGCCAATGCTGACT -CCAACATGGTTGCCAATGCAACCT -CCAACATGGTTGCCAATGGCTACT -CCAACATGGTTGCCAATGGGATCT -CCAACATGGTTGCCAATGAAGGCT -CCAACATGGTTGCCAATGTCAACC -CCAACATGGTTGCCAATGTGTTCC -CCAACATGGTTGCCAATGATTCCC -CCAACATGGTTGCCAATGTTCTCG -CCAACATGGTTGCCAATGTAGACG -CCAACATGGTTGCCAATGGTAACG -CCAACATGGTTGCCAATGACTTCG -CCAACATGGTTGCCAATGTACGCA -CCAACATGGTTGCCAATGCTTGCA -CCAACATGGTTGCCAATGCGAACA -CCAACATGGTTGCCAATGCAGTCA -CCAACATGGTTGCCAATGGATCCA -CCAACATGGTTGCCAATGACGACA -CCAACATGGTTGCCAATGAGCTCA -CCAACATGGTTGCCAATGTCACGT -CCAACATGGTTGCCAATGCGTAGT -CCAACATGGTTGCCAATGGTCAGT -CCAACATGGTTGCCAATGGAAGGT -CCAACATGGTTGCCAATGAACCGT -CCAACATGGTTGCCAATGTTGTGC -CCAACATGGTTGCCAATGCTAAGC -CCAACATGGTTGCCAATGACTAGC -CCAACATGGTTGCCAATGAGATGC -CCAACATGGTTGCCAATGTGAAGG -CCAACATGGTTGCCAATGCAATGG -CCAACATGGTTGCCAATGATGAGG -CCAACATGGTTGCCAATGAATGGG -CCAACATGGTTGCCAATGTCCTGA -CCAACATGGTTGCCAATGTAGCGA -CCAACATGGTTGCCAATGCACAGA -CCAACATGGTTGCCAATGGCAAGA -CCAACATGGTTGCCAATGGGTTGA -CCAACATGGTTGCCAATGTCCGAT -CCAACATGGTTGCCAATGTGGCAT -CCAACATGGTTGCCAATGCGAGAT -CCAACATGGTTGCCAATGTACCAC -CCAACATGGTTGCCAATGCAGAAC -CCAACATGGTTGCCAATGGTCTAC -CCAACATGGTTGCCAATGACGTAC -CCAACATGGTTGCCAATGAGTGAC -CCAACATGGTTGCCAATGCTGTAG -CCAACATGGTTGCCAATGCCTAAG -CCAACATGGTTGCCAATGGTTCAG -CCAACATGGTTGCCAATGGCATAG -CCAACATGGTTGCCAATGGACAAG -CCAACATGGTTGCCAATGAAGCAG -CCAACATGGTTGCCAATGCGTCAA -CCAACATGGTTGCCAATGGCTGAA -CCAACATGGTTGCCAATGAGTACG -CCAACATGGTTGCCAATGATCCGA -CCAACATGGTTGCCAATGATGGGA -CCAACATGGTTGCCAATGGTGCAA -CCAACATGGTTGCCAATGGAGGAA -CCAACATGGTTGCCAATGCAGGTA -CCAACATGGTTGCCAATGGACTCT -CCAACATGGTTGCCAATGAGTCCT -CCAACATGGTTGCCAATGTAAGCC -CCAACATGGTTGCCAATGATAGCC -CCAACATGGTTGCCAATGTAACCG -CCAACATGGTTGCCAATGATGCCA -CCAACACCTTTGAACGGAGGAAAC -CCAACACCTTTGAACGGAAACACC -CCAACACCTTTGAACGGAATCGAG -CCAACACCTTTGAACGGACTCCTT -CCAACACCTTTGAACGGACCTGTT -CCAACACCTTTGAACGGACGGTTT -CCAACACCTTTGAACGGAGTGGTT -CCAACACCTTTGAACGGAGCCTTT -CCAACACCTTTGAACGGAGGTCTT -CCAACACCTTTGAACGGAACGCTT -CCAACACCTTTGAACGGAAGCGTT -CCAACACCTTTGAACGGATTCGTC -CCAACACCTTTGAACGGATCTCTC -CCAACACCTTTGAACGGATGGATC -CCAACACCTTTGAACGGACACTTC -CCAACACCTTTGAACGGAGTACTC -CCAACACCTTTGAACGGAGATGTC -CCAACACCTTTGAACGGAACAGTC -CCAACACCTTTGAACGGATTGCTG -CCAACACCTTTGAACGGATCCATG -CCAACACCTTTGAACGGATGTGTG -CCAACACCTTTGAACGGACTAGTG -CCAACACCTTTGAACGGACATCTG -CCAACACCTTTGAACGGAGAGTTG -CCAACACCTTTGAACGGAAGACTG -CCAACACCTTTGAACGGATCGGTA -CCAACACCTTTGAACGGATGCCTA -CCAACACCTTTGAACGGACCACTA -CCAACACCTTTGAACGGAGGAGTA -CCAACACCTTTGAACGGATCGTCT -CCAACACCTTTGAACGGATGCACT -CCAACACCTTTGAACGGACTGACT -CCAACACCTTTGAACGGACAACCT -CCAACACCTTTGAACGGAGCTACT -CCAACACCTTTGAACGGAGGATCT -CCAACACCTTTGAACGGAAAGGCT -CCAACACCTTTGAACGGATCAACC -CCAACACCTTTGAACGGATGTTCC -CCAACACCTTTGAACGGAATTCCC -CCAACACCTTTGAACGGATTCTCG -CCAACACCTTTGAACGGATAGACG -CCAACACCTTTGAACGGAGTAACG -CCAACACCTTTGAACGGAACTTCG -CCAACACCTTTGAACGGATACGCA -CCAACACCTTTGAACGGACTTGCA -CCAACACCTTTGAACGGACGAACA -CCAACACCTTTGAACGGACAGTCA -CCAACACCTTTGAACGGAGATCCA -CCAACACCTTTGAACGGAACGACA -CCAACACCTTTGAACGGAAGCTCA -CCAACACCTTTGAACGGATCACGT -CCAACACCTTTGAACGGACGTAGT -CCAACACCTTTGAACGGAGTCAGT -CCAACACCTTTGAACGGAGAAGGT -CCAACACCTTTGAACGGAAACCGT -CCAACACCTTTGAACGGATTGTGC -CCAACACCTTTGAACGGACTAAGC -CCAACACCTTTGAACGGAACTAGC -CCAACACCTTTGAACGGAAGATGC -CCAACACCTTTGAACGGATGAAGG -CCAACACCTTTGAACGGACAATGG -CCAACACCTTTGAACGGAATGAGG -CCAACACCTTTGAACGGAAATGGG -CCAACACCTTTGAACGGATCCTGA -CCAACACCTTTGAACGGATAGCGA -CCAACACCTTTGAACGGACACAGA -CCAACACCTTTGAACGGAGCAAGA -CCAACACCTTTGAACGGAGGTTGA -CCAACACCTTTGAACGGATCCGAT -CCAACACCTTTGAACGGATGGCAT -CCAACACCTTTGAACGGACGAGAT -CCAACACCTTTGAACGGATACCAC -CCAACACCTTTGAACGGACAGAAC -CCAACACCTTTGAACGGAGTCTAC -CCAACACCTTTGAACGGAACGTAC -CCAACACCTTTGAACGGAAGTGAC -CCAACACCTTTGAACGGACTGTAG -CCAACACCTTTGAACGGACCTAAG -CCAACACCTTTGAACGGAGTTCAG -CCAACACCTTTGAACGGAGCATAG -CCAACACCTTTGAACGGAGACAAG -CCAACACCTTTGAACGGAAAGCAG -CCAACACCTTTGAACGGACGTCAA -CCAACACCTTTGAACGGAGCTGAA -CCAACACCTTTGAACGGAAGTACG -CCAACACCTTTGAACGGAATCCGA -CCAACACCTTTGAACGGAATGGGA -CCAACACCTTTGAACGGAGTGCAA -CCAACACCTTTGAACGGAGAGGAA -CCAACACCTTTGAACGGACAGGTA -CCAACACCTTTGAACGGAGACTCT -CCAACACCTTTGAACGGAAGTCCT -CCAACACCTTTGAACGGATAAGCC -CCAACACCTTTGAACGGAATAGCC -CCAACACCTTTGAACGGATAACCG -CCAACACCTTTGAACGGAATGCCA -CCAACACCTTTGACCAACGGAAAC -CCAACACCTTTGACCAACAACACC -CCAACACCTTTGACCAACATCGAG -CCAACACCTTTGACCAACCTCCTT -CCAACACCTTTGACCAACCCTGTT -CCAACACCTTTGACCAACCGGTTT -CCAACACCTTTGACCAACGTGGTT -CCAACACCTTTGACCAACGCCTTT -CCAACACCTTTGACCAACGGTCTT -CCAACACCTTTGACCAACACGCTT -CCAACACCTTTGACCAACAGCGTT -CCAACACCTTTGACCAACTTCGTC -CCAACACCTTTGACCAACTCTCTC -CCAACACCTTTGACCAACTGGATC -CCAACACCTTTGACCAACCACTTC -CCAACACCTTTGACCAACGTACTC -CCAACACCTTTGACCAACGATGTC -CCAACACCTTTGACCAACACAGTC -CCAACACCTTTGACCAACTTGCTG -CCAACACCTTTGACCAACTCCATG -CCAACACCTTTGACCAACTGTGTG -CCAACACCTTTGACCAACCTAGTG -CCAACACCTTTGACCAACCATCTG -CCAACACCTTTGACCAACGAGTTG -CCAACACCTTTGACCAACAGACTG -CCAACACCTTTGACCAACTCGGTA -CCAACACCTTTGACCAACTGCCTA -CCAACACCTTTGACCAACCCACTA -CCAACACCTTTGACCAACGGAGTA -CCAACACCTTTGACCAACTCGTCT -CCAACACCTTTGACCAACTGCACT -CCAACACCTTTGACCAACCTGACT -CCAACACCTTTGACCAACCAACCT -CCAACACCTTTGACCAACGCTACT -CCAACACCTTTGACCAACGGATCT -CCAACACCTTTGACCAACAAGGCT -CCAACACCTTTGACCAACTCAACC -CCAACACCTTTGACCAACTGTTCC -CCAACACCTTTGACCAACATTCCC -CCAACACCTTTGACCAACTTCTCG -CCAACACCTTTGACCAACTAGACG -CCAACACCTTTGACCAACGTAACG -CCAACACCTTTGACCAACACTTCG -CCAACACCTTTGACCAACTACGCA -CCAACACCTTTGACCAACCTTGCA -CCAACACCTTTGACCAACCGAACA -CCAACACCTTTGACCAACCAGTCA -CCAACACCTTTGACCAACGATCCA -CCAACACCTTTGACCAACACGACA -CCAACACCTTTGACCAACAGCTCA -CCAACACCTTTGACCAACTCACGT -CCAACACCTTTGACCAACCGTAGT -CCAACACCTTTGACCAACGTCAGT -CCAACACCTTTGACCAACGAAGGT -CCAACACCTTTGACCAACAACCGT -CCAACACCTTTGACCAACTTGTGC -CCAACACCTTTGACCAACCTAAGC -CCAACACCTTTGACCAACACTAGC -CCAACACCTTTGACCAACAGATGC -CCAACACCTTTGACCAACTGAAGG -CCAACACCTTTGACCAACCAATGG -CCAACACCTTTGACCAACATGAGG -CCAACACCTTTGACCAACAATGGG -CCAACACCTTTGACCAACTCCTGA -CCAACACCTTTGACCAACTAGCGA -CCAACACCTTTGACCAACCACAGA -CCAACACCTTTGACCAACGCAAGA -CCAACACCTTTGACCAACGGTTGA -CCAACACCTTTGACCAACTCCGAT -CCAACACCTTTGACCAACTGGCAT -CCAACACCTTTGACCAACCGAGAT -CCAACACCTTTGACCAACTACCAC -CCAACACCTTTGACCAACCAGAAC -CCAACACCTTTGACCAACGTCTAC -CCAACACCTTTGACCAACACGTAC -CCAACACCTTTGACCAACAGTGAC -CCAACACCTTTGACCAACCTGTAG -CCAACACCTTTGACCAACCCTAAG -CCAACACCTTTGACCAACGTTCAG -CCAACACCTTTGACCAACGCATAG -CCAACACCTTTGACCAACGACAAG -CCAACACCTTTGACCAACAAGCAG -CCAACACCTTTGACCAACCGTCAA -CCAACACCTTTGACCAACGCTGAA -CCAACACCTTTGACCAACAGTACG -CCAACACCTTTGACCAACATCCGA -CCAACACCTTTGACCAACATGGGA -CCAACACCTTTGACCAACGTGCAA -CCAACACCTTTGACCAACGAGGAA -CCAACACCTTTGACCAACCAGGTA -CCAACACCTTTGACCAACGACTCT -CCAACACCTTTGACCAACAGTCCT -CCAACACCTTTGACCAACTAAGCC -CCAACACCTTTGACCAACATAGCC -CCAACACCTTTGACCAACTAACCG -CCAACACCTTTGACCAACATGCCA -CCAACACCTTTGGAGATCGGAAAC -CCAACACCTTTGGAGATCAACACC -CCAACACCTTTGGAGATCATCGAG -CCAACACCTTTGGAGATCCTCCTT -CCAACACCTTTGGAGATCCCTGTT -CCAACACCTTTGGAGATCCGGTTT -CCAACACCTTTGGAGATCGTGGTT -CCAACACCTTTGGAGATCGCCTTT -CCAACACCTTTGGAGATCGGTCTT -CCAACACCTTTGGAGATCACGCTT -CCAACACCTTTGGAGATCAGCGTT -CCAACACCTTTGGAGATCTTCGTC -CCAACACCTTTGGAGATCTCTCTC -CCAACACCTTTGGAGATCTGGATC -CCAACACCTTTGGAGATCCACTTC -CCAACACCTTTGGAGATCGTACTC -CCAACACCTTTGGAGATCGATGTC -CCAACACCTTTGGAGATCACAGTC -CCAACACCTTTGGAGATCTTGCTG -CCAACACCTTTGGAGATCTCCATG -CCAACACCTTTGGAGATCTGTGTG -CCAACACCTTTGGAGATCCTAGTG -CCAACACCTTTGGAGATCCATCTG -CCAACACCTTTGGAGATCGAGTTG -CCAACACCTTTGGAGATCAGACTG -CCAACACCTTTGGAGATCTCGGTA -CCAACACCTTTGGAGATCTGCCTA -CCAACACCTTTGGAGATCCCACTA -CCAACACCTTTGGAGATCGGAGTA -CCAACACCTTTGGAGATCTCGTCT -CCAACACCTTTGGAGATCTGCACT -CCAACACCTTTGGAGATCCTGACT -CCAACACCTTTGGAGATCCAACCT -CCAACACCTTTGGAGATCGCTACT -CCAACACCTTTGGAGATCGGATCT -CCAACACCTTTGGAGATCAAGGCT -CCAACACCTTTGGAGATCTCAACC -CCAACACCTTTGGAGATCTGTTCC -CCAACACCTTTGGAGATCATTCCC -CCAACACCTTTGGAGATCTTCTCG -CCAACACCTTTGGAGATCTAGACG -CCAACACCTTTGGAGATCGTAACG -CCAACACCTTTGGAGATCACTTCG -CCAACACCTTTGGAGATCTACGCA -CCAACACCTTTGGAGATCCTTGCA -CCAACACCTTTGGAGATCCGAACA -CCAACACCTTTGGAGATCCAGTCA -CCAACACCTTTGGAGATCGATCCA -CCAACACCTTTGGAGATCACGACA -CCAACACCTTTGGAGATCAGCTCA -CCAACACCTTTGGAGATCTCACGT -CCAACACCTTTGGAGATCCGTAGT -CCAACACCTTTGGAGATCGTCAGT -CCAACACCTTTGGAGATCGAAGGT -CCAACACCTTTGGAGATCAACCGT -CCAACACCTTTGGAGATCTTGTGC -CCAACACCTTTGGAGATCCTAAGC -CCAACACCTTTGGAGATCACTAGC -CCAACACCTTTGGAGATCAGATGC -CCAACACCTTTGGAGATCTGAAGG -CCAACACCTTTGGAGATCCAATGG -CCAACACCTTTGGAGATCATGAGG -CCAACACCTTTGGAGATCAATGGG -CCAACACCTTTGGAGATCTCCTGA -CCAACACCTTTGGAGATCTAGCGA -CCAACACCTTTGGAGATCCACAGA -CCAACACCTTTGGAGATCGCAAGA -CCAACACCTTTGGAGATCGGTTGA -CCAACACCTTTGGAGATCTCCGAT -CCAACACCTTTGGAGATCTGGCAT -CCAACACCTTTGGAGATCCGAGAT -CCAACACCTTTGGAGATCTACCAC -CCAACACCTTTGGAGATCCAGAAC -CCAACACCTTTGGAGATCGTCTAC -CCAACACCTTTGGAGATCACGTAC -CCAACACCTTTGGAGATCAGTGAC -CCAACACCTTTGGAGATCCTGTAG -CCAACACCTTTGGAGATCCCTAAG -CCAACACCTTTGGAGATCGTTCAG -CCAACACCTTTGGAGATCGCATAG -CCAACACCTTTGGAGATCGACAAG -CCAACACCTTTGGAGATCAAGCAG -CCAACACCTTTGGAGATCCGTCAA -CCAACACCTTTGGAGATCGCTGAA -CCAACACCTTTGGAGATCAGTACG -CCAACACCTTTGGAGATCATCCGA -CCAACACCTTTGGAGATCATGGGA -CCAACACCTTTGGAGATCGTGCAA -CCAACACCTTTGGAGATCGAGGAA -CCAACACCTTTGGAGATCCAGGTA -CCAACACCTTTGGAGATCGACTCT -CCAACACCTTTGGAGATCAGTCCT -CCAACACCTTTGGAGATCTAAGCC -CCAACACCTTTGGAGATCATAGCC -CCAACACCTTTGGAGATCTAACCG -CCAACACCTTTGGAGATCATGCCA -CCAACACCTTTGCTTCTCGGAAAC -CCAACACCTTTGCTTCTCAACACC -CCAACACCTTTGCTTCTCATCGAG -CCAACACCTTTGCTTCTCCTCCTT -CCAACACCTTTGCTTCTCCCTGTT -CCAACACCTTTGCTTCTCCGGTTT -CCAACACCTTTGCTTCTCGTGGTT -CCAACACCTTTGCTTCTCGCCTTT -CCAACACCTTTGCTTCTCGGTCTT -CCAACACCTTTGCTTCTCACGCTT -CCAACACCTTTGCTTCTCAGCGTT -CCAACACCTTTGCTTCTCTTCGTC -CCAACACCTTTGCTTCTCTCTCTC -CCAACACCTTTGCTTCTCTGGATC -CCAACACCTTTGCTTCTCCACTTC -CCAACACCTTTGCTTCTCGTACTC -CCAACACCTTTGCTTCTCGATGTC -CCAACACCTTTGCTTCTCACAGTC -CCAACACCTTTGCTTCTCTTGCTG -CCAACACCTTTGCTTCTCTCCATG -CCAACACCTTTGCTTCTCTGTGTG -CCAACACCTTTGCTTCTCCTAGTG -CCAACACCTTTGCTTCTCCATCTG -CCAACACCTTTGCTTCTCGAGTTG -CCAACACCTTTGCTTCTCAGACTG -CCAACACCTTTGCTTCTCTCGGTA -CCAACACCTTTGCTTCTCTGCCTA -CCAACACCTTTGCTTCTCCCACTA -CCAACACCTTTGCTTCTCGGAGTA -CCAACACCTTTGCTTCTCTCGTCT -CCAACACCTTTGCTTCTCTGCACT -CCAACACCTTTGCTTCTCCTGACT -CCAACACCTTTGCTTCTCCAACCT -CCAACACCTTTGCTTCTCGCTACT -CCAACACCTTTGCTTCTCGGATCT -CCAACACCTTTGCTTCTCAAGGCT -CCAACACCTTTGCTTCTCTCAACC -CCAACACCTTTGCTTCTCTGTTCC -CCAACACCTTTGCTTCTCATTCCC -CCAACACCTTTGCTTCTCTTCTCG -CCAACACCTTTGCTTCTCTAGACG -CCAACACCTTTGCTTCTCGTAACG -CCAACACCTTTGCTTCTCACTTCG -CCAACACCTTTGCTTCTCTACGCA -CCAACACCTTTGCTTCTCCTTGCA -CCAACACCTTTGCTTCTCCGAACA -CCAACACCTTTGCTTCTCCAGTCA -CCAACACCTTTGCTTCTCGATCCA -CCAACACCTTTGCTTCTCACGACA -CCAACACCTTTGCTTCTCAGCTCA -CCAACACCTTTGCTTCTCTCACGT -CCAACACCTTTGCTTCTCCGTAGT -CCAACACCTTTGCTTCTCGTCAGT -CCAACACCTTTGCTTCTCGAAGGT -CCAACACCTTTGCTTCTCAACCGT -CCAACACCTTTGCTTCTCTTGTGC -CCAACACCTTTGCTTCTCCTAAGC -CCAACACCTTTGCTTCTCACTAGC -CCAACACCTTTGCTTCTCAGATGC -CCAACACCTTTGCTTCTCTGAAGG -CCAACACCTTTGCTTCTCCAATGG -CCAACACCTTTGCTTCTCATGAGG -CCAACACCTTTGCTTCTCAATGGG -CCAACACCTTTGCTTCTCTCCTGA -CCAACACCTTTGCTTCTCTAGCGA -CCAACACCTTTGCTTCTCCACAGA -CCAACACCTTTGCTTCTCGCAAGA -CCAACACCTTTGCTTCTCGGTTGA -CCAACACCTTTGCTTCTCTCCGAT -CCAACACCTTTGCTTCTCTGGCAT -CCAACACCTTTGCTTCTCCGAGAT -CCAACACCTTTGCTTCTCTACCAC -CCAACACCTTTGCTTCTCCAGAAC -CCAACACCTTTGCTTCTCGTCTAC -CCAACACCTTTGCTTCTCACGTAC -CCAACACCTTTGCTTCTCAGTGAC -CCAACACCTTTGCTTCTCCTGTAG -CCAACACCTTTGCTTCTCCCTAAG -CCAACACCTTTGCTTCTCGTTCAG -CCAACACCTTTGCTTCTCGCATAG -CCAACACCTTTGCTTCTCGACAAG -CCAACACCTTTGCTTCTCAAGCAG -CCAACACCTTTGCTTCTCCGTCAA -CCAACACCTTTGCTTCTCGCTGAA -CCAACACCTTTGCTTCTCAGTACG -CCAACACCTTTGCTTCTCATCCGA -CCAACACCTTTGCTTCTCATGGGA -CCAACACCTTTGCTTCTCGTGCAA -CCAACACCTTTGCTTCTCGAGGAA -CCAACACCTTTGCTTCTCCAGGTA -CCAACACCTTTGCTTCTCGACTCT -CCAACACCTTTGCTTCTCAGTCCT -CCAACACCTTTGCTTCTCTAAGCC -CCAACACCTTTGCTTCTCATAGCC -CCAACACCTTTGCTTCTCTAACCG -CCAACACCTTTGCTTCTCATGCCA -CCAACACCTTTGGTTCCTGGAAAC -CCAACACCTTTGGTTCCTAACACC -CCAACACCTTTGGTTCCTATCGAG -CCAACACCTTTGGTTCCTCTCCTT -CCAACACCTTTGGTTCCTCCTGTT -CCAACACCTTTGGTTCCTCGGTTT -CCAACACCTTTGGTTCCTGTGGTT -CCAACACCTTTGGTTCCTGCCTTT -CCAACACCTTTGGTTCCTGGTCTT -CCAACACCTTTGGTTCCTACGCTT -CCAACACCTTTGGTTCCTAGCGTT -CCAACACCTTTGGTTCCTTTCGTC -CCAACACCTTTGGTTCCTTCTCTC -CCAACACCTTTGGTTCCTTGGATC -CCAACACCTTTGGTTCCTCACTTC -CCAACACCTTTGGTTCCTGTACTC -CCAACACCTTTGGTTCCTGATGTC -CCAACACCTTTGGTTCCTACAGTC -CCAACACCTTTGGTTCCTTTGCTG -CCAACACCTTTGGTTCCTTCCATG -CCAACACCTTTGGTTCCTTGTGTG -CCAACACCTTTGGTTCCTCTAGTG -CCAACACCTTTGGTTCCTCATCTG -CCAACACCTTTGGTTCCTGAGTTG -CCAACACCTTTGGTTCCTAGACTG -CCAACACCTTTGGTTCCTTCGGTA -CCAACACCTTTGGTTCCTTGCCTA -CCAACACCTTTGGTTCCTCCACTA -CCAACACCTTTGGTTCCTGGAGTA -CCAACACCTTTGGTTCCTTCGTCT -CCAACACCTTTGGTTCCTTGCACT -CCAACACCTTTGGTTCCTCTGACT -CCAACACCTTTGGTTCCTCAACCT -CCAACACCTTTGGTTCCTGCTACT -CCAACACCTTTGGTTCCTGGATCT -CCAACACCTTTGGTTCCTAAGGCT -CCAACACCTTTGGTTCCTTCAACC -CCAACACCTTTGGTTCCTTGTTCC -CCAACACCTTTGGTTCCTATTCCC -CCAACACCTTTGGTTCCTTTCTCG -CCAACACCTTTGGTTCCTTAGACG -CCAACACCTTTGGTTCCTGTAACG -CCAACACCTTTGGTTCCTACTTCG -CCAACACCTTTGGTTCCTTACGCA -CCAACACCTTTGGTTCCTCTTGCA -CCAACACCTTTGGTTCCTCGAACA -CCAACACCTTTGGTTCCTCAGTCA -CCAACACCTTTGGTTCCTGATCCA -CCAACACCTTTGGTTCCTACGACA -CCAACACCTTTGGTTCCTAGCTCA -CCAACACCTTTGGTTCCTTCACGT -CCAACACCTTTGGTTCCTCGTAGT -CCAACACCTTTGGTTCCTGTCAGT -CCAACACCTTTGGTTCCTGAAGGT -CCAACACCTTTGGTTCCTAACCGT -CCAACACCTTTGGTTCCTTTGTGC -CCAACACCTTTGGTTCCTCTAAGC -CCAACACCTTTGGTTCCTACTAGC -CCAACACCTTTGGTTCCTAGATGC -CCAACACCTTTGGTTCCTTGAAGG -CCAACACCTTTGGTTCCTCAATGG -CCAACACCTTTGGTTCCTATGAGG -CCAACACCTTTGGTTCCTAATGGG -CCAACACCTTTGGTTCCTTCCTGA -CCAACACCTTTGGTTCCTTAGCGA -CCAACACCTTTGGTTCCTCACAGA -CCAACACCTTTGGTTCCTGCAAGA -CCAACACCTTTGGTTCCTGGTTGA -CCAACACCTTTGGTTCCTTCCGAT -CCAACACCTTTGGTTCCTTGGCAT -CCAACACCTTTGGTTCCTCGAGAT -CCAACACCTTTGGTTCCTTACCAC -CCAACACCTTTGGTTCCTCAGAAC -CCAACACCTTTGGTTCCTGTCTAC -CCAACACCTTTGGTTCCTACGTAC -CCAACACCTTTGGTTCCTAGTGAC -CCAACACCTTTGGTTCCTCTGTAG -CCAACACCTTTGGTTCCTCCTAAG -CCAACACCTTTGGTTCCTGTTCAG -CCAACACCTTTGGTTCCTGCATAG -CCAACACCTTTGGTTCCTGACAAG -CCAACACCTTTGGTTCCTAAGCAG -CCAACACCTTTGGTTCCTCGTCAA -CCAACACCTTTGGTTCCTGCTGAA -CCAACACCTTTGGTTCCTAGTACG -CCAACACCTTTGGTTCCTATCCGA -CCAACACCTTTGGTTCCTATGGGA -CCAACACCTTTGGTTCCTGTGCAA -CCAACACCTTTGGTTCCTGAGGAA -CCAACACCTTTGGTTCCTCAGGTA -CCAACACCTTTGGTTCCTGACTCT -CCAACACCTTTGGTTCCTAGTCCT -CCAACACCTTTGGTTCCTTAAGCC -CCAACACCTTTGGTTCCTATAGCC -CCAACACCTTTGGTTCCTTAACCG -CCAACACCTTTGGTTCCTATGCCA -CCAACACCTTTGTTTCGGGGAAAC -CCAACACCTTTGTTTCGGAACACC -CCAACACCTTTGTTTCGGATCGAG -CCAACACCTTTGTTTCGGCTCCTT -CCAACACCTTTGTTTCGGCCTGTT -CCAACACCTTTGTTTCGGCGGTTT -CCAACACCTTTGTTTCGGGTGGTT -CCAACACCTTTGTTTCGGGCCTTT -CCAACACCTTTGTTTCGGGGTCTT -CCAACACCTTTGTTTCGGACGCTT -CCAACACCTTTGTTTCGGAGCGTT -CCAACACCTTTGTTTCGGTTCGTC -CCAACACCTTTGTTTCGGTCTCTC -CCAACACCTTTGTTTCGGTGGATC -CCAACACCTTTGTTTCGGCACTTC -CCAACACCTTTGTTTCGGGTACTC -CCAACACCTTTGTTTCGGGATGTC -CCAACACCTTTGTTTCGGACAGTC -CCAACACCTTTGTTTCGGTTGCTG -CCAACACCTTTGTTTCGGTCCATG -CCAACACCTTTGTTTCGGTGTGTG -CCAACACCTTTGTTTCGGCTAGTG -CCAACACCTTTGTTTCGGCATCTG -CCAACACCTTTGTTTCGGGAGTTG -CCAACACCTTTGTTTCGGAGACTG -CCAACACCTTTGTTTCGGTCGGTA -CCAACACCTTTGTTTCGGTGCCTA -CCAACACCTTTGTTTCGGCCACTA -CCAACACCTTTGTTTCGGGGAGTA -CCAACACCTTTGTTTCGGTCGTCT -CCAACACCTTTGTTTCGGTGCACT -CCAACACCTTTGTTTCGGCTGACT -CCAACACCTTTGTTTCGGCAACCT -CCAACACCTTTGTTTCGGGCTACT -CCAACACCTTTGTTTCGGGGATCT -CCAACACCTTTGTTTCGGAAGGCT -CCAACACCTTTGTTTCGGTCAACC -CCAACACCTTTGTTTCGGTGTTCC -CCAACACCTTTGTTTCGGATTCCC -CCAACACCTTTGTTTCGGTTCTCG -CCAACACCTTTGTTTCGGTAGACG -CCAACACCTTTGTTTCGGGTAACG -CCAACACCTTTGTTTCGGACTTCG -CCAACACCTTTGTTTCGGTACGCA -CCAACACCTTTGTTTCGGCTTGCA -CCAACACCTTTGTTTCGGCGAACA -CCAACACCTTTGTTTCGGCAGTCA -CCAACACCTTTGTTTCGGGATCCA -CCAACACCTTTGTTTCGGACGACA -CCAACACCTTTGTTTCGGAGCTCA -CCAACACCTTTGTTTCGGTCACGT -CCAACACCTTTGTTTCGGCGTAGT -CCAACACCTTTGTTTCGGGTCAGT -CCAACACCTTTGTTTCGGGAAGGT -CCAACACCTTTGTTTCGGAACCGT -CCAACACCTTTGTTTCGGTTGTGC -CCAACACCTTTGTTTCGGCTAAGC -CCAACACCTTTGTTTCGGACTAGC -CCAACACCTTTGTTTCGGAGATGC -CCAACACCTTTGTTTCGGTGAAGG -CCAACACCTTTGTTTCGGCAATGG -CCAACACCTTTGTTTCGGATGAGG -CCAACACCTTTGTTTCGGAATGGG -CCAACACCTTTGTTTCGGTCCTGA -CCAACACCTTTGTTTCGGTAGCGA -CCAACACCTTTGTTTCGGCACAGA -CCAACACCTTTGTTTCGGGCAAGA -CCAACACCTTTGTTTCGGGGTTGA -CCAACACCTTTGTTTCGGTCCGAT -CCAACACCTTTGTTTCGGTGGCAT -CCAACACCTTTGTTTCGGCGAGAT -CCAACACCTTTGTTTCGGTACCAC -CCAACACCTTTGTTTCGGCAGAAC -CCAACACCTTTGTTTCGGGTCTAC -CCAACACCTTTGTTTCGGACGTAC -CCAACACCTTTGTTTCGGAGTGAC -CCAACACCTTTGTTTCGGCTGTAG -CCAACACCTTTGTTTCGGCCTAAG -CCAACACCTTTGTTTCGGGTTCAG -CCAACACCTTTGTTTCGGGCATAG -CCAACACCTTTGTTTCGGGACAAG -CCAACACCTTTGTTTCGGAAGCAG -CCAACACCTTTGTTTCGGCGTCAA -CCAACACCTTTGTTTCGGGCTGAA -CCAACACCTTTGTTTCGGAGTACG -CCAACACCTTTGTTTCGGATCCGA -CCAACACCTTTGTTTCGGATGGGA -CCAACACCTTTGTTTCGGGTGCAA -CCAACACCTTTGTTTCGGGAGGAA -CCAACACCTTTGTTTCGGCAGGTA -CCAACACCTTTGTTTCGGGACTCT -CCAACACCTTTGTTTCGGAGTCCT -CCAACACCTTTGTTTCGGTAAGCC -CCAACACCTTTGTTTCGGATAGCC -CCAACACCTTTGTTTCGGTAACCG -CCAACACCTTTGTTTCGGATGCCA -CCAACACCTTTGGTTGTGGGAAAC -CCAACACCTTTGGTTGTGAACACC -CCAACACCTTTGGTTGTGATCGAG -CCAACACCTTTGGTTGTGCTCCTT -CCAACACCTTTGGTTGTGCCTGTT -CCAACACCTTTGGTTGTGCGGTTT -CCAACACCTTTGGTTGTGGTGGTT -CCAACACCTTTGGTTGTGGCCTTT -CCAACACCTTTGGTTGTGGGTCTT -CCAACACCTTTGGTTGTGACGCTT -CCAACACCTTTGGTTGTGAGCGTT -CCAACACCTTTGGTTGTGTTCGTC -CCAACACCTTTGGTTGTGTCTCTC -CCAACACCTTTGGTTGTGTGGATC -CCAACACCTTTGGTTGTGCACTTC -CCAACACCTTTGGTTGTGGTACTC -CCAACACCTTTGGTTGTGGATGTC -CCAACACCTTTGGTTGTGACAGTC -CCAACACCTTTGGTTGTGTTGCTG -CCAACACCTTTGGTTGTGTCCATG -CCAACACCTTTGGTTGTGTGTGTG -CCAACACCTTTGGTTGTGCTAGTG -CCAACACCTTTGGTTGTGCATCTG -CCAACACCTTTGGTTGTGGAGTTG -CCAACACCTTTGGTTGTGAGACTG -CCAACACCTTTGGTTGTGTCGGTA -CCAACACCTTTGGTTGTGTGCCTA -CCAACACCTTTGGTTGTGCCACTA -CCAACACCTTTGGTTGTGGGAGTA -CCAACACCTTTGGTTGTGTCGTCT -CCAACACCTTTGGTTGTGTGCACT -CCAACACCTTTGGTTGTGCTGACT -CCAACACCTTTGGTTGTGCAACCT -CCAACACCTTTGGTTGTGGCTACT -CCAACACCTTTGGTTGTGGGATCT -CCAACACCTTTGGTTGTGAAGGCT -CCAACACCTTTGGTTGTGTCAACC -CCAACACCTTTGGTTGTGTGTTCC -CCAACACCTTTGGTTGTGATTCCC -CCAACACCTTTGGTTGTGTTCTCG -CCAACACCTTTGGTTGTGTAGACG -CCAACACCTTTGGTTGTGGTAACG -CCAACACCTTTGGTTGTGACTTCG -CCAACACCTTTGGTTGTGTACGCA -CCAACACCTTTGGTTGTGCTTGCA -CCAACACCTTTGGTTGTGCGAACA -CCAACACCTTTGGTTGTGCAGTCA -CCAACACCTTTGGTTGTGGATCCA -CCAACACCTTTGGTTGTGACGACA -CCAACACCTTTGGTTGTGAGCTCA -CCAACACCTTTGGTTGTGTCACGT -CCAACACCTTTGGTTGTGCGTAGT -CCAACACCTTTGGTTGTGGTCAGT -CCAACACCTTTGGTTGTGGAAGGT -CCAACACCTTTGGTTGTGAACCGT -CCAACACCTTTGGTTGTGTTGTGC -CCAACACCTTTGGTTGTGCTAAGC -CCAACACCTTTGGTTGTGACTAGC -CCAACACCTTTGGTTGTGAGATGC -CCAACACCTTTGGTTGTGTGAAGG -CCAACACCTTTGGTTGTGCAATGG -CCAACACCTTTGGTTGTGATGAGG -CCAACACCTTTGGTTGTGAATGGG -CCAACACCTTTGGTTGTGTCCTGA -CCAACACCTTTGGTTGTGTAGCGA -CCAACACCTTTGGTTGTGCACAGA -CCAACACCTTTGGTTGTGGCAAGA -CCAACACCTTTGGTTGTGGGTTGA -CCAACACCTTTGGTTGTGTCCGAT -CCAACACCTTTGGTTGTGTGGCAT -CCAACACCTTTGGTTGTGCGAGAT -CCAACACCTTTGGTTGTGTACCAC -CCAACACCTTTGGTTGTGCAGAAC -CCAACACCTTTGGTTGTGGTCTAC -CCAACACCTTTGGTTGTGACGTAC -CCAACACCTTTGGTTGTGAGTGAC -CCAACACCTTTGGTTGTGCTGTAG -CCAACACCTTTGGTTGTGCCTAAG -CCAACACCTTTGGTTGTGGTTCAG -CCAACACCTTTGGTTGTGGCATAG -CCAACACCTTTGGTTGTGGACAAG -CCAACACCTTTGGTTGTGAAGCAG -CCAACACCTTTGGTTGTGCGTCAA -CCAACACCTTTGGTTGTGGCTGAA -CCAACACCTTTGGTTGTGAGTACG -CCAACACCTTTGGTTGTGATCCGA -CCAACACCTTTGGTTGTGATGGGA -CCAACACCTTTGGTTGTGGTGCAA -CCAACACCTTTGGTTGTGGAGGAA -CCAACACCTTTGGTTGTGCAGGTA -CCAACACCTTTGGTTGTGGACTCT -CCAACACCTTTGGTTGTGAGTCCT -CCAACACCTTTGGTTGTGTAAGCC -CCAACACCTTTGGTTGTGATAGCC -CCAACACCTTTGGTTGTGTAACCG -CCAACACCTTTGGTTGTGATGCCA -CCAACACCTTTGTTTGCCGGAAAC -CCAACACCTTTGTTTGCCAACACC -CCAACACCTTTGTTTGCCATCGAG -CCAACACCTTTGTTTGCCCTCCTT -CCAACACCTTTGTTTGCCCCTGTT -CCAACACCTTTGTTTGCCCGGTTT -CCAACACCTTTGTTTGCCGTGGTT -CCAACACCTTTGTTTGCCGCCTTT -CCAACACCTTTGTTTGCCGGTCTT -CCAACACCTTTGTTTGCCACGCTT -CCAACACCTTTGTTTGCCAGCGTT -CCAACACCTTTGTTTGCCTTCGTC -CCAACACCTTTGTTTGCCTCTCTC -CCAACACCTTTGTTTGCCTGGATC -CCAACACCTTTGTTTGCCCACTTC -CCAACACCTTTGTTTGCCGTACTC -CCAACACCTTTGTTTGCCGATGTC -CCAACACCTTTGTTTGCCACAGTC -CCAACACCTTTGTTTGCCTTGCTG -CCAACACCTTTGTTTGCCTCCATG -CCAACACCTTTGTTTGCCTGTGTG -CCAACACCTTTGTTTGCCCTAGTG -CCAACACCTTTGTTTGCCCATCTG -CCAACACCTTTGTTTGCCGAGTTG -CCAACACCTTTGTTTGCCAGACTG -CCAACACCTTTGTTTGCCTCGGTA -CCAACACCTTTGTTTGCCTGCCTA -CCAACACCTTTGTTTGCCCCACTA -CCAACACCTTTGTTTGCCGGAGTA -CCAACACCTTTGTTTGCCTCGTCT -CCAACACCTTTGTTTGCCTGCACT -CCAACACCTTTGTTTGCCCTGACT -CCAACACCTTTGTTTGCCCAACCT -CCAACACCTTTGTTTGCCGCTACT -CCAACACCTTTGTTTGCCGGATCT -CCAACACCTTTGTTTGCCAAGGCT -CCAACACCTTTGTTTGCCTCAACC -CCAACACCTTTGTTTGCCTGTTCC -CCAACACCTTTGTTTGCCATTCCC -CCAACACCTTTGTTTGCCTTCTCG -CCAACACCTTTGTTTGCCTAGACG -CCAACACCTTTGTTTGCCGTAACG -CCAACACCTTTGTTTGCCACTTCG -CCAACACCTTTGTTTGCCTACGCA -CCAACACCTTTGTTTGCCCTTGCA -CCAACACCTTTGTTTGCCCGAACA -CCAACACCTTTGTTTGCCCAGTCA -CCAACACCTTTGTTTGCCGATCCA -CCAACACCTTTGTTTGCCACGACA -CCAACACCTTTGTTTGCCAGCTCA -CCAACACCTTTGTTTGCCTCACGT -CCAACACCTTTGTTTGCCCGTAGT -CCAACACCTTTGTTTGCCGTCAGT -CCAACACCTTTGTTTGCCGAAGGT -CCAACACCTTTGTTTGCCAACCGT -CCAACACCTTTGTTTGCCTTGTGC -CCAACACCTTTGTTTGCCCTAAGC -CCAACACCTTTGTTTGCCACTAGC -CCAACACCTTTGTTTGCCAGATGC -CCAACACCTTTGTTTGCCTGAAGG -CCAACACCTTTGTTTGCCCAATGG -CCAACACCTTTGTTTGCCATGAGG -CCAACACCTTTGTTTGCCAATGGG -CCAACACCTTTGTTTGCCTCCTGA -CCAACACCTTTGTTTGCCTAGCGA -CCAACACCTTTGTTTGCCCACAGA -CCAACACCTTTGTTTGCCGCAAGA -CCAACACCTTTGTTTGCCGGTTGA -CCAACACCTTTGTTTGCCTCCGAT -CCAACACCTTTGTTTGCCTGGCAT -CCAACACCTTTGTTTGCCCGAGAT -CCAACACCTTTGTTTGCCTACCAC -CCAACACCTTTGTTTGCCCAGAAC -CCAACACCTTTGTTTGCCGTCTAC -CCAACACCTTTGTTTGCCACGTAC -CCAACACCTTTGTTTGCCAGTGAC -CCAACACCTTTGTTTGCCCTGTAG -CCAACACCTTTGTTTGCCCCTAAG -CCAACACCTTTGTTTGCCGTTCAG -CCAACACCTTTGTTTGCCGCATAG -CCAACACCTTTGTTTGCCGACAAG -CCAACACCTTTGTTTGCCAAGCAG -CCAACACCTTTGTTTGCCCGTCAA -CCAACACCTTTGTTTGCCGCTGAA -CCAACACCTTTGTTTGCCAGTACG -CCAACACCTTTGTTTGCCATCCGA -CCAACACCTTTGTTTGCCATGGGA -CCAACACCTTTGTTTGCCGTGCAA -CCAACACCTTTGTTTGCCGAGGAA -CCAACACCTTTGTTTGCCCAGGTA -CCAACACCTTTGTTTGCCGACTCT -CCAACACCTTTGTTTGCCAGTCCT -CCAACACCTTTGTTTGCCTAAGCC -CCAACACCTTTGTTTGCCATAGCC -CCAACACCTTTGTTTGCCTAACCG -CCAACACCTTTGTTTGCCATGCCA -CCAACACCTTTGCTTGGTGGAAAC -CCAACACCTTTGCTTGGTAACACC -CCAACACCTTTGCTTGGTATCGAG -CCAACACCTTTGCTTGGTCTCCTT -CCAACACCTTTGCTTGGTCCTGTT -CCAACACCTTTGCTTGGTCGGTTT -CCAACACCTTTGCTTGGTGTGGTT -CCAACACCTTTGCTTGGTGCCTTT -CCAACACCTTTGCTTGGTGGTCTT -CCAACACCTTTGCTTGGTACGCTT -CCAACACCTTTGCTTGGTAGCGTT -CCAACACCTTTGCTTGGTTTCGTC -CCAACACCTTTGCTTGGTTCTCTC -CCAACACCTTTGCTTGGTTGGATC -CCAACACCTTTGCTTGGTCACTTC -CCAACACCTTTGCTTGGTGTACTC -CCAACACCTTTGCTTGGTGATGTC -CCAACACCTTTGCTTGGTACAGTC -CCAACACCTTTGCTTGGTTTGCTG -CCAACACCTTTGCTTGGTTCCATG -CCAACACCTTTGCTTGGTTGTGTG -CCAACACCTTTGCTTGGTCTAGTG -CCAACACCTTTGCTTGGTCATCTG -CCAACACCTTTGCTTGGTGAGTTG -CCAACACCTTTGCTTGGTAGACTG -CCAACACCTTTGCTTGGTTCGGTA -CCAACACCTTTGCTTGGTTGCCTA -CCAACACCTTTGCTTGGTCCACTA -CCAACACCTTTGCTTGGTGGAGTA -CCAACACCTTTGCTTGGTTCGTCT -CCAACACCTTTGCTTGGTTGCACT -CCAACACCTTTGCTTGGTCTGACT -CCAACACCTTTGCTTGGTCAACCT -CCAACACCTTTGCTTGGTGCTACT -CCAACACCTTTGCTTGGTGGATCT -CCAACACCTTTGCTTGGTAAGGCT -CCAACACCTTTGCTTGGTTCAACC -CCAACACCTTTGCTTGGTTGTTCC -CCAACACCTTTGCTTGGTATTCCC -CCAACACCTTTGCTTGGTTTCTCG -CCAACACCTTTGCTTGGTTAGACG -CCAACACCTTTGCTTGGTGTAACG -CCAACACCTTTGCTTGGTACTTCG -CCAACACCTTTGCTTGGTTACGCA -CCAACACCTTTGCTTGGTCTTGCA -CCAACACCTTTGCTTGGTCGAACA -CCAACACCTTTGCTTGGTCAGTCA -CCAACACCTTTGCTTGGTGATCCA -CCAACACCTTTGCTTGGTACGACA -CCAACACCTTTGCTTGGTAGCTCA -CCAACACCTTTGCTTGGTTCACGT -CCAACACCTTTGCTTGGTCGTAGT -CCAACACCTTTGCTTGGTGTCAGT -CCAACACCTTTGCTTGGTGAAGGT -CCAACACCTTTGCTTGGTAACCGT -CCAACACCTTTGCTTGGTTTGTGC -CCAACACCTTTGCTTGGTCTAAGC -CCAACACCTTTGCTTGGTACTAGC -CCAACACCTTTGCTTGGTAGATGC -CCAACACCTTTGCTTGGTTGAAGG -CCAACACCTTTGCTTGGTCAATGG -CCAACACCTTTGCTTGGTATGAGG -CCAACACCTTTGCTTGGTAATGGG -CCAACACCTTTGCTTGGTTCCTGA -CCAACACCTTTGCTTGGTTAGCGA -CCAACACCTTTGCTTGGTCACAGA -CCAACACCTTTGCTTGGTGCAAGA -CCAACACCTTTGCTTGGTGGTTGA -CCAACACCTTTGCTTGGTTCCGAT -CCAACACCTTTGCTTGGTTGGCAT -CCAACACCTTTGCTTGGTCGAGAT -CCAACACCTTTGCTTGGTTACCAC -CCAACACCTTTGCTTGGTCAGAAC -CCAACACCTTTGCTTGGTGTCTAC -CCAACACCTTTGCTTGGTACGTAC -CCAACACCTTTGCTTGGTAGTGAC -CCAACACCTTTGCTTGGTCTGTAG -CCAACACCTTTGCTTGGTCCTAAG -CCAACACCTTTGCTTGGTGTTCAG -CCAACACCTTTGCTTGGTGCATAG -CCAACACCTTTGCTTGGTGACAAG -CCAACACCTTTGCTTGGTAAGCAG -CCAACACCTTTGCTTGGTCGTCAA -CCAACACCTTTGCTTGGTGCTGAA -CCAACACCTTTGCTTGGTAGTACG -CCAACACCTTTGCTTGGTATCCGA -CCAACACCTTTGCTTGGTATGGGA -CCAACACCTTTGCTTGGTGTGCAA -CCAACACCTTTGCTTGGTGAGGAA -CCAACACCTTTGCTTGGTCAGGTA -CCAACACCTTTGCTTGGTGACTCT -CCAACACCTTTGCTTGGTAGTCCT -CCAACACCTTTGCTTGGTTAAGCC -CCAACACCTTTGCTTGGTATAGCC -CCAACACCTTTGCTTGGTTAACCG -CCAACACCTTTGCTTGGTATGCCA -CCAACACCTTTGCTTACGGGAAAC -CCAACACCTTTGCTTACGAACACC -CCAACACCTTTGCTTACGATCGAG -CCAACACCTTTGCTTACGCTCCTT -CCAACACCTTTGCTTACGCCTGTT -CCAACACCTTTGCTTACGCGGTTT -CCAACACCTTTGCTTACGGTGGTT -CCAACACCTTTGCTTACGGCCTTT -CCAACACCTTTGCTTACGGGTCTT -CCAACACCTTTGCTTACGACGCTT -CCAACACCTTTGCTTACGAGCGTT -CCAACACCTTTGCTTACGTTCGTC -CCAACACCTTTGCTTACGTCTCTC -CCAACACCTTTGCTTACGTGGATC -CCAACACCTTTGCTTACGCACTTC -CCAACACCTTTGCTTACGGTACTC -CCAACACCTTTGCTTACGGATGTC -CCAACACCTTTGCTTACGACAGTC -CCAACACCTTTGCTTACGTTGCTG -CCAACACCTTTGCTTACGTCCATG -CCAACACCTTTGCTTACGTGTGTG -CCAACACCTTTGCTTACGCTAGTG -CCAACACCTTTGCTTACGCATCTG -CCAACACCTTTGCTTACGGAGTTG -CCAACACCTTTGCTTACGAGACTG -CCAACACCTTTGCTTACGTCGGTA -CCAACACCTTTGCTTACGTGCCTA -CCAACACCTTTGCTTACGCCACTA -CCAACACCTTTGCTTACGGGAGTA -CCAACACCTTTGCTTACGTCGTCT -CCAACACCTTTGCTTACGTGCACT -CCAACACCTTTGCTTACGCTGACT -CCAACACCTTTGCTTACGCAACCT -CCAACACCTTTGCTTACGGCTACT -CCAACACCTTTGCTTACGGGATCT -CCAACACCTTTGCTTACGAAGGCT -CCAACACCTTTGCTTACGTCAACC -CCAACACCTTTGCTTACGTGTTCC -CCAACACCTTTGCTTACGATTCCC -CCAACACCTTTGCTTACGTTCTCG -CCAACACCTTTGCTTACGTAGACG -CCAACACCTTTGCTTACGGTAACG -CCAACACCTTTGCTTACGACTTCG -CCAACACCTTTGCTTACGTACGCA -CCAACACCTTTGCTTACGCTTGCA -CCAACACCTTTGCTTACGCGAACA -CCAACACCTTTGCTTACGCAGTCA -CCAACACCTTTGCTTACGGATCCA -CCAACACCTTTGCTTACGACGACA -CCAACACCTTTGCTTACGAGCTCA -CCAACACCTTTGCTTACGTCACGT -CCAACACCTTTGCTTACGCGTAGT -CCAACACCTTTGCTTACGGTCAGT -CCAACACCTTTGCTTACGGAAGGT -CCAACACCTTTGCTTACGAACCGT -CCAACACCTTTGCTTACGTTGTGC -CCAACACCTTTGCTTACGCTAAGC -CCAACACCTTTGCTTACGACTAGC -CCAACACCTTTGCTTACGAGATGC -CCAACACCTTTGCTTACGTGAAGG -CCAACACCTTTGCTTACGCAATGG -CCAACACCTTTGCTTACGATGAGG -CCAACACCTTTGCTTACGAATGGG -CCAACACCTTTGCTTACGTCCTGA -CCAACACCTTTGCTTACGTAGCGA -CCAACACCTTTGCTTACGCACAGA -CCAACACCTTTGCTTACGGCAAGA -CCAACACCTTTGCTTACGGGTTGA -CCAACACCTTTGCTTACGTCCGAT -CCAACACCTTTGCTTACGTGGCAT -CCAACACCTTTGCTTACGCGAGAT -CCAACACCTTTGCTTACGTACCAC -CCAACACCTTTGCTTACGCAGAAC -CCAACACCTTTGCTTACGGTCTAC -CCAACACCTTTGCTTACGACGTAC -CCAACACCTTTGCTTACGAGTGAC -CCAACACCTTTGCTTACGCTGTAG -CCAACACCTTTGCTTACGCCTAAG -CCAACACCTTTGCTTACGGTTCAG -CCAACACCTTTGCTTACGGCATAG -CCAACACCTTTGCTTACGGACAAG -CCAACACCTTTGCTTACGAAGCAG -CCAACACCTTTGCTTACGCGTCAA -CCAACACCTTTGCTTACGGCTGAA -CCAACACCTTTGCTTACGAGTACG -CCAACACCTTTGCTTACGATCCGA -CCAACACCTTTGCTTACGATGGGA -CCAACACCTTTGCTTACGGTGCAA -CCAACACCTTTGCTTACGGAGGAA -CCAACACCTTTGCTTACGCAGGTA -CCAACACCTTTGCTTACGGACTCT -CCAACACCTTTGCTTACGAGTCCT -CCAACACCTTTGCTTACGTAAGCC -CCAACACCTTTGCTTACGATAGCC -CCAACACCTTTGCTTACGTAACCG -CCAACACCTTTGCTTACGATGCCA -CCAACACCTTTGGTTAGCGGAAAC -CCAACACCTTTGGTTAGCAACACC -CCAACACCTTTGGTTAGCATCGAG -CCAACACCTTTGGTTAGCCTCCTT -CCAACACCTTTGGTTAGCCCTGTT -CCAACACCTTTGGTTAGCCGGTTT -CCAACACCTTTGGTTAGCGTGGTT -CCAACACCTTTGGTTAGCGCCTTT -CCAACACCTTTGGTTAGCGGTCTT -CCAACACCTTTGGTTAGCACGCTT -CCAACACCTTTGGTTAGCAGCGTT -CCAACACCTTTGGTTAGCTTCGTC -CCAACACCTTTGGTTAGCTCTCTC -CCAACACCTTTGGTTAGCTGGATC -CCAACACCTTTGGTTAGCCACTTC -CCAACACCTTTGGTTAGCGTACTC -CCAACACCTTTGGTTAGCGATGTC -CCAACACCTTTGGTTAGCACAGTC -CCAACACCTTTGGTTAGCTTGCTG -CCAACACCTTTGGTTAGCTCCATG -CCAACACCTTTGGTTAGCTGTGTG -CCAACACCTTTGGTTAGCCTAGTG -CCAACACCTTTGGTTAGCCATCTG -CCAACACCTTTGGTTAGCGAGTTG -CCAACACCTTTGGTTAGCAGACTG -CCAACACCTTTGGTTAGCTCGGTA -CCAACACCTTTGGTTAGCTGCCTA -CCAACACCTTTGGTTAGCCCACTA -CCAACACCTTTGGTTAGCGGAGTA -CCAACACCTTTGGTTAGCTCGTCT -CCAACACCTTTGGTTAGCTGCACT -CCAACACCTTTGGTTAGCCTGACT -CCAACACCTTTGGTTAGCCAACCT -CCAACACCTTTGGTTAGCGCTACT -CCAACACCTTTGGTTAGCGGATCT -CCAACACCTTTGGTTAGCAAGGCT -CCAACACCTTTGGTTAGCTCAACC -CCAACACCTTTGGTTAGCTGTTCC -CCAACACCTTTGGTTAGCATTCCC -CCAACACCTTTGGTTAGCTTCTCG -CCAACACCTTTGGTTAGCTAGACG -CCAACACCTTTGGTTAGCGTAACG -CCAACACCTTTGGTTAGCACTTCG -CCAACACCTTTGGTTAGCTACGCA -CCAACACCTTTGGTTAGCCTTGCA -CCAACACCTTTGGTTAGCCGAACA -CCAACACCTTTGGTTAGCCAGTCA -CCAACACCTTTGGTTAGCGATCCA -CCAACACCTTTGGTTAGCACGACA -CCAACACCTTTGGTTAGCAGCTCA -CCAACACCTTTGGTTAGCTCACGT -CCAACACCTTTGGTTAGCCGTAGT -CCAACACCTTTGGTTAGCGTCAGT -CCAACACCTTTGGTTAGCGAAGGT -CCAACACCTTTGGTTAGCAACCGT -CCAACACCTTTGGTTAGCTTGTGC -CCAACACCTTTGGTTAGCCTAAGC -CCAACACCTTTGGTTAGCACTAGC -CCAACACCTTTGGTTAGCAGATGC -CCAACACCTTTGGTTAGCTGAAGG -CCAACACCTTTGGTTAGCCAATGG -CCAACACCTTTGGTTAGCATGAGG -CCAACACCTTTGGTTAGCAATGGG -CCAACACCTTTGGTTAGCTCCTGA -CCAACACCTTTGGTTAGCTAGCGA -CCAACACCTTTGGTTAGCCACAGA -CCAACACCTTTGGTTAGCGCAAGA -CCAACACCTTTGGTTAGCGGTTGA -CCAACACCTTTGGTTAGCTCCGAT -CCAACACCTTTGGTTAGCTGGCAT -CCAACACCTTTGGTTAGCCGAGAT -CCAACACCTTTGGTTAGCTACCAC -CCAACACCTTTGGTTAGCCAGAAC -CCAACACCTTTGGTTAGCGTCTAC -CCAACACCTTTGGTTAGCACGTAC -CCAACACCTTTGGTTAGCAGTGAC -CCAACACCTTTGGTTAGCCTGTAG -CCAACACCTTTGGTTAGCCCTAAG -CCAACACCTTTGGTTAGCGTTCAG -CCAACACCTTTGGTTAGCGCATAG -CCAACACCTTTGGTTAGCGACAAG -CCAACACCTTTGGTTAGCAAGCAG -CCAACACCTTTGGTTAGCCGTCAA -CCAACACCTTTGGTTAGCGCTGAA -CCAACACCTTTGGTTAGCAGTACG -CCAACACCTTTGGTTAGCATCCGA -CCAACACCTTTGGTTAGCATGGGA -CCAACACCTTTGGTTAGCGTGCAA -CCAACACCTTTGGTTAGCGAGGAA -CCAACACCTTTGGTTAGCCAGGTA -CCAACACCTTTGGTTAGCGACTCT -CCAACACCTTTGGTTAGCAGTCCT -CCAACACCTTTGGTTAGCTAAGCC -CCAACACCTTTGGTTAGCATAGCC -CCAACACCTTTGGTTAGCTAACCG -CCAACACCTTTGGTTAGCATGCCA -CCAACACCTTTGGTCTTCGGAAAC -CCAACACCTTTGGTCTTCAACACC -CCAACACCTTTGGTCTTCATCGAG -CCAACACCTTTGGTCTTCCTCCTT -CCAACACCTTTGGTCTTCCCTGTT -CCAACACCTTTGGTCTTCCGGTTT -CCAACACCTTTGGTCTTCGTGGTT -CCAACACCTTTGGTCTTCGCCTTT -CCAACACCTTTGGTCTTCGGTCTT -CCAACACCTTTGGTCTTCACGCTT -CCAACACCTTTGGTCTTCAGCGTT -CCAACACCTTTGGTCTTCTTCGTC -CCAACACCTTTGGTCTTCTCTCTC -CCAACACCTTTGGTCTTCTGGATC -CCAACACCTTTGGTCTTCCACTTC -CCAACACCTTTGGTCTTCGTACTC -CCAACACCTTTGGTCTTCGATGTC -CCAACACCTTTGGTCTTCACAGTC -CCAACACCTTTGGTCTTCTTGCTG -CCAACACCTTTGGTCTTCTCCATG -CCAACACCTTTGGTCTTCTGTGTG -CCAACACCTTTGGTCTTCCTAGTG -CCAACACCTTTGGTCTTCCATCTG -CCAACACCTTTGGTCTTCGAGTTG -CCAACACCTTTGGTCTTCAGACTG -CCAACACCTTTGGTCTTCTCGGTA -CCAACACCTTTGGTCTTCTGCCTA -CCAACACCTTTGGTCTTCCCACTA -CCAACACCTTTGGTCTTCGGAGTA -CCAACACCTTTGGTCTTCTCGTCT -CCAACACCTTTGGTCTTCTGCACT -CCAACACCTTTGGTCTTCCTGACT -CCAACACCTTTGGTCTTCCAACCT -CCAACACCTTTGGTCTTCGCTACT -CCAACACCTTTGGTCTTCGGATCT -CCAACACCTTTGGTCTTCAAGGCT -CCAACACCTTTGGTCTTCTCAACC -CCAACACCTTTGGTCTTCTGTTCC -CCAACACCTTTGGTCTTCATTCCC -CCAACACCTTTGGTCTTCTTCTCG -CCAACACCTTTGGTCTTCTAGACG -CCAACACCTTTGGTCTTCGTAACG -CCAACACCTTTGGTCTTCACTTCG -CCAACACCTTTGGTCTTCTACGCA -CCAACACCTTTGGTCTTCCTTGCA -CCAACACCTTTGGTCTTCCGAACA -CCAACACCTTTGGTCTTCCAGTCA -CCAACACCTTTGGTCTTCGATCCA -CCAACACCTTTGGTCTTCACGACA -CCAACACCTTTGGTCTTCAGCTCA -CCAACACCTTTGGTCTTCTCACGT -CCAACACCTTTGGTCTTCCGTAGT -CCAACACCTTTGGTCTTCGTCAGT -CCAACACCTTTGGTCTTCGAAGGT -CCAACACCTTTGGTCTTCAACCGT -CCAACACCTTTGGTCTTCTTGTGC -CCAACACCTTTGGTCTTCCTAAGC -CCAACACCTTTGGTCTTCACTAGC -CCAACACCTTTGGTCTTCAGATGC -CCAACACCTTTGGTCTTCTGAAGG -CCAACACCTTTGGTCTTCCAATGG -CCAACACCTTTGGTCTTCATGAGG -CCAACACCTTTGGTCTTCAATGGG -CCAACACCTTTGGTCTTCTCCTGA -CCAACACCTTTGGTCTTCTAGCGA -CCAACACCTTTGGTCTTCCACAGA -CCAACACCTTTGGTCTTCGCAAGA -CCAACACCTTTGGTCTTCGGTTGA -CCAACACCTTTGGTCTTCTCCGAT -CCAACACCTTTGGTCTTCTGGCAT -CCAACACCTTTGGTCTTCCGAGAT -CCAACACCTTTGGTCTTCTACCAC -CCAACACCTTTGGTCTTCCAGAAC -CCAACACCTTTGGTCTTCGTCTAC -CCAACACCTTTGGTCTTCACGTAC -CCAACACCTTTGGTCTTCAGTGAC -CCAACACCTTTGGTCTTCCTGTAG -CCAACACCTTTGGTCTTCCCTAAG -CCAACACCTTTGGTCTTCGTTCAG -CCAACACCTTTGGTCTTCGCATAG -CCAACACCTTTGGTCTTCGACAAG -CCAACACCTTTGGTCTTCAAGCAG -CCAACACCTTTGGTCTTCCGTCAA -CCAACACCTTTGGTCTTCGCTGAA -CCAACACCTTTGGTCTTCAGTACG -CCAACACCTTTGGTCTTCATCCGA -CCAACACCTTTGGTCTTCATGGGA -CCAACACCTTTGGTCTTCGTGCAA -CCAACACCTTTGGTCTTCGAGGAA -CCAACACCTTTGGTCTTCCAGGTA -CCAACACCTTTGGTCTTCGACTCT -CCAACACCTTTGGTCTTCAGTCCT -CCAACACCTTTGGTCTTCTAAGCC -CCAACACCTTTGGTCTTCATAGCC -CCAACACCTTTGGTCTTCTAACCG -CCAACACCTTTGGTCTTCATGCCA -CCAACACCTTTGCTCTCTGGAAAC -CCAACACCTTTGCTCTCTAACACC -CCAACACCTTTGCTCTCTATCGAG -CCAACACCTTTGCTCTCTCTCCTT -CCAACACCTTTGCTCTCTCCTGTT -CCAACACCTTTGCTCTCTCGGTTT -CCAACACCTTTGCTCTCTGTGGTT -CCAACACCTTTGCTCTCTGCCTTT -CCAACACCTTTGCTCTCTGGTCTT -CCAACACCTTTGCTCTCTACGCTT -CCAACACCTTTGCTCTCTAGCGTT -CCAACACCTTTGCTCTCTTTCGTC -CCAACACCTTTGCTCTCTTCTCTC -CCAACACCTTTGCTCTCTTGGATC -CCAACACCTTTGCTCTCTCACTTC -CCAACACCTTTGCTCTCTGTACTC -CCAACACCTTTGCTCTCTGATGTC -CCAACACCTTTGCTCTCTACAGTC -CCAACACCTTTGCTCTCTTTGCTG -CCAACACCTTTGCTCTCTTCCATG -CCAACACCTTTGCTCTCTTGTGTG -CCAACACCTTTGCTCTCTCTAGTG -CCAACACCTTTGCTCTCTCATCTG -CCAACACCTTTGCTCTCTGAGTTG -CCAACACCTTTGCTCTCTAGACTG -CCAACACCTTTGCTCTCTTCGGTA -CCAACACCTTTGCTCTCTTGCCTA -CCAACACCTTTGCTCTCTCCACTA -CCAACACCTTTGCTCTCTGGAGTA -CCAACACCTTTGCTCTCTTCGTCT -CCAACACCTTTGCTCTCTTGCACT -CCAACACCTTTGCTCTCTCTGACT -CCAACACCTTTGCTCTCTCAACCT -CCAACACCTTTGCTCTCTGCTACT -CCAACACCTTTGCTCTCTGGATCT -CCAACACCTTTGCTCTCTAAGGCT -CCAACACCTTTGCTCTCTTCAACC -CCAACACCTTTGCTCTCTTGTTCC -CCAACACCTTTGCTCTCTATTCCC -CCAACACCTTTGCTCTCTTTCTCG -CCAACACCTTTGCTCTCTTAGACG -CCAACACCTTTGCTCTCTGTAACG -CCAACACCTTTGCTCTCTACTTCG -CCAACACCTTTGCTCTCTTACGCA -CCAACACCTTTGCTCTCTCTTGCA -CCAACACCTTTGCTCTCTCGAACA -CCAACACCTTTGCTCTCTCAGTCA -CCAACACCTTTGCTCTCTGATCCA -CCAACACCTTTGCTCTCTACGACA -CCAACACCTTTGCTCTCTAGCTCA -CCAACACCTTTGCTCTCTTCACGT -CCAACACCTTTGCTCTCTCGTAGT -CCAACACCTTTGCTCTCTGTCAGT -CCAACACCTTTGCTCTCTGAAGGT -CCAACACCTTTGCTCTCTAACCGT -CCAACACCTTTGCTCTCTTTGTGC -CCAACACCTTTGCTCTCTCTAAGC -CCAACACCTTTGCTCTCTACTAGC -CCAACACCTTTGCTCTCTAGATGC -CCAACACCTTTGCTCTCTTGAAGG -CCAACACCTTTGCTCTCTCAATGG -CCAACACCTTTGCTCTCTATGAGG -CCAACACCTTTGCTCTCTAATGGG -CCAACACCTTTGCTCTCTTCCTGA -CCAACACCTTTGCTCTCTTAGCGA -CCAACACCTTTGCTCTCTCACAGA -CCAACACCTTTGCTCTCTGCAAGA -CCAACACCTTTGCTCTCTGGTTGA -CCAACACCTTTGCTCTCTTCCGAT -CCAACACCTTTGCTCTCTTGGCAT -CCAACACCTTTGCTCTCTCGAGAT -CCAACACCTTTGCTCTCTTACCAC -CCAACACCTTTGCTCTCTCAGAAC -CCAACACCTTTGCTCTCTGTCTAC -CCAACACCTTTGCTCTCTACGTAC -CCAACACCTTTGCTCTCTAGTGAC -CCAACACCTTTGCTCTCTCTGTAG -CCAACACCTTTGCTCTCTCCTAAG -CCAACACCTTTGCTCTCTGTTCAG -CCAACACCTTTGCTCTCTGCATAG -CCAACACCTTTGCTCTCTGACAAG -CCAACACCTTTGCTCTCTAAGCAG -CCAACACCTTTGCTCTCTCGTCAA -CCAACACCTTTGCTCTCTGCTGAA -CCAACACCTTTGCTCTCTAGTACG -CCAACACCTTTGCTCTCTATCCGA -CCAACACCTTTGCTCTCTATGGGA -CCAACACCTTTGCTCTCTGTGCAA -CCAACACCTTTGCTCTCTGAGGAA -CCAACACCTTTGCTCTCTCAGGTA -CCAACACCTTTGCTCTCTGACTCT -CCAACACCTTTGCTCTCTAGTCCT -CCAACACCTTTGCTCTCTTAAGCC -CCAACACCTTTGCTCTCTATAGCC -CCAACACCTTTGCTCTCTTAACCG -CCAACACCTTTGCTCTCTATGCCA -CCAACACCTTTGATCTGGGGAAAC -CCAACACCTTTGATCTGGAACACC -CCAACACCTTTGATCTGGATCGAG -CCAACACCTTTGATCTGGCTCCTT -CCAACACCTTTGATCTGGCCTGTT -CCAACACCTTTGATCTGGCGGTTT -CCAACACCTTTGATCTGGGTGGTT -CCAACACCTTTGATCTGGGCCTTT -CCAACACCTTTGATCTGGGGTCTT -CCAACACCTTTGATCTGGACGCTT -CCAACACCTTTGATCTGGAGCGTT -CCAACACCTTTGATCTGGTTCGTC -CCAACACCTTTGATCTGGTCTCTC -CCAACACCTTTGATCTGGTGGATC -CCAACACCTTTGATCTGGCACTTC -CCAACACCTTTGATCTGGGTACTC -CCAACACCTTTGATCTGGGATGTC -CCAACACCTTTGATCTGGACAGTC -CCAACACCTTTGATCTGGTTGCTG -CCAACACCTTTGATCTGGTCCATG -CCAACACCTTTGATCTGGTGTGTG -CCAACACCTTTGATCTGGCTAGTG -CCAACACCTTTGATCTGGCATCTG -CCAACACCTTTGATCTGGGAGTTG -CCAACACCTTTGATCTGGAGACTG -CCAACACCTTTGATCTGGTCGGTA -CCAACACCTTTGATCTGGTGCCTA -CCAACACCTTTGATCTGGCCACTA -CCAACACCTTTGATCTGGGGAGTA -CCAACACCTTTGATCTGGTCGTCT -CCAACACCTTTGATCTGGTGCACT -CCAACACCTTTGATCTGGCTGACT -CCAACACCTTTGATCTGGCAACCT -CCAACACCTTTGATCTGGGCTACT -CCAACACCTTTGATCTGGGGATCT -CCAACACCTTTGATCTGGAAGGCT -CCAACACCTTTGATCTGGTCAACC -CCAACACCTTTGATCTGGTGTTCC -CCAACACCTTTGATCTGGATTCCC -CCAACACCTTTGATCTGGTTCTCG -CCAACACCTTTGATCTGGTAGACG -CCAACACCTTTGATCTGGGTAACG -CCAACACCTTTGATCTGGACTTCG -CCAACACCTTTGATCTGGTACGCA -CCAACACCTTTGATCTGGCTTGCA -CCAACACCTTTGATCTGGCGAACA -CCAACACCTTTGATCTGGCAGTCA -CCAACACCTTTGATCTGGGATCCA -CCAACACCTTTGATCTGGACGACA -CCAACACCTTTGATCTGGAGCTCA -CCAACACCTTTGATCTGGTCACGT -CCAACACCTTTGATCTGGCGTAGT -CCAACACCTTTGATCTGGGTCAGT -CCAACACCTTTGATCTGGGAAGGT -CCAACACCTTTGATCTGGAACCGT -CCAACACCTTTGATCTGGTTGTGC -CCAACACCTTTGATCTGGCTAAGC -CCAACACCTTTGATCTGGACTAGC -CCAACACCTTTGATCTGGAGATGC -CCAACACCTTTGATCTGGTGAAGG -CCAACACCTTTGATCTGGCAATGG -CCAACACCTTTGATCTGGATGAGG -CCAACACCTTTGATCTGGAATGGG -CCAACACCTTTGATCTGGTCCTGA -CCAACACCTTTGATCTGGTAGCGA -CCAACACCTTTGATCTGGCACAGA -CCAACACCTTTGATCTGGGCAAGA -CCAACACCTTTGATCTGGGGTTGA -CCAACACCTTTGATCTGGTCCGAT -CCAACACCTTTGATCTGGTGGCAT -CCAACACCTTTGATCTGGCGAGAT -CCAACACCTTTGATCTGGTACCAC -CCAACACCTTTGATCTGGCAGAAC -CCAACACCTTTGATCTGGGTCTAC -CCAACACCTTTGATCTGGACGTAC -CCAACACCTTTGATCTGGAGTGAC -CCAACACCTTTGATCTGGCTGTAG -CCAACACCTTTGATCTGGCCTAAG -CCAACACCTTTGATCTGGGTTCAG -CCAACACCTTTGATCTGGGCATAG -CCAACACCTTTGATCTGGGACAAG -CCAACACCTTTGATCTGGAAGCAG -CCAACACCTTTGATCTGGCGTCAA -CCAACACCTTTGATCTGGGCTGAA -CCAACACCTTTGATCTGGAGTACG -CCAACACCTTTGATCTGGATCCGA -CCAACACCTTTGATCTGGATGGGA -CCAACACCTTTGATCTGGGTGCAA -CCAACACCTTTGATCTGGGAGGAA -CCAACACCTTTGATCTGGCAGGTA -CCAACACCTTTGATCTGGGACTCT -CCAACACCTTTGATCTGGAGTCCT -CCAACACCTTTGATCTGGTAAGCC -CCAACACCTTTGATCTGGATAGCC -CCAACACCTTTGATCTGGTAACCG -CCAACACCTTTGATCTGGATGCCA -CCAACACCTTTGTTCCACGGAAAC -CCAACACCTTTGTTCCACAACACC -CCAACACCTTTGTTCCACATCGAG -CCAACACCTTTGTTCCACCTCCTT -CCAACACCTTTGTTCCACCCTGTT -CCAACACCTTTGTTCCACCGGTTT -CCAACACCTTTGTTCCACGTGGTT -CCAACACCTTTGTTCCACGCCTTT -CCAACACCTTTGTTCCACGGTCTT -CCAACACCTTTGTTCCACACGCTT -CCAACACCTTTGTTCCACAGCGTT -CCAACACCTTTGTTCCACTTCGTC -CCAACACCTTTGTTCCACTCTCTC -CCAACACCTTTGTTCCACTGGATC -CCAACACCTTTGTTCCACCACTTC -CCAACACCTTTGTTCCACGTACTC -CCAACACCTTTGTTCCACGATGTC -CCAACACCTTTGTTCCACACAGTC -CCAACACCTTTGTTCCACTTGCTG -CCAACACCTTTGTTCCACTCCATG -CCAACACCTTTGTTCCACTGTGTG -CCAACACCTTTGTTCCACCTAGTG -CCAACACCTTTGTTCCACCATCTG -CCAACACCTTTGTTCCACGAGTTG -CCAACACCTTTGTTCCACAGACTG -CCAACACCTTTGTTCCACTCGGTA -CCAACACCTTTGTTCCACTGCCTA -CCAACACCTTTGTTCCACCCACTA -CCAACACCTTTGTTCCACGGAGTA -CCAACACCTTTGTTCCACTCGTCT -CCAACACCTTTGTTCCACTGCACT -CCAACACCTTTGTTCCACCTGACT -CCAACACCTTTGTTCCACCAACCT -CCAACACCTTTGTTCCACGCTACT -CCAACACCTTTGTTCCACGGATCT -CCAACACCTTTGTTCCACAAGGCT -CCAACACCTTTGTTCCACTCAACC -CCAACACCTTTGTTCCACTGTTCC -CCAACACCTTTGTTCCACATTCCC -CCAACACCTTTGTTCCACTTCTCG -CCAACACCTTTGTTCCACTAGACG -CCAACACCTTTGTTCCACGTAACG -CCAACACCTTTGTTCCACACTTCG -CCAACACCTTTGTTCCACTACGCA -CCAACACCTTTGTTCCACCTTGCA -CCAACACCTTTGTTCCACCGAACA -CCAACACCTTTGTTCCACCAGTCA -CCAACACCTTTGTTCCACGATCCA -CCAACACCTTTGTTCCACACGACA -CCAACACCTTTGTTCCACAGCTCA -CCAACACCTTTGTTCCACTCACGT -CCAACACCTTTGTTCCACCGTAGT -CCAACACCTTTGTTCCACGTCAGT -CCAACACCTTTGTTCCACGAAGGT -CCAACACCTTTGTTCCACAACCGT -CCAACACCTTTGTTCCACTTGTGC -CCAACACCTTTGTTCCACCTAAGC -CCAACACCTTTGTTCCACACTAGC -CCAACACCTTTGTTCCACAGATGC -CCAACACCTTTGTTCCACTGAAGG -CCAACACCTTTGTTCCACCAATGG -CCAACACCTTTGTTCCACATGAGG -CCAACACCTTTGTTCCACAATGGG -CCAACACCTTTGTTCCACTCCTGA -CCAACACCTTTGTTCCACTAGCGA -CCAACACCTTTGTTCCACCACAGA -CCAACACCTTTGTTCCACGCAAGA -CCAACACCTTTGTTCCACGGTTGA -CCAACACCTTTGTTCCACTCCGAT -CCAACACCTTTGTTCCACTGGCAT -CCAACACCTTTGTTCCACCGAGAT -CCAACACCTTTGTTCCACTACCAC -CCAACACCTTTGTTCCACCAGAAC -CCAACACCTTTGTTCCACGTCTAC -CCAACACCTTTGTTCCACACGTAC -CCAACACCTTTGTTCCACAGTGAC -CCAACACCTTTGTTCCACCTGTAG -CCAACACCTTTGTTCCACCCTAAG -CCAACACCTTTGTTCCACGTTCAG -CCAACACCTTTGTTCCACGCATAG -CCAACACCTTTGTTCCACGACAAG -CCAACACCTTTGTTCCACAAGCAG -CCAACACCTTTGTTCCACCGTCAA -CCAACACCTTTGTTCCACGCTGAA -CCAACACCTTTGTTCCACAGTACG -CCAACACCTTTGTTCCACATCCGA -CCAACACCTTTGTTCCACATGGGA -CCAACACCTTTGTTCCACGTGCAA -CCAACACCTTTGTTCCACGAGGAA -CCAACACCTTTGTTCCACCAGGTA -CCAACACCTTTGTTCCACGACTCT -CCAACACCTTTGTTCCACAGTCCT -CCAACACCTTTGTTCCACTAAGCC -CCAACACCTTTGTTCCACATAGCC -CCAACACCTTTGTTCCACTAACCG -CCAACACCTTTGTTCCACATGCCA -CCAACACCTTTGCTCGTAGGAAAC -CCAACACCTTTGCTCGTAAACACC -CCAACACCTTTGCTCGTAATCGAG -CCAACACCTTTGCTCGTACTCCTT -CCAACACCTTTGCTCGTACCTGTT -CCAACACCTTTGCTCGTACGGTTT -CCAACACCTTTGCTCGTAGTGGTT -CCAACACCTTTGCTCGTAGCCTTT -CCAACACCTTTGCTCGTAGGTCTT -CCAACACCTTTGCTCGTAACGCTT -CCAACACCTTTGCTCGTAAGCGTT -CCAACACCTTTGCTCGTATTCGTC -CCAACACCTTTGCTCGTATCTCTC -CCAACACCTTTGCTCGTATGGATC -CCAACACCTTTGCTCGTACACTTC -CCAACACCTTTGCTCGTAGTACTC -CCAACACCTTTGCTCGTAGATGTC -CCAACACCTTTGCTCGTAACAGTC -CCAACACCTTTGCTCGTATTGCTG -CCAACACCTTTGCTCGTATCCATG -CCAACACCTTTGCTCGTATGTGTG -CCAACACCTTTGCTCGTACTAGTG -CCAACACCTTTGCTCGTACATCTG -CCAACACCTTTGCTCGTAGAGTTG -CCAACACCTTTGCTCGTAAGACTG -CCAACACCTTTGCTCGTATCGGTA -CCAACACCTTTGCTCGTATGCCTA -CCAACACCTTTGCTCGTACCACTA -CCAACACCTTTGCTCGTAGGAGTA -CCAACACCTTTGCTCGTATCGTCT -CCAACACCTTTGCTCGTATGCACT -CCAACACCTTTGCTCGTACTGACT -CCAACACCTTTGCTCGTACAACCT -CCAACACCTTTGCTCGTAGCTACT -CCAACACCTTTGCTCGTAGGATCT -CCAACACCTTTGCTCGTAAAGGCT -CCAACACCTTTGCTCGTATCAACC -CCAACACCTTTGCTCGTATGTTCC -CCAACACCTTTGCTCGTAATTCCC -CCAACACCTTTGCTCGTATTCTCG -CCAACACCTTTGCTCGTATAGACG -CCAACACCTTTGCTCGTAGTAACG -CCAACACCTTTGCTCGTAACTTCG -CCAACACCTTTGCTCGTATACGCA -CCAACACCTTTGCTCGTACTTGCA -CCAACACCTTTGCTCGTACGAACA -CCAACACCTTTGCTCGTACAGTCA -CCAACACCTTTGCTCGTAGATCCA -CCAACACCTTTGCTCGTAACGACA -CCAACACCTTTGCTCGTAAGCTCA -CCAACACCTTTGCTCGTATCACGT -CCAACACCTTTGCTCGTACGTAGT -CCAACACCTTTGCTCGTAGTCAGT -CCAACACCTTTGCTCGTAGAAGGT -CCAACACCTTTGCTCGTAAACCGT -CCAACACCTTTGCTCGTATTGTGC -CCAACACCTTTGCTCGTACTAAGC -CCAACACCTTTGCTCGTAACTAGC -CCAACACCTTTGCTCGTAAGATGC -CCAACACCTTTGCTCGTATGAAGG -CCAACACCTTTGCTCGTACAATGG -CCAACACCTTTGCTCGTAATGAGG -CCAACACCTTTGCTCGTAAATGGG -CCAACACCTTTGCTCGTATCCTGA -CCAACACCTTTGCTCGTATAGCGA -CCAACACCTTTGCTCGTACACAGA -CCAACACCTTTGCTCGTAGCAAGA -CCAACACCTTTGCTCGTAGGTTGA -CCAACACCTTTGCTCGTATCCGAT -CCAACACCTTTGCTCGTATGGCAT -CCAACACCTTTGCTCGTACGAGAT -CCAACACCTTTGCTCGTATACCAC -CCAACACCTTTGCTCGTACAGAAC -CCAACACCTTTGCTCGTAGTCTAC -CCAACACCTTTGCTCGTAACGTAC -CCAACACCTTTGCTCGTAAGTGAC -CCAACACCTTTGCTCGTACTGTAG -CCAACACCTTTGCTCGTACCTAAG -CCAACACCTTTGCTCGTAGTTCAG -CCAACACCTTTGCTCGTAGCATAG -CCAACACCTTTGCTCGTAGACAAG -CCAACACCTTTGCTCGTAAAGCAG -CCAACACCTTTGCTCGTACGTCAA -CCAACACCTTTGCTCGTAGCTGAA -CCAACACCTTTGCTCGTAAGTACG -CCAACACCTTTGCTCGTAATCCGA -CCAACACCTTTGCTCGTAATGGGA -CCAACACCTTTGCTCGTAGTGCAA -CCAACACCTTTGCTCGTAGAGGAA -CCAACACCTTTGCTCGTACAGGTA -CCAACACCTTTGCTCGTAGACTCT -CCAACACCTTTGCTCGTAAGTCCT -CCAACACCTTTGCTCGTATAAGCC -CCAACACCTTTGCTCGTAATAGCC -CCAACACCTTTGCTCGTATAACCG -CCAACACCTTTGCTCGTAATGCCA -CCAACACCTTTGGTCGATGGAAAC -CCAACACCTTTGGTCGATAACACC -CCAACACCTTTGGTCGATATCGAG -CCAACACCTTTGGTCGATCTCCTT -CCAACACCTTTGGTCGATCCTGTT -CCAACACCTTTGGTCGATCGGTTT -CCAACACCTTTGGTCGATGTGGTT -CCAACACCTTTGGTCGATGCCTTT -CCAACACCTTTGGTCGATGGTCTT -CCAACACCTTTGGTCGATACGCTT -CCAACACCTTTGGTCGATAGCGTT -CCAACACCTTTGGTCGATTTCGTC -CCAACACCTTTGGTCGATTCTCTC -CCAACACCTTTGGTCGATTGGATC -CCAACACCTTTGGTCGATCACTTC -CCAACACCTTTGGTCGATGTACTC -CCAACACCTTTGGTCGATGATGTC -CCAACACCTTTGGTCGATACAGTC -CCAACACCTTTGGTCGATTTGCTG -CCAACACCTTTGGTCGATTCCATG -CCAACACCTTTGGTCGATTGTGTG -CCAACACCTTTGGTCGATCTAGTG -CCAACACCTTTGGTCGATCATCTG -CCAACACCTTTGGTCGATGAGTTG -CCAACACCTTTGGTCGATAGACTG -CCAACACCTTTGGTCGATTCGGTA -CCAACACCTTTGGTCGATTGCCTA -CCAACACCTTTGGTCGATCCACTA -CCAACACCTTTGGTCGATGGAGTA -CCAACACCTTTGGTCGATTCGTCT -CCAACACCTTTGGTCGATTGCACT -CCAACACCTTTGGTCGATCTGACT -CCAACACCTTTGGTCGATCAACCT -CCAACACCTTTGGTCGATGCTACT -CCAACACCTTTGGTCGATGGATCT -CCAACACCTTTGGTCGATAAGGCT -CCAACACCTTTGGTCGATTCAACC -CCAACACCTTTGGTCGATTGTTCC -CCAACACCTTTGGTCGATATTCCC -CCAACACCTTTGGTCGATTTCTCG -CCAACACCTTTGGTCGATTAGACG -CCAACACCTTTGGTCGATGTAACG -CCAACACCTTTGGTCGATACTTCG -CCAACACCTTTGGTCGATTACGCA -CCAACACCTTTGGTCGATCTTGCA -CCAACACCTTTGGTCGATCGAACA -CCAACACCTTTGGTCGATCAGTCA -CCAACACCTTTGGTCGATGATCCA -CCAACACCTTTGGTCGATACGACA -CCAACACCTTTGGTCGATAGCTCA -CCAACACCTTTGGTCGATTCACGT -CCAACACCTTTGGTCGATCGTAGT -CCAACACCTTTGGTCGATGTCAGT -CCAACACCTTTGGTCGATGAAGGT -CCAACACCTTTGGTCGATAACCGT -CCAACACCTTTGGTCGATTTGTGC -CCAACACCTTTGGTCGATCTAAGC -CCAACACCTTTGGTCGATACTAGC -CCAACACCTTTGGTCGATAGATGC -CCAACACCTTTGGTCGATTGAAGG -CCAACACCTTTGGTCGATCAATGG -CCAACACCTTTGGTCGATATGAGG -CCAACACCTTTGGTCGATAATGGG -CCAACACCTTTGGTCGATTCCTGA -CCAACACCTTTGGTCGATTAGCGA -CCAACACCTTTGGTCGATCACAGA -CCAACACCTTTGGTCGATGCAAGA -CCAACACCTTTGGTCGATGGTTGA -CCAACACCTTTGGTCGATTCCGAT -CCAACACCTTTGGTCGATTGGCAT -CCAACACCTTTGGTCGATCGAGAT -CCAACACCTTTGGTCGATTACCAC -CCAACACCTTTGGTCGATCAGAAC -CCAACACCTTTGGTCGATGTCTAC -CCAACACCTTTGGTCGATACGTAC -CCAACACCTTTGGTCGATAGTGAC -CCAACACCTTTGGTCGATCTGTAG -CCAACACCTTTGGTCGATCCTAAG -CCAACACCTTTGGTCGATGTTCAG -CCAACACCTTTGGTCGATGCATAG -CCAACACCTTTGGTCGATGACAAG -CCAACACCTTTGGTCGATAAGCAG -CCAACACCTTTGGTCGATCGTCAA -CCAACACCTTTGGTCGATGCTGAA -CCAACACCTTTGGTCGATAGTACG -CCAACACCTTTGGTCGATATCCGA -CCAACACCTTTGGTCGATATGGGA -CCAACACCTTTGGTCGATGTGCAA -CCAACACCTTTGGTCGATGAGGAA -CCAACACCTTTGGTCGATCAGGTA -CCAACACCTTTGGTCGATGACTCT -CCAACACCTTTGGTCGATAGTCCT -CCAACACCTTTGGTCGATTAAGCC -CCAACACCTTTGGTCGATATAGCC -CCAACACCTTTGGTCGATTAACCG -CCAACACCTTTGGTCGATATGCCA -CCAACACCTTTGGTCACAGGAAAC -CCAACACCTTTGGTCACAAACACC -CCAACACCTTTGGTCACAATCGAG -CCAACACCTTTGGTCACACTCCTT -CCAACACCTTTGGTCACACCTGTT -CCAACACCTTTGGTCACACGGTTT -CCAACACCTTTGGTCACAGTGGTT -CCAACACCTTTGGTCACAGCCTTT -CCAACACCTTTGGTCACAGGTCTT -CCAACACCTTTGGTCACAACGCTT -CCAACACCTTTGGTCACAAGCGTT -CCAACACCTTTGGTCACATTCGTC -CCAACACCTTTGGTCACATCTCTC -CCAACACCTTTGGTCACATGGATC -CCAACACCTTTGGTCACACACTTC -CCAACACCTTTGGTCACAGTACTC -CCAACACCTTTGGTCACAGATGTC -CCAACACCTTTGGTCACAACAGTC -CCAACACCTTTGGTCACATTGCTG -CCAACACCTTTGGTCACATCCATG -CCAACACCTTTGGTCACATGTGTG -CCAACACCTTTGGTCACACTAGTG -CCAACACCTTTGGTCACACATCTG -CCAACACCTTTGGTCACAGAGTTG -CCAACACCTTTGGTCACAAGACTG -CCAACACCTTTGGTCACATCGGTA -CCAACACCTTTGGTCACATGCCTA -CCAACACCTTTGGTCACACCACTA -CCAACACCTTTGGTCACAGGAGTA -CCAACACCTTTGGTCACATCGTCT -CCAACACCTTTGGTCACATGCACT -CCAACACCTTTGGTCACACTGACT -CCAACACCTTTGGTCACACAACCT -CCAACACCTTTGGTCACAGCTACT -CCAACACCTTTGGTCACAGGATCT -CCAACACCTTTGGTCACAAAGGCT -CCAACACCTTTGGTCACATCAACC -CCAACACCTTTGGTCACATGTTCC -CCAACACCTTTGGTCACAATTCCC -CCAACACCTTTGGTCACATTCTCG -CCAACACCTTTGGTCACATAGACG -CCAACACCTTTGGTCACAGTAACG -CCAACACCTTTGGTCACAACTTCG -CCAACACCTTTGGTCACATACGCA -CCAACACCTTTGGTCACACTTGCA -CCAACACCTTTGGTCACACGAACA -CCAACACCTTTGGTCACACAGTCA -CCAACACCTTTGGTCACAGATCCA -CCAACACCTTTGGTCACAACGACA -CCAACACCTTTGGTCACAAGCTCA -CCAACACCTTTGGTCACATCACGT -CCAACACCTTTGGTCACACGTAGT -CCAACACCTTTGGTCACAGTCAGT -CCAACACCTTTGGTCACAGAAGGT -CCAACACCTTTGGTCACAAACCGT -CCAACACCTTTGGTCACATTGTGC -CCAACACCTTTGGTCACACTAAGC -CCAACACCTTTGGTCACAACTAGC -CCAACACCTTTGGTCACAAGATGC -CCAACACCTTTGGTCACATGAAGG -CCAACACCTTTGGTCACACAATGG -CCAACACCTTTGGTCACAATGAGG -CCAACACCTTTGGTCACAAATGGG -CCAACACCTTTGGTCACATCCTGA -CCAACACCTTTGGTCACATAGCGA -CCAACACCTTTGGTCACACACAGA -CCAACACCTTTGGTCACAGCAAGA -CCAACACCTTTGGTCACAGGTTGA -CCAACACCTTTGGTCACATCCGAT -CCAACACCTTTGGTCACATGGCAT -CCAACACCTTTGGTCACACGAGAT -CCAACACCTTTGGTCACATACCAC -CCAACACCTTTGGTCACACAGAAC -CCAACACCTTTGGTCACAGTCTAC -CCAACACCTTTGGTCACAACGTAC -CCAACACCTTTGGTCACAAGTGAC -CCAACACCTTTGGTCACACTGTAG -CCAACACCTTTGGTCACACCTAAG -CCAACACCTTTGGTCACAGTTCAG -CCAACACCTTTGGTCACAGCATAG -CCAACACCTTTGGTCACAGACAAG -CCAACACCTTTGGTCACAAAGCAG -CCAACACCTTTGGTCACACGTCAA -CCAACACCTTTGGTCACAGCTGAA -CCAACACCTTTGGTCACAAGTACG -CCAACACCTTTGGTCACAATCCGA -CCAACACCTTTGGTCACAATGGGA -CCAACACCTTTGGTCACAGTGCAA -CCAACACCTTTGGTCACAGAGGAA -CCAACACCTTTGGTCACACAGGTA -CCAACACCTTTGGTCACAGACTCT -CCAACACCTTTGGTCACAAGTCCT -CCAACACCTTTGGTCACATAAGCC -CCAACACCTTTGGTCACAATAGCC -CCAACACCTTTGGTCACATAACCG -CCAACACCTTTGGTCACAATGCCA -CCAACACCTTTGCTGTTGGGAAAC -CCAACACCTTTGCTGTTGAACACC -CCAACACCTTTGCTGTTGATCGAG -CCAACACCTTTGCTGTTGCTCCTT -CCAACACCTTTGCTGTTGCCTGTT -CCAACACCTTTGCTGTTGCGGTTT -CCAACACCTTTGCTGTTGGTGGTT -CCAACACCTTTGCTGTTGGCCTTT -CCAACACCTTTGCTGTTGGGTCTT -CCAACACCTTTGCTGTTGACGCTT -CCAACACCTTTGCTGTTGAGCGTT -CCAACACCTTTGCTGTTGTTCGTC -CCAACACCTTTGCTGTTGTCTCTC -CCAACACCTTTGCTGTTGTGGATC -CCAACACCTTTGCTGTTGCACTTC -CCAACACCTTTGCTGTTGGTACTC -CCAACACCTTTGCTGTTGGATGTC -CCAACACCTTTGCTGTTGACAGTC -CCAACACCTTTGCTGTTGTTGCTG -CCAACACCTTTGCTGTTGTCCATG -CCAACACCTTTGCTGTTGTGTGTG -CCAACACCTTTGCTGTTGCTAGTG -CCAACACCTTTGCTGTTGCATCTG -CCAACACCTTTGCTGTTGGAGTTG -CCAACACCTTTGCTGTTGAGACTG -CCAACACCTTTGCTGTTGTCGGTA -CCAACACCTTTGCTGTTGTGCCTA -CCAACACCTTTGCTGTTGCCACTA -CCAACACCTTTGCTGTTGGGAGTA -CCAACACCTTTGCTGTTGTCGTCT -CCAACACCTTTGCTGTTGTGCACT -CCAACACCTTTGCTGTTGCTGACT -CCAACACCTTTGCTGTTGCAACCT -CCAACACCTTTGCTGTTGGCTACT -CCAACACCTTTGCTGTTGGGATCT -CCAACACCTTTGCTGTTGAAGGCT -CCAACACCTTTGCTGTTGTCAACC -CCAACACCTTTGCTGTTGTGTTCC -CCAACACCTTTGCTGTTGATTCCC -CCAACACCTTTGCTGTTGTTCTCG -CCAACACCTTTGCTGTTGTAGACG -CCAACACCTTTGCTGTTGGTAACG -CCAACACCTTTGCTGTTGACTTCG -CCAACACCTTTGCTGTTGTACGCA -CCAACACCTTTGCTGTTGCTTGCA -CCAACACCTTTGCTGTTGCGAACA -CCAACACCTTTGCTGTTGCAGTCA -CCAACACCTTTGCTGTTGGATCCA -CCAACACCTTTGCTGTTGACGACA -CCAACACCTTTGCTGTTGAGCTCA -CCAACACCTTTGCTGTTGTCACGT -CCAACACCTTTGCTGTTGCGTAGT -CCAACACCTTTGCTGTTGGTCAGT -CCAACACCTTTGCTGTTGGAAGGT -CCAACACCTTTGCTGTTGAACCGT -CCAACACCTTTGCTGTTGTTGTGC -CCAACACCTTTGCTGTTGCTAAGC -CCAACACCTTTGCTGTTGACTAGC -CCAACACCTTTGCTGTTGAGATGC -CCAACACCTTTGCTGTTGTGAAGG -CCAACACCTTTGCTGTTGCAATGG -CCAACACCTTTGCTGTTGATGAGG -CCAACACCTTTGCTGTTGAATGGG -CCAACACCTTTGCTGTTGTCCTGA -CCAACACCTTTGCTGTTGTAGCGA -CCAACACCTTTGCTGTTGCACAGA -CCAACACCTTTGCTGTTGGCAAGA -CCAACACCTTTGCTGTTGGGTTGA -CCAACACCTTTGCTGTTGTCCGAT -CCAACACCTTTGCTGTTGTGGCAT -CCAACACCTTTGCTGTTGCGAGAT -CCAACACCTTTGCTGTTGTACCAC -CCAACACCTTTGCTGTTGCAGAAC -CCAACACCTTTGCTGTTGGTCTAC -CCAACACCTTTGCTGTTGACGTAC -CCAACACCTTTGCTGTTGAGTGAC -CCAACACCTTTGCTGTTGCTGTAG -CCAACACCTTTGCTGTTGCCTAAG -CCAACACCTTTGCTGTTGGTTCAG -CCAACACCTTTGCTGTTGGCATAG -CCAACACCTTTGCTGTTGGACAAG -CCAACACCTTTGCTGTTGAAGCAG -CCAACACCTTTGCTGTTGCGTCAA -CCAACACCTTTGCTGTTGGCTGAA -CCAACACCTTTGCTGTTGAGTACG -CCAACACCTTTGCTGTTGATCCGA -CCAACACCTTTGCTGTTGATGGGA -CCAACACCTTTGCTGTTGGTGCAA -CCAACACCTTTGCTGTTGGAGGAA -CCAACACCTTTGCTGTTGCAGGTA -CCAACACCTTTGCTGTTGGACTCT -CCAACACCTTTGCTGTTGAGTCCT -CCAACACCTTTGCTGTTGTAAGCC -CCAACACCTTTGCTGTTGATAGCC -CCAACACCTTTGCTGTTGTAACCG -CCAACACCTTTGCTGTTGATGCCA -CCAACACCTTTGATGTCCGGAAAC -CCAACACCTTTGATGTCCAACACC -CCAACACCTTTGATGTCCATCGAG -CCAACACCTTTGATGTCCCTCCTT -CCAACACCTTTGATGTCCCCTGTT -CCAACACCTTTGATGTCCCGGTTT -CCAACACCTTTGATGTCCGTGGTT -CCAACACCTTTGATGTCCGCCTTT -CCAACACCTTTGATGTCCGGTCTT -CCAACACCTTTGATGTCCACGCTT -CCAACACCTTTGATGTCCAGCGTT -CCAACACCTTTGATGTCCTTCGTC -CCAACACCTTTGATGTCCTCTCTC -CCAACACCTTTGATGTCCTGGATC -CCAACACCTTTGATGTCCCACTTC -CCAACACCTTTGATGTCCGTACTC -CCAACACCTTTGATGTCCGATGTC -CCAACACCTTTGATGTCCACAGTC -CCAACACCTTTGATGTCCTTGCTG -CCAACACCTTTGATGTCCTCCATG -CCAACACCTTTGATGTCCTGTGTG -CCAACACCTTTGATGTCCCTAGTG -CCAACACCTTTGATGTCCCATCTG -CCAACACCTTTGATGTCCGAGTTG -CCAACACCTTTGATGTCCAGACTG -CCAACACCTTTGATGTCCTCGGTA -CCAACACCTTTGATGTCCTGCCTA -CCAACACCTTTGATGTCCCCACTA -CCAACACCTTTGATGTCCGGAGTA -CCAACACCTTTGATGTCCTCGTCT -CCAACACCTTTGATGTCCTGCACT -CCAACACCTTTGATGTCCCTGACT -CCAACACCTTTGATGTCCCAACCT -CCAACACCTTTGATGTCCGCTACT -CCAACACCTTTGATGTCCGGATCT -CCAACACCTTTGATGTCCAAGGCT -CCAACACCTTTGATGTCCTCAACC -CCAACACCTTTGATGTCCTGTTCC -CCAACACCTTTGATGTCCATTCCC -CCAACACCTTTGATGTCCTTCTCG -CCAACACCTTTGATGTCCTAGACG -CCAACACCTTTGATGTCCGTAACG -CCAACACCTTTGATGTCCACTTCG -CCAACACCTTTGATGTCCTACGCA -CCAACACCTTTGATGTCCCTTGCA -CCAACACCTTTGATGTCCCGAACA -CCAACACCTTTGATGTCCCAGTCA -CCAACACCTTTGATGTCCGATCCA -CCAACACCTTTGATGTCCACGACA -CCAACACCTTTGATGTCCAGCTCA -CCAACACCTTTGATGTCCTCACGT -CCAACACCTTTGATGTCCCGTAGT -CCAACACCTTTGATGTCCGTCAGT -CCAACACCTTTGATGTCCGAAGGT -CCAACACCTTTGATGTCCAACCGT -CCAACACCTTTGATGTCCTTGTGC -CCAACACCTTTGATGTCCCTAAGC -CCAACACCTTTGATGTCCACTAGC -CCAACACCTTTGATGTCCAGATGC -CCAACACCTTTGATGTCCTGAAGG -CCAACACCTTTGATGTCCCAATGG -CCAACACCTTTGATGTCCATGAGG -CCAACACCTTTGATGTCCAATGGG -CCAACACCTTTGATGTCCTCCTGA -CCAACACCTTTGATGTCCTAGCGA -CCAACACCTTTGATGTCCCACAGA -CCAACACCTTTGATGTCCGCAAGA -CCAACACCTTTGATGTCCGGTTGA -CCAACACCTTTGATGTCCTCCGAT -CCAACACCTTTGATGTCCTGGCAT -CCAACACCTTTGATGTCCCGAGAT -CCAACACCTTTGATGTCCTACCAC -CCAACACCTTTGATGTCCCAGAAC -CCAACACCTTTGATGTCCGTCTAC -CCAACACCTTTGATGTCCACGTAC -CCAACACCTTTGATGTCCAGTGAC -CCAACACCTTTGATGTCCCTGTAG -CCAACACCTTTGATGTCCCCTAAG -CCAACACCTTTGATGTCCGTTCAG -CCAACACCTTTGATGTCCGCATAG -CCAACACCTTTGATGTCCGACAAG -CCAACACCTTTGATGTCCAAGCAG -CCAACACCTTTGATGTCCCGTCAA -CCAACACCTTTGATGTCCGCTGAA -CCAACACCTTTGATGTCCAGTACG -CCAACACCTTTGATGTCCATCCGA -CCAACACCTTTGATGTCCATGGGA -CCAACACCTTTGATGTCCGTGCAA -CCAACACCTTTGATGTCCGAGGAA -CCAACACCTTTGATGTCCCAGGTA -CCAACACCTTTGATGTCCGACTCT -CCAACACCTTTGATGTCCAGTCCT -CCAACACCTTTGATGTCCTAAGCC -CCAACACCTTTGATGTCCATAGCC -CCAACACCTTTGATGTCCTAACCG -CCAACACCTTTGATGTCCATGCCA -CCAACACCTTTGGTGTGTGGAAAC -CCAACACCTTTGGTGTGTAACACC -CCAACACCTTTGGTGTGTATCGAG -CCAACACCTTTGGTGTGTCTCCTT -CCAACACCTTTGGTGTGTCCTGTT -CCAACACCTTTGGTGTGTCGGTTT -CCAACACCTTTGGTGTGTGTGGTT -CCAACACCTTTGGTGTGTGCCTTT -CCAACACCTTTGGTGTGTGGTCTT -CCAACACCTTTGGTGTGTACGCTT -CCAACACCTTTGGTGTGTAGCGTT -CCAACACCTTTGGTGTGTTTCGTC -CCAACACCTTTGGTGTGTTCTCTC -CCAACACCTTTGGTGTGTTGGATC -CCAACACCTTTGGTGTGTCACTTC -CCAACACCTTTGGTGTGTGTACTC -CCAACACCTTTGGTGTGTGATGTC -CCAACACCTTTGGTGTGTACAGTC -CCAACACCTTTGGTGTGTTTGCTG -CCAACACCTTTGGTGTGTTCCATG -CCAACACCTTTGGTGTGTTGTGTG -CCAACACCTTTGGTGTGTCTAGTG -CCAACACCTTTGGTGTGTCATCTG -CCAACACCTTTGGTGTGTGAGTTG -CCAACACCTTTGGTGTGTAGACTG -CCAACACCTTTGGTGTGTTCGGTA -CCAACACCTTTGGTGTGTTGCCTA -CCAACACCTTTGGTGTGTCCACTA -CCAACACCTTTGGTGTGTGGAGTA -CCAACACCTTTGGTGTGTTCGTCT -CCAACACCTTTGGTGTGTTGCACT -CCAACACCTTTGGTGTGTCTGACT -CCAACACCTTTGGTGTGTCAACCT -CCAACACCTTTGGTGTGTGCTACT -CCAACACCTTTGGTGTGTGGATCT -CCAACACCTTTGGTGTGTAAGGCT -CCAACACCTTTGGTGTGTTCAACC -CCAACACCTTTGGTGTGTTGTTCC -CCAACACCTTTGGTGTGTATTCCC -CCAACACCTTTGGTGTGTTTCTCG -CCAACACCTTTGGTGTGTTAGACG -CCAACACCTTTGGTGTGTGTAACG -CCAACACCTTTGGTGTGTACTTCG -CCAACACCTTTGGTGTGTTACGCA -CCAACACCTTTGGTGTGTCTTGCA -CCAACACCTTTGGTGTGTCGAACA -CCAACACCTTTGGTGTGTCAGTCA -CCAACACCTTTGGTGTGTGATCCA -CCAACACCTTTGGTGTGTACGACA -CCAACACCTTTGGTGTGTAGCTCA -CCAACACCTTTGGTGTGTTCACGT -CCAACACCTTTGGTGTGTCGTAGT -CCAACACCTTTGGTGTGTGTCAGT -CCAACACCTTTGGTGTGTGAAGGT -CCAACACCTTTGGTGTGTAACCGT -CCAACACCTTTGGTGTGTTTGTGC -CCAACACCTTTGGTGTGTCTAAGC -CCAACACCTTTGGTGTGTACTAGC -CCAACACCTTTGGTGTGTAGATGC -CCAACACCTTTGGTGTGTTGAAGG -CCAACACCTTTGGTGTGTCAATGG -CCAACACCTTTGGTGTGTATGAGG -CCAACACCTTTGGTGTGTAATGGG -CCAACACCTTTGGTGTGTTCCTGA -CCAACACCTTTGGTGTGTTAGCGA -CCAACACCTTTGGTGTGTCACAGA -CCAACACCTTTGGTGTGTGCAAGA -CCAACACCTTTGGTGTGTGGTTGA -CCAACACCTTTGGTGTGTTCCGAT -CCAACACCTTTGGTGTGTTGGCAT -CCAACACCTTTGGTGTGTCGAGAT -CCAACACCTTTGGTGTGTTACCAC -CCAACACCTTTGGTGTGTCAGAAC -CCAACACCTTTGGTGTGTGTCTAC -CCAACACCTTTGGTGTGTACGTAC -CCAACACCTTTGGTGTGTAGTGAC -CCAACACCTTTGGTGTGTCTGTAG -CCAACACCTTTGGTGTGTCCTAAG -CCAACACCTTTGGTGTGTGTTCAG -CCAACACCTTTGGTGTGTGCATAG -CCAACACCTTTGGTGTGTGACAAG -CCAACACCTTTGGTGTGTAAGCAG -CCAACACCTTTGGTGTGTCGTCAA -CCAACACCTTTGGTGTGTGCTGAA -CCAACACCTTTGGTGTGTAGTACG -CCAACACCTTTGGTGTGTATCCGA -CCAACACCTTTGGTGTGTATGGGA -CCAACACCTTTGGTGTGTGTGCAA -CCAACACCTTTGGTGTGTGAGGAA -CCAACACCTTTGGTGTGTCAGGTA -CCAACACCTTTGGTGTGTGACTCT -CCAACACCTTTGGTGTGTAGTCCT -CCAACACCTTTGGTGTGTTAAGCC -CCAACACCTTTGGTGTGTATAGCC -CCAACACCTTTGGTGTGTTAACCG -CCAACACCTTTGGTGTGTATGCCA -CCAACACCTTTGGTGCTAGGAAAC -CCAACACCTTTGGTGCTAAACACC -CCAACACCTTTGGTGCTAATCGAG -CCAACACCTTTGGTGCTACTCCTT -CCAACACCTTTGGTGCTACCTGTT -CCAACACCTTTGGTGCTACGGTTT -CCAACACCTTTGGTGCTAGTGGTT -CCAACACCTTTGGTGCTAGCCTTT -CCAACACCTTTGGTGCTAGGTCTT -CCAACACCTTTGGTGCTAACGCTT -CCAACACCTTTGGTGCTAAGCGTT -CCAACACCTTTGGTGCTATTCGTC -CCAACACCTTTGGTGCTATCTCTC -CCAACACCTTTGGTGCTATGGATC -CCAACACCTTTGGTGCTACACTTC -CCAACACCTTTGGTGCTAGTACTC -CCAACACCTTTGGTGCTAGATGTC -CCAACACCTTTGGTGCTAACAGTC -CCAACACCTTTGGTGCTATTGCTG -CCAACACCTTTGGTGCTATCCATG -CCAACACCTTTGGTGCTATGTGTG -CCAACACCTTTGGTGCTACTAGTG -CCAACACCTTTGGTGCTACATCTG -CCAACACCTTTGGTGCTAGAGTTG -CCAACACCTTTGGTGCTAAGACTG -CCAACACCTTTGGTGCTATCGGTA -CCAACACCTTTGGTGCTATGCCTA -CCAACACCTTTGGTGCTACCACTA -CCAACACCTTTGGTGCTAGGAGTA -CCAACACCTTTGGTGCTATCGTCT -CCAACACCTTTGGTGCTATGCACT -CCAACACCTTTGGTGCTACTGACT -CCAACACCTTTGGTGCTACAACCT -CCAACACCTTTGGTGCTAGCTACT -CCAACACCTTTGGTGCTAGGATCT -CCAACACCTTTGGTGCTAAAGGCT -CCAACACCTTTGGTGCTATCAACC -CCAACACCTTTGGTGCTATGTTCC -CCAACACCTTTGGTGCTAATTCCC -CCAACACCTTTGGTGCTATTCTCG -CCAACACCTTTGGTGCTATAGACG -CCAACACCTTTGGTGCTAGTAACG -CCAACACCTTTGGTGCTAACTTCG -CCAACACCTTTGGTGCTATACGCA -CCAACACCTTTGGTGCTACTTGCA -CCAACACCTTTGGTGCTACGAACA -CCAACACCTTTGGTGCTACAGTCA -CCAACACCTTTGGTGCTAGATCCA -CCAACACCTTTGGTGCTAACGACA -CCAACACCTTTGGTGCTAAGCTCA -CCAACACCTTTGGTGCTATCACGT -CCAACACCTTTGGTGCTACGTAGT -CCAACACCTTTGGTGCTAGTCAGT -CCAACACCTTTGGTGCTAGAAGGT -CCAACACCTTTGGTGCTAAACCGT -CCAACACCTTTGGTGCTATTGTGC -CCAACACCTTTGGTGCTACTAAGC -CCAACACCTTTGGTGCTAACTAGC -CCAACACCTTTGGTGCTAAGATGC -CCAACACCTTTGGTGCTATGAAGG -CCAACACCTTTGGTGCTACAATGG -CCAACACCTTTGGTGCTAATGAGG -CCAACACCTTTGGTGCTAAATGGG -CCAACACCTTTGGTGCTATCCTGA -CCAACACCTTTGGTGCTATAGCGA -CCAACACCTTTGGTGCTACACAGA -CCAACACCTTTGGTGCTAGCAAGA -CCAACACCTTTGGTGCTAGGTTGA -CCAACACCTTTGGTGCTATCCGAT -CCAACACCTTTGGTGCTATGGCAT -CCAACACCTTTGGTGCTACGAGAT -CCAACACCTTTGGTGCTATACCAC -CCAACACCTTTGGTGCTACAGAAC -CCAACACCTTTGGTGCTAGTCTAC -CCAACACCTTTGGTGCTAACGTAC -CCAACACCTTTGGTGCTAAGTGAC -CCAACACCTTTGGTGCTACTGTAG -CCAACACCTTTGGTGCTACCTAAG -CCAACACCTTTGGTGCTAGTTCAG -CCAACACCTTTGGTGCTAGCATAG -CCAACACCTTTGGTGCTAGACAAG -CCAACACCTTTGGTGCTAAAGCAG -CCAACACCTTTGGTGCTACGTCAA -CCAACACCTTTGGTGCTAGCTGAA -CCAACACCTTTGGTGCTAAGTACG -CCAACACCTTTGGTGCTAATCCGA -CCAACACCTTTGGTGCTAATGGGA -CCAACACCTTTGGTGCTAGTGCAA -CCAACACCTTTGGTGCTAGAGGAA -CCAACACCTTTGGTGCTACAGGTA -CCAACACCTTTGGTGCTAGACTCT -CCAACACCTTTGGTGCTAAGTCCT -CCAACACCTTTGGTGCTATAAGCC -CCAACACCTTTGGTGCTAATAGCC -CCAACACCTTTGGTGCTATAACCG -CCAACACCTTTGGTGCTAATGCCA -CCAACACCTTTGCTGCATGGAAAC -CCAACACCTTTGCTGCATAACACC -CCAACACCTTTGCTGCATATCGAG -CCAACACCTTTGCTGCATCTCCTT -CCAACACCTTTGCTGCATCCTGTT -CCAACACCTTTGCTGCATCGGTTT -CCAACACCTTTGCTGCATGTGGTT -CCAACACCTTTGCTGCATGCCTTT -CCAACACCTTTGCTGCATGGTCTT -CCAACACCTTTGCTGCATACGCTT -CCAACACCTTTGCTGCATAGCGTT -CCAACACCTTTGCTGCATTTCGTC -CCAACACCTTTGCTGCATTCTCTC -CCAACACCTTTGCTGCATTGGATC -CCAACACCTTTGCTGCATCACTTC -CCAACACCTTTGCTGCATGTACTC -CCAACACCTTTGCTGCATGATGTC -CCAACACCTTTGCTGCATACAGTC -CCAACACCTTTGCTGCATTTGCTG -CCAACACCTTTGCTGCATTCCATG -CCAACACCTTTGCTGCATTGTGTG -CCAACACCTTTGCTGCATCTAGTG -CCAACACCTTTGCTGCATCATCTG -CCAACACCTTTGCTGCATGAGTTG -CCAACACCTTTGCTGCATAGACTG -CCAACACCTTTGCTGCATTCGGTA -CCAACACCTTTGCTGCATTGCCTA -CCAACACCTTTGCTGCATCCACTA -CCAACACCTTTGCTGCATGGAGTA -CCAACACCTTTGCTGCATTCGTCT -CCAACACCTTTGCTGCATTGCACT -CCAACACCTTTGCTGCATCTGACT -CCAACACCTTTGCTGCATCAACCT -CCAACACCTTTGCTGCATGCTACT -CCAACACCTTTGCTGCATGGATCT -CCAACACCTTTGCTGCATAAGGCT -CCAACACCTTTGCTGCATTCAACC -CCAACACCTTTGCTGCATTGTTCC -CCAACACCTTTGCTGCATATTCCC -CCAACACCTTTGCTGCATTTCTCG -CCAACACCTTTGCTGCATTAGACG -CCAACACCTTTGCTGCATGTAACG -CCAACACCTTTGCTGCATACTTCG -CCAACACCTTTGCTGCATTACGCA -CCAACACCTTTGCTGCATCTTGCA -CCAACACCTTTGCTGCATCGAACA -CCAACACCTTTGCTGCATCAGTCA -CCAACACCTTTGCTGCATGATCCA -CCAACACCTTTGCTGCATACGACA -CCAACACCTTTGCTGCATAGCTCA -CCAACACCTTTGCTGCATTCACGT -CCAACACCTTTGCTGCATCGTAGT -CCAACACCTTTGCTGCATGTCAGT -CCAACACCTTTGCTGCATGAAGGT -CCAACACCTTTGCTGCATAACCGT -CCAACACCTTTGCTGCATTTGTGC -CCAACACCTTTGCTGCATCTAAGC -CCAACACCTTTGCTGCATACTAGC -CCAACACCTTTGCTGCATAGATGC -CCAACACCTTTGCTGCATTGAAGG -CCAACACCTTTGCTGCATCAATGG -CCAACACCTTTGCTGCATATGAGG -CCAACACCTTTGCTGCATAATGGG -CCAACACCTTTGCTGCATTCCTGA -CCAACACCTTTGCTGCATTAGCGA -CCAACACCTTTGCTGCATCACAGA -CCAACACCTTTGCTGCATGCAAGA -CCAACACCTTTGCTGCATGGTTGA -CCAACACCTTTGCTGCATTCCGAT -CCAACACCTTTGCTGCATTGGCAT -CCAACACCTTTGCTGCATCGAGAT -CCAACACCTTTGCTGCATTACCAC -CCAACACCTTTGCTGCATCAGAAC -CCAACACCTTTGCTGCATGTCTAC -CCAACACCTTTGCTGCATACGTAC -CCAACACCTTTGCTGCATAGTGAC -CCAACACCTTTGCTGCATCTGTAG -CCAACACCTTTGCTGCATCCTAAG -CCAACACCTTTGCTGCATGTTCAG -CCAACACCTTTGCTGCATGCATAG -CCAACACCTTTGCTGCATGACAAG -CCAACACCTTTGCTGCATAAGCAG -CCAACACCTTTGCTGCATCGTCAA -CCAACACCTTTGCTGCATGCTGAA -CCAACACCTTTGCTGCATAGTACG -CCAACACCTTTGCTGCATATCCGA -CCAACACCTTTGCTGCATATGGGA -CCAACACCTTTGCTGCATGTGCAA -CCAACACCTTTGCTGCATGAGGAA -CCAACACCTTTGCTGCATCAGGTA -CCAACACCTTTGCTGCATGACTCT -CCAACACCTTTGCTGCATAGTCCT -CCAACACCTTTGCTGCATTAAGCC -CCAACACCTTTGCTGCATATAGCC -CCAACACCTTTGCTGCATTAACCG -CCAACACCTTTGCTGCATATGCCA -CCAACACCTTTGTTGGAGGGAAAC -CCAACACCTTTGTTGGAGAACACC -CCAACACCTTTGTTGGAGATCGAG -CCAACACCTTTGTTGGAGCTCCTT -CCAACACCTTTGTTGGAGCCTGTT -CCAACACCTTTGTTGGAGCGGTTT -CCAACACCTTTGTTGGAGGTGGTT -CCAACACCTTTGTTGGAGGCCTTT -CCAACACCTTTGTTGGAGGGTCTT -CCAACACCTTTGTTGGAGACGCTT -CCAACACCTTTGTTGGAGAGCGTT -CCAACACCTTTGTTGGAGTTCGTC -CCAACACCTTTGTTGGAGTCTCTC -CCAACACCTTTGTTGGAGTGGATC -CCAACACCTTTGTTGGAGCACTTC -CCAACACCTTTGTTGGAGGTACTC -CCAACACCTTTGTTGGAGGATGTC -CCAACACCTTTGTTGGAGACAGTC -CCAACACCTTTGTTGGAGTTGCTG -CCAACACCTTTGTTGGAGTCCATG -CCAACACCTTTGTTGGAGTGTGTG -CCAACACCTTTGTTGGAGCTAGTG -CCAACACCTTTGTTGGAGCATCTG -CCAACACCTTTGTTGGAGGAGTTG -CCAACACCTTTGTTGGAGAGACTG -CCAACACCTTTGTTGGAGTCGGTA -CCAACACCTTTGTTGGAGTGCCTA -CCAACACCTTTGTTGGAGCCACTA -CCAACACCTTTGTTGGAGGGAGTA -CCAACACCTTTGTTGGAGTCGTCT -CCAACACCTTTGTTGGAGTGCACT -CCAACACCTTTGTTGGAGCTGACT -CCAACACCTTTGTTGGAGCAACCT -CCAACACCTTTGTTGGAGGCTACT -CCAACACCTTTGTTGGAGGGATCT -CCAACACCTTTGTTGGAGAAGGCT -CCAACACCTTTGTTGGAGTCAACC -CCAACACCTTTGTTGGAGTGTTCC -CCAACACCTTTGTTGGAGATTCCC -CCAACACCTTTGTTGGAGTTCTCG -CCAACACCTTTGTTGGAGTAGACG -CCAACACCTTTGTTGGAGGTAACG -CCAACACCTTTGTTGGAGACTTCG -CCAACACCTTTGTTGGAGTACGCA -CCAACACCTTTGTTGGAGCTTGCA -CCAACACCTTTGTTGGAGCGAACA -CCAACACCTTTGTTGGAGCAGTCA -CCAACACCTTTGTTGGAGGATCCA -CCAACACCTTTGTTGGAGACGACA -CCAACACCTTTGTTGGAGAGCTCA -CCAACACCTTTGTTGGAGTCACGT -CCAACACCTTTGTTGGAGCGTAGT -CCAACACCTTTGTTGGAGGTCAGT -CCAACACCTTTGTTGGAGGAAGGT -CCAACACCTTTGTTGGAGAACCGT -CCAACACCTTTGTTGGAGTTGTGC -CCAACACCTTTGTTGGAGCTAAGC -CCAACACCTTTGTTGGAGACTAGC -CCAACACCTTTGTTGGAGAGATGC -CCAACACCTTTGTTGGAGTGAAGG -CCAACACCTTTGTTGGAGCAATGG -CCAACACCTTTGTTGGAGATGAGG -CCAACACCTTTGTTGGAGAATGGG -CCAACACCTTTGTTGGAGTCCTGA -CCAACACCTTTGTTGGAGTAGCGA -CCAACACCTTTGTTGGAGCACAGA -CCAACACCTTTGTTGGAGGCAAGA -CCAACACCTTTGTTGGAGGGTTGA -CCAACACCTTTGTTGGAGTCCGAT -CCAACACCTTTGTTGGAGTGGCAT -CCAACACCTTTGTTGGAGCGAGAT -CCAACACCTTTGTTGGAGTACCAC -CCAACACCTTTGTTGGAGCAGAAC -CCAACACCTTTGTTGGAGGTCTAC -CCAACACCTTTGTTGGAGACGTAC -CCAACACCTTTGTTGGAGAGTGAC -CCAACACCTTTGTTGGAGCTGTAG -CCAACACCTTTGTTGGAGCCTAAG -CCAACACCTTTGTTGGAGGTTCAG -CCAACACCTTTGTTGGAGGCATAG -CCAACACCTTTGTTGGAGGACAAG -CCAACACCTTTGTTGGAGAAGCAG -CCAACACCTTTGTTGGAGCGTCAA -CCAACACCTTTGTTGGAGGCTGAA -CCAACACCTTTGTTGGAGAGTACG -CCAACACCTTTGTTGGAGATCCGA -CCAACACCTTTGTTGGAGATGGGA -CCAACACCTTTGTTGGAGGTGCAA -CCAACACCTTTGTTGGAGGAGGAA -CCAACACCTTTGTTGGAGCAGGTA -CCAACACCTTTGTTGGAGGACTCT -CCAACACCTTTGTTGGAGAGTCCT -CCAACACCTTTGTTGGAGTAAGCC -CCAACACCTTTGTTGGAGATAGCC -CCAACACCTTTGTTGGAGTAACCG -CCAACACCTTTGTTGGAGATGCCA -CCAACACCTTTGCTGAGAGGAAAC -CCAACACCTTTGCTGAGAAACACC -CCAACACCTTTGCTGAGAATCGAG -CCAACACCTTTGCTGAGACTCCTT -CCAACACCTTTGCTGAGACCTGTT -CCAACACCTTTGCTGAGACGGTTT -CCAACACCTTTGCTGAGAGTGGTT -CCAACACCTTTGCTGAGAGCCTTT -CCAACACCTTTGCTGAGAGGTCTT -CCAACACCTTTGCTGAGAACGCTT -CCAACACCTTTGCTGAGAAGCGTT -CCAACACCTTTGCTGAGATTCGTC -CCAACACCTTTGCTGAGATCTCTC -CCAACACCTTTGCTGAGATGGATC -CCAACACCTTTGCTGAGACACTTC -CCAACACCTTTGCTGAGAGTACTC -CCAACACCTTTGCTGAGAGATGTC -CCAACACCTTTGCTGAGAACAGTC -CCAACACCTTTGCTGAGATTGCTG -CCAACACCTTTGCTGAGATCCATG -CCAACACCTTTGCTGAGATGTGTG -CCAACACCTTTGCTGAGACTAGTG -CCAACACCTTTGCTGAGACATCTG -CCAACACCTTTGCTGAGAGAGTTG -CCAACACCTTTGCTGAGAAGACTG -CCAACACCTTTGCTGAGATCGGTA -CCAACACCTTTGCTGAGATGCCTA -CCAACACCTTTGCTGAGACCACTA -CCAACACCTTTGCTGAGAGGAGTA -CCAACACCTTTGCTGAGATCGTCT -CCAACACCTTTGCTGAGATGCACT -CCAACACCTTTGCTGAGACTGACT -CCAACACCTTTGCTGAGACAACCT -CCAACACCTTTGCTGAGAGCTACT -CCAACACCTTTGCTGAGAGGATCT -CCAACACCTTTGCTGAGAAAGGCT -CCAACACCTTTGCTGAGATCAACC -CCAACACCTTTGCTGAGATGTTCC -CCAACACCTTTGCTGAGAATTCCC -CCAACACCTTTGCTGAGATTCTCG -CCAACACCTTTGCTGAGATAGACG -CCAACACCTTTGCTGAGAGTAACG -CCAACACCTTTGCTGAGAACTTCG -CCAACACCTTTGCTGAGATACGCA -CCAACACCTTTGCTGAGACTTGCA -CCAACACCTTTGCTGAGACGAACA -CCAACACCTTTGCTGAGACAGTCA -CCAACACCTTTGCTGAGAGATCCA -CCAACACCTTTGCTGAGAACGACA -CCAACACCTTTGCTGAGAAGCTCA -CCAACACCTTTGCTGAGATCACGT -CCAACACCTTTGCTGAGACGTAGT -CCAACACCTTTGCTGAGAGTCAGT -CCAACACCTTTGCTGAGAGAAGGT -CCAACACCTTTGCTGAGAAACCGT -CCAACACCTTTGCTGAGATTGTGC -CCAACACCTTTGCTGAGACTAAGC -CCAACACCTTTGCTGAGAACTAGC -CCAACACCTTTGCTGAGAAGATGC -CCAACACCTTTGCTGAGATGAAGG -CCAACACCTTTGCTGAGACAATGG -CCAACACCTTTGCTGAGAATGAGG -CCAACACCTTTGCTGAGAAATGGG -CCAACACCTTTGCTGAGATCCTGA -CCAACACCTTTGCTGAGATAGCGA -CCAACACCTTTGCTGAGACACAGA -CCAACACCTTTGCTGAGAGCAAGA -CCAACACCTTTGCTGAGAGGTTGA -CCAACACCTTTGCTGAGATCCGAT -CCAACACCTTTGCTGAGATGGCAT -CCAACACCTTTGCTGAGACGAGAT -CCAACACCTTTGCTGAGATACCAC -CCAACACCTTTGCTGAGACAGAAC -CCAACACCTTTGCTGAGAGTCTAC -CCAACACCTTTGCTGAGAACGTAC -CCAACACCTTTGCTGAGAAGTGAC -CCAACACCTTTGCTGAGACTGTAG -CCAACACCTTTGCTGAGACCTAAG -CCAACACCTTTGCTGAGAGTTCAG -CCAACACCTTTGCTGAGAGCATAG -CCAACACCTTTGCTGAGAGACAAG -CCAACACCTTTGCTGAGAAAGCAG -CCAACACCTTTGCTGAGACGTCAA -CCAACACCTTTGCTGAGAGCTGAA -CCAACACCTTTGCTGAGAAGTACG -CCAACACCTTTGCTGAGAATCCGA -CCAACACCTTTGCTGAGAATGGGA -CCAACACCTTTGCTGAGAGTGCAA -CCAACACCTTTGCTGAGAGAGGAA -CCAACACCTTTGCTGAGACAGGTA -CCAACACCTTTGCTGAGAGACTCT -CCAACACCTTTGCTGAGAAGTCCT -CCAACACCTTTGCTGAGATAAGCC -CCAACACCTTTGCTGAGAATAGCC -CCAACACCTTTGCTGAGATAACCG -CCAACACCTTTGCTGAGAATGCCA -CCAACACCTTTGGTATCGGGAAAC -CCAACACCTTTGGTATCGAACACC -CCAACACCTTTGGTATCGATCGAG -CCAACACCTTTGGTATCGCTCCTT -CCAACACCTTTGGTATCGCCTGTT -CCAACACCTTTGGTATCGCGGTTT -CCAACACCTTTGGTATCGGTGGTT -CCAACACCTTTGGTATCGGCCTTT -CCAACACCTTTGGTATCGGGTCTT -CCAACACCTTTGGTATCGACGCTT -CCAACACCTTTGGTATCGAGCGTT -CCAACACCTTTGGTATCGTTCGTC -CCAACACCTTTGGTATCGTCTCTC -CCAACACCTTTGGTATCGTGGATC -CCAACACCTTTGGTATCGCACTTC -CCAACACCTTTGGTATCGGTACTC -CCAACACCTTTGGTATCGGATGTC -CCAACACCTTTGGTATCGACAGTC -CCAACACCTTTGGTATCGTTGCTG -CCAACACCTTTGGTATCGTCCATG -CCAACACCTTTGGTATCGTGTGTG -CCAACACCTTTGGTATCGCTAGTG -CCAACACCTTTGGTATCGCATCTG -CCAACACCTTTGGTATCGGAGTTG -CCAACACCTTTGGTATCGAGACTG -CCAACACCTTTGGTATCGTCGGTA -CCAACACCTTTGGTATCGTGCCTA -CCAACACCTTTGGTATCGCCACTA -CCAACACCTTTGGTATCGGGAGTA -CCAACACCTTTGGTATCGTCGTCT -CCAACACCTTTGGTATCGTGCACT -CCAACACCTTTGGTATCGCTGACT -CCAACACCTTTGGTATCGCAACCT -CCAACACCTTTGGTATCGGCTACT -CCAACACCTTTGGTATCGGGATCT -CCAACACCTTTGGTATCGAAGGCT -CCAACACCTTTGGTATCGTCAACC -CCAACACCTTTGGTATCGTGTTCC -CCAACACCTTTGGTATCGATTCCC -CCAACACCTTTGGTATCGTTCTCG -CCAACACCTTTGGTATCGTAGACG -CCAACACCTTTGGTATCGGTAACG -CCAACACCTTTGGTATCGACTTCG -CCAACACCTTTGGTATCGTACGCA -CCAACACCTTTGGTATCGCTTGCA -CCAACACCTTTGGTATCGCGAACA -CCAACACCTTTGGTATCGCAGTCA -CCAACACCTTTGGTATCGGATCCA -CCAACACCTTTGGTATCGACGACA -CCAACACCTTTGGTATCGAGCTCA -CCAACACCTTTGGTATCGTCACGT -CCAACACCTTTGGTATCGCGTAGT -CCAACACCTTTGGTATCGGTCAGT -CCAACACCTTTGGTATCGGAAGGT -CCAACACCTTTGGTATCGAACCGT -CCAACACCTTTGGTATCGTTGTGC -CCAACACCTTTGGTATCGCTAAGC -CCAACACCTTTGGTATCGACTAGC -CCAACACCTTTGGTATCGAGATGC -CCAACACCTTTGGTATCGTGAAGG -CCAACACCTTTGGTATCGCAATGG -CCAACACCTTTGGTATCGATGAGG -CCAACACCTTTGGTATCGAATGGG -CCAACACCTTTGGTATCGTCCTGA -CCAACACCTTTGGTATCGTAGCGA -CCAACACCTTTGGTATCGCACAGA -CCAACACCTTTGGTATCGGCAAGA -CCAACACCTTTGGTATCGGGTTGA -CCAACACCTTTGGTATCGTCCGAT -CCAACACCTTTGGTATCGTGGCAT -CCAACACCTTTGGTATCGCGAGAT -CCAACACCTTTGGTATCGTACCAC -CCAACACCTTTGGTATCGCAGAAC -CCAACACCTTTGGTATCGGTCTAC -CCAACACCTTTGGTATCGACGTAC -CCAACACCTTTGGTATCGAGTGAC -CCAACACCTTTGGTATCGCTGTAG -CCAACACCTTTGGTATCGCCTAAG -CCAACACCTTTGGTATCGGTTCAG -CCAACACCTTTGGTATCGGCATAG -CCAACACCTTTGGTATCGGACAAG -CCAACACCTTTGGTATCGAAGCAG -CCAACACCTTTGGTATCGCGTCAA -CCAACACCTTTGGTATCGGCTGAA -CCAACACCTTTGGTATCGAGTACG -CCAACACCTTTGGTATCGATCCGA -CCAACACCTTTGGTATCGATGGGA -CCAACACCTTTGGTATCGGTGCAA -CCAACACCTTTGGTATCGGAGGAA -CCAACACCTTTGGTATCGCAGGTA -CCAACACCTTTGGTATCGGACTCT -CCAACACCTTTGGTATCGAGTCCT -CCAACACCTTTGGTATCGTAAGCC -CCAACACCTTTGGTATCGATAGCC -CCAACACCTTTGGTATCGTAACCG -CCAACACCTTTGGTATCGATGCCA -CCAACACCTTTGCTATGCGGAAAC -CCAACACCTTTGCTATGCAACACC -CCAACACCTTTGCTATGCATCGAG -CCAACACCTTTGCTATGCCTCCTT -CCAACACCTTTGCTATGCCCTGTT -CCAACACCTTTGCTATGCCGGTTT -CCAACACCTTTGCTATGCGTGGTT -CCAACACCTTTGCTATGCGCCTTT -CCAACACCTTTGCTATGCGGTCTT -CCAACACCTTTGCTATGCACGCTT -CCAACACCTTTGCTATGCAGCGTT -CCAACACCTTTGCTATGCTTCGTC -CCAACACCTTTGCTATGCTCTCTC -CCAACACCTTTGCTATGCTGGATC -CCAACACCTTTGCTATGCCACTTC -CCAACACCTTTGCTATGCGTACTC -CCAACACCTTTGCTATGCGATGTC -CCAACACCTTTGCTATGCACAGTC -CCAACACCTTTGCTATGCTTGCTG -CCAACACCTTTGCTATGCTCCATG -CCAACACCTTTGCTATGCTGTGTG -CCAACACCTTTGCTATGCCTAGTG -CCAACACCTTTGCTATGCCATCTG -CCAACACCTTTGCTATGCGAGTTG -CCAACACCTTTGCTATGCAGACTG -CCAACACCTTTGCTATGCTCGGTA -CCAACACCTTTGCTATGCTGCCTA -CCAACACCTTTGCTATGCCCACTA -CCAACACCTTTGCTATGCGGAGTA -CCAACACCTTTGCTATGCTCGTCT -CCAACACCTTTGCTATGCTGCACT -CCAACACCTTTGCTATGCCTGACT -CCAACACCTTTGCTATGCCAACCT -CCAACACCTTTGCTATGCGCTACT -CCAACACCTTTGCTATGCGGATCT -CCAACACCTTTGCTATGCAAGGCT -CCAACACCTTTGCTATGCTCAACC -CCAACACCTTTGCTATGCTGTTCC -CCAACACCTTTGCTATGCATTCCC -CCAACACCTTTGCTATGCTTCTCG -CCAACACCTTTGCTATGCTAGACG -CCAACACCTTTGCTATGCGTAACG -CCAACACCTTTGCTATGCACTTCG -CCAACACCTTTGCTATGCTACGCA -CCAACACCTTTGCTATGCCTTGCA -CCAACACCTTTGCTATGCCGAACA -CCAACACCTTTGCTATGCCAGTCA -CCAACACCTTTGCTATGCGATCCA -CCAACACCTTTGCTATGCACGACA -CCAACACCTTTGCTATGCAGCTCA -CCAACACCTTTGCTATGCTCACGT -CCAACACCTTTGCTATGCCGTAGT -CCAACACCTTTGCTATGCGTCAGT -CCAACACCTTTGCTATGCGAAGGT -CCAACACCTTTGCTATGCAACCGT -CCAACACCTTTGCTATGCTTGTGC -CCAACACCTTTGCTATGCCTAAGC -CCAACACCTTTGCTATGCACTAGC -CCAACACCTTTGCTATGCAGATGC -CCAACACCTTTGCTATGCTGAAGG -CCAACACCTTTGCTATGCCAATGG -CCAACACCTTTGCTATGCATGAGG -CCAACACCTTTGCTATGCAATGGG -CCAACACCTTTGCTATGCTCCTGA -CCAACACCTTTGCTATGCTAGCGA -CCAACACCTTTGCTATGCCACAGA -CCAACACCTTTGCTATGCGCAAGA -CCAACACCTTTGCTATGCGGTTGA -CCAACACCTTTGCTATGCTCCGAT -CCAACACCTTTGCTATGCTGGCAT -CCAACACCTTTGCTATGCCGAGAT -CCAACACCTTTGCTATGCTACCAC -CCAACACCTTTGCTATGCCAGAAC -CCAACACCTTTGCTATGCGTCTAC -CCAACACCTTTGCTATGCACGTAC -CCAACACCTTTGCTATGCAGTGAC -CCAACACCTTTGCTATGCCTGTAG -CCAACACCTTTGCTATGCCCTAAG -CCAACACCTTTGCTATGCGTTCAG -CCAACACCTTTGCTATGCGCATAG -CCAACACCTTTGCTATGCGACAAG -CCAACACCTTTGCTATGCAAGCAG -CCAACACCTTTGCTATGCCGTCAA -CCAACACCTTTGCTATGCGCTGAA -CCAACACCTTTGCTATGCAGTACG -CCAACACCTTTGCTATGCATCCGA -CCAACACCTTTGCTATGCATGGGA -CCAACACCTTTGCTATGCGTGCAA -CCAACACCTTTGCTATGCGAGGAA -CCAACACCTTTGCTATGCCAGGTA -CCAACACCTTTGCTATGCGACTCT -CCAACACCTTTGCTATGCAGTCCT -CCAACACCTTTGCTATGCTAAGCC -CCAACACCTTTGCTATGCATAGCC -CCAACACCTTTGCTATGCTAACCG -CCAACACCTTTGCTATGCATGCCA -CCAACACCTTTGCTACCAGGAAAC -CCAACACCTTTGCTACCAAACACC -CCAACACCTTTGCTACCAATCGAG -CCAACACCTTTGCTACCACTCCTT -CCAACACCTTTGCTACCACCTGTT -CCAACACCTTTGCTACCACGGTTT -CCAACACCTTTGCTACCAGTGGTT -CCAACACCTTTGCTACCAGCCTTT -CCAACACCTTTGCTACCAGGTCTT -CCAACACCTTTGCTACCAACGCTT -CCAACACCTTTGCTACCAAGCGTT -CCAACACCTTTGCTACCATTCGTC -CCAACACCTTTGCTACCATCTCTC -CCAACACCTTTGCTACCATGGATC -CCAACACCTTTGCTACCACACTTC -CCAACACCTTTGCTACCAGTACTC -CCAACACCTTTGCTACCAGATGTC -CCAACACCTTTGCTACCAACAGTC -CCAACACCTTTGCTACCATTGCTG -CCAACACCTTTGCTACCATCCATG -CCAACACCTTTGCTACCATGTGTG -CCAACACCTTTGCTACCACTAGTG -CCAACACCTTTGCTACCACATCTG -CCAACACCTTTGCTACCAGAGTTG -CCAACACCTTTGCTACCAAGACTG -CCAACACCTTTGCTACCATCGGTA -CCAACACCTTTGCTACCATGCCTA -CCAACACCTTTGCTACCACCACTA -CCAACACCTTTGCTACCAGGAGTA -CCAACACCTTTGCTACCATCGTCT -CCAACACCTTTGCTACCATGCACT -CCAACACCTTTGCTACCACTGACT -CCAACACCTTTGCTACCACAACCT -CCAACACCTTTGCTACCAGCTACT -CCAACACCTTTGCTACCAGGATCT -CCAACACCTTTGCTACCAAAGGCT -CCAACACCTTTGCTACCATCAACC -CCAACACCTTTGCTACCATGTTCC -CCAACACCTTTGCTACCAATTCCC -CCAACACCTTTGCTACCATTCTCG -CCAACACCTTTGCTACCATAGACG -CCAACACCTTTGCTACCAGTAACG -CCAACACCTTTGCTACCAACTTCG -CCAACACCTTTGCTACCATACGCA -CCAACACCTTTGCTACCACTTGCA -CCAACACCTTTGCTACCACGAACA -CCAACACCTTTGCTACCACAGTCA -CCAACACCTTTGCTACCAGATCCA -CCAACACCTTTGCTACCAACGACA -CCAACACCTTTGCTACCAAGCTCA -CCAACACCTTTGCTACCATCACGT -CCAACACCTTTGCTACCACGTAGT -CCAACACCTTTGCTACCAGTCAGT -CCAACACCTTTGCTACCAGAAGGT -CCAACACCTTTGCTACCAAACCGT -CCAACACCTTTGCTACCATTGTGC -CCAACACCTTTGCTACCACTAAGC -CCAACACCTTTGCTACCAACTAGC -CCAACACCTTTGCTACCAAGATGC -CCAACACCTTTGCTACCATGAAGG -CCAACACCTTTGCTACCACAATGG -CCAACACCTTTGCTACCAATGAGG -CCAACACCTTTGCTACCAAATGGG -CCAACACCTTTGCTACCATCCTGA -CCAACACCTTTGCTACCATAGCGA -CCAACACCTTTGCTACCACACAGA -CCAACACCTTTGCTACCAGCAAGA -CCAACACCTTTGCTACCAGGTTGA -CCAACACCTTTGCTACCATCCGAT -CCAACACCTTTGCTACCATGGCAT -CCAACACCTTTGCTACCACGAGAT -CCAACACCTTTGCTACCATACCAC -CCAACACCTTTGCTACCACAGAAC -CCAACACCTTTGCTACCAGTCTAC -CCAACACCTTTGCTACCAACGTAC -CCAACACCTTTGCTACCAAGTGAC -CCAACACCTTTGCTACCACTGTAG -CCAACACCTTTGCTACCACCTAAG -CCAACACCTTTGCTACCAGTTCAG -CCAACACCTTTGCTACCAGCATAG -CCAACACCTTTGCTACCAGACAAG -CCAACACCTTTGCTACCAAAGCAG -CCAACACCTTTGCTACCACGTCAA -CCAACACCTTTGCTACCAGCTGAA -CCAACACCTTTGCTACCAAGTACG -CCAACACCTTTGCTACCAATCCGA -CCAACACCTTTGCTACCAATGGGA -CCAACACCTTTGCTACCAGTGCAA -CCAACACCTTTGCTACCAGAGGAA -CCAACACCTTTGCTACCACAGGTA -CCAACACCTTTGCTACCAGACTCT -CCAACACCTTTGCTACCAAGTCCT -CCAACACCTTTGCTACCATAAGCC -CCAACACCTTTGCTACCAATAGCC -CCAACACCTTTGCTACCATAACCG -CCAACACCTTTGCTACCAATGCCA -CCAACACCTTTGGTAGGAGGAAAC -CCAACACCTTTGGTAGGAAACACC -CCAACACCTTTGGTAGGAATCGAG -CCAACACCTTTGGTAGGACTCCTT -CCAACACCTTTGGTAGGACCTGTT -CCAACACCTTTGGTAGGACGGTTT -CCAACACCTTTGGTAGGAGTGGTT -CCAACACCTTTGGTAGGAGCCTTT -CCAACACCTTTGGTAGGAGGTCTT -CCAACACCTTTGGTAGGAACGCTT -CCAACACCTTTGGTAGGAAGCGTT -CCAACACCTTTGGTAGGATTCGTC -CCAACACCTTTGGTAGGATCTCTC -CCAACACCTTTGGTAGGATGGATC -CCAACACCTTTGGTAGGACACTTC -CCAACACCTTTGGTAGGAGTACTC -CCAACACCTTTGGTAGGAGATGTC -CCAACACCTTTGGTAGGAACAGTC -CCAACACCTTTGGTAGGATTGCTG -CCAACACCTTTGGTAGGATCCATG -CCAACACCTTTGGTAGGATGTGTG -CCAACACCTTTGGTAGGACTAGTG -CCAACACCTTTGGTAGGACATCTG -CCAACACCTTTGGTAGGAGAGTTG -CCAACACCTTTGGTAGGAAGACTG -CCAACACCTTTGGTAGGATCGGTA -CCAACACCTTTGGTAGGATGCCTA -CCAACACCTTTGGTAGGACCACTA -CCAACACCTTTGGTAGGAGGAGTA -CCAACACCTTTGGTAGGATCGTCT -CCAACACCTTTGGTAGGATGCACT -CCAACACCTTTGGTAGGACTGACT -CCAACACCTTTGGTAGGACAACCT -CCAACACCTTTGGTAGGAGCTACT -CCAACACCTTTGGTAGGAGGATCT -CCAACACCTTTGGTAGGAAAGGCT -CCAACACCTTTGGTAGGATCAACC -CCAACACCTTTGGTAGGATGTTCC -CCAACACCTTTGGTAGGAATTCCC -CCAACACCTTTGGTAGGATTCTCG -CCAACACCTTTGGTAGGATAGACG -CCAACACCTTTGGTAGGAGTAACG -CCAACACCTTTGGTAGGAACTTCG -CCAACACCTTTGGTAGGATACGCA -CCAACACCTTTGGTAGGACTTGCA -CCAACACCTTTGGTAGGACGAACA -CCAACACCTTTGGTAGGACAGTCA -CCAACACCTTTGGTAGGAGATCCA -CCAACACCTTTGGTAGGAACGACA -CCAACACCTTTGGTAGGAAGCTCA -CCAACACCTTTGGTAGGATCACGT -CCAACACCTTTGGTAGGACGTAGT -CCAACACCTTTGGTAGGAGTCAGT -CCAACACCTTTGGTAGGAGAAGGT -CCAACACCTTTGGTAGGAAACCGT -CCAACACCTTTGGTAGGATTGTGC -CCAACACCTTTGGTAGGACTAAGC -CCAACACCTTTGGTAGGAACTAGC -CCAACACCTTTGGTAGGAAGATGC -CCAACACCTTTGGTAGGATGAAGG -CCAACACCTTTGGTAGGACAATGG -CCAACACCTTTGGTAGGAATGAGG -CCAACACCTTTGGTAGGAAATGGG -CCAACACCTTTGGTAGGATCCTGA -CCAACACCTTTGGTAGGATAGCGA -CCAACACCTTTGGTAGGACACAGA -CCAACACCTTTGGTAGGAGCAAGA -CCAACACCTTTGGTAGGAGGTTGA -CCAACACCTTTGGTAGGATCCGAT -CCAACACCTTTGGTAGGATGGCAT -CCAACACCTTTGGTAGGACGAGAT -CCAACACCTTTGGTAGGATACCAC -CCAACACCTTTGGTAGGACAGAAC -CCAACACCTTTGGTAGGAGTCTAC -CCAACACCTTTGGTAGGAACGTAC -CCAACACCTTTGGTAGGAAGTGAC -CCAACACCTTTGGTAGGACTGTAG -CCAACACCTTTGGTAGGACCTAAG -CCAACACCTTTGGTAGGAGTTCAG -CCAACACCTTTGGTAGGAGCATAG -CCAACACCTTTGGTAGGAGACAAG -CCAACACCTTTGGTAGGAAAGCAG -CCAACACCTTTGGTAGGACGTCAA -CCAACACCTTTGGTAGGAGCTGAA -CCAACACCTTTGGTAGGAAGTACG -CCAACACCTTTGGTAGGAATCCGA -CCAACACCTTTGGTAGGAATGGGA -CCAACACCTTTGGTAGGAGTGCAA -CCAACACCTTTGGTAGGAGAGGAA -CCAACACCTTTGGTAGGACAGGTA -CCAACACCTTTGGTAGGAGACTCT -CCAACACCTTTGGTAGGAAGTCCT -CCAACACCTTTGGTAGGATAAGCC -CCAACACCTTTGGTAGGAATAGCC -CCAACACCTTTGGTAGGATAACCG -CCAACACCTTTGGTAGGAATGCCA -CCAACACCTTTGTCTTCGGGAAAC -CCAACACCTTTGTCTTCGAACACC -CCAACACCTTTGTCTTCGATCGAG -CCAACACCTTTGTCTTCGCTCCTT -CCAACACCTTTGTCTTCGCCTGTT -CCAACACCTTTGTCTTCGCGGTTT -CCAACACCTTTGTCTTCGGTGGTT -CCAACACCTTTGTCTTCGGCCTTT -CCAACACCTTTGTCTTCGGGTCTT -CCAACACCTTTGTCTTCGACGCTT -CCAACACCTTTGTCTTCGAGCGTT -CCAACACCTTTGTCTTCGTTCGTC -CCAACACCTTTGTCTTCGTCTCTC -CCAACACCTTTGTCTTCGTGGATC -CCAACACCTTTGTCTTCGCACTTC -CCAACACCTTTGTCTTCGGTACTC -CCAACACCTTTGTCTTCGGATGTC -CCAACACCTTTGTCTTCGACAGTC -CCAACACCTTTGTCTTCGTTGCTG -CCAACACCTTTGTCTTCGTCCATG -CCAACACCTTTGTCTTCGTGTGTG -CCAACACCTTTGTCTTCGCTAGTG -CCAACACCTTTGTCTTCGCATCTG -CCAACACCTTTGTCTTCGGAGTTG -CCAACACCTTTGTCTTCGAGACTG -CCAACACCTTTGTCTTCGTCGGTA -CCAACACCTTTGTCTTCGTGCCTA -CCAACACCTTTGTCTTCGCCACTA -CCAACACCTTTGTCTTCGGGAGTA -CCAACACCTTTGTCTTCGTCGTCT -CCAACACCTTTGTCTTCGTGCACT -CCAACACCTTTGTCTTCGCTGACT -CCAACACCTTTGTCTTCGCAACCT -CCAACACCTTTGTCTTCGGCTACT -CCAACACCTTTGTCTTCGGGATCT -CCAACACCTTTGTCTTCGAAGGCT -CCAACACCTTTGTCTTCGTCAACC -CCAACACCTTTGTCTTCGTGTTCC -CCAACACCTTTGTCTTCGATTCCC -CCAACACCTTTGTCTTCGTTCTCG -CCAACACCTTTGTCTTCGTAGACG -CCAACACCTTTGTCTTCGGTAACG -CCAACACCTTTGTCTTCGACTTCG -CCAACACCTTTGTCTTCGTACGCA -CCAACACCTTTGTCTTCGCTTGCA -CCAACACCTTTGTCTTCGCGAACA -CCAACACCTTTGTCTTCGCAGTCA -CCAACACCTTTGTCTTCGGATCCA -CCAACACCTTTGTCTTCGACGACA -CCAACACCTTTGTCTTCGAGCTCA -CCAACACCTTTGTCTTCGTCACGT -CCAACACCTTTGTCTTCGCGTAGT -CCAACACCTTTGTCTTCGGTCAGT -CCAACACCTTTGTCTTCGGAAGGT -CCAACACCTTTGTCTTCGAACCGT -CCAACACCTTTGTCTTCGTTGTGC -CCAACACCTTTGTCTTCGCTAAGC -CCAACACCTTTGTCTTCGACTAGC -CCAACACCTTTGTCTTCGAGATGC -CCAACACCTTTGTCTTCGTGAAGG -CCAACACCTTTGTCTTCGCAATGG -CCAACACCTTTGTCTTCGATGAGG -CCAACACCTTTGTCTTCGAATGGG -CCAACACCTTTGTCTTCGTCCTGA -CCAACACCTTTGTCTTCGTAGCGA -CCAACACCTTTGTCTTCGCACAGA -CCAACACCTTTGTCTTCGGCAAGA -CCAACACCTTTGTCTTCGGGTTGA -CCAACACCTTTGTCTTCGTCCGAT -CCAACACCTTTGTCTTCGTGGCAT -CCAACACCTTTGTCTTCGCGAGAT -CCAACACCTTTGTCTTCGTACCAC -CCAACACCTTTGTCTTCGCAGAAC -CCAACACCTTTGTCTTCGGTCTAC -CCAACACCTTTGTCTTCGACGTAC -CCAACACCTTTGTCTTCGAGTGAC -CCAACACCTTTGTCTTCGCTGTAG -CCAACACCTTTGTCTTCGCCTAAG -CCAACACCTTTGTCTTCGGTTCAG -CCAACACCTTTGTCTTCGGCATAG -CCAACACCTTTGTCTTCGGACAAG -CCAACACCTTTGTCTTCGAAGCAG -CCAACACCTTTGTCTTCGCGTCAA -CCAACACCTTTGTCTTCGGCTGAA -CCAACACCTTTGTCTTCGAGTACG -CCAACACCTTTGTCTTCGATCCGA -CCAACACCTTTGTCTTCGATGGGA -CCAACACCTTTGTCTTCGGTGCAA -CCAACACCTTTGTCTTCGGAGGAA -CCAACACCTTTGTCTTCGCAGGTA -CCAACACCTTTGTCTTCGGACTCT -CCAACACCTTTGTCTTCGAGTCCT -CCAACACCTTTGTCTTCGTAAGCC -CCAACACCTTTGTCTTCGATAGCC -CCAACACCTTTGTCTTCGTAACCG -CCAACACCTTTGTCTTCGATGCCA -CCAACACCTTTGACTTGCGGAAAC -CCAACACCTTTGACTTGCAACACC -CCAACACCTTTGACTTGCATCGAG -CCAACACCTTTGACTTGCCTCCTT -CCAACACCTTTGACTTGCCCTGTT -CCAACACCTTTGACTTGCCGGTTT -CCAACACCTTTGACTTGCGTGGTT -CCAACACCTTTGACTTGCGCCTTT -CCAACACCTTTGACTTGCGGTCTT -CCAACACCTTTGACTTGCACGCTT -CCAACACCTTTGACTTGCAGCGTT -CCAACACCTTTGACTTGCTTCGTC -CCAACACCTTTGACTTGCTCTCTC -CCAACACCTTTGACTTGCTGGATC -CCAACACCTTTGACTTGCCACTTC -CCAACACCTTTGACTTGCGTACTC -CCAACACCTTTGACTTGCGATGTC -CCAACACCTTTGACTTGCACAGTC -CCAACACCTTTGACTTGCTTGCTG -CCAACACCTTTGACTTGCTCCATG -CCAACACCTTTGACTTGCTGTGTG -CCAACACCTTTGACTTGCCTAGTG -CCAACACCTTTGACTTGCCATCTG -CCAACACCTTTGACTTGCGAGTTG -CCAACACCTTTGACTTGCAGACTG -CCAACACCTTTGACTTGCTCGGTA -CCAACACCTTTGACTTGCTGCCTA -CCAACACCTTTGACTTGCCCACTA -CCAACACCTTTGACTTGCGGAGTA -CCAACACCTTTGACTTGCTCGTCT -CCAACACCTTTGACTTGCTGCACT -CCAACACCTTTGACTTGCCTGACT -CCAACACCTTTGACTTGCCAACCT -CCAACACCTTTGACTTGCGCTACT -CCAACACCTTTGACTTGCGGATCT -CCAACACCTTTGACTTGCAAGGCT -CCAACACCTTTGACTTGCTCAACC -CCAACACCTTTGACTTGCTGTTCC -CCAACACCTTTGACTTGCATTCCC -CCAACACCTTTGACTTGCTTCTCG -CCAACACCTTTGACTTGCTAGACG -CCAACACCTTTGACTTGCGTAACG -CCAACACCTTTGACTTGCACTTCG -CCAACACCTTTGACTTGCTACGCA -CCAACACCTTTGACTTGCCTTGCA -CCAACACCTTTGACTTGCCGAACA -CCAACACCTTTGACTTGCCAGTCA -CCAACACCTTTGACTTGCGATCCA -CCAACACCTTTGACTTGCACGACA -CCAACACCTTTGACTTGCAGCTCA -CCAACACCTTTGACTTGCTCACGT -CCAACACCTTTGACTTGCCGTAGT -CCAACACCTTTGACTTGCGTCAGT -CCAACACCTTTGACTTGCGAAGGT -CCAACACCTTTGACTTGCAACCGT -CCAACACCTTTGACTTGCTTGTGC -CCAACACCTTTGACTTGCCTAAGC -CCAACACCTTTGACTTGCACTAGC -CCAACACCTTTGACTTGCAGATGC -CCAACACCTTTGACTTGCTGAAGG -CCAACACCTTTGACTTGCCAATGG -CCAACACCTTTGACTTGCATGAGG -CCAACACCTTTGACTTGCAATGGG -CCAACACCTTTGACTTGCTCCTGA -CCAACACCTTTGACTTGCTAGCGA -CCAACACCTTTGACTTGCCACAGA -CCAACACCTTTGACTTGCGCAAGA -CCAACACCTTTGACTTGCGGTTGA -CCAACACCTTTGACTTGCTCCGAT -CCAACACCTTTGACTTGCTGGCAT -CCAACACCTTTGACTTGCCGAGAT -CCAACACCTTTGACTTGCTACCAC -CCAACACCTTTGACTTGCCAGAAC -CCAACACCTTTGACTTGCGTCTAC -CCAACACCTTTGACTTGCACGTAC -CCAACACCTTTGACTTGCAGTGAC -CCAACACCTTTGACTTGCCTGTAG -CCAACACCTTTGACTTGCCCTAAG -CCAACACCTTTGACTTGCGTTCAG -CCAACACCTTTGACTTGCGCATAG -CCAACACCTTTGACTTGCGACAAG -CCAACACCTTTGACTTGCAAGCAG -CCAACACCTTTGACTTGCCGTCAA -CCAACACCTTTGACTTGCGCTGAA -CCAACACCTTTGACTTGCAGTACG -CCAACACCTTTGACTTGCATCCGA -CCAACACCTTTGACTTGCATGGGA -CCAACACCTTTGACTTGCGTGCAA -CCAACACCTTTGACTTGCGAGGAA -CCAACACCTTTGACTTGCCAGGTA -CCAACACCTTTGACTTGCGACTCT -CCAACACCTTTGACTTGCAGTCCT -CCAACACCTTTGACTTGCTAAGCC -CCAACACCTTTGACTTGCATAGCC -CCAACACCTTTGACTTGCTAACCG -CCAACACCTTTGACTTGCATGCCA -CCAACACCTTTGACTCTGGGAAAC -CCAACACCTTTGACTCTGAACACC -CCAACACCTTTGACTCTGATCGAG -CCAACACCTTTGACTCTGCTCCTT -CCAACACCTTTGACTCTGCCTGTT -CCAACACCTTTGACTCTGCGGTTT -CCAACACCTTTGACTCTGGTGGTT -CCAACACCTTTGACTCTGGCCTTT -CCAACACCTTTGACTCTGGGTCTT -CCAACACCTTTGACTCTGACGCTT -CCAACACCTTTGACTCTGAGCGTT -CCAACACCTTTGACTCTGTTCGTC -CCAACACCTTTGACTCTGTCTCTC -CCAACACCTTTGACTCTGTGGATC -CCAACACCTTTGACTCTGCACTTC -CCAACACCTTTGACTCTGGTACTC -CCAACACCTTTGACTCTGGATGTC -CCAACACCTTTGACTCTGACAGTC -CCAACACCTTTGACTCTGTTGCTG -CCAACACCTTTGACTCTGTCCATG -CCAACACCTTTGACTCTGTGTGTG -CCAACACCTTTGACTCTGCTAGTG -CCAACACCTTTGACTCTGCATCTG -CCAACACCTTTGACTCTGGAGTTG -CCAACACCTTTGACTCTGAGACTG -CCAACACCTTTGACTCTGTCGGTA -CCAACACCTTTGACTCTGTGCCTA -CCAACACCTTTGACTCTGCCACTA -CCAACACCTTTGACTCTGGGAGTA -CCAACACCTTTGACTCTGTCGTCT -CCAACACCTTTGACTCTGTGCACT -CCAACACCTTTGACTCTGCTGACT -CCAACACCTTTGACTCTGCAACCT -CCAACACCTTTGACTCTGGCTACT -CCAACACCTTTGACTCTGGGATCT -CCAACACCTTTGACTCTGAAGGCT -CCAACACCTTTGACTCTGTCAACC -CCAACACCTTTGACTCTGTGTTCC -CCAACACCTTTGACTCTGATTCCC -CCAACACCTTTGACTCTGTTCTCG -CCAACACCTTTGACTCTGTAGACG -CCAACACCTTTGACTCTGGTAACG -CCAACACCTTTGACTCTGACTTCG -CCAACACCTTTGACTCTGTACGCA -CCAACACCTTTGACTCTGCTTGCA -CCAACACCTTTGACTCTGCGAACA -CCAACACCTTTGACTCTGCAGTCA -CCAACACCTTTGACTCTGGATCCA -CCAACACCTTTGACTCTGACGACA -CCAACACCTTTGACTCTGAGCTCA -CCAACACCTTTGACTCTGTCACGT -CCAACACCTTTGACTCTGCGTAGT -CCAACACCTTTGACTCTGGTCAGT -CCAACACCTTTGACTCTGGAAGGT -CCAACACCTTTGACTCTGAACCGT -CCAACACCTTTGACTCTGTTGTGC -CCAACACCTTTGACTCTGCTAAGC -CCAACACCTTTGACTCTGACTAGC -CCAACACCTTTGACTCTGAGATGC -CCAACACCTTTGACTCTGTGAAGG -CCAACACCTTTGACTCTGCAATGG -CCAACACCTTTGACTCTGATGAGG -CCAACACCTTTGACTCTGAATGGG -CCAACACCTTTGACTCTGTCCTGA -CCAACACCTTTGACTCTGTAGCGA -CCAACACCTTTGACTCTGCACAGA -CCAACACCTTTGACTCTGGCAAGA -CCAACACCTTTGACTCTGGGTTGA -CCAACACCTTTGACTCTGTCCGAT -CCAACACCTTTGACTCTGTGGCAT -CCAACACCTTTGACTCTGCGAGAT -CCAACACCTTTGACTCTGTACCAC -CCAACACCTTTGACTCTGCAGAAC -CCAACACCTTTGACTCTGGTCTAC -CCAACACCTTTGACTCTGACGTAC -CCAACACCTTTGACTCTGAGTGAC -CCAACACCTTTGACTCTGCTGTAG -CCAACACCTTTGACTCTGCCTAAG -CCAACACCTTTGACTCTGGTTCAG -CCAACACCTTTGACTCTGGCATAG -CCAACACCTTTGACTCTGGACAAG -CCAACACCTTTGACTCTGAAGCAG -CCAACACCTTTGACTCTGCGTCAA -CCAACACCTTTGACTCTGGCTGAA -CCAACACCTTTGACTCTGAGTACG -CCAACACCTTTGACTCTGATCCGA -CCAACACCTTTGACTCTGATGGGA -CCAACACCTTTGACTCTGGTGCAA -CCAACACCTTTGACTCTGGAGGAA -CCAACACCTTTGACTCTGCAGGTA -CCAACACCTTTGACTCTGGACTCT -CCAACACCTTTGACTCTGAGTCCT -CCAACACCTTTGACTCTGTAAGCC -CCAACACCTTTGACTCTGATAGCC -CCAACACCTTTGACTCTGTAACCG -CCAACACCTTTGACTCTGATGCCA -CCAACACCTTTGCCTCAAGGAAAC -CCAACACCTTTGCCTCAAAACACC -CCAACACCTTTGCCTCAAATCGAG -CCAACACCTTTGCCTCAACTCCTT -CCAACACCTTTGCCTCAACCTGTT -CCAACACCTTTGCCTCAACGGTTT -CCAACACCTTTGCCTCAAGTGGTT -CCAACACCTTTGCCTCAAGCCTTT -CCAACACCTTTGCCTCAAGGTCTT -CCAACACCTTTGCCTCAAACGCTT -CCAACACCTTTGCCTCAAAGCGTT -CCAACACCTTTGCCTCAATTCGTC -CCAACACCTTTGCCTCAATCTCTC -CCAACACCTTTGCCTCAATGGATC -CCAACACCTTTGCCTCAACACTTC -CCAACACCTTTGCCTCAAGTACTC -CCAACACCTTTGCCTCAAGATGTC -CCAACACCTTTGCCTCAAACAGTC -CCAACACCTTTGCCTCAATTGCTG -CCAACACCTTTGCCTCAATCCATG -CCAACACCTTTGCCTCAATGTGTG -CCAACACCTTTGCCTCAACTAGTG -CCAACACCTTTGCCTCAACATCTG -CCAACACCTTTGCCTCAAGAGTTG -CCAACACCTTTGCCTCAAAGACTG -CCAACACCTTTGCCTCAATCGGTA -CCAACACCTTTGCCTCAATGCCTA -CCAACACCTTTGCCTCAACCACTA -CCAACACCTTTGCCTCAAGGAGTA -CCAACACCTTTGCCTCAATCGTCT -CCAACACCTTTGCCTCAATGCACT -CCAACACCTTTGCCTCAACTGACT -CCAACACCTTTGCCTCAACAACCT -CCAACACCTTTGCCTCAAGCTACT -CCAACACCTTTGCCTCAAGGATCT -CCAACACCTTTGCCTCAAAAGGCT -CCAACACCTTTGCCTCAATCAACC -CCAACACCTTTGCCTCAATGTTCC -CCAACACCTTTGCCTCAAATTCCC -CCAACACCTTTGCCTCAATTCTCG -CCAACACCTTTGCCTCAATAGACG -CCAACACCTTTGCCTCAAGTAACG -CCAACACCTTTGCCTCAAACTTCG -CCAACACCTTTGCCTCAATACGCA -CCAACACCTTTGCCTCAACTTGCA -CCAACACCTTTGCCTCAACGAACA -CCAACACCTTTGCCTCAACAGTCA -CCAACACCTTTGCCTCAAGATCCA -CCAACACCTTTGCCTCAAACGACA -CCAACACCTTTGCCTCAAAGCTCA -CCAACACCTTTGCCTCAATCACGT -CCAACACCTTTGCCTCAACGTAGT -CCAACACCTTTGCCTCAAGTCAGT -CCAACACCTTTGCCTCAAGAAGGT -CCAACACCTTTGCCTCAAAACCGT -CCAACACCTTTGCCTCAATTGTGC -CCAACACCTTTGCCTCAACTAAGC -CCAACACCTTTGCCTCAAACTAGC -CCAACACCTTTGCCTCAAAGATGC -CCAACACCTTTGCCTCAATGAAGG -CCAACACCTTTGCCTCAACAATGG -CCAACACCTTTGCCTCAAATGAGG -CCAACACCTTTGCCTCAAAATGGG -CCAACACCTTTGCCTCAATCCTGA -CCAACACCTTTGCCTCAATAGCGA -CCAACACCTTTGCCTCAACACAGA -CCAACACCTTTGCCTCAAGCAAGA -CCAACACCTTTGCCTCAAGGTTGA -CCAACACCTTTGCCTCAATCCGAT -CCAACACCTTTGCCTCAATGGCAT -CCAACACCTTTGCCTCAACGAGAT -CCAACACCTTTGCCTCAATACCAC -CCAACACCTTTGCCTCAACAGAAC -CCAACACCTTTGCCTCAAGTCTAC -CCAACACCTTTGCCTCAAACGTAC -CCAACACCTTTGCCTCAAAGTGAC -CCAACACCTTTGCCTCAACTGTAG -CCAACACCTTTGCCTCAACCTAAG -CCAACACCTTTGCCTCAAGTTCAG -CCAACACCTTTGCCTCAAGCATAG -CCAACACCTTTGCCTCAAGACAAG -CCAACACCTTTGCCTCAAAAGCAG -CCAACACCTTTGCCTCAACGTCAA -CCAACACCTTTGCCTCAAGCTGAA -CCAACACCTTTGCCTCAAAGTACG -CCAACACCTTTGCCTCAAATCCGA -CCAACACCTTTGCCTCAAATGGGA -CCAACACCTTTGCCTCAAGTGCAA -CCAACACCTTTGCCTCAAGAGGAA -CCAACACCTTTGCCTCAACAGGTA -CCAACACCTTTGCCTCAAGACTCT -CCAACACCTTTGCCTCAAAGTCCT -CCAACACCTTTGCCTCAATAAGCC -CCAACACCTTTGCCTCAAATAGCC -CCAACACCTTTGCCTCAATAACCG -CCAACACCTTTGCCTCAAATGCCA -CCAACACCTTTGACTGCTGGAAAC -CCAACACCTTTGACTGCTAACACC -CCAACACCTTTGACTGCTATCGAG -CCAACACCTTTGACTGCTCTCCTT -CCAACACCTTTGACTGCTCCTGTT -CCAACACCTTTGACTGCTCGGTTT -CCAACACCTTTGACTGCTGTGGTT -CCAACACCTTTGACTGCTGCCTTT -CCAACACCTTTGACTGCTGGTCTT -CCAACACCTTTGACTGCTACGCTT -CCAACACCTTTGACTGCTAGCGTT -CCAACACCTTTGACTGCTTTCGTC -CCAACACCTTTGACTGCTTCTCTC -CCAACACCTTTGACTGCTTGGATC -CCAACACCTTTGACTGCTCACTTC -CCAACACCTTTGACTGCTGTACTC -CCAACACCTTTGACTGCTGATGTC -CCAACACCTTTGACTGCTACAGTC -CCAACACCTTTGACTGCTTTGCTG -CCAACACCTTTGACTGCTTCCATG -CCAACACCTTTGACTGCTTGTGTG -CCAACACCTTTGACTGCTCTAGTG -CCAACACCTTTGACTGCTCATCTG -CCAACACCTTTGACTGCTGAGTTG -CCAACACCTTTGACTGCTAGACTG -CCAACACCTTTGACTGCTTCGGTA -CCAACACCTTTGACTGCTTGCCTA -CCAACACCTTTGACTGCTCCACTA -CCAACACCTTTGACTGCTGGAGTA -CCAACACCTTTGACTGCTTCGTCT -CCAACACCTTTGACTGCTTGCACT -CCAACACCTTTGACTGCTCTGACT -CCAACACCTTTGACTGCTCAACCT -CCAACACCTTTGACTGCTGCTACT -CCAACACCTTTGACTGCTGGATCT -CCAACACCTTTGACTGCTAAGGCT -CCAACACCTTTGACTGCTTCAACC -CCAACACCTTTGACTGCTTGTTCC -CCAACACCTTTGACTGCTATTCCC -CCAACACCTTTGACTGCTTTCTCG -CCAACACCTTTGACTGCTTAGACG -CCAACACCTTTGACTGCTGTAACG -CCAACACCTTTGACTGCTACTTCG -CCAACACCTTTGACTGCTTACGCA -CCAACACCTTTGACTGCTCTTGCA -CCAACACCTTTGACTGCTCGAACA -CCAACACCTTTGACTGCTCAGTCA -CCAACACCTTTGACTGCTGATCCA -CCAACACCTTTGACTGCTACGACA -CCAACACCTTTGACTGCTAGCTCA -CCAACACCTTTGACTGCTTCACGT -CCAACACCTTTGACTGCTCGTAGT -CCAACACCTTTGACTGCTGTCAGT -CCAACACCTTTGACTGCTGAAGGT -CCAACACCTTTGACTGCTAACCGT -CCAACACCTTTGACTGCTTTGTGC -CCAACACCTTTGACTGCTCTAAGC -CCAACACCTTTGACTGCTACTAGC -CCAACACCTTTGACTGCTAGATGC -CCAACACCTTTGACTGCTTGAAGG -CCAACACCTTTGACTGCTCAATGG -CCAACACCTTTGACTGCTATGAGG -CCAACACCTTTGACTGCTAATGGG -CCAACACCTTTGACTGCTTCCTGA -CCAACACCTTTGACTGCTTAGCGA -CCAACACCTTTGACTGCTCACAGA -CCAACACCTTTGACTGCTGCAAGA -CCAACACCTTTGACTGCTGGTTGA -CCAACACCTTTGACTGCTTCCGAT -CCAACACCTTTGACTGCTTGGCAT -CCAACACCTTTGACTGCTCGAGAT -CCAACACCTTTGACTGCTTACCAC -CCAACACCTTTGACTGCTCAGAAC -CCAACACCTTTGACTGCTGTCTAC -CCAACACCTTTGACTGCTACGTAC -CCAACACCTTTGACTGCTAGTGAC -CCAACACCTTTGACTGCTCTGTAG -CCAACACCTTTGACTGCTCCTAAG -CCAACACCTTTGACTGCTGTTCAG -CCAACACCTTTGACTGCTGCATAG -CCAACACCTTTGACTGCTGACAAG -CCAACACCTTTGACTGCTAAGCAG -CCAACACCTTTGACTGCTCGTCAA -CCAACACCTTTGACTGCTGCTGAA -CCAACACCTTTGACTGCTAGTACG -CCAACACCTTTGACTGCTATCCGA -CCAACACCTTTGACTGCTATGGGA -CCAACACCTTTGACTGCTGTGCAA -CCAACACCTTTGACTGCTGAGGAA -CCAACACCTTTGACTGCTCAGGTA -CCAACACCTTTGACTGCTGACTCT -CCAACACCTTTGACTGCTAGTCCT -CCAACACCTTTGACTGCTTAAGCC -CCAACACCTTTGACTGCTATAGCC -CCAACACCTTTGACTGCTTAACCG -CCAACACCTTTGACTGCTATGCCA -CCAACACCTTTGTCTGGAGGAAAC -CCAACACCTTTGTCTGGAAACACC -CCAACACCTTTGTCTGGAATCGAG -CCAACACCTTTGTCTGGACTCCTT -CCAACACCTTTGTCTGGACCTGTT -CCAACACCTTTGTCTGGACGGTTT -CCAACACCTTTGTCTGGAGTGGTT -CCAACACCTTTGTCTGGAGCCTTT -CCAACACCTTTGTCTGGAGGTCTT -CCAACACCTTTGTCTGGAACGCTT -CCAACACCTTTGTCTGGAAGCGTT -CCAACACCTTTGTCTGGATTCGTC -CCAACACCTTTGTCTGGATCTCTC -CCAACACCTTTGTCTGGATGGATC -CCAACACCTTTGTCTGGACACTTC -CCAACACCTTTGTCTGGAGTACTC -CCAACACCTTTGTCTGGAGATGTC -CCAACACCTTTGTCTGGAACAGTC -CCAACACCTTTGTCTGGATTGCTG -CCAACACCTTTGTCTGGATCCATG -CCAACACCTTTGTCTGGATGTGTG -CCAACACCTTTGTCTGGACTAGTG -CCAACACCTTTGTCTGGACATCTG -CCAACACCTTTGTCTGGAGAGTTG -CCAACACCTTTGTCTGGAAGACTG -CCAACACCTTTGTCTGGATCGGTA -CCAACACCTTTGTCTGGATGCCTA -CCAACACCTTTGTCTGGACCACTA -CCAACACCTTTGTCTGGAGGAGTA -CCAACACCTTTGTCTGGATCGTCT -CCAACACCTTTGTCTGGATGCACT -CCAACACCTTTGTCTGGACTGACT -CCAACACCTTTGTCTGGACAACCT -CCAACACCTTTGTCTGGAGCTACT -CCAACACCTTTGTCTGGAGGATCT -CCAACACCTTTGTCTGGAAAGGCT -CCAACACCTTTGTCTGGATCAACC -CCAACACCTTTGTCTGGATGTTCC -CCAACACCTTTGTCTGGAATTCCC -CCAACACCTTTGTCTGGATTCTCG -CCAACACCTTTGTCTGGATAGACG -CCAACACCTTTGTCTGGAGTAACG -CCAACACCTTTGTCTGGAACTTCG -CCAACACCTTTGTCTGGATACGCA -CCAACACCTTTGTCTGGACTTGCA -CCAACACCTTTGTCTGGACGAACA -CCAACACCTTTGTCTGGACAGTCA -CCAACACCTTTGTCTGGAGATCCA -CCAACACCTTTGTCTGGAACGACA -CCAACACCTTTGTCTGGAAGCTCA -CCAACACCTTTGTCTGGATCACGT -CCAACACCTTTGTCTGGACGTAGT -CCAACACCTTTGTCTGGAGTCAGT -CCAACACCTTTGTCTGGAGAAGGT -CCAACACCTTTGTCTGGAAACCGT -CCAACACCTTTGTCTGGATTGTGC -CCAACACCTTTGTCTGGACTAAGC -CCAACACCTTTGTCTGGAACTAGC -CCAACACCTTTGTCTGGAAGATGC -CCAACACCTTTGTCTGGATGAAGG -CCAACACCTTTGTCTGGACAATGG -CCAACACCTTTGTCTGGAATGAGG -CCAACACCTTTGTCTGGAAATGGG -CCAACACCTTTGTCTGGATCCTGA -CCAACACCTTTGTCTGGATAGCGA -CCAACACCTTTGTCTGGACACAGA -CCAACACCTTTGTCTGGAGCAAGA -CCAACACCTTTGTCTGGAGGTTGA -CCAACACCTTTGTCTGGATCCGAT -CCAACACCTTTGTCTGGATGGCAT -CCAACACCTTTGTCTGGACGAGAT -CCAACACCTTTGTCTGGATACCAC -CCAACACCTTTGTCTGGACAGAAC -CCAACACCTTTGTCTGGAGTCTAC -CCAACACCTTTGTCTGGAACGTAC -CCAACACCTTTGTCTGGAAGTGAC -CCAACACCTTTGTCTGGACTGTAG -CCAACACCTTTGTCTGGACCTAAG -CCAACACCTTTGTCTGGAGTTCAG -CCAACACCTTTGTCTGGAGCATAG -CCAACACCTTTGTCTGGAGACAAG -CCAACACCTTTGTCTGGAAAGCAG -CCAACACCTTTGTCTGGACGTCAA -CCAACACCTTTGTCTGGAGCTGAA -CCAACACCTTTGTCTGGAAGTACG -CCAACACCTTTGTCTGGAATCCGA -CCAACACCTTTGTCTGGAATGGGA -CCAACACCTTTGTCTGGAGTGCAA -CCAACACCTTTGTCTGGAGAGGAA -CCAACACCTTTGTCTGGACAGGTA -CCAACACCTTTGTCTGGAGACTCT -CCAACACCTTTGTCTGGAAGTCCT -CCAACACCTTTGTCTGGATAAGCC -CCAACACCTTTGTCTGGAATAGCC -CCAACACCTTTGTCTGGATAACCG -CCAACACCTTTGTCTGGAATGCCA -CCAACACCTTTGGCTAAGGGAAAC -CCAACACCTTTGGCTAAGAACACC -CCAACACCTTTGGCTAAGATCGAG -CCAACACCTTTGGCTAAGCTCCTT -CCAACACCTTTGGCTAAGCCTGTT -CCAACACCTTTGGCTAAGCGGTTT -CCAACACCTTTGGCTAAGGTGGTT -CCAACACCTTTGGCTAAGGCCTTT -CCAACACCTTTGGCTAAGGGTCTT -CCAACACCTTTGGCTAAGACGCTT -CCAACACCTTTGGCTAAGAGCGTT -CCAACACCTTTGGCTAAGTTCGTC -CCAACACCTTTGGCTAAGTCTCTC -CCAACACCTTTGGCTAAGTGGATC -CCAACACCTTTGGCTAAGCACTTC -CCAACACCTTTGGCTAAGGTACTC -CCAACACCTTTGGCTAAGGATGTC -CCAACACCTTTGGCTAAGACAGTC -CCAACACCTTTGGCTAAGTTGCTG -CCAACACCTTTGGCTAAGTCCATG -CCAACACCTTTGGCTAAGTGTGTG -CCAACACCTTTGGCTAAGCTAGTG -CCAACACCTTTGGCTAAGCATCTG -CCAACACCTTTGGCTAAGGAGTTG -CCAACACCTTTGGCTAAGAGACTG -CCAACACCTTTGGCTAAGTCGGTA -CCAACACCTTTGGCTAAGTGCCTA -CCAACACCTTTGGCTAAGCCACTA -CCAACACCTTTGGCTAAGGGAGTA -CCAACACCTTTGGCTAAGTCGTCT -CCAACACCTTTGGCTAAGTGCACT -CCAACACCTTTGGCTAAGCTGACT -CCAACACCTTTGGCTAAGCAACCT -CCAACACCTTTGGCTAAGGCTACT -CCAACACCTTTGGCTAAGGGATCT -CCAACACCTTTGGCTAAGAAGGCT -CCAACACCTTTGGCTAAGTCAACC -CCAACACCTTTGGCTAAGTGTTCC -CCAACACCTTTGGCTAAGATTCCC -CCAACACCTTTGGCTAAGTTCTCG -CCAACACCTTTGGCTAAGTAGACG -CCAACACCTTTGGCTAAGGTAACG -CCAACACCTTTGGCTAAGACTTCG -CCAACACCTTTGGCTAAGTACGCA -CCAACACCTTTGGCTAAGCTTGCA -CCAACACCTTTGGCTAAGCGAACA -CCAACACCTTTGGCTAAGCAGTCA -CCAACACCTTTGGCTAAGGATCCA -CCAACACCTTTGGCTAAGACGACA -CCAACACCTTTGGCTAAGAGCTCA -CCAACACCTTTGGCTAAGTCACGT -CCAACACCTTTGGCTAAGCGTAGT -CCAACACCTTTGGCTAAGGTCAGT -CCAACACCTTTGGCTAAGGAAGGT -CCAACACCTTTGGCTAAGAACCGT -CCAACACCTTTGGCTAAGTTGTGC -CCAACACCTTTGGCTAAGCTAAGC -CCAACACCTTTGGCTAAGACTAGC -CCAACACCTTTGGCTAAGAGATGC -CCAACACCTTTGGCTAAGTGAAGG -CCAACACCTTTGGCTAAGCAATGG -CCAACACCTTTGGCTAAGATGAGG -CCAACACCTTTGGCTAAGAATGGG -CCAACACCTTTGGCTAAGTCCTGA -CCAACACCTTTGGCTAAGTAGCGA -CCAACACCTTTGGCTAAGCACAGA -CCAACACCTTTGGCTAAGGCAAGA -CCAACACCTTTGGCTAAGGGTTGA -CCAACACCTTTGGCTAAGTCCGAT -CCAACACCTTTGGCTAAGTGGCAT -CCAACACCTTTGGCTAAGCGAGAT -CCAACACCTTTGGCTAAGTACCAC -CCAACACCTTTGGCTAAGCAGAAC -CCAACACCTTTGGCTAAGGTCTAC -CCAACACCTTTGGCTAAGACGTAC -CCAACACCTTTGGCTAAGAGTGAC -CCAACACCTTTGGCTAAGCTGTAG -CCAACACCTTTGGCTAAGCCTAAG -CCAACACCTTTGGCTAAGGTTCAG -CCAACACCTTTGGCTAAGGCATAG -CCAACACCTTTGGCTAAGGACAAG -CCAACACCTTTGGCTAAGAAGCAG -CCAACACCTTTGGCTAAGCGTCAA -CCAACACCTTTGGCTAAGGCTGAA -CCAACACCTTTGGCTAAGAGTACG -CCAACACCTTTGGCTAAGATCCGA -CCAACACCTTTGGCTAAGATGGGA -CCAACACCTTTGGCTAAGGTGCAA -CCAACACCTTTGGCTAAGGAGGAA -CCAACACCTTTGGCTAAGCAGGTA -CCAACACCTTTGGCTAAGGACTCT -CCAACACCTTTGGCTAAGAGTCCT -CCAACACCTTTGGCTAAGTAAGCC -CCAACACCTTTGGCTAAGATAGCC -CCAACACCTTTGGCTAAGTAACCG -CCAACACCTTTGGCTAAGATGCCA -CCAACACCTTTGACCTCAGGAAAC -CCAACACCTTTGACCTCAAACACC -CCAACACCTTTGACCTCAATCGAG -CCAACACCTTTGACCTCACTCCTT -CCAACACCTTTGACCTCACCTGTT -CCAACACCTTTGACCTCACGGTTT -CCAACACCTTTGACCTCAGTGGTT -CCAACACCTTTGACCTCAGCCTTT -CCAACACCTTTGACCTCAGGTCTT -CCAACACCTTTGACCTCAACGCTT -CCAACACCTTTGACCTCAAGCGTT -CCAACACCTTTGACCTCATTCGTC -CCAACACCTTTGACCTCATCTCTC -CCAACACCTTTGACCTCATGGATC -CCAACACCTTTGACCTCACACTTC -CCAACACCTTTGACCTCAGTACTC -CCAACACCTTTGACCTCAGATGTC -CCAACACCTTTGACCTCAACAGTC -CCAACACCTTTGACCTCATTGCTG -CCAACACCTTTGACCTCATCCATG -CCAACACCTTTGACCTCATGTGTG -CCAACACCTTTGACCTCACTAGTG -CCAACACCTTTGACCTCACATCTG -CCAACACCTTTGACCTCAGAGTTG -CCAACACCTTTGACCTCAAGACTG -CCAACACCTTTGACCTCATCGGTA -CCAACACCTTTGACCTCATGCCTA -CCAACACCTTTGACCTCACCACTA -CCAACACCTTTGACCTCAGGAGTA -CCAACACCTTTGACCTCATCGTCT -CCAACACCTTTGACCTCATGCACT -CCAACACCTTTGACCTCACTGACT -CCAACACCTTTGACCTCACAACCT -CCAACACCTTTGACCTCAGCTACT -CCAACACCTTTGACCTCAGGATCT -CCAACACCTTTGACCTCAAAGGCT -CCAACACCTTTGACCTCATCAACC -CCAACACCTTTGACCTCATGTTCC -CCAACACCTTTGACCTCAATTCCC -CCAACACCTTTGACCTCATTCTCG -CCAACACCTTTGACCTCATAGACG -CCAACACCTTTGACCTCAGTAACG -CCAACACCTTTGACCTCAACTTCG -CCAACACCTTTGACCTCATACGCA -CCAACACCTTTGACCTCACTTGCA -CCAACACCTTTGACCTCACGAACA -CCAACACCTTTGACCTCACAGTCA -CCAACACCTTTGACCTCAGATCCA -CCAACACCTTTGACCTCAACGACA -CCAACACCTTTGACCTCAAGCTCA -CCAACACCTTTGACCTCATCACGT -CCAACACCTTTGACCTCACGTAGT -CCAACACCTTTGACCTCAGTCAGT -CCAACACCTTTGACCTCAGAAGGT -CCAACACCTTTGACCTCAAACCGT -CCAACACCTTTGACCTCATTGTGC -CCAACACCTTTGACCTCACTAAGC -CCAACACCTTTGACCTCAACTAGC -CCAACACCTTTGACCTCAAGATGC -CCAACACCTTTGACCTCATGAAGG -CCAACACCTTTGACCTCACAATGG -CCAACACCTTTGACCTCAATGAGG -CCAACACCTTTGACCTCAAATGGG -CCAACACCTTTGACCTCATCCTGA -CCAACACCTTTGACCTCATAGCGA -CCAACACCTTTGACCTCACACAGA -CCAACACCTTTGACCTCAGCAAGA -CCAACACCTTTGACCTCAGGTTGA -CCAACACCTTTGACCTCATCCGAT -CCAACACCTTTGACCTCATGGCAT -CCAACACCTTTGACCTCACGAGAT -CCAACACCTTTGACCTCATACCAC -CCAACACCTTTGACCTCACAGAAC -CCAACACCTTTGACCTCAGTCTAC -CCAACACCTTTGACCTCAACGTAC -CCAACACCTTTGACCTCAAGTGAC -CCAACACCTTTGACCTCACTGTAG -CCAACACCTTTGACCTCACCTAAG -CCAACACCTTTGACCTCAGTTCAG -CCAACACCTTTGACCTCAGCATAG -CCAACACCTTTGACCTCAGACAAG -CCAACACCTTTGACCTCAAAGCAG -CCAACACCTTTGACCTCACGTCAA -CCAACACCTTTGACCTCAGCTGAA -CCAACACCTTTGACCTCAAGTACG -CCAACACCTTTGACCTCAATCCGA -CCAACACCTTTGACCTCAATGGGA -CCAACACCTTTGACCTCAGTGCAA -CCAACACCTTTGACCTCAGAGGAA -CCAACACCTTTGACCTCACAGGTA -CCAACACCTTTGACCTCAGACTCT -CCAACACCTTTGACCTCAAGTCCT -CCAACACCTTTGACCTCATAAGCC -CCAACACCTTTGACCTCAATAGCC -CCAACACCTTTGACCTCATAACCG -CCAACACCTTTGACCTCAATGCCA -CCAACACCTTTGTCCTGTGGAAAC -CCAACACCTTTGTCCTGTAACACC -CCAACACCTTTGTCCTGTATCGAG -CCAACACCTTTGTCCTGTCTCCTT -CCAACACCTTTGTCCTGTCCTGTT -CCAACACCTTTGTCCTGTCGGTTT -CCAACACCTTTGTCCTGTGTGGTT -CCAACACCTTTGTCCTGTGCCTTT -CCAACACCTTTGTCCTGTGGTCTT -CCAACACCTTTGTCCTGTACGCTT -CCAACACCTTTGTCCTGTAGCGTT -CCAACACCTTTGTCCTGTTTCGTC -CCAACACCTTTGTCCTGTTCTCTC -CCAACACCTTTGTCCTGTTGGATC -CCAACACCTTTGTCCTGTCACTTC -CCAACACCTTTGTCCTGTGTACTC -CCAACACCTTTGTCCTGTGATGTC -CCAACACCTTTGTCCTGTACAGTC -CCAACACCTTTGTCCTGTTTGCTG -CCAACACCTTTGTCCTGTTCCATG -CCAACACCTTTGTCCTGTTGTGTG -CCAACACCTTTGTCCTGTCTAGTG -CCAACACCTTTGTCCTGTCATCTG -CCAACACCTTTGTCCTGTGAGTTG -CCAACACCTTTGTCCTGTAGACTG -CCAACACCTTTGTCCTGTTCGGTA -CCAACACCTTTGTCCTGTTGCCTA -CCAACACCTTTGTCCTGTCCACTA -CCAACACCTTTGTCCTGTGGAGTA -CCAACACCTTTGTCCTGTTCGTCT -CCAACACCTTTGTCCTGTTGCACT -CCAACACCTTTGTCCTGTCTGACT -CCAACACCTTTGTCCTGTCAACCT -CCAACACCTTTGTCCTGTGCTACT -CCAACACCTTTGTCCTGTGGATCT -CCAACACCTTTGTCCTGTAAGGCT -CCAACACCTTTGTCCTGTTCAACC -CCAACACCTTTGTCCTGTTGTTCC -CCAACACCTTTGTCCTGTATTCCC -CCAACACCTTTGTCCTGTTTCTCG -CCAACACCTTTGTCCTGTTAGACG -CCAACACCTTTGTCCTGTGTAACG -CCAACACCTTTGTCCTGTACTTCG -CCAACACCTTTGTCCTGTTACGCA -CCAACACCTTTGTCCTGTCTTGCA -CCAACACCTTTGTCCTGTCGAACA -CCAACACCTTTGTCCTGTCAGTCA -CCAACACCTTTGTCCTGTGATCCA -CCAACACCTTTGTCCTGTACGACA -CCAACACCTTTGTCCTGTAGCTCA -CCAACACCTTTGTCCTGTTCACGT -CCAACACCTTTGTCCTGTCGTAGT -CCAACACCTTTGTCCTGTGTCAGT -CCAACACCTTTGTCCTGTGAAGGT -CCAACACCTTTGTCCTGTAACCGT -CCAACACCTTTGTCCTGTTTGTGC -CCAACACCTTTGTCCTGTCTAAGC -CCAACACCTTTGTCCTGTACTAGC -CCAACACCTTTGTCCTGTAGATGC -CCAACACCTTTGTCCTGTTGAAGG -CCAACACCTTTGTCCTGTCAATGG -CCAACACCTTTGTCCTGTATGAGG -CCAACACCTTTGTCCTGTAATGGG -CCAACACCTTTGTCCTGTTCCTGA -CCAACACCTTTGTCCTGTTAGCGA -CCAACACCTTTGTCCTGTCACAGA -CCAACACCTTTGTCCTGTGCAAGA -CCAACACCTTTGTCCTGTGGTTGA -CCAACACCTTTGTCCTGTTCCGAT -CCAACACCTTTGTCCTGTTGGCAT -CCAACACCTTTGTCCTGTCGAGAT -CCAACACCTTTGTCCTGTTACCAC -CCAACACCTTTGTCCTGTCAGAAC -CCAACACCTTTGTCCTGTGTCTAC -CCAACACCTTTGTCCTGTACGTAC -CCAACACCTTTGTCCTGTAGTGAC -CCAACACCTTTGTCCTGTCTGTAG -CCAACACCTTTGTCCTGTCCTAAG -CCAACACCTTTGTCCTGTGTTCAG -CCAACACCTTTGTCCTGTGCATAG -CCAACACCTTTGTCCTGTGACAAG -CCAACACCTTTGTCCTGTAAGCAG -CCAACACCTTTGTCCTGTCGTCAA -CCAACACCTTTGTCCTGTGCTGAA -CCAACACCTTTGTCCTGTAGTACG -CCAACACCTTTGTCCTGTATCCGA -CCAACACCTTTGTCCTGTATGGGA -CCAACACCTTTGTCCTGTGTGCAA -CCAACACCTTTGTCCTGTGAGGAA -CCAACACCTTTGTCCTGTCAGGTA -CCAACACCTTTGTCCTGTGACTCT -CCAACACCTTTGTCCTGTAGTCCT -CCAACACCTTTGTCCTGTTAAGCC -CCAACACCTTTGTCCTGTATAGCC -CCAACACCTTTGTCCTGTTAACCG -CCAACACCTTTGTCCTGTATGCCA -CCAACACCTTTGCCCATTGGAAAC -CCAACACCTTTGCCCATTAACACC -CCAACACCTTTGCCCATTATCGAG -CCAACACCTTTGCCCATTCTCCTT -CCAACACCTTTGCCCATTCCTGTT -CCAACACCTTTGCCCATTCGGTTT -CCAACACCTTTGCCCATTGTGGTT -CCAACACCTTTGCCCATTGCCTTT -CCAACACCTTTGCCCATTGGTCTT -CCAACACCTTTGCCCATTACGCTT -CCAACACCTTTGCCCATTAGCGTT -CCAACACCTTTGCCCATTTTCGTC -CCAACACCTTTGCCCATTTCTCTC -CCAACACCTTTGCCCATTTGGATC -CCAACACCTTTGCCCATTCACTTC -CCAACACCTTTGCCCATTGTACTC -CCAACACCTTTGCCCATTGATGTC -CCAACACCTTTGCCCATTACAGTC -CCAACACCTTTGCCCATTTTGCTG -CCAACACCTTTGCCCATTTCCATG -CCAACACCTTTGCCCATTTGTGTG -CCAACACCTTTGCCCATTCTAGTG -CCAACACCTTTGCCCATTCATCTG -CCAACACCTTTGCCCATTGAGTTG -CCAACACCTTTGCCCATTAGACTG -CCAACACCTTTGCCCATTTCGGTA -CCAACACCTTTGCCCATTTGCCTA -CCAACACCTTTGCCCATTCCACTA -CCAACACCTTTGCCCATTGGAGTA -CCAACACCTTTGCCCATTTCGTCT -CCAACACCTTTGCCCATTTGCACT -CCAACACCTTTGCCCATTCTGACT -CCAACACCTTTGCCCATTCAACCT -CCAACACCTTTGCCCATTGCTACT -CCAACACCTTTGCCCATTGGATCT -CCAACACCTTTGCCCATTAAGGCT -CCAACACCTTTGCCCATTTCAACC -CCAACACCTTTGCCCATTTGTTCC -CCAACACCTTTGCCCATTATTCCC -CCAACACCTTTGCCCATTTTCTCG -CCAACACCTTTGCCCATTTAGACG -CCAACACCTTTGCCCATTGTAACG -CCAACACCTTTGCCCATTACTTCG -CCAACACCTTTGCCCATTTACGCA -CCAACACCTTTGCCCATTCTTGCA -CCAACACCTTTGCCCATTCGAACA -CCAACACCTTTGCCCATTCAGTCA -CCAACACCTTTGCCCATTGATCCA -CCAACACCTTTGCCCATTACGACA -CCAACACCTTTGCCCATTAGCTCA -CCAACACCTTTGCCCATTTCACGT -CCAACACCTTTGCCCATTCGTAGT -CCAACACCTTTGCCCATTGTCAGT -CCAACACCTTTGCCCATTGAAGGT -CCAACACCTTTGCCCATTAACCGT -CCAACACCTTTGCCCATTTTGTGC -CCAACACCTTTGCCCATTCTAAGC -CCAACACCTTTGCCCATTACTAGC -CCAACACCTTTGCCCATTAGATGC -CCAACACCTTTGCCCATTTGAAGG -CCAACACCTTTGCCCATTCAATGG -CCAACACCTTTGCCCATTATGAGG -CCAACACCTTTGCCCATTAATGGG -CCAACACCTTTGCCCATTTCCTGA -CCAACACCTTTGCCCATTTAGCGA -CCAACACCTTTGCCCATTCACAGA -CCAACACCTTTGCCCATTGCAAGA -CCAACACCTTTGCCCATTGGTTGA -CCAACACCTTTGCCCATTTCCGAT -CCAACACCTTTGCCCATTTGGCAT -CCAACACCTTTGCCCATTCGAGAT -CCAACACCTTTGCCCATTTACCAC -CCAACACCTTTGCCCATTCAGAAC -CCAACACCTTTGCCCATTGTCTAC -CCAACACCTTTGCCCATTACGTAC -CCAACACCTTTGCCCATTAGTGAC -CCAACACCTTTGCCCATTCTGTAG -CCAACACCTTTGCCCATTCCTAAG -CCAACACCTTTGCCCATTGTTCAG -CCAACACCTTTGCCCATTGCATAG -CCAACACCTTTGCCCATTGACAAG -CCAACACCTTTGCCCATTAAGCAG -CCAACACCTTTGCCCATTCGTCAA -CCAACACCTTTGCCCATTGCTGAA -CCAACACCTTTGCCCATTAGTACG -CCAACACCTTTGCCCATTATCCGA -CCAACACCTTTGCCCATTATGGGA -CCAACACCTTTGCCCATTGTGCAA -CCAACACCTTTGCCCATTGAGGAA -CCAACACCTTTGCCCATTCAGGTA -CCAACACCTTTGCCCATTGACTCT -CCAACACCTTTGCCCATTAGTCCT -CCAACACCTTTGCCCATTTAAGCC -CCAACACCTTTGCCCATTATAGCC -CCAACACCTTTGCCCATTTAACCG -CCAACACCTTTGCCCATTATGCCA -CCAACACCTTTGTCGTTCGGAAAC -CCAACACCTTTGTCGTTCAACACC -CCAACACCTTTGTCGTTCATCGAG -CCAACACCTTTGTCGTTCCTCCTT -CCAACACCTTTGTCGTTCCCTGTT -CCAACACCTTTGTCGTTCCGGTTT -CCAACACCTTTGTCGTTCGTGGTT -CCAACACCTTTGTCGTTCGCCTTT -CCAACACCTTTGTCGTTCGGTCTT -CCAACACCTTTGTCGTTCACGCTT -CCAACACCTTTGTCGTTCAGCGTT -CCAACACCTTTGTCGTTCTTCGTC -CCAACACCTTTGTCGTTCTCTCTC -CCAACACCTTTGTCGTTCTGGATC -CCAACACCTTTGTCGTTCCACTTC -CCAACACCTTTGTCGTTCGTACTC -CCAACACCTTTGTCGTTCGATGTC -CCAACACCTTTGTCGTTCACAGTC -CCAACACCTTTGTCGTTCTTGCTG -CCAACACCTTTGTCGTTCTCCATG -CCAACACCTTTGTCGTTCTGTGTG -CCAACACCTTTGTCGTTCCTAGTG -CCAACACCTTTGTCGTTCCATCTG -CCAACACCTTTGTCGTTCGAGTTG -CCAACACCTTTGTCGTTCAGACTG -CCAACACCTTTGTCGTTCTCGGTA -CCAACACCTTTGTCGTTCTGCCTA -CCAACACCTTTGTCGTTCCCACTA -CCAACACCTTTGTCGTTCGGAGTA -CCAACACCTTTGTCGTTCTCGTCT -CCAACACCTTTGTCGTTCTGCACT -CCAACACCTTTGTCGTTCCTGACT -CCAACACCTTTGTCGTTCCAACCT -CCAACACCTTTGTCGTTCGCTACT -CCAACACCTTTGTCGTTCGGATCT -CCAACACCTTTGTCGTTCAAGGCT -CCAACACCTTTGTCGTTCTCAACC -CCAACACCTTTGTCGTTCTGTTCC -CCAACACCTTTGTCGTTCATTCCC -CCAACACCTTTGTCGTTCTTCTCG -CCAACACCTTTGTCGTTCTAGACG -CCAACACCTTTGTCGTTCGTAACG -CCAACACCTTTGTCGTTCACTTCG -CCAACACCTTTGTCGTTCTACGCA -CCAACACCTTTGTCGTTCCTTGCA -CCAACACCTTTGTCGTTCCGAACA -CCAACACCTTTGTCGTTCCAGTCA -CCAACACCTTTGTCGTTCGATCCA -CCAACACCTTTGTCGTTCACGACA -CCAACACCTTTGTCGTTCAGCTCA -CCAACACCTTTGTCGTTCTCACGT -CCAACACCTTTGTCGTTCCGTAGT -CCAACACCTTTGTCGTTCGTCAGT -CCAACACCTTTGTCGTTCGAAGGT -CCAACACCTTTGTCGTTCAACCGT -CCAACACCTTTGTCGTTCTTGTGC -CCAACACCTTTGTCGTTCCTAAGC -CCAACACCTTTGTCGTTCACTAGC -CCAACACCTTTGTCGTTCAGATGC -CCAACACCTTTGTCGTTCTGAAGG -CCAACACCTTTGTCGTTCCAATGG -CCAACACCTTTGTCGTTCATGAGG -CCAACACCTTTGTCGTTCAATGGG -CCAACACCTTTGTCGTTCTCCTGA -CCAACACCTTTGTCGTTCTAGCGA -CCAACACCTTTGTCGTTCCACAGA -CCAACACCTTTGTCGTTCGCAAGA -CCAACACCTTTGTCGTTCGGTTGA -CCAACACCTTTGTCGTTCTCCGAT -CCAACACCTTTGTCGTTCTGGCAT -CCAACACCTTTGTCGTTCCGAGAT -CCAACACCTTTGTCGTTCTACCAC -CCAACACCTTTGTCGTTCCAGAAC -CCAACACCTTTGTCGTTCGTCTAC -CCAACACCTTTGTCGTTCACGTAC -CCAACACCTTTGTCGTTCAGTGAC -CCAACACCTTTGTCGTTCCTGTAG -CCAACACCTTTGTCGTTCCCTAAG -CCAACACCTTTGTCGTTCGTTCAG -CCAACACCTTTGTCGTTCGCATAG -CCAACACCTTTGTCGTTCGACAAG -CCAACACCTTTGTCGTTCAAGCAG -CCAACACCTTTGTCGTTCCGTCAA -CCAACACCTTTGTCGTTCGCTGAA -CCAACACCTTTGTCGTTCAGTACG -CCAACACCTTTGTCGTTCATCCGA -CCAACACCTTTGTCGTTCATGGGA -CCAACACCTTTGTCGTTCGTGCAA -CCAACACCTTTGTCGTTCGAGGAA -CCAACACCTTTGTCGTTCCAGGTA -CCAACACCTTTGTCGTTCGACTCT -CCAACACCTTTGTCGTTCAGTCCT -CCAACACCTTTGTCGTTCTAAGCC -CCAACACCTTTGTCGTTCATAGCC -CCAACACCTTTGTCGTTCTAACCG -CCAACACCTTTGTCGTTCATGCCA -CCAACACCTTTGACGTAGGGAAAC -CCAACACCTTTGACGTAGAACACC -CCAACACCTTTGACGTAGATCGAG -CCAACACCTTTGACGTAGCTCCTT -CCAACACCTTTGACGTAGCCTGTT -CCAACACCTTTGACGTAGCGGTTT -CCAACACCTTTGACGTAGGTGGTT -CCAACACCTTTGACGTAGGCCTTT -CCAACACCTTTGACGTAGGGTCTT -CCAACACCTTTGACGTAGACGCTT -CCAACACCTTTGACGTAGAGCGTT -CCAACACCTTTGACGTAGTTCGTC -CCAACACCTTTGACGTAGTCTCTC -CCAACACCTTTGACGTAGTGGATC -CCAACACCTTTGACGTAGCACTTC -CCAACACCTTTGACGTAGGTACTC -CCAACACCTTTGACGTAGGATGTC -CCAACACCTTTGACGTAGACAGTC -CCAACACCTTTGACGTAGTTGCTG -CCAACACCTTTGACGTAGTCCATG -CCAACACCTTTGACGTAGTGTGTG -CCAACACCTTTGACGTAGCTAGTG -CCAACACCTTTGACGTAGCATCTG -CCAACACCTTTGACGTAGGAGTTG -CCAACACCTTTGACGTAGAGACTG -CCAACACCTTTGACGTAGTCGGTA -CCAACACCTTTGACGTAGTGCCTA -CCAACACCTTTGACGTAGCCACTA -CCAACACCTTTGACGTAGGGAGTA -CCAACACCTTTGACGTAGTCGTCT -CCAACACCTTTGACGTAGTGCACT -CCAACACCTTTGACGTAGCTGACT -CCAACACCTTTGACGTAGCAACCT -CCAACACCTTTGACGTAGGCTACT -CCAACACCTTTGACGTAGGGATCT -CCAACACCTTTGACGTAGAAGGCT -CCAACACCTTTGACGTAGTCAACC -CCAACACCTTTGACGTAGTGTTCC -CCAACACCTTTGACGTAGATTCCC -CCAACACCTTTGACGTAGTTCTCG -CCAACACCTTTGACGTAGTAGACG -CCAACACCTTTGACGTAGGTAACG -CCAACACCTTTGACGTAGACTTCG -CCAACACCTTTGACGTAGTACGCA -CCAACACCTTTGACGTAGCTTGCA -CCAACACCTTTGACGTAGCGAACA -CCAACACCTTTGACGTAGCAGTCA -CCAACACCTTTGACGTAGGATCCA -CCAACACCTTTGACGTAGACGACA -CCAACACCTTTGACGTAGAGCTCA -CCAACACCTTTGACGTAGTCACGT -CCAACACCTTTGACGTAGCGTAGT -CCAACACCTTTGACGTAGGTCAGT -CCAACACCTTTGACGTAGGAAGGT -CCAACACCTTTGACGTAGAACCGT -CCAACACCTTTGACGTAGTTGTGC -CCAACACCTTTGACGTAGCTAAGC -CCAACACCTTTGACGTAGACTAGC -CCAACACCTTTGACGTAGAGATGC -CCAACACCTTTGACGTAGTGAAGG -CCAACACCTTTGACGTAGCAATGG -CCAACACCTTTGACGTAGATGAGG -CCAACACCTTTGACGTAGAATGGG -CCAACACCTTTGACGTAGTCCTGA -CCAACACCTTTGACGTAGTAGCGA -CCAACACCTTTGACGTAGCACAGA -CCAACACCTTTGACGTAGGCAAGA -CCAACACCTTTGACGTAGGGTTGA -CCAACACCTTTGACGTAGTCCGAT -CCAACACCTTTGACGTAGTGGCAT -CCAACACCTTTGACGTAGCGAGAT -CCAACACCTTTGACGTAGTACCAC -CCAACACCTTTGACGTAGCAGAAC -CCAACACCTTTGACGTAGGTCTAC -CCAACACCTTTGACGTAGACGTAC -CCAACACCTTTGACGTAGAGTGAC -CCAACACCTTTGACGTAGCTGTAG -CCAACACCTTTGACGTAGCCTAAG -CCAACACCTTTGACGTAGGTTCAG -CCAACACCTTTGACGTAGGCATAG -CCAACACCTTTGACGTAGGACAAG -CCAACACCTTTGACGTAGAAGCAG -CCAACACCTTTGACGTAGCGTCAA -CCAACACCTTTGACGTAGGCTGAA -CCAACACCTTTGACGTAGAGTACG -CCAACACCTTTGACGTAGATCCGA -CCAACACCTTTGACGTAGATGGGA -CCAACACCTTTGACGTAGGTGCAA -CCAACACCTTTGACGTAGGAGGAA -CCAACACCTTTGACGTAGCAGGTA -CCAACACCTTTGACGTAGGACTCT -CCAACACCTTTGACGTAGAGTCCT -CCAACACCTTTGACGTAGTAAGCC -CCAACACCTTTGACGTAGATAGCC -CCAACACCTTTGACGTAGTAACCG -CCAACACCTTTGACGTAGATGCCA -CCAACACCTTTGACGGTAGGAAAC -CCAACACCTTTGACGGTAAACACC -CCAACACCTTTGACGGTAATCGAG -CCAACACCTTTGACGGTACTCCTT -CCAACACCTTTGACGGTACCTGTT -CCAACACCTTTGACGGTACGGTTT -CCAACACCTTTGACGGTAGTGGTT -CCAACACCTTTGACGGTAGCCTTT -CCAACACCTTTGACGGTAGGTCTT -CCAACACCTTTGACGGTAACGCTT -CCAACACCTTTGACGGTAAGCGTT -CCAACACCTTTGACGGTATTCGTC -CCAACACCTTTGACGGTATCTCTC -CCAACACCTTTGACGGTATGGATC -CCAACACCTTTGACGGTACACTTC -CCAACACCTTTGACGGTAGTACTC -CCAACACCTTTGACGGTAGATGTC -CCAACACCTTTGACGGTAACAGTC -CCAACACCTTTGACGGTATTGCTG -CCAACACCTTTGACGGTATCCATG -CCAACACCTTTGACGGTATGTGTG -CCAACACCTTTGACGGTACTAGTG -CCAACACCTTTGACGGTACATCTG -CCAACACCTTTGACGGTAGAGTTG -CCAACACCTTTGACGGTAAGACTG -CCAACACCTTTGACGGTATCGGTA -CCAACACCTTTGACGGTATGCCTA -CCAACACCTTTGACGGTACCACTA -CCAACACCTTTGACGGTAGGAGTA -CCAACACCTTTGACGGTATCGTCT -CCAACACCTTTGACGGTATGCACT -CCAACACCTTTGACGGTACTGACT -CCAACACCTTTGACGGTACAACCT -CCAACACCTTTGACGGTAGCTACT -CCAACACCTTTGACGGTAGGATCT -CCAACACCTTTGACGGTAAAGGCT -CCAACACCTTTGACGGTATCAACC -CCAACACCTTTGACGGTATGTTCC -CCAACACCTTTGACGGTAATTCCC -CCAACACCTTTGACGGTATTCTCG -CCAACACCTTTGACGGTATAGACG -CCAACACCTTTGACGGTAGTAACG -CCAACACCTTTGACGGTAACTTCG -CCAACACCTTTGACGGTATACGCA -CCAACACCTTTGACGGTACTTGCA -CCAACACCTTTGACGGTACGAACA -CCAACACCTTTGACGGTACAGTCA -CCAACACCTTTGACGGTAGATCCA -CCAACACCTTTGACGGTAACGACA -CCAACACCTTTGACGGTAAGCTCA -CCAACACCTTTGACGGTATCACGT -CCAACACCTTTGACGGTACGTAGT -CCAACACCTTTGACGGTAGTCAGT -CCAACACCTTTGACGGTAGAAGGT -CCAACACCTTTGACGGTAAACCGT -CCAACACCTTTGACGGTATTGTGC -CCAACACCTTTGACGGTACTAAGC -CCAACACCTTTGACGGTAACTAGC -CCAACACCTTTGACGGTAAGATGC -CCAACACCTTTGACGGTATGAAGG -CCAACACCTTTGACGGTACAATGG -CCAACACCTTTGACGGTAATGAGG -CCAACACCTTTGACGGTAAATGGG -CCAACACCTTTGACGGTATCCTGA -CCAACACCTTTGACGGTATAGCGA -CCAACACCTTTGACGGTACACAGA -CCAACACCTTTGACGGTAGCAAGA -CCAACACCTTTGACGGTAGGTTGA -CCAACACCTTTGACGGTATCCGAT -CCAACACCTTTGACGGTATGGCAT -CCAACACCTTTGACGGTACGAGAT -CCAACACCTTTGACGGTATACCAC -CCAACACCTTTGACGGTACAGAAC -CCAACACCTTTGACGGTAGTCTAC -CCAACACCTTTGACGGTAACGTAC -CCAACACCTTTGACGGTAAGTGAC -CCAACACCTTTGACGGTACTGTAG -CCAACACCTTTGACGGTACCTAAG -CCAACACCTTTGACGGTAGTTCAG -CCAACACCTTTGACGGTAGCATAG -CCAACACCTTTGACGGTAGACAAG -CCAACACCTTTGACGGTAAAGCAG -CCAACACCTTTGACGGTACGTCAA -CCAACACCTTTGACGGTAGCTGAA -CCAACACCTTTGACGGTAAGTACG -CCAACACCTTTGACGGTAATCCGA -CCAACACCTTTGACGGTAATGGGA -CCAACACCTTTGACGGTAGTGCAA -CCAACACCTTTGACGGTAGAGGAA -CCAACACCTTTGACGGTACAGGTA -CCAACACCTTTGACGGTAGACTCT -CCAACACCTTTGACGGTAAGTCCT -CCAACACCTTTGACGGTATAAGCC -CCAACACCTTTGACGGTAATAGCC -CCAACACCTTTGACGGTATAACCG -CCAACACCTTTGACGGTAATGCCA -CCAACACCTTTGTCGACTGGAAAC -CCAACACCTTTGTCGACTAACACC -CCAACACCTTTGTCGACTATCGAG -CCAACACCTTTGTCGACTCTCCTT -CCAACACCTTTGTCGACTCCTGTT -CCAACACCTTTGTCGACTCGGTTT -CCAACACCTTTGTCGACTGTGGTT -CCAACACCTTTGTCGACTGCCTTT -CCAACACCTTTGTCGACTGGTCTT -CCAACACCTTTGTCGACTACGCTT -CCAACACCTTTGTCGACTAGCGTT -CCAACACCTTTGTCGACTTTCGTC -CCAACACCTTTGTCGACTTCTCTC -CCAACACCTTTGTCGACTTGGATC -CCAACACCTTTGTCGACTCACTTC -CCAACACCTTTGTCGACTGTACTC -CCAACACCTTTGTCGACTGATGTC -CCAACACCTTTGTCGACTACAGTC -CCAACACCTTTGTCGACTTTGCTG -CCAACACCTTTGTCGACTTCCATG -CCAACACCTTTGTCGACTTGTGTG -CCAACACCTTTGTCGACTCTAGTG -CCAACACCTTTGTCGACTCATCTG -CCAACACCTTTGTCGACTGAGTTG -CCAACACCTTTGTCGACTAGACTG -CCAACACCTTTGTCGACTTCGGTA -CCAACACCTTTGTCGACTTGCCTA -CCAACACCTTTGTCGACTCCACTA -CCAACACCTTTGTCGACTGGAGTA -CCAACACCTTTGTCGACTTCGTCT -CCAACACCTTTGTCGACTTGCACT -CCAACACCTTTGTCGACTCTGACT -CCAACACCTTTGTCGACTCAACCT -CCAACACCTTTGTCGACTGCTACT -CCAACACCTTTGTCGACTGGATCT -CCAACACCTTTGTCGACTAAGGCT -CCAACACCTTTGTCGACTTCAACC -CCAACACCTTTGTCGACTTGTTCC -CCAACACCTTTGTCGACTATTCCC -CCAACACCTTTGTCGACTTTCTCG -CCAACACCTTTGTCGACTTAGACG -CCAACACCTTTGTCGACTGTAACG -CCAACACCTTTGTCGACTACTTCG -CCAACACCTTTGTCGACTTACGCA -CCAACACCTTTGTCGACTCTTGCA -CCAACACCTTTGTCGACTCGAACA -CCAACACCTTTGTCGACTCAGTCA -CCAACACCTTTGTCGACTGATCCA -CCAACACCTTTGTCGACTACGACA -CCAACACCTTTGTCGACTAGCTCA -CCAACACCTTTGTCGACTTCACGT -CCAACACCTTTGTCGACTCGTAGT -CCAACACCTTTGTCGACTGTCAGT -CCAACACCTTTGTCGACTGAAGGT -CCAACACCTTTGTCGACTAACCGT -CCAACACCTTTGTCGACTTTGTGC -CCAACACCTTTGTCGACTCTAAGC -CCAACACCTTTGTCGACTACTAGC -CCAACACCTTTGTCGACTAGATGC -CCAACACCTTTGTCGACTTGAAGG -CCAACACCTTTGTCGACTCAATGG -CCAACACCTTTGTCGACTATGAGG -CCAACACCTTTGTCGACTAATGGG -CCAACACCTTTGTCGACTTCCTGA -CCAACACCTTTGTCGACTTAGCGA -CCAACACCTTTGTCGACTCACAGA -CCAACACCTTTGTCGACTGCAAGA -CCAACACCTTTGTCGACTGGTTGA -CCAACACCTTTGTCGACTTCCGAT -CCAACACCTTTGTCGACTTGGCAT -CCAACACCTTTGTCGACTCGAGAT -CCAACACCTTTGTCGACTTACCAC -CCAACACCTTTGTCGACTCAGAAC -CCAACACCTTTGTCGACTGTCTAC -CCAACACCTTTGTCGACTACGTAC -CCAACACCTTTGTCGACTAGTGAC -CCAACACCTTTGTCGACTCTGTAG -CCAACACCTTTGTCGACTCCTAAG -CCAACACCTTTGTCGACTGTTCAG -CCAACACCTTTGTCGACTGCATAG -CCAACACCTTTGTCGACTGACAAG -CCAACACCTTTGTCGACTAAGCAG -CCAACACCTTTGTCGACTCGTCAA -CCAACACCTTTGTCGACTGCTGAA -CCAACACCTTTGTCGACTAGTACG -CCAACACCTTTGTCGACTATCCGA -CCAACACCTTTGTCGACTATGGGA -CCAACACCTTTGTCGACTGTGCAA -CCAACACCTTTGTCGACTGAGGAA -CCAACACCTTTGTCGACTCAGGTA -CCAACACCTTTGTCGACTGACTCT -CCAACACCTTTGTCGACTAGTCCT -CCAACACCTTTGTCGACTTAAGCC -CCAACACCTTTGTCGACTATAGCC -CCAACACCTTTGTCGACTTAACCG -CCAACACCTTTGTCGACTATGCCA -CCAACACCTTTGGCATACGGAAAC -CCAACACCTTTGGCATACAACACC -CCAACACCTTTGGCATACATCGAG -CCAACACCTTTGGCATACCTCCTT -CCAACACCTTTGGCATACCCTGTT -CCAACACCTTTGGCATACCGGTTT -CCAACACCTTTGGCATACGTGGTT -CCAACACCTTTGGCATACGCCTTT -CCAACACCTTTGGCATACGGTCTT -CCAACACCTTTGGCATACACGCTT -CCAACACCTTTGGCATACAGCGTT -CCAACACCTTTGGCATACTTCGTC -CCAACACCTTTGGCATACTCTCTC -CCAACACCTTTGGCATACTGGATC -CCAACACCTTTGGCATACCACTTC -CCAACACCTTTGGCATACGTACTC -CCAACACCTTTGGCATACGATGTC -CCAACACCTTTGGCATACACAGTC -CCAACACCTTTGGCATACTTGCTG -CCAACACCTTTGGCATACTCCATG -CCAACACCTTTGGCATACTGTGTG -CCAACACCTTTGGCATACCTAGTG -CCAACACCTTTGGCATACCATCTG -CCAACACCTTTGGCATACGAGTTG -CCAACACCTTTGGCATACAGACTG -CCAACACCTTTGGCATACTCGGTA -CCAACACCTTTGGCATACTGCCTA -CCAACACCTTTGGCATACCCACTA -CCAACACCTTTGGCATACGGAGTA -CCAACACCTTTGGCATACTCGTCT -CCAACACCTTTGGCATACTGCACT -CCAACACCTTTGGCATACCTGACT -CCAACACCTTTGGCATACCAACCT -CCAACACCTTTGGCATACGCTACT -CCAACACCTTTGGCATACGGATCT -CCAACACCTTTGGCATACAAGGCT -CCAACACCTTTGGCATACTCAACC -CCAACACCTTTGGCATACTGTTCC -CCAACACCTTTGGCATACATTCCC -CCAACACCTTTGGCATACTTCTCG -CCAACACCTTTGGCATACTAGACG -CCAACACCTTTGGCATACGTAACG -CCAACACCTTTGGCATACACTTCG -CCAACACCTTTGGCATACTACGCA -CCAACACCTTTGGCATACCTTGCA -CCAACACCTTTGGCATACCGAACA -CCAACACCTTTGGCATACCAGTCA -CCAACACCTTTGGCATACGATCCA -CCAACACCTTTGGCATACACGACA -CCAACACCTTTGGCATACAGCTCA -CCAACACCTTTGGCATACTCACGT -CCAACACCTTTGGCATACCGTAGT -CCAACACCTTTGGCATACGTCAGT -CCAACACCTTTGGCATACGAAGGT -CCAACACCTTTGGCATACAACCGT -CCAACACCTTTGGCATACTTGTGC -CCAACACCTTTGGCATACCTAAGC -CCAACACCTTTGGCATACACTAGC -CCAACACCTTTGGCATACAGATGC -CCAACACCTTTGGCATACTGAAGG -CCAACACCTTTGGCATACCAATGG -CCAACACCTTTGGCATACATGAGG -CCAACACCTTTGGCATACAATGGG -CCAACACCTTTGGCATACTCCTGA -CCAACACCTTTGGCATACTAGCGA -CCAACACCTTTGGCATACCACAGA -CCAACACCTTTGGCATACGCAAGA -CCAACACCTTTGGCATACGGTTGA -CCAACACCTTTGGCATACTCCGAT -CCAACACCTTTGGCATACTGGCAT -CCAACACCTTTGGCATACCGAGAT -CCAACACCTTTGGCATACTACCAC -CCAACACCTTTGGCATACCAGAAC -CCAACACCTTTGGCATACGTCTAC -CCAACACCTTTGGCATACACGTAC -CCAACACCTTTGGCATACAGTGAC -CCAACACCTTTGGCATACCTGTAG -CCAACACCTTTGGCATACCCTAAG -CCAACACCTTTGGCATACGTTCAG -CCAACACCTTTGGCATACGCATAG -CCAACACCTTTGGCATACGACAAG -CCAACACCTTTGGCATACAAGCAG -CCAACACCTTTGGCATACCGTCAA -CCAACACCTTTGGCATACGCTGAA -CCAACACCTTTGGCATACAGTACG -CCAACACCTTTGGCATACATCCGA -CCAACACCTTTGGCATACATGGGA -CCAACACCTTTGGCATACGTGCAA -CCAACACCTTTGGCATACGAGGAA -CCAACACCTTTGGCATACCAGGTA -CCAACACCTTTGGCATACGACTCT -CCAACACCTTTGGCATACAGTCCT -CCAACACCTTTGGCATACTAAGCC -CCAACACCTTTGGCATACATAGCC -CCAACACCTTTGGCATACTAACCG -CCAACACCTTTGGCATACATGCCA -CCAACACCTTTGGCACTTGGAAAC -CCAACACCTTTGGCACTTAACACC -CCAACACCTTTGGCACTTATCGAG -CCAACACCTTTGGCACTTCTCCTT -CCAACACCTTTGGCACTTCCTGTT -CCAACACCTTTGGCACTTCGGTTT -CCAACACCTTTGGCACTTGTGGTT -CCAACACCTTTGGCACTTGCCTTT -CCAACACCTTTGGCACTTGGTCTT -CCAACACCTTTGGCACTTACGCTT -CCAACACCTTTGGCACTTAGCGTT -CCAACACCTTTGGCACTTTTCGTC -CCAACACCTTTGGCACTTTCTCTC -CCAACACCTTTGGCACTTTGGATC -CCAACACCTTTGGCACTTCACTTC -CCAACACCTTTGGCACTTGTACTC -CCAACACCTTTGGCACTTGATGTC -CCAACACCTTTGGCACTTACAGTC -CCAACACCTTTGGCACTTTTGCTG -CCAACACCTTTGGCACTTTCCATG -CCAACACCTTTGGCACTTTGTGTG -CCAACACCTTTGGCACTTCTAGTG -CCAACACCTTTGGCACTTCATCTG -CCAACACCTTTGGCACTTGAGTTG -CCAACACCTTTGGCACTTAGACTG -CCAACACCTTTGGCACTTTCGGTA -CCAACACCTTTGGCACTTTGCCTA -CCAACACCTTTGGCACTTCCACTA -CCAACACCTTTGGCACTTGGAGTA -CCAACACCTTTGGCACTTTCGTCT -CCAACACCTTTGGCACTTTGCACT -CCAACACCTTTGGCACTTCTGACT -CCAACACCTTTGGCACTTCAACCT -CCAACACCTTTGGCACTTGCTACT -CCAACACCTTTGGCACTTGGATCT -CCAACACCTTTGGCACTTAAGGCT -CCAACACCTTTGGCACTTTCAACC -CCAACACCTTTGGCACTTTGTTCC -CCAACACCTTTGGCACTTATTCCC -CCAACACCTTTGGCACTTTTCTCG -CCAACACCTTTGGCACTTTAGACG -CCAACACCTTTGGCACTTGTAACG -CCAACACCTTTGGCACTTACTTCG -CCAACACCTTTGGCACTTTACGCA -CCAACACCTTTGGCACTTCTTGCA -CCAACACCTTTGGCACTTCGAACA -CCAACACCTTTGGCACTTCAGTCA -CCAACACCTTTGGCACTTGATCCA -CCAACACCTTTGGCACTTACGACA -CCAACACCTTTGGCACTTAGCTCA -CCAACACCTTTGGCACTTTCACGT -CCAACACCTTTGGCACTTCGTAGT -CCAACACCTTTGGCACTTGTCAGT -CCAACACCTTTGGCACTTGAAGGT -CCAACACCTTTGGCACTTAACCGT -CCAACACCTTTGGCACTTTTGTGC -CCAACACCTTTGGCACTTCTAAGC -CCAACACCTTTGGCACTTACTAGC -CCAACACCTTTGGCACTTAGATGC -CCAACACCTTTGGCACTTTGAAGG -CCAACACCTTTGGCACTTCAATGG -CCAACACCTTTGGCACTTATGAGG -CCAACACCTTTGGCACTTAATGGG -CCAACACCTTTGGCACTTTCCTGA -CCAACACCTTTGGCACTTTAGCGA -CCAACACCTTTGGCACTTCACAGA -CCAACACCTTTGGCACTTGCAAGA -CCAACACCTTTGGCACTTGGTTGA -CCAACACCTTTGGCACTTTCCGAT -CCAACACCTTTGGCACTTTGGCAT -CCAACACCTTTGGCACTTCGAGAT -CCAACACCTTTGGCACTTTACCAC -CCAACACCTTTGGCACTTCAGAAC -CCAACACCTTTGGCACTTGTCTAC -CCAACACCTTTGGCACTTACGTAC -CCAACACCTTTGGCACTTAGTGAC -CCAACACCTTTGGCACTTCTGTAG -CCAACACCTTTGGCACTTCCTAAG -CCAACACCTTTGGCACTTGTTCAG -CCAACACCTTTGGCACTTGCATAG -CCAACACCTTTGGCACTTGACAAG -CCAACACCTTTGGCACTTAAGCAG -CCAACACCTTTGGCACTTCGTCAA -CCAACACCTTTGGCACTTGCTGAA -CCAACACCTTTGGCACTTAGTACG -CCAACACCTTTGGCACTTATCCGA -CCAACACCTTTGGCACTTATGGGA -CCAACACCTTTGGCACTTGTGCAA -CCAACACCTTTGGCACTTGAGGAA -CCAACACCTTTGGCACTTCAGGTA -CCAACACCTTTGGCACTTGACTCT -CCAACACCTTTGGCACTTAGTCCT -CCAACACCTTTGGCACTTTAAGCC -CCAACACCTTTGGCACTTATAGCC -CCAACACCTTTGGCACTTTAACCG -CCAACACCTTTGGCACTTATGCCA -CCAACACCTTTGACACGAGGAAAC -CCAACACCTTTGACACGAAACACC -CCAACACCTTTGACACGAATCGAG -CCAACACCTTTGACACGACTCCTT -CCAACACCTTTGACACGACCTGTT -CCAACACCTTTGACACGACGGTTT -CCAACACCTTTGACACGAGTGGTT -CCAACACCTTTGACACGAGCCTTT -CCAACACCTTTGACACGAGGTCTT -CCAACACCTTTGACACGAACGCTT -CCAACACCTTTGACACGAAGCGTT -CCAACACCTTTGACACGATTCGTC -CCAACACCTTTGACACGATCTCTC -CCAACACCTTTGACACGATGGATC -CCAACACCTTTGACACGACACTTC -CCAACACCTTTGACACGAGTACTC -CCAACACCTTTGACACGAGATGTC -CCAACACCTTTGACACGAACAGTC -CCAACACCTTTGACACGATTGCTG -CCAACACCTTTGACACGATCCATG -CCAACACCTTTGACACGATGTGTG -CCAACACCTTTGACACGACTAGTG -CCAACACCTTTGACACGACATCTG -CCAACACCTTTGACACGAGAGTTG -CCAACACCTTTGACACGAAGACTG -CCAACACCTTTGACACGATCGGTA -CCAACACCTTTGACACGATGCCTA -CCAACACCTTTGACACGACCACTA -CCAACACCTTTGACACGAGGAGTA -CCAACACCTTTGACACGATCGTCT -CCAACACCTTTGACACGATGCACT -CCAACACCTTTGACACGACTGACT -CCAACACCTTTGACACGACAACCT -CCAACACCTTTGACACGAGCTACT -CCAACACCTTTGACACGAGGATCT -CCAACACCTTTGACACGAAAGGCT -CCAACACCTTTGACACGATCAACC -CCAACACCTTTGACACGATGTTCC -CCAACACCTTTGACACGAATTCCC -CCAACACCTTTGACACGATTCTCG -CCAACACCTTTGACACGATAGACG -CCAACACCTTTGACACGAGTAACG -CCAACACCTTTGACACGAACTTCG -CCAACACCTTTGACACGATACGCA -CCAACACCTTTGACACGACTTGCA -CCAACACCTTTGACACGACGAACA -CCAACACCTTTGACACGACAGTCA -CCAACACCTTTGACACGAGATCCA -CCAACACCTTTGACACGAACGACA -CCAACACCTTTGACACGAAGCTCA -CCAACACCTTTGACACGATCACGT -CCAACACCTTTGACACGACGTAGT -CCAACACCTTTGACACGAGTCAGT -CCAACACCTTTGACACGAGAAGGT -CCAACACCTTTGACACGAAACCGT -CCAACACCTTTGACACGATTGTGC -CCAACACCTTTGACACGACTAAGC -CCAACACCTTTGACACGAACTAGC -CCAACACCTTTGACACGAAGATGC -CCAACACCTTTGACACGATGAAGG -CCAACACCTTTGACACGACAATGG -CCAACACCTTTGACACGAATGAGG -CCAACACCTTTGACACGAAATGGG -CCAACACCTTTGACACGATCCTGA -CCAACACCTTTGACACGATAGCGA -CCAACACCTTTGACACGACACAGA -CCAACACCTTTGACACGAGCAAGA -CCAACACCTTTGACACGAGGTTGA -CCAACACCTTTGACACGATCCGAT -CCAACACCTTTGACACGATGGCAT -CCAACACCTTTGACACGACGAGAT -CCAACACCTTTGACACGATACCAC -CCAACACCTTTGACACGACAGAAC -CCAACACCTTTGACACGAGTCTAC -CCAACACCTTTGACACGAACGTAC -CCAACACCTTTGACACGAAGTGAC -CCAACACCTTTGACACGACTGTAG -CCAACACCTTTGACACGACCTAAG -CCAACACCTTTGACACGAGTTCAG -CCAACACCTTTGACACGAGCATAG -CCAACACCTTTGACACGAGACAAG -CCAACACCTTTGACACGAAAGCAG -CCAACACCTTTGACACGACGTCAA -CCAACACCTTTGACACGAGCTGAA -CCAACACCTTTGACACGAAGTACG -CCAACACCTTTGACACGAATCCGA -CCAACACCTTTGACACGAATGGGA -CCAACACCTTTGACACGAGTGCAA -CCAACACCTTTGACACGAGAGGAA -CCAACACCTTTGACACGACAGGTA -CCAACACCTTTGACACGAGACTCT -CCAACACCTTTGACACGAAGTCCT -CCAACACCTTTGACACGATAAGCC -CCAACACCTTTGACACGAATAGCC -CCAACACCTTTGACACGATAACCG -CCAACACCTTTGACACGAATGCCA -CCAACACCTTTGTCACAGGGAAAC -CCAACACCTTTGTCACAGAACACC -CCAACACCTTTGTCACAGATCGAG -CCAACACCTTTGTCACAGCTCCTT -CCAACACCTTTGTCACAGCCTGTT -CCAACACCTTTGTCACAGCGGTTT -CCAACACCTTTGTCACAGGTGGTT -CCAACACCTTTGTCACAGGCCTTT -CCAACACCTTTGTCACAGGGTCTT -CCAACACCTTTGTCACAGACGCTT -CCAACACCTTTGTCACAGAGCGTT -CCAACACCTTTGTCACAGTTCGTC -CCAACACCTTTGTCACAGTCTCTC -CCAACACCTTTGTCACAGTGGATC -CCAACACCTTTGTCACAGCACTTC -CCAACACCTTTGTCACAGGTACTC -CCAACACCTTTGTCACAGGATGTC -CCAACACCTTTGTCACAGACAGTC -CCAACACCTTTGTCACAGTTGCTG -CCAACACCTTTGTCACAGTCCATG -CCAACACCTTTGTCACAGTGTGTG -CCAACACCTTTGTCACAGCTAGTG -CCAACACCTTTGTCACAGCATCTG -CCAACACCTTTGTCACAGGAGTTG -CCAACACCTTTGTCACAGAGACTG -CCAACACCTTTGTCACAGTCGGTA -CCAACACCTTTGTCACAGTGCCTA -CCAACACCTTTGTCACAGCCACTA -CCAACACCTTTGTCACAGGGAGTA -CCAACACCTTTGTCACAGTCGTCT -CCAACACCTTTGTCACAGTGCACT -CCAACACCTTTGTCACAGCTGACT -CCAACACCTTTGTCACAGCAACCT -CCAACACCTTTGTCACAGGCTACT -CCAACACCTTTGTCACAGGGATCT -CCAACACCTTTGTCACAGAAGGCT -CCAACACCTTTGTCACAGTCAACC -CCAACACCTTTGTCACAGTGTTCC -CCAACACCTTTGTCACAGATTCCC -CCAACACCTTTGTCACAGTTCTCG -CCAACACCTTTGTCACAGTAGACG -CCAACACCTTTGTCACAGGTAACG -CCAACACCTTTGTCACAGACTTCG -CCAACACCTTTGTCACAGTACGCA -CCAACACCTTTGTCACAGCTTGCA -CCAACACCTTTGTCACAGCGAACA -CCAACACCTTTGTCACAGCAGTCA -CCAACACCTTTGTCACAGGATCCA -CCAACACCTTTGTCACAGACGACA -CCAACACCTTTGTCACAGAGCTCA -CCAACACCTTTGTCACAGTCACGT -CCAACACCTTTGTCACAGCGTAGT -CCAACACCTTTGTCACAGGTCAGT -CCAACACCTTTGTCACAGGAAGGT -CCAACACCTTTGTCACAGAACCGT -CCAACACCTTTGTCACAGTTGTGC -CCAACACCTTTGTCACAGCTAAGC -CCAACACCTTTGTCACAGACTAGC -CCAACACCTTTGTCACAGAGATGC -CCAACACCTTTGTCACAGTGAAGG -CCAACACCTTTGTCACAGCAATGG -CCAACACCTTTGTCACAGATGAGG -CCAACACCTTTGTCACAGAATGGG -CCAACACCTTTGTCACAGTCCTGA -CCAACACCTTTGTCACAGTAGCGA -CCAACACCTTTGTCACAGCACAGA -CCAACACCTTTGTCACAGGCAAGA -CCAACACCTTTGTCACAGGGTTGA -CCAACACCTTTGTCACAGTCCGAT -CCAACACCTTTGTCACAGTGGCAT -CCAACACCTTTGTCACAGCGAGAT -CCAACACCTTTGTCACAGTACCAC -CCAACACCTTTGTCACAGCAGAAC -CCAACACCTTTGTCACAGGTCTAC -CCAACACCTTTGTCACAGACGTAC -CCAACACCTTTGTCACAGAGTGAC -CCAACACCTTTGTCACAGCTGTAG -CCAACACCTTTGTCACAGCCTAAG -CCAACACCTTTGTCACAGGTTCAG -CCAACACCTTTGTCACAGGCATAG -CCAACACCTTTGTCACAGGACAAG -CCAACACCTTTGTCACAGAAGCAG -CCAACACCTTTGTCACAGCGTCAA -CCAACACCTTTGTCACAGGCTGAA -CCAACACCTTTGTCACAGAGTACG -CCAACACCTTTGTCACAGATCCGA -CCAACACCTTTGTCACAGATGGGA -CCAACACCTTTGTCACAGGTGCAA -CCAACACCTTTGTCACAGGAGGAA -CCAACACCTTTGTCACAGCAGGTA -CCAACACCTTTGTCACAGGACTCT -CCAACACCTTTGTCACAGAGTCCT -CCAACACCTTTGTCACAGTAAGCC -CCAACACCTTTGTCACAGATAGCC -CCAACACCTTTGTCACAGTAACCG -CCAACACCTTTGTCACAGATGCCA -CCAACACCTTTGCCAGATGGAAAC -CCAACACCTTTGCCAGATAACACC -CCAACACCTTTGCCAGATATCGAG -CCAACACCTTTGCCAGATCTCCTT -CCAACACCTTTGCCAGATCCTGTT -CCAACACCTTTGCCAGATCGGTTT -CCAACACCTTTGCCAGATGTGGTT -CCAACACCTTTGCCAGATGCCTTT -CCAACACCTTTGCCAGATGGTCTT -CCAACACCTTTGCCAGATACGCTT -CCAACACCTTTGCCAGATAGCGTT -CCAACACCTTTGCCAGATTTCGTC -CCAACACCTTTGCCAGATTCTCTC -CCAACACCTTTGCCAGATTGGATC -CCAACACCTTTGCCAGATCACTTC -CCAACACCTTTGCCAGATGTACTC -CCAACACCTTTGCCAGATGATGTC -CCAACACCTTTGCCAGATACAGTC -CCAACACCTTTGCCAGATTTGCTG -CCAACACCTTTGCCAGATTCCATG -CCAACACCTTTGCCAGATTGTGTG -CCAACACCTTTGCCAGATCTAGTG -CCAACACCTTTGCCAGATCATCTG -CCAACACCTTTGCCAGATGAGTTG -CCAACACCTTTGCCAGATAGACTG -CCAACACCTTTGCCAGATTCGGTA -CCAACACCTTTGCCAGATTGCCTA -CCAACACCTTTGCCAGATCCACTA -CCAACACCTTTGCCAGATGGAGTA -CCAACACCTTTGCCAGATTCGTCT -CCAACACCTTTGCCAGATTGCACT -CCAACACCTTTGCCAGATCTGACT -CCAACACCTTTGCCAGATCAACCT -CCAACACCTTTGCCAGATGCTACT -CCAACACCTTTGCCAGATGGATCT -CCAACACCTTTGCCAGATAAGGCT -CCAACACCTTTGCCAGATTCAACC -CCAACACCTTTGCCAGATTGTTCC -CCAACACCTTTGCCAGATATTCCC -CCAACACCTTTGCCAGATTTCTCG -CCAACACCTTTGCCAGATTAGACG -CCAACACCTTTGCCAGATGTAACG -CCAACACCTTTGCCAGATACTTCG -CCAACACCTTTGCCAGATTACGCA -CCAACACCTTTGCCAGATCTTGCA -CCAACACCTTTGCCAGATCGAACA -CCAACACCTTTGCCAGATCAGTCA -CCAACACCTTTGCCAGATGATCCA -CCAACACCTTTGCCAGATACGACA -CCAACACCTTTGCCAGATAGCTCA -CCAACACCTTTGCCAGATTCACGT -CCAACACCTTTGCCAGATCGTAGT -CCAACACCTTTGCCAGATGTCAGT -CCAACACCTTTGCCAGATGAAGGT -CCAACACCTTTGCCAGATAACCGT -CCAACACCTTTGCCAGATTTGTGC -CCAACACCTTTGCCAGATCTAAGC -CCAACACCTTTGCCAGATACTAGC -CCAACACCTTTGCCAGATAGATGC -CCAACACCTTTGCCAGATTGAAGG -CCAACACCTTTGCCAGATCAATGG -CCAACACCTTTGCCAGATATGAGG -CCAACACCTTTGCCAGATAATGGG -CCAACACCTTTGCCAGATTCCTGA -CCAACACCTTTGCCAGATTAGCGA -CCAACACCTTTGCCAGATCACAGA -CCAACACCTTTGCCAGATGCAAGA -CCAACACCTTTGCCAGATGGTTGA -CCAACACCTTTGCCAGATTCCGAT -CCAACACCTTTGCCAGATTGGCAT -CCAACACCTTTGCCAGATCGAGAT -CCAACACCTTTGCCAGATTACCAC -CCAACACCTTTGCCAGATCAGAAC -CCAACACCTTTGCCAGATGTCTAC -CCAACACCTTTGCCAGATACGTAC -CCAACACCTTTGCCAGATAGTGAC -CCAACACCTTTGCCAGATCTGTAG -CCAACACCTTTGCCAGATCCTAAG -CCAACACCTTTGCCAGATGTTCAG -CCAACACCTTTGCCAGATGCATAG -CCAACACCTTTGCCAGATGACAAG -CCAACACCTTTGCCAGATAAGCAG -CCAACACCTTTGCCAGATCGTCAA -CCAACACCTTTGCCAGATGCTGAA -CCAACACCTTTGCCAGATAGTACG -CCAACACCTTTGCCAGATATCCGA -CCAACACCTTTGCCAGATATGGGA -CCAACACCTTTGCCAGATGTGCAA -CCAACACCTTTGCCAGATGAGGAA -CCAACACCTTTGCCAGATCAGGTA -CCAACACCTTTGCCAGATGACTCT -CCAACACCTTTGCCAGATAGTCCT -CCAACACCTTTGCCAGATTAAGCC -CCAACACCTTTGCCAGATATAGCC -CCAACACCTTTGCCAGATTAACCG -CCAACACCTTTGCCAGATATGCCA -CCAACACCTTTGACAACGGGAAAC -CCAACACCTTTGACAACGAACACC -CCAACACCTTTGACAACGATCGAG -CCAACACCTTTGACAACGCTCCTT -CCAACACCTTTGACAACGCCTGTT -CCAACACCTTTGACAACGCGGTTT -CCAACACCTTTGACAACGGTGGTT -CCAACACCTTTGACAACGGCCTTT -CCAACACCTTTGACAACGGGTCTT -CCAACACCTTTGACAACGACGCTT -CCAACACCTTTGACAACGAGCGTT -CCAACACCTTTGACAACGTTCGTC -CCAACACCTTTGACAACGTCTCTC -CCAACACCTTTGACAACGTGGATC -CCAACACCTTTGACAACGCACTTC -CCAACACCTTTGACAACGGTACTC -CCAACACCTTTGACAACGGATGTC -CCAACACCTTTGACAACGACAGTC -CCAACACCTTTGACAACGTTGCTG -CCAACACCTTTGACAACGTCCATG -CCAACACCTTTGACAACGTGTGTG -CCAACACCTTTGACAACGCTAGTG -CCAACACCTTTGACAACGCATCTG -CCAACACCTTTGACAACGGAGTTG -CCAACACCTTTGACAACGAGACTG -CCAACACCTTTGACAACGTCGGTA -CCAACACCTTTGACAACGTGCCTA -CCAACACCTTTGACAACGCCACTA -CCAACACCTTTGACAACGGGAGTA -CCAACACCTTTGACAACGTCGTCT -CCAACACCTTTGACAACGTGCACT -CCAACACCTTTGACAACGCTGACT -CCAACACCTTTGACAACGCAACCT -CCAACACCTTTGACAACGGCTACT -CCAACACCTTTGACAACGGGATCT -CCAACACCTTTGACAACGAAGGCT -CCAACACCTTTGACAACGTCAACC -CCAACACCTTTGACAACGTGTTCC -CCAACACCTTTGACAACGATTCCC -CCAACACCTTTGACAACGTTCTCG -CCAACACCTTTGACAACGTAGACG -CCAACACCTTTGACAACGGTAACG -CCAACACCTTTGACAACGACTTCG -CCAACACCTTTGACAACGTACGCA -CCAACACCTTTGACAACGCTTGCA -CCAACACCTTTGACAACGCGAACA -CCAACACCTTTGACAACGCAGTCA -CCAACACCTTTGACAACGGATCCA -CCAACACCTTTGACAACGACGACA -CCAACACCTTTGACAACGAGCTCA -CCAACACCTTTGACAACGTCACGT -CCAACACCTTTGACAACGCGTAGT -CCAACACCTTTGACAACGGTCAGT -CCAACACCTTTGACAACGGAAGGT -CCAACACCTTTGACAACGAACCGT -CCAACACCTTTGACAACGTTGTGC -CCAACACCTTTGACAACGCTAAGC -CCAACACCTTTGACAACGACTAGC -CCAACACCTTTGACAACGAGATGC -CCAACACCTTTGACAACGTGAAGG -CCAACACCTTTGACAACGCAATGG -CCAACACCTTTGACAACGATGAGG -CCAACACCTTTGACAACGAATGGG -CCAACACCTTTGACAACGTCCTGA -CCAACACCTTTGACAACGTAGCGA -CCAACACCTTTGACAACGCACAGA -CCAACACCTTTGACAACGGCAAGA -CCAACACCTTTGACAACGGGTTGA -CCAACACCTTTGACAACGTCCGAT -CCAACACCTTTGACAACGTGGCAT -CCAACACCTTTGACAACGCGAGAT -CCAACACCTTTGACAACGTACCAC -CCAACACCTTTGACAACGCAGAAC -CCAACACCTTTGACAACGGTCTAC -CCAACACCTTTGACAACGACGTAC -CCAACACCTTTGACAACGAGTGAC -CCAACACCTTTGACAACGCTGTAG -CCAACACCTTTGACAACGCCTAAG -CCAACACCTTTGACAACGGTTCAG -CCAACACCTTTGACAACGGCATAG -CCAACACCTTTGACAACGGACAAG -CCAACACCTTTGACAACGAAGCAG -CCAACACCTTTGACAACGCGTCAA -CCAACACCTTTGACAACGGCTGAA -CCAACACCTTTGACAACGAGTACG -CCAACACCTTTGACAACGATCCGA -CCAACACCTTTGACAACGATGGGA -CCAACACCTTTGACAACGGTGCAA -CCAACACCTTTGACAACGGAGGAA -CCAACACCTTTGACAACGCAGGTA -CCAACACCTTTGACAACGGACTCT -CCAACACCTTTGACAACGAGTCCT -CCAACACCTTTGACAACGTAAGCC -CCAACACCTTTGACAACGATAGCC -CCAACACCTTTGACAACGTAACCG -CCAACACCTTTGACAACGATGCCA -CCAACACCTTTGTCAAGCGGAAAC -CCAACACCTTTGTCAAGCAACACC -CCAACACCTTTGTCAAGCATCGAG -CCAACACCTTTGTCAAGCCTCCTT -CCAACACCTTTGTCAAGCCCTGTT -CCAACACCTTTGTCAAGCCGGTTT -CCAACACCTTTGTCAAGCGTGGTT -CCAACACCTTTGTCAAGCGCCTTT -CCAACACCTTTGTCAAGCGGTCTT -CCAACACCTTTGTCAAGCACGCTT -CCAACACCTTTGTCAAGCAGCGTT -CCAACACCTTTGTCAAGCTTCGTC -CCAACACCTTTGTCAAGCTCTCTC -CCAACACCTTTGTCAAGCTGGATC -CCAACACCTTTGTCAAGCCACTTC -CCAACACCTTTGTCAAGCGTACTC -CCAACACCTTTGTCAAGCGATGTC -CCAACACCTTTGTCAAGCACAGTC -CCAACACCTTTGTCAAGCTTGCTG -CCAACACCTTTGTCAAGCTCCATG -CCAACACCTTTGTCAAGCTGTGTG -CCAACACCTTTGTCAAGCCTAGTG -CCAACACCTTTGTCAAGCCATCTG -CCAACACCTTTGTCAAGCGAGTTG -CCAACACCTTTGTCAAGCAGACTG -CCAACACCTTTGTCAAGCTCGGTA -CCAACACCTTTGTCAAGCTGCCTA -CCAACACCTTTGTCAAGCCCACTA -CCAACACCTTTGTCAAGCGGAGTA -CCAACACCTTTGTCAAGCTCGTCT -CCAACACCTTTGTCAAGCTGCACT -CCAACACCTTTGTCAAGCCTGACT -CCAACACCTTTGTCAAGCCAACCT -CCAACACCTTTGTCAAGCGCTACT -CCAACACCTTTGTCAAGCGGATCT -CCAACACCTTTGTCAAGCAAGGCT -CCAACACCTTTGTCAAGCTCAACC -CCAACACCTTTGTCAAGCTGTTCC -CCAACACCTTTGTCAAGCATTCCC -CCAACACCTTTGTCAAGCTTCTCG -CCAACACCTTTGTCAAGCTAGACG -CCAACACCTTTGTCAAGCGTAACG -CCAACACCTTTGTCAAGCACTTCG -CCAACACCTTTGTCAAGCTACGCA -CCAACACCTTTGTCAAGCCTTGCA -CCAACACCTTTGTCAAGCCGAACA -CCAACACCTTTGTCAAGCCAGTCA -CCAACACCTTTGTCAAGCGATCCA -CCAACACCTTTGTCAAGCACGACA -CCAACACCTTTGTCAAGCAGCTCA -CCAACACCTTTGTCAAGCTCACGT -CCAACACCTTTGTCAAGCCGTAGT -CCAACACCTTTGTCAAGCGTCAGT -CCAACACCTTTGTCAAGCGAAGGT -CCAACACCTTTGTCAAGCAACCGT -CCAACACCTTTGTCAAGCTTGTGC -CCAACACCTTTGTCAAGCCTAAGC -CCAACACCTTTGTCAAGCACTAGC -CCAACACCTTTGTCAAGCAGATGC -CCAACACCTTTGTCAAGCTGAAGG -CCAACACCTTTGTCAAGCCAATGG -CCAACACCTTTGTCAAGCATGAGG -CCAACACCTTTGTCAAGCAATGGG -CCAACACCTTTGTCAAGCTCCTGA -CCAACACCTTTGTCAAGCTAGCGA -CCAACACCTTTGTCAAGCCACAGA -CCAACACCTTTGTCAAGCGCAAGA -CCAACACCTTTGTCAAGCGGTTGA -CCAACACCTTTGTCAAGCTCCGAT -CCAACACCTTTGTCAAGCTGGCAT -CCAACACCTTTGTCAAGCCGAGAT -CCAACACCTTTGTCAAGCTACCAC -CCAACACCTTTGTCAAGCCAGAAC -CCAACACCTTTGTCAAGCGTCTAC -CCAACACCTTTGTCAAGCACGTAC -CCAACACCTTTGTCAAGCAGTGAC -CCAACACCTTTGTCAAGCCTGTAG -CCAACACCTTTGTCAAGCCCTAAG -CCAACACCTTTGTCAAGCGTTCAG -CCAACACCTTTGTCAAGCGCATAG -CCAACACCTTTGTCAAGCGACAAG -CCAACACCTTTGTCAAGCAAGCAG -CCAACACCTTTGTCAAGCCGTCAA -CCAACACCTTTGTCAAGCGCTGAA -CCAACACCTTTGTCAAGCAGTACG -CCAACACCTTTGTCAAGCATCCGA -CCAACACCTTTGTCAAGCATGGGA -CCAACACCTTTGTCAAGCGTGCAA -CCAACACCTTTGTCAAGCGAGGAA -CCAACACCTTTGTCAAGCCAGGTA -CCAACACCTTTGTCAAGCGACTCT -CCAACACCTTTGTCAAGCAGTCCT -CCAACACCTTTGTCAAGCTAAGCC -CCAACACCTTTGTCAAGCATAGCC -CCAACACCTTTGTCAAGCTAACCG -CCAACACCTTTGTCAAGCATGCCA -CCAACACCTTTGCGTTCAGGAAAC -CCAACACCTTTGCGTTCAAACACC -CCAACACCTTTGCGTTCAATCGAG -CCAACACCTTTGCGTTCACTCCTT -CCAACACCTTTGCGTTCACCTGTT -CCAACACCTTTGCGTTCACGGTTT -CCAACACCTTTGCGTTCAGTGGTT -CCAACACCTTTGCGTTCAGCCTTT -CCAACACCTTTGCGTTCAGGTCTT -CCAACACCTTTGCGTTCAACGCTT -CCAACACCTTTGCGTTCAAGCGTT -CCAACACCTTTGCGTTCATTCGTC -CCAACACCTTTGCGTTCATCTCTC -CCAACACCTTTGCGTTCATGGATC -CCAACACCTTTGCGTTCACACTTC -CCAACACCTTTGCGTTCAGTACTC -CCAACACCTTTGCGTTCAGATGTC -CCAACACCTTTGCGTTCAACAGTC -CCAACACCTTTGCGTTCATTGCTG -CCAACACCTTTGCGTTCATCCATG -CCAACACCTTTGCGTTCATGTGTG -CCAACACCTTTGCGTTCACTAGTG -CCAACACCTTTGCGTTCACATCTG -CCAACACCTTTGCGTTCAGAGTTG -CCAACACCTTTGCGTTCAAGACTG -CCAACACCTTTGCGTTCATCGGTA -CCAACACCTTTGCGTTCATGCCTA -CCAACACCTTTGCGTTCACCACTA -CCAACACCTTTGCGTTCAGGAGTA -CCAACACCTTTGCGTTCATCGTCT -CCAACACCTTTGCGTTCATGCACT -CCAACACCTTTGCGTTCACTGACT -CCAACACCTTTGCGTTCACAACCT -CCAACACCTTTGCGTTCAGCTACT -CCAACACCTTTGCGTTCAGGATCT -CCAACACCTTTGCGTTCAAAGGCT -CCAACACCTTTGCGTTCATCAACC -CCAACACCTTTGCGTTCATGTTCC -CCAACACCTTTGCGTTCAATTCCC -CCAACACCTTTGCGTTCATTCTCG -CCAACACCTTTGCGTTCATAGACG -CCAACACCTTTGCGTTCAGTAACG -CCAACACCTTTGCGTTCAACTTCG -CCAACACCTTTGCGTTCATACGCA -CCAACACCTTTGCGTTCACTTGCA -CCAACACCTTTGCGTTCACGAACA -CCAACACCTTTGCGTTCACAGTCA -CCAACACCTTTGCGTTCAGATCCA -CCAACACCTTTGCGTTCAACGACA -CCAACACCTTTGCGTTCAAGCTCA -CCAACACCTTTGCGTTCATCACGT -CCAACACCTTTGCGTTCACGTAGT -CCAACACCTTTGCGTTCAGTCAGT -CCAACACCTTTGCGTTCAGAAGGT -CCAACACCTTTGCGTTCAAACCGT -CCAACACCTTTGCGTTCATTGTGC -CCAACACCTTTGCGTTCACTAAGC -CCAACACCTTTGCGTTCAACTAGC -CCAACACCTTTGCGTTCAAGATGC -CCAACACCTTTGCGTTCATGAAGG -CCAACACCTTTGCGTTCACAATGG -CCAACACCTTTGCGTTCAATGAGG -CCAACACCTTTGCGTTCAAATGGG -CCAACACCTTTGCGTTCATCCTGA -CCAACACCTTTGCGTTCATAGCGA -CCAACACCTTTGCGTTCACACAGA -CCAACACCTTTGCGTTCAGCAAGA -CCAACACCTTTGCGTTCAGGTTGA -CCAACACCTTTGCGTTCATCCGAT -CCAACACCTTTGCGTTCATGGCAT -CCAACACCTTTGCGTTCACGAGAT -CCAACACCTTTGCGTTCATACCAC -CCAACACCTTTGCGTTCACAGAAC -CCAACACCTTTGCGTTCAGTCTAC -CCAACACCTTTGCGTTCAACGTAC -CCAACACCTTTGCGTTCAAGTGAC -CCAACACCTTTGCGTTCACTGTAG -CCAACACCTTTGCGTTCACCTAAG -CCAACACCTTTGCGTTCAGTTCAG -CCAACACCTTTGCGTTCAGCATAG -CCAACACCTTTGCGTTCAGACAAG -CCAACACCTTTGCGTTCAAAGCAG -CCAACACCTTTGCGTTCACGTCAA -CCAACACCTTTGCGTTCAGCTGAA -CCAACACCTTTGCGTTCAAGTACG -CCAACACCTTTGCGTTCAATCCGA -CCAACACCTTTGCGTTCAATGGGA -CCAACACCTTTGCGTTCAGTGCAA -CCAACACCTTTGCGTTCAGAGGAA -CCAACACCTTTGCGTTCACAGGTA -CCAACACCTTTGCGTTCAGACTCT -CCAACACCTTTGCGTTCAAGTCCT -CCAACACCTTTGCGTTCATAAGCC -CCAACACCTTTGCGTTCAATAGCC -CCAACACCTTTGCGTTCATAACCG -CCAACACCTTTGCGTTCAATGCCA -CCAACACCTTTGAGTCGTGGAAAC -CCAACACCTTTGAGTCGTAACACC -CCAACACCTTTGAGTCGTATCGAG -CCAACACCTTTGAGTCGTCTCCTT -CCAACACCTTTGAGTCGTCCTGTT -CCAACACCTTTGAGTCGTCGGTTT -CCAACACCTTTGAGTCGTGTGGTT -CCAACACCTTTGAGTCGTGCCTTT -CCAACACCTTTGAGTCGTGGTCTT -CCAACACCTTTGAGTCGTACGCTT -CCAACACCTTTGAGTCGTAGCGTT -CCAACACCTTTGAGTCGTTTCGTC -CCAACACCTTTGAGTCGTTCTCTC -CCAACACCTTTGAGTCGTTGGATC -CCAACACCTTTGAGTCGTCACTTC -CCAACACCTTTGAGTCGTGTACTC -CCAACACCTTTGAGTCGTGATGTC -CCAACACCTTTGAGTCGTACAGTC -CCAACACCTTTGAGTCGTTTGCTG -CCAACACCTTTGAGTCGTTCCATG -CCAACACCTTTGAGTCGTTGTGTG -CCAACACCTTTGAGTCGTCTAGTG -CCAACACCTTTGAGTCGTCATCTG -CCAACACCTTTGAGTCGTGAGTTG -CCAACACCTTTGAGTCGTAGACTG -CCAACACCTTTGAGTCGTTCGGTA -CCAACACCTTTGAGTCGTTGCCTA -CCAACACCTTTGAGTCGTCCACTA -CCAACACCTTTGAGTCGTGGAGTA -CCAACACCTTTGAGTCGTTCGTCT -CCAACACCTTTGAGTCGTTGCACT -CCAACACCTTTGAGTCGTCTGACT -CCAACACCTTTGAGTCGTCAACCT -CCAACACCTTTGAGTCGTGCTACT -CCAACACCTTTGAGTCGTGGATCT -CCAACACCTTTGAGTCGTAAGGCT -CCAACACCTTTGAGTCGTTCAACC -CCAACACCTTTGAGTCGTTGTTCC -CCAACACCTTTGAGTCGTATTCCC -CCAACACCTTTGAGTCGTTTCTCG -CCAACACCTTTGAGTCGTTAGACG -CCAACACCTTTGAGTCGTGTAACG -CCAACACCTTTGAGTCGTACTTCG -CCAACACCTTTGAGTCGTTACGCA -CCAACACCTTTGAGTCGTCTTGCA -CCAACACCTTTGAGTCGTCGAACA -CCAACACCTTTGAGTCGTCAGTCA -CCAACACCTTTGAGTCGTGATCCA -CCAACACCTTTGAGTCGTACGACA -CCAACACCTTTGAGTCGTAGCTCA -CCAACACCTTTGAGTCGTTCACGT -CCAACACCTTTGAGTCGTCGTAGT -CCAACACCTTTGAGTCGTGTCAGT -CCAACACCTTTGAGTCGTGAAGGT -CCAACACCTTTGAGTCGTAACCGT -CCAACACCTTTGAGTCGTTTGTGC -CCAACACCTTTGAGTCGTCTAAGC -CCAACACCTTTGAGTCGTACTAGC -CCAACACCTTTGAGTCGTAGATGC -CCAACACCTTTGAGTCGTTGAAGG -CCAACACCTTTGAGTCGTCAATGG -CCAACACCTTTGAGTCGTATGAGG -CCAACACCTTTGAGTCGTAATGGG -CCAACACCTTTGAGTCGTTCCTGA -CCAACACCTTTGAGTCGTTAGCGA -CCAACACCTTTGAGTCGTCACAGA -CCAACACCTTTGAGTCGTGCAAGA -CCAACACCTTTGAGTCGTGGTTGA -CCAACACCTTTGAGTCGTTCCGAT -CCAACACCTTTGAGTCGTTGGCAT -CCAACACCTTTGAGTCGTCGAGAT -CCAACACCTTTGAGTCGTTACCAC -CCAACACCTTTGAGTCGTCAGAAC -CCAACACCTTTGAGTCGTGTCTAC -CCAACACCTTTGAGTCGTACGTAC -CCAACACCTTTGAGTCGTAGTGAC -CCAACACCTTTGAGTCGTCTGTAG -CCAACACCTTTGAGTCGTCCTAAG -CCAACACCTTTGAGTCGTGTTCAG -CCAACACCTTTGAGTCGTGCATAG -CCAACACCTTTGAGTCGTGACAAG -CCAACACCTTTGAGTCGTAAGCAG -CCAACACCTTTGAGTCGTCGTCAA -CCAACACCTTTGAGTCGTGCTGAA -CCAACACCTTTGAGTCGTAGTACG -CCAACACCTTTGAGTCGTATCCGA -CCAACACCTTTGAGTCGTATGGGA -CCAACACCTTTGAGTCGTGTGCAA -CCAACACCTTTGAGTCGTGAGGAA -CCAACACCTTTGAGTCGTCAGGTA -CCAACACCTTTGAGTCGTGACTCT -CCAACACCTTTGAGTCGTAGTCCT -CCAACACCTTTGAGTCGTTAAGCC -CCAACACCTTTGAGTCGTATAGCC -CCAACACCTTTGAGTCGTTAACCG -CCAACACCTTTGAGTCGTATGCCA -CCAACACCTTTGAGTGTCGGAAAC -CCAACACCTTTGAGTGTCAACACC -CCAACACCTTTGAGTGTCATCGAG -CCAACACCTTTGAGTGTCCTCCTT -CCAACACCTTTGAGTGTCCCTGTT -CCAACACCTTTGAGTGTCCGGTTT -CCAACACCTTTGAGTGTCGTGGTT -CCAACACCTTTGAGTGTCGCCTTT -CCAACACCTTTGAGTGTCGGTCTT -CCAACACCTTTGAGTGTCACGCTT -CCAACACCTTTGAGTGTCAGCGTT -CCAACACCTTTGAGTGTCTTCGTC -CCAACACCTTTGAGTGTCTCTCTC -CCAACACCTTTGAGTGTCTGGATC -CCAACACCTTTGAGTGTCCACTTC -CCAACACCTTTGAGTGTCGTACTC -CCAACACCTTTGAGTGTCGATGTC -CCAACACCTTTGAGTGTCACAGTC -CCAACACCTTTGAGTGTCTTGCTG -CCAACACCTTTGAGTGTCTCCATG -CCAACACCTTTGAGTGTCTGTGTG -CCAACACCTTTGAGTGTCCTAGTG -CCAACACCTTTGAGTGTCCATCTG -CCAACACCTTTGAGTGTCGAGTTG -CCAACACCTTTGAGTGTCAGACTG -CCAACACCTTTGAGTGTCTCGGTA -CCAACACCTTTGAGTGTCTGCCTA -CCAACACCTTTGAGTGTCCCACTA -CCAACACCTTTGAGTGTCGGAGTA -CCAACACCTTTGAGTGTCTCGTCT -CCAACACCTTTGAGTGTCTGCACT -CCAACACCTTTGAGTGTCCTGACT -CCAACACCTTTGAGTGTCCAACCT -CCAACACCTTTGAGTGTCGCTACT -CCAACACCTTTGAGTGTCGGATCT -CCAACACCTTTGAGTGTCAAGGCT -CCAACACCTTTGAGTGTCTCAACC -CCAACACCTTTGAGTGTCTGTTCC -CCAACACCTTTGAGTGTCATTCCC -CCAACACCTTTGAGTGTCTTCTCG -CCAACACCTTTGAGTGTCTAGACG -CCAACACCTTTGAGTGTCGTAACG -CCAACACCTTTGAGTGTCACTTCG -CCAACACCTTTGAGTGTCTACGCA -CCAACACCTTTGAGTGTCCTTGCA -CCAACACCTTTGAGTGTCCGAACA -CCAACACCTTTGAGTGTCCAGTCA -CCAACACCTTTGAGTGTCGATCCA -CCAACACCTTTGAGTGTCACGACA -CCAACACCTTTGAGTGTCAGCTCA -CCAACACCTTTGAGTGTCTCACGT -CCAACACCTTTGAGTGTCCGTAGT -CCAACACCTTTGAGTGTCGTCAGT -CCAACACCTTTGAGTGTCGAAGGT -CCAACACCTTTGAGTGTCAACCGT -CCAACACCTTTGAGTGTCTTGTGC -CCAACACCTTTGAGTGTCCTAAGC -CCAACACCTTTGAGTGTCACTAGC -CCAACACCTTTGAGTGTCAGATGC -CCAACACCTTTGAGTGTCTGAAGG -CCAACACCTTTGAGTGTCCAATGG -CCAACACCTTTGAGTGTCATGAGG -CCAACACCTTTGAGTGTCAATGGG -CCAACACCTTTGAGTGTCTCCTGA -CCAACACCTTTGAGTGTCTAGCGA -CCAACACCTTTGAGTGTCCACAGA -CCAACACCTTTGAGTGTCGCAAGA -CCAACACCTTTGAGTGTCGGTTGA -CCAACACCTTTGAGTGTCTCCGAT -CCAACACCTTTGAGTGTCTGGCAT -CCAACACCTTTGAGTGTCCGAGAT -CCAACACCTTTGAGTGTCTACCAC -CCAACACCTTTGAGTGTCCAGAAC -CCAACACCTTTGAGTGTCGTCTAC -CCAACACCTTTGAGTGTCACGTAC -CCAACACCTTTGAGTGTCAGTGAC -CCAACACCTTTGAGTGTCCTGTAG -CCAACACCTTTGAGTGTCCCTAAG -CCAACACCTTTGAGTGTCGTTCAG -CCAACACCTTTGAGTGTCGCATAG -CCAACACCTTTGAGTGTCGACAAG -CCAACACCTTTGAGTGTCAAGCAG -CCAACACCTTTGAGTGTCCGTCAA -CCAACACCTTTGAGTGTCGCTGAA -CCAACACCTTTGAGTGTCAGTACG -CCAACACCTTTGAGTGTCATCCGA -CCAACACCTTTGAGTGTCATGGGA -CCAACACCTTTGAGTGTCGTGCAA -CCAACACCTTTGAGTGTCGAGGAA -CCAACACCTTTGAGTGTCCAGGTA -CCAACACCTTTGAGTGTCGACTCT -CCAACACCTTTGAGTGTCAGTCCT -CCAACACCTTTGAGTGTCTAAGCC -CCAACACCTTTGAGTGTCATAGCC -CCAACACCTTTGAGTGTCTAACCG -CCAACACCTTTGAGTGTCATGCCA -CCAACACCTTTGGGTGAAGGAAAC -CCAACACCTTTGGGTGAAAACACC -CCAACACCTTTGGGTGAAATCGAG -CCAACACCTTTGGGTGAACTCCTT -CCAACACCTTTGGGTGAACCTGTT -CCAACACCTTTGGGTGAACGGTTT -CCAACACCTTTGGGTGAAGTGGTT -CCAACACCTTTGGGTGAAGCCTTT -CCAACACCTTTGGGTGAAGGTCTT -CCAACACCTTTGGGTGAAACGCTT -CCAACACCTTTGGGTGAAAGCGTT -CCAACACCTTTGGGTGAATTCGTC -CCAACACCTTTGGGTGAATCTCTC -CCAACACCTTTGGGTGAATGGATC -CCAACACCTTTGGGTGAACACTTC -CCAACACCTTTGGGTGAAGTACTC -CCAACACCTTTGGGTGAAGATGTC -CCAACACCTTTGGGTGAAACAGTC -CCAACACCTTTGGGTGAATTGCTG -CCAACACCTTTGGGTGAATCCATG -CCAACACCTTTGGGTGAATGTGTG -CCAACACCTTTGGGTGAACTAGTG -CCAACACCTTTGGGTGAACATCTG -CCAACACCTTTGGGTGAAGAGTTG -CCAACACCTTTGGGTGAAAGACTG -CCAACACCTTTGGGTGAATCGGTA -CCAACACCTTTGGGTGAATGCCTA -CCAACACCTTTGGGTGAACCACTA -CCAACACCTTTGGGTGAAGGAGTA -CCAACACCTTTGGGTGAATCGTCT -CCAACACCTTTGGGTGAATGCACT -CCAACACCTTTGGGTGAACTGACT -CCAACACCTTTGGGTGAACAACCT -CCAACACCTTTGGGTGAAGCTACT -CCAACACCTTTGGGTGAAGGATCT -CCAACACCTTTGGGTGAAAAGGCT -CCAACACCTTTGGGTGAATCAACC -CCAACACCTTTGGGTGAATGTTCC -CCAACACCTTTGGGTGAAATTCCC -CCAACACCTTTGGGTGAATTCTCG -CCAACACCTTTGGGTGAATAGACG -CCAACACCTTTGGGTGAAGTAACG -CCAACACCTTTGGGTGAAACTTCG -CCAACACCTTTGGGTGAATACGCA -CCAACACCTTTGGGTGAACTTGCA -CCAACACCTTTGGGTGAACGAACA -CCAACACCTTTGGGTGAACAGTCA -CCAACACCTTTGGGTGAAGATCCA -CCAACACCTTTGGGTGAAACGACA -CCAACACCTTTGGGTGAAAGCTCA -CCAACACCTTTGGGTGAATCACGT -CCAACACCTTTGGGTGAACGTAGT -CCAACACCTTTGGGTGAAGTCAGT -CCAACACCTTTGGGTGAAGAAGGT -CCAACACCTTTGGGTGAAAACCGT -CCAACACCTTTGGGTGAATTGTGC -CCAACACCTTTGGGTGAACTAAGC -CCAACACCTTTGGGTGAAACTAGC -CCAACACCTTTGGGTGAAAGATGC -CCAACACCTTTGGGTGAATGAAGG -CCAACACCTTTGGGTGAACAATGG -CCAACACCTTTGGGTGAAATGAGG -CCAACACCTTTGGGTGAAAATGGG -CCAACACCTTTGGGTGAATCCTGA -CCAACACCTTTGGGTGAATAGCGA -CCAACACCTTTGGGTGAACACAGA -CCAACACCTTTGGGTGAAGCAAGA -CCAACACCTTTGGGTGAAGGTTGA -CCAACACCTTTGGGTGAATCCGAT -CCAACACCTTTGGGTGAATGGCAT -CCAACACCTTTGGGTGAACGAGAT -CCAACACCTTTGGGTGAATACCAC -CCAACACCTTTGGGTGAACAGAAC -CCAACACCTTTGGGTGAAGTCTAC -CCAACACCTTTGGGTGAAACGTAC -CCAACACCTTTGGGTGAAAGTGAC -CCAACACCTTTGGGTGAACTGTAG -CCAACACCTTTGGGTGAACCTAAG -CCAACACCTTTGGGTGAAGTTCAG -CCAACACCTTTGGGTGAAGCATAG -CCAACACCTTTGGGTGAAGACAAG -CCAACACCTTTGGGTGAAAAGCAG -CCAACACCTTTGGGTGAACGTCAA -CCAACACCTTTGGGTGAAGCTGAA -CCAACACCTTTGGGTGAAAGTACG -CCAACACCTTTGGGTGAAATCCGA -CCAACACCTTTGGGTGAAATGGGA -CCAACACCTTTGGGTGAAGTGCAA -CCAACACCTTTGGGTGAAGAGGAA -CCAACACCTTTGGGTGAACAGGTA -CCAACACCTTTGGGTGAAGACTCT -CCAACACCTTTGGGTGAAAGTCCT -CCAACACCTTTGGGTGAATAAGCC -CCAACACCTTTGGGTGAAATAGCC -CCAACACCTTTGGGTGAATAACCG -CCAACACCTTTGGGTGAAATGCCA -CCAACACCTTTGCGTAACGGAAAC -CCAACACCTTTGCGTAACAACACC -CCAACACCTTTGCGTAACATCGAG -CCAACACCTTTGCGTAACCTCCTT -CCAACACCTTTGCGTAACCCTGTT -CCAACACCTTTGCGTAACCGGTTT -CCAACACCTTTGCGTAACGTGGTT -CCAACACCTTTGCGTAACGCCTTT -CCAACACCTTTGCGTAACGGTCTT -CCAACACCTTTGCGTAACACGCTT -CCAACACCTTTGCGTAACAGCGTT -CCAACACCTTTGCGTAACTTCGTC -CCAACACCTTTGCGTAACTCTCTC -CCAACACCTTTGCGTAACTGGATC -CCAACACCTTTGCGTAACCACTTC -CCAACACCTTTGCGTAACGTACTC -CCAACACCTTTGCGTAACGATGTC -CCAACACCTTTGCGTAACACAGTC -CCAACACCTTTGCGTAACTTGCTG -CCAACACCTTTGCGTAACTCCATG -CCAACACCTTTGCGTAACTGTGTG -CCAACACCTTTGCGTAACCTAGTG -CCAACACCTTTGCGTAACCATCTG -CCAACACCTTTGCGTAACGAGTTG -CCAACACCTTTGCGTAACAGACTG -CCAACACCTTTGCGTAACTCGGTA -CCAACACCTTTGCGTAACTGCCTA -CCAACACCTTTGCGTAACCCACTA -CCAACACCTTTGCGTAACGGAGTA -CCAACACCTTTGCGTAACTCGTCT -CCAACACCTTTGCGTAACTGCACT -CCAACACCTTTGCGTAACCTGACT -CCAACACCTTTGCGTAACCAACCT -CCAACACCTTTGCGTAACGCTACT -CCAACACCTTTGCGTAACGGATCT -CCAACACCTTTGCGTAACAAGGCT -CCAACACCTTTGCGTAACTCAACC -CCAACACCTTTGCGTAACTGTTCC -CCAACACCTTTGCGTAACATTCCC -CCAACACCTTTGCGTAACTTCTCG -CCAACACCTTTGCGTAACTAGACG -CCAACACCTTTGCGTAACGTAACG -CCAACACCTTTGCGTAACACTTCG -CCAACACCTTTGCGTAACTACGCA -CCAACACCTTTGCGTAACCTTGCA -CCAACACCTTTGCGTAACCGAACA -CCAACACCTTTGCGTAACCAGTCA -CCAACACCTTTGCGTAACGATCCA -CCAACACCTTTGCGTAACACGACA -CCAACACCTTTGCGTAACAGCTCA -CCAACACCTTTGCGTAACTCACGT -CCAACACCTTTGCGTAACCGTAGT -CCAACACCTTTGCGTAACGTCAGT -CCAACACCTTTGCGTAACGAAGGT -CCAACACCTTTGCGTAACAACCGT -CCAACACCTTTGCGTAACTTGTGC -CCAACACCTTTGCGTAACCTAAGC -CCAACACCTTTGCGTAACACTAGC -CCAACACCTTTGCGTAACAGATGC -CCAACACCTTTGCGTAACTGAAGG -CCAACACCTTTGCGTAACCAATGG -CCAACACCTTTGCGTAACATGAGG -CCAACACCTTTGCGTAACAATGGG -CCAACACCTTTGCGTAACTCCTGA -CCAACACCTTTGCGTAACTAGCGA -CCAACACCTTTGCGTAACCACAGA -CCAACACCTTTGCGTAACGCAAGA -CCAACACCTTTGCGTAACGGTTGA -CCAACACCTTTGCGTAACTCCGAT -CCAACACCTTTGCGTAACTGGCAT -CCAACACCTTTGCGTAACCGAGAT -CCAACACCTTTGCGTAACTACCAC -CCAACACCTTTGCGTAACCAGAAC -CCAACACCTTTGCGTAACGTCTAC -CCAACACCTTTGCGTAACACGTAC -CCAACACCTTTGCGTAACAGTGAC -CCAACACCTTTGCGTAACCTGTAG -CCAACACCTTTGCGTAACCCTAAG -CCAACACCTTTGCGTAACGTTCAG -CCAACACCTTTGCGTAACGCATAG -CCAACACCTTTGCGTAACGACAAG -CCAACACCTTTGCGTAACAAGCAG -CCAACACCTTTGCGTAACCGTCAA -CCAACACCTTTGCGTAACGCTGAA -CCAACACCTTTGCGTAACAGTACG -CCAACACCTTTGCGTAACATCCGA -CCAACACCTTTGCGTAACATGGGA -CCAACACCTTTGCGTAACGTGCAA -CCAACACCTTTGCGTAACGAGGAA -CCAACACCTTTGCGTAACCAGGTA -CCAACACCTTTGCGTAACGACTCT -CCAACACCTTTGCGTAACAGTCCT -CCAACACCTTTGCGTAACTAAGCC -CCAACACCTTTGCGTAACATAGCC -CCAACACCTTTGCGTAACTAACCG -CCAACACCTTTGCGTAACATGCCA -CCAACACCTTTGTGCTTGGGAAAC -CCAACACCTTTGTGCTTGAACACC -CCAACACCTTTGTGCTTGATCGAG -CCAACACCTTTGTGCTTGCTCCTT -CCAACACCTTTGTGCTTGCCTGTT -CCAACACCTTTGTGCTTGCGGTTT -CCAACACCTTTGTGCTTGGTGGTT -CCAACACCTTTGTGCTTGGCCTTT -CCAACACCTTTGTGCTTGGGTCTT -CCAACACCTTTGTGCTTGACGCTT -CCAACACCTTTGTGCTTGAGCGTT -CCAACACCTTTGTGCTTGTTCGTC -CCAACACCTTTGTGCTTGTCTCTC -CCAACACCTTTGTGCTTGTGGATC -CCAACACCTTTGTGCTTGCACTTC -CCAACACCTTTGTGCTTGGTACTC -CCAACACCTTTGTGCTTGGATGTC -CCAACACCTTTGTGCTTGACAGTC -CCAACACCTTTGTGCTTGTTGCTG -CCAACACCTTTGTGCTTGTCCATG -CCAACACCTTTGTGCTTGTGTGTG -CCAACACCTTTGTGCTTGCTAGTG -CCAACACCTTTGTGCTTGCATCTG -CCAACACCTTTGTGCTTGGAGTTG -CCAACACCTTTGTGCTTGAGACTG -CCAACACCTTTGTGCTTGTCGGTA -CCAACACCTTTGTGCTTGTGCCTA -CCAACACCTTTGTGCTTGCCACTA -CCAACACCTTTGTGCTTGGGAGTA -CCAACACCTTTGTGCTTGTCGTCT -CCAACACCTTTGTGCTTGTGCACT -CCAACACCTTTGTGCTTGCTGACT -CCAACACCTTTGTGCTTGCAACCT -CCAACACCTTTGTGCTTGGCTACT -CCAACACCTTTGTGCTTGGGATCT -CCAACACCTTTGTGCTTGAAGGCT -CCAACACCTTTGTGCTTGTCAACC -CCAACACCTTTGTGCTTGTGTTCC -CCAACACCTTTGTGCTTGATTCCC -CCAACACCTTTGTGCTTGTTCTCG -CCAACACCTTTGTGCTTGTAGACG -CCAACACCTTTGTGCTTGGTAACG -CCAACACCTTTGTGCTTGACTTCG -CCAACACCTTTGTGCTTGTACGCA -CCAACACCTTTGTGCTTGCTTGCA -CCAACACCTTTGTGCTTGCGAACA -CCAACACCTTTGTGCTTGCAGTCA -CCAACACCTTTGTGCTTGGATCCA -CCAACACCTTTGTGCTTGACGACA -CCAACACCTTTGTGCTTGAGCTCA -CCAACACCTTTGTGCTTGTCACGT -CCAACACCTTTGTGCTTGCGTAGT -CCAACACCTTTGTGCTTGGTCAGT -CCAACACCTTTGTGCTTGGAAGGT -CCAACACCTTTGTGCTTGAACCGT -CCAACACCTTTGTGCTTGTTGTGC -CCAACACCTTTGTGCTTGCTAAGC -CCAACACCTTTGTGCTTGACTAGC -CCAACACCTTTGTGCTTGAGATGC -CCAACACCTTTGTGCTTGTGAAGG -CCAACACCTTTGTGCTTGCAATGG -CCAACACCTTTGTGCTTGATGAGG -CCAACACCTTTGTGCTTGAATGGG -CCAACACCTTTGTGCTTGTCCTGA -CCAACACCTTTGTGCTTGTAGCGA -CCAACACCTTTGTGCTTGCACAGA -CCAACACCTTTGTGCTTGGCAAGA -CCAACACCTTTGTGCTTGGGTTGA -CCAACACCTTTGTGCTTGTCCGAT -CCAACACCTTTGTGCTTGTGGCAT -CCAACACCTTTGTGCTTGCGAGAT -CCAACACCTTTGTGCTTGTACCAC -CCAACACCTTTGTGCTTGCAGAAC -CCAACACCTTTGTGCTTGGTCTAC -CCAACACCTTTGTGCTTGACGTAC -CCAACACCTTTGTGCTTGAGTGAC -CCAACACCTTTGTGCTTGCTGTAG -CCAACACCTTTGTGCTTGCCTAAG -CCAACACCTTTGTGCTTGGTTCAG -CCAACACCTTTGTGCTTGGCATAG -CCAACACCTTTGTGCTTGGACAAG -CCAACACCTTTGTGCTTGAAGCAG -CCAACACCTTTGTGCTTGCGTCAA -CCAACACCTTTGTGCTTGGCTGAA -CCAACACCTTTGTGCTTGAGTACG -CCAACACCTTTGTGCTTGATCCGA -CCAACACCTTTGTGCTTGATGGGA -CCAACACCTTTGTGCTTGGTGCAA -CCAACACCTTTGTGCTTGGAGGAA -CCAACACCTTTGTGCTTGCAGGTA -CCAACACCTTTGTGCTTGGACTCT -CCAACACCTTTGTGCTTGAGTCCT -CCAACACCTTTGTGCTTGTAAGCC -CCAACACCTTTGTGCTTGATAGCC -CCAACACCTTTGTGCTTGTAACCG -CCAACACCTTTGTGCTTGATGCCA -CCAACACCTTTGAGCCTAGGAAAC -CCAACACCTTTGAGCCTAAACACC -CCAACACCTTTGAGCCTAATCGAG -CCAACACCTTTGAGCCTACTCCTT -CCAACACCTTTGAGCCTACCTGTT -CCAACACCTTTGAGCCTACGGTTT -CCAACACCTTTGAGCCTAGTGGTT -CCAACACCTTTGAGCCTAGCCTTT -CCAACACCTTTGAGCCTAGGTCTT -CCAACACCTTTGAGCCTAACGCTT -CCAACACCTTTGAGCCTAAGCGTT -CCAACACCTTTGAGCCTATTCGTC -CCAACACCTTTGAGCCTATCTCTC -CCAACACCTTTGAGCCTATGGATC -CCAACACCTTTGAGCCTACACTTC -CCAACACCTTTGAGCCTAGTACTC -CCAACACCTTTGAGCCTAGATGTC -CCAACACCTTTGAGCCTAACAGTC -CCAACACCTTTGAGCCTATTGCTG -CCAACACCTTTGAGCCTATCCATG -CCAACACCTTTGAGCCTATGTGTG -CCAACACCTTTGAGCCTACTAGTG -CCAACACCTTTGAGCCTACATCTG -CCAACACCTTTGAGCCTAGAGTTG -CCAACACCTTTGAGCCTAAGACTG -CCAACACCTTTGAGCCTATCGGTA -CCAACACCTTTGAGCCTATGCCTA -CCAACACCTTTGAGCCTACCACTA -CCAACACCTTTGAGCCTAGGAGTA -CCAACACCTTTGAGCCTATCGTCT -CCAACACCTTTGAGCCTATGCACT -CCAACACCTTTGAGCCTACTGACT -CCAACACCTTTGAGCCTACAACCT -CCAACACCTTTGAGCCTAGCTACT -CCAACACCTTTGAGCCTAGGATCT -CCAACACCTTTGAGCCTAAAGGCT -CCAACACCTTTGAGCCTATCAACC -CCAACACCTTTGAGCCTATGTTCC -CCAACACCTTTGAGCCTAATTCCC -CCAACACCTTTGAGCCTATTCTCG -CCAACACCTTTGAGCCTATAGACG -CCAACACCTTTGAGCCTAGTAACG -CCAACACCTTTGAGCCTAACTTCG -CCAACACCTTTGAGCCTATACGCA -CCAACACCTTTGAGCCTACTTGCA -CCAACACCTTTGAGCCTACGAACA -CCAACACCTTTGAGCCTACAGTCA -CCAACACCTTTGAGCCTAGATCCA -CCAACACCTTTGAGCCTAACGACA -CCAACACCTTTGAGCCTAAGCTCA -CCAACACCTTTGAGCCTATCACGT -CCAACACCTTTGAGCCTACGTAGT -CCAACACCTTTGAGCCTAGTCAGT -CCAACACCTTTGAGCCTAGAAGGT -CCAACACCTTTGAGCCTAAACCGT -CCAACACCTTTGAGCCTATTGTGC -CCAACACCTTTGAGCCTACTAAGC -CCAACACCTTTGAGCCTAACTAGC -CCAACACCTTTGAGCCTAAGATGC -CCAACACCTTTGAGCCTATGAAGG -CCAACACCTTTGAGCCTACAATGG -CCAACACCTTTGAGCCTAATGAGG -CCAACACCTTTGAGCCTAAATGGG -CCAACACCTTTGAGCCTATCCTGA -CCAACACCTTTGAGCCTATAGCGA -CCAACACCTTTGAGCCTACACAGA -CCAACACCTTTGAGCCTAGCAAGA -CCAACACCTTTGAGCCTAGGTTGA -CCAACACCTTTGAGCCTATCCGAT -CCAACACCTTTGAGCCTATGGCAT -CCAACACCTTTGAGCCTACGAGAT -CCAACACCTTTGAGCCTATACCAC -CCAACACCTTTGAGCCTACAGAAC -CCAACACCTTTGAGCCTAGTCTAC -CCAACACCTTTGAGCCTAACGTAC -CCAACACCTTTGAGCCTAAGTGAC -CCAACACCTTTGAGCCTACTGTAG -CCAACACCTTTGAGCCTACCTAAG -CCAACACCTTTGAGCCTAGTTCAG -CCAACACCTTTGAGCCTAGCATAG -CCAACACCTTTGAGCCTAGACAAG -CCAACACCTTTGAGCCTAAAGCAG -CCAACACCTTTGAGCCTACGTCAA -CCAACACCTTTGAGCCTAGCTGAA -CCAACACCTTTGAGCCTAAGTACG -CCAACACCTTTGAGCCTAATCCGA -CCAACACCTTTGAGCCTAATGGGA -CCAACACCTTTGAGCCTAGTGCAA -CCAACACCTTTGAGCCTAGAGGAA -CCAACACCTTTGAGCCTACAGGTA -CCAACACCTTTGAGCCTAGACTCT -CCAACACCTTTGAGCCTAAGTCCT -CCAACACCTTTGAGCCTATAAGCC -CCAACACCTTTGAGCCTAATAGCC -CCAACACCTTTGAGCCTATAACCG -CCAACACCTTTGAGCCTAATGCCA -CCAACACCTTTGAGCACTGGAAAC -CCAACACCTTTGAGCACTAACACC -CCAACACCTTTGAGCACTATCGAG -CCAACACCTTTGAGCACTCTCCTT -CCAACACCTTTGAGCACTCCTGTT -CCAACACCTTTGAGCACTCGGTTT -CCAACACCTTTGAGCACTGTGGTT -CCAACACCTTTGAGCACTGCCTTT -CCAACACCTTTGAGCACTGGTCTT -CCAACACCTTTGAGCACTACGCTT -CCAACACCTTTGAGCACTAGCGTT -CCAACACCTTTGAGCACTTTCGTC -CCAACACCTTTGAGCACTTCTCTC -CCAACACCTTTGAGCACTTGGATC -CCAACACCTTTGAGCACTCACTTC -CCAACACCTTTGAGCACTGTACTC -CCAACACCTTTGAGCACTGATGTC -CCAACACCTTTGAGCACTACAGTC -CCAACACCTTTGAGCACTTTGCTG -CCAACACCTTTGAGCACTTCCATG -CCAACACCTTTGAGCACTTGTGTG -CCAACACCTTTGAGCACTCTAGTG -CCAACACCTTTGAGCACTCATCTG -CCAACACCTTTGAGCACTGAGTTG -CCAACACCTTTGAGCACTAGACTG -CCAACACCTTTGAGCACTTCGGTA -CCAACACCTTTGAGCACTTGCCTA -CCAACACCTTTGAGCACTCCACTA -CCAACACCTTTGAGCACTGGAGTA -CCAACACCTTTGAGCACTTCGTCT -CCAACACCTTTGAGCACTTGCACT -CCAACACCTTTGAGCACTCTGACT -CCAACACCTTTGAGCACTCAACCT -CCAACACCTTTGAGCACTGCTACT -CCAACACCTTTGAGCACTGGATCT -CCAACACCTTTGAGCACTAAGGCT -CCAACACCTTTGAGCACTTCAACC -CCAACACCTTTGAGCACTTGTTCC -CCAACACCTTTGAGCACTATTCCC -CCAACACCTTTGAGCACTTTCTCG -CCAACACCTTTGAGCACTTAGACG -CCAACACCTTTGAGCACTGTAACG -CCAACACCTTTGAGCACTACTTCG -CCAACACCTTTGAGCACTTACGCA -CCAACACCTTTGAGCACTCTTGCA -CCAACACCTTTGAGCACTCGAACA -CCAACACCTTTGAGCACTCAGTCA -CCAACACCTTTGAGCACTGATCCA -CCAACACCTTTGAGCACTACGACA -CCAACACCTTTGAGCACTAGCTCA -CCAACACCTTTGAGCACTTCACGT -CCAACACCTTTGAGCACTCGTAGT -CCAACACCTTTGAGCACTGTCAGT -CCAACACCTTTGAGCACTGAAGGT -CCAACACCTTTGAGCACTAACCGT -CCAACACCTTTGAGCACTTTGTGC -CCAACACCTTTGAGCACTCTAAGC -CCAACACCTTTGAGCACTACTAGC -CCAACACCTTTGAGCACTAGATGC -CCAACACCTTTGAGCACTTGAAGG -CCAACACCTTTGAGCACTCAATGG -CCAACACCTTTGAGCACTATGAGG -CCAACACCTTTGAGCACTAATGGG -CCAACACCTTTGAGCACTTCCTGA -CCAACACCTTTGAGCACTTAGCGA -CCAACACCTTTGAGCACTCACAGA -CCAACACCTTTGAGCACTGCAAGA -CCAACACCTTTGAGCACTGGTTGA -CCAACACCTTTGAGCACTTCCGAT -CCAACACCTTTGAGCACTTGGCAT -CCAACACCTTTGAGCACTCGAGAT -CCAACACCTTTGAGCACTTACCAC -CCAACACCTTTGAGCACTCAGAAC -CCAACACCTTTGAGCACTGTCTAC -CCAACACCTTTGAGCACTACGTAC -CCAACACCTTTGAGCACTAGTGAC -CCAACACCTTTGAGCACTCTGTAG -CCAACACCTTTGAGCACTCCTAAG -CCAACACCTTTGAGCACTGTTCAG -CCAACACCTTTGAGCACTGCATAG -CCAACACCTTTGAGCACTGACAAG -CCAACACCTTTGAGCACTAAGCAG -CCAACACCTTTGAGCACTCGTCAA -CCAACACCTTTGAGCACTGCTGAA -CCAACACCTTTGAGCACTAGTACG -CCAACACCTTTGAGCACTATCCGA -CCAACACCTTTGAGCACTATGGGA -CCAACACCTTTGAGCACTGTGCAA -CCAACACCTTTGAGCACTGAGGAA -CCAACACCTTTGAGCACTCAGGTA -CCAACACCTTTGAGCACTGACTCT -CCAACACCTTTGAGCACTAGTCCT -CCAACACCTTTGAGCACTTAAGCC -CCAACACCTTTGAGCACTATAGCC -CCAACACCTTTGAGCACTTAACCG -CCAACACCTTTGAGCACTATGCCA -CCAACACCTTTGTGCAGAGGAAAC -CCAACACCTTTGTGCAGAAACACC -CCAACACCTTTGTGCAGAATCGAG -CCAACACCTTTGTGCAGACTCCTT -CCAACACCTTTGTGCAGACCTGTT -CCAACACCTTTGTGCAGACGGTTT -CCAACACCTTTGTGCAGAGTGGTT -CCAACACCTTTGTGCAGAGCCTTT -CCAACACCTTTGTGCAGAGGTCTT -CCAACACCTTTGTGCAGAACGCTT -CCAACACCTTTGTGCAGAAGCGTT -CCAACACCTTTGTGCAGATTCGTC -CCAACACCTTTGTGCAGATCTCTC -CCAACACCTTTGTGCAGATGGATC -CCAACACCTTTGTGCAGACACTTC -CCAACACCTTTGTGCAGAGTACTC -CCAACACCTTTGTGCAGAGATGTC -CCAACACCTTTGTGCAGAACAGTC -CCAACACCTTTGTGCAGATTGCTG -CCAACACCTTTGTGCAGATCCATG -CCAACACCTTTGTGCAGATGTGTG -CCAACACCTTTGTGCAGACTAGTG -CCAACACCTTTGTGCAGACATCTG -CCAACACCTTTGTGCAGAGAGTTG -CCAACACCTTTGTGCAGAAGACTG -CCAACACCTTTGTGCAGATCGGTA -CCAACACCTTTGTGCAGATGCCTA -CCAACACCTTTGTGCAGACCACTA -CCAACACCTTTGTGCAGAGGAGTA -CCAACACCTTTGTGCAGATCGTCT -CCAACACCTTTGTGCAGATGCACT -CCAACACCTTTGTGCAGACTGACT -CCAACACCTTTGTGCAGACAACCT -CCAACACCTTTGTGCAGAGCTACT -CCAACACCTTTGTGCAGAGGATCT -CCAACACCTTTGTGCAGAAAGGCT -CCAACACCTTTGTGCAGATCAACC -CCAACACCTTTGTGCAGATGTTCC -CCAACACCTTTGTGCAGAATTCCC -CCAACACCTTTGTGCAGATTCTCG -CCAACACCTTTGTGCAGATAGACG -CCAACACCTTTGTGCAGAGTAACG -CCAACACCTTTGTGCAGAACTTCG -CCAACACCTTTGTGCAGATACGCA -CCAACACCTTTGTGCAGACTTGCA -CCAACACCTTTGTGCAGACGAACA -CCAACACCTTTGTGCAGACAGTCA -CCAACACCTTTGTGCAGAGATCCA -CCAACACCTTTGTGCAGAACGACA -CCAACACCTTTGTGCAGAAGCTCA -CCAACACCTTTGTGCAGATCACGT -CCAACACCTTTGTGCAGACGTAGT -CCAACACCTTTGTGCAGAGTCAGT -CCAACACCTTTGTGCAGAGAAGGT -CCAACACCTTTGTGCAGAAACCGT -CCAACACCTTTGTGCAGATTGTGC -CCAACACCTTTGTGCAGACTAAGC -CCAACACCTTTGTGCAGAACTAGC -CCAACACCTTTGTGCAGAAGATGC -CCAACACCTTTGTGCAGATGAAGG -CCAACACCTTTGTGCAGACAATGG -CCAACACCTTTGTGCAGAATGAGG -CCAACACCTTTGTGCAGAAATGGG -CCAACACCTTTGTGCAGATCCTGA -CCAACACCTTTGTGCAGATAGCGA -CCAACACCTTTGTGCAGACACAGA -CCAACACCTTTGTGCAGAGCAAGA -CCAACACCTTTGTGCAGAGGTTGA -CCAACACCTTTGTGCAGATCCGAT -CCAACACCTTTGTGCAGATGGCAT -CCAACACCTTTGTGCAGACGAGAT -CCAACACCTTTGTGCAGATACCAC -CCAACACCTTTGTGCAGACAGAAC -CCAACACCTTTGTGCAGAGTCTAC -CCAACACCTTTGTGCAGAACGTAC -CCAACACCTTTGTGCAGAAGTGAC -CCAACACCTTTGTGCAGACTGTAG -CCAACACCTTTGTGCAGACCTAAG -CCAACACCTTTGTGCAGAGTTCAG -CCAACACCTTTGTGCAGAGCATAG -CCAACACCTTTGTGCAGAGACAAG -CCAACACCTTTGTGCAGAAAGCAG -CCAACACCTTTGTGCAGACGTCAA -CCAACACCTTTGTGCAGAGCTGAA -CCAACACCTTTGTGCAGAAGTACG -CCAACACCTTTGTGCAGAATCCGA -CCAACACCTTTGTGCAGAATGGGA -CCAACACCTTTGTGCAGAGTGCAA -CCAACACCTTTGTGCAGAGAGGAA -CCAACACCTTTGTGCAGACAGGTA -CCAACACCTTTGTGCAGAGACTCT -CCAACACCTTTGTGCAGAAGTCCT -CCAACACCTTTGTGCAGATAAGCC -CCAACACCTTTGTGCAGAATAGCC -CCAACACCTTTGTGCAGATAACCG -CCAACACCTTTGTGCAGAATGCCA -CCAACACCTTTGAGGTGAGGAAAC -CCAACACCTTTGAGGTGAAACACC -CCAACACCTTTGAGGTGAATCGAG -CCAACACCTTTGAGGTGACTCCTT -CCAACACCTTTGAGGTGACCTGTT -CCAACACCTTTGAGGTGACGGTTT -CCAACACCTTTGAGGTGAGTGGTT -CCAACACCTTTGAGGTGAGCCTTT -CCAACACCTTTGAGGTGAGGTCTT -CCAACACCTTTGAGGTGAACGCTT -CCAACACCTTTGAGGTGAAGCGTT -CCAACACCTTTGAGGTGATTCGTC -CCAACACCTTTGAGGTGATCTCTC -CCAACACCTTTGAGGTGATGGATC -CCAACACCTTTGAGGTGACACTTC -CCAACACCTTTGAGGTGAGTACTC -CCAACACCTTTGAGGTGAGATGTC -CCAACACCTTTGAGGTGAACAGTC -CCAACACCTTTGAGGTGATTGCTG -CCAACACCTTTGAGGTGATCCATG -CCAACACCTTTGAGGTGATGTGTG -CCAACACCTTTGAGGTGACTAGTG -CCAACACCTTTGAGGTGACATCTG -CCAACACCTTTGAGGTGAGAGTTG -CCAACACCTTTGAGGTGAAGACTG -CCAACACCTTTGAGGTGATCGGTA -CCAACACCTTTGAGGTGATGCCTA -CCAACACCTTTGAGGTGACCACTA -CCAACACCTTTGAGGTGAGGAGTA -CCAACACCTTTGAGGTGATCGTCT -CCAACACCTTTGAGGTGATGCACT -CCAACACCTTTGAGGTGACTGACT -CCAACACCTTTGAGGTGACAACCT -CCAACACCTTTGAGGTGAGCTACT -CCAACACCTTTGAGGTGAGGATCT -CCAACACCTTTGAGGTGAAAGGCT -CCAACACCTTTGAGGTGATCAACC -CCAACACCTTTGAGGTGATGTTCC -CCAACACCTTTGAGGTGAATTCCC -CCAACACCTTTGAGGTGATTCTCG -CCAACACCTTTGAGGTGATAGACG -CCAACACCTTTGAGGTGAGTAACG -CCAACACCTTTGAGGTGAACTTCG -CCAACACCTTTGAGGTGATACGCA -CCAACACCTTTGAGGTGACTTGCA -CCAACACCTTTGAGGTGACGAACA -CCAACACCTTTGAGGTGACAGTCA -CCAACACCTTTGAGGTGAGATCCA -CCAACACCTTTGAGGTGAACGACA -CCAACACCTTTGAGGTGAAGCTCA -CCAACACCTTTGAGGTGATCACGT -CCAACACCTTTGAGGTGACGTAGT -CCAACACCTTTGAGGTGAGTCAGT -CCAACACCTTTGAGGTGAGAAGGT -CCAACACCTTTGAGGTGAAACCGT -CCAACACCTTTGAGGTGATTGTGC -CCAACACCTTTGAGGTGACTAAGC -CCAACACCTTTGAGGTGAACTAGC -CCAACACCTTTGAGGTGAAGATGC -CCAACACCTTTGAGGTGATGAAGG -CCAACACCTTTGAGGTGACAATGG -CCAACACCTTTGAGGTGAATGAGG -CCAACACCTTTGAGGTGAAATGGG -CCAACACCTTTGAGGTGATCCTGA -CCAACACCTTTGAGGTGATAGCGA -CCAACACCTTTGAGGTGACACAGA -CCAACACCTTTGAGGTGAGCAAGA -CCAACACCTTTGAGGTGAGGTTGA -CCAACACCTTTGAGGTGATCCGAT -CCAACACCTTTGAGGTGATGGCAT -CCAACACCTTTGAGGTGACGAGAT -CCAACACCTTTGAGGTGATACCAC -CCAACACCTTTGAGGTGACAGAAC -CCAACACCTTTGAGGTGAGTCTAC -CCAACACCTTTGAGGTGAACGTAC -CCAACACCTTTGAGGTGAAGTGAC -CCAACACCTTTGAGGTGACTGTAG -CCAACACCTTTGAGGTGACCTAAG -CCAACACCTTTGAGGTGAGTTCAG -CCAACACCTTTGAGGTGAGCATAG -CCAACACCTTTGAGGTGAGACAAG -CCAACACCTTTGAGGTGAAAGCAG -CCAACACCTTTGAGGTGACGTCAA -CCAACACCTTTGAGGTGAGCTGAA -CCAACACCTTTGAGGTGAAGTACG -CCAACACCTTTGAGGTGAATCCGA -CCAACACCTTTGAGGTGAATGGGA -CCAACACCTTTGAGGTGAGTGCAA -CCAACACCTTTGAGGTGAGAGGAA -CCAACACCTTTGAGGTGACAGGTA -CCAACACCTTTGAGGTGAGACTCT -CCAACACCTTTGAGGTGAAGTCCT -CCAACACCTTTGAGGTGATAAGCC -CCAACACCTTTGAGGTGAATAGCC -CCAACACCTTTGAGGTGATAACCG -CCAACACCTTTGAGGTGAATGCCA -CCAACACCTTTGTGGCAAGGAAAC -CCAACACCTTTGTGGCAAAACACC -CCAACACCTTTGTGGCAAATCGAG -CCAACACCTTTGTGGCAACTCCTT -CCAACACCTTTGTGGCAACCTGTT -CCAACACCTTTGTGGCAACGGTTT -CCAACACCTTTGTGGCAAGTGGTT -CCAACACCTTTGTGGCAAGCCTTT -CCAACACCTTTGTGGCAAGGTCTT -CCAACACCTTTGTGGCAAACGCTT -CCAACACCTTTGTGGCAAAGCGTT -CCAACACCTTTGTGGCAATTCGTC -CCAACACCTTTGTGGCAATCTCTC -CCAACACCTTTGTGGCAATGGATC -CCAACACCTTTGTGGCAACACTTC -CCAACACCTTTGTGGCAAGTACTC -CCAACACCTTTGTGGCAAGATGTC -CCAACACCTTTGTGGCAAACAGTC -CCAACACCTTTGTGGCAATTGCTG -CCAACACCTTTGTGGCAATCCATG -CCAACACCTTTGTGGCAATGTGTG -CCAACACCTTTGTGGCAACTAGTG -CCAACACCTTTGTGGCAACATCTG -CCAACACCTTTGTGGCAAGAGTTG -CCAACACCTTTGTGGCAAAGACTG -CCAACACCTTTGTGGCAATCGGTA -CCAACACCTTTGTGGCAATGCCTA -CCAACACCTTTGTGGCAACCACTA -CCAACACCTTTGTGGCAAGGAGTA -CCAACACCTTTGTGGCAATCGTCT -CCAACACCTTTGTGGCAATGCACT -CCAACACCTTTGTGGCAACTGACT -CCAACACCTTTGTGGCAACAACCT -CCAACACCTTTGTGGCAAGCTACT -CCAACACCTTTGTGGCAAGGATCT -CCAACACCTTTGTGGCAAAAGGCT -CCAACACCTTTGTGGCAATCAACC -CCAACACCTTTGTGGCAATGTTCC -CCAACACCTTTGTGGCAAATTCCC -CCAACACCTTTGTGGCAATTCTCG -CCAACACCTTTGTGGCAATAGACG -CCAACACCTTTGTGGCAAGTAACG -CCAACACCTTTGTGGCAAACTTCG -CCAACACCTTTGTGGCAATACGCA -CCAACACCTTTGTGGCAACTTGCA -CCAACACCTTTGTGGCAACGAACA -CCAACACCTTTGTGGCAACAGTCA -CCAACACCTTTGTGGCAAGATCCA -CCAACACCTTTGTGGCAAACGACA -CCAACACCTTTGTGGCAAAGCTCA -CCAACACCTTTGTGGCAATCACGT -CCAACACCTTTGTGGCAACGTAGT -CCAACACCTTTGTGGCAAGTCAGT -CCAACACCTTTGTGGCAAGAAGGT -CCAACACCTTTGTGGCAAAACCGT -CCAACACCTTTGTGGCAATTGTGC -CCAACACCTTTGTGGCAACTAAGC -CCAACACCTTTGTGGCAAACTAGC -CCAACACCTTTGTGGCAAAGATGC -CCAACACCTTTGTGGCAATGAAGG -CCAACACCTTTGTGGCAACAATGG -CCAACACCTTTGTGGCAAATGAGG -CCAACACCTTTGTGGCAAAATGGG -CCAACACCTTTGTGGCAATCCTGA -CCAACACCTTTGTGGCAATAGCGA -CCAACACCTTTGTGGCAACACAGA -CCAACACCTTTGTGGCAAGCAAGA -CCAACACCTTTGTGGCAAGGTTGA -CCAACACCTTTGTGGCAATCCGAT -CCAACACCTTTGTGGCAATGGCAT -CCAACACCTTTGTGGCAACGAGAT -CCAACACCTTTGTGGCAATACCAC -CCAACACCTTTGTGGCAACAGAAC -CCAACACCTTTGTGGCAAGTCTAC -CCAACACCTTTGTGGCAAACGTAC -CCAACACCTTTGTGGCAAAGTGAC -CCAACACCTTTGTGGCAACTGTAG -CCAACACCTTTGTGGCAACCTAAG -CCAACACCTTTGTGGCAAGTTCAG -CCAACACCTTTGTGGCAAGCATAG -CCAACACCTTTGTGGCAAGACAAG -CCAACACCTTTGTGGCAAAAGCAG -CCAACACCTTTGTGGCAACGTCAA -CCAACACCTTTGTGGCAAGCTGAA -CCAACACCTTTGTGGCAAAGTACG -CCAACACCTTTGTGGCAAATCCGA -CCAACACCTTTGTGGCAAATGGGA -CCAACACCTTTGTGGCAAGTGCAA -CCAACACCTTTGTGGCAAGAGGAA -CCAACACCTTTGTGGCAACAGGTA -CCAACACCTTTGTGGCAAGACTCT -CCAACACCTTTGTGGCAAAGTCCT -CCAACACCTTTGTGGCAATAAGCC -CCAACACCTTTGTGGCAAATAGCC -CCAACACCTTTGTGGCAATAACCG -CCAACACCTTTGTGGCAAATGCCA -CCAACACCTTTGAGGATGGGAAAC -CCAACACCTTTGAGGATGAACACC -CCAACACCTTTGAGGATGATCGAG -CCAACACCTTTGAGGATGCTCCTT -CCAACACCTTTGAGGATGCCTGTT -CCAACACCTTTGAGGATGCGGTTT -CCAACACCTTTGAGGATGGTGGTT -CCAACACCTTTGAGGATGGCCTTT -CCAACACCTTTGAGGATGGGTCTT -CCAACACCTTTGAGGATGACGCTT -CCAACACCTTTGAGGATGAGCGTT -CCAACACCTTTGAGGATGTTCGTC -CCAACACCTTTGAGGATGTCTCTC -CCAACACCTTTGAGGATGTGGATC -CCAACACCTTTGAGGATGCACTTC -CCAACACCTTTGAGGATGGTACTC -CCAACACCTTTGAGGATGGATGTC -CCAACACCTTTGAGGATGACAGTC -CCAACACCTTTGAGGATGTTGCTG -CCAACACCTTTGAGGATGTCCATG -CCAACACCTTTGAGGATGTGTGTG -CCAACACCTTTGAGGATGCTAGTG -CCAACACCTTTGAGGATGCATCTG -CCAACACCTTTGAGGATGGAGTTG -CCAACACCTTTGAGGATGAGACTG -CCAACACCTTTGAGGATGTCGGTA -CCAACACCTTTGAGGATGTGCCTA -CCAACACCTTTGAGGATGCCACTA -CCAACACCTTTGAGGATGGGAGTA -CCAACACCTTTGAGGATGTCGTCT -CCAACACCTTTGAGGATGTGCACT -CCAACACCTTTGAGGATGCTGACT -CCAACACCTTTGAGGATGCAACCT -CCAACACCTTTGAGGATGGCTACT -CCAACACCTTTGAGGATGGGATCT -CCAACACCTTTGAGGATGAAGGCT -CCAACACCTTTGAGGATGTCAACC -CCAACACCTTTGAGGATGTGTTCC -CCAACACCTTTGAGGATGATTCCC -CCAACACCTTTGAGGATGTTCTCG -CCAACACCTTTGAGGATGTAGACG -CCAACACCTTTGAGGATGGTAACG -CCAACACCTTTGAGGATGACTTCG -CCAACACCTTTGAGGATGTACGCA -CCAACACCTTTGAGGATGCTTGCA -CCAACACCTTTGAGGATGCGAACA -CCAACACCTTTGAGGATGCAGTCA -CCAACACCTTTGAGGATGGATCCA -CCAACACCTTTGAGGATGACGACA -CCAACACCTTTGAGGATGAGCTCA -CCAACACCTTTGAGGATGTCACGT -CCAACACCTTTGAGGATGCGTAGT -CCAACACCTTTGAGGATGGTCAGT -CCAACACCTTTGAGGATGGAAGGT -CCAACACCTTTGAGGATGAACCGT -CCAACACCTTTGAGGATGTTGTGC -CCAACACCTTTGAGGATGCTAAGC -CCAACACCTTTGAGGATGACTAGC -CCAACACCTTTGAGGATGAGATGC -CCAACACCTTTGAGGATGTGAAGG -CCAACACCTTTGAGGATGCAATGG -CCAACACCTTTGAGGATGATGAGG -CCAACACCTTTGAGGATGAATGGG -CCAACACCTTTGAGGATGTCCTGA -CCAACACCTTTGAGGATGTAGCGA -CCAACACCTTTGAGGATGCACAGA -CCAACACCTTTGAGGATGGCAAGA -CCAACACCTTTGAGGATGGGTTGA -CCAACACCTTTGAGGATGTCCGAT -CCAACACCTTTGAGGATGTGGCAT -CCAACACCTTTGAGGATGCGAGAT -CCAACACCTTTGAGGATGTACCAC -CCAACACCTTTGAGGATGCAGAAC -CCAACACCTTTGAGGATGGTCTAC -CCAACACCTTTGAGGATGACGTAC -CCAACACCTTTGAGGATGAGTGAC -CCAACACCTTTGAGGATGCTGTAG -CCAACACCTTTGAGGATGCCTAAG -CCAACACCTTTGAGGATGGTTCAG -CCAACACCTTTGAGGATGGCATAG -CCAACACCTTTGAGGATGGACAAG -CCAACACCTTTGAGGATGAAGCAG -CCAACACCTTTGAGGATGCGTCAA -CCAACACCTTTGAGGATGGCTGAA -CCAACACCTTTGAGGATGAGTACG -CCAACACCTTTGAGGATGATCCGA -CCAACACCTTTGAGGATGATGGGA -CCAACACCTTTGAGGATGGTGCAA -CCAACACCTTTGAGGATGGAGGAA -CCAACACCTTTGAGGATGCAGGTA -CCAACACCTTTGAGGATGGACTCT -CCAACACCTTTGAGGATGAGTCCT -CCAACACCTTTGAGGATGTAAGCC -CCAACACCTTTGAGGATGATAGCC -CCAACACCTTTGAGGATGTAACCG -CCAACACCTTTGAGGATGATGCCA -CCAACACCTTTGGGGAATGGAAAC -CCAACACCTTTGGGGAATAACACC -CCAACACCTTTGGGGAATATCGAG -CCAACACCTTTGGGGAATCTCCTT -CCAACACCTTTGGGGAATCCTGTT -CCAACACCTTTGGGGAATCGGTTT -CCAACACCTTTGGGGAATGTGGTT -CCAACACCTTTGGGGAATGCCTTT -CCAACACCTTTGGGGAATGGTCTT -CCAACACCTTTGGGGAATACGCTT -CCAACACCTTTGGGGAATAGCGTT -CCAACACCTTTGGGGAATTTCGTC -CCAACACCTTTGGGGAATTCTCTC -CCAACACCTTTGGGGAATTGGATC -CCAACACCTTTGGGGAATCACTTC -CCAACACCTTTGGGGAATGTACTC -CCAACACCTTTGGGGAATGATGTC -CCAACACCTTTGGGGAATACAGTC -CCAACACCTTTGGGGAATTTGCTG -CCAACACCTTTGGGGAATTCCATG -CCAACACCTTTGGGGAATTGTGTG -CCAACACCTTTGGGGAATCTAGTG -CCAACACCTTTGGGGAATCATCTG -CCAACACCTTTGGGGAATGAGTTG -CCAACACCTTTGGGGAATAGACTG -CCAACACCTTTGGGGAATTCGGTA -CCAACACCTTTGGGGAATTGCCTA -CCAACACCTTTGGGGAATCCACTA -CCAACACCTTTGGGGAATGGAGTA -CCAACACCTTTGGGGAATTCGTCT -CCAACACCTTTGGGGAATTGCACT -CCAACACCTTTGGGGAATCTGACT -CCAACACCTTTGGGGAATCAACCT -CCAACACCTTTGGGGAATGCTACT -CCAACACCTTTGGGGAATGGATCT -CCAACACCTTTGGGGAATAAGGCT -CCAACACCTTTGGGGAATTCAACC -CCAACACCTTTGGGGAATTGTTCC -CCAACACCTTTGGGGAATATTCCC -CCAACACCTTTGGGGAATTTCTCG -CCAACACCTTTGGGGAATTAGACG -CCAACACCTTTGGGGAATGTAACG -CCAACACCTTTGGGGAATACTTCG -CCAACACCTTTGGGGAATTACGCA -CCAACACCTTTGGGGAATCTTGCA -CCAACACCTTTGGGGAATCGAACA -CCAACACCTTTGGGGAATCAGTCA -CCAACACCTTTGGGGAATGATCCA -CCAACACCTTTGGGGAATACGACA -CCAACACCTTTGGGGAATAGCTCA -CCAACACCTTTGGGGAATTCACGT -CCAACACCTTTGGGGAATCGTAGT -CCAACACCTTTGGGGAATGTCAGT -CCAACACCTTTGGGGAATGAAGGT -CCAACACCTTTGGGGAATAACCGT -CCAACACCTTTGGGGAATTTGTGC -CCAACACCTTTGGGGAATCTAAGC -CCAACACCTTTGGGGAATACTAGC -CCAACACCTTTGGGGAATAGATGC -CCAACACCTTTGGGGAATTGAAGG -CCAACACCTTTGGGGAATCAATGG -CCAACACCTTTGGGGAATATGAGG -CCAACACCTTTGGGGAATAATGGG -CCAACACCTTTGGGGAATTCCTGA -CCAACACCTTTGGGGAATTAGCGA -CCAACACCTTTGGGGAATCACAGA -CCAACACCTTTGGGGAATGCAAGA -CCAACACCTTTGGGGAATGGTTGA -CCAACACCTTTGGGGAATTCCGAT -CCAACACCTTTGGGGAATTGGCAT -CCAACACCTTTGGGGAATCGAGAT -CCAACACCTTTGGGGAATTACCAC -CCAACACCTTTGGGGAATCAGAAC -CCAACACCTTTGGGGAATGTCTAC -CCAACACCTTTGGGGAATACGTAC -CCAACACCTTTGGGGAATAGTGAC -CCAACACCTTTGGGGAATCTGTAG -CCAACACCTTTGGGGAATCCTAAG -CCAACACCTTTGGGGAATGTTCAG -CCAACACCTTTGGGGAATGCATAG -CCAACACCTTTGGGGAATGACAAG -CCAACACCTTTGGGGAATAAGCAG -CCAACACCTTTGGGGAATCGTCAA -CCAACACCTTTGGGGAATGCTGAA -CCAACACCTTTGGGGAATAGTACG -CCAACACCTTTGGGGAATATCCGA -CCAACACCTTTGGGGAATATGGGA -CCAACACCTTTGGGGAATGTGCAA -CCAACACCTTTGGGGAATGAGGAA -CCAACACCTTTGGGGAATCAGGTA -CCAACACCTTTGGGGAATGACTCT -CCAACACCTTTGGGGAATAGTCCT -CCAACACCTTTGGGGAATTAAGCC -CCAACACCTTTGGGGAATATAGCC -CCAACACCTTTGGGGAATTAACCG -CCAACACCTTTGGGGAATATGCCA -CCAACACCTTTGTGATCCGGAAAC -CCAACACCTTTGTGATCCAACACC -CCAACACCTTTGTGATCCATCGAG -CCAACACCTTTGTGATCCCTCCTT -CCAACACCTTTGTGATCCCCTGTT -CCAACACCTTTGTGATCCCGGTTT -CCAACACCTTTGTGATCCGTGGTT -CCAACACCTTTGTGATCCGCCTTT -CCAACACCTTTGTGATCCGGTCTT -CCAACACCTTTGTGATCCACGCTT -CCAACACCTTTGTGATCCAGCGTT -CCAACACCTTTGTGATCCTTCGTC -CCAACACCTTTGTGATCCTCTCTC -CCAACACCTTTGTGATCCTGGATC -CCAACACCTTTGTGATCCCACTTC -CCAACACCTTTGTGATCCGTACTC -CCAACACCTTTGTGATCCGATGTC -CCAACACCTTTGTGATCCACAGTC -CCAACACCTTTGTGATCCTTGCTG -CCAACACCTTTGTGATCCTCCATG -CCAACACCTTTGTGATCCTGTGTG -CCAACACCTTTGTGATCCCTAGTG -CCAACACCTTTGTGATCCCATCTG -CCAACACCTTTGTGATCCGAGTTG -CCAACACCTTTGTGATCCAGACTG -CCAACACCTTTGTGATCCTCGGTA -CCAACACCTTTGTGATCCTGCCTA -CCAACACCTTTGTGATCCCCACTA -CCAACACCTTTGTGATCCGGAGTA -CCAACACCTTTGTGATCCTCGTCT -CCAACACCTTTGTGATCCTGCACT -CCAACACCTTTGTGATCCCTGACT -CCAACACCTTTGTGATCCCAACCT -CCAACACCTTTGTGATCCGCTACT -CCAACACCTTTGTGATCCGGATCT -CCAACACCTTTGTGATCCAAGGCT -CCAACACCTTTGTGATCCTCAACC -CCAACACCTTTGTGATCCTGTTCC -CCAACACCTTTGTGATCCATTCCC -CCAACACCTTTGTGATCCTTCTCG -CCAACACCTTTGTGATCCTAGACG -CCAACACCTTTGTGATCCGTAACG -CCAACACCTTTGTGATCCACTTCG -CCAACACCTTTGTGATCCTACGCA -CCAACACCTTTGTGATCCCTTGCA -CCAACACCTTTGTGATCCCGAACA -CCAACACCTTTGTGATCCCAGTCA -CCAACACCTTTGTGATCCGATCCA -CCAACACCTTTGTGATCCACGACA -CCAACACCTTTGTGATCCAGCTCA -CCAACACCTTTGTGATCCTCACGT -CCAACACCTTTGTGATCCCGTAGT -CCAACACCTTTGTGATCCGTCAGT -CCAACACCTTTGTGATCCGAAGGT -CCAACACCTTTGTGATCCAACCGT -CCAACACCTTTGTGATCCTTGTGC -CCAACACCTTTGTGATCCCTAAGC -CCAACACCTTTGTGATCCACTAGC -CCAACACCTTTGTGATCCAGATGC -CCAACACCTTTGTGATCCTGAAGG -CCAACACCTTTGTGATCCCAATGG -CCAACACCTTTGTGATCCATGAGG -CCAACACCTTTGTGATCCAATGGG -CCAACACCTTTGTGATCCTCCTGA -CCAACACCTTTGTGATCCTAGCGA -CCAACACCTTTGTGATCCCACAGA -CCAACACCTTTGTGATCCGCAAGA -CCAACACCTTTGTGATCCGGTTGA -CCAACACCTTTGTGATCCTCCGAT -CCAACACCTTTGTGATCCTGGCAT -CCAACACCTTTGTGATCCCGAGAT -CCAACACCTTTGTGATCCTACCAC -CCAACACCTTTGTGATCCCAGAAC -CCAACACCTTTGTGATCCGTCTAC -CCAACACCTTTGTGATCCACGTAC -CCAACACCTTTGTGATCCAGTGAC -CCAACACCTTTGTGATCCCTGTAG -CCAACACCTTTGTGATCCCCTAAG -CCAACACCTTTGTGATCCGTTCAG -CCAACACCTTTGTGATCCGCATAG -CCAACACCTTTGTGATCCGACAAG -CCAACACCTTTGTGATCCAAGCAG -CCAACACCTTTGTGATCCCGTCAA -CCAACACCTTTGTGATCCGCTGAA -CCAACACCTTTGTGATCCAGTACG -CCAACACCTTTGTGATCCATCCGA -CCAACACCTTTGTGATCCATGGGA -CCAACACCTTTGTGATCCGTGCAA -CCAACACCTTTGTGATCCGAGGAA -CCAACACCTTTGTGATCCCAGGTA -CCAACACCTTTGTGATCCGACTCT -CCAACACCTTTGTGATCCAGTCCT -CCAACACCTTTGTGATCCTAAGCC -CCAACACCTTTGTGATCCATAGCC -CCAACACCTTTGTGATCCTAACCG -CCAACACCTTTGTGATCCATGCCA -CCAACACCTTTGCGATAGGGAAAC -CCAACACCTTTGCGATAGAACACC -CCAACACCTTTGCGATAGATCGAG -CCAACACCTTTGCGATAGCTCCTT -CCAACACCTTTGCGATAGCCTGTT -CCAACACCTTTGCGATAGCGGTTT -CCAACACCTTTGCGATAGGTGGTT -CCAACACCTTTGCGATAGGCCTTT -CCAACACCTTTGCGATAGGGTCTT -CCAACACCTTTGCGATAGACGCTT -CCAACACCTTTGCGATAGAGCGTT -CCAACACCTTTGCGATAGTTCGTC -CCAACACCTTTGCGATAGTCTCTC -CCAACACCTTTGCGATAGTGGATC -CCAACACCTTTGCGATAGCACTTC -CCAACACCTTTGCGATAGGTACTC -CCAACACCTTTGCGATAGGATGTC -CCAACACCTTTGCGATAGACAGTC -CCAACACCTTTGCGATAGTTGCTG -CCAACACCTTTGCGATAGTCCATG -CCAACACCTTTGCGATAGTGTGTG -CCAACACCTTTGCGATAGCTAGTG -CCAACACCTTTGCGATAGCATCTG -CCAACACCTTTGCGATAGGAGTTG -CCAACACCTTTGCGATAGAGACTG -CCAACACCTTTGCGATAGTCGGTA -CCAACACCTTTGCGATAGTGCCTA -CCAACACCTTTGCGATAGCCACTA -CCAACACCTTTGCGATAGGGAGTA -CCAACACCTTTGCGATAGTCGTCT -CCAACACCTTTGCGATAGTGCACT -CCAACACCTTTGCGATAGCTGACT -CCAACACCTTTGCGATAGCAACCT -CCAACACCTTTGCGATAGGCTACT -CCAACACCTTTGCGATAGGGATCT -CCAACACCTTTGCGATAGAAGGCT -CCAACACCTTTGCGATAGTCAACC -CCAACACCTTTGCGATAGTGTTCC -CCAACACCTTTGCGATAGATTCCC -CCAACACCTTTGCGATAGTTCTCG -CCAACACCTTTGCGATAGTAGACG -CCAACACCTTTGCGATAGGTAACG -CCAACACCTTTGCGATAGACTTCG -CCAACACCTTTGCGATAGTACGCA -CCAACACCTTTGCGATAGCTTGCA -CCAACACCTTTGCGATAGCGAACA -CCAACACCTTTGCGATAGCAGTCA -CCAACACCTTTGCGATAGGATCCA -CCAACACCTTTGCGATAGACGACA -CCAACACCTTTGCGATAGAGCTCA -CCAACACCTTTGCGATAGTCACGT -CCAACACCTTTGCGATAGCGTAGT -CCAACACCTTTGCGATAGGTCAGT -CCAACACCTTTGCGATAGGAAGGT -CCAACACCTTTGCGATAGAACCGT -CCAACACCTTTGCGATAGTTGTGC -CCAACACCTTTGCGATAGCTAAGC -CCAACACCTTTGCGATAGACTAGC -CCAACACCTTTGCGATAGAGATGC -CCAACACCTTTGCGATAGTGAAGG -CCAACACCTTTGCGATAGCAATGG -CCAACACCTTTGCGATAGATGAGG -CCAACACCTTTGCGATAGAATGGG -CCAACACCTTTGCGATAGTCCTGA -CCAACACCTTTGCGATAGTAGCGA -CCAACACCTTTGCGATAGCACAGA -CCAACACCTTTGCGATAGGCAAGA -CCAACACCTTTGCGATAGGGTTGA -CCAACACCTTTGCGATAGTCCGAT -CCAACACCTTTGCGATAGTGGCAT -CCAACACCTTTGCGATAGCGAGAT -CCAACACCTTTGCGATAGTACCAC -CCAACACCTTTGCGATAGCAGAAC -CCAACACCTTTGCGATAGGTCTAC -CCAACACCTTTGCGATAGACGTAC -CCAACACCTTTGCGATAGAGTGAC -CCAACACCTTTGCGATAGCTGTAG -CCAACACCTTTGCGATAGCCTAAG -CCAACACCTTTGCGATAGGTTCAG -CCAACACCTTTGCGATAGGCATAG -CCAACACCTTTGCGATAGGACAAG -CCAACACCTTTGCGATAGAAGCAG -CCAACACCTTTGCGATAGCGTCAA -CCAACACCTTTGCGATAGGCTGAA -CCAACACCTTTGCGATAGAGTACG -CCAACACCTTTGCGATAGATCCGA -CCAACACCTTTGCGATAGATGGGA -CCAACACCTTTGCGATAGGTGCAA -CCAACACCTTTGCGATAGGAGGAA -CCAACACCTTTGCGATAGCAGGTA -CCAACACCTTTGCGATAGGACTCT -CCAACACCTTTGCGATAGAGTCCT -CCAACACCTTTGCGATAGTAAGCC -CCAACACCTTTGCGATAGATAGCC -CCAACACCTTTGCGATAGTAACCG -CCAACACCTTTGCGATAGATGCCA -CCAACACCTTTGAGACACGGAAAC -CCAACACCTTTGAGACACAACACC -CCAACACCTTTGAGACACATCGAG -CCAACACCTTTGAGACACCTCCTT -CCAACACCTTTGAGACACCCTGTT -CCAACACCTTTGAGACACCGGTTT -CCAACACCTTTGAGACACGTGGTT -CCAACACCTTTGAGACACGCCTTT -CCAACACCTTTGAGACACGGTCTT -CCAACACCTTTGAGACACACGCTT -CCAACACCTTTGAGACACAGCGTT -CCAACACCTTTGAGACACTTCGTC -CCAACACCTTTGAGACACTCTCTC -CCAACACCTTTGAGACACTGGATC -CCAACACCTTTGAGACACCACTTC -CCAACACCTTTGAGACACGTACTC -CCAACACCTTTGAGACACGATGTC -CCAACACCTTTGAGACACACAGTC -CCAACACCTTTGAGACACTTGCTG -CCAACACCTTTGAGACACTCCATG -CCAACACCTTTGAGACACTGTGTG -CCAACACCTTTGAGACACCTAGTG -CCAACACCTTTGAGACACCATCTG -CCAACACCTTTGAGACACGAGTTG -CCAACACCTTTGAGACACAGACTG -CCAACACCTTTGAGACACTCGGTA -CCAACACCTTTGAGACACTGCCTA -CCAACACCTTTGAGACACCCACTA -CCAACACCTTTGAGACACGGAGTA -CCAACACCTTTGAGACACTCGTCT -CCAACACCTTTGAGACACTGCACT -CCAACACCTTTGAGACACCTGACT -CCAACACCTTTGAGACACCAACCT -CCAACACCTTTGAGACACGCTACT -CCAACACCTTTGAGACACGGATCT -CCAACACCTTTGAGACACAAGGCT -CCAACACCTTTGAGACACTCAACC -CCAACACCTTTGAGACACTGTTCC -CCAACACCTTTGAGACACATTCCC -CCAACACCTTTGAGACACTTCTCG -CCAACACCTTTGAGACACTAGACG -CCAACACCTTTGAGACACGTAACG -CCAACACCTTTGAGACACACTTCG -CCAACACCTTTGAGACACTACGCA -CCAACACCTTTGAGACACCTTGCA -CCAACACCTTTGAGACACCGAACA -CCAACACCTTTGAGACACCAGTCA -CCAACACCTTTGAGACACGATCCA -CCAACACCTTTGAGACACACGACA -CCAACACCTTTGAGACACAGCTCA -CCAACACCTTTGAGACACTCACGT -CCAACACCTTTGAGACACCGTAGT -CCAACACCTTTGAGACACGTCAGT -CCAACACCTTTGAGACACGAAGGT -CCAACACCTTTGAGACACAACCGT -CCAACACCTTTGAGACACTTGTGC -CCAACACCTTTGAGACACCTAAGC -CCAACACCTTTGAGACACACTAGC -CCAACACCTTTGAGACACAGATGC -CCAACACCTTTGAGACACTGAAGG -CCAACACCTTTGAGACACCAATGG -CCAACACCTTTGAGACACATGAGG -CCAACACCTTTGAGACACAATGGG -CCAACACCTTTGAGACACTCCTGA -CCAACACCTTTGAGACACTAGCGA -CCAACACCTTTGAGACACCACAGA -CCAACACCTTTGAGACACGCAAGA -CCAACACCTTTGAGACACGGTTGA -CCAACACCTTTGAGACACTCCGAT -CCAACACCTTTGAGACACTGGCAT -CCAACACCTTTGAGACACCGAGAT -CCAACACCTTTGAGACACTACCAC -CCAACACCTTTGAGACACCAGAAC -CCAACACCTTTGAGACACGTCTAC -CCAACACCTTTGAGACACACGTAC -CCAACACCTTTGAGACACAGTGAC -CCAACACCTTTGAGACACCTGTAG -CCAACACCTTTGAGACACCCTAAG -CCAACACCTTTGAGACACGTTCAG -CCAACACCTTTGAGACACGCATAG -CCAACACCTTTGAGACACGACAAG -CCAACACCTTTGAGACACAAGCAG -CCAACACCTTTGAGACACCGTCAA -CCAACACCTTTGAGACACGCTGAA -CCAACACCTTTGAGACACAGTACG -CCAACACCTTTGAGACACATCCGA -CCAACACCTTTGAGACACATGGGA -CCAACACCTTTGAGACACGTGCAA -CCAACACCTTTGAGACACGAGGAA -CCAACACCTTTGAGACACCAGGTA -CCAACACCTTTGAGACACGACTCT -CCAACACCTTTGAGACACAGTCCT -CCAACACCTTTGAGACACTAAGCC -CCAACACCTTTGAGACACATAGCC -CCAACACCTTTGAGACACTAACCG -CCAACACCTTTGAGACACATGCCA -CCAACACCTTTGAGAGCAGGAAAC -CCAACACCTTTGAGAGCAAACACC -CCAACACCTTTGAGAGCAATCGAG -CCAACACCTTTGAGAGCACTCCTT -CCAACACCTTTGAGAGCACCTGTT -CCAACACCTTTGAGAGCACGGTTT -CCAACACCTTTGAGAGCAGTGGTT -CCAACACCTTTGAGAGCAGCCTTT -CCAACACCTTTGAGAGCAGGTCTT -CCAACACCTTTGAGAGCAACGCTT -CCAACACCTTTGAGAGCAAGCGTT -CCAACACCTTTGAGAGCATTCGTC -CCAACACCTTTGAGAGCATCTCTC -CCAACACCTTTGAGAGCATGGATC -CCAACACCTTTGAGAGCACACTTC -CCAACACCTTTGAGAGCAGTACTC -CCAACACCTTTGAGAGCAGATGTC -CCAACACCTTTGAGAGCAACAGTC -CCAACACCTTTGAGAGCATTGCTG -CCAACACCTTTGAGAGCATCCATG -CCAACACCTTTGAGAGCATGTGTG -CCAACACCTTTGAGAGCACTAGTG -CCAACACCTTTGAGAGCACATCTG -CCAACACCTTTGAGAGCAGAGTTG -CCAACACCTTTGAGAGCAAGACTG -CCAACACCTTTGAGAGCATCGGTA -CCAACACCTTTGAGAGCATGCCTA -CCAACACCTTTGAGAGCACCACTA -CCAACACCTTTGAGAGCAGGAGTA -CCAACACCTTTGAGAGCATCGTCT -CCAACACCTTTGAGAGCATGCACT -CCAACACCTTTGAGAGCACTGACT -CCAACACCTTTGAGAGCACAACCT -CCAACACCTTTGAGAGCAGCTACT -CCAACACCTTTGAGAGCAGGATCT -CCAACACCTTTGAGAGCAAAGGCT -CCAACACCTTTGAGAGCATCAACC -CCAACACCTTTGAGAGCATGTTCC -CCAACACCTTTGAGAGCAATTCCC -CCAACACCTTTGAGAGCATTCTCG -CCAACACCTTTGAGAGCATAGACG -CCAACACCTTTGAGAGCAGTAACG -CCAACACCTTTGAGAGCAACTTCG -CCAACACCTTTGAGAGCATACGCA -CCAACACCTTTGAGAGCACTTGCA -CCAACACCTTTGAGAGCACGAACA -CCAACACCTTTGAGAGCACAGTCA -CCAACACCTTTGAGAGCAGATCCA -CCAACACCTTTGAGAGCAACGACA -CCAACACCTTTGAGAGCAAGCTCA -CCAACACCTTTGAGAGCATCACGT -CCAACACCTTTGAGAGCACGTAGT -CCAACACCTTTGAGAGCAGTCAGT -CCAACACCTTTGAGAGCAGAAGGT -CCAACACCTTTGAGAGCAAACCGT -CCAACACCTTTGAGAGCATTGTGC -CCAACACCTTTGAGAGCACTAAGC -CCAACACCTTTGAGAGCAACTAGC -CCAACACCTTTGAGAGCAAGATGC -CCAACACCTTTGAGAGCATGAAGG -CCAACACCTTTGAGAGCACAATGG -CCAACACCTTTGAGAGCAATGAGG -CCAACACCTTTGAGAGCAAATGGG -CCAACACCTTTGAGAGCATCCTGA -CCAACACCTTTGAGAGCATAGCGA -CCAACACCTTTGAGAGCACACAGA -CCAACACCTTTGAGAGCAGCAAGA -CCAACACCTTTGAGAGCAGGTTGA -CCAACACCTTTGAGAGCATCCGAT -CCAACACCTTTGAGAGCATGGCAT -CCAACACCTTTGAGAGCACGAGAT -CCAACACCTTTGAGAGCATACCAC -CCAACACCTTTGAGAGCACAGAAC -CCAACACCTTTGAGAGCAGTCTAC -CCAACACCTTTGAGAGCAACGTAC -CCAACACCTTTGAGAGCAAGTGAC -CCAACACCTTTGAGAGCACTGTAG -CCAACACCTTTGAGAGCACCTAAG -CCAACACCTTTGAGAGCAGTTCAG -CCAACACCTTTGAGAGCAGCATAG -CCAACACCTTTGAGAGCAGACAAG -CCAACACCTTTGAGAGCAAAGCAG -CCAACACCTTTGAGAGCACGTCAA -CCAACACCTTTGAGAGCAGCTGAA -CCAACACCTTTGAGAGCAAGTACG -CCAACACCTTTGAGAGCAATCCGA -CCAACACCTTTGAGAGCAATGGGA -CCAACACCTTTGAGAGCAGTGCAA -CCAACACCTTTGAGAGCAGAGGAA -CCAACACCTTTGAGAGCACAGGTA -CCAACACCTTTGAGAGCAGACTCT -CCAACACCTTTGAGAGCAAGTCCT -CCAACACCTTTGAGAGCATAAGCC -CCAACACCTTTGAGAGCAATAGCC -CCAACACCTTTGAGAGCATAACCG -CCAACACCTTTGAGAGCAATGCCA -CCAACACCTTTGTGAGGTGGAAAC -CCAACACCTTTGTGAGGTAACACC -CCAACACCTTTGTGAGGTATCGAG -CCAACACCTTTGTGAGGTCTCCTT -CCAACACCTTTGTGAGGTCCTGTT -CCAACACCTTTGTGAGGTCGGTTT -CCAACACCTTTGTGAGGTGTGGTT -CCAACACCTTTGTGAGGTGCCTTT -CCAACACCTTTGTGAGGTGGTCTT -CCAACACCTTTGTGAGGTACGCTT -CCAACACCTTTGTGAGGTAGCGTT -CCAACACCTTTGTGAGGTTTCGTC -CCAACACCTTTGTGAGGTTCTCTC -CCAACACCTTTGTGAGGTTGGATC -CCAACACCTTTGTGAGGTCACTTC -CCAACACCTTTGTGAGGTGTACTC -CCAACACCTTTGTGAGGTGATGTC -CCAACACCTTTGTGAGGTACAGTC -CCAACACCTTTGTGAGGTTTGCTG -CCAACACCTTTGTGAGGTTCCATG -CCAACACCTTTGTGAGGTTGTGTG -CCAACACCTTTGTGAGGTCTAGTG -CCAACACCTTTGTGAGGTCATCTG -CCAACACCTTTGTGAGGTGAGTTG -CCAACACCTTTGTGAGGTAGACTG -CCAACACCTTTGTGAGGTTCGGTA -CCAACACCTTTGTGAGGTTGCCTA -CCAACACCTTTGTGAGGTCCACTA -CCAACACCTTTGTGAGGTGGAGTA -CCAACACCTTTGTGAGGTTCGTCT -CCAACACCTTTGTGAGGTTGCACT -CCAACACCTTTGTGAGGTCTGACT -CCAACACCTTTGTGAGGTCAACCT -CCAACACCTTTGTGAGGTGCTACT -CCAACACCTTTGTGAGGTGGATCT -CCAACACCTTTGTGAGGTAAGGCT -CCAACACCTTTGTGAGGTTCAACC -CCAACACCTTTGTGAGGTTGTTCC -CCAACACCTTTGTGAGGTATTCCC -CCAACACCTTTGTGAGGTTTCTCG -CCAACACCTTTGTGAGGTTAGACG -CCAACACCTTTGTGAGGTGTAACG -CCAACACCTTTGTGAGGTACTTCG -CCAACACCTTTGTGAGGTTACGCA -CCAACACCTTTGTGAGGTCTTGCA -CCAACACCTTTGTGAGGTCGAACA -CCAACACCTTTGTGAGGTCAGTCA -CCAACACCTTTGTGAGGTGATCCA -CCAACACCTTTGTGAGGTACGACA -CCAACACCTTTGTGAGGTAGCTCA -CCAACACCTTTGTGAGGTTCACGT -CCAACACCTTTGTGAGGTCGTAGT -CCAACACCTTTGTGAGGTGTCAGT -CCAACACCTTTGTGAGGTGAAGGT -CCAACACCTTTGTGAGGTAACCGT -CCAACACCTTTGTGAGGTTTGTGC -CCAACACCTTTGTGAGGTCTAAGC -CCAACACCTTTGTGAGGTACTAGC -CCAACACCTTTGTGAGGTAGATGC -CCAACACCTTTGTGAGGTTGAAGG -CCAACACCTTTGTGAGGTCAATGG -CCAACACCTTTGTGAGGTATGAGG -CCAACACCTTTGTGAGGTAATGGG -CCAACACCTTTGTGAGGTTCCTGA -CCAACACCTTTGTGAGGTTAGCGA -CCAACACCTTTGTGAGGTCACAGA -CCAACACCTTTGTGAGGTGCAAGA -CCAACACCTTTGTGAGGTGGTTGA -CCAACACCTTTGTGAGGTTCCGAT -CCAACACCTTTGTGAGGTTGGCAT -CCAACACCTTTGTGAGGTCGAGAT -CCAACACCTTTGTGAGGTTACCAC -CCAACACCTTTGTGAGGTCAGAAC -CCAACACCTTTGTGAGGTGTCTAC -CCAACACCTTTGTGAGGTACGTAC -CCAACACCTTTGTGAGGTAGTGAC -CCAACACCTTTGTGAGGTCTGTAG -CCAACACCTTTGTGAGGTCCTAAG -CCAACACCTTTGTGAGGTGTTCAG -CCAACACCTTTGTGAGGTGCATAG -CCAACACCTTTGTGAGGTGACAAG -CCAACACCTTTGTGAGGTAAGCAG -CCAACACCTTTGTGAGGTCGTCAA -CCAACACCTTTGTGAGGTGCTGAA -CCAACACCTTTGTGAGGTAGTACG -CCAACACCTTTGTGAGGTATCCGA -CCAACACCTTTGTGAGGTATGGGA -CCAACACCTTTGTGAGGTGTGCAA -CCAACACCTTTGTGAGGTGAGGAA -CCAACACCTTTGTGAGGTCAGGTA -CCAACACCTTTGTGAGGTGACTCT -CCAACACCTTTGTGAGGTAGTCCT -CCAACACCTTTGTGAGGTTAAGCC -CCAACACCTTTGTGAGGTATAGCC -CCAACACCTTTGTGAGGTTAACCG -CCAACACCTTTGTGAGGTATGCCA -CCAACACCTTTGGATTCCGGAAAC -CCAACACCTTTGGATTCCAACACC -CCAACACCTTTGGATTCCATCGAG -CCAACACCTTTGGATTCCCTCCTT -CCAACACCTTTGGATTCCCCTGTT -CCAACACCTTTGGATTCCCGGTTT -CCAACACCTTTGGATTCCGTGGTT -CCAACACCTTTGGATTCCGCCTTT -CCAACACCTTTGGATTCCGGTCTT -CCAACACCTTTGGATTCCACGCTT -CCAACACCTTTGGATTCCAGCGTT -CCAACACCTTTGGATTCCTTCGTC -CCAACACCTTTGGATTCCTCTCTC -CCAACACCTTTGGATTCCTGGATC -CCAACACCTTTGGATTCCCACTTC -CCAACACCTTTGGATTCCGTACTC -CCAACACCTTTGGATTCCGATGTC -CCAACACCTTTGGATTCCACAGTC -CCAACACCTTTGGATTCCTTGCTG -CCAACACCTTTGGATTCCTCCATG -CCAACACCTTTGGATTCCTGTGTG -CCAACACCTTTGGATTCCCTAGTG -CCAACACCTTTGGATTCCCATCTG -CCAACACCTTTGGATTCCGAGTTG -CCAACACCTTTGGATTCCAGACTG -CCAACACCTTTGGATTCCTCGGTA -CCAACACCTTTGGATTCCTGCCTA -CCAACACCTTTGGATTCCCCACTA -CCAACACCTTTGGATTCCGGAGTA -CCAACACCTTTGGATTCCTCGTCT -CCAACACCTTTGGATTCCTGCACT -CCAACACCTTTGGATTCCCTGACT -CCAACACCTTTGGATTCCCAACCT -CCAACACCTTTGGATTCCGCTACT -CCAACACCTTTGGATTCCGGATCT -CCAACACCTTTGGATTCCAAGGCT -CCAACACCTTTGGATTCCTCAACC -CCAACACCTTTGGATTCCTGTTCC -CCAACACCTTTGGATTCCATTCCC -CCAACACCTTTGGATTCCTTCTCG -CCAACACCTTTGGATTCCTAGACG -CCAACACCTTTGGATTCCGTAACG -CCAACACCTTTGGATTCCACTTCG -CCAACACCTTTGGATTCCTACGCA -CCAACACCTTTGGATTCCCTTGCA -CCAACACCTTTGGATTCCCGAACA -CCAACACCTTTGGATTCCCAGTCA -CCAACACCTTTGGATTCCGATCCA -CCAACACCTTTGGATTCCACGACA -CCAACACCTTTGGATTCCAGCTCA -CCAACACCTTTGGATTCCTCACGT -CCAACACCTTTGGATTCCCGTAGT -CCAACACCTTTGGATTCCGTCAGT -CCAACACCTTTGGATTCCGAAGGT -CCAACACCTTTGGATTCCAACCGT -CCAACACCTTTGGATTCCTTGTGC -CCAACACCTTTGGATTCCCTAAGC -CCAACACCTTTGGATTCCACTAGC -CCAACACCTTTGGATTCCAGATGC -CCAACACCTTTGGATTCCTGAAGG -CCAACACCTTTGGATTCCCAATGG -CCAACACCTTTGGATTCCATGAGG -CCAACACCTTTGGATTCCAATGGG -CCAACACCTTTGGATTCCTCCTGA -CCAACACCTTTGGATTCCTAGCGA -CCAACACCTTTGGATTCCCACAGA -CCAACACCTTTGGATTCCGCAAGA -CCAACACCTTTGGATTCCGGTTGA -CCAACACCTTTGGATTCCTCCGAT -CCAACACCTTTGGATTCCTGGCAT -CCAACACCTTTGGATTCCCGAGAT -CCAACACCTTTGGATTCCTACCAC -CCAACACCTTTGGATTCCCAGAAC -CCAACACCTTTGGATTCCGTCTAC -CCAACACCTTTGGATTCCACGTAC -CCAACACCTTTGGATTCCAGTGAC -CCAACACCTTTGGATTCCCTGTAG -CCAACACCTTTGGATTCCCCTAAG -CCAACACCTTTGGATTCCGTTCAG -CCAACACCTTTGGATTCCGCATAG -CCAACACCTTTGGATTCCGACAAG -CCAACACCTTTGGATTCCAAGCAG -CCAACACCTTTGGATTCCCGTCAA -CCAACACCTTTGGATTCCGCTGAA -CCAACACCTTTGGATTCCAGTACG -CCAACACCTTTGGATTCCATCCGA -CCAACACCTTTGGATTCCATGGGA -CCAACACCTTTGGATTCCGTGCAA -CCAACACCTTTGGATTCCGAGGAA -CCAACACCTTTGGATTCCCAGGTA -CCAACACCTTTGGATTCCGACTCT -CCAACACCTTTGGATTCCAGTCCT -CCAACACCTTTGGATTCCTAAGCC -CCAACACCTTTGGATTCCATAGCC -CCAACACCTTTGGATTCCTAACCG -CCAACACCTTTGGATTCCATGCCA -CCAACACCTTTGCATTGGGGAAAC -CCAACACCTTTGCATTGGAACACC -CCAACACCTTTGCATTGGATCGAG -CCAACACCTTTGCATTGGCTCCTT -CCAACACCTTTGCATTGGCCTGTT -CCAACACCTTTGCATTGGCGGTTT -CCAACACCTTTGCATTGGGTGGTT -CCAACACCTTTGCATTGGGCCTTT -CCAACACCTTTGCATTGGGGTCTT -CCAACACCTTTGCATTGGACGCTT -CCAACACCTTTGCATTGGAGCGTT -CCAACACCTTTGCATTGGTTCGTC -CCAACACCTTTGCATTGGTCTCTC -CCAACACCTTTGCATTGGTGGATC -CCAACACCTTTGCATTGGCACTTC -CCAACACCTTTGCATTGGGTACTC -CCAACACCTTTGCATTGGGATGTC -CCAACACCTTTGCATTGGACAGTC -CCAACACCTTTGCATTGGTTGCTG -CCAACACCTTTGCATTGGTCCATG -CCAACACCTTTGCATTGGTGTGTG -CCAACACCTTTGCATTGGCTAGTG -CCAACACCTTTGCATTGGCATCTG -CCAACACCTTTGCATTGGGAGTTG -CCAACACCTTTGCATTGGAGACTG -CCAACACCTTTGCATTGGTCGGTA -CCAACACCTTTGCATTGGTGCCTA -CCAACACCTTTGCATTGGCCACTA -CCAACACCTTTGCATTGGGGAGTA -CCAACACCTTTGCATTGGTCGTCT -CCAACACCTTTGCATTGGTGCACT -CCAACACCTTTGCATTGGCTGACT -CCAACACCTTTGCATTGGCAACCT -CCAACACCTTTGCATTGGGCTACT -CCAACACCTTTGCATTGGGGATCT -CCAACACCTTTGCATTGGAAGGCT -CCAACACCTTTGCATTGGTCAACC -CCAACACCTTTGCATTGGTGTTCC -CCAACACCTTTGCATTGGATTCCC -CCAACACCTTTGCATTGGTTCTCG -CCAACACCTTTGCATTGGTAGACG -CCAACACCTTTGCATTGGGTAACG -CCAACACCTTTGCATTGGACTTCG -CCAACACCTTTGCATTGGTACGCA -CCAACACCTTTGCATTGGCTTGCA -CCAACACCTTTGCATTGGCGAACA -CCAACACCTTTGCATTGGCAGTCA -CCAACACCTTTGCATTGGGATCCA -CCAACACCTTTGCATTGGACGACA -CCAACACCTTTGCATTGGAGCTCA -CCAACACCTTTGCATTGGTCACGT -CCAACACCTTTGCATTGGCGTAGT -CCAACACCTTTGCATTGGGTCAGT -CCAACACCTTTGCATTGGGAAGGT -CCAACACCTTTGCATTGGAACCGT -CCAACACCTTTGCATTGGTTGTGC -CCAACACCTTTGCATTGGCTAAGC -CCAACACCTTTGCATTGGACTAGC -CCAACACCTTTGCATTGGAGATGC -CCAACACCTTTGCATTGGTGAAGG -CCAACACCTTTGCATTGGCAATGG -CCAACACCTTTGCATTGGATGAGG -CCAACACCTTTGCATTGGAATGGG -CCAACACCTTTGCATTGGTCCTGA -CCAACACCTTTGCATTGGTAGCGA -CCAACACCTTTGCATTGGCACAGA -CCAACACCTTTGCATTGGGCAAGA -CCAACACCTTTGCATTGGGGTTGA -CCAACACCTTTGCATTGGTCCGAT -CCAACACCTTTGCATTGGTGGCAT -CCAACACCTTTGCATTGGCGAGAT -CCAACACCTTTGCATTGGTACCAC -CCAACACCTTTGCATTGGCAGAAC -CCAACACCTTTGCATTGGGTCTAC -CCAACACCTTTGCATTGGACGTAC -CCAACACCTTTGCATTGGAGTGAC -CCAACACCTTTGCATTGGCTGTAG -CCAACACCTTTGCATTGGCCTAAG -CCAACACCTTTGCATTGGGTTCAG -CCAACACCTTTGCATTGGGCATAG -CCAACACCTTTGCATTGGGACAAG -CCAACACCTTTGCATTGGAAGCAG -CCAACACCTTTGCATTGGCGTCAA -CCAACACCTTTGCATTGGGCTGAA -CCAACACCTTTGCATTGGAGTACG -CCAACACCTTTGCATTGGATCCGA -CCAACACCTTTGCATTGGATGGGA -CCAACACCTTTGCATTGGGTGCAA -CCAACACCTTTGCATTGGGAGGAA -CCAACACCTTTGCATTGGCAGGTA -CCAACACCTTTGCATTGGGACTCT -CCAACACCTTTGCATTGGAGTCCT -CCAACACCTTTGCATTGGTAAGCC -CCAACACCTTTGCATTGGATAGCC -CCAACACCTTTGCATTGGTAACCG -CCAACACCTTTGCATTGGATGCCA -CCAACACCTTTGGATCGAGGAAAC -CCAACACCTTTGGATCGAAACACC -CCAACACCTTTGGATCGAATCGAG -CCAACACCTTTGGATCGACTCCTT -CCAACACCTTTGGATCGACCTGTT -CCAACACCTTTGGATCGACGGTTT -CCAACACCTTTGGATCGAGTGGTT -CCAACACCTTTGGATCGAGCCTTT -CCAACACCTTTGGATCGAGGTCTT -CCAACACCTTTGGATCGAACGCTT -CCAACACCTTTGGATCGAAGCGTT -CCAACACCTTTGGATCGATTCGTC -CCAACACCTTTGGATCGATCTCTC -CCAACACCTTTGGATCGATGGATC -CCAACACCTTTGGATCGACACTTC -CCAACACCTTTGGATCGAGTACTC -CCAACACCTTTGGATCGAGATGTC -CCAACACCTTTGGATCGAACAGTC -CCAACACCTTTGGATCGATTGCTG -CCAACACCTTTGGATCGATCCATG -CCAACACCTTTGGATCGATGTGTG -CCAACACCTTTGGATCGACTAGTG -CCAACACCTTTGGATCGACATCTG -CCAACACCTTTGGATCGAGAGTTG -CCAACACCTTTGGATCGAAGACTG -CCAACACCTTTGGATCGATCGGTA -CCAACACCTTTGGATCGATGCCTA -CCAACACCTTTGGATCGACCACTA -CCAACACCTTTGGATCGAGGAGTA -CCAACACCTTTGGATCGATCGTCT -CCAACACCTTTGGATCGATGCACT -CCAACACCTTTGGATCGACTGACT -CCAACACCTTTGGATCGACAACCT -CCAACACCTTTGGATCGAGCTACT -CCAACACCTTTGGATCGAGGATCT -CCAACACCTTTGGATCGAAAGGCT -CCAACACCTTTGGATCGATCAACC -CCAACACCTTTGGATCGATGTTCC -CCAACACCTTTGGATCGAATTCCC -CCAACACCTTTGGATCGATTCTCG -CCAACACCTTTGGATCGATAGACG -CCAACACCTTTGGATCGAGTAACG -CCAACACCTTTGGATCGAACTTCG -CCAACACCTTTGGATCGATACGCA -CCAACACCTTTGGATCGACTTGCA -CCAACACCTTTGGATCGACGAACA -CCAACACCTTTGGATCGACAGTCA -CCAACACCTTTGGATCGAGATCCA -CCAACACCTTTGGATCGAACGACA -CCAACACCTTTGGATCGAAGCTCA -CCAACACCTTTGGATCGATCACGT -CCAACACCTTTGGATCGACGTAGT -CCAACACCTTTGGATCGAGTCAGT -CCAACACCTTTGGATCGAGAAGGT -CCAACACCTTTGGATCGAAACCGT -CCAACACCTTTGGATCGATTGTGC -CCAACACCTTTGGATCGACTAAGC -CCAACACCTTTGGATCGAACTAGC -CCAACACCTTTGGATCGAAGATGC -CCAACACCTTTGGATCGATGAAGG -CCAACACCTTTGGATCGACAATGG -CCAACACCTTTGGATCGAATGAGG -CCAACACCTTTGGATCGAAATGGG -CCAACACCTTTGGATCGATCCTGA -CCAACACCTTTGGATCGATAGCGA -CCAACACCTTTGGATCGACACAGA -CCAACACCTTTGGATCGAGCAAGA -CCAACACCTTTGGATCGAGGTTGA -CCAACACCTTTGGATCGATCCGAT -CCAACACCTTTGGATCGATGGCAT -CCAACACCTTTGGATCGACGAGAT -CCAACACCTTTGGATCGATACCAC -CCAACACCTTTGGATCGACAGAAC -CCAACACCTTTGGATCGAGTCTAC -CCAACACCTTTGGATCGAACGTAC -CCAACACCTTTGGATCGAAGTGAC -CCAACACCTTTGGATCGACTGTAG -CCAACACCTTTGGATCGACCTAAG -CCAACACCTTTGGATCGAGTTCAG -CCAACACCTTTGGATCGAGCATAG -CCAACACCTTTGGATCGAGACAAG -CCAACACCTTTGGATCGAAAGCAG -CCAACACCTTTGGATCGACGTCAA -CCAACACCTTTGGATCGAGCTGAA -CCAACACCTTTGGATCGAAGTACG -CCAACACCTTTGGATCGAATCCGA -CCAACACCTTTGGATCGAATGGGA -CCAACACCTTTGGATCGAGTGCAA -CCAACACCTTTGGATCGAGAGGAA -CCAACACCTTTGGATCGACAGGTA -CCAACACCTTTGGATCGAGACTCT -CCAACACCTTTGGATCGAAGTCCT -CCAACACCTTTGGATCGATAAGCC -CCAACACCTTTGGATCGAATAGCC -CCAACACCTTTGGATCGATAACCG -CCAACACCTTTGGATCGAATGCCA -CCAACACCTTTGCACTACGGAAAC -CCAACACCTTTGCACTACAACACC -CCAACACCTTTGCACTACATCGAG -CCAACACCTTTGCACTACCTCCTT -CCAACACCTTTGCACTACCCTGTT -CCAACACCTTTGCACTACCGGTTT -CCAACACCTTTGCACTACGTGGTT -CCAACACCTTTGCACTACGCCTTT -CCAACACCTTTGCACTACGGTCTT -CCAACACCTTTGCACTACACGCTT -CCAACACCTTTGCACTACAGCGTT -CCAACACCTTTGCACTACTTCGTC -CCAACACCTTTGCACTACTCTCTC -CCAACACCTTTGCACTACTGGATC -CCAACACCTTTGCACTACCACTTC -CCAACACCTTTGCACTACGTACTC -CCAACACCTTTGCACTACGATGTC -CCAACACCTTTGCACTACACAGTC -CCAACACCTTTGCACTACTTGCTG -CCAACACCTTTGCACTACTCCATG -CCAACACCTTTGCACTACTGTGTG -CCAACACCTTTGCACTACCTAGTG -CCAACACCTTTGCACTACCATCTG -CCAACACCTTTGCACTACGAGTTG -CCAACACCTTTGCACTACAGACTG -CCAACACCTTTGCACTACTCGGTA -CCAACACCTTTGCACTACTGCCTA -CCAACACCTTTGCACTACCCACTA -CCAACACCTTTGCACTACGGAGTA -CCAACACCTTTGCACTACTCGTCT -CCAACACCTTTGCACTACTGCACT -CCAACACCTTTGCACTACCTGACT -CCAACACCTTTGCACTACCAACCT -CCAACACCTTTGCACTACGCTACT -CCAACACCTTTGCACTACGGATCT -CCAACACCTTTGCACTACAAGGCT -CCAACACCTTTGCACTACTCAACC -CCAACACCTTTGCACTACTGTTCC -CCAACACCTTTGCACTACATTCCC -CCAACACCTTTGCACTACTTCTCG -CCAACACCTTTGCACTACTAGACG -CCAACACCTTTGCACTACGTAACG -CCAACACCTTTGCACTACACTTCG -CCAACACCTTTGCACTACTACGCA -CCAACACCTTTGCACTACCTTGCA -CCAACACCTTTGCACTACCGAACA -CCAACACCTTTGCACTACCAGTCA -CCAACACCTTTGCACTACGATCCA -CCAACACCTTTGCACTACACGACA -CCAACACCTTTGCACTACAGCTCA -CCAACACCTTTGCACTACTCACGT -CCAACACCTTTGCACTACCGTAGT -CCAACACCTTTGCACTACGTCAGT -CCAACACCTTTGCACTACGAAGGT -CCAACACCTTTGCACTACAACCGT -CCAACACCTTTGCACTACTTGTGC -CCAACACCTTTGCACTACCTAAGC -CCAACACCTTTGCACTACACTAGC -CCAACACCTTTGCACTACAGATGC -CCAACACCTTTGCACTACTGAAGG -CCAACACCTTTGCACTACCAATGG -CCAACACCTTTGCACTACATGAGG -CCAACACCTTTGCACTACAATGGG -CCAACACCTTTGCACTACTCCTGA -CCAACACCTTTGCACTACTAGCGA -CCAACACCTTTGCACTACCACAGA -CCAACACCTTTGCACTACGCAAGA -CCAACACCTTTGCACTACGGTTGA -CCAACACCTTTGCACTACTCCGAT -CCAACACCTTTGCACTACTGGCAT -CCAACACCTTTGCACTACCGAGAT -CCAACACCTTTGCACTACTACCAC -CCAACACCTTTGCACTACCAGAAC -CCAACACCTTTGCACTACGTCTAC -CCAACACCTTTGCACTACACGTAC -CCAACACCTTTGCACTACAGTGAC -CCAACACCTTTGCACTACCTGTAG -CCAACACCTTTGCACTACCCTAAG -CCAACACCTTTGCACTACGTTCAG -CCAACACCTTTGCACTACGCATAG -CCAACACCTTTGCACTACGACAAG -CCAACACCTTTGCACTACAAGCAG -CCAACACCTTTGCACTACCGTCAA -CCAACACCTTTGCACTACGCTGAA -CCAACACCTTTGCACTACAGTACG -CCAACACCTTTGCACTACATCCGA -CCAACACCTTTGCACTACATGGGA -CCAACACCTTTGCACTACGTGCAA -CCAACACCTTTGCACTACGAGGAA -CCAACACCTTTGCACTACCAGGTA -CCAACACCTTTGCACTACGACTCT -CCAACACCTTTGCACTACAGTCCT -CCAACACCTTTGCACTACTAAGCC -CCAACACCTTTGCACTACATAGCC -CCAACACCTTTGCACTACTAACCG -CCAACACCTTTGCACTACATGCCA -CCAACACCTTTGAACCAGGGAAAC -CCAACACCTTTGAACCAGAACACC -CCAACACCTTTGAACCAGATCGAG -CCAACACCTTTGAACCAGCTCCTT -CCAACACCTTTGAACCAGCCTGTT -CCAACACCTTTGAACCAGCGGTTT -CCAACACCTTTGAACCAGGTGGTT -CCAACACCTTTGAACCAGGCCTTT -CCAACACCTTTGAACCAGGGTCTT -CCAACACCTTTGAACCAGACGCTT -CCAACACCTTTGAACCAGAGCGTT -CCAACACCTTTGAACCAGTTCGTC -CCAACACCTTTGAACCAGTCTCTC -CCAACACCTTTGAACCAGTGGATC -CCAACACCTTTGAACCAGCACTTC -CCAACACCTTTGAACCAGGTACTC -CCAACACCTTTGAACCAGGATGTC -CCAACACCTTTGAACCAGACAGTC -CCAACACCTTTGAACCAGTTGCTG -CCAACACCTTTGAACCAGTCCATG -CCAACACCTTTGAACCAGTGTGTG -CCAACACCTTTGAACCAGCTAGTG -CCAACACCTTTGAACCAGCATCTG -CCAACACCTTTGAACCAGGAGTTG -CCAACACCTTTGAACCAGAGACTG -CCAACACCTTTGAACCAGTCGGTA -CCAACACCTTTGAACCAGTGCCTA -CCAACACCTTTGAACCAGCCACTA -CCAACACCTTTGAACCAGGGAGTA -CCAACACCTTTGAACCAGTCGTCT -CCAACACCTTTGAACCAGTGCACT -CCAACACCTTTGAACCAGCTGACT -CCAACACCTTTGAACCAGCAACCT -CCAACACCTTTGAACCAGGCTACT -CCAACACCTTTGAACCAGGGATCT -CCAACACCTTTGAACCAGAAGGCT -CCAACACCTTTGAACCAGTCAACC -CCAACACCTTTGAACCAGTGTTCC -CCAACACCTTTGAACCAGATTCCC -CCAACACCTTTGAACCAGTTCTCG -CCAACACCTTTGAACCAGTAGACG -CCAACACCTTTGAACCAGGTAACG -CCAACACCTTTGAACCAGACTTCG -CCAACACCTTTGAACCAGTACGCA -CCAACACCTTTGAACCAGCTTGCA -CCAACACCTTTGAACCAGCGAACA -CCAACACCTTTGAACCAGCAGTCA -CCAACACCTTTGAACCAGGATCCA -CCAACACCTTTGAACCAGACGACA -CCAACACCTTTGAACCAGAGCTCA -CCAACACCTTTGAACCAGTCACGT -CCAACACCTTTGAACCAGCGTAGT -CCAACACCTTTGAACCAGGTCAGT -CCAACACCTTTGAACCAGGAAGGT -CCAACACCTTTGAACCAGAACCGT -CCAACACCTTTGAACCAGTTGTGC -CCAACACCTTTGAACCAGCTAAGC -CCAACACCTTTGAACCAGACTAGC -CCAACACCTTTGAACCAGAGATGC -CCAACACCTTTGAACCAGTGAAGG -CCAACACCTTTGAACCAGCAATGG -CCAACACCTTTGAACCAGATGAGG -CCAACACCTTTGAACCAGAATGGG -CCAACACCTTTGAACCAGTCCTGA -CCAACACCTTTGAACCAGTAGCGA -CCAACACCTTTGAACCAGCACAGA -CCAACACCTTTGAACCAGGCAAGA -CCAACACCTTTGAACCAGGGTTGA -CCAACACCTTTGAACCAGTCCGAT -CCAACACCTTTGAACCAGTGGCAT -CCAACACCTTTGAACCAGCGAGAT -CCAACACCTTTGAACCAGTACCAC -CCAACACCTTTGAACCAGCAGAAC -CCAACACCTTTGAACCAGGTCTAC -CCAACACCTTTGAACCAGACGTAC -CCAACACCTTTGAACCAGAGTGAC -CCAACACCTTTGAACCAGCTGTAG -CCAACACCTTTGAACCAGCCTAAG -CCAACACCTTTGAACCAGGTTCAG -CCAACACCTTTGAACCAGGCATAG -CCAACACCTTTGAACCAGGACAAG -CCAACACCTTTGAACCAGAAGCAG -CCAACACCTTTGAACCAGCGTCAA -CCAACACCTTTGAACCAGGCTGAA -CCAACACCTTTGAACCAGAGTACG -CCAACACCTTTGAACCAGATCCGA -CCAACACCTTTGAACCAGATGGGA -CCAACACCTTTGAACCAGGTGCAA -CCAACACCTTTGAACCAGGAGGAA -CCAACACCTTTGAACCAGCAGGTA -CCAACACCTTTGAACCAGGACTCT -CCAACACCTTTGAACCAGAGTCCT -CCAACACCTTTGAACCAGTAAGCC -CCAACACCTTTGAACCAGATAGCC -CCAACACCTTTGAACCAGTAACCG -CCAACACCTTTGAACCAGATGCCA -CCAACACCTTTGTACGTCGGAAAC -CCAACACCTTTGTACGTCAACACC -CCAACACCTTTGTACGTCATCGAG -CCAACACCTTTGTACGTCCTCCTT -CCAACACCTTTGTACGTCCCTGTT -CCAACACCTTTGTACGTCCGGTTT -CCAACACCTTTGTACGTCGTGGTT -CCAACACCTTTGTACGTCGCCTTT -CCAACACCTTTGTACGTCGGTCTT -CCAACACCTTTGTACGTCACGCTT -CCAACACCTTTGTACGTCAGCGTT -CCAACACCTTTGTACGTCTTCGTC -CCAACACCTTTGTACGTCTCTCTC -CCAACACCTTTGTACGTCTGGATC -CCAACACCTTTGTACGTCCACTTC -CCAACACCTTTGTACGTCGTACTC -CCAACACCTTTGTACGTCGATGTC -CCAACACCTTTGTACGTCACAGTC -CCAACACCTTTGTACGTCTTGCTG -CCAACACCTTTGTACGTCTCCATG -CCAACACCTTTGTACGTCTGTGTG -CCAACACCTTTGTACGTCCTAGTG -CCAACACCTTTGTACGTCCATCTG -CCAACACCTTTGTACGTCGAGTTG -CCAACACCTTTGTACGTCAGACTG -CCAACACCTTTGTACGTCTCGGTA -CCAACACCTTTGTACGTCTGCCTA -CCAACACCTTTGTACGTCCCACTA -CCAACACCTTTGTACGTCGGAGTA -CCAACACCTTTGTACGTCTCGTCT -CCAACACCTTTGTACGTCTGCACT -CCAACACCTTTGTACGTCCTGACT -CCAACACCTTTGTACGTCCAACCT -CCAACACCTTTGTACGTCGCTACT -CCAACACCTTTGTACGTCGGATCT -CCAACACCTTTGTACGTCAAGGCT -CCAACACCTTTGTACGTCTCAACC -CCAACACCTTTGTACGTCTGTTCC -CCAACACCTTTGTACGTCATTCCC -CCAACACCTTTGTACGTCTTCTCG -CCAACACCTTTGTACGTCTAGACG -CCAACACCTTTGTACGTCGTAACG -CCAACACCTTTGTACGTCACTTCG -CCAACACCTTTGTACGTCTACGCA -CCAACACCTTTGTACGTCCTTGCA -CCAACACCTTTGTACGTCCGAACA -CCAACACCTTTGTACGTCCAGTCA -CCAACACCTTTGTACGTCGATCCA -CCAACACCTTTGTACGTCACGACA -CCAACACCTTTGTACGTCAGCTCA -CCAACACCTTTGTACGTCTCACGT -CCAACACCTTTGTACGTCCGTAGT -CCAACACCTTTGTACGTCGTCAGT -CCAACACCTTTGTACGTCGAAGGT -CCAACACCTTTGTACGTCAACCGT -CCAACACCTTTGTACGTCTTGTGC -CCAACACCTTTGTACGTCCTAAGC -CCAACACCTTTGTACGTCACTAGC -CCAACACCTTTGTACGTCAGATGC -CCAACACCTTTGTACGTCTGAAGG -CCAACACCTTTGTACGTCCAATGG -CCAACACCTTTGTACGTCATGAGG -CCAACACCTTTGTACGTCAATGGG -CCAACACCTTTGTACGTCTCCTGA -CCAACACCTTTGTACGTCTAGCGA -CCAACACCTTTGTACGTCCACAGA -CCAACACCTTTGTACGTCGCAAGA -CCAACACCTTTGTACGTCGGTTGA -CCAACACCTTTGTACGTCTCCGAT -CCAACACCTTTGTACGTCTGGCAT -CCAACACCTTTGTACGTCCGAGAT -CCAACACCTTTGTACGTCTACCAC -CCAACACCTTTGTACGTCCAGAAC -CCAACACCTTTGTACGTCGTCTAC -CCAACACCTTTGTACGTCACGTAC -CCAACACCTTTGTACGTCAGTGAC -CCAACACCTTTGTACGTCCTGTAG -CCAACACCTTTGTACGTCCCTAAG -CCAACACCTTTGTACGTCGTTCAG -CCAACACCTTTGTACGTCGCATAG -CCAACACCTTTGTACGTCGACAAG -CCAACACCTTTGTACGTCAAGCAG -CCAACACCTTTGTACGTCCGTCAA -CCAACACCTTTGTACGTCGCTGAA -CCAACACCTTTGTACGTCAGTACG -CCAACACCTTTGTACGTCATCCGA -CCAACACCTTTGTACGTCATGGGA -CCAACACCTTTGTACGTCGTGCAA -CCAACACCTTTGTACGTCGAGGAA -CCAACACCTTTGTACGTCCAGGTA -CCAACACCTTTGTACGTCGACTCT -CCAACACCTTTGTACGTCAGTCCT -CCAACACCTTTGTACGTCTAAGCC -CCAACACCTTTGTACGTCATAGCC -CCAACACCTTTGTACGTCTAACCG -CCAACACCTTTGTACGTCATGCCA -CCAACACCTTTGTACACGGGAAAC -CCAACACCTTTGTACACGAACACC -CCAACACCTTTGTACACGATCGAG -CCAACACCTTTGTACACGCTCCTT -CCAACACCTTTGTACACGCCTGTT -CCAACACCTTTGTACACGCGGTTT -CCAACACCTTTGTACACGGTGGTT -CCAACACCTTTGTACACGGCCTTT -CCAACACCTTTGTACACGGGTCTT -CCAACACCTTTGTACACGACGCTT -CCAACACCTTTGTACACGAGCGTT -CCAACACCTTTGTACACGTTCGTC -CCAACACCTTTGTACACGTCTCTC -CCAACACCTTTGTACACGTGGATC -CCAACACCTTTGTACACGCACTTC -CCAACACCTTTGTACACGGTACTC -CCAACACCTTTGTACACGGATGTC -CCAACACCTTTGTACACGACAGTC -CCAACACCTTTGTACACGTTGCTG -CCAACACCTTTGTACACGTCCATG -CCAACACCTTTGTACACGTGTGTG -CCAACACCTTTGTACACGCTAGTG -CCAACACCTTTGTACACGCATCTG -CCAACACCTTTGTACACGGAGTTG -CCAACACCTTTGTACACGAGACTG -CCAACACCTTTGTACACGTCGGTA -CCAACACCTTTGTACACGTGCCTA -CCAACACCTTTGTACACGCCACTA -CCAACACCTTTGTACACGGGAGTA -CCAACACCTTTGTACACGTCGTCT -CCAACACCTTTGTACACGTGCACT -CCAACACCTTTGTACACGCTGACT -CCAACACCTTTGTACACGCAACCT -CCAACACCTTTGTACACGGCTACT -CCAACACCTTTGTACACGGGATCT -CCAACACCTTTGTACACGAAGGCT -CCAACACCTTTGTACACGTCAACC -CCAACACCTTTGTACACGTGTTCC -CCAACACCTTTGTACACGATTCCC -CCAACACCTTTGTACACGTTCTCG -CCAACACCTTTGTACACGTAGACG -CCAACACCTTTGTACACGGTAACG -CCAACACCTTTGTACACGACTTCG -CCAACACCTTTGTACACGTACGCA -CCAACACCTTTGTACACGCTTGCA -CCAACACCTTTGTACACGCGAACA -CCAACACCTTTGTACACGCAGTCA -CCAACACCTTTGTACACGGATCCA -CCAACACCTTTGTACACGACGACA -CCAACACCTTTGTACACGAGCTCA -CCAACACCTTTGTACACGTCACGT -CCAACACCTTTGTACACGCGTAGT -CCAACACCTTTGTACACGGTCAGT -CCAACACCTTTGTACACGGAAGGT -CCAACACCTTTGTACACGAACCGT -CCAACACCTTTGTACACGTTGTGC -CCAACACCTTTGTACACGCTAAGC -CCAACACCTTTGTACACGACTAGC -CCAACACCTTTGTACACGAGATGC -CCAACACCTTTGTACACGTGAAGG -CCAACACCTTTGTACACGCAATGG -CCAACACCTTTGTACACGATGAGG -CCAACACCTTTGTACACGAATGGG -CCAACACCTTTGTACACGTCCTGA -CCAACACCTTTGTACACGTAGCGA -CCAACACCTTTGTACACGCACAGA -CCAACACCTTTGTACACGGCAAGA -CCAACACCTTTGTACACGGGTTGA -CCAACACCTTTGTACACGTCCGAT -CCAACACCTTTGTACACGTGGCAT -CCAACACCTTTGTACACGCGAGAT -CCAACACCTTTGTACACGTACCAC -CCAACACCTTTGTACACGCAGAAC -CCAACACCTTTGTACACGGTCTAC -CCAACACCTTTGTACACGACGTAC -CCAACACCTTTGTACACGAGTGAC -CCAACACCTTTGTACACGCTGTAG -CCAACACCTTTGTACACGCCTAAG -CCAACACCTTTGTACACGGTTCAG -CCAACACCTTTGTACACGGCATAG -CCAACACCTTTGTACACGGACAAG -CCAACACCTTTGTACACGAAGCAG -CCAACACCTTTGTACACGCGTCAA -CCAACACCTTTGTACACGGCTGAA -CCAACACCTTTGTACACGAGTACG -CCAACACCTTTGTACACGATCCGA -CCAACACCTTTGTACACGATGGGA -CCAACACCTTTGTACACGGTGCAA -CCAACACCTTTGTACACGGAGGAA -CCAACACCTTTGTACACGCAGGTA -CCAACACCTTTGTACACGGACTCT -CCAACACCTTTGTACACGAGTCCT -CCAACACCTTTGTACACGTAAGCC -CCAACACCTTTGTACACGATAGCC -CCAACACCTTTGTACACGTAACCG -CCAACACCTTTGTACACGATGCCA -CCAACACCTTTGGACAGTGGAAAC -CCAACACCTTTGGACAGTAACACC -CCAACACCTTTGGACAGTATCGAG -CCAACACCTTTGGACAGTCTCCTT -CCAACACCTTTGGACAGTCCTGTT -CCAACACCTTTGGACAGTCGGTTT -CCAACACCTTTGGACAGTGTGGTT -CCAACACCTTTGGACAGTGCCTTT -CCAACACCTTTGGACAGTGGTCTT -CCAACACCTTTGGACAGTACGCTT -CCAACACCTTTGGACAGTAGCGTT -CCAACACCTTTGGACAGTTTCGTC -CCAACACCTTTGGACAGTTCTCTC -CCAACACCTTTGGACAGTTGGATC -CCAACACCTTTGGACAGTCACTTC -CCAACACCTTTGGACAGTGTACTC -CCAACACCTTTGGACAGTGATGTC -CCAACACCTTTGGACAGTACAGTC -CCAACACCTTTGGACAGTTTGCTG -CCAACACCTTTGGACAGTTCCATG -CCAACACCTTTGGACAGTTGTGTG -CCAACACCTTTGGACAGTCTAGTG -CCAACACCTTTGGACAGTCATCTG -CCAACACCTTTGGACAGTGAGTTG -CCAACACCTTTGGACAGTAGACTG -CCAACACCTTTGGACAGTTCGGTA -CCAACACCTTTGGACAGTTGCCTA -CCAACACCTTTGGACAGTCCACTA -CCAACACCTTTGGACAGTGGAGTA -CCAACACCTTTGGACAGTTCGTCT -CCAACACCTTTGGACAGTTGCACT -CCAACACCTTTGGACAGTCTGACT -CCAACACCTTTGGACAGTCAACCT -CCAACACCTTTGGACAGTGCTACT -CCAACACCTTTGGACAGTGGATCT -CCAACACCTTTGGACAGTAAGGCT -CCAACACCTTTGGACAGTTCAACC -CCAACACCTTTGGACAGTTGTTCC -CCAACACCTTTGGACAGTATTCCC -CCAACACCTTTGGACAGTTTCTCG -CCAACACCTTTGGACAGTTAGACG -CCAACACCTTTGGACAGTGTAACG -CCAACACCTTTGGACAGTACTTCG -CCAACACCTTTGGACAGTTACGCA -CCAACACCTTTGGACAGTCTTGCA -CCAACACCTTTGGACAGTCGAACA -CCAACACCTTTGGACAGTCAGTCA -CCAACACCTTTGGACAGTGATCCA -CCAACACCTTTGGACAGTACGACA -CCAACACCTTTGGACAGTAGCTCA -CCAACACCTTTGGACAGTTCACGT -CCAACACCTTTGGACAGTCGTAGT -CCAACACCTTTGGACAGTGTCAGT -CCAACACCTTTGGACAGTGAAGGT -CCAACACCTTTGGACAGTAACCGT -CCAACACCTTTGGACAGTTTGTGC -CCAACACCTTTGGACAGTCTAAGC -CCAACACCTTTGGACAGTACTAGC -CCAACACCTTTGGACAGTAGATGC -CCAACACCTTTGGACAGTTGAAGG -CCAACACCTTTGGACAGTCAATGG -CCAACACCTTTGGACAGTATGAGG -CCAACACCTTTGGACAGTAATGGG -CCAACACCTTTGGACAGTTCCTGA -CCAACACCTTTGGACAGTTAGCGA -CCAACACCTTTGGACAGTCACAGA -CCAACACCTTTGGACAGTGCAAGA -CCAACACCTTTGGACAGTGGTTGA -CCAACACCTTTGGACAGTTCCGAT -CCAACACCTTTGGACAGTTGGCAT -CCAACACCTTTGGACAGTCGAGAT -CCAACACCTTTGGACAGTTACCAC -CCAACACCTTTGGACAGTCAGAAC -CCAACACCTTTGGACAGTGTCTAC -CCAACACCTTTGGACAGTACGTAC -CCAACACCTTTGGACAGTAGTGAC -CCAACACCTTTGGACAGTCTGTAG -CCAACACCTTTGGACAGTCCTAAG -CCAACACCTTTGGACAGTGTTCAG -CCAACACCTTTGGACAGTGCATAG -CCAACACCTTTGGACAGTGACAAG -CCAACACCTTTGGACAGTAAGCAG -CCAACACCTTTGGACAGTCGTCAA -CCAACACCTTTGGACAGTGCTGAA -CCAACACCTTTGGACAGTAGTACG -CCAACACCTTTGGACAGTATCCGA -CCAACACCTTTGGACAGTATGGGA -CCAACACCTTTGGACAGTGTGCAA -CCAACACCTTTGGACAGTGAGGAA -CCAACACCTTTGGACAGTCAGGTA -CCAACACCTTTGGACAGTGACTCT -CCAACACCTTTGGACAGTAGTCCT -CCAACACCTTTGGACAGTTAAGCC -CCAACACCTTTGGACAGTATAGCC -CCAACACCTTTGGACAGTTAACCG -CCAACACCTTTGGACAGTATGCCA -CCAACACCTTTGTAGCTGGGAAAC -CCAACACCTTTGTAGCTGAACACC -CCAACACCTTTGTAGCTGATCGAG -CCAACACCTTTGTAGCTGCTCCTT -CCAACACCTTTGTAGCTGCCTGTT -CCAACACCTTTGTAGCTGCGGTTT -CCAACACCTTTGTAGCTGGTGGTT -CCAACACCTTTGTAGCTGGCCTTT -CCAACACCTTTGTAGCTGGGTCTT -CCAACACCTTTGTAGCTGACGCTT -CCAACACCTTTGTAGCTGAGCGTT -CCAACACCTTTGTAGCTGTTCGTC -CCAACACCTTTGTAGCTGTCTCTC -CCAACACCTTTGTAGCTGTGGATC -CCAACACCTTTGTAGCTGCACTTC -CCAACACCTTTGTAGCTGGTACTC -CCAACACCTTTGTAGCTGGATGTC -CCAACACCTTTGTAGCTGACAGTC -CCAACACCTTTGTAGCTGTTGCTG -CCAACACCTTTGTAGCTGTCCATG -CCAACACCTTTGTAGCTGTGTGTG -CCAACACCTTTGTAGCTGCTAGTG -CCAACACCTTTGTAGCTGCATCTG -CCAACACCTTTGTAGCTGGAGTTG -CCAACACCTTTGTAGCTGAGACTG -CCAACACCTTTGTAGCTGTCGGTA -CCAACACCTTTGTAGCTGTGCCTA -CCAACACCTTTGTAGCTGCCACTA -CCAACACCTTTGTAGCTGGGAGTA -CCAACACCTTTGTAGCTGTCGTCT -CCAACACCTTTGTAGCTGTGCACT -CCAACACCTTTGTAGCTGCTGACT -CCAACACCTTTGTAGCTGCAACCT -CCAACACCTTTGTAGCTGGCTACT -CCAACACCTTTGTAGCTGGGATCT -CCAACACCTTTGTAGCTGAAGGCT -CCAACACCTTTGTAGCTGTCAACC -CCAACACCTTTGTAGCTGTGTTCC -CCAACACCTTTGTAGCTGATTCCC -CCAACACCTTTGTAGCTGTTCTCG -CCAACACCTTTGTAGCTGTAGACG -CCAACACCTTTGTAGCTGGTAACG -CCAACACCTTTGTAGCTGACTTCG -CCAACACCTTTGTAGCTGTACGCA -CCAACACCTTTGTAGCTGCTTGCA -CCAACACCTTTGTAGCTGCGAACA -CCAACACCTTTGTAGCTGCAGTCA -CCAACACCTTTGTAGCTGGATCCA -CCAACACCTTTGTAGCTGACGACA -CCAACACCTTTGTAGCTGAGCTCA -CCAACACCTTTGTAGCTGTCACGT -CCAACACCTTTGTAGCTGCGTAGT -CCAACACCTTTGTAGCTGGTCAGT -CCAACACCTTTGTAGCTGGAAGGT -CCAACACCTTTGTAGCTGAACCGT -CCAACACCTTTGTAGCTGTTGTGC -CCAACACCTTTGTAGCTGCTAAGC -CCAACACCTTTGTAGCTGACTAGC -CCAACACCTTTGTAGCTGAGATGC -CCAACACCTTTGTAGCTGTGAAGG -CCAACACCTTTGTAGCTGCAATGG -CCAACACCTTTGTAGCTGATGAGG -CCAACACCTTTGTAGCTGAATGGG -CCAACACCTTTGTAGCTGTCCTGA -CCAACACCTTTGTAGCTGTAGCGA -CCAACACCTTTGTAGCTGCACAGA -CCAACACCTTTGTAGCTGGCAAGA -CCAACACCTTTGTAGCTGGGTTGA -CCAACACCTTTGTAGCTGTCCGAT -CCAACACCTTTGTAGCTGTGGCAT -CCAACACCTTTGTAGCTGCGAGAT -CCAACACCTTTGTAGCTGTACCAC -CCAACACCTTTGTAGCTGCAGAAC -CCAACACCTTTGTAGCTGGTCTAC -CCAACACCTTTGTAGCTGACGTAC -CCAACACCTTTGTAGCTGAGTGAC -CCAACACCTTTGTAGCTGCTGTAG -CCAACACCTTTGTAGCTGCCTAAG -CCAACACCTTTGTAGCTGGTTCAG -CCAACACCTTTGTAGCTGGCATAG -CCAACACCTTTGTAGCTGGACAAG -CCAACACCTTTGTAGCTGAAGCAG -CCAACACCTTTGTAGCTGCGTCAA -CCAACACCTTTGTAGCTGGCTGAA -CCAACACCTTTGTAGCTGAGTACG -CCAACACCTTTGTAGCTGATCCGA -CCAACACCTTTGTAGCTGATGGGA -CCAACACCTTTGTAGCTGGTGCAA -CCAACACCTTTGTAGCTGGAGGAA -CCAACACCTTTGTAGCTGCAGGTA -CCAACACCTTTGTAGCTGGACTCT -CCAACACCTTTGTAGCTGAGTCCT -CCAACACCTTTGTAGCTGTAAGCC -CCAACACCTTTGTAGCTGATAGCC -CCAACACCTTTGTAGCTGTAACCG -CCAACACCTTTGTAGCTGATGCCA -CCAACACCTTTGAAGCCTGGAAAC -CCAACACCTTTGAAGCCTAACACC -CCAACACCTTTGAAGCCTATCGAG -CCAACACCTTTGAAGCCTCTCCTT -CCAACACCTTTGAAGCCTCCTGTT -CCAACACCTTTGAAGCCTCGGTTT -CCAACACCTTTGAAGCCTGTGGTT -CCAACACCTTTGAAGCCTGCCTTT -CCAACACCTTTGAAGCCTGGTCTT -CCAACACCTTTGAAGCCTACGCTT -CCAACACCTTTGAAGCCTAGCGTT -CCAACACCTTTGAAGCCTTTCGTC -CCAACACCTTTGAAGCCTTCTCTC -CCAACACCTTTGAAGCCTTGGATC -CCAACACCTTTGAAGCCTCACTTC -CCAACACCTTTGAAGCCTGTACTC -CCAACACCTTTGAAGCCTGATGTC -CCAACACCTTTGAAGCCTACAGTC -CCAACACCTTTGAAGCCTTTGCTG -CCAACACCTTTGAAGCCTTCCATG -CCAACACCTTTGAAGCCTTGTGTG -CCAACACCTTTGAAGCCTCTAGTG -CCAACACCTTTGAAGCCTCATCTG -CCAACACCTTTGAAGCCTGAGTTG -CCAACACCTTTGAAGCCTAGACTG -CCAACACCTTTGAAGCCTTCGGTA -CCAACACCTTTGAAGCCTTGCCTA -CCAACACCTTTGAAGCCTCCACTA -CCAACACCTTTGAAGCCTGGAGTA -CCAACACCTTTGAAGCCTTCGTCT -CCAACACCTTTGAAGCCTTGCACT -CCAACACCTTTGAAGCCTCTGACT -CCAACACCTTTGAAGCCTCAACCT -CCAACACCTTTGAAGCCTGCTACT -CCAACACCTTTGAAGCCTGGATCT -CCAACACCTTTGAAGCCTAAGGCT -CCAACACCTTTGAAGCCTTCAACC -CCAACACCTTTGAAGCCTTGTTCC -CCAACACCTTTGAAGCCTATTCCC -CCAACACCTTTGAAGCCTTTCTCG -CCAACACCTTTGAAGCCTTAGACG -CCAACACCTTTGAAGCCTGTAACG -CCAACACCTTTGAAGCCTACTTCG -CCAACACCTTTGAAGCCTTACGCA -CCAACACCTTTGAAGCCTCTTGCA -CCAACACCTTTGAAGCCTCGAACA -CCAACACCTTTGAAGCCTCAGTCA -CCAACACCTTTGAAGCCTGATCCA -CCAACACCTTTGAAGCCTACGACA -CCAACACCTTTGAAGCCTAGCTCA -CCAACACCTTTGAAGCCTTCACGT -CCAACACCTTTGAAGCCTCGTAGT -CCAACACCTTTGAAGCCTGTCAGT -CCAACACCTTTGAAGCCTGAAGGT -CCAACACCTTTGAAGCCTAACCGT -CCAACACCTTTGAAGCCTTTGTGC -CCAACACCTTTGAAGCCTCTAAGC -CCAACACCTTTGAAGCCTACTAGC -CCAACACCTTTGAAGCCTAGATGC -CCAACACCTTTGAAGCCTTGAAGG -CCAACACCTTTGAAGCCTCAATGG -CCAACACCTTTGAAGCCTATGAGG -CCAACACCTTTGAAGCCTAATGGG -CCAACACCTTTGAAGCCTTCCTGA -CCAACACCTTTGAAGCCTTAGCGA -CCAACACCTTTGAAGCCTCACAGA -CCAACACCTTTGAAGCCTGCAAGA -CCAACACCTTTGAAGCCTGGTTGA -CCAACACCTTTGAAGCCTTCCGAT -CCAACACCTTTGAAGCCTTGGCAT -CCAACACCTTTGAAGCCTCGAGAT -CCAACACCTTTGAAGCCTTACCAC -CCAACACCTTTGAAGCCTCAGAAC -CCAACACCTTTGAAGCCTGTCTAC -CCAACACCTTTGAAGCCTACGTAC -CCAACACCTTTGAAGCCTAGTGAC -CCAACACCTTTGAAGCCTCTGTAG -CCAACACCTTTGAAGCCTCCTAAG -CCAACACCTTTGAAGCCTGTTCAG -CCAACACCTTTGAAGCCTGCATAG -CCAACACCTTTGAAGCCTGACAAG -CCAACACCTTTGAAGCCTAAGCAG -CCAACACCTTTGAAGCCTCGTCAA -CCAACACCTTTGAAGCCTGCTGAA -CCAACACCTTTGAAGCCTAGTACG -CCAACACCTTTGAAGCCTATCCGA -CCAACACCTTTGAAGCCTATGGGA -CCAACACCTTTGAAGCCTGTGCAA -CCAACACCTTTGAAGCCTGAGGAA -CCAACACCTTTGAAGCCTCAGGTA -CCAACACCTTTGAAGCCTGACTCT -CCAACACCTTTGAAGCCTAGTCCT -CCAACACCTTTGAAGCCTTAAGCC -CCAACACCTTTGAAGCCTATAGCC -CCAACACCTTTGAAGCCTTAACCG -CCAACACCTTTGAAGCCTATGCCA -CCAACACCTTTGCAGGTTGGAAAC -CCAACACCTTTGCAGGTTAACACC -CCAACACCTTTGCAGGTTATCGAG -CCAACACCTTTGCAGGTTCTCCTT -CCAACACCTTTGCAGGTTCCTGTT -CCAACACCTTTGCAGGTTCGGTTT -CCAACACCTTTGCAGGTTGTGGTT -CCAACACCTTTGCAGGTTGCCTTT -CCAACACCTTTGCAGGTTGGTCTT -CCAACACCTTTGCAGGTTACGCTT -CCAACACCTTTGCAGGTTAGCGTT -CCAACACCTTTGCAGGTTTTCGTC -CCAACACCTTTGCAGGTTTCTCTC -CCAACACCTTTGCAGGTTTGGATC -CCAACACCTTTGCAGGTTCACTTC -CCAACACCTTTGCAGGTTGTACTC -CCAACACCTTTGCAGGTTGATGTC -CCAACACCTTTGCAGGTTACAGTC -CCAACACCTTTGCAGGTTTTGCTG -CCAACACCTTTGCAGGTTTCCATG -CCAACACCTTTGCAGGTTTGTGTG -CCAACACCTTTGCAGGTTCTAGTG -CCAACACCTTTGCAGGTTCATCTG -CCAACACCTTTGCAGGTTGAGTTG -CCAACACCTTTGCAGGTTAGACTG -CCAACACCTTTGCAGGTTTCGGTA -CCAACACCTTTGCAGGTTTGCCTA -CCAACACCTTTGCAGGTTCCACTA -CCAACACCTTTGCAGGTTGGAGTA -CCAACACCTTTGCAGGTTTCGTCT -CCAACACCTTTGCAGGTTTGCACT -CCAACACCTTTGCAGGTTCTGACT -CCAACACCTTTGCAGGTTCAACCT -CCAACACCTTTGCAGGTTGCTACT -CCAACACCTTTGCAGGTTGGATCT -CCAACACCTTTGCAGGTTAAGGCT -CCAACACCTTTGCAGGTTTCAACC -CCAACACCTTTGCAGGTTTGTTCC -CCAACACCTTTGCAGGTTATTCCC -CCAACACCTTTGCAGGTTTTCTCG -CCAACACCTTTGCAGGTTTAGACG -CCAACACCTTTGCAGGTTGTAACG -CCAACACCTTTGCAGGTTACTTCG -CCAACACCTTTGCAGGTTTACGCA -CCAACACCTTTGCAGGTTCTTGCA -CCAACACCTTTGCAGGTTCGAACA -CCAACACCTTTGCAGGTTCAGTCA -CCAACACCTTTGCAGGTTGATCCA -CCAACACCTTTGCAGGTTACGACA -CCAACACCTTTGCAGGTTAGCTCA -CCAACACCTTTGCAGGTTTCACGT -CCAACACCTTTGCAGGTTCGTAGT -CCAACACCTTTGCAGGTTGTCAGT -CCAACACCTTTGCAGGTTGAAGGT -CCAACACCTTTGCAGGTTAACCGT -CCAACACCTTTGCAGGTTTTGTGC -CCAACACCTTTGCAGGTTCTAAGC -CCAACACCTTTGCAGGTTACTAGC -CCAACACCTTTGCAGGTTAGATGC -CCAACACCTTTGCAGGTTTGAAGG -CCAACACCTTTGCAGGTTCAATGG -CCAACACCTTTGCAGGTTATGAGG -CCAACACCTTTGCAGGTTAATGGG -CCAACACCTTTGCAGGTTTCCTGA -CCAACACCTTTGCAGGTTTAGCGA -CCAACACCTTTGCAGGTTCACAGA -CCAACACCTTTGCAGGTTGCAAGA -CCAACACCTTTGCAGGTTGGTTGA -CCAACACCTTTGCAGGTTTCCGAT -CCAACACCTTTGCAGGTTTGGCAT -CCAACACCTTTGCAGGTTCGAGAT -CCAACACCTTTGCAGGTTTACCAC -CCAACACCTTTGCAGGTTCAGAAC -CCAACACCTTTGCAGGTTGTCTAC -CCAACACCTTTGCAGGTTACGTAC -CCAACACCTTTGCAGGTTAGTGAC -CCAACACCTTTGCAGGTTCTGTAG -CCAACACCTTTGCAGGTTCCTAAG -CCAACACCTTTGCAGGTTGTTCAG -CCAACACCTTTGCAGGTTGCATAG -CCAACACCTTTGCAGGTTGACAAG -CCAACACCTTTGCAGGTTAAGCAG -CCAACACCTTTGCAGGTTCGTCAA -CCAACACCTTTGCAGGTTGCTGAA -CCAACACCTTTGCAGGTTAGTACG -CCAACACCTTTGCAGGTTATCCGA -CCAACACCTTTGCAGGTTATGGGA -CCAACACCTTTGCAGGTTGTGCAA -CCAACACCTTTGCAGGTTGAGGAA -CCAACACCTTTGCAGGTTCAGGTA -CCAACACCTTTGCAGGTTGACTCT -CCAACACCTTTGCAGGTTAGTCCT -CCAACACCTTTGCAGGTTTAAGCC -CCAACACCTTTGCAGGTTATAGCC -CCAACACCTTTGCAGGTTTAACCG -CCAACACCTTTGCAGGTTATGCCA -CCAACACCTTTGTAGGCAGGAAAC -CCAACACCTTTGTAGGCAAACACC -CCAACACCTTTGTAGGCAATCGAG -CCAACACCTTTGTAGGCACTCCTT -CCAACACCTTTGTAGGCACCTGTT -CCAACACCTTTGTAGGCACGGTTT -CCAACACCTTTGTAGGCAGTGGTT -CCAACACCTTTGTAGGCAGCCTTT -CCAACACCTTTGTAGGCAGGTCTT -CCAACACCTTTGTAGGCAACGCTT -CCAACACCTTTGTAGGCAAGCGTT -CCAACACCTTTGTAGGCATTCGTC -CCAACACCTTTGTAGGCATCTCTC -CCAACACCTTTGTAGGCATGGATC -CCAACACCTTTGTAGGCACACTTC -CCAACACCTTTGTAGGCAGTACTC -CCAACACCTTTGTAGGCAGATGTC -CCAACACCTTTGTAGGCAACAGTC -CCAACACCTTTGTAGGCATTGCTG -CCAACACCTTTGTAGGCATCCATG -CCAACACCTTTGTAGGCATGTGTG -CCAACACCTTTGTAGGCACTAGTG -CCAACACCTTTGTAGGCACATCTG -CCAACACCTTTGTAGGCAGAGTTG -CCAACACCTTTGTAGGCAAGACTG -CCAACACCTTTGTAGGCATCGGTA -CCAACACCTTTGTAGGCATGCCTA -CCAACACCTTTGTAGGCACCACTA -CCAACACCTTTGTAGGCAGGAGTA -CCAACACCTTTGTAGGCATCGTCT -CCAACACCTTTGTAGGCATGCACT -CCAACACCTTTGTAGGCACTGACT -CCAACACCTTTGTAGGCACAACCT -CCAACACCTTTGTAGGCAGCTACT -CCAACACCTTTGTAGGCAGGATCT -CCAACACCTTTGTAGGCAAAGGCT -CCAACACCTTTGTAGGCATCAACC -CCAACACCTTTGTAGGCATGTTCC -CCAACACCTTTGTAGGCAATTCCC -CCAACACCTTTGTAGGCATTCTCG -CCAACACCTTTGTAGGCATAGACG -CCAACACCTTTGTAGGCAGTAACG -CCAACACCTTTGTAGGCAACTTCG -CCAACACCTTTGTAGGCATACGCA -CCAACACCTTTGTAGGCACTTGCA -CCAACACCTTTGTAGGCACGAACA -CCAACACCTTTGTAGGCACAGTCA -CCAACACCTTTGTAGGCAGATCCA -CCAACACCTTTGTAGGCAACGACA -CCAACACCTTTGTAGGCAAGCTCA -CCAACACCTTTGTAGGCATCACGT -CCAACACCTTTGTAGGCACGTAGT -CCAACACCTTTGTAGGCAGTCAGT -CCAACACCTTTGTAGGCAGAAGGT -CCAACACCTTTGTAGGCAAACCGT -CCAACACCTTTGTAGGCATTGTGC -CCAACACCTTTGTAGGCACTAAGC -CCAACACCTTTGTAGGCAACTAGC -CCAACACCTTTGTAGGCAAGATGC -CCAACACCTTTGTAGGCATGAAGG -CCAACACCTTTGTAGGCACAATGG -CCAACACCTTTGTAGGCAATGAGG -CCAACACCTTTGTAGGCAAATGGG -CCAACACCTTTGTAGGCATCCTGA -CCAACACCTTTGTAGGCATAGCGA -CCAACACCTTTGTAGGCACACAGA -CCAACACCTTTGTAGGCAGCAAGA -CCAACACCTTTGTAGGCAGGTTGA -CCAACACCTTTGTAGGCATCCGAT -CCAACACCTTTGTAGGCATGGCAT -CCAACACCTTTGTAGGCACGAGAT -CCAACACCTTTGTAGGCATACCAC -CCAACACCTTTGTAGGCACAGAAC -CCAACACCTTTGTAGGCAGTCTAC -CCAACACCTTTGTAGGCAACGTAC -CCAACACCTTTGTAGGCAAGTGAC -CCAACACCTTTGTAGGCACTGTAG -CCAACACCTTTGTAGGCACCTAAG -CCAACACCTTTGTAGGCAGTTCAG -CCAACACCTTTGTAGGCAGCATAG -CCAACACCTTTGTAGGCAGACAAG -CCAACACCTTTGTAGGCAAAGCAG -CCAACACCTTTGTAGGCACGTCAA -CCAACACCTTTGTAGGCAGCTGAA -CCAACACCTTTGTAGGCAAGTACG -CCAACACCTTTGTAGGCAATCCGA -CCAACACCTTTGTAGGCAATGGGA -CCAACACCTTTGTAGGCAGTGCAA -CCAACACCTTTGTAGGCAGAGGAA -CCAACACCTTTGTAGGCACAGGTA -CCAACACCTTTGTAGGCAGACTCT -CCAACACCTTTGTAGGCAAGTCCT -CCAACACCTTTGTAGGCATAAGCC -CCAACACCTTTGTAGGCAATAGCC -CCAACACCTTTGTAGGCATAACCG -CCAACACCTTTGTAGGCAATGCCA -CCAACACCTTTGAAGGACGGAAAC -CCAACACCTTTGAAGGACAACACC -CCAACACCTTTGAAGGACATCGAG -CCAACACCTTTGAAGGACCTCCTT -CCAACACCTTTGAAGGACCCTGTT -CCAACACCTTTGAAGGACCGGTTT -CCAACACCTTTGAAGGACGTGGTT -CCAACACCTTTGAAGGACGCCTTT -CCAACACCTTTGAAGGACGGTCTT -CCAACACCTTTGAAGGACACGCTT -CCAACACCTTTGAAGGACAGCGTT -CCAACACCTTTGAAGGACTTCGTC -CCAACACCTTTGAAGGACTCTCTC -CCAACACCTTTGAAGGACTGGATC -CCAACACCTTTGAAGGACCACTTC -CCAACACCTTTGAAGGACGTACTC -CCAACACCTTTGAAGGACGATGTC -CCAACACCTTTGAAGGACACAGTC -CCAACACCTTTGAAGGACTTGCTG -CCAACACCTTTGAAGGACTCCATG -CCAACACCTTTGAAGGACTGTGTG -CCAACACCTTTGAAGGACCTAGTG -CCAACACCTTTGAAGGACCATCTG -CCAACACCTTTGAAGGACGAGTTG -CCAACACCTTTGAAGGACAGACTG -CCAACACCTTTGAAGGACTCGGTA -CCAACACCTTTGAAGGACTGCCTA -CCAACACCTTTGAAGGACCCACTA -CCAACACCTTTGAAGGACGGAGTA -CCAACACCTTTGAAGGACTCGTCT -CCAACACCTTTGAAGGACTGCACT -CCAACACCTTTGAAGGACCTGACT -CCAACACCTTTGAAGGACCAACCT -CCAACACCTTTGAAGGACGCTACT -CCAACACCTTTGAAGGACGGATCT -CCAACACCTTTGAAGGACAAGGCT -CCAACACCTTTGAAGGACTCAACC -CCAACACCTTTGAAGGACTGTTCC -CCAACACCTTTGAAGGACATTCCC -CCAACACCTTTGAAGGACTTCTCG -CCAACACCTTTGAAGGACTAGACG -CCAACACCTTTGAAGGACGTAACG -CCAACACCTTTGAAGGACACTTCG -CCAACACCTTTGAAGGACTACGCA -CCAACACCTTTGAAGGACCTTGCA -CCAACACCTTTGAAGGACCGAACA -CCAACACCTTTGAAGGACCAGTCA -CCAACACCTTTGAAGGACGATCCA -CCAACACCTTTGAAGGACACGACA -CCAACACCTTTGAAGGACAGCTCA -CCAACACCTTTGAAGGACTCACGT -CCAACACCTTTGAAGGACCGTAGT -CCAACACCTTTGAAGGACGTCAGT -CCAACACCTTTGAAGGACGAAGGT -CCAACACCTTTGAAGGACAACCGT -CCAACACCTTTGAAGGACTTGTGC -CCAACACCTTTGAAGGACCTAAGC -CCAACACCTTTGAAGGACACTAGC -CCAACACCTTTGAAGGACAGATGC -CCAACACCTTTGAAGGACTGAAGG -CCAACACCTTTGAAGGACCAATGG -CCAACACCTTTGAAGGACATGAGG -CCAACACCTTTGAAGGACAATGGG -CCAACACCTTTGAAGGACTCCTGA -CCAACACCTTTGAAGGACTAGCGA -CCAACACCTTTGAAGGACCACAGA -CCAACACCTTTGAAGGACGCAAGA -CCAACACCTTTGAAGGACGGTTGA -CCAACACCTTTGAAGGACTCCGAT -CCAACACCTTTGAAGGACTGGCAT -CCAACACCTTTGAAGGACCGAGAT -CCAACACCTTTGAAGGACTACCAC -CCAACACCTTTGAAGGACCAGAAC -CCAACACCTTTGAAGGACGTCTAC -CCAACACCTTTGAAGGACACGTAC -CCAACACCTTTGAAGGACAGTGAC -CCAACACCTTTGAAGGACCTGTAG -CCAACACCTTTGAAGGACCCTAAG -CCAACACCTTTGAAGGACGTTCAG -CCAACACCTTTGAAGGACGCATAG -CCAACACCTTTGAAGGACGACAAG -CCAACACCTTTGAAGGACAAGCAG -CCAACACCTTTGAAGGACCGTCAA -CCAACACCTTTGAAGGACGCTGAA -CCAACACCTTTGAAGGACAGTACG -CCAACACCTTTGAAGGACATCCGA -CCAACACCTTTGAAGGACATGGGA -CCAACACCTTTGAAGGACGTGCAA -CCAACACCTTTGAAGGACGAGGAA -CCAACACCTTTGAAGGACCAGGTA -CCAACACCTTTGAAGGACGACTCT -CCAACACCTTTGAAGGACAGTCCT -CCAACACCTTTGAAGGACTAAGCC -CCAACACCTTTGAAGGACATAGCC -CCAACACCTTTGAAGGACTAACCG -CCAACACCTTTGAAGGACATGCCA -CCAACACCTTTGCAGAAGGGAAAC -CCAACACCTTTGCAGAAGAACACC -CCAACACCTTTGCAGAAGATCGAG -CCAACACCTTTGCAGAAGCTCCTT -CCAACACCTTTGCAGAAGCCTGTT -CCAACACCTTTGCAGAAGCGGTTT -CCAACACCTTTGCAGAAGGTGGTT -CCAACACCTTTGCAGAAGGCCTTT -CCAACACCTTTGCAGAAGGGTCTT -CCAACACCTTTGCAGAAGACGCTT -CCAACACCTTTGCAGAAGAGCGTT -CCAACACCTTTGCAGAAGTTCGTC -CCAACACCTTTGCAGAAGTCTCTC -CCAACACCTTTGCAGAAGTGGATC -CCAACACCTTTGCAGAAGCACTTC -CCAACACCTTTGCAGAAGGTACTC -CCAACACCTTTGCAGAAGGATGTC -CCAACACCTTTGCAGAAGACAGTC -CCAACACCTTTGCAGAAGTTGCTG -CCAACACCTTTGCAGAAGTCCATG -CCAACACCTTTGCAGAAGTGTGTG -CCAACACCTTTGCAGAAGCTAGTG -CCAACACCTTTGCAGAAGCATCTG -CCAACACCTTTGCAGAAGGAGTTG -CCAACACCTTTGCAGAAGAGACTG -CCAACACCTTTGCAGAAGTCGGTA -CCAACACCTTTGCAGAAGTGCCTA -CCAACACCTTTGCAGAAGCCACTA -CCAACACCTTTGCAGAAGGGAGTA -CCAACACCTTTGCAGAAGTCGTCT -CCAACACCTTTGCAGAAGTGCACT -CCAACACCTTTGCAGAAGCTGACT -CCAACACCTTTGCAGAAGCAACCT -CCAACACCTTTGCAGAAGGCTACT -CCAACACCTTTGCAGAAGGGATCT -CCAACACCTTTGCAGAAGAAGGCT -CCAACACCTTTGCAGAAGTCAACC -CCAACACCTTTGCAGAAGTGTTCC -CCAACACCTTTGCAGAAGATTCCC -CCAACACCTTTGCAGAAGTTCTCG -CCAACACCTTTGCAGAAGTAGACG -CCAACACCTTTGCAGAAGGTAACG -CCAACACCTTTGCAGAAGACTTCG -CCAACACCTTTGCAGAAGTACGCA -CCAACACCTTTGCAGAAGCTTGCA -CCAACACCTTTGCAGAAGCGAACA -CCAACACCTTTGCAGAAGCAGTCA -CCAACACCTTTGCAGAAGGATCCA -CCAACACCTTTGCAGAAGACGACA -CCAACACCTTTGCAGAAGAGCTCA -CCAACACCTTTGCAGAAGTCACGT -CCAACACCTTTGCAGAAGCGTAGT -CCAACACCTTTGCAGAAGGTCAGT -CCAACACCTTTGCAGAAGGAAGGT -CCAACACCTTTGCAGAAGAACCGT -CCAACACCTTTGCAGAAGTTGTGC -CCAACACCTTTGCAGAAGCTAAGC -CCAACACCTTTGCAGAAGACTAGC -CCAACACCTTTGCAGAAGAGATGC -CCAACACCTTTGCAGAAGTGAAGG -CCAACACCTTTGCAGAAGCAATGG -CCAACACCTTTGCAGAAGATGAGG -CCAACACCTTTGCAGAAGAATGGG -CCAACACCTTTGCAGAAGTCCTGA -CCAACACCTTTGCAGAAGTAGCGA -CCAACACCTTTGCAGAAGCACAGA -CCAACACCTTTGCAGAAGGCAAGA -CCAACACCTTTGCAGAAGGGTTGA -CCAACACCTTTGCAGAAGTCCGAT -CCAACACCTTTGCAGAAGTGGCAT -CCAACACCTTTGCAGAAGCGAGAT -CCAACACCTTTGCAGAAGTACCAC -CCAACACCTTTGCAGAAGCAGAAC -CCAACACCTTTGCAGAAGGTCTAC -CCAACACCTTTGCAGAAGACGTAC -CCAACACCTTTGCAGAAGAGTGAC -CCAACACCTTTGCAGAAGCTGTAG -CCAACACCTTTGCAGAAGCCTAAG -CCAACACCTTTGCAGAAGGTTCAG -CCAACACCTTTGCAGAAGGCATAG -CCAACACCTTTGCAGAAGGACAAG -CCAACACCTTTGCAGAAGAAGCAG -CCAACACCTTTGCAGAAGCGTCAA -CCAACACCTTTGCAGAAGGCTGAA -CCAACACCTTTGCAGAAGAGTACG -CCAACACCTTTGCAGAAGATCCGA -CCAACACCTTTGCAGAAGATGGGA -CCAACACCTTTGCAGAAGGTGCAA -CCAACACCTTTGCAGAAGGAGGAA -CCAACACCTTTGCAGAAGCAGGTA -CCAACACCTTTGCAGAAGGACTCT -CCAACACCTTTGCAGAAGAGTCCT -CCAACACCTTTGCAGAAGTAAGCC -CCAACACCTTTGCAGAAGATAGCC -CCAACACCTTTGCAGAAGTAACCG -CCAACACCTTTGCAGAAGATGCCA -CCAACACCTTTGCAACGTGGAAAC -CCAACACCTTTGCAACGTAACACC -CCAACACCTTTGCAACGTATCGAG -CCAACACCTTTGCAACGTCTCCTT -CCAACACCTTTGCAACGTCCTGTT -CCAACACCTTTGCAACGTCGGTTT -CCAACACCTTTGCAACGTGTGGTT -CCAACACCTTTGCAACGTGCCTTT -CCAACACCTTTGCAACGTGGTCTT -CCAACACCTTTGCAACGTACGCTT -CCAACACCTTTGCAACGTAGCGTT -CCAACACCTTTGCAACGTTTCGTC -CCAACACCTTTGCAACGTTCTCTC -CCAACACCTTTGCAACGTTGGATC -CCAACACCTTTGCAACGTCACTTC -CCAACACCTTTGCAACGTGTACTC -CCAACACCTTTGCAACGTGATGTC -CCAACACCTTTGCAACGTACAGTC -CCAACACCTTTGCAACGTTTGCTG -CCAACACCTTTGCAACGTTCCATG -CCAACACCTTTGCAACGTTGTGTG -CCAACACCTTTGCAACGTCTAGTG -CCAACACCTTTGCAACGTCATCTG -CCAACACCTTTGCAACGTGAGTTG -CCAACACCTTTGCAACGTAGACTG -CCAACACCTTTGCAACGTTCGGTA -CCAACACCTTTGCAACGTTGCCTA -CCAACACCTTTGCAACGTCCACTA -CCAACACCTTTGCAACGTGGAGTA -CCAACACCTTTGCAACGTTCGTCT -CCAACACCTTTGCAACGTTGCACT -CCAACACCTTTGCAACGTCTGACT -CCAACACCTTTGCAACGTCAACCT -CCAACACCTTTGCAACGTGCTACT -CCAACACCTTTGCAACGTGGATCT -CCAACACCTTTGCAACGTAAGGCT -CCAACACCTTTGCAACGTTCAACC -CCAACACCTTTGCAACGTTGTTCC -CCAACACCTTTGCAACGTATTCCC -CCAACACCTTTGCAACGTTTCTCG -CCAACACCTTTGCAACGTTAGACG -CCAACACCTTTGCAACGTGTAACG -CCAACACCTTTGCAACGTACTTCG -CCAACACCTTTGCAACGTTACGCA -CCAACACCTTTGCAACGTCTTGCA -CCAACACCTTTGCAACGTCGAACA -CCAACACCTTTGCAACGTCAGTCA -CCAACACCTTTGCAACGTGATCCA -CCAACACCTTTGCAACGTACGACA -CCAACACCTTTGCAACGTAGCTCA -CCAACACCTTTGCAACGTTCACGT -CCAACACCTTTGCAACGTCGTAGT -CCAACACCTTTGCAACGTGTCAGT -CCAACACCTTTGCAACGTGAAGGT -CCAACACCTTTGCAACGTAACCGT -CCAACACCTTTGCAACGTTTGTGC -CCAACACCTTTGCAACGTCTAAGC -CCAACACCTTTGCAACGTACTAGC -CCAACACCTTTGCAACGTAGATGC -CCAACACCTTTGCAACGTTGAAGG -CCAACACCTTTGCAACGTCAATGG -CCAACACCTTTGCAACGTATGAGG -CCAACACCTTTGCAACGTAATGGG -CCAACACCTTTGCAACGTTCCTGA -CCAACACCTTTGCAACGTTAGCGA -CCAACACCTTTGCAACGTCACAGA -CCAACACCTTTGCAACGTGCAAGA -CCAACACCTTTGCAACGTGGTTGA -CCAACACCTTTGCAACGTTCCGAT -CCAACACCTTTGCAACGTTGGCAT -CCAACACCTTTGCAACGTCGAGAT -CCAACACCTTTGCAACGTTACCAC -CCAACACCTTTGCAACGTCAGAAC -CCAACACCTTTGCAACGTGTCTAC -CCAACACCTTTGCAACGTACGTAC -CCAACACCTTTGCAACGTAGTGAC -CCAACACCTTTGCAACGTCTGTAG -CCAACACCTTTGCAACGTCCTAAG -CCAACACCTTTGCAACGTGTTCAG -CCAACACCTTTGCAACGTGCATAG -CCAACACCTTTGCAACGTGACAAG -CCAACACCTTTGCAACGTAAGCAG -CCAACACCTTTGCAACGTCGTCAA -CCAACACCTTTGCAACGTGCTGAA -CCAACACCTTTGCAACGTAGTACG -CCAACACCTTTGCAACGTATCCGA -CCAACACCTTTGCAACGTATGGGA -CCAACACCTTTGCAACGTGTGCAA -CCAACACCTTTGCAACGTGAGGAA -CCAACACCTTTGCAACGTCAGGTA -CCAACACCTTTGCAACGTGACTCT -CCAACACCTTTGCAACGTAGTCCT -CCAACACCTTTGCAACGTTAAGCC -CCAACACCTTTGCAACGTATAGCC -CCAACACCTTTGCAACGTTAACCG -CCAACACCTTTGCAACGTATGCCA -CCAACACCTTTGGAAGCTGGAAAC -CCAACACCTTTGGAAGCTAACACC -CCAACACCTTTGGAAGCTATCGAG -CCAACACCTTTGGAAGCTCTCCTT -CCAACACCTTTGGAAGCTCCTGTT -CCAACACCTTTGGAAGCTCGGTTT -CCAACACCTTTGGAAGCTGTGGTT -CCAACACCTTTGGAAGCTGCCTTT -CCAACACCTTTGGAAGCTGGTCTT -CCAACACCTTTGGAAGCTACGCTT -CCAACACCTTTGGAAGCTAGCGTT -CCAACACCTTTGGAAGCTTTCGTC -CCAACACCTTTGGAAGCTTCTCTC -CCAACACCTTTGGAAGCTTGGATC -CCAACACCTTTGGAAGCTCACTTC -CCAACACCTTTGGAAGCTGTACTC -CCAACACCTTTGGAAGCTGATGTC -CCAACACCTTTGGAAGCTACAGTC -CCAACACCTTTGGAAGCTTTGCTG -CCAACACCTTTGGAAGCTTCCATG -CCAACACCTTTGGAAGCTTGTGTG -CCAACACCTTTGGAAGCTCTAGTG -CCAACACCTTTGGAAGCTCATCTG -CCAACACCTTTGGAAGCTGAGTTG -CCAACACCTTTGGAAGCTAGACTG -CCAACACCTTTGGAAGCTTCGGTA -CCAACACCTTTGGAAGCTTGCCTA -CCAACACCTTTGGAAGCTCCACTA -CCAACACCTTTGGAAGCTGGAGTA -CCAACACCTTTGGAAGCTTCGTCT -CCAACACCTTTGGAAGCTTGCACT -CCAACACCTTTGGAAGCTCTGACT -CCAACACCTTTGGAAGCTCAACCT -CCAACACCTTTGGAAGCTGCTACT -CCAACACCTTTGGAAGCTGGATCT -CCAACACCTTTGGAAGCTAAGGCT -CCAACACCTTTGGAAGCTTCAACC -CCAACACCTTTGGAAGCTTGTTCC -CCAACACCTTTGGAAGCTATTCCC -CCAACACCTTTGGAAGCTTTCTCG -CCAACACCTTTGGAAGCTTAGACG -CCAACACCTTTGGAAGCTGTAACG -CCAACACCTTTGGAAGCTACTTCG -CCAACACCTTTGGAAGCTTACGCA -CCAACACCTTTGGAAGCTCTTGCA -CCAACACCTTTGGAAGCTCGAACA -CCAACACCTTTGGAAGCTCAGTCA -CCAACACCTTTGGAAGCTGATCCA -CCAACACCTTTGGAAGCTACGACA -CCAACACCTTTGGAAGCTAGCTCA -CCAACACCTTTGGAAGCTTCACGT -CCAACACCTTTGGAAGCTCGTAGT -CCAACACCTTTGGAAGCTGTCAGT -CCAACACCTTTGGAAGCTGAAGGT -CCAACACCTTTGGAAGCTAACCGT -CCAACACCTTTGGAAGCTTTGTGC -CCAACACCTTTGGAAGCTCTAAGC -CCAACACCTTTGGAAGCTACTAGC -CCAACACCTTTGGAAGCTAGATGC -CCAACACCTTTGGAAGCTTGAAGG -CCAACACCTTTGGAAGCTCAATGG -CCAACACCTTTGGAAGCTATGAGG -CCAACACCTTTGGAAGCTAATGGG -CCAACACCTTTGGAAGCTTCCTGA -CCAACACCTTTGGAAGCTTAGCGA -CCAACACCTTTGGAAGCTCACAGA -CCAACACCTTTGGAAGCTGCAAGA -CCAACACCTTTGGAAGCTGGTTGA -CCAACACCTTTGGAAGCTTCCGAT -CCAACACCTTTGGAAGCTTGGCAT -CCAACACCTTTGGAAGCTCGAGAT -CCAACACCTTTGGAAGCTTACCAC -CCAACACCTTTGGAAGCTCAGAAC -CCAACACCTTTGGAAGCTGTCTAC -CCAACACCTTTGGAAGCTACGTAC -CCAACACCTTTGGAAGCTAGTGAC -CCAACACCTTTGGAAGCTCTGTAG -CCAACACCTTTGGAAGCTCCTAAG -CCAACACCTTTGGAAGCTGTTCAG -CCAACACCTTTGGAAGCTGCATAG -CCAACACCTTTGGAAGCTGACAAG -CCAACACCTTTGGAAGCTAAGCAG -CCAACACCTTTGGAAGCTCGTCAA -CCAACACCTTTGGAAGCTGCTGAA -CCAACACCTTTGGAAGCTAGTACG -CCAACACCTTTGGAAGCTATCCGA -CCAACACCTTTGGAAGCTATGGGA -CCAACACCTTTGGAAGCTGTGCAA -CCAACACCTTTGGAAGCTGAGGAA -CCAACACCTTTGGAAGCTCAGGTA -CCAACACCTTTGGAAGCTGACTCT -CCAACACCTTTGGAAGCTAGTCCT -CCAACACCTTTGGAAGCTTAAGCC -CCAACACCTTTGGAAGCTATAGCC -CCAACACCTTTGGAAGCTTAACCG -CCAACACCTTTGGAAGCTATGCCA -CCAACACCTTTGACGAGTGGAAAC -CCAACACCTTTGACGAGTAACACC -CCAACACCTTTGACGAGTATCGAG -CCAACACCTTTGACGAGTCTCCTT -CCAACACCTTTGACGAGTCCTGTT -CCAACACCTTTGACGAGTCGGTTT -CCAACACCTTTGACGAGTGTGGTT -CCAACACCTTTGACGAGTGCCTTT -CCAACACCTTTGACGAGTGGTCTT -CCAACACCTTTGACGAGTACGCTT -CCAACACCTTTGACGAGTAGCGTT -CCAACACCTTTGACGAGTTTCGTC -CCAACACCTTTGACGAGTTCTCTC -CCAACACCTTTGACGAGTTGGATC -CCAACACCTTTGACGAGTCACTTC -CCAACACCTTTGACGAGTGTACTC -CCAACACCTTTGACGAGTGATGTC -CCAACACCTTTGACGAGTACAGTC -CCAACACCTTTGACGAGTTTGCTG -CCAACACCTTTGACGAGTTCCATG -CCAACACCTTTGACGAGTTGTGTG -CCAACACCTTTGACGAGTCTAGTG -CCAACACCTTTGACGAGTCATCTG -CCAACACCTTTGACGAGTGAGTTG -CCAACACCTTTGACGAGTAGACTG -CCAACACCTTTGACGAGTTCGGTA -CCAACACCTTTGACGAGTTGCCTA -CCAACACCTTTGACGAGTCCACTA -CCAACACCTTTGACGAGTGGAGTA -CCAACACCTTTGACGAGTTCGTCT -CCAACACCTTTGACGAGTTGCACT -CCAACACCTTTGACGAGTCTGACT -CCAACACCTTTGACGAGTCAACCT -CCAACACCTTTGACGAGTGCTACT -CCAACACCTTTGACGAGTGGATCT -CCAACACCTTTGACGAGTAAGGCT -CCAACACCTTTGACGAGTTCAACC -CCAACACCTTTGACGAGTTGTTCC -CCAACACCTTTGACGAGTATTCCC -CCAACACCTTTGACGAGTTTCTCG -CCAACACCTTTGACGAGTTAGACG -CCAACACCTTTGACGAGTGTAACG -CCAACACCTTTGACGAGTACTTCG -CCAACACCTTTGACGAGTTACGCA -CCAACACCTTTGACGAGTCTTGCA -CCAACACCTTTGACGAGTCGAACA -CCAACACCTTTGACGAGTCAGTCA -CCAACACCTTTGACGAGTGATCCA -CCAACACCTTTGACGAGTACGACA -CCAACACCTTTGACGAGTAGCTCA -CCAACACCTTTGACGAGTTCACGT -CCAACACCTTTGACGAGTCGTAGT -CCAACACCTTTGACGAGTGTCAGT -CCAACACCTTTGACGAGTGAAGGT -CCAACACCTTTGACGAGTAACCGT -CCAACACCTTTGACGAGTTTGTGC -CCAACACCTTTGACGAGTCTAAGC -CCAACACCTTTGACGAGTACTAGC -CCAACACCTTTGACGAGTAGATGC -CCAACACCTTTGACGAGTTGAAGG -CCAACACCTTTGACGAGTCAATGG -CCAACACCTTTGACGAGTATGAGG -CCAACACCTTTGACGAGTAATGGG -CCAACACCTTTGACGAGTTCCTGA -CCAACACCTTTGACGAGTTAGCGA -CCAACACCTTTGACGAGTCACAGA -CCAACACCTTTGACGAGTGCAAGA -CCAACACCTTTGACGAGTGGTTGA -CCAACACCTTTGACGAGTTCCGAT -CCAACACCTTTGACGAGTTGGCAT -CCAACACCTTTGACGAGTCGAGAT -CCAACACCTTTGACGAGTTACCAC -CCAACACCTTTGACGAGTCAGAAC -CCAACACCTTTGACGAGTGTCTAC -CCAACACCTTTGACGAGTACGTAC -CCAACACCTTTGACGAGTAGTGAC -CCAACACCTTTGACGAGTCTGTAG -CCAACACCTTTGACGAGTCCTAAG -CCAACACCTTTGACGAGTGTTCAG -CCAACACCTTTGACGAGTGCATAG -CCAACACCTTTGACGAGTGACAAG -CCAACACCTTTGACGAGTAAGCAG -CCAACACCTTTGACGAGTCGTCAA -CCAACACCTTTGACGAGTGCTGAA -CCAACACCTTTGACGAGTAGTACG -CCAACACCTTTGACGAGTATCCGA -CCAACACCTTTGACGAGTATGGGA -CCAACACCTTTGACGAGTGTGCAA -CCAACACCTTTGACGAGTGAGGAA -CCAACACCTTTGACGAGTCAGGTA -CCAACACCTTTGACGAGTGACTCT -CCAACACCTTTGACGAGTAGTCCT -CCAACACCTTTGACGAGTTAAGCC -CCAACACCTTTGACGAGTATAGCC -CCAACACCTTTGACGAGTTAACCG -CCAACACCTTTGACGAGTATGCCA -CCAACACCTTTGCGAATCGGAAAC -CCAACACCTTTGCGAATCAACACC -CCAACACCTTTGCGAATCATCGAG -CCAACACCTTTGCGAATCCTCCTT -CCAACACCTTTGCGAATCCCTGTT -CCAACACCTTTGCGAATCCGGTTT -CCAACACCTTTGCGAATCGTGGTT -CCAACACCTTTGCGAATCGCCTTT -CCAACACCTTTGCGAATCGGTCTT -CCAACACCTTTGCGAATCACGCTT -CCAACACCTTTGCGAATCAGCGTT -CCAACACCTTTGCGAATCTTCGTC -CCAACACCTTTGCGAATCTCTCTC -CCAACACCTTTGCGAATCTGGATC -CCAACACCTTTGCGAATCCACTTC -CCAACACCTTTGCGAATCGTACTC -CCAACACCTTTGCGAATCGATGTC -CCAACACCTTTGCGAATCACAGTC -CCAACACCTTTGCGAATCTTGCTG -CCAACACCTTTGCGAATCTCCATG -CCAACACCTTTGCGAATCTGTGTG -CCAACACCTTTGCGAATCCTAGTG -CCAACACCTTTGCGAATCCATCTG -CCAACACCTTTGCGAATCGAGTTG -CCAACACCTTTGCGAATCAGACTG -CCAACACCTTTGCGAATCTCGGTA -CCAACACCTTTGCGAATCTGCCTA -CCAACACCTTTGCGAATCCCACTA -CCAACACCTTTGCGAATCGGAGTA -CCAACACCTTTGCGAATCTCGTCT -CCAACACCTTTGCGAATCTGCACT -CCAACACCTTTGCGAATCCTGACT -CCAACACCTTTGCGAATCCAACCT -CCAACACCTTTGCGAATCGCTACT -CCAACACCTTTGCGAATCGGATCT -CCAACACCTTTGCGAATCAAGGCT -CCAACACCTTTGCGAATCTCAACC -CCAACACCTTTGCGAATCTGTTCC -CCAACACCTTTGCGAATCATTCCC -CCAACACCTTTGCGAATCTTCTCG -CCAACACCTTTGCGAATCTAGACG -CCAACACCTTTGCGAATCGTAACG -CCAACACCTTTGCGAATCACTTCG -CCAACACCTTTGCGAATCTACGCA -CCAACACCTTTGCGAATCCTTGCA -CCAACACCTTTGCGAATCCGAACA -CCAACACCTTTGCGAATCCAGTCA -CCAACACCTTTGCGAATCGATCCA -CCAACACCTTTGCGAATCACGACA -CCAACACCTTTGCGAATCAGCTCA -CCAACACCTTTGCGAATCTCACGT -CCAACACCTTTGCGAATCCGTAGT -CCAACACCTTTGCGAATCGTCAGT -CCAACACCTTTGCGAATCGAAGGT -CCAACACCTTTGCGAATCAACCGT -CCAACACCTTTGCGAATCTTGTGC -CCAACACCTTTGCGAATCCTAAGC -CCAACACCTTTGCGAATCACTAGC -CCAACACCTTTGCGAATCAGATGC -CCAACACCTTTGCGAATCTGAAGG -CCAACACCTTTGCGAATCCAATGG -CCAACACCTTTGCGAATCATGAGG -CCAACACCTTTGCGAATCAATGGG -CCAACACCTTTGCGAATCTCCTGA -CCAACACCTTTGCGAATCTAGCGA -CCAACACCTTTGCGAATCCACAGA -CCAACACCTTTGCGAATCGCAAGA -CCAACACCTTTGCGAATCGGTTGA -CCAACACCTTTGCGAATCTCCGAT -CCAACACCTTTGCGAATCTGGCAT -CCAACACCTTTGCGAATCCGAGAT -CCAACACCTTTGCGAATCTACCAC -CCAACACCTTTGCGAATCCAGAAC -CCAACACCTTTGCGAATCGTCTAC -CCAACACCTTTGCGAATCACGTAC -CCAACACCTTTGCGAATCAGTGAC -CCAACACCTTTGCGAATCCTGTAG -CCAACACCTTTGCGAATCCCTAAG -CCAACACCTTTGCGAATCGTTCAG -CCAACACCTTTGCGAATCGCATAG -CCAACACCTTTGCGAATCGACAAG -CCAACACCTTTGCGAATCAAGCAG -CCAACACCTTTGCGAATCCGTCAA -CCAACACCTTTGCGAATCGCTGAA -CCAACACCTTTGCGAATCAGTACG -CCAACACCTTTGCGAATCATCCGA -CCAACACCTTTGCGAATCATGGGA -CCAACACCTTTGCGAATCGTGCAA -CCAACACCTTTGCGAATCGAGGAA -CCAACACCTTTGCGAATCCAGGTA -CCAACACCTTTGCGAATCGACTCT -CCAACACCTTTGCGAATCAGTCCT -CCAACACCTTTGCGAATCTAAGCC -CCAACACCTTTGCGAATCATAGCC -CCAACACCTTTGCGAATCTAACCG -CCAACACCTTTGCGAATCATGCCA -CCAACACCTTTGGGAATGGGAAAC -CCAACACCTTTGGGAATGAACACC -CCAACACCTTTGGGAATGATCGAG -CCAACACCTTTGGGAATGCTCCTT -CCAACACCTTTGGGAATGCCTGTT -CCAACACCTTTGGGAATGCGGTTT -CCAACACCTTTGGGAATGGTGGTT -CCAACACCTTTGGGAATGGCCTTT -CCAACACCTTTGGGAATGGGTCTT -CCAACACCTTTGGGAATGACGCTT -CCAACACCTTTGGGAATGAGCGTT -CCAACACCTTTGGGAATGTTCGTC -CCAACACCTTTGGGAATGTCTCTC -CCAACACCTTTGGGAATGTGGATC -CCAACACCTTTGGGAATGCACTTC -CCAACACCTTTGGGAATGGTACTC -CCAACACCTTTGGGAATGGATGTC -CCAACACCTTTGGGAATGACAGTC -CCAACACCTTTGGGAATGTTGCTG -CCAACACCTTTGGGAATGTCCATG -CCAACACCTTTGGGAATGTGTGTG -CCAACACCTTTGGGAATGCTAGTG -CCAACACCTTTGGGAATGCATCTG -CCAACACCTTTGGGAATGGAGTTG -CCAACACCTTTGGGAATGAGACTG -CCAACACCTTTGGGAATGTCGGTA -CCAACACCTTTGGGAATGTGCCTA -CCAACACCTTTGGGAATGCCACTA -CCAACACCTTTGGGAATGGGAGTA -CCAACACCTTTGGGAATGTCGTCT -CCAACACCTTTGGGAATGTGCACT -CCAACACCTTTGGGAATGCTGACT -CCAACACCTTTGGGAATGCAACCT -CCAACACCTTTGGGAATGGCTACT -CCAACACCTTTGGGAATGGGATCT -CCAACACCTTTGGGAATGAAGGCT -CCAACACCTTTGGGAATGTCAACC -CCAACACCTTTGGGAATGTGTTCC -CCAACACCTTTGGGAATGATTCCC -CCAACACCTTTGGGAATGTTCTCG -CCAACACCTTTGGGAATGTAGACG -CCAACACCTTTGGGAATGGTAACG -CCAACACCTTTGGGAATGACTTCG -CCAACACCTTTGGGAATGTACGCA -CCAACACCTTTGGGAATGCTTGCA -CCAACACCTTTGGGAATGCGAACA -CCAACACCTTTGGGAATGCAGTCA -CCAACACCTTTGGGAATGGATCCA -CCAACACCTTTGGGAATGACGACA -CCAACACCTTTGGGAATGAGCTCA -CCAACACCTTTGGGAATGTCACGT -CCAACACCTTTGGGAATGCGTAGT -CCAACACCTTTGGGAATGGTCAGT -CCAACACCTTTGGGAATGGAAGGT -CCAACACCTTTGGGAATGAACCGT -CCAACACCTTTGGGAATGTTGTGC -CCAACACCTTTGGGAATGCTAAGC -CCAACACCTTTGGGAATGACTAGC -CCAACACCTTTGGGAATGAGATGC -CCAACACCTTTGGGAATGTGAAGG -CCAACACCTTTGGGAATGCAATGG -CCAACACCTTTGGGAATGATGAGG -CCAACACCTTTGGGAATGAATGGG -CCAACACCTTTGGGAATGTCCTGA -CCAACACCTTTGGGAATGTAGCGA -CCAACACCTTTGGGAATGCACAGA -CCAACACCTTTGGGAATGGCAAGA -CCAACACCTTTGGGAATGGGTTGA -CCAACACCTTTGGGAATGTCCGAT -CCAACACCTTTGGGAATGTGGCAT -CCAACACCTTTGGGAATGCGAGAT -CCAACACCTTTGGGAATGTACCAC -CCAACACCTTTGGGAATGCAGAAC -CCAACACCTTTGGGAATGGTCTAC -CCAACACCTTTGGGAATGACGTAC -CCAACACCTTTGGGAATGAGTGAC -CCAACACCTTTGGGAATGCTGTAG -CCAACACCTTTGGGAATGCCTAAG -CCAACACCTTTGGGAATGGTTCAG -CCAACACCTTTGGGAATGGCATAG -CCAACACCTTTGGGAATGGACAAG -CCAACACCTTTGGGAATGAAGCAG -CCAACACCTTTGGGAATGCGTCAA -CCAACACCTTTGGGAATGGCTGAA -CCAACACCTTTGGGAATGAGTACG -CCAACACCTTTGGGAATGATCCGA -CCAACACCTTTGGGAATGATGGGA -CCAACACCTTTGGGAATGGTGCAA -CCAACACCTTTGGGAATGGAGGAA -CCAACACCTTTGGGAATGCAGGTA -CCAACACCTTTGGGAATGGACTCT -CCAACACCTTTGGGAATGAGTCCT -CCAACACCTTTGGGAATGTAAGCC -CCAACACCTTTGGGAATGATAGCC -CCAACACCTTTGGGAATGTAACCG -CCAACACCTTTGGGAATGATGCCA -CCAACACCTTTGCAAGTGGGAAAC -CCAACACCTTTGCAAGTGAACACC -CCAACACCTTTGCAAGTGATCGAG -CCAACACCTTTGCAAGTGCTCCTT -CCAACACCTTTGCAAGTGCCTGTT -CCAACACCTTTGCAAGTGCGGTTT -CCAACACCTTTGCAAGTGGTGGTT -CCAACACCTTTGCAAGTGGCCTTT -CCAACACCTTTGCAAGTGGGTCTT -CCAACACCTTTGCAAGTGACGCTT -CCAACACCTTTGCAAGTGAGCGTT -CCAACACCTTTGCAAGTGTTCGTC -CCAACACCTTTGCAAGTGTCTCTC -CCAACACCTTTGCAAGTGTGGATC -CCAACACCTTTGCAAGTGCACTTC -CCAACACCTTTGCAAGTGGTACTC -CCAACACCTTTGCAAGTGGATGTC -CCAACACCTTTGCAAGTGACAGTC -CCAACACCTTTGCAAGTGTTGCTG -CCAACACCTTTGCAAGTGTCCATG -CCAACACCTTTGCAAGTGTGTGTG -CCAACACCTTTGCAAGTGCTAGTG -CCAACACCTTTGCAAGTGCATCTG -CCAACACCTTTGCAAGTGGAGTTG -CCAACACCTTTGCAAGTGAGACTG -CCAACACCTTTGCAAGTGTCGGTA -CCAACACCTTTGCAAGTGTGCCTA -CCAACACCTTTGCAAGTGCCACTA -CCAACACCTTTGCAAGTGGGAGTA -CCAACACCTTTGCAAGTGTCGTCT -CCAACACCTTTGCAAGTGTGCACT -CCAACACCTTTGCAAGTGCTGACT -CCAACACCTTTGCAAGTGCAACCT -CCAACACCTTTGCAAGTGGCTACT -CCAACACCTTTGCAAGTGGGATCT -CCAACACCTTTGCAAGTGAAGGCT -CCAACACCTTTGCAAGTGTCAACC -CCAACACCTTTGCAAGTGTGTTCC -CCAACACCTTTGCAAGTGATTCCC -CCAACACCTTTGCAAGTGTTCTCG -CCAACACCTTTGCAAGTGTAGACG -CCAACACCTTTGCAAGTGGTAACG -CCAACACCTTTGCAAGTGACTTCG -CCAACACCTTTGCAAGTGTACGCA -CCAACACCTTTGCAAGTGCTTGCA -CCAACACCTTTGCAAGTGCGAACA -CCAACACCTTTGCAAGTGCAGTCA -CCAACACCTTTGCAAGTGGATCCA -CCAACACCTTTGCAAGTGACGACA -CCAACACCTTTGCAAGTGAGCTCA -CCAACACCTTTGCAAGTGTCACGT -CCAACACCTTTGCAAGTGCGTAGT -CCAACACCTTTGCAAGTGGTCAGT -CCAACACCTTTGCAAGTGGAAGGT -CCAACACCTTTGCAAGTGAACCGT -CCAACACCTTTGCAAGTGTTGTGC -CCAACACCTTTGCAAGTGCTAAGC -CCAACACCTTTGCAAGTGACTAGC -CCAACACCTTTGCAAGTGAGATGC -CCAACACCTTTGCAAGTGTGAAGG -CCAACACCTTTGCAAGTGCAATGG -CCAACACCTTTGCAAGTGATGAGG -CCAACACCTTTGCAAGTGAATGGG -CCAACACCTTTGCAAGTGTCCTGA -CCAACACCTTTGCAAGTGTAGCGA -CCAACACCTTTGCAAGTGCACAGA -CCAACACCTTTGCAAGTGGCAAGA -CCAACACCTTTGCAAGTGGGTTGA -CCAACACCTTTGCAAGTGTCCGAT -CCAACACCTTTGCAAGTGTGGCAT -CCAACACCTTTGCAAGTGCGAGAT -CCAACACCTTTGCAAGTGTACCAC -CCAACACCTTTGCAAGTGCAGAAC -CCAACACCTTTGCAAGTGGTCTAC -CCAACACCTTTGCAAGTGACGTAC -CCAACACCTTTGCAAGTGAGTGAC -CCAACACCTTTGCAAGTGCTGTAG -CCAACACCTTTGCAAGTGCCTAAG -CCAACACCTTTGCAAGTGGTTCAG -CCAACACCTTTGCAAGTGGCATAG -CCAACACCTTTGCAAGTGGACAAG -CCAACACCTTTGCAAGTGAAGCAG -CCAACACCTTTGCAAGTGCGTCAA -CCAACACCTTTGCAAGTGGCTGAA -CCAACACCTTTGCAAGTGAGTACG -CCAACACCTTTGCAAGTGATCCGA -CCAACACCTTTGCAAGTGATGGGA -CCAACACCTTTGCAAGTGGTGCAA -CCAACACCTTTGCAAGTGGAGGAA -CCAACACCTTTGCAAGTGCAGGTA -CCAACACCTTTGCAAGTGGACTCT -CCAACACCTTTGCAAGTGAGTCCT -CCAACACCTTTGCAAGTGTAAGCC -CCAACACCTTTGCAAGTGATAGCC -CCAACACCTTTGCAAGTGTAACCG -CCAACACCTTTGCAAGTGATGCCA -CCAACACCTTTGGAAGAGGGAAAC -CCAACACCTTTGGAAGAGAACACC -CCAACACCTTTGGAAGAGATCGAG -CCAACACCTTTGGAAGAGCTCCTT -CCAACACCTTTGGAAGAGCCTGTT -CCAACACCTTTGGAAGAGCGGTTT -CCAACACCTTTGGAAGAGGTGGTT -CCAACACCTTTGGAAGAGGCCTTT -CCAACACCTTTGGAAGAGGGTCTT -CCAACACCTTTGGAAGAGACGCTT -CCAACACCTTTGGAAGAGAGCGTT -CCAACACCTTTGGAAGAGTTCGTC -CCAACACCTTTGGAAGAGTCTCTC -CCAACACCTTTGGAAGAGTGGATC -CCAACACCTTTGGAAGAGCACTTC -CCAACACCTTTGGAAGAGGTACTC -CCAACACCTTTGGAAGAGGATGTC -CCAACACCTTTGGAAGAGACAGTC -CCAACACCTTTGGAAGAGTTGCTG -CCAACACCTTTGGAAGAGTCCATG -CCAACACCTTTGGAAGAGTGTGTG -CCAACACCTTTGGAAGAGCTAGTG -CCAACACCTTTGGAAGAGCATCTG -CCAACACCTTTGGAAGAGGAGTTG -CCAACACCTTTGGAAGAGAGACTG -CCAACACCTTTGGAAGAGTCGGTA -CCAACACCTTTGGAAGAGTGCCTA -CCAACACCTTTGGAAGAGCCACTA -CCAACACCTTTGGAAGAGGGAGTA -CCAACACCTTTGGAAGAGTCGTCT -CCAACACCTTTGGAAGAGTGCACT -CCAACACCTTTGGAAGAGCTGACT -CCAACACCTTTGGAAGAGCAACCT -CCAACACCTTTGGAAGAGGCTACT -CCAACACCTTTGGAAGAGGGATCT -CCAACACCTTTGGAAGAGAAGGCT -CCAACACCTTTGGAAGAGTCAACC -CCAACACCTTTGGAAGAGTGTTCC -CCAACACCTTTGGAAGAGATTCCC -CCAACACCTTTGGAAGAGTTCTCG -CCAACACCTTTGGAAGAGTAGACG -CCAACACCTTTGGAAGAGGTAACG -CCAACACCTTTGGAAGAGACTTCG -CCAACACCTTTGGAAGAGTACGCA -CCAACACCTTTGGAAGAGCTTGCA -CCAACACCTTTGGAAGAGCGAACA -CCAACACCTTTGGAAGAGCAGTCA -CCAACACCTTTGGAAGAGGATCCA -CCAACACCTTTGGAAGAGACGACA -CCAACACCTTTGGAAGAGAGCTCA -CCAACACCTTTGGAAGAGTCACGT -CCAACACCTTTGGAAGAGCGTAGT -CCAACACCTTTGGAAGAGGTCAGT -CCAACACCTTTGGAAGAGGAAGGT -CCAACACCTTTGGAAGAGAACCGT -CCAACACCTTTGGAAGAGTTGTGC -CCAACACCTTTGGAAGAGCTAAGC -CCAACACCTTTGGAAGAGACTAGC -CCAACACCTTTGGAAGAGAGATGC -CCAACACCTTTGGAAGAGTGAAGG -CCAACACCTTTGGAAGAGCAATGG -CCAACACCTTTGGAAGAGATGAGG -CCAACACCTTTGGAAGAGAATGGG -CCAACACCTTTGGAAGAGTCCTGA -CCAACACCTTTGGAAGAGTAGCGA -CCAACACCTTTGGAAGAGCACAGA -CCAACACCTTTGGAAGAGGCAAGA -CCAACACCTTTGGAAGAGGGTTGA -CCAACACCTTTGGAAGAGTCCGAT -CCAACACCTTTGGAAGAGTGGCAT -CCAACACCTTTGGAAGAGCGAGAT -CCAACACCTTTGGAAGAGTACCAC -CCAACACCTTTGGAAGAGCAGAAC -CCAACACCTTTGGAAGAGGTCTAC -CCAACACCTTTGGAAGAGACGTAC -CCAACACCTTTGGAAGAGAGTGAC -CCAACACCTTTGGAAGAGCTGTAG -CCAACACCTTTGGAAGAGCCTAAG -CCAACACCTTTGGAAGAGGTTCAG -CCAACACCTTTGGAAGAGGCATAG -CCAACACCTTTGGAAGAGGACAAG -CCAACACCTTTGGAAGAGAAGCAG -CCAACACCTTTGGAAGAGCGTCAA -CCAACACCTTTGGAAGAGGCTGAA -CCAACACCTTTGGAAGAGAGTACG -CCAACACCTTTGGAAGAGATCCGA -CCAACACCTTTGGAAGAGATGGGA -CCAACACCTTTGGAAGAGGTGCAA -CCAACACCTTTGGAAGAGGAGGAA -CCAACACCTTTGGAAGAGCAGGTA -CCAACACCTTTGGAAGAGGACTCT -CCAACACCTTTGGAAGAGAGTCCT -CCAACACCTTTGGAAGAGTAAGCC -CCAACACCTTTGGAAGAGATAGCC -CCAACACCTTTGGAAGAGTAACCG -CCAACACCTTTGGAAGAGATGCCA -CCAACACCTTTGGTACAGGGAAAC -CCAACACCTTTGGTACAGAACACC -CCAACACCTTTGGTACAGATCGAG -CCAACACCTTTGGTACAGCTCCTT -CCAACACCTTTGGTACAGCCTGTT -CCAACACCTTTGGTACAGCGGTTT -CCAACACCTTTGGTACAGGTGGTT -CCAACACCTTTGGTACAGGCCTTT -CCAACACCTTTGGTACAGGGTCTT -CCAACACCTTTGGTACAGACGCTT -CCAACACCTTTGGTACAGAGCGTT -CCAACACCTTTGGTACAGTTCGTC -CCAACACCTTTGGTACAGTCTCTC -CCAACACCTTTGGTACAGTGGATC -CCAACACCTTTGGTACAGCACTTC -CCAACACCTTTGGTACAGGTACTC -CCAACACCTTTGGTACAGGATGTC -CCAACACCTTTGGTACAGACAGTC -CCAACACCTTTGGTACAGTTGCTG -CCAACACCTTTGGTACAGTCCATG -CCAACACCTTTGGTACAGTGTGTG -CCAACACCTTTGGTACAGCTAGTG -CCAACACCTTTGGTACAGCATCTG -CCAACACCTTTGGTACAGGAGTTG -CCAACACCTTTGGTACAGAGACTG -CCAACACCTTTGGTACAGTCGGTA -CCAACACCTTTGGTACAGTGCCTA -CCAACACCTTTGGTACAGCCACTA -CCAACACCTTTGGTACAGGGAGTA -CCAACACCTTTGGTACAGTCGTCT -CCAACACCTTTGGTACAGTGCACT -CCAACACCTTTGGTACAGCTGACT -CCAACACCTTTGGTACAGCAACCT -CCAACACCTTTGGTACAGGCTACT -CCAACACCTTTGGTACAGGGATCT -CCAACACCTTTGGTACAGAAGGCT -CCAACACCTTTGGTACAGTCAACC -CCAACACCTTTGGTACAGTGTTCC -CCAACACCTTTGGTACAGATTCCC -CCAACACCTTTGGTACAGTTCTCG -CCAACACCTTTGGTACAGTAGACG -CCAACACCTTTGGTACAGGTAACG -CCAACACCTTTGGTACAGACTTCG -CCAACACCTTTGGTACAGTACGCA -CCAACACCTTTGGTACAGCTTGCA -CCAACACCTTTGGTACAGCGAACA -CCAACACCTTTGGTACAGCAGTCA -CCAACACCTTTGGTACAGGATCCA -CCAACACCTTTGGTACAGACGACA -CCAACACCTTTGGTACAGAGCTCA -CCAACACCTTTGGTACAGTCACGT -CCAACACCTTTGGTACAGCGTAGT -CCAACACCTTTGGTACAGGTCAGT -CCAACACCTTTGGTACAGGAAGGT -CCAACACCTTTGGTACAGAACCGT -CCAACACCTTTGGTACAGTTGTGC -CCAACACCTTTGGTACAGCTAAGC -CCAACACCTTTGGTACAGACTAGC -CCAACACCTTTGGTACAGAGATGC -CCAACACCTTTGGTACAGTGAAGG -CCAACACCTTTGGTACAGCAATGG -CCAACACCTTTGGTACAGATGAGG -CCAACACCTTTGGTACAGAATGGG -CCAACACCTTTGGTACAGTCCTGA -CCAACACCTTTGGTACAGTAGCGA -CCAACACCTTTGGTACAGCACAGA -CCAACACCTTTGGTACAGGCAAGA -CCAACACCTTTGGTACAGGGTTGA -CCAACACCTTTGGTACAGTCCGAT -CCAACACCTTTGGTACAGTGGCAT -CCAACACCTTTGGTACAGCGAGAT -CCAACACCTTTGGTACAGTACCAC -CCAACACCTTTGGTACAGCAGAAC -CCAACACCTTTGGTACAGGTCTAC -CCAACACCTTTGGTACAGACGTAC -CCAACACCTTTGGTACAGAGTGAC -CCAACACCTTTGGTACAGCTGTAG -CCAACACCTTTGGTACAGCCTAAG -CCAACACCTTTGGTACAGGTTCAG -CCAACACCTTTGGTACAGGCATAG -CCAACACCTTTGGTACAGGACAAG -CCAACACCTTTGGTACAGAAGCAG -CCAACACCTTTGGTACAGCGTCAA -CCAACACCTTTGGTACAGGCTGAA -CCAACACCTTTGGTACAGAGTACG -CCAACACCTTTGGTACAGATCCGA -CCAACACCTTTGGTACAGATGGGA -CCAACACCTTTGGTACAGGTGCAA -CCAACACCTTTGGTACAGGAGGAA -CCAACACCTTTGGTACAGCAGGTA -CCAACACCTTTGGTACAGGACTCT -CCAACACCTTTGGTACAGAGTCCT -CCAACACCTTTGGTACAGTAAGCC -CCAACACCTTTGGTACAGATAGCC -CCAACACCTTTGGTACAGTAACCG -CCAACACCTTTGGTACAGATGCCA -CCAACACCTTTGTCTGACGGAAAC -CCAACACCTTTGTCTGACAACACC -CCAACACCTTTGTCTGACATCGAG -CCAACACCTTTGTCTGACCTCCTT -CCAACACCTTTGTCTGACCCTGTT -CCAACACCTTTGTCTGACCGGTTT -CCAACACCTTTGTCTGACGTGGTT -CCAACACCTTTGTCTGACGCCTTT -CCAACACCTTTGTCTGACGGTCTT -CCAACACCTTTGTCTGACACGCTT -CCAACACCTTTGTCTGACAGCGTT -CCAACACCTTTGTCTGACTTCGTC -CCAACACCTTTGTCTGACTCTCTC -CCAACACCTTTGTCTGACTGGATC -CCAACACCTTTGTCTGACCACTTC -CCAACACCTTTGTCTGACGTACTC -CCAACACCTTTGTCTGACGATGTC -CCAACACCTTTGTCTGACACAGTC -CCAACACCTTTGTCTGACTTGCTG -CCAACACCTTTGTCTGACTCCATG -CCAACACCTTTGTCTGACTGTGTG -CCAACACCTTTGTCTGACCTAGTG -CCAACACCTTTGTCTGACCATCTG -CCAACACCTTTGTCTGACGAGTTG -CCAACACCTTTGTCTGACAGACTG -CCAACACCTTTGTCTGACTCGGTA -CCAACACCTTTGTCTGACTGCCTA -CCAACACCTTTGTCTGACCCACTA -CCAACACCTTTGTCTGACGGAGTA -CCAACACCTTTGTCTGACTCGTCT -CCAACACCTTTGTCTGACTGCACT -CCAACACCTTTGTCTGACCTGACT -CCAACACCTTTGTCTGACCAACCT -CCAACACCTTTGTCTGACGCTACT -CCAACACCTTTGTCTGACGGATCT -CCAACACCTTTGTCTGACAAGGCT -CCAACACCTTTGTCTGACTCAACC -CCAACACCTTTGTCTGACTGTTCC -CCAACACCTTTGTCTGACATTCCC -CCAACACCTTTGTCTGACTTCTCG -CCAACACCTTTGTCTGACTAGACG -CCAACACCTTTGTCTGACGTAACG -CCAACACCTTTGTCTGACACTTCG -CCAACACCTTTGTCTGACTACGCA -CCAACACCTTTGTCTGACCTTGCA -CCAACACCTTTGTCTGACCGAACA -CCAACACCTTTGTCTGACCAGTCA -CCAACACCTTTGTCTGACGATCCA -CCAACACCTTTGTCTGACACGACA -CCAACACCTTTGTCTGACAGCTCA -CCAACACCTTTGTCTGACTCACGT -CCAACACCTTTGTCTGACCGTAGT -CCAACACCTTTGTCTGACGTCAGT -CCAACACCTTTGTCTGACGAAGGT -CCAACACCTTTGTCTGACAACCGT -CCAACACCTTTGTCTGACTTGTGC -CCAACACCTTTGTCTGACCTAAGC -CCAACACCTTTGTCTGACACTAGC -CCAACACCTTTGTCTGACAGATGC -CCAACACCTTTGTCTGACTGAAGG -CCAACACCTTTGTCTGACCAATGG -CCAACACCTTTGTCTGACATGAGG -CCAACACCTTTGTCTGACAATGGG -CCAACACCTTTGTCTGACTCCTGA -CCAACACCTTTGTCTGACTAGCGA -CCAACACCTTTGTCTGACCACAGA -CCAACACCTTTGTCTGACGCAAGA -CCAACACCTTTGTCTGACGGTTGA -CCAACACCTTTGTCTGACTCCGAT -CCAACACCTTTGTCTGACTGGCAT -CCAACACCTTTGTCTGACCGAGAT -CCAACACCTTTGTCTGACTACCAC -CCAACACCTTTGTCTGACCAGAAC -CCAACACCTTTGTCTGACGTCTAC -CCAACACCTTTGTCTGACACGTAC -CCAACACCTTTGTCTGACAGTGAC -CCAACACCTTTGTCTGACCTGTAG -CCAACACCTTTGTCTGACCCTAAG -CCAACACCTTTGTCTGACGTTCAG -CCAACACCTTTGTCTGACGCATAG -CCAACACCTTTGTCTGACGACAAG -CCAACACCTTTGTCTGACAAGCAG -CCAACACCTTTGTCTGACCGTCAA -CCAACACCTTTGTCTGACGCTGAA -CCAACACCTTTGTCTGACAGTACG -CCAACACCTTTGTCTGACATCCGA -CCAACACCTTTGTCTGACATGGGA -CCAACACCTTTGTCTGACGTGCAA -CCAACACCTTTGTCTGACGAGGAA -CCAACACCTTTGTCTGACCAGGTA -CCAACACCTTTGTCTGACGACTCT -CCAACACCTTTGTCTGACAGTCCT -CCAACACCTTTGTCTGACTAAGCC -CCAACACCTTTGTCTGACATAGCC -CCAACACCTTTGTCTGACTAACCG -CCAACACCTTTGTCTGACATGCCA -CCAACACCTTTGCCTAGTGGAAAC -CCAACACCTTTGCCTAGTAACACC -CCAACACCTTTGCCTAGTATCGAG -CCAACACCTTTGCCTAGTCTCCTT -CCAACACCTTTGCCTAGTCCTGTT -CCAACACCTTTGCCTAGTCGGTTT -CCAACACCTTTGCCTAGTGTGGTT -CCAACACCTTTGCCTAGTGCCTTT -CCAACACCTTTGCCTAGTGGTCTT -CCAACACCTTTGCCTAGTACGCTT -CCAACACCTTTGCCTAGTAGCGTT -CCAACACCTTTGCCTAGTTTCGTC -CCAACACCTTTGCCTAGTTCTCTC -CCAACACCTTTGCCTAGTTGGATC -CCAACACCTTTGCCTAGTCACTTC -CCAACACCTTTGCCTAGTGTACTC -CCAACACCTTTGCCTAGTGATGTC -CCAACACCTTTGCCTAGTACAGTC -CCAACACCTTTGCCTAGTTTGCTG -CCAACACCTTTGCCTAGTTCCATG -CCAACACCTTTGCCTAGTTGTGTG -CCAACACCTTTGCCTAGTCTAGTG -CCAACACCTTTGCCTAGTCATCTG -CCAACACCTTTGCCTAGTGAGTTG -CCAACACCTTTGCCTAGTAGACTG -CCAACACCTTTGCCTAGTTCGGTA -CCAACACCTTTGCCTAGTTGCCTA -CCAACACCTTTGCCTAGTCCACTA -CCAACACCTTTGCCTAGTGGAGTA -CCAACACCTTTGCCTAGTTCGTCT -CCAACACCTTTGCCTAGTTGCACT -CCAACACCTTTGCCTAGTCTGACT -CCAACACCTTTGCCTAGTCAACCT -CCAACACCTTTGCCTAGTGCTACT -CCAACACCTTTGCCTAGTGGATCT -CCAACACCTTTGCCTAGTAAGGCT -CCAACACCTTTGCCTAGTTCAACC -CCAACACCTTTGCCTAGTTGTTCC -CCAACACCTTTGCCTAGTATTCCC -CCAACACCTTTGCCTAGTTTCTCG -CCAACACCTTTGCCTAGTTAGACG -CCAACACCTTTGCCTAGTGTAACG -CCAACACCTTTGCCTAGTACTTCG -CCAACACCTTTGCCTAGTTACGCA -CCAACACCTTTGCCTAGTCTTGCA -CCAACACCTTTGCCTAGTCGAACA -CCAACACCTTTGCCTAGTCAGTCA -CCAACACCTTTGCCTAGTGATCCA -CCAACACCTTTGCCTAGTACGACA -CCAACACCTTTGCCTAGTAGCTCA -CCAACACCTTTGCCTAGTTCACGT -CCAACACCTTTGCCTAGTCGTAGT -CCAACACCTTTGCCTAGTGTCAGT -CCAACACCTTTGCCTAGTGAAGGT -CCAACACCTTTGCCTAGTAACCGT -CCAACACCTTTGCCTAGTTTGTGC -CCAACACCTTTGCCTAGTCTAAGC -CCAACACCTTTGCCTAGTACTAGC -CCAACACCTTTGCCTAGTAGATGC -CCAACACCTTTGCCTAGTTGAAGG -CCAACACCTTTGCCTAGTCAATGG -CCAACACCTTTGCCTAGTATGAGG -CCAACACCTTTGCCTAGTAATGGG -CCAACACCTTTGCCTAGTTCCTGA -CCAACACCTTTGCCTAGTTAGCGA -CCAACACCTTTGCCTAGTCACAGA -CCAACACCTTTGCCTAGTGCAAGA -CCAACACCTTTGCCTAGTGGTTGA -CCAACACCTTTGCCTAGTTCCGAT -CCAACACCTTTGCCTAGTTGGCAT -CCAACACCTTTGCCTAGTCGAGAT -CCAACACCTTTGCCTAGTTACCAC -CCAACACCTTTGCCTAGTCAGAAC -CCAACACCTTTGCCTAGTGTCTAC -CCAACACCTTTGCCTAGTACGTAC -CCAACACCTTTGCCTAGTAGTGAC -CCAACACCTTTGCCTAGTCTGTAG -CCAACACCTTTGCCTAGTCCTAAG -CCAACACCTTTGCCTAGTGTTCAG -CCAACACCTTTGCCTAGTGCATAG -CCAACACCTTTGCCTAGTGACAAG -CCAACACCTTTGCCTAGTAAGCAG -CCAACACCTTTGCCTAGTCGTCAA -CCAACACCTTTGCCTAGTGCTGAA -CCAACACCTTTGCCTAGTAGTACG -CCAACACCTTTGCCTAGTATCCGA -CCAACACCTTTGCCTAGTATGGGA -CCAACACCTTTGCCTAGTGTGCAA -CCAACACCTTTGCCTAGTGAGGAA -CCAACACCTTTGCCTAGTCAGGTA -CCAACACCTTTGCCTAGTGACTCT -CCAACACCTTTGCCTAGTAGTCCT -CCAACACCTTTGCCTAGTTAAGCC -CCAACACCTTTGCCTAGTATAGCC -CCAACACCTTTGCCTAGTTAACCG -CCAACACCTTTGCCTAGTATGCCA -CCAACACCTTTGGCCTAAGGAAAC -CCAACACCTTTGGCCTAAAACACC -CCAACACCTTTGGCCTAAATCGAG -CCAACACCTTTGGCCTAACTCCTT -CCAACACCTTTGGCCTAACCTGTT -CCAACACCTTTGGCCTAACGGTTT -CCAACACCTTTGGCCTAAGTGGTT -CCAACACCTTTGGCCTAAGCCTTT -CCAACACCTTTGGCCTAAGGTCTT -CCAACACCTTTGGCCTAAACGCTT -CCAACACCTTTGGCCTAAAGCGTT -CCAACACCTTTGGCCTAATTCGTC -CCAACACCTTTGGCCTAATCTCTC -CCAACACCTTTGGCCTAATGGATC -CCAACACCTTTGGCCTAACACTTC -CCAACACCTTTGGCCTAAGTACTC -CCAACACCTTTGGCCTAAGATGTC -CCAACACCTTTGGCCTAAACAGTC -CCAACACCTTTGGCCTAATTGCTG -CCAACACCTTTGGCCTAATCCATG -CCAACACCTTTGGCCTAATGTGTG -CCAACACCTTTGGCCTAACTAGTG -CCAACACCTTTGGCCTAACATCTG -CCAACACCTTTGGCCTAAGAGTTG -CCAACACCTTTGGCCTAAAGACTG -CCAACACCTTTGGCCTAATCGGTA -CCAACACCTTTGGCCTAATGCCTA -CCAACACCTTTGGCCTAACCACTA -CCAACACCTTTGGCCTAAGGAGTA -CCAACACCTTTGGCCTAATCGTCT -CCAACACCTTTGGCCTAATGCACT -CCAACACCTTTGGCCTAACTGACT -CCAACACCTTTGGCCTAACAACCT -CCAACACCTTTGGCCTAAGCTACT -CCAACACCTTTGGCCTAAGGATCT -CCAACACCTTTGGCCTAAAAGGCT -CCAACACCTTTGGCCTAATCAACC -CCAACACCTTTGGCCTAATGTTCC -CCAACACCTTTGGCCTAAATTCCC -CCAACACCTTTGGCCTAATTCTCG -CCAACACCTTTGGCCTAATAGACG -CCAACACCTTTGGCCTAAGTAACG -CCAACACCTTTGGCCTAAACTTCG -CCAACACCTTTGGCCTAATACGCA -CCAACACCTTTGGCCTAACTTGCA -CCAACACCTTTGGCCTAACGAACA -CCAACACCTTTGGCCTAACAGTCA -CCAACACCTTTGGCCTAAGATCCA -CCAACACCTTTGGCCTAAACGACA -CCAACACCTTTGGCCTAAAGCTCA -CCAACACCTTTGGCCTAATCACGT -CCAACACCTTTGGCCTAACGTAGT -CCAACACCTTTGGCCTAAGTCAGT -CCAACACCTTTGGCCTAAGAAGGT -CCAACACCTTTGGCCTAAAACCGT -CCAACACCTTTGGCCTAATTGTGC -CCAACACCTTTGGCCTAACTAAGC -CCAACACCTTTGGCCTAAACTAGC -CCAACACCTTTGGCCTAAAGATGC -CCAACACCTTTGGCCTAATGAAGG -CCAACACCTTTGGCCTAACAATGG -CCAACACCTTTGGCCTAAATGAGG -CCAACACCTTTGGCCTAAAATGGG -CCAACACCTTTGGCCTAATCCTGA -CCAACACCTTTGGCCTAATAGCGA -CCAACACCTTTGGCCTAACACAGA -CCAACACCTTTGGCCTAAGCAAGA -CCAACACCTTTGGCCTAAGGTTGA -CCAACACCTTTGGCCTAATCCGAT -CCAACACCTTTGGCCTAATGGCAT -CCAACACCTTTGGCCTAACGAGAT -CCAACACCTTTGGCCTAATACCAC -CCAACACCTTTGGCCTAACAGAAC -CCAACACCTTTGGCCTAAGTCTAC -CCAACACCTTTGGCCTAAACGTAC -CCAACACCTTTGGCCTAAAGTGAC -CCAACACCTTTGGCCTAACTGTAG -CCAACACCTTTGGCCTAACCTAAG -CCAACACCTTTGGCCTAAGTTCAG -CCAACACCTTTGGCCTAAGCATAG -CCAACACCTTTGGCCTAAGACAAG -CCAACACCTTTGGCCTAAAAGCAG -CCAACACCTTTGGCCTAACGTCAA -CCAACACCTTTGGCCTAAGCTGAA -CCAACACCTTTGGCCTAAAGTACG -CCAACACCTTTGGCCTAAATCCGA -CCAACACCTTTGGCCTAAATGGGA -CCAACACCTTTGGCCTAAGTGCAA -CCAACACCTTTGGCCTAAGAGGAA -CCAACACCTTTGGCCTAACAGGTA -CCAACACCTTTGGCCTAAGACTCT -CCAACACCTTTGGCCTAAAGTCCT -CCAACACCTTTGGCCTAATAAGCC -CCAACACCTTTGGCCTAAATAGCC -CCAACACCTTTGGCCTAATAACCG -CCAACACCTTTGGCCTAAATGCCA -CCAACACCTTTGGCCATAGGAAAC -CCAACACCTTTGGCCATAAACACC -CCAACACCTTTGGCCATAATCGAG -CCAACACCTTTGGCCATACTCCTT -CCAACACCTTTGGCCATACCTGTT -CCAACACCTTTGGCCATACGGTTT -CCAACACCTTTGGCCATAGTGGTT -CCAACACCTTTGGCCATAGCCTTT -CCAACACCTTTGGCCATAGGTCTT -CCAACACCTTTGGCCATAACGCTT -CCAACACCTTTGGCCATAAGCGTT -CCAACACCTTTGGCCATATTCGTC -CCAACACCTTTGGCCATATCTCTC -CCAACACCTTTGGCCATATGGATC -CCAACACCTTTGGCCATACACTTC -CCAACACCTTTGGCCATAGTACTC -CCAACACCTTTGGCCATAGATGTC -CCAACACCTTTGGCCATAACAGTC -CCAACACCTTTGGCCATATTGCTG -CCAACACCTTTGGCCATATCCATG -CCAACACCTTTGGCCATATGTGTG -CCAACACCTTTGGCCATACTAGTG -CCAACACCTTTGGCCATACATCTG -CCAACACCTTTGGCCATAGAGTTG -CCAACACCTTTGGCCATAAGACTG -CCAACACCTTTGGCCATATCGGTA -CCAACACCTTTGGCCATATGCCTA -CCAACACCTTTGGCCATACCACTA -CCAACACCTTTGGCCATAGGAGTA -CCAACACCTTTGGCCATATCGTCT -CCAACACCTTTGGCCATATGCACT -CCAACACCTTTGGCCATACTGACT -CCAACACCTTTGGCCATACAACCT -CCAACACCTTTGGCCATAGCTACT -CCAACACCTTTGGCCATAGGATCT -CCAACACCTTTGGCCATAAAGGCT -CCAACACCTTTGGCCATATCAACC -CCAACACCTTTGGCCATATGTTCC -CCAACACCTTTGGCCATAATTCCC -CCAACACCTTTGGCCATATTCTCG -CCAACACCTTTGGCCATATAGACG -CCAACACCTTTGGCCATAGTAACG -CCAACACCTTTGGCCATAACTTCG -CCAACACCTTTGGCCATATACGCA -CCAACACCTTTGGCCATACTTGCA -CCAACACCTTTGGCCATACGAACA -CCAACACCTTTGGCCATACAGTCA -CCAACACCTTTGGCCATAGATCCA -CCAACACCTTTGGCCATAACGACA -CCAACACCTTTGGCCATAAGCTCA -CCAACACCTTTGGCCATATCACGT -CCAACACCTTTGGCCATACGTAGT -CCAACACCTTTGGCCATAGTCAGT -CCAACACCTTTGGCCATAGAAGGT -CCAACACCTTTGGCCATAAACCGT -CCAACACCTTTGGCCATATTGTGC -CCAACACCTTTGGCCATACTAAGC -CCAACACCTTTGGCCATAACTAGC -CCAACACCTTTGGCCATAAGATGC -CCAACACCTTTGGCCATATGAAGG -CCAACACCTTTGGCCATACAATGG -CCAACACCTTTGGCCATAATGAGG -CCAACACCTTTGGCCATAAATGGG -CCAACACCTTTGGCCATATCCTGA -CCAACACCTTTGGCCATATAGCGA -CCAACACCTTTGGCCATACACAGA -CCAACACCTTTGGCCATAGCAAGA -CCAACACCTTTGGCCATAGGTTGA -CCAACACCTTTGGCCATATCCGAT -CCAACACCTTTGGCCATATGGCAT -CCAACACCTTTGGCCATACGAGAT -CCAACACCTTTGGCCATATACCAC -CCAACACCTTTGGCCATACAGAAC -CCAACACCTTTGGCCATAGTCTAC -CCAACACCTTTGGCCATAACGTAC -CCAACACCTTTGGCCATAAGTGAC -CCAACACCTTTGGCCATACTGTAG -CCAACACCTTTGGCCATACCTAAG -CCAACACCTTTGGCCATAGTTCAG -CCAACACCTTTGGCCATAGCATAG -CCAACACCTTTGGCCATAGACAAG -CCAACACCTTTGGCCATAAAGCAG -CCAACACCTTTGGCCATACGTCAA -CCAACACCTTTGGCCATAGCTGAA -CCAACACCTTTGGCCATAAGTACG -CCAACACCTTTGGCCATAATCCGA -CCAACACCTTTGGCCATAATGGGA -CCAACACCTTTGGCCATAGTGCAA -CCAACACCTTTGGCCATAGAGGAA -CCAACACCTTTGGCCATACAGGTA -CCAACACCTTTGGCCATAGACTCT -CCAACACCTTTGGCCATAAGTCCT -CCAACACCTTTGGCCATATAAGCC -CCAACACCTTTGGCCATAATAGCC -CCAACACCTTTGGCCATATAACCG -CCAACACCTTTGGCCATAATGCCA -CCAACACCTTTGCCGTAAGGAAAC -CCAACACCTTTGCCGTAAAACACC -CCAACACCTTTGCCGTAAATCGAG -CCAACACCTTTGCCGTAACTCCTT -CCAACACCTTTGCCGTAACCTGTT -CCAACACCTTTGCCGTAACGGTTT -CCAACACCTTTGCCGTAAGTGGTT -CCAACACCTTTGCCGTAAGCCTTT -CCAACACCTTTGCCGTAAGGTCTT -CCAACACCTTTGCCGTAAACGCTT -CCAACACCTTTGCCGTAAAGCGTT -CCAACACCTTTGCCGTAATTCGTC -CCAACACCTTTGCCGTAATCTCTC -CCAACACCTTTGCCGTAATGGATC -CCAACACCTTTGCCGTAACACTTC -CCAACACCTTTGCCGTAAGTACTC -CCAACACCTTTGCCGTAAGATGTC -CCAACACCTTTGCCGTAAACAGTC -CCAACACCTTTGCCGTAATTGCTG -CCAACACCTTTGCCGTAATCCATG -CCAACACCTTTGCCGTAATGTGTG -CCAACACCTTTGCCGTAACTAGTG -CCAACACCTTTGCCGTAACATCTG -CCAACACCTTTGCCGTAAGAGTTG -CCAACACCTTTGCCGTAAAGACTG -CCAACACCTTTGCCGTAATCGGTA -CCAACACCTTTGCCGTAATGCCTA -CCAACACCTTTGCCGTAACCACTA -CCAACACCTTTGCCGTAAGGAGTA -CCAACACCTTTGCCGTAATCGTCT -CCAACACCTTTGCCGTAATGCACT -CCAACACCTTTGCCGTAACTGACT -CCAACACCTTTGCCGTAACAACCT -CCAACACCTTTGCCGTAAGCTACT -CCAACACCTTTGCCGTAAGGATCT -CCAACACCTTTGCCGTAAAAGGCT -CCAACACCTTTGCCGTAATCAACC -CCAACACCTTTGCCGTAATGTTCC -CCAACACCTTTGCCGTAAATTCCC -CCAACACCTTTGCCGTAATTCTCG -CCAACACCTTTGCCGTAATAGACG -CCAACACCTTTGCCGTAAGTAACG -CCAACACCTTTGCCGTAAACTTCG -CCAACACCTTTGCCGTAATACGCA -CCAACACCTTTGCCGTAACTTGCA -CCAACACCTTTGCCGTAACGAACA -CCAACACCTTTGCCGTAACAGTCA -CCAACACCTTTGCCGTAAGATCCA -CCAACACCTTTGCCGTAAACGACA -CCAACACCTTTGCCGTAAAGCTCA -CCAACACCTTTGCCGTAATCACGT -CCAACACCTTTGCCGTAACGTAGT -CCAACACCTTTGCCGTAAGTCAGT -CCAACACCTTTGCCGTAAGAAGGT -CCAACACCTTTGCCGTAAAACCGT -CCAACACCTTTGCCGTAATTGTGC -CCAACACCTTTGCCGTAACTAAGC -CCAACACCTTTGCCGTAAACTAGC -CCAACACCTTTGCCGTAAAGATGC -CCAACACCTTTGCCGTAATGAAGG -CCAACACCTTTGCCGTAACAATGG -CCAACACCTTTGCCGTAAATGAGG -CCAACACCTTTGCCGTAAAATGGG -CCAACACCTTTGCCGTAATCCTGA -CCAACACCTTTGCCGTAATAGCGA -CCAACACCTTTGCCGTAACACAGA -CCAACACCTTTGCCGTAAGCAAGA -CCAACACCTTTGCCGTAAGGTTGA -CCAACACCTTTGCCGTAATCCGAT -CCAACACCTTTGCCGTAATGGCAT -CCAACACCTTTGCCGTAACGAGAT -CCAACACCTTTGCCGTAATACCAC -CCAACACCTTTGCCGTAACAGAAC -CCAACACCTTTGCCGTAAGTCTAC -CCAACACCTTTGCCGTAAACGTAC -CCAACACCTTTGCCGTAAAGTGAC -CCAACACCTTTGCCGTAACTGTAG -CCAACACCTTTGCCGTAACCTAAG -CCAACACCTTTGCCGTAAGTTCAG -CCAACACCTTTGCCGTAAGCATAG -CCAACACCTTTGCCGTAAGACAAG -CCAACACCTTTGCCGTAAAAGCAG -CCAACACCTTTGCCGTAACGTCAA -CCAACACCTTTGCCGTAAGCTGAA -CCAACACCTTTGCCGTAAAGTACG -CCAACACCTTTGCCGTAAATCCGA -CCAACACCTTTGCCGTAAATGGGA -CCAACACCTTTGCCGTAAGTGCAA -CCAACACCTTTGCCGTAAGAGGAA -CCAACACCTTTGCCGTAACAGGTA -CCAACACCTTTGCCGTAAGACTCT -CCAACACCTTTGCCGTAAAGTCCT -CCAACACCTTTGCCGTAATAAGCC -CCAACACCTTTGCCGTAAATAGCC -CCAACACCTTTGCCGTAATAACCG -CCAACACCTTTGCCGTAAATGCCA -CCAACACCTTTGCCAATGGGAAAC -CCAACACCTTTGCCAATGAACACC -CCAACACCTTTGCCAATGATCGAG -CCAACACCTTTGCCAATGCTCCTT -CCAACACCTTTGCCAATGCCTGTT -CCAACACCTTTGCCAATGCGGTTT -CCAACACCTTTGCCAATGGTGGTT -CCAACACCTTTGCCAATGGCCTTT -CCAACACCTTTGCCAATGGGTCTT -CCAACACCTTTGCCAATGACGCTT -CCAACACCTTTGCCAATGAGCGTT -CCAACACCTTTGCCAATGTTCGTC -CCAACACCTTTGCCAATGTCTCTC -CCAACACCTTTGCCAATGTGGATC -CCAACACCTTTGCCAATGCACTTC -CCAACACCTTTGCCAATGGTACTC -CCAACACCTTTGCCAATGGATGTC -CCAACACCTTTGCCAATGACAGTC -CCAACACCTTTGCCAATGTTGCTG -CCAACACCTTTGCCAATGTCCATG -CCAACACCTTTGCCAATGTGTGTG -CCAACACCTTTGCCAATGCTAGTG -CCAACACCTTTGCCAATGCATCTG -CCAACACCTTTGCCAATGGAGTTG -CCAACACCTTTGCCAATGAGACTG -CCAACACCTTTGCCAATGTCGGTA -CCAACACCTTTGCCAATGTGCCTA -CCAACACCTTTGCCAATGCCACTA -CCAACACCTTTGCCAATGGGAGTA -CCAACACCTTTGCCAATGTCGTCT -CCAACACCTTTGCCAATGTGCACT -CCAACACCTTTGCCAATGCTGACT -CCAACACCTTTGCCAATGCAACCT -CCAACACCTTTGCCAATGGCTACT -CCAACACCTTTGCCAATGGGATCT -CCAACACCTTTGCCAATGAAGGCT -CCAACACCTTTGCCAATGTCAACC -CCAACACCTTTGCCAATGTGTTCC -CCAACACCTTTGCCAATGATTCCC -CCAACACCTTTGCCAATGTTCTCG -CCAACACCTTTGCCAATGTAGACG -CCAACACCTTTGCCAATGGTAACG -CCAACACCTTTGCCAATGACTTCG -CCAACACCTTTGCCAATGTACGCA -CCAACACCTTTGCCAATGCTTGCA -CCAACACCTTTGCCAATGCGAACA -CCAACACCTTTGCCAATGCAGTCA -CCAACACCTTTGCCAATGGATCCA -CCAACACCTTTGCCAATGACGACA -CCAACACCTTTGCCAATGAGCTCA -CCAACACCTTTGCCAATGTCACGT -CCAACACCTTTGCCAATGCGTAGT -CCAACACCTTTGCCAATGGTCAGT -CCAACACCTTTGCCAATGGAAGGT -CCAACACCTTTGCCAATGAACCGT -CCAACACCTTTGCCAATGTTGTGC -CCAACACCTTTGCCAATGCTAAGC -CCAACACCTTTGCCAATGACTAGC -CCAACACCTTTGCCAATGAGATGC -CCAACACCTTTGCCAATGTGAAGG -CCAACACCTTTGCCAATGCAATGG -CCAACACCTTTGCCAATGATGAGG -CCAACACCTTTGCCAATGAATGGG -CCAACACCTTTGCCAATGTCCTGA -CCAACACCTTTGCCAATGTAGCGA -CCAACACCTTTGCCAATGCACAGA -CCAACACCTTTGCCAATGGCAAGA -CCAACACCTTTGCCAATGGGTTGA -CCAACACCTTTGCCAATGTCCGAT -CCAACACCTTTGCCAATGTGGCAT -CCAACACCTTTGCCAATGCGAGAT -CCAACACCTTTGCCAATGTACCAC -CCAACACCTTTGCCAATGCAGAAC -CCAACACCTTTGCCAATGGTCTAC -CCAACACCTTTGCCAATGACGTAC -CCAACACCTTTGCCAATGAGTGAC -CCAACACCTTTGCCAATGCTGTAG -CCAACACCTTTGCCAATGCCTAAG -CCAACACCTTTGCCAATGGTTCAG -CCAACACCTTTGCCAATGGCATAG -CCAACACCTTTGCCAATGGACAAG -CCAACACCTTTGCCAATGAAGCAG -CCAACACCTTTGCCAATGCGTCAA -CCAACACCTTTGCCAATGGCTGAA -CCAACACCTTTGCCAATGAGTACG -CCAACACCTTTGCCAATGATCCGA -CCAACACCTTTGCCAATGATGGGA -CCAACACCTTTGCCAATGGTGCAA -CCAACACCTTTGCCAATGGAGGAA -CCAACACCTTTGCCAATGCAGGTA -CCAACACCTTTGCCAATGGACTCT -CCAACACCTTTGCCAATGAGTCCT -CCAACACCTTTGCCAATGTAAGCC -CCAACACCTTTGCCAATGATAGCC -CCAACACCTTTGCCAATGTAACCG -CCAACACCTTTGCCAATGATGCCA -CCAACAGTCTTGAACGGAGGAAAC -CCAACAGTCTTGAACGGAAACACC -CCAACAGTCTTGAACGGAATCGAG -CCAACAGTCTTGAACGGACTCCTT -CCAACAGTCTTGAACGGACCTGTT -CCAACAGTCTTGAACGGACGGTTT -CCAACAGTCTTGAACGGAGTGGTT -CCAACAGTCTTGAACGGAGCCTTT -CCAACAGTCTTGAACGGAGGTCTT -CCAACAGTCTTGAACGGAACGCTT -CCAACAGTCTTGAACGGAAGCGTT -CCAACAGTCTTGAACGGATTCGTC -CCAACAGTCTTGAACGGATCTCTC -CCAACAGTCTTGAACGGATGGATC -CCAACAGTCTTGAACGGACACTTC -CCAACAGTCTTGAACGGAGTACTC -CCAACAGTCTTGAACGGAGATGTC -CCAACAGTCTTGAACGGAACAGTC -CCAACAGTCTTGAACGGATTGCTG -CCAACAGTCTTGAACGGATCCATG -CCAACAGTCTTGAACGGATGTGTG -CCAACAGTCTTGAACGGACTAGTG -CCAACAGTCTTGAACGGACATCTG -CCAACAGTCTTGAACGGAGAGTTG -CCAACAGTCTTGAACGGAAGACTG -CCAACAGTCTTGAACGGATCGGTA -CCAACAGTCTTGAACGGATGCCTA -CCAACAGTCTTGAACGGACCACTA -CCAACAGTCTTGAACGGAGGAGTA -CCAACAGTCTTGAACGGATCGTCT -CCAACAGTCTTGAACGGATGCACT -CCAACAGTCTTGAACGGACTGACT -CCAACAGTCTTGAACGGACAACCT -CCAACAGTCTTGAACGGAGCTACT -CCAACAGTCTTGAACGGAGGATCT -CCAACAGTCTTGAACGGAAAGGCT -CCAACAGTCTTGAACGGATCAACC -CCAACAGTCTTGAACGGATGTTCC -CCAACAGTCTTGAACGGAATTCCC -CCAACAGTCTTGAACGGATTCTCG -CCAACAGTCTTGAACGGATAGACG -CCAACAGTCTTGAACGGAGTAACG -CCAACAGTCTTGAACGGAACTTCG -CCAACAGTCTTGAACGGATACGCA -CCAACAGTCTTGAACGGACTTGCA -CCAACAGTCTTGAACGGACGAACA -CCAACAGTCTTGAACGGACAGTCA -CCAACAGTCTTGAACGGAGATCCA -CCAACAGTCTTGAACGGAACGACA -CCAACAGTCTTGAACGGAAGCTCA -CCAACAGTCTTGAACGGATCACGT -CCAACAGTCTTGAACGGACGTAGT -CCAACAGTCTTGAACGGAGTCAGT -CCAACAGTCTTGAACGGAGAAGGT -CCAACAGTCTTGAACGGAAACCGT -CCAACAGTCTTGAACGGATTGTGC -CCAACAGTCTTGAACGGACTAAGC -CCAACAGTCTTGAACGGAACTAGC -CCAACAGTCTTGAACGGAAGATGC -CCAACAGTCTTGAACGGATGAAGG -CCAACAGTCTTGAACGGACAATGG -CCAACAGTCTTGAACGGAATGAGG -CCAACAGTCTTGAACGGAAATGGG -CCAACAGTCTTGAACGGATCCTGA -CCAACAGTCTTGAACGGATAGCGA -CCAACAGTCTTGAACGGACACAGA -CCAACAGTCTTGAACGGAGCAAGA -CCAACAGTCTTGAACGGAGGTTGA -CCAACAGTCTTGAACGGATCCGAT -CCAACAGTCTTGAACGGATGGCAT -CCAACAGTCTTGAACGGACGAGAT -CCAACAGTCTTGAACGGATACCAC -CCAACAGTCTTGAACGGACAGAAC -CCAACAGTCTTGAACGGAGTCTAC -CCAACAGTCTTGAACGGAACGTAC -CCAACAGTCTTGAACGGAAGTGAC -CCAACAGTCTTGAACGGACTGTAG -CCAACAGTCTTGAACGGACCTAAG -CCAACAGTCTTGAACGGAGTTCAG -CCAACAGTCTTGAACGGAGCATAG -CCAACAGTCTTGAACGGAGACAAG -CCAACAGTCTTGAACGGAAAGCAG -CCAACAGTCTTGAACGGACGTCAA -CCAACAGTCTTGAACGGAGCTGAA -CCAACAGTCTTGAACGGAAGTACG -CCAACAGTCTTGAACGGAATCCGA -CCAACAGTCTTGAACGGAATGGGA -CCAACAGTCTTGAACGGAGTGCAA -CCAACAGTCTTGAACGGAGAGGAA -CCAACAGTCTTGAACGGACAGGTA -CCAACAGTCTTGAACGGAGACTCT -CCAACAGTCTTGAACGGAAGTCCT -CCAACAGTCTTGAACGGATAAGCC -CCAACAGTCTTGAACGGAATAGCC -CCAACAGTCTTGAACGGATAACCG -CCAACAGTCTTGAACGGAATGCCA -CCAACAGTCTTGACCAACGGAAAC -CCAACAGTCTTGACCAACAACACC -CCAACAGTCTTGACCAACATCGAG -CCAACAGTCTTGACCAACCTCCTT -CCAACAGTCTTGACCAACCCTGTT -CCAACAGTCTTGACCAACCGGTTT -CCAACAGTCTTGACCAACGTGGTT -CCAACAGTCTTGACCAACGCCTTT -CCAACAGTCTTGACCAACGGTCTT -CCAACAGTCTTGACCAACACGCTT -CCAACAGTCTTGACCAACAGCGTT -CCAACAGTCTTGACCAACTTCGTC -CCAACAGTCTTGACCAACTCTCTC -CCAACAGTCTTGACCAACTGGATC -CCAACAGTCTTGACCAACCACTTC -CCAACAGTCTTGACCAACGTACTC -CCAACAGTCTTGACCAACGATGTC -CCAACAGTCTTGACCAACACAGTC -CCAACAGTCTTGACCAACTTGCTG -CCAACAGTCTTGACCAACTCCATG -CCAACAGTCTTGACCAACTGTGTG -CCAACAGTCTTGACCAACCTAGTG -CCAACAGTCTTGACCAACCATCTG -CCAACAGTCTTGACCAACGAGTTG -CCAACAGTCTTGACCAACAGACTG -CCAACAGTCTTGACCAACTCGGTA -CCAACAGTCTTGACCAACTGCCTA -CCAACAGTCTTGACCAACCCACTA -CCAACAGTCTTGACCAACGGAGTA -CCAACAGTCTTGACCAACTCGTCT -CCAACAGTCTTGACCAACTGCACT -CCAACAGTCTTGACCAACCTGACT -CCAACAGTCTTGACCAACCAACCT -CCAACAGTCTTGACCAACGCTACT -CCAACAGTCTTGACCAACGGATCT -CCAACAGTCTTGACCAACAAGGCT -CCAACAGTCTTGACCAACTCAACC -CCAACAGTCTTGACCAACTGTTCC -CCAACAGTCTTGACCAACATTCCC -CCAACAGTCTTGACCAACTTCTCG -CCAACAGTCTTGACCAACTAGACG -CCAACAGTCTTGACCAACGTAACG -CCAACAGTCTTGACCAACACTTCG -CCAACAGTCTTGACCAACTACGCA -CCAACAGTCTTGACCAACCTTGCA -CCAACAGTCTTGACCAACCGAACA -CCAACAGTCTTGACCAACCAGTCA -CCAACAGTCTTGACCAACGATCCA -CCAACAGTCTTGACCAACACGACA -CCAACAGTCTTGACCAACAGCTCA -CCAACAGTCTTGACCAACTCACGT -CCAACAGTCTTGACCAACCGTAGT -CCAACAGTCTTGACCAACGTCAGT -CCAACAGTCTTGACCAACGAAGGT -CCAACAGTCTTGACCAACAACCGT -CCAACAGTCTTGACCAACTTGTGC -CCAACAGTCTTGACCAACCTAAGC -CCAACAGTCTTGACCAACACTAGC -CCAACAGTCTTGACCAACAGATGC -CCAACAGTCTTGACCAACTGAAGG -CCAACAGTCTTGACCAACCAATGG -CCAACAGTCTTGACCAACATGAGG -CCAACAGTCTTGACCAACAATGGG -CCAACAGTCTTGACCAACTCCTGA -CCAACAGTCTTGACCAACTAGCGA -CCAACAGTCTTGACCAACCACAGA -CCAACAGTCTTGACCAACGCAAGA -CCAACAGTCTTGACCAACGGTTGA -CCAACAGTCTTGACCAACTCCGAT -CCAACAGTCTTGACCAACTGGCAT -CCAACAGTCTTGACCAACCGAGAT -CCAACAGTCTTGACCAACTACCAC -CCAACAGTCTTGACCAACCAGAAC -CCAACAGTCTTGACCAACGTCTAC -CCAACAGTCTTGACCAACACGTAC -CCAACAGTCTTGACCAACAGTGAC -CCAACAGTCTTGACCAACCTGTAG -CCAACAGTCTTGACCAACCCTAAG -CCAACAGTCTTGACCAACGTTCAG -CCAACAGTCTTGACCAACGCATAG -CCAACAGTCTTGACCAACGACAAG -CCAACAGTCTTGACCAACAAGCAG -CCAACAGTCTTGACCAACCGTCAA -CCAACAGTCTTGACCAACGCTGAA -CCAACAGTCTTGACCAACAGTACG -CCAACAGTCTTGACCAACATCCGA -CCAACAGTCTTGACCAACATGGGA -CCAACAGTCTTGACCAACGTGCAA -CCAACAGTCTTGACCAACGAGGAA -CCAACAGTCTTGACCAACCAGGTA -CCAACAGTCTTGACCAACGACTCT -CCAACAGTCTTGACCAACAGTCCT -CCAACAGTCTTGACCAACTAAGCC -CCAACAGTCTTGACCAACATAGCC -CCAACAGTCTTGACCAACTAACCG -CCAACAGTCTTGACCAACATGCCA -CCAACAGTCTTGGAGATCGGAAAC -CCAACAGTCTTGGAGATCAACACC -CCAACAGTCTTGGAGATCATCGAG -CCAACAGTCTTGGAGATCCTCCTT -CCAACAGTCTTGGAGATCCCTGTT -CCAACAGTCTTGGAGATCCGGTTT -CCAACAGTCTTGGAGATCGTGGTT -CCAACAGTCTTGGAGATCGCCTTT -CCAACAGTCTTGGAGATCGGTCTT -CCAACAGTCTTGGAGATCACGCTT -CCAACAGTCTTGGAGATCAGCGTT -CCAACAGTCTTGGAGATCTTCGTC -CCAACAGTCTTGGAGATCTCTCTC -CCAACAGTCTTGGAGATCTGGATC -CCAACAGTCTTGGAGATCCACTTC -CCAACAGTCTTGGAGATCGTACTC -CCAACAGTCTTGGAGATCGATGTC -CCAACAGTCTTGGAGATCACAGTC -CCAACAGTCTTGGAGATCTTGCTG -CCAACAGTCTTGGAGATCTCCATG -CCAACAGTCTTGGAGATCTGTGTG -CCAACAGTCTTGGAGATCCTAGTG -CCAACAGTCTTGGAGATCCATCTG -CCAACAGTCTTGGAGATCGAGTTG -CCAACAGTCTTGGAGATCAGACTG -CCAACAGTCTTGGAGATCTCGGTA -CCAACAGTCTTGGAGATCTGCCTA -CCAACAGTCTTGGAGATCCCACTA -CCAACAGTCTTGGAGATCGGAGTA -CCAACAGTCTTGGAGATCTCGTCT -CCAACAGTCTTGGAGATCTGCACT -CCAACAGTCTTGGAGATCCTGACT -CCAACAGTCTTGGAGATCCAACCT -CCAACAGTCTTGGAGATCGCTACT -CCAACAGTCTTGGAGATCGGATCT -CCAACAGTCTTGGAGATCAAGGCT -CCAACAGTCTTGGAGATCTCAACC -CCAACAGTCTTGGAGATCTGTTCC -CCAACAGTCTTGGAGATCATTCCC -CCAACAGTCTTGGAGATCTTCTCG -CCAACAGTCTTGGAGATCTAGACG -CCAACAGTCTTGGAGATCGTAACG -CCAACAGTCTTGGAGATCACTTCG -CCAACAGTCTTGGAGATCTACGCA -CCAACAGTCTTGGAGATCCTTGCA -CCAACAGTCTTGGAGATCCGAACA -CCAACAGTCTTGGAGATCCAGTCA -CCAACAGTCTTGGAGATCGATCCA -CCAACAGTCTTGGAGATCACGACA -CCAACAGTCTTGGAGATCAGCTCA -CCAACAGTCTTGGAGATCTCACGT -CCAACAGTCTTGGAGATCCGTAGT -CCAACAGTCTTGGAGATCGTCAGT -CCAACAGTCTTGGAGATCGAAGGT -CCAACAGTCTTGGAGATCAACCGT -CCAACAGTCTTGGAGATCTTGTGC -CCAACAGTCTTGGAGATCCTAAGC -CCAACAGTCTTGGAGATCACTAGC -CCAACAGTCTTGGAGATCAGATGC -CCAACAGTCTTGGAGATCTGAAGG -CCAACAGTCTTGGAGATCCAATGG -CCAACAGTCTTGGAGATCATGAGG -CCAACAGTCTTGGAGATCAATGGG -CCAACAGTCTTGGAGATCTCCTGA -CCAACAGTCTTGGAGATCTAGCGA -CCAACAGTCTTGGAGATCCACAGA -CCAACAGTCTTGGAGATCGCAAGA -CCAACAGTCTTGGAGATCGGTTGA -CCAACAGTCTTGGAGATCTCCGAT -CCAACAGTCTTGGAGATCTGGCAT -CCAACAGTCTTGGAGATCCGAGAT -CCAACAGTCTTGGAGATCTACCAC -CCAACAGTCTTGGAGATCCAGAAC -CCAACAGTCTTGGAGATCGTCTAC -CCAACAGTCTTGGAGATCACGTAC -CCAACAGTCTTGGAGATCAGTGAC -CCAACAGTCTTGGAGATCCTGTAG -CCAACAGTCTTGGAGATCCCTAAG -CCAACAGTCTTGGAGATCGTTCAG -CCAACAGTCTTGGAGATCGCATAG -CCAACAGTCTTGGAGATCGACAAG -CCAACAGTCTTGGAGATCAAGCAG -CCAACAGTCTTGGAGATCCGTCAA -CCAACAGTCTTGGAGATCGCTGAA -CCAACAGTCTTGGAGATCAGTACG -CCAACAGTCTTGGAGATCATCCGA -CCAACAGTCTTGGAGATCATGGGA -CCAACAGTCTTGGAGATCGTGCAA -CCAACAGTCTTGGAGATCGAGGAA -CCAACAGTCTTGGAGATCCAGGTA -CCAACAGTCTTGGAGATCGACTCT -CCAACAGTCTTGGAGATCAGTCCT -CCAACAGTCTTGGAGATCTAAGCC -CCAACAGTCTTGGAGATCATAGCC -CCAACAGTCTTGGAGATCTAACCG -CCAACAGTCTTGGAGATCATGCCA -CCAACAGTCTTGCTTCTCGGAAAC -CCAACAGTCTTGCTTCTCAACACC -CCAACAGTCTTGCTTCTCATCGAG -CCAACAGTCTTGCTTCTCCTCCTT -CCAACAGTCTTGCTTCTCCCTGTT -CCAACAGTCTTGCTTCTCCGGTTT -CCAACAGTCTTGCTTCTCGTGGTT -CCAACAGTCTTGCTTCTCGCCTTT -CCAACAGTCTTGCTTCTCGGTCTT -CCAACAGTCTTGCTTCTCACGCTT -CCAACAGTCTTGCTTCTCAGCGTT -CCAACAGTCTTGCTTCTCTTCGTC -CCAACAGTCTTGCTTCTCTCTCTC -CCAACAGTCTTGCTTCTCTGGATC -CCAACAGTCTTGCTTCTCCACTTC -CCAACAGTCTTGCTTCTCGTACTC -CCAACAGTCTTGCTTCTCGATGTC -CCAACAGTCTTGCTTCTCACAGTC -CCAACAGTCTTGCTTCTCTTGCTG -CCAACAGTCTTGCTTCTCTCCATG -CCAACAGTCTTGCTTCTCTGTGTG -CCAACAGTCTTGCTTCTCCTAGTG -CCAACAGTCTTGCTTCTCCATCTG -CCAACAGTCTTGCTTCTCGAGTTG -CCAACAGTCTTGCTTCTCAGACTG -CCAACAGTCTTGCTTCTCTCGGTA -CCAACAGTCTTGCTTCTCTGCCTA -CCAACAGTCTTGCTTCTCCCACTA -CCAACAGTCTTGCTTCTCGGAGTA -CCAACAGTCTTGCTTCTCTCGTCT -CCAACAGTCTTGCTTCTCTGCACT -CCAACAGTCTTGCTTCTCCTGACT -CCAACAGTCTTGCTTCTCCAACCT -CCAACAGTCTTGCTTCTCGCTACT -CCAACAGTCTTGCTTCTCGGATCT -CCAACAGTCTTGCTTCTCAAGGCT -CCAACAGTCTTGCTTCTCTCAACC -CCAACAGTCTTGCTTCTCTGTTCC -CCAACAGTCTTGCTTCTCATTCCC -CCAACAGTCTTGCTTCTCTTCTCG -CCAACAGTCTTGCTTCTCTAGACG -CCAACAGTCTTGCTTCTCGTAACG -CCAACAGTCTTGCTTCTCACTTCG -CCAACAGTCTTGCTTCTCTACGCA -CCAACAGTCTTGCTTCTCCTTGCA -CCAACAGTCTTGCTTCTCCGAACA -CCAACAGTCTTGCTTCTCCAGTCA -CCAACAGTCTTGCTTCTCGATCCA -CCAACAGTCTTGCTTCTCACGACA -CCAACAGTCTTGCTTCTCAGCTCA -CCAACAGTCTTGCTTCTCTCACGT -CCAACAGTCTTGCTTCTCCGTAGT -CCAACAGTCTTGCTTCTCGTCAGT -CCAACAGTCTTGCTTCTCGAAGGT -CCAACAGTCTTGCTTCTCAACCGT -CCAACAGTCTTGCTTCTCTTGTGC -CCAACAGTCTTGCTTCTCCTAAGC -CCAACAGTCTTGCTTCTCACTAGC -CCAACAGTCTTGCTTCTCAGATGC -CCAACAGTCTTGCTTCTCTGAAGG -CCAACAGTCTTGCTTCTCCAATGG -CCAACAGTCTTGCTTCTCATGAGG -CCAACAGTCTTGCTTCTCAATGGG -CCAACAGTCTTGCTTCTCTCCTGA -CCAACAGTCTTGCTTCTCTAGCGA -CCAACAGTCTTGCTTCTCCACAGA -CCAACAGTCTTGCTTCTCGCAAGA -CCAACAGTCTTGCTTCTCGGTTGA -CCAACAGTCTTGCTTCTCTCCGAT -CCAACAGTCTTGCTTCTCTGGCAT -CCAACAGTCTTGCTTCTCCGAGAT -CCAACAGTCTTGCTTCTCTACCAC -CCAACAGTCTTGCTTCTCCAGAAC -CCAACAGTCTTGCTTCTCGTCTAC -CCAACAGTCTTGCTTCTCACGTAC -CCAACAGTCTTGCTTCTCAGTGAC -CCAACAGTCTTGCTTCTCCTGTAG -CCAACAGTCTTGCTTCTCCCTAAG -CCAACAGTCTTGCTTCTCGTTCAG -CCAACAGTCTTGCTTCTCGCATAG -CCAACAGTCTTGCTTCTCGACAAG -CCAACAGTCTTGCTTCTCAAGCAG -CCAACAGTCTTGCTTCTCCGTCAA -CCAACAGTCTTGCTTCTCGCTGAA -CCAACAGTCTTGCTTCTCAGTACG -CCAACAGTCTTGCTTCTCATCCGA -CCAACAGTCTTGCTTCTCATGGGA -CCAACAGTCTTGCTTCTCGTGCAA -CCAACAGTCTTGCTTCTCGAGGAA -CCAACAGTCTTGCTTCTCCAGGTA -CCAACAGTCTTGCTTCTCGACTCT -CCAACAGTCTTGCTTCTCAGTCCT -CCAACAGTCTTGCTTCTCTAAGCC -CCAACAGTCTTGCTTCTCATAGCC -CCAACAGTCTTGCTTCTCTAACCG -CCAACAGTCTTGCTTCTCATGCCA -CCAACAGTCTTGGTTCCTGGAAAC -CCAACAGTCTTGGTTCCTAACACC -CCAACAGTCTTGGTTCCTATCGAG -CCAACAGTCTTGGTTCCTCTCCTT -CCAACAGTCTTGGTTCCTCCTGTT -CCAACAGTCTTGGTTCCTCGGTTT -CCAACAGTCTTGGTTCCTGTGGTT -CCAACAGTCTTGGTTCCTGCCTTT -CCAACAGTCTTGGTTCCTGGTCTT -CCAACAGTCTTGGTTCCTACGCTT -CCAACAGTCTTGGTTCCTAGCGTT -CCAACAGTCTTGGTTCCTTTCGTC -CCAACAGTCTTGGTTCCTTCTCTC -CCAACAGTCTTGGTTCCTTGGATC -CCAACAGTCTTGGTTCCTCACTTC -CCAACAGTCTTGGTTCCTGTACTC -CCAACAGTCTTGGTTCCTGATGTC -CCAACAGTCTTGGTTCCTACAGTC -CCAACAGTCTTGGTTCCTTTGCTG -CCAACAGTCTTGGTTCCTTCCATG -CCAACAGTCTTGGTTCCTTGTGTG -CCAACAGTCTTGGTTCCTCTAGTG -CCAACAGTCTTGGTTCCTCATCTG -CCAACAGTCTTGGTTCCTGAGTTG -CCAACAGTCTTGGTTCCTAGACTG -CCAACAGTCTTGGTTCCTTCGGTA -CCAACAGTCTTGGTTCCTTGCCTA -CCAACAGTCTTGGTTCCTCCACTA -CCAACAGTCTTGGTTCCTGGAGTA -CCAACAGTCTTGGTTCCTTCGTCT -CCAACAGTCTTGGTTCCTTGCACT -CCAACAGTCTTGGTTCCTCTGACT -CCAACAGTCTTGGTTCCTCAACCT -CCAACAGTCTTGGTTCCTGCTACT -CCAACAGTCTTGGTTCCTGGATCT -CCAACAGTCTTGGTTCCTAAGGCT -CCAACAGTCTTGGTTCCTTCAACC -CCAACAGTCTTGGTTCCTTGTTCC -CCAACAGTCTTGGTTCCTATTCCC -CCAACAGTCTTGGTTCCTTTCTCG -CCAACAGTCTTGGTTCCTTAGACG -CCAACAGTCTTGGTTCCTGTAACG -CCAACAGTCTTGGTTCCTACTTCG -CCAACAGTCTTGGTTCCTTACGCA -CCAACAGTCTTGGTTCCTCTTGCA -CCAACAGTCTTGGTTCCTCGAACA -CCAACAGTCTTGGTTCCTCAGTCA -CCAACAGTCTTGGTTCCTGATCCA -CCAACAGTCTTGGTTCCTACGACA -CCAACAGTCTTGGTTCCTAGCTCA -CCAACAGTCTTGGTTCCTTCACGT -CCAACAGTCTTGGTTCCTCGTAGT -CCAACAGTCTTGGTTCCTGTCAGT -CCAACAGTCTTGGTTCCTGAAGGT -CCAACAGTCTTGGTTCCTAACCGT -CCAACAGTCTTGGTTCCTTTGTGC -CCAACAGTCTTGGTTCCTCTAAGC -CCAACAGTCTTGGTTCCTACTAGC -CCAACAGTCTTGGTTCCTAGATGC -CCAACAGTCTTGGTTCCTTGAAGG -CCAACAGTCTTGGTTCCTCAATGG -CCAACAGTCTTGGTTCCTATGAGG -CCAACAGTCTTGGTTCCTAATGGG -CCAACAGTCTTGGTTCCTTCCTGA -CCAACAGTCTTGGTTCCTTAGCGA -CCAACAGTCTTGGTTCCTCACAGA -CCAACAGTCTTGGTTCCTGCAAGA -CCAACAGTCTTGGTTCCTGGTTGA -CCAACAGTCTTGGTTCCTTCCGAT -CCAACAGTCTTGGTTCCTTGGCAT -CCAACAGTCTTGGTTCCTCGAGAT -CCAACAGTCTTGGTTCCTTACCAC -CCAACAGTCTTGGTTCCTCAGAAC -CCAACAGTCTTGGTTCCTGTCTAC -CCAACAGTCTTGGTTCCTACGTAC -CCAACAGTCTTGGTTCCTAGTGAC -CCAACAGTCTTGGTTCCTCTGTAG -CCAACAGTCTTGGTTCCTCCTAAG -CCAACAGTCTTGGTTCCTGTTCAG -CCAACAGTCTTGGTTCCTGCATAG -CCAACAGTCTTGGTTCCTGACAAG -CCAACAGTCTTGGTTCCTAAGCAG -CCAACAGTCTTGGTTCCTCGTCAA -CCAACAGTCTTGGTTCCTGCTGAA -CCAACAGTCTTGGTTCCTAGTACG -CCAACAGTCTTGGTTCCTATCCGA -CCAACAGTCTTGGTTCCTATGGGA -CCAACAGTCTTGGTTCCTGTGCAA -CCAACAGTCTTGGTTCCTGAGGAA -CCAACAGTCTTGGTTCCTCAGGTA -CCAACAGTCTTGGTTCCTGACTCT -CCAACAGTCTTGGTTCCTAGTCCT -CCAACAGTCTTGGTTCCTTAAGCC -CCAACAGTCTTGGTTCCTATAGCC -CCAACAGTCTTGGTTCCTTAACCG -CCAACAGTCTTGGTTCCTATGCCA -CCAACAGTCTTGTTTCGGGGAAAC -CCAACAGTCTTGTTTCGGAACACC -CCAACAGTCTTGTTTCGGATCGAG -CCAACAGTCTTGTTTCGGCTCCTT -CCAACAGTCTTGTTTCGGCCTGTT -CCAACAGTCTTGTTTCGGCGGTTT -CCAACAGTCTTGTTTCGGGTGGTT -CCAACAGTCTTGTTTCGGGCCTTT -CCAACAGTCTTGTTTCGGGGTCTT -CCAACAGTCTTGTTTCGGACGCTT -CCAACAGTCTTGTTTCGGAGCGTT -CCAACAGTCTTGTTTCGGTTCGTC -CCAACAGTCTTGTTTCGGTCTCTC -CCAACAGTCTTGTTTCGGTGGATC -CCAACAGTCTTGTTTCGGCACTTC -CCAACAGTCTTGTTTCGGGTACTC -CCAACAGTCTTGTTTCGGGATGTC -CCAACAGTCTTGTTTCGGACAGTC -CCAACAGTCTTGTTTCGGTTGCTG -CCAACAGTCTTGTTTCGGTCCATG -CCAACAGTCTTGTTTCGGTGTGTG -CCAACAGTCTTGTTTCGGCTAGTG -CCAACAGTCTTGTTTCGGCATCTG -CCAACAGTCTTGTTTCGGGAGTTG -CCAACAGTCTTGTTTCGGAGACTG -CCAACAGTCTTGTTTCGGTCGGTA -CCAACAGTCTTGTTTCGGTGCCTA -CCAACAGTCTTGTTTCGGCCACTA -CCAACAGTCTTGTTTCGGGGAGTA -CCAACAGTCTTGTTTCGGTCGTCT -CCAACAGTCTTGTTTCGGTGCACT -CCAACAGTCTTGTTTCGGCTGACT -CCAACAGTCTTGTTTCGGCAACCT -CCAACAGTCTTGTTTCGGGCTACT -CCAACAGTCTTGTTTCGGGGATCT -CCAACAGTCTTGTTTCGGAAGGCT -CCAACAGTCTTGTTTCGGTCAACC -CCAACAGTCTTGTTTCGGTGTTCC -CCAACAGTCTTGTTTCGGATTCCC -CCAACAGTCTTGTTTCGGTTCTCG -CCAACAGTCTTGTTTCGGTAGACG -CCAACAGTCTTGTTTCGGGTAACG -CCAACAGTCTTGTTTCGGACTTCG -CCAACAGTCTTGTTTCGGTACGCA -CCAACAGTCTTGTTTCGGCTTGCA -CCAACAGTCTTGTTTCGGCGAACA -CCAACAGTCTTGTTTCGGCAGTCA -CCAACAGTCTTGTTTCGGGATCCA -CCAACAGTCTTGTTTCGGACGACA -CCAACAGTCTTGTTTCGGAGCTCA -CCAACAGTCTTGTTTCGGTCACGT -CCAACAGTCTTGTTTCGGCGTAGT -CCAACAGTCTTGTTTCGGGTCAGT -CCAACAGTCTTGTTTCGGGAAGGT -CCAACAGTCTTGTTTCGGAACCGT -CCAACAGTCTTGTTTCGGTTGTGC -CCAACAGTCTTGTTTCGGCTAAGC -CCAACAGTCTTGTTTCGGACTAGC -CCAACAGTCTTGTTTCGGAGATGC -CCAACAGTCTTGTTTCGGTGAAGG -CCAACAGTCTTGTTTCGGCAATGG -CCAACAGTCTTGTTTCGGATGAGG -CCAACAGTCTTGTTTCGGAATGGG -CCAACAGTCTTGTTTCGGTCCTGA -CCAACAGTCTTGTTTCGGTAGCGA -CCAACAGTCTTGTTTCGGCACAGA -CCAACAGTCTTGTTTCGGGCAAGA -CCAACAGTCTTGTTTCGGGGTTGA -CCAACAGTCTTGTTTCGGTCCGAT -CCAACAGTCTTGTTTCGGTGGCAT -CCAACAGTCTTGTTTCGGCGAGAT -CCAACAGTCTTGTTTCGGTACCAC -CCAACAGTCTTGTTTCGGCAGAAC -CCAACAGTCTTGTTTCGGGTCTAC -CCAACAGTCTTGTTTCGGACGTAC -CCAACAGTCTTGTTTCGGAGTGAC -CCAACAGTCTTGTTTCGGCTGTAG -CCAACAGTCTTGTTTCGGCCTAAG -CCAACAGTCTTGTTTCGGGTTCAG -CCAACAGTCTTGTTTCGGGCATAG -CCAACAGTCTTGTTTCGGGACAAG -CCAACAGTCTTGTTTCGGAAGCAG -CCAACAGTCTTGTTTCGGCGTCAA -CCAACAGTCTTGTTTCGGGCTGAA -CCAACAGTCTTGTTTCGGAGTACG -CCAACAGTCTTGTTTCGGATCCGA -CCAACAGTCTTGTTTCGGATGGGA -CCAACAGTCTTGTTTCGGGTGCAA -CCAACAGTCTTGTTTCGGGAGGAA -CCAACAGTCTTGTTTCGGCAGGTA -CCAACAGTCTTGTTTCGGGACTCT -CCAACAGTCTTGTTTCGGAGTCCT -CCAACAGTCTTGTTTCGGTAAGCC -CCAACAGTCTTGTTTCGGATAGCC -CCAACAGTCTTGTTTCGGTAACCG -CCAACAGTCTTGTTTCGGATGCCA -CCAACAGTCTTGGTTGTGGGAAAC -CCAACAGTCTTGGTTGTGAACACC -CCAACAGTCTTGGTTGTGATCGAG -CCAACAGTCTTGGTTGTGCTCCTT -CCAACAGTCTTGGTTGTGCCTGTT -CCAACAGTCTTGGTTGTGCGGTTT -CCAACAGTCTTGGTTGTGGTGGTT -CCAACAGTCTTGGTTGTGGCCTTT -CCAACAGTCTTGGTTGTGGGTCTT -CCAACAGTCTTGGTTGTGACGCTT -CCAACAGTCTTGGTTGTGAGCGTT -CCAACAGTCTTGGTTGTGTTCGTC -CCAACAGTCTTGGTTGTGTCTCTC -CCAACAGTCTTGGTTGTGTGGATC -CCAACAGTCTTGGTTGTGCACTTC -CCAACAGTCTTGGTTGTGGTACTC -CCAACAGTCTTGGTTGTGGATGTC -CCAACAGTCTTGGTTGTGACAGTC -CCAACAGTCTTGGTTGTGTTGCTG -CCAACAGTCTTGGTTGTGTCCATG -CCAACAGTCTTGGTTGTGTGTGTG -CCAACAGTCTTGGTTGTGCTAGTG -CCAACAGTCTTGGTTGTGCATCTG -CCAACAGTCTTGGTTGTGGAGTTG -CCAACAGTCTTGGTTGTGAGACTG -CCAACAGTCTTGGTTGTGTCGGTA -CCAACAGTCTTGGTTGTGTGCCTA -CCAACAGTCTTGGTTGTGCCACTA -CCAACAGTCTTGGTTGTGGGAGTA -CCAACAGTCTTGGTTGTGTCGTCT -CCAACAGTCTTGGTTGTGTGCACT -CCAACAGTCTTGGTTGTGCTGACT -CCAACAGTCTTGGTTGTGCAACCT -CCAACAGTCTTGGTTGTGGCTACT -CCAACAGTCTTGGTTGTGGGATCT -CCAACAGTCTTGGTTGTGAAGGCT -CCAACAGTCTTGGTTGTGTCAACC -CCAACAGTCTTGGTTGTGTGTTCC -CCAACAGTCTTGGTTGTGATTCCC -CCAACAGTCTTGGTTGTGTTCTCG -CCAACAGTCTTGGTTGTGTAGACG -CCAACAGTCTTGGTTGTGGTAACG -CCAACAGTCTTGGTTGTGACTTCG -CCAACAGTCTTGGTTGTGTACGCA -CCAACAGTCTTGGTTGTGCTTGCA -CCAACAGTCTTGGTTGTGCGAACA -CCAACAGTCTTGGTTGTGCAGTCA -CCAACAGTCTTGGTTGTGGATCCA -CCAACAGTCTTGGTTGTGACGACA -CCAACAGTCTTGGTTGTGAGCTCA -CCAACAGTCTTGGTTGTGTCACGT -CCAACAGTCTTGGTTGTGCGTAGT -CCAACAGTCTTGGTTGTGGTCAGT -CCAACAGTCTTGGTTGTGGAAGGT -CCAACAGTCTTGGTTGTGAACCGT -CCAACAGTCTTGGTTGTGTTGTGC -CCAACAGTCTTGGTTGTGCTAAGC -CCAACAGTCTTGGTTGTGACTAGC -CCAACAGTCTTGGTTGTGAGATGC -CCAACAGTCTTGGTTGTGTGAAGG -CCAACAGTCTTGGTTGTGCAATGG -CCAACAGTCTTGGTTGTGATGAGG -CCAACAGTCTTGGTTGTGAATGGG -CCAACAGTCTTGGTTGTGTCCTGA -CCAACAGTCTTGGTTGTGTAGCGA -CCAACAGTCTTGGTTGTGCACAGA -CCAACAGTCTTGGTTGTGGCAAGA -CCAACAGTCTTGGTTGTGGGTTGA -CCAACAGTCTTGGTTGTGTCCGAT -CCAACAGTCTTGGTTGTGTGGCAT -CCAACAGTCTTGGTTGTGCGAGAT -CCAACAGTCTTGGTTGTGTACCAC -CCAACAGTCTTGGTTGTGCAGAAC -CCAACAGTCTTGGTTGTGGTCTAC -CCAACAGTCTTGGTTGTGACGTAC -CCAACAGTCTTGGTTGTGAGTGAC -CCAACAGTCTTGGTTGTGCTGTAG -CCAACAGTCTTGGTTGTGCCTAAG -CCAACAGTCTTGGTTGTGGTTCAG -CCAACAGTCTTGGTTGTGGCATAG -CCAACAGTCTTGGTTGTGGACAAG -CCAACAGTCTTGGTTGTGAAGCAG -CCAACAGTCTTGGTTGTGCGTCAA -CCAACAGTCTTGGTTGTGGCTGAA -CCAACAGTCTTGGTTGTGAGTACG -CCAACAGTCTTGGTTGTGATCCGA -CCAACAGTCTTGGTTGTGATGGGA -CCAACAGTCTTGGTTGTGGTGCAA -CCAACAGTCTTGGTTGTGGAGGAA -CCAACAGTCTTGGTTGTGCAGGTA -CCAACAGTCTTGGTTGTGGACTCT -CCAACAGTCTTGGTTGTGAGTCCT -CCAACAGTCTTGGTTGTGTAAGCC -CCAACAGTCTTGGTTGTGATAGCC -CCAACAGTCTTGGTTGTGTAACCG -CCAACAGTCTTGGTTGTGATGCCA -CCAACAGTCTTGTTTGCCGGAAAC -CCAACAGTCTTGTTTGCCAACACC -CCAACAGTCTTGTTTGCCATCGAG -CCAACAGTCTTGTTTGCCCTCCTT -CCAACAGTCTTGTTTGCCCCTGTT -CCAACAGTCTTGTTTGCCCGGTTT -CCAACAGTCTTGTTTGCCGTGGTT -CCAACAGTCTTGTTTGCCGCCTTT -CCAACAGTCTTGTTTGCCGGTCTT -CCAACAGTCTTGTTTGCCACGCTT -CCAACAGTCTTGTTTGCCAGCGTT -CCAACAGTCTTGTTTGCCTTCGTC -CCAACAGTCTTGTTTGCCTCTCTC -CCAACAGTCTTGTTTGCCTGGATC -CCAACAGTCTTGTTTGCCCACTTC -CCAACAGTCTTGTTTGCCGTACTC -CCAACAGTCTTGTTTGCCGATGTC -CCAACAGTCTTGTTTGCCACAGTC -CCAACAGTCTTGTTTGCCTTGCTG -CCAACAGTCTTGTTTGCCTCCATG -CCAACAGTCTTGTTTGCCTGTGTG -CCAACAGTCTTGTTTGCCCTAGTG -CCAACAGTCTTGTTTGCCCATCTG -CCAACAGTCTTGTTTGCCGAGTTG -CCAACAGTCTTGTTTGCCAGACTG -CCAACAGTCTTGTTTGCCTCGGTA -CCAACAGTCTTGTTTGCCTGCCTA -CCAACAGTCTTGTTTGCCCCACTA -CCAACAGTCTTGTTTGCCGGAGTA -CCAACAGTCTTGTTTGCCTCGTCT -CCAACAGTCTTGTTTGCCTGCACT -CCAACAGTCTTGTTTGCCCTGACT -CCAACAGTCTTGTTTGCCCAACCT -CCAACAGTCTTGTTTGCCGCTACT -CCAACAGTCTTGTTTGCCGGATCT -CCAACAGTCTTGTTTGCCAAGGCT -CCAACAGTCTTGTTTGCCTCAACC -CCAACAGTCTTGTTTGCCTGTTCC -CCAACAGTCTTGTTTGCCATTCCC -CCAACAGTCTTGTTTGCCTTCTCG -CCAACAGTCTTGTTTGCCTAGACG -CCAACAGTCTTGTTTGCCGTAACG -CCAACAGTCTTGTTTGCCACTTCG -CCAACAGTCTTGTTTGCCTACGCA -CCAACAGTCTTGTTTGCCCTTGCA -CCAACAGTCTTGTTTGCCCGAACA -CCAACAGTCTTGTTTGCCCAGTCA -CCAACAGTCTTGTTTGCCGATCCA -CCAACAGTCTTGTTTGCCACGACA -CCAACAGTCTTGTTTGCCAGCTCA -CCAACAGTCTTGTTTGCCTCACGT -CCAACAGTCTTGTTTGCCCGTAGT -CCAACAGTCTTGTTTGCCGTCAGT -CCAACAGTCTTGTTTGCCGAAGGT -CCAACAGTCTTGTTTGCCAACCGT -CCAACAGTCTTGTTTGCCTTGTGC -CCAACAGTCTTGTTTGCCCTAAGC -CCAACAGTCTTGTTTGCCACTAGC -CCAACAGTCTTGTTTGCCAGATGC -CCAACAGTCTTGTTTGCCTGAAGG -CCAACAGTCTTGTTTGCCCAATGG -CCAACAGTCTTGTTTGCCATGAGG -CCAACAGTCTTGTTTGCCAATGGG -CCAACAGTCTTGTTTGCCTCCTGA -CCAACAGTCTTGTTTGCCTAGCGA -CCAACAGTCTTGTTTGCCCACAGA -CCAACAGTCTTGTTTGCCGCAAGA -CCAACAGTCTTGTTTGCCGGTTGA -CCAACAGTCTTGTTTGCCTCCGAT -CCAACAGTCTTGTTTGCCTGGCAT -CCAACAGTCTTGTTTGCCCGAGAT -CCAACAGTCTTGTTTGCCTACCAC -CCAACAGTCTTGTTTGCCCAGAAC -CCAACAGTCTTGTTTGCCGTCTAC -CCAACAGTCTTGTTTGCCACGTAC -CCAACAGTCTTGTTTGCCAGTGAC -CCAACAGTCTTGTTTGCCCTGTAG -CCAACAGTCTTGTTTGCCCCTAAG -CCAACAGTCTTGTTTGCCGTTCAG -CCAACAGTCTTGTTTGCCGCATAG -CCAACAGTCTTGTTTGCCGACAAG -CCAACAGTCTTGTTTGCCAAGCAG -CCAACAGTCTTGTTTGCCCGTCAA -CCAACAGTCTTGTTTGCCGCTGAA -CCAACAGTCTTGTTTGCCAGTACG -CCAACAGTCTTGTTTGCCATCCGA -CCAACAGTCTTGTTTGCCATGGGA -CCAACAGTCTTGTTTGCCGTGCAA -CCAACAGTCTTGTTTGCCGAGGAA -CCAACAGTCTTGTTTGCCCAGGTA -CCAACAGTCTTGTTTGCCGACTCT -CCAACAGTCTTGTTTGCCAGTCCT -CCAACAGTCTTGTTTGCCTAAGCC -CCAACAGTCTTGTTTGCCATAGCC -CCAACAGTCTTGTTTGCCTAACCG -CCAACAGTCTTGTTTGCCATGCCA -CCAACAGTCTTGCTTGGTGGAAAC -CCAACAGTCTTGCTTGGTAACACC -CCAACAGTCTTGCTTGGTATCGAG -CCAACAGTCTTGCTTGGTCTCCTT -CCAACAGTCTTGCTTGGTCCTGTT -CCAACAGTCTTGCTTGGTCGGTTT -CCAACAGTCTTGCTTGGTGTGGTT -CCAACAGTCTTGCTTGGTGCCTTT -CCAACAGTCTTGCTTGGTGGTCTT -CCAACAGTCTTGCTTGGTACGCTT -CCAACAGTCTTGCTTGGTAGCGTT -CCAACAGTCTTGCTTGGTTTCGTC -CCAACAGTCTTGCTTGGTTCTCTC -CCAACAGTCTTGCTTGGTTGGATC -CCAACAGTCTTGCTTGGTCACTTC -CCAACAGTCTTGCTTGGTGTACTC -CCAACAGTCTTGCTTGGTGATGTC -CCAACAGTCTTGCTTGGTACAGTC -CCAACAGTCTTGCTTGGTTTGCTG -CCAACAGTCTTGCTTGGTTCCATG -CCAACAGTCTTGCTTGGTTGTGTG -CCAACAGTCTTGCTTGGTCTAGTG -CCAACAGTCTTGCTTGGTCATCTG -CCAACAGTCTTGCTTGGTGAGTTG -CCAACAGTCTTGCTTGGTAGACTG -CCAACAGTCTTGCTTGGTTCGGTA -CCAACAGTCTTGCTTGGTTGCCTA -CCAACAGTCTTGCTTGGTCCACTA -CCAACAGTCTTGCTTGGTGGAGTA -CCAACAGTCTTGCTTGGTTCGTCT -CCAACAGTCTTGCTTGGTTGCACT -CCAACAGTCTTGCTTGGTCTGACT -CCAACAGTCTTGCTTGGTCAACCT -CCAACAGTCTTGCTTGGTGCTACT -CCAACAGTCTTGCTTGGTGGATCT -CCAACAGTCTTGCTTGGTAAGGCT -CCAACAGTCTTGCTTGGTTCAACC -CCAACAGTCTTGCTTGGTTGTTCC -CCAACAGTCTTGCTTGGTATTCCC -CCAACAGTCTTGCTTGGTTTCTCG -CCAACAGTCTTGCTTGGTTAGACG -CCAACAGTCTTGCTTGGTGTAACG -CCAACAGTCTTGCTTGGTACTTCG -CCAACAGTCTTGCTTGGTTACGCA -CCAACAGTCTTGCTTGGTCTTGCA -CCAACAGTCTTGCTTGGTCGAACA -CCAACAGTCTTGCTTGGTCAGTCA -CCAACAGTCTTGCTTGGTGATCCA -CCAACAGTCTTGCTTGGTACGACA -CCAACAGTCTTGCTTGGTAGCTCA -CCAACAGTCTTGCTTGGTTCACGT -CCAACAGTCTTGCTTGGTCGTAGT -CCAACAGTCTTGCTTGGTGTCAGT -CCAACAGTCTTGCTTGGTGAAGGT -CCAACAGTCTTGCTTGGTAACCGT -CCAACAGTCTTGCTTGGTTTGTGC -CCAACAGTCTTGCTTGGTCTAAGC -CCAACAGTCTTGCTTGGTACTAGC -CCAACAGTCTTGCTTGGTAGATGC -CCAACAGTCTTGCTTGGTTGAAGG -CCAACAGTCTTGCTTGGTCAATGG -CCAACAGTCTTGCTTGGTATGAGG -CCAACAGTCTTGCTTGGTAATGGG -CCAACAGTCTTGCTTGGTTCCTGA -CCAACAGTCTTGCTTGGTTAGCGA -CCAACAGTCTTGCTTGGTCACAGA -CCAACAGTCTTGCTTGGTGCAAGA -CCAACAGTCTTGCTTGGTGGTTGA -CCAACAGTCTTGCTTGGTTCCGAT -CCAACAGTCTTGCTTGGTTGGCAT -CCAACAGTCTTGCTTGGTCGAGAT -CCAACAGTCTTGCTTGGTTACCAC -CCAACAGTCTTGCTTGGTCAGAAC -CCAACAGTCTTGCTTGGTGTCTAC -CCAACAGTCTTGCTTGGTACGTAC -CCAACAGTCTTGCTTGGTAGTGAC -CCAACAGTCTTGCTTGGTCTGTAG -CCAACAGTCTTGCTTGGTCCTAAG -CCAACAGTCTTGCTTGGTGTTCAG -CCAACAGTCTTGCTTGGTGCATAG -CCAACAGTCTTGCTTGGTGACAAG -CCAACAGTCTTGCTTGGTAAGCAG -CCAACAGTCTTGCTTGGTCGTCAA -CCAACAGTCTTGCTTGGTGCTGAA -CCAACAGTCTTGCTTGGTAGTACG -CCAACAGTCTTGCTTGGTATCCGA -CCAACAGTCTTGCTTGGTATGGGA -CCAACAGTCTTGCTTGGTGTGCAA -CCAACAGTCTTGCTTGGTGAGGAA -CCAACAGTCTTGCTTGGTCAGGTA -CCAACAGTCTTGCTTGGTGACTCT -CCAACAGTCTTGCTTGGTAGTCCT -CCAACAGTCTTGCTTGGTTAAGCC -CCAACAGTCTTGCTTGGTATAGCC -CCAACAGTCTTGCTTGGTTAACCG -CCAACAGTCTTGCTTGGTATGCCA -CCAACAGTCTTGCTTACGGGAAAC -CCAACAGTCTTGCTTACGAACACC -CCAACAGTCTTGCTTACGATCGAG -CCAACAGTCTTGCTTACGCTCCTT -CCAACAGTCTTGCTTACGCCTGTT -CCAACAGTCTTGCTTACGCGGTTT -CCAACAGTCTTGCTTACGGTGGTT -CCAACAGTCTTGCTTACGGCCTTT -CCAACAGTCTTGCTTACGGGTCTT -CCAACAGTCTTGCTTACGACGCTT -CCAACAGTCTTGCTTACGAGCGTT -CCAACAGTCTTGCTTACGTTCGTC -CCAACAGTCTTGCTTACGTCTCTC -CCAACAGTCTTGCTTACGTGGATC -CCAACAGTCTTGCTTACGCACTTC -CCAACAGTCTTGCTTACGGTACTC -CCAACAGTCTTGCTTACGGATGTC -CCAACAGTCTTGCTTACGACAGTC -CCAACAGTCTTGCTTACGTTGCTG -CCAACAGTCTTGCTTACGTCCATG -CCAACAGTCTTGCTTACGTGTGTG -CCAACAGTCTTGCTTACGCTAGTG -CCAACAGTCTTGCTTACGCATCTG -CCAACAGTCTTGCTTACGGAGTTG -CCAACAGTCTTGCTTACGAGACTG -CCAACAGTCTTGCTTACGTCGGTA -CCAACAGTCTTGCTTACGTGCCTA -CCAACAGTCTTGCTTACGCCACTA -CCAACAGTCTTGCTTACGGGAGTA -CCAACAGTCTTGCTTACGTCGTCT -CCAACAGTCTTGCTTACGTGCACT -CCAACAGTCTTGCTTACGCTGACT -CCAACAGTCTTGCTTACGCAACCT -CCAACAGTCTTGCTTACGGCTACT -CCAACAGTCTTGCTTACGGGATCT -CCAACAGTCTTGCTTACGAAGGCT -CCAACAGTCTTGCTTACGTCAACC -CCAACAGTCTTGCTTACGTGTTCC -CCAACAGTCTTGCTTACGATTCCC -CCAACAGTCTTGCTTACGTTCTCG -CCAACAGTCTTGCTTACGTAGACG -CCAACAGTCTTGCTTACGGTAACG -CCAACAGTCTTGCTTACGACTTCG -CCAACAGTCTTGCTTACGTACGCA -CCAACAGTCTTGCTTACGCTTGCA -CCAACAGTCTTGCTTACGCGAACA -CCAACAGTCTTGCTTACGCAGTCA -CCAACAGTCTTGCTTACGGATCCA -CCAACAGTCTTGCTTACGACGACA -CCAACAGTCTTGCTTACGAGCTCA -CCAACAGTCTTGCTTACGTCACGT -CCAACAGTCTTGCTTACGCGTAGT -CCAACAGTCTTGCTTACGGTCAGT -CCAACAGTCTTGCTTACGGAAGGT -CCAACAGTCTTGCTTACGAACCGT -CCAACAGTCTTGCTTACGTTGTGC -CCAACAGTCTTGCTTACGCTAAGC -CCAACAGTCTTGCTTACGACTAGC -CCAACAGTCTTGCTTACGAGATGC -CCAACAGTCTTGCTTACGTGAAGG -CCAACAGTCTTGCTTACGCAATGG -CCAACAGTCTTGCTTACGATGAGG -CCAACAGTCTTGCTTACGAATGGG -CCAACAGTCTTGCTTACGTCCTGA -CCAACAGTCTTGCTTACGTAGCGA -CCAACAGTCTTGCTTACGCACAGA -CCAACAGTCTTGCTTACGGCAAGA -CCAACAGTCTTGCTTACGGGTTGA -CCAACAGTCTTGCTTACGTCCGAT -CCAACAGTCTTGCTTACGTGGCAT -CCAACAGTCTTGCTTACGCGAGAT -CCAACAGTCTTGCTTACGTACCAC -CCAACAGTCTTGCTTACGCAGAAC -CCAACAGTCTTGCTTACGGTCTAC -CCAACAGTCTTGCTTACGACGTAC -CCAACAGTCTTGCTTACGAGTGAC -CCAACAGTCTTGCTTACGCTGTAG -CCAACAGTCTTGCTTACGCCTAAG -CCAACAGTCTTGCTTACGGTTCAG -CCAACAGTCTTGCTTACGGCATAG -CCAACAGTCTTGCTTACGGACAAG -CCAACAGTCTTGCTTACGAAGCAG -CCAACAGTCTTGCTTACGCGTCAA -CCAACAGTCTTGCTTACGGCTGAA -CCAACAGTCTTGCTTACGAGTACG -CCAACAGTCTTGCTTACGATCCGA -CCAACAGTCTTGCTTACGATGGGA -CCAACAGTCTTGCTTACGGTGCAA -CCAACAGTCTTGCTTACGGAGGAA -CCAACAGTCTTGCTTACGCAGGTA -CCAACAGTCTTGCTTACGGACTCT -CCAACAGTCTTGCTTACGAGTCCT -CCAACAGTCTTGCTTACGTAAGCC -CCAACAGTCTTGCTTACGATAGCC -CCAACAGTCTTGCTTACGTAACCG -CCAACAGTCTTGCTTACGATGCCA -CCAACAGTCTTGGTTAGCGGAAAC -CCAACAGTCTTGGTTAGCAACACC -CCAACAGTCTTGGTTAGCATCGAG -CCAACAGTCTTGGTTAGCCTCCTT -CCAACAGTCTTGGTTAGCCCTGTT -CCAACAGTCTTGGTTAGCCGGTTT -CCAACAGTCTTGGTTAGCGTGGTT -CCAACAGTCTTGGTTAGCGCCTTT -CCAACAGTCTTGGTTAGCGGTCTT -CCAACAGTCTTGGTTAGCACGCTT -CCAACAGTCTTGGTTAGCAGCGTT -CCAACAGTCTTGGTTAGCTTCGTC -CCAACAGTCTTGGTTAGCTCTCTC -CCAACAGTCTTGGTTAGCTGGATC -CCAACAGTCTTGGTTAGCCACTTC -CCAACAGTCTTGGTTAGCGTACTC -CCAACAGTCTTGGTTAGCGATGTC -CCAACAGTCTTGGTTAGCACAGTC -CCAACAGTCTTGGTTAGCTTGCTG -CCAACAGTCTTGGTTAGCTCCATG -CCAACAGTCTTGGTTAGCTGTGTG -CCAACAGTCTTGGTTAGCCTAGTG -CCAACAGTCTTGGTTAGCCATCTG -CCAACAGTCTTGGTTAGCGAGTTG -CCAACAGTCTTGGTTAGCAGACTG -CCAACAGTCTTGGTTAGCTCGGTA -CCAACAGTCTTGGTTAGCTGCCTA -CCAACAGTCTTGGTTAGCCCACTA -CCAACAGTCTTGGTTAGCGGAGTA -CCAACAGTCTTGGTTAGCTCGTCT -CCAACAGTCTTGGTTAGCTGCACT -CCAACAGTCTTGGTTAGCCTGACT -CCAACAGTCTTGGTTAGCCAACCT -CCAACAGTCTTGGTTAGCGCTACT -CCAACAGTCTTGGTTAGCGGATCT -CCAACAGTCTTGGTTAGCAAGGCT -CCAACAGTCTTGGTTAGCTCAACC -CCAACAGTCTTGGTTAGCTGTTCC -CCAACAGTCTTGGTTAGCATTCCC -CCAACAGTCTTGGTTAGCTTCTCG -CCAACAGTCTTGGTTAGCTAGACG -CCAACAGTCTTGGTTAGCGTAACG -CCAACAGTCTTGGTTAGCACTTCG -CCAACAGTCTTGGTTAGCTACGCA -CCAACAGTCTTGGTTAGCCTTGCA -CCAACAGTCTTGGTTAGCCGAACA -CCAACAGTCTTGGTTAGCCAGTCA -CCAACAGTCTTGGTTAGCGATCCA -CCAACAGTCTTGGTTAGCACGACA -CCAACAGTCTTGGTTAGCAGCTCA -CCAACAGTCTTGGTTAGCTCACGT -CCAACAGTCTTGGTTAGCCGTAGT -CCAACAGTCTTGGTTAGCGTCAGT -CCAACAGTCTTGGTTAGCGAAGGT -CCAACAGTCTTGGTTAGCAACCGT -CCAACAGTCTTGGTTAGCTTGTGC -CCAACAGTCTTGGTTAGCCTAAGC -CCAACAGTCTTGGTTAGCACTAGC -CCAACAGTCTTGGTTAGCAGATGC -CCAACAGTCTTGGTTAGCTGAAGG -CCAACAGTCTTGGTTAGCCAATGG -CCAACAGTCTTGGTTAGCATGAGG -CCAACAGTCTTGGTTAGCAATGGG -CCAACAGTCTTGGTTAGCTCCTGA -CCAACAGTCTTGGTTAGCTAGCGA -CCAACAGTCTTGGTTAGCCACAGA -CCAACAGTCTTGGTTAGCGCAAGA -CCAACAGTCTTGGTTAGCGGTTGA -CCAACAGTCTTGGTTAGCTCCGAT -CCAACAGTCTTGGTTAGCTGGCAT -CCAACAGTCTTGGTTAGCCGAGAT -CCAACAGTCTTGGTTAGCTACCAC -CCAACAGTCTTGGTTAGCCAGAAC -CCAACAGTCTTGGTTAGCGTCTAC -CCAACAGTCTTGGTTAGCACGTAC -CCAACAGTCTTGGTTAGCAGTGAC -CCAACAGTCTTGGTTAGCCTGTAG -CCAACAGTCTTGGTTAGCCCTAAG -CCAACAGTCTTGGTTAGCGTTCAG -CCAACAGTCTTGGTTAGCGCATAG -CCAACAGTCTTGGTTAGCGACAAG -CCAACAGTCTTGGTTAGCAAGCAG -CCAACAGTCTTGGTTAGCCGTCAA -CCAACAGTCTTGGTTAGCGCTGAA -CCAACAGTCTTGGTTAGCAGTACG -CCAACAGTCTTGGTTAGCATCCGA -CCAACAGTCTTGGTTAGCATGGGA -CCAACAGTCTTGGTTAGCGTGCAA -CCAACAGTCTTGGTTAGCGAGGAA -CCAACAGTCTTGGTTAGCCAGGTA -CCAACAGTCTTGGTTAGCGACTCT -CCAACAGTCTTGGTTAGCAGTCCT -CCAACAGTCTTGGTTAGCTAAGCC -CCAACAGTCTTGGTTAGCATAGCC -CCAACAGTCTTGGTTAGCTAACCG -CCAACAGTCTTGGTTAGCATGCCA -CCAACAGTCTTGGTCTTCGGAAAC -CCAACAGTCTTGGTCTTCAACACC -CCAACAGTCTTGGTCTTCATCGAG -CCAACAGTCTTGGTCTTCCTCCTT -CCAACAGTCTTGGTCTTCCCTGTT -CCAACAGTCTTGGTCTTCCGGTTT -CCAACAGTCTTGGTCTTCGTGGTT -CCAACAGTCTTGGTCTTCGCCTTT -CCAACAGTCTTGGTCTTCGGTCTT -CCAACAGTCTTGGTCTTCACGCTT -CCAACAGTCTTGGTCTTCAGCGTT -CCAACAGTCTTGGTCTTCTTCGTC -CCAACAGTCTTGGTCTTCTCTCTC -CCAACAGTCTTGGTCTTCTGGATC -CCAACAGTCTTGGTCTTCCACTTC -CCAACAGTCTTGGTCTTCGTACTC -CCAACAGTCTTGGTCTTCGATGTC -CCAACAGTCTTGGTCTTCACAGTC -CCAACAGTCTTGGTCTTCTTGCTG -CCAACAGTCTTGGTCTTCTCCATG -CCAACAGTCTTGGTCTTCTGTGTG -CCAACAGTCTTGGTCTTCCTAGTG -CCAACAGTCTTGGTCTTCCATCTG -CCAACAGTCTTGGTCTTCGAGTTG -CCAACAGTCTTGGTCTTCAGACTG -CCAACAGTCTTGGTCTTCTCGGTA -CCAACAGTCTTGGTCTTCTGCCTA -CCAACAGTCTTGGTCTTCCCACTA -CCAACAGTCTTGGTCTTCGGAGTA -CCAACAGTCTTGGTCTTCTCGTCT -CCAACAGTCTTGGTCTTCTGCACT -CCAACAGTCTTGGTCTTCCTGACT -CCAACAGTCTTGGTCTTCCAACCT -CCAACAGTCTTGGTCTTCGCTACT -CCAACAGTCTTGGTCTTCGGATCT -CCAACAGTCTTGGTCTTCAAGGCT -CCAACAGTCTTGGTCTTCTCAACC -CCAACAGTCTTGGTCTTCTGTTCC -CCAACAGTCTTGGTCTTCATTCCC -CCAACAGTCTTGGTCTTCTTCTCG -CCAACAGTCTTGGTCTTCTAGACG -CCAACAGTCTTGGTCTTCGTAACG -CCAACAGTCTTGGTCTTCACTTCG -CCAACAGTCTTGGTCTTCTACGCA -CCAACAGTCTTGGTCTTCCTTGCA -CCAACAGTCTTGGTCTTCCGAACA -CCAACAGTCTTGGTCTTCCAGTCA -CCAACAGTCTTGGTCTTCGATCCA -CCAACAGTCTTGGTCTTCACGACA -CCAACAGTCTTGGTCTTCAGCTCA -CCAACAGTCTTGGTCTTCTCACGT -CCAACAGTCTTGGTCTTCCGTAGT -CCAACAGTCTTGGTCTTCGTCAGT -CCAACAGTCTTGGTCTTCGAAGGT -CCAACAGTCTTGGTCTTCAACCGT -CCAACAGTCTTGGTCTTCTTGTGC -CCAACAGTCTTGGTCTTCCTAAGC -CCAACAGTCTTGGTCTTCACTAGC -CCAACAGTCTTGGTCTTCAGATGC -CCAACAGTCTTGGTCTTCTGAAGG -CCAACAGTCTTGGTCTTCCAATGG -CCAACAGTCTTGGTCTTCATGAGG -CCAACAGTCTTGGTCTTCAATGGG -CCAACAGTCTTGGTCTTCTCCTGA -CCAACAGTCTTGGTCTTCTAGCGA -CCAACAGTCTTGGTCTTCCACAGA -CCAACAGTCTTGGTCTTCGCAAGA -CCAACAGTCTTGGTCTTCGGTTGA -CCAACAGTCTTGGTCTTCTCCGAT -CCAACAGTCTTGGTCTTCTGGCAT -CCAACAGTCTTGGTCTTCCGAGAT -CCAACAGTCTTGGTCTTCTACCAC -CCAACAGTCTTGGTCTTCCAGAAC -CCAACAGTCTTGGTCTTCGTCTAC -CCAACAGTCTTGGTCTTCACGTAC -CCAACAGTCTTGGTCTTCAGTGAC -CCAACAGTCTTGGTCTTCCTGTAG -CCAACAGTCTTGGTCTTCCCTAAG -CCAACAGTCTTGGTCTTCGTTCAG -CCAACAGTCTTGGTCTTCGCATAG -CCAACAGTCTTGGTCTTCGACAAG -CCAACAGTCTTGGTCTTCAAGCAG -CCAACAGTCTTGGTCTTCCGTCAA -CCAACAGTCTTGGTCTTCGCTGAA -CCAACAGTCTTGGTCTTCAGTACG -CCAACAGTCTTGGTCTTCATCCGA -CCAACAGTCTTGGTCTTCATGGGA -CCAACAGTCTTGGTCTTCGTGCAA -CCAACAGTCTTGGTCTTCGAGGAA -CCAACAGTCTTGGTCTTCCAGGTA -CCAACAGTCTTGGTCTTCGACTCT -CCAACAGTCTTGGTCTTCAGTCCT -CCAACAGTCTTGGTCTTCTAAGCC -CCAACAGTCTTGGTCTTCATAGCC -CCAACAGTCTTGGTCTTCTAACCG -CCAACAGTCTTGGTCTTCATGCCA -CCAACAGTCTTGCTCTCTGGAAAC -CCAACAGTCTTGCTCTCTAACACC -CCAACAGTCTTGCTCTCTATCGAG -CCAACAGTCTTGCTCTCTCTCCTT -CCAACAGTCTTGCTCTCTCCTGTT -CCAACAGTCTTGCTCTCTCGGTTT -CCAACAGTCTTGCTCTCTGTGGTT -CCAACAGTCTTGCTCTCTGCCTTT -CCAACAGTCTTGCTCTCTGGTCTT -CCAACAGTCTTGCTCTCTACGCTT -CCAACAGTCTTGCTCTCTAGCGTT -CCAACAGTCTTGCTCTCTTTCGTC -CCAACAGTCTTGCTCTCTTCTCTC -CCAACAGTCTTGCTCTCTTGGATC -CCAACAGTCTTGCTCTCTCACTTC -CCAACAGTCTTGCTCTCTGTACTC -CCAACAGTCTTGCTCTCTGATGTC -CCAACAGTCTTGCTCTCTACAGTC -CCAACAGTCTTGCTCTCTTTGCTG -CCAACAGTCTTGCTCTCTTCCATG -CCAACAGTCTTGCTCTCTTGTGTG -CCAACAGTCTTGCTCTCTCTAGTG -CCAACAGTCTTGCTCTCTCATCTG -CCAACAGTCTTGCTCTCTGAGTTG -CCAACAGTCTTGCTCTCTAGACTG -CCAACAGTCTTGCTCTCTTCGGTA -CCAACAGTCTTGCTCTCTTGCCTA -CCAACAGTCTTGCTCTCTCCACTA -CCAACAGTCTTGCTCTCTGGAGTA -CCAACAGTCTTGCTCTCTTCGTCT -CCAACAGTCTTGCTCTCTTGCACT -CCAACAGTCTTGCTCTCTCTGACT -CCAACAGTCTTGCTCTCTCAACCT -CCAACAGTCTTGCTCTCTGCTACT -CCAACAGTCTTGCTCTCTGGATCT -CCAACAGTCTTGCTCTCTAAGGCT -CCAACAGTCTTGCTCTCTTCAACC -CCAACAGTCTTGCTCTCTTGTTCC -CCAACAGTCTTGCTCTCTATTCCC -CCAACAGTCTTGCTCTCTTTCTCG -CCAACAGTCTTGCTCTCTTAGACG -CCAACAGTCTTGCTCTCTGTAACG -CCAACAGTCTTGCTCTCTACTTCG -CCAACAGTCTTGCTCTCTTACGCA -CCAACAGTCTTGCTCTCTCTTGCA -CCAACAGTCTTGCTCTCTCGAACA -CCAACAGTCTTGCTCTCTCAGTCA -CCAACAGTCTTGCTCTCTGATCCA -CCAACAGTCTTGCTCTCTACGACA -CCAACAGTCTTGCTCTCTAGCTCA -CCAACAGTCTTGCTCTCTTCACGT -CCAACAGTCTTGCTCTCTCGTAGT -CCAACAGTCTTGCTCTCTGTCAGT -CCAACAGTCTTGCTCTCTGAAGGT -CCAACAGTCTTGCTCTCTAACCGT -CCAACAGTCTTGCTCTCTTTGTGC -CCAACAGTCTTGCTCTCTCTAAGC -CCAACAGTCTTGCTCTCTACTAGC -CCAACAGTCTTGCTCTCTAGATGC -CCAACAGTCTTGCTCTCTTGAAGG -CCAACAGTCTTGCTCTCTCAATGG -CCAACAGTCTTGCTCTCTATGAGG -CCAACAGTCTTGCTCTCTAATGGG -CCAACAGTCTTGCTCTCTTCCTGA -CCAACAGTCTTGCTCTCTTAGCGA -CCAACAGTCTTGCTCTCTCACAGA -CCAACAGTCTTGCTCTCTGCAAGA -CCAACAGTCTTGCTCTCTGGTTGA -CCAACAGTCTTGCTCTCTTCCGAT -CCAACAGTCTTGCTCTCTTGGCAT -CCAACAGTCTTGCTCTCTCGAGAT -CCAACAGTCTTGCTCTCTTACCAC -CCAACAGTCTTGCTCTCTCAGAAC -CCAACAGTCTTGCTCTCTGTCTAC -CCAACAGTCTTGCTCTCTACGTAC -CCAACAGTCTTGCTCTCTAGTGAC -CCAACAGTCTTGCTCTCTCTGTAG -CCAACAGTCTTGCTCTCTCCTAAG -CCAACAGTCTTGCTCTCTGTTCAG -CCAACAGTCTTGCTCTCTGCATAG -CCAACAGTCTTGCTCTCTGACAAG -CCAACAGTCTTGCTCTCTAAGCAG -CCAACAGTCTTGCTCTCTCGTCAA -CCAACAGTCTTGCTCTCTGCTGAA -CCAACAGTCTTGCTCTCTAGTACG -CCAACAGTCTTGCTCTCTATCCGA -CCAACAGTCTTGCTCTCTATGGGA -CCAACAGTCTTGCTCTCTGTGCAA -CCAACAGTCTTGCTCTCTGAGGAA -CCAACAGTCTTGCTCTCTCAGGTA -CCAACAGTCTTGCTCTCTGACTCT -CCAACAGTCTTGCTCTCTAGTCCT -CCAACAGTCTTGCTCTCTTAAGCC -CCAACAGTCTTGCTCTCTATAGCC -CCAACAGTCTTGCTCTCTTAACCG -CCAACAGTCTTGCTCTCTATGCCA -CCAACAGTCTTGATCTGGGGAAAC -CCAACAGTCTTGATCTGGAACACC -CCAACAGTCTTGATCTGGATCGAG -CCAACAGTCTTGATCTGGCTCCTT -CCAACAGTCTTGATCTGGCCTGTT -CCAACAGTCTTGATCTGGCGGTTT -CCAACAGTCTTGATCTGGGTGGTT -CCAACAGTCTTGATCTGGGCCTTT -CCAACAGTCTTGATCTGGGGTCTT -CCAACAGTCTTGATCTGGACGCTT -CCAACAGTCTTGATCTGGAGCGTT -CCAACAGTCTTGATCTGGTTCGTC -CCAACAGTCTTGATCTGGTCTCTC -CCAACAGTCTTGATCTGGTGGATC -CCAACAGTCTTGATCTGGCACTTC -CCAACAGTCTTGATCTGGGTACTC -CCAACAGTCTTGATCTGGGATGTC -CCAACAGTCTTGATCTGGACAGTC -CCAACAGTCTTGATCTGGTTGCTG -CCAACAGTCTTGATCTGGTCCATG -CCAACAGTCTTGATCTGGTGTGTG -CCAACAGTCTTGATCTGGCTAGTG -CCAACAGTCTTGATCTGGCATCTG -CCAACAGTCTTGATCTGGGAGTTG -CCAACAGTCTTGATCTGGAGACTG -CCAACAGTCTTGATCTGGTCGGTA -CCAACAGTCTTGATCTGGTGCCTA -CCAACAGTCTTGATCTGGCCACTA -CCAACAGTCTTGATCTGGGGAGTA -CCAACAGTCTTGATCTGGTCGTCT -CCAACAGTCTTGATCTGGTGCACT -CCAACAGTCTTGATCTGGCTGACT -CCAACAGTCTTGATCTGGCAACCT -CCAACAGTCTTGATCTGGGCTACT -CCAACAGTCTTGATCTGGGGATCT -CCAACAGTCTTGATCTGGAAGGCT -CCAACAGTCTTGATCTGGTCAACC -CCAACAGTCTTGATCTGGTGTTCC -CCAACAGTCTTGATCTGGATTCCC -CCAACAGTCTTGATCTGGTTCTCG -CCAACAGTCTTGATCTGGTAGACG -CCAACAGTCTTGATCTGGGTAACG -CCAACAGTCTTGATCTGGACTTCG -CCAACAGTCTTGATCTGGTACGCA -CCAACAGTCTTGATCTGGCTTGCA -CCAACAGTCTTGATCTGGCGAACA -CCAACAGTCTTGATCTGGCAGTCA -CCAACAGTCTTGATCTGGGATCCA -CCAACAGTCTTGATCTGGACGACA -CCAACAGTCTTGATCTGGAGCTCA -CCAACAGTCTTGATCTGGTCACGT -CCAACAGTCTTGATCTGGCGTAGT -CCAACAGTCTTGATCTGGGTCAGT -CCAACAGTCTTGATCTGGGAAGGT -CCAACAGTCTTGATCTGGAACCGT -CCAACAGTCTTGATCTGGTTGTGC -CCAACAGTCTTGATCTGGCTAAGC -CCAACAGTCTTGATCTGGACTAGC -CCAACAGTCTTGATCTGGAGATGC -CCAACAGTCTTGATCTGGTGAAGG -CCAACAGTCTTGATCTGGCAATGG -CCAACAGTCTTGATCTGGATGAGG -CCAACAGTCTTGATCTGGAATGGG -CCAACAGTCTTGATCTGGTCCTGA -CCAACAGTCTTGATCTGGTAGCGA -CCAACAGTCTTGATCTGGCACAGA -CCAACAGTCTTGATCTGGGCAAGA -CCAACAGTCTTGATCTGGGGTTGA -CCAACAGTCTTGATCTGGTCCGAT -CCAACAGTCTTGATCTGGTGGCAT -CCAACAGTCTTGATCTGGCGAGAT -CCAACAGTCTTGATCTGGTACCAC -CCAACAGTCTTGATCTGGCAGAAC -CCAACAGTCTTGATCTGGGTCTAC -CCAACAGTCTTGATCTGGACGTAC -CCAACAGTCTTGATCTGGAGTGAC -CCAACAGTCTTGATCTGGCTGTAG -CCAACAGTCTTGATCTGGCCTAAG -CCAACAGTCTTGATCTGGGTTCAG -CCAACAGTCTTGATCTGGGCATAG -CCAACAGTCTTGATCTGGGACAAG -CCAACAGTCTTGATCTGGAAGCAG -CCAACAGTCTTGATCTGGCGTCAA -CCAACAGTCTTGATCTGGGCTGAA -CCAACAGTCTTGATCTGGAGTACG -CCAACAGTCTTGATCTGGATCCGA -CCAACAGTCTTGATCTGGATGGGA -CCAACAGTCTTGATCTGGGTGCAA -CCAACAGTCTTGATCTGGGAGGAA -CCAACAGTCTTGATCTGGCAGGTA -CCAACAGTCTTGATCTGGGACTCT -CCAACAGTCTTGATCTGGAGTCCT -CCAACAGTCTTGATCTGGTAAGCC -CCAACAGTCTTGATCTGGATAGCC -CCAACAGTCTTGATCTGGTAACCG -CCAACAGTCTTGATCTGGATGCCA -CCAACAGTCTTGTTCCACGGAAAC -CCAACAGTCTTGTTCCACAACACC -CCAACAGTCTTGTTCCACATCGAG -CCAACAGTCTTGTTCCACCTCCTT -CCAACAGTCTTGTTCCACCCTGTT -CCAACAGTCTTGTTCCACCGGTTT -CCAACAGTCTTGTTCCACGTGGTT -CCAACAGTCTTGTTCCACGCCTTT -CCAACAGTCTTGTTCCACGGTCTT -CCAACAGTCTTGTTCCACACGCTT -CCAACAGTCTTGTTCCACAGCGTT -CCAACAGTCTTGTTCCACTTCGTC -CCAACAGTCTTGTTCCACTCTCTC -CCAACAGTCTTGTTCCACTGGATC -CCAACAGTCTTGTTCCACCACTTC -CCAACAGTCTTGTTCCACGTACTC -CCAACAGTCTTGTTCCACGATGTC -CCAACAGTCTTGTTCCACACAGTC -CCAACAGTCTTGTTCCACTTGCTG -CCAACAGTCTTGTTCCACTCCATG -CCAACAGTCTTGTTCCACTGTGTG -CCAACAGTCTTGTTCCACCTAGTG -CCAACAGTCTTGTTCCACCATCTG -CCAACAGTCTTGTTCCACGAGTTG -CCAACAGTCTTGTTCCACAGACTG -CCAACAGTCTTGTTCCACTCGGTA -CCAACAGTCTTGTTCCACTGCCTA -CCAACAGTCTTGTTCCACCCACTA -CCAACAGTCTTGTTCCACGGAGTA -CCAACAGTCTTGTTCCACTCGTCT -CCAACAGTCTTGTTCCACTGCACT -CCAACAGTCTTGTTCCACCTGACT -CCAACAGTCTTGTTCCACCAACCT -CCAACAGTCTTGTTCCACGCTACT -CCAACAGTCTTGTTCCACGGATCT -CCAACAGTCTTGTTCCACAAGGCT -CCAACAGTCTTGTTCCACTCAACC -CCAACAGTCTTGTTCCACTGTTCC -CCAACAGTCTTGTTCCACATTCCC -CCAACAGTCTTGTTCCACTTCTCG -CCAACAGTCTTGTTCCACTAGACG -CCAACAGTCTTGTTCCACGTAACG -CCAACAGTCTTGTTCCACACTTCG -CCAACAGTCTTGTTCCACTACGCA -CCAACAGTCTTGTTCCACCTTGCA -CCAACAGTCTTGTTCCACCGAACA -CCAACAGTCTTGTTCCACCAGTCA -CCAACAGTCTTGTTCCACGATCCA -CCAACAGTCTTGTTCCACACGACA -CCAACAGTCTTGTTCCACAGCTCA -CCAACAGTCTTGTTCCACTCACGT -CCAACAGTCTTGTTCCACCGTAGT -CCAACAGTCTTGTTCCACGTCAGT -CCAACAGTCTTGTTCCACGAAGGT -CCAACAGTCTTGTTCCACAACCGT -CCAACAGTCTTGTTCCACTTGTGC -CCAACAGTCTTGTTCCACCTAAGC -CCAACAGTCTTGTTCCACACTAGC -CCAACAGTCTTGTTCCACAGATGC -CCAACAGTCTTGTTCCACTGAAGG -CCAACAGTCTTGTTCCACCAATGG -CCAACAGTCTTGTTCCACATGAGG -CCAACAGTCTTGTTCCACAATGGG -CCAACAGTCTTGTTCCACTCCTGA -CCAACAGTCTTGTTCCACTAGCGA -CCAACAGTCTTGTTCCACCACAGA -CCAACAGTCTTGTTCCACGCAAGA -CCAACAGTCTTGTTCCACGGTTGA -CCAACAGTCTTGTTCCACTCCGAT -CCAACAGTCTTGTTCCACTGGCAT -CCAACAGTCTTGTTCCACCGAGAT -CCAACAGTCTTGTTCCACTACCAC -CCAACAGTCTTGTTCCACCAGAAC -CCAACAGTCTTGTTCCACGTCTAC -CCAACAGTCTTGTTCCACACGTAC -CCAACAGTCTTGTTCCACAGTGAC -CCAACAGTCTTGTTCCACCTGTAG -CCAACAGTCTTGTTCCACCCTAAG -CCAACAGTCTTGTTCCACGTTCAG -CCAACAGTCTTGTTCCACGCATAG -CCAACAGTCTTGTTCCACGACAAG -CCAACAGTCTTGTTCCACAAGCAG -CCAACAGTCTTGTTCCACCGTCAA -CCAACAGTCTTGTTCCACGCTGAA -CCAACAGTCTTGTTCCACAGTACG -CCAACAGTCTTGTTCCACATCCGA -CCAACAGTCTTGTTCCACATGGGA -CCAACAGTCTTGTTCCACGTGCAA -CCAACAGTCTTGTTCCACGAGGAA -CCAACAGTCTTGTTCCACCAGGTA -CCAACAGTCTTGTTCCACGACTCT -CCAACAGTCTTGTTCCACAGTCCT -CCAACAGTCTTGTTCCACTAAGCC -CCAACAGTCTTGTTCCACATAGCC -CCAACAGTCTTGTTCCACTAACCG -CCAACAGTCTTGTTCCACATGCCA -CCAACAGTCTTGCTCGTAGGAAAC -CCAACAGTCTTGCTCGTAAACACC -CCAACAGTCTTGCTCGTAATCGAG -CCAACAGTCTTGCTCGTACTCCTT -CCAACAGTCTTGCTCGTACCTGTT -CCAACAGTCTTGCTCGTACGGTTT -CCAACAGTCTTGCTCGTAGTGGTT -CCAACAGTCTTGCTCGTAGCCTTT -CCAACAGTCTTGCTCGTAGGTCTT -CCAACAGTCTTGCTCGTAACGCTT -CCAACAGTCTTGCTCGTAAGCGTT -CCAACAGTCTTGCTCGTATTCGTC -CCAACAGTCTTGCTCGTATCTCTC -CCAACAGTCTTGCTCGTATGGATC -CCAACAGTCTTGCTCGTACACTTC -CCAACAGTCTTGCTCGTAGTACTC -CCAACAGTCTTGCTCGTAGATGTC -CCAACAGTCTTGCTCGTAACAGTC -CCAACAGTCTTGCTCGTATTGCTG -CCAACAGTCTTGCTCGTATCCATG -CCAACAGTCTTGCTCGTATGTGTG -CCAACAGTCTTGCTCGTACTAGTG -CCAACAGTCTTGCTCGTACATCTG -CCAACAGTCTTGCTCGTAGAGTTG -CCAACAGTCTTGCTCGTAAGACTG -CCAACAGTCTTGCTCGTATCGGTA -CCAACAGTCTTGCTCGTATGCCTA -CCAACAGTCTTGCTCGTACCACTA -CCAACAGTCTTGCTCGTAGGAGTA -CCAACAGTCTTGCTCGTATCGTCT -CCAACAGTCTTGCTCGTATGCACT -CCAACAGTCTTGCTCGTACTGACT -CCAACAGTCTTGCTCGTACAACCT -CCAACAGTCTTGCTCGTAGCTACT -CCAACAGTCTTGCTCGTAGGATCT -CCAACAGTCTTGCTCGTAAAGGCT -CCAACAGTCTTGCTCGTATCAACC -CCAACAGTCTTGCTCGTATGTTCC -CCAACAGTCTTGCTCGTAATTCCC -CCAACAGTCTTGCTCGTATTCTCG -CCAACAGTCTTGCTCGTATAGACG -CCAACAGTCTTGCTCGTAGTAACG -CCAACAGTCTTGCTCGTAACTTCG -CCAACAGTCTTGCTCGTATACGCA -CCAACAGTCTTGCTCGTACTTGCA -CCAACAGTCTTGCTCGTACGAACA -CCAACAGTCTTGCTCGTACAGTCA -CCAACAGTCTTGCTCGTAGATCCA -CCAACAGTCTTGCTCGTAACGACA -CCAACAGTCTTGCTCGTAAGCTCA -CCAACAGTCTTGCTCGTATCACGT -CCAACAGTCTTGCTCGTACGTAGT -CCAACAGTCTTGCTCGTAGTCAGT -CCAACAGTCTTGCTCGTAGAAGGT -CCAACAGTCTTGCTCGTAAACCGT -CCAACAGTCTTGCTCGTATTGTGC -CCAACAGTCTTGCTCGTACTAAGC -CCAACAGTCTTGCTCGTAACTAGC -CCAACAGTCTTGCTCGTAAGATGC -CCAACAGTCTTGCTCGTATGAAGG -CCAACAGTCTTGCTCGTACAATGG -CCAACAGTCTTGCTCGTAATGAGG -CCAACAGTCTTGCTCGTAAATGGG -CCAACAGTCTTGCTCGTATCCTGA -CCAACAGTCTTGCTCGTATAGCGA -CCAACAGTCTTGCTCGTACACAGA -CCAACAGTCTTGCTCGTAGCAAGA -CCAACAGTCTTGCTCGTAGGTTGA -CCAACAGTCTTGCTCGTATCCGAT -CCAACAGTCTTGCTCGTATGGCAT -CCAACAGTCTTGCTCGTACGAGAT -CCAACAGTCTTGCTCGTATACCAC -CCAACAGTCTTGCTCGTACAGAAC -CCAACAGTCTTGCTCGTAGTCTAC -CCAACAGTCTTGCTCGTAACGTAC -CCAACAGTCTTGCTCGTAAGTGAC -CCAACAGTCTTGCTCGTACTGTAG -CCAACAGTCTTGCTCGTACCTAAG -CCAACAGTCTTGCTCGTAGTTCAG -CCAACAGTCTTGCTCGTAGCATAG -CCAACAGTCTTGCTCGTAGACAAG -CCAACAGTCTTGCTCGTAAAGCAG -CCAACAGTCTTGCTCGTACGTCAA -CCAACAGTCTTGCTCGTAGCTGAA -CCAACAGTCTTGCTCGTAAGTACG -CCAACAGTCTTGCTCGTAATCCGA -CCAACAGTCTTGCTCGTAATGGGA -CCAACAGTCTTGCTCGTAGTGCAA -CCAACAGTCTTGCTCGTAGAGGAA -CCAACAGTCTTGCTCGTACAGGTA -CCAACAGTCTTGCTCGTAGACTCT -CCAACAGTCTTGCTCGTAAGTCCT -CCAACAGTCTTGCTCGTATAAGCC -CCAACAGTCTTGCTCGTAATAGCC -CCAACAGTCTTGCTCGTATAACCG -CCAACAGTCTTGCTCGTAATGCCA -CCAACAGTCTTGGTCGATGGAAAC -CCAACAGTCTTGGTCGATAACACC -CCAACAGTCTTGGTCGATATCGAG -CCAACAGTCTTGGTCGATCTCCTT -CCAACAGTCTTGGTCGATCCTGTT -CCAACAGTCTTGGTCGATCGGTTT -CCAACAGTCTTGGTCGATGTGGTT -CCAACAGTCTTGGTCGATGCCTTT -CCAACAGTCTTGGTCGATGGTCTT -CCAACAGTCTTGGTCGATACGCTT -CCAACAGTCTTGGTCGATAGCGTT -CCAACAGTCTTGGTCGATTTCGTC -CCAACAGTCTTGGTCGATTCTCTC -CCAACAGTCTTGGTCGATTGGATC -CCAACAGTCTTGGTCGATCACTTC -CCAACAGTCTTGGTCGATGTACTC -CCAACAGTCTTGGTCGATGATGTC -CCAACAGTCTTGGTCGATACAGTC -CCAACAGTCTTGGTCGATTTGCTG -CCAACAGTCTTGGTCGATTCCATG -CCAACAGTCTTGGTCGATTGTGTG -CCAACAGTCTTGGTCGATCTAGTG -CCAACAGTCTTGGTCGATCATCTG -CCAACAGTCTTGGTCGATGAGTTG -CCAACAGTCTTGGTCGATAGACTG -CCAACAGTCTTGGTCGATTCGGTA -CCAACAGTCTTGGTCGATTGCCTA -CCAACAGTCTTGGTCGATCCACTA -CCAACAGTCTTGGTCGATGGAGTA -CCAACAGTCTTGGTCGATTCGTCT -CCAACAGTCTTGGTCGATTGCACT -CCAACAGTCTTGGTCGATCTGACT -CCAACAGTCTTGGTCGATCAACCT -CCAACAGTCTTGGTCGATGCTACT -CCAACAGTCTTGGTCGATGGATCT -CCAACAGTCTTGGTCGATAAGGCT -CCAACAGTCTTGGTCGATTCAACC -CCAACAGTCTTGGTCGATTGTTCC -CCAACAGTCTTGGTCGATATTCCC -CCAACAGTCTTGGTCGATTTCTCG -CCAACAGTCTTGGTCGATTAGACG -CCAACAGTCTTGGTCGATGTAACG -CCAACAGTCTTGGTCGATACTTCG -CCAACAGTCTTGGTCGATTACGCA -CCAACAGTCTTGGTCGATCTTGCA -CCAACAGTCTTGGTCGATCGAACA -CCAACAGTCTTGGTCGATCAGTCA -CCAACAGTCTTGGTCGATGATCCA -CCAACAGTCTTGGTCGATACGACA -CCAACAGTCTTGGTCGATAGCTCA -CCAACAGTCTTGGTCGATTCACGT -CCAACAGTCTTGGTCGATCGTAGT -CCAACAGTCTTGGTCGATGTCAGT -CCAACAGTCTTGGTCGATGAAGGT -CCAACAGTCTTGGTCGATAACCGT -CCAACAGTCTTGGTCGATTTGTGC -CCAACAGTCTTGGTCGATCTAAGC -CCAACAGTCTTGGTCGATACTAGC -CCAACAGTCTTGGTCGATAGATGC -CCAACAGTCTTGGTCGATTGAAGG -CCAACAGTCTTGGTCGATCAATGG -CCAACAGTCTTGGTCGATATGAGG -CCAACAGTCTTGGTCGATAATGGG -CCAACAGTCTTGGTCGATTCCTGA -CCAACAGTCTTGGTCGATTAGCGA -CCAACAGTCTTGGTCGATCACAGA -CCAACAGTCTTGGTCGATGCAAGA -CCAACAGTCTTGGTCGATGGTTGA -CCAACAGTCTTGGTCGATTCCGAT -CCAACAGTCTTGGTCGATTGGCAT -CCAACAGTCTTGGTCGATCGAGAT -CCAACAGTCTTGGTCGATTACCAC -CCAACAGTCTTGGTCGATCAGAAC -CCAACAGTCTTGGTCGATGTCTAC -CCAACAGTCTTGGTCGATACGTAC -CCAACAGTCTTGGTCGATAGTGAC -CCAACAGTCTTGGTCGATCTGTAG -CCAACAGTCTTGGTCGATCCTAAG -CCAACAGTCTTGGTCGATGTTCAG -CCAACAGTCTTGGTCGATGCATAG -CCAACAGTCTTGGTCGATGACAAG -CCAACAGTCTTGGTCGATAAGCAG -CCAACAGTCTTGGTCGATCGTCAA -CCAACAGTCTTGGTCGATGCTGAA -CCAACAGTCTTGGTCGATAGTACG -CCAACAGTCTTGGTCGATATCCGA -CCAACAGTCTTGGTCGATATGGGA -CCAACAGTCTTGGTCGATGTGCAA -CCAACAGTCTTGGTCGATGAGGAA -CCAACAGTCTTGGTCGATCAGGTA -CCAACAGTCTTGGTCGATGACTCT -CCAACAGTCTTGGTCGATAGTCCT -CCAACAGTCTTGGTCGATTAAGCC -CCAACAGTCTTGGTCGATATAGCC -CCAACAGTCTTGGTCGATTAACCG -CCAACAGTCTTGGTCGATATGCCA -CCAACAGTCTTGGTCACAGGAAAC -CCAACAGTCTTGGTCACAAACACC -CCAACAGTCTTGGTCACAATCGAG -CCAACAGTCTTGGTCACACTCCTT -CCAACAGTCTTGGTCACACCTGTT -CCAACAGTCTTGGTCACACGGTTT -CCAACAGTCTTGGTCACAGTGGTT -CCAACAGTCTTGGTCACAGCCTTT -CCAACAGTCTTGGTCACAGGTCTT -CCAACAGTCTTGGTCACAACGCTT -CCAACAGTCTTGGTCACAAGCGTT -CCAACAGTCTTGGTCACATTCGTC -CCAACAGTCTTGGTCACATCTCTC -CCAACAGTCTTGGTCACATGGATC -CCAACAGTCTTGGTCACACACTTC -CCAACAGTCTTGGTCACAGTACTC -CCAACAGTCTTGGTCACAGATGTC -CCAACAGTCTTGGTCACAACAGTC -CCAACAGTCTTGGTCACATTGCTG -CCAACAGTCTTGGTCACATCCATG -CCAACAGTCTTGGTCACATGTGTG -CCAACAGTCTTGGTCACACTAGTG -CCAACAGTCTTGGTCACACATCTG -CCAACAGTCTTGGTCACAGAGTTG -CCAACAGTCTTGGTCACAAGACTG -CCAACAGTCTTGGTCACATCGGTA -CCAACAGTCTTGGTCACATGCCTA -CCAACAGTCTTGGTCACACCACTA -CCAACAGTCTTGGTCACAGGAGTA -CCAACAGTCTTGGTCACATCGTCT -CCAACAGTCTTGGTCACATGCACT -CCAACAGTCTTGGTCACACTGACT -CCAACAGTCTTGGTCACACAACCT -CCAACAGTCTTGGTCACAGCTACT -CCAACAGTCTTGGTCACAGGATCT -CCAACAGTCTTGGTCACAAAGGCT -CCAACAGTCTTGGTCACATCAACC -CCAACAGTCTTGGTCACATGTTCC -CCAACAGTCTTGGTCACAATTCCC -CCAACAGTCTTGGTCACATTCTCG -CCAACAGTCTTGGTCACATAGACG -CCAACAGTCTTGGTCACAGTAACG -CCAACAGTCTTGGTCACAACTTCG -CCAACAGTCTTGGTCACATACGCA -CCAACAGTCTTGGTCACACTTGCA -CCAACAGTCTTGGTCACACGAACA -CCAACAGTCTTGGTCACACAGTCA -CCAACAGTCTTGGTCACAGATCCA -CCAACAGTCTTGGTCACAACGACA -CCAACAGTCTTGGTCACAAGCTCA -CCAACAGTCTTGGTCACATCACGT -CCAACAGTCTTGGTCACACGTAGT -CCAACAGTCTTGGTCACAGTCAGT -CCAACAGTCTTGGTCACAGAAGGT -CCAACAGTCTTGGTCACAAACCGT -CCAACAGTCTTGGTCACATTGTGC -CCAACAGTCTTGGTCACACTAAGC -CCAACAGTCTTGGTCACAACTAGC -CCAACAGTCTTGGTCACAAGATGC -CCAACAGTCTTGGTCACATGAAGG -CCAACAGTCTTGGTCACACAATGG -CCAACAGTCTTGGTCACAATGAGG -CCAACAGTCTTGGTCACAAATGGG -CCAACAGTCTTGGTCACATCCTGA -CCAACAGTCTTGGTCACATAGCGA -CCAACAGTCTTGGTCACACACAGA -CCAACAGTCTTGGTCACAGCAAGA -CCAACAGTCTTGGTCACAGGTTGA -CCAACAGTCTTGGTCACATCCGAT -CCAACAGTCTTGGTCACATGGCAT -CCAACAGTCTTGGTCACACGAGAT -CCAACAGTCTTGGTCACATACCAC -CCAACAGTCTTGGTCACACAGAAC -CCAACAGTCTTGGTCACAGTCTAC -CCAACAGTCTTGGTCACAACGTAC -CCAACAGTCTTGGTCACAAGTGAC -CCAACAGTCTTGGTCACACTGTAG -CCAACAGTCTTGGTCACACCTAAG -CCAACAGTCTTGGTCACAGTTCAG -CCAACAGTCTTGGTCACAGCATAG -CCAACAGTCTTGGTCACAGACAAG -CCAACAGTCTTGGTCACAAAGCAG -CCAACAGTCTTGGTCACACGTCAA -CCAACAGTCTTGGTCACAGCTGAA -CCAACAGTCTTGGTCACAAGTACG -CCAACAGTCTTGGTCACAATCCGA -CCAACAGTCTTGGTCACAATGGGA -CCAACAGTCTTGGTCACAGTGCAA -CCAACAGTCTTGGTCACAGAGGAA -CCAACAGTCTTGGTCACACAGGTA -CCAACAGTCTTGGTCACAGACTCT -CCAACAGTCTTGGTCACAAGTCCT -CCAACAGTCTTGGTCACATAAGCC -CCAACAGTCTTGGTCACAATAGCC -CCAACAGTCTTGGTCACATAACCG -CCAACAGTCTTGGTCACAATGCCA -CCAACAGTCTTGCTGTTGGGAAAC -CCAACAGTCTTGCTGTTGAACACC -CCAACAGTCTTGCTGTTGATCGAG -CCAACAGTCTTGCTGTTGCTCCTT -CCAACAGTCTTGCTGTTGCCTGTT -CCAACAGTCTTGCTGTTGCGGTTT -CCAACAGTCTTGCTGTTGGTGGTT -CCAACAGTCTTGCTGTTGGCCTTT -CCAACAGTCTTGCTGTTGGGTCTT -CCAACAGTCTTGCTGTTGACGCTT -CCAACAGTCTTGCTGTTGAGCGTT -CCAACAGTCTTGCTGTTGTTCGTC -CCAACAGTCTTGCTGTTGTCTCTC -CCAACAGTCTTGCTGTTGTGGATC -CCAACAGTCTTGCTGTTGCACTTC -CCAACAGTCTTGCTGTTGGTACTC -CCAACAGTCTTGCTGTTGGATGTC -CCAACAGTCTTGCTGTTGACAGTC -CCAACAGTCTTGCTGTTGTTGCTG -CCAACAGTCTTGCTGTTGTCCATG -CCAACAGTCTTGCTGTTGTGTGTG -CCAACAGTCTTGCTGTTGCTAGTG -CCAACAGTCTTGCTGTTGCATCTG -CCAACAGTCTTGCTGTTGGAGTTG -CCAACAGTCTTGCTGTTGAGACTG -CCAACAGTCTTGCTGTTGTCGGTA -CCAACAGTCTTGCTGTTGTGCCTA -CCAACAGTCTTGCTGTTGCCACTA -CCAACAGTCTTGCTGTTGGGAGTA -CCAACAGTCTTGCTGTTGTCGTCT -CCAACAGTCTTGCTGTTGTGCACT -CCAACAGTCTTGCTGTTGCTGACT -CCAACAGTCTTGCTGTTGCAACCT -CCAACAGTCTTGCTGTTGGCTACT -CCAACAGTCTTGCTGTTGGGATCT -CCAACAGTCTTGCTGTTGAAGGCT -CCAACAGTCTTGCTGTTGTCAACC -CCAACAGTCTTGCTGTTGTGTTCC -CCAACAGTCTTGCTGTTGATTCCC -CCAACAGTCTTGCTGTTGTTCTCG -CCAACAGTCTTGCTGTTGTAGACG -CCAACAGTCTTGCTGTTGGTAACG -CCAACAGTCTTGCTGTTGACTTCG -CCAACAGTCTTGCTGTTGTACGCA -CCAACAGTCTTGCTGTTGCTTGCA -CCAACAGTCTTGCTGTTGCGAACA -CCAACAGTCTTGCTGTTGCAGTCA -CCAACAGTCTTGCTGTTGGATCCA -CCAACAGTCTTGCTGTTGACGACA -CCAACAGTCTTGCTGTTGAGCTCA -CCAACAGTCTTGCTGTTGTCACGT -CCAACAGTCTTGCTGTTGCGTAGT -CCAACAGTCTTGCTGTTGGTCAGT -CCAACAGTCTTGCTGTTGGAAGGT -CCAACAGTCTTGCTGTTGAACCGT -CCAACAGTCTTGCTGTTGTTGTGC -CCAACAGTCTTGCTGTTGCTAAGC -CCAACAGTCTTGCTGTTGACTAGC -CCAACAGTCTTGCTGTTGAGATGC -CCAACAGTCTTGCTGTTGTGAAGG -CCAACAGTCTTGCTGTTGCAATGG -CCAACAGTCTTGCTGTTGATGAGG -CCAACAGTCTTGCTGTTGAATGGG -CCAACAGTCTTGCTGTTGTCCTGA -CCAACAGTCTTGCTGTTGTAGCGA -CCAACAGTCTTGCTGTTGCACAGA -CCAACAGTCTTGCTGTTGGCAAGA -CCAACAGTCTTGCTGTTGGGTTGA -CCAACAGTCTTGCTGTTGTCCGAT -CCAACAGTCTTGCTGTTGTGGCAT -CCAACAGTCTTGCTGTTGCGAGAT -CCAACAGTCTTGCTGTTGTACCAC -CCAACAGTCTTGCTGTTGCAGAAC -CCAACAGTCTTGCTGTTGGTCTAC -CCAACAGTCTTGCTGTTGACGTAC -CCAACAGTCTTGCTGTTGAGTGAC -CCAACAGTCTTGCTGTTGCTGTAG -CCAACAGTCTTGCTGTTGCCTAAG -CCAACAGTCTTGCTGTTGGTTCAG -CCAACAGTCTTGCTGTTGGCATAG -CCAACAGTCTTGCTGTTGGACAAG -CCAACAGTCTTGCTGTTGAAGCAG -CCAACAGTCTTGCTGTTGCGTCAA -CCAACAGTCTTGCTGTTGGCTGAA -CCAACAGTCTTGCTGTTGAGTACG -CCAACAGTCTTGCTGTTGATCCGA -CCAACAGTCTTGCTGTTGATGGGA -CCAACAGTCTTGCTGTTGGTGCAA -CCAACAGTCTTGCTGTTGGAGGAA -CCAACAGTCTTGCTGTTGCAGGTA -CCAACAGTCTTGCTGTTGGACTCT -CCAACAGTCTTGCTGTTGAGTCCT -CCAACAGTCTTGCTGTTGTAAGCC -CCAACAGTCTTGCTGTTGATAGCC -CCAACAGTCTTGCTGTTGTAACCG -CCAACAGTCTTGCTGTTGATGCCA -CCAACAGTCTTGATGTCCGGAAAC -CCAACAGTCTTGATGTCCAACACC -CCAACAGTCTTGATGTCCATCGAG -CCAACAGTCTTGATGTCCCTCCTT -CCAACAGTCTTGATGTCCCCTGTT -CCAACAGTCTTGATGTCCCGGTTT -CCAACAGTCTTGATGTCCGTGGTT -CCAACAGTCTTGATGTCCGCCTTT -CCAACAGTCTTGATGTCCGGTCTT -CCAACAGTCTTGATGTCCACGCTT -CCAACAGTCTTGATGTCCAGCGTT -CCAACAGTCTTGATGTCCTTCGTC -CCAACAGTCTTGATGTCCTCTCTC -CCAACAGTCTTGATGTCCTGGATC -CCAACAGTCTTGATGTCCCACTTC -CCAACAGTCTTGATGTCCGTACTC -CCAACAGTCTTGATGTCCGATGTC -CCAACAGTCTTGATGTCCACAGTC -CCAACAGTCTTGATGTCCTTGCTG -CCAACAGTCTTGATGTCCTCCATG -CCAACAGTCTTGATGTCCTGTGTG -CCAACAGTCTTGATGTCCCTAGTG -CCAACAGTCTTGATGTCCCATCTG -CCAACAGTCTTGATGTCCGAGTTG -CCAACAGTCTTGATGTCCAGACTG -CCAACAGTCTTGATGTCCTCGGTA -CCAACAGTCTTGATGTCCTGCCTA -CCAACAGTCTTGATGTCCCCACTA -CCAACAGTCTTGATGTCCGGAGTA -CCAACAGTCTTGATGTCCTCGTCT -CCAACAGTCTTGATGTCCTGCACT -CCAACAGTCTTGATGTCCCTGACT -CCAACAGTCTTGATGTCCCAACCT -CCAACAGTCTTGATGTCCGCTACT -CCAACAGTCTTGATGTCCGGATCT -CCAACAGTCTTGATGTCCAAGGCT -CCAACAGTCTTGATGTCCTCAACC -CCAACAGTCTTGATGTCCTGTTCC -CCAACAGTCTTGATGTCCATTCCC -CCAACAGTCTTGATGTCCTTCTCG -CCAACAGTCTTGATGTCCTAGACG -CCAACAGTCTTGATGTCCGTAACG -CCAACAGTCTTGATGTCCACTTCG -CCAACAGTCTTGATGTCCTACGCA -CCAACAGTCTTGATGTCCCTTGCA -CCAACAGTCTTGATGTCCCGAACA -CCAACAGTCTTGATGTCCCAGTCA -CCAACAGTCTTGATGTCCGATCCA -CCAACAGTCTTGATGTCCACGACA -CCAACAGTCTTGATGTCCAGCTCA -CCAACAGTCTTGATGTCCTCACGT -CCAACAGTCTTGATGTCCCGTAGT -CCAACAGTCTTGATGTCCGTCAGT -CCAACAGTCTTGATGTCCGAAGGT -CCAACAGTCTTGATGTCCAACCGT -CCAACAGTCTTGATGTCCTTGTGC -CCAACAGTCTTGATGTCCCTAAGC -CCAACAGTCTTGATGTCCACTAGC -CCAACAGTCTTGATGTCCAGATGC -CCAACAGTCTTGATGTCCTGAAGG -CCAACAGTCTTGATGTCCCAATGG -CCAACAGTCTTGATGTCCATGAGG -CCAACAGTCTTGATGTCCAATGGG -CCAACAGTCTTGATGTCCTCCTGA -CCAACAGTCTTGATGTCCTAGCGA -CCAACAGTCTTGATGTCCCACAGA -CCAACAGTCTTGATGTCCGCAAGA -CCAACAGTCTTGATGTCCGGTTGA -CCAACAGTCTTGATGTCCTCCGAT -CCAACAGTCTTGATGTCCTGGCAT -CCAACAGTCTTGATGTCCCGAGAT -CCAACAGTCTTGATGTCCTACCAC -CCAACAGTCTTGATGTCCCAGAAC -CCAACAGTCTTGATGTCCGTCTAC -CCAACAGTCTTGATGTCCACGTAC -CCAACAGTCTTGATGTCCAGTGAC -CCAACAGTCTTGATGTCCCTGTAG -CCAACAGTCTTGATGTCCCCTAAG -CCAACAGTCTTGATGTCCGTTCAG -CCAACAGTCTTGATGTCCGCATAG -CCAACAGTCTTGATGTCCGACAAG -CCAACAGTCTTGATGTCCAAGCAG -CCAACAGTCTTGATGTCCCGTCAA -CCAACAGTCTTGATGTCCGCTGAA -CCAACAGTCTTGATGTCCAGTACG -CCAACAGTCTTGATGTCCATCCGA -CCAACAGTCTTGATGTCCATGGGA -CCAACAGTCTTGATGTCCGTGCAA -CCAACAGTCTTGATGTCCGAGGAA -CCAACAGTCTTGATGTCCCAGGTA -CCAACAGTCTTGATGTCCGACTCT -CCAACAGTCTTGATGTCCAGTCCT -CCAACAGTCTTGATGTCCTAAGCC -CCAACAGTCTTGATGTCCATAGCC -CCAACAGTCTTGATGTCCTAACCG -CCAACAGTCTTGATGTCCATGCCA -CCAACAGTCTTGGTGTGTGGAAAC -CCAACAGTCTTGGTGTGTAACACC -CCAACAGTCTTGGTGTGTATCGAG -CCAACAGTCTTGGTGTGTCTCCTT -CCAACAGTCTTGGTGTGTCCTGTT -CCAACAGTCTTGGTGTGTCGGTTT -CCAACAGTCTTGGTGTGTGTGGTT -CCAACAGTCTTGGTGTGTGCCTTT -CCAACAGTCTTGGTGTGTGGTCTT -CCAACAGTCTTGGTGTGTACGCTT -CCAACAGTCTTGGTGTGTAGCGTT -CCAACAGTCTTGGTGTGTTTCGTC -CCAACAGTCTTGGTGTGTTCTCTC -CCAACAGTCTTGGTGTGTTGGATC -CCAACAGTCTTGGTGTGTCACTTC -CCAACAGTCTTGGTGTGTGTACTC -CCAACAGTCTTGGTGTGTGATGTC -CCAACAGTCTTGGTGTGTACAGTC -CCAACAGTCTTGGTGTGTTTGCTG -CCAACAGTCTTGGTGTGTTCCATG -CCAACAGTCTTGGTGTGTTGTGTG -CCAACAGTCTTGGTGTGTCTAGTG -CCAACAGTCTTGGTGTGTCATCTG -CCAACAGTCTTGGTGTGTGAGTTG -CCAACAGTCTTGGTGTGTAGACTG -CCAACAGTCTTGGTGTGTTCGGTA -CCAACAGTCTTGGTGTGTTGCCTA -CCAACAGTCTTGGTGTGTCCACTA -CCAACAGTCTTGGTGTGTGGAGTA -CCAACAGTCTTGGTGTGTTCGTCT -CCAACAGTCTTGGTGTGTTGCACT -CCAACAGTCTTGGTGTGTCTGACT -CCAACAGTCTTGGTGTGTCAACCT -CCAACAGTCTTGGTGTGTGCTACT -CCAACAGTCTTGGTGTGTGGATCT -CCAACAGTCTTGGTGTGTAAGGCT -CCAACAGTCTTGGTGTGTTCAACC -CCAACAGTCTTGGTGTGTTGTTCC -CCAACAGTCTTGGTGTGTATTCCC -CCAACAGTCTTGGTGTGTTTCTCG -CCAACAGTCTTGGTGTGTTAGACG -CCAACAGTCTTGGTGTGTGTAACG -CCAACAGTCTTGGTGTGTACTTCG -CCAACAGTCTTGGTGTGTTACGCA -CCAACAGTCTTGGTGTGTCTTGCA -CCAACAGTCTTGGTGTGTCGAACA -CCAACAGTCTTGGTGTGTCAGTCA -CCAACAGTCTTGGTGTGTGATCCA -CCAACAGTCTTGGTGTGTACGACA -CCAACAGTCTTGGTGTGTAGCTCA -CCAACAGTCTTGGTGTGTTCACGT -CCAACAGTCTTGGTGTGTCGTAGT -CCAACAGTCTTGGTGTGTGTCAGT -CCAACAGTCTTGGTGTGTGAAGGT -CCAACAGTCTTGGTGTGTAACCGT -CCAACAGTCTTGGTGTGTTTGTGC -CCAACAGTCTTGGTGTGTCTAAGC -CCAACAGTCTTGGTGTGTACTAGC -CCAACAGTCTTGGTGTGTAGATGC -CCAACAGTCTTGGTGTGTTGAAGG -CCAACAGTCTTGGTGTGTCAATGG -CCAACAGTCTTGGTGTGTATGAGG -CCAACAGTCTTGGTGTGTAATGGG -CCAACAGTCTTGGTGTGTTCCTGA -CCAACAGTCTTGGTGTGTTAGCGA -CCAACAGTCTTGGTGTGTCACAGA -CCAACAGTCTTGGTGTGTGCAAGA -CCAACAGTCTTGGTGTGTGGTTGA -CCAACAGTCTTGGTGTGTTCCGAT -CCAACAGTCTTGGTGTGTTGGCAT -CCAACAGTCTTGGTGTGTCGAGAT -CCAACAGTCTTGGTGTGTTACCAC -CCAACAGTCTTGGTGTGTCAGAAC -CCAACAGTCTTGGTGTGTGTCTAC -CCAACAGTCTTGGTGTGTACGTAC -CCAACAGTCTTGGTGTGTAGTGAC -CCAACAGTCTTGGTGTGTCTGTAG -CCAACAGTCTTGGTGTGTCCTAAG -CCAACAGTCTTGGTGTGTGTTCAG -CCAACAGTCTTGGTGTGTGCATAG -CCAACAGTCTTGGTGTGTGACAAG -CCAACAGTCTTGGTGTGTAAGCAG -CCAACAGTCTTGGTGTGTCGTCAA -CCAACAGTCTTGGTGTGTGCTGAA -CCAACAGTCTTGGTGTGTAGTACG -CCAACAGTCTTGGTGTGTATCCGA -CCAACAGTCTTGGTGTGTATGGGA -CCAACAGTCTTGGTGTGTGTGCAA -CCAACAGTCTTGGTGTGTGAGGAA -CCAACAGTCTTGGTGTGTCAGGTA -CCAACAGTCTTGGTGTGTGACTCT -CCAACAGTCTTGGTGTGTAGTCCT -CCAACAGTCTTGGTGTGTTAAGCC -CCAACAGTCTTGGTGTGTATAGCC -CCAACAGTCTTGGTGTGTTAACCG -CCAACAGTCTTGGTGTGTATGCCA -CCAACAGTCTTGGTGCTAGGAAAC -CCAACAGTCTTGGTGCTAAACACC -CCAACAGTCTTGGTGCTAATCGAG -CCAACAGTCTTGGTGCTACTCCTT -CCAACAGTCTTGGTGCTACCTGTT -CCAACAGTCTTGGTGCTACGGTTT -CCAACAGTCTTGGTGCTAGTGGTT -CCAACAGTCTTGGTGCTAGCCTTT -CCAACAGTCTTGGTGCTAGGTCTT -CCAACAGTCTTGGTGCTAACGCTT -CCAACAGTCTTGGTGCTAAGCGTT -CCAACAGTCTTGGTGCTATTCGTC -CCAACAGTCTTGGTGCTATCTCTC -CCAACAGTCTTGGTGCTATGGATC -CCAACAGTCTTGGTGCTACACTTC -CCAACAGTCTTGGTGCTAGTACTC -CCAACAGTCTTGGTGCTAGATGTC -CCAACAGTCTTGGTGCTAACAGTC -CCAACAGTCTTGGTGCTATTGCTG -CCAACAGTCTTGGTGCTATCCATG -CCAACAGTCTTGGTGCTATGTGTG -CCAACAGTCTTGGTGCTACTAGTG -CCAACAGTCTTGGTGCTACATCTG -CCAACAGTCTTGGTGCTAGAGTTG -CCAACAGTCTTGGTGCTAAGACTG -CCAACAGTCTTGGTGCTATCGGTA -CCAACAGTCTTGGTGCTATGCCTA -CCAACAGTCTTGGTGCTACCACTA -CCAACAGTCTTGGTGCTAGGAGTA -CCAACAGTCTTGGTGCTATCGTCT -CCAACAGTCTTGGTGCTATGCACT -CCAACAGTCTTGGTGCTACTGACT -CCAACAGTCTTGGTGCTACAACCT -CCAACAGTCTTGGTGCTAGCTACT -CCAACAGTCTTGGTGCTAGGATCT -CCAACAGTCTTGGTGCTAAAGGCT -CCAACAGTCTTGGTGCTATCAACC -CCAACAGTCTTGGTGCTATGTTCC -CCAACAGTCTTGGTGCTAATTCCC -CCAACAGTCTTGGTGCTATTCTCG -CCAACAGTCTTGGTGCTATAGACG -CCAACAGTCTTGGTGCTAGTAACG -CCAACAGTCTTGGTGCTAACTTCG -CCAACAGTCTTGGTGCTATACGCA -CCAACAGTCTTGGTGCTACTTGCA -CCAACAGTCTTGGTGCTACGAACA -CCAACAGTCTTGGTGCTACAGTCA -CCAACAGTCTTGGTGCTAGATCCA -CCAACAGTCTTGGTGCTAACGACA -CCAACAGTCTTGGTGCTAAGCTCA -CCAACAGTCTTGGTGCTATCACGT -CCAACAGTCTTGGTGCTACGTAGT -CCAACAGTCTTGGTGCTAGTCAGT -CCAACAGTCTTGGTGCTAGAAGGT -CCAACAGTCTTGGTGCTAAACCGT -CCAACAGTCTTGGTGCTATTGTGC -CCAACAGTCTTGGTGCTACTAAGC -CCAACAGTCTTGGTGCTAACTAGC -CCAACAGTCTTGGTGCTAAGATGC -CCAACAGTCTTGGTGCTATGAAGG -CCAACAGTCTTGGTGCTACAATGG -CCAACAGTCTTGGTGCTAATGAGG -CCAACAGTCTTGGTGCTAAATGGG -CCAACAGTCTTGGTGCTATCCTGA -CCAACAGTCTTGGTGCTATAGCGA -CCAACAGTCTTGGTGCTACACAGA -CCAACAGTCTTGGTGCTAGCAAGA -CCAACAGTCTTGGTGCTAGGTTGA -CCAACAGTCTTGGTGCTATCCGAT -CCAACAGTCTTGGTGCTATGGCAT -CCAACAGTCTTGGTGCTACGAGAT -CCAACAGTCTTGGTGCTATACCAC -CCAACAGTCTTGGTGCTACAGAAC -CCAACAGTCTTGGTGCTAGTCTAC -CCAACAGTCTTGGTGCTAACGTAC -CCAACAGTCTTGGTGCTAAGTGAC -CCAACAGTCTTGGTGCTACTGTAG -CCAACAGTCTTGGTGCTACCTAAG -CCAACAGTCTTGGTGCTAGTTCAG -CCAACAGTCTTGGTGCTAGCATAG -CCAACAGTCTTGGTGCTAGACAAG -CCAACAGTCTTGGTGCTAAAGCAG -CCAACAGTCTTGGTGCTACGTCAA -CCAACAGTCTTGGTGCTAGCTGAA -CCAACAGTCTTGGTGCTAAGTACG -CCAACAGTCTTGGTGCTAATCCGA -CCAACAGTCTTGGTGCTAATGGGA -CCAACAGTCTTGGTGCTAGTGCAA -CCAACAGTCTTGGTGCTAGAGGAA -CCAACAGTCTTGGTGCTACAGGTA -CCAACAGTCTTGGTGCTAGACTCT -CCAACAGTCTTGGTGCTAAGTCCT -CCAACAGTCTTGGTGCTATAAGCC -CCAACAGTCTTGGTGCTAATAGCC -CCAACAGTCTTGGTGCTATAACCG -CCAACAGTCTTGGTGCTAATGCCA -CCAACAGTCTTGCTGCATGGAAAC -CCAACAGTCTTGCTGCATAACACC -CCAACAGTCTTGCTGCATATCGAG -CCAACAGTCTTGCTGCATCTCCTT -CCAACAGTCTTGCTGCATCCTGTT -CCAACAGTCTTGCTGCATCGGTTT -CCAACAGTCTTGCTGCATGTGGTT -CCAACAGTCTTGCTGCATGCCTTT -CCAACAGTCTTGCTGCATGGTCTT -CCAACAGTCTTGCTGCATACGCTT -CCAACAGTCTTGCTGCATAGCGTT -CCAACAGTCTTGCTGCATTTCGTC -CCAACAGTCTTGCTGCATTCTCTC -CCAACAGTCTTGCTGCATTGGATC -CCAACAGTCTTGCTGCATCACTTC -CCAACAGTCTTGCTGCATGTACTC -CCAACAGTCTTGCTGCATGATGTC -CCAACAGTCTTGCTGCATACAGTC -CCAACAGTCTTGCTGCATTTGCTG -CCAACAGTCTTGCTGCATTCCATG -CCAACAGTCTTGCTGCATTGTGTG -CCAACAGTCTTGCTGCATCTAGTG -CCAACAGTCTTGCTGCATCATCTG -CCAACAGTCTTGCTGCATGAGTTG -CCAACAGTCTTGCTGCATAGACTG -CCAACAGTCTTGCTGCATTCGGTA -CCAACAGTCTTGCTGCATTGCCTA -CCAACAGTCTTGCTGCATCCACTA -CCAACAGTCTTGCTGCATGGAGTA -CCAACAGTCTTGCTGCATTCGTCT -CCAACAGTCTTGCTGCATTGCACT -CCAACAGTCTTGCTGCATCTGACT -CCAACAGTCTTGCTGCATCAACCT -CCAACAGTCTTGCTGCATGCTACT -CCAACAGTCTTGCTGCATGGATCT -CCAACAGTCTTGCTGCATAAGGCT -CCAACAGTCTTGCTGCATTCAACC -CCAACAGTCTTGCTGCATTGTTCC -CCAACAGTCTTGCTGCATATTCCC -CCAACAGTCTTGCTGCATTTCTCG -CCAACAGTCTTGCTGCATTAGACG -CCAACAGTCTTGCTGCATGTAACG -CCAACAGTCTTGCTGCATACTTCG -CCAACAGTCTTGCTGCATTACGCA -CCAACAGTCTTGCTGCATCTTGCA -CCAACAGTCTTGCTGCATCGAACA -CCAACAGTCTTGCTGCATCAGTCA -CCAACAGTCTTGCTGCATGATCCA -CCAACAGTCTTGCTGCATACGACA -CCAACAGTCTTGCTGCATAGCTCA -CCAACAGTCTTGCTGCATTCACGT -CCAACAGTCTTGCTGCATCGTAGT -CCAACAGTCTTGCTGCATGTCAGT -CCAACAGTCTTGCTGCATGAAGGT -CCAACAGTCTTGCTGCATAACCGT -CCAACAGTCTTGCTGCATTTGTGC -CCAACAGTCTTGCTGCATCTAAGC -CCAACAGTCTTGCTGCATACTAGC -CCAACAGTCTTGCTGCATAGATGC -CCAACAGTCTTGCTGCATTGAAGG -CCAACAGTCTTGCTGCATCAATGG -CCAACAGTCTTGCTGCATATGAGG -CCAACAGTCTTGCTGCATAATGGG -CCAACAGTCTTGCTGCATTCCTGA -CCAACAGTCTTGCTGCATTAGCGA -CCAACAGTCTTGCTGCATCACAGA -CCAACAGTCTTGCTGCATGCAAGA -CCAACAGTCTTGCTGCATGGTTGA -CCAACAGTCTTGCTGCATTCCGAT -CCAACAGTCTTGCTGCATTGGCAT -CCAACAGTCTTGCTGCATCGAGAT -CCAACAGTCTTGCTGCATTACCAC -CCAACAGTCTTGCTGCATCAGAAC -CCAACAGTCTTGCTGCATGTCTAC -CCAACAGTCTTGCTGCATACGTAC -CCAACAGTCTTGCTGCATAGTGAC -CCAACAGTCTTGCTGCATCTGTAG -CCAACAGTCTTGCTGCATCCTAAG -CCAACAGTCTTGCTGCATGTTCAG -CCAACAGTCTTGCTGCATGCATAG -CCAACAGTCTTGCTGCATGACAAG -CCAACAGTCTTGCTGCATAAGCAG -CCAACAGTCTTGCTGCATCGTCAA -CCAACAGTCTTGCTGCATGCTGAA -CCAACAGTCTTGCTGCATAGTACG -CCAACAGTCTTGCTGCATATCCGA -CCAACAGTCTTGCTGCATATGGGA -CCAACAGTCTTGCTGCATGTGCAA -CCAACAGTCTTGCTGCATGAGGAA -CCAACAGTCTTGCTGCATCAGGTA -CCAACAGTCTTGCTGCATGACTCT -CCAACAGTCTTGCTGCATAGTCCT -CCAACAGTCTTGCTGCATTAAGCC -CCAACAGTCTTGCTGCATATAGCC -CCAACAGTCTTGCTGCATTAACCG -CCAACAGTCTTGCTGCATATGCCA -CCAACAGTCTTGTTGGAGGGAAAC -CCAACAGTCTTGTTGGAGAACACC -CCAACAGTCTTGTTGGAGATCGAG -CCAACAGTCTTGTTGGAGCTCCTT -CCAACAGTCTTGTTGGAGCCTGTT -CCAACAGTCTTGTTGGAGCGGTTT -CCAACAGTCTTGTTGGAGGTGGTT -CCAACAGTCTTGTTGGAGGCCTTT -CCAACAGTCTTGTTGGAGGGTCTT -CCAACAGTCTTGTTGGAGACGCTT -CCAACAGTCTTGTTGGAGAGCGTT -CCAACAGTCTTGTTGGAGTTCGTC -CCAACAGTCTTGTTGGAGTCTCTC -CCAACAGTCTTGTTGGAGTGGATC -CCAACAGTCTTGTTGGAGCACTTC -CCAACAGTCTTGTTGGAGGTACTC -CCAACAGTCTTGTTGGAGGATGTC -CCAACAGTCTTGTTGGAGACAGTC -CCAACAGTCTTGTTGGAGTTGCTG -CCAACAGTCTTGTTGGAGTCCATG -CCAACAGTCTTGTTGGAGTGTGTG -CCAACAGTCTTGTTGGAGCTAGTG -CCAACAGTCTTGTTGGAGCATCTG -CCAACAGTCTTGTTGGAGGAGTTG -CCAACAGTCTTGTTGGAGAGACTG -CCAACAGTCTTGTTGGAGTCGGTA -CCAACAGTCTTGTTGGAGTGCCTA -CCAACAGTCTTGTTGGAGCCACTA -CCAACAGTCTTGTTGGAGGGAGTA -CCAACAGTCTTGTTGGAGTCGTCT -CCAACAGTCTTGTTGGAGTGCACT -CCAACAGTCTTGTTGGAGCTGACT -CCAACAGTCTTGTTGGAGCAACCT -CCAACAGTCTTGTTGGAGGCTACT -CCAACAGTCTTGTTGGAGGGATCT -CCAACAGTCTTGTTGGAGAAGGCT -CCAACAGTCTTGTTGGAGTCAACC -CCAACAGTCTTGTTGGAGTGTTCC -CCAACAGTCTTGTTGGAGATTCCC -CCAACAGTCTTGTTGGAGTTCTCG -CCAACAGTCTTGTTGGAGTAGACG -CCAACAGTCTTGTTGGAGGTAACG -CCAACAGTCTTGTTGGAGACTTCG -CCAACAGTCTTGTTGGAGTACGCA -CCAACAGTCTTGTTGGAGCTTGCA -CCAACAGTCTTGTTGGAGCGAACA -CCAACAGTCTTGTTGGAGCAGTCA -CCAACAGTCTTGTTGGAGGATCCA -CCAACAGTCTTGTTGGAGACGACA -CCAACAGTCTTGTTGGAGAGCTCA -CCAACAGTCTTGTTGGAGTCACGT -CCAACAGTCTTGTTGGAGCGTAGT -CCAACAGTCTTGTTGGAGGTCAGT -CCAACAGTCTTGTTGGAGGAAGGT -CCAACAGTCTTGTTGGAGAACCGT -CCAACAGTCTTGTTGGAGTTGTGC -CCAACAGTCTTGTTGGAGCTAAGC -CCAACAGTCTTGTTGGAGACTAGC -CCAACAGTCTTGTTGGAGAGATGC -CCAACAGTCTTGTTGGAGTGAAGG -CCAACAGTCTTGTTGGAGCAATGG -CCAACAGTCTTGTTGGAGATGAGG -CCAACAGTCTTGTTGGAGAATGGG -CCAACAGTCTTGTTGGAGTCCTGA -CCAACAGTCTTGTTGGAGTAGCGA -CCAACAGTCTTGTTGGAGCACAGA -CCAACAGTCTTGTTGGAGGCAAGA -CCAACAGTCTTGTTGGAGGGTTGA -CCAACAGTCTTGTTGGAGTCCGAT -CCAACAGTCTTGTTGGAGTGGCAT -CCAACAGTCTTGTTGGAGCGAGAT -CCAACAGTCTTGTTGGAGTACCAC -CCAACAGTCTTGTTGGAGCAGAAC -CCAACAGTCTTGTTGGAGGTCTAC -CCAACAGTCTTGTTGGAGACGTAC -CCAACAGTCTTGTTGGAGAGTGAC -CCAACAGTCTTGTTGGAGCTGTAG -CCAACAGTCTTGTTGGAGCCTAAG -CCAACAGTCTTGTTGGAGGTTCAG -CCAACAGTCTTGTTGGAGGCATAG -CCAACAGTCTTGTTGGAGGACAAG -CCAACAGTCTTGTTGGAGAAGCAG -CCAACAGTCTTGTTGGAGCGTCAA -CCAACAGTCTTGTTGGAGGCTGAA -CCAACAGTCTTGTTGGAGAGTACG -CCAACAGTCTTGTTGGAGATCCGA -CCAACAGTCTTGTTGGAGATGGGA -CCAACAGTCTTGTTGGAGGTGCAA -CCAACAGTCTTGTTGGAGGAGGAA -CCAACAGTCTTGTTGGAGCAGGTA -CCAACAGTCTTGTTGGAGGACTCT -CCAACAGTCTTGTTGGAGAGTCCT -CCAACAGTCTTGTTGGAGTAAGCC -CCAACAGTCTTGTTGGAGATAGCC -CCAACAGTCTTGTTGGAGTAACCG -CCAACAGTCTTGTTGGAGATGCCA -CCAACAGTCTTGCTGAGAGGAAAC -CCAACAGTCTTGCTGAGAAACACC -CCAACAGTCTTGCTGAGAATCGAG -CCAACAGTCTTGCTGAGACTCCTT -CCAACAGTCTTGCTGAGACCTGTT -CCAACAGTCTTGCTGAGACGGTTT -CCAACAGTCTTGCTGAGAGTGGTT -CCAACAGTCTTGCTGAGAGCCTTT -CCAACAGTCTTGCTGAGAGGTCTT -CCAACAGTCTTGCTGAGAACGCTT -CCAACAGTCTTGCTGAGAAGCGTT -CCAACAGTCTTGCTGAGATTCGTC -CCAACAGTCTTGCTGAGATCTCTC -CCAACAGTCTTGCTGAGATGGATC -CCAACAGTCTTGCTGAGACACTTC -CCAACAGTCTTGCTGAGAGTACTC -CCAACAGTCTTGCTGAGAGATGTC -CCAACAGTCTTGCTGAGAACAGTC -CCAACAGTCTTGCTGAGATTGCTG -CCAACAGTCTTGCTGAGATCCATG -CCAACAGTCTTGCTGAGATGTGTG -CCAACAGTCTTGCTGAGACTAGTG -CCAACAGTCTTGCTGAGACATCTG -CCAACAGTCTTGCTGAGAGAGTTG -CCAACAGTCTTGCTGAGAAGACTG -CCAACAGTCTTGCTGAGATCGGTA -CCAACAGTCTTGCTGAGATGCCTA -CCAACAGTCTTGCTGAGACCACTA -CCAACAGTCTTGCTGAGAGGAGTA -CCAACAGTCTTGCTGAGATCGTCT -CCAACAGTCTTGCTGAGATGCACT -CCAACAGTCTTGCTGAGACTGACT -CCAACAGTCTTGCTGAGACAACCT -CCAACAGTCTTGCTGAGAGCTACT -CCAACAGTCTTGCTGAGAGGATCT -CCAACAGTCTTGCTGAGAAAGGCT -CCAACAGTCTTGCTGAGATCAACC -CCAACAGTCTTGCTGAGATGTTCC -CCAACAGTCTTGCTGAGAATTCCC -CCAACAGTCTTGCTGAGATTCTCG -CCAACAGTCTTGCTGAGATAGACG -CCAACAGTCTTGCTGAGAGTAACG -CCAACAGTCTTGCTGAGAACTTCG -CCAACAGTCTTGCTGAGATACGCA -CCAACAGTCTTGCTGAGACTTGCA -CCAACAGTCTTGCTGAGACGAACA -CCAACAGTCTTGCTGAGACAGTCA -CCAACAGTCTTGCTGAGAGATCCA -CCAACAGTCTTGCTGAGAACGACA -CCAACAGTCTTGCTGAGAAGCTCA -CCAACAGTCTTGCTGAGATCACGT -CCAACAGTCTTGCTGAGACGTAGT -CCAACAGTCTTGCTGAGAGTCAGT -CCAACAGTCTTGCTGAGAGAAGGT -CCAACAGTCTTGCTGAGAAACCGT -CCAACAGTCTTGCTGAGATTGTGC -CCAACAGTCTTGCTGAGACTAAGC -CCAACAGTCTTGCTGAGAACTAGC -CCAACAGTCTTGCTGAGAAGATGC -CCAACAGTCTTGCTGAGATGAAGG -CCAACAGTCTTGCTGAGACAATGG -CCAACAGTCTTGCTGAGAATGAGG -CCAACAGTCTTGCTGAGAAATGGG -CCAACAGTCTTGCTGAGATCCTGA -CCAACAGTCTTGCTGAGATAGCGA -CCAACAGTCTTGCTGAGACACAGA -CCAACAGTCTTGCTGAGAGCAAGA -CCAACAGTCTTGCTGAGAGGTTGA -CCAACAGTCTTGCTGAGATCCGAT -CCAACAGTCTTGCTGAGATGGCAT -CCAACAGTCTTGCTGAGACGAGAT -CCAACAGTCTTGCTGAGATACCAC -CCAACAGTCTTGCTGAGACAGAAC -CCAACAGTCTTGCTGAGAGTCTAC -CCAACAGTCTTGCTGAGAACGTAC -CCAACAGTCTTGCTGAGAAGTGAC -CCAACAGTCTTGCTGAGACTGTAG -CCAACAGTCTTGCTGAGACCTAAG -CCAACAGTCTTGCTGAGAGTTCAG -CCAACAGTCTTGCTGAGAGCATAG -CCAACAGTCTTGCTGAGAGACAAG -CCAACAGTCTTGCTGAGAAAGCAG -CCAACAGTCTTGCTGAGACGTCAA -CCAACAGTCTTGCTGAGAGCTGAA -CCAACAGTCTTGCTGAGAAGTACG -CCAACAGTCTTGCTGAGAATCCGA -CCAACAGTCTTGCTGAGAATGGGA -CCAACAGTCTTGCTGAGAGTGCAA -CCAACAGTCTTGCTGAGAGAGGAA -CCAACAGTCTTGCTGAGACAGGTA -CCAACAGTCTTGCTGAGAGACTCT -CCAACAGTCTTGCTGAGAAGTCCT -CCAACAGTCTTGCTGAGATAAGCC -CCAACAGTCTTGCTGAGAATAGCC -CCAACAGTCTTGCTGAGATAACCG -CCAACAGTCTTGCTGAGAATGCCA -CCAACAGTCTTGGTATCGGGAAAC -CCAACAGTCTTGGTATCGAACACC -CCAACAGTCTTGGTATCGATCGAG -CCAACAGTCTTGGTATCGCTCCTT -CCAACAGTCTTGGTATCGCCTGTT -CCAACAGTCTTGGTATCGCGGTTT -CCAACAGTCTTGGTATCGGTGGTT -CCAACAGTCTTGGTATCGGCCTTT -CCAACAGTCTTGGTATCGGGTCTT -CCAACAGTCTTGGTATCGACGCTT -CCAACAGTCTTGGTATCGAGCGTT -CCAACAGTCTTGGTATCGTTCGTC -CCAACAGTCTTGGTATCGTCTCTC -CCAACAGTCTTGGTATCGTGGATC -CCAACAGTCTTGGTATCGCACTTC -CCAACAGTCTTGGTATCGGTACTC -CCAACAGTCTTGGTATCGGATGTC -CCAACAGTCTTGGTATCGACAGTC -CCAACAGTCTTGGTATCGTTGCTG -CCAACAGTCTTGGTATCGTCCATG -CCAACAGTCTTGGTATCGTGTGTG -CCAACAGTCTTGGTATCGCTAGTG -CCAACAGTCTTGGTATCGCATCTG -CCAACAGTCTTGGTATCGGAGTTG -CCAACAGTCTTGGTATCGAGACTG -CCAACAGTCTTGGTATCGTCGGTA -CCAACAGTCTTGGTATCGTGCCTA -CCAACAGTCTTGGTATCGCCACTA -CCAACAGTCTTGGTATCGGGAGTA -CCAACAGTCTTGGTATCGTCGTCT -CCAACAGTCTTGGTATCGTGCACT -CCAACAGTCTTGGTATCGCTGACT -CCAACAGTCTTGGTATCGCAACCT -CCAACAGTCTTGGTATCGGCTACT -CCAACAGTCTTGGTATCGGGATCT -CCAACAGTCTTGGTATCGAAGGCT -CCAACAGTCTTGGTATCGTCAACC -CCAACAGTCTTGGTATCGTGTTCC -CCAACAGTCTTGGTATCGATTCCC -CCAACAGTCTTGGTATCGTTCTCG -CCAACAGTCTTGGTATCGTAGACG -CCAACAGTCTTGGTATCGGTAACG -CCAACAGTCTTGGTATCGACTTCG -CCAACAGTCTTGGTATCGTACGCA -CCAACAGTCTTGGTATCGCTTGCA -CCAACAGTCTTGGTATCGCGAACA -CCAACAGTCTTGGTATCGCAGTCA -CCAACAGTCTTGGTATCGGATCCA -CCAACAGTCTTGGTATCGACGACA -CCAACAGTCTTGGTATCGAGCTCA -CCAACAGTCTTGGTATCGTCACGT -CCAACAGTCTTGGTATCGCGTAGT -CCAACAGTCTTGGTATCGGTCAGT -CCAACAGTCTTGGTATCGGAAGGT -CCAACAGTCTTGGTATCGAACCGT -CCAACAGTCTTGGTATCGTTGTGC -CCAACAGTCTTGGTATCGCTAAGC -CCAACAGTCTTGGTATCGACTAGC -CCAACAGTCTTGGTATCGAGATGC -CCAACAGTCTTGGTATCGTGAAGG -CCAACAGTCTTGGTATCGCAATGG -CCAACAGTCTTGGTATCGATGAGG -CCAACAGTCTTGGTATCGAATGGG -CCAACAGTCTTGGTATCGTCCTGA -CCAACAGTCTTGGTATCGTAGCGA -CCAACAGTCTTGGTATCGCACAGA -CCAACAGTCTTGGTATCGGCAAGA -CCAACAGTCTTGGTATCGGGTTGA -CCAACAGTCTTGGTATCGTCCGAT -CCAACAGTCTTGGTATCGTGGCAT -CCAACAGTCTTGGTATCGCGAGAT -CCAACAGTCTTGGTATCGTACCAC -CCAACAGTCTTGGTATCGCAGAAC -CCAACAGTCTTGGTATCGGTCTAC -CCAACAGTCTTGGTATCGACGTAC -CCAACAGTCTTGGTATCGAGTGAC -CCAACAGTCTTGGTATCGCTGTAG -CCAACAGTCTTGGTATCGCCTAAG -CCAACAGTCTTGGTATCGGTTCAG -CCAACAGTCTTGGTATCGGCATAG -CCAACAGTCTTGGTATCGGACAAG -CCAACAGTCTTGGTATCGAAGCAG -CCAACAGTCTTGGTATCGCGTCAA -CCAACAGTCTTGGTATCGGCTGAA -CCAACAGTCTTGGTATCGAGTACG -CCAACAGTCTTGGTATCGATCCGA -CCAACAGTCTTGGTATCGATGGGA -CCAACAGTCTTGGTATCGGTGCAA -CCAACAGTCTTGGTATCGGAGGAA -CCAACAGTCTTGGTATCGCAGGTA -CCAACAGTCTTGGTATCGGACTCT -CCAACAGTCTTGGTATCGAGTCCT -CCAACAGTCTTGGTATCGTAAGCC -CCAACAGTCTTGGTATCGATAGCC -CCAACAGTCTTGGTATCGTAACCG -CCAACAGTCTTGGTATCGATGCCA -CCAACAGTCTTGCTATGCGGAAAC -CCAACAGTCTTGCTATGCAACACC -CCAACAGTCTTGCTATGCATCGAG -CCAACAGTCTTGCTATGCCTCCTT -CCAACAGTCTTGCTATGCCCTGTT -CCAACAGTCTTGCTATGCCGGTTT -CCAACAGTCTTGCTATGCGTGGTT -CCAACAGTCTTGCTATGCGCCTTT -CCAACAGTCTTGCTATGCGGTCTT -CCAACAGTCTTGCTATGCACGCTT -CCAACAGTCTTGCTATGCAGCGTT -CCAACAGTCTTGCTATGCTTCGTC -CCAACAGTCTTGCTATGCTCTCTC -CCAACAGTCTTGCTATGCTGGATC -CCAACAGTCTTGCTATGCCACTTC -CCAACAGTCTTGCTATGCGTACTC -CCAACAGTCTTGCTATGCGATGTC -CCAACAGTCTTGCTATGCACAGTC -CCAACAGTCTTGCTATGCTTGCTG -CCAACAGTCTTGCTATGCTCCATG -CCAACAGTCTTGCTATGCTGTGTG -CCAACAGTCTTGCTATGCCTAGTG -CCAACAGTCTTGCTATGCCATCTG -CCAACAGTCTTGCTATGCGAGTTG -CCAACAGTCTTGCTATGCAGACTG -CCAACAGTCTTGCTATGCTCGGTA -CCAACAGTCTTGCTATGCTGCCTA -CCAACAGTCTTGCTATGCCCACTA -CCAACAGTCTTGCTATGCGGAGTA -CCAACAGTCTTGCTATGCTCGTCT -CCAACAGTCTTGCTATGCTGCACT -CCAACAGTCTTGCTATGCCTGACT -CCAACAGTCTTGCTATGCCAACCT -CCAACAGTCTTGCTATGCGCTACT -CCAACAGTCTTGCTATGCGGATCT -CCAACAGTCTTGCTATGCAAGGCT -CCAACAGTCTTGCTATGCTCAACC -CCAACAGTCTTGCTATGCTGTTCC -CCAACAGTCTTGCTATGCATTCCC -CCAACAGTCTTGCTATGCTTCTCG -CCAACAGTCTTGCTATGCTAGACG -CCAACAGTCTTGCTATGCGTAACG -CCAACAGTCTTGCTATGCACTTCG -CCAACAGTCTTGCTATGCTACGCA -CCAACAGTCTTGCTATGCCTTGCA -CCAACAGTCTTGCTATGCCGAACA -CCAACAGTCTTGCTATGCCAGTCA -CCAACAGTCTTGCTATGCGATCCA -CCAACAGTCTTGCTATGCACGACA -CCAACAGTCTTGCTATGCAGCTCA -CCAACAGTCTTGCTATGCTCACGT -CCAACAGTCTTGCTATGCCGTAGT -CCAACAGTCTTGCTATGCGTCAGT -CCAACAGTCTTGCTATGCGAAGGT -CCAACAGTCTTGCTATGCAACCGT -CCAACAGTCTTGCTATGCTTGTGC -CCAACAGTCTTGCTATGCCTAAGC -CCAACAGTCTTGCTATGCACTAGC -CCAACAGTCTTGCTATGCAGATGC -CCAACAGTCTTGCTATGCTGAAGG -CCAACAGTCTTGCTATGCCAATGG -CCAACAGTCTTGCTATGCATGAGG -CCAACAGTCTTGCTATGCAATGGG -CCAACAGTCTTGCTATGCTCCTGA -CCAACAGTCTTGCTATGCTAGCGA -CCAACAGTCTTGCTATGCCACAGA -CCAACAGTCTTGCTATGCGCAAGA -CCAACAGTCTTGCTATGCGGTTGA -CCAACAGTCTTGCTATGCTCCGAT -CCAACAGTCTTGCTATGCTGGCAT -CCAACAGTCTTGCTATGCCGAGAT -CCAACAGTCTTGCTATGCTACCAC -CCAACAGTCTTGCTATGCCAGAAC -CCAACAGTCTTGCTATGCGTCTAC -CCAACAGTCTTGCTATGCACGTAC -CCAACAGTCTTGCTATGCAGTGAC -CCAACAGTCTTGCTATGCCTGTAG -CCAACAGTCTTGCTATGCCCTAAG -CCAACAGTCTTGCTATGCGTTCAG -CCAACAGTCTTGCTATGCGCATAG -CCAACAGTCTTGCTATGCGACAAG -CCAACAGTCTTGCTATGCAAGCAG -CCAACAGTCTTGCTATGCCGTCAA -CCAACAGTCTTGCTATGCGCTGAA -CCAACAGTCTTGCTATGCAGTACG -CCAACAGTCTTGCTATGCATCCGA -CCAACAGTCTTGCTATGCATGGGA -CCAACAGTCTTGCTATGCGTGCAA -CCAACAGTCTTGCTATGCGAGGAA -CCAACAGTCTTGCTATGCCAGGTA -CCAACAGTCTTGCTATGCGACTCT -CCAACAGTCTTGCTATGCAGTCCT -CCAACAGTCTTGCTATGCTAAGCC -CCAACAGTCTTGCTATGCATAGCC -CCAACAGTCTTGCTATGCTAACCG -CCAACAGTCTTGCTATGCATGCCA -CCAACAGTCTTGCTACCAGGAAAC -CCAACAGTCTTGCTACCAAACACC -CCAACAGTCTTGCTACCAATCGAG -CCAACAGTCTTGCTACCACTCCTT -CCAACAGTCTTGCTACCACCTGTT -CCAACAGTCTTGCTACCACGGTTT -CCAACAGTCTTGCTACCAGTGGTT -CCAACAGTCTTGCTACCAGCCTTT -CCAACAGTCTTGCTACCAGGTCTT -CCAACAGTCTTGCTACCAACGCTT -CCAACAGTCTTGCTACCAAGCGTT -CCAACAGTCTTGCTACCATTCGTC -CCAACAGTCTTGCTACCATCTCTC -CCAACAGTCTTGCTACCATGGATC -CCAACAGTCTTGCTACCACACTTC -CCAACAGTCTTGCTACCAGTACTC -CCAACAGTCTTGCTACCAGATGTC -CCAACAGTCTTGCTACCAACAGTC -CCAACAGTCTTGCTACCATTGCTG -CCAACAGTCTTGCTACCATCCATG -CCAACAGTCTTGCTACCATGTGTG -CCAACAGTCTTGCTACCACTAGTG -CCAACAGTCTTGCTACCACATCTG -CCAACAGTCTTGCTACCAGAGTTG -CCAACAGTCTTGCTACCAAGACTG -CCAACAGTCTTGCTACCATCGGTA -CCAACAGTCTTGCTACCATGCCTA -CCAACAGTCTTGCTACCACCACTA -CCAACAGTCTTGCTACCAGGAGTA -CCAACAGTCTTGCTACCATCGTCT -CCAACAGTCTTGCTACCATGCACT -CCAACAGTCTTGCTACCACTGACT -CCAACAGTCTTGCTACCACAACCT -CCAACAGTCTTGCTACCAGCTACT -CCAACAGTCTTGCTACCAGGATCT -CCAACAGTCTTGCTACCAAAGGCT -CCAACAGTCTTGCTACCATCAACC -CCAACAGTCTTGCTACCATGTTCC -CCAACAGTCTTGCTACCAATTCCC -CCAACAGTCTTGCTACCATTCTCG -CCAACAGTCTTGCTACCATAGACG -CCAACAGTCTTGCTACCAGTAACG -CCAACAGTCTTGCTACCAACTTCG -CCAACAGTCTTGCTACCATACGCA -CCAACAGTCTTGCTACCACTTGCA -CCAACAGTCTTGCTACCACGAACA -CCAACAGTCTTGCTACCACAGTCA -CCAACAGTCTTGCTACCAGATCCA -CCAACAGTCTTGCTACCAACGACA -CCAACAGTCTTGCTACCAAGCTCA -CCAACAGTCTTGCTACCATCACGT -CCAACAGTCTTGCTACCACGTAGT -CCAACAGTCTTGCTACCAGTCAGT -CCAACAGTCTTGCTACCAGAAGGT -CCAACAGTCTTGCTACCAAACCGT -CCAACAGTCTTGCTACCATTGTGC -CCAACAGTCTTGCTACCACTAAGC -CCAACAGTCTTGCTACCAACTAGC -CCAACAGTCTTGCTACCAAGATGC -CCAACAGTCTTGCTACCATGAAGG -CCAACAGTCTTGCTACCACAATGG -CCAACAGTCTTGCTACCAATGAGG -CCAACAGTCTTGCTACCAAATGGG -CCAACAGTCTTGCTACCATCCTGA -CCAACAGTCTTGCTACCATAGCGA -CCAACAGTCTTGCTACCACACAGA -CCAACAGTCTTGCTACCAGCAAGA -CCAACAGTCTTGCTACCAGGTTGA -CCAACAGTCTTGCTACCATCCGAT -CCAACAGTCTTGCTACCATGGCAT -CCAACAGTCTTGCTACCACGAGAT -CCAACAGTCTTGCTACCATACCAC -CCAACAGTCTTGCTACCACAGAAC -CCAACAGTCTTGCTACCAGTCTAC -CCAACAGTCTTGCTACCAACGTAC -CCAACAGTCTTGCTACCAAGTGAC -CCAACAGTCTTGCTACCACTGTAG -CCAACAGTCTTGCTACCACCTAAG -CCAACAGTCTTGCTACCAGTTCAG -CCAACAGTCTTGCTACCAGCATAG -CCAACAGTCTTGCTACCAGACAAG -CCAACAGTCTTGCTACCAAAGCAG -CCAACAGTCTTGCTACCACGTCAA -CCAACAGTCTTGCTACCAGCTGAA -CCAACAGTCTTGCTACCAAGTACG -CCAACAGTCTTGCTACCAATCCGA -CCAACAGTCTTGCTACCAATGGGA -CCAACAGTCTTGCTACCAGTGCAA -CCAACAGTCTTGCTACCAGAGGAA -CCAACAGTCTTGCTACCACAGGTA -CCAACAGTCTTGCTACCAGACTCT -CCAACAGTCTTGCTACCAAGTCCT -CCAACAGTCTTGCTACCATAAGCC -CCAACAGTCTTGCTACCAATAGCC -CCAACAGTCTTGCTACCATAACCG -CCAACAGTCTTGCTACCAATGCCA -CCAACAGTCTTGGTAGGAGGAAAC -CCAACAGTCTTGGTAGGAAACACC -CCAACAGTCTTGGTAGGAATCGAG -CCAACAGTCTTGGTAGGACTCCTT -CCAACAGTCTTGGTAGGACCTGTT -CCAACAGTCTTGGTAGGACGGTTT -CCAACAGTCTTGGTAGGAGTGGTT -CCAACAGTCTTGGTAGGAGCCTTT -CCAACAGTCTTGGTAGGAGGTCTT -CCAACAGTCTTGGTAGGAACGCTT -CCAACAGTCTTGGTAGGAAGCGTT -CCAACAGTCTTGGTAGGATTCGTC -CCAACAGTCTTGGTAGGATCTCTC -CCAACAGTCTTGGTAGGATGGATC -CCAACAGTCTTGGTAGGACACTTC -CCAACAGTCTTGGTAGGAGTACTC -CCAACAGTCTTGGTAGGAGATGTC -CCAACAGTCTTGGTAGGAACAGTC -CCAACAGTCTTGGTAGGATTGCTG -CCAACAGTCTTGGTAGGATCCATG -CCAACAGTCTTGGTAGGATGTGTG -CCAACAGTCTTGGTAGGACTAGTG -CCAACAGTCTTGGTAGGACATCTG -CCAACAGTCTTGGTAGGAGAGTTG -CCAACAGTCTTGGTAGGAAGACTG -CCAACAGTCTTGGTAGGATCGGTA -CCAACAGTCTTGGTAGGATGCCTA -CCAACAGTCTTGGTAGGACCACTA -CCAACAGTCTTGGTAGGAGGAGTA -CCAACAGTCTTGGTAGGATCGTCT -CCAACAGTCTTGGTAGGATGCACT -CCAACAGTCTTGGTAGGACTGACT -CCAACAGTCTTGGTAGGACAACCT -CCAACAGTCTTGGTAGGAGCTACT -CCAACAGTCTTGGTAGGAGGATCT -CCAACAGTCTTGGTAGGAAAGGCT -CCAACAGTCTTGGTAGGATCAACC -CCAACAGTCTTGGTAGGATGTTCC -CCAACAGTCTTGGTAGGAATTCCC -CCAACAGTCTTGGTAGGATTCTCG -CCAACAGTCTTGGTAGGATAGACG -CCAACAGTCTTGGTAGGAGTAACG -CCAACAGTCTTGGTAGGAACTTCG -CCAACAGTCTTGGTAGGATACGCA -CCAACAGTCTTGGTAGGACTTGCA -CCAACAGTCTTGGTAGGACGAACA -CCAACAGTCTTGGTAGGACAGTCA -CCAACAGTCTTGGTAGGAGATCCA -CCAACAGTCTTGGTAGGAACGACA -CCAACAGTCTTGGTAGGAAGCTCA -CCAACAGTCTTGGTAGGATCACGT -CCAACAGTCTTGGTAGGACGTAGT -CCAACAGTCTTGGTAGGAGTCAGT -CCAACAGTCTTGGTAGGAGAAGGT -CCAACAGTCTTGGTAGGAAACCGT -CCAACAGTCTTGGTAGGATTGTGC -CCAACAGTCTTGGTAGGACTAAGC -CCAACAGTCTTGGTAGGAACTAGC -CCAACAGTCTTGGTAGGAAGATGC -CCAACAGTCTTGGTAGGATGAAGG -CCAACAGTCTTGGTAGGACAATGG -CCAACAGTCTTGGTAGGAATGAGG -CCAACAGTCTTGGTAGGAAATGGG -CCAACAGTCTTGGTAGGATCCTGA -CCAACAGTCTTGGTAGGATAGCGA -CCAACAGTCTTGGTAGGACACAGA -CCAACAGTCTTGGTAGGAGCAAGA -CCAACAGTCTTGGTAGGAGGTTGA -CCAACAGTCTTGGTAGGATCCGAT -CCAACAGTCTTGGTAGGATGGCAT -CCAACAGTCTTGGTAGGACGAGAT -CCAACAGTCTTGGTAGGATACCAC -CCAACAGTCTTGGTAGGACAGAAC -CCAACAGTCTTGGTAGGAGTCTAC -CCAACAGTCTTGGTAGGAACGTAC -CCAACAGTCTTGGTAGGAAGTGAC -CCAACAGTCTTGGTAGGACTGTAG -CCAACAGTCTTGGTAGGACCTAAG -CCAACAGTCTTGGTAGGAGTTCAG -CCAACAGTCTTGGTAGGAGCATAG -CCAACAGTCTTGGTAGGAGACAAG -CCAACAGTCTTGGTAGGAAAGCAG -CCAACAGTCTTGGTAGGACGTCAA -CCAACAGTCTTGGTAGGAGCTGAA -CCAACAGTCTTGGTAGGAAGTACG -CCAACAGTCTTGGTAGGAATCCGA -CCAACAGTCTTGGTAGGAATGGGA -CCAACAGTCTTGGTAGGAGTGCAA -CCAACAGTCTTGGTAGGAGAGGAA -CCAACAGTCTTGGTAGGACAGGTA -CCAACAGTCTTGGTAGGAGACTCT -CCAACAGTCTTGGTAGGAAGTCCT -CCAACAGTCTTGGTAGGATAAGCC -CCAACAGTCTTGGTAGGAATAGCC -CCAACAGTCTTGGTAGGATAACCG -CCAACAGTCTTGGTAGGAATGCCA -CCAACAGTCTTGTCTTCGGGAAAC -CCAACAGTCTTGTCTTCGAACACC -CCAACAGTCTTGTCTTCGATCGAG -CCAACAGTCTTGTCTTCGCTCCTT -CCAACAGTCTTGTCTTCGCCTGTT -CCAACAGTCTTGTCTTCGCGGTTT -CCAACAGTCTTGTCTTCGGTGGTT -CCAACAGTCTTGTCTTCGGCCTTT -CCAACAGTCTTGTCTTCGGGTCTT -CCAACAGTCTTGTCTTCGACGCTT -CCAACAGTCTTGTCTTCGAGCGTT -CCAACAGTCTTGTCTTCGTTCGTC -CCAACAGTCTTGTCTTCGTCTCTC -CCAACAGTCTTGTCTTCGTGGATC -CCAACAGTCTTGTCTTCGCACTTC -CCAACAGTCTTGTCTTCGGTACTC -CCAACAGTCTTGTCTTCGGATGTC -CCAACAGTCTTGTCTTCGACAGTC -CCAACAGTCTTGTCTTCGTTGCTG -CCAACAGTCTTGTCTTCGTCCATG -CCAACAGTCTTGTCTTCGTGTGTG -CCAACAGTCTTGTCTTCGCTAGTG -CCAACAGTCTTGTCTTCGCATCTG -CCAACAGTCTTGTCTTCGGAGTTG -CCAACAGTCTTGTCTTCGAGACTG -CCAACAGTCTTGTCTTCGTCGGTA -CCAACAGTCTTGTCTTCGTGCCTA -CCAACAGTCTTGTCTTCGCCACTA -CCAACAGTCTTGTCTTCGGGAGTA -CCAACAGTCTTGTCTTCGTCGTCT -CCAACAGTCTTGTCTTCGTGCACT -CCAACAGTCTTGTCTTCGCTGACT -CCAACAGTCTTGTCTTCGCAACCT -CCAACAGTCTTGTCTTCGGCTACT -CCAACAGTCTTGTCTTCGGGATCT -CCAACAGTCTTGTCTTCGAAGGCT -CCAACAGTCTTGTCTTCGTCAACC -CCAACAGTCTTGTCTTCGTGTTCC -CCAACAGTCTTGTCTTCGATTCCC -CCAACAGTCTTGTCTTCGTTCTCG -CCAACAGTCTTGTCTTCGTAGACG -CCAACAGTCTTGTCTTCGGTAACG -CCAACAGTCTTGTCTTCGACTTCG -CCAACAGTCTTGTCTTCGTACGCA -CCAACAGTCTTGTCTTCGCTTGCA -CCAACAGTCTTGTCTTCGCGAACA -CCAACAGTCTTGTCTTCGCAGTCA -CCAACAGTCTTGTCTTCGGATCCA -CCAACAGTCTTGTCTTCGACGACA -CCAACAGTCTTGTCTTCGAGCTCA -CCAACAGTCTTGTCTTCGTCACGT -CCAACAGTCTTGTCTTCGCGTAGT -CCAACAGTCTTGTCTTCGGTCAGT -CCAACAGTCTTGTCTTCGGAAGGT -CCAACAGTCTTGTCTTCGAACCGT -CCAACAGTCTTGTCTTCGTTGTGC -CCAACAGTCTTGTCTTCGCTAAGC -CCAACAGTCTTGTCTTCGACTAGC -CCAACAGTCTTGTCTTCGAGATGC -CCAACAGTCTTGTCTTCGTGAAGG -CCAACAGTCTTGTCTTCGCAATGG -CCAACAGTCTTGTCTTCGATGAGG -CCAACAGTCTTGTCTTCGAATGGG -CCAACAGTCTTGTCTTCGTCCTGA -CCAACAGTCTTGTCTTCGTAGCGA -CCAACAGTCTTGTCTTCGCACAGA -CCAACAGTCTTGTCTTCGGCAAGA -CCAACAGTCTTGTCTTCGGGTTGA -CCAACAGTCTTGTCTTCGTCCGAT -CCAACAGTCTTGTCTTCGTGGCAT -CCAACAGTCTTGTCTTCGCGAGAT -CCAACAGTCTTGTCTTCGTACCAC -CCAACAGTCTTGTCTTCGCAGAAC -CCAACAGTCTTGTCTTCGGTCTAC -CCAACAGTCTTGTCTTCGACGTAC -CCAACAGTCTTGTCTTCGAGTGAC -CCAACAGTCTTGTCTTCGCTGTAG -CCAACAGTCTTGTCTTCGCCTAAG -CCAACAGTCTTGTCTTCGGTTCAG -CCAACAGTCTTGTCTTCGGCATAG -CCAACAGTCTTGTCTTCGGACAAG -CCAACAGTCTTGTCTTCGAAGCAG -CCAACAGTCTTGTCTTCGCGTCAA -CCAACAGTCTTGTCTTCGGCTGAA -CCAACAGTCTTGTCTTCGAGTACG -CCAACAGTCTTGTCTTCGATCCGA -CCAACAGTCTTGTCTTCGATGGGA -CCAACAGTCTTGTCTTCGGTGCAA -CCAACAGTCTTGTCTTCGGAGGAA -CCAACAGTCTTGTCTTCGCAGGTA -CCAACAGTCTTGTCTTCGGACTCT -CCAACAGTCTTGTCTTCGAGTCCT -CCAACAGTCTTGTCTTCGTAAGCC -CCAACAGTCTTGTCTTCGATAGCC -CCAACAGTCTTGTCTTCGTAACCG -CCAACAGTCTTGTCTTCGATGCCA -CCAACAGTCTTGACTTGCGGAAAC -CCAACAGTCTTGACTTGCAACACC -CCAACAGTCTTGACTTGCATCGAG -CCAACAGTCTTGACTTGCCTCCTT -CCAACAGTCTTGACTTGCCCTGTT -CCAACAGTCTTGACTTGCCGGTTT -CCAACAGTCTTGACTTGCGTGGTT -CCAACAGTCTTGACTTGCGCCTTT -CCAACAGTCTTGACTTGCGGTCTT -CCAACAGTCTTGACTTGCACGCTT -CCAACAGTCTTGACTTGCAGCGTT -CCAACAGTCTTGACTTGCTTCGTC -CCAACAGTCTTGACTTGCTCTCTC -CCAACAGTCTTGACTTGCTGGATC -CCAACAGTCTTGACTTGCCACTTC -CCAACAGTCTTGACTTGCGTACTC -CCAACAGTCTTGACTTGCGATGTC -CCAACAGTCTTGACTTGCACAGTC -CCAACAGTCTTGACTTGCTTGCTG -CCAACAGTCTTGACTTGCTCCATG -CCAACAGTCTTGACTTGCTGTGTG -CCAACAGTCTTGACTTGCCTAGTG -CCAACAGTCTTGACTTGCCATCTG -CCAACAGTCTTGACTTGCGAGTTG -CCAACAGTCTTGACTTGCAGACTG -CCAACAGTCTTGACTTGCTCGGTA -CCAACAGTCTTGACTTGCTGCCTA -CCAACAGTCTTGACTTGCCCACTA -CCAACAGTCTTGACTTGCGGAGTA -CCAACAGTCTTGACTTGCTCGTCT -CCAACAGTCTTGACTTGCTGCACT -CCAACAGTCTTGACTTGCCTGACT -CCAACAGTCTTGACTTGCCAACCT -CCAACAGTCTTGACTTGCGCTACT -CCAACAGTCTTGACTTGCGGATCT -CCAACAGTCTTGACTTGCAAGGCT -CCAACAGTCTTGACTTGCTCAACC -CCAACAGTCTTGACTTGCTGTTCC -CCAACAGTCTTGACTTGCATTCCC -CCAACAGTCTTGACTTGCTTCTCG -CCAACAGTCTTGACTTGCTAGACG -CCAACAGTCTTGACTTGCGTAACG -CCAACAGTCTTGACTTGCACTTCG -CCAACAGTCTTGACTTGCTACGCA -CCAACAGTCTTGACTTGCCTTGCA -CCAACAGTCTTGACTTGCCGAACA -CCAACAGTCTTGACTTGCCAGTCA -CCAACAGTCTTGACTTGCGATCCA -CCAACAGTCTTGACTTGCACGACA -CCAACAGTCTTGACTTGCAGCTCA -CCAACAGTCTTGACTTGCTCACGT -CCAACAGTCTTGACTTGCCGTAGT -CCAACAGTCTTGACTTGCGTCAGT -CCAACAGTCTTGACTTGCGAAGGT -CCAACAGTCTTGACTTGCAACCGT -CCAACAGTCTTGACTTGCTTGTGC -CCAACAGTCTTGACTTGCCTAAGC -CCAACAGTCTTGACTTGCACTAGC -CCAACAGTCTTGACTTGCAGATGC -CCAACAGTCTTGACTTGCTGAAGG -CCAACAGTCTTGACTTGCCAATGG -CCAACAGTCTTGACTTGCATGAGG -CCAACAGTCTTGACTTGCAATGGG -CCAACAGTCTTGACTTGCTCCTGA -CCAACAGTCTTGACTTGCTAGCGA -CCAACAGTCTTGACTTGCCACAGA -CCAACAGTCTTGACTTGCGCAAGA -CCAACAGTCTTGACTTGCGGTTGA -CCAACAGTCTTGACTTGCTCCGAT -CCAACAGTCTTGACTTGCTGGCAT -CCAACAGTCTTGACTTGCCGAGAT -CCAACAGTCTTGACTTGCTACCAC -CCAACAGTCTTGACTTGCCAGAAC -CCAACAGTCTTGACTTGCGTCTAC -CCAACAGTCTTGACTTGCACGTAC -CCAACAGTCTTGACTTGCAGTGAC -CCAACAGTCTTGACTTGCCTGTAG -CCAACAGTCTTGACTTGCCCTAAG -CCAACAGTCTTGACTTGCGTTCAG -CCAACAGTCTTGACTTGCGCATAG -CCAACAGTCTTGACTTGCGACAAG -CCAACAGTCTTGACTTGCAAGCAG -CCAACAGTCTTGACTTGCCGTCAA -CCAACAGTCTTGACTTGCGCTGAA -CCAACAGTCTTGACTTGCAGTACG -CCAACAGTCTTGACTTGCATCCGA -CCAACAGTCTTGACTTGCATGGGA -CCAACAGTCTTGACTTGCGTGCAA -CCAACAGTCTTGACTTGCGAGGAA -CCAACAGTCTTGACTTGCCAGGTA -CCAACAGTCTTGACTTGCGACTCT -CCAACAGTCTTGACTTGCAGTCCT -CCAACAGTCTTGACTTGCTAAGCC -CCAACAGTCTTGACTTGCATAGCC -CCAACAGTCTTGACTTGCTAACCG -CCAACAGTCTTGACTTGCATGCCA -CCAACAGTCTTGACTCTGGGAAAC -CCAACAGTCTTGACTCTGAACACC -CCAACAGTCTTGACTCTGATCGAG -CCAACAGTCTTGACTCTGCTCCTT -CCAACAGTCTTGACTCTGCCTGTT -CCAACAGTCTTGACTCTGCGGTTT -CCAACAGTCTTGACTCTGGTGGTT -CCAACAGTCTTGACTCTGGCCTTT -CCAACAGTCTTGACTCTGGGTCTT -CCAACAGTCTTGACTCTGACGCTT -CCAACAGTCTTGACTCTGAGCGTT -CCAACAGTCTTGACTCTGTTCGTC -CCAACAGTCTTGACTCTGTCTCTC -CCAACAGTCTTGACTCTGTGGATC -CCAACAGTCTTGACTCTGCACTTC -CCAACAGTCTTGACTCTGGTACTC -CCAACAGTCTTGACTCTGGATGTC -CCAACAGTCTTGACTCTGACAGTC -CCAACAGTCTTGACTCTGTTGCTG -CCAACAGTCTTGACTCTGTCCATG -CCAACAGTCTTGACTCTGTGTGTG -CCAACAGTCTTGACTCTGCTAGTG -CCAACAGTCTTGACTCTGCATCTG -CCAACAGTCTTGACTCTGGAGTTG -CCAACAGTCTTGACTCTGAGACTG -CCAACAGTCTTGACTCTGTCGGTA -CCAACAGTCTTGACTCTGTGCCTA -CCAACAGTCTTGACTCTGCCACTA -CCAACAGTCTTGACTCTGGGAGTA -CCAACAGTCTTGACTCTGTCGTCT -CCAACAGTCTTGACTCTGTGCACT -CCAACAGTCTTGACTCTGCTGACT -CCAACAGTCTTGACTCTGCAACCT -CCAACAGTCTTGACTCTGGCTACT -CCAACAGTCTTGACTCTGGGATCT -CCAACAGTCTTGACTCTGAAGGCT -CCAACAGTCTTGACTCTGTCAACC -CCAACAGTCTTGACTCTGTGTTCC -CCAACAGTCTTGACTCTGATTCCC -CCAACAGTCTTGACTCTGTTCTCG -CCAACAGTCTTGACTCTGTAGACG -CCAACAGTCTTGACTCTGGTAACG -CCAACAGTCTTGACTCTGACTTCG -CCAACAGTCTTGACTCTGTACGCA -CCAACAGTCTTGACTCTGCTTGCA -CCAACAGTCTTGACTCTGCGAACA -CCAACAGTCTTGACTCTGCAGTCA -CCAACAGTCTTGACTCTGGATCCA -CCAACAGTCTTGACTCTGACGACA -CCAACAGTCTTGACTCTGAGCTCA -CCAACAGTCTTGACTCTGTCACGT -CCAACAGTCTTGACTCTGCGTAGT -CCAACAGTCTTGACTCTGGTCAGT -CCAACAGTCTTGACTCTGGAAGGT -CCAACAGTCTTGACTCTGAACCGT -CCAACAGTCTTGACTCTGTTGTGC -CCAACAGTCTTGACTCTGCTAAGC -CCAACAGTCTTGACTCTGACTAGC -CCAACAGTCTTGACTCTGAGATGC -CCAACAGTCTTGACTCTGTGAAGG -CCAACAGTCTTGACTCTGCAATGG -CCAACAGTCTTGACTCTGATGAGG -CCAACAGTCTTGACTCTGAATGGG -CCAACAGTCTTGACTCTGTCCTGA -CCAACAGTCTTGACTCTGTAGCGA -CCAACAGTCTTGACTCTGCACAGA -CCAACAGTCTTGACTCTGGCAAGA -CCAACAGTCTTGACTCTGGGTTGA -CCAACAGTCTTGACTCTGTCCGAT -CCAACAGTCTTGACTCTGTGGCAT -CCAACAGTCTTGACTCTGCGAGAT -CCAACAGTCTTGACTCTGTACCAC -CCAACAGTCTTGACTCTGCAGAAC -CCAACAGTCTTGACTCTGGTCTAC -CCAACAGTCTTGACTCTGACGTAC -CCAACAGTCTTGACTCTGAGTGAC -CCAACAGTCTTGACTCTGCTGTAG -CCAACAGTCTTGACTCTGCCTAAG -CCAACAGTCTTGACTCTGGTTCAG -CCAACAGTCTTGACTCTGGCATAG -CCAACAGTCTTGACTCTGGACAAG -CCAACAGTCTTGACTCTGAAGCAG -CCAACAGTCTTGACTCTGCGTCAA -CCAACAGTCTTGACTCTGGCTGAA -CCAACAGTCTTGACTCTGAGTACG -CCAACAGTCTTGACTCTGATCCGA -CCAACAGTCTTGACTCTGATGGGA -CCAACAGTCTTGACTCTGGTGCAA -CCAACAGTCTTGACTCTGGAGGAA -CCAACAGTCTTGACTCTGCAGGTA -CCAACAGTCTTGACTCTGGACTCT -CCAACAGTCTTGACTCTGAGTCCT -CCAACAGTCTTGACTCTGTAAGCC -CCAACAGTCTTGACTCTGATAGCC -CCAACAGTCTTGACTCTGTAACCG -CCAACAGTCTTGACTCTGATGCCA -CCAACAGTCTTGCCTCAAGGAAAC -CCAACAGTCTTGCCTCAAAACACC -CCAACAGTCTTGCCTCAAATCGAG -CCAACAGTCTTGCCTCAACTCCTT -CCAACAGTCTTGCCTCAACCTGTT -CCAACAGTCTTGCCTCAACGGTTT -CCAACAGTCTTGCCTCAAGTGGTT -CCAACAGTCTTGCCTCAAGCCTTT -CCAACAGTCTTGCCTCAAGGTCTT -CCAACAGTCTTGCCTCAAACGCTT -CCAACAGTCTTGCCTCAAAGCGTT -CCAACAGTCTTGCCTCAATTCGTC -CCAACAGTCTTGCCTCAATCTCTC -CCAACAGTCTTGCCTCAATGGATC -CCAACAGTCTTGCCTCAACACTTC -CCAACAGTCTTGCCTCAAGTACTC -CCAACAGTCTTGCCTCAAGATGTC -CCAACAGTCTTGCCTCAAACAGTC -CCAACAGTCTTGCCTCAATTGCTG -CCAACAGTCTTGCCTCAATCCATG -CCAACAGTCTTGCCTCAATGTGTG -CCAACAGTCTTGCCTCAACTAGTG -CCAACAGTCTTGCCTCAACATCTG -CCAACAGTCTTGCCTCAAGAGTTG -CCAACAGTCTTGCCTCAAAGACTG -CCAACAGTCTTGCCTCAATCGGTA -CCAACAGTCTTGCCTCAATGCCTA -CCAACAGTCTTGCCTCAACCACTA -CCAACAGTCTTGCCTCAAGGAGTA -CCAACAGTCTTGCCTCAATCGTCT -CCAACAGTCTTGCCTCAATGCACT -CCAACAGTCTTGCCTCAACTGACT -CCAACAGTCTTGCCTCAACAACCT -CCAACAGTCTTGCCTCAAGCTACT -CCAACAGTCTTGCCTCAAGGATCT -CCAACAGTCTTGCCTCAAAAGGCT -CCAACAGTCTTGCCTCAATCAACC -CCAACAGTCTTGCCTCAATGTTCC -CCAACAGTCTTGCCTCAAATTCCC -CCAACAGTCTTGCCTCAATTCTCG -CCAACAGTCTTGCCTCAATAGACG -CCAACAGTCTTGCCTCAAGTAACG -CCAACAGTCTTGCCTCAAACTTCG -CCAACAGTCTTGCCTCAATACGCA -CCAACAGTCTTGCCTCAACTTGCA -CCAACAGTCTTGCCTCAACGAACA -CCAACAGTCTTGCCTCAACAGTCA -CCAACAGTCTTGCCTCAAGATCCA -CCAACAGTCTTGCCTCAAACGACA -CCAACAGTCTTGCCTCAAAGCTCA -CCAACAGTCTTGCCTCAATCACGT -CCAACAGTCTTGCCTCAACGTAGT -CCAACAGTCTTGCCTCAAGTCAGT -CCAACAGTCTTGCCTCAAGAAGGT -CCAACAGTCTTGCCTCAAAACCGT -CCAACAGTCTTGCCTCAATTGTGC -CCAACAGTCTTGCCTCAACTAAGC -CCAACAGTCTTGCCTCAAACTAGC -CCAACAGTCTTGCCTCAAAGATGC -CCAACAGTCTTGCCTCAATGAAGG -CCAACAGTCTTGCCTCAACAATGG -CCAACAGTCTTGCCTCAAATGAGG -CCAACAGTCTTGCCTCAAAATGGG -CCAACAGTCTTGCCTCAATCCTGA -CCAACAGTCTTGCCTCAATAGCGA -CCAACAGTCTTGCCTCAACACAGA -CCAACAGTCTTGCCTCAAGCAAGA -CCAACAGTCTTGCCTCAAGGTTGA -CCAACAGTCTTGCCTCAATCCGAT -CCAACAGTCTTGCCTCAATGGCAT -CCAACAGTCTTGCCTCAACGAGAT -CCAACAGTCTTGCCTCAATACCAC -CCAACAGTCTTGCCTCAACAGAAC -CCAACAGTCTTGCCTCAAGTCTAC -CCAACAGTCTTGCCTCAAACGTAC -CCAACAGTCTTGCCTCAAAGTGAC -CCAACAGTCTTGCCTCAACTGTAG -CCAACAGTCTTGCCTCAACCTAAG -CCAACAGTCTTGCCTCAAGTTCAG -CCAACAGTCTTGCCTCAAGCATAG -CCAACAGTCTTGCCTCAAGACAAG -CCAACAGTCTTGCCTCAAAAGCAG -CCAACAGTCTTGCCTCAACGTCAA -CCAACAGTCTTGCCTCAAGCTGAA -CCAACAGTCTTGCCTCAAAGTACG -CCAACAGTCTTGCCTCAAATCCGA -CCAACAGTCTTGCCTCAAATGGGA -CCAACAGTCTTGCCTCAAGTGCAA -CCAACAGTCTTGCCTCAAGAGGAA -CCAACAGTCTTGCCTCAACAGGTA -CCAACAGTCTTGCCTCAAGACTCT -CCAACAGTCTTGCCTCAAAGTCCT -CCAACAGTCTTGCCTCAATAAGCC -CCAACAGTCTTGCCTCAAATAGCC -CCAACAGTCTTGCCTCAATAACCG -CCAACAGTCTTGCCTCAAATGCCA -CCAACAGTCTTGACTGCTGGAAAC -CCAACAGTCTTGACTGCTAACACC -CCAACAGTCTTGACTGCTATCGAG -CCAACAGTCTTGACTGCTCTCCTT -CCAACAGTCTTGACTGCTCCTGTT -CCAACAGTCTTGACTGCTCGGTTT -CCAACAGTCTTGACTGCTGTGGTT -CCAACAGTCTTGACTGCTGCCTTT -CCAACAGTCTTGACTGCTGGTCTT -CCAACAGTCTTGACTGCTACGCTT -CCAACAGTCTTGACTGCTAGCGTT -CCAACAGTCTTGACTGCTTTCGTC -CCAACAGTCTTGACTGCTTCTCTC -CCAACAGTCTTGACTGCTTGGATC -CCAACAGTCTTGACTGCTCACTTC -CCAACAGTCTTGACTGCTGTACTC -CCAACAGTCTTGACTGCTGATGTC -CCAACAGTCTTGACTGCTACAGTC -CCAACAGTCTTGACTGCTTTGCTG -CCAACAGTCTTGACTGCTTCCATG -CCAACAGTCTTGACTGCTTGTGTG -CCAACAGTCTTGACTGCTCTAGTG -CCAACAGTCTTGACTGCTCATCTG -CCAACAGTCTTGACTGCTGAGTTG -CCAACAGTCTTGACTGCTAGACTG -CCAACAGTCTTGACTGCTTCGGTA -CCAACAGTCTTGACTGCTTGCCTA -CCAACAGTCTTGACTGCTCCACTA -CCAACAGTCTTGACTGCTGGAGTA -CCAACAGTCTTGACTGCTTCGTCT -CCAACAGTCTTGACTGCTTGCACT -CCAACAGTCTTGACTGCTCTGACT -CCAACAGTCTTGACTGCTCAACCT -CCAACAGTCTTGACTGCTGCTACT -CCAACAGTCTTGACTGCTGGATCT -CCAACAGTCTTGACTGCTAAGGCT -CCAACAGTCTTGACTGCTTCAACC -CCAACAGTCTTGACTGCTTGTTCC -CCAACAGTCTTGACTGCTATTCCC -CCAACAGTCTTGACTGCTTTCTCG -CCAACAGTCTTGACTGCTTAGACG -CCAACAGTCTTGACTGCTGTAACG -CCAACAGTCTTGACTGCTACTTCG -CCAACAGTCTTGACTGCTTACGCA -CCAACAGTCTTGACTGCTCTTGCA -CCAACAGTCTTGACTGCTCGAACA -CCAACAGTCTTGACTGCTCAGTCA -CCAACAGTCTTGACTGCTGATCCA -CCAACAGTCTTGACTGCTACGACA -CCAACAGTCTTGACTGCTAGCTCA -CCAACAGTCTTGACTGCTTCACGT -CCAACAGTCTTGACTGCTCGTAGT -CCAACAGTCTTGACTGCTGTCAGT -CCAACAGTCTTGACTGCTGAAGGT -CCAACAGTCTTGACTGCTAACCGT -CCAACAGTCTTGACTGCTTTGTGC -CCAACAGTCTTGACTGCTCTAAGC -CCAACAGTCTTGACTGCTACTAGC -CCAACAGTCTTGACTGCTAGATGC -CCAACAGTCTTGACTGCTTGAAGG -CCAACAGTCTTGACTGCTCAATGG -CCAACAGTCTTGACTGCTATGAGG -CCAACAGTCTTGACTGCTAATGGG -CCAACAGTCTTGACTGCTTCCTGA -CCAACAGTCTTGACTGCTTAGCGA -CCAACAGTCTTGACTGCTCACAGA -CCAACAGTCTTGACTGCTGCAAGA -CCAACAGTCTTGACTGCTGGTTGA -CCAACAGTCTTGACTGCTTCCGAT -CCAACAGTCTTGACTGCTTGGCAT -CCAACAGTCTTGACTGCTCGAGAT -CCAACAGTCTTGACTGCTTACCAC -CCAACAGTCTTGACTGCTCAGAAC -CCAACAGTCTTGACTGCTGTCTAC -CCAACAGTCTTGACTGCTACGTAC -CCAACAGTCTTGACTGCTAGTGAC -CCAACAGTCTTGACTGCTCTGTAG -CCAACAGTCTTGACTGCTCCTAAG -CCAACAGTCTTGACTGCTGTTCAG -CCAACAGTCTTGACTGCTGCATAG -CCAACAGTCTTGACTGCTGACAAG -CCAACAGTCTTGACTGCTAAGCAG -CCAACAGTCTTGACTGCTCGTCAA -CCAACAGTCTTGACTGCTGCTGAA -CCAACAGTCTTGACTGCTAGTACG -CCAACAGTCTTGACTGCTATCCGA -CCAACAGTCTTGACTGCTATGGGA -CCAACAGTCTTGACTGCTGTGCAA -CCAACAGTCTTGACTGCTGAGGAA -CCAACAGTCTTGACTGCTCAGGTA -CCAACAGTCTTGACTGCTGACTCT -CCAACAGTCTTGACTGCTAGTCCT -CCAACAGTCTTGACTGCTTAAGCC -CCAACAGTCTTGACTGCTATAGCC -CCAACAGTCTTGACTGCTTAACCG -CCAACAGTCTTGACTGCTATGCCA -CCAACAGTCTTGTCTGGAGGAAAC -CCAACAGTCTTGTCTGGAAACACC -CCAACAGTCTTGTCTGGAATCGAG -CCAACAGTCTTGTCTGGACTCCTT -CCAACAGTCTTGTCTGGACCTGTT -CCAACAGTCTTGTCTGGACGGTTT -CCAACAGTCTTGTCTGGAGTGGTT -CCAACAGTCTTGTCTGGAGCCTTT -CCAACAGTCTTGTCTGGAGGTCTT -CCAACAGTCTTGTCTGGAACGCTT -CCAACAGTCTTGTCTGGAAGCGTT -CCAACAGTCTTGTCTGGATTCGTC -CCAACAGTCTTGTCTGGATCTCTC -CCAACAGTCTTGTCTGGATGGATC -CCAACAGTCTTGTCTGGACACTTC -CCAACAGTCTTGTCTGGAGTACTC -CCAACAGTCTTGTCTGGAGATGTC -CCAACAGTCTTGTCTGGAACAGTC -CCAACAGTCTTGTCTGGATTGCTG -CCAACAGTCTTGTCTGGATCCATG -CCAACAGTCTTGTCTGGATGTGTG -CCAACAGTCTTGTCTGGACTAGTG -CCAACAGTCTTGTCTGGACATCTG -CCAACAGTCTTGTCTGGAGAGTTG -CCAACAGTCTTGTCTGGAAGACTG -CCAACAGTCTTGTCTGGATCGGTA -CCAACAGTCTTGTCTGGATGCCTA -CCAACAGTCTTGTCTGGACCACTA -CCAACAGTCTTGTCTGGAGGAGTA -CCAACAGTCTTGTCTGGATCGTCT -CCAACAGTCTTGTCTGGATGCACT -CCAACAGTCTTGTCTGGACTGACT -CCAACAGTCTTGTCTGGACAACCT -CCAACAGTCTTGTCTGGAGCTACT -CCAACAGTCTTGTCTGGAGGATCT -CCAACAGTCTTGTCTGGAAAGGCT -CCAACAGTCTTGTCTGGATCAACC -CCAACAGTCTTGTCTGGATGTTCC -CCAACAGTCTTGTCTGGAATTCCC -CCAACAGTCTTGTCTGGATTCTCG -CCAACAGTCTTGTCTGGATAGACG -CCAACAGTCTTGTCTGGAGTAACG -CCAACAGTCTTGTCTGGAACTTCG -CCAACAGTCTTGTCTGGATACGCA -CCAACAGTCTTGTCTGGACTTGCA -CCAACAGTCTTGTCTGGACGAACA -CCAACAGTCTTGTCTGGACAGTCA -CCAACAGTCTTGTCTGGAGATCCA -CCAACAGTCTTGTCTGGAACGACA -CCAACAGTCTTGTCTGGAAGCTCA -CCAACAGTCTTGTCTGGATCACGT -CCAACAGTCTTGTCTGGACGTAGT -CCAACAGTCTTGTCTGGAGTCAGT -CCAACAGTCTTGTCTGGAGAAGGT -CCAACAGTCTTGTCTGGAAACCGT -CCAACAGTCTTGTCTGGATTGTGC -CCAACAGTCTTGTCTGGACTAAGC -CCAACAGTCTTGTCTGGAACTAGC -CCAACAGTCTTGTCTGGAAGATGC -CCAACAGTCTTGTCTGGATGAAGG -CCAACAGTCTTGTCTGGACAATGG -CCAACAGTCTTGTCTGGAATGAGG -CCAACAGTCTTGTCTGGAAATGGG -CCAACAGTCTTGTCTGGATCCTGA -CCAACAGTCTTGTCTGGATAGCGA -CCAACAGTCTTGTCTGGACACAGA -CCAACAGTCTTGTCTGGAGCAAGA -CCAACAGTCTTGTCTGGAGGTTGA -CCAACAGTCTTGTCTGGATCCGAT -CCAACAGTCTTGTCTGGATGGCAT -CCAACAGTCTTGTCTGGACGAGAT -CCAACAGTCTTGTCTGGATACCAC -CCAACAGTCTTGTCTGGACAGAAC -CCAACAGTCTTGTCTGGAGTCTAC -CCAACAGTCTTGTCTGGAACGTAC -CCAACAGTCTTGTCTGGAAGTGAC -CCAACAGTCTTGTCTGGACTGTAG -CCAACAGTCTTGTCTGGACCTAAG -CCAACAGTCTTGTCTGGAGTTCAG -CCAACAGTCTTGTCTGGAGCATAG -CCAACAGTCTTGTCTGGAGACAAG -CCAACAGTCTTGTCTGGAAAGCAG -CCAACAGTCTTGTCTGGACGTCAA -CCAACAGTCTTGTCTGGAGCTGAA -CCAACAGTCTTGTCTGGAAGTACG -CCAACAGTCTTGTCTGGAATCCGA -CCAACAGTCTTGTCTGGAATGGGA -CCAACAGTCTTGTCTGGAGTGCAA -CCAACAGTCTTGTCTGGAGAGGAA -CCAACAGTCTTGTCTGGACAGGTA -CCAACAGTCTTGTCTGGAGACTCT -CCAACAGTCTTGTCTGGAAGTCCT -CCAACAGTCTTGTCTGGATAAGCC -CCAACAGTCTTGTCTGGAATAGCC -CCAACAGTCTTGTCTGGATAACCG -CCAACAGTCTTGTCTGGAATGCCA -CCAACAGTCTTGGCTAAGGGAAAC -CCAACAGTCTTGGCTAAGAACACC -CCAACAGTCTTGGCTAAGATCGAG -CCAACAGTCTTGGCTAAGCTCCTT -CCAACAGTCTTGGCTAAGCCTGTT -CCAACAGTCTTGGCTAAGCGGTTT -CCAACAGTCTTGGCTAAGGTGGTT -CCAACAGTCTTGGCTAAGGCCTTT -CCAACAGTCTTGGCTAAGGGTCTT -CCAACAGTCTTGGCTAAGACGCTT -CCAACAGTCTTGGCTAAGAGCGTT -CCAACAGTCTTGGCTAAGTTCGTC -CCAACAGTCTTGGCTAAGTCTCTC -CCAACAGTCTTGGCTAAGTGGATC -CCAACAGTCTTGGCTAAGCACTTC -CCAACAGTCTTGGCTAAGGTACTC -CCAACAGTCTTGGCTAAGGATGTC -CCAACAGTCTTGGCTAAGACAGTC -CCAACAGTCTTGGCTAAGTTGCTG -CCAACAGTCTTGGCTAAGTCCATG -CCAACAGTCTTGGCTAAGTGTGTG -CCAACAGTCTTGGCTAAGCTAGTG -CCAACAGTCTTGGCTAAGCATCTG -CCAACAGTCTTGGCTAAGGAGTTG -CCAACAGTCTTGGCTAAGAGACTG -CCAACAGTCTTGGCTAAGTCGGTA -CCAACAGTCTTGGCTAAGTGCCTA -CCAACAGTCTTGGCTAAGCCACTA -CCAACAGTCTTGGCTAAGGGAGTA -CCAACAGTCTTGGCTAAGTCGTCT -CCAACAGTCTTGGCTAAGTGCACT -CCAACAGTCTTGGCTAAGCTGACT -CCAACAGTCTTGGCTAAGCAACCT -CCAACAGTCTTGGCTAAGGCTACT -CCAACAGTCTTGGCTAAGGGATCT -CCAACAGTCTTGGCTAAGAAGGCT -CCAACAGTCTTGGCTAAGTCAACC -CCAACAGTCTTGGCTAAGTGTTCC -CCAACAGTCTTGGCTAAGATTCCC -CCAACAGTCTTGGCTAAGTTCTCG -CCAACAGTCTTGGCTAAGTAGACG -CCAACAGTCTTGGCTAAGGTAACG -CCAACAGTCTTGGCTAAGACTTCG -CCAACAGTCTTGGCTAAGTACGCA -CCAACAGTCTTGGCTAAGCTTGCA -CCAACAGTCTTGGCTAAGCGAACA -CCAACAGTCTTGGCTAAGCAGTCA -CCAACAGTCTTGGCTAAGGATCCA -CCAACAGTCTTGGCTAAGACGACA -CCAACAGTCTTGGCTAAGAGCTCA -CCAACAGTCTTGGCTAAGTCACGT -CCAACAGTCTTGGCTAAGCGTAGT -CCAACAGTCTTGGCTAAGGTCAGT -CCAACAGTCTTGGCTAAGGAAGGT -CCAACAGTCTTGGCTAAGAACCGT -CCAACAGTCTTGGCTAAGTTGTGC -CCAACAGTCTTGGCTAAGCTAAGC -CCAACAGTCTTGGCTAAGACTAGC -CCAACAGTCTTGGCTAAGAGATGC -CCAACAGTCTTGGCTAAGTGAAGG -CCAACAGTCTTGGCTAAGCAATGG -CCAACAGTCTTGGCTAAGATGAGG -CCAACAGTCTTGGCTAAGAATGGG -CCAACAGTCTTGGCTAAGTCCTGA -CCAACAGTCTTGGCTAAGTAGCGA -CCAACAGTCTTGGCTAAGCACAGA -CCAACAGTCTTGGCTAAGGCAAGA -CCAACAGTCTTGGCTAAGGGTTGA -CCAACAGTCTTGGCTAAGTCCGAT -CCAACAGTCTTGGCTAAGTGGCAT -CCAACAGTCTTGGCTAAGCGAGAT -CCAACAGTCTTGGCTAAGTACCAC -CCAACAGTCTTGGCTAAGCAGAAC -CCAACAGTCTTGGCTAAGGTCTAC -CCAACAGTCTTGGCTAAGACGTAC -CCAACAGTCTTGGCTAAGAGTGAC -CCAACAGTCTTGGCTAAGCTGTAG -CCAACAGTCTTGGCTAAGCCTAAG -CCAACAGTCTTGGCTAAGGTTCAG -CCAACAGTCTTGGCTAAGGCATAG -CCAACAGTCTTGGCTAAGGACAAG -CCAACAGTCTTGGCTAAGAAGCAG -CCAACAGTCTTGGCTAAGCGTCAA -CCAACAGTCTTGGCTAAGGCTGAA -CCAACAGTCTTGGCTAAGAGTACG -CCAACAGTCTTGGCTAAGATCCGA -CCAACAGTCTTGGCTAAGATGGGA -CCAACAGTCTTGGCTAAGGTGCAA -CCAACAGTCTTGGCTAAGGAGGAA -CCAACAGTCTTGGCTAAGCAGGTA -CCAACAGTCTTGGCTAAGGACTCT -CCAACAGTCTTGGCTAAGAGTCCT -CCAACAGTCTTGGCTAAGTAAGCC -CCAACAGTCTTGGCTAAGATAGCC -CCAACAGTCTTGGCTAAGTAACCG -CCAACAGTCTTGGCTAAGATGCCA -CCAACAGTCTTGACCTCAGGAAAC -CCAACAGTCTTGACCTCAAACACC -CCAACAGTCTTGACCTCAATCGAG -CCAACAGTCTTGACCTCACTCCTT -CCAACAGTCTTGACCTCACCTGTT -CCAACAGTCTTGACCTCACGGTTT -CCAACAGTCTTGACCTCAGTGGTT -CCAACAGTCTTGACCTCAGCCTTT -CCAACAGTCTTGACCTCAGGTCTT -CCAACAGTCTTGACCTCAACGCTT -CCAACAGTCTTGACCTCAAGCGTT -CCAACAGTCTTGACCTCATTCGTC -CCAACAGTCTTGACCTCATCTCTC -CCAACAGTCTTGACCTCATGGATC -CCAACAGTCTTGACCTCACACTTC -CCAACAGTCTTGACCTCAGTACTC -CCAACAGTCTTGACCTCAGATGTC -CCAACAGTCTTGACCTCAACAGTC -CCAACAGTCTTGACCTCATTGCTG -CCAACAGTCTTGACCTCATCCATG -CCAACAGTCTTGACCTCATGTGTG -CCAACAGTCTTGACCTCACTAGTG -CCAACAGTCTTGACCTCACATCTG -CCAACAGTCTTGACCTCAGAGTTG -CCAACAGTCTTGACCTCAAGACTG -CCAACAGTCTTGACCTCATCGGTA -CCAACAGTCTTGACCTCATGCCTA -CCAACAGTCTTGACCTCACCACTA -CCAACAGTCTTGACCTCAGGAGTA -CCAACAGTCTTGACCTCATCGTCT -CCAACAGTCTTGACCTCATGCACT -CCAACAGTCTTGACCTCACTGACT -CCAACAGTCTTGACCTCACAACCT -CCAACAGTCTTGACCTCAGCTACT -CCAACAGTCTTGACCTCAGGATCT -CCAACAGTCTTGACCTCAAAGGCT -CCAACAGTCTTGACCTCATCAACC -CCAACAGTCTTGACCTCATGTTCC -CCAACAGTCTTGACCTCAATTCCC -CCAACAGTCTTGACCTCATTCTCG -CCAACAGTCTTGACCTCATAGACG -CCAACAGTCTTGACCTCAGTAACG -CCAACAGTCTTGACCTCAACTTCG -CCAACAGTCTTGACCTCATACGCA -CCAACAGTCTTGACCTCACTTGCA -CCAACAGTCTTGACCTCACGAACA -CCAACAGTCTTGACCTCACAGTCA -CCAACAGTCTTGACCTCAGATCCA -CCAACAGTCTTGACCTCAACGACA -CCAACAGTCTTGACCTCAAGCTCA -CCAACAGTCTTGACCTCATCACGT -CCAACAGTCTTGACCTCACGTAGT -CCAACAGTCTTGACCTCAGTCAGT -CCAACAGTCTTGACCTCAGAAGGT -CCAACAGTCTTGACCTCAAACCGT -CCAACAGTCTTGACCTCATTGTGC -CCAACAGTCTTGACCTCACTAAGC -CCAACAGTCTTGACCTCAACTAGC -CCAACAGTCTTGACCTCAAGATGC -CCAACAGTCTTGACCTCATGAAGG -CCAACAGTCTTGACCTCACAATGG -CCAACAGTCTTGACCTCAATGAGG -CCAACAGTCTTGACCTCAAATGGG -CCAACAGTCTTGACCTCATCCTGA -CCAACAGTCTTGACCTCATAGCGA -CCAACAGTCTTGACCTCACACAGA -CCAACAGTCTTGACCTCAGCAAGA -CCAACAGTCTTGACCTCAGGTTGA -CCAACAGTCTTGACCTCATCCGAT -CCAACAGTCTTGACCTCATGGCAT -CCAACAGTCTTGACCTCACGAGAT -CCAACAGTCTTGACCTCATACCAC -CCAACAGTCTTGACCTCACAGAAC -CCAACAGTCTTGACCTCAGTCTAC -CCAACAGTCTTGACCTCAACGTAC -CCAACAGTCTTGACCTCAAGTGAC -CCAACAGTCTTGACCTCACTGTAG -CCAACAGTCTTGACCTCACCTAAG -CCAACAGTCTTGACCTCAGTTCAG -CCAACAGTCTTGACCTCAGCATAG -CCAACAGTCTTGACCTCAGACAAG -CCAACAGTCTTGACCTCAAAGCAG -CCAACAGTCTTGACCTCACGTCAA -CCAACAGTCTTGACCTCAGCTGAA -CCAACAGTCTTGACCTCAAGTACG -CCAACAGTCTTGACCTCAATCCGA -CCAACAGTCTTGACCTCAATGGGA -CCAACAGTCTTGACCTCAGTGCAA -CCAACAGTCTTGACCTCAGAGGAA -CCAACAGTCTTGACCTCACAGGTA -CCAACAGTCTTGACCTCAGACTCT -CCAACAGTCTTGACCTCAAGTCCT -CCAACAGTCTTGACCTCATAAGCC -CCAACAGTCTTGACCTCAATAGCC -CCAACAGTCTTGACCTCATAACCG -CCAACAGTCTTGACCTCAATGCCA -CCAACAGTCTTGTCCTGTGGAAAC -CCAACAGTCTTGTCCTGTAACACC -CCAACAGTCTTGTCCTGTATCGAG -CCAACAGTCTTGTCCTGTCTCCTT -CCAACAGTCTTGTCCTGTCCTGTT -CCAACAGTCTTGTCCTGTCGGTTT -CCAACAGTCTTGTCCTGTGTGGTT -CCAACAGTCTTGTCCTGTGCCTTT -CCAACAGTCTTGTCCTGTGGTCTT -CCAACAGTCTTGTCCTGTACGCTT -CCAACAGTCTTGTCCTGTAGCGTT -CCAACAGTCTTGTCCTGTTTCGTC -CCAACAGTCTTGTCCTGTTCTCTC -CCAACAGTCTTGTCCTGTTGGATC -CCAACAGTCTTGTCCTGTCACTTC -CCAACAGTCTTGTCCTGTGTACTC -CCAACAGTCTTGTCCTGTGATGTC -CCAACAGTCTTGTCCTGTACAGTC -CCAACAGTCTTGTCCTGTTTGCTG -CCAACAGTCTTGTCCTGTTCCATG -CCAACAGTCTTGTCCTGTTGTGTG -CCAACAGTCTTGTCCTGTCTAGTG -CCAACAGTCTTGTCCTGTCATCTG -CCAACAGTCTTGTCCTGTGAGTTG -CCAACAGTCTTGTCCTGTAGACTG -CCAACAGTCTTGTCCTGTTCGGTA -CCAACAGTCTTGTCCTGTTGCCTA -CCAACAGTCTTGTCCTGTCCACTA -CCAACAGTCTTGTCCTGTGGAGTA -CCAACAGTCTTGTCCTGTTCGTCT -CCAACAGTCTTGTCCTGTTGCACT -CCAACAGTCTTGTCCTGTCTGACT -CCAACAGTCTTGTCCTGTCAACCT -CCAACAGTCTTGTCCTGTGCTACT -CCAACAGTCTTGTCCTGTGGATCT -CCAACAGTCTTGTCCTGTAAGGCT -CCAACAGTCTTGTCCTGTTCAACC -CCAACAGTCTTGTCCTGTTGTTCC -CCAACAGTCTTGTCCTGTATTCCC -CCAACAGTCTTGTCCTGTTTCTCG -CCAACAGTCTTGTCCTGTTAGACG -CCAACAGTCTTGTCCTGTGTAACG -CCAACAGTCTTGTCCTGTACTTCG -CCAACAGTCTTGTCCTGTTACGCA -CCAACAGTCTTGTCCTGTCTTGCA -CCAACAGTCTTGTCCTGTCGAACA -CCAACAGTCTTGTCCTGTCAGTCA -CCAACAGTCTTGTCCTGTGATCCA -CCAACAGTCTTGTCCTGTACGACA -CCAACAGTCTTGTCCTGTAGCTCA -CCAACAGTCTTGTCCTGTTCACGT -CCAACAGTCTTGTCCTGTCGTAGT -CCAACAGTCTTGTCCTGTGTCAGT -CCAACAGTCTTGTCCTGTGAAGGT -CCAACAGTCTTGTCCTGTAACCGT -CCAACAGTCTTGTCCTGTTTGTGC -CCAACAGTCTTGTCCTGTCTAAGC -CCAACAGTCTTGTCCTGTACTAGC -CCAACAGTCTTGTCCTGTAGATGC -CCAACAGTCTTGTCCTGTTGAAGG -CCAACAGTCTTGTCCTGTCAATGG -CCAACAGTCTTGTCCTGTATGAGG -CCAACAGTCTTGTCCTGTAATGGG -CCAACAGTCTTGTCCTGTTCCTGA -CCAACAGTCTTGTCCTGTTAGCGA -CCAACAGTCTTGTCCTGTCACAGA -CCAACAGTCTTGTCCTGTGCAAGA -CCAACAGTCTTGTCCTGTGGTTGA -CCAACAGTCTTGTCCTGTTCCGAT -CCAACAGTCTTGTCCTGTTGGCAT -CCAACAGTCTTGTCCTGTCGAGAT -CCAACAGTCTTGTCCTGTTACCAC -CCAACAGTCTTGTCCTGTCAGAAC -CCAACAGTCTTGTCCTGTGTCTAC -CCAACAGTCTTGTCCTGTACGTAC -CCAACAGTCTTGTCCTGTAGTGAC -CCAACAGTCTTGTCCTGTCTGTAG -CCAACAGTCTTGTCCTGTCCTAAG -CCAACAGTCTTGTCCTGTGTTCAG -CCAACAGTCTTGTCCTGTGCATAG -CCAACAGTCTTGTCCTGTGACAAG -CCAACAGTCTTGTCCTGTAAGCAG -CCAACAGTCTTGTCCTGTCGTCAA -CCAACAGTCTTGTCCTGTGCTGAA -CCAACAGTCTTGTCCTGTAGTACG -CCAACAGTCTTGTCCTGTATCCGA -CCAACAGTCTTGTCCTGTATGGGA -CCAACAGTCTTGTCCTGTGTGCAA -CCAACAGTCTTGTCCTGTGAGGAA -CCAACAGTCTTGTCCTGTCAGGTA -CCAACAGTCTTGTCCTGTGACTCT -CCAACAGTCTTGTCCTGTAGTCCT -CCAACAGTCTTGTCCTGTTAAGCC -CCAACAGTCTTGTCCTGTATAGCC -CCAACAGTCTTGTCCTGTTAACCG -CCAACAGTCTTGTCCTGTATGCCA -CCAACAGTCTTGCCCATTGGAAAC -CCAACAGTCTTGCCCATTAACACC -CCAACAGTCTTGCCCATTATCGAG -CCAACAGTCTTGCCCATTCTCCTT -CCAACAGTCTTGCCCATTCCTGTT -CCAACAGTCTTGCCCATTCGGTTT -CCAACAGTCTTGCCCATTGTGGTT -CCAACAGTCTTGCCCATTGCCTTT -CCAACAGTCTTGCCCATTGGTCTT -CCAACAGTCTTGCCCATTACGCTT -CCAACAGTCTTGCCCATTAGCGTT -CCAACAGTCTTGCCCATTTTCGTC -CCAACAGTCTTGCCCATTTCTCTC -CCAACAGTCTTGCCCATTTGGATC -CCAACAGTCTTGCCCATTCACTTC -CCAACAGTCTTGCCCATTGTACTC -CCAACAGTCTTGCCCATTGATGTC -CCAACAGTCTTGCCCATTACAGTC -CCAACAGTCTTGCCCATTTTGCTG -CCAACAGTCTTGCCCATTTCCATG -CCAACAGTCTTGCCCATTTGTGTG -CCAACAGTCTTGCCCATTCTAGTG -CCAACAGTCTTGCCCATTCATCTG -CCAACAGTCTTGCCCATTGAGTTG -CCAACAGTCTTGCCCATTAGACTG -CCAACAGTCTTGCCCATTTCGGTA -CCAACAGTCTTGCCCATTTGCCTA -CCAACAGTCTTGCCCATTCCACTA -CCAACAGTCTTGCCCATTGGAGTA -CCAACAGTCTTGCCCATTTCGTCT -CCAACAGTCTTGCCCATTTGCACT -CCAACAGTCTTGCCCATTCTGACT -CCAACAGTCTTGCCCATTCAACCT -CCAACAGTCTTGCCCATTGCTACT -CCAACAGTCTTGCCCATTGGATCT -CCAACAGTCTTGCCCATTAAGGCT -CCAACAGTCTTGCCCATTTCAACC -CCAACAGTCTTGCCCATTTGTTCC -CCAACAGTCTTGCCCATTATTCCC -CCAACAGTCTTGCCCATTTTCTCG -CCAACAGTCTTGCCCATTTAGACG -CCAACAGTCTTGCCCATTGTAACG -CCAACAGTCTTGCCCATTACTTCG -CCAACAGTCTTGCCCATTTACGCA -CCAACAGTCTTGCCCATTCTTGCA -CCAACAGTCTTGCCCATTCGAACA -CCAACAGTCTTGCCCATTCAGTCA -CCAACAGTCTTGCCCATTGATCCA -CCAACAGTCTTGCCCATTACGACA -CCAACAGTCTTGCCCATTAGCTCA -CCAACAGTCTTGCCCATTTCACGT -CCAACAGTCTTGCCCATTCGTAGT -CCAACAGTCTTGCCCATTGTCAGT -CCAACAGTCTTGCCCATTGAAGGT -CCAACAGTCTTGCCCATTAACCGT -CCAACAGTCTTGCCCATTTTGTGC -CCAACAGTCTTGCCCATTCTAAGC -CCAACAGTCTTGCCCATTACTAGC -CCAACAGTCTTGCCCATTAGATGC -CCAACAGTCTTGCCCATTTGAAGG -CCAACAGTCTTGCCCATTCAATGG -CCAACAGTCTTGCCCATTATGAGG -CCAACAGTCTTGCCCATTAATGGG -CCAACAGTCTTGCCCATTTCCTGA -CCAACAGTCTTGCCCATTTAGCGA -CCAACAGTCTTGCCCATTCACAGA -CCAACAGTCTTGCCCATTGCAAGA -CCAACAGTCTTGCCCATTGGTTGA -CCAACAGTCTTGCCCATTTCCGAT -CCAACAGTCTTGCCCATTTGGCAT -CCAACAGTCTTGCCCATTCGAGAT -CCAACAGTCTTGCCCATTTACCAC -CCAACAGTCTTGCCCATTCAGAAC -CCAACAGTCTTGCCCATTGTCTAC -CCAACAGTCTTGCCCATTACGTAC -CCAACAGTCTTGCCCATTAGTGAC -CCAACAGTCTTGCCCATTCTGTAG -CCAACAGTCTTGCCCATTCCTAAG -CCAACAGTCTTGCCCATTGTTCAG -CCAACAGTCTTGCCCATTGCATAG -CCAACAGTCTTGCCCATTGACAAG -CCAACAGTCTTGCCCATTAAGCAG -CCAACAGTCTTGCCCATTCGTCAA -CCAACAGTCTTGCCCATTGCTGAA -CCAACAGTCTTGCCCATTAGTACG -CCAACAGTCTTGCCCATTATCCGA -CCAACAGTCTTGCCCATTATGGGA -CCAACAGTCTTGCCCATTGTGCAA -CCAACAGTCTTGCCCATTGAGGAA -CCAACAGTCTTGCCCATTCAGGTA -CCAACAGTCTTGCCCATTGACTCT -CCAACAGTCTTGCCCATTAGTCCT -CCAACAGTCTTGCCCATTTAAGCC -CCAACAGTCTTGCCCATTATAGCC -CCAACAGTCTTGCCCATTTAACCG -CCAACAGTCTTGCCCATTATGCCA -CCAACAGTCTTGTCGTTCGGAAAC -CCAACAGTCTTGTCGTTCAACACC -CCAACAGTCTTGTCGTTCATCGAG -CCAACAGTCTTGTCGTTCCTCCTT -CCAACAGTCTTGTCGTTCCCTGTT -CCAACAGTCTTGTCGTTCCGGTTT -CCAACAGTCTTGTCGTTCGTGGTT -CCAACAGTCTTGTCGTTCGCCTTT -CCAACAGTCTTGTCGTTCGGTCTT -CCAACAGTCTTGTCGTTCACGCTT -CCAACAGTCTTGTCGTTCAGCGTT -CCAACAGTCTTGTCGTTCTTCGTC -CCAACAGTCTTGTCGTTCTCTCTC -CCAACAGTCTTGTCGTTCTGGATC -CCAACAGTCTTGTCGTTCCACTTC -CCAACAGTCTTGTCGTTCGTACTC -CCAACAGTCTTGTCGTTCGATGTC -CCAACAGTCTTGTCGTTCACAGTC -CCAACAGTCTTGTCGTTCTTGCTG -CCAACAGTCTTGTCGTTCTCCATG -CCAACAGTCTTGTCGTTCTGTGTG -CCAACAGTCTTGTCGTTCCTAGTG -CCAACAGTCTTGTCGTTCCATCTG -CCAACAGTCTTGTCGTTCGAGTTG -CCAACAGTCTTGTCGTTCAGACTG -CCAACAGTCTTGTCGTTCTCGGTA -CCAACAGTCTTGTCGTTCTGCCTA -CCAACAGTCTTGTCGTTCCCACTA -CCAACAGTCTTGTCGTTCGGAGTA -CCAACAGTCTTGTCGTTCTCGTCT -CCAACAGTCTTGTCGTTCTGCACT -CCAACAGTCTTGTCGTTCCTGACT -CCAACAGTCTTGTCGTTCCAACCT -CCAACAGTCTTGTCGTTCGCTACT -CCAACAGTCTTGTCGTTCGGATCT -CCAACAGTCTTGTCGTTCAAGGCT -CCAACAGTCTTGTCGTTCTCAACC -CCAACAGTCTTGTCGTTCTGTTCC -CCAACAGTCTTGTCGTTCATTCCC -CCAACAGTCTTGTCGTTCTTCTCG -CCAACAGTCTTGTCGTTCTAGACG -CCAACAGTCTTGTCGTTCGTAACG -CCAACAGTCTTGTCGTTCACTTCG -CCAACAGTCTTGTCGTTCTACGCA -CCAACAGTCTTGTCGTTCCTTGCA -CCAACAGTCTTGTCGTTCCGAACA -CCAACAGTCTTGTCGTTCCAGTCA -CCAACAGTCTTGTCGTTCGATCCA -CCAACAGTCTTGTCGTTCACGACA -CCAACAGTCTTGTCGTTCAGCTCA -CCAACAGTCTTGTCGTTCTCACGT -CCAACAGTCTTGTCGTTCCGTAGT -CCAACAGTCTTGTCGTTCGTCAGT -CCAACAGTCTTGTCGTTCGAAGGT -CCAACAGTCTTGTCGTTCAACCGT -CCAACAGTCTTGTCGTTCTTGTGC -CCAACAGTCTTGTCGTTCCTAAGC -CCAACAGTCTTGTCGTTCACTAGC -CCAACAGTCTTGTCGTTCAGATGC -CCAACAGTCTTGTCGTTCTGAAGG -CCAACAGTCTTGTCGTTCCAATGG -CCAACAGTCTTGTCGTTCATGAGG -CCAACAGTCTTGTCGTTCAATGGG -CCAACAGTCTTGTCGTTCTCCTGA -CCAACAGTCTTGTCGTTCTAGCGA -CCAACAGTCTTGTCGTTCCACAGA -CCAACAGTCTTGTCGTTCGCAAGA -CCAACAGTCTTGTCGTTCGGTTGA -CCAACAGTCTTGTCGTTCTCCGAT -CCAACAGTCTTGTCGTTCTGGCAT -CCAACAGTCTTGTCGTTCCGAGAT -CCAACAGTCTTGTCGTTCTACCAC -CCAACAGTCTTGTCGTTCCAGAAC -CCAACAGTCTTGTCGTTCGTCTAC -CCAACAGTCTTGTCGTTCACGTAC -CCAACAGTCTTGTCGTTCAGTGAC -CCAACAGTCTTGTCGTTCCTGTAG -CCAACAGTCTTGTCGTTCCCTAAG -CCAACAGTCTTGTCGTTCGTTCAG -CCAACAGTCTTGTCGTTCGCATAG -CCAACAGTCTTGTCGTTCGACAAG -CCAACAGTCTTGTCGTTCAAGCAG -CCAACAGTCTTGTCGTTCCGTCAA -CCAACAGTCTTGTCGTTCGCTGAA -CCAACAGTCTTGTCGTTCAGTACG -CCAACAGTCTTGTCGTTCATCCGA -CCAACAGTCTTGTCGTTCATGGGA -CCAACAGTCTTGTCGTTCGTGCAA -CCAACAGTCTTGTCGTTCGAGGAA -CCAACAGTCTTGTCGTTCCAGGTA -CCAACAGTCTTGTCGTTCGACTCT -CCAACAGTCTTGTCGTTCAGTCCT -CCAACAGTCTTGTCGTTCTAAGCC -CCAACAGTCTTGTCGTTCATAGCC -CCAACAGTCTTGTCGTTCTAACCG -CCAACAGTCTTGTCGTTCATGCCA -CCAACAGTCTTGACGTAGGGAAAC -CCAACAGTCTTGACGTAGAACACC -CCAACAGTCTTGACGTAGATCGAG -CCAACAGTCTTGACGTAGCTCCTT -CCAACAGTCTTGACGTAGCCTGTT -CCAACAGTCTTGACGTAGCGGTTT -CCAACAGTCTTGACGTAGGTGGTT -CCAACAGTCTTGACGTAGGCCTTT -CCAACAGTCTTGACGTAGGGTCTT -CCAACAGTCTTGACGTAGACGCTT -CCAACAGTCTTGACGTAGAGCGTT -CCAACAGTCTTGACGTAGTTCGTC -CCAACAGTCTTGACGTAGTCTCTC -CCAACAGTCTTGACGTAGTGGATC -CCAACAGTCTTGACGTAGCACTTC -CCAACAGTCTTGACGTAGGTACTC -CCAACAGTCTTGACGTAGGATGTC -CCAACAGTCTTGACGTAGACAGTC -CCAACAGTCTTGACGTAGTTGCTG -CCAACAGTCTTGACGTAGTCCATG -CCAACAGTCTTGACGTAGTGTGTG -CCAACAGTCTTGACGTAGCTAGTG -CCAACAGTCTTGACGTAGCATCTG -CCAACAGTCTTGACGTAGGAGTTG -CCAACAGTCTTGACGTAGAGACTG -CCAACAGTCTTGACGTAGTCGGTA -CCAACAGTCTTGACGTAGTGCCTA -CCAACAGTCTTGACGTAGCCACTA -CCAACAGTCTTGACGTAGGGAGTA -CCAACAGTCTTGACGTAGTCGTCT -CCAACAGTCTTGACGTAGTGCACT -CCAACAGTCTTGACGTAGCTGACT -CCAACAGTCTTGACGTAGCAACCT -CCAACAGTCTTGACGTAGGCTACT -CCAACAGTCTTGACGTAGGGATCT -CCAACAGTCTTGACGTAGAAGGCT -CCAACAGTCTTGACGTAGTCAACC -CCAACAGTCTTGACGTAGTGTTCC -CCAACAGTCTTGACGTAGATTCCC -CCAACAGTCTTGACGTAGTTCTCG -CCAACAGTCTTGACGTAGTAGACG -CCAACAGTCTTGACGTAGGTAACG -CCAACAGTCTTGACGTAGACTTCG -CCAACAGTCTTGACGTAGTACGCA -CCAACAGTCTTGACGTAGCTTGCA -CCAACAGTCTTGACGTAGCGAACA -CCAACAGTCTTGACGTAGCAGTCA -CCAACAGTCTTGACGTAGGATCCA -CCAACAGTCTTGACGTAGACGACA -CCAACAGTCTTGACGTAGAGCTCA -CCAACAGTCTTGACGTAGTCACGT -CCAACAGTCTTGACGTAGCGTAGT -CCAACAGTCTTGACGTAGGTCAGT -CCAACAGTCTTGACGTAGGAAGGT -CCAACAGTCTTGACGTAGAACCGT -CCAACAGTCTTGACGTAGTTGTGC -CCAACAGTCTTGACGTAGCTAAGC -CCAACAGTCTTGACGTAGACTAGC -CCAACAGTCTTGACGTAGAGATGC -CCAACAGTCTTGACGTAGTGAAGG -CCAACAGTCTTGACGTAGCAATGG -CCAACAGTCTTGACGTAGATGAGG -CCAACAGTCTTGACGTAGAATGGG -CCAACAGTCTTGACGTAGTCCTGA -CCAACAGTCTTGACGTAGTAGCGA -CCAACAGTCTTGACGTAGCACAGA -CCAACAGTCTTGACGTAGGCAAGA -CCAACAGTCTTGACGTAGGGTTGA -CCAACAGTCTTGACGTAGTCCGAT -CCAACAGTCTTGACGTAGTGGCAT -CCAACAGTCTTGACGTAGCGAGAT -CCAACAGTCTTGACGTAGTACCAC -CCAACAGTCTTGACGTAGCAGAAC -CCAACAGTCTTGACGTAGGTCTAC -CCAACAGTCTTGACGTAGACGTAC -CCAACAGTCTTGACGTAGAGTGAC -CCAACAGTCTTGACGTAGCTGTAG -CCAACAGTCTTGACGTAGCCTAAG -CCAACAGTCTTGACGTAGGTTCAG -CCAACAGTCTTGACGTAGGCATAG -CCAACAGTCTTGACGTAGGACAAG -CCAACAGTCTTGACGTAGAAGCAG -CCAACAGTCTTGACGTAGCGTCAA -CCAACAGTCTTGACGTAGGCTGAA -CCAACAGTCTTGACGTAGAGTACG -CCAACAGTCTTGACGTAGATCCGA -CCAACAGTCTTGACGTAGATGGGA -CCAACAGTCTTGACGTAGGTGCAA -CCAACAGTCTTGACGTAGGAGGAA -CCAACAGTCTTGACGTAGCAGGTA -CCAACAGTCTTGACGTAGGACTCT -CCAACAGTCTTGACGTAGAGTCCT -CCAACAGTCTTGACGTAGTAAGCC -CCAACAGTCTTGACGTAGATAGCC -CCAACAGTCTTGACGTAGTAACCG -CCAACAGTCTTGACGTAGATGCCA -CCAACAGTCTTGACGGTAGGAAAC -CCAACAGTCTTGACGGTAAACACC -CCAACAGTCTTGACGGTAATCGAG -CCAACAGTCTTGACGGTACTCCTT -CCAACAGTCTTGACGGTACCTGTT -CCAACAGTCTTGACGGTACGGTTT -CCAACAGTCTTGACGGTAGTGGTT -CCAACAGTCTTGACGGTAGCCTTT -CCAACAGTCTTGACGGTAGGTCTT -CCAACAGTCTTGACGGTAACGCTT -CCAACAGTCTTGACGGTAAGCGTT -CCAACAGTCTTGACGGTATTCGTC -CCAACAGTCTTGACGGTATCTCTC -CCAACAGTCTTGACGGTATGGATC -CCAACAGTCTTGACGGTACACTTC -CCAACAGTCTTGACGGTAGTACTC -CCAACAGTCTTGACGGTAGATGTC -CCAACAGTCTTGACGGTAACAGTC -CCAACAGTCTTGACGGTATTGCTG -CCAACAGTCTTGACGGTATCCATG -CCAACAGTCTTGACGGTATGTGTG -CCAACAGTCTTGACGGTACTAGTG -CCAACAGTCTTGACGGTACATCTG -CCAACAGTCTTGACGGTAGAGTTG -CCAACAGTCTTGACGGTAAGACTG -CCAACAGTCTTGACGGTATCGGTA -CCAACAGTCTTGACGGTATGCCTA -CCAACAGTCTTGACGGTACCACTA -CCAACAGTCTTGACGGTAGGAGTA -CCAACAGTCTTGACGGTATCGTCT -CCAACAGTCTTGACGGTATGCACT -CCAACAGTCTTGACGGTACTGACT -CCAACAGTCTTGACGGTACAACCT -CCAACAGTCTTGACGGTAGCTACT -CCAACAGTCTTGACGGTAGGATCT -CCAACAGTCTTGACGGTAAAGGCT -CCAACAGTCTTGACGGTATCAACC -CCAACAGTCTTGACGGTATGTTCC -CCAACAGTCTTGACGGTAATTCCC -CCAACAGTCTTGACGGTATTCTCG -CCAACAGTCTTGACGGTATAGACG -CCAACAGTCTTGACGGTAGTAACG -CCAACAGTCTTGACGGTAACTTCG -CCAACAGTCTTGACGGTATACGCA -CCAACAGTCTTGACGGTACTTGCA -CCAACAGTCTTGACGGTACGAACA -CCAACAGTCTTGACGGTACAGTCA -CCAACAGTCTTGACGGTAGATCCA -CCAACAGTCTTGACGGTAACGACA -CCAACAGTCTTGACGGTAAGCTCA -CCAACAGTCTTGACGGTATCACGT -CCAACAGTCTTGACGGTACGTAGT -CCAACAGTCTTGACGGTAGTCAGT -CCAACAGTCTTGACGGTAGAAGGT -CCAACAGTCTTGACGGTAAACCGT -CCAACAGTCTTGACGGTATTGTGC -CCAACAGTCTTGACGGTACTAAGC -CCAACAGTCTTGACGGTAACTAGC -CCAACAGTCTTGACGGTAAGATGC -CCAACAGTCTTGACGGTATGAAGG -CCAACAGTCTTGACGGTACAATGG -CCAACAGTCTTGACGGTAATGAGG -CCAACAGTCTTGACGGTAAATGGG -CCAACAGTCTTGACGGTATCCTGA -CCAACAGTCTTGACGGTATAGCGA -CCAACAGTCTTGACGGTACACAGA -CCAACAGTCTTGACGGTAGCAAGA -CCAACAGTCTTGACGGTAGGTTGA -CCAACAGTCTTGACGGTATCCGAT -CCAACAGTCTTGACGGTATGGCAT -CCAACAGTCTTGACGGTACGAGAT -CCAACAGTCTTGACGGTATACCAC -CCAACAGTCTTGACGGTACAGAAC -CCAACAGTCTTGACGGTAGTCTAC -CCAACAGTCTTGACGGTAACGTAC -CCAACAGTCTTGACGGTAAGTGAC -CCAACAGTCTTGACGGTACTGTAG -CCAACAGTCTTGACGGTACCTAAG -CCAACAGTCTTGACGGTAGTTCAG -CCAACAGTCTTGACGGTAGCATAG -CCAACAGTCTTGACGGTAGACAAG -CCAACAGTCTTGACGGTAAAGCAG -CCAACAGTCTTGACGGTACGTCAA -CCAACAGTCTTGACGGTAGCTGAA -CCAACAGTCTTGACGGTAAGTACG -CCAACAGTCTTGACGGTAATCCGA -CCAACAGTCTTGACGGTAATGGGA -CCAACAGTCTTGACGGTAGTGCAA -CCAACAGTCTTGACGGTAGAGGAA -CCAACAGTCTTGACGGTACAGGTA -CCAACAGTCTTGACGGTAGACTCT -CCAACAGTCTTGACGGTAAGTCCT -CCAACAGTCTTGACGGTATAAGCC -CCAACAGTCTTGACGGTAATAGCC -CCAACAGTCTTGACGGTATAACCG -CCAACAGTCTTGACGGTAATGCCA -CCAACAGTCTTGTCGACTGGAAAC -CCAACAGTCTTGTCGACTAACACC -CCAACAGTCTTGTCGACTATCGAG -CCAACAGTCTTGTCGACTCTCCTT -CCAACAGTCTTGTCGACTCCTGTT -CCAACAGTCTTGTCGACTCGGTTT -CCAACAGTCTTGTCGACTGTGGTT -CCAACAGTCTTGTCGACTGCCTTT -CCAACAGTCTTGTCGACTGGTCTT -CCAACAGTCTTGTCGACTACGCTT -CCAACAGTCTTGTCGACTAGCGTT -CCAACAGTCTTGTCGACTTTCGTC -CCAACAGTCTTGTCGACTTCTCTC -CCAACAGTCTTGTCGACTTGGATC -CCAACAGTCTTGTCGACTCACTTC -CCAACAGTCTTGTCGACTGTACTC -CCAACAGTCTTGTCGACTGATGTC -CCAACAGTCTTGTCGACTACAGTC -CCAACAGTCTTGTCGACTTTGCTG -CCAACAGTCTTGTCGACTTCCATG -CCAACAGTCTTGTCGACTTGTGTG -CCAACAGTCTTGTCGACTCTAGTG -CCAACAGTCTTGTCGACTCATCTG -CCAACAGTCTTGTCGACTGAGTTG -CCAACAGTCTTGTCGACTAGACTG -CCAACAGTCTTGTCGACTTCGGTA -CCAACAGTCTTGTCGACTTGCCTA -CCAACAGTCTTGTCGACTCCACTA -CCAACAGTCTTGTCGACTGGAGTA -CCAACAGTCTTGTCGACTTCGTCT -CCAACAGTCTTGTCGACTTGCACT -CCAACAGTCTTGTCGACTCTGACT -CCAACAGTCTTGTCGACTCAACCT -CCAACAGTCTTGTCGACTGCTACT -CCAACAGTCTTGTCGACTGGATCT -CCAACAGTCTTGTCGACTAAGGCT -CCAACAGTCTTGTCGACTTCAACC -CCAACAGTCTTGTCGACTTGTTCC -CCAACAGTCTTGTCGACTATTCCC -CCAACAGTCTTGTCGACTTTCTCG -CCAACAGTCTTGTCGACTTAGACG -CCAACAGTCTTGTCGACTGTAACG -CCAACAGTCTTGTCGACTACTTCG -CCAACAGTCTTGTCGACTTACGCA -CCAACAGTCTTGTCGACTCTTGCA -CCAACAGTCTTGTCGACTCGAACA -CCAACAGTCTTGTCGACTCAGTCA -CCAACAGTCTTGTCGACTGATCCA -CCAACAGTCTTGTCGACTACGACA -CCAACAGTCTTGTCGACTAGCTCA -CCAACAGTCTTGTCGACTTCACGT -CCAACAGTCTTGTCGACTCGTAGT -CCAACAGTCTTGTCGACTGTCAGT -CCAACAGTCTTGTCGACTGAAGGT -CCAACAGTCTTGTCGACTAACCGT -CCAACAGTCTTGTCGACTTTGTGC -CCAACAGTCTTGTCGACTCTAAGC -CCAACAGTCTTGTCGACTACTAGC -CCAACAGTCTTGTCGACTAGATGC -CCAACAGTCTTGTCGACTTGAAGG -CCAACAGTCTTGTCGACTCAATGG -CCAACAGTCTTGTCGACTATGAGG -CCAACAGTCTTGTCGACTAATGGG -CCAACAGTCTTGTCGACTTCCTGA -CCAACAGTCTTGTCGACTTAGCGA -CCAACAGTCTTGTCGACTCACAGA -CCAACAGTCTTGTCGACTGCAAGA -CCAACAGTCTTGTCGACTGGTTGA -CCAACAGTCTTGTCGACTTCCGAT -CCAACAGTCTTGTCGACTTGGCAT -CCAACAGTCTTGTCGACTCGAGAT -CCAACAGTCTTGTCGACTTACCAC -CCAACAGTCTTGTCGACTCAGAAC -CCAACAGTCTTGTCGACTGTCTAC -CCAACAGTCTTGTCGACTACGTAC -CCAACAGTCTTGTCGACTAGTGAC -CCAACAGTCTTGTCGACTCTGTAG -CCAACAGTCTTGTCGACTCCTAAG -CCAACAGTCTTGTCGACTGTTCAG -CCAACAGTCTTGTCGACTGCATAG -CCAACAGTCTTGTCGACTGACAAG -CCAACAGTCTTGTCGACTAAGCAG -CCAACAGTCTTGTCGACTCGTCAA -CCAACAGTCTTGTCGACTGCTGAA -CCAACAGTCTTGTCGACTAGTACG -CCAACAGTCTTGTCGACTATCCGA -CCAACAGTCTTGTCGACTATGGGA -CCAACAGTCTTGTCGACTGTGCAA -CCAACAGTCTTGTCGACTGAGGAA -CCAACAGTCTTGTCGACTCAGGTA -CCAACAGTCTTGTCGACTGACTCT -CCAACAGTCTTGTCGACTAGTCCT -CCAACAGTCTTGTCGACTTAAGCC -CCAACAGTCTTGTCGACTATAGCC -CCAACAGTCTTGTCGACTTAACCG -CCAACAGTCTTGTCGACTATGCCA -CCAACAGTCTTGGCATACGGAAAC -CCAACAGTCTTGGCATACAACACC -CCAACAGTCTTGGCATACATCGAG -CCAACAGTCTTGGCATACCTCCTT -CCAACAGTCTTGGCATACCCTGTT -CCAACAGTCTTGGCATACCGGTTT -CCAACAGTCTTGGCATACGTGGTT -CCAACAGTCTTGGCATACGCCTTT -CCAACAGTCTTGGCATACGGTCTT -CCAACAGTCTTGGCATACACGCTT -CCAACAGTCTTGGCATACAGCGTT -CCAACAGTCTTGGCATACTTCGTC -CCAACAGTCTTGGCATACTCTCTC -CCAACAGTCTTGGCATACTGGATC -CCAACAGTCTTGGCATACCACTTC -CCAACAGTCTTGGCATACGTACTC -CCAACAGTCTTGGCATACGATGTC -CCAACAGTCTTGGCATACACAGTC -CCAACAGTCTTGGCATACTTGCTG -CCAACAGTCTTGGCATACTCCATG -CCAACAGTCTTGGCATACTGTGTG -CCAACAGTCTTGGCATACCTAGTG -CCAACAGTCTTGGCATACCATCTG -CCAACAGTCTTGGCATACGAGTTG -CCAACAGTCTTGGCATACAGACTG -CCAACAGTCTTGGCATACTCGGTA -CCAACAGTCTTGGCATACTGCCTA -CCAACAGTCTTGGCATACCCACTA -CCAACAGTCTTGGCATACGGAGTA -CCAACAGTCTTGGCATACTCGTCT -CCAACAGTCTTGGCATACTGCACT -CCAACAGTCTTGGCATACCTGACT -CCAACAGTCTTGGCATACCAACCT -CCAACAGTCTTGGCATACGCTACT -CCAACAGTCTTGGCATACGGATCT -CCAACAGTCTTGGCATACAAGGCT -CCAACAGTCTTGGCATACTCAACC -CCAACAGTCTTGGCATACTGTTCC -CCAACAGTCTTGGCATACATTCCC -CCAACAGTCTTGGCATACTTCTCG -CCAACAGTCTTGGCATACTAGACG -CCAACAGTCTTGGCATACGTAACG -CCAACAGTCTTGGCATACACTTCG -CCAACAGTCTTGGCATACTACGCA -CCAACAGTCTTGGCATACCTTGCA -CCAACAGTCTTGGCATACCGAACA -CCAACAGTCTTGGCATACCAGTCA -CCAACAGTCTTGGCATACGATCCA -CCAACAGTCTTGGCATACACGACA -CCAACAGTCTTGGCATACAGCTCA -CCAACAGTCTTGGCATACTCACGT -CCAACAGTCTTGGCATACCGTAGT -CCAACAGTCTTGGCATACGTCAGT -CCAACAGTCTTGGCATACGAAGGT -CCAACAGTCTTGGCATACAACCGT -CCAACAGTCTTGGCATACTTGTGC -CCAACAGTCTTGGCATACCTAAGC -CCAACAGTCTTGGCATACACTAGC -CCAACAGTCTTGGCATACAGATGC -CCAACAGTCTTGGCATACTGAAGG -CCAACAGTCTTGGCATACCAATGG -CCAACAGTCTTGGCATACATGAGG -CCAACAGTCTTGGCATACAATGGG -CCAACAGTCTTGGCATACTCCTGA -CCAACAGTCTTGGCATACTAGCGA -CCAACAGTCTTGGCATACCACAGA -CCAACAGTCTTGGCATACGCAAGA -CCAACAGTCTTGGCATACGGTTGA -CCAACAGTCTTGGCATACTCCGAT -CCAACAGTCTTGGCATACTGGCAT -CCAACAGTCTTGGCATACCGAGAT -CCAACAGTCTTGGCATACTACCAC -CCAACAGTCTTGGCATACCAGAAC -CCAACAGTCTTGGCATACGTCTAC -CCAACAGTCTTGGCATACACGTAC -CCAACAGTCTTGGCATACAGTGAC -CCAACAGTCTTGGCATACCTGTAG -CCAACAGTCTTGGCATACCCTAAG -CCAACAGTCTTGGCATACGTTCAG -CCAACAGTCTTGGCATACGCATAG -CCAACAGTCTTGGCATACGACAAG -CCAACAGTCTTGGCATACAAGCAG -CCAACAGTCTTGGCATACCGTCAA -CCAACAGTCTTGGCATACGCTGAA -CCAACAGTCTTGGCATACAGTACG -CCAACAGTCTTGGCATACATCCGA -CCAACAGTCTTGGCATACATGGGA -CCAACAGTCTTGGCATACGTGCAA -CCAACAGTCTTGGCATACGAGGAA -CCAACAGTCTTGGCATACCAGGTA -CCAACAGTCTTGGCATACGACTCT -CCAACAGTCTTGGCATACAGTCCT -CCAACAGTCTTGGCATACTAAGCC -CCAACAGTCTTGGCATACATAGCC -CCAACAGTCTTGGCATACTAACCG -CCAACAGTCTTGGCATACATGCCA -CCAACAGTCTTGGCACTTGGAAAC -CCAACAGTCTTGGCACTTAACACC -CCAACAGTCTTGGCACTTATCGAG -CCAACAGTCTTGGCACTTCTCCTT -CCAACAGTCTTGGCACTTCCTGTT -CCAACAGTCTTGGCACTTCGGTTT -CCAACAGTCTTGGCACTTGTGGTT -CCAACAGTCTTGGCACTTGCCTTT -CCAACAGTCTTGGCACTTGGTCTT -CCAACAGTCTTGGCACTTACGCTT -CCAACAGTCTTGGCACTTAGCGTT -CCAACAGTCTTGGCACTTTTCGTC -CCAACAGTCTTGGCACTTTCTCTC -CCAACAGTCTTGGCACTTTGGATC -CCAACAGTCTTGGCACTTCACTTC -CCAACAGTCTTGGCACTTGTACTC -CCAACAGTCTTGGCACTTGATGTC -CCAACAGTCTTGGCACTTACAGTC -CCAACAGTCTTGGCACTTTTGCTG -CCAACAGTCTTGGCACTTTCCATG -CCAACAGTCTTGGCACTTTGTGTG -CCAACAGTCTTGGCACTTCTAGTG -CCAACAGTCTTGGCACTTCATCTG -CCAACAGTCTTGGCACTTGAGTTG -CCAACAGTCTTGGCACTTAGACTG -CCAACAGTCTTGGCACTTTCGGTA -CCAACAGTCTTGGCACTTTGCCTA -CCAACAGTCTTGGCACTTCCACTA -CCAACAGTCTTGGCACTTGGAGTA -CCAACAGTCTTGGCACTTTCGTCT -CCAACAGTCTTGGCACTTTGCACT -CCAACAGTCTTGGCACTTCTGACT -CCAACAGTCTTGGCACTTCAACCT -CCAACAGTCTTGGCACTTGCTACT -CCAACAGTCTTGGCACTTGGATCT -CCAACAGTCTTGGCACTTAAGGCT -CCAACAGTCTTGGCACTTTCAACC -CCAACAGTCTTGGCACTTTGTTCC -CCAACAGTCTTGGCACTTATTCCC -CCAACAGTCTTGGCACTTTTCTCG -CCAACAGTCTTGGCACTTTAGACG -CCAACAGTCTTGGCACTTGTAACG -CCAACAGTCTTGGCACTTACTTCG -CCAACAGTCTTGGCACTTTACGCA -CCAACAGTCTTGGCACTTCTTGCA -CCAACAGTCTTGGCACTTCGAACA -CCAACAGTCTTGGCACTTCAGTCA -CCAACAGTCTTGGCACTTGATCCA -CCAACAGTCTTGGCACTTACGACA -CCAACAGTCTTGGCACTTAGCTCA -CCAACAGTCTTGGCACTTTCACGT -CCAACAGTCTTGGCACTTCGTAGT -CCAACAGTCTTGGCACTTGTCAGT -CCAACAGTCTTGGCACTTGAAGGT -CCAACAGTCTTGGCACTTAACCGT -CCAACAGTCTTGGCACTTTTGTGC -CCAACAGTCTTGGCACTTCTAAGC -CCAACAGTCTTGGCACTTACTAGC -CCAACAGTCTTGGCACTTAGATGC -CCAACAGTCTTGGCACTTTGAAGG -CCAACAGTCTTGGCACTTCAATGG -CCAACAGTCTTGGCACTTATGAGG -CCAACAGTCTTGGCACTTAATGGG -CCAACAGTCTTGGCACTTTCCTGA -CCAACAGTCTTGGCACTTTAGCGA -CCAACAGTCTTGGCACTTCACAGA -CCAACAGTCTTGGCACTTGCAAGA -CCAACAGTCTTGGCACTTGGTTGA -CCAACAGTCTTGGCACTTTCCGAT -CCAACAGTCTTGGCACTTTGGCAT -CCAACAGTCTTGGCACTTCGAGAT -CCAACAGTCTTGGCACTTTACCAC -CCAACAGTCTTGGCACTTCAGAAC -CCAACAGTCTTGGCACTTGTCTAC -CCAACAGTCTTGGCACTTACGTAC -CCAACAGTCTTGGCACTTAGTGAC -CCAACAGTCTTGGCACTTCTGTAG -CCAACAGTCTTGGCACTTCCTAAG -CCAACAGTCTTGGCACTTGTTCAG -CCAACAGTCTTGGCACTTGCATAG -CCAACAGTCTTGGCACTTGACAAG -CCAACAGTCTTGGCACTTAAGCAG -CCAACAGTCTTGGCACTTCGTCAA -CCAACAGTCTTGGCACTTGCTGAA -CCAACAGTCTTGGCACTTAGTACG -CCAACAGTCTTGGCACTTATCCGA -CCAACAGTCTTGGCACTTATGGGA -CCAACAGTCTTGGCACTTGTGCAA -CCAACAGTCTTGGCACTTGAGGAA -CCAACAGTCTTGGCACTTCAGGTA -CCAACAGTCTTGGCACTTGACTCT -CCAACAGTCTTGGCACTTAGTCCT -CCAACAGTCTTGGCACTTTAAGCC -CCAACAGTCTTGGCACTTATAGCC -CCAACAGTCTTGGCACTTTAACCG -CCAACAGTCTTGGCACTTATGCCA -CCAACAGTCTTGACACGAGGAAAC -CCAACAGTCTTGACACGAAACACC -CCAACAGTCTTGACACGAATCGAG -CCAACAGTCTTGACACGACTCCTT -CCAACAGTCTTGACACGACCTGTT -CCAACAGTCTTGACACGACGGTTT -CCAACAGTCTTGACACGAGTGGTT -CCAACAGTCTTGACACGAGCCTTT -CCAACAGTCTTGACACGAGGTCTT -CCAACAGTCTTGACACGAACGCTT -CCAACAGTCTTGACACGAAGCGTT -CCAACAGTCTTGACACGATTCGTC -CCAACAGTCTTGACACGATCTCTC -CCAACAGTCTTGACACGATGGATC -CCAACAGTCTTGACACGACACTTC -CCAACAGTCTTGACACGAGTACTC -CCAACAGTCTTGACACGAGATGTC -CCAACAGTCTTGACACGAACAGTC -CCAACAGTCTTGACACGATTGCTG -CCAACAGTCTTGACACGATCCATG -CCAACAGTCTTGACACGATGTGTG -CCAACAGTCTTGACACGACTAGTG -CCAACAGTCTTGACACGACATCTG -CCAACAGTCTTGACACGAGAGTTG -CCAACAGTCTTGACACGAAGACTG -CCAACAGTCTTGACACGATCGGTA -CCAACAGTCTTGACACGATGCCTA -CCAACAGTCTTGACACGACCACTA -CCAACAGTCTTGACACGAGGAGTA -CCAACAGTCTTGACACGATCGTCT -CCAACAGTCTTGACACGATGCACT -CCAACAGTCTTGACACGACTGACT -CCAACAGTCTTGACACGACAACCT -CCAACAGTCTTGACACGAGCTACT -CCAACAGTCTTGACACGAGGATCT -CCAACAGTCTTGACACGAAAGGCT -CCAACAGTCTTGACACGATCAACC -CCAACAGTCTTGACACGATGTTCC -CCAACAGTCTTGACACGAATTCCC -CCAACAGTCTTGACACGATTCTCG -CCAACAGTCTTGACACGATAGACG -CCAACAGTCTTGACACGAGTAACG -CCAACAGTCTTGACACGAACTTCG -CCAACAGTCTTGACACGATACGCA -CCAACAGTCTTGACACGACTTGCA -CCAACAGTCTTGACACGACGAACA -CCAACAGTCTTGACACGACAGTCA -CCAACAGTCTTGACACGAGATCCA -CCAACAGTCTTGACACGAACGACA -CCAACAGTCTTGACACGAAGCTCA -CCAACAGTCTTGACACGATCACGT -CCAACAGTCTTGACACGACGTAGT -CCAACAGTCTTGACACGAGTCAGT -CCAACAGTCTTGACACGAGAAGGT -CCAACAGTCTTGACACGAAACCGT -CCAACAGTCTTGACACGATTGTGC -CCAACAGTCTTGACACGACTAAGC -CCAACAGTCTTGACACGAACTAGC -CCAACAGTCTTGACACGAAGATGC -CCAACAGTCTTGACACGATGAAGG -CCAACAGTCTTGACACGACAATGG -CCAACAGTCTTGACACGAATGAGG -CCAACAGTCTTGACACGAAATGGG -CCAACAGTCTTGACACGATCCTGA -CCAACAGTCTTGACACGATAGCGA -CCAACAGTCTTGACACGACACAGA -CCAACAGTCTTGACACGAGCAAGA -CCAACAGTCTTGACACGAGGTTGA -CCAACAGTCTTGACACGATCCGAT -CCAACAGTCTTGACACGATGGCAT -CCAACAGTCTTGACACGACGAGAT -CCAACAGTCTTGACACGATACCAC -CCAACAGTCTTGACACGACAGAAC -CCAACAGTCTTGACACGAGTCTAC -CCAACAGTCTTGACACGAACGTAC -CCAACAGTCTTGACACGAAGTGAC -CCAACAGTCTTGACACGACTGTAG -CCAACAGTCTTGACACGACCTAAG -CCAACAGTCTTGACACGAGTTCAG -CCAACAGTCTTGACACGAGCATAG -CCAACAGTCTTGACACGAGACAAG -CCAACAGTCTTGACACGAAAGCAG -CCAACAGTCTTGACACGACGTCAA -CCAACAGTCTTGACACGAGCTGAA -CCAACAGTCTTGACACGAAGTACG -CCAACAGTCTTGACACGAATCCGA -CCAACAGTCTTGACACGAATGGGA -CCAACAGTCTTGACACGAGTGCAA -CCAACAGTCTTGACACGAGAGGAA -CCAACAGTCTTGACACGACAGGTA -CCAACAGTCTTGACACGAGACTCT -CCAACAGTCTTGACACGAAGTCCT -CCAACAGTCTTGACACGATAAGCC -CCAACAGTCTTGACACGAATAGCC -CCAACAGTCTTGACACGATAACCG -CCAACAGTCTTGACACGAATGCCA -CCAACAGTCTTGTCACAGGGAAAC -CCAACAGTCTTGTCACAGAACACC -CCAACAGTCTTGTCACAGATCGAG -CCAACAGTCTTGTCACAGCTCCTT -CCAACAGTCTTGTCACAGCCTGTT -CCAACAGTCTTGTCACAGCGGTTT -CCAACAGTCTTGTCACAGGTGGTT -CCAACAGTCTTGTCACAGGCCTTT -CCAACAGTCTTGTCACAGGGTCTT -CCAACAGTCTTGTCACAGACGCTT -CCAACAGTCTTGTCACAGAGCGTT -CCAACAGTCTTGTCACAGTTCGTC -CCAACAGTCTTGTCACAGTCTCTC -CCAACAGTCTTGTCACAGTGGATC -CCAACAGTCTTGTCACAGCACTTC -CCAACAGTCTTGTCACAGGTACTC -CCAACAGTCTTGTCACAGGATGTC -CCAACAGTCTTGTCACAGACAGTC -CCAACAGTCTTGTCACAGTTGCTG -CCAACAGTCTTGTCACAGTCCATG -CCAACAGTCTTGTCACAGTGTGTG -CCAACAGTCTTGTCACAGCTAGTG -CCAACAGTCTTGTCACAGCATCTG -CCAACAGTCTTGTCACAGGAGTTG -CCAACAGTCTTGTCACAGAGACTG -CCAACAGTCTTGTCACAGTCGGTA -CCAACAGTCTTGTCACAGTGCCTA -CCAACAGTCTTGTCACAGCCACTA -CCAACAGTCTTGTCACAGGGAGTA -CCAACAGTCTTGTCACAGTCGTCT -CCAACAGTCTTGTCACAGTGCACT -CCAACAGTCTTGTCACAGCTGACT -CCAACAGTCTTGTCACAGCAACCT -CCAACAGTCTTGTCACAGGCTACT -CCAACAGTCTTGTCACAGGGATCT -CCAACAGTCTTGTCACAGAAGGCT -CCAACAGTCTTGTCACAGTCAACC -CCAACAGTCTTGTCACAGTGTTCC -CCAACAGTCTTGTCACAGATTCCC -CCAACAGTCTTGTCACAGTTCTCG -CCAACAGTCTTGTCACAGTAGACG -CCAACAGTCTTGTCACAGGTAACG -CCAACAGTCTTGTCACAGACTTCG -CCAACAGTCTTGTCACAGTACGCA -CCAACAGTCTTGTCACAGCTTGCA -CCAACAGTCTTGTCACAGCGAACA -CCAACAGTCTTGTCACAGCAGTCA -CCAACAGTCTTGTCACAGGATCCA -CCAACAGTCTTGTCACAGACGACA -CCAACAGTCTTGTCACAGAGCTCA -CCAACAGTCTTGTCACAGTCACGT -CCAACAGTCTTGTCACAGCGTAGT -CCAACAGTCTTGTCACAGGTCAGT -CCAACAGTCTTGTCACAGGAAGGT -CCAACAGTCTTGTCACAGAACCGT -CCAACAGTCTTGTCACAGTTGTGC -CCAACAGTCTTGTCACAGCTAAGC -CCAACAGTCTTGTCACAGACTAGC -CCAACAGTCTTGTCACAGAGATGC -CCAACAGTCTTGTCACAGTGAAGG -CCAACAGTCTTGTCACAGCAATGG -CCAACAGTCTTGTCACAGATGAGG -CCAACAGTCTTGTCACAGAATGGG -CCAACAGTCTTGTCACAGTCCTGA -CCAACAGTCTTGTCACAGTAGCGA -CCAACAGTCTTGTCACAGCACAGA -CCAACAGTCTTGTCACAGGCAAGA -CCAACAGTCTTGTCACAGGGTTGA -CCAACAGTCTTGTCACAGTCCGAT -CCAACAGTCTTGTCACAGTGGCAT -CCAACAGTCTTGTCACAGCGAGAT -CCAACAGTCTTGTCACAGTACCAC -CCAACAGTCTTGTCACAGCAGAAC -CCAACAGTCTTGTCACAGGTCTAC -CCAACAGTCTTGTCACAGACGTAC -CCAACAGTCTTGTCACAGAGTGAC -CCAACAGTCTTGTCACAGCTGTAG -CCAACAGTCTTGTCACAGCCTAAG -CCAACAGTCTTGTCACAGGTTCAG -CCAACAGTCTTGTCACAGGCATAG -CCAACAGTCTTGTCACAGGACAAG -CCAACAGTCTTGTCACAGAAGCAG -CCAACAGTCTTGTCACAGCGTCAA -CCAACAGTCTTGTCACAGGCTGAA -CCAACAGTCTTGTCACAGAGTACG -CCAACAGTCTTGTCACAGATCCGA -CCAACAGTCTTGTCACAGATGGGA -CCAACAGTCTTGTCACAGGTGCAA -CCAACAGTCTTGTCACAGGAGGAA -CCAACAGTCTTGTCACAGCAGGTA -CCAACAGTCTTGTCACAGGACTCT -CCAACAGTCTTGTCACAGAGTCCT -CCAACAGTCTTGTCACAGTAAGCC -CCAACAGTCTTGTCACAGATAGCC -CCAACAGTCTTGTCACAGTAACCG -CCAACAGTCTTGTCACAGATGCCA -CCAACAGTCTTGCCAGATGGAAAC -CCAACAGTCTTGCCAGATAACACC -CCAACAGTCTTGCCAGATATCGAG -CCAACAGTCTTGCCAGATCTCCTT -CCAACAGTCTTGCCAGATCCTGTT -CCAACAGTCTTGCCAGATCGGTTT -CCAACAGTCTTGCCAGATGTGGTT -CCAACAGTCTTGCCAGATGCCTTT -CCAACAGTCTTGCCAGATGGTCTT -CCAACAGTCTTGCCAGATACGCTT -CCAACAGTCTTGCCAGATAGCGTT -CCAACAGTCTTGCCAGATTTCGTC -CCAACAGTCTTGCCAGATTCTCTC -CCAACAGTCTTGCCAGATTGGATC -CCAACAGTCTTGCCAGATCACTTC -CCAACAGTCTTGCCAGATGTACTC -CCAACAGTCTTGCCAGATGATGTC -CCAACAGTCTTGCCAGATACAGTC -CCAACAGTCTTGCCAGATTTGCTG -CCAACAGTCTTGCCAGATTCCATG -CCAACAGTCTTGCCAGATTGTGTG -CCAACAGTCTTGCCAGATCTAGTG -CCAACAGTCTTGCCAGATCATCTG -CCAACAGTCTTGCCAGATGAGTTG -CCAACAGTCTTGCCAGATAGACTG -CCAACAGTCTTGCCAGATTCGGTA -CCAACAGTCTTGCCAGATTGCCTA -CCAACAGTCTTGCCAGATCCACTA -CCAACAGTCTTGCCAGATGGAGTA -CCAACAGTCTTGCCAGATTCGTCT -CCAACAGTCTTGCCAGATTGCACT -CCAACAGTCTTGCCAGATCTGACT -CCAACAGTCTTGCCAGATCAACCT -CCAACAGTCTTGCCAGATGCTACT -CCAACAGTCTTGCCAGATGGATCT -CCAACAGTCTTGCCAGATAAGGCT -CCAACAGTCTTGCCAGATTCAACC -CCAACAGTCTTGCCAGATTGTTCC -CCAACAGTCTTGCCAGATATTCCC -CCAACAGTCTTGCCAGATTTCTCG -CCAACAGTCTTGCCAGATTAGACG -CCAACAGTCTTGCCAGATGTAACG -CCAACAGTCTTGCCAGATACTTCG -CCAACAGTCTTGCCAGATTACGCA -CCAACAGTCTTGCCAGATCTTGCA -CCAACAGTCTTGCCAGATCGAACA -CCAACAGTCTTGCCAGATCAGTCA -CCAACAGTCTTGCCAGATGATCCA -CCAACAGTCTTGCCAGATACGACA -CCAACAGTCTTGCCAGATAGCTCA -CCAACAGTCTTGCCAGATTCACGT -CCAACAGTCTTGCCAGATCGTAGT -CCAACAGTCTTGCCAGATGTCAGT -CCAACAGTCTTGCCAGATGAAGGT -CCAACAGTCTTGCCAGATAACCGT -CCAACAGTCTTGCCAGATTTGTGC -CCAACAGTCTTGCCAGATCTAAGC -CCAACAGTCTTGCCAGATACTAGC -CCAACAGTCTTGCCAGATAGATGC -CCAACAGTCTTGCCAGATTGAAGG -CCAACAGTCTTGCCAGATCAATGG -CCAACAGTCTTGCCAGATATGAGG -CCAACAGTCTTGCCAGATAATGGG -CCAACAGTCTTGCCAGATTCCTGA -CCAACAGTCTTGCCAGATTAGCGA -CCAACAGTCTTGCCAGATCACAGA -CCAACAGTCTTGCCAGATGCAAGA -CCAACAGTCTTGCCAGATGGTTGA -CCAACAGTCTTGCCAGATTCCGAT -CCAACAGTCTTGCCAGATTGGCAT -CCAACAGTCTTGCCAGATCGAGAT -CCAACAGTCTTGCCAGATTACCAC -CCAACAGTCTTGCCAGATCAGAAC -CCAACAGTCTTGCCAGATGTCTAC -CCAACAGTCTTGCCAGATACGTAC -CCAACAGTCTTGCCAGATAGTGAC -CCAACAGTCTTGCCAGATCTGTAG -CCAACAGTCTTGCCAGATCCTAAG -CCAACAGTCTTGCCAGATGTTCAG -CCAACAGTCTTGCCAGATGCATAG -CCAACAGTCTTGCCAGATGACAAG -CCAACAGTCTTGCCAGATAAGCAG -CCAACAGTCTTGCCAGATCGTCAA -CCAACAGTCTTGCCAGATGCTGAA -CCAACAGTCTTGCCAGATAGTACG -CCAACAGTCTTGCCAGATATCCGA -CCAACAGTCTTGCCAGATATGGGA -CCAACAGTCTTGCCAGATGTGCAA -CCAACAGTCTTGCCAGATGAGGAA -CCAACAGTCTTGCCAGATCAGGTA -CCAACAGTCTTGCCAGATGACTCT -CCAACAGTCTTGCCAGATAGTCCT -CCAACAGTCTTGCCAGATTAAGCC -CCAACAGTCTTGCCAGATATAGCC -CCAACAGTCTTGCCAGATTAACCG -CCAACAGTCTTGCCAGATATGCCA -CCAACAGTCTTGACAACGGGAAAC -CCAACAGTCTTGACAACGAACACC -CCAACAGTCTTGACAACGATCGAG -CCAACAGTCTTGACAACGCTCCTT -CCAACAGTCTTGACAACGCCTGTT -CCAACAGTCTTGACAACGCGGTTT -CCAACAGTCTTGACAACGGTGGTT -CCAACAGTCTTGACAACGGCCTTT -CCAACAGTCTTGACAACGGGTCTT -CCAACAGTCTTGACAACGACGCTT -CCAACAGTCTTGACAACGAGCGTT -CCAACAGTCTTGACAACGTTCGTC -CCAACAGTCTTGACAACGTCTCTC -CCAACAGTCTTGACAACGTGGATC -CCAACAGTCTTGACAACGCACTTC -CCAACAGTCTTGACAACGGTACTC -CCAACAGTCTTGACAACGGATGTC -CCAACAGTCTTGACAACGACAGTC -CCAACAGTCTTGACAACGTTGCTG -CCAACAGTCTTGACAACGTCCATG -CCAACAGTCTTGACAACGTGTGTG -CCAACAGTCTTGACAACGCTAGTG -CCAACAGTCTTGACAACGCATCTG -CCAACAGTCTTGACAACGGAGTTG -CCAACAGTCTTGACAACGAGACTG -CCAACAGTCTTGACAACGTCGGTA -CCAACAGTCTTGACAACGTGCCTA -CCAACAGTCTTGACAACGCCACTA -CCAACAGTCTTGACAACGGGAGTA -CCAACAGTCTTGACAACGTCGTCT -CCAACAGTCTTGACAACGTGCACT -CCAACAGTCTTGACAACGCTGACT -CCAACAGTCTTGACAACGCAACCT -CCAACAGTCTTGACAACGGCTACT -CCAACAGTCTTGACAACGGGATCT -CCAACAGTCTTGACAACGAAGGCT -CCAACAGTCTTGACAACGTCAACC -CCAACAGTCTTGACAACGTGTTCC -CCAACAGTCTTGACAACGATTCCC -CCAACAGTCTTGACAACGTTCTCG -CCAACAGTCTTGACAACGTAGACG -CCAACAGTCTTGACAACGGTAACG -CCAACAGTCTTGACAACGACTTCG -CCAACAGTCTTGACAACGTACGCA -CCAACAGTCTTGACAACGCTTGCA -CCAACAGTCTTGACAACGCGAACA -CCAACAGTCTTGACAACGCAGTCA -CCAACAGTCTTGACAACGGATCCA -CCAACAGTCTTGACAACGACGACA -CCAACAGTCTTGACAACGAGCTCA -CCAACAGTCTTGACAACGTCACGT -CCAACAGTCTTGACAACGCGTAGT -CCAACAGTCTTGACAACGGTCAGT -CCAACAGTCTTGACAACGGAAGGT -CCAACAGTCTTGACAACGAACCGT -CCAACAGTCTTGACAACGTTGTGC -CCAACAGTCTTGACAACGCTAAGC -CCAACAGTCTTGACAACGACTAGC -CCAACAGTCTTGACAACGAGATGC -CCAACAGTCTTGACAACGTGAAGG -CCAACAGTCTTGACAACGCAATGG -CCAACAGTCTTGACAACGATGAGG -CCAACAGTCTTGACAACGAATGGG -CCAACAGTCTTGACAACGTCCTGA -CCAACAGTCTTGACAACGTAGCGA -CCAACAGTCTTGACAACGCACAGA -CCAACAGTCTTGACAACGGCAAGA -CCAACAGTCTTGACAACGGGTTGA -CCAACAGTCTTGACAACGTCCGAT -CCAACAGTCTTGACAACGTGGCAT -CCAACAGTCTTGACAACGCGAGAT -CCAACAGTCTTGACAACGTACCAC -CCAACAGTCTTGACAACGCAGAAC -CCAACAGTCTTGACAACGGTCTAC -CCAACAGTCTTGACAACGACGTAC -CCAACAGTCTTGACAACGAGTGAC -CCAACAGTCTTGACAACGCTGTAG -CCAACAGTCTTGACAACGCCTAAG -CCAACAGTCTTGACAACGGTTCAG -CCAACAGTCTTGACAACGGCATAG -CCAACAGTCTTGACAACGGACAAG -CCAACAGTCTTGACAACGAAGCAG -CCAACAGTCTTGACAACGCGTCAA -CCAACAGTCTTGACAACGGCTGAA -CCAACAGTCTTGACAACGAGTACG -CCAACAGTCTTGACAACGATCCGA -CCAACAGTCTTGACAACGATGGGA -CCAACAGTCTTGACAACGGTGCAA -CCAACAGTCTTGACAACGGAGGAA -CCAACAGTCTTGACAACGCAGGTA -CCAACAGTCTTGACAACGGACTCT -CCAACAGTCTTGACAACGAGTCCT -CCAACAGTCTTGACAACGTAAGCC -CCAACAGTCTTGACAACGATAGCC -CCAACAGTCTTGACAACGTAACCG -CCAACAGTCTTGACAACGATGCCA -CCAACAGTCTTGTCAAGCGGAAAC -CCAACAGTCTTGTCAAGCAACACC -CCAACAGTCTTGTCAAGCATCGAG -CCAACAGTCTTGTCAAGCCTCCTT -CCAACAGTCTTGTCAAGCCCTGTT -CCAACAGTCTTGTCAAGCCGGTTT -CCAACAGTCTTGTCAAGCGTGGTT -CCAACAGTCTTGTCAAGCGCCTTT -CCAACAGTCTTGTCAAGCGGTCTT -CCAACAGTCTTGTCAAGCACGCTT -CCAACAGTCTTGTCAAGCAGCGTT -CCAACAGTCTTGTCAAGCTTCGTC -CCAACAGTCTTGTCAAGCTCTCTC -CCAACAGTCTTGTCAAGCTGGATC -CCAACAGTCTTGTCAAGCCACTTC -CCAACAGTCTTGTCAAGCGTACTC -CCAACAGTCTTGTCAAGCGATGTC -CCAACAGTCTTGTCAAGCACAGTC -CCAACAGTCTTGTCAAGCTTGCTG -CCAACAGTCTTGTCAAGCTCCATG -CCAACAGTCTTGTCAAGCTGTGTG -CCAACAGTCTTGTCAAGCCTAGTG -CCAACAGTCTTGTCAAGCCATCTG -CCAACAGTCTTGTCAAGCGAGTTG -CCAACAGTCTTGTCAAGCAGACTG -CCAACAGTCTTGTCAAGCTCGGTA -CCAACAGTCTTGTCAAGCTGCCTA -CCAACAGTCTTGTCAAGCCCACTA -CCAACAGTCTTGTCAAGCGGAGTA -CCAACAGTCTTGTCAAGCTCGTCT -CCAACAGTCTTGTCAAGCTGCACT -CCAACAGTCTTGTCAAGCCTGACT -CCAACAGTCTTGTCAAGCCAACCT -CCAACAGTCTTGTCAAGCGCTACT -CCAACAGTCTTGTCAAGCGGATCT -CCAACAGTCTTGTCAAGCAAGGCT -CCAACAGTCTTGTCAAGCTCAACC -CCAACAGTCTTGTCAAGCTGTTCC -CCAACAGTCTTGTCAAGCATTCCC -CCAACAGTCTTGTCAAGCTTCTCG -CCAACAGTCTTGTCAAGCTAGACG -CCAACAGTCTTGTCAAGCGTAACG -CCAACAGTCTTGTCAAGCACTTCG -CCAACAGTCTTGTCAAGCTACGCA -CCAACAGTCTTGTCAAGCCTTGCA -CCAACAGTCTTGTCAAGCCGAACA -CCAACAGTCTTGTCAAGCCAGTCA -CCAACAGTCTTGTCAAGCGATCCA -CCAACAGTCTTGTCAAGCACGACA -CCAACAGTCTTGTCAAGCAGCTCA -CCAACAGTCTTGTCAAGCTCACGT -CCAACAGTCTTGTCAAGCCGTAGT -CCAACAGTCTTGTCAAGCGTCAGT -CCAACAGTCTTGTCAAGCGAAGGT -CCAACAGTCTTGTCAAGCAACCGT -CCAACAGTCTTGTCAAGCTTGTGC -CCAACAGTCTTGTCAAGCCTAAGC -CCAACAGTCTTGTCAAGCACTAGC -CCAACAGTCTTGTCAAGCAGATGC -CCAACAGTCTTGTCAAGCTGAAGG -CCAACAGTCTTGTCAAGCCAATGG -CCAACAGTCTTGTCAAGCATGAGG -CCAACAGTCTTGTCAAGCAATGGG -CCAACAGTCTTGTCAAGCTCCTGA -CCAACAGTCTTGTCAAGCTAGCGA -CCAACAGTCTTGTCAAGCCACAGA -CCAACAGTCTTGTCAAGCGCAAGA -CCAACAGTCTTGTCAAGCGGTTGA -CCAACAGTCTTGTCAAGCTCCGAT -CCAACAGTCTTGTCAAGCTGGCAT -CCAACAGTCTTGTCAAGCCGAGAT -CCAACAGTCTTGTCAAGCTACCAC -CCAACAGTCTTGTCAAGCCAGAAC -CCAACAGTCTTGTCAAGCGTCTAC -CCAACAGTCTTGTCAAGCACGTAC -CCAACAGTCTTGTCAAGCAGTGAC -CCAACAGTCTTGTCAAGCCTGTAG -CCAACAGTCTTGTCAAGCCCTAAG -CCAACAGTCTTGTCAAGCGTTCAG -CCAACAGTCTTGTCAAGCGCATAG -CCAACAGTCTTGTCAAGCGACAAG -CCAACAGTCTTGTCAAGCAAGCAG -CCAACAGTCTTGTCAAGCCGTCAA -CCAACAGTCTTGTCAAGCGCTGAA -CCAACAGTCTTGTCAAGCAGTACG -CCAACAGTCTTGTCAAGCATCCGA -CCAACAGTCTTGTCAAGCATGGGA -CCAACAGTCTTGTCAAGCGTGCAA -CCAACAGTCTTGTCAAGCGAGGAA -CCAACAGTCTTGTCAAGCCAGGTA -CCAACAGTCTTGTCAAGCGACTCT -CCAACAGTCTTGTCAAGCAGTCCT -CCAACAGTCTTGTCAAGCTAAGCC -CCAACAGTCTTGTCAAGCATAGCC -CCAACAGTCTTGTCAAGCTAACCG -CCAACAGTCTTGTCAAGCATGCCA -CCAACAGTCTTGCGTTCAGGAAAC -CCAACAGTCTTGCGTTCAAACACC -CCAACAGTCTTGCGTTCAATCGAG -CCAACAGTCTTGCGTTCACTCCTT -CCAACAGTCTTGCGTTCACCTGTT -CCAACAGTCTTGCGTTCACGGTTT -CCAACAGTCTTGCGTTCAGTGGTT -CCAACAGTCTTGCGTTCAGCCTTT -CCAACAGTCTTGCGTTCAGGTCTT -CCAACAGTCTTGCGTTCAACGCTT -CCAACAGTCTTGCGTTCAAGCGTT -CCAACAGTCTTGCGTTCATTCGTC -CCAACAGTCTTGCGTTCATCTCTC -CCAACAGTCTTGCGTTCATGGATC -CCAACAGTCTTGCGTTCACACTTC -CCAACAGTCTTGCGTTCAGTACTC -CCAACAGTCTTGCGTTCAGATGTC -CCAACAGTCTTGCGTTCAACAGTC -CCAACAGTCTTGCGTTCATTGCTG -CCAACAGTCTTGCGTTCATCCATG -CCAACAGTCTTGCGTTCATGTGTG -CCAACAGTCTTGCGTTCACTAGTG -CCAACAGTCTTGCGTTCACATCTG -CCAACAGTCTTGCGTTCAGAGTTG -CCAACAGTCTTGCGTTCAAGACTG -CCAACAGTCTTGCGTTCATCGGTA -CCAACAGTCTTGCGTTCATGCCTA -CCAACAGTCTTGCGTTCACCACTA -CCAACAGTCTTGCGTTCAGGAGTA -CCAACAGTCTTGCGTTCATCGTCT -CCAACAGTCTTGCGTTCATGCACT -CCAACAGTCTTGCGTTCACTGACT -CCAACAGTCTTGCGTTCACAACCT -CCAACAGTCTTGCGTTCAGCTACT -CCAACAGTCTTGCGTTCAGGATCT -CCAACAGTCTTGCGTTCAAAGGCT -CCAACAGTCTTGCGTTCATCAACC -CCAACAGTCTTGCGTTCATGTTCC -CCAACAGTCTTGCGTTCAATTCCC -CCAACAGTCTTGCGTTCATTCTCG -CCAACAGTCTTGCGTTCATAGACG -CCAACAGTCTTGCGTTCAGTAACG -CCAACAGTCTTGCGTTCAACTTCG -CCAACAGTCTTGCGTTCATACGCA -CCAACAGTCTTGCGTTCACTTGCA -CCAACAGTCTTGCGTTCACGAACA -CCAACAGTCTTGCGTTCACAGTCA -CCAACAGTCTTGCGTTCAGATCCA -CCAACAGTCTTGCGTTCAACGACA -CCAACAGTCTTGCGTTCAAGCTCA -CCAACAGTCTTGCGTTCATCACGT -CCAACAGTCTTGCGTTCACGTAGT -CCAACAGTCTTGCGTTCAGTCAGT -CCAACAGTCTTGCGTTCAGAAGGT -CCAACAGTCTTGCGTTCAAACCGT -CCAACAGTCTTGCGTTCATTGTGC -CCAACAGTCTTGCGTTCACTAAGC -CCAACAGTCTTGCGTTCAACTAGC -CCAACAGTCTTGCGTTCAAGATGC -CCAACAGTCTTGCGTTCATGAAGG -CCAACAGTCTTGCGTTCACAATGG -CCAACAGTCTTGCGTTCAATGAGG -CCAACAGTCTTGCGTTCAAATGGG -CCAACAGTCTTGCGTTCATCCTGA -CCAACAGTCTTGCGTTCATAGCGA -CCAACAGTCTTGCGTTCACACAGA -CCAACAGTCTTGCGTTCAGCAAGA -CCAACAGTCTTGCGTTCAGGTTGA -CCAACAGTCTTGCGTTCATCCGAT -CCAACAGTCTTGCGTTCATGGCAT -CCAACAGTCTTGCGTTCACGAGAT -CCAACAGTCTTGCGTTCATACCAC -CCAACAGTCTTGCGTTCACAGAAC -CCAACAGTCTTGCGTTCAGTCTAC -CCAACAGTCTTGCGTTCAACGTAC -CCAACAGTCTTGCGTTCAAGTGAC -CCAACAGTCTTGCGTTCACTGTAG -CCAACAGTCTTGCGTTCACCTAAG -CCAACAGTCTTGCGTTCAGTTCAG -CCAACAGTCTTGCGTTCAGCATAG -CCAACAGTCTTGCGTTCAGACAAG -CCAACAGTCTTGCGTTCAAAGCAG -CCAACAGTCTTGCGTTCACGTCAA -CCAACAGTCTTGCGTTCAGCTGAA -CCAACAGTCTTGCGTTCAAGTACG -CCAACAGTCTTGCGTTCAATCCGA -CCAACAGTCTTGCGTTCAATGGGA -CCAACAGTCTTGCGTTCAGTGCAA -CCAACAGTCTTGCGTTCAGAGGAA -CCAACAGTCTTGCGTTCACAGGTA -CCAACAGTCTTGCGTTCAGACTCT -CCAACAGTCTTGCGTTCAAGTCCT -CCAACAGTCTTGCGTTCATAAGCC -CCAACAGTCTTGCGTTCAATAGCC -CCAACAGTCTTGCGTTCATAACCG -CCAACAGTCTTGCGTTCAATGCCA -CCAACAGTCTTGAGTCGTGGAAAC -CCAACAGTCTTGAGTCGTAACACC -CCAACAGTCTTGAGTCGTATCGAG -CCAACAGTCTTGAGTCGTCTCCTT -CCAACAGTCTTGAGTCGTCCTGTT -CCAACAGTCTTGAGTCGTCGGTTT -CCAACAGTCTTGAGTCGTGTGGTT -CCAACAGTCTTGAGTCGTGCCTTT -CCAACAGTCTTGAGTCGTGGTCTT -CCAACAGTCTTGAGTCGTACGCTT -CCAACAGTCTTGAGTCGTAGCGTT -CCAACAGTCTTGAGTCGTTTCGTC -CCAACAGTCTTGAGTCGTTCTCTC -CCAACAGTCTTGAGTCGTTGGATC -CCAACAGTCTTGAGTCGTCACTTC -CCAACAGTCTTGAGTCGTGTACTC -CCAACAGTCTTGAGTCGTGATGTC -CCAACAGTCTTGAGTCGTACAGTC -CCAACAGTCTTGAGTCGTTTGCTG -CCAACAGTCTTGAGTCGTTCCATG -CCAACAGTCTTGAGTCGTTGTGTG -CCAACAGTCTTGAGTCGTCTAGTG -CCAACAGTCTTGAGTCGTCATCTG -CCAACAGTCTTGAGTCGTGAGTTG -CCAACAGTCTTGAGTCGTAGACTG -CCAACAGTCTTGAGTCGTTCGGTA -CCAACAGTCTTGAGTCGTTGCCTA -CCAACAGTCTTGAGTCGTCCACTA -CCAACAGTCTTGAGTCGTGGAGTA -CCAACAGTCTTGAGTCGTTCGTCT -CCAACAGTCTTGAGTCGTTGCACT -CCAACAGTCTTGAGTCGTCTGACT -CCAACAGTCTTGAGTCGTCAACCT -CCAACAGTCTTGAGTCGTGCTACT -CCAACAGTCTTGAGTCGTGGATCT -CCAACAGTCTTGAGTCGTAAGGCT -CCAACAGTCTTGAGTCGTTCAACC -CCAACAGTCTTGAGTCGTTGTTCC -CCAACAGTCTTGAGTCGTATTCCC -CCAACAGTCTTGAGTCGTTTCTCG -CCAACAGTCTTGAGTCGTTAGACG -CCAACAGTCTTGAGTCGTGTAACG -CCAACAGTCTTGAGTCGTACTTCG -CCAACAGTCTTGAGTCGTTACGCA -CCAACAGTCTTGAGTCGTCTTGCA -CCAACAGTCTTGAGTCGTCGAACA -CCAACAGTCTTGAGTCGTCAGTCA -CCAACAGTCTTGAGTCGTGATCCA -CCAACAGTCTTGAGTCGTACGACA -CCAACAGTCTTGAGTCGTAGCTCA -CCAACAGTCTTGAGTCGTTCACGT -CCAACAGTCTTGAGTCGTCGTAGT -CCAACAGTCTTGAGTCGTGTCAGT -CCAACAGTCTTGAGTCGTGAAGGT -CCAACAGTCTTGAGTCGTAACCGT -CCAACAGTCTTGAGTCGTTTGTGC -CCAACAGTCTTGAGTCGTCTAAGC -CCAACAGTCTTGAGTCGTACTAGC -CCAACAGTCTTGAGTCGTAGATGC -CCAACAGTCTTGAGTCGTTGAAGG -CCAACAGTCTTGAGTCGTCAATGG -CCAACAGTCTTGAGTCGTATGAGG -CCAACAGTCTTGAGTCGTAATGGG -CCAACAGTCTTGAGTCGTTCCTGA -CCAACAGTCTTGAGTCGTTAGCGA -CCAACAGTCTTGAGTCGTCACAGA -CCAACAGTCTTGAGTCGTGCAAGA -CCAACAGTCTTGAGTCGTGGTTGA -CCAACAGTCTTGAGTCGTTCCGAT -CCAACAGTCTTGAGTCGTTGGCAT -CCAACAGTCTTGAGTCGTCGAGAT -CCAACAGTCTTGAGTCGTTACCAC -CCAACAGTCTTGAGTCGTCAGAAC -CCAACAGTCTTGAGTCGTGTCTAC -CCAACAGTCTTGAGTCGTACGTAC -CCAACAGTCTTGAGTCGTAGTGAC -CCAACAGTCTTGAGTCGTCTGTAG -CCAACAGTCTTGAGTCGTCCTAAG -CCAACAGTCTTGAGTCGTGTTCAG -CCAACAGTCTTGAGTCGTGCATAG -CCAACAGTCTTGAGTCGTGACAAG -CCAACAGTCTTGAGTCGTAAGCAG -CCAACAGTCTTGAGTCGTCGTCAA -CCAACAGTCTTGAGTCGTGCTGAA -CCAACAGTCTTGAGTCGTAGTACG -CCAACAGTCTTGAGTCGTATCCGA -CCAACAGTCTTGAGTCGTATGGGA -CCAACAGTCTTGAGTCGTGTGCAA -CCAACAGTCTTGAGTCGTGAGGAA -CCAACAGTCTTGAGTCGTCAGGTA -CCAACAGTCTTGAGTCGTGACTCT -CCAACAGTCTTGAGTCGTAGTCCT -CCAACAGTCTTGAGTCGTTAAGCC -CCAACAGTCTTGAGTCGTATAGCC -CCAACAGTCTTGAGTCGTTAACCG -CCAACAGTCTTGAGTCGTATGCCA -CCAACAGTCTTGAGTGTCGGAAAC -CCAACAGTCTTGAGTGTCAACACC -CCAACAGTCTTGAGTGTCATCGAG -CCAACAGTCTTGAGTGTCCTCCTT -CCAACAGTCTTGAGTGTCCCTGTT -CCAACAGTCTTGAGTGTCCGGTTT -CCAACAGTCTTGAGTGTCGTGGTT -CCAACAGTCTTGAGTGTCGCCTTT -CCAACAGTCTTGAGTGTCGGTCTT -CCAACAGTCTTGAGTGTCACGCTT -CCAACAGTCTTGAGTGTCAGCGTT -CCAACAGTCTTGAGTGTCTTCGTC -CCAACAGTCTTGAGTGTCTCTCTC -CCAACAGTCTTGAGTGTCTGGATC -CCAACAGTCTTGAGTGTCCACTTC -CCAACAGTCTTGAGTGTCGTACTC -CCAACAGTCTTGAGTGTCGATGTC -CCAACAGTCTTGAGTGTCACAGTC -CCAACAGTCTTGAGTGTCTTGCTG -CCAACAGTCTTGAGTGTCTCCATG -CCAACAGTCTTGAGTGTCTGTGTG -CCAACAGTCTTGAGTGTCCTAGTG -CCAACAGTCTTGAGTGTCCATCTG -CCAACAGTCTTGAGTGTCGAGTTG -CCAACAGTCTTGAGTGTCAGACTG -CCAACAGTCTTGAGTGTCTCGGTA -CCAACAGTCTTGAGTGTCTGCCTA -CCAACAGTCTTGAGTGTCCCACTA -CCAACAGTCTTGAGTGTCGGAGTA -CCAACAGTCTTGAGTGTCTCGTCT -CCAACAGTCTTGAGTGTCTGCACT -CCAACAGTCTTGAGTGTCCTGACT -CCAACAGTCTTGAGTGTCCAACCT -CCAACAGTCTTGAGTGTCGCTACT -CCAACAGTCTTGAGTGTCGGATCT -CCAACAGTCTTGAGTGTCAAGGCT -CCAACAGTCTTGAGTGTCTCAACC -CCAACAGTCTTGAGTGTCTGTTCC -CCAACAGTCTTGAGTGTCATTCCC -CCAACAGTCTTGAGTGTCTTCTCG -CCAACAGTCTTGAGTGTCTAGACG -CCAACAGTCTTGAGTGTCGTAACG -CCAACAGTCTTGAGTGTCACTTCG -CCAACAGTCTTGAGTGTCTACGCA -CCAACAGTCTTGAGTGTCCTTGCA -CCAACAGTCTTGAGTGTCCGAACA -CCAACAGTCTTGAGTGTCCAGTCA -CCAACAGTCTTGAGTGTCGATCCA -CCAACAGTCTTGAGTGTCACGACA -CCAACAGTCTTGAGTGTCAGCTCA -CCAACAGTCTTGAGTGTCTCACGT -CCAACAGTCTTGAGTGTCCGTAGT -CCAACAGTCTTGAGTGTCGTCAGT -CCAACAGTCTTGAGTGTCGAAGGT -CCAACAGTCTTGAGTGTCAACCGT -CCAACAGTCTTGAGTGTCTTGTGC -CCAACAGTCTTGAGTGTCCTAAGC -CCAACAGTCTTGAGTGTCACTAGC -CCAACAGTCTTGAGTGTCAGATGC -CCAACAGTCTTGAGTGTCTGAAGG -CCAACAGTCTTGAGTGTCCAATGG -CCAACAGTCTTGAGTGTCATGAGG -CCAACAGTCTTGAGTGTCAATGGG -CCAACAGTCTTGAGTGTCTCCTGA -CCAACAGTCTTGAGTGTCTAGCGA -CCAACAGTCTTGAGTGTCCACAGA -CCAACAGTCTTGAGTGTCGCAAGA -CCAACAGTCTTGAGTGTCGGTTGA -CCAACAGTCTTGAGTGTCTCCGAT -CCAACAGTCTTGAGTGTCTGGCAT -CCAACAGTCTTGAGTGTCCGAGAT -CCAACAGTCTTGAGTGTCTACCAC -CCAACAGTCTTGAGTGTCCAGAAC -CCAACAGTCTTGAGTGTCGTCTAC -CCAACAGTCTTGAGTGTCACGTAC -CCAACAGTCTTGAGTGTCAGTGAC -CCAACAGTCTTGAGTGTCCTGTAG -CCAACAGTCTTGAGTGTCCCTAAG -CCAACAGTCTTGAGTGTCGTTCAG -CCAACAGTCTTGAGTGTCGCATAG -CCAACAGTCTTGAGTGTCGACAAG -CCAACAGTCTTGAGTGTCAAGCAG -CCAACAGTCTTGAGTGTCCGTCAA -CCAACAGTCTTGAGTGTCGCTGAA -CCAACAGTCTTGAGTGTCAGTACG -CCAACAGTCTTGAGTGTCATCCGA -CCAACAGTCTTGAGTGTCATGGGA -CCAACAGTCTTGAGTGTCGTGCAA -CCAACAGTCTTGAGTGTCGAGGAA -CCAACAGTCTTGAGTGTCCAGGTA -CCAACAGTCTTGAGTGTCGACTCT -CCAACAGTCTTGAGTGTCAGTCCT -CCAACAGTCTTGAGTGTCTAAGCC -CCAACAGTCTTGAGTGTCATAGCC -CCAACAGTCTTGAGTGTCTAACCG -CCAACAGTCTTGAGTGTCATGCCA -CCAACAGTCTTGGGTGAAGGAAAC -CCAACAGTCTTGGGTGAAAACACC -CCAACAGTCTTGGGTGAAATCGAG -CCAACAGTCTTGGGTGAACTCCTT -CCAACAGTCTTGGGTGAACCTGTT -CCAACAGTCTTGGGTGAACGGTTT -CCAACAGTCTTGGGTGAAGTGGTT -CCAACAGTCTTGGGTGAAGCCTTT -CCAACAGTCTTGGGTGAAGGTCTT -CCAACAGTCTTGGGTGAAACGCTT -CCAACAGTCTTGGGTGAAAGCGTT -CCAACAGTCTTGGGTGAATTCGTC -CCAACAGTCTTGGGTGAATCTCTC -CCAACAGTCTTGGGTGAATGGATC -CCAACAGTCTTGGGTGAACACTTC -CCAACAGTCTTGGGTGAAGTACTC -CCAACAGTCTTGGGTGAAGATGTC -CCAACAGTCTTGGGTGAAACAGTC -CCAACAGTCTTGGGTGAATTGCTG -CCAACAGTCTTGGGTGAATCCATG -CCAACAGTCTTGGGTGAATGTGTG -CCAACAGTCTTGGGTGAACTAGTG -CCAACAGTCTTGGGTGAACATCTG -CCAACAGTCTTGGGTGAAGAGTTG -CCAACAGTCTTGGGTGAAAGACTG -CCAACAGTCTTGGGTGAATCGGTA -CCAACAGTCTTGGGTGAATGCCTA -CCAACAGTCTTGGGTGAACCACTA -CCAACAGTCTTGGGTGAAGGAGTA -CCAACAGTCTTGGGTGAATCGTCT -CCAACAGTCTTGGGTGAATGCACT -CCAACAGTCTTGGGTGAACTGACT -CCAACAGTCTTGGGTGAACAACCT -CCAACAGTCTTGGGTGAAGCTACT -CCAACAGTCTTGGGTGAAGGATCT -CCAACAGTCTTGGGTGAAAAGGCT -CCAACAGTCTTGGGTGAATCAACC -CCAACAGTCTTGGGTGAATGTTCC -CCAACAGTCTTGGGTGAAATTCCC -CCAACAGTCTTGGGTGAATTCTCG -CCAACAGTCTTGGGTGAATAGACG -CCAACAGTCTTGGGTGAAGTAACG -CCAACAGTCTTGGGTGAAACTTCG -CCAACAGTCTTGGGTGAATACGCA -CCAACAGTCTTGGGTGAACTTGCA -CCAACAGTCTTGGGTGAACGAACA -CCAACAGTCTTGGGTGAACAGTCA -CCAACAGTCTTGGGTGAAGATCCA -CCAACAGTCTTGGGTGAAACGACA -CCAACAGTCTTGGGTGAAAGCTCA -CCAACAGTCTTGGGTGAATCACGT -CCAACAGTCTTGGGTGAACGTAGT -CCAACAGTCTTGGGTGAAGTCAGT -CCAACAGTCTTGGGTGAAGAAGGT -CCAACAGTCTTGGGTGAAAACCGT -CCAACAGTCTTGGGTGAATTGTGC -CCAACAGTCTTGGGTGAACTAAGC -CCAACAGTCTTGGGTGAAACTAGC -CCAACAGTCTTGGGTGAAAGATGC -CCAACAGTCTTGGGTGAATGAAGG -CCAACAGTCTTGGGTGAACAATGG -CCAACAGTCTTGGGTGAAATGAGG -CCAACAGTCTTGGGTGAAAATGGG -CCAACAGTCTTGGGTGAATCCTGA -CCAACAGTCTTGGGTGAATAGCGA -CCAACAGTCTTGGGTGAACACAGA -CCAACAGTCTTGGGTGAAGCAAGA -CCAACAGTCTTGGGTGAAGGTTGA -CCAACAGTCTTGGGTGAATCCGAT -CCAACAGTCTTGGGTGAATGGCAT -CCAACAGTCTTGGGTGAACGAGAT -CCAACAGTCTTGGGTGAATACCAC -CCAACAGTCTTGGGTGAACAGAAC -CCAACAGTCTTGGGTGAAGTCTAC -CCAACAGTCTTGGGTGAAACGTAC -CCAACAGTCTTGGGTGAAAGTGAC -CCAACAGTCTTGGGTGAACTGTAG -CCAACAGTCTTGGGTGAACCTAAG -CCAACAGTCTTGGGTGAAGTTCAG -CCAACAGTCTTGGGTGAAGCATAG -CCAACAGTCTTGGGTGAAGACAAG -CCAACAGTCTTGGGTGAAAAGCAG -CCAACAGTCTTGGGTGAACGTCAA -CCAACAGTCTTGGGTGAAGCTGAA -CCAACAGTCTTGGGTGAAAGTACG -CCAACAGTCTTGGGTGAAATCCGA -CCAACAGTCTTGGGTGAAATGGGA -CCAACAGTCTTGGGTGAAGTGCAA -CCAACAGTCTTGGGTGAAGAGGAA -CCAACAGTCTTGGGTGAACAGGTA -CCAACAGTCTTGGGTGAAGACTCT -CCAACAGTCTTGGGTGAAAGTCCT -CCAACAGTCTTGGGTGAATAAGCC -CCAACAGTCTTGGGTGAAATAGCC -CCAACAGTCTTGGGTGAATAACCG -CCAACAGTCTTGGGTGAAATGCCA -CCAACAGTCTTGCGTAACGGAAAC -CCAACAGTCTTGCGTAACAACACC -CCAACAGTCTTGCGTAACATCGAG -CCAACAGTCTTGCGTAACCTCCTT -CCAACAGTCTTGCGTAACCCTGTT -CCAACAGTCTTGCGTAACCGGTTT -CCAACAGTCTTGCGTAACGTGGTT -CCAACAGTCTTGCGTAACGCCTTT -CCAACAGTCTTGCGTAACGGTCTT -CCAACAGTCTTGCGTAACACGCTT -CCAACAGTCTTGCGTAACAGCGTT -CCAACAGTCTTGCGTAACTTCGTC -CCAACAGTCTTGCGTAACTCTCTC -CCAACAGTCTTGCGTAACTGGATC -CCAACAGTCTTGCGTAACCACTTC -CCAACAGTCTTGCGTAACGTACTC -CCAACAGTCTTGCGTAACGATGTC -CCAACAGTCTTGCGTAACACAGTC -CCAACAGTCTTGCGTAACTTGCTG -CCAACAGTCTTGCGTAACTCCATG -CCAACAGTCTTGCGTAACTGTGTG -CCAACAGTCTTGCGTAACCTAGTG -CCAACAGTCTTGCGTAACCATCTG -CCAACAGTCTTGCGTAACGAGTTG -CCAACAGTCTTGCGTAACAGACTG -CCAACAGTCTTGCGTAACTCGGTA -CCAACAGTCTTGCGTAACTGCCTA -CCAACAGTCTTGCGTAACCCACTA -CCAACAGTCTTGCGTAACGGAGTA -CCAACAGTCTTGCGTAACTCGTCT -CCAACAGTCTTGCGTAACTGCACT -CCAACAGTCTTGCGTAACCTGACT -CCAACAGTCTTGCGTAACCAACCT -CCAACAGTCTTGCGTAACGCTACT -CCAACAGTCTTGCGTAACGGATCT -CCAACAGTCTTGCGTAACAAGGCT -CCAACAGTCTTGCGTAACTCAACC -CCAACAGTCTTGCGTAACTGTTCC -CCAACAGTCTTGCGTAACATTCCC -CCAACAGTCTTGCGTAACTTCTCG -CCAACAGTCTTGCGTAACTAGACG -CCAACAGTCTTGCGTAACGTAACG -CCAACAGTCTTGCGTAACACTTCG -CCAACAGTCTTGCGTAACTACGCA -CCAACAGTCTTGCGTAACCTTGCA -CCAACAGTCTTGCGTAACCGAACA -CCAACAGTCTTGCGTAACCAGTCA -CCAACAGTCTTGCGTAACGATCCA -CCAACAGTCTTGCGTAACACGACA -CCAACAGTCTTGCGTAACAGCTCA -CCAACAGTCTTGCGTAACTCACGT -CCAACAGTCTTGCGTAACCGTAGT -CCAACAGTCTTGCGTAACGTCAGT -CCAACAGTCTTGCGTAACGAAGGT -CCAACAGTCTTGCGTAACAACCGT -CCAACAGTCTTGCGTAACTTGTGC -CCAACAGTCTTGCGTAACCTAAGC -CCAACAGTCTTGCGTAACACTAGC -CCAACAGTCTTGCGTAACAGATGC -CCAACAGTCTTGCGTAACTGAAGG -CCAACAGTCTTGCGTAACCAATGG -CCAACAGTCTTGCGTAACATGAGG -CCAACAGTCTTGCGTAACAATGGG -CCAACAGTCTTGCGTAACTCCTGA -CCAACAGTCTTGCGTAACTAGCGA -CCAACAGTCTTGCGTAACCACAGA -CCAACAGTCTTGCGTAACGCAAGA -CCAACAGTCTTGCGTAACGGTTGA -CCAACAGTCTTGCGTAACTCCGAT -CCAACAGTCTTGCGTAACTGGCAT -CCAACAGTCTTGCGTAACCGAGAT -CCAACAGTCTTGCGTAACTACCAC -CCAACAGTCTTGCGTAACCAGAAC -CCAACAGTCTTGCGTAACGTCTAC -CCAACAGTCTTGCGTAACACGTAC -CCAACAGTCTTGCGTAACAGTGAC -CCAACAGTCTTGCGTAACCTGTAG -CCAACAGTCTTGCGTAACCCTAAG -CCAACAGTCTTGCGTAACGTTCAG -CCAACAGTCTTGCGTAACGCATAG -CCAACAGTCTTGCGTAACGACAAG -CCAACAGTCTTGCGTAACAAGCAG -CCAACAGTCTTGCGTAACCGTCAA -CCAACAGTCTTGCGTAACGCTGAA -CCAACAGTCTTGCGTAACAGTACG -CCAACAGTCTTGCGTAACATCCGA -CCAACAGTCTTGCGTAACATGGGA -CCAACAGTCTTGCGTAACGTGCAA -CCAACAGTCTTGCGTAACGAGGAA -CCAACAGTCTTGCGTAACCAGGTA -CCAACAGTCTTGCGTAACGACTCT -CCAACAGTCTTGCGTAACAGTCCT -CCAACAGTCTTGCGTAACTAAGCC -CCAACAGTCTTGCGTAACATAGCC -CCAACAGTCTTGCGTAACTAACCG -CCAACAGTCTTGCGTAACATGCCA -CCAACAGTCTTGTGCTTGGGAAAC -CCAACAGTCTTGTGCTTGAACACC -CCAACAGTCTTGTGCTTGATCGAG -CCAACAGTCTTGTGCTTGCTCCTT -CCAACAGTCTTGTGCTTGCCTGTT -CCAACAGTCTTGTGCTTGCGGTTT -CCAACAGTCTTGTGCTTGGTGGTT -CCAACAGTCTTGTGCTTGGCCTTT -CCAACAGTCTTGTGCTTGGGTCTT -CCAACAGTCTTGTGCTTGACGCTT -CCAACAGTCTTGTGCTTGAGCGTT -CCAACAGTCTTGTGCTTGTTCGTC -CCAACAGTCTTGTGCTTGTCTCTC -CCAACAGTCTTGTGCTTGTGGATC -CCAACAGTCTTGTGCTTGCACTTC -CCAACAGTCTTGTGCTTGGTACTC -CCAACAGTCTTGTGCTTGGATGTC -CCAACAGTCTTGTGCTTGACAGTC -CCAACAGTCTTGTGCTTGTTGCTG -CCAACAGTCTTGTGCTTGTCCATG -CCAACAGTCTTGTGCTTGTGTGTG -CCAACAGTCTTGTGCTTGCTAGTG -CCAACAGTCTTGTGCTTGCATCTG -CCAACAGTCTTGTGCTTGGAGTTG -CCAACAGTCTTGTGCTTGAGACTG -CCAACAGTCTTGTGCTTGTCGGTA -CCAACAGTCTTGTGCTTGTGCCTA -CCAACAGTCTTGTGCTTGCCACTA -CCAACAGTCTTGTGCTTGGGAGTA -CCAACAGTCTTGTGCTTGTCGTCT -CCAACAGTCTTGTGCTTGTGCACT -CCAACAGTCTTGTGCTTGCTGACT -CCAACAGTCTTGTGCTTGCAACCT -CCAACAGTCTTGTGCTTGGCTACT -CCAACAGTCTTGTGCTTGGGATCT -CCAACAGTCTTGTGCTTGAAGGCT -CCAACAGTCTTGTGCTTGTCAACC -CCAACAGTCTTGTGCTTGTGTTCC -CCAACAGTCTTGTGCTTGATTCCC -CCAACAGTCTTGTGCTTGTTCTCG -CCAACAGTCTTGTGCTTGTAGACG -CCAACAGTCTTGTGCTTGGTAACG -CCAACAGTCTTGTGCTTGACTTCG -CCAACAGTCTTGTGCTTGTACGCA -CCAACAGTCTTGTGCTTGCTTGCA -CCAACAGTCTTGTGCTTGCGAACA -CCAACAGTCTTGTGCTTGCAGTCA -CCAACAGTCTTGTGCTTGGATCCA -CCAACAGTCTTGTGCTTGACGACA -CCAACAGTCTTGTGCTTGAGCTCA -CCAACAGTCTTGTGCTTGTCACGT -CCAACAGTCTTGTGCTTGCGTAGT -CCAACAGTCTTGTGCTTGGTCAGT -CCAACAGTCTTGTGCTTGGAAGGT -CCAACAGTCTTGTGCTTGAACCGT -CCAACAGTCTTGTGCTTGTTGTGC -CCAACAGTCTTGTGCTTGCTAAGC -CCAACAGTCTTGTGCTTGACTAGC -CCAACAGTCTTGTGCTTGAGATGC -CCAACAGTCTTGTGCTTGTGAAGG -CCAACAGTCTTGTGCTTGCAATGG -CCAACAGTCTTGTGCTTGATGAGG -CCAACAGTCTTGTGCTTGAATGGG -CCAACAGTCTTGTGCTTGTCCTGA -CCAACAGTCTTGTGCTTGTAGCGA -CCAACAGTCTTGTGCTTGCACAGA -CCAACAGTCTTGTGCTTGGCAAGA -CCAACAGTCTTGTGCTTGGGTTGA -CCAACAGTCTTGTGCTTGTCCGAT -CCAACAGTCTTGTGCTTGTGGCAT -CCAACAGTCTTGTGCTTGCGAGAT -CCAACAGTCTTGTGCTTGTACCAC -CCAACAGTCTTGTGCTTGCAGAAC -CCAACAGTCTTGTGCTTGGTCTAC -CCAACAGTCTTGTGCTTGACGTAC -CCAACAGTCTTGTGCTTGAGTGAC -CCAACAGTCTTGTGCTTGCTGTAG -CCAACAGTCTTGTGCTTGCCTAAG -CCAACAGTCTTGTGCTTGGTTCAG -CCAACAGTCTTGTGCTTGGCATAG -CCAACAGTCTTGTGCTTGGACAAG -CCAACAGTCTTGTGCTTGAAGCAG -CCAACAGTCTTGTGCTTGCGTCAA -CCAACAGTCTTGTGCTTGGCTGAA -CCAACAGTCTTGTGCTTGAGTACG -CCAACAGTCTTGTGCTTGATCCGA -CCAACAGTCTTGTGCTTGATGGGA -CCAACAGTCTTGTGCTTGGTGCAA -CCAACAGTCTTGTGCTTGGAGGAA -CCAACAGTCTTGTGCTTGCAGGTA -CCAACAGTCTTGTGCTTGGACTCT -CCAACAGTCTTGTGCTTGAGTCCT -CCAACAGTCTTGTGCTTGTAAGCC -CCAACAGTCTTGTGCTTGATAGCC -CCAACAGTCTTGTGCTTGTAACCG -CCAACAGTCTTGTGCTTGATGCCA -CCAACAGTCTTGAGCCTAGGAAAC -CCAACAGTCTTGAGCCTAAACACC -CCAACAGTCTTGAGCCTAATCGAG -CCAACAGTCTTGAGCCTACTCCTT -CCAACAGTCTTGAGCCTACCTGTT -CCAACAGTCTTGAGCCTACGGTTT -CCAACAGTCTTGAGCCTAGTGGTT -CCAACAGTCTTGAGCCTAGCCTTT -CCAACAGTCTTGAGCCTAGGTCTT -CCAACAGTCTTGAGCCTAACGCTT -CCAACAGTCTTGAGCCTAAGCGTT -CCAACAGTCTTGAGCCTATTCGTC -CCAACAGTCTTGAGCCTATCTCTC -CCAACAGTCTTGAGCCTATGGATC -CCAACAGTCTTGAGCCTACACTTC -CCAACAGTCTTGAGCCTAGTACTC -CCAACAGTCTTGAGCCTAGATGTC -CCAACAGTCTTGAGCCTAACAGTC -CCAACAGTCTTGAGCCTATTGCTG -CCAACAGTCTTGAGCCTATCCATG -CCAACAGTCTTGAGCCTATGTGTG -CCAACAGTCTTGAGCCTACTAGTG -CCAACAGTCTTGAGCCTACATCTG -CCAACAGTCTTGAGCCTAGAGTTG -CCAACAGTCTTGAGCCTAAGACTG -CCAACAGTCTTGAGCCTATCGGTA -CCAACAGTCTTGAGCCTATGCCTA -CCAACAGTCTTGAGCCTACCACTA -CCAACAGTCTTGAGCCTAGGAGTA -CCAACAGTCTTGAGCCTATCGTCT -CCAACAGTCTTGAGCCTATGCACT -CCAACAGTCTTGAGCCTACTGACT -CCAACAGTCTTGAGCCTACAACCT -CCAACAGTCTTGAGCCTAGCTACT -CCAACAGTCTTGAGCCTAGGATCT -CCAACAGTCTTGAGCCTAAAGGCT -CCAACAGTCTTGAGCCTATCAACC -CCAACAGTCTTGAGCCTATGTTCC -CCAACAGTCTTGAGCCTAATTCCC -CCAACAGTCTTGAGCCTATTCTCG -CCAACAGTCTTGAGCCTATAGACG -CCAACAGTCTTGAGCCTAGTAACG -CCAACAGTCTTGAGCCTAACTTCG -CCAACAGTCTTGAGCCTATACGCA -CCAACAGTCTTGAGCCTACTTGCA -CCAACAGTCTTGAGCCTACGAACA -CCAACAGTCTTGAGCCTACAGTCA -CCAACAGTCTTGAGCCTAGATCCA -CCAACAGTCTTGAGCCTAACGACA -CCAACAGTCTTGAGCCTAAGCTCA -CCAACAGTCTTGAGCCTATCACGT -CCAACAGTCTTGAGCCTACGTAGT -CCAACAGTCTTGAGCCTAGTCAGT -CCAACAGTCTTGAGCCTAGAAGGT -CCAACAGTCTTGAGCCTAAACCGT -CCAACAGTCTTGAGCCTATTGTGC -CCAACAGTCTTGAGCCTACTAAGC -CCAACAGTCTTGAGCCTAACTAGC -CCAACAGTCTTGAGCCTAAGATGC -CCAACAGTCTTGAGCCTATGAAGG -CCAACAGTCTTGAGCCTACAATGG -CCAACAGTCTTGAGCCTAATGAGG -CCAACAGTCTTGAGCCTAAATGGG -CCAACAGTCTTGAGCCTATCCTGA -CCAACAGTCTTGAGCCTATAGCGA -CCAACAGTCTTGAGCCTACACAGA -CCAACAGTCTTGAGCCTAGCAAGA -CCAACAGTCTTGAGCCTAGGTTGA -CCAACAGTCTTGAGCCTATCCGAT -CCAACAGTCTTGAGCCTATGGCAT -CCAACAGTCTTGAGCCTACGAGAT -CCAACAGTCTTGAGCCTATACCAC -CCAACAGTCTTGAGCCTACAGAAC -CCAACAGTCTTGAGCCTAGTCTAC -CCAACAGTCTTGAGCCTAACGTAC -CCAACAGTCTTGAGCCTAAGTGAC -CCAACAGTCTTGAGCCTACTGTAG -CCAACAGTCTTGAGCCTACCTAAG -CCAACAGTCTTGAGCCTAGTTCAG -CCAACAGTCTTGAGCCTAGCATAG -CCAACAGTCTTGAGCCTAGACAAG -CCAACAGTCTTGAGCCTAAAGCAG -CCAACAGTCTTGAGCCTACGTCAA -CCAACAGTCTTGAGCCTAGCTGAA -CCAACAGTCTTGAGCCTAAGTACG -CCAACAGTCTTGAGCCTAATCCGA -CCAACAGTCTTGAGCCTAATGGGA -CCAACAGTCTTGAGCCTAGTGCAA -CCAACAGTCTTGAGCCTAGAGGAA -CCAACAGTCTTGAGCCTACAGGTA -CCAACAGTCTTGAGCCTAGACTCT -CCAACAGTCTTGAGCCTAAGTCCT -CCAACAGTCTTGAGCCTATAAGCC -CCAACAGTCTTGAGCCTAATAGCC -CCAACAGTCTTGAGCCTATAACCG -CCAACAGTCTTGAGCCTAATGCCA -CCAACAGTCTTGAGCACTGGAAAC -CCAACAGTCTTGAGCACTAACACC -CCAACAGTCTTGAGCACTATCGAG -CCAACAGTCTTGAGCACTCTCCTT -CCAACAGTCTTGAGCACTCCTGTT -CCAACAGTCTTGAGCACTCGGTTT -CCAACAGTCTTGAGCACTGTGGTT -CCAACAGTCTTGAGCACTGCCTTT -CCAACAGTCTTGAGCACTGGTCTT -CCAACAGTCTTGAGCACTACGCTT -CCAACAGTCTTGAGCACTAGCGTT -CCAACAGTCTTGAGCACTTTCGTC -CCAACAGTCTTGAGCACTTCTCTC -CCAACAGTCTTGAGCACTTGGATC -CCAACAGTCTTGAGCACTCACTTC -CCAACAGTCTTGAGCACTGTACTC -CCAACAGTCTTGAGCACTGATGTC -CCAACAGTCTTGAGCACTACAGTC -CCAACAGTCTTGAGCACTTTGCTG -CCAACAGTCTTGAGCACTTCCATG -CCAACAGTCTTGAGCACTTGTGTG -CCAACAGTCTTGAGCACTCTAGTG -CCAACAGTCTTGAGCACTCATCTG -CCAACAGTCTTGAGCACTGAGTTG -CCAACAGTCTTGAGCACTAGACTG -CCAACAGTCTTGAGCACTTCGGTA -CCAACAGTCTTGAGCACTTGCCTA -CCAACAGTCTTGAGCACTCCACTA -CCAACAGTCTTGAGCACTGGAGTA -CCAACAGTCTTGAGCACTTCGTCT -CCAACAGTCTTGAGCACTTGCACT -CCAACAGTCTTGAGCACTCTGACT -CCAACAGTCTTGAGCACTCAACCT -CCAACAGTCTTGAGCACTGCTACT -CCAACAGTCTTGAGCACTGGATCT -CCAACAGTCTTGAGCACTAAGGCT -CCAACAGTCTTGAGCACTTCAACC -CCAACAGTCTTGAGCACTTGTTCC -CCAACAGTCTTGAGCACTATTCCC -CCAACAGTCTTGAGCACTTTCTCG -CCAACAGTCTTGAGCACTTAGACG -CCAACAGTCTTGAGCACTGTAACG -CCAACAGTCTTGAGCACTACTTCG -CCAACAGTCTTGAGCACTTACGCA -CCAACAGTCTTGAGCACTCTTGCA -CCAACAGTCTTGAGCACTCGAACA -CCAACAGTCTTGAGCACTCAGTCA -CCAACAGTCTTGAGCACTGATCCA -CCAACAGTCTTGAGCACTACGACA -CCAACAGTCTTGAGCACTAGCTCA -CCAACAGTCTTGAGCACTTCACGT -CCAACAGTCTTGAGCACTCGTAGT -CCAACAGTCTTGAGCACTGTCAGT -CCAACAGTCTTGAGCACTGAAGGT -CCAACAGTCTTGAGCACTAACCGT -CCAACAGTCTTGAGCACTTTGTGC -CCAACAGTCTTGAGCACTCTAAGC -CCAACAGTCTTGAGCACTACTAGC -CCAACAGTCTTGAGCACTAGATGC -CCAACAGTCTTGAGCACTTGAAGG -CCAACAGTCTTGAGCACTCAATGG -CCAACAGTCTTGAGCACTATGAGG -CCAACAGTCTTGAGCACTAATGGG -CCAACAGTCTTGAGCACTTCCTGA -CCAACAGTCTTGAGCACTTAGCGA -CCAACAGTCTTGAGCACTCACAGA -CCAACAGTCTTGAGCACTGCAAGA -CCAACAGTCTTGAGCACTGGTTGA -CCAACAGTCTTGAGCACTTCCGAT -CCAACAGTCTTGAGCACTTGGCAT -CCAACAGTCTTGAGCACTCGAGAT -CCAACAGTCTTGAGCACTTACCAC -CCAACAGTCTTGAGCACTCAGAAC -CCAACAGTCTTGAGCACTGTCTAC -CCAACAGTCTTGAGCACTACGTAC -CCAACAGTCTTGAGCACTAGTGAC -CCAACAGTCTTGAGCACTCTGTAG -CCAACAGTCTTGAGCACTCCTAAG -CCAACAGTCTTGAGCACTGTTCAG -CCAACAGTCTTGAGCACTGCATAG -CCAACAGTCTTGAGCACTGACAAG -CCAACAGTCTTGAGCACTAAGCAG -CCAACAGTCTTGAGCACTCGTCAA -CCAACAGTCTTGAGCACTGCTGAA -CCAACAGTCTTGAGCACTAGTACG -CCAACAGTCTTGAGCACTATCCGA -CCAACAGTCTTGAGCACTATGGGA -CCAACAGTCTTGAGCACTGTGCAA -CCAACAGTCTTGAGCACTGAGGAA -CCAACAGTCTTGAGCACTCAGGTA -CCAACAGTCTTGAGCACTGACTCT -CCAACAGTCTTGAGCACTAGTCCT -CCAACAGTCTTGAGCACTTAAGCC -CCAACAGTCTTGAGCACTATAGCC -CCAACAGTCTTGAGCACTTAACCG -CCAACAGTCTTGAGCACTATGCCA -CCAACAGTCTTGTGCAGAGGAAAC -CCAACAGTCTTGTGCAGAAACACC -CCAACAGTCTTGTGCAGAATCGAG -CCAACAGTCTTGTGCAGACTCCTT -CCAACAGTCTTGTGCAGACCTGTT -CCAACAGTCTTGTGCAGACGGTTT -CCAACAGTCTTGTGCAGAGTGGTT -CCAACAGTCTTGTGCAGAGCCTTT -CCAACAGTCTTGTGCAGAGGTCTT -CCAACAGTCTTGTGCAGAACGCTT -CCAACAGTCTTGTGCAGAAGCGTT -CCAACAGTCTTGTGCAGATTCGTC -CCAACAGTCTTGTGCAGATCTCTC -CCAACAGTCTTGTGCAGATGGATC -CCAACAGTCTTGTGCAGACACTTC -CCAACAGTCTTGTGCAGAGTACTC -CCAACAGTCTTGTGCAGAGATGTC -CCAACAGTCTTGTGCAGAACAGTC -CCAACAGTCTTGTGCAGATTGCTG -CCAACAGTCTTGTGCAGATCCATG -CCAACAGTCTTGTGCAGATGTGTG -CCAACAGTCTTGTGCAGACTAGTG -CCAACAGTCTTGTGCAGACATCTG -CCAACAGTCTTGTGCAGAGAGTTG -CCAACAGTCTTGTGCAGAAGACTG -CCAACAGTCTTGTGCAGATCGGTA -CCAACAGTCTTGTGCAGATGCCTA -CCAACAGTCTTGTGCAGACCACTA -CCAACAGTCTTGTGCAGAGGAGTA -CCAACAGTCTTGTGCAGATCGTCT -CCAACAGTCTTGTGCAGATGCACT -CCAACAGTCTTGTGCAGACTGACT -CCAACAGTCTTGTGCAGACAACCT -CCAACAGTCTTGTGCAGAGCTACT -CCAACAGTCTTGTGCAGAGGATCT -CCAACAGTCTTGTGCAGAAAGGCT -CCAACAGTCTTGTGCAGATCAACC -CCAACAGTCTTGTGCAGATGTTCC -CCAACAGTCTTGTGCAGAATTCCC -CCAACAGTCTTGTGCAGATTCTCG -CCAACAGTCTTGTGCAGATAGACG -CCAACAGTCTTGTGCAGAGTAACG -CCAACAGTCTTGTGCAGAACTTCG -CCAACAGTCTTGTGCAGATACGCA -CCAACAGTCTTGTGCAGACTTGCA -CCAACAGTCTTGTGCAGACGAACA -CCAACAGTCTTGTGCAGACAGTCA -CCAACAGTCTTGTGCAGAGATCCA -CCAACAGTCTTGTGCAGAACGACA -CCAACAGTCTTGTGCAGAAGCTCA -CCAACAGTCTTGTGCAGATCACGT -CCAACAGTCTTGTGCAGACGTAGT -CCAACAGTCTTGTGCAGAGTCAGT -CCAACAGTCTTGTGCAGAGAAGGT -CCAACAGTCTTGTGCAGAAACCGT -CCAACAGTCTTGTGCAGATTGTGC -CCAACAGTCTTGTGCAGACTAAGC -CCAACAGTCTTGTGCAGAACTAGC -CCAACAGTCTTGTGCAGAAGATGC -CCAACAGTCTTGTGCAGATGAAGG -CCAACAGTCTTGTGCAGACAATGG -CCAACAGTCTTGTGCAGAATGAGG -CCAACAGTCTTGTGCAGAAATGGG -CCAACAGTCTTGTGCAGATCCTGA -CCAACAGTCTTGTGCAGATAGCGA -CCAACAGTCTTGTGCAGACACAGA -CCAACAGTCTTGTGCAGAGCAAGA -CCAACAGTCTTGTGCAGAGGTTGA -CCAACAGTCTTGTGCAGATCCGAT -CCAACAGTCTTGTGCAGATGGCAT -CCAACAGTCTTGTGCAGACGAGAT -CCAACAGTCTTGTGCAGATACCAC -CCAACAGTCTTGTGCAGACAGAAC -CCAACAGTCTTGTGCAGAGTCTAC -CCAACAGTCTTGTGCAGAACGTAC -CCAACAGTCTTGTGCAGAAGTGAC -CCAACAGTCTTGTGCAGACTGTAG -CCAACAGTCTTGTGCAGACCTAAG -CCAACAGTCTTGTGCAGAGTTCAG -CCAACAGTCTTGTGCAGAGCATAG -CCAACAGTCTTGTGCAGAGACAAG -CCAACAGTCTTGTGCAGAAAGCAG -CCAACAGTCTTGTGCAGACGTCAA -CCAACAGTCTTGTGCAGAGCTGAA -CCAACAGTCTTGTGCAGAAGTACG -CCAACAGTCTTGTGCAGAATCCGA -CCAACAGTCTTGTGCAGAATGGGA -CCAACAGTCTTGTGCAGAGTGCAA -CCAACAGTCTTGTGCAGAGAGGAA -CCAACAGTCTTGTGCAGACAGGTA -CCAACAGTCTTGTGCAGAGACTCT -CCAACAGTCTTGTGCAGAAGTCCT -CCAACAGTCTTGTGCAGATAAGCC -CCAACAGTCTTGTGCAGAATAGCC -CCAACAGTCTTGTGCAGATAACCG -CCAACAGTCTTGTGCAGAATGCCA -CCAACAGTCTTGAGGTGAGGAAAC -CCAACAGTCTTGAGGTGAAACACC -CCAACAGTCTTGAGGTGAATCGAG -CCAACAGTCTTGAGGTGACTCCTT -CCAACAGTCTTGAGGTGACCTGTT -CCAACAGTCTTGAGGTGACGGTTT -CCAACAGTCTTGAGGTGAGTGGTT -CCAACAGTCTTGAGGTGAGCCTTT -CCAACAGTCTTGAGGTGAGGTCTT -CCAACAGTCTTGAGGTGAACGCTT -CCAACAGTCTTGAGGTGAAGCGTT -CCAACAGTCTTGAGGTGATTCGTC -CCAACAGTCTTGAGGTGATCTCTC -CCAACAGTCTTGAGGTGATGGATC -CCAACAGTCTTGAGGTGACACTTC -CCAACAGTCTTGAGGTGAGTACTC -CCAACAGTCTTGAGGTGAGATGTC -CCAACAGTCTTGAGGTGAACAGTC -CCAACAGTCTTGAGGTGATTGCTG -CCAACAGTCTTGAGGTGATCCATG -CCAACAGTCTTGAGGTGATGTGTG -CCAACAGTCTTGAGGTGACTAGTG -CCAACAGTCTTGAGGTGACATCTG -CCAACAGTCTTGAGGTGAGAGTTG -CCAACAGTCTTGAGGTGAAGACTG -CCAACAGTCTTGAGGTGATCGGTA -CCAACAGTCTTGAGGTGATGCCTA -CCAACAGTCTTGAGGTGACCACTA -CCAACAGTCTTGAGGTGAGGAGTA -CCAACAGTCTTGAGGTGATCGTCT -CCAACAGTCTTGAGGTGATGCACT -CCAACAGTCTTGAGGTGACTGACT -CCAACAGTCTTGAGGTGACAACCT -CCAACAGTCTTGAGGTGAGCTACT -CCAACAGTCTTGAGGTGAGGATCT -CCAACAGTCTTGAGGTGAAAGGCT -CCAACAGTCTTGAGGTGATCAACC -CCAACAGTCTTGAGGTGATGTTCC -CCAACAGTCTTGAGGTGAATTCCC -CCAACAGTCTTGAGGTGATTCTCG -CCAACAGTCTTGAGGTGATAGACG -CCAACAGTCTTGAGGTGAGTAACG -CCAACAGTCTTGAGGTGAACTTCG -CCAACAGTCTTGAGGTGATACGCA -CCAACAGTCTTGAGGTGACTTGCA -CCAACAGTCTTGAGGTGACGAACA -CCAACAGTCTTGAGGTGACAGTCA -CCAACAGTCTTGAGGTGAGATCCA -CCAACAGTCTTGAGGTGAACGACA -CCAACAGTCTTGAGGTGAAGCTCA -CCAACAGTCTTGAGGTGATCACGT -CCAACAGTCTTGAGGTGACGTAGT -CCAACAGTCTTGAGGTGAGTCAGT -CCAACAGTCTTGAGGTGAGAAGGT -CCAACAGTCTTGAGGTGAAACCGT -CCAACAGTCTTGAGGTGATTGTGC -CCAACAGTCTTGAGGTGACTAAGC -CCAACAGTCTTGAGGTGAACTAGC -CCAACAGTCTTGAGGTGAAGATGC -CCAACAGTCTTGAGGTGATGAAGG -CCAACAGTCTTGAGGTGACAATGG -CCAACAGTCTTGAGGTGAATGAGG -CCAACAGTCTTGAGGTGAAATGGG -CCAACAGTCTTGAGGTGATCCTGA -CCAACAGTCTTGAGGTGATAGCGA -CCAACAGTCTTGAGGTGACACAGA -CCAACAGTCTTGAGGTGAGCAAGA -CCAACAGTCTTGAGGTGAGGTTGA -CCAACAGTCTTGAGGTGATCCGAT -CCAACAGTCTTGAGGTGATGGCAT -CCAACAGTCTTGAGGTGACGAGAT -CCAACAGTCTTGAGGTGATACCAC -CCAACAGTCTTGAGGTGACAGAAC -CCAACAGTCTTGAGGTGAGTCTAC -CCAACAGTCTTGAGGTGAACGTAC -CCAACAGTCTTGAGGTGAAGTGAC -CCAACAGTCTTGAGGTGACTGTAG -CCAACAGTCTTGAGGTGACCTAAG -CCAACAGTCTTGAGGTGAGTTCAG -CCAACAGTCTTGAGGTGAGCATAG -CCAACAGTCTTGAGGTGAGACAAG -CCAACAGTCTTGAGGTGAAAGCAG -CCAACAGTCTTGAGGTGACGTCAA -CCAACAGTCTTGAGGTGAGCTGAA -CCAACAGTCTTGAGGTGAAGTACG -CCAACAGTCTTGAGGTGAATCCGA -CCAACAGTCTTGAGGTGAATGGGA -CCAACAGTCTTGAGGTGAGTGCAA -CCAACAGTCTTGAGGTGAGAGGAA -CCAACAGTCTTGAGGTGACAGGTA -CCAACAGTCTTGAGGTGAGACTCT -CCAACAGTCTTGAGGTGAAGTCCT -CCAACAGTCTTGAGGTGATAAGCC -CCAACAGTCTTGAGGTGAATAGCC -CCAACAGTCTTGAGGTGATAACCG -CCAACAGTCTTGAGGTGAATGCCA -CCAACAGTCTTGTGGCAAGGAAAC -CCAACAGTCTTGTGGCAAAACACC -CCAACAGTCTTGTGGCAAATCGAG -CCAACAGTCTTGTGGCAACTCCTT -CCAACAGTCTTGTGGCAACCTGTT -CCAACAGTCTTGTGGCAACGGTTT -CCAACAGTCTTGTGGCAAGTGGTT -CCAACAGTCTTGTGGCAAGCCTTT -CCAACAGTCTTGTGGCAAGGTCTT -CCAACAGTCTTGTGGCAAACGCTT -CCAACAGTCTTGTGGCAAAGCGTT -CCAACAGTCTTGTGGCAATTCGTC -CCAACAGTCTTGTGGCAATCTCTC -CCAACAGTCTTGTGGCAATGGATC -CCAACAGTCTTGTGGCAACACTTC -CCAACAGTCTTGTGGCAAGTACTC -CCAACAGTCTTGTGGCAAGATGTC -CCAACAGTCTTGTGGCAAACAGTC -CCAACAGTCTTGTGGCAATTGCTG -CCAACAGTCTTGTGGCAATCCATG -CCAACAGTCTTGTGGCAATGTGTG -CCAACAGTCTTGTGGCAACTAGTG -CCAACAGTCTTGTGGCAACATCTG -CCAACAGTCTTGTGGCAAGAGTTG -CCAACAGTCTTGTGGCAAAGACTG -CCAACAGTCTTGTGGCAATCGGTA -CCAACAGTCTTGTGGCAATGCCTA -CCAACAGTCTTGTGGCAACCACTA -CCAACAGTCTTGTGGCAAGGAGTA -CCAACAGTCTTGTGGCAATCGTCT -CCAACAGTCTTGTGGCAATGCACT -CCAACAGTCTTGTGGCAACTGACT -CCAACAGTCTTGTGGCAACAACCT -CCAACAGTCTTGTGGCAAGCTACT -CCAACAGTCTTGTGGCAAGGATCT -CCAACAGTCTTGTGGCAAAAGGCT -CCAACAGTCTTGTGGCAATCAACC -CCAACAGTCTTGTGGCAATGTTCC -CCAACAGTCTTGTGGCAAATTCCC -CCAACAGTCTTGTGGCAATTCTCG -CCAACAGTCTTGTGGCAATAGACG -CCAACAGTCTTGTGGCAAGTAACG -CCAACAGTCTTGTGGCAAACTTCG -CCAACAGTCTTGTGGCAATACGCA -CCAACAGTCTTGTGGCAACTTGCA -CCAACAGTCTTGTGGCAACGAACA -CCAACAGTCTTGTGGCAACAGTCA -CCAACAGTCTTGTGGCAAGATCCA -CCAACAGTCTTGTGGCAAACGACA -CCAACAGTCTTGTGGCAAAGCTCA -CCAACAGTCTTGTGGCAATCACGT -CCAACAGTCTTGTGGCAACGTAGT -CCAACAGTCTTGTGGCAAGTCAGT -CCAACAGTCTTGTGGCAAGAAGGT -CCAACAGTCTTGTGGCAAAACCGT -CCAACAGTCTTGTGGCAATTGTGC -CCAACAGTCTTGTGGCAACTAAGC -CCAACAGTCTTGTGGCAAACTAGC -CCAACAGTCTTGTGGCAAAGATGC -CCAACAGTCTTGTGGCAATGAAGG -CCAACAGTCTTGTGGCAACAATGG -CCAACAGTCTTGTGGCAAATGAGG -CCAACAGTCTTGTGGCAAAATGGG -CCAACAGTCTTGTGGCAATCCTGA -CCAACAGTCTTGTGGCAATAGCGA -CCAACAGTCTTGTGGCAACACAGA -CCAACAGTCTTGTGGCAAGCAAGA -CCAACAGTCTTGTGGCAAGGTTGA -CCAACAGTCTTGTGGCAATCCGAT -CCAACAGTCTTGTGGCAATGGCAT -CCAACAGTCTTGTGGCAACGAGAT -CCAACAGTCTTGTGGCAATACCAC -CCAACAGTCTTGTGGCAACAGAAC -CCAACAGTCTTGTGGCAAGTCTAC -CCAACAGTCTTGTGGCAAACGTAC -CCAACAGTCTTGTGGCAAAGTGAC -CCAACAGTCTTGTGGCAACTGTAG -CCAACAGTCTTGTGGCAACCTAAG -CCAACAGTCTTGTGGCAAGTTCAG -CCAACAGTCTTGTGGCAAGCATAG -CCAACAGTCTTGTGGCAAGACAAG -CCAACAGTCTTGTGGCAAAAGCAG -CCAACAGTCTTGTGGCAACGTCAA -CCAACAGTCTTGTGGCAAGCTGAA -CCAACAGTCTTGTGGCAAAGTACG -CCAACAGTCTTGTGGCAAATCCGA -CCAACAGTCTTGTGGCAAATGGGA -CCAACAGTCTTGTGGCAAGTGCAA -CCAACAGTCTTGTGGCAAGAGGAA -CCAACAGTCTTGTGGCAACAGGTA -CCAACAGTCTTGTGGCAAGACTCT -CCAACAGTCTTGTGGCAAAGTCCT -CCAACAGTCTTGTGGCAATAAGCC -CCAACAGTCTTGTGGCAAATAGCC -CCAACAGTCTTGTGGCAATAACCG -CCAACAGTCTTGTGGCAAATGCCA -CCAACAGTCTTGAGGATGGGAAAC -CCAACAGTCTTGAGGATGAACACC -CCAACAGTCTTGAGGATGATCGAG -CCAACAGTCTTGAGGATGCTCCTT -CCAACAGTCTTGAGGATGCCTGTT -CCAACAGTCTTGAGGATGCGGTTT -CCAACAGTCTTGAGGATGGTGGTT -CCAACAGTCTTGAGGATGGCCTTT -CCAACAGTCTTGAGGATGGGTCTT -CCAACAGTCTTGAGGATGACGCTT -CCAACAGTCTTGAGGATGAGCGTT -CCAACAGTCTTGAGGATGTTCGTC -CCAACAGTCTTGAGGATGTCTCTC -CCAACAGTCTTGAGGATGTGGATC -CCAACAGTCTTGAGGATGCACTTC -CCAACAGTCTTGAGGATGGTACTC -CCAACAGTCTTGAGGATGGATGTC -CCAACAGTCTTGAGGATGACAGTC -CCAACAGTCTTGAGGATGTTGCTG -CCAACAGTCTTGAGGATGTCCATG -CCAACAGTCTTGAGGATGTGTGTG -CCAACAGTCTTGAGGATGCTAGTG -CCAACAGTCTTGAGGATGCATCTG -CCAACAGTCTTGAGGATGGAGTTG -CCAACAGTCTTGAGGATGAGACTG -CCAACAGTCTTGAGGATGTCGGTA -CCAACAGTCTTGAGGATGTGCCTA -CCAACAGTCTTGAGGATGCCACTA -CCAACAGTCTTGAGGATGGGAGTA -CCAACAGTCTTGAGGATGTCGTCT -CCAACAGTCTTGAGGATGTGCACT -CCAACAGTCTTGAGGATGCTGACT -CCAACAGTCTTGAGGATGCAACCT -CCAACAGTCTTGAGGATGGCTACT -CCAACAGTCTTGAGGATGGGATCT -CCAACAGTCTTGAGGATGAAGGCT -CCAACAGTCTTGAGGATGTCAACC -CCAACAGTCTTGAGGATGTGTTCC -CCAACAGTCTTGAGGATGATTCCC -CCAACAGTCTTGAGGATGTTCTCG -CCAACAGTCTTGAGGATGTAGACG -CCAACAGTCTTGAGGATGGTAACG -CCAACAGTCTTGAGGATGACTTCG -CCAACAGTCTTGAGGATGTACGCA -CCAACAGTCTTGAGGATGCTTGCA -CCAACAGTCTTGAGGATGCGAACA -CCAACAGTCTTGAGGATGCAGTCA -CCAACAGTCTTGAGGATGGATCCA -CCAACAGTCTTGAGGATGACGACA -CCAACAGTCTTGAGGATGAGCTCA -CCAACAGTCTTGAGGATGTCACGT -CCAACAGTCTTGAGGATGCGTAGT -CCAACAGTCTTGAGGATGGTCAGT -CCAACAGTCTTGAGGATGGAAGGT -CCAACAGTCTTGAGGATGAACCGT -CCAACAGTCTTGAGGATGTTGTGC -CCAACAGTCTTGAGGATGCTAAGC -CCAACAGTCTTGAGGATGACTAGC -CCAACAGTCTTGAGGATGAGATGC -CCAACAGTCTTGAGGATGTGAAGG -CCAACAGTCTTGAGGATGCAATGG -CCAACAGTCTTGAGGATGATGAGG -CCAACAGTCTTGAGGATGAATGGG -CCAACAGTCTTGAGGATGTCCTGA -CCAACAGTCTTGAGGATGTAGCGA -CCAACAGTCTTGAGGATGCACAGA -CCAACAGTCTTGAGGATGGCAAGA -CCAACAGTCTTGAGGATGGGTTGA -CCAACAGTCTTGAGGATGTCCGAT -CCAACAGTCTTGAGGATGTGGCAT -CCAACAGTCTTGAGGATGCGAGAT -CCAACAGTCTTGAGGATGTACCAC -CCAACAGTCTTGAGGATGCAGAAC -CCAACAGTCTTGAGGATGGTCTAC -CCAACAGTCTTGAGGATGACGTAC -CCAACAGTCTTGAGGATGAGTGAC -CCAACAGTCTTGAGGATGCTGTAG -CCAACAGTCTTGAGGATGCCTAAG -CCAACAGTCTTGAGGATGGTTCAG -CCAACAGTCTTGAGGATGGCATAG -CCAACAGTCTTGAGGATGGACAAG -CCAACAGTCTTGAGGATGAAGCAG -CCAACAGTCTTGAGGATGCGTCAA -CCAACAGTCTTGAGGATGGCTGAA -CCAACAGTCTTGAGGATGAGTACG -CCAACAGTCTTGAGGATGATCCGA -CCAACAGTCTTGAGGATGATGGGA -CCAACAGTCTTGAGGATGGTGCAA -CCAACAGTCTTGAGGATGGAGGAA -CCAACAGTCTTGAGGATGCAGGTA -CCAACAGTCTTGAGGATGGACTCT -CCAACAGTCTTGAGGATGAGTCCT -CCAACAGTCTTGAGGATGTAAGCC -CCAACAGTCTTGAGGATGATAGCC -CCAACAGTCTTGAGGATGTAACCG -CCAACAGTCTTGAGGATGATGCCA -CCAACAGTCTTGGGGAATGGAAAC -CCAACAGTCTTGGGGAATAACACC -CCAACAGTCTTGGGGAATATCGAG -CCAACAGTCTTGGGGAATCTCCTT -CCAACAGTCTTGGGGAATCCTGTT -CCAACAGTCTTGGGGAATCGGTTT -CCAACAGTCTTGGGGAATGTGGTT -CCAACAGTCTTGGGGAATGCCTTT -CCAACAGTCTTGGGGAATGGTCTT -CCAACAGTCTTGGGGAATACGCTT -CCAACAGTCTTGGGGAATAGCGTT -CCAACAGTCTTGGGGAATTTCGTC -CCAACAGTCTTGGGGAATTCTCTC -CCAACAGTCTTGGGGAATTGGATC -CCAACAGTCTTGGGGAATCACTTC -CCAACAGTCTTGGGGAATGTACTC -CCAACAGTCTTGGGGAATGATGTC -CCAACAGTCTTGGGGAATACAGTC -CCAACAGTCTTGGGGAATTTGCTG -CCAACAGTCTTGGGGAATTCCATG -CCAACAGTCTTGGGGAATTGTGTG -CCAACAGTCTTGGGGAATCTAGTG -CCAACAGTCTTGGGGAATCATCTG -CCAACAGTCTTGGGGAATGAGTTG -CCAACAGTCTTGGGGAATAGACTG -CCAACAGTCTTGGGGAATTCGGTA -CCAACAGTCTTGGGGAATTGCCTA -CCAACAGTCTTGGGGAATCCACTA -CCAACAGTCTTGGGGAATGGAGTA -CCAACAGTCTTGGGGAATTCGTCT -CCAACAGTCTTGGGGAATTGCACT -CCAACAGTCTTGGGGAATCTGACT -CCAACAGTCTTGGGGAATCAACCT -CCAACAGTCTTGGGGAATGCTACT -CCAACAGTCTTGGGGAATGGATCT -CCAACAGTCTTGGGGAATAAGGCT -CCAACAGTCTTGGGGAATTCAACC -CCAACAGTCTTGGGGAATTGTTCC -CCAACAGTCTTGGGGAATATTCCC -CCAACAGTCTTGGGGAATTTCTCG -CCAACAGTCTTGGGGAATTAGACG -CCAACAGTCTTGGGGAATGTAACG -CCAACAGTCTTGGGGAATACTTCG -CCAACAGTCTTGGGGAATTACGCA -CCAACAGTCTTGGGGAATCTTGCA -CCAACAGTCTTGGGGAATCGAACA -CCAACAGTCTTGGGGAATCAGTCA -CCAACAGTCTTGGGGAATGATCCA -CCAACAGTCTTGGGGAATACGACA -CCAACAGTCTTGGGGAATAGCTCA -CCAACAGTCTTGGGGAATTCACGT -CCAACAGTCTTGGGGAATCGTAGT -CCAACAGTCTTGGGGAATGTCAGT -CCAACAGTCTTGGGGAATGAAGGT -CCAACAGTCTTGGGGAATAACCGT -CCAACAGTCTTGGGGAATTTGTGC -CCAACAGTCTTGGGGAATCTAAGC -CCAACAGTCTTGGGGAATACTAGC -CCAACAGTCTTGGGGAATAGATGC -CCAACAGTCTTGGGGAATTGAAGG -CCAACAGTCTTGGGGAATCAATGG -CCAACAGTCTTGGGGAATATGAGG -CCAACAGTCTTGGGGAATAATGGG -CCAACAGTCTTGGGGAATTCCTGA -CCAACAGTCTTGGGGAATTAGCGA -CCAACAGTCTTGGGGAATCACAGA -CCAACAGTCTTGGGGAATGCAAGA -CCAACAGTCTTGGGGAATGGTTGA -CCAACAGTCTTGGGGAATTCCGAT -CCAACAGTCTTGGGGAATTGGCAT -CCAACAGTCTTGGGGAATCGAGAT -CCAACAGTCTTGGGGAATTACCAC -CCAACAGTCTTGGGGAATCAGAAC -CCAACAGTCTTGGGGAATGTCTAC -CCAACAGTCTTGGGGAATACGTAC -CCAACAGTCTTGGGGAATAGTGAC -CCAACAGTCTTGGGGAATCTGTAG -CCAACAGTCTTGGGGAATCCTAAG -CCAACAGTCTTGGGGAATGTTCAG -CCAACAGTCTTGGGGAATGCATAG -CCAACAGTCTTGGGGAATGACAAG -CCAACAGTCTTGGGGAATAAGCAG -CCAACAGTCTTGGGGAATCGTCAA -CCAACAGTCTTGGGGAATGCTGAA -CCAACAGTCTTGGGGAATAGTACG -CCAACAGTCTTGGGGAATATCCGA -CCAACAGTCTTGGGGAATATGGGA -CCAACAGTCTTGGGGAATGTGCAA -CCAACAGTCTTGGGGAATGAGGAA -CCAACAGTCTTGGGGAATCAGGTA -CCAACAGTCTTGGGGAATGACTCT -CCAACAGTCTTGGGGAATAGTCCT -CCAACAGTCTTGGGGAATTAAGCC -CCAACAGTCTTGGGGAATATAGCC -CCAACAGTCTTGGGGAATTAACCG -CCAACAGTCTTGGGGAATATGCCA -CCAACAGTCTTGTGATCCGGAAAC -CCAACAGTCTTGTGATCCAACACC -CCAACAGTCTTGTGATCCATCGAG -CCAACAGTCTTGTGATCCCTCCTT -CCAACAGTCTTGTGATCCCCTGTT -CCAACAGTCTTGTGATCCCGGTTT -CCAACAGTCTTGTGATCCGTGGTT -CCAACAGTCTTGTGATCCGCCTTT -CCAACAGTCTTGTGATCCGGTCTT -CCAACAGTCTTGTGATCCACGCTT -CCAACAGTCTTGTGATCCAGCGTT -CCAACAGTCTTGTGATCCTTCGTC -CCAACAGTCTTGTGATCCTCTCTC -CCAACAGTCTTGTGATCCTGGATC -CCAACAGTCTTGTGATCCCACTTC -CCAACAGTCTTGTGATCCGTACTC -CCAACAGTCTTGTGATCCGATGTC -CCAACAGTCTTGTGATCCACAGTC -CCAACAGTCTTGTGATCCTTGCTG -CCAACAGTCTTGTGATCCTCCATG -CCAACAGTCTTGTGATCCTGTGTG -CCAACAGTCTTGTGATCCCTAGTG -CCAACAGTCTTGTGATCCCATCTG -CCAACAGTCTTGTGATCCGAGTTG -CCAACAGTCTTGTGATCCAGACTG -CCAACAGTCTTGTGATCCTCGGTA -CCAACAGTCTTGTGATCCTGCCTA -CCAACAGTCTTGTGATCCCCACTA -CCAACAGTCTTGTGATCCGGAGTA -CCAACAGTCTTGTGATCCTCGTCT -CCAACAGTCTTGTGATCCTGCACT -CCAACAGTCTTGTGATCCCTGACT -CCAACAGTCTTGTGATCCCAACCT -CCAACAGTCTTGTGATCCGCTACT -CCAACAGTCTTGTGATCCGGATCT -CCAACAGTCTTGTGATCCAAGGCT -CCAACAGTCTTGTGATCCTCAACC -CCAACAGTCTTGTGATCCTGTTCC -CCAACAGTCTTGTGATCCATTCCC -CCAACAGTCTTGTGATCCTTCTCG -CCAACAGTCTTGTGATCCTAGACG -CCAACAGTCTTGTGATCCGTAACG -CCAACAGTCTTGTGATCCACTTCG -CCAACAGTCTTGTGATCCTACGCA -CCAACAGTCTTGTGATCCCTTGCA -CCAACAGTCTTGTGATCCCGAACA -CCAACAGTCTTGTGATCCCAGTCA -CCAACAGTCTTGTGATCCGATCCA -CCAACAGTCTTGTGATCCACGACA -CCAACAGTCTTGTGATCCAGCTCA -CCAACAGTCTTGTGATCCTCACGT -CCAACAGTCTTGTGATCCCGTAGT -CCAACAGTCTTGTGATCCGTCAGT -CCAACAGTCTTGTGATCCGAAGGT -CCAACAGTCTTGTGATCCAACCGT -CCAACAGTCTTGTGATCCTTGTGC -CCAACAGTCTTGTGATCCCTAAGC -CCAACAGTCTTGTGATCCACTAGC -CCAACAGTCTTGTGATCCAGATGC -CCAACAGTCTTGTGATCCTGAAGG -CCAACAGTCTTGTGATCCCAATGG -CCAACAGTCTTGTGATCCATGAGG -CCAACAGTCTTGTGATCCAATGGG -CCAACAGTCTTGTGATCCTCCTGA -CCAACAGTCTTGTGATCCTAGCGA -CCAACAGTCTTGTGATCCCACAGA -CCAACAGTCTTGTGATCCGCAAGA -CCAACAGTCTTGTGATCCGGTTGA -CCAACAGTCTTGTGATCCTCCGAT -CCAACAGTCTTGTGATCCTGGCAT -CCAACAGTCTTGTGATCCCGAGAT -CCAACAGTCTTGTGATCCTACCAC -CCAACAGTCTTGTGATCCCAGAAC -CCAACAGTCTTGTGATCCGTCTAC -CCAACAGTCTTGTGATCCACGTAC -CCAACAGTCTTGTGATCCAGTGAC -CCAACAGTCTTGTGATCCCTGTAG -CCAACAGTCTTGTGATCCCCTAAG -CCAACAGTCTTGTGATCCGTTCAG -CCAACAGTCTTGTGATCCGCATAG -CCAACAGTCTTGTGATCCGACAAG -CCAACAGTCTTGTGATCCAAGCAG -CCAACAGTCTTGTGATCCCGTCAA -CCAACAGTCTTGTGATCCGCTGAA -CCAACAGTCTTGTGATCCAGTACG -CCAACAGTCTTGTGATCCATCCGA -CCAACAGTCTTGTGATCCATGGGA -CCAACAGTCTTGTGATCCGTGCAA -CCAACAGTCTTGTGATCCGAGGAA -CCAACAGTCTTGTGATCCCAGGTA -CCAACAGTCTTGTGATCCGACTCT -CCAACAGTCTTGTGATCCAGTCCT -CCAACAGTCTTGTGATCCTAAGCC -CCAACAGTCTTGTGATCCATAGCC -CCAACAGTCTTGTGATCCTAACCG -CCAACAGTCTTGTGATCCATGCCA -CCAACAGTCTTGCGATAGGGAAAC -CCAACAGTCTTGCGATAGAACACC -CCAACAGTCTTGCGATAGATCGAG -CCAACAGTCTTGCGATAGCTCCTT -CCAACAGTCTTGCGATAGCCTGTT -CCAACAGTCTTGCGATAGCGGTTT -CCAACAGTCTTGCGATAGGTGGTT -CCAACAGTCTTGCGATAGGCCTTT -CCAACAGTCTTGCGATAGGGTCTT -CCAACAGTCTTGCGATAGACGCTT -CCAACAGTCTTGCGATAGAGCGTT -CCAACAGTCTTGCGATAGTTCGTC -CCAACAGTCTTGCGATAGTCTCTC -CCAACAGTCTTGCGATAGTGGATC -CCAACAGTCTTGCGATAGCACTTC -CCAACAGTCTTGCGATAGGTACTC -CCAACAGTCTTGCGATAGGATGTC -CCAACAGTCTTGCGATAGACAGTC -CCAACAGTCTTGCGATAGTTGCTG -CCAACAGTCTTGCGATAGTCCATG -CCAACAGTCTTGCGATAGTGTGTG -CCAACAGTCTTGCGATAGCTAGTG -CCAACAGTCTTGCGATAGCATCTG -CCAACAGTCTTGCGATAGGAGTTG -CCAACAGTCTTGCGATAGAGACTG -CCAACAGTCTTGCGATAGTCGGTA -CCAACAGTCTTGCGATAGTGCCTA -CCAACAGTCTTGCGATAGCCACTA -CCAACAGTCTTGCGATAGGGAGTA -CCAACAGTCTTGCGATAGTCGTCT -CCAACAGTCTTGCGATAGTGCACT -CCAACAGTCTTGCGATAGCTGACT -CCAACAGTCTTGCGATAGCAACCT -CCAACAGTCTTGCGATAGGCTACT -CCAACAGTCTTGCGATAGGGATCT -CCAACAGTCTTGCGATAGAAGGCT -CCAACAGTCTTGCGATAGTCAACC -CCAACAGTCTTGCGATAGTGTTCC -CCAACAGTCTTGCGATAGATTCCC -CCAACAGTCTTGCGATAGTTCTCG -CCAACAGTCTTGCGATAGTAGACG -CCAACAGTCTTGCGATAGGTAACG -CCAACAGTCTTGCGATAGACTTCG -CCAACAGTCTTGCGATAGTACGCA -CCAACAGTCTTGCGATAGCTTGCA -CCAACAGTCTTGCGATAGCGAACA -CCAACAGTCTTGCGATAGCAGTCA -CCAACAGTCTTGCGATAGGATCCA -CCAACAGTCTTGCGATAGACGACA -CCAACAGTCTTGCGATAGAGCTCA -CCAACAGTCTTGCGATAGTCACGT -CCAACAGTCTTGCGATAGCGTAGT -CCAACAGTCTTGCGATAGGTCAGT -CCAACAGTCTTGCGATAGGAAGGT -CCAACAGTCTTGCGATAGAACCGT -CCAACAGTCTTGCGATAGTTGTGC -CCAACAGTCTTGCGATAGCTAAGC -CCAACAGTCTTGCGATAGACTAGC -CCAACAGTCTTGCGATAGAGATGC -CCAACAGTCTTGCGATAGTGAAGG -CCAACAGTCTTGCGATAGCAATGG -CCAACAGTCTTGCGATAGATGAGG -CCAACAGTCTTGCGATAGAATGGG -CCAACAGTCTTGCGATAGTCCTGA -CCAACAGTCTTGCGATAGTAGCGA -CCAACAGTCTTGCGATAGCACAGA -CCAACAGTCTTGCGATAGGCAAGA -CCAACAGTCTTGCGATAGGGTTGA -CCAACAGTCTTGCGATAGTCCGAT -CCAACAGTCTTGCGATAGTGGCAT -CCAACAGTCTTGCGATAGCGAGAT -CCAACAGTCTTGCGATAGTACCAC -CCAACAGTCTTGCGATAGCAGAAC -CCAACAGTCTTGCGATAGGTCTAC -CCAACAGTCTTGCGATAGACGTAC -CCAACAGTCTTGCGATAGAGTGAC -CCAACAGTCTTGCGATAGCTGTAG -CCAACAGTCTTGCGATAGCCTAAG -CCAACAGTCTTGCGATAGGTTCAG -CCAACAGTCTTGCGATAGGCATAG -CCAACAGTCTTGCGATAGGACAAG -CCAACAGTCTTGCGATAGAAGCAG -CCAACAGTCTTGCGATAGCGTCAA -CCAACAGTCTTGCGATAGGCTGAA -CCAACAGTCTTGCGATAGAGTACG -CCAACAGTCTTGCGATAGATCCGA -CCAACAGTCTTGCGATAGATGGGA -CCAACAGTCTTGCGATAGGTGCAA -CCAACAGTCTTGCGATAGGAGGAA -CCAACAGTCTTGCGATAGCAGGTA -CCAACAGTCTTGCGATAGGACTCT -CCAACAGTCTTGCGATAGAGTCCT -CCAACAGTCTTGCGATAGTAAGCC -CCAACAGTCTTGCGATAGATAGCC -CCAACAGTCTTGCGATAGTAACCG -CCAACAGTCTTGCGATAGATGCCA -CCAACAGTCTTGAGACACGGAAAC -CCAACAGTCTTGAGACACAACACC -CCAACAGTCTTGAGACACATCGAG -CCAACAGTCTTGAGACACCTCCTT -CCAACAGTCTTGAGACACCCTGTT -CCAACAGTCTTGAGACACCGGTTT -CCAACAGTCTTGAGACACGTGGTT -CCAACAGTCTTGAGACACGCCTTT -CCAACAGTCTTGAGACACGGTCTT -CCAACAGTCTTGAGACACACGCTT -CCAACAGTCTTGAGACACAGCGTT -CCAACAGTCTTGAGACACTTCGTC -CCAACAGTCTTGAGACACTCTCTC -CCAACAGTCTTGAGACACTGGATC -CCAACAGTCTTGAGACACCACTTC -CCAACAGTCTTGAGACACGTACTC -CCAACAGTCTTGAGACACGATGTC -CCAACAGTCTTGAGACACACAGTC -CCAACAGTCTTGAGACACTTGCTG -CCAACAGTCTTGAGACACTCCATG -CCAACAGTCTTGAGACACTGTGTG -CCAACAGTCTTGAGACACCTAGTG -CCAACAGTCTTGAGACACCATCTG -CCAACAGTCTTGAGACACGAGTTG -CCAACAGTCTTGAGACACAGACTG -CCAACAGTCTTGAGACACTCGGTA -CCAACAGTCTTGAGACACTGCCTA -CCAACAGTCTTGAGACACCCACTA -CCAACAGTCTTGAGACACGGAGTA -CCAACAGTCTTGAGACACTCGTCT -CCAACAGTCTTGAGACACTGCACT -CCAACAGTCTTGAGACACCTGACT -CCAACAGTCTTGAGACACCAACCT -CCAACAGTCTTGAGACACGCTACT -CCAACAGTCTTGAGACACGGATCT -CCAACAGTCTTGAGACACAAGGCT -CCAACAGTCTTGAGACACTCAACC -CCAACAGTCTTGAGACACTGTTCC -CCAACAGTCTTGAGACACATTCCC -CCAACAGTCTTGAGACACTTCTCG -CCAACAGTCTTGAGACACTAGACG -CCAACAGTCTTGAGACACGTAACG -CCAACAGTCTTGAGACACACTTCG -CCAACAGTCTTGAGACACTACGCA -CCAACAGTCTTGAGACACCTTGCA -CCAACAGTCTTGAGACACCGAACA -CCAACAGTCTTGAGACACCAGTCA -CCAACAGTCTTGAGACACGATCCA -CCAACAGTCTTGAGACACACGACA -CCAACAGTCTTGAGACACAGCTCA -CCAACAGTCTTGAGACACTCACGT -CCAACAGTCTTGAGACACCGTAGT -CCAACAGTCTTGAGACACGTCAGT -CCAACAGTCTTGAGACACGAAGGT -CCAACAGTCTTGAGACACAACCGT -CCAACAGTCTTGAGACACTTGTGC -CCAACAGTCTTGAGACACCTAAGC -CCAACAGTCTTGAGACACACTAGC -CCAACAGTCTTGAGACACAGATGC -CCAACAGTCTTGAGACACTGAAGG -CCAACAGTCTTGAGACACCAATGG -CCAACAGTCTTGAGACACATGAGG -CCAACAGTCTTGAGACACAATGGG -CCAACAGTCTTGAGACACTCCTGA -CCAACAGTCTTGAGACACTAGCGA -CCAACAGTCTTGAGACACCACAGA -CCAACAGTCTTGAGACACGCAAGA -CCAACAGTCTTGAGACACGGTTGA -CCAACAGTCTTGAGACACTCCGAT -CCAACAGTCTTGAGACACTGGCAT -CCAACAGTCTTGAGACACCGAGAT -CCAACAGTCTTGAGACACTACCAC -CCAACAGTCTTGAGACACCAGAAC -CCAACAGTCTTGAGACACGTCTAC -CCAACAGTCTTGAGACACACGTAC -CCAACAGTCTTGAGACACAGTGAC -CCAACAGTCTTGAGACACCTGTAG -CCAACAGTCTTGAGACACCCTAAG -CCAACAGTCTTGAGACACGTTCAG -CCAACAGTCTTGAGACACGCATAG -CCAACAGTCTTGAGACACGACAAG -CCAACAGTCTTGAGACACAAGCAG -CCAACAGTCTTGAGACACCGTCAA -CCAACAGTCTTGAGACACGCTGAA -CCAACAGTCTTGAGACACAGTACG -CCAACAGTCTTGAGACACATCCGA -CCAACAGTCTTGAGACACATGGGA -CCAACAGTCTTGAGACACGTGCAA -CCAACAGTCTTGAGACACGAGGAA -CCAACAGTCTTGAGACACCAGGTA -CCAACAGTCTTGAGACACGACTCT -CCAACAGTCTTGAGACACAGTCCT -CCAACAGTCTTGAGACACTAAGCC -CCAACAGTCTTGAGACACATAGCC -CCAACAGTCTTGAGACACTAACCG -CCAACAGTCTTGAGACACATGCCA -CCAACAGTCTTGAGAGCAGGAAAC -CCAACAGTCTTGAGAGCAAACACC -CCAACAGTCTTGAGAGCAATCGAG -CCAACAGTCTTGAGAGCACTCCTT -CCAACAGTCTTGAGAGCACCTGTT -CCAACAGTCTTGAGAGCACGGTTT -CCAACAGTCTTGAGAGCAGTGGTT -CCAACAGTCTTGAGAGCAGCCTTT -CCAACAGTCTTGAGAGCAGGTCTT -CCAACAGTCTTGAGAGCAACGCTT -CCAACAGTCTTGAGAGCAAGCGTT -CCAACAGTCTTGAGAGCATTCGTC -CCAACAGTCTTGAGAGCATCTCTC -CCAACAGTCTTGAGAGCATGGATC -CCAACAGTCTTGAGAGCACACTTC -CCAACAGTCTTGAGAGCAGTACTC -CCAACAGTCTTGAGAGCAGATGTC -CCAACAGTCTTGAGAGCAACAGTC -CCAACAGTCTTGAGAGCATTGCTG -CCAACAGTCTTGAGAGCATCCATG -CCAACAGTCTTGAGAGCATGTGTG -CCAACAGTCTTGAGAGCACTAGTG -CCAACAGTCTTGAGAGCACATCTG -CCAACAGTCTTGAGAGCAGAGTTG -CCAACAGTCTTGAGAGCAAGACTG -CCAACAGTCTTGAGAGCATCGGTA -CCAACAGTCTTGAGAGCATGCCTA -CCAACAGTCTTGAGAGCACCACTA -CCAACAGTCTTGAGAGCAGGAGTA -CCAACAGTCTTGAGAGCATCGTCT -CCAACAGTCTTGAGAGCATGCACT -CCAACAGTCTTGAGAGCACTGACT -CCAACAGTCTTGAGAGCACAACCT -CCAACAGTCTTGAGAGCAGCTACT -CCAACAGTCTTGAGAGCAGGATCT -CCAACAGTCTTGAGAGCAAAGGCT -CCAACAGTCTTGAGAGCATCAACC -CCAACAGTCTTGAGAGCATGTTCC -CCAACAGTCTTGAGAGCAATTCCC -CCAACAGTCTTGAGAGCATTCTCG -CCAACAGTCTTGAGAGCATAGACG -CCAACAGTCTTGAGAGCAGTAACG -CCAACAGTCTTGAGAGCAACTTCG -CCAACAGTCTTGAGAGCATACGCA -CCAACAGTCTTGAGAGCACTTGCA -CCAACAGTCTTGAGAGCACGAACA -CCAACAGTCTTGAGAGCACAGTCA -CCAACAGTCTTGAGAGCAGATCCA -CCAACAGTCTTGAGAGCAACGACA -CCAACAGTCTTGAGAGCAAGCTCA -CCAACAGTCTTGAGAGCATCACGT -CCAACAGTCTTGAGAGCACGTAGT -CCAACAGTCTTGAGAGCAGTCAGT -CCAACAGTCTTGAGAGCAGAAGGT -CCAACAGTCTTGAGAGCAAACCGT -CCAACAGTCTTGAGAGCATTGTGC -CCAACAGTCTTGAGAGCACTAAGC -CCAACAGTCTTGAGAGCAACTAGC -CCAACAGTCTTGAGAGCAAGATGC -CCAACAGTCTTGAGAGCATGAAGG -CCAACAGTCTTGAGAGCACAATGG -CCAACAGTCTTGAGAGCAATGAGG -CCAACAGTCTTGAGAGCAAATGGG -CCAACAGTCTTGAGAGCATCCTGA -CCAACAGTCTTGAGAGCATAGCGA -CCAACAGTCTTGAGAGCACACAGA -CCAACAGTCTTGAGAGCAGCAAGA -CCAACAGTCTTGAGAGCAGGTTGA -CCAACAGTCTTGAGAGCATCCGAT -CCAACAGTCTTGAGAGCATGGCAT -CCAACAGTCTTGAGAGCACGAGAT -CCAACAGTCTTGAGAGCATACCAC -CCAACAGTCTTGAGAGCACAGAAC -CCAACAGTCTTGAGAGCAGTCTAC -CCAACAGTCTTGAGAGCAACGTAC -CCAACAGTCTTGAGAGCAAGTGAC -CCAACAGTCTTGAGAGCACTGTAG -CCAACAGTCTTGAGAGCACCTAAG -CCAACAGTCTTGAGAGCAGTTCAG -CCAACAGTCTTGAGAGCAGCATAG -CCAACAGTCTTGAGAGCAGACAAG -CCAACAGTCTTGAGAGCAAAGCAG -CCAACAGTCTTGAGAGCACGTCAA -CCAACAGTCTTGAGAGCAGCTGAA -CCAACAGTCTTGAGAGCAAGTACG -CCAACAGTCTTGAGAGCAATCCGA -CCAACAGTCTTGAGAGCAATGGGA -CCAACAGTCTTGAGAGCAGTGCAA -CCAACAGTCTTGAGAGCAGAGGAA -CCAACAGTCTTGAGAGCACAGGTA -CCAACAGTCTTGAGAGCAGACTCT -CCAACAGTCTTGAGAGCAAGTCCT -CCAACAGTCTTGAGAGCATAAGCC -CCAACAGTCTTGAGAGCAATAGCC -CCAACAGTCTTGAGAGCATAACCG -CCAACAGTCTTGAGAGCAATGCCA -CCAACAGTCTTGTGAGGTGGAAAC -CCAACAGTCTTGTGAGGTAACACC -CCAACAGTCTTGTGAGGTATCGAG -CCAACAGTCTTGTGAGGTCTCCTT -CCAACAGTCTTGTGAGGTCCTGTT -CCAACAGTCTTGTGAGGTCGGTTT -CCAACAGTCTTGTGAGGTGTGGTT -CCAACAGTCTTGTGAGGTGCCTTT -CCAACAGTCTTGTGAGGTGGTCTT -CCAACAGTCTTGTGAGGTACGCTT -CCAACAGTCTTGTGAGGTAGCGTT -CCAACAGTCTTGTGAGGTTTCGTC -CCAACAGTCTTGTGAGGTTCTCTC -CCAACAGTCTTGTGAGGTTGGATC -CCAACAGTCTTGTGAGGTCACTTC -CCAACAGTCTTGTGAGGTGTACTC -CCAACAGTCTTGTGAGGTGATGTC -CCAACAGTCTTGTGAGGTACAGTC -CCAACAGTCTTGTGAGGTTTGCTG -CCAACAGTCTTGTGAGGTTCCATG -CCAACAGTCTTGTGAGGTTGTGTG -CCAACAGTCTTGTGAGGTCTAGTG -CCAACAGTCTTGTGAGGTCATCTG -CCAACAGTCTTGTGAGGTGAGTTG -CCAACAGTCTTGTGAGGTAGACTG -CCAACAGTCTTGTGAGGTTCGGTA -CCAACAGTCTTGTGAGGTTGCCTA -CCAACAGTCTTGTGAGGTCCACTA -CCAACAGTCTTGTGAGGTGGAGTA -CCAACAGTCTTGTGAGGTTCGTCT -CCAACAGTCTTGTGAGGTTGCACT -CCAACAGTCTTGTGAGGTCTGACT -CCAACAGTCTTGTGAGGTCAACCT -CCAACAGTCTTGTGAGGTGCTACT -CCAACAGTCTTGTGAGGTGGATCT -CCAACAGTCTTGTGAGGTAAGGCT -CCAACAGTCTTGTGAGGTTCAACC -CCAACAGTCTTGTGAGGTTGTTCC -CCAACAGTCTTGTGAGGTATTCCC -CCAACAGTCTTGTGAGGTTTCTCG -CCAACAGTCTTGTGAGGTTAGACG -CCAACAGTCTTGTGAGGTGTAACG -CCAACAGTCTTGTGAGGTACTTCG -CCAACAGTCTTGTGAGGTTACGCA -CCAACAGTCTTGTGAGGTCTTGCA -CCAACAGTCTTGTGAGGTCGAACA -CCAACAGTCTTGTGAGGTCAGTCA -CCAACAGTCTTGTGAGGTGATCCA -CCAACAGTCTTGTGAGGTACGACA -CCAACAGTCTTGTGAGGTAGCTCA -CCAACAGTCTTGTGAGGTTCACGT -CCAACAGTCTTGTGAGGTCGTAGT -CCAACAGTCTTGTGAGGTGTCAGT -CCAACAGTCTTGTGAGGTGAAGGT -CCAACAGTCTTGTGAGGTAACCGT -CCAACAGTCTTGTGAGGTTTGTGC -CCAACAGTCTTGTGAGGTCTAAGC -CCAACAGTCTTGTGAGGTACTAGC -CCAACAGTCTTGTGAGGTAGATGC -CCAACAGTCTTGTGAGGTTGAAGG -CCAACAGTCTTGTGAGGTCAATGG -CCAACAGTCTTGTGAGGTATGAGG -CCAACAGTCTTGTGAGGTAATGGG -CCAACAGTCTTGTGAGGTTCCTGA -CCAACAGTCTTGTGAGGTTAGCGA -CCAACAGTCTTGTGAGGTCACAGA -CCAACAGTCTTGTGAGGTGCAAGA -CCAACAGTCTTGTGAGGTGGTTGA -CCAACAGTCTTGTGAGGTTCCGAT -CCAACAGTCTTGTGAGGTTGGCAT -CCAACAGTCTTGTGAGGTCGAGAT -CCAACAGTCTTGTGAGGTTACCAC -CCAACAGTCTTGTGAGGTCAGAAC -CCAACAGTCTTGTGAGGTGTCTAC -CCAACAGTCTTGTGAGGTACGTAC -CCAACAGTCTTGTGAGGTAGTGAC -CCAACAGTCTTGTGAGGTCTGTAG -CCAACAGTCTTGTGAGGTCCTAAG -CCAACAGTCTTGTGAGGTGTTCAG -CCAACAGTCTTGTGAGGTGCATAG -CCAACAGTCTTGTGAGGTGACAAG -CCAACAGTCTTGTGAGGTAAGCAG -CCAACAGTCTTGTGAGGTCGTCAA -CCAACAGTCTTGTGAGGTGCTGAA -CCAACAGTCTTGTGAGGTAGTACG -CCAACAGTCTTGTGAGGTATCCGA -CCAACAGTCTTGTGAGGTATGGGA -CCAACAGTCTTGTGAGGTGTGCAA -CCAACAGTCTTGTGAGGTGAGGAA -CCAACAGTCTTGTGAGGTCAGGTA -CCAACAGTCTTGTGAGGTGACTCT -CCAACAGTCTTGTGAGGTAGTCCT -CCAACAGTCTTGTGAGGTTAAGCC -CCAACAGTCTTGTGAGGTATAGCC -CCAACAGTCTTGTGAGGTTAACCG -CCAACAGTCTTGTGAGGTATGCCA -CCAACAGTCTTGGATTCCGGAAAC -CCAACAGTCTTGGATTCCAACACC -CCAACAGTCTTGGATTCCATCGAG -CCAACAGTCTTGGATTCCCTCCTT -CCAACAGTCTTGGATTCCCCTGTT -CCAACAGTCTTGGATTCCCGGTTT -CCAACAGTCTTGGATTCCGTGGTT -CCAACAGTCTTGGATTCCGCCTTT -CCAACAGTCTTGGATTCCGGTCTT -CCAACAGTCTTGGATTCCACGCTT -CCAACAGTCTTGGATTCCAGCGTT -CCAACAGTCTTGGATTCCTTCGTC -CCAACAGTCTTGGATTCCTCTCTC -CCAACAGTCTTGGATTCCTGGATC -CCAACAGTCTTGGATTCCCACTTC -CCAACAGTCTTGGATTCCGTACTC -CCAACAGTCTTGGATTCCGATGTC -CCAACAGTCTTGGATTCCACAGTC -CCAACAGTCTTGGATTCCTTGCTG -CCAACAGTCTTGGATTCCTCCATG -CCAACAGTCTTGGATTCCTGTGTG -CCAACAGTCTTGGATTCCCTAGTG -CCAACAGTCTTGGATTCCCATCTG -CCAACAGTCTTGGATTCCGAGTTG -CCAACAGTCTTGGATTCCAGACTG -CCAACAGTCTTGGATTCCTCGGTA -CCAACAGTCTTGGATTCCTGCCTA -CCAACAGTCTTGGATTCCCCACTA -CCAACAGTCTTGGATTCCGGAGTA -CCAACAGTCTTGGATTCCTCGTCT -CCAACAGTCTTGGATTCCTGCACT -CCAACAGTCTTGGATTCCCTGACT -CCAACAGTCTTGGATTCCCAACCT -CCAACAGTCTTGGATTCCGCTACT -CCAACAGTCTTGGATTCCGGATCT -CCAACAGTCTTGGATTCCAAGGCT -CCAACAGTCTTGGATTCCTCAACC -CCAACAGTCTTGGATTCCTGTTCC -CCAACAGTCTTGGATTCCATTCCC -CCAACAGTCTTGGATTCCTTCTCG -CCAACAGTCTTGGATTCCTAGACG -CCAACAGTCTTGGATTCCGTAACG -CCAACAGTCTTGGATTCCACTTCG -CCAACAGTCTTGGATTCCTACGCA -CCAACAGTCTTGGATTCCCTTGCA -CCAACAGTCTTGGATTCCCGAACA -CCAACAGTCTTGGATTCCCAGTCA -CCAACAGTCTTGGATTCCGATCCA -CCAACAGTCTTGGATTCCACGACA -CCAACAGTCTTGGATTCCAGCTCA -CCAACAGTCTTGGATTCCTCACGT -CCAACAGTCTTGGATTCCCGTAGT -CCAACAGTCTTGGATTCCGTCAGT -CCAACAGTCTTGGATTCCGAAGGT -CCAACAGTCTTGGATTCCAACCGT -CCAACAGTCTTGGATTCCTTGTGC -CCAACAGTCTTGGATTCCCTAAGC -CCAACAGTCTTGGATTCCACTAGC -CCAACAGTCTTGGATTCCAGATGC -CCAACAGTCTTGGATTCCTGAAGG -CCAACAGTCTTGGATTCCCAATGG -CCAACAGTCTTGGATTCCATGAGG -CCAACAGTCTTGGATTCCAATGGG -CCAACAGTCTTGGATTCCTCCTGA -CCAACAGTCTTGGATTCCTAGCGA -CCAACAGTCTTGGATTCCCACAGA -CCAACAGTCTTGGATTCCGCAAGA -CCAACAGTCTTGGATTCCGGTTGA -CCAACAGTCTTGGATTCCTCCGAT -CCAACAGTCTTGGATTCCTGGCAT -CCAACAGTCTTGGATTCCCGAGAT -CCAACAGTCTTGGATTCCTACCAC -CCAACAGTCTTGGATTCCCAGAAC -CCAACAGTCTTGGATTCCGTCTAC -CCAACAGTCTTGGATTCCACGTAC -CCAACAGTCTTGGATTCCAGTGAC -CCAACAGTCTTGGATTCCCTGTAG -CCAACAGTCTTGGATTCCCCTAAG -CCAACAGTCTTGGATTCCGTTCAG -CCAACAGTCTTGGATTCCGCATAG -CCAACAGTCTTGGATTCCGACAAG -CCAACAGTCTTGGATTCCAAGCAG -CCAACAGTCTTGGATTCCCGTCAA -CCAACAGTCTTGGATTCCGCTGAA -CCAACAGTCTTGGATTCCAGTACG -CCAACAGTCTTGGATTCCATCCGA -CCAACAGTCTTGGATTCCATGGGA -CCAACAGTCTTGGATTCCGTGCAA -CCAACAGTCTTGGATTCCGAGGAA -CCAACAGTCTTGGATTCCCAGGTA -CCAACAGTCTTGGATTCCGACTCT -CCAACAGTCTTGGATTCCAGTCCT -CCAACAGTCTTGGATTCCTAAGCC -CCAACAGTCTTGGATTCCATAGCC -CCAACAGTCTTGGATTCCTAACCG -CCAACAGTCTTGGATTCCATGCCA -CCAACAGTCTTGCATTGGGGAAAC -CCAACAGTCTTGCATTGGAACACC -CCAACAGTCTTGCATTGGATCGAG -CCAACAGTCTTGCATTGGCTCCTT -CCAACAGTCTTGCATTGGCCTGTT -CCAACAGTCTTGCATTGGCGGTTT -CCAACAGTCTTGCATTGGGTGGTT -CCAACAGTCTTGCATTGGGCCTTT -CCAACAGTCTTGCATTGGGGTCTT -CCAACAGTCTTGCATTGGACGCTT -CCAACAGTCTTGCATTGGAGCGTT -CCAACAGTCTTGCATTGGTTCGTC -CCAACAGTCTTGCATTGGTCTCTC -CCAACAGTCTTGCATTGGTGGATC -CCAACAGTCTTGCATTGGCACTTC -CCAACAGTCTTGCATTGGGTACTC -CCAACAGTCTTGCATTGGGATGTC -CCAACAGTCTTGCATTGGACAGTC -CCAACAGTCTTGCATTGGTTGCTG -CCAACAGTCTTGCATTGGTCCATG -CCAACAGTCTTGCATTGGTGTGTG -CCAACAGTCTTGCATTGGCTAGTG -CCAACAGTCTTGCATTGGCATCTG -CCAACAGTCTTGCATTGGGAGTTG -CCAACAGTCTTGCATTGGAGACTG -CCAACAGTCTTGCATTGGTCGGTA -CCAACAGTCTTGCATTGGTGCCTA -CCAACAGTCTTGCATTGGCCACTA -CCAACAGTCTTGCATTGGGGAGTA -CCAACAGTCTTGCATTGGTCGTCT -CCAACAGTCTTGCATTGGTGCACT -CCAACAGTCTTGCATTGGCTGACT -CCAACAGTCTTGCATTGGCAACCT -CCAACAGTCTTGCATTGGGCTACT -CCAACAGTCTTGCATTGGGGATCT -CCAACAGTCTTGCATTGGAAGGCT -CCAACAGTCTTGCATTGGTCAACC -CCAACAGTCTTGCATTGGTGTTCC -CCAACAGTCTTGCATTGGATTCCC -CCAACAGTCTTGCATTGGTTCTCG -CCAACAGTCTTGCATTGGTAGACG -CCAACAGTCTTGCATTGGGTAACG -CCAACAGTCTTGCATTGGACTTCG -CCAACAGTCTTGCATTGGTACGCA -CCAACAGTCTTGCATTGGCTTGCA -CCAACAGTCTTGCATTGGCGAACA -CCAACAGTCTTGCATTGGCAGTCA -CCAACAGTCTTGCATTGGGATCCA -CCAACAGTCTTGCATTGGACGACA -CCAACAGTCTTGCATTGGAGCTCA -CCAACAGTCTTGCATTGGTCACGT -CCAACAGTCTTGCATTGGCGTAGT -CCAACAGTCTTGCATTGGGTCAGT -CCAACAGTCTTGCATTGGGAAGGT -CCAACAGTCTTGCATTGGAACCGT -CCAACAGTCTTGCATTGGTTGTGC -CCAACAGTCTTGCATTGGCTAAGC -CCAACAGTCTTGCATTGGACTAGC -CCAACAGTCTTGCATTGGAGATGC -CCAACAGTCTTGCATTGGTGAAGG -CCAACAGTCTTGCATTGGCAATGG -CCAACAGTCTTGCATTGGATGAGG -CCAACAGTCTTGCATTGGAATGGG -CCAACAGTCTTGCATTGGTCCTGA -CCAACAGTCTTGCATTGGTAGCGA -CCAACAGTCTTGCATTGGCACAGA -CCAACAGTCTTGCATTGGGCAAGA -CCAACAGTCTTGCATTGGGGTTGA -CCAACAGTCTTGCATTGGTCCGAT -CCAACAGTCTTGCATTGGTGGCAT -CCAACAGTCTTGCATTGGCGAGAT -CCAACAGTCTTGCATTGGTACCAC -CCAACAGTCTTGCATTGGCAGAAC -CCAACAGTCTTGCATTGGGTCTAC -CCAACAGTCTTGCATTGGACGTAC -CCAACAGTCTTGCATTGGAGTGAC -CCAACAGTCTTGCATTGGCTGTAG -CCAACAGTCTTGCATTGGCCTAAG -CCAACAGTCTTGCATTGGGTTCAG -CCAACAGTCTTGCATTGGGCATAG -CCAACAGTCTTGCATTGGGACAAG -CCAACAGTCTTGCATTGGAAGCAG -CCAACAGTCTTGCATTGGCGTCAA -CCAACAGTCTTGCATTGGGCTGAA -CCAACAGTCTTGCATTGGAGTACG -CCAACAGTCTTGCATTGGATCCGA -CCAACAGTCTTGCATTGGATGGGA -CCAACAGTCTTGCATTGGGTGCAA -CCAACAGTCTTGCATTGGGAGGAA -CCAACAGTCTTGCATTGGCAGGTA -CCAACAGTCTTGCATTGGGACTCT -CCAACAGTCTTGCATTGGAGTCCT -CCAACAGTCTTGCATTGGTAAGCC -CCAACAGTCTTGCATTGGATAGCC -CCAACAGTCTTGCATTGGTAACCG -CCAACAGTCTTGCATTGGATGCCA -CCAACAGTCTTGGATCGAGGAAAC -CCAACAGTCTTGGATCGAAACACC -CCAACAGTCTTGGATCGAATCGAG -CCAACAGTCTTGGATCGACTCCTT -CCAACAGTCTTGGATCGACCTGTT -CCAACAGTCTTGGATCGACGGTTT -CCAACAGTCTTGGATCGAGTGGTT -CCAACAGTCTTGGATCGAGCCTTT -CCAACAGTCTTGGATCGAGGTCTT -CCAACAGTCTTGGATCGAACGCTT -CCAACAGTCTTGGATCGAAGCGTT -CCAACAGTCTTGGATCGATTCGTC -CCAACAGTCTTGGATCGATCTCTC -CCAACAGTCTTGGATCGATGGATC -CCAACAGTCTTGGATCGACACTTC -CCAACAGTCTTGGATCGAGTACTC -CCAACAGTCTTGGATCGAGATGTC -CCAACAGTCTTGGATCGAACAGTC -CCAACAGTCTTGGATCGATTGCTG -CCAACAGTCTTGGATCGATCCATG -CCAACAGTCTTGGATCGATGTGTG -CCAACAGTCTTGGATCGACTAGTG -CCAACAGTCTTGGATCGACATCTG -CCAACAGTCTTGGATCGAGAGTTG -CCAACAGTCTTGGATCGAAGACTG -CCAACAGTCTTGGATCGATCGGTA -CCAACAGTCTTGGATCGATGCCTA -CCAACAGTCTTGGATCGACCACTA -CCAACAGTCTTGGATCGAGGAGTA -CCAACAGTCTTGGATCGATCGTCT -CCAACAGTCTTGGATCGATGCACT -CCAACAGTCTTGGATCGACTGACT -CCAACAGTCTTGGATCGACAACCT -CCAACAGTCTTGGATCGAGCTACT -CCAACAGTCTTGGATCGAGGATCT -CCAACAGTCTTGGATCGAAAGGCT -CCAACAGTCTTGGATCGATCAACC -CCAACAGTCTTGGATCGATGTTCC -CCAACAGTCTTGGATCGAATTCCC -CCAACAGTCTTGGATCGATTCTCG -CCAACAGTCTTGGATCGATAGACG -CCAACAGTCTTGGATCGAGTAACG -CCAACAGTCTTGGATCGAACTTCG -CCAACAGTCTTGGATCGATACGCA -CCAACAGTCTTGGATCGACTTGCA -CCAACAGTCTTGGATCGACGAACA -CCAACAGTCTTGGATCGACAGTCA -CCAACAGTCTTGGATCGAGATCCA -CCAACAGTCTTGGATCGAACGACA -CCAACAGTCTTGGATCGAAGCTCA -CCAACAGTCTTGGATCGATCACGT -CCAACAGTCTTGGATCGACGTAGT -CCAACAGTCTTGGATCGAGTCAGT -CCAACAGTCTTGGATCGAGAAGGT -CCAACAGTCTTGGATCGAAACCGT -CCAACAGTCTTGGATCGATTGTGC -CCAACAGTCTTGGATCGACTAAGC -CCAACAGTCTTGGATCGAACTAGC -CCAACAGTCTTGGATCGAAGATGC -CCAACAGTCTTGGATCGATGAAGG -CCAACAGTCTTGGATCGACAATGG -CCAACAGTCTTGGATCGAATGAGG -CCAACAGTCTTGGATCGAAATGGG -CCAACAGTCTTGGATCGATCCTGA -CCAACAGTCTTGGATCGATAGCGA -CCAACAGTCTTGGATCGACACAGA -CCAACAGTCTTGGATCGAGCAAGA -CCAACAGTCTTGGATCGAGGTTGA -CCAACAGTCTTGGATCGATCCGAT -CCAACAGTCTTGGATCGATGGCAT -CCAACAGTCTTGGATCGACGAGAT -CCAACAGTCTTGGATCGATACCAC -CCAACAGTCTTGGATCGACAGAAC -CCAACAGTCTTGGATCGAGTCTAC -CCAACAGTCTTGGATCGAACGTAC -CCAACAGTCTTGGATCGAAGTGAC -CCAACAGTCTTGGATCGACTGTAG -CCAACAGTCTTGGATCGACCTAAG -CCAACAGTCTTGGATCGAGTTCAG -CCAACAGTCTTGGATCGAGCATAG -CCAACAGTCTTGGATCGAGACAAG -CCAACAGTCTTGGATCGAAAGCAG -CCAACAGTCTTGGATCGACGTCAA -CCAACAGTCTTGGATCGAGCTGAA -CCAACAGTCTTGGATCGAAGTACG -CCAACAGTCTTGGATCGAATCCGA -CCAACAGTCTTGGATCGAATGGGA -CCAACAGTCTTGGATCGAGTGCAA -CCAACAGTCTTGGATCGAGAGGAA -CCAACAGTCTTGGATCGACAGGTA -CCAACAGTCTTGGATCGAGACTCT -CCAACAGTCTTGGATCGAAGTCCT -CCAACAGTCTTGGATCGATAAGCC -CCAACAGTCTTGGATCGAATAGCC -CCAACAGTCTTGGATCGATAACCG -CCAACAGTCTTGGATCGAATGCCA -CCAACAGTCTTGCACTACGGAAAC -CCAACAGTCTTGCACTACAACACC -CCAACAGTCTTGCACTACATCGAG -CCAACAGTCTTGCACTACCTCCTT -CCAACAGTCTTGCACTACCCTGTT -CCAACAGTCTTGCACTACCGGTTT -CCAACAGTCTTGCACTACGTGGTT -CCAACAGTCTTGCACTACGCCTTT -CCAACAGTCTTGCACTACGGTCTT -CCAACAGTCTTGCACTACACGCTT -CCAACAGTCTTGCACTACAGCGTT -CCAACAGTCTTGCACTACTTCGTC -CCAACAGTCTTGCACTACTCTCTC -CCAACAGTCTTGCACTACTGGATC -CCAACAGTCTTGCACTACCACTTC -CCAACAGTCTTGCACTACGTACTC -CCAACAGTCTTGCACTACGATGTC -CCAACAGTCTTGCACTACACAGTC -CCAACAGTCTTGCACTACTTGCTG -CCAACAGTCTTGCACTACTCCATG -CCAACAGTCTTGCACTACTGTGTG -CCAACAGTCTTGCACTACCTAGTG -CCAACAGTCTTGCACTACCATCTG -CCAACAGTCTTGCACTACGAGTTG -CCAACAGTCTTGCACTACAGACTG -CCAACAGTCTTGCACTACTCGGTA -CCAACAGTCTTGCACTACTGCCTA -CCAACAGTCTTGCACTACCCACTA -CCAACAGTCTTGCACTACGGAGTA -CCAACAGTCTTGCACTACTCGTCT -CCAACAGTCTTGCACTACTGCACT -CCAACAGTCTTGCACTACCTGACT -CCAACAGTCTTGCACTACCAACCT -CCAACAGTCTTGCACTACGCTACT -CCAACAGTCTTGCACTACGGATCT -CCAACAGTCTTGCACTACAAGGCT -CCAACAGTCTTGCACTACTCAACC -CCAACAGTCTTGCACTACTGTTCC -CCAACAGTCTTGCACTACATTCCC -CCAACAGTCTTGCACTACTTCTCG -CCAACAGTCTTGCACTACTAGACG -CCAACAGTCTTGCACTACGTAACG -CCAACAGTCTTGCACTACACTTCG -CCAACAGTCTTGCACTACTACGCA -CCAACAGTCTTGCACTACCTTGCA -CCAACAGTCTTGCACTACCGAACA -CCAACAGTCTTGCACTACCAGTCA -CCAACAGTCTTGCACTACGATCCA -CCAACAGTCTTGCACTACACGACA -CCAACAGTCTTGCACTACAGCTCA -CCAACAGTCTTGCACTACTCACGT -CCAACAGTCTTGCACTACCGTAGT -CCAACAGTCTTGCACTACGTCAGT -CCAACAGTCTTGCACTACGAAGGT -CCAACAGTCTTGCACTACAACCGT -CCAACAGTCTTGCACTACTTGTGC -CCAACAGTCTTGCACTACCTAAGC -CCAACAGTCTTGCACTACACTAGC -CCAACAGTCTTGCACTACAGATGC -CCAACAGTCTTGCACTACTGAAGG -CCAACAGTCTTGCACTACCAATGG -CCAACAGTCTTGCACTACATGAGG -CCAACAGTCTTGCACTACAATGGG -CCAACAGTCTTGCACTACTCCTGA -CCAACAGTCTTGCACTACTAGCGA -CCAACAGTCTTGCACTACCACAGA -CCAACAGTCTTGCACTACGCAAGA -CCAACAGTCTTGCACTACGGTTGA -CCAACAGTCTTGCACTACTCCGAT -CCAACAGTCTTGCACTACTGGCAT -CCAACAGTCTTGCACTACCGAGAT -CCAACAGTCTTGCACTACTACCAC -CCAACAGTCTTGCACTACCAGAAC -CCAACAGTCTTGCACTACGTCTAC -CCAACAGTCTTGCACTACACGTAC -CCAACAGTCTTGCACTACAGTGAC -CCAACAGTCTTGCACTACCTGTAG -CCAACAGTCTTGCACTACCCTAAG -CCAACAGTCTTGCACTACGTTCAG -CCAACAGTCTTGCACTACGCATAG -CCAACAGTCTTGCACTACGACAAG -CCAACAGTCTTGCACTACAAGCAG -CCAACAGTCTTGCACTACCGTCAA -CCAACAGTCTTGCACTACGCTGAA -CCAACAGTCTTGCACTACAGTACG -CCAACAGTCTTGCACTACATCCGA -CCAACAGTCTTGCACTACATGGGA -CCAACAGTCTTGCACTACGTGCAA -CCAACAGTCTTGCACTACGAGGAA -CCAACAGTCTTGCACTACCAGGTA -CCAACAGTCTTGCACTACGACTCT -CCAACAGTCTTGCACTACAGTCCT -CCAACAGTCTTGCACTACTAAGCC -CCAACAGTCTTGCACTACATAGCC -CCAACAGTCTTGCACTACTAACCG -CCAACAGTCTTGCACTACATGCCA -CCAACAGTCTTGAACCAGGGAAAC -CCAACAGTCTTGAACCAGAACACC -CCAACAGTCTTGAACCAGATCGAG -CCAACAGTCTTGAACCAGCTCCTT -CCAACAGTCTTGAACCAGCCTGTT -CCAACAGTCTTGAACCAGCGGTTT -CCAACAGTCTTGAACCAGGTGGTT -CCAACAGTCTTGAACCAGGCCTTT -CCAACAGTCTTGAACCAGGGTCTT -CCAACAGTCTTGAACCAGACGCTT -CCAACAGTCTTGAACCAGAGCGTT -CCAACAGTCTTGAACCAGTTCGTC -CCAACAGTCTTGAACCAGTCTCTC -CCAACAGTCTTGAACCAGTGGATC -CCAACAGTCTTGAACCAGCACTTC -CCAACAGTCTTGAACCAGGTACTC -CCAACAGTCTTGAACCAGGATGTC -CCAACAGTCTTGAACCAGACAGTC -CCAACAGTCTTGAACCAGTTGCTG -CCAACAGTCTTGAACCAGTCCATG -CCAACAGTCTTGAACCAGTGTGTG -CCAACAGTCTTGAACCAGCTAGTG -CCAACAGTCTTGAACCAGCATCTG -CCAACAGTCTTGAACCAGGAGTTG -CCAACAGTCTTGAACCAGAGACTG -CCAACAGTCTTGAACCAGTCGGTA -CCAACAGTCTTGAACCAGTGCCTA -CCAACAGTCTTGAACCAGCCACTA -CCAACAGTCTTGAACCAGGGAGTA -CCAACAGTCTTGAACCAGTCGTCT -CCAACAGTCTTGAACCAGTGCACT -CCAACAGTCTTGAACCAGCTGACT -CCAACAGTCTTGAACCAGCAACCT -CCAACAGTCTTGAACCAGGCTACT -CCAACAGTCTTGAACCAGGGATCT -CCAACAGTCTTGAACCAGAAGGCT -CCAACAGTCTTGAACCAGTCAACC -CCAACAGTCTTGAACCAGTGTTCC -CCAACAGTCTTGAACCAGATTCCC -CCAACAGTCTTGAACCAGTTCTCG -CCAACAGTCTTGAACCAGTAGACG -CCAACAGTCTTGAACCAGGTAACG -CCAACAGTCTTGAACCAGACTTCG -CCAACAGTCTTGAACCAGTACGCA -CCAACAGTCTTGAACCAGCTTGCA -CCAACAGTCTTGAACCAGCGAACA -CCAACAGTCTTGAACCAGCAGTCA -CCAACAGTCTTGAACCAGGATCCA -CCAACAGTCTTGAACCAGACGACA -CCAACAGTCTTGAACCAGAGCTCA -CCAACAGTCTTGAACCAGTCACGT -CCAACAGTCTTGAACCAGCGTAGT -CCAACAGTCTTGAACCAGGTCAGT -CCAACAGTCTTGAACCAGGAAGGT -CCAACAGTCTTGAACCAGAACCGT -CCAACAGTCTTGAACCAGTTGTGC -CCAACAGTCTTGAACCAGCTAAGC -CCAACAGTCTTGAACCAGACTAGC -CCAACAGTCTTGAACCAGAGATGC -CCAACAGTCTTGAACCAGTGAAGG -CCAACAGTCTTGAACCAGCAATGG -CCAACAGTCTTGAACCAGATGAGG -CCAACAGTCTTGAACCAGAATGGG -CCAACAGTCTTGAACCAGTCCTGA -CCAACAGTCTTGAACCAGTAGCGA -CCAACAGTCTTGAACCAGCACAGA -CCAACAGTCTTGAACCAGGCAAGA -CCAACAGTCTTGAACCAGGGTTGA -CCAACAGTCTTGAACCAGTCCGAT -CCAACAGTCTTGAACCAGTGGCAT -CCAACAGTCTTGAACCAGCGAGAT -CCAACAGTCTTGAACCAGTACCAC -CCAACAGTCTTGAACCAGCAGAAC -CCAACAGTCTTGAACCAGGTCTAC -CCAACAGTCTTGAACCAGACGTAC -CCAACAGTCTTGAACCAGAGTGAC -CCAACAGTCTTGAACCAGCTGTAG -CCAACAGTCTTGAACCAGCCTAAG -CCAACAGTCTTGAACCAGGTTCAG -CCAACAGTCTTGAACCAGGCATAG -CCAACAGTCTTGAACCAGGACAAG -CCAACAGTCTTGAACCAGAAGCAG -CCAACAGTCTTGAACCAGCGTCAA -CCAACAGTCTTGAACCAGGCTGAA -CCAACAGTCTTGAACCAGAGTACG -CCAACAGTCTTGAACCAGATCCGA -CCAACAGTCTTGAACCAGATGGGA -CCAACAGTCTTGAACCAGGTGCAA -CCAACAGTCTTGAACCAGGAGGAA -CCAACAGTCTTGAACCAGCAGGTA -CCAACAGTCTTGAACCAGGACTCT -CCAACAGTCTTGAACCAGAGTCCT -CCAACAGTCTTGAACCAGTAAGCC -CCAACAGTCTTGAACCAGATAGCC -CCAACAGTCTTGAACCAGTAACCG -CCAACAGTCTTGAACCAGATGCCA -CCAACAGTCTTGTACGTCGGAAAC -CCAACAGTCTTGTACGTCAACACC -CCAACAGTCTTGTACGTCATCGAG -CCAACAGTCTTGTACGTCCTCCTT -CCAACAGTCTTGTACGTCCCTGTT -CCAACAGTCTTGTACGTCCGGTTT -CCAACAGTCTTGTACGTCGTGGTT -CCAACAGTCTTGTACGTCGCCTTT -CCAACAGTCTTGTACGTCGGTCTT -CCAACAGTCTTGTACGTCACGCTT -CCAACAGTCTTGTACGTCAGCGTT -CCAACAGTCTTGTACGTCTTCGTC -CCAACAGTCTTGTACGTCTCTCTC -CCAACAGTCTTGTACGTCTGGATC -CCAACAGTCTTGTACGTCCACTTC -CCAACAGTCTTGTACGTCGTACTC -CCAACAGTCTTGTACGTCGATGTC -CCAACAGTCTTGTACGTCACAGTC -CCAACAGTCTTGTACGTCTTGCTG -CCAACAGTCTTGTACGTCTCCATG -CCAACAGTCTTGTACGTCTGTGTG -CCAACAGTCTTGTACGTCCTAGTG -CCAACAGTCTTGTACGTCCATCTG -CCAACAGTCTTGTACGTCGAGTTG -CCAACAGTCTTGTACGTCAGACTG -CCAACAGTCTTGTACGTCTCGGTA -CCAACAGTCTTGTACGTCTGCCTA -CCAACAGTCTTGTACGTCCCACTA -CCAACAGTCTTGTACGTCGGAGTA -CCAACAGTCTTGTACGTCTCGTCT -CCAACAGTCTTGTACGTCTGCACT -CCAACAGTCTTGTACGTCCTGACT -CCAACAGTCTTGTACGTCCAACCT -CCAACAGTCTTGTACGTCGCTACT -CCAACAGTCTTGTACGTCGGATCT -CCAACAGTCTTGTACGTCAAGGCT -CCAACAGTCTTGTACGTCTCAACC -CCAACAGTCTTGTACGTCTGTTCC -CCAACAGTCTTGTACGTCATTCCC -CCAACAGTCTTGTACGTCTTCTCG -CCAACAGTCTTGTACGTCTAGACG -CCAACAGTCTTGTACGTCGTAACG -CCAACAGTCTTGTACGTCACTTCG -CCAACAGTCTTGTACGTCTACGCA -CCAACAGTCTTGTACGTCCTTGCA -CCAACAGTCTTGTACGTCCGAACA -CCAACAGTCTTGTACGTCCAGTCA -CCAACAGTCTTGTACGTCGATCCA -CCAACAGTCTTGTACGTCACGACA -CCAACAGTCTTGTACGTCAGCTCA -CCAACAGTCTTGTACGTCTCACGT -CCAACAGTCTTGTACGTCCGTAGT -CCAACAGTCTTGTACGTCGTCAGT -CCAACAGTCTTGTACGTCGAAGGT -CCAACAGTCTTGTACGTCAACCGT -CCAACAGTCTTGTACGTCTTGTGC -CCAACAGTCTTGTACGTCCTAAGC -CCAACAGTCTTGTACGTCACTAGC -CCAACAGTCTTGTACGTCAGATGC -CCAACAGTCTTGTACGTCTGAAGG -CCAACAGTCTTGTACGTCCAATGG -CCAACAGTCTTGTACGTCATGAGG -CCAACAGTCTTGTACGTCAATGGG -CCAACAGTCTTGTACGTCTCCTGA -CCAACAGTCTTGTACGTCTAGCGA -CCAACAGTCTTGTACGTCCACAGA -CCAACAGTCTTGTACGTCGCAAGA -CCAACAGTCTTGTACGTCGGTTGA -CCAACAGTCTTGTACGTCTCCGAT -CCAACAGTCTTGTACGTCTGGCAT -CCAACAGTCTTGTACGTCCGAGAT -CCAACAGTCTTGTACGTCTACCAC -CCAACAGTCTTGTACGTCCAGAAC -CCAACAGTCTTGTACGTCGTCTAC -CCAACAGTCTTGTACGTCACGTAC -CCAACAGTCTTGTACGTCAGTGAC -CCAACAGTCTTGTACGTCCTGTAG -CCAACAGTCTTGTACGTCCCTAAG -CCAACAGTCTTGTACGTCGTTCAG -CCAACAGTCTTGTACGTCGCATAG -CCAACAGTCTTGTACGTCGACAAG -CCAACAGTCTTGTACGTCAAGCAG -CCAACAGTCTTGTACGTCCGTCAA -CCAACAGTCTTGTACGTCGCTGAA -CCAACAGTCTTGTACGTCAGTACG -CCAACAGTCTTGTACGTCATCCGA -CCAACAGTCTTGTACGTCATGGGA -CCAACAGTCTTGTACGTCGTGCAA -CCAACAGTCTTGTACGTCGAGGAA -CCAACAGTCTTGTACGTCCAGGTA -CCAACAGTCTTGTACGTCGACTCT -CCAACAGTCTTGTACGTCAGTCCT -CCAACAGTCTTGTACGTCTAAGCC -CCAACAGTCTTGTACGTCATAGCC -CCAACAGTCTTGTACGTCTAACCG -CCAACAGTCTTGTACGTCATGCCA -CCAACAGTCTTGTACACGGGAAAC -CCAACAGTCTTGTACACGAACACC -CCAACAGTCTTGTACACGATCGAG -CCAACAGTCTTGTACACGCTCCTT -CCAACAGTCTTGTACACGCCTGTT -CCAACAGTCTTGTACACGCGGTTT -CCAACAGTCTTGTACACGGTGGTT -CCAACAGTCTTGTACACGGCCTTT -CCAACAGTCTTGTACACGGGTCTT -CCAACAGTCTTGTACACGACGCTT -CCAACAGTCTTGTACACGAGCGTT -CCAACAGTCTTGTACACGTTCGTC -CCAACAGTCTTGTACACGTCTCTC -CCAACAGTCTTGTACACGTGGATC -CCAACAGTCTTGTACACGCACTTC -CCAACAGTCTTGTACACGGTACTC -CCAACAGTCTTGTACACGGATGTC -CCAACAGTCTTGTACACGACAGTC -CCAACAGTCTTGTACACGTTGCTG -CCAACAGTCTTGTACACGTCCATG -CCAACAGTCTTGTACACGTGTGTG -CCAACAGTCTTGTACACGCTAGTG -CCAACAGTCTTGTACACGCATCTG -CCAACAGTCTTGTACACGGAGTTG -CCAACAGTCTTGTACACGAGACTG -CCAACAGTCTTGTACACGTCGGTA -CCAACAGTCTTGTACACGTGCCTA -CCAACAGTCTTGTACACGCCACTA -CCAACAGTCTTGTACACGGGAGTA -CCAACAGTCTTGTACACGTCGTCT -CCAACAGTCTTGTACACGTGCACT -CCAACAGTCTTGTACACGCTGACT -CCAACAGTCTTGTACACGCAACCT -CCAACAGTCTTGTACACGGCTACT -CCAACAGTCTTGTACACGGGATCT -CCAACAGTCTTGTACACGAAGGCT -CCAACAGTCTTGTACACGTCAACC -CCAACAGTCTTGTACACGTGTTCC -CCAACAGTCTTGTACACGATTCCC -CCAACAGTCTTGTACACGTTCTCG -CCAACAGTCTTGTACACGTAGACG -CCAACAGTCTTGTACACGGTAACG -CCAACAGTCTTGTACACGACTTCG -CCAACAGTCTTGTACACGTACGCA -CCAACAGTCTTGTACACGCTTGCA -CCAACAGTCTTGTACACGCGAACA -CCAACAGTCTTGTACACGCAGTCA -CCAACAGTCTTGTACACGGATCCA -CCAACAGTCTTGTACACGACGACA -CCAACAGTCTTGTACACGAGCTCA -CCAACAGTCTTGTACACGTCACGT -CCAACAGTCTTGTACACGCGTAGT -CCAACAGTCTTGTACACGGTCAGT -CCAACAGTCTTGTACACGGAAGGT -CCAACAGTCTTGTACACGAACCGT -CCAACAGTCTTGTACACGTTGTGC -CCAACAGTCTTGTACACGCTAAGC -CCAACAGTCTTGTACACGACTAGC -CCAACAGTCTTGTACACGAGATGC -CCAACAGTCTTGTACACGTGAAGG -CCAACAGTCTTGTACACGCAATGG -CCAACAGTCTTGTACACGATGAGG -CCAACAGTCTTGTACACGAATGGG -CCAACAGTCTTGTACACGTCCTGA -CCAACAGTCTTGTACACGTAGCGA -CCAACAGTCTTGTACACGCACAGA -CCAACAGTCTTGTACACGGCAAGA -CCAACAGTCTTGTACACGGGTTGA -CCAACAGTCTTGTACACGTCCGAT -CCAACAGTCTTGTACACGTGGCAT -CCAACAGTCTTGTACACGCGAGAT -CCAACAGTCTTGTACACGTACCAC -CCAACAGTCTTGTACACGCAGAAC -CCAACAGTCTTGTACACGGTCTAC -CCAACAGTCTTGTACACGACGTAC -CCAACAGTCTTGTACACGAGTGAC -CCAACAGTCTTGTACACGCTGTAG -CCAACAGTCTTGTACACGCCTAAG -CCAACAGTCTTGTACACGGTTCAG -CCAACAGTCTTGTACACGGCATAG -CCAACAGTCTTGTACACGGACAAG -CCAACAGTCTTGTACACGAAGCAG -CCAACAGTCTTGTACACGCGTCAA -CCAACAGTCTTGTACACGGCTGAA -CCAACAGTCTTGTACACGAGTACG -CCAACAGTCTTGTACACGATCCGA -CCAACAGTCTTGTACACGATGGGA -CCAACAGTCTTGTACACGGTGCAA -CCAACAGTCTTGTACACGGAGGAA -CCAACAGTCTTGTACACGCAGGTA -CCAACAGTCTTGTACACGGACTCT -CCAACAGTCTTGTACACGAGTCCT -CCAACAGTCTTGTACACGTAAGCC -CCAACAGTCTTGTACACGATAGCC -CCAACAGTCTTGTACACGTAACCG -CCAACAGTCTTGTACACGATGCCA -CCAACAGTCTTGGACAGTGGAAAC -CCAACAGTCTTGGACAGTAACACC -CCAACAGTCTTGGACAGTATCGAG -CCAACAGTCTTGGACAGTCTCCTT -CCAACAGTCTTGGACAGTCCTGTT -CCAACAGTCTTGGACAGTCGGTTT -CCAACAGTCTTGGACAGTGTGGTT -CCAACAGTCTTGGACAGTGCCTTT -CCAACAGTCTTGGACAGTGGTCTT -CCAACAGTCTTGGACAGTACGCTT -CCAACAGTCTTGGACAGTAGCGTT -CCAACAGTCTTGGACAGTTTCGTC -CCAACAGTCTTGGACAGTTCTCTC -CCAACAGTCTTGGACAGTTGGATC -CCAACAGTCTTGGACAGTCACTTC -CCAACAGTCTTGGACAGTGTACTC -CCAACAGTCTTGGACAGTGATGTC -CCAACAGTCTTGGACAGTACAGTC -CCAACAGTCTTGGACAGTTTGCTG -CCAACAGTCTTGGACAGTTCCATG -CCAACAGTCTTGGACAGTTGTGTG -CCAACAGTCTTGGACAGTCTAGTG -CCAACAGTCTTGGACAGTCATCTG -CCAACAGTCTTGGACAGTGAGTTG -CCAACAGTCTTGGACAGTAGACTG -CCAACAGTCTTGGACAGTTCGGTA -CCAACAGTCTTGGACAGTTGCCTA -CCAACAGTCTTGGACAGTCCACTA -CCAACAGTCTTGGACAGTGGAGTA -CCAACAGTCTTGGACAGTTCGTCT -CCAACAGTCTTGGACAGTTGCACT -CCAACAGTCTTGGACAGTCTGACT -CCAACAGTCTTGGACAGTCAACCT -CCAACAGTCTTGGACAGTGCTACT -CCAACAGTCTTGGACAGTGGATCT -CCAACAGTCTTGGACAGTAAGGCT -CCAACAGTCTTGGACAGTTCAACC -CCAACAGTCTTGGACAGTTGTTCC -CCAACAGTCTTGGACAGTATTCCC -CCAACAGTCTTGGACAGTTTCTCG -CCAACAGTCTTGGACAGTTAGACG -CCAACAGTCTTGGACAGTGTAACG -CCAACAGTCTTGGACAGTACTTCG -CCAACAGTCTTGGACAGTTACGCA -CCAACAGTCTTGGACAGTCTTGCA -CCAACAGTCTTGGACAGTCGAACA -CCAACAGTCTTGGACAGTCAGTCA -CCAACAGTCTTGGACAGTGATCCA -CCAACAGTCTTGGACAGTACGACA -CCAACAGTCTTGGACAGTAGCTCA -CCAACAGTCTTGGACAGTTCACGT -CCAACAGTCTTGGACAGTCGTAGT -CCAACAGTCTTGGACAGTGTCAGT -CCAACAGTCTTGGACAGTGAAGGT -CCAACAGTCTTGGACAGTAACCGT -CCAACAGTCTTGGACAGTTTGTGC -CCAACAGTCTTGGACAGTCTAAGC -CCAACAGTCTTGGACAGTACTAGC -CCAACAGTCTTGGACAGTAGATGC -CCAACAGTCTTGGACAGTTGAAGG -CCAACAGTCTTGGACAGTCAATGG -CCAACAGTCTTGGACAGTATGAGG -CCAACAGTCTTGGACAGTAATGGG -CCAACAGTCTTGGACAGTTCCTGA -CCAACAGTCTTGGACAGTTAGCGA -CCAACAGTCTTGGACAGTCACAGA -CCAACAGTCTTGGACAGTGCAAGA -CCAACAGTCTTGGACAGTGGTTGA -CCAACAGTCTTGGACAGTTCCGAT -CCAACAGTCTTGGACAGTTGGCAT -CCAACAGTCTTGGACAGTCGAGAT -CCAACAGTCTTGGACAGTTACCAC -CCAACAGTCTTGGACAGTCAGAAC -CCAACAGTCTTGGACAGTGTCTAC -CCAACAGTCTTGGACAGTACGTAC -CCAACAGTCTTGGACAGTAGTGAC -CCAACAGTCTTGGACAGTCTGTAG -CCAACAGTCTTGGACAGTCCTAAG -CCAACAGTCTTGGACAGTGTTCAG -CCAACAGTCTTGGACAGTGCATAG -CCAACAGTCTTGGACAGTGACAAG -CCAACAGTCTTGGACAGTAAGCAG -CCAACAGTCTTGGACAGTCGTCAA -CCAACAGTCTTGGACAGTGCTGAA -CCAACAGTCTTGGACAGTAGTACG -CCAACAGTCTTGGACAGTATCCGA -CCAACAGTCTTGGACAGTATGGGA -CCAACAGTCTTGGACAGTGTGCAA -CCAACAGTCTTGGACAGTGAGGAA -CCAACAGTCTTGGACAGTCAGGTA -CCAACAGTCTTGGACAGTGACTCT -CCAACAGTCTTGGACAGTAGTCCT -CCAACAGTCTTGGACAGTTAAGCC -CCAACAGTCTTGGACAGTATAGCC -CCAACAGTCTTGGACAGTTAACCG -CCAACAGTCTTGGACAGTATGCCA -CCAACAGTCTTGTAGCTGGGAAAC -CCAACAGTCTTGTAGCTGAACACC -CCAACAGTCTTGTAGCTGATCGAG -CCAACAGTCTTGTAGCTGCTCCTT -CCAACAGTCTTGTAGCTGCCTGTT -CCAACAGTCTTGTAGCTGCGGTTT -CCAACAGTCTTGTAGCTGGTGGTT -CCAACAGTCTTGTAGCTGGCCTTT -CCAACAGTCTTGTAGCTGGGTCTT -CCAACAGTCTTGTAGCTGACGCTT -CCAACAGTCTTGTAGCTGAGCGTT -CCAACAGTCTTGTAGCTGTTCGTC -CCAACAGTCTTGTAGCTGTCTCTC -CCAACAGTCTTGTAGCTGTGGATC -CCAACAGTCTTGTAGCTGCACTTC -CCAACAGTCTTGTAGCTGGTACTC -CCAACAGTCTTGTAGCTGGATGTC -CCAACAGTCTTGTAGCTGACAGTC -CCAACAGTCTTGTAGCTGTTGCTG -CCAACAGTCTTGTAGCTGTCCATG -CCAACAGTCTTGTAGCTGTGTGTG -CCAACAGTCTTGTAGCTGCTAGTG -CCAACAGTCTTGTAGCTGCATCTG -CCAACAGTCTTGTAGCTGGAGTTG -CCAACAGTCTTGTAGCTGAGACTG -CCAACAGTCTTGTAGCTGTCGGTA -CCAACAGTCTTGTAGCTGTGCCTA -CCAACAGTCTTGTAGCTGCCACTA -CCAACAGTCTTGTAGCTGGGAGTA -CCAACAGTCTTGTAGCTGTCGTCT -CCAACAGTCTTGTAGCTGTGCACT -CCAACAGTCTTGTAGCTGCTGACT -CCAACAGTCTTGTAGCTGCAACCT -CCAACAGTCTTGTAGCTGGCTACT -CCAACAGTCTTGTAGCTGGGATCT -CCAACAGTCTTGTAGCTGAAGGCT -CCAACAGTCTTGTAGCTGTCAACC -CCAACAGTCTTGTAGCTGTGTTCC -CCAACAGTCTTGTAGCTGATTCCC -CCAACAGTCTTGTAGCTGTTCTCG -CCAACAGTCTTGTAGCTGTAGACG -CCAACAGTCTTGTAGCTGGTAACG -CCAACAGTCTTGTAGCTGACTTCG -CCAACAGTCTTGTAGCTGTACGCA -CCAACAGTCTTGTAGCTGCTTGCA -CCAACAGTCTTGTAGCTGCGAACA -CCAACAGTCTTGTAGCTGCAGTCA -CCAACAGTCTTGTAGCTGGATCCA -CCAACAGTCTTGTAGCTGACGACA -CCAACAGTCTTGTAGCTGAGCTCA -CCAACAGTCTTGTAGCTGTCACGT -CCAACAGTCTTGTAGCTGCGTAGT -CCAACAGTCTTGTAGCTGGTCAGT -CCAACAGTCTTGTAGCTGGAAGGT -CCAACAGTCTTGTAGCTGAACCGT -CCAACAGTCTTGTAGCTGTTGTGC -CCAACAGTCTTGTAGCTGCTAAGC -CCAACAGTCTTGTAGCTGACTAGC -CCAACAGTCTTGTAGCTGAGATGC -CCAACAGTCTTGTAGCTGTGAAGG -CCAACAGTCTTGTAGCTGCAATGG -CCAACAGTCTTGTAGCTGATGAGG -CCAACAGTCTTGTAGCTGAATGGG -CCAACAGTCTTGTAGCTGTCCTGA -CCAACAGTCTTGTAGCTGTAGCGA -CCAACAGTCTTGTAGCTGCACAGA -CCAACAGTCTTGTAGCTGGCAAGA -CCAACAGTCTTGTAGCTGGGTTGA -CCAACAGTCTTGTAGCTGTCCGAT -CCAACAGTCTTGTAGCTGTGGCAT -CCAACAGTCTTGTAGCTGCGAGAT -CCAACAGTCTTGTAGCTGTACCAC -CCAACAGTCTTGTAGCTGCAGAAC -CCAACAGTCTTGTAGCTGGTCTAC -CCAACAGTCTTGTAGCTGACGTAC -CCAACAGTCTTGTAGCTGAGTGAC -CCAACAGTCTTGTAGCTGCTGTAG -CCAACAGTCTTGTAGCTGCCTAAG -CCAACAGTCTTGTAGCTGGTTCAG -CCAACAGTCTTGTAGCTGGCATAG -CCAACAGTCTTGTAGCTGGACAAG -CCAACAGTCTTGTAGCTGAAGCAG -CCAACAGTCTTGTAGCTGCGTCAA -CCAACAGTCTTGTAGCTGGCTGAA -CCAACAGTCTTGTAGCTGAGTACG -CCAACAGTCTTGTAGCTGATCCGA -CCAACAGTCTTGTAGCTGATGGGA -CCAACAGTCTTGTAGCTGGTGCAA -CCAACAGTCTTGTAGCTGGAGGAA -CCAACAGTCTTGTAGCTGCAGGTA -CCAACAGTCTTGTAGCTGGACTCT -CCAACAGTCTTGTAGCTGAGTCCT -CCAACAGTCTTGTAGCTGTAAGCC -CCAACAGTCTTGTAGCTGATAGCC -CCAACAGTCTTGTAGCTGTAACCG -CCAACAGTCTTGTAGCTGATGCCA -CCAACAGTCTTGAAGCCTGGAAAC -CCAACAGTCTTGAAGCCTAACACC -CCAACAGTCTTGAAGCCTATCGAG -CCAACAGTCTTGAAGCCTCTCCTT -CCAACAGTCTTGAAGCCTCCTGTT -CCAACAGTCTTGAAGCCTCGGTTT -CCAACAGTCTTGAAGCCTGTGGTT -CCAACAGTCTTGAAGCCTGCCTTT -CCAACAGTCTTGAAGCCTGGTCTT -CCAACAGTCTTGAAGCCTACGCTT -CCAACAGTCTTGAAGCCTAGCGTT -CCAACAGTCTTGAAGCCTTTCGTC -CCAACAGTCTTGAAGCCTTCTCTC -CCAACAGTCTTGAAGCCTTGGATC -CCAACAGTCTTGAAGCCTCACTTC -CCAACAGTCTTGAAGCCTGTACTC -CCAACAGTCTTGAAGCCTGATGTC -CCAACAGTCTTGAAGCCTACAGTC -CCAACAGTCTTGAAGCCTTTGCTG -CCAACAGTCTTGAAGCCTTCCATG -CCAACAGTCTTGAAGCCTTGTGTG -CCAACAGTCTTGAAGCCTCTAGTG -CCAACAGTCTTGAAGCCTCATCTG -CCAACAGTCTTGAAGCCTGAGTTG -CCAACAGTCTTGAAGCCTAGACTG -CCAACAGTCTTGAAGCCTTCGGTA -CCAACAGTCTTGAAGCCTTGCCTA -CCAACAGTCTTGAAGCCTCCACTA -CCAACAGTCTTGAAGCCTGGAGTA -CCAACAGTCTTGAAGCCTTCGTCT -CCAACAGTCTTGAAGCCTTGCACT -CCAACAGTCTTGAAGCCTCTGACT -CCAACAGTCTTGAAGCCTCAACCT -CCAACAGTCTTGAAGCCTGCTACT -CCAACAGTCTTGAAGCCTGGATCT -CCAACAGTCTTGAAGCCTAAGGCT -CCAACAGTCTTGAAGCCTTCAACC -CCAACAGTCTTGAAGCCTTGTTCC -CCAACAGTCTTGAAGCCTATTCCC -CCAACAGTCTTGAAGCCTTTCTCG -CCAACAGTCTTGAAGCCTTAGACG -CCAACAGTCTTGAAGCCTGTAACG -CCAACAGTCTTGAAGCCTACTTCG -CCAACAGTCTTGAAGCCTTACGCA -CCAACAGTCTTGAAGCCTCTTGCA -CCAACAGTCTTGAAGCCTCGAACA -CCAACAGTCTTGAAGCCTCAGTCA -CCAACAGTCTTGAAGCCTGATCCA -CCAACAGTCTTGAAGCCTACGACA -CCAACAGTCTTGAAGCCTAGCTCA -CCAACAGTCTTGAAGCCTTCACGT -CCAACAGTCTTGAAGCCTCGTAGT -CCAACAGTCTTGAAGCCTGTCAGT -CCAACAGTCTTGAAGCCTGAAGGT -CCAACAGTCTTGAAGCCTAACCGT -CCAACAGTCTTGAAGCCTTTGTGC -CCAACAGTCTTGAAGCCTCTAAGC -CCAACAGTCTTGAAGCCTACTAGC -CCAACAGTCTTGAAGCCTAGATGC -CCAACAGTCTTGAAGCCTTGAAGG -CCAACAGTCTTGAAGCCTCAATGG -CCAACAGTCTTGAAGCCTATGAGG -CCAACAGTCTTGAAGCCTAATGGG -CCAACAGTCTTGAAGCCTTCCTGA -CCAACAGTCTTGAAGCCTTAGCGA -CCAACAGTCTTGAAGCCTCACAGA -CCAACAGTCTTGAAGCCTGCAAGA -CCAACAGTCTTGAAGCCTGGTTGA -CCAACAGTCTTGAAGCCTTCCGAT -CCAACAGTCTTGAAGCCTTGGCAT -CCAACAGTCTTGAAGCCTCGAGAT -CCAACAGTCTTGAAGCCTTACCAC -CCAACAGTCTTGAAGCCTCAGAAC -CCAACAGTCTTGAAGCCTGTCTAC -CCAACAGTCTTGAAGCCTACGTAC -CCAACAGTCTTGAAGCCTAGTGAC -CCAACAGTCTTGAAGCCTCTGTAG -CCAACAGTCTTGAAGCCTCCTAAG -CCAACAGTCTTGAAGCCTGTTCAG -CCAACAGTCTTGAAGCCTGCATAG -CCAACAGTCTTGAAGCCTGACAAG -CCAACAGTCTTGAAGCCTAAGCAG -CCAACAGTCTTGAAGCCTCGTCAA -CCAACAGTCTTGAAGCCTGCTGAA -CCAACAGTCTTGAAGCCTAGTACG -CCAACAGTCTTGAAGCCTATCCGA -CCAACAGTCTTGAAGCCTATGGGA -CCAACAGTCTTGAAGCCTGTGCAA -CCAACAGTCTTGAAGCCTGAGGAA -CCAACAGTCTTGAAGCCTCAGGTA -CCAACAGTCTTGAAGCCTGACTCT -CCAACAGTCTTGAAGCCTAGTCCT -CCAACAGTCTTGAAGCCTTAAGCC -CCAACAGTCTTGAAGCCTATAGCC -CCAACAGTCTTGAAGCCTTAACCG -CCAACAGTCTTGAAGCCTATGCCA -CCAACAGTCTTGCAGGTTGGAAAC -CCAACAGTCTTGCAGGTTAACACC -CCAACAGTCTTGCAGGTTATCGAG -CCAACAGTCTTGCAGGTTCTCCTT -CCAACAGTCTTGCAGGTTCCTGTT -CCAACAGTCTTGCAGGTTCGGTTT -CCAACAGTCTTGCAGGTTGTGGTT -CCAACAGTCTTGCAGGTTGCCTTT -CCAACAGTCTTGCAGGTTGGTCTT -CCAACAGTCTTGCAGGTTACGCTT -CCAACAGTCTTGCAGGTTAGCGTT -CCAACAGTCTTGCAGGTTTTCGTC -CCAACAGTCTTGCAGGTTTCTCTC -CCAACAGTCTTGCAGGTTTGGATC -CCAACAGTCTTGCAGGTTCACTTC -CCAACAGTCTTGCAGGTTGTACTC -CCAACAGTCTTGCAGGTTGATGTC -CCAACAGTCTTGCAGGTTACAGTC -CCAACAGTCTTGCAGGTTTTGCTG -CCAACAGTCTTGCAGGTTTCCATG -CCAACAGTCTTGCAGGTTTGTGTG -CCAACAGTCTTGCAGGTTCTAGTG -CCAACAGTCTTGCAGGTTCATCTG -CCAACAGTCTTGCAGGTTGAGTTG -CCAACAGTCTTGCAGGTTAGACTG -CCAACAGTCTTGCAGGTTTCGGTA -CCAACAGTCTTGCAGGTTTGCCTA -CCAACAGTCTTGCAGGTTCCACTA -CCAACAGTCTTGCAGGTTGGAGTA -CCAACAGTCTTGCAGGTTTCGTCT -CCAACAGTCTTGCAGGTTTGCACT -CCAACAGTCTTGCAGGTTCTGACT -CCAACAGTCTTGCAGGTTCAACCT -CCAACAGTCTTGCAGGTTGCTACT -CCAACAGTCTTGCAGGTTGGATCT -CCAACAGTCTTGCAGGTTAAGGCT -CCAACAGTCTTGCAGGTTTCAACC -CCAACAGTCTTGCAGGTTTGTTCC -CCAACAGTCTTGCAGGTTATTCCC -CCAACAGTCTTGCAGGTTTTCTCG -CCAACAGTCTTGCAGGTTTAGACG -CCAACAGTCTTGCAGGTTGTAACG -CCAACAGTCTTGCAGGTTACTTCG -CCAACAGTCTTGCAGGTTTACGCA -CCAACAGTCTTGCAGGTTCTTGCA -CCAACAGTCTTGCAGGTTCGAACA -CCAACAGTCTTGCAGGTTCAGTCA -CCAACAGTCTTGCAGGTTGATCCA -CCAACAGTCTTGCAGGTTACGACA -CCAACAGTCTTGCAGGTTAGCTCA -CCAACAGTCTTGCAGGTTTCACGT -CCAACAGTCTTGCAGGTTCGTAGT -CCAACAGTCTTGCAGGTTGTCAGT -CCAACAGTCTTGCAGGTTGAAGGT -CCAACAGTCTTGCAGGTTAACCGT -CCAACAGTCTTGCAGGTTTTGTGC -CCAACAGTCTTGCAGGTTCTAAGC -CCAACAGTCTTGCAGGTTACTAGC -CCAACAGTCTTGCAGGTTAGATGC -CCAACAGTCTTGCAGGTTTGAAGG -CCAACAGTCTTGCAGGTTCAATGG -CCAACAGTCTTGCAGGTTATGAGG -CCAACAGTCTTGCAGGTTAATGGG -CCAACAGTCTTGCAGGTTTCCTGA -CCAACAGTCTTGCAGGTTTAGCGA -CCAACAGTCTTGCAGGTTCACAGA -CCAACAGTCTTGCAGGTTGCAAGA -CCAACAGTCTTGCAGGTTGGTTGA -CCAACAGTCTTGCAGGTTTCCGAT -CCAACAGTCTTGCAGGTTTGGCAT -CCAACAGTCTTGCAGGTTCGAGAT -CCAACAGTCTTGCAGGTTTACCAC -CCAACAGTCTTGCAGGTTCAGAAC -CCAACAGTCTTGCAGGTTGTCTAC -CCAACAGTCTTGCAGGTTACGTAC -CCAACAGTCTTGCAGGTTAGTGAC -CCAACAGTCTTGCAGGTTCTGTAG -CCAACAGTCTTGCAGGTTCCTAAG -CCAACAGTCTTGCAGGTTGTTCAG -CCAACAGTCTTGCAGGTTGCATAG -CCAACAGTCTTGCAGGTTGACAAG -CCAACAGTCTTGCAGGTTAAGCAG -CCAACAGTCTTGCAGGTTCGTCAA -CCAACAGTCTTGCAGGTTGCTGAA -CCAACAGTCTTGCAGGTTAGTACG -CCAACAGTCTTGCAGGTTATCCGA -CCAACAGTCTTGCAGGTTATGGGA -CCAACAGTCTTGCAGGTTGTGCAA -CCAACAGTCTTGCAGGTTGAGGAA -CCAACAGTCTTGCAGGTTCAGGTA -CCAACAGTCTTGCAGGTTGACTCT -CCAACAGTCTTGCAGGTTAGTCCT -CCAACAGTCTTGCAGGTTTAAGCC -CCAACAGTCTTGCAGGTTATAGCC -CCAACAGTCTTGCAGGTTTAACCG -CCAACAGTCTTGCAGGTTATGCCA -CCAACAGTCTTGTAGGCAGGAAAC -CCAACAGTCTTGTAGGCAAACACC -CCAACAGTCTTGTAGGCAATCGAG -CCAACAGTCTTGTAGGCACTCCTT -CCAACAGTCTTGTAGGCACCTGTT -CCAACAGTCTTGTAGGCACGGTTT -CCAACAGTCTTGTAGGCAGTGGTT -CCAACAGTCTTGTAGGCAGCCTTT -CCAACAGTCTTGTAGGCAGGTCTT -CCAACAGTCTTGTAGGCAACGCTT -CCAACAGTCTTGTAGGCAAGCGTT -CCAACAGTCTTGTAGGCATTCGTC -CCAACAGTCTTGTAGGCATCTCTC -CCAACAGTCTTGTAGGCATGGATC -CCAACAGTCTTGTAGGCACACTTC -CCAACAGTCTTGTAGGCAGTACTC -CCAACAGTCTTGTAGGCAGATGTC -CCAACAGTCTTGTAGGCAACAGTC -CCAACAGTCTTGTAGGCATTGCTG -CCAACAGTCTTGTAGGCATCCATG -CCAACAGTCTTGTAGGCATGTGTG -CCAACAGTCTTGTAGGCACTAGTG -CCAACAGTCTTGTAGGCACATCTG -CCAACAGTCTTGTAGGCAGAGTTG -CCAACAGTCTTGTAGGCAAGACTG -CCAACAGTCTTGTAGGCATCGGTA -CCAACAGTCTTGTAGGCATGCCTA -CCAACAGTCTTGTAGGCACCACTA -CCAACAGTCTTGTAGGCAGGAGTA -CCAACAGTCTTGTAGGCATCGTCT -CCAACAGTCTTGTAGGCATGCACT -CCAACAGTCTTGTAGGCACTGACT -CCAACAGTCTTGTAGGCACAACCT -CCAACAGTCTTGTAGGCAGCTACT -CCAACAGTCTTGTAGGCAGGATCT -CCAACAGTCTTGTAGGCAAAGGCT -CCAACAGTCTTGTAGGCATCAACC -CCAACAGTCTTGTAGGCATGTTCC -CCAACAGTCTTGTAGGCAATTCCC -CCAACAGTCTTGTAGGCATTCTCG -CCAACAGTCTTGTAGGCATAGACG -CCAACAGTCTTGTAGGCAGTAACG -CCAACAGTCTTGTAGGCAACTTCG -CCAACAGTCTTGTAGGCATACGCA -CCAACAGTCTTGTAGGCACTTGCA -CCAACAGTCTTGTAGGCACGAACA -CCAACAGTCTTGTAGGCACAGTCA -CCAACAGTCTTGTAGGCAGATCCA -CCAACAGTCTTGTAGGCAACGACA -CCAACAGTCTTGTAGGCAAGCTCA -CCAACAGTCTTGTAGGCATCACGT -CCAACAGTCTTGTAGGCACGTAGT -CCAACAGTCTTGTAGGCAGTCAGT -CCAACAGTCTTGTAGGCAGAAGGT -CCAACAGTCTTGTAGGCAAACCGT -CCAACAGTCTTGTAGGCATTGTGC -CCAACAGTCTTGTAGGCACTAAGC -CCAACAGTCTTGTAGGCAACTAGC -CCAACAGTCTTGTAGGCAAGATGC -CCAACAGTCTTGTAGGCATGAAGG -CCAACAGTCTTGTAGGCACAATGG -CCAACAGTCTTGTAGGCAATGAGG -CCAACAGTCTTGTAGGCAAATGGG -CCAACAGTCTTGTAGGCATCCTGA -CCAACAGTCTTGTAGGCATAGCGA -CCAACAGTCTTGTAGGCACACAGA -CCAACAGTCTTGTAGGCAGCAAGA -CCAACAGTCTTGTAGGCAGGTTGA -CCAACAGTCTTGTAGGCATCCGAT -CCAACAGTCTTGTAGGCATGGCAT -CCAACAGTCTTGTAGGCACGAGAT -CCAACAGTCTTGTAGGCATACCAC -CCAACAGTCTTGTAGGCACAGAAC -CCAACAGTCTTGTAGGCAGTCTAC -CCAACAGTCTTGTAGGCAACGTAC -CCAACAGTCTTGTAGGCAAGTGAC -CCAACAGTCTTGTAGGCACTGTAG -CCAACAGTCTTGTAGGCACCTAAG -CCAACAGTCTTGTAGGCAGTTCAG -CCAACAGTCTTGTAGGCAGCATAG -CCAACAGTCTTGTAGGCAGACAAG -CCAACAGTCTTGTAGGCAAAGCAG -CCAACAGTCTTGTAGGCACGTCAA -CCAACAGTCTTGTAGGCAGCTGAA -CCAACAGTCTTGTAGGCAAGTACG -CCAACAGTCTTGTAGGCAATCCGA -CCAACAGTCTTGTAGGCAATGGGA -CCAACAGTCTTGTAGGCAGTGCAA -CCAACAGTCTTGTAGGCAGAGGAA -CCAACAGTCTTGTAGGCACAGGTA -CCAACAGTCTTGTAGGCAGACTCT -CCAACAGTCTTGTAGGCAAGTCCT -CCAACAGTCTTGTAGGCATAAGCC -CCAACAGTCTTGTAGGCAATAGCC -CCAACAGTCTTGTAGGCATAACCG -CCAACAGTCTTGTAGGCAATGCCA -CCAACAGTCTTGAAGGACGGAAAC -CCAACAGTCTTGAAGGACAACACC -CCAACAGTCTTGAAGGACATCGAG -CCAACAGTCTTGAAGGACCTCCTT -CCAACAGTCTTGAAGGACCCTGTT -CCAACAGTCTTGAAGGACCGGTTT -CCAACAGTCTTGAAGGACGTGGTT -CCAACAGTCTTGAAGGACGCCTTT -CCAACAGTCTTGAAGGACGGTCTT -CCAACAGTCTTGAAGGACACGCTT -CCAACAGTCTTGAAGGACAGCGTT -CCAACAGTCTTGAAGGACTTCGTC -CCAACAGTCTTGAAGGACTCTCTC -CCAACAGTCTTGAAGGACTGGATC -CCAACAGTCTTGAAGGACCACTTC -CCAACAGTCTTGAAGGACGTACTC -CCAACAGTCTTGAAGGACGATGTC -CCAACAGTCTTGAAGGACACAGTC -CCAACAGTCTTGAAGGACTTGCTG -CCAACAGTCTTGAAGGACTCCATG -CCAACAGTCTTGAAGGACTGTGTG -CCAACAGTCTTGAAGGACCTAGTG -CCAACAGTCTTGAAGGACCATCTG -CCAACAGTCTTGAAGGACGAGTTG -CCAACAGTCTTGAAGGACAGACTG -CCAACAGTCTTGAAGGACTCGGTA -CCAACAGTCTTGAAGGACTGCCTA -CCAACAGTCTTGAAGGACCCACTA -CCAACAGTCTTGAAGGACGGAGTA -CCAACAGTCTTGAAGGACTCGTCT -CCAACAGTCTTGAAGGACTGCACT -CCAACAGTCTTGAAGGACCTGACT -CCAACAGTCTTGAAGGACCAACCT -CCAACAGTCTTGAAGGACGCTACT -CCAACAGTCTTGAAGGACGGATCT -CCAACAGTCTTGAAGGACAAGGCT -CCAACAGTCTTGAAGGACTCAACC -CCAACAGTCTTGAAGGACTGTTCC -CCAACAGTCTTGAAGGACATTCCC -CCAACAGTCTTGAAGGACTTCTCG -CCAACAGTCTTGAAGGACTAGACG -CCAACAGTCTTGAAGGACGTAACG -CCAACAGTCTTGAAGGACACTTCG -CCAACAGTCTTGAAGGACTACGCA -CCAACAGTCTTGAAGGACCTTGCA -CCAACAGTCTTGAAGGACCGAACA -CCAACAGTCTTGAAGGACCAGTCA -CCAACAGTCTTGAAGGACGATCCA -CCAACAGTCTTGAAGGACACGACA -CCAACAGTCTTGAAGGACAGCTCA -CCAACAGTCTTGAAGGACTCACGT -CCAACAGTCTTGAAGGACCGTAGT -CCAACAGTCTTGAAGGACGTCAGT -CCAACAGTCTTGAAGGACGAAGGT -CCAACAGTCTTGAAGGACAACCGT -CCAACAGTCTTGAAGGACTTGTGC -CCAACAGTCTTGAAGGACCTAAGC -CCAACAGTCTTGAAGGACACTAGC -CCAACAGTCTTGAAGGACAGATGC -CCAACAGTCTTGAAGGACTGAAGG -CCAACAGTCTTGAAGGACCAATGG -CCAACAGTCTTGAAGGACATGAGG -CCAACAGTCTTGAAGGACAATGGG -CCAACAGTCTTGAAGGACTCCTGA -CCAACAGTCTTGAAGGACTAGCGA -CCAACAGTCTTGAAGGACCACAGA -CCAACAGTCTTGAAGGACGCAAGA -CCAACAGTCTTGAAGGACGGTTGA -CCAACAGTCTTGAAGGACTCCGAT -CCAACAGTCTTGAAGGACTGGCAT -CCAACAGTCTTGAAGGACCGAGAT -CCAACAGTCTTGAAGGACTACCAC -CCAACAGTCTTGAAGGACCAGAAC -CCAACAGTCTTGAAGGACGTCTAC -CCAACAGTCTTGAAGGACACGTAC -CCAACAGTCTTGAAGGACAGTGAC -CCAACAGTCTTGAAGGACCTGTAG -CCAACAGTCTTGAAGGACCCTAAG -CCAACAGTCTTGAAGGACGTTCAG -CCAACAGTCTTGAAGGACGCATAG -CCAACAGTCTTGAAGGACGACAAG -CCAACAGTCTTGAAGGACAAGCAG -CCAACAGTCTTGAAGGACCGTCAA -CCAACAGTCTTGAAGGACGCTGAA -CCAACAGTCTTGAAGGACAGTACG -CCAACAGTCTTGAAGGACATCCGA -CCAACAGTCTTGAAGGACATGGGA -CCAACAGTCTTGAAGGACGTGCAA -CCAACAGTCTTGAAGGACGAGGAA -CCAACAGTCTTGAAGGACCAGGTA -CCAACAGTCTTGAAGGACGACTCT -CCAACAGTCTTGAAGGACAGTCCT -CCAACAGTCTTGAAGGACTAAGCC -CCAACAGTCTTGAAGGACATAGCC -CCAACAGTCTTGAAGGACTAACCG -CCAACAGTCTTGAAGGACATGCCA -CCAACAGTCTTGCAGAAGGGAAAC -CCAACAGTCTTGCAGAAGAACACC -CCAACAGTCTTGCAGAAGATCGAG -CCAACAGTCTTGCAGAAGCTCCTT -CCAACAGTCTTGCAGAAGCCTGTT -CCAACAGTCTTGCAGAAGCGGTTT -CCAACAGTCTTGCAGAAGGTGGTT -CCAACAGTCTTGCAGAAGGCCTTT -CCAACAGTCTTGCAGAAGGGTCTT -CCAACAGTCTTGCAGAAGACGCTT -CCAACAGTCTTGCAGAAGAGCGTT -CCAACAGTCTTGCAGAAGTTCGTC -CCAACAGTCTTGCAGAAGTCTCTC -CCAACAGTCTTGCAGAAGTGGATC -CCAACAGTCTTGCAGAAGCACTTC -CCAACAGTCTTGCAGAAGGTACTC -CCAACAGTCTTGCAGAAGGATGTC -CCAACAGTCTTGCAGAAGACAGTC -CCAACAGTCTTGCAGAAGTTGCTG -CCAACAGTCTTGCAGAAGTCCATG -CCAACAGTCTTGCAGAAGTGTGTG -CCAACAGTCTTGCAGAAGCTAGTG -CCAACAGTCTTGCAGAAGCATCTG -CCAACAGTCTTGCAGAAGGAGTTG -CCAACAGTCTTGCAGAAGAGACTG -CCAACAGTCTTGCAGAAGTCGGTA -CCAACAGTCTTGCAGAAGTGCCTA -CCAACAGTCTTGCAGAAGCCACTA -CCAACAGTCTTGCAGAAGGGAGTA -CCAACAGTCTTGCAGAAGTCGTCT -CCAACAGTCTTGCAGAAGTGCACT -CCAACAGTCTTGCAGAAGCTGACT -CCAACAGTCTTGCAGAAGCAACCT -CCAACAGTCTTGCAGAAGGCTACT -CCAACAGTCTTGCAGAAGGGATCT -CCAACAGTCTTGCAGAAGAAGGCT -CCAACAGTCTTGCAGAAGTCAACC -CCAACAGTCTTGCAGAAGTGTTCC -CCAACAGTCTTGCAGAAGATTCCC -CCAACAGTCTTGCAGAAGTTCTCG -CCAACAGTCTTGCAGAAGTAGACG -CCAACAGTCTTGCAGAAGGTAACG -CCAACAGTCTTGCAGAAGACTTCG -CCAACAGTCTTGCAGAAGTACGCA -CCAACAGTCTTGCAGAAGCTTGCA -CCAACAGTCTTGCAGAAGCGAACA -CCAACAGTCTTGCAGAAGCAGTCA -CCAACAGTCTTGCAGAAGGATCCA -CCAACAGTCTTGCAGAAGACGACA -CCAACAGTCTTGCAGAAGAGCTCA -CCAACAGTCTTGCAGAAGTCACGT -CCAACAGTCTTGCAGAAGCGTAGT -CCAACAGTCTTGCAGAAGGTCAGT -CCAACAGTCTTGCAGAAGGAAGGT -CCAACAGTCTTGCAGAAGAACCGT -CCAACAGTCTTGCAGAAGTTGTGC -CCAACAGTCTTGCAGAAGCTAAGC -CCAACAGTCTTGCAGAAGACTAGC -CCAACAGTCTTGCAGAAGAGATGC -CCAACAGTCTTGCAGAAGTGAAGG -CCAACAGTCTTGCAGAAGCAATGG -CCAACAGTCTTGCAGAAGATGAGG -CCAACAGTCTTGCAGAAGAATGGG -CCAACAGTCTTGCAGAAGTCCTGA -CCAACAGTCTTGCAGAAGTAGCGA -CCAACAGTCTTGCAGAAGCACAGA -CCAACAGTCTTGCAGAAGGCAAGA -CCAACAGTCTTGCAGAAGGGTTGA -CCAACAGTCTTGCAGAAGTCCGAT -CCAACAGTCTTGCAGAAGTGGCAT -CCAACAGTCTTGCAGAAGCGAGAT -CCAACAGTCTTGCAGAAGTACCAC -CCAACAGTCTTGCAGAAGCAGAAC -CCAACAGTCTTGCAGAAGGTCTAC -CCAACAGTCTTGCAGAAGACGTAC -CCAACAGTCTTGCAGAAGAGTGAC -CCAACAGTCTTGCAGAAGCTGTAG -CCAACAGTCTTGCAGAAGCCTAAG -CCAACAGTCTTGCAGAAGGTTCAG -CCAACAGTCTTGCAGAAGGCATAG -CCAACAGTCTTGCAGAAGGACAAG -CCAACAGTCTTGCAGAAGAAGCAG -CCAACAGTCTTGCAGAAGCGTCAA -CCAACAGTCTTGCAGAAGGCTGAA -CCAACAGTCTTGCAGAAGAGTACG -CCAACAGTCTTGCAGAAGATCCGA -CCAACAGTCTTGCAGAAGATGGGA -CCAACAGTCTTGCAGAAGGTGCAA -CCAACAGTCTTGCAGAAGGAGGAA -CCAACAGTCTTGCAGAAGCAGGTA -CCAACAGTCTTGCAGAAGGACTCT -CCAACAGTCTTGCAGAAGAGTCCT -CCAACAGTCTTGCAGAAGTAAGCC -CCAACAGTCTTGCAGAAGATAGCC -CCAACAGTCTTGCAGAAGTAACCG -CCAACAGTCTTGCAGAAGATGCCA -CCAACAGTCTTGCAACGTGGAAAC -CCAACAGTCTTGCAACGTAACACC -CCAACAGTCTTGCAACGTATCGAG -CCAACAGTCTTGCAACGTCTCCTT -CCAACAGTCTTGCAACGTCCTGTT -CCAACAGTCTTGCAACGTCGGTTT -CCAACAGTCTTGCAACGTGTGGTT -CCAACAGTCTTGCAACGTGCCTTT -CCAACAGTCTTGCAACGTGGTCTT -CCAACAGTCTTGCAACGTACGCTT -CCAACAGTCTTGCAACGTAGCGTT -CCAACAGTCTTGCAACGTTTCGTC -CCAACAGTCTTGCAACGTTCTCTC -CCAACAGTCTTGCAACGTTGGATC -CCAACAGTCTTGCAACGTCACTTC -CCAACAGTCTTGCAACGTGTACTC -CCAACAGTCTTGCAACGTGATGTC -CCAACAGTCTTGCAACGTACAGTC -CCAACAGTCTTGCAACGTTTGCTG -CCAACAGTCTTGCAACGTTCCATG -CCAACAGTCTTGCAACGTTGTGTG -CCAACAGTCTTGCAACGTCTAGTG -CCAACAGTCTTGCAACGTCATCTG -CCAACAGTCTTGCAACGTGAGTTG -CCAACAGTCTTGCAACGTAGACTG -CCAACAGTCTTGCAACGTTCGGTA -CCAACAGTCTTGCAACGTTGCCTA -CCAACAGTCTTGCAACGTCCACTA -CCAACAGTCTTGCAACGTGGAGTA -CCAACAGTCTTGCAACGTTCGTCT -CCAACAGTCTTGCAACGTTGCACT -CCAACAGTCTTGCAACGTCTGACT -CCAACAGTCTTGCAACGTCAACCT -CCAACAGTCTTGCAACGTGCTACT -CCAACAGTCTTGCAACGTGGATCT -CCAACAGTCTTGCAACGTAAGGCT -CCAACAGTCTTGCAACGTTCAACC -CCAACAGTCTTGCAACGTTGTTCC -CCAACAGTCTTGCAACGTATTCCC -CCAACAGTCTTGCAACGTTTCTCG -CCAACAGTCTTGCAACGTTAGACG -CCAACAGTCTTGCAACGTGTAACG -CCAACAGTCTTGCAACGTACTTCG -CCAACAGTCTTGCAACGTTACGCA -CCAACAGTCTTGCAACGTCTTGCA -CCAACAGTCTTGCAACGTCGAACA -CCAACAGTCTTGCAACGTCAGTCA -CCAACAGTCTTGCAACGTGATCCA -CCAACAGTCTTGCAACGTACGACA -CCAACAGTCTTGCAACGTAGCTCA -CCAACAGTCTTGCAACGTTCACGT -CCAACAGTCTTGCAACGTCGTAGT -CCAACAGTCTTGCAACGTGTCAGT -CCAACAGTCTTGCAACGTGAAGGT -CCAACAGTCTTGCAACGTAACCGT -CCAACAGTCTTGCAACGTTTGTGC -CCAACAGTCTTGCAACGTCTAAGC -CCAACAGTCTTGCAACGTACTAGC -CCAACAGTCTTGCAACGTAGATGC -CCAACAGTCTTGCAACGTTGAAGG -CCAACAGTCTTGCAACGTCAATGG -CCAACAGTCTTGCAACGTATGAGG -CCAACAGTCTTGCAACGTAATGGG -CCAACAGTCTTGCAACGTTCCTGA -CCAACAGTCTTGCAACGTTAGCGA -CCAACAGTCTTGCAACGTCACAGA -CCAACAGTCTTGCAACGTGCAAGA -CCAACAGTCTTGCAACGTGGTTGA -CCAACAGTCTTGCAACGTTCCGAT -CCAACAGTCTTGCAACGTTGGCAT -CCAACAGTCTTGCAACGTCGAGAT -CCAACAGTCTTGCAACGTTACCAC -CCAACAGTCTTGCAACGTCAGAAC -CCAACAGTCTTGCAACGTGTCTAC -CCAACAGTCTTGCAACGTACGTAC -CCAACAGTCTTGCAACGTAGTGAC -CCAACAGTCTTGCAACGTCTGTAG -CCAACAGTCTTGCAACGTCCTAAG -CCAACAGTCTTGCAACGTGTTCAG -CCAACAGTCTTGCAACGTGCATAG -CCAACAGTCTTGCAACGTGACAAG -CCAACAGTCTTGCAACGTAAGCAG -CCAACAGTCTTGCAACGTCGTCAA -CCAACAGTCTTGCAACGTGCTGAA -CCAACAGTCTTGCAACGTAGTACG -CCAACAGTCTTGCAACGTATCCGA -CCAACAGTCTTGCAACGTATGGGA -CCAACAGTCTTGCAACGTGTGCAA -CCAACAGTCTTGCAACGTGAGGAA -CCAACAGTCTTGCAACGTCAGGTA -CCAACAGTCTTGCAACGTGACTCT -CCAACAGTCTTGCAACGTAGTCCT -CCAACAGTCTTGCAACGTTAAGCC -CCAACAGTCTTGCAACGTATAGCC -CCAACAGTCTTGCAACGTTAACCG -CCAACAGTCTTGCAACGTATGCCA -CCAACAGTCTTGGAAGCTGGAAAC -CCAACAGTCTTGGAAGCTAACACC -CCAACAGTCTTGGAAGCTATCGAG -CCAACAGTCTTGGAAGCTCTCCTT -CCAACAGTCTTGGAAGCTCCTGTT -CCAACAGTCTTGGAAGCTCGGTTT -CCAACAGTCTTGGAAGCTGTGGTT -CCAACAGTCTTGGAAGCTGCCTTT -CCAACAGTCTTGGAAGCTGGTCTT -CCAACAGTCTTGGAAGCTACGCTT -CCAACAGTCTTGGAAGCTAGCGTT -CCAACAGTCTTGGAAGCTTTCGTC -CCAACAGTCTTGGAAGCTTCTCTC -CCAACAGTCTTGGAAGCTTGGATC -CCAACAGTCTTGGAAGCTCACTTC -CCAACAGTCTTGGAAGCTGTACTC -CCAACAGTCTTGGAAGCTGATGTC -CCAACAGTCTTGGAAGCTACAGTC -CCAACAGTCTTGGAAGCTTTGCTG -CCAACAGTCTTGGAAGCTTCCATG -CCAACAGTCTTGGAAGCTTGTGTG -CCAACAGTCTTGGAAGCTCTAGTG -CCAACAGTCTTGGAAGCTCATCTG -CCAACAGTCTTGGAAGCTGAGTTG -CCAACAGTCTTGGAAGCTAGACTG -CCAACAGTCTTGGAAGCTTCGGTA -CCAACAGTCTTGGAAGCTTGCCTA -CCAACAGTCTTGGAAGCTCCACTA -CCAACAGTCTTGGAAGCTGGAGTA -CCAACAGTCTTGGAAGCTTCGTCT -CCAACAGTCTTGGAAGCTTGCACT -CCAACAGTCTTGGAAGCTCTGACT -CCAACAGTCTTGGAAGCTCAACCT -CCAACAGTCTTGGAAGCTGCTACT -CCAACAGTCTTGGAAGCTGGATCT -CCAACAGTCTTGGAAGCTAAGGCT -CCAACAGTCTTGGAAGCTTCAACC -CCAACAGTCTTGGAAGCTTGTTCC -CCAACAGTCTTGGAAGCTATTCCC -CCAACAGTCTTGGAAGCTTTCTCG -CCAACAGTCTTGGAAGCTTAGACG -CCAACAGTCTTGGAAGCTGTAACG -CCAACAGTCTTGGAAGCTACTTCG -CCAACAGTCTTGGAAGCTTACGCA -CCAACAGTCTTGGAAGCTCTTGCA -CCAACAGTCTTGGAAGCTCGAACA -CCAACAGTCTTGGAAGCTCAGTCA -CCAACAGTCTTGGAAGCTGATCCA -CCAACAGTCTTGGAAGCTACGACA -CCAACAGTCTTGGAAGCTAGCTCA -CCAACAGTCTTGGAAGCTTCACGT -CCAACAGTCTTGGAAGCTCGTAGT -CCAACAGTCTTGGAAGCTGTCAGT -CCAACAGTCTTGGAAGCTGAAGGT -CCAACAGTCTTGGAAGCTAACCGT -CCAACAGTCTTGGAAGCTTTGTGC -CCAACAGTCTTGGAAGCTCTAAGC -CCAACAGTCTTGGAAGCTACTAGC -CCAACAGTCTTGGAAGCTAGATGC -CCAACAGTCTTGGAAGCTTGAAGG -CCAACAGTCTTGGAAGCTCAATGG -CCAACAGTCTTGGAAGCTATGAGG -CCAACAGTCTTGGAAGCTAATGGG -CCAACAGTCTTGGAAGCTTCCTGA -CCAACAGTCTTGGAAGCTTAGCGA -CCAACAGTCTTGGAAGCTCACAGA -CCAACAGTCTTGGAAGCTGCAAGA -CCAACAGTCTTGGAAGCTGGTTGA -CCAACAGTCTTGGAAGCTTCCGAT -CCAACAGTCTTGGAAGCTTGGCAT -CCAACAGTCTTGGAAGCTCGAGAT -CCAACAGTCTTGGAAGCTTACCAC -CCAACAGTCTTGGAAGCTCAGAAC -CCAACAGTCTTGGAAGCTGTCTAC -CCAACAGTCTTGGAAGCTACGTAC -CCAACAGTCTTGGAAGCTAGTGAC -CCAACAGTCTTGGAAGCTCTGTAG -CCAACAGTCTTGGAAGCTCCTAAG -CCAACAGTCTTGGAAGCTGTTCAG -CCAACAGTCTTGGAAGCTGCATAG -CCAACAGTCTTGGAAGCTGACAAG -CCAACAGTCTTGGAAGCTAAGCAG -CCAACAGTCTTGGAAGCTCGTCAA -CCAACAGTCTTGGAAGCTGCTGAA -CCAACAGTCTTGGAAGCTAGTACG -CCAACAGTCTTGGAAGCTATCCGA -CCAACAGTCTTGGAAGCTATGGGA -CCAACAGTCTTGGAAGCTGTGCAA -CCAACAGTCTTGGAAGCTGAGGAA -CCAACAGTCTTGGAAGCTCAGGTA -CCAACAGTCTTGGAAGCTGACTCT -CCAACAGTCTTGGAAGCTAGTCCT -CCAACAGTCTTGGAAGCTTAAGCC -CCAACAGTCTTGGAAGCTATAGCC -CCAACAGTCTTGGAAGCTTAACCG -CCAACAGTCTTGGAAGCTATGCCA -CCAACAGTCTTGACGAGTGGAAAC -CCAACAGTCTTGACGAGTAACACC -CCAACAGTCTTGACGAGTATCGAG -CCAACAGTCTTGACGAGTCTCCTT -CCAACAGTCTTGACGAGTCCTGTT -CCAACAGTCTTGACGAGTCGGTTT -CCAACAGTCTTGACGAGTGTGGTT -CCAACAGTCTTGACGAGTGCCTTT -CCAACAGTCTTGACGAGTGGTCTT -CCAACAGTCTTGACGAGTACGCTT -CCAACAGTCTTGACGAGTAGCGTT -CCAACAGTCTTGACGAGTTTCGTC -CCAACAGTCTTGACGAGTTCTCTC -CCAACAGTCTTGACGAGTTGGATC -CCAACAGTCTTGACGAGTCACTTC -CCAACAGTCTTGACGAGTGTACTC -CCAACAGTCTTGACGAGTGATGTC -CCAACAGTCTTGACGAGTACAGTC -CCAACAGTCTTGACGAGTTTGCTG -CCAACAGTCTTGACGAGTTCCATG -CCAACAGTCTTGACGAGTTGTGTG -CCAACAGTCTTGACGAGTCTAGTG -CCAACAGTCTTGACGAGTCATCTG -CCAACAGTCTTGACGAGTGAGTTG -CCAACAGTCTTGACGAGTAGACTG -CCAACAGTCTTGACGAGTTCGGTA -CCAACAGTCTTGACGAGTTGCCTA -CCAACAGTCTTGACGAGTCCACTA -CCAACAGTCTTGACGAGTGGAGTA -CCAACAGTCTTGACGAGTTCGTCT -CCAACAGTCTTGACGAGTTGCACT -CCAACAGTCTTGACGAGTCTGACT -CCAACAGTCTTGACGAGTCAACCT -CCAACAGTCTTGACGAGTGCTACT -CCAACAGTCTTGACGAGTGGATCT -CCAACAGTCTTGACGAGTAAGGCT -CCAACAGTCTTGACGAGTTCAACC -CCAACAGTCTTGACGAGTTGTTCC -CCAACAGTCTTGACGAGTATTCCC -CCAACAGTCTTGACGAGTTTCTCG -CCAACAGTCTTGACGAGTTAGACG -CCAACAGTCTTGACGAGTGTAACG -CCAACAGTCTTGACGAGTACTTCG -CCAACAGTCTTGACGAGTTACGCA -CCAACAGTCTTGACGAGTCTTGCA -CCAACAGTCTTGACGAGTCGAACA -CCAACAGTCTTGACGAGTCAGTCA -CCAACAGTCTTGACGAGTGATCCA -CCAACAGTCTTGACGAGTACGACA -CCAACAGTCTTGACGAGTAGCTCA -CCAACAGTCTTGACGAGTTCACGT -CCAACAGTCTTGACGAGTCGTAGT -CCAACAGTCTTGACGAGTGTCAGT -CCAACAGTCTTGACGAGTGAAGGT -CCAACAGTCTTGACGAGTAACCGT -CCAACAGTCTTGACGAGTTTGTGC -CCAACAGTCTTGACGAGTCTAAGC -CCAACAGTCTTGACGAGTACTAGC -CCAACAGTCTTGACGAGTAGATGC -CCAACAGTCTTGACGAGTTGAAGG -CCAACAGTCTTGACGAGTCAATGG -CCAACAGTCTTGACGAGTATGAGG -CCAACAGTCTTGACGAGTAATGGG -CCAACAGTCTTGACGAGTTCCTGA -CCAACAGTCTTGACGAGTTAGCGA -CCAACAGTCTTGACGAGTCACAGA -CCAACAGTCTTGACGAGTGCAAGA -CCAACAGTCTTGACGAGTGGTTGA -CCAACAGTCTTGACGAGTTCCGAT -CCAACAGTCTTGACGAGTTGGCAT -CCAACAGTCTTGACGAGTCGAGAT -CCAACAGTCTTGACGAGTTACCAC -CCAACAGTCTTGACGAGTCAGAAC -CCAACAGTCTTGACGAGTGTCTAC -CCAACAGTCTTGACGAGTACGTAC -CCAACAGTCTTGACGAGTAGTGAC -CCAACAGTCTTGACGAGTCTGTAG -CCAACAGTCTTGACGAGTCCTAAG -CCAACAGTCTTGACGAGTGTTCAG -CCAACAGTCTTGACGAGTGCATAG -CCAACAGTCTTGACGAGTGACAAG -CCAACAGTCTTGACGAGTAAGCAG -CCAACAGTCTTGACGAGTCGTCAA -CCAACAGTCTTGACGAGTGCTGAA -CCAACAGTCTTGACGAGTAGTACG -CCAACAGTCTTGACGAGTATCCGA -CCAACAGTCTTGACGAGTATGGGA -CCAACAGTCTTGACGAGTGTGCAA -CCAACAGTCTTGACGAGTGAGGAA -CCAACAGTCTTGACGAGTCAGGTA -CCAACAGTCTTGACGAGTGACTCT -CCAACAGTCTTGACGAGTAGTCCT -CCAACAGTCTTGACGAGTTAAGCC -CCAACAGTCTTGACGAGTATAGCC -CCAACAGTCTTGACGAGTTAACCG -CCAACAGTCTTGACGAGTATGCCA -CCAACAGTCTTGCGAATCGGAAAC -CCAACAGTCTTGCGAATCAACACC -CCAACAGTCTTGCGAATCATCGAG -CCAACAGTCTTGCGAATCCTCCTT -CCAACAGTCTTGCGAATCCCTGTT -CCAACAGTCTTGCGAATCCGGTTT -CCAACAGTCTTGCGAATCGTGGTT -CCAACAGTCTTGCGAATCGCCTTT -CCAACAGTCTTGCGAATCGGTCTT -CCAACAGTCTTGCGAATCACGCTT -CCAACAGTCTTGCGAATCAGCGTT -CCAACAGTCTTGCGAATCTTCGTC -CCAACAGTCTTGCGAATCTCTCTC -CCAACAGTCTTGCGAATCTGGATC -CCAACAGTCTTGCGAATCCACTTC -CCAACAGTCTTGCGAATCGTACTC -CCAACAGTCTTGCGAATCGATGTC -CCAACAGTCTTGCGAATCACAGTC -CCAACAGTCTTGCGAATCTTGCTG -CCAACAGTCTTGCGAATCTCCATG -CCAACAGTCTTGCGAATCTGTGTG -CCAACAGTCTTGCGAATCCTAGTG -CCAACAGTCTTGCGAATCCATCTG -CCAACAGTCTTGCGAATCGAGTTG -CCAACAGTCTTGCGAATCAGACTG -CCAACAGTCTTGCGAATCTCGGTA -CCAACAGTCTTGCGAATCTGCCTA -CCAACAGTCTTGCGAATCCCACTA -CCAACAGTCTTGCGAATCGGAGTA -CCAACAGTCTTGCGAATCTCGTCT -CCAACAGTCTTGCGAATCTGCACT -CCAACAGTCTTGCGAATCCTGACT -CCAACAGTCTTGCGAATCCAACCT -CCAACAGTCTTGCGAATCGCTACT -CCAACAGTCTTGCGAATCGGATCT -CCAACAGTCTTGCGAATCAAGGCT -CCAACAGTCTTGCGAATCTCAACC -CCAACAGTCTTGCGAATCTGTTCC -CCAACAGTCTTGCGAATCATTCCC -CCAACAGTCTTGCGAATCTTCTCG -CCAACAGTCTTGCGAATCTAGACG -CCAACAGTCTTGCGAATCGTAACG -CCAACAGTCTTGCGAATCACTTCG -CCAACAGTCTTGCGAATCTACGCA -CCAACAGTCTTGCGAATCCTTGCA -CCAACAGTCTTGCGAATCCGAACA -CCAACAGTCTTGCGAATCCAGTCA -CCAACAGTCTTGCGAATCGATCCA -CCAACAGTCTTGCGAATCACGACA -CCAACAGTCTTGCGAATCAGCTCA -CCAACAGTCTTGCGAATCTCACGT -CCAACAGTCTTGCGAATCCGTAGT -CCAACAGTCTTGCGAATCGTCAGT -CCAACAGTCTTGCGAATCGAAGGT -CCAACAGTCTTGCGAATCAACCGT -CCAACAGTCTTGCGAATCTTGTGC -CCAACAGTCTTGCGAATCCTAAGC -CCAACAGTCTTGCGAATCACTAGC -CCAACAGTCTTGCGAATCAGATGC -CCAACAGTCTTGCGAATCTGAAGG -CCAACAGTCTTGCGAATCCAATGG -CCAACAGTCTTGCGAATCATGAGG -CCAACAGTCTTGCGAATCAATGGG -CCAACAGTCTTGCGAATCTCCTGA -CCAACAGTCTTGCGAATCTAGCGA -CCAACAGTCTTGCGAATCCACAGA -CCAACAGTCTTGCGAATCGCAAGA -CCAACAGTCTTGCGAATCGGTTGA -CCAACAGTCTTGCGAATCTCCGAT -CCAACAGTCTTGCGAATCTGGCAT -CCAACAGTCTTGCGAATCCGAGAT -CCAACAGTCTTGCGAATCTACCAC -CCAACAGTCTTGCGAATCCAGAAC -CCAACAGTCTTGCGAATCGTCTAC -CCAACAGTCTTGCGAATCACGTAC -CCAACAGTCTTGCGAATCAGTGAC -CCAACAGTCTTGCGAATCCTGTAG -CCAACAGTCTTGCGAATCCCTAAG -CCAACAGTCTTGCGAATCGTTCAG -CCAACAGTCTTGCGAATCGCATAG -CCAACAGTCTTGCGAATCGACAAG -CCAACAGTCTTGCGAATCAAGCAG -CCAACAGTCTTGCGAATCCGTCAA -CCAACAGTCTTGCGAATCGCTGAA -CCAACAGTCTTGCGAATCAGTACG -CCAACAGTCTTGCGAATCATCCGA -CCAACAGTCTTGCGAATCATGGGA -CCAACAGTCTTGCGAATCGTGCAA -CCAACAGTCTTGCGAATCGAGGAA -CCAACAGTCTTGCGAATCCAGGTA -CCAACAGTCTTGCGAATCGACTCT -CCAACAGTCTTGCGAATCAGTCCT -CCAACAGTCTTGCGAATCTAAGCC -CCAACAGTCTTGCGAATCATAGCC -CCAACAGTCTTGCGAATCTAACCG -CCAACAGTCTTGCGAATCATGCCA -CCAACAGTCTTGGGAATGGGAAAC -CCAACAGTCTTGGGAATGAACACC -CCAACAGTCTTGGGAATGATCGAG -CCAACAGTCTTGGGAATGCTCCTT -CCAACAGTCTTGGGAATGCCTGTT -CCAACAGTCTTGGGAATGCGGTTT -CCAACAGTCTTGGGAATGGTGGTT -CCAACAGTCTTGGGAATGGCCTTT -CCAACAGTCTTGGGAATGGGTCTT -CCAACAGTCTTGGGAATGACGCTT -CCAACAGTCTTGGGAATGAGCGTT -CCAACAGTCTTGGGAATGTTCGTC -CCAACAGTCTTGGGAATGTCTCTC -CCAACAGTCTTGGGAATGTGGATC -CCAACAGTCTTGGGAATGCACTTC -CCAACAGTCTTGGGAATGGTACTC -CCAACAGTCTTGGGAATGGATGTC -CCAACAGTCTTGGGAATGACAGTC -CCAACAGTCTTGGGAATGTTGCTG -CCAACAGTCTTGGGAATGTCCATG -CCAACAGTCTTGGGAATGTGTGTG -CCAACAGTCTTGGGAATGCTAGTG -CCAACAGTCTTGGGAATGCATCTG -CCAACAGTCTTGGGAATGGAGTTG -CCAACAGTCTTGGGAATGAGACTG -CCAACAGTCTTGGGAATGTCGGTA -CCAACAGTCTTGGGAATGTGCCTA -CCAACAGTCTTGGGAATGCCACTA -CCAACAGTCTTGGGAATGGGAGTA -CCAACAGTCTTGGGAATGTCGTCT -CCAACAGTCTTGGGAATGTGCACT -CCAACAGTCTTGGGAATGCTGACT -CCAACAGTCTTGGGAATGCAACCT -CCAACAGTCTTGGGAATGGCTACT -CCAACAGTCTTGGGAATGGGATCT -CCAACAGTCTTGGGAATGAAGGCT -CCAACAGTCTTGGGAATGTCAACC -CCAACAGTCTTGGGAATGTGTTCC -CCAACAGTCTTGGGAATGATTCCC -CCAACAGTCTTGGGAATGTTCTCG -CCAACAGTCTTGGGAATGTAGACG -CCAACAGTCTTGGGAATGGTAACG -CCAACAGTCTTGGGAATGACTTCG -CCAACAGTCTTGGGAATGTACGCA -CCAACAGTCTTGGGAATGCTTGCA -CCAACAGTCTTGGGAATGCGAACA -CCAACAGTCTTGGGAATGCAGTCA -CCAACAGTCTTGGGAATGGATCCA -CCAACAGTCTTGGGAATGACGACA -CCAACAGTCTTGGGAATGAGCTCA -CCAACAGTCTTGGGAATGTCACGT -CCAACAGTCTTGGGAATGCGTAGT -CCAACAGTCTTGGGAATGGTCAGT -CCAACAGTCTTGGGAATGGAAGGT -CCAACAGTCTTGGGAATGAACCGT -CCAACAGTCTTGGGAATGTTGTGC -CCAACAGTCTTGGGAATGCTAAGC -CCAACAGTCTTGGGAATGACTAGC -CCAACAGTCTTGGGAATGAGATGC -CCAACAGTCTTGGGAATGTGAAGG -CCAACAGTCTTGGGAATGCAATGG -CCAACAGTCTTGGGAATGATGAGG -CCAACAGTCTTGGGAATGAATGGG -CCAACAGTCTTGGGAATGTCCTGA -CCAACAGTCTTGGGAATGTAGCGA -CCAACAGTCTTGGGAATGCACAGA -CCAACAGTCTTGGGAATGGCAAGA -CCAACAGTCTTGGGAATGGGTTGA -CCAACAGTCTTGGGAATGTCCGAT -CCAACAGTCTTGGGAATGTGGCAT -CCAACAGTCTTGGGAATGCGAGAT -CCAACAGTCTTGGGAATGTACCAC -CCAACAGTCTTGGGAATGCAGAAC -CCAACAGTCTTGGGAATGGTCTAC -CCAACAGTCTTGGGAATGACGTAC -CCAACAGTCTTGGGAATGAGTGAC -CCAACAGTCTTGGGAATGCTGTAG -CCAACAGTCTTGGGAATGCCTAAG -CCAACAGTCTTGGGAATGGTTCAG -CCAACAGTCTTGGGAATGGCATAG -CCAACAGTCTTGGGAATGGACAAG -CCAACAGTCTTGGGAATGAAGCAG -CCAACAGTCTTGGGAATGCGTCAA -CCAACAGTCTTGGGAATGGCTGAA -CCAACAGTCTTGGGAATGAGTACG -CCAACAGTCTTGGGAATGATCCGA -CCAACAGTCTTGGGAATGATGGGA -CCAACAGTCTTGGGAATGGTGCAA -CCAACAGTCTTGGGAATGGAGGAA -CCAACAGTCTTGGGAATGCAGGTA -CCAACAGTCTTGGGAATGGACTCT -CCAACAGTCTTGGGAATGAGTCCT -CCAACAGTCTTGGGAATGTAAGCC -CCAACAGTCTTGGGAATGATAGCC -CCAACAGTCTTGGGAATGTAACCG -CCAACAGTCTTGGGAATGATGCCA -CCAACAGTCTTGCAAGTGGGAAAC -CCAACAGTCTTGCAAGTGAACACC -CCAACAGTCTTGCAAGTGATCGAG -CCAACAGTCTTGCAAGTGCTCCTT -CCAACAGTCTTGCAAGTGCCTGTT -CCAACAGTCTTGCAAGTGCGGTTT -CCAACAGTCTTGCAAGTGGTGGTT -CCAACAGTCTTGCAAGTGGCCTTT -CCAACAGTCTTGCAAGTGGGTCTT -CCAACAGTCTTGCAAGTGACGCTT -CCAACAGTCTTGCAAGTGAGCGTT -CCAACAGTCTTGCAAGTGTTCGTC -CCAACAGTCTTGCAAGTGTCTCTC -CCAACAGTCTTGCAAGTGTGGATC -CCAACAGTCTTGCAAGTGCACTTC -CCAACAGTCTTGCAAGTGGTACTC -CCAACAGTCTTGCAAGTGGATGTC -CCAACAGTCTTGCAAGTGACAGTC -CCAACAGTCTTGCAAGTGTTGCTG -CCAACAGTCTTGCAAGTGTCCATG -CCAACAGTCTTGCAAGTGTGTGTG -CCAACAGTCTTGCAAGTGCTAGTG -CCAACAGTCTTGCAAGTGCATCTG -CCAACAGTCTTGCAAGTGGAGTTG -CCAACAGTCTTGCAAGTGAGACTG -CCAACAGTCTTGCAAGTGTCGGTA -CCAACAGTCTTGCAAGTGTGCCTA -CCAACAGTCTTGCAAGTGCCACTA -CCAACAGTCTTGCAAGTGGGAGTA -CCAACAGTCTTGCAAGTGTCGTCT -CCAACAGTCTTGCAAGTGTGCACT -CCAACAGTCTTGCAAGTGCTGACT -CCAACAGTCTTGCAAGTGCAACCT -CCAACAGTCTTGCAAGTGGCTACT -CCAACAGTCTTGCAAGTGGGATCT -CCAACAGTCTTGCAAGTGAAGGCT -CCAACAGTCTTGCAAGTGTCAACC -CCAACAGTCTTGCAAGTGTGTTCC -CCAACAGTCTTGCAAGTGATTCCC -CCAACAGTCTTGCAAGTGTTCTCG -CCAACAGTCTTGCAAGTGTAGACG -CCAACAGTCTTGCAAGTGGTAACG -CCAACAGTCTTGCAAGTGACTTCG -CCAACAGTCTTGCAAGTGTACGCA -CCAACAGTCTTGCAAGTGCTTGCA -CCAACAGTCTTGCAAGTGCGAACA -CCAACAGTCTTGCAAGTGCAGTCA -CCAACAGTCTTGCAAGTGGATCCA -CCAACAGTCTTGCAAGTGACGACA -CCAACAGTCTTGCAAGTGAGCTCA -CCAACAGTCTTGCAAGTGTCACGT -CCAACAGTCTTGCAAGTGCGTAGT -CCAACAGTCTTGCAAGTGGTCAGT -CCAACAGTCTTGCAAGTGGAAGGT -CCAACAGTCTTGCAAGTGAACCGT -CCAACAGTCTTGCAAGTGTTGTGC -CCAACAGTCTTGCAAGTGCTAAGC -CCAACAGTCTTGCAAGTGACTAGC -CCAACAGTCTTGCAAGTGAGATGC -CCAACAGTCTTGCAAGTGTGAAGG -CCAACAGTCTTGCAAGTGCAATGG -CCAACAGTCTTGCAAGTGATGAGG -CCAACAGTCTTGCAAGTGAATGGG -CCAACAGTCTTGCAAGTGTCCTGA -CCAACAGTCTTGCAAGTGTAGCGA -CCAACAGTCTTGCAAGTGCACAGA -CCAACAGTCTTGCAAGTGGCAAGA -CCAACAGTCTTGCAAGTGGGTTGA -CCAACAGTCTTGCAAGTGTCCGAT -CCAACAGTCTTGCAAGTGTGGCAT -CCAACAGTCTTGCAAGTGCGAGAT -CCAACAGTCTTGCAAGTGTACCAC -CCAACAGTCTTGCAAGTGCAGAAC -CCAACAGTCTTGCAAGTGGTCTAC -CCAACAGTCTTGCAAGTGACGTAC -CCAACAGTCTTGCAAGTGAGTGAC -CCAACAGTCTTGCAAGTGCTGTAG -CCAACAGTCTTGCAAGTGCCTAAG -CCAACAGTCTTGCAAGTGGTTCAG -CCAACAGTCTTGCAAGTGGCATAG -CCAACAGTCTTGCAAGTGGACAAG -CCAACAGTCTTGCAAGTGAAGCAG -CCAACAGTCTTGCAAGTGCGTCAA -CCAACAGTCTTGCAAGTGGCTGAA -CCAACAGTCTTGCAAGTGAGTACG -CCAACAGTCTTGCAAGTGATCCGA -CCAACAGTCTTGCAAGTGATGGGA -CCAACAGTCTTGCAAGTGGTGCAA -CCAACAGTCTTGCAAGTGGAGGAA -CCAACAGTCTTGCAAGTGCAGGTA -CCAACAGTCTTGCAAGTGGACTCT -CCAACAGTCTTGCAAGTGAGTCCT -CCAACAGTCTTGCAAGTGTAAGCC -CCAACAGTCTTGCAAGTGATAGCC -CCAACAGTCTTGCAAGTGTAACCG -CCAACAGTCTTGCAAGTGATGCCA -CCAACAGTCTTGGAAGAGGGAAAC -CCAACAGTCTTGGAAGAGAACACC -CCAACAGTCTTGGAAGAGATCGAG -CCAACAGTCTTGGAAGAGCTCCTT -CCAACAGTCTTGGAAGAGCCTGTT -CCAACAGTCTTGGAAGAGCGGTTT -CCAACAGTCTTGGAAGAGGTGGTT -CCAACAGTCTTGGAAGAGGCCTTT -CCAACAGTCTTGGAAGAGGGTCTT -CCAACAGTCTTGGAAGAGACGCTT -CCAACAGTCTTGGAAGAGAGCGTT -CCAACAGTCTTGGAAGAGTTCGTC -CCAACAGTCTTGGAAGAGTCTCTC -CCAACAGTCTTGGAAGAGTGGATC -CCAACAGTCTTGGAAGAGCACTTC -CCAACAGTCTTGGAAGAGGTACTC -CCAACAGTCTTGGAAGAGGATGTC -CCAACAGTCTTGGAAGAGACAGTC -CCAACAGTCTTGGAAGAGTTGCTG -CCAACAGTCTTGGAAGAGTCCATG -CCAACAGTCTTGGAAGAGTGTGTG -CCAACAGTCTTGGAAGAGCTAGTG -CCAACAGTCTTGGAAGAGCATCTG -CCAACAGTCTTGGAAGAGGAGTTG -CCAACAGTCTTGGAAGAGAGACTG -CCAACAGTCTTGGAAGAGTCGGTA -CCAACAGTCTTGGAAGAGTGCCTA -CCAACAGTCTTGGAAGAGCCACTA -CCAACAGTCTTGGAAGAGGGAGTA -CCAACAGTCTTGGAAGAGTCGTCT -CCAACAGTCTTGGAAGAGTGCACT -CCAACAGTCTTGGAAGAGCTGACT -CCAACAGTCTTGGAAGAGCAACCT -CCAACAGTCTTGGAAGAGGCTACT -CCAACAGTCTTGGAAGAGGGATCT -CCAACAGTCTTGGAAGAGAAGGCT -CCAACAGTCTTGGAAGAGTCAACC -CCAACAGTCTTGGAAGAGTGTTCC -CCAACAGTCTTGGAAGAGATTCCC -CCAACAGTCTTGGAAGAGTTCTCG -CCAACAGTCTTGGAAGAGTAGACG -CCAACAGTCTTGGAAGAGGTAACG -CCAACAGTCTTGGAAGAGACTTCG -CCAACAGTCTTGGAAGAGTACGCA -CCAACAGTCTTGGAAGAGCTTGCA -CCAACAGTCTTGGAAGAGCGAACA -CCAACAGTCTTGGAAGAGCAGTCA -CCAACAGTCTTGGAAGAGGATCCA -CCAACAGTCTTGGAAGAGACGACA -CCAACAGTCTTGGAAGAGAGCTCA -CCAACAGTCTTGGAAGAGTCACGT -CCAACAGTCTTGGAAGAGCGTAGT -CCAACAGTCTTGGAAGAGGTCAGT -CCAACAGTCTTGGAAGAGGAAGGT -CCAACAGTCTTGGAAGAGAACCGT -CCAACAGTCTTGGAAGAGTTGTGC -CCAACAGTCTTGGAAGAGCTAAGC -CCAACAGTCTTGGAAGAGACTAGC -CCAACAGTCTTGGAAGAGAGATGC -CCAACAGTCTTGGAAGAGTGAAGG -CCAACAGTCTTGGAAGAGCAATGG -CCAACAGTCTTGGAAGAGATGAGG -CCAACAGTCTTGGAAGAGAATGGG -CCAACAGTCTTGGAAGAGTCCTGA -CCAACAGTCTTGGAAGAGTAGCGA -CCAACAGTCTTGGAAGAGCACAGA -CCAACAGTCTTGGAAGAGGCAAGA -CCAACAGTCTTGGAAGAGGGTTGA -CCAACAGTCTTGGAAGAGTCCGAT -CCAACAGTCTTGGAAGAGTGGCAT -CCAACAGTCTTGGAAGAGCGAGAT -CCAACAGTCTTGGAAGAGTACCAC -CCAACAGTCTTGGAAGAGCAGAAC -CCAACAGTCTTGGAAGAGGTCTAC -CCAACAGTCTTGGAAGAGACGTAC -CCAACAGTCTTGGAAGAGAGTGAC -CCAACAGTCTTGGAAGAGCTGTAG -CCAACAGTCTTGGAAGAGCCTAAG -CCAACAGTCTTGGAAGAGGTTCAG -CCAACAGTCTTGGAAGAGGCATAG -CCAACAGTCTTGGAAGAGGACAAG -CCAACAGTCTTGGAAGAGAAGCAG -CCAACAGTCTTGGAAGAGCGTCAA -CCAACAGTCTTGGAAGAGGCTGAA -CCAACAGTCTTGGAAGAGAGTACG -CCAACAGTCTTGGAAGAGATCCGA -CCAACAGTCTTGGAAGAGATGGGA -CCAACAGTCTTGGAAGAGGTGCAA -CCAACAGTCTTGGAAGAGGAGGAA -CCAACAGTCTTGGAAGAGCAGGTA -CCAACAGTCTTGGAAGAGGACTCT -CCAACAGTCTTGGAAGAGAGTCCT -CCAACAGTCTTGGAAGAGTAAGCC -CCAACAGTCTTGGAAGAGATAGCC -CCAACAGTCTTGGAAGAGTAACCG -CCAACAGTCTTGGAAGAGATGCCA -CCAACAGTCTTGGTACAGGGAAAC -CCAACAGTCTTGGTACAGAACACC -CCAACAGTCTTGGTACAGATCGAG -CCAACAGTCTTGGTACAGCTCCTT -CCAACAGTCTTGGTACAGCCTGTT -CCAACAGTCTTGGTACAGCGGTTT -CCAACAGTCTTGGTACAGGTGGTT -CCAACAGTCTTGGTACAGGCCTTT -CCAACAGTCTTGGTACAGGGTCTT -CCAACAGTCTTGGTACAGACGCTT -CCAACAGTCTTGGTACAGAGCGTT -CCAACAGTCTTGGTACAGTTCGTC -CCAACAGTCTTGGTACAGTCTCTC -CCAACAGTCTTGGTACAGTGGATC -CCAACAGTCTTGGTACAGCACTTC -CCAACAGTCTTGGTACAGGTACTC -CCAACAGTCTTGGTACAGGATGTC -CCAACAGTCTTGGTACAGACAGTC -CCAACAGTCTTGGTACAGTTGCTG -CCAACAGTCTTGGTACAGTCCATG -CCAACAGTCTTGGTACAGTGTGTG -CCAACAGTCTTGGTACAGCTAGTG -CCAACAGTCTTGGTACAGCATCTG -CCAACAGTCTTGGTACAGGAGTTG -CCAACAGTCTTGGTACAGAGACTG -CCAACAGTCTTGGTACAGTCGGTA -CCAACAGTCTTGGTACAGTGCCTA -CCAACAGTCTTGGTACAGCCACTA -CCAACAGTCTTGGTACAGGGAGTA -CCAACAGTCTTGGTACAGTCGTCT -CCAACAGTCTTGGTACAGTGCACT -CCAACAGTCTTGGTACAGCTGACT -CCAACAGTCTTGGTACAGCAACCT -CCAACAGTCTTGGTACAGGCTACT -CCAACAGTCTTGGTACAGGGATCT -CCAACAGTCTTGGTACAGAAGGCT -CCAACAGTCTTGGTACAGTCAACC -CCAACAGTCTTGGTACAGTGTTCC -CCAACAGTCTTGGTACAGATTCCC -CCAACAGTCTTGGTACAGTTCTCG -CCAACAGTCTTGGTACAGTAGACG -CCAACAGTCTTGGTACAGGTAACG -CCAACAGTCTTGGTACAGACTTCG -CCAACAGTCTTGGTACAGTACGCA -CCAACAGTCTTGGTACAGCTTGCA -CCAACAGTCTTGGTACAGCGAACA -CCAACAGTCTTGGTACAGCAGTCA -CCAACAGTCTTGGTACAGGATCCA -CCAACAGTCTTGGTACAGACGACA -CCAACAGTCTTGGTACAGAGCTCA -CCAACAGTCTTGGTACAGTCACGT -CCAACAGTCTTGGTACAGCGTAGT -CCAACAGTCTTGGTACAGGTCAGT -CCAACAGTCTTGGTACAGGAAGGT -CCAACAGTCTTGGTACAGAACCGT -CCAACAGTCTTGGTACAGTTGTGC -CCAACAGTCTTGGTACAGCTAAGC -CCAACAGTCTTGGTACAGACTAGC -CCAACAGTCTTGGTACAGAGATGC -CCAACAGTCTTGGTACAGTGAAGG -CCAACAGTCTTGGTACAGCAATGG -CCAACAGTCTTGGTACAGATGAGG -CCAACAGTCTTGGTACAGAATGGG -CCAACAGTCTTGGTACAGTCCTGA -CCAACAGTCTTGGTACAGTAGCGA -CCAACAGTCTTGGTACAGCACAGA -CCAACAGTCTTGGTACAGGCAAGA -CCAACAGTCTTGGTACAGGGTTGA -CCAACAGTCTTGGTACAGTCCGAT -CCAACAGTCTTGGTACAGTGGCAT -CCAACAGTCTTGGTACAGCGAGAT -CCAACAGTCTTGGTACAGTACCAC -CCAACAGTCTTGGTACAGCAGAAC -CCAACAGTCTTGGTACAGGTCTAC -CCAACAGTCTTGGTACAGACGTAC -CCAACAGTCTTGGTACAGAGTGAC -CCAACAGTCTTGGTACAGCTGTAG -CCAACAGTCTTGGTACAGCCTAAG -CCAACAGTCTTGGTACAGGTTCAG -CCAACAGTCTTGGTACAGGCATAG -CCAACAGTCTTGGTACAGGACAAG -CCAACAGTCTTGGTACAGAAGCAG -CCAACAGTCTTGGTACAGCGTCAA -CCAACAGTCTTGGTACAGGCTGAA -CCAACAGTCTTGGTACAGAGTACG -CCAACAGTCTTGGTACAGATCCGA -CCAACAGTCTTGGTACAGATGGGA -CCAACAGTCTTGGTACAGGTGCAA -CCAACAGTCTTGGTACAGGAGGAA -CCAACAGTCTTGGTACAGCAGGTA -CCAACAGTCTTGGTACAGGACTCT -CCAACAGTCTTGGTACAGAGTCCT -CCAACAGTCTTGGTACAGTAAGCC -CCAACAGTCTTGGTACAGATAGCC -CCAACAGTCTTGGTACAGTAACCG -CCAACAGTCTTGGTACAGATGCCA -CCAACAGTCTTGTCTGACGGAAAC -CCAACAGTCTTGTCTGACAACACC -CCAACAGTCTTGTCTGACATCGAG -CCAACAGTCTTGTCTGACCTCCTT -CCAACAGTCTTGTCTGACCCTGTT -CCAACAGTCTTGTCTGACCGGTTT -CCAACAGTCTTGTCTGACGTGGTT -CCAACAGTCTTGTCTGACGCCTTT -CCAACAGTCTTGTCTGACGGTCTT -CCAACAGTCTTGTCTGACACGCTT -CCAACAGTCTTGTCTGACAGCGTT -CCAACAGTCTTGTCTGACTTCGTC -CCAACAGTCTTGTCTGACTCTCTC -CCAACAGTCTTGTCTGACTGGATC -CCAACAGTCTTGTCTGACCACTTC -CCAACAGTCTTGTCTGACGTACTC -CCAACAGTCTTGTCTGACGATGTC -CCAACAGTCTTGTCTGACACAGTC -CCAACAGTCTTGTCTGACTTGCTG -CCAACAGTCTTGTCTGACTCCATG -CCAACAGTCTTGTCTGACTGTGTG -CCAACAGTCTTGTCTGACCTAGTG -CCAACAGTCTTGTCTGACCATCTG -CCAACAGTCTTGTCTGACGAGTTG -CCAACAGTCTTGTCTGACAGACTG -CCAACAGTCTTGTCTGACTCGGTA -CCAACAGTCTTGTCTGACTGCCTA -CCAACAGTCTTGTCTGACCCACTA -CCAACAGTCTTGTCTGACGGAGTA -CCAACAGTCTTGTCTGACTCGTCT -CCAACAGTCTTGTCTGACTGCACT -CCAACAGTCTTGTCTGACCTGACT -CCAACAGTCTTGTCTGACCAACCT -CCAACAGTCTTGTCTGACGCTACT -CCAACAGTCTTGTCTGACGGATCT -CCAACAGTCTTGTCTGACAAGGCT -CCAACAGTCTTGTCTGACTCAACC -CCAACAGTCTTGTCTGACTGTTCC -CCAACAGTCTTGTCTGACATTCCC -CCAACAGTCTTGTCTGACTTCTCG -CCAACAGTCTTGTCTGACTAGACG -CCAACAGTCTTGTCTGACGTAACG -CCAACAGTCTTGTCTGACACTTCG -CCAACAGTCTTGTCTGACTACGCA -CCAACAGTCTTGTCTGACCTTGCA -CCAACAGTCTTGTCTGACCGAACA -CCAACAGTCTTGTCTGACCAGTCA -CCAACAGTCTTGTCTGACGATCCA -CCAACAGTCTTGTCTGACACGACA -CCAACAGTCTTGTCTGACAGCTCA -CCAACAGTCTTGTCTGACTCACGT -CCAACAGTCTTGTCTGACCGTAGT -CCAACAGTCTTGTCTGACGTCAGT -CCAACAGTCTTGTCTGACGAAGGT -CCAACAGTCTTGTCTGACAACCGT -CCAACAGTCTTGTCTGACTTGTGC -CCAACAGTCTTGTCTGACCTAAGC -CCAACAGTCTTGTCTGACACTAGC -CCAACAGTCTTGTCTGACAGATGC -CCAACAGTCTTGTCTGACTGAAGG -CCAACAGTCTTGTCTGACCAATGG -CCAACAGTCTTGTCTGACATGAGG -CCAACAGTCTTGTCTGACAATGGG -CCAACAGTCTTGTCTGACTCCTGA -CCAACAGTCTTGTCTGACTAGCGA -CCAACAGTCTTGTCTGACCACAGA -CCAACAGTCTTGTCTGACGCAAGA -CCAACAGTCTTGTCTGACGGTTGA -CCAACAGTCTTGTCTGACTCCGAT -CCAACAGTCTTGTCTGACTGGCAT -CCAACAGTCTTGTCTGACCGAGAT -CCAACAGTCTTGTCTGACTACCAC -CCAACAGTCTTGTCTGACCAGAAC -CCAACAGTCTTGTCTGACGTCTAC -CCAACAGTCTTGTCTGACACGTAC -CCAACAGTCTTGTCTGACAGTGAC -CCAACAGTCTTGTCTGACCTGTAG -CCAACAGTCTTGTCTGACCCTAAG -CCAACAGTCTTGTCTGACGTTCAG -CCAACAGTCTTGTCTGACGCATAG -CCAACAGTCTTGTCTGACGACAAG -CCAACAGTCTTGTCTGACAAGCAG -CCAACAGTCTTGTCTGACCGTCAA -CCAACAGTCTTGTCTGACGCTGAA -CCAACAGTCTTGTCTGACAGTACG -CCAACAGTCTTGTCTGACATCCGA -CCAACAGTCTTGTCTGACATGGGA -CCAACAGTCTTGTCTGACGTGCAA -CCAACAGTCTTGTCTGACGAGGAA -CCAACAGTCTTGTCTGACCAGGTA -CCAACAGTCTTGTCTGACGACTCT -CCAACAGTCTTGTCTGACAGTCCT -CCAACAGTCTTGTCTGACTAAGCC -CCAACAGTCTTGTCTGACATAGCC -CCAACAGTCTTGTCTGACTAACCG -CCAACAGTCTTGTCTGACATGCCA -CCAACAGTCTTGCCTAGTGGAAAC -CCAACAGTCTTGCCTAGTAACACC -CCAACAGTCTTGCCTAGTATCGAG -CCAACAGTCTTGCCTAGTCTCCTT -CCAACAGTCTTGCCTAGTCCTGTT -CCAACAGTCTTGCCTAGTCGGTTT -CCAACAGTCTTGCCTAGTGTGGTT -CCAACAGTCTTGCCTAGTGCCTTT -CCAACAGTCTTGCCTAGTGGTCTT -CCAACAGTCTTGCCTAGTACGCTT -CCAACAGTCTTGCCTAGTAGCGTT -CCAACAGTCTTGCCTAGTTTCGTC -CCAACAGTCTTGCCTAGTTCTCTC -CCAACAGTCTTGCCTAGTTGGATC -CCAACAGTCTTGCCTAGTCACTTC -CCAACAGTCTTGCCTAGTGTACTC -CCAACAGTCTTGCCTAGTGATGTC -CCAACAGTCTTGCCTAGTACAGTC -CCAACAGTCTTGCCTAGTTTGCTG -CCAACAGTCTTGCCTAGTTCCATG -CCAACAGTCTTGCCTAGTTGTGTG -CCAACAGTCTTGCCTAGTCTAGTG -CCAACAGTCTTGCCTAGTCATCTG -CCAACAGTCTTGCCTAGTGAGTTG -CCAACAGTCTTGCCTAGTAGACTG -CCAACAGTCTTGCCTAGTTCGGTA -CCAACAGTCTTGCCTAGTTGCCTA -CCAACAGTCTTGCCTAGTCCACTA -CCAACAGTCTTGCCTAGTGGAGTA -CCAACAGTCTTGCCTAGTTCGTCT -CCAACAGTCTTGCCTAGTTGCACT -CCAACAGTCTTGCCTAGTCTGACT -CCAACAGTCTTGCCTAGTCAACCT -CCAACAGTCTTGCCTAGTGCTACT -CCAACAGTCTTGCCTAGTGGATCT -CCAACAGTCTTGCCTAGTAAGGCT -CCAACAGTCTTGCCTAGTTCAACC -CCAACAGTCTTGCCTAGTTGTTCC -CCAACAGTCTTGCCTAGTATTCCC -CCAACAGTCTTGCCTAGTTTCTCG -CCAACAGTCTTGCCTAGTTAGACG -CCAACAGTCTTGCCTAGTGTAACG -CCAACAGTCTTGCCTAGTACTTCG -CCAACAGTCTTGCCTAGTTACGCA -CCAACAGTCTTGCCTAGTCTTGCA -CCAACAGTCTTGCCTAGTCGAACA -CCAACAGTCTTGCCTAGTCAGTCA -CCAACAGTCTTGCCTAGTGATCCA -CCAACAGTCTTGCCTAGTACGACA -CCAACAGTCTTGCCTAGTAGCTCA -CCAACAGTCTTGCCTAGTTCACGT -CCAACAGTCTTGCCTAGTCGTAGT -CCAACAGTCTTGCCTAGTGTCAGT -CCAACAGTCTTGCCTAGTGAAGGT -CCAACAGTCTTGCCTAGTAACCGT -CCAACAGTCTTGCCTAGTTTGTGC -CCAACAGTCTTGCCTAGTCTAAGC -CCAACAGTCTTGCCTAGTACTAGC -CCAACAGTCTTGCCTAGTAGATGC -CCAACAGTCTTGCCTAGTTGAAGG -CCAACAGTCTTGCCTAGTCAATGG -CCAACAGTCTTGCCTAGTATGAGG -CCAACAGTCTTGCCTAGTAATGGG -CCAACAGTCTTGCCTAGTTCCTGA -CCAACAGTCTTGCCTAGTTAGCGA -CCAACAGTCTTGCCTAGTCACAGA -CCAACAGTCTTGCCTAGTGCAAGA -CCAACAGTCTTGCCTAGTGGTTGA -CCAACAGTCTTGCCTAGTTCCGAT -CCAACAGTCTTGCCTAGTTGGCAT -CCAACAGTCTTGCCTAGTCGAGAT -CCAACAGTCTTGCCTAGTTACCAC -CCAACAGTCTTGCCTAGTCAGAAC -CCAACAGTCTTGCCTAGTGTCTAC -CCAACAGTCTTGCCTAGTACGTAC -CCAACAGTCTTGCCTAGTAGTGAC -CCAACAGTCTTGCCTAGTCTGTAG -CCAACAGTCTTGCCTAGTCCTAAG -CCAACAGTCTTGCCTAGTGTTCAG -CCAACAGTCTTGCCTAGTGCATAG -CCAACAGTCTTGCCTAGTGACAAG -CCAACAGTCTTGCCTAGTAAGCAG -CCAACAGTCTTGCCTAGTCGTCAA -CCAACAGTCTTGCCTAGTGCTGAA -CCAACAGTCTTGCCTAGTAGTACG -CCAACAGTCTTGCCTAGTATCCGA -CCAACAGTCTTGCCTAGTATGGGA -CCAACAGTCTTGCCTAGTGTGCAA -CCAACAGTCTTGCCTAGTGAGGAA -CCAACAGTCTTGCCTAGTCAGGTA -CCAACAGTCTTGCCTAGTGACTCT -CCAACAGTCTTGCCTAGTAGTCCT -CCAACAGTCTTGCCTAGTTAAGCC -CCAACAGTCTTGCCTAGTATAGCC -CCAACAGTCTTGCCTAGTTAACCG -CCAACAGTCTTGCCTAGTATGCCA -CCAACAGTCTTGGCCTAAGGAAAC -CCAACAGTCTTGGCCTAAAACACC -CCAACAGTCTTGGCCTAAATCGAG -CCAACAGTCTTGGCCTAACTCCTT -CCAACAGTCTTGGCCTAACCTGTT -CCAACAGTCTTGGCCTAACGGTTT -CCAACAGTCTTGGCCTAAGTGGTT -CCAACAGTCTTGGCCTAAGCCTTT -CCAACAGTCTTGGCCTAAGGTCTT -CCAACAGTCTTGGCCTAAACGCTT -CCAACAGTCTTGGCCTAAAGCGTT -CCAACAGTCTTGGCCTAATTCGTC -CCAACAGTCTTGGCCTAATCTCTC -CCAACAGTCTTGGCCTAATGGATC -CCAACAGTCTTGGCCTAACACTTC -CCAACAGTCTTGGCCTAAGTACTC -CCAACAGTCTTGGCCTAAGATGTC -CCAACAGTCTTGGCCTAAACAGTC -CCAACAGTCTTGGCCTAATTGCTG -CCAACAGTCTTGGCCTAATCCATG -CCAACAGTCTTGGCCTAATGTGTG -CCAACAGTCTTGGCCTAACTAGTG -CCAACAGTCTTGGCCTAACATCTG -CCAACAGTCTTGGCCTAAGAGTTG -CCAACAGTCTTGGCCTAAAGACTG -CCAACAGTCTTGGCCTAATCGGTA -CCAACAGTCTTGGCCTAATGCCTA -CCAACAGTCTTGGCCTAACCACTA -CCAACAGTCTTGGCCTAAGGAGTA -CCAACAGTCTTGGCCTAATCGTCT -CCAACAGTCTTGGCCTAATGCACT -CCAACAGTCTTGGCCTAACTGACT -CCAACAGTCTTGGCCTAACAACCT -CCAACAGTCTTGGCCTAAGCTACT -CCAACAGTCTTGGCCTAAGGATCT -CCAACAGTCTTGGCCTAAAAGGCT -CCAACAGTCTTGGCCTAATCAACC -CCAACAGTCTTGGCCTAATGTTCC -CCAACAGTCTTGGCCTAAATTCCC -CCAACAGTCTTGGCCTAATTCTCG -CCAACAGTCTTGGCCTAATAGACG -CCAACAGTCTTGGCCTAAGTAACG -CCAACAGTCTTGGCCTAAACTTCG -CCAACAGTCTTGGCCTAATACGCA -CCAACAGTCTTGGCCTAACTTGCA -CCAACAGTCTTGGCCTAACGAACA -CCAACAGTCTTGGCCTAACAGTCA -CCAACAGTCTTGGCCTAAGATCCA -CCAACAGTCTTGGCCTAAACGACA -CCAACAGTCTTGGCCTAAAGCTCA -CCAACAGTCTTGGCCTAATCACGT -CCAACAGTCTTGGCCTAACGTAGT -CCAACAGTCTTGGCCTAAGTCAGT -CCAACAGTCTTGGCCTAAGAAGGT -CCAACAGTCTTGGCCTAAAACCGT -CCAACAGTCTTGGCCTAATTGTGC -CCAACAGTCTTGGCCTAACTAAGC -CCAACAGTCTTGGCCTAAACTAGC -CCAACAGTCTTGGCCTAAAGATGC -CCAACAGTCTTGGCCTAATGAAGG -CCAACAGTCTTGGCCTAACAATGG -CCAACAGTCTTGGCCTAAATGAGG -CCAACAGTCTTGGCCTAAAATGGG -CCAACAGTCTTGGCCTAATCCTGA -CCAACAGTCTTGGCCTAATAGCGA -CCAACAGTCTTGGCCTAACACAGA -CCAACAGTCTTGGCCTAAGCAAGA -CCAACAGTCTTGGCCTAAGGTTGA -CCAACAGTCTTGGCCTAATCCGAT -CCAACAGTCTTGGCCTAATGGCAT -CCAACAGTCTTGGCCTAACGAGAT -CCAACAGTCTTGGCCTAATACCAC -CCAACAGTCTTGGCCTAACAGAAC -CCAACAGTCTTGGCCTAAGTCTAC -CCAACAGTCTTGGCCTAAACGTAC -CCAACAGTCTTGGCCTAAAGTGAC -CCAACAGTCTTGGCCTAACTGTAG -CCAACAGTCTTGGCCTAACCTAAG -CCAACAGTCTTGGCCTAAGTTCAG -CCAACAGTCTTGGCCTAAGCATAG -CCAACAGTCTTGGCCTAAGACAAG -CCAACAGTCTTGGCCTAAAAGCAG -CCAACAGTCTTGGCCTAACGTCAA -CCAACAGTCTTGGCCTAAGCTGAA -CCAACAGTCTTGGCCTAAAGTACG -CCAACAGTCTTGGCCTAAATCCGA -CCAACAGTCTTGGCCTAAATGGGA -CCAACAGTCTTGGCCTAAGTGCAA -CCAACAGTCTTGGCCTAAGAGGAA -CCAACAGTCTTGGCCTAACAGGTA -CCAACAGTCTTGGCCTAAGACTCT -CCAACAGTCTTGGCCTAAAGTCCT -CCAACAGTCTTGGCCTAATAAGCC -CCAACAGTCTTGGCCTAAATAGCC -CCAACAGTCTTGGCCTAATAACCG -CCAACAGTCTTGGCCTAAATGCCA -CCAACAGTCTTGGCCATAGGAAAC -CCAACAGTCTTGGCCATAAACACC -CCAACAGTCTTGGCCATAATCGAG -CCAACAGTCTTGGCCATACTCCTT -CCAACAGTCTTGGCCATACCTGTT -CCAACAGTCTTGGCCATACGGTTT -CCAACAGTCTTGGCCATAGTGGTT -CCAACAGTCTTGGCCATAGCCTTT -CCAACAGTCTTGGCCATAGGTCTT -CCAACAGTCTTGGCCATAACGCTT -CCAACAGTCTTGGCCATAAGCGTT -CCAACAGTCTTGGCCATATTCGTC -CCAACAGTCTTGGCCATATCTCTC -CCAACAGTCTTGGCCATATGGATC -CCAACAGTCTTGGCCATACACTTC -CCAACAGTCTTGGCCATAGTACTC -CCAACAGTCTTGGCCATAGATGTC -CCAACAGTCTTGGCCATAACAGTC -CCAACAGTCTTGGCCATATTGCTG -CCAACAGTCTTGGCCATATCCATG -CCAACAGTCTTGGCCATATGTGTG -CCAACAGTCTTGGCCATACTAGTG -CCAACAGTCTTGGCCATACATCTG -CCAACAGTCTTGGCCATAGAGTTG -CCAACAGTCTTGGCCATAAGACTG -CCAACAGTCTTGGCCATATCGGTA -CCAACAGTCTTGGCCATATGCCTA -CCAACAGTCTTGGCCATACCACTA -CCAACAGTCTTGGCCATAGGAGTA -CCAACAGTCTTGGCCATATCGTCT -CCAACAGTCTTGGCCATATGCACT -CCAACAGTCTTGGCCATACTGACT -CCAACAGTCTTGGCCATACAACCT -CCAACAGTCTTGGCCATAGCTACT -CCAACAGTCTTGGCCATAGGATCT -CCAACAGTCTTGGCCATAAAGGCT -CCAACAGTCTTGGCCATATCAACC -CCAACAGTCTTGGCCATATGTTCC -CCAACAGTCTTGGCCATAATTCCC -CCAACAGTCTTGGCCATATTCTCG -CCAACAGTCTTGGCCATATAGACG -CCAACAGTCTTGGCCATAGTAACG -CCAACAGTCTTGGCCATAACTTCG -CCAACAGTCTTGGCCATATACGCA -CCAACAGTCTTGGCCATACTTGCA -CCAACAGTCTTGGCCATACGAACA -CCAACAGTCTTGGCCATACAGTCA -CCAACAGTCTTGGCCATAGATCCA -CCAACAGTCTTGGCCATAACGACA -CCAACAGTCTTGGCCATAAGCTCA -CCAACAGTCTTGGCCATATCACGT -CCAACAGTCTTGGCCATACGTAGT -CCAACAGTCTTGGCCATAGTCAGT -CCAACAGTCTTGGCCATAGAAGGT -CCAACAGTCTTGGCCATAAACCGT -CCAACAGTCTTGGCCATATTGTGC -CCAACAGTCTTGGCCATACTAAGC -CCAACAGTCTTGGCCATAACTAGC -CCAACAGTCTTGGCCATAAGATGC -CCAACAGTCTTGGCCATATGAAGG -CCAACAGTCTTGGCCATACAATGG -CCAACAGTCTTGGCCATAATGAGG -CCAACAGTCTTGGCCATAAATGGG -CCAACAGTCTTGGCCATATCCTGA -CCAACAGTCTTGGCCATATAGCGA -CCAACAGTCTTGGCCATACACAGA -CCAACAGTCTTGGCCATAGCAAGA -CCAACAGTCTTGGCCATAGGTTGA -CCAACAGTCTTGGCCATATCCGAT -CCAACAGTCTTGGCCATATGGCAT -CCAACAGTCTTGGCCATACGAGAT -CCAACAGTCTTGGCCATATACCAC -CCAACAGTCTTGGCCATACAGAAC -CCAACAGTCTTGGCCATAGTCTAC -CCAACAGTCTTGGCCATAACGTAC -CCAACAGTCTTGGCCATAAGTGAC -CCAACAGTCTTGGCCATACTGTAG -CCAACAGTCTTGGCCATACCTAAG -CCAACAGTCTTGGCCATAGTTCAG -CCAACAGTCTTGGCCATAGCATAG -CCAACAGTCTTGGCCATAGACAAG -CCAACAGTCTTGGCCATAAAGCAG -CCAACAGTCTTGGCCATACGTCAA -CCAACAGTCTTGGCCATAGCTGAA -CCAACAGTCTTGGCCATAAGTACG -CCAACAGTCTTGGCCATAATCCGA -CCAACAGTCTTGGCCATAATGGGA -CCAACAGTCTTGGCCATAGTGCAA -CCAACAGTCTTGGCCATAGAGGAA -CCAACAGTCTTGGCCATACAGGTA -CCAACAGTCTTGGCCATAGACTCT -CCAACAGTCTTGGCCATAAGTCCT -CCAACAGTCTTGGCCATATAAGCC -CCAACAGTCTTGGCCATAATAGCC -CCAACAGTCTTGGCCATATAACCG -CCAACAGTCTTGGCCATAATGCCA -CCAACAGTCTTGCCGTAAGGAAAC -CCAACAGTCTTGCCGTAAAACACC -CCAACAGTCTTGCCGTAAATCGAG -CCAACAGTCTTGCCGTAACTCCTT -CCAACAGTCTTGCCGTAACCTGTT -CCAACAGTCTTGCCGTAACGGTTT -CCAACAGTCTTGCCGTAAGTGGTT -CCAACAGTCTTGCCGTAAGCCTTT -CCAACAGTCTTGCCGTAAGGTCTT -CCAACAGTCTTGCCGTAAACGCTT -CCAACAGTCTTGCCGTAAAGCGTT -CCAACAGTCTTGCCGTAATTCGTC -CCAACAGTCTTGCCGTAATCTCTC -CCAACAGTCTTGCCGTAATGGATC -CCAACAGTCTTGCCGTAACACTTC -CCAACAGTCTTGCCGTAAGTACTC -CCAACAGTCTTGCCGTAAGATGTC -CCAACAGTCTTGCCGTAAACAGTC -CCAACAGTCTTGCCGTAATTGCTG -CCAACAGTCTTGCCGTAATCCATG -CCAACAGTCTTGCCGTAATGTGTG -CCAACAGTCTTGCCGTAACTAGTG -CCAACAGTCTTGCCGTAACATCTG -CCAACAGTCTTGCCGTAAGAGTTG -CCAACAGTCTTGCCGTAAAGACTG -CCAACAGTCTTGCCGTAATCGGTA -CCAACAGTCTTGCCGTAATGCCTA -CCAACAGTCTTGCCGTAACCACTA -CCAACAGTCTTGCCGTAAGGAGTA -CCAACAGTCTTGCCGTAATCGTCT -CCAACAGTCTTGCCGTAATGCACT -CCAACAGTCTTGCCGTAACTGACT -CCAACAGTCTTGCCGTAACAACCT -CCAACAGTCTTGCCGTAAGCTACT -CCAACAGTCTTGCCGTAAGGATCT -CCAACAGTCTTGCCGTAAAAGGCT -CCAACAGTCTTGCCGTAATCAACC -CCAACAGTCTTGCCGTAATGTTCC -CCAACAGTCTTGCCGTAAATTCCC -CCAACAGTCTTGCCGTAATTCTCG -CCAACAGTCTTGCCGTAATAGACG -CCAACAGTCTTGCCGTAAGTAACG -CCAACAGTCTTGCCGTAAACTTCG -CCAACAGTCTTGCCGTAATACGCA -CCAACAGTCTTGCCGTAACTTGCA -CCAACAGTCTTGCCGTAACGAACA -CCAACAGTCTTGCCGTAACAGTCA -CCAACAGTCTTGCCGTAAGATCCA -CCAACAGTCTTGCCGTAAACGACA -CCAACAGTCTTGCCGTAAAGCTCA -CCAACAGTCTTGCCGTAATCACGT -CCAACAGTCTTGCCGTAACGTAGT -CCAACAGTCTTGCCGTAAGTCAGT -CCAACAGTCTTGCCGTAAGAAGGT -CCAACAGTCTTGCCGTAAAACCGT -CCAACAGTCTTGCCGTAATTGTGC -CCAACAGTCTTGCCGTAACTAAGC -CCAACAGTCTTGCCGTAAACTAGC -CCAACAGTCTTGCCGTAAAGATGC -CCAACAGTCTTGCCGTAATGAAGG -CCAACAGTCTTGCCGTAACAATGG -CCAACAGTCTTGCCGTAAATGAGG -CCAACAGTCTTGCCGTAAAATGGG -CCAACAGTCTTGCCGTAATCCTGA -CCAACAGTCTTGCCGTAATAGCGA -CCAACAGTCTTGCCGTAACACAGA -CCAACAGTCTTGCCGTAAGCAAGA -CCAACAGTCTTGCCGTAAGGTTGA -CCAACAGTCTTGCCGTAATCCGAT -CCAACAGTCTTGCCGTAATGGCAT -CCAACAGTCTTGCCGTAACGAGAT -CCAACAGTCTTGCCGTAATACCAC -CCAACAGTCTTGCCGTAACAGAAC -CCAACAGTCTTGCCGTAAGTCTAC -CCAACAGTCTTGCCGTAAACGTAC -CCAACAGTCTTGCCGTAAAGTGAC -CCAACAGTCTTGCCGTAACTGTAG -CCAACAGTCTTGCCGTAACCTAAG -CCAACAGTCTTGCCGTAAGTTCAG -CCAACAGTCTTGCCGTAAGCATAG -CCAACAGTCTTGCCGTAAGACAAG -CCAACAGTCTTGCCGTAAAAGCAG -CCAACAGTCTTGCCGTAACGTCAA -CCAACAGTCTTGCCGTAAGCTGAA -CCAACAGTCTTGCCGTAAAGTACG -CCAACAGTCTTGCCGTAAATCCGA -CCAACAGTCTTGCCGTAAATGGGA -CCAACAGTCTTGCCGTAAGTGCAA -CCAACAGTCTTGCCGTAAGAGGAA -CCAACAGTCTTGCCGTAACAGGTA -CCAACAGTCTTGCCGTAAGACTCT -CCAACAGTCTTGCCGTAAAGTCCT -CCAACAGTCTTGCCGTAATAAGCC -CCAACAGTCTTGCCGTAAATAGCC -CCAACAGTCTTGCCGTAATAACCG -CCAACAGTCTTGCCGTAAATGCCA -CCAACAGTCTTGCCAATGGGAAAC -CCAACAGTCTTGCCAATGAACACC -CCAACAGTCTTGCCAATGATCGAG -CCAACAGTCTTGCCAATGCTCCTT -CCAACAGTCTTGCCAATGCCTGTT -CCAACAGTCTTGCCAATGCGGTTT -CCAACAGTCTTGCCAATGGTGGTT -CCAACAGTCTTGCCAATGGCCTTT -CCAACAGTCTTGCCAATGGGTCTT -CCAACAGTCTTGCCAATGACGCTT -CCAACAGTCTTGCCAATGAGCGTT -CCAACAGTCTTGCCAATGTTCGTC -CCAACAGTCTTGCCAATGTCTCTC -CCAACAGTCTTGCCAATGTGGATC -CCAACAGTCTTGCCAATGCACTTC -CCAACAGTCTTGCCAATGGTACTC -CCAACAGTCTTGCCAATGGATGTC -CCAACAGTCTTGCCAATGACAGTC -CCAACAGTCTTGCCAATGTTGCTG -CCAACAGTCTTGCCAATGTCCATG -CCAACAGTCTTGCCAATGTGTGTG -CCAACAGTCTTGCCAATGCTAGTG -CCAACAGTCTTGCCAATGCATCTG -CCAACAGTCTTGCCAATGGAGTTG -CCAACAGTCTTGCCAATGAGACTG -CCAACAGTCTTGCCAATGTCGGTA -CCAACAGTCTTGCCAATGTGCCTA -CCAACAGTCTTGCCAATGCCACTA -CCAACAGTCTTGCCAATGGGAGTA -CCAACAGTCTTGCCAATGTCGTCT -CCAACAGTCTTGCCAATGTGCACT -CCAACAGTCTTGCCAATGCTGACT -CCAACAGTCTTGCCAATGCAACCT -CCAACAGTCTTGCCAATGGCTACT -CCAACAGTCTTGCCAATGGGATCT -CCAACAGTCTTGCCAATGAAGGCT -CCAACAGTCTTGCCAATGTCAACC -CCAACAGTCTTGCCAATGTGTTCC -CCAACAGTCTTGCCAATGATTCCC -CCAACAGTCTTGCCAATGTTCTCG -CCAACAGTCTTGCCAATGTAGACG -CCAACAGTCTTGCCAATGGTAACG -CCAACAGTCTTGCCAATGACTTCG -CCAACAGTCTTGCCAATGTACGCA -CCAACAGTCTTGCCAATGCTTGCA -CCAACAGTCTTGCCAATGCGAACA -CCAACAGTCTTGCCAATGCAGTCA -CCAACAGTCTTGCCAATGGATCCA -CCAACAGTCTTGCCAATGACGACA -CCAACAGTCTTGCCAATGAGCTCA -CCAACAGTCTTGCCAATGTCACGT -CCAACAGTCTTGCCAATGCGTAGT -CCAACAGTCTTGCCAATGGTCAGT -CCAACAGTCTTGCCAATGGAAGGT -CCAACAGTCTTGCCAATGAACCGT -CCAACAGTCTTGCCAATGTTGTGC -CCAACAGTCTTGCCAATGCTAAGC -CCAACAGTCTTGCCAATGACTAGC -CCAACAGTCTTGCCAATGAGATGC -CCAACAGTCTTGCCAATGTGAAGG -CCAACAGTCTTGCCAATGCAATGG -CCAACAGTCTTGCCAATGATGAGG -CCAACAGTCTTGCCAATGAATGGG -CCAACAGTCTTGCCAATGTCCTGA -CCAACAGTCTTGCCAATGTAGCGA -CCAACAGTCTTGCCAATGCACAGA -CCAACAGTCTTGCCAATGGCAAGA -CCAACAGTCTTGCCAATGGGTTGA -CCAACAGTCTTGCCAATGTCCGAT -CCAACAGTCTTGCCAATGTGGCAT -CCAACAGTCTTGCCAATGCGAGAT -CCAACAGTCTTGCCAATGTACCAC -CCAACAGTCTTGCCAATGCAGAAC -CCAACAGTCTTGCCAATGGTCTAC -CCAACAGTCTTGCCAATGACGTAC -CCAACAGTCTTGCCAATGAGTGAC -CCAACAGTCTTGCCAATGCTGTAG -CCAACAGTCTTGCCAATGCCTAAG -CCAACAGTCTTGCCAATGGTTCAG -CCAACAGTCTTGCCAATGGCATAG -CCAACAGTCTTGCCAATGGACAAG -CCAACAGTCTTGCCAATGAAGCAG -CCAACAGTCTTGCCAATGCGTCAA -CCAACAGTCTTGCCAATGGCTGAA -CCAACAGTCTTGCCAATGAGTACG -CCAACAGTCTTGCCAATGATCCGA -CCAACAGTCTTGCCAATGATGGGA -CCAACAGTCTTGCCAATGGTGCAA -CCAACAGTCTTGCCAATGGAGGAA -CCAACAGTCTTGCCAATGCAGGTA -CCAACAGTCTTGCCAATGGACTCT -CCAACAGTCTTGCCAATGAGTCCT -CCAACAGTCTTGCCAATGTAAGCC -CCAACAGTCTTGCCAATGATAGCC -CCAACAGTCTTGCCAATGTAACCG -CCAACAGTCTTGCCAATGATGCCA -CCAACACGCTTAAACGGAGGAAAC -CCAACACGCTTAAACGGAAACACC -CCAACACGCTTAAACGGAATCGAG -CCAACACGCTTAAACGGACTCCTT -CCAACACGCTTAAACGGACCTGTT -CCAACACGCTTAAACGGACGGTTT -CCAACACGCTTAAACGGAGTGGTT -CCAACACGCTTAAACGGAGCCTTT -CCAACACGCTTAAACGGAGGTCTT -CCAACACGCTTAAACGGAACGCTT -CCAACACGCTTAAACGGAAGCGTT -CCAACACGCTTAAACGGATTCGTC -CCAACACGCTTAAACGGATCTCTC -CCAACACGCTTAAACGGATGGATC -CCAACACGCTTAAACGGACACTTC -CCAACACGCTTAAACGGAGTACTC -CCAACACGCTTAAACGGAGATGTC -CCAACACGCTTAAACGGAACAGTC -CCAACACGCTTAAACGGATTGCTG -CCAACACGCTTAAACGGATCCATG -CCAACACGCTTAAACGGATGTGTG -CCAACACGCTTAAACGGACTAGTG -CCAACACGCTTAAACGGACATCTG -CCAACACGCTTAAACGGAGAGTTG -CCAACACGCTTAAACGGAAGACTG -CCAACACGCTTAAACGGATCGGTA -CCAACACGCTTAAACGGATGCCTA -CCAACACGCTTAAACGGACCACTA -CCAACACGCTTAAACGGAGGAGTA -CCAACACGCTTAAACGGATCGTCT -CCAACACGCTTAAACGGATGCACT -CCAACACGCTTAAACGGACTGACT -CCAACACGCTTAAACGGACAACCT -CCAACACGCTTAAACGGAGCTACT -CCAACACGCTTAAACGGAGGATCT -CCAACACGCTTAAACGGAAAGGCT -CCAACACGCTTAAACGGATCAACC -CCAACACGCTTAAACGGATGTTCC -CCAACACGCTTAAACGGAATTCCC -CCAACACGCTTAAACGGATTCTCG -CCAACACGCTTAAACGGATAGACG -CCAACACGCTTAAACGGAGTAACG -CCAACACGCTTAAACGGAACTTCG -CCAACACGCTTAAACGGATACGCA -CCAACACGCTTAAACGGACTTGCA -CCAACACGCTTAAACGGACGAACA -CCAACACGCTTAAACGGACAGTCA -CCAACACGCTTAAACGGAGATCCA -CCAACACGCTTAAACGGAACGACA -CCAACACGCTTAAACGGAAGCTCA -CCAACACGCTTAAACGGATCACGT -CCAACACGCTTAAACGGACGTAGT -CCAACACGCTTAAACGGAGTCAGT -CCAACACGCTTAAACGGAGAAGGT -CCAACACGCTTAAACGGAAACCGT -CCAACACGCTTAAACGGATTGTGC -CCAACACGCTTAAACGGACTAAGC -CCAACACGCTTAAACGGAACTAGC -CCAACACGCTTAAACGGAAGATGC -CCAACACGCTTAAACGGATGAAGG -CCAACACGCTTAAACGGACAATGG -CCAACACGCTTAAACGGAATGAGG -CCAACACGCTTAAACGGAAATGGG -CCAACACGCTTAAACGGATCCTGA -CCAACACGCTTAAACGGATAGCGA -CCAACACGCTTAAACGGACACAGA -CCAACACGCTTAAACGGAGCAAGA -CCAACACGCTTAAACGGAGGTTGA -CCAACACGCTTAAACGGATCCGAT -CCAACACGCTTAAACGGATGGCAT -CCAACACGCTTAAACGGACGAGAT -CCAACACGCTTAAACGGATACCAC -CCAACACGCTTAAACGGACAGAAC -CCAACACGCTTAAACGGAGTCTAC -CCAACACGCTTAAACGGAACGTAC -CCAACACGCTTAAACGGAAGTGAC -CCAACACGCTTAAACGGACTGTAG -CCAACACGCTTAAACGGACCTAAG -CCAACACGCTTAAACGGAGTTCAG -CCAACACGCTTAAACGGAGCATAG -CCAACACGCTTAAACGGAGACAAG -CCAACACGCTTAAACGGAAAGCAG -CCAACACGCTTAAACGGACGTCAA -CCAACACGCTTAAACGGAGCTGAA -CCAACACGCTTAAACGGAAGTACG -CCAACACGCTTAAACGGAATCCGA -CCAACACGCTTAAACGGAATGGGA -CCAACACGCTTAAACGGAGTGCAA -CCAACACGCTTAAACGGAGAGGAA -CCAACACGCTTAAACGGACAGGTA -CCAACACGCTTAAACGGAGACTCT -CCAACACGCTTAAACGGAAGTCCT -CCAACACGCTTAAACGGATAAGCC -CCAACACGCTTAAACGGAATAGCC -CCAACACGCTTAAACGGATAACCG -CCAACACGCTTAAACGGAATGCCA -CCAACACGCTTAACCAACGGAAAC -CCAACACGCTTAACCAACAACACC -CCAACACGCTTAACCAACATCGAG -CCAACACGCTTAACCAACCTCCTT -CCAACACGCTTAACCAACCCTGTT -CCAACACGCTTAACCAACCGGTTT -CCAACACGCTTAACCAACGTGGTT -CCAACACGCTTAACCAACGCCTTT -CCAACACGCTTAACCAACGGTCTT -CCAACACGCTTAACCAACACGCTT -CCAACACGCTTAACCAACAGCGTT -CCAACACGCTTAACCAACTTCGTC -CCAACACGCTTAACCAACTCTCTC -CCAACACGCTTAACCAACTGGATC -CCAACACGCTTAACCAACCACTTC -CCAACACGCTTAACCAACGTACTC -CCAACACGCTTAACCAACGATGTC -CCAACACGCTTAACCAACACAGTC -CCAACACGCTTAACCAACTTGCTG -CCAACACGCTTAACCAACTCCATG -CCAACACGCTTAACCAACTGTGTG -CCAACACGCTTAACCAACCTAGTG -CCAACACGCTTAACCAACCATCTG -CCAACACGCTTAACCAACGAGTTG -CCAACACGCTTAACCAACAGACTG -CCAACACGCTTAACCAACTCGGTA -CCAACACGCTTAACCAACTGCCTA -CCAACACGCTTAACCAACCCACTA -CCAACACGCTTAACCAACGGAGTA -CCAACACGCTTAACCAACTCGTCT -CCAACACGCTTAACCAACTGCACT -CCAACACGCTTAACCAACCTGACT -CCAACACGCTTAACCAACCAACCT -CCAACACGCTTAACCAACGCTACT -CCAACACGCTTAACCAACGGATCT -CCAACACGCTTAACCAACAAGGCT -CCAACACGCTTAACCAACTCAACC -CCAACACGCTTAACCAACTGTTCC -CCAACACGCTTAACCAACATTCCC -CCAACACGCTTAACCAACTTCTCG -CCAACACGCTTAACCAACTAGACG -CCAACACGCTTAACCAACGTAACG -CCAACACGCTTAACCAACACTTCG -CCAACACGCTTAACCAACTACGCA -CCAACACGCTTAACCAACCTTGCA -CCAACACGCTTAACCAACCGAACA -CCAACACGCTTAACCAACCAGTCA -CCAACACGCTTAACCAACGATCCA -CCAACACGCTTAACCAACACGACA -CCAACACGCTTAACCAACAGCTCA -CCAACACGCTTAACCAACTCACGT -CCAACACGCTTAACCAACCGTAGT -CCAACACGCTTAACCAACGTCAGT -CCAACACGCTTAACCAACGAAGGT -CCAACACGCTTAACCAACAACCGT -CCAACACGCTTAACCAACTTGTGC -CCAACACGCTTAACCAACCTAAGC -CCAACACGCTTAACCAACACTAGC -CCAACACGCTTAACCAACAGATGC -CCAACACGCTTAACCAACTGAAGG -CCAACACGCTTAACCAACCAATGG -CCAACACGCTTAACCAACATGAGG -CCAACACGCTTAACCAACAATGGG -CCAACACGCTTAACCAACTCCTGA -CCAACACGCTTAACCAACTAGCGA -CCAACACGCTTAACCAACCACAGA -CCAACACGCTTAACCAACGCAAGA -CCAACACGCTTAACCAACGGTTGA -CCAACACGCTTAACCAACTCCGAT -CCAACACGCTTAACCAACTGGCAT -CCAACACGCTTAACCAACCGAGAT -CCAACACGCTTAACCAACTACCAC -CCAACACGCTTAACCAACCAGAAC -CCAACACGCTTAACCAACGTCTAC -CCAACACGCTTAACCAACACGTAC -CCAACACGCTTAACCAACAGTGAC -CCAACACGCTTAACCAACCTGTAG -CCAACACGCTTAACCAACCCTAAG -CCAACACGCTTAACCAACGTTCAG -CCAACACGCTTAACCAACGCATAG -CCAACACGCTTAACCAACGACAAG -CCAACACGCTTAACCAACAAGCAG -CCAACACGCTTAACCAACCGTCAA -CCAACACGCTTAACCAACGCTGAA -CCAACACGCTTAACCAACAGTACG -CCAACACGCTTAACCAACATCCGA -CCAACACGCTTAACCAACATGGGA -CCAACACGCTTAACCAACGTGCAA -CCAACACGCTTAACCAACGAGGAA -CCAACACGCTTAACCAACCAGGTA -CCAACACGCTTAACCAACGACTCT -CCAACACGCTTAACCAACAGTCCT -CCAACACGCTTAACCAACTAAGCC -CCAACACGCTTAACCAACATAGCC -CCAACACGCTTAACCAACTAACCG -CCAACACGCTTAACCAACATGCCA -CCAACACGCTTAGAGATCGGAAAC -CCAACACGCTTAGAGATCAACACC -CCAACACGCTTAGAGATCATCGAG -CCAACACGCTTAGAGATCCTCCTT -CCAACACGCTTAGAGATCCCTGTT -CCAACACGCTTAGAGATCCGGTTT -CCAACACGCTTAGAGATCGTGGTT -CCAACACGCTTAGAGATCGCCTTT -CCAACACGCTTAGAGATCGGTCTT -CCAACACGCTTAGAGATCACGCTT -CCAACACGCTTAGAGATCAGCGTT -CCAACACGCTTAGAGATCTTCGTC -CCAACACGCTTAGAGATCTCTCTC -CCAACACGCTTAGAGATCTGGATC -CCAACACGCTTAGAGATCCACTTC -CCAACACGCTTAGAGATCGTACTC -CCAACACGCTTAGAGATCGATGTC -CCAACACGCTTAGAGATCACAGTC -CCAACACGCTTAGAGATCTTGCTG -CCAACACGCTTAGAGATCTCCATG -CCAACACGCTTAGAGATCTGTGTG -CCAACACGCTTAGAGATCCTAGTG -CCAACACGCTTAGAGATCCATCTG -CCAACACGCTTAGAGATCGAGTTG -CCAACACGCTTAGAGATCAGACTG -CCAACACGCTTAGAGATCTCGGTA -CCAACACGCTTAGAGATCTGCCTA -CCAACACGCTTAGAGATCCCACTA -CCAACACGCTTAGAGATCGGAGTA -CCAACACGCTTAGAGATCTCGTCT -CCAACACGCTTAGAGATCTGCACT -CCAACACGCTTAGAGATCCTGACT -CCAACACGCTTAGAGATCCAACCT -CCAACACGCTTAGAGATCGCTACT -CCAACACGCTTAGAGATCGGATCT -CCAACACGCTTAGAGATCAAGGCT -CCAACACGCTTAGAGATCTCAACC -CCAACACGCTTAGAGATCTGTTCC -CCAACACGCTTAGAGATCATTCCC -CCAACACGCTTAGAGATCTTCTCG -CCAACACGCTTAGAGATCTAGACG -CCAACACGCTTAGAGATCGTAACG -CCAACACGCTTAGAGATCACTTCG -CCAACACGCTTAGAGATCTACGCA -CCAACACGCTTAGAGATCCTTGCA -CCAACACGCTTAGAGATCCGAACA -CCAACACGCTTAGAGATCCAGTCA -CCAACACGCTTAGAGATCGATCCA -CCAACACGCTTAGAGATCACGACA -CCAACACGCTTAGAGATCAGCTCA -CCAACACGCTTAGAGATCTCACGT -CCAACACGCTTAGAGATCCGTAGT -CCAACACGCTTAGAGATCGTCAGT -CCAACACGCTTAGAGATCGAAGGT -CCAACACGCTTAGAGATCAACCGT -CCAACACGCTTAGAGATCTTGTGC -CCAACACGCTTAGAGATCCTAAGC -CCAACACGCTTAGAGATCACTAGC -CCAACACGCTTAGAGATCAGATGC -CCAACACGCTTAGAGATCTGAAGG -CCAACACGCTTAGAGATCCAATGG -CCAACACGCTTAGAGATCATGAGG -CCAACACGCTTAGAGATCAATGGG -CCAACACGCTTAGAGATCTCCTGA -CCAACACGCTTAGAGATCTAGCGA -CCAACACGCTTAGAGATCCACAGA -CCAACACGCTTAGAGATCGCAAGA -CCAACACGCTTAGAGATCGGTTGA -CCAACACGCTTAGAGATCTCCGAT -CCAACACGCTTAGAGATCTGGCAT -CCAACACGCTTAGAGATCCGAGAT -CCAACACGCTTAGAGATCTACCAC -CCAACACGCTTAGAGATCCAGAAC -CCAACACGCTTAGAGATCGTCTAC -CCAACACGCTTAGAGATCACGTAC -CCAACACGCTTAGAGATCAGTGAC -CCAACACGCTTAGAGATCCTGTAG -CCAACACGCTTAGAGATCCCTAAG -CCAACACGCTTAGAGATCGTTCAG -CCAACACGCTTAGAGATCGCATAG -CCAACACGCTTAGAGATCGACAAG -CCAACACGCTTAGAGATCAAGCAG -CCAACACGCTTAGAGATCCGTCAA -CCAACACGCTTAGAGATCGCTGAA -CCAACACGCTTAGAGATCAGTACG -CCAACACGCTTAGAGATCATCCGA -CCAACACGCTTAGAGATCATGGGA -CCAACACGCTTAGAGATCGTGCAA -CCAACACGCTTAGAGATCGAGGAA -CCAACACGCTTAGAGATCCAGGTA -CCAACACGCTTAGAGATCGACTCT -CCAACACGCTTAGAGATCAGTCCT -CCAACACGCTTAGAGATCTAAGCC -CCAACACGCTTAGAGATCATAGCC -CCAACACGCTTAGAGATCTAACCG -CCAACACGCTTAGAGATCATGCCA -CCAACACGCTTACTTCTCGGAAAC -CCAACACGCTTACTTCTCAACACC -CCAACACGCTTACTTCTCATCGAG -CCAACACGCTTACTTCTCCTCCTT -CCAACACGCTTACTTCTCCCTGTT -CCAACACGCTTACTTCTCCGGTTT -CCAACACGCTTACTTCTCGTGGTT -CCAACACGCTTACTTCTCGCCTTT -CCAACACGCTTACTTCTCGGTCTT -CCAACACGCTTACTTCTCACGCTT -CCAACACGCTTACTTCTCAGCGTT -CCAACACGCTTACTTCTCTTCGTC -CCAACACGCTTACTTCTCTCTCTC -CCAACACGCTTACTTCTCTGGATC -CCAACACGCTTACTTCTCCACTTC -CCAACACGCTTACTTCTCGTACTC -CCAACACGCTTACTTCTCGATGTC -CCAACACGCTTACTTCTCACAGTC -CCAACACGCTTACTTCTCTTGCTG -CCAACACGCTTACTTCTCTCCATG -CCAACACGCTTACTTCTCTGTGTG -CCAACACGCTTACTTCTCCTAGTG -CCAACACGCTTACTTCTCCATCTG -CCAACACGCTTACTTCTCGAGTTG -CCAACACGCTTACTTCTCAGACTG -CCAACACGCTTACTTCTCTCGGTA -CCAACACGCTTACTTCTCTGCCTA -CCAACACGCTTACTTCTCCCACTA -CCAACACGCTTACTTCTCGGAGTA -CCAACACGCTTACTTCTCTCGTCT -CCAACACGCTTACTTCTCTGCACT -CCAACACGCTTACTTCTCCTGACT -CCAACACGCTTACTTCTCCAACCT -CCAACACGCTTACTTCTCGCTACT -CCAACACGCTTACTTCTCGGATCT -CCAACACGCTTACTTCTCAAGGCT -CCAACACGCTTACTTCTCTCAACC -CCAACACGCTTACTTCTCTGTTCC -CCAACACGCTTACTTCTCATTCCC -CCAACACGCTTACTTCTCTTCTCG -CCAACACGCTTACTTCTCTAGACG -CCAACACGCTTACTTCTCGTAACG -CCAACACGCTTACTTCTCACTTCG -CCAACACGCTTACTTCTCTACGCA -CCAACACGCTTACTTCTCCTTGCA -CCAACACGCTTACTTCTCCGAACA -CCAACACGCTTACTTCTCCAGTCA -CCAACACGCTTACTTCTCGATCCA -CCAACACGCTTACTTCTCACGACA -CCAACACGCTTACTTCTCAGCTCA -CCAACACGCTTACTTCTCTCACGT -CCAACACGCTTACTTCTCCGTAGT -CCAACACGCTTACTTCTCGTCAGT -CCAACACGCTTACTTCTCGAAGGT -CCAACACGCTTACTTCTCAACCGT -CCAACACGCTTACTTCTCTTGTGC -CCAACACGCTTACTTCTCCTAAGC -CCAACACGCTTACTTCTCACTAGC -CCAACACGCTTACTTCTCAGATGC -CCAACACGCTTACTTCTCTGAAGG -CCAACACGCTTACTTCTCCAATGG -CCAACACGCTTACTTCTCATGAGG -CCAACACGCTTACTTCTCAATGGG -CCAACACGCTTACTTCTCTCCTGA -CCAACACGCTTACTTCTCTAGCGA -CCAACACGCTTACTTCTCCACAGA -CCAACACGCTTACTTCTCGCAAGA -CCAACACGCTTACTTCTCGGTTGA -CCAACACGCTTACTTCTCTCCGAT -CCAACACGCTTACTTCTCTGGCAT -CCAACACGCTTACTTCTCCGAGAT -CCAACACGCTTACTTCTCTACCAC -CCAACACGCTTACTTCTCCAGAAC -CCAACACGCTTACTTCTCGTCTAC -CCAACACGCTTACTTCTCACGTAC -CCAACACGCTTACTTCTCAGTGAC -CCAACACGCTTACTTCTCCTGTAG -CCAACACGCTTACTTCTCCCTAAG -CCAACACGCTTACTTCTCGTTCAG -CCAACACGCTTACTTCTCGCATAG -CCAACACGCTTACTTCTCGACAAG -CCAACACGCTTACTTCTCAAGCAG -CCAACACGCTTACTTCTCCGTCAA -CCAACACGCTTACTTCTCGCTGAA -CCAACACGCTTACTTCTCAGTACG -CCAACACGCTTACTTCTCATCCGA -CCAACACGCTTACTTCTCATGGGA -CCAACACGCTTACTTCTCGTGCAA -CCAACACGCTTACTTCTCGAGGAA -CCAACACGCTTACTTCTCCAGGTA -CCAACACGCTTACTTCTCGACTCT -CCAACACGCTTACTTCTCAGTCCT -CCAACACGCTTACTTCTCTAAGCC -CCAACACGCTTACTTCTCATAGCC -CCAACACGCTTACTTCTCTAACCG -CCAACACGCTTACTTCTCATGCCA -CCAACACGCTTAGTTCCTGGAAAC -CCAACACGCTTAGTTCCTAACACC -CCAACACGCTTAGTTCCTATCGAG -CCAACACGCTTAGTTCCTCTCCTT -CCAACACGCTTAGTTCCTCCTGTT -CCAACACGCTTAGTTCCTCGGTTT -CCAACACGCTTAGTTCCTGTGGTT -CCAACACGCTTAGTTCCTGCCTTT -CCAACACGCTTAGTTCCTGGTCTT -CCAACACGCTTAGTTCCTACGCTT -CCAACACGCTTAGTTCCTAGCGTT -CCAACACGCTTAGTTCCTTTCGTC -CCAACACGCTTAGTTCCTTCTCTC -CCAACACGCTTAGTTCCTTGGATC -CCAACACGCTTAGTTCCTCACTTC -CCAACACGCTTAGTTCCTGTACTC -CCAACACGCTTAGTTCCTGATGTC -CCAACACGCTTAGTTCCTACAGTC -CCAACACGCTTAGTTCCTTTGCTG -CCAACACGCTTAGTTCCTTCCATG -CCAACACGCTTAGTTCCTTGTGTG -CCAACACGCTTAGTTCCTCTAGTG -CCAACACGCTTAGTTCCTCATCTG -CCAACACGCTTAGTTCCTGAGTTG -CCAACACGCTTAGTTCCTAGACTG -CCAACACGCTTAGTTCCTTCGGTA -CCAACACGCTTAGTTCCTTGCCTA -CCAACACGCTTAGTTCCTCCACTA -CCAACACGCTTAGTTCCTGGAGTA -CCAACACGCTTAGTTCCTTCGTCT -CCAACACGCTTAGTTCCTTGCACT -CCAACACGCTTAGTTCCTCTGACT -CCAACACGCTTAGTTCCTCAACCT -CCAACACGCTTAGTTCCTGCTACT -CCAACACGCTTAGTTCCTGGATCT -CCAACACGCTTAGTTCCTAAGGCT -CCAACACGCTTAGTTCCTTCAACC -CCAACACGCTTAGTTCCTTGTTCC -CCAACACGCTTAGTTCCTATTCCC -CCAACACGCTTAGTTCCTTTCTCG -CCAACACGCTTAGTTCCTTAGACG -CCAACACGCTTAGTTCCTGTAACG -CCAACACGCTTAGTTCCTACTTCG -CCAACACGCTTAGTTCCTTACGCA -CCAACACGCTTAGTTCCTCTTGCA -CCAACACGCTTAGTTCCTCGAACA -CCAACACGCTTAGTTCCTCAGTCA -CCAACACGCTTAGTTCCTGATCCA -CCAACACGCTTAGTTCCTACGACA -CCAACACGCTTAGTTCCTAGCTCA -CCAACACGCTTAGTTCCTTCACGT -CCAACACGCTTAGTTCCTCGTAGT -CCAACACGCTTAGTTCCTGTCAGT -CCAACACGCTTAGTTCCTGAAGGT -CCAACACGCTTAGTTCCTAACCGT -CCAACACGCTTAGTTCCTTTGTGC -CCAACACGCTTAGTTCCTCTAAGC -CCAACACGCTTAGTTCCTACTAGC -CCAACACGCTTAGTTCCTAGATGC -CCAACACGCTTAGTTCCTTGAAGG -CCAACACGCTTAGTTCCTCAATGG -CCAACACGCTTAGTTCCTATGAGG -CCAACACGCTTAGTTCCTAATGGG -CCAACACGCTTAGTTCCTTCCTGA -CCAACACGCTTAGTTCCTTAGCGA -CCAACACGCTTAGTTCCTCACAGA -CCAACACGCTTAGTTCCTGCAAGA -CCAACACGCTTAGTTCCTGGTTGA -CCAACACGCTTAGTTCCTTCCGAT -CCAACACGCTTAGTTCCTTGGCAT -CCAACACGCTTAGTTCCTCGAGAT -CCAACACGCTTAGTTCCTTACCAC -CCAACACGCTTAGTTCCTCAGAAC -CCAACACGCTTAGTTCCTGTCTAC -CCAACACGCTTAGTTCCTACGTAC -CCAACACGCTTAGTTCCTAGTGAC -CCAACACGCTTAGTTCCTCTGTAG -CCAACACGCTTAGTTCCTCCTAAG -CCAACACGCTTAGTTCCTGTTCAG -CCAACACGCTTAGTTCCTGCATAG -CCAACACGCTTAGTTCCTGACAAG -CCAACACGCTTAGTTCCTAAGCAG -CCAACACGCTTAGTTCCTCGTCAA -CCAACACGCTTAGTTCCTGCTGAA -CCAACACGCTTAGTTCCTAGTACG -CCAACACGCTTAGTTCCTATCCGA -CCAACACGCTTAGTTCCTATGGGA -CCAACACGCTTAGTTCCTGTGCAA -CCAACACGCTTAGTTCCTGAGGAA -CCAACACGCTTAGTTCCTCAGGTA -CCAACACGCTTAGTTCCTGACTCT -CCAACACGCTTAGTTCCTAGTCCT -CCAACACGCTTAGTTCCTTAAGCC -CCAACACGCTTAGTTCCTATAGCC -CCAACACGCTTAGTTCCTTAACCG -CCAACACGCTTAGTTCCTATGCCA -CCAACACGCTTATTTCGGGGAAAC -CCAACACGCTTATTTCGGAACACC -CCAACACGCTTATTTCGGATCGAG -CCAACACGCTTATTTCGGCTCCTT -CCAACACGCTTATTTCGGCCTGTT -CCAACACGCTTATTTCGGCGGTTT -CCAACACGCTTATTTCGGGTGGTT -CCAACACGCTTATTTCGGGCCTTT -CCAACACGCTTATTTCGGGGTCTT -CCAACACGCTTATTTCGGACGCTT -CCAACACGCTTATTTCGGAGCGTT -CCAACACGCTTATTTCGGTTCGTC -CCAACACGCTTATTTCGGTCTCTC -CCAACACGCTTATTTCGGTGGATC -CCAACACGCTTATTTCGGCACTTC -CCAACACGCTTATTTCGGGTACTC -CCAACACGCTTATTTCGGGATGTC -CCAACACGCTTATTTCGGACAGTC -CCAACACGCTTATTTCGGTTGCTG -CCAACACGCTTATTTCGGTCCATG -CCAACACGCTTATTTCGGTGTGTG -CCAACACGCTTATTTCGGCTAGTG -CCAACACGCTTATTTCGGCATCTG -CCAACACGCTTATTTCGGGAGTTG -CCAACACGCTTATTTCGGAGACTG -CCAACACGCTTATTTCGGTCGGTA -CCAACACGCTTATTTCGGTGCCTA -CCAACACGCTTATTTCGGCCACTA -CCAACACGCTTATTTCGGGGAGTA -CCAACACGCTTATTTCGGTCGTCT -CCAACACGCTTATTTCGGTGCACT -CCAACACGCTTATTTCGGCTGACT -CCAACACGCTTATTTCGGCAACCT -CCAACACGCTTATTTCGGGCTACT -CCAACACGCTTATTTCGGGGATCT -CCAACACGCTTATTTCGGAAGGCT -CCAACACGCTTATTTCGGTCAACC -CCAACACGCTTATTTCGGTGTTCC -CCAACACGCTTATTTCGGATTCCC -CCAACACGCTTATTTCGGTTCTCG -CCAACACGCTTATTTCGGTAGACG -CCAACACGCTTATTTCGGGTAACG -CCAACACGCTTATTTCGGACTTCG -CCAACACGCTTATTTCGGTACGCA -CCAACACGCTTATTTCGGCTTGCA -CCAACACGCTTATTTCGGCGAACA -CCAACACGCTTATTTCGGCAGTCA -CCAACACGCTTATTTCGGGATCCA -CCAACACGCTTATTTCGGACGACA -CCAACACGCTTATTTCGGAGCTCA -CCAACACGCTTATTTCGGTCACGT -CCAACACGCTTATTTCGGCGTAGT -CCAACACGCTTATTTCGGGTCAGT -CCAACACGCTTATTTCGGGAAGGT -CCAACACGCTTATTTCGGAACCGT -CCAACACGCTTATTTCGGTTGTGC -CCAACACGCTTATTTCGGCTAAGC -CCAACACGCTTATTTCGGACTAGC -CCAACACGCTTATTTCGGAGATGC -CCAACACGCTTATTTCGGTGAAGG -CCAACACGCTTATTTCGGCAATGG -CCAACACGCTTATTTCGGATGAGG -CCAACACGCTTATTTCGGAATGGG -CCAACACGCTTATTTCGGTCCTGA -CCAACACGCTTATTTCGGTAGCGA -CCAACACGCTTATTTCGGCACAGA -CCAACACGCTTATTTCGGGCAAGA -CCAACACGCTTATTTCGGGGTTGA -CCAACACGCTTATTTCGGTCCGAT -CCAACACGCTTATTTCGGTGGCAT -CCAACACGCTTATTTCGGCGAGAT -CCAACACGCTTATTTCGGTACCAC -CCAACACGCTTATTTCGGCAGAAC -CCAACACGCTTATTTCGGGTCTAC -CCAACACGCTTATTTCGGACGTAC -CCAACACGCTTATTTCGGAGTGAC -CCAACACGCTTATTTCGGCTGTAG -CCAACACGCTTATTTCGGCCTAAG -CCAACACGCTTATTTCGGGTTCAG -CCAACACGCTTATTTCGGGCATAG -CCAACACGCTTATTTCGGGACAAG -CCAACACGCTTATTTCGGAAGCAG -CCAACACGCTTATTTCGGCGTCAA -CCAACACGCTTATTTCGGGCTGAA -CCAACACGCTTATTTCGGAGTACG -CCAACACGCTTATTTCGGATCCGA -CCAACACGCTTATTTCGGATGGGA -CCAACACGCTTATTTCGGGTGCAA -CCAACACGCTTATTTCGGGAGGAA -CCAACACGCTTATTTCGGCAGGTA -CCAACACGCTTATTTCGGGACTCT -CCAACACGCTTATTTCGGAGTCCT -CCAACACGCTTATTTCGGTAAGCC -CCAACACGCTTATTTCGGATAGCC -CCAACACGCTTATTTCGGTAACCG -CCAACACGCTTATTTCGGATGCCA -CCAACACGCTTAGTTGTGGGAAAC -CCAACACGCTTAGTTGTGAACACC -CCAACACGCTTAGTTGTGATCGAG -CCAACACGCTTAGTTGTGCTCCTT -CCAACACGCTTAGTTGTGCCTGTT -CCAACACGCTTAGTTGTGCGGTTT -CCAACACGCTTAGTTGTGGTGGTT -CCAACACGCTTAGTTGTGGCCTTT -CCAACACGCTTAGTTGTGGGTCTT -CCAACACGCTTAGTTGTGACGCTT -CCAACACGCTTAGTTGTGAGCGTT -CCAACACGCTTAGTTGTGTTCGTC -CCAACACGCTTAGTTGTGTCTCTC -CCAACACGCTTAGTTGTGTGGATC -CCAACACGCTTAGTTGTGCACTTC -CCAACACGCTTAGTTGTGGTACTC -CCAACACGCTTAGTTGTGGATGTC -CCAACACGCTTAGTTGTGACAGTC -CCAACACGCTTAGTTGTGTTGCTG -CCAACACGCTTAGTTGTGTCCATG -CCAACACGCTTAGTTGTGTGTGTG -CCAACACGCTTAGTTGTGCTAGTG -CCAACACGCTTAGTTGTGCATCTG -CCAACACGCTTAGTTGTGGAGTTG -CCAACACGCTTAGTTGTGAGACTG -CCAACACGCTTAGTTGTGTCGGTA -CCAACACGCTTAGTTGTGTGCCTA -CCAACACGCTTAGTTGTGCCACTA -CCAACACGCTTAGTTGTGGGAGTA -CCAACACGCTTAGTTGTGTCGTCT -CCAACACGCTTAGTTGTGTGCACT -CCAACACGCTTAGTTGTGCTGACT -CCAACACGCTTAGTTGTGCAACCT -CCAACACGCTTAGTTGTGGCTACT -CCAACACGCTTAGTTGTGGGATCT -CCAACACGCTTAGTTGTGAAGGCT -CCAACACGCTTAGTTGTGTCAACC -CCAACACGCTTAGTTGTGTGTTCC -CCAACACGCTTAGTTGTGATTCCC -CCAACACGCTTAGTTGTGTTCTCG -CCAACACGCTTAGTTGTGTAGACG -CCAACACGCTTAGTTGTGGTAACG -CCAACACGCTTAGTTGTGACTTCG -CCAACACGCTTAGTTGTGTACGCA -CCAACACGCTTAGTTGTGCTTGCA -CCAACACGCTTAGTTGTGCGAACA -CCAACACGCTTAGTTGTGCAGTCA -CCAACACGCTTAGTTGTGGATCCA -CCAACACGCTTAGTTGTGACGACA -CCAACACGCTTAGTTGTGAGCTCA -CCAACACGCTTAGTTGTGTCACGT -CCAACACGCTTAGTTGTGCGTAGT -CCAACACGCTTAGTTGTGGTCAGT -CCAACACGCTTAGTTGTGGAAGGT -CCAACACGCTTAGTTGTGAACCGT -CCAACACGCTTAGTTGTGTTGTGC -CCAACACGCTTAGTTGTGCTAAGC -CCAACACGCTTAGTTGTGACTAGC -CCAACACGCTTAGTTGTGAGATGC -CCAACACGCTTAGTTGTGTGAAGG -CCAACACGCTTAGTTGTGCAATGG -CCAACACGCTTAGTTGTGATGAGG -CCAACACGCTTAGTTGTGAATGGG -CCAACACGCTTAGTTGTGTCCTGA -CCAACACGCTTAGTTGTGTAGCGA -CCAACACGCTTAGTTGTGCACAGA -CCAACACGCTTAGTTGTGGCAAGA -CCAACACGCTTAGTTGTGGGTTGA -CCAACACGCTTAGTTGTGTCCGAT -CCAACACGCTTAGTTGTGTGGCAT -CCAACACGCTTAGTTGTGCGAGAT -CCAACACGCTTAGTTGTGTACCAC -CCAACACGCTTAGTTGTGCAGAAC -CCAACACGCTTAGTTGTGGTCTAC -CCAACACGCTTAGTTGTGACGTAC -CCAACACGCTTAGTTGTGAGTGAC -CCAACACGCTTAGTTGTGCTGTAG -CCAACACGCTTAGTTGTGCCTAAG -CCAACACGCTTAGTTGTGGTTCAG -CCAACACGCTTAGTTGTGGCATAG -CCAACACGCTTAGTTGTGGACAAG -CCAACACGCTTAGTTGTGAAGCAG -CCAACACGCTTAGTTGTGCGTCAA -CCAACACGCTTAGTTGTGGCTGAA -CCAACACGCTTAGTTGTGAGTACG -CCAACACGCTTAGTTGTGATCCGA -CCAACACGCTTAGTTGTGATGGGA -CCAACACGCTTAGTTGTGGTGCAA -CCAACACGCTTAGTTGTGGAGGAA -CCAACACGCTTAGTTGTGCAGGTA -CCAACACGCTTAGTTGTGGACTCT -CCAACACGCTTAGTTGTGAGTCCT -CCAACACGCTTAGTTGTGTAAGCC -CCAACACGCTTAGTTGTGATAGCC -CCAACACGCTTAGTTGTGTAACCG -CCAACACGCTTAGTTGTGATGCCA -CCAACACGCTTATTTGCCGGAAAC -CCAACACGCTTATTTGCCAACACC -CCAACACGCTTATTTGCCATCGAG -CCAACACGCTTATTTGCCCTCCTT -CCAACACGCTTATTTGCCCCTGTT -CCAACACGCTTATTTGCCCGGTTT -CCAACACGCTTATTTGCCGTGGTT -CCAACACGCTTATTTGCCGCCTTT -CCAACACGCTTATTTGCCGGTCTT -CCAACACGCTTATTTGCCACGCTT -CCAACACGCTTATTTGCCAGCGTT -CCAACACGCTTATTTGCCTTCGTC -CCAACACGCTTATTTGCCTCTCTC -CCAACACGCTTATTTGCCTGGATC -CCAACACGCTTATTTGCCCACTTC -CCAACACGCTTATTTGCCGTACTC -CCAACACGCTTATTTGCCGATGTC -CCAACACGCTTATTTGCCACAGTC -CCAACACGCTTATTTGCCTTGCTG -CCAACACGCTTATTTGCCTCCATG -CCAACACGCTTATTTGCCTGTGTG -CCAACACGCTTATTTGCCCTAGTG -CCAACACGCTTATTTGCCCATCTG -CCAACACGCTTATTTGCCGAGTTG -CCAACACGCTTATTTGCCAGACTG -CCAACACGCTTATTTGCCTCGGTA -CCAACACGCTTATTTGCCTGCCTA -CCAACACGCTTATTTGCCCCACTA -CCAACACGCTTATTTGCCGGAGTA -CCAACACGCTTATTTGCCTCGTCT -CCAACACGCTTATTTGCCTGCACT -CCAACACGCTTATTTGCCCTGACT -CCAACACGCTTATTTGCCCAACCT -CCAACACGCTTATTTGCCGCTACT -CCAACACGCTTATTTGCCGGATCT -CCAACACGCTTATTTGCCAAGGCT -CCAACACGCTTATTTGCCTCAACC -CCAACACGCTTATTTGCCTGTTCC -CCAACACGCTTATTTGCCATTCCC -CCAACACGCTTATTTGCCTTCTCG -CCAACACGCTTATTTGCCTAGACG -CCAACACGCTTATTTGCCGTAACG -CCAACACGCTTATTTGCCACTTCG -CCAACACGCTTATTTGCCTACGCA -CCAACACGCTTATTTGCCCTTGCA -CCAACACGCTTATTTGCCCGAACA -CCAACACGCTTATTTGCCCAGTCA -CCAACACGCTTATTTGCCGATCCA -CCAACACGCTTATTTGCCACGACA -CCAACACGCTTATTTGCCAGCTCA -CCAACACGCTTATTTGCCTCACGT -CCAACACGCTTATTTGCCCGTAGT -CCAACACGCTTATTTGCCGTCAGT -CCAACACGCTTATTTGCCGAAGGT -CCAACACGCTTATTTGCCAACCGT -CCAACACGCTTATTTGCCTTGTGC -CCAACACGCTTATTTGCCCTAAGC -CCAACACGCTTATTTGCCACTAGC -CCAACACGCTTATTTGCCAGATGC -CCAACACGCTTATTTGCCTGAAGG -CCAACACGCTTATTTGCCCAATGG -CCAACACGCTTATTTGCCATGAGG -CCAACACGCTTATTTGCCAATGGG -CCAACACGCTTATTTGCCTCCTGA -CCAACACGCTTATTTGCCTAGCGA -CCAACACGCTTATTTGCCCACAGA -CCAACACGCTTATTTGCCGCAAGA -CCAACACGCTTATTTGCCGGTTGA -CCAACACGCTTATTTGCCTCCGAT -CCAACACGCTTATTTGCCTGGCAT -CCAACACGCTTATTTGCCCGAGAT -CCAACACGCTTATTTGCCTACCAC -CCAACACGCTTATTTGCCCAGAAC -CCAACACGCTTATTTGCCGTCTAC -CCAACACGCTTATTTGCCACGTAC -CCAACACGCTTATTTGCCAGTGAC -CCAACACGCTTATTTGCCCTGTAG -CCAACACGCTTATTTGCCCCTAAG -CCAACACGCTTATTTGCCGTTCAG -CCAACACGCTTATTTGCCGCATAG -CCAACACGCTTATTTGCCGACAAG -CCAACACGCTTATTTGCCAAGCAG -CCAACACGCTTATTTGCCCGTCAA -CCAACACGCTTATTTGCCGCTGAA -CCAACACGCTTATTTGCCAGTACG -CCAACACGCTTATTTGCCATCCGA -CCAACACGCTTATTTGCCATGGGA -CCAACACGCTTATTTGCCGTGCAA -CCAACACGCTTATTTGCCGAGGAA -CCAACACGCTTATTTGCCCAGGTA -CCAACACGCTTATTTGCCGACTCT -CCAACACGCTTATTTGCCAGTCCT -CCAACACGCTTATTTGCCTAAGCC -CCAACACGCTTATTTGCCATAGCC -CCAACACGCTTATTTGCCTAACCG -CCAACACGCTTATTTGCCATGCCA -CCAACACGCTTACTTGGTGGAAAC -CCAACACGCTTACTTGGTAACACC -CCAACACGCTTACTTGGTATCGAG -CCAACACGCTTACTTGGTCTCCTT -CCAACACGCTTACTTGGTCCTGTT -CCAACACGCTTACTTGGTCGGTTT -CCAACACGCTTACTTGGTGTGGTT -CCAACACGCTTACTTGGTGCCTTT -CCAACACGCTTACTTGGTGGTCTT -CCAACACGCTTACTTGGTACGCTT -CCAACACGCTTACTTGGTAGCGTT -CCAACACGCTTACTTGGTTTCGTC -CCAACACGCTTACTTGGTTCTCTC -CCAACACGCTTACTTGGTTGGATC -CCAACACGCTTACTTGGTCACTTC -CCAACACGCTTACTTGGTGTACTC -CCAACACGCTTACTTGGTGATGTC -CCAACACGCTTACTTGGTACAGTC -CCAACACGCTTACTTGGTTTGCTG -CCAACACGCTTACTTGGTTCCATG -CCAACACGCTTACTTGGTTGTGTG -CCAACACGCTTACTTGGTCTAGTG -CCAACACGCTTACTTGGTCATCTG -CCAACACGCTTACTTGGTGAGTTG -CCAACACGCTTACTTGGTAGACTG -CCAACACGCTTACTTGGTTCGGTA -CCAACACGCTTACTTGGTTGCCTA -CCAACACGCTTACTTGGTCCACTA -CCAACACGCTTACTTGGTGGAGTA -CCAACACGCTTACTTGGTTCGTCT -CCAACACGCTTACTTGGTTGCACT -CCAACACGCTTACTTGGTCTGACT -CCAACACGCTTACTTGGTCAACCT -CCAACACGCTTACTTGGTGCTACT -CCAACACGCTTACTTGGTGGATCT -CCAACACGCTTACTTGGTAAGGCT -CCAACACGCTTACTTGGTTCAACC -CCAACACGCTTACTTGGTTGTTCC -CCAACACGCTTACTTGGTATTCCC -CCAACACGCTTACTTGGTTTCTCG -CCAACACGCTTACTTGGTTAGACG -CCAACACGCTTACTTGGTGTAACG -CCAACACGCTTACTTGGTACTTCG -CCAACACGCTTACTTGGTTACGCA -CCAACACGCTTACTTGGTCTTGCA -CCAACACGCTTACTTGGTCGAACA -CCAACACGCTTACTTGGTCAGTCA -CCAACACGCTTACTTGGTGATCCA -CCAACACGCTTACTTGGTACGACA -CCAACACGCTTACTTGGTAGCTCA -CCAACACGCTTACTTGGTTCACGT -CCAACACGCTTACTTGGTCGTAGT -CCAACACGCTTACTTGGTGTCAGT -CCAACACGCTTACTTGGTGAAGGT -CCAACACGCTTACTTGGTAACCGT -CCAACACGCTTACTTGGTTTGTGC -CCAACACGCTTACTTGGTCTAAGC -CCAACACGCTTACTTGGTACTAGC -CCAACACGCTTACTTGGTAGATGC -CCAACACGCTTACTTGGTTGAAGG -CCAACACGCTTACTTGGTCAATGG -CCAACACGCTTACTTGGTATGAGG -CCAACACGCTTACTTGGTAATGGG -CCAACACGCTTACTTGGTTCCTGA -CCAACACGCTTACTTGGTTAGCGA -CCAACACGCTTACTTGGTCACAGA -CCAACACGCTTACTTGGTGCAAGA -CCAACACGCTTACTTGGTGGTTGA -CCAACACGCTTACTTGGTTCCGAT -CCAACACGCTTACTTGGTTGGCAT -CCAACACGCTTACTTGGTCGAGAT -CCAACACGCTTACTTGGTTACCAC -CCAACACGCTTACTTGGTCAGAAC -CCAACACGCTTACTTGGTGTCTAC -CCAACACGCTTACTTGGTACGTAC -CCAACACGCTTACTTGGTAGTGAC -CCAACACGCTTACTTGGTCTGTAG -CCAACACGCTTACTTGGTCCTAAG -CCAACACGCTTACTTGGTGTTCAG -CCAACACGCTTACTTGGTGCATAG -CCAACACGCTTACTTGGTGACAAG -CCAACACGCTTACTTGGTAAGCAG -CCAACACGCTTACTTGGTCGTCAA -CCAACACGCTTACTTGGTGCTGAA -CCAACACGCTTACTTGGTAGTACG -CCAACACGCTTACTTGGTATCCGA -CCAACACGCTTACTTGGTATGGGA -CCAACACGCTTACTTGGTGTGCAA -CCAACACGCTTACTTGGTGAGGAA -CCAACACGCTTACTTGGTCAGGTA -CCAACACGCTTACTTGGTGACTCT -CCAACACGCTTACTTGGTAGTCCT -CCAACACGCTTACTTGGTTAAGCC -CCAACACGCTTACTTGGTATAGCC -CCAACACGCTTACTTGGTTAACCG -CCAACACGCTTACTTGGTATGCCA -CCAACACGCTTACTTACGGGAAAC -CCAACACGCTTACTTACGAACACC -CCAACACGCTTACTTACGATCGAG -CCAACACGCTTACTTACGCTCCTT -CCAACACGCTTACTTACGCCTGTT -CCAACACGCTTACTTACGCGGTTT -CCAACACGCTTACTTACGGTGGTT -CCAACACGCTTACTTACGGCCTTT -CCAACACGCTTACTTACGGGTCTT -CCAACACGCTTACTTACGACGCTT -CCAACACGCTTACTTACGAGCGTT -CCAACACGCTTACTTACGTTCGTC -CCAACACGCTTACTTACGTCTCTC -CCAACACGCTTACTTACGTGGATC -CCAACACGCTTACTTACGCACTTC -CCAACACGCTTACTTACGGTACTC -CCAACACGCTTACTTACGGATGTC -CCAACACGCTTACTTACGACAGTC -CCAACACGCTTACTTACGTTGCTG -CCAACACGCTTACTTACGTCCATG -CCAACACGCTTACTTACGTGTGTG -CCAACACGCTTACTTACGCTAGTG -CCAACACGCTTACTTACGCATCTG -CCAACACGCTTACTTACGGAGTTG -CCAACACGCTTACTTACGAGACTG -CCAACACGCTTACTTACGTCGGTA -CCAACACGCTTACTTACGTGCCTA -CCAACACGCTTACTTACGCCACTA -CCAACACGCTTACTTACGGGAGTA -CCAACACGCTTACTTACGTCGTCT -CCAACACGCTTACTTACGTGCACT -CCAACACGCTTACTTACGCTGACT -CCAACACGCTTACTTACGCAACCT -CCAACACGCTTACTTACGGCTACT -CCAACACGCTTACTTACGGGATCT -CCAACACGCTTACTTACGAAGGCT -CCAACACGCTTACTTACGTCAACC -CCAACACGCTTACTTACGTGTTCC -CCAACACGCTTACTTACGATTCCC -CCAACACGCTTACTTACGTTCTCG -CCAACACGCTTACTTACGTAGACG -CCAACACGCTTACTTACGGTAACG -CCAACACGCTTACTTACGACTTCG -CCAACACGCTTACTTACGTACGCA -CCAACACGCTTACTTACGCTTGCA -CCAACACGCTTACTTACGCGAACA -CCAACACGCTTACTTACGCAGTCA -CCAACACGCTTACTTACGGATCCA -CCAACACGCTTACTTACGACGACA -CCAACACGCTTACTTACGAGCTCA -CCAACACGCTTACTTACGTCACGT -CCAACACGCTTACTTACGCGTAGT -CCAACACGCTTACTTACGGTCAGT -CCAACACGCTTACTTACGGAAGGT -CCAACACGCTTACTTACGAACCGT -CCAACACGCTTACTTACGTTGTGC -CCAACACGCTTACTTACGCTAAGC -CCAACACGCTTACTTACGACTAGC -CCAACACGCTTACTTACGAGATGC -CCAACACGCTTACTTACGTGAAGG -CCAACACGCTTACTTACGCAATGG -CCAACACGCTTACTTACGATGAGG -CCAACACGCTTACTTACGAATGGG -CCAACACGCTTACTTACGTCCTGA -CCAACACGCTTACTTACGTAGCGA -CCAACACGCTTACTTACGCACAGA -CCAACACGCTTACTTACGGCAAGA -CCAACACGCTTACTTACGGGTTGA -CCAACACGCTTACTTACGTCCGAT -CCAACACGCTTACTTACGTGGCAT -CCAACACGCTTACTTACGCGAGAT -CCAACACGCTTACTTACGTACCAC -CCAACACGCTTACTTACGCAGAAC -CCAACACGCTTACTTACGGTCTAC -CCAACACGCTTACTTACGACGTAC -CCAACACGCTTACTTACGAGTGAC -CCAACACGCTTACTTACGCTGTAG -CCAACACGCTTACTTACGCCTAAG -CCAACACGCTTACTTACGGTTCAG -CCAACACGCTTACTTACGGCATAG -CCAACACGCTTACTTACGGACAAG -CCAACACGCTTACTTACGAAGCAG -CCAACACGCTTACTTACGCGTCAA -CCAACACGCTTACTTACGGCTGAA -CCAACACGCTTACTTACGAGTACG -CCAACACGCTTACTTACGATCCGA -CCAACACGCTTACTTACGATGGGA -CCAACACGCTTACTTACGGTGCAA -CCAACACGCTTACTTACGGAGGAA -CCAACACGCTTACTTACGCAGGTA -CCAACACGCTTACTTACGGACTCT -CCAACACGCTTACTTACGAGTCCT -CCAACACGCTTACTTACGTAAGCC -CCAACACGCTTACTTACGATAGCC -CCAACACGCTTACTTACGTAACCG -CCAACACGCTTACTTACGATGCCA -CCAACACGCTTAGTTAGCGGAAAC -CCAACACGCTTAGTTAGCAACACC -CCAACACGCTTAGTTAGCATCGAG -CCAACACGCTTAGTTAGCCTCCTT -CCAACACGCTTAGTTAGCCCTGTT -CCAACACGCTTAGTTAGCCGGTTT -CCAACACGCTTAGTTAGCGTGGTT -CCAACACGCTTAGTTAGCGCCTTT -CCAACACGCTTAGTTAGCGGTCTT -CCAACACGCTTAGTTAGCACGCTT -CCAACACGCTTAGTTAGCAGCGTT -CCAACACGCTTAGTTAGCTTCGTC -CCAACACGCTTAGTTAGCTCTCTC -CCAACACGCTTAGTTAGCTGGATC -CCAACACGCTTAGTTAGCCACTTC -CCAACACGCTTAGTTAGCGTACTC -CCAACACGCTTAGTTAGCGATGTC -CCAACACGCTTAGTTAGCACAGTC -CCAACACGCTTAGTTAGCTTGCTG -CCAACACGCTTAGTTAGCTCCATG -CCAACACGCTTAGTTAGCTGTGTG -CCAACACGCTTAGTTAGCCTAGTG -CCAACACGCTTAGTTAGCCATCTG -CCAACACGCTTAGTTAGCGAGTTG -CCAACACGCTTAGTTAGCAGACTG -CCAACACGCTTAGTTAGCTCGGTA -CCAACACGCTTAGTTAGCTGCCTA -CCAACACGCTTAGTTAGCCCACTA -CCAACACGCTTAGTTAGCGGAGTA -CCAACACGCTTAGTTAGCTCGTCT -CCAACACGCTTAGTTAGCTGCACT -CCAACACGCTTAGTTAGCCTGACT -CCAACACGCTTAGTTAGCCAACCT -CCAACACGCTTAGTTAGCGCTACT -CCAACACGCTTAGTTAGCGGATCT -CCAACACGCTTAGTTAGCAAGGCT -CCAACACGCTTAGTTAGCTCAACC -CCAACACGCTTAGTTAGCTGTTCC -CCAACACGCTTAGTTAGCATTCCC -CCAACACGCTTAGTTAGCTTCTCG -CCAACACGCTTAGTTAGCTAGACG -CCAACACGCTTAGTTAGCGTAACG -CCAACACGCTTAGTTAGCACTTCG -CCAACACGCTTAGTTAGCTACGCA -CCAACACGCTTAGTTAGCCTTGCA -CCAACACGCTTAGTTAGCCGAACA -CCAACACGCTTAGTTAGCCAGTCA -CCAACACGCTTAGTTAGCGATCCA -CCAACACGCTTAGTTAGCACGACA -CCAACACGCTTAGTTAGCAGCTCA -CCAACACGCTTAGTTAGCTCACGT -CCAACACGCTTAGTTAGCCGTAGT -CCAACACGCTTAGTTAGCGTCAGT -CCAACACGCTTAGTTAGCGAAGGT -CCAACACGCTTAGTTAGCAACCGT -CCAACACGCTTAGTTAGCTTGTGC -CCAACACGCTTAGTTAGCCTAAGC -CCAACACGCTTAGTTAGCACTAGC -CCAACACGCTTAGTTAGCAGATGC -CCAACACGCTTAGTTAGCTGAAGG -CCAACACGCTTAGTTAGCCAATGG -CCAACACGCTTAGTTAGCATGAGG -CCAACACGCTTAGTTAGCAATGGG -CCAACACGCTTAGTTAGCTCCTGA -CCAACACGCTTAGTTAGCTAGCGA -CCAACACGCTTAGTTAGCCACAGA -CCAACACGCTTAGTTAGCGCAAGA -CCAACACGCTTAGTTAGCGGTTGA -CCAACACGCTTAGTTAGCTCCGAT -CCAACACGCTTAGTTAGCTGGCAT -CCAACACGCTTAGTTAGCCGAGAT -CCAACACGCTTAGTTAGCTACCAC -CCAACACGCTTAGTTAGCCAGAAC -CCAACACGCTTAGTTAGCGTCTAC -CCAACACGCTTAGTTAGCACGTAC -CCAACACGCTTAGTTAGCAGTGAC -CCAACACGCTTAGTTAGCCTGTAG -CCAACACGCTTAGTTAGCCCTAAG -CCAACACGCTTAGTTAGCGTTCAG -CCAACACGCTTAGTTAGCGCATAG -CCAACACGCTTAGTTAGCGACAAG -CCAACACGCTTAGTTAGCAAGCAG -CCAACACGCTTAGTTAGCCGTCAA -CCAACACGCTTAGTTAGCGCTGAA -CCAACACGCTTAGTTAGCAGTACG -CCAACACGCTTAGTTAGCATCCGA -CCAACACGCTTAGTTAGCATGGGA -CCAACACGCTTAGTTAGCGTGCAA -CCAACACGCTTAGTTAGCGAGGAA -CCAACACGCTTAGTTAGCCAGGTA -CCAACACGCTTAGTTAGCGACTCT -CCAACACGCTTAGTTAGCAGTCCT -CCAACACGCTTAGTTAGCTAAGCC -CCAACACGCTTAGTTAGCATAGCC -CCAACACGCTTAGTTAGCTAACCG -CCAACACGCTTAGTTAGCATGCCA -CCAACACGCTTAGTCTTCGGAAAC -CCAACACGCTTAGTCTTCAACACC -CCAACACGCTTAGTCTTCATCGAG -CCAACACGCTTAGTCTTCCTCCTT -CCAACACGCTTAGTCTTCCCTGTT -CCAACACGCTTAGTCTTCCGGTTT -CCAACACGCTTAGTCTTCGTGGTT -CCAACACGCTTAGTCTTCGCCTTT -CCAACACGCTTAGTCTTCGGTCTT -CCAACACGCTTAGTCTTCACGCTT -CCAACACGCTTAGTCTTCAGCGTT -CCAACACGCTTAGTCTTCTTCGTC -CCAACACGCTTAGTCTTCTCTCTC -CCAACACGCTTAGTCTTCTGGATC -CCAACACGCTTAGTCTTCCACTTC -CCAACACGCTTAGTCTTCGTACTC -CCAACACGCTTAGTCTTCGATGTC -CCAACACGCTTAGTCTTCACAGTC -CCAACACGCTTAGTCTTCTTGCTG -CCAACACGCTTAGTCTTCTCCATG -CCAACACGCTTAGTCTTCTGTGTG -CCAACACGCTTAGTCTTCCTAGTG -CCAACACGCTTAGTCTTCCATCTG -CCAACACGCTTAGTCTTCGAGTTG -CCAACACGCTTAGTCTTCAGACTG -CCAACACGCTTAGTCTTCTCGGTA -CCAACACGCTTAGTCTTCTGCCTA -CCAACACGCTTAGTCTTCCCACTA -CCAACACGCTTAGTCTTCGGAGTA -CCAACACGCTTAGTCTTCTCGTCT -CCAACACGCTTAGTCTTCTGCACT -CCAACACGCTTAGTCTTCCTGACT -CCAACACGCTTAGTCTTCCAACCT -CCAACACGCTTAGTCTTCGCTACT -CCAACACGCTTAGTCTTCGGATCT -CCAACACGCTTAGTCTTCAAGGCT -CCAACACGCTTAGTCTTCTCAACC -CCAACACGCTTAGTCTTCTGTTCC -CCAACACGCTTAGTCTTCATTCCC -CCAACACGCTTAGTCTTCTTCTCG -CCAACACGCTTAGTCTTCTAGACG -CCAACACGCTTAGTCTTCGTAACG -CCAACACGCTTAGTCTTCACTTCG -CCAACACGCTTAGTCTTCTACGCA -CCAACACGCTTAGTCTTCCTTGCA -CCAACACGCTTAGTCTTCCGAACA -CCAACACGCTTAGTCTTCCAGTCA -CCAACACGCTTAGTCTTCGATCCA -CCAACACGCTTAGTCTTCACGACA -CCAACACGCTTAGTCTTCAGCTCA -CCAACACGCTTAGTCTTCTCACGT -CCAACACGCTTAGTCTTCCGTAGT -CCAACACGCTTAGTCTTCGTCAGT -CCAACACGCTTAGTCTTCGAAGGT -CCAACACGCTTAGTCTTCAACCGT -CCAACACGCTTAGTCTTCTTGTGC -CCAACACGCTTAGTCTTCCTAAGC -CCAACACGCTTAGTCTTCACTAGC -CCAACACGCTTAGTCTTCAGATGC -CCAACACGCTTAGTCTTCTGAAGG -CCAACACGCTTAGTCTTCCAATGG -CCAACACGCTTAGTCTTCATGAGG -CCAACACGCTTAGTCTTCAATGGG -CCAACACGCTTAGTCTTCTCCTGA -CCAACACGCTTAGTCTTCTAGCGA -CCAACACGCTTAGTCTTCCACAGA -CCAACACGCTTAGTCTTCGCAAGA -CCAACACGCTTAGTCTTCGGTTGA -CCAACACGCTTAGTCTTCTCCGAT -CCAACACGCTTAGTCTTCTGGCAT -CCAACACGCTTAGTCTTCCGAGAT -CCAACACGCTTAGTCTTCTACCAC -CCAACACGCTTAGTCTTCCAGAAC -CCAACACGCTTAGTCTTCGTCTAC -CCAACACGCTTAGTCTTCACGTAC -CCAACACGCTTAGTCTTCAGTGAC -CCAACACGCTTAGTCTTCCTGTAG -CCAACACGCTTAGTCTTCCCTAAG -CCAACACGCTTAGTCTTCGTTCAG -CCAACACGCTTAGTCTTCGCATAG -CCAACACGCTTAGTCTTCGACAAG -CCAACACGCTTAGTCTTCAAGCAG -CCAACACGCTTAGTCTTCCGTCAA -CCAACACGCTTAGTCTTCGCTGAA -CCAACACGCTTAGTCTTCAGTACG -CCAACACGCTTAGTCTTCATCCGA -CCAACACGCTTAGTCTTCATGGGA -CCAACACGCTTAGTCTTCGTGCAA -CCAACACGCTTAGTCTTCGAGGAA -CCAACACGCTTAGTCTTCCAGGTA -CCAACACGCTTAGTCTTCGACTCT -CCAACACGCTTAGTCTTCAGTCCT -CCAACACGCTTAGTCTTCTAAGCC -CCAACACGCTTAGTCTTCATAGCC -CCAACACGCTTAGTCTTCTAACCG -CCAACACGCTTAGTCTTCATGCCA -CCAACACGCTTACTCTCTGGAAAC -CCAACACGCTTACTCTCTAACACC -CCAACACGCTTACTCTCTATCGAG -CCAACACGCTTACTCTCTCTCCTT -CCAACACGCTTACTCTCTCCTGTT -CCAACACGCTTACTCTCTCGGTTT -CCAACACGCTTACTCTCTGTGGTT -CCAACACGCTTACTCTCTGCCTTT -CCAACACGCTTACTCTCTGGTCTT -CCAACACGCTTACTCTCTACGCTT -CCAACACGCTTACTCTCTAGCGTT -CCAACACGCTTACTCTCTTTCGTC -CCAACACGCTTACTCTCTTCTCTC -CCAACACGCTTACTCTCTTGGATC -CCAACACGCTTACTCTCTCACTTC -CCAACACGCTTACTCTCTGTACTC -CCAACACGCTTACTCTCTGATGTC -CCAACACGCTTACTCTCTACAGTC -CCAACACGCTTACTCTCTTTGCTG -CCAACACGCTTACTCTCTTCCATG -CCAACACGCTTACTCTCTTGTGTG -CCAACACGCTTACTCTCTCTAGTG -CCAACACGCTTACTCTCTCATCTG -CCAACACGCTTACTCTCTGAGTTG -CCAACACGCTTACTCTCTAGACTG -CCAACACGCTTACTCTCTTCGGTA -CCAACACGCTTACTCTCTTGCCTA -CCAACACGCTTACTCTCTCCACTA -CCAACACGCTTACTCTCTGGAGTA -CCAACACGCTTACTCTCTTCGTCT -CCAACACGCTTACTCTCTTGCACT -CCAACACGCTTACTCTCTCTGACT -CCAACACGCTTACTCTCTCAACCT -CCAACACGCTTACTCTCTGCTACT -CCAACACGCTTACTCTCTGGATCT -CCAACACGCTTACTCTCTAAGGCT -CCAACACGCTTACTCTCTTCAACC -CCAACACGCTTACTCTCTTGTTCC -CCAACACGCTTACTCTCTATTCCC -CCAACACGCTTACTCTCTTTCTCG -CCAACACGCTTACTCTCTTAGACG -CCAACACGCTTACTCTCTGTAACG -CCAACACGCTTACTCTCTACTTCG -CCAACACGCTTACTCTCTTACGCA -CCAACACGCTTACTCTCTCTTGCA -CCAACACGCTTACTCTCTCGAACA -CCAACACGCTTACTCTCTCAGTCA -CCAACACGCTTACTCTCTGATCCA -CCAACACGCTTACTCTCTACGACA -CCAACACGCTTACTCTCTAGCTCA -CCAACACGCTTACTCTCTTCACGT -CCAACACGCTTACTCTCTCGTAGT -CCAACACGCTTACTCTCTGTCAGT -CCAACACGCTTACTCTCTGAAGGT -CCAACACGCTTACTCTCTAACCGT -CCAACACGCTTACTCTCTTTGTGC -CCAACACGCTTACTCTCTCTAAGC -CCAACACGCTTACTCTCTACTAGC -CCAACACGCTTACTCTCTAGATGC -CCAACACGCTTACTCTCTTGAAGG -CCAACACGCTTACTCTCTCAATGG -CCAACACGCTTACTCTCTATGAGG -CCAACACGCTTACTCTCTAATGGG -CCAACACGCTTACTCTCTTCCTGA -CCAACACGCTTACTCTCTTAGCGA -CCAACACGCTTACTCTCTCACAGA -CCAACACGCTTACTCTCTGCAAGA -CCAACACGCTTACTCTCTGGTTGA -CCAACACGCTTACTCTCTTCCGAT -CCAACACGCTTACTCTCTTGGCAT -CCAACACGCTTACTCTCTCGAGAT -CCAACACGCTTACTCTCTTACCAC -CCAACACGCTTACTCTCTCAGAAC -CCAACACGCTTACTCTCTGTCTAC -CCAACACGCTTACTCTCTACGTAC -CCAACACGCTTACTCTCTAGTGAC -CCAACACGCTTACTCTCTCTGTAG -CCAACACGCTTACTCTCTCCTAAG -CCAACACGCTTACTCTCTGTTCAG -CCAACACGCTTACTCTCTGCATAG -CCAACACGCTTACTCTCTGACAAG -CCAACACGCTTACTCTCTAAGCAG -CCAACACGCTTACTCTCTCGTCAA -CCAACACGCTTACTCTCTGCTGAA -CCAACACGCTTACTCTCTAGTACG -CCAACACGCTTACTCTCTATCCGA -CCAACACGCTTACTCTCTATGGGA -CCAACACGCTTACTCTCTGTGCAA -CCAACACGCTTACTCTCTGAGGAA -CCAACACGCTTACTCTCTCAGGTA -CCAACACGCTTACTCTCTGACTCT -CCAACACGCTTACTCTCTAGTCCT -CCAACACGCTTACTCTCTTAAGCC -CCAACACGCTTACTCTCTATAGCC -CCAACACGCTTACTCTCTTAACCG -CCAACACGCTTACTCTCTATGCCA -CCAACACGCTTAATCTGGGGAAAC -CCAACACGCTTAATCTGGAACACC -CCAACACGCTTAATCTGGATCGAG -CCAACACGCTTAATCTGGCTCCTT -CCAACACGCTTAATCTGGCCTGTT -CCAACACGCTTAATCTGGCGGTTT -CCAACACGCTTAATCTGGGTGGTT -CCAACACGCTTAATCTGGGCCTTT -CCAACACGCTTAATCTGGGGTCTT -CCAACACGCTTAATCTGGACGCTT -CCAACACGCTTAATCTGGAGCGTT -CCAACACGCTTAATCTGGTTCGTC -CCAACACGCTTAATCTGGTCTCTC -CCAACACGCTTAATCTGGTGGATC -CCAACACGCTTAATCTGGCACTTC -CCAACACGCTTAATCTGGGTACTC -CCAACACGCTTAATCTGGGATGTC -CCAACACGCTTAATCTGGACAGTC -CCAACACGCTTAATCTGGTTGCTG -CCAACACGCTTAATCTGGTCCATG -CCAACACGCTTAATCTGGTGTGTG -CCAACACGCTTAATCTGGCTAGTG -CCAACACGCTTAATCTGGCATCTG -CCAACACGCTTAATCTGGGAGTTG -CCAACACGCTTAATCTGGAGACTG -CCAACACGCTTAATCTGGTCGGTA -CCAACACGCTTAATCTGGTGCCTA -CCAACACGCTTAATCTGGCCACTA -CCAACACGCTTAATCTGGGGAGTA -CCAACACGCTTAATCTGGTCGTCT -CCAACACGCTTAATCTGGTGCACT -CCAACACGCTTAATCTGGCTGACT -CCAACACGCTTAATCTGGCAACCT -CCAACACGCTTAATCTGGGCTACT -CCAACACGCTTAATCTGGGGATCT -CCAACACGCTTAATCTGGAAGGCT -CCAACACGCTTAATCTGGTCAACC -CCAACACGCTTAATCTGGTGTTCC -CCAACACGCTTAATCTGGATTCCC -CCAACACGCTTAATCTGGTTCTCG -CCAACACGCTTAATCTGGTAGACG -CCAACACGCTTAATCTGGGTAACG -CCAACACGCTTAATCTGGACTTCG -CCAACACGCTTAATCTGGTACGCA -CCAACACGCTTAATCTGGCTTGCA -CCAACACGCTTAATCTGGCGAACA -CCAACACGCTTAATCTGGCAGTCA -CCAACACGCTTAATCTGGGATCCA -CCAACACGCTTAATCTGGACGACA -CCAACACGCTTAATCTGGAGCTCA -CCAACACGCTTAATCTGGTCACGT -CCAACACGCTTAATCTGGCGTAGT -CCAACACGCTTAATCTGGGTCAGT -CCAACACGCTTAATCTGGGAAGGT -CCAACACGCTTAATCTGGAACCGT -CCAACACGCTTAATCTGGTTGTGC -CCAACACGCTTAATCTGGCTAAGC -CCAACACGCTTAATCTGGACTAGC -CCAACACGCTTAATCTGGAGATGC -CCAACACGCTTAATCTGGTGAAGG -CCAACACGCTTAATCTGGCAATGG -CCAACACGCTTAATCTGGATGAGG -CCAACACGCTTAATCTGGAATGGG -CCAACACGCTTAATCTGGTCCTGA -CCAACACGCTTAATCTGGTAGCGA -CCAACACGCTTAATCTGGCACAGA -CCAACACGCTTAATCTGGGCAAGA -CCAACACGCTTAATCTGGGGTTGA -CCAACACGCTTAATCTGGTCCGAT -CCAACACGCTTAATCTGGTGGCAT -CCAACACGCTTAATCTGGCGAGAT -CCAACACGCTTAATCTGGTACCAC -CCAACACGCTTAATCTGGCAGAAC -CCAACACGCTTAATCTGGGTCTAC -CCAACACGCTTAATCTGGACGTAC -CCAACACGCTTAATCTGGAGTGAC -CCAACACGCTTAATCTGGCTGTAG -CCAACACGCTTAATCTGGCCTAAG -CCAACACGCTTAATCTGGGTTCAG -CCAACACGCTTAATCTGGGCATAG -CCAACACGCTTAATCTGGGACAAG -CCAACACGCTTAATCTGGAAGCAG -CCAACACGCTTAATCTGGCGTCAA -CCAACACGCTTAATCTGGGCTGAA -CCAACACGCTTAATCTGGAGTACG -CCAACACGCTTAATCTGGATCCGA -CCAACACGCTTAATCTGGATGGGA -CCAACACGCTTAATCTGGGTGCAA -CCAACACGCTTAATCTGGGAGGAA -CCAACACGCTTAATCTGGCAGGTA -CCAACACGCTTAATCTGGGACTCT -CCAACACGCTTAATCTGGAGTCCT -CCAACACGCTTAATCTGGTAAGCC -CCAACACGCTTAATCTGGATAGCC -CCAACACGCTTAATCTGGTAACCG -CCAACACGCTTAATCTGGATGCCA -CCAACACGCTTATTCCACGGAAAC -CCAACACGCTTATTCCACAACACC -CCAACACGCTTATTCCACATCGAG -CCAACACGCTTATTCCACCTCCTT -CCAACACGCTTATTCCACCCTGTT -CCAACACGCTTATTCCACCGGTTT -CCAACACGCTTATTCCACGTGGTT -CCAACACGCTTATTCCACGCCTTT -CCAACACGCTTATTCCACGGTCTT -CCAACACGCTTATTCCACACGCTT -CCAACACGCTTATTCCACAGCGTT -CCAACACGCTTATTCCACTTCGTC -CCAACACGCTTATTCCACTCTCTC -CCAACACGCTTATTCCACTGGATC -CCAACACGCTTATTCCACCACTTC -CCAACACGCTTATTCCACGTACTC -CCAACACGCTTATTCCACGATGTC -CCAACACGCTTATTCCACACAGTC -CCAACACGCTTATTCCACTTGCTG -CCAACACGCTTATTCCACTCCATG -CCAACACGCTTATTCCACTGTGTG -CCAACACGCTTATTCCACCTAGTG -CCAACACGCTTATTCCACCATCTG -CCAACACGCTTATTCCACGAGTTG -CCAACACGCTTATTCCACAGACTG -CCAACACGCTTATTCCACTCGGTA -CCAACACGCTTATTCCACTGCCTA -CCAACACGCTTATTCCACCCACTA -CCAACACGCTTATTCCACGGAGTA -CCAACACGCTTATTCCACTCGTCT -CCAACACGCTTATTCCACTGCACT -CCAACACGCTTATTCCACCTGACT -CCAACACGCTTATTCCACCAACCT -CCAACACGCTTATTCCACGCTACT -CCAACACGCTTATTCCACGGATCT -CCAACACGCTTATTCCACAAGGCT -CCAACACGCTTATTCCACTCAACC -CCAACACGCTTATTCCACTGTTCC -CCAACACGCTTATTCCACATTCCC -CCAACACGCTTATTCCACTTCTCG -CCAACACGCTTATTCCACTAGACG -CCAACACGCTTATTCCACGTAACG -CCAACACGCTTATTCCACACTTCG -CCAACACGCTTATTCCACTACGCA -CCAACACGCTTATTCCACCTTGCA -CCAACACGCTTATTCCACCGAACA -CCAACACGCTTATTCCACCAGTCA -CCAACACGCTTATTCCACGATCCA -CCAACACGCTTATTCCACACGACA -CCAACACGCTTATTCCACAGCTCA -CCAACACGCTTATTCCACTCACGT -CCAACACGCTTATTCCACCGTAGT -CCAACACGCTTATTCCACGTCAGT -CCAACACGCTTATTCCACGAAGGT -CCAACACGCTTATTCCACAACCGT -CCAACACGCTTATTCCACTTGTGC -CCAACACGCTTATTCCACCTAAGC -CCAACACGCTTATTCCACACTAGC -CCAACACGCTTATTCCACAGATGC -CCAACACGCTTATTCCACTGAAGG -CCAACACGCTTATTCCACCAATGG -CCAACACGCTTATTCCACATGAGG -CCAACACGCTTATTCCACAATGGG -CCAACACGCTTATTCCACTCCTGA -CCAACACGCTTATTCCACTAGCGA -CCAACACGCTTATTCCACCACAGA -CCAACACGCTTATTCCACGCAAGA -CCAACACGCTTATTCCACGGTTGA -CCAACACGCTTATTCCACTCCGAT -CCAACACGCTTATTCCACTGGCAT -CCAACACGCTTATTCCACCGAGAT -CCAACACGCTTATTCCACTACCAC -CCAACACGCTTATTCCACCAGAAC -CCAACACGCTTATTCCACGTCTAC -CCAACACGCTTATTCCACACGTAC -CCAACACGCTTATTCCACAGTGAC -CCAACACGCTTATTCCACCTGTAG -CCAACACGCTTATTCCACCCTAAG -CCAACACGCTTATTCCACGTTCAG -CCAACACGCTTATTCCACGCATAG -CCAACACGCTTATTCCACGACAAG -CCAACACGCTTATTCCACAAGCAG -CCAACACGCTTATTCCACCGTCAA -CCAACACGCTTATTCCACGCTGAA -CCAACACGCTTATTCCACAGTACG -CCAACACGCTTATTCCACATCCGA -CCAACACGCTTATTCCACATGGGA -CCAACACGCTTATTCCACGTGCAA -CCAACACGCTTATTCCACGAGGAA -CCAACACGCTTATTCCACCAGGTA -CCAACACGCTTATTCCACGACTCT -CCAACACGCTTATTCCACAGTCCT -CCAACACGCTTATTCCACTAAGCC -CCAACACGCTTATTCCACATAGCC -CCAACACGCTTATTCCACTAACCG -CCAACACGCTTATTCCACATGCCA -CCAACACGCTTACTCGTAGGAAAC -CCAACACGCTTACTCGTAAACACC -CCAACACGCTTACTCGTAATCGAG -CCAACACGCTTACTCGTACTCCTT -CCAACACGCTTACTCGTACCTGTT -CCAACACGCTTACTCGTACGGTTT -CCAACACGCTTACTCGTAGTGGTT -CCAACACGCTTACTCGTAGCCTTT -CCAACACGCTTACTCGTAGGTCTT -CCAACACGCTTACTCGTAACGCTT -CCAACACGCTTACTCGTAAGCGTT -CCAACACGCTTACTCGTATTCGTC -CCAACACGCTTACTCGTATCTCTC -CCAACACGCTTACTCGTATGGATC -CCAACACGCTTACTCGTACACTTC -CCAACACGCTTACTCGTAGTACTC -CCAACACGCTTACTCGTAGATGTC -CCAACACGCTTACTCGTAACAGTC -CCAACACGCTTACTCGTATTGCTG -CCAACACGCTTACTCGTATCCATG -CCAACACGCTTACTCGTATGTGTG -CCAACACGCTTACTCGTACTAGTG -CCAACACGCTTACTCGTACATCTG -CCAACACGCTTACTCGTAGAGTTG -CCAACACGCTTACTCGTAAGACTG -CCAACACGCTTACTCGTATCGGTA -CCAACACGCTTACTCGTATGCCTA -CCAACACGCTTACTCGTACCACTA -CCAACACGCTTACTCGTAGGAGTA -CCAACACGCTTACTCGTATCGTCT -CCAACACGCTTACTCGTATGCACT -CCAACACGCTTACTCGTACTGACT -CCAACACGCTTACTCGTACAACCT -CCAACACGCTTACTCGTAGCTACT -CCAACACGCTTACTCGTAGGATCT -CCAACACGCTTACTCGTAAAGGCT -CCAACACGCTTACTCGTATCAACC -CCAACACGCTTACTCGTATGTTCC -CCAACACGCTTACTCGTAATTCCC -CCAACACGCTTACTCGTATTCTCG -CCAACACGCTTACTCGTATAGACG -CCAACACGCTTACTCGTAGTAACG -CCAACACGCTTACTCGTAACTTCG -CCAACACGCTTACTCGTATACGCA -CCAACACGCTTACTCGTACTTGCA -CCAACACGCTTACTCGTACGAACA -CCAACACGCTTACTCGTACAGTCA -CCAACACGCTTACTCGTAGATCCA -CCAACACGCTTACTCGTAACGACA -CCAACACGCTTACTCGTAAGCTCA -CCAACACGCTTACTCGTATCACGT -CCAACACGCTTACTCGTACGTAGT -CCAACACGCTTACTCGTAGTCAGT -CCAACACGCTTACTCGTAGAAGGT -CCAACACGCTTACTCGTAAACCGT -CCAACACGCTTACTCGTATTGTGC -CCAACACGCTTACTCGTACTAAGC -CCAACACGCTTACTCGTAACTAGC -CCAACACGCTTACTCGTAAGATGC -CCAACACGCTTACTCGTATGAAGG -CCAACACGCTTACTCGTACAATGG -CCAACACGCTTACTCGTAATGAGG -CCAACACGCTTACTCGTAAATGGG -CCAACACGCTTACTCGTATCCTGA -CCAACACGCTTACTCGTATAGCGA -CCAACACGCTTACTCGTACACAGA -CCAACACGCTTACTCGTAGCAAGA -CCAACACGCTTACTCGTAGGTTGA -CCAACACGCTTACTCGTATCCGAT -CCAACACGCTTACTCGTATGGCAT -CCAACACGCTTACTCGTACGAGAT -CCAACACGCTTACTCGTATACCAC -CCAACACGCTTACTCGTACAGAAC -CCAACACGCTTACTCGTAGTCTAC -CCAACACGCTTACTCGTAACGTAC -CCAACACGCTTACTCGTAAGTGAC -CCAACACGCTTACTCGTACTGTAG -CCAACACGCTTACTCGTACCTAAG -CCAACACGCTTACTCGTAGTTCAG -CCAACACGCTTACTCGTAGCATAG -CCAACACGCTTACTCGTAGACAAG -CCAACACGCTTACTCGTAAAGCAG -CCAACACGCTTACTCGTACGTCAA -CCAACACGCTTACTCGTAGCTGAA -CCAACACGCTTACTCGTAAGTACG -CCAACACGCTTACTCGTAATCCGA -CCAACACGCTTACTCGTAATGGGA -CCAACACGCTTACTCGTAGTGCAA -CCAACACGCTTACTCGTAGAGGAA -CCAACACGCTTACTCGTACAGGTA -CCAACACGCTTACTCGTAGACTCT -CCAACACGCTTACTCGTAAGTCCT -CCAACACGCTTACTCGTATAAGCC -CCAACACGCTTACTCGTAATAGCC -CCAACACGCTTACTCGTATAACCG -CCAACACGCTTACTCGTAATGCCA -CCAACACGCTTAGTCGATGGAAAC -CCAACACGCTTAGTCGATAACACC -CCAACACGCTTAGTCGATATCGAG -CCAACACGCTTAGTCGATCTCCTT -CCAACACGCTTAGTCGATCCTGTT -CCAACACGCTTAGTCGATCGGTTT -CCAACACGCTTAGTCGATGTGGTT -CCAACACGCTTAGTCGATGCCTTT -CCAACACGCTTAGTCGATGGTCTT -CCAACACGCTTAGTCGATACGCTT -CCAACACGCTTAGTCGATAGCGTT -CCAACACGCTTAGTCGATTTCGTC -CCAACACGCTTAGTCGATTCTCTC -CCAACACGCTTAGTCGATTGGATC -CCAACACGCTTAGTCGATCACTTC -CCAACACGCTTAGTCGATGTACTC -CCAACACGCTTAGTCGATGATGTC -CCAACACGCTTAGTCGATACAGTC -CCAACACGCTTAGTCGATTTGCTG -CCAACACGCTTAGTCGATTCCATG -CCAACACGCTTAGTCGATTGTGTG -CCAACACGCTTAGTCGATCTAGTG -CCAACACGCTTAGTCGATCATCTG -CCAACACGCTTAGTCGATGAGTTG -CCAACACGCTTAGTCGATAGACTG -CCAACACGCTTAGTCGATTCGGTA -CCAACACGCTTAGTCGATTGCCTA -CCAACACGCTTAGTCGATCCACTA -CCAACACGCTTAGTCGATGGAGTA -CCAACACGCTTAGTCGATTCGTCT -CCAACACGCTTAGTCGATTGCACT -CCAACACGCTTAGTCGATCTGACT -CCAACACGCTTAGTCGATCAACCT -CCAACACGCTTAGTCGATGCTACT -CCAACACGCTTAGTCGATGGATCT -CCAACACGCTTAGTCGATAAGGCT -CCAACACGCTTAGTCGATTCAACC -CCAACACGCTTAGTCGATTGTTCC -CCAACACGCTTAGTCGATATTCCC -CCAACACGCTTAGTCGATTTCTCG -CCAACACGCTTAGTCGATTAGACG -CCAACACGCTTAGTCGATGTAACG -CCAACACGCTTAGTCGATACTTCG -CCAACACGCTTAGTCGATTACGCA -CCAACACGCTTAGTCGATCTTGCA -CCAACACGCTTAGTCGATCGAACA -CCAACACGCTTAGTCGATCAGTCA -CCAACACGCTTAGTCGATGATCCA -CCAACACGCTTAGTCGATACGACA -CCAACACGCTTAGTCGATAGCTCA -CCAACACGCTTAGTCGATTCACGT -CCAACACGCTTAGTCGATCGTAGT -CCAACACGCTTAGTCGATGTCAGT -CCAACACGCTTAGTCGATGAAGGT -CCAACACGCTTAGTCGATAACCGT -CCAACACGCTTAGTCGATTTGTGC -CCAACACGCTTAGTCGATCTAAGC -CCAACACGCTTAGTCGATACTAGC -CCAACACGCTTAGTCGATAGATGC -CCAACACGCTTAGTCGATTGAAGG -CCAACACGCTTAGTCGATCAATGG -CCAACACGCTTAGTCGATATGAGG -CCAACACGCTTAGTCGATAATGGG -CCAACACGCTTAGTCGATTCCTGA -CCAACACGCTTAGTCGATTAGCGA -CCAACACGCTTAGTCGATCACAGA -CCAACACGCTTAGTCGATGCAAGA -CCAACACGCTTAGTCGATGGTTGA -CCAACACGCTTAGTCGATTCCGAT -CCAACACGCTTAGTCGATTGGCAT -CCAACACGCTTAGTCGATCGAGAT -CCAACACGCTTAGTCGATTACCAC -CCAACACGCTTAGTCGATCAGAAC -CCAACACGCTTAGTCGATGTCTAC -CCAACACGCTTAGTCGATACGTAC -CCAACACGCTTAGTCGATAGTGAC -CCAACACGCTTAGTCGATCTGTAG -CCAACACGCTTAGTCGATCCTAAG -CCAACACGCTTAGTCGATGTTCAG -CCAACACGCTTAGTCGATGCATAG -CCAACACGCTTAGTCGATGACAAG -CCAACACGCTTAGTCGATAAGCAG -CCAACACGCTTAGTCGATCGTCAA -CCAACACGCTTAGTCGATGCTGAA -CCAACACGCTTAGTCGATAGTACG -CCAACACGCTTAGTCGATATCCGA -CCAACACGCTTAGTCGATATGGGA -CCAACACGCTTAGTCGATGTGCAA -CCAACACGCTTAGTCGATGAGGAA -CCAACACGCTTAGTCGATCAGGTA -CCAACACGCTTAGTCGATGACTCT -CCAACACGCTTAGTCGATAGTCCT -CCAACACGCTTAGTCGATTAAGCC -CCAACACGCTTAGTCGATATAGCC -CCAACACGCTTAGTCGATTAACCG -CCAACACGCTTAGTCGATATGCCA -CCAACACGCTTAGTCACAGGAAAC -CCAACACGCTTAGTCACAAACACC -CCAACACGCTTAGTCACAATCGAG -CCAACACGCTTAGTCACACTCCTT -CCAACACGCTTAGTCACACCTGTT -CCAACACGCTTAGTCACACGGTTT -CCAACACGCTTAGTCACAGTGGTT -CCAACACGCTTAGTCACAGCCTTT -CCAACACGCTTAGTCACAGGTCTT -CCAACACGCTTAGTCACAACGCTT -CCAACACGCTTAGTCACAAGCGTT -CCAACACGCTTAGTCACATTCGTC -CCAACACGCTTAGTCACATCTCTC -CCAACACGCTTAGTCACATGGATC -CCAACACGCTTAGTCACACACTTC -CCAACACGCTTAGTCACAGTACTC -CCAACACGCTTAGTCACAGATGTC -CCAACACGCTTAGTCACAACAGTC -CCAACACGCTTAGTCACATTGCTG -CCAACACGCTTAGTCACATCCATG -CCAACACGCTTAGTCACATGTGTG -CCAACACGCTTAGTCACACTAGTG -CCAACACGCTTAGTCACACATCTG -CCAACACGCTTAGTCACAGAGTTG -CCAACACGCTTAGTCACAAGACTG -CCAACACGCTTAGTCACATCGGTA -CCAACACGCTTAGTCACATGCCTA -CCAACACGCTTAGTCACACCACTA -CCAACACGCTTAGTCACAGGAGTA -CCAACACGCTTAGTCACATCGTCT -CCAACACGCTTAGTCACATGCACT -CCAACACGCTTAGTCACACTGACT -CCAACACGCTTAGTCACACAACCT -CCAACACGCTTAGTCACAGCTACT -CCAACACGCTTAGTCACAGGATCT -CCAACACGCTTAGTCACAAAGGCT -CCAACACGCTTAGTCACATCAACC -CCAACACGCTTAGTCACATGTTCC -CCAACACGCTTAGTCACAATTCCC -CCAACACGCTTAGTCACATTCTCG -CCAACACGCTTAGTCACATAGACG -CCAACACGCTTAGTCACAGTAACG -CCAACACGCTTAGTCACAACTTCG -CCAACACGCTTAGTCACATACGCA -CCAACACGCTTAGTCACACTTGCA -CCAACACGCTTAGTCACACGAACA -CCAACACGCTTAGTCACACAGTCA -CCAACACGCTTAGTCACAGATCCA -CCAACACGCTTAGTCACAACGACA -CCAACACGCTTAGTCACAAGCTCA -CCAACACGCTTAGTCACATCACGT -CCAACACGCTTAGTCACACGTAGT -CCAACACGCTTAGTCACAGTCAGT -CCAACACGCTTAGTCACAGAAGGT -CCAACACGCTTAGTCACAAACCGT -CCAACACGCTTAGTCACATTGTGC -CCAACACGCTTAGTCACACTAAGC -CCAACACGCTTAGTCACAACTAGC -CCAACACGCTTAGTCACAAGATGC -CCAACACGCTTAGTCACATGAAGG -CCAACACGCTTAGTCACACAATGG -CCAACACGCTTAGTCACAATGAGG -CCAACACGCTTAGTCACAAATGGG -CCAACACGCTTAGTCACATCCTGA -CCAACACGCTTAGTCACATAGCGA -CCAACACGCTTAGTCACACACAGA -CCAACACGCTTAGTCACAGCAAGA -CCAACACGCTTAGTCACAGGTTGA -CCAACACGCTTAGTCACATCCGAT -CCAACACGCTTAGTCACATGGCAT -CCAACACGCTTAGTCACACGAGAT -CCAACACGCTTAGTCACATACCAC -CCAACACGCTTAGTCACACAGAAC -CCAACACGCTTAGTCACAGTCTAC -CCAACACGCTTAGTCACAACGTAC -CCAACACGCTTAGTCACAAGTGAC -CCAACACGCTTAGTCACACTGTAG -CCAACACGCTTAGTCACACCTAAG -CCAACACGCTTAGTCACAGTTCAG -CCAACACGCTTAGTCACAGCATAG -CCAACACGCTTAGTCACAGACAAG -CCAACACGCTTAGTCACAAAGCAG -CCAACACGCTTAGTCACACGTCAA -CCAACACGCTTAGTCACAGCTGAA -CCAACACGCTTAGTCACAAGTACG -CCAACACGCTTAGTCACAATCCGA -CCAACACGCTTAGTCACAATGGGA -CCAACACGCTTAGTCACAGTGCAA -CCAACACGCTTAGTCACAGAGGAA -CCAACACGCTTAGTCACACAGGTA -CCAACACGCTTAGTCACAGACTCT -CCAACACGCTTAGTCACAAGTCCT -CCAACACGCTTAGTCACATAAGCC -CCAACACGCTTAGTCACAATAGCC -CCAACACGCTTAGTCACATAACCG -CCAACACGCTTAGTCACAATGCCA -CCAACACGCTTACTGTTGGGAAAC -CCAACACGCTTACTGTTGAACACC -CCAACACGCTTACTGTTGATCGAG -CCAACACGCTTACTGTTGCTCCTT -CCAACACGCTTACTGTTGCCTGTT -CCAACACGCTTACTGTTGCGGTTT -CCAACACGCTTACTGTTGGTGGTT -CCAACACGCTTACTGTTGGCCTTT -CCAACACGCTTACTGTTGGGTCTT -CCAACACGCTTACTGTTGACGCTT -CCAACACGCTTACTGTTGAGCGTT -CCAACACGCTTACTGTTGTTCGTC -CCAACACGCTTACTGTTGTCTCTC -CCAACACGCTTACTGTTGTGGATC -CCAACACGCTTACTGTTGCACTTC -CCAACACGCTTACTGTTGGTACTC -CCAACACGCTTACTGTTGGATGTC -CCAACACGCTTACTGTTGACAGTC -CCAACACGCTTACTGTTGTTGCTG -CCAACACGCTTACTGTTGTCCATG -CCAACACGCTTACTGTTGTGTGTG -CCAACACGCTTACTGTTGCTAGTG -CCAACACGCTTACTGTTGCATCTG -CCAACACGCTTACTGTTGGAGTTG -CCAACACGCTTACTGTTGAGACTG -CCAACACGCTTACTGTTGTCGGTA -CCAACACGCTTACTGTTGTGCCTA -CCAACACGCTTACTGTTGCCACTA -CCAACACGCTTACTGTTGGGAGTA -CCAACACGCTTACTGTTGTCGTCT -CCAACACGCTTACTGTTGTGCACT -CCAACACGCTTACTGTTGCTGACT -CCAACACGCTTACTGTTGCAACCT -CCAACACGCTTACTGTTGGCTACT -CCAACACGCTTACTGTTGGGATCT -CCAACACGCTTACTGTTGAAGGCT -CCAACACGCTTACTGTTGTCAACC -CCAACACGCTTACTGTTGTGTTCC -CCAACACGCTTACTGTTGATTCCC -CCAACACGCTTACTGTTGTTCTCG -CCAACACGCTTACTGTTGTAGACG -CCAACACGCTTACTGTTGGTAACG -CCAACACGCTTACTGTTGACTTCG -CCAACACGCTTACTGTTGTACGCA -CCAACACGCTTACTGTTGCTTGCA -CCAACACGCTTACTGTTGCGAACA -CCAACACGCTTACTGTTGCAGTCA -CCAACACGCTTACTGTTGGATCCA -CCAACACGCTTACTGTTGACGACA -CCAACACGCTTACTGTTGAGCTCA -CCAACACGCTTACTGTTGTCACGT -CCAACACGCTTACTGTTGCGTAGT -CCAACACGCTTACTGTTGGTCAGT -CCAACACGCTTACTGTTGGAAGGT -CCAACACGCTTACTGTTGAACCGT -CCAACACGCTTACTGTTGTTGTGC -CCAACACGCTTACTGTTGCTAAGC -CCAACACGCTTACTGTTGACTAGC -CCAACACGCTTACTGTTGAGATGC -CCAACACGCTTACTGTTGTGAAGG -CCAACACGCTTACTGTTGCAATGG -CCAACACGCTTACTGTTGATGAGG -CCAACACGCTTACTGTTGAATGGG -CCAACACGCTTACTGTTGTCCTGA -CCAACACGCTTACTGTTGTAGCGA -CCAACACGCTTACTGTTGCACAGA -CCAACACGCTTACTGTTGGCAAGA -CCAACACGCTTACTGTTGGGTTGA -CCAACACGCTTACTGTTGTCCGAT -CCAACACGCTTACTGTTGTGGCAT -CCAACACGCTTACTGTTGCGAGAT -CCAACACGCTTACTGTTGTACCAC -CCAACACGCTTACTGTTGCAGAAC -CCAACACGCTTACTGTTGGTCTAC -CCAACACGCTTACTGTTGACGTAC -CCAACACGCTTACTGTTGAGTGAC -CCAACACGCTTACTGTTGCTGTAG -CCAACACGCTTACTGTTGCCTAAG -CCAACACGCTTACTGTTGGTTCAG -CCAACACGCTTACTGTTGGCATAG -CCAACACGCTTACTGTTGGACAAG -CCAACACGCTTACTGTTGAAGCAG -CCAACACGCTTACTGTTGCGTCAA -CCAACACGCTTACTGTTGGCTGAA -CCAACACGCTTACTGTTGAGTACG -CCAACACGCTTACTGTTGATCCGA -CCAACACGCTTACTGTTGATGGGA -CCAACACGCTTACTGTTGGTGCAA -CCAACACGCTTACTGTTGGAGGAA -CCAACACGCTTACTGTTGCAGGTA -CCAACACGCTTACTGTTGGACTCT -CCAACACGCTTACTGTTGAGTCCT -CCAACACGCTTACTGTTGTAAGCC -CCAACACGCTTACTGTTGATAGCC -CCAACACGCTTACTGTTGTAACCG -CCAACACGCTTACTGTTGATGCCA -CCAACACGCTTAATGTCCGGAAAC -CCAACACGCTTAATGTCCAACACC -CCAACACGCTTAATGTCCATCGAG -CCAACACGCTTAATGTCCCTCCTT -CCAACACGCTTAATGTCCCCTGTT -CCAACACGCTTAATGTCCCGGTTT -CCAACACGCTTAATGTCCGTGGTT -CCAACACGCTTAATGTCCGCCTTT -CCAACACGCTTAATGTCCGGTCTT -CCAACACGCTTAATGTCCACGCTT -CCAACACGCTTAATGTCCAGCGTT -CCAACACGCTTAATGTCCTTCGTC -CCAACACGCTTAATGTCCTCTCTC -CCAACACGCTTAATGTCCTGGATC -CCAACACGCTTAATGTCCCACTTC -CCAACACGCTTAATGTCCGTACTC -CCAACACGCTTAATGTCCGATGTC -CCAACACGCTTAATGTCCACAGTC -CCAACACGCTTAATGTCCTTGCTG -CCAACACGCTTAATGTCCTCCATG -CCAACACGCTTAATGTCCTGTGTG -CCAACACGCTTAATGTCCCTAGTG -CCAACACGCTTAATGTCCCATCTG -CCAACACGCTTAATGTCCGAGTTG -CCAACACGCTTAATGTCCAGACTG -CCAACACGCTTAATGTCCTCGGTA -CCAACACGCTTAATGTCCTGCCTA -CCAACACGCTTAATGTCCCCACTA -CCAACACGCTTAATGTCCGGAGTA -CCAACACGCTTAATGTCCTCGTCT -CCAACACGCTTAATGTCCTGCACT -CCAACACGCTTAATGTCCCTGACT -CCAACACGCTTAATGTCCCAACCT -CCAACACGCTTAATGTCCGCTACT -CCAACACGCTTAATGTCCGGATCT -CCAACACGCTTAATGTCCAAGGCT -CCAACACGCTTAATGTCCTCAACC -CCAACACGCTTAATGTCCTGTTCC -CCAACACGCTTAATGTCCATTCCC -CCAACACGCTTAATGTCCTTCTCG -CCAACACGCTTAATGTCCTAGACG -CCAACACGCTTAATGTCCGTAACG -CCAACACGCTTAATGTCCACTTCG -CCAACACGCTTAATGTCCTACGCA -CCAACACGCTTAATGTCCCTTGCA -CCAACACGCTTAATGTCCCGAACA -CCAACACGCTTAATGTCCCAGTCA -CCAACACGCTTAATGTCCGATCCA -CCAACACGCTTAATGTCCACGACA -CCAACACGCTTAATGTCCAGCTCA -CCAACACGCTTAATGTCCTCACGT -CCAACACGCTTAATGTCCCGTAGT -CCAACACGCTTAATGTCCGTCAGT -CCAACACGCTTAATGTCCGAAGGT -CCAACACGCTTAATGTCCAACCGT -CCAACACGCTTAATGTCCTTGTGC -CCAACACGCTTAATGTCCCTAAGC -CCAACACGCTTAATGTCCACTAGC -CCAACACGCTTAATGTCCAGATGC -CCAACACGCTTAATGTCCTGAAGG -CCAACACGCTTAATGTCCCAATGG -CCAACACGCTTAATGTCCATGAGG -CCAACACGCTTAATGTCCAATGGG -CCAACACGCTTAATGTCCTCCTGA -CCAACACGCTTAATGTCCTAGCGA -CCAACACGCTTAATGTCCCACAGA -CCAACACGCTTAATGTCCGCAAGA -CCAACACGCTTAATGTCCGGTTGA -CCAACACGCTTAATGTCCTCCGAT -CCAACACGCTTAATGTCCTGGCAT -CCAACACGCTTAATGTCCCGAGAT -CCAACACGCTTAATGTCCTACCAC -CCAACACGCTTAATGTCCCAGAAC -CCAACACGCTTAATGTCCGTCTAC -CCAACACGCTTAATGTCCACGTAC -CCAACACGCTTAATGTCCAGTGAC -CCAACACGCTTAATGTCCCTGTAG -CCAACACGCTTAATGTCCCCTAAG -CCAACACGCTTAATGTCCGTTCAG -CCAACACGCTTAATGTCCGCATAG -CCAACACGCTTAATGTCCGACAAG -CCAACACGCTTAATGTCCAAGCAG -CCAACACGCTTAATGTCCCGTCAA -CCAACACGCTTAATGTCCGCTGAA -CCAACACGCTTAATGTCCAGTACG -CCAACACGCTTAATGTCCATCCGA -CCAACACGCTTAATGTCCATGGGA -CCAACACGCTTAATGTCCGTGCAA -CCAACACGCTTAATGTCCGAGGAA -CCAACACGCTTAATGTCCCAGGTA -CCAACACGCTTAATGTCCGACTCT -CCAACACGCTTAATGTCCAGTCCT -CCAACACGCTTAATGTCCTAAGCC -CCAACACGCTTAATGTCCATAGCC -CCAACACGCTTAATGTCCTAACCG -CCAACACGCTTAATGTCCATGCCA -CCAACACGCTTAGTGTGTGGAAAC -CCAACACGCTTAGTGTGTAACACC -CCAACACGCTTAGTGTGTATCGAG -CCAACACGCTTAGTGTGTCTCCTT -CCAACACGCTTAGTGTGTCCTGTT -CCAACACGCTTAGTGTGTCGGTTT -CCAACACGCTTAGTGTGTGTGGTT -CCAACACGCTTAGTGTGTGCCTTT -CCAACACGCTTAGTGTGTGGTCTT -CCAACACGCTTAGTGTGTACGCTT -CCAACACGCTTAGTGTGTAGCGTT -CCAACACGCTTAGTGTGTTTCGTC -CCAACACGCTTAGTGTGTTCTCTC -CCAACACGCTTAGTGTGTTGGATC -CCAACACGCTTAGTGTGTCACTTC -CCAACACGCTTAGTGTGTGTACTC -CCAACACGCTTAGTGTGTGATGTC -CCAACACGCTTAGTGTGTACAGTC -CCAACACGCTTAGTGTGTTTGCTG -CCAACACGCTTAGTGTGTTCCATG -CCAACACGCTTAGTGTGTTGTGTG -CCAACACGCTTAGTGTGTCTAGTG -CCAACACGCTTAGTGTGTCATCTG -CCAACACGCTTAGTGTGTGAGTTG -CCAACACGCTTAGTGTGTAGACTG -CCAACACGCTTAGTGTGTTCGGTA -CCAACACGCTTAGTGTGTTGCCTA -CCAACACGCTTAGTGTGTCCACTA -CCAACACGCTTAGTGTGTGGAGTA -CCAACACGCTTAGTGTGTTCGTCT -CCAACACGCTTAGTGTGTTGCACT -CCAACACGCTTAGTGTGTCTGACT -CCAACACGCTTAGTGTGTCAACCT -CCAACACGCTTAGTGTGTGCTACT -CCAACACGCTTAGTGTGTGGATCT -CCAACACGCTTAGTGTGTAAGGCT -CCAACACGCTTAGTGTGTTCAACC -CCAACACGCTTAGTGTGTTGTTCC -CCAACACGCTTAGTGTGTATTCCC -CCAACACGCTTAGTGTGTTTCTCG -CCAACACGCTTAGTGTGTTAGACG -CCAACACGCTTAGTGTGTGTAACG -CCAACACGCTTAGTGTGTACTTCG -CCAACACGCTTAGTGTGTTACGCA -CCAACACGCTTAGTGTGTCTTGCA -CCAACACGCTTAGTGTGTCGAACA -CCAACACGCTTAGTGTGTCAGTCA -CCAACACGCTTAGTGTGTGATCCA -CCAACACGCTTAGTGTGTACGACA -CCAACACGCTTAGTGTGTAGCTCA -CCAACACGCTTAGTGTGTTCACGT -CCAACACGCTTAGTGTGTCGTAGT -CCAACACGCTTAGTGTGTGTCAGT -CCAACACGCTTAGTGTGTGAAGGT -CCAACACGCTTAGTGTGTAACCGT -CCAACACGCTTAGTGTGTTTGTGC -CCAACACGCTTAGTGTGTCTAAGC -CCAACACGCTTAGTGTGTACTAGC -CCAACACGCTTAGTGTGTAGATGC -CCAACACGCTTAGTGTGTTGAAGG -CCAACACGCTTAGTGTGTCAATGG -CCAACACGCTTAGTGTGTATGAGG -CCAACACGCTTAGTGTGTAATGGG -CCAACACGCTTAGTGTGTTCCTGA -CCAACACGCTTAGTGTGTTAGCGA -CCAACACGCTTAGTGTGTCACAGA -CCAACACGCTTAGTGTGTGCAAGA -CCAACACGCTTAGTGTGTGGTTGA -CCAACACGCTTAGTGTGTTCCGAT -CCAACACGCTTAGTGTGTTGGCAT -CCAACACGCTTAGTGTGTCGAGAT -CCAACACGCTTAGTGTGTTACCAC -CCAACACGCTTAGTGTGTCAGAAC -CCAACACGCTTAGTGTGTGTCTAC -CCAACACGCTTAGTGTGTACGTAC -CCAACACGCTTAGTGTGTAGTGAC -CCAACACGCTTAGTGTGTCTGTAG -CCAACACGCTTAGTGTGTCCTAAG -CCAACACGCTTAGTGTGTGTTCAG -CCAACACGCTTAGTGTGTGCATAG -CCAACACGCTTAGTGTGTGACAAG -CCAACACGCTTAGTGTGTAAGCAG -CCAACACGCTTAGTGTGTCGTCAA -CCAACACGCTTAGTGTGTGCTGAA -CCAACACGCTTAGTGTGTAGTACG -CCAACACGCTTAGTGTGTATCCGA -CCAACACGCTTAGTGTGTATGGGA -CCAACACGCTTAGTGTGTGTGCAA -CCAACACGCTTAGTGTGTGAGGAA -CCAACACGCTTAGTGTGTCAGGTA -CCAACACGCTTAGTGTGTGACTCT -CCAACACGCTTAGTGTGTAGTCCT -CCAACACGCTTAGTGTGTTAAGCC -CCAACACGCTTAGTGTGTATAGCC -CCAACACGCTTAGTGTGTTAACCG -CCAACACGCTTAGTGTGTATGCCA -CCAACACGCTTAGTGCTAGGAAAC -CCAACACGCTTAGTGCTAAACACC -CCAACACGCTTAGTGCTAATCGAG -CCAACACGCTTAGTGCTACTCCTT -CCAACACGCTTAGTGCTACCTGTT -CCAACACGCTTAGTGCTACGGTTT -CCAACACGCTTAGTGCTAGTGGTT -CCAACACGCTTAGTGCTAGCCTTT -CCAACACGCTTAGTGCTAGGTCTT -CCAACACGCTTAGTGCTAACGCTT -CCAACACGCTTAGTGCTAAGCGTT -CCAACACGCTTAGTGCTATTCGTC -CCAACACGCTTAGTGCTATCTCTC -CCAACACGCTTAGTGCTATGGATC -CCAACACGCTTAGTGCTACACTTC -CCAACACGCTTAGTGCTAGTACTC -CCAACACGCTTAGTGCTAGATGTC -CCAACACGCTTAGTGCTAACAGTC -CCAACACGCTTAGTGCTATTGCTG -CCAACACGCTTAGTGCTATCCATG -CCAACACGCTTAGTGCTATGTGTG -CCAACACGCTTAGTGCTACTAGTG -CCAACACGCTTAGTGCTACATCTG -CCAACACGCTTAGTGCTAGAGTTG -CCAACACGCTTAGTGCTAAGACTG -CCAACACGCTTAGTGCTATCGGTA -CCAACACGCTTAGTGCTATGCCTA -CCAACACGCTTAGTGCTACCACTA -CCAACACGCTTAGTGCTAGGAGTA -CCAACACGCTTAGTGCTATCGTCT -CCAACACGCTTAGTGCTATGCACT -CCAACACGCTTAGTGCTACTGACT -CCAACACGCTTAGTGCTACAACCT -CCAACACGCTTAGTGCTAGCTACT -CCAACACGCTTAGTGCTAGGATCT -CCAACACGCTTAGTGCTAAAGGCT -CCAACACGCTTAGTGCTATCAACC -CCAACACGCTTAGTGCTATGTTCC -CCAACACGCTTAGTGCTAATTCCC -CCAACACGCTTAGTGCTATTCTCG -CCAACACGCTTAGTGCTATAGACG -CCAACACGCTTAGTGCTAGTAACG -CCAACACGCTTAGTGCTAACTTCG -CCAACACGCTTAGTGCTATACGCA -CCAACACGCTTAGTGCTACTTGCA -CCAACACGCTTAGTGCTACGAACA -CCAACACGCTTAGTGCTACAGTCA -CCAACACGCTTAGTGCTAGATCCA -CCAACACGCTTAGTGCTAACGACA -CCAACACGCTTAGTGCTAAGCTCA -CCAACACGCTTAGTGCTATCACGT -CCAACACGCTTAGTGCTACGTAGT -CCAACACGCTTAGTGCTAGTCAGT -CCAACACGCTTAGTGCTAGAAGGT -CCAACACGCTTAGTGCTAAACCGT -CCAACACGCTTAGTGCTATTGTGC -CCAACACGCTTAGTGCTACTAAGC -CCAACACGCTTAGTGCTAACTAGC -CCAACACGCTTAGTGCTAAGATGC -CCAACACGCTTAGTGCTATGAAGG -CCAACACGCTTAGTGCTACAATGG -CCAACACGCTTAGTGCTAATGAGG -CCAACACGCTTAGTGCTAAATGGG -CCAACACGCTTAGTGCTATCCTGA -CCAACACGCTTAGTGCTATAGCGA -CCAACACGCTTAGTGCTACACAGA -CCAACACGCTTAGTGCTAGCAAGA -CCAACACGCTTAGTGCTAGGTTGA -CCAACACGCTTAGTGCTATCCGAT -CCAACACGCTTAGTGCTATGGCAT -CCAACACGCTTAGTGCTACGAGAT -CCAACACGCTTAGTGCTATACCAC -CCAACACGCTTAGTGCTACAGAAC -CCAACACGCTTAGTGCTAGTCTAC -CCAACACGCTTAGTGCTAACGTAC -CCAACACGCTTAGTGCTAAGTGAC -CCAACACGCTTAGTGCTACTGTAG -CCAACACGCTTAGTGCTACCTAAG -CCAACACGCTTAGTGCTAGTTCAG -CCAACACGCTTAGTGCTAGCATAG -CCAACACGCTTAGTGCTAGACAAG -CCAACACGCTTAGTGCTAAAGCAG -CCAACACGCTTAGTGCTACGTCAA -CCAACACGCTTAGTGCTAGCTGAA -CCAACACGCTTAGTGCTAAGTACG -CCAACACGCTTAGTGCTAATCCGA -CCAACACGCTTAGTGCTAATGGGA -CCAACACGCTTAGTGCTAGTGCAA -CCAACACGCTTAGTGCTAGAGGAA -CCAACACGCTTAGTGCTACAGGTA -CCAACACGCTTAGTGCTAGACTCT -CCAACACGCTTAGTGCTAAGTCCT -CCAACACGCTTAGTGCTATAAGCC -CCAACACGCTTAGTGCTAATAGCC -CCAACACGCTTAGTGCTATAACCG -CCAACACGCTTAGTGCTAATGCCA -CCAACACGCTTACTGCATGGAAAC -CCAACACGCTTACTGCATAACACC -CCAACACGCTTACTGCATATCGAG -CCAACACGCTTACTGCATCTCCTT -CCAACACGCTTACTGCATCCTGTT -CCAACACGCTTACTGCATCGGTTT -CCAACACGCTTACTGCATGTGGTT -CCAACACGCTTACTGCATGCCTTT -CCAACACGCTTACTGCATGGTCTT -CCAACACGCTTACTGCATACGCTT -CCAACACGCTTACTGCATAGCGTT -CCAACACGCTTACTGCATTTCGTC -CCAACACGCTTACTGCATTCTCTC -CCAACACGCTTACTGCATTGGATC -CCAACACGCTTACTGCATCACTTC -CCAACACGCTTACTGCATGTACTC -CCAACACGCTTACTGCATGATGTC -CCAACACGCTTACTGCATACAGTC -CCAACACGCTTACTGCATTTGCTG -CCAACACGCTTACTGCATTCCATG -CCAACACGCTTACTGCATTGTGTG -CCAACACGCTTACTGCATCTAGTG -CCAACACGCTTACTGCATCATCTG -CCAACACGCTTACTGCATGAGTTG -CCAACACGCTTACTGCATAGACTG -CCAACACGCTTACTGCATTCGGTA -CCAACACGCTTACTGCATTGCCTA -CCAACACGCTTACTGCATCCACTA -CCAACACGCTTACTGCATGGAGTA -CCAACACGCTTACTGCATTCGTCT -CCAACACGCTTACTGCATTGCACT -CCAACACGCTTACTGCATCTGACT -CCAACACGCTTACTGCATCAACCT -CCAACACGCTTACTGCATGCTACT -CCAACACGCTTACTGCATGGATCT -CCAACACGCTTACTGCATAAGGCT -CCAACACGCTTACTGCATTCAACC -CCAACACGCTTACTGCATTGTTCC -CCAACACGCTTACTGCATATTCCC -CCAACACGCTTACTGCATTTCTCG -CCAACACGCTTACTGCATTAGACG -CCAACACGCTTACTGCATGTAACG -CCAACACGCTTACTGCATACTTCG -CCAACACGCTTACTGCATTACGCA -CCAACACGCTTACTGCATCTTGCA -CCAACACGCTTACTGCATCGAACA -CCAACACGCTTACTGCATCAGTCA -CCAACACGCTTACTGCATGATCCA -CCAACACGCTTACTGCATACGACA -CCAACACGCTTACTGCATAGCTCA -CCAACACGCTTACTGCATTCACGT -CCAACACGCTTACTGCATCGTAGT -CCAACACGCTTACTGCATGTCAGT -CCAACACGCTTACTGCATGAAGGT -CCAACACGCTTACTGCATAACCGT -CCAACACGCTTACTGCATTTGTGC -CCAACACGCTTACTGCATCTAAGC -CCAACACGCTTACTGCATACTAGC -CCAACACGCTTACTGCATAGATGC -CCAACACGCTTACTGCATTGAAGG -CCAACACGCTTACTGCATCAATGG -CCAACACGCTTACTGCATATGAGG -CCAACACGCTTACTGCATAATGGG -CCAACACGCTTACTGCATTCCTGA -CCAACACGCTTACTGCATTAGCGA -CCAACACGCTTACTGCATCACAGA -CCAACACGCTTACTGCATGCAAGA -CCAACACGCTTACTGCATGGTTGA -CCAACACGCTTACTGCATTCCGAT -CCAACACGCTTACTGCATTGGCAT -CCAACACGCTTACTGCATCGAGAT -CCAACACGCTTACTGCATTACCAC -CCAACACGCTTACTGCATCAGAAC -CCAACACGCTTACTGCATGTCTAC -CCAACACGCTTACTGCATACGTAC -CCAACACGCTTACTGCATAGTGAC -CCAACACGCTTACTGCATCTGTAG -CCAACACGCTTACTGCATCCTAAG -CCAACACGCTTACTGCATGTTCAG -CCAACACGCTTACTGCATGCATAG -CCAACACGCTTACTGCATGACAAG -CCAACACGCTTACTGCATAAGCAG -CCAACACGCTTACTGCATCGTCAA -CCAACACGCTTACTGCATGCTGAA -CCAACACGCTTACTGCATAGTACG -CCAACACGCTTACTGCATATCCGA -CCAACACGCTTACTGCATATGGGA -CCAACACGCTTACTGCATGTGCAA -CCAACACGCTTACTGCATGAGGAA -CCAACACGCTTACTGCATCAGGTA -CCAACACGCTTACTGCATGACTCT -CCAACACGCTTACTGCATAGTCCT -CCAACACGCTTACTGCATTAAGCC -CCAACACGCTTACTGCATATAGCC -CCAACACGCTTACTGCATTAACCG -CCAACACGCTTACTGCATATGCCA -CCAACACGCTTATTGGAGGGAAAC -CCAACACGCTTATTGGAGAACACC -CCAACACGCTTATTGGAGATCGAG -CCAACACGCTTATTGGAGCTCCTT -CCAACACGCTTATTGGAGCCTGTT -CCAACACGCTTATTGGAGCGGTTT -CCAACACGCTTATTGGAGGTGGTT -CCAACACGCTTATTGGAGGCCTTT -CCAACACGCTTATTGGAGGGTCTT -CCAACACGCTTATTGGAGACGCTT -CCAACACGCTTATTGGAGAGCGTT -CCAACACGCTTATTGGAGTTCGTC -CCAACACGCTTATTGGAGTCTCTC -CCAACACGCTTATTGGAGTGGATC -CCAACACGCTTATTGGAGCACTTC -CCAACACGCTTATTGGAGGTACTC -CCAACACGCTTATTGGAGGATGTC -CCAACACGCTTATTGGAGACAGTC -CCAACACGCTTATTGGAGTTGCTG -CCAACACGCTTATTGGAGTCCATG -CCAACACGCTTATTGGAGTGTGTG -CCAACACGCTTATTGGAGCTAGTG -CCAACACGCTTATTGGAGCATCTG -CCAACACGCTTATTGGAGGAGTTG -CCAACACGCTTATTGGAGAGACTG -CCAACACGCTTATTGGAGTCGGTA -CCAACACGCTTATTGGAGTGCCTA -CCAACACGCTTATTGGAGCCACTA -CCAACACGCTTATTGGAGGGAGTA -CCAACACGCTTATTGGAGTCGTCT -CCAACACGCTTATTGGAGTGCACT -CCAACACGCTTATTGGAGCTGACT -CCAACACGCTTATTGGAGCAACCT -CCAACACGCTTATTGGAGGCTACT -CCAACACGCTTATTGGAGGGATCT -CCAACACGCTTATTGGAGAAGGCT -CCAACACGCTTATTGGAGTCAACC -CCAACACGCTTATTGGAGTGTTCC -CCAACACGCTTATTGGAGATTCCC -CCAACACGCTTATTGGAGTTCTCG -CCAACACGCTTATTGGAGTAGACG -CCAACACGCTTATTGGAGGTAACG -CCAACACGCTTATTGGAGACTTCG -CCAACACGCTTATTGGAGTACGCA -CCAACACGCTTATTGGAGCTTGCA -CCAACACGCTTATTGGAGCGAACA -CCAACACGCTTATTGGAGCAGTCA -CCAACACGCTTATTGGAGGATCCA -CCAACACGCTTATTGGAGACGACA -CCAACACGCTTATTGGAGAGCTCA -CCAACACGCTTATTGGAGTCACGT -CCAACACGCTTATTGGAGCGTAGT -CCAACACGCTTATTGGAGGTCAGT -CCAACACGCTTATTGGAGGAAGGT -CCAACACGCTTATTGGAGAACCGT -CCAACACGCTTATTGGAGTTGTGC -CCAACACGCTTATTGGAGCTAAGC -CCAACACGCTTATTGGAGACTAGC -CCAACACGCTTATTGGAGAGATGC -CCAACACGCTTATTGGAGTGAAGG -CCAACACGCTTATTGGAGCAATGG -CCAACACGCTTATTGGAGATGAGG -CCAACACGCTTATTGGAGAATGGG -CCAACACGCTTATTGGAGTCCTGA -CCAACACGCTTATTGGAGTAGCGA -CCAACACGCTTATTGGAGCACAGA -CCAACACGCTTATTGGAGGCAAGA -CCAACACGCTTATTGGAGGGTTGA -CCAACACGCTTATTGGAGTCCGAT -CCAACACGCTTATTGGAGTGGCAT -CCAACACGCTTATTGGAGCGAGAT -CCAACACGCTTATTGGAGTACCAC -CCAACACGCTTATTGGAGCAGAAC -CCAACACGCTTATTGGAGGTCTAC -CCAACACGCTTATTGGAGACGTAC -CCAACACGCTTATTGGAGAGTGAC -CCAACACGCTTATTGGAGCTGTAG -CCAACACGCTTATTGGAGCCTAAG -CCAACACGCTTATTGGAGGTTCAG -CCAACACGCTTATTGGAGGCATAG -CCAACACGCTTATTGGAGGACAAG -CCAACACGCTTATTGGAGAAGCAG -CCAACACGCTTATTGGAGCGTCAA -CCAACACGCTTATTGGAGGCTGAA -CCAACACGCTTATTGGAGAGTACG -CCAACACGCTTATTGGAGATCCGA -CCAACACGCTTATTGGAGATGGGA -CCAACACGCTTATTGGAGGTGCAA -CCAACACGCTTATTGGAGGAGGAA -CCAACACGCTTATTGGAGCAGGTA -CCAACACGCTTATTGGAGGACTCT -CCAACACGCTTATTGGAGAGTCCT -CCAACACGCTTATTGGAGTAAGCC -CCAACACGCTTATTGGAGATAGCC -CCAACACGCTTATTGGAGTAACCG -CCAACACGCTTATTGGAGATGCCA -CCAACACGCTTACTGAGAGGAAAC -CCAACACGCTTACTGAGAAACACC -CCAACACGCTTACTGAGAATCGAG -CCAACACGCTTACTGAGACTCCTT -CCAACACGCTTACTGAGACCTGTT -CCAACACGCTTACTGAGACGGTTT -CCAACACGCTTACTGAGAGTGGTT -CCAACACGCTTACTGAGAGCCTTT -CCAACACGCTTACTGAGAGGTCTT -CCAACACGCTTACTGAGAACGCTT -CCAACACGCTTACTGAGAAGCGTT -CCAACACGCTTACTGAGATTCGTC -CCAACACGCTTACTGAGATCTCTC -CCAACACGCTTACTGAGATGGATC -CCAACACGCTTACTGAGACACTTC -CCAACACGCTTACTGAGAGTACTC -CCAACACGCTTACTGAGAGATGTC -CCAACACGCTTACTGAGAACAGTC -CCAACACGCTTACTGAGATTGCTG -CCAACACGCTTACTGAGATCCATG -CCAACACGCTTACTGAGATGTGTG -CCAACACGCTTACTGAGACTAGTG -CCAACACGCTTACTGAGACATCTG -CCAACACGCTTACTGAGAGAGTTG -CCAACACGCTTACTGAGAAGACTG -CCAACACGCTTACTGAGATCGGTA -CCAACACGCTTACTGAGATGCCTA -CCAACACGCTTACTGAGACCACTA -CCAACACGCTTACTGAGAGGAGTA -CCAACACGCTTACTGAGATCGTCT -CCAACACGCTTACTGAGATGCACT -CCAACACGCTTACTGAGACTGACT -CCAACACGCTTACTGAGACAACCT -CCAACACGCTTACTGAGAGCTACT -CCAACACGCTTACTGAGAGGATCT -CCAACACGCTTACTGAGAAAGGCT -CCAACACGCTTACTGAGATCAACC -CCAACACGCTTACTGAGATGTTCC -CCAACACGCTTACTGAGAATTCCC -CCAACACGCTTACTGAGATTCTCG -CCAACACGCTTACTGAGATAGACG -CCAACACGCTTACTGAGAGTAACG -CCAACACGCTTACTGAGAACTTCG -CCAACACGCTTACTGAGATACGCA -CCAACACGCTTACTGAGACTTGCA -CCAACACGCTTACTGAGACGAACA -CCAACACGCTTACTGAGACAGTCA -CCAACACGCTTACTGAGAGATCCA -CCAACACGCTTACTGAGAACGACA -CCAACACGCTTACTGAGAAGCTCA -CCAACACGCTTACTGAGATCACGT -CCAACACGCTTACTGAGACGTAGT -CCAACACGCTTACTGAGAGTCAGT -CCAACACGCTTACTGAGAGAAGGT -CCAACACGCTTACTGAGAAACCGT -CCAACACGCTTACTGAGATTGTGC -CCAACACGCTTACTGAGACTAAGC -CCAACACGCTTACTGAGAACTAGC -CCAACACGCTTACTGAGAAGATGC -CCAACACGCTTACTGAGATGAAGG -CCAACACGCTTACTGAGACAATGG -CCAACACGCTTACTGAGAATGAGG -CCAACACGCTTACTGAGAAATGGG -CCAACACGCTTACTGAGATCCTGA -CCAACACGCTTACTGAGATAGCGA -CCAACACGCTTACTGAGACACAGA -CCAACACGCTTACTGAGAGCAAGA -CCAACACGCTTACTGAGAGGTTGA -CCAACACGCTTACTGAGATCCGAT -CCAACACGCTTACTGAGATGGCAT -CCAACACGCTTACTGAGACGAGAT -CCAACACGCTTACTGAGATACCAC -CCAACACGCTTACTGAGACAGAAC -CCAACACGCTTACTGAGAGTCTAC -CCAACACGCTTACTGAGAACGTAC -CCAACACGCTTACTGAGAAGTGAC -CCAACACGCTTACTGAGACTGTAG -CCAACACGCTTACTGAGACCTAAG -CCAACACGCTTACTGAGAGTTCAG -CCAACACGCTTACTGAGAGCATAG -CCAACACGCTTACTGAGAGACAAG -CCAACACGCTTACTGAGAAAGCAG -CCAACACGCTTACTGAGACGTCAA -CCAACACGCTTACTGAGAGCTGAA -CCAACACGCTTACTGAGAAGTACG -CCAACACGCTTACTGAGAATCCGA -CCAACACGCTTACTGAGAATGGGA -CCAACACGCTTACTGAGAGTGCAA -CCAACACGCTTACTGAGAGAGGAA -CCAACACGCTTACTGAGACAGGTA -CCAACACGCTTACTGAGAGACTCT -CCAACACGCTTACTGAGAAGTCCT -CCAACACGCTTACTGAGATAAGCC -CCAACACGCTTACTGAGAATAGCC -CCAACACGCTTACTGAGATAACCG -CCAACACGCTTACTGAGAATGCCA -CCAACACGCTTAGTATCGGGAAAC -CCAACACGCTTAGTATCGAACACC -CCAACACGCTTAGTATCGATCGAG -CCAACACGCTTAGTATCGCTCCTT -CCAACACGCTTAGTATCGCCTGTT -CCAACACGCTTAGTATCGCGGTTT -CCAACACGCTTAGTATCGGTGGTT -CCAACACGCTTAGTATCGGCCTTT -CCAACACGCTTAGTATCGGGTCTT -CCAACACGCTTAGTATCGACGCTT -CCAACACGCTTAGTATCGAGCGTT -CCAACACGCTTAGTATCGTTCGTC -CCAACACGCTTAGTATCGTCTCTC -CCAACACGCTTAGTATCGTGGATC -CCAACACGCTTAGTATCGCACTTC -CCAACACGCTTAGTATCGGTACTC -CCAACACGCTTAGTATCGGATGTC -CCAACACGCTTAGTATCGACAGTC -CCAACACGCTTAGTATCGTTGCTG -CCAACACGCTTAGTATCGTCCATG -CCAACACGCTTAGTATCGTGTGTG -CCAACACGCTTAGTATCGCTAGTG -CCAACACGCTTAGTATCGCATCTG -CCAACACGCTTAGTATCGGAGTTG -CCAACACGCTTAGTATCGAGACTG -CCAACACGCTTAGTATCGTCGGTA -CCAACACGCTTAGTATCGTGCCTA -CCAACACGCTTAGTATCGCCACTA -CCAACACGCTTAGTATCGGGAGTA -CCAACACGCTTAGTATCGTCGTCT -CCAACACGCTTAGTATCGTGCACT -CCAACACGCTTAGTATCGCTGACT -CCAACACGCTTAGTATCGCAACCT -CCAACACGCTTAGTATCGGCTACT -CCAACACGCTTAGTATCGGGATCT -CCAACACGCTTAGTATCGAAGGCT -CCAACACGCTTAGTATCGTCAACC -CCAACACGCTTAGTATCGTGTTCC -CCAACACGCTTAGTATCGATTCCC -CCAACACGCTTAGTATCGTTCTCG -CCAACACGCTTAGTATCGTAGACG -CCAACACGCTTAGTATCGGTAACG -CCAACACGCTTAGTATCGACTTCG -CCAACACGCTTAGTATCGTACGCA -CCAACACGCTTAGTATCGCTTGCA -CCAACACGCTTAGTATCGCGAACA -CCAACACGCTTAGTATCGCAGTCA -CCAACACGCTTAGTATCGGATCCA -CCAACACGCTTAGTATCGACGACA -CCAACACGCTTAGTATCGAGCTCA -CCAACACGCTTAGTATCGTCACGT -CCAACACGCTTAGTATCGCGTAGT -CCAACACGCTTAGTATCGGTCAGT -CCAACACGCTTAGTATCGGAAGGT -CCAACACGCTTAGTATCGAACCGT -CCAACACGCTTAGTATCGTTGTGC -CCAACACGCTTAGTATCGCTAAGC -CCAACACGCTTAGTATCGACTAGC -CCAACACGCTTAGTATCGAGATGC -CCAACACGCTTAGTATCGTGAAGG -CCAACACGCTTAGTATCGCAATGG -CCAACACGCTTAGTATCGATGAGG -CCAACACGCTTAGTATCGAATGGG -CCAACACGCTTAGTATCGTCCTGA -CCAACACGCTTAGTATCGTAGCGA -CCAACACGCTTAGTATCGCACAGA -CCAACACGCTTAGTATCGGCAAGA -CCAACACGCTTAGTATCGGGTTGA -CCAACACGCTTAGTATCGTCCGAT -CCAACACGCTTAGTATCGTGGCAT -CCAACACGCTTAGTATCGCGAGAT -CCAACACGCTTAGTATCGTACCAC -CCAACACGCTTAGTATCGCAGAAC -CCAACACGCTTAGTATCGGTCTAC -CCAACACGCTTAGTATCGACGTAC -CCAACACGCTTAGTATCGAGTGAC -CCAACACGCTTAGTATCGCTGTAG -CCAACACGCTTAGTATCGCCTAAG -CCAACACGCTTAGTATCGGTTCAG -CCAACACGCTTAGTATCGGCATAG -CCAACACGCTTAGTATCGGACAAG -CCAACACGCTTAGTATCGAAGCAG -CCAACACGCTTAGTATCGCGTCAA -CCAACACGCTTAGTATCGGCTGAA -CCAACACGCTTAGTATCGAGTACG -CCAACACGCTTAGTATCGATCCGA -CCAACACGCTTAGTATCGATGGGA -CCAACACGCTTAGTATCGGTGCAA -CCAACACGCTTAGTATCGGAGGAA -CCAACACGCTTAGTATCGCAGGTA -CCAACACGCTTAGTATCGGACTCT -CCAACACGCTTAGTATCGAGTCCT -CCAACACGCTTAGTATCGTAAGCC -CCAACACGCTTAGTATCGATAGCC -CCAACACGCTTAGTATCGTAACCG -CCAACACGCTTAGTATCGATGCCA -CCAACACGCTTACTATGCGGAAAC -CCAACACGCTTACTATGCAACACC -CCAACACGCTTACTATGCATCGAG -CCAACACGCTTACTATGCCTCCTT -CCAACACGCTTACTATGCCCTGTT -CCAACACGCTTACTATGCCGGTTT -CCAACACGCTTACTATGCGTGGTT -CCAACACGCTTACTATGCGCCTTT -CCAACACGCTTACTATGCGGTCTT -CCAACACGCTTACTATGCACGCTT -CCAACACGCTTACTATGCAGCGTT -CCAACACGCTTACTATGCTTCGTC -CCAACACGCTTACTATGCTCTCTC -CCAACACGCTTACTATGCTGGATC -CCAACACGCTTACTATGCCACTTC -CCAACACGCTTACTATGCGTACTC -CCAACACGCTTACTATGCGATGTC -CCAACACGCTTACTATGCACAGTC -CCAACACGCTTACTATGCTTGCTG -CCAACACGCTTACTATGCTCCATG -CCAACACGCTTACTATGCTGTGTG -CCAACACGCTTACTATGCCTAGTG -CCAACACGCTTACTATGCCATCTG -CCAACACGCTTACTATGCGAGTTG -CCAACACGCTTACTATGCAGACTG -CCAACACGCTTACTATGCTCGGTA -CCAACACGCTTACTATGCTGCCTA -CCAACACGCTTACTATGCCCACTA -CCAACACGCTTACTATGCGGAGTA -CCAACACGCTTACTATGCTCGTCT -CCAACACGCTTACTATGCTGCACT -CCAACACGCTTACTATGCCTGACT -CCAACACGCTTACTATGCCAACCT -CCAACACGCTTACTATGCGCTACT -CCAACACGCTTACTATGCGGATCT -CCAACACGCTTACTATGCAAGGCT -CCAACACGCTTACTATGCTCAACC -CCAACACGCTTACTATGCTGTTCC -CCAACACGCTTACTATGCATTCCC -CCAACACGCTTACTATGCTTCTCG -CCAACACGCTTACTATGCTAGACG -CCAACACGCTTACTATGCGTAACG -CCAACACGCTTACTATGCACTTCG -CCAACACGCTTACTATGCTACGCA -CCAACACGCTTACTATGCCTTGCA -CCAACACGCTTACTATGCCGAACA -CCAACACGCTTACTATGCCAGTCA -CCAACACGCTTACTATGCGATCCA -CCAACACGCTTACTATGCACGACA -CCAACACGCTTACTATGCAGCTCA -CCAACACGCTTACTATGCTCACGT -CCAACACGCTTACTATGCCGTAGT -CCAACACGCTTACTATGCGTCAGT -CCAACACGCTTACTATGCGAAGGT -CCAACACGCTTACTATGCAACCGT -CCAACACGCTTACTATGCTTGTGC -CCAACACGCTTACTATGCCTAAGC -CCAACACGCTTACTATGCACTAGC -CCAACACGCTTACTATGCAGATGC -CCAACACGCTTACTATGCTGAAGG -CCAACACGCTTACTATGCCAATGG -CCAACACGCTTACTATGCATGAGG -CCAACACGCTTACTATGCAATGGG -CCAACACGCTTACTATGCTCCTGA -CCAACACGCTTACTATGCTAGCGA -CCAACACGCTTACTATGCCACAGA -CCAACACGCTTACTATGCGCAAGA -CCAACACGCTTACTATGCGGTTGA -CCAACACGCTTACTATGCTCCGAT -CCAACACGCTTACTATGCTGGCAT -CCAACACGCTTACTATGCCGAGAT -CCAACACGCTTACTATGCTACCAC -CCAACACGCTTACTATGCCAGAAC -CCAACACGCTTACTATGCGTCTAC -CCAACACGCTTACTATGCACGTAC -CCAACACGCTTACTATGCAGTGAC -CCAACACGCTTACTATGCCTGTAG -CCAACACGCTTACTATGCCCTAAG -CCAACACGCTTACTATGCGTTCAG -CCAACACGCTTACTATGCGCATAG -CCAACACGCTTACTATGCGACAAG -CCAACACGCTTACTATGCAAGCAG -CCAACACGCTTACTATGCCGTCAA -CCAACACGCTTACTATGCGCTGAA -CCAACACGCTTACTATGCAGTACG -CCAACACGCTTACTATGCATCCGA -CCAACACGCTTACTATGCATGGGA -CCAACACGCTTACTATGCGTGCAA -CCAACACGCTTACTATGCGAGGAA -CCAACACGCTTACTATGCCAGGTA -CCAACACGCTTACTATGCGACTCT -CCAACACGCTTACTATGCAGTCCT -CCAACACGCTTACTATGCTAAGCC -CCAACACGCTTACTATGCATAGCC -CCAACACGCTTACTATGCTAACCG -CCAACACGCTTACTATGCATGCCA -CCAACACGCTTACTACCAGGAAAC -CCAACACGCTTACTACCAAACACC -CCAACACGCTTACTACCAATCGAG -CCAACACGCTTACTACCACTCCTT -CCAACACGCTTACTACCACCTGTT -CCAACACGCTTACTACCACGGTTT -CCAACACGCTTACTACCAGTGGTT -CCAACACGCTTACTACCAGCCTTT -CCAACACGCTTACTACCAGGTCTT -CCAACACGCTTACTACCAACGCTT -CCAACACGCTTACTACCAAGCGTT -CCAACACGCTTACTACCATTCGTC -CCAACACGCTTACTACCATCTCTC -CCAACACGCTTACTACCATGGATC -CCAACACGCTTACTACCACACTTC -CCAACACGCTTACTACCAGTACTC -CCAACACGCTTACTACCAGATGTC -CCAACACGCTTACTACCAACAGTC -CCAACACGCTTACTACCATTGCTG -CCAACACGCTTACTACCATCCATG -CCAACACGCTTACTACCATGTGTG -CCAACACGCTTACTACCACTAGTG -CCAACACGCTTACTACCACATCTG -CCAACACGCTTACTACCAGAGTTG -CCAACACGCTTACTACCAAGACTG -CCAACACGCTTACTACCATCGGTA -CCAACACGCTTACTACCATGCCTA -CCAACACGCTTACTACCACCACTA -CCAACACGCTTACTACCAGGAGTA -CCAACACGCTTACTACCATCGTCT -CCAACACGCTTACTACCATGCACT -CCAACACGCTTACTACCACTGACT -CCAACACGCTTACTACCACAACCT -CCAACACGCTTACTACCAGCTACT -CCAACACGCTTACTACCAGGATCT -CCAACACGCTTACTACCAAAGGCT -CCAACACGCTTACTACCATCAACC -CCAACACGCTTACTACCATGTTCC -CCAACACGCTTACTACCAATTCCC -CCAACACGCTTACTACCATTCTCG -CCAACACGCTTACTACCATAGACG -CCAACACGCTTACTACCAGTAACG -CCAACACGCTTACTACCAACTTCG -CCAACACGCTTACTACCATACGCA -CCAACACGCTTACTACCACTTGCA -CCAACACGCTTACTACCACGAACA -CCAACACGCTTACTACCACAGTCA -CCAACACGCTTACTACCAGATCCA -CCAACACGCTTACTACCAACGACA -CCAACACGCTTACTACCAAGCTCA -CCAACACGCTTACTACCATCACGT -CCAACACGCTTACTACCACGTAGT -CCAACACGCTTACTACCAGTCAGT -CCAACACGCTTACTACCAGAAGGT -CCAACACGCTTACTACCAAACCGT -CCAACACGCTTACTACCATTGTGC -CCAACACGCTTACTACCACTAAGC -CCAACACGCTTACTACCAACTAGC -CCAACACGCTTACTACCAAGATGC -CCAACACGCTTACTACCATGAAGG -CCAACACGCTTACTACCACAATGG -CCAACACGCTTACTACCAATGAGG -CCAACACGCTTACTACCAAATGGG -CCAACACGCTTACTACCATCCTGA -CCAACACGCTTACTACCATAGCGA -CCAACACGCTTACTACCACACAGA -CCAACACGCTTACTACCAGCAAGA -CCAACACGCTTACTACCAGGTTGA -CCAACACGCTTACTACCATCCGAT -CCAACACGCTTACTACCATGGCAT -CCAACACGCTTACTACCACGAGAT -CCAACACGCTTACTACCATACCAC -CCAACACGCTTACTACCACAGAAC -CCAACACGCTTACTACCAGTCTAC -CCAACACGCTTACTACCAACGTAC -CCAACACGCTTACTACCAAGTGAC -CCAACACGCTTACTACCACTGTAG -CCAACACGCTTACTACCACCTAAG -CCAACACGCTTACTACCAGTTCAG -CCAACACGCTTACTACCAGCATAG -CCAACACGCTTACTACCAGACAAG -CCAACACGCTTACTACCAAAGCAG -CCAACACGCTTACTACCACGTCAA -CCAACACGCTTACTACCAGCTGAA -CCAACACGCTTACTACCAAGTACG -CCAACACGCTTACTACCAATCCGA -CCAACACGCTTACTACCAATGGGA -CCAACACGCTTACTACCAGTGCAA -CCAACACGCTTACTACCAGAGGAA -CCAACACGCTTACTACCACAGGTA -CCAACACGCTTACTACCAGACTCT -CCAACACGCTTACTACCAAGTCCT -CCAACACGCTTACTACCATAAGCC -CCAACACGCTTACTACCAATAGCC -CCAACACGCTTACTACCATAACCG -CCAACACGCTTACTACCAATGCCA -CCAACACGCTTAGTAGGAGGAAAC -CCAACACGCTTAGTAGGAAACACC -CCAACACGCTTAGTAGGAATCGAG -CCAACACGCTTAGTAGGACTCCTT -CCAACACGCTTAGTAGGACCTGTT -CCAACACGCTTAGTAGGACGGTTT -CCAACACGCTTAGTAGGAGTGGTT -CCAACACGCTTAGTAGGAGCCTTT -CCAACACGCTTAGTAGGAGGTCTT -CCAACACGCTTAGTAGGAACGCTT -CCAACACGCTTAGTAGGAAGCGTT -CCAACACGCTTAGTAGGATTCGTC -CCAACACGCTTAGTAGGATCTCTC -CCAACACGCTTAGTAGGATGGATC -CCAACACGCTTAGTAGGACACTTC -CCAACACGCTTAGTAGGAGTACTC -CCAACACGCTTAGTAGGAGATGTC -CCAACACGCTTAGTAGGAACAGTC -CCAACACGCTTAGTAGGATTGCTG -CCAACACGCTTAGTAGGATCCATG -CCAACACGCTTAGTAGGATGTGTG -CCAACACGCTTAGTAGGACTAGTG -CCAACACGCTTAGTAGGACATCTG -CCAACACGCTTAGTAGGAGAGTTG -CCAACACGCTTAGTAGGAAGACTG -CCAACACGCTTAGTAGGATCGGTA -CCAACACGCTTAGTAGGATGCCTA -CCAACACGCTTAGTAGGACCACTA -CCAACACGCTTAGTAGGAGGAGTA -CCAACACGCTTAGTAGGATCGTCT -CCAACACGCTTAGTAGGATGCACT -CCAACACGCTTAGTAGGACTGACT -CCAACACGCTTAGTAGGACAACCT -CCAACACGCTTAGTAGGAGCTACT -CCAACACGCTTAGTAGGAGGATCT -CCAACACGCTTAGTAGGAAAGGCT -CCAACACGCTTAGTAGGATCAACC -CCAACACGCTTAGTAGGATGTTCC -CCAACACGCTTAGTAGGAATTCCC -CCAACACGCTTAGTAGGATTCTCG -CCAACACGCTTAGTAGGATAGACG -CCAACACGCTTAGTAGGAGTAACG -CCAACACGCTTAGTAGGAACTTCG -CCAACACGCTTAGTAGGATACGCA -CCAACACGCTTAGTAGGACTTGCA -CCAACACGCTTAGTAGGACGAACA -CCAACACGCTTAGTAGGACAGTCA -CCAACACGCTTAGTAGGAGATCCA -CCAACACGCTTAGTAGGAACGACA -CCAACACGCTTAGTAGGAAGCTCA -CCAACACGCTTAGTAGGATCACGT -CCAACACGCTTAGTAGGACGTAGT -CCAACACGCTTAGTAGGAGTCAGT -CCAACACGCTTAGTAGGAGAAGGT -CCAACACGCTTAGTAGGAAACCGT -CCAACACGCTTAGTAGGATTGTGC -CCAACACGCTTAGTAGGACTAAGC -CCAACACGCTTAGTAGGAACTAGC -CCAACACGCTTAGTAGGAAGATGC -CCAACACGCTTAGTAGGATGAAGG -CCAACACGCTTAGTAGGACAATGG -CCAACACGCTTAGTAGGAATGAGG -CCAACACGCTTAGTAGGAAATGGG -CCAACACGCTTAGTAGGATCCTGA -CCAACACGCTTAGTAGGATAGCGA -CCAACACGCTTAGTAGGACACAGA -CCAACACGCTTAGTAGGAGCAAGA -CCAACACGCTTAGTAGGAGGTTGA -CCAACACGCTTAGTAGGATCCGAT -CCAACACGCTTAGTAGGATGGCAT -CCAACACGCTTAGTAGGACGAGAT -CCAACACGCTTAGTAGGATACCAC -CCAACACGCTTAGTAGGACAGAAC -CCAACACGCTTAGTAGGAGTCTAC -CCAACACGCTTAGTAGGAACGTAC -CCAACACGCTTAGTAGGAAGTGAC -CCAACACGCTTAGTAGGACTGTAG -CCAACACGCTTAGTAGGACCTAAG -CCAACACGCTTAGTAGGAGTTCAG -CCAACACGCTTAGTAGGAGCATAG -CCAACACGCTTAGTAGGAGACAAG -CCAACACGCTTAGTAGGAAAGCAG -CCAACACGCTTAGTAGGACGTCAA -CCAACACGCTTAGTAGGAGCTGAA -CCAACACGCTTAGTAGGAAGTACG -CCAACACGCTTAGTAGGAATCCGA -CCAACACGCTTAGTAGGAATGGGA -CCAACACGCTTAGTAGGAGTGCAA -CCAACACGCTTAGTAGGAGAGGAA -CCAACACGCTTAGTAGGACAGGTA -CCAACACGCTTAGTAGGAGACTCT -CCAACACGCTTAGTAGGAAGTCCT -CCAACACGCTTAGTAGGATAAGCC -CCAACACGCTTAGTAGGAATAGCC -CCAACACGCTTAGTAGGATAACCG -CCAACACGCTTAGTAGGAATGCCA -CCAACACGCTTATCTTCGGGAAAC -CCAACACGCTTATCTTCGAACACC -CCAACACGCTTATCTTCGATCGAG -CCAACACGCTTATCTTCGCTCCTT -CCAACACGCTTATCTTCGCCTGTT -CCAACACGCTTATCTTCGCGGTTT -CCAACACGCTTATCTTCGGTGGTT -CCAACACGCTTATCTTCGGCCTTT -CCAACACGCTTATCTTCGGGTCTT -CCAACACGCTTATCTTCGACGCTT -CCAACACGCTTATCTTCGAGCGTT -CCAACACGCTTATCTTCGTTCGTC -CCAACACGCTTATCTTCGTCTCTC -CCAACACGCTTATCTTCGTGGATC -CCAACACGCTTATCTTCGCACTTC -CCAACACGCTTATCTTCGGTACTC -CCAACACGCTTATCTTCGGATGTC -CCAACACGCTTATCTTCGACAGTC -CCAACACGCTTATCTTCGTTGCTG -CCAACACGCTTATCTTCGTCCATG -CCAACACGCTTATCTTCGTGTGTG -CCAACACGCTTATCTTCGCTAGTG -CCAACACGCTTATCTTCGCATCTG -CCAACACGCTTATCTTCGGAGTTG -CCAACACGCTTATCTTCGAGACTG -CCAACACGCTTATCTTCGTCGGTA -CCAACACGCTTATCTTCGTGCCTA -CCAACACGCTTATCTTCGCCACTA -CCAACACGCTTATCTTCGGGAGTA -CCAACACGCTTATCTTCGTCGTCT -CCAACACGCTTATCTTCGTGCACT -CCAACACGCTTATCTTCGCTGACT -CCAACACGCTTATCTTCGCAACCT -CCAACACGCTTATCTTCGGCTACT -CCAACACGCTTATCTTCGGGATCT -CCAACACGCTTATCTTCGAAGGCT -CCAACACGCTTATCTTCGTCAACC -CCAACACGCTTATCTTCGTGTTCC -CCAACACGCTTATCTTCGATTCCC -CCAACACGCTTATCTTCGTTCTCG -CCAACACGCTTATCTTCGTAGACG -CCAACACGCTTATCTTCGGTAACG -CCAACACGCTTATCTTCGACTTCG -CCAACACGCTTATCTTCGTACGCA -CCAACACGCTTATCTTCGCTTGCA -CCAACACGCTTATCTTCGCGAACA -CCAACACGCTTATCTTCGCAGTCA -CCAACACGCTTATCTTCGGATCCA -CCAACACGCTTATCTTCGACGACA -CCAACACGCTTATCTTCGAGCTCA -CCAACACGCTTATCTTCGTCACGT -CCAACACGCTTATCTTCGCGTAGT -CCAACACGCTTATCTTCGGTCAGT -CCAACACGCTTATCTTCGGAAGGT -CCAACACGCTTATCTTCGAACCGT -CCAACACGCTTATCTTCGTTGTGC -CCAACACGCTTATCTTCGCTAAGC -CCAACACGCTTATCTTCGACTAGC -CCAACACGCTTATCTTCGAGATGC -CCAACACGCTTATCTTCGTGAAGG -CCAACACGCTTATCTTCGCAATGG -CCAACACGCTTATCTTCGATGAGG -CCAACACGCTTATCTTCGAATGGG -CCAACACGCTTATCTTCGTCCTGA -CCAACACGCTTATCTTCGTAGCGA -CCAACACGCTTATCTTCGCACAGA -CCAACACGCTTATCTTCGGCAAGA -CCAACACGCTTATCTTCGGGTTGA -CCAACACGCTTATCTTCGTCCGAT -CCAACACGCTTATCTTCGTGGCAT -CCAACACGCTTATCTTCGCGAGAT -CCAACACGCTTATCTTCGTACCAC -CCAACACGCTTATCTTCGCAGAAC -CCAACACGCTTATCTTCGGTCTAC -CCAACACGCTTATCTTCGACGTAC -CCAACACGCTTATCTTCGAGTGAC -CCAACACGCTTATCTTCGCTGTAG -CCAACACGCTTATCTTCGCCTAAG -CCAACACGCTTATCTTCGGTTCAG -CCAACACGCTTATCTTCGGCATAG -CCAACACGCTTATCTTCGGACAAG -CCAACACGCTTATCTTCGAAGCAG -CCAACACGCTTATCTTCGCGTCAA -CCAACACGCTTATCTTCGGCTGAA -CCAACACGCTTATCTTCGAGTACG -CCAACACGCTTATCTTCGATCCGA -CCAACACGCTTATCTTCGATGGGA -CCAACACGCTTATCTTCGGTGCAA -CCAACACGCTTATCTTCGGAGGAA -CCAACACGCTTATCTTCGCAGGTA -CCAACACGCTTATCTTCGGACTCT -CCAACACGCTTATCTTCGAGTCCT -CCAACACGCTTATCTTCGTAAGCC -CCAACACGCTTATCTTCGATAGCC -CCAACACGCTTATCTTCGTAACCG -CCAACACGCTTATCTTCGATGCCA -CCAACACGCTTAACTTGCGGAAAC -CCAACACGCTTAACTTGCAACACC -CCAACACGCTTAACTTGCATCGAG -CCAACACGCTTAACTTGCCTCCTT -CCAACACGCTTAACTTGCCCTGTT -CCAACACGCTTAACTTGCCGGTTT -CCAACACGCTTAACTTGCGTGGTT -CCAACACGCTTAACTTGCGCCTTT -CCAACACGCTTAACTTGCGGTCTT -CCAACACGCTTAACTTGCACGCTT -CCAACACGCTTAACTTGCAGCGTT -CCAACACGCTTAACTTGCTTCGTC -CCAACACGCTTAACTTGCTCTCTC -CCAACACGCTTAACTTGCTGGATC -CCAACACGCTTAACTTGCCACTTC -CCAACACGCTTAACTTGCGTACTC -CCAACACGCTTAACTTGCGATGTC -CCAACACGCTTAACTTGCACAGTC -CCAACACGCTTAACTTGCTTGCTG -CCAACACGCTTAACTTGCTCCATG -CCAACACGCTTAACTTGCTGTGTG -CCAACACGCTTAACTTGCCTAGTG -CCAACACGCTTAACTTGCCATCTG -CCAACACGCTTAACTTGCGAGTTG -CCAACACGCTTAACTTGCAGACTG -CCAACACGCTTAACTTGCTCGGTA -CCAACACGCTTAACTTGCTGCCTA -CCAACACGCTTAACTTGCCCACTA -CCAACACGCTTAACTTGCGGAGTA -CCAACACGCTTAACTTGCTCGTCT -CCAACACGCTTAACTTGCTGCACT -CCAACACGCTTAACTTGCCTGACT -CCAACACGCTTAACTTGCCAACCT -CCAACACGCTTAACTTGCGCTACT -CCAACACGCTTAACTTGCGGATCT -CCAACACGCTTAACTTGCAAGGCT -CCAACACGCTTAACTTGCTCAACC -CCAACACGCTTAACTTGCTGTTCC -CCAACACGCTTAACTTGCATTCCC -CCAACACGCTTAACTTGCTTCTCG -CCAACACGCTTAACTTGCTAGACG -CCAACACGCTTAACTTGCGTAACG -CCAACACGCTTAACTTGCACTTCG -CCAACACGCTTAACTTGCTACGCA -CCAACACGCTTAACTTGCCTTGCA -CCAACACGCTTAACTTGCCGAACA -CCAACACGCTTAACTTGCCAGTCA -CCAACACGCTTAACTTGCGATCCA -CCAACACGCTTAACTTGCACGACA -CCAACACGCTTAACTTGCAGCTCA -CCAACACGCTTAACTTGCTCACGT -CCAACACGCTTAACTTGCCGTAGT -CCAACACGCTTAACTTGCGTCAGT -CCAACACGCTTAACTTGCGAAGGT -CCAACACGCTTAACTTGCAACCGT -CCAACACGCTTAACTTGCTTGTGC -CCAACACGCTTAACTTGCCTAAGC -CCAACACGCTTAACTTGCACTAGC -CCAACACGCTTAACTTGCAGATGC -CCAACACGCTTAACTTGCTGAAGG -CCAACACGCTTAACTTGCCAATGG -CCAACACGCTTAACTTGCATGAGG -CCAACACGCTTAACTTGCAATGGG -CCAACACGCTTAACTTGCTCCTGA -CCAACACGCTTAACTTGCTAGCGA -CCAACACGCTTAACTTGCCACAGA -CCAACACGCTTAACTTGCGCAAGA -CCAACACGCTTAACTTGCGGTTGA -CCAACACGCTTAACTTGCTCCGAT -CCAACACGCTTAACTTGCTGGCAT -CCAACACGCTTAACTTGCCGAGAT -CCAACACGCTTAACTTGCTACCAC -CCAACACGCTTAACTTGCCAGAAC -CCAACACGCTTAACTTGCGTCTAC -CCAACACGCTTAACTTGCACGTAC -CCAACACGCTTAACTTGCAGTGAC -CCAACACGCTTAACTTGCCTGTAG -CCAACACGCTTAACTTGCCCTAAG -CCAACACGCTTAACTTGCGTTCAG -CCAACACGCTTAACTTGCGCATAG -CCAACACGCTTAACTTGCGACAAG -CCAACACGCTTAACTTGCAAGCAG -CCAACACGCTTAACTTGCCGTCAA -CCAACACGCTTAACTTGCGCTGAA -CCAACACGCTTAACTTGCAGTACG -CCAACACGCTTAACTTGCATCCGA -CCAACACGCTTAACTTGCATGGGA -CCAACACGCTTAACTTGCGTGCAA -CCAACACGCTTAACTTGCGAGGAA -CCAACACGCTTAACTTGCCAGGTA -CCAACACGCTTAACTTGCGACTCT -CCAACACGCTTAACTTGCAGTCCT -CCAACACGCTTAACTTGCTAAGCC -CCAACACGCTTAACTTGCATAGCC -CCAACACGCTTAACTTGCTAACCG -CCAACACGCTTAACTTGCATGCCA -CCAACACGCTTAACTCTGGGAAAC -CCAACACGCTTAACTCTGAACACC -CCAACACGCTTAACTCTGATCGAG -CCAACACGCTTAACTCTGCTCCTT -CCAACACGCTTAACTCTGCCTGTT -CCAACACGCTTAACTCTGCGGTTT -CCAACACGCTTAACTCTGGTGGTT -CCAACACGCTTAACTCTGGCCTTT -CCAACACGCTTAACTCTGGGTCTT -CCAACACGCTTAACTCTGACGCTT -CCAACACGCTTAACTCTGAGCGTT -CCAACACGCTTAACTCTGTTCGTC -CCAACACGCTTAACTCTGTCTCTC -CCAACACGCTTAACTCTGTGGATC -CCAACACGCTTAACTCTGCACTTC -CCAACACGCTTAACTCTGGTACTC -CCAACACGCTTAACTCTGGATGTC -CCAACACGCTTAACTCTGACAGTC -CCAACACGCTTAACTCTGTTGCTG -CCAACACGCTTAACTCTGTCCATG -CCAACACGCTTAACTCTGTGTGTG -CCAACACGCTTAACTCTGCTAGTG -CCAACACGCTTAACTCTGCATCTG -CCAACACGCTTAACTCTGGAGTTG -CCAACACGCTTAACTCTGAGACTG -CCAACACGCTTAACTCTGTCGGTA -CCAACACGCTTAACTCTGTGCCTA -CCAACACGCTTAACTCTGCCACTA -CCAACACGCTTAACTCTGGGAGTA -CCAACACGCTTAACTCTGTCGTCT -CCAACACGCTTAACTCTGTGCACT -CCAACACGCTTAACTCTGCTGACT -CCAACACGCTTAACTCTGCAACCT -CCAACACGCTTAACTCTGGCTACT -CCAACACGCTTAACTCTGGGATCT -CCAACACGCTTAACTCTGAAGGCT -CCAACACGCTTAACTCTGTCAACC -CCAACACGCTTAACTCTGTGTTCC -CCAACACGCTTAACTCTGATTCCC -CCAACACGCTTAACTCTGTTCTCG -CCAACACGCTTAACTCTGTAGACG -CCAACACGCTTAACTCTGGTAACG -CCAACACGCTTAACTCTGACTTCG -CCAACACGCTTAACTCTGTACGCA -CCAACACGCTTAACTCTGCTTGCA -CCAACACGCTTAACTCTGCGAACA -CCAACACGCTTAACTCTGCAGTCA -CCAACACGCTTAACTCTGGATCCA -CCAACACGCTTAACTCTGACGACA -CCAACACGCTTAACTCTGAGCTCA -CCAACACGCTTAACTCTGTCACGT -CCAACACGCTTAACTCTGCGTAGT -CCAACACGCTTAACTCTGGTCAGT -CCAACACGCTTAACTCTGGAAGGT -CCAACACGCTTAACTCTGAACCGT -CCAACACGCTTAACTCTGTTGTGC -CCAACACGCTTAACTCTGCTAAGC -CCAACACGCTTAACTCTGACTAGC -CCAACACGCTTAACTCTGAGATGC -CCAACACGCTTAACTCTGTGAAGG -CCAACACGCTTAACTCTGCAATGG -CCAACACGCTTAACTCTGATGAGG -CCAACACGCTTAACTCTGAATGGG -CCAACACGCTTAACTCTGTCCTGA -CCAACACGCTTAACTCTGTAGCGA -CCAACACGCTTAACTCTGCACAGA -CCAACACGCTTAACTCTGGCAAGA -CCAACACGCTTAACTCTGGGTTGA -CCAACACGCTTAACTCTGTCCGAT -CCAACACGCTTAACTCTGTGGCAT -CCAACACGCTTAACTCTGCGAGAT -CCAACACGCTTAACTCTGTACCAC -CCAACACGCTTAACTCTGCAGAAC -CCAACACGCTTAACTCTGGTCTAC -CCAACACGCTTAACTCTGACGTAC -CCAACACGCTTAACTCTGAGTGAC -CCAACACGCTTAACTCTGCTGTAG -CCAACACGCTTAACTCTGCCTAAG -CCAACACGCTTAACTCTGGTTCAG -CCAACACGCTTAACTCTGGCATAG -CCAACACGCTTAACTCTGGACAAG -CCAACACGCTTAACTCTGAAGCAG -CCAACACGCTTAACTCTGCGTCAA -CCAACACGCTTAACTCTGGCTGAA -CCAACACGCTTAACTCTGAGTACG -CCAACACGCTTAACTCTGATCCGA -CCAACACGCTTAACTCTGATGGGA -CCAACACGCTTAACTCTGGTGCAA -CCAACACGCTTAACTCTGGAGGAA -CCAACACGCTTAACTCTGCAGGTA -CCAACACGCTTAACTCTGGACTCT -CCAACACGCTTAACTCTGAGTCCT -CCAACACGCTTAACTCTGTAAGCC -CCAACACGCTTAACTCTGATAGCC -CCAACACGCTTAACTCTGTAACCG -CCAACACGCTTAACTCTGATGCCA -CCAACACGCTTACCTCAAGGAAAC -CCAACACGCTTACCTCAAAACACC -CCAACACGCTTACCTCAAATCGAG -CCAACACGCTTACCTCAACTCCTT -CCAACACGCTTACCTCAACCTGTT -CCAACACGCTTACCTCAACGGTTT -CCAACACGCTTACCTCAAGTGGTT -CCAACACGCTTACCTCAAGCCTTT -CCAACACGCTTACCTCAAGGTCTT -CCAACACGCTTACCTCAAACGCTT -CCAACACGCTTACCTCAAAGCGTT -CCAACACGCTTACCTCAATTCGTC -CCAACACGCTTACCTCAATCTCTC -CCAACACGCTTACCTCAATGGATC -CCAACACGCTTACCTCAACACTTC -CCAACACGCTTACCTCAAGTACTC -CCAACACGCTTACCTCAAGATGTC -CCAACACGCTTACCTCAAACAGTC -CCAACACGCTTACCTCAATTGCTG -CCAACACGCTTACCTCAATCCATG -CCAACACGCTTACCTCAATGTGTG -CCAACACGCTTACCTCAACTAGTG -CCAACACGCTTACCTCAACATCTG -CCAACACGCTTACCTCAAGAGTTG -CCAACACGCTTACCTCAAAGACTG -CCAACACGCTTACCTCAATCGGTA -CCAACACGCTTACCTCAATGCCTA -CCAACACGCTTACCTCAACCACTA -CCAACACGCTTACCTCAAGGAGTA -CCAACACGCTTACCTCAATCGTCT -CCAACACGCTTACCTCAATGCACT -CCAACACGCTTACCTCAACTGACT -CCAACACGCTTACCTCAACAACCT -CCAACACGCTTACCTCAAGCTACT -CCAACACGCTTACCTCAAGGATCT -CCAACACGCTTACCTCAAAAGGCT -CCAACACGCTTACCTCAATCAACC -CCAACACGCTTACCTCAATGTTCC -CCAACACGCTTACCTCAAATTCCC -CCAACACGCTTACCTCAATTCTCG -CCAACACGCTTACCTCAATAGACG -CCAACACGCTTACCTCAAGTAACG -CCAACACGCTTACCTCAAACTTCG -CCAACACGCTTACCTCAATACGCA -CCAACACGCTTACCTCAACTTGCA -CCAACACGCTTACCTCAACGAACA -CCAACACGCTTACCTCAACAGTCA -CCAACACGCTTACCTCAAGATCCA -CCAACACGCTTACCTCAAACGACA -CCAACACGCTTACCTCAAAGCTCA -CCAACACGCTTACCTCAATCACGT -CCAACACGCTTACCTCAACGTAGT -CCAACACGCTTACCTCAAGTCAGT -CCAACACGCTTACCTCAAGAAGGT -CCAACACGCTTACCTCAAAACCGT -CCAACACGCTTACCTCAATTGTGC -CCAACACGCTTACCTCAACTAAGC -CCAACACGCTTACCTCAAACTAGC -CCAACACGCTTACCTCAAAGATGC -CCAACACGCTTACCTCAATGAAGG -CCAACACGCTTACCTCAACAATGG -CCAACACGCTTACCTCAAATGAGG -CCAACACGCTTACCTCAAAATGGG -CCAACACGCTTACCTCAATCCTGA -CCAACACGCTTACCTCAATAGCGA -CCAACACGCTTACCTCAACACAGA -CCAACACGCTTACCTCAAGCAAGA -CCAACACGCTTACCTCAAGGTTGA -CCAACACGCTTACCTCAATCCGAT -CCAACACGCTTACCTCAATGGCAT -CCAACACGCTTACCTCAACGAGAT -CCAACACGCTTACCTCAATACCAC -CCAACACGCTTACCTCAACAGAAC -CCAACACGCTTACCTCAAGTCTAC -CCAACACGCTTACCTCAAACGTAC -CCAACACGCTTACCTCAAAGTGAC -CCAACACGCTTACCTCAACTGTAG -CCAACACGCTTACCTCAACCTAAG -CCAACACGCTTACCTCAAGTTCAG -CCAACACGCTTACCTCAAGCATAG -CCAACACGCTTACCTCAAGACAAG -CCAACACGCTTACCTCAAAAGCAG -CCAACACGCTTACCTCAACGTCAA -CCAACACGCTTACCTCAAGCTGAA -CCAACACGCTTACCTCAAAGTACG -CCAACACGCTTACCTCAAATCCGA -CCAACACGCTTACCTCAAATGGGA -CCAACACGCTTACCTCAAGTGCAA -CCAACACGCTTACCTCAAGAGGAA -CCAACACGCTTACCTCAACAGGTA -CCAACACGCTTACCTCAAGACTCT -CCAACACGCTTACCTCAAAGTCCT -CCAACACGCTTACCTCAATAAGCC -CCAACACGCTTACCTCAAATAGCC -CCAACACGCTTACCTCAATAACCG -CCAACACGCTTACCTCAAATGCCA -CCAACACGCTTAACTGCTGGAAAC -CCAACACGCTTAACTGCTAACACC -CCAACACGCTTAACTGCTATCGAG -CCAACACGCTTAACTGCTCTCCTT -CCAACACGCTTAACTGCTCCTGTT -CCAACACGCTTAACTGCTCGGTTT -CCAACACGCTTAACTGCTGTGGTT -CCAACACGCTTAACTGCTGCCTTT -CCAACACGCTTAACTGCTGGTCTT -CCAACACGCTTAACTGCTACGCTT -CCAACACGCTTAACTGCTAGCGTT -CCAACACGCTTAACTGCTTTCGTC -CCAACACGCTTAACTGCTTCTCTC -CCAACACGCTTAACTGCTTGGATC -CCAACACGCTTAACTGCTCACTTC -CCAACACGCTTAACTGCTGTACTC -CCAACACGCTTAACTGCTGATGTC -CCAACACGCTTAACTGCTACAGTC -CCAACACGCTTAACTGCTTTGCTG -CCAACACGCTTAACTGCTTCCATG -CCAACACGCTTAACTGCTTGTGTG -CCAACACGCTTAACTGCTCTAGTG -CCAACACGCTTAACTGCTCATCTG -CCAACACGCTTAACTGCTGAGTTG -CCAACACGCTTAACTGCTAGACTG -CCAACACGCTTAACTGCTTCGGTA -CCAACACGCTTAACTGCTTGCCTA -CCAACACGCTTAACTGCTCCACTA -CCAACACGCTTAACTGCTGGAGTA -CCAACACGCTTAACTGCTTCGTCT -CCAACACGCTTAACTGCTTGCACT -CCAACACGCTTAACTGCTCTGACT -CCAACACGCTTAACTGCTCAACCT -CCAACACGCTTAACTGCTGCTACT -CCAACACGCTTAACTGCTGGATCT -CCAACACGCTTAACTGCTAAGGCT -CCAACACGCTTAACTGCTTCAACC -CCAACACGCTTAACTGCTTGTTCC -CCAACACGCTTAACTGCTATTCCC -CCAACACGCTTAACTGCTTTCTCG -CCAACACGCTTAACTGCTTAGACG -CCAACACGCTTAACTGCTGTAACG -CCAACACGCTTAACTGCTACTTCG -CCAACACGCTTAACTGCTTACGCA -CCAACACGCTTAACTGCTCTTGCA -CCAACACGCTTAACTGCTCGAACA -CCAACACGCTTAACTGCTCAGTCA -CCAACACGCTTAACTGCTGATCCA -CCAACACGCTTAACTGCTACGACA -CCAACACGCTTAACTGCTAGCTCA -CCAACACGCTTAACTGCTTCACGT -CCAACACGCTTAACTGCTCGTAGT -CCAACACGCTTAACTGCTGTCAGT -CCAACACGCTTAACTGCTGAAGGT -CCAACACGCTTAACTGCTAACCGT -CCAACACGCTTAACTGCTTTGTGC -CCAACACGCTTAACTGCTCTAAGC -CCAACACGCTTAACTGCTACTAGC -CCAACACGCTTAACTGCTAGATGC -CCAACACGCTTAACTGCTTGAAGG -CCAACACGCTTAACTGCTCAATGG -CCAACACGCTTAACTGCTATGAGG -CCAACACGCTTAACTGCTAATGGG -CCAACACGCTTAACTGCTTCCTGA -CCAACACGCTTAACTGCTTAGCGA -CCAACACGCTTAACTGCTCACAGA -CCAACACGCTTAACTGCTGCAAGA -CCAACACGCTTAACTGCTGGTTGA -CCAACACGCTTAACTGCTTCCGAT -CCAACACGCTTAACTGCTTGGCAT -CCAACACGCTTAACTGCTCGAGAT -CCAACACGCTTAACTGCTTACCAC -CCAACACGCTTAACTGCTCAGAAC -CCAACACGCTTAACTGCTGTCTAC -CCAACACGCTTAACTGCTACGTAC -CCAACACGCTTAACTGCTAGTGAC -CCAACACGCTTAACTGCTCTGTAG -CCAACACGCTTAACTGCTCCTAAG -CCAACACGCTTAACTGCTGTTCAG -CCAACACGCTTAACTGCTGCATAG -CCAACACGCTTAACTGCTGACAAG -CCAACACGCTTAACTGCTAAGCAG -CCAACACGCTTAACTGCTCGTCAA -CCAACACGCTTAACTGCTGCTGAA -CCAACACGCTTAACTGCTAGTACG -CCAACACGCTTAACTGCTATCCGA -CCAACACGCTTAACTGCTATGGGA -CCAACACGCTTAACTGCTGTGCAA -CCAACACGCTTAACTGCTGAGGAA -CCAACACGCTTAACTGCTCAGGTA -CCAACACGCTTAACTGCTGACTCT -CCAACACGCTTAACTGCTAGTCCT -CCAACACGCTTAACTGCTTAAGCC -CCAACACGCTTAACTGCTATAGCC -CCAACACGCTTAACTGCTTAACCG -CCAACACGCTTAACTGCTATGCCA -CCAACACGCTTATCTGGAGGAAAC -CCAACACGCTTATCTGGAAACACC -CCAACACGCTTATCTGGAATCGAG -CCAACACGCTTATCTGGACTCCTT -CCAACACGCTTATCTGGACCTGTT -CCAACACGCTTATCTGGACGGTTT -CCAACACGCTTATCTGGAGTGGTT -CCAACACGCTTATCTGGAGCCTTT -CCAACACGCTTATCTGGAGGTCTT -CCAACACGCTTATCTGGAACGCTT -CCAACACGCTTATCTGGAAGCGTT -CCAACACGCTTATCTGGATTCGTC -CCAACACGCTTATCTGGATCTCTC -CCAACACGCTTATCTGGATGGATC -CCAACACGCTTATCTGGACACTTC -CCAACACGCTTATCTGGAGTACTC -CCAACACGCTTATCTGGAGATGTC -CCAACACGCTTATCTGGAACAGTC -CCAACACGCTTATCTGGATTGCTG -CCAACACGCTTATCTGGATCCATG -CCAACACGCTTATCTGGATGTGTG -CCAACACGCTTATCTGGACTAGTG -CCAACACGCTTATCTGGACATCTG -CCAACACGCTTATCTGGAGAGTTG -CCAACACGCTTATCTGGAAGACTG -CCAACACGCTTATCTGGATCGGTA -CCAACACGCTTATCTGGATGCCTA -CCAACACGCTTATCTGGACCACTA -CCAACACGCTTATCTGGAGGAGTA -CCAACACGCTTATCTGGATCGTCT -CCAACACGCTTATCTGGATGCACT -CCAACACGCTTATCTGGACTGACT -CCAACACGCTTATCTGGACAACCT -CCAACACGCTTATCTGGAGCTACT -CCAACACGCTTATCTGGAGGATCT -CCAACACGCTTATCTGGAAAGGCT -CCAACACGCTTATCTGGATCAACC -CCAACACGCTTATCTGGATGTTCC -CCAACACGCTTATCTGGAATTCCC -CCAACACGCTTATCTGGATTCTCG -CCAACACGCTTATCTGGATAGACG -CCAACACGCTTATCTGGAGTAACG -CCAACACGCTTATCTGGAACTTCG -CCAACACGCTTATCTGGATACGCA -CCAACACGCTTATCTGGACTTGCA -CCAACACGCTTATCTGGACGAACA -CCAACACGCTTATCTGGACAGTCA -CCAACACGCTTATCTGGAGATCCA -CCAACACGCTTATCTGGAACGACA -CCAACACGCTTATCTGGAAGCTCA -CCAACACGCTTATCTGGATCACGT -CCAACACGCTTATCTGGACGTAGT -CCAACACGCTTATCTGGAGTCAGT -CCAACACGCTTATCTGGAGAAGGT -CCAACACGCTTATCTGGAAACCGT -CCAACACGCTTATCTGGATTGTGC -CCAACACGCTTATCTGGACTAAGC -CCAACACGCTTATCTGGAACTAGC -CCAACACGCTTATCTGGAAGATGC -CCAACACGCTTATCTGGATGAAGG -CCAACACGCTTATCTGGACAATGG -CCAACACGCTTATCTGGAATGAGG -CCAACACGCTTATCTGGAAATGGG -CCAACACGCTTATCTGGATCCTGA -CCAACACGCTTATCTGGATAGCGA -CCAACACGCTTATCTGGACACAGA -CCAACACGCTTATCTGGAGCAAGA -CCAACACGCTTATCTGGAGGTTGA -CCAACACGCTTATCTGGATCCGAT -CCAACACGCTTATCTGGATGGCAT -CCAACACGCTTATCTGGACGAGAT -CCAACACGCTTATCTGGATACCAC -CCAACACGCTTATCTGGACAGAAC -CCAACACGCTTATCTGGAGTCTAC -CCAACACGCTTATCTGGAACGTAC -CCAACACGCTTATCTGGAAGTGAC -CCAACACGCTTATCTGGACTGTAG -CCAACACGCTTATCTGGACCTAAG -CCAACACGCTTATCTGGAGTTCAG -CCAACACGCTTATCTGGAGCATAG -CCAACACGCTTATCTGGAGACAAG -CCAACACGCTTATCTGGAAAGCAG -CCAACACGCTTATCTGGACGTCAA -CCAACACGCTTATCTGGAGCTGAA -CCAACACGCTTATCTGGAAGTACG -CCAACACGCTTATCTGGAATCCGA -CCAACACGCTTATCTGGAATGGGA -CCAACACGCTTATCTGGAGTGCAA -CCAACACGCTTATCTGGAGAGGAA -CCAACACGCTTATCTGGACAGGTA -CCAACACGCTTATCTGGAGACTCT -CCAACACGCTTATCTGGAAGTCCT -CCAACACGCTTATCTGGATAAGCC -CCAACACGCTTATCTGGAATAGCC -CCAACACGCTTATCTGGATAACCG -CCAACACGCTTATCTGGAATGCCA -CCAACACGCTTAGCTAAGGGAAAC -CCAACACGCTTAGCTAAGAACACC -CCAACACGCTTAGCTAAGATCGAG -CCAACACGCTTAGCTAAGCTCCTT -CCAACACGCTTAGCTAAGCCTGTT -CCAACACGCTTAGCTAAGCGGTTT -CCAACACGCTTAGCTAAGGTGGTT -CCAACACGCTTAGCTAAGGCCTTT -CCAACACGCTTAGCTAAGGGTCTT -CCAACACGCTTAGCTAAGACGCTT -CCAACACGCTTAGCTAAGAGCGTT -CCAACACGCTTAGCTAAGTTCGTC -CCAACACGCTTAGCTAAGTCTCTC -CCAACACGCTTAGCTAAGTGGATC -CCAACACGCTTAGCTAAGCACTTC -CCAACACGCTTAGCTAAGGTACTC -CCAACACGCTTAGCTAAGGATGTC -CCAACACGCTTAGCTAAGACAGTC -CCAACACGCTTAGCTAAGTTGCTG -CCAACACGCTTAGCTAAGTCCATG -CCAACACGCTTAGCTAAGTGTGTG -CCAACACGCTTAGCTAAGCTAGTG -CCAACACGCTTAGCTAAGCATCTG -CCAACACGCTTAGCTAAGGAGTTG -CCAACACGCTTAGCTAAGAGACTG -CCAACACGCTTAGCTAAGTCGGTA -CCAACACGCTTAGCTAAGTGCCTA -CCAACACGCTTAGCTAAGCCACTA -CCAACACGCTTAGCTAAGGGAGTA -CCAACACGCTTAGCTAAGTCGTCT -CCAACACGCTTAGCTAAGTGCACT -CCAACACGCTTAGCTAAGCTGACT -CCAACACGCTTAGCTAAGCAACCT -CCAACACGCTTAGCTAAGGCTACT -CCAACACGCTTAGCTAAGGGATCT -CCAACACGCTTAGCTAAGAAGGCT -CCAACACGCTTAGCTAAGTCAACC -CCAACACGCTTAGCTAAGTGTTCC -CCAACACGCTTAGCTAAGATTCCC -CCAACACGCTTAGCTAAGTTCTCG -CCAACACGCTTAGCTAAGTAGACG -CCAACACGCTTAGCTAAGGTAACG -CCAACACGCTTAGCTAAGACTTCG -CCAACACGCTTAGCTAAGTACGCA -CCAACACGCTTAGCTAAGCTTGCA -CCAACACGCTTAGCTAAGCGAACA -CCAACACGCTTAGCTAAGCAGTCA -CCAACACGCTTAGCTAAGGATCCA -CCAACACGCTTAGCTAAGACGACA -CCAACACGCTTAGCTAAGAGCTCA -CCAACACGCTTAGCTAAGTCACGT -CCAACACGCTTAGCTAAGCGTAGT -CCAACACGCTTAGCTAAGGTCAGT -CCAACACGCTTAGCTAAGGAAGGT -CCAACACGCTTAGCTAAGAACCGT -CCAACACGCTTAGCTAAGTTGTGC -CCAACACGCTTAGCTAAGCTAAGC -CCAACACGCTTAGCTAAGACTAGC -CCAACACGCTTAGCTAAGAGATGC -CCAACACGCTTAGCTAAGTGAAGG -CCAACACGCTTAGCTAAGCAATGG -CCAACACGCTTAGCTAAGATGAGG -CCAACACGCTTAGCTAAGAATGGG -CCAACACGCTTAGCTAAGTCCTGA -CCAACACGCTTAGCTAAGTAGCGA -CCAACACGCTTAGCTAAGCACAGA -CCAACACGCTTAGCTAAGGCAAGA -CCAACACGCTTAGCTAAGGGTTGA -CCAACACGCTTAGCTAAGTCCGAT -CCAACACGCTTAGCTAAGTGGCAT -CCAACACGCTTAGCTAAGCGAGAT -CCAACACGCTTAGCTAAGTACCAC -CCAACACGCTTAGCTAAGCAGAAC -CCAACACGCTTAGCTAAGGTCTAC -CCAACACGCTTAGCTAAGACGTAC -CCAACACGCTTAGCTAAGAGTGAC -CCAACACGCTTAGCTAAGCTGTAG -CCAACACGCTTAGCTAAGCCTAAG -CCAACACGCTTAGCTAAGGTTCAG -CCAACACGCTTAGCTAAGGCATAG -CCAACACGCTTAGCTAAGGACAAG -CCAACACGCTTAGCTAAGAAGCAG -CCAACACGCTTAGCTAAGCGTCAA -CCAACACGCTTAGCTAAGGCTGAA -CCAACACGCTTAGCTAAGAGTACG -CCAACACGCTTAGCTAAGATCCGA -CCAACACGCTTAGCTAAGATGGGA -CCAACACGCTTAGCTAAGGTGCAA -CCAACACGCTTAGCTAAGGAGGAA -CCAACACGCTTAGCTAAGCAGGTA -CCAACACGCTTAGCTAAGGACTCT -CCAACACGCTTAGCTAAGAGTCCT -CCAACACGCTTAGCTAAGTAAGCC -CCAACACGCTTAGCTAAGATAGCC -CCAACACGCTTAGCTAAGTAACCG -CCAACACGCTTAGCTAAGATGCCA -CCAACACGCTTAACCTCAGGAAAC -CCAACACGCTTAACCTCAAACACC -CCAACACGCTTAACCTCAATCGAG -CCAACACGCTTAACCTCACTCCTT -CCAACACGCTTAACCTCACCTGTT -CCAACACGCTTAACCTCACGGTTT -CCAACACGCTTAACCTCAGTGGTT -CCAACACGCTTAACCTCAGCCTTT -CCAACACGCTTAACCTCAGGTCTT -CCAACACGCTTAACCTCAACGCTT -CCAACACGCTTAACCTCAAGCGTT -CCAACACGCTTAACCTCATTCGTC -CCAACACGCTTAACCTCATCTCTC -CCAACACGCTTAACCTCATGGATC -CCAACACGCTTAACCTCACACTTC -CCAACACGCTTAACCTCAGTACTC -CCAACACGCTTAACCTCAGATGTC -CCAACACGCTTAACCTCAACAGTC -CCAACACGCTTAACCTCATTGCTG -CCAACACGCTTAACCTCATCCATG -CCAACACGCTTAACCTCATGTGTG -CCAACACGCTTAACCTCACTAGTG -CCAACACGCTTAACCTCACATCTG -CCAACACGCTTAACCTCAGAGTTG -CCAACACGCTTAACCTCAAGACTG -CCAACACGCTTAACCTCATCGGTA -CCAACACGCTTAACCTCATGCCTA -CCAACACGCTTAACCTCACCACTA -CCAACACGCTTAACCTCAGGAGTA -CCAACACGCTTAACCTCATCGTCT -CCAACACGCTTAACCTCATGCACT -CCAACACGCTTAACCTCACTGACT -CCAACACGCTTAACCTCACAACCT -CCAACACGCTTAACCTCAGCTACT -CCAACACGCTTAACCTCAGGATCT -CCAACACGCTTAACCTCAAAGGCT -CCAACACGCTTAACCTCATCAACC -CCAACACGCTTAACCTCATGTTCC -CCAACACGCTTAACCTCAATTCCC -CCAACACGCTTAACCTCATTCTCG -CCAACACGCTTAACCTCATAGACG -CCAACACGCTTAACCTCAGTAACG -CCAACACGCTTAACCTCAACTTCG -CCAACACGCTTAACCTCATACGCA -CCAACACGCTTAACCTCACTTGCA -CCAACACGCTTAACCTCACGAACA -CCAACACGCTTAACCTCACAGTCA -CCAACACGCTTAACCTCAGATCCA -CCAACACGCTTAACCTCAACGACA -CCAACACGCTTAACCTCAAGCTCA -CCAACACGCTTAACCTCATCACGT -CCAACACGCTTAACCTCACGTAGT -CCAACACGCTTAACCTCAGTCAGT -CCAACACGCTTAACCTCAGAAGGT -CCAACACGCTTAACCTCAAACCGT -CCAACACGCTTAACCTCATTGTGC -CCAACACGCTTAACCTCACTAAGC -CCAACACGCTTAACCTCAACTAGC -CCAACACGCTTAACCTCAAGATGC -CCAACACGCTTAACCTCATGAAGG -CCAACACGCTTAACCTCACAATGG -CCAACACGCTTAACCTCAATGAGG -CCAACACGCTTAACCTCAAATGGG -CCAACACGCTTAACCTCATCCTGA -CCAACACGCTTAACCTCATAGCGA -CCAACACGCTTAACCTCACACAGA -CCAACACGCTTAACCTCAGCAAGA -CCAACACGCTTAACCTCAGGTTGA -CCAACACGCTTAACCTCATCCGAT -CCAACACGCTTAACCTCATGGCAT -CCAACACGCTTAACCTCACGAGAT -CCAACACGCTTAACCTCATACCAC -CCAACACGCTTAACCTCACAGAAC -CCAACACGCTTAACCTCAGTCTAC -CCAACACGCTTAACCTCAACGTAC -CCAACACGCTTAACCTCAAGTGAC -CCAACACGCTTAACCTCACTGTAG -CCAACACGCTTAACCTCACCTAAG -CCAACACGCTTAACCTCAGTTCAG -CCAACACGCTTAACCTCAGCATAG -CCAACACGCTTAACCTCAGACAAG -CCAACACGCTTAACCTCAAAGCAG -CCAACACGCTTAACCTCACGTCAA -CCAACACGCTTAACCTCAGCTGAA -CCAACACGCTTAACCTCAAGTACG -CCAACACGCTTAACCTCAATCCGA -CCAACACGCTTAACCTCAATGGGA -CCAACACGCTTAACCTCAGTGCAA -CCAACACGCTTAACCTCAGAGGAA -CCAACACGCTTAACCTCACAGGTA -CCAACACGCTTAACCTCAGACTCT -CCAACACGCTTAACCTCAAGTCCT -CCAACACGCTTAACCTCATAAGCC -CCAACACGCTTAACCTCAATAGCC -CCAACACGCTTAACCTCATAACCG -CCAACACGCTTAACCTCAATGCCA -CCAACACGCTTATCCTGTGGAAAC -CCAACACGCTTATCCTGTAACACC -CCAACACGCTTATCCTGTATCGAG -CCAACACGCTTATCCTGTCTCCTT -CCAACACGCTTATCCTGTCCTGTT -CCAACACGCTTATCCTGTCGGTTT -CCAACACGCTTATCCTGTGTGGTT -CCAACACGCTTATCCTGTGCCTTT -CCAACACGCTTATCCTGTGGTCTT -CCAACACGCTTATCCTGTACGCTT -CCAACACGCTTATCCTGTAGCGTT -CCAACACGCTTATCCTGTTTCGTC -CCAACACGCTTATCCTGTTCTCTC -CCAACACGCTTATCCTGTTGGATC -CCAACACGCTTATCCTGTCACTTC -CCAACACGCTTATCCTGTGTACTC -CCAACACGCTTATCCTGTGATGTC -CCAACACGCTTATCCTGTACAGTC -CCAACACGCTTATCCTGTTTGCTG -CCAACACGCTTATCCTGTTCCATG -CCAACACGCTTATCCTGTTGTGTG -CCAACACGCTTATCCTGTCTAGTG -CCAACACGCTTATCCTGTCATCTG -CCAACACGCTTATCCTGTGAGTTG -CCAACACGCTTATCCTGTAGACTG -CCAACACGCTTATCCTGTTCGGTA -CCAACACGCTTATCCTGTTGCCTA -CCAACACGCTTATCCTGTCCACTA -CCAACACGCTTATCCTGTGGAGTA -CCAACACGCTTATCCTGTTCGTCT -CCAACACGCTTATCCTGTTGCACT -CCAACACGCTTATCCTGTCTGACT -CCAACACGCTTATCCTGTCAACCT -CCAACACGCTTATCCTGTGCTACT -CCAACACGCTTATCCTGTGGATCT -CCAACACGCTTATCCTGTAAGGCT -CCAACACGCTTATCCTGTTCAACC -CCAACACGCTTATCCTGTTGTTCC -CCAACACGCTTATCCTGTATTCCC -CCAACACGCTTATCCTGTTTCTCG -CCAACACGCTTATCCTGTTAGACG -CCAACACGCTTATCCTGTGTAACG -CCAACACGCTTATCCTGTACTTCG -CCAACACGCTTATCCTGTTACGCA -CCAACACGCTTATCCTGTCTTGCA -CCAACACGCTTATCCTGTCGAACA -CCAACACGCTTATCCTGTCAGTCA -CCAACACGCTTATCCTGTGATCCA -CCAACACGCTTATCCTGTACGACA -CCAACACGCTTATCCTGTAGCTCA -CCAACACGCTTATCCTGTTCACGT -CCAACACGCTTATCCTGTCGTAGT -CCAACACGCTTATCCTGTGTCAGT -CCAACACGCTTATCCTGTGAAGGT -CCAACACGCTTATCCTGTAACCGT -CCAACACGCTTATCCTGTTTGTGC -CCAACACGCTTATCCTGTCTAAGC -CCAACACGCTTATCCTGTACTAGC -CCAACACGCTTATCCTGTAGATGC -CCAACACGCTTATCCTGTTGAAGG -CCAACACGCTTATCCTGTCAATGG -CCAACACGCTTATCCTGTATGAGG -CCAACACGCTTATCCTGTAATGGG -CCAACACGCTTATCCTGTTCCTGA -CCAACACGCTTATCCTGTTAGCGA -CCAACACGCTTATCCTGTCACAGA -CCAACACGCTTATCCTGTGCAAGA -CCAACACGCTTATCCTGTGGTTGA -CCAACACGCTTATCCTGTTCCGAT -CCAACACGCTTATCCTGTTGGCAT -CCAACACGCTTATCCTGTCGAGAT -CCAACACGCTTATCCTGTTACCAC -CCAACACGCTTATCCTGTCAGAAC -CCAACACGCTTATCCTGTGTCTAC -CCAACACGCTTATCCTGTACGTAC -CCAACACGCTTATCCTGTAGTGAC -CCAACACGCTTATCCTGTCTGTAG -CCAACACGCTTATCCTGTCCTAAG -CCAACACGCTTATCCTGTGTTCAG -CCAACACGCTTATCCTGTGCATAG -CCAACACGCTTATCCTGTGACAAG -CCAACACGCTTATCCTGTAAGCAG -CCAACACGCTTATCCTGTCGTCAA -CCAACACGCTTATCCTGTGCTGAA -CCAACACGCTTATCCTGTAGTACG -CCAACACGCTTATCCTGTATCCGA -CCAACACGCTTATCCTGTATGGGA -CCAACACGCTTATCCTGTGTGCAA -CCAACACGCTTATCCTGTGAGGAA -CCAACACGCTTATCCTGTCAGGTA -CCAACACGCTTATCCTGTGACTCT -CCAACACGCTTATCCTGTAGTCCT -CCAACACGCTTATCCTGTTAAGCC -CCAACACGCTTATCCTGTATAGCC -CCAACACGCTTATCCTGTTAACCG -CCAACACGCTTATCCTGTATGCCA -CCAACACGCTTACCCATTGGAAAC -CCAACACGCTTACCCATTAACACC -CCAACACGCTTACCCATTATCGAG -CCAACACGCTTACCCATTCTCCTT -CCAACACGCTTACCCATTCCTGTT -CCAACACGCTTACCCATTCGGTTT -CCAACACGCTTACCCATTGTGGTT -CCAACACGCTTACCCATTGCCTTT -CCAACACGCTTACCCATTGGTCTT -CCAACACGCTTACCCATTACGCTT -CCAACACGCTTACCCATTAGCGTT -CCAACACGCTTACCCATTTTCGTC -CCAACACGCTTACCCATTTCTCTC -CCAACACGCTTACCCATTTGGATC -CCAACACGCTTACCCATTCACTTC -CCAACACGCTTACCCATTGTACTC -CCAACACGCTTACCCATTGATGTC -CCAACACGCTTACCCATTACAGTC -CCAACACGCTTACCCATTTTGCTG -CCAACACGCTTACCCATTTCCATG -CCAACACGCTTACCCATTTGTGTG -CCAACACGCTTACCCATTCTAGTG -CCAACACGCTTACCCATTCATCTG -CCAACACGCTTACCCATTGAGTTG -CCAACACGCTTACCCATTAGACTG -CCAACACGCTTACCCATTTCGGTA -CCAACACGCTTACCCATTTGCCTA -CCAACACGCTTACCCATTCCACTA -CCAACACGCTTACCCATTGGAGTA -CCAACACGCTTACCCATTTCGTCT -CCAACACGCTTACCCATTTGCACT -CCAACACGCTTACCCATTCTGACT -CCAACACGCTTACCCATTCAACCT -CCAACACGCTTACCCATTGCTACT -CCAACACGCTTACCCATTGGATCT -CCAACACGCTTACCCATTAAGGCT -CCAACACGCTTACCCATTTCAACC -CCAACACGCTTACCCATTTGTTCC -CCAACACGCTTACCCATTATTCCC -CCAACACGCTTACCCATTTTCTCG -CCAACACGCTTACCCATTTAGACG -CCAACACGCTTACCCATTGTAACG -CCAACACGCTTACCCATTACTTCG -CCAACACGCTTACCCATTTACGCA -CCAACACGCTTACCCATTCTTGCA -CCAACACGCTTACCCATTCGAACA -CCAACACGCTTACCCATTCAGTCA -CCAACACGCTTACCCATTGATCCA -CCAACACGCTTACCCATTACGACA -CCAACACGCTTACCCATTAGCTCA -CCAACACGCTTACCCATTTCACGT -CCAACACGCTTACCCATTCGTAGT -CCAACACGCTTACCCATTGTCAGT -CCAACACGCTTACCCATTGAAGGT -CCAACACGCTTACCCATTAACCGT -CCAACACGCTTACCCATTTTGTGC -CCAACACGCTTACCCATTCTAAGC -CCAACACGCTTACCCATTACTAGC -CCAACACGCTTACCCATTAGATGC -CCAACACGCTTACCCATTTGAAGG -CCAACACGCTTACCCATTCAATGG -CCAACACGCTTACCCATTATGAGG -CCAACACGCTTACCCATTAATGGG -CCAACACGCTTACCCATTTCCTGA -CCAACACGCTTACCCATTTAGCGA -CCAACACGCTTACCCATTCACAGA -CCAACACGCTTACCCATTGCAAGA -CCAACACGCTTACCCATTGGTTGA -CCAACACGCTTACCCATTTCCGAT -CCAACACGCTTACCCATTTGGCAT -CCAACACGCTTACCCATTCGAGAT -CCAACACGCTTACCCATTTACCAC -CCAACACGCTTACCCATTCAGAAC -CCAACACGCTTACCCATTGTCTAC -CCAACACGCTTACCCATTACGTAC -CCAACACGCTTACCCATTAGTGAC -CCAACACGCTTACCCATTCTGTAG -CCAACACGCTTACCCATTCCTAAG -CCAACACGCTTACCCATTGTTCAG -CCAACACGCTTACCCATTGCATAG -CCAACACGCTTACCCATTGACAAG -CCAACACGCTTACCCATTAAGCAG -CCAACACGCTTACCCATTCGTCAA -CCAACACGCTTACCCATTGCTGAA -CCAACACGCTTACCCATTAGTACG -CCAACACGCTTACCCATTATCCGA -CCAACACGCTTACCCATTATGGGA -CCAACACGCTTACCCATTGTGCAA -CCAACACGCTTACCCATTGAGGAA -CCAACACGCTTACCCATTCAGGTA -CCAACACGCTTACCCATTGACTCT -CCAACACGCTTACCCATTAGTCCT -CCAACACGCTTACCCATTTAAGCC -CCAACACGCTTACCCATTATAGCC -CCAACACGCTTACCCATTTAACCG -CCAACACGCTTACCCATTATGCCA -CCAACACGCTTATCGTTCGGAAAC -CCAACACGCTTATCGTTCAACACC -CCAACACGCTTATCGTTCATCGAG -CCAACACGCTTATCGTTCCTCCTT -CCAACACGCTTATCGTTCCCTGTT -CCAACACGCTTATCGTTCCGGTTT -CCAACACGCTTATCGTTCGTGGTT -CCAACACGCTTATCGTTCGCCTTT -CCAACACGCTTATCGTTCGGTCTT -CCAACACGCTTATCGTTCACGCTT -CCAACACGCTTATCGTTCAGCGTT -CCAACACGCTTATCGTTCTTCGTC -CCAACACGCTTATCGTTCTCTCTC -CCAACACGCTTATCGTTCTGGATC -CCAACACGCTTATCGTTCCACTTC -CCAACACGCTTATCGTTCGTACTC -CCAACACGCTTATCGTTCGATGTC -CCAACACGCTTATCGTTCACAGTC -CCAACACGCTTATCGTTCTTGCTG -CCAACACGCTTATCGTTCTCCATG -CCAACACGCTTATCGTTCTGTGTG -CCAACACGCTTATCGTTCCTAGTG -CCAACACGCTTATCGTTCCATCTG -CCAACACGCTTATCGTTCGAGTTG -CCAACACGCTTATCGTTCAGACTG -CCAACACGCTTATCGTTCTCGGTA -CCAACACGCTTATCGTTCTGCCTA -CCAACACGCTTATCGTTCCCACTA -CCAACACGCTTATCGTTCGGAGTA -CCAACACGCTTATCGTTCTCGTCT -CCAACACGCTTATCGTTCTGCACT -CCAACACGCTTATCGTTCCTGACT -CCAACACGCTTATCGTTCCAACCT -CCAACACGCTTATCGTTCGCTACT -CCAACACGCTTATCGTTCGGATCT -CCAACACGCTTATCGTTCAAGGCT -CCAACACGCTTATCGTTCTCAACC -CCAACACGCTTATCGTTCTGTTCC -CCAACACGCTTATCGTTCATTCCC -CCAACACGCTTATCGTTCTTCTCG -CCAACACGCTTATCGTTCTAGACG -CCAACACGCTTATCGTTCGTAACG -CCAACACGCTTATCGTTCACTTCG -CCAACACGCTTATCGTTCTACGCA -CCAACACGCTTATCGTTCCTTGCA -CCAACACGCTTATCGTTCCGAACA -CCAACACGCTTATCGTTCCAGTCA -CCAACACGCTTATCGTTCGATCCA -CCAACACGCTTATCGTTCACGACA -CCAACACGCTTATCGTTCAGCTCA -CCAACACGCTTATCGTTCTCACGT -CCAACACGCTTATCGTTCCGTAGT -CCAACACGCTTATCGTTCGTCAGT -CCAACACGCTTATCGTTCGAAGGT -CCAACACGCTTATCGTTCAACCGT -CCAACACGCTTATCGTTCTTGTGC -CCAACACGCTTATCGTTCCTAAGC -CCAACACGCTTATCGTTCACTAGC -CCAACACGCTTATCGTTCAGATGC -CCAACACGCTTATCGTTCTGAAGG -CCAACACGCTTATCGTTCCAATGG -CCAACACGCTTATCGTTCATGAGG -CCAACACGCTTATCGTTCAATGGG -CCAACACGCTTATCGTTCTCCTGA -CCAACACGCTTATCGTTCTAGCGA -CCAACACGCTTATCGTTCCACAGA -CCAACACGCTTATCGTTCGCAAGA -CCAACACGCTTATCGTTCGGTTGA -CCAACACGCTTATCGTTCTCCGAT -CCAACACGCTTATCGTTCTGGCAT -CCAACACGCTTATCGTTCCGAGAT -CCAACACGCTTATCGTTCTACCAC -CCAACACGCTTATCGTTCCAGAAC -CCAACACGCTTATCGTTCGTCTAC -CCAACACGCTTATCGTTCACGTAC -CCAACACGCTTATCGTTCAGTGAC -CCAACACGCTTATCGTTCCTGTAG -CCAACACGCTTATCGTTCCCTAAG -CCAACACGCTTATCGTTCGTTCAG -CCAACACGCTTATCGTTCGCATAG -CCAACACGCTTATCGTTCGACAAG -CCAACACGCTTATCGTTCAAGCAG -CCAACACGCTTATCGTTCCGTCAA -CCAACACGCTTATCGTTCGCTGAA -CCAACACGCTTATCGTTCAGTACG -CCAACACGCTTATCGTTCATCCGA -CCAACACGCTTATCGTTCATGGGA -CCAACACGCTTATCGTTCGTGCAA -CCAACACGCTTATCGTTCGAGGAA -CCAACACGCTTATCGTTCCAGGTA -CCAACACGCTTATCGTTCGACTCT -CCAACACGCTTATCGTTCAGTCCT -CCAACACGCTTATCGTTCTAAGCC -CCAACACGCTTATCGTTCATAGCC -CCAACACGCTTATCGTTCTAACCG -CCAACACGCTTATCGTTCATGCCA -CCAACACGCTTAACGTAGGGAAAC -CCAACACGCTTAACGTAGAACACC -CCAACACGCTTAACGTAGATCGAG -CCAACACGCTTAACGTAGCTCCTT -CCAACACGCTTAACGTAGCCTGTT -CCAACACGCTTAACGTAGCGGTTT -CCAACACGCTTAACGTAGGTGGTT -CCAACACGCTTAACGTAGGCCTTT -CCAACACGCTTAACGTAGGGTCTT -CCAACACGCTTAACGTAGACGCTT -CCAACACGCTTAACGTAGAGCGTT -CCAACACGCTTAACGTAGTTCGTC -CCAACACGCTTAACGTAGTCTCTC -CCAACACGCTTAACGTAGTGGATC -CCAACACGCTTAACGTAGCACTTC -CCAACACGCTTAACGTAGGTACTC -CCAACACGCTTAACGTAGGATGTC -CCAACACGCTTAACGTAGACAGTC -CCAACACGCTTAACGTAGTTGCTG -CCAACACGCTTAACGTAGTCCATG -CCAACACGCTTAACGTAGTGTGTG -CCAACACGCTTAACGTAGCTAGTG -CCAACACGCTTAACGTAGCATCTG -CCAACACGCTTAACGTAGGAGTTG -CCAACACGCTTAACGTAGAGACTG -CCAACACGCTTAACGTAGTCGGTA -CCAACACGCTTAACGTAGTGCCTA -CCAACACGCTTAACGTAGCCACTA -CCAACACGCTTAACGTAGGGAGTA -CCAACACGCTTAACGTAGTCGTCT -CCAACACGCTTAACGTAGTGCACT -CCAACACGCTTAACGTAGCTGACT -CCAACACGCTTAACGTAGCAACCT -CCAACACGCTTAACGTAGGCTACT -CCAACACGCTTAACGTAGGGATCT -CCAACACGCTTAACGTAGAAGGCT -CCAACACGCTTAACGTAGTCAACC -CCAACACGCTTAACGTAGTGTTCC -CCAACACGCTTAACGTAGATTCCC -CCAACACGCTTAACGTAGTTCTCG -CCAACACGCTTAACGTAGTAGACG -CCAACACGCTTAACGTAGGTAACG -CCAACACGCTTAACGTAGACTTCG -CCAACACGCTTAACGTAGTACGCA -CCAACACGCTTAACGTAGCTTGCA -CCAACACGCTTAACGTAGCGAACA -CCAACACGCTTAACGTAGCAGTCA -CCAACACGCTTAACGTAGGATCCA -CCAACACGCTTAACGTAGACGACA -CCAACACGCTTAACGTAGAGCTCA -CCAACACGCTTAACGTAGTCACGT -CCAACACGCTTAACGTAGCGTAGT -CCAACACGCTTAACGTAGGTCAGT -CCAACACGCTTAACGTAGGAAGGT -CCAACACGCTTAACGTAGAACCGT -CCAACACGCTTAACGTAGTTGTGC -CCAACACGCTTAACGTAGCTAAGC -CCAACACGCTTAACGTAGACTAGC -CCAACACGCTTAACGTAGAGATGC -CCAACACGCTTAACGTAGTGAAGG -CCAACACGCTTAACGTAGCAATGG -CCAACACGCTTAACGTAGATGAGG -CCAACACGCTTAACGTAGAATGGG -CCAACACGCTTAACGTAGTCCTGA -CCAACACGCTTAACGTAGTAGCGA -CCAACACGCTTAACGTAGCACAGA -CCAACACGCTTAACGTAGGCAAGA -CCAACACGCTTAACGTAGGGTTGA -CCAACACGCTTAACGTAGTCCGAT -CCAACACGCTTAACGTAGTGGCAT -CCAACACGCTTAACGTAGCGAGAT -CCAACACGCTTAACGTAGTACCAC -CCAACACGCTTAACGTAGCAGAAC -CCAACACGCTTAACGTAGGTCTAC -CCAACACGCTTAACGTAGACGTAC -CCAACACGCTTAACGTAGAGTGAC -CCAACACGCTTAACGTAGCTGTAG -CCAACACGCTTAACGTAGCCTAAG -CCAACACGCTTAACGTAGGTTCAG -CCAACACGCTTAACGTAGGCATAG -CCAACACGCTTAACGTAGGACAAG -CCAACACGCTTAACGTAGAAGCAG -CCAACACGCTTAACGTAGCGTCAA -CCAACACGCTTAACGTAGGCTGAA -CCAACACGCTTAACGTAGAGTACG -CCAACACGCTTAACGTAGATCCGA -CCAACACGCTTAACGTAGATGGGA -CCAACACGCTTAACGTAGGTGCAA -CCAACACGCTTAACGTAGGAGGAA -CCAACACGCTTAACGTAGCAGGTA -CCAACACGCTTAACGTAGGACTCT -CCAACACGCTTAACGTAGAGTCCT -CCAACACGCTTAACGTAGTAAGCC -CCAACACGCTTAACGTAGATAGCC -CCAACACGCTTAACGTAGTAACCG -CCAACACGCTTAACGTAGATGCCA -CCAACACGCTTAACGGTAGGAAAC -CCAACACGCTTAACGGTAAACACC -CCAACACGCTTAACGGTAATCGAG -CCAACACGCTTAACGGTACTCCTT -CCAACACGCTTAACGGTACCTGTT -CCAACACGCTTAACGGTACGGTTT -CCAACACGCTTAACGGTAGTGGTT -CCAACACGCTTAACGGTAGCCTTT -CCAACACGCTTAACGGTAGGTCTT -CCAACACGCTTAACGGTAACGCTT -CCAACACGCTTAACGGTAAGCGTT -CCAACACGCTTAACGGTATTCGTC -CCAACACGCTTAACGGTATCTCTC -CCAACACGCTTAACGGTATGGATC -CCAACACGCTTAACGGTACACTTC -CCAACACGCTTAACGGTAGTACTC -CCAACACGCTTAACGGTAGATGTC -CCAACACGCTTAACGGTAACAGTC -CCAACACGCTTAACGGTATTGCTG -CCAACACGCTTAACGGTATCCATG -CCAACACGCTTAACGGTATGTGTG -CCAACACGCTTAACGGTACTAGTG -CCAACACGCTTAACGGTACATCTG -CCAACACGCTTAACGGTAGAGTTG -CCAACACGCTTAACGGTAAGACTG -CCAACACGCTTAACGGTATCGGTA -CCAACACGCTTAACGGTATGCCTA -CCAACACGCTTAACGGTACCACTA -CCAACACGCTTAACGGTAGGAGTA -CCAACACGCTTAACGGTATCGTCT -CCAACACGCTTAACGGTATGCACT -CCAACACGCTTAACGGTACTGACT -CCAACACGCTTAACGGTACAACCT -CCAACACGCTTAACGGTAGCTACT -CCAACACGCTTAACGGTAGGATCT -CCAACACGCTTAACGGTAAAGGCT -CCAACACGCTTAACGGTATCAACC -CCAACACGCTTAACGGTATGTTCC -CCAACACGCTTAACGGTAATTCCC -CCAACACGCTTAACGGTATTCTCG -CCAACACGCTTAACGGTATAGACG -CCAACACGCTTAACGGTAGTAACG -CCAACACGCTTAACGGTAACTTCG -CCAACACGCTTAACGGTATACGCA -CCAACACGCTTAACGGTACTTGCA -CCAACACGCTTAACGGTACGAACA -CCAACACGCTTAACGGTACAGTCA -CCAACACGCTTAACGGTAGATCCA -CCAACACGCTTAACGGTAACGACA -CCAACACGCTTAACGGTAAGCTCA -CCAACACGCTTAACGGTATCACGT -CCAACACGCTTAACGGTACGTAGT -CCAACACGCTTAACGGTAGTCAGT -CCAACACGCTTAACGGTAGAAGGT -CCAACACGCTTAACGGTAAACCGT -CCAACACGCTTAACGGTATTGTGC -CCAACACGCTTAACGGTACTAAGC -CCAACACGCTTAACGGTAACTAGC -CCAACACGCTTAACGGTAAGATGC -CCAACACGCTTAACGGTATGAAGG -CCAACACGCTTAACGGTACAATGG -CCAACACGCTTAACGGTAATGAGG -CCAACACGCTTAACGGTAAATGGG -CCAACACGCTTAACGGTATCCTGA -CCAACACGCTTAACGGTATAGCGA -CCAACACGCTTAACGGTACACAGA -CCAACACGCTTAACGGTAGCAAGA -CCAACACGCTTAACGGTAGGTTGA -CCAACACGCTTAACGGTATCCGAT -CCAACACGCTTAACGGTATGGCAT -CCAACACGCTTAACGGTACGAGAT -CCAACACGCTTAACGGTATACCAC -CCAACACGCTTAACGGTACAGAAC -CCAACACGCTTAACGGTAGTCTAC -CCAACACGCTTAACGGTAACGTAC -CCAACACGCTTAACGGTAAGTGAC -CCAACACGCTTAACGGTACTGTAG -CCAACACGCTTAACGGTACCTAAG -CCAACACGCTTAACGGTAGTTCAG -CCAACACGCTTAACGGTAGCATAG -CCAACACGCTTAACGGTAGACAAG -CCAACACGCTTAACGGTAAAGCAG -CCAACACGCTTAACGGTACGTCAA -CCAACACGCTTAACGGTAGCTGAA -CCAACACGCTTAACGGTAAGTACG -CCAACACGCTTAACGGTAATCCGA -CCAACACGCTTAACGGTAATGGGA -CCAACACGCTTAACGGTAGTGCAA -CCAACACGCTTAACGGTAGAGGAA -CCAACACGCTTAACGGTACAGGTA -CCAACACGCTTAACGGTAGACTCT -CCAACACGCTTAACGGTAAGTCCT -CCAACACGCTTAACGGTATAAGCC -CCAACACGCTTAACGGTAATAGCC -CCAACACGCTTAACGGTATAACCG -CCAACACGCTTAACGGTAATGCCA -CCAACACGCTTATCGACTGGAAAC -CCAACACGCTTATCGACTAACACC -CCAACACGCTTATCGACTATCGAG -CCAACACGCTTATCGACTCTCCTT -CCAACACGCTTATCGACTCCTGTT -CCAACACGCTTATCGACTCGGTTT -CCAACACGCTTATCGACTGTGGTT -CCAACACGCTTATCGACTGCCTTT -CCAACACGCTTATCGACTGGTCTT -CCAACACGCTTATCGACTACGCTT -CCAACACGCTTATCGACTAGCGTT -CCAACACGCTTATCGACTTTCGTC -CCAACACGCTTATCGACTTCTCTC -CCAACACGCTTATCGACTTGGATC -CCAACACGCTTATCGACTCACTTC -CCAACACGCTTATCGACTGTACTC -CCAACACGCTTATCGACTGATGTC -CCAACACGCTTATCGACTACAGTC -CCAACACGCTTATCGACTTTGCTG -CCAACACGCTTATCGACTTCCATG -CCAACACGCTTATCGACTTGTGTG -CCAACACGCTTATCGACTCTAGTG -CCAACACGCTTATCGACTCATCTG -CCAACACGCTTATCGACTGAGTTG -CCAACACGCTTATCGACTAGACTG -CCAACACGCTTATCGACTTCGGTA -CCAACACGCTTATCGACTTGCCTA -CCAACACGCTTATCGACTCCACTA -CCAACACGCTTATCGACTGGAGTA -CCAACACGCTTATCGACTTCGTCT -CCAACACGCTTATCGACTTGCACT -CCAACACGCTTATCGACTCTGACT -CCAACACGCTTATCGACTCAACCT -CCAACACGCTTATCGACTGCTACT -CCAACACGCTTATCGACTGGATCT -CCAACACGCTTATCGACTAAGGCT -CCAACACGCTTATCGACTTCAACC -CCAACACGCTTATCGACTTGTTCC -CCAACACGCTTATCGACTATTCCC -CCAACACGCTTATCGACTTTCTCG -CCAACACGCTTATCGACTTAGACG -CCAACACGCTTATCGACTGTAACG -CCAACACGCTTATCGACTACTTCG -CCAACACGCTTATCGACTTACGCA -CCAACACGCTTATCGACTCTTGCA -CCAACACGCTTATCGACTCGAACA -CCAACACGCTTATCGACTCAGTCA -CCAACACGCTTATCGACTGATCCA -CCAACACGCTTATCGACTACGACA -CCAACACGCTTATCGACTAGCTCA -CCAACACGCTTATCGACTTCACGT -CCAACACGCTTATCGACTCGTAGT -CCAACACGCTTATCGACTGTCAGT -CCAACACGCTTATCGACTGAAGGT -CCAACACGCTTATCGACTAACCGT -CCAACACGCTTATCGACTTTGTGC -CCAACACGCTTATCGACTCTAAGC -CCAACACGCTTATCGACTACTAGC -CCAACACGCTTATCGACTAGATGC -CCAACACGCTTATCGACTTGAAGG -CCAACACGCTTATCGACTCAATGG -CCAACACGCTTATCGACTATGAGG -CCAACACGCTTATCGACTAATGGG -CCAACACGCTTATCGACTTCCTGA -CCAACACGCTTATCGACTTAGCGA -CCAACACGCTTATCGACTCACAGA -CCAACACGCTTATCGACTGCAAGA -CCAACACGCTTATCGACTGGTTGA -CCAACACGCTTATCGACTTCCGAT -CCAACACGCTTATCGACTTGGCAT -CCAACACGCTTATCGACTCGAGAT -CCAACACGCTTATCGACTTACCAC -CCAACACGCTTATCGACTCAGAAC -CCAACACGCTTATCGACTGTCTAC -CCAACACGCTTATCGACTACGTAC -CCAACACGCTTATCGACTAGTGAC -CCAACACGCTTATCGACTCTGTAG -CCAACACGCTTATCGACTCCTAAG -CCAACACGCTTATCGACTGTTCAG -CCAACACGCTTATCGACTGCATAG -CCAACACGCTTATCGACTGACAAG -CCAACACGCTTATCGACTAAGCAG -CCAACACGCTTATCGACTCGTCAA -CCAACACGCTTATCGACTGCTGAA -CCAACACGCTTATCGACTAGTACG -CCAACACGCTTATCGACTATCCGA -CCAACACGCTTATCGACTATGGGA -CCAACACGCTTATCGACTGTGCAA -CCAACACGCTTATCGACTGAGGAA -CCAACACGCTTATCGACTCAGGTA -CCAACACGCTTATCGACTGACTCT -CCAACACGCTTATCGACTAGTCCT -CCAACACGCTTATCGACTTAAGCC -CCAACACGCTTATCGACTATAGCC -CCAACACGCTTATCGACTTAACCG -CCAACACGCTTATCGACTATGCCA -CCAACACGCTTAGCATACGGAAAC -CCAACACGCTTAGCATACAACACC -CCAACACGCTTAGCATACATCGAG -CCAACACGCTTAGCATACCTCCTT -CCAACACGCTTAGCATACCCTGTT -CCAACACGCTTAGCATACCGGTTT -CCAACACGCTTAGCATACGTGGTT -CCAACACGCTTAGCATACGCCTTT -CCAACACGCTTAGCATACGGTCTT -CCAACACGCTTAGCATACACGCTT -CCAACACGCTTAGCATACAGCGTT -CCAACACGCTTAGCATACTTCGTC -CCAACACGCTTAGCATACTCTCTC -CCAACACGCTTAGCATACTGGATC -CCAACACGCTTAGCATACCACTTC -CCAACACGCTTAGCATACGTACTC -CCAACACGCTTAGCATACGATGTC -CCAACACGCTTAGCATACACAGTC -CCAACACGCTTAGCATACTTGCTG -CCAACACGCTTAGCATACTCCATG -CCAACACGCTTAGCATACTGTGTG -CCAACACGCTTAGCATACCTAGTG -CCAACACGCTTAGCATACCATCTG -CCAACACGCTTAGCATACGAGTTG -CCAACACGCTTAGCATACAGACTG -CCAACACGCTTAGCATACTCGGTA -CCAACACGCTTAGCATACTGCCTA -CCAACACGCTTAGCATACCCACTA -CCAACACGCTTAGCATACGGAGTA -CCAACACGCTTAGCATACTCGTCT -CCAACACGCTTAGCATACTGCACT -CCAACACGCTTAGCATACCTGACT -CCAACACGCTTAGCATACCAACCT -CCAACACGCTTAGCATACGCTACT -CCAACACGCTTAGCATACGGATCT -CCAACACGCTTAGCATACAAGGCT -CCAACACGCTTAGCATACTCAACC -CCAACACGCTTAGCATACTGTTCC -CCAACACGCTTAGCATACATTCCC -CCAACACGCTTAGCATACTTCTCG -CCAACACGCTTAGCATACTAGACG -CCAACACGCTTAGCATACGTAACG -CCAACACGCTTAGCATACACTTCG -CCAACACGCTTAGCATACTACGCA -CCAACACGCTTAGCATACCTTGCA -CCAACACGCTTAGCATACCGAACA -CCAACACGCTTAGCATACCAGTCA -CCAACACGCTTAGCATACGATCCA -CCAACACGCTTAGCATACACGACA -CCAACACGCTTAGCATACAGCTCA -CCAACACGCTTAGCATACTCACGT -CCAACACGCTTAGCATACCGTAGT -CCAACACGCTTAGCATACGTCAGT -CCAACACGCTTAGCATACGAAGGT -CCAACACGCTTAGCATACAACCGT -CCAACACGCTTAGCATACTTGTGC -CCAACACGCTTAGCATACCTAAGC -CCAACACGCTTAGCATACACTAGC -CCAACACGCTTAGCATACAGATGC -CCAACACGCTTAGCATACTGAAGG -CCAACACGCTTAGCATACCAATGG -CCAACACGCTTAGCATACATGAGG -CCAACACGCTTAGCATACAATGGG -CCAACACGCTTAGCATACTCCTGA -CCAACACGCTTAGCATACTAGCGA -CCAACACGCTTAGCATACCACAGA -CCAACACGCTTAGCATACGCAAGA -CCAACACGCTTAGCATACGGTTGA -CCAACACGCTTAGCATACTCCGAT -CCAACACGCTTAGCATACTGGCAT -CCAACACGCTTAGCATACCGAGAT -CCAACACGCTTAGCATACTACCAC -CCAACACGCTTAGCATACCAGAAC -CCAACACGCTTAGCATACGTCTAC -CCAACACGCTTAGCATACACGTAC -CCAACACGCTTAGCATACAGTGAC -CCAACACGCTTAGCATACCTGTAG -CCAACACGCTTAGCATACCCTAAG -CCAACACGCTTAGCATACGTTCAG -CCAACACGCTTAGCATACGCATAG -CCAACACGCTTAGCATACGACAAG -CCAACACGCTTAGCATACAAGCAG -CCAACACGCTTAGCATACCGTCAA -CCAACACGCTTAGCATACGCTGAA -CCAACACGCTTAGCATACAGTACG -CCAACACGCTTAGCATACATCCGA -CCAACACGCTTAGCATACATGGGA -CCAACACGCTTAGCATACGTGCAA -CCAACACGCTTAGCATACGAGGAA -CCAACACGCTTAGCATACCAGGTA -CCAACACGCTTAGCATACGACTCT -CCAACACGCTTAGCATACAGTCCT -CCAACACGCTTAGCATACTAAGCC -CCAACACGCTTAGCATACATAGCC -CCAACACGCTTAGCATACTAACCG -CCAACACGCTTAGCATACATGCCA -CCAACACGCTTAGCACTTGGAAAC -CCAACACGCTTAGCACTTAACACC -CCAACACGCTTAGCACTTATCGAG -CCAACACGCTTAGCACTTCTCCTT -CCAACACGCTTAGCACTTCCTGTT -CCAACACGCTTAGCACTTCGGTTT -CCAACACGCTTAGCACTTGTGGTT -CCAACACGCTTAGCACTTGCCTTT -CCAACACGCTTAGCACTTGGTCTT -CCAACACGCTTAGCACTTACGCTT -CCAACACGCTTAGCACTTAGCGTT -CCAACACGCTTAGCACTTTTCGTC -CCAACACGCTTAGCACTTTCTCTC -CCAACACGCTTAGCACTTTGGATC -CCAACACGCTTAGCACTTCACTTC -CCAACACGCTTAGCACTTGTACTC -CCAACACGCTTAGCACTTGATGTC -CCAACACGCTTAGCACTTACAGTC -CCAACACGCTTAGCACTTTTGCTG -CCAACACGCTTAGCACTTTCCATG -CCAACACGCTTAGCACTTTGTGTG -CCAACACGCTTAGCACTTCTAGTG -CCAACACGCTTAGCACTTCATCTG -CCAACACGCTTAGCACTTGAGTTG -CCAACACGCTTAGCACTTAGACTG -CCAACACGCTTAGCACTTTCGGTA -CCAACACGCTTAGCACTTTGCCTA -CCAACACGCTTAGCACTTCCACTA -CCAACACGCTTAGCACTTGGAGTA -CCAACACGCTTAGCACTTTCGTCT -CCAACACGCTTAGCACTTTGCACT -CCAACACGCTTAGCACTTCTGACT -CCAACACGCTTAGCACTTCAACCT -CCAACACGCTTAGCACTTGCTACT -CCAACACGCTTAGCACTTGGATCT -CCAACACGCTTAGCACTTAAGGCT -CCAACACGCTTAGCACTTTCAACC -CCAACACGCTTAGCACTTTGTTCC -CCAACACGCTTAGCACTTATTCCC -CCAACACGCTTAGCACTTTTCTCG -CCAACACGCTTAGCACTTTAGACG -CCAACACGCTTAGCACTTGTAACG -CCAACACGCTTAGCACTTACTTCG -CCAACACGCTTAGCACTTTACGCA -CCAACACGCTTAGCACTTCTTGCA -CCAACACGCTTAGCACTTCGAACA -CCAACACGCTTAGCACTTCAGTCA -CCAACACGCTTAGCACTTGATCCA -CCAACACGCTTAGCACTTACGACA -CCAACACGCTTAGCACTTAGCTCA -CCAACACGCTTAGCACTTTCACGT -CCAACACGCTTAGCACTTCGTAGT -CCAACACGCTTAGCACTTGTCAGT -CCAACACGCTTAGCACTTGAAGGT -CCAACACGCTTAGCACTTAACCGT -CCAACACGCTTAGCACTTTTGTGC -CCAACACGCTTAGCACTTCTAAGC -CCAACACGCTTAGCACTTACTAGC -CCAACACGCTTAGCACTTAGATGC -CCAACACGCTTAGCACTTTGAAGG -CCAACACGCTTAGCACTTCAATGG -CCAACACGCTTAGCACTTATGAGG -CCAACACGCTTAGCACTTAATGGG -CCAACACGCTTAGCACTTTCCTGA -CCAACACGCTTAGCACTTTAGCGA -CCAACACGCTTAGCACTTCACAGA -CCAACACGCTTAGCACTTGCAAGA -CCAACACGCTTAGCACTTGGTTGA -CCAACACGCTTAGCACTTTCCGAT -CCAACACGCTTAGCACTTTGGCAT -CCAACACGCTTAGCACTTCGAGAT -CCAACACGCTTAGCACTTTACCAC -CCAACACGCTTAGCACTTCAGAAC -CCAACACGCTTAGCACTTGTCTAC -CCAACACGCTTAGCACTTACGTAC -CCAACACGCTTAGCACTTAGTGAC -CCAACACGCTTAGCACTTCTGTAG -CCAACACGCTTAGCACTTCCTAAG -CCAACACGCTTAGCACTTGTTCAG -CCAACACGCTTAGCACTTGCATAG -CCAACACGCTTAGCACTTGACAAG -CCAACACGCTTAGCACTTAAGCAG -CCAACACGCTTAGCACTTCGTCAA -CCAACACGCTTAGCACTTGCTGAA -CCAACACGCTTAGCACTTAGTACG -CCAACACGCTTAGCACTTATCCGA -CCAACACGCTTAGCACTTATGGGA -CCAACACGCTTAGCACTTGTGCAA -CCAACACGCTTAGCACTTGAGGAA -CCAACACGCTTAGCACTTCAGGTA -CCAACACGCTTAGCACTTGACTCT -CCAACACGCTTAGCACTTAGTCCT -CCAACACGCTTAGCACTTTAAGCC -CCAACACGCTTAGCACTTATAGCC -CCAACACGCTTAGCACTTTAACCG -CCAACACGCTTAGCACTTATGCCA -CCAACACGCTTAACACGAGGAAAC -CCAACACGCTTAACACGAAACACC -CCAACACGCTTAACACGAATCGAG -CCAACACGCTTAACACGACTCCTT -CCAACACGCTTAACACGACCTGTT -CCAACACGCTTAACACGACGGTTT -CCAACACGCTTAACACGAGTGGTT -CCAACACGCTTAACACGAGCCTTT -CCAACACGCTTAACACGAGGTCTT -CCAACACGCTTAACACGAACGCTT -CCAACACGCTTAACACGAAGCGTT -CCAACACGCTTAACACGATTCGTC -CCAACACGCTTAACACGATCTCTC -CCAACACGCTTAACACGATGGATC -CCAACACGCTTAACACGACACTTC -CCAACACGCTTAACACGAGTACTC -CCAACACGCTTAACACGAGATGTC -CCAACACGCTTAACACGAACAGTC -CCAACACGCTTAACACGATTGCTG -CCAACACGCTTAACACGATCCATG -CCAACACGCTTAACACGATGTGTG -CCAACACGCTTAACACGACTAGTG -CCAACACGCTTAACACGACATCTG -CCAACACGCTTAACACGAGAGTTG -CCAACACGCTTAACACGAAGACTG -CCAACACGCTTAACACGATCGGTA -CCAACACGCTTAACACGATGCCTA -CCAACACGCTTAACACGACCACTA -CCAACACGCTTAACACGAGGAGTA -CCAACACGCTTAACACGATCGTCT -CCAACACGCTTAACACGATGCACT -CCAACACGCTTAACACGACTGACT -CCAACACGCTTAACACGACAACCT -CCAACACGCTTAACACGAGCTACT -CCAACACGCTTAACACGAGGATCT -CCAACACGCTTAACACGAAAGGCT -CCAACACGCTTAACACGATCAACC -CCAACACGCTTAACACGATGTTCC -CCAACACGCTTAACACGAATTCCC -CCAACACGCTTAACACGATTCTCG -CCAACACGCTTAACACGATAGACG -CCAACACGCTTAACACGAGTAACG -CCAACACGCTTAACACGAACTTCG -CCAACACGCTTAACACGATACGCA -CCAACACGCTTAACACGACTTGCA -CCAACACGCTTAACACGACGAACA -CCAACACGCTTAACACGACAGTCA -CCAACACGCTTAACACGAGATCCA -CCAACACGCTTAACACGAACGACA -CCAACACGCTTAACACGAAGCTCA -CCAACACGCTTAACACGATCACGT -CCAACACGCTTAACACGACGTAGT -CCAACACGCTTAACACGAGTCAGT -CCAACACGCTTAACACGAGAAGGT -CCAACACGCTTAACACGAAACCGT -CCAACACGCTTAACACGATTGTGC -CCAACACGCTTAACACGACTAAGC -CCAACACGCTTAACACGAACTAGC -CCAACACGCTTAACACGAAGATGC -CCAACACGCTTAACACGATGAAGG -CCAACACGCTTAACACGACAATGG -CCAACACGCTTAACACGAATGAGG -CCAACACGCTTAACACGAAATGGG -CCAACACGCTTAACACGATCCTGA -CCAACACGCTTAACACGATAGCGA -CCAACACGCTTAACACGACACAGA -CCAACACGCTTAACACGAGCAAGA -CCAACACGCTTAACACGAGGTTGA -CCAACACGCTTAACACGATCCGAT -CCAACACGCTTAACACGATGGCAT -CCAACACGCTTAACACGACGAGAT -CCAACACGCTTAACACGATACCAC -CCAACACGCTTAACACGACAGAAC -CCAACACGCTTAACACGAGTCTAC -CCAACACGCTTAACACGAACGTAC -CCAACACGCTTAACACGAAGTGAC -CCAACACGCTTAACACGACTGTAG -CCAACACGCTTAACACGACCTAAG -CCAACACGCTTAACACGAGTTCAG -CCAACACGCTTAACACGAGCATAG -CCAACACGCTTAACACGAGACAAG -CCAACACGCTTAACACGAAAGCAG -CCAACACGCTTAACACGACGTCAA -CCAACACGCTTAACACGAGCTGAA -CCAACACGCTTAACACGAAGTACG -CCAACACGCTTAACACGAATCCGA -CCAACACGCTTAACACGAATGGGA -CCAACACGCTTAACACGAGTGCAA -CCAACACGCTTAACACGAGAGGAA -CCAACACGCTTAACACGACAGGTA -CCAACACGCTTAACACGAGACTCT -CCAACACGCTTAACACGAAGTCCT -CCAACACGCTTAACACGATAAGCC -CCAACACGCTTAACACGAATAGCC -CCAACACGCTTAACACGATAACCG -CCAACACGCTTAACACGAATGCCA -CCAACACGCTTATCACAGGGAAAC -CCAACACGCTTATCACAGAACACC -CCAACACGCTTATCACAGATCGAG -CCAACACGCTTATCACAGCTCCTT -CCAACACGCTTATCACAGCCTGTT -CCAACACGCTTATCACAGCGGTTT -CCAACACGCTTATCACAGGTGGTT -CCAACACGCTTATCACAGGCCTTT -CCAACACGCTTATCACAGGGTCTT -CCAACACGCTTATCACAGACGCTT -CCAACACGCTTATCACAGAGCGTT -CCAACACGCTTATCACAGTTCGTC -CCAACACGCTTATCACAGTCTCTC -CCAACACGCTTATCACAGTGGATC -CCAACACGCTTATCACAGCACTTC -CCAACACGCTTATCACAGGTACTC -CCAACACGCTTATCACAGGATGTC -CCAACACGCTTATCACAGACAGTC -CCAACACGCTTATCACAGTTGCTG -CCAACACGCTTATCACAGTCCATG -CCAACACGCTTATCACAGTGTGTG -CCAACACGCTTATCACAGCTAGTG -CCAACACGCTTATCACAGCATCTG -CCAACACGCTTATCACAGGAGTTG -CCAACACGCTTATCACAGAGACTG -CCAACACGCTTATCACAGTCGGTA -CCAACACGCTTATCACAGTGCCTA -CCAACACGCTTATCACAGCCACTA -CCAACACGCTTATCACAGGGAGTA -CCAACACGCTTATCACAGTCGTCT -CCAACACGCTTATCACAGTGCACT -CCAACACGCTTATCACAGCTGACT -CCAACACGCTTATCACAGCAACCT -CCAACACGCTTATCACAGGCTACT -CCAACACGCTTATCACAGGGATCT -CCAACACGCTTATCACAGAAGGCT -CCAACACGCTTATCACAGTCAACC -CCAACACGCTTATCACAGTGTTCC -CCAACACGCTTATCACAGATTCCC -CCAACACGCTTATCACAGTTCTCG -CCAACACGCTTATCACAGTAGACG -CCAACACGCTTATCACAGGTAACG -CCAACACGCTTATCACAGACTTCG -CCAACACGCTTATCACAGTACGCA -CCAACACGCTTATCACAGCTTGCA -CCAACACGCTTATCACAGCGAACA -CCAACACGCTTATCACAGCAGTCA -CCAACACGCTTATCACAGGATCCA -CCAACACGCTTATCACAGACGACA -CCAACACGCTTATCACAGAGCTCA -CCAACACGCTTATCACAGTCACGT -CCAACACGCTTATCACAGCGTAGT -CCAACACGCTTATCACAGGTCAGT -CCAACACGCTTATCACAGGAAGGT -CCAACACGCTTATCACAGAACCGT -CCAACACGCTTATCACAGTTGTGC -CCAACACGCTTATCACAGCTAAGC -CCAACACGCTTATCACAGACTAGC -CCAACACGCTTATCACAGAGATGC -CCAACACGCTTATCACAGTGAAGG -CCAACACGCTTATCACAGCAATGG -CCAACACGCTTATCACAGATGAGG -CCAACACGCTTATCACAGAATGGG -CCAACACGCTTATCACAGTCCTGA -CCAACACGCTTATCACAGTAGCGA -CCAACACGCTTATCACAGCACAGA -CCAACACGCTTATCACAGGCAAGA -CCAACACGCTTATCACAGGGTTGA -CCAACACGCTTATCACAGTCCGAT -CCAACACGCTTATCACAGTGGCAT -CCAACACGCTTATCACAGCGAGAT -CCAACACGCTTATCACAGTACCAC -CCAACACGCTTATCACAGCAGAAC -CCAACACGCTTATCACAGGTCTAC -CCAACACGCTTATCACAGACGTAC -CCAACACGCTTATCACAGAGTGAC -CCAACACGCTTATCACAGCTGTAG -CCAACACGCTTATCACAGCCTAAG -CCAACACGCTTATCACAGGTTCAG -CCAACACGCTTATCACAGGCATAG -CCAACACGCTTATCACAGGACAAG -CCAACACGCTTATCACAGAAGCAG -CCAACACGCTTATCACAGCGTCAA -CCAACACGCTTATCACAGGCTGAA -CCAACACGCTTATCACAGAGTACG -CCAACACGCTTATCACAGATCCGA -CCAACACGCTTATCACAGATGGGA -CCAACACGCTTATCACAGGTGCAA -CCAACACGCTTATCACAGGAGGAA -CCAACACGCTTATCACAGCAGGTA -CCAACACGCTTATCACAGGACTCT -CCAACACGCTTATCACAGAGTCCT -CCAACACGCTTATCACAGTAAGCC -CCAACACGCTTATCACAGATAGCC -CCAACACGCTTATCACAGTAACCG -CCAACACGCTTATCACAGATGCCA -CCAACACGCTTACCAGATGGAAAC -CCAACACGCTTACCAGATAACACC -CCAACACGCTTACCAGATATCGAG -CCAACACGCTTACCAGATCTCCTT -CCAACACGCTTACCAGATCCTGTT -CCAACACGCTTACCAGATCGGTTT -CCAACACGCTTACCAGATGTGGTT -CCAACACGCTTACCAGATGCCTTT -CCAACACGCTTACCAGATGGTCTT -CCAACACGCTTACCAGATACGCTT -CCAACACGCTTACCAGATAGCGTT -CCAACACGCTTACCAGATTTCGTC -CCAACACGCTTACCAGATTCTCTC -CCAACACGCTTACCAGATTGGATC -CCAACACGCTTACCAGATCACTTC -CCAACACGCTTACCAGATGTACTC -CCAACACGCTTACCAGATGATGTC -CCAACACGCTTACCAGATACAGTC -CCAACACGCTTACCAGATTTGCTG -CCAACACGCTTACCAGATTCCATG -CCAACACGCTTACCAGATTGTGTG -CCAACACGCTTACCAGATCTAGTG -CCAACACGCTTACCAGATCATCTG -CCAACACGCTTACCAGATGAGTTG -CCAACACGCTTACCAGATAGACTG -CCAACACGCTTACCAGATTCGGTA -CCAACACGCTTACCAGATTGCCTA -CCAACACGCTTACCAGATCCACTA -CCAACACGCTTACCAGATGGAGTA -CCAACACGCTTACCAGATTCGTCT -CCAACACGCTTACCAGATTGCACT -CCAACACGCTTACCAGATCTGACT -CCAACACGCTTACCAGATCAACCT -CCAACACGCTTACCAGATGCTACT -CCAACACGCTTACCAGATGGATCT -CCAACACGCTTACCAGATAAGGCT -CCAACACGCTTACCAGATTCAACC -CCAACACGCTTACCAGATTGTTCC -CCAACACGCTTACCAGATATTCCC -CCAACACGCTTACCAGATTTCTCG -CCAACACGCTTACCAGATTAGACG -CCAACACGCTTACCAGATGTAACG -CCAACACGCTTACCAGATACTTCG -CCAACACGCTTACCAGATTACGCA -CCAACACGCTTACCAGATCTTGCA -CCAACACGCTTACCAGATCGAACA -CCAACACGCTTACCAGATCAGTCA -CCAACACGCTTACCAGATGATCCA -CCAACACGCTTACCAGATACGACA -CCAACACGCTTACCAGATAGCTCA -CCAACACGCTTACCAGATTCACGT -CCAACACGCTTACCAGATCGTAGT -CCAACACGCTTACCAGATGTCAGT -CCAACACGCTTACCAGATGAAGGT -CCAACACGCTTACCAGATAACCGT -CCAACACGCTTACCAGATTTGTGC -CCAACACGCTTACCAGATCTAAGC -CCAACACGCTTACCAGATACTAGC -CCAACACGCTTACCAGATAGATGC -CCAACACGCTTACCAGATTGAAGG -CCAACACGCTTACCAGATCAATGG -CCAACACGCTTACCAGATATGAGG -CCAACACGCTTACCAGATAATGGG -CCAACACGCTTACCAGATTCCTGA -CCAACACGCTTACCAGATTAGCGA -CCAACACGCTTACCAGATCACAGA -CCAACACGCTTACCAGATGCAAGA -CCAACACGCTTACCAGATGGTTGA -CCAACACGCTTACCAGATTCCGAT -CCAACACGCTTACCAGATTGGCAT -CCAACACGCTTACCAGATCGAGAT -CCAACACGCTTACCAGATTACCAC -CCAACACGCTTACCAGATCAGAAC -CCAACACGCTTACCAGATGTCTAC -CCAACACGCTTACCAGATACGTAC -CCAACACGCTTACCAGATAGTGAC -CCAACACGCTTACCAGATCTGTAG -CCAACACGCTTACCAGATCCTAAG -CCAACACGCTTACCAGATGTTCAG -CCAACACGCTTACCAGATGCATAG -CCAACACGCTTACCAGATGACAAG -CCAACACGCTTACCAGATAAGCAG -CCAACACGCTTACCAGATCGTCAA -CCAACACGCTTACCAGATGCTGAA -CCAACACGCTTACCAGATAGTACG -CCAACACGCTTACCAGATATCCGA -CCAACACGCTTACCAGATATGGGA -CCAACACGCTTACCAGATGTGCAA -CCAACACGCTTACCAGATGAGGAA -CCAACACGCTTACCAGATCAGGTA -CCAACACGCTTACCAGATGACTCT -CCAACACGCTTACCAGATAGTCCT -CCAACACGCTTACCAGATTAAGCC -CCAACACGCTTACCAGATATAGCC -CCAACACGCTTACCAGATTAACCG -CCAACACGCTTACCAGATATGCCA -CCAACACGCTTAACAACGGGAAAC -CCAACACGCTTAACAACGAACACC -CCAACACGCTTAACAACGATCGAG -CCAACACGCTTAACAACGCTCCTT -CCAACACGCTTAACAACGCCTGTT -CCAACACGCTTAACAACGCGGTTT -CCAACACGCTTAACAACGGTGGTT -CCAACACGCTTAACAACGGCCTTT -CCAACACGCTTAACAACGGGTCTT -CCAACACGCTTAACAACGACGCTT -CCAACACGCTTAACAACGAGCGTT -CCAACACGCTTAACAACGTTCGTC -CCAACACGCTTAACAACGTCTCTC -CCAACACGCTTAACAACGTGGATC -CCAACACGCTTAACAACGCACTTC -CCAACACGCTTAACAACGGTACTC -CCAACACGCTTAACAACGGATGTC -CCAACACGCTTAACAACGACAGTC -CCAACACGCTTAACAACGTTGCTG -CCAACACGCTTAACAACGTCCATG -CCAACACGCTTAACAACGTGTGTG -CCAACACGCTTAACAACGCTAGTG -CCAACACGCTTAACAACGCATCTG -CCAACACGCTTAACAACGGAGTTG -CCAACACGCTTAACAACGAGACTG -CCAACACGCTTAACAACGTCGGTA -CCAACACGCTTAACAACGTGCCTA -CCAACACGCTTAACAACGCCACTA -CCAACACGCTTAACAACGGGAGTA -CCAACACGCTTAACAACGTCGTCT -CCAACACGCTTAACAACGTGCACT -CCAACACGCTTAACAACGCTGACT -CCAACACGCTTAACAACGCAACCT -CCAACACGCTTAACAACGGCTACT -CCAACACGCTTAACAACGGGATCT -CCAACACGCTTAACAACGAAGGCT -CCAACACGCTTAACAACGTCAACC -CCAACACGCTTAACAACGTGTTCC -CCAACACGCTTAACAACGATTCCC -CCAACACGCTTAACAACGTTCTCG -CCAACACGCTTAACAACGTAGACG -CCAACACGCTTAACAACGGTAACG -CCAACACGCTTAACAACGACTTCG -CCAACACGCTTAACAACGTACGCA -CCAACACGCTTAACAACGCTTGCA -CCAACACGCTTAACAACGCGAACA -CCAACACGCTTAACAACGCAGTCA -CCAACACGCTTAACAACGGATCCA -CCAACACGCTTAACAACGACGACA -CCAACACGCTTAACAACGAGCTCA -CCAACACGCTTAACAACGTCACGT -CCAACACGCTTAACAACGCGTAGT -CCAACACGCTTAACAACGGTCAGT -CCAACACGCTTAACAACGGAAGGT -CCAACACGCTTAACAACGAACCGT -CCAACACGCTTAACAACGTTGTGC -CCAACACGCTTAACAACGCTAAGC -CCAACACGCTTAACAACGACTAGC -CCAACACGCTTAACAACGAGATGC -CCAACACGCTTAACAACGTGAAGG -CCAACACGCTTAACAACGCAATGG -CCAACACGCTTAACAACGATGAGG -CCAACACGCTTAACAACGAATGGG -CCAACACGCTTAACAACGTCCTGA -CCAACACGCTTAACAACGTAGCGA -CCAACACGCTTAACAACGCACAGA -CCAACACGCTTAACAACGGCAAGA -CCAACACGCTTAACAACGGGTTGA -CCAACACGCTTAACAACGTCCGAT -CCAACACGCTTAACAACGTGGCAT -CCAACACGCTTAACAACGCGAGAT -CCAACACGCTTAACAACGTACCAC -CCAACACGCTTAACAACGCAGAAC -CCAACACGCTTAACAACGGTCTAC -CCAACACGCTTAACAACGACGTAC -CCAACACGCTTAACAACGAGTGAC -CCAACACGCTTAACAACGCTGTAG -CCAACACGCTTAACAACGCCTAAG -CCAACACGCTTAACAACGGTTCAG -CCAACACGCTTAACAACGGCATAG -CCAACACGCTTAACAACGGACAAG -CCAACACGCTTAACAACGAAGCAG -CCAACACGCTTAACAACGCGTCAA -CCAACACGCTTAACAACGGCTGAA -CCAACACGCTTAACAACGAGTACG -CCAACACGCTTAACAACGATCCGA -CCAACACGCTTAACAACGATGGGA -CCAACACGCTTAACAACGGTGCAA -CCAACACGCTTAACAACGGAGGAA -CCAACACGCTTAACAACGCAGGTA -CCAACACGCTTAACAACGGACTCT -CCAACACGCTTAACAACGAGTCCT -CCAACACGCTTAACAACGTAAGCC -CCAACACGCTTAACAACGATAGCC -CCAACACGCTTAACAACGTAACCG -CCAACACGCTTAACAACGATGCCA -CCAACACGCTTATCAAGCGGAAAC -CCAACACGCTTATCAAGCAACACC -CCAACACGCTTATCAAGCATCGAG -CCAACACGCTTATCAAGCCTCCTT -CCAACACGCTTATCAAGCCCTGTT -CCAACACGCTTATCAAGCCGGTTT -CCAACACGCTTATCAAGCGTGGTT -CCAACACGCTTATCAAGCGCCTTT -CCAACACGCTTATCAAGCGGTCTT -CCAACACGCTTATCAAGCACGCTT -CCAACACGCTTATCAAGCAGCGTT -CCAACACGCTTATCAAGCTTCGTC -CCAACACGCTTATCAAGCTCTCTC -CCAACACGCTTATCAAGCTGGATC -CCAACACGCTTATCAAGCCACTTC -CCAACACGCTTATCAAGCGTACTC -CCAACACGCTTATCAAGCGATGTC -CCAACACGCTTATCAAGCACAGTC -CCAACACGCTTATCAAGCTTGCTG -CCAACACGCTTATCAAGCTCCATG -CCAACACGCTTATCAAGCTGTGTG -CCAACACGCTTATCAAGCCTAGTG -CCAACACGCTTATCAAGCCATCTG -CCAACACGCTTATCAAGCGAGTTG -CCAACACGCTTATCAAGCAGACTG -CCAACACGCTTATCAAGCTCGGTA -CCAACACGCTTATCAAGCTGCCTA -CCAACACGCTTATCAAGCCCACTA -CCAACACGCTTATCAAGCGGAGTA -CCAACACGCTTATCAAGCTCGTCT -CCAACACGCTTATCAAGCTGCACT -CCAACACGCTTATCAAGCCTGACT -CCAACACGCTTATCAAGCCAACCT -CCAACACGCTTATCAAGCGCTACT -CCAACACGCTTATCAAGCGGATCT -CCAACACGCTTATCAAGCAAGGCT -CCAACACGCTTATCAAGCTCAACC -CCAACACGCTTATCAAGCTGTTCC -CCAACACGCTTATCAAGCATTCCC -CCAACACGCTTATCAAGCTTCTCG -CCAACACGCTTATCAAGCTAGACG -CCAACACGCTTATCAAGCGTAACG -CCAACACGCTTATCAAGCACTTCG -CCAACACGCTTATCAAGCTACGCA -CCAACACGCTTATCAAGCCTTGCA -CCAACACGCTTATCAAGCCGAACA -CCAACACGCTTATCAAGCCAGTCA -CCAACACGCTTATCAAGCGATCCA -CCAACACGCTTATCAAGCACGACA -CCAACACGCTTATCAAGCAGCTCA -CCAACACGCTTATCAAGCTCACGT -CCAACACGCTTATCAAGCCGTAGT -CCAACACGCTTATCAAGCGTCAGT -CCAACACGCTTATCAAGCGAAGGT -CCAACACGCTTATCAAGCAACCGT -CCAACACGCTTATCAAGCTTGTGC -CCAACACGCTTATCAAGCCTAAGC -CCAACACGCTTATCAAGCACTAGC -CCAACACGCTTATCAAGCAGATGC -CCAACACGCTTATCAAGCTGAAGG -CCAACACGCTTATCAAGCCAATGG -CCAACACGCTTATCAAGCATGAGG -CCAACACGCTTATCAAGCAATGGG -CCAACACGCTTATCAAGCTCCTGA -CCAACACGCTTATCAAGCTAGCGA -CCAACACGCTTATCAAGCCACAGA -CCAACACGCTTATCAAGCGCAAGA -CCAACACGCTTATCAAGCGGTTGA -CCAACACGCTTATCAAGCTCCGAT -CCAACACGCTTATCAAGCTGGCAT -CCAACACGCTTATCAAGCCGAGAT -CCAACACGCTTATCAAGCTACCAC -CCAACACGCTTATCAAGCCAGAAC -CCAACACGCTTATCAAGCGTCTAC -CCAACACGCTTATCAAGCACGTAC -CCAACACGCTTATCAAGCAGTGAC -CCAACACGCTTATCAAGCCTGTAG -CCAACACGCTTATCAAGCCCTAAG -CCAACACGCTTATCAAGCGTTCAG -CCAACACGCTTATCAAGCGCATAG -CCAACACGCTTATCAAGCGACAAG -CCAACACGCTTATCAAGCAAGCAG -CCAACACGCTTATCAAGCCGTCAA -CCAACACGCTTATCAAGCGCTGAA -CCAACACGCTTATCAAGCAGTACG -CCAACACGCTTATCAAGCATCCGA -CCAACACGCTTATCAAGCATGGGA -CCAACACGCTTATCAAGCGTGCAA -CCAACACGCTTATCAAGCGAGGAA -CCAACACGCTTATCAAGCCAGGTA -CCAACACGCTTATCAAGCGACTCT -CCAACACGCTTATCAAGCAGTCCT -CCAACACGCTTATCAAGCTAAGCC -CCAACACGCTTATCAAGCATAGCC -CCAACACGCTTATCAAGCTAACCG -CCAACACGCTTATCAAGCATGCCA -CCAACACGCTTACGTTCAGGAAAC -CCAACACGCTTACGTTCAAACACC -CCAACACGCTTACGTTCAATCGAG -CCAACACGCTTACGTTCACTCCTT -CCAACACGCTTACGTTCACCTGTT -CCAACACGCTTACGTTCACGGTTT -CCAACACGCTTACGTTCAGTGGTT -CCAACACGCTTACGTTCAGCCTTT -CCAACACGCTTACGTTCAGGTCTT -CCAACACGCTTACGTTCAACGCTT -CCAACACGCTTACGTTCAAGCGTT -CCAACACGCTTACGTTCATTCGTC -CCAACACGCTTACGTTCATCTCTC -CCAACACGCTTACGTTCATGGATC -CCAACACGCTTACGTTCACACTTC -CCAACACGCTTACGTTCAGTACTC -CCAACACGCTTACGTTCAGATGTC -CCAACACGCTTACGTTCAACAGTC -CCAACACGCTTACGTTCATTGCTG -CCAACACGCTTACGTTCATCCATG -CCAACACGCTTACGTTCATGTGTG -CCAACACGCTTACGTTCACTAGTG -CCAACACGCTTACGTTCACATCTG -CCAACACGCTTACGTTCAGAGTTG -CCAACACGCTTACGTTCAAGACTG -CCAACACGCTTACGTTCATCGGTA -CCAACACGCTTACGTTCATGCCTA -CCAACACGCTTACGTTCACCACTA -CCAACACGCTTACGTTCAGGAGTA -CCAACACGCTTACGTTCATCGTCT -CCAACACGCTTACGTTCATGCACT -CCAACACGCTTACGTTCACTGACT -CCAACACGCTTACGTTCACAACCT -CCAACACGCTTACGTTCAGCTACT -CCAACACGCTTACGTTCAGGATCT -CCAACACGCTTACGTTCAAAGGCT -CCAACACGCTTACGTTCATCAACC -CCAACACGCTTACGTTCATGTTCC -CCAACACGCTTACGTTCAATTCCC -CCAACACGCTTACGTTCATTCTCG -CCAACACGCTTACGTTCATAGACG -CCAACACGCTTACGTTCAGTAACG -CCAACACGCTTACGTTCAACTTCG -CCAACACGCTTACGTTCATACGCA -CCAACACGCTTACGTTCACTTGCA -CCAACACGCTTACGTTCACGAACA -CCAACACGCTTACGTTCACAGTCA -CCAACACGCTTACGTTCAGATCCA -CCAACACGCTTACGTTCAACGACA -CCAACACGCTTACGTTCAAGCTCA -CCAACACGCTTACGTTCATCACGT -CCAACACGCTTACGTTCACGTAGT -CCAACACGCTTACGTTCAGTCAGT -CCAACACGCTTACGTTCAGAAGGT -CCAACACGCTTACGTTCAAACCGT -CCAACACGCTTACGTTCATTGTGC -CCAACACGCTTACGTTCACTAAGC -CCAACACGCTTACGTTCAACTAGC -CCAACACGCTTACGTTCAAGATGC -CCAACACGCTTACGTTCATGAAGG -CCAACACGCTTACGTTCACAATGG -CCAACACGCTTACGTTCAATGAGG -CCAACACGCTTACGTTCAAATGGG -CCAACACGCTTACGTTCATCCTGA -CCAACACGCTTACGTTCATAGCGA -CCAACACGCTTACGTTCACACAGA -CCAACACGCTTACGTTCAGCAAGA -CCAACACGCTTACGTTCAGGTTGA -CCAACACGCTTACGTTCATCCGAT -CCAACACGCTTACGTTCATGGCAT -CCAACACGCTTACGTTCACGAGAT -CCAACACGCTTACGTTCATACCAC -CCAACACGCTTACGTTCACAGAAC -CCAACACGCTTACGTTCAGTCTAC -CCAACACGCTTACGTTCAACGTAC -CCAACACGCTTACGTTCAAGTGAC -CCAACACGCTTACGTTCACTGTAG -CCAACACGCTTACGTTCACCTAAG -CCAACACGCTTACGTTCAGTTCAG -CCAACACGCTTACGTTCAGCATAG -CCAACACGCTTACGTTCAGACAAG -CCAACACGCTTACGTTCAAAGCAG -CCAACACGCTTACGTTCACGTCAA -CCAACACGCTTACGTTCAGCTGAA -CCAACACGCTTACGTTCAAGTACG -CCAACACGCTTACGTTCAATCCGA -CCAACACGCTTACGTTCAATGGGA -CCAACACGCTTACGTTCAGTGCAA -CCAACACGCTTACGTTCAGAGGAA -CCAACACGCTTACGTTCACAGGTA -CCAACACGCTTACGTTCAGACTCT -CCAACACGCTTACGTTCAAGTCCT -CCAACACGCTTACGTTCATAAGCC -CCAACACGCTTACGTTCAATAGCC -CCAACACGCTTACGTTCATAACCG -CCAACACGCTTACGTTCAATGCCA -CCAACACGCTTAAGTCGTGGAAAC -CCAACACGCTTAAGTCGTAACACC -CCAACACGCTTAAGTCGTATCGAG -CCAACACGCTTAAGTCGTCTCCTT -CCAACACGCTTAAGTCGTCCTGTT -CCAACACGCTTAAGTCGTCGGTTT -CCAACACGCTTAAGTCGTGTGGTT -CCAACACGCTTAAGTCGTGCCTTT -CCAACACGCTTAAGTCGTGGTCTT -CCAACACGCTTAAGTCGTACGCTT -CCAACACGCTTAAGTCGTAGCGTT -CCAACACGCTTAAGTCGTTTCGTC -CCAACACGCTTAAGTCGTTCTCTC -CCAACACGCTTAAGTCGTTGGATC -CCAACACGCTTAAGTCGTCACTTC -CCAACACGCTTAAGTCGTGTACTC -CCAACACGCTTAAGTCGTGATGTC -CCAACACGCTTAAGTCGTACAGTC -CCAACACGCTTAAGTCGTTTGCTG -CCAACACGCTTAAGTCGTTCCATG -CCAACACGCTTAAGTCGTTGTGTG -CCAACACGCTTAAGTCGTCTAGTG -CCAACACGCTTAAGTCGTCATCTG -CCAACACGCTTAAGTCGTGAGTTG -CCAACACGCTTAAGTCGTAGACTG -CCAACACGCTTAAGTCGTTCGGTA -CCAACACGCTTAAGTCGTTGCCTA -CCAACACGCTTAAGTCGTCCACTA -CCAACACGCTTAAGTCGTGGAGTA -CCAACACGCTTAAGTCGTTCGTCT -CCAACACGCTTAAGTCGTTGCACT -CCAACACGCTTAAGTCGTCTGACT -CCAACACGCTTAAGTCGTCAACCT -CCAACACGCTTAAGTCGTGCTACT -CCAACACGCTTAAGTCGTGGATCT -CCAACACGCTTAAGTCGTAAGGCT -CCAACACGCTTAAGTCGTTCAACC -CCAACACGCTTAAGTCGTTGTTCC -CCAACACGCTTAAGTCGTATTCCC -CCAACACGCTTAAGTCGTTTCTCG -CCAACACGCTTAAGTCGTTAGACG -CCAACACGCTTAAGTCGTGTAACG -CCAACACGCTTAAGTCGTACTTCG -CCAACACGCTTAAGTCGTTACGCA -CCAACACGCTTAAGTCGTCTTGCA -CCAACACGCTTAAGTCGTCGAACA -CCAACACGCTTAAGTCGTCAGTCA -CCAACACGCTTAAGTCGTGATCCA -CCAACACGCTTAAGTCGTACGACA -CCAACACGCTTAAGTCGTAGCTCA -CCAACACGCTTAAGTCGTTCACGT -CCAACACGCTTAAGTCGTCGTAGT -CCAACACGCTTAAGTCGTGTCAGT -CCAACACGCTTAAGTCGTGAAGGT -CCAACACGCTTAAGTCGTAACCGT -CCAACACGCTTAAGTCGTTTGTGC -CCAACACGCTTAAGTCGTCTAAGC -CCAACACGCTTAAGTCGTACTAGC -CCAACACGCTTAAGTCGTAGATGC -CCAACACGCTTAAGTCGTTGAAGG -CCAACACGCTTAAGTCGTCAATGG -CCAACACGCTTAAGTCGTATGAGG -CCAACACGCTTAAGTCGTAATGGG -CCAACACGCTTAAGTCGTTCCTGA -CCAACACGCTTAAGTCGTTAGCGA -CCAACACGCTTAAGTCGTCACAGA -CCAACACGCTTAAGTCGTGCAAGA -CCAACACGCTTAAGTCGTGGTTGA -CCAACACGCTTAAGTCGTTCCGAT -CCAACACGCTTAAGTCGTTGGCAT -CCAACACGCTTAAGTCGTCGAGAT -CCAACACGCTTAAGTCGTTACCAC -CCAACACGCTTAAGTCGTCAGAAC -CCAACACGCTTAAGTCGTGTCTAC -CCAACACGCTTAAGTCGTACGTAC -CCAACACGCTTAAGTCGTAGTGAC -CCAACACGCTTAAGTCGTCTGTAG -CCAACACGCTTAAGTCGTCCTAAG -CCAACACGCTTAAGTCGTGTTCAG -CCAACACGCTTAAGTCGTGCATAG -CCAACACGCTTAAGTCGTGACAAG -CCAACACGCTTAAGTCGTAAGCAG -CCAACACGCTTAAGTCGTCGTCAA -CCAACACGCTTAAGTCGTGCTGAA -CCAACACGCTTAAGTCGTAGTACG -CCAACACGCTTAAGTCGTATCCGA -CCAACACGCTTAAGTCGTATGGGA -CCAACACGCTTAAGTCGTGTGCAA -CCAACACGCTTAAGTCGTGAGGAA -CCAACACGCTTAAGTCGTCAGGTA -CCAACACGCTTAAGTCGTGACTCT -CCAACACGCTTAAGTCGTAGTCCT -CCAACACGCTTAAGTCGTTAAGCC -CCAACACGCTTAAGTCGTATAGCC -CCAACACGCTTAAGTCGTTAACCG -CCAACACGCTTAAGTCGTATGCCA -CCAACACGCTTAAGTGTCGGAAAC -CCAACACGCTTAAGTGTCAACACC -CCAACACGCTTAAGTGTCATCGAG -CCAACACGCTTAAGTGTCCTCCTT -CCAACACGCTTAAGTGTCCCTGTT -CCAACACGCTTAAGTGTCCGGTTT -CCAACACGCTTAAGTGTCGTGGTT -CCAACACGCTTAAGTGTCGCCTTT -CCAACACGCTTAAGTGTCGGTCTT -CCAACACGCTTAAGTGTCACGCTT -CCAACACGCTTAAGTGTCAGCGTT -CCAACACGCTTAAGTGTCTTCGTC -CCAACACGCTTAAGTGTCTCTCTC -CCAACACGCTTAAGTGTCTGGATC -CCAACACGCTTAAGTGTCCACTTC -CCAACACGCTTAAGTGTCGTACTC -CCAACACGCTTAAGTGTCGATGTC -CCAACACGCTTAAGTGTCACAGTC -CCAACACGCTTAAGTGTCTTGCTG -CCAACACGCTTAAGTGTCTCCATG -CCAACACGCTTAAGTGTCTGTGTG -CCAACACGCTTAAGTGTCCTAGTG -CCAACACGCTTAAGTGTCCATCTG -CCAACACGCTTAAGTGTCGAGTTG -CCAACACGCTTAAGTGTCAGACTG -CCAACACGCTTAAGTGTCTCGGTA -CCAACACGCTTAAGTGTCTGCCTA -CCAACACGCTTAAGTGTCCCACTA -CCAACACGCTTAAGTGTCGGAGTA -CCAACACGCTTAAGTGTCTCGTCT -CCAACACGCTTAAGTGTCTGCACT -CCAACACGCTTAAGTGTCCTGACT -CCAACACGCTTAAGTGTCCAACCT -CCAACACGCTTAAGTGTCGCTACT -CCAACACGCTTAAGTGTCGGATCT -CCAACACGCTTAAGTGTCAAGGCT -CCAACACGCTTAAGTGTCTCAACC -CCAACACGCTTAAGTGTCTGTTCC -CCAACACGCTTAAGTGTCATTCCC -CCAACACGCTTAAGTGTCTTCTCG -CCAACACGCTTAAGTGTCTAGACG -CCAACACGCTTAAGTGTCGTAACG -CCAACACGCTTAAGTGTCACTTCG -CCAACACGCTTAAGTGTCTACGCA -CCAACACGCTTAAGTGTCCTTGCA -CCAACACGCTTAAGTGTCCGAACA -CCAACACGCTTAAGTGTCCAGTCA -CCAACACGCTTAAGTGTCGATCCA -CCAACACGCTTAAGTGTCACGACA -CCAACACGCTTAAGTGTCAGCTCA -CCAACACGCTTAAGTGTCTCACGT -CCAACACGCTTAAGTGTCCGTAGT -CCAACACGCTTAAGTGTCGTCAGT -CCAACACGCTTAAGTGTCGAAGGT -CCAACACGCTTAAGTGTCAACCGT -CCAACACGCTTAAGTGTCTTGTGC -CCAACACGCTTAAGTGTCCTAAGC -CCAACACGCTTAAGTGTCACTAGC -CCAACACGCTTAAGTGTCAGATGC -CCAACACGCTTAAGTGTCTGAAGG -CCAACACGCTTAAGTGTCCAATGG -CCAACACGCTTAAGTGTCATGAGG -CCAACACGCTTAAGTGTCAATGGG -CCAACACGCTTAAGTGTCTCCTGA -CCAACACGCTTAAGTGTCTAGCGA -CCAACACGCTTAAGTGTCCACAGA -CCAACACGCTTAAGTGTCGCAAGA -CCAACACGCTTAAGTGTCGGTTGA -CCAACACGCTTAAGTGTCTCCGAT -CCAACACGCTTAAGTGTCTGGCAT -CCAACACGCTTAAGTGTCCGAGAT -CCAACACGCTTAAGTGTCTACCAC -CCAACACGCTTAAGTGTCCAGAAC -CCAACACGCTTAAGTGTCGTCTAC -CCAACACGCTTAAGTGTCACGTAC -CCAACACGCTTAAGTGTCAGTGAC -CCAACACGCTTAAGTGTCCTGTAG -CCAACACGCTTAAGTGTCCCTAAG -CCAACACGCTTAAGTGTCGTTCAG -CCAACACGCTTAAGTGTCGCATAG -CCAACACGCTTAAGTGTCGACAAG -CCAACACGCTTAAGTGTCAAGCAG -CCAACACGCTTAAGTGTCCGTCAA -CCAACACGCTTAAGTGTCGCTGAA -CCAACACGCTTAAGTGTCAGTACG -CCAACACGCTTAAGTGTCATCCGA -CCAACACGCTTAAGTGTCATGGGA -CCAACACGCTTAAGTGTCGTGCAA -CCAACACGCTTAAGTGTCGAGGAA -CCAACACGCTTAAGTGTCCAGGTA -CCAACACGCTTAAGTGTCGACTCT -CCAACACGCTTAAGTGTCAGTCCT -CCAACACGCTTAAGTGTCTAAGCC -CCAACACGCTTAAGTGTCATAGCC -CCAACACGCTTAAGTGTCTAACCG -CCAACACGCTTAAGTGTCATGCCA -CCAACACGCTTAGGTGAAGGAAAC -CCAACACGCTTAGGTGAAAACACC -CCAACACGCTTAGGTGAAATCGAG -CCAACACGCTTAGGTGAACTCCTT -CCAACACGCTTAGGTGAACCTGTT -CCAACACGCTTAGGTGAACGGTTT -CCAACACGCTTAGGTGAAGTGGTT -CCAACACGCTTAGGTGAAGCCTTT -CCAACACGCTTAGGTGAAGGTCTT -CCAACACGCTTAGGTGAAACGCTT -CCAACACGCTTAGGTGAAAGCGTT -CCAACACGCTTAGGTGAATTCGTC -CCAACACGCTTAGGTGAATCTCTC -CCAACACGCTTAGGTGAATGGATC -CCAACACGCTTAGGTGAACACTTC -CCAACACGCTTAGGTGAAGTACTC -CCAACACGCTTAGGTGAAGATGTC -CCAACACGCTTAGGTGAAACAGTC -CCAACACGCTTAGGTGAATTGCTG -CCAACACGCTTAGGTGAATCCATG -CCAACACGCTTAGGTGAATGTGTG -CCAACACGCTTAGGTGAACTAGTG -CCAACACGCTTAGGTGAACATCTG -CCAACACGCTTAGGTGAAGAGTTG -CCAACACGCTTAGGTGAAAGACTG -CCAACACGCTTAGGTGAATCGGTA -CCAACACGCTTAGGTGAATGCCTA -CCAACACGCTTAGGTGAACCACTA -CCAACACGCTTAGGTGAAGGAGTA -CCAACACGCTTAGGTGAATCGTCT -CCAACACGCTTAGGTGAATGCACT -CCAACACGCTTAGGTGAACTGACT -CCAACACGCTTAGGTGAACAACCT -CCAACACGCTTAGGTGAAGCTACT -CCAACACGCTTAGGTGAAGGATCT -CCAACACGCTTAGGTGAAAAGGCT -CCAACACGCTTAGGTGAATCAACC -CCAACACGCTTAGGTGAATGTTCC -CCAACACGCTTAGGTGAAATTCCC -CCAACACGCTTAGGTGAATTCTCG -CCAACACGCTTAGGTGAATAGACG -CCAACACGCTTAGGTGAAGTAACG -CCAACACGCTTAGGTGAAACTTCG -CCAACACGCTTAGGTGAATACGCA -CCAACACGCTTAGGTGAACTTGCA -CCAACACGCTTAGGTGAACGAACA -CCAACACGCTTAGGTGAACAGTCA -CCAACACGCTTAGGTGAAGATCCA -CCAACACGCTTAGGTGAAACGACA -CCAACACGCTTAGGTGAAAGCTCA -CCAACACGCTTAGGTGAATCACGT -CCAACACGCTTAGGTGAACGTAGT -CCAACACGCTTAGGTGAAGTCAGT -CCAACACGCTTAGGTGAAGAAGGT -CCAACACGCTTAGGTGAAAACCGT -CCAACACGCTTAGGTGAATTGTGC -CCAACACGCTTAGGTGAACTAAGC -CCAACACGCTTAGGTGAAACTAGC -CCAACACGCTTAGGTGAAAGATGC -CCAACACGCTTAGGTGAATGAAGG -CCAACACGCTTAGGTGAACAATGG -CCAACACGCTTAGGTGAAATGAGG -CCAACACGCTTAGGTGAAAATGGG -CCAACACGCTTAGGTGAATCCTGA -CCAACACGCTTAGGTGAATAGCGA -CCAACACGCTTAGGTGAACACAGA -CCAACACGCTTAGGTGAAGCAAGA -CCAACACGCTTAGGTGAAGGTTGA -CCAACACGCTTAGGTGAATCCGAT -CCAACACGCTTAGGTGAATGGCAT -CCAACACGCTTAGGTGAACGAGAT -CCAACACGCTTAGGTGAATACCAC -CCAACACGCTTAGGTGAACAGAAC -CCAACACGCTTAGGTGAAGTCTAC -CCAACACGCTTAGGTGAAACGTAC -CCAACACGCTTAGGTGAAAGTGAC -CCAACACGCTTAGGTGAACTGTAG -CCAACACGCTTAGGTGAACCTAAG -CCAACACGCTTAGGTGAAGTTCAG -CCAACACGCTTAGGTGAAGCATAG -CCAACACGCTTAGGTGAAGACAAG -CCAACACGCTTAGGTGAAAAGCAG -CCAACACGCTTAGGTGAACGTCAA -CCAACACGCTTAGGTGAAGCTGAA -CCAACACGCTTAGGTGAAAGTACG -CCAACACGCTTAGGTGAAATCCGA -CCAACACGCTTAGGTGAAATGGGA -CCAACACGCTTAGGTGAAGTGCAA -CCAACACGCTTAGGTGAAGAGGAA -CCAACACGCTTAGGTGAACAGGTA -CCAACACGCTTAGGTGAAGACTCT -CCAACACGCTTAGGTGAAAGTCCT -CCAACACGCTTAGGTGAATAAGCC -CCAACACGCTTAGGTGAAATAGCC -CCAACACGCTTAGGTGAATAACCG -CCAACACGCTTAGGTGAAATGCCA -CCAACACGCTTACGTAACGGAAAC -CCAACACGCTTACGTAACAACACC -CCAACACGCTTACGTAACATCGAG -CCAACACGCTTACGTAACCTCCTT -CCAACACGCTTACGTAACCCTGTT -CCAACACGCTTACGTAACCGGTTT -CCAACACGCTTACGTAACGTGGTT -CCAACACGCTTACGTAACGCCTTT -CCAACACGCTTACGTAACGGTCTT -CCAACACGCTTACGTAACACGCTT -CCAACACGCTTACGTAACAGCGTT -CCAACACGCTTACGTAACTTCGTC -CCAACACGCTTACGTAACTCTCTC -CCAACACGCTTACGTAACTGGATC -CCAACACGCTTACGTAACCACTTC -CCAACACGCTTACGTAACGTACTC -CCAACACGCTTACGTAACGATGTC -CCAACACGCTTACGTAACACAGTC -CCAACACGCTTACGTAACTTGCTG -CCAACACGCTTACGTAACTCCATG -CCAACACGCTTACGTAACTGTGTG -CCAACACGCTTACGTAACCTAGTG -CCAACACGCTTACGTAACCATCTG -CCAACACGCTTACGTAACGAGTTG -CCAACACGCTTACGTAACAGACTG -CCAACACGCTTACGTAACTCGGTA -CCAACACGCTTACGTAACTGCCTA -CCAACACGCTTACGTAACCCACTA -CCAACACGCTTACGTAACGGAGTA -CCAACACGCTTACGTAACTCGTCT -CCAACACGCTTACGTAACTGCACT -CCAACACGCTTACGTAACCTGACT -CCAACACGCTTACGTAACCAACCT -CCAACACGCTTACGTAACGCTACT -CCAACACGCTTACGTAACGGATCT -CCAACACGCTTACGTAACAAGGCT -CCAACACGCTTACGTAACTCAACC -CCAACACGCTTACGTAACTGTTCC -CCAACACGCTTACGTAACATTCCC -CCAACACGCTTACGTAACTTCTCG -CCAACACGCTTACGTAACTAGACG -CCAACACGCTTACGTAACGTAACG -CCAACACGCTTACGTAACACTTCG -CCAACACGCTTACGTAACTACGCA -CCAACACGCTTACGTAACCTTGCA -CCAACACGCTTACGTAACCGAACA -CCAACACGCTTACGTAACCAGTCA -CCAACACGCTTACGTAACGATCCA -CCAACACGCTTACGTAACACGACA -CCAACACGCTTACGTAACAGCTCA -CCAACACGCTTACGTAACTCACGT -CCAACACGCTTACGTAACCGTAGT -CCAACACGCTTACGTAACGTCAGT -CCAACACGCTTACGTAACGAAGGT -CCAACACGCTTACGTAACAACCGT -CCAACACGCTTACGTAACTTGTGC -CCAACACGCTTACGTAACCTAAGC -CCAACACGCTTACGTAACACTAGC -CCAACACGCTTACGTAACAGATGC -CCAACACGCTTACGTAACTGAAGG -CCAACACGCTTACGTAACCAATGG -CCAACACGCTTACGTAACATGAGG -CCAACACGCTTACGTAACAATGGG -CCAACACGCTTACGTAACTCCTGA -CCAACACGCTTACGTAACTAGCGA -CCAACACGCTTACGTAACCACAGA -CCAACACGCTTACGTAACGCAAGA -CCAACACGCTTACGTAACGGTTGA -CCAACACGCTTACGTAACTCCGAT -CCAACACGCTTACGTAACTGGCAT -CCAACACGCTTACGTAACCGAGAT -CCAACACGCTTACGTAACTACCAC -CCAACACGCTTACGTAACCAGAAC -CCAACACGCTTACGTAACGTCTAC -CCAACACGCTTACGTAACACGTAC -CCAACACGCTTACGTAACAGTGAC -CCAACACGCTTACGTAACCTGTAG -CCAACACGCTTACGTAACCCTAAG -CCAACACGCTTACGTAACGTTCAG -CCAACACGCTTACGTAACGCATAG -CCAACACGCTTACGTAACGACAAG -CCAACACGCTTACGTAACAAGCAG -CCAACACGCTTACGTAACCGTCAA -CCAACACGCTTACGTAACGCTGAA -CCAACACGCTTACGTAACAGTACG -CCAACACGCTTACGTAACATCCGA -CCAACACGCTTACGTAACATGGGA -CCAACACGCTTACGTAACGTGCAA -CCAACACGCTTACGTAACGAGGAA -CCAACACGCTTACGTAACCAGGTA -CCAACACGCTTACGTAACGACTCT -CCAACACGCTTACGTAACAGTCCT -CCAACACGCTTACGTAACTAAGCC -CCAACACGCTTACGTAACATAGCC -CCAACACGCTTACGTAACTAACCG -CCAACACGCTTACGTAACATGCCA -CCAACACGCTTATGCTTGGGAAAC -CCAACACGCTTATGCTTGAACACC -CCAACACGCTTATGCTTGATCGAG -CCAACACGCTTATGCTTGCTCCTT -CCAACACGCTTATGCTTGCCTGTT -CCAACACGCTTATGCTTGCGGTTT -CCAACACGCTTATGCTTGGTGGTT -CCAACACGCTTATGCTTGGCCTTT -CCAACACGCTTATGCTTGGGTCTT -CCAACACGCTTATGCTTGACGCTT -CCAACACGCTTATGCTTGAGCGTT -CCAACACGCTTATGCTTGTTCGTC -CCAACACGCTTATGCTTGTCTCTC -CCAACACGCTTATGCTTGTGGATC -CCAACACGCTTATGCTTGCACTTC -CCAACACGCTTATGCTTGGTACTC -CCAACACGCTTATGCTTGGATGTC -CCAACACGCTTATGCTTGACAGTC -CCAACACGCTTATGCTTGTTGCTG -CCAACACGCTTATGCTTGTCCATG -CCAACACGCTTATGCTTGTGTGTG -CCAACACGCTTATGCTTGCTAGTG -CCAACACGCTTATGCTTGCATCTG -CCAACACGCTTATGCTTGGAGTTG -CCAACACGCTTATGCTTGAGACTG -CCAACACGCTTATGCTTGTCGGTA -CCAACACGCTTATGCTTGTGCCTA -CCAACACGCTTATGCTTGCCACTA -CCAACACGCTTATGCTTGGGAGTA -CCAACACGCTTATGCTTGTCGTCT -CCAACACGCTTATGCTTGTGCACT -CCAACACGCTTATGCTTGCTGACT -CCAACACGCTTATGCTTGCAACCT -CCAACACGCTTATGCTTGGCTACT -CCAACACGCTTATGCTTGGGATCT -CCAACACGCTTATGCTTGAAGGCT -CCAACACGCTTATGCTTGTCAACC -CCAACACGCTTATGCTTGTGTTCC -CCAACACGCTTATGCTTGATTCCC -CCAACACGCTTATGCTTGTTCTCG -CCAACACGCTTATGCTTGTAGACG -CCAACACGCTTATGCTTGGTAACG -CCAACACGCTTATGCTTGACTTCG -CCAACACGCTTATGCTTGTACGCA -CCAACACGCTTATGCTTGCTTGCA -CCAACACGCTTATGCTTGCGAACA -CCAACACGCTTATGCTTGCAGTCA -CCAACACGCTTATGCTTGGATCCA -CCAACACGCTTATGCTTGACGACA -CCAACACGCTTATGCTTGAGCTCA -CCAACACGCTTATGCTTGTCACGT -CCAACACGCTTATGCTTGCGTAGT -CCAACACGCTTATGCTTGGTCAGT -CCAACACGCTTATGCTTGGAAGGT -CCAACACGCTTATGCTTGAACCGT -CCAACACGCTTATGCTTGTTGTGC -CCAACACGCTTATGCTTGCTAAGC -CCAACACGCTTATGCTTGACTAGC -CCAACACGCTTATGCTTGAGATGC -CCAACACGCTTATGCTTGTGAAGG -CCAACACGCTTATGCTTGCAATGG -CCAACACGCTTATGCTTGATGAGG -CCAACACGCTTATGCTTGAATGGG -CCAACACGCTTATGCTTGTCCTGA -CCAACACGCTTATGCTTGTAGCGA -CCAACACGCTTATGCTTGCACAGA -CCAACACGCTTATGCTTGGCAAGA -CCAACACGCTTATGCTTGGGTTGA -CCAACACGCTTATGCTTGTCCGAT -CCAACACGCTTATGCTTGTGGCAT -CCAACACGCTTATGCTTGCGAGAT -CCAACACGCTTATGCTTGTACCAC -CCAACACGCTTATGCTTGCAGAAC -CCAACACGCTTATGCTTGGTCTAC -CCAACACGCTTATGCTTGACGTAC -CCAACACGCTTATGCTTGAGTGAC -CCAACACGCTTATGCTTGCTGTAG -CCAACACGCTTATGCTTGCCTAAG -CCAACACGCTTATGCTTGGTTCAG -CCAACACGCTTATGCTTGGCATAG -CCAACACGCTTATGCTTGGACAAG -CCAACACGCTTATGCTTGAAGCAG -CCAACACGCTTATGCTTGCGTCAA -CCAACACGCTTATGCTTGGCTGAA -CCAACACGCTTATGCTTGAGTACG -CCAACACGCTTATGCTTGATCCGA -CCAACACGCTTATGCTTGATGGGA -CCAACACGCTTATGCTTGGTGCAA -CCAACACGCTTATGCTTGGAGGAA -CCAACACGCTTATGCTTGCAGGTA -CCAACACGCTTATGCTTGGACTCT -CCAACACGCTTATGCTTGAGTCCT -CCAACACGCTTATGCTTGTAAGCC -CCAACACGCTTATGCTTGATAGCC -CCAACACGCTTATGCTTGTAACCG -CCAACACGCTTATGCTTGATGCCA -CCAACACGCTTAAGCCTAGGAAAC -CCAACACGCTTAAGCCTAAACACC -CCAACACGCTTAAGCCTAATCGAG -CCAACACGCTTAAGCCTACTCCTT -CCAACACGCTTAAGCCTACCTGTT -CCAACACGCTTAAGCCTACGGTTT -CCAACACGCTTAAGCCTAGTGGTT -CCAACACGCTTAAGCCTAGCCTTT -CCAACACGCTTAAGCCTAGGTCTT -CCAACACGCTTAAGCCTAACGCTT -CCAACACGCTTAAGCCTAAGCGTT -CCAACACGCTTAAGCCTATTCGTC -CCAACACGCTTAAGCCTATCTCTC -CCAACACGCTTAAGCCTATGGATC -CCAACACGCTTAAGCCTACACTTC -CCAACACGCTTAAGCCTAGTACTC -CCAACACGCTTAAGCCTAGATGTC -CCAACACGCTTAAGCCTAACAGTC -CCAACACGCTTAAGCCTATTGCTG -CCAACACGCTTAAGCCTATCCATG -CCAACACGCTTAAGCCTATGTGTG -CCAACACGCTTAAGCCTACTAGTG -CCAACACGCTTAAGCCTACATCTG -CCAACACGCTTAAGCCTAGAGTTG -CCAACACGCTTAAGCCTAAGACTG -CCAACACGCTTAAGCCTATCGGTA -CCAACACGCTTAAGCCTATGCCTA -CCAACACGCTTAAGCCTACCACTA -CCAACACGCTTAAGCCTAGGAGTA -CCAACACGCTTAAGCCTATCGTCT -CCAACACGCTTAAGCCTATGCACT -CCAACACGCTTAAGCCTACTGACT -CCAACACGCTTAAGCCTACAACCT -CCAACACGCTTAAGCCTAGCTACT -CCAACACGCTTAAGCCTAGGATCT -CCAACACGCTTAAGCCTAAAGGCT -CCAACACGCTTAAGCCTATCAACC -CCAACACGCTTAAGCCTATGTTCC -CCAACACGCTTAAGCCTAATTCCC -CCAACACGCTTAAGCCTATTCTCG -CCAACACGCTTAAGCCTATAGACG -CCAACACGCTTAAGCCTAGTAACG -CCAACACGCTTAAGCCTAACTTCG -CCAACACGCTTAAGCCTATACGCA -CCAACACGCTTAAGCCTACTTGCA -CCAACACGCTTAAGCCTACGAACA -CCAACACGCTTAAGCCTACAGTCA -CCAACACGCTTAAGCCTAGATCCA -CCAACACGCTTAAGCCTAACGACA -CCAACACGCTTAAGCCTAAGCTCA -CCAACACGCTTAAGCCTATCACGT -CCAACACGCTTAAGCCTACGTAGT -CCAACACGCTTAAGCCTAGTCAGT -CCAACACGCTTAAGCCTAGAAGGT -CCAACACGCTTAAGCCTAAACCGT -CCAACACGCTTAAGCCTATTGTGC -CCAACACGCTTAAGCCTACTAAGC -CCAACACGCTTAAGCCTAACTAGC -CCAACACGCTTAAGCCTAAGATGC -CCAACACGCTTAAGCCTATGAAGG -CCAACACGCTTAAGCCTACAATGG -CCAACACGCTTAAGCCTAATGAGG -CCAACACGCTTAAGCCTAAATGGG -CCAACACGCTTAAGCCTATCCTGA -CCAACACGCTTAAGCCTATAGCGA -CCAACACGCTTAAGCCTACACAGA -CCAACACGCTTAAGCCTAGCAAGA -CCAACACGCTTAAGCCTAGGTTGA -CCAACACGCTTAAGCCTATCCGAT -CCAACACGCTTAAGCCTATGGCAT -CCAACACGCTTAAGCCTACGAGAT -CCAACACGCTTAAGCCTATACCAC -CCAACACGCTTAAGCCTACAGAAC -CCAACACGCTTAAGCCTAGTCTAC -CCAACACGCTTAAGCCTAACGTAC -CCAACACGCTTAAGCCTAAGTGAC -CCAACACGCTTAAGCCTACTGTAG -CCAACACGCTTAAGCCTACCTAAG -CCAACACGCTTAAGCCTAGTTCAG -CCAACACGCTTAAGCCTAGCATAG -CCAACACGCTTAAGCCTAGACAAG -CCAACACGCTTAAGCCTAAAGCAG -CCAACACGCTTAAGCCTACGTCAA -CCAACACGCTTAAGCCTAGCTGAA -CCAACACGCTTAAGCCTAAGTACG -CCAACACGCTTAAGCCTAATCCGA -CCAACACGCTTAAGCCTAATGGGA -CCAACACGCTTAAGCCTAGTGCAA -CCAACACGCTTAAGCCTAGAGGAA -CCAACACGCTTAAGCCTACAGGTA -CCAACACGCTTAAGCCTAGACTCT -CCAACACGCTTAAGCCTAAGTCCT -CCAACACGCTTAAGCCTATAAGCC -CCAACACGCTTAAGCCTAATAGCC -CCAACACGCTTAAGCCTATAACCG -CCAACACGCTTAAGCCTAATGCCA -CCAACACGCTTAAGCACTGGAAAC -CCAACACGCTTAAGCACTAACACC -CCAACACGCTTAAGCACTATCGAG -CCAACACGCTTAAGCACTCTCCTT -CCAACACGCTTAAGCACTCCTGTT -CCAACACGCTTAAGCACTCGGTTT -CCAACACGCTTAAGCACTGTGGTT -CCAACACGCTTAAGCACTGCCTTT -CCAACACGCTTAAGCACTGGTCTT -CCAACACGCTTAAGCACTACGCTT -CCAACACGCTTAAGCACTAGCGTT -CCAACACGCTTAAGCACTTTCGTC -CCAACACGCTTAAGCACTTCTCTC -CCAACACGCTTAAGCACTTGGATC -CCAACACGCTTAAGCACTCACTTC -CCAACACGCTTAAGCACTGTACTC -CCAACACGCTTAAGCACTGATGTC -CCAACACGCTTAAGCACTACAGTC -CCAACACGCTTAAGCACTTTGCTG -CCAACACGCTTAAGCACTTCCATG -CCAACACGCTTAAGCACTTGTGTG -CCAACACGCTTAAGCACTCTAGTG -CCAACACGCTTAAGCACTCATCTG -CCAACACGCTTAAGCACTGAGTTG -CCAACACGCTTAAGCACTAGACTG -CCAACACGCTTAAGCACTTCGGTA -CCAACACGCTTAAGCACTTGCCTA -CCAACACGCTTAAGCACTCCACTA -CCAACACGCTTAAGCACTGGAGTA -CCAACACGCTTAAGCACTTCGTCT -CCAACACGCTTAAGCACTTGCACT -CCAACACGCTTAAGCACTCTGACT -CCAACACGCTTAAGCACTCAACCT -CCAACACGCTTAAGCACTGCTACT -CCAACACGCTTAAGCACTGGATCT -CCAACACGCTTAAGCACTAAGGCT -CCAACACGCTTAAGCACTTCAACC -CCAACACGCTTAAGCACTTGTTCC -CCAACACGCTTAAGCACTATTCCC -CCAACACGCTTAAGCACTTTCTCG -CCAACACGCTTAAGCACTTAGACG -CCAACACGCTTAAGCACTGTAACG -CCAACACGCTTAAGCACTACTTCG -CCAACACGCTTAAGCACTTACGCA -CCAACACGCTTAAGCACTCTTGCA -CCAACACGCTTAAGCACTCGAACA -CCAACACGCTTAAGCACTCAGTCA -CCAACACGCTTAAGCACTGATCCA -CCAACACGCTTAAGCACTACGACA -CCAACACGCTTAAGCACTAGCTCA -CCAACACGCTTAAGCACTTCACGT -CCAACACGCTTAAGCACTCGTAGT -CCAACACGCTTAAGCACTGTCAGT -CCAACACGCTTAAGCACTGAAGGT -CCAACACGCTTAAGCACTAACCGT -CCAACACGCTTAAGCACTTTGTGC -CCAACACGCTTAAGCACTCTAAGC -CCAACACGCTTAAGCACTACTAGC -CCAACACGCTTAAGCACTAGATGC -CCAACACGCTTAAGCACTTGAAGG -CCAACACGCTTAAGCACTCAATGG -CCAACACGCTTAAGCACTATGAGG -CCAACACGCTTAAGCACTAATGGG -CCAACACGCTTAAGCACTTCCTGA -CCAACACGCTTAAGCACTTAGCGA -CCAACACGCTTAAGCACTCACAGA -CCAACACGCTTAAGCACTGCAAGA -CCAACACGCTTAAGCACTGGTTGA -CCAACACGCTTAAGCACTTCCGAT -CCAACACGCTTAAGCACTTGGCAT -CCAACACGCTTAAGCACTCGAGAT -CCAACACGCTTAAGCACTTACCAC -CCAACACGCTTAAGCACTCAGAAC -CCAACACGCTTAAGCACTGTCTAC -CCAACACGCTTAAGCACTACGTAC -CCAACACGCTTAAGCACTAGTGAC -CCAACACGCTTAAGCACTCTGTAG -CCAACACGCTTAAGCACTCCTAAG -CCAACACGCTTAAGCACTGTTCAG -CCAACACGCTTAAGCACTGCATAG -CCAACACGCTTAAGCACTGACAAG -CCAACACGCTTAAGCACTAAGCAG -CCAACACGCTTAAGCACTCGTCAA -CCAACACGCTTAAGCACTGCTGAA -CCAACACGCTTAAGCACTAGTACG -CCAACACGCTTAAGCACTATCCGA -CCAACACGCTTAAGCACTATGGGA -CCAACACGCTTAAGCACTGTGCAA -CCAACACGCTTAAGCACTGAGGAA -CCAACACGCTTAAGCACTCAGGTA -CCAACACGCTTAAGCACTGACTCT -CCAACACGCTTAAGCACTAGTCCT -CCAACACGCTTAAGCACTTAAGCC -CCAACACGCTTAAGCACTATAGCC -CCAACACGCTTAAGCACTTAACCG -CCAACACGCTTAAGCACTATGCCA -CCAACACGCTTATGCAGAGGAAAC -CCAACACGCTTATGCAGAAACACC -CCAACACGCTTATGCAGAATCGAG -CCAACACGCTTATGCAGACTCCTT -CCAACACGCTTATGCAGACCTGTT -CCAACACGCTTATGCAGACGGTTT -CCAACACGCTTATGCAGAGTGGTT -CCAACACGCTTATGCAGAGCCTTT -CCAACACGCTTATGCAGAGGTCTT -CCAACACGCTTATGCAGAACGCTT -CCAACACGCTTATGCAGAAGCGTT -CCAACACGCTTATGCAGATTCGTC -CCAACACGCTTATGCAGATCTCTC -CCAACACGCTTATGCAGATGGATC -CCAACACGCTTATGCAGACACTTC -CCAACACGCTTATGCAGAGTACTC -CCAACACGCTTATGCAGAGATGTC -CCAACACGCTTATGCAGAACAGTC -CCAACACGCTTATGCAGATTGCTG -CCAACACGCTTATGCAGATCCATG -CCAACACGCTTATGCAGATGTGTG -CCAACACGCTTATGCAGACTAGTG -CCAACACGCTTATGCAGACATCTG -CCAACACGCTTATGCAGAGAGTTG -CCAACACGCTTATGCAGAAGACTG -CCAACACGCTTATGCAGATCGGTA -CCAACACGCTTATGCAGATGCCTA -CCAACACGCTTATGCAGACCACTA -CCAACACGCTTATGCAGAGGAGTA -CCAACACGCTTATGCAGATCGTCT -CCAACACGCTTATGCAGATGCACT -CCAACACGCTTATGCAGACTGACT -CCAACACGCTTATGCAGACAACCT -CCAACACGCTTATGCAGAGCTACT -CCAACACGCTTATGCAGAGGATCT -CCAACACGCTTATGCAGAAAGGCT -CCAACACGCTTATGCAGATCAACC -CCAACACGCTTATGCAGATGTTCC -CCAACACGCTTATGCAGAATTCCC -CCAACACGCTTATGCAGATTCTCG -CCAACACGCTTATGCAGATAGACG -CCAACACGCTTATGCAGAGTAACG -CCAACACGCTTATGCAGAACTTCG -CCAACACGCTTATGCAGATACGCA -CCAACACGCTTATGCAGACTTGCA -CCAACACGCTTATGCAGACGAACA -CCAACACGCTTATGCAGACAGTCA -CCAACACGCTTATGCAGAGATCCA -CCAACACGCTTATGCAGAACGACA -CCAACACGCTTATGCAGAAGCTCA -CCAACACGCTTATGCAGATCACGT -CCAACACGCTTATGCAGACGTAGT -CCAACACGCTTATGCAGAGTCAGT -CCAACACGCTTATGCAGAGAAGGT -CCAACACGCTTATGCAGAAACCGT -CCAACACGCTTATGCAGATTGTGC -CCAACACGCTTATGCAGACTAAGC -CCAACACGCTTATGCAGAACTAGC -CCAACACGCTTATGCAGAAGATGC -CCAACACGCTTATGCAGATGAAGG -CCAACACGCTTATGCAGACAATGG -CCAACACGCTTATGCAGAATGAGG -CCAACACGCTTATGCAGAAATGGG -CCAACACGCTTATGCAGATCCTGA -CCAACACGCTTATGCAGATAGCGA -CCAACACGCTTATGCAGACACAGA -CCAACACGCTTATGCAGAGCAAGA -CCAACACGCTTATGCAGAGGTTGA -CCAACACGCTTATGCAGATCCGAT -CCAACACGCTTATGCAGATGGCAT -CCAACACGCTTATGCAGACGAGAT -CCAACACGCTTATGCAGATACCAC -CCAACACGCTTATGCAGACAGAAC -CCAACACGCTTATGCAGAGTCTAC -CCAACACGCTTATGCAGAACGTAC -CCAACACGCTTATGCAGAAGTGAC -CCAACACGCTTATGCAGACTGTAG -CCAACACGCTTATGCAGACCTAAG -CCAACACGCTTATGCAGAGTTCAG -CCAACACGCTTATGCAGAGCATAG -CCAACACGCTTATGCAGAGACAAG -CCAACACGCTTATGCAGAAAGCAG -CCAACACGCTTATGCAGACGTCAA -CCAACACGCTTATGCAGAGCTGAA -CCAACACGCTTATGCAGAAGTACG -CCAACACGCTTATGCAGAATCCGA -CCAACACGCTTATGCAGAATGGGA -CCAACACGCTTATGCAGAGTGCAA -CCAACACGCTTATGCAGAGAGGAA -CCAACACGCTTATGCAGACAGGTA -CCAACACGCTTATGCAGAGACTCT -CCAACACGCTTATGCAGAAGTCCT -CCAACACGCTTATGCAGATAAGCC -CCAACACGCTTATGCAGAATAGCC -CCAACACGCTTATGCAGATAACCG -CCAACACGCTTATGCAGAATGCCA -CCAACACGCTTAAGGTGAGGAAAC -CCAACACGCTTAAGGTGAAACACC -CCAACACGCTTAAGGTGAATCGAG -CCAACACGCTTAAGGTGACTCCTT -CCAACACGCTTAAGGTGACCTGTT -CCAACACGCTTAAGGTGACGGTTT -CCAACACGCTTAAGGTGAGTGGTT -CCAACACGCTTAAGGTGAGCCTTT -CCAACACGCTTAAGGTGAGGTCTT -CCAACACGCTTAAGGTGAACGCTT -CCAACACGCTTAAGGTGAAGCGTT -CCAACACGCTTAAGGTGATTCGTC -CCAACACGCTTAAGGTGATCTCTC -CCAACACGCTTAAGGTGATGGATC -CCAACACGCTTAAGGTGACACTTC -CCAACACGCTTAAGGTGAGTACTC -CCAACACGCTTAAGGTGAGATGTC -CCAACACGCTTAAGGTGAACAGTC -CCAACACGCTTAAGGTGATTGCTG -CCAACACGCTTAAGGTGATCCATG -CCAACACGCTTAAGGTGATGTGTG -CCAACACGCTTAAGGTGACTAGTG -CCAACACGCTTAAGGTGACATCTG -CCAACACGCTTAAGGTGAGAGTTG -CCAACACGCTTAAGGTGAAGACTG -CCAACACGCTTAAGGTGATCGGTA -CCAACACGCTTAAGGTGATGCCTA -CCAACACGCTTAAGGTGACCACTA -CCAACACGCTTAAGGTGAGGAGTA -CCAACACGCTTAAGGTGATCGTCT -CCAACACGCTTAAGGTGATGCACT -CCAACACGCTTAAGGTGACTGACT -CCAACACGCTTAAGGTGACAACCT -CCAACACGCTTAAGGTGAGCTACT -CCAACACGCTTAAGGTGAGGATCT -CCAACACGCTTAAGGTGAAAGGCT -CCAACACGCTTAAGGTGATCAACC -CCAACACGCTTAAGGTGATGTTCC -CCAACACGCTTAAGGTGAATTCCC -CCAACACGCTTAAGGTGATTCTCG -CCAACACGCTTAAGGTGATAGACG -CCAACACGCTTAAGGTGAGTAACG -CCAACACGCTTAAGGTGAACTTCG -CCAACACGCTTAAGGTGATACGCA -CCAACACGCTTAAGGTGACTTGCA -CCAACACGCTTAAGGTGACGAACA -CCAACACGCTTAAGGTGACAGTCA -CCAACACGCTTAAGGTGAGATCCA -CCAACACGCTTAAGGTGAACGACA -CCAACACGCTTAAGGTGAAGCTCA -CCAACACGCTTAAGGTGATCACGT -CCAACACGCTTAAGGTGACGTAGT -CCAACACGCTTAAGGTGAGTCAGT -CCAACACGCTTAAGGTGAGAAGGT -CCAACACGCTTAAGGTGAAACCGT -CCAACACGCTTAAGGTGATTGTGC -CCAACACGCTTAAGGTGACTAAGC -CCAACACGCTTAAGGTGAACTAGC -CCAACACGCTTAAGGTGAAGATGC -CCAACACGCTTAAGGTGATGAAGG -CCAACACGCTTAAGGTGACAATGG -CCAACACGCTTAAGGTGAATGAGG -CCAACACGCTTAAGGTGAAATGGG -CCAACACGCTTAAGGTGATCCTGA -CCAACACGCTTAAGGTGATAGCGA -CCAACACGCTTAAGGTGACACAGA -CCAACACGCTTAAGGTGAGCAAGA -CCAACACGCTTAAGGTGAGGTTGA -CCAACACGCTTAAGGTGATCCGAT -CCAACACGCTTAAGGTGATGGCAT -CCAACACGCTTAAGGTGACGAGAT -CCAACACGCTTAAGGTGATACCAC -CCAACACGCTTAAGGTGACAGAAC -CCAACACGCTTAAGGTGAGTCTAC -CCAACACGCTTAAGGTGAACGTAC -CCAACACGCTTAAGGTGAAGTGAC -CCAACACGCTTAAGGTGACTGTAG -CCAACACGCTTAAGGTGACCTAAG -CCAACACGCTTAAGGTGAGTTCAG -CCAACACGCTTAAGGTGAGCATAG -CCAACACGCTTAAGGTGAGACAAG -CCAACACGCTTAAGGTGAAAGCAG -CCAACACGCTTAAGGTGACGTCAA -CCAACACGCTTAAGGTGAGCTGAA -CCAACACGCTTAAGGTGAAGTACG -CCAACACGCTTAAGGTGAATCCGA -CCAACACGCTTAAGGTGAATGGGA -CCAACACGCTTAAGGTGAGTGCAA -CCAACACGCTTAAGGTGAGAGGAA -CCAACACGCTTAAGGTGACAGGTA -CCAACACGCTTAAGGTGAGACTCT -CCAACACGCTTAAGGTGAAGTCCT -CCAACACGCTTAAGGTGATAAGCC -CCAACACGCTTAAGGTGAATAGCC -CCAACACGCTTAAGGTGATAACCG -CCAACACGCTTAAGGTGAATGCCA -CCAACACGCTTATGGCAAGGAAAC -CCAACACGCTTATGGCAAAACACC -CCAACACGCTTATGGCAAATCGAG -CCAACACGCTTATGGCAACTCCTT -CCAACACGCTTATGGCAACCTGTT -CCAACACGCTTATGGCAACGGTTT -CCAACACGCTTATGGCAAGTGGTT -CCAACACGCTTATGGCAAGCCTTT -CCAACACGCTTATGGCAAGGTCTT -CCAACACGCTTATGGCAAACGCTT -CCAACACGCTTATGGCAAAGCGTT -CCAACACGCTTATGGCAATTCGTC -CCAACACGCTTATGGCAATCTCTC -CCAACACGCTTATGGCAATGGATC -CCAACACGCTTATGGCAACACTTC -CCAACACGCTTATGGCAAGTACTC -CCAACACGCTTATGGCAAGATGTC -CCAACACGCTTATGGCAAACAGTC -CCAACACGCTTATGGCAATTGCTG -CCAACACGCTTATGGCAATCCATG -CCAACACGCTTATGGCAATGTGTG -CCAACACGCTTATGGCAACTAGTG -CCAACACGCTTATGGCAACATCTG -CCAACACGCTTATGGCAAGAGTTG -CCAACACGCTTATGGCAAAGACTG -CCAACACGCTTATGGCAATCGGTA -CCAACACGCTTATGGCAATGCCTA -CCAACACGCTTATGGCAACCACTA -CCAACACGCTTATGGCAAGGAGTA -CCAACACGCTTATGGCAATCGTCT -CCAACACGCTTATGGCAATGCACT -CCAACACGCTTATGGCAACTGACT -CCAACACGCTTATGGCAACAACCT -CCAACACGCTTATGGCAAGCTACT -CCAACACGCTTATGGCAAGGATCT -CCAACACGCTTATGGCAAAAGGCT -CCAACACGCTTATGGCAATCAACC -CCAACACGCTTATGGCAATGTTCC -CCAACACGCTTATGGCAAATTCCC -CCAACACGCTTATGGCAATTCTCG -CCAACACGCTTATGGCAATAGACG -CCAACACGCTTATGGCAAGTAACG -CCAACACGCTTATGGCAAACTTCG -CCAACACGCTTATGGCAATACGCA -CCAACACGCTTATGGCAACTTGCA -CCAACACGCTTATGGCAACGAACA -CCAACACGCTTATGGCAACAGTCA -CCAACACGCTTATGGCAAGATCCA -CCAACACGCTTATGGCAAACGACA -CCAACACGCTTATGGCAAAGCTCA -CCAACACGCTTATGGCAATCACGT -CCAACACGCTTATGGCAACGTAGT -CCAACACGCTTATGGCAAGTCAGT -CCAACACGCTTATGGCAAGAAGGT -CCAACACGCTTATGGCAAAACCGT -CCAACACGCTTATGGCAATTGTGC -CCAACACGCTTATGGCAACTAAGC -CCAACACGCTTATGGCAAACTAGC -CCAACACGCTTATGGCAAAGATGC -CCAACACGCTTATGGCAATGAAGG -CCAACACGCTTATGGCAACAATGG -CCAACACGCTTATGGCAAATGAGG -CCAACACGCTTATGGCAAAATGGG -CCAACACGCTTATGGCAATCCTGA -CCAACACGCTTATGGCAATAGCGA -CCAACACGCTTATGGCAACACAGA -CCAACACGCTTATGGCAAGCAAGA -CCAACACGCTTATGGCAAGGTTGA -CCAACACGCTTATGGCAATCCGAT -CCAACACGCTTATGGCAATGGCAT -CCAACACGCTTATGGCAACGAGAT -CCAACACGCTTATGGCAATACCAC -CCAACACGCTTATGGCAACAGAAC -CCAACACGCTTATGGCAAGTCTAC -CCAACACGCTTATGGCAAACGTAC -CCAACACGCTTATGGCAAAGTGAC -CCAACACGCTTATGGCAACTGTAG -CCAACACGCTTATGGCAACCTAAG -CCAACACGCTTATGGCAAGTTCAG -CCAACACGCTTATGGCAAGCATAG -CCAACACGCTTATGGCAAGACAAG -CCAACACGCTTATGGCAAAAGCAG -CCAACACGCTTATGGCAACGTCAA -CCAACACGCTTATGGCAAGCTGAA -CCAACACGCTTATGGCAAAGTACG -CCAACACGCTTATGGCAAATCCGA -CCAACACGCTTATGGCAAATGGGA -CCAACACGCTTATGGCAAGTGCAA -CCAACACGCTTATGGCAAGAGGAA -CCAACACGCTTATGGCAACAGGTA -CCAACACGCTTATGGCAAGACTCT -CCAACACGCTTATGGCAAAGTCCT -CCAACACGCTTATGGCAATAAGCC -CCAACACGCTTATGGCAAATAGCC -CCAACACGCTTATGGCAATAACCG -CCAACACGCTTATGGCAAATGCCA -CCAACACGCTTAAGGATGGGAAAC -CCAACACGCTTAAGGATGAACACC -CCAACACGCTTAAGGATGATCGAG -CCAACACGCTTAAGGATGCTCCTT -CCAACACGCTTAAGGATGCCTGTT -CCAACACGCTTAAGGATGCGGTTT -CCAACACGCTTAAGGATGGTGGTT -CCAACACGCTTAAGGATGGCCTTT -CCAACACGCTTAAGGATGGGTCTT -CCAACACGCTTAAGGATGACGCTT -CCAACACGCTTAAGGATGAGCGTT -CCAACACGCTTAAGGATGTTCGTC -CCAACACGCTTAAGGATGTCTCTC -CCAACACGCTTAAGGATGTGGATC -CCAACACGCTTAAGGATGCACTTC -CCAACACGCTTAAGGATGGTACTC -CCAACACGCTTAAGGATGGATGTC -CCAACACGCTTAAGGATGACAGTC -CCAACACGCTTAAGGATGTTGCTG -CCAACACGCTTAAGGATGTCCATG -CCAACACGCTTAAGGATGTGTGTG -CCAACACGCTTAAGGATGCTAGTG -CCAACACGCTTAAGGATGCATCTG -CCAACACGCTTAAGGATGGAGTTG -CCAACACGCTTAAGGATGAGACTG -CCAACACGCTTAAGGATGTCGGTA -CCAACACGCTTAAGGATGTGCCTA -CCAACACGCTTAAGGATGCCACTA -CCAACACGCTTAAGGATGGGAGTA -CCAACACGCTTAAGGATGTCGTCT -CCAACACGCTTAAGGATGTGCACT -CCAACACGCTTAAGGATGCTGACT -CCAACACGCTTAAGGATGCAACCT -CCAACACGCTTAAGGATGGCTACT -CCAACACGCTTAAGGATGGGATCT -CCAACACGCTTAAGGATGAAGGCT -CCAACACGCTTAAGGATGTCAACC -CCAACACGCTTAAGGATGTGTTCC -CCAACACGCTTAAGGATGATTCCC -CCAACACGCTTAAGGATGTTCTCG -CCAACACGCTTAAGGATGTAGACG -CCAACACGCTTAAGGATGGTAACG -CCAACACGCTTAAGGATGACTTCG -CCAACACGCTTAAGGATGTACGCA -CCAACACGCTTAAGGATGCTTGCA -CCAACACGCTTAAGGATGCGAACA -CCAACACGCTTAAGGATGCAGTCA -CCAACACGCTTAAGGATGGATCCA -CCAACACGCTTAAGGATGACGACA -CCAACACGCTTAAGGATGAGCTCA -CCAACACGCTTAAGGATGTCACGT -CCAACACGCTTAAGGATGCGTAGT -CCAACACGCTTAAGGATGGTCAGT -CCAACACGCTTAAGGATGGAAGGT -CCAACACGCTTAAGGATGAACCGT -CCAACACGCTTAAGGATGTTGTGC -CCAACACGCTTAAGGATGCTAAGC -CCAACACGCTTAAGGATGACTAGC -CCAACACGCTTAAGGATGAGATGC -CCAACACGCTTAAGGATGTGAAGG -CCAACACGCTTAAGGATGCAATGG -CCAACACGCTTAAGGATGATGAGG -CCAACACGCTTAAGGATGAATGGG -CCAACACGCTTAAGGATGTCCTGA -CCAACACGCTTAAGGATGTAGCGA -CCAACACGCTTAAGGATGCACAGA -CCAACACGCTTAAGGATGGCAAGA -CCAACACGCTTAAGGATGGGTTGA -CCAACACGCTTAAGGATGTCCGAT -CCAACACGCTTAAGGATGTGGCAT -CCAACACGCTTAAGGATGCGAGAT -CCAACACGCTTAAGGATGTACCAC -CCAACACGCTTAAGGATGCAGAAC -CCAACACGCTTAAGGATGGTCTAC -CCAACACGCTTAAGGATGACGTAC -CCAACACGCTTAAGGATGAGTGAC -CCAACACGCTTAAGGATGCTGTAG -CCAACACGCTTAAGGATGCCTAAG -CCAACACGCTTAAGGATGGTTCAG -CCAACACGCTTAAGGATGGCATAG -CCAACACGCTTAAGGATGGACAAG -CCAACACGCTTAAGGATGAAGCAG -CCAACACGCTTAAGGATGCGTCAA -CCAACACGCTTAAGGATGGCTGAA -CCAACACGCTTAAGGATGAGTACG -CCAACACGCTTAAGGATGATCCGA -CCAACACGCTTAAGGATGATGGGA -CCAACACGCTTAAGGATGGTGCAA -CCAACACGCTTAAGGATGGAGGAA -CCAACACGCTTAAGGATGCAGGTA -CCAACACGCTTAAGGATGGACTCT -CCAACACGCTTAAGGATGAGTCCT -CCAACACGCTTAAGGATGTAAGCC -CCAACACGCTTAAGGATGATAGCC -CCAACACGCTTAAGGATGTAACCG -CCAACACGCTTAAGGATGATGCCA -CCAACACGCTTAGGGAATGGAAAC -CCAACACGCTTAGGGAATAACACC -CCAACACGCTTAGGGAATATCGAG -CCAACACGCTTAGGGAATCTCCTT -CCAACACGCTTAGGGAATCCTGTT -CCAACACGCTTAGGGAATCGGTTT -CCAACACGCTTAGGGAATGTGGTT -CCAACACGCTTAGGGAATGCCTTT -CCAACACGCTTAGGGAATGGTCTT -CCAACACGCTTAGGGAATACGCTT -CCAACACGCTTAGGGAATAGCGTT -CCAACACGCTTAGGGAATTTCGTC -CCAACACGCTTAGGGAATTCTCTC -CCAACACGCTTAGGGAATTGGATC -CCAACACGCTTAGGGAATCACTTC -CCAACACGCTTAGGGAATGTACTC -CCAACACGCTTAGGGAATGATGTC -CCAACACGCTTAGGGAATACAGTC -CCAACACGCTTAGGGAATTTGCTG -CCAACACGCTTAGGGAATTCCATG -CCAACACGCTTAGGGAATTGTGTG -CCAACACGCTTAGGGAATCTAGTG -CCAACACGCTTAGGGAATCATCTG -CCAACACGCTTAGGGAATGAGTTG -CCAACACGCTTAGGGAATAGACTG -CCAACACGCTTAGGGAATTCGGTA -CCAACACGCTTAGGGAATTGCCTA -CCAACACGCTTAGGGAATCCACTA -CCAACACGCTTAGGGAATGGAGTA -CCAACACGCTTAGGGAATTCGTCT -CCAACACGCTTAGGGAATTGCACT -CCAACACGCTTAGGGAATCTGACT -CCAACACGCTTAGGGAATCAACCT -CCAACACGCTTAGGGAATGCTACT -CCAACACGCTTAGGGAATGGATCT -CCAACACGCTTAGGGAATAAGGCT -CCAACACGCTTAGGGAATTCAACC -CCAACACGCTTAGGGAATTGTTCC -CCAACACGCTTAGGGAATATTCCC -CCAACACGCTTAGGGAATTTCTCG -CCAACACGCTTAGGGAATTAGACG -CCAACACGCTTAGGGAATGTAACG -CCAACACGCTTAGGGAATACTTCG -CCAACACGCTTAGGGAATTACGCA -CCAACACGCTTAGGGAATCTTGCA -CCAACACGCTTAGGGAATCGAACA -CCAACACGCTTAGGGAATCAGTCA -CCAACACGCTTAGGGAATGATCCA -CCAACACGCTTAGGGAATACGACA -CCAACACGCTTAGGGAATAGCTCA -CCAACACGCTTAGGGAATTCACGT -CCAACACGCTTAGGGAATCGTAGT -CCAACACGCTTAGGGAATGTCAGT -CCAACACGCTTAGGGAATGAAGGT -CCAACACGCTTAGGGAATAACCGT -CCAACACGCTTAGGGAATTTGTGC -CCAACACGCTTAGGGAATCTAAGC -CCAACACGCTTAGGGAATACTAGC -CCAACACGCTTAGGGAATAGATGC -CCAACACGCTTAGGGAATTGAAGG -CCAACACGCTTAGGGAATCAATGG -CCAACACGCTTAGGGAATATGAGG -CCAACACGCTTAGGGAATAATGGG -CCAACACGCTTAGGGAATTCCTGA -CCAACACGCTTAGGGAATTAGCGA -CCAACACGCTTAGGGAATCACAGA -CCAACACGCTTAGGGAATGCAAGA -CCAACACGCTTAGGGAATGGTTGA -CCAACACGCTTAGGGAATTCCGAT -CCAACACGCTTAGGGAATTGGCAT -CCAACACGCTTAGGGAATCGAGAT -CCAACACGCTTAGGGAATTACCAC -CCAACACGCTTAGGGAATCAGAAC -CCAACACGCTTAGGGAATGTCTAC -CCAACACGCTTAGGGAATACGTAC -CCAACACGCTTAGGGAATAGTGAC -CCAACACGCTTAGGGAATCTGTAG -CCAACACGCTTAGGGAATCCTAAG -CCAACACGCTTAGGGAATGTTCAG -CCAACACGCTTAGGGAATGCATAG -CCAACACGCTTAGGGAATGACAAG -CCAACACGCTTAGGGAATAAGCAG -CCAACACGCTTAGGGAATCGTCAA -CCAACACGCTTAGGGAATGCTGAA -CCAACACGCTTAGGGAATAGTACG -CCAACACGCTTAGGGAATATCCGA -CCAACACGCTTAGGGAATATGGGA -CCAACACGCTTAGGGAATGTGCAA -CCAACACGCTTAGGGAATGAGGAA -CCAACACGCTTAGGGAATCAGGTA -CCAACACGCTTAGGGAATGACTCT -CCAACACGCTTAGGGAATAGTCCT -CCAACACGCTTAGGGAATTAAGCC -CCAACACGCTTAGGGAATATAGCC -CCAACACGCTTAGGGAATTAACCG -CCAACACGCTTAGGGAATATGCCA -CCAACACGCTTATGATCCGGAAAC -CCAACACGCTTATGATCCAACACC -CCAACACGCTTATGATCCATCGAG -CCAACACGCTTATGATCCCTCCTT -CCAACACGCTTATGATCCCCTGTT -CCAACACGCTTATGATCCCGGTTT -CCAACACGCTTATGATCCGTGGTT -CCAACACGCTTATGATCCGCCTTT -CCAACACGCTTATGATCCGGTCTT -CCAACACGCTTATGATCCACGCTT -CCAACACGCTTATGATCCAGCGTT -CCAACACGCTTATGATCCTTCGTC -CCAACACGCTTATGATCCTCTCTC -CCAACACGCTTATGATCCTGGATC -CCAACACGCTTATGATCCCACTTC -CCAACACGCTTATGATCCGTACTC -CCAACACGCTTATGATCCGATGTC -CCAACACGCTTATGATCCACAGTC -CCAACACGCTTATGATCCTTGCTG -CCAACACGCTTATGATCCTCCATG -CCAACACGCTTATGATCCTGTGTG -CCAACACGCTTATGATCCCTAGTG -CCAACACGCTTATGATCCCATCTG -CCAACACGCTTATGATCCGAGTTG -CCAACACGCTTATGATCCAGACTG -CCAACACGCTTATGATCCTCGGTA -CCAACACGCTTATGATCCTGCCTA -CCAACACGCTTATGATCCCCACTA -CCAACACGCTTATGATCCGGAGTA -CCAACACGCTTATGATCCTCGTCT -CCAACACGCTTATGATCCTGCACT -CCAACACGCTTATGATCCCTGACT -CCAACACGCTTATGATCCCAACCT -CCAACACGCTTATGATCCGCTACT -CCAACACGCTTATGATCCGGATCT -CCAACACGCTTATGATCCAAGGCT -CCAACACGCTTATGATCCTCAACC -CCAACACGCTTATGATCCTGTTCC -CCAACACGCTTATGATCCATTCCC -CCAACACGCTTATGATCCTTCTCG -CCAACACGCTTATGATCCTAGACG -CCAACACGCTTATGATCCGTAACG -CCAACACGCTTATGATCCACTTCG -CCAACACGCTTATGATCCTACGCA -CCAACACGCTTATGATCCCTTGCA -CCAACACGCTTATGATCCCGAACA -CCAACACGCTTATGATCCCAGTCA -CCAACACGCTTATGATCCGATCCA -CCAACACGCTTATGATCCACGACA -CCAACACGCTTATGATCCAGCTCA -CCAACACGCTTATGATCCTCACGT -CCAACACGCTTATGATCCCGTAGT -CCAACACGCTTATGATCCGTCAGT -CCAACACGCTTATGATCCGAAGGT -CCAACACGCTTATGATCCAACCGT -CCAACACGCTTATGATCCTTGTGC -CCAACACGCTTATGATCCCTAAGC -CCAACACGCTTATGATCCACTAGC -CCAACACGCTTATGATCCAGATGC -CCAACACGCTTATGATCCTGAAGG -CCAACACGCTTATGATCCCAATGG -CCAACACGCTTATGATCCATGAGG -CCAACACGCTTATGATCCAATGGG -CCAACACGCTTATGATCCTCCTGA -CCAACACGCTTATGATCCTAGCGA -CCAACACGCTTATGATCCCACAGA -CCAACACGCTTATGATCCGCAAGA -CCAACACGCTTATGATCCGGTTGA -CCAACACGCTTATGATCCTCCGAT -CCAACACGCTTATGATCCTGGCAT -CCAACACGCTTATGATCCCGAGAT -CCAACACGCTTATGATCCTACCAC -CCAACACGCTTATGATCCCAGAAC -CCAACACGCTTATGATCCGTCTAC -CCAACACGCTTATGATCCACGTAC -CCAACACGCTTATGATCCAGTGAC -CCAACACGCTTATGATCCCTGTAG -CCAACACGCTTATGATCCCCTAAG -CCAACACGCTTATGATCCGTTCAG -CCAACACGCTTATGATCCGCATAG -CCAACACGCTTATGATCCGACAAG -CCAACACGCTTATGATCCAAGCAG -CCAACACGCTTATGATCCCGTCAA -CCAACACGCTTATGATCCGCTGAA -CCAACACGCTTATGATCCAGTACG -CCAACACGCTTATGATCCATCCGA -CCAACACGCTTATGATCCATGGGA -CCAACACGCTTATGATCCGTGCAA -CCAACACGCTTATGATCCGAGGAA -CCAACACGCTTATGATCCCAGGTA -CCAACACGCTTATGATCCGACTCT -CCAACACGCTTATGATCCAGTCCT -CCAACACGCTTATGATCCTAAGCC -CCAACACGCTTATGATCCATAGCC -CCAACACGCTTATGATCCTAACCG -CCAACACGCTTATGATCCATGCCA -CCAACACGCTTACGATAGGGAAAC -CCAACACGCTTACGATAGAACACC -CCAACACGCTTACGATAGATCGAG -CCAACACGCTTACGATAGCTCCTT -CCAACACGCTTACGATAGCCTGTT -CCAACACGCTTACGATAGCGGTTT -CCAACACGCTTACGATAGGTGGTT -CCAACACGCTTACGATAGGCCTTT -CCAACACGCTTACGATAGGGTCTT -CCAACACGCTTACGATAGACGCTT -CCAACACGCTTACGATAGAGCGTT -CCAACACGCTTACGATAGTTCGTC -CCAACACGCTTACGATAGTCTCTC -CCAACACGCTTACGATAGTGGATC -CCAACACGCTTACGATAGCACTTC -CCAACACGCTTACGATAGGTACTC -CCAACACGCTTACGATAGGATGTC -CCAACACGCTTACGATAGACAGTC -CCAACACGCTTACGATAGTTGCTG -CCAACACGCTTACGATAGTCCATG -CCAACACGCTTACGATAGTGTGTG -CCAACACGCTTACGATAGCTAGTG -CCAACACGCTTACGATAGCATCTG -CCAACACGCTTACGATAGGAGTTG -CCAACACGCTTACGATAGAGACTG -CCAACACGCTTACGATAGTCGGTA -CCAACACGCTTACGATAGTGCCTA -CCAACACGCTTACGATAGCCACTA -CCAACACGCTTACGATAGGGAGTA -CCAACACGCTTACGATAGTCGTCT -CCAACACGCTTACGATAGTGCACT -CCAACACGCTTACGATAGCTGACT -CCAACACGCTTACGATAGCAACCT -CCAACACGCTTACGATAGGCTACT -CCAACACGCTTACGATAGGGATCT -CCAACACGCTTACGATAGAAGGCT -CCAACACGCTTACGATAGTCAACC -CCAACACGCTTACGATAGTGTTCC -CCAACACGCTTACGATAGATTCCC -CCAACACGCTTACGATAGTTCTCG -CCAACACGCTTACGATAGTAGACG -CCAACACGCTTACGATAGGTAACG -CCAACACGCTTACGATAGACTTCG -CCAACACGCTTACGATAGTACGCA -CCAACACGCTTACGATAGCTTGCA -CCAACACGCTTACGATAGCGAACA -CCAACACGCTTACGATAGCAGTCA -CCAACACGCTTACGATAGGATCCA -CCAACACGCTTACGATAGACGACA -CCAACACGCTTACGATAGAGCTCA -CCAACACGCTTACGATAGTCACGT -CCAACACGCTTACGATAGCGTAGT -CCAACACGCTTACGATAGGTCAGT -CCAACACGCTTACGATAGGAAGGT -CCAACACGCTTACGATAGAACCGT -CCAACACGCTTACGATAGTTGTGC -CCAACACGCTTACGATAGCTAAGC -CCAACACGCTTACGATAGACTAGC -CCAACACGCTTACGATAGAGATGC -CCAACACGCTTACGATAGTGAAGG -CCAACACGCTTACGATAGCAATGG -CCAACACGCTTACGATAGATGAGG -CCAACACGCTTACGATAGAATGGG -CCAACACGCTTACGATAGTCCTGA -CCAACACGCTTACGATAGTAGCGA -CCAACACGCTTACGATAGCACAGA -CCAACACGCTTACGATAGGCAAGA -CCAACACGCTTACGATAGGGTTGA -CCAACACGCTTACGATAGTCCGAT -CCAACACGCTTACGATAGTGGCAT -CCAACACGCTTACGATAGCGAGAT -CCAACACGCTTACGATAGTACCAC -CCAACACGCTTACGATAGCAGAAC -CCAACACGCTTACGATAGGTCTAC -CCAACACGCTTACGATAGACGTAC -CCAACACGCTTACGATAGAGTGAC -CCAACACGCTTACGATAGCTGTAG -CCAACACGCTTACGATAGCCTAAG -CCAACACGCTTACGATAGGTTCAG -CCAACACGCTTACGATAGGCATAG -CCAACACGCTTACGATAGGACAAG -CCAACACGCTTACGATAGAAGCAG -CCAACACGCTTACGATAGCGTCAA -CCAACACGCTTACGATAGGCTGAA -CCAACACGCTTACGATAGAGTACG -CCAACACGCTTACGATAGATCCGA -CCAACACGCTTACGATAGATGGGA -CCAACACGCTTACGATAGGTGCAA -CCAACACGCTTACGATAGGAGGAA -CCAACACGCTTACGATAGCAGGTA -CCAACACGCTTACGATAGGACTCT -CCAACACGCTTACGATAGAGTCCT -CCAACACGCTTACGATAGTAAGCC -CCAACACGCTTACGATAGATAGCC -CCAACACGCTTACGATAGTAACCG -CCAACACGCTTACGATAGATGCCA -CCAACACGCTTAAGACACGGAAAC -CCAACACGCTTAAGACACAACACC -CCAACACGCTTAAGACACATCGAG -CCAACACGCTTAAGACACCTCCTT -CCAACACGCTTAAGACACCCTGTT -CCAACACGCTTAAGACACCGGTTT -CCAACACGCTTAAGACACGTGGTT -CCAACACGCTTAAGACACGCCTTT -CCAACACGCTTAAGACACGGTCTT -CCAACACGCTTAAGACACACGCTT -CCAACACGCTTAAGACACAGCGTT -CCAACACGCTTAAGACACTTCGTC -CCAACACGCTTAAGACACTCTCTC -CCAACACGCTTAAGACACTGGATC -CCAACACGCTTAAGACACCACTTC -CCAACACGCTTAAGACACGTACTC -CCAACACGCTTAAGACACGATGTC -CCAACACGCTTAAGACACACAGTC -CCAACACGCTTAAGACACTTGCTG -CCAACACGCTTAAGACACTCCATG -CCAACACGCTTAAGACACTGTGTG -CCAACACGCTTAAGACACCTAGTG -CCAACACGCTTAAGACACCATCTG -CCAACACGCTTAAGACACGAGTTG -CCAACACGCTTAAGACACAGACTG -CCAACACGCTTAAGACACTCGGTA -CCAACACGCTTAAGACACTGCCTA -CCAACACGCTTAAGACACCCACTA -CCAACACGCTTAAGACACGGAGTA -CCAACACGCTTAAGACACTCGTCT -CCAACACGCTTAAGACACTGCACT -CCAACACGCTTAAGACACCTGACT -CCAACACGCTTAAGACACCAACCT -CCAACACGCTTAAGACACGCTACT -CCAACACGCTTAAGACACGGATCT -CCAACACGCTTAAGACACAAGGCT -CCAACACGCTTAAGACACTCAACC -CCAACACGCTTAAGACACTGTTCC -CCAACACGCTTAAGACACATTCCC -CCAACACGCTTAAGACACTTCTCG -CCAACACGCTTAAGACACTAGACG -CCAACACGCTTAAGACACGTAACG -CCAACACGCTTAAGACACACTTCG -CCAACACGCTTAAGACACTACGCA -CCAACACGCTTAAGACACCTTGCA -CCAACACGCTTAAGACACCGAACA -CCAACACGCTTAAGACACCAGTCA -CCAACACGCTTAAGACACGATCCA -CCAACACGCTTAAGACACACGACA -CCAACACGCTTAAGACACAGCTCA -CCAACACGCTTAAGACACTCACGT -CCAACACGCTTAAGACACCGTAGT -CCAACACGCTTAAGACACGTCAGT -CCAACACGCTTAAGACACGAAGGT -CCAACACGCTTAAGACACAACCGT -CCAACACGCTTAAGACACTTGTGC -CCAACACGCTTAAGACACCTAAGC -CCAACACGCTTAAGACACACTAGC -CCAACACGCTTAAGACACAGATGC -CCAACACGCTTAAGACACTGAAGG -CCAACACGCTTAAGACACCAATGG -CCAACACGCTTAAGACACATGAGG -CCAACACGCTTAAGACACAATGGG -CCAACACGCTTAAGACACTCCTGA -CCAACACGCTTAAGACACTAGCGA -CCAACACGCTTAAGACACCACAGA -CCAACACGCTTAAGACACGCAAGA -CCAACACGCTTAAGACACGGTTGA -CCAACACGCTTAAGACACTCCGAT -CCAACACGCTTAAGACACTGGCAT -CCAACACGCTTAAGACACCGAGAT -CCAACACGCTTAAGACACTACCAC -CCAACACGCTTAAGACACCAGAAC -CCAACACGCTTAAGACACGTCTAC -CCAACACGCTTAAGACACACGTAC -CCAACACGCTTAAGACACAGTGAC -CCAACACGCTTAAGACACCTGTAG -CCAACACGCTTAAGACACCCTAAG -CCAACACGCTTAAGACACGTTCAG -CCAACACGCTTAAGACACGCATAG -CCAACACGCTTAAGACACGACAAG -CCAACACGCTTAAGACACAAGCAG -CCAACACGCTTAAGACACCGTCAA -CCAACACGCTTAAGACACGCTGAA -CCAACACGCTTAAGACACAGTACG -CCAACACGCTTAAGACACATCCGA -CCAACACGCTTAAGACACATGGGA -CCAACACGCTTAAGACACGTGCAA -CCAACACGCTTAAGACACGAGGAA -CCAACACGCTTAAGACACCAGGTA -CCAACACGCTTAAGACACGACTCT -CCAACACGCTTAAGACACAGTCCT -CCAACACGCTTAAGACACTAAGCC -CCAACACGCTTAAGACACATAGCC -CCAACACGCTTAAGACACTAACCG -CCAACACGCTTAAGACACATGCCA -CCAACACGCTTAAGAGCAGGAAAC -CCAACACGCTTAAGAGCAAACACC -CCAACACGCTTAAGAGCAATCGAG -CCAACACGCTTAAGAGCACTCCTT -CCAACACGCTTAAGAGCACCTGTT -CCAACACGCTTAAGAGCACGGTTT -CCAACACGCTTAAGAGCAGTGGTT -CCAACACGCTTAAGAGCAGCCTTT -CCAACACGCTTAAGAGCAGGTCTT -CCAACACGCTTAAGAGCAACGCTT -CCAACACGCTTAAGAGCAAGCGTT -CCAACACGCTTAAGAGCATTCGTC -CCAACACGCTTAAGAGCATCTCTC -CCAACACGCTTAAGAGCATGGATC -CCAACACGCTTAAGAGCACACTTC -CCAACACGCTTAAGAGCAGTACTC -CCAACACGCTTAAGAGCAGATGTC -CCAACACGCTTAAGAGCAACAGTC -CCAACACGCTTAAGAGCATTGCTG -CCAACACGCTTAAGAGCATCCATG -CCAACACGCTTAAGAGCATGTGTG -CCAACACGCTTAAGAGCACTAGTG -CCAACACGCTTAAGAGCACATCTG -CCAACACGCTTAAGAGCAGAGTTG -CCAACACGCTTAAGAGCAAGACTG -CCAACACGCTTAAGAGCATCGGTA -CCAACACGCTTAAGAGCATGCCTA -CCAACACGCTTAAGAGCACCACTA -CCAACACGCTTAAGAGCAGGAGTA -CCAACACGCTTAAGAGCATCGTCT -CCAACACGCTTAAGAGCATGCACT -CCAACACGCTTAAGAGCACTGACT -CCAACACGCTTAAGAGCACAACCT -CCAACACGCTTAAGAGCAGCTACT -CCAACACGCTTAAGAGCAGGATCT -CCAACACGCTTAAGAGCAAAGGCT -CCAACACGCTTAAGAGCATCAACC -CCAACACGCTTAAGAGCATGTTCC -CCAACACGCTTAAGAGCAATTCCC -CCAACACGCTTAAGAGCATTCTCG -CCAACACGCTTAAGAGCATAGACG -CCAACACGCTTAAGAGCAGTAACG -CCAACACGCTTAAGAGCAACTTCG -CCAACACGCTTAAGAGCATACGCA -CCAACACGCTTAAGAGCACTTGCA -CCAACACGCTTAAGAGCACGAACA -CCAACACGCTTAAGAGCACAGTCA -CCAACACGCTTAAGAGCAGATCCA -CCAACACGCTTAAGAGCAACGACA -CCAACACGCTTAAGAGCAAGCTCA -CCAACACGCTTAAGAGCATCACGT -CCAACACGCTTAAGAGCACGTAGT -CCAACACGCTTAAGAGCAGTCAGT -CCAACACGCTTAAGAGCAGAAGGT -CCAACACGCTTAAGAGCAAACCGT -CCAACACGCTTAAGAGCATTGTGC -CCAACACGCTTAAGAGCACTAAGC -CCAACACGCTTAAGAGCAACTAGC -CCAACACGCTTAAGAGCAAGATGC -CCAACACGCTTAAGAGCATGAAGG -CCAACACGCTTAAGAGCACAATGG -CCAACACGCTTAAGAGCAATGAGG -CCAACACGCTTAAGAGCAAATGGG -CCAACACGCTTAAGAGCATCCTGA -CCAACACGCTTAAGAGCATAGCGA -CCAACACGCTTAAGAGCACACAGA -CCAACACGCTTAAGAGCAGCAAGA -CCAACACGCTTAAGAGCAGGTTGA -CCAACACGCTTAAGAGCATCCGAT -CCAACACGCTTAAGAGCATGGCAT -CCAACACGCTTAAGAGCACGAGAT -CCAACACGCTTAAGAGCATACCAC -CCAACACGCTTAAGAGCACAGAAC -CCAACACGCTTAAGAGCAGTCTAC -CCAACACGCTTAAGAGCAACGTAC -CCAACACGCTTAAGAGCAAGTGAC -CCAACACGCTTAAGAGCACTGTAG -CCAACACGCTTAAGAGCACCTAAG -CCAACACGCTTAAGAGCAGTTCAG -CCAACACGCTTAAGAGCAGCATAG -CCAACACGCTTAAGAGCAGACAAG -CCAACACGCTTAAGAGCAAAGCAG -CCAACACGCTTAAGAGCACGTCAA -CCAACACGCTTAAGAGCAGCTGAA -CCAACACGCTTAAGAGCAAGTACG -CCAACACGCTTAAGAGCAATCCGA -CCAACACGCTTAAGAGCAATGGGA -CCAACACGCTTAAGAGCAGTGCAA -CCAACACGCTTAAGAGCAGAGGAA -CCAACACGCTTAAGAGCACAGGTA -CCAACACGCTTAAGAGCAGACTCT -CCAACACGCTTAAGAGCAAGTCCT -CCAACACGCTTAAGAGCATAAGCC -CCAACACGCTTAAGAGCAATAGCC -CCAACACGCTTAAGAGCATAACCG -CCAACACGCTTAAGAGCAATGCCA -CCAACACGCTTATGAGGTGGAAAC -CCAACACGCTTATGAGGTAACACC -CCAACACGCTTATGAGGTATCGAG -CCAACACGCTTATGAGGTCTCCTT -CCAACACGCTTATGAGGTCCTGTT -CCAACACGCTTATGAGGTCGGTTT -CCAACACGCTTATGAGGTGTGGTT -CCAACACGCTTATGAGGTGCCTTT -CCAACACGCTTATGAGGTGGTCTT -CCAACACGCTTATGAGGTACGCTT -CCAACACGCTTATGAGGTAGCGTT -CCAACACGCTTATGAGGTTTCGTC -CCAACACGCTTATGAGGTTCTCTC -CCAACACGCTTATGAGGTTGGATC -CCAACACGCTTATGAGGTCACTTC -CCAACACGCTTATGAGGTGTACTC -CCAACACGCTTATGAGGTGATGTC -CCAACACGCTTATGAGGTACAGTC -CCAACACGCTTATGAGGTTTGCTG -CCAACACGCTTATGAGGTTCCATG -CCAACACGCTTATGAGGTTGTGTG -CCAACACGCTTATGAGGTCTAGTG -CCAACACGCTTATGAGGTCATCTG -CCAACACGCTTATGAGGTGAGTTG -CCAACACGCTTATGAGGTAGACTG -CCAACACGCTTATGAGGTTCGGTA -CCAACACGCTTATGAGGTTGCCTA -CCAACACGCTTATGAGGTCCACTA -CCAACACGCTTATGAGGTGGAGTA -CCAACACGCTTATGAGGTTCGTCT -CCAACACGCTTATGAGGTTGCACT -CCAACACGCTTATGAGGTCTGACT -CCAACACGCTTATGAGGTCAACCT -CCAACACGCTTATGAGGTGCTACT -CCAACACGCTTATGAGGTGGATCT -CCAACACGCTTATGAGGTAAGGCT -CCAACACGCTTATGAGGTTCAACC -CCAACACGCTTATGAGGTTGTTCC -CCAACACGCTTATGAGGTATTCCC -CCAACACGCTTATGAGGTTTCTCG -CCAACACGCTTATGAGGTTAGACG -CCAACACGCTTATGAGGTGTAACG -CCAACACGCTTATGAGGTACTTCG -CCAACACGCTTATGAGGTTACGCA -CCAACACGCTTATGAGGTCTTGCA -CCAACACGCTTATGAGGTCGAACA -CCAACACGCTTATGAGGTCAGTCA -CCAACACGCTTATGAGGTGATCCA -CCAACACGCTTATGAGGTACGACA -CCAACACGCTTATGAGGTAGCTCA -CCAACACGCTTATGAGGTTCACGT -CCAACACGCTTATGAGGTCGTAGT -CCAACACGCTTATGAGGTGTCAGT -CCAACACGCTTATGAGGTGAAGGT -CCAACACGCTTATGAGGTAACCGT -CCAACACGCTTATGAGGTTTGTGC -CCAACACGCTTATGAGGTCTAAGC -CCAACACGCTTATGAGGTACTAGC -CCAACACGCTTATGAGGTAGATGC -CCAACACGCTTATGAGGTTGAAGG -CCAACACGCTTATGAGGTCAATGG -CCAACACGCTTATGAGGTATGAGG -CCAACACGCTTATGAGGTAATGGG -CCAACACGCTTATGAGGTTCCTGA -CCAACACGCTTATGAGGTTAGCGA -CCAACACGCTTATGAGGTCACAGA -CCAACACGCTTATGAGGTGCAAGA -CCAACACGCTTATGAGGTGGTTGA -CCAACACGCTTATGAGGTTCCGAT -CCAACACGCTTATGAGGTTGGCAT -CCAACACGCTTATGAGGTCGAGAT -CCAACACGCTTATGAGGTTACCAC -CCAACACGCTTATGAGGTCAGAAC -CCAACACGCTTATGAGGTGTCTAC -CCAACACGCTTATGAGGTACGTAC -CCAACACGCTTATGAGGTAGTGAC -CCAACACGCTTATGAGGTCTGTAG -CCAACACGCTTATGAGGTCCTAAG -CCAACACGCTTATGAGGTGTTCAG -CCAACACGCTTATGAGGTGCATAG -CCAACACGCTTATGAGGTGACAAG -CCAACACGCTTATGAGGTAAGCAG -CCAACACGCTTATGAGGTCGTCAA -CCAACACGCTTATGAGGTGCTGAA -CCAACACGCTTATGAGGTAGTACG -CCAACACGCTTATGAGGTATCCGA -CCAACACGCTTATGAGGTATGGGA -CCAACACGCTTATGAGGTGTGCAA -CCAACACGCTTATGAGGTGAGGAA -CCAACACGCTTATGAGGTCAGGTA -CCAACACGCTTATGAGGTGACTCT -CCAACACGCTTATGAGGTAGTCCT -CCAACACGCTTATGAGGTTAAGCC -CCAACACGCTTATGAGGTATAGCC -CCAACACGCTTATGAGGTTAACCG -CCAACACGCTTATGAGGTATGCCA -CCAACACGCTTAGATTCCGGAAAC -CCAACACGCTTAGATTCCAACACC -CCAACACGCTTAGATTCCATCGAG -CCAACACGCTTAGATTCCCTCCTT -CCAACACGCTTAGATTCCCCTGTT -CCAACACGCTTAGATTCCCGGTTT -CCAACACGCTTAGATTCCGTGGTT -CCAACACGCTTAGATTCCGCCTTT -CCAACACGCTTAGATTCCGGTCTT -CCAACACGCTTAGATTCCACGCTT -CCAACACGCTTAGATTCCAGCGTT -CCAACACGCTTAGATTCCTTCGTC -CCAACACGCTTAGATTCCTCTCTC -CCAACACGCTTAGATTCCTGGATC -CCAACACGCTTAGATTCCCACTTC -CCAACACGCTTAGATTCCGTACTC -CCAACACGCTTAGATTCCGATGTC -CCAACACGCTTAGATTCCACAGTC -CCAACACGCTTAGATTCCTTGCTG -CCAACACGCTTAGATTCCTCCATG -CCAACACGCTTAGATTCCTGTGTG -CCAACACGCTTAGATTCCCTAGTG -CCAACACGCTTAGATTCCCATCTG -CCAACACGCTTAGATTCCGAGTTG -CCAACACGCTTAGATTCCAGACTG -CCAACACGCTTAGATTCCTCGGTA -CCAACACGCTTAGATTCCTGCCTA -CCAACACGCTTAGATTCCCCACTA -CCAACACGCTTAGATTCCGGAGTA -CCAACACGCTTAGATTCCTCGTCT -CCAACACGCTTAGATTCCTGCACT -CCAACACGCTTAGATTCCCTGACT -CCAACACGCTTAGATTCCCAACCT -CCAACACGCTTAGATTCCGCTACT -CCAACACGCTTAGATTCCGGATCT -CCAACACGCTTAGATTCCAAGGCT -CCAACACGCTTAGATTCCTCAACC -CCAACACGCTTAGATTCCTGTTCC -CCAACACGCTTAGATTCCATTCCC -CCAACACGCTTAGATTCCTTCTCG -CCAACACGCTTAGATTCCTAGACG -CCAACACGCTTAGATTCCGTAACG -CCAACACGCTTAGATTCCACTTCG -CCAACACGCTTAGATTCCTACGCA -CCAACACGCTTAGATTCCCTTGCA -CCAACACGCTTAGATTCCCGAACA -CCAACACGCTTAGATTCCCAGTCA -CCAACACGCTTAGATTCCGATCCA -CCAACACGCTTAGATTCCACGACA -CCAACACGCTTAGATTCCAGCTCA -CCAACACGCTTAGATTCCTCACGT -CCAACACGCTTAGATTCCCGTAGT -CCAACACGCTTAGATTCCGTCAGT -CCAACACGCTTAGATTCCGAAGGT -CCAACACGCTTAGATTCCAACCGT -CCAACACGCTTAGATTCCTTGTGC -CCAACACGCTTAGATTCCCTAAGC -CCAACACGCTTAGATTCCACTAGC -CCAACACGCTTAGATTCCAGATGC -CCAACACGCTTAGATTCCTGAAGG -CCAACACGCTTAGATTCCCAATGG -CCAACACGCTTAGATTCCATGAGG -CCAACACGCTTAGATTCCAATGGG -CCAACACGCTTAGATTCCTCCTGA -CCAACACGCTTAGATTCCTAGCGA -CCAACACGCTTAGATTCCCACAGA -CCAACACGCTTAGATTCCGCAAGA -CCAACACGCTTAGATTCCGGTTGA -CCAACACGCTTAGATTCCTCCGAT -CCAACACGCTTAGATTCCTGGCAT -CCAACACGCTTAGATTCCCGAGAT -CCAACACGCTTAGATTCCTACCAC -CCAACACGCTTAGATTCCCAGAAC -CCAACACGCTTAGATTCCGTCTAC -CCAACACGCTTAGATTCCACGTAC -CCAACACGCTTAGATTCCAGTGAC -CCAACACGCTTAGATTCCCTGTAG -CCAACACGCTTAGATTCCCCTAAG -CCAACACGCTTAGATTCCGTTCAG -CCAACACGCTTAGATTCCGCATAG -CCAACACGCTTAGATTCCGACAAG -CCAACACGCTTAGATTCCAAGCAG -CCAACACGCTTAGATTCCCGTCAA -CCAACACGCTTAGATTCCGCTGAA -CCAACACGCTTAGATTCCAGTACG -CCAACACGCTTAGATTCCATCCGA -CCAACACGCTTAGATTCCATGGGA -CCAACACGCTTAGATTCCGTGCAA -CCAACACGCTTAGATTCCGAGGAA -CCAACACGCTTAGATTCCCAGGTA -CCAACACGCTTAGATTCCGACTCT -CCAACACGCTTAGATTCCAGTCCT -CCAACACGCTTAGATTCCTAAGCC -CCAACACGCTTAGATTCCATAGCC -CCAACACGCTTAGATTCCTAACCG -CCAACACGCTTAGATTCCATGCCA -CCAACACGCTTACATTGGGGAAAC -CCAACACGCTTACATTGGAACACC -CCAACACGCTTACATTGGATCGAG -CCAACACGCTTACATTGGCTCCTT -CCAACACGCTTACATTGGCCTGTT -CCAACACGCTTACATTGGCGGTTT -CCAACACGCTTACATTGGGTGGTT -CCAACACGCTTACATTGGGCCTTT -CCAACACGCTTACATTGGGGTCTT -CCAACACGCTTACATTGGACGCTT -CCAACACGCTTACATTGGAGCGTT -CCAACACGCTTACATTGGTTCGTC -CCAACACGCTTACATTGGTCTCTC -CCAACACGCTTACATTGGTGGATC -CCAACACGCTTACATTGGCACTTC -CCAACACGCTTACATTGGGTACTC -CCAACACGCTTACATTGGGATGTC -CCAACACGCTTACATTGGACAGTC -CCAACACGCTTACATTGGTTGCTG -CCAACACGCTTACATTGGTCCATG -CCAACACGCTTACATTGGTGTGTG -CCAACACGCTTACATTGGCTAGTG -CCAACACGCTTACATTGGCATCTG -CCAACACGCTTACATTGGGAGTTG -CCAACACGCTTACATTGGAGACTG -CCAACACGCTTACATTGGTCGGTA -CCAACACGCTTACATTGGTGCCTA -CCAACACGCTTACATTGGCCACTA -CCAACACGCTTACATTGGGGAGTA -CCAACACGCTTACATTGGTCGTCT -CCAACACGCTTACATTGGTGCACT -CCAACACGCTTACATTGGCTGACT -CCAACACGCTTACATTGGCAACCT -CCAACACGCTTACATTGGGCTACT -CCAACACGCTTACATTGGGGATCT -CCAACACGCTTACATTGGAAGGCT -CCAACACGCTTACATTGGTCAACC -CCAACACGCTTACATTGGTGTTCC -CCAACACGCTTACATTGGATTCCC -CCAACACGCTTACATTGGTTCTCG -CCAACACGCTTACATTGGTAGACG -CCAACACGCTTACATTGGGTAACG -CCAACACGCTTACATTGGACTTCG -CCAACACGCTTACATTGGTACGCA -CCAACACGCTTACATTGGCTTGCA -CCAACACGCTTACATTGGCGAACA -CCAACACGCTTACATTGGCAGTCA -CCAACACGCTTACATTGGGATCCA -CCAACACGCTTACATTGGACGACA -CCAACACGCTTACATTGGAGCTCA -CCAACACGCTTACATTGGTCACGT -CCAACACGCTTACATTGGCGTAGT -CCAACACGCTTACATTGGGTCAGT -CCAACACGCTTACATTGGGAAGGT -CCAACACGCTTACATTGGAACCGT -CCAACACGCTTACATTGGTTGTGC -CCAACACGCTTACATTGGCTAAGC -CCAACACGCTTACATTGGACTAGC -CCAACACGCTTACATTGGAGATGC -CCAACACGCTTACATTGGTGAAGG -CCAACACGCTTACATTGGCAATGG -CCAACACGCTTACATTGGATGAGG -CCAACACGCTTACATTGGAATGGG -CCAACACGCTTACATTGGTCCTGA -CCAACACGCTTACATTGGTAGCGA -CCAACACGCTTACATTGGCACAGA -CCAACACGCTTACATTGGGCAAGA -CCAACACGCTTACATTGGGGTTGA -CCAACACGCTTACATTGGTCCGAT -CCAACACGCTTACATTGGTGGCAT -CCAACACGCTTACATTGGCGAGAT -CCAACACGCTTACATTGGTACCAC -CCAACACGCTTACATTGGCAGAAC -CCAACACGCTTACATTGGGTCTAC -CCAACACGCTTACATTGGACGTAC -CCAACACGCTTACATTGGAGTGAC -CCAACACGCTTACATTGGCTGTAG -CCAACACGCTTACATTGGCCTAAG -CCAACACGCTTACATTGGGTTCAG -CCAACACGCTTACATTGGGCATAG -CCAACACGCTTACATTGGGACAAG -CCAACACGCTTACATTGGAAGCAG -CCAACACGCTTACATTGGCGTCAA -CCAACACGCTTACATTGGGCTGAA -CCAACACGCTTACATTGGAGTACG -CCAACACGCTTACATTGGATCCGA -CCAACACGCTTACATTGGATGGGA -CCAACACGCTTACATTGGGTGCAA -CCAACACGCTTACATTGGGAGGAA -CCAACACGCTTACATTGGCAGGTA -CCAACACGCTTACATTGGGACTCT -CCAACACGCTTACATTGGAGTCCT -CCAACACGCTTACATTGGTAAGCC -CCAACACGCTTACATTGGATAGCC -CCAACACGCTTACATTGGTAACCG -CCAACACGCTTACATTGGATGCCA -CCAACACGCTTAGATCGAGGAAAC -CCAACACGCTTAGATCGAAACACC -CCAACACGCTTAGATCGAATCGAG -CCAACACGCTTAGATCGACTCCTT -CCAACACGCTTAGATCGACCTGTT -CCAACACGCTTAGATCGACGGTTT -CCAACACGCTTAGATCGAGTGGTT -CCAACACGCTTAGATCGAGCCTTT -CCAACACGCTTAGATCGAGGTCTT -CCAACACGCTTAGATCGAACGCTT -CCAACACGCTTAGATCGAAGCGTT -CCAACACGCTTAGATCGATTCGTC -CCAACACGCTTAGATCGATCTCTC -CCAACACGCTTAGATCGATGGATC -CCAACACGCTTAGATCGACACTTC -CCAACACGCTTAGATCGAGTACTC -CCAACACGCTTAGATCGAGATGTC -CCAACACGCTTAGATCGAACAGTC -CCAACACGCTTAGATCGATTGCTG -CCAACACGCTTAGATCGATCCATG -CCAACACGCTTAGATCGATGTGTG -CCAACACGCTTAGATCGACTAGTG -CCAACACGCTTAGATCGACATCTG -CCAACACGCTTAGATCGAGAGTTG -CCAACACGCTTAGATCGAAGACTG -CCAACACGCTTAGATCGATCGGTA -CCAACACGCTTAGATCGATGCCTA -CCAACACGCTTAGATCGACCACTA -CCAACACGCTTAGATCGAGGAGTA -CCAACACGCTTAGATCGATCGTCT -CCAACACGCTTAGATCGATGCACT -CCAACACGCTTAGATCGACTGACT -CCAACACGCTTAGATCGACAACCT -CCAACACGCTTAGATCGAGCTACT -CCAACACGCTTAGATCGAGGATCT -CCAACACGCTTAGATCGAAAGGCT -CCAACACGCTTAGATCGATCAACC -CCAACACGCTTAGATCGATGTTCC -CCAACACGCTTAGATCGAATTCCC -CCAACACGCTTAGATCGATTCTCG -CCAACACGCTTAGATCGATAGACG -CCAACACGCTTAGATCGAGTAACG -CCAACACGCTTAGATCGAACTTCG -CCAACACGCTTAGATCGATACGCA -CCAACACGCTTAGATCGACTTGCA -CCAACACGCTTAGATCGACGAACA -CCAACACGCTTAGATCGACAGTCA -CCAACACGCTTAGATCGAGATCCA -CCAACACGCTTAGATCGAACGACA -CCAACACGCTTAGATCGAAGCTCA -CCAACACGCTTAGATCGATCACGT -CCAACACGCTTAGATCGACGTAGT -CCAACACGCTTAGATCGAGTCAGT -CCAACACGCTTAGATCGAGAAGGT -CCAACACGCTTAGATCGAAACCGT -CCAACACGCTTAGATCGATTGTGC -CCAACACGCTTAGATCGACTAAGC -CCAACACGCTTAGATCGAACTAGC -CCAACACGCTTAGATCGAAGATGC -CCAACACGCTTAGATCGATGAAGG -CCAACACGCTTAGATCGACAATGG -CCAACACGCTTAGATCGAATGAGG -CCAACACGCTTAGATCGAAATGGG -CCAACACGCTTAGATCGATCCTGA -CCAACACGCTTAGATCGATAGCGA -CCAACACGCTTAGATCGACACAGA -CCAACACGCTTAGATCGAGCAAGA -CCAACACGCTTAGATCGAGGTTGA -CCAACACGCTTAGATCGATCCGAT -CCAACACGCTTAGATCGATGGCAT -CCAACACGCTTAGATCGACGAGAT -CCAACACGCTTAGATCGATACCAC -CCAACACGCTTAGATCGACAGAAC -CCAACACGCTTAGATCGAGTCTAC -CCAACACGCTTAGATCGAACGTAC -CCAACACGCTTAGATCGAAGTGAC -CCAACACGCTTAGATCGACTGTAG -CCAACACGCTTAGATCGACCTAAG -CCAACACGCTTAGATCGAGTTCAG -CCAACACGCTTAGATCGAGCATAG -CCAACACGCTTAGATCGAGACAAG -CCAACACGCTTAGATCGAAAGCAG -CCAACACGCTTAGATCGACGTCAA -CCAACACGCTTAGATCGAGCTGAA -CCAACACGCTTAGATCGAAGTACG -CCAACACGCTTAGATCGAATCCGA -CCAACACGCTTAGATCGAATGGGA -CCAACACGCTTAGATCGAGTGCAA -CCAACACGCTTAGATCGAGAGGAA -CCAACACGCTTAGATCGACAGGTA -CCAACACGCTTAGATCGAGACTCT -CCAACACGCTTAGATCGAAGTCCT -CCAACACGCTTAGATCGATAAGCC -CCAACACGCTTAGATCGAATAGCC -CCAACACGCTTAGATCGATAACCG -CCAACACGCTTAGATCGAATGCCA -CCAACACGCTTACACTACGGAAAC -CCAACACGCTTACACTACAACACC -CCAACACGCTTACACTACATCGAG -CCAACACGCTTACACTACCTCCTT -CCAACACGCTTACACTACCCTGTT -CCAACACGCTTACACTACCGGTTT -CCAACACGCTTACACTACGTGGTT -CCAACACGCTTACACTACGCCTTT -CCAACACGCTTACACTACGGTCTT -CCAACACGCTTACACTACACGCTT -CCAACACGCTTACACTACAGCGTT -CCAACACGCTTACACTACTTCGTC -CCAACACGCTTACACTACTCTCTC -CCAACACGCTTACACTACTGGATC -CCAACACGCTTACACTACCACTTC -CCAACACGCTTACACTACGTACTC -CCAACACGCTTACACTACGATGTC -CCAACACGCTTACACTACACAGTC -CCAACACGCTTACACTACTTGCTG -CCAACACGCTTACACTACTCCATG -CCAACACGCTTACACTACTGTGTG -CCAACACGCTTACACTACCTAGTG -CCAACACGCTTACACTACCATCTG -CCAACACGCTTACACTACGAGTTG -CCAACACGCTTACACTACAGACTG -CCAACACGCTTACACTACTCGGTA -CCAACACGCTTACACTACTGCCTA -CCAACACGCTTACACTACCCACTA -CCAACACGCTTACACTACGGAGTA -CCAACACGCTTACACTACTCGTCT -CCAACACGCTTACACTACTGCACT -CCAACACGCTTACACTACCTGACT -CCAACACGCTTACACTACCAACCT -CCAACACGCTTACACTACGCTACT -CCAACACGCTTACACTACGGATCT -CCAACACGCTTACACTACAAGGCT -CCAACACGCTTACACTACTCAACC -CCAACACGCTTACACTACTGTTCC -CCAACACGCTTACACTACATTCCC -CCAACACGCTTACACTACTTCTCG -CCAACACGCTTACACTACTAGACG -CCAACACGCTTACACTACGTAACG -CCAACACGCTTACACTACACTTCG -CCAACACGCTTACACTACTACGCA -CCAACACGCTTACACTACCTTGCA -CCAACACGCTTACACTACCGAACA -CCAACACGCTTACACTACCAGTCA -CCAACACGCTTACACTACGATCCA -CCAACACGCTTACACTACACGACA -CCAACACGCTTACACTACAGCTCA -CCAACACGCTTACACTACTCACGT -CCAACACGCTTACACTACCGTAGT -CCAACACGCTTACACTACGTCAGT -CCAACACGCTTACACTACGAAGGT -CCAACACGCTTACACTACAACCGT -CCAACACGCTTACACTACTTGTGC -CCAACACGCTTACACTACCTAAGC -CCAACACGCTTACACTACACTAGC -CCAACACGCTTACACTACAGATGC -CCAACACGCTTACACTACTGAAGG -CCAACACGCTTACACTACCAATGG -CCAACACGCTTACACTACATGAGG -CCAACACGCTTACACTACAATGGG -CCAACACGCTTACACTACTCCTGA -CCAACACGCTTACACTACTAGCGA -CCAACACGCTTACACTACCACAGA -CCAACACGCTTACACTACGCAAGA -CCAACACGCTTACACTACGGTTGA -CCAACACGCTTACACTACTCCGAT -CCAACACGCTTACACTACTGGCAT -CCAACACGCTTACACTACCGAGAT -CCAACACGCTTACACTACTACCAC -CCAACACGCTTACACTACCAGAAC -CCAACACGCTTACACTACGTCTAC -CCAACACGCTTACACTACACGTAC -CCAACACGCTTACACTACAGTGAC -CCAACACGCTTACACTACCTGTAG -CCAACACGCTTACACTACCCTAAG -CCAACACGCTTACACTACGTTCAG -CCAACACGCTTACACTACGCATAG -CCAACACGCTTACACTACGACAAG -CCAACACGCTTACACTACAAGCAG -CCAACACGCTTACACTACCGTCAA -CCAACACGCTTACACTACGCTGAA -CCAACACGCTTACACTACAGTACG -CCAACACGCTTACACTACATCCGA -CCAACACGCTTACACTACATGGGA -CCAACACGCTTACACTACGTGCAA -CCAACACGCTTACACTACGAGGAA -CCAACACGCTTACACTACCAGGTA -CCAACACGCTTACACTACGACTCT -CCAACACGCTTACACTACAGTCCT -CCAACACGCTTACACTACTAAGCC -CCAACACGCTTACACTACATAGCC -CCAACACGCTTACACTACTAACCG -CCAACACGCTTACACTACATGCCA -CCAACACGCTTAAACCAGGGAAAC -CCAACACGCTTAAACCAGAACACC -CCAACACGCTTAAACCAGATCGAG -CCAACACGCTTAAACCAGCTCCTT -CCAACACGCTTAAACCAGCCTGTT -CCAACACGCTTAAACCAGCGGTTT -CCAACACGCTTAAACCAGGTGGTT -CCAACACGCTTAAACCAGGCCTTT -CCAACACGCTTAAACCAGGGTCTT -CCAACACGCTTAAACCAGACGCTT -CCAACACGCTTAAACCAGAGCGTT -CCAACACGCTTAAACCAGTTCGTC -CCAACACGCTTAAACCAGTCTCTC -CCAACACGCTTAAACCAGTGGATC -CCAACACGCTTAAACCAGCACTTC -CCAACACGCTTAAACCAGGTACTC -CCAACACGCTTAAACCAGGATGTC -CCAACACGCTTAAACCAGACAGTC -CCAACACGCTTAAACCAGTTGCTG -CCAACACGCTTAAACCAGTCCATG -CCAACACGCTTAAACCAGTGTGTG -CCAACACGCTTAAACCAGCTAGTG -CCAACACGCTTAAACCAGCATCTG -CCAACACGCTTAAACCAGGAGTTG -CCAACACGCTTAAACCAGAGACTG -CCAACACGCTTAAACCAGTCGGTA -CCAACACGCTTAAACCAGTGCCTA -CCAACACGCTTAAACCAGCCACTA -CCAACACGCTTAAACCAGGGAGTA -CCAACACGCTTAAACCAGTCGTCT -CCAACACGCTTAAACCAGTGCACT -CCAACACGCTTAAACCAGCTGACT -CCAACACGCTTAAACCAGCAACCT -CCAACACGCTTAAACCAGGCTACT -CCAACACGCTTAAACCAGGGATCT -CCAACACGCTTAAACCAGAAGGCT -CCAACACGCTTAAACCAGTCAACC -CCAACACGCTTAAACCAGTGTTCC -CCAACACGCTTAAACCAGATTCCC -CCAACACGCTTAAACCAGTTCTCG -CCAACACGCTTAAACCAGTAGACG -CCAACACGCTTAAACCAGGTAACG -CCAACACGCTTAAACCAGACTTCG -CCAACACGCTTAAACCAGTACGCA -CCAACACGCTTAAACCAGCTTGCA -CCAACACGCTTAAACCAGCGAACA -CCAACACGCTTAAACCAGCAGTCA -CCAACACGCTTAAACCAGGATCCA -CCAACACGCTTAAACCAGACGACA -CCAACACGCTTAAACCAGAGCTCA -CCAACACGCTTAAACCAGTCACGT -CCAACACGCTTAAACCAGCGTAGT -CCAACACGCTTAAACCAGGTCAGT -CCAACACGCTTAAACCAGGAAGGT -CCAACACGCTTAAACCAGAACCGT -CCAACACGCTTAAACCAGTTGTGC -CCAACACGCTTAAACCAGCTAAGC -CCAACACGCTTAAACCAGACTAGC -CCAACACGCTTAAACCAGAGATGC -CCAACACGCTTAAACCAGTGAAGG -CCAACACGCTTAAACCAGCAATGG -CCAACACGCTTAAACCAGATGAGG -CCAACACGCTTAAACCAGAATGGG -CCAACACGCTTAAACCAGTCCTGA -CCAACACGCTTAAACCAGTAGCGA -CCAACACGCTTAAACCAGCACAGA -CCAACACGCTTAAACCAGGCAAGA -CCAACACGCTTAAACCAGGGTTGA -CCAACACGCTTAAACCAGTCCGAT -CCAACACGCTTAAACCAGTGGCAT -CCAACACGCTTAAACCAGCGAGAT -CCAACACGCTTAAACCAGTACCAC -CCAACACGCTTAAACCAGCAGAAC -CCAACACGCTTAAACCAGGTCTAC -CCAACACGCTTAAACCAGACGTAC -CCAACACGCTTAAACCAGAGTGAC -CCAACACGCTTAAACCAGCTGTAG -CCAACACGCTTAAACCAGCCTAAG -CCAACACGCTTAAACCAGGTTCAG -CCAACACGCTTAAACCAGGCATAG -CCAACACGCTTAAACCAGGACAAG -CCAACACGCTTAAACCAGAAGCAG -CCAACACGCTTAAACCAGCGTCAA -CCAACACGCTTAAACCAGGCTGAA -CCAACACGCTTAAACCAGAGTACG -CCAACACGCTTAAACCAGATCCGA -CCAACACGCTTAAACCAGATGGGA -CCAACACGCTTAAACCAGGTGCAA -CCAACACGCTTAAACCAGGAGGAA -CCAACACGCTTAAACCAGCAGGTA -CCAACACGCTTAAACCAGGACTCT -CCAACACGCTTAAACCAGAGTCCT -CCAACACGCTTAAACCAGTAAGCC -CCAACACGCTTAAACCAGATAGCC -CCAACACGCTTAAACCAGTAACCG -CCAACACGCTTAAACCAGATGCCA -CCAACACGCTTATACGTCGGAAAC -CCAACACGCTTATACGTCAACACC -CCAACACGCTTATACGTCATCGAG -CCAACACGCTTATACGTCCTCCTT -CCAACACGCTTATACGTCCCTGTT -CCAACACGCTTATACGTCCGGTTT -CCAACACGCTTATACGTCGTGGTT -CCAACACGCTTATACGTCGCCTTT -CCAACACGCTTATACGTCGGTCTT -CCAACACGCTTATACGTCACGCTT -CCAACACGCTTATACGTCAGCGTT -CCAACACGCTTATACGTCTTCGTC -CCAACACGCTTATACGTCTCTCTC -CCAACACGCTTATACGTCTGGATC -CCAACACGCTTATACGTCCACTTC -CCAACACGCTTATACGTCGTACTC -CCAACACGCTTATACGTCGATGTC -CCAACACGCTTATACGTCACAGTC -CCAACACGCTTATACGTCTTGCTG -CCAACACGCTTATACGTCTCCATG -CCAACACGCTTATACGTCTGTGTG -CCAACACGCTTATACGTCCTAGTG -CCAACACGCTTATACGTCCATCTG -CCAACACGCTTATACGTCGAGTTG -CCAACACGCTTATACGTCAGACTG -CCAACACGCTTATACGTCTCGGTA -CCAACACGCTTATACGTCTGCCTA -CCAACACGCTTATACGTCCCACTA -CCAACACGCTTATACGTCGGAGTA -CCAACACGCTTATACGTCTCGTCT -CCAACACGCTTATACGTCTGCACT -CCAACACGCTTATACGTCCTGACT -CCAACACGCTTATACGTCCAACCT -CCAACACGCTTATACGTCGCTACT -CCAACACGCTTATACGTCGGATCT -CCAACACGCTTATACGTCAAGGCT -CCAACACGCTTATACGTCTCAACC -CCAACACGCTTATACGTCTGTTCC -CCAACACGCTTATACGTCATTCCC -CCAACACGCTTATACGTCTTCTCG -CCAACACGCTTATACGTCTAGACG -CCAACACGCTTATACGTCGTAACG -CCAACACGCTTATACGTCACTTCG -CCAACACGCTTATACGTCTACGCA -CCAACACGCTTATACGTCCTTGCA -CCAACACGCTTATACGTCCGAACA -CCAACACGCTTATACGTCCAGTCA -CCAACACGCTTATACGTCGATCCA -CCAACACGCTTATACGTCACGACA -CCAACACGCTTATACGTCAGCTCA -CCAACACGCTTATACGTCTCACGT -CCAACACGCTTATACGTCCGTAGT -CCAACACGCTTATACGTCGTCAGT -CCAACACGCTTATACGTCGAAGGT -CCAACACGCTTATACGTCAACCGT -CCAACACGCTTATACGTCTTGTGC -CCAACACGCTTATACGTCCTAAGC -CCAACACGCTTATACGTCACTAGC -CCAACACGCTTATACGTCAGATGC -CCAACACGCTTATACGTCTGAAGG -CCAACACGCTTATACGTCCAATGG -CCAACACGCTTATACGTCATGAGG -CCAACACGCTTATACGTCAATGGG -CCAACACGCTTATACGTCTCCTGA -CCAACACGCTTATACGTCTAGCGA -CCAACACGCTTATACGTCCACAGA -CCAACACGCTTATACGTCGCAAGA -CCAACACGCTTATACGTCGGTTGA -CCAACACGCTTATACGTCTCCGAT -CCAACACGCTTATACGTCTGGCAT -CCAACACGCTTATACGTCCGAGAT -CCAACACGCTTATACGTCTACCAC -CCAACACGCTTATACGTCCAGAAC -CCAACACGCTTATACGTCGTCTAC -CCAACACGCTTATACGTCACGTAC -CCAACACGCTTATACGTCAGTGAC -CCAACACGCTTATACGTCCTGTAG -CCAACACGCTTATACGTCCCTAAG -CCAACACGCTTATACGTCGTTCAG -CCAACACGCTTATACGTCGCATAG -CCAACACGCTTATACGTCGACAAG -CCAACACGCTTATACGTCAAGCAG -CCAACACGCTTATACGTCCGTCAA -CCAACACGCTTATACGTCGCTGAA -CCAACACGCTTATACGTCAGTACG -CCAACACGCTTATACGTCATCCGA -CCAACACGCTTATACGTCATGGGA -CCAACACGCTTATACGTCGTGCAA -CCAACACGCTTATACGTCGAGGAA -CCAACACGCTTATACGTCCAGGTA -CCAACACGCTTATACGTCGACTCT -CCAACACGCTTATACGTCAGTCCT -CCAACACGCTTATACGTCTAAGCC -CCAACACGCTTATACGTCATAGCC -CCAACACGCTTATACGTCTAACCG -CCAACACGCTTATACGTCATGCCA -CCAACACGCTTATACACGGGAAAC -CCAACACGCTTATACACGAACACC -CCAACACGCTTATACACGATCGAG -CCAACACGCTTATACACGCTCCTT -CCAACACGCTTATACACGCCTGTT -CCAACACGCTTATACACGCGGTTT -CCAACACGCTTATACACGGTGGTT -CCAACACGCTTATACACGGCCTTT -CCAACACGCTTATACACGGGTCTT -CCAACACGCTTATACACGACGCTT -CCAACACGCTTATACACGAGCGTT -CCAACACGCTTATACACGTTCGTC -CCAACACGCTTATACACGTCTCTC -CCAACACGCTTATACACGTGGATC -CCAACACGCTTATACACGCACTTC -CCAACACGCTTATACACGGTACTC -CCAACACGCTTATACACGGATGTC -CCAACACGCTTATACACGACAGTC -CCAACACGCTTATACACGTTGCTG -CCAACACGCTTATACACGTCCATG -CCAACACGCTTATACACGTGTGTG -CCAACACGCTTATACACGCTAGTG -CCAACACGCTTATACACGCATCTG -CCAACACGCTTATACACGGAGTTG -CCAACACGCTTATACACGAGACTG -CCAACACGCTTATACACGTCGGTA -CCAACACGCTTATACACGTGCCTA -CCAACACGCTTATACACGCCACTA -CCAACACGCTTATACACGGGAGTA -CCAACACGCTTATACACGTCGTCT -CCAACACGCTTATACACGTGCACT -CCAACACGCTTATACACGCTGACT -CCAACACGCTTATACACGCAACCT -CCAACACGCTTATACACGGCTACT -CCAACACGCTTATACACGGGATCT -CCAACACGCTTATACACGAAGGCT -CCAACACGCTTATACACGTCAACC -CCAACACGCTTATACACGTGTTCC -CCAACACGCTTATACACGATTCCC -CCAACACGCTTATACACGTTCTCG -CCAACACGCTTATACACGTAGACG -CCAACACGCTTATACACGGTAACG -CCAACACGCTTATACACGACTTCG -CCAACACGCTTATACACGTACGCA -CCAACACGCTTATACACGCTTGCA -CCAACACGCTTATACACGCGAACA -CCAACACGCTTATACACGCAGTCA -CCAACACGCTTATACACGGATCCA -CCAACACGCTTATACACGACGACA -CCAACACGCTTATACACGAGCTCA -CCAACACGCTTATACACGTCACGT -CCAACACGCTTATACACGCGTAGT -CCAACACGCTTATACACGGTCAGT -CCAACACGCTTATACACGGAAGGT -CCAACACGCTTATACACGAACCGT -CCAACACGCTTATACACGTTGTGC -CCAACACGCTTATACACGCTAAGC -CCAACACGCTTATACACGACTAGC -CCAACACGCTTATACACGAGATGC -CCAACACGCTTATACACGTGAAGG -CCAACACGCTTATACACGCAATGG -CCAACACGCTTATACACGATGAGG -CCAACACGCTTATACACGAATGGG -CCAACACGCTTATACACGTCCTGA -CCAACACGCTTATACACGTAGCGA -CCAACACGCTTATACACGCACAGA -CCAACACGCTTATACACGGCAAGA -CCAACACGCTTATACACGGGTTGA -CCAACACGCTTATACACGTCCGAT -CCAACACGCTTATACACGTGGCAT -CCAACACGCTTATACACGCGAGAT -CCAACACGCTTATACACGTACCAC -CCAACACGCTTATACACGCAGAAC -CCAACACGCTTATACACGGTCTAC -CCAACACGCTTATACACGACGTAC -CCAACACGCTTATACACGAGTGAC -CCAACACGCTTATACACGCTGTAG -CCAACACGCTTATACACGCCTAAG -CCAACACGCTTATACACGGTTCAG -CCAACACGCTTATACACGGCATAG -CCAACACGCTTATACACGGACAAG -CCAACACGCTTATACACGAAGCAG -CCAACACGCTTATACACGCGTCAA -CCAACACGCTTATACACGGCTGAA -CCAACACGCTTATACACGAGTACG -CCAACACGCTTATACACGATCCGA -CCAACACGCTTATACACGATGGGA -CCAACACGCTTATACACGGTGCAA -CCAACACGCTTATACACGGAGGAA -CCAACACGCTTATACACGCAGGTA -CCAACACGCTTATACACGGACTCT -CCAACACGCTTATACACGAGTCCT -CCAACACGCTTATACACGTAAGCC -CCAACACGCTTATACACGATAGCC -CCAACACGCTTATACACGTAACCG -CCAACACGCTTATACACGATGCCA -CCAACACGCTTAGACAGTGGAAAC -CCAACACGCTTAGACAGTAACACC -CCAACACGCTTAGACAGTATCGAG -CCAACACGCTTAGACAGTCTCCTT -CCAACACGCTTAGACAGTCCTGTT -CCAACACGCTTAGACAGTCGGTTT -CCAACACGCTTAGACAGTGTGGTT -CCAACACGCTTAGACAGTGCCTTT -CCAACACGCTTAGACAGTGGTCTT -CCAACACGCTTAGACAGTACGCTT -CCAACACGCTTAGACAGTAGCGTT -CCAACACGCTTAGACAGTTTCGTC -CCAACACGCTTAGACAGTTCTCTC -CCAACACGCTTAGACAGTTGGATC -CCAACACGCTTAGACAGTCACTTC -CCAACACGCTTAGACAGTGTACTC -CCAACACGCTTAGACAGTGATGTC -CCAACACGCTTAGACAGTACAGTC -CCAACACGCTTAGACAGTTTGCTG -CCAACACGCTTAGACAGTTCCATG -CCAACACGCTTAGACAGTTGTGTG -CCAACACGCTTAGACAGTCTAGTG -CCAACACGCTTAGACAGTCATCTG -CCAACACGCTTAGACAGTGAGTTG -CCAACACGCTTAGACAGTAGACTG -CCAACACGCTTAGACAGTTCGGTA -CCAACACGCTTAGACAGTTGCCTA -CCAACACGCTTAGACAGTCCACTA -CCAACACGCTTAGACAGTGGAGTA -CCAACACGCTTAGACAGTTCGTCT -CCAACACGCTTAGACAGTTGCACT -CCAACACGCTTAGACAGTCTGACT -CCAACACGCTTAGACAGTCAACCT -CCAACACGCTTAGACAGTGCTACT -CCAACACGCTTAGACAGTGGATCT -CCAACACGCTTAGACAGTAAGGCT -CCAACACGCTTAGACAGTTCAACC -CCAACACGCTTAGACAGTTGTTCC -CCAACACGCTTAGACAGTATTCCC -CCAACACGCTTAGACAGTTTCTCG -CCAACACGCTTAGACAGTTAGACG -CCAACACGCTTAGACAGTGTAACG -CCAACACGCTTAGACAGTACTTCG -CCAACACGCTTAGACAGTTACGCA -CCAACACGCTTAGACAGTCTTGCA -CCAACACGCTTAGACAGTCGAACA -CCAACACGCTTAGACAGTCAGTCA -CCAACACGCTTAGACAGTGATCCA -CCAACACGCTTAGACAGTACGACA -CCAACACGCTTAGACAGTAGCTCA -CCAACACGCTTAGACAGTTCACGT -CCAACACGCTTAGACAGTCGTAGT -CCAACACGCTTAGACAGTGTCAGT -CCAACACGCTTAGACAGTGAAGGT -CCAACACGCTTAGACAGTAACCGT -CCAACACGCTTAGACAGTTTGTGC -CCAACACGCTTAGACAGTCTAAGC -CCAACACGCTTAGACAGTACTAGC -CCAACACGCTTAGACAGTAGATGC -CCAACACGCTTAGACAGTTGAAGG -CCAACACGCTTAGACAGTCAATGG -CCAACACGCTTAGACAGTATGAGG -CCAACACGCTTAGACAGTAATGGG -CCAACACGCTTAGACAGTTCCTGA -CCAACACGCTTAGACAGTTAGCGA -CCAACACGCTTAGACAGTCACAGA -CCAACACGCTTAGACAGTGCAAGA -CCAACACGCTTAGACAGTGGTTGA -CCAACACGCTTAGACAGTTCCGAT -CCAACACGCTTAGACAGTTGGCAT -CCAACACGCTTAGACAGTCGAGAT -CCAACACGCTTAGACAGTTACCAC -CCAACACGCTTAGACAGTCAGAAC -CCAACACGCTTAGACAGTGTCTAC -CCAACACGCTTAGACAGTACGTAC -CCAACACGCTTAGACAGTAGTGAC -CCAACACGCTTAGACAGTCTGTAG -CCAACACGCTTAGACAGTCCTAAG -CCAACACGCTTAGACAGTGTTCAG -CCAACACGCTTAGACAGTGCATAG -CCAACACGCTTAGACAGTGACAAG -CCAACACGCTTAGACAGTAAGCAG -CCAACACGCTTAGACAGTCGTCAA -CCAACACGCTTAGACAGTGCTGAA -CCAACACGCTTAGACAGTAGTACG -CCAACACGCTTAGACAGTATCCGA -CCAACACGCTTAGACAGTATGGGA -CCAACACGCTTAGACAGTGTGCAA -CCAACACGCTTAGACAGTGAGGAA -CCAACACGCTTAGACAGTCAGGTA -CCAACACGCTTAGACAGTGACTCT -CCAACACGCTTAGACAGTAGTCCT -CCAACACGCTTAGACAGTTAAGCC -CCAACACGCTTAGACAGTATAGCC -CCAACACGCTTAGACAGTTAACCG -CCAACACGCTTAGACAGTATGCCA -CCAACACGCTTATAGCTGGGAAAC -CCAACACGCTTATAGCTGAACACC -CCAACACGCTTATAGCTGATCGAG -CCAACACGCTTATAGCTGCTCCTT -CCAACACGCTTATAGCTGCCTGTT -CCAACACGCTTATAGCTGCGGTTT -CCAACACGCTTATAGCTGGTGGTT -CCAACACGCTTATAGCTGGCCTTT -CCAACACGCTTATAGCTGGGTCTT -CCAACACGCTTATAGCTGACGCTT -CCAACACGCTTATAGCTGAGCGTT -CCAACACGCTTATAGCTGTTCGTC -CCAACACGCTTATAGCTGTCTCTC -CCAACACGCTTATAGCTGTGGATC -CCAACACGCTTATAGCTGCACTTC -CCAACACGCTTATAGCTGGTACTC -CCAACACGCTTATAGCTGGATGTC -CCAACACGCTTATAGCTGACAGTC -CCAACACGCTTATAGCTGTTGCTG -CCAACACGCTTATAGCTGTCCATG -CCAACACGCTTATAGCTGTGTGTG -CCAACACGCTTATAGCTGCTAGTG -CCAACACGCTTATAGCTGCATCTG -CCAACACGCTTATAGCTGGAGTTG -CCAACACGCTTATAGCTGAGACTG -CCAACACGCTTATAGCTGTCGGTA -CCAACACGCTTATAGCTGTGCCTA -CCAACACGCTTATAGCTGCCACTA -CCAACACGCTTATAGCTGGGAGTA -CCAACACGCTTATAGCTGTCGTCT -CCAACACGCTTATAGCTGTGCACT -CCAACACGCTTATAGCTGCTGACT -CCAACACGCTTATAGCTGCAACCT -CCAACACGCTTATAGCTGGCTACT -CCAACACGCTTATAGCTGGGATCT -CCAACACGCTTATAGCTGAAGGCT -CCAACACGCTTATAGCTGTCAACC -CCAACACGCTTATAGCTGTGTTCC -CCAACACGCTTATAGCTGATTCCC -CCAACACGCTTATAGCTGTTCTCG -CCAACACGCTTATAGCTGTAGACG -CCAACACGCTTATAGCTGGTAACG -CCAACACGCTTATAGCTGACTTCG -CCAACACGCTTATAGCTGTACGCA -CCAACACGCTTATAGCTGCTTGCA -CCAACACGCTTATAGCTGCGAACA -CCAACACGCTTATAGCTGCAGTCA -CCAACACGCTTATAGCTGGATCCA -CCAACACGCTTATAGCTGACGACA -CCAACACGCTTATAGCTGAGCTCA -CCAACACGCTTATAGCTGTCACGT -CCAACACGCTTATAGCTGCGTAGT -CCAACACGCTTATAGCTGGTCAGT -CCAACACGCTTATAGCTGGAAGGT -CCAACACGCTTATAGCTGAACCGT -CCAACACGCTTATAGCTGTTGTGC -CCAACACGCTTATAGCTGCTAAGC -CCAACACGCTTATAGCTGACTAGC -CCAACACGCTTATAGCTGAGATGC -CCAACACGCTTATAGCTGTGAAGG -CCAACACGCTTATAGCTGCAATGG -CCAACACGCTTATAGCTGATGAGG -CCAACACGCTTATAGCTGAATGGG -CCAACACGCTTATAGCTGTCCTGA -CCAACACGCTTATAGCTGTAGCGA -CCAACACGCTTATAGCTGCACAGA -CCAACACGCTTATAGCTGGCAAGA -CCAACACGCTTATAGCTGGGTTGA -CCAACACGCTTATAGCTGTCCGAT -CCAACACGCTTATAGCTGTGGCAT -CCAACACGCTTATAGCTGCGAGAT -CCAACACGCTTATAGCTGTACCAC -CCAACACGCTTATAGCTGCAGAAC -CCAACACGCTTATAGCTGGTCTAC -CCAACACGCTTATAGCTGACGTAC -CCAACACGCTTATAGCTGAGTGAC -CCAACACGCTTATAGCTGCTGTAG -CCAACACGCTTATAGCTGCCTAAG -CCAACACGCTTATAGCTGGTTCAG -CCAACACGCTTATAGCTGGCATAG -CCAACACGCTTATAGCTGGACAAG -CCAACACGCTTATAGCTGAAGCAG -CCAACACGCTTATAGCTGCGTCAA -CCAACACGCTTATAGCTGGCTGAA -CCAACACGCTTATAGCTGAGTACG -CCAACACGCTTATAGCTGATCCGA -CCAACACGCTTATAGCTGATGGGA -CCAACACGCTTATAGCTGGTGCAA -CCAACACGCTTATAGCTGGAGGAA -CCAACACGCTTATAGCTGCAGGTA -CCAACACGCTTATAGCTGGACTCT -CCAACACGCTTATAGCTGAGTCCT -CCAACACGCTTATAGCTGTAAGCC -CCAACACGCTTATAGCTGATAGCC -CCAACACGCTTATAGCTGTAACCG -CCAACACGCTTATAGCTGATGCCA -CCAACACGCTTAAAGCCTGGAAAC -CCAACACGCTTAAAGCCTAACACC -CCAACACGCTTAAAGCCTATCGAG -CCAACACGCTTAAAGCCTCTCCTT -CCAACACGCTTAAAGCCTCCTGTT -CCAACACGCTTAAAGCCTCGGTTT -CCAACACGCTTAAAGCCTGTGGTT -CCAACACGCTTAAAGCCTGCCTTT -CCAACACGCTTAAAGCCTGGTCTT -CCAACACGCTTAAAGCCTACGCTT -CCAACACGCTTAAAGCCTAGCGTT -CCAACACGCTTAAAGCCTTTCGTC -CCAACACGCTTAAAGCCTTCTCTC -CCAACACGCTTAAAGCCTTGGATC -CCAACACGCTTAAAGCCTCACTTC -CCAACACGCTTAAAGCCTGTACTC -CCAACACGCTTAAAGCCTGATGTC -CCAACACGCTTAAAGCCTACAGTC -CCAACACGCTTAAAGCCTTTGCTG -CCAACACGCTTAAAGCCTTCCATG -CCAACACGCTTAAAGCCTTGTGTG -CCAACACGCTTAAAGCCTCTAGTG -CCAACACGCTTAAAGCCTCATCTG -CCAACACGCTTAAAGCCTGAGTTG -CCAACACGCTTAAAGCCTAGACTG -CCAACACGCTTAAAGCCTTCGGTA -CCAACACGCTTAAAGCCTTGCCTA -CCAACACGCTTAAAGCCTCCACTA -CCAACACGCTTAAAGCCTGGAGTA -CCAACACGCTTAAAGCCTTCGTCT -CCAACACGCTTAAAGCCTTGCACT -CCAACACGCTTAAAGCCTCTGACT -CCAACACGCTTAAAGCCTCAACCT -CCAACACGCTTAAAGCCTGCTACT -CCAACACGCTTAAAGCCTGGATCT -CCAACACGCTTAAAGCCTAAGGCT -CCAACACGCTTAAAGCCTTCAACC -CCAACACGCTTAAAGCCTTGTTCC -CCAACACGCTTAAAGCCTATTCCC -CCAACACGCTTAAAGCCTTTCTCG -CCAACACGCTTAAAGCCTTAGACG -CCAACACGCTTAAAGCCTGTAACG -CCAACACGCTTAAAGCCTACTTCG -CCAACACGCTTAAAGCCTTACGCA -CCAACACGCTTAAAGCCTCTTGCA -CCAACACGCTTAAAGCCTCGAACA -CCAACACGCTTAAAGCCTCAGTCA -CCAACACGCTTAAAGCCTGATCCA -CCAACACGCTTAAAGCCTACGACA -CCAACACGCTTAAAGCCTAGCTCA -CCAACACGCTTAAAGCCTTCACGT -CCAACACGCTTAAAGCCTCGTAGT -CCAACACGCTTAAAGCCTGTCAGT -CCAACACGCTTAAAGCCTGAAGGT -CCAACACGCTTAAAGCCTAACCGT -CCAACACGCTTAAAGCCTTTGTGC -CCAACACGCTTAAAGCCTCTAAGC -CCAACACGCTTAAAGCCTACTAGC -CCAACACGCTTAAAGCCTAGATGC -CCAACACGCTTAAAGCCTTGAAGG -CCAACACGCTTAAAGCCTCAATGG -CCAACACGCTTAAAGCCTATGAGG -CCAACACGCTTAAAGCCTAATGGG -CCAACACGCTTAAAGCCTTCCTGA -CCAACACGCTTAAAGCCTTAGCGA -CCAACACGCTTAAAGCCTCACAGA -CCAACACGCTTAAAGCCTGCAAGA -CCAACACGCTTAAAGCCTGGTTGA -CCAACACGCTTAAAGCCTTCCGAT -CCAACACGCTTAAAGCCTTGGCAT -CCAACACGCTTAAAGCCTCGAGAT -CCAACACGCTTAAAGCCTTACCAC -CCAACACGCTTAAAGCCTCAGAAC -CCAACACGCTTAAAGCCTGTCTAC -CCAACACGCTTAAAGCCTACGTAC -CCAACACGCTTAAAGCCTAGTGAC -CCAACACGCTTAAAGCCTCTGTAG -CCAACACGCTTAAAGCCTCCTAAG -CCAACACGCTTAAAGCCTGTTCAG -CCAACACGCTTAAAGCCTGCATAG -CCAACACGCTTAAAGCCTGACAAG -CCAACACGCTTAAAGCCTAAGCAG -CCAACACGCTTAAAGCCTCGTCAA -CCAACACGCTTAAAGCCTGCTGAA -CCAACACGCTTAAAGCCTAGTACG -CCAACACGCTTAAAGCCTATCCGA -CCAACACGCTTAAAGCCTATGGGA -CCAACACGCTTAAAGCCTGTGCAA -CCAACACGCTTAAAGCCTGAGGAA -CCAACACGCTTAAAGCCTCAGGTA -CCAACACGCTTAAAGCCTGACTCT -CCAACACGCTTAAAGCCTAGTCCT -CCAACACGCTTAAAGCCTTAAGCC -CCAACACGCTTAAAGCCTATAGCC -CCAACACGCTTAAAGCCTTAACCG -CCAACACGCTTAAAGCCTATGCCA -CCAACACGCTTACAGGTTGGAAAC -CCAACACGCTTACAGGTTAACACC -CCAACACGCTTACAGGTTATCGAG -CCAACACGCTTACAGGTTCTCCTT -CCAACACGCTTACAGGTTCCTGTT -CCAACACGCTTACAGGTTCGGTTT -CCAACACGCTTACAGGTTGTGGTT -CCAACACGCTTACAGGTTGCCTTT -CCAACACGCTTACAGGTTGGTCTT -CCAACACGCTTACAGGTTACGCTT -CCAACACGCTTACAGGTTAGCGTT -CCAACACGCTTACAGGTTTTCGTC -CCAACACGCTTACAGGTTTCTCTC -CCAACACGCTTACAGGTTTGGATC -CCAACACGCTTACAGGTTCACTTC -CCAACACGCTTACAGGTTGTACTC -CCAACACGCTTACAGGTTGATGTC -CCAACACGCTTACAGGTTACAGTC -CCAACACGCTTACAGGTTTTGCTG -CCAACACGCTTACAGGTTTCCATG -CCAACACGCTTACAGGTTTGTGTG -CCAACACGCTTACAGGTTCTAGTG -CCAACACGCTTACAGGTTCATCTG -CCAACACGCTTACAGGTTGAGTTG -CCAACACGCTTACAGGTTAGACTG -CCAACACGCTTACAGGTTTCGGTA -CCAACACGCTTACAGGTTTGCCTA -CCAACACGCTTACAGGTTCCACTA -CCAACACGCTTACAGGTTGGAGTA -CCAACACGCTTACAGGTTTCGTCT -CCAACACGCTTACAGGTTTGCACT -CCAACACGCTTACAGGTTCTGACT -CCAACACGCTTACAGGTTCAACCT -CCAACACGCTTACAGGTTGCTACT -CCAACACGCTTACAGGTTGGATCT -CCAACACGCTTACAGGTTAAGGCT -CCAACACGCTTACAGGTTTCAACC -CCAACACGCTTACAGGTTTGTTCC -CCAACACGCTTACAGGTTATTCCC -CCAACACGCTTACAGGTTTTCTCG -CCAACACGCTTACAGGTTTAGACG -CCAACACGCTTACAGGTTGTAACG -CCAACACGCTTACAGGTTACTTCG -CCAACACGCTTACAGGTTTACGCA -CCAACACGCTTACAGGTTCTTGCA -CCAACACGCTTACAGGTTCGAACA -CCAACACGCTTACAGGTTCAGTCA -CCAACACGCTTACAGGTTGATCCA -CCAACACGCTTACAGGTTACGACA -CCAACACGCTTACAGGTTAGCTCA -CCAACACGCTTACAGGTTTCACGT -CCAACACGCTTACAGGTTCGTAGT -CCAACACGCTTACAGGTTGTCAGT -CCAACACGCTTACAGGTTGAAGGT -CCAACACGCTTACAGGTTAACCGT -CCAACACGCTTACAGGTTTTGTGC -CCAACACGCTTACAGGTTCTAAGC -CCAACACGCTTACAGGTTACTAGC -CCAACACGCTTACAGGTTAGATGC -CCAACACGCTTACAGGTTTGAAGG -CCAACACGCTTACAGGTTCAATGG -CCAACACGCTTACAGGTTATGAGG -CCAACACGCTTACAGGTTAATGGG -CCAACACGCTTACAGGTTTCCTGA -CCAACACGCTTACAGGTTTAGCGA -CCAACACGCTTACAGGTTCACAGA -CCAACACGCTTACAGGTTGCAAGA -CCAACACGCTTACAGGTTGGTTGA -CCAACACGCTTACAGGTTTCCGAT -CCAACACGCTTACAGGTTTGGCAT -CCAACACGCTTACAGGTTCGAGAT -CCAACACGCTTACAGGTTTACCAC -CCAACACGCTTACAGGTTCAGAAC -CCAACACGCTTACAGGTTGTCTAC -CCAACACGCTTACAGGTTACGTAC -CCAACACGCTTACAGGTTAGTGAC -CCAACACGCTTACAGGTTCTGTAG -CCAACACGCTTACAGGTTCCTAAG -CCAACACGCTTACAGGTTGTTCAG -CCAACACGCTTACAGGTTGCATAG -CCAACACGCTTACAGGTTGACAAG -CCAACACGCTTACAGGTTAAGCAG -CCAACACGCTTACAGGTTCGTCAA -CCAACACGCTTACAGGTTGCTGAA -CCAACACGCTTACAGGTTAGTACG -CCAACACGCTTACAGGTTATCCGA -CCAACACGCTTACAGGTTATGGGA -CCAACACGCTTACAGGTTGTGCAA -CCAACACGCTTACAGGTTGAGGAA -CCAACACGCTTACAGGTTCAGGTA -CCAACACGCTTACAGGTTGACTCT -CCAACACGCTTACAGGTTAGTCCT -CCAACACGCTTACAGGTTTAAGCC -CCAACACGCTTACAGGTTATAGCC -CCAACACGCTTACAGGTTTAACCG -CCAACACGCTTACAGGTTATGCCA -CCAACACGCTTATAGGCAGGAAAC -CCAACACGCTTATAGGCAAACACC -CCAACACGCTTATAGGCAATCGAG -CCAACACGCTTATAGGCACTCCTT -CCAACACGCTTATAGGCACCTGTT -CCAACACGCTTATAGGCACGGTTT -CCAACACGCTTATAGGCAGTGGTT -CCAACACGCTTATAGGCAGCCTTT -CCAACACGCTTATAGGCAGGTCTT -CCAACACGCTTATAGGCAACGCTT -CCAACACGCTTATAGGCAAGCGTT -CCAACACGCTTATAGGCATTCGTC -CCAACACGCTTATAGGCATCTCTC -CCAACACGCTTATAGGCATGGATC -CCAACACGCTTATAGGCACACTTC -CCAACACGCTTATAGGCAGTACTC -CCAACACGCTTATAGGCAGATGTC -CCAACACGCTTATAGGCAACAGTC -CCAACACGCTTATAGGCATTGCTG -CCAACACGCTTATAGGCATCCATG -CCAACACGCTTATAGGCATGTGTG -CCAACACGCTTATAGGCACTAGTG -CCAACACGCTTATAGGCACATCTG -CCAACACGCTTATAGGCAGAGTTG -CCAACACGCTTATAGGCAAGACTG -CCAACACGCTTATAGGCATCGGTA -CCAACACGCTTATAGGCATGCCTA -CCAACACGCTTATAGGCACCACTA -CCAACACGCTTATAGGCAGGAGTA -CCAACACGCTTATAGGCATCGTCT -CCAACACGCTTATAGGCATGCACT -CCAACACGCTTATAGGCACTGACT -CCAACACGCTTATAGGCACAACCT -CCAACACGCTTATAGGCAGCTACT -CCAACACGCTTATAGGCAGGATCT -CCAACACGCTTATAGGCAAAGGCT -CCAACACGCTTATAGGCATCAACC -CCAACACGCTTATAGGCATGTTCC -CCAACACGCTTATAGGCAATTCCC -CCAACACGCTTATAGGCATTCTCG -CCAACACGCTTATAGGCATAGACG -CCAACACGCTTATAGGCAGTAACG -CCAACACGCTTATAGGCAACTTCG -CCAACACGCTTATAGGCATACGCA -CCAACACGCTTATAGGCACTTGCA -CCAACACGCTTATAGGCACGAACA -CCAACACGCTTATAGGCACAGTCA -CCAACACGCTTATAGGCAGATCCA -CCAACACGCTTATAGGCAACGACA -CCAACACGCTTATAGGCAAGCTCA -CCAACACGCTTATAGGCATCACGT -CCAACACGCTTATAGGCACGTAGT -CCAACACGCTTATAGGCAGTCAGT -CCAACACGCTTATAGGCAGAAGGT -CCAACACGCTTATAGGCAAACCGT -CCAACACGCTTATAGGCATTGTGC -CCAACACGCTTATAGGCACTAAGC -CCAACACGCTTATAGGCAACTAGC -CCAACACGCTTATAGGCAAGATGC -CCAACACGCTTATAGGCATGAAGG -CCAACACGCTTATAGGCACAATGG -CCAACACGCTTATAGGCAATGAGG -CCAACACGCTTATAGGCAAATGGG -CCAACACGCTTATAGGCATCCTGA -CCAACACGCTTATAGGCATAGCGA -CCAACACGCTTATAGGCACACAGA -CCAACACGCTTATAGGCAGCAAGA -CCAACACGCTTATAGGCAGGTTGA -CCAACACGCTTATAGGCATCCGAT -CCAACACGCTTATAGGCATGGCAT -CCAACACGCTTATAGGCACGAGAT -CCAACACGCTTATAGGCATACCAC -CCAACACGCTTATAGGCACAGAAC -CCAACACGCTTATAGGCAGTCTAC -CCAACACGCTTATAGGCAACGTAC -CCAACACGCTTATAGGCAAGTGAC -CCAACACGCTTATAGGCACTGTAG -CCAACACGCTTATAGGCACCTAAG -CCAACACGCTTATAGGCAGTTCAG -CCAACACGCTTATAGGCAGCATAG -CCAACACGCTTATAGGCAGACAAG -CCAACACGCTTATAGGCAAAGCAG -CCAACACGCTTATAGGCACGTCAA -CCAACACGCTTATAGGCAGCTGAA -CCAACACGCTTATAGGCAAGTACG -CCAACACGCTTATAGGCAATCCGA -CCAACACGCTTATAGGCAATGGGA -CCAACACGCTTATAGGCAGTGCAA -CCAACACGCTTATAGGCAGAGGAA -CCAACACGCTTATAGGCACAGGTA -CCAACACGCTTATAGGCAGACTCT -CCAACACGCTTATAGGCAAGTCCT -CCAACACGCTTATAGGCATAAGCC -CCAACACGCTTATAGGCAATAGCC -CCAACACGCTTATAGGCATAACCG -CCAACACGCTTATAGGCAATGCCA -CCAACACGCTTAAAGGACGGAAAC -CCAACACGCTTAAAGGACAACACC -CCAACACGCTTAAAGGACATCGAG -CCAACACGCTTAAAGGACCTCCTT -CCAACACGCTTAAAGGACCCTGTT -CCAACACGCTTAAAGGACCGGTTT -CCAACACGCTTAAAGGACGTGGTT -CCAACACGCTTAAAGGACGCCTTT -CCAACACGCTTAAAGGACGGTCTT -CCAACACGCTTAAAGGACACGCTT -CCAACACGCTTAAAGGACAGCGTT -CCAACACGCTTAAAGGACTTCGTC -CCAACACGCTTAAAGGACTCTCTC -CCAACACGCTTAAAGGACTGGATC -CCAACACGCTTAAAGGACCACTTC -CCAACACGCTTAAAGGACGTACTC -CCAACACGCTTAAAGGACGATGTC -CCAACACGCTTAAAGGACACAGTC -CCAACACGCTTAAAGGACTTGCTG -CCAACACGCTTAAAGGACTCCATG -CCAACACGCTTAAAGGACTGTGTG -CCAACACGCTTAAAGGACCTAGTG -CCAACACGCTTAAAGGACCATCTG -CCAACACGCTTAAAGGACGAGTTG -CCAACACGCTTAAAGGACAGACTG -CCAACACGCTTAAAGGACTCGGTA -CCAACACGCTTAAAGGACTGCCTA -CCAACACGCTTAAAGGACCCACTA -CCAACACGCTTAAAGGACGGAGTA -CCAACACGCTTAAAGGACTCGTCT -CCAACACGCTTAAAGGACTGCACT -CCAACACGCTTAAAGGACCTGACT -CCAACACGCTTAAAGGACCAACCT -CCAACACGCTTAAAGGACGCTACT -CCAACACGCTTAAAGGACGGATCT -CCAACACGCTTAAAGGACAAGGCT -CCAACACGCTTAAAGGACTCAACC -CCAACACGCTTAAAGGACTGTTCC -CCAACACGCTTAAAGGACATTCCC -CCAACACGCTTAAAGGACTTCTCG -CCAACACGCTTAAAGGACTAGACG -CCAACACGCTTAAAGGACGTAACG -CCAACACGCTTAAAGGACACTTCG -CCAACACGCTTAAAGGACTACGCA -CCAACACGCTTAAAGGACCTTGCA -CCAACACGCTTAAAGGACCGAACA -CCAACACGCTTAAAGGACCAGTCA -CCAACACGCTTAAAGGACGATCCA -CCAACACGCTTAAAGGACACGACA -CCAACACGCTTAAAGGACAGCTCA -CCAACACGCTTAAAGGACTCACGT -CCAACACGCTTAAAGGACCGTAGT -CCAACACGCTTAAAGGACGTCAGT -CCAACACGCTTAAAGGACGAAGGT -CCAACACGCTTAAAGGACAACCGT -CCAACACGCTTAAAGGACTTGTGC -CCAACACGCTTAAAGGACCTAAGC -CCAACACGCTTAAAGGACACTAGC -CCAACACGCTTAAAGGACAGATGC -CCAACACGCTTAAAGGACTGAAGG -CCAACACGCTTAAAGGACCAATGG -CCAACACGCTTAAAGGACATGAGG -CCAACACGCTTAAAGGACAATGGG -CCAACACGCTTAAAGGACTCCTGA -CCAACACGCTTAAAGGACTAGCGA -CCAACACGCTTAAAGGACCACAGA -CCAACACGCTTAAAGGACGCAAGA -CCAACACGCTTAAAGGACGGTTGA -CCAACACGCTTAAAGGACTCCGAT -CCAACACGCTTAAAGGACTGGCAT -CCAACACGCTTAAAGGACCGAGAT -CCAACACGCTTAAAGGACTACCAC -CCAACACGCTTAAAGGACCAGAAC -CCAACACGCTTAAAGGACGTCTAC -CCAACACGCTTAAAGGACACGTAC -CCAACACGCTTAAAGGACAGTGAC -CCAACACGCTTAAAGGACCTGTAG -CCAACACGCTTAAAGGACCCTAAG -CCAACACGCTTAAAGGACGTTCAG -CCAACACGCTTAAAGGACGCATAG -CCAACACGCTTAAAGGACGACAAG -CCAACACGCTTAAAGGACAAGCAG -CCAACACGCTTAAAGGACCGTCAA -CCAACACGCTTAAAGGACGCTGAA -CCAACACGCTTAAAGGACAGTACG -CCAACACGCTTAAAGGACATCCGA -CCAACACGCTTAAAGGACATGGGA -CCAACACGCTTAAAGGACGTGCAA -CCAACACGCTTAAAGGACGAGGAA -CCAACACGCTTAAAGGACCAGGTA -CCAACACGCTTAAAGGACGACTCT -CCAACACGCTTAAAGGACAGTCCT -CCAACACGCTTAAAGGACTAAGCC -CCAACACGCTTAAAGGACATAGCC -CCAACACGCTTAAAGGACTAACCG -CCAACACGCTTAAAGGACATGCCA -CCAACACGCTTACAGAAGGGAAAC -CCAACACGCTTACAGAAGAACACC -CCAACACGCTTACAGAAGATCGAG -CCAACACGCTTACAGAAGCTCCTT -CCAACACGCTTACAGAAGCCTGTT -CCAACACGCTTACAGAAGCGGTTT -CCAACACGCTTACAGAAGGTGGTT -CCAACACGCTTACAGAAGGCCTTT -CCAACACGCTTACAGAAGGGTCTT -CCAACACGCTTACAGAAGACGCTT -CCAACACGCTTACAGAAGAGCGTT -CCAACACGCTTACAGAAGTTCGTC -CCAACACGCTTACAGAAGTCTCTC -CCAACACGCTTACAGAAGTGGATC -CCAACACGCTTACAGAAGCACTTC -CCAACACGCTTACAGAAGGTACTC -CCAACACGCTTACAGAAGGATGTC -CCAACACGCTTACAGAAGACAGTC -CCAACACGCTTACAGAAGTTGCTG -CCAACACGCTTACAGAAGTCCATG -CCAACACGCTTACAGAAGTGTGTG -CCAACACGCTTACAGAAGCTAGTG -CCAACACGCTTACAGAAGCATCTG -CCAACACGCTTACAGAAGGAGTTG -CCAACACGCTTACAGAAGAGACTG -CCAACACGCTTACAGAAGTCGGTA -CCAACACGCTTACAGAAGTGCCTA -CCAACACGCTTACAGAAGCCACTA -CCAACACGCTTACAGAAGGGAGTA -CCAACACGCTTACAGAAGTCGTCT -CCAACACGCTTACAGAAGTGCACT -CCAACACGCTTACAGAAGCTGACT -CCAACACGCTTACAGAAGCAACCT -CCAACACGCTTACAGAAGGCTACT -CCAACACGCTTACAGAAGGGATCT -CCAACACGCTTACAGAAGAAGGCT -CCAACACGCTTACAGAAGTCAACC -CCAACACGCTTACAGAAGTGTTCC -CCAACACGCTTACAGAAGATTCCC -CCAACACGCTTACAGAAGTTCTCG -CCAACACGCTTACAGAAGTAGACG -CCAACACGCTTACAGAAGGTAACG -CCAACACGCTTACAGAAGACTTCG -CCAACACGCTTACAGAAGTACGCA -CCAACACGCTTACAGAAGCTTGCA -CCAACACGCTTACAGAAGCGAACA -CCAACACGCTTACAGAAGCAGTCA -CCAACACGCTTACAGAAGGATCCA -CCAACACGCTTACAGAAGACGACA -CCAACACGCTTACAGAAGAGCTCA -CCAACACGCTTACAGAAGTCACGT -CCAACACGCTTACAGAAGCGTAGT -CCAACACGCTTACAGAAGGTCAGT -CCAACACGCTTACAGAAGGAAGGT -CCAACACGCTTACAGAAGAACCGT -CCAACACGCTTACAGAAGTTGTGC -CCAACACGCTTACAGAAGCTAAGC -CCAACACGCTTACAGAAGACTAGC -CCAACACGCTTACAGAAGAGATGC -CCAACACGCTTACAGAAGTGAAGG -CCAACACGCTTACAGAAGCAATGG -CCAACACGCTTACAGAAGATGAGG -CCAACACGCTTACAGAAGAATGGG -CCAACACGCTTACAGAAGTCCTGA -CCAACACGCTTACAGAAGTAGCGA -CCAACACGCTTACAGAAGCACAGA -CCAACACGCTTACAGAAGGCAAGA -CCAACACGCTTACAGAAGGGTTGA -CCAACACGCTTACAGAAGTCCGAT -CCAACACGCTTACAGAAGTGGCAT -CCAACACGCTTACAGAAGCGAGAT -CCAACACGCTTACAGAAGTACCAC -CCAACACGCTTACAGAAGCAGAAC -CCAACACGCTTACAGAAGGTCTAC -CCAACACGCTTACAGAAGACGTAC -CCAACACGCTTACAGAAGAGTGAC -CCAACACGCTTACAGAAGCTGTAG -CCAACACGCTTACAGAAGCCTAAG -CCAACACGCTTACAGAAGGTTCAG -CCAACACGCTTACAGAAGGCATAG -CCAACACGCTTACAGAAGGACAAG -CCAACACGCTTACAGAAGAAGCAG -CCAACACGCTTACAGAAGCGTCAA -CCAACACGCTTACAGAAGGCTGAA -CCAACACGCTTACAGAAGAGTACG -CCAACACGCTTACAGAAGATCCGA -CCAACACGCTTACAGAAGATGGGA -CCAACACGCTTACAGAAGGTGCAA -CCAACACGCTTACAGAAGGAGGAA -CCAACACGCTTACAGAAGCAGGTA -CCAACACGCTTACAGAAGGACTCT -CCAACACGCTTACAGAAGAGTCCT -CCAACACGCTTACAGAAGTAAGCC -CCAACACGCTTACAGAAGATAGCC -CCAACACGCTTACAGAAGTAACCG -CCAACACGCTTACAGAAGATGCCA -CCAACACGCTTACAACGTGGAAAC -CCAACACGCTTACAACGTAACACC -CCAACACGCTTACAACGTATCGAG -CCAACACGCTTACAACGTCTCCTT -CCAACACGCTTACAACGTCCTGTT -CCAACACGCTTACAACGTCGGTTT -CCAACACGCTTACAACGTGTGGTT -CCAACACGCTTACAACGTGCCTTT -CCAACACGCTTACAACGTGGTCTT -CCAACACGCTTACAACGTACGCTT -CCAACACGCTTACAACGTAGCGTT -CCAACACGCTTACAACGTTTCGTC -CCAACACGCTTACAACGTTCTCTC -CCAACACGCTTACAACGTTGGATC -CCAACACGCTTACAACGTCACTTC -CCAACACGCTTACAACGTGTACTC -CCAACACGCTTACAACGTGATGTC -CCAACACGCTTACAACGTACAGTC -CCAACACGCTTACAACGTTTGCTG -CCAACACGCTTACAACGTTCCATG -CCAACACGCTTACAACGTTGTGTG -CCAACACGCTTACAACGTCTAGTG -CCAACACGCTTACAACGTCATCTG -CCAACACGCTTACAACGTGAGTTG -CCAACACGCTTACAACGTAGACTG -CCAACACGCTTACAACGTTCGGTA -CCAACACGCTTACAACGTTGCCTA -CCAACACGCTTACAACGTCCACTA -CCAACACGCTTACAACGTGGAGTA -CCAACACGCTTACAACGTTCGTCT -CCAACACGCTTACAACGTTGCACT -CCAACACGCTTACAACGTCTGACT -CCAACACGCTTACAACGTCAACCT -CCAACACGCTTACAACGTGCTACT -CCAACACGCTTACAACGTGGATCT -CCAACACGCTTACAACGTAAGGCT -CCAACACGCTTACAACGTTCAACC -CCAACACGCTTACAACGTTGTTCC -CCAACACGCTTACAACGTATTCCC -CCAACACGCTTACAACGTTTCTCG -CCAACACGCTTACAACGTTAGACG -CCAACACGCTTACAACGTGTAACG -CCAACACGCTTACAACGTACTTCG -CCAACACGCTTACAACGTTACGCA -CCAACACGCTTACAACGTCTTGCA -CCAACACGCTTACAACGTCGAACA -CCAACACGCTTACAACGTCAGTCA -CCAACACGCTTACAACGTGATCCA -CCAACACGCTTACAACGTACGACA -CCAACACGCTTACAACGTAGCTCA -CCAACACGCTTACAACGTTCACGT -CCAACACGCTTACAACGTCGTAGT -CCAACACGCTTACAACGTGTCAGT -CCAACACGCTTACAACGTGAAGGT -CCAACACGCTTACAACGTAACCGT -CCAACACGCTTACAACGTTTGTGC -CCAACACGCTTACAACGTCTAAGC -CCAACACGCTTACAACGTACTAGC -CCAACACGCTTACAACGTAGATGC -CCAACACGCTTACAACGTTGAAGG -CCAACACGCTTACAACGTCAATGG -CCAACACGCTTACAACGTATGAGG -CCAACACGCTTACAACGTAATGGG -CCAACACGCTTACAACGTTCCTGA -CCAACACGCTTACAACGTTAGCGA -CCAACACGCTTACAACGTCACAGA -CCAACACGCTTACAACGTGCAAGA -CCAACACGCTTACAACGTGGTTGA -CCAACACGCTTACAACGTTCCGAT -CCAACACGCTTACAACGTTGGCAT -CCAACACGCTTACAACGTCGAGAT -CCAACACGCTTACAACGTTACCAC -CCAACACGCTTACAACGTCAGAAC -CCAACACGCTTACAACGTGTCTAC -CCAACACGCTTACAACGTACGTAC -CCAACACGCTTACAACGTAGTGAC -CCAACACGCTTACAACGTCTGTAG -CCAACACGCTTACAACGTCCTAAG -CCAACACGCTTACAACGTGTTCAG -CCAACACGCTTACAACGTGCATAG -CCAACACGCTTACAACGTGACAAG -CCAACACGCTTACAACGTAAGCAG -CCAACACGCTTACAACGTCGTCAA -CCAACACGCTTACAACGTGCTGAA -CCAACACGCTTACAACGTAGTACG -CCAACACGCTTACAACGTATCCGA -CCAACACGCTTACAACGTATGGGA -CCAACACGCTTACAACGTGTGCAA -CCAACACGCTTACAACGTGAGGAA -CCAACACGCTTACAACGTCAGGTA -CCAACACGCTTACAACGTGACTCT -CCAACACGCTTACAACGTAGTCCT -CCAACACGCTTACAACGTTAAGCC -CCAACACGCTTACAACGTATAGCC -CCAACACGCTTACAACGTTAACCG -CCAACACGCTTACAACGTATGCCA -CCAACACGCTTAGAAGCTGGAAAC -CCAACACGCTTAGAAGCTAACACC -CCAACACGCTTAGAAGCTATCGAG -CCAACACGCTTAGAAGCTCTCCTT -CCAACACGCTTAGAAGCTCCTGTT -CCAACACGCTTAGAAGCTCGGTTT -CCAACACGCTTAGAAGCTGTGGTT -CCAACACGCTTAGAAGCTGCCTTT -CCAACACGCTTAGAAGCTGGTCTT -CCAACACGCTTAGAAGCTACGCTT -CCAACACGCTTAGAAGCTAGCGTT -CCAACACGCTTAGAAGCTTTCGTC -CCAACACGCTTAGAAGCTTCTCTC -CCAACACGCTTAGAAGCTTGGATC -CCAACACGCTTAGAAGCTCACTTC -CCAACACGCTTAGAAGCTGTACTC -CCAACACGCTTAGAAGCTGATGTC -CCAACACGCTTAGAAGCTACAGTC -CCAACACGCTTAGAAGCTTTGCTG -CCAACACGCTTAGAAGCTTCCATG -CCAACACGCTTAGAAGCTTGTGTG -CCAACACGCTTAGAAGCTCTAGTG -CCAACACGCTTAGAAGCTCATCTG -CCAACACGCTTAGAAGCTGAGTTG -CCAACACGCTTAGAAGCTAGACTG -CCAACACGCTTAGAAGCTTCGGTA -CCAACACGCTTAGAAGCTTGCCTA -CCAACACGCTTAGAAGCTCCACTA -CCAACACGCTTAGAAGCTGGAGTA -CCAACACGCTTAGAAGCTTCGTCT -CCAACACGCTTAGAAGCTTGCACT -CCAACACGCTTAGAAGCTCTGACT -CCAACACGCTTAGAAGCTCAACCT -CCAACACGCTTAGAAGCTGCTACT -CCAACACGCTTAGAAGCTGGATCT -CCAACACGCTTAGAAGCTAAGGCT -CCAACACGCTTAGAAGCTTCAACC -CCAACACGCTTAGAAGCTTGTTCC -CCAACACGCTTAGAAGCTATTCCC -CCAACACGCTTAGAAGCTTTCTCG -CCAACACGCTTAGAAGCTTAGACG -CCAACACGCTTAGAAGCTGTAACG -CCAACACGCTTAGAAGCTACTTCG -CCAACACGCTTAGAAGCTTACGCA -CCAACACGCTTAGAAGCTCTTGCA -CCAACACGCTTAGAAGCTCGAACA -CCAACACGCTTAGAAGCTCAGTCA -CCAACACGCTTAGAAGCTGATCCA -CCAACACGCTTAGAAGCTACGACA -CCAACACGCTTAGAAGCTAGCTCA -CCAACACGCTTAGAAGCTTCACGT -CCAACACGCTTAGAAGCTCGTAGT -CCAACACGCTTAGAAGCTGTCAGT -CCAACACGCTTAGAAGCTGAAGGT -CCAACACGCTTAGAAGCTAACCGT -CCAACACGCTTAGAAGCTTTGTGC -CCAACACGCTTAGAAGCTCTAAGC -CCAACACGCTTAGAAGCTACTAGC -CCAACACGCTTAGAAGCTAGATGC -CCAACACGCTTAGAAGCTTGAAGG -CCAACACGCTTAGAAGCTCAATGG -CCAACACGCTTAGAAGCTATGAGG -CCAACACGCTTAGAAGCTAATGGG -CCAACACGCTTAGAAGCTTCCTGA -CCAACACGCTTAGAAGCTTAGCGA -CCAACACGCTTAGAAGCTCACAGA -CCAACACGCTTAGAAGCTGCAAGA -CCAACACGCTTAGAAGCTGGTTGA -CCAACACGCTTAGAAGCTTCCGAT -CCAACACGCTTAGAAGCTTGGCAT -CCAACACGCTTAGAAGCTCGAGAT -CCAACACGCTTAGAAGCTTACCAC -CCAACACGCTTAGAAGCTCAGAAC -CCAACACGCTTAGAAGCTGTCTAC -CCAACACGCTTAGAAGCTACGTAC -CCAACACGCTTAGAAGCTAGTGAC -CCAACACGCTTAGAAGCTCTGTAG -CCAACACGCTTAGAAGCTCCTAAG -CCAACACGCTTAGAAGCTGTTCAG -CCAACACGCTTAGAAGCTGCATAG -CCAACACGCTTAGAAGCTGACAAG -CCAACACGCTTAGAAGCTAAGCAG -CCAACACGCTTAGAAGCTCGTCAA -CCAACACGCTTAGAAGCTGCTGAA -CCAACACGCTTAGAAGCTAGTACG -CCAACACGCTTAGAAGCTATCCGA -CCAACACGCTTAGAAGCTATGGGA -CCAACACGCTTAGAAGCTGTGCAA -CCAACACGCTTAGAAGCTGAGGAA -CCAACACGCTTAGAAGCTCAGGTA -CCAACACGCTTAGAAGCTGACTCT -CCAACACGCTTAGAAGCTAGTCCT -CCAACACGCTTAGAAGCTTAAGCC -CCAACACGCTTAGAAGCTATAGCC -CCAACACGCTTAGAAGCTTAACCG -CCAACACGCTTAGAAGCTATGCCA -CCAACACGCTTAACGAGTGGAAAC -CCAACACGCTTAACGAGTAACACC -CCAACACGCTTAACGAGTATCGAG -CCAACACGCTTAACGAGTCTCCTT -CCAACACGCTTAACGAGTCCTGTT -CCAACACGCTTAACGAGTCGGTTT -CCAACACGCTTAACGAGTGTGGTT -CCAACACGCTTAACGAGTGCCTTT -CCAACACGCTTAACGAGTGGTCTT -CCAACACGCTTAACGAGTACGCTT -CCAACACGCTTAACGAGTAGCGTT -CCAACACGCTTAACGAGTTTCGTC -CCAACACGCTTAACGAGTTCTCTC -CCAACACGCTTAACGAGTTGGATC -CCAACACGCTTAACGAGTCACTTC -CCAACACGCTTAACGAGTGTACTC -CCAACACGCTTAACGAGTGATGTC -CCAACACGCTTAACGAGTACAGTC -CCAACACGCTTAACGAGTTTGCTG -CCAACACGCTTAACGAGTTCCATG -CCAACACGCTTAACGAGTTGTGTG -CCAACACGCTTAACGAGTCTAGTG -CCAACACGCTTAACGAGTCATCTG -CCAACACGCTTAACGAGTGAGTTG -CCAACACGCTTAACGAGTAGACTG -CCAACACGCTTAACGAGTTCGGTA -CCAACACGCTTAACGAGTTGCCTA -CCAACACGCTTAACGAGTCCACTA -CCAACACGCTTAACGAGTGGAGTA -CCAACACGCTTAACGAGTTCGTCT -CCAACACGCTTAACGAGTTGCACT -CCAACACGCTTAACGAGTCTGACT -CCAACACGCTTAACGAGTCAACCT -CCAACACGCTTAACGAGTGCTACT -CCAACACGCTTAACGAGTGGATCT -CCAACACGCTTAACGAGTAAGGCT -CCAACACGCTTAACGAGTTCAACC -CCAACACGCTTAACGAGTTGTTCC -CCAACACGCTTAACGAGTATTCCC -CCAACACGCTTAACGAGTTTCTCG -CCAACACGCTTAACGAGTTAGACG -CCAACACGCTTAACGAGTGTAACG -CCAACACGCTTAACGAGTACTTCG -CCAACACGCTTAACGAGTTACGCA -CCAACACGCTTAACGAGTCTTGCA -CCAACACGCTTAACGAGTCGAACA -CCAACACGCTTAACGAGTCAGTCA -CCAACACGCTTAACGAGTGATCCA -CCAACACGCTTAACGAGTACGACA -CCAACACGCTTAACGAGTAGCTCA -CCAACACGCTTAACGAGTTCACGT -CCAACACGCTTAACGAGTCGTAGT -CCAACACGCTTAACGAGTGTCAGT -CCAACACGCTTAACGAGTGAAGGT -CCAACACGCTTAACGAGTAACCGT -CCAACACGCTTAACGAGTTTGTGC -CCAACACGCTTAACGAGTCTAAGC -CCAACACGCTTAACGAGTACTAGC -CCAACACGCTTAACGAGTAGATGC -CCAACACGCTTAACGAGTTGAAGG -CCAACACGCTTAACGAGTCAATGG -CCAACACGCTTAACGAGTATGAGG -CCAACACGCTTAACGAGTAATGGG -CCAACACGCTTAACGAGTTCCTGA -CCAACACGCTTAACGAGTTAGCGA -CCAACACGCTTAACGAGTCACAGA -CCAACACGCTTAACGAGTGCAAGA -CCAACACGCTTAACGAGTGGTTGA -CCAACACGCTTAACGAGTTCCGAT -CCAACACGCTTAACGAGTTGGCAT -CCAACACGCTTAACGAGTCGAGAT -CCAACACGCTTAACGAGTTACCAC -CCAACACGCTTAACGAGTCAGAAC -CCAACACGCTTAACGAGTGTCTAC -CCAACACGCTTAACGAGTACGTAC -CCAACACGCTTAACGAGTAGTGAC -CCAACACGCTTAACGAGTCTGTAG -CCAACACGCTTAACGAGTCCTAAG -CCAACACGCTTAACGAGTGTTCAG -CCAACACGCTTAACGAGTGCATAG -CCAACACGCTTAACGAGTGACAAG -CCAACACGCTTAACGAGTAAGCAG -CCAACACGCTTAACGAGTCGTCAA -CCAACACGCTTAACGAGTGCTGAA -CCAACACGCTTAACGAGTAGTACG -CCAACACGCTTAACGAGTATCCGA -CCAACACGCTTAACGAGTATGGGA -CCAACACGCTTAACGAGTGTGCAA -CCAACACGCTTAACGAGTGAGGAA -CCAACACGCTTAACGAGTCAGGTA -CCAACACGCTTAACGAGTGACTCT -CCAACACGCTTAACGAGTAGTCCT -CCAACACGCTTAACGAGTTAAGCC -CCAACACGCTTAACGAGTATAGCC -CCAACACGCTTAACGAGTTAACCG -CCAACACGCTTAACGAGTATGCCA -CCAACACGCTTACGAATCGGAAAC -CCAACACGCTTACGAATCAACACC -CCAACACGCTTACGAATCATCGAG -CCAACACGCTTACGAATCCTCCTT -CCAACACGCTTACGAATCCCTGTT -CCAACACGCTTACGAATCCGGTTT -CCAACACGCTTACGAATCGTGGTT -CCAACACGCTTACGAATCGCCTTT -CCAACACGCTTACGAATCGGTCTT -CCAACACGCTTACGAATCACGCTT -CCAACACGCTTACGAATCAGCGTT -CCAACACGCTTACGAATCTTCGTC -CCAACACGCTTACGAATCTCTCTC -CCAACACGCTTACGAATCTGGATC -CCAACACGCTTACGAATCCACTTC -CCAACACGCTTACGAATCGTACTC -CCAACACGCTTACGAATCGATGTC -CCAACACGCTTACGAATCACAGTC -CCAACACGCTTACGAATCTTGCTG -CCAACACGCTTACGAATCTCCATG -CCAACACGCTTACGAATCTGTGTG -CCAACACGCTTACGAATCCTAGTG -CCAACACGCTTACGAATCCATCTG -CCAACACGCTTACGAATCGAGTTG -CCAACACGCTTACGAATCAGACTG -CCAACACGCTTACGAATCTCGGTA -CCAACACGCTTACGAATCTGCCTA -CCAACACGCTTACGAATCCCACTA -CCAACACGCTTACGAATCGGAGTA -CCAACACGCTTACGAATCTCGTCT -CCAACACGCTTACGAATCTGCACT -CCAACACGCTTACGAATCCTGACT -CCAACACGCTTACGAATCCAACCT -CCAACACGCTTACGAATCGCTACT -CCAACACGCTTACGAATCGGATCT -CCAACACGCTTACGAATCAAGGCT -CCAACACGCTTACGAATCTCAACC -CCAACACGCTTACGAATCTGTTCC -CCAACACGCTTACGAATCATTCCC -CCAACACGCTTACGAATCTTCTCG -CCAACACGCTTACGAATCTAGACG -CCAACACGCTTACGAATCGTAACG -CCAACACGCTTACGAATCACTTCG -CCAACACGCTTACGAATCTACGCA -CCAACACGCTTACGAATCCTTGCA -CCAACACGCTTACGAATCCGAACA -CCAACACGCTTACGAATCCAGTCA -CCAACACGCTTACGAATCGATCCA -CCAACACGCTTACGAATCACGACA -CCAACACGCTTACGAATCAGCTCA -CCAACACGCTTACGAATCTCACGT -CCAACACGCTTACGAATCCGTAGT -CCAACACGCTTACGAATCGTCAGT -CCAACACGCTTACGAATCGAAGGT -CCAACACGCTTACGAATCAACCGT -CCAACACGCTTACGAATCTTGTGC -CCAACACGCTTACGAATCCTAAGC -CCAACACGCTTACGAATCACTAGC -CCAACACGCTTACGAATCAGATGC -CCAACACGCTTACGAATCTGAAGG -CCAACACGCTTACGAATCCAATGG -CCAACACGCTTACGAATCATGAGG -CCAACACGCTTACGAATCAATGGG -CCAACACGCTTACGAATCTCCTGA -CCAACACGCTTACGAATCTAGCGA -CCAACACGCTTACGAATCCACAGA -CCAACACGCTTACGAATCGCAAGA -CCAACACGCTTACGAATCGGTTGA -CCAACACGCTTACGAATCTCCGAT -CCAACACGCTTACGAATCTGGCAT -CCAACACGCTTACGAATCCGAGAT -CCAACACGCTTACGAATCTACCAC -CCAACACGCTTACGAATCCAGAAC -CCAACACGCTTACGAATCGTCTAC -CCAACACGCTTACGAATCACGTAC -CCAACACGCTTACGAATCAGTGAC -CCAACACGCTTACGAATCCTGTAG -CCAACACGCTTACGAATCCCTAAG -CCAACACGCTTACGAATCGTTCAG -CCAACACGCTTACGAATCGCATAG -CCAACACGCTTACGAATCGACAAG -CCAACACGCTTACGAATCAAGCAG -CCAACACGCTTACGAATCCGTCAA -CCAACACGCTTACGAATCGCTGAA -CCAACACGCTTACGAATCAGTACG -CCAACACGCTTACGAATCATCCGA -CCAACACGCTTACGAATCATGGGA -CCAACACGCTTACGAATCGTGCAA -CCAACACGCTTACGAATCGAGGAA -CCAACACGCTTACGAATCCAGGTA -CCAACACGCTTACGAATCGACTCT -CCAACACGCTTACGAATCAGTCCT -CCAACACGCTTACGAATCTAAGCC -CCAACACGCTTACGAATCATAGCC -CCAACACGCTTACGAATCTAACCG -CCAACACGCTTACGAATCATGCCA -CCAACACGCTTAGGAATGGGAAAC -CCAACACGCTTAGGAATGAACACC -CCAACACGCTTAGGAATGATCGAG -CCAACACGCTTAGGAATGCTCCTT -CCAACACGCTTAGGAATGCCTGTT -CCAACACGCTTAGGAATGCGGTTT -CCAACACGCTTAGGAATGGTGGTT -CCAACACGCTTAGGAATGGCCTTT -CCAACACGCTTAGGAATGGGTCTT -CCAACACGCTTAGGAATGACGCTT -CCAACACGCTTAGGAATGAGCGTT -CCAACACGCTTAGGAATGTTCGTC -CCAACACGCTTAGGAATGTCTCTC -CCAACACGCTTAGGAATGTGGATC -CCAACACGCTTAGGAATGCACTTC -CCAACACGCTTAGGAATGGTACTC -CCAACACGCTTAGGAATGGATGTC -CCAACACGCTTAGGAATGACAGTC -CCAACACGCTTAGGAATGTTGCTG -CCAACACGCTTAGGAATGTCCATG -CCAACACGCTTAGGAATGTGTGTG -CCAACACGCTTAGGAATGCTAGTG -CCAACACGCTTAGGAATGCATCTG -CCAACACGCTTAGGAATGGAGTTG -CCAACACGCTTAGGAATGAGACTG -CCAACACGCTTAGGAATGTCGGTA -CCAACACGCTTAGGAATGTGCCTA -CCAACACGCTTAGGAATGCCACTA -CCAACACGCTTAGGAATGGGAGTA -CCAACACGCTTAGGAATGTCGTCT -CCAACACGCTTAGGAATGTGCACT -CCAACACGCTTAGGAATGCTGACT -CCAACACGCTTAGGAATGCAACCT -CCAACACGCTTAGGAATGGCTACT -CCAACACGCTTAGGAATGGGATCT -CCAACACGCTTAGGAATGAAGGCT -CCAACACGCTTAGGAATGTCAACC -CCAACACGCTTAGGAATGTGTTCC -CCAACACGCTTAGGAATGATTCCC -CCAACACGCTTAGGAATGTTCTCG -CCAACACGCTTAGGAATGTAGACG -CCAACACGCTTAGGAATGGTAACG -CCAACACGCTTAGGAATGACTTCG -CCAACACGCTTAGGAATGTACGCA -CCAACACGCTTAGGAATGCTTGCA -CCAACACGCTTAGGAATGCGAACA -CCAACACGCTTAGGAATGCAGTCA -CCAACACGCTTAGGAATGGATCCA -CCAACACGCTTAGGAATGACGACA -CCAACACGCTTAGGAATGAGCTCA -CCAACACGCTTAGGAATGTCACGT -CCAACACGCTTAGGAATGCGTAGT -CCAACACGCTTAGGAATGGTCAGT -CCAACACGCTTAGGAATGGAAGGT -CCAACACGCTTAGGAATGAACCGT -CCAACACGCTTAGGAATGTTGTGC -CCAACACGCTTAGGAATGCTAAGC -CCAACACGCTTAGGAATGACTAGC -CCAACACGCTTAGGAATGAGATGC -CCAACACGCTTAGGAATGTGAAGG -CCAACACGCTTAGGAATGCAATGG -CCAACACGCTTAGGAATGATGAGG -CCAACACGCTTAGGAATGAATGGG -CCAACACGCTTAGGAATGTCCTGA -CCAACACGCTTAGGAATGTAGCGA -CCAACACGCTTAGGAATGCACAGA -CCAACACGCTTAGGAATGGCAAGA -CCAACACGCTTAGGAATGGGTTGA -CCAACACGCTTAGGAATGTCCGAT -CCAACACGCTTAGGAATGTGGCAT -CCAACACGCTTAGGAATGCGAGAT -CCAACACGCTTAGGAATGTACCAC -CCAACACGCTTAGGAATGCAGAAC -CCAACACGCTTAGGAATGGTCTAC -CCAACACGCTTAGGAATGACGTAC -CCAACACGCTTAGGAATGAGTGAC -CCAACACGCTTAGGAATGCTGTAG -CCAACACGCTTAGGAATGCCTAAG -CCAACACGCTTAGGAATGGTTCAG -CCAACACGCTTAGGAATGGCATAG -CCAACACGCTTAGGAATGGACAAG -CCAACACGCTTAGGAATGAAGCAG -CCAACACGCTTAGGAATGCGTCAA -CCAACACGCTTAGGAATGGCTGAA -CCAACACGCTTAGGAATGAGTACG -CCAACACGCTTAGGAATGATCCGA -CCAACACGCTTAGGAATGATGGGA -CCAACACGCTTAGGAATGGTGCAA -CCAACACGCTTAGGAATGGAGGAA -CCAACACGCTTAGGAATGCAGGTA -CCAACACGCTTAGGAATGGACTCT -CCAACACGCTTAGGAATGAGTCCT -CCAACACGCTTAGGAATGTAAGCC -CCAACACGCTTAGGAATGATAGCC -CCAACACGCTTAGGAATGTAACCG -CCAACACGCTTAGGAATGATGCCA -CCAACACGCTTACAAGTGGGAAAC -CCAACACGCTTACAAGTGAACACC -CCAACACGCTTACAAGTGATCGAG -CCAACACGCTTACAAGTGCTCCTT -CCAACACGCTTACAAGTGCCTGTT -CCAACACGCTTACAAGTGCGGTTT -CCAACACGCTTACAAGTGGTGGTT -CCAACACGCTTACAAGTGGCCTTT -CCAACACGCTTACAAGTGGGTCTT -CCAACACGCTTACAAGTGACGCTT -CCAACACGCTTACAAGTGAGCGTT -CCAACACGCTTACAAGTGTTCGTC -CCAACACGCTTACAAGTGTCTCTC -CCAACACGCTTACAAGTGTGGATC -CCAACACGCTTACAAGTGCACTTC -CCAACACGCTTACAAGTGGTACTC -CCAACACGCTTACAAGTGGATGTC -CCAACACGCTTACAAGTGACAGTC -CCAACACGCTTACAAGTGTTGCTG -CCAACACGCTTACAAGTGTCCATG -CCAACACGCTTACAAGTGTGTGTG -CCAACACGCTTACAAGTGCTAGTG -CCAACACGCTTACAAGTGCATCTG -CCAACACGCTTACAAGTGGAGTTG -CCAACACGCTTACAAGTGAGACTG -CCAACACGCTTACAAGTGTCGGTA -CCAACACGCTTACAAGTGTGCCTA -CCAACACGCTTACAAGTGCCACTA -CCAACACGCTTACAAGTGGGAGTA -CCAACACGCTTACAAGTGTCGTCT -CCAACACGCTTACAAGTGTGCACT -CCAACACGCTTACAAGTGCTGACT -CCAACACGCTTACAAGTGCAACCT -CCAACACGCTTACAAGTGGCTACT -CCAACACGCTTACAAGTGGGATCT -CCAACACGCTTACAAGTGAAGGCT -CCAACACGCTTACAAGTGTCAACC -CCAACACGCTTACAAGTGTGTTCC -CCAACACGCTTACAAGTGATTCCC -CCAACACGCTTACAAGTGTTCTCG -CCAACACGCTTACAAGTGTAGACG -CCAACACGCTTACAAGTGGTAACG -CCAACACGCTTACAAGTGACTTCG -CCAACACGCTTACAAGTGTACGCA -CCAACACGCTTACAAGTGCTTGCA -CCAACACGCTTACAAGTGCGAACA -CCAACACGCTTACAAGTGCAGTCA -CCAACACGCTTACAAGTGGATCCA -CCAACACGCTTACAAGTGACGACA -CCAACACGCTTACAAGTGAGCTCA -CCAACACGCTTACAAGTGTCACGT -CCAACACGCTTACAAGTGCGTAGT -CCAACACGCTTACAAGTGGTCAGT -CCAACACGCTTACAAGTGGAAGGT -CCAACACGCTTACAAGTGAACCGT -CCAACACGCTTACAAGTGTTGTGC -CCAACACGCTTACAAGTGCTAAGC -CCAACACGCTTACAAGTGACTAGC -CCAACACGCTTACAAGTGAGATGC -CCAACACGCTTACAAGTGTGAAGG -CCAACACGCTTACAAGTGCAATGG -CCAACACGCTTACAAGTGATGAGG -CCAACACGCTTACAAGTGAATGGG -CCAACACGCTTACAAGTGTCCTGA -CCAACACGCTTACAAGTGTAGCGA -CCAACACGCTTACAAGTGCACAGA -CCAACACGCTTACAAGTGGCAAGA -CCAACACGCTTACAAGTGGGTTGA -CCAACACGCTTACAAGTGTCCGAT -CCAACACGCTTACAAGTGTGGCAT -CCAACACGCTTACAAGTGCGAGAT -CCAACACGCTTACAAGTGTACCAC -CCAACACGCTTACAAGTGCAGAAC -CCAACACGCTTACAAGTGGTCTAC -CCAACACGCTTACAAGTGACGTAC -CCAACACGCTTACAAGTGAGTGAC -CCAACACGCTTACAAGTGCTGTAG -CCAACACGCTTACAAGTGCCTAAG -CCAACACGCTTACAAGTGGTTCAG -CCAACACGCTTACAAGTGGCATAG -CCAACACGCTTACAAGTGGACAAG -CCAACACGCTTACAAGTGAAGCAG -CCAACACGCTTACAAGTGCGTCAA -CCAACACGCTTACAAGTGGCTGAA -CCAACACGCTTACAAGTGAGTACG -CCAACACGCTTACAAGTGATCCGA -CCAACACGCTTACAAGTGATGGGA -CCAACACGCTTACAAGTGGTGCAA -CCAACACGCTTACAAGTGGAGGAA -CCAACACGCTTACAAGTGCAGGTA -CCAACACGCTTACAAGTGGACTCT -CCAACACGCTTACAAGTGAGTCCT -CCAACACGCTTACAAGTGTAAGCC -CCAACACGCTTACAAGTGATAGCC -CCAACACGCTTACAAGTGTAACCG -CCAACACGCTTACAAGTGATGCCA -CCAACACGCTTAGAAGAGGGAAAC -CCAACACGCTTAGAAGAGAACACC -CCAACACGCTTAGAAGAGATCGAG -CCAACACGCTTAGAAGAGCTCCTT -CCAACACGCTTAGAAGAGCCTGTT -CCAACACGCTTAGAAGAGCGGTTT -CCAACACGCTTAGAAGAGGTGGTT -CCAACACGCTTAGAAGAGGCCTTT -CCAACACGCTTAGAAGAGGGTCTT -CCAACACGCTTAGAAGAGACGCTT -CCAACACGCTTAGAAGAGAGCGTT -CCAACACGCTTAGAAGAGTTCGTC -CCAACACGCTTAGAAGAGTCTCTC -CCAACACGCTTAGAAGAGTGGATC -CCAACACGCTTAGAAGAGCACTTC -CCAACACGCTTAGAAGAGGTACTC -CCAACACGCTTAGAAGAGGATGTC -CCAACACGCTTAGAAGAGACAGTC -CCAACACGCTTAGAAGAGTTGCTG -CCAACACGCTTAGAAGAGTCCATG -CCAACACGCTTAGAAGAGTGTGTG -CCAACACGCTTAGAAGAGCTAGTG -CCAACACGCTTAGAAGAGCATCTG -CCAACACGCTTAGAAGAGGAGTTG -CCAACACGCTTAGAAGAGAGACTG -CCAACACGCTTAGAAGAGTCGGTA -CCAACACGCTTAGAAGAGTGCCTA -CCAACACGCTTAGAAGAGCCACTA -CCAACACGCTTAGAAGAGGGAGTA -CCAACACGCTTAGAAGAGTCGTCT -CCAACACGCTTAGAAGAGTGCACT -CCAACACGCTTAGAAGAGCTGACT -CCAACACGCTTAGAAGAGCAACCT -CCAACACGCTTAGAAGAGGCTACT -CCAACACGCTTAGAAGAGGGATCT -CCAACACGCTTAGAAGAGAAGGCT -CCAACACGCTTAGAAGAGTCAACC -CCAACACGCTTAGAAGAGTGTTCC -CCAACACGCTTAGAAGAGATTCCC -CCAACACGCTTAGAAGAGTTCTCG -CCAACACGCTTAGAAGAGTAGACG -CCAACACGCTTAGAAGAGGTAACG -CCAACACGCTTAGAAGAGACTTCG -CCAACACGCTTAGAAGAGTACGCA -CCAACACGCTTAGAAGAGCTTGCA -CCAACACGCTTAGAAGAGCGAACA -CCAACACGCTTAGAAGAGCAGTCA -CCAACACGCTTAGAAGAGGATCCA -CCAACACGCTTAGAAGAGACGACA -CCAACACGCTTAGAAGAGAGCTCA -CCAACACGCTTAGAAGAGTCACGT -CCAACACGCTTAGAAGAGCGTAGT -CCAACACGCTTAGAAGAGGTCAGT -CCAACACGCTTAGAAGAGGAAGGT -CCAACACGCTTAGAAGAGAACCGT -CCAACACGCTTAGAAGAGTTGTGC -CCAACACGCTTAGAAGAGCTAAGC -CCAACACGCTTAGAAGAGACTAGC -CCAACACGCTTAGAAGAGAGATGC -CCAACACGCTTAGAAGAGTGAAGG -CCAACACGCTTAGAAGAGCAATGG -CCAACACGCTTAGAAGAGATGAGG -CCAACACGCTTAGAAGAGAATGGG -CCAACACGCTTAGAAGAGTCCTGA -CCAACACGCTTAGAAGAGTAGCGA -CCAACACGCTTAGAAGAGCACAGA -CCAACACGCTTAGAAGAGGCAAGA -CCAACACGCTTAGAAGAGGGTTGA -CCAACACGCTTAGAAGAGTCCGAT -CCAACACGCTTAGAAGAGTGGCAT -CCAACACGCTTAGAAGAGCGAGAT -CCAACACGCTTAGAAGAGTACCAC -CCAACACGCTTAGAAGAGCAGAAC -CCAACACGCTTAGAAGAGGTCTAC -CCAACACGCTTAGAAGAGACGTAC -CCAACACGCTTAGAAGAGAGTGAC -CCAACACGCTTAGAAGAGCTGTAG -CCAACACGCTTAGAAGAGCCTAAG -CCAACACGCTTAGAAGAGGTTCAG -CCAACACGCTTAGAAGAGGCATAG -CCAACACGCTTAGAAGAGGACAAG -CCAACACGCTTAGAAGAGAAGCAG -CCAACACGCTTAGAAGAGCGTCAA -CCAACACGCTTAGAAGAGGCTGAA -CCAACACGCTTAGAAGAGAGTACG -CCAACACGCTTAGAAGAGATCCGA -CCAACACGCTTAGAAGAGATGGGA -CCAACACGCTTAGAAGAGGTGCAA -CCAACACGCTTAGAAGAGGAGGAA -CCAACACGCTTAGAAGAGCAGGTA -CCAACACGCTTAGAAGAGGACTCT -CCAACACGCTTAGAAGAGAGTCCT -CCAACACGCTTAGAAGAGTAAGCC -CCAACACGCTTAGAAGAGATAGCC -CCAACACGCTTAGAAGAGTAACCG -CCAACACGCTTAGAAGAGATGCCA -CCAACACGCTTAGTACAGGGAAAC -CCAACACGCTTAGTACAGAACACC -CCAACACGCTTAGTACAGATCGAG -CCAACACGCTTAGTACAGCTCCTT -CCAACACGCTTAGTACAGCCTGTT -CCAACACGCTTAGTACAGCGGTTT -CCAACACGCTTAGTACAGGTGGTT -CCAACACGCTTAGTACAGGCCTTT -CCAACACGCTTAGTACAGGGTCTT -CCAACACGCTTAGTACAGACGCTT -CCAACACGCTTAGTACAGAGCGTT -CCAACACGCTTAGTACAGTTCGTC -CCAACACGCTTAGTACAGTCTCTC -CCAACACGCTTAGTACAGTGGATC -CCAACACGCTTAGTACAGCACTTC -CCAACACGCTTAGTACAGGTACTC -CCAACACGCTTAGTACAGGATGTC -CCAACACGCTTAGTACAGACAGTC -CCAACACGCTTAGTACAGTTGCTG -CCAACACGCTTAGTACAGTCCATG -CCAACACGCTTAGTACAGTGTGTG -CCAACACGCTTAGTACAGCTAGTG -CCAACACGCTTAGTACAGCATCTG -CCAACACGCTTAGTACAGGAGTTG -CCAACACGCTTAGTACAGAGACTG -CCAACACGCTTAGTACAGTCGGTA -CCAACACGCTTAGTACAGTGCCTA -CCAACACGCTTAGTACAGCCACTA -CCAACACGCTTAGTACAGGGAGTA -CCAACACGCTTAGTACAGTCGTCT -CCAACACGCTTAGTACAGTGCACT -CCAACACGCTTAGTACAGCTGACT -CCAACACGCTTAGTACAGCAACCT -CCAACACGCTTAGTACAGGCTACT -CCAACACGCTTAGTACAGGGATCT -CCAACACGCTTAGTACAGAAGGCT -CCAACACGCTTAGTACAGTCAACC -CCAACACGCTTAGTACAGTGTTCC -CCAACACGCTTAGTACAGATTCCC -CCAACACGCTTAGTACAGTTCTCG -CCAACACGCTTAGTACAGTAGACG -CCAACACGCTTAGTACAGGTAACG -CCAACACGCTTAGTACAGACTTCG -CCAACACGCTTAGTACAGTACGCA -CCAACACGCTTAGTACAGCTTGCA -CCAACACGCTTAGTACAGCGAACA -CCAACACGCTTAGTACAGCAGTCA -CCAACACGCTTAGTACAGGATCCA -CCAACACGCTTAGTACAGACGACA -CCAACACGCTTAGTACAGAGCTCA -CCAACACGCTTAGTACAGTCACGT -CCAACACGCTTAGTACAGCGTAGT -CCAACACGCTTAGTACAGGTCAGT -CCAACACGCTTAGTACAGGAAGGT -CCAACACGCTTAGTACAGAACCGT -CCAACACGCTTAGTACAGTTGTGC -CCAACACGCTTAGTACAGCTAAGC -CCAACACGCTTAGTACAGACTAGC -CCAACACGCTTAGTACAGAGATGC -CCAACACGCTTAGTACAGTGAAGG -CCAACACGCTTAGTACAGCAATGG -CCAACACGCTTAGTACAGATGAGG -CCAACACGCTTAGTACAGAATGGG -CCAACACGCTTAGTACAGTCCTGA -CCAACACGCTTAGTACAGTAGCGA -CCAACACGCTTAGTACAGCACAGA -CCAACACGCTTAGTACAGGCAAGA -CCAACACGCTTAGTACAGGGTTGA -CCAACACGCTTAGTACAGTCCGAT -CCAACACGCTTAGTACAGTGGCAT -CCAACACGCTTAGTACAGCGAGAT -CCAACACGCTTAGTACAGTACCAC -CCAACACGCTTAGTACAGCAGAAC -CCAACACGCTTAGTACAGGTCTAC -CCAACACGCTTAGTACAGACGTAC -CCAACACGCTTAGTACAGAGTGAC -CCAACACGCTTAGTACAGCTGTAG -CCAACACGCTTAGTACAGCCTAAG -CCAACACGCTTAGTACAGGTTCAG -CCAACACGCTTAGTACAGGCATAG -CCAACACGCTTAGTACAGGACAAG -CCAACACGCTTAGTACAGAAGCAG -CCAACACGCTTAGTACAGCGTCAA -CCAACACGCTTAGTACAGGCTGAA -CCAACACGCTTAGTACAGAGTACG -CCAACACGCTTAGTACAGATCCGA -CCAACACGCTTAGTACAGATGGGA -CCAACACGCTTAGTACAGGTGCAA -CCAACACGCTTAGTACAGGAGGAA -CCAACACGCTTAGTACAGCAGGTA -CCAACACGCTTAGTACAGGACTCT -CCAACACGCTTAGTACAGAGTCCT -CCAACACGCTTAGTACAGTAAGCC -CCAACACGCTTAGTACAGATAGCC -CCAACACGCTTAGTACAGTAACCG -CCAACACGCTTAGTACAGATGCCA -CCAACACGCTTATCTGACGGAAAC -CCAACACGCTTATCTGACAACACC -CCAACACGCTTATCTGACATCGAG -CCAACACGCTTATCTGACCTCCTT -CCAACACGCTTATCTGACCCTGTT -CCAACACGCTTATCTGACCGGTTT -CCAACACGCTTATCTGACGTGGTT -CCAACACGCTTATCTGACGCCTTT -CCAACACGCTTATCTGACGGTCTT -CCAACACGCTTATCTGACACGCTT -CCAACACGCTTATCTGACAGCGTT -CCAACACGCTTATCTGACTTCGTC -CCAACACGCTTATCTGACTCTCTC -CCAACACGCTTATCTGACTGGATC -CCAACACGCTTATCTGACCACTTC -CCAACACGCTTATCTGACGTACTC -CCAACACGCTTATCTGACGATGTC -CCAACACGCTTATCTGACACAGTC -CCAACACGCTTATCTGACTTGCTG -CCAACACGCTTATCTGACTCCATG -CCAACACGCTTATCTGACTGTGTG -CCAACACGCTTATCTGACCTAGTG -CCAACACGCTTATCTGACCATCTG -CCAACACGCTTATCTGACGAGTTG -CCAACACGCTTATCTGACAGACTG -CCAACACGCTTATCTGACTCGGTA -CCAACACGCTTATCTGACTGCCTA -CCAACACGCTTATCTGACCCACTA -CCAACACGCTTATCTGACGGAGTA -CCAACACGCTTATCTGACTCGTCT -CCAACACGCTTATCTGACTGCACT -CCAACACGCTTATCTGACCTGACT -CCAACACGCTTATCTGACCAACCT -CCAACACGCTTATCTGACGCTACT -CCAACACGCTTATCTGACGGATCT -CCAACACGCTTATCTGACAAGGCT -CCAACACGCTTATCTGACTCAACC -CCAACACGCTTATCTGACTGTTCC -CCAACACGCTTATCTGACATTCCC -CCAACACGCTTATCTGACTTCTCG -CCAACACGCTTATCTGACTAGACG -CCAACACGCTTATCTGACGTAACG -CCAACACGCTTATCTGACACTTCG -CCAACACGCTTATCTGACTACGCA -CCAACACGCTTATCTGACCTTGCA -CCAACACGCTTATCTGACCGAACA -CCAACACGCTTATCTGACCAGTCA -CCAACACGCTTATCTGACGATCCA -CCAACACGCTTATCTGACACGACA -CCAACACGCTTATCTGACAGCTCA -CCAACACGCTTATCTGACTCACGT -CCAACACGCTTATCTGACCGTAGT -CCAACACGCTTATCTGACGTCAGT -CCAACACGCTTATCTGACGAAGGT -CCAACACGCTTATCTGACAACCGT -CCAACACGCTTATCTGACTTGTGC -CCAACACGCTTATCTGACCTAAGC -CCAACACGCTTATCTGACACTAGC -CCAACACGCTTATCTGACAGATGC -CCAACACGCTTATCTGACTGAAGG -CCAACACGCTTATCTGACCAATGG -CCAACACGCTTATCTGACATGAGG -CCAACACGCTTATCTGACAATGGG -CCAACACGCTTATCTGACTCCTGA -CCAACACGCTTATCTGACTAGCGA -CCAACACGCTTATCTGACCACAGA -CCAACACGCTTATCTGACGCAAGA -CCAACACGCTTATCTGACGGTTGA -CCAACACGCTTATCTGACTCCGAT -CCAACACGCTTATCTGACTGGCAT -CCAACACGCTTATCTGACCGAGAT -CCAACACGCTTATCTGACTACCAC -CCAACACGCTTATCTGACCAGAAC -CCAACACGCTTATCTGACGTCTAC -CCAACACGCTTATCTGACACGTAC -CCAACACGCTTATCTGACAGTGAC -CCAACACGCTTATCTGACCTGTAG -CCAACACGCTTATCTGACCCTAAG -CCAACACGCTTATCTGACGTTCAG -CCAACACGCTTATCTGACGCATAG -CCAACACGCTTATCTGACGACAAG -CCAACACGCTTATCTGACAAGCAG -CCAACACGCTTATCTGACCGTCAA -CCAACACGCTTATCTGACGCTGAA -CCAACACGCTTATCTGACAGTACG -CCAACACGCTTATCTGACATCCGA -CCAACACGCTTATCTGACATGGGA -CCAACACGCTTATCTGACGTGCAA -CCAACACGCTTATCTGACGAGGAA -CCAACACGCTTATCTGACCAGGTA -CCAACACGCTTATCTGACGACTCT -CCAACACGCTTATCTGACAGTCCT -CCAACACGCTTATCTGACTAAGCC -CCAACACGCTTATCTGACATAGCC -CCAACACGCTTATCTGACTAACCG -CCAACACGCTTATCTGACATGCCA -CCAACACGCTTACCTAGTGGAAAC -CCAACACGCTTACCTAGTAACACC -CCAACACGCTTACCTAGTATCGAG -CCAACACGCTTACCTAGTCTCCTT -CCAACACGCTTACCTAGTCCTGTT -CCAACACGCTTACCTAGTCGGTTT -CCAACACGCTTACCTAGTGTGGTT -CCAACACGCTTACCTAGTGCCTTT -CCAACACGCTTACCTAGTGGTCTT -CCAACACGCTTACCTAGTACGCTT -CCAACACGCTTACCTAGTAGCGTT -CCAACACGCTTACCTAGTTTCGTC -CCAACACGCTTACCTAGTTCTCTC -CCAACACGCTTACCTAGTTGGATC -CCAACACGCTTACCTAGTCACTTC -CCAACACGCTTACCTAGTGTACTC -CCAACACGCTTACCTAGTGATGTC -CCAACACGCTTACCTAGTACAGTC -CCAACACGCTTACCTAGTTTGCTG -CCAACACGCTTACCTAGTTCCATG -CCAACACGCTTACCTAGTTGTGTG -CCAACACGCTTACCTAGTCTAGTG -CCAACACGCTTACCTAGTCATCTG -CCAACACGCTTACCTAGTGAGTTG -CCAACACGCTTACCTAGTAGACTG -CCAACACGCTTACCTAGTTCGGTA -CCAACACGCTTACCTAGTTGCCTA -CCAACACGCTTACCTAGTCCACTA -CCAACACGCTTACCTAGTGGAGTA -CCAACACGCTTACCTAGTTCGTCT -CCAACACGCTTACCTAGTTGCACT -CCAACACGCTTACCTAGTCTGACT -CCAACACGCTTACCTAGTCAACCT -CCAACACGCTTACCTAGTGCTACT -CCAACACGCTTACCTAGTGGATCT -CCAACACGCTTACCTAGTAAGGCT -CCAACACGCTTACCTAGTTCAACC -CCAACACGCTTACCTAGTTGTTCC -CCAACACGCTTACCTAGTATTCCC -CCAACACGCTTACCTAGTTTCTCG -CCAACACGCTTACCTAGTTAGACG -CCAACACGCTTACCTAGTGTAACG -CCAACACGCTTACCTAGTACTTCG -CCAACACGCTTACCTAGTTACGCA -CCAACACGCTTACCTAGTCTTGCA -CCAACACGCTTACCTAGTCGAACA -CCAACACGCTTACCTAGTCAGTCA -CCAACACGCTTACCTAGTGATCCA -CCAACACGCTTACCTAGTACGACA -CCAACACGCTTACCTAGTAGCTCA -CCAACACGCTTACCTAGTTCACGT -CCAACACGCTTACCTAGTCGTAGT -CCAACACGCTTACCTAGTGTCAGT -CCAACACGCTTACCTAGTGAAGGT -CCAACACGCTTACCTAGTAACCGT -CCAACACGCTTACCTAGTTTGTGC -CCAACACGCTTACCTAGTCTAAGC -CCAACACGCTTACCTAGTACTAGC -CCAACACGCTTACCTAGTAGATGC -CCAACACGCTTACCTAGTTGAAGG -CCAACACGCTTACCTAGTCAATGG -CCAACACGCTTACCTAGTATGAGG -CCAACACGCTTACCTAGTAATGGG -CCAACACGCTTACCTAGTTCCTGA -CCAACACGCTTACCTAGTTAGCGA -CCAACACGCTTACCTAGTCACAGA -CCAACACGCTTACCTAGTGCAAGA -CCAACACGCTTACCTAGTGGTTGA -CCAACACGCTTACCTAGTTCCGAT -CCAACACGCTTACCTAGTTGGCAT -CCAACACGCTTACCTAGTCGAGAT -CCAACACGCTTACCTAGTTACCAC -CCAACACGCTTACCTAGTCAGAAC -CCAACACGCTTACCTAGTGTCTAC -CCAACACGCTTACCTAGTACGTAC -CCAACACGCTTACCTAGTAGTGAC -CCAACACGCTTACCTAGTCTGTAG -CCAACACGCTTACCTAGTCCTAAG -CCAACACGCTTACCTAGTGTTCAG -CCAACACGCTTACCTAGTGCATAG -CCAACACGCTTACCTAGTGACAAG -CCAACACGCTTACCTAGTAAGCAG -CCAACACGCTTACCTAGTCGTCAA -CCAACACGCTTACCTAGTGCTGAA -CCAACACGCTTACCTAGTAGTACG -CCAACACGCTTACCTAGTATCCGA -CCAACACGCTTACCTAGTATGGGA -CCAACACGCTTACCTAGTGTGCAA -CCAACACGCTTACCTAGTGAGGAA -CCAACACGCTTACCTAGTCAGGTA -CCAACACGCTTACCTAGTGACTCT -CCAACACGCTTACCTAGTAGTCCT -CCAACACGCTTACCTAGTTAAGCC -CCAACACGCTTACCTAGTATAGCC -CCAACACGCTTACCTAGTTAACCG -CCAACACGCTTACCTAGTATGCCA -CCAACACGCTTAGCCTAAGGAAAC -CCAACACGCTTAGCCTAAAACACC -CCAACACGCTTAGCCTAAATCGAG -CCAACACGCTTAGCCTAACTCCTT -CCAACACGCTTAGCCTAACCTGTT -CCAACACGCTTAGCCTAACGGTTT -CCAACACGCTTAGCCTAAGTGGTT -CCAACACGCTTAGCCTAAGCCTTT -CCAACACGCTTAGCCTAAGGTCTT -CCAACACGCTTAGCCTAAACGCTT -CCAACACGCTTAGCCTAAAGCGTT -CCAACACGCTTAGCCTAATTCGTC -CCAACACGCTTAGCCTAATCTCTC -CCAACACGCTTAGCCTAATGGATC -CCAACACGCTTAGCCTAACACTTC -CCAACACGCTTAGCCTAAGTACTC -CCAACACGCTTAGCCTAAGATGTC -CCAACACGCTTAGCCTAAACAGTC -CCAACACGCTTAGCCTAATTGCTG -CCAACACGCTTAGCCTAATCCATG -CCAACACGCTTAGCCTAATGTGTG -CCAACACGCTTAGCCTAACTAGTG -CCAACACGCTTAGCCTAACATCTG -CCAACACGCTTAGCCTAAGAGTTG -CCAACACGCTTAGCCTAAAGACTG -CCAACACGCTTAGCCTAATCGGTA -CCAACACGCTTAGCCTAATGCCTA -CCAACACGCTTAGCCTAACCACTA -CCAACACGCTTAGCCTAAGGAGTA -CCAACACGCTTAGCCTAATCGTCT -CCAACACGCTTAGCCTAATGCACT -CCAACACGCTTAGCCTAACTGACT -CCAACACGCTTAGCCTAACAACCT -CCAACACGCTTAGCCTAAGCTACT -CCAACACGCTTAGCCTAAGGATCT -CCAACACGCTTAGCCTAAAAGGCT -CCAACACGCTTAGCCTAATCAACC -CCAACACGCTTAGCCTAATGTTCC -CCAACACGCTTAGCCTAAATTCCC -CCAACACGCTTAGCCTAATTCTCG -CCAACACGCTTAGCCTAATAGACG -CCAACACGCTTAGCCTAAGTAACG -CCAACACGCTTAGCCTAAACTTCG -CCAACACGCTTAGCCTAATACGCA -CCAACACGCTTAGCCTAACTTGCA -CCAACACGCTTAGCCTAACGAACA -CCAACACGCTTAGCCTAACAGTCA -CCAACACGCTTAGCCTAAGATCCA -CCAACACGCTTAGCCTAAACGACA -CCAACACGCTTAGCCTAAAGCTCA -CCAACACGCTTAGCCTAATCACGT -CCAACACGCTTAGCCTAACGTAGT -CCAACACGCTTAGCCTAAGTCAGT -CCAACACGCTTAGCCTAAGAAGGT -CCAACACGCTTAGCCTAAAACCGT -CCAACACGCTTAGCCTAATTGTGC -CCAACACGCTTAGCCTAACTAAGC -CCAACACGCTTAGCCTAAACTAGC -CCAACACGCTTAGCCTAAAGATGC -CCAACACGCTTAGCCTAATGAAGG -CCAACACGCTTAGCCTAACAATGG -CCAACACGCTTAGCCTAAATGAGG -CCAACACGCTTAGCCTAAAATGGG -CCAACACGCTTAGCCTAATCCTGA -CCAACACGCTTAGCCTAATAGCGA -CCAACACGCTTAGCCTAACACAGA -CCAACACGCTTAGCCTAAGCAAGA -CCAACACGCTTAGCCTAAGGTTGA -CCAACACGCTTAGCCTAATCCGAT -CCAACACGCTTAGCCTAATGGCAT -CCAACACGCTTAGCCTAACGAGAT -CCAACACGCTTAGCCTAATACCAC -CCAACACGCTTAGCCTAACAGAAC -CCAACACGCTTAGCCTAAGTCTAC -CCAACACGCTTAGCCTAAACGTAC -CCAACACGCTTAGCCTAAAGTGAC -CCAACACGCTTAGCCTAACTGTAG -CCAACACGCTTAGCCTAACCTAAG -CCAACACGCTTAGCCTAAGTTCAG -CCAACACGCTTAGCCTAAGCATAG -CCAACACGCTTAGCCTAAGACAAG -CCAACACGCTTAGCCTAAAAGCAG -CCAACACGCTTAGCCTAACGTCAA -CCAACACGCTTAGCCTAAGCTGAA -CCAACACGCTTAGCCTAAAGTACG -CCAACACGCTTAGCCTAAATCCGA -CCAACACGCTTAGCCTAAATGGGA -CCAACACGCTTAGCCTAAGTGCAA -CCAACACGCTTAGCCTAAGAGGAA -CCAACACGCTTAGCCTAACAGGTA -CCAACACGCTTAGCCTAAGACTCT -CCAACACGCTTAGCCTAAAGTCCT -CCAACACGCTTAGCCTAATAAGCC -CCAACACGCTTAGCCTAAATAGCC -CCAACACGCTTAGCCTAATAACCG -CCAACACGCTTAGCCTAAATGCCA -CCAACACGCTTAGCCATAGGAAAC -CCAACACGCTTAGCCATAAACACC -CCAACACGCTTAGCCATAATCGAG -CCAACACGCTTAGCCATACTCCTT -CCAACACGCTTAGCCATACCTGTT -CCAACACGCTTAGCCATACGGTTT -CCAACACGCTTAGCCATAGTGGTT -CCAACACGCTTAGCCATAGCCTTT -CCAACACGCTTAGCCATAGGTCTT -CCAACACGCTTAGCCATAACGCTT -CCAACACGCTTAGCCATAAGCGTT -CCAACACGCTTAGCCATATTCGTC -CCAACACGCTTAGCCATATCTCTC -CCAACACGCTTAGCCATATGGATC -CCAACACGCTTAGCCATACACTTC -CCAACACGCTTAGCCATAGTACTC -CCAACACGCTTAGCCATAGATGTC -CCAACACGCTTAGCCATAACAGTC -CCAACACGCTTAGCCATATTGCTG -CCAACACGCTTAGCCATATCCATG -CCAACACGCTTAGCCATATGTGTG -CCAACACGCTTAGCCATACTAGTG -CCAACACGCTTAGCCATACATCTG -CCAACACGCTTAGCCATAGAGTTG -CCAACACGCTTAGCCATAAGACTG -CCAACACGCTTAGCCATATCGGTA -CCAACACGCTTAGCCATATGCCTA -CCAACACGCTTAGCCATACCACTA -CCAACACGCTTAGCCATAGGAGTA -CCAACACGCTTAGCCATATCGTCT -CCAACACGCTTAGCCATATGCACT -CCAACACGCTTAGCCATACTGACT -CCAACACGCTTAGCCATACAACCT -CCAACACGCTTAGCCATAGCTACT -CCAACACGCTTAGCCATAGGATCT -CCAACACGCTTAGCCATAAAGGCT -CCAACACGCTTAGCCATATCAACC -CCAACACGCTTAGCCATATGTTCC -CCAACACGCTTAGCCATAATTCCC -CCAACACGCTTAGCCATATTCTCG -CCAACACGCTTAGCCATATAGACG -CCAACACGCTTAGCCATAGTAACG -CCAACACGCTTAGCCATAACTTCG -CCAACACGCTTAGCCATATACGCA -CCAACACGCTTAGCCATACTTGCA -CCAACACGCTTAGCCATACGAACA -CCAACACGCTTAGCCATACAGTCA -CCAACACGCTTAGCCATAGATCCA -CCAACACGCTTAGCCATAACGACA -CCAACACGCTTAGCCATAAGCTCA -CCAACACGCTTAGCCATATCACGT -CCAACACGCTTAGCCATACGTAGT -CCAACACGCTTAGCCATAGTCAGT -CCAACACGCTTAGCCATAGAAGGT -CCAACACGCTTAGCCATAAACCGT -CCAACACGCTTAGCCATATTGTGC -CCAACACGCTTAGCCATACTAAGC -CCAACACGCTTAGCCATAACTAGC -CCAACACGCTTAGCCATAAGATGC -CCAACACGCTTAGCCATATGAAGG -CCAACACGCTTAGCCATACAATGG -CCAACACGCTTAGCCATAATGAGG -CCAACACGCTTAGCCATAAATGGG -CCAACACGCTTAGCCATATCCTGA -CCAACACGCTTAGCCATATAGCGA -CCAACACGCTTAGCCATACACAGA -CCAACACGCTTAGCCATAGCAAGA -CCAACACGCTTAGCCATAGGTTGA -CCAACACGCTTAGCCATATCCGAT -CCAACACGCTTAGCCATATGGCAT -CCAACACGCTTAGCCATACGAGAT -CCAACACGCTTAGCCATATACCAC -CCAACACGCTTAGCCATACAGAAC -CCAACACGCTTAGCCATAGTCTAC -CCAACACGCTTAGCCATAACGTAC -CCAACACGCTTAGCCATAAGTGAC -CCAACACGCTTAGCCATACTGTAG -CCAACACGCTTAGCCATACCTAAG -CCAACACGCTTAGCCATAGTTCAG -CCAACACGCTTAGCCATAGCATAG -CCAACACGCTTAGCCATAGACAAG -CCAACACGCTTAGCCATAAAGCAG -CCAACACGCTTAGCCATACGTCAA -CCAACACGCTTAGCCATAGCTGAA -CCAACACGCTTAGCCATAAGTACG -CCAACACGCTTAGCCATAATCCGA -CCAACACGCTTAGCCATAATGGGA -CCAACACGCTTAGCCATAGTGCAA -CCAACACGCTTAGCCATAGAGGAA -CCAACACGCTTAGCCATACAGGTA -CCAACACGCTTAGCCATAGACTCT -CCAACACGCTTAGCCATAAGTCCT -CCAACACGCTTAGCCATATAAGCC -CCAACACGCTTAGCCATAATAGCC -CCAACACGCTTAGCCATATAACCG -CCAACACGCTTAGCCATAATGCCA -CCAACACGCTTACCGTAAGGAAAC -CCAACACGCTTACCGTAAAACACC -CCAACACGCTTACCGTAAATCGAG -CCAACACGCTTACCGTAACTCCTT -CCAACACGCTTACCGTAACCTGTT -CCAACACGCTTACCGTAACGGTTT -CCAACACGCTTACCGTAAGTGGTT -CCAACACGCTTACCGTAAGCCTTT -CCAACACGCTTACCGTAAGGTCTT -CCAACACGCTTACCGTAAACGCTT -CCAACACGCTTACCGTAAAGCGTT -CCAACACGCTTACCGTAATTCGTC -CCAACACGCTTACCGTAATCTCTC -CCAACACGCTTACCGTAATGGATC -CCAACACGCTTACCGTAACACTTC -CCAACACGCTTACCGTAAGTACTC -CCAACACGCTTACCGTAAGATGTC -CCAACACGCTTACCGTAAACAGTC -CCAACACGCTTACCGTAATTGCTG -CCAACACGCTTACCGTAATCCATG -CCAACACGCTTACCGTAATGTGTG -CCAACACGCTTACCGTAACTAGTG -CCAACACGCTTACCGTAACATCTG -CCAACACGCTTACCGTAAGAGTTG -CCAACACGCTTACCGTAAAGACTG -CCAACACGCTTACCGTAATCGGTA -CCAACACGCTTACCGTAATGCCTA -CCAACACGCTTACCGTAACCACTA -CCAACACGCTTACCGTAAGGAGTA -CCAACACGCTTACCGTAATCGTCT -CCAACACGCTTACCGTAATGCACT -CCAACACGCTTACCGTAACTGACT -CCAACACGCTTACCGTAACAACCT -CCAACACGCTTACCGTAAGCTACT -CCAACACGCTTACCGTAAGGATCT -CCAACACGCTTACCGTAAAAGGCT -CCAACACGCTTACCGTAATCAACC -CCAACACGCTTACCGTAATGTTCC -CCAACACGCTTACCGTAAATTCCC -CCAACACGCTTACCGTAATTCTCG -CCAACACGCTTACCGTAATAGACG -CCAACACGCTTACCGTAAGTAACG -CCAACACGCTTACCGTAAACTTCG -CCAACACGCTTACCGTAATACGCA -CCAACACGCTTACCGTAACTTGCA -CCAACACGCTTACCGTAACGAACA -CCAACACGCTTACCGTAACAGTCA -CCAACACGCTTACCGTAAGATCCA -CCAACACGCTTACCGTAAACGACA -CCAACACGCTTACCGTAAAGCTCA -CCAACACGCTTACCGTAATCACGT -CCAACACGCTTACCGTAACGTAGT -CCAACACGCTTACCGTAAGTCAGT -CCAACACGCTTACCGTAAGAAGGT -CCAACACGCTTACCGTAAAACCGT -CCAACACGCTTACCGTAATTGTGC -CCAACACGCTTACCGTAACTAAGC -CCAACACGCTTACCGTAAACTAGC -CCAACACGCTTACCGTAAAGATGC -CCAACACGCTTACCGTAATGAAGG -CCAACACGCTTACCGTAACAATGG -CCAACACGCTTACCGTAAATGAGG -CCAACACGCTTACCGTAAAATGGG -CCAACACGCTTACCGTAATCCTGA -CCAACACGCTTACCGTAATAGCGA -CCAACACGCTTACCGTAACACAGA -CCAACACGCTTACCGTAAGCAAGA -CCAACACGCTTACCGTAAGGTTGA -CCAACACGCTTACCGTAATCCGAT -CCAACACGCTTACCGTAATGGCAT -CCAACACGCTTACCGTAACGAGAT -CCAACACGCTTACCGTAATACCAC -CCAACACGCTTACCGTAACAGAAC -CCAACACGCTTACCGTAAGTCTAC -CCAACACGCTTACCGTAAACGTAC -CCAACACGCTTACCGTAAAGTGAC -CCAACACGCTTACCGTAACTGTAG -CCAACACGCTTACCGTAACCTAAG -CCAACACGCTTACCGTAAGTTCAG -CCAACACGCTTACCGTAAGCATAG -CCAACACGCTTACCGTAAGACAAG -CCAACACGCTTACCGTAAAAGCAG -CCAACACGCTTACCGTAACGTCAA -CCAACACGCTTACCGTAAGCTGAA -CCAACACGCTTACCGTAAAGTACG -CCAACACGCTTACCGTAAATCCGA -CCAACACGCTTACCGTAAATGGGA -CCAACACGCTTACCGTAAGTGCAA -CCAACACGCTTACCGTAAGAGGAA -CCAACACGCTTACCGTAACAGGTA -CCAACACGCTTACCGTAAGACTCT -CCAACACGCTTACCGTAAAGTCCT -CCAACACGCTTACCGTAATAAGCC -CCAACACGCTTACCGTAAATAGCC -CCAACACGCTTACCGTAATAACCG -CCAACACGCTTACCGTAAATGCCA -CCAACACGCTTACCAATGGGAAAC -CCAACACGCTTACCAATGAACACC -CCAACACGCTTACCAATGATCGAG -CCAACACGCTTACCAATGCTCCTT -CCAACACGCTTACCAATGCCTGTT -CCAACACGCTTACCAATGCGGTTT -CCAACACGCTTACCAATGGTGGTT -CCAACACGCTTACCAATGGCCTTT -CCAACACGCTTACCAATGGGTCTT -CCAACACGCTTACCAATGACGCTT -CCAACACGCTTACCAATGAGCGTT -CCAACACGCTTACCAATGTTCGTC -CCAACACGCTTACCAATGTCTCTC -CCAACACGCTTACCAATGTGGATC -CCAACACGCTTACCAATGCACTTC -CCAACACGCTTACCAATGGTACTC -CCAACACGCTTACCAATGGATGTC -CCAACACGCTTACCAATGACAGTC -CCAACACGCTTACCAATGTTGCTG -CCAACACGCTTACCAATGTCCATG -CCAACACGCTTACCAATGTGTGTG -CCAACACGCTTACCAATGCTAGTG -CCAACACGCTTACCAATGCATCTG -CCAACACGCTTACCAATGGAGTTG -CCAACACGCTTACCAATGAGACTG -CCAACACGCTTACCAATGTCGGTA -CCAACACGCTTACCAATGTGCCTA -CCAACACGCTTACCAATGCCACTA -CCAACACGCTTACCAATGGGAGTA -CCAACACGCTTACCAATGTCGTCT -CCAACACGCTTACCAATGTGCACT -CCAACACGCTTACCAATGCTGACT -CCAACACGCTTACCAATGCAACCT -CCAACACGCTTACCAATGGCTACT -CCAACACGCTTACCAATGGGATCT -CCAACACGCTTACCAATGAAGGCT -CCAACACGCTTACCAATGTCAACC -CCAACACGCTTACCAATGTGTTCC -CCAACACGCTTACCAATGATTCCC -CCAACACGCTTACCAATGTTCTCG -CCAACACGCTTACCAATGTAGACG -CCAACACGCTTACCAATGGTAACG -CCAACACGCTTACCAATGACTTCG -CCAACACGCTTACCAATGTACGCA -CCAACACGCTTACCAATGCTTGCA -CCAACACGCTTACCAATGCGAACA -CCAACACGCTTACCAATGCAGTCA -CCAACACGCTTACCAATGGATCCA -CCAACACGCTTACCAATGACGACA -CCAACACGCTTACCAATGAGCTCA -CCAACACGCTTACCAATGTCACGT -CCAACACGCTTACCAATGCGTAGT -CCAACACGCTTACCAATGGTCAGT -CCAACACGCTTACCAATGGAAGGT -CCAACACGCTTACCAATGAACCGT -CCAACACGCTTACCAATGTTGTGC -CCAACACGCTTACCAATGCTAAGC -CCAACACGCTTACCAATGACTAGC -CCAACACGCTTACCAATGAGATGC -CCAACACGCTTACCAATGTGAAGG -CCAACACGCTTACCAATGCAATGG -CCAACACGCTTACCAATGATGAGG -CCAACACGCTTACCAATGAATGGG -CCAACACGCTTACCAATGTCCTGA -CCAACACGCTTACCAATGTAGCGA -CCAACACGCTTACCAATGCACAGA -CCAACACGCTTACCAATGGCAAGA -CCAACACGCTTACCAATGGGTTGA -CCAACACGCTTACCAATGTCCGAT -CCAACACGCTTACCAATGTGGCAT -CCAACACGCTTACCAATGCGAGAT -CCAACACGCTTACCAATGTACCAC -CCAACACGCTTACCAATGCAGAAC -CCAACACGCTTACCAATGGTCTAC -CCAACACGCTTACCAATGACGTAC -CCAACACGCTTACCAATGAGTGAC -CCAACACGCTTACCAATGCTGTAG -CCAACACGCTTACCAATGCCTAAG -CCAACACGCTTACCAATGGTTCAG -CCAACACGCTTACCAATGGCATAG -CCAACACGCTTACCAATGGACAAG -CCAACACGCTTACCAATGAAGCAG -CCAACACGCTTACCAATGCGTCAA -CCAACACGCTTACCAATGGCTGAA -CCAACACGCTTACCAATGAGTACG -CCAACACGCTTACCAATGATCCGA -CCAACACGCTTACCAATGATGGGA -CCAACACGCTTACCAATGGTGCAA -CCAACACGCTTACCAATGGAGGAA -CCAACACGCTTACCAATGCAGGTA -CCAACACGCTTACCAATGGACTCT -CCAACACGCTTACCAATGAGTCCT -CCAACACGCTTACCAATGTAAGCC -CCAACACGCTTACCAATGATAGCC -CCAACACGCTTACCAATGTAACCG -CCAACACGCTTACCAATGATGCCA -CCAACAGCGTTAAACGGAGGAAAC -CCAACAGCGTTAAACGGAAACACC -CCAACAGCGTTAAACGGAATCGAG -CCAACAGCGTTAAACGGACTCCTT -CCAACAGCGTTAAACGGACCTGTT -CCAACAGCGTTAAACGGACGGTTT -CCAACAGCGTTAAACGGAGTGGTT -CCAACAGCGTTAAACGGAGCCTTT -CCAACAGCGTTAAACGGAGGTCTT -CCAACAGCGTTAAACGGAACGCTT -CCAACAGCGTTAAACGGAAGCGTT -CCAACAGCGTTAAACGGATTCGTC -CCAACAGCGTTAAACGGATCTCTC -CCAACAGCGTTAAACGGATGGATC -CCAACAGCGTTAAACGGACACTTC -CCAACAGCGTTAAACGGAGTACTC -CCAACAGCGTTAAACGGAGATGTC -CCAACAGCGTTAAACGGAACAGTC -CCAACAGCGTTAAACGGATTGCTG -CCAACAGCGTTAAACGGATCCATG -CCAACAGCGTTAAACGGATGTGTG -CCAACAGCGTTAAACGGACTAGTG -CCAACAGCGTTAAACGGACATCTG -CCAACAGCGTTAAACGGAGAGTTG -CCAACAGCGTTAAACGGAAGACTG -CCAACAGCGTTAAACGGATCGGTA -CCAACAGCGTTAAACGGATGCCTA -CCAACAGCGTTAAACGGACCACTA -CCAACAGCGTTAAACGGAGGAGTA -CCAACAGCGTTAAACGGATCGTCT -CCAACAGCGTTAAACGGATGCACT -CCAACAGCGTTAAACGGACTGACT -CCAACAGCGTTAAACGGACAACCT -CCAACAGCGTTAAACGGAGCTACT -CCAACAGCGTTAAACGGAGGATCT -CCAACAGCGTTAAACGGAAAGGCT -CCAACAGCGTTAAACGGATCAACC -CCAACAGCGTTAAACGGATGTTCC -CCAACAGCGTTAAACGGAATTCCC -CCAACAGCGTTAAACGGATTCTCG -CCAACAGCGTTAAACGGATAGACG -CCAACAGCGTTAAACGGAGTAACG -CCAACAGCGTTAAACGGAACTTCG -CCAACAGCGTTAAACGGATACGCA -CCAACAGCGTTAAACGGACTTGCA -CCAACAGCGTTAAACGGACGAACA -CCAACAGCGTTAAACGGACAGTCA -CCAACAGCGTTAAACGGAGATCCA -CCAACAGCGTTAAACGGAACGACA -CCAACAGCGTTAAACGGAAGCTCA -CCAACAGCGTTAAACGGATCACGT -CCAACAGCGTTAAACGGACGTAGT -CCAACAGCGTTAAACGGAGTCAGT -CCAACAGCGTTAAACGGAGAAGGT -CCAACAGCGTTAAACGGAAACCGT -CCAACAGCGTTAAACGGATTGTGC -CCAACAGCGTTAAACGGACTAAGC -CCAACAGCGTTAAACGGAACTAGC -CCAACAGCGTTAAACGGAAGATGC -CCAACAGCGTTAAACGGATGAAGG -CCAACAGCGTTAAACGGACAATGG -CCAACAGCGTTAAACGGAATGAGG -CCAACAGCGTTAAACGGAAATGGG -CCAACAGCGTTAAACGGATCCTGA -CCAACAGCGTTAAACGGATAGCGA -CCAACAGCGTTAAACGGACACAGA -CCAACAGCGTTAAACGGAGCAAGA -CCAACAGCGTTAAACGGAGGTTGA -CCAACAGCGTTAAACGGATCCGAT -CCAACAGCGTTAAACGGATGGCAT -CCAACAGCGTTAAACGGACGAGAT -CCAACAGCGTTAAACGGATACCAC -CCAACAGCGTTAAACGGACAGAAC -CCAACAGCGTTAAACGGAGTCTAC -CCAACAGCGTTAAACGGAACGTAC -CCAACAGCGTTAAACGGAAGTGAC -CCAACAGCGTTAAACGGACTGTAG -CCAACAGCGTTAAACGGACCTAAG -CCAACAGCGTTAAACGGAGTTCAG -CCAACAGCGTTAAACGGAGCATAG -CCAACAGCGTTAAACGGAGACAAG -CCAACAGCGTTAAACGGAAAGCAG -CCAACAGCGTTAAACGGACGTCAA -CCAACAGCGTTAAACGGAGCTGAA -CCAACAGCGTTAAACGGAAGTACG -CCAACAGCGTTAAACGGAATCCGA -CCAACAGCGTTAAACGGAATGGGA -CCAACAGCGTTAAACGGAGTGCAA -CCAACAGCGTTAAACGGAGAGGAA -CCAACAGCGTTAAACGGACAGGTA -CCAACAGCGTTAAACGGAGACTCT -CCAACAGCGTTAAACGGAAGTCCT -CCAACAGCGTTAAACGGATAAGCC -CCAACAGCGTTAAACGGAATAGCC -CCAACAGCGTTAAACGGATAACCG -CCAACAGCGTTAAACGGAATGCCA -CCAACAGCGTTAACCAACGGAAAC -CCAACAGCGTTAACCAACAACACC -CCAACAGCGTTAACCAACATCGAG -CCAACAGCGTTAACCAACCTCCTT -CCAACAGCGTTAACCAACCCTGTT -CCAACAGCGTTAACCAACCGGTTT -CCAACAGCGTTAACCAACGTGGTT -CCAACAGCGTTAACCAACGCCTTT -CCAACAGCGTTAACCAACGGTCTT -CCAACAGCGTTAACCAACACGCTT -CCAACAGCGTTAACCAACAGCGTT -CCAACAGCGTTAACCAACTTCGTC -CCAACAGCGTTAACCAACTCTCTC -CCAACAGCGTTAACCAACTGGATC -CCAACAGCGTTAACCAACCACTTC -CCAACAGCGTTAACCAACGTACTC -CCAACAGCGTTAACCAACGATGTC -CCAACAGCGTTAACCAACACAGTC -CCAACAGCGTTAACCAACTTGCTG -CCAACAGCGTTAACCAACTCCATG -CCAACAGCGTTAACCAACTGTGTG -CCAACAGCGTTAACCAACCTAGTG -CCAACAGCGTTAACCAACCATCTG -CCAACAGCGTTAACCAACGAGTTG -CCAACAGCGTTAACCAACAGACTG -CCAACAGCGTTAACCAACTCGGTA -CCAACAGCGTTAACCAACTGCCTA -CCAACAGCGTTAACCAACCCACTA -CCAACAGCGTTAACCAACGGAGTA -CCAACAGCGTTAACCAACTCGTCT -CCAACAGCGTTAACCAACTGCACT -CCAACAGCGTTAACCAACCTGACT -CCAACAGCGTTAACCAACCAACCT -CCAACAGCGTTAACCAACGCTACT -CCAACAGCGTTAACCAACGGATCT -CCAACAGCGTTAACCAACAAGGCT -CCAACAGCGTTAACCAACTCAACC -CCAACAGCGTTAACCAACTGTTCC -CCAACAGCGTTAACCAACATTCCC -CCAACAGCGTTAACCAACTTCTCG -CCAACAGCGTTAACCAACTAGACG -CCAACAGCGTTAACCAACGTAACG -CCAACAGCGTTAACCAACACTTCG -CCAACAGCGTTAACCAACTACGCA -CCAACAGCGTTAACCAACCTTGCA -CCAACAGCGTTAACCAACCGAACA -CCAACAGCGTTAACCAACCAGTCA -CCAACAGCGTTAACCAACGATCCA -CCAACAGCGTTAACCAACACGACA -CCAACAGCGTTAACCAACAGCTCA -CCAACAGCGTTAACCAACTCACGT -CCAACAGCGTTAACCAACCGTAGT -CCAACAGCGTTAACCAACGTCAGT -CCAACAGCGTTAACCAACGAAGGT -CCAACAGCGTTAACCAACAACCGT -CCAACAGCGTTAACCAACTTGTGC -CCAACAGCGTTAACCAACCTAAGC -CCAACAGCGTTAACCAACACTAGC -CCAACAGCGTTAACCAACAGATGC -CCAACAGCGTTAACCAACTGAAGG -CCAACAGCGTTAACCAACCAATGG -CCAACAGCGTTAACCAACATGAGG -CCAACAGCGTTAACCAACAATGGG -CCAACAGCGTTAACCAACTCCTGA -CCAACAGCGTTAACCAACTAGCGA -CCAACAGCGTTAACCAACCACAGA -CCAACAGCGTTAACCAACGCAAGA -CCAACAGCGTTAACCAACGGTTGA -CCAACAGCGTTAACCAACTCCGAT -CCAACAGCGTTAACCAACTGGCAT -CCAACAGCGTTAACCAACCGAGAT -CCAACAGCGTTAACCAACTACCAC -CCAACAGCGTTAACCAACCAGAAC -CCAACAGCGTTAACCAACGTCTAC -CCAACAGCGTTAACCAACACGTAC -CCAACAGCGTTAACCAACAGTGAC -CCAACAGCGTTAACCAACCTGTAG -CCAACAGCGTTAACCAACCCTAAG -CCAACAGCGTTAACCAACGTTCAG -CCAACAGCGTTAACCAACGCATAG -CCAACAGCGTTAACCAACGACAAG -CCAACAGCGTTAACCAACAAGCAG -CCAACAGCGTTAACCAACCGTCAA -CCAACAGCGTTAACCAACGCTGAA -CCAACAGCGTTAACCAACAGTACG -CCAACAGCGTTAACCAACATCCGA -CCAACAGCGTTAACCAACATGGGA -CCAACAGCGTTAACCAACGTGCAA -CCAACAGCGTTAACCAACGAGGAA -CCAACAGCGTTAACCAACCAGGTA -CCAACAGCGTTAACCAACGACTCT -CCAACAGCGTTAACCAACAGTCCT -CCAACAGCGTTAACCAACTAAGCC -CCAACAGCGTTAACCAACATAGCC -CCAACAGCGTTAACCAACTAACCG -CCAACAGCGTTAACCAACATGCCA -CCAACAGCGTTAGAGATCGGAAAC -CCAACAGCGTTAGAGATCAACACC -CCAACAGCGTTAGAGATCATCGAG -CCAACAGCGTTAGAGATCCTCCTT -CCAACAGCGTTAGAGATCCCTGTT -CCAACAGCGTTAGAGATCCGGTTT -CCAACAGCGTTAGAGATCGTGGTT -CCAACAGCGTTAGAGATCGCCTTT -CCAACAGCGTTAGAGATCGGTCTT -CCAACAGCGTTAGAGATCACGCTT -CCAACAGCGTTAGAGATCAGCGTT -CCAACAGCGTTAGAGATCTTCGTC -CCAACAGCGTTAGAGATCTCTCTC -CCAACAGCGTTAGAGATCTGGATC -CCAACAGCGTTAGAGATCCACTTC -CCAACAGCGTTAGAGATCGTACTC -CCAACAGCGTTAGAGATCGATGTC -CCAACAGCGTTAGAGATCACAGTC -CCAACAGCGTTAGAGATCTTGCTG -CCAACAGCGTTAGAGATCTCCATG -CCAACAGCGTTAGAGATCTGTGTG -CCAACAGCGTTAGAGATCCTAGTG -CCAACAGCGTTAGAGATCCATCTG -CCAACAGCGTTAGAGATCGAGTTG -CCAACAGCGTTAGAGATCAGACTG -CCAACAGCGTTAGAGATCTCGGTA -CCAACAGCGTTAGAGATCTGCCTA -CCAACAGCGTTAGAGATCCCACTA -CCAACAGCGTTAGAGATCGGAGTA -CCAACAGCGTTAGAGATCTCGTCT -CCAACAGCGTTAGAGATCTGCACT -CCAACAGCGTTAGAGATCCTGACT -CCAACAGCGTTAGAGATCCAACCT -CCAACAGCGTTAGAGATCGCTACT -CCAACAGCGTTAGAGATCGGATCT -CCAACAGCGTTAGAGATCAAGGCT -CCAACAGCGTTAGAGATCTCAACC -CCAACAGCGTTAGAGATCTGTTCC -CCAACAGCGTTAGAGATCATTCCC -CCAACAGCGTTAGAGATCTTCTCG -CCAACAGCGTTAGAGATCTAGACG -CCAACAGCGTTAGAGATCGTAACG -CCAACAGCGTTAGAGATCACTTCG -CCAACAGCGTTAGAGATCTACGCA -CCAACAGCGTTAGAGATCCTTGCA -CCAACAGCGTTAGAGATCCGAACA -CCAACAGCGTTAGAGATCCAGTCA -CCAACAGCGTTAGAGATCGATCCA -CCAACAGCGTTAGAGATCACGACA -CCAACAGCGTTAGAGATCAGCTCA -CCAACAGCGTTAGAGATCTCACGT -CCAACAGCGTTAGAGATCCGTAGT -CCAACAGCGTTAGAGATCGTCAGT -CCAACAGCGTTAGAGATCGAAGGT -CCAACAGCGTTAGAGATCAACCGT -CCAACAGCGTTAGAGATCTTGTGC -CCAACAGCGTTAGAGATCCTAAGC -CCAACAGCGTTAGAGATCACTAGC -CCAACAGCGTTAGAGATCAGATGC -CCAACAGCGTTAGAGATCTGAAGG -CCAACAGCGTTAGAGATCCAATGG -CCAACAGCGTTAGAGATCATGAGG -CCAACAGCGTTAGAGATCAATGGG -CCAACAGCGTTAGAGATCTCCTGA -CCAACAGCGTTAGAGATCTAGCGA -CCAACAGCGTTAGAGATCCACAGA -CCAACAGCGTTAGAGATCGCAAGA -CCAACAGCGTTAGAGATCGGTTGA -CCAACAGCGTTAGAGATCTCCGAT -CCAACAGCGTTAGAGATCTGGCAT -CCAACAGCGTTAGAGATCCGAGAT -CCAACAGCGTTAGAGATCTACCAC -CCAACAGCGTTAGAGATCCAGAAC -CCAACAGCGTTAGAGATCGTCTAC -CCAACAGCGTTAGAGATCACGTAC -CCAACAGCGTTAGAGATCAGTGAC -CCAACAGCGTTAGAGATCCTGTAG -CCAACAGCGTTAGAGATCCCTAAG -CCAACAGCGTTAGAGATCGTTCAG -CCAACAGCGTTAGAGATCGCATAG -CCAACAGCGTTAGAGATCGACAAG -CCAACAGCGTTAGAGATCAAGCAG -CCAACAGCGTTAGAGATCCGTCAA -CCAACAGCGTTAGAGATCGCTGAA -CCAACAGCGTTAGAGATCAGTACG -CCAACAGCGTTAGAGATCATCCGA -CCAACAGCGTTAGAGATCATGGGA -CCAACAGCGTTAGAGATCGTGCAA -CCAACAGCGTTAGAGATCGAGGAA -CCAACAGCGTTAGAGATCCAGGTA -CCAACAGCGTTAGAGATCGACTCT -CCAACAGCGTTAGAGATCAGTCCT -CCAACAGCGTTAGAGATCTAAGCC -CCAACAGCGTTAGAGATCATAGCC -CCAACAGCGTTAGAGATCTAACCG -CCAACAGCGTTAGAGATCATGCCA -CCAACAGCGTTACTTCTCGGAAAC -CCAACAGCGTTACTTCTCAACACC -CCAACAGCGTTACTTCTCATCGAG -CCAACAGCGTTACTTCTCCTCCTT -CCAACAGCGTTACTTCTCCCTGTT -CCAACAGCGTTACTTCTCCGGTTT -CCAACAGCGTTACTTCTCGTGGTT -CCAACAGCGTTACTTCTCGCCTTT -CCAACAGCGTTACTTCTCGGTCTT -CCAACAGCGTTACTTCTCACGCTT -CCAACAGCGTTACTTCTCAGCGTT -CCAACAGCGTTACTTCTCTTCGTC -CCAACAGCGTTACTTCTCTCTCTC -CCAACAGCGTTACTTCTCTGGATC -CCAACAGCGTTACTTCTCCACTTC -CCAACAGCGTTACTTCTCGTACTC -CCAACAGCGTTACTTCTCGATGTC -CCAACAGCGTTACTTCTCACAGTC -CCAACAGCGTTACTTCTCTTGCTG -CCAACAGCGTTACTTCTCTCCATG -CCAACAGCGTTACTTCTCTGTGTG -CCAACAGCGTTACTTCTCCTAGTG -CCAACAGCGTTACTTCTCCATCTG -CCAACAGCGTTACTTCTCGAGTTG -CCAACAGCGTTACTTCTCAGACTG -CCAACAGCGTTACTTCTCTCGGTA -CCAACAGCGTTACTTCTCTGCCTA -CCAACAGCGTTACTTCTCCCACTA -CCAACAGCGTTACTTCTCGGAGTA -CCAACAGCGTTACTTCTCTCGTCT -CCAACAGCGTTACTTCTCTGCACT -CCAACAGCGTTACTTCTCCTGACT -CCAACAGCGTTACTTCTCCAACCT -CCAACAGCGTTACTTCTCGCTACT -CCAACAGCGTTACTTCTCGGATCT -CCAACAGCGTTACTTCTCAAGGCT -CCAACAGCGTTACTTCTCTCAACC -CCAACAGCGTTACTTCTCTGTTCC -CCAACAGCGTTACTTCTCATTCCC -CCAACAGCGTTACTTCTCTTCTCG -CCAACAGCGTTACTTCTCTAGACG -CCAACAGCGTTACTTCTCGTAACG -CCAACAGCGTTACTTCTCACTTCG -CCAACAGCGTTACTTCTCTACGCA -CCAACAGCGTTACTTCTCCTTGCA -CCAACAGCGTTACTTCTCCGAACA -CCAACAGCGTTACTTCTCCAGTCA -CCAACAGCGTTACTTCTCGATCCA -CCAACAGCGTTACTTCTCACGACA -CCAACAGCGTTACTTCTCAGCTCA -CCAACAGCGTTACTTCTCTCACGT -CCAACAGCGTTACTTCTCCGTAGT -CCAACAGCGTTACTTCTCGTCAGT -CCAACAGCGTTACTTCTCGAAGGT -CCAACAGCGTTACTTCTCAACCGT -CCAACAGCGTTACTTCTCTTGTGC -CCAACAGCGTTACTTCTCCTAAGC -CCAACAGCGTTACTTCTCACTAGC -CCAACAGCGTTACTTCTCAGATGC -CCAACAGCGTTACTTCTCTGAAGG -CCAACAGCGTTACTTCTCCAATGG -CCAACAGCGTTACTTCTCATGAGG -CCAACAGCGTTACTTCTCAATGGG -CCAACAGCGTTACTTCTCTCCTGA -CCAACAGCGTTACTTCTCTAGCGA -CCAACAGCGTTACTTCTCCACAGA -CCAACAGCGTTACTTCTCGCAAGA -CCAACAGCGTTACTTCTCGGTTGA -CCAACAGCGTTACTTCTCTCCGAT -CCAACAGCGTTACTTCTCTGGCAT -CCAACAGCGTTACTTCTCCGAGAT -CCAACAGCGTTACTTCTCTACCAC -CCAACAGCGTTACTTCTCCAGAAC -CCAACAGCGTTACTTCTCGTCTAC -CCAACAGCGTTACTTCTCACGTAC -CCAACAGCGTTACTTCTCAGTGAC -CCAACAGCGTTACTTCTCCTGTAG -CCAACAGCGTTACTTCTCCCTAAG -CCAACAGCGTTACTTCTCGTTCAG -CCAACAGCGTTACTTCTCGCATAG -CCAACAGCGTTACTTCTCGACAAG -CCAACAGCGTTACTTCTCAAGCAG -CCAACAGCGTTACTTCTCCGTCAA -CCAACAGCGTTACTTCTCGCTGAA -CCAACAGCGTTACTTCTCAGTACG -CCAACAGCGTTACTTCTCATCCGA -CCAACAGCGTTACTTCTCATGGGA -CCAACAGCGTTACTTCTCGTGCAA -CCAACAGCGTTACTTCTCGAGGAA -CCAACAGCGTTACTTCTCCAGGTA -CCAACAGCGTTACTTCTCGACTCT -CCAACAGCGTTACTTCTCAGTCCT -CCAACAGCGTTACTTCTCTAAGCC -CCAACAGCGTTACTTCTCATAGCC -CCAACAGCGTTACTTCTCTAACCG -CCAACAGCGTTACTTCTCATGCCA -CCAACAGCGTTAGTTCCTGGAAAC -CCAACAGCGTTAGTTCCTAACACC -CCAACAGCGTTAGTTCCTATCGAG -CCAACAGCGTTAGTTCCTCTCCTT -CCAACAGCGTTAGTTCCTCCTGTT -CCAACAGCGTTAGTTCCTCGGTTT -CCAACAGCGTTAGTTCCTGTGGTT -CCAACAGCGTTAGTTCCTGCCTTT -CCAACAGCGTTAGTTCCTGGTCTT -CCAACAGCGTTAGTTCCTACGCTT -CCAACAGCGTTAGTTCCTAGCGTT -CCAACAGCGTTAGTTCCTTTCGTC -CCAACAGCGTTAGTTCCTTCTCTC -CCAACAGCGTTAGTTCCTTGGATC -CCAACAGCGTTAGTTCCTCACTTC -CCAACAGCGTTAGTTCCTGTACTC -CCAACAGCGTTAGTTCCTGATGTC -CCAACAGCGTTAGTTCCTACAGTC -CCAACAGCGTTAGTTCCTTTGCTG -CCAACAGCGTTAGTTCCTTCCATG -CCAACAGCGTTAGTTCCTTGTGTG -CCAACAGCGTTAGTTCCTCTAGTG -CCAACAGCGTTAGTTCCTCATCTG -CCAACAGCGTTAGTTCCTGAGTTG -CCAACAGCGTTAGTTCCTAGACTG -CCAACAGCGTTAGTTCCTTCGGTA -CCAACAGCGTTAGTTCCTTGCCTA -CCAACAGCGTTAGTTCCTCCACTA -CCAACAGCGTTAGTTCCTGGAGTA -CCAACAGCGTTAGTTCCTTCGTCT -CCAACAGCGTTAGTTCCTTGCACT -CCAACAGCGTTAGTTCCTCTGACT -CCAACAGCGTTAGTTCCTCAACCT -CCAACAGCGTTAGTTCCTGCTACT -CCAACAGCGTTAGTTCCTGGATCT -CCAACAGCGTTAGTTCCTAAGGCT -CCAACAGCGTTAGTTCCTTCAACC -CCAACAGCGTTAGTTCCTTGTTCC -CCAACAGCGTTAGTTCCTATTCCC -CCAACAGCGTTAGTTCCTTTCTCG -CCAACAGCGTTAGTTCCTTAGACG -CCAACAGCGTTAGTTCCTGTAACG -CCAACAGCGTTAGTTCCTACTTCG -CCAACAGCGTTAGTTCCTTACGCA -CCAACAGCGTTAGTTCCTCTTGCA -CCAACAGCGTTAGTTCCTCGAACA -CCAACAGCGTTAGTTCCTCAGTCA -CCAACAGCGTTAGTTCCTGATCCA -CCAACAGCGTTAGTTCCTACGACA -CCAACAGCGTTAGTTCCTAGCTCA -CCAACAGCGTTAGTTCCTTCACGT -CCAACAGCGTTAGTTCCTCGTAGT -CCAACAGCGTTAGTTCCTGTCAGT -CCAACAGCGTTAGTTCCTGAAGGT -CCAACAGCGTTAGTTCCTAACCGT -CCAACAGCGTTAGTTCCTTTGTGC -CCAACAGCGTTAGTTCCTCTAAGC -CCAACAGCGTTAGTTCCTACTAGC -CCAACAGCGTTAGTTCCTAGATGC -CCAACAGCGTTAGTTCCTTGAAGG -CCAACAGCGTTAGTTCCTCAATGG -CCAACAGCGTTAGTTCCTATGAGG -CCAACAGCGTTAGTTCCTAATGGG -CCAACAGCGTTAGTTCCTTCCTGA -CCAACAGCGTTAGTTCCTTAGCGA -CCAACAGCGTTAGTTCCTCACAGA -CCAACAGCGTTAGTTCCTGCAAGA -CCAACAGCGTTAGTTCCTGGTTGA -CCAACAGCGTTAGTTCCTTCCGAT -CCAACAGCGTTAGTTCCTTGGCAT -CCAACAGCGTTAGTTCCTCGAGAT -CCAACAGCGTTAGTTCCTTACCAC -CCAACAGCGTTAGTTCCTCAGAAC -CCAACAGCGTTAGTTCCTGTCTAC -CCAACAGCGTTAGTTCCTACGTAC -CCAACAGCGTTAGTTCCTAGTGAC -CCAACAGCGTTAGTTCCTCTGTAG -CCAACAGCGTTAGTTCCTCCTAAG -CCAACAGCGTTAGTTCCTGTTCAG -CCAACAGCGTTAGTTCCTGCATAG -CCAACAGCGTTAGTTCCTGACAAG -CCAACAGCGTTAGTTCCTAAGCAG -CCAACAGCGTTAGTTCCTCGTCAA -CCAACAGCGTTAGTTCCTGCTGAA -CCAACAGCGTTAGTTCCTAGTACG -CCAACAGCGTTAGTTCCTATCCGA -CCAACAGCGTTAGTTCCTATGGGA -CCAACAGCGTTAGTTCCTGTGCAA -CCAACAGCGTTAGTTCCTGAGGAA -CCAACAGCGTTAGTTCCTCAGGTA -CCAACAGCGTTAGTTCCTGACTCT -CCAACAGCGTTAGTTCCTAGTCCT -CCAACAGCGTTAGTTCCTTAAGCC -CCAACAGCGTTAGTTCCTATAGCC -CCAACAGCGTTAGTTCCTTAACCG -CCAACAGCGTTAGTTCCTATGCCA -CCAACAGCGTTATTTCGGGGAAAC -CCAACAGCGTTATTTCGGAACACC -CCAACAGCGTTATTTCGGATCGAG -CCAACAGCGTTATTTCGGCTCCTT -CCAACAGCGTTATTTCGGCCTGTT -CCAACAGCGTTATTTCGGCGGTTT -CCAACAGCGTTATTTCGGGTGGTT -CCAACAGCGTTATTTCGGGCCTTT -CCAACAGCGTTATTTCGGGGTCTT -CCAACAGCGTTATTTCGGACGCTT -CCAACAGCGTTATTTCGGAGCGTT -CCAACAGCGTTATTTCGGTTCGTC -CCAACAGCGTTATTTCGGTCTCTC -CCAACAGCGTTATTTCGGTGGATC -CCAACAGCGTTATTTCGGCACTTC -CCAACAGCGTTATTTCGGGTACTC -CCAACAGCGTTATTTCGGGATGTC -CCAACAGCGTTATTTCGGACAGTC -CCAACAGCGTTATTTCGGTTGCTG -CCAACAGCGTTATTTCGGTCCATG -CCAACAGCGTTATTTCGGTGTGTG -CCAACAGCGTTATTTCGGCTAGTG -CCAACAGCGTTATTTCGGCATCTG -CCAACAGCGTTATTTCGGGAGTTG -CCAACAGCGTTATTTCGGAGACTG -CCAACAGCGTTATTTCGGTCGGTA -CCAACAGCGTTATTTCGGTGCCTA -CCAACAGCGTTATTTCGGCCACTA -CCAACAGCGTTATTTCGGGGAGTA -CCAACAGCGTTATTTCGGTCGTCT -CCAACAGCGTTATTTCGGTGCACT -CCAACAGCGTTATTTCGGCTGACT -CCAACAGCGTTATTTCGGCAACCT -CCAACAGCGTTATTTCGGGCTACT -CCAACAGCGTTATTTCGGGGATCT -CCAACAGCGTTATTTCGGAAGGCT -CCAACAGCGTTATTTCGGTCAACC -CCAACAGCGTTATTTCGGTGTTCC -CCAACAGCGTTATTTCGGATTCCC -CCAACAGCGTTATTTCGGTTCTCG -CCAACAGCGTTATTTCGGTAGACG -CCAACAGCGTTATTTCGGGTAACG -CCAACAGCGTTATTTCGGACTTCG -CCAACAGCGTTATTTCGGTACGCA -CCAACAGCGTTATTTCGGCTTGCA -CCAACAGCGTTATTTCGGCGAACA -CCAACAGCGTTATTTCGGCAGTCA -CCAACAGCGTTATTTCGGGATCCA -CCAACAGCGTTATTTCGGACGACA -CCAACAGCGTTATTTCGGAGCTCA -CCAACAGCGTTATTTCGGTCACGT -CCAACAGCGTTATTTCGGCGTAGT -CCAACAGCGTTATTTCGGGTCAGT -CCAACAGCGTTATTTCGGGAAGGT -CCAACAGCGTTATTTCGGAACCGT -CCAACAGCGTTATTTCGGTTGTGC -CCAACAGCGTTATTTCGGCTAAGC -CCAACAGCGTTATTTCGGACTAGC -CCAACAGCGTTATTTCGGAGATGC -CCAACAGCGTTATTTCGGTGAAGG -CCAACAGCGTTATTTCGGCAATGG -CCAACAGCGTTATTTCGGATGAGG -CCAACAGCGTTATTTCGGAATGGG -CCAACAGCGTTATTTCGGTCCTGA -CCAACAGCGTTATTTCGGTAGCGA -CCAACAGCGTTATTTCGGCACAGA -CCAACAGCGTTATTTCGGGCAAGA -CCAACAGCGTTATTTCGGGGTTGA -CCAACAGCGTTATTTCGGTCCGAT -CCAACAGCGTTATTTCGGTGGCAT -CCAACAGCGTTATTTCGGCGAGAT -CCAACAGCGTTATTTCGGTACCAC -CCAACAGCGTTATTTCGGCAGAAC -CCAACAGCGTTATTTCGGGTCTAC -CCAACAGCGTTATTTCGGACGTAC -CCAACAGCGTTATTTCGGAGTGAC -CCAACAGCGTTATTTCGGCTGTAG -CCAACAGCGTTATTTCGGCCTAAG -CCAACAGCGTTATTTCGGGTTCAG -CCAACAGCGTTATTTCGGGCATAG -CCAACAGCGTTATTTCGGGACAAG -CCAACAGCGTTATTTCGGAAGCAG -CCAACAGCGTTATTTCGGCGTCAA -CCAACAGCGTTATTTCGGGCTGAA -CCAACAGCGTTATTTCGGAGTACG -CCAACAGCGTTATTTCGGATCCGA -CCAACAGCGTTATTTCGGATGGGA -CCAACAGCGTTATTTCGGGTGCAA -CCAACAGCGTTATTTCGGGAGGAA -CCAACAGCGTTATTTCGGCAGGTA -CCAACAGCGTTATTTCGGGACTCT -CCAACAGCGTTATTTCGGAGTCCT -CCAACAGCGTTATTTCGGTAAGCC -CCAACAGCGTTATTTCGGATAGCC -CCAACAGCGTTATTTCGGTAACCG -CCAACAGCGTTATTTCGGATGCCA -CCAACAGCGTTAGTTGTGGGAAAC -CCAACAGCGTTAGTTGTGAACACC -CCAACAGCGTTAGTTGTGATCGAG -CCAACAGCGTTAGTTGTGCTCCTT -CCAACAGCGTTAGTTGTGCCTGTT -CCAACAGCGTTAGTTGTGCGGTTT -CCAACAGCGTTAGTTGTGGTGGTT -CCAACAGCGTTAGTTGTGGCCTTT -CCAACAGCGTTAGTTGTGGGTCTT -CCAACAGCGTTAGTTGTGACGCTT -CCAACAGCGTTAGTTGTGAGCGTT -CCAACAGCGTTAGTTGTGTTCGTC -CCAACAGCGTTAGTTGTGTCTCTC -CCAACAGCGTTAGTTGTGTGGATC -CCAACAGCGTTAGTTGTGCACTTC -CCAACAGCGTTAGTTGTGGTACTC -CCAACAGCGTTAGTTGTGGATGTC -CCAACAGCGTTAGTTGTGACAGTC -CCAACAGCGTTAGTTGTGTTGCTG -CCAACAGCGTTAGTTGTGTCCATG -CCAACAGCGTTAGTTGTGTGTGTG -CCAACAGCGTTAGTTGTGCTAGTG -CCAACAGCGTTAGTTGTGCATCTG -CCAACAGCGTTAGTTGTGGAGTTG -CCAACAGCGTTAGTTGTGAGACTG -CCAACAGCGTTAGTTGTGTCGGTA -CCAACAGCGTTAGTTGTGTGCCTA -CCAACAGCGTTAGTTGTGCCACTA -CCAACAGCGTTAGTTGTGGGAGTA -CCAACAGCGTTAGTTGTGTCGTCT -CCAACAGCGTTAGTTGTGTGCACT -CCAACAGCGTTAGTTGTGCTGACT -CCAACAGCGTTAGTTGTGCAACCT -CCAACAGCGTTAGTTGTGGCTACT -CCAACAGCGTTAGTTGTGGGATCT -CCAACAGCGTTAGTTGTGAAGGCT -CCAACAGCGTTAGTTGTGTCAACC -CCAACAGCGTTAGTTGTGTGTTCC -CCAACAGCGTTAGTTGTGATTCCC -CCAACAGCGTTAGTTGTGTTCTCG -CCAACAGCGTTAGTTGTGTAGACG -CCAACAGCGTTAGTTGTGGTAACG -CCAACAGCGTTAGTTGTGACTTCG -CCAACAGCGTTAGTTGTGTACGCA -CCAACAGCGTTAGTTGTGCTTGCA -CCAACAGCGTTAGTTGTGCGAACA -CCAACAGCGTTAGTTGTGCAGTCA -CCAACAGCGTTAGTTGTGGATCCA -CCAACAGCGTTAGTTGTGACGACA -CCAACAGCGTTAGTTGTGAGCTCA -CCAACAGCGTTAGTTGTGTCACGT -CCAACAGCGTTAGTTGTGCGTAGT -CCAACAGCGTTAGTTGTGGTCAGT -CCAACAGCGTTAGTTGTGGAAGGT -CCAACAGCGTTAGTTGTGAACCGT -CCAACAGCGTTAGTTGTGTTGTGC -CCAACAGCGTTAGTTGTGCTAAGC -CCAACAGCGTTAGTTGTGACTAGC -CCAACAGCGTTAGTTGTGAGATGC -CCAACAGCGTTAGTTGTGTGAAGG -CCAACAGCGTTAGTTGTGCAATGG -CCAACAGCGTTAGTTGTGATGAGG -CCAACAGCGTTAGTTGTGAATGGG -CCAACAGCGTTAGTTGTGTCCTGA -CCAACAGCGTTAGTTGTGTAGCGA -CCAACAGCGTTAGTTGTGCACAGA -CCAACAGCGTTAGTTGTGGCAAGA -CCAACAGCGTTAGTTGTGGGTTGA -CCAACAGCGTTAGTTGTGTCCGAT -CCAACAGCGTTAGTTGTGTGGCAT -CCAACAGCGTTAGTTGTGCGAGAT -CCAACAGCGTTAGTTGTGTACCAC -CCAACAGCGTTAGTTGTGCAGAAC -CCAACAGCGTTAGTTGTGGTCTAC -CCAACAGCGTTAGTTGTGACGTAC -CCAACAGCGTTAGTTGTGAGTGAC -CCAACAGCGTTAGTTGTGCTGTAG -CCAACAGCGTTAGTTGTGCCTAAG -CCAACAGCGTTAGTTGTGGTTCAG -CCAACAGCGTTAGTTGTGGCATAG -CCAACAGCGTTAGTTGTGGACAAG -CCAACAGCGTTAGTTGTGAAGCAG -CCAACAGCGTTAGTTGTGCGTCAA -CCAACAGCGTTAGTTGTGGCTGAA -CCAACAGCGTTAGTTGTGAGTACG -CCAACAGCGTTAGTTGTGATCCGA -CCAACAGCGTTAGTTGTGATGGGA -CCAACAGCGTTAGTTGTGGTGCAA -CCAACAGCGTTAGTTGTGGAGGAA -CCAACAGCGTTAGTTGTGCAGGTA -CCAACAGCGTTAGTTGTGGACTCT -CCAACAGCGTTAGTTGTGAGTCCT -CCAACAGCGTTAGTTGTGTAAGCC -CCAACAGCGTTAGTTGTGATAGCC -CCAACAGCGTTAGTTGTGTAACCG -CCAACAGCGTTAGTTGTGATGCCA -CCAACAGCGTTATTTGCCGGAAAC -CCAACAGCGTTATTTGCCAACACC -CCAACAGCGTTATTTGCCATCGAG -CCAACAGCGTTATTTGCCCTCCTT -CCAACAGCGTTATTTGCCCCTGTT -CCAACAGCGTTATTTGCCCGGTTT -CCAACAGCGTTATTTGCCGTGGTT -CCAACAGCGTTATTTGCCGCCTTT -CCAACAGCGTTATTTGCCGGTCTT -CCAACAGCGTTATTTGCCACGCTT -CCAACAGCGTTATTTGCCAGCGTT -CCAACAGCGTTATTTGCCTTCGTC -CCAACAGCGTTATTTGCCTCTCTC -CCAACAGCGTTATTTGCCTGGATC -CCAACAGCGTTATTTGCCCACTTC -CCAACAGCGTTATTTGCCGTACTC -CCAACAGCGTTATTTGCCGATGTC -CCAACAGCGTTATTTGCCACAGTC -CCAACAGCGTTATTTGCCTTGCTG -CCAACAGCGTTATTTGCCTCCATG -CCAACAGCGTTATTTGCCTGTGTG -CCAACAGCGTTATTTGCCCTAGTG -CCAACAGCGTTATTTGCCCATCTG -CCAACAGCGTTATTTGCCGAGTTG -CCAACAGCGTTATTTGCCAGACTG -CCAACAGCGTTATTTGCCTCGGTA -CCAACAGCGTTATTTGCCTGCCTA -CCAACAGCGTTATTTGCCCCACTA -CCAACAGCGTTATTTGCCGGAGTA -CCAACAGCGTTATTTGCCTCGTCT -CCAACAGCGTTATTTGCCTGCACT -CCAACAGCGTTATTTGCCCTGACT -CCAACAGCGTTATTTGCCCAACCT -CCAACAGCGTTATTTGCCGCTACT -CCAACAGCGTTATTTGCCGGATCT -CCAACAGCGTTATTTGCCAAGGCT -CCAACAGCGTTATTTGCCTCAACC -CCAACAGCGTTATTTGCCTGTTCC -CCAACAGCGTTATTTGCCATTCCC -CCAACAGCGTTATTTGCCTTCTCG -CCAACAGCGTTATTTGCCTAGACG -CCAACAGCGTTATTTGCCGTAACG -CCAACAGCGTTATTTGCCACTTCG -CCAACAGCGTTATTTGCCTACGCA -CCAACAGCGTTATTTGCCCTTGCA -CCAACAGCGTTATTTGCCCGAACA -CCAACAGCGTTATTTGCCCAGTCA -CCAACAGCGTTATTTGCCGATCCA -CCAACAGCGTTATTTGCCACGACA -CCAACAGCGTTATTTGCCAGCTCA -CCAACAGCGTTATTTGCCTCACGT -CCAACAGCGTTATTTGCCCGTAGT -CCAACAGCGTTATTTGCCGTCAGT -CCAACAGCGTTATTTGCCGAAGGT -CCAACAGCGTTATTTGCCAACCGT -CCAACAGCGTTATTTGCCTTGTGC -CCAACAGCGTTATTTGCCCTAAGC -CCAACAGCGTTATTTGCCACTAGC -CCAACAGCGTTATTTGCCAGATGC -CCAACAGCGTTATTTGCCTGAAGG -CCAACAGCGTTATTTGCCCAATGG -CCAACAGCGTTATTTGCCATGAGG -CCAACAGCGTTATTTGCCAATGGG -CCAACAGCGTTATTTGCCTCCTGA -CCAACAGCGTTATTTGCCTAGCGA -CCAACAGCGTTATTTGCCCACAGA -CCAACAGCGTTATTTGCCGCAAGA -CCAACAGCGTTATTTGCCGGTTGA -CCAACAGCGTTATTTGCCTCCGAT -CCAACAGCGTTATTTGCCTGGCAT -CCAACAGCGTTATTTGCCCGAGAT -CCAACAGCGTTATTTGCCTACCAC -CCAACAGCGTTATTTGCCCAGAAC -CCAACAGCGTTATTTGCCGTCTAC -CCAACAGCGTTATTTGCCACGTAC -CCAACAGCGTTATTTGCCAGTGAC -CCAACAGCGTTATTTGCCCTGTAG -CCAACAGCGTTATTTGCCCCTAAG -CCAACAGCGTTATTTGCCGTTCAG -CCAACAGCGTTATTTGCCGCATAG -CCAACAGCGTTATTTGCCGACAAG -CCAACAGCGTTATTTGCCAAGCAG -CCAACAGCGTTATTTGCCCGTCAA -CCAACAGCGTTATTTGCCGCTGAA -CCAACAGCGTTATTTGCCAGTACG -CCAACAGCGTTATTTGCCATCCGA -CCAACAGCGTTATTTGCCATGGGA -CCAACAGCGTTATTTGCCGTGCAA -CCAACAGCGTTATTTGCCGAGGAA -CCAACAGCGTTATTTGCCCAGGTA -CCAACAGCGTTATTTGCCGACTCT -CCAACAGCGTTATTTGCCAGTCCT -CCAACAGCGTTATTTGCCTAAGCC -CCAACAGCGTTATTTGCCATAGCC -CCAACAGCGTTATTTGCCTAACCG -CCAACAGCGTTATTTGCCATGCCA -CCAACAGCGTTACTTGGTGGAAAC -CCAACAGCGTTACTTGGTAACACC -CCAACAGCGTTACTTGGTATCGAG -CCAACAGCGTTACTTGGTCTCCTT -CCAACAGCGTTACTTGGTCCTGTT -CCAACAGCGTTACTTGGTCGGTTT -CCAACAGCGTTACTTGGTGTGGTT -CCAACAGCGTTACTTGGTGCCTTT -CCAACAGCGTTACTTGGTGGTCTT -CCAACAGCGTTACTTGGTACGCTT -CCAACAGCGTTACTTGGTAGCGTT -CCAACAGCGTTACTTGGTTTCGTC -CCAACAGCGTTACTTGGTTCTCTC -CCAACAGCGTTACTTGGTTGGATC -CCAACAGCGTTACTTGGTCACTTC -CCAACAGCGTTACTTGGTGTACTC -CCAACAGCGTTACTTGGTGATGTC -CCAACAGCGTTACTTGGTACAGTC -CCAACAGCGTTACTTGGTTTGCTG -CCAACAGCGTTACTTGGTTCCATG -CCAACAGCGTTACTTGGTTGTGTG -CCAACAGCGTTACTTGGTCTAGTG -CCAACAGCGTTACTTGGTCATCTG -CCAACAGCGTTACTTGGTGAGTTG -CCAACAGCGTTACTTGGTAGACTG -CCAACAGCGTTACTTGGTTCGGTA -CCAACAGCGTTACTTGGTTGCCTA -CCAACAGCGTTACTTGGTCCACTA -CCAACAGCGTTACTTGGTGGAGTA -CCAACAGCGTTACTTGGTTCGTCT -CCAACAGCGTTACTTGGTTGCACT -CCAACAGCGTTACTTGGTCTGACT -CCAACAGCGTTACTTGGTCAACCT -CCAACAGCGTTACTTGGTGCTACT -CCAACAGCGTTACTTGGTGGATCT -CCAACAGCGTTACTTGGTAAGGCT -CCAACAGCGTTACTTGGTTCAACC -CCAACAGCGTTACTTGGTTGTTCC -CCAACAGCGTTACTTGGTATTCCC -CCAACAGCGTTACTTGGTTTCTCG -CCAACAGCGTTACTTGGTTAGACG -CCAACAGCGTTACTTGGTGTAACG -CCAACAGCGTTACTTGGTACTTCG -CCAACAGCGTTACTTGGTTACGCA -CCAACAGCGTTACTTGGTCTTGCA -CCAACAGCGTTACTTGGTCGAACA -CCAACAGCGTTACTTGGTCAGTCA -CCAACAGCGTTACTTGGTGATCCA -CCAACAGCGTTACTTGGTACGACA -CCAACAGCGTTACTTGGTAGCTCA -CCAACAGCGTTACTTGGTTCACGT -CCAACAGCGTTACTTGGTCGTAGT -CCAACAGCGTTACTTGGTGTCAGT -CCAACAGCGTTACTTGGTGAAGGT -CCAACAGCGTTACTTGGTAACCGT -CCAACAGCGTTACTTGGTTTGTGC -CCAACAGCGTTACTTGGTCTAAGC -CCAACAGCGTTACTTGGTACTAGC -CCAACAGCGTTACTTGGTAGATGC -CCAACAGCGTTACTTGGTTGAAGG -CCAACAGCGTTACTTGGTCAATGG -CCAACAGCGTTACTTGGTATGAGG -CCAACAGCGTTACTTGGTAATGGG -CCAACAGCGTTACTTGGTTCCTGA -CCAACAGCGTTACTTGGTTAGCGA -CCAACAGCGTTACTTGGTCACAGA -CCAACAGCGTTACTTGGTGCAAGA -CCAACAGCGTTACTTGGTGGTTGA -CCAACAGCGTTACTTGGTTCCGAT -CCAACAGCGTTACTTGGTTGGCAT -CCAACAGCGTTACTTGGTCGAGAT -CCAACAGCGTTACTTGGTTACCAC -CCAACAGCGTTACTTGGTCAGAAC -CCAACAGCGTTACTTGGTGTCTAC -CCAACAGCGTTACTTGGTACGTAC -CCAACAGCGTTACTTGGTAGTGAC -CCAACAGCGTTACTTGGTCTGTAG -CCAACAGCGTTACTTGGTCCTAAG -CCAACAGCGTTACTTGGTGTTCAG -CCAACAGCGTTACTTGGTGCATAG -CCAACAGCGTTACTTGGTGACAAG -CCAACAGCGTTACTTGGTAAGCAG -CCAACAGCGTTACTTGGTCGTCAA -CCAACAGCGTTACTTGGTGCTGAA -CCAACAGCGTTACTTGGTAGTACG -CCAACAGCGTTACTTGGTATCCGA -CCAACAGCGTTACTTGGTATGGGA -CCAACAGCGTTACTTGGTGTGCAA -CCAACAGCGTTACTTGGTGAGGAA -CCAACAGCGTTACTTGGTCAGGTA -CCAACAGCGTTACTTGGTGACTCT -CCAACAGCGTTACTTGGTAGTCCT -CCAACAGCGTTACTTGGTTAAGCC -CCAACAGCGTTACTTGGTATAGCC -CCAACAGCGTTACTTGGTTAACCG -CCAACAGCGTTACTTGGTATGCCA -CCAACAGCGTTACTTACGGGAAAC -CCAACAGCGTTACTTACGAACACC -CCAACAGCGTTACTTACGATCGAG -CCAACAGCGTTACTTACGCTCCTT -CCAACAGCGTTACTTACGCCTGTT -CCAACAGCGTTACTTACGCGGTTT -CCAACAGCGTTACTTACGGTGGTT -CCAACAGCGTTACTTACGGCCTTT -CCAACAGCGTTACTTACGGGTCTT -CCAACAGCGTTACTTACGACGCTT -CCAACAGCGTTACTTACGAGCGTT -CCAACAGCGTTACTTACGTTCGTC -CCAACAGCGTTACTTACGTCTCTC -CCAACAGCGTTACTTACGTGGATC -CCAACAGCGTTACTTACGCACTTC -CCAACAGCGTTACTTACGGTACTC -CCAACAGCGTTACTTACGGATGTC -CCAACAGCGTTACTTACGACAGTC -CCAACAGCGTTACTTACGTTGCTG -CCAACAGCGTTACTTACGTCCATG -CCAACAGCGTTACTTACGTGTGTG -CCAACAGCGTTACTTACGCTAGTG -CCAACAGCGTTACTTACGCATCTG -CCAACAGCGTTACTTACGGAGTTG -CCAACAGCGTTACTTACGAGACTG -CCAACAGCGTTACTTACGTCGGTA -CCAACAGCGTTACTTACGTGCCTA -CCAACAGCGTTACTTACGCCACTA -CCAACAGCGTTACTTACGGGAGTA -CCAACAGCGTTACTTACGTCGTCT -CCAACAGCGTTACTTACGTGCACT -CCAACAGCGTTACTTACGCTGACT -CCAACAGCGTTACTTACGCAACCT -CCAACAGCGTTACTTACGGCTACT -CCAACAGCGTTACTTACGGGATCT -CCAACAGCGTTACTTACGAAGGCT -CCAACAGCGTTACTTACGTCAACC -CCAACAGCGTTACTTACGTGTTCC -CCAACAGCGTTACTTACGATTCCC -CCAACAGCGTTACTTACGTTCTCG -CCAACAGCGTTACTTACGTAGACG -CCAACAGCGTTACTTACGGTAACG -CCAACAGCGTTACTTACGACTTCG -CCAACAGCGTTACTTACGTACGCA -CCAACAGCGTTACTTACGCTTGCA -CCAACAGCGTTACTTACGCGAACA -CCAACAGCGTTACTTACGCAGTCA -CCAACAGCGTTACTTACGGATCCA -CCAACAGCGTTACTTACGACGACA -CCAACAGCGTTACTTACGAGCTCA -CCAACAGCGTTACTTACGTCACGT -CCAACAGCGTTACTTACGCGTAGT -CCAACAGCGTTACTTACGGTCAGT -CCAACAGCGTTACTTACGGAAGGT -CCAACAGCGTTACTTACGAACCGT -CCAACAGCGTTACTTACGTTGTGC -CCAACAGCGTTACTTACGCTAAGC -CCAACAGCGTTACTTACGACTAGC -CCAACAGCGTTACTTACGAGATGC -CCAACAGCGTTACTTACGTGAAGG -CCAACAGCGTTACTTACGCAATGG -CCAACAGCGTTACTTACGATGAGG -CCAACAGCGTTACTTACGAATGGG -CCAACAGCGTTACTTACGTCCTGA -CCAACAGCGTTACTTACGTAGCGA -CCAACAGCGTTACTTACGCACAGA -CCAACAGCGTTACTTACGGCAAGA -CCAACAGCGTTACTTACGGGTTGA -CCAACAGCGTTACTTACGTCCGAT -CCAACAGCGTTACTTACGTGGCAT -CCAACAGCGTTACTTACGCGAGAT -CCAACAGCGTTACTTACGTACCAC -CCAACAGCGTTACTTACGCAGAAC -CCAACAGCGTTACTTACGGTCTAC -CCAACAGCGTTACTTACGACGTAC -CCAACAGCGTTACTTACGAGTGAC -CCAACAGCGTTACTTACGCTGTAG -CCAACAGCGTTACTTACGCCTAAG -CCAACAGCGTTACTTACGGTTCAG -CCAACAGCGTTACTTACGGCATAG -CCAACAGCGTTACTTACGGACAAG -CCAACAGCGTTACTTACGAAGCAG -CCAACAGCGTTACTTACGCGTCAA -CCAACAGCGTTACTTACGGCTGAA -CCAACAGCGTTACTTACGAGTACG -CCAACAGCGTTACTTACGATCCGA -CCAACAGCGTTACTTACGATGGGA -CCAACAGCGTTACTTACGGTGCAA -CCAACAGCGTTACTTACGGAGGAA -CCAACAGCGTTACTTACGCAGGTA -CCAACAGCGTTACTTACGGACTCT -CCAACAGCGTTACTTACGAGTCCT -CCAACAGCGTTACTTACGTAAGCC -CCAACAGCGTTACTTACGATAGCC -CCAACAGCGTTACTTACGTAACCG -CCAACAGCGTTACTTACGATGCCA -CCAACAGCGTTAGTTAGCGGAAAC -CCAACAGCGTTAGTTAGCAACACC -CCAACAGCGTTAGTTAGCATCGAG -CCAACAGCGTTAGTTAGCCTCCTT -CCAACAGCGTTAGTTAGCCCTGTT -CCAACAGCGTTAGTTAGCCGGTTT -CCAACAGCGTTAGTTAGCGTGGTT -CCAACAGCGTTAGTTAGCGCCTTT -CCAACAGCGTTAGTTAGCGGTCTT -CCAACAGCGTTAGTTAGCACGCTT -CCAACAGCGTTAGTTAGCAGCGTT -CCAACAGCGTTAGTTAGCTTCGTC -CCAACAGCGTTAGTTAGCTCTCTC -CCAACAGCGTTAGTTAGCTGGATC -CCAACAGCGTTAGTTAGCCACTTC -CCAACAGCGTTAGTTAGCGTACTC -CCAACAGCGTTAGTTAGCGATGTC -CCAACAGCGTTAGTTAGCACAGTC -CCAACAGCGTTAGTTAGCTTGCTG -CCAACAGCGTTAGTTAGCTCCATG -CCAACAGCGTTAGTTAGCTGTGTG -CCAACAGCGTTAGTTAGCCTAGTG -CCAACAGCGTTAGTTAGCCATCTG -CCAACAGCGTTAGTTAGCGAGTTG -CCAACAGCGTTAGTTAGCAGACTG -CCAACAGCGTTAGTTAGCTCGGTA -CCAACAGCGTTAGTTAGCTGCCTA -CCAACAGCGTTAGTTAGCCCACTA -CCAACAGCGTTAGTTAGCGGAGTA -CCAACAGCGTTAGTTAGCTCGTCT -CCAACAGCGTTAGTTAGCTGCACT -CCAACAGCGTTAGTTAGCCTGACT -CCAACAGCGTTAGTTAGCCAACCT -CCAACAGCGTTAGTTAGCGCTACT -CCAACAGCGTTAGTTAGCGGATCT -CCAACAGCGTTAGTTAGCAAGGCT -CCAACAGCGTTAGTTAGCTCAACC -CCAACAGCGTTAGTTAGCTGTTCC -CCAACAGCGTTAGTTAGCATTCCC -CCAACAGCGTTAGTTAGCTTCTCG -CCAACAGCGTTAGTTAGCTAGACG -CCAACAGCGTTAGTTAGCGTAACG -CCAACAGCGTTAGTTAGCACTTCG -CCAACAGCGTTAGTTAGCTACGCA -CCAACAGCGTTAGTTAGCCTTGCA -CCAACAGCGTTAGTTAGCCGAACA -CCAACAGCGTTAGTTAGCCAGTCA -CCAACAGCGTTAGTTAGCGATCCA -CCAACAGCGTTAGTTAGCACGACA -CCAACAGCGTTAGTTAGCAGCTCA -CCAACAGCGTTAGTTAGCTCACGT -CCAACAGCGTTAGTTAGCCGTAGT -CCAACAGCGTTAGTTAGCGTCAGT -CCAACAGCGTTAGTTAGCGAAGGT -CCAACAGCGTTAGTTAGCAACCGT -CCAACAGCGTTAGTTAGCTTGTGC -CCAACAGCGTTAGTTAGCCTAAGC -CCAACAGCGTTAGTTAGCACTAGC -CCAACAGCGTTAGTTAGCAGATGC -CCAACAGCGTTAGTTAGCTGAAGG -CCAACAGCGTTAGTTAGCCAATGG -CCAACAGCGTTAGTTAGCATGAGG -CCAACAGCGTTAGTTAGCAATGGG -CCAACAGCGTTAGTTAGCTCCTGA -CCAACAGCGTTAGTTAGCTAGCGA -CCAACAGCGTTAGTTAGCCACAGA -CCAACAGCGTTAGTTAGCGCAAGA -CCAACAGCGTTAGTTAGCGGTTGA -CCAACAGCGTTAGTTAGCTCCGAT -CCAACAGCGTTAGTTAGCTGGCAT -CCAACAGCGTTAGTTAGCCGAGAT -CCAACAGCGTTAGTTAGCTACCAC -CCAACAGCGTTAGTTAGCCAGAAC -CCAACAGCGTTAGTTAGCGTCTAC -CCAACAGCGTTAGTTAGCACGTAC -CCAACAGCGTTAGTTAGCAGTGAC -CCAACAGCGTTAGTTAGCCTGTAG -CCAACAGCGTTAGTTAGCCCTAAG -CCAACAGCGTTAGTTAGCGTTCAG -CCAACAGCGTTAGTTAGCGCATAG -CCAACAGCGTTAGTTAGCGACAAG -CCAACAGCGTTAGTTAGCAAGCAG -CCAACAGCGTTAGTTAGCCGTCAA -CCAACAGCGTTAGTTAGCGCTGAA -CCAACAGCGTTAGTTAGCAGTACG -CCAACAGCGTTAGTTAGCATCCGA -CCAACAGCGTTAGTTAGCATGGGA -CCAACAGCGTTAGTTAGCGTGCAA -CCAACAGCGTTAGTTAGCGAGGAA -CCAACAGCGTTAGTTAGCCAGGTA -CCAACAGCGTTAGTTAGCGACTCT -CCAACAGCGTTAGTTAGCAGTCCT -CCAACAGCGTTAGTTAGCTAAGCC -CCAACAGCGTTAGTTAGCATAGCC -CCAACAGCGTTAGTTAGCTAACCG -CCAACAGCGTTAGTTAGCATGCCA -CCAACAGCGTTAGTCTTCGGAAAC -CCAACAGCGTTAGTCTTCAACACC -CCAACAGCGTTAGTCTTCATCGAG -CCAACAGCGTTAGTCTTCCTCCTT -CCAACAGCGTTAGTCTTCCCTGTT -CCAACAGCGTTAGTCTTCCGGTTT -CCAACAGCGTTAGTCTTCGTGGTT -CCAACAGCGTTAGTCTTCGCCTTT -CCAACAGCGTTAGTCTTCGGTCTT -CCAACAGCGTTAGTCTTCACGCTT -CCAACAGCGTTAGTCTTCAGCGTT -CCAACAGCGTTAGTCTTCTTCGTC -CCAACAGCGTTAGTCTTCTCTCTC -CCAACAGCGTTAGTCTTCTGGATC -CCAACAGCGTTAGTCTTCCACTTC -CCAACAGCGTTAGTCTTCGTACTC -CCAACAGCGTTAGTCTTCGATGTC -CCAACAGCGTTAGTCTTCACAGTC -CCAACAGCGTTAGTCTTCTTGCTG -CCAACAGCGTTAGTCTTCTCCATG -CCAACAGCGTTAGTCTTCTGTGTG -CCAACAGCGTTAGTCTTCCTAGTG -CCAACAGCGTTAGTCTTCCATCTG -CCAACAGCGTTAGTCTTCGAGTTG -CCAACAGCGTTAGTCTTCAGACTG -CCAACAGCGTTAGTCTTCTCGGTA -CCAACAGCGTTAGTCTTCTGCCTA -CCAACAGCGTTAGTCTTCCCACTA -CCAACAGCGTTAGTCTTCGGAGTA -CCAACAGCGTTAGTCTTCTCGTCT -CCAACAGCGTTAGTCTTCTGCACT -CCAACAGCGTTAGTCTTCCTGACT -CCAACAGCGTTAGTCTTCCAACCT -CCAACAGCGTTAGTCTTCGCTACT -CCAACAGCGTTAGTCTTCGGATCT -CCAACAGCGTTAGTCTTCAAGGCT -CCAACAGCGTTAGTCTTCTCAACC -CCAACAGCGTTAGTCTTCTGTTCC -CCAACAGCGTTAGTCTTCATTCCC -CCAACAGCGTTAGTCTTCTTCTCG -CCAACAGCGTTAGTCTTCTAGACG -CCAACAGCGTTAGTCTTCGTAACG -CCAACAGCGTTAGTCTTCACTTCG -CCAACAGCGTTAGTCTTCTACGCA -CCAACAGCGTTAGTCTTCCTTGCA -CCAACAGCGTTAGTCTTCCGAACA -CCAACAGCGTTAGTCTTCCAGTCA -CCAACAGCGTTAGTCTTCGATCCA -CCAACAGCGTTAGTCTTCACGACA -CCAACAGCGTTAGTCTTCAGCTCA -CCAACAGCGTTAGTCTTCTCACGT -CCAACAGCGTTAGTCTTCCGTAGT -CCAACAGCGTTAGTCTTCGTCAGT -CCAACAGCGTTAGTCTTCGAAGGT -CCAACAGCGTTAGTCTTCAACCGT -CCAACAGCGTTAGTCTTCTTGTGC -CCAACAGCGTTAGTCTTCCTAAGC -CCAACAGCGTTAGTCTTCACTAGC -CCAACAGCGTTAGTCTTCAGATGC -CCAACAGCGTTAGTCTTCTGAAGG -CCAACAGCGTTAGTCTTCCAATGG -CCAACAGCGTTAGTCTTCATGAGG -CCAACAGCGTTAGTCTTCAATGGG -CCAACAGCGTTAGTCTTCTCCTGA -CCAACAGCGTTAGTCTTCTAGCGA -CCAACAGCGTTAGTCTTCCACAGA -CCAACAGCGTTAGTCTTCGCAAGA -CCAACAGCGTTAGTCTTCGGTTGA -CCAACAGCGTTAGTCTTCTCCGAT -CCAACAGCGTTAGTCTTCTGGCAT -CCAACAGCGTTAGTCTTCCGAGAT -CCAACAGCGTTAGTCTTCTACCAC -CCAACAGCGTTAGTCTTCCAGAAC -CCAACAGCGTTAGTCTTCGTCTAC -CCAACAGCGTTAGTCTTCACGTAC -CCAACAGCGTTAGTCTTCAGTGAC -CCAACAGCGTTAGTCTTCCTGTAG -CCAACAGCGTTAGTCTTCCCTAAG -CCAACAGCGTTAGTCTTCGTTCAG -CCAACAGCGTTAGTCTTCGCATAG -CCAACAGCGTTAGTCTTCGACAAG -CCAACAGCGTTAGTCTTCAAGCAG -CCAACAGCGTTAGTCTTCCGTCAA -CCAACAGCGTTAGTCTTCGCTGAA -CCAACAGCGTTAGTCTTCAGTACG -CCAACAGCGTTAGTCTTCATCCGA -CCAACAGCGTTAGTCTTCATGGGA -CCAACAGCGTTAGTCTTCGTGCAA -CCAACAGCGTTAGTCTTCGAGGAA -CCAACAGCGTTAGTCTTCCAGGTA -CCAACAGCGTTAGTCTTCGACTCT -CCAACAGCGTTAGTCTTCAGTCCT -CCAACAGCGTTAGTCTTCTAAGCC -CCAACAGCGTTAGTCTTCATAGCC -CCAACAGCGTTAGTCTTCTAACCG -CCAACAGCGTTAGTCTTCATGCCA -CCAACAGCGTTACTCTCTGGAAAC -CCAACAGCGTTACTCTCTAACACC -CCAACAGCGTTACTCTCTATCGAG -CCAACAGCGTTACTCTCTCTCCTT -CCAACAGCGTTACTCTCTCCTGTT -CCAACAGCGTTACTCTCTCGGTTT -CCAACAGCGTTACTCTCTGTGGTT -CCAACAGCGTTACTCTCTGCCTTT -CCAACAGCGTTACTCTCTGGTCTT -CCAACAGCGTTACTCTCTACGCTT -CCAACAGCGTTACTCTCTAGCGTT -CCAACAGCGTTACTCTCTTTCGTC -CCAACAGCGTTACTCTCTTCTCTC -CCAACAGCGTTACTCTCTTGGATC -CCAACAGCGTTACTCTCTCACTTC -CCAACAGCGTTACTCTCTGTACTC -CCAACAGCGTTACTCTCTGATGTC -CCAACAGCGTTACTCTCTACAGTC -CCAACAGCGTTACTCTCTTTGCTG -CCAACAGCGTTACTCTCTTCCATG -CCAACAGCGTTACTCTCTTGTGTG -CCAACAGCGTTACTCTCTCTAGTG -CCAACAGCGTTACTCTCTCATCTG -CCAACAGCGTTACTCTCTGAGTTG -CCAACAGCGTTACTCTCTAGACTG -CCAACAGCGTTACTCTCTTCGGTA -CCAACAGCGTTACTCTCTTGCCTA -CCAACAGCGTTACTCTCTCCACTA -CCAACAGCGTTACTCTCTGGAGTA -CCAACAGCGTTACTCTCTTCGTCT -CCAACAGCGTTACTCTCTTGCACT -CCAACAGCGTTACTCTCTCTGACT -CCAACAGCGTTACTCTCTCAACCT -CCAACAGCGTTACTCTCTGCTACT -CCAACAGCGTTACTCTCTGGATCT -CCAACAGCGTTACTCTCTAAGGCT -CCAACAGCGTTACTCTCTTCAACC -CCAACAGCGTTACTCTCTTGTTCC -CCAACAGCGTTACTCTCTATTCCC -CCAACAGCGTTACTCTCTTTCTCG -CCAACAGCGTTACTCTCTTAGACG -CCAACAGCGTTACTCTCTGTAACG -CCAACAGCGTTACTCTCTACTTCG -CCAACAGCGTTACTCTCTTACGCA -CCAACAGCGTTACTCTCTCTTGCA -CCAACAGCGTTACTCTCTCGAACA -CCAACAGCGTTACTCTCTCAGTCA -CCAACAGCGTTACTCTCTGATCCA -CCAACAGCGTTACTCTCTACGACA -CCAACAGCGTTACTCTCTAGCTCA -CCAACAGCGTTACTCTCTTCACGT -CCAACAGCGTTACTCTCTCGTAGT -CCAACAGCGTTACTCTCTGTCAGT -CCAACAGCGTTACTCTCTGAAGGT -CCAACAGCGTTACTCTCTAACCGT -CCAACAGCGTTACTCTCTTTGTGC -CCAACAGCGTTACTCTCTCTAAGC -CCAACAGCGTTACTCTCTACTAGC -CCAACAGCGTTACTCTCTAGATGC -CCAACAGCGTTACTCTCTTGAAGG -CCAACAGCGTTACTCTCTCAATGG -CCAACAGCGTTACTCTCTATGAGG -CCAACAGCGTTACTCTCTAATGGG -CCAACAGCGTTACTCTCTTCCTGA -CCAACAGCGTTACTCTCTTAGCGA -CCAACAGCGTTACTCTCTCACAGA -CCAACAGCGTTACTCTCTGCAAGA -CCAACAGCGTTACTCTCTGGTTGA -CCAACAGCGTTACTCTCTTCCGAT -CCAACAGCGTTACTCTCTTGGCAT -CCAACAGCGTTACTCTCTCGAGAT -CCAACAGCGTTACTCTCTTACCAC -CCAACAGCGTTACTCTCTCAGAAC -CCAACAGCGTTACTCTCTGTCTAC -CCAACAGCGTTACTCTCTACGTAC -CCAACAGCGTTACTCTCTAGTGAC -CCAACAGCGTTACTCTCTCTGTAG -CCAACAGCGTTACTCTCTCCTAAG -CCAACAGCGTTACTCTCTGTTCAG -CCAACAGCGTTACTCTCTGCATAG -CCAACAGCGTTACTCTCTGACAAG -CCAACAGCGTTACTCTCTAAGCAG -CCAACAGCGTTACTCTCTCGTCAA -CCAACAGCGTTACTCTCTGCTGAA -CCAACAGCGTTACTCTCTAGTACG -CCAACAGCGTTACTCTCTATCCGA -CCAACAGCGTTACTCTCTATGGGA -CCAACAGCGTTACTCTCTGTGCAA -CCAACAGCGTTACTCTCTGAGGAA -CCAACAGCGTTACTCTCTCAGGTA -CCAACAGCGTTACTCTCTGACTCT -CCAACAGCGTTACTCTCTAGTCCT -CCAACAGCGTTACTCTCTTAAGCC -CCAACAGCGTTACTCTCTATAGCC -CCAACAGCGTTACTCTCTTAACCG -CCAACAGCGTTACTCTCTATGCCA -CCAACAGCGTTAATCTGGGGAAAC -CCAACAGCGTTAATCTGGAACACC -CCAACAGCGTTAATCTGGATCGAG -CCAACAGCGTTAATCTGGCTCCTT -CCAACAGCGTTAATCTGGCCTGTT -CCAACAGCGTTAATCTGGCGGTTT -CCAACAGCGTTAATCTGGGTGGTT -CCAACAGCGTTAATCTGGGCCTTT -CCAACAGCGTTAATCTGGGGTCTT -CCAACAGCGTTAATCTGGACGCTT -CCAACAGCGTTAATCTGGAGCGTT -CCAACAGCGTTAATCTGGTTCGTC -CCAACAGCGTTAATCTGGTCTCTC -CCAACAGCGTTAATCTGGTGGATC -CCAACAGCGTTAATCTGGCACTTC -CCAACAGCGTTAATCTGGGTACTC -CCAACAGCGTTAATCTGGGATGTC -CCAACAGCGTTAATCTGGACAGTC -CCAACAGCGTTAATCTGGTTGCTG -CCAACAGCGTTAATCTGGTCCATG -CCAACAGCGTTAATCTGGTGTGTG -CCAACAGCGTTAATCTGGCTAGTG -CCAACAGCGTTAATCTGGCATCTG -CCAACAGCGTTAATCTGGGAGTTG -CCAACAGCGTTAATCTGGAGACTG -CCAACAGCGTTAATCTGGTCGGTA -CCAACAGCGTTAATCTGGTGCCTA -CCAACAGCGTTAATCTGGCCACTA -CCAACAGCGTTAATCTGGGGAGTA -CCAACAGCGTTAATCTGGTCGTCT -CCAACAGCGTTAATCTGGTGCACT -CCAACAGCGTTAATCTGGCTGACT -CCAACAGCGTTAATCTGGCAACCT -CCAACAGCGTTAATCTGGGCTACT -CCAACAGCGTTAATCTGGGGATCT -CCAACAGCGTTAATCTGGAAGGCT -CCAACAGCGTTAATCTGGTCAACC -CCAACAGCGTTAATCTGGTGTTCC -CCAACAGCGTTAATCTGGATTCCC -CCAACAGCGTTAATCTGGTTCTCG -CCAACAGCGTTAATCTGGTAGACG -CCAACAGCGTTAATCTGGGTAACG -CCAACAGCGTTAATCTGGACTTCG -CCAACAGCGTTAATCTGGTACGCA -CCAACAGCGTTAATCTGGCTTGCA -CCAACAGCGTTAATCTGGCGAACA -CCAACAGCGTTAATCTGGCAGTCA -CCAACAGCGTTAATCTGGGATCCA -CCAACAGCGTTAATCTGGACGACA -CCAACAGCGTTAATCTGGAGCTCA -CCAACAGCGTTAATCTGGTCACGT -CCAACAGCGTTAATCTGGCGTAGT -CCAACAGCGTTAATCTGGGTCAGT -CCAACAGCGTTAATCTGGGAAGGT -CCAACAGCGTTAATCTGGAACCGT -CCAACAGCGTTAATCTGGTTGTGC -CCAACAGCGTTAATCTGGCTAAGC -CCAACAGCGTTAATCTGGACTAGC -CCAACAGCGTTAATCTGGAGATGC -CCAACAGCGTTAATCTGGTGAAGG -CCAACAGCGTTAATCTGGCAATGG -CCAACAGCGTTAATCTGGATGAGG -CCAACAGCGTTAATCTGGAATGGG -CCAACAGCGTTAATCTGGTCCTGA -CCAACAGCGTTAATCTGGTAGCGA -CCAACAGCGTTAATCTGGCACAGA -CCAACAGCGTTAATCTGGGCAAGA -CCAACAGCGTTAATCTGGGGTTGA -CCAACAGCGTTAATCTGGTCCGAT -CCAACAGCGTTAATCTGGTGGCAT -CCAACAGCGTTAATCTGGCGAGAT -CCAACAGCGTTAATCTGGTACCAC -CCAACAGCGTTAATCTGGCAGAAC -CCAACAGCGTTAATCTGGGTCTAC -CCAACAGCGTTAATCTGGACGTAC -CCAACAGCGTTAATCTGGAGTGAC -CCAACAGCGTTAATCTGGCTGTAG -CCAACAGCGTTAATCTGGCCTAAG -CCAACAGCGTTAATCTGGGTTCAG -CCAACAGCGTTAATCTGGGCATAG -CCAACAGCGTTAATCTGGGACAAG -CCAACAGCGTTAATCTGGAAGCAG -CCAACAGCGTTAATCTGGCGTCAA -CCAACAGCGTTAATCTGGGCTGAA -CCAACAGCGTTAATCTGGAGTACG -CCAACAGCGTTAATCTGGATCCGA -CCAACAGCGTTAATCTGGATGGGA -CCAACAGCGTTAATCTGGGTGCAA -CCAACAGCGTTAATCTGGGAGGAA -CCAACAGCGTTAATCTGGCAGGTA -CCAACAGCGTTAATCTGGGACTCT -CCAACAGCGTTAATCTGGAGTCCT -CCAACAGCGTTAATCTGGTAAGCC -CCAACAGCGTTAATCTGGATAGCC -CCAACAGCGTTAATCTGGTAACCG -CCAACAGCGTTAATCTGGATGCCA -CCAACAGCGTTATTCCACGGAAAC -CCAACAGCGTTATTCCACAACACC -CCAACAGCGTTATTCCACATCGAG -CCAACAGCGTTATTCCACCTCCTT -CCAACAGCGTTATTCCACCCTGTT -CCAACAGCGTTATTCCACCGGTTT -CCAACAGCGTTATTCCACGTGGTT -CCAACAGCGTTATTCCACGCCTTT -CCAACAGCGTTATTCCACGGTCTT -CCAACAGCGTTATTCCACACGCTT -CCAACAGCGTTATTCCACAGCGTT -CCAACAGCGTTATTCCACTTCGTC -CCAACAGCGTTATTCCACTCTCTC -CCAACAGCGTTATTCCACTGGATC -CCAACAGCGTTATTCCACCACTTC -CCAACAGCGTTATTCCACGTACTC -CCAACAGCGTTATTCCACGATGTC -CCAACAGCGTTATTCCACACAGTC -CCAACAGCGTTATTCCACTTGCTG -CCAACAGCGTTATTCCACTCCATG -CCAACAGCGTTATTCCACTGTGTG -CCAACAGCGTTATTCCACCTAGTG -CCAACAGCGTTATTCCACCATCTG -CCAACAGCGTTATTCCACGAGTTG -CCAACAGCGTTATTCCACAGACTG -CCAACAGCGTTATTCCACTCGGTA -CCAACAGCGTTATTCCACTGCCTA -CCAACAGCGTTATTCCACCCACTA -CCAACAGCGTTATTCCACGGAGTA -CCAACAGCGTTATTCCACTCGTCT -CCAACAGCGTTATTCCACTGCACT -CCAACAGCGTTATTCCACCTGACT -CCAACAGCGTTATTCCACCAACCT -CCAACAGCGTTATTCCACGCTACT -CCAACAGCGTTATTCCACGGATCT -CCAACAGCGTTATTCCACAAGGCT -CCAACAGCGTTATTCCACTCAACC -CCAACAGCGTTATTCCACTGTTCC -CCAACAGCGTTATTCCACATTCCC -CCAACAGCGTTATTCCACTTCTCG -CCAACAGCGTTATTCCACTAGACG -CCAACAGCGTTATTCCACGTAACG -CCAACAGCGTTATTCCACACTTCG -CCAACAGCGTTATTCCACTACGCA -CCAACAGCGTTATTCCACCTTGCA -CCAACAGCGTTATTCCACCGAACA -CCAACAGCGTTATTCCACCAGTCA -CCAACAGCGTTATTCCACGATCCA -CCAACAGCGTTATTCCACACGACA -CCAACAGCGTTATTCCACAGCTCA -CCAACAGCGTTATTCCACTCACGT -CCAACAGCGTTATTCCACCGTAGT -CCAACAGCGTTATTCCACGTCAGT -CCAACAGCGTTATTCCACGAAGGT -CCAACAGCGTTATTCCACAACCGT -CCAACAGCGTTATTCCACTTGTGC -CCAACAGCGTTATTCCACCTAAGC -CCAACAGCGTTATTCCACACTAGC -CCAACAGCGTTATTCCACAGATGC -CCAACAGCGTTATTCCACTGAAGG -CCAACAGCGTTATTCCACCAATGG -CCAACAGCGTTATTCCACATGAGG -CCAACAGCGTTATTCCACAATGGG -CCAACAGCGTTATTCCACTCCTGA -CCAACAGCGTTATTCCACTAGCGA -CCAACAGCGTTATTCCACCACAGA -CCAACAGCGTTATTCCACGCAAGA -CCAACAGCGTTATTCCACGGTTGA -CCAACAGCGTTATTCCACTCCGAT -CCAACAGCGTTATTCCACTGGCAT -CCAACAGCGTTATTCCACCGAGAT -CCAACAGCGTTATTCCACTACCAC -CCAACAGCGTTATTCCACCAGAAC -CCAACAGCGTTATTCCACGTCTAC -CCAACAGCGTTATTCCACACGTAC -CCAACAGCGTTATTCCACAGTGAC -CCAACAGCGTTATTCCACCTGTAG -CCAACAGCGTTATTCCACCCTAAG -CCAACAGCGTTATTCCACGTTCAG -CCAACAGCGTTATTCCACGCATAG -CCAACAGCGTTATTCCACGACAAG -CCAACAGCGTTATTCCACAAGCAG -CCAACAGCGTTATTCCACCGTCAA -CCAACAGCGTTATTCCACGCTGAA -CCAACAGCGTTATTCCACAGTACG -CCAACAGCGTTATTCCACATCCGA -CCAACAGCGTTATTCCACATGGGA -CCAACAGCGTTATTCCACGTGCAA -CCAACAGCGTTATTCCACGAGGAA -CCAACAGCGTTATTCCACCAGGTA -CCAACAGCGTTATTCCACGACTCT -CCAACAGCGTTATTCCACAGTCCT -CCAACAGCGTTATTCCACTAAGCC -CCAACAGCGTTATTCCACATAGCC -CCAACAGCGTTATTCCACTAACCG -CCAACAGCGTTATTCCACATGCCA -CCAACAGCGTTACTCGTAGGAAAC -CCAACAGCGTTACTCGTAAACACC -CCAACAGCGTTACTCGTAATCGAG -CCAACAGCGTTACTCGTACTCCTT -CCAACAGCGTTACTCGTACCTGTT -CCAACAGCGTTACTCGTACGGTTT -CCAACAGCGTTACTCGTAGTGGTT -CCAACAGCGTTACTCGTAGCCTTT -CCAACAGCGTTACTCGTAGGTCTT -CCAACAGCGTTACTCGTAACGCTT -CCAACAGCGTTACTCGTAAGCGTT -CCAACAGCGTTACTCGTATTCGTC -CCAACAGCGTTACTCGTATCTCTC -CCAACAGCGTTACTCGTATGGATC -CCAACAGCGTTACTCGTACACTTC -CCAACAGCGTTACTCGTAGTACTC -CCAACAGCGTTACTCGTAGATGTC -CCAACAGCGTTACTCGTAACAGTC -CCAACAGCGTTACTCGTATTGCTG -CCAACAGCGTTACTCGTATCCATG -CCAACAGCGTTACTCGTATGTGTG -CCAACAGCGTTACTCGTACTAGTG -CCAACAGCGTTACTCGTACATCTG -CCAACAGCGTTACTCGTAGAGTTG -CCAACAGCGTTACTCGTAAGACTG -CCAACAGCGTTACTCGTATCGGTA -CCAACAGCGTTACTCGTATGCCTA -CCAACAGCGTTACTCGTACCACTA -CCAACAGCGTTACTCGTAGGAGTA -CCAACAGCGTTACTCGTATCGTCT -CCAACAGCGTTACTCGTATGCACT -CCAACAGCGTTACTCGTACTGACT -CCAACAGCGTTACTCGTACAACCT -CCAACAGCGTTACTCGTAGCTACT -CCAACAGCGTTACTCGTAGGATCT -CCAACAGCGTTACTCGTAAAGGCT -CCAACAGCGTTACTCGTATCAACC -CCAACAGCGTTACTCGTATGTTCC -CCAACAGCGTTACTCGTAATTCCC -CCAACAGCGTTACTCGTATTCTCG -CCAACAGCGTTACTCGTATAGACG -CCAACAGCGTTACTCGTAGTAACG -CCAACAGCGTTACTCGTAACTTCG -CCAACAGCGTTACTCGTATACGCA -CCAACAGCGTTACTCGTACTTGCA -CCAACAGCGTTACTCGTACGAACA -CCAACAGCGTTACTCGTACAGTCA -CCAACAGCGTTACTCGTAGATCCA -CCAACAGCGTTACTCGTAACGACA -CCAACAGCGTTACTCGTAAGCTCA -CCAACAGCGTTACTCGTATCACGT -CCAACAGCGTTACTCGTACGTAGT -CCAACAGCGTTACTCGTAGTCAGT -CCAACAGCGTTACTCGTAGAAGGT -CCAACAGCGTTACTCGTAAACCGT -CCAACAGCGTTACTCGTATTGTGC -CCAACAGCGTTACTCGTACTAAGC -CCAACAGCGTTACTCGTAACTAGC -CCAACAGCGTTACTCGTAAGATGC -CCAACAGCGTTACTCGTATGAAGG -CCAACAGCGTTACTCGTACAATGG -CCAACAGCGTTACTCGTAATGAGG -CCAACAGCGTTACTCGTAAATGGG -CCAACAGCGTTACTCGTATCCTGA -CCAACAGCGTTACTCGTATAGCGA -CCAACAGCGTTACTCGTACACAGA -CCAACAGCGTTACTCGTAGCAAGA -CCAACAGCGTTACTCGTAGGTTGA -CCAACAGCGTTACTCGTATCCGAT -CCAACAGCGTTACTCGTATGGCAT -CCAACAGCGTTACTCGTACGAGAT -CCAACAGCGTTACTCGTATACCAC -CCAACAGCGTTACTCGTACAGAAC -CCAACAGCGTTACTCGTAGTCTAC -CCAACAGCGTTACTCGTAACGTAC -CCAACAGCGTTACTCGTAAGTGAC -CCAACAGCGTTACTCGTACTGTAG -CCAACAGCGTTACTCGTACCTAAG -CCAACAGCGTTACTCGTAGTTCAG -CCAACAGCGTTACTCGTAGCATAG -CCAACAGCGTTACTCGTAGACAAG -CCAACAGCGTTACTCGTAAAGCAG -CCAACAGCGTTACTCGTACGTCAA -CCAACAGCGTTACTCGTAGCTGAA -CCAACAGCGTTACTCGTAAGTACG -CCAACAGCGTTACTCGTAATCCGA -CCAACAGCGTTACTCGTAATGGGA -CCAACAGCGTTACTCGTAGTGCAA -CCAACAGCGTTACTCGTAGAGGAA -CCAACAGCGTTACTCGTACAGGTA -CCAACAGCGTTACTCGTAGACTCT -CCAACAGCGTTACTCGTAAGTCCT -CCAACAGCGTTACTCGTATAAGCC -CCAACAGCGTTACTCGTAATAGCC -CCAACAGCGTTACTCGTATAACCG -CCAACAGCGTTACTCGTAATGCCA -CCAACAGCGTTAGTCGATGGAAAC -CCAACAGCGTTAGTCGATAACACC -CCAACAGCGTTAGTCGATATCGAG -CCAACAGCGTTAGTCGATCTCCTT -CCAACAGCGTTAGTCGATCCTGTT -CCAACAGCGTTAGTCGATCGGTTT -CCAACAGCGTTAGTCGATGTGGTT -CCAACAGCGTTAGTCGATGCCTTT -CCAACAGCGTTAGTCGATGGTCTT -CCAACAGCGTTAGTCGATACGCTT -CCAACAGCGTTAGTCGATAGCGTT -CCAACAGCGTTAGTCGATTTCGTC -CCAACAGCGTTAGTCGATTCTCTC -CCAACAGCGTTAGTCGATTGGATC -CCAACAGCGTTAGTCGATCACTTC -CCAACAGCGTTAGTCGATGTACTC -CCAACAGCGTTAGTCGATGATGTC -CCAACAGCGTTAGTCGATACAGTC -CCAACAGCGTTAGTCGATTTGCTG -CCAACAGCGTTAGTCGATTCCATG -CCAACAGCGTTAGTCGATTGTGTG -CCAACAGCGTTAGTCGATCTAGTG -CCAACAGCGTTAGTCGATCATCTG -CCAACAGCGTTAGTCGATGAGTTG -CCAACAGCGTTAGTCGATAGACTG -CCAACAGCGTTAGTCGATTCGGTA -CCAACAGCGTTAGTCGATTGCCTA -CCAACAGCGTTAGTCGATCCACTA -CCAACAGCGTTAGTCGATGGAGTA -CCAACAGCGTTAGTCGATTCGTCT -CCAACAGCGTTAGTCGATTGCACT -CCAACAGCGTTAGTCGATCTGACT -CCAACAGCGTTAGTCGATCAACCT -CCAACAGCGTTAGTCGATGCTACT -CCAACAGCGTTAGTCGATGGATCT -CCAACAGCGTTAGTCGATAAGGCT -CCAACAGCGTTAGTCGATTCAACC -CCAACAGCGTTAGTCGATTGTTCC -CCAACAGCGTTAGTCGATATTCCC -CCAACAGCGTTAGTCGATTTCTCG -CCAACAGCGTTAGTCGATTAGACG -CCAACAGCGTTAGTCGATGTAACG -CCAACAGCGTTAGTCGATACTTCG -CCAACAGCGTTAGTCGATTACGCA -CCAACAGCGTTAGTCGATCTTGCA -CCAACAGCGTTAGTCGATCGAACA -CCAACAGCGTTAGTCGATCAGTCA -CCAACAGCGTTAGTCGATGATCCA -CCAACAGCGTTAGTCGATACGACA -CCAACAGCGTTAGTCGATAGCTCA -CCAACAGCGTTAGTCGATTCACGT -CCAACAGCGTTAGTCGATCGTAGT -CCAACAGCGTTAGTCGATGTCAGT -CCAACAGCGTTAGTCGATGAAGGT -CCAACAGCGTTAGTCGATAACCGT -CCAACAGCGTTAGTCGATTTGTGC -CCAACAGCGTTAGTCGATCTAAGC -CCAACAGCGTTAGTCGATACTAGC -CCAACAGCGTTAGTCGATAGATGC -CCAACAGCGTTAGTCGATTGAAGG -CCAACAGCGTTAGTCGATCAATGG -CCAACAGCGTTAGTCGATATGAGG -CCAACAGCGTTAGTCGATAATGGG -CCAACAGCGTTAGTCGATTCCTGA -CCAACAGCGTTAGTCGATTAGCGA -CCAACAGCGTTAGTCGATCACAGA -CCAACAGCGTTAGTCGATGCAAGA -CCAACAGCGTTAGTCGATGGTTGA -CCAACAGCGTTAGTCGATTCCGAT -CCAACAGCGTTAGTCGATTGGCAT -CCAACAGCGTTAGTCGATCGAGAT -CCAACAGCGTTAGTCGATTACCAC -CCAACAGCGTTAGTCGATCAGAAC -CCAACAGCGTTAGTCGATGTCTAC -CCAACAGCGTTAGTCGATACGTAC -CCAACAGCGTTAGTCGATAGTGAC -CCAACAGCGTTAGTCGATCTGTAG -CCAACAGCGTTAGTCGATCCTAAG -CCAACAGCGTTAGTCGATGTTCAG -CCAACAGCGTTAGTCGATGCATAG -CCAACAGCGTTAGTCGATGACAAG -CCAACAGCGTTAGTCGATAAGCAG -CCAACAGCGTTAGTCGATCGTCAA -CCAACAGCGTTAGTCGATGCTGAA -CCAACAGCGTTAGTCGATAGTACG -CCAACAGCGTTAGTCGATATCCGA -CCAACAGCGTTAGTCGATATGGGA -CCAACAGCGTTAGTCGATGTGCAA -CCAACAGCGTTAGTCGATGAGGAA -CCAACAGCGTTAGTCGATCAGGTA -CCAACAGCGTTAGTCGATGACTCT -CCAACAGCGTTAGTCGATAGTCCT -CCAACAGCGTTAGTCGATTAAGCC -CCAACAGCGTTAGTCGATATAGCC -CCAACAGCGTTAGTCGATTAACCG -CCAACAGCGTTAGTCGATATGCCA -CCAACAGCGTTAGTCACAGGAAAC -CCAACAGCGTTAGTCACAAACACC -CCAACAGCGTTAGTCACAATCGAG -CCAACAGCGTTAGTCACACTCCTT -CCAACAGCGTTAGTCACACCTGTT -CCAACAGCGTTAGTCACACGGTTT -CCAACAGCGTTAGTCACAGTGGTT -CCAACAGCGTTAGTCACAGCCTTT -CCAACAGCGTTAGTCACAGGTCTT -CCAACAGCGTTAGTCACAACGCTT -CCAACAGCGTTAGTCACAAGCGTT -CCAACAGCGTTAGTCACATTCGTC -CCAACAGCGTTAGTCACATCTCTC -CCAACAGCGTTAGTCACATGGATC -CCAACAGCGTTAGTCACACACTTC -CCAACAGCGTTAGTCACAGTACTC -CCAACAGCGTTAGTCACAGATGTC -CCAACAGCGTTAGTCACAACAGTC -CCAACAGCGTTAGTCACATTGCTG -CCAACAGCGTTAGTCACATCCATG -CCAACAGCGTTAGTCACATGTGTG -CCAACAGCGTTAGTCACACTAGTG -CCAACAGCGTTAGTCACACATCTG -CCAACAGCGTTAGTCACAGAGTTG -CCAACAGCGTTAGTCACAAGACTG -CCAACAGCGTTAGTCACATCGGTA -CCAACAGCGTTAGTCACATGCCTA -CCAACAGCGTTAGTCACACCACTA -CCAACAGCGTTAGTCACAGGAGTA -CCAACAGCGTTAGTCACATCGTCT -CCAACAGCGTTAGTCACATGCACT -CCAACAGCGTTAGTCACACTGACT -CCAACAGCGTTAGTCACACAACCT -CCAACAGCGTTAGTCACAGCTACT -CCAACAGCGTTAGTCACAGGATCT -CCAACAGCGTTAGTCACAAAGGCT -CCAACAGCGTTAGTCACATCAACC -CCAACAGCGTTAGTCACATGTTCC -CCAACAGCGTTAGTCACAATTCCC -CCAACAGCGTTAGTCACATTCTCG -CCAACAGCGTTAGTCACATAGACG -CCAACAGCGTTAGTCACAGTAACG -CCAACAGCGTTAGTCACAACTTCG -CCAACAGCGTTAGTCACATACGCA -CCAACAGCGTTAGTCACACTTGCA -CCAACAGCGTTAGTCACACGAACA -CCAACAGCGTTAGTCACACAGTCA -CCAACAGCGTTAGTCACAGATCCA -CCAACAGCGTTAGTCACAACGACA -CCAACAGCGTTAGTCACAAGCTCA -CCAACAGCGTTAGTCACATCACGT -CCAACAGCGTTAGTCACACGTAGT -CCAACAGCGTTAGTCACAGTCAGT -CCAACAGCGTTAGTCACAGAAGGT -CCAACAGCGTTAGTCACAAACCGT -CCAACAGCGTTAGTCACATTGTGC -CCAACAGCGTTAGTCACACTAAGC -CCAACAGCGTTAGTCACAACTAGC -CCAACAGCGTTAGTCACAAGATGC -CCAACAGCGTTAGTCACATGAAGG -CCAACAGCGTTAGTCACACAATGG -CCAACAGCGTTAGTCACAATGAGG -CCAACAGCGTTAGTCACAAATGGG -CCAACAGCGTTAGTCACATCCTGA -CCAACAGCGTTAGTCACATAGCGA -CCAACAGCGTTAGTCACACACAGA -CCAACAGCGTTAGTCACAGCAAGA -CCAACAGCGTTAGTCACAGGTTGA -CCAACAGCGTTAGTCACATCCGAT -CCAACAGCGTTAGTCACATGGCAT -CCAACAGCGTTAGTCACACGAGAT -CCAACAGCGTTAGTCACATACCAC -CCAACAGCGTTAGTCACACAGAAC -CCAACAGCGTTAGTCACAGTCTAC -CCAACAGCGTTAGTCACAACGTAC -CCAACAGCGTTAGTCACAAGTGAC -CCAACAGCGTTAGTCACACTGTAG -CCAACAGCGTTAGTCACACCTAAG -CCAACAGCGTTAGTCACAGTTCAG -CCAACAGCGTTAGTCACAGCATAG -CCAACAGCGTTAGTCACAGACAAG -CCAACAGCGTTAGTCACAAAGCAG -CCAACAGCGTTAGTCACACGTCAA -CCAACAGCGTTAGTCACAGCTGAA -CCAACAGCGTTAGTCACAAGTACG -CCAACAGCGTTAGTCACAATCCGA -CCAACAGCGTTAGTCACAATGGGA -CCAACAGCGTTAGTCACAGTGCAA -CCAACAGCGTTAGTCACAGAGGAA -CCAACAGCGTTAGTCACACAGGTA -CCAACAGCGTTAGTCACAGACTCT -CCAACAGCGTTAGTCACAAGTCCT -CCAACAGCGTTAGTCACATAAGCC -CCAACAGCGTTAGTCACAATAGCC -CCAACAGCGTTAGTCACATAACCG -CCAACAGCGTTAGTCACAATGCCA -CCAACAGCGTTACTGTTGGGAAAC -CCAACAGCGTTACTGTTGAACACC -CCAACAGCGTTACTGTTGATCGAG -CCAACAGCGTTACTGTTGCTCCTT -CCAACAGCGTTACTGTTGCCTGTT -CCAACAGCGTTACTGTTGCGGTTT -CCAACAGCGTTACTGTTGGTGGTT -CCAACAGCGTTACTGTTGGCCTTT -CCAACAGCGTTACTGTTGGGTCTT -CCAACAGCGTTACTGTTGACGCTT -CCAACAGCGTTACTGTTGAGCGTT -CCAACAGCGTTACTGTTGTTCGTC -CCAACAGCGTTACTGTTGTCTCTC -CCAACAGCGTTACTGTTGTGGATC -CCAACAGCGTTACTGTTGCACTTC -CCAACAGCGTTACTGTTGGTACTC -CCAACAGCGTTACTGTTGGATGTC -CCAACAGCGTTACTGTTGACAGTC -CCAACAGCGTTACTGTTGTTGCTG -CCAACAGCGTTACTGTTGTCCATG -CCAACAGCGTTACTGTTGTGTGTG -CCAACAGCGTTACTGTTGCTAGTG -CCAACAGCGTTACTGTTGCATCTG -CCAACAGCGTTACTGTTGGAGTTG -CCAACAGCGTTACTGTTGAGACTG -CCAACAGCGTTACTGTTGTCGGTA -CCAACAGCGTTACTGTTGTGCCTA -CCAACAGCGTTACTGTTGCCACTA -CCAACAGCGTTACTGTTGGGAGTA -CCAACAGCGTTACTGTTGTCGTCT -CCAACAGCGTTACTGTTGTGCACT -CCAACAGCGTTACTGTTGCTGACT -CCAACAGCGTTACTGTTGCAACCT -CCAACAGCGTTACTGTTGGCTACT -CCAACAGCGTTACTGTTGGGATCT -CCAACAGCGTTACTGTTGAAGGCT -CCAACAGCGTTACTGTTGTCAACC -CCAACAGCGTTACTGTTGTGTTCC -CCAACAGCGTTACTGTTGATTCCC -CCAACAGCGTTACTGTTGTTCTCG -CCAACAGCGTTACTGTTGTAGACG -CCAACAGCGTTACTGTTGGTAACG -CCAACAGCGTTACTGTTGACTTCG -CCAACAGCGTTACTGTTGTACGCA -CCAACAGCGTTACTGTTGCTTGCA -CCAACAGCGTTACTGTTGCGAACA -CCAACAGCGTTACTGTTGCAGTCA -CCAACAGCGTTACTGTTGGATCCA -CCAACAGCGTTACTGTTGACGACA -CCAACAGCGTTACTGTTGAGCTCA -CCAACAGCGTTACTGTTGTCACGT -CCAACAGCGTTACTGTTGCGTAGT -CCAACAGCGTTACTGTTGGTCAGT -CCAACAGCGTTACTGTTGGAAGGT -CCAACAGCGTTACTGTTGAACCGT -CCAACAGCGTTACTGTTGTTGTGC -CCAACAGCGTTACTGTTGCTAAGC -CCAACAGCGTTACTGTTGACTAGC -CCAACAGCGTTACTGTTGAGATGC -CCAACAGCGTTACTGTTGTGAAGG -CCAACAGCGTTACTGTTGCAATGG -CCAACAGCGTTACTGTTGATGAGG -CCAACAGCGTTACTGTTGAATGGG -CCAACAGCGTTACTGTTGTCCTGA -CCAACAGCGTTACTGTTGTAGCGA -CCAACAGCGTTACTGTTGCACAGA -CCAACAGCGTTACTGTTGGCAAGA -CCAACAGCGTTACTGTTGGGTTGA -CCAACAGCGTTACTGTTGTCCGAT -CCAACAGCGTTACTGTTGTGGCAT -CCAACAGCGTTACTGTTGCGAGAT -CCAACAGCGTTACTGTTGTACCAC -CCAACAGCGTTACTGTTGCAGAAC -CCAACAGCGTTACTGTTGGTCTAC -CCAACAGCGTTACTGTTGACGTAC -CCAACAGCGTTACTGTTGAGTGAC -CCAACAGCGTTACTGTTGCTGTAG -CCAACAGCGTTACTGTTGCCTAAG -CCAACAGCGTTACTGTTGGTTCAG -CCAACAGCGTTACTGTTGGCATAG -CCAACAGCGTTACTGTTGGACAAG -CCAACAGCGTTACTGTTGAAGCAG -CCAACAGCGTTACTGTTGCGTCAA -CCAACAGCGTTACTGTTGGCTGAA -CCAACAGCGTTACTGTTGAGTACG -CCAACAGCGTTACTGTTGATCCGA -CCAACAGCGTTACTGTTGATGGGA -CCAACAGCGTTACTGTTGGTGCAA -CCAACAGCGTTACTGTTGGAGGAA -CCAACAGCGTTACTGTTGCAGGTA -CCAACAGCGTTACTGTTGGACTCT -CCAACAGCGTTACTGTTGAGTCCT -CCAACAGCGTTACTGTTGTAAGCC -CCAACAGCGTTACTGTTGATAGCC -CCAACAGCGTTACTGTTGTAACCG -CCAACAGCGTTACTGTTGATGCCA -CCAACAGCGTTAATGTCCGGAAAC -CCAACAGCGTTAATGTCCAACACC -CCAACAGCGTTAATGTCCATCGAG -CCAACAGCGTTAATGTCCCTCCTT -CCAACAGCGTTAATGTCCCCTGTT -CCAACAGCGTTAATGTCCCGGTTT -CCAACAGCGTTAATGTCCGTGGTT -CCAACAGCGTTAATGTCCGCCTTT -CCAACAGCGTTAATGTCCGGTCTT -CCAACAGCGTTAATGTCCACGCTT -CCAACAGCGTTAATGTCCAGCGTT -CCAACAGCGTTAATGTCCTTCGTC -CCAACAGCGTTAATGTCCTCTCTC -CCAACAGCGTTAATGTCCTGGATC -CCAACAGCGTTAATGTCCCACTTC -CCAACAGCGTTAATGTCCGTACTC -CCAACAGCGTTAATGTCCGATGTC -CCAACAGCGTTAATGTCCACAGTC -CCAACAGCGTTAATGTCCTTGCTG -CCAACAGCGTTAATGTCCTCCATG -CCAACAGCGTTAATGTCCTGTGTG -CCAACAGCGTTAATGTCCCTAGTG -CCAACAGCGTTAATGTCCCATCTG -CCAACAGCGTTAATGTCCGAGTTG -CCAACAGCGTTAATGTCCAGACTG -CCAACAGCGTTAATGTCCTCGGTA -CCAACAGCGTTAATGTCCTGCCTA -CCAACAGCGTTAATGTCCCCACTA -CCAACAGCGTTAATGTCCGGAGTA -CCAACAGCGTTAATGTCCTCGTCT -CCAACAGCGTTAATGTCCTGCACT -CCAACAGCGTTAATGTCCCTGACT -CCAACAGCGTTAATGTCCCAACCT -CCAACAGCGTTAATGTCCGCTACT -CCAACAGCGTTAATGTCCGGATCT -CCAACAGCGTTAATGTCCAAGGCT -CCAACAGCGTTAATGTCCTCAACC -CCAACAGCGTTAATGTCCTGTTCC -CCAACAGCGTTAATGTCCATTCCC -CCAACAGCGTTAATGTCCTTCTCG -CCAACAGCGTTAATGTCCTAGACG -CCAACAGCGTTAATGTCCGTAACG -CCAACAGCGTTAATGTCCACTTCG -CCAACAGCGTTAATGTCCTACGCA -CCAACAGCGTTAATGTCCCTTGCA -CCAACAGCGTTAATGTCCCGAACA -CCAACAGCGTTAATGTCCCAGTCA -CCAACAGCGTTAATGTCCGATCCA -CCAACAGCGTTAATGTCCACGACA -CCAACAGCGTTAATGTCCAGCTCA -CCAACAGCGTTAATGTCCTCACGT -CCAACAGCGTTAATGTCCCGTAGT -CCAACAGCGTTAATGTCCGTCAGT -CCAACAGCGTTAATGTCCGAAGGT -CCAACAGCGTTAATGTCCAACCGT -CCAACAGCGTTAATGTCCTTGTGC -CCAACAGCGTTAATGTCCCTAAGC -CCAACAGCGTTAATGTCCACTAGC -CCAACAGCGTTAATGTCCAGATGC -CCAACAGCGTTAATGTCCTGAAGG -CCAACAGCGTTAATGTCCCAATGG -CCAACAGCGTTAATGTCCATGAGG -CCAACAGCGTTAATGTCCAATGGG -CCAACAGCGTTAATGTCCTCCTGA -CCAACAGCGTTAATGTCCTAGCGA -CCAACAGCGTTAATGTCCCACAGA -CCAACAGCGTTAATGTCCGCAAGA -CCAACAGCGTTAATGTCCGGTTGA -CCAACAGCGTTAATGTCCTCCGAT -CCAACAGCGTTAATGTCCTGGCAT -CCAACAGCGTTAATGTCCCGAGAT -CCAACAGCGTTAATGTCCTACCAC -CCAACAGCGTTAATGTCCCAGAAC -CCAACAGCGTTAATGTCCGTCTAC -CCAACAGCGTTAATGTCCACGTAC -CCAACAGCGTTAATGTCCAGTGAC -CCAACAGCGTTAATGTCCCTGTAG -CCAACAGCGTTAATGTCCCCTAAG -CCAACAGCGTTAATGTCCGTTCAG -CCAACAGCGTTAATGTCCGCATAG -CCAACAGCGTTAATGTCCGACAAG -CCAACAGCGTTAATGTCCAAGCAG -CCAACAGCGTTAATGTCCCGTCAA -CCAACAGCGTTAATGTCCGCTGAA -CCAACAGCGTTAATGTCCAGTACG -CCAACAGCGTTAATGTCCATCCGA -CCAACAGCGTTAATGTCCATGGGA -CCAACAGCGTTAATGTCCGTGCAA -CCAACAGCGTTAATGTCCGAGGAA -CCAACAGCGTTAATGTCCCAGGTA -CCAACAGCGTTAATGTCCGACTCT -CCAACAGCGTTAATGTCCAGTCCT -CCAACAGCGTTAATGTCCTAAGCC -CCAACAGCGTTAATGTCCATAGCC -CCAACAGCGTTAATGTCCTAACCG -CCAACAGCGTTAATGTCCATGCCA -CCAACAGCGTTAGTGTGTGGAAAC -CCAACAGCGTTAGTGTGTAACACC -CCAACAGCGTTAGTGTGTATCGAG -CCAACAGCGTTAGTGTGTCTCCTT -CCAACAGCGTTAGTGTGTCCTGTT -CCAACAGCGTTAGTGTGTCGGTTT -CCAACAGCGTTAGTGTGTGTGGTT -CCAACAGCGTTAGTGTGTGCCTTT -CCAACAGCGTTAGTGTGTGGTCTT -CCAACAGCGTTAGTGTGTACGCTT -CCAACAGCGTTAGTGTGTAGCGTT -CCAACAGCGTTAGTGTGTTTCGTC -CCAACAGCGTTAGTGTGTTCTCTC -CCAACAGCGTTAGTGTGTTGGATC -CCAACAGCGTTAGTGTGTCACTTC -CCAACAGCGTTAGTGTGTGTACTC -CCAACAGCGTTAGTGTGTGATGTC -CCAACAGCGTTAGTGTGTACAGTC -CCAACAGCGTTAGTGTGTTTGCTG -CCAACAGCGTTAGTGTGTTCCATG -CCAACAGCGTTAGTGTGTTGTGTG -CCAACAGCGTTAGTGTGTCTAGTG -CCAACAGCGTTAGTGTGTCATCTG -CCAACAGCGTTAGTGTGTGAGTTG -CCAACAGCGTTAGTGTGTAGACTG -CCAACAGCGTTAGTGTGTTCGGTA -CCAACAGCGTTAGTGTGTTGCCTA -CCAACAGCGTTAGTGTGTCCACTA -CCAACAGCGTTAGTGTGTGGAGTA -CCAACAGCGTTAGTGTGTTCGTCT -CCAACAGCGTTAGTGTGTTGCACT -CCAACAGCGTTAGTGTGTCTGACT -CCAACAGCGTTAGTGTGTCAACCT -CCAACAGCGTTAGTGTGTGCTACT -CCAACAGCGTTAGTGTGTGGATCT -CCAACAGCGTTAGTGTGTAAGGCT -CCAACAGCGTTAGTGTGTTCAACC -CCAACAGCGTTAGTGTGTTGTTCC -CCAACAGCGTTAGTGTGTATTCCC -CCAACAGCGTTAGTGTGTTTCTCG -CCAACAGCGTTAGTGTGTTAGACG -CCAACAGCGTTAGTGTGTGTAACG -CCAACAGCGTTAGTGTGTACTTCG -CCAACAGCGTTAGTGTGTTACGCA -CCAACAGCGTTAGTGTGTCTTGCA -CCAACAGCGTTAGTGTGTCGAACA -CCAACAGCGTTAGTGTGTCAGTCA -CCAACAGCGTTAGTGTGTGATCCA -CCAACAGCGTTAGTGTGTACGACA -CCAACAGCGTTAGTGTGTAGCTCA -CCAACAGCGTTAGTGTGTTCACGT -CCAACAGCGTTAGTGTGTCGTAGT -CCAACAGCGTTAGTGTGTGTCAGT -CCAACAGCGTTAGTGTGTGAAGGT -CCAACAGCGTTAGTGTGTAACCGT -CCAACAGCGTTAGTGTGTTTGTGC -CCAACAGCGTTAGTGTGTCTAAGC -CCAACAGCGTTAGTGTGTACTAGC -CCAACAGCGTTAGTGTGTAGATGC -CCAACAGCGTTAGTGTGTTGAAGG -CCAACAGCGTTAGTGTGTCAATGG -CCAACAGCGTTAGTGTGTATGAGG -CCAACAGCGTTAGTGTGTAATGGG -CCAACAGCGTTAGTGTGTTCCTGA -CCAACAGCGTTAGTGTGTTAGCGA -CCAACAGCGTTAGTGTGTCACAGA -CCAACAGCGTTAGTGTGTGCAAGA -CCAACAGCGTTAGTGTGTGGTTGA -CCAACAGCGTTAGTGTGTTCCGAT -CCAACAGCGTTAGTGTGTTGGCAT -CCAACAGCGTTAGTGTGTCGAGAT -CCAACAGCGTTAGTGTGTTACCAC -CCAACAGCGTTAGTGTGTCAGAAC -CCAACAGCGTTAGTGTGTGTCTAC -CCAACAGCGTTAGTGTGTACGTAC -CCAACAGCGTTAGTGTGTAGTGAC -CCAACAGCGTTAGTGTGTCTGTAG -CCAACAGCGTTAGTGTGTCCTAAG -CCAACAGCGTTAGTGTGTGTTCAG -CCAACAGCGTTAGTGTGTGCATAG -CCAACAGCGTTAGTGTGTGACAAG -CCAACAGCGTTAGTGTGTAAGCAG -CCAACAGCGTTAGTGTGTCGTCAA -CCAACAGCGTTAGTGTGTGCTGAA -CCAACAGCGTTAGTGTGTAGTACG -CCAACAGCGTTAGTGTGTATCCGA -CCAACAGCGTTAGTGTGTATGGGA -CCAACAGCGTTAGTGTGTGTGCAA -CCAACAGCGTTAGTGTGTGAGGAA -CCAACAGCGTTAGTGTGTCAGGTA -CCAACAGCGTTAGTGTGTGACTCT -CCAACAGCGTTAGTGTGTAGTCCT -CCAACAGCGTTAGTGTGTTAAGCC -CCAACAGCGTTAGTGTGTATAGCC -CCAACAGCGTTAGTGTGTTAACCG -CCAACAGCGTTAGTGTGTATGCCA -CCAACAGCGTTAGTGCTAGGAAAC -CCAACAGCGTTAGTGCTAAACACC -CCAACAGCGTTAGTGCTAATCGAG -CCAACAGCGTTAGTGCTACTCCTT -CCAACAGCGTTAGTGCTACCTGTT -CCAACAGCGTTAGTGCTACGGTTT -CCAACAGCGTTAGTGCTAGTGGTT -CCAACAGCGTTAGTGCTAGCCTTT -CCAACAGCGTTAGTGCTAGGTCTT -CCAACAGCGTTAGTGCTAACGCTT -CCAACAGCGTTAGTGCTAAGCGTT -CCAACAGCGTTAGTGCTATTCGTC -CCAACAGCGTTAGTGCTATCTCTC -CCAACAGCGTTAGTGCTATGGATC -CCAACAGCGTTAGTGCTACACTTC -CCAACAGCGTTAGTGCTAGTACTC -CCAACAGCGTTAGTGCTAGATGTC -CCAACAGCGTTAGTGCTAACAGTC -CCAACAGCGTTAGTGCTATTGCTG -CCAACAGCGTTAGTGCTATCCATG -CCAACAGCGTTAGTGCTATGTGTG -CCAACAGCGTTAGTGCTACTAGTG -CCAACAGCGTTAGTGCTACATCTG -CCAACAGCGTTAGTGCTAGAGTTG -CCAACAGCGTTAGTGCTAAGACTG -CCAACAGCGTTAGTGCTATCGGTA -CCAACAGCGTTAGTGCTATGCCTA -CCAACAGCGTTAGTGCTACCACTA -CCAACAGCGTTAGTGCTAGGAGTA -CCAACAGCGTTAGTGCTATCGTCT -CCAACAGCGTTAGTGCTATGCACT -CCAACAGCGTTAGTGCTACTGACT -CCAACAGCGTTAGTGCTACAACCT -CCAACAGCGTTAGTGCTAGCTACT -CCAACAGCGTTAGTGCTAGGATCT -CCAACAGCGTTAGTGCTAAAGGCT -CCAACAGCGTTAGTGCTATCAACC -CCAACAGCGTTAGTGCTATGTTCC -CCAACAGCGTTAGTGCTAATTCCC -CCAACAGCGTTAGTGCTATTCTCG -CCAACAGCGTTAGTGCTATAGACG -CCAACAGCGTTAGTGCTAGTAACG -CCAACAGCGTTAGTGCTAACTTCG -CCAACAGCGTTAGTGCTATACGCA -CCAACAGCGTTAGTGCTACTTGCA -CCAACAGCGTTAGTGCTACGAACA -CCAACAGCGTTAGTGCTACAGTCA -CCAACAGCGTTAGTGCTAGATCCA -CCAACAGCGTTAGTGCTAACGACA -CCAACAGCGTTAGTGCTAAGCTCA -CCAACAGCGTTAGTGCTATCACGT -CCAACAGCGTTAGTGCTACGTAGT -CCAACAGCGTTAGTGCTAGTCAGT -CCAACAGCGTTAGTGCTAGAAGGT -CCAACAGCGTTAGTGCTAAACCGT -CCAACAGCGTTAGTGCTATTGTGC -CCAACAGCGTTAGTGCTACTAAGC -CCAACAGCGTTAGTGCTAACTAGC -CCAACAGCGTTAGTGCTAAGATGC -CCAACAGCGTTAGTGCTATGAAGG -CCAACAGCGTTAGTGCTACAATGG -CCAACAGCGTTAGTGCTAATGAGG -CCAACAGCGTTAGTGCTAAATGGG -CCAACAGCGTTAGTGCTATCCTGA -CCAACAGCGTTAGTGCTATAGCGA -CCAACAGCGTTAGTGCTACACAGA -CCAACAGCGTTAGTGCTAGCAAGA -CCAACAGCGTTAGTGCTAGGTTGA -CCAACAGCGTTAGTGCTATCCGAT -CCAACAGCGTTAGTGCTATGGCAT -CCAACAGCGTTAGTGCTACGAGAT -CCAACAGCGTTAGTGCTATACCAC -CCAACAGCGTTAGTGCTACAGAAC -CCAACAGCGTTAGTGCTAGTCTAC -CCAACAGCGTTAGTGCTAACGTAC -CCAACAGCGTTAGTGCTAAGTGAC -CCAACAGCGTTAGTGCTACTGTAG -CCAACAGCGTTAGTGCTACCTAAG -CCAACAGCGTTAGTGCTAGTTCAG -CCAACAGCGTTAGTGCTAGCATAG -CCAACAGCGTTAGTGCTAGACAAG -CCAACAGCGTTAGTGCTAAAGCAG -CCAACAGCGTTAGTGCTACGTCAA -CCAACAGCGTTAGTGCTAGCTGAA -CCAACAGCGTTAGTGCTAAGTACG -CCAACAGCGTTAGTGCTAATCCGA -CCAACAGCGTTAGTGCTAATGGGA -CCAACAGCGTTAGTGCTAGTGCAA -CCAACAGCGTTAGTGCTAGAGGAA -CCAACAGCGTTAGTGCTACAGGTA -CCAACAGCGTTAGTGCTAGACTCT -CCAACAGCGTTAGTGCTAAGTCCT -CCAACAGCGTTAGTGCTATAAGCC -CCAACAGCGTTAGTGCTAATAGCC -CCAACAGCGTTAGTGCTATAACCG -CCAACAGCGTTAGTGCTAATGCCA -CCAACAGCGTTACTGCATGGAAAC -CCAACAGCGTTACTGCATAACACC -CCAACAGCGTTACTGCATATCGAG -CCAACAGCGTTACTGCATCTCCTT -CCAACAGCGTTACTGCATCCTGTT -CCAACAGCGTTACTGCATCGGTTT -CCAACAGCGTTACTGCATGTGGTT -CCAACAGCGTTACTGCATGCCTTT -CCAACAGCGTTACTGCATGGTCTT -CCAACAGCGTTACTGCATACGCTT -CCAACAGCGTTACTGCATAGCGTT -CCAACAGCGTTACTGCATTTCGTC -CCAACAGCGTTACTGCATTCTCTC -CCAACAGCGTTACTGCATTGGATC -CCAACAGCGTTACTGCATCACTTC -CCAACAGCGTTACTGCATGTACTC -CCAACAGCGTTACTGCATGATGTC -CCAACAGCGTTACTGCATACAGTC -CCAACAGCGTTACTGCATTTGCTG -CCAACAGCGTTACTGCATTCCATG -CCAACAGCGTTACTGCATTGTGTG -CCAACAGCGTTACTGCATCTAGTG -CCAACAGCGTTACTGCATCATCTG -CCAACAGCGTTACTGCATGAGTTG -CCAACAGCGTTACTGCATAGACTG -CCAACAGCGTTACTGCATTCGGTA -CCAACAGCGTTACTGCATTGCCTA -CCAACAGCGTTACTGCATCCACTA -CCAACAGCGTTACTGCATGGAGTA -CCAACAGCGTTACTGCATTCGTCT -CCAACAGCGTTACTGCATTGCACT -CCAACAGCGTTACTGCATCTGACT -CCAACAGCGTTACTGCATCAACCT -CCAACAGCGTTACTGCATGCTACT -CCAACAGCGTTACTGCATGGATCT -CCAACAGCGTTACTGCATAAGGCT -CCAACAGCGTTACTGCATTCAACC -CCAACAGCGTTACTGCATTGTTCC -CCAACAGCGTTACTGCATATTCCC -CCAACAGCGTTACTGCATTTCTCG -CCAACAGCGTTACTGCATTAGACG -CCAACAGCGTTACTGCATGTAACG -CCAACAGCGTTACTGCATACTTCG -CCAACAGCGTTACTGCATTACGCA -CCAACAGCGTTACTGCATCTTGCA -CCAACAGCGTTACTGCATCGAACA -CCAACAGCGTTACTGCATCAGTCA -CCAACAGCGTTACTGCATGATCCA -CCAACAGCGTTACTGCATACGACA -CCAACAGCGTTACTGCATAGCTCA -CCAACAGCGTTACTGCATTCACGT -CCAACAGCGTTACTGCATCGTAGT -CCAACAGCGTTACTGCATGTCAGT -CCAACAGCGTTACTGCATGAAGGT -CCAACAGCGTTACTGCATAACCGT -CCAACAGCGTTACTGCATTTGTGC -CCAACAGCGTTACTGCATCTAAGC -CCAACAGCGTTACTGCATACTAGC -CCAACAGCGTTACTGCATAGATGC -CCAACAGCGTTACTGCATTGAAGG -CCAACAGCGTTACTGCATCAATGG -CCAACAGCGTTACTGCATATGAGG -CCAACAGCGTTACTGCATAATGGG -CCAACAGCGTTACTGCATTCCTGA -CCAACAGCGTTACTGCATTAGCGA -CCAACAGCGTTACTGCATCACAGA -CCAACAGCGTTACTGCATGCAAGA -CCAACAGCGTTACTGCATGGTTGA -CCAACAGCGTTACTGCATTCCGAT -CCAACAGCGTTACTGCATTGGCAT -CCAACAGCGTTACTGCATCGAGAT -CCAACAGCGTTACTGCATTACCAC -CCAACAGCGTTACTGCATCAGAAC -CCAACAGCGTTACTGCATGTCTAC -CCAACAGCGTTACTGCATACGTAC -CCAACAGCGTTACTGCATAGTGAC -CCAACAGCGTTACTGCATCTGTAG -CCAACAGCGTTACTGCATCCTAAG -CCAACAGCGTTACTGCATGTTCAG -CCAACAGCGTTACTGCATGCATAG -CCAACAGCGTTACTGCATGACAAG -CCAACAGCGTTACTGCATAAGCAG -CCAACAGCGTTACTGCATCGTCAA -CCAACAGCGTTACTGCATGCTGAA -CCAACAGCGTTACTGCATAGTACG -CCAACAGCGTTACTGCATATCCGA -CCAACAGCGTTACTGCATATGGGA -CCAACAGCGTTACTGCATGTGCAA -CCAACAGCGTTACTGCATGAGGAA -CCAACAGCGTTACTGCATCAGGTA -CCAACAGCGTTACTGCATGACTCT -CCAACAGCGTTACTGCATAGTCCT -CCAACAGCGTTACTGCATTAAGCC -CCAACAGCGTTACTGCATATAGCC -CCAACAGCGTTACTGCATTAACCG -CCAACAGCGTTACTGCATATGCCA -CCAACAGCGTTATTGGAGGGAAAC -CCAACAGCGTTATTGGAGAACACC -CCAACAGCGTTATTGGAGATCGAG -CCAACAGCGTTATTGGAGCTCCTT -CCAACAGCGTTATTGGAGCCTGTT -CCAACAGCGTTATTGGAGCGGTTT -CCAACAGCGTTATTGGAGGTGGTT -CCAACAGCGTTATTGGAGGCCTTT -CCAACAGCGTTATTGGAGGGTCTT -CCAACAGCGTTATTGGAGACGCTT -CCAACAGCGTTATTGGAGAGCGTT -CCAACAGCGTTATTGGAGTTCGTC -CCAACAGCGTTATTGGAGTCTCTC -CCAACAGCGTTATTGGAGTGGATC -CCAACAGCGTTATTGGAGCACTTC -CCAACAGCGTTATTGGAGGTACTC -CCAACAGCGTTATTGGAGGATGTC -CCAACAGCGTTATTGGAGACAGTC -CCAACAGCGTTATTGGAGTTGCTG -CCAACAGCGTTATTGGAGTCCATG -CCAACAGCGTTATTGGAGTGTGTG -CCAACAGCGTTATTGGAGCTAGTG -CCAACAGCGTTATTGGAGCATCTG -CCAACAGCGTTATTGGAGGAGTTG -CCAACAGCGTTATTGGAGAGACTG -CCAACAGCGTTATTGGAGTCGGTA -CCAACAGCGTTATTGGAGTGCCTA -CCAACAGCGTTATTGGAGCCACTA -CCAACAGCGTTATTGGAGGGAGTA -CCAACAGCGTTATTGGAGTCGTCT -CCAACAGCGTTATTGGAGTGCACT -CCAACAGCGTTATTGGAGCTGACT -CCAACAGCGTTATTGGAGCAACCT -CCAACAGCGTTATTGGAGGCTACT -CCAACAGCGTTATTGGAGGGATCT -CCAACAGCGTTATTGGAGAAGGCT -CCAACAGCGTTATTGGAGTCAACC -CCAACAGCGTTATTGGAGTGTTCC -CCAACAGCGTTATTGGAGATTCCC -CCAACAGCGTTATTGGAGTTCTCG -CCAACAGCGTTATTGGAGTAGACG -CCAACAGCGTTATTGGAGGTAACG -CCAACAGCGTTATTGGAGACTTCG -CCAACAGCGTTATTGGAGTACGCA -CCAACAGCGTTATTGGAGCTTGCA -CCAACAGCGTTATTGGAGCGAACA -CCAACAGCGTTATTGGAGCAGTCA -CCAACAGCGTTATTGGAGGATCCA -CCAACAGCGTTATTGGAGACGACA -CCAACAGCGTTATTGGAGAGCTCA -CCAACAGCGTTATTGGAGTCACGT -CCAACAGCGTTATTGGAGCGTAGT -CCAACAGCGTTATTGGAGGTCAGT -CCAACAGCGTTATTGGAGGAAGGT -CCAACAGCGTTATTGGAGAACCGT -CCAACAGCGTTATTGGAGTTGTGC -CCAACAGCGTTATTGGAGCTAAGC -CCAACAGCGTTATTGGAGACTAGC -CCAACAGCGTTATTGGAGAGATGC -CCAACAGCGTTATTGGAGTGAAGG -CCAACAGCGTTATTGGAGCAATGG -CCAACAGCGTTATTGGAGATGAGG -CCAACAGCGTTATTGGAGAATGGG -CCAACAGCGTTATTGGAGTCCTGA -CCAACAGCGTTATTGGAGTAGCGA -CCAACAGCGTTATTGGAGCACAGA -CCAACAGCGTTATTGGAGGCAAGA -CCAACAGCGTTATTGGAGGGTTGA -CCAACAGCGTTATTGGAGTCCGAT -CCAACAGCGTTATTGGAGTGGCAT -CCAACAGCGTTATTGGAGCGAGAT -CCAACAGCGTTATTGGAGTACCAC -CCAACAGCGTTATTGGAGCAGAAC -CCAACAGCGTTATTGGAGGTCTAC -CCAACAGCGTTATTGGAGACGTAC -CCAACAGCGTTATTGGAGAGTGAC -CCAACAGCGTTATTGGAGCTGTAG -CCAACAGCGTTATTGGAGCCTAAG -CCAACAGCGTTATTGGAGGTTCAG -CCAACAGCGTTATTGGAGGCATAG -CCAACAGCGTTATTGGAGGACAAG -CCAACAGCGTTATTGGAGAAGCAG -CCAACAGCGTTATTGGAGCGTCAA -CCAACAGCGTTATTGGAGGCTGAA -CCAACAGCGTTATTGGAGAGTACG -CCAACAGCGTTATTGGAGATCCGA -CCAACAGCGTTATTGGAGATGGGA -CCAACAGCGTTATTGGAGGTGCAA -CCAACAGCGTTATTGGAGGAGGAA -CCAACAGCGTTATTGGAGCAGGTA -CCAACAGCGTTATTGGAGGACTCT -CCAACAGCGTTATTGGAGAGTCCT -CCAACAGCGTTATTGGAGTAAGCC -CCAACAGCGTTATTGGAGATAGCC -CCAACAGCGTTATTGGAGTAACCG -CCAACAGCGTTATTGGAGATGCCA -CCAACAGCGTTACTGAGAGGAAAC -CCAACAGCGTTACTGAGAAACACC -CCAACAGCGTTACTGAGAATCGAG -CCAACAGCGTTACTGAGACTCCTT -CCAACAGCGTTACTGAGACCTGTT -CCAACAGCGTTACTGAGACGGTTT -CCAACAGCGTTACTGAGAGTGGTT -CCAACAGCGTTACTGAGAGCCTTT -CCAACAGCGTTACTGAGAGGTCTT -CCAACAGCGTTACTGAGAACGCTT -CCAACAGCGTTACTGAGAAGCGTT -CCAACAGCGTTACTGAGATTCGTC -CCAACAGCGTTACTGAGATCTCTC -CCAACAGCGTTACTGAGATGGATC -CCAACAGCGTTACTGAGACACTTC -CCAACAGCGTTACTGAGAGTACTC -CCAACAGCGTTACTGAGAGATGTC -CCAACAGCGTTACTGAGAACAGTC -CCAACAGCGTTACTGAGATTGCTG -CCAACAGCGTTACTGAGATCCATG -CCAACAGCGTTACTGAGATGTGTG -CCAACAGCGTTACTGAGACTAGTG -CCAACAGCGTTACTGAGACATCTG -CCAACAGCGTTACTGAGAGAGTTG -CCAACAGCGTTACTGAGAAGACTG -CCAACAGCGTTACTGAGATCGGTA -CCAACAGCGTTACTGAGATGCCTA -CCAACAGCGTTACTGAGACCACTA -CCAACAGCGTTACTGAGAGGAGTA -CCAACAGCGTTACTGAGATCGTCT -CCAACAGCGTTACTGAGATGCACT -CCAACAGCGTTACTGAGACTGACT -CCAACAGCGTTACTGAGACAACCT -CCAACAGCGTTACTGAGAGCTACT -CCAACAGCGTTACTGAGAGGATCT -CCAACAGCGTTACTGAGAAAGGCT -CCAACAGCGTTACTGAGATCAACC -CCAACAGCGTTACTGAGATGTTCC -CCAACAGCGTTACTGAGAATTCCC -CCAACAGCGTTACTGAGATTCTCG -CCAACAGCGTTACTGAGATAGACG -CCAACAGCGTTACTGAGAGTAACG -CCAACAGCGTTACTGAGAACTTCG -CCAACAGCGTTACTGAGATACGCA -CCAACAGCGTTACTGAGACTTGCA -CCAACAGCGTTACTGAGACGAACA -CCAACAGCGTTACTGAGACAGTCA -CCAACAGCGTTACTGAGAGATCCA -CCAACAGCGTTACTGAGAACGACA -CCAACAGCGTTACTGAGAAGCTCA -CCAACAGCGTTACTGAGATCACGT -CCAACAGCGTTACTGAGACGTAGT -CCAACAGCGTTACTGAGAGTCAGT -CCAACAGCGTTACTGAGAGAAGGT -CCAACAGCGTTACTGAGAAACCGT -CCAACAGCGTTACTGAGATTGTGC -CCAACAGCGTTACTGAGACTAAGC -CCAACAGCGTTACTGAGAACTAGC -CCAACAGCGTTACTGAGAAGATGC -CCAACAGCGTTACTGAGATGAAGG -CCAACAGCGTTACTGAGACAATGG -CCAACAGCGTTACTGAGAATGAGG -CCAACAGCGTTACTGAGAAATGGG -CCAACAGCGTTACTGAGATCCTGA -CCAACAGCGTTACTGAGATAGCGA -CCAACAGCGTTACTGAGACACAGA -CCAACAGCGTTACTGAGAGCAAGA -CCAACAGCGTTACTGAGAGGTTGA -CCAACAGCGTTACTGAGATCCGAT -CCAACAGCGTTACTGAGATGGCAT -CCAACAGCGTTACTGAGACGAGAT -CCAACAGCGTTACTGAGATACCAC -CCAACAGCGTTACTGAGACAGAAC -CCAACAGCGTTACTGAGAGTCTAC -CCAACAGCGTTACTGAGAACGTAC -CCAACAGCGTTACTGAGAAGTGAC -CCAACAGCGTTACTGAGACTGTAG -CCAACAGCGTTACTGAGACCTAAG -CCAACAGCGTTACTGAGAGTTCAG -CCAACAGCGTTACTGAGAGCATAG -CCAACAGCGTTACTGAGAGACAAG -CCAACAGCGTTACTGAGAAAGCAG -CCAACAGCGTTACTGAGACGTCAA -CCAACAGCGTTACTGAGAGCTGAA -CCAACAGCGTTACTGAGAAGTACG -CCAACAGCGTTACTGAGAATCCGA -CCAACAGCGTTACTGAGAATGGGA -CCAACAGCGTTACTGAGAGTGCAA -CCAACAGCGTTACTGAGAGAGGAA -CCAACAGCGTTACTGAGACAGGTA -CCAACAGCGTTACTGAGAGACTCT -CCAACAGCGTTACTGAGAAGTCCT -CCAACAGCGTTACTGAGATAAGCC -CCAACAGCGTTACTGAGAATAGCC -CCAACAGCGTTACTGAGATAACCG -CCAACAGCGTTACTGAGAATGCCA -CCAACAGCGTTAGTATCGGGAAAC -CCAACAGCGTTAGTATCGAACACC -CCAACAGCGTTAGTATCGATCGAG -CCAACAGCGTTAGTATCGCTCCTT -CCAACAGCGTTAGTATCGCCTGTT -CCAACAGCGTTAGTATCGCGGTTT -CCAACAGCGTTAGTATCGGTGGTT -CCAACAGCGTTAGTATCGGCCTTT -CCAACAGCGTTAGTATCGGGTCTT -CCAACAGCGTTAGTATCGACGCTT -CCAACAGCGTTAGTATCGAGCGTT -CCAACAGCGTTAGTATCGTTCGTC -CCAACAGCGTTAGTATCGTCTCTC -CCAACAGCGTTAGTATCGTGGATC -CCAACAGCGTTAGTATCGCACTTC -CCAACAGCGTTAGTATCGGTACTC -CCAACAGCGTTAGTATCGGATGTC -CCAACAGCGTTAGTATCGACAGTC -CCAACAGCGTTAGTATCGTTGCTG -CCAACAGCGTTAGTATCGTCCATG -CCAACAGCGTTAGTATCGTGTGTG -CCAACAGCGTTAGTATCGCTAGTG -CCAACAGCGTTAGTATCGCATCTG -CCAACAGCGTTAGTATCGGAGTTG -CCAACAGCGTTAGTATCGAGACTG -CCAACAGCGTTAGTATCGTCGGTA -CCAACAGCGTTAGTATCGTGCCTA -CCAACAGCGTTAGTATCGCCACTA -CCAACAGCGTTAGTATCGGGAGTA -CCAACAGCGTTAGTATCGTCGTCT -CCAACAGCGTTAGTATCGTGCACT -CCAACAGCGTTAGTATCGCTGACT -CCAACAGCGTTAGTATCGCAACCT -CCAACAGCGTTAGTATCGGCTACT -CCAACAGCGTTAGTATCGGGATCT -CCAACAGCGTTAGTATCGAAGGCT -CCAACAGCGTTAGTATCGTCAACC -CCAACAGCGTTAGTATCGTGTTCC -CCAACAGCGTTAGTATCGATTCCC -CCAACAGCGTTAGTATCGTTCTCG -CCAACAGCGTTAGTATCGTAGACG -CCAACAGCGTTAGTATCGGTAACG -CCAACAGCGTTAGTATCGACTTCG -CCAACAGCGTTAGTATCGTACGCA -CCAACAGCGTTAGTATCGCTTGCA -CCAACAGCGTTAGTATCGCGAACA -CCAACAGCGTTAGTATCGCAGTCA -CCAACAGCGTTAGTATCGGATCCA -CCAACAGCGTTAGTATCGACGACA -CCAACAGCGTTAGTATCGAGCTCA -CCAACAGCGTTAGTATCGTCACGT -CCAACAGCGTTAGTATCGCGTAGT -CCAACAGCGTTAGTATCGGTCAGT -CCAACAGCGTTAGTATCGGAAGGT -CCAACAGCGTTAGTATCGAACCGT -CCAACAGCGTTAGTATCGTTGTGC -CCAACAGCGTTAGTATCGCTAAGC -CCAACAGCGTTAGTATCGACTAGC -CCAACAGCGTTAGTATCGAGATGC -CCAACAGCGTTAGTATCGTGAAGG -CCAACAGCGTTAGTATCGCAATGG -CCAACAGCGTTAGTATCGATGAGG -CCAACAGCGTTAGTATCGAATGGG -CCAACAGCGTTAGTATCGTCCTGA -CCAACAGCGTTAGTATCGTAGCGA -CCAACAGCGTTAGTATCGCACAGA -CCAACAGCGTTAGTATCGGCAAGA -CCAACAGCGTTAGTATCGGGTTGA -CCAACAGCGTTAGTATCGTCCGAT -CCAACAGCGTTAGTATCGTGGCAT -CCAACAGCGTTAGTATCGCGAGAT -CCAACAGCGTTAGTATCGTACCAC -CCAACAGCGTTAGTATCGCAGAAC -CCAACAGCGTTAGTATCGGTCTAC -CCAACAGCGTTAGTATCGACGTAC -CCAACAGCGTTAGTATCGAGTGAC -CCAACAGCGTTAGTATCGCTGTAG -CCAACAGCGTTAGTATCGCCTAAG -CCAACAGCGTTAGTATCGGTTCAG -CCAACAGCGTTAGTATCGGCATAG -CCAACAGCGTTAGTATCGGACAAG -CCAACAGCGTTAGTATCGAAGCAG -CCAACAGCGTTAGTATCGCGTCAA -CCAACAGCGTTAGTATCGGCTGAA -CCAACAGCGTTAGTATCGAGTACG -CCAACAGCGTTAGTATCGATCCGA -CCAACAGCGTTAGTATCGATGGGA -CCAACAGCGTTAGTATCGGTGCAA -CCAACAGCGTTAGTATCGGAGGAA -CCAACAGCGTTAGTATCGCAGGTA -CCAACAGCGTTAGTATCGGACTCT -CCAACAGCGTTAGTATCGAGTCCT -CCAACAGCGTTAGTATCGTAAGCC -CCAACAGCGTTAGTATCGATAGCC -CCAACAGCGTTAGTATCGTAACCG -CCAACAGCGTTAGTATCGATGCCA -CCAACAGCGTTACTATGCGGAAAC -CCAACAGCGTTACTATGCAACACC -CCAACAGCGTTACTATGCATCGAG -CCAACAGCGTTACTATGCCTCCTT -CCAACAGCGTTACTATGCCCTGTT -CCAACAGCGTTACTATGCCGGTTT -CCAACAGCGTTACTATGCGTGGTT -CCAACAGCGTTACTATGCGCCTTT -CCAACAGCGTTACTATGCGGTCTT -CCAACAGCGTTACTATGCACGCTT -CCAACAGCGTTACTATGCAGCGTT -CCAACAGCGTTACTATGCTTCGTC -CCAACAGCGTTACTATGCTCTCTC -CCAACAGCGTTACTATGCTGGATC -CCAACAGCGTTACTATGCCACTTC -CCAACAGCGTTACTATGCGTACTC -CCAACAGCGTTACTATGCGATGTC -CCAACAGCGTTACTATGCACAGTC -CCAACAGCGTTACTATGCTTGCTG -CCAACAGCGTTACTATGCTCCATG -CCAACAGCGTTACTATGCTGTGTG -CCAACAGCGTTACTATGCCTAGTG -CCAACAGCGTTACTATGCCATCTG -CCAACAGCGTTACTATGCGAGTTG -CCAACAGCGTTACTATGCAGACTG -CCAACAGCGTTACTATGCTCGGTA -CCAACAGCGTTACTATGCTGCCTA -CCAACAGCGTTACTATGCCCACTA -CCAACAGCGTTACTATGCGGAGTA -CCAACAGCGTTACTATGCTCGTCT -CCAACAGCGTTACTATGCTGCACT -CCAACAGCGTTACTATGCCTGACT -CCAACAGCGTTACTATGCCAACCT -CCAACAGCGTTACTATGCGCTACT -CCAACAGCGTTACTATGCGGATCT -CCAACAGCGTTACTATGCAAGGCT -CCAACAGCGTTACTATGCTCAACC -CCAACAGCGTTACTATGCTGTTCC -CCAACAGCGTTACTATGCATTCCC -CCAACAGCGTTACTATGCTTCTCG -CCAACAGCGTTACTATGCTAGACG -CCAACAGCGTTACTATGCGTAACG -CCAACAGCGTTACTATGCACTTCG -CCAACAGCGTTACTATGCTACGCA -CCAACAGCGTTACTATGCCTTGCA -CCAACAGCGTTACTATGCCGAACA -CCAACAGCGTTACTATGCCAGTCA -CCAACAGCGTTACTATGCGATCCA -CCAACAGCGTTACTATGCACGACA -CCAACAGCGTTACTATGCAGCTCA -CCAACAGCGTTACTATGCTCACGT -CCAACAGCGTTACTATGCCGTAGT -CCAACAGCGTTACTATGCGTCAGT -CCAACAGCGTTACTATGCGAAGGT -CCAACAGCGTTACTATGCAACCGT -CCAACAGCGTTACTATGCTTGTGC -CCAACAGCGTTACTATGCCTAAGC -CCAACAGCGTTACTATGCACTAGC -CCAACAGCGTTACTATGCAGATGC -CCAACAGCGTTACTATGCTGAAGG -CCAACAGCGTTACTATGCCAATGG -CCAACAGCGTTACTATGCATGAGG -CCAACAGCGTTACTATGCAATGGG -CCAACAGCGTTACTATGCTCCTGA -CCAACAGCGTTACTATGCTAGCGA -CCAACAGCGTTACTATGCCACAGA -CCAACAGCGTTACTATGCGCAAGA -CCAACAGCGTTACTATGCGGTTGA -CCAACAGCGTTACTATGCTCCGAT -CCAACAGCGTTACTATGCTGGCAT -CCAACAGCGTTACTATGCCGAGAT -CCAACAGCGTTACTATGCTACCAC -CCAACAGCGTTACTATGCCAGAAC -CCAACAGCGTTACTATGCGTCTAC -CCAACAGCGTTACTATGCACGTAC -CCAACAGCGTTACTATGCAGTGAC -CCAACAGCGTTACTATGCCTGTAG -CCAACAGCGTTACTATGCCCTAAG -CCAACAGCGTTACTATGCGTTCAG -CCAACAGCGTTACTATGCGCATAG -CCAACAGCGTTACTATGCGACAAG -CCAACAGCGTTACTATGCAAGCAG -CCAACAGCGTTACTATGCCGTCAA -CCAACAGCGTTACTATGCGCTGAA -CCAACAGCGTTACTATGCAGTACG -CCAACAGCGTTACTATGCATCCGA -CCAACAGCGTTACTATGCATGGGA -CCAACAGCGTTACTATGCGTGCAA -CCAACAGCGTTACTATGCGAGGAA -CCAACAGCGTTACTATGCCAGGTA -CCAACAGCGTTACTATGCGACTCT -CCAACAGCGTTACTATGCAGTCCT -CCAACAGCGTTACTATGCTAAGCC -CCAACAGCGTTACTATGCATAGCC -CCAACAGCGTTACTATGCTAACCG -CCAACAGCGTTACTATGCATGCCA -CCAACAGCGTTACTACCAGGAAAC -CCAACAGCGTTACTACCAAACACC -CCAACAGCGTTACTACCAATCGAG -CCAACAGCGTTACTACCACTCCTT -CCAACAGCGTTACTACCACCTGTT -CCAACAGCGTTACTACCACGGTTT -CCAACAGCGTTACTACCAGTGGTT -CCAACAGCGTTACTACCAGCCTTT -CCAACAGCGTTACTACCAGGTCTT -CCAACAGCGTTACTACCAACGCTT -CCAACAGCGTTACTACCAAGCGTT -CCAACAGCGTTACTACCATTCGTC -CCAACAGCGTTACTACCATCTCTC -CCAACAGCGTTACTACCATGGATC -CCAACAGCGTTACTACCACACTTC -CCAACAGCGTTACTACCAGTACTC -CCAACAGCGTTACTACCAGATGTC -CCAACAGCGTTACTACCAACAGTC -CCAACAGCGTTACTACCATTGCTG -CCAACAGCGTTACTACCATCCATG -CCAACAGCGTTACTACCATGTGTG -CCAACAGCGTTACTACCACTAGTG -CCAACAGCGTTACTACCACATCTG -CCAACAGCGTTACTACCAGAGTTG -CCAACAGCGTTACTACCAAGACTG -CCAACAGCGTTACTACCATCGGTA -CCAACAGCGTTACTACCATGCCTA -CCAACAGCGTTACTACCACCACTA -CCAACAGCGTTACTACCAGGAGTA -CCAACAGCGTTACTACCATCGTCT -CCAACAGCGTTACTACCATGCACT -CCAACAGCGTTACTACCACTGACT -CCAACAGCGTTACTACCACAACCT -CCAACAGCGTTACTACCAGCTACT -CCAACAGCGTTACTACCAGGATCT -CCAACAGCGTTACTACCAAAGGCT -CCAACAGCGTTACTACCATCAACC -CCAACAGCGTTACTACCATGTTCC -CCAACAGCGTTACTACCAATTCCC -CCAACAGCGTTACTACCATTCTCG -CCAACAGCGTTACTACCATAGACG -CCAACAGCGTTACTACCAGTAACG -CCAACAGCGTTACTACCAACTTCG -CCAACAGCGTTACTACCATACGCA -CCAACAGCGTTACTACCACTTGCA -CCAACAGCGTTACTACCACGAACA -CCAACAGCGTTACTACCACAGTCA -CCAACAGCGTTACTACCAGATCCA -CCAACAGCGTTACTACCAACGACA -CCAACAGCGTTACTACCAAGCTCA -CCAACAGCGTTACTACCATCACGT -CCAACAGCGTTACTACCACGTAGT -CCAACAGCGTTACTACCAGTCAGT -CCAACAGCGTTACTACCAGAAGGT -CCAACAGCGTTACTACCAAACCGT -CCAACAGCGTTACTACCATTGTGC -CCAACAGCGTTACTACCACTAAGC -CCAACAGCGTTACTACCAACTAGC -CCAACAGCGTTACTACCAAGATGC -CCAACAGCGTTACTACCATGAAGG -CCAACAGCGTTACTACCACAATGG -CCAACAGCGTTACTACCAATGAGG -CCAACAGCGTTACTACCAAATGGG -CCAACAGCGTTACTACCATCCTGA -CCAACAGCGTTACTACCATAGCGA -CCAACAGCGTTACTACCACACAGA -CCAACAGCGTTACTACCAGCAAGA -CCAACAGCGTTACTACCAGGTTGA -CCAACAGCGTTACTACCATCCGAT -CCAACAGCGTTACTACCATGGCAT -CCAACAGCGTTACTACCACGAGAT -CCAACAGCGTTACTACCATACCAC -CCAACAGCGTTACTACCACAGAAC -CCAACAGCGTTACTACCAGTCTAC -CCAACAGCGTTACTACCAACGTAC -CCAACAGCGTTACTACCAAGTGAC -CCAACAGCGTTACTACCACTGTAG -CCAACAGCGTTACTACCACCTAAG -CCAACAGCGTTACTACCAGTTCAG -CCAACAGCGTTACTACCAGCATAG -CCAACAGCGTTACTACCAGACAAG -CCAACAGCGTTACTACCAAAGCAG -CCAACAGCGTTACTACCACGTCAA -CCAACAGCGTTACTACCAGCTGAA -CCAACAGCGTTACTACCAAGTACG -CCAACAGCGTTACTACCAATCCGA -CCAACAGCGTTACTACCAATGGGA -CCAACAGCGTTACTACCAGTGCAA -CCAACAGCGTTACTACCAGAGGAA -CCAACAGCGTTACTACCACAGGTA -CCAACAGCGTTACTACCAGACTCT -CCAACAGCGTTACTACCAAGTCCT -CCAACAGCGTTACTACCATAAGCC -CCAACAGCGTTACTACCAATAGCC -CCAACAGCGTTACTACCATAACCG -CCAACAGCGTTACTACCAATGCCA -CCAACAGCGTTAGTAGGAGGAAAC -CCAACAGCGTTAGTAGGAAACACC -CCAACAGCGTTAGTAGGAATCGAG -CCAACAGCGTTAGTAGGACTCCTT -CCAACAGCGTTAGTAGGACCTGTT -CCAACAGCGTTAGTAGGACGGTTT -CCAACAGCGTTAGTAGGAGTGGTT -CCAACAGCGTTAGTAGGAGCCTTT -CCAACAGCGTTAGTAGGAGGTCTT -CCAACAGCGTTAGTAGGAACGCTT -CCAACAGCGTTAGTAGGAAGCGTT -CCAACAGCGTTAGTAGGATTCGTC -CCAACAGCGTTAGTAGGATCTCTC -CCAACAGCGTTAGTAGGATGGATC -CCAACAGCGTTAGTAGGACACTTC -CCAACAGCGTTAGTAGGAGTACTC -CCAACAGCGTTAGTAGGAGATGTC -CCAACAGCGTTAGTAGGAACAGTC -CCAACAGCGTTAGTAGGATTGCTG -CCAACAGCGTTAGTAGGATCCATG -CCAACAGCGTTAGTAGGATGTGTG -CCAACAGCGTTAGTAGGACTAGTG -CCAACAGCGTTAGTAGGACATCTG -CCAACAGCGTTAGTAGGAGAGTTG -CCAACAGCGTTAGTAGGAAGACTG -CCAACAGCGTTAGTAGGATCGGTA -CCAACAGCGTTAGTAGGATGCCTA -CCAACAGCGTTAGTAGGACCACTA -CCAACAGCGTTAGTAGGAGGAGTA -CCAACAGCGTTAGTAGGATCGTCT -CCAACAGCGTTAGTAGGATGCACT -CCAACAGCGTTAGTAGGACTGACT -CCAACAGCGTTAGTAGGACAACCT -CCAACAGCGTTAGTAGGAGCTACT -CCAACAGCGTTAGTAGGAGGATCT -CCAACAGCGTTAGTAGGAAAGGCT -CCAACAGCGTTAGTAGGATCAACC -CCAACAGCGTTAGTAGGATGTTCC -CCAACAGCGTTAGTAGGAATTCCC -CCAACAGCGTTAGTAGGATTCTCG -CCAACAGCGTTAGTAGGATAGACG -CCAACAGCGTTAGTAGGAGTAACG -CCAACAGCGTTAGTAGGAACTTCG -CCAACAGCGTTAGTAGGATACGCA -CCAACAGCGTTAGTAGGACTTGCA -CCAACAGCGTTAGTAGGACGAACA -CCAACAGCGTTAGTAGGACAGTCA -CCAACAGCGTTAGTAGGAGATCCA -CCAACAGCGTTAGTAGGAACGACA -CCAACAGCGTTAGTAGGAAGCTCA -CCAACAGCGTTAGTAGGATCACGT -CCAACAGCGTTAGTAGGACGTAGT -CCAACAGCGTTAGTAGGAGTCAGT -CCAACAGCGTTAGTAGGAGAAGGT -CCAACAGCGTTAGTAGGAAACCGT -CCAACAGCGTTAGTAGGATTGTGC -CCAACAGCGTTAGTAGGACTAAGC -CCAACAGCGTTAGTAGGAACTAGC -CCAACAGCGTTAGTAGGAAGATGC -CCAACAGCGTTAGTAGGATGAAGG -CCAACAGCGTTAGTAGGACAATGG -CCAACAGCGTTAGTAGGAATGAGG -CCAACAGCGTTAGTAGGAAATGGG -CCAACAGCGTTAGTAGGATCCTGA -CCAACAGCGTTAGTAGGATAGCGA -CCAACAGCGTTAGTAGGACACAGA -CCAACAGCGTTAGTAGGAGCAAGA -CCAACAGCGTTAGTAGGAGGTTGA -CCAACAGCGTTAGTAGGATCCGAT -CCAACAGCGTTAGTAGGATGGCAT -CCAACAGCGTTAGTAGGACGAGAT -CCAACAGCGTTAGTAGGATACCAC -CCAACAGCGTTAGTAGGACAGAAC -CCAACAGCGTTAGTAGGAGTCTAC -CCAACAGCGTTAGTAGGAACGTAC -CCAACAGCGTTAGTAGGAAGTGAC -CCAACAGCGTTAGTAGGACTGTAG -CCAACAGCGTTAGTAGGACCTAAG -CCAACAGCGTTAGTAGGAGTTCAG -CCAACAGCGTTAGTAGGAGCATAG -CCAACAGCGTTAGTAGGAGACAAG -CCAACAGCGTTAGTAGGAAAGCAG -CCAACAGCGTTAGTAGGACGTCAA -CCAACAGCGTTAGTAGGAGCTGAA -CCAACAGCGTTAGTAGGAAGTACG -CCAACAGCGTTAGTAGGAATCCGA -CCAACAGCGTTAGTAGGAATGGGA -CCAACAGCGTTAGTAGGAGTGCAA -CCAACAGCGTTAGTAGGAGAGGAA -CCAACAGCGTTAGTAGGACAGGTA -CCAACAGCGTTAGTAGGAGACTCT -CCAACAGCGTTAGTAGGAAGTCCT -CCAACAGCGTTAGTAGGATAAGCC -CCAACAGCGTTAGTAGGAATAGCC -CCAACAGCGTTAGTAGGATAACCG -CCAACAGCGTTAGTAGGAATGCCA -CCAACAGCGTTATCTTCGGGAAAC -CCAACAGCGTTATCTTCGAACACC -CCAACAGCGTTATCTTCGATCGAG -CCAACAGCGTTATCTTCGCTCCTT -CCAACAGCGTTATCTTCGCCTGTT -CCAACAGCGTTATCTTCGCGGTTT -CCAACAGCGTTATCTTCGGTGGTT -CCAACAGCGTTATCTTCGGCCTTT -CCAACAGCGTTATCTTCGGGTCTT -CCAACAGCGTTATCTTCGACGCTT -CCAACAGCGTTATCTTCGAGCGTT -CCAACAGCGTTATCTTCGTTCGTC -CCAACAGCGTTATCTTCGTCTCTC -CCAACAGCGTTATCTTCGTGGATC -CCAACAGCGTTATCTTCGCACTTC -CCAACAGCGTTATCTTCGGTACTC -CCAACAGCGTTATCTTCGGATGTC -CCAACAGCGTTATCTTCGACAGTC -CCAACAGCGTTATCTTCGTTGCTG -CCAACAGCGTTATCTTCGTCCATG -CCAACAGCGTTATCTTCGTGTGTG -CCAACAGCGTTATCTTCGCTAGTG -CCAACAGCGTTATCTTCGCATCTG -CCAACAGCGTTATCTTCGGAGTTG -CCAACAGCGTTATCTTCGAGACTG -CCAACAGCGTTATCTTCGTCGGTA -CCAACAGCGTTATCTTCGTGCCTA -CCAACAGCGTTATCTTCGCCACTA -CCAACAGCGTTATCTTCGGGAGTA -CCAACAGCGTTATCTTCGTCGTCT -CCAACAGCGTTATCTTCGTGCACT -CCAACAGCGTTATCTTCGCTGACT -CCAACAGCGTTATCTTCGCAACCT -CCAACAGCGTTATCTTCGGCTACT -CCAACAGCGTTATCTTCGGGATCT -CCAACAGCGTTATCTTCGAAGGCT -CCAACAGCGTTATCTTCGTCAACC -CCAACAGCGTTATCTTCGTGTTCC -CCAACAGCGTTATCTTCGATTCCC -CCAACAGCGTTATCTTCGTTCTCG -CCAACAGCGTTATCTTCGTAGACG -CCAACAGCGTTATCTTCGGTAACG -CCAACAGCGTTATCTTCGACTTCG -CCAACAGCGTTATCTTCGTACGCA -CCAACAGCGTTATCTTCGCTTGCA -CCAACAGCGTTATCTTCGCGAACA -CCAACAGCGTTATCTTCGCAGTCA -CCAACAGCGTTATCTTCGGATCCA -CCAACAGCGTTATCTTCGACGACA -CCAACAGCGTTATCTTCGAGCTCA -CCAACAGCGTTATCTTCGTCACGT -CCAACAGCGTTATCTTCGCGTAGT -CCAACAGCGTTATCTTCGGTCAGT -CCAACAGCGTTATCTTCGGAAGGT -CCAACAGCGTTATCTTCGAACCGT -CCAACAGCGTTATCTTCGTTGTGC -CCAACAGCGTTATCTTCGCTAAGC -CCAACAGCGTTATCTTCGACTAGC -CCAACAGCGTTATCTTCGAGATGC -CCAACAGCGTTATCTTCGTGAAGG -CCAACAGCGTTATCTTCGCAATGG -CCAACAGCGTTATCTTCGATGAGG -CCAACAGCGTTATCTTCGAATGGG -CCAACAGCGTTATCTTCGTCCTGA -CCAACAGCGTTATCTTCGTAGCGA -CCAACAGCGTTATCTTCGCACAGA -CCAACAGCGTTATCTTCGGCAAGA -CCAACAGCGTTATCTTCGGGTTGA -CCAACAGCGTTATCTTCGTCCGAT -CCAACAGCGTTATCTTCGTGGCAT -CCAACAGCGTTATCTTCGCGAGAT -CCAACAGCGTTATCTTCGTACCAC -CCAACAGCGTTATCTTCGCAGAAC -CCAACAGCGTTATCTTCGGTCTAC -CCAACAGCGTTATCTTCGACGTAC -CCAACAGCGTTATCTTCGAGTGAC -CCAACAGCGTTATCTTCGCTGTAG -CCAACAGCGTTATCTTCGCCTAAG -CCAACAGCGTTATCTTCGGTTCAG -CCAACAGCGTTATCTTCGGCATAG -CCAACAGCGTTATCTTCGGACAAG -CCAACAGCGTTATCTTCGAAGCAG -CCAACAGCGTTATCTTCGCGTCAA -CCAACAGCGTTATCTTCGGCTGAA -CCAACAGCGTTATCTTCGAGTACG -CCAACAGCGTTATCTTCGATCCGA -CCAACAGCGTTATCTTCGATGGGA -CCAACAGCGTTATCTTCGGTGCAA -CCAACAGCGTTATCTTCGGAGGAA -CCAACAGCGTTATCTTCGCAGGTA -CCAACAGCGTTATCTTCGGACTCT -CCAACAGCGTTATCTTCGAGTCCT -CCAACAGCGTTATCTTCGTAAGCC -CCAACAGCGTTATCTTCGATAGCC -CCAACAGCGTTATCTTCGTAACCG -CCAACAGCGTTATCTTCGATGCCA -CCAACAGCGTTAACTTGCGGAAAC -CCAACAGCGTTAACTTGCAACACC -CCAACAGCGTTAACTTGCATCGAG -CCAACAGCGTTAACTTGCCTCCTT -CCAACAGCGTTAACTTGCCCTGTT -CCAACAGCGTTAACTTGCCGGTTT -CCAACAGCGTTAACTTGCGTGGTT -CCAACAGCGTTAACTTGCGCCTTT -CCAACAGCGTTAACTTGCGGTCTT -CCAACAGCGTTAACTTGCACGCTT -CCAACAGCGTTAACTTGCAGCGTT -CCAACAGCGTTAACTTGCTTCGTC -CCAACAGCGTTAACTTGCTCTCTC -CCAACAGCGTTAACTTGCTGGATC -CCAACAGCGTTAACTTGCCACTTC -CCAACAGCGTTAACTTGCGTACTC -CCAACAGCGTTAACTTGCGATGTC -CCAACAGCGTTAACTTGCACAGTC -CCAACAGCGTTAACTTGCTTGCTG -CCAACAGCGTTAACTTGCTCCATG -CCAACAGCGTTAACTTGCTGTGTG -CCAACAGCGTTAACTTGCCTAGTG -CCAACAGCGTTAACTTGCCATCTG -CCAACAGCGTTAACTTGCGAGTTG -CCAACAGCGTTAACTTGCAGACTG -CCAACAGCGTTAACTTGCTCGGTA -CCAACAGCGTTAACTTGCTGCCTA -CCAACAGCGTTAACTTGCCCACTA -CCAACAGCGTTAACTTGCGGAGTA -CCAACAGCGTTAACTTGCTCGTCT -CCAACAGCGTTAACTTGCTGCACT -CCAACAGCGTTAACTTGCCTGACT -CCAACAGCGTTAACTTGCCAACCT -CCAACAGCGTTAACTTGCGCTACT -CCAACAGCGTTAACTTGCGGATCT -CCAACAGCGTTAACTTGCAAGGCT -CCAACAGCGTTAACTTGCTCAACC -CCAACAGCGTTAACTTGCTGTTCC -CCAACAGCGTTAACTTGCATTCCC -CCAACAGCGTTAACTTGCTTCTCG -CCAACAGCGTTAACTTGCTAGACG -CCAACAGCGTTAACTTGCGTAACG -CCAACAGCGTTAACTTGCACTTCG -CCAACAGCGTTAACTTGCTACGCA -CCAACAGCGTTAACTTGCCTTGCA -CCAACAGCGTTAACTTGCCGAACA -CCAACAGCGTTAACTTGCCAGTCA -CCAACAGCGTTAACTTGCGATCCA -CCAACAGCGTTAACTTGCACGACA -CCAACAGCGTTAACTTGCAGCTCA -CCAACAGCGTTAACTTGCTCACGT -CCAACAGCGTTAACTTGCCGTAGT -CCAACAGCGTTAACTTGCGTCAGT -CCAACAGCGTTAACTTGCGAAGGT -CCAACAGCGTTAACTTGCAACCGT -CCAACAGCGTTAACTTGCTTGTGC -CCAACAGCGTTAACTTGCCTAAGC -CCAACAGCGTTAACTTGCACTAGC -CCAACAGCGTTAACTTGCAGATGC -CCAACAGCGTTAACTTGCTGAAGG -CCAACAGCGTTAACTTGCCAATGG -CCAACAGCGTTAACTTGCATGAGG -CCAACAGCGTTAACTTGCAATGGG -CCAACAGCGTTAACTTGCTCCTGA -CCAACAGCGTTAACTTGCTAGCGA -CCAACAGCGTTAACTTGCCACAGA -CCAACAGCGTTAACTTGCGCAAGA -CCAACAGCGTTAACTTGCGGTTGA -CCAACAGCGTTAACTTGCTCCGAT -CCAACAGCGTTAACTTGCTGGCAT -CCAACAGCGTTAACTTGCCGAGAT -CCAACAGCGTTAACTTGCTACCAC -CCAACAGCGTTAACTTGCCAGAAC -CCAACAGCGTTAACTTGCGTCTAC -CCAACAGCGTTAACTTGCACGTAC -CCAACAGCGTTAACTTGCAGTGAC -CCAACAGCGTTAACTTGCCTGTAG -CCAACAGCGTTAACTTGCCCTAAG -CCAACAGCGTTAACTTGCGTTCAG -CCAACAGCGTTAACTTGCGCATAG -CCAACAGCGTTAACTTGCGACAAG -CCAACAGCGTTAACTTGCAAGCAG -CCAACAGCGTTAACTTGCCGTCAA -CCAACAGCGTTAACTTGCGCTGAA -CCAACAGCGTTAACTTGCAGTACG -CCAACAGCGTTAACTTGCATCCGA -CCAACAGCGTTAACTTGCATGGGA -CCAACAGCGTTAACTTGCGTGCAA -CCAACAGCGTTAACTTGCGAGGAA -CCAACAGCGTTAACTTGCCAGGTA -CCAACAGCGTTAACTTGCGACTCT -CCAACAGCGTTAACTTGCAGTCCT -CCAACAGCGTTAACTTGCTAAGCC -CCAACAGCGTTAACTTGCATAGCC -CCAACAGCGTTAACTTGCTAACCG -CCAACAGCGTTAACTTGCATGCCA -CCAACAGCGTTAACTCTGGGAAAC -CCAACAGCGTTAACTCTGAACACC -CCAACAGCGTTAACTCTGATCGAG -CCAACAGCGTTAACTCTGCTCCTT -CCAACAGCGTTAACTCTGCCTGTT -CCAACAGCGTTAACTCTGCGGTTT -CCAACAGCGTTAACTCTGGTGGTT -CCAACAGCGTTAACTCTGGCCTTT -CCAACAGCGTTAACTCTGGGTCTT -CCAACAGCGTTAACTCTGACGCTT -CCAACAGCGTTAACTCTGAGCGTT -CCAACAGCGTTAACTCTGTTCGTC -CCAACAGCGTTAACTCTGTCTCTC -CCAACAGCGTTAACTCTGTGGATC -CCAACAGCGTTAACTCTGCACTTC -CCAACAGCGTTAACTCTGGTACTC -CCAACAGCGTTAACTCTGGATGTC -CCAACAGCGTTAACTCTGACAGTC -CCAACAGCGTTAACTCTGTTGCTG -CCAACAGCGTTAACTCTGTCCATG -CCAACAGCGTTAACTCTGTGTGTG -CCAACAGCGTTAACTCTGCTAGTG -CCAACAGCGTTAACTCTGCATCTG -CCAACAGCGTTAACTCTGGAGTTG -CCAACAGCGTTAACTCTGAGACTG -CCAACAGCGTTAACTCTGTCGGTA -CCAACAGCGTTAACTCTGTGCCTA -CCAACAGCGTTAACTCTGCCACTA -CCAACAGCGTTAACTCTGGGAGTA -CCAACAGCGTTAACTCTGTCGTCT -CCAACAGCGTTAACTCTGTGCACT -CCAACAGCGTTAACTCTGCTGACT -CCAACAGCGTTAACTCTGCAACCT -CCAACAGCGTTAACTCTGGCTACT -CCAACAGCGTTAACTCTGGGATCT -CCAACAGCGTTAACTCTGAAGGCT -CCAACAGCGTTAACTCTGTCAACC -CCAACAGCGTTAACTCTGTGTTCC -CCAACAGCGTTAACTCTGATTCCC -CCAACAGCGTTAACTCTGTTCTCG -CCAACAGCGTTAACTCTGTAGACG -CCAACAGCGTTAACTCTGGTAACG -CCAACAGCGTTAACTCTGACTTCG -CCAACAGCGTTAACTCTGTACGCA -CCAACAGCGTTAACTCTGCTTGCA -CCAACAGCGTTAACTCTGCGAACA -CCAACAGCGTTAACTCTGCAGTCA -CCAACAGCGTTAACTCTGGATCCA -CCAACAGCGTTAACTCTGACGACA -CCAACAGCGTTAACTCTGAGCTCA -CCAACAGCGTTAACTCTGTCACGT -CCAACAGCGTTAACTCTGCGTAGT -CCAACAGCGTTAACTCTGGTCAGT -CCAACAGCGTTAACTCTGGAAGGT -CCAACAGCGTTAACTCTGAACCGT -CCAACAGCGTTAACTCTGTTGTGC -CCAACAGCGTTAACTCTGCTAAGC -CCAACAGCGTTAACTCTGACTAGC -CCAACAGCGTTAACTCTGAGATGC -CCAACAGCGTTAACTCTGTGAAGG -CCAACAGCGTTAACTCTGCAATGG -CCAACAGCGTTAACTCTGATGAGG -CCAACAGCGTTAACTCTGAATGGG -CCAACAGCGTTAACTCTGTCCTGA -CCAACAGCGTTAACTCTGTAGCGA -CCAACAGCGTTAACTCTGCACAGA -CCAACAGCGTTAACTCTGGCAAGA -CCAACAGCGTTAACTCTGGGTTGA -CCAACAGCGTTAACTCTGTCCGAT -CCAACAGCGTTAACTCTGTGGCAT -CCAACAGCGTTAACTCTGCGAGAT -CCAACAGCGTTAACTCTGTACCAC -CCAACAGCGTTAACTCTGCAGAAC -CCAACAGCGTTAACTCTGGTCTAC -CCAACAGCGTTAACTCTGACGTAC -CCAACAGCGTTAACTCTGAGTGAC -CCAACAGCGTTAACTCTGCTGTAG -CCAACAGCGTTAACTCTGCCTAAG -CCAACAGCGTTAACTCTGGTTCAG -CCAACAGCGTTAACTCTGGCATAG -CCAACAGCGTTAACTCTGGACAAG -CCAACAGCGTTAACTCTGAAGCAG -CCAACAGCGTTAACTCTGCGTCAA -CCAACAGCGTTAACTCTGGCTGAA -CCAACAGCGTTAACTCTGAGTACG -CCAACAGCGTTAACTCTGATCCGA -CCAACAGCGTTAACTCTGATGGGA -CCAACAGCGTTAACTCTGGTGCAA -CCAACAGCGTTAACTCTGGAGGAA -CCAACAGCGTTAACTCTGCAGGTA -CCAACAGCGTTAACTCTGGACTCT -CCAACAGCGTTAACTCTGAGTCCT -CCAACAGCGTTAACTCTGTAAGCC -CCAACAGCGTTAACTCTGATAGCC -CCAACAGCGTTAACTCTGTAACCG -CCAACAGCGTTAACTCTGATGCCA -CCAACAGCGTTACCTCAAGGAAAC -CCAACAGCGTTACCTCAAAACACC -CCAACAGCGTTACCTCAAATCGAG -CCAACAGCGTTACCTCAACTCCTT -CCAACAGCGTTACCTCAACCTGTT -CCAACAGCGTTACCTCAACGGTTT -CCAACAGCGTTACCTCAAGTGGTT -CCAACAGCGTTACCTCAAGCCTTT -CCAACAGCGTTACCTCAAGGTCTT -CCAACAGCGTTACCTCAAACGCTT -CCAACAGCGTTACCTCAAAGCGTT -CCAACAGCGTTACCTCAATTCGTC -CCAACAGCGTTACCTCAATCTCTC -CCAACAGCGTTACCTCAATGGATC -CCAACAGCGTTACCTCAACACTTC -CCAACAGCGTTACCTCAAGTACTC -CCAACAGCGTTACCTCAAGATGTC -CCAACAGCGTTACCTCAAACAGTC -CCAACAGCGTTACCTCAATTGCTG -CCAACAGCGTTACCTCAATCCATG -CCAACAGCGTTACCTCAATGTGTG -CCAACAGCGTTACCTCAACTAGTG -CCAACAGCGTTACCTCAACATCTG -CCAACAGCGTTACCTCAAGAGTTG -CCAACAGCGTTACCTCAAAGACTG -CCAACAGCGTTACCTCAATCGGTA -CCAACAGCGTTACCTCAATGCCTA -CCAACAGCGTTACCTCAACCACTA -CCAACAGCGTTACCTCAAGGAGTA -CCAACAGCGTTACCTCAATCGTCT -CCAACAGCGTTACCTCAATGCACT -CCAACAGCGTTACCTCAACTGACT -CCAACAGCGTTACCTCAACAACCT -CCAACAGCGTTACCTCAAGCTACT -CCAACAGCGTTACCTCAAGGATCT -CCAACAGCGTTACCTCAAAAGGCT -CCAACAGCGTTACCTCAATCAACC -CCAACAGCGTTACCTCAATGTTCC -CCAACAGCGTTACCTCAAATTCCC -CCAACAGCGTTACCTCAATTCTCG -CCAACAGCGTTACCTCAATAGACG -CCAACAGCGTTACCTCAAGTAACG -CCAACAGCGTTACCTCAAACTTCG -CCAACAGCGTTACCTCAATACGCA -CCAACAGCGTTACCTCAACTTGCA -CCAACAGCGTTACCTCAACGAACA -CCAACAGCGTTACCTCAACAGTCA -CCAACAGCGTTACCTCAAGATCCA -CCAACAGCGTTACCTCAAACGACA -CCAACAGCGTTACCTCAAAGCTCA -CCAACAGCGTTACCTCAATCACGT -CCAACAGCGTTACCTCAACGTAGT -CCAACAGCGTTACCTCAAGTCAGT -CCAACAGCGTTACCTCAAGAAGGT -CCAACAGCGTTACCTCAAAACCGT -CCAACAGCGTTACCTCAATTGTGC -CCAACAGCGTTACCTCAACTAAGC -CCAACAGCGTTACCTCAAACTAGC -CCAACAGCGTTACCTCAAAGATGC -CCAACAGCGTTACCTCAATGAAGG -CCAACAGCGTTACCTCAACAATGG -CCAACAGCGTTACCTCAAATGAGG -CCAACAGCGTTACCTCAAAATGGG -CCAACAGCGTTACCTCAATCCTGA -CCAACAGCGTTACCTCAATAGCGA -CCAACAGCGTTACCTCAACACAGA -CCAACAGCGTTACCTCAAGCAAGA -CCAACAGCGTTACCTCAAGGTTGA -CCAACAGCGTTACCTCAATCCGAT -CCAACAGCGTTACCTCAATGGCAT -CCAACAGCGTTACCTCAACGAGAT -CCAACAGCGTTACCTCAATACCAC -CCAACAGCGTTACCTCAACAGAAC -CCAACAGCGTTACCTCAAGTCTAC -CCAACAGCGTTACCTCAAACGTAC -CCAACAGCGTTACCTCAAAGTGAC -CCAACAGCGTTACCTCAACTGTAG -CCAACAGCGTTACCTCAACCTAAG -CCAACAGCGTTACCTCAAGTTCAG -CCAACAGCGTTACCTCAAGCATAG -CCAACAGCGTTACCTCAAGACAAG -CCAACAGCGTTACCTCAAAAGCAG -CCAACAGCGTTACCTCAACGTCAA -CCAACAGCGTTACCTCAAGCTGAA -CCAACAGCGTTACCTCAAAGTACG -CCAACAGCGTTACCTCAAATCCGA -CCAACAGCGTTACCTCAAATGGGA -CCAACAGCGTTACCTCAAGTGCAA -CCAACAGCGTTACCTCAAGAGGAA -CCAACAGCGTTACCTCAACAGGTA -CCAACAGCGTTACCTCAAGACTCT -CCAACAGCGTTACCTCAAAGTCCT -CCAACAGCGTTACCTCAATAAGCC -CCAACAGCGTTACCTCAAATAGCC -CCAACAGCGTTACCTCAATAACCG -CCAACAGCGTTACCTCAAATGCCA -CCAACAGCGTTAACTGCTGGAAAC -CCAACAGCGTTAACTGCTAACACC -CCAACAGCGTTAACTGCTATCGAG -CCAACAGCGTTAACTGCTCTCCTT -CCAACAGCGTTAACTGCTCCTGTT -CCAACAGCGTTAACTGCTCGGTTT -CCAACAGCGTTAACTGCTGTGGTT -CCAACAGCGTTAACTGCTGCCTTT -CCAACAGCGTTAACTGCTGGTCTT -CCAACAGCGTTAACTGCTACGCTT -CCAACAGCGTTAACTGCTAGCGTT -CCAACAGCGTTAACTGCTTTCGTC -CCAACAGCGTTAACTGCTTCTCTC -CCAACAGCGTTAACTGCTTGGATC -CCAACAGCGTTAACTGCTCACTTC -CCAACAGCGTTAACTGCTGTACTC -CCAACAGCGTTAACTGCTGATGTC -CCAACAGCGTTAACTGCTACAGTC -CCAACAGCGTTAACTGCTTTGCTG -CCAACAGCGTTAACTGCTTCCATG -CCAACAGCGTTAACTGCTTGTGTG -CCAACAGCGTTAACTGCTCTAGTG -CCAACAGCGTTAACTGCTCATCTG -CCAACAGCGTTAACTGCTGAGTTG -CCAACAGCGTTAACTGCTAGACTG -CCAACAGCGTTAACTGCTTCGGTA -CCAACAGCGTTAACTGCTTGCCTA -CCAACAGCGTTAACTGCTCCACTA -CCAACAGCGTTAACTGCTGGAGTA -CCAACAGCGTTAACTGCTTCGTCT -CCAACAGCGTTAACTGCTTGCACT -CCAACAGCGTTAACTGCTCTGACT -CCAACAGCGTTAACTGCTCAACCT -CCAACAGCGTTAACTGCTGCTACT -CCAACAGCGTTAACTGCTGGATCT -CCAACAGCGTTAACTGCTAAGGCT -CCAACAGCGTTAACTGCTTCAACC -CCAACAGCGTTAACTGCTTGTTCC -CCAACAGCGTTAACTGCTATTCCC -CCAACAGCGTTAACTGCTTTCTCG -CCAACAGCGTTAACTGCTTAGACG -CCAACAGCGTTAACTGCTGTAACG -CCAACAGCGTTAACTGCTACTTCG -CCAACAGCGTTAACTGCTTACGCA -CCAACAGCGTTAACTGCTCTTGCA -CCAACAGCGTTAACTGCTCGAACA -CCAACAGCGTTAACTGCTCAGTCA -CCAACAGCGTTAACTGCTGATCCA -CCAACAGCGTTAACTGCTACGACA -CCAACAGCGTTAACTGCTAGCTCA -CCAACAGCGTTAACTGCTTCACGT -CCAACAGCGTTAACTGCTCGTAGT -CCAACAGCGTTAACTGCTGTCAGT -CCAACAGCGTTAACTGCTGAAGGT -CCAACAGCGTTAACTGCTAACCGT -CCAACAGCGTTAACTGCTTTGTGC -CCAACAGCGTTAACTGCTCTAAGC -CCAACAGCGTTAACTGCTACTAGC -CCAACAGCGTTAACTGCTAGATGC -CCAACAGCGTTAACTGCTTGAAGG -CCAACAGCGTTAACTGCTCAATGG -CCAACAGCGTTAACTGCTATGAGG -CCAACAGCGTTAACTGCTAATGGG -CCAACAGCGTTAACTGCTTCCTGA -CCAACAGCGTTAACTGCTTAGCGA -CCAACAGCGTTAACTGCTCACAGA -CCAACAGCGTTAACTGCTGCAAGA -CCAACAGCGTTAACTGCTGGTTGA -CCAACAGCGTTAACTGCTTCCGAT -CCAACAGCGTTAACTGCTTGGCAT -CCAACAGCGTTAACTGCTCGAGAT -CCAACAGCGTTAACTGCTTACCAC -CCAACAGCGTTAACTGCTCAGAAC -CCAACAGCGTTAACTGCTGTCTAC -CCAACAGCGTTAACTGCTACGTAC -CCAACAGCGTTAACTGCTAGTGAC -CCAACAGCGTTAACTGCTCTGTAG -CCAACAGCGTTAACTGCTCCTAAG -CCAACAGCGTTAACTGCTGTTCAG -CCAACAGCGTTAACTGCTGCATAG -CCAACAGCGTTAACTGCTGACAAG -CCAACAGCGTTAACTGCTAAGCAG -CCAACAGCGTTAACTGCTCGTCAA -CCAACAGCGTTAACTGCTGCTGAA -CCAACAGCGTTAACTGCTAGTACG -CCAACAGCGTTAACTGCTATCCGA -CCAACAGCGTTAACTGCTATGGGA -CCAACAGCGTTAACTGCTGTGCAA -CCAACAGCGTTAACTGCTGAGGAA -CCAACAGCGTTAACTGCTCAGGTA -CCAACAGCGTTAACTGCTGACTCT -CCAACAGCGTTAACTGCTAGTCCT -CCAACAGCGTTAACTGCTTAAGCC -CCAACAGCGTTAACTGCTATAGCC -CCAACAGCGTTAACTGCTTAACCG -CCAACAGCGTTAACTGCTATGCCA -CCAACAGCGTTATCTGGAGGAAAC -CCAACAGCGTTATCTGGAAACACC -CCAACAGCGTTATCTGGAATCGAG -CCAACAGCGTTATCTGGACTCCTT -CCAACAGCGTTATCTGGACCTGTT -CCAACAGCGTTATCTGGACGGTTT -CCAACAGCGTTATCTGGAGTGGTT -CCAACAGCGTTATCTGGAGCCTTT -CCAACAGCGTTATCTGGAGGTCTT -CCAACAGCGTTATCTGGAACGCTT -CCAACAGCGTTATCTGGAAGCGTT -CCAACAGCGTTATCTGGATTCGTC -CCAACAGCGTTATCTGGATCTCTC -CCAACAGCGTTATCTGGATGGATC -CCAACAGCGTTATCTGGACACTTC -CCAACAGCGTTATCTGGAGTACTC -CCAACAGCGTTATCTGGAGATGTC -CCAACAGCGTTATCTGGAACAGTC -CCAACAGCGTTATCTGGATTGCTG -CCAACAGCGTTATCTGGATCCATG -CCAACAGCGTTATCTGGATGTGTG -CCAACAGCGTTATCTGGACTAGTG -CCAACAGCGTTATCTGGACATCTG -CCAACAGCGTTATCTGGAGAGTTG -CCAACAGCGTTATCTGGAAGACTG -CCAACAGCGTTATCTGGATCGGTA -CCAACAGCGTTATCTGGATGCCTA -CCAACAGCGTTATCTGGACCACTA -CCAACAGCGTTATCTGGAGGAGTA -CCAACAGCGTTATCTGGATCGTCT -CCAACAGCGTTATCTGGATGCACT -CCAACAGCGTTATCTGGACTGACT -CCAACAGCGTTATCTGGACAACCT -CCAACAGCGTTATCTGGAGCTACT -CCAACAGCGTTATCTGGAGGATCT -CCAACAGCGTTATCTGGAAAGGCT -CCAACAGCGTTATCTGGATCAACC -CCAACAGCGTTATCTGGATGTTCC -CCAACAGCGTTATCTGGAATTCCC -CCAACAGCGTTATCTGGATTCTCG -CCAACAGCGTTATCTGGATAGACG -CCAACAGCGTTATCTGGAGTAACG -CCAACAGCGTTATCTGGAACTTCG -CCAACAGCGTTATCTGGATACGCA -CCAACAGCGTTATCTGGACTTGCA -CCAACAGCGTTATCTGGACGAACA -CCAACAGCGTTATCTGGACAGTCA -CCAACAGCGTTATCTGGAGATCCA -CCAACAGCGTTATCTGGAACGACA -CCAACAGCGTTATCTGGAAGCTCA -CCAACAGCGTTATCTGGATCACGT -CCAACAGCGTTATCTGGACGTAGT -CCAACAGCGTTATCTGGAGTCAGT -CCAACAGCGTTATCTGGAGAAGGT -CCAACAGCGTTATCTGGAAACCGT -CCAACAGCGTTATCTGGATTGTGC -CCAACAGCGTTATCTGGACTAAGC -CCAACAGCGTTATCTGGAACTAGC -CCAACAGCGTTATCTGGAAGATGC -CCAACAGCGTTATCTGGATGAAGG -CCAACAGCGTTATCTGGACAATGG -CCAACAGCGTTATCTGGAATGAGG -CCAACAGCGTTATCTGGAAATGGG -CCAACAGCGTTATCTGGATCCTGA -CCAACAGCGTTATCTGGATAGCGA -CCAACAGCGTTATCTGGACACAGA -CCAACAGCGTTATCTGGAGCAAGA -CCAACAGCGTTATCTGGAGGTTGA -CCAACAGCGTTATCTGGATCCGAT -CCAACAGCGTTATCTGGATGGCAT -CCAACAGCGTTATCTGGACGAGAT -CCAACAGCGTTATCTGGATACCAC -CCAACAGCGTTATCTGGACAGAAC -CCAACAGCGTTATCTGGAGTCTAC -CCAACAGCGTTATCTGGAACGTAC -CCAACAGCGTTATCTGGAAGTGAC -CCAACAGCGTTATCTGGACTGTAG -CCAACAGCGTTATCTGGACCTAAG -CCAACAGCGTTATCTGGAGTTCAG -CCAACAGCGTTATCTGGAGCATAG -CCAACAGCGTTATCTGGAGACAAG -CCAACAGCGTTATCTGGAAAGCAG -CCAACAGCGTTATCTGGACGTCAA -CCAACAGCGTTATCTGGAGCTGAA -CCAACAGCGTTATCTGGAAGTACG -CCAACAGCGTTATCTGGAATCCGA -CCAACAGCGTTATCTGGAATGGGA -CCAACAGCGTTATCTGGAGTGCAA -CCAACAGCGTTATCTGGAGAGGAA -CCAACAGCGTTATCTGGACAGGTA -CCAACAGCGTTATCTGGAGACTCT -CCAACAGCGTTATCTGGAAGTCCT -CCAACAGCGTTATCTGGATAAGCC -CCAACAGCGTTATCTGGAATAGCC -CCAACAGCGTTATCTGGATAACCG -CCAACAGCGTTATCTGGAATGCCA -CCAACAGCGTTAGCTAAGGGAAAC -CCAACAGCGTTAGCTAAGAACACC -CCAACAGCGTTAGCTAAGATCGAG -CCAACAGCGTTAGCTAAGCTCCTT -CCAACAGCGTTAGCTAAGCCTGTT -CCAACAGCGTTAGCTAAGCGGTTT -CCAACAGCGTTAGCTAAGGTGGTT -CCAACAGCGTTAGCTAAGGCCTTT -CCAACAGCGTTAGCTAAGGGTCTT -CCAACAGCGTTAGCTAAGACGCTT -CCAACAGCGTTAGCTAAGAGCGTT -CCAACAGCGTTAGCTAAGTTCGTC -CCAACAGCGTTAGCTAAGTCTCTC -CCAACAGCGTTAGCTAAGTGGATC -CCAACAGCGTTAGCTAAGCACTTC -CCAACAGCGTTAGCTAAGGTACTC -CCAACAGCGTTAGCTAAGGATGTC -CCAACAGCGTTAGCTAAGACAGTC -CCAACAGCGTTAGCTAAGTTGCTG -CCAACAGCGTTAGCTAAGTCCATG -CCAACAGCGTTAGCTAAGTGTGTG -CCAACAGCGTTAGCTAAGCTAGTG -CCAACAGCGTTAGCTAAGCATCTG -CCAACAGCGTTAGCTAAGGAGTTG -CCAACAGCGTTAGCTAAGAGACTG -CCAACAGCGTTAGCTAAGTCGGTA -CCAACAGCGTTAGCTAAGTGCCTA -CCAACAGCGTTAGCTAAGCCACTA -CCAACAGCGTTAGCTAAGGGAGTA -CCAACAGCGTTAGCTAAGTCGTCT -CCAACAGCGTTAGCTAAGTGCACT -CCAACAGCGTTAGCTAAGCTGACT -CCAACAGCGTTAGCTAAGCAACCT -CCAACAGCGTTAGCTAAGGCTACT -CCAACAGCGTTAGCTAAGGGATCT -CCAACAGCGTTAGCTAAGAAGGCT -CCAACAGCGTTAGCTAAGTCAACC -CCAACAGCGTTAGCTAAGTGTTCC -CCAACAGCGTTAGCTAAGATTCCC -CCAACAGCGTTAGCTAAGTTCTCG -CCAACAGCGTTAGCTAAGTAGACG -CCAACAGCGTTAGCTAAGGTAACG -CCAACAGCGTTAGCTAAGACTTCG -CCAACAGCGTTAGCTAAGTACGCA -CCAACAGCGTTAGCTAAGCTTGCA -CCAACAGCGTTAGCTAAGCGAACA -CCAACAGCGTTAGCTAAGCAGTCA -CCAACAGCGTTAGCTAAGGATCCA -CCAACAGCGTTAGCTAAGACGACA -CCAACAGCGTTAGCTAAGAGCTCA -CCAACAGCGTTAGCTAAGTCACGT -CCAACAGCGTTAGCTAAGCGTAGT -CCAACAGCGTTAGCTAAGGTCAGT -CCAACAGCGTTAGCTAAGGAAGGT -CCAACAGCGTTAGCTAAGAACCGT -CCAACAGCGTTAGCTAAGTTGTGC -CCAACAGCGTTAGCTAAGCTAAGC -CCAACAGCGTTAGCTAAGACTAGC -CCAACAGCGTTAGCTAAGAGATGC -CCAACAGCGTTAGCTAAGTGAAGG -CCAACAGCGTTAGCTAAGCAATGG -CCAACAGCGTTAGCTAAGATGAGG -CCAACAGCGTTAGCTAAGAATGGG -CCAACAGCGTTAGCTAAGTCCTGA -CCAACAGCGTTAGCTAAGTAGCGA -CCAACAGCGTTAGCTAAGCACAGA -CCAACAGCGTTAGCTAAGGCAAGA -CCAACAGCGTTAGCTAAGGGTTGA -CCAACAGCGTTAGCTAAGTCCGAT -CCAACAGCGTTAGCTAAGTGGCAT -CCAACAGCGTTAGCTAAGCGAGAT -CCAACAGCGTTAGCTAAGTACCAC -CCAACAGCGTTAGCTAAGCAGAAC -CCAACAGCGTTAGCTAAGGTCTAC -CCAACAGCGTTAGCTAAGACGTAC -CCAACAGCGTTAGCTAAGAGTGAC -CCAACAGCGTTAGCTAAGCTGTAG -CCAACAGCGTTAGCTAAGCCTAAG -CCAACAGCGTTAGCTAAGGTTCAG -CCAACAGCGTTAGCTAAGGCATAG -CCAACAGCGTTAGCTAAGGACAAG -CCAACAGCGTTAGCTAAGAAGCAG -CCAACAGCGTTAGCTAAGCGTCAA -CCAACAGCGTTAGCTAAGGCTGAA -CCAACAGCGTTAGCTAAGAGTACG -CCAACAGCGTTAGCTAAGATCCGA -CCAACAGCGTTAGCTAAGATGGGA -CCAACAGCGTTAGCTAAGGTGCAA -CCAACAGCGTTAGCTAAGGAGGAA -CCAACAGCGTTAGCTAAGCAGGTA -CCAACAGCGTTAGCTAAGGACTCT -CCAACAGCGTTAGCTAAGAGTCCT -CCAACAGCGTTAGCTAAGTAAGCC -CCAACAGCGTTAGCTAAGATAGCC -CCAACAGCGTTAGCTAAGTAACCG -CCAACAGCGTTAGCTAAGATGCCA -CCAACAGCGTTAACCTCAGGAAAC -CCAACAGCGTTAACCTCAAACACC -CCAACAGCGTTAACCTCAATCGAG -CCAACAGCGTTAACCTCACTCCTT -CCAACAGCGTTAACCTCACCTGTT -CCAACAGCGTTAACCTCACGGTTT -CCAACAGCGTTAACCTCAGTGGTT -CCAACAGCGTTAACCTCAGCCTTT -CCAACAGCGTTAACCTCAGGTCTT -CCAACAGCGTTAACCTCAACGCTT -CCAACAGCGTTAACCTCAAGCGTT -CCAACAGCGTTAACCTCATTCGTC -CCAACAGCGTTAACCTCATCTCTC -CCAACAGCGTTAACCTCATGGATC -CCAACAGCGTTAACCTCACACTTC -CCAACAGCGTTAACCTCAGTACTC -CCAACAGCGTTAACCTCAGATGTC -CCAACAGCGTTAACCTCAACAGTC -CCAACAGCGTTAACCTCATTGCTG -CCAACAGCGTTAACCTCATCCATG -CCAACAGCGTTAACCTCATGTGTG -CCAACAGCGTTAACCTCACTAGTG -CCAACAGCGTTAACCTCACATCTG -CCAACAGCGTTAACCTCAGAGTTG -CCAACAGCGTTAACCTCAAGACTG -CCAACAGCGTTAACCTCATCGGTA -CCAACAGCGTTAACCTCATGCCTA -CCAACAGCGTTAACCTCACCACTA -CCAACAGCGTTAACCTCAGGAGTA -CCAACAGCGTTAACCTCATCGTCT -CCAACAGCGTTAACCTCATGCACT -CCAACAGCGTTAACCTCACTGACT -CCAACAGCGTTAACCTCACAACCT -CCAACAGCGTTAACCTCAGCTACT -CCAACAGCGTTAACCTCAGGATCT -CCAACAGCGTTAACCTCAAAGGCT -CCAACAGCGTTAACCTCATCAACC -CCAACAGCGTTAACCTCATGTTCC -CCAACAGCGTTAACCTCAATTCCC -CCAACAGCGTTAACCTCATTCTCG -CCAACAGCGTTAACCTCATAGACG -CCAACAGCGTTAACCTCAGTAACG -CCAACAGCGTTAACCTCAACTTCG -CCAACAGCGTTAACCTCATACGCA -CCAACAGCGTTAACCTCACTTGCA -CCAACAGCGTTAACCTCACGAACA -CCAACAGCGTTAACCTCACAGTCA -CCAACAGCGTTAACCTCAGATCCA -CCAACAGCGTTAACCTCAACGACA -CCAACAGCGTTAACCTCAAGCTCA -CCAACAGCGTTAACCTCATCACGT -CCAACAGCGTTAACCTCACGTAGT -CCAACAGCGTTAACCTCAGTCAGT -CCAACAGCGTTAACCTCAGAAGGT -CCAACAGCGTTAACCTCAAACCGT -CCAACAGCGTTAACCTCATTGTGC -CCAACAGCGTTAACCTCACTAAGC -CCAACAGCGTTAACCTCAACTAGC -CCAACAGCGTTAACCTCAAGATGC -CCAACAGCGTTAACCTCATGAAGG -CCAACAGCGTTAACCTCACAATGG -CCAACAGCGTTAACCTCAATGAGG -CCAACAGCGTTAACCTCAAATGGG -CCAACAGCGTTAACCTCATCCTGA -CCAACAGCGTTAACCTCATAGCGA -CCAACAGCGTTAACCTCACACAGA -CCAACAGCGTTAACCTCAGCAAGA -CCAACAGCGTTAACCTCAGGTTGA -CCAACAGCGTTAACCTCATCCGAT -CCAACAGCGTTAACCTCATGGCAT -CCAACAGCGTTAACCTCACGAGAT -CCAACAGCGTTAACCTCATACCAC -CCAACAGCGTTAACCTCACAGAAC -CCAACAGCGTTAACCTCAGTCTAC -CCAACAGCGTTAACCTCAACGTAC -CCAACAGCGTTAACCTCAAGTGAC -CCAACAGCGTTAACCTCACTGTAG -CCAACAGCGTTAACCTCACCTAAG -CCAACAGCGTTAACCTCAGTTCAG -CCAACAGCGTTAACCTCAGCATAG -CCAACAGCGTTAACCTCAGACAAG -CCAACAGCGTTAACCTCAAAGCAG -CCAACAGCGTTAACCTCACGTCAA -CCAACAGCGTTAACCTCAGCTGAA -CCAACAGCGTTAACCTCAAGTACG -CCAACAGCGTTAACCTCAATCCGA -CCAACAGCGTTAACCTCAATGGGA -CCAACAGCGTTAACCTCAGTGCAA -CCAACAGCGTTAACCTCAGAGGAA -CCAACAGCGTTAACCTCACAGGTA -CCAACAGCGTTAACCTCAGACTCT -CCAACAGCGTTAACCTCAAGTCCT -CCAACAGCGTTAACCTCATAAGCC -CCAACAGCGTTAACCTCAATAGCC -CCAACAGCGTTAACCTCATAACCG -CCAACAGCGTTAACCTCAATGCCA -CCAACAGCGTTATCCTGTGGAAAC -CCAACAGCGTTATCCTGTAACACC -CCAACAGCGTTATCCTGTATCGAG -CCAACAGCGTTATCCTGTCTCCTT -CCAACAGCGTTATCCTGTCCTGTT -CCAACAGCGTTATCCTGTCGGTTT -CCAACAGCGTTATCCTGTGTGGTT -CCAACAGCGTTATCCTGTGCCTTT -CCAACAGCGTTATCCTGTGGTCTT -CCAACAGCGTTATCCTGTACGCTT -CCAACAGCGTTATCCTGTAGCGTT -CCAACAGCGTTATCCTGTTTCGTC -CCAACAGCGTTATCCTGTTCTCTC -CCAACAGCGTTATCCTGTTGGATC -CCAACAGCGTTATCCTGTCACTTC -CCAACAGCGTTATCCTGTGTACTC -CCAACAGCGTTATCCTGTGATGTC -CCAACAGCGTTATCCTGTACAGTC -CCAACAGCGTTATCCTGTTTGCTG -CCAACAGCGTTATCCTGTTCCATG -CCAACAGCGTTATCCTGTTGTGTG -CCAACAGCGTTATCCTGTCTAGTG -CCAACAGCGTTATCCTGTCATCTG -CCAACAGCGTTATCCTGTGAGTTG -CCAACAGCGTTATCCTGTAGACTG -CCAACAGCGTTATCCTGTTCGGTA -CCAACAGCGTTATCCTGTTGCCTA -CCAACAGCGTTATCCTGTCCACTA -CCAACAGCGTTATCCTGTGGAGTA -CCAACAGCGTTATCCTGTTCGTCT -CCAACAGCGTTATCCTGTTGCACT -CCAACAGCGTTATCCTGTCTGACT -CCAACAGCGTTATCCTGTCAACCT -CCAACAGCGTTATCCTGTGCTACT -CCAACAGCGTTATCCTGTGGATCT -CCAACAGCGTTATCCTGTAAGGCT -CCAACAGCGTTATCCTGTTCAACC -CCAACAGCGTTATCCTGTTGTTCC -CCAACAGCGTTATCCTGTATTCCC -CCAACAGCGTTATCCTGTTTCTCG -CCAACAGCGTTATCCTGTTAGACG -CCAACAGCGTTATCCTGTGTAACG -CCAACAGCGTTATCCTGTACTTCG -CCAACAGCGTTATCCTGTTACGCA -CCAACAGCGTTATCCTGTCTTGCA -CCAACAGCGTTATCCTGTCGAACA -CCAACAGCGTTATCCTGTCAGTCA -CCAACAGCGTTATCCTGTGATCCA -CCAACAGCGTTATCCTGTACGACA -CCAACAGCGTTATCCTGTAGCTCA -CCAACAGCGTTATCCTGTTCACGT -CCAACAGCGTTATCCTGTCGTAGT -CCAACAGCGTTATCCTGTGTCAGT -CCAACAGCGTTATCCTGTGAAGGT -CCAACAGCGTTATCCTGTAACCGT -CCAACAGCGTTATCCTGTTTGTGC -CCAACAGCGTTATCCTGTCTAAGC -CCAACAGCGTTATCCTGTACTAGC -CCAACAGCGTTATCCTGTAGATGC -CCAACAGCGTTATCCTGTTGAAGG -CCAACAGCGTTATCCTGTCAATGG -CCAACAGCGTTATCCTGTATGAGG -CCAACAGCGTTATCCTGTAATGGG -CCAACAGCGTTATCCTGTTCCTGA -CCAACAGCGTTATCCTGTTAGCGA -CCAACAGCGTTATCCTGTCACAGA -CCAACAGCGTTATCCTGTGCAAGA -CCAACAGCGTTATCCTGTGGTTGA -CCAACAGCGTTATCCTGTTCCGAT -CCAACAGCGTTATCCTGTTGGCAT -CCAACAGCGTTATCCTGTCGAGAT -CCAACAGCGTTATCCTGTTACCAC -CCAACAGCGTTATCCTGTCAGAAC -CCAACAGCGTTATCCTGTGTCTAC -CCAACAGCGTTATCCTGTACGTAC -CCAACAGCGTTATCCTGTAGTGAC -CCAACAGCGTTATCCTGTCTGTAG -CCAACAGCGTTATCCTGTCCTAAG -CCAACAGCGTTATCCTGTGTTCAG -CCAACAGCGTTATCCTGTGCATAG -CCAACAGCGTTATCCTGTGACAAG -CCAACAGCGTTATCCTGTAAGCAG -CCAACAGCGTTATCCTGTCGTCAA -CCAACAGCGTTATCCTGTGCTGAA -CCAACAGCGTTATCCTGTAGTACG -CCAACAGCGTTATCCTGTATCCGA -CCAACAGCGTTATCCTGTATGGGA -CCAACAGCGTTATCCTGTGTGCAA -CCAACAGCGTTATCCTGTGAGGAA -CCAACAGCGTTATCCTGTCAGGTA -CCAACAGCGTTATCCTGTGACTCT -CCAACAGCGTTATCCTGTAGTCCT -CCAACAGCGTTATCCTGTTAAGCC -CCAACAGCGTTATCCTGTATAGCC -CCAACAGCGTTATCCTGTTAACCG -CCAACAGCGTTATCCTGTATGCCA -CCAACAGCGTTACCCATTGGAAAC -CCAACAGCGTTACCCATTAACACC -CCAACAGCGTTACCCATTATCGAG -CCAACAGCGTTACCCATTCTCCTT -CCAACAGCGTTACCCATTCCTGTT -CCAACAGCGTTACCCATTCGGTTT -CCAACAGCGTTACCCATTGTGGTT -CCAACAGCGTTACCCATTGCCTTT -CCAACAGCGTTACCCATTGGTCTT -CCAACAGCGTTACCCATTACGCTT -CCAACAGCGTTACCCATTAGCGTT -CCAACAGCGTTACCCATTTTCGTC -CCAACAGCGTTACCCATTTCTCTC -CCAACAGCGTTACCCATTTGGATC -CCAACAGCGTTACCCATTCACTTC -CCAACAGCGTTACCCATTGTACTC -CCAACAGCGTTACCCATTGATGTC -CCAACAGCGTTACCCATTACAGTC -CCAACAGCGTTACCCATTTTGCTG -CCAACAGCGTTACCCATTTCCATG -CCAACAGCGTTACCCATTTGTGTG -CCAACAGCGTTACCCATTCTAGTG -CCAACAGCGTTACCCATTCATCTG -CCAACAGCGTTACCCATTGAGTTG -CCAACAGCGTTACCCATTAGACTG -CCAACAGCGTTACCCATTTCGGTA -CCAACAGCGTTACCCATTTGCCTA -CCAACAGCGTTACCCATTCCACTA -CCAACAGCGTTACCCATTGGAGTA -CCAACAGCGTTACCCATTTCGTCT -CCAACAGCGTTACCCATTTGCACT -CCAACAGCGTTACCCATTCTGACT -CCAACAGCGTTACCCATTCAACCT -CCAACAGCGTTACCCATTGCTACT -CCAACAGCGTTACCCATTGGATCT -CCAACAGCGTTACCCATTAAGGCT -CCAACAGCGTTACCCATTTCAACC -CCAACAGCGTTACCCATTTGTTCC -CCAACAGCGTTACCCATTATTCCC -CCAACAGCGTTACCCATTTTCTCG -CCAACAGCGTTACCCATTTAGACG -CCAACAGCGTTACCCATTGTAACG -CCAACAGCGTTACCCATTACTTCG -CCAACAGCGTTACCCATTTACGCA -CCAACAGCGTTACCCATTCTTGCA -CCAACAGCGTTACCCATTCGAACA -CCAACAGCGTTACCCATTCAGTCA -CCAACAGCGTTACCCATTGATCCA -CCAACAGCGTTACCCATTACGACA -CCAACAGCGTTACCCATTAGCTCA -CCAACAGCGTTACCCATTTCACGT -CCAACAGCGTTACCCATTCGTAGT -CCAACAGCGTTACCCATTGTCAGT -CCAACAGCGTTACCCATTGAAGGT -CCAACAGCGTTACCCATTAACCGT -CCAACAGCGTTACCCATTTTGTGC -CCAACAGCGTTACCCATTCTAAGC -CCAACAGCGTTACCCATTACTAGC -CCAACAGCGTTACCCATTAGATGC -CCAACAGCGTTACCCATTTGAAGG -CCAACAGCGTTACCCATTCAATGG -CCAACAGCGTTACCCATTATGAGG -CCAACAGCGTTACCCATTAATGGG -CCAACAGCGTTACCCATTTCCTGA -CCAACAGCGTTACCCATTTAGCGA -CCAACAGCGTTACCCATTCACAGA -CCAACAGCGTTACCCATTGCAAGA -CCAACAGCGTTACCCATTGGTTGA -CCAACAGCGTTACCCATTTCCGAT -CCAACAGCGTTACCCATTTGGCAT -CCAACAGCGTTACCCATTCGAGAT -CCAACAGCGTTACCCATTTACCAC -CCAACAGCGTTACCCATTCAGAAC -CCAACAGCGTTACCCATTGTCTAC -CCAACAGCGTTACCCATTACGTAC -CCAACAGCGTTACCCATTAGTGAC -CCAACAGCGTTACCCATTCTGTAG -CCAACAGCGTTACCCATTCCTAAG -CCAACAGCGTTACCCATTGTTCAG -CCAACAGCGTTACCCATTGCATAG -CCAACAGCGTTACCCATTGACAAG -CCAACAGCGTTACCCATTAAGCAG -CCAACAGCGTTACCCATTCGTCAA -CCAACAGCGTTACCCATTGCTGAA -CCAACAGCGTTACCCATTAGTACG -CCAACAGCGTTACCCATTATCCGA -CCAACAGCGTTACCCATTATGGGA -CCAACAGCGTTACCCATTGTGCAA -CCAACAGCGTTACCCATTGAGGAA -CCAACAGCGTTACCCATTCAGGTA -CCAACAGCGTTACCCATTGACTCT -CCAACAGCGTTACCCATTAGTCCT -CCAACAGCGTTACCCATTTAAGCC -CCAACAGCGTTACCCATTATAGCC -CCAACAGCGTTACCCATTTAACCG -CCAACAGCGTTACCCATTATGCCA -CCAACAGCGTTATCGTTCGGAAAC -CCAACAGCGTTATCGTTCAACACC -CCAACAGCGTTATCGTTCATCGAG -CCAACAGCGTTATCGTTCCTCCTT -CCAACAGCGTTATCGTTCCCTGTT -CCAACAGCGTTATCGTTCCGGTTT -CCAACAGCGTTATCGTTCGTGGTT -CCAACAGCGTTATCGTTCGCCTTT -CCAACAGCGTTATCGTTCGGTCTT -CCAACAGCGTTATCGTTCACGCTT -CCAACAGCGTTATCGTTCAGCGTT -CCAACAGCGTTATCGTTCTTCGTC -CCAACAGCGTTATCGTTCTCTCTC -CCAACAGCGTTATCGTTCTGGATC -CCAACAGCGTTATCGTTCCACTTC -CCAACAGCGTTATCGTTCGTACTC -CCAACAGCGTTATCGTTCGATGTC -CCAACAGCGTTATCGTTCACAGTC -CCAACAGCGTTATCGTTCTTGCTG -CCAACAGCGTTATCGTTCTCCATG -CCAACAGCGTTATCGTTCTGTGTG -CCAACAGCGTTATCGTTCCTAGTG -CCAACAGCGTTATCGTTCCATCTG -CCAACAGCGTTATCGTTCGAGTTG -CCAACAGCGTTATCGTTCAGACTG -CCAACAGCGTTATCGTTCTCGGTA -CCAACAGCGTTATCGTTCTGCCTA -CCAACAGCGTTATCGTTCCCACTA -CCAACAGCGTTATCGTTCGGAGTA -CCAACAGCGTTATCGTTCTCGTCT -CCAACAGCGTTATCGTTCTGCACT -CCAACAGCGTTATCGTTCCTGACT -CCAACAGCGTTATCGTTCCAACCT -CCAACAGCGTTATCGTTCGCTACT -CCAACAGCGTTATCGTTCGGATCT -CCAACAGCGTTATCGTTCAAGGCT -CCAACAGCGTTATCGTTCTCAACC -CCAACAGCGTTATCGTTCTGTTCC -CCAACAGCGTTATCGTTCATTCCC -CCAACAGCGTTATCGTTCTTCTCG -CCAACAGCGTTATCGTTCTAGACG -CCAACAGCGTTATCGTTCGTAACG -CCAACAGCGTTATCGTTCACTTCG -CCAACAGCGTTATCGTTCTACGCA -CCAACAGCGTTATCGTTCCTTGCA -CCAACAGCGTTATCGTTCCGAACA -CCAACAGCGTTATCGTTCCAGTCA -CCAACAGCGTTATCGTTCGATCCA -CCAACAGCGTTATCGTTCACGACA -CCAACAGCGTTATCGTTCAGCTCA -CCAACAGCGTTATCGTTCTCACGT -CCAACAGCGTTATCGTTCCGTAGT -CCAACAGCGTTATCGTTCGTCAGT -CCAACAGCGTTATCGTTCGAAGGT -CCAACAGCGTTATCGTTCAACCGT -CCAACAGCGTTATCGTTCTTGTGC -CCAACAGCGTTATCGTTCCTAAGC -CCAACAGCGTTATCGTTCACTAGC -CCAACAGCGTTATCGTTCAGATGC -CCAACAGCGTTATCGTTCTGAAGG -CCAACAGCGTTATCGTTCCAATGG -CCAACAGCGTTATCGTTCATGAGG -CCAACAGCGTTATCGTTCAATGGG -CCAACAGCGTTATCGTTCTCCTGA -CCAACAGCGTTATCGTTCTAGCGA -CCAACAGCGTTATCGTTCCACAGA -CCAACAGCGTTATCGTTCGCAAGA -CCAACAGCGTTATCGTTCGGTTGA -CCAACAGCGTTATCGTTCTCCGAT -CCAACAGCGTTATCGTTCTGGCAT -CCAACAGCGTTATCGTTCCGAGAT -CCAACAGCGTTATCGTTCTACCAC -CCAACAGCGTTATCGTTCCAGAAC -CCAACAGCGTTATCGTTCGTCTAC -CCAACAGCGTTATCGTTCACGTAC -CCAACAGCGTTATCGTTCAGTGAC -CCAACAGCGTTATCGTTCCTGTAG -CCAACAGCGTTATCGTTCCCTAAG -CCAACAGCGTTATCGTTCGTTCAG -CCAACAGCGTTATCGTTCGCATAG -CCAACAGCGTTATCGTTCGACAAG -CCAACAGCGTTATCGTTCAAGCAG -CCAACAGCGTTATCGTTCCGTCAA -CCAACAGCGTTATCGTTCGCTGAA -CCAACAGCGTTATCGTTCAGTACG -CCAACAGCGTTATCGTTCATCCGA -CCAACAGCGTTATCGTTCATGGGA -CCAACAGCGTTATCGTTCGTGCAA -CCAACAGCGTTATCGTTCGAGGAA -CCAACAGCGTTATCGTTCCAGGTA -CCAACAGCGTTATCGTTCGACTCT -CCAACAGCGTTATCGTTCAGTCCT -CCAACAGCGTTATCGTTCTAAGCC -CCAACAGCGTTATCGTTCATAGCC -CCAACAGCGTTATCGTTCTAACCG -CCAACAGCGTTATCGTTCATGCCA -CCAACAGCGTTAACGTAGGGAAAC -CCAACAGCGTTAACGTAGAACACC -CCAACAGCGTTAACGTAGATCGAG -CCAACAGCGTTAACGTAGCTCCTT -CCAACAGCGTTAACGTAGCCTGTT -CCAACAGCGTTAACGTAGCGGTTT -CCAACAGCGTTAACGTAGGTGGTT -CCAACAGCGTTAACGTAGGCCTTT -CCAACAGCGTTAACGTAGGGTCTT -CCAACAGCGTTAACGTAGACGCTT -CCAACAGCGTTAACGTAGAGCGTT -CCAACAGCGTTAACGTAGTTCGTC -CCAACAGCGTTAACGTAGTCTCTC -CCAACAGCGTTAACGTAGTGGATC -CCAACAGCGTTAACGTAGCACTTC -CCAACAGCGTTAACGTAGGTACTC -CCAACAGCGTTAACGTAGGATGTC -CCAACAGCGTTAACGTAGACAGTC -CCAACAGCGTTAACGTAGTTGCTG -CCAACAGCGTTAACGTAGTCCATG -CCAACAGCGTTAACGTAGTGTGTG -CCAACAGCGTTAACGTAGCTAGTG -CCAACAGCGTTAACGTAGCATCTG -CCAACAGCGTTAACGTAGGAGTTG -CCAACAGCGTTAACGTAGAGACTG -CCAACAGCGTTAACGTAGTCGGTA -CCAACAGCGTTAACGTAGTGCCTA -CCAACAGCGTTAACGTAGCCACTA -CCAACAGCGTTAACGTAGGGAGTA -CCAACAGCGTTAACGTAGTCGTCT -CCAACAGCGTTAACGTAGTGCACT -CCAACAGCGTTAACGTAGCTGACT -CCAACAGCGTTAACGTAGCAACCT -CCAACAGCGTTAACGTAGGCTACT -CCAACAGCGTTAACGTAGGGATCT -CCAACAGCGTTAACGTAGAAGGCT -CCAACAGCGTTAACGTAGTCAACC -CCAACAGCGTTAACGTAGTGTTCC -CCAACAGCGTTAACGTAGATTCCC -CCAACAGCGTTAACGTAGTTCTCG -CCAACAGCGTTAACGTAGTAGACG -CCAACAGCGTTAACGTAGGTAACG -CCAACAGCGTTAACGTAGACTTCG -CCAACAGCGTTAACGTAGTACGCA -CCAACAGCGTTAACGTAGCTTGCA -CCAACAGCGTTAACGTAGCGAACA -CCAACAGCGTTAACGTAGCAGTCA -CCAACAGCGTTAACGTAGGATCCA -CCAACAGCGTTAACGTAGACGACA -CCAACAGCGTTAACGTAGAGCTCA -CCAACAGCGTTAACGTAGTCACGT -CCAACAGCGTTAACGTAGCGTAGT -CCAACAGCGTTAACGTAGGTCAGT -CCAACAGCGTTAACGTAGGAAGGT -CCAACAGCGTTAACGTAGAACCGT -CCAACAGCGTTAACGTAGTTGTGC -CCAACAGCGTTAACGTAGCTAAGC -CCAACAGCGTTAACGTAGACTAGC -CCAACAGCGTTAACGTAGAGATGC -CCAACAGCGTTAACGTAGTGAAGG -CCAACAGCGTTAACGTAGCAATGG -CCAACAGCGTTAACGTAGATGAGG -CCAACAGCGTTAACGTAGAATGGG -CCAACAGCGTTAACGTAGTCCTGA -CCAACAGCGTTAACGTAGTAGCGA -CCAACAGCGTTAACGTAGCACAGA -CCAACAGCGTTAACGTAGGCAAGA -CCAACAGCGTTAACGTAGGGTTGA -CCAACAGCGTTAACGTAGTCCGAT -CCAACAGCGTTAACGTAGTGGCAT -CCAACAGCGTTAACGTAGCGAGAT -CCAACAGCGTTAACGTAGTACCAC -CCAACAGCGTTAACGTAGCAGAAC -CCAACAGCGTTAACGTAGGTCTAC -CCAACAGCGTTAACGTAGACGTAC -CCAACAGCGTTAACGTAGAGTGAC -CCAACAGCGTTAACGTAGCTGTAG -CCAACAGCGTTAACGTAGCCTAAG -CCAACAGCGTTAACGTAGGTTCAG -CCAACAGCGTTAACGTAGGCATAG -CCAACAGCGTTAACGTAGGACAAG -CCAACAGCGTTAACGTAGAAGCAG -CCAACAGCGTTAACGTAGCGTCAA -CCAACAGCGTTAACGTAGGCTGAA -CCAACAGCGTTAACGTAGAGTACG -CCAACAGCGTTAACGTAGATCCGA -CCAACAGCGTTAACGTAGATGGGA -CCAACAGCGTTAACGTAGGTGCAA -CCAACAGCGTTAACGTAGGAGGAA -CCAACAGCGTTAACGTAGCAGGTA -CCAACAGCGTTAACGTAGGACTCT -CCAACAGCGTTAACGTAGAGTCCT -CCAACAGCGTTAACGTAGTAAGCC -CCAACAGCGTTAACGTAGATAGCC -CCAACAGCGTTAACGTAGTAACCG -CCAACAGCGTTAACGTAGATGCCA -CCAACAGCGTTAACGGTAGGAAAC -CCAACAGCGTTAACGGTAAACACC -CCAACAGCGTTAACGGTAATCGAG -CCAACAGCGTTAACGGTACTCCTT -CCAACAGCGTTAACGGTACCTGTT -CCAACAGCGTTAACGGTACGGTTT -CCAACAGCGTTAACGGTAGTGGTT -CCAACAGCGTTAACGGTAGCCTTT -CCAACAGCGTTAACGGTAGGTCTT -CCAACAGCGTTAACGGTAACGCTT -CCAACAGCGTTAACGGTAAGCGTT -CCAACAGCGTTAACGGTATTCGTC -CCAACAGCGTTAACGGTATCTCTC -CCAACAGCGTTAACGGTATGGATC -CCAACAGCGTTAACGGTACACTTC -CCAACAGCGTTAACGGTAGTACTC -CCAACAGCGTTAACGGTAGATGTC -CCAACAGCGTTAACGGTAACAGTC -CCAACAGCGTTAACGGTATTGCTG -CCAACAGCGTTAACGGTATCCATG -CCAACAGCGTTAACGGTATGTGTG -CCAACAGCGTTAACGGTACTAGTG -CCAACAGCGTTAACGGTACATCTG -CCAACAGCGTTAACGGTAGAGTTG -CCAACAGCGTTAACGGTAAGACTG -CCAACAGCGTTAACGGTATCGGTA -CCAACAGCGTTAACGGTATGCCTA -CCAACAGCGTTAACGGTACCACTA -CCAACAGCGTTAACGGTAGGAGTA -CCAACAGCGTTAACGGTATCGTCT -CCAACAGCGTTAACGGTATGCACT -CCAACAGCGTTAACGGTACTGACT -CCAACAGCGTTAACGGTACAACCT -CCAACAGCGTTAACGGTAGCTACT -CCAACAGCGTTAACGGTAGGATCT -CCAACAGCGTTAACGGTAAAGGCT -CCAACAGCGTTAACGGTATCAACC -CCAACAGCGTTAACGGTATGTTCC -CCAACAGCGTTAACGGTAATTCCC -CCAACAGCGTTAACGGTATTCTCG -CCAACAGCGTTAACGGTATAGACG -CCAACAGCGTTAACGGTAGTAACG -CCAACAGCGTTAACGGTAACTTCG -CCAACAGCGTTAACGGTATACGCA -CCAACAGCGTTAACGGTACTTGCA -CCAACAGCGTTAACGGTACGAACA -CCAACAGCGTTAACGGTACAGTCA -CCAACAGCGTTAACGGTAGATCCA -CCAACAGCGTTAACGGTAACGACA -CCAACAGCGTTAACGGTAAGCTCA -CCAACAGCGTTAACGGTATCACGT -CCAACAGCGTTAACGGTACGTAGT -CCAACAGCGTTAACGGTAGTCAGT -CCAACAGCGTTAACGGTAGAAGGT -CCAACAGCGTTAACGGTAAACCGT -CCAACAGCGTTAACGGTATTGTGC -CCAACAGCGTTAACGGTACTAAGC -CCAACAGCGTTAACGGTAACTAGC -CCAACAGCGTTAACGGTAAGATGC -CCAACAGCGTTAACGGTATGAAGG -CCAACAGCGTTAACGGTACAATGG -CCAACAGCGTTAACGGTAATGAGG -CCAACAGCGTTAACGGTAAATGGG -CCAACAGCGTTAACGGTATCCTGA -CCAACAGCGTTAACGGTATAGCGA -CCAACAGCGTTAACGGTACACAGA -CCAACAGCGTTAACGGTAGCAAGA -CCAACAGCGTTAACGGTAGGTTGA -CCAACAGCGTTAACGGTATCCGAT -CCAACAGCGTTAACGGTATGGCAT -CCAACAGCGTTAACGGTACGAGAT -CCAACAGCGTTAACGGTATACCAC -CCAACAGCGTTAACGGTACAGAAC -CCAACAGCGTTAACGGTAGTCTAC -CCAACAGCGTTAACGGTAACGTAC -CCAACAGCGTTAACGGTAAGTGAC -CCAACAGCGTTAACGGTACTGTAG -CCAACAGCGTTAACGGTACCTAAG -CCAACAGCGTTAACGGTAGTTCAG -CCAACAGCGTTAACGGTAGCATAG -CCAACAGCGTTAACGGTAGACAAG -CCAACAGCGTTAACGGTAAAGCAG -CCAACAGCGTTAACGGTACGTCAA -CCAACAGCGTTAACGGTAGCTGAA -CCAACAGCGTTAACGGTAAGTACG -CCAACAGCGTTAACGGTAATCCGA -CCAACAGCGTTAACGGTAATGGGA -CCAACAGCGTTAACGGTAGTGCAA -CCAACAGCGTTAACGGTAGAGGAA -CCAACAGCGTTAACGGTACAGGTA -CCAACAGCGTTAACGGTAGACTCT -CCAACAGCGTTAACGGTAAGTCCT -CCAACAGCGTTAACGGTATAAGCC -CCAACAGCGTTAACGGTAATAGCC -CCAACAGCGTTAACGGTATAACCG -CCAACAGCGTTAACGGTAATGCCA -CCAACAGCGTTATCGACTGGAAAC -CCAACAGCGTTATCGACTAACACC -CCAACAGCGTTATCGACTATCGAG -CCAACAGCGTTATCGACTCTCCTT -CCAACAGCGTTATCGACTCCTGTT -CCAACAGCGTTATCGACTCGGTTT -CCAACAGCGTTATCGACTGTGGTT -CCAACAGCGTTATCGACTGCCTTT -CCAACAGCGTTATCGACTGGTCTT -CCAACAGCGTTATCGACTACGCTT -CCAACAGCGTTATCGACTAGCGTT -CCAACAGCGTTATCGACTTTCGTC -CCAACAGCGTTATCGACTTCTCTC -CCAACAGCGTTATCGACTTGGATC -CCAACAGCGTTATCGACTCACTTC -CCAACAGCGTTATCGACTGTACTC -CCAACAGCGTTATCGACTGATGTC -CCAACAGCGTTATCGACTACAGTC -CCAACAGCGTTATCGACTTTGCTG -CCAACAGCGTTATCGACTTCCATG -CCAACAGCGTTATCGACTTGTGTG -CCAACAGCGTTATCGACTCTAGTG -CCAACAGCGTTATCGACTCATCTG -CCAACAGCGTTATCGACTGAGTTG -CCAACAGCGTTATCGACTAGACTG -CCAACAGCGTTATCGACTTCGGTA -CCAACAGCGTTATCGACTTGCCTA -CCAACAGCGTTATCGACTCCACTA -CCAACAGCGTTATCGACTGGAGTA -CCAACAGCGTTATCGACTTCGTCT -CCAACAGCGTTATCGACTTGCACT -CCAACAGCGTTATCGACTCTGACT -CCAACAGCGTTATCGACTCAACCT -CCAACAGCGTTATCGACTGCTACT -CCAACAGCGTTATCGACTGGATCT -CCAACAGCGTTATCGACTAAGGCT -CCAACAGCGTTATCGACTTCAACC -CCAACAGCGTTATCGACTTGTTCC -CCAACAGCGTTATCGACTATTCCC -CCAACAGCGTTATCGACTTTCTCG -CCAACAGCGTTATCGACTTAGACG -CCAACAGCGTTATCGACTGTAACG -CCAACAGCGTTATCGACTACTTCG -CCAACAGCGTTATCGACTTACGCA -CCAACAGCGTTATCGACTCTTGCA -CCAACAGCGTTATCGACTCGAACA -CCAACAGCGTTATCGACTCAGTCA -CCAACAGCGTTATCGACTGATCCA -CCAACAGCGTTATCGACTACGACA -CCAACAGCGTTATCGACTAGCTCA -CCAACAGCGTTATCGACTTCACGT -CCAACAGCGTTATCGACTCGTAGT -CCAACAGCGTTATCGACTGTCAGT -CCAACAGCGTTATCGACTGAAGGT -CCAACAGCGTTATCGACTAACCGT -CCAACAGCGTTATCGACTTTGTGC -CCAACAGCGTTATCGACTCTAAGC -CCAACAGCGTTATCGACTACTAGC -CCAACAGCGTTATCGACTAGATGC -CCAACAGCGTTATCGACTTGAAGG -CCAACAGCGTTATCGACTCAATGG -CCAACAGCGTTATCGACTATGAGG -CCAACAGCGTTATCGACTAATGGG -CCAACAGCGTTATCGACTTCCTGA -CCAACAGCGTTATCGACTTAGCGA -CCAACAGCGTTATCGACTCACAGA -CCAACAGCGTTATCGACTGCAAGA -CCAACAGCGTTATCGACTGGTTGA -CCAACAGCGTTATCGACTTCCGAT -CCAACAGCGTTATCGACTTGGCAT -CCAACAGCGTTATCGACTCGAGAT -CCAACAGCGTTATCGACTTACCAC -CCAACAGCGTTATCGACTCAGAAC -CCAACAGCGTTATCGACTGTCTAC -CCAACAGCGTTATCGACTACGTAC -CCAACAGCGTTATCGACTAGTGAC -CCAACAGCGTTATCGACTCTGTAG -CCAACAGCGTTATCGACTCCTAAG -CCAACAGCGTTATCGACTGTTCAG -CCAACAGCGTTATCGACTGCATAG -CCAACAGCGTTATCGACTGACAAG -CCAACAGCGTTATCGACTAAGCAG -CCAACAGCGTTATCGACTCGTCAA -CCAACAGCGTTATCGACTGCTGAA -CCAACAGCGTTATCGACTAGTACG -CCAACAGCGTTATCGACTATCCGA -CCAACAGCGTTATCGACTATGGGA -CCAACAGCGTTATCGACTGTGCAA -CCAACAGCGTTATCGACTGAGGAA -CCAACAGCGTTATCGACTCAGGTA -CCAACAGCGTTATCGACTGACTCT -CCAACAGCGTTATCGACTAGTCCT -CCAACAGCGTTATCGACTTAAGCC -CCAACAGCGTTATCGACTATAGCC -CCAACAGCGTTATCGACTTAACCG -CCAACAGCGTTATCGACTATGCCA -CCAACAGCGTTAGCATACGGAAAC -CCAACAGCGTTAGCATACAACACC -CCAACAGCGTTAGCATACATCGAG -CCAACAGCGTTAGCATACCTCCTT -CCAACAGCGTTAGCATACCCTGTT -CCAACAGCGTTAGCATACCGGTTT -CCAACAGCGTTAGCATACGTGGTT -CCAACAGCGTTAGCATACGCCTTT -CCAACAGCGTTAGCATACGGTCTT -CCAACAGCGTTAGCATACACGCTT -CCAACAGCGTTAGCATACAGCGTT -CCAACAGCGTTAGCATACTTCGTC -CCAACAGCGTTAGCATACTCTCTC -CCAACAGCGTTAGCATACTGGATC -CCAACAGCGTTAGCATACCACTTC -CCAACAGCGTTAGCATACGTACTC -CCAACAGCGTTAGCATACGATGTC -CCAACAGCGTTAGCATACACAGTC -CCAACAGCGTTAGCATACTTGCTG -CCAACAGCGTTAGCATACTCCATG -CCAACAGCGTTAGCATACTGTGTG -CCAACAGCGTTAGCATACCTAGTG -CCAACAGCGTTAGCATACCATCTG -CCAACAGCGTTAGCATACGAGTTG -CCAACAGCGTTAGCATACAGACTG -CCAACAGCGTTAGCATACTCGGTA -CCAACAGCGTTAGCATACTGCCTA -CCAACAGCGTTAGCATACCCACTA -CCAACAGCGTTAGCATACGGAGTA -CCAACAGCGTTAGCATACTCGTCT -CCAACAGCGTTAGCATACTGCACT -CCAACAGCGTTAGCATACCTGACT -CCAACAGCGTTAGCATACCAACCT -CCAACAGCGTTAGCATACGCTACT -CCAACAGCGTTAGCATACGGATCT -CCAACAGCGTTAGCATACAAGGCT -CCAACAGCGTTAGCATACTCAACC -CCAACAGCGTTAGCATACTGTTCC -CCAACAGCGTTAGCATACATTCCC -CCAACAGCGTTAGCATACTTCTCG -CCAACAGCGTTAGCATACTAGACG -CCAACAGCGTTAGCATACGTAACG -CCAACAGCGTTAGCATACACTTCG -CCAACAGCGTTAGCATACTACGCA -CCAACAGCGTTAGCATACCTTGCA -CCAACAGCGTTAGCATACCGAACA -CCAACAGCGTTAGCATACCAGTCA -CCAACAGCGTTAGCATACGATCCA -CCAACAGCGTTAGCATACACGACA -CCAACAGCGTTAGCATACAGCTCA -CCAACAGCGTTAGCATACTCACGT -CCAACAGCGTTAGCATACCGTAGT -CCAACAGCGTTAGCATACGTCAGT -CCAACAGCGTTAGCATACGAAGGT -CCAACAGCGTTAGCATACAACCGT -CCAACAGCGTTAGCATACTTGTGC -CCAACAGCGTTAGCATACCTAAGC -CCAACAGCGTTAGCATACACTAGC -CCAACAGCGTTAGCATACAGATGC -CCAACAGCGTTAGCATACTGAAGG -CCAACAGCGTTAGCATACCAATGG -CCAACAGCGTTAGCATACATGAGG -CCAACAGCGTTAGCATACAATGGG -CCAACAGCGTTAGCATACTCCTGA -CCAACAGCGTTAGCATACTAGCGA -CCAACAGCGTTAGCATACCACAGA -CCAACAGCGTTAGCATACGCAAGA -CCAACAGCGTTAGCATACGGTTGA -CCAACAGCGTTAGCATACTCCGAT -CCAACAGCGTTAGCATACTGGCAT -CCAACAGCGTTAGCATACCGAGAT -CCAACAGCGTTAGCATACTACCAC -CCAACAGCGTTAGCATACCAGAAC -CCAACAGCGTTAGCATACGTCTAC -CCAACAGCGTTAGCATACACGTAC -CCAACAGCGTTAGCATACAGTGAC -CCAACAGCGTTAGCATACCTGTAG -CCAACAGCGTTAGCATACCCTAAG -CCAACAGCGTTAGCATACGTTCAG -CCAACAGCGTTAGCATACGCATAG -CCAACAGCGTTAGCATACGACAAG -CCAACAGCGTTAGCATACAAGCAG -CCAACAGCGTTAGCATACCGTCAA -CCAACAGCGTTAGCATACGCTGAA -CCAACAGCGTTAGCATACAGTACG -CCAACAGCGTTAGCATACATCCGA -CCAACAGCGTTAGCATACATGGGA -CCAACAGCGTTAGCATACGTGCAA -CCAACAGCGTTAGCATACGAGGAA -CCAACAGCGTTAGCATACCAGGTA -CCAACAGCGTTAGCATACGACTCT -CCAACAGCGTTAGCATACAGTCCT -CCAACAGCGTTAGCATACTAAGCC -CCAACAGCGTTAGCATACATAGCC -CCAACAGCGTTAGCATACTAACCG -CCAACAGCGTTAGCATACATGCCA -CCAACAGCGTTAGCACTTGGAAAC -CCAACAGCGTTAGCACTTAACACC -CCAACAGCGTTAGCACTTATCGAG -CCAACAGCGTTAGCACTTCTCCTT -CCAACAGCGTTAGCACTTCCTGTT -CCAACAGCGTTAGCACTTCGGTTT -CCAACAGCGTTAGCACTTGTGGTT -CCAACAGCGTTAGCACTTGCCTTT -CCAACAGCGTTAGCACTTGGTCTT -CCAACAGCGTTAGCACTTACGCTT -CCAACAGCGTTAGCACTTAGCGTT -CCAACAGCGTTAGCACTTTTCGTC -CCAACAGCGTTAGCACTTTCTCTC -CCAACAGCGTTAGCACTTTGGATC -CCAACAGCGTTAGCACTTCACTTC -CCAACAGCGTTAGCACTTGTACTC -CCAACAGCGTTAGCACTTGATGTC -CCAACAGCGTTAGCACTTACAGTC -CCAACAGCGTTAGCACTTTTGCTG -CCAACAGCGTTAGCACTTTCCATG -CCAACAGCGTTAGCACTTTGTGTG -CCAACAGCGTTAGCACTTCTAGTG -CCAACAGCGTTAGCACTTCATCTG -CCAACAGCGTTAGCACTTGAGTTG -CCAACAGCGTTAGCACTTAGACTG -CCAACAGCGTTAGCACTTTCGGTA -CCAACAGCGTTAGCACTTTGCCTA -CCAACAGCGTTAGCACTTCCACTA -CCAACAGCGTTAGCACTTGGAGTA -CCAACAGCGTTAGCACTTTCGTCT -CCAACAGCGTTAGCACTTTGCACT -CCAACAGCGTTAGCACTTCTGACT -CCAACAGCGTTAGCACTTCAACCT -CCAACAGCGTTAGCACTTGCTACT -CCAACAGCGTTAGCACTTGGATCT -CCAACAGCGTTAGCACTTAAGGCT -CCAACAGCGTTAGCACTTTCAACC -CCAACAGCGTTAGCACTTTGTTCC -CCAACAGCGTTAGCACTTATTCCC -CCAACAGCGTTAGCACTTTTCTCG -CCAACAGCGTTAGCACTTTAGACG -CCAACAGCGTTAGCACTTGTAACG -CCAACAGCGTTAGCACTTACTTCG -CCAACAGCGTTAGCACTTTACGCA -CCAACAGCGTTAGCACTTCTTGCA -CCAACAGCGTTAGCACTTCGAACA -CCAACAGCGTTAGCACTTCAGTCA -CCAACAGCGTTAGCACTTGATCCA -CCAACAGCGTTAGCACTTACGACA -CCAACAGCGTTAGCACTTAGCTCA -CCAACAGCGTTAGCACTTTCACGT -CCAACAGCGTTAGCACTTCGTAGT -CCAACAGCGTTAGCACTTGTCAGT -CCAACAGCGTTAGCACTTGAAGGT -CCAACAGCGTTAGCACTTAACCGT -CCAACAGCGTTAGCACTTTTGTGC -CCAACAGCGTTAGCACTTCTAAGC -CCAACAGCGTTAGCACTTACTAGC -CCAACAGCGTTAGCACTTAGATGC -CCAACAGCGTTAGCACTTTGAAGG -CCAACAGCGTTAGCACTTCAATGG -CCAACAGCGTTAGCACTTATGAGG -CCAACAGCGTTAGCACTTAATGGG -CCAACAGCGTTAGCACTTTCCTGA -CCAACAGCGTTAGCACTTTAGCGA -CCAACAGCGTTAGCACTTCACAGA -CCAACAGCGTTAGCACTTGCAAGA -CCAACAGCGTTAGCACTTGGTTGA -CCAACAGCGTTAGCACTTTCCGAT -CCAACAGCGTTAGCACTTTGGCAT -CCAACAGCGTTAGCACTTCGAGAT -CCAACAGCGTTAGCACTTTACCAC -CCAACAGCGTTAGCACTTCAGAAC -CCAACAGCGTTAGCACTTGTCTAC -CCAACAGCGTTAGCACTTACGTAC -CCAACAGCGTTAGCACTTAGTGAC -CCAACAGCGTTAGCACTTCTGTAG -CCAACAGCGTTAGCACTTCCTAAG -CCAACAGCGTTAGCACTTGTTCAG -CCAACAGCGTTAGCACTTGCATAG -CCAACAGCGTTAGCACTTGACAAG -CCAACAGCGTTAGCACTTAAGCAG -CCAACAGCGTTAGCACTTCGTCAA -CCAACAGCGTTAGCACTTGCTGAA -CCAACAGCGTTAGCACTTAGTACG -CCAACAGCGTTAGCACTTATCCGA -CCAACAGCGTTAGCACTTATGGGA -CCAACAGCGTTAGCACTTGTGCAA -CCAACAGCGTTAGCACTTGAGGAA -CCAACAGCGTTAGCACTTCAGGTA -CCAACAGCGTTAGCACTTGACTCT -CCAACAGCGTTAGCACTTAGTCCT -CCAACAGCGTTAGCACTTTAAGCC -CCAACAGCGTTAGCACTTATAGCC -CCAACAGCGTTAGCACTTTAACCG -CCAACAGCGTTAGCACTTATGCCA -CCAACAGCGTTAACACGAGGAAAC -CCAACAGCGTTAACACGAAACACC -CCAACAGCGTTAACACGAATCGAG -CCAACAGCGTTAACACGACTCCTT -CCAACAGCGTTAACACGACCTGTT -CCAACAGCGTTAACACGACGGTTT -CCAACAGCGTTAACACGAGTGGTT -CCAACAGCGTTAACACGAGCCTTT -CCAACAGCGTTAACACGAGGTCTT -CCAACAGCGTTAACACGAACGCTT -CCAACAGCGTTAACACGAAGCGTT -CCAACAGCGTTAACACGATTCGTC -CCAACAGCGTTAACACGATCTCTC -CCAACAGCGTTAACACGATGGATC -CCAACAGCGTTAACACGACACTTC -CCAACAGCGTTAACACGAGTACTC -CCAACAGCGTTAACACGAGATGTC -CCAACAGCGTTAACACGAACAGTC -CCAACAGCGTTAACACGATTGCTG -CCAACAGCGTTAACACGATCCATG -CCAACAGCGTTAACACGATGTGTG -CCAACAGCGTTAACACGACTAGTG -CCAACAGCGTTAACACGACATCTG -CCAACAGCGTTAACACGAGAGTTG -CCAACAGCGTTAACACGAAGACTG -CCAACAGCGTTAACACGATCGGTA -CCAACAGCGTTAACACGATGCCTA -CCAACAGCGTTAACACGACCACTA -CCAACAGCGTTAACACGAGGAGTA -CCAACAGCGTTAACACGATCGTCT -CCAACAGCGTTAACACGATGCACT -CCAACAGCGTTAACACGACTGACT -CCAACAGCGTTAACACGACAACCT -CCAACAGCGTTAACACGAGCTACT -CCAACAGCGTTAACACGAGGATCT -CCAACAGCGTTAACACGAAAGGCT -CCAACAGCGTTAACACGATCAACC -CCAACAGCGTTAACACGATGTTCC -CCAACAGCGTTAACACGAATTCCC -CCAACAGCGTTAACACGATTCTCG -CCAACAGCGTTAACACGATAGACG -CCAACAGCGTTAACACGAGTAACG -CCAACAGCGTTAACACGAACTTCG -CCAACAGCGTTAACACGATACGCA -CCAACAGCGTTAACACGACTTGCA -CCAACAGCGTTAACACGACGAACA -CCAACAGCGTTAACACGACAGTCA -CCAACAGCGTTAACACGAGATCCA -CCAACAGCGTTAACACGAACGACA -CCAACAGCGTTAACACGAAGCTCA -CCAACAGCGTTAACACGATCACGT -CCAACAGCGTTAACACGACGTAGT -CCAACAGCGTTAACACGAGTCAGT -CCAACAGCGTTAACACGAGAAGGT -CCAACAGCGTTAACACGAAACCGT -CCAACAGCGTTAACACGATTGTGC -CCAACAGCGTTAACACGACTAAGC -CCAACAGCGTTAACACGAACTAGC -CCAACAGCGTTAACACGAAGATGC -CCAACAGCGTTAACACGATGAAGG -CCAACAGCGTTAACACGACAATGG -CCAACAGCGTTAACACGAATGAGG -CCAACAGCGTTAACACGAAATGGG -CCAACAGCGTTAACACGATCCTGA -CCAACAGCGTTAACACGATAGCGA -CCAACAGCGTTAACACGACACAGA -CCAACAGCGTTAACACGAGCAAGA -CCAACAGCGTTAACACGAGGTTGA -CCAACAGCGTTAACACGATCCGAT -CCAACAGCGTTAACACGATGGCAT -CCAACAGCGTTAACACGACGAGAT -CCAACAGCGTTAACACGATACCAC -CCAACAGCGTTAACACGACAGAAC -CCAACAGCGTTAACACGAGTCTAC -CCAACAGCGTTAACACGAACGTAC -CCAACAGCGTTAACACGAAGTGAC -CCAACAGCGTTAACACGACTGTAG -CCAACAGCGTTAACACGACCTAAG -CCAACAGCGTTAACACGAGTTCAG -CCAACAGCGTTAACACGAGCATAG -CCAACAGCGTTAACACGAGACAAG -CCAACAGCGTTAACACGAAAGCAG -CCAACAGCGTTAACACGACGTCAA -CCAACAGCGTTAACACGAGCTGAA -CCAACAGCGTTAACACGAAGTACG -CCAACAGCGTTAACACGAATCCGA -CCAACAGCGTTAACACGAATGGGA -CCAACAGCGTTAACACGAGTGCAA -CCAACAGCGTTAACACGAGAGGAA -CCAACAGCGTTAACACGACAGGTA -CCAACAGCGTTAACACGAGACTCT -CCAACAGCGTTAACACGAAGTCCT -CCAACAGCGTTAACACGATAAGCC -CCAACAGCGTTAACACGAATAGCC -CCAACAGCGTTAACACGATAACCG -CCAACAGCGTTAACACGAATGCCA -CCAACAGCGTTATCACAGGGAAAC -CCAACAGCGTTATCACAGAACACC -CCAACAGCGTTATCACAGATCGAG -CCAACAGCGTTATCACAGCTCCTT -CCAACAGCGTTATCACAGCCTGTT -CCAACAGCGTTATCACAGCGGTTT -CCAACAGCGTTATCACAGGTGGTT -CCAACAGCGTTATCACAGGCCTTT -CCAACAGCGTTATCACAGGGTCTT -CCAACAGCGTTATCACAGACGCTT -CCAACAGCGTTATCACAGAGCGTT -CCAACAGCGTTATCACAGTTCGTC -CCAACAGCGTTATCACAGTCTCTC -CCAACAGCGTTATCACAGTGGATC -CCAACAGCGTTATCACAGCACTTC -CCAACAGCGTTATCACAGGTACTC -CCAACAGCGTTATCACAGGATGTC -CCAACAGCGTTATCACAGACAGTC -CCAACAGCGTTATCACAGTTGCTG -CCAACAGCGTTATCACAGTCCATG -CCAACAGCGTTATCACAGTGTGTG -CCAACAGCGTTATCACAGCTAGTG -CCAACAGCGTTATCACAGCATCTG -CCAACAGCGTTATCACAGGAGTTG -CCAACAGCGTTATCACAGAGACTG -CCAACAGCGTTATCACAGTCGGTA -CCAACAGCGTTATCACAGTGCCTA -CCAACAGCGTTATCACAGCCACTA -CCAACAGCGTTATCACAGGGAGTA -CCAACAGCGTTATCACAGTCGTCT -CCAACAGCGTTATCACAGTGCACT -CCAACAGCGTTATCACAGCTGACT -CCAACAGCGTTATCACAGCAACCT -CCAACAGCGTTATCACAGGCTACT -CCAACAGCGTTATCACAGGGATCT -CCAACAGCGTTATCACAGAAGGCT -CCAACAGCGTTATCACAGTCAACC -CCAACAGCGTTATCACAGTGTTCC -CCAACAGCGTTATCACAGATTCCC -CCAACAGCGTTATCACAGTTCTCG -CCAACAGCGTTATCACAGTAGACG -CCAACAGCGTTATCACAGGTAACG -CCAACAGCGTTATCACAGACTTCG -CCAACAGCGTTATCACAGTACGCA -CCAACAGCGTTATCACAGCTTGCA -CCAACAGCGTTATCACAGCGAACA -CCAACAGCGTTATCACAGCAGTCA -CCAACAGCGTTATCACAGGATCCA -CCAACAGCGTTATCACAGACGACA -CCAACAGCGTTATCACAGAGCTCA -CCAACAGCGTTATCACAGTCACGT -CCAACAGCGTTATCACAGCGTAGT -CCAACAGCGTTATCACAGGTCAGT -CCAACAGCGTTATCACAGGAAGGT -CCAACAGCGTTATCACAGAACCGT -CCAACAGCGTTATCACAGTTGTGC -CCAACAGCGTTATCACAGCTAAGC -CCAACAGCGTTATCACAGACTAGC -CCAACAGCGTTATCACAGAGATGC -CCAACAGCGTTATCACAGTGAAGG -CCAACAGCGTTATCACAGCAATGG -CCAACAGCGTTATCACAGATGAGG -CCAACAGCGTTATCACAGAATGGG -CCAACAGCGTTATCACAGTCCTGA -CCAACAGCGTTATCACAGTAGCGA -CCAACAGCGTTATCACAGCACAGA -CCAACAGCGTTATCACAGGCAAGA -CCAACAGCGTTATCACAGGGTTGA -CCAACAGCGTTATCACAGTCCGAT -CCAACAGCGTTATCACAGTGGCAT -CCAACAGCGTTATCACAGCGAGAT -CCAACAGCGTTATCACAGTACCAC -CCAACAGCGTTATCACAGCAGAAC -CCAACAGCGTTATCACAGGTCTAC -CCAACAGCGTTATCACAGACGTAC -CCAACAGCGTTATCACAGAGTGAC -CCAACAGCGTTATCACAGCTGTAG -CCAACAGCGTTATCACAGCCTAAG -CCAACAGCGTTATCACAGGTTCAG -CCAACAGCGTTATCACAGGCATAG -CCAACAGCGTTATCACAGGACAAG -CCAACAGCGTTATCACAGAAGCAG -CCAACAGCGTTATCACAGCGTCAA -CCAACAGCGTTATCACAGGCTGAA -CCAACAGCGTTATCACAGAGTACG -CCAACAGCGTTATCACAGATCCGA -CCAACAGCGTTATCACAGATGGGA -CCAACAGCGTTATCACAGGTGCAA -CCAACAGCGTTATCACAGGAGGAA -CCAACAGCGTTATCACAGCAGGTA -CCAACAGCGTTATCACAGGACTCT -CCAACAGCGTTATCACAGAGTCCT -CCAACAGCGTTATCACAGTAAGCC -CCAACAGCGTTATCACAGATAGCC -CCAACAGCGTTATCACAGTAACCG -CCAACAGCGTTATCACAGATGCCA -CCAACAGCGTTACCAGATGGAAAC -CCAACAGCGTTACCAGATAACACC -CCAACAGCGTTACCAGATATCGAG -CCAACAGCGTTACCAGATCTCCTT -CCAACAGCGTTACCAGATCCTGTT -CCAACAGCGTTACCAGATCGGTTT -CCAACAGCGTTACCAGATGTGGTT -CCAACAGCGTTACCAGATGCCTTT -CCAACAGCGTTACCAGATGGTCTT -CCAACAGCGTTACCAGATACGCTT -CCAACAGCGTTACCAGATAGCGTT -CCAACAGCGTTACCAGATTTCGTC -CCAACAGCGTTACCAGATTCTCTC -CCAACAGCGTTACCAGATTGGATC -CCAACAGCGTTACCAGATCACTTC -CCAACAGCGTTACCAGATGTACTC -CCAACAGCGTTACCAGATGATGTC -CCAACAGCGTTACCAGATACAGTC -CCAACAGCGTTACCAGATTTGCTG -CCAACAGCGTTACCAGATTCCATG -CCAACAGCGTTACCAGATTGTGTG -CCAACAGCGTTACCAGATCTAGTG -CCAACAGCGTTACCAGATCATCTG -CCAACAGCGTTACCAGATGAGTTG -CCAACAGCGTTACCAGATAGACTG -CCAACAGCGTTACCAGATTCGGTA -CCAACAGCGTTACCAGATTGCCTA -CCAACAGCGTTACCAGATCCACTA -CCAACAGCGTTACCAGATGGAGTA -CCAACAGCGTTACCAGATTCGTCT -CCAACAGCGTTACCAGATTGCACT -CCAACAGCGTTACCAGATCTGACT -CCAACAGCGTTACCAGATCAACCT -CCAACAGCGTTACCAGATGCTACT -CCAACAGCGTTACCAGATGGATCT -CCAACAGCGTTACCAGATAAGGCT -CCAACAGCGTTACCAGATTCAACC -CCAACAGCGTTACCAGATTGTTCC -CCAACAGCGTTACCAGATATTCCC -CCAACAGCGTTACCAGATTTCTCG -CCAACAGCGTTACCAGATTAGACG -CCAACAGCGTTACCAGATGTAACG -CCAACAGCGTTACCAGATACTTCG -CCAACAGCGTTACCAGATTACGCA -CCAACAGCGTTACCAGATCTTGCA -CCAACAGCGTTACCAGATCGAACA -CCAACAGCGTTACCAGATCAGTCA -CCAACAGCGTTACCAGATGATCCA -CCAACAGCGTTACCAGATACGACA -CCAACAGCGTTACCAGATAGCTCA -CCAACAGCGTTACCAGATTCACGT -CCAACAGCGTTACCAGATCGTAGT -CCAACAGCGTTACCAGATGTCAGT -CCAACAGCGTTACCAGATGAAGGT -CCAACAGCGTTACCAGATAACCGT -CCAACAGCGTTACCAGATTTGTGC -CCAACAGCGTTACCAGATCTAAGC -CCAACAGCGTTACCAGATACTAGC -CCAACAGCGTTACCAGATAGATGC -CCAACAGCGTTACCAGATTGAAGG -CCAACAGCGTTACCAGATCAATGG -CCAACAGCGTTACCAGATATGAGG -CCAACAGCGTTACCAGATAATGGG -CCAACAGCGTTACCAGATTCCTGA -CCAACAGCGTTACCAGATTAGCGA -CCAACAGCGTTACCAGATCACAGA -CCAACAGCGTTACCAGATGCAAGA -CCAACAGCGTTACCAGATGGTTGA -CCAACAGCGTTACCAGATTCCGAT -CCAACAGCGTTACCAGATTGGCAT -CCAACAGCGTTACCAGATCGAGAT -CCAACAGCGTTACCAGATTACCAC -CCAACAGCGTTACCAGATCAGAAC -CCAACAGCGTTACCAGATGTCTAC -CCAACAGCGTTACCAGATACGTAC -CCAACAGCGTTACCAGATAGTGAC -CCAACAGCGTTACCAGATCTGTAG -CCAACAGCGTTACCAGATCCTAAG -CCAACAGCGTTACCAGATGTTCAG -CCAACAGCGTTACCAGATGCATAG -CCAACAGCGTTACCAGATGACAAG -CCAACAGCGTTACCAGATAAGCAG -CCAACAGCGTTACCAGATCGTCAA -CCAACAGCGTTACCAGATGCTGAA -CCAACAGCGTTACCAGATAGTACG -CCAACAGCGTTACCAGATATCCGA -CCAACAGCGTTACCAGATATGGGA -CCAACAGCGTTACCAGATGTGCAA -CCAACAGCGTTACCAGATGAGGAA -CCAACAGCGTTACCAGATCAGGTA -CCAACAGCGTTACCAGATGACTCT -CCAACAGCGTTACCAGATAGTCCT -CCAACAGCGTTACCAGATTAAGCC -CCAACAGCGTTACCAGATATAGCC -CCAACAGCGTTACCAGATTAACCG -CCAACAGCGTTACCAGATATGCCA -CCAACAGCGTTAACAACGGGAAAC -CCAACAGCGTTAACAACGAACACC -CCAACAGCGTTAACAACGATCGAG -CCAACAGCGTTAACAACGCTCCTT -CCAACAGCGTTAACAACGCCTGTT -CCAACAGCGTTAACAACGCGGTTT -CCAACAGCGTTAACAACGGTGGTT -CCAACAGCGTTAACAACGGCCTTT -CCAACAGCGTTAACAACGGGTCTT -CCAACAGCGTTAACAACGACGCTT -CCAACAGCGTTAACAACGAGCGTT -CCAACAGCGTTAACAACGTTCGTC -CCAACAGCGTTAACAACGTCTCTC -CCAACAGCGTTAACAACGTGGATC -CCAACAGCGTTAACAACGCACTTC -CCAACAGCGTTAACAACGGTACTC -CCAACAGCGTTAACAACGGATGTC -CCAACAGCGTTAACAACGACAGTC -CCAACAGCGTTAACAACGTTGCTG -CCAACAGCGTTAACAACGTCCATG -CCAACAGCGTTAACAACGTGTGTG -CCAACAGCGTTAACAACGCTAGTG -CCAACAGCGTTAACAACGCATCTG -CCAACAGCGTTAACAACGGAGTTG -CCAACAGCGTTAACAACGAGACTG -CCAACAGCGTTAACAACGTCGGTA -CCAACAGCGTTAACAACGTGCCTA -CCAACAGCGTTAACAACGCCACTA -CCAACAGCGTTAACAACGGGAGTA -CCAACAGCGTTAACAACGTCGTCT -CCAACAGCGTTAACAACGTGCACT -CCAACAGCGTTAACAACGCTGACT -CCAACAGCGTTAACAACGCAACCT -CCAACAGCGTTAACAACGGCTACT -CCAACAGCGTTAACAACGGGATCT -CCAACAGCGTTAACAACGAAGGCT -CCAACAGCGTTAACAACGTCAACC -CCAACAGCGTTAACAACGTGTTCC -CCAACAGCGTTAACAACGATTCCC -CCAACAGCGTTAACAACGTTCTCG -CCAACAGCGTTAACAACGTAGACG -CCAACAGCGTTAACAACGGTAACG -CCAACAGCGTTAACAACGACTTCG -CCAACAGCGTTAACAACGTACGCA -CCAACAGCGTTAACAACGCTTGCA -CCAACAGCGTTAACAACGCGAACA -CCAACAGCGTTAACAACGCAGTCA -CCAACAGCGTTAACAACGGATCCA -CCAACAGCGTTAACAACGACGACA -CCAACAGCGTTAACAACGAGCTCA -CCAACAGCGTTAACAACGTCACGT -CCAACAGCGTTAACAACGCGTAGT -CCAACAGCGTTAACAACGGTCAGT -CCAACAGCGTTAACAACGGAAGGT -CCAACAGCGTTAACAACGAACCGT -CCAACAGCGTTAACAACGTTGTGC -CCAACAGCGTTAACAACGCTAAGC -CCAACAGCGTTAACAACGACTAGC -CCAACAGCGTTAACAACGAGATGC -CCAACAGCGTTAACAACGTGAAGG -CCAACAGCGTTAACAACGCAATGG -CCAACAGCGTTAACAACGATGAGG -CCAACAGCGTTAACAACGAATGGG -CCAACAGCGTTAACAACGTCCTGA -CCAACAGCGTTAACAACGTAGCGA -CCAACAGCGTTAACAACGCACAGA -CCAACAGCGTTAACAACGGCAAGA -CCAACAGCGTTAACAACGGGTTGA -CCAACAGCGTTAACAACGTCCGAT -CCAACAGCGTTAACAACGTGGCAT -CCAACAGCGTTAACAACGCGAGAT -CCAACAGCGTTAACAACGTACCAC -CCAACAGCGTTAACAACGCAGAAC -CCAACAGCGTTAACAACGGTCTAC -CCAACAGCGTTAACAACGACGTAC -CCAACAGCGTTAACAACGAGTGAC -CCAACAGCGTTAACAACGCTGTAG -CCAACAGCGTTAACAACGCCTAAG -CCAACAGCGTTAACAACGGTTCAG -CCAACAGCGTTAACAACGGCATAG -CCAACAGCGTTAACAACGGACAAG -CCAACAGCGTTAACAACGAAGCAG -CCAACAGCGTTAACAACGCGTCAA -CCAACAGCGTTAACAACGGCTGAA -CCAACAGCGTTAACAACGAGTACG -CCAACAGCGTTAACAACGATCCGA -CCAACAGCGTTAACAACGATGGGA -CCAACAGCGTTAACAACGGTGCAA -CCAACAGCGTTAACAACGGAGGAA -CCAACAGCGTTAACAACGCAGGTA -CCAACAGCGTTAACAACGGACTCT -CCAACAGCGTTAACAACGAGTCCT -CCAACAGCGTTAACAACGTAAGCC -CCAACAGCGTTAACAACGATAGCC -CCAACAGCGTTAACAACGTAACCG -CCAACAGCGTTAACAACGATGCCA -CCAACAGCGTTATCAAGCGGAAAC -CCAACAGCGTTATCAAGCAACACC -CCAACAGCGTTATCAAGCATCGAG -CCAACAGCGTTATCAAGCCTCCTT -CCAACAGCGTTATCAAGCCCTGTT -CCAACAGCGTTATCAAGCCGGTTT -CCAACAGCGTTATCAAGCGTGGTT -CCAACAGCGTTATCAAGCGCCTTT -CCAACAGCGTTATCAAGCGGTCTT -CCAACAGCGTTATCAAGCACGCTT -CCAACAGCGTTATCAAGCAGCGTT -CCAACAGCGTTATCAAGCTTCGTC -CCAACAGCGTTATCAAGCTCTCTC -CCAACAGCGTTATCAAGCTGGATC -CCAACAGCGTTATCAAGCCACTTC -CCAACAGCGTTATCAAGCGTACTC -CCAACAGCGTTATCAAGCGATGTC -CCAACAGCGTTATCAAGCACAGTC -CCAACAGCGTTATCAAGCTTGCTG -CCAACAGCGTTATCAAGCTCCATG -CCAACAGCGTTATCAAGCTGTGTG -CCAACAGCGTTATCAAGCCTAGTG -CCAACAGCGTTATCAAGCCATCTG -CCAACAGCGTTATCAAGCGAGTTG -CCAACAGCGTTATCAAGCAGACTG -CCAACAGCGTTATCAAGCTCGGTA -CCAACAGCGTTATCAAGCTGCCTA -CCAACAGCGTTATCAAGCCCACTA -CCAACAGCGTTATCAAGCGGAGTA -CCAACAGCGTTATCAAGCTCGTCT -CCAACAGCGTTATCAAGCTGCACT -CCAACAGCGTTATCAAGCCTGACT -CCAACAGCGTTATCAAGCCAACCT -CCAACAGCGTTATCAAGCGCTACT -CCAACAGCGTTATCAAGCGGATCT -CCAACAGCGTTATCAAGCAAGGCT -CCAACAGCGTTATCAAGCTCAACC -CCAACAGCGTTATCAAGCTGTTCC -CCAACAGCGTTATCAAGCATTCCC -CCAACAGCGTTATCAAGCTTCTCG -CCAACAGCGTTATCAAGCTAGACG -CCAACAGCGTTATCAAGCGTAACG -CCAACAGCGTTATCAAGCACTTCG -CCAACAGCGTTATCAAGCTACGCA -CCAACAGCGTTATCAAGCCTTGCA -CCAACAGCGTTATCAAGCCGAACA -CCAACAGCGTTATCAAGCCAGTCA -CCAACAGCGTTATCAAGCGATCCA -CCAACAGCGTTATCAAGCACGACA -CCAACAGCGTTATCAAGCAGCTCA -CCAACAGCGTTATCAAGCTCACGT -CCAACAGCGTTATCAAGCCGTAGT -CCAACAGCGTTATCAAGCGTCAGT -CCAACAGCGTTATCAAGCGAAGGT -CCAACAGCGTTATCAAGCAACCGT -CCAACAGCGTTATCAAGCTTGTGC -CCAACAGCGTTATCAAGCCTAAGC -CCAACAGCGTTATCAAGCACTAGC -CCAACAGCGTTATCAAGCAGATGC -CCAACAGCGTTATCAAGCTGAAGG -CCAACAGCGTTATCAAGCCAATGG -CCAACAGCGTTATCAAGCATGAGG -CCAACAGCGTTATCAAGCAATGGG -CCAACAGCGTTATCAAGCTCCTGA -CCAACAGCGTTATCAAGCTAGCGA -CCAACAGCGTTATCAAGCCACAGA -CCAACAGCGTTATCAAGCGCAAGA -CCAACAGCGTTATCAAGCGGTTGA -CCAACAGCGTTATCAAGCTCCGAT -CCAACAGCGTTATCAAGCTGGCAT -CCAACAGCGTTATCAAGCCGAGAT -CCAACAGCGTTATCAAGCTACCAC -CCAACAGCGTTATCAAGCCAGAAC -CCAACAGCGTTATCAAGCGTCTAC -CCAACAGCGTTATCAAGCACGTAC -CCAACAGCGTTATCAAGCAGTGAC -CCAACAGCGTTATCAAGCCTGTAG -CCAACAGCGTTATCAAGCCCTAAG -CCAACAGCGTTATCAAGCGTTCAG -CCAACAGCGTTATCAAGCGCATAG -CCAACAGCGTTATCAAGCGACAAG -CCAACAGCGTTATCAAGCAAGCAG -CCAACAGCGTTATCAAGCCGTCAA -CCAACAGCGTTATCAAGCGCTGAA -CCAACAGCGTTATCAAGCAGTACG -CCAACAGCGTTATCAAGCATCCGA -CCAACAGCGTTATCAAGCATGGGA -CCAACAGCGTTATCAAGCGTGCAA -CCAACAGCGTTATCAAGCGAGGAA -CCAACAGCGTTATCAAGCCAGGTA -CCAACAGCGTTATCAAGCGACTCT -CCAACAGCGTTATCAAGCAGTCCT -CCAACAGCGTTATCAAGCTAAGCC -CCAACAGCGTTATCAAGCATAGCC -CCAACAGCGTTATCAAGCTAACCG -CCAACAGCGTTATCAAGCATGCCA -CCAACAGCGTTACGTTCAGGAAAC -CCAACAGCGTTACGTTCAAACACC -CCAACAGCGTTACGTTCAATCGAG -CCAACAGCGTTACGTTCACTCCTT -CCAACAGCGTTACGTTCACCTGTT -CCAACAGCGTTACGTTCACGGTTT -CCAACAGCGTTACGTTCAGTGGTT -CCAACAGCGTTACGTTCAGCCTTT -CCAACAGCGTTACGTTCAGGTCTT -CCAACAGCGTTACGTTCAACGCTT -CCAACAGCGTTACGTTCAAGCGTT -CCAACAGCGTTACGTTCATTCGTC -CCAACAGCGTTACGTTCATCTCTC -CCAACAGCGTTACGTTCATGGATC -CCAACAGCGTTACGTTCACACTTC -CCAACAGCGTTACGTTCAGTACTC -CCAACAGCGTTACGTTCAGATGTC -CCAACAGCGTTACGTTCAACAGTC -CCAACAGCGTTACGTTCATTGCTG -CCAACAGCGTTACGTTCATCCATG -CCAACAGCGTTACGTTCATGTGTG -CCAACAGCGTTACGTTCACTAGTG -CCAACAGCGTTACGTTCACATCTG -CCAACAGCGTTACGTTCAGAGTTG -CCAACAGCGTTACGTTCAAGACTG -CCAACAGCGTTACGTTCATCGGTA -CCAACAGCGTTACGTTCATGCCTA -CCAACAGCGTTACGTTCACCACTA -CCAACAGCGTTACGTTCAGGAGTA -CCAACAGCGTTACGTTCATCGTCT -CCAACAGCGTTACGTTCATGCACT -CCAACAGCGTTACGTTCACTGACT -CCAACAGCGTTACGTTCACAACCT -CCAACAGCGTTACGTTCAGCTACT -CCAACAGCGTTACGTTCAGGATCT -CCAACAGCGTTACGTTCAAAGGCT -CCAACAGCGTTACGTTCATCAACC -CCAACAGCGTTACGTTCATGTTCC -CCAACAGCGTTACGTTCAATTCCC -CCAACAGCGTTACGTTCATTCTCG -CCAACAGCGTTACGTTCATAGACG -CCAACAGCGTTACGTTCAGTAACG -CCAACAGCGTTACGTTCAACTTCG -CCAACAGCGTTACGTTCATACGCA -CCAACAGCGTTACGTTCACTTGCA -CCAACAGCGTTACGTTCACGAACA -CCAACAGCGTTACGTTCACAGTCA -CCAACAGCGTTACGTTCAGATCCA -CCAACAGCGTTACGTTCAACGACA -CCAACAGCGTTACGTTCAAGCTCA -CCAACAGCGTTACGTTCATCACGT -CCAACAGCGTTACGTTCACGTAGT -CCAACAGCGTTACGTTCAGTCAGT -CCAACAGCGTTACGTTCAGAAGGT -CCAACAGCGTTACGTTCAAACCGT -CCAACAGCGTTACGTTCATTGTGC -CCAACAGCGTTACGTTCACTAAGC -CCAACAGCGTTACGTTCAACTAGC -CCAACAGCGTTACGTTCAAGATGC -CCAACAGCGTTACGTTCATGAAGG -CCAACAGCGTTACGTTCACAATGG -CCAACAGCGTTACGTTCAATGAGG -CCAACAGCGTTACGTTCAAATGGG -CCAACAGCGTTACGTTCATCCTGA -CCAACAGCGTTACGTTCATAGCGA -CCAACAGCGTTACGTTCACACAGA -CCAACAGCGTTACGTTCAGCAAGA -CCAACAGCGTTACGTTCAGGTTGA -CCAACAGCGTTACGTTCATCCGAT -CCAACAGCGTTACGTTCATGGCAT -CCAACAGCGTTACGTTCACGAGAT -CCAACAGCGTTACGTTCATACCAC -CCAACAGCGTTACGTTCACAGAAC -CCAACAGCGTTACGTTCAGTCTAC -CCAACAGCGTTACGTTCAACGTAC -CCAACAGCGTTACGTTCAAGTGAC -CCAACAGCGTTACGTTCACTGTAG -CCAACAGCGTTACGTTCACCTAAG -CCAACAGCGTTACGTTCAGTTCAG -CCAACAGCGTTACGTTCAGCATAG -CCAACAGCGTTACGTTCAGACAAG -CCAACAGCGTTACGTTCAAAGCAG -CCAACAGCGTTACGTTCACGTCAA -CCAACAGCGTTACGTTCAGCTGAA -CCAACAGCGTTACGTTCAAGTACG -CCAACAGCGTTACGTTCAATCCGA -CCAACAGCGTTACGTTCAATGGGA -CCAACAGCGTTACGTTCAGTGCAA -CCAACAGCGTTACGTTCAGAGGAA -CCAACAGCGTTACGTTCACAGGTA -CCAACAGCGTTACGTTCAGACTCT -CCAACAGCGTTACGTTCAAGTCCT -CCAACAGCGTTACGTTCATAAGCC -CCAACAGCGTTACGTTCAATAGCC -CCAACAGCGTTACGTTCATAACCG -CCAACAGCGTTACGTTCAATGCCA -CCAACAGCGTTAAGTCGTGGAAAC -CCAACAGCGTTAAGTCGTAACACC -CCAACAGCGTTAAGTCGTATCGAG -CCAACAGCGTTAAGTCGTCTCCTT -CCAACAGCGTTAAGTCGTCCTGTT -CCAACAGCGTTAAGTCGTCGGTTT -CCAACAGCGTTAAGTCGTGTGGTT -CCAACAGCGTTAAGTCGTGCCTTT -CCAACAGCGTTAAGTCGTGGTCTT -CCAACAGCGTTAAGTCGTACGCTT -CCAACAGCGTTAAGTCGTAGCGTT -CCAACAGCGTTAAGTCGTTTCGTC -CCAACAGCGTTAAGTCGTTCTCTC -CCAACAGCGTTAAGTCGTTGGATC -CCAACAGCGTTAAGTCGTCACTTC -CCAACAGCGTTAAGTCGTGTACTC -CCAACAGCGTTAAGTCGTGATGTC -CCAACAGCGTTAAGTCGTACAGTC -CCAACAGCGTTAAGTCGTTTGCTG -CCAACAGCGTTAAGTCGTTCCATG -CCAACAGCGTTAAGTCGTTGTGTG -CCAACAGCGTTAAGTCGTCTAGTG -CCAACAGCGTTAAGTCGTCATCTG -CCAACAGCGTTAAGTCGTGAGTTG -CCAACAGCGTTAAGTCGTAGACTG -CCAACAGCGTTAAGTCGTTCGGTA -CCAACAGCGTTAAGTCGTTGCCTA -CCAACAGCGTTAAGTCGTCCACTA -CCAACAGCGTTAAGTCGTGGAGTA -CCAACAGCGTTAAGTCGTTCGTCT -CCAACAGCGTTAAGTCGTTGCACT -CCAACAGCGTTAAGTCGTCTGACT -CCAACAGCGTTAAGTCGTCAACCT -CCAACAGCGTTAAGTCGTGCTACT -CCAACAGCGTTAAGTCGTGGATCT -CCAACAGCGTTAAGTCGTAAGGCT -CCAACAGCGTTAAGTCGTTCAACC -CCAACAGCGTTAAGTCGTTGTTCC -CCAACAGCGTTAAGTCGTATTCCC -CCAACAGCGTTAAGTCGTTTCTCG -CCAACAGCGTTAAGTCGTTAGACG -CCAACAGCGTTAAGTCGTGTAACG -CCAACAGCGTTAAGTCGTACTTCG -CCAACAGCGTTAAGTCGTTACGCA -CCAACAGCGTTAAGTCGTCTTGCA -CCAACAGCGTTAAGTCGTCGAACA -CCAACAGCGTTAAGTCGTCAGTCA -CCAACAGCGTTAAGTCGTGATCCA -CCAACAGCGTTAAGTCGTACGACA -CCAACAGCGTTAAGTCGTAGCTCA -CCAACAGCGTTAAGTCGTTCACGT -CCAACAGCGTTAAGTCGTCGTAGT -CCAACAGCGTTAAGTCGTGTCAGT -CCAACAGCGTTAAGTCGTGAAGGT -CCAACAGCGTTAAGTCGTAACCGT -CCAACAGCGTTAAGTCGTTTGTGC -CCAACAGCGTTAAGTCGTCTAAGC -CCAACAGCGTTAAGTCGTACTAGC -CCAACAGCGTTAAGTCGTAGATGC -CCAACAGCGTTAAGTCGTTGAAGG -CCAACAGCGTTAAGTCGTCAATGG -CCAACAGCGTTAAGTCGTATGAGG -CCAACAGCGTTAAGTCGTAATGGG -CCAACAGCGTTAAGTCGTTCCTGA -CCAACAGCGTTAAGTCGTTAGCGA -CCAACAGCGTTAAGTCGTCACAGA -CCAACAGCGTTAAGTCGTGCAAGA -CCAACAGCGTTAAGTCGTGGTTGA -CCAACAGCGTTAAGTCGTTCCGAT -CCAACAGCGTTAAGTCGTTGGCAT -CCAACAGCGTTAAGTCGTCGAGAT -CCAACAGCGTTAAGTCGTTACCAC -CCAACAGCGTTAAGTCGTCAGAAC -CCAACAGCGTTAAGTCGTGTCTAC -CCAACAGCGTTAAGTCGTACGTAC -CCAACAGCGTTAAGTCGTAGTGAC -CCAACAGCGTTAAGTCGTCTGTAG -CCAACAGCGTTAAGTCGTCCTAAG -CCAACAGCGTTAAGTCGTGTTCAG -CCAACAGCGTTAAGTCGTGCATAG -CCAACAGCGTTAAGTCGTGACAAG -CCAACAGCGTTAAGTCGTAAGCAG -CCAACAGCGTTAAGTCGTCGTCAA -CCAACAGCGTTAAGTCGTGCTGAA -CCAACAGCGTTAAGTCGTAGTACG -CCAACAGCGTTAAGTCGTATCCGA -CCAACAGCGTTAAGTCGTATGGGA -CCAACAGCGTTAAGTCGTGTGCAA -CCAACAGCGTTAAGTCGTGAGGAA -CCAACAGCGTTAAGTCGTCAGGTA -CCAACAGCGTTAAGTCGTGACTCT -CCAACAGCGTTAAGTCGTAGTCCT -CCAACAGCGTTAAGTCGTTAAGCC -CCAACAGCGTTAAGTCGTATAGCC -CCAACAGCGTTAAGTCGTTAACCG -CCAACAGCGTTAAGTCGTATGCCA -CCAACAGCGTTAAGTGTCGGAAAC -CCAACAGCGTTAAGTGTCAACACC -CCAACAGCGTTAAGTGTCATCGAG -CCAACAGCGTTAAGTGTCCTCCTT -CCAACAGCGTTAAGTGTCCCTGTT -CCAACAGCGTTAAGTGTCCGGTTT -CCAACAGCGTTAAGTGTCGTGGTT -CCAACAGCGTTAAGTGTCGCCTTT -CCAACAGCGTTAAGTGTCGGTCTT -CCAACAGCGTTAAGTGTCACGCTT -CCAACAGCGTTAAGTGTCAGCGTT -CCAACAGCGTTAAGTGTCTTCGTC -CCAACAGCGTTAAGTGTCTCTCTC -CCAACAGCGTTAAGTGTCTGGATC -CCAACAGCGTTAAGTGTCCACTTC -CCAACAGCGTTAAGTGTCGTACTC -CCAACAGCGTTAAGTGTCGATGTC -CCAACAGCGTTAAGTGTCACAGTC -CCAACAGCGTTAAGTGTCTTGCTG -CCAACAGCGTTAAGTGTCTCCATG -CCAACAGCGTTAAGTGTCTGTGTG -CCAACAGCGTTAAGTGTCCTAGTG -CCAACAGCGTTAAGTGTCCATCTG -CCAACAGCGTTAAGTGTCGAGTTG -CCAACAGCGTTAAGTGTCAGACTG -CCAACAGCGTTAAGTGTCTCGGTA -CCAACAGCGTTAAGTGTCTGCCTA -CCAACAGCGTTAAGTGTCCCACTA -CCAACAGCGTTAAGTGTCGGAGTA -CCAACAGCGTTAAGTGTCTCGTCT -CCAACAGCGTTAAGTGTCTGCACT -CCAACAGCGTTAAGTGTCCTGACT -CCAACAGCGTTAAGTGTCCAACCT -CCAACAGCGTTAAGTGTCGCTACT -CCAACAGCGTTAAGTGTCGGATCT -CCAACAGCGTTAAGTGTCAAGGCT -CCAACAGCGTTAAGTGTCTCAACC -CCAACAGCGTTAAGTGTCTGTTCC -CCAACAGCGTTAAGTGTCATTCCC -CCAACAGCGTTAAGTGTCTTCTCG -CCAACAGCGTTAAGTGTCTAGACG -CCAACAGCGTTAAGTGTCGTAACG -CCAACAGCGTTAAGTGTCACTTCG -CCAACAGCGTTAAGTGTCTACGCA -CCAACAGCGTTAAGTGTCCTTGCA -CCAACAGCGTTAAGTGTCCGAACA -CCAACAGCGTTAAGTGTCCAGTCA -CCAACAGCGTTAAGTGTCGATCCA -CCAACAGCGTTAAGTGTCACGACA -CCAACAGCGTTAAGTGTCAGCTCA -CCAACAGCGTTAAGTGTCTCACGT -CCAACAGCGTTAAGTGTCCGTAGT -CCAACAGCGTTAAGTGTCGTCAGT -CCAACAGCGTTAAGTGTCGAAGGT -CCAACAGCGTTAAGTGTCAACCGT -CCAACAGCGTTAAGTGTCTTGTGC -CCAACAGCGTTAAGTGTCCTAAGC -CCAACAGCGTTAAGTGTCACTAGC -CCAACAGCGTTAAGTGTCAGATGC -CCAACAGCGTTAAGTGTCTGAAGG -CCAACAGCGTTAAGTGTCCAATGG -CCAACAGCGTTAAGTGTCATGAGG -CCAACAGCGTTAAGTGTCAATGGG -CCAACAGCGTTAAGTGTCTCCTGA -CCAACAGCGTTAAGTGTCTAGCGA -CCAACAGCGTTAAGTGTCCACAGA -CCAACAGCGTTAAGTGTCGCAAGA -CCAACAGCGTTAAGTGTCGGTTGA -CCAACAGCGTTAAGTGTCTCCGAT -CCAACAGCGTTAAGTGTCTGGCAT -CCAACAGCGTTAAGTGTCCGAGAT -CCAACAGCGTTAAGTGTCTACCAC -CCAACAGCGTTAAGTGTCCAGAAC -CCAACAGCGTTAAGTGTCGTCTAC -CCAACAGCGTTAAGTGTCACGTAC -CCAACAGCGTTAAGTGTCAGTGAC -CCAACAGCGTTAAGTGTCCTGTAG -CCAACAGCGTTAAGTGTCCCTAAG -CCAACAGCGTTAAGTGTCGTTCAG -CCAACAGCGTTAAGTGTCGCATAG -CCAACAGCGTTAAGTGTCGACAAG -CCAACAGCGTTAAGTGTCAAGCAG -CCAACAGCGTTAAGTGTCCGTCAA -CCAACAGCGTTAAGTGTCGCTGAA -CCAACAGCGTTAAGTGTCAGTACG -CCAACAGCGTTAAGTGTCATCCGA -CCAACAGCGTTAAGTGTCATGGGA -CCAACAGCGTTAAGTGTCGTGCAA -CCAACAGCGTTAAGTGTCGAGGAA -CCAACAGCGTTAAGTGTCCAGGTA -CCAACAGCGTTAAGTGTCGACTCT -CCAACAGCGTTAAGTGTCAGTCCT -CCAACAGCGTTAAGTGTCTAAGCC -CCAACAGCGTTAAGTGTCATAGCC -CCAACAGCGTTAAGTGTCTAACCG -CCAACAGCGTTAAGTGTCATGCCA -CCAACAGCGTTAGGTGAAGGAAAC -CCAACAGCGTTAGGTGAAAACACC -CCAACAGCGTTAGGTGAAATCGAG -CCAACAGCGTTAGGTGAACTCCTT -CCAACAGCGTTAGGTGAACCTGTT -CCAACAGCGTTAGGTGAACGGTTT -CCAACAGCGTTAGGTGAAGTGGTT -CCAACAGCGTTAGGTGAAGCCTTT -CCAACAGCGTTAGGTGAAGGTCTT -CCAACAGCGTTAGGTGAAACGCTT -CCAACAGCGTTAGGTGAAAGCGTT -CCAACAGCGTTAGGTGAATTCGTC -CCAACAGCGTTAGGTGAATCTCTC -CCAACAGCGTTAGGTGAATGGATC -CCAACAGCGTTAGGTGAACACTTC -CCAACAGCGTTAGGTGAAGTACTC -CCAACAGCGTTAGGTGAAGATGTC -CCAACAGCGTTAGGTGAAACAGTC -CCAACAGCGTTAGGTGAATTGCTG -CCAACAGCGTTAGGTGAATCCATG -CCAACAGCGTTAGGTGAATGTGTG -CCAACAGCGTTAGGTGAACTAGTG -CCAACAGCGTTAGGTGAACATCTG -CCAACAGCGTTAGGTGAAGAGTTG -CCAACAGCGTTAGGTGAAAGACTG -CCAACAGCGTTAGGTGAATCGGTA -CCAACAGCGTTAGGTGAATGCCTA -CCAACAGCGTTAGGTGAACCACTA -CCAACAGCGTTAGGTGAAGGAGTA -CCAACAGCGTTAGGTGAATCGTCT -CCAACAGCGTTAGGTGAATGCACT -CCAACAGCGTTAGGTGAACTGACT -CCAACAGCGTTAGGTGAACAACCT -CCAACAGCGTTAGGTGAAGCTACT -CCAACAGCGTTAGGTGAAGGATCT -CCAACAGCGTTAGGTGAAAAGGCT -CCAACAGCGTTAGGTGAATCAACC -CCAACAGCGTTAGGTGAATGTTCC -CCAACAGCGTTAGGTGAAATTCCC -CCAACAGCGTTAGGTGAATTCTCG -CCAACAGCGTTAGGTGAATAGACG -CCAACAGCGTTAGGTGAAGTAACG -CCAACAGCGTTAGGTGAAACTTCG -CCAACAGCGTTAGGTGAATACGCA -CCAACAGCGTTAGGTGAACTTGCA -CCAACAGCGTTAGGTGAACGAACA -CCAACAGCGTTAGGTGAACAGTCA -CCAACAGCGTTAGGTGAAGATCCA -CCAACAGCGTTAGGTGAAACGACA -CCAACAGCGTTAGGTGAAAGCTCA -CCAACAGCGTTAGGTGAATCACGT -CCAACAGCGTTAGGTGAACGTAGT -CCAACAGCGTTAGGTGAAGTCAGT -CCAACAGCGTTAGGTGAAGAAGGT -CCAACAGCGTTAGGTGAAAACCGT -CCAACAGCGTTAGGTGAATTGTGC -CCAACAGCGTTAGGTGAACTAAGC -CCAACAGCGTTAGGTGAAACTAGC -CCAACAGCGTTAGGTGAAAGATGC -CCAACAGCGTTAGGTGAATGAAGG -CCAACAGCGTTAGGTGAACAATGG -CCAACAGCGTTAGGTGAAATGAGG -CCAACAGCGTTAGGTGAAAATGGG -CCAACAGCGTTAGGTGAATCCTGA -CCAACAGCGTTAGGTGAATAGCGA -CCAACAGCGTTAGGTGAACACAGA -CCAACAGCGTTAGGTGAAGCAAGA -CCAACAGCGTTAGGTGAAGGTTGA -CCAACAGCGTTAGGTGAATCCGAT -CCAACAGCGTTAGGTGAATGGCAT -CCAACAGCGTTAGGTGAACGAGAT -CCAACAGCGTTAGGTGAATACCAC -CCAACAGCGTTAGGTGAACAGAAC -CCAACAGCGTTAGGTGAAGTCTAC -CCAACAGCGTTAGGTGAAACGTAC -CCAACAGCGTTAGGTGAAAGTGAC -CCAACAGCGTTAGGTGAACTGTAG -CCAACAGCGTTAGGTGAACCTAAG -CCAACAGCGTTAGGTGAAGTTCAG -CCAACAGCGTTAGGTGAAGCATAG -CCAACAGCGTTAGGTGAAGACAAG -CCAACAGCGTTAGGTGAAAAGCAG -CCAACAGCGTTAGGTGAACGTCAA -CCAACAGCGTTAGGTGAAGCTGAA -CCAACAGCGTTAGGTGAAAGTACG -CCAACAGCGTTAGGTGAAATCCGA -CCAACAGCGTTAGGTGAAATGGGA -CCAACAGCGTTAGGTGAAGTGCAA -CCAACAGCGTTAGGTGAAGAGGAA -CCAACAGCGTTAGGTGAACAGGTA -CCAACAGCGTTAGGTGAAGACTCT -CCAACAGCGTTAGGTGAAAGTCCT -CCAACAGCGTTAGGTGAATAAGCC -CCAACAGCGTTAGGTGAAATAGCC -CCAACAGCGTTAGGTGAATAACCG -CCAACAGCGTTAGGTGAAATGCCA -CCAACAGCGTTACGTAACGGAAAC -CCAACAGCGTTACGTAACAACACC -CCAACAGCGTTACGTAACATCGAG -CCAACAGCGTTACGTAACCTCCTT -CCAACAGCGTTACGTAACCCTGTT -CCAACAGCGTTACGTAACCGGTTT -CCAACAGCGTTACGTAACGTGGTT -CCAACAGCGTTACGTAACGCCTTT -CCAACAGCGTTACGTAACGGTCTT -CCAACAGCGTTACGTAACACGCTT -CCAACAGCGTTACGTAACAGCGTT -CCAACAGCGTTACGTAACTTCGTC -CCAACAGCGTTACGTAACTCTCTC -CCAACAGCGTTACGTAACTGGATC -CCAACAGCGTTACGTAACCACTTC -CCAACAGCGTTACGTAACGTACTC -CCAACAGCGTTACGTAACGATGTC -CCAACAGCGTTACGTAACACAGTC -CCAACAGCGTTACGTAACTTGCTG -CCAACAGCGTTACGTAACTCCATG -CCAACAGCGTTACGTAACTGTGTG -CCAACAGCGTTACGTAACCTAGTG -CCAACAGCGTTACGTAACCATCTG -CCAACAGCGTTACGTAACGAGTTG -CCAACAGCGTTACGTAACAGACTG -CCAACAGCGTTACGTAACTCGGTA -CCAACAGCGTTACGTAACTGCCTA -CCAACAGCGTTACGTAACCCACTA -CCAACAGCGTTACGTAACGGAGTA -CCAACAGCGTTACGTAACTCGTCT -CCAACAGCGTTACGTAACTGCACT -CCAACAGCGTTACGTAACCTGACT -CCAACAGCGTTACGTAACCAACCT -CCAACAGCGTTACGTAACGCTACT -CCAACAGCGTTACGTAACGGATCT -CCAACAGCGTTACGTAACAAGGCT -CCAACAGCGTTACGTAACTCAACC -CCAACAGCGTTACGTAACTGTTCC -CCAACAGCGTTACGTAACATTCCC -CCAACAGCGTTACGTAACTTCTCG -CCAACAGCGTTACGTAACTAGACG -CCAACAGCGTTACGTAACGTAACG -CCAACAGCGTTACGTAACACTTCG -CCAACAGCGTTACGTAACTACGCA -CCAACAGCGTTACGTAACCTTGCA -CCAACAGCGTTACGTAACCGAACA -CCAACAGCGTTACGTAACCAGTCA -CCAACAGCGTTACGTAACGATCCA -CCAACAGCGTTACGTAACACGACA -CCAACAGCGTTACGTAACAGCTCA -CCAACAGCGTTACGTAACTCACGT -CCAACAGCGTTACGTAACCGTAGT -CCAACAGCGTTACGTAACGTCAGT -CCAACAGCGTTACGTAACGAAGGT -CCAACAGCGTTACGTAACAACCGT -CCAACAGCGTTACGTAACTTGTGC -CCAACAGCGTTACGTAACCTAAGC -CCAACAGCGTTACGTAACACTAGC -CCAACAGCGTTACGTAACAGATGC -CCAACAGCGTTACGTAACTGAAGG -CCAACAGCGTTACGTAACCAATGG -CCAACAGCGTTACGTAACATGAGG -CCAACAGCGTTACGTAACAATGGG -CCAACAGCGTTACGTAACTCCTGA -CCAACAGCGTTACGTAACTAGCGA -CCAACAGCGTTACGTAACCACAGA -CCAACAGCGTTACGTAACGCAAGA -CCAACAGCGTTACGTAACGGTTGA -CCAACAGCGTTACGTAACTCCGAT -CCAACAGCGTTACGTAACTGGCAT -CCAACAGCGTTACGTAACCGAGAT -CCAACAGCGTTACGTAACTACCAC -CCAACAGCGTTACGTAACCAGAAC -CCAACAGCGTTACGTAACGTCTAC -CCAACAGCGTTACGTAACACGTAC -CCAACAGCGTTACGTAACAGTGAC -CCAACAGCGTTACGTAACCTGTAG -CCAACAGCGTTACGTAACCCTAAG -CCAACAGCGTTACGTAACGTTCAG -CCAACAGCGTTACGTAACGCATAG -CCAACAGCGTTACGTAACGACAAG -CCAACAGCGTTACGTAACAAGCAG -CCAACAGCGTTACGTAACCGTCAA -CCAACAGCGTTACGTAACGCTGAA -CCAACAGCGTTACGTAACAGTACG -CCAACAGCGTTACGTAACATCCGA -CCAACAGCGTTACGTAACATGGGA -CCAACAGCGTTACGTAACGTGCAA -CCAACAGCGTTACGTAACGAGGAA -CCAACAGCGTTACGTAACCAGGTA -CCAACAGCGTTACGTAACGACTCT -CCAACAGCGTTACGTAACAGTCCT -CCAACAGCGTTACGTAACTAAGCC -CCAACAGCGTTACGTAACATAGCC -CCAACAGCGTTACGTAACTAACCG -CCAACAGCGTTACGTAACATGCCA -CCAACAGCGTTATGCTTGGGAAAC -CCAACAGCGTTATGCTTGAACACC -CCAACAGCGTTATGCTTGATCGAG -CCAACAGCGTTATGCTTGCTCCTT -CCAACAGCGTTATGCTTGCCTGTT -CCAACAGCGTTATGCTTGCGGTTT -CCAACAGCGTTATGCTTGGTGGTT -CCAACAGCGTTATGCTTGGCCTTT -CCAACAGCGTTATGCTTGGGTCTT -CCAACAGCGTTATGCTTGACGCTT -CCAACAGCGTTATGCTTGAGCGTT -CCAACAGCGTTATGCTTGTTCGTC -CCAACAGCGTTATGCTTGTCTCTC -CCAACAGCGTTATGCTTGTGGATC -CCAACAGCGTTATGCTTGCACTTC -CCAACAGCGTTATGCTTGGTACTC -CCAACAGCGTTATGCTTGGATGTC -CCAACAGCGTTATGCTTGACAGTC -CCAACAGCGTTATGCTTGTTGCTG -CCAACAGCGTTATGCTTGTCCATG -CCAACAGCGTTATGCTTGTGTGTG -CCAACAGCGTTATGCTTGCTAGTG -CCAACAGCGTTATGCTTGCATCTG -CCAACAGCGTTATGCTTGGAGTTG -CCAACAGCGTTATGCTTGAGACTG -CCAACAGCGTTATGCTTGTCGGTA -CCAACAGCGTTATGCTTGTGCCTA -CCAACAGCGTTATGCTTGCCACTA -CCAACAGCGTTATGCTTGGGAGTA -CCAACAGCGTTATGCTTGTCGTCT -CCAACAGCGTTATGCTTGTGCACT -CCAACAGCGTTATGCTTGCTGACT -CCAACAGCGTTATGCTTGCAACCT -CCAACAGCGTTATGCTTGGCTACT -CCAACAGCGTTATGCTTGGGATCT -CCAACAGCGTTATGCTTGAAGGCT -CCAACAGCGTTATGCTTGTCAACC -CCAACAGCGTTATGCTTGTGTTCC -CCAACAGCGTTATGCTTGATTCCC -CCAACAGCGTTATGCTTGTTCTCG -CCAACAGCGTTATGCTTGTAGACG -CCAACAGCGTTATGCTTGGTAACG -CCAACAGCGTTATGCTTGACTTCG -CCAACAGCGTTATGCTTGTACGCA -CCAACAGCGTTATGCTTGCTTGCA -CCAACAGCGTTATGCTTGCGAACA -CCAACAGCGTTATGCTTGCAGTCA -CCAACAGCGTTATGCTTGGATCCA -CCAACAGCGTTATGCTTGACGACA -CCAACAGCGTTATGCTTGAGCTCA -CCAACAGCGTTATGCTTGTCACGT -CCAACAGCGTTATGCTTGCGTAGT -CCAACAGCGTTATGCTTGGTCAGT -CCAACAGCGTTATGCTTGGAAGGT -CCAACAGCGTTATGCTTGAACCGT -CCAACAGCGTTATGCTTGTTGTGC -CCAACAGCGTTATGCTTGCTAAGC -CCAACAGCGTTATGCTTGACTAGC -CCAACAGCGTTATGCTTGAGATGC -CCAACAGCGTTATGCTTGTGAAGG -CCAACAGCGTTATGCTTGCAATGG -CCAACAGCGTTATGCTTGATGAGG -CCAACAGCGTTATGCTTGAATGGG -CCAACAGCGTTATGCTTGTCCTGA -CCAACAGCGTTATGCTTGTAGCGA -CCAACAGCGTTATGCTTGCACAGA -CCAACAGCGTTATGCTTGGCAAGA -CCAACAGCGTTATGCTTGGGTTGA -CCAACAGCGTTATGCTTGTCCGAT -CCAACAGCGTTATGCTTGTGGCAT -CCAACAGCGTTATGCTTGCGAGAT -CCAACAGCGTTATGCTTGTACCAC -CCAACAGCGTTATGCTTGCAGAAC -CCAACAGCGTTATGCTTGGTCTAC -CCAACAGCGTTATGCTTGACGTAC -CCAACAGCGTTATGCTTGAGTGAC -CCAACAGCGTTATGCTTGCTGTAG -CCAACAGCGTTATGCTTGCCTAAG -CCAACAGCGTTATGCTTGGTTCAG -CCAACAGCGTTATGCTTGGCATAG -CCAACAGCGTTATGCTTGGACAAG -CCAACAGCGTTATGCTTGAAGCAG -CCAACAGCGTTATGCTTGCGTCAA -CCAACAGCGTTATGCTTGGCTGAA -CCAACAGCGTTATGCTTGAGTACG -CCAACAGCGTTATGCTTGATCCGA -CCAACAGCGTTATGCTTGATGGGA -CCAACAGCGTTATGCTTGGTGCAA -CCAACAGCGTTATGCTTGGAGGAA -CCAACAGCGTTATGCTTGCAGGTA -CCAACAGCGTTATGCTTGGACTCT -CCAACAGCGTTATGCTTGAGTCCT -CCAACAGCGTTATGCTTGTAAGCC -CCAACAGCGTTATGCTTGATAGCC -CCAACAGCGTTATGCTTGTAACCG -CCAACAGCGTTATGCTTGATGCCA -CCAACAGCGTTAAGCCTAGGAAAC -CCAACAGCGTTAAGCCTAAACACC -CCAACAGCGTTAAGCCTAATCGAG -CCAACAGCGTTAAGCCTACTCCTT -CCAACAGCGTTAAGCCTACCTGTT -CCAACAGCGTTAAGCCTACGGTTT -CCAACAGCGTTAAGCCTAGTGGTT -CCAACAGCGTTAAGCCTAGCCTTT -CCAACAGCGTTAAGCCTAGGTCTT -CCAACAGCGTTAAGCCTAACGCTT -CCAACAGCGTTAAGCCTAAGCGTT -CCAACAGCGTTAAGCCTATTCGTC -CCAACAGCGTTAAGCCTATCTCTC -CCAACAGCGTTAAGCCTATGGATC -CCAACAGCGTTAAGCCTACACTTC -CCAACAGCGTTAAGCCTAGTACTC -CCAACAGCGTTAAGCCTAGATGTC -CCAACAGCGTTAAGCCTAACAGTC -CCAACAGCGTTAAGCCTATTGCTG -CCAACAGCGTTAAGCCTATCCATG -CCAACAGCGTTAAGCCTATGTGTG -CCAACAGCGTTAAGCCTACTAGTG -CCAACAGCGTTAAGCCTACATCTG -CCAACAGCGTTAAGCCTAGAGTTG -CCAACAGCGTTAAGCCTAAGACTG -CCAACAGCGTTAAGCCTATCGGTA -CCAACAGCGTTAAGCCTATGCCTA -CCAACAGCGTTAAGCCTACCACTA -CCAACAGCGTTAAGCCTAGGAGTA -CCAACAGCGTTAAGCCTATCGTCT -CCAACAGCGTTAAGCCTATGCACT -CCAACAGCGTTAAGCCTACTGACT -CCAACAGCGTTAAGCCTACAACCT -CCAACAGCGTTAAGCCTAGCTACT -CCAACAGCGTTAAGCCTAGGATCT -CCAACAGCGTTAAGCCTAAAGGCT -CCAACAGCGTTAAGCCTATCAACC -CCAACAGCGTTAAGCCTATGTTCC -CCAACAGCGTTAAGCCTAATTCCC -CCAACAGCGTTAAGCCTATTCTCG -CCAACAGCGTTAAGCCTATAGACG -CCAACAGCGTTAAGCCTAGTAACG -CCAACAGCGTTAAGCCTAACTTCG -CCAACAGCGTTAAGCCTATACGCA -CCAACAGCGTTAAGCCTACTTGCA -CCAACAGCGTTAAGCCTACGAACA -CCAACAGCGTTAAGCCTACAGTCA -CCAACAGCGTTAAGCCTAGATCCA -CCAACAGCGTTAAGCCTAACGACA -CCAACAGCGTTAAGCCTAAGCTCA -CCAACAGCGTTAAGCCTATCACGT -CCAACAGCGTTAAGCCTACGTAGT -CCAACAGCGTTAAGCCTAGTCAGT -CCAACAGCGTTAAGCCTAGAAGGT -CCAACAGCGTTAAGCCTAAACCGT -CCAACAGCGTTAAGCCTATTGTGC -CCAACAGCGTTAAGCCTACTAAGC -CCAACAGCGTTAAGCCTAACTAGC -CCAACAGCGTTAAGCCTAAGATGC -CCAACAGCGTTAAGCCTATGAAGG -CCAACAGCGTTAAGCCTACAATGG -CCAACAGCGTTAAGCCTAATGAGG -CCAACAGCGTTAAGCCTAAATGGG -CCAACAGCGTTAAGCCTATCCTGA -CCAACAGCGTTAAGCCTATAGCGA -CCAACAGCGTTAAGCCTACACAGA -CCAACAGCGTTAAGCCTAGCAAGA -CCAACAGCGTTAAGCCTAGGTTGA -CCAACAGCGTTAAGCCTATCCGAT -CCAACAGCGTTAAGCCTATGGCAT -CCAACAGCGTTAAGCCTACGAGAT -CCAACAGCGTTAAGCCTATACCAC -CCAACAGCGTTAAGCCTACAGAAC -CCAACAGCGTTAAGCCTAGTCTAC -CCAACAGCGTTAAGCCTAACGTAC -CCAACAGCGTTAAGCCTAAGTGAC -CCAACAGCGTTAAGCCTACTGTAG -CCAACAGCGTTAAGCCTACCTAAG -CCAACAGCGTTAAGCCTAGTTCAG -CCAACAGCGTTAAGCCTAGCATAG -CCAACAGCGTTAAGCCTAGACAAG -CCAACAGCGTTAAGCCTAAAGCAG -CCAACAGCGTTAAGCCTACGTCAA -CCAACAGCGTTAAGCCTAGCTGAA -CCAACAGCGTTAAGCCTAAGTACG -CCAACAGCGTTAAGCCTAATCCGA -CCAACAGCGTTAAGCCTAATGGGA -CCAACAGCGTTAAGCCTAGTGCAA -CCAACAGCGTTAAGCCTAGAGGAA -CCAACAGCGTTAAGCCTACAGGTA -CCAACAGCGTTAAGCCTAGACTCT -CCAACAGCGTTAAGCCTAAGTCCT -CCAACAGCGTTAAGCCTATAAGCC -CCAACAGCGTTAAGCCTAATAGCC -CCAACAGCGTTAAGCCTATAACCG -CCAACAGCGTTAAGCCTAATGCCA -CCAACAGCGTTAAGCACTGGAAAC -CCAACAGCGTTAAGCACTAACACC -CCAACAGCGTTAAGCACTATCGAG -CCAACAGCGTTAAGCACTCTCCTT -CCAACAGCGTTAAGCACTCCTGTT -CCAACAGCGTTAAGCACTCGGTTT -CCAACAGCGTTAAGCACTGTGGTT -CCAACAGCGTTAAGCACTGCCTTT -CCAACAGCGTTAAGCACTGGTCTT -CCAACAGCGTTAAGCACTACGCTT -CCAACAGCGTTAAGCACTAGCGTT -CCAACAGCGTTAAGCACTTTCGTC -CCAACAGCGTTAAGCACTTCTCTC -CCAACAGCGTTAAGCACTTGGATC -CCAACAGCGTTAAGCACTCACTTC -CCAACAGCGTTAAGCACTGTACTC -CCAACAGCGTTAAGCACTGATGTC -CCAACAGCGTTAAGCACTACAGTC -CCAACAGCGTTAAGCACTTTGCTG -CCAACAGCGTTAAGCACTTCCATG -CCAACAGCGTTAAGCACTTGTGTG -CCAACAGCGTTAAGCACTCTAGTG -CCAACAGCGTTAAGCACTCATCTG -CCAACAGCGTTAAGCACTGAGTTG -CCAACAGCGTTAAGCACTAGACTG -CCAACAGCGTTAAGCACTTCGGTA -CCAACAGCGTTAAGCACTTGCCTA -CCAACAGCGTTAAGCACTCCACTA -CCAACAGCGTTAAGCACTGGAGTA -CCAACAGCGTTAAGCACTTCGTCT -CCAACAGCGTTAAGCACTTGCACT -CCAACAGCGTTAAGCACTCTGACT -CCAACAGCGTTAAGCACTCAACCT -CCAACAGCGTTAAGCACTGCTACT -CCAACAGCGTTAAGCACTGGATCT -CCAACAGCGTTAAGCACTAAGGCT -CCAACAGCGTTAAGCACTTCAACC -CCAACAGCGTTAAGCACTTGTTCC -CCAACAGCGTTAAGCACTATTCCC -CCAACAGCGTTAAGCACTTTCTCG -CCAACAGCGTTAAGCACTTAGACG -CCAACAGCGTTAAGCACTGTAACG -CCAACAGCGTTAAGCACTACTTCG -CCAACAGCGTTAAGCACTTACGCA -CCAACAGCGTTAAGCACTCTTGCA -CCAACAGCGTTAAGCACTCGAACA -CCAACAGCGTTAAGCACTCAGTCA -CCAACAGCGTTAAGCACTGATCCA -CCAACAGCGTTAAGCACTACGACA -CCAACAGCGTTAAGCACTAGCTCA -CCAACAGCGTTAAGCACTTCACGT -CCAACAGCGTTAAGCACTCGTAGT -CCAACAGCGTTAAGCACTGTCAGT -CCAACAGCGTTAAGCACTGAAGGT -CCAACAGCGTTAAGCACTAACCGT -CCAACAGCGTTAAGCACTTTGTGC -CCAACAGCGTTAAGCACTCTAAGC -CCAACAGCGTTAAGCACTACTAGC -CCAACAGCGTTAAGCACTAGATGC -CCAACAGCGTTAAGCACTTGAAGG -CCAACAGCGTTAAGCACTCAATGG -CCAACAGCGTTAAGCACTATGAGG -CCAACAGCGTTAAGCACTAATGGG -CCAACAGCGTTAAGCACTTCCTGA -CCAACAGCGTTAAGCACTTAGCGA -CCAACAGCGTTAAGCACTCACAGA -CCAACAGCGTTAAGCACTGCAAGA -CCAACAGCGTTAAGCACTGGTTGA -CCAACAGCGTTAAGCACTTCCGAT -CCAACAGCGTTAAGCACTTGGCAT -CCAACAGCGTTAAGCACTCGAGAT -CCAACAGCGTTAAGCACTTACCAC -CCAACAGCGTTAAGCACTCAGAAC -CCAACAGCGTTAAGCACTGTCTAC -CCAACAGCGTTAAGCACTACGTAC -CCAACAGCGTTAAGCACTAGTGAC -CCAACAGCGTTAAGCACTCTGTAG -CCAACAGCGTTAAGCACTCCTAAG -CCAACAGCGTTAAGCACTGTTCAG -CCAACAGCGTTAAGCACTGCATAG -CCAACAGCGTTAAGCACTGACAAG -CCAACAGCGTTAAGCACTAAGCAG -CCAACAGCGTTAAGCACTCGTCAA -CCAACAGCGTTAAGCACTGCTGAA -CCAACAGCGTTAAGCACTAGTACG -CCAACAGCGTTAAGCACTATCCGA -CCAACAGCGTTAAGCACTATGGGA -CCAACAGCGTTAAGCACTGTGCAA -CCAACAGCGTTAAGCACTGAGGAA -CCAACAGCGTTAAGCACTCAGGTA -CCAACAGCGTTAAGCACTGACTCT -CCAACAGCGTTAAGCACTAGTCCT -CCAACAGCGTTAAGCACTTAAGCC -CCAACAGCGTTAAGCACTATAGCC -CCAACAGCGTTAAGCACTTAACCG -CCAACAGCGTTAAGCACTATGCCA -CCAACAGCGTTATGCAGAGGAAAC -CCAACAGCGTTATGCAGAAACACC -CCAACAGCGTTATGCAGAATCGAG -CCAACAGCGTTATGCAGACTCCTT -CCAACAGCGTTATGCAGACCTGTT -CCAACAGCGTTATGCAGACGGTTT -CCAACAGCGTTATGCAGAGTGGTT -CCAACAGCGTTATGCAGAGCCTTT -CCAACAGCGTTATGCAGAGGTCTT -CCAACAGCGTTATGCAGAACGCTT -CCAACAGCGTTATGCAGAAGCGTT -CCAACAGCGTTATGCAGATTCGTC -CCAACAGCGTTATGCAGATCTCTC -CCAACAGCGTTATGCAGATGGATC -CCAACAGCGTTATGCAGACACTTC -CCAACAGCGTTATGCAGAGTACTC -CCAACAGCGTTATGCAGAGATGTC -CCAACAGCGTTATGCAGAACAGTC -CCAACAGCGTTATGCAGATTGCTG -CCAACAGCGTTATGCAGATCCATG -CCAACAGCGTTATGCAGATGTGTG -CCAACAGCGTTATGCAGACTAGTG -CCAACAGCGTTATGCAGACATCTG -CCAACAGCGTTATGCAGAGAGTTG -CCAACAGCGTTATGCAGAAGACTG -CCAACAGCGTTATGCAGATCGGTA -CCAACAGCGTTATGCAGATGCCTA -CCAACAGCGTTATGCAGACCACTA -CCAACAGCGTTATGCAGAGGAGTA -CCAACAGCGTTATGCAGATCGTCT -CCAACAGCGTTATGCAGATGCACT -CCAACAGCGTTATGCAGACTGACT -CCAACAGCGTTATGCAGACAACCT -CCAACAGCGTTATGCAGAGCTACT -CCAACAGCGTTATGCAGAGGATCT -CCAACAGCGTTATGCAGAAAGGCT -CCAACAGCGTTATGCAGATCAACC -CCAACAGCGTTATGCAGATGTTCC -CCAACAGCGTTATGCAGAATTCCC -CCAACAGCGTTATGCAGATTCTCG -CCAACAGCGTTATGCAGATAGACG -CCAACAGCGTTATGCAGAGTAACG -CCAACAGCGTTATGCAGAACTTCG -CCAACAGCGTTATGCAGATACGCA -CCAACAGCGTTATGCAGACTTGCA -CCAACAGCGTTATGCAGACGAACA -CCAACAGCGTTATGCAGACAGTCA -CCAACAGCGTTATGCAGAGATCCA -CCAACAGCGTTATGCAGAACGACA -CCAACAGCGTTATGCAGAAGCTCA -CCAACAGCGTTATGCAGATCACGT -CCAACAGCGTTATGCAGACGTAGT -CCAACAGCGTTATGCAGAGTCAGT -CCAACAGCGTTATGCAGAGAAGGT -CCAACAGCGTTATGCAGAAACCGT -CCAACAGCGTTATGCAGATTGTGC -CCAACAGCGTTATGCAGACTAAGC -CCAACAGCGTTATGCAGAACTAGC -CCAACAGCGTTATGCAGAAGATGC -CCAACAGCGTTATGCAGATGAAGG -CCAACAGCGTTATGCAGACAATGG -CCAACAGCGTTATGCAGAATGAGG -CCAACAGCGTTATGCAGAAATGGG -CCAACAGCGTTATGCAGATCCTGA -CCAACAGCGTTATGCAGATAGCGA -CCAACAGCGTTATGCAGACACAGA -CCAACAGCGTTATGCAGAGCAAGA -CCAACAGCGTTATGCAGAGGTTGA -CCAACAGCGTTATGCAGATCCGAT -CCAACAGCGTTATGCAGATGGCAT -CCAACAGCGTTATGCAGACGAGAT -CCAACAGCGTTATGCAGATACCAC -CCAACAGCGTTATGCAGACAGAAC -CCAACAGCGTTATGCAGAGTCTAC -CCAACAGCGTTATGCAGAACGTAC -CCAACAGCGTTATGCAGAAGTGAC -CCAACAGCGTTATGCAGACTGTAG -CCAACAGCGTTATGCAGACCTAAG -CCAACAGCGTTATGCAGAGTTCAG -CCAACAGCGTTATGCAGAGCATAG -CCAACAGCGTTATGCAGAGACAAG -CCAACAGCGTTATGCAGAAAGCAG -CCAACAGCGTTATGCAGACGTCAA -CCAACAGCGTTATGCAGAGCTGAA -CCAACAGCGTTATGCAGAAGTACG -CCAACAGCGTTATGCAGAATCCGA -CCAACAGCGTTATGCAGAATGGGA -CCAACAGCGTTATGCAGAGTGCAA -CCAACAGCGTTATGCAGAGAGGAA -CCAACAGCGTTATGCAGACAGGTA -CCAACAGCGTTATGCAGAGACTCT -CCAACAGCGTTATGCAGAAGTCCT -CCAACAGCGTTATGCAGATAAGCC -CCAACAGCGTTATGCAGAATAGCC -CCAACAGCGTTATGCAGATAACCG -CCAACAGCGTTATGCAGAATGCCA -CCAACAGCGTTAAGGTGAGGAAAC -CCAACAGCGTTAAGGTGAAACACC -CCAACAGCGTTAAGGTGAATCGAG -CCAACAGCGTTAAGGTGACTCCTT -CCAACAGCGTTAAGGTGACCTGTT -CCAACAGCGTTAAGGTGACGGTTT -CCAACAGCGTTAAGGTGAGTGGTT -CCAACAGCGTTAAGGTGAGCCTTT -CCAACAGCGTTAAGGTGAGGTCTT -CCAACAGCGTTAAGGTGAACGCTT -CCAACAGCGTTAAGGTGAAGCGTT -CCAACAGCGTTAAGGTGATTCGTC -CCAACAGCGTTAAGGTGATCTCTC -CCAACAGCGTTAAGGTGATGGATC -CCAACAGCGTTAAGGTGACACTTC -CCAACAGCGTTAAGGTGAGTACTC -CCAACAGCGTTAAGGTGAGATGTC -CCAACAGCGTTAAGGTGAACAGTC -CCAACAGCGTTAAGGTGATTGCTG -CCAACAGCGTTAAGGTGATCCATG -CCAACAGCGTTAAGGTGATGTGTG -CCAACAGCGTTAAGGTGACTAGTG -CCAACAGCGTTAAGGTGACATCTG -CCAACAGCGTTAAGGTGAGAGTTG -CCAACAGCGTTAAGGTGAAGACTG -CCAACAGCGTTAAGGTGATCGGTA -CCAACAGCGTTAAGGTGATGCCTA -CCAACAGCGTTAAGGTGACCACTA -CCAACAGCGTTAAGGTGAGGAGTA -CCAACAGCGTTAAGGTGATCGTCT -CCAACAGCGTTAAGGTGATGCACT -CCAACAGCGTTAAGGTGACTGACT -CCAACAGCGTTAAGGTGACAACCT -CCAACAGCGTTAAGGTGAGCTACT -CCAACAGCGTTAAGGTGAGGATCT -CCAACAGCGTTAAGGTGAAAGGCT -CCAACAGCGTTAAGGTGATCAACC -CCAACAGCGTTAAGGTGATGTTCC -CCAACAGCGTTAAGGTGAATTCCC -CCAACAGCGTTAAGGTGATTCTCG -CCAACAGCGTTAAGGTGATAGACG -CCAACAGCGTTAAGGTGAGTAACG -CCAACAGCGTTAAGGTGAACTTCG -CCAACAGCGTTAAGGTGATACGCA -CCAACAGCGTTAAGGTGACTTGCA -CCAACAGCGTTAAGGTGACGAACA -CCAACAGCGTTAAGGTGACAGTCA -CCAACAGCGTTAAGGTGAGATCCA -CCAACAGCGTTAAGGTGAACGACA -CCAACAGCGTTAAGGTGAAGCTCA -CCAACAGCGTTAAGGTGATCACGT -CCAACAGCGTTAAGGTGACGTAGT -CCAACAGCGTTAAGGTGAGTCAGT -CCAACAGCGTTAAGGTGAGAAGGT -CCAACAGCGTTAAGGTGAAACCGT -CCAACAGCGTTAAGGTGATTGTGC -CCAACAGCGTTAAGGTGACTAAGC -CCAACAGCGTTAAGGTGAACTAGC -CCAACAGCGTTAAGGTGAAGATGC -CCAACAGCGTTAAGGTGATGAAGG -CCAACAGCGTTAAGGTGACAATGG -CCAACAGCGTTAAGGTGAATGAGG -CCAACAGCGTTAAGGTGAAATGGG -CCAACAGCGTTAAGGTGATCCTGA -CCAACAGCGTTAAGGTGATAGCGA -CCAACAGCGTTAAGGTGACACAGA -CCAACAGCGTTAAGGTGAGCAAGA -CCAACAGCGTTAAGGTGAGGTTGA -CCAACAGCGTTAAGGTGATCCGAT -CCAACAGCGTTAAGGTGATGGCAT -CCAACAGCGTTAAGGTGACGAGAT -CCAACAGCGTTAAGGTGATACCAC -CCAACAGCGTTAAGGTGACAGAAC -CCAACAGCGTTAAGGTGAGTCTAC -CCAACAGCGTTAAGGTGAACGTAC -CCAACAGCGTTAAGGTGAAGTGAC -CCAACAGCGTTAAGGTGACTGTAG -CCAACAGCGTTAAGGTGACCTAAG -CCAACAGCGTTAAGGTGAGTTCAG -CCAACAGCGTTAAGGTGAGCATAG -CCAACAGCGTTAAGGTGAGACAAG -CCAACAGCGTTAAGGTGAAAGCAG -CCAACAGCGTTAAGGTGACGTCAA -CCAACAGCGTTAAGGTGAGCTGAA -CCAACAGCGTTAAGGTGAAGTACG -CCAACAGCGTTAAGGTGAATCCGA -CCAACAGCGTTAAGGTGAATGGGA -CCAACAGCGTTAAGGTGAGTGCAA -CCAACAGCGTTAAGGTGAGAGGAA -CCAACAGCGTTAAGGTGACAGGTA -CCAACAGCGTTAAGGTGAGACTCT -CCAACAGCGTTAAGGTGAAGTCCT -CCAACAGCGTTAAGGTGATAAGCC -CCAACAGCGTTAAGGTGAATAGCC -CCAACAGCGTTAAGGTGATAACCG -CCAACAGCGTTAAGGTGAATGCCA -CCAACAGCGTTATGGCAAGGAAAC -CCAACAGCGTTATGGCAAAACACC -CCAACAGCGTTATGGCAAATCGAG -CCAACAGCGTTATGGCAACTCCTT -CCAACAGCGTTATGGCAACCTGTT -CCAACAGCGTTATGGCAACGGTTT -CCAACAGCGTTATGGCAAGTGGTT -CCAACAGCGTTATGGCAAGCCTTT -CCAACAGCGTTATGGCAAGGTCTT -CCAACAGCGTTATGGCAAACGCTT -CCAACAGCGTTATGGCAAAGCGTT -CCAACAGCGTTATGGCAATTCGTC -CCAACAGCGTTATGGCAATCTCTC -CCAACAGCGTTATGGCAATGGATC -CCAACAGCGTTATGGCAACACTTC -CCAACAGCGTTATGGCAAGTACTC -CCAACAGCGTTATGGCAAGATGTC -CCAACAGCGTTATGGCAAACAGTC -CCAACAGCGTTATGGCAATTGCTG -CCAACAGCGTTATGGCAATCCATG -CCAACAGCGTTATGGCAATGTGTG -CCAACAGCGTTATGGCAACTAGTG -CCAACAGCGTTATGGCAACATCTG -CCAACAGCGTTATGGCAAGAGTTG -CCAACAGCGTTATGGCAAAGACTG -CCAACAGCGTTATGGCAATCGGTA -CCAACAGCGTTATGGCAATGCCTA -CCAACAGCGTTATGGCAACCACTA -CCAACAGCGTTATGGCAAGGAGTA -CCAACAGCGTTATGGCAATCGTCT -CCAACAGCGTTATGGCAATGCACT -CCAACAGCGTTATGGCAACTGACT -CCAACAGCGTTATGGCAACAACCT -CCAACAGCGTTATGGCAAGCTACT -CCAACAGCGTTATGGCAAGGATCT -CCAACAGCGTTATGGCAAAAGGCT -CCAACAGCGTTATGGCAATCAACC -CCAACAGCGTTATGGCAATGTTCC -CCAACAGCGTTATGGCAAATTCCC -CCAACAGCGTTATGGCAATTCTCG -CCAACAGCGTTATGGCAATAGACG -CCAACAGCGTTATGGCAAGTAACG -CCAACAGCGTTATGGCAAACTTCG -CCAACAGCGTTATGGCAATACGCA -CCAACAGCGTTATGGCAACTTGCA -CCAACAGCGTTATGGCAACGAACA -CCAACAGCGTTATGGCAACAGTCA -CCAACAGCGTTATGGCAAGATCCA -CCAACAGCGTTATGGCAAACGACA -CCAACAGCGTTATGGCAAAGCTCA -CCAACAGCGTTATGGCAATCACGT -CCAACAGCGTTATGGCAACGTAGT -CCAACAGCGTTATGGCAAGTCAGT -CCAACAGCGTTATGGCAAGAAGGT -CCAACAGCGTTATGGCAAAACCGT -CCAACAGCGTTATGGCAATTGTGC -CCAACAGCGTTATGGCAACTAAGC -CCAACAGCGTTATGGCAAACTAGC -CCAACAGCGTTATGGCAAAGATGC -CCAACAGCGTTATGGCAATGAAGG -CCAACAGCGTTATGGCAACAATGG -CCAACAGCGTTATGGCAAATGAGG -CCAACAGCGTTATGGCAAAATGGG -CCAACAGCGTTATGGCAATCCTGA -CCAACAGCGTTATGGCAATAGCGA -CCAACAGCGTTATGGCAACACAGA -CCAACAGCGTTATGGCAAGCAAGA -CCAACAGCGTTATGGCAAGGTTGA -CCAACAGCGTTATGGCAATCCGAT -CCAACAGCGTTATGGCAATGGCAT -CCAACAGCGTTATGGCAACGAGAT -CCAACAGCGTTATGGCAATACCAC -CCAACAGCGTTATGGCAACAGAAC -CCAACAGCGTTATGGCAAGTCTAC -CCAACAGCGTTATGGCAAACGTAC -CCAACAGCGTTATGGCAAAGTGAC -CCAACAGCGTTATGGCAACTGTAG -CCAACAGCGTTATGGCAACCTAAG -CCAACAGCGTTATGGCAAGTTCAG -CCAACAGCGTTATGGCAAGCATAG -CCAACAGCGTTATGGCAAGACAAG -CCAACAGCGTTATGGCAAAAGCAG -CCAACAGCGTTATGGCAACGTCAA -CCAACAGCGTTATGGCAAGCTGAA -CCAACAGCGTTATGGCAAAGTACG -CCAACAGCGTTATGGCAAATCCGA -CCAACAGCGTTATGGCAAATGGGA -CCAACAGCGTTATGGCAAGTGCAA -CCAACAGCGTTATGGCAAGAGGAA -CCAACAGCGTTATGGCAACAGGTA -CCAACAGCGTTATGGCAAGACTCT -CCAACAGCGTTATGGCAAAGTCCT -CCAACAGCGTTATGGCAATAAGCC -CCAACAGCGTTATGGCAAATAGCC -CCAACAGCGTTATGGCAATAACCG -CCAACAGCGTTATGGCAAATGCCA -CCAACAGCGTTAAGGATGGGAAAC -CCAACAGCGTTAAGGATGAACACC -CCAACAGCGTTAAGGATGATCGAG -CCAACAGCGTTAAGGATGCTCCTT -CCAACAGCGTTAAGGATGCCTGTT -CCAACAGCGTTAAGGATGCGGTTT -CCAACAGCGTTAAGGATGGTGGTT -CCAACAGCGTTAAGGATGGCCTTT -CCAACAGCGTTAAGGATGGGTCTT -CCAACAGCGTTAAGGATGACGCTT -CCAACAGCGTTAAGGATGAGCGTT -CCAACAGCGTTAAGGATGTTCGTC -CCAACAGCGTTAAGGATGTCTCTC -CCAACAGCGTTAAGGATGTGGATC -CCAACAGCGTTAAGGATGCACTTC -CCAACAGCGTTAAGGATGGTACTC -CCAACAGCGTTAAGGATGGATGTC -CCAACAGCGTTAAGGATGACAGTC -CCAACAGCGTTAAGGATGTTGCTG -CCAACAGCGTTAAGGATGTCCATG -CCAACAGCGTTAAGGATGTGTGTG -CCAACAGCGTTAAGGATGCTAGTG -CCAACAGCGTTAAGGATGCATCTG -CCAACAGCGTTAAGGATGGAGTTG -CCAACAGCGTTAAGGATGAGACTG -CCAACAGCGTTAAGGATGTCGGTA -CCAACAGCGTTAAGGATGTGCCTA -CCAACAGCGTTAAGGATGCCACTA -CCAACAGCGTTAAGGATGGGAGTA -CCAACAGCGTTAAGGATGTCGTCT -CCAACAGCGTTAAGGATGTGCACT -CCAACAGCGTTAAGGATGCTGACT -CCAACAGCGTTAAGGATGCAACCT -CCAACAGCGTTAAGGATGGCTACT -CCAACAGCGTTAAGGATGGGATCT -CCAACAGCGTTAAGGATGAAGGCT -CCAACAGCGTTAAGGATGTCAACC -CCAACAGCGTTAAGGATGTGTTCC -CCAACAGCGTTAAGGATGATTCCC -CCAACAGCGTTAAGGATGTTCTCG -CCAACAGCGTTAAGGATGTAGACG -CCAACAGCGTTAAGGATGGTAACG -CCAACAGCGTTAAGGATGACTTCG -CCAACAGCGTTAAGGATGTACGCA -CCAACAGCGTTAAGGATGCTTGCA -CCAACAGCGTTAAGGATGCGAACA -CCAACAGCGTTAAGGATGCAGTCA -CCAACAGCGTTAAGGATGGATCCA -CCAACAGCGTTAAGGATGACGACA -CCAACAGCGTTAAGGATGAGCTCA -CCAACAGCGTTAAGGATGTCACGT -CCAACAGCGTTAAGGATGCGTAGT -CCAACAGCGTTAAGGATGGTCAGT -CCAACAGCGTTAAGGATGGAAGGT -CCAACAGCGTTAAGGATGAACCGT -CCAACAGCGTTAAGGATGTTGTGC -CCAACAGCGTTAAGGATGCTAAGC -CCAACAGCGTTAAGGATGACTAGC -CCAACAGCGTTAAGGATGAGATGC -CCAACAGCGTTAAGGATGTGAAGG -CCAACAGCGTTAAGGATGCAATGG -CCAACAGCGTTAAGGATGATGAGG -CCAACAGCGTTAAGGATGAATGGG -CCAACAGCGTTAAGGATGTCCTGA -CCAACAGCGTTAAGGATGTAGCGA -CCAACAGCGTTAAGGATGCACAGA -CCAACAGCGTTAAGGATGGCAAGA -CCAACAGCGTTAAGGATGGGTTGA -CCAACAGCGTTAAGGATGTCCGAT -CCAACAGCGTTAAGGATGTGGCAT -CCAACAGCGTTAAGGATGCGAGAT -CCAACAGCGTTAAGGATGTACCAC -CCAACAGCGTTAAGGATGCAGAAC -CCAACAGCGTTAAGGATGGTCTAC -CCAACAGCGTTAAGGATGACGTAC -CCAACAGCGTTAAGGATGAGTGAC -CCAACAGCGTTAAGGATGCTGTAG -CCAACAGCGTTAAGGATGCCTAAG -CCAACAGCGTTAAGGATGGTTCAG -CCAACAGCGTTAAGGATGGCATAG -CCAACAGCGTTAAGGATGGACAAG -CCAACAGCGTTAAGGATGAAGCAG -CCAACAGCGTTAAGGATGCGTCAA -CCAACAGCGTTAAGGATGGCTGAA -CCAACAGCGTTAAGGATGAGTACG -CCAACAGCGTTAAGGATGATCCGA -CCAACAGCGTTAAGGATGATGGGA -CCAACAGCGTTAAGGATGGTGCAA -CCAACAGCGTTAAGGATGGAGGAA -CCAACAGCGTTAAGGATGCAGGTA -CCAACAGCGTTAAGGATGGACTCT -CCAACAGCGTTAAGGATGAGTCCT -CCAACAGCGTTAAGGATGTAAGCC -CCAACAGCGTTAAGGATGATAGCC -CCAACAGCGTTAAGGATGTAACCG -CCAACAGCGTTAAGGATGATGCCA -CCAACAGCGTTAGGGAATGGAAAC -CCAACAGCGTTAGGGAATAACACC -CCAACAGCGTTAGGGAATATCGAG -CCAACAGCGTTAGGGAATCTCCTT -CCAACAGCGTTAGGGAATCCTGTT -CCAACAGCGTTAGGGAATCGGTTT -CCAACAGCGTTAGGGAATGTGGTT -CCAACAGCGTTAGGGAATGCCTTT -CCAACAGCGTTAGGGAATGGTCTT -CCAACAGCGTTAGGGAATACGCTT -CCAACAGCGTTAGGGAATAGCGTT -CCAACAGCGTTAGGGAATTTCGTC -CCAACAGCGTTAGGGAATTCTCTC -CCAACAGCGTTAGGGAATTGGATC -CCAACAGCGTTAGGGAATCACTTC -CCAACAGCGTTAGGGAATGTACTC -CCAACAGCGTTAGGGAATGATGTC -CCAACAGCGTTAGGGAATACAGTC -CCAACAGCGTTAGGGAATTTGCTG -CCAACAGCGTTAGGGAATTCCATG -CCAACAGCGTTAGGGAATTGTGTG -CCAACAGCGTTAGGGAATCTAGTG -CCAACAGCGTTAGGGAATCATCTG -CCAACAGCGTTAGGGAATGAGTTG -CCAACAGCGTTAGGGAATAGACTG -CCAACAGCGTTAGGGAATTCGGTA -CCAACAGCGTTAGGGAATTGCCTA -CCAACAGCGTTAGGGAATCCACTA -CCAACAGCGTTAGGGAATGGAGTA -CCAACAGCGTTAGGGAATTCGTCT -CCAACAGCGTTAGGGAATTGCACT -CCAACAGCGTTAGGGAATCTGACT -CCAACAGCGTTAGGGAATCAACCT -CCAACAGCGTTAGGGAATGCTACT -CCAACAGCGTTAGGGAATGGATCT -CCAACAGCGTTAGGGAATAAGGCT -CCAACAGCGTTAGGGAATTCAACC -CCAACAGCGTTAGGGAATTGTTCC -CCAACAGCGTTAGGGAATATTCCC -CCAACAGCGTTAGGGAATTTCTCG -CCAACAGCGTTAGGGAATTAGACG -CCAACAGCGTTAGGGAATGTAACG -CCAACAGCGTTAGGGAATACTTCG -CCAACAGCGTTAGGGAATTACGCA -CCAACAGCGTTAGGGAATCTTGCA -CCAACAGCGTTAGGGAATCGAACA -CCAACAGCGTTAGGGAATCAGTCA -CCAACAGCGTTAGGGAATGATCCA -CCAACAGCGTTAGGGAATACGACA -CCAACAGCGTTAGGGAATAGCTCA -CCAACAGCGTTAGGGAATTCACGT -CCAACAGCGTTAGGGAATCGTAGT -CCAACAGCGTTAGGGAATGTCAGT -CCAACAGCGTTAGGGAATGAAGGT -CCAACAGCGTTAGGGAATAACCGT -CCAACAGCGTTAGGGAATTTGTGC -CCAACAGCGTTAGGGAATCTAAGC -CCAACAGCGTTAGGGAATACTAGC -CCAACAGCGTTAGGGAATAGATGC -CCAACAGCGTTAGGGAATTGAAGG -CCAACAGCGTTAGGGAATCAATGG -CCAACAGCGTTAGGGAATATGAGG -CCAACAGCGTTAGGGAATAATGGG -CCAACAGCGTTAGGGAATTCCTGA -CCAACAGCGTTAGGGAATTAGCGA -CCAACAGCGTTAGGGAATCACAGA -CCAACAGCGTTAGGGAATGCAAGA -CCAACAGCGTTAGGGAATGGTTGA -CCAACAGCGTTAGGGAATTCCGAT -CCAACAGCGTTAGGGAATTGGCAT -CCAACAGCGTTAGGGAATCGAGAT -CCAACAGCGTTAGGGAATTACCAC -CCAACAGCGTTAGGGAATCAGAAC -CCAACAGCGTTAGGGAATGTCTAC -CCAACAGCGTTAGGGAATACGTAC -CCAACAGCGTTAGGGAATAGTGAC -CCAACAGCGTTAGGGAATCTGTAG -CCAACAGCGTTAGGGAATCCTAAG -CCAACAGCGTTAGGGAATGTTCAG -CCAACAGCGTTAGGGAATGCATAG -CCAACAGCGTTAGGGAATGACAAG -CCAACAGCGTTAGGGAATAAGCAG -CCAACAGCGTTAGGGAATCGTCAA -CCAACAGCGTTAGGGAATGCTGAA -CCAACAGCGTTAGGGAATAGTACG -CCAACAGCGTTAGGGAATATCCGA -CCAACAGCGTTAGGGAATATGGGA -CCAACAGCGTTAGGGAATGTGCAA -CCAACAGCGTTAGGGAATGAGGAA -CCAACAGCGTTAGGGAATCAGGTA -CCAACAGCGTTAGGGAATGACTCT -CCAACAGCGTTAGGGAATAGTCCT -CCAACAGCGTTAGGGAATTAAGCC -CCAACAGCGTTAGGGAATATAGCC -CCAACAGCGTTAGGGAATTAACCG -CCAACAGCGTTAGGGAATATGCCA -CCAACAGCGTTATGATCCGGAAAC -CCAACAGCGTTATGATCCAACACC -CCAACAGCGTTATGATCCATCGAG -CCAACAGCGTTATGATCCCTCCTT -CCAACAGCGTTATGATCCCCTGTT -CCAACAGCGTTATGATCCCGGTTT -CCAACAGCGTTATGATCCGTGGTT -CCAACAGCGTTATGATCCGCCTTT -CCAACAGCGTTATGATCCGGTCTT -CCAACAGCGTTATGATCCACGCTT -CCAACAGCGTTATGATCCAGCGTT -CCAACAGCGTTATGATCCTTCGTC -CCAACAGCGTTATGATCCTCTCTC -CCAACAGCGTTATGATCCTGGATC -CCAACAGCGTTATGATCCCACTTC -CCAACAGCGTTATGATCCGTACTC -CCAACAGCGTTATGATCCGATGTC -CCAACAGCGTTATGATCCACAGTC -CCAACAGCGTTATGATCCTTGCTG -CCAACAGCGTTATGATCCTCCATG -CCAACAGCGTTATGATCCTGTGTG -CCAACAGCGTTATGATCCCTAGTG -CCAACAGCGTTATGATCCCATCTG -CCAACAGCGTTATGATCCGAGTTG -CCAACAGCGTTATGATCCAGACTG -CCAACAGCGTTATGATCCTCGGTA -CCAACAGCGTTATGATCCTGCCTA -CCAACAGCGTTATGATCCCCACTA -CCAACAGCGTTATGATCCGGAGTA -CCAACAGCGTTATGATCCTCGTCT -CCAACAGCGTTATGATCCTGCACT -CCAACAGCGTTATGATCCCTGACT -CCAACAGCGTTATGATCCCAACCT -CCAACAGCGTTATGATCCGCTACT -CCAACAGCGTTATGATCCGGATCT -CCAACAGCGTTATGATCCAAGGCT -CCAACAGCGTTATGATCCTCAACC -CCAACAGCGTTATGATCCTGTTCC -CCAACAGCGTTATGATCCATTCCC -CCAACAGCGTTATGATCCTTCTCG -CCAACAGCGTTATGATCCTAGACG -CCAACAGCGTTATGATCCGTAACG -CCAACAGCGTTATGATCCACTTCG -CCAACAGCGTTATGATCCTACGCA -CCAACAGCGTTATGATCCCTTGCA -CCAACAGCGTTATGATCCCGAACA -CCAACAGCGTTATGATCCCAGTCA -CCAACAGCGTTATGATCCGATCCA -CCAACAGCGTTATGATCCACGACA -CCAACAGCGTTATGATCCAGCTCA -CCAACAGCGTTATGATCCTCACGT -CCAACAGCGTTATGATCCCGTAGT -CCAACAGCGTTATGATCCGTCAGT -CCAACAGCGTTATGATCCGAAGGT -CCAACAGCGTTATGATCCAACCGT -CCAACAGCGTTATGATCCTTGTGC -CCAACAGCGTTATGATCCCTAAGC -CCAACAGCGTTATGATCCACTAGC -CCAACAGCGTTATGATCCAGATGC -CCAACAGCGTTATGATCCTGAAGG -CCAACAGCGTTATGATCCCAATGG -CCAACAGCGTTATGATCCATGAGG -CCAACAGCGTTATGATCCAATGGG -CCAACAGCGTTATGATCCTCCTGA -CCAACAGCGTTATGATCCTAGCGA -CCAACAGCGTTATGATCCCACAGA -CCAACAGCGTTATGATCCGCAAGA -CCAACAGCGTTATGATCCGGTTGA -CCAACAGCGTTATGATCCTCCGAT -CCAACAGCGTTATGATCCTGGCAT -CCAACAGCGTTATGATCCCGAGAT -CCAACAGCGTTATGATCCTACCAC -CCAACAGCGTTATGATCCCAGAAC -CCAACAGCGTTATGATCCGTCTAC -CCAACAGCGTTATGATCCACGTAC -CCAACAGCGTTATGATCCAGTGAC -CCAACAGCGTTATGATCCCTGTAG -CCAACAGCGTTATGATCCCCTAAG -CCAACAGCGTTATGATCCGTTCAG -CCAACAGCGTTATGATCCGCATAG -CCAACAGCGTTATGATCCGACAAG -CCAACAGCGTTATGATCCAAGCAG -CCAACAGCGTTATGATCCCGTCAA -CCAACAGCGTTATGATCCGCTGAA -CCAACAGCGTTATGATCCAGTACG -CCAACAGCGTTATGATCCATCCGA -CCAACAGCGTTATGATCCATGGGA -CCAACAGCGTTATGATCCGTGCAA -CCAACAGCGTTATGATCCGAGGAA -CCAACAGCGTTATGATCCCAGGTA -CCAACAGCGTTATGATCCGACTCT -CCAACAGCGTTATGATCCAGTCCT -CCAACAGCGTTATGATCCTAAGCC -CCAACAGCGTTATGATCCATAGCC -CCAACAGCGTTATGATCCTAACCG -CCAACAGCGTTATGATCCATGCCA -CCAACAGCGTTACGATAGGGAAAC -CCAACAGCGTTACGATAGAACACC -CCAACAGCGTTACGATAGATCGAG -CCAACAGCGTTACGATAGCTCCTT -CCAACAGCGTTACGATAGCCTGTT -CCAACAGCGTTACGATAGCGGTTT -CCAACAGCGTTACGATAGGTGGTT -CCAACAGCGTTACGATAGGCCTTT -CCAACAGCGTTACGATAGGGTCTT -CCAACAGCGTTACGATAGACGCTT -CCAACAGCGTTACGATAGAGCGTT -CCAACAGCGTTACGATAGTTCGTC -CCAACAGCGTTACGATAGTCTCTC -CCAACAGCGTTACGATAGTGGATC -CCAACAGCGTTACGATAGCACTTC -CCAACAGCGTTACGATAGGTACTC -CCAACAGCGTTACGATAGGATGTC -CCAACAGCGTTACGATAGACAGTC -CCAACAGCGTTACGATAGTTGCTG -CCAACAGCGTTACGATAGTCCATG -CCAACAGCGTTACGATAGTGTGTG -CCAACAGCGTTACGATAGCTAGTG -CCAACAGCGTTACGATAGCATCTG -CCAACAGCGTTACGATAGGAGTTG -CCAACAGCGTTACGATAGAGACTG -CCAACAGCGTTACGATAGTCGGTA -CCAACAGCGTTACGATAGTGCCTA -CCAACAGCGTTACGATAGCCACTA -CCAACAGCGTTACGATAGGGAGTA -CCAACAGCGTTACGATAGTCGTCT -CCAACAGCGTTACGATAGTGCACT -CCAACAGCGTTACGATAGCTGACT -CCAACAGCGTTACGATAGCAACCT -CCAACAGCGTTACGATAGGCTACT -CCAACAGCGTTACGATAGGGATCT -CCAACAGCGTTACGATAGAAGGCT -CCAACAGCGTTACGATAGTCAACC -CCAACAGCGTTACGATAGTGTTCC -CCAACAGCGTTACGATAGATTCCC -CCAACAGCGTTACGATAGTTCTCG -CCAACAGCGTTACGATAGTAGACG -CCAACAGCGTTACGATAGGTAACG -CCAACAGCGTTACGATAGACTTCG -CCAACAGCGTTACGATAGTACGCA -CCAACAGCGTTACGATAGCTTGCA -CCAACAGCGTTACGATAGCGAACA -CCAACAGCGTTACGATAGCAGTCA -CCAACAGCGTTACGATAGGATCCA -CCAACAGCGTTACGATAGACGACA -CCAACAGCGTTACGATAGAGCTCA -CCAACAGCGTTACGATAGTCACGT -CCAACAGCGTTACGATAGCGTAGT -CCAACAGCGTTACGATAGGTCAGT -CCAACAGCGTTACGATAGGAAGGT -CCAACAGCGTTACGATAGAACCGT -CCAACAGCGTTACGATAGTTGTGC -CCAACAGCGTTACGATAGCTAAGC -CCAACAGCGTTACGATAGACTAGC -CCAACAGCGTTACGATAGAGATGC -CCAACAGCGTTACGATAGTGAAGG -CCAACAGCGTTACGATAGCAATGG -CCAACAGCGTTACGATAGATGAGG -CCAACAGCGTTACGATAGAATGGG -CCAACAGCGTTACGATAGTCCTGA -CCAACAGCGTTACGATAGTAGCGA -CCAACAGCGTTACGATAGCACAGA -CCAACAGCGTTACGATAGGCAAGA -CCAACAGCGTTACGATAGGGTTGA -CCAACAGCGTTACGATAGTCCGAT -CCAACAGCGTTACGATAGTGGCAT -CCAACAGCGTTACGATAGCGAGAT -CCAACAGCGTTACGATAGTACCAC -CCAACAGCGTTACGATAGCAGAAC -CCAACAGCGTTACGATAGGTCTAC -CCAACAGCGTTACGATAGACGTAC -CCAACAGCGTTACGATAGAGTGAC -CCAACAGCGTTACGATAGCTGTAG -CCAACAGCGTTACGATAGCCTAAG -CCAACAGCGTTACGATAGGTTCAG -CCAACAGCGTTACGATAGGCATAG -CCAACAGCGTTACGATAGGACAAG -CCAACAGCGTTACGATAGAAGCAG -CCAACAGCGTTACGATAGCGTCAA -CCAACAGCGTTACGATAGGCTGAA -CCAACAGCGTTACGATAGAGTACG -CCAACAGCGTTACGATAGATCCGA -CCAACAGCGTTACGATAGATGGGA -CCAACAGCGTTACGATAGGTGCAA -CCAACAGCGTTACGATAGGAGGAA -CCAACAGCGTTACGATAGCAGGTA -CCAACAGCGTTACGATAGGACTCT -CCAACAGCGTTACGATAGAGTCCT -CCAACAGCGTTACGATAGTAAGCC -CCAACAGCGTTACGATAGATAGCC -CCAACAGCGTTACGATAGTAACCG -CCAACAGCGTTACGATAGATGCCA -CCAACAGCGTTAAGACACGGAAAC -CCAACAGCGTTAAGACACAACACC -CCAACAGCGTTAAGACACATCGAG -CCAACAGCGTTAAGACACCTCCTT -CCAACAGCGTTAAGACACCCTGTT -CCAACAGCGTTAAGACACCGGTTT -CCAACAGCGTTAAGACACGTGGTT -CCAACAGCGTTAAGACACGCCTTT -CCAACAGCGTTAAGACACGGTCTT -CCAACAGCGTTAAGACACACGCTT -CCAACAGCGTTAAGACACAGCGTT -CCAACAGCGTTAAGACACTTCGTC -CCAACAGCGTTAAGACACTCTCTC -CCAACAGCGTTAAGACACTGGATC -CCAACAGCGTTAAGACACCACTTC -CCAACAGCGTTAAGACACGTACTC -CCAACAGCGTTAAGACACGATGTC -CCAACAGCGTTAAGACACACAGTC -CCAACAGCGTTAAGACACTTGCTG -CCAACAGCGTTAAGACACTCCATG -CCAACAGCGTTAAGACACTGTGTG -CCAACAGCGTTAAGACACCTAGTG -CCAACAGCGTTAAGACACCATCTG -CCAACAGCGTTAAGACACGAGTTG -CCAACAGCGTTAAGACACAGACTG -CCAACAGCGTTAAGACACTCGGTA -CCAACAGCGTTAAGACACTGCCTA -CCAACAGCGTTAAGACACCCACTA -CCAACAGCGTTAAGACACGGAGTA -CCAACAGCGTTAAGACACTCGTCT -CCAACAGCGTTAAGACACTGCACT -CCAACAGCGTTAAGACACCTGACT -CCAACAGCGTTAAGACACCAACCT -CCAACAGCGTTAAGACACGCTACT -CCAACAGCGTTAAGACACGGATCT -CCAACAGCGTTAAGACACAAGGCT -CCAACAGCGTTAAGACACTCAACC -CCAACAGCGTTAAGACACTGTTCC -CCAACAGCGTTAAGACACATTCCC -CCAACAGCGTTAAGACACTTCTCG -CCAACAGCGTTAAGACACTAGACG -CCAACAGCGTTAAGACACGTAACG -CCAACAGCGTTAAGACACACTTCG -CCAACAGCGTTAAGACACTACGCA -CCAACAGCGTTAAGACACCTTGCA -CCAACAGCGTTAAGACACCGAACA -CCAACAGCGTTAAGACACCAGTCA -CCAACAGCGTTAAGACACGATCCA -CCAACAGCGTTAAGACACACGACA -CCAACAGCGTTAAGACACAGCTCA -CCAACAGCGTTAAGACACTCACGT -CCAACAGCGTTAAGACACCGTAGT -CCAACAGCGTTAAGACACGTCAGT -CCAACAGCGTTAAGACACGAAGGT -CCAACAGCGTTAAGACACAACCGT -CCAACAGCGTTAAGACACTTGTGC -CCAACAGCGTTAAGACACCTAAGC -CCAACAGCGTTAAGACACACTAGC -CCAACAGCGTTAAGACACAGATGC -CCAACAGCGTTAAGACACTGAAGG -CCAACAGCGTTAAGACACCAATGG -CCAACAGCGTTAAGACACATGAGG -CCAACAGCGTTAAGACACAATGGG -CCAACAGCGTTAAGACACTCCTGA -CCAACAGCGTTAAGACACTAGCGA -CCAACAGCGTTAAGACACCACAGA -CCAACAGCGTTAAGACACGCAAGA -CCAACAGCGTTAAGACACGGTTGA -CCAACAGCGTTAAGACACTCCGAT -CCAACAGCGTTAAGACACTGGCAT -CCAACAGCGTTAAGACACCGAGAT -CCAACAGCGTTAAGACACTACCAC -CCAACAGCGTTAAGACACCAGAAC -CCAACAGCGTTAAGACACGTCTAC -CCAACAGCGTTAAGACACACGTAC -CCAACAGCGTTAAGACACAGTGAC -CCAACAGCGTTAAGACACCTGTAG -CCAACAGCGTTAAGACACCCTAAG -CCAACAGCGTTAAGACACGTTCAG -CCAACAGCGTTAAGACACGCATAG -CCAACAGCGTTAAGACACGACAAG -CCAACAGCGTTAAGACACAAGCAG -CCAACAGCGTTAAGACACCGTCAA -CCAACAGCGTTAAGACACGCTGAA -CCAACAGCGTTAAGACACAGTACG -CCAACAGCGTTAAGACACATCCGA -CCAACAGCGTTAAGACACATGGGA -CCAACAGCGTTAAGACACGTGCAA -CCAACAGCGTTAAGACACGAGGAA -CCAACAGCGTTAAGACACCAGGTA -CCAACAGCGTTAAGACACGACTCT -CCAACAGCGTTAAGACACAGTCCT -CCAACAGCGTTAAGACACTAAGCC -CCAACAGCGTTAAGACACATAGCC -CCAACAGCGTTAAGACACTAACCG -CCAACAGCGTTAAGACACATGCCA -CCAACAGCGTTAAGAGCAGGAAAC -CCAACAGCGTTAAGAGCAAACACC -CCAACAGCGTTAAGAGCAATCGAG -CCAACAGCGTTAAGAGCACTCCTT -CCAACAGCGTTAAGAGCACCTGTT -CCAACAGCGTTAAGAGCACGGTTT -CCAACAGCGTTAAGAGCAGTGGTT -CCAACAGCGTTAAGAGCAGCCTTT -CCAACAGCGTTAAGAGCAGGTCTT -CCAACAGCGTTAAGAGCAACGCTT -CCAACAGCGTTAAGAGCAAGCGTT -CCAACAGCGTTAAGAGCATTCGTC -CCAACAGCGTTAAGAGCATCTCTC -CCAACAGCGTTAAGAGCATGGATC -CCAACAGCGTTAAGAGCACACTTC -CCAACAGCGTTAAGAGCAGTACTC -CCAACAGCGTTAAGAGCAGATGTC -CCAACAGCGTTAAGAGCAACAGTC -CCAACAGCGTTAAGAGCATTGCTG -CCAACAGCGTTAAGAGCATCCATG -CCAACAGCGTTAAGAGCATGTGTG -CCAACAGCGTTAAGAGCACTAGTG -CCAACAGCGTTAAGAGCACATCTG -CCAACAGCGTTAAGAGCAGAGTTG -CCAACAGCGTTAAGAGCAAGACTG -CCAACAGCGTTAAGAGCATCGGTA -CCAACAGCGTTAAGAGCATGCCTA -CCAACAGCGTTAAGAGCACCACTA -CCAACAGCGTTAAGAGCAGGAGTA -CCAACAGCGTTAAGAGCATCGTCT -CCAACAGCGTTAAGAGCATGCACT -CCAACAGCGTTAAGAGCACTGACT -CCAACAGCGTTAAGAGCACAACCT -CCAACAGCGTTAAGAGCAGCTACT -CCAACAGCGTTAAGAGCAGGATCT -CCAACAGCGTTAAGAGCAAAGGCT -CCAACAGCGTTAAGAGCATCAACC -CCAACAGCGTTAAGAGCATGTTCC -CCAACAGCGTTAAGAGCAATTCCC -CCAACAGCGTTAAGAGCATTCTCG -CCAACAGCGTTAAGAGCATAGACG -CCAACAGCGTTAAGAGCAGTAACG -CCAACAGCGTTAAGAGCAACTTCG -CCAACAGCGTTAAGAGCATACGCA -CCAACAGCGTTAAGAGCACTTGCA -CCAACAGCGTTAAGAGCACGAACA -CCAACAGCGTTAAGAGCACAGTCA -CCAACAGCGTTAAGAGCAGATCCA -CCAACAGCGTTAAGAGCAACGACA -CCAACAGCGTTAAGAGCAAGCTCA -CCAACAGCGTTAAGAGCATCACGT -CCAACAGCGTTAAGAGCACGTAGT -CCAACAGCGTTAAGAGCAGTCAGT -CCAACAGCGTTAAGAGCAGAAGGT -CCAACAGCGTTAAGAGCAAACCGT -CCAACAGCGTTAAGAGCATTGTGC -CCAACAGCGTTAAGAGCACTAAGC -CCAACAGCGTTAAGAGCAACTAGC -CCAACAGCGTTAAGAGCAAGATGC -CCAACAGCGTTAAGAGCATGAAGG -CCAACAGCGTTAAGAGCACAATGG -CCAACAGCGTTAAGAGCAATGAGG -CCAACAGCGTTAAGAGCAAATGGG -CCAACAGCGTTAAGAGCATCCTGA -CCAACAGCGTTAAGAGCATAGCGA -CCAACAGCGTTAAGAGCACACAGA -CCAACAGCGTTAAGAGCAGCAAGA -CCAACAGCGTTAAGAGCAGGTTGA -CCAACAGCGTTAAGAGCATCCGAT -CCAACAGCGTTAAGAGCATGGCAT -CCAACAGCGTTAAGAGCACGAGAT -CCAACAGCGTTAAGAGCATACCAC -CCAACAGCGTTAAGAGCACAGAAC -CCAACAGCGTTAAGAGCAGTCTAC -CCAACAGCGTTAAGAGCAACGTAC -CCAACAGCGTTAAGAGCAAGTGAC -CCAACAGCGTTAAGAGCACTGTAG -CCAACAGCGTTAAGAGCACCTAAG -CCAACAGCGTTAAGAGCAGTTCAG -CCAACAGCGTTAAGAGCAGCATAG -CCAACAGCGTTAAGAGCAGACAAG -CCAACAGCGTTAAGAGCAAAGCAG -CCAACAGCGTTAAGAGCACGTCAA -CCAACAGCGTTAAGAGCAGCTGAA -CCAACAGCGTTAAGAGCAAGTACG -CCAACAGCGTTAAGAGCAATCCGA -CCAACAGCGTTAAGAGCAATGGGA -CCAACAGCGTTAAGAGCAGTGCAA -CCAACAGCGTTAAGAGCAGAGGAA -CCAACAGCGTTAAGAGCACAGGTA -CCAACAGCGTTAAGAGCAGACTCT -CCAACAGCGTTAAGAGCAAGTCCT -CCAACAGCGTTAAGAGCATAAGCC -CCAACAGCGTTAAGAGCAATAGCC -CCAACAGCGTTAAGAGCATAACCG -CCAACAGCGTTAAGAGCAATGCCA -CCAACAGCGTTATGAGGTGGAAAC -CCAACAGCGTTATGAGGTAACACC -CCAACAGCGTTATGAGGTATCGAG -CCAACAGCGTTATGAGGTCTCCTT -CCAACAGCGTTATGAGGTCCTGTT -CCAACAGCGTTATGAGGTCGGTTT -CCAACAGCGTTATGAGGTGTGGTT -CCAACAGCGTTATGAGGTGCCTTT -CCAACAGCGTTATGAGGTGGTCTT -CCAACAGCGTTATGAGGTACGCTT -CCAACAGCGTTATGAGGTAGCGTT -CCAACAGCGTTATGAGGTTTCGTC -CCAACAGCGTTATGAGGTTCTCTC -CCAACAGCGTTATGAGGTTGGATC -CCAACAGCGTTATGAGGTCACTTC -CCAACAGCGTTATGAGGTGTACTC -CCAACAGCGTTATGAGGTGATGTC -CCAACAGCGTTATGAGGTACAGTC -CCAACAGCGTTATGAGGTTTGCTG -CCAACAGCGTTATGAGGTTCCATG -CCAACAGCGTTATGAGGTTGTGTG -CCAACAGCGTTATGAGGTCTAGTG -CCAACAGCGTTATGAGGTCATCTG -CCAACAGCGTTATGAGGTGAGTTG -CCAACAGCGTTATGAGGTAGACTG -CCAACAGCGTTATGAGGTTCGGTA -CCAACAGCGTTATGAGGTTGCCTA -CCAACAGCGTTATGAGGTCCACTA -CCAACAGCGTTATGAGGTGGAGTA -CCAACAGCGTTATGAGGTTCGTCT -CCAACAGCGTTATGAGGTTGCACT -CCAACAGCGTTATGAGGTCTGACT -CCAACAGCGTTATGAGGTCAACCT -CCAACAGCGTTATGAGGTGCTACT -CCAACAGCGTTATGAGGTGGATCT -CCAACAGCGTTATGAGGTAAGGCT -CCAACAGCGTTATGAGGTTCAACC -CCAACAGCGTTATGAGGTTGTTCC -CCAACAGCGTTATGAGGTATTCCC -CCAACAGCGTTATGAGGTTTCTCG -CCAACAGCGTTATGAGGTTAGACG -CCAACAGCGTTATGAGGTGTAACG -CCAACAGCGTTATGAGGTACTTCG -CCAACAGCGTTATGAGGTTACGCA -CCAACAGCGTTATGAGGTCTTGCA -CCAACAGCGTTATGAGGTCGAACA -CCAACAGCGTTATGAGGTCAGTCA -CCAACAGCGTTATGAGGTGATCCA -CCAACAGCGTTATGAGGTACGACA -CCAACAGCGTTATGAGGTAGCTCA -CCAACAGCGTTATGAGGTTCACGT -CCAACAGCGTTATGAGGTCGTAGT -CCAACAGCGTTATGAGGTGTCAGT -CCAACAGCGTTATGAGGTGAAGGT -CCAACAGCGTTATGAGGTAACCGT -CCAACAGCGTTATGAGGTTTGTGC -CCAACAGCGTTATGAGGTCTAAGC -CCAACAGCGTTATGAGGTACTAGC -CCAACAGCGTTATGAGGTAGATGC -CCAACAGCGTTATGAGGTTGAAGG -CCAACAGCGTTATGAGGTCAATGG -CCAACAGCGTTATGAGGTATGAGG -CCAACAGCGTTATGAGGTAATGGG -CCAACAGCGTTATGAGGTTCCTGA -CCAACAGCGTTATGAGGTTAGCGA -CCAACAGCGTTATGAGGTCACAGA -CCAACAGCGTTATGAGGTGCAAGA -CCAACAGCGTTATGAGGTGGTTGA -CCAACAGCGTTATGAGGTTCCGAT -CCAACAGCGTTATGAGGTTGGCAT -CCAACAGCGTTATGAGGTCGAGAT -CCAACAGCGTTATGAGGTTACCAC -CCAACAGCGTTATGAGGTCAGAAC -CCAACAGCGTTATGAGGTGTCTAC -CCAACAGCGTTATGAGGTACGTAC -CCAACAGCGTTATGAGGTAGTGAC -CCAACAGCGTTATGAGGTCTGTAG -CCAACAGCGTTATGAGGTCCTAAG -CCAACAGCGTTATGAGGTGTTCAG -CCAACAGCGTTATGAGGTGCATAG -CCAACAGCGTTATGAGGTGACAAG -CCAACAGCGTTATGAGGTAAGCAG -CCAACAGCGTTATGAGGTCGTCAA -CCAACAGCGTTATGAGGTGCTGAA -CCAACAGCGTTATGAGGTAGTACG -CCAACAGCGTTATGAGGTATCCGA -CCAACAGCGTTATGAGGTATGGGA -CCAACAGCGTTATGAGGTGTGCAA -CCAACAGCGTTATGAGGTGAGGAA -CCAACAGCGTTATGAGGTCAGGTA -CCAACAGCGTTATGAGGTGACTCT -CCAACAGCGTTATGAGGTAGTCCT -CCAACAGCGTTATGAGGTTAAGCC -CCAACAGCGTTATGAGGTATAGCC -CCAACAGCGTTATGAGGTTAACCG -CCAACAGCGTTATGAGGTATGCCA -CCAACAGCGTTAGATTCCGGAAAC -CCAACAGCGTTAGATTCCAACACC -CCAACAGCGTTAGATTCCATCGAG -CCAACAGCGTTAGATTCCCTCCTT -CCAACAGCGTTAGATTCCCCTGTT -CCAACAGCGTTAGATTCCCGGTTT -CCAACAGCGTTAGATTCCGTGGTT -CCAACAGCGTTAGATTCCGCCTTT -CCAACAGCGTTAGATTCCGGTCTT -CCAACAGCGTTAGATTCCACGCTT -CCAACAGCGTTAGATTCCAGCGTT -CCAACAGCGTTAGATTCCTTCGTC -CCAACAGCGTTAGATTCCTCTCTC -CCAACAGCGTTAGATTCCTGGATC -CCAACAGCGTTAGATTCCCACTTC -CCAACAGCGTTAGATTCCGTACTC -CCAACAGCGTTAGATTCCGATGTC -CCAACAGCGTTAGATTCCACAGTC -CCAACAGCGTTAGATTCCTTGCTG -CCAACAGCGTTAGATTCCTCCATG -CCAACAGCGTTAGATTCCTGTGTG -CCAACAGCGTTAGATTCCCTAGTG -CCAACAGCGTTAGATTCCCATCTG -CCAACAGCGTTAGATTCCGAGTTG -CCAACAGCGTTAGATTCCAGACTG -CCAACAGCGTTAGATTCCTCGGTA -CCAACAGCGTTAGATTCCTGCCTA -CCAACAGCGTTAGATTCCCCACTA -CCAACAGCGTTAGATTCCGGAGTA -CCAACAGCGTTAGATTCCTCGTCT -CCAACAGCGTTAGATTCCTGCACT -CCAACAGCGTTAGATTCCCTGACT -CCAACAGCGTTAGATTCCCAACCT -CCAACAGCGTTAGATTCCGCTACT -CCAACAGCGTTAGATTCCGGATCT -CCAACAGCGTTAGATTCCAAGGCT -CCAACAGCGTTAGATTCCTCAACC -CCAACAGCGTTAGATTCCTGTTCC -CCAACAGCGTTAGATTCCATTCCC -CCAACAGCGTTAGATTCCTTCTCG -CCAACAGCGTTAGATTCCTAGACG -CCAACAGCGTTAGATTCCGTAACG -CCAACAGCGTTAGATTCCACTTCG -CCAACAGCGTTAGATTCCTACGCA -CCAACAGCGTTAGATTCCCTTGCA -CCAACAGCGTTAGATTCCCGAACA -CCAACAGCGTTAGATTCCCAGTCA -CCAACAGCGTTAGATTCCGATCCA -CCAACAGCGTTAGATTCCACGACA -CCAACAGCGTTAGATTCCAGCTCA -CCAACAGCGTTAGATTCCTCACGT -CCAACAGCGTTAGATTCCCGTAGT -CCAACAGCGTTAGATTCCGTCAGT -CCAACAGCGTTAGATTCCGAAGGT -CCAACAGCGTTAGATTCCAACCGT -CCAACAGCGTTAGATTCCTTGTGC -CCAACAGCGTTAGATTCCCTAAGC -CCAACAGCGTTAGATTCCACTAGC -CCAACAGCGTTAGATTCCAGATGC -CCAACAGCGTTAGATTCCTGAAGG -CCAACAGCGTTAGATTCCCAATGG -CCAACAGCGTTAGATTCCATGAGG -CCAACAGCGTTAGATTCCAATGGG -CCAACAGCGTTAGATTCCTCCTGA -CCAACAGCGTTAGATTCCTAGCGA -CCAACAGCGTTAGATTCCCACAGA -CCAACAGCGTTAGATTCCGCAAGA -CCAACAGCGTTAGATTCCGGTTGA -CCAACAGCGTTAGATTCCTCCGAT -CCAACAGCGTTAGATTCCTGGCAT -CCAACAGCGTTAGATTCCCGAGAT -CCAACAGCGTTAGATTCCTACCAC -CCAACAGCGTTAGATTCCCAGAAC -CCAACAGCGTTAGATTCCGTCTAC -CCAACAGCGTTAGATTCCACGTAC -CCAACAGCGTTAGATTCCAGTGAC -CCAACAGCGTTAGATTCCCTGTAG -CCAACAGCGTTAGATTCCCCTAAG -CCAACAGCGTTAGATTCCGTTCAG -CCAACAGCGTTAGATTCCGCATAG -CCAACAGCGTTAGATTCCGACAAG -CCAACAGCGTTAGATTCCAAGCAG -CCAACAGCGTTAGATTCCCGTCAA -CCAACAGCGTTAGATTCCGCTGAA -CCAACAGCGTTAGATTCCAGTACG -CCAACAGCGTTAGATTCCATCCGA -CCAACAGCGTTAGATTCCATGGGA -CCAACAGCGTTAGATTCCGTGCAA -CCAACAGCGTTAGATTCCGAGGAA -CCAACAGCGTTAGATTCCCAGGTA -CCAACAGCGTTAGATTCCGACTCT -CCAACAGCGTTAGATTCCAGTCCT -CCAACAGCGTTAGATTCCTAAGCC -CCAACAGCGTTAGATTCCATAGCC -CCAACAGCGTTAGATTCCTAACCG -CCAACAGCGTTAGATTCCATGCCA -CCAACAGCGTTACATTGGGGAAAC -CCAACAGCGTTACATTGGAACACC -CCAACAGCGTTACATTGGATCGAG -CCAACAGCGTTACATTGGCTCCTT -CCAACAGCGTTACATTGGCCTGTT -CCAACAGCGTTACATTGGCGGTTT -CCAACAGCGTTACATTGGGTGGTT -CCAACAGCGTTACATTGGGCCTTT -CCAACAGCGTTACATTGGGGTCTT -CCAACAGCGTTACATTGGACGCTT -CCAACAGCGTTACATTGGAGCGTT -CCAACAGCGTTACATTGGTTCGTC -CCAACAGCGTTACATTGGTCTCTC -CCAACAGCGTTACATTGGTGGATC -CCAACAGCGTTACATTGGCACTTC -CCAACAGCGTTACATTGGGTACTC -CCAACAGCGTTACATTGGGATGTC -CCAACAGCGTTACATTGGACAGTC -CCAACAGCGTTACATTGGTTGCTG -CCAACAGCGTTACATTGGTCCATG -CCAACAGCGTTACATTGGTGTGTG -CCAACAGCGTTACATTGGCTAGTG -CCAACAGCGTTACATTGGCATCTG -CCAACAGCGTTACATTGGGAGTTG -CCAACAGCGTTACATTGGAGACTG -CCAACAGCGTTACATTGGTCGGTA -CCAACAGCGTTACATTGGTGCCTA -CCAACAGCGTTACATTGGCCACTA -CCAACAGCGTTACATTGGGGAGTA -CCAACAGCGTTACATTGGTCGTCT -CCAACAGCGTTACATTGGTGCACT -CCAACAGCGTTACATTGGCTGACT -CCAACAGCGTTACATTGGCAACCT -CCAACAGCGTTACATTGGGCTACT -CCAACAGCGTTACATTGGGGATCT -CCAACAGCGTTACATTGGAAGGCT -CCAACAGCGTTACATTGGTCAACC -CCAACAGCGTTACATTGGTGTTCC -CCAACAGCGTTACATTGGATTCCC -CCAACAGCGTTACATTGGTTCTCG -CCAACAGCGTTACATTGGTAGACG -CCAACAGCGTTACATTGGGTAACG -CCAACAGCGTTACATTGGACTTCG -CCAACAGCGTTACATTGGTACGCA -CCAACAGCGTTACATTGGCTTGCA -CCAACAGCGTTACATTGGCGAACA -CCAACAGCGTTACATTGGCAGTCA -CCAACAGCGTTACATTGGGATCCA -CCAACAGCGTTACATTGGACGACA -CCAACAGCGTTACATTGGAGCTCA -CCAACAGCGTTACATTGGTCACGT -CCAACAGCGTTACATTGGCGTAGT -CCAACAGCGTTACATTGGGTCAGT -CCAACAGCGTTACATTGGGAAGGT -CCAACAGCGTTACATTGGAACCGT -CCAACAGCGTTACATTGGTTGTGC -CCAACAGCGTTACATTGGCTAAGC -CCAACAGCGTTACATTGGACTAGC -CCAACAGCGTTACATTGGAGATGC -CCAACAGCGTTACATTGGTGAAGG -CCAACAGCGTTACATTGGCAATGG -CCAACAGCGTTACATTGGATGAGG -CCAACAGCGTTACATTGGAATGGG -CCAACAGCGTTACATTGGTCCTGA -CCAACAGCGTTACATTGGTAGCGA -CCAACAGCGTTACATTGGCACAGA -CCAACAGCGTTACATTGGGCAAGA -CCAACAGCGTTACATTGGGGTTGA -CCAACAGCGTTACATTGGTCCGAT -CCAACAGCGTTACATTGGTGGCAT -CCAACAGCGTTACATTGGCGAGAT -CCAACAGCGTTACATTGGTACCAC -CCAACAGCGTTACATTGGCAGAAC -CCAACAGCGTTACATTGGGTCTAC -CCAACAGCGTTACATTGGACGTAC -CCAACAGCGTTACATTGGAGTGAC -CCAACAGCGTTACATTGGCTGTAG -CCAACAGCGTTACATTGGCCTAAG -CCAACAGCGTTACATTGGGTTCAG -CCAACAGCGTTACATTGGGCATAG -CCAACAGCGTTACATTGGGACAAG -CCAACAGCGTTACATTGGAAGCAG -CCAACAGCGTTACATTGGCGTCAA -CCAACAGCGTTACATTGGGCTGAA -CCAACAGCGTTACATTGGAGTACG -CCAACAGCGTTACATTGGATCCGA -CCAACAGCGTTACATTGGATGGGA -CCAACAGCGTTACATTGGGTGCAA -CCAACAGCGTTACATTGGGAGGAA -CCAACAGCGTTACATTGGCAGGTA -CCAACAGCGTTACATTGGGACTCT -CCAACAGCGTTACATTGGAGTCCT -CCAACAGCGTTACATTGGTAAGCC -CCAACAGCGTTACATTGGATAGCC -CCAACAGCGTTACATTGGTAACCG -CCAACAGCGTTACATTGGATGCCA -CCAACAGCGTTAGATCGAGGAAAC -CCAACAGCGTTAGATCGAAACACC -CCAACAGCGTTAGATCGAATCGAG -CCAACAGCGTTAGATCGACTCCTT -CCAACAGCGTTAGATCGACCTGTT -CCAACAGCGTTAGATCGACGGTTT -CCAACAGCGTTAGATCGAGTGGTT -CCAACAGCGTTAGATCGAGCCTTT -CCAACAGCGTTAGATCGAGGTCTT -CCAACAGCGTTAGATCGAACGCTT -CCAACAGCGTTAGATCGAAGCGTT -CCAACAGCGTTAGATCGATTCGTC -CCAACAGCGTTAGATCGATCTCTC -CCAACAGCGTTAGATCGATGGATC -CCAACAGCGTTAGATCGACACTTC -CCAACAGCGTTAGATCGAGTACTC -CCAACAGCGTTAGATCGAGATGTC -CCAACAGCGTTAGATCGAACAGTC -CCAACAGCGTTAGATCGATTGCTG -CCAACAGCGTTAGATCGATCCATG -CCAACAGCGTTAGATCGATGTGTG -CCAACAGCGTTAGATCGACTAGTG -CCAACAGCGTTAGATCGACATCTG -CCAACAGCGTTAGATCGAGAGTTG -CCAACAGCGTTAGATCGAAGACTG -CCAACAGCGTTAGATCGATCGGTA -CCAACAGCGTTAGATCGATGCCTA -CCAACAGCGTTAGATCGACCACTA -CCAACAGCGTTAGATCGAGGAGTA -CCAACAGCGTTAGATCGATCGTCT -CCAACAGCGTTAGATCGATGCACT -CCAACAGCGTTAGATCGACTGACT -CCAACAGCGTTAGATCGACAACCT -CCAACAGCGTTAGATCGAGCTACT -CCAACAGCGTTAGATCGAGGATCT -CCAACAGCGTTAGATCGAAAGGCT -CCAACAGCGTTAGATCGATCAACC -CCAACAGCGTTAGATCGATGTTCC -CCAACAGCGTTAGATCGAATTCCC -CCAACAGCGTTAGATCGATTCTCG -CCAACAGCGTTAGATCGATAGACG -CCAACAGCGTTAGATCGAGTAACG -CCAACAGCGTTAGATCGAACTTCG -CCAACAGCGTTAGATCGATACGCA -CCAACAGCGTTAGATCGACTTGCA -CCAACAGCGTTAGATCGACGAACA -CCAACAGCGTTAGATCGACAGTCA -CCAACAGCGTTAGATCGAGATCCA -CCAACAGCGTTAGATCGAACGACA -CCAACAGCGTTAGATCGAAGCTCA -CCAACAGCGTTAGATCGATCACGT -CCAACAGCGTTAGATCGACGTAGT -CCAACAGCGTTAGATCGAGTCAGT -CCAACAGCGTTAGATCGAGAAGGT -CCAACAGCGTTAGATCGAAACCGT -CCAACAGCGTTAGATCGATTGTGC -CCAACAGCGTTAGATCGACTAAGC -CCAACAGCGTTAGATCGAACTAGC -CCAACAGCGTTAGATCGAAGATGC -CCAACAGCGTTAGATCGATGAAGG -CCAACAGCGTTAGATCGACAATGG -CCAACAGCGTTAGATCGAATGAGG -CCAACAGCGTTAGATCGAAATGGG -CCAACAGCGTTAGATCGATCCTGA -CCAACAGCGTTAGATCGATAGCGA -CCAACAGCGTTAGATCGACACAGA -CCAACAGCGTTAGATCGAGCAAGA -CCAACAGCGTTAGATCGAGGTTGA -CCAACAGCGTTAGATCGATCCGAT -CCAACAGCGTTAGATCGATGGCAT -CCAACAGCGTTAGATCGACGAGAT -CCAACAGCGTTAGATCGATACCAC -CCAACAGCGTTAGATCGACAGAAC -CCAACAGCGTTAGATCGAGTCTAC -CCAACAGCGTTAGATCGAACGTAC -CCAACAGCGTTAGATCGAAGTGAC -CCAACAGCGTTAGATCGACTGTAG -CCAACAGCGTTAGATCGACCTAAG -CCAACAGCGTTAGATCGAGTTCAG -CCAACAGCGTTAGATCGAGCATAG -CCAACAGCGTTAGATCGAGACAAG -CCAACAGCGTTAGATCGAAAGCAG -CCAACAGCGTTAGATCGACGTCAA -CCAACAGCGTTAGATCGAGCTGAA -CCAACAGCGTTAGATCGAAGTACG -CCAACAGCGTTAGATCGAATCCGA -CCAACAGCGTTAGATCGAATGGGA -CCAACAGCGTTAGATCGAGTGCAA -CCAACAGCGTTAGATCGAGAGGAA -CCAACAGCGTTAGATCGACAGGTA -CCAACAGCGTTAGATCGAGACTCT -CCAACAGCGTTAGATCGAAGTCCT -CCAACAGCGTTAGATCGATAAGCC -CCAACAGCGTTAGATCGAATAGCC -CCAACAGCGTTAGATCGATAACCG -CCAACAGCGTTAGATCGAATGCCA -CCAACAGCGTTACACTACGGAAAC -CCAACAGCGTTACACTACAACACC -CCAACAGCGTTACACTACATCGAG -CCAACAGCGTTACACTACCTCCTT -CCAACAGCGTTACACTACCCTGTT -CCAACAGCGTTACACTACCGGTTT -CCAACAGCGTTACACTACGTGGTT -CCAACAGCGTTACACTACGCCTTT -CCAACAGCGTTACACTACGGTCTT -CCAACAGCGTTACACTACACGCTT -CCAACAGCGTTACACTACAGCGTT -CCAACAGCGTTACACTACTTCGTC -CCAACAGCGTTACACTACTCTCTC -CCAACAGCGTTACACTACTGGATC -CCAACAGCGTTACACTACCACTTC -CCAACAGCGTTACACTACGTACTC -CCAACAGCGTTACACTACGATGTC -CCAACAGCGTTACACTACACAGTC -CCAACAGCGTTACACTACTTGCTG -CCAACAGCGTTACACTACTCCATG -CCAACAGCGTTACACTACTGTGTG -CCAACAGCGTTACACTACCTAGTG -CCAACAGCGTTACACTACCATCTG -CCAACAGCGTTACACTACGAGTTG -CCAACAGCGTTACACTACAGACTG -CCAACAGCGTTACACTACTCGGTA -CCAACAGCGTTACACTACTGCCTA -CCAACAGCGTTACACTACCCACTA -CCAACAGCGTTACACTACGGAGTA -CCAACAGCGTTACACTACTCGTCT -CCAACAGCGTTACACTACTGCACT -CCAACAGCGTTACACTACCTGACT -CCAACAGCGTTACACTACCAACCT -CCAACAGCGTTACACTACGCTACT -CCAACAGCGTTACACTACGGATCT -CCAACAGCGTTACACTACAAGGCT -CCAACAGCGTTACACTACTCAACC -CCAACAGCGTTACACTACTGTTCC -CCAACAGCGTTACACTACATTCCC -CCAACAGCGTTACACTACTTCTCG -CCAACAGCGTTACACTACTAGACG -CCAACAGCGTTACACTACGTAACG -CCAACAGCGTTACACTACACTTCG -CCAACAGCGTTACACTACTACGCA -CCAACAGCGTTACACTACCTTGCA -CCAACAGCGTTACACTACCGAACA -CCAACAGCGTTACACTACCAGTCA -CCAACAGCGTTACACTACGATCCA -CCAACAGCGTTACACTACACGACA -CCAACAGCGTTACACTACAGCTCA -CCAACAGCGTTACACTACTCACGT -CCAACAGCGTTACACTACCGTAGT -CCAACAGCGTTACACTACGTCAGT -CCAACAGCGTTACACTACGAAGGT -CCAACAGCGTTACACTACAACCGT -CCAACAGCGTTACACTACTTGTGC -CCAACAGCGTTACACTACCTAAGC -CCAACAGCGTTACACTACACTAGC -CCAACAGCGTTACACTACAGATGC -CCAACAGCGTTACACTACTGAAGG -CCAACAGCGTTACACTACCAATGG -CCAACAGCGTTACACTACATGAGG -CCAACAGCGTTACACTACAATGGG -CCAACAGCGTTACACTACTCCTGA -CCAACAGCGTTACACTACTAGCGA -CCAACAGCGTTACACTACCACAGA -CCAACAGCGTTACACTACGCAAGA -CCAACAGCGTTACACTACGGTTGA -CCAACAGCGTTACACTACTCCGAT -CCAACAGCGTTACACTACTGGCAT -CCAACAGCGTTACACTACCGAGAT -CCAACAGCGTTACACTACTACCAC -CCAACAGCGTTACACTACCAGAAC -CCAACAGCGTTACACTACGTCTAC -CCAACAGCGTTACACTACACGTAC -CCAACAGCGTTACACTACAGTGAC -CCAACAGCGTTACACTACCTGTAG -CCAACAGCGTTACACTACCCTAAG -CCAACAGCGTTACACTACGTTCAG -CCAACAGCGTTACACTACGCATAG -CCAACAGCGTTACACTACGACAAG -CCAACAGCGTTACACTACAAGCAG -CCAACAGCGTTACACTACCGTCAA -CCAACAGCGTTACACTACGCTGAA -CCAACAGCGTTACACTACAGTACG -CCAACAGCGTTACACTACATCCGA -CCAACAGCGTTACACTACATGGGA -CCAACAGCGTTACACTACGTGCAA -CCAACAGCGTTACACTACGAGGAA -CCAACAGCGTTACACTACCAGGTA -CCAACAGCGTTACACTACGACTCT -CCAACAGCGTTACACTACAGTCCT -CCAACAGCGTTACACTACTAAGCC -CCAACAGCGTTACACTACATAGCC -CCAACAGCGTTACACTACTAACCG -CCAACAGCGTTACACTACATGCCA -CCAACAGCGTTAAACCAGGGAAAC -CCAACAGCGTTAAACCAGAACACC -CCAACAGCGTTAAACCAGATCGAG -CCAACAGCGTTAAACCAGCTCCTT -CCAACAGCGTTAAACCAGCCTGTT -CCAACAGCGTTAAACCAGCGGTTT -CCAACAGCGTTAAACCAGGTGGTT -CCAACAGCGTTAAACCAGGCCTTT -CCAACAGCGTTAAACCAGGGTCTT -CCAACAGCGTTAAACCAGACGCTT -CCAACAGCGTTAAACCAGAGCGTT -CCAACAGCGTTAAACCAGTTCGTC -CCAACAGCGTTAAACCAGTCTCTC -CCAACAGCGTTAAACCAGTGGATC -CCAACAGCGTTAAACCAGCACTTC -CCAACAGCGTTAAACCAGGTACTC -CCAACAGCGTTAAACCAGGATGTC -CCAACAGCGTTAAACCAGACAGTC -CCAACAGCGTTAAACCAGTTGCTG -CCAACAGCGTTAAACCAGTCCATG -CCAACAGCGTTAAACCAGTGTGTG -CCAACAGCGTTAAACCAGCTAGTG -CCAACAGCGTTAAACCAGCATCTG -CCAACAGCGTTAAACCAGGAGTTG -CCAACAGCGTTAAACCAGAGACTG -CCAACAGCGTTAAACCAGTCGGTA -CCAACAGCGTTAAACCAGTGCCTA -CCAACAGCGTTAAACCAGCCACTA -CCAACAGCGTTAAACCAGGGAGTA -CCAACAGCGTTAAACCAGTCGTCT -CCAACAGCGTTAAACCAGTGCACT -CCAACAGCGTTAAACCAGCTGACT -CCAACAGCGTTAAACCAGCAACCT -CCAACAGCGTTAAACCAGGCTACT -CCAACAGCGTTAAACCAGGGATCT -CCAACAGCGTTAAACCAGAAGGCT -CCAACAGCGTTAAACCAGTCAACC -CCAACAGCGTTAAACCAGTGTTCC -CCAACAGCGTTAAACCAGATTCCC -CCAACAGCGTTAAACCAGTTCTCG -CCAACAGCGTTAAACCAGTAGACG -CCAACAGCGTTAAACCAGGTAACG -CCAACAGCGTTAAACCAGACTTCG -CCAACAGCGTTAAACCAGTACGCA -CCAACAGCGTTAAACCAGCTTGCA -CCAACAGCGTTAAACCAGCGAACA -CCAACAGCGTTAAACCAGCAGTCA -CCAACAGCGTTAAACCAGGATCCA -CCAACAGCGTTAAACCAGACGACA -CCAACAGCGTTAAACCAGAGCTCA -CCAACAGCGTTAAACCAGTCACGT -CCAACAGCGTTAAACCAGCGTAGT -CCAACAGCGTTAAACCAGGTCAGT -CCAACAGCGTTAAACCAGGAAGGT -CCAACAGCGTTAAACCAGAACCGT -CCAACAGCGTTAAACCAGTTGTGC -CCAACAGCGTTAAACCAGCTAAGC -CCAACAGCGTTAAACCAGACTAGC -CCAACAGCGTTAAACCAGAGATGC -CCAACAGCGTTAAACCAGTGAAGG -CCAACAGCGTTAAACCAGCAATGG -CCAACAGCGTTAAACCAGATGAGG -CCAACAGCGTTAAACCAGAATGGG -CCAACAGCGTTAAACCAGTCCTGA -CCAACAGCGTTAAACCAGTAGCGA -CCAACAGCGTTAAACCAGCACAGA -CCAACAGCGTTAAACCAGGCAAGA -CCAACAGCGTTAAACCAGGGTTGA -CCAACAGCGTTAAACCAGTCCGAT -CCAACAGCGTTAAACCAGTGGCAT -CCAACAGCGTTAAACCAGCGAGAT -CCAACAGCGTTAAACCAGTACCAC -CCAACAGCGTTAAACCAGCAGAAC -CCAACAGCGTTAAACCAGGTCTAC -CCAACAGCGTTAAACCAGACGTAC -CCAACAGCGTTAAACCAGAGTGAC -CCAACAGCGTTAAACCAGCTGTAG -CCAACAGCGTTAAACCAGCCTAAG -CCAACAGCGTTAAACCAGGTTCAG -CCAACAGCGTTAAACCAGGCATAG -CCAACAGCGTTAAACCAGGACAAG -CCAACAGCGTTAAACCAGAAGCAG -CCAACAGCGTTAAACCAGCGTCAA -CCAACAGCGTTAAACCAGGCTGAA -CCAACAGCGTTAAACCAGAGTACG -CCAACAGCGTTAAACCAGATCCGA -CCAACAGCGTTAAACCAGATGGGA -CCAACAGCGTTAAACCAGGTGCAA -CCAACAGCGTTAAACCAGGAGGAA -CCAACAGCGTTAAACCAGCAGGTA -CCAACAGCGTTAAACCAGGACTCT -CCAACAGCGTTAAACCAGAGTCCT -CCAACAGCGTTAAACCAGTAAGCC -CCAACAGCGTTAAACCAGATAGCC -CCAACAGCGTTAAACCAGTAACCG -CCAACAGCGTTAAACCAGATGCCA -CCAACAGCGTTATACGTCGGAAAC -CCAACAGCGTTATACGTCAACACC -CCAACAGCGTTATACGTCATCGAG -CCAACAGCGTTATACGTCCTCCTT -CCAACAGCGTTATACGTCCCTGTT -CCAACAGCGTTATACGTCCGGTTT -CCAACAGCGTTATACGTCGTGGTT -CCAACAGCGTTATACGTCGCCTTT -CCAACAGCGTTATACGTCGGTCTT -CCAACAGCGTTATACGTCACGCTT -CCAACAGCGTTATACGTCAGCGTT -CCAACAGCGTTATACGTCTTCGTC -CCAACAGCGTTATACGTCTCTCTC -CCAACAGCGTTATACGTCTGGATC -CCAACAGCGTTATACGTCCACTTC -CCAACAGCGTTATACGTCGTACTC -CCAACAGCGTTATACGTCGATGTC -CCAACAGCGTTATACGTCACAGTC -CCAACAGCGTTATACGTCTTGCTG -CCAACAGCGTTATACGTCTCCATG -CCAACAGCGTTATACGTCTGTGTG -CCAACAGCGTTATACGTCCTAGTG -CCAACAGCGTTATACGTCCATCTG -CCAACAGCGTTATACGTCGAGTTG -CCAACAGCGTTATACGTCAGACTG -CCAACAGCGTTATACGTCTCGGTA -CCAACAGCGTTATACGTCTGCCTA -CCAACAGCGTTATACGTCCCACTA -CCAACAGCGTTATACGTCGGAGTA -CCAACAGCGTTATACGTCTCGTCT -CCAACAGCGTTATACGTCTGCACT -CCAACAGCGTTATACGTCCTGACT -CCAACAGCGTTATACGTCCAACCT -CCAACAGCGTTATACGTCGCTACT -CCAACAGCGTTATACGTCGGATCT -CCAACAGCGTTATACGTCAAGGCT -CCAACAGCGTTATACGTCTCAACC -CCAACAGCGTTATACGTCTGTTCC -CCAACAGCGTTATACGTCATTCCC -CCAACAGCGTTATACGTCTTCTCG -CCAACAGCGTTATACGTCTAGACG -CCAACAGCGTTATACGTCGTAACG -CCAACAGCGTTATACGTCACTTCG -CCAACAGCGTTATACGTCTACGCA -CCAACAGCGTTATACGTCCTTGCA -CCAACAGCGTTATACGTCCGAACA -CCAACAGCGTTATACGTCCAGTCA -CCAACAGCGTTATACGTCGATCCA -CCAACAGCGTTATACGTCACGACA -CCAACAGCGTTATACGTCAGCTCA -CCAACAGCGTTATACGTCTCACGT -CCAACAGCGTTATACGTCCGTAGT -CCAACAGCGTTATACGTCGTCAGT -CCAACAGCGTTATACGTCGAAGGT -CCAACAGCGTTATACGTCAACCGT -CCAACAGCGTTATACGTCTTGTGC -CCAACAGCGTTATACGTCCTAAGC -CCAACAGCGTTATACGTCACTAGC -CCAACAGCGTTATACGTCAGATGC -CCAACAGCGTTATACGTCTGAAGG -CCAACAGCGTTATACGTCCAATGG -CCAACAGCGTTATACGTCATGAGG -CCAACAGCGTTATACGTCAATGGG -CCAACAGCGTTATACGTCTCCTGA -CCAACAGCGTTATACGTCTAGCGA -CCAACAGCGTTATACGTCCACAGA -CCAACAGCGTTATACGTCGCAAGA -CCAACAGCGTTATACGTCGGTTGA -CCAACAGCGTTATACGTCTCCGAT -CCAACAGCGTTATACGTCTGGCAT -CCAACAGCGTTATACGTCCGAGAT -CCAACAGCGTTATACGTCTACCAC -CCAACAGCGTTATACGTCCAGAAC -CCAACAGCGTTATACGTCGTCTAC -CCAACAGCGTTATACGTCACGTAC -CCAACAGCGTTATACGTCAGTGAC -CCAACAGCGTTATACGTCCTGTAG -CCAACAGCGTTATACGTCCCTAAG -CCAACAGCGTTATACGTCGTTCAG -CCAACAGCGTTATACGTCGCATAG -CCAACAGCGTTATACGTCGACAAG -CCAACAGCGTTATACGTCAAGCAG -CCAACAGCGTTATACGTCCGTCAA -CCAACAGCGTTATACGTCGCTGAA -CCAACAGCGTTATACGTCAGTACG -CCAACAGCGTTATACGTCATCCGA -CCAACAGCGTTATACGTCATGGGA -CCAACAGCGTTATACGTCGTGCAA -CCAACAGCGTTATACGTCGAGGAA -CCAACAGCGTTATACGTCCAGGTA -CCAACAGCGTTATACGTCGACTCT -CCAACAGCGTTATACGTCAGTCCT -CCAACAGCGTTATACGTCTAAGCC -CCAACAGCGTTATACGTCATAGCC -CCAACAGCGTTATACGTCTAACCG -CCAACAGCGTTATACGTCATGCCA -CCAACAGCGTTATACACGGGAAAC -CCAACAGCGTTATACACGAACACC -CCAACAGCGTTATACACGATCGAG -CCAACAGCGTTATACACGCTCCTT -CCAACAGCGTTATACACGCCTGTT -CCAACAGCGTTATACACGCGGTTT -CCAACAGCGTTATACACGGTGGTT -CCAACAGCGTTATACACGGCCTTT -CCAACAGCGTTATACACGGGTCTT -CCAACAGCGTTATACACGACGCTT -CCAACAGCGTTATACACGAGCGTT -CCAACAGCGTTATACACGTTCGTC -CCAACAGCGTTATACACGTCTCTC -CCAACAGCGTTATACACGTGGATC -CCAACAGCGTTATACACGCACTTC -CCAACAGCGTTATACACGGTACTC -CCAACAGCGTTATACACGGATGTC -CCAACAGCGTTATACACGACAGTC -CCAACAGCGTTATACACGTTGCTG -CCAACAGCGTTATACACGTCCATG -CCAACAGCGTTATACACGTGTGTG -CCAACAGCGTTATACACGCTAGTG -CCAACAGCGTTATACACGCATCTG -CCAACAGCGTTATACACGGAGTTG -CCAACAGCGTTATACACGAGACTG -CCAACAGCGTTATACACGTCGGTA -CCAACAGCGTTATACACGTGCCTA -CCAACAGCGTTATACACGCCACTA -CCAACAGCGTTATACACGGGAGTA -CCAACAGCGTTATACACGTCGTCT -CCAACAGCGTTATACACGTGCACT -CCAACAGCGTTATACACGCTGACT -CCAACAGCGTTATACACGCAACCT -CCAACAGCGTTATACACGGCTACT -CCAACAGCGTTATACACGGGATCT -CCAACAGCGTTATACACGAAGGCT -CCAACAGCGTTATACACGTCAACC -CCAACAGCGTTATACACGTGTTCC -CCAACAGCGTTATACACGATTCCC -CCAACAGCGTTATACACGTTCTCG -CCAACAGCGTTATACACGTAGACG -CCAACAGCGTTATACACGGTAACG -CCAACAGCGTTATACACGACTTCG -CCAACAGCGTTATACACGTACGCA -CCAACAGCGTTATACACGCTTGCA -CCAACAGCGTTATACACGCGAACA -CCAACAGCGTTATACACGCAGTCA -CCAACAGCGTTATACACGGATCCA -CCAACAGCGTTATACACGACGACA -CCAACAGCGTTATACACGAGCTCA -CCAACAGCGTTATACACGTCACGT -CCAACAGCGTTATACACGCGTAGT -CCAACAGCGTTATACACGGTCAGT -CCAACAGCGTTATACACGGAAGGT -CCAACAGCGTTATACACGAACCGT -CCAACAGCGTTATACACGTTGTGC -CCAACAGCGTTATACACGCTAAGC -CCAACAGCGTTATACACGACTAGC -CCAACAGCGTTATACACGAGATGC -CCAACAGCGTTATACACGTGAAGG -CCAACAGCGTTATACACGCAATGG -CCAACAGCGTTATACACGATGAGG -CCAACAGCGTTATACACGAATGGG -CCAACAGCGTTATACACGTCCTGA -CCAACAGCGTTATACACGTAGCGA -CCAACAGCGTTATACACGCACAGA -CCAACAGCGTTATACACGGCAAGA -CCAACAGCGTTATACACGGGTTGA -CCAACAGCGTTATACACGTCCGAT -CCAACAGCGTTATACACGTGGCAT -CCAACAGCGTTATACACGCGAGAT -CCAACAGCGTTATACACGTACCAC -CCAACAGCGTTATACACGCAGAAC -CCAACAGCGTTATACACGGTCTAC -CCAACAGCGTTATACACGACGTAC -CCAACAGCGTTATACACGAGTGAC -CCAACAGCGTTATACACGCTGTAG -CCAACAGCGTTATACACGCCTAAG -CCAACAGCGTTATACACGGTTCAG -CCAACAGCGTTATACACGGCATAG -CCAACAGCGTTATACACGGACAAG -CCAACAGCGTTATACACGAAGCAG -CCAACAGCGTTATACACGCGTCAA -CCAACAGCGTTATACACGGCTGAA -CCAACAGCGTTATACACGAGTACG -CCAACAGCGTTATACACGATCCGA -CCAACAGCGTTATACACGATGGGA -CCAACAGCGTTATACACGGTGCAA -CCAACAGCGTTATACACGGAGGAA -CCAACAGCGTTATACACGCAGGTA -CCAACAGCGTTATACACGGACTCT -CCAACAGCGTTATACACGAGTCCT -CCAACAGCGTTATACACGTAAGCC -CCAACAGCGTTATACACGATAGCC -CCAACAGCGTTATACACGTAACCG -CCAACAGCGTTATACACGATGCCA -CCAACAGCGTTAGACAGTGGAAAC -CCAACAGCGTTAGACAGTAACACC -CCAACAGCGTTAGACAGTATCGAG -CCAACAGCGTTAGACAGTCTCCTT -CCAACAGCGTTAGACAGTCCTGTT -CCAACAGCGTTAGACAGTCGGTTT -CCAACAGCGTTAGACAGTGTGGTT -CCAACAGCGTTAGACAGTGCCTTT -CCAACAGCGTTAGACAGTGGTCTT -CCAACAGCGTTAGACAGTACGCTT -CCAACAGCGTTAGACAGTAGCGTT -CCAACAGCGTTAGACAGTTTCGTC -CCAACAGCGTTAGACAGTTCTCTC -CCAACAGCGTTAGACAGTTGGATC -CCAACAGCGTTAGACAGTCACTTC -CCAACAGCGTTAGACAGTGTACTC -CCAACAGCGTTAGACAGTGATGTC -CCAACAGCGTTAGACAGTACAGTC -CCAACAGCGTTAGACAGTTTGCTG -CCAACAGCGTTAGACAGTTCCATG -CCAACAGCGTTAGACAGTTGTGTG -CCAACAGCGTTAGACAGTCTAGTG -CCAACAGCGTTAGACAGTCATCTG -CCAACAGCGTTAGACAGTGAGTTG -CCAACAGCGTTAGACAGTAGACTG -CCAACAGCGTTAGACAGTTCGGTA -CCAACAGCGTTAGACAGTTGCCTA -CCAACAGCGTTAGACAGTCCACTA -CCAACAGCGTTAGACAGTGGAGTA -CCAACAGCGTTAGACAGTTCGTCT -CCAACAGCGTTAGACAGTTGCACT -CCAACAGCGTTAGACAGTCTGACT -CCAACAGCGTTAGACAGTCAACCT -CCAACAGCGTTAGACAGTGCTACT -CCAACAGCGTTAGACAGTGGATCT -CCAACAGCGTTAGACAGTAAGGCT -CCAACAGCGTTAGACAGTTCAACC -CCAACAGCGTTAGACAGTTGTTCC -CCAACAGCGTTAGACAGTATTCCC -CCAACAGCGTTAGACAGTTTCTCG -CCAACAGCGTTAGACAGTTAGACG -CCAACAGCGTTAGACAGTGTAACG -CCAACAGCGTTAGACAGTACTTCG -CCAACAGCGTTAGACAGTTACGCA -CCAACAGCGTTAGACAGTCTTGCA -CCAACAGCGTTAGACAGTCGAACA -CCAACAGCGTTAGACAGTCAGTCA -CCAACAGCGTTAGACAGTGATCCA -CCAACAGCGTTAGACAGTACGACA -CCAACAGCGTTAGACAGTAGCTCA -CCAACAGCGTTAGACAGTTCACGT -CCAACAGCGTTAGACAGTCGTAGT -CCAACAGCGTTAGACAGTGTCAGT -CCAACAGCGTTAGACAGTGAAGGT -CCAACAGCGTTAGACAGTAACCGT -CCAACAGCGTTAGACAGTTTGTGC -CCAACAGCGTTAGACAGTCTAAGC -CCAACAGCGTTAGACAGTACTAGC -CCAACAGCGTTAGACAGTAGATGC -CCAACAGCGTTAGACAGTTGAAGG -CCAACAGCGTTAGACAGTCAATGG -CCAACAGCGTTAGACAGTATGAGG -CCAACAGCGTTAGACAGTAATGGG -CCAACAGCGTTAGACAGTTCCTGA -CCAACAGCGTTAGACAGTTAGCGA -CCAACAGCGTTAGACAGTCACAGA -CCAACAGCGTTAGACAGTGCAAGA -CCAACAGCGTTAGACAGTGGTTGA -CCAACAGCGTTAGACAGTTCCGAT -CCAACAGCGTTAGACAGTTGGCAT -CCAACAGCGTTAGACAGTCGAGAT -CCAACAGCGTTAGACAGTTACCAC -CCAACAGCGTTAGACAGTCAGAAC -CCAACAGCGTTAGACAGTGTCTAC -CCAACAGCGTTAGACAGTACGTAC -CCAACAGCGTTAGACAGTAGTGAC -CCAACAGCGTTAGACAGTCTGTAG -CCAACAGCGTTAGACAGTCCTAAG -CCAACAGCGTTAGACAGTGTTCAG -CCAACAGCGTTAGACAGTGCATAG -CCAACAGCGTTAGACAGTGACAAG -CCAACAGCGTTAGACAGTAAGCAG -CCAACAGCGTTAGACAGTCGTCAA -CCAACAGCGTTAGACAGTGCTGAA -CCAACAGCGTTAGACAGTAGTACG -CCAACAGCGTTAGACAGTATCCGA -CCAACAGCGTTAGACAGTATGGGA -CCAACAGCGTTAGACAGTGTGCAA -CCAACAGCGTTAGACAGTGAGGAA -CCAACAGCGTTAGACAGTCAGGTA -CCAACAGCGTTAGACAGTGACTCT -CCAACAGCGTTAGACAGTAGTCCT -CCAACAGCGTTAGACAGTTAAGCC -CCAACAGCGTTAGACAGTATAGCC -CCAACAGCGTTAGACAGTTAACCG -CCAACAGCGTTAGACAGTATGCCA -CCAACAGCGTTATAGCTGGGAAAC -CCAACAGCGTTATAGCTGAACACC -CCAACAGCGTTATAGCTGATCGAG -CCAACAGCGTTATAGCTGCTCCTT -CCAACAGCGTTATAGCTGCCTGTT -CCAACAGCGTTATAGCTGCGGTTT -CCAACAGCGTTATAGCTGGTGGTT -CCAACAGCGTTATAGCTGGCCTTT -CCAACAGCGTTATAGCTGGGTCTT -CCAACAGCGTTATAGCTGACGCTT -CCAACAGCGTTATAGCTGAGCGTT -CCAACAGCGTTATAGCTGTTCGTC -CCAACAGCGTTATAGCTGTCTCTC -CCAACAGCGTTATAGCTGTGGATC -CCAACAGCGTTATAGCTGCACTTC -CCAACAGCGTTATAGCTGGTACTC -CCAACAGCGTTATAGCTGGATGTC -CCAACAGCGTTATAGCTGACAGTC -CCAACAGCGTTATAGCTGTTGCTG -CCAACAGCGTTATAGCTGTCCATG -CCAACAGCGTTATAGCTGTGTGTG -CCAACAGCGTTATAGCTGCTAGTG -CCAACAGCGTTATAGCTGCATCTG -CCAACAGCGTTATAGCTGGAGTTG -CCAACAGCGTTATAGCTGAGACTG -CCAACAGCGTTATAGCTGTCGGTA -CCAACAGCGTTATAGCTGTGCCTA -CCAACAGCGTTATAGCTGCCACTA -CCAACAGCGTTATAGCTGGGAGTA -CCAACAGCGTTATAGCTGTCGTCT -CCAACAGCGTTATAGCTGTGCACT -CCAACAGCGTTATAGCTGCTGACT -CCAACAGCGTTATAGCTGCAACCT -CCAACAGCGTTATAGCTGGCTACT -CCAACAGCGTTATAGCTGGGATCT -CCAACAGCGTTATAGCTGAAGGCT -CCAACAGCGTTATAGCTGTCAACC -CCAACAGCGTTATAGCTGTGTTCC -CCAACAGCGTTATAGCTGATTCCC -CCAACAGCGTTATAGCTGTTCTCG -CCAACAGCGTTATAGCTGTAGACG -CCAACAGCGTTATAGCTGGTAACG -CCAACAGCGTTATAGCTGACTTCG -CCAACAGCGTTATAGCTGTACGCA -CCAACAGCGTTATAGCTGCTTGCA -CCAACAGCGTTATAGCTGCGAACA -CCAACAGCGTTATAGCTGCAGTCA -CCAACAGCGTTATAGCTGGATCCA -CCAACAGCGTTATAGCTGACGACA -CCAACAGCGTTATAGCTGAGCTCA -CCAACAGCGTTATAGCTGTCACGT -CCAACAGCGTTATAGCTGCGTAGT -CCAACAGCGTTATAGCTGGTCAGT -CCAACAGCGTTATAGCTGGAAGGT -CCAACAGCGTTATAGCTGAACCGT -CCAACAGCGTTATAGCTGTTGTGC -CCAACAGCGTTATAGCTGCTAAGC -CCAACAGCGTTATAGCTGACTAGC -CCAACAGCGTTATAGCTGAGATGC -CCAACAGCGTTATAGCTGTGAAGG -CCAACAGCGTTATAGCTGCAATGG -CCAACAGCGTTATAGCTGATGAGG -CCAACAGCGTTATAGCTGAATGGG -CCAACAGCGTTATAGCTGTCCTGA -CCAACAGCGTTATAGCTGTAGCGA -CCAACAGCGTTATAGCTGCACAGA -CCAACAGCGTTATAGCTGGCAAGA -CCAACAGCGTTATAGCTGGGTTGA -CCAACAGCGTTATAGCTGTCCGAT -CCAACAGCGTTATAGCTGTGGCAT -CCAACAGCGTTATAGCTGCGAGAT -CCAACAGCGTTATAGCTGTACCAC -CCAACAGCGTTATAGCTGCAGAAC -CCAACAGCGTTATAGCTGGTCTAC -CCAACAGCGTTATAGCTGACGTAC -CCAACAGCGTTATAGCTGAGTGAC -CCAACAGCGTTATAGCTGCTGTAG -CCAACAGCGTTATAGCTGCCTAAG -CCAACAGCGTTATAGCTGGTTCAG -CCAACAGCGTTATAGCTGGCATAG -CCAACAGCGTTATAGCTGGACAAG -CCAACAGCGTTATAGCTGAAGCAG -CCAACAGCGTTATAGCTGCGTCAA -CCAACAGCGTTATAGCTGGCTGAA -CCAACAGCGTTATAGCTGAGTACG -CCAACAGCGTTATAGCTGATCCGA -CCAACAGCGTTATAGCTGATGGGA -CCAACAGCGTTATAGCTGGTGCAA -CCAACAGCGTTATAGCTGGAGGAA -CCAACAGCGTTATAGCTGCAGGTA -CCAACAGCGTTATAGCTGGACTCT -CCAACAGCGTTATAGCTGAGTCCT -CCAACAGCGTTATAGCTGTAAGCC -CCAACAGCGTTATAGCTGATAGCC -CCAACAGCGTTATAGCTGTAACCG -CCAACAGCGTTATAGCTGATGCCA -CCAACAGCGTTAAAGCCTGGAAAC -CCAACAGCGTTAAAGCCTAACACC -CCAACAGCGTTAAAGCCTATCGAG -CCAACAGCGTTAAAGCCTCTCCTT -CCAACAGCGTTAAAGCCTCCTGTT -CCAACAGCGTTAAAGCCTCGGTTT -CCAACAGCGTTAAAGCCTGTGGTT -CCAACAGCGTTAAAGCCTGCCTTT -CCAACAGCGTTAAAGCCTGGTCTT -CCAACAGCGTTAAAGCCTACGCTT -CCAACAGCGTTAAAGCCTAGCGTT -CCAACAGCGTTAAAGCCTTTCGTC -CCAACAGCGTTAAAGCCTTCTCTC -CCAACAGCGTTAAAGCCTTGGATC -CCAACAGCGTTAAAGCCTCACTTC -CCAACAGCGTTAAAGCCTGTACTC -CCAACAGCGTTAAAGCCTGATGTC -CCAACAGCGTTAAAGCCTACAGTC -CCAACAGCGTTAAAGCCTTTGCTG -CCAACAGCGTTAAAGCCTTCCATG -CCAACAGCGTTAAAGCCTTGTGTG -CCAACAGCGTTAAAGCCTCTAGTG -CCAACAGCGTTAAAGCCTCATCTG -CCAACAGCGTTAAAGCCTGAGTTG -CCAACAGCGTTAAAGCCTAGACTG -CCAACAGCGTTAAAGCCTTCGGTA -CCAACAGCGTTAAAGCCTTGCCTA -CCAACAGCGTTAAAGCCTCCACTA -CCAACAGCGTTAAAGCCTGGAGTA -CCAACAGCGTTAAAGCCTTCGTCT -CCAACAGCGTTAAAGCCTTGCACT -CCAACAGCGTTAAAGCCTCTGACT -CCAACAGCGTTAAAGCCTCAACCT -CCAACAGCGTTAAAGCCTGCTACT -CCAACAGCGTTAAAGCCTGGATCT -CCAACAGCGTTAAAGCCTAAGGCT -CCAACAGCGTTAAAGCCTTCAACC -CCAACAGCGTTAAAGCCTTGTTCC -CCAACAGCGTTAAAGCCTATTCCC -CCAACAGCGTTAAAGCCTTTCTCG -CCAACAGCGTTAAAGCCTTAGACG -CCAACAGCGTTAAAGCCTGTAACG -CCAACAGCGTTAAAGCCTACTTCG -CCAACAGCGTTAAAGCCTTACGCA -CCAACAGCGTTAAAGCCTCTTGCA -CCAACAGCGTTAAAGCCTCGAACA -CCAACAGCGTTAAAGCCTCAGTCA -CCAACAGCGTTAAAGCCTGATCCA -CCAACAGCGTTAAAGCCTACGACA -CCAACAGCGTTAAAGCCTAGCTCA -CCAACAGCGTTAAAGCCTTCACGT -CCAACAGCGTTAAAGCCTCGTAGT -CCAACAGCGTTAAAGCCTGTCAGT -CCAACAGCGTTAAAGCCTGAAGGT -CCAACAGCGTTAAAGCCTAACCGT -CCAACAGCGTTAAAGCCTTTGTGC -CCAACAGCGTTAAAGCCTCTAAGC -CCAACAGCGTTAAAGCCTACTAGC -CCAACAGCGTTAAAGCCTAGATGC -CCAACAGCGTTAAAGCCTTGAAGG -CCAACAGCGTTAAAGCCTCAATGG -CCAACAGCGTTAAAGCCTATGAGG -CCAACAGCGTTAAAGCCTAATGGG -CCAACAGCGTTAAAGCCTTCCTGA -CCAACAGCGTTAAAGCCTTAGCGA -CCAACAGCGTTAAAGCCTCACAGA -CCAACAGCGTTAAAGCCTGCAAGA -CCAACAGCGTTAAAGCCTGGTTGA -CCAACAGCGTTAAAGCCTTCCGAT -CCAACAGCGTTAAAGCCTTGGCAT -CCAACAGCGTTAAAGCCTCGAGAT -CCAACAGCGTTAAAGCCTTACCAC -CCAACAGCGTTAAAGCCTCAGAAC -CCAACAGCGTTAAAGCCTGTCTAC -CCAACAGCGTTAAAGCCTACGTAC -CCAACAGCGTTAAAGCCTAGTGAC -CCAACAGCGTTAAAGCCTCTGTAG -CCAACAGCGTTAAAGCCTCCTAAG -CCAACAGCGTTAAAGCCTGTTCAG -CCAACAGCGTTAAAGCCTGCATAG -CCAACAGCGTTAAAGCCTGACAAG -CCAACAGCGTTAAAGCCTAAGCAG -CCAACAGCGTTAAAGCCTCGTCAA -CCAACAGCGTTAAAGCCTGCTGAA -CCAACAGCGTTAAAGCCTAGTACG -CCAACAGCGTTAAAGCCTATCCGA -CCAACAGCGTTAAAGCCTATGGGA -CCAACAGCGTTAAAGCCTGTGCAA -CCAACAGCGTTAAAGCCTGAGGAA -CCAACAGCGTTAAAGCCTCAGGTA -CCAACAGCGTTAAAGCCTGACTCT -CCAACAGCGTTAAAGCCTAGTCCT -CCAACAGCGTTAAAGCCTTAAGCC -CCAACAGCGTTAAAGCCTATAGCC -CCAACAGCGTTAAAGCCTTAACCG -CCAACAGCGTTAAAGCCTATGCCA -CCAACAGCGTTACAGGTTGGAAAC -CCAACAGCGTTACAGGTTAACACC -CCAACAGCGTTACAGGTTATCGAG -CCAACAGCGTTACAGGTTCTCCTT -CCAACAGCGTTACAGGTTCCTGTT -CCAACAGCGTTACAGGTTCGGTTT -CCAACAGCGTTACAGGTTGTGGTT -CCAACAGCGTTACAGGTTGCCTTT -CCAACAGCGTTACAGGTTGGTCTT -CCAACAGCGTTACAGGTTACGCTT -CCAACAGCGTTACAGGTTAGCGTT -CCAACAGCGTTACAGGTTTTCGTC -CCAACAGCGTTACAGGTTTCTCTC -CCAACAGCGTTACAGGTTTGGATC -CCAACAGCGTTACAGGTTCACTTC -CCAACAGCGTTACAGGTTGTACTC -CCAACAGCGTTACAGGTTGATGTC -CCAACAGCGTTACAGGTTACAGTC -CCAACAGCGTTACAGGTTTTGCTG -CCAACAGCGTTACAGGTTTCCATG -CCAACAGCGTTACAGGTTTGTGTG -CCAACAGCGTTACAGGTTCTAGTG -CCAACAGCGTTACAGGTTCATCTG -CCAACAGCGTTACAGGTTGAGTTG -CCAACAGCGTTACAGGTTAGACTG -CCAACAGCGTTACAGGTTTCGGTA -CCAACAGCGTTACAGGTTTGCCTA -CCAACAGCGTTACAGGTTCCACTA -CCAACAGCGTTACAGGTTGGAGTA -CCAACAGCGTTACAGGTTTCGTCT -CCAACAGCGTTACAGGTTTGCACT -CCAACAGCGTTACAGGTTCTGACT -CCAACAGCGTTACAGGTTCAACCT -CCAACAGCGTTACAGGTTGCTACT -CCAACAGCGTTACAGGTTGGATCT -CCAACAGCGTTACAGGTTAAGGCT -CCAACAGCGTTACAGGTTTCAACC -CCAACAGCGTTACAGGTTTGTTCC -CCAACAGCGTTACAGGTTATTCCC -CCAACAGCGTTACAGGTTTTCTCG -CCAACAGCGTTACAGGTTTAGACG -CCAACAGCGTTACAGGTTGTAACG -CCAACAGCGTTACAGGTTACTTCG -CCAACAGCGTTACAGGTTTACGCA -CCAACAGCGTTACAGGTTCTTGCA -CCAACAGCGTTACAGGTTCGAACA -CCAACAGCGTTACAGGTTCAGTCA -CCAACAGCGTTACAGGTTGATCCA -CCAACAGCGTTACAGGTTACGACA -CCAACAGCGTTACAGGTTAGCTCA -CCAACAGCGTTACAGGTTTCACGT -CCAACAGCGTTACAGGTTCGTAGT -CCAACAGCGTTACAGGTTGTCAGT -CCAACAGCGTTACAGGTTGAAGGT -CCAACAGCGTTACAGGTTAACCGT -CCAACAGCGTTACAGGTTTTGTGC -CCAACAGCGTTACAGGTTCTAAGC -CCAACAGCGTTACAGGTTACTAGC -CCAACAGCGTTACAGGTTAGATGC -CCAACAGCGTTACAGGTTTGAAGG -CCAACAGCGTTACAGGTTCAATGG -CCAACAGCGTTACAGGTTATGAGG -CCAACAGCGTTACAGGTTAATGGG -CCAACAGCGTTACAGGTTTCCTGA -CCAACAGCGTTACAGGTTTAGCGA -CCAACAGCGTTACAGGTTCACAGA -CCAACAGCGTTACAGGTTGCAAGA -CCAACAGCGTTACAGGTTGGTTGA -CCAACAGCGTTACAGGTTTCCGAT -CCAACAGCGTTACAGGTTTGGCAT -CCAACAGCGTTACAGGTTCGAGAT -CCAACAGCGTTACAGGTTTACCAC -CCAACAGCGTTACAGGTTCAGAAC -CCAACAGCGTTACAGGTTGTCTAC -CCAACAGCGTTACAGGTTACGTAC -CCAACAGCGTTACAGGTTAGTGAC -CCAACAGCGTTACAGGTTCTGTAG -CCAACAGCGTTACAGGTTCCTAAG -CCAACAGCGTTACAGGTTGTTCAG -CCAACAGCGTTACAGGTTGCATAG -CCAACAGCGTTACAGGTTGACAAG -CCAACAGCGTTACAGGTTAAGCAG -CCAACAGCGTTACAGGTTCGTCAA -CCAACAGCGTTACAGGTTGCTGAA -CCAACAGCGTTACAGGTTAGTACG -CCAACAGCGTTACAGGTTATCCGA -CCAACAGCGTTACAGGTTATGGGA -CCAACAGCGTTACAGGTTGTGCAA -CCAACAGCGTTACAGGTTGAGGAA -CCAACAGCGTTACAGGTTCAGGTA -CCAACAGCGTTACAGGTTGACTCT -CCAACAGCGTTACAGGTTAGTCCT -CCAACAGCGTTACAGGTTTAAGCC -CCAACAGCGTTACAGGTTATAGCC -CCAACAGCGTTACAGGTTTAACCG -CCAACAGCGTTACAGGTTATGCCA -CCAACAGCGTTATAGGCAGGAAAC -CCAACAGCGTTATAGGCAAACACC -CCAACAGCGTTATAGGCAATCGAG -CCAACAGCGTTATAGGCACTCCTT -CCAACAGCGTTATAGGCACCTGTT -CCAACAGCGTTATAGGCACGGTTT -CCAACAGCGTTATAGGCAGTGGTT -CCAACAGCGTTATAGGCAGCCTTT -CCAACAGCGTTATAGGCAGGTCTT -CCAACAGCGTTATAGGCAACGCTT -CCAACAGCGTTATAGGCAAGCGTT -CCAACAGCGTTATAGGCATTCGTC -CCAACAGCGTTATAGGCATCTCTC -CCAACAGCGTTATAGGCATGGATC -CCAACAGCGTTATAGGCACACTTC -CCAACAGCGTTATAGGCAGTACTC -CCAACAGCGTTATAGGCAGATGTC -CCAACAGCGTTATAGGCAACAGTC -CCAACAGCGTTATAGGCATTGCTG -CCAACAGCGTTATAGGCATCCATG -CCAACAGCGTTATAGGCATGTGTG -CCAACAGCGTTATAGGCACTAGTG -CCAACAGCGTTATAGGCACATCTG -CCAACAGCGTTATAGGCAGAGTTG -CCAACAGCGTTATAGGCAAGACTG -CCAACAGCGTTATAGGCATCGGTA -CCAACAGCGTTATAGGCATGCCTA -CCAACAGCGTTATAGGCACCACTA -CCAACAGCGTTATAGGCAGGAGTA -CCAACAGCGTTATAGGCATCGTCT -CCAACAGCGTTATAGGCATGCACT -CCAACAGCGTTATAGGCACTGACT -CCAACAGCGTTATAGGCACAACCT -CCAACAGCGTTATAGGCAGCTACT -CCAACAGCGTTATAGGCAGGATCT -CCAACAGCGTTATAGGCAAAGGCT -CCAACAGCGTTATAGGCATCAACC -CCAACAGCGTTATAGGCATGTTCC -CCAACAGCGTTATAGGCAATTCCC -CCAACAGCGTTATAGGCATTCTCG -CCAACAGCGTTATAGGCATAGACG -CCAACAGCGTTATAGGCAGTAACG -CCAACAGCGTTATAGGCAACTTCG -CCAACAGCGTTATAGGCATACGCA -CCAACAGCGTTATAGGCACTTGCA -CCAACAGCGTTATAGGCACGAACA -CCAACAGCGTTATAGGCACAGTCA -CCAACAGCGTTATAGGCAGATCCA -CCAACAGCGTTATAGGCAACGACA -CCAACAGCGTTATAGGCAAGCTCA -CCAACAGCGTTATAGGCATCACGT -CCAACAGCGTTATAGGCACGTAGT -CCAACAGCGTTATAGGCAGTCAGT -CCAACAGCGTTATAGGCAGAAGGT -CCAACAGCGTTATAGGCAAACCGT -CCAACAGCGTTATAGGCATTGTGC -CCAACAGCGTTATAGGCACTAAGC -CCAACAGCGTTATAGGCAACTAGC -CCAACAGCGTTATAGGCAAGATGC -CCAACAGCGTTATAGGCATGAAGG -CCAACAGCGTTATAGGCACAATGG -CCAACAGCGTTATAGGCAATGAGG -CCAACAGCGTTATAGGCAAATGGG -CCAACAGCGTTATAGGCATCCTGA -CCAACAGCGTTATAGGCATAGCGA -CCAACAGCGTTATAGGCACACAGA -CCAACAGCGTTATAGGCAGCAAGA -CCAACAGCGTTATAGGCAGGTTGA -CCAACAGCGTTATAGGCATCCGAT -CCAACAGCGTTATAGGCATGGCAT -CCAACAGCGTTATAGGCACGAGAT -CCAACAGCGTTATAGGCATACCAC -CCAACAGCGTTATAGGCACAGAAC -CCAACAGCGTTATAGGCAGTCTAC -CCAACAGCGTTATAGGCAACGTAC -CCAACAGCGTTATAGGCAAGTGAC -CCAACAGCGTTATAGGCACTGTAG -CCAACAGCGTTATAGGCACCTAAG -CCAACAGCGTTATAGGCAGTTCAG -CCAACAGCGTTATAGGCAGCATAG -CCAACAGCGTTATAGGCAGACAAG -CCAACAGCGTTATAGGCAAAGCAG -CCAACAGCGTTATAGGCACGTCAA -CCAACAGCGTTATAGGCAGCTGAA -CCAACAGCGTTATAGGCAAGTACG -CCAACAGCGTTATAGGCAATCCGA -CCAACAGCGTTATAGGCAATGGGA -CCAACAGCGTTATAGGCAGTGCAA -CCAACAGCGTTATAGGCAGAGGAA -CCAACAGCGTTATAGGCACAGGTA -CCAACAGCGTTATAGGCAGACTCT -CCAACAGCGTTATAGGCAAGTCCT -CCAACAGCGTTATAGGCATAAGCC -CCAACAGCGTTATAGGCAATAGCC -CCAACAGCGTTATAGGCATAACCG -CCAACAGCGTTATAGGCAATGCCA -CCAACAGCGTTAAAGGACGGAAAC -CCAACAGCGTTAAAGGACAACACC -CCAACAGCGTTAAAGGACATCGAG -CCAACAGCGTTAAAGGACCTCCTT -CCAACAGCGTTAAAGGACCCTGTT -CCAACAGCGTTAAAGGACCGGTTT -CCAACAGCGTTAAAGGACGTGGTT -CCAACAGCGTTAAAGGACGCCTTT -CCAACAGCGTTAAAGGACGGTCTT -CCAACAGCGTTAAAGGACACGCTT -CCAACAGCGTTAAAGGACAGCGTT -CCAACAGCGTTAAAGGACTTCGTC -CCAACAGCGTTAAAGGACTCTCTC -CCAACAGCGTTAAAGGACTGGATC -CCAACAGCGTTAAAGGACCACTTC -CCAACAGCGTTAAAGGACGTACTC -CCAACAGCGTTAAAGGACGATGTC -CCAACAGCGTTAAAGGACACAGTC -CCAACAGCGTTAAAGGACTTGCTG -CCAACAGCGTTAAAGGACTCCATG -CCAACAGCGTTAAAGGACTGTGTG -CCAACAGCGTTAAAGGACCTAGTG -CCAACAGCGTTAAAGGACCATCTG -CCAACAGCGTTAAAGGACGAGTTG -CCAACAGCGTTAAAGGACAGACTG -CCAACAGCGTTAAAGGACTCGGTA -CCAACAGCGTTAAAGGACTGCCTA -CCAACAGCGTTAAAGGACCCACTA -CCAACAGCGTTAAAGGACGGAGTA -CCAACAGCGTTAAAGGACTCGTCT -CCAACAGCGTTAAAGGACTGCACT -CCAACAGCGTTAAAGGACCTGACT -CCAACAGCGTTAAAGGACCAACCT -CCAACAGCGTTAAAGGACGCTACT -CCAACAGCGTTAAAGGACGGATCT -CCAACAGCGTTAAAGGACAAGGCT -CCAACAGCGTTAAAGGACTCAACC -CCAACAGCGTTAAAGGACTGTTCC -CCAACAGCGTTAAAGGACATTCCC -CCAACAGCGTTAAAGGACTTCTCG -CCAACAGCGTTAAAGGACTAGACG -CCAACAGCGTTAAAGGACGTAACG -CCAACAGCGTTAAAGGACACTTCG -CCAACAGCGTTAAAGGACTACGCA -CCAACAGCGTTAAAGGACCTTGCA -CCAACAGCGTTAAAGGACCGAACA -CCAACAGCGTTAAAGGACCAGTCA -CCAACAGCGTTAAAGGACGATCCA -CCAACAGCGTTAAAGGACACGACA -CCAACAGCGTTAAAGGACAGCTCA -CCAACAGCGTTAAAGGACTCACGT -CCAACAGCGTTAAAGGACCGTAGT -CCAACAGCGTTAAAGGACGTCAGT -CCAACAGCGTTAAAGGACGAAGGT -CCAACAGCGTTAAAGGACAACCGT -CCAACAGCGTTAAAGGACTTGTGC -CCAACAGCGTTAAAGGACCTAAGC -CCAACAGCGTTAAAGGACACTAGC -CCAACAGCGTTAAAGGACAGATGC -CCAACAGCGTTAAAGGACTGAAGG -CCAACAGCGTTAAAGGACCAATGG -CCAACAGCGTTAAAGGACATGAGG -CCAACAGCGTTAAAGGACAATGGG -CCAACAGCGTTAAAGGACTCCTGA -CCAACAGCGTTAAAGGACTAGCGA -CCAACAGCGTTAAAGGACCACAGA -CCAACAGCGTTAAAGGACGCAAGA -CCAACAGCGTTAAAGGACGGTTGA -CCAACAGCGTTAAAGGACTCCGAT -CCAACAGCGTTAAAGGACTGGCAT -CCAACAGCGTTAAAGGACCGAGAT -CCAACAGCGTTAAAGGACTACCAC -CCAACAGCGTTAAAGGACCAGAAC -CCAACAGCGTTAAAGGACGTCTAC -CCAACAGCGTTAAAGGACACGTAC -CCAACAGCGTTAAAGGACAGTGAC -CCAACAGCGTTAAAGGACCTGTAG -CCAACAGCGTTAAAGGACCCTAAG -CCAACAGCGTTAAAGGACGTTCAG -CCAACAGCGTTAAAGGACGCATAG -CCAACAGCGTTAAAGGACGACAAG -CCAACAGCGTTAAAGGACAAGCAG -CCAACAGCGTTAAAGGACCGTCAA -CCAACAGCGTTAAAGGACGCTGAA -CCAACAGCGTTAAAGGACAGTACG -CCAACAGCGTTAAAGGACATCCGA -CCAACAGCGTTAAAGGACATGGGA -CCAACAGCGTTAAAGGACGTGCAA -CCAACAGCGTTAAAGGACGAGGAA -CCAACAGCGTTAAAGGACCAGGTA -CCAACAGCGTTAAAGGACGACTCT -CCAACAGCGTTAAAGGACAGTCCT -CCAACAGCGTTAAAGGACTAAGCC -CCAACAGCGTTAAAGGACATAGCC -CCAACAGCGTTAAAGGACTAACCG -CCAACAGCGTTAAAGGACATGCCA -CCAACAGCGTTACAGAAGGGAAAC -CCAACAGCGTTACAGAAGAACACC -CCAACAGCGTTACAGAAGATCGAG -CCAACAGCGTTACAGAAGCTCCTT -CCAACAGCGTTACAGAAGCCTGTT -CCAACAGCGTTACAGAAGCGGTTT -CCAACAGCGTTACAGAAGGTGGTT -CCAACAGCGTTACAGAAGGCCTTT -CCAACAGCGTTACAGAAGGGTCTT -CCAACAGCGTTACAGAAGACGCTT -CCAACAGCGTTACAGAAGAGCGTT -CCAACAGCGTTACAGAAGTTCGTC -CCAACAGCGTTACAGAAGTCTCTC -CCAACAGCGTTACAGAAGTGGATC -CCAACAGCGTTACAGAAGCACTTC -CCAACAGCGTTACAGAAGGTACTC -CCAACAGCGTTACAGAAGGATGTC -CCAACAGCGTTACAGAAGACAGTC -CCAACAGCGTTACAGAAGTTGCTG -CCAACAGCGTTACAGAAGTCCATG -CCAACAGCGTTACAGAAGTGTGTG -CCAACAGCGTTACAGAAGCTAGTG -CCAACAGCGTTACAGAAGCATCTG -CCAACAGCGTTACAGAAGGAGTTG -CCAACAGCGTTACAGAAGAGACTG -CCAACAGCGTTACAGAAGTCGGTA -CCAACAGCGTTACAGAAGTGCCTA -CCAACAGCGTTACAGAAGCCACTA -CCAACAGCGTTACAGAAGGGAGTA -CCAACAGCGTTACAGAAGTCGTCT -CCAACAGCGTTACAGAAGTGCACT -CCAACAGCGTTACAGAAGCTGACT -CCAACAGCGTTACAGAAGCAACCT -CCAACAGCGTTACAGAAGGCTACT -CCAACAGCGTTACAGAAGGGATCT -CCAACAGCGTTACAGAAGAAGGCT -CCAACAGCGTTACAGAAGTCAACC -CCAACAGCGTTACAGAAGTGTTCC -CCAACAGCGTTACAGAAGATTCCC -CCAACAGCGTTACAGAAGTTCTCG -CCAACAGCGTTACAGAAGTAGACG -CCAACAGCGTTACAGAAGGTAACG -CCAACAGCGTTACAGAAGACTTCG -CCAACAGCGTTACAGAAGTACGCA -CCAACAGCGTTACAGAAGCTTGCA -CCAACAGCGTTACAGAAGCGAACA -CCAACAGCGTTACAGAAGCAGTCA -CCAACAGCGTTACAGAAGGATCCA -CCAACAGCGTTACAGAAGACGACA -CCAACAGCGTTACAGAAGAGCTCA -CCAACAGCGTTACAGAAGTCACGT -CCAACAGCGTTACAGAAGCGTAGT -CCAACAGCGTTACAGAAGGTCAGT -CCAACAGCGTTACAGAAGGAAGGT -CCAACAGCGTTACAGAAGAACCGT -CCAACAGCGTTACAGAAGTTGTGC -CCAACAGCGTTACAGAAGCTAAGC -CCAACAGCGTTACAGAAGACTAGC -CCAACAGCGTTACAGAAGAGATGC -CCAACAGCGTTACAGAAGTGAAGG -CCAACAGCGTTACAGAAGCAATGG -CCAACAGCGTTACAGAAGATGAGG -CCAACAGCGTTACAGAAGAATGGG -CCAACAGCGTTACAGAAGTCCTGA -CCAACAGCGTTACAGAAGTAGCGA -CCAACAGCGTTACAGAAGCACAGA -CCAACAGCGTTACAGAAGGCAAGA -CCAACAGCGTTACAGAAGGGTTGA -CCAACAGCGTTACAGAAGTCCGAT -CCAACAGCGTTACAGAAGTGGCAT -CCAACAGCGTTACAGAAGCGAGAT -CCAACAGCGTTACAGAAGTACCAC -CCAACAGCGTTACAGAAGCAGAAC -CCAACAGCGTTACAGAAGGTCTAC -CCAACAGCGTTACAGAAGACGTAC -CCAACAGCGTTACAGAAGAGTGAC -CCAACAGCGTTACAGAAGCTGTAG -CCAACAGCGTTACAGAAGCCTAAG -CCAACAGCGTTACAGAAGGTTCAG -CCAACAGCGTTACAGAAGGCATAG -CCAACAGCGTTACAGAAGGACAAG -CCAACAGCGTTACAGAAGAAGCAG -CCAACAGCGTTACAGAAGCGTCAA -CCAACAGCGTTACAGAAGGCTGAA -CCAACAGCGTTACAGAAGAGTACG -CCAACAGCGTTACAGAAGATCCGA -CCAACAGCGTTACAGAAGATGGGA -CCAACAGCGTTACAGAAGGTGCAA -CCAACAGCGTTACAGAAGGAGGAA -CCAACAGCGTTACAGAAGCAGGTA -CCAACAGCGTTACAGAAGGACTCT -CCAACAGCGTTACAGAAGAGTCCT -CCAACAGCGTTACAGAAGTAAGCC -CCAACAGCGTTACAGAAGATAGCC -CCAACAGCGTTACAGAAGTAACCG -CCAACAGCGTTACAGAAGATGCCA -CCAACAGCGTTACAACGTGGAAAC -CCAACAGCGTTACAACGTAACACC -CCAACAGCGTTACAACGTATCGAG -CCAACAGCGTTACAACGTCTCCTT -CCAACAGCGTTACAACGTCCTGTT -CCAACAGCGTTACAACGTCGGTTT -CCAACAGCGTTACAACGTGTGGTT -CCAACAGCGTTACAACGTGCCTTT -CCAACAGCGTTACAACGTGGTCTT -CCAACAGCGTTACAACGTACGCTT -CCAACAGCGTTACAACGTAGCGTT -CCAACAGCGTTACAACGTTTCGTC -CCAACAGCGTTACAACGTTCTCTC -CCAACAGCGTTACAACGTTGGATC -CCAACAGCGTTACAACGTCACTTC -CCAACAGCGTTACAACGTGTACTC -CCAACAGCGTTACAACGTGATGTC -CCAACAGCGTTACAACGTACAGTC -CCAACAGCGTTACAACGTTTGCTG -CCAACAGCGTTACAACGTTCCATG -CCAACAGCGTTACAACGTTGTGTG -CCAACAGCGTTACAACGTCTAGTG -CCAACAGCGTTACAACGTCATCTG -CCAACAGCGTTACAACGTGAGTTG -CCAACAGCGTTACAACGTAGACTG -CCAACAGCGTTACAACGTTCGGTA -CCAACAGCGTTACAACGTTGCCTA -CCAACAGCGTTACAACGTCCACTA -CCAACAGCGTTACAACGTGGAGTA -CCAACAGCGTTACAACGTTCGTCT -CCAACAGCGTTACAACGTTGCACT -CCAACAGCGTTACAACGTCTGACT -CCAACAGCGTTACAACGTCAACCT -CCAACAGCGTTACAACGTGCTACT -CCAACAGCGTTACAACGTGGATCT -CCAACAGCGTTACAACGTAAGGCT -CCAACAGCGTTACAACGTTCAACC -CCAACAGCGTTACAACGTTGTTCC -CCAACAGCGTTACAACGTATTCCC -CCAACAGCGTTACAACGTTTCTCG -CCAACAGCGTTACAACGTTAGACG -CCAACAGCGTTACAACGTGTAACG -CCAACAGCGTTACAACGTACTTCG -CCAACAGCGTTACAACGTTACGCA -CCAACAGCGTTACAACGTCTTGCA -CCAACAGCGTTACAACGTCGAACA -CCAACAGCGTTACAACGTCAGTCA -CCAACAGCGTTACAACGTGATCCA -CCAACAGCGTTACAACGTACGACA -CCAACAGCGTTACAACGTAGCTCA -CCAACAGCGTTACAACGTTCACGT -CCAACAGCGTTACAACGTCGTAGT -CCAACAGCGTTACAACGTGTCAGT -CCAACAGCGTTACAACGTGAAGGT -CCAACAGCGTTACAACGTAACCGT -CCAACAGCGTTACAACGTTTGTGC -CCAACAGCGTTACAACGTCTAAGC -CCAACAGCGTTACAACGTACTAGC -CCAACAGCGTTACAACGTAGATGC -CCAACAGCGTTACAACGTTGAAGG -CCAACAGCGTTACAACGTCAATGG -CCAACAGCGTTACAACGTATGAGG -CCAACAGCGTTACAACGTAATGGG -CCAACAGCGTTACAACGTTCCTGA -CCAACAGCGTTACAACGTTAGCGA -CCAACAGCGTTACAACGTCACAGA -CCAACAGCGTTACAACGTGCAAGA -CCAACAGCGTTACAACGTGGTTGA -CCAACAGCGTTACAACGTTCCGAT -CCAACAGCGTTACAACGTTGGCAT -CCAACAGCGTTACAACGTCGAGAT -CCAACAGCGTTACAACGTTACCAC -CCAACAGCGTTACAACGTCAGAAC -CCAACAGCGTTACAACGTGTCTAC -CCAACAGCGTTACAACGTACGTAC -CCAACAGCGTTACAACGTAGTGAC -CCAACAGCGTTACAACGTCTGTAG -CCAACAGCGTTACAACGTCCTAAG -CCAACAGCGTTACAACGTGTTCAG -CCAACAGCGTTACAACGTGCATAG -CCAACAGCGTTACAACGTGACAAG -CCAACAGCGTTACAACGTAAGCAG -CCAACAGCGTTACAACGTCGTCAA -CCAACAGCGTTACAACGTGCTGAA -CCAACAGCGTTACAACGTAGTACG -CCAACAGCGTTACAACGTATCCGA -CCAACAGCGTTACAACGTATGGGA -CCAACAGCGTTACAACGTGTGCAA -CCAACAGCGTTACAACGTGAGGAA -CCAACAGCGTTACAACGTCAGGTA -CCAACAGCGTTACAACGTGACTCT -CCAACAGCGTTACAACGTAGTCCT -CCAACAGCGTTACAACGTTAAGCC -CCAACAGCGTTACAACGTATAGCC -CCAACAGCGTTACAACGTTAACCG -CCAACAGCGTTACAACGTATGCCA -CCAACAGCGTTAGAAGCTGGAAAC -CCAACAGCGTTAGAAGCTAACACC -CCAACAGCGTTAGAAGCTATCGAG -CCAACAGCGTTAGAAGCTCTCCTT -CCAACAGCGTTAGAAGCTCCTGTT -CCAACAGCGTTAGAAGCTCGGTTT -CCAACAGCGTTAGAAGCTGTGGTT -CCAACAGCGTTAGAAGCTGCCTTT -CCAACAGCGTTAGAAGCTGGTCTT -CCAACAGCGTTAGAAGCTACGCTT -CCAACAGCGTTAGAAGCTAGCGTT -CCAACAGCGTTAGAAGCTTTCGTC -CCAACAGCGTTAGAAGCTTCTCTC -CCAACAGCGTTAGAAGCTTGGATC -CCAACAGCGTTAGAAGCTCACTTC -CCAACAGCGTTAGAAGCTGTACTC -CCAACAGCGTTAGAAGCTGATGTC -CCAACAGCGTTAGAAGCTACAGTC -CCAACAGCGTTAGAAGCTTTGCTG -CCAACAGCGTTAGAAGCTTCCATG -CCAACAGCGTTAGAAGCTTGTGTG -CCAACAGCGTTAGAAGCTCTAGTG -CCAACAGCGTTAGAAGCTCATCTG -CCAACAGCGTTAGAAGCTGAGTTG -CCAACAGCGTTAGAAGCTAGACTG -CCAACAGCGTTAGAAGCTTCGGTA -CCAACAGCGTTAGAAGCTTGCCTA -CCAACAGCGTTAGAAGCTCCACTA -CCAACAGCGTTAGAAGCTGGAGTA -CCAACAGCGTTAGAAGCTTCGTCT -CCAACAGCGTTAGAAGCTTGCACT -CCAACAGCGTTAGAAGCTCTGACT -CCAACAGCGTTAGAAGCTCAACCT -CCAACAGCGTTAGAAGCTGCTACT -CCAACAGCGTTAGAAGCTGGATCT -CCAACAGCGTTAGAAGCTAAGGCT -CCAACAGCGTTAGAAGCTTCAACC -CCAACAGCGTTAGAAGCTTGTTCC -CCAACAGCGTTAGAAGCTATTCCC -CCAACAGCGTTAGAAGCTTTCTCG -CCAACAGCGTTAGAAGCTTAGACG -CCAACAGCGTTAGAAGCTGTAACG -CCAACAGCGTTAGAAGCTACTTCG -CCAACAGCGTTAGAAGCTTACGCA -CCAACAGCGTTAGAAGCTCTTGCA -CCAACAGCGTTAGAAGCTCGAACA -CCAACAGCGTTAGAAGCTCAGTCA -CCAACAGCGTTAGAAGCTGATCCA -CCAACAGCGTTAGAAGCTACGACA -CCAACAGCGTTAGAAGCTAGCTCA -CCAACAGCGTTAGAAGCTTCACGT -CCAACAGCGTTAGAAGCTCGTAGT -CCAACAGCGTTAGAAGCTGTCAGT -CCAACAGCGTTAGAAGCTGAAGGT -CCAACAGCGTTAGAAGCTAACCGT -CCAACAGCGTTAGAAGCTTTGTGC -CCAACAGCGTTAGAAGCTCTAAGC -CCAACAGCGTTAGAAGCTACTAGC -CCAACAGCGTTAGAAGCTAGATGC -CCAACAGCGTTAGAAGCTTGAAGG -CCAACAGCGTTAGAAGCTCAATGG -CCAACAGCGTTAGAAGCTATGAGG -CCAACAGCGTTAGAAGCTAATGGG -CCAACAGCGTTAGAAGCTTCCTGA -CCAACAGCGTTAGAAGCTTAGCGA -CCAACAGCGTTAGAAGCTCACAGA -CCAACAGCGTTAGAAGCTGCAAGA -CCAACAGCGTTAGAAGCTGGTTGA -CCAACAGCGTTAGAAGCTTCCGAT -CCAACAGCGTTAGAAGCTTGGCAT -CCAACAGCGTTAGAAGCTCGAGAT -CCAACAGCGTTAGAAGCTTACCAC -CCAACAGCGTTAGAAGCTCAGAAC -CCAACAGCGTTAGAAGCTGTCTAC -CCAACAGCGTTAGAAGCTACGTAC -CCAACAGCGTTAGAAGCTAGTGAC -CCAACAGCGTTAGAAGCTCTGTAG -CCAACAGCGTTAGAAGCTCCTAAG -CCAACAGCGTTAGAAGCTGTTCAG -CCAACAGCGTTAGAAGCTGCATAG -CCAACAGCGTTAGAAGCTGACAAG -CCAACAGCGTTAGAAGCTAAGCAG -CCAACAGCGTTAGAAGCTCGTCAA -CCAACAGCGTTAGAAGCTGCTGAA -CCAACAGCGTTAGAAGCTAGTACG -CCAACAGCGTTAGAAGCTATCCGA -CCAACAGCGTTAGAAGCTATGGGA -CCAACAGCGTTAGAAGCTGTGCAA -CCAACAGCGTTAGAAGCTGAGGAA -CCAACAGCGTTAGAAGCTCAGGTA -CCAACAGCGTTAGAAGCTGACTCT -CCAACAGCGTTAGAAGCTAGTCCT -CCAACAGCGTTAGAAGCTTAAGCC -CCAACAGCGTTAGAAGCTATAGCC -CCAACAGCGTTAGAAGCTTAACCG -CCAACAGCGTTAGAAGCTATGCCA -CCAACAGCGTTAACGAGTGGAAAC -CCAACAGCGTTAACGAGTAACACC -CCAACAGCGTTAACGAGTATCGAG -CCAACAGCGTTAACGAGTCTCCTT -CCAACAGCGTTAACGAGTCCTGTT -CCAACAGCGTTAACGAGTCGGTTT -CCAACAGCGTTAACGAGTGTGGTT -CCAACAGCGTTAACGAGTGCCTTT -CCAACAGCGTTAACGAGTGGTCTT -CCAACAGCGTTAACGAGTACGCTT -CCAACAGCGTTAACGAGTAGCGTT -CCAACAGCGTTAACGAGTTTCGTC -CCAACAGCGTTAACGAGTTCTCTC -CCAACAGCGTTAACGAGTTGGATC -CCAACAGCGTTAACGAGTCACTTC -CCAACAGCGTTAACGAGTGTACTC -CCAACAGCGTTAACGAGTGATGTC -CCAACAGCGTTAACGAGTACAGTC -CCAACAGCGTTAACGAGTTTGCTG -CCAACAGCGTTAACGAGTTCCATG -CCAACAGCGTTAACGAGTTGTGTG -CCAACAGCGTTAACGAGTCTAGTG -CCAACAGCGTTAACGAGTCATCTG -CCAACAGCGTTAACGAGTGAGTTG -CCAACAGCGTTAACGAGTAGACTG -CCAACAGCGTTAACGAGTTCGGTA -CCAACAGCGTTAACGAGTTGCCTA -CCAACAGCGTTAACGAGTCCACTA -CCAACAGCGTTAACGAGTGGAGTA -CCAACAGCGTTAACGAGTTCGTCT -CCAACAGCGTTAACGAGTTGCACT -CCAACAGCGTTAACGAGTCTGACT -CCAACAGCGTTAACGAGTCAACCT -CCAACAGCGTTAACGAGTGCTACT -CCAACAGCGTTAACGAGTGGATCT -CCAACAGCGTTAACGAGTAAGGCT -CCAACAGCGTTAACGAGTTCAACC -CCAACAGCGTTAACGAGTTGTTCC -CCAACAGCGTTAACGAGTATTCCC -CCAACAGCGTTAACGAGTTTCTCG -CCAACAGCGTTAACGAGTTAGACG -CCAACAGCGTTAACGAGTGTAACG -CCAACAGCGTTAACGAGTACTTCG -CCAACAGCGTTAACGAGTTACGCA -CCAACAGCGTTAACGAGTCTTGCA -CCAACAGCGTTAACGAGTCGAACA -CCAACAGCGTTAACGAGTCAGTCA -CCAACAGCGTTAACGAGTGATCCA -CCAACAGCGTTAACGAGTACGACA -CCAACAGCGTTAACGAGTAGCTCA -CCAACAGCGTTAACGAGTTCACGT -CCAACAGCGTTAACGAGTCGTAGT -CCAACAGCGTTAACGAGTGTCAGT -CCAACAGCGTTAACGAGTGAAGGT -CCAACAGCGTTAACGAGTAACCGT -CCAACAGCGTTAACGAGTTTGTGC -CCAACAGCGTTAACGAGTCTAAGC -CCAACAGCGTTAACGAGTACTAGC -CCAACAGCGTTAACGAGTAGATGC -CCAACAGCGTTAACGAGTTGAAGG -CCAACAGCGTTAACGAGTCAATGG -CCAACAGCGTTAACGAGTATGAGG -CCAACAGCGTTAACGAGTAATGGG -CCAACAGCGTTAACGAGTTCCTGA -CCAACAGCGTTAACGAGTTAGCGA -CCAACAGCGTTAACGAGTCACAGA -CCAACAGCGTTAACGAGTGCAAGA -CCAACAGCGTTAACGAGTGGTTGA -CCAACAGCGTTAACGAGTTCCGAT -CCAACAGCGTTAACGAGTTGGCAT -CCAACAGCGTTAACGAGTCGAGAT -CCAACAGCGTTAACGAGTTACCAC -CCAACAGCGTTAACGAGTCAGAAC -CCAACAGCGTTAACGAGTGTCTAC -CCAACAGCGTTAACGAGTACGTAC -CCAACAGCGTTAACGAGTAGTGAC -CCAACAGCGTTAACGAGTCTGTAG -CCAACAGCGTTAACGAGTCCTAAG -CCAACAGCGTTAACGAGTGTTCAG -CCAACAGCGTTAACGAGTGCATAG -CCAACAGCGTTAACGAGTGACAAG -CCAACAGCGTTAACGAGTAAGCAG -CCAACAGCGTTAACGAGTCGTCAA -CCAACAGCGTTAACGAGTGCTGAA -CCAACAGCGTTAACGAGTAGTACG -CCAACAGCGTTAACGAGTATCCGA -CCAACAGCGTTAACGAGTATGGGA -CCAACAGCGTTAACGAGTGTGCAA -CCAACAGCGTTAACGAGTGAGGAA -CCAACAGCGTTAACGAGTCAGGTA -CCAACAGCGTTAACGAGTGACTCT -CCAACAGCGTTAACGAGTAGTCCT -CCAACAGCGTTAACGAGTTAAGCC -CCAACAGCGTTAACGAGTATAGCC -CCAACAGCGTTAACGAGTTAACCG -CCAACAGCGTTAACGAGTATGCCA -CCAACAGCGTTACGAATCGGAAAC -CCAACAGCGTTACGAATCAACACC -CCAACAGCGTTACGAATCATCGAG -CCAACAGCGTTACGAATCCTCCTT -CCAACAGCGTTACGAATCCCTGTT -CCAACAGCGTTACGAATCCGGTTT -CCAACAGCGTTACGAATCGTGGTT -CCAACAGCGTTACGAATCGCCTTT -CCAACAGCGTTACGAATCGGTCTT -CCAACAGCGTTACGAATCACGCTT -CCAACAGCGTTACGAATCAGCGTT -CCAACAGCGTTACGAATCTTCGTC -CCAACAGCGTTACGAATCTCTCTC -CCAACAGCGTTACGAATCTGGATC -CCAACAGCGTTACGAATCCACTTC -CCAACAGCGTTACGAATCGTACTC -CCAACAGCGTTACGAATCGATGTC -CCAACAGCGTTACGAATCACAGTC -CCAACAGCGTTACGAATCTTGCTG -CCAACAGCGTTACGAATCTCCATG -CCAACAGCGTTACGAATCTGTGTG -CCAACAGCGTTACGAATCCTAGTG -CCAACAGCGTTACGAATCCATCTG -CCAACAGCGTTACGAATCGAGTTG -CCAACAGCGTTACGAATCAGACTG -CCAACAGCGTTACGAATCTCGGTA -CCAACAGCGTTACGAATCTGCCTA -CCAACAGCGTTACGAATCCCACTA -CCAACAGCGTTACGAATCGGAGTA -CCAACAGCGTTACGAATCTCGTCT -CCAACAGCGTTACGAATCTGCACT -CCAACAGCGTTACGAATCCTGACT -CCAACAGCGTTACGAATCCAACCT -CCAACAGCGTTACGAATCGCTACT -CCAACAGCGTTACGAATCGGATCT -CCAACAGCGTTACGAATCAAGGCT -CCAACAGCGTTACGAATCTCAACC -CCAACAGCGTTACGAATCTGTTCC -CCAACAGCGTTACGAATCATTCCC -CCAACAGCGTTACGAATCTTCTCG -CCAACAGCGTTACGAATCTAGACG -CCAACAGCGTTACGAATCGTAACG -CCAACAGCGTTACGAATCACTTCG -CCAACAGCGTTACGAATCTACGCA -CCAACAGCGTTACGAATCCTTGCA -CCAACAGCGTTACGAATCCGAACA -CCAACAGCGTTACGAATCCAGTCA -CCAACAGCGTTACGAATCGATCCA -CCAACAGCGTTACGAATCACGACA -CCAACAGCGTTACGAATCAGCTCA -CCAACAGCGTTACGAATCTCACGT -CCAACAGCGTTACGAATCCGTAGT -CCAACAGCGTTACGAATCGTCAGT -CCAACAGCGTTACGAATCGAAGGT -CCAACAGCGTTACGAATCAACCGT -CCAACAGCGTTACGAATCTTGTGC -CCAACAGCGTTACGAATCCTAAGC -CCAACAGCGTTACGAATCACTAGC -CCAACAGCGTTACGAATCAGATGC -CCAACAGCGTTACGAATCTGAAGG -CCAACAGCGTTACGAATCCAATGG -CCAACAGCGTTACGAATCATGAGG -CCAACAGCGTTACGAATCAATGGG -CCAACAGCGTTACGAATCTCCTGA -CCAACAGCGTTACGAATCTAGCGA -CCAACAGCGTTACGAATCCACAGA -CCAACAGCGTTACGAATCGCAAGA -CCAACAGCGTTACGAATCGGTTGA -CCAACAGCGTTACGAATCTCCGAT -CCAACAGCGTTACGAATCTGGCAT -CCAACAGCGTTACGAATCCGAGAT -CCAACAGCGTTACGAATCTACCAC -CCAACAGCGTTACGAATCCAGAAC -CCAACAGCGTTACGAATCGTCTAC -CCAACAGCGTTACGAATCACGTAC -CCAACAGCGTTACGAATCAGTGAC -CCAACAGCGTTACGAATCCTGTAG -CCAACAGCGTTACGAATCCCTAAG -CCAACAGCGTTACGAATCGTTCAG -CCAACAGCGTTACGAATCGCATAG -CCAACAGCGTTACGAATCGACAAG -CCAACAGCGTTACGAATCAAGCAG -CCAACAGCGTTACGAATCCGTCAA -CCAACAGCGTTACGAATCGCTGAA -CCAACAGCGTTACGAATCAGTACG -CCAACAGCGTTACGAATCATCCGA -CCAACAGCGTTACGAATCATGGGA -CCAACAGCGTTACGAATCGTGCAA -CCAACAGCGTTACGAATCGAGGAA -CCAACAGCGTTACGAATCCAGGTA -CCAACAGCGTTACGAATCGACTCT -CCAACAGCGTTACGAATCAGTCCT -CCAACAGCGTTACGAATCTAAGCC -CCAACAGCGTTACGAATCATAGCC -CCAACAGCGTTACGAATCTAACCG -CCAACAGCGTTACGAATCATGCCA -CCAACAGCGTTAGGAATGGGAAAC -CCAACAGCGTTAGGAATGAACACC -CCAACAGCGTTAGGAATGATCGAG -CCAACAGCGTTAGGAATGCTCCTT -CCAACAGCGTTAGGAATGCCTGTT -CCAACAGCGTTAGGAATGCGGTTT -CCAACAGCGTTAGGAATGGTGGTT -CCAACAGCGTTAGGAATGGCCTTT -CCAACAGCGTTAGGAATGGGTCTT -CCAACAGCGTTAGGAATGACGCTT -CCAACAGCGTTAGGAATGAGCGTT -CCAACAGCGTTAGGAATGTTCGTC -CCAACAGCGTTAGGAATGTCTCTC -CCAACAGCGTTAGGAATGTGGATC -CCAACAGCGTTAGGAATGCACTTC -CCAACAGCGTTAGGAATGGTACTC -CCAACAGCGTTAGGAATGGATGTC -CCAACAGCGTTAGGAATGACAGTC -CCAACAGCGTTAGGAATGTTGCTG -CCAACAGCGTTAGGAATGTCCATG -CCAACAGCGTTAGGAATGTGTGTG -CCAACAGCGTTAGGAATGCTAGTG -CCAACAGCGTTAGGAATGCATCTG -CCAACAGCGTTAGGAATGGAGTTG -CCAACAGCGTTAGGAATGAGACTG -CCAACAGCGTTAGGAATGTCGGTA -CCAACAGCGTTAGGAATGTGCCTA -CCAACAGCGTTAGGAATGCCACTA -CCAACAGCGTTAGGAATGGGAGTA -CCAACAGCGTTAGGAATGTCGTCT -CCAACAGCGTTAGGAATGTGCACT -CCAACAGCGTTAGGAATGCTGACT -CCAACAGCGTTAGGAATGCAACCT -CCAACAGCGTTAGGAATGGCTACT -CCAACAGCGTTAGGAATGGGATCT -CCAACAGCGTTAGGAATGAAGGCT -CCAACAGCGTTAGGAATGTCAACC -CCAACAGCGTTAGGAATGTGTTCC -CCAACAGCGTTAGGAATGATTCCC -CCAACAGCGTTAGGAATGTTCTCG -CCAACAGCGTTAGGAATGTAGACG -CCAACAGCGTTAGGAATGGTAACG -CCAACAGCGTTAGGAATGACTTCG -CCAACAGCGTTAGGAATGTACGCA -CCAACAGCGTTAGGAATGCTTGCA -CCAACAGCGTTAGGAATGCGAACA -CCAACAGCGTTAGGAATGCAGTCA -CCAACAGCGTTAGGAATGGATCCA -CCAACAGCGTTAGGAATGACGACA -CCAACAGCGTTAGGAATGAGCTCA -CCAACAGCGTTAGGAATGTCACGT -CCAACAGCGTTAGGAATGCGTAGT -CCAACAGCGTTAGGAATGGTCAGT -CCAACAGCGTTAGGAATGGAAGGT -CCAACAGCGTTAGGAATGAACCGT -CCAACAGCGTTAGGAATGTTGTGC -CCAACAGCGTTAGGAATGCTAAGC -CCAACAGCGTTAGGAATGACTAGC -CCAACAGCGTTAGGAATGAGATGC -CCAACAGCGTTAGGAATGTGAAGG -CCAACAGCGTTAGGAATGCAATGG -CCAACAGCGTTAGGAATGATGAGG -CCAACAGCGTTAGGAATGAATGGG -CCAACAGCGTTAGGAATGTCCTGA -CCAACAGCGTTAGGAATGTAGCGA -CCAACAGCGTTAGGAATGCACAGA -CCAACAGCGTTAGGAATGGCAAGA -CCAACAGCGTTAGGAATGGGTTGA -CCAACAGCGTTAGGAATGTCCGAT -CCAACAGCGTTAGGAATGTGGCAT -CCAACAGCGTTAGGAATGCGAGAT -CCAACAGCGTTAGGAATGTACCAC -CCAACAGCGTTAGGAATGCAGAAC -CCAACAGCGTTAGGAATGGTCTAC -CCAACAGCGTTAGGAATGACGTAC -CCAACAGCGTTAGGAATGAGTGAC -CCAACAGCGTTAGGAATGCTGTAG -CCAACAGCGTTAGGAATGCCTAAG -CCAACAGCGTTAGGAATGGTTCAG -CCAACAGCGTTAGGAATGGCATAG -CCAACAGCGTTAGGAATGGACAAG -CCAACAGCGTTAGGAATGAAGCAG -CCAACAGCGTTAGGAATGCGTCAA -CCAACAGCGTTAGGAATGGCTGAA -CCAACAGCGTTAGGAATGAGTACG -CCAACAGCGTTAGGAATGATCCGA -CCAACAGCGTTAGGAATGATGGGA -CCAACAGCGTTAGGAATGGTGCAA -CCAACAGCGTTAGGAATGGAGGAA -CCAACAGCGTTAGGAATGCAGGTA -CCAACAGCGTTAGGAATGGACTCT -CCAACAGCGTTAGGAATGAGTCCT -CCAACAGCGTTAGGAATGTAAGCC -CCAACAGCGTTAGGAATGATAGCC -CCAACAGCGTTAGGAATGTAACCG -CCAACAGCGTTAGGAATGATGCCA -CCAACAGCGTTACAAGTGGGAAAC -CCAACAGCGTTACAAGTGAACACC -CCAACAGCGTTACAAGTGATCGAG -CCAACAGCGTTACAAGTGCTCCTT -CCAACAGCGTTACAAGTGCCTGTT -CCAACAGCGTTACAAGTGCGGTTT -CCAACAGCGTTACAAGTGGTGGTT -CCAACAGCGTTACAAGTGGCCTTT -CCAACAGCGTTACAAGTGGGTCTT -CCAACAGCGTTACAAGTGACGCTT -CCAACAGCGTTACAAGTGAGCGTT -CCAACAGCGTTACAAGTGTTCGTC -CCAACAGCGTTACAAGTGTCTCTC -CCAACAGCGTTACAAGTGTGGATC -CCAACAGCGTTACAAGTGCACTTC -CCAACAGCGTTACAAGTGGTACTC -CCAACAGCGTTACAAGTGGATGTC -CCAACAGCGTTACAAGTGACAGTC -CCAACAGCGTTACAAGTGTTGCTG -CCAACAGCGTTACAAGTGTCCATG -CCAACAGCGTTACAAGTGTGTGTG -CCAACAGCGTTACAAGTGCTAGTG -CCAACAGCGTTACAAGTGCATCTG -CCAACAGCGTTACAAGTGGAGTTG -CCAACAGCGTTACAAGTGAGACTG -CCAACAGCGTTACAAGTGTCGGTA -CCAACAGCGTTACAAGTGTGCCTA -CCAACAGCGTTACAAGTGCCACTA -CCAACAGCGTTACAAGTGGGAGTA -CCAACAGCGTTACAAGTGTCGTCT -CCAACAGCGTTACAAGTGTGCACT -CCAACAGCGTTACAAGTGCTGACT -CCAACAGCGTTACAAGTGCAACCT -CCAACAGCGTTACAAGTGGCTACT -CCAACAGCGTTACAAGTGGGATCT -CCAACAGCGTTACAAGTGAAGGCT -CCAACAGCGTTACAAGTGTCAACC -CCAACAGCGTTACAAGTGTGTTCC -CCAACAGCGTTACAAGTGATTCCC -CCAACAGCGTTACAAGTGTTCTCG -CCAACAGCGTTACAAGTGTAGACG -CCAACAGCGTTACAAGTGGTAACG -CCAACAGCGTTACAAGTGACTTCG -CCAACAGCGTTACAAGTGTACGCA -CCAACAGCGTTACAAGTGCTTGCA -CCAACAGCGTTACAAGTGCGAACA -CCAACAGCGTTACAAGTGCAGTCA -CCAACAGCGTTACAAGTGGATCCA -CCAACAGCGTTACAAGTGACGACA -CCAACAGCGTTACAAGTGAGCTCA -CCAACAGCGTTACAAGTGTCACGT -CCAACAGCGTTACAAGTGCGTAGT -CCAACAGCGTTACAAGTGGTCAGT -CCAACAGCGTTACAAGTGGAAGGT -CCAACAGCGTTACAAGTGAACCGT -CCAACAGCGTTACAAGTGTTGTGC -CCAACAGCGTTACAAGTGCTAAGC -CCAACAGCGTTACAAGTGACTAGC -CCAACAGCGTTACAAGTGAGATGC -CCAACAGCGTTACAAGTGTGAAGG -CCAACAGCGTTACAAGTGCAATGG -CCAACAGCGTTACAAGTGATGAGG -CCAACAGCGTTACAAGTGAATGGG -CCAACAGCGTTACAAGTGTCCTGA -CCAACAGCGTTACAAGTGTAGCGA -CCAACAGCGTTACAAGTGCACAGA -CCAACAGCGTTACAAGTGGCAAGA -CCAACAGCGTTACAAGTGGGTTGA -CCAACAGCGTTACAAGTGTCCGAT -CCAACAGCGTTACAAGTGTGGCAT -CCAACAGCGTTACAAGTGCGAGAT -CCAACAGCGTTACAAGTGTACCAC -CCAACAGCGTTACAAGTGCAGAAC -CCAACAGCGTTACAAGTGGTCTAC -CCAACAGCGTTACAAGTGACGTAC -CCAACAGCGTTACAAGTGAGTGAC -CCAACAGCGTTACAAGTGCTGTAG -CCAACAGCGTTACAAGTGCCTAAG -CCAACAGCGTTACAAGTGGTTCAG -CCAACAGCGTTACAAGTGGCATAG -CCAACAGCGTTACAAGTGGACAAG -CCAACAGCGTTACAAGTGAAGCAG -CCAACAGCGTTACAAGTGCGTCAA -CCAACAGCGTTACAAGTGGCTGAA -CCAACAGCGTTACAAGTGAGTACG -CCAACAGCGTTACAAGTGATCCGA -CCAACAGCGTTACAAGTGATGGGA -CCAACAGCGTTACAAGTGGTGCAA -CCAACAGCGTTACAAGTGGAGGAA -CCAACAGCGTTACAAGTGCAGGTA -CCAACAGCGTTACAAGTGGACTCT -CCAACAGCGTTACAAGTGAGTCCT -CCAACAGCGTTACAAGTGTAAGCC -CCAACAGCGTTACAAGTGATAGCC -CCAACAGCGTTACAAGTGTAACCG -CCAACAGCGTTACAAGTGATGCCA -CCAACAGCGTTAGAAGAGGGAAAC -CCAACAGCGTTAGAAGAGAACACC -CCAACAGCGTTAGAAGAGATCGAG -CCAACAGCGTTAGAAGAGCTCCTT -CCAACAGCGTTAGAAGAGCCTGTT -CCAACAGCGTTAGAAGAGCGGTTT -CCAACAGCGTTAGAAGAGGTGGTT -CCAACAGCGTTAGAAGAGGCCTTT -CCAACAGCGTTAGAAGAGGGTCTT -CCAACAGCGTTAGAAGAGACGCTT -CCAACAGCGTTAGAAGAGAGCGTT -CCAACAGCGTTAGAAGAGTTCGTC -CCAACAGCGTTAGAAGAGTCTCTC -CCAACAGCGTTAGAAGAGTGGATC -CCAACAGCGTTAGAAGAGCACTTC -CCAACAGCGTTAGAAGAGGTACTC -CCAACAGCGTTAGAAGAGGATGTC -CCAACAGCGTTAGAAGAGACAGTC -CCAACAGCGTTAGAAGAGTTGCTG -CCAACAGCGTTAGAAGAGTCCATG -CCAACAGCGTTAGAAGAGTGTGTG -CCAACAGCGTTAGAAGAGCTAGTG -CCAACAGCGTTAGAAGAGCATCTG -CCAACAGCGTTAGAAGAGGAGTTG -CCAACAGCGTTAGAAGAGAGACTG -CCAACAGCGTTAGAAGAGTCGGTA -CCAACAGCGTTAGAAGAGTGCCTA -CCAACAGCGTTAGAAGAGCCACTA -CCAACAGCGTTAGAAGAGGGAGTA -CCAACAGCGTTAGAAGAGTCGTCT -CCAACAGCGTTAGAAGAGTGCACT -CCAACAGCGTTAGAAGAGCTGACT -CCAACAGCGTTAGAAGAGCAACCT -CCAACAGCGTTAGAAGAGGCTACT -CCAACAGCGTTAGAAGAGGGATCT -CCAACAGCGTTAGAAGAGAAGGCT -CCAACAGCGTTAGAAGAGTCAACC -CCAACAGCGTTAGAAGAGTGTTCC -CCAACAGCGTTAGAAGAGATTCCC -CCAACAGCGTTAGAAGAGTTCTCG -CCAACAGCGTTAGAAGAGTAGACG -CCAACAGCGTTAGAAGAGGTAACG -CCAACAGCGTTAGAAGAGACTTCG -CCAACAGCGTTAGAAGAGTACGCA -CCAACAGCGTTAGAAGAGCTTGCA -CCAACAGCGTTAGAAGAGCGAACA -CCAACAGCGTTAGAAGAGCAGTCA -CCAACAGCGTTAGAAGAGGATCCA -CCAACAGCGTTAGAAGAGACGACA -CCAACAGCGTTAGAAGAGAGCTCA -CCAACAGCGTTAGAAGAGTCACGT -CCAACAGCGTTAGAAGAGCGTAGT -CCAACAGCGTTAGAAGAGGTCAGT -CCAACAGCGTTAGAAGAGGAAGGT -CCAACAGCGTTAGAAGAGAACCGT -CCAACAGCGTTAGAAGAGTTGTGC -CCAACAGCGTTAGAAGAGCTAAGC -CCAACAGCGTTAGAAGAGACTAGC -CCAACAGCGTTAGAAGAGAGATGC -CCAACAGCGTTAGAAGAGTGAAGG -CCAACAGCGTTAGAAGAGCAATGG -CCAACAGCGTTAGAAGAGATGAGG -CCAACAGCGTTAGAAGAGAATGGG -CCAACAGCGTTAGAAGAGTCCTGA -CCAACAGCGTTAGAAGAGTAGCGA -CCAACAGCGTTAGAAGAGCACAGA -CCAACAGCGTTAGAAGAGGCAAGA -CCAACAGCGTTAGAAGAGGGTTGA -CCAACAGCGTTAGAAGAGTCCGAT -CCAACAGCGTTAGAAGAGTGGCAT -CCAACAGCGTTAGAAGAGCGAGAT -CCAACAGCGTTAGAAGAGTACCAC -CCAACAGCGTTAGAAGAGCAGAAC -CCAACAGCGTTAGAAGAGGTCTAC -CCAACAGCGTTAGAAGAGACGTAC -CCAACAGCGTTAGAAGAGAGTGAC -CCAACAGCGTTAGAAGAGCTGTAG -CCAACAGCGTTAGAAGAGCCTAAG -CCAACAGCGTTAGAAGAGGTTCAG -CCAACAGCGTTAGAAGAGGCATAG -CCAACAGCGTTAGAAGAGGACAAG -CCAACAGCGTTAGAAGAGAAGCAG -CCAACAGCGTTAGAAGAGCGTCAA -CCAACAGCGTTAGAAGAGGCTGAA -CCAACAGCGTTAGAAGAGAGTACG -CCAACAGCGTTAGAAGAGATCCGA -CCAACAGCGTTAGAAGAGATGGGA -CCAACAGCGTTAGAAGAGGTGCAA -CCAACAGCGTTAGAAGAGGAGGAA -CCAACAGCGTTAGAAGAGCAGGTA -CCAACAGCGTTAGAAGAGGACTCT -CCAACAGCGTTAGAAGAGAGTCCT -CCAACAGCGTTAGAAGAGTAAGCC -CCAACAGCGTTAGAAGAGATAGCC -CCAACAGCGTTAGAAGAGTAACCG -CCAACAGCGTTAGAAGAGATGCCA -CCAACAGCGTTAGTACAGGGAAAC -CCAACAGCGTTAGTACAGAACACC -CCAACAGCGTTAGTACAGATCGAG -CCAACAGCGTTAGTACAGCTCCTT -CCAACAGCGTTAGTACAGCCTGTT -CCAACAGCGTTAGTACAGCGGTTT -CCAACAGCGTTAGTACAGGTGGTT -CCAACAGCGTTAGTACAGGCCTTT -CCAACAGCGTTAGTACAGGGTCTT -CCAACAGCGTTAGTACAGACGCTT -CCAACAGCGTTAGTACAGAGCGTT -CCAACAGCGTTAGTACAGTTCGTC -CCAACAGCGTTAGTACAGTCTCTC -CCAACAGCGTTAGTACAGTGGATC -CCAACAGCGTTAGTACAGCACTTC -CCAACAGCGTTAGTACAGGTACTC -CCAACAGCGTTAGTACAGGATGTC -CCAACAGCGTTAGTACAGACAGTC -CCAACAGCGTTAGTACAGTTGCTG -CCAACAGCGTTAGTACAGTCCATG -CCAACAGCGTTAGTACAGTGTGTG -CCAACAGCGTTAGTACAGCTAGTG -CCAACAGCGTTAGTACAGCATCTG -CCAACAGCGTTAGTACAGGAGTTG -CCAACAGCGTTAGTACAGAGACTG -CCAACAGCGTTAGTACAGTCGGTA -CCAACAGCGTTAGTACAGTGCCTA -CCAACAGCGTTAGTACAGCCACTA -CCAACAGCGTTAGTACAGGGAGTA -CCAACAGCGTTAGTACAGTCGTCT -CCAACAGCGTTAGTACAGTGCACT -CCAACAGCGTTAGTACAGCTGACT -CCAACAGCGTTAGTACAGCAACCT -CCAACAGCGTTAGTACAGGCTACT -CCAACAGCGTTAGTACAGGGATCT -CCAACAGCGTTAGTACAGAAGGCT -CCAACAGCGTTAGTACAGTCAACC -CCAACAGCGTTAGTACAGTGTTCC -CCAACAGCGTTAGTACAGATTCCC -CCAACAGCGTTAGTACAGTTCTCG -CCAACAGCGTTAGTACAGTAGACG -CCAACAGCGTTAGTACAGGTAACG -CCAACAGCGTTAGTACAGACTTCG -CCAACAGCGTTAGTACAGTACGCA -CCAACAGCGTTAGTACAGCTTGCA -CCAACAGCGTTAGTACAGCGAACA -CCAACAGCGTTAGTACAGCAGTCA -CCAACAGCGTTAGTACAGGATCCA -CCAACAGCGTTAGTACAGACGACA -CCAACAGCGTTAGTACAGAGCTCA -CCAACAGCGTTAGTACAGTCACGT -CCAACAGCGTTAGTACAGCGTAGT -CCAACAGCGTTAGTACAGGTCAGT -CCAACAGCGTTAGTACAGGAAGGT -CCAACAGCGTTAGTACAGAACCGT -CCAACAGCGTTAGTACAGTTGTGC -CCAACAGCGTTAGTACAGCTAAGC -CCAACAGCGTTAGTACAGACTAGC -CCAACAGCGTTAGTACAGAGATGC -CCAACAGCGTTAGTACAGTGAAGG -CCAACAGCGTTAGTACAGCAATGG -CCAACAGCGTTAGTACAGATGAGG -CCAACAGCGTTAGTACAGAATGGG -CCAACAGCGTTAGTACAGTCCTGA -CCAACAGCGTTAGTACAGTAGCGA -CCAACAGCGTTAGTACAGCACAGA -CCAACAGCGTTAGTACAGGCAAGA -CCAACAGCGTTAGTACAGGGTTGA -CCAACAGCGTTAGTACAGTCCGAT -CCAACAGCGTTAGTACAGTGGCAT -CCAACAGCGTTAGTACAGCGAGAT -CCAACAGCGTTAGTACAGTACCAC -CCAACAGCGTTAGTACAGCAGAAC -CCAACAGCGTTAGTACAGGTCTAC -CCAACAGCGTTAGTACAGACGTAC -CCAACAGCGTTAGTACAGAGTGAC -CCAACAGCGTTAGTACAGCTGTAG -CCAACAGCGTTAGTACAGCCTAAG -CCAACAGCGTTAGTACAGGTTCAG -CCAACAGCGTTAGTACAGGCATAG -CCAACAGCGTTAGTACAGGACAAG -CCAACAGCGTTAGTACAGAAGCAG -CCAACAGCGTTAGTACAGCGTCAA -CCAACAGCGTTAGTACAGGCTGAA -CCAACAGCGTTAGTACAGAGTACG -CCAACAGCGTTAGTACAGATCCGA -CCAACAGCGTTAGTACAGATGGGA -CCAACAGCGTTAGTACAGGTGCAA -CCAACAGCGTTAGTACAGGAGGAA -CCAACAGCGTTAGTACAGCAGGTA -CCAACAGCGTTAGTACAGGACTCT -CCAACAGCGTTAGTACAGAGTCCT -CCAACAGCGTTAGTACAGTAAGCC -CCAACAGCGTTAGTACAGATAGCC -CCAACAGCGTTAGTACAGTAACCG -CCAACAGCGTTAGTACAGATGCCA -CCAACAGCGTTATCTGACGGAAAC -CCAACAGCGTTATCTGACAACACC -CCAACAGCGTTATCTGACATCGAG -CCAACAGCGTTATCTGACCTCCTT -CCAACAGCGTTATCTGACCCTGTT -CCAACAGCGTTATCTGACCGGTTT -CCAACAGCGTTATCTGACGTGGTT -CCAACAGCGTTATCTGACGCCTTT -CCAACAGCGTTATCTGACGGTCTT -CCAACAGCGTTATCTGACACGCTT -CCAACAGCGTTATCTGACAGCGTT -CCAACAGCGTTATCTGACTTCGTC -CCAACAGCGTTATCTGACTCTCTC -CCAACAGCGTTATCTGACTGGATC -CCAACAGCGTTATCTGACCACTTC -CCAACAGCGTTATCTGACGTACTC -CCAACAGCGTTATCTGACGATGTC -CCAACAGCGTTATCTGACACAGTC -CCAACAGCGTTATCTGACTTGCTG -CCAACAGCGTTATCTGACTCCATG -CCAACAGCGTTATCTGACTGTGTG -CCAACAGCGTTATCTGACCTAGTG -CCAACAGCGTTATCTGACCATCTG -CCAACAGCGTTATCTGACGAGTTG -CCAACAGCGTTATCTGACAGACTG -CCAACAGCGTTATCTGACTCGGTA -CCAACAGCGTTATCTGACTGCCTA -CCAACAGCGTTATCTGACCCACTA -CCAACAGCGTTATCTGACGGAGTA -CCAACAGCGTTATCTGACTCGTCT -CCAACAGCGTTATCTGACTGCACT -CCAACAGCGTTATCTGACCTGACT -CCAACAGCGTTATCTGACCAACCT -CCAACAGCGTTATCTGACGCTACT -CCAACAGCGTTATCTGACGGATCT -CCAACAGCGTTATCTGACAAGGCT -CCAACAGCGTTATCTGACTCAACC -CCAACAGCGTTATCTGACTGTTCC -CCAACAGCGTTATCTGACATTCCC -CCAACAGCGTTATCTGACTTCTCG -CCAACAGCGTTATCTGACTAGACG -CCAACAGCGTTATCTGACGTAACG -CCAACAGCGTTATCTGACACTTCG -CCAACAGCGTTATCTGACTACGCA -CCAACAGCGTTATCTGACCTTGCA -CCAACAGCGTTATCTGACCGAACA -CCAACAGCGTTATCTGACCAGTCA -CCAACAGCGTTATCTGACGATCCA -CCAACAGCGTTATCTGACACGACA -CCAACAGCGTTATCTGACAGCTCA -CCAACAGCGTTATCTGACTCACGT -CCAACAGCGTTATCTGACCGTAGT -CCAACAGCGTTATCTGACGTCAGT -CCAACAGCGTTATCTGACGAAGGT -CCAACAGCGTTATCTGACAACCGT -CCAACAGCGTTATCTGACTTGTGC -CCAACAGCGTTATCTGACCTAAGC -CCAACAGCGTTATCTGACACTAGC -CCAACAGCGTTATCTGACAGATGC -CCAACAGCGTTATCTGACTGAAGG -CCAACAGCGTTATCTGACCAATGG -CCAACAGCGTTATCTGACATGAGG -CCAACAGCGTTATCTGACAATGGG -CCAACAGCGTTATCTGACTCCTGA -CCAACAGCGTTATCTGACTAGCGA -CCAACAGCGTTATCTGACCACAGA -CCAACAGCGTTATCTGACGCAAGA -CCAACAGCGTTATCTGACGGTTGA -CCAACAGCGTTATCTGACTCCGAT -CCAACAGCGTTATCTGACTGGCAT -CCAACAGCGTTATCTGACCGAGAT -CCAACAGCGTTATCTGACTACCAC -CCAACAGCGTTATCTGACCAGAAC -CCAACAGCGTTATCTGACGTCTAC -CCAACAGCGTTATCTGACACGTAC -CCAACAGCGTTATCTGACAGTGAC -CCAACAGCGTTATCTGACCTGTAG -CCAACAGCGTTATCTGACCCTAAG -CCAACAGCGTTATCTGACGTTCAG -CCAACAGCGTTATCTGACGCATAG -CCAACAGCGTTATCTGACGACAAG -CCAACAGCGTTATCTGACAAGCAG -CCAACAGCGTTATCTGACCGTCAA -CCAACAGCGTTATCTGACGCTGAA -CCAACAGCGTTATCTGACAGTACG -CCAACAGCGTTATCTGACATCCGA -CCAACAGCGTTATCTGACATGGGA -CCAACAGCGTTATCTGACGTGCAA -CCAACAGCGTTATCTGACGAGGAA -CCAACAGCGTTATCTGACCAGGTA -CCAACAGCGTTATCTGACGACTCT -CCAACAGCGTTATCTGACAGTCCT -CCAACAGCGTTATCTGACTAAGCC -CCAACAGCGTTATCTGACATAGCC -CCAACAGCGTTATCTGACTAACCG -CCAACAGCGTTATCTGACATGCCA -CCAACAGCGTTACCTAGTGGAAAC -CCAACAGCGTTACCTAGTAACACC -CCAACAGCGTTACCTAGTATCGAG -CCAACAGCGTTACCTAGTCTCCTT -CCAACAGCGTTACCTAGTCCTGTT -CCAACAGCGTTACCTAGTCGGTTT -CCAACAGCGTTACCTAGTGTGGTT -CCAACAGCGTTACCTAGTGCCTTT -CCAACAGCGTTACCTAGTGGTCTT -CCAACAGCGTTACCTAGTACGCTT -CCAACAGCGTTACCTAGTAGCGTT -CCAACAGCGTTACCTAGTTTCGTC -CCAACAGCGTTACCTAGTTCTCTC -CCAACAGCGTTACCTAGTTGGATC -CCAACAGCGTTACCTAGTCACTTC -CCAACAGCGTTACCTAGTGTACTC -CCAACAGCGTTACCTAGTGATGTC -CCAACAGCGTTACCTAGTACAGTC -CCAACAGCGTTACCTAGTTTGCTG -CCAACAGCGTTACCTAGTTCCATG -CCAACAGCGTTACCTAGTTGTGTG -CCAACAGCGTTACCTAGTCTAGTG -CCAACAGCGTTACCTAGTCATCTG -CCAACAGCGTTACCTAGTGAGTTG -CCAACAGCGTTACCTAGTAGACTG -CCAACAGCGTTACCTAGTTCGGTA -CCAACAGCGTTACCTAGTTGCCTA -CCAACAGCGTTACCTAGTCCACTA -CCAACAGCGTTACCTAGTGGAGTA -CCAACAGCGTTACCTAGTTCGTCT -CCAACAGCGTTACCTAGTTGCACT -CCAACAGCGTTACCTAGTCTGACT -CCAACAGCGTTACCTAGTCAACCT -CCAACAGCGTTACCTAGTGCTACT -CCAACAGCGTTACCTAGTGGATCT -CCAACAGCGTTACCTAGTAAGGCT -CCAACAGCGTTACCTAGTTCAACC -CCAACAGCGTTACCTAGTTGTTCC -CCAACAGCGTTACCTAGTATTCCC -CCAACAGCGTTACCTAGTTTCTCG -CCAACAGCGTTACCTAGTTAGACG -CCAACAGCGTTACCTAGTGTAACG -CCAACAGCGTTACCTAGTACTTCG -CCAACAGCGTTACCTAGTTACGCA -CCAACAGCGTTACCTAGTCTTGCA -CCAACAGCGTTACCTAGTCGAACA -CCAACAGCGTTACCTAGTCAGTCA -CCAACAGCGTTACCTAGTGATCCA -CCAACAGCGTTACCTAGTACGACA -CCAACAGCGTTACCTAGTAGCTCA -CCAACAGCGTTACCTAGTTCACGT -CCAACAGCGTTACCTAGTCGTAGT -CCAACAGCGTTACCTAGTGTCAGT -CCAACAGCGTTACCTAGTGAAGGT -CCAACAGCGTTACCTAGTAACCGT -CCAACAGCGTTACCTAGTTTGTGC -CCAACAGCGTTACCTAGTCTAAGC -CCAACAGCGTTACCTAGTACTAGC -CCAACAGCGTTACCTAGTAGATGC -CCAACAGCGTTACCTAGTTGAAGG -CCAACAGCGTTACCTAGTCAATGG -CCAACAGCGTTACCTAGTATGAGG -CCAACAGCGTTACCTAGTAATGGG -CCAACAGCGTTACCTAGTTCCTGA -CCAACAGCGTTACCTAGTTAGCGA -CCAACAGCGTTACCTAGTCACAGA -CCAACAGCGTTACCTAGTGCAAGA -CCAACAGCGTTACCTAGTGGTTGA -CCAACAGCGTTACCTAGTTCCGAT -CCAACAGCGTTACCTAGTTGGCAT -CCAACAGCGTTACCTAGTCGAGAT -CCAACAGCGTTACCTAGTTACCAC -CCAACAGCGTTACCTAGTCAGAAC -CCAACAGCGTTACCTAGTGTCTAC -CCAACAGCGTTACCTAGTACGTAC -CCAACAGCGTTACCTAGTAGTGAC -CCAACAGCGTTACCTAGTCTGTAG -CCAACAGCGTTACCTAGTCCTAAG -CCAACAGCGTTACCTAGTGTTCAG -CCAACAGCGTTACCTAGTGCATAG -CCAACAGCGTTACCTAGTGACAAG -CCAACAGCGTTACCTAGTAAGCAG -CCAACAGCGTTACCTAGTCGTCAA -CCAACAGCGTTACCTAGTGCTGAA -CCAACAGCGTTACCTAGTAGTACG -CCAACAGCGTTACCTAGTATCCGA -CCAACAGCGTTACCTAGTATGGGA -CCAACAGCGTTACCTAGTGTGCAA -CCAACAGCGTTACCTAGTGAGGAA -CCAACAGCGTTACCTAGTCAGGTA -CCAACAGCGTTACCTAGTGACTCT -CCAACAGCGTTACCTAGTAGTCCT -CCAACAGCGTTACCTAGTTAAGCC -CCAACAGCGTTACCTAGTATAGCC -CCAACAGCGTTACCTAGTTAACCG -CCAACAGCGTTACCTAGTATGCCA -CCAACAGCGTTAGCCTAAGGAAAC -CCAACAGCGTTAGCCTAAAACACC -CCAACAGCGTTAGCCTAAATCGAG -CCAACAGCGTTAGCCTAACTCCTT -CCAACAGCGTTAGCCTAACCTGTT -CCAACAGCGTTAGCCTAACGGTTT -CCAACAGCGTTAGCCTAAGTGGTT -CCAACAGCGTTAGCCTAAGCCTTT -CCAACAGCGTTAGCCTAAGGTCTT -CCAACAGCGTTAGCCTAAACGCTT -CCAACAGCGTTAGCCTAAAGCGTT -CCAACAGCGTTAGCCTAATTCGTC -CCAACAGCGTTAGCCTAATCTCTC -CCAACAGCGTTAGCCTAATGGATC -CCAACAGCGTTAGCCTAACACTTC -CCAACAGCGTTAGCCTAAGTACTC -CCAACAGCGTTAGCCTAAGATGTC -CCAACAGCGTTAGCCTAAACAGTC -CCAACAGCGTTAGCCTAATTGCTG -CCAACAGCGTTAGCCTAATCCATG -CCAACAGCGTTAGCCTAATGTGTG -CCAACAGCGTTAGCCTAACTAGTG -CCAACAGCGTTAGCCTAACATCTG -CCAACAGCGTTAGCCTAAGAGTTG -CCAACAGCGTTAGCCTAAAGACTG -CCAACAGCGTTAGCCTAATCGGTA -CCAACAGCGTTAGCCTAATGCCTA -CCAACAGCGTTAGCCTAACCACTA -CCAACAGCGTTAGCCTAAGGAGTA -CCAACAGCGTTAGCCTAATCGTCT -CCAACAGCGTTAGCCTAATGCACT -CCAACAGCGTTAGCCTAACTGACT -CCAACAGCGTTAGCCTAACAACCT -CCAACAGCGTTAGCCTAAGCTACT -CCAACAGCGTTAGCCTAAGGATCT -CCAACAGCGTTAGCCTAAAAGGCT -CCAACAGCGTTAGCCTAATCAACC -CCAACAGCGTTAGCCTAATGTTCC -CCAACAGCGTTAGCCTAAATTCCC -CCAACAGCGTTAGCCTAATTCTCG -CCAACAGCGTTAGCCTAATAGACG -CCAACAGCGTTAGCCTAAGTAACG -CCAACAGCGTTAGCCTAAACTTCG -CCAACAGCGTTAGCCTAATACGCA -CCAACAGCGTTAGCCTAACTTGCA -CCAACAGCGTTAGCCTAACGAACA -CCAACAGCGTTAGCCTAACAGTCA -CCAACAGCGTTAGCCTAAGATCCA -CCAACAGCGTTAGCCTAAACGACA -CCAACAGCGTTAGCCTAAAGCTCA -CCAACAGCGTTAGCCTAATCACGT -CCAACAGCGTTAGCCTAACGTAGT -CCAACAGCGTTAGCCTAAGTCAGT -CCAACAGCGTTAGCCTAAGAAGGT -CCAACAGCGTTAGCCTAAAACCGT -CCAACAGCGTTAGCCTAATTGTGC -CCAACAGCGTTAGCCTAACTAAGC -CCAACAGCGTTAGCCTAAACTAGC -CCAACAGCGTTAGCCTAAAGATGC -CCAACAGCGTTAGCCTAATGAAGG -CCAACAGCGTTAGCCTAACAATGG -CCAACAGCGTTAGCCTAAATGAGG -CCAACAGCGTTAGCCTAAAATGGG -CCAACAGCGTTAGCCTAATCCTGA -CCAACAGCGTTAGCCTAATAGCGA -CCAACAGCGTTAGCCTAACACAGA -CCAACAGCGTTAGCCTAAGCAAGA -CCAACAGCGTTAGCCTAAGGTTGA -CCAACAGCGTTAGCCTAATCCGAT -CCAACAGCGTTAGCCTAATGGCAT -CCAACAGCGTTAGCCTAACGAGAT -CCAACAGCGTTAGCCTAATACCAC -CCAACAGCGTTAGCCTAACAGAAC -CCAACAGCGTTAGCCTAAGTCTAC -CCAACAGCGTTAGCCTAAACGTAC -CCAACAGCGTTAGCCTAAAGTGAC -CCAACAGCGTTAGCCTAACTGTAG -CCAACAGCGTTAGCCTAACCTAAG -CCAACAGCGTTAGCCTAAGTTCAG -CCAACAGCGTTAGCCTAAGCATAG -CCAACAGCGTTAGCCTAAGACAAG -CCAACAGCGTTAGCCTAAAAGCAG -CCAACAGCGTTAGCCTAACGTCAA -CCAACAGCGTTAGCCTAAGCTGAA -CCAACAGCGTTAGCCTAAAGTACG -CCAACAGCGTTAGCCTAAATCCGA -CCAACAGCGTTAGCCTAAATGGGA -CCAACAGCGTTAGCCTAAGTGCAA -CCAACAGCGTTAGCCTAAGAGGAA -CCAACAGCGTTAGCCTAACAGGTA -CCAACAGCGTTAGCCTAAGACTCT -CCAACAGCGTTAGCCTAAAGTCCT -CCAACAGCGTTAGCCTAATAAGCC -CCAACAGCGTTAGCCTAAATAGCC -CCAACAGCGTTAGCCTAATAACCG -CCAACAGCGTTAGCCTAAATGCCA -CCAACAGCGTTAGCCATAGGAAAC -CCAACAGCGTTAGCCATAAACACC -CCAACAGCGTTAGCCATAATCGAG -CCAACAGCGTTAGCCATACTCCTT -CCAACAGCGTTAGCCATACCTGTT -CCAACAGCGTTAGCCATACGGTTT -CCAACAGCGTTAGCCATAGTGGTT -CCAACAGCGTTAGCCATAGCCTTT -CCAACAGCGTTAGCCATAGGTCTT -CCAACAGCGTTAGCCATAACGCTT -CCAACAGCGTTAGCCATAAGCGTT -CCAACAGCGTTAGCCATATTCGTC -CCAACAGCGTTAGCCATATCTCTC -CCAACAGCGTTAGCCATATGGATC -CCAACAGCGTTAGCCATACACTTC -CCAACAGCGTTAGCCATAGTACTC -CCAACAGCGTTAGCCATAGATGTC -CCAACAGCGTTAGCCATAACAGTC -CCAACAGCGTTAGCCATATTGCTG -CCAACAGCGTTAGCCATATCCATG -CCAACAGCGTTAGCCATATGTGTG -CCAACAGCGTTAGCCATACTAGTG -CCAACAGCGTTAGCCATACATCTG -CCAACAGCGTTAGCCATAGAGTTG -CCAACAGCGTTAGCCATAAGACTG -CCAACAGCGTTAGCCATATCGGTA -CCAACAGCGTTAGCCATATGCCTA -CCAACAGCGTTAGCCATACCACTA -CCAACAGCGTTAGCCATAGGAGTA -CCAACAGCGTTAGCCATATCGTCT -CCAACAGCGTTAGCCATATGCACT -CCAACAGCGTTAGCCATACTGACT -CCAACAGCGTTAGCCATACAACCT -CCAACAGCGTTAGCCATAGCTACT -CCAACAGCGTTAGCCATAGGATCT -CCAACAGCGTTAGCCATAAAGGCT -CCAACAGCGTTAGCCATATCAACC -CCAACAGCGTTAGCCATATGTTCC -CCAACAGCGTTAGCCATAATTCCC -CCAACAGCGTTAGCCATATTCTCG -CCAACAGCGTTAGCCATATAGACG -CCAACAGCGTTAGCCATAGTAACG -CCAACAGCGTTAGCCATAACTTCG -CCAACAGCGTTAGCCATATACGCA -CCAACAGCGTTAGCCATACTTGCA -CCAACAGCGTTAGCCATACGAACA -CCAACAGCGTTAGCCATACAGTCA -CCAACAGCGTTAGCCATAGATCCA -CCAACAGCGTTAGCCATAACGACA -CCAACAGCGTTAGCCATAAGCTCA -CCAACAGCGTTAGCCATATCACGT -CCAACAGCGTTAGCCATACGTAGT -CCAACAGCGTTAGCCATAGTCAGT -CCAACAGCGTTAGCCATAGAAGGT -CCAACAGCGTTAGCCATAAACCGT -CCAACAGCGTTAGCCATATTGTGC -CCAACAGCGTTAGCCATACTAAGC -CCAACAGCGTTAGCCATAACTAGC -CCAACAGCGTTAGCCATAAGATGC -CCAACAGCGTTAGCCATATGAAGG -CCAACAGCGTTAGCCATACAATGG -CCAACAGCGTTAGCCATAATGAGG -CCAACAGCGTTAGCCATAAATGGG -CCAACAGCGTTAGCCATATCCTGA -CCAACAGCGTTAGCCATATAGCGA -CCAACAGCGTTAGCCATACACAGA -CCAACAGCGTTAGCCATAGCAAGA -CCAACAGCGTTAGCCATAGGTTGA -CCAACAGCGTTAGCCATATCCGAT -CCAACAGCGTTAGCCATATGGCAT -CCAACAGCGTTAGCCATACGAGAT -CCAACAGCGTTAGCCATATACCAC -CCAACAGCGTTAGCCATACAGAAC -CCAACAGCGTTAGCCATAGTCTAC -CCAACAGCGTTAGCCATAACGTAC -CCAACAGCGTTAGCCATAAGTGAC -CCAACAGCGTTAGCCATACTGTAG -CCAACAGCGTTAGCCATACCTAAG -CCAACAGCGTTAGCCATAGTTCAG -CCAACAGCGTTAGCCATAGCATAG -CCAACAGCGTTAGCCATAGACAAG -CCAACAGCGTTAGCCATAAAGCAG -CCAACAGCGTTAGCCATACGTCAA -CCAACAGCGTTAGCCATAGCTGAA -CCAACAGCGTTAGCCATAAGTACG -CCAACAGCGTTAGCCATAATCCGA -CCAACAGCGTTAGCCATAATGGGA -CCAACAGCGTTAGCCATAGTGCAA -CCAACAGCGTTAGCCATAGAGGAA -CCAACAGCGTTAGCCATACAGGTA -CCAACAGCGTTAGCCATAGACTCT -CCAACAGCGTTAGCCATAAGTCCT -CCAACAGCGTTAGCCATATAAGCC -CCAACAGCGTTAGCCATAATAGCC -CCAACAGCGTTAGCCATATAACCG -CCAACAGCGTTAGCCATAATGCCA -CCAACAGCGTTACCGTAAGGAAAC -CCAACAGCGTTACCGTAAAACACC -CCAACAGCGTTACCGTAAATCGAG -CCAACAGCGTTACCGTAACTCCTT -CCAACAGCGTTACCGTAACCTGTT -CCAACAGCGTTACCGTAACGGTTT -CCAACAGCGTTACCGTAAGTGGTT -CCAACAGCGTTACCGTAAGCCTTT -CCAACAGCGTTACCGTAAGGTCTT -CCAACAGCGTTACCGTAAACGCTT -CCAACAGCGTTACCGTAAAGCGTT -CCAACAGCGTTACCGTAATTCGTC -CCAACAGCGTTACCGTAATCTCTC -CCAACAGCGTTACCGTAATGGATC -CCAACAGCGTTACCGTAACACTTC -CCAACAGCGTTACCGTAAGTACTC -CCAACAGCGTTACCGTAAGATGTC -CCAACAGCGTTACCGTAAACAGTC -CCAACAGCGTTACCGTAATTGCTG -CCAACAGCGTTACCGTAATCCATG -CCAACAGCGTTACCGTAATGTGTG -CCAACAGCGTTACCGTAACTAGTG -CCAACAGCGTTACCGTAACATCTG -CCAACAGCGTTACCGTAAGAGTTG -CCAACAGCGTTACCGTAAAGACTG -CCAACAGCGTTACCGTAATCGGTA -CCAACAGCGTTACCGTAATGCCTA -CCAACAGCGTTACCGTAACCACTA -CCAACAGCGTTACCGTAAGGAGTA -CCAACAGCGTTACCGTAATCGTCT -CCAACAGCGTTACCGTAATGCACT -CCAACAGCGTTACCGTAACTGACT -CCAACAGCGTTACCGTAACAACCT -CCAACAGCGTTACCGTAAGCTACT -CCAACAGCGTTACCGTAAGGATCT -CCAACAGCGTTACCGTAAAAGGCT -CCAACAGCGTTACCGTAATCAACC -CCAACAGCGTTACCGTAATGTTCC -CCAACAGCGTTACCGTAAATTCCC -CCAACAGCGTTACCGTAATTCTCG -CCAACAGCGTTACCGTAATAGACG -CCAACAGCGTTACCGTAAGTAACG -CCAACAGCGTTACCGTAAACTTCG -CCAACAGCGTTACCGTAATACGCA -CCAACAGCGTTACCGTAACTTGCA -CCAACAGCGTTACCGTAACGAACA -CCAACAGCGTTACCGTAACAGTCA -CCAACAGCGTTACCGTAAGATCCA -CCAACAGCGTTACCGTAAACGACA -CCAACAGCGTTACCGTAAAGCTCA -CCAACAGCGTTACCGTAATCACGT -CCAACAGCGTTACCGTAACGTAGT -CCAACAGCGTTACCGTAAGTCAGT -CCAACAGCGTTACCGTAAGAAGGT -CCAACAGCGTTACCGTAAAACCGT -CCAACAGCGTTACCGTAATTGTGC -CCAACAGCGTTACCGTAACTAAGC -CCAACAGCGTTACCGTAAACTAGC -CCAACAGCGTTACCGTAAAGATGC -CCAACAGCGTTACCGTAATGAAGG -CCAACAGCGTTACCGTAACAATGG -CCAACAGCGTTACCGTAAATGAGG -CCAACAGCGTTACCGTAAAATGGG -CCAACAGCGTTACCGTAATCCTGA -CCAACAGCGTTACCGTAATAGCGA -CCAACAGCGTTACCGTAACACAGA -CCAACAGCGTTACCGTAAGCAAGA -CCAACAGCGTTACCGTAAGGTTGA -CCAACAGCGTTACCGTAATCCGAT -CCAACAGCGTTACCGTAATGGCAT -CCAACAGCGTTACCGTAACGAGAT -CCAACAGCGTTACCGTAATACCAC -CCAACAGCGTTACCGTAACAGAAC -CCAACAGCGTTACCGTAAGTCTAC -CCAACAGCGTTACCGTAAACGTAC -CCAACAGCGTTACCGTAAAGTGAC -CCAACAGCGTTACCGTAACTGTAG -CCAACAGCGTTACCGTAACCTAAG -CCAACAGCGTTACCGTAAGTTCAG -CCAACAGCGTTACCGTAAGCATAG -CCAACAGCGTTACCGTAAGACAAG -CCAACAGCGTTACCGTAAAAGCAG -CCAACAGCGTTACCGTAACGTCAA -CCAACAGCGTTACCGTAAGCTGAA -CCAACAGCGTTACCGTAAAGTACG -CCAACAGCGTTACCGTAAATCCGA -CCAACAGCGTTACCGTAAATGGGA -CCAACAGCGTTACCGTAAGTGCAA -CCAACAGCGTTACCGTAAGAGGAA -CCAACAGCGTTACCGTAACAGGTA -CCAACAGCGTTACCGTAAGACTCT -CCAACAGCGTTACCGTAAAGTCCT -CCAACAGCGTTACCGTAATAAGCC -CCAACAGCGTTACCGTAAATAGCC -CCAACAGCGTTACCGTAATAACCG -CCAACAGCGTTACCGTAAATGCCA -CCAACAGCGTTACCAATGGGAAAC -CCAACAGCGTTACCAATGAACACC -CCAACAGCGTTACCAATGATCGAG -CCAACAGCGTTACCAATGCTCCTT -CCAACAGCGTTACCAATGCCTGTT -CCAACAGCGTTACCAATGCGGTTT -CCAACAGCGTTACCAATGGTGGTT -CCAACAGCGTTACCAATGGCCTTT -CCAACAGCGTTACCAATGGGTCTT -CCAACAGCGTTACCAATGACGCTT -CCAACAGCGTTACCAATGAGCGTT -CCAACAGCGTTACCAATGTTCGTC -CCAACAGCGTTACCAATGTCTCTC -CCAACAGCGTTACCAATGTGGATC -CCAACAGCGTTACCAATGCACTTC -CCAACAGCGTTACCAATGGTACTC -CCAACAGCGTTACCAATGGATGTC -CCAACAGCGTTACCAATGACAGTC -CCAACAGCGTTACCAATGTTGCTG -CCAACAGCGTTACCAATGTCCATG -CCAACAGCGTTACCAATGTGTGTG -CCAACAGCGTTACCAATGCTAGTG -CCAACAGCGTTACCAATGCATCTG -CCAACAGCGTTACCAATGGAGTTG -CCAACAGCGTTACCAATGAGACTG -CCAACAGCGTTACCAATGTCGGTA -CCAACAGCGTTACCAATGTGCCTA -CCAACAGCGTTACCAATGCCACTA -CCAACAGCGTTACCAATGGGAGTA -CCAACAGCGTTACCAATGTCGTCT -CCAACAGCGTTACCAATGTGCACT -CCAACAGCGTTACCAATGCTGACT -CCAACAGCGTTACCAATGCAACCT -CCAACAGCGTTACCAATGGCTACT -CCAACAGCGTTACCAATGGGATCT -CCAACAGCGTTACCAATGAAGGCT -CCAACAGCGTTACCAATGTCAACC -CCAACAGCGTTACCAATGTGTTCC -CCAACAGCGTTACCAATGATTCCC -CCAACAGCGTTACCAATGTTCTCG -CCAACAGCGTTACCAATGTAGACG -CCAACAGCGTTACCAATGGTAACG -CCAACAGCGTTACCAATGACTTCG -CCAACAGCGTTACCAATGTACGCA -CCAACAGCGTTACCAATGCTTGCA -CCAACAGCGTTACCAATGCGAACA -CCAACAGCGTTACCAATGCAGTCA -CCAACAGCGTTACCAATGGATCCA -CCAACAGCGTTACCAATGACGACA -CCAACAGCGTTACCAATGAGCTCA -CCAACAGCGTTACCAATGTCACGT -CCAACAGCGTTACCAATGCGTAGT -CCAACAGCGTTACCAATGGTCAGT -CCAACAGCGTTACCAATGGAAGGT -CCAACAGCGTTACCAATGAACCGT -CCAACAGCGTTACCAATGTTGTGC -CCAACAGCGTTACCAATGCTAAGC -CCAACAGCGTTACCAATGACTAGC -CCAACAGCGTTACCAATGAGATGC -CCAACAGCGTTACCAATGTGAAGG -CCAACAGCGTTACCAATGCAATGG -CCAACAGCGTTACCAATGATGAGG -CCAACAGCGTTACCAATGAATGGG -CCAACAGCGTTACCAATGTCCTGA -CCAACAGCGTTACCAATGTAGCGA -CCAACAGCGTTACCAATGCACAGA -CCAACAGCGTTACCAATGGCAAGA -CCAACAGCGTTACCAATGGGTTGA -CCAACAGCGTTACCAATGTCCGAT -CCAACAGCGTTACCAATGTGGCAT -CCAACAGCGTTACCAATGCGAGAT -CCAACAGCGTTACCAATGTACCAC -CCAACAGCGTTACCAATGCAGAAC -CCAACAGCGTTACCAATGGTCTAC -CCAACAGCGTTACCAATGACGTAC -CCAACAGCGTTACCAATGAGTGAC -CCAACAGCGTTACCAATGCTGTAG -CCAACAGCGTTACCAATGCCTAAG -CCAACAGCGTTACCAATGGTTCAG -CCAACAGCGTTACCAATGGCATAG -CCAACAGCGTTACCAATGGACAAG -CCAACAGCGTTACCAATGAAGCAG -CCAACAGCGTTACCAATGCGTCAA -CCAACAGCGTTACCAATGGCTGAA -CCAACAGCGTTACCAATGAGTACG -CCAACAGCGTTACCAATGATCCGA -CCAACAGCGTTACCAATGATGGGA -CCAACAGCGTTACCAATGGTGCAA -CCAACAGCGTTACCAATGGAGGAA -CCAACAGCGTTACCAATGCAGGTA -CCAACAGCGTTACCAATGGACTCT -CCAACAGCGTTACCAATGAGTCCT -CCAACAGCGTTACCAATGTAAGCC -CCAACAGCGTTACCAATGATAGCC -CCAACAGCGTTACCAATGTAACCG -CCAACAGCGTTACCAATGATGCCA -CCAACATCGTCTAACGGAGGAAAC -CCAACATCGTCTAACGGAAACACC -CCAACATCGTCTAACGGAATCGAG -CCAACATCGTCTAACGGACTCCTT -CCAACATCGTCTAACGGACCTGTT -CCAACATCGTCTAACGGACGGTTT -CCAACATCGTCTAACGGAGTGGTT -CCAACATCGTCTAACGGAGCCTTT -CCAACATCGTCTAACGGAGGTCTT -CCAACATCGTCTAACGGAACGCTT -CCAACATCGTCTAACGGAAGCGTT -CCAACATCGTCTAACGGATTCGTC -CCAACATCGTCTAACGGATCTCTC -CCAACATCGTCTAACGGATGGATC -CCAACATCGTCTAACGGACACTTC -CCAACATCGTCTAACGGAGTACTC -CCAACATCGTCTAACGGAGATGTC -CCAACATCGTCTAACGGAACAGTC -CCAACATCGTCTAACGGATTGCTG -CCAACATCGTCTAACGGATCCATG -CCAACATCGTCTAACGGATGTGTG -CCAACATCGTCTAACGGACTAGTG -CCAACATCGTCTAACGGACATCTG -CCAACATCGTCTAACGGAGAGTTG -CCAACATCGTCTAACGGAAGACTG -CCAACATCGTCTAACGGATCGGTA -CCAACATCGTCTAACGGATGCCTA -CCAACATCGTCTAACGGACCACTA -CCAACATCGTCTAACGGAGGAGTA -CCAACATCGTCTAACGGATCGTCT -CCAACATCGTCTAACGGATGCACT -CCAACATCGTCTAACGGACTGACT -CCAACATCGTCTAACGGACAACCT -CCAACATCGTCTAACGGAGCTACT -CCAACATCGTCTAACGGAGGATCT -CCAACATCGTCTAACGGAAAGGCT -CCAACATCGTCTAACGGATCAACC -CCAACATCGTCTAACGGATGTTCC -CCAACATCGTCTAACGGAATTCCC -CCAACATCGTCTAACGGATTCTCG -CCAACATCGTCTAACGGATAGACG -CCAACATCGTCTAACGGAGTAACG -CCAACATCGTCTAACGGAACTTCG -CCAACATCGTCTAACGGATACGCA -CCAACATCGTCTAACGGACTTGCA -CCAACATCGTCTAACGGACGAACA -CCAACATCGTCTAACGGACAGTCA -CCAACATCGTCTAACGGAGATCCA -CCAACATCGTCTAACGGAACGACA -CCAACATCGTCTAACGGAAGCTCA -CCAACATCGTCTAACGGATCACGT -CCAACATCGTCTAACGGACGTAGT -CCAACATCGTCTAACGGAGTCAGT -CCAACATCGTCTAACGGAGAAGGT -CCAACATCGTCTAACGGAAACCGT -CCAACATCGTCTAACGGATTGTGC -CCAACATCGTCTAACGGACTAAGC -CCAACATCGTCTAACGGAACTAGC -CCAACATCGTCTAACGGAAGATGC -CCAACATCGTCTAACGGATGAAGG -CCAACATCGTCTAACGGACAATGG -CCAACATCGTCTAACGGAATGAGG -CCAACATCGTCTAACGGAAATGGG -CCAACATCGTCTAACGGATCCTGA -CCAACATCGTCTAACGGATAGCGA -CCAACATCGTCTAACGGACACAGA -CCAACATCGTCTAACGGAGCAAGA -CCAACATCGTCTAACGGAGGTTGA -CCAACATCGTCTAACGGATCCGAT -CCAACATCGTCTAACGGATGGCAT -CCAACATCGTCTAACGGACGAGAT -CCAACATCGTCTAACGGATACCAC -CCAACATCGTCTAACGGACAGAAC -CCAACATCGTCTAACGGAGTCTAC -CCAACATCGTCTAACGGAACGTAC -CCAACATCGTCTAACGGAAGTGAC -CCAACATCGTCTAACGGACTGTAG -CCAACATCGTCTAACGGACCTAAG -CCAACATCGTCTAACGGAGTTCAG -CCAACATCGTCTAACGGAGCATAG -CCAACATCGTCTAACGGAGACAAG -CCAACATCGTCTAACGGAAAGCAG -CCAACATCGTCTAACGGACGTCAA -CCAACATCGTCTAACGGAGCTGAA -CCAACATCGTCTAACGGAAGTACG -CCAACATCGTCTAACGGAATCCGA -CCAACATCGTCTAACGGAATGGGA -CCAACATCGTCTAACGGAGTGCAA -CCAACATCGTCTAACGGAGAGGAA -CCAACATCGTCTAACGGACAGGTA -CCAACATCGTCTAACGGAGACTCT -CCAACATCGTCTAACGGAAGTCCT -CCAACATCGTCTAACGGATAAGCC -CCAACATCGTCTAACGGAATAGCC -CCAACATCGTCTAACGGATAACCG -CCAACATCGTCTAACGGAATGCCA -CCAACATCGTCTACCAACGGAAAC -CCAACATCGTCTACCAACAACACC -CCAACATCGTCTACCAACATCGAG -CCAACATCGTCTACCAACCTCCTT -CCAACATCGTCTACCAACCCTGTT -CCAACATCGTCTACCAACCGGTTT -CCAACATCGTCTACCAACGTGGTT -CCAACATCGTCTACCAACGCCTTT -CCAACATCGTCTACCAACGGTCTT -CCAACATCGTCTACCAACACGCTT -CCAACATCGTCTACCAACAGCGTT -CCAACATCGTCTACCAACTTCGTC -CCAACATCGTCTACCAACTCTCTC -CCAACATCGTCTACCAACTGGATC -CCAACATCGTCTACCAACCACTTC -CCAACATCGTCTACCAACGTACTC -CCAACATCGTCTACCAACGATGTC -CCAACATCGTCTACCAACACAGTC -CCAACATCGTCTACCAACTTGCTG -CCAACATCGTCTACCAACTCCATG -CCAACATCGTCTACCAACTGTGTG -CCAACATCGTCTACCAACCTAGTG -CCAACATCGTCTACCAACCATCTG -CCAACATCGTCTACCAACGAGTTG -CCAACATCGTCTACCAACAGACTG -CCAACATCGTCTACCAACTCGGTA -CCAACATCGTCTACCAACTGCCTA -CCAACATCGTCTACCAACCCACTA -CCAACATCGTCTACCAACGGAGTA -CCAACATCGTCTACCAACTCGTCT -CCAACATCGTCTACCAACTGCACT -CCAACATCGTCTACCAACCTGACT -CCAACATCGTCTACCAACCAACCT -CCAACATCGTCTACCAACGCTACT -CCAACATCGTCTACCAACGGATCT -CCAACATCGTCTACCAACAAGGCT -CCAACATCGTCTACCAACTCAACC -CCAACATCGTCTACCAACTGTTCC -CCAACATCGTCTACCAACATTCCC -CCAACATCGTCTACCAACTTCTCG -CCAACATCGTCTACCAACTAGACG -CCAACATCGTCTACCAACGTAACG -CCAACATCGTCTACCAACACTTCG -CCAACATCGTCTACCAACTACGCA -CCAACATCGTCTACCAACCTTGCA -CCAACATCGTCTACCAACCGAACA -CCAACATCGTCTACCAACCAGTCA -CCAACATCGTCTACCAACGATCCA -CCAACATCGTCTACCAACACGACA -CCAACATCGTCTACCAACAGCTCA -CCAACATCGTCTACCAACTCACGT -CCAACATCGTCTACCAACCGTAGT -CCAACATCGTCTACCAACGTCAGT -CCAACATCGTCTACCAACGAAGGT -CCAACATCGTCTACCAACAACCGT -CCAACATCGTCTACCAACTTGTGC -CCAACATCGTCTACCAACCTAAGC -CCAACATCGTCTACCAACACTAGC -CCAACATCGTCTACCAACAGATGC -CCAACATCGTCTACCAACTGAAGG -CCAACATCGTCTACCAACCAATGG -CCAACATCGTCTACCAACATGAGG -CCAACATCGTCTACCAACAATGGG -CCAACATCGTCTACCAACTCCTGA -CCAACATCGTCTACCAACTAGCGA -CCAACATCGTCTACCAACCACAGA -CCAACATCGTCTACCAACGCAAGA -CCAACATCGTCTACCAACGGTTGA -CCAACATCGTCTACCAACTCCGAT -CCAACATCGTCTACCAACTGGCAT -CCAACATCGTCTACCAACCGAGAT -CCAACATCGTCTACCAACTACCAC -CCAACATCGTCTACCAACCAGAAC -CCAACATCGTCTACCAACGTCTAC -CCAACATCGTCTACCAACACGTAC -CCAACATCGTCTACCAACAGTGAC -CCAACATCGTCTACCAACCTGTAG -CCAACATCGTCTACCAACCCTAAG -CCAACATCGTCTACCAACGTTCAG -CCAACATCGTCTACCAACGCATAG -CCAACATCGTCTACCAACGACAAG -CCAACATCGTCTACCAACAAGCAG -CCAACATCGTCTACCAACCGTCAA -CCAACATCGTCTACCAACGCTGAA -CCAACATCGTCTACCAACAGTACG -CCAACATCGTCTACCAACATCCGA -CCAACATCGTCTACCAACATGGGA -CCAACATCGTCTACCAACGTGCAA -CCAACATCGTCTACCAACGAGGAA -CCAACATCGTCTACCAACCAGGTA -CCAACATCGTCTACCAACGACTCT -CCAACATCGTCTACCAACAGTCCT -CCAACATCGTCTACCAACTAAGCC -CCAACATCGTCTACCAACATAGCC -CCAACATCGTCTACCAACTAACCG -CCAACATCGTCTACCAACATGCCA -CCAACATCGTCTGAGATCGGAAAC -CCAACATCGTCTGAGATCAACACC -CCAACATCGTCTGAGATCATCGAG -CCAACATCGTCTGAGATCCTCCTT -CCAACATCGTCTGAGATCCCTGTT -CCAACATCGTCTGAGATCCGGTTT -CCAACATCGTCTGAGATCGTGGTT -CCAACATCGTCTGAGATCGCCTTT -CCAACATCGTCTGAGATCGGTCTT -CCAACATCGTCTGAGATCACGCTT -CCAACATCGTCTGAGATCAGCGTT -CCAACATCGTCTGAGATCTTCGTC -CCAACATCGTCTGAGATCTCTCTC -CCAACATCGTCTGAGATCTGGATC -CCAACATCGTCTGAGATCCACTTC -CCAACATCGTCTGAGATCGTACTC -CCAACATCGTCTGAGATCGATGTC -CCAACATCGTCTGAGATCACAGTC -CCAACATCGTCTGAGATCTTGCTG -CCAACATCGTCTGAGATCTCCATG -CCAACATCGTCTGAGATCTGTGTG -CCAACATCGTCTGAGATCCTAGTG -CCAACATCGTCTGAGATCCATCTG -CCAACATCGTCTGAGATCGAGTTG -CCAACATCGTCTGAGATCAGACTG -CCAACATCGTCTGAGATCTCGGTA -CCAACATCGTCTGAGATCTGCCTA -CCAACATCGTCTGAGATCCCACTA -CCAACATCGTCTGAGATCGGAGTA -CCAACATCGTCTGAGATCTCGTCT -CCAACATCGTCTGAGATCTGCACT -CCAACATCGTCTGAGATCCTGACT -CCAACATCGTCTGAGATCCAACCT -CCAACATCGTCTGAGATCGCTACT -CCAACATCGTCTGAGATCGGATCT -CCAACATCGTCTGAGATCAAGGCT -CCAACATCGTCTGAGATCTCAACC -CCAACATCGTCTGAGATCTGTTCC -CCAACATCGTCTGAGATCATTCCC -CCAACATCGTCTGAGATCTTCTCG -CCAACATCGTCTGAGATCTAGACG -CCAACATCGTCTGAGATCGTAACG -CCAACATCGTCTGAGATCACTTCG -CCAACATCGTCTGAGATCTACGCA -CCAACATCGTCTGAGATCCTTGCA -CCAACATCGTCTGAGATCCGAACA -CCAACATCGTCTGAGATCCAGTCA -CCAACATCGTCTGAGATCGATCCA -CCAACATCGTCTGAGATCACGACA -CCAACATCGTCTGAGATCAGCTCA -CCAACATCGTCTGAGATCTCACGT -CCAACATCGTCTGAGATCCGTAGT -CCAACATCGTCTGAGATCGTCAGT -CCAACATCGTCTGAGATCGAAGGT -CCAACATCGTCTGAGATCAACCGT -CCAACATCGTCTGAGATCTTGTGC -CCAACATCGTCTGAGATCCTAAGC -CCAACATCGTCTGAGATCACTAGC -CCAACATCGTCTGAGATCAGATGC -CCAACATCGTCTGAGATCTGAAGG -CCAACATCGTCTGAGATCCAATGG -CCAACATCGTCTGAGATCATGAGG -CCAACATCGTCTGAGATCAATGGG -CCAACATCGTCTGAGATCTCCTGA -CCAACATCGTCTGAGATCTAGCGA -CCAACATCGTCTGAGATCCACAGA -CCAACATCGTCTGAGATCGCAAGA -CCAACATCGTCTGAGATCGGTTGA -CCAACATCGTCTGAGATCTCCGAT -CCAACATCGTCTGAGATCTGGCAT -CCAACATCGTCTGAGATCCGAGAT -CCAACATCGTCTGAGATCTACCAC -CCAACATCGTCTGAGATCCAGAAC -CCAACATCGTCTGAGATCGTCTAC -CCAACATCGTCTGAGATCACGTAC -CCAACATCGTCTGAGATCAGTGAC -CCAACATCGTCTGAGATCCTGTAG -CCAACATCGTCTGAGATCCCTAAG -CCAACATCGTCTGAGATCGTTCAG -CCAACATCGTCTGAGATCGCATAG -CCAACATCGTCTGAGATCGACAAG -CCAACATCGTCTGAGATCAAGCAG -CCAACATCGTCTGAGATCCGTCAA -CCAACATCGTCTGAGATCGCTGAA -CCAACATCGTCTGAGATCAGTACG -CCAACATCGTCTGAGATCATCCGA -CCAACATCGTCTGAGATCATGGGA -CCAACATCGTCTGAGATCGTGCAA -CCAACATCGTCTGAGATCGAGGAA -CCAACATCGTCTGAGATCCAGGTA -CCAACATCGTCTGAGATCGACTCT -CCAACATCGTCTGAGATCAGTCCT -CCAACATCGTCTGAGATCTAAGCC -CCAACATCGTCTGAGATCATAGCC -CCAACATCGTCTGAGATCTAACCG -CCAACATCGTCTGAGATCATGCCA -CCAACATCGTCTCTTCTCGGAAAC -CCAACATCGTCTCTTCTCAACACC -CCAACATCGTCTCTTCTCATCGAG -CCAACATCGTCTCTTCTCCTCCTT -CCAACATCGTCTCTTCTCCCTGTT -CCAACATCGTCTCTTCTCCGGTTT -CCAACATCGTCTCTTCTCGTGGTT -CCAACATCGTCTCTTCTCGCCTTT -CCAACATCGTCTCTTCTCGGTCTT -CCAACATCGTCTCTTCTCACGCTT -CCAACATCGTCTCTTCTCAGCGTT -CCAACATCGTCTCTTCTCTTCGTC -CCAACATCGTCTCTTCTCTCTCTC -CCAACATCGTCTCTTCTCTGGATC -CCAACATCGTCTCTTCTCCACTTC -CCAACATCGTCTCTTCTCGTACTC -CCAACATCGTCTCTTCTCGATGTC -CCAACATCGTCTCTTCTCACAGTC -CCAACATCGTCTCTTCTCTTGCTG -CCAACATCGTCTCTTCTCTCCATG -CCAACATCGTCTCTTCTCTGTGTG -CCAACATCGTCTCTTCTCCTAGTG -CCAACATCGTCTCTTCTCCATCTG -CCAACATCGTCTCTTCTCGAGTTG -CCAACATCGTCTCTTCTCAGACTG -CCAACATCGTCTCTTCTCTCGGTA -CCAACATCGTCTCTTCTCTGCCTA -CCAACATCGTCTCTTCTCCCACTA -CCAACATCGTCTCTTCTCGGAGTA -CCAACATCGTCTCTTCTCTCGTCT -CCAACATCGTCTCTTCTCTGCACT -CCAACATCGTCTCTTCTCCTGACT -CCAACATCGTCTCTTCTCCAACCT -CCAACATCGTCTCTTCTCGCTACT -CCAACATCGTCTCTTCTCGGATCT -CCAACATCGTCTCTTCTCAAGGCT -CCAACATCGTCTCTTCTCTCAACC -CCAACATCGTCTCTTCTCTGTTCC -CCAACATCGTCTCTTCTCATTCCC -CCAACATCGTCTCTTCTCTTCTCG -CCAACATCGTCTCTTCTCTAGACG -CCAACATCGTCTCTTCTCGTAACG -CCAACATCGTCTCTTCTCACTTCG -CCAACATCGTCTCTTCTCTACGCA -CCAACATCGTCTCTTCTCCTTGCA -CCAACATCGTCTCTTCTCCGAACA -CCAACATCGTCTCTTCTCCAGTCA -CCAACATCGTCTCTTCTCGATCCA -CCAACATCGTCTCTTCTCACGACA -CCAACATCGTCTCTTCTCAGCTCA -CCAACATCGTCTCTTCTCTCACGT -CCAACATCGTCTCTTCTCCGTAGT -CCAACATCGTCTCTTCTCGTCAGT -CCAACATCGTCTCTTCTCGAAGGT -CCAACATCGTCTCTTCTCAACCGT -CCAACATCGTCTCTTCTCTTGTGC -CCAACATCGTCTCTTCTCCTAAGC -CCAACATCGTCTCTTCTCACTAGC -CCAACATCGTCTCTTCTCAGATGC -CCAACATCGTCTCTTCTCTGAAGG -CCAACATCGTCTCTTCTCCAATGG -CCAACATCGTCTCTTCTCATGAGG -CCAACATCGTCTCTTCTCAATGGG -CCAACATCGTCTCTTCTCTCCTGA -CCAACATCGTCTCTTCTCTAGCGA -CCAACATCGTCTCTTCTCCACAGA -CCAACATCGTCTCTTCTCGCAAGA -CCAACATCGTCTCTTCTCGGTTGA -CCAACATCGTCTCTTCTCTCCGAT -CCAACATCGTCTCTTCTCTGGCAT -CCAACATCGTCTCTTCTCCGAGAT -CCAACATCGTCTCTTCTCTACCAC -CCAACATCGTCTCTTCTCCAGAAC -CCAACATCGTCTCTTCTCGTCTAC -CCAACATCGTCTCTTCTCACGTAC -CCAACATCGTCTCTTCTCAGTGAC -CCAACATCGTCTCTTCTCCTGTAG -CCAACATCGTCTCTTCTCCCTAAG -CCAACATCGTCTCTTCTCGTTCAG -CCAACATCGTCTCTTCTCGCATAG -CCAACATCGTCTCTTCTCGACAAG -CCAACATCGTCTCTTCTCAAGCAG -CCAACATCGTCTCTTCTCCGTCAA -CCAACATCGTCTCTTCTCGCTGAA -CCAACATCGTCTCTTCTCAGTACG -CCAACATCGTCTCTTCTCATCCGA -CCAACATCGTCTCTTCTCATGGGA -CCAACATCGTCTCTTCTCGTGCAA -CCAACATCGTCTCTTCTCGAGGAA -CCAACATCGTCTCTTCTCCAGGTA -CCAACATCGTCTCTTCTCGACTCT -CCAACATCGTCTCTTCTCAGTCCT -CCAACATCGTCTCTTCTCTAAGCC -CCAACATCGTCTCTTCTCATAGCC -CCAACATCGTCTCTTCTCTAACCG -CCAACATCGTCTCTTCTCATGCCA -CCAACATCGTCTGTTCCTGGAAAC -CCAACATCGTCTGTTCCTAACACC -CCAACATCGTCTGTTCCTATCGAG -CCAACATCGTCTGTTCCTCTCCTT -CCAACATCGTCTGTTCCTCCTGTT -CCAACATCGTCTGTTCCTCGGTTT -CCAACATCGTCTGTTCCTGTGGTT -CCAACATCGTCTGTTCCTGCCTTT -CCAACATCGTCTGTTCCTGGTCTT -CCAACATCGTCTGTTCCTACGCTT -CCAACATCGTCTGTTCCTAGCGTT -CCAACATCGTCTGTTCCTTTCGTC -CCAACATCGTCTGTTCCTTCTCTC -CCAACATCGTCTGTTCCTTGGATC -CCAACATCGTCTGTTCCTCACTTC -CCAACATCGTCTGTTCCTGTACTC -CCAACATCGTCTGTTCCTGATGTC -CCAACATCGTCTGTTCCTACAGTC -CCAACATCGTCTGTTCCTTTGCTG -CCAACATCGTCTGTTCCTTCCATG -CCAACATCGTCTGTTCCTTGTGTG -CCAACATCGTCTGTTCCTCTAGTG -CCAACATCGTCTGTTCCTCATCTG -CCAACATCGTCTGTTCCTGAGTTG -CCAACATCGTCTGTTCCTAGACTG -CCAACATCGTCTGTTCCTTCGGTA -CCAACATCGTCTGTTCCTTGCCTA -CCAACATCGTCTGTTCCTCCACTA -CCAACATCGTCTGTTCCTGGAGTA -CCAACATCGTCTGTTCCTTCGTCT -CCAACATCGTCTGTTCCTTGCACT -CCAACATCGTCTGTTCCTCTGACT -CCAACATCGTCTGTTCCTCAACCT -CCAACATCGTCTGTTCCTGCTACT -CCAACATCGTCTGTTCCTGGATCT -CCAACATCGTCTGTTCCTAAGGCT -CCAACATCGTCTGTTCCTTCAACC -CCAACATCGTCTGTTCCTTGTTCC -CCAACATCGTCTGTTCCTATTCCC -CCAACATCGTCTGTTCCTTTCTCG -CCAACATCGTCTGTTCCTTAGACG -CCAACATCGTCTGTTCCTGTAACG -CCAACATCGTCTGTTCCTACTTCG -CCAACATCGTCTGTTCCTTACGCA -CCAACATCGTCTGTTCCTCTTGCA -CCAACATCGTCTGTTCCTCGAACA -CCAACATCGTCTGTTCCTCAGTCA -CCAACATCGTCTGTTCCTGATCCA -CCAACATCGTCTGTTCCTACGACA -CCAACATCGTCTGTTCCTAGCTCA -CCAACATCGTCTGTTCCTTCACGT -CCAACATCGTCTGTTCCTCGTAGT -CCAACATCGTCTGTTCCTGTCAGT -CCAACATCGTCTGTTCCTGAAGGT -CCAACATCGTCTGTTCCTAACCGT -CCAACATCGTCTGTTCCTTTGTGC -CCAACATCGTCTGTTCCTCTAAGC -CCAACATCGTCTGTTCCTACTAGC -CCAACATCGTCTGTTCCTAGATGC -CCAACATCGTCTGTTCCTTGAAGG -CCAACATCGTCTGTTCCTCAATGG -CCAACATCGTCTGTTCCTATGAGG -CCAACATCGTCTGTTCCTAATGGG -CCAACATCGTCTGTTCCTTCCTGA -CCAACATCGTCTGTTCCTTAGCGA -CCAACATCGTCTGTTCCTCACAGA -CCAACATCGTCTGTTCCTGCAAGA -CCAACATCGTCTGTTCCTGGTTGA -CCAACATCGTCTGTTCCTTCCGAT -CCAACATCGTCTGTTCCTTGGCAT -CCAACATCGTCTGTTCCTCGAGAT -CCAACATCGTCTGTTCCTTACCAC -CCAACATCGTCTGTTCCTCAGAAC -CCAACATCGTCTGTTCCTGTCTAC -CCAACATCGTCTGTTCCTACGTAC -CCAACATCGTCTGTTCCTAGTGAC -CCAACATCGTCTGTTCCTCTGTAG -CCAACATCGTCTGTTCCTCCTAAG -CCAACATCGTCTGTTCCTGTTCAG -CCAACATCGTCTGTTCCTGCATAG -CCAACATCGTCTGTTCCTGACAAG -CCAACATCGTCTGTTCCTAAGCAG -CCAACATCGTCTGTTCCTCGTCAA -CCAACATCGTCTGTTCCTGCTGAA -CCAACATCGTCTGTTCCTAGTACG -CCAACATCGTCTGTTCCTATCCGA -CCAACATCGTCTGTTCCTATGGGA -CCAACATCGTCTGTTCCTGTGCAA -CCAACATCGTCTGTTCCTGAGGAA -CCAACATCGTCTGTTCCTCAGGTA -CCAACATCGTCTGTTCCTGACTCT -CCAACATCGTCTGTTCCTAGTCCT -CCAACATCGTCTGTTCCTTAAGCC -CCAACATCGTCTGTTCCTATAGCC -CCAACATCGTCTGTTCCTTAACCG -CCAACATCGTCTGTTCCTATGCCA -CCAACATCGTCTTTTCGGGGAAAC -CCAACATCGTCTTTTCGGAACACC -CCAACATCGTCTTTTCGGATCGAG -CCAACATCGTCTTTTCGGCTCCTT -CCAACATCGTCTTTTCGGCCTGTT -CCAACATCGTCTTTTCGGCGGTTT -CCAACATCGTCTTTTCGGGTGGTT -CCAACATCGTCTTTTCGGGCCTTT -CCAACATCGTCTTTTCGGGGTCTT -CCAACATCGTCTTTTCGGACGCTT -CCAACATCGTCTTTTCGGAGCGTT -CCAACATCGTCTTTTCGGTTCGTC -CCAACATCGTCTTTTCGGTCTCTC -CCAACATCGTCTTTTCGGTGGATC -CCAACATCGTCTTTTCGGCACTTC -CCAACATCGTCTTTTCGGGTACTC -CCAACATCGTCTTTTCGGGATGTC -CCAACATCGTCTTTTCGGACAGTC -CCAACATCGTCTTTTCGGTTGCTG -CCAACATCGTCTTTTCGGTCCATG -CCAACATCGTCTTTTCGGTGTGTG -CCAACATCGTCTTTTCGGCTAGTG -CCAACATCGTCTTTTCGGCATCTG -CCAACATCGTCTTTTCGGGAGTTG -CCAACATCGTCTTTTCGGAGACTG -CCAACATCGTCTTTTCGGTCGGTA -CCAACATCGTCTTTTCGGTGCCTA -CCAACATCGTCTTTTCGGCCACTA -CCAACATCGTCTTTTCGGGGAGTA -CCAACATCGTCTTTTCGGTCGTCT -CCAACATCGTCTTTTCGGTGCACT -CCAACATCGTCTTTTCGGCTGACT -CCAACATCGTCTTTTCGGCAACCT -CCAACATCGTCTTTTCGGGCTACT -CCAACATCGTCTTTTCGGGGATCT -CCAACATCGTCTTTTCGGAAGGCT -CCAACATCGTCTTTTCGGTCAACC -CCAACATCGTCTTTTCGGTGTTCC -CCAACATCGTCTTTTCGGATTCCC -CCAACATCGTCTTTTCGGTTCTCG -CCAACATCGTCTTTTCGGTAGACG -CCAACATCGTCTTTTCGGGTAACG -CCAACATCGTCTTTTCGGACTTCG -CCAACATCGTCTTTTCGGTACGCA -CCAACATCGTCTTTTCGGCTTGCA -CCAACATCGTCTTTTCGGCGAACA -CCAACATCGTCTTTTCGGCAGTCA -CCAACATCGTCTTTTCGGGATCCA -CCAACATCGTCTTTTCGGACGACA -CCAACATCGTCTTTTCGGAGCTCA -CCAACATCGTCTTTTCGGTCACGT -CCAACATCGTCTTTTCGGCGTAGT -CCAACATCGTCTTTTCGGGTCAGT -CCAACATCGTCTTTTCGGGAAGGT -CCAACATCGTCTTTTCGGAACCGT -CCAACATCGTCTTTTCGGTTGTGC -CCAACATCGTCTTTTCGGCTAAGC -CCAACATCGTCTTTTCGGACTAGC -CCAACATCGTCTTTTCGGAGATGC -CCAACATCGTCTTTTCGGTGAAGG -CCAACATCGTCTTTTCGGCAATGG -CCAACATCGTCTTTTCGGATGAGG -CCAACATCGTCTTTTCGGAATGGG -CCAACATCGTCTTTTCGGTCCTGA -CCAACATCGTCTTTTCGGTAGCGA -CCAACATCGTCTTTTCGGCACAGA -CCAACATCGTCTTTTCGGGCAAGA -CCAACATCGTCTTTTCGGGGTTGA -CCAACATCGTCTTTTCGGTCCGAT -CCAACATCGTCTTTTCGGTGGCAT -CCAACATCGTCTTTTCGGCGAGAT -CCAACATCGTCTTTTCGGTACCAC -CCAACATCGTCTTTTCGGCAGAAC -CCAACATCGTCTTTTCGGGTCTAC -CCAACATCGTCTTTTCGGACGTAC -CCAACATCGTCTTTTCGGAGTGAC -CCAACATCGTCTTTTCGGCTGTAG -CCAACATCGTCTTTTCGGCCTAAG -CCAACATCGTCTTTTCGGGTTCAG -CCAACATCGTCTTTTCGGGCATAG -CCAACATCGTCTTTTCGGGACAAG -CCAACATCGTCTTTTCGGAAGCAG -CCAACATCGTCTTTTCGGCGTCAA -CCAACATCGTCTTTTCGGGCTGAA -CCAACATCGTCTTTTCGGAGTACG -CCAACATCGTCTTTTCGGATCCGA -CCAACATCGTCTTTTCGGATGGGA -CCAACATCGTCTTTTCGGGTGCAA -CCAACATCGTCTTTTCGGGAGGAA -CCAACATCGTCTTTTCGGCAGGTA -CCAACATCGTCTTTTCGGGACTCT -CCAACATCGTCTTTTCGGAGTCCT -CCAACATCGTCTTTTCGGTAAGCC -CCAACATCGTCTTTTCGGATAGCC -CCAACATCGTCTTTTCGGTAACCG -CCAACATCGTCTTTTCGGATGCCA -CCAACATCGTCTGTTGTGGGAAAC -CCAACATCGTCTGTTGTGAACACC -CCAACATCGTCTGTTGTGATCGAG -CCAACATCGTCTGTTGTGCTCCTT -CCAACATCGTCTGTTGTGCCTGTT -CCAACATCGTCTGTTGTGCGGTTT -CCAACATCGTCTGTTGTGGTGGTT -CCAACATCGTCTGTTGTGGCCTTT -CCAACATCGTCTGTTGTGGGTCTT -CCAACATCGTCTGTTGTGACGCTT -CCAACATCGTCTGTTGTGAGCGTT -CCAACATCGTCTGTTGTGTTCGTC -CCAACATCGTCTGTTGTGTCTCTC -CCAACATCGTCTGTTGTGTGGATC -CCAACATCGTCTGTTGTGCACTTC -CCAACATCGTCTGTTGTGGTACTC -CCAACATCGTCTGTTGTGGATGTC -CCAACATCGTCTGTTGTGACAGTC -CCAACATCGTCTGTTGTGTTGCTG -CCAACATCGTCTGTTGTGTCCATG -CCAACATCGTCTGTTGTGTGTGTG -CCAACATCGTCTGTTGTGCTAGTG -CCAACATCGTCTGTTGTGCATCTG -CCAACATCGTCTGTTGTGGAGTTG -CCAACATCGTCTGTTGTGAGACTG -CCAACATCGTCTGTTGTGTCGGTA -CCAACATCGTCTGTTGTGTGCCTA -CCAACATCGTCTGTTGTGCCACTA -CCAACATCGTCTGTTGTGGGAGTA -CCAACATCGTCTGTTGTGTCGTCT -CCAACATCGTCTGTTGTGTGCACT -CCAACATCGTCTGTTGTGCTGACT -CCAACATCGTCTGTTGTGCAACCT -CCAACATCGTCTGTTGTGGCTACT -CCAACATCGTCTGTTGTGGGATCT -CCAACATCGTCTGTTGTGAAGGCT -CCAACATCGTCTGTTGTGTCAACC -CCAACATCGTCTGTTGTGTGTTCC -CCAACATCGTCTGTTGTGATTCCC -CCAACATCGTCTGTTGTGTTCTCG -CCAACATCGTCTGTTGTGTAGACG -CCAACATCGTCTGTTGTGGTAACG -CCAACATCGTCTGTTGTGACTTCG -CCAACATCGTCTGTTGTGTACGCA -CCAACATCGTCTGTTGTGCTTGCA -CCAACATCGTCTGTTGTGCGAACA -CCAACATCGTCTGTTGTGCAGTCA -CCAACATCGTCTGTTGTGGATCCA -CCAACATCGTCTGTTGTGACGACA -CCAACATCGTCTGTTGTGAGCTCA -CCAACATCGTCTGTTGTGTCACGT -CCAACATCGTCTGTTGTGCGTAGT -CCAACATCGTCTGTTGTGGTCAGT -CCAACATCGTCTGTTGTGGAAGGT -CCAACATCGTCTGTTGTGAACCGT -CCAACATCGTCTGTTGTGTTGTGC -CCAACATCGTCTGTTGTGCTAAGC -CCAACATCGTCTGTTGTGACTAGC -CCAACATCGTCTGTTGTGAGATGC -CCAACATCGTCTGTTGTGTGAAGG -CCAACATCGTCTGTTGTGCAATGG -CCAACATCGTCTGTTGTGATGAGG -CCAACATCGTCTGTTGTGAATGGG -CCAACATCGTCTGTTGTGTCCTGA -CCAACATCGTCTGTTGTGTAGCGA -CCAACATCGTCTGTTGTGCACAGA -CCAACATCGTCTGTTGTGGCAAGA -CCAACATCGTCTGTTGTGGGTTGA -CCAACATCGTCTGTTGTGTCCGAT -CCAACATCGTCTGTTGTGTGGCAT -CCAACATCGTCTGTTGTGCGAGAT -CCAACATCGTCTGTTGTGTACCAC -CCAACATCGTCTGTTGTGCAGAAC -CCAACATCGTCTGTTGTGGTCTAC -CCAACATCGTCTGTTGTGACGTAC -CCAACATCGTCTGTTGTGAGTGAC -CCAACATCGTCTGTTGTGCTGTAG -CCAACATCGTCTGTTGTGCCTAAG -CCAACATCGTCTGTTGTGGTTCAG -CCAACATCGTCTGTTGTGGCATAG -CCAACATCGTCTGTTGTGGACAAG -CCAACATCGTCTGTTGTGAAGCAG -CCAACATCGTCTGTTGTGCGTCAA -CCAACATCGTCTGTTGTGGCTGAA -CCAACATCGTCTGTTGTGAGTACG -CCAACATCGTCTGTTGTGATCCGA -CCAACATCGTCTGTTGTGATGGGA -CCAACATCGTCTGTTGTGGTGCAA -CCAACATCGTCTGTTGTGGAGGAA -CCAACATCGTCTGTTGTGCAGGTA -CCAACATCGTCTGTTGTGGACTCT -CCAACATCGTCTGTTGTGAGTCCT -CCAACATCGTCTGTTGTGTAAGCC -CCAACATCGTCTGTTGTGATAGCC -CCAACATCGTCTGTTGTGTAACCG -CCAACATCGTCTGTTGTGATGCCA -CCAACATCGTCTTTTGCCGGAAAC -CCAACATCGTCTTTTGCCAACACC -CCAACATCGTCTTTTGCCATCGAG -CCAACATCGTCTTTTGCCCTCCTT -CCAACATCGTCTTTTGCCCCTGTT -CCAACATCGTCTTTTGCCCGGTTT -CCAACATCGTCTTTTGCCGTGGTT -CCAACATCGTCTTTTGCCGCCTTT -CCAACATCGTCTTTTGCCGGTCTT -CCAACATCGTCTTTTGCCACGCTT -CCAACATCGTCTTTTGCCAGCGTT -CCAACATCGTCTTTTGCCTTCGTC -CCAACATCGTCTTTTGCCTCTCTC -CCAACATCGTCTTTTGCCTGGATC -CCAACATCGTCTTTTGCCCACTTC -CCAACATCGTCTTTTGCCGTACTC -CCAACATCGTCTTTTGCCGATGTC -CCAACATCGTCTTTTGCCACAGTC -CCAACATCGTCTTTTGCCTTGCTG -CCAACATCGTCTTTTGCCTCCATG -CCAACATCGTCTTTTGCCTGTGTG -CCAACATCGTCTTTTGCCCTAGTG -CCAACATCGTCTTTTGCCCATCTG -CCAACATCGTCTTTTGCCGAGTTG -CCAACATCGTCTTTTGCCAGACTG -CCAACATCGTCTTTTGCCTCGGTA -CCAACATCGTCTTTTGCCTGCCTA -CCAACATCGTCTTTTGCCCCACTA -CCAACATCGTCTTTTGCCGGAGTA -CCAACATCGTCTTTTGCCTCGTCT -CCAACATCGTCTTTTGCCTGCACT -CCAACATCGTCTTTTGCCCTGACT -CCAACATCGTCTTTTGCCCAACCT -CCAACATCGTCTTTTGCCGCTACT -CCAACATCGTCTTTTGCCGGATCT -CCAACATCGTCTTTTGCCAAGGCT -CCAACATCGTCTTTTGCCTCAACC -CCAACATCGTCTTTTGCCTGTTCC -CCAACATCGTCTTTTGCCATTCCC -CCAACATCGTCTTTTGCCTTCTCG -CCAACATCGTCTTTTGCCTAGACG -CCAACATCGTCTTTTGCCGTAACG -CCAACATCGTCTTTTGCCACTTCG -CCAACATCGTCTTTTGCCTACGCA -CCAACATCGTCTTTTGCCCTTGCA -CCAACATCGTCTTTTGCCCGAACA -CCAACATCGTCTTTTGCCCAGTCA -CCAACATCGTCTTTTGCCGATCCA -CCAACATCGTCTTTTGCCACGACA -CCAACATCGTCTTTTGCCAGCTCA -CCAACATCGTCTTTTGCCTCACGT -CCAACATCGTCTTTTGCCCGTAGT -CCAACATCGTCTTTTGCCGTCAGT -CCAACATCGTCTTTTGCCGAAGGT -CCAACATCGTCTTTTGCCAACCGT -CCAACATCGTCTTTTGCCTTGTGC -CCAACATCGTCTTTTGCCCTAAGC -CCAACATCGTCTTTTGCCACTAGC -CCAACATCGTCTTTTGCCAGATGC -CCAACATCGTCTTTTGCCTGAAGG -CCAACATCGTCTTTTGCCCAATGG -CCAACATCGTCTTTTGCCATGAGG -CCAACATCGTCTTTTGCCAATGGG -CCAACATCGTCTTTTGCCTCCTGA -CCAACATCGTCTTTTGCCTAGCGA -CCAACATCGTCTTTTGCCCACAGA -CCAACATCGTCTTTTGCCGCAAGA -CCAACATCGTCTTTTGCCGGTTGA -CCAACATCGTCTTTTGCCTCCGAT -CCAACATCGTCTTTTGCCTGGCAT -CCAACATCGTCTTTTGCCCGAGAT -CCAACATCGTCTTTTGCCTACCAC -CCAACATCGTCTTTTGCCCAGAAC -CCAACATCGTCTTTTGCCGTCTAC -CCAACATCGTCTTTTGCCACGTAC -CCAACATCGTCTTTTGCCAGTGAC -CCAACATCGTCTTTTGCCCTGTAG -CCAACATCGTCTTTTGCCCCTAAG -CCAACATCGTCTTTTGCCGTTCAG -CCAACATCGTCTTTTGCCGCATAG -CCAACATCGTCTTTTGCCGACAAG -CCAACATCGTCTTTTGCCAAGCAG -CCAACATCGTCTTTTGCCCGTCAA -CCAACATCGTCTTTTGCCGCTGAA -CCAACATCGTCTTTTGCCAGTACG -CCAACATCGTCTTTTGCCATCCGA -CCAACATCGTCTTTTGCCATGGGA -CCAACATCGTCTTTTGCCGTGCAA -CCAACATCGTCTTTTGCCGAGGAA -CCAACATCGTCTTTTGCCCAGGTA -CCAACATCGTCTTTTGCCGACTCT -CCAACATCGTCTTTTGCCAGTCCT -CCAACATCGTCTTTTGCCTAAGCC -CCAACATCGTCTTTTGCCATAGCC -CCAACATCGTCTTTTGCCTAACCG -CCAACATCGTCTTTTGCCATGCCA -CCAACATCGTCTCTTGGTGGAAAC -CCAACATCGTCTCTTGGTAACACC -CCAACATCGTCTCTTGGTATCGAG -CCAACATCGTCTCTTGGTCTCCTT -CCAACATCGTCTCTTGGTCCTGTT -CCAACATCGTCTCTTGGTCGGTTT -CCAACATCGTCTCTTGGTGTGGTT -CCAACATCGTCTCTTGGTGCCTTT -CCAACATCGTCTCTTGGTGGTCTT -CCAACATCGTCTCTTGGTACGCTT -CCAACATCGTCTCTTGGTAGCGTT -CCAACATCGTCTCTTGGTTTCGTC -CCAACATCGTCTCTTGGTTCTCTC -CCAACATCGTCTCTTGGTTGGATC -CCAACATCGTCTCTTGGTCACTTC -CCAACATCGTCTCTTGGTGTACTC -CCAACATCGTCTCTTGGTGATGTC -CCAACATCGTCTCTTGGTACAGTC -CCAACATCGTCTCTTGGTTTGCTG -CCAACATCGTCTCTTGGTTCCATG -CCAACATCGTCTCTTGGTTGTGTG -CCAACATCGTCTCTTGGTCTAGTG -CCAACATCGTCTCTTGGTCATCTG -CCAACATCGTCTCTTGGTGAGTTG -CCAACATCGTCTCTTGGTAGACTG -CCAACATCGTCTCTTGGTTCGGTA -CCAACATCGTCTCTTGGTTGCCTA -CCAACATCGTCTCTTGGTCCACTA -CCAACATCGTCTCTTGGTGGAGTA -CCAACATCGTCTCTTGGTTCGTCT -CCAACATCGTCTCTTGGTTGCACT -CCAACATCGTCTCTTGGTCTGACT -CCAACATCGTCTCTTGGTCAACCT -CCAACATCGTCTCTTGGTGCTACT -CCAACATCGTCTCTTGGTGGATCT -CCAACATCGTCTCTTGGTAAGGCT -CCAACATCGTCTCTTGGTTCAACC -CCAACATCGTCTCTTGGTTGTTCC -CCAACATCGTCTCTTGGTATTCCC -CCAACATCGTCTCTTGGTTTCTCG -CCAACATCGTCTCTTGGTTAGACG -CCAACATCGTCTCTTGGTGTAACG -CCAACATCGTCTCTTGGTACTTCG -CCAACATCGTCTCTTGGTTACGCA -CCAACATCGTCTCTTGGTCTTGCA -CCAACATCGTCTCTTGGTCGAACA -CCAACATCGTCTCTTGGTCAGTCA -CCAACATCGTCTCTTGGTGATCCA -CCAACATCGTCTCTTGGTACGACA -CCAACATCGTCTCTTGGTAGCTCA -CCAACATCGTCTCTTGGTTCACGT -CCAACATCGTCTCTTGGTCGTAGT -CCAACATCGTCTCTTGGTGTCAGT -CCAACATCGTCTCTTGGTGAAGGT -CCAACATCGTCTCTTGGTAACCGT -CCAACATCGTCTCTTGGTTTGTGC -CCAACATCGTCTCTTGGTCTAAGC -CCAACATCGTCTCTTGGTACTAGC -CCAACATCGTCTCTTGGTAGATGC -CCAACATCGTCTCTTGGTTGAAGG -CCAACATCGTCTCTTGGTCAATGG -CCAACATCGTCTCTTGGTATGAGG -CCAACATCGTCTCTTGGTAATGGG -CCAACATCGTCTCTTGGTTCCTGA -CCAACATCGTCTCTTGGTTAGCGA -CCAACATCGTCTCTTGGTCACAGA -CCAACATCGTCTCTTGGTGCAAGA -CCAACATCGTCTCTTGGTGGTTGA -CCAACATCGTCTCTTGGTTCCGAT -CCAACATCGTCTCTTGGTTGGCAT -CCAACATCGTCTCTTGGTCGAGAT -CCAACATCGTCTCTTGGTTACCAC -CCAACATCGTCTCTTGGTCAGAAC -CCAACATCGTCTCTTGGTGTCTAC -CCAACATCGTCTCTTGGTACGTAC -CCAACATCGTCTCTTGGTAGTGAC -CCAACATCGTCTCTTGGTCTGTAG -CCAACATCGTCTCTTGGTCCTAAG -CCAACATCGTCTCTTGGTGTTCAG -CCAACATCGTCTCTTGGTGCATAG -CCAACATCGTCTCTTGGTGACAAG -CCAACATCGTCTCTTGGTAAGCAG -CCAACATCGTCTCTTGGTCGTCAA -CCAACATCGTCTCTTGGTGCTGAA -CCAACATCGTCTCTTGGTAGTACG -CCAACATCGTCTCTTGGTATCCGA -CCAACATCGTCTCTTGGTATGGGA -CCAACATCGTCTCTTGGTGTGCAA -CCAACATCGTCTCTTGGTGAGGAA -CCAACATCGTCTCTTGGTCAGGTA -CCAACATCGTCTCTTGGTGACTCT -CCAACATCGTCTCTTGGTAGTCCT -CCAACATCGTCTCTTGGTTAAGCC -CCAACATCGTCTCTTGGTATAGCC -CCAACATCGTCTCTTGGTTAACCG -CCAACATCGTCTCTTGGTATGCCA -CCAACATCGTCTCTTACGGGAAAC -CCAACATCGTCTCTTACGAACACC -CCAACATCGTCTCTTACGATCGAG -CCAACATCGTCTCTTACGCTCCTT -CCAACATCGTCTCTTACGCCTGTT -CCAACATCGTCTCTTACGCGGTTT -CCAACATCGTCTCTTACGGTGGTT -CCAACATCGTCTCTTACGGCCTTT -CCAACATCGTCTCTTACGGGTCTT -CCAACATCGTCTCTTACGACGCTT -CCAACATCGTCTCTTACGAGCGTT -CCAACATCGTCTCTTACGTTCGTC -CCAACATCGTCTCTTACGTCTCTC -CCAACATCGTCTCTTACGTGGATC -CCAACATCGTCTCTTACGCACTTC -CCAACATCGTCTCTTACGGTACTC -CCAACATCGTCTCTTACGGATGTC -CCAACATCGTCTCTTACGACAGTC -CCAACATCGTCTCTTACGTTGCTG -CCAACATCGTCTCTTACGTCCATG -CCAACATCGTCTCTTACGTGTGTG -CCAACATCGTCTCTTACGCTAGTG -CCAACATCGTCTCTTACGCATCTG -CCAACATCGTCTCTTACGGAGTTG -CCAACATCGTCTCTTACGAGACTG -CCAACATCGTCTCTTACGTCGGTA -CCAACATCGTCTCTTACGTGCCTA -CCAACATCGTCTCTTACGCCACTA -CCAACATCGTCTCTTACGGGAGTA -CCAACATCGTCTCTTACGTCGTCT -CCAACATCGTCTCTTACGTGCACT -CCAACATCGTCTCTTACGCTGACT -CCAACATCGTCTCTTACGCAACCT -CCAACATCGTCTCTTACGGCTACT -CCAACATCGTCTCTTACGGGATCT -CCAACATCGTCTCTTACGAAGGCT -CCAACATCGTCTCTTACGTCAACC -CCAACATCGTCTCTTACGTGTTCC -CCAACATCGTCTCTTACGATTCCC -CCAACATCGTCTCTTACGTTCTCG -CCAACATCGTCTCTTACGTAGACG -CCAACATCGTCTCTTACGGTAACG -CCAACATCGTCTCTTACGACTTCG -CCAACATCGTCTCTTACGTACGCA -CCAACATCGTCTCTTACGCTTGCA -CCAACATCGTCTCTTACGCGAACA -CCAACATCGTCTCTTACGCAGTCA -CCAACATCGTCTCTTACGGATCCA -CCAACATCGTCTCTTACGACGACA -CCAACATCGTCTCTTACGAGCTCA -CCAACATCGTCTCTTACGTCACGT -CCAACATCGTCTCTTACGCGTAGT -CCAACATCGTCTCTTACGGTCAGT -CCAACATCGTCTCTTACGGAAGGT -CCAACATCGTCTCTTACGAACCGT -CCAACATCGTCTCTTACGTTGTGC -CCAACATCGTCTCTTACGCTAAGC -CCAACATCGTCTCTTACGACTAGC -CCAACATCGTCTCTTACGAGATGC -CCAACATCGTCTCTTACGTGAAGG -CCAACATCGTCTCTTACGCAATGG -CCAACATCGTCTCTTACGATGAGG -CCAACATCGTCTCTTACGAATGGG -CCAACATCGTCTCTTACGTCCTGA -CCAACATCGTCTCTTACGTAGCGA -CCAACATCGTCTCTTACGCACAGA -CCAACATCGTCTCTTACGGCAAGA -CCAACATCGTCTCTTACGGGTTGA -CCAACATCGTCTCTTACGTCCGAT -CCAACATCGTCTCTTACGTGGCAT -CCAACATCGTCTCTTACGCGAGAT -CCAACATCGTCTCTTACGTACCAC -CCAACATCGTCTCTTACGCAGAAC -CCAACATCGTCTCTTACGGTCTAC -CCAACATCGTCTCTTACGACGTAC -CCAACATCGTCTCTTACGAGTGAC -CCAACATCGTCTCTTACGCTGTAG -CCAACATCGTCTCTTACGCCTAAG -CCAACATCGTCTCTTACGGTTCAG -CCAACATCGTCTCTTACGGCATAG -CCAACATCGTCTCTTACGGACAAG -CCAACATCGTCTCTTACGAAGCAG -CCAACATCGTCTCTTACGCGTCAA -CCAACATCGTCTCTTACGGCTGAA -CCAACATCGTCTCTTACGAGTACG -CCAACATCGTCTCTTACGATCCGA -CCAACATCGTCTCTTACGATGGGA -CCAACATCGTCTCTTACGGTGCAA -CCAACATCGTCTCTTACGGAGGAA -CCAACATCGTCTCTTACGCAGGTA -CCAACATCGTCTCTTACGGACTCT -CCAACATCGTCTCTTACGAGTCCT -CCAACATCGTCTCTTACGTAAGCC -CCAACATCGTCTCTTACGATAGCC -CCAACATCGTCTCTTACGTAACCG -CCAACATCGTCTCTTACGATGCCA -CCAACATCGTCTGTTAGCGGAAAC -CCAACATCGTCTGTTAGCAACACC -CCAACATCGTCTGTTAGCATCGAG -CCAACATCGTCTGTTAGCCTCCTT -CCAACATCGTCTGTTAGCCCTGTT -CCAACATCGTCTGTTAGCCGGTTT -CCAACATCGTCTGTTAGCGTGGTT -CCAACATCGTCTGTTAGCGCCTTT -CCAACATCGTCTGTTAGCGGTCTT -CCAACATCGTCTGTTAGCACGCTT -CCAACATCGTCTGTTAGCAGCGTT -CCAACATCGTCTGTTAGCTTCGTC -CCAACATCGTCTGTTAGCTCTCTC -CCAACATCGTCTGTTAGCTGGATC -CCAACATCGTCTGTTAGCCACTTC -CCAACATCGTCTGTTAGCGTACTC -CCAACATCGTCTGTTAGCGATGTC -CCAACATCGTCTGTTAGCACAGTC -CCAACATCGTCTGTTAGCTTGCTG -CCAACATCGTCTGTTAGCTCCATG -CCAACATCGTCTGTTAGCTGTGTG -CCAACATCGTCTGTTAGCCTAGTG -CCAACATCGTCTGTTAGCCATCTG -CCAACATCGTCTGTTAGCGAGTTG -CCAACATCGTCTGTTAGCAGACTG -CCAACATCGTCTGTTAGCTCGGTA -CCAACATCGTCTGTTAGCTGCCTA -CCAACATCGTCTGTTAGCCCACTA -CCAACATCGTCTGTTAGCGGAGTA -CCAACATCGTCTGTTAGCTCGTCT -CCAACATCGTCTGTTAGCTGCACT -CCAACATCGTCTGTTAGCCTGACT -CCAACATCGTCTGTTAGCCAACCT -CCAACATCGTCTGTTAGCGCTACT -CCAACATCGTCTGTTAGCGGATCT -CCAACATCGTCTGTTAGCAAGGCT -CCAACATCGTCTGTTAGCTCAACC -CCAACATCGTCTGTTAGCTGTTCC -CCAACATCGTCTGTTAGCATTCCC -CCAACATCGTCTGTTAGCTTCTCG -CCAACATCGTCTGTTAGCTAGACG -CCAACATCGTCTGTTAGCGTAACG -CCAACATCGTCTGTTAGCACTTCG -CCAACATCGTCTGTTAGCTACGCA -CCAACATCGTCTGTTAGCCTTGCA -CCAACATCGTCTGTTAGCCGAACA -CCAACATCGTCTGTTAGCCAGTCA -CCAACATCGTCTGTTAGCGATCCA -CCAACATCGTCTGTTAGCACGACA -CCAACATCGTCTGTTAGCAGCTCA -CCAACATCGTCTGTTAGCTCACGT -CCAACATCGTCTGTTAGCCGTAGT -CCAACATCGTCTGTTAGCGTCAGT -CCAACATCGTCTGTTAGCGAAGGT -CCAACATCGTCTGTTAGCAACCGT -CCAACATCGTCTGTTAGCTTGTGC -CCAACATCGTCTGTTAGCCTAAGC -CCAACATCGTCTGTTAGCACTAGC -CCAACATCGTCTGTTAGCAGATGC -CCAACATCGTCTGTTAGCTGAAGG -CCAACATCGTCTGTTAGCCAATGG -CCAACATCGTCTGTTAGCATGAGG -CCAACATCGTCTGTTAGCAATGGG -CCAACATCGTCTGTTAGCTCCTGA -CCAACATCGTCTGTTAGCTAGCGA -CCAACATCGTCTGTTAGCCACAGA -CCAACATCGTCTGTTAGCGCAAGA -CCAACATCGTCTGTTAGCGGTTGA -CCAACATCGTCTGTTAGCTCCGAT -CCAACATCGTCTGTTAGCTGGCAT -CCAACATCGTCTGTTAGCCGAGAT -CCAACATCGTCTGTTAGCTACCAC -CCAACATCGTCTGTTAGCCAGAAC -CCAACATCGTCTGTTAGCGTCTAC -CCAACATCGTCTGTTAGCACGTAC -CCAACATCGTCTGTTAGCAGTGAC -CCAACATCGTCTGTTAGCCTGTAG -CCAACATCGTCTGTTAGCCCTAAG -CCAACATCGTCTGTTAGCGTTCAG -CCAACATCGTCTGTTAGCGCATAG -CCAACATCGTCTGTTAGCGACAAG -CCAACATCGTCTGTTAGCAAGCAG -CCAACATCGTCTGTTAGCCGTCAA -CCAACATCGTCTGTTAGCGCTGAA -CCAACATCGTCTGTTAGCAGTACG -CCAACATCGTCTGTTAGCATCCGA -CCAACATCGTCTGTTAGCATGGGA -CCAACATCGTCTGTTAGCGTGCAA -CCAACATCGTCTGTTAGCGAGGAA -CCAACATCGTCTGTTAGCCAGGTA -CCAACATCGTCTGTTAGCGACTCT -CCAACATCGTCTGTTAGCAGTCCT -CCAACATCGTCTGTTAGCTAAGCC -CCAACATCGTCTGTTAGCATAGCC -CCAACATCGTCTGTTAGCTAACCG -CCAACATCGTCTGTTAGCATGCCA -CCAACATCGTCTGTCTTCGGAAAC -CCAACATCGTCTGTCTTCAACACC -CCAACATCGTCTGTCTTCATCGAG -CCAACATCGTCTGTCTTCCTCCTT -CCAACATCGTCTGTCTTCCCTGTT -CCAACATCGTCTGTCTTCCGGTTT -CCAACATCGTCTGTCTTCGTGGTT -CCAACATCGTCTGTCTTCGCCTTT -CCAACATCGTCTGTCTTCGGTCTT -CCAACATCGTCTGTCTTCACGCTT -CCAACATCGTCTGTCTTCAGCGTT -CCAACATCGTCTGTCTTCTTCGTC -CCAACATCGTCTGTCTTCTCTCTC -CCAACATCGTCTGTCTTCTGGATC -CCAACATCGTCTGTCTTCCACTTC -CCAACATCGTCTGTCTTCGTACTC -CCAACATCGTCTGTCTTCGATGTC -CCAACATCGTCTGTCTTCACAGTC -CCAACATCGTCTGTCTTCTTGCTG -CCAACATCGTCTGTCTTCTCCATG -CCAACATCGTCTGTCTTCTGTGTG -CCAACATCGTCTGTCTTCCTAGTG -CCAACATCGTCTGTCTTCCATCTG -CCAACATCGTCTGTCTTCGAGTTG -CCAACATCGTCTGTCTTCAGACTG -CCAACATCGTCTGTCTTCTCGGTA -CCAACATCGTCTGTCTTCTGCCTA -CCAACATCGTCTGTCTTCCCACTA -CCAACATCGTCTGTCTTCGGAGTA -CCAACATCGTCTGTCTTCTCGTCT -CCAACATCGTCTGTCTTCTGCACT -CCAACATCGTCTGTCTTCCTGACT -CCAACATCGTCTGTCTTCCAACCT -CCAACATCGTCTGTCTTCGCTACT -CCAACATCGTCTGTCTTCGGATCT -CCAACATCGTCTGTCTTCAAGGCT -CCAACATCGTCTGTCTTCTCAACC -CCAACATCGTCTGTCTTCTGTTCC -CCAACATCGTCTGTCTTCATTCCC -CCAACATCGTCTGTCTTCTTCTCG -CCAACATCGTCTGTCTTCTAGACG -CCAACATCGTCTGTCTTCGTAACG -CCAACATCGTCTGTCTTCACTTCG -CCAACATCGTCTGTCTTCTACGCA -CCAACATCGTCTGTCTTCCTTGCA -CCAACATCGTCTGTCTTCCGAACA -CCAACATCGTCTGTCTTCCAGTCA -CCAACATCGTCTGTCTTCGATCCA -CCAACATCGTCTGTCTTCACGACA -CCAACATCGTCTGTCTTCAGCTCA -CCAACATCGTCTGTCTTCTCACGT -CCAACATCGTCTGTCTTCCGTAGT -CCAACATCGTCTGTCTTCGTCAGT -CCAACATCGTCTGTCTTCGAAGGT -CCAACATCGTCTGTCTTCAACCGT -CCAACATCGTCTGTCTTCTTGTGC -CCAACATCGTCTGTCTTCCTAAGC -CCAACATCGTCTGTCTTCACTAGC -CCAACATCGTCTGTCTTCAGATGC -CCAACATCGTCTGTCTTCTGAAGG -CCAACATCGTCTGTCTTCCAATGG -CCAACATCGTCTGTCTTCATGAGG -CCAACATCGTCTGTCTTCAATGGG -CCAACATCGTCTGTCTTCTCCTGA -CCAACATCGTCTGTCTTCTAGCGA -CCAACATCGTCTGTCTTCCACAGA -CCAACATCGTCTGTCTTCGCAAGA -CCAACATCGTCTGTCTTCGGTTGA -CCAACATCGTCTGTCTTCTCCGAT -CCAACATCGTCTGTCTTCTGGCAT -CCAACATCGTCTGTCTTCCGAGAT -CCAACATCGTCTGTCTTCTACCAC -CCAACATCGTCTGTCTTCCAGAAC -CCAACATCGTCTGTCTTCGTCTAC -CCAACATCGTCTGTCTTCACGTAC -CCAACATCGTCTGTCTTCAGTGAC -CCAACATCGTCTGTCTTCCTGTAG -CCAACATCGTCTGTCTTCCCTAAG -CCAACATCGTCTGTCTTCGTTCAG -CCAACATCGTCTGTCTTCGCATAG -CCAACATCGTCTGTCTTCGACAAG -CCAACATCGTCTGTCTTCAAGCAG -CCAACATCGTCTGTCTTCCGTCAA -CCAACATCGTCTGTCTTCGCTGAA -CCAACATCGTCTGTCTTCAGTACG -CCAACATCGTCTGTCTTCATCCGA -CCAACATCGTCTGTCTTCATGGGA -CCAACATCGTCTGTCTTCGTGCAA -CCAACATCGTCTGTCTTCGAGGAA -CCAACATCGTCTGTCTTCCAGGTA -CCAACATCGTCTGTCTTCGACTCT -CCAACATCGTCTGTCTTCAGTCCT -CCAACATCGTCTGTCTTCTAAGCC -CCAACATCGTCTGTCTTCATAGCC -CCAACATCGTCTGTCTTCTAACCG -CCAACATCGTCTGTCTTCATGCCA -CCAACATCGTCTCTCTCTGGAAAC -CCAACATCGTCTCTCTCTAACACC -CCAACATCGTCTCTCTCTATCGAG -CCAACATCGTCTCTCTCTCTCCTT -CCAACATCGTCTCTCTCTCCTGTT -CCAACATCGTCTCTCTCTCGGTTT -CCAACATCGTCTCTCTCTGTGGTT -CCAACATCGTCTCTCTCTGCCTTT -CCAACATCGTCTCTCTCTGGTCTT -CCAACATCGTCTCTCTCTACGCTT -CCAACATCGTCTCTCTCTAGCGTT -CCAACATCGTCTCTCTCTTTCGTC -CCAACATCGTCTCTCTCTTCTCTC -CCAACATCGTCTCTCTCTTGGATC -CCAACATCGTCTCTCTCTCACTTC -CCAACATCGTCTCTCTCTGTACTC -CCAACATCGTCTCTCTCTGATGTC -CCAACATCGTCTCTCTCTACAGTC -CCAACATCGTCTCTCTCTTTGCTG -CCAACATCGTCTCTCTCTTCCATG -CCAACATCGTCTCTCTCTTGTGTG -CCAACATCGTCTCTCTCTCTAGTG -CCAACATCGTCTCTCTCTCATCTG -CCAACATCGTCTCTCTCTGAGTTG -CCAACATCGTCTCTCTCTAGACTG -CCAACATCGTCTCTCTCTTCGGTA -CCAACATCGTCTCTCTCTTGCCTA -CCAACATCGTCTCTCTCTCCACTA -CCAACATCGTCTCTCTCTGGAGTA -CCAACATCGTCTCTCTCTTCGTCT -CCAACATCGTCTCTCTCTTGCACT -CCAACATCGTCTCTCTCTCTGACT -CCAACATCGTCTCTCTCTCAACCT -CCAACATCGTCTCTCTCTGCTACT -CCAACATCGTCTCTCTCTGGATCT -CCAACATCGTCTCTCTCTAAGGCT -CCAACATCGTCTCTCTCTTCAACC -CCAACATCGTCTCTCTCTTGTTCC -CCAACATCGTCTCTCTCTATTCCC -CCAACATCGTCTCTCTCTTTCTCG -CCAACATCGTCTCTCTCTTAGACG -CCAACATCGTCTCTCTCTGTAACG -CCAACATCGTCTCTCTCTACTTCG -CCAACATCGTCTCTCTCTTACGCA -CCAACATCGTCTCTCTCTCTTGCA -CCAACATCGTCTCTCTCTCGAACA -CCAACATCGTCTCTCTCTCAGTCA -CCAACATCGTCTCTCTCTGATCCA -CCAACATCGTCTCTCTCTACGACA -CCAACATCGTCTCTCTCTAGCTCA -CCAACATCGTCTCTCTCTTCACGT -CCAACATCGTCTCTCTCTCGTAGT -CCAACATCGTCTCTCTCTGTCAGT -CCAACATCGTCTCTCTCTGAAGGT -CCAACATCGTCTCTCTCTAACCGT -CCAACATCGTCTCTCTCTTTGTGC -CCAACATCGTCTCTCTCTCTAAGC -CCAACATCGTCTCTCTCTACTAGC -CCAACATCGTCTCTCTCTAGATGC -CCAACATCGTCTCTCTCTTGAAGG -CCAACATCGTCTCTCTCTCAATGG -CCAACATCGTCTCTCTCTATGAGG -CCAACATCGTCTCTCTCTAATGGG -CCAACATCGTCTCTCTCTTCCTGA -CCAACATCGTCTCTCTCTTAGCGA -CCAACATCGTCTCTCTCTCACAGA -CCAACATCGTCTCTCTCTGCAAGA -CCAACATCGTCTCTCTCTGGTTGA -CCAACATCGTCTCTCTCTTCCGAT -CCAACATCGTCTCTCTCTTGGCAT -CCAACATCGTCTCTCTCTCGAGAT -CCAACATCGTCTCTCTCTTACCAC -CCAACATCGTCTCTCTCTCAGAAC -CCAACATCGTCTCTCTCTGTCTAC -CCAACATCGTCTCTCTCTACGTAC -CCAACATCGTCTCTCTCTAGTGAC -CCAACATCGTCTCTCTCTCTGTAG -CCAACATCGTCTCTCTCTCCTAAG -CCAACATCGTCTCTCTCTGTTCAG -CCAACATCGTCTCTCTCTGCATAG -CCAACATCGTCTCTCTCTGACAAG -CCAACATCGTCTCTCTCTAAGCAG -CCAACATCGTCTCTCTCTCGTCAA -CCAACATCGTCTCTCTCTGCTGAA -CCAACATCGTCTCTCTCTAGTACG -CCAACATCGTCTCTCTCTATCCGA -CCAACATCGTCTCTCTCTATGGGA -CCAACATCGTCTCTCTCTGTGCAA -CCAACATCGTCTCTCTCTGAGGAA -CCAACATCGTCTCTCTCTCAGGTA -CCAACATCGTCTCTCTCTGACTCT -CCAACATCGTCTCTCTCTAGTCCT -CCAACATCGTCTCTCTCTTAAGCC -CCAACATCGTCTCTCTCTATAGCC -CCAACATCGTCTCTCTCTTAACCG -CCAACATCGTCTCTCTCTATGCCA -CCAACATCGTCTATCTGGGGAAAC -CCAACATCGTCTATCTGGAACACC -CCAACATCGTCTATCTGGATCGAG -CCAACATCGTCTATCTGGCTCCTT -CCAACATCGTCTATCTGGCCTGTT -CCAACATCGTCTATCTGGCGGTTT -CCAACATCGTCTATCTGGGTGGTT -CCAACATCGTCTATCTGGGCCTTT -CCAACATCGTCTATCTGGGGTCTT -CCAACATCGTCTATCTGGACGCTT -CCAACATCGTCTATCTGGAGCGTT -CCAACATCGTCTATCTGGTTCGTC -CCAACATCGTCTATCTGGTCTCTC -CCAACATCGTCTATCTGGTGGATC -CCAACATCGTCTATCTGGCACTTC -CCAACATCGTCTATCTGGGTACTC -CCAACATCGTCTATCTGGGATGTC -CCAACATCGTCTATCTGGACAGTC -CCAACATCGTCTATCTGGTTGCTG -CCAACATCGTCTATCTGGTCCATG -CCAACATCGTCTATCTGGTGTGTG -CCAACATCGTCTATCTGGCTAGTG -CCAACATCGTCTATCTGGCATCTG -CCAACATCGTCTATCTGGGAGTTG -CCAACATCGTCTATCTGGAGACTG -CCAACATCGTCTATCTGGTCGGTA -CCAACATCGTCTATCTGGTGCCTA -CCAACATCGTCTATCTGGCCACTA -CCAACATCGTCTATCTGGGGAGTA -CCAACATCGTCTATCTGGTCGTCT -CCAACATCGTCTATCTGGTGCACT -CCAACATCGTCTATCTGGCTGACT -CCAACATCGTCTATCTGGCAACCT -CCAACATCGTCTATCTGGGCTACT -CCAACATCGTCTATCTGGGGATCT -CCAACATCGTCTATCTGGAAGGCT -CCAACATCGTCTATCTGGTCAACC -CCAACATCGTCTATCTGGTGTTCC -CCAACATCGTCTATCTGGATTCCC -CCAACATCGTCTATCTGGTTCTCG -CCAACATCGTCTATCTGGTAGACG -CCAACATCGTCTATCTGGGTAACG -CCAACATCGTCTATCTGGACTTCG -CCAACATCGTCTATCTGGTACGCA -CCAACATCGTCTATCTGGCTTGCA -CCAACATCGTCTATCTGGCGAACA -CCAACATCGTCTATCTGGCAGTCA -CCAACATCGTCTATCTGGGATCCA -CCAACATCGTCTATCTGGACGACA -CCAACATCGTCTATCTGGAGCTCA -CCAACATCGTCTATCTGGTCACGT -CCAACATCGTCTATCTGGCGTAGT -CCAACATCGTCTATCTGGGTCAGT -CCAACATCGTCTATCTGGGAAGGT -CCAACATCGTCTATCTGGAACCGT -CCAACATCGTCTATCTGGTTGTGC -CCAACATCGTCTATCTGGCTAAGC -CCAACATCGTCTATCTGGACTAGC -CCAACATCGTCTATCTGGAGATGC -CCAACATCGTCTATCTGGTGAAGG -CCAACATCGTCTATCTGGCAATGG -CCAACATCGTCTATCTGGATGAGG -CCAACATCGTCTATCTGGAATGGG -CCAACATCGTCTATCTGGTCCTGA -CCAACATCGTCTATCTGGTAGCGA -CCAACATCGTCTATCTGGCACAGA -CCAACATCGTCTATCTGGGCAAGA -CCAACATCGTCTATCTGGGGTTGA -CCAACATCGTCTATCTGGTCCGAT -CCAACATCGTCTATCTGGTGGCAT -CCAACATCGTCTATCTGGCGAGAT -CCAACATCGTCTATCTGGTACCAC -CCAACATCGTCTATCTGGCAGAAC -CCAACATCGTCTATCTGGGTCTAC -CCAACATCGTCTATCTGGACGTAC -CCAACATCGTCTATCTGGAGTGAC -CCAACATCGTCTATCTGGCTGTAG -CCAACATCGTCTATCTGGCCTAAG -CCAACATCGTCTATCTGGGTTCAG -CCAACATCGTCTATCTGGGCATAG -CCAACATCGTCTATCTGGGACAAG -CCAACATCGTCTATCTGGAAGCAG -CCAACATCGTCTATCTGGCGTCAA -CCAACATCGTCTATCTGGGCTGAA -CCAACATCGTCTATCTGGAGTACG -CCAACATCGTCTATCTGGATCCGA -CCAACATCGTCTATCTGGATGGGA -CCAACATCGTCTATCTGGGTGCAA -CCAACATCGTCTATCTGGGAGGAA -CCAACATCGTCTATCTGGCAGGTA -CCAACATCGTCTATCTGGGACTCT -CCAACATCGTCTATCTGGAGTCCT -CCAACATCGTCTATCTGGTAAGCC -CCAACATCGTCTATCTGGATAGCC -CCAACATCGTCTATCTGGTAACCG -CCAACATCGTCTATCTGGATGCCA -CCAACATCGTCTTTCCACGGAAAC -CCAACATCGTCTTTCCACAACACC -CCAACATCGTCTTTCCACATCGAG -CCAACATCGTCTTTCCACCTCCTT -CCAACATCGTCTTTCCACCCTGTT -CCAACATCGTCTTTCCACCGGTTT -CCAACATCGTCTTTCCACGTGGTT -CCAACATCGTCTTTCCACGCCTTT -CCAACATCGTCTTTCCACGGTCTT -CCAACATCGTCTTTCCACACGCTT -CCAACATCGTCTTTCCACAGCGTT -CCAACATCGTCTTTCCACTTCGTC -CCAACATCGTCTTTCCACTCTCTC -CCAACATCGTCTTTCCACTGGATC -CCAACATCGTCTTTCCACCACTTC -CCAACATCGTCTTTCCACGTACTC -CCAACATCGTCTTTCCACGATGTC -CCAACATCGTCTTTCCACACAGTC -CCAACATCGTCTTTCCACTTGCTG -CCAACATCGTCTTTCCACTCCATG -CCAACATCGTCTTTCCACTGTGTG -CCAACATCGTCTTTCCACCTAGTG -CCAACATCGTCTTTCCACCATCTG -CCAACATCGTCTTTCCACGAGTTG -CCAACATCGTCTTTCCACAGACTG -CCAACATCGTCTTTCCACTCGGTA -CCAACATCGTCTTTCCACTGCCTA -CCAACATCGTCTTTCCACCCACTA -CCAACATCGTCTTTCCACGGAGTA -CCAACATCGTCTTTCCACTCGTCT -CCAACATCGTCTTTCCACTGCACT -CCAACATCGTCTTTCCACCTGACT -CCAACATCGTCTTTCCACCAACCT -CCAACATCGTCTTTCCACGCTACT -CCAACATCGTCTTTCCACGGATCT -CCAACATCGTCTTTCCACAAGGCT -CCAACATCGTCTTTCCACTCAACC -CCAACATCGTCTTTCCACTGTTCC -CCAACATCGTCTTTCCACATTCCC -CCAACATCGTCTTTCCACTTCTCG -CCAACATCGTCTTTCCACTAGACG -CCAACATCGTCTTTCCACGTAACG -CCAACATCGTCTTTCCACACTTCG -CCAACATCGTCTTTCCACTACGCA -CCAACATCGTCTTTCCACCTTGCA -CCAACATCGTCTTTCCACCGAACA -CCAACATCGTCTTTCCACCAGTCA -CCAACATCGTCTTTCCACGATCCA -CCAACATCGTCTTTCCACACGACA -CCAACATCGTCTTTCCACAGCTCA -CCAACATCGTCTTTCCACTCACGT -CCAACATCGTCTTTCCACCGTAGT -CCAACATCGTCTTTCCACGTCAGT -CCAACATCGTCTTTCCACGAAGGT -CCAACATCGTCTTTCCACAACCGT -CCAACATCGTCTTTCCACTTGTGC -CCAACATCGTCTTTCCACCTAAGC -CCAACATCGTCTTTCCACACTAGC -CCAACATCGTCTTTCCACAGATGC -CCAACATCGTCTTTCCACTGAAGG -CCAACATCGTCTTTCCACCAATGG -CCAACATCGTCTTTCCACATGAGG -CCAACATCGTCTTTCCACAATGGG -CCAACATCGTCTTTCCACTCCTGA -CCAACATCGTCTTTCCACTAGCGA -CCAACATCGTCTTTCCACCACAGA -CCAACATCGTCTTTCCACGCAAGA -CCAACATCGTCTTTCCACGGTTGA -CCAACATCGTCTTTCCACTCCGAT -CCAACATCGTCTTTCCACTGGCAT -CCAACATCGTCTTTCCACCGAGAT -CCAACATCGTCTTTCCACTACCAC -CCAACATCGTCTTTCCACCAGAAC -CCAACATCGTCTTTCCACGTCTAC -CCAACATCGTCTTTCCACACGTAC -CCAACATCGTCTTTCCACAGTGAC -CCAACATCGTCTTTCCACCTGTAG -CCAACATCGTCTTTCCACCCTAAG -CCAACATCGTCTTTCCACGTTCAG -CCAACATCGTCTTTCCACGCATAG -CCAACATCGTCTTTCCACGACAAG -CCAACATCGTCTTTCCACAAGCAG -CCAACATCGTCTTTCCACCGTCAA -CCAACATCGTCTTTCCACGCTGAA -CCAACATCGTCTTTCCACAGTACG -CCAACATCGTCTTTCCACATCCGA -CCAACATCGTCTTTCCACATGGGA -CCAACATCGTCTTTCCACGTGCAA -CCAACATCGTCTTTCCACGAGGAA -CCAACATCGTCTTTCCACCAGGTA -CCAACATCGTCTTTCCACGACTCT -CCAACATCGTCTTTCCACAGTCCT -CCAACATCGTCTTTCCACTAAGCC -CCAACATCGTCTTTCCACATAGCC -CCAACATCGTCTTTCCACTAACCG -CCAACATCGTCTTTCCACATGCCA -CCAACATCGTCTCTCGTAGGAAAC -CCAACATCGTCTCTCGTAAACACC -CCAACATCGTCTCTCGTAATCGAG -CCAACATCGTCTCTCGTACTCCTT -CCAACATCGTCTCTCGTACCTGTT -CCAACATCGTCTCTCGTACGGTTT -CCAACATCGTCTCTCGTAGTGGTT -CCAACATCGTCTCTCGTAGCCTTT -CCAACATCGTCTCTCGTAGGTCTT -CCAACATCGTCTCTCGTAACGCTT -CCAACATCGTCTCTCGTAAGCGTT -CCAACATCGTCTCTCGTATTCGTC -CCAACATCGTCTCTCGTATCTCTC -CCAACATCGTCTCTCGTATGGATC -CCAACATCGTCTCTCGTACACTTC -CCAACATCGTCTCTCGTAGTACTC -CCAACATCGTCTCTCGTAGATGTC -CCAACATCGTCTCTCGTAACAGTC -CCAACATCGTCTCTCGTATTGCTG -CCAACATCGTCTCTCGTATCCATG -CCAACATCGTCTCTCGTATGTGTG -CCAACATCGTCTCTCGTACTAGTG -CCAACATCGTCTCTCGTACATCTG -CCAACATCGTCTCTCGTAGAGTTG -CCAACATCGTCTCTCGTAAGACTG -CCAACATCGTCTCTCGTATCGGTA -CCAACATCGTCTCTCGTATGCCTA -CCAACATCGTCTCTCGTACCACTA -CCAACATCGTCTCTCGTAGGAGTA -CCAACATCGTCTCTCGTATCGTCT -CCAACATCGTCTCTCGTATGCACT -CCAACATCGTCTCTCGTACTGACT -CCAACATCGTCTCTCGTACAACCT -CCAACATCGTCTCTCGTAGCTACT -CCAACATCGTCTCTCGTAGGATCT -CCAACATCGTCTCTCGTAAAGGCT -CCAACATCGTCTCTCGTATCAACC -CCAACATCGTCTCTCGTATGTTCC -CCAACATCGTCTCTCGTAATTCCC -CCAACATCGTCTCTCGTATTCTCG -CCAACATCGTCTCTCGTATAGACG -CCAACATCGTCTCTCGTAGTAACG -CCAACATCGTCTCTCGTAACTTCG -CCAACATCGTCTCTCGTATACGCA -CCAACATCGTCTCTCGTACTTGCA -CCAACATCGTCTCTCGTACGAACA -CCAACATCGTCTCTCGTACAGTCA -CCAACATCGTCTCTCGTAGATCCA -CCAACATCGTCTCTCGTAACGACA -CCAACATCGTCTCTCGTAAGCTCA -CCAACATCGTCTCTCGTATCACGT -CCAACATCGTCTCTCGTACGTAGT -CCAACATCGTCTCTCGTAGTCAGT -CCAACATCGTCTCTCGTAGAAGGT -CCAACATCGTCTCTCGTAAACCGT -CCAACATCGTCTCTCGTATTGTGC -CCAACATCGTCTCTCGTACTAAGC -CCAACATCGTCTCTCGTAACTAGC -CCAACATCGTCTCTCGTAAGATGC -CCAACATCGTCTCTCGTATGAAGG -CCAACATCGTCTCTCGTACAATGG -CCAACATCGTCTCTCGTAATGAGG -CCAACATCGTCTCTCGTAAATGGG -CCAACATCGTCTCTCGTATCCTGA -CCAACATCGTCTCTCGTATAGCGA -CCAACATCGTCTCTCGTACACAGA -CCAACATCGTCTCTCGTAGCAAGA -CCAACATCGTCTCTCGTAGGTTGA -CCAACATCGTCTCTCGTATCCGAT -CCAACATCGTCTCTCGTATGGCAT -CCAACATCGTCTCTCGTACGAGAT -CCAACATCGTCTCTCGTATACCAC -CCAACATCGTCTCTCGTACAGAAC -CCAACATCGTCTCTCGTAGTCTAC -CCAACATCGTCTCTCGTAACGTAC -CCAACATCGTCTCTCGTAAGTGAC -CCAACATCGTCTCTCGTACTGTAG -CCAACATCGTCTCTCGTACCTAAG -CCAACATCGTCTCTCGTAGTTCAG -CCAACATCGTCTCTCGTAGCATAG -CCAACATCGTCTCTCGTAGACAAG -CCAACATCGTCTCTCGTAAAGCAG -CCAACATCGTCTCTCGTACGTCAA -CCAACATCGTCTCTCGTAGCTGAA -CCAACATCGTCTCTCGTAAGTACG -CCAACATCGTCTCTCGTAATCCGA -CCAACATCGTCTCTCGTAATGGGA -CCAACATCGTCTCTCGTAGTGCAA -CCAACATCGTCTCTCGTAGAGGAA -CCAACATCGTCTCTCGTACAGGTA -CCAACATCGTCTCTCGTAGACTCT -CCAACATCGTCTCTCGTAAGTCCT -CCAACATCGTCTCTCGTATAAGCC -CCAACATCGTCTCTCGTAATAGCC -CCAACATCGTCTCTCGTATAACCG -CCAACATCGTCTCTCGTAATGCCA -CCAACATCGTCTGTCGATGGAAAC -CCAACATCGTCTGTCGATAACACC -CCAACATCGTCTGTCGATATCGAG -CCAACATCGTCTGTCGATCTCCTT -CCAACATCGTCTGTCGATCCTGTT -CCAACATCGTCTGTCGATCGGTTT -CCAACATCGTCTGTCGATGTGGTT -CCAACATCGTCTGTCGATGCCTTT -CCAACATCGTCTGTCGATGGTCTT -CCAACATCGTCTGTCGATACGCTT -CCAACATCGTCTGTCGATAGCGTT -CCAACATCGTCTGTCGATTTCGTC -CCAACATCGTCTGTCGATTCTCTC -CCAACATCGTCTGTCGATTGGATC -CCAACATCGTCTGTCGATCACTTC -CCAACATCGTCTGTCGATGTACTC -CCAACATCGTCTGTCGATGATGTC -CCAACATCGTCTGTCGATACAGTC -CCAACATCGTCTGTCGATTTGCTG -CCAACATCGTCTGTCGATTCCATG -CCAACATCGTCTGTCGATTGTGTG -CCAACATCGTCTGTCGATCTAGTG -CCAACATCGTCTGTCGATCATCTG -CCAACATCGTCTGTCGATGAGTTG -CCAACATCGTCTGTCGATAGACTG -CCAACATCGTCTGTCGATTCGGTA -CCAACATCGTCTGTCGATTGCCTA -CCAACATCGTCTGTCGATCCACTA -CCAACATCGTCTGTCGATGGAGTA -CCAACATCGTCTGTCGATTCGTCT -CCAACATCGTCTGTCGATTGCACT -CCAACATCGTCTGTCGATCTGACT -CCAACATCGTCTGTCGATCAACCT -CCAACATCGTCTGTCGATGCTACT -CCAACATCGTCTGTCGATGGATCT -CCAACATCGTCTGTCGATAAGGCT -CCAACATCGTCTGTCGATTCAACC -CCAACATCGTCTGTCGATTGTTCC -CCAACATCGTCTGTCGATATTCCC -CCAACATCGTCTGTCGATTTCTCG -CCAACATCGTCTGTCGATTAGACG -CCAACATCGTCTGTCGATGTAACG -CCAACATCGTCTGTCGATACTTCG -CCAACATCGTCTGTCGATTACGCA -CCAACATCGTCTGTCGATCTTGCA -CCAACATCGTCTGTCGATCGAACA -CCAACATCGTCTGTCGATCAGTCA -CCAACATCGTCTGTCGATGATCCA -CCAACATCGTCTGTCGATACGACA -CCAACATCGTCTGTCGATAGCTCA -CCAACATCGTCTGTCGATTCACGT -CCAACATCGTCTGTCGATCGTAGT -CCAACATCGTCTGTCGATGTCAGT -CCAACATCGTCTGTCGATGAAGGT -CCAACATCGTCTGTCGATAACCGT -CCAACATCGTCTGTCGATTTGTGC -CCAACATCGTCTGTCGATCTAAGC -CCAACATCGTCTGTCGATACTAGC -CCAACATCGTCTGTCGATAGATGC -CCAACATCGTCTGTCGATTGAAGG -CCAACATCGTCTGTCGATCAATGG -CCAACATCGTCTGTCGATATGAGG -CCAACATCGTCTGTCGATAATGGG -CCAACATCGTCTGTCGATTCCTGA -CCAACATCGTCTGTCGATTAGCGA -CCAACATCGTCTGTCGATCACAGA -CCAACATCGTCTGTCGATGCAAGA -CCAACATCGTCTGTCGATGGTTGA -CCAACATCGTCTGTCGATTCCGAT -CCAACATCGTCTGTCGATTGGCAT -CCAACATCGTCTGTCGATCGAGAT -CCAACATCGTCTGTCGATTACCAC -CCAACATCGTCTGTCGATCAGAAC -CCAACATCGTCTGTCGATGTCTAC -CCAACATCGTCTGTCGATACGTAC -CCAACATCGTCTGTCGATAGTGAC -CCAACATCGTCTGTCGATCTGTAG -CCAACATCGTCTGTCGATCCTAAG -CCAACATCGTCTGTCGATGTTCAG -CCAACATCGTCTGTCGATGCATAG -CCAACATCGTCTGTCGATGACAAG -CCAACATCGTCTGTCGATAAGCAG -CCAACATCGTCTGTCGATCGTCAA -CCAACATCGTCTGTCGATGCTGAA -CCAACATCGTCTGTCGATAGTACG -CCAACATCGTCTGTCGATATCCGA -CCAACATCGTCTGTCGATATGGGA -CCAACATCGTCTGTCGATGTGCAA -CCAACATCGTCTGTCGATGAGGAA -CCAACATCGTCTGTCGATCAGGTA -CCAACATCGTCTGTCGATGACTCT -CCAACATCGTCTGTCGATAGTCCT -CCAACATCGTCTGTCGATTAAGCC -CCAACATCGTCTGTCGATATAGCC -CCAACATCGTCTGTCGATTAACCG -CCAACATCGTCTGTCGATATGCCA -CCAACATCGTCTGTCACAGGAAAC -CCAACATCGTCTGTCACAAACACC -CCAACATCGTCTGTCACAATCGAG -CCAACATCGTCTGTCACACTCCTT -CCAACATCGTCTGTCACACCTGTT -CCAACATCGTCTGTCACACGGTTT -CCAACATCGTCTGTCACAGTGGTT -CCAACATCGTCTGTCACAGCCTTT -CCAACATCGTCTGTCACAGGTCTT -CCAACATCGTCTGTCACAACGCTT -CCAACATCGTCTGTCACAAGCGTT -CCAACATCGTCTGTCACATTCGTC -CCAACATCGTCTGTCACATCTCTC -CCAACATCGTCTGTCACATGGATC -CCAACATCGTCTGTCACACACTTC -CCAACATCGTCTGTCACAGTACTC -CCAACATCGTCTGTCACAGATGTC -CCAACATCGTCTGTCACAACAGTC -CCAACATCGTCTGTCACATTGCTG -CCAACATCGTCTGTCACATCCATG -CCAACATCGTCTGTCACATGTGTG -CCAACATCGTCTGTCACACTAGTG -CCAACATCGTCTGTCACACATCTG -CCAACATCGTCTGTCACAGAGTTG -CCAACATCGTCTGTCACAAGACTG -CCAACATCGTCTGTCACATCGGTA -CCAACATCGTCTGTCACATGCCTA -CCAACATCGTCTGTCACACCACTA -CCAACATCGTCTGTCACAGGAGTA -CCAACATCGTCTGTCACATCGTCT -CCAACATCGTCTGTCACATGCACT -CCAACATCGTCTGTCACACTGACT -CCAACATCGTCTGTCACACAACCT -CCAACATCGTCTGTCACAGCTACT -CCAACATCGTCTGTCACAGGATCT -CCAACATCGTCTGTCACAAAGGCT -CCAACATCGTCTGTCACATCAACC -CCAACATCGTCTGTCACATGTTCC -CCAACATCGTCTGTCACAATTCCC -CCAACATCGTCTGTCACATTCTCG -CCAACATCGTCTGTCACATAGACG -CCAACATCGTCTGTCACAGTAACG -CCAACATCGTCTGTCACAACTTCG -CCAACATCGTCTGTCACATACGCA -CCAACATCGTCTGTCACACTTGCA -CCAACATCGTCTGTCACACGAACA -CCAACATCGTCTGTCACACAGTCA -CCAACATCGTCTGTCACAGATCCA -CCAACATCGTCTGTCACAACGACA -CCAACATCGTCTGTCACAAGCTCA -CCAACATCGTCTGTCACATCACGT -CCAACATCGTCTGTCACACGTAGT -CCAACATCGTCTGTCACAGTCAGT -CCAACATCGTCTGTCACAGAAGGT -CCAACATCGTCTGTCACAAACCGT -CCAACATCGTCTGTCACATTGTGC -CCAACATCGTCTGTCACACTAAGC -CCAACATCGTCTGTCACAACTAGC -CCAACATCGTCTGTCACAAGATGC -CCAACATCGTCTGTCACATGAAGG -CCAACATCGTCTGTCACACAATGG -CCAACATCGTCTGTCACAATGAGG -CCAACATCGTCTGTCACAAATGGG -CCAACATCGTCTGTCACATCCTGA -CCAACATCGTCTGTCACATAGCGA -CCAACATCGTCTGTCACACACAGA -CCAACATCGTCTGTCACAGCAAGA -CCAACATCGTCTGTCACAGGTTGA -CCAACATCGTCTGTCACATCCGAT -CCAACATCGTCTGTCACATGGCAT -CCAACATCGTCTGTCACACGAGAT -CCAACATCGTCTGTCACATACCAC -CCAACATCGTCTGTCACACAGAAC -CCAACATCGTCTGTCACAGTCTAC -CCAACATCGTCTGTCACAACGTAC -CCAACATCGTCTGTCACAAGTGAC -CCAACATCGTCTGTCACACTGTAG -CCAACATCGTCTGTCACACCTAAG -CCAACATCGTCTGTCACAGTTCAG -CCAACATCGTCTGTCACAGCATAG -CCAACATCGTCTGTCACAGACAAG -CCAACATCGTCTGTCACAAAGCAG -CCAACATCGTCTGTCACACGTCAA -CCAACATCGTCTGTCACAGCTGAA -CCAACATCGTCTGTCACAAGTACG -CCAACATCGTCTGTCACAATCCGA -CCAACATCGTCTGTCACAATGGGA -CCAACATCGTCTGTCACAGTGCAA -CCAACATCGTCTGTCACAGAGGAA -CCAACATCGTCTGTCACACAGGTA -CCAACATCGTCTGTCACAGACTCT -CCAACATCGTCTGTCACAAGTCCT -CCAACATCGTCTGTCACATAAGCC -CCAACATCGTCTGTCACAATAGCC -CCAACATCGTCTGTCACATAACCG -CCAACATCGTCTGTCACAATGCCA -CCAACATCGTCTCTGTTGGGAAAC -CCAACATCGTCTCTGTTGAACACC -CCAACATCGTCTCTGTTGATCGAG -CCAACATCGTCTCTGTTGCTCCTT -CCAACATCGTCTCTGTTGCCTGTT -CCAACATCGTCTCTGTTGCGGTTT -CCAACATCGTCTCTGTTGGTGGTT -CCAACATCGTCTCTGTTGGCCTTT -CCAACATCGTCTCTGTTGGGTCTT -CCAACATCGTCTCTGTTGACGCTT -CCAACATCGTCTCTGTTGAGCGTT -CCAACATCGTCTCTGTTGTTCGTC -CCAACATCGTCTCTGTTGTCTCTC -CCAACATCGTCTCTGTTGTGGATC -CCAACATCGTCTCTGTTGCACTTC -CCAACATCGTCTCTGTTGGTACTC -CCAACATCGTCTCTGTTGGATGTC -CCAACATCGTCTCTGTTGACAGTC -CCAACATCGTCTCTGTTGTTGCTG -CCAACATCGTCTCTGTTGTCCATG -CCAACATCGTCTCTGTTGTGTGTG -CCAACATCGTCTCTGTTGCTAGTG -CCAACATCGTCTCTGTTGCATCTG -CCAACATCGTCTCTGTTGGAGTTG -CCAACATCGTCTCTGTTGAGACTG -CCAACATCGTCTCTGTTGTCGGTA -CCAACATCGTCTCTGTTGTGCCTA -CCAACATCGTCTCTGTTGCCACTA -CCAACATCGTCTCTGTTGGGAGTA -CCAACATCGTCTCTGTTGTCGTCT -CCAACATCGTCTCTGTTGTGCACT -CCAACATCGTCTCTGTTGCTGACT -CCAACATCGTCTCTGTTGCAACCT -CCAACATCGTCTCTGTTGGCTACT -CCAACATCGTCTCTGTTGGGATCT -CCAACATCGTCTCTGTTGAAGGCT -CCAACATCGTCTCTGTTGTCAACC -CCAACATCGTCTCTGTTGTGTTCC -CCAACATCGTCTCTGTTGATTCCC -CCAACATCGTCTCTGTTGTTCTCG -CCAACATCGTCTCTGTTGTAGACG -CCAACATCGTCTCTGTTGGTAACG -CCAACATCGTCTCTGTTGACTTCG -CCAACATCGTCTCTGTTGTACGCA -CCAACATCGTCTCTGTTGCTTGCA -CCAACATCGTCTCTGTTGCGAACA -CCAACATCGTCTCTGTTGCAGTCA -CCAACATCGTCTCTGTTGGATCCA -CCAACATCGTCTCTGTTGACGACA -CCAACATCGTCTCTGTTGAGCTCA -CCAACATCGTCTCTGTTGTCACGT -CCAACATCGTCTCTGTTGCGTAGT -CCAACATCGTCTCTGTTGGTCAGT -CCAACATCGTCTCTGTTGGAAGGT -CCAACATCGTCTCTGTTGAACCGT -CCAACATCGTCTCTGTTGTTGTGC -CCAACATCGTCTCTGTTGCTAAGC -CCAACATCGTCTCTGTTGACTAGC -CCAACATCGTCTCTGTTGAGATGC -CCAACATCGTCTCTGTTGTGAAGG -CCAACATCGTCTCTGTTGCAATGG -CCAACATCGTCTCTGTTGATGAGG -CCAACATCGTCTCTGTTGAATGGG -CCAACATCGTCTCTGTTGTCCTGA -CCAACATCGTCTCTGTTGTAGCGA -CCAACATCGTCTCTGTTGCACAGA -CCAACATCGTCTCTGTTGGCAAGA -CCAACATCGTCTCTGTTGGGTTGA -CCAACATCGTCTCTGTTGTCCGAT -CCAACATCGTCTCTGTTGTGGCAT -CCAACATCGTCTCTGTTGCGAGAT -CCAACATCGTCTCTGTTGTACCAC -CCAACATCGTCTCTGTTGCAGAAC -CCAACATCGTCTCTGTTGGTCTAC -CCAACATCGTCTCTGTTGACGTAC -CCAACATCGTCTCTGTTGAGTGAC -CCAACATCGTCTCTGTTGCTGTAG -CCAACATCGTCTCTGTTGCCTAAG -CCAACATCGTCTCTGTTGGTTCAG -CCAACATCGTCTCTGTTGGCATAG -CCAACATCGTCTCTGTTGGACAAG -CCAACATCGTCTCTGTTGAAGCAG -CCAACATCGTCTCTGTTGCGTCAA -CCAACATCGTCTCTGTTGGCTGAA -CCAACATCGTCTCTGTTGAGTACG -CCAACATCGTCTCTGTTGATCCGA -CCAACATCGTCTCTGTTGATGGGA -CCAACATCGTCTCTGTTGGTGCAA -CCAACATCGTCTCTGTTGGAGGAA -CCAACATCGTCTCTGTTGCAGGTA -CCAACATCGTCTCTGTTGGACTCT -CCAACATCGTCTCTGTTGAGTCCT -CCAACATCGTCTCTGTTGTAAGCC -CCAACATCGTCTCTGTTGATAGCC -CCAACATCGTCTCTGTTGTAACCG -CCAACATCGTCTCTGTTGATGCCA -CCAACATCGTCTATGTCCGGAAAC -CCAACATCGTCTATGTCCAACACC -CCAACATCGTCTATGTCCATCGAG -CCAACATCGTCTATGTCCCTCCTT -CCAACATCGTCTATGTCCCCTGTT -CCAACATCGTCTATGTCCCGGTTT -CCAACATCGTCTATGTCCGTGGTT -CCAACATCGTCTATGTCCGCCTTT -CCAACATCGTCTATGTCCGGTCTT -CCAACATCGTCTATGTCCACGCTT -CCAACATCGTCTATGTCCAGCGTT -CCAACATCGTCTATGTCCTTCGTC -CCAACATCGTCTATGTCCTCTCTC -CCAACATCGTCTATGTCCTGGATC -CCAACATCGTCTATGTCCCACTTC -CCAACATCGTCTATGTCCGTACTC -CCAACATCGTCTATGTCCGATGTC -CCAACATCGTCTATGTCCACAGTC -CCAACATCGTCTATGTCCTTGCTG -CCAACATCGTCTATGTCCTCCATG -CCAACATCGTCTATGTCCTGTGTG -CCAACATCGTCTATGTCCCTAGTG -CCAACATCGTCTATGTCCCATCTG -CCAACATCGTCTATGTCCGAGTTG -CCAACATCGTCTATGTCCAGACTG -CCAACATCGTCTATGTCCTCGGTA -CCAACATCGTCTATGTCCTGCCTA -CCAACATCGTCTATGTCCCCACTA -CCAACATCGTCTATGTCCGGAGTA -CCAACATCGTCTATGTCCTCGTCT -CCAACATCGTCTATGTCCTGCACT -CCAACATCGTCTATGTCCCTGACT -CCAACATCGTCTATGTCCCAACCT -CCAACATCGTCTATGTCCGCTACT -CCAACATCGTCTATGTCCGGATCT -CCAACATCGTCTATGTCCAAGGCT -CCAACATCGTCTATGTCCTCAACC -CCAACATCGTCTATGTCCTGTTCC -CCAACATCGTCTATGTCCATTCCC -CCAACATCGTCTATGTCCTTCTCG -CCAACATCGTCTATGTCCTAGACG -CCAACATCGTCTATGTCCGTAACG -CCAACATCGTCTATGTCCACTTCG -CCAACATCGTCTATGTCCTACGCA -CCAACATCGTCTATGTCCCTTGCA -CCAACATCGTCTATGTCCCGAACA -CCAACATCGTCTATGTCCCAGTCA -CCAACATCGTCTATGTCCGATCCA -CCAACATCGTCTATGTCCACGACA -CCAACATCGTCTATGTCCAGCTCA -CCAACATCGTCTATGTCCTCACGT -CCAACATCGTCTATGTCCCGTAGT -CCAACATCGTCTATGTCCGTCAGT -CCAACATCGTCTATGTCCGAAGGT -CCAACATCGTCTATGTCCAACCGT -CCAACATCGTCTATGTCCTTGTGC -CCAACATCGTCTATGTCCCTAAGC -CCAACATCGTCTATGTCCACTAGC -CCAACATCGTCTATGTCCAGATGC -CCAACATCGTCTATGTCCTGAAGG -CCAACATCGTCTATGTCCCAATGG -CCAACATCGTCTATGTCCATGAGG -CCAACATCGTCTATGTCCAATGGG -CCAACATCGTCTATGTCCTCCTGA -CCAACATCGTCTATGTCCTAGCGA -CCAACATCGTCTATGTCCCACAGA -CCAACATCGTCTATGTCCGCAAGA -CCAACATCGTCTATGTCCGGTTGA -CCAACATCGTCTATGTCCTCCGAT -CCAACATCGTCTATGTCCTGGCAT -CCAACATCGTCTATGTCCCGAGAT -CCAACATCGTCTATGTCCTACCAC -CCAACATCGTCTATGTCCCAGAAC -CCAACATCGTCTATGTCCGTCTAC -CCAACATCGTCTATGTCCACGTAC -CCAACATCGTCTATGTCCAGTGAC -CCAACATCGTCTATGTCCCTGTAG -CCAACATCGTCTATGTCCCCTAAG -CCAACATCGTCTATGTCCGTTCAG -CCAACATCGTCTATGTCCGCATAG -CCAACATCGTCTATGTCCGACAAG -CCAACATCGTCTATGTCCAAGCAG -CCAACATCGTCTATGTCCCGTCAA -CCAACATCGTCTATGTCCGCTGAA -CCAACATCGTCTATGTCCAGTACG -CCAACATCGTCTATGTCCATCCGA -CCAACATCGTCTATGTCCATGGGA -CCAACATCGTCTATGTCCGTGCAA -CCAACATCGTCTATGTCCGAGGAA -CCAACATCGTCTATGTCCCAGGTA -CCAACATCGTCTATGTCCGACTCT -CCAACATCGTCTATGTCCAGTCCT -CCAACATCGTCTATGTCCTAAGCC -CCAACATCGTCTATGTCCATAGCC -CCAACATCGTCTATGTCCTAACCG -CCAACATCGTCTATGTCCATGCCA -CCAACATCGTCTGTGTGTGGAAAC -CCAACATCGTCTGTGTGTAACACC -CCAACATCGTCTGTGTGTATCGAG -CCAACATCGTCTGTGTGTCTCCTT -CCAACATCGTCTGTGTGTCCTGTT -CCAACATCGTCTGTGTGTCGGTTT -CCAACATCGTCTGTGTGTGTGGTT -CCAACATCGTCTGTGTGTGCCTTT -CCAACATCGTCTGTGTGTGGTCTT -CCAACATCGTCTGTGTGTACGCTT -CCAACATCGTCTGTGTGTAGCGTT -CCAACATCGTCTGTGTGTTTCGTC -CCAACATCGTCTGTGTGTTCTCTC -CCAACATCGTCTGTGTGTTGGATC -CCAACATCGTCTGTGTGTCACTTC -CCAACATCGTCTGTGTGTGTACTC -CCAACATCGTCTGTGTGTGATGTC -CCAACATCGTCTGTGTGTACAGTC -CCAACATCGTCTGTGTGTTTGCTG -CCAACATCGTCTGTGTGTTCCATG -CCAACATCGTCTGTGTGTTGTGTG -CCAACATCGTCTGTGTGTCTAGTG -CCAACATCGTCTGTGTGTCATCTG -CCAACATCGTCTGTGTGTGAGTTG -CCAACATCGTCTGTGTGTAGACTG -CCAACATCGTCTGTGTGTTCGGTA -CCAACATCGTCTGTGTGTTGCCTA -CCAACATCGTCTGTGTGTCCACTA -CCAACATCGTCTGTGTGTGGAGTA -CCAACATCGTCTGTGTGTTCGTCT -CCAACATCGTCTGTGTGTTGCACT -CCAACATCGTCTGTGTGTCTGACT -CCAACATCGTCTGTGTGTCAACCT -CCAACATCGTCTGTGTGTGCTACT -CCAACATCGTCTGTGTGTGGATCT -CCAACATCGTCTGTGTGTAAGGCT -CCAACATCGTCTGTGTGTTCAACC -CCAACATCGTCTGTGTGTTGTTCC -CCAACATCGTCTGTGTGTATTCCC -CCAACATCGTCTGTGTGTTTCTCG -CCAACATCGTCTGTGTGTTAGACG -CCAACATCGTCTGTGTGTGTAACG -CCAACATCGTCTGTGTGTACTTCG -CCAACATCGTCTGTGTGTTACGCA -CCAACATCGTCTGTGTGTCTTGCA -CCAACATCGTCTGTGTGTCGAACA -CCAACATCGTCTGTGTGTCAGTCA -CCAACATCGTCTGTGTGTGATCCA -CCAACATCGTCTGTGTGTACGACA -CCAACATCGTCTGTGTGTAGCTCA -CCAACATCGTCTGTGTGTTCACGT -CCAACATCGTCTGTGTGTCGTAGT -CCAACATCGTCTGTGTGTGTCAGT -CCAACATCGTCTGTGTGTGAAGGT -CCAACATCGTCTGTGTGTAACCGT -CCAACATCGTCTGTGTGTTTGTGC -CCAACATCGTCTGTGTGTCTAAGC -CCAACATCGTCTGTGTGTACTAGC -CCAACATCGTCTGTGTGTAGATGC -CCAACATCGTCTGTGTGTTGAAGG -CCAACATCGTCTGTGTGTCAATGG -CCAACATCGTCTGTGTGTATGAGG -CCAACATCGTCTGTGTGTAATGGG -CCAACATCGTCTGTGTGTTCCTGA -CCAACATCGTCTGTGTGTTAGCGA -CCAACATCGTCTGTGTGTCACAGA -CCAACATCGTCTGTGTGTGCAAGA -CCAACATCGTCTGTGTGTGGTTGA -CCAACATCGTCTGTGTGTTCCGAT -CCAACATCGTCTGTGTGTTGGCAT -CCAACATCGTCTGTGTGTCGAGAT -CCAACATCGTCTGTGTGTTACCAC -CCAACATCGTCTGTGTGTCAGAAC -CCAACATCGTCTGTGTGTGTCTAC -CCAACATCGTCTGTGTGTACGTAC -CCAACATCGTCTGTGTGTAGTGAC -CCAACATCGTCTGTGTGTCTGTAG -CCAACATCGTCTGTGTGTCCTAAG -CCAACATCGTCTGTGTGTGTTCAG -CCAACATCGTCTGTGTGTGCATAG -CCAACATCGTCTGTGTGTGACAAG -CCAACATCGTCTGTGTGTAAGCAG -CCAACATCGTCTGTGTGTCGTCAA -CCAACATCGTCTGTGTGTGCTGAA -CCAACATCGTCTGTGTGTAGTACG -CCAACATCGTCTGTGTGTATCCGA -CCAACATCGTCTGTGTGTATGGGA -CCAACATCGTCTGTGTGTGTGCAA -CCAACATCGTCTGTGTGTGAGGAA -CCAACATCGTCTGTGTGTCAGGTA -CCAACATCGTCTGTGTGTGACTCT -CCAACATCGTCTGTGTGTAGTCCT -CCAACATCGTCTGTGTGTTAAGCC -CCAACATCGTCTGTGTGTATAGCC -CCAACATCGTCTGTGTGTTAACCG -CCAACATCGTCTGTGTGTATGCCA -CCAACATCGTCTGTGCTAGGAAAC -CCAACATCGTCTGTGCTAAACACC -CCAACATCGTCTGTGCTAATCGAG -CCAACATCGTCTGTGCTACTCCTT -CCAACATCGTCTGTGCTACCTGTT -CCAACATCGTCTGTGCTACGGTTT -CCAACATCGTCTGTGCTAGTGGTT -CCAACATCGTCTGTGCTAGCCTTT -CCAACATCGTCTGTGCTAGGTCTT -CCAACATCGTCTGTGCTAACGCTT -CCAACATCGTCTGTGCTAAGCGTT -CCAACATCGTCTGTGCTATTCGTC -CCAACATCGTCTGTGCTATCTCTC -CCAACATCGTCTGTGCTATGGATC -CCAACATCGTCTGTGCTACACTTC -CCAACATCGTCTGTGCTAGTACTC -CCAACATCGTCTGTGCTAGATGTC -CCAACATCGTCTGTGCTAACAGTC -CCAACATCGTCTGTGCTATTGCTG -CCAACATCGTCTGTGCTATCCATG -CCAACATCGTCTGTGCTATGTGTG -CCAACATCGTCTGTGCTACTAGTG -CCAACATCGTCTGTGCTACATCTG -CCAACATCGTCTGTGCTAGAGTTG -CCAACATCGTCTGTGCTAAGACTG -CCAACATCGTCTGTGCTATCGGTA -CCAACATCGTCTGTGCTATGCCTA -CCAACATCGTCTGTGCTACCACTA -CCAACATCGTCTGTGCTAGGAGTA -CCAACATCGTCTGTGCTATCGTCT -CCAACATCGTCTGTGCTATGCACT -CCAACATCGTCTGTGCTACTGACT -CCAACATCGTCTGTGCTACAACCT -CCAACATCGTCTGTGCTAGCTACT -CCAACATCGTCTGTGCTAGGATCT -CCAACATCGTCTGTGCTAAAGGCT -CCAACATCGTCTGTGCTATCAACC -CCAACATCGTCTGTGCTATGTTCC -CCAACATCGTCTGTGCTAATTCCC -CCAACATCGTCTGTGCTATTCTCG -CCAACATCGTCTGTGCTATAGACG -CCAACATCGTCTGTGCTAGTAACG -CCAACATCGTCTGTGCTAACTTCG -CCAACATCGTCTGTGCTATACGCA -CCAACATCGTCTGTGCTACTTGCA -CCAACATCGTCTGTGCTACGAACA -CCAACATCGTCTGTGCTACAGTCA -CCAACATCGTCTGTGCTAGATCCA -CCAACATCGTCTGTGCTAACGACA -CCAACATCGTCTGTGCTAAGCTCA -CCAACATCGTCTGTGCTATCACGT -CCAACATCGTCTGTGCTACGTAGT -CCAACATCGTCTGTGCTAGTCAGT -CCAACATCGTCTGTGCTAGAAGGT -CCAACATCGTCTGTGCTAAACCGT -CCAACATCGTCTGTGCTATTGTGC -CCAACATCGTCTGTGCTACTAAGC -CCAACATCGTCTGTGCTAACTAGC -CCAACATCGTCTGTGCTAAGATGC -CCAACATCGTCTGTGCTATGAAGG -CCAACATCGTCTGTGCTACAATGG -CCAACATCGTCTGTGCTAATGAGG -CCAACATCGTCTGTGCTAAATGGG -CCAACATCGTCTGTGCTATCCTGA -CCAACATCGTCTGTGCTATAGCGA -CCAACATCGTCTGTGCTACACAGA -CCAACATCGTCTGTGCTAGCAAGA -CCAACATCGTCTGTGCTAGGTTGA -CCAACATCGTCTGTGCTATCCGAT -CCAACATCGTCTGTGCTATGGCAT -CCAACATCGTCTGTGCTACGAGAT -CCAACATCGTCTGTGCTATACCAC -CCAACATCGTCTGTGCTACAGAAC -CCAACATCGTCTGTGCTAGTCTAC -CCAACATCGTCTGTGCTAACGTAC -CCAACATCGTCTGTGCTAAGTGAC -CCAACATCGTCTGTGCTACTGTAG -CCAACATCGTCTGTGCTACCTAAG -CCAACATCGTCTGTGCTAGTTCAG -CCAACATCGTCTGTGCTAGCATAG -CCAACATCGTCTGTGCTAGACAAG -CCAACATCGTCTGTGCTAAAGCAG -CCAACATCGTCTGTGCTACGTCAA -CCAACATCGTCTGTGCTAGCTGAA -CCAACATCGTCTGTGCTAAGTACG -CCAACATCGTCTGTGCTAATCCGA -CCAACATCGTCTGTGCTAATGGGA -CCAACATCGTCTGTGCTAGTGCAA -CCAACATCGTCTGTGCTAGAGGAA -CCAACATCGTCTGTGCTACAGGTA -CCAACATCGTCTGTGCTAGACTCT -CCAACATCGTCTGTGCTAAGTCCT -CCAACATCGTCTGTGCTATAAGCC -CCAACATCGTCTGTGCTAATAGCC -CCAACATCGTCTGTGCTATAACCG -CCAACATCGTCTGTGCTAATGCCA -CCAACATCGTCTCTGCATGGAAAC -CCAACATCGTCTCTGCATAACACC -CCAACATCGTCTCTGCATATCGAG -CCAACATCGTCTCTGCATCTCCTT -CCAACATCGTCTCTGCATCCTGTT -CCAACATCGTCTCTGCATCGGTTT -CCAACATCGTCTCTGCATGTGGTT -CCAACATCGTCTCTGCATGCCTTT -CCAACATCGTCTCTGCATGGTCTT -CCAACATCGTCTCTGCATACGCTT -CCAACATCGTCTCTGCATAGCGTT -CCAACATCGTCTCTGCATTTCGTC -CCAACATCGTCTCTGCATTCTCTC -CCAACATCGTCTCTGCATTGGATC -CCAACATCGTCTCTGCATCACTTC -CCAACATCGTCTCTGCATGTACTC -CCAACATCGTCTCTGCATGATGTC -CCAACATCGTCTCTGCATACAGTC -CCAACATCGTCTCTGCATTTGCTG -CCAACATCGTCTCTGCATTCCATG -CCAACATCGTCTCTGCATTGTGTG -CCAACATCGTCTCTGCATCTAGTG -CCAACATCGTCTCTGCATCATCTG -CCAACATCGTCTCTGCATGAGTTG -CCAACATCGTCTCTGCATAGACTG -CCAACATCGTCTCTGCATTCGGTA -CCAACATCGTCTCTGCATTGCCTA -CCAACATCGTCTCTGCATCCACTA -CCAACATCGTCTCTGCATGGAGTA -CCAACATCGTCTCTGCATTCGTCT -CCAACATCGTCTCTGCATTGCACT -CCAACATCGTCTCTGCATCTGACT -CCAACATCGTCTCTGCATCAACCT -CCAACATCGTCTCTGCATGCTACT -CCAACATCGTCTCTGCATGGATCT -CCAACATCGTCTCTGCATAAGGCT -CCAACATCGTCTCTGCATTCAACC -CCAACATCGTCTCTGCATTGTTCC -CCAACATCGTCTCTGCATATTCCC -CCAACATCGTCTCTGCATTTCTCG -CCAACATCGTCTCTGCATTAGACG -CCAACATCGTCTCTGCATGTAACG -CCAACATCGTCTCTGCATACTTCG -CCAACATCGTCTCTGCATTACGCA -CCAACATCGTCTCTGCATCTTGCA -CCAACATCGTCTCTGCATCGAACA -CCAACATCGTCTCTGCATCAGTCA -CCAACATCGTCTCTGCATGATCCA -CCAACATCGTCTCTGCATACGACA -CCAACATCGTCTCTGCATAGCTCA -CCAACATCGTCTCTGCATTCACGT -CCAACATCGTCTCTGCATCGTAGT -CCAACATCGTCTCTGCATGTCAGT -CCAACATCGTCTCTGCATGAAGGT -CCAACATCGTCTCTGCATAACCGT -CCAACATCGTCTCTGCATTTGTGC -CCAACATCGTCTCTGCATCTAAGC -CCAACATCGTCTCTGCATACTAGC -CCAACATCGTCTCTGCATAGATGC -CCAACATCGTCTCTGCATTGAAGG -CCAACATCGTCTCTGCATCAATGG -CCAACATCGTCTCTGCATATGAGG -CCAACATCGTCTCTGCATAATGGG -CCAACATCGTCTCTGCATTCCTGA -CCAACATCGTCTCTGCATTAGCGA -CCAACATCGTCTCTGCATCACAGA -CCAACATCGTCTCTGCATGCAAGA -CCAACATCGTCTCTGCATGGTTGA -CCAACATCGTCTCTGCATTCCGAT -CCAACATCGTCTCTGCATTGGCAT -CCAACATCGTCTCTGCATCGAGAT -CCAACATCGTCTCTGCATTACCAC -CCAACATCGTCTCTGCATCAGAAC -CCAACATCGTCTCTGCATGTCTAC -CCAACATCGTCTCTGCATACGTAC -CCAACATCGTCTCTGCATAGTGAC -CCAACATCGTCTCTGCATCTGTAG -CCAACATCGTCTCTGCATCCTAAG -CCAACATCGTCTCTGCATGTTCAG -CCAACATCGTCTCTGCATGCATAG -CCAACATCGTCTCTGCATGACAAG -CCAACATCGTCTCTGCATAAGCAG -CCAACATCGTCTCTGCATCGTCAA -CCAACATCGTCTCTGCATGCTGAA -CCAACATCGTCTCTGCATAGTACG -CCAACATCGTCTCTGCATATCCGA -CCAACATCGTCTCTGCATATGGGA -CCAACATCGTCTCTGCATGTGCAA -CCAACATCGTCTCTGCATGAGGAA -CCAACATCGTCTCTGCATCAGGTA -CCAACATCGTCTCTGCATGACTCT -CCAACATCGTCTCTGCATAGTCCT -CCAACATCGTCTCTGCATTAAGCC -CCAACATCGTCTCTGCATATAGCC -CCAACATCGTCTCTGCATTAACCG -CCAACATCGTCTCTGCATATGCCA -CCAACATCGTCTTTGGAGGGAAAC -CCAACATCGTCTTTGGAGAACACC -CCAACATCGTCTTTGGAGATCGAG -CCAACATCGTCTTTGGAGCTCCTT -CCAACATCGTCTTTGGAGCCTGTT -CCAACATCGTCTTTGGAGCGGTTT -CCAACATCGTCTTTGGAGGTGGTT -CCAACATCGTCTTTGGAGGCCTTT -CCAACATCGTCTTTGGAGGGTCTT -CCAACATCGTCTTTGGAGACGCTT -CCAACATCGTCTTTGGAGAGCGTT -CCAACATCGTCTTTGGAGTTCGTC -CCAACATCGTCTTTGGAGTCTCTC -CCAACATCGTCTTTGGAGTGGATC -CCAACATCGTCTTTGGAGCACTTC -CCAACATCGTCTTTGGAGGTACTC -CCAACATCGTCTTTGGAGGATGTC -CCAACATCGTCTTTGGAGACAGTC -CCAACATCGTCTTTGGAGTTGCTG -CCAACATCGTCTTTGGAGTCCATG -CCAACATCGTCTTTGGAGTGTGTG -CCAACATCGTCTTTGGAGCTAGTG -CCAACATCGTCTTTGGAGCATCTG -CCAACATCGTCTTTGGAGGAGTTG -CCAACATCGTCTTTGGAGAGACTG -CCAACATCGTCTTTGGAGTCGGTA -CCAACATCGTCTTTGGAGTGCCTA -CCAACATCGTCTTTGGAGCCACTA -CCAACATCGTCTTTGGAGGGAGTA -CCAACATCGTCTTTGGAGTCGTCT -CCAACATCGTCTTTGGAGTGCACT -CCAACATCGTCTTTGGAGCTGACT -CCAACATCGTCTTTGGAGCAACCT -CCAACATCGTCTTTGGAGGCTACT -CCAACATCGTCTTTGGAGGGATCT -CCAACATCGTCTTTGGAGAAGGCT -CCAACATCGTCTTTGGAGTCAACC -CCAACATCGTCTTTGGAGTGTTCC -CCAACATCGTCTTTGGAGATTCCC -CCAACATCGTCTTTGGAGTTCTCG -CCAACATCGTCTTTGGAGTAGACG -CCAACATCGTCTTTGGAGGTAACG -CCAACATCGTCTTTGGAGACTTCG -CCAACATCGTCTTTGGAGTACGCA -CCAACATCGTCTTTGGAGCTTGCA -CCAACATCGTCTTTGGAGCGAACA -CCAACATCGTCTTTGGAGCAGTCA -CCAACATCGTCTTTGGAGGATCCA -CCAACATCGTCTTTGGAGACGACA -CCAACATCGTCTTTGGAGAGCTCA -CCAACATCGTCTTTGGAGTCACGT -CCAACATCGTCTTTGGAGCGTAGT -CCAACATCGTCTTTGGAGGTCAGT -CCAACATCGTCTTTGGAGGAAGGT -CCAACATCGTCTTTGGAGAACCGT -CCAACATCGTCTTTGGAGTTGTGC -CCAACATCGTCTTTGGAGCTAAGC -CCAACATCGTCTTTGGAGACTAGC -CCAACATCGTCTTTGGAGAGATGC -CCAACATCGTCTTTGGAGTGAAGG -CCAACATCGTCTTTGGAGCAATGG -CCAACATCGTCTTTGGAGATGAGG -CCAACATCGTCTTTGGAGAATGGG -CCAACATCGTCTTTGGAGTCCTGA -CCAACATCGTCTTTGGAGTAGCGA -CCAACATCGTCTTTGGAGCACAGA -CCAACATCGTCTTTGGAGGCAAGA -CCAACATCGTCTTTGGAGGGTTGA -CCAACATCGTCTTTGGAGTCCGAT -CCAACATCGTCTTTGGAGTGGCAT -CCAACATCGTCTTTGGAGCGAGAT -CCAACATCGTCTTTGGAGTACCAC -CCAACATCGTCTTTGGAGCAGAAC -CCAACATCGTCTTTGGAGGTCTAC -CCAACATCGTCTTTGGAGACGTAC -CCAACATCGTCTTTGGAGAGTGAC -CCAACATCGTCTTTGGAGCTGTAG -CCAACATCGTCTTTGGAGCCTAAG -CCAACATCGTCTTTGGAGGTTCAG -CCAACATCGTCTTTGGAGGCATAG -CCAACATCGTCTTTGGAGGACAAG -CCAACATCGTCTTTGGAGAAGCAG -CCAACATCGTCTTTGGAGCGTCAA -CCAACATCGTCTTTGGAGGCTGAA -CCAACATCGTCTTTGGAGAGTACG -CCAACATCGTCTTTGGAGATCCGA -CCAACATCGTCTTTGGAGATGGGA -CCAACATCGTCTTTGGAGGTGCAA -CCAACATCGTCTTTGGAGGAGGAA -CCAACATCGTCTTTGGAGCAGGTA -CCAACATCGTCTTTGGAGGACTCT -CCAACATCGTCTTTGGAGAGTCCT -CCAACATCGTCTTTGGAGTAAGCC -CCAACATCGTCTTTGGAGATAGCC -CCAACATCGTCTTTGGAGTAACCG -CCAACATCGTCTTTGGAGATGCCA -CCAACATCGTCTCTGAGAGGAAAC -CCAACATCGTCTCTGAGAAACACC -CCAACATCGTCTCTGAGAATCGAG -CCAACATCGTCTCTGAGACTCCTT -CCAACATCGTCTCTGAGACCTGTT -CCAACATCGTCTCTGAGACGGTTT -CCAACATCGTCTCTGAGAGTGGTT -CCAACATCGTCTCTGAGAGCCTTT -CCAACATCGTCTCTGAGAGGTCTT -CCAACATCGTCTCTGAGAACGCTT -CCAACATCGTCTCTGAGAAGCGTT -CCAACATCGTCTCTGAGATTCGTC -CCAACATCGTCTCTGAGATCTCTC -CCAACATCGTCTCTGAGATGGATC -CCAACATCGTCTCTGAGACACTTC -CCAACATCGTCTCTGAGAGTACTC -CCAACATCGTCTCTGAGAGATGTC -CCAACATCGTCTCTGAGAACAGTC -CCAACATCGTCTCTGAGATTGCTG -CCAACATCGTCTCTGAGATCCATG -CCAACATCGTCTCTGAGATGTGTG -CCAACATCGTCTCTGAGACTAGTG -CCAACATCGTCTCTGAGACATCTG -CCAACATCGTCTCTGAGAGAGTTG -CCAACATCGTCTCTGAGAAGACTG -CCAACATCGTCTCTGAGATCGGTA -CCAACATCGTCTCTGAGATGCCTA -CCAACATCGTCTCTGAGACCACTA -CCAACATCGTCTCTGAGAGGAGTA -CCAACATCGTCTCTGAGATCGTCT -CCAACATCGTCTCTGAGATGCACT -CCAACATCGTCTCTGAGACTGACT -CCAACATCGTCTCTGAGACAACCT -CCAACATCGTCTCTGAGAGCTACT -CCAACATCGTCTCTGAGAGGATCT -CCAACATCGTCTCTGAGAAAGGCT -CCAACATCGTCTCTGAGATCAACC -CCAACATCGTCTCTGAGATGTTCC -CCAACATCGTCTCTGAGAATTCCC -CCAACATCGTCTCTGAGATTCTCG -CCAACATCGTCTCTGAGATAGACG -CCAACATCGTCTCTGAGAGTAACG -CCAACATCGTCTCTGAGAACTTCG -CCAACATCGTCTCTGAGATACGCA -CCAACATCGTCTCTGAGACTTGCA -CCAACATCGTCTCTGAGACGAACA -CCAACATCGTCTCTGAGACAGTCA -CCAACATCGTCTCTGAGAGATCCA -CCAACATCGTCTCTGAGAACGACA -CCAACATCGTCTCTGAGAAGCTCA -CCAACATCGTCTCTGAGATCACGT -CCAACATCGTCTCTGAGACGTAGT -CCAACATCGTCTCTGAGAGTCAGT -CCAACATCGTCTCTGAGAGAAGGT -CCAACATCGTCTCTGAGAAACCGT -CCAACATCGTCTCTGAGATTGTGC -CCAACATCGTCTCTGAGACTAAGC -CCAACATCGTCTCTGAGAACTAGC -CCAACATCGTCTCTGAGAAGATGC -CCAACATCGTCTCTGAGATGAAGG -CCAACATCGTCTCTGAGACAATGG -CCAACATCGTCTCTGAGAATGAGG -CCAACATCGTCTCTGAGAAATGGG -CCAACATCGTCTCTGAGATCCTGA -CCAACATCGTCTCTGAGATAGCGA -CCAACATCGTCTCTGAGACACAGA -CCAACATCGTCTCTGAGAGCAAGA -CCAACATCGTCTCTGAGAGGTTGA -CCAACATCGTCTCTGAGATCCGAT -CCAACATCGTCTCTGAGATGGCAT -CCAACATCGTCTCTGAGACGAGAT -CCAACATCGTCTCTGAGATACCAC -CCAACATCGTCTCTGAGACAGAAC -CCAACATCGTCTCTGAGAGTCTAC -CCAACATCGTCTCTGAGAACGTAC -CCAACATCGTCTCTGAGAAGTGAC -CCAACATCGTCTCTGAGACTGTAG -CCAACATCGTCTCTGAGACCTAAG -CCAACATCGTCTCTGAGAGTTCAG -CCAACATCGTCTCTGAGAGCATAG -CCAACATCGTCTCTGAGAGACAAG -CCAACATCGTCTCTGAGAAAGCAG -CCAACATCGTCTCTGAGACGTCAA -CCAACATCGTCTCTGAGAGCTGAA -CCAACATCGTCTCTGAGAAGTACG -CCAACATCGTCTCTGAGAATCCGA -CCAACATCGTCTCTGAGAATGGGA -CCAACATCGTCTCTGAGAGTGCAA -CCAACATCGTCTCTGAGAGAGGAA -CCAACATCGTCTCTGAGACAGGTA -CCAACATCGTCTCTGAGAGACTCT -CCAACATCGTCTCTGAGAAGTCCT -CCAACATCGTCTCTGAGATAAGCC -CCAACATCGTCTCTGAGAATAGCC -CCAACATCGTCTCTGAGATAACCG -CCAACATCGTCTCTGAGAATGCCA -CCAACATCGTCTGTATCGGGAAAC -CCAACATCGTCTGTATCGAACACC -CCAACATCGTCTGTATCGATCGAG -CCAACATCGTCTGTATCGCTCCTT -CCAACATCGTCTGTATCGCCTGTT -CCAACATCGTCTGTATCGCGGTTT -CCAACATCGTCTGTATCGGTGGTT -CCAACATCGTCTGTATCGGCCTTT -CCAACATCGTCTGTATCGGGTCTT -CCAACATCGTCTGTATCGACGCTT -CCAACATCGTCTGTATCGAGCGTT -CCAACATCGTCTGTATCGTTCGTC -CCAACATCGTCTGTATCGTCTCTC -CCAACATCGTCTGTATCGTGGATC -CCAACATCGTCTGTATCGCACTTC -CCAACATCGTCTGTATCGGTACTC -CCAACATCGTCTGTATCGGATGTC -CCAACATCGTCTGTATCGACAGTC -CCAACATCGTCTGTATCGTTGCTG -CCAACATCGTCTGTATCGTCCATG -CCAACATCGTCTGTATCGTGTGTG -CCAACATCGTCTGTATCGCTAGTG -CCAACATCGTCTGTATCGCATCTG -CCAACATCGTCTGTATCGGAGTTG -CCAACATCGTCTGTATCGAGACTG -CCAACATCGTCTGTATCGTCGGTA -CCAACATCGTCTGTATCGTGCCTA -CCAACATCGTCTGTATCGCCACTA -CCAACATCGTCTGTATCGGGAGTA -CCAACATCGTCTGTATCGTCGTCT -CCAACATCGTCTGTATCGTGCACT -CCAACATCGTCTGTATCGCTGACT -CCAACATCGTCTGTATCGCAACCT -CCAACATCGTCTGTATCGGCTACT -CCAACATCGTCTGTATCGGGATCT -CCAACATCGTCTGTATCGAAGGCT -CCAACATCGTCTGTATCGTCAACC -CCAACATCGTCTGTATCGTGTTCC -CCAACATCGTCTGTATCGATTCCC -CCAACATCGTCTGTATCGTTCTCG -CCAACATCGTCTGTATCGTAGACG -CCAACATCGTCTGTATCGGTAACG -CCAACATCGTCTGTATCGACTTCG -CCAACATCGTCTGTATCGTACGCA -CCAACATCGTCTGTATCGCTTGCA -CCAACATCGTCTGTATCGCGAACA -CCAACATCGTCTGTATCGCAGTCA -CCAACATCGTCTGTATCGGATCCA -CCAACATCGTCTGTATCGACGACA -CCAACATCGTCTGTATCGAGCTCA -CCAACATCGTCTGTATCGTCACGT -CCAACATCGTCTGTATCGCGTAGT -CCAACATCGTCTGTATCGGTCAGT -CCAACATCGTCTGTATCGGAAGGT -CCAACATCGTCTGTATCGAACCGT -CCAACATCGTCTGTATCGTTGTGC -CCAACATCGTCTGTATCGCTAAGC -CCAACATCGTCTGTATCGACTAGC -CCAACATCGTCTGTATCGAGATGC -CCAACATCGTCTGTATCGTGAAGG -CCAACATCGTCTGTATCGCAATGG -CCAACATCGTCTGTATCGATGAGG -CCAACATCGTCTGTATCGAATGGG -CCAACATCGTCTGTATCGTCCTGA -CCAACATCGTCTGTATCGTAGCGA -CCAACATCGTCTGTATCGCACAGA -CCAACATCGTCTGTATCGGCAAGA -CCAACATCGTCTGTATCGGGTTGA -CCAACATCGTCTGTATCGTCCGAT -CCAACATCGTCTGTATCGTGGCAT -CCAACATCGTCTGTATCGCGAGAT -CCAACATCGTCTGTATCGTACCAC -CCAACATCGTCTGTATCGCAGAAC -CCAACATCGTCTGTATCGGTCTAC -CCAACATCGTCTGTATCGACGTAC -CCAACATCGTCTGTATCGAGTGAC -CCAACATCGTCTGTATCGCTGTAG -CCAACATCGTCTGTATCGCCTAAG -CCAACATCGTCTGTATCGGTTCAG -CCAACATCGTCTGTATCGGCATAG -CCAACATCGTCTGTATCGGACAAG -CCAACATCGTCTGTATCGAAGCAG -CCAACATCGTCTGTATCGCGTCAA -CCAACATCGTCTGTATCGGCTGAA -CCAACATCGTCTGTATCGAGTACG -CCAACATCGTCTGTATCGATCCGA -CCAACATCGTCTGTATCGATGGGA -CCAACATCGTCTGTATCGGTGCAA -CCAACATCGTCTGTATCGGAGGAA -CCAACATCGTCTGTATCGCAGGTA -CCAACATCGTCTGTATCGGACTCT -CCAACATCGTCTGTATCGAGTCCT -CCAACATCGTCTGTATCGTAAGCC -CCAACATCGTCTGTATCGATAGCC -CCAACATCGTCTGTATCGTAACCG -CCAACATCGTCTGTATCGATGCCA -CCAACATCGTCTCTATGCGGAAAC -CCAACATCGTCTCTATGCAACACC -CCAACATCGTCTCTATGCATCGAG -CCAACATCGTCTCTATGCCTCCTT -CCAACATCGTCTCTATGCCCTGTT -CCAACATCGTCTCTATGCCGGTTT -CCAACATCGTCTCTATGCGTGGTT -CCAACATCGTCTCTATGCGCCTTT -CCAACATCGTCTCTATGCGGTCTT -CCAACATCGTCTCTATGCACGCTT -CCAACATCGTCTCTATGCAGCGTT -CCAACATCGTCTCTATGCTTCGTC -CCAACATCGTCTCTATGCTCTCTC -CCAACATCGTCTCTATGCTGGATC -CCAACATCGTCTCTATGCCACTTC -CCAACATCGTCTCTATGCGTACTC -CCAACATCGTCTCTATGCGATGTC -CCAACATCGTCTCTATGCACAGTC -CCAACATCGTCTCTATGCTTGCTG -CCAACATCGTCTCTATGCTCCATG -CCAACATCGTCTCTATGCTGTGTG -CCAACATCGTCTCTATGCCTAGTG -CCAACATCGTCTCTATGCCATCTG -CCAACATCGTCTCTATGCGAGTTG -CCAACATCGTCTCTATGCAGACTG -CCAACATCGTCTCTATGCTCGGTA -CCAACATCGTCTCTATGCTGCCTA -CCAACATCGTCTCTATGCCCACTA -CCAACATCGTCTCTATGCGGAGTA -CCAACATCGTCTCTATGCTCGTCT -CCAACATCGTCTCTATGCTGCACT -CCAACATCGTCTCTATGCCTGACT -CCAACATCGTCTCTATGCCAACCT -CCAACATCGTCTCTATGCGCTACT -CCAACATCGTCTCTATGCGGATCT -CCAACATCGTCTCTATGCAAGGCT -CCAACATCGTCTCTATGCTCAACC -CCAACATCGTCTCTATGCTGTTCC -CCAACATCGTCTCTATGCATTCCC -CCAACATCGTCTCTATGCTTCTCG -CCAACATCGTCTCTATGCTAGACG -CCAACATCGTCTCTATGCGTAACG -CCAACATCGTCTCTATGCACTTCG -CCAACATCGTCTCTATGCTACGCA -CCAACATCGTCTCTATGCCTTGCA -CCAACATCGTCTCTATGCCGAACA -CCAACATCGTCTCTATGCCAGTCA -CCAACATCGTCTCTATGCGATCCA -CCAACATCGTCTCTATGCACGACA -CCAACATCGTCTCTATGCAGCTCA -CCAACATCGTCTCTATGCTCACGT -CCAACATCGTCTCTATGCCGTAGT -CCAACATCGTCTCTATGCGTCAGT -CCAACATCGTCTCTATGCGAAGGT -CCAACATCGTCTCTATGCAACCGT -CCAACATCGTCTCTATGCTTGTGC -CCAACATCGTCTCTATGCCTAAGC -CCAACATCGTCTCTATGCACTAGC -CCAACATCGTCTCTATGCAGATGC -CCAACATCGTCTCTATGCTGAAGG -CCAACATCGTCTCTATGCCAATGG -CCAACATCGTCTCTATGCATGAGG -CCAACATCGTCTCTATGCAATGGG -CCAACATCGTCTCTATGCTCCTGA -CCAACATCGTCTCTATGCTAGCGA -CCAACATCGTCTCTATGCCACAGA -CCAACATCGTCTCTATGCGCAAGA -CCAACATCGTCTCTATGCGGTTGA -CCAACATCGTCTCTATGCTCCGAT -CCAACATCGTCTCTATGCTGGCAT -CCAACATCGTCTCTATGCCGAGAT -CCAACATCGTCTCTATGCTACCAC -CCAACATCGTCTCTATGCCAGAAC -CCAACATCGTCTCTATGCGTCTAC -CCAACATCGTCTCTATGCACGTAC -CCAACATCGTCTCTATGCAGTGAC -CCAACATCGTCTCTATGCCTGTAG -CCAACATCGTCTCTATGCCCTAAG -CCAACATCGTCTCTATGCGTTCAG -CCAACATCGTCTCTATGCGCATAG -CCAACATCGTCTCTATGCGACAAG -CCAACATCGTCTCTATGCAAGCAG -CCAACATCGTCTCTATGCCGTCAA -CCAACATCGTCTCTATGCGCTGAA -CCAACATCGTCTCTATGCAGTACG -CCAACATCGTCTCTATGCATCCGA -CCAACATCGTCTCTATGCATGGGA -CCAACATCGTCTCTATGCGTGCAA -CCAACATCGTCTCTATGCGAGGAA -CCAACATCGTCTCTATGCCAGGTA -CCAACATCGTCTCTATGCGACTCT -CCAACATCGTCTCTATGCAGTCCT -CCAACATCGTCTCTATGCTAAGCC -CCAACATCGTCTCTATGCATAGCC -CCAACATCGTCTCTATGCTAACCG -CCAACATCGTCTCTATGCATGCCA -CCAACATCGTCTCTACCAGGAAAC -CCAACATCGTCTCTACCAAACACC -CCAACATCGTCTCTACCAATCGAG -CCAACATCGTCTCTACCACTCCTT -CCAACATCGTCTCTACCACCTGTT -CCAACATCGTCTCTACCACGGTTT -CCAACATCGTCTCTACCAGTGGTT -CCAACATCGTCTCTACCAGCCTTT -CCAACATCGTCTCTACCAGGTCTT -CCAACATCGTCTCTACCAACGCTT -CCAACATCGTCTCTACCAAGCGTT -CCAACATCGTCTCTACCATTCGTC -CCAACATCGTCTCTACCATCTCTC -CCAACATCGTCTCTACCATGGATC -CCAACATCGTCTCTACCACACTTC -CCAACATCGTCTCTACCAGTACTC -CCAACATCGTCTCTACCAGATGTC -CCAACATCGTCTCTACCAACAGTC -CCAACATCGTCTCTACCATTGCTG -CCAACATCGTCTCTACCATCCATG -CCAACATCGTCTCTACCATGTGTG -CCAACATCGTCTCTACCACTAGTG -CCAACATCGTCTCTACCACATCTG -CCAACATCGTCTCTACCAGAGTTG -CCAACATCGTCTCTACCAAGACTG -CCAACATCGTCTCTACCATCGGTA -CCAACATCGTCTCTACCATGCCTA -CCAACATCGTCTCTACCACCACTA -CCAACATCGTCTCTACCAGGAGTA -CCAACATCGTCTCTACCATCGTCT -CCAACATCGTCTCTACCATGCACT -CCAACATCGTCTCTACCACTGACT -CCAACATCGTCTCTACCACAACCT -CCAACATCGTCTCTACCAGCTACT -CCAACATCGTCTCTACCAGGATCT -CCAACATCGTCTCTACCAAAGGCT -CCAACATCGTCTCTACCATCAACC -CCAACATCGTCTCTACCATGTTCC -CCAACATCGTCTCTACCAATTCCC -CCAACATCGTCTCTACCATTCTCG -CCAACATCGTCTCTACCATAGACG -CCAACATCGTCTCTACCAGTAACG -CCAACATCGTCTCTACCAACTTCG -CCAACATCGTCTCTACCATACGCA -CCAACATCGTCTCTACCACTTGCA -CCAACATCGTCTCTACCACGAACA -CCAACATCGTCTCTACCACAGTCA -CCAACATCGTCTCTACCAGATCCA -CCAACATCGTCTCTACCAACGACA -CCAACATCGTCTCTACCAAGCTCA -CCAACATCGTCTCTACCATCACGT -CCAACATCGTCTCTACCACGTAGT -CCAACATCGTCTCTACCAGTCAGT -CCAACATCGTCTCTACCAGAAGGT -CCAACATCGTCTCTACCAAACCGT -CCAACATCGTCTCTACCATTGTGC -CCAACATCGTCTCTACCACTAAGC -CCAACATCGTCTCTACCAACTAGC -CCAACATCGTCTCTACCAAGATGC -CCAACATCGTCTCTACCATGAAGG -CCAACATCGTCTCTACCACAATGG -CCAACATCGTCTCTACCAATGAGG -CCAACATCGTCTCTACCAAATGGG -CCAACATCGTCTCTACCATCCTGA -CCAACATCGTCTCTACCATAGCGA -CCAACATCGTCTCTACCACACAGA -CCAACATCGTCTCTACCAGCAAGA -CCAACATCGTCTCTACCAGGTTGA -CCAACATCGTCTCTACCATCCGAT -CCAACATCGTCTCTACCATGGCAT -CCAACATCGTCTCTACCACGAGAT -CCAACATCGTCTCTACCATACCAC -CCAACATCGTCTCTACCACAGAAC -CCAACATCGTCTCTACCAGTCTAC -CCAACATCGTCTCTACCAACGTAC -CCAACATCGTCTCTACCAAGTGAC -CCAACATCGTCTCTACCACTGTAG -CCAACATCGTCTCTACCACCTAAG -CCAACATCGTCTCTACCAGTTCAG -CCAACATCGTCTCTACCAGCATAG -CCAACATCGTCTCTACCAGACAAG -CCAACATCGTCTCTACCAAAGCAG -CCAACATCGTCTCTACCACGTCAA -CCAACATCGTCTCTACCAGCTGAA -CCAACATCGTCTCTACCAAGTACG -CCAACATCGTCTCTACCAATCCGA -CCAACATCGTCTCTACCAATGGGA -CCAACATCGTCTCTACCAGTGCAA -CCAACATCGTCTCTACCAGAGGAA -CCAACATCGTCTCTACCACAGGTA -CCAACATCGTCTCTACCAGACTCT -CCAACATCGTCTCTACCAAGTCCT -CCAACATCGTCTCTACCATAAGCC -CCAACATCGTCTCTACCAATAGCC -CCAACATCGTCTCTACCATAACCG -CCAACATCGTCTCTACCAATGCCA -CCAACATCGTCTGTAGGAGGAAAC -CCAACATCGTCTGTAGGAAACACC -CCAACATCGTCTGTAGGAATCGAG -CCAACATCGTCTGTAGGACTCCTT -CCAACATCGTCTGTAGGACCTGTT -CCAACATCGTCTGTAGGACGGTTT -CCAACATCGTCTGTAGGAGTGGTT -CCAACATCGTCTGTAGGAGCCTTT -CCAACATCGTCTGTAGGAGGTCTT -CCAACATCGTCTGTAGGAACGCTT -CCAACATCGTCTGTAGGAAGCGTT -CCAACATCGTCTGTAGGATTCGTC -CCAACATCGTCTGTAGGATCTCTC -CCAACATCGTCTGTAGGATGGATC -CCAACATCGTCTGTAGGACACTTC -CCAACATCGTCTGTAGGAGTACTC -CCAACATCGTCTGTAGGAGATGTC -CCAACATCGTCTGTAGGAACAGTC -CCAACATCGTCTGTAGGATTGCTG -CCAACATCGTCTGTAGGATCCATG -CCAACATCGTCTGTAGGATGTGTG -CCAACATCGTCTGTAGGACTAGTG -CCAACATCGTCTGTAGGACATCTG -CCAACATCGTCTGTAGGAGAGTTG -CCAACATCGTCTGTAGGAAGACTG -CCAACATCGTCTGTAGGATCGGTA -CCAACATCGTCTGTAGGATGCCTA -CCAACATCGTCTGTAGGACCACTA -CCAACATCGTCTGTAGGAGGAGTA -CCAACATCGTCTGTAGGATCGTCT -CCAACATCGTCTGTAGGATGCACT -CCAACATCGTCTGTAGGACTGACT -CCAACATCGTCTGTAGGACAACCT -CCAACATCGTCTGTAGGAGCTACT -CCAACATCGTCTGTAGGAGGATCT -CCAACATCGTCTGTAGGAAAGGCT -CCAACATCGTCTGTAGGATCAACC -CCAACATCGTCTGTAGGATGTTCC -CCAACATCGTCTGTAGGAATTCCC -CCAACATCGTCTGTAGGATTCTCG -CCAACATCGTCTGTAGGATAGACG -CCAACATCGTCTGTAGGAGTAACG -CCAACATCGTCTGTAGGAACTTCG -CCAACATCGTCTGTAGGATACGCA -CCAACATCGTCTGTAGGACTTGCA -CCAACATCGTCTGTAGGACGAACA -CCAACATCGTCTGTAGGACAGTCA -CCAACATCGTCTGTAGGAGATCCA -CCAACATCGTCTGTAGGAACGACA -CCAACATCGTCTGTAGGAAGCTCA -CCAACATCGTCTGTAGGATCACGT -CCAACATCGTCTGTAGGACGTAGT -CCAACATCGTCTGTAGGAGTCAGT -CCAACATCGTCTGTAGGAGAAGGT -CCAACATCGTCTGTAGGAAACCGT -CCAACATCGTCTGTAGGATTGTGC -CCAACATCGTCTGTAGGACTAAGC -CCAACATCGTCTGTAGGAACTAGC -CCAACATCGTCTGTAGGAAGATGC -CCAACATCGTCTGTAGGATGAAGG -CCAACATCGTCTGTAGGACAATGG -CCAACATCGTCTGTAGGAATGAGG -CCAACATCGTCTGTAGGAAATGGG -CCAACATCGTCTGTAGGATCCTGA -CCAACATCGTCTGTAGGATAGCGA -CCAACATCGTCTGTAGGACACAGA -CCAACATCGTCTGTAGGAGCAAGA -CCAACATCGTCTGTAGGAGGTTGA -CCAACATCGTCTGTAGGATCCGAT -CCAACATCGTCTGTAGGATGGCAT -CCAACATCGTCTGTAGGACGAGAT -CCAACATCGTCTGTAGGATACCAC -CCAACATCGTCTGTAGGACAGAAC -CCAACATCGTCTGTAGGAGTCTAC -CCAACATCGTCTGTAGGAACGTAC -CCAACATCGTCTGTAGGAAGTGAC -CCAACATCGTCTGTAGGACTGTAG -CCAACATCGTCTGTAGGACCTAAG -CCAACATCGTCTGTAGGAGTTCAG -CCAACATCGTCTGTAGGAGCATAG -CCAACATCGTCTGTAGGAGACAAG -CCAACATCGTCTGTAGGAAAGCAG -CCAACATCGTCTGTAGGACGTCAA -CCAACATCGTCTGTAGGAGCTGAA -CCAACATCGTCTGTAGGAAGTACG -CCAACATCGTCTGTAGGAATCCGA -CCAACATCGTCTGTAGGAATGGGA -CCAACATCGTCTGTAGGAGTGCAA -CCAACATCGTCTGTAGGAGAGGAA -CCAACATCGTCTGTAGGACAGGTA -CCAACATCGTCTGTAGGAGACTCT -CCAACATCGTCTGTAGGAAGTCCT -CCAACATCGTCTGTAGGATAAGCC -CCAACATCGTCTGTAGGAATAGCC -CCAACATCGTCTGTAGGATAACCG -CCAACATCGTCTGTAGGAATGCCA -CCAACATCGTCTTCTTCGGGAAAC -CCAACATCGTCTTCTTCGAACACC -CCAACATCGTCTTCTTCGATCGAG -CCAACATCGTCTTCTTCGCTCCTT -CCAACATCGTCTTCTTCGCCTGTT -CCAACATCGTCTTCTTCGCGGTTT -CCAACATCGTCTTCTTCGGTGGTT -CCAACATCGTCTTCTTCGGCCTTT -CCAACATCGTCTTCTTCGGGTCTT -CCAACATCGTCTTCTTCGACGCTT -CCAACATCGTCTTCTTCGAGCGTT -CCAACATCGTCTTCTTCGTTCGTC -CCAACATCGTCTTCTTCGTCTCTC -CCAACATCGTCTTCTTCGTGGATC -CCAACATCGTCTTCTTCGCACTTC -CCAACATCGTCTTCTTCGGTACTC -CCAACATCGTCTTCTTCGGATGTC -CCAACATCGTCTTCTTCGACAGTC -CCAACATCGTCTTCTTCGTTGCTG -CCAACATCGTCTTCTTCGTCCATG -CCAACATCGTCTTCTTCGTGTGTG -CCAACATCGTCTTCTTCGCTAGTG -CCAACATCGTCTTCTTCGCATCTG -CCAACATCGTCTTCTTCGGAGTTG -CCAACATCGTCTTCTTCGAGACTG -CCAACATCGTCTTCTTCGTCGGTA -CCAACATCGTCTTCTTCGTGCCTA -CCAACATCGTCTTCTTCGCCACTA -CCAACATCGTCTTCTTCGGGAGTA -CCAACATCGTCTTCTTCGTCGTCT -CCAACATCGTCTTCTTCGTGCACT -CCAACATCGTCTTCTTCGCTGACT -CCAACATCGTCTTCTTCGCAACCT -CCAACATCGTCTTCTTCGGCTACT -CCAACATCGTCTTCTTCGGGATCT -CCAACATCGTCTTCTTCGAAGGCT -CCAACATCGTCTTCTTCGTCAACC -CCAACATCGTCTTCTTCGTGTTCC -CCAACATCGTCTTCTTCGATTCCC -CCAACATCGTCTTCTTCGTTCTCG -CCAACATCGTCTTCTTCGTAGACG -CCAACATCGTCTTCTTCGGTAACG -CCAACATCGTCTTCTTCGACTTCG -CCAACATCGTCTTCTTCGTACGCA -CCAACATCGTCTTCTTCGCTTGCA -CCAACATCGTCTTCTTCGCGAACA -CCAACATCGTCTTCTTCGCAGTCA -CCAACATCGTCTTCTTCGGATCCA -CCAACATCGTCTTCTTCGACGACA -CCAACATCGTCTTCTTCGAGCTCA -CCAACATCGTCTTCTTCGTCACGT -CCAACATCGTCTTCTTCGCGTAGT -CCAACATCGTCTTCTTCGGTCAGT -CCAACATCGTCTTCTTCGGAAGGT -CCAACATCGTCTTCTTCGAACCGT -CCAACATCGTCTTCTTCGTTGTGC -CCAACATCGTCTTCTTCGCTAAGC -CCAACATCGTCTTCTTCGACTAGC -CCAACATCGTCTTCTTCGAGATGC -CCAACATCGTCTTCTTCGTGAAGG -CCAACATCGTCTTCTTCGCAATGG -CCAACATCGTCTTCTTCGATGAGG -CCAACATCGTCTTCTTCGAATGGG -CCAACATCGTCTTCTTCGTCCTGA -CCAACATCGTCTTCTTCGTAGCGA -CCAACATCGTCTTCTTCGCACAGA -CCAACATCGTCTTCTTCGGCAAGA -CCAACATCGTCTTCTTCGGGTTGA -CCAACATCGTCTTCTTCGTCCGAT -CCAACATCGTCTTCTTCGTGGCAT -CCAACATCGTCTTCTTCGCGAGAT -CCAACATCGTCTTCTTCGTACCAC -CCAACATCGTCTTCTTCGCAGAAC -CCAACATCGTCTTCTTCGGTCTAC -CCAACATCGTCTTCTTCGACGTAC -CCAACATCGTCTTCTTCGAGTGAC -CCAACATCGTCTTCTTCGCTGTAG -CCAACATCGTCTTCTTCGCCTAAG -CCAACATCGTCTTCTTCGGTTCAG -CCAACATCGTCTTCTTCGGCATAG -CCAACATCGTCTTCTTCGGACAAG -CCAACATCGTCTTCTTCGAAGCAG -CCAACATCGTCTTCTTCGCGTCAA -CCAACATCGTCTTCTTCGGCTGAA -CCAACATCGTCTTCTTCGAGTACG -CCAACATCGTCTTCTTCGATCCGA -CCAACATCGTCTTCTTCGATGGGA -CCAACATCGTCTTCTTCGGTGCAA -CCAACATCGTCTTCTTCGGAGGAA -CCAACATCGTCTTCTTCGCAGGTA -CCAACATCGTCTTCTTCGGACTCT -CCAACATCGTCTTCTTCGAGTCCT -CCAACATCGTCTTCTTCGTAAGCC -CCAACATCGTCTTCTTCGATAGCC -CCAACATCGTCTTCTTCGTAACCG -CCAACATCGTCTTCTTCGATGCCA -CCAACATCGTCTACTTGCGGAAAC -CCAACATCGTCTACTTGCAACACC -CCAACATCGTCTACTTGCATCGAG -CCAACATCGTCTACTTGCCTCCTT -CCAACATCGTCTACTTGCCCTGTT -CCAACATCGTCTACTTGCCGGTTT -CCAACATCGTCTACTTGCGTGGTT -CCAACATCGTCTACTTGCGCCTTT -CCAACATCGTCTACTTGCGGTCTT -CCAACATCGTCTACTTGCACGCTT -CCAACATCGTCTACTTGCAGCGTT -CCAACATCGTCTACTTGCTTCGTC -CCAACATCGTCTACTTGCTCTCTC -CCAACATCGTCTACTTGCTGGATC -CCAACATCGTCTACTTGCCACTTC -CCAACATCGTCTACTTGCGTACTC -CCAACATCGTCTACTTGCGATGTC -CCAACATCGTCTACTTGCACAGTC -CCAACATCGTCTACTTGCTTGCTG -CCAACATCGTCTACTTGCTCCATG -CCAACATCGTCTACTTGCTGTGTG -CCAACATCGTCTACTTGCCTAGTG -CCAACATCGTCTACTTGCCATCTG -CCAACATCGTCTACTTGCGAGTTG -CCAACATCGTCTACTTGCAGACTG -CCAACATCGTCTACTTGCTCGGTA -CCAACATCGTCTACTTGCTGCCTA -CCAACATCGTCTACTTGCCCACTA -CCAACATCGTCTACTTGCGGAGTA -CCAACATCGTCTACTTGCTCGTCT -CCAACATCGTCTACTTGCTGCACT -CCAACATCGTCTACTTGCCTGACT -CCAACATCGTCTACTTGCCAACCT -CCAACATCGTCTACTTGCGCTACT -CCAACATCGTCTACTTGCGGATCT -CCAACATCGTCTACTTGCAAGGCT -CCAACATCGTCTACTTGCTCAACC -CCAACATCGTCTACTTGCTGTTCC -CCAACATCGTCTACTTGCATTCCC -CCAACATCGTCTACTTGCTTCTCG -CCAACATCGTCTACTTGCTAGACG -CCAACATCGTCTACTTGCGTAACG -CCAACATCGTCTACTTGCACTTCG -CCAACATCGTCTACTTGCTACGCA -CCAACATCGTCTACTTGCCTTGCA -CCAACATCGTCTACTTGCCGAACA -CCAACATCGTCTACTTGCCAGTCA -CCAACATCGTCTACTTGCGATCCA -CCAACATCGTCTACTTGCACGACA -CCAACATCGTCTACTTGCAGCTCA -CCAACATCGTCTACTTGCTCACGT -CCAACATCGTCTACTTGCCGTAGT -CCAACATCGTCTACTTGCGTCAGT -CCAACATCGTCTACTTGCGAAGGT -CCAACATCGTCTACTTGCAACCGT -CCAACATCGTCTACTTGCTTGTGC -CCAACATCGTCTACTTGCCTAAGC -CCAACATCGTCTACTTGCACTAGC -CCAACATCGTCTACTTGCAGATGC -CCAACATCGTCTACTTGCTGAAGG -CCAACATCGTCTACTTGCCAATGG -CCAACATCGTCTACTTGCATGAGG -CCAACATCGTCTACTTGCAATGGG -CCAACATCGTCTACTTGCTCCTGA -CCAACATCGTCTACTTGCTAGCGA -CCAACATCGTCTACTTGCCACAGA -CCAACATCGTCTACTTGCGCAAGA -CCAACATCGTCTACTTGCGGTTGA -CCAACATCGTCTACTTGCTCCGAT -CCAACATCGTCTACTTGCTGGCAT -CCAACATCGTCTACTTGCCGAGAT -CCAACATCGTCTACTTGCTACCAC -CCAACATCGTCTACTTGCCAGAAC -CCAACATCGTCTACTTGCGTCTAC -CCAACATCGTCTACTTGCACGTAC -CCAACATCGTCTACTTGCAGTGAC -CCAACATCGTCTACTTGCCTGTAG -CCAACATCGTCTACTTGCCCTAAG -CCAACATCGTCTACTTGCGTTCAG -CCAACATCGTCTACTTGCGCATAG -CCAACATCGTCTACTTGCGACAAG -CCAACATCGTCTACTTGCAAGCAG -CCAACATCGTCTACTTGCCGTCAA -CCAACATCGTCTACTTGCGCTGAA -CCAACATCGTCTACTTGCAGTACG -CCAACATCGTCTACTTGCATCCGA -CCAACATCGTCTACTTGCATGGGA -CCAACATCGTCTACTTGCGTGCAA -CCAACATCGTCTACTTGCGAGGAA -CCAACATCGTCTACTTGCCAGGTA -CCAACATCGTCTACTTGCGACTCT -CCAACATCGTCTACTTGCAGTCCT -CCAACATCGTCTACTTGCTAAGCC -CCAACATCGTCTACTTGCATAGCC -CCAACATCGTCTACTTGCTAACCG -CCAACATCGTCTACTTGCATGCCA -CCAACATCGTCTACTCTGGGAAAC -CCAACATCGTCTACTCTGAACACC -CCAACATCGTCTACTCTGATCGAG -CCAACATCGTCTACTCTGCTCCTT -CCAACATCGTCTACTCTGCCTGTT -CCAACATCGTCTACTCTGCGGTTT -CCAACATCGTCTACTCTGGTGGTT -CCAACATCGTCTACTCTGGCCTTT -CCAACATCGTCTACTCTGGGTCTT -CCAACATCGTCTACTCTGACGCTT -CCAACATCGTCTACTCTGAGCGTT -CCAACATCGTCTACTCTGTTCGTC -CCAACATCGTCTACTCTGTCTCTC -CCAACATCGTCTACTCTGTGGATC -CCAACATCGTCTACTCTGCACTTC -CCAACATCGTCTACTCTGGTACTC -CCAACATCGTCTACTCTGGATGTC -CCAACATCGTCTACTCTGACAGTC -CCAACATCGTCTACTCTGTTGCTG -CCAACATCGTCTACTCTGTCCATG -CCAACATCGTCTACTCTGTGTGTG -CCAACATCGTCTACTCTGCTAGTG -CCAACATCGTCTACTCTGCATCTG -CCAACATCGTCTACTCTGGAGTTG -CCAACATCGTCTACTCTGAGACTG -CCAACATCGTCTACTCTGTCGGTA -CCAACATCGTCTACTCTGTGCCTA -CCAACATCGTCTACTCTGCCACTA -CCAACATCGTCTACTCTGGGAGTA -CCAACATCGTCTACTCTGTCGTCT -CCAACATCGTCTACTCTGTGCACT -CCAACATCGTCTACTCTGCTGACT -CCAACATCGTCTACTCTGCAACCT -CCAACATCGTCTACTCTGGCTACT -CCAACATCGTCTACTCTGGGATCT -CCAACATCGTCTACTCTGAAGGCT -CCAACATCGTCTACTCTGTCAACC -CCAACATCGTCTACTCTGTGTTCC -CCAACATCGTCTACTCTGATTCCC -CCAACATCGTCTACTCTGTTCTCG -CCAACATCGTCTACTCTGTAGACG -CCAACATCGTCTACTCTGGTAACG -CCAACATCGTCTACTCTGACTTCG -CCAACATCGTCTACTCTGTACGCA -CCAACATCGTCTACTCTGCTTGCA -CCAACATCGTCTACTCTGCGAACA -CCAACATCGTCTACTCTGCAGTCA -CCAACATCGTCTACTCTGGATCCA -CCAACATCGTCTACTCTGACGACA -CCAACATCGTCTACTCTGAGCTCA -CCAACATCGTCTACTCTGTCACGT -CCAACATCGTCTACTCTGCGTAGT -CCAACATCGTCTACTCTGGTCAGT -CCAACATCGTCTACTCTGGAAGGT -CCAACATCGTCTACTCTGAACCGT -CCAACATCGTCTACTCTGTTGTGC -CCAACATCGTCTACTCTGCTAAGC -CCAACATCGTCTACTCTGACTAGC -CCAACATCGTCTACTCTGAGATGC -CCAACATCGTCTACTCTGTGAAGG -CCAACATCGTCTACTCTGCAATGG -CCAACATCGTCTACTCTGATGAGG -CCAACATCGTCTACTCTGAATGGG -CCAACATCGTCTACTCTGTCCTGA -CCAACATCGTCTACTCTGTAGCGA -CCAACATCGTCTACTCTGCACAGA -CCAACATCGTCTACTCTGGCAAGA -CCAACATCGTCTACTCTGGGTTGA -CCAACATCGTCTACTCTGTCCGAT -CCAACATCGTCTACTCTGTGGCAT -CCAACATCGTCTACTCTGCGAGAT -CCAACATCGTCTACTCTGTACCAC -CCAACATCGTCTACTCTGCAGAAC -CCAACATCGTCTACTCTGGTCTAC -CCAACATCGTCTACTCTGACGTAC -CCAACATCGTCTACTCTGAGTGAC -CCAACATCGTCTACTCTGCTGTAG -CCAACATCGTCTACTCTGCCTAAG -CCAACATCGTCTACTCTGGTTCAG -CCAACATCGTCTACTCTGGCATAG -CCAACATCGTCTACTCTGGACAAG -CCAACATCGTCTACTCTGAAGCAG -CCAACATCGTCTACTCTGCGTCAA -CCAACATCGTCTACTCTGGCTGAA -CCAACATCGTCTACTCTGAGTACG -CCAACATCGTCTACTCTGATCCGA -CCAACATCGTCTACTCTGATGGGA -CCAACATCGTCTACTCTGGTGCAA -CCAACATCGTCTACTCTGGAGGAA -CCAACATCGTCTACTCTGCAGGTA -CCAACATCGTCTACTCTGGACTCT -CCAACATCGTCTACTCTGAGTCCT -CCAACATCGTCTACTCTGTAAGCC -CCAACATCGTCTACTCTGATAGCC -CCAACATCGTCTACTCTGTAACCG -CCAACATCGTCTACTCTGATGCCA -CCAACATCGTCTCCTCAAGGAAAC -CCAACATCGTCTCCTCAAAACACC -CCAACATCGTCTCCTCAAATCGAG -CCAACATCGTCTCCTCAACTCCTT -CCAACATCGTCTCCTCAACCTGTT -CCAACATCGTCTCCTCAACGGTTT -CCAACATCGTCTCCTCAAGTGGTT -CCAACATCGTCTCCTCAAGCCTTT -CCAACATCGTCTCCTCAAGGTCTT -CCAACATCGTCTCCTCAAACGCTT -CCAACATCGTCTCCTCAAAGCGTT -CCAACATCGTCTCCTCAATTCGTC -CCAACATCGTCTCCTCAATCTCTC -CCAACATCGTCTCCTCAATGGATC -CCAACATCGTCTCCTCAACACTTC -CCAACATCGTCTCCTCAAGTACTC -CCAACATCGTCTCCTCAAGATGTC -CCAACATCGTCTCCTCAAACAGTC -CCAACATCGTCTCCTCAATTGCTG -CCAACATCGTCTCCTCAATCCATG -CCAACATCGTCTCCTCAATGTGTG -CCAACATCGTCTCCTCAACTAGTG -CCAACATCGTCTCCTCAACATCTG -CCAACATCGTCTCCTCAAGAGTTG -CCAACATCGTCTCCTCAAAGACTG -CCAACATCGTCTCCTCAATCGGTA -CCAACATCGTCTCCTCAATGCCTA -CCAACATCGTCTCCTCAACCACTA -CCAACATCGTCTCCTCAAGGAGTA -CCAACATCGTCTCCTCAATCGTCT -CCAACATCGTCTCCTCAATGCACT -CCAACATCGTCTCCTCAACTGACT -CCAACATCGTCTCCTCAACAACCT -CCAACATCGTCTCCTCAAGCTACT -CCAACATCGTCTCCTCAAGGATCT -CCAACATCGTCTCCTCAAAAGGCT -CCAACATCGTCTCCTCAATCAACC -CCAACATCGTCTCCTCAATGTTCC -CCAACATCGTCTCCTCAAATTCCC -CCAACATCGTCTCCTCAATTCTCG -CCAACATCGTCTCCTCAATAGACG -CCAACATCGTCTCCTCAAGTAACG -CCAACATCGTCTCCTCAAACTTCG -CCAACATCGTCTCCTCAATACGCA -CCAACATCGTCTCCTCAACTTGCA -CCAACATCGTCTCCTCAACGAACA -CCAACATCGTCTCCTCAACAGTCA -CCAACATCGTCTCCTCAAGATCCA -CCAACATCGTCTCCTCAAACGACA -CCAACATCGTCTCCTCAAAGCTCA -CCAACATCGTCTCCTCAATCACGT -CCAACATCGTCTCCTCAACGTAGT -CCAACATCGTCTCCTCAAGTCAGT -CCAACATCGTCTCCTCAAGAAGGT -CCAACATCGTCTCCTCAAAACCGT -CCAACATCGTCTCCTCAATTGTGC -CCAACATCGTCTCCTCAACTAAGC -CCAACATCGTCTCCTCAAACTAGC -CCAACATCGTCTCCTCAAAGATGC -CCAACATCGTCTCCTCAATGAAGG -CCAACATCGTCTCCTCAACAATGG -CCAACATCGTCTCCTCAAATGAGG -CCAACATCGTCTCCTCAAAATGGG -CCAACATCGTCTCCTCAATCCTGA -CCAACATCGTCTCCTCAATAGCGA -CCAACATCGTCTCCTCAACACAGA -CCAACATCGTCTCCTCAAGCAAGA -CCAACATCGTCTCCTCAAGGTTGA -CCAACATCGTCTCCTCAATCCGAT -CCAACATCGTCTCCTCAATGGCAT -CCAACATCGTCTCCTCAACGAGAT -CCAACATCGTCTCCTCAATACCAC -CCAACATCGTCTCCTCAACAGAAC -CCAACATCGTCTCCTCAAGTCTAC -CCAACATCGTCTCCTCAAACGTAC -CCAACATCGTCTCCTCAAAGTGAC -CCAACATCGTCTCCTCAACTGTAG -CCAACATCGTCTCCTCAACCTAAG -CCAACATCGTCTCCTCAAGTTCAG -CCAACATCGTCTCCTCAAGCATAG -CCAACATCGTCTCCTCAAGACAAG -CCAACATCGTCTCCTCAAAAGCAG -CCAACATCGTCTCCTCAACGTCAA -CCAACATCGTCTCCTCAAGCTGAA -CCAACATCGTCTCCTCAAAGTACG -CCAACATCGTCTCCTCAAATCCGA -CCAACATCGTCTCCTCAAATGGGA -CCAACATCGTCTCCTCAAGTGCAA -CCAACATCGTCTCCTCAAGAGGAA -CCAACATCGTCTCCTCAACAGGTA -CCAACATCGTCTCCTCAAGACTCT -CCAACATCGTCTCCTCAAAGTCCT -CCAACATCGTCTCCTCAATAAGCC -CCAACATCGTCTCCTCAAATAGCC -CCAACATCGTCTCCTCAATAACCG -CCAACATCGTCTCCTCAAATGCCA -CCAACATCGTCTACTGCTGGAAAC -CCAACATCGTCTACTGCTAACACC -CCAACATCGTCTACTGCTATCGAG -CCAACATCGTCTACTGCTCTCCTT -CCAACATCGTCTACTGCTCCTGTT -CCAACATCGTCTACTGCTCGGTTT -CCAACATCGTCTACTGCTGTGGTT -CCAACATCGTCTACTGCTGCCTTT -CCAACATCGTCTACTGCTGGTCTT -CCAACATCGTCTACTGCTACGCTT -CCAACATCGTCTACTGCTAGCGTT -CCAACATCGTCTACTGCTTTCGTC -CCAACATCGTCTACTGCTTCTCTC -CCAACATCGTCTACTGCTTGGATC -CCAACATCGTCTACTGCTCACTTC -CCAACATCGTCTACTGCTGTACTC -CCAACATCGTCTACTGCTGATGTC -CCAACATCGTCTACTGCTACAGTC -CCAACATCGTCTACTGCTTTGCTG -CCAACATCGTCTACTGCTTCCATG -CCAACATCGTCTACTGCTTGTGTG -CCAACATCGTCTACTGCTCTAGTG -CCAACATCGTCTACTGCTCATCTG -CCAACATCGTCTACTGCTGAGTTG -CCAACATCGTCTACTGCTAGACTG -CCAACATCGTCTACTGCTTCGGTA -CCAACATCGTCTACTGCTTGCCTA -CCAACATCGTCTACTGCTCCACTA -CCAACATCGTCTACTGCTGGAGTA -CCAACATCGTCTACTGCTTCGTCT -CCAACATCGTCTACTGCTTGCACT -CCAACATCGTCTACTGCTCTGACT -CCAACATCGTCTACTGCTCAACCT -CCAACATCGTCTACTGCTGCTACT -CCAACATCGTCTACTGCTGGATCT -CCAACATCGTCTACTGCTAAGGCT -CCAACATCGTCTACTGCTTCAACC -CCAACATCGTCTACTGCTTGTTCC -CCAACATCGTCTACTGCTATTCCC -CCAACATCGTCTACTGCTTTCTCG -CCAACATCGTCTACTGCTTAGACG -CCAACATCGTCTACTGCTGTAACG -CCAACATCGTCTACTGCTACTTCG -CCAACATCGTCTACTGCTTACGCA -CCAACATCGTCTACTGCTCTTGCA -CCAACATCGTCTACTGCTCGAACA -CCAACATCGTCTACTGCTCAGTCA -CCAACATCGTCTACTGCTGATCCA -CCAACATCGTCTACTGCTACGACA -CCAACATCGTCTACTGCTAGCTCA -CCAACATCGTCTACTGCTTCACGT -CCAACATCGTCTACTGCTCGTAGT -CCAACATCGTCTACTGCTGTCAGT -CCAACATCGTCTACTGCTGAAGGT -CCAACATCGTCTACTGCTAACCGT -CCAACATCGTCTACTGCTTTGTGC -CCAACATCGTCTACTGCTCTAAGC -CCAACATCGTCTACTGCTACTAGC -CCAACATCGTCTACTGCTAGATGC -CCAACATCGTCTACTGCTTGAAGG -CCAACATCGTCTACTGCTCAATGG -CCAACATCGTCTACTGCTATGAGG -CCAACATCGTCTACTGCTAATGGG -CCAACATCGTCTACTGCTTCCTGA -CCAACATCGTCTACTGCTTAGCGA -CCAACATCGTCTACTGCTCACAGA -CCAACATCGTCTACTGCTGCAAGA -CCAACATCGTCTACTGCTGGTTGA -CCAACATCGTCTACTGCTTCCGAT -CCAACATCGTCTACTGCTTGGCAT -CCAACATCGTCTACTGCTCGAGAT -CCAACATCGTCTACTGCTTACCAC -CCAACATCGTCTACTGCTCAGAAC -CCAACATCGTCTACTGCTGTCTAC -CCAACATCGTCTACTGCTACGTAC -CCAACATCGTCTACTGCTAGTGAC -CCAACATCGTCTACTGCTCTGTAG -CCAACATCGTCTACTGCTCCTAAG -CCAACATCGTCTACTGCTGTTCAG -CCAACATCGTCTACTGCTGCATAG -CCAACATCGTCTACTGCTGACAAG -CCAACATCGTCTACTGCTAAGCAG -CCAACATCGTCTACTGCTCGTCAA -CCAACATCGTCTACTGCTGCTGAA -CCAACATCGTCTACTGCTAGTACG -CCAACATCGTCTACTGCTATCCGA -CCAACATCGTCTACTGCTATGGGA -CCAACATCGTCTACTGCTGTGCAA -CCAACATCGTCTACTGCTGAGGAA -CCAACATCGTCTACTGCTCAGGTA -CCAACATCGTCTACTGCTGACTCT -CCAACATCGTCTACTGCTAGTCCT -CCAACATCGTCTACTGCTTAAGCC -CCAACATCGTCTACTGCTATAGCC -CCAACATCGTCTACTGCTTAACCG -CCAACATCGTCTACTGCTATGCCA -CCAACATCGTCTTCTGGAGGAAAC -CCAACATCGTCTTCTGGAAACACC -CCAACATCGTCTTCTGGAATCGAG -CCAACATCGTCTTCTGGACTCCTT -CCAACATCGTCTTCTGGACCTGTT -CCAACATCGTCTTCTGGACGGTTT -CCAACATCGTCTTCTGGAGTGGTT -CCAACATCGTCTTCTGGAGCCTTT -CCAACATCGTCTTCTGGAGGTCTT -CCAACATCGTCTTCTGGAACGCTT -CCAACATCGTCTTCTGGAAGCGTT -CCAACATCGTCTTCTGGATTCGTC -CCAACATCGTCTTCTGGATCTCTC -CCAACATCGTCTTCTGGATGGATC -CCAACATCGTCTTCTGGACACTTC -CCAACATCGTCTTCTGGAGTACTC -CCAACATCGTCTTCTGGAGATGTC -CCAACATCGTCTTCTGGAACAGTC -CCAACATCGTCTTCTGGATTGCTG -CCAACATCGTCTTCTGGATCCATG -CCAACATCGTCTTCTGGATGTGTG -CCAACATCGTCTTCTGGACTAGTG -CCAACATCGTCTTCTGGACATCTG -CCAACATCGTCTTCTGGAGAGTTG -CCAACATCGTCTTCTGGAAGACTG -CCAACATCGTCTTCTGGATCGGTA -CCAACATCGTCTTCTGGATGCCTA -CCAACATCGTCTTCTGGACCACTA -CCAACATCGTCTTCTGGAGGAGTA -CCAACATCGTCTTCTGGATCGTCT -CCAACATCGTCTTCTGGATGCACT -CCAACATCGTCTTCTGGACTGACT -CCAACATCGTCTTCTGGACAACCT -CCAACATCGTCTTCTGGAGCTACT -CCAACATCGTCTTCTGGAGGATCT -CCAACATCGTCTTCTGGAAAGGCT -CCAACATCGTCTTCTGGATCAACC -CCAACATCGTCTTCTGGATGTTCC -CCAACATCGTCTTCTGGAATTCCC -CCAACATCGTCTTCTGGATTCTCG -CCAACATCGTCTTCTGGATAGACG -CCAACATCGTCTTCTGGAGTAACG -CCAACATCGTCTTCTGGAACTTCG -CCAACATCGTCTTCTGGATACGCA -CCAACATCGTCTTCTGGACTTGCA -CCAACATCGTCTTCTGGACGAACA -CCAACATCGTCTTCTGGACAGTCA -CCAACATCGTCTTCTGGAGATCCA -CCAACATCGTCTTCTGGAACGACA -CCAACATCGTCTTCTGGAAGCTCA -CCAACATCGTCTTCTGGATCACGT -CCAACATCGTCTTCTGGACGTAGT -CCAACATCGTCTTCTGGAGTCAGT -CCAACATCGTCTTCTGGAGAAGGT -CCAACATCGTCTTCTGGAAACCGT -CCAACATCGTCTTCTGGATTGTGC -CCAACATCGTCTTCTGGACTAAGC -CCAACATCGTCTTCTGGAACTAGC -CCAACATCGTCTTCTGGAAGATGC -CCAACATCGTCTTCTGGATGAAGG -CCAACATCGTCTTCTGGACAATGG -CCAACATCGTCTTCTGGAATGAGG -CCAACATCGTCTTCTGGAAATGGG -CCAACATCGTCTTCTGGATCCTGA -CCAACATCGTCTTCTGGATAGCGA -CCAACATCGTCTTCTGGACACAGA -CCAACATCGTCTTCTGGAGCAAGA -CCAACATCGTCTTCTGGAGGTTGA -CCAACATCGTCTTCTGGATCCGAT -CCAACATCGTCTTCTGGATGGCAT -CCAACATCGTCTTCTGGACGAGAT -CCAACATCGTCTTCTGGATACCAC -CCAACATCGTCTTCTGGACAGAAC -CCAACATCGTCTTCTGGAGTCTAC -CCAACATCGTCTTCTGGAACGTAC -CCAACATCGTCTTCTGGAAGTGAC -CCAACATCGTCTTCTGGACTGTAG -CCAACATCGTCTTCTGGACCTAAG -CCAACATCGTCTTCTGGAGTTCAG -CCAACATCGTCTTCTGGAGCATAG -CCAACATCGTCTTCTGGAGACAAG -CCAACATCGTCTTCTGGAAAGCAG -CCAACATCGTCTTCTGGACGTCAA -CCAACATCGTCTTCTGGAGCTGAA -CCAACATCGTCTTCTGGAAGTACG -CCAACATCGTCTTCTGGAATCCGA -CCAACATCGTCTTCTGGAATGGGA -CCAACATCGTCTTCTGGAGTGCAA -CCAACATCGTCTTCTGGAGAGGAA -CCAACATCGTCTTCTGGACAGGTA -CCAACATCGTCTTCTGGAGACTCT -CCAACATCGTCTTCTGGAAGTCCT -CCAACATCGTCTTCTGGATAAGCC -CCAACATCGTCTTCTGGAATAGCC -CCAACATCGTCTTCTGGATAACCG -CCAACATCGTCTTCTGGAATGCCA -CCAACATCGTCTGCTAAGGGAAAC -CCAACATCGTCTGCTAAGAACACC -CCAACATCGTCTGCTAAGATCGAG -CCAACATCGTCTGCTAAGCTCCTT -CCAACATCGTCTGCTAAGCCTGTT -CCAACATCGTCTGCTAAGCGGTTT -CCAACATCGTCTGCTAAGGTGGTT -CCAACATCGTCTGCTAAGGCCTTT -CCAACATCGTCTGCTAAGGGTCTT -CCAACATCGTCTGCTAAGACGCTT -CCAACATCGTCTGCTAAGAGCGTT -CCAACATCGTCTGCTAAGTTCGTC -CCAACATCGTCTGCTAAGTCTCTC -CCAACATCGTCTGCTAAGTGGATC -CCAACATCGTCTGCTAAGCACTTC -CCAACATCGTCTGCTAAGGTACTC -CCAACATCGTCTGCTAAGGATGTC -CCAACATCGTCTGCTAAGACAGTC -CCAACATCGTCTGCTAAGTTGCTG -CCAACATCGTCTGCTAAGTCCATG -CCAACATCGTCTGCTAAGTGTGTG -CCAACATCGTCTGCTAAGCTAGTG -CCAACATCGTCTGCTAAGCATCTG -CCAACATCGTCTGCTAAGGAGTTG -CCAACATCGTCTGCTAAGAGACTG -CCAACATCGTCTGCTAAGTCGGTA -CCAACATCGTCTGCTAAGTGCCTA -CCAACATCGTCTGCTAAGCCACTA -CCAACATCGTCTGCTAAGGGAGTA -CCAACATCGTCTGCTAAGTCGTCT -CCAACATCGTCTGCTAAGTGCACT -CCAACATCGTCTGCTAAGCTGACT -CCAACATCGTCTGCTAAGCAACCT -CCAACATCGTCTGCTAAGGCTACT -CCAACATCGTCTGCTAAGGGATCT -CCAACATCGTCTGCTAAGAAGGCT -CCAACATCGTCTGCTAAGTCAACC -CCAACATCGTCTGCTAAGTGTTCC -CCAACATCGTCTGCTAAGATTCCC -CCAACATCGTCTGCTAAGTTCTCG -CCAACATCGTCTGCTAAGTAGACG -CCAACATCGTCTGCTAAGGTAACG -CCAACATCGTCTGCTAAGACTTCG -CCAACATCGTCTGCTAAGTACGCA -CCAACATCGTCTGCTAAGCTTGCA -CCAACATCGTCTGCTAAGCGAACA -CCAACATCGTCTGCTAAGCAGTCA -CCAACATCGTCTGCTAAGGATCCA -CCAACATCGTCTGCTAAGACGACA -CCAACATCGTCTGCTAAGAGCTCA -CCAACATCGTCTGCTAAGTCACGT -CCAACATCGTCTGCTAAGCGTAGT -CCAACATCGTCTGCTAAGGTCAGT -CCAACATCGTCTGCTAAGGAAGGT -CCAACATCGTCTGCTAAGAACCGT -CCAACATCGTCTGCTAAGTTGTGC -CCAACATCGTCTGCTAAGCTAAGC -CCAACATCGTCTGCTAAGACTAGC -CCAACATCGTCTGCTAAGAGATGC -CCAACATCGTCTGCTAAGTGAAGG -CCAACATCGTCTGCTAAGCAATGG -CCAACATCGTCTGCTAAGATGAGG -CCAACATCGTCTGCTAAGAATGGG -CCAACATCGTCTGCTAAGTCCTGA -CCAACATCGTCTGCTAAGTAGCGA -CCAACATCGTCTGCTAAGCACAGA -CCAACATCGTCTGCTAAGGCAAGA -CCAACATCGTCTGCTAAGGGTTGA -CCAACATCGTCTGCTAAGTCCGAT -CCAACATCGTCTGCTAAGTGGCAT -CCAACATCGTCTGCTAAGCGAGAT -CCAACATCGTCTGCTAAGTACCAC -CCAACATCGTCTGCTAAGCAGAAC -CCAACATCGTCTGCTAAGGTCTAC -CCAACATCGTCTGCTAAGACGTAC -CCAACATCGTCTGCTAAGAGTGAC -CCAACATCGTCTGCTAAGCTGTAG -CCAACATCGTCTGCTAAGCCTAAG -CCAACATCGTCTGCTAAGGTTCAG -CCAACATCGTCTGCTAAGGCATAG -CCAACATCGTCTGCTAAGGACAAG -CCAACATCGTCTGCTAAGAAGCAG -CCAACATCGTCTGCTAAGCGTCAA -CCAACATCGTCTGCTAAGGCTGAA -CCAACATCGTCTGCTAAGAGTACG -CCAACATCGTCTGCTAAGATCCGA -CCAACATCGTCTGCTAAGATGGGA -CCAACATCGTCTGCTAAGGTGCAA -CCAACATCGTCTGCTAAGGAGGAA -CCAACATCGTCTGCTAAGCAGGTA -CCAACATCGTCTGCTAAGGACTCT -CCAACATCGTCTGCTAAGAGTCCT -CCAACATCGTCTGCTAAGTAAGCC -CCAACATCGTCTGCTAAGATAGCC -CCAACATCGTCTGCTAAGTAACCG -CCAACATCGTCTGCTAAGATGCCA -CCAACATCGTCTACCTCAGGAAAC -CCAACATCGTCTACCTCAAACACC -CCAACATCGTCTACCTCAATCGAG -CCAACATCGTCTACCTCACTCCTT -CCAACATCGTCTACCTCACCTGTT -CCAACATCGTCTACCTCACGGTTT -CCAACATCGTCTACCTCAGTGGTT -CCAACATCGTCTACCTCAGCCTTT -CCAACATCGTCTACCTCAGGTCTT -CCAACATCGTCTACCTCAACGCTT -CCAACATCGTCTACCTCAAGCGTT -CCAACATCGTCTACCTCATTCGTC -CCAACATCGTCTACCTCATCTCTC -CCAACATCGTCTACCTCATGGATC -CCAACATCGTCTACCTCACACTTC -CCAACATCGTCTACCTCAGTACTC -CCAACATCGTCTACCTCAGATGTC -CCAACATCGTCTACCTCAACAGTC -CCAACATCGTCTACCTCATTGCTG -CCAACATCGTCTACCTCATCCATG -CCAACATCGTCTACCTCATGTGTG -CCAACATCGTCTACCTCACTAGTG -CCAACATCGTCTACCTCACATCTG -CCAACATCGTCTACCTCAGAGTTG -CCAACATCGTCTACCTCAAGACTG -CCAACATCGTCTACCTCATCGGTA -CCAACATCGTCTACCTCATGCCTA -CCAACATCGTCTACCTCACCACTA -CCAACATCGTCTACCTCAGGAGTA -CCAACATCGTCTACCTCATCGTCT -CCAACATCGTCTACCTCATGCACT -CCAACATCGTCTACCTCACTGACT -CCAACATCGTCTACCTCACAACCT -CCAACATCGTCTACCTCAGCTACT -CCAACATCGTCTACCTCAGGATCT -CCAACATCGTCTACCTCAAAGGCT -CCAACATCGTCTACCTCATCAACC -CCAACATCGTCTACCTCATGTTCC -CCAACATCGTCTACCTCAATTCCC -CCAACATCGTCTACCTCATTCTCG -CCAACATCGTCTACCTCATAGACG -CCAACATCGTCTACCTCAGTAACG -CCAACATCGTCTACCTCAACTTCG -CCAACATCGTCTACCTCATACGCA -CCAACATCGTCTACCTCACTTGCA -CCAACATCGTCTACCTCACGAACA -CCAACATCGTCTACCTCACAGTCA -CCAACATCGTCTACCTCAGATCCA -CCAACATCGTCTACCTCAACGACA -CCAACATCGTCTACCTCAAGCTCA -CCAACATCGTCTACCTCATCACGT -CCAACATCGTCTACCTCACGTAGT -CCAACATCGTCTACCTCAGTCAGT -CCAACATCGTCTACCTCAGAAGGT -CCAACATCGTCTACCTCAAACCGT -CCAACATCGTCTACCTCATTGTGC -CCAACATCGTCTACCTCACTAAGC -CCAACATCGTCTACCTCAACTAGC -CCAACATCGTCTACCTCAAGATGC -CCAACATCGTCTACCTCATGAAGG -CCAACATCGTCTACCTCACAATGG -CCAACATCGTCTACCTCAATGAGG -CCAACATCGTCTACCTCAAATGGG -CCAACATCGTCTACCTCATCCTGA -CCAACATCGTCTACCTCATAGCGA -CCAACATCGTCTACCTCACACAGA -CCAACATCGTCTACCTCAGCAAGA -CCAACATCGTCTACCTCAGGTTGA -CCAACATCGTCTACCTCATCCGAT -CCAACATCGTCTACCTCATGGCAT -CCAACATCGTCTACCTCACGAGAT -CCAACATCGTCTACCTCATACCAC -CCAACATCGTCTACCTCACAGAAC -CCAACATCGTCTACCTCAGTCTAC -CCAACATCGTCTACCTCAACGTAC -CCAACATCGTCTACCTCAAGTGAC -CCAACATCGTCTACCTCACTGTAG -CCAACATCGTCTACCTCACCTAAG -CCAACATCGTCTACCTCAGTTCAG -CCAACATCGTCTACCTCAGCATAG -CCAACATCGTCTACCTCAGACAAG -CCAACATCGTCTACCTCAAAGCAG -CCAACATCGTCTACCTCACGTCAA -CCAACATCGTCTACCTCAGCTGAA -CCAACATCGTCTACCTCAAGTACG -CCAACATCGTCTACCTCAATCCGA -CCAACATCGTCTACCTCAATGGGA -CCAACATCGTCTACCTCAGTGCAA -CCAACATCGTCTACCTCAGAGGAA -CCAACATCGTCTACCTCACAGGTA -CCAACATCGTCTACCTCAGACTCT -CCAACATCGTCTACCTCAAGTCCT -CCAACATCGTCTACCTCATAAGCC -CCAACATCGTCTACCTCAATAGCC -CCAACATCGTCTACCTCATAACCG -CCAACATCGTCTACCTCAATGCCA -CCAACATCGTCTTCCTGTGGAAAC -CCAACATCGTCTTCCTGTAACACC -CCAACATCGTCTTCCTGTATCGAG -CCAACATCGTCTTCCTGTCTCCTT -CCAACATCGTCTTCCTGTCCTGTT -CCAACATCGTCTTCCTGTCGGTTT -CCAACATCGTCTTCCTGTGTGGTT -CCAACATCGTCTTCCTGTGCCTTT -CCAACATCGTCTTCCTGTGGTCTT -CCAACATCGTCTTCCTGTACGCTT -CCAACATCGTCTTCCTGTAGCGTT -CCAACATCGTCTTCCTGTTTCGTC -CCAACATCGTCTTCCTGTTCTCTC -CCAACATCGTCTTCCTGTTGGATC -CCAACATCGTCTTCCTGTCACTTC -CCAACATCGTCTTCCTGTGTACTC -CCAACATCGTCTTCCTGTGATGTC -CCAACATCGTCTTCCTGTACAGTC -CCAACATCGTCTTCCTGTTTGCTG -CCAACATCGTCTTCCTGTTCCATG -CCAACATCGTCTTCCTGTTGTGTG -CCAACATCGTCTTCCTGTCTAGTG -CCAACATCGTCTTCCTGTCATCTG -CCAACATCGTCTTCCTGTGAGTTG -CCAACATCGTCTTCCTGTAGACTG -CCAACATCGTCTTCCTGTTCGGTA -CCAACATCGTCTTCCTGTTGCCTA -CCAACATCGTCTTCCTGTCCACTA -CCAACATCGTCTTCCTGTGGAGTA -CCAACATCGTCTTCCTGTTCGTCT -CCAACATCGTCTTCCTGTTGCACT -CCAACATCGTCTTCCTGTCTGACT -CCAACATCGTCTTCCTGTCAACCT -CCAACATCGTCTTCCTGTGCTACT -CCAACATCGTCTTCCTGTGGATCT -CCAACATCGTCTTCCTGTAAGGCT -CCAACATCGTCTTCCTGTTCAACC -CCAACATCGTCTTCCTGTTGTTCC -CCAACATCGTCTTCCTGTATTCCC -CCAACATCGTCTTCCTGTTTCTCG -CCAACATCGTCTTCCTGTTAGACG -CCAACATCGTCTTCCTGTGTAACG -CCAACATCGTCTTCCTGTACTTCG -CCAACATCGTCTTCCTGTTACGCA -CCAACATCGTCTTCCTGTCTTGCA -CCAACATCGTCTTCCTGTCGAACA -CCAACATCGTCTTCCTGTCAGTCA -CCAACATCGTCTTCCTGTGATCCA -CCAACATCGTCTTCCTGTACGACA -CCAACATCGTCTTCCTGTAGCTCA -CCAACATCGTCTTCCTGTTCACGT -CCAACATCGTCTTCCTGTCGTAGT -CCAACATCGTCTTCCTGTGTCAGT -CCAACATCGTCTTCCTGTGAAGGT -CCAACATCGTCTTCCTGTAACCGT -CCAACATCGTCTTCCTGTTTGTGC -CCAACATCGTCTTCCTGTCTAAGC -CCAACATCGTCTTCCTGTACTAGC -CCAACATCGTCTTCCTGTAGATGC -CCAACATCGTCTTCCTGTTGAAGG -CCAACATCGTCTTCCTGTCAATGG -CCAACATCGTCTTCCTGTATGAGG -CCAACATCGTCTTCCTGTAATGGG -CCAACATCGTCTTCCTGTTCCTGA -CCAACATCGTCTTCCTGTTAGCGA -CCAACATCGTCTTCCTGTCACAGA -CCAACATCGTCTTCCTGTGCAAGA -CCAACATCGTCTTCCTGTGGTTGA -CCAACATCGTCTTCCTGTTCCGAT -CCAACATCGTCTTCCTGTTGGCAT -CCAACATCGTCTTCCTGTCGAGAT -CCAACATCGTCTTCCTGTTACCAC -CCAACATCGTCTTCCTGTCAGAAC -CCAACATCGTCTTCCTGTGTCTAC -CCAACATCGTCTTCCTGTACGTAC -CCAACATCGTCTTCCTGTAGTGAC -CCAACATCGTCTTCCTGTCTGTAG -CCAACATCGTCTTCCTGTCCTAAG -CCAACATCGTCTTCCTGTGTTCAG -CCAACATCGTCTTCCTGTGCATAG -CCAACATCGTCTTCCTGTGACAAG -CCAACATCGTCTTCCTGTAAGCAG -CCAACATCGTCTTCCTGTCGTCAA -CCAACATCGTCTTCCTGTGCTGAA -CCAACATCGTCTTCCTGTAGTACG -CCAACATCGTCTTCCTGTATCCGA -CCAACATCGTCTTCCTGTATGGGA -CCAACATCGTCTTCCTGTGTGCAA -CCAACATCGTCTTCCTGTGAGGAA -CCAACATCGTCTTCCTGTCAGGTA -CCAACATCGTCTTCCTGTGACTCT -CCAACATCGTCTTCCTGTAGTCCT -CCAACATCGTCTTCCTGTTAAGCC -CCAACATCGTCTTCCTGTATAGCC -CCAACATCGTCTTCCTGTTAACCG -CCAACATCGTCTTCCTGTATGCCA -CCAACATCGTCTCCCATTGGAAAC -CCAACATCGTCTCCCATTAACACC -CCAACATCGTCTCCCATTATCGAG -CCAACATCGTCTCCCATTCTCCTT -CCAACATCGTCTCCCATTCCTGTT -CCAACATCGTCTCCCATTCGGTTT -CCAACATCGTCTCCCATTGTGGTT -CCAACATCGTCTCCCATTGCCTTT -CCAACATCGTCTCCCATTGGTCTT -CCAACATCGTCTCCCATTACGCTT -CCAACATCGTCTCCCATTAGCGTT -CCAACATCGTCTCCCATTTTCGTC -CCAACATCGTCTCCCATTTCTCTC -CCAACATCGTCTCCCATTTGGATC -CCAACATCGTCTCCCATTCACTTC -CCAACATCGTCTCCCATTGTACTC -CCAACATCGTCTCCCATTGATGTC -CCAACATCGTCTCCCATTACAGTC -CCAACATCGTCTCCCATTTTGCTG -CCAACATCGTCTCCCATTTCCATG -CCAACATCGTCTCCCATTTGTGTG -CCAACATCGTCTCCCATTCTAGTG -CCAACATCGTCTCCCATTCATCTG -CCAACATCGTCTCCCATTGAGTTG -CCAACATCGTCTCCCATTAGACTG -CCAACATCGTCTCCCATTTCGGTA -CCAACATCGTCTCCCATTTGCCTA -CCAACATCGTCTCCCATTCCACTA -CCAACATCGTCTCCCATTGGAGTA -CCAACATCGTCTCCCATTTCGTCT -CCAACATCGTCTCCCATTTGCACT -CCAACATCGTCTCCCATTCTGACT -CCAACATCGTCTCCCATTCAACCT -CCAACATCGTCTCCCATTGCTACT -CCAACATCGTCTCCCATTGGATCT -CCAACATCGTCTCCCATTAAGGCT -CCAACATCGTCTCCCATTTCAACC -CCAACATCGTCTCCCATTTGTTCC -CCAACATCGTCTCCCATTATTCCC -CCAACATCGTCTCCCATTTTCTCG -CCAACATCGTCTCCCATTTAGACG -CCAACATCGTCTCCCATTGTAACG -CCAACATCGTCTCCCATTACTTCG -CCAACATCGTCTCCCATTTACGCA -CCAACATCGTCTCCCATTCTTGCA -CCAACATCGTCTCCCATTCGAACA -CCAACATCGTCTCCCATTCAGTCA -CCAACATCGTCTCCCATTGATCCA -CCAACATCGTCTCCCATTACGACA -CCAACATCGTCTCCCATTAGCTCA -CCAACATCGTCTCCCATTTCACGT -CCAACATCGTCTCCCATTCGTAGT -CCAACATCGTCTCCCATTGTCAGT -CCAACATCGTCTCCCATTGAAGGT -CCAACATCGTCTCCCATTAACCGT -CCAACATCGTCTCCCATTTTGTGC -CCAACATCGTCTCCCATTCTAAGC -CCAACATCGTCTCCCATTACTAGC -CCAACATCGTCTCCCATTAGATGC -CCAACATCGTCTCCCATTTGAAGG -CCAACATCGTCTCCCATTCAATGG -CCAACATCGTCTCCCATTATGAGG -CCAACATCGTCTCCCATTAATGGG -CCAACATCGTCTCCCATTTCCTGA -CCAACATCGTCTCCCATTTAGCGA -CCAACATCGTCTCCCATTCACAGA -CCAACATCGTCTCCCATTGCAAGA -CCAACATCGTCTCCCATTGGTTGA -CCAACATCGTCTCCCATTTCCGAT -CCAACATCGTCTCCCATTTGGCAT -CCAACATCGTCTCCCATTCGAGAT -CCAACATCGTCTCCCATTTACCAC -CCAACATCGTCTCCCATTCAGAAC -CCAACATCGTCTCCCATTGTCTAC -CCAACATCGTCTCCCATTACGTAC -CCAACATCGTCTCCCATTAGTGAC -CCAACATCGTCTCCCATTCTGTAG -CCAACATCGTCTCCCATTCCTAAG -CCAACATCGTCTCCCATTGTTCAG -CCAACATCGTCTCCCATTGCATAG -CCAACATCGTCTCCCATTGACAAG -CCAACATCGTCTCCCATTAAGCAG -CCAACATCGTCTCCCATTCGTCAA -CCAACATCGTCTCCCATTGCTGAA -CCAACATCGTCTCCCATTAGTACG -CCAACATCGTCTCCCATTATCCGA -CCAACATCGTCTCCCATTATGGGA -CCAACATCGTCTCCCATTGTGCAA -CCAACATCGTCTCCCATTGAGGAA -CCAACATCGTCTCCCATTCAGGTA -CCAACATCGTCTCCCATTGACTCT -CCAACATCGTCTCCCATTAGTCCT -CCAACATCGTCTCCCATTTAAGCC -CCAACATCGTCTCCCATTATAGCC -CCAACATCGTCTCCCATTTAACCG -CCAACATCGTCTCCCATTATGCCA -CCAACATCGTCTTCGTTCGGAAAC -CCAACATCGTCTTCGTTCAACACC -CCAACATCGTCTTCGTTCATCGAG -CCAACATCGTCTTCGTTCCTCCTT -CCAACATCGTCTTCGTTCCCTGTT -CCAACATCGTCTTCGTTCCGGTTT -CCAACATCGTCTTCGTTCGTGGTT -CCAACATCGTCTTCGTTCGCCTTT -CCAACATCGTCTTCGTTCGGTCTT -CCAACATCGTCTTCGTTCACGCTT -CCAACATCGTCTTCGTTCAGCGTT -CCAACATCGTCTTCGTTCTTCGTC -CCAACATCGTCTTCGTTCTCTCTC -CCAACATCGTCTTCGTTCTGGATC -CCAACATCGTCTTCGTTCCACTTC -CCAACATCGTCTTCGTTCGTACTC -CCAACATCGTCTTCGTTCGATGTC -CCAACATCGTCTTCGTTCACAGTC -CCAACATCGTCTTCGTTCTTGCTG -CCAACATCGTCTTCGTTCTCCATG -CCAACATCGTCTTCGTTCTGTGTG -CCAACATCGTCTTCGTTCCTAGTG -CCAACATCGTCTTCGTTCCATCTG -CCAACATCGTCTTCGTTCGAGTTG -CCAACATCGTCTTCGTTCAGACTG -CCAACATCGTCTTCGTTCTCGGTA -CCAACATCGTCTTCGTTCTGCCTA -CCAACATCGTCTTCGTTCCCACTA -CCAACATCGTCTTCGTTCGGAGTA -CCAACATCGTCTTCGTTCTCGTCT -CCAACATCGTCTTCGTTCTGCACT -CCAACATCGTCTTCGTTCCTGACT -CCAACATCGTCTTCGTTCCAACCT -CCAACATCGTCTTCGTTCGCTACT -CCAACATCGTCTTCGTTCGGATCT -CCAACATCGTCTTCGTTCAAGGCT -CCAACATCGTCTTCGTTCTCAACC -CCAACATCGTCTTCGTTCTGTTCC -CCAACATCGTCTTCGTTCATTCCC -CCAACATCGTCTTCGTTCTTCTCG -CCAACATCGTCTTCGTTCTAGACG -CCAACATCGTCTTCGTTCGTAACG -CCAACATCGTCTTCGTTCACTTCG -CCAACATCGTCTTCGTTCTACGCA -CCAACATCGTCTTCGTTCCTTGCA -CCAACATCGTCTTCGTTCCGAACA -CCAACATCGTCTTCGTTCCAGTCA -CCAACATCGTCTTCGTTCGATCCA -CCAACATCGTCTTCGTTCACGACA -CCAACATCGTCTTCGTTCAGCTCA -CCAACATCGTCTTCGTTCTCACGT -CCAACATCGTCTTCGTTCCGTAGT -CCAACATCGTCTTCGTTCGTCAGT -CCAACATCGTCTTCGTTCGAAGGT -CCAACATCGTCTTCGTTCAACCGT -CCAACATCGTCTTCGTTCTTGTGC -CCAACATCGTCTTCGTTCCTAAGC -CCAACATCGTCTTCGTTCACTAGC -CCAACATCGTCTTCGTTCAGATGC -CCAACATCGTCTTCGTTCTGAAGG -CCAACATCGTCTTCGTTCCAATGG -CCAACATCGTCTTCGTTCATGAGG -CCAACATCGTCTTCGTTCAATGGG -CCAACATCGTCTTCGTTCTCCTGA -CCAACATCGTCTTCGTTCTAGCGA -CCAACATCGTCTTCGTTCCACAGA -CCAACATCGTCTTCGTTCGCAAGA -CCAACATCGTCTTCGTTCGGTTGA -CCAACATCGTCTTCGTTCTCCGAT -CCAACATCGTCTTCGTTCTGGCAT -CCAACATCGTCTTCGTTCCGAGAT -CCAACATCGTCTTCGTTCTACCAC -CCAACATCGTCTTCGTTCCAGAAC -CCAACATCGTCTTCGTTCGTCTAC -CCAACATCGTCTTCGTTCACGTAC -CCAACATCGTCTTCGTTCAGTGAC -CCAACATCGTCTTCGTTCCTGTAG -CCAACATCGTCTTCGTTCCCTAAG -CCAACATCGTCTTCGTTCGTTCAG -CCAACATCGTCTTCGTTCGCATAG -CCAACATCGTCTTCGTTCGACAAG -CCAACATCGTCTTCGTTCAAGCAG -CCAACATCGTCTTCGTTCCGTCAA -CCAACATCGTCTTCGTTCGCTGAA -CCAACATCGTCTTCGTTCAGTACG -CCAACATCGTCTTCGTTCATCCGA -CCAACATCGTCTTCGTTCATGGGA -CCAACATCGTCTTCGTTCGTGCAA -CCAACATCGTCTTCGTTCGAGGAA -CCAACATCGTCTTCGTTCCAGGTA -CCAACATCGTCTTCGTTCGACTCT -CCAACATCGTCTTCGTTCAGTCCT -CCAACATCGTCTTCGTTCTAAGCC -CCAACATCGTCTTCGTTCATAGCC -CCAACATCGTCTTCGTTCTAACCG -CCAACATCGTCTTCGTTCATGCCA -CCAACATCGTCTACGTAGGGAAAC -CCAACATCGTCTACGTAGAACACC -CCAACATCGTCTACGTAGATCGAG -CCAACATCGTCTACGTAGCTCCTT -CCAACATCGTCTACGTAGCCTGTT -CCAACATCGTCTACGTAGCGGTTT -CCAACATCGTCTACGTAGGTGGTT -CCAACATCGTCTACGTAGGCCTTT -CCAACATCGTCTACGTAGGGTCTT -CCAACATCGTCTACGTAGACGCTT -CCAACATCGTCTACGTAGAGCGTT -CCAACATCGTCTACGTAGTTCGTC -CCAACATCGTCTACGTAGTCTCTC -CCAACATCGTCTACGTAGTGGATC -CCAACATCGTCTACGTAGCACTTC -CCAACATCGTCTACGTAGGTACTC -CCAACATCGTCTACGTAGGATGTC -CCAACATCGTCTACGTAGACAGTC -CCAACATCGTCTACGTAGTTGCTG -CCAACATCGTCTACGTAGTCCATG -CCAACATCGTCTACGTAGTGTGTG -CCAACATCGTCTACGTAGCTAGTG -CCAACATCGTCTACGTAGCATCTG -CCAACATCGTCTACGTAGGAGTTG -CCAACATCGTCTACGTAGAGACTG -CCAACATCGTCTACGTAGTCGGTA -CCAACATCGTCTACGTAGTGCCTA -CCAACATCGTCTACGTAGCCACTA -CCAACATCGTCTACGTAGGGAGTA -CCAACATCGTCTACGTAGTCGTCT -CCAACATCGTCTACGTAGTGCACT -CCAACATCGTCTACGTAGCTGACT -CCAACATCGTCTACGTAGCAACCT -CCAACATCGTCTACGTAGGCTACT -CCAACATCGTCTACGTAGGGATCT -CCAACATCGTCTACGTAGAAGGCT -CCAACATCGTCTACGTAGTCAACC -CCAACATCGTCTACGTAGTGTTCC -CCAACATCGTCTACGTAGATTCCC -CCAACATCGTCTACGTAGTTCTCG -CCAACATCGTCTACGTAGTAGACG -CCAACATCGTCTACGTAGGTAACG -CCAACATCGTCTACGTAGACTTCG -CCAACATCGTCTACGTAGTACGCA -CCAACATCGTCTACGTAGCTTGCA -CCAACATCGTCTACGTAGCGAACA -CCAACATCGTCTACGTAGCAGTCA -CCAACATCGTCTACGTAGGATCCA -CCAACATCGTCTACGTAGACGACA -CCAACATCGTCTACGTAGAGCTCA -CCAACATCGTCTACGTAGTCACGT -CCAACATCGTCTACGTAGCGTAGT -CCAACATCGTCTACGTAGGTCAGT -CCAACATCGTCTACGTAGGAAGGT -CCAACATCGTCTACGTAGAACCGT -CCAACATCGTCTACGTAGTTGTGC -CCAACATCGTCTACGTAGCTAAGC -CCAACATCGTCTACGTAGACTAGC -CCAACATCGTCTACGTAGAGATGC -CCAACATCGTCTACGTAGTGAAGG -CCAACATCGTCTACGTAGCAATGG -CCAACATCGTCTACGTAGATGAGG -CCAACATCGTCTACGTAGAATGGG -CCAACATCGTCTACGTAGTCCTGA -CCAACATCGTCTACGTAGTAGCGA -CCAACATCGTCTACGTAGCACAGA -CCAACATCGTCTACGTAGGCAAGA -CCAACATCGTCTACGTAGGGTTGA -CCAACATCGTCTACGTAGTCCGAT -CCAACATCGTCTACGTAGTGGCAT -CCAACATCGTCTACGTAGCGAGAT -CCAACATCGTCTACGTAGTACCAC -CCAACATCGTCTACGTAGCAGAAC -CCAACATCGTCTACGTAGGTCTAC -CCAACATCGTCTACGTAGACGTAC -CCAACATCGTCTACGTAGAGTGAC -CCAACATCGTCTACGTAGCTGTAG -CCAACATCGTCTACGTAGCCTAAG -CCAACATCGTCTACGTAGGTTCAG -CCAACATCGTCTACGTAGGCATAG -CCAACATCGTCTACGTAGGACAAG -CCAACATCGTCTACGTAGAAGCAG -CCAACATCGTCTACGTAGCGTCAA -CCAACATCGTCTACGTAGGCTGAA -CCAACATCGTCTACGTAGAGTACG -CCAACATCGTCTACGTAGATCCGA -CCAACATCGTCTACGTAGATGGGA -CCAACATCGTCTACGTAGGTGCAA -CCAACATCGTCTACGTAGGAGGAA -CCAACATCGTCTACGTAGCAGGTA -CCAACATCGTCTACGTAGGACTCT -CCAACATCGTCTACGTAGAGTCCT -CCAACATCGTCTACGTAGTAAGCC -CCAACATCGTCTACGTAGATAGCC -CCAACATCGTCTACGTAGTAACCG -CCAACATCGTCTACGTAGATGCCA -CCAACATCGTCTACGGTAGGAAAC -CCAACATCGTCTACGGTAAACACC -CCAACATCGTCTACGGTAATCGAG -CCAACATCGTCTACGGTACTCCTT -CCAACATCGTCTACGGTACCTGTT -CCAACATCGTCTACGGTACGGTTT -CCAACATCGTCTACGGTAGTGGTT -CCAACATCGTCTACGGTAGCCTTT -CCAACATCGTCTACGGTAGGTCTT -CCAACATCGTCTACGGTAACGCTT -CCAACATCGTCTACGGTAAGCGTT -CCAACATCGTCTACGGTATTCGTC -CCAACATCGTCTACGGTATCTCTC -CCAACATCGTCTACGGTATGGATC -CCAACATCGTCTACGGTACACTTC -CCAACATCGTCTACGGTAGTACTC -CCAACATCGTCTACGGTAGATGTC -CCAACATCGTCTACGGTAACAGTC -CCAACATCGTCTACGGTATTGCTG -CCAACATCGTCTACGGTATCCATG -CCAACATCGTCTACGGTATGTGTG -CCAACATCGTCTACGGTACTAGTG -CCAACATCGTCTACGGTACATCTG -CCAACATCGTCTACGGTAGAGTTG -CCAACATCGTCTACGGTAAGACTG -CCAACATCGTCTACGGTATCGGTA -CCAACATCGTCTACGGTATGCCTA -CCAACATCGTCTACGGTACCACTA -CCAACATCGTCTACGGTAGGAGTA -CCAACATCGTCTACGGTATCGTCT -CCAACATCGTCTACGGTATGCACT -CCAACATCGTCTACGGTACTGACT -CCAACATCGTCTACGGTACAACCT -CCAACATCGTCTACGGTAGCTACT -CCAACATCGTCTACGGTAGGATCT -CCAACATCGTCTACGGTAAAGGCT -CCAACATCGTCTACGGTATCAACC -CCAACATCGTCTACGGTATGTTCC -CCAACATCGTCTACGGTAATTCCC -CCAACATCGTCTACGGTATTCTCG -CCAACATCGTCTACGGTATAGACG -CCAACATCGTCTACGGTAGTAACG -CCAACATCGTCTACGGTAACTTCG -CCAACATCGTCTACGGTATACGCA -CCAACATCGTCTACGGTACTTGCA -CCAACATCGTCTACGGTACGAACA -CCAACATCGTCTACGGTACAGTCA -CCAACATCGTCTACGGTAGATCCA -CCAACATCGTCTACGGTAACGACA -CCAACATCGTCTACGGTAAGCTCA -CCAACATCGTCTACGGTATCACGT -CCAACATCGTCTACGGTACGTAGT -CCAACATCGTCTACGGTAGTCAGT -CCAACATCGTCTACGGTAGAAGGT -CCAACATCGTCTACGGTAAACCGT -CCAACATCGTCTACGGTATTGTGC -CCAACATCGTCTACGGTACTAAGC -CCAACATCGTCTACGGTAACTAGC -CCAACATCGTCTACGGTAAGATGC -CCAACATCGTCTACGGTATGAAGG -CCAACATCGTCTACGGTACAATGG -CCAACATCGTCTACGGTAATGAGG -CCAACATCGTCTACGGTAAATGGG -CCAACATCGTCTACGGTATCCTGA -CCAACATCGTCTACGGTATAGCGA -CCAACATCGTCTACGGTACACAGA -CCAACATCGTCTACGGTAGCAAGA -CCAACATCGTCTACGGTAGGTTGA -CCAACATCGTCTACGGTATCCGAT -CCAACATCGTCTACGGTATGGCAT -CCAACATCGTCTACGGTACGAGAT -CCAACATCGTCTACGGTATACCAC -CCAACATCGTCTACGGTACAGAAC -CCAACATCGTCTACGGTAGTCTAC -CCAACATCGTCTACGGTAACGTAC -CCAACATCGTCTACGGTAAGTGAC -CCAACATCGTCTACGGTACTGTAG -CCAACATCGTCTACGGTACCTAAG -CCAACATCGTCTACGGTAGTTCAG -CCAACATCGTCTACGGTAGCATAG -CCAACATCGTCTACGGTAGACAAG -CCAACATCGTCTACGGTAAAGCAG -CCAACATCGTCTACGGTACGTCAA -CCAACATCGTCTACGGTAGCTGAA -CCAACATCGTCTACGGTAAGTACG -CCAACATCGTCTACGGTAATCCGA -CCAACATCGTCTACGGTAATGGGA -CCAACATCGTCTACGGTAGTGCAA -CCAACATCGTCTACGGTAGAGGAA -CCAACATCGTCTACGGTACAGGTA -CCAACATCGTCTACGGTAGACTCT -CCAACATCGTCTACGGTAAGTCCT -CCAACATCGTCTACGGTATAAGCC -CCAACATCGTCTACGGTAATAGCC -CCAACATCGTCTACGGTATAACCG -CCAACATCGTCTACGGTAATGCCA -CCAACATCGTCTTCGACTGGAAAC -CCAACATCGTCTTCGACTAACACC -CCAACATCGTCTTCGACTATCGAG -CCAACATCGTCTTCGACTCTCCTT -CCAACATCGTCTTCGACTCCTGTT -CCAACATCGTCTTCGACTCGGTTT -CCAACATCGTCTTCGACTGTGGTT -CCAACATCGTCTTCGACTGCCTTT -CCAACATCGTCTTCGACTGGTCTT -CCAACATCGTCTTCGACTACGCTT -CCAACATCGTCTTCGACTAGCGTT -CCAACATCGTCTTCGACTTTCGTC -CCAACATCGTCTTCGACTTCTCTC -CCAACATCGTCTTCGACTTGGATC -CCAACATCGTCTTCGACTCACTTC -CCAACATCGTCTTCGACTGTACTC -CCAACATCGTCTTCGACTGATGTC -CCAACATCGTCTTCGACTACAGTC -CCAACATCGTCTTCGACTTTGCTG -CCAACATCGTCTTCGACTTCCATG -CCAACATCGTCTTCGACTTGTGTG -CCAACATCGTCTTCGACTCTAGTG -CCAACATCGTCTTCGACTCATCTG -CCAACATCGTCTTCGACTGAGTTG -CCAACATCGTCTTCGACTAGACTG -CCAACATCGTCTTCGACTTCGGTA -CCAACATCGTCTTCGACTTGCCTA -CCAACATCGTCTTCGACTCCACTA -CCAACATCGTCTTCGACTGGAGTA -CCAACATCGTCTTCGACTTCGTCT -CCAACATCGTCTTCGACTTGCACT -CCAACATCGTCTTCGACTCTGACT -CCAACATCGTCTTCGACTCAACCT -CCAACATCGTCTTCGACTGCTACT -CCAACATCGTCTTCGACTGGATCT -CCAACATCGTCTTCGACTAAGGCT -CCAACATCGTCTTCGACTTCAACC -CCAACATCGTCTTCGACTTGTTCC -CCAACATCGTCTTCGACTATTCCC -CCAACATCGTCTTCGACTTTCTCG -CCAACATCGTCTTCGACTTAGACG -CCAACATCGTCTTCGACTGTAACG -CCAACATCGTCTTCGACTACTTCG -CCAACATCGTCTTCGACTTACGCA -CCAACATCGTCTTCGACTCTTGCA -CCAACATCGTCTTCGACTCGAACA -CCAACATCGTCTTCGACTCAGTCA -CCAACATCGTCTTCGACTGATCCA -CCAACATCGTCTTCGACTACGACA -CCAACATCGTCTTCGACTAGCTCA -CCAACATCGTCTTCGACTTCACGT -CCAACATCGTCTTCGACTCGTAGT -CCAACATCGTCTTCGACTGTCAGT -CCAACATCGTCTTCGACTGAAGGT -CCAACATCGTCTTCGACTAACCGT -CCAACATCGTCTTCGACTTTGTGC -CCAACATCGTCTTCGACTCTAAGC -CCAACATCGTCTTCGACTACTAGC -CCAACATCGTCTTCGACTAGATGC -CCAACATCGTCTTCGACTTGAAGG -CCAACATCGTCTTCGACTCAATGG -CCAACATCGTCTTCGACTATGAGG -CCAACATCGTCTTCGACTAATGGG -CCAACATCGTCTTCGACTTCCTGA -CCAACATCGTCTTCGACTTAGCGA -CCAACATCGTCTTCGACTCACAGA -CCAACATCGTCTTCGACTGCAAGA -CCAACATCGTCTTCGACTGGTTGA -CCAACATCGTCTTCGACTTCCGAT -CCAACATCGTCTTCGACTTGGCAT -CCAACATCGTCTTCGACTCGAGAT -CCAACATCGTCTTCGACTTACCAC -CCAACATCGTCTTCGACTCAGAAC -CCAACATCGTCTTCGACTGTCTAC -CCAACATCGTCTTCGACTACGTAC -CCAACATCGTCTTCGACTAGTGAC -CCAACATCGTCTTCGACTCTGTAG -CCAACATCGTCTTCGACTCCTAAG -CCAACATCGTCTTCGACTGTTCAG -CCAACATCGTCTTCGACTGCATAG -CCAACATCGTCTTCGACTGACAAG -CCAACATCGTCTTCGACTAAGCAG -CCAACATCGTCTTCGACTCGTCAA -CCAACATCGTCTTCGACTGCTGAA -CCAACATCGTCTTCGACTAGTACG -CCAACATCGTCTTCGACTATCCGA -CCAACATCGTCTTCGACTATGGGA -CCAACATCGTCTTCGACTGTGCAA -CCAACATCGTCTTCGACTGAGGAA -CCAACATCGTCTTCGACTCAGGTA -CCAACATCGTCTTCGACTGACTCT -CCAACATCGTCTTCGACTAGTCCT -CCAACATCGTCTTCGACTTAAGCC -CCAACATCGTCTTCGACTATAGCC -CCAACATCGTCTTCGACTTAACCG -CCAACATCGTCTTCGACTATGCCA -CCAACATCGTCTGCATACGGAAAC -CCAACATCGTCTGCATACAACACC -CCAACATCGTCTGCATACATCGAG -CCAACATCGTCTGCATACCTCCTT -CCAACATCGTCTGCATACCCTGTT -CCAACATCGTCTGCATACCGGTTT -CCAACATCGTCTGCATACGTGGTT -CCAACATCGTCTGCATACGCCTTT -CCAACATCGTCTGCATACGGTCTT -CCAACATCGTCTGCATACACGCTT -CCAACATCGTCTGCATACAGCGTT -CCAACATCGTCTGCATACTTCGTC -CCAACATCGTCTGCATACTCTCTC -CCAACATCGTCTGCATACTGGATC -CCAACATCGTCTGCATACCACTTC -CCAACATCGTCTGCATACGTACTC -CCAACATCGTCTGCATACGATGTC -CCAACATCGTCTGCATACACAGTC -CCAACATCGTCTGCATACTTGCTG -CCAACATCGTCTGCATACTCCATG -CCAACATCGTCTGCATACTGTGTG -CCAACATCGTCTGCATACCTAGTG -CCAACATCGTCTGCATACCATCTG -CCAACATCGTCTGCATACGAGTTG -CCAACATCGTCTGCATACAGACTG -CCAACATCGTCTGCATACTCGGTA -CCAACATCGTCTGCATACTGCCTA -CCAACATCGTCTGCATACCCACTA -CCAACATCGTCTGCATACGGAGTA -CCAACATCGTCTGCATACTCGTCT -CCAACATCGTCTGCATACTGCACT -CCAACATCGTCTGCATACCTGACT -CCAACATCGTCTGCATACCAACCT -CCAACATCGTCTGCATACGCTACT -CCAACATCGTCTGCATACGGATCT -CCAACATCGTCTGCATACAAGGCT -CCAACATCGTCTGCATACTCAACC -CCAACATCGTCTGCATACTGTTCC -CCAACATCGTCTGCATACATTCCC -CCAACATCGTCTGCATACTTCTCG -CCAACATCGTCTGCATACTAGACG -CCAACATCGTCTGCATACGTAACG -CCAACATCGTCTGCATACACTTCG -CCAACATCGTCTGCATACTACGCA -CCAACATCGTCTGCATACCTTGCA -CCAACATCGTCTGCATACCGAACA -CCAACATCGTCTGCATACCAGTCA -CCAACATCGTCTGCATACGATCCA -CCAACATCGTCTGCATACACGACA -CCAACATCGTCTGCATACAGCTCA -CCAACATCGTCTGCATACTCACGT -CCAACATCGTCTGCATACCGTAGT -CCAACATCGTCTGCATACGTCAGT -CCAACATCGTCTGCATACGAAGGT -CCAACATCGTCTGCATACAACCGT -CCAACATCGTCTGCATACTTGTGC -CCAACATCGTCTGCATACCTAAGC -CCAACATCGTCTGCATACACTAGC -CCAACATCGTCTGCATACAGATGC -CCAACATCGTCTGCATACTGAAGG -CCAACATCGTCTGCATACCAATGG -CCAACATCGTCTGCATACATGAGG -CCAACATCGTCTGCATACAATGGG -CCAACATCGTCTGCATACTCCTGA -CCAACATCGTCTGCATACTAGCGA -CCAACATCGTCTGCATACCACAGA -CCAACATCGTCTGCATACGCAAGA -CCAACATCGTCTGCATACGGTTGA -CCAACATCGTCTGCATACTCCGAT -CCAACATCGTCTGCATACTGGCAT -CCAACATCGTCTGCATACCGAGAT -CCAACATCGTCTGCATACTACCAC -CCAACATCGTCTGCATACCAGAAC -CCAACATCGTCTGCATACGTCTAC -CCAACATCGTCTGCATACACGTAC -CCAACATCGTCTGCATACAGTGAC -CCAACATCGTCTGCATACCTGTAG -CCAACATCGTCTGCATACCCTAAG -CCAACATCGTCTGCATACGTTCAG -CCAACATCGTCTGCATACGCATAG -CCAACATCGTCTGCATACGACAAG -CCAACATCGTCTGCATACAAGCAG -CCAACATCGTCTGCATACCGTCAA -CCAACATCGTCTGCATACGCTGAA -CCAACATCGTCTGCATACAGTACG -CCAACATCGTCTGCATACATCCGA -CCAACATCGTCTGCATACATGGGA -CCAACATCGTCTGCATACGTGCAA -CCAACATCGTCTGCATACGAGGAA -CCAACATCGTCTGCATACCAGGTA -CCAACATCGTCTGCATACGACTCT -CCAACATCGTCTGCATACAGTCCT -CCAACATCGTCTGCATACTAAGCC -CCAACATCGTCTGCATACATAGCC -CCAACATCGTCTGCATACTAACCG -CCAACATCGTCTGCATACATGCCA -CCAACATCGTCTGCACTTGGAAAC -CCAACATCGTCTGCACTTAACACC -CCAACATCGTCTGCACTTATCGAG -CCAACATCGTCTGCACTTCTCCTT -CCAACATCGTCTGCACTTCCTGTT -CCAACATCGTCTGCACTTCGGTTT -CCAACATCGTCTGCACTTGTGGTT -CCAACATCGTCTGCACTTGCCTTT -CCAACATCGTCTGCACTTGGTCTT -CCAACATCGTCTGCACTTACGCTT -CCAACATCGTCTGCACTTAGCGTT -CCAACATCGTCTGCACTTTTCGTC -CCAACATCGTCTGCACTTTCTCTC -CCAACATCGTCTGCACTTTGGATC -CCAACATCGTCTGCACTTCACTTC -CCAACATCGTCTGCACTTGTACTC -CCAACATCGTCTGCACTTGATGTC -CCAACATCGTCTGCACTTACAGTC -CCAACATCGTCTGCACTTTTGCTG -CCAACATCGTCTGCACTTTCCATG -CCAACATCGTCTGCACTTTGTGTG -CCAACATCGTCTGCACTTCTAGTG -CCAACATCGTCTGCACTTCATCTG -CCAACATCGTCTGCACTTGAGTTG -CCAACATCGTCTGCACTTAGACTG -CCAACATCGTCTGCACTTTCGGTA -CCAACATCGTCTGCACTTTGCCTA -CCAACATCGTCTGCACTTCCACTA -CCAACATCGTCTGCACTTGGAGTA -CCAACATCGTCTGCACTTTCGTCT -CCAACATCGTCTGCACTTTGCACT -CCAACATCGTCTGCACTTCTGACT -CCAACATCGTCTGCACTTCAACCT -CCAACATCGTCTGCACTTGCTACT -CCAACATCGTCTGCACTTGGATCT -CCAACATCGTCTGCACTTAAGGCT -CCAACATCGTCTGCACTTTCAACC -CCAACATCGTCTGCACTTTGTTCC -CCAACATCGTCTGCACTTATTCCC -CCAACATCGTCTGCACTTTTCTCG -CCAACATCGTCTGCACTTTAGACG -CCAACATCGTCTGCACTTGTAACG -CCAACATCGTCTGCACTTACTTCG -CCAACATCGTCTGCACTTTACGCA -CCAACATCGTCTGCACTTCTTGCA -CCAACATCGTCTGCACTTCGAACA -CCAACATCGTCTGCACTTCAGTCA -CCAACATCGTCTGCACTTGATCCA -CCAACATCGTCTGCACTTACGACA -CCAACATCGTCTGCACTTAGCTCA -CCAACATCGTCTGCACTTTCACGT -CCAACATCGTCTGCACTTCGTAGT -CCAACATCGTCTGCACTTGTCAGT -CCAACATCGTCTGCACTTGAAGGT -CCAACATCGTCTGCACTTAACCGT -CCAACATCGTCTGCACTTTTGTGC -CCAACATCGTCTGCACTTCTAAGC -CCAACATCGTCTGCACTTACTAGC -CCAACATCGTCTGCACTTAGATGC -CCAACATCGTCTGCACTTTGAAGG -CCAACATCGTCTGCACTTCAATGG -CCAACATCGTCTGCACTTATGAGG -CCAACATCGTCTGCACTTAATGGG -CCAACATCGTCTGCACTTTCCTGA -CCAACATCGTCTGCACTTTAGCGA -CCAACATCGTCTGCACTTCACAGA -CCAACATCGTCTGCACTTGCAAGA -CCAACATCGTCTGCACTTGGTTGA -CCAACATCGTCTGCACTTTCCGAT -CCAACATCGTCTGCACTTTGGCAT -CCAACATCGTCTGCACTTCGAGAT -CCAACATCGTCTGCACTTTACCAC -CCAACATCGTCTGCACTTCAGAAC -CCAACATCGTCTGCACTTGTCTAC -CCAACATCGTCTGCACTTACGTAC -CCAACATCGTCTGCACTTAGTGAC -CCAACATCGTCTGCACTTCTGTAG -CCAACATCGTCTGCACTTCCTAAG -CCAACATCGTCTGCACTTGTTCAG -CCAACATCGTCTGCACTTGCATAG -CCAACATCGTCTGCACTTGACAAG -CCAACATCGTCTGCACTTAAGCAG -CCAACATCGTCTGCACTTCGTCAA -CCAACATCGTCTGCACTTGCTGAA -CCAACATCGTCTGCACTTAGTACG -CCAACATCGTCTGCACTTATCCGA -CCAACATCGTCTGCACTTATGGGA -CCAACATCGTCTGCACTTGTGCAA -CCAACATCGTCTGCACTTGAGGAA -CCAACATCGTCTGCACTTCAGGTA -CCAACATCGTCTGCACTTGACTCT -CCAACATCGTCTGCACTTAGTCCT -CCAACATCGTCTGCACTTTAAGCC -CCAACATCGTCTGCACTTATAGCC -CCAACATCGTCTGCACTTTAACCG -CCAACATCGTCTGCACTTATGCCA -CCAACATCGTCTACACGAGGAAAC -CCAACATCGTCTACACGAAACACC -CCAACATCGTCTACACGAATCGAG -CCAACATCGTCTACACGACTCCTT -CCAACATCGTCTACACGACCTGTT -CCAACATCGTCTACACGACGGTTT -CCAACATCGTCTACACGAGTGGTT -CCAACATCGTCTACACGAGCCTTT -CCAACATCGTCTACACGAGGTCTT -CCAACATCGTCTACACGAACGCTT -CCAACATCGTCTACACGAAGCGTT -CCAACATCGTCTACACGATTCGTC -CCAACATCGTCTACACGATCTCTC -CCAACATCGTCTACACGATGGATC -CCAACATCGTCTACACGACACTTC -CCAACATCGTCTACACGAGTACTC -CCAACATCGTCTACACGAGATGTC -CCAACATCGTCTACACGAACAGTC -CCAACATCGTCTACACGATTGCTG -CCAACATCGTCTACACGATCCATG -CCAACATCGTCTACACGATGTGTG -CCAACATCGTCTACACGACTAGTG -CCAACATCGTCTACACGACATCTG -CCAACATCGTCTACACGAGAGTTG -CCAACATCGTCTACACGAAGACTG -CCAACATCGTCTACACGATCGGTA -CCAACATCGTCTACACGATGCCTA -CCAACATCGTCTACACGACCACTA -CCAACATCGTCTACACGAGGAGTA -CCAACATCGTCTACACGATCGTCT -CCAACATCGTCTACACGATGCACT -CCAACATCGTCTACACGACTGACT -CCAACATCGTCTACACGACAACCT -CCAACATCGTCTACACGAGCTACT -CCAACATCGTCTACACGAGGATCT -CCAACATCGTCTACACGAAAGGCT -CCAACATCGTCTACACGATCAACC -CCAACATCGTCTACACGATGTTCC -CCAACATCGTCTACACGAATTCCC -CCAACATCGTCTACACGATTCTCG -CCAACATCGTCTACACGATAGACG -CCAACATCGTCTACACGAGTAACG -CCAACATCGTCTACACGAACTTCG -CCAACATCGTCTACACGATACGCA -CCAACATCGTCTACACGACTTGCA -CCAACATCGTCTACACGACGAACA -CCAACATCGTCTACACGACAGTCA -CCAACATCGTCTACACGAGATCCA -CCAACATCGTCTACACGAACGACA -CCAACATCGTCTACACGAAGCTCA -CCAACATCGTCTACACGATCACGT -CCAACATCGTCTACACGACGTAGT -CCAACATCGTCTACACGAGTCAGT -CCAACATCGTCTACACGAGAAGGT -CCAACATCGTCTACACGAAACCGT -CCAACATCGTCTACACGATTGTGC -CCAACATCGTCTACACGACTAAGC -CCAACATCGTCTACACGAACTAGC -CCAACATCGTCTACACGAAGATGC -CCAACATCGTCTACACGATGAAGG -CCAACATCGTCTACACGACAATGG -CCAACATCGTCTACACGAATGAGG -CCAACATCGTCTACACGAAATGGG -CCAACATCGTCTACACGATCCTGA -CCAACATCGTCTACACGATAGCGA -CCAACATCGTCTACACGACACAGA -CCAACATCGTCTACACGAGCAAGA -CCAACATCGTCTACACGAGGTTGA -CCAACATCGTCTACACGATCCGAT -CCAACATCGTCTACACGATGGCAT -CCAACATCGTCTACACGACGAGAT -CCAACATCGTCTACACGATACCAC -CCAACATCGTCTACACGACAGAAC -CCAACATCGTCTACACGAGTCTAC -CCAACATCGTCTACACGAACGTAC -CCAACATCGTCTACACGAAGTGAC -CCAACATCGTCTACACGACTGTAG -CCAACATCGTCTACACGACCTAAG -CCAACATCGTCTACACGAGTTCAG -CCAACATCGTCTACACGAGCATAG -CCAACATCGTCTACACGAGACAAG -CCAACATCGTCTACACGAAAGCAG -CCAACATCGTCTACACGACGTCAA -CCAACATCGTCTACACGAGCTGAA -CCAACATCGTCTACACGAAGTACG -CCAACATCGTCTACACGAATCCGA -CCAACATCGTCTACACGAATGGGA -CCAACATCGTCTACACGAGTGCAA -CCAACATCGTCTACACGAGAGGAA -CCAACATCGTCTACACGACAGGTA -CCAACATCGTCTACACGAGACTCT -CCAACATCGTCTACACGAAGTCCT -CCAACATCGTCTACACGATAAGCC -CCAACATCGTCTACACGAATAGCC -CCAACATCGTCTACACGATAACCG -CCAACATCGTCTACACGAATGCCA -CCAACATCGTCTTCACAGGGAAAC -CCAACATCGTCTTCACAGAACACC -CCAACATCGTCTTCACAGATCGAG -CCAACATCGTCTTCACAGCTCCTT -CCAACATCGTCTTCACAGCCTGTT -CCAACATCGTCTTCACAGCGGTTT -CCAACATCGTCTTCACAGGTGGTT -CCAACATCGTCTTCACAGGCCTTT -CCAACATCGTCTTCACAGGGTCTT -CCAACATCGTCTTCACAGACGCTT -CCAACATCGTCTTCACAGAGCGTT -CCAACATCGTCTTCACAGTTCGTC -CCAACATCGTCTTCACAGTCTCTC -CCAACATCGTCTTCACAGTGGATC -CCAACATCGTCTTCACAGCACTTC -CCAACATCGTCTTCACAGGTACTC -CCAACATCGTCTTCACAGGATGTC -CCAACATCGTCTTCACAGACAGTC -CCAACATCGTCTTCACAGTTGCTG -CCAACATCGTCTTCACAGTCCATG -CCAACATCGTCTTCACAGTGTGTG -CCAACATCGTCTTCACAGCTAGTG -CCAACATCGTCTTCACAGCATCTG -CCAACATCGTCTTCACAGGAGTTG -CCAACATCGTCTTCACAGAGACTG -CCAACATCGTCTTCACAGTCGGTA -CCAACATCGTCTTCACAGTGCCTA -CCAACATCGTCTTCACAGCCACTA -CCAACATCGTCTTCACAGGGAGTA -CCAACATCGTCTTCACAGTCGTCT -CCAACATCGTCTTCACAGTGCACT -CCAACATCGTCTTCACAGCTGACT -CCAACATCGTCTTCACAGCAACCT -CCAACATCGTCTTCACAGGCTACT -CCAACATCGTCTTCACAGGGATCT -CCAACATCGTCTTCACAGAAGGCT -CCAACATCGTCTTCACAGTCAACC -CCAACATCGTCTTCACAGTGTTCC -CCAACATCGTCTTCACAGATTCCC -CCAACATCGTCTTCACAGTTCTCG -CCAACATCGTCTTCACAGTAGACG -CCAACATCGTCTTCACAGGTAACG -CCAACATCGTCTTCACAGACTTCG -CCAACATCGTCTTCACAGTACGCA -CCAACATCGTCTTCACAGCTTGCA -CCAACATCGTCTTCACAGCGAACA -CCAACATCGTCTTCACAGCAGTCA -CCAACATCGTCTTCACAGGATCCA -CCAACATCGTCTTCACAGACGACA -CCAACATCGTCTTCACAGAGCTCA -CCAACATCGTCTTCACAGTCACGT -CCAACATCGTCTTCACAGCGTAGT -CCAACATCGTCTTCACAGGTCAGT -CCAACATCGTCTTCACAGGAAGGT -CCAACATCGTCTTCACAGAACCGT -CCAACATCGTCTTCACAGTTGTGC -CCAACATCGTCTTCACAGCTAAGC -CCAACATCGTCTTCACAGACTAGC -CCAACATCGTCTTCACAGAGATGC -CCAACATCGTCTTCACAGTGAAGG -CCAACATCGTCTTCACAGCAATGG -CCAACATCGTCTTCACAGATGAGG -CCAACATCGTCTTCACAGAATGGG -CCAACATCGTCTTCACAGTCCTGA -CCAACATCGTCTTCACAGTAGCGA -CCAACATCGTCTTCACAGCACAGA -CCAACATCGTCTTCACAGGCAAGA -CCAACATCGTCTTCACAGGGTTGA -CCAACATCGTCTTCACAGTCCGAT -CCAACATCGTCTTCACAGTGGCAT -CCAACATCGTCTTCACAGCGAGAT -CCAACATCGTCTTCACAGTACCAC -CCAACATCGTCTTCACAGCAGAAC -CCAACATCGTCTTCACAGGTCTAC -CCAACATCGTCTTCACAGACGTAC -CCAACATCGTCTTCACAGAGTGAC -CCAACATCGTCTTCACAGCTGTAG -CCAACATCGTCTTCACAGCCTAAG -CCAACATCGTCTTCACAGGTTCAG -CCAACATCGTCTTCACAGGCATAG -CCAACATCGTCTTCACAGGACAAG -CCAACATCGTCTTCACAGAAGCAG -CCAACATCGTCTTCACAGCGTCAA -CCAACATCGTCTTCACAGGCTGAA -CCAACATCGTCTTCACAGAGTACG -CCAACATCGTCTTCACAGATCCGA -CCAACATCGTCTTCACAGATGGGA -CCAACATCGTCTTCACAGGTGCAA -CCAACATCGTCTTCACAGGAGGAA -CCAACATCGTCTTCACAGCAGGTA -CCAACATCGTCTTCACAGGACTCT -CCAACATCGTCTTCACAGAGTCCT -CCAACATCGTCTTCACAGTAAGCC -CCAACATCGTCTTCACAGATAGCC -CCAACATCGTCTTCACAGTAACCG -CCAACATCGTCTTCACAGATGCCA -CCAACATCGTCTCCAGATGGAAAC -CCAACATCGTCTCCAGATAACACC -CCAACATCGTCTCCAGATATCGAG -CCAACATCGTCTCCAGATCTCCTT -CCAACATCGTCTCCAGATCCTGTT -CCAACATCGTCTCCAGATCGGTTT -CCAACATCGTCTCCAGATGTGGTT -CCAACATCGTCTCCAGATGCCTTT -CCAACATCGTCTCCAGATGGTCTT -CCAACATCGTCTCCAGATACGCTT -CCAACATCGTCTCCAGATAGCGTT -CCAACATCGTCTCCAGATTTCGTC -CCAACATCGTCTCCAGATTCTCTC -CCAACATCGTCTCCAGATTGGATC -CCAACATCGTCTCCAGATCACTTC -CCAACATCGTCTCCAGATGTACTC -CCAACATCGTCTCCAGATGATGTC -CCAACATCGTCTCCAGATACAGTC -CCAACATCGTCTCCAGATTTGCTG -CCAACATCGTCTCCAGATTCCATG -CCAACATCGTCTCCAGATTGTGTG -CCAACATCGTCTCCAGATCTAGTG -CCAACATCGTCTCCAGATCATCTG -CCAACATCGTCTCCAGATGAGTTG -CCAACATCGTCTCCAGATAGACTG -CCAACATCGTCTCCAGATTCGGTA -CCAACATCGTCTCCAGATTGCCTA -CCAACATCGTCTCCAGATCCACTA -CCAACATCGTCTCCAGATGGAGTA -CCAACATCGTCTCCAGATTCGTCT -CCAACATCGTCTCCAGATTGCACT -CCAACATCGTCTCCAGATCTGACT -CCAACATCGTCTCCAGATCAACCT -CCAACATCGTCTCCAGATGCTACT -CCAACATCGTCTCCAGATGGATCT -CCAACATCGTCTCCAGATAAGGCT -CCAACATCGTCTCCAGATTCAACC -CCAACATCGTCTCCAGATTGTTCC -CCAACATCGTCTCCAGATATTCCC -CCAACATCGTCTCCAGATTTCTCG -CCAACATCGTCTCCAGATTAGACG -CCAACATCGTCTCCAGATGTAACG -CCAACATCGTCTCCAGATACTTCG -CCAACATCGTCTCCAGATTACGCA -CCAACATCGTCTCCAGATCTTGCA -CCAACATCGTCTCCAGATCGAACA -CCAACATCGTCTCCAGATCAGTCA -CCAACATCGTCTCCAGATGATCCA -CCAACATCGTCTCCAGATACGACA -CCAACATCGTCTCCAGATAGCTCA -CCAACATCGTCTCCAGATTCACGT -CCAACATCGTCTCCAGATCGTAGT -CCAACATCGTCTCCAGATGTCAGT -CCAACATCGTCTCCAGATGAAGGT -CCAACATCGTCTCCAGATAACCGT -CCAACATCGTCTCCAGATTTGTGC -CCAACATCGTCTCCAGATCTAAGC -CCAACATCGTCTCCAGATACTAGC -CCAACATCGTCTCCAGATAGATGC -CCAACATCGTCTCCAGATTGAAGG -CCAACATCGTCTCCAGATCAATGG -CCAACATCGTCTCCAGATATGAGG -CCAACATCGTCTCCAGATAATGGG -CCAACATCGTCTCCAGATTCCTGA -CCAACATCGTCTCCAGATTAGCGA -CCAACATCGTCTCCAGATCACAGA -CCAACATCGTCTCCAGATGCAAGA -CCAACATCGTCTCCAGATGGTTGA -CCAACATCGTCTCCAGATTCCGAT -CCAACATCGTCTCCAGATTGGCAT -CCAACATCGTCTCCAGATCGAGAT -CCAACATCGTCTCCAGATTACCAC -CCAACATCGTCTCCAGATCAGAAC -CCAACATCGTCTCCAGATGTCTAC -CCAACATCGTCTCCAGATACGTAC -CCAACATCGTCTCCAGATAGTGAC -CCAACATCGTCTCCAGATCTGTAG -CCAACATCGTCTCCAGATCCTAAG -CCAACATCGTCTCCAGATGTTCAG -CCAACATCGTCTCCAGATGCATAG -CCAACATCGTCTCCAGATGACAAG -CCAACATCGTCTCCAGATAAGCAG -CCAACATCGTCTCCAGATCGTCAA -CCAACATCGTCTCCAGATGCTGAA -CCAACATCGTCTCCAGATAGTACG -CCAACATCGTCTCCAGATATCCGA -CCAACATCGTCTCCAGATATGGGA -CCAACATCGTCTCCAGATGTGCAA -CCAACATCGTCTCCAGATGAGGAA -CCAACATCGTCTCCAGATCAGGTA -CCAACATCGTCTCCAGATGACTCT -CCAACATCGTCTCCAGATAGTCCT -CCAACATCGTCTCCAGATTAAGCC -CCAACATCGTCTCCAGATATAGCC -CCAACATCGTCTCCAGATTAACCG -CCAACATCGTCTCCAGATATGCCA -CCAACATCGTCTACAACGGGAAAC -CCAACATCGTCTACAACGAACACC -CCAACATCGTCTACAACGATCGAG -CCAACATCGTCTACAACGCTCCTT -CCAACATCGTCTACAACGCCTGTT -CCAACATCGTCTACAACGCGGTTT -CCAACATCGTCTACAACGGTGGTT -CCAACATCGTCTACAACGGCCTTT -CCAACATCGTCTACAACGGGTCTT -CCAACATCGTCTACAACGACGCTT -CCAACATCGTCTACAACGAGCGTT -CCAACATCGTCTACAACGTTCGTC -CCAACATCGTCTACAACGTCTCTC -CCAACATCGTCTACAACGTGGATC -CCAACATCGTCTACAACGCACTTC -CCAACATCGTCTACAACGGTACTC -CCAACATCGTCTACAACGGATGTC -CCAACATCGTCTACAACGACAGTC -CCAACATCGTCTACAACGTTGCTG -CCAACATCGTCTACAACGTCCATG -CCAACATCGTCTACAACGTGTGTG -CCAACATCGTCTACAACGCTAGTG -CCAACATCGTCTACAACGCATCTG -CCAACATCGTCTACAACGGAGTTG -CCAACATCGTCTACAACGAGACTG -CCAACATCGTCTACAACGTCGGTA -CCAACATCGTCTACAACGTGCCTA -CCAACATCGTCTACAACGCCACTA -CCAACATCGTCTACAACGGGAGTA -CCAACATCGTCTACAACGTCGTCT -CCAACATCGTCTACAACGTGCACT -CCAACATCGTCTACAACGCTGACT -CCAACATCGTCTACAACGCAACCT -CCAACATCGTCTACAACGGCTACT -CCAACATCGTCTACAACGGGATCT -CCAACATCGTCTACAACGAAGGCT -CCAACATCGTCTACAACGTCAACC -CCAACATCGTCTACAACGTGTTCC -CCAACATCGTCTACAACGATTCCC -CCAACATCGTCTACAACGTTCTCG -CCAACATCGTCTACAACGTAGACG -CCAACATCGTCTACAACGGTAACG -CCAACATCGTCTACAACGACTTCG -CCAACATCGTCTACAACGTACGCA -CCAACATCGTCTACAACGCTTGCA -CCAACATCGTCTACAACGCGAACA -CCAACATCGTCTACAACGCAGTCA -CCAACATCGTCTACAACGGATCCA -CCAACATCGTCTACAACGACGACA -CCAACATCGTCTACAACGAGCTCA -CCAACATCGTCTACAACGTCACGT -CCAACATCGTCTACAACGCGTAGT -CCAACATCGTCTACAACGGTCAGT -CCAACATCGTCTACAACGGAAGGT -CCAACATCGTCTACAACGAACCGT -CCAACATCGTCTACAACGTTGTGC -CCAACATCGTCTACAACGCTAAGC -CCAACATCGTCTACAACGACTAGC -CCAACATCGTCTACAACGAGATGC -CCAACATCGTCTACAACGTGAAGG -CCAACATCGTCTACAACGCAATGG -CCAACATCGTCTACAACGATGAGG -CCAACATCGTCTACAACGAATGGG -CCAACATCGTCTACAACGTCCTGA -CCAACATCGTCTACAACGTAGCGA -CCAACATCGTCTACAACGCACAGA -CCAACATCGTCTACAACGGCAAGA -CCAACATCGTCTACAACGGGTTGA -CCAACATCGTCTACAACGTCCGAT -CCAACATCGTCTACAACGTGGCAT -CCAACATCGTCTACAACGCGAGAT -CCAACATCGTCTACAACGTACCAC -CCAACATCGTCTACAACGCAGAAC -CCAACATCGTCTACAACGGTCTAC -CCAACATCGTCTACAACGACGTAC -CCAACATCGTCTACAACGAGTGAC -CCAACATCGTCTACAACGCTGTAG -CCAACATCGTCTACAACGCCTAAG -CCAACATCGTCTACAACGGTTCAG -CCAACATCGTCTACAACGGCATAG -CCAACATCGTCTACAACGGACAAG -CCAACATCGTCTACAACGAAGCAG -CCAACATCGTCTACAACGCGTCAA -CCAACATCGTCTACAACGGCTGAA -CCAACATCGTCTACAACGAGTACG -CCAACATCGTCTACAACGATCCGA -CCAACATCGTCTACAACGATGGGA -CCAACATCGTCTACAACGGTGCAA -CCAACATCGTCTACAACGGAGGAA -CCAACATCGTCTACAACGCAGGTA -CCAACATCGTCTACAACGGACTCT -CCAACATCGTCTACAACGAGTCCT -CCAACATCGTCTACAACGTAAGCC -CCAACATCGTCTACAACGATAGCC -CCAACATCGTCTACAACGTAACCG -CCAACATCGTCTACAACGATGCCA -CCAACATCGTCTTCAAGCGGAAAC -CCAACATCGTCTTCAAGCAACACC -CCAACATCGTCTTCAAGCATCGAG -CCAACATCGTCTTCAAGCCTCCTT -CCAACATCGTCTTCAAGCCCTGTT -CCAACATCGTCTTCAAGCCGGTTT -CCAACATCGTCTTCAAGCGTGGTT -CCAACATCGTCTTCAAGCGCCTTT -CCAACATCGTCTTCAAGCGGTCTT -CCAACATCGTCTTCAAGCACGCTT -CCAACATCGTCTTCAAGCAGCGTT -CCAACATCGTCTTCAAGCTTCGTC -CCAACATCGTCTTCAAGCTCTCTC -CCAACATCGTCTTCAAGCTGGATC -CCAACATCGTCTTCAAGCCACTTC -CCAACATCGTCTTCAAGCGTACTC -CCAACATCGTCTTCAAGCGATGTC -CCAACATCGTCTTCAAGCACAGTC -CCAACATCGTCTTCAAGCTTGCTG -CCAACATCGTCTTCAAGCTCCATG -CCAACATCGTCTTCAAGCTGTGTG -CCAACATCGTCTTCAAGCCTAGTG -CCAACATCGTCTTCAAGCCATCTG -CCAACATCGTCTTCAAGCGAGTTG -CCAACATCGTCTTCAAGCAGACTG -CCAACATCGTCTTCAAGCTCGGTA -CCAACATCGTCTTCAAGCTGCCTA -CCAACATCGTCTTCAAGCCCACTA -CCAACATCGTCTTCAAGCGGAGTA -CCAACATCGTCTTCAAGCTCGTCT -CCAACATCGTCTTCAAGCTGCACT -CCAACATCGTCTTCAAGCCTGACT -CCAACATCGTCTTCAAGCCAACCT -CCAACATCGTCTTCAAGCGCTACT -CCAACATCGTCTTCAAGCGGATCT -CCAACATCGTCTTCAAGCAAGGCT -CCAACATCGTCTTCAAGCTCAACC -CCAACATCGTCTTCAAGCTGTTCC -CCAACATCGTCTTCAAGCATTCCC -CCAACATCGTCTTCAAGCTTCTCG -CCAACATCGTCTTCAAGCTAGACG -CCAACATCGTCTTCAAGCGTAACG -CCAACATCGTCTTCAAGCACTTCG -CCAACATCGTCTTCAAGCTACGCA -CCAACATCGTCTTCAAGCCTTGCA -CCAACATCGTCTTCAAGCCGAACA -CCAACATCGTCTTCAAGCCAGTCA -CCAACATCGTCTTCAAGCGATCCA -CCAACATCGTCTTCAAGCACGACA -CCAACATCGTCTTCAAGCAGCTCA -CCAACATCGTCTTCAAGCTCACGT -CCAACATCGTCTTCAAGCCGTAGT -CCAACATCGTCTTCAAGCGTCAGT -CCAACATCGTCTTCAAGCGAAGGT -CCAACATCGTCTTCAAGCAACCGT -CCAACATCGTCTTCAAGCTTGTGC -CCAACATCGTCTTCAAGCCTAAGC -CCAACATCGTCTTCAAGCACTAGC -CCAACATCGTCTTCAAGCAGATGC -CCAACATCGTCTTCAAGCTGAAGG -CCAACATCGTCTTCAAGCCAATGG -CCAACATCGTCTTCAAGCATGAGG -CCAACATCGTCTTCAAGCAATGGG -CCAACATCGTCTTCAAGCTCCTGA -CCAACATCGTCTTCAAGCTAGCGA -CCAACATCGTCTTCAAGCCACAGA -CCAACATCGTCTTCAAGCGCAAGA -CCAACATCGTCTTCAAGCGGTTGA -CCAACATCGTCTTCAAGCTCCGAT -CCAACATCGTCTTCAAGCTGGCAT -CCAACATCGTCTTCAAGCCGAGAT -CCAACATCGTCTTCAAGCTACCAC -CCAACATCGTCTTCAAGCCAGAAC -CCAACATCGTCTTCAAGCGTCTAC -CCAACATCGTCTTCAAGCACGTAC -CCAACATCGTCTTCAAGCAGTGAC -CCAACATCGTCTTCAAGCCTGTAG -CCAACATCGTCTTCAAGCCCTAAG -CCAACATCGTCTTCAAGCGTTCAG -CCAACATCGTCTTCAAGCGCATAG -CCAACATCGTCTTCAAGCGACAAG -CCAACATCGTCTTCAAGCAAGCAG -CCAACATCGTCTTCAAGCCGTCAA -CCAACATCGTCTTCAAGCGCTGAA -CCAACATCGTCTTCAAGCAGTACG -CCAACATCGTCTTCAAGCATCCGA -CCAACATCGTCTTCAAGCATGGGA -CCAACATCGTCTTCAAGCGTGCAA -CCAACATCGTCTTCAAGCGAGGAA -CCAACATCGTCTTCAAGCCAGGTA -CCAACATCGTCTTCAAGCGACTCT -CCAACATCGTCTTCAAGCAGTCCT -CCAACATCGTCTTCAAGCTAAGCC -CCAACATCGTCTTCAAGCATAGCC -CCAACATCGTCTTCAAGCTAACCG -CCAACATCGTCTTCAAGCATGCCA -CCAACATCGTCTCGTTCAGGAAAC -CCAACATCGTCTCGTTCAAACACC -CCAACATCGTCTCGTTCAATCGAG -CCAACATCGTCTCGTTCACTCCTT -CCAACATCGTCTCGTTCACCTGTT -CCAACATCGTCTCGTTCACGGTTT -CCAACATCGTCTCGTTCAGTGGTT -CCAACATCGTCTCGTTCAGCCTTT -CCAACATCGTCTCGTTCAGGTCTT -CCAACATCGTCTCGTTCAACGCTT -CCAACATCGTCTCGTTCAAGCGTT -CCAACATCGTCTCGTTCATTCGTC -CCAACATCGTCTCGTTCATCTCTC -CCAACATCGTCTCGTTCATGGATC -CCAACATCGTCTCGTTCACACTTC -CCAACATCGTCTCGTTCAGTACTC -CCAACATCGTCTCGTTCAGATGTC -CCAACATCGTCTCGTTCAACAGTC -CCAACATCGTCTCGTTCATTGCTG -CCAACATCGTCTCGTTCATCCATG -CCAACATCGTCTCGTTCATGTGTG -CCAACATCGTCTCGTTCACTAGTG -CCAACATCGTCTCGTTCACATCTG -CCAACATCGTCTCGTTCAGAGTTG -CCAACATCGTCTCGTTCAAGACTG -CCAACATCGTCTCGTTCATCGGTA -CCAACATCGTCTCGTTCATGCCTA -CCAACATCGTCTCGTTCACCACTA -CCAACATCGTCTCGTTCAGGAGTA -CCAACATCGTCTCGTTCATCGTCT -CCAACATCGTCTCGTTCATGCACT -CCAACATCGTCTCGTTCACTGACT -CCAACATCGTCTCGTTCACAACCT -CCAACATCGTCTCGTTCAGCTACT -CCAACATCGTCTCGTTCAGGATCT -CCAACATCGTCTCGTTCAAAGGCT -CCAACATCGTCTCGTTCATCAACC -CCAACATCGTCTCGTTCATGTTCC -CCAACATCGTCTCGTTCAATTCCC -CCAACATCGTCTCGTTCATTCTCG -CCAACATCGTCTCGTTCATAGACG -CCAACATCGTCTCGTTCAGTAACG -CCAACATCGTCTCGTTCAACTTCG -CCAACATCGTCTCGTTCATACGCA -CCAACATCGTCTCGTTCACTTGCA -CCAACATCGTCTCGTTCACGAACA -CCAACATCGTCTCGTTCACAGTCA -CCAACATCGTCTCGTTCAGATCCA -CCAACATCGTCTCGTTCAACGACA -CCAACATCGTCTCGTTCAAGCTCA -CCAACATCGTCTCGTTCATCACGT -CCAACATCGTCTCGTTCACGTAGT -CCAACATCGTCTCGTTCAGTCAGT -CCAACATCGTCTCGTTCAGAAGGT -CCAACATCGTCTCGTTCAAACCGT -CCAACATCGTCTCGTTCATTGTGC -CCAACATCGTCTCGTTCACTAAGC -CCAACATCGTCTCGTTCAACTAGC -CCAACATCGTCTCGTTCAAGATGC -CCAACATCGTCTCGTTCATGAAGG -CCAACATCGTCTCGTTCACAATGG -CCAACATCGTCTCGTTCAATGAGG -CCAACATCGTCTCGTTCAAATGGG -CCAACATCGTCTCGTTCATCCTGA -CCAACATCGTCTCGTTCATAGCGA -CCAACATCGTCTCGTTCACACAGA -CCAACATCGTCTCGTTCAGCAAGA -CCAACATCGTCTCGTTCAGGTTGA -CCAACATCGTCTCGTTCATCCGAT -CCAACATCGTCTCGTTCATGGCAT -CCAACATCGTCTCGTTCACGAGAT -CCAACATCGTCTCGTTCATACCAC -CCAACATCGTCTCGTTCACAGAAC -CCAACATCGTCTCGTTCAGTCTAC -CCAACATCGTCTCGTTCAACGTAC -CCAACATCGTCTCGTTCAAGTGAC -CCAACATCGTCTCGTTCACTGTAG -CCAACATCGTCTCGTTCACCTAAG -CCAACATCGTCTCGTTCAGTTCAG -CCAACATCGTCTCGTTCAGCATAG -CCAACATCGTCTCGTTCAGACAAG -CCAACATCGTCTCGTTCAAAGCAG -CCAACATCGTCTCGTTCACGTCAA -CCAACATCGTCTCGTTCAGCTGAA -CCAACATCGTCTCGTTCAAGTACG -CCAACATCGTCTCGTTCAATCCGA -CCAACATCGTCTCGTTCAATGGGA -CCAACATCGTCTCGTTCAGTGCAA -CCAACATCGTCTCGTTCAGAGGAA -CCAACATCGTCTCGTTCACAGGTA -CCAACATCGTCTCGTTCAGACTCT -CCAACATCGTCTCGTTCAAGTCCT -CCAACATCGTCTCGTTCATAAGCC -CCAACATCGTCTCGTTCAATAGCC -CCAACATCGTCTCGTTCATAACCG -CCAACATCGTCTCGTTCAATGCCA -CCAACATCGTCTAGTCGTGGAAAC -CCAACATCGTCTAGTCGTAACACC -CCAACATCGTCTAGTCGTATCGAG -CCAACATCGTCTAGTCGTCTCCTT -CCAACATCGTCTAGTCGTCCTGTT -CCAACATCGTCTAGTCGTCGGTTT -CCAACATCGTCTAGTCGTGTGGTT -CCAACATCGTCTAGTCGTGCCTTT -CCAACATCGTCTAGTCGTGGTCTT -CCAACATCGTCTAGTCGTACGCTT -CCAACATCGTCTAGTCGTAGCGTT -CCAACATCGTCTAGTCGTTTCGTC -CCAACATCGTCTAGTCGTTCTCTC -CCAACATCGTCTAGTCGTTGGATC -CCAACATCGTCTAGTCGTCACTTC -CCAACATCGTCTAGTCGTGTACTC -CCAACATCGTCTAGTCGTGATGTC -CCAACATCGTCTAGTCGTACAGTC -CCAACATCGTCTAGTCGTTTGCTG -CCAACATCGTCTAGTCGTTCCATG -CCAACATCGTCTAGTCGTTGTGTG -CCAACATCGTCTAGTCGTCTAGTG -CCAACATCGTCTAGTCGTCATCTG -CCAACATCGTCTAGTCGTGAGTTG -CCAACATCGTCTAGTCGTAGACTG -CCAACATCGTCTAGTCGTTCGGTA -CCAACATCGTCTAGTCGTTGCCTA -CCAACATCGTCTAGTCGTCCACTA -CCAACATCGTCTAGTCGTGGAGTA -CCAACATCGTCTAGTCGTTCGTCT -CCAACATCGTCTAGTCGTTGCACT -CCAACATCGTCTAGTCGTCTGACT -CCAACATCGTCTAGTCGTCAACCT -CCAACATCGTCTAGTCGTGCTACT -CCAACATCGTCTAGTCGTGGATCT -CCAACATCGTCTAGTCGTAAGGCT -CCAACATCGTCTAGTCGTTCAACC -CCAACATCGTCTAGTCGTTGTTCC -CCAACATCGTCTAGTCGTATTCCC -CCAACATCGTCTAGTCGTTTCTCG -CCAACATCGTCTAGTCGTTAGACG -CCAACATCGTCTAGTCGTGTAACG -CCAACATCGTCTAGTCGTACTTCG -CCAACATCGTCTAGTCGTTACGCA -CCAACATCGTCTAGTCGTCTTGCA -CCAACATCGTCTAGTCGTCGAACA -CCAACATCGTCTAGTCGTCAGTCA -CCAACATCGTCTAGTCGTGATCCA -CCAACATCGTCTAGTCGTACGACA -CCAACATCGTCTAGTCGTAGCTCA -CCAACATCGTCTAGTCGTTCACGT -CCAACATCGTCTAGTCGTCGTAGT -CCAACATCGTCTAGTCGTGTCAGT -CCAACATCGTCTAGTCGTGAAGGT -CCAACATCGTCTAGTCGTAACCGT -CCAACATCGTCTAGTCGTTTGTGC -CCAACATCGTCTAGTCGTCTAAGC -CCAACATCGTCTAGTCGTACTAGC -CCAACATCGTCTAGTCGTAGATGC -CCAACATCGTCTAGTCGTTGAAGG -CCAACATCGTCTAGTCGTCAATGG -CCAACATCGTCTAGTCGTATGAGG -CCAACATCGTCTAGTCGTAATGGG -CCAACATCGTCTAGTCGTTCCTGA -CCAACATCGTCTAGTCGTTAGCGA -CCAACATCGTCTAGTCGTCACAGA -CCAACATCGTCTAGTCGTGCAAGA -CCAACATCGTCTAGTCGTGGTTGA -CCAACATCGTCTAGTCGTTCCGAT -CCAACATCGTCTAGTCGTTGGCAT -CCAACATCGTCTAGTCGTCGAGAT -CCAACATCGTCTAGTCGTTACCAC -CCAACATCGTCTAGTCGTCAGAAC -CCAACATCGTCTAGTCGTGTCTAC -CCAACATCGTCTAGTCGTACGTAC -CCAACATCGTCTAGTCGTAGTGAC -CCAACATCGTCTAGTCGTCTGTAG -CCAACATCGTCTAGTCGTCCTAAG -CCAACATCGTCTAGTCGTGTTCAG -CCAACATCGTCTAGTCGTGCATAG -CCAACATCGTCTAGTCGTGACAAG -CCAACATCGTCTAGTCGTAAGCAG -CCAACATCGTCTAGTCGTCGTCAA -CCAACATCGTCTAGTCGTGCTGAA -CCAACATCGTCTAGTCGTAGTACG -CCAACATCGTCTAGTCGTATCCGA -CCAACATCGTCTAGTCGTATGGGA -CCAACATCGTCTAGTCGTGTGCAA -CCAACATCGTCTAGTCGTGAGGAA -CCAACATCGTCTAGTCGTCAGGTA -CCAACATCGTCTAGTCGTGACTCT -CCAACATCGTCTAGTCGTAGTCCT -CCAACATCGTCTAGTCGTTAAGCC -CCAACATCGTCTAGTCGTATAGCC -CCAACATCGTCTAGTCGTTAACCG -CCAACATCGTCTAGTCGTATGCCA -CCAACATCGTCTAGTGTCGGAAAC -CCAACATCGTCTAGTGTCAACACC -CCAACATCGTCTAGTGTCATCGAG -CCAACATCGTCTAGTGTCCTCCTT -CCAACATCGTCTAGTGTCCCTGTT -CCAACATCGTCTAGTGTCCGGTTT -CCAACATCGTCTAGTGTCGTGGTT -CCAACATCGTCTAGTGTCGCCTTT -CCAACATCGTCTAGTGTCGGTCTT -CCAACATCGTCTAGTGTCACGCTT -CCAACATCGTCTAGTGTCAGCGTT -CCAACATCGTCTAGTGTCTTCGTC -CCAACATCGTCTAGTGTCTCTCTC -CCAACATCGTCTAGTGTCTGGATC -CCAACATCGTCTAGTGTCCACTTC -CCAACATCGTCTAGTGTCGTACTC -CCAACATCGTCTAGTGTCGATGTC -CCAACATCGTCTAGTGTCACAGTC -CCAACATCGTCTAGTGTCTTGCTG -CCAACATCGTCTAGTGTCTCCATG -CCAACATCGTCTAGTGTCTGTGTG -CCAACATCGTCTAGTGTCCTAGTG -CCAACATCGTCTAGTGTCCATCTG -CCAACATCGTCTAGTGTCGAGTTG -CCAACATCGTCTAGTGTCAGACTG -CCAACATCGTCTAGTGTCTCGGTA -CCAACATCGTCTAGTGTCTGCCTA -CCAACATCGTCTAGTGTCCCACTA -CCAACATCGTCTAGTGTCGGAGTA -CCAACATCGTCTAGTGTCTCGTCT -CCAACATCGTCTAGTGTCTGCACT -CCAACATCGTCTAGTGTCCTGACT -CCAACATCGTCTAGTGTCCAACCT -CCAACATCGTCTAGTGTCGCTACT -CCAACATCGTCTAGTGTCGGATCT -CCAACATCGTCTAGTGTCAAGGCT -CCAACATCGTCTAGTGTCTCAACC -CCAACATCGTCTAGTGTCTGTTCC -CCAACATCGTCTAGTGTCATTCCC -CCAACATCGTCTAGTGTCTTCTCG -CCAACATCGTCTAGTGTCTAGACG -CCAACATCGTCTAGTGTCGTAACG -CCAACATCGTCTAGTGTCACTTCG -CCAACATCGTCTAGTGTCTACGCA -CCAACATCGTCTAGTGTCCTTGCA -CCAACATCGTCTAGTGTCCGAACA -CCAACATCGTCTAGTGTCCAGTCA -CCAACATCGTCTAGTGTCGATCCA -CCAACATCGTCTAGTGTCACGACA -CCAACATCGTCTAGTGTCAGCTCA -CCAACATCGTCTAGTGTCTCACGT -CCAACATCGTCTAGTGTCCGTAGT -CCAACATCGTCTAGTGTCGTCAGT -CCAACATCGTCTAGTGTCGAAGGT -CCAACATCGTCTAGTGTCAACCGT -CCAACATCGTCTAGTGTCTTGTGC -CCAACATCGTCTAGTGTCCTAAGC -CCAACATCGTCTAGTGTCACTAGC -CCAACATCGTCTAGTGTCAGATGC -CCAACATCGTCTAGTGTCTGAAGG -CCAACATCGTCTAGTGTCCAATGG -CCAACATCGTCTAGTGTCATGAGG -CCAACATCGTCTAGTGTCAATGGG -CCAACATCGTCTAGTGTCTCCTGA -CCAACATCGTCTAGTGTCTAGCGA -CCAACATCGTCTAGTGTCCACAGA -CCAACATCGTCTAGTGTCGCAAGA -CCAACATCGTCTAGTGTCGGTTGA -CCAACATCGTCTAGTGTCTCCGAT -CCAACATCGTCTAGTGTCTGGCAT -CCAACATCGTCTAGTGTCCGAGAT -CCAACATCGTCTAGTGTCTACCAC -CCAACATCGTCTAGTGTCCAGAAC -CCAACATCGTCTAGTGTCGTCTAC -CCAACATCGTCTAGTGTCACGTAC -CCAACATCGTCTAGTGTCAGTGAC -CCAACATCGTCTAGTGTCCTGTAG -CCAACATCGTCTAGTGTCCCTAAG -CCAACATCGTCTAGTGTCGTTCAG -CCAACATCGTCTAGTGTCGCATAG -CCAACATCGTCTAGTGTCGACAAG -CCAACATCGTCTAGTGTCAAGCAG -CCAACATCGTCTAGTGTCCGTCAA -CCAACATCGTCTAGTGTCGCTGAA -CCAACATCGTCTAGTGTCAGTACG -CCAACATCGTCTAGTGTCATCCGA -CCAACATCGTCTAGTGTCATGGGA -CCAACATCGTCTAGTGTCGTGCAA -CCAACATCGTCTAGTGTCGAGGAA -CCAACATCGTCTAGTGTCCAGGTA -CCAACATCGTCTAGTGTCGACTCT -CCAACATCGTCTAGTGTCAGTCCT -CCAACATCGTCTAGTGTCTAAGCC -CCAACATCGTCTAGTGTCATAGCC -CCAACATCGTCTAGTGTCTAACCG -CCAACATCGTCTAGTGTCATGCCA -CCAACATCGTCTGGTGAAGGAAAC -CCAACATCGTCTGGTGAAAACACC -CCAACATCGTCTGGTGAAATCGAG -CCAACATCGTCTGGTGAACTCCTT -CCAACATCGTCTGGTGAACCTGTT -CCAACATCGTCTGGTGAACGGTTT -CCAACATCGTCTGGTGAAGTGGTT -CCAACATCGTCTGGTGAAGCCTTT -CCAACATCGTCTGGTGAAGGTCTT -CCAACATCGTCTGGTGAAACGCTT -CCAACATCGTCTGGTGAAAGCGTT -CCAACATCGTCTGGTGAATTCGTC -CCAACATCGTCTGGTGAATCTCTC -CCAACATCGTCTGGTGAATGGATC -CCAACATCGTCTGGTGAACACTTC -CCAACATCGTCTGGTGAAGTACTC -CCAACATCGTCTGGTGAAGATGTC -CCAACATCGTCTGGTGAAACAGTC -CCAACATCGTCTGGTGAATTGCTG -CCAACATCGTCTGGTGAATCCATG -CCAACATCGTCTGGTGAATGTGTG -CCAACATCGTCTGGTGAACTAGTG -CCAACATCGTCTGGTGAACATCTG -CCAACATCGTCTGGTGAAGAGTTG -CCAACATCGTCTGGTGAAAGACTG -CCAACATCGTCTGGTGAATCGGTA -CCAACATCGTCTGGTGAATGCCTA -CCAACATCGTCTGGTGAACCACTA -CCAACATCGTCTGGTGAAGGAGTA -CCAACATCGTCTGGTGAATCGTCT -CCAACATCGTCTGGTGAATGCACT -CCAACATCGTCTGGTGAACTGACT -CCAACATCGTCTGGTGAACAACCT -CCAACATCGTCTGGTGAAGCTACT -CCAACATCGTCTGGTGAAGGATCT -CCAACATCGTCTGGTGAAAAGGCT -CCAACATCGTCTGGTGAATCAACC -CCAACATCGTCTGGTGAATGTTCC -CCAACATCGTCTGGTGAAATTCCC -CCAACATCGTCTGGTGAATTCTCG -CCAACATCGTCTGGTGAATAGACG -CCAACATCGTCTGGTGAAGTAACG -CCAACATCGTCTGGTGAAACTTCG -CCAACATCGTCTGGTGAATACGCA -CCAACATCGTCTGGTGAACTTGCA -CCAACATCGTCTGGTGAACGAACA -CCAACATCGTCTGGTGAACAGTCA -CCAACATCGTCTGGTGAAGATCCA -CCAACATCGTCTGGTGAAACGACA -CCAACATCGTCTGGTGAAAGCTCA -CCAACATCGTCTGGTGAATCACGT -CCAACATCGTCTGGTGAACGTAGT -CCAACATCGTCTGGTGAAGTCAGT -CCAACATCGTCTGGTGAAGAAGGT -CCAACATCGTCTGGTGAAAACCGT -CCAACATCGTCTGGTGAATTGTGC -CCAACATCGTCTGGTGAACTAAGC -CCAACATCGTCTGGTGAAACTAGC -CCAACATCGTCTGGTGAAAGATGC -CCAACATCGTCTGGTGAATGAAGG -CCAACATCGTCTGGTGAACAATGG -CCAACATCGTCTGGTGAAATGAGG -CCAACATCGTCTGGTGAAAATGGG -CCAACATCGTCTGGTGAATCCTGA -CCAACATCGTCTGGTGAATAGCGA -CCAACATCGTCTGGTGAACACAGA -CCAACATCGTCTGGTGAAGCAAGA -CCAACATCGTCTGGTGAAGGTTGA -CCAACATCGTCTGGTGAATCCGAT -CCAACATCGTCTGGTGAATGGCAT -CCAACATCGTCTGGTGAACGAGAT -CCAACATCGTCTGGTGAATACCAC -CCAACATCGTCTGGTGAACAGAAC -CCAACATCGTCTGGTGAAGTCTAC -CCAACATCGTCTGGTGAAACGTAC -CCAACATCGTCTGGTGAAAGTGAC -CCAACATCGTCTGGTGAACTGTAG -CCAACATCGTCTGGTGAACCTAAG -CCAACATCGTCTGGTGAAGTTCAG -CCAACATCGTCTGGTGAAGCATAG -CCAACATCGTCTGGTGAAGACAAG -CCAACATCGTCTGGTGAAAAGCAG -CCAACATCGTCTGGTGAACGTCAA -CCAACATCGTCTGGTGAAGCTGAA -CCAACATCGTCTGGTGAAAGTACG -CCAACATCGTCTGGTGAAATCCGA -CCAACATCGTCTGGTGAAATGGGA -CCAACATCGTCTGGTGAAGTGCAA -CCAACATCGTCTGGTGAAGAGGAA -CCAACATCGTCTGGTGAACAGGTA -CCAACATCGTCTGGTGAAGACTCT -CCAACATCGTCTGGTGAAAGTCCT -CCAACATCGTCTGGTGAATAAGCC -CCAACATCGTCTGGTGAAATAGCC -CCAACATCGTCTGGTGAATAACCG -CCAACATCGTCTGGTGAAATGCCA -CCAACATCGTCTCGTAACGGAAAC -CCAACATCGTCTCGTAACAACACC -CCAACATCGTCTCGTAACATCGAG -CCAACATCGTCTCGTAACCTCCTT -CCAACATCGTCTCGTAACCCTGTT -CCAACATCGTCTCGTAACCGGTTT -CCAACATCGTCTCGTAACGTGGTT -CCAACATCGTCTCGTAACGCCTTT -CCAACATCGTCTCGTAACGGTCTT -CCAACATCGTCTCGTAACACGCTT -CCAACATCGTCTCGTAACAGCGTT -CCAACATCGTCTCGTAACTTCGTC -CCAACATCGTCTCGTAACTCTCTC -CCAACATCGTCTCGTAACTGGATC -CCAACATCGTCTCGTAACCACTTC -CCAACATCGTCTCGTAACGTACTC -CCAACATCGTCTCGTAACGATGTC -CCAACATCGTCTCGTAACACAGTC -CCAACATCGTCTCGTAACTTGCTG -CCAACATCGTCTCGTAACTCCATG -CCAACATCGTCTCGTAACTGTGTG -CCAACATCGTCTCGTAACCTAGTG -CCAACATCGTCTCGTAACCATCTG -CCAACATCGTCTCGTAACGAGTTG -CCAACATCGTCTCGTAACAGACTG -CCAACATCGTCTCGTAACTCGGTA -CCAACATCGTCTCGTAACTGCCTA -CCAACATCGTCTCGTAACCCACTA -CCAACATCGTCTCGTAACGGAGTA -CCAACATCGTCTCGTAACTCGTCT -CCAACATCGTCTCGTAACTGCACT -CCAACATCGTCTCGTAACCTGACT -CCAACATCGTCTCGTAACCAACCT -CCAACATCGTCTCGTAACGCTACT -CCAACATCGTCTCGTAACGGATCT -CCAACATCGTCTCGTAACAAGGCT -CCAACATCGTCTCGTAACTCAACC -CCAACATCGTCTCGTAACTGTTCC -CCAACATCGTCTCGTAACATTCCC -CCAACATCGTCTCGTAACTTCTCG -CCAACATCGTCTCGTAACTAGACG -CCAACATCGTCTCGTAACGTAACG -CCAACATCGTCTCGTAACACTTCG -CCAACATCGTCTCGTAACTACGCA -CCAACATCGTCTCGTAACCTTGCA -CCAACATCGTCTCGTAACCGAACA -CCAACATCGTCTCGTAACCAGTCA -CCAACATCGTCTCGTAACGATCCA -CCAACATCGTCTCGTAACACGACA -CCAACATCGTCTCGTAACAGCTCA -CCAACATCGTCTCGTAACTCACGT -CCAACATCGTCTCGTAACCGTAGT -CCAACATCGTCTCGTAACGTCAGT -CCAACATCGTCTCGTAACGAAGGT -CCAACATCGTCTCGTAACAACCGT -CCAACATCGTCTCGTAACTTGTGC -CCAACATCGTCTCGTAACCTAAGC -CCAACATCGTCTCGTAACACTAGC -CCAACATCGTCTCGTAACAGATGC -CCAACATCGTCTCGTAACTGAAGG -CCAACATCGTCTCGTAACCAATGG -CCAACATCGTCTCGTAACATGAGG -CCAACATCGTCTCGTAACAATGGG -CCAACATCGTCTCGTAACTCCTGA -CCAACATCGTCTCGTAACTAGCGA -CCAACATCGTCTCGTAACCACAGA -CCAACATCGTCTCGTAACGCAAGA -CCAACATCGTCTCGTAACGGTTGA -CCAACATCGTCTCGTAACTCCGAT -CCAACATCGTCTCGTAACTGGCAT -CCAACATCGTCTCGTAACCGAGAT -CCAACATCGTCTCGTAACTACCAC -CCAACATCGTCTCGTAACCAGAAC -CCAACATCGTCTCGTAACGTCTAC -CCAACATCGTCTCGTAACACGTAC -CCAACATCGTCTCGTAACAGTGAC -CCAACATCGTCTCGTAACCTGTAG -CCAACATCGTCTCGTAACCCTAAG -CCAACATCGTCTCGTAACGTTCAG -CCAACATCGTCTCGTAACGCATAG -CCAACATCGTCTCGTAACGACAAG -CCAACATCGTCTCGTAACAAGCAG -CCAACATCGTCTCGTAACCGTCAA -CCAACATCGTCTCGTAACGCTGAA -CCAACATCGTCTCGTAACAGTACG -CCAACATCGTCTCGTAACATCCGA -CCAACATCGTCTCGTAACATGGGA -CCAACATCGTCTCGTAACGTGCAA -CCAACATCGTCTCGTAACGAGGAA -CCAACATCGTCTCGTAACCAGGTA -CCAACATCGTCTCGTAACGACTCT -CCAACATCGTCTCGTAACAGTCCT -CCAACATCGTCTCGTAACTAAGCC -CCAACATCGTCTCGTAACATAGCC -CCAACATCGTCTCGTAACTAACCG -CCAACATCGTCTCGTAACATGCCA -CCAACATCGTCTTGCTTGGGAAAC -CCAACATCGTCTTGCTTGAACACC -CCAACATCGTCTTGCTTGATCGAG -CCAACATCGTCTTGCTTGCTCCTT -CCAACATCGTCTTGCTTGCCTGTT -CCAACATCGTCTTGCTTGCGGTTT -CCAACATCGTCTTGCTTGGTGGTT -CCAACATCGTCTTGCTTGGCCTTT -CCAACATCGTCTTGCTTGGGTCTT -CCAACATCGTCTTGCTTGACGCTT -CCAACATCGTCTTGCTTGAGCGTT -CCAACATCGTCTTGCTTGTTCGTC -CCAACATCGTCTTGCTTGTCTCTC -CCAACATCGTCTTGCTTGTGGATC -CCAACATCGTCTTGCTTGCACTTC -CCAACATCGTCTTGCTTGGTACTC -CCAACATCGTCTTGCTTGGATGTC -CCAACATCGTCTTGCTTGACAGTC -CCAACATCGTCTTGCTTGTTGCTG -CCAACATCGTCTTGCTTGTCCATG -CCAACATCGTCTTGCTTGTGTGTG -CCAACATCGTCTTGCTTGCTAGTG -CCAACATCGTCTTGCTTGCATCTG -CCAACATCGTCTTGCTTGGAGTTG -CCAACATCGTCTTGCTTGAGACTG -CCAACATCGTCTTGCTTGTCGGTA -CCAACATCGTCTTGCTTGTGCCTA -CCAACATCGTCTTGCTTGCCACTA -CCAACATCGTCTTGCTTGGGAGTA -CCAACATCGTCTTGCTTGTCGTCT -CCAACATCGTCTTGCTTGTGCACT -CCAACATCGTCTTGCTTGCTGACT -CCAACATCGTCTTGCTTGCAACCT -CCAACATCGTCTTGCTTGGCTACT -CCAACATCGTCTTGCTTGGGATCT -CCAACATCGTCTTGCTTGAAGGCT -CCAACATCGTCTTGCTTGTCAACC -CCAACATCGTCTTGCTTGTGTTCC -CCAACATCGTCTTGCTTGATTCCC -CCAACATCGTCTTGCTTGTTCTCG -CCAACATCGTCTTGCTTGTAGACG -CCAACATCGTCTTGCTTGGTAACG -CCAACATCGTCTTGCTTGACTTCG -CCAACATCGTCTTGCTTGTACGCA -CCAACATCGTCTTGCTTGCTTGCA -CCAACATCGTCTTGCTTGCGAACA -CCAACATCGTCTTGCTTGCAGTCA -CCAACATCGTCTTGCTTGGATCCA -CCAACATCGTCTTGCTTGACGACA -CCAACATCGTCTTGCTTGAGCTCA -CCAACATCGTCTTGCTTGTCACGT -CCAACATCGTCTTGCTTGCGTAGT -CCAACATCGTCTTGCTTGGTCAGT -CCAACATCGTCTTGCTTGGAAGGT -CCAACATCGTCTTGCTTGAACCGT -CCAACATCGTCTTGCTTGTTGTGC -CCAACATCGTCTTGCTTGCTAAGC -CCAACATCGTCTTGCTTGACTAGC -CCAACATCGTCTTGCTTGAGATGC -CCAACATCGTCTTGCTTGTGAAGG -CCAACATCGTCTTGCTTGCAATGG -CCAACATCGTCTTGCTTGATGAGG -CCAACATCGTCTTGCTTGAATGGG -CCAACATCGTCTTGCTTGTCCTGA -CCAACATCGTCTTGCTTGTAGCGA -CCAACATCGTCTTGCTTGCACAGA -CCAACATCGTCTTGCTTGGCAAGA -CCAACATCGTCTTGCTTGGGTTGA -CCAACATCGTCTTGCTTGTCCGAT -CCAACATCGTCTTGCTTGTGGCAT -CCAACATCGTCTTGCTTGCGAGAT -CCAACATCGTCTTGCTTGTACCAC -CCAACATCGTCTTGCTTGCAGAAC -CCAACATCGTCTTGCTTGGTCTAC -CCAACATCGTCTTGCTTGACGTAC -CCAACATCGTCTTGCTTGAGTGAC -CCAACATCGTCTTGCTTGCTGTAG -CCAACATCGTCTTGCTTGCCTAAG -CCAACATCGTCTTGCTTGGTTCAG -CCAACATCGTCTTGCTTGGCATAG -CCAACATCGTCTTGCTTGGACAAG -CCAACATCGTCTTGCTTGAAGCAG -CCAACATCGTCTTGCTTGCGTCAA -CCAACATCGTCTTGCTTGGCTGAA -CCAACATCGTCTTGCTTGAGTACG -CCAACATCGTCTTGCTTGATCCGA -CCAACATCGTCTTGCTTGATGGGA -CCAACATCGTCTTGCTTGGTGCAA -CCAACATCGTCTTGCTTGGAGGAA -CCAACATCGTCTTGCTTGCAGGTA -CCAACATCGTCTTGCTTGGACTCT -CCAACATCGTCTTGCTTGAGTCCT -CCAACATCGTCTTGCTTGTAAGCC -CCAACATCGTCTTGCTTGATAGCC -CCAACATCGTCTTGCTTGTAACCG -CCAACATCGTCTTGCTTGATGCCA -CCAACATCGTCTAGCCTAGGAAAC -CCAACATCGTCTAGCCTAAACACC -CCAACATCGTCTAGCCTAATCGAG -CCAACATCGTCTAGCCTACTCCTT -CCAACATCGTCTAGCCTACCTGTT -CCAACATCGTCTAGCCTACGGTTT -CCAACATCGTCTAGCCTAGTGGTT -CCAACATCGTCTAGCCTAGCCTTT -CCAACATCGTCTAGCCTAGGTCTT -CCAACATCGTCTAGCCTAACGCTT -CCAACATCGTCTAGCCTAAGCGTT -CCAACATCGTCTAGCCTATTCGTC -CCAACATCGTCTAGCCTATCTCTC -CCAACATCGTCTAGCCTATGGATC -CCAACATCGTCTAGCCTACACTTC -CCAACATCGTCTAGCCTAGTACTC -CCAACATCGTCTAGCCTAGATGTC -CCAACATCGTCTAGCCTAACAGTC -CCAACATCGTCTAGCCTATTGCTG -CCAACATCGTCTAGCCTATCCATG -CCAACATCGTCTAGCCTATGTGTG -CCAACATCGTCTAGCCTACTAGTG -CCAACATCGTCTAGCCTACATCTG -CCAACATCGTCTAGCCTAGAGTTG -CCAACATCGTCTAGCCTAAGACTG -CCAACATCGTCTAGCCTATCGGTA -CCAACATCGTCTAGCCTATGCCTA -CCAACATCGTCTAGCCTACCACTA -CCAACATCGTCTAGCCTAGGAGTA -CCAACATCGTCTAGCCTATCGTCT -CCAACATCGTCTAGCCTATGCACT -CCAACATCGTCTAGCCTACTGACT -CCAACATCGTCTAGCCTACAACCT -CCAACATCGTCTAGCCTAGCTACT -CCAACATCGTCTAGCCTAGGATCT -CCAACATCGTCTAGCCTAAAGGCT -CCAACATCGTCTAGCCTATCAACC -CCAACATCGTCTAGCCTATGTTCC -CCAACATCGTCTAGCCTAATTCCC -CCAACATCGTCTAGCCTATTCTCG -CCAACATCGTCTAGCCTATAGACG -CCAACATCGTCTAGCCTAGTAACG -CCAACATCGTCTAGCCTAACTTCG -CCAACATCGTCTAGCCTATACGCA -CCAACATCGTCTAGCCTACTTGCA -CCAACATCGTCTAGCCTACGAACA -CCAACATCGTCTAGCCTACAGTCA -CCAACATCGTCTAGCCTAGATCCA -CCAACATCGTCTAGCCTAACGACA -CCAACATCGTCTAGCCTAAGCTCA -CCAACATCGTCTAGCCTATCACGT -CCAACATCGTCTAGCCTACGTAGT -CCAACATCGTCTAGCCTAGTCAGT -CCAACATCGTCTAGCCTAGAAGGT -CCAACATCGTCTAGCCTAAACCGT -CCAACATCGTCTAGCCTATTGTGC -CCAACATCGTCTAGCCTACTAAGC -CCAACATCGTCTAGCCTAACTAGC -CCAACATCGTCTAGCCTAAGATGC -CCAACATCGTCTAGCCTATGAAGG -CCAACATCGTCTAGCCTACAATGG -CCAACATCGTCTAGCCTAATGAGG -CCAACATCGTCTAGCCTAAATGGG -CCAACATCGTCTAGCCTATCCTGA -CCAACATCGTCTAGCCTATAGCGA -CCAACATCGTCTAGCCTACACAGA -CCAACATCGTCTAGCCTAGCAAGA -CCAACATCGTCTAGCCTAGGTTGA -CCAACATCGTCTAGCCTATCCGAT -CCAACATCGTCTAGCCTATGGCAT -CCAACATCGTCTAGCCTACGAGAT -CCAACATCGTCTAGCCTATACCAC -CCAACATCGTCTAGCCTACAGAAC -CCAACATCGTCTAGCCTAGTCTAC -CCAACATCGTCTAGCCTAACGTAC -CCAACATCGTCTAGCCTAAGTGAC -CCAACATCGTCTAGCCTACTGTAG -CCAACATCGTCTAGCCTACCTAAG -CCAACATCGTCTAGCCTAGTTCAG -CCAACATCGTCTAGCCTAGCATAG -CCAACATCGTCTAGCCTAGACAAG -CCAACATCGTCTAGCCTAAAGCAG -CCAACATCGTCTAGCCTACGTCAA -CCAACATCGTCTAGCCTAGCTGAA -CCAACATCGTCTAGCCTAAGTACG -CCAACATCGTCTAGCCTAATCCGA -CCAACATCGTCTAGCCTAATGGGA -CCAACATCGTCTAGCCTAGTGCAA -CCAACATCGTCTAGCCTAGAGGAA -CCAACATCGTCTAGCCTACAGGTA -CCAACATCGTCTAGCCTAGACTCT -CCAACATCGTCTAGCCTAAGTCCT -CCAACATCGTCTAGCCTATAAGCC -CCAACATCGTCTAGCCTAATAGCC -CCAACATCGTCTAGCCTATAACCG -CCAACATCGTCTAGCCTAATGCCA -CCAACATCGTCTAGCACTGGAAAC -CCAACATCGTCTAGCACTAACACC -CCAACATCGTCTAGCACTATCGAG -CCAACATCGTCTAGCACTCTCCTT -CCAACATCGTCTAGCACTCCTGTT -CCAACATCGTCTAGCACTCGGTTT -CCAACATCGTCTAGCACTGTGGTT -CCAACATCGTCTAGCACTGCCTTT -CCAACATCGTCTAGCACTGGTCTT -CCAACATCGTCTAGCACTACGCTT -CCAACATCGTCTAGCACTAGCGTT -CCAACATCGTCTAGCACTTTCGTC -CCAACATCGTCTAGCACTTCTCTC -CCAACATCGTCTAGCACTTGGATC -CCAACATCGTCTAGCACTCACTTC -CCAACATCGTCTAGCACTGTACTC -CCAACATCGTCTAGCACTGATGTC -CCAACATCGTCTAGCACTACAGTC -CCAACATCGTCTAGCACTTTGCTG -CCAACATCGTCTAGCACTTCCATG -CCAACATCGTCTAGCACTTGTGTG -CCAACATCGTCTAGCACTCTAGTG -CCAACATCGTCTAGCACTCATCTG -CCAACATCGTCTAGCACTGAGTTG -CCAACATCGTCTAGCACTAGACTG -CCAACATCGTCTAGCACTTCGGTA -CCAACATCGTCTAGCACTTGCCTA -CCAACATCGTCTAGCACTCCACTA -CCAACATCGTCTAGCACTGGAGTA -CCAACATCGTCTAGCACTTCGTCT -CCAACATCGTCTAGCACTTGCACT -CCAACATCGTCTAGCACTCTGACT -CCAACATCGTCTAGCACTCAACCT -CCAACATCGTCTAGCACTGCTACT -CCAACATCGTCTAGCACTGGATCT -CCAACATCGTCTAGCACTAAGGCT -CCAACATCGTCTAGCACTTCAACC -CCAACATCGTCTAGCACTTGTTCC -CCAACATCGTCTAGCACTATTCCC -CCAACATCGTCTAGCACTTTCTCG -CCAACATCGTCTAGCACTTAGACG -CCAACATCGTCTAGCACTGTAACG -CCAACATCGTCTAGCACTACTTCG -CCAACATCGTCTAGCACTTACGCA -CCAACATCGTCTAGCACTCTTGCA -CCAACATCGTCTAGCACTCGAACA -CCAACATCGTCTAGCACTCAGTCA -CCAACATCGTCTAGCACTGATCCA -CCAACATCGTCTAGCACTACGACA -CCAACATCGTCTAGCACTAGCTCA -CCAACATCGTCTAGCACTTCACGT -CCAACATCGTCTAGCACTCGTAGT -CCAACATCGTCTAGCACTGTCAGT -CCAACATCGTCTAGCACTGAAGGT -CCAACATCGTCTAGCACTAACCGT -CCAACATCGTCTAGCACTTTGTGC -CCAACATCGTCTAGCACTCTAAGC -CCAACATCGTCTAGCACTACTAGC -CCAACATCGTCTAGCACTAGATGC -CCAACATCGTCTAGCACTTGAAGG -CCAACATCGTCTAGCACTCAATGG -CCAACATCGTCTAGCACTATGAGG -CCAACATCGTCTAGCACTAATGGG -CCAACATCGTCTAGCACTTCCTGA -CCAACATCGTCTAGCACTTAGCGA -CCAACATCGTCTAGCACTCACAGA -CCAACATCGTCTAGCACTGCAAGA -CCAACATCGTCTAGCACTGGTTGA -CCAACATCGTCTAGCACTTCCGAT -CCAACATCGTCTAGCACTTGGCAT -CCAACATCGTCTAGCACTCGAGAT -CCAACATCGTCTAGCACTTACCAC -CCAACATCGTCTAGCACTCAGAAC -CCAACATCGTCTAGCACTGTCTAC -CCAACATCGTCTAGCACTACGTAC -CCAACATCGTCTAGCACTAGTGAC -CCAACATCGTCTAGCACTCTGTAG -CCAACATCGTCTAGCACTCCTAAG -CCAACATCGTCTAGCACTGTTCAG -CCAACATCGTCTAGCACTGCATAG -CCAACATCGTCTAGCACTGACAAG -CCAACATCGTCTAGCACTAAGCAG -CCAACATCGTCTAGCACTCGTCAA -CCAACATCGTCTAGCACTGCTGAA -CCAACATCGTCTAGCACTAGTACG -CCAACATCGTCTAGCACTATCCGA -CCAACATCGTCTAGCACTATGGGA -CCAACATCGTCTAGCACTGTGCAA -CCAACATCGTCTAGCACTGAGGAA -CCAACATCGTCTAGCACTCAGGTA -CCAACATCGTCTAGCACTGACTCT -CCAACATCGTCTAGCACTAGTCCT -CCAACATCGTCTAGCACTTAAGCC -CCAACATCGTCTAGCACTATAGCC -CCAACATCGTCTAGCACTTAACCG -CCAACATCGTCTAGCACTATGCCA -CCAACATCGTCTTGCAGAGGAAAC -CCAACATCGTCTTGCAGAAACACC -CCAACATCGTCTTGCAGAATCGAG -CCAACATCGTCTTGCAGACTCCTT -CCAACATCGTCTTGCAGACCTGTT -CCAACATCGTCTTGCAGACGGTTT -CCAACATCGTCTTGCAGAGTGGTT -CCAACATCGTCTTGCAGAGCCTTT -CCAACATCGTCTTGCAGAGGTCTT -CCAACATCGTCTTGCAGAACGCTT -CCAACATCGTCTTGCAGAAGCGTT -CCAACATCGTCTTGCAGATTCGTC -CCAACATCGTCTTGCAGATCTCTC -CCAACATCGTCTTGCAGATGGATC -CCAACATCGTCTTGCAGACACTTC -CCAACATCGTCTTGCAGAGTACTC -CCAACATCGTCTTGCAGAGATGTC -CCAACATCGTCTTGCAGAACAGTC -CCAACATCGTCTTGCAGATTGCTG -CCAACATCGTCTTGCAGATCCATG -CCAACATCGTCTTGCAGATGTGTG -CCAACATCGTCTTGCAGACTAGTG -CCAACATCGTCTTGCAGACATCTG -CCAACATCGTCTTGCAGAGAGTTG -CCAACATCGTCTTGCAGAAGACTG -CCAACATCGTCTTGCAGATCGGTA -CCAACATCGTCTTGCAGATGCCTA -CCAACATCGTCTTGCAGACCACTA -CCAACATCGTCTTGCAGAGGAGTA -CCAACATCGTCTTGCAGATCGTCT -CCAACATCGTCTTGCAGATGCACT -CCAACATCGTCTTGCAGACTGACT -CCAACATCGTCTTGCAGACAACCT -CCAACATCGTCTTGCAGAGCTACT -CCAACATCGTCTTGCAGAGGATCT -CCAACATCGTCTTGCAGAAAGGCT -CCAACATCGTCTTGCAGATCAACC -CCAACATCGTCTTGCAGATGTTCC -CCAACATCGTCTTGCAGAATTCCC -CCAACATCGTCTTGCAGATTCTCG -CCAACATCGTCTTGCAGATAGACG -CCAACATCGTCTTGCAGAGTAACG -CCAACATCGTCTTGCAGAACTTCG -CCAACATCGTCTTGCAGATACGCA -CCAACATCGTCTTGCAGACTTGCA -CCAACATCGTCTTGCAGACGAACA -CCAACATCGTCTTGCAGACAGTCA -CCAACATCGTCTTGCAGAGATCCA -CCAACATCGTCTTGCAGAACGACA -CCAACATCGTCTTGCAGAAGCTCA -CCAACATCGTCTTGCAGATCACGT -CCAACATCGTCTTGCAGACGTAGT -CCAACATCGTCTTGCAGAGTCAGT -CCAACATCGTCTTGCAGAGAAGGT -CCAACATCGTCTTGCAGAAACCGT -CCAACATCGTCTTGCAGATTGTGC -CCAACATCGTCTTGCAGACTAAGC -CCAACATCGTCTTGCAGAACTAGC -CCAACATCGTCTTGCAGAAGATGC -CCAACATCGTCTTGCAGATGAAGG -CCAACATCGTCTTGCAGACAATGG -CCAACATCGTCTTGCAGAATGAGG -CCAACATCGTCTTGCAGAAATGGG -CCAACATCGTCTTGCAGATCCTGA -CCAACATCGTCTTGCAGATAGCGA -CCAACATCGTCTTGCAGACACAGA -CCAACATCGTCTTGCAGAGCAAGA -CCAACATCGTCTTGCAGAGGTTGA -CCAACATCGTCTTGCAGATCCGAT -CCAACATCGTCTTGCAGATGGCAT -CCAACATCGTCTTGCAGACGAGAT -CCAACATCGTCTTGCAGATACCAC -CCAACATCGTCTTGCAGACAGAAC -CCAACATCGTCTTGCAGAGTCTAC -CCAACATCGTCTTGCAGAACGTAC -CCAACATCGTCTTGCAGAAGTGAC -CCAACATCGTCTTGCAGACTGTAG -CCAACATCGTCTTGCAGACCTAAG -CCAACATCGTCTTGCAGAGTTCAG -CCAACATCGTCTTGCAGAGCATAG -CCAACATCGTCTTGCAGAGACAAG -CCAACATCGTCTTGCAGAAAGCAG -CCAACATCGTCTTGCAGACGTCAA -CCAACATCGTCTTGCAGAGCTGAA -CCAACATCGTCTTGCAGAAGTACG -CCAACATCGTCTTGCAGAATCCGA -CCAACATCGTCTTGCAGAATGGGA -CCAACATCGTCTTGCAGAGTGCAA -CCAACATCGTCTTGCAGAGAGGAA -CCAACATCGTCTTGCAGACAGGTA -CCAACATCGTCTTGCAGAGACTCT -CCAACATCGTCTTGCAGAAGTCCT -CCAACATCGTCTTGCAGATAAGCC -CCAACATCGTCTTGCAGAATAGCC -CCAACATCGTCTTGCAGATAACCG -CCAACATCGTCTTGCAGAATGCCA -CCAACATCGTCTAGGTGAGGAAAC -CCAACATCGTCTAGGTGAAACACC -CCAACATCGTCTAGGTGAATCGAG -CCAACATCGTCTAGGTGACTCCTT -CCAACATCGTCTAGGTGACCTGTT -CCAACATCGTCTAGGTGACGGTTT -CCAACATCGTCTAGGTGAGTGGTT -CCAACATCGTCTAGGTGAGCCTTT -CCAACATCGTCTAGGTGAGGTCTT -CCAACATCGTCTAGGTGAACGCTT -CCAACATCGTCTAGGTGAAGCGTT -CCAACATCGTCTAGGTGATTCGTC -CCAACATCGTCTAGGTGATCTCTC -CCAACATCGTCTAGGTGATGGATC -CCAACATCGTCTAGGTGACACTTC -CCAACATCGTCTAGGTGAGTACTC -CCAACATCGTCTAGGTGAGATGTC -CCAACATCGTCTAGGTGAACAGTC -CCAACATCGTCTAGGTGATTGCTG -CCAACATCGTCTAGGTGATCCATG -CCAACATCGTCTAGGTGATGTGTG -CCAACATCGTCTAGGTGACTAGTG -CCAACATCGTCTAGGTGACATCTG -CCAACATCGTCTAGGTGAGAGTTG -CCAACATCGTCTAGGTGAAGACTG -CCAACATCGTCTAGGTGATCGGTA -CCAACATCGTCTAGGTGATGCCTA -CCAACATCGTCTAGGTGACCACTA -CCAACATCGTCTAGGTGAGGAGTA -CCAACATCGTCTAGGTGATCGTCT -CCAACATCGTCTAGGTGATGCACT -CCAACATCGTCTAGGTGACTGACT -CCAACATCGTCTAGGTGACAACCT -CCAACATCGTCTAGGTGAGCTACT -CCAACATCGTCTAGGTGAGGATCT -CCAACATCGTCTAGGTGAAAGGCT -CCAACATCGTCTAGGTGATCAACC -CCAACATCGTCTAGGTGATGTTCC -CCAACATCGTCTAGGTGAATTCCC -CCAACATCGTCTAGGTGATTCTCG -CCAACATCGTCTAGGTGATAGACG -CCAACATCGTCTAGGTGAGTAACG -CCAACATCGTCTAGGTGAACTTCG -CCAACATCGTCTAGGTGATACGCA -CCAACATCGTCTAGGTGACTTGCA -CCAACATCGTCTAGGTGACGAACA -CCAACATCGTCTAGGTGACAGTCA -CCAACATCGTCTAGGTGAGATCCA -CCAACATCGTCTAGGTGAACGACA -CCAACATCGTCTAGGTGAAGCTCA -CCAACATCGTCTAGGTGATCACGT -CCAACATCGTCTAGGTGACGTAGT -CCAACATCGTCTAGGTGAGTCAGT -CCAACATCGTCTAGGTGAGAAGGT -CCAACATCGTCTAGGTGAAACCGT -CCAACATCGTCTAGGTGATTGTGC -CCAACATCGTCTAGGTGACTAAGC -CCAACATCGTCTAGGTGAACTAGC -CCAACATCGTCTAGGTGAAGATGC -CCAACATCGTCTAGGTGATGAAGG -CCAACATCGTCTAGGTGACAATGG -CCAACATCGTCTAGGTGAATGAGG -CCAACATCGTCTAGGTGAAATGGG -CCAACATCGTCTAGGTGATCCTGA -CCAACATCGTCTAGGTGATAGCGA -CCAACATCGTCTAGGTGACACAGA -CCAACATCGTCTAGGTGAGCAAGA -CCAACATCGTCTAGGTGAGGTTGA -CCAACATCGTCTAGGTGATCCGAT -CCAACATCGTCTAGGTGATGGCAT -CCAACATCGTCTAGGTGACGAGAT -CCAACATCGTCTAGGTGATACCAC -CCAACATCGTCTAGGTGACAGAAC -CCAACATCGTCTAGGTGAGTCTAC -CCAACATCGTCTAGGTGAACGTAC -CCAACATCGTCTAGGTGAAGTGAC -CCAACATCGTCTAGGTGACTGTAG -CCAACATCGTCTAGGTGACCTAAG -CCAACATCGTCTAGGTGAGTTCAG -CCAACATCGTCTAGGTGAGCATAG -CCAACATCGTCTAGGTGAGACAAG -CCAACATCGTCTAGGTGAAAGCAG -CCAACATCGTCTAGGTGACGTCAA -CCAACATCGTCTAGGTGAGCTGAA -CCAACATCGTCTAGGTGAAGTACG -CCAACATCGTCTAGGTGAATCCGA -CCAACATCGTCTAGGTGAATGGGA -CCAACATCGTCTAGGTGAGTGCAA -CCAACATCGTCTAGGTGAGAGGAA -CCAACATCGTCTAGGTGACAGGTA -CCAACATCGTCTAGGTGAGACTCT -CCAACATCGTCTAGGTGAAGTCCT -CCAACATCGTCTAGGTGATAAGCC -CCAACATCGTCTAGGTGAATAGCC -CCAACATCGTCTAGGTGATAACCG -CCAACATCGTCTAGGTGAATGCCA -CCAACATCGTCTTGGCAAGGAAAC -CCAACATCGTCTTGGCAAAACACC -CCAACATCGTCTTGGCAAATCGAG -CCAACATCGTCTTGGCAACTCCTT -CCAACATCGTCTTGGCAACCTGTT -CCAACATCGTCTTGGCAACGGTTT -CCAACATCGTCTTGGCAAGTGGTT -CCAACATCGTCTTGGCAAGCCTTT -CCAACATCGTCTTGGCAAGGTCTT -CCAACATCGTCTTGGCAAACGCTT -CCAACATCGTCTTGGCAAAGCGTT -CCAACATCGTCTTGGCAATTCGTC -CCAACATCGTCTTGGCAATCTCTC -CCAACATCGTCTTGGCAATGGATC -CCAACATCGTCTTGGCAACACTTC -CCAACATCGTCTTGGCAAGTACTC -CCAACATCGTCTTGGCAAGATGTC -CCAACATCGTCTTGGCAAACAGTC -CCAACATCGTCTTGGCAATTGCTG -CCAACATCGTCTTGGCAATCCATG -CCAACATCGTCTTGGCAATGTGTG -CCAACATCGTCTTGGCAACTAGTG -CCAACATCGTCTTGGCAACATCTG -CCAACATCGTCTTGGCAAGAGTTG -CCAACATCGTCTTGGCAAAGACTG -CCAACATCGTCTTGGCAATCGGTA -CCAACATCGTCTTGGCAATGCCTA -CCAACATCGTCTTGGCAACCACTA -CCAACATCGTCTTGGCAAGGAGTA -CCAACATCGTCTTGGCAATCGTCT -CCAACATCGTCTTGGCAATGCACT -CCAACATCGTCTTGGCAACTGACT -CCAACATCGTCTTGGCAACAACCT -CCAACATCGTCTTGGCAAGCTACT -CCAACATCGTCTTGGCAAGGATCT -CCAACATCGTCTTGGCAAAAGGCT -CCAACATCGTCTTGGCAATCAACC -CCAACATCGTCTTGGCAATGTTCC -CCAACATCGTCTTGGCAAATTCCC -CCAACATCGTCTTGGCAATTCTCG -CCAACATCGTCTTGGCAATAGACG -CCAACATCGTCTTGGCAAGTAACG -CCAACATCGTCTTGGCAAACTTCG -CCAACATCGTCTTGGCAATACGCA -CCAACATCGTCTTGGCAACTTGCA -CCAACATCGTCTTGGCAACGAACA -CCAACATCGTCTTGGCAACAGTCA -CCAACATCGTCTTGGCAAGATCCA -CCAACATCGTCTTGGCAAACGACA -CCAACATCGTCTTGGCAAAGCTCA -CCAACATCGTCTTGGCAATCACGT -CCAACATCGTCTTGGCAACGTAGT -CCAACATCGTCTTGGCAAGTCAGT -CCAACATCGTCTTGGCAAGAAGGT -CCAACATCGTCTTGGCAAAACCGT -CCAACATCGTCTTGGCAATTGTGC -CCAACATCGTCTTGGCAACTAAGC -CCAACATCGTCTTGGCAAACTAGC -CCAACATCGTCTTGGCAAAGATGC -CCAACATCGTCTTGGCAATGAAGG -CCAACATCGTCTTGGCAACAATGG -CCAACATCGTCTTGGCAAATGAGG -CCAACATCGTCTTGGCAAAATGGG -CCAACATCGTCTTGGCAATCCTGA -CCAACATCGTCTTGGCAATAGCGA -CCAACATCGTCTTGGCAACACAGA -CCAACATCGTCTTGGCAAGCAAGA -CCAACATCGTCTTGGCAAGGTTGA -CCAACATCGTCTTGGCAATCCGAT -CCAACATCGTCTTGGCAATGGCAT -CCAACATCGTCTTGGCAACGAGAT -CCAACATCGTCTTGGCAATACCAC -CCAACATCGTCTTGGCAACAGAAC -CCAACATCGTCTTGGCAAGTCTAC -CCAACATCGTCTTGGCAAACGTAC -CCAACATCGTCTTGGCAAAGTGAC -CCAACATCGTCTTGGCAACTGTAG -CCAACATCGTCTTGGCAACCTAAG -CCAACATCGTCTTGGCAAGTTCAG -CCAACATCGTCTTGGCAAGCATAG -CCAACATCGTCTTGGCAAGACAAG -CCAACATCGTCTTGGCAAAAGCAG -CCAACATCGTCTTGGCAACGTCAA -CCAACATCGTCTTGGCAAGCTGAA -CCAACATCGTCTTGGCAAAGTACG -CCAACATCGTCTTGGCAAATCCGA -CCAACATCGTCTTGGCAAATGGGA -CCAACATCGTCTTGGCAAGTGCAA -CCAACATCGTCTTGGCAAGAGGAA -CCAACATCGTCTTGGCAACAGGTA -CCAACATCGTCTTGGCAAGACTCT -CCAACATCGTCTTGGCAAAGTCCT -CCAACATCGTCTTGGCAATAAGCC -CCAACATCGTCTTGGCAAATAGCC -CCAACATCGTCTTGGCAATAACCG -CCAACATCGTCTTGGCAAATGCCA -CCAACATCGTCTAGGATGGGAAAC -CCAACATCGTCTAGGATGAACACC -CCAACATCGTCTAGGATGATCGAG -CCAACATCGTCTAGGATGCTCCTT -CCAACATCGTCTAGGATGCCTGTT -CCAACATCGTCTAGGATGCGGTTT -CCAACATCGTCTAGGATGGTGGTT -CCAACATCGTCTAGGATGGCCTTT -CCAACATCGTCTAGGATGGGTCTT -CCAACATCGTCTAGGATGACGCTT -CCAACATCGTCTAGGATGAGCGTT -CCAACATCGTCTAGGATGTTCGTC -CCAACATCGTCTAGGATGTCTCTC -CCAACATCGTCTAGGATGTGGATC -CCAACATCGTCTAGGATGCACTTC -CCAACATCGTCTAGGATGGTACTC -CCAACATCGTCTAGGATGGATGTC -CCAACATCGTCTAGGATGACAGTC -CCAACATCGTCTAGGATGTTGCTG -CCAACATCGTCTAGGATGTCCATG -CCAACATCGTCTAGGATGTGTGTG -CCAACATCGTCTAGGATGCTAGTG -CCAACATCGTCTAGGATGCATCTG -CCAACATCGTCTAGGATGGAGTTG -CCAACATCGTCTAGGATGAGACTG -CCAACATCGTCTAGGATGTCGGTA -CCAACATCGTCTAGGATGTGCCTA -CCAACATCGTCTAGGATGCCACTA -CCAACATCGTCTAGGATGGGAGTA -CCAACATCGTCTAGGATGTCGTCT -CCAACATCGTCTAGGATGTGCACT -CCAACATCGTCTAGGATGCTGACT -CCAACATCGTCTAGGATGCAACCT -CCAACATCGTCTAGGATGGCTACT -CCAACATCGTCTAGGATGGGATCT -CCAACATCGTCTAGGATGAAGGCT -CCAACATCGTCTAGGATGTCAACC -CCAACATCGTCTAGGATGTGTTCC -CCAACATCGTCTAGGATGATTCCC -CCAACATCGTCTAGGATGTTCTCG -CCAACATCGTCTAGGATGTAGACG -CCAACATCGTCTAGGATGGTAACG -CCAACATCGTCTAGGATGACTTCG -CCAACATCGTCTAGGATGTACGCA -CCAACATCGTCTAGGATGCTTGCA -CCAACATCGTCTAGGATGCGAACA -CCAACATCGTCTAGGATGCAGTCA -CCAACATCGTCTAGGATGGATCCA -CCAACATCGTCTAGGATGACGACA -CCAACATCGTCTAGGATGAGCTCA -CCAACATCGTCTAGGATGTCACGT -CCAACATCGTCTAGGATGCGTAGT -CCAACATCGTCTAGGATGGTCAGT -CCAACATCGTCTAGGATGGAAGGT -CCAACATCGTCTAGGATGAACCGT -CCAACATCGTCTAGGATGTTGTGC -CCAACATCGTCTAGGATGCTAAGC -CCAACATCGTCTAGGATGACTAGC -CCAACATCGTCTAGGATGAGATGC -CCAACATCGTCTAGGATGTGAAGG -CCAACATCGTCTAGGATGCAATGG -CCAACATCGTCTAGGATGATGAGG -CCAACATCGTCTAGGATGAATGGG -CCAACATCGTCTAGGATGTCCTGA -CCAACATCGTCTAGGATGTAGCGA -CCAACATCGTCTAGGATGCACAGA -CCAACATCGTCTAGGATGGCAAGA -CCAACATCGTCTAGGATGGGTTGA -CCAACATCGTCTAGGATGTCCGAT -CCAACATCGTCTAGGATGTGGCAT -CCAACATCGTCTAGGATGCGAGAT -CCAACATCGTCTAGGATGTACCAC -CCAACATCGTCTAGGATGCAGAAC -CCAACATCGTCTAGGATGGTCTAC -CCAACATCGTCTAGGATGACGTAC -CCAACATCGTCTAGGATGAGTGAC -CCAACATCGTCTAGGATGCTGTAG -CCAACATCGTCTAGGATGCCTAAG -CCAACATCGTCTAGGATGGTTCAG -CCAACATCGTCTAGGATGGCATAG -CCAACATCGTCTAGGATGGACAAG -CCAACATCGTCTAGGATGAAGCAG -CCAACATCGTCTAGGATGCGTCAA -CCAACATCGTCTAGGATGGCTGAA -CCAACATCGTCTAGGATGAGTACG -CCAACATCGTCTAGGATGATCCGA -CCAACATCGTCTAGGATGATGGGA -CCAACATCGTCTAGGATGGTGCAA -CCAACATCGTCTAGGATGGAGGAA -CCAACATCGTCTAGGATGCAGGTA -CCAACATCGTCTAGGATGGACTCT -CCAACATCGTCTAGGATGAGTCCT -CCAACATCGTCTAGGATGTAAGCC -CCAACATCGTCTAGGATGATAGCC -CCAACATCGTCTAGGATGTAACCG -CCAACATCGTCTAGGATGATGCCA -CCAACATCGTCTGGGAATGGAAAC -CCAACATCGTCTGGGAATAACACC -CCAACATCGTCTGGGAATATCGAG -CCAACATCGTCTGGGAATCTCCTT -CCAACATCGTCTGGGAATCCTGTT -CCAACATCGTCTGGGAATCGGTTT -CCAACATCGTCTGGGAATGTGGTT -CCAACATCGTCTGGGAATGCCTTT -CCAACATCGTCTGGGAATGGTCTT -CCAACATCGTCTGGGAATACGCTT -CCAACATCGTCTGGGAATAGCGTT -CCAACATCGTCTGGGAATTTCGTC -CCAACATCGTCTGGGAATTCTCTC -CCAACATCGTCTGGGAATTGGATC -CCAACATCGTCTGGGAATCACTTC -CCAACATCGTCTGGGAATGTACTC -CCAACATCGTCTGGGAATGATGTC -CCAACATCGTCTGGGAATACAGTC -CCAACATCGTCTGGGAATTTGCTG -CCAACATCGTCTGGGAATTCCATG -CCAACATCGTCTGGGAATTGTGTG -CCAACATCGTCTGGGAATCTAGTG -CCAACATCGTCTGGGAATCATCTG -CCAACATCGTCTGGGAATGAGTTG -CCAACATCGTCTGGGAATAGACTG -CCAACATCGTCTGGGAATTCGGTA -CCAACATCGTCTGGGAATTGCCTA -CCAACATCGTCTGGGAATCCACTA -CCAACATCGTCTGGGAATGGAGTA -CCAACATCGTCTGGGAATTCGTCT -CCAACATCGTCTGGGAATTGCACT -CCAACATCGTCTGGGAATCTGACT -CCAACATCGTCTGGGAATCAACCT -CCAACATCGTCTGGGAATGCTACT -CCAACATCGTCTGGGAATGGATCT -CCAACATCGTCTGGGAATAAGGCT -CCAACATCGTCTGGGAATTCAACC -CCAACATCGTCTGGGAATTGTTCC -CCAACATCGTCTGGGAATATTCCC -CCAACATCGTCTGGGAATTTCTCG -CCAACATCGTCTGGGAATTAGACG -CCAACATCGTCTGGGAATGTAACG -CCAACATCGTCTGGGAATACTTCG -CCAACATCGTCTGGGAATTACGCA -CCAACATCGTCTGGGAATCTTGCA -CCAACATCGTCTGGGAATCGAACA -CCAACATCGTCTGGGAATCAGTCA -CCAACATCGTCTGGGAATGATCCA -CCAACATCGTCTGGGAATACGACA -CCAACATCGTCTGGGAATAGCTCA -CCAACATCGTCTGGGAATTCACGT -CCAACATCGTCTGGGAATCGTAGT -CCAACATCGTCTGGGAATGTCAGT -CCAACATCGTCTGGGAATGAAGGT -CCAACATCGTCTGGGAATAACCGT -CCAACATCGTCTGGGAATTTGTGC -CCAACATCGTCTGGGAATCTAAGC -CCAACATCGTCTGGGAATACTAGC -CCAACATCGTCTGGGAATAGATGC -CCAACATCGTCTGGGAATTGAAGG -CCAACATCGTCTGGGAATCAATGG -CCAACATCGTCTGGGAATATGAGG -CCAACATCGTCTGGGAATAATGGG -CCAACATCGTCTGGGAATTCCTGA -CCAACATCGTCTGGGAATTAGCGA -CCAACATCGTCTGGGAATCACAGA -CCAACATCGTCTGGGAATGCAAGA -CCAACATCGTCTGGGAATGGTTGA -CCAACATCGTCTGGGAATTCCGAT -CCAACATCGTCTGGGAATTGGCAT -CCAACATCGTCTGGGAATCGAGAT -CCAACATCGTCTGGGAATTACCAC -CCAACATCGTCTGGGAATCAGAAC -CCAACATCGTCTGGGAATGTCTAC -CCAACATCGTCTGGGAATACGTAC -CCAACATCGTCTGGGAATAGTGAC -CCAACATCGTCTGGGAATCTGTAG -CCAACATCGTCTGGGAATCCTAAG -CCAACATCGTCTGGGAATGTTCAG -CCAACATCGTCTGGGAATGCATAG -CCAACATCGTCTGGGAATGACAAG -CCAACATCGTCTGGGAATAAGCAG -CCAACATCGTCTGGGAATCGTCAA -CCAACATCGTCTGGGAATGCTGAA -CCAACATCGTCTGGGAATAGTACG -CCAACATCGTCTGGGAATATCCGA -CCAACATCGTCTGGGAATATGGGA -CCAACATCGTCTGGGAATGTGCAA -CCAACATCGTCTGGGAATGAGGAA -CCAACATCGTCTGGGAATCAGGTA -CCAACATCGTCTGGGAATGACTCT -CCAACATCGTCTGGGAATAGTCCT -CCAACATCGTCTGGGAATTAAGCC -CCAACATCGTCTGGGAATATAGCC -CCAACATCGTCTGGGAATTAACCG -CCAACATCGTCTGGGAATATGCCA -CCAACATCGTCTTGATCCGGAAAC -CCAACATCGTCTTGATCCAACACC -CCAACATCGTCTTGATCCATCGAG -CCAACATCGTCTTGATCCCTCCTT -CCAACATCGTCTTGATCCCCTGTT -CCAACATCGTCTTGATCCCGGTTT -CCAACATCGTCTTGATCCGTGGTT -CCAACATCGTCTTGATCCGCCTTT -CCAACATCGTCTTGATCCGGTCTT -CCAACATCGTCTTGATCCACGCTT -CCAACATCGTCTTGATCCAGCGTT -CCAACATCGTCTTGATCCTTCGTC -CCAACATCGTCTTGATCCTCTCTC -CCAACATCGTCTTGATCCTGGATC -CCAACATCGTCTTGATCCCACTTC -CCAACATCGTCTTGATCCGTACTC -CCAACATCGTCTTGATCCGATGTC -CCAACATCGTCTTGATCCACAGTC -CCAACATCGTCTTGATCCTTGCTG -CCAACATCGTCTTGATCCTCCATG -CCAACATCGTCTTGATCCTGTGTG -CCAACATCGTCTTGATCCCTAGTG -CCAACATCGTCTTGATCCCATCTG -CCAACATCGTCTTGATCCGAGTTG -CCAACATCGTCTTGATCCAGACTG -CCAACATCGTCTTGATCCTCGGTA -CCAACATCGTCTTGATCCTGCCTA -CCAACATCGTCTTGATCCCCACTA -CCAACATCGTCTTGATCCGGAGTA -CCAACATCGTCTTGATCCTCGTCT -CCAACATCGTCTTGATCCTGCACT -CCAACATCGTCTTGATCCCTGACT -CCAACATCGTCTTGATCCCAACCT -CCAACATCGTCTTGATCCGCTACT -CCAACATCGTCTTGATCCGGATCT -CCAACATCGTCTTGATCCAAGGCT -CCAACATCGTCTTGATCCTCAACC -CCAACATCGTCTTGATCCTGTTCC -CCAACATCGTCTTGATCCATTCCC -CCAACATCGTCTTGATCCTTCTCG -CCAACATCGTCTTGATCCTAGACG -CCAACATCGTCTTGATCCGTAACG -CCAACATCGTCTTGATCCACTTCG -CCAACATCGTCTTGATCCTACGCA -CCAACATCGTCTTGATCCCTTGCA -CCAACATCGTCTTGATCCCGAACA -CCAACATCGTCTTGATCCCAGTCA -CCAACATCGTCTTGATCCGATCCA -CCAACATCGTCTTGATCCACGACA -CCAACATCGTCTTGATCCAGCTCA -CCAACATCGTCTTGATCCTCACGT -CCAACATCGTCTTGATCCCGTAGT -CCAACATCGTCTTGATCCGTCAGT -CCAACATCGTCTTGATCCGAAGGT -CCAACATCGTCTTGATCCAACCGT -CCAACATCGTCTTGATCCTTGTGC -CCAACATCGTCTTGATCCCTAAGC -CCAACATCGTCTTGATCCACTAGC -CCAACATCGTCTTGATCCAGATGC -CCAACATCGTCTTGATCCTGAAGG -CCAACATCGTCTTGATCCCAATGG -CCAACATCGTCTTGATCCATGAGG -CCAACATCGTCTTGATCCAATGGG -CCAACATCGTCTTGATCCTCCTGA -CCAACATCGTCTTGATCCTAGCGA -CCAACATCGTCTTGATCCCACAGA -CCAACATCGTCTTGATCCGCAAGA -CCAACATCGTCTTGATCCGGTTGA -CCAACATCGTCTTGATCCTCCGAT -CCAACATCGTCTTGATCCTGGCAT -CCAACATCGTCTTGATCCCGAGAT -CCAACATCGTCTTGATCCTACCAC -CCAACATCGTCTTGATCCCAGAAC -CCAACATCGTCTTGATCCGTCTAC -CCAACATCGTCTTGATCCACGTAC -CCAACATCGTCTTGATCCAGTGAC -CCAACATCGTCTTGATCCCTGTAG -CCAACATCGTCTTGATCCCCTAAG -CCAACATCGTCTTGATCCGTTCAG -CCAACATCGTCTTGATCCGCATAG -CCAACATCGTCTTGATCCGACAAG -CCAACATCGTCTTGATCCAAGCAG -CCAACATCGTCTTGATCCCGTCAA -CCAACATCGTCTTGATCCGCTGAA -CCAACATCGTCTTGATCCAGTACG -CCAACATCGTCTTGATCCATCCGA -CCAACATCGTCTTGATCCATGGGA -CCAACATCGTCTTGATCCGTGCAA -CCAACATCGTCTTGATCCGAGGAA -CCAACATCGTCTTGATCCCAGGTA -CCAACATCGTCTTGATCCGACTCT -CCAACATCGTCTTGATCCAGTCCT -CCAACATCGTCTTGATCCTAAGCC -CCAACATCGTCTTGATCCATAGCC -CCAACATCGTCTTGATCCTAACCG -CCAACATCGTCTTGATCCATGCCA -CCAACATCGTCTCGATAGGGAAAC -CCAACATCGTCTCGATAGAACACC -CCAACATCGTCTCGATAGATCGAG -CCAACATCGTCTCGATAGCTCCTT -CCAACATCGTCTCGATAGCCTGTT -CCAACATCGTCTCGATAGCGGTTT -CCAACATCGTCTCGATAGGTGGTT -CCAACATCGTCTCGATAGGCCTTT -CCAACATCGTCTCGATAGGGTCTT -CCAACATCGTCTCGATAGACGCTT -CCAACATCGTCTCGATAGAGCGTT -CCAACATCGTCTCGATAGTTCGTC -CCAACATCGTCTCGATAGTCTCTC -CCAACATCGTCTCGATAGTGGATC -CCAACATCGTCTCGATAGCACTTC -CCAACATCGTCTCGATAGGTACTC -CCAACATCGTCTCGATAGGATGTC -CCAACATCGTCTCGATAGACAGTC -CCAACATCGTCTCGATAGTTGCTG -CCAACATCGTCTCGATAGTCCATG -CCAACATCGTCTCGATAGTGTGTG -CCAACATCGTCTCGATAGCTAGTG -CCAACATCGTCTCGATAGCATCTG -CCAACATCGTCTCGATAGGAGTTG -CCAACATCGTCTCGATAGAGACTG -CCAACATCGTCTCGATAGTCGGTA -CCAACATCGTCTCGATAGTGCCTA -CCAACATCGTCTCGATAGCCACTA -CCAACATCGTCTCGATAGGGAGTA -CCAACATCGTCTCGATAGTCGTCT -CCAACATCGTCTCGATAGTGCACT -CCAACATCGTCTCGATAGCTGACT -CCAACATCGTCTCGATAGCAACCT -CCAACATCGTCTCGATAGGCTACT -CCAACATCGTCTCGATAGGGATCT -CCAACATCGTCTCGATAGAAGGCT -CCAACATCGTCTCGATAGTCAACC -CCAACATCGTCTCGATAGTGTTCC -CCAACATCGTCTCGATAGATTCCC -CCAACATCGTCTCGATAGTTCTCG -CCAACATCGTCTCGATAGTAGACG -CCAACATCGTCTCGATAGGTAACG -CCAACATCGTCTCGATAGACTTCG -CCAACATCGTCTCGATAGTACGCA -CCAACATCGTCTCGATAGCTTGCA -CCAACATCGTCTCGATAGCGAACA -CCAACATCGTCTCGATAGCAGTCA -CCAACATCGTCTCGATAGGATCCA -CCAACATCGTCTCGATAGACGACA -CCAACATCGTCTCGATAGAGCTCA -CCAACATCGTCTCGATAGTCACGT -CCAACATCGTCTCGATAGCGTAGT -CCAACATCGTCTCGATAGGTCAGT -CCAACATCGTCTCGATAGGAAGGT -CCAACATCGTCTCGATAGAACCGT -CCAACATCGTCTCGATAGTTGTGC -CCAACATCGTCTCGATAGCTAAGC -CCAACATCGTCTCGATAGACTAGC -CCAACATCGTCTCGATAGAGATGC -CCAACATCGTCTCGATAGTGAAGG -CCAACATCGTCTCGATAGCAATGG -CCAACATCGTCTCGATAGATGAGG -CCAACATCGTCTCGATAGAATGGG -CCAACATCGTCTCGATAGTCCTGA -CCAACATCGTCTCGATAGTAGCGA -CCAACATCGTCTCGATAGCACAGA -CCAACATCGTCTCGATAGGCAAGA -CCAACATCGTCTCGATAGGGTTGA -CCAACATCGTCTCGATAGTCCGAT -CCAACATCGTCTCGATAGTGGCAT -CCAACATCGTCTCGATAGCGAGAT -CCAACATCGTCTCGATAGTACCAC -CCAACATCGTCTCGATAGCAGAAC -CCAACATCGTCTCGATAGGTCTAC -CCAACATCGTCTCGATAGACGTAC -CCAACATCGTCTCGATAGAGTGAC -CCAACATCGTCTCGATAGCTGTAG -CCAACATCGTCTCGATAGCCTAAG -CCAACATCGTCTCGATAGGTTCAG -CCAACATCGTCTCGATAGGCATAG -CCAACATCGTCTCGATAGGACAAG -CCAACATCGTCTCGATAGAAGCAG -CCAACATCGTCTCGATAGCGTCAA -CCAACATCGTCTCGATAGGCTGAA -CCAACATCGTCTCGATAGAGTACG -CCAACATCGTCTCGATAGATCCGA -CCAACATCGTCTCGATAGATGGGA -CCAACATCGTCTCGATAGGTGCAA -CCAACATCGTCTCGATAGGAGGAA -CCAACATCGTCTCGATAGCAGGTA -CCAACATCGTCTCGATAGGACTCT -CCAACATCGTCTCGATAGAGTCCT -CCAACATCGTCTCGATAGTAAGCC -CCAACATCGTCTCGATAGATAGCC -CCAACATCGTCTCGATAGTAACCG -CCAACATCGTCTCGATAGATGCCA -CCAACATCGTCTAGACACGGAAAC -CCAACATCGTCTAGACACAACACC -CCAACATCGTCTAGACACATCGAG -CCAACATCGTCTAGACACCTCCTT -CCAACATCGTCTAGACACCCTGTT -CCAACATCGTCTAGACACCGGTTT -CCAACATCGTCTAGACACGTGGTT -CCAACATCGTCTAGACACGCCTTT -CCAACATCGTCTAGACACGGTCTT -CCAACATCGTCTAGACACACGCTT -CCAACATCGTCTAGACACAGCGTT -CCAACATCGTCTAGACACTTCGTC -CCAACATCGTCTAGACACTCTCTC -CCAACATCGTCTAGACACTGGATC -CCAACATCGTCTAGACACCACTTC -CCAACATCGTCTAGACACGTACTC -CCAACATCGTCTAGACACGATGTC -CCAACATCGTCTAGACACACAGTC -CCAACATCGTCTAGACACTTGCTG -CCAACATCGTCTAGACACTCCATG -CCAACATCGTCTAGACACTGTGTG -CCAACATCGTCTAGACACCTAGTG -CCAACATCGTCTAGACACCATCTG -CCAACATCGTCTAGACACGAGTTG -CCAACATCGTCTAGACACAGACTG -CCAACATCGTCTAGACACTCGGTA -CCAACATCGTCTAGACACTGCCTA -CCAACATCGTCTAGACACCCACTA -CCAACATCGTCTAGACACGGAGTA -CCAACATCGTCTAGACACTCGTCT -CCAACATCGTCTAGACACTGCACT -CCAACATCGTCTAGACACCTGACT -CCAACATCGTCTAGACACCAACCT -CCAACATCGTCTAGACACGCTACT -CCAACATCGTCTAGACACGGATCT -CCAACATCGTCTAGACACAAGGCT -CCAACATCGTCTAGACACTCAACC -CCAACATCGTCTAGACACTGTTCC -CCAACATCGTCTAGACACATTCCC -CCAACATCGTCTAGACACTTCTCG -CCAACATCGTCTAGACACTAGACG -CCAACATCGTCTAGACACGTAACG -CCAACATCGTCTAGACACACTTCG -CCAACATCGTCTAGACACTACGCA -CCAACATCGTCTAGACACCTTGCA -CCAACATCGTCTAGACACCGAACA -CCAACATCGTCTAGACACCAGTCA -CCAACATCGTCTAGACACGATCCA -CCAACATCGTCTAGACACACGACA -CCAACATCGTCTAGACACAGCTCA -CCAACATCGTCTAGACACTCACGT -CCAACATCGTCTAGACACCGTAGT -CCAACATCGTCTAGACACGTCAGT -CCAACATCGTCTAGACACGAAGGT -CCAACATCGTCTAGACACAACCGT -CCAACATCGTCTAGACACTTGTGC -CCAACATCGTCTAGACACCTAAGC -CCAACATCGTCTAGACACACTAGC -CCAACATCGTCTAGACACAGATGC -CCAACATCGTCTAGACACTGAAGG -CCAACATCGTCTAGACACCAATGG -CCAACATCGTCTAGACACATGAGG -CCAACATCGTCTAGACACAATGGG -CCAACATCGTCTAGACACTCCTGA -CCAACATCGTCTAGACACTAGCGA -CCAACATCGTCTAGACACCACAGA -CCAACATCGTCTAGACACGCAAGA -CCAACATCGTCTAGACACGGTTGA -CCAACATCGTCTAGACACTCCGAT -CCAACATCGTCTAGACACTGGCAT -CCAACATCGTCTAGACACCGAGAT -CCAACATCGTCTAGACACTACCAC -CCAACATCGTCTAGACACCAGAAC -CCAACATCGTCTAGACACGTCTAC -CCAACATCGTCTAGACACACGTAC -CCAACATCGTCTAGACACAGTGAC -CCAACATCGTCTAGACACCTGTAG -CCAACATCGTCTAGACACCCTAAG -CCAACATCGTCTAGACACGTTCAG -CCAACATCGTCTAGACACGCATAG -CCAACATCGTCTAGACACGACAAG -CCAACATCGTCTAGACACAAGCAG -CCAACATCGTCTAGACACCGTCAA -CCAACATCGTCTAGACACGCTGAA -CCAACATCGTCTAGACACAGTACG -CCAACATCGTCTAGACACATCCGA -CCAACATCGTCTAGACACATGGGA -CCAACATCGTCTAGACACGTGCAA -CCAACATCGTCTAGACACGAGGAA -CCAACATCGTCTAGACACCAGGTA -CCAACATCGTCTAGACACGACTCT -CCAACATCGTCTAGACACAGTCCT -CCAACATCGTCTAGACACTAAGCC -CCAACATCGTCTAGACACATAGCC -CCAACATCGTCTAGACACTAACCG -CCAACATCGTCTAGACACATGCCA -CCAACATCGTCTAGAGCAGGAAAC -CCAACATCGTCTAGAGCAAACACC -CCAACATCGTCTAGAGCAATCGAG -CCAACATCGTCTAGAGCACTCCTT -CCAACATCGTCTAGAGCACCTGTT -CCAACATCGTCTAGAGCACGGTTT -CCAACATCGTCTAGAGCAGTGGTT -CCAACATCGTCTAGAGCAGCCTTT -CCAACATCGTCTAGAGCAGGTCTT -CCAACATCGTCTAGAGCAACGCTT -CCAACATCGTCTAGAGCAAGCGTT -CCAACATCGTCTAGAGCATTCGTC -CCAACATCGTCTAGAGCATCTCTC -CCAACATCGTCTAGAGCATGGATC -CCAACATCGTCTAGAGCACACTTC -CCAACATCGTCTAGAGCAGTACTC -CCAACATCGTCTAGAGCAGATGTC -CCAACATCGTCTAGAGCAACAGTC -CCAACATCGTCTAGAGCATTGCTG -CCAACATCGTCTAGAGCATCCATG -CCAACATCGTCTAGAGCATGTGTG -CCAACATCGTCTAGAGCACTAGTG -CCAACATCGTCTAGAGCACATCTG -CCAACATCGTCTAGAGCAGAGTTG -CCAACATCGTCTAGAGCAAGACTG -CCAACATCGTCTAGAGCATCGGTA -CCAACATCGTCTAGAGCATGCCTA -CCAACATCGTCTAGAGCACCACTA -CCAACATCGTCTAGAGCAGGAGTA -CCAACATCGTCTAGAGCATCGTCT -CCAACATCGTCTAGAGCATGCACT -CCAACATCGTCTAGAGCACTGACT -CCAACATCGTCTAGAGCACAACCT -CCAACATCGTCTAGAGCAGCTACT -CCAACATCGTCTAGAGCAGGATCT -CCAACATCGTCTAGAGCAAAGGCT -CCAACATCGTCTAGAGCATCAACC -CCAACATCGTCTAGAGCATGTTCC -CCAACATCGTCTAGAGCAATTCCC -CCAACATCGTCTAGAGCATTCTCG -CCAACATCGTCTAGAGCATAGACG -CCAACATCGTCTAGAGCAGTAACG -CCAACATCGTCTAGAGCAACTTCG -CCAACATCGTCTAGAGCATACGCA -CCAACATCGTCTAGAGCACTTGCA -CCAACATCGTCTAGAGCACGAACA -CCAACATCGTCTAGAGCACAGTCA -CCAACATCGTCTAGAGCAGATCCA -CCAACATCGTCTAGAGCAACGACA -CCAACATCGTCTAGAGCAAGCTCA -CCAACATCGTCTAGAGCATCACGT -CCAACATCGTCTAGAGCACGTAGT -CCAACATCGTCTAGAGCAGTCAGT -CCAACATCGTCTAGAGCAGAAGGT -CCAACATCGTCTAGAGCAAACCGT -CCAACATCGTCTAGAGCATTGTGC -CCAACATCGTCTAGAGCACTAAGC -CCAACATCGTCTAGAGCAACTAGC -CCAACATCGTCTAGAGCAAGATGC -CCAACATCGTCTAGAGCATGAAGG -CCAACATCGTCTAGAGCACAATGG -CCAACATCGTCTAGAGCAATGAGG -CCAACATCGTCTAGAGCAAATGGG -CCAACATCGTCTAGAGCATCCTGA -CCAACATCGTCTAGAGCATAGCGA -CCAACATCGTCTAGAGCACACAGA -CCAACATCGTCTAGAGCAGCAAGA -CCAACATCGTCTAGAGCAGGTTGA -CCAACATCGTCTAGAGCATCCGAT -CCAACATCGTCTAGAGCATGGCAT -CCAACATCGTCTAGAGCACGAGAT -CCAACATCGTCTAGAGCATACCAC -CCAACATCGTCTAGAGCACAGAAC -CCAACATCGTCTAGAGCAGTCTAC -CCAACATCGTCTAGAGCAACGTAC -CCAACATCGTCTAGAGCAAGTGAC -CCAACATCGTCTAGAGCACTGTAG -CCAACATCGTCTAGAGCACCTAAG -CCAACATCGTCTAGAGCAGTTCAG -CCAACATCGTCTAGAGCAGCATAG -CCAACATCGTCTAGAGCAGACAAG -CCAACATCGTCTAGAGCAAAGCAG -CCAACATCGTCTAGAGCACGTCAA -CCAACATCGTCTAGAGCAGCTGAA -CCAACATCGTCTAGAGCAAGTACG -CCAACATCGTCTAGAGCAATCCGA -CCAACATCGTCTAGAGCAATGGGA -CCAACATCGTCTAGAGCAGTGCAA -CCAACATCGTCTAGAGCAGAGGAA -CCAACATCGTCTAGAGCACAGGTA -CCAACATCGTCTAGAGCAGACTCT -CCAACATCGTCTAGAGCAAGTCCT -CCAACATCGTCTAGAGCATAAGCC -CCAACATCGTCTAGAGCAATAGCC -CCAACATCGTCTAGAGCATAACCG -CCAACATCGTCTAGAGCAATGCCA -CCAACATCGTCTTGAGGTGGAAAC -CCAACATCGTCTTGAGGTAACACC -CCAACATCGTCTTGAGGTATCGAG -CCAACATCGTCTTGAGGTCTCCTT -CCAACATCGTCTTGAGGTCCTGTT -CCAACATCGTCTTGAGGTCGGTTT -CCAACATCGTCTTGAGGTGTGGTT -CCAACATCGTCTTGAGGTGCCTTT -CCAACATCGTCTTGAGGTGGTCTT -CCAACATCGTCTTGAGGTACGCTT -CCAACATCGTCTTGAGGTAGCGTT -CCAACATCGTCTTGAGGTTTCGTC -CCAACATCGTCTTGAGGTTCTCTC -CCAACATCGTCTTGAGGTTGGATC -CCAACATCGTCTTGAGGTCACTTC -CCAACATCGTCTTGAGGTGTACTC -CCAACATCGTCTTGAGGTGATGTC -CCAACATCGTCTTGAGGTACAGTC -CCAACATCGTCTTGAGGTTTGCTG -CCAACATCGTCTTGAGGTTCCATG -CCAACATCGTCTTGAGGTTGTGTG -CCAACATCGTCTTGAGGTCTAGTG -CCAACATCGTCTTGAGGTCATCTG -CCAACATCGTCTTGAGGTGAGTTG -CCAACATCGTCTTGAGGTAGACTG -CCAACATCGTCTTGAGGTTCGGTA -CCAACATCGTCTTGAGGTTGCCTA -CCAACATCGTCTTGAGGTCCACTA -CCAACATCGTCTTGAGGTGGAGTA -CCAACATCGTCTTGAGGTTCGTCT -CCAACATCGTCTTGAGGTTGCACT -CCAACATCGTCTTGAGGTCTGACT -CCAACATCGTCTTGAGGTCAACCT -CCAACATCGTCTTGAGGTGCTACT -CCAACATCGTCTTGAGGTGGATCT -CCAACATCGTCTTGAGGTAAGGCT -CCAACATCGTCTTGAGGTTCAACC -CCAACATCGTCTTGAGGTTGTTCC -CCAACATCGTCTTGAGGTATTCCC -CCAACATCGTCTTGAGGTTTCTCG -CCAACATCGTCTTGAGGTTAGACG -CCAACATCGTCTTGAGGTGTAACG -CCAACATCGTCTTGAGGTACTTCG -CCAACATCGTCTTGAGGTTACGCA -CCAACATCGTCTTGAGGTCTTGCA -CCAACATCGTCTTGAGGTCGAACA -CCAACATCGTCTTGAGGTCAGTCA -CCAACATCGTCTTGAGGTGATCCA -CCAACATCGTCTTGAGGTACGACA -CCAACATCGTCTTGAGGTAGCTCA -CCAACATCGTCTTGAGGTTCACGT -CCAACATCGTCTTGAGGTCGTAGT -CCAACATCGTCTTGAGGTGTCAGT -CCAACATCGTCTTGAGGTGAAGGT -CCAACATCGTCTTGAGGTAACCGT -CCAACATCGTCTTGAGGTTTGTGC -CCAACATCGTCTTGAGGTCTAAGC -CCAACATCGTCTTGAGGTACTAGC -CCAACATCGTCTTGAGGTAGATGC -CCAACATCGTCTTGAGGTTGAAGG -CCAACATCGTCTTGAGGTCAATGG -CCAACATCGTCTTGAGGTATGAGG -CCAACATCGTCTTGAGGTAATGGG -CCAACATCGTCTTGAGGTTCCTGA -CCAACATCGTCTTGAGGTTAGCGA -CCAACATCGTCTTGAGGTCACAGA -CCAACATCGTCTTGAGGTGCAAGA -CCAACATCGTCTTGAGGTGGTTGA -CCAACATCGTCTTGAGGTTCCGAT -CCAACATCGTCTTGAGGTTGGCAT -CCAACATCGTCTTGAGGTCGAGAT -CCAACATCGTCTTGAGGTTACCAC -CCAACATCGTCTTGAGGTCAGAAC -CCAACATCGTCTTGAGGTGTCTAC -CCAACATCGTCTTGAGGTACGTAC -CCAACATCGTCTTGAGGTAGTGAC -CCAACATCGTCTTGAGGTCTGTAG -CCAACATCGTCTTGAGGTCCTAAG -CCAACATCGTCTTGAGGTGTTCAG -CCAACATCGTCTTGAGGTGCATAG -CCAACATCGTCTTGAGGTGACAAG -CCAACATCGTCTTGAGGTAAGCAG -CCAACATCGTCTTGAGGTCGTCAA -CCAACATCGTCTTGAGGTGCTGAA -CCAACATCGTCTTGAGGTAGTACG -CCAACATCGTCTTGAGGTATCCGA -CCAACATCGTCTTGAGGTATGGGA -CCAACATCGTCTTGAGGTGTGCAA -CCAACATCGTCTTGAGGTGAGGAA -CCAACATCGTCTTGAGGTCAGGTA -CCAACATCGTCTTGAGGTGACTCT -CCAACATCGTCTTGAGGTAGTCCT -CCAACATCGTCTTGAGGTTAAGCC -CCAACATCGTCTTGAGGTATAGCC -CCAACATCGTCTTGAGGTTAACCG -CCAACATCGTCTTGAGGTATGCCA -CCAACATCGTCTGATTCCGGAAAC -CCAACATCGTCTGATTCCAACACC -CCAACATCGTCTGATTCCATCGAG -CCAACATCGTCTGATTCCCTCCTT -CCAACATCGTCTGATTCCCCTGTT -CCAACATCGTCTGATTCCCGGTTT -CCAACATCGTCTGATTCCGTGGTT -CCAACATCGTCTGATTCCGCCTTT -CCAACATCGTCTGATTCCGGTCTT -CCAACATCGTCTGATTCCACGCTT -CCAACATCGTCTGATTCCAGCGTT -CCAACATCGTCTGATTCCTTCGTC -CCAACATCGTCTGATTCCTCTCTC -CCAACATCGTCTGATTCCTGGATC -CCAACATCGTCTGATTCCCACTTC -CCAACATCGTCTGATTCCGTACTC -CCAACATCGTCTGATTCCGATGTC -CCAACATCGTCTGATTCCACAGTC -CCAACATCGTCTGATTCCTTGCTG -CCAACATCGTCTGATTCCTCCATG -CCAACATCGTCTGATTCCTGTGTG -CCAACATCGTCTGATTCCCTAGTG -CCAACATCGTCTGATTCCCATCTG -CCAACATCGTCTGATTCCGAGTTG -CCAACATCGTCTGATTCCAGACTG -CCAACATCGTCTGATTCCTCGGTA -CCAACATCGTCTGATTCCTGCCTA -CCAACATCGTCTGATTCCCCACTA -CCAACATCGTCTGATTCCGGAGTA -CCAACATCGTCTGATTCCTCGTCT -CCAACATCGTCTGATTCCTGCACT -CCAACATCGTCTGATTCCCTGACT -CCAACATCGTCTGATTCCCAACCT -CCAACATCGTCTGATTCCGCTACT -CCAACATCGTCTGATTCCGGATCT -CCAACATCGTCTGATTCCAAGGCT -CCAACATCGTCTGATTCCTCAACC -CCAACATCGTCTGATTCCTGTTCC -CCAACATCGTCTGATTCCATTCCC -CCAACATCGTCTGATTCCTTCTCG -CCAACATCGTCTGATTCCTAGACG -CCAACATCGTCTGATTCCGTAACG -CCAACATCGTCTGATTCCACTTCG -CCAACATCGTCTGATTCCTACGCA -CCAACATCGTCTGATTCCCTTGCA -CCAACATCGTCTGATTCCCGAACA -CCAACATCGTCTGATTCCCAGTCA -CCAACATCGTCTGATTCCGATCCA -CCAACATCGTCTGATTCCACGACA -CCAACATCGTCTGATTCCAGCTCA -CCAACATCGTCTGATTCCTCACGT -CCAACATCGTCTGATTCCCGTAGT -CCAACATCGTCTGATTCCGTCAGT -CCAACATCGTCTGATTCCGAAGGT -CCAACATCGTCTGATTCCAACCGT -CCAACATCGTCTGATTCCTTGTGC -CCAACATCGTCTGATTCCCTAAGC -CCAACATCGTCTGATTCCACTAGC -CCAACATCGTCTGATTCCAGATGC -CCAACATCGTCTGATTCCTGAAGG -CCAACATCGTCTGATTCCCAATGG -CCAACATCGTCTGATTCCATGAGG -CCAACATCGTCTGATTCCAATGGG -CCAACATCGTCTGATTCCTCCTGA -CCAACATCGTCTGATTCCTAGCGA -CCAACATCGTCTGATTCCCACAGA -CCAACATCGTCTGATTCCGCAAGA -CCAACATCGTCTGATTCCGGTTGA -CCAACATCGTCTGATTCCTCCGAT -CCAACATCGTCTGATTCCTGGCAT -CCAACATCGTCTGATTCCCGAGAT -CCAACATCGTCTGATTCCTACCAC -CCAACATCGTCTGATTCCCAGAAC -CCAACATCGTCTGATTCCGTCTAC -CCAACATCGTCTGATTCCACGTAC -CCAACATCGTCTGATTCCAGTGAC -CCAACATCGTCTGATTCCCTGTAG -CCAACATCGTCTGATTCCCCTAAG -CCAACATCGTCTGATTCCGTTCAG -CCAACATCGTCTGATTCCGCATAG -CCAACATCGTCTGATTCCGACAAG -CCAACATCGTCTGATTCCAAGCAG -CCAACATCGTCTGATTCCCGTCAA -CCAACATCGTCTGATTCCGCTGAA -CCAACATCGTCTGATTCCAGTACG -CCAACATCGTCTGATTCCATCCGA -CCAACATCGTCTGATTCCATGGGA -CCAACATCGTCTGATTCCGTGCAA -CCAACATCGTCTGATTCCGAGGAA -CCAACATCGTCTGATTCCCAGGTA -CCAACATCGTCTGATTCCGACTCT -CCAACATCGTCTGATTCCAGTCCT -CCAACATCGTCTGATTCCTAAGCC -CCAACATCGTCTGATTCCATAGCC -CCAACATCGTCTGATTCCTAACCG -CCAACATCGTCTGATTCCATGCCA -CCAACATCGTCTCATTGGGGAAAC -CCAACATCGTCTCATTGGAACACC -CCAACATCGTCTCATTGGATCGAG -CCAACATCGTCTCATTGGCTCCTT -CCAACATCGTCTCATTGGCCTGTT -CCAACATCGTCTCATTGGCGGTTT -CCAACATCGTCTCATTGGGTGGTT -CCAACATCGTCTCATTGGGCCTTT -CCAACATCGTCTCATTGGGGTCTT -CCAACATCGTCTCATTGGACGCTT -CCAACATCGTCTCATTGGAGCGTT -CCAACATCGTCTCATTGGTTCGTC -CCAACATCGTCTCATTGGTCTCTC -CCAACATCGTCTCATTGGTGGATC -CCAACATCGTCTCATTGGCACTTC -CCAACATCGTCTCATTGGGTACTC -CCAACATCGTCTCATTGGGATGTC -CCAACATCGTCTCATTGGACAGTC -CCAACATCGTCTCATTGGTTGCTG -CCAACATCGTCTCATTGGTCCATG -CCAACATCGTCTCATTGGTGTGTG -CCAACATCGTCTCATTGGCTAGTG -CCAACATCGTCTCATTGGCATCTG -CCAACATCGTCTCATTGGGAGTTG -CCAACATCGTCTCATTGGAGACTG -CCAACATCGTCTCATTGGTCGGTA -CCAACATCGTCTCATTGGTGCCTA -CCAACATCGTCTCATTGGCCACTA -CCAACATCGTCTCATTGGGGAGTA -CCAACATCGTCTCATTGGTCGTCT -CCAACATCGTCTCATTGGTGCACT -CCAACATCGTCTCATTGGCTGACT -CCAACATCGTCTCATTGGCAACCT -CCAACATCGTCTCATTGGGCTACT -CCAACATCGTCTCATTGGGGATCT -CCAACATCGTCTCATTGGAAGGCT -CCAACATCGTCTCATTGGTCAACC -CCAACATCGTCTCATTGGTGTTCC -CCAACATCGTCTCATTGGATTCCC -CCAACATCGTCTCATTGGTTCTCG -CCAACATCGTCTCATTGGTAGACG -CCAACATCGTCTCATTGGGTAACG -CCAACATCGTCTCATTGGACTTCG -CCAACATCGTCTCATTGGTACGCA -CCAACATCGTCTCATTGGCTTGCA -CCAACATCGTCTCATTGGCGAACA -CCAACATCGTCTCATTGGCAGTCA -CCAACATCGTCTCATTGGGATCCA -CCAACATCGTCTCATTGGACGACA -CCAACATCGTCTCATTGGAGCTCA -CCAACATCGTCTCATTGGTCACGT -CCAACATCGTCTCATTGGCGTAGT -CCAACATCGTCTCATTGGGTCAGT -CCAACATCGTCTCATTGGGAAGGT -CCAACATCGTCTCATTGGAACCGT -CCAACATCGTCTCATTGGTTGTGC -CCAACATCGTCTCATTGGCTAAGC -CCAACATCGTCTCATTGGACTAGC -CCAACATCGTCTCATTGGAGATGC -CCAACATCGTCTCATTGGTGAAGG -CCAACATCGTCTCATTGGCAATGG -CCAACATCGTCTCATTGGATGAGG -CCAACATCGTCTCATTGGAATGGG -CCAACATCGTCTCATTGGTCCTGA -CCAACATCGTCTCATTGGTAGCGA -CCAACATCGTCTCATTGGCACAGA -CCAACATCGTCTCATTGGGCAAGA -CCAACATCGTCTCATTGGGGTTGA -CCAACATCGTCTCATTGGTCCGAT -CCAACATCGTCTCATTGGTGGCAT -CCAACATCGTCTCATTGGCGAGAT -CCAACATCGTCTCATTGGTACCAC -CCAACATCGTCTCATTGGCAGAAC -CCAACATCGTCTCATTGGGTCTAC -CCAACATCGTCTCATTGGACGTAC -CCAACATCGTCTCATTGGAGTGAC -CCAACATCGTCTCATTGGCTGTAG -CCAACATCGTCTCATTGGCCTAAG -CCAACATCGTCTCATTGGGTTCAG -CCAACATCGTCTCATTGGGCATAG -CCAACATCGTCTCATTGGGACAAG -CCAACATCGTCTCATTGGAAGCAG -CCAACATCGTCTCATTGGCGTCAA -CCAACATCGTCTCATTGGGCTGAA -CCAACATCGTCTCATTGGAGTACG -CCAACATCGTCTCATTGGATCCGA -CCAACATCGTCTCATTGGATGGGA -CCAACATCGTCTCATTGGGTGCAA -CCAACATCGTCTCATTGGGAGGAA -CCAACATCGTCTCATTGGCAGGTA -CCAACATCGTCTCATTGGGACTCT -CCAACATCGTCTCATTGGAGTCCT -CCAACATCGTCTCATTGGTAAGCC -CCAACATCGTCTCATTGGATAGCC -CCAACATCGTCTCATTGGTAACCG -CCAACATCGTCTCATTGGATGCCA -CCAACATCGTCTGATCGAGGAAAC -CCAACATCGTCTGATCGAAACACC -CCAACATCGTCTGATCGAATCGAG -CCAACATCGTCTGATCGACTCCTT -CCAACATCGTCTGATCGACCTGTT -CCAACATCGTCTGATCGACGGTTT -CCAACATCGTCTGATCGAGTGGTT -CCAACATCGTCTGATCGAGCCTTT -CCAACATCGTCTGATCGAGGTCTT -CCAACATCGTCTGATCGAACGCTT -CCAACATCGTCTGATCGAAGCGTT -CCAACATCGTCTGATCGATTCGTC -CCAACATCGTCTGATCGATCTCTC -CCAACATCGTCTGATCGATGGATC -CCAACATCGTCTGATCGACACTTC -CCAACATCGTCTGATCGAGTACTC -CCAACATCGTCTGATCGAGATGTC -CCAACATCGTCTGATCGAACAGTC -CCAACATCGTCTGATCGATTGCTG -CCAACATCGTCTGATCGATCCATG -CCAACATCGTCTGATCGATGTGTG -CCAACATCGTCTGATCGACTAGTG -CCAACATCGTCTGATCGACATCTG -CCAACATCGTCTGATCGAGAGTTG -CCAACATCGTCTGATCGAAGACTG -CCAACATCGTCTGATCGATCGGTA -CCAACATCGTCTGATCGATGCCTA -CCAACATCGTCTGATCGACCACTA -CCAACATCGTCTGATCGAGGAGTA -CCAACATCGTCTGATCGATCGTCT -CCAACATCGTCTGATCGATGCACT -CCAACATCGTCTGATCGACTGACT -CCAACATCGTCTGATCGACAACCT -CCAACATCGTCTGATCGAGCTACT -CCAACATCGTCTGATCGAGGATCT -CCAACATCGTCTGATCGAAAGGCT -CCAACATCGTCTGATCGATCAACC -CCAACATCGTCTGATCGATGTTCC -CCAACATCGTCTGATCGAATTCCC -CCAACATCGTCTGATCGATTCTCG -CCAACATCGTCTGATCGATAGACG -CCAACATCGTCTGATCGAGTAACG -CCAACATCGTCTGATCGAACTTCG -CCAACATCGTCTGATCGATACGCA -CCAACATCGTCTGATCGACTTGCA -CCAACATCGTCTGATCGACGAACA -CCAACATCGTCTGATCGACAGTCA -CCAACATCGTCTGATCGAGATCCA -CCAACATCGTCTGATCGAACGACA -CCAACATCGTCTGATCGAAGCTCA -CCAACATCGTCTGATCGATCACGT -CCAACATCGTCTGATCGACGTAGT -CCAACATCGTCTGATCGAGTCAGT -CCAACATCGTCTGATCGAGAAGGT -CCAACATCGTCTGATCGAAACCGT -CCAACATCGTCTGATCGATTGTGC -CCAACATCGTCTGATCGACTAAGC -CCAACATCGTCTGATCGAACTAGC -CCAACATCGTCTGATCGAAGATGC -CCAACATCGTCTGATCGATGAAGG -CCAACATCGTCTGATCGACAATGG -CCAACATCGTCTGATCGAATGAGG -CCAACATCGTCTGATCGAAATGGG -CCAACATCGTCTGATCGATCCTGA -CCAACATCGTCTGATCGATAGCGA -CCAACATCGTCTGATCGACACAGA -CCAACATCGTCTGATCGAGCAAGA -CCAACATCGTCTGATCGAGGTTGA -CCAACATCGTCTGATCGATCCGAT -CCAACATCGTCTGATCGATGGCAT -CCAACATCGTCTGATCGACGAGAT -CCAACATCGTCTGATCGATACCAC -CCAACATCGTCTGATCGACAGAAC -CCAACATCGTCTGATCGAGTCTAC -CCAACATCGTCTGATCGAACGTAC -CCAACATCGTCTGATCGAAGTGAC -CCAACATCGTCTGATCGACTGTAG -CCAACATCGTCTGATCGACCTAAG -CCAACATCGTCTGATCGAGTTCAG -CCAACATCGTCTGATCGAGCATAG -CCAACATCGTCTGATCGAGACAAG -CCAACATCGTCTGATCGAAAGCAG -CCAACATCGTCTGATCGACGTCAA -CCAACATCGTCTGATCGAGCTGAA -CCAACATCGTCTGATCGAAGTACG -CCAACATCGTCTGATCGAATCCGA -CCAACATCGTCTGATCGAATGGGA -CCAACATCGTCTGATCGAGTGCAA -CCAACATCGTCTGATCGAGAGGAA -CCAACATCGTCTGATCGACAGGTA -CCAACATCGTCTGATCGAGACTCT -CCAACATCGTCTGATCGAAGTCCT -CCAACATCGTCTGATCGATAAGCC -CCAACATCGTCTGATCGAATAGCC -CCAACATCGTCTGATCGATAACCG -CCAACATCGTCTGATCGAATGCCA -CCAACATCGTCTCACTACGGAAAC -CCAACATCGTCTCACTACAACACC -CCAACATCGTCTCACTACATCGAG -CCAACATCGTCTCACTACCTCCTT -CCAACATCGTCTCACTACCCTGTT -CCAACATCGTCTCACTACCGGTTT -CCAACATCGTCTCACTACGTGGTT -CCAACATCGTCTCACTACGCCTTT -CCAACATCGTCTCACTACGGTCTT -CCAACATCGTCTCACTACACGCTT -CCAACATCGTCTCACTACAGCGTT -CCAACATCGTCTCACTACTTCGTC -CCAACATCGTCTCACTACTCTCTC -CCAACATCGTCTCACTACTGGATC -CCAACATCGTCTCACTACCACTTC -CCAACATCGTCTCACTACGTACTC -CCAACATCGTCTCACTACGATGTC -CCAACATCGTCTCACTACACAGTC -CCAACATCGTCTCACTACTTGCTG -CCAACATCGTCTCACTACTCCATG -CCAACATCGTCTCACTACTGTGTG -CCAACATCGTCTCACTACCTAGTG -CCAACATCGTCTCACTACCATCTG -CCAACATCGTCTCACTACGAGTTG -CCAACATCGTCTCACTACAGACTG -CCAACATCGTCTCACTACTCGGTA -CCAACATCGTCTCACTACTGCCTA -CCAACATCGTCTCACTACCCACTA -CCAACATCGTCTCACTACGGAGTA -CCAACATCGTCTCACTACTCGTCT -CCAACATCGTCTCACTACTGCACT -CCAACATCGTCTCACTACCTGACT -CCAACATCGTCTCACTACCAACCT -CCAACATCGTCTCACTACGCTACT -CCAACATCGTCTCACTACGGATCT -CCAACATCGTCTCACTACAAGGCT -CCAACATCGTCTCACTACTCAACC -CCAACATCGTCTCACTACTGTTCC -CCAACATCGTCTCACTACATTCCC -CCAACATCGTCTCACTACTTCTCG -CCAACATCGTCTCACTACTAGACG -CCAACATCGTCTCACTACGTAACG -CCAACATCGTCTCACTACACTTCG -CCAACATCGTCTCACTACTACGCA -CCAACATCGTCTCACTACCTTGCA -CCAACATCGTCTCACTACCGAACA -CCAACATCGTCTCACTACCAGTCA -CCAACATCGTCTCACTACGATCCA -CCAACATCGTCTCACTACACGACA -CCAACATCGTCTCACTACAGCTCA -CCAACATCGTCTCACTACTCACGT -CCAACATCGTCTCACTACCGTAGT -CCAACATCGTCTCACTACGTCAGT -CCAACATCGTCTCACTACGAAGGT -CCAACATCGTCTCACTACAACCGT -CCAACATCGTCTCACTACTTGTGC -CCAACATCGTCTCACTACCTAAGC -CCAACATCGTCTCACTACACTAGC -CCAACATCGTCTCACTACAGATGC -CCAACATCGTCTCACTACTGAAGG -CCAACATCGTCTCACTACCAATGG -CCAACATCGTCTCACTACATGAGG -CCAACATCGTCTCACTACAATGGG -CCAACATCGTCTCACTACTCCTGA -CCAACATCGTCTCACTACTAGCGA -CCAACATCGTCTCACTACCACAGA -CCAACATCGTCTCACTACGCAAGA -CCAACATCGTCTCACTACGGTTGA -CCAACATCGTCTCACTACTCCGAT -CCAACATCGTCTCACTACTGGCAT -CCAACATCGTCTCACTACCGAGAT -CCAACATCGTCTCACTACTACCAC -CCAACATCGTCTCACTACCAGAAC -CCAACATCGTCTCACTACGTCTAC -CCAACATCGTCTCACTACACGTAC -CCAACATCGTCTCACTACAGTGAC -CCAACATCGTCTCACTACCTGTAG -CCAACATCGTCTCACTACCCTAAG -CCAACATCGTCTCACTACGTTCAG -CCAACATCGTCTCACTACGCATAG -CCAACATCGTCTCACTACGACAAG -CCAACATCGTCTCACTACAAGCAG -CCAACATCGTCTCACTACCGTCAA -CCAACATCGTCTCACTACGCTGAA -CCAACATCGTCTCACTACAGTACG -CCAACATCGTCTCACTACATCCGA -CCAACATCGTCTCACTACATGGGA -CCAACATCGTCTCACTACGTGCAA -CCAACATCGTCTCACTACGAGGAA -CCAACATCGTCTCACTACCAGGTA -CCAACATCGTCTCACTACGACTCT -CCAACATCGTCTCACTACAGTCCT -CCAACATCGTCTCACTACTAAGCC -CCAACATCGTCTCACTACATAGCC -CCAACATCGTCTCACTACTAACCG -CCAACATCGTCTCACTACATGCCA -CCAACATCGTCTAACCAGGGAAAC -CCAACATCGTCTAACCAGAACACC -CCAACATCGTCTAACCAGATCGAG -CCAACATCGTCTAACCAGCTCCTT -CCAACATCGTCTAACCAGCCTGTT -CCAACATCGTCTAACCAGCGGTTT -CCAACATCGTCTAACCAGGTGGTT -CCAACATCGTCTAACCAGGCCTTT -CCAACATCGTCTAACCAGGGTCTT -CCAACATCGTCTAACCAGACGCTT -CCAACATCGTCTAACCAGAGCGTT -CCAACATCGTCTAACCAGTTCGTC -CCAACATCGTCTAACCAGTCTCTC -CCAACATCGTCTAACCAGTGGATC -CCAACATCGTCTAACCAGCACTTC -CCAACATCGTCTAACCAGGTACTC -CCAACATCGTCTAACCAGGATGTC -CCAACATCGTCTAACCAGACAGTC -CCAACATCGTCTAACCAGTTGCTG -CCAACATCGTCTAACCAGTCCATG -CCAACATCGTCTAACCAGTGTGTG -CCAACATCGTCTAACCAGCTAGTG -CCAACATCGTCTAACCAGCATCTG -CCAACATCGTCTAACCAGGAGTTG -CCAACATCGTCTAACCAGAGACTG -CCAACATCGTCTAACCAGTCGGTA -CCAACATCGTCTAACCAGTGCCTA -CCAACATCGTCTAACCAGCCACTA -CCAACATCGTCTAACCAGGGAGTA -CCAACATCGTCTAACCAGTCGTCT -CCAACATCGTCTAACCAGTGCACT -CCAACATCGTCTAACCAGCTGACT -CCAACATCGTCTAACCAGCAACCT -CCAACATCGTCTAACCAGGCTACT -CCAACATCGTCTAACCAGGGATCT -CCAACATCGTCTAACCAGAAGGCT -CCAACATCGTCTAACCAGTCAACC -CCAACATCGTCTAACCAGTGTTCC -CCAACATCGTCTAACCAGATTCCC -CCAACATCGTCTAACCAGTTCTCG -CCAACATCGTCTAACCAGTAGACG -CCAACATCGTCTAACCAGGTAACG -CCAACATCGTCTAACCAGACTTCG -CCAACATCGTCTAACCAGTACGCA -CCAACATCGTCTAACCAGCTTGCA -CCAACATCGTCTAACCAGCGAACA -CCAACATCGTCTAACCAGCAGTCA -CCAACATCGTCTAACCAGGATCCA -CCAACATCGTCTAACCAGACGACA -CCAACATCGTCTAACCAGAGCTCA -CCAACATCGTCTAACCAGTCACGT -CCAACATCGTCTAACCAGCGTAGT -CCAACATCGTCTAACCAGGTCAGT -CCAACATCGTCTAACCAGGAAGGT -CCAACATCGTCTAACCAGAACCGT -CCAACATCGTCTAACCAGTTGTGC -CCAACATCGTCTAACCAGCTAAGC -CCAACATCGTCTAACCAGACTAGC -CCAACATCGTCTAACCAGAGATGC -CCAACATCGTCTAACCAGTGAAGG -CCAACATCGTCTAACCAGCAATGG -CCAACATCGTCTAACCAGATGAGG -CCAACATCGTCTAACCAGAATGGG -CCAACATCGTCTAACCAGTCCTGA -CCAACATCGTCTAACCAGTAGCGA -CCAACATCGTCTAACCAGCACAGA -CCAACATCGTCTAACCAGGCAAGA -CCAACATCGTCTAACCAGGGTTGA -CCAACATCGTCTAACCAGTCCGAT -CCAACATCGTCTAACCAGTGGCAT -CCAACATCGTCTAACCAGCGAGAT -CCAACATCGTCTAACCAGTACCAC -CCAACATCGTCTAACCAGCAGAAC -CCAACATCGTCTAACCAGGTCTAC -CCAACATCGTCTAACCAGACGTAC -CCAACATCGTCTAACCAGAGTGAC -CCAACATCGTCTAACCAGCTGTAG -CCAACATCGTCTAACCAGCCTAAG -CCAACATCGTCTAACCAGGTTCAG -CCAACATCGTCTAACCAGGCATAG -CCAACATCGTCTAACCAGGACAAG -CCAACATCGTCTAACCAGAAGCAG -CCAACATCGTCTAACCAGCGTCAA -CCAACATCGTCTAACCAGGCTGAA -CCAACATCGTCTAACCAGAGTACG -CCAACATCGTCTAACCAGATCCGA -CCAACATCGTCTAACCAGATGGGA -CCAACATCGTCTAACCAGGTGCAA -CCAACATCGTCTAACCAGGAGGAA -CCAACATCGTCTAACCAGCAGGTA -CCAACATCGTCTAACCAGGACTCT -CCAACATCGTCTAACCAGAGTCCT -CCAACATCGTCTAACCAGTAAGCC -CCAACATCGTCTAACCAGATAGCC -CCAACATCGTCTAACCAGTAACCG -CCAACATCGTCTAACCAGATGCCA -CCAACATCGTCTTACGTCGGAAAC -CCAACATCGTCTTACGTCAACACC -CCAACATCGTCTTACGTCATCGAG -CCAACATCGTCTTACGTCCTCCTT -CCAACATCGTCTTACGTCCCTGTT -CCAACATCGTCTTACGTCCGGTTT -CCAACATCGTCTTACGTCGTGGTT -CCAACATCGTCTTACGTCGCCTTT -CCAACATCGTCTTACGTCGGTCTT -CCAACATCGTCTTACGTCACGCTT -CCAACATCGTCTTACGTCAGCGTT -CCAACATCGTCTTACGTCTTCGTC -CCAACATCGTCTTACGTCTCTCTC -CCAACATCGTCTTACGTCTGGATC -CCAACATCGTCTTACGTCCACTTC -CCAACATCGTCTTACGTCGTACTC -CCAACATCGTCTTACGTCGATGTC -CCAACATCGTCTTACGTCACAGTC -CCAACATCGTCTTACGTCTTGCTG -CCAACATCGTCTTACGTCTCCATG -CCAACATCGTCTTACGTCTGTGTG -CCAACATCGTCTTACGTCCTAGTG -CCAACATCGTCTTACGTCCATCTG -CCAACATCGTCTTACGTCGAGTTG -CCAACATCGTCTTACGTCAGACTG -CCAACATCGTCTTACGTCTCGGTA -CCAACATCGTCTTACGTCTGCCTA -CCAACATCGTCTTACGTCCCACTA -CCAACATCGTCTTACGTCGGAGTA -CCAACATCGTCTTACGTCTCGTCT -CCAACATCGTCTTACGTCTGCACT -CCAACATCGTCTTACGTCCTGACT -CCAACATCGTCTTACGTCCAACCT -CCAACATCGTCTTACGTCGCTACT -CCAACATCGTCTTACGTCGGATCT -CCAACATCGTCTTACGTCAAGGCT -CCAACATCGTCTTACGTCTCAACC -CCAACATCGTCTTACGTCTGTTCC -CCAACATCGTCTTACGTCATTCCC -CCAACATCGTCTTACGTCTTCTCG -CCAACATCGTCTTACGTCTAGACG -CCAACATCGTCTTACGTCGTAACG -CCAACATCGTCTTACGTCACTTCG -CCAACATCGTCTTACGTCTACGCA -CCAACATCGTCTTACGTCCTTGCA -CCAACATCGTCTTACGTCCGAACA -CCAACATCGTCTTACGTCCAGTCA -CCAACATCGTCTTACGTCGATCCA -CCAACATCGTCTTACGTCACGACA -CCAACATCGTCTTACGTCAGCTCA -CCAACATCGTCTTACGTCTCACGT -CCAACATCGTCTTACGTCCGTAGT -CCAACATCGTCTTACGTCGTCAGT -CCAACATCGTCTTACGTCGAAGGT -CCAACATCGTCTTACGTCAACCGT -CCAACATCGTCTTACGTCTTGTGC -CCAACATCGTCTTACGTCCTAAGC -CCAACATCGTCTTACGTCACTAGC -CCAACATCGTCTTACGTCAGATGC -CCAACATCGTCTTACGTCTGAAGG -CCAACATCGTCTTACGTCCAATGG -CCAACATCGTCTTACGTCATGAGG -CCAACATCGTCTTACGTCAATGGG -CCAACATCGTCTTACGTCTCCTGA -CCAACATCGTCTTACGTCTAGCGA -CCAACATCGTCTTACGTCCACAGA -CCAACATCGTCTTACGTCGCAAGA -CCAACATCGTCTTACGTCGGTTGA -CCAACATCGTCTTACGTCTCCGAT -CCAACATCGTCTTACGTCTGGCAT -CCAACATCGTCTTACGTCCGAGAT -CCAACATCGTCTTACGTCTACCAC -CCAACATCGTCTTACGTCCAGAAC -CCAACATCGTCTTACGTCGTCTAC -CCAACATCGTCTTACGTCACGTAC -CCAACATCGTCTTACGTCAGTGAC -CCAACATCGTCTTACGTCCTGTAG -CCAACATCGTCTTACGTCCCTAAG -CCAACATCGTCTTACGTCGTTCAG -CCAACATCGTCTTACGTCGCATAG -CCAACATCGTCTTACGTCGACAAG -CCAACATCGTCTTACGTCAAGCAG -CCAACATCGTCTTACGTCCGTCAA -CCAACATCGTCTTACGTCGCTGAA -CCAACATCGTCTTACGTCAGTACG -CCAACATCGTCTTACGTCATCCGA -CCAACATCGTCTTACGTCATGGGA -CCAACATCGTCTTACGTCGTGCAA -CCAACATCGTCTTACGTCGAGGAA -CCAACATCGTCTTACGTCCAGGTA -CCAACATCGTCTTACGTCGACTCT -CCAACATCGTCTTACGTCAGTCCT -CCAACATCGTCTTACGTCTAAGCC -CCAACATCGTCTTACGTCATAGCC -CCAACATCGTCTTACGTCTAACCG -CCAACATCGTCTTACGTCATGCCA -CCAACATCGTCTTACACGGGAAAC -CCAACATCGTCTTACACGAACACC -CCAACATCGTCTTACACGATCGAG -CCAACATCGTCTTACACGCTCCTT -CCAACATCGTCTTACACGCCTGTT -CCAACATCGTCTTACACGCGGTTT -CCAACATCGTCTTACACGGTGGTT -CCAACATCGTCTTACACGGCCTTT -CCAACATCGTCTTACACGGGTCTT -CCAACATCGTCTTACACGACGCTT -CCAACATCGTCTTACACGAGCGTT -CCAACATCGTCTTACACGTTCGTC -CCAACATCGTCTTACACGTCTCTC -CCAACATCGTCTTACACGTGGATC -CCAACATCGTCTTACACGCACTTC -CCAACATCGTCTTACACGGTACTC -CCAACATCGTCTTACACGGATGTC -CCAACATCGTCTTACACGACAGTC -CCAACATCGTCTTACACGTTGCTG -CCAACATCGTCTTACACGTCCATG -CCAACATCGTCTTACACGTGTGTG -CCAACATCGTCTTACACGCTAGTG -CCAACATCGTCTTACACGCATCTG -CCAACATCGTCTTACACGGAGTTG -CCAACATCGTCTTACACGAGACTG -CCAACATCGTCTTACACGTCGGTA -CCAACATCGTCTTACACGTGCCTA -CCAACATCGTCTTACACGCCACTA -CCAACATCGTCTTACACGGGAGTA -CCAACATCGTCTTACACGTCGTCT -CCAACATCGTCTTACACGTGCACT -CCAACATCGTCTTACACGCTGACT -CCAACATCGTCTTACACGCAACCT -CCAACATCGTCTTACACGGCTACT -CCAACATCGTCTTACACGGGATCT -CCAACATCGTCTTACACGAAGGCT -CCAACATCGTCTTACACGTCAACC -CCAACATCGTCTTACACGTGTTCC -CCAACATCGTCTTACACGATTCCC -CCAACATCGTCTTACACGTTCTCG -CCAACATCGTCTTACACGTAGACG -CCAACATCGTCTTACACGGTAACG -CCAACATCGTCTTACACGACTTCG -CCAACATCGTCTTACACGTACGCA -CCAACATCGTCTTACACGCTTGCA -CCAACATCGTCTTACACGCGAACA -CCAACATCGTCTTACACGCAGTCA -CCAACATCGTCTTACACGGATCCA -CCAACATCGTCTTACACGACGACA -CCAACATCGTCTTACACGAGCTCA -CCAACATCGTCTTACACGTCACGT -CCAACATCGTCTTACACGCGTAGT -CCAACATCGTCTTACACGGTCAGT -CCAACATCGTCTTACACGGAAGGT -CCAACATCGTCTTACACGAACCGT -CCAACATCGTCTTACACGTTGTGC -CCAACATCGTCTTACACGCTAAGC -CCAACATCGTCTTACACGACTAGC -CCAACATCGTCTTACACGAGATGC -CCAACATCGTCTTACACGTGAAGG -CCAACATCGTCTTACACGCAATGG -CCAACATCGTCTTACACGATGAGG -CCAACATCGTCTTACACGAATGGG -CCAACATCGTCTTACACGTCCTGA -CCAACATCGTCTTACACGTAGCGA -CCAACATCGTCTTACACGCACAGA -CCAACATCGTCTTACACGGCAAGA -CCAACATCGTCTTACACGGGTTGA -CCAACATCGTCTTACACGTCCGAT -CCAACATCGTCTTACACGTGGCAT -CCAACATCGTCTTACACGCGAGAT -CCAACATCGTCTTACACGTACCAC -CCAACATCGTCTTACACGCAGAAC -CCAACATCGTCTTACACGGTCTAC -CCAACATCGTCTTACACGACGTAC -CCAACATCGTCTTACACGAGTGAC -CCAACATCGTCTTACACGCTGTAG -CCAACATCGTCTTACACGCCTAAG -CCAACATCGTCTTACACGGTTCAG -CCAACATCGTCTTACACGGCATAG -CCAACATCGTCTTACACGGACAAG -CCAACATCGTCTTACACGAAGCAG -CCAACATCGTCTTACACGCGTCAA -CCAACATCGTCTTACACGGCTGAA -CCAACATCGTCTTACACGAGTACG -CCAACATCGTCTTACACGATCCGA -CCAACATCGTCTTACACGATGGGA -CCAACATCGTCTTACACGGTGCAA -CCAACATCGTCTTACACGGAGGAA -CCAACATCGTCTTACACGCAGGTA -CCAACATCGTCTTACACGGACTCT -CCAACATCGTCTTACACGAGTCCT -CCAACATCGTCTTACACGTAAGCC -CCAACATCGTCTTACACGATAGCC -CCAACATCGTCTTACACGTAACCG -CCAACATCGTCTTACACGATGCCA -CCAACATCGTCTGACAGTGGAAAC -CCAACATCGTCTGACAGTAACACC -CCAACATCGTCTGACAGTATCGAG -CCAACATCGTCTGACAGTCTCCTT -CCAACATCGTCTGACAGTCCTGTT -CCAACATCGTCTGACAGTCGGTTT -CCAACATCGTCTGACAGTGTGGTT -CCAACATCGTCTGACAGTGCCTTT -CCAACATCGTCTGACAGTGGTCTT -CCAACATCGTCTGACAGTACGCTT -CCAACATCGTCTGACAGTAGCGTT -CCAACATCGTCTGACAGTTTCGTC -CCAACATCGTCTGACAGTTCTCTC -CCAACATCGTCTGACAGTTGGATC -CCAACATCGTCTGACAGTCACTTC -CCAACATCGTCTGACAGTGTACTC -CCAACATCGTCTGACAGTGATGTC -CCAACATCGTCTGACAGTACAGTC -CCAACATCGTCTGACAGTTTGCTG -CCAACATCGTCTGACAGTTCCATG -CCAACATCGTCTGACAGTTGTGTG -CCAACATCGTCTGACAGTCTAGTG -CCAACATCGTCTGACAGTCATCTG -CCAACATCGTCTGACAGTGAGTTG -CCAACATCGTCTGACAGTAGACTG -CCAACATCGTCTGACAGTTCGGTA -CCAACATCGTCTGACAGTTGCCTA -CCAACATCGTCTGACAGTCCACTA -CCAACATCGTCTGACAGTGGAGTA -CCAACATCGTCTGACAGTTCGTCT -CCAACATCGTCTGACAGTTGCACT -CCAACATCGTCTGACAGTCTGACT -CCAACATCGTCTGACAGTCAACCT -CCAACATCGTCTGACAGTGCTACT -CCAACATCGTCTGACAGTGGATCT -CCAACATCGTCTGACAGTAAGGCT -CCAACATCGTCTGACAGTTCAACC -CCAACATCGTCTGACAGTTGTTCC -CCAACATCGTCTGACAGTATTCCC -CCAACATCGTCTGACAGTTTCTCG -CCAACATCGTCTGACAGTTAGACG -CCAACATCGTCTGACAGTGTAACG -CCAACATCGTCTGACAGTACTTCG -CCAACATCGTCTGACAGTTACGCA -CCAACATCGTCTGACAGTCTTGCA -CCAACATCGTCTGACAGTCGAACA -CCAACATCGTCTGACAGTCAGTCA -CCAACATCGTCTGACAGTGATCCA -CCAACATCGTCTGACAGTACGACA -CCAACATCGTCTGACAGTAGCTCA -CCAACATCGTCTGACAGTTCACGT -CCAACATCGTCTGACAGTCGTAGT -CCAACATCGTCTGACAGTGTCAGT -CCAACATCGTCTGACAGTGAAGGT -CCAACATCGTCTGACAGTAACCGT -CCAACATCGTCTGACAGTTTGTGC -CCAACATCGTCTGACAGTCTAAGC -CCAACATCGTCTGACAGTACTAGC -CCAACATCGTCTGACAGTAGATGC -CCAACATCGTCTGACAGTTGAAGG -CCAACATCGTCTGACAGTCAATGG -CCAACATCGTCTGACAGTATGAGG -CCAACATCGTCTGACAGTAATGGG -CCAACATCGTCTGACAGTTCCTGA -CCAACATCGTCTGACAGTTAGCGA -CCAACATCGTCTGACAGTCACAGA -CCAACATCGTCTGACAGTGCAAGA -CCAACATCGTCTGACAGTGGTTGA -CCAACATCGTCTGACAGTTCCGAT -CCAACATCGTCTGACAGTTGGCAT -CCAACATCGTCTGACAGTCGAGAT -CCAACATCGTCTGACAGTTACCAC -CCAACATCGTCTGACAGTCAGAAC -CCAACATCGTCTGACAGTGTCTAC -CCAACATCGTCTGACAGTACGTAC -CCAACATCGTCTGACAGTAGTGAC -CCAACATCGTCTGACAGTCTGTAG -CCAACATCGTCTGACAGTCCTAAG -CCAACATCGTCTGACAGTGTTCAG -CCAACATCGTCTGACAGTGCATAG -CCAACATCGTCTGACAGTGACAAG -CCAACATCGTCTGACAGTAAGCAG -CCAACATCGTCTGACAGTCGTCAA -CCAACATCGTCTGACAGTGCTGAA -CCAACATCGTCTGACAGTAGTACG -CCAACATCGTCTGACAGTATCCGA -CCAACATCGTCTGACAGTATGGGA -CCAACATCGTCTGACAGTGTGCAA -CCAACATCGTCTGACAGTGAGGAA -CCAACATCGTCTGACAGTCAGGTA -CCAACATCGTCTGACAGTGACTCT -CCAACATCGTCTGACAGTAGTCCT -CCAACATCGTCTGACAGTTAAGCC -CCAACATCGTCTGACAGTATAGCC -CCAACATCGTCTGACAGTTAACCG -CCAACATCGTCTGACAGTATGCCA -CCAACATCGTCTTAGCTGGGAAAC -CCAACATCGTCTTAGCTGAACACC -CCAACATCGTCTTAGCTGATCGAG -CCAACATCGTCTTAGCTGCTCCTT -CCAACATCGTCTTAGCTGCCTGTT -CCAACATCGTCTTAGCTGCGGTTT -CCAACATCGTCTTAGCTGGTGGTT -CCAACATCGTCTTAGCTGGCCTTT -CCAACATCGTCTTAGCTGGGTCTT -CCAACATCGTCTTAGCTGACGCTT -CCAACATCGTCTTAGCTGAGCGTT -CCAACATCGTCTTAGCTGTTCGTC -CCAACATCGTCTTAGCTGTCTCTC -CCAACATCGTCTTAGCTGTGGATC -CCAACATCGTCTTAGCTGCACTTC -CCAACATCGTCTTAGCTGGTACTC -CCAACATCGTCTTAGCTGGATGTC -CCAACATCGTCTTAGCTGACAGTC -CCAACATCGTCTTAGCTGTTGCTG -CCAACATCGTCTTAGCTGTCCATG -CCAACATCGTCTTAGCTGTGTGTG -CCAACATCGTCTTAGCTGCTAGTG -CCAACATCGTCTTAGCTGCATCTG -CCAACATCGTCTTAGCTGGAGTTG -CCAACATCGTCTTAGCTGAGACTG -CCAACATCGTCTTAGCTGTCGGTA -CCAACATCGTCTTAGCTGTGCCTA -CCAACATCGTCTTAGCTGCCACTA -CCAACATCGTCTTAGCTGGGAGTA -CCAACATCGTCTTAGCTGTCGTCT -CCAACATCGTCTTAGCTGTGCACT -CCAACATCGTCTTAGCTGCTGACT -CCAACATCGTCTTAGCTGCAACCT -CCAACATCGTCTTAGCTGGCTACT -CCAACATCGTCTTAGCTGGGATCT -CCAACATCGTCTTAGCTGAAGGCT -CCAACATCGTCTTAGCTGTCAACC -CCAACATCGTCTTAGCTGTGTTCC -CCAACATCGTCTTAGCTGATTCCC -CCAACATCGTCTTAGCTGTTCTCG -CCAACATCGTCTTAGCTGTAGACG -CCAACATCGTCTTAGCTGGTAACG -CCAACATCGTCTTAGCTGACTTCG -CCAACATCGTCTTAGCTGTACGCA -CCAACATCGTCTTAGCTGCTTGCA -CCAACATCGTCTTAGCTGCGAACA -CCAACATCGTCTTAGCTGCAGTCA -CCAACATCGTCTTAGCTGGATCCA -CCAACATCGTCTTAGCTGACGACA -CCAACATCGTCTTAGCTGAGCTCA -CCAACATCGTCTTAGCTGTCACGT -CCAACATCGTCTTAGCTGCGTAGT -CCAACATCGTCTTAGCTGGTCAGT -CCAACATCGTCTTAGCTGGAAGGT -CCAACATCGTCTTAGCTGAACCGT -CCAACATCGTCTTAGCTGTTGTGC -CCAACATCGTCTTAGCTGCTAAGC -CCAACATCGTCTTAGCTGACTAGC -CCAACATCGTCTTAGCTGAGATGC -CCAACATCGTCTTAGCTGTGAAGG -CCAACATCGTCTTAGCTGCAATGG -CCAACATCGTCTTAGCTGATGAGG -CCAACATCGTCTTAGCTGAATGGG -CCAACATCGTCTTAGCTGTCCTGA -CCAACATCGTCTTAGCTGTAGCGA -CCAACATCGTCTTAGCTGCACAGA -CCAACATCGTCTTAGCTGGCAAGA -CCAACATCGTCTTAGCTGGGTTGA -CCAACATCGTCTTAGCTGTCCGAT -CCAACATCGTCTTAGCTGTGGCAT -CCAACATCGTCTTAGCTGCGAGAT -CCAACATCGTCTTAGCTGTACCAC -CCAACATCGTCTTAGCTGCAGAAC -CCAACATCGTCTTAGCTGGTCTAC -CCAACATCGTCTTAGCTGACGTAC -CCAACATCGTCTTAGCTGAGTGAC -CCAACATCGTCTTAGCTGCTGTAG -CCAACATCGTCTTAGCTGCCTAAG -CCAACATCGTCTTAGCTGGTTCAG -CCAACATCGTCTTAGCTGGCATAG -CCAACATCGTCTTAGCTGGACAAG -CCAACATCGTCTTAGCTGAAGCAG -CCAACATCGTCTTAGCTGCGTCAA -CCAACATCGTCTTAGCTGGCTGAA -CCAACATCGTCTTAGCTGAGTACG -CCAACATCGTCTTAGCTGATCCGA -CCAACATCGTCTTAGCTGATGGGA -CCAACATCGTCTTAGCTGGTGCAA -CCAACATCGTCTTAGCTGGAGGAA -CCAACATCGTCTTAGCTGCAGGTA -CCAACATCGTCTTAGCTGGACTCT -CCAACATCGTCTTAGCTGAGTCCT -CCAACATCGTCTTAGCTGTAAGCC -CCAACATCGTCTTAGCTGATAGCC -CCAACATCGTCTTAGCTGTAACCG -CCAACATCGTCTTAGCTGATGCCA -CCAACATCGTCTAAGCCTGGAAAC -CCAACATCGTCTAAGCCTAACACC -CCAACATCGTCTAAGCCTATCGAG -CCAACATCGTCTAAGCCTCTCCTT -CCAACATCGTCTAAGCCTCCTGTT -CCAACATCGTCTAAGCCTCGGTTT -CCAACATCGTCTAAGCCTGTGGTT -CCAACATCGTCTAAGCCTGCCTTT -CCAACATCGTCTAAGCCTGGTCTT -CCAACATCGTCTAAGCCTACGCTT -CCAACATCGTCTAAGCCTAGCGTT -CCAACATCGTCTAAGCCTTTCGTC -CCAACATCGTCTAAGCCTTCTCTC -CCAACATCGTCTAAGCCTTGGATC -CCAACATCGTCTAAGCCTCACTTC -CCAACATCGTCTAAGCCTGTACTC -CCAACATCGTCTAAGCCTGATGTC -CCAACATCGTCTAAGCCTACAGTC -CCAACATCGTCTAAGCCTTTGCTG -CCAACATCGTCTAAGCCTTCCATG -CCAACATCGTCTAAGCCTTGTGTG -CCAACATCGTCTAAGCCTCTAGTG -CCAACATCGTCTAAGCCTCATCTG -CCAACATCGTCTAAGCCTGAGTTG -CCAACATCGTCTAAGCCTAGACTG -CCAACATCGTCTAAGCCTTCGGTA -CCAACATCGTCTAAGCCTTGCCTA -CCAACATCGTCTAAGCCTCCACTA -CCAACATCGTCTAAGCCTGGAGTA -CCAACATCGTCTAAGCCTTCGTCT -CCAACATCGTCTAAGCCTTGCACT -CCAACATCGTCTAAGCCTCTGACT -CCAACATCGTCTAAGCCTCAACCT -CCAACATCGTCTAAGCCTGCTACT -CCAACATCGTCTAAGCCTGGATCT -CCAACATCGTCTAAGCCTAAGGCT -CCAACATCGTCTAAGCCTTCAACC -CCAACATCGTCTAAGCCTTGTTCC -CCAACATCGTCTAAGCCTATTCCC -CCAACATCGTCTAAGCCTTTCTCG -CCAACATCGTCTAAGCCTTAGACG -CCAACATCGTCTAAGCCTGTAACG -CCAACATCGTCTAAGCCTACTTCG -CCAACATCGTCTAAGCCTTACGCA -CCAACATCGTCTAAGCCTCTTGCA -CCAACATCGTCTAAGCCTCGAACA -CCAACATCGTCTAAGCCTCAGTCA -CCAACATCGTCTAAGCCTGATCCA -CCAACATCGTCTAAGCCTACGACA -CCAACATCGTCTAAGCCTAGCTCA -CCAACATCGTCTAAGCCTTCACGT -CCAACATCGTCTAAGCCTCGTAGT -CCAACATCGTCTAAGCCTGTCAGT -CCAACATCGTCTAAGCCTGAAGGT -CCAACATCGTCTAAGCCTAACCGT -CCAACATCGTCTAAGCCTTTGTGC -CCAACATCGTCTAAGCCTCTAAGC -CCAACATCGTCTAAGCCTACTAGC -CCAACATCGTCTAAGCCTAGATGC -CCAACATCGTCTAAGCCTTGAAGG -CCAACATCGTCTAAGCCTCAATGG -CCAACATCGTCTAAGCCTATGAGG -CCAACATCGTCTAAGCCTAATGGG -CCAACATCGTCTAAGCCTTCCTGA -CCAACATCGTCTAAGCCTTAGCGA -CCAACATCGTCTAAGCCTCACAGA -CCAACATCGTCTAAGCCTGCAAGA -CCAACATCGTCTAAGCCTGGTTGA -CCAACATCGTCTAAGCCTTCCGAT -CCAACATCGTCTAAGCCTTGGCAT -CCAACATCGTCTAAGCCTCGAGAT -CCAACATCGTCTAAGCCTTACCAC -CCAACATCGTCTAAGCCTCAGAAC -CCAACATCGTCTAAGCCTGTCTAC -CCAACATCGTCTAAGCCTACGTAC -CCAACATCGTCTAAGCCTAGTGAC -CCAACATCGTCTAAGCCTCTGTAG -CCAACATCGTCTAAGCCTCCTAAG -CCAACATCGTCTAAGCCTGTTCAG -CCAACATCGTCTAAGCCTGCATAG -CCAACATCGTCTAAGCCTGACAAG -CCAACATCGTCTAAGCCTAAGCAG -CCAACATCGTCTAAGCCTCGTCAA -CCAACATCGTCTAAGCCTGCTGAA -CCAACATCGTCTAAGCCTAGTACG -CCAACATCGTCTAAGCCTATCCGA -CCAACATCGTCTAAGCCTATGGGA -CCAACATCGTCTAAGCCTGTGCAA -CCAACATCGTCTAAGCCTGAGGAA -CCAACATCGTCTAAGCCTCAGGTA -CCAACATCGTCTAAGCCTGACTCT -CCAACATCGTCTAAGCCTAGTCCT -CCAACATCGTCTAAGCCTTAAGCC -CCAACATCGTCTAAGCCTATAGCC -CCAACATCGTCTAAGCCTTAACCG -CCAACATCGTCTAAGCCTATGCCA -CCAACATCGTCTCAGGTTGGAAAC -CCAACATCGTCTCAGGTTAACACC -CCAACATCGTCTCAGGTTATCGAG -CCAACATCGTCTCAGGTTCTCCTT -CCAACATCGTCTCAGGTTCCTGTT -CCAACATCGTCTCAGGTTCGGTTT -CCAACATCGTCTCAGGTTGTGGTT -CCAACATCGTCTCAGGTTGCCTTT -CCAACATCGTCTCAGGTTGGTCTT -CCAACATCGTCTCAGGTTACGCTT -CCAACATCGTCTCAGGTTAGCGTT -CCAACATCGTCTCAGGTTTTCGTC -CCAACATCGTCTCAGGTTTCTCTC -CCAACATCGTCTCAGGTTTGGATC -CCAACATCGTCTCAGGTTCACTTC -CCAACATCGTCTCAGGTTGTACTC -CCAACATCGTCTCAGGTTGATGTC -CCAACATCGTCTCAGGTTACAGTC -CCAACATCGTCTCAGGTTTTGCTG -CCAACATCGTCTCAGGTTTCCATG -CCAACATCGTCTCAGGTTTGTGTG -CCAACATCGTCTCAGGTTCTAGTG -CCAACATCGTCTCAGGTTCATCTG -CCAACATCGTCTCAGGTTGAGTTG -CCAACATCGTCTCAGGTTAGACTG -CCAACATCGTCTCAGGTTTCGGTA -CCAACATCGTCTCAGGTTTGCCTA -CCAACATCGTCTCAGGTTCCACTA -CCAACATCGTCTCAGGTTGGAGTA -CCAACATCGTCTCAGGTTTCGTCT -CCAACATCGTCTCAGGTTTGCACT -CCAACATCGTCTCAGGTTCTGACT -CCAACATCGTCTCAGGTTCAACCT -CCAACATCGTCTCAGGTTGCTACT -CCAACATCGTCTCAGGTTGGATCT -CCAACATCGTCTCAGGTTAAGGCT -CCAACATCGTCTCAGGTTTCAACC -CCAACATCGTCTCAGGTTTGTTCC -CCAACATCGTCTCAGGTTATTCCC -CCAACATCGTCTCAGGTTTTCTCG -CCAACATCGTCTCAGGTTTAGACG -CCAACATCGTCTCAGGTTGTAACG -CCAACATCGTCTCAGGTTACTTCG -CCAACATCGTCTCAGGTTTACGCA -CCAACATCGTCTCAGGTTCTTGCA -CCAACATCGTCTCAGGTTCGAACA -CCAACATCGTCTCAGGTTCAGTCA -CCAACATCGTCTCAGGTTGATCCA -CCAACATCGTCTCAGGTTACGACA -CCAACATCGTCTCAGGTTAGCTCA -CCAACATCGTCTCAGGTTTCACGT -CCAACATCGTCTCAGGTTCGTAGT -CCAACATCGTCTCAGGTTGTCAGT -CCAACATCGTCTCAGGTTGAAGGT -CCAACATCGTCTCAGGTTAACCGT -CCAACATCGTCTCAGGTTTTGTGC -CCAACATCGTCTCAGGTTCTAAGC -CCAACATCGTCTCAGGTTACTAGC -CCAACATCGTCTCAGGTTAGATGC -CCAACATCGTCTCAGGTTTGAAGG -CCAACATCGTCTCAGGTTCAATGG -CCAACATCGTCTCAGGTTATGAGG -CCAACATCGTCTCAGGTTAATGGG -CCAACATCGTCTCAGGTTTCCTGA -CCAACATCGTCTCAGGTTTAGCGA -CCAACATCGTCTCAGGTTCACAGA -CCAACATCGTCTCAGGTTGCAAGA -CCAACATCGTCTCAGGTTGGTTGA -CCAACATCGTCTCAGGTTTCCGAT -CCAACATCGTCTCAGGTTTGGCAT -CCAACATCGTCTCAGGTTCGAGAT -CCAACATCGTCTCAGGTTTACCAC -CCAACATCGTCTCAGGTTCAGAAC -CCAACATCGTCTCAGGTTGTCTAC -CCAACATCGTCTCAGGTTACGTAC -CCAACATCGTCTCAGGTTAGTGAC -CCAACATCGTCTCAGGTTCTGTAG -CCAACATCGTCTCAGGTTCCTAAG -CCAACATCGTCTCAGGTTGTTCAG -CCAACATCGTCTCAGGTTGCATAG -CCAACATCGTCTCAGGTTGACAAG -CCAACATCGTCTCAGGTTAAGCAG -CCAACATCGTCTCAGGTTCGTCAA -CCAACATCGTCTCAGGTTGCTGAA -CCAACATCGTCTCAGGTTAGTACG -CCAACATCGTCTCAGGTTATCCGA -CCAACATCGTCTCAGGTTATGGGA -CCAACATCGTCTCAGGTTGTGCAA -CCAACATCGTCTCAGGTTGAGGAA -CCAACATCGTCTCAGGTTCAGGTA -CCAACATCGTCTCAGGTTGACTCT -CCAACATCGTCTCAGGTTAGTCCT -CCAACATCGTCTCAGGTTTAAGCC -CCAACATCGTCTCAGGTTATAGCC -CCAACATCGTCTCAGGTTTAACCG -CCAACATCGTCTCAGGTTATGCCA -CCAACATCGTCTTAGGCAGGAAAC -CCAACATCGTCTTAGGCAAACACC -CCAACATCGTCTTAGGCAATCGAG -CCAACATCGTCTTAGGCACTCCTT -CCAACATCGTCTTAGGCACCTGTT -CCAACATCGTCTTAGGCACGGTTT -CCAACATCGTCTTAGGCAGTGGTT -CCAACATCGTCTTAGGCAGCCTTT -CCAACATCGTCTTAGGCAGGTCTT -CCAACATCGTCTTAGGCAACGCTT -CCAACATCGTCTTAGGCAAGCGTT -CCAACATCGTCTTAGGCATTCGTC -CCAACATCGTCTTAGGCATCTCTC -CCAACATCGTCTTAGGCATGGATC -CCAACATCGTCTTAGGCACACTTC -CCAACATCGTCTTAGGCAGTACTC -CCAACATCGTCTTAGGCAGATGTC -CCAACATCGTCTTAGGCAACAGTC -CCAACATCGTCTTAGGCATTGCTG -CCAACATCGTCTTAGGCATCCATG -CCAACATCGTCTTAGGCATGTGTG -CCAACATCGTCTTAGGCACTAGTG -CCAACATCGTCTTAGGCACATCTG -CCAACATCGTCTTAGGCAGAGTTG -CCAACATCGTCTTAGGCAAGACTG -CCAACATCGTCTTAGGCATCGGTA -CCAACATCGTCTTAGGCATGCCTA -CCAACATCGTCTTAGGCACCACTA -CCAACATCGTCTTAGGCAGGAGTA -CCAACATCGTCTTAGGCATCGTCT -CCAACATCGTCTTAGGCATGCACT -CCAACATCGTCTTAGGCACTGACT -CCAACATCGTCTTAGGCACAACCT -CCAACATCGTCTTAGGCAGCTACT -CCAACATCGTCTTAGGCAGGATCT -CCAACATCGTCTTAGGCAAAGGCT -CCAACATCGTCTTAGGCATCAACC -CCAACATCGTCTTAGGCATGTTCC -CCAACATCGTCTTAGGCAATTCCC -CCAACATCGTCTTAGGCATTCTCG -CCAACATCGTCTTAGGCATAGACG -CCAACATCGTCTTAGGCAGTAACG -CCAACATCGTCTTAGGCAACTTCG -CCAACATCGTCTTAGGCATACGCA -CCAACATCGTCTTAGGCACTTGCA -CCAACATCGTCTTAGGCACGAACA -CCAACATCGTCTTAGGCACAGTCA -CCAACATCGTCTTAGGCAGATCCA -CCAACATCGTCTTAGGCAACGACA -CCAACATCGTCTTAGGCAAGCTCA -CCAACATCGTCTTAGGCATCACGT -CCAACATCGTCTTAGGCACGTAGT -CCAACATCGTCTTAGGCAGTCAGT -CCAACATCGTCTTAGGCAGAAGGT -CCAACATCGTCTTAGGCAAACCGT -CCAACATCGTCTTAGGCATTGTGC -CCAACATCGTCTTAGGCACTAAGC -CCAACATCGTCTTAGGCAACTAGC -CCAACATCGTCTTAGGCAAGATGC -CCAACATCGTCTTAGGCATGAAGG -CCAACATCGTCTTAGGCACAATGG -CCAACATCGTCTTAGGCAATGAGG -CCAACATCGTCTTAGGCAAATGGG -CCAACATCGTCTTAGGCATCCTGA -CCAACATCGTCTTAGGCATAGCGA -CCAACATCGTCTTAGGCACACAGA -CCAACATCGTCTTAGGCAGCAAGA -CCAACATCGTCTTAGGCAGGTTGA -CCAACATCGTCTTAGGCATCCGAT -CCAACATCGTCTTAGGCATGGCAT -CCAACATCGTCTTAGGCACGAGAT -CCAACATCGTCTTAGGCATACCAC -CCAACATCGTCTTAGGCACAGAAC -CCAACATCGTCTTAGGCAGTCTAC -CCAACATCGTCTTAGGCAACGTAC -CCAACATCGTCTTAGGCAAGTGAC -CCAACATCGTCTTAGGCACTGTAG -CCAACATCGTCTTAGGCACCTAAG -CCAACATCGTCTTAGGCAGTTCAG -CCAACATCGTCTTAGGCAGCATAG -CCAACATCGTCTTAGGCAGACAAG -CCAACATCGTCTTAGGCAAAGCAG -CCAACATCGTCTTAGGCACGTCAA -CCAACATCGTCTTAGGCAGCTGAA -CCAACATCGTCTTAGGCAAGTACG -CCAACATCGTCTTAGGCAATCCGA -CCAACATCGTCTTAGGCAATGGGA -CCAACATCGTCTTAGGCAGTGCAA -CCAACATCGTCTTAGGCAGAGGAA -CCAACATCGTCTTAGGCACAGGTA -CCAACATCGTCTTAGGCAGACTCT -CCAACATCGTCTTAGGCAAGTCCT -CCAACATCGTCTTAGGCATAAGCC -CCAACATCGTCTTAGGCAATAGCC -CCAACATCGTCTTAGGCATAACCG -CCAACATCGTCTTAGGCAATGCCA -CCAACATCGTCTAAGGACGGAAAC -CCAACATCGTCTAAGGACAACACC -CCAACATCGTCTAAGGACATCGAG -CCAACATCGTCTAAGGACCTCCTT -CCAACATCGTCTAAGGACCCTGTT -CCAACATCGTCTAAGGACCGGTTT -CCAACATCGTCTAAGGACGTGGTT -CCAACATCGTCTAAGGACGCCTTT -CCAACATCGTCTAAGGACGGTCTT -CCAACATCGTCTAAGGACACGCTT -CCAACATCGTCTAAGGACAGCGTT -CCAACATCGTCTAAGGACTTCGTC -CCAACATCGTCTAAGGACTCTCTC -CCAACATCGTCTAAGGACTGGATC -CCAACATCGTCTAAGGACCACTTC -CCAACATCGTCTAAGGACGTACTC -CCAACATCGTCTAAGGACGATGTC -CCAACATCGTCTAAGGACACAGTC -CCAACATCGTCTAAGGACTTGCTG -CCAACATCGTCTAAGGACTCCATG -CCAACATCGTCTAAGGACTGTGTG -CCAACATCGTCTAAGGACCTAGTG -CCAACATCGTCTAAGGACCATCTG -CCAACATCGTCTAAGGACGAGTTG -CCAACATCGTCTAAGGACAGACTG -CCAACATCGTCTAAGGACTCGGTA -CCAACATCGTCTAAGGACTGCCTA -CCAACATCGTCTAAGGACCCACTA -CCAACATCGTCTAAGGACGGAGTA -CCAACATCGTCTAAGGACTCGTCT -CCAACATCGTCTAAGGACTGCACT -CCAACATCGTCTAAGGACCTGACT -CCAACATCGTCTAAGGACCAACCT -CCAACATCGTCTAAGGACGCTACT -CCAACATCGTCTAAGGACGGATCT -CCAACATCGTCTAAGGACAAGGCT -CCAACATCGTCTAAGGACTCAACC -CCAACATCGTCTAAGGACTGTTCC -CCAACATCGTCTAAGGACATTCCC -CCAACATCGTCTAAGGACTTCTCG -CCAACATCGTCTAAGGACTAGACG -CCAACATCGTCTAAGGACGTAACG -CCAACATCGTCTAAGGACACTTCG -CCAACATCGTCTAAGGACTACGCA -CCAACATCGTCTAAGGACCTTGCA -CCAACATCGTCTAAGGACCGAACA -CCAACATCGTCTAAGGACCAGTCA -CCAACATCGTCTAAGGACGATCCA -CCAACATCGTCTAAGGACACGACA -CCAACATCGTCTAAGGACAGCTCA -CCAACATCGTCTAAGGACTCACGT -CCAACATCGTCTAAGGACCGTAGT -CCAACATCGTCTAAGGACGTCAGT -CCAACATCGTCTAAGGACGAAGGT -CCAACATCGTCTAAGGACAACCGT -CCAACATCGTCTAAGGACTTGTGC -CCAACATCGTCTAAGGACCTAAGC -CCAACATCGTCTAAGGACACTAGC -CCAACATCGTCTAAGGACAGATGC -CCAACATCGTCTAAGGACTGAAGG -CCAACATCGTCTAAGGACCAATGG -CCAACATCGTCTAAGGACATGAGG -CCAACATCGTCTAAGGACAATGGG -CCAACATCGTCTAAGGACTCCTGA -CCAACATCGTCTAAGGACTAGCGA -CCAACATCGTCTAAGGACCACAGA -CCAACATCGTCTAAGGACGCAAGA -CCAACATCGTCTAAGGACGGTTGA -CCAACATCGTCTAAGGACTCCGAT -CCAACATCGTCTAAGGACTGGCAT -CCAACATCGTCTAAGGACCGAGAT -CCAACATCGTCTAAGGACTACCAC -CCAACATCGTCTAAGGACCAGAAC -CCAACATCGTCTAAGGACGTCTAC -CCAACATCGTCTAAGGACACGTAC -CCAACATCGTCTAAGGACAGTGAC -CCAACATCGTCTAAGGACCTGTAG -CCAACATCGTCTAAGGACCCTAAG -CCAACATCGTCTAAGGACGTTCAG -CCAACATCGTCTAAGGACGCATAG -CCAACATCGTCTAAGGACGACAAG -CCAACATCGTCTAAGGACAAGCAG -CCAACATCGTCTAAGGACCGTCAA -CCAACATCGTCTAAGGACGCTGAA -CCAACATCGTCTAAGGACAGTACG -CCAACATCGTCTAAGGACATCCGA -CCAACATCGTCTAAGGACATGGGA -CCAACATCGTCTAAGGACGTGCAA -CCAACATCGTCTAAGGACGAGGAA -CCAACATCGTCTAAGGACCAGGTA -CCAACATCGTCTAAGGACGACTCT -CCAACATCGTCTAAGGACAGTCCT -CCAACATCGTCTAAGGACTAAGCC -CCAACATCGTCTAAGGACATAGCC -CCAACATCGTCTAAGGACTAACCG -CCAACATCGTCTAAGGACATGCCA -CCAACATCGTCTCAGAAGGGAAAC -CCAACATCGTCTCAGAAGAACACC -CCAACATCGTCTCAGAAGATCGAG -CCAACATCGTCTCAGAAGCTCCTT -CCAACATCGTCTCAGAAGCCTGTT -CCAACATCGTCTCAGAAGCGGTTT -CCAACATCGTCTCAGAAGGTGGTT -CCAACATCGTCTCAGAAGGCCTTT -CCAACATCGTCTCAGAAGGGTCTT -CCAACATCGTCTCAGAAGACGCTT -CCAACATCGTCTCAGAAGAGCGTT -CCAACATCGTCTCAGAAGTTCGTC -CCAACATCGTCTCAGAAGTCTCTC -CCAACATCGTCTCAGAAGTGGATC -CCAACATCGTCTCAGAAGCACTTC -CCAACATCGTCTCAGAAGGTACTC -CCAACATCGTCTCAGAAGGATGTC -CCAACATCGTCTCAGAAGACAGTC -CCAACATCGTCTCAGAAGTTGCTG -CCAACATCGTCTCAGAAGTCCATG -CCAACATCGTCTCAGAAGTGTGTG -CCAACATCGTCTCAGAAGCTAGTG -CCAACATCGTCTCAGAAGCATCTG -CCAACATCGTCTCAGAAGGAGTTG -CCAACATCGTCTCAGAAGAGACTG -CCAACATCGTCTCAGAAGTCGGTA -CCAACATCGTCTCAGAAGTGCCTA -CCAACATCGTCTCAGAAGCCACTA -CCAACATCGTCTCAGAAGGGAGTA -CCAACATCGTCTCAGAAGTCGTCT -CCAACATCGTCTCAGAAGTGCACT -CCAACATCGTCTCAGAAGCTGACT -CCAACATCGTCTCAGAAGCAACCT -CCAACATCGTCTCAGAAGGCTACT -CCAACATCGTCTCAGAAGGGATCT -CCAACATCGTCTCAGAAGAAGGCT -CCAACATCGTCTCAGAAGTCAACC -CCAACATCGTCTCAGAAGTGTTCC -CCAACATCGTCTCAGAAGATTCCC -CCAACATCGTCTCAGAAGTTCTCG -CCAACATCGTCTCAGAAGTAGACG -CCAACATCGTCTCAGAAGGTAACG -CCAACATCGTCTCAGAAGACTTCG -CCAACATCGTCTCAGAAGTACGCA -CCAACATCGTCTCAGAAGCTTGCA -CCAACATCGTCTCAGAAGCGAACA -CCAACATCGTCTCAGAAGCAGTCA -CCAACATCGTCTCAGAAGGATCCA -CCAACATCGTCTCAGAAGACGACA -CCAACATCGTCTCAGAAGAGCTCA -CCAACATCGTCTCAGAAGTCACGT -CCAACATCGTCTCAGAAGCGTAGT -CCAACATCGTCTCAGAAGGTCAGT -CCAACATCGTCTCAGAAGGAAGGT -CCAACATCGTCTCAGAAGAACCGT -CCAACATCGTCTCAGAAGTTGTGC -CCAACATCGTCTCAGAAGCTAAGC -CCAACATCGTCTCAGAAGACTAGC -CCAACATCGTCTCAGAAGAGATGC -CCAACATCGTCTCAGAAGTGAAGG -CCAACATCGTCTCAGAAGCAATGG -CCAACATCGTCTCAGAAGATGAGG -CCAACATCGTCTCAGAAGAATGGG -CCAACATCGTCTCAGAAGTCCTGA -CCAACATCGTCTCAGAAGTAGCGA -CCAACATCGTCTCAGAAGCACAGA -CCAACATCGTCTCAGAAGGCAAGA -CCAACATCGTCTCAGAAGGGTTGA -CCAACATCGTCTCAGAAGTCCGAT -CCAACATCGTCTCAGAAGTGGCAT -CCAACATCGTCTCAGAAGCGAGAT -CCAACATCGTCTCAGAAGTACCAC -CCAACATCGTCTCAGAAGCAGAAC -CCAACATCGTCTCAGAAGGTCTAC -CCAACATCGTCTCAGAAGACGTAC -CCAACATCGTCTCAGAAGAGTGAC -CCAACATCGTCTCAGAAGCTGTAG -CCAACATCGTCTCAGAAGCCTAAG -CCAACATCGTCTCAGAAGGTTCAG -CCAACATCGTCTCAGAAGGCATAG -CCAACATCGTCTCAGAAGGACAAG -CCAACATCGTCTCAGAAGAAGCAG -CCAACATCGTCTCAGAAGCGTCAA -CCAACATCGTCTCAGAAGGCTGAA -CCAACATCGTCTCAGAAGAGTACG -CCAACATCGTCTCAGAAGATCCGA -CCAACATCGTCTCAGAAGATGGGA -CCAACATCGTCTCAGAAGGTGCAA -CCAACATCGTCTCAGAAGGAGGAA -CCAACATCGTCTCAGAAGCAGGTA -CCAACATCGTCTCAGAAGGACTCT -CCAACATCGTCTCAGAAGAGTCCT -CCAACATCGTCTCAGAAGTAAGCC -CCAACATCGTCTCAGAAGATAGCC -CCAACATCGTCTCAGAAGTAACCG -CCAACATCGTCTCAGAAGATGCCA -CCAACATCGTCTCAACGTGGAAAC -CCAACATCGTCTCAACGTAACACC -CCAACATCGTCTCAACGTATCGAG -CCAACATCGTCTCAACGTCTCCTT -CCAACATCGTCTCAACGTCCTGTT -CCAACATCGTCTCAACGTCGGTTT -CCAACATCGTCTCAACGTGTGGTT -CCAACATCGTCTCAACGTGCCTTT -CCAACATCGTCTCAACGTGGTCTT -CCAACATCGTCTCAACGTACGCTT -CCAACATCGTCTCAACGTAGCGTT -CCAACATCGTCTCAACGTTTCGTC -CCAACATCGTCTCAACGTTCTCTC -CCAACATCGTCTCAACGTTGGATC -CCAACATCGTCTCAACGTCACTTC -CCAACATCGTCTCAACGTGTACTC -CCAACATCGTCTCAACGTGATGTC -CCAACATCGTCTCAACGTACAGTC -CCAACATCGTCTCAACGTTTGCTG -CCAACATCGTCTCAACGTTCCATG -CCAACATCGTCTCAACGTTGTGTG -CCAACATCGTCTCAACGTCTAGTG -CCAACATCGTCTCAACGTCATCTG -CCAACATCGTCTCAACGTGAGTTG -CCAACATCGTCTCAACGTAGACTG -CCAACATCGTCTCAACGTTCGGTA -CCAACATCGTCTCAACGTTGCCTA -CCAACATCGTCTCAACGTCCACTA -CCAACATCGTCTCAACGTGGAGTA -CCAACATCGTCTCAACGTTCGTCT -CCAACATCGTCTCAACGTTGCACT -CCAACATCGTCTCAACGTCTGACT -CCAACATCGTCTCAACGTCAACCT -CCAACATCGTCTCAACGTGCTACT -CCAACATCGTCTCAACGTGGATCT -CCAACATCGTCTCAACGTAAGGCT -CCAACATCGTCTCAACGTTCAACC -CCAACATCGTCTCAACGTTGTTCC -CCAACATCGTCTCAACGTATTCCC -CCAACATCGTCTCAACGTTTCTCG -CCAACATCGTCTCAACGTTAGACG -CCAACATCGTCTCAACGTGTAACG -CCAACATCGTCTCAACGTACTTCG -CCAACATCGTCTCAACGTTACGCA -CCAACATCGTCTCAACGTCTTGCA -CCAACATCGTCTCAACGTCGAACA -CCAACATCGTCTCAACGTCAGTCA -CCAACATCGTCTCAACGTGATCCA -CCAACATCGTCTCAACGTACGACA -CCAACATCGTCTCAACGTAGCTCA -CCAACATCGTCTCAACGTTCACGT -CCAACATCGTCTCAACGTCGTAGT -CCAACATCGTCTCAACGTGTCAGT -CCAACATCGTCTCAACGTGAAGGT -CCAACATCGTCTCAACGTAACCGT -CCAACATCGTCTCAACGTTTGTGC -CCAACATCGTCTCAACGTCTAAGC -CCAACATCGTCTCAACGTACTAGC -CCAACATCGTCTCAACGTAGATGC -CCAACATCGTCTCAACGTTGAAGG -CCAACATCGTCTCAACGTCAATGG -CCAACATCGTCTCAACGTATGAGG -CCAACATCGTCTCAACGTAATGGG -CCAACATCGTCTCAACGTTCCTGA -CCAACATCGTCTCAACGTTAGCGA -CCAACATCGTCTCAACGTCACAGA -CCAACATCGTCTCAACGTGCAAGA -CCAACATCGTCTCAACGTGGTTGA -CCAACATCGTCTCAACGTTCCGAT -CCAACATCGTCTCAACGTTGGCAT -CCAACATCGTCTCAACGTCGAGAT -CCAACATCGTCTCAACGTTACCAC -CCAACATCGTCTCAACGTCAGAAC -CCAACATCGTCTCAACGTGTCTAC -CCAACATCGTCTCAACGTACGTAC -CCAACATCGTCTCAACGTAGTGAC -CCAACATCGTCTCAACGTCTGTAG -CCAACATCGTCTCAACGTCCTAAG -CCAACATCGTCTCAACGTGTTCAG -CCAACATCGTCTCAACGTGCATAG -CCAACATCGTCTCAACGTGACAAG -CCAACATCGTCTCAACGTAAGCAG -CCAACATCGTCTCAACGTCGTCAA -CCAACATCGTCTCAACGTGCTGAA -CCAACATCGTCTCAACGTAGTACG -CCAACATCGTCTCAACGTATCCGA -CCAACATCGTCTCAACGTATGGGA -CCAACATCGTCTCAACGTGTGCAA -CCAACATCGTCTCAACGTGAGGAA -CCAACATCGTCTCAACGTCAGGTA -CCAACATCGTCTCAACGTGACTCT -CCAACATCGTCTCAACGTAGTCCT -CCAACATCGTCTCAACGTTAAGCC -CCAACATCGTCTCAACGTATAGCC -CCAACATCGTCTCAACGTTAACCG -CCAACATCGTCTCAACGTATGCCA -CCAACATCGTCTGAAGCTGGAAAC -CCAACATCGTCTGAAGCTAACACC -CCAACATCGTCTGAAGCTATCGAG -CCAACATCGTCTGAAGCTCTCCTT -CCAACATCGTCTGAAGCTCCTGTT -CCAACATCGTCTGAAGCTCGGTTT -CCAACATCGTCTGAAGCTGTGGTT -CCAACATCGTCTGAAGCTGCCTTT -CCAACATCGTCTGAAGCTGGTCTT -CCAACATCGTCTGAAGCTACGCTT -CCAACATCGTCTGAAGCTAGCGTT -CCAACATCGTCTGAAGCTTTCGTC -CCAACATCGTCTGAAGCTTCTCTC -CCAACATCGTCTGAAGCTTGGATC -CCAACATCGTCTGAAGCTCACTTC -CCAACATCGTCTGAAGCTGTACTC -CCAACATCGTCTGAAGCTGATGTC -CCAACATCGTCTGAAGCTACAGTC -CCAACATCGTCTGAAGCTTTGCTG -CCAACATCGTCTGAAGCTTCCATG -CCAACATCGTCTGAAGCTTGTGTG -CCAACATCGTCTGAAGCTCTAGTG -CCAACATCGTCTGAAGCTCATCTG -CCAACATCGTCTGAAGCTGAGTTG -CCAACATCGTCTGAAGCTAGACTG -CCAACATCGTCTGAAGCTTCGGTA -CCAACATCGTCTGAAGCTTGCCTA -CCAACATCGTCTGAAGCTCCACTA -CCAACATCGTCTGAAGCTGGAGTA -CCAACATCGTCTGAAGCTTCGTCT -CCAACATCGTCTGAAGCTTGCACT -CCAACATCGTCTGAAGCTCTGACT -CCAACATCGTCTGAAGCTCAACCT -CCAACATCGTCTGAAGCTGCTACT -CCAACATCGTCTGAAGCTGGATCT -CCAACATCGTCTGAAGCTAAGGCT -CCAACATCGTCTGAAGCTTCAACC -CCAACATCGTCTGAAGCTTGTTCC -CCAACATCGTCTGAAGCTATTCCC -CCAACATCGTCTGAAGCTTTCTCG -CCAACATCGTCTGAAGCTTAGACG -CCAACATCGTCTGAAGCTGTAACG -CCAACATCGTCTGAAGCTACTTCG -CCAACATCGTCTGAAGCTTACGCA -CCAACATCGTCTGAAGCTCTTGCA -CCAACATCGTCTGAAGCTCGAACA -CCAACATCGTCTGAAGCTCAGTCA -CCAACATCGTCTGAAGCTGATCCA -CCAACATCGTCTGAAGCTACGACA -CCAACATCGTCTGAAGCTAGCTCA -CCAACATCGTCTGAAGCTTCACGT -CCAACATCGTCTGAAGCTCGTAGT -CCAACATCGTCTGAAGCTGTCAGT -CCAACATCGTCTGAAGCTGAAGGT -CCAACATCGTCTGAAGCTAACCGT -CCAACATCGTCTGAAGCTTTGTGC -CCAACATCGTCTGAAGCTCTAAGC -CCAACATCGTCTGAAGCTACTAGC -CCAACATCGTCTGAAGCTAGATGC -CCAACATCGTCTGAAGCTTGAAGG -CCAACATCGTCTGAAGCTCAATGG -CCAACATCGTCTGAAGCTATGAGG -CCAACATCGTCTGAAGCTAATGGG -CCAACATCGTCTGAAGCTTCCTGA -CCAACATCGTCTGAAGCTTAGCGA -CCAACATCGTCTGAAGCTCACAGA -CCAACATCGTCTGAAGCTGCAAGA -CCAACATCGTCTGAAGCTGGTTGA -CCAACATCGTCTGAAGCTTCCGAT -CCAACATCGTCTGAAGCTTGGCAT -CCAACATCGTCTGAAGCTCGAGAT -CCAACATCGTCTGAAGCTTACCAC -CCAACATCGTCTGAAGCTCAGAAC -CCAACATCGTCTGAAGCTGTCTAC -CCAACATCGTCTGAAGCTACGTAC -CCAACATCGTCTGAAGCTAGTGAC -CCAACATCGTCTGAAGCTCTGTAG -CCAACATCGTCTGAAGCTCCTAAG -CCAACATCGTCTGAAGCTGTTCAG -CCAACATCGTCTGAAGCTGCATAG -CCAACATCGTCTGAAGCTGACAAG -CCAACATCGTCTGAAGCTAAGCAG -CCAACATCGTCTGAAGCTCGTCAA -CCAACATCGTCTGAAGCTGCTGAA -CCAACATCGTCTGAAGCTAGTACG -CCAACATCGTCTGAAGCTATCCGA -CCAACATCGTCTGAAGCTATGGGA -CCAACATCGTCTGAAGCTGTGCAA -CCAACATCGTCTGAAGCTGAGGAA -CCAACATCGTCTGAAGCTCAGGTA -CCAACATCGTCTGAAGCTGACTCT -CCAACATCGTCTGAAGCTAGTCCT -CCAACATCGTCTGAAGCTTAAGCC -CCAACATCGTCTGAAGCTATAGCC -CCAACATCGTCTGAAGCTTAACCG -CCAACATCGTCTGAAGCTATGCCA -CCAACATCGTCTACGAGTGGAAAC -CCAACATCGTCTACGAGTAACACC -CCAACATCGTCTACGAGTATCGAG -CCAACATCGTCTACGAGTCTCCTT -CCAACATCGTCTACGAGTCCTGTT -CCAACATCGTCTACGAGTCGGTTT -CCAACATCGTCTACGAGTGTGGTT -CCAACATCGTCTACGAGTGCCTTT -CCAACATCGTCTACGAGTGGTCTT -CCAACATCGTCTACGAGTACGCTT -CCAACATCGTCTACGAGTAGCGTT -CCAACATCGTCTACGAGTTTCGTC -CCAACATCGTCTACGAGTTCTCTC -CCAACATCGTCTACGAGTTGGATC -CCAACATCGTCTACGAGTCACTTC -CCAACATCGTCTACGAGTGTACTC -CCAACATCGTCTACGAGTGATGTC -CCAACATCGTCTACGAGTACAGTC -CCAACATCGTCTACGAGTTTGCTG -CCAACATCGTCTACGAGTTCCATG -CCAACATCGTCTACGAGTTGTGTG -CCAACATCGTCTACGAGTCTAGTG -CCAACATCGTCTACGAGTCATCTG -CCAACATCGTCTACGAGTGAGTTG -CCAACATCGTCTACGAGTAGACTG -CCAACATCGTCTACGAGTTCGGTA -CCAACATCGTCTACGAGTTGCCTA -CCAACATCGTCTACGAGTCCACTA -CCAACATCGTCTACGAGTGGAGTA -CCAACATCGTCTACGAGTTCGTCT -CCAACATCGTCTACGAGTTGCACT -CCAACATCGTCTACGAGTCTGACT -CCAACATCGTCTACGAGTCAACCT -CCAACATCGTCTACGAGTGCTACT -CCAACATCGTCTACGAGTGGATCT -CCAACATCGTCTACGAGTAAGGCT -CCAACATCGTCTACGAGTTCAACC -CCAACATCGTCTACGAGTTGTTCC -CCAACATCGTCTACGAGTATTCCC -CCAACATCGTCTACGAGTTTCTCG -CCAACATCGTCTACGAGTTAGACG -CCAACATCGTCTACGAGTGTAACG -CCAACATCGTCTACGAGTACTTCG -CCAACATCGTCTACGAGTTACGCA -CCAACATCGTCTACGAGTCTTGCA -CCAACATCGTCTACGAGTCGAACA -CCAACATCGTCTACGAGTCAGTCA -CCAACATCGTCTACGAGTGATCCA -CCAACATCGTCTACGAGTACGACA -CCAACATCGTCTACGAGTAGCTCA -CCAACATCGTCTACGAGTTCACGT -CCAACATCGTCTACGAGTCGTAGT -CCAACATCGTCTACGAGTGTCAGT -CCAACATCGTCTACGAGTGAAGGT -CCAACATCGTCTACGAGTAACCGT -CCAACATCGTCTACGAGTTTGTGC -CCAACATCGTCTACGAGTCTAAGC -CCAACATCGTCTACGAGTACTAGC -CCAACATCGTCTACGAGTAGATGC -CCAACATCGTCTACGAGTTGAAGG -CCAACATCGTCTACGAGTCAATGG -CCAACATCGTCTACGAGTATGAGG -CCAACATCGTCTACGAGTAATGGG -CCAACATCGTCTACGAGTTCCTGA -CCAACATCGTCTACGAGTTAGCGA -CCAACATCGTCTACGAGTCACAGA -CCAACATCGTCTACGAGTGCAAGA -CCAACATCGTCTACGAGTGGTTGA -CCAACATCGTCTACGAGTTCCGAT -CCAACATCGTCTACGAGTTGGCAT -CCAACATCGTCTACGAGTCGAGAT -CCAACATCGTCTACGAGTTACCAC -CCAACATCGTCTACGAGTCAGAAC -CCAACATCGTCTACGAGTGTCTAC -CCAACATCGTCTACGAGTACGTAC -CCAACATCGTCTACGAGTAGTGAC -CCAACATCGTCTACGAGTCTGTAG -CCAACATCGTCTACGAGTCCTAAG -CCAACATCGTCTACGAGTGTTCAG -CCAACATCGTCTACGAGTGCATAG -CCAACATCGTCTACGAGTGACAAG -CCAACATCGTCTACGAGTAAGCAG -CCAACATCGTCTACGAGTCGTCAA -CCAACATCGTCTACGAGTGCTGAA -CCAACATCGTCTACGAGTAGTACG -CCAACATCGTCTACGAGTATCCGA -CCAACATCGTCTACGAGTATGGGA -CCAACATCGTCTACGAGTGTGCAA -CCAACATCGTCTACGAGTGAGGAA -CCAACATCGTCTACGAGTCAGGTA -CCAACATCGTCTACGAGTGACTCT -CCAACATCGTCTACGAGTAGTCCT -CCAACATCGTCTACGAGTTAAGCC -CCAACATCGTCTACGAGTATAGCC -CCAACATCGTCTACGAGTTAACCG -CCAACATCGTCTACGAGTATGCCA -CCAACATCGTCTCGAATCGGAAAC -CCAACATCGTCTCGAATCAACACC -CCAACATCGTCTCGAATCATCGAG -CCAACATCGTCTCGAATCCTCCTT -CCAACATCGTCTCGAATCCCTGTT -CCAACATCGTCTCGAATCCGGTTT -CCAACATCGTCTCGAATCGTGGTT -CCAACATCGTCTCGAATCGCCTTT -CCAACATCGTCTCGAATCGGTCTT -CCAACATCGTCTCGAATCACGCTT -CCAACATCGTCTCGAATCAGCGTT -CCAACATCGTCTCGAATCTTCGTC -CCAACATCGTCTCGAATCTCTCTC -CCAACATCGTCTCGAATCTGGATC -CCAACATCGTCTCGAATCCACTTC -CCAACATCGTCTCGAATCGTACTC -CCAACATCGTCTCGAATCGATGTC -CCAACATCGTCTCGAATCACAGTC -CCAACATCGTCTCGAATCTTGCTG -CCAACATCGTCTCGAATCTCCATG -CCAACATCGTCTCGAATCTGTGTG -CCAACATCGTCTCGAATCCTAGTG -CCAACATCGTCTCGAATCCATCTG -CCAACATCGTCTCGAATCGAGTTG -CCAACATCGTCTCGAATCAGACTG -CCAACATCGTCTCGAATCTCGGTA -CCAACATCGTCTCGAATCTGCCTA -CCAACATCGTCTCGAATCCCACTA -CCAACATCGTCTCGAATCGGAGTA -CCAACATCGTCTCGAATCTCGTCT -CCAACATCGTCTCGAATCTGCACT -CCAACATCGTCTCGAATCCTGACT -CCAACATCGTCTCGAATCCAACCT -CCAACATCGTCTCGAATCGCTACT -CCAACATCGTCTCGAATCGGATCT -CCAACATCGTCTCGAATCAAGGCT -CCAACATCGTCTCGAATCTCAACC -CCAACATCGTCTCGAATCTGTTCC -CCAACATCGTCTCGAATCATTCCC -CCAACATCGTCTCGAATCTTCTCG -CCAACATCGTCTCGAATCTAGACG -CCAACATCGTCTCGAATCGTAACG -CCAACATCGTCTCGAATCACTTCG -CCAACATCGTCTCGAATCTACGCA -CCAACATCGTCTCGAATCCTTGCA -CCAACATCGTCTCGAATCCGAACA -CCAACATCGTCTCGAATCCAGTCA -CCAACATCGTCTCGAATCGATCCA -CCAACATCGTCTCGAATCACGACA -CCAACATCGTCTCGAATCAGCTCA -CCAACATCGTCTCGAATCTCACGT -CCAACATCGTCTCGAATCCGTAGT -CCAACATCGTCTCGAATCGTCAGT -CCAACATCGTCTCGAATCGAAGGT -CCAACATCGTCTCGAATCAACCGT -CCAACATCGTCTCGAATCTTGTGC -CCAACATCGTCTCGAATCCTAAGC -CCAACATCGTCTCGAATCACTAGC -CCAACATCGTCTCGAATCAGATGC -CCAACATCGTCTCGAATCTGAAGG -CCAACATCGTCTCGAATCCAATGG -CCAACATCGTCTCGAATCATGAGG -CCAACATCGTCTCGAATCAATGGG -CCAACATCGTCTCGAATCTCCTGA -CCAACATCGTCTCGAATCTAGCGA -CCAACATCGTCTCGAATCCACAGA -CCAACATCGTCTCGAATCGCAAGA -CCAACATCGTCTCGAATCGGTTGA -CCAACATCGTCTCGAATCTCCGAT -CCAACATCGTCTCGAATCTGGCAT -CCAACATCGTCTCGAATCCGAGAT -CCAACATCGTCTCGAATCTACCAC -CCAACATCGTCTCGAATCCAGAAC -CCAACATCGTCTCGAATCGTCTAC -CCAACATCGTCTCGAATCACGTAC -CCAACATCGTCTCGAATCAGTGAC -CCAACATCGTCTCGAATCCTGTAG -CCAACATCGTCTCGAATCCCTAAG -CCAACATCGTCTCGAATCGTTCAG -CCAACATCGTCTCGAATCGCATAG -CCAACATCGTCTCGAATCGACAAG -CCAACATCGTCTCGAATCAAGCAG -CCAACATCGTCTCGAATCCGTCAA -CCAACATCGTCTCGAATCGCTGAA -CCAACATCGTCTCGAATCAGTACG -CCAACATCGTCTCGAATCATCCGA -CCAACATCGTCTCGAATCATGGGA -CCAACATCGTCTCGAATCGTGCAA -CCAACATCGTCTCGAATCGAGGAA -CCAACATCGTCTCGAATCCAGGTA -CCAACATCGTCTCGAATCGACTCT -CCAACATCGTCTCGAATCAGTCCT -CCAACATCGTCTCGAATCTAAGCC -CCAACATCGTCTCGAATCATAGCC -CCAACATCGTCTCGAATCTAACCG -CCAACATCGTCTCGAATCATGCCA -CCAACATCGTCTGGAATGGGAAAC -CCAACATCGTCTGGAATGAACACC -CCAACATCGTCTGGAATGATCGAG -CCAACATCGTCTGGAATGCTCCTT -CCAACATCGTCTGGAATGCCTGTT -CCAACATCGTCTGGAATGCGGTTT -CCAACATCGTCTGGAATGGTGGTT -CCAACATCGTCTGGAATGGCCTTT -CCAACATCGTCTGGAATGGGTCTT -CCAACATCGTCTGGAATGACGCTT -CCAACATCGTCTGGAATGAGCGTT -CCAACATCGTCTGGAATGTTCGTC -CCAACATCGTCTGGAATGTCTCTC -CCAACATCGTCTGGAATGTGGATC -CCAACATCGTCTGGAATGCACTTC -CCAACATCGTCTGGAATGGTACTC -CCAACATCGTCTGGAATGGATGTC -CCAACATCGTCTGGAATGACAGTC -CCAACATCGTCTGGAATGTTGCTG -CCAACATCGTCTGGAATGTCCATG -CCAACATCGTCTGGAATGTGTGTG -CCAACATCGTCTGGAATGCTAGTG -CCAACATCGTCTGGAATGCATCTG -CCAACATCGTCTGGAATGGAGTTG -CCAACATCGTCTGGAATGAGACTG -CCAACATCGTCTGGAATGTCGGTA -CCAACATCGTCTGGAATGTGCCTA -CCAACATCGTCTGGAATGCCACTA -CCAACATCGTCTGGAATGGGAGTA -CCAACATCGTCTGGAATGTCGTCT -CCAACATCGTCTGGAATGTGCACT -CCAACATCGTCTGGAATGCTGACT -CCAACATCGTCTGGAATGCAACCT -CCAACATCGTCTGGAATGGCTACT -CCAACATCGTCTGGAATGGGATCT -CCAACATCGTCTGGAATGAAGGCT -CCAACATCGTCTGGAATGTCAACC -CCAACATCGTCTGGAATGTGTTCC -CCAACATCGTCTGGAATGATTCCC -CCAACATCGTCTGGAATGTTCTCG -CCAACATCGTCTGGAATGTAGACG -CCAACATCGTCTGGAATGGTAACG -CCAACATCGTCTGGAATGACTTCG -CCAACATCGTCTGGAATGTACGCA -CCAACATCGTCTGGAATGCTTGCA -CCAACATCGTCTGGAATGCGAACA -CCAACATCGTCTGGAATGCAGTCA -CCAACATCGTCTGGAATGGATCCA -CCAACATCGTCTGGAATGACGACA -CCAACATCGTCTGGAATGAGCTCA -CCAACATCGTCTGGAATGTCACGT -CCAACATCGTCTGGAATGCGTAGT -CCAACATCGTCTGGAATGGTCAGT -CCAACATCGTCTGGAATGGAAGGT -CCAACATCGTCTGGAATGAACCGT -CCAACATCGTCTGGAATGTTGTGC -CCAACATCGTCTGGAATGCTAAGC -CCAACATCGTCTGGAATGACTAGC -CCAACATCGTCTGGAATGAGATGC -CCAACATCGTCTGGAATGTGAAGG -CCAACATCGTCTGGAATGCAATGG -CCAACATCGTCTGGAATGATGAGG -CCAACATCGTCTGGAATGAATGGG -CCAACATCGTCTGGAATGTCCTGA -CCAACATCGTCTGGAATGTAGCGA -CCAACATCGTCTGGAATGCACAGA -CCAACATCGTCTGGAATGGCAAGA -CCAACATCGTCTGGAATGGGTTGA -CCAACATCGTCTGGAATGTCCGAT -CCAACATCGTCTGGAATGTGGCAT -CCAACATCGTCTGGAATGCGAGAT -CCAACATCGTCTGGAATGTACCAC -CCAACATCGTCTGGAATGCAGAAC -CCAACATCGTCTGGAATGGTCTAC -CCAACATCGTCTGGAATGACGTAC -CCAACATCGTCTGGAATGAGTGAC -CCAACATCGTCTGGAATGCTGTAG -CCAACATCGTCTGGAATGCCTAAG -CCAACATCGTCTGGAATGGTTCAG -CCAACATCGTCTGGAATGGCATAG -CCAACATCGTCTGGAATGGACAAG -CCAACATCGTCTGGAATGAAGCAG -CCAACATCGTCTGGAATGCGTCAA -CCAACATCGTCTGGAATGGCTGAA -CCAACATCGTCTGGAATGAGTACG -CCAACATCGTCTGGAATGATCCGA -CCAACATCGTCTGGAATGATGGGA -CCAACATCGTCTGGAATGGTGCAA -CCAACATCGTCTGGAATGGAGGAA -CCAACATCGTCTGGAATGCAGGTA -CCAACATCGTCTGGAATGGACTCT -CCAACATCGTCTGGAATGAGTCCT -CCAACATCGTCTGGAATGTAAGCC -CCAACATCGTCTGGAATGATAGCC -CCAACATCGTCTGGAATGTAACCG -CCAACATCGTCTGGAATGATGCCA -CCAACATCGTCTCAAGTGGGAAAC -CCAACATCGTCTCAAGTGAACACC -CCAACATCGTCTCAAGTGATCGAG -CCAACATCGTCTCAAGTGCTCCTT -CCAACATCGTCTCAAGTGCCTGTT -CCAACATCGTCTCAAGTGCGGTTT -CCAACATCGTCTCAAGTGGTGGTT -CCAACATCGTCTCAAGTGGCCTTT -CCAACATCGTCTCAAGTGGGTCTT -CCAACATCGTCTCAAGTGACGCTT -CCAACATCGTCTCAAGTGAGCGTT -CCAACATCGTCTCAAGTGTTCGTC -CCAACATCGTCTCAAGTGTCTCTC -CCAACATCGTCTCAAGTGTGGATC -CCAACATCGTCTCAAGTGCACTTC -CCAACATCGTCTCAAGTGGTACTC -CCAACATCGTCTCAAGTGGATGTC -CCAACATCGTCTCAAGTGACAGTC -CCAACATCGTCTCAAGTGTTGCTG -CCAACATCGTCTCAAGTGTCCATG -CCAACATCGTCTCAAGTGTGTGTG -CCAACATCGTCTCAAGTGCTAGTG -CCAACATCGTCTCAAGTGCATCTG -CCAACATCGTCTCAAGTGGAGTTG -CCAACATCGTCTCAAGTGAGACTG -CCAACATCGTCTCAAGTGTCGGTA -CCAACATCGTCTCAAGTGTGCCTA -CCAACATCGTCTCAAGTGCCACTA -CCAACATCGTCTCAAGTGGGAGTA -CCAACATCGTCTCAAGTGTCGTCT -CCAACATCGTCTCAAGTGTGCACT -CCAACATCGTCTCAAGTGCTGACT -CCAACATCGTCTCAAGTGCAACCT -CCAACATCGTCTCAAGTGGCTACT -CCAACATCGTCTCAAGTGGGATCT -CCAACATCGTCTCAAGTGAAGGCT -CCAACATCGTCTCAAGTGTCAACC -CCAACATCGTCTCAAGTGTGTTCC -CCAACATCGTCTCAAGTGATTCCC -CCAACATCGTCTCAAGTGTTCTCG -CCAACATCGTCTCAAGTGTAGACG -CCAACATCGTCTCAAGTGGTAACG -CCAACATCGTCTCAAGTGACTTCG -CCAACATCGTCTCAAGTGTACGCA -CCAACATCGTCTCAAGTGCTTGCA -CCAACATCGTCTCAAGTGCGAACA -CCAACATCGTCTCAAGTGCAGTCA -CCAACATCGTCTCAAGTGGATCCA -CCAACATCGTCTCAAGTGACGACA -CCAACATCGTCTCAAGTGAGCTCA -CCAACATCGTCTCAAGTGTCACGT -CCAACATCGTCTCAAGTGCGTAGT -CCAACATCGTCTCAAGTGGTCAGT -CCAACATCGTCTCAAGTGGAAGGT -CCAACATCGTCTCAAGTGAACCGT -CCAACATCGTCTCAAGTGTTGTGC -CCAACATCGTCTCAAGTGCTAAGC -CCAACATCGTCTCAAGTGACTAGC -CCAACATCGTCTCAAGTGAGATGC -CCAACATCGTCTCAAGTGTGAAGG -CCAACATCGTCTCAAGTGCAATGG -CCAACATCGTCTCAAGTGATGAGG -CCAACATCGTCTCAAGTGAATGGG -CCAACATCGTCTCAAGTGTCCTGA -CCAACATCGTCTCAAGTGTAGCGA -CCAACATCGTCTCAAGTGCACAGA -CCAACATCGTCTCAAGTGGCAAGA -CCAACATCGTCTCAAGTGGGTTGA -CCAACATCGTCTCAAGTGTCCGAT -CCAACATCGTCTCAAGTGTGGCAT -CCAACATCGTCTCAAGTGCGAGAT -CCAACATCGTCTCAAGTGTACCAC -CCAACATCGTCTCAAGTGCAGAAC -CCAACATCGTCTCAAGTGGTCTAC -CCAACATCGTCTCAAGTGACGTAC -CCAACATCGTCTCAAGTGAGTGAC -CCAACATCGTCTCAAGTGCTGTAG -CCAACATCGTCTCAAGTGCCTAAG -CCAACATCGTCTCAAGTGGTTCAG -CCAACATCGTCTCAAGTGGCATAG -CCAACATCGTCTCAAGTGGACAAG -CCAACATCGTCTCAAGTGAAGCAG -CCAACATCGTCTCAAGTGCGTCAA -CCAACATCGTCTCAAGTGGCTGAA -CCAACATCGTCTCAAGTGAGTACG -CCAACATCGTCTCAAGTGATCCGA -CCAACATCGTCTCAAGTGATGGGA -CCAACATCGTCTCAAGTGGTGCAA -CCAACATCGTCTCAAGTGGAGGAA -CCAACATCGTCTCAAGTGCAGGTA -CCAACATCGTCTCAAGTGGACTCT -CCAACATCGTCTCAAGTGAGTCCT -CCAACATCGTCTCAAGTGTAAGCC -CCAACATCGTCTCAAGTGATAGCC -CCAACATCGTCTCAAGTGTAACCG -CCAACATCGTCTCAAGTGATGCCA -CCAACATCGTCTGAAGAGGGAAAC -CCAACATCGTCTGAAGAGAACACC -CCAACATCGTCTGAAGAGATCGAG -CCAACATCGTCTGAAGAGCTCCTT -CCAACATCGTCTGAAGAGCCTGTT -CCAACATCGTCTGAAGAGCGGTTT -CCAACATCGTCTGAAGAGGTGGTT -CCAACATCGTCTGAAGAGGCCTTT -CCAACATCGTCTGAAGAGGGTCTT -CCAACATCGTCTGAAGAGACGCTT -CCAACATCGTCTGAAGAGAGCGTT -CCAACATCGTCTGAAGAGTTCGTC -CCAACATCGTCTGAAGAGTCTCTC -CCAACATCGTCTGAAGAGTGGATC -CCAACATCGTCTGAAGAGCACTTC -CCAACATCGTCTGAAGAGGTACTC -CCAACATCGTCTGAAGAGGATGTC -CCAACATCGTCTGAAGAGACAGTC -CCAACATCGTCTGAAGAGTTGCTG -CCAACATCGTCTGAAGAGTCCATG -CCAACATCGTCTGAAGAGTGTGTG -CCAACATCGTCTGAAGAGCTAGTG -CCAACATCGTCTGAAGAGCATCTG -CCAACATCGTCTGAAGAGGAGTTG -CCAACATCGTCTGAAGAGAGACTG -CCAACATCGTCTGAAGAGTCGGTA -CCAACATCGTCTGAAGAGTGCCTA -CCAACATCGTCTGAAGAGCCACTA -CCAACATCGTCTGAAGAGGGAGTA -CCAACATCGTCTGAAGAGTCGTCT -CCAACATCGTCTGAAGAGTGCACT -CCAACATCGTCTGAAGAGCTGACT -CCAACATCGTCTGAAGAGCAACCT -CCAACATCGTCTGAAGAGGCTACT -CCAACATCGTCTGAAGAGGGATCT -CCAACATCGTCTGAAGAGAAGGCT -CCAACATCGTCTGAAGAGTCAACC -CCAACATCGTCTGAAGAGTGTTCC -CCAACATCGTCTGAAGAGATTCCC -CCAACATCGTCTGAAGAGTTCTCG -CCAACATCGTCTGAAGAGTAGACG -CCAACATCGTCTGAAGAGGTAACG -CCAACATCGTCTGAAGAGACTTCG -CCAACATCGTCTGAAGAGTACGCA -CCAACATCGTCTGAAGAGCTTGCA -CCAACATCGTCTGAAGAGCGAACA -CCAACATCGTCTGAAGAGCAGTCA -CCAACATCGTCTGAAGAGGATCCA -CCAACATCGTCTGAAGAGACGACA -CCAACATCGTCTGAAGAGAGCTCA -CCAACATCGTCTGAAGAGTCACGT -CCAACATCGTCTGAAGAGCGTAGT -CCAACATCGTCTGAAGAGGTCAGT -CCAACATCGTCTGAAGAGGAAGGT -CCAACATCGTCTGAAGAGAACCGT -CCAACATCGTCTGAAGAGTTGTGC -CCAACATCGTCTGAAGAGCTAAGC -CCAACATCGTCTGAAGAGACTAGC -CCAACATCGTCTGAAGAGAGATGC -CCAACATCGTCTGAAGAGTGAAGG -CCAACATCGTCTGAAGAGCAATGG -CCAACATCGTCTGAAGAGATGAGG -CCAACATCGTCTGAAGAGAATGGG -CCAACATCGTCTGAAGAGTCCTGA -CCAACATCGTCTGAAGAGTAGCGA -CCAACATCGTCTGAAGAGCACAGA -CCAACATCGTCTGAAGAGGCAAGA -CCAACATCGTCTGAAGAGGGTTGA -CCAACATCGTCTGAAGAGTCCGAT -CCAACATCGTCTGAAGAGTGGCAT -CCAACATCGTCTGAAGAGCGAGAT -CCAACATCGTCTGAAGAGTACCAC -CCAACATCGTCTGAAGAGCAGAAC -CCAACATCGTCTGAAGAGGTCTAC -CCAACATCGTCTGAAGAGACGTAC -CCAACATCGTCTGAAGAGAGTGAC -CCAACATCGTCTGAAGAGCTGTAG -CCAACATCGTCTGAAGAGCCTAAG -CCAACATCGTCTGAAGAGGTTCAG -CCAACATCGTCTGAAGAGGCATAG -CCAACATCGTCTGAAGAGGACAAG -CCAACATCGTCTGAAGAGAAGCAG -CCAACATCGTCTGAAGAGCGTCAA -CCAACATCGTCTGAAGAGGCTGAA -CCAACATCGTCTGAAGAGAGTACG -CCAACATCGTCTGAAGAGATCCGA -CCAACATCGTCTGAAGAGATGGGA -CCAACATCGTCTGAAGAGGTGCAA -CCAACATCGTCTGAAGAGGAGGAA -CCAACATCGTCTGAAGAGCAGGTA -CCAACATCGTCTGAAGAGGACTCT -CCAACATCGTCTGAAGAGAGTCCT -CCAACATCGTCTGAAGAGTAAGCC -CCAACATCGTCTGAAGAGATAGCC -CCAACATCGTCTGAAGAGTAACCG -CCAACATCGTCTGAAGAGATGCCA -CCAACATCGTCTGTACAGGGAAAC -CCAACATCGTCTGTACAGAACACC -CCAACATCGTCTGTACAGATCGAG -CCAACATCGTCTGTACAGCTCCTT -CCAACATCGTCTGTACAGCCTGTT -CCAACATCGTCTGTACAGCGGTTT -CCAACATCGTCTGTACAGGTGGTT -CCAACATCGTCTGTACAGGCCTTT -CCAACATCGTCTGTACAGGGTCTT -CCAACATCGTCTGTACAGACGCTT -CCAACATCGTCTGTACAGAGCGTT -CCAACATCGTCTGTACAGTTCGTC -CCAACATCGTCTGTACAGTCTCTC -CCAACATCGTCTGTACAGTGGATC -CCAACATCGTCTGTACAGCACTTC -CCAACATCGTCTGTACAGGTACTC -CCAACATCGTCTGTACAGGATGTC -CCAACATCGTCTGTACAGACAGTC -CCAACATCGTCTGTACAGTTGCTG -CCAACATCGTCTGTACAGTCCATG -CCAACATCGTCTGTACAGTGTGTG -CCAACATCGTCTGTACAGCTAGTG -CCAACATCGTCTGTACAGCATCTG -CCAACATCGTCTGTACAGGAGTTG -CCAACATCGTCTGTACAGAGACTG -CCAACATCGTCTGTACAGTCGGTA -CCAACATCGTCTGTACAGTGCCTA -CCAACATCGTCTGTACAGCCACTA -CCAACATCGTCTGTACAGGGAGTA -CCAACATCGTCTGTACAGTCGTCT -CCAACATCGTCTGTACAGTGCACT -CCAACATCGTCTGTACAGCTGACT -CCAACATCGTCTGTACAGCAACCT -CCAACATCGTCTGTACAGGCTACT -CCAACATCGTCTGTACAGGGATCT -CCAACATCGTCTGTACAGAAGGCT -CCAACATCGTCTGTACAGTCAACC -CCAACATCGTCTGTACAGTGTTCC -CCAACATCGTCTGTACAGATTCCC -CCAACATCGTCTGTACAGTTCTCG -CCAACATCGTCTGTACAGTAGACG -CCAACATCGTCTGTACAGGTAACG -CCAACATCGTCTGTACAGACTTCG -CCAACATCGTCTGTACAGTACGCA -CCAACATCGTCTGTACAGCTTGCA -CCAACATCGTCTGTACAGCGAACA -CCAACATCGTCTGTACAGCAGTCA -CCAACATCGTCTGTACAGGATCCA -CCAACATCGTCTGTACAGACGACA -CCAACATCGTCTGTACAGAGCTCA -CCAACATCGTCTGTACAGTCACGT -CCAACATCGTCTGTACAGCGTAGT -CCAACATCGTCTGTACAGGTCAGT -CCAACATCGTCTGTACAGGAAGGT -CCAACATCGTCTGTACAGAACCGT -CCAACATCGTCTGTACAGTTGTGC -CCAACATCGTCTGTACAGCTAAGC -CCAACATCGTCTGTACAGACTAGC -CCAACATCGTCTGTACAGAGATGC -CCAACATCGTCTGTACAGTGAAGG -CCAACATCGTCTGTACAGCAATGG -CCAACATCGTCTGTACAGATGAGG -CCAACATCGTCTGTACAGAATGGG -CCAACATCGTCTGTACAGTCCTGA -CCAACATCGTCTGTACAGTAGCGA -CCAACATCGTCTGTACAGCACAGA -CCAACATCGTCTGTACAGGCAAGA -CCAACATCGTCTGTACAGGGTTGA -CCAACATCGTCTGTACAGTCCGAT -CCAACATCGTCTGTACAGTGGCAT -CCAACATCGTCTGTACAGCGAGAT -CCAACATCGTCTGTACAGTACCAC -CCAACATCGTCTGTACAGCAGAAC -CCAACATCGTCTGTACAGGTCTAC -CCAACATCGTCTGTACAGACGTAC -CCAACATCGTCTGTACAGAGTGAC -CCAACATCGTCTGTACAGCTGTAG -CCAACATCGTCTGTACAGCCTAAG -CCAACATCGTCTGTACAGGTTCAG -CCAACATCGTCTGTACAGGCATAG -CCAACATCGTCTGTACAGGACAAG -CCAACATCGTCTGTACAGAAGCAG -CCAACATCGTCTGTACAGCGTCAA -CCAACATCGTCTGTACAGGCTGAA -CCAACATCGTCTGTACAGAGTACG -CCAACATCGTCTGTACAGATCCGA -CCAACATCGTCTGTACAGATGGGA -CCAACATCGTCTGTACAGGTGCAA -CCAACATCGTCTGTACAGGAGGAA -CCAACATCGTCTGTACAGCAGGTA -CCAACATCGTCTGTACAGGACTCT -CCAACATCGTCTGTACAGAGTCCT -CCAACATCGTCTGTACAGTAAGCC -CCAACATCGTCTGTACAGATAGCC -CCAACATCGTCTGTACAGTAACCG -CCAACATCGTCTGTACAGATGCCA -CCAACATCGTCTTCTGACGGAAAC -CCAACATCGTCTTCTGACAACACC -CCAACATCGTCTTCTGACATCGAG -CCAACATCGTCTTCTGACCTCCTT -CCAACATCGTCTTCTGACCCTGTT -CCAACATCGTCTTCTGACCGGTTT -CCAACATCGTCTTCTGACGTGGTT -CCAACATCGTCTTCTGACGCCTTT -CCAACATCGTCTTCTGACGGTCTT -CCAACATCGTCTTCTGACACGCTT -CCAACATCGTCTTCTGACAGCGTT -CCAACATCGTCTTCTGACTTCGTC -CCAACATCGTCTTCTGACTCTCTC -CCAACATCGTCTTCTGACTGGATC -CCAACATCGTCTTCTGACCACTTC -CCAACATCGTCTTCTGACGTACTC -CCAACATCGTCTTCTGACGATGTC -CCAACATCGTCTTCTGACACAGTC -CCAACATCGTCTTCTGACTTGCTG -CCAACATCGTCTTCTGACTCCATG -CCAACATCGTCTTCTGACTGTGTG -CCAACATCGTCTTCTGACCTAGTG -CCAACATCGTCTTCTGACCATCTG -CCAACATCGTCTTCTGACGAGTTG -CCAACATCGTCTTCTGACAGACTG -CCAACATCGTCTTCTGACTCGGTA -CCAACATCGTCTTCTGACTGCCTA -CCAACATCGTCTTCTGACCCACTA -CCAACATCGTCTTCTGACGGAGTA -CCAACATCGTCTTCTGACTCGTCT -CCAACATCGTCTTCTGACTGCACT -CCAACATCGTCTTCTGACCTGACT -CCAACATCGTCTTCTGACCAACCT -CCAACATCGTCTTCTGACGCTACT -CCAACATCGTCTTCTGACGGATCT -CCAACATCGTCTTCTGACAAGGCT -CCAACATCGTCTTCTGACTCAACC -CCAACATCGTCTTCTGACTGTTCC -CCAACATCGTCTTCTGACATTCCC -CCAACATCGTCTTCTGACTTCTCG -CCAACATCGTCTTCTGACTAGACG -CCAACATCGTCTTCTGACGTAACG -CCAACATCGTCTTCTGACACTTCG -CCAACATCGTCTTCTGACTACGCA -CCAACATCGTCTTCTGACCTTGCA -CCAACATCGTCTTCTGACCGAACA -CCAACATCGTCTTCTGACCAGTCA -CCAACATCGTCTTCTGACGATCCA -CCAACATCGTCTTCTGACACGACA -CCAACATCGTCTTCTGACAGCTCA -CCAACATCGTCTTCTGACTCACGT -CCAACATCGTCTTCTGACCGTAGT -CCAACATCGTCTTCTGACGTCAGT -CCAACATCGTCTTCTGACGAAGGT -CCAACATCGTCTTCTGACAACCGT -CCAACATCGTCTTCTGACTTGTGC -CCAACATCGTCTTCTGACCTAAGC -CCAACATCGTCTTCTGACACTAGC -CCAACATCGTCTTCTGACAGATGC -CCAACATCGTCTTCTGACTGAAGG -CCAACATCGTCTTCTGACCAATGG -CCAACATCGTCTTCTGACATGAGG -CCAACATCGTCTTCTGACAATGGG -CCAACATCGTCTTCTGACTCCTGA -CCAACATCGTCTTCTGACTAGCGA -CCAACATCGTCTTCTGACCACAGA -CCAACATCGTCTTCTGACGCAAGA -CCAACATCGTCTTCTGACGGTTGA -CCAACATCGTCTTCTGACTCCGAT -CCAACATCGTCTTCTGACTGGCAT -CCAACATCGTCTTCTGACCGAGAT -CCAACATCGTCTTCTGACTACCAC -CCAACATCGTCTTCTGACCAGAAC -CCAACATCGTCTTCTGACGTCTAC -CCAACATCGTCTTCTGACACGTAC -CCAACATCGTCTTCTGACAGTGAC -CCAACATCGTCTTCTGACCTGTAG -CCAACATCGTCTTCTGACCCTAAG -CCAACATCGTCTTCTGACGTTCAG -CCAACATCGTCTTCTGACGCATAG -CCAACATCGTCTTCTGACGACAAG -CCAACATCGTCTTCTGACAAGCAG -CCAACATCGTCTTCTGACCGTCAA -CCAACATCGTCTTCTGACGCTGAA -CCAACATCGTCTTCTGACAGTACG -CCAACATCGTCTTCTGACATCCGA -CCAACATCGTCTTCTGACATGGGA -CCAACATCGTCTTCTGACGTGCAA -CCAACATCGTCTTCTGACGAGGAA -CCAACATCGTCTTCTGACCAGGTA -CCAACATCGTCTTCTGACGACTCT -CCAACATCGTCTTCTGACAGTCCT -CCAACATCGTCTTCTGACTAAGCC -CCAACATCGTCTTCTGACATAGCC -CCAACATCGTCTTCTGACTAACCG -CCAACATCGTCTTCTGACATGCCA -CCAACATCGTCTCCTAGTGGAAAC -CCAACATCGTCTCCTAGTAACACC -CCAACATCGTCTCCTAGTATCGAG -CCAACATCGTCTCCTAGTCTCCTT -CCAACATCGTCTCCTAGTCCTGTT -CCAACATCGTCTCCTAGTCGGTTT -CCAACATCGTCTCCTAGTGTGGTT -CCAACATCGTCTCCTAGTGCCTTT -CCAACATCGTCTCCTAGTGGTCTT -CCAACATCGTCTCCTAGTACGCTT -CCAACATCGTCTCCTAGTAGCGTT -CCAACATCGTCTCCTAGTTTCGTC -CCAACATCGTCTCCTAGTTCTCTC -CCAACATCGTCTCCTAGTTGGATC -CCAACATCGTCTCCTAGTCACTTC -CCAACATCGTCTCCTAGTGTACTC -CCAACATCGTCTCCTAGTGATGTC -CCAACATCGTCTCCTAGTACAGTC -CCAACATCGTCTCCTAGTTTGCTG -CCAACATCGTCTCCTAGTTCCATG -CCAACATCGTCTCCTAGTTGTGTG -CCAACATCGTCTCCTAGTCTAGTG -CCAACATCGTCTCCTAGTCATCTG -CCAACATCGTCTCCTAGTGAGTTG -CCAACATCGTCTCCTAGTAGACTG -CCAACATCGTCTCCTAGTTCGGTA -CCAACATCGTCTCCTAGTTGCCTA -CCAACATCGTCTCCTAGTCCACTA -CCAACATCGTCTCCTAGTGGAGTA -CCAACATCGTCTCCTAGTTCGTCT -CCAACATCGTCTCCTAGTTGCACT -CCAACATCGTCTCCTAGTCTGACT -CCAACATCGTCTCCTAGTCAACCT -CCAACATCGTCTCCTAGTGCTACT -CCAACATCGTCTCCTAGTGGATCT -CCAACATCGTCTCCTAGTAAGGCT -CCAACATCGTCTCCTAGTTCAACC -CCAACATCGTCTCCTAGTTGTTCC -CCAACATCGTCTCCTAGTATTCCC -CCAACATCGTCTCCTAGTTTCTCG -CCAACATCGTCTCCTAGTTAGACG -CCAACATCGTCTCCTAGTGTAACG -CCAACATCGTCTCCTAGTACTTCG -CCAACATCGTCTCCTAGTTACGCA -CCAACATCGTCTCCTAGTCTTGCA -CCAACATCGTCTCCTAGTCGAACA -CCAACATCGTCTCCTAGTCAGTCA -CCAACATCGTCTCCTAGTGATCCA -CCAACATCGTCTCCTAGTACGACA -CCAACATCGTCTCCTAGTAGCTCA -CCAACATCGTCTCCTAGTTCACGT -CCAACATCGTCTCCTAGTCGTAGT -CCAACATCGTCTCCTAGTGTCAGT -CCAACATCGTCTCCTAGTGAAGGT -CCAACATCGTCTCCTAGTAACCGT -CCAACATCGTCTCCTAGTTTGTGC -CCAACATCGTCTCCTAGTCTAAGC -CCAACATCGTCTCCTAGTACTAGC -CCAACATCGTCTCCTAGTAGATGC -CCAACATCGTCTCCTAGTTGAAGG -CCAACATCGTCTCCTAGTCAATGG -CCAACATCGTCTCCTAGTATGAGG -CCAACATCGTCTCCTAGTAATGGG -CCAACATCGTCTCCTAGTTCCTGA -CCAACATCGTCTCCTAGTTAGCGA -CCAACATCGTCTCCTAGTCACAGA -CCAACATCGTCTCCTAGTGCAAGA -CCAACATCGTCTCCTAGTGGTTGA -CCAACATCGTCTCCTAGTTCCGAT -CCAACATCGTCTCCTAGTTGGCAT -CCAACATCGTCTCCTAGTCGAGAT -CCAACATCGTCTCCTAGTTACCAC -CCAACATCGTCTCCTAGTCAGAAC -CCAACATCGTCTCCTAGTGTCTAC -CCAACATCGTCTCCTAGTACGTAC -CCAACATCGTCTCCTAGTAGTGAC -CCAACATCGTCTCCTAGTCTGTAG -CCAACATCGTCTCCTAGTCCTAAG -CCAACATCGTCTCCTAGTGTTCAG -CCAACATCGTCTCCTAGTGCATAG -CCAACATCGTCTCCTAGTGACAAG -CCAACATCGTCTCCTAGTAAGCAG -CCAACATCGTCTCCTAGTCGTCAA -CCAACATCGTCTCCTAGTGCTGAA -CCAACATCGTCTCCTAGTAGTACG -CCAACATCGTCTCCTAGTATCCGA -CCAACATCGTCTCCTAGTATGGGA -CCAACATCGTCTCCTAGTGTGCAA -CCAACATCGTCTCCTAGTGAGGAA -CCAACATCGTCTCCTAGTCAGGTA -CCAACATCGTCTCCTAGTGACTCT -CCAACATCGTCTCCTAGTAGTCCT -CCAACATCGTCTCCTAGTTAAGCC -CCAACATCGTCTCCTAGTATAGCC -CCAACATCGTCTCCTAGTTAACCG -CCAACATCGTCTCCTAGTATGCCA -CCAACATCGTCTGCCTAAGGAAAC -CCAACATCGTCTGCCTAAAACACC -CCAACATCGTCTGCCTAAATCGAG -CCAACATCGTCTGCCTAACTCCTT -CCAACATCGTCTGCCTAACCTGTT -CCAACATCGTCTGCCTAACGGTTT -CCAACATCGTCTGCCTAAGTGGTT -CCAACATCGTCTGCCTAAGCCTTT -CCAACATCGTCTGCCTAAGGTCTT -CCAACATCGTCTGCCTAAACGCTT -CCAACATCGTCTGCCTAAAGCGTT -CCAACATCGTCTGCCTAATTCGTC -CCAACATCGTCTGCCTAATCTCTC -CCAACATCGTCTGCCTAATGGATC -CCAACATCGTCTGCCTAACACTTC -CCAACATCGTCTGCCTAAGTACTC -CCAACATCGTCTGCCTAAGATGTC -CCAACATCGTCTGCCTAAACAGTC -CCAACATCGTCTGCCTAATTGCTG -CCAACATCGTCTGCCTAATCCATG -CCAACATCGTCTGCCTAATGTGTG -CCAACATCGTCTGCCTAACTAGTG -CCAACATCGTCTGCCTAACATCTG -CCAACATCGTCTGCCTAAGAGTTG -CCAACATCGTCTGCCTAAAGACTG -CCAACATCGTCTGCCTAATCGGTA -CCAACATCGTCTGCCTAATGCCTA -CCAACATCGTCTGCCTAACCACTA -CCAACATCGTCTGCCTAAGGAGTA -CCAACATCGTCTGCCTAATCGTCT -CCAACATCGTCTGCCTAATGCACT -CCAACATCGTCTGCCTAACTGACT -CCAACATCGTCTGCCTAACAACCT -CCAACATCGTCTGCCTAAGCTACT -CCAACATCGTCTGCCTAAGGATCT -CCAACATCGTCTGCCTAAAAGGCT -CCAACATCGTCTGCCTAATCAACC -CCAACATCGTCTGCCTAATGTTCC -CCAACATCGTCTGCCTAAATTCCC -CCAACATCGTCTGCCTAATTCTCG -CCAACATCGTCTGCCTAATAGACG -CCAACATCGTCTGCCTAAGTAACG -CCAACATCGTCTGCCTAAACTTCG -CCAACATCGTCTGCCTAATACGCA -CCAACATCGTCTGCCTAACTTGCA -CCAACATCGTCTGCCTAACGAACA -CCAACATCGTCTGCCTAACAGTCA -CCAACATCGTCTGCCTAAGATCCA -CCAACATCGTCTGCCTAAACGACA -CCAACATCGTCTGCCTAAAGCTCA -CCAACATCGTCTGCCTAATCACGT -CCAACATCGTCTGCCTAACGTAGT -CCAACATCGTCTGCCTAAGTCAGT -CCAACATCGTCTGCCTAAGAAGGT -CCAACATCGTCTGCCTAAAACCGT -CCAACATCGTCTGCCTAATTGTGC -CCAACATCGTCTGCCTAACTAAGC -CCAACATCGTCTGCCTAAACTAGC -CCAACATCGTCTGCCTAAAGATGC -CCAACATCGTCTGCCTAATGAAGG -CCAACATCGTCTGCCTAACAATGG -CCAACATCGTCTGCCTAAATGAGG -CCAACATCGTCTGCCTAAAATGGG -CCAACATCGTCTGCCTAATCCTGA -CCAACATCGTCTGCCTAATAGCGA -CCAACATCGTCTGCCTAACACAGA -CCAACATCGTCTGCCTAAGCAAGA -CCAACATCGTCTGCCTAAGGTTGA -CCAACATCGTCTGCCTAATCCGAT -CCAACATCGTCTGCCTAATGGCAT -CCAACATCGTCTGCCTAACGAGAT -CCAACATCGTCTGCCTAATACCAC -CCAACATCGTCTGCCTAACAGAAC -CCAACATCGTCTGCCTAAGTCTAC -CCAACATCGTCTGCCTAAACGTAC -CCAACATCGTCTGCCTAAAGTGAC -CCAACATCGTCTGCCTAACTGTAG -CCAACATCGTCTGCCTAACCTAAG -CCAACATCGTCTGCCTAAGTTCAG -CCAACATCGTCTGCCTAAGCATAG -CCAACATCGTCTGCCTAAGACAAG -CCAACATCGTCTGCCTAAAAGCAG -CCAACATCGTCTGCCTAACGTCAA -CCAACATCGTCTGCCTAAGCTGAA -CCAACATCGTCTGCCTAAAGTACG -CCAACATCGTCTGCCTAAATCCGA -CCAACATCGTCTGCCTAAATGGGA -CCAACATCGTCTGCCTAAGTGCAA -CCAACATCGTCTGCCTAAGAGGAA -CCAACATCGTCTGCCTAACAGGTA -CCAACATCGTCTGCCTAAGACTCT -CCAACATCGTCTGCCTAAAGTCCT -CCAACATCGTCTGCCTAATAAGCC -CCAACATCGTCTGCCTAAATAGCC -CCAACATCGTCTGCCTAATAACCG -CCAACATCGTCTGCCTAAATGCCA -CCAACATCGTCTGCCATAGGAAAC -CCAACATCGTCTGCCATAAACACC -CCAACATCGTCTGCCATAATCGAG -CCAACATCGTCTGCCATACTCCTT -CCAACATCGTCTGCCATACCTGTT -CCAACATCGTCTGCCATACGGTTT -CCAACATCGTCTGCCATAGTGGTT -CCAACATCGTCTGCCATAGCCTTT -CCAACATCGTCTGCCATAGGTCTT -CCAACATCGTCTGCCATAACGCTT -CCAACATCGTCTGCCATAAGCGTT -CCAACATCGTCTGCCATATTCGTC -CCAACATCGTCTGCCATATCTCTC -CCAACATCGTCTGCCATATGGATC -CCAACATCGTCTGCCATACACTTC -CCAACATCGTCTGCCATAGTACTC -CCAACATCGTCTGCCATAGATGTC -CCAACATCGTCTGCCATAACAGTC -CCAACATCGTCTGCCATATTGCTG -CCAACATCGTCTGCCATATCCATG -CCAACATCGTCTGCCATATGTGTG -CCAACATCGTCTGCCATACTAGTG -CCAACATCGTCTGCCATACATCTG -CCAACATCGTCTGCCATAGAGTTG -CCAACATCGTCTGCCATAAGACTG -CCAACATCGTCTGCCATATCGGTA -CCAACATCGTCTGCCATATGCCTA -CCAACATCGTCTGCCATACCACTA -CCAACATCGTCTGCCATAGGAGTA -CCAACATCGTCTGCCATATCGTCT -CCAACATCGTCTGCCATATGCACT -CCAACATCGTCTGCCATACTGACT -CCAACATCGTCTGCCATACAACCT -CCAACATCGTCTGCCATAGCTACT -CCAACATCGTCTGCCATAGGATCT -CCAACATCGTCTGCCATAAAGGCT -CCAACATCGTCTGCCATATCAACC -CCAACATCGTCTGCCATATGTTCC -CCAACATCGTCTGCCATAATTCCC -CCAACATCGTCTGCCATATTCTCG -CCAACATCGTCTGCCATATAGACG -CCAACATCGTCTGCCATAGTAACG -CCAACATCGTCTGCCATAACTTCG -CCAACATCGTCTGCCATATACGCA -CCAACATCGTCTGCCATACTTGCA -CCAACATCGTCTGCCATACGAACA -CCAACATCGTCTGCCATACAGTCA -CCAACATCGTCTGCCATAGATCCA -CCAACATCGTCTGCCATAACGACA -CCAACATCGTCTGCCATAAGCTCA -CCAACATCGTCTGCCATATCACGT -CCAACATCGTCTGCCATACGTAGT -CCAACATCGTCTGCCATAGTCAGT -CCAACATCGTCTGCCATAGAAGGT -CCAACATCGTCTGCCATAAACCGT -CCAACATCGTCTGCCATATTGTGC -CCAACATCGTCTGCCATACTAAGC -CCAACATCGTCTGCCATAACTAGC -CCAACATCGTCTGCCATAAGATGC -CCAACATCGTCTGCCATATGAAGG -CCAACATCGTCTGCCATACAATGG -CCAACATCGTCTGCCATAATGAGG -CCAACATCGTCTGCCATAAATGGG -CCAACATCGTCTGCCATATCCTGA -CCAACATCGTCTGCCATATAGCGA -CCAACATCGTCTGCCATACACAGA -CCAACATCGTCTGCCATAGCAAGA -CCAACATCGTCTGCCATAGGTTGA -CCAACATCGTCTGCCATATCCGAT -CCAACATCGTCTGCCATATGGCAT -CCAACATCGTCTGCCATACGAGAT -CCAACATCGTCTGCCATATACCAC -CCAACATCGTCTGCCATACAGAAC -CCAACATCGTCTGCCATAGTCTAC -CCAACATCGTCTGCCATAACGTAC -CCAACATCGTCTGCCATAAGTGAC -CCAACATCGTCTGCCATACTGTAG -CCAACATCGTCTGCCATACCTAAG -CCAACATCGTCTGCCATAGTTCAG -CCAACATCGTCTGCCATAGCATAG -CCAACATCGTCTGCCATAGACAAG -CCAACATCGTCTGCCATAAAGCAG -CCAACATCGTCTGCCATACGTCAA -CCAACATCGTCTGCCATAGCTGAA -CCAACATCGTCTGCCATAAGTACG -CCAACATCGTCTGCCATAATCCGA -CCAACATCGTCTGCCATAATGGGA -CCAACATCGTCTGCCATAGTGCAA -CCAACATCGTCTGCCATAGAGGAA -CCAACATCGTCTGCCATACAGGTA -CCAACATCGTCTGCCATAGACTCT -CCAACATCGTCTGCCATAAGTCCT -CCAACATCGTCTGCCATATAAGCC -CCAACATCGTCTGCCATAATAGCC -CCAACATCGTCTGCCATATAACCG -CCAACATCGTCTGCCATAATGCCA -CCAACATCGTCTCCGTAAGGAAAC -CCAACATCGTCTCCGTAAAACACC -CCAACATCGTCTCCGTAAATCGAG -CCAACATCGTCTCCGTAACTCCTT -CCAACATCGTCTCCGTAACCTGTT -CCAACATCGTCTCCGTAACGGTTT -CCAACATCGTCTCCGTAAGTGGTT -CCAACATCGTCTCCGTAAGCCTTT -CCAACATCGTCTCCGTAAGGTCTT -CCAACATCGTCTCCGTAAACGCTT -CCAACATCGTCTCCGTAAAGCGTT -CCAACATCGTCTCCGTAATTCGTC -CCAACATCGTCTCCGTAATCTCTC -CCAACATCGTCTCCGTAATGGATC -CCAACATCGTCTCCGTAACACTTC -CCAACATCGTCTCCGTAAGTACTC -CCAACATCGTCTCCGTAAGATGTC -CCAACATCGTCTCCGTAAACAGTC -CCAACATCGTCTCCGTAATTGCTG -CCAACATCGTCTCCGTAATCCATG -CCAACATCGTCTCCGTAATGTGTG -CCAACATCGTCTCCGTAACTAGTG -CCAACATCGTCTCCGTAACATCTG -CCAACATCGTCTCCGTAAGAGTTG -CCAACATCGTCTCCGTAAAGACTG -CCAACATCGTCTCCGTAATCGGTA -CCAACATCGTCTCCGTAATGCCTA -CCAACATCGTCTCCGTAACCACTA -CCAACATCGTCTCCGTAAGGAGTA -CCAACATCGTCTCCGTAATCGTCT -CCAACATCGTCTCCGTAATGCACT -CCAACATCGTCTCCGTAACTGACT -CCAACATCGTCTCCGTAACAACCT -CCAACATCGTCTCCGTAAGCTACT -CCAACATCGTCTCCGTAAGGATCT -CCAACATCGTCTCCGTAAAAGGCT -CCAACATCGTCTCCGTAATCAACC -CCAACATCGTCTCCGTAATGTTCC -CCAACATCGTCTCCGTAAATTCCC -CCAACATCGTCTCCGTAATTCTCG -CCAACATCGTCTCCGTAATAGACG -CCAACATCGTCTCCGTAAGTAACG -CCAACATCGTCTCCGTAAACTTCG -CCAACATCGTCTCCGTAATACGCA -CCAACATCGTCTCCGTAACTTGCA -CCAACATCGTCTCCGTAACGAACA -CCAACATCGTCTCCGTAACAGTCA -CCAACATCGTCTCCGTAAGATCCA -CCAACATCGTCTCCGTAAACGACA -CCAACATCGTCTCCGTAAAGCTCA -CCAACATCGTCTCCGTAATCACGT -CCAACATCGTCTCCGTAACGTAGT -CCAACATCGTCTCCGTAAGTCAGT -CCAACATCGTCTCCGTAAGAAGGT -CCAACATCGTCTCCGTAAAACCGT -CCAACATCGTCTCCGTAATTGTGC -CCAACATCGTCTCCGTAACTAAGC -CCAACATCGTCTCCGTAAACTAGC -CCAACATCGTCTCCGTAAAGATGC -CCAACATCGTCTCCGTAATGAAGG -CCAACATCGTCTCCGTAACAATGG -CCAACATCGTCTCCGTAAATGAGG -CCAACATCGTCTCCGTAAAATGGG -CCAACATCGTCTCCGTAATCCTGA -CCAACATCGTCTCCGTAATAGCGA -CCAACATCGTCTCCGTAACACAGA -CCAACATCGTCTCCGTAAGCAAGA -CCAACATCGTCTCCGTAAGGTTGA -CCAACATCGTCTCCGTAATCCGAT -CCAACATCGTCTCCGTAATGGCAT -CCAACATCGTCTCCGTAACGAGAT -CCAACATCGTCTCCGTAATACCAC -CCAACATCGTCTCCGTAACAGAAC -CCAACATCGTCTCCGTAAGTCTAC -CCAACATCGTCTCCGTAAACGTAC -CCAACATCGTCTCCGTAAAGTGAC -CCAACATCGTCTCCGTAACTGTAG -CCAACATCGTCTCCGTAACCTAAG -CCAACATCGTCTCCGTAAGTTCAG -CCAACATCGTCTCCGTAAGCATAG -CCAACATCGTCTCCGTAAGACAAG -CCAACATCGTCTCCGTAAAAGCAG -CCAACATCGTCTCCGTAACGTCAA -CCAACATCGTCTCCGTAAGCTGAA -CCAACATCGTCTCCGTAAAGTACG -CCAACATCGTCTCCGTAAATCCGA -CCAACATCGTCTCCGTAAATGGGA -CCAACATCGTCTCCGTAAGTGCAA -CCAACATCGTCTCCGTAAGAGGAA -CCAACATCGTCTCCGTAACAGGTA -CCAACATCGTCTCCGTAAGACTCT -CCAACATCGTCTCCGTAAAGTCCT -CCAACATCGTCTCCGTAATAAGCC -CCAACATCGTCTCCGTAAATAGCC -CCAACATCGTCTCCGTAATAACCG -CCAACATCGTCTCCGTAAATGCCA -CCAACATCGTCTCCAATGGGAAAC -CCAACATCGTCTCCAATGAACACC -CCAACATCGTCTCCAATGATCGAG -CCAACATCGTCTCCAATGCTCCTT -CCAACATCGTCTCCAATGCCTGTT -CCAACATCGTCTCCAATGCGGTTT -CCAACATCGTCTCCAATGGTGGTT -CCAACATCGTCTCCAATGGCCTTT -CCAACATCGTCTCCAATGGGTCTT -CCAACATCGTCTCCAATGACGCTT -CCAACATCGTCTCCAATGAGCGTT -CCAACATCGTCTCCAATGTTCGTC -CCAACATCGTCTCCAATGTCTCTC -CCAACATCGTCTCCAATGTGGATC -CCAACATCGTCTCCAATGCACTTC -CCAACATCGTCTCCAATGGTACTC -CCAACATCGTCTCCAATGGATGTC -CCAACATCGTCTCCAATGACAGTC -CCAACATCGTCTCCAATGTTGCTG -CCAACATCGTCTCCAATGTCCATG -CCAACATCGTCTCCAATGTGTGTG -CCAACATCGTCTCCAATGCTAGTG -CCAACATCGTCTCCAATGCATCTG -CCAACATCGTCTCCAATGGAGTTG -CCAACATCGTCTCCAATGAGACTG -CCAACATCGTCTCCAATGTCGGTA -CCAACATCGTCTCCAATGTGCCTA -CCAACATCGTCTCCAATGCCACTA -CCAACATCGTCTCCAATGGGAGTA -CCAACATCGTCTCCAATGTCGTCT -CCAACATCGTCTCCAATGTGCACT -CCAACATCGTCTCCAATGCTGACT -CCAACATCGTCTCCAATGCAACCT -CCAACATCGTCTCCAATGGCTACT -CCAACATCGTCTCCAATGGGATCT -CCAACATCGTCTCCAATGAAGGCT -CCAACATCGTCTCCAATGTCAACC -CCAACATCGTCTCCAATGTGTTCC -CCAACATCGTCTCCAATGATTCCC -CCAACATCGTCTCCAATGTTCTCG -CCAACATCGTCTCCAATGTAGACG -CCAACATCGTCTCCAATGGTAACG -CCAACATCGTCTCCAATGACTTCG -CCAACATCGTCTCCAATGTACGCA -CCAACATCGTCTCCAATGCTTGCA -CCAACATCGTCTCCAATGCGAACA -CCAACATCGTCTCCAATGCAGTCA -CCAACATCGTCTCCAATGGATCCA -CCAACATCGTCTCCAATGACGACA -CCAACATCGTCTCCAATGAGCTCA -CCAACATCGTCTCCAATGTCACGT -CCAACATCGTCTCCAATGCGTAGT -CCAACATCGTCTCCAATGGTCAGT -CCAACATCGTCTCCAATGGAAGGT -CCAACATCGTCTCCAATGAACCGT -CCAACATCGTCTCCAATGTTGTGC -CCAACATCGTCTCCAATGCTAAGC -CCAACATCGTCTCCAATGACTAGC -CCAACATCGTCTCCAATGAGATGC -CCAACATCGTCTCCAATGTGAAGG -CCAACATCGTCTCCAATGCAATGG -CCAACATCGTCTCCAATGATGAGG -CCAACATCGTCTCCAATGAATGGG -CCAACATCGTCTCCAATGTCCTGA -CCAACATCGTCTCCAATGTAGCGA -CCAACATCGTCTCCAATGCACAGA -CCAACATCGTCTCCAATGGCAAGA -CCAACATCGTCTCCAATGGGTTGA -CCAACATCGTCTCCAATGTCCGAT -CCAACATCGTCTCCAATGTGGCAT -CCAACATCGTCTCCAATGCGAGAT -CCAACATCGTCTCCAATGTACCAC -CCAACATCGTCTCCAATGCAGAAC -CCAACATCGTCTCCAATGGTCTAC -CCAACATCGTCTCCAATGACGTAC -CCAACATCGTCTCCAATGAGTGAC -CCAACATCGTCTCCAATGCTGTAG -CCAACATCGTCTCCAATGCCTAAG -CCAACATCGTCTCCAATGGTTCAG -CCAACATCGTCTCCAATGGCATAG -CCAACATCGTCTCCAATGGACAAG -CCAACATCGTCTCCAATGAAGCAG -CCAACATCGTCTCCAATGCGTCAA -CCAACATCGTCTCCAATGGCTGAA -CCAACATCGTCTCCAATGAGTACG -CCAACATCGTCTCCAATGATCCGA -CCAACATCGTCTCCAATGATGGGA -CCAACATCGTCTCCAATGGTGCAA -CCAACATCGTCTCCAATGGAGGAA -CCAACATCGTCTCCAATGCAGGTA -CCAACATCGTCTCCAATGGACTCT -CCAACATCGTCTCCAATGAGTCCT -CCAACATCGTCTCCAATGTAAGCC -CCAACATCGTCTCCAATGATAGCC -CCAACATCGTCTCCAATGTAACCG -CCAACATCGTCTCCAATGATGCCA -CCAACACTCTCTAACGGAGGAAAC -CCAACACTCTCTAACGGAAACACC -CCAACACTCTCTAACGGAATCGAG -CCAACACTCTCTAACGGACTCCTT -CCAACACTCTCTAACGGACCTGTT -CCAACACTCTCTAACGGACGGTTT -CCAACACTCTCTAACGGAGTGGTT -CCAACACTCTCTAACGGAGCCTTT -CCAACACTCTCTAACGGAGGTCTT -CCAACACTCTCTAACGGAACGCTT -CCAACACTCTCTAACGGAAGCGTT -CCAACACTCTCTAACGGATTCGTC -CCAACACTCTCTAACGGATCTCTC -CCAACACTCTCTAACGGATGGATC -CCAACACTCTCTAACGGACACTTC -CCAACACTCTCTAACGGAGTACTC -CCAACACTCTCTAACGGAGATGTC -CCAACACTCTCTAACGGAACAGTC -CCAACACTCTCTAACGGATTGCTG -CCAACACTCTCTAACGGATCCATG -CCAACACTCTCTAACGGATGTGTG -CCAACACTCTCTAACGGACTAGTG -CCAACACTCTCTAACGGACATCTG -CCAACACTCTCTAACGGAGAGTTG -CCAACACTCTCTAACGGAAGACTG -CCAACACTCTCTAACGGATCGGTA -CCAACACTCTCTAACGGATGCCTA -CCAACACTCTCTAACGGACCACTA -CCAACACTCTCTAACGGAGGAGTA -CCAACACTCTCTAACGGATCGTCT -CCAACACTCTCTAACGGATGCACT -CCAACACTCTCTAACGGACTGACT -CCAACACTCTCTAACGGACAACCT -CCAACACTCTCTAACGGAGCTACT -CCAACACTCTCTAACGGAGGATCT -CCAACACTCTCTAACGGAAAGGCT -CCAACACTCTCTAACGGATCAACC -CCAACACTCTCTAACGGATGTTCC -CCAACACTCTCTAACGGAATTCCC -CCAACACTCTCTAACGGATTCTCG -CCAACACTCTCTAACGGATAGACG -CCAACACTCTCTAACGGAGTAACG -CCAACACTCTCTAACGGAACTTCG -CCAACACTCTCTAACGGATACGCA -CCAACACTCTCTAACGGACTTGCA -CCAACACTCTCTAACGGACGAACA -CCAACACTCTCTAACGGACAGTCA -CCAACACTCTCTAACGGAGATCCA -CCAACACTCTCTAACGGAACGACA -CCAACACTCTCTAACGGAAGCTCA -CCAACACTCTCTAACGGATCACGT -CCAACACTCTCTAACGGACGTAGT -CCAACACTCTCTAACGGAGTCAGT -CCAACACTCTCTAACGGAGAAGGT -CCAACACTCTCTAACGGAAACCGT -CCAACACTCTCTAACGGATTGTGC -CCAACACTCTCTAACGGACTAAGC -CCAACACTCTCTAACGGAACTAGC -CCAACACTCTCTAACGGAAGATGC -CCAACACTCTCTAACGGATGAAGG -CCAACACTCTCTAACGGACAATGG -CCAACACTCTCTAACGGAATGAGG -CCAACACTCTCTAACGGAAATGGG -CCAACACTCTCTAACGGATCCTGA -CCAACACTCTCTAACGGATAGCGA -CCAACACTCTCTAACGGACACAGA -CCAACACTCTCTAACGGAGCAAGA -CCAACACTCTCTAACGGAGGTTGA -CCAACACTCTCTAACGGATCCGAT -CCAACACTCTCTAACGGATGGCAT -CCAACACTCTCTAACGGACGAGAT -CCAACACTCTCTAACGGATACCAC -CCAACACTCTCTAACGGACAGAAC -CCAACACTCTCTAACGGAGTCTAC -CCAACACTCTCTAACGGAACGTAC -CCAACACTCTCTAACGGAAGTGAC -CCAACACTCTCTAACGGACTGTAG -CCAACACTCTCTAACGGACCTAAG -CCAACACTCTCTAACGGAGTTCAG -CCAACACTCTCTAACGGAGCATAG -CCAACACTCTCTAACGGAGACAAG -CCAACACTCTCTAACGGAAAGCAG -CCAACACTCTCTAACGGACGTCAA -CCAACACTCTCTAACGGAGCTGAA -CCAACACTCTCTAACGGAAGTACG -CCAACACTCTCTAACGGAATCCGA -CCAACACTCTCTAACGGAATGGGA -CCAACACTCTCTAACGGAGTGCAA -CCAACACTCTCTAACGGAGAGGAA -CCAACACTCTCTAACGGACAGGTA -CCAACACTCTCTAACGGAGACTCT -CCAACACTCTCTAACGGAAGTCCT -CCAACACTCTCTAACGGATAAGCC -CCAACACTCTCTAACGGAATAGCC -CCAACACTCTCTAACGGATAACCG -CCAACACTCTCTAACGGAATGCCA -CCAACACTCTCTACCAACGGAAAC -CCAACACTCTCTACCAACAACACC -CCAACACTCTCTACCAACATCGAG -CCAACACTCTCTACCAACCTCCTT -CCAACACTCTCTACCAACCCTGTT -CCAACACTCTCTACCAACCGGTTT -CCAACACTCTCTACCAACGTGGTT -CCAACACTCTCTACCAACGCCTTT -CCAACACTCTCTACCAACGGTCTT -CCAACACTCTCTACCAACACGCTT -CCAACACTCTCTACCAACAGCGTT -CCAACACTCTCTACCAACTTCGTC -CCAACACTCTCTACCAACTCTCTC -CCAACACTCTCTACCAACTGGATC -CCAACACTCTCTACCAACCACTTC -CCAACACTCTCTACCAACGTACTC -CCAACACTCTCTACCAACGATGTC -CCAACACTCTCTACCAACACAGTC -CCAACACTCTCTACCAACTTGCTG -CCAACACTCTCTACCAACTCCATG -CCAACACTCTCTACCAACTGTGTG -CCAACACTCTCTACCAACCTAGTG -CCAACACTCTCTACCAACCATCTG -CCAACACTCTCTACCAACGAGTTG -CCAACACTCTCTACCAACAGACTG -CCAACACTCTCTACCAACTCGGTA -CCAACACTCTCTACCAACTGCCTA -CCAACACTCTCTACCAACCCACTA -CCAACACTCTCTACCAACGGAGTA -CCAACACTCTCTACCAACTCGTCT -CCAACACTCTCTACCAACTGCACT -CCAACACTCTCTACCAACCTGACT -CCAACACTCTCTACCAACCAACCT -CCAACACTCTCTACCAACGCTACT -CCAACACTCTCTACCAACGGATCT -CCAACACTCTCTACCAACAAGGCT -CCAACACTCTCTACCAACTCAACC -CCAACACTCTCTACCAACTGTTCC -CCAACACTCTCTACCAACATTCCC -CCAACACTCTCTACCAACTTCTCG -CCAACACTCTCTACCAACTAGACG -CCAACACTCTCTACCAACGTAACG -CCAACACTCTCTACCAACACTTCG -CCAACACTCTCTACCAACTACGCA -CCAACACTCTCTACCAACCTTGCA -CCAACACTCTCTACCAACCGAACA -CCAACACTCTCTACCAACCAGTCA -CCAACACTCTCTACCAACGATCCA -CCAACACTCTCTACCAACACGACA -CCAACACTCTCTACCAACAGCTCA -CCAACACTCTCTACCAACTCACGT -CCAACACTCTCTACCAACCGTAGT -CCAACACTCTCTACCAACGTCAGT -CCAACACTCTCTACCAACGAAGGT -CCAACACTCTCTACCAACAACCGT -CCAACACTCTCTACCAACTTGTGC -CCAACACTCTCTACCAACCTAAGC -CCAACACTCTCTACCAACACTAGC -CCAACACTCTCTACCAACAGATGC -CCAACACTCTCTACCAACTGAAGG -CCAACACTCTCTACCAACCAATGG -CCAACACTCTCTACCAACATGAGG -CCAACACTCTCTACCAACAATGGG -CCAACACTCTCTACCAACTCCTGA -CCAACACTCTCTACCAACTAGCGA -CCAACACTCTCTACCAACCACAGA -CCAACACTCTCTACCAACGCAAGA -CCAACACTCTCTACCAACGGTTGA -CCAACACTCTCTACCAACTCCGAT -CCAACACTCTCTACCAACTGGCAT -CCAACACTCTCTACCAACCGAGAT -CCAACACTCTCTACCAACTACCAC -CCAACACTCTCTACCAACCAGAAC -CCAACACTCTCTACCAACGTCTAC -CCAACACTCTCTACCAACACGTAC -CCAACACTCTCTACCAACAGTGAC -CCAACACTCTCTACCAACCTGTAG -CCAACACTCTCTACCAACCCTAAG -CCAACACTCTCTACCAACGTTCAG -CCAACACTCTCTACCAACGCATAG -CCAACACTCTCTACCAACGACAAG -CCAACACTCTCTACCAACAAGCAG -CCAACACTCTCTACCAACCGTCAA -CCAACACTCTCTACCAACGCTGAA -CCAACACTCTCTACCAACAGTACG -CCAACACTCTCTACCAACATCCGA -CCAACACTCTCTACCAACATGGGA -CCAACACTCTCTACCAACGTGCAA -CCAACACTCTCTACCAACGAGGAA -CCAACACTCTCTACCAACCAGGTA -CCAACACTCTCTACCAACGACTCT -CCAACACTCTCTACCAACAGTCCT -CCAACACTCTCTACCAACTAAGCC -CCAACACTCTCTACCAACATAGCC -CCAACACTCTCTACCAACTAACCG -CCAACACTCTCTACCAACATGCCA -CCAACACTCTCTGAGATCGGAAAC -CCAACACTCTCTGAGATCAACACC -CCAACACTCTCTGAGATCATCGAG -CCAACACTCTCTGAGATCCTCCTT -CCAACACTCTCTGAGATCCCTGTT -CCAACACTCTCTGAGATCCGGTTT -CCAACACTCTCTGAGATCGTGGTT -CCAACACTCTCTGAGATCGCCTTT -CCAACACTCTCTGAGATCGGTCTT -CCAACACTCTCTGAGATCACGCTT -CCAACACTCTCTGAGATCAGCGTT -CCAACACTCTCTGAGATCTTCGTC -CCAACACTCTCTGAGATCTCTCTC -CCAACACTCTCTGAGATCTGGATC -CCAACACTCTCTGAGATCCACTTC -CCAACACTCTCTGAGATCGTACTC -CCAACACTCTCTGAGATCGATGTC -CCAACACTCTCTGAGATCACAGTC -CCAACACTCTCTGAGATCTTGCTG -CCAACACTCTCTGAGATCTCCATG -CCAACACTCTCTGAGATCTGTGTG -CCAACACTCTCTGAGATCCTAGTG -CCAACACTCTCTGAGATCCATCTG -CCAACACTCTCTGAGATCGAGTTG -CCAACACTCTCTGAGATCAGACTG -CCAACACTCTCTGAGATCTCGGTA -CCAACACTCTCTGAGATCTGCCTA -CCAACACTCTCTGAGATCCCACTA -CCAACACTCTCTGAGATCGGAGTA -CCAACACTCTCTGAGATCTCGTCT -CCAACACTCTCTGAGATCTGCACT -CCAACACTCTCTGAGATCCTGACT -CCAACACTCTCTGAGATCCAACCT -CCAACACTCTCTGAGATCGCTACT -CCAACACTCTCTGAGATCGGATCT -CCAACACTCTCTGAGATCAAGGCT -CCAACACTCTCTGAGATCTCAACC -CCAACACTCTCTGAGATCTGTTCC -CCAACACTCTCTGAGATCATTCCC -CCAACACTCTCTGAGATCTTCTCG -CCAACACTCTCTGAGATCTAGACG -CCAACACTCTCTGAGATCGTAACG -CCAACACTCTCTGAGATCACTTCG -CCAACACTCTCTGAGATCTACGCA -CCAACACTCTCTGAGATCCTTGCA -CCAACACTCTCTGAGATCCGAACA -CCAACACTCTCTGAGATCCAGTCA -CCAACACTCTCTGAGATCGATCCA -CCAACACTCTCTGAGATCACGACA -CCAACACTCTCTGAGATCAGCTCA -CCAACACTCTCTGAGATCTCACGT -CCAACACTCTCTGAGATCCGTAGT -CCAACACTCTCTGAGATCGTCAGT -CCAACACTCTCTGAGATCGAAGGT -CCAACACTCTCTGAGATCAACCGT -CCAACACTCTCTGAGATCTTGTGC -CCAACACTCTCTGAGATCCTAAGC -CCAACACTCTCTGAGATCACTAGC -CCAACACTCTCTGAGATCAGATGC -CCAACACTCTCTGAGATCTGAAGG -CCAACACTCTCTGAGATCCAATGG -CCAACACTCTCTGAGATCATGAGG -CCAACACTCTCTGAGATCAATGGG -CCAACACTCTCTGAGATCTCCTGA -CCAACACTCTCTGAGATCTAGCGA -CCAACACTCTCTGAGATCCACAGA -CCAACACTCTCTGAGATCGCAAGA -CCAACACTCTCTGAGATCGGTTGA -CCAACACTCTCTGAGATCTCCGAT -CCAACACTCTCTGAGATCTGGCAT -CCAACACTCTCTGAGATCCGAGAT -CCAACACTCTCTGAGATCTACCAC -CCAACACTCTCTGAGATCCAGAAC -CCAACACTCTCTGAGATCGTCTAC -CCAACACTCTCTGAGATCACGTAC -CCAACACTCTCTGAGATCAGTGAC -CCAACACTCTCTGAGATCCTGTAG -CCAACACTCTCTGAGATCCCTAAG -CCAACACTCTCTGAGATCGTTCAG -CCAACACTCTCTGAGATCGCATAG -CCAACACTCTCTGAGATCGACAAG -CCAACACTCTCTGAGATCAAGCAG -CCAACACTCTCTGAGATCCGTCAA -CCAACACTCTCTGAGATCGCTGAA -CCAACACTCTCTGAGATCAGTACG -CCAACACTCTCTGAGATCATCCGA -CCAACACTCTCTGAGATCATGGGA -CCAACACTCTCTGAGATCGTGCAA -CCAACACTCTCTGAGATCGAGGAA -CCAACACTCTCTGAGATCCAGGTA -CCAACACTCTCTGAGATCGACTCT -CCAACACTCTCTGAGATCAGTCCT -CCAACACTCTCTGAGATCTAAGCC -CCAACACTCTCTGAGATCATAGCC -CCAACACTCTCTGAGATCTAACCG -CCAACACTCTCTGAGATCATGCCA -CCAACACTCTCTCTTCTCGGAAAC -CCAACACTCTCTCTTCTCAACACC -CCAACACTCTCTCTTCTCATCGAG -CCAACACTCTCTCTTCTCCTCCTT -CCAACACTCTCTCTTCTCCCTGTT -CCAACACTCTCTCTTCTCCGGTTT -CCAACACTCTCTCTTCTCGTGGTT -CCAACACTCTCTCTTCTCGCCTTT -CCAACACTCTCTCTTCTCGGTCTT -CCAACACTCTCTCTTCTCACGCTT -CCAACACTCTCTCTTCTCAGCGTT -CCAACACTCTCTCTTCTCTTCGTC -CCAACACTCTCTCTTCTCTCTCTC -CCAACACTCTCTCTTCTCTGGATC -CCAACACTCTCTCTTCTCCACTTC -CCAACACTCTCTCTTCTCGTACTC -CCAACACTCTCTCTTCTCGATGTC -CCAACACTCTCTCTTCTCACAGTC -CCAACACTCTCTCTTCTCTTGCTG -CCAACACTCTCTCTTCTCTCCATG -CCAACACTCTCTCTTCTCTGTGTG -CCAACACTCTCTCTTCTCCTAGTG -CCAACACTCTCTCTTCTCCATCTG -CCAACACTCTCTCTTCTCGAGTTG -CCAACACTCTCTCTTCTCAGACTG -CCAACACTCTCTCTTCTCTCGGTA -CCAACACTCTCTCTTCTCTGCCTA -CCAACACTCTCTCTTCTCCCACTA -CCAACACTCTCTCTTCTCGGAGTA -CCAACACTCTCTCTTCTCTCGTCT -CCAACACTCTCTCTTCTCTGCACT -CCAACACTCTCTCTTCTCCTGACT -CCAACACTCTCTCTTCTCCAACCT -CCAACACTCTCTCTTCTCGCTACT -CCAACACTCTCTCTTCTCGGATCT -CCAACACTCTCTCTTCTCAAGGCT -CCAACACTCTCTCTTCTCTCAACC -CCAACACTCTCTCTTCTCTGTTCC -CCAACACTCTCTCTTCTCATTCCC -CCAACACTCTCTCTTCTCTTCTCG -CCAACACTCTCTCTTCTCTAGACG -CCAACACTCTCTCTTCTCGTAACG -CCAACACTCTCTCTTCTCACTTCG -CCAACACTCTCTCTTCTCTACGCA -CCAACACTCTCTCTTCTCCTTGCA -CCAACACTCTCTCTTCTCCGAACA -CCAACACTCTCTCTTCTCCAGTCA -CCAACACTCTCTCTTCTCGATCCA -CCAACACTCTCTCTTCTCACGACA -CCAACACTCTCTCTTCTCAGCTCA -CCAACACTCTCTCTTCTCTCACGT -CCAACACTCTCTCTTCTCCGTAGT -CCAACACTCTCTCTTCTCGTCAGT -CCAACACTCTCTCTTCTCGAAGGT -CCAACACTCTCTCTTCTCAACCGT -CCAACACTCTCTCTTCTCTTGTGC -CCAACACTCTCTCTTCTCCTAAGC -CCAACACTCTCTCTTCTCACTAGC -CCAACACTCTCTCTTCTCAGATGC -CCAACACTCTCTCTTCTCTGAAGG -CCAACACTCTCTCTTCTCCAATGG -CCAACACTCTCTCTTCTCATGAGG -CCAACACTCTCTCTTCTCAATGGG -CCAACACTCTCTCTTCTCTCCTGA -CCAACACTCTCTCTTCTCTAGCGA -CCAACACTCTCTCTTCTCCACAGA -CCAACACTCTCTCTTCTCGCAAGA -CCAACACTCTCTCTTCTCGGTTGA -CCAACACTCTCTCTTCTCTCCGAT -CCAACACTCTCTCTTCTCTGGCAT -CCAACACTCTCTCTTCTCCGAGAT -CCAACACTCTCTCTTCTCTACCAC -CCAACACTCTCTCTTCTCCAGAAC -CCAACACTCTCTCTTCTCGTCTAC -CCAACACTCTCTCTTCTCACGTAC -CCAACACTCTCTCTTCTCAGTGAC -CCAACACTCTCTCTTCTCCTGTAG -CCAACACTCTCTCTTCTCCCTAAG -CCAACACTCTCTCTTCTCGTTCAG -CCAACACTCTCTCTTCTCGCATAG -CCAACACTCTCTCTTCTCGACAAG -CCAACACTCTCTCTTCTCAAGCAG -CCAACACTCTCTCTTCTCCGTCAA -CCAACACTCTCTCTTCTCGCTGAA -CCAACACTCTCTCTTCTCAGTACG -CCAACACTCTCTCTTCTCATCCGA -CCAACACTCTCTCTTCTCATGGGA -CCAACACTCTCTCTTCTCGTGCAA -CCAACACTCTCTCTTCTCGAGGAA -CCAACACTCTCTCTTCTCCAGGTA -CCAACACTCTCTCTTCTCGACTCT -CCAACACTCTCTCTTCTCAGTCCT -CCAACACTCTCTCTTCTCTAAGCC -CCAACACTCTCTCTTCTCATAGCC -CCAACACTCTCTCTTCTCTAACCG -CCAACACTCTCTCTTCTCATGCCA -CCAACACTCTCTGTTCCTGGAAAC -CCAACACTCTCTGTTCCTAACACC -CCAACACTCTCTGTTCCTATCGAG -CCAACACTCTCTGTTCCTCTCCTT -CCAACACTCTCTGTTCCTCCTGTT -CCAACACTCTCTGTTCCTCGGTTT -CCAACACTCTCTGTTCCTGTGGTT -CCAACACTCTCTGTTCCTGCCTTT -CCAACACTCTCTGTTCCTGGTCTT -CCAACACTCTCTGTTCCTACGCTT -CCAACACTCTCTGTTCCTAGCGTT -CCAACACTCTCTGTTCCTTTCGTC -CCAACACTCTCTGTTCCTTCTCTC -CCAACACTCTCTGTTCCTTGGATC -CCAACACTCTCTGTTCCTCACTTC -CCAACACTCTCTGTTCCTGTACTC -CCAACACTCTCTGTTCCTGATGTC -CCAACACTCTCTGTTCCTACAGTC -CCAACACTCTCTGTTCCTTTGCTG -CCAACACTCTCTGTTCCTTCCATG -CCAACACTCTCTGTTCCTTGTGTG -CCAACACTCTCTGTTCCTCTAGTG -CCAACACTCTCTGTTCCTCATCTG -CCAACACTCTCTGTTCCTGAGTTG -CCAACACTCTCTGTTCCTAGACTG -CCAACACTCTCTGTTCCTTCGGTA -CCAACACTCTCTGTTCCTTGCCTA -CCAACACTCTCTGTTCCTCCACTA -CCAACACTCTCTGTTCCTGGAGTA -CCAACACTCTCTGTTCCTTCGTCT -CCAACACTCTCTGTTCCTTGCACT -CCAACACTCTCTGTTCCTCTGACT -CCAACACTCTCTGTTCCTCAACCT -CCAACACTCTCTGTTCCTGCTACT -CCAACACTCTCTGTTCCTGGATCT -CCAACACTCTCTGTTCCTAAGGCT -CCAACACTCTCTGTTCCTTCAACC -CCAACACTCTCTGTTCCTTGTTCC -CCAACACTCTCTGTTCCTATTCCC -CCAACACTCTCTGTTCCTTTCTCG -CCAACACTCTCTGTTCCTTAGACG -CCAACACTCTCTGTTCCTGTAACG -CCAACACTCTCTGTTCCTACTTCG -CCAACACTCTCTGTTCCTTACGCA -CCAACACTCTCTGTTCCTCTTGCA -CCAACACTCTCTGTTCCTCGAACA -CCAACACTCTCTGTTCCTCAGTCA -CCAACACTCTCTGTTCCTGATCCA -CCAACACTCTCTGTTCCTACGACA -CCAACACTCTCTGTTCCTAGCTCA -CCAACACTCTCTGTTCCTTCACGT -CCAACACTCTCTGTTCCTCGTAGT -CCAACACTCTCTGTTCCTGTCAGT -CCAACACTCTCTGTTCCTGAAGGT -CCAACACTCTCTGTTCCTAACCGT -CCAACACTCTCTGTTCCTTTGTGC -CCAACACTCTCTGTTCCTCTAAGC -CCAACACTCTCTGTTCCTACTAGC -CCAACACTCTCTGTTCCTAGATGC -CCAACACTCTCTGTTCCTTGAAGG -CCAACACTCTCTGTTCCTCAATGG -CCAACACTCTCTGTTCCTATGAGG -CCAACACTCTCTGTTCCTAATGGG -CCAACACTCTCTGTTCCTTCCTGA -CCAACACTCTCTGTTCCTTAGCGA -CCAACACTCTCTGTTCCTCACAGA -CCAACACTCTCTGTTCCTGCAAGA -CCAACACTCTCTGTTCCTGGTTGA -CCAACACTCTCTGTTCCTTCCGAT -CCAACACTCTCTGTTCCTTGGCAT -CCAACACTCTCTGTTCCTCGAGAT -CCAACACTCTCTGTTCCTTACCAC -CCAACACTCTCTGTTCCTCAGAAC -CCAACACTCTCTGTTCCTGTCTAC -CCAACACTCTCTGTTCCTACGTAC -CCAACACTCTCTGTTCCTAGTGAC -CCAACACTCTCTGTTCCTCTGTAG -CCAACACTCTCTGTTCCTCCTAAG -CCAACACTCTCTGTTCCTGTTCAG -CCAACACTCTCTGTTCCTGCATAG -CCAACACTCTCTGTTCCTGACAAG -CCAACACTCTCTGTTCCTAAGCAG -CCAACACTCTCTGTTCCTCGTCAA -CCAACACTCTCTGTTCCTGCTGAA -CCAACACTCTCTGTTCCTAGTACG -CCAACACTCTCTGTTCCTATCCGA -CCAACACTCTCTGTTCCTATGGGA -CCAACACTCTCTGTTCCTGTGCAA -CCAACACTCTCTGTTCCTGAGGAA -CCAACACTCTCTGTTCCTCAGGTA -CCAACACTCTCTGTTCCTGACTCT -CCAACACTCTCTGTTCCTAGTCCT -CCAACACTCTCTGTTCCTTAAGCC -CCAACACTCTCTGTTCCTATAGCC -CCAACACTCTCTGTTCCTTAACCG -CCAACACTCTCTGTTCCTATGCCA -CCAACACTCTCTTTTCGGGGAAAC -CCAACACTCTCTTTTCGGAACACC -CCAACACTCTCTTTTCGGATCGAG -CCAACACTCTCTTTTCGGCTCCTT -CCAACACTCTCTTTTCGGCCTGTT -CCAACACTCTCTTTTCGGCGGTTT -CCAACACTCTCTTTTCGGGTGGTT -CCAACACTCTCTTTTCGGGCCTTT -CCAACACTCTCTTTTCGGGGTCTT -CCAACACTCTCTTTTCGGACGCTT -CCAACACTCTCTTTTCGGAGCGTT -CCAACACTCTCTTTTCGGTTCGTC -CCAACACTCTCTTTTCGGTCTCTC -CCAACACTCTCTTTTCGGTGGATC -CCAACACTCTCTTTTCGGCACTTC -CCAACACTCTCTTTTCGGGTACTC -CCAACACTCTCTTTTCGGGATGTC -CCAACACTCTCTTTTCGGACAGTC -CCAACACTCTCTTTTCGGTTGCTG -CCAACACTCTCTTTTCGGTCCATG -CCAACACTCTCTTTTCGGTGTGTG -CCAACACTCTCTTTTCGGCTAGTG -CCAACACTCTCTTTTCGGCATCTG -CCAACACTCTCTTTTCGGGAGTTG -CCAACACTCTCTTTTCGGAGACTG -CCAACACTCTCTTTTCGGTCGGTA -CCAACACTCTCTTTTCGGTGCCTA -CCAACACTCTCTTTTCGGCCACTA -CCAACACTCTCTTTTCGGGGAGTA -CCAACACTCTCTTTTCGGTCGTCT -CCAACACTCTCTTTTCGGTGCACT -CCAACACTCTCTTTTCGGCTGACT -CCAACACTCTCTTTTCGGCAACCT -CCAACACTCTCTTTTCGGGCTACT -CCAACACTCTCTTTTCGGGGATCT -CCAACACTCTCTTTTCGGAAGGCT -CCAACACTCTCTTTTCGGTCAACC -CCAACACTCTCTTTTCGGTGTTCC -CCAACACTCTCTTTTCGGATTCCC -CCAACACTCTCTTTTCGGTTCTCG -CCAACACTCTCTTTTCGGTAGACG -CCAACACTCTCTTTTCGGGTAACG -CCAACACTCTCTTTTCGGACTTCG -CCAACACTCTCTTTTCGGTACGCA -CCAACACTCTCTTTTCGGCTTGCA -CCAACACTCTCTTTTCGGCGAACA -CCAACACTCTCTTTTCGGCAGTCA -CCAACACTCTCTTTTCGGGATCCA -CCAACACTCTCTTTTCGGACGACA -CCAACACTCTCTTTTCGGAGCTCA -CCAACACTCTCTTTTCGGTCACGT -CCAACACTCTCTTTTCGGCGTAGT -CCAACACTCTCTTTTCGGGTCAGT -CCAACACTCTCTTTTCGGGAAGGT -CCAACACTCTCTTTTCGGAACCGT -CCAACACTCTCTTTTCGGTTGTGC -CCAACACTCTCTTTTCGGCTAAGC -CCAACACTCTCTTTTCGGACTAGC -CCAACACTCTCTTTTCGGAGATGC -CCAACACTCTCTTTTCGGTGAAGG -CCAACACTCTCTTTTCGGCAATGG -CCAACACTCTCTTTTCGGATGAGG -CCAACACTCTCTTTTCGGAATGGG -CCAACACTCTCTTTTCGGTCCTGA -CCAACACTCTCTTTTCGGTAGCGA -CCAACACTCTCTTTTCGGCACAGA -CCAACACTCTCTTTTCGGGCAAGA -CCAACACTCTCTTTTCGGGGTTGA -CCAACACTCTCTTTTCGGTCCGAT -CCAACACTCTCTTTTCGGTGGCAT -CCAACACTCTCTTTTCGGCGAGAT -CCAACACTCTCTTTTCGGTACCAC -CCAACACTCTCTTTTCGGCAGAAC -CCAACACTCTCTTTTCGGGTCTAC -CCAACACTCTCTTTTCGGACGTAC -CCAACACTCTCTTTTCGGAGTGAC -CCAACACTCTCTTTTCGGCTGTAG -CCAACACTCTCTTTTCGGCCTAAG -CCAACACTCTCTTTTCGGGTTCAG -CCAACACTCTCTTTTCGGGCATAG -CCAACACTCTCTTTTCGGGACAAG -CCAACACTCTCTTTTCGGAAGCAG -CCAACACTCTCTTTTCGGCGTCAA -CCAACACTCTCTTTTCGGGCTGAA -CCAACACTCTCTTTTCGGAGTACG -CCAACACTCTCTTTTCGGATCCGA -CCAACACTCTCTTTTCGGATGGGA -CCAACACTCTCTTTTCGGGTGCAA -CCAACACTCTCTTTTCGGGAGGAA -CCAACACTCTCTTTTCGGCAGGTA -CCAACACTCTCTTTTCGGGACTCT -CCAACACTCTCTTTTCGGAGTCCT -CCAACACTCTCTTTTCGGTAAGCC -CCAACACTCTCTTTTCGGATAGCC -CCAACACTCTCTTTTCGGTAACCG -CCAACACTCTCTTTTCGGATGCCA -CCAACACTCTCTGTTGTGGGAAAC -CCAACACTCTCTGTTGTGAACACC -CCAACACTCTCTGTTGTGATCGAG -CCAACACTCTCTGTTGTGCTCCTT -CCAACACTCTCTGTTGTGCCTGTT -CCAACACTCTCTGTTGTGCGGTTT -CCAACACTCTCTGTTGTGGTGGTT -CCAACACTCTCTGTTGTGGCCTTT -CCAACACTCTCTGTTGTGGGTCTT -CCAACACTCTCTGTTGTGACGCTT -CCAACACTCTCTGTTGTGAGCGTT -CCAACACTCTCTGTTGTGTTCGTC -CCAACACTCTCTGTTGTGTCTCTC -CCAACACTCTCTGTTGTGTGGATC -CCAACACTCTCTGTTGTGCACTTC -CCAACACTCTCTGTTGTGGTACTC -CCAACACTCTCTGTTGTGGATGTC -CCAACACTCTCTGTTGTGACAGTC -CCAACACTCTCTGTTGTGTTGCTG -CCAACACTCTCTGTTGTGTCCATG -CCAACACTCTCTGTTGTGTGTGTG -CCAACACTCTCTGTTGTGCTAGTG -CCAACACTCTCTGTTGTGCATCTG -CCAACACTCTCTGTTGTGGAGTTG -CCAACACTCTCTGTTGTGAGACTG -CCAACACTCTCTGTTGTGTCGGTA -CCAACACTCTCTGTTGTGTGCCTA -CCAACACTCTCTGTTGTGCCACTA -CCAACACTCTCTGTTGTGGGAGTA -CCAACACTCTCTGTTGTGTCGTCT -CCAACACTCTCTGTTGTGTGCACT -CCAACACTCTCTGTTGTGCTGACT -CCAACACTCTCTGTTGTGCAACCT -CCAACACTCTCTGTTGTGGCTACT -CCAACACTCTCTGTTGTGGGATCT -CCAACACTCTCTGTTGTGAAGGCT -CCAACACTCTCTGTTGTGTCAACC -CCAACACTCTCTGTTGTGTGTTCC -CCAACACTCTCTGTTGTGATTCCC -CCAACACTCTCTGTTGTGTTCTCG -CCAACACTCTCTGTTGTGTAGACG -CCAACACTCTCTGTTGTGGTAACG -CCAACACTCTCTGTTGTGACTTCG -CCAACACTCTCTGTTGTGTACGCA -CCAACACTCTCTGTTGTGCTTGCA -CCAACACTCTCTGTTGTGCGAACA -CCAACACTCTCTGTTGTGCAGTCA -CCAACACTCTCTGTTGTGGATCCA -CCAACACTCTCTGTTGTGACGACA -CCAACACTCTCTGTTGTGAGCTCA -CCAACACTCTCTGTTGTGTCACGT -CCAACACTCTCTGTTGTGCGTAGT -CCAACACTCTCTGTTGTGGTCAGT -CCAACACTCTCTGTTGTGGAAGGT -CCAACACTCTCTGTTGTGAACCGT -CCAACACTCTCTGTTGTGTTGTGC -CCAACACTCTCTGTTGTGCTAAGC -CCAACACTCTCTGTTGTGACTAGC -CCAACACTCTCTGTTGTGAGATGC -CCAACACTCTCTGTTGTGTGAAGG -CCAACACTCTCTGTTGTGCAATGG -CCAACACTCTCTGTTGTGATGAGG -CCAACACTCTCTGTTGTGAATGGG -CCAACACTCTCTGTTGTGTCCTGA -CCAACACTCTCTGTTGTGTAGCGA -CCAACACTCTCTGTTGTGCACAGA -CCAACACTCTCTGTTGTGGCAAGA -CCAACACTCTCTGTTGTGGGTTGA -CCAACACTCTCTGTTGTGTCCGAT -CCAACACTCTCTGTTGTGTGGCAT -CCAACACTCTCTGTTGTGCGAGAT -CCAACACTCTCTGTTGTGTACCAC -CCAACACTCTCTGTTGTGCAGAAC -CCAACACTCTCTGTTGTGGTCTAC -CCAACACTCTCTGTTGTGACGTAC -CCAACACTCTCTGTTGTGAGTGAC -CCAACACTCTCTGTTGTGCTGTAG -CCAACACTCTCTGTTGTGCCTAAG -CCAACACTCTCTGTTGTGGTTCAG -CCAACACTCTCTGTTGTGGCATAG -CCAACACTCTCTGTTGTGGACAAG -CCAACACTCTCTGTTGTGAAGCAG -CCAACACTCTCTGTTGTGCGTCAA -CCAACACTCTCTGTTGTGGCTGAA -CCAACACTCTCTGTTGTGAGTACG -CCAACACTCTCTGTTGTGATCCGA -CCAACACTCTCTGTTGTGATGGGA -CCAACACTCTCTGTTGTGGTGCAA -CCAACACTCTCTGTTGTGGAGGAA -CCAACACTCTCTGTTGTGCAGGTA -CCAACACTCTCTGTTGTGGACTCT -CCAACACTCTCTGTTGTGAGTCCT -CCAACACTCTCTGTTGTGTAAGCC -CCAACACTCTCTGTTGTGATAGCC -CCAACACTCTCTGTTGTGTAACCG -CCAACACTCTCTGTTGTGATGCCA -CCAACACTCTCTTTTGCCGGAAAC -CCAACACTCTCTTTTGCCAACACC -CCAACACTCTCTTTTGCCATCGAG -CCAACACTCTCTTTTGCCCTCCTT -CCAACACTCTCTTTTGCCCCTGTT -CCAACACTCTCTTTTGCCCGGTTT -CCAACACTCTCTTTTGCCGTGGTT -CCAACACTCTCTTTTGCCGCCTTT -CCAACACTCTCTTTTGCCGGTCTT -CCAACACTCTCTTTTGCCACGCTT -CCAACACTCTCTTTTGCCAGCGTT -CCAACACTCTCTTTTGCCTTCGTC -CCAACACTCTCTTTTGCCTCTCTC -CCAACACTCTCTTTTGCCTGGATC -CCAACACTCTCTTTTGCCCACTTC -CCAACACTCTCTTTTGCCGTACTC -CCAACACTCTCTTTTGCCGATGTC -CCAACACTCTCTTTTGCCACAGTC -CCAACACTCTCTTTTGCCTTGCTG -CCAACACTCTCTTTTGCCTCCATG -CCAACACTCTCTTTTGCCTGTGTG -CCAACACTCTCTTTTGCCCTAGTG -CCAACACTCTCTTTTGCCCATCTG -CCAACACTCTCTTTTGCCGAGTTG -CCAACACTCTCTTTTGCCAGACTG -CCAACACTCTCTTTTGCCTCGGTA -CCAACACTCTCTTTTGCCTGCCTA -CCAACACTCTCTTTTGCCCCACTA -CCAACACTCTCTTTTGCCGGAGTA -CCAACACTCTCTTTTGCCTCGTCT -CCAACACTCTCTTTTGCCTGCACT -CCAACACTCTCTTTTGCCCTGACT -CCAACACTCTCTTTTGCCCAACCT -CCAACACTCTCTTTTGCCGCTACT -CCAACACTCTCTTTTGCCGGATCT -CCAACACTCTCTTTTGCCAAGGCT -CCAACACTCTCTTTTGCCTCAACC -CCAACACTCTCTTTTGCCTGTTCC -CCAACACTCTCTTTTGCCATTCCC -CCAACACTCTCTTTTGCCTTCTCG -CCAACACTCTCTTTTGCCTAGACG -CCAACACTCTCTTTTGCCGTAACG -CCAACACTCTCTTTTGCCACTTCG -CCAACACTCTCTTTTGCCTACGCA -CCAACACTCTCTTTTGCCCTTGCA -CCAACACTCTCTTTTGCCCGAACA -CCAACACTCTCTTTTGCCCAGTCA -CCAACACTCTCTTTTGCCGATCCA -CCAACACTCTCTTTTGCCACGACA -CCAACACTCTCTTTTGCCAGCTCA -CCAACACTCTCTTTTGCCTCACGT -CCAACACTCTCTTTTGCCCGTAGT -CCAACACTCTCTTTTGCCGTCAGT -CCAACACTCTCTTTTGCCGAAGGT -CCAACACTCTCTTTTGCCAACCGT -CCAACACTCTCTTTTGCCTTGTGC -CCAACACTCTCTTTTGCCCTAAGC -CCAACACTCTCTTTTGCCACTAGC -CCAACACTCTCTTTTGCCAGATGC -CCAACACTCTCTTTTGCCTGAAGG -CCAACACTCTCTTTTGCCCAATGG -CCAACACTCTCTTTTGCCATGAGG -CCAACACTCTCTTTTGCCAATGGG -CCAACACTCTCTTTTGCCTCCTGA -CCAACACTCTCTTTTGCCTAGCGA -CCAACACTCTCTTTTGCCCACAGA -CCAACACTCTCTTTTGCCGCAAGA -CCAACACTCTCTTTTGCCGGTTGA -CCAACACTCTCTTTTGCCTCCGAT -CCAACACTCTCTTTTGCCTGGCAT -CCAACACTCTCTTTTGCCCGAGAT -CCAACACTCTCTTTTGCCTACCAC -CCAACACTCTCTTTTGCCCAGAAC -CCAACACTCTCTTTTGCCGTCTAC -CCAACACTCTCTTTTGCCACGTAC -CCAACACTCTCTTTTGCCAGTGAC -CCAACACTCTCTTTTGCCCTGTAG -CCAACACTCTCTTTTGCCCCTAAG -CCAACACTCTCTTTTGCCGTTCAG -CCAACACTCTCTTTTGCCGCATAG -CCAACACTCTCTTTTGCCGACAAG -CCAACACTCTCTTTTGCCAAGCAG -CCAACACTCTCTTTTGCCCGTCAA -CCAACACTCTCTTTTGCCGCTGAA -CCAACACTCTCTTTTGCCAGTACG -CCAACACTCTCTTTTGCCATCCGA -CCAACACTCTCTTTTGCCATGGGA -CCAACACTCTCTTTTGCCGTGCAA -CCAACACTCTCTTTTGCCGAGGAA -CCAACACTCTCTTTTGCCCAGGTA -CCAACACTCTCTTTTGCCGACTCT -CCAACACTCTCTTTTGCCAGTCCT -CCAACACTCTCTTTTGCCTAAGCC -CCAACACTCTCTTTTGCCATAGCC -CCAACACTCTCTTTTGCCTAACCG -CCAACACTCTCTTTTGCCATGCCA -CCAACACTCTCTCTTGGTGGAAAC -CCAACACTCTCTCTTGGTAACACC -CCAACACTCTCTCTTGGTATCGAG -CCAACACTCTCTCTTGGTCTCCTT -CCAACACTCTCTCTTGGTCCTGTT -CCAACACTCTCTCTTGGTCGGTTT -CCAACACTCTCTCTTGGTGTGGTT -CCAACACTCTCTCTTGGTGCCTTT -CCAACACTCTCTCTTGGTGGTCTT -CCAACACTCTCTCTTGGTACGCTT -CCAACACTCTCTCTTGGTAGCGTT -CCAACACTCTCTCTTGGTTTCGTC -CCAACACTCTCTCTTGGTTCTCTC -CCAACACTCTCTCTTGGTTGGATC -CCAACACTCTCTCTTGGTCACTTC -CCAACACTCTCTCTTGGTGTACTC -CCAACACTCTCTCTTGGTGATGTC -CCAACACTCTCTCTTGGTACAGTC -CCAACACTCTCTCTTGGTTTGCTG -CCAACACTCTCTCTTGGTTCCATG -CCAACACTCTCTCTTGGTTGTGTG -CCAACACTCTCTCTTGGTCTAGTG -CCAACACTCTCTCTTGGTCATCTG -CCAACACTCTCTCTTGGTGAGTTG -CCAACACTCTCTCTTGGTAGACTG -CCAACACTCTCTCTTGGTTCGGTA -CCAACACTCTCTCTTGGTTGCCTA -CCAACACTCTCTCTTGGTCCACTA -CCAACACTCTCTCTTGGTGGAGTA -CCAACACTCTCTCTTGGTTCGTCT -CCAACACTCTCTCTTGGTTGCACT -CCAACACTCTCTCTTGGTCTGACT -CCAACACTCTCTCTTGGTCAACCT -CCAACACTCTCTCTTGGTGCTACT -CCAACACTCTCTCTTGGTGGATCT -CCAACACTCTCTCTTGGTAAGGCT -CCAACACTCTCTCTTGGTTCAACC -CCAACACTCTCTCTTGGTTGTTCC -CCAACACTCTCTCTTGGTATTCCC -CCAACACTCTCTCTTGGTTTCTCG -CCAACACTCTCTCTTGGTTAGACG -CCAACACTCTCTCTTGGTGTAACG -CCAACACTCTCTCTTGGTACTTCG -CCAACACTCTCTCTTGGTTACGCA -CCAACACTCTCTCTTGGTCTTGCA -CCAACACTCTCTCTTGGTCGAACA -CCAACACTCTCTCTTGGTCAGTCA -CCAACACTCTCTCTTGGTGATCCA -CCAACACTCTCTCTTGGTACGACA -CCAACACTCTCTCTTGGTAGCTCA -CCAACACTCTCTCTTGGTTCACGT -CCAACACTCTCTCTTGGTCGTAGT -CCAACACTCTCTCTTGGTGTCAGT -CCAACACTCTCTCTTGGTGAAGGT -CCAACACTCTCTCTTGGTAACCGT -CCAACACTCTCTCTTGGTTTGTGC -CCAACACTCTCTCTTGGTCTAAGC -CCAACACTCTCTCTTGGTACTAGC -CCAACACTCTCTCTTGGTAGATGC -CCAACACTCTCTCTTGGTTGAAGG -CCAACACTCTCTCTTGGTCAATGG -CCAACACTCTCTCTTGGTATGAGG -CCAACACTCTCTCTTGGTAATGGG -CCAACACTCTCTCTTGGTTCCTGA -CCAACACTCTCTCTTGGTTAGCGA -CCAACACTCTCTCTTGGTCACAGA -CCAACACTCTCTCTTGGTGCAAGA -CCAACACTCTCTCTTGGTGGTTGA -CCAACACTCTCTCTTGGTTCCGAT -CCAACACTCTCTCTTGGTTGGCAT -CCAACACTCTCTCTTGGTCGAGAT -CCAACACTCTCTCTTGGTTACCAC -CCAACACTCTCTCTTGGTCAGAAC -CCAACACTCTCTCTTGGTGTCTAC -CCAACACTCTCTCTTGGTACGTAC -CCAACACTCTCTCTTGGTAGTGAC -CCAACACTCTCTCTTGGTCTGTAG -CCAACACTCTCTCTTGGTCCTAAG -CCAACACTCTCTCTTGGTGTTCAG -CCAACACTCTCTCTTGGTGCATAG -CCAACACTCTCTCTTGGTGACAAG -CCAACACTCTCTCTTGGTAAGCAG -CCAACACTCTCTCTTGGTCGTCAA -CCAACACTCTCTCTTGGTGCTGAA -CCAACACTCTCTCTTGGTAGTACG -CCAACACTCTCTCTTGGTATCCGA -CCAACACTCTCTCTTGGTATGGGA -CCAACACTCTCTCTTGGTGTGCAA -CCAACACTCTCTCTTGGTGAGGAA -CCAACACTCTCTCTTGGTCAGGTA -CCAACACTCTCTCTTGGTGACTCT -CCAACACTCTCTCTTGGTAGTCCT -CCAACACTCTCTCTTGGTTAAGCC -CCAACACTCTCTCTTGGTATAGCC -CCAACACTCTCTCTTGGTTAACCG -CCAACACTCTCTCTTGGTATGCCA -CCAACACTCTCTCTTACGGGAAAC -CCAACACTCTCTCTTACGAACACC -CCAACACTCTCTCTTACGATCGAG -CCAACACTCTCTCTTACGCTCCTT -CCAACACTCTCTCTTACGCCTGTT -CCAACACTCTCTCTTACGCGGTTT -CCAACACTCTCTCTTACGGTGGTT -CCAACACTCTCTCTTACGGCCTTT -CCAACACTCTCTCTTACGGGTCTT -CCAACACTCTCTCTTACGACGCTT -CCAACACTCTCTCTTACGAGCGTT -CCAACACTCTCTCTTACGTTCGTC -CCAACACTCTCTCTTACGTCTCTC -CCAACACTCTCTCTTACGTGGATC -CCAACACTCTCTCTTACGCACTTC -CCAACACTCTCTCTTACGGTACTC -CCAACACTCTCTCTTACGGATGTC -CCAACACTCTCTCTTACGACAGTC -CCAACACTCTCTCTTACGTTGCTG -CCAACACTCTCTCTTACGTCCATG -CCAACACTCTCTCTTACGTGTGTG -CCAACACTCTCTCTTACGCTAGTG -CCAACACTCTCTCTTACGCATCTG -CCAACACTCTCTCTTACGGAGTTG -CCAACACTCTCTCTTACGAGACTG -CCAACACTCTCTCTTACGTCGGTA -CCAACACTCTCTCTTACGTGCCTA -CCAACACTCTCTCTTACGCCACTA -CCAACACTCTCTCTTACGGGAGTA -CCAACACTCTCTCTTACGTCGTCT -CCAACACTCTCTCTTACGTGCACT -CCAACACTCTCTCTTACGCTGACT -CCAACACTCTCTCTTACGCAACCT -CCAACACTCTCTCTTACGGCTACT -CCAACACTCTCTCTTACGGGATCT -CCAACACTCTCTCTTACGAAGGCT -CCAACACTCTCTCTTACGTCAACC -CCAACACTCTCTCTTACGTGTTCC -CCAACACTCTCTCTTACGATTCCC -CCAACACTCTCTCTTACGTTCTCG -CCAACACTCTCTCTTACGTAGACG -CCAACACTCTCTCTTACGGTAACG -CCAACACTCTCTCTTACGACTTCG -CCAACACTCTCTCTTACGTACGCA -CCAACACTCTCTCTTACGCTTGCA -CCAACACTCTCTCTTACGCGAACA -CCAACACTCTCTCTTACGCAGTCA -CCAACACTCTCTCTTACGGATCCA -CCAACACTCTCTCTTACGACGACA -CCAACACTCTCTCTTACGAGCTCA -CCAACACTCTCTCTTACGTCACGT -CCAACACTCTCTCTTACGCGTAGT -CCAACACTCTCTCTTACGGTCAGT -CCAACACTCTCTCTTACGGAAGGT -CCAACACTCTCTCTTACGAACCGT -CCAACACTCTCTCTTACGTTGTGC -CCAACACTCTCTCTTACGCTAAGC -CCAACACTCTCTCTTACGACTAGC -CCAACACTCTCTCTTACGAGATGC -CCAACACTCTCTCTTACGTGAAGG -CCAACACTCTCTCTTACGCAATGG -CCAACACTCTCTCTTACGATGAGG -CCAACACTCTCTCTTACGAATGGG -CCAACACTCTCTCTTACGTCCTGA -CCAACACTCTCTCTTACGTAGCGA -CCAACACTCTCTCTTACGCACAGA -CCAACACTCTCTCTTACGGCAAGA -CCAACACTCTCTCTTACGGGTTGA -CCAACACTCTCTCTTACGTCCGAT -CCAACACTCTCTCTTACGTGGCAT -CCAACACTCTCTCTTACGCGAGAT -CCAACACTCTCTCTTACGTACCAC -CCAACACTCTCTCTTACGCAGAAC -CCAACACTCTCTCTTACGGTCTAC -CCAACACTCTCTCTTACGACGTAC -CCAACACTCTCTCTTACGAGTGAC -CCAACACTCTCTCTTACGCTGTAG -CCAACACTCTCTCTTACGCCTAAG -CCAACACTCTCTCTTACGGTTCAG -CCAACACTCTCTCTTACGGCATAG -CCAACACTCTCTCTTACGGACAAG -CCAACACTCTCTCTTACGAAGCAG -CCAACACTCTCTCTTACGCGTCAA -CCAACACTCTCTCTTACGGCTGAA -CCAACACTCTCTCTTACGAGTACG -CCAACACTCTCTCTTACGATCCGA -CCAACACTCTCTCTTACGATGGGA -CCAACACTCTCTCTTACGGTGCAA -CCAACACTCTCTCTTACGGAGGAA -CCAACACTCTCTCTTACGCAGGTA -CCAACACTCTCTCTTACGGACTCT -CCAACACTCTCTCTTACGAGTCCT -CCAACACTCTCTCTTACGTAAGCC -CCAACACTCTCTCTTACGATAGCC -CCAACACTCTCTCTTACGTAACCG -CCAACACTCTCTCTTACGATGCCA -CCAACACTCTCTGTTAGCGGAAAC -CCAACACTCTCTGTTAGCAACACC -CCAACACTCTCTGTTAGCATCGAG -CCAACACTCTCTGTTAGCCTCCTT -CCAACACTCTCTGTTAGCCCTGTT -CCAACACTCTCTGTTAGCCGGTTT -CCAACACTCTCTGTTAGCGTGGTT -CCAACACTCTCTGTTAGCGCCTTT -CCAACACTCTCTGTTAGCGGTCTT -CCAACACTCTCTGTTAGCACGCTT -CCAACACTCTCTGTTAGCAGCGTT -CCAACACTCTCTGTTAGCTTCGTC -CCAACACTCTCTGTTAGCTCTCTC -CCAACACTCTCTGTTAGCTGGATC -CCAACACTCTCTGTTAGCCACTTC -CCAACACTCTCTGTTAGCGTACTC -CCAACACTCTCTGTTAGCGATGTC -CCAACACTCTCTGTTAGCACAGTC -CCAACACTCTCTGTTAGCTTGCTG -CCAACACTCTCTGTTAGCTCCATG -CCAACACTCTCTGTTAGCTGTGTG -CCAACACTCTCTGTTAGCCTAGTG -CCAACACTCTCTGTTAGCCATCTG -CCAACACTCTCTGTTAGCGAGTTG -CCAACACTCTCTGTTAGCAGACTG -CCAACACTCTCTGTTAGCTCGGTA -CCAACACTCTCTGTTAGCTGCCTA -CCAACACTCTCTGTTAGCCCACTA -CCAACACTCTCTGTTAGCGGAGTA -CCAACACTCTCTGTTAGCTCGTCT -CCAACACTCTCTGTTAGCTGCACT -CCAACACTCTCTGTTAGCCTGACT -CCAACACTCTCTGTTAGCCAACCT -CCAACACTCTCTGTTAGCGCTACT -CCAACACTCTCTGTTAGCGGATCT -CCAACACTCTCTGTTAGCAAGGCT -CCAACACTCTCTGTTAGCTCAACC -CCAACACTCTCTGTTAGCTGTTCC -CCAACACTCTCTGTTAGCATTCCC -CCAACACTCTCTGTTAGCTTCTCG -CCAACACTCTCTGTTAGCTAGACG -CCAACACTCTCTGTTAGCGTAACG -CCAACACTCTCTGTTAGCACTTCG -CCAACACTCTCTGTTAGCTACGCA -CCAACACTCTCTGTTAGCCTTGCA -CCAACACTCTCTGTTAGCCGAACA -CCAACACTCTCTGTTAGCCAGTCA -CCAACACTCTCTGTTAGCGATCCA -CCAACACTCTCTGTTAGCACGACA -CCAACACTCTCTGTTAGCAGCTCA -CCAACACTCTCTGTTAGCTCACGT -CCAACACTCTCTGTTAGCCGTAGT -CCAACACTCTCTGTTAGCGTCAGT -CCAACACTCTCTGTTAGCGAAGGT -CCAACACTCTCTGTTAGCAACCGT -CCAACACTCTCTGTTAGCTTGTGC -CCAACACTCTCTGTTAGCCTAAGC -CCAACACTCTCTGTTAGCACTAGC -CCAACACTCTCTGTTAGCAGATGC -CCAACACTCTCTGTTAGCTGAAGG -CCAACACTCTCTGTTAGCCAATGG -CCAACACTCTCTGTTAGCATGAGG -CCAACACTCTCTGTTAGCAATGGG -CCAACACTCTCTGTTAGCTCCTGA -CCAACACTCTCTGTTAGCTAGCGA -CCAACACTCTCTGTTAGCCACAGA -CCAACACTCTCTGTTAGCGCAAGA -CCAACACTCTCTGTTAGCGGTTGA -CCAACACTCTCTGTTAGCTCCGAT -CCAACACTCTCTGTTAGCTGGCAT -CCAACACTCTCTGTTAGCCGAGAT -CCAACACTCTCTGTTAGCTACCAC -CCAACACTCTCTGTTAGCCAGAAC -CCAACACTCTCTGTTAGCGTCTAC -CCAACACTCTCTGTTAGCACGTAC -CCAACACTCTCTGTTAGCAGTGAC -CCAACACTCTCTGTTAGCCTGTAG -CCAACACTCTCTGTTAGCCCTAAG -CCAACACTCTCTGTTAGCGTTCAG -CCAACACTCTCTGTTAGCGCATAG -CCAACACTCTCTGTTAGCGACAAG -CCAACACTCTCTGTTAGCAAGCAG -CCAACACTCTCTGTTAGCCGTCAA -CCAACACTCTCTGTTAGCGCTGAA -CCAACACTCTCTGTTAGCAGTACG -CCAACACTCTCTGTTAGCATCCGA -CCAACACTCTCTGTTAGCATGGGA -CCAACACTCTCTGTTAGCGTGCAA -CCAACACTCTCTGTTAGCGAGGAA -CCAACACTCTCTGTTAGCCAGGTA -CCAACACTCTCTGTTAGCGACTCT -CCAACACTCTCTGTTAGCAGTCCT -CCAACACTCTCTGTTAGCTAAGCC -CCAACACTCTCTGTTAGCATAGCC -CCAACACTCTCTGTTAGCTAACCG -CCAACACTCTCTGTTAGCATGCCA -CCAACACTCTCTGTCTTCGGAAAC -CCAACACTCTCTGTCTTCAACACC -CCAACACTCTCTGTCTTCATCGAG -CCAACACTCTCTGTCTTCCTCCTT -CCAACACTCTCTGTCTTCCCTGTT -CCAACACTCTCTGTCTTCCGGTTT -CCAACACTCTCTGTCTTCGTGGTT -CCAACACTCTCTGTCTTCGCCTTT -CCAACACTCTCTGTCTTCGGTCTT -CCAACACTCTCTGTCTTCACGCTT -CCAACACTCTCTGTCTTCAGCGTT -CCAACACTCTCTGTCTTCTTCGTC -CCAACACTCTCTGTCTTCTCTCTC -CCAACACTCTCTGTCTTCTGGATC -CCAACACTCTCTGTCTTCCACTTC -CCAACACTCTCTGTCTTCGTACTC -CCAACACTCTCTGTCTTCGATGTC -CCAACACTCTCTGTCTTCACAGTC -CCAACACTCTCTGTCTTCTTGCTG -CCAACACTCTCTGTCTTCTCCATG -CCAACACTCTCTGTCTTCTGTGTG -CCAACACTCTCTGTCTTCCTAGTG -CCAACACTCTCTGTCTTCCATCTG -CCAACACTCTCTGTCTTCGAGTTG -CCAACACTCTCTGTCTTCAGACTG -CCAACACTCTCTGTCTTCTCGGTA -CCAACACTCTCTGTCTTCTGCCTA -CCAACACTCTCTGTCTTCCCACTA -CCAACACTCTCTGTCTTCGGAGTA -CCAACACTCTCTGTCTTCTCGTCT -CCAACACTCTCTGTCTTCTGCACT -CCAACACTCTCTGTCTTCCTGACT -CCAACACTCTCTGTCTTCCAACCT -CCAACACTCTCTGTCTTCGCTACT -CCAACACTCTCTGTCTTCGGATCT -CCAACACTCTCTGTCTTCAAGGCT -CCAACACTCTCTGTCTTCTCAACC -CCAACACTCTCTGTCTTCTGTTCC -CCAACACTCTCTGTCTTCATTCCC -CCAACACTCTCTGTCTTCTTCTCG -CCAACACTCTCTGTCTTCTAGACG -CCAACACTCTCTGTCTTCGTAACG -CCAACACTCTCTGTCTTCACTTCG -CCAACACTCTCTGTCTTCTACGCA -CCAACACTCTCTGTCTTCCTTGCA -CCAACACTCTCTGTCTTCCGAACA -CCAACACTCTCTGTCTTCCAGTCA -CCAACACTCTCTGTCTTCGATCCA -CCAACACTCTCTGTCTTCACGACA -CCAACACTCTCTGTCTTCAGCTCA -CCAACACTCTCTGTCTTCTCACGT -CCAACACTCTCTGTCTTCCGTAGT -CCAACACTCTCTGTCTTCGTCAGT -CCAACACTCTCTGTCTTCGAAGGT -CCAACACTCTCTGTCTTCAACCGT -CCAACACTCTCTGTCTTCTTGTGC -CCAACACTCTCTGTCTTCCTAAGC -CCAACACTCTCTGTCTTCACTAGC -CCAACACTCTCTGTCTTCAGATGC -CCAACACTCTCTGTCTTCTGAAGG -CCAACACTCTCTGTCTTCCAATGG -CCAACACTCTCTGTCTTCATGAGG -CCAACACTCTCTGTCTTCAATGGG -CCAACACTCTCTGTCTTCTCCTGA -CCAACACTCTCTGTCTTCTAGCGA -CCAACACTCTCTGTCTTCCACAGA -CCAACACTCTCTGTCTTCGCAAGA -CCAACACTCTCTGTCTTCGGTTGA -CCAACACTCTCTGTCTTCTCCGAT -CCAACACTCTCTGTCTTCTGGCAT -CCAACACTCTCTGTCTTCCGAGAT -CCAACACTCTCTGTCTTCTACCAC -CCAACACTCTCTGTCTTCCAGAAC -CCAACACTCTCTGTCTTCGTCTAC -CCAACACTCTCTGTCTTCACGTAC -CCAACACTCTCTGTCTTCAGTGAC -CCAACACTCTCTGTCTTCCTGTAG -CCAACACTCTCTGTCTTCCCTAAG -CCAACACTCTCTGTCTTCGTTCAG -CCAACACTCTCTGTCTTCGCATAG -CCAACACTCTCTGTCTTCGACAAG -CCAACACTCTCTGTCTTCAAGCAG -CCAACACTCTCTGTCTTCCGTCAA -CCAACACTCTCTGTCTTCGCTGAA -CCAACACTCTCTGTCTTCAGTACG -CCAACACTCTCTGTCTTCATCCGA -CCAACACTCTCTGTCTTCATGGGA -CCAACACTCTCTGTCTTCGTGCAA -CCAACACTCTCTGTCTTCGAGGAA -CCAACACTCTCTGTCTTCCAGGTA -CCAACACTCTCTGTCTTCGACTCT -CCAACACTCTCTGTCTTCAGTCCT -CCAACACTCTCTGTCTTCTAAGCC -CCAACACTCTCTGTCTTCATAGCC -CCAACACTCTCTGTCTTCTAACCG -CCAACACTCTCTGTCTTCATGCCA -CCAACACTCTCTCTCTCTGGAAAC -CCAACACTCTCTCTCTCTAACACC -CCAACACTCTCTCTCTCTATCGAG -CCAACACTCTCTCTCTCTCTCCTT -CCAACACTCTCTCTCTCTCCTGTT -CCAACACTCTCTCTCTCTCGGTTT -CCAACACTCTCTCTCTCTGTGGTT -CCAACACTCTCTCTCTCTGCCTTT -CCAACACTCTCTCTCTCTGGTCTT -CCAACACTCTCTCTCTCTACGCTT -CCAACACTCTCTCTCTCTAGCGTT -CCAACACTCTCTCTCTCTTTCGTC -CCAACACTCTCTCTCTCTTCTCTC -CCAACACTCTCTCTCTCTTGGATC -CCAACACTCTCTCTCTCTCACTTC -CCAACACTCTCTCTCTCTGTACTC -CCAACACTCTCTCTCTCTGATGTC -CCAACACTCTCTCTCTCTACAGTC -CCAACACTCTCTCTCTCTTTGCTG -CCAACACTCTCTCTCTCTTCCATG -CCAACACTCTCTCTCTCTTGTGTG -CCAACACTCTCTCTCTCTCTAGTG -CCAACACTCTCTCTCTCTCATCTG -CCAACACTCTCTCTCTCTGAGTTG -CCAACACTCTCTCTCTCTAGACTG -CCAACACTCTCTCTCTCTTCGGTA -CCAACACTCTCTCTCTCTTGCCTA -CCAACACTCTCTCTCTCTCCACTA -CCAACACTCTCTCTCTCTGGAGTA -CCAACACTCTCTCTCTCTTCGTCT -CCAACACTCTCTCTCTCTTGCACT -CCAACACTCTCTCTCTCTCTGACT -CCAACACTCTCTCTCTCTCAACCT -CCAACACTCTCTCTCTCTGCTACT -CCAACACTCTCTCTCTCTGGATCT -CCAACACTCTCTCTCTCTAAGGCT -CCAACACTCTCTCTCTCTTCAACC -CCAACACTCTCTCTCTCTTGTTCC -CCAACACTCTCTCTCTCTATTCCC -CCAACACTCTCTCTCTCTTTCTCG -CCAACACTCTCTCTCTCTTAGACG -CCAACACTCTCTCTCTCTGTAACG -CCAACACTCTCTCTCTCTACTTCG -CCAACACTCTCTCTCTCTTACGCA -CCAACACTCTCTCTCTCTCTTGCA -CCAACACTCTCTCTCTCTCGAACA -CCAACACTCTCTCTCTCTCAGTCA -CCAACACTCTCTCTCTCTGATCCA -CCAACACTCTCTCTCTCTACGACA -CCAACACTCTCTCTCTCTAGCTCA -CCAACACTCTCTCTCTCTTCACGT -CCAACACTCTCTCTCTCTCGTAGT -CCAACACTCTCTCTCTCTGTCAGT -CCAACACTCTCTCTCTCTGAAGGT -CCAACACTCTCTCTCTCTAACCGT -CCAACACTCTCTCTCTCTTTGTGC -CCAACACTCTCTCTCTCTCTAAGC -CCAACACTCTCTCTCTCTACTAGC -CCAACACTCTCTCTCTCTAGATGC -CCAACACTCTCTCTCTCTTGAAGG -CCAACACTCTCTCTCTCTCAATGG -CCAACACTCTCTCTCTCTATGAGG -CCAACACTCTCTCTCTCTAATGGG -CCAACACTCTCTCTCTCTTCCTGA -CCAACACTCTCTCTCTCTTAGCGA -CCAACACTCTCTCTCTCTCACAGA -CCAACACTCTCTCTCTCTGCAAGA -CCAACACTCTCTCTCTCTGGTTGA -CCAACACTCTCTCTCTCTTCCGAT -CCAACACTCTCTCTCTCTTGGCAT -CCAACACTCTCTCTCTCTCGAGAT -CCAACACTCTCTCTCTCTTACCAC -CCAACACTCTCTCTCTCTCAGAAC -CCAACACTCTCTCTCTCTGTCTAC -CCAACACTCTCTCTCTCTACGTAC -CCAACACTCTCTCTCTCTAGTGAC -CCAACACTCTCTCTCTCTCTGTAG -CCAACACTCTCTCTCTCTCCTAAG -CCAACACTCTCTCTCTCTGTTCAG -CCAACACTCTCTCTCTCTGCATAG -CCAACACTCTCTCTCTCTGACAAG -CCAACACTCTCTCTCTCTAAGCAG -CCAACACTCTCTCTCTCTCGTCAA -CCAACACTCTCTCTCTCTGCTGAA -CCAACACTCTCTCTCTCTAGTACG -CCAACACTCTCTCTCTCTATCCGA -CCAACACTCTCTCTCTCTATGGGA -CCAACACTCTCTCTCTCTGTGCAA -CCAACACTCTCTCTCTCTGAGGAA -CCAACACTCTCTCTCTCTCAGGTA -CCAACACTCTCTCTCTCTGACTCT -CCAACACTCTCTCTCTCTAGTCCT -CCAACACTCTCTCTCTCTTAAGCC -CCAACACTCTCTCTCTCTATAGCC -CCAACACTCTCTCTCTCTTAACCG -CCAACACTCTCTCTCTCTATGCCA -CCAACACTCTCTATCTGGGGAAAC -CCAACACTCTCTATCTGGAACACC -CCAACACTCTCTATCTGGATCGAG -CCAACACTCTCTATCTGGCTCCTT -CCAACACTCTCTATCTGGCCTGTT -CCAACACTCTCTATCTGGCGGTTT -CCAACACTCTCTATCTGGGTGGTT -CCAACACTCTCTATCTGGGCCTTT -CCAACACTCTCTATCTGGGGTCTT -CCAACACTCTCTATCTGGACGCTT -CCAACACTCTCTATCTGGAGCGTT -CCAACACTCTCTATCTGGTTCGTC -CCAACACTCTCTATCTGGTCTCTC -CCAACACTCTCTATCTGGTGGATC -CCAACACTCTCTATCTGGCACTTC -CCAACACTCTCTATCTGGGTACTC -CCAACACTCTCTATCTGGGATGTC -CCAACACTCTCTATCTGGACAGTC -CCAACACTCTCTATCTGGTTGCTG -CCAACACTCTCTATCTGGTCCATG -CCAACACTCTCTATCTGGTGTGTG -CCAACACTCTCTATCTGGCTAGTG -CCAACACTCTCTATCTGGCATCTG -CCAACACTCTCTATCTGGGAGTTG -CCAACACTCTCTATCTGGAGACTG -CCAACACTCTCTATCTGGTCGGTA -CCAACACTCTCTATCTGGTGCCTA -CCAACACTCTCTATCTGGCCACTA -CCAACACTCTCTATCTGGGGAGTA -CCAACACTCTCTATCTGGTCGTCT -CCAACACTCTCTATCTGGTGCACT -CCAACACTCTCTATCTGGCTGACT -CCAACACTCTCTATCTGGCAACCT -CCAACACTCTCTATCTGGGCTACT -CCAACACTCTCTATCTGGGGATCT -CCAACACTCTCTATCTGGAAGGCT -CCAACACTCTCTATCTGGTCAACC -CCAACACTCTCTATCTGGTGTTCC -CCAACACTCTCTATCTGGATTCCC -CCAACACTCTCTATCTGGTTCTCG -CCAACACTCTCTATCTGGTAGACG -CCAACACTCTCTATCTGGGTAACG -CCAACACTCTCTATCTGGACTTCG -CCAACACTCTCTATCTGGTACGCA -CCAACACTCTCTATCTGGCTTGCA -CCAACACTCTCTATCTGGCGAACA -CCAACACTCTCTATCTGGCAGTCA -CCAACACTCTCTATCTGGGATCCA -CCAACACTCTCTATCTGGACGACA -CCAACACTCTCTATCTGGAGCTCA -CCAACACTCTCTATCTGGTCACGT -CCAACACTCTCTATCTGGCGTAGT -CCAACACTCTCTATCTGGGTCAGT -CCAACACTCTCTATCTGGGAAGGT -CCAACACTCTCTATCTGGAACCGT -CCAACACTCTCTATCTGGTTGTGC -CCAACACTCTCTATCTGGCTAAGC -CCAACACTCTCTATCTGGACTAGC -CCAACACTCTCTATCTGGAGATGC -CCAACACTCTCTATCTGGTGAAGG -CCAACACTCTCTATCTGGCAATGG -CCAACACTCTCTATCTGGATGAGG -CCAACACTCTCTATCTGGAATGGG -CCAACACTCTCTATCTGGTCCTGA -CCAACACTCTCTATCTGGTAGCGA -CCAACACTCTCTATCTGGCACAGA -CCAACACTCTCTATCTGGGCAAGA -CCAACACTCTCTATCTGGGGTTGA -CCAACACTCTCTATCTGGTCCGAT -CCAACACTCTCTATCTGGTGGCAT -CCAACACTCTCTATCTGGCGAGAT -CCAACACTCTCTATCTGGTACCAC -CCAACACTCTCTATCTGGCAGAAC -CCAACACTCTCTATCTGGGTCTAC -CCAACACTCTCTATCTGGACGTAC -CCAACACTCTCTATCTGGAGTGAC -CCAACACTCTCTATCTGGCTGTAG -CCAACACTCTCTATCTGGCCTAAG -CCAACACTCTCTATCTGGGTTCAG -CCAACACTCTCTATCTGGGCATAG -CCAACACTCTCTATCTGGGACAAG -CCAACACTCTCTATCTGGAAGCAG -CCAACACTCTCTATCTGGCGTCAA -CCAACACTCTCTATCTGGGCTGAA -CCAACACTCTCTATCTGGAGTACG -CCAACACTCTCTATCTGGATCCGA -CCAACACTCTCTATCTGGATGGGA -CCAACACTCTCTATCTGGGTGCAA -CCAACACTCTCTATCTGGGAGGAA -CCAACACTCTCTATCTGGCAGGTA -CCAACACTCTCTATCTGGGACTCT -CCAACACTCTCTATCTGGAGTCCT -CCAACACTCTCTATCTGGTAAGCC -CCAACACTCTCTATCTGGATAGCC -CCAACACTCTCTATCTGGTAACCG -CCAACACTCTCTATCTGGATGCCA -CCAACACTCTCTTTCCACGGAAAC -CCAACACTCTCTTTCCACAACACC -CCAACACTCTCTTTCCACATCGAG -CCAACACTCTCTTTCCACCTCCTT -CCAACACTCTCTTTCCACCCTGTT -CCAACACTCTCTTTCCACCGGTTT -CCAACACTCTCTTTCCACGTGGTT -CCAACACTCTCTTTCCACGCCTTT -CCAACACTCTCTTTCCACGGTCTT -CCAACACTCTCTTTCCACACGCTT -CCAACACTCTCTTTCCACAGCGTT -CCAACACTCTCTTTCCACTTCGTC -CCAACACTCTCTTTCCACTCTCTC -CCAACACTCTCTTTCCACTGGATC -CCAACACTCTCTTTCCACCACTTC -CCAACACTCTCTTTCCACGTACTC -CCAACACTCTCTTTCCACGATGTC -CCAACACTCTCTTTCCACACAGTC -CCAACACTCTCTTTCCACTTGCTG -CCAACACTCTCTTTCCACTCCATG -CCAACACTCTCTTTCCACTGTGTG -CCAACACTCTCTTTCCACCTAGTG -CCAACACTCTCTTTCCACCATCTG -CCAACACTCTCTTTCCACGAGTTG -CCAACACTCTCTTTCCACAGACTG -CCAACACTCTCTTTCCACTCGGTA -CCAACACTCTCTTTCCACTGCCTA -CCAACACTCTCTTTCCACCCACTA -CCAACACTCTCTTTCCACGGAGTA -CCAACACTCTCTTTCCACTCGTCT -CCAACACTCTCTTTCCACTGCACT -CCAACACTCTCTTTCCACCTGACT -CCAACACTCTCTTTCCACCAACCT -CCAACACTCTCTTTCCACGCTACT -CCAACACTCTCTTTCCACGGATCT -CCAACACTCTCTTTCCACAAGGCT -CCAACACTCTCTTTCCACTCAACC -CCAACACTCTCTTTCCACTGTTCC -CCAACACTCTCTTTCCACATTCCC -CCAACACTCTCTTTCCACTTCTCG -CCAACACTCTCTTTCCACTAGACG -CCAACACTCTCTTTCCACGTAACG -CCAACACTCTCTTTCCACACTTCG -CCAACACTCTCTTTCCACTACGCA -CCAACACTCTCTTTCCACCTTGCA -CCAACACTCTCTTTCCACCGAACA -CCAACACTCTCTTTCCACCAGTCA -CCAACACTCTCTTTCCACGATCCA -CCAACACTCTCTTTCCACACGACA -CCAACACTCTCTTTCCACAGCTCA -CCAACACTCTCTTTCCACTCACGT -CCAACACTCTCTTTCCACCGTAGT -CCAACACTCTCTTTCCACGTCAGT -CCAACACTCTCTTTCCACGAAGGT -CCAACACTCTCTTTCCACAACCGT -CCAACACTCTCTTTCCACTTGTGC -CCAACACTCTCTTTCCACCTAAGC -CCAACACTCTCTTTCCACACTAGC -CCAACACTCTCTTTCCACAGATGC -CCAACACTCTCTTTCCACTGAAGG -CCAACACTCTCTTTCCACCAATGG -CCAACACTCTCTTTCCACATGAGG -CCAACACTCTCTTTCCACAATGGG -CCAACACTCTCTTTCCACTCCTGA -CCAACACTCTCTTTCCACTAGCGA -CCAACACTCTCTTTCCACCACAGA -CCAACACTCTCTTTCCACGCAAGA -CCAACACTCTCTTTCCACGGTTGA -CCAACACTCTCTTTCCACTCCGAT -CCAACACTCTCTTTCCACTGGCAT -CCAACACTCTCTTTCCACCGAGAT -CCAACACTCTCTTTCCACTACCAC -CCAACACTCTCTTTCCACCAGAAC -CCAACACTCTCTTTCCACGTCTAC -CCAACACTCTCTTTCCACACGTAC -CCAACACTCTCTTTCCACAGTGAC -CCAACACTCTCTTTCCACCTGTAG -CCAACACTCTCTTTCCACCCTAAG -CCAACACTCTCTTTCCACGTTCAG -CCAACACTCTCTTTCCACGCATAG -CCAACACTCTCTTTCCACGACAAG -CCAACACTCTCTTTCCACAAGCAG -CCAACACTCTCTTTCCACCGTCAA -CCAACACTCTCTTTCCACGCTGAA -CCAACACTCTCTTTCCACAGTACG -CCAACACTCTCTTTCCACATCCGA -CCAACACTCTCTTTCCACATGGGA -CCAACACTCTCTTTCCACGTGCAA -CCAACACTCTCTTTCCACGAGGAA -CCAACACTCTCTTTCCACCAGGTA -CCAACACTCTCTTTCCACGACTCT -CCAACACTCTCTTTCCACAGTCCT -CCAACACTCTCTTTCCACTAAGCC -CCAACACTCTCTTTCCACATAGCC -CCAACACTCTCTTTCCACTAACCG -CCAACACTCTCTTTCCACATGCCA -CCAACACTCTCTCTCGTAGGAAAC -CCAACACTCTCTCTCGTAAACACC -CCAACACTCTCTCTCGTAATCGAG -CCAACACTCTCTCTCGTACTCCTT -CCAACACTCTCTCTCGTACCTGTT -CCAACACTCTCTCTCGTACGGTTT -CCAACACTCTCTCTCGTAGTGGTT -CCAACACTCTCTCTCGTAGCCTTT -CCAACACTCTCTCTCGTAGGTCTT -CCAACACTCTCTCTCGTAACGCTT -CCAACACTCTCTCTCGTAAGCGTT -CCAACACTCTCTCTCGTATTCGTC -CCAACACTCTCTCTCGTATCTCTC -CCAACACTCTCTCTCGTATGGATC -CCAACACTCTCTCTCGTACACTTC -CCAACACTCTCTCTCGTAGTACTC -CCAACACTCTCTCTCGTAGATGTC -CCAACACTCTCTCTCGTAACAGTC -CCAACACTCTCTCTCGTATTGCTG -CCAACACTCTCTCTCGTATCCATG -CCAACACTCTCTCTCGTATGTGTG -CCAACACTCTCTCTCGTACTAGTG -CCAACACTCTCTCTCGTACATCTG -CCAACACTCTCTCTCGTAGAGTTG -CCAACACTCTCTCTCGTAAGACTG -CCAACACTCTCTCTCGTATCGGTA -CCAACACTCTCTCTCGTATGCCTA -CCAACACTCTCTCTCGTACCACTA -CCAACACTCTCTCTCGTAGGAGTA -CCAACACTCTCTCTCGTATCGTCT -CCAACACTCTCTCTCGTATGCACT -CCAACACTCTCTCTCGTACTGACT -CCAACACTCTCTCTCGTACAACCT -CCAACACTCTCTCTCGTAGCTACT -CCAACACTCTCTCTCGTAGGATCT -CCAACACTCTCTCTCGTAAAGGCT -CCAACACTCTCTCTCGTATCAACC -CCAACACTCTCTCTCGTATGTTCC -CCAACACTCTCTCTCGTAATTCCC -CCAACACTCTCTCTCGTATTCTCG -CCAACACTCTCTCTCGTATAGACG -CCAACACTCTCTCTCGTAGTAACG -CCAACACTCTCTCTCGTAACTTCG -CCAACACTCTCTCTCGTATACGCA -CCAACACTCTCTCTCGTACTTGCA -CCAACACTCTCTCTCGTACGAACA -CCAACACTCTCTCTCGTACAGTCA -CCAACACTCTCTCTCGTAGATCCA -CCAACACTCTCTCTCGTAACGACA -CCAACACTCTCTCTCGTAAGCTCA -CCAACACTCTCTCTCGTATCACGT -CCAACACTCTCTCTCGTACGTAGT -CCAACACTCTCTCTCGTAGTCAGT -CCAACACTCTCTCTCGTAGAAGGT -CCAACACTCTCTCTCGTAAACCGT -CCAACACTCTCTCTCGTATTGTGC -CCAACACTCTCTCTCGTACTAAGC -CCAACACTCTCTCTCGTAACTAGC -CCAACACTCTCTCTCGTAAGATGC -CCAACACTCTCTCTCGTATGAAGG -CCAACACTCTCTCTCGTACAATGG -CCAACACTCTCTCTCGTAATGAGG -CCAACACTCTCTCTCGTAAATGGG -CCAACACTCTCTCTCGTATCCTGA -CCAACACTCTCTCTCGTATAGCGA -CCAACACTCTCTCTCGTACACAGA -CCAACACTCTCTCTCGTAGCAAGA -CCAACACTCTCTCTCGTAGGTTGA -CCAACACTCTCTCTCGTATCCGAT -CCAACACTCTCTCTCGTATGGCAT -CCAACACTCTCTCTCGTACGAGAT -CCAACACTCTCTCTCGTATACCAC -CCAACACTCTCTCTCGTACAGAAC -CCAACACTCTCTCTCGTAGTCTAC -CCAACACTCTCTCTCGTAACGTAC -CCAACACTCTCTCTCGTAAGTGAC -CCAACACTCTCTCTCGTACTGTAG -CCAACACTCTCTCTCGTACCTAAG -CCAACACTCTCTCTCGTAGTTCAG -CCAACACTCTCTCTCGTAGCATAG -CCAACACTCTCTCTCGTAGACAAG -CCAACACTCTCTCTCGTAAAGCAG -CCAACACTCTCTCTCGTACGTCAA -CCAACACTCTCTCTCGTAGCTGAA -CCAACACTCTCTCTCGTAAGTACG -CCAACACTCTCTCTCGTAATCCGA -CCAACACTCTCTCTCGTAATGGGA -CCAACACTCTCTCTCGTAGTGCAA -CCAACACTCTCTCTCGTAGAGGAA -CCAACACTCTCTCTCGTACAGGTA -CCAACACTCTCTCTCGTAGACTCT -CCAACACTCTCTCTCGTAAGTCCT -CCAACACTCTCTCTCGTATAAGCC -CCAACACTCTCTCTCGTAATAGCC -CCAACACTCTCTCTCGTATAACCG -CCAACACTCTCTCTCGTAATGCCA -CCAACACTCTCTGTCGATGGAAAC -CCAACACTCTCTGTCGATAACACC -CCAACACTCTCTGTCGATATCGAG -CCAACACTCTCTGTCGATCTCCTT -CCAACACTCTCTGTCGATCCTGTT -CCAACACTCTCTGTCGATCGGTTT -CCAACACTCTCTGTCGATGTGGTT -CCAACACTCTCTGTCGATGCCTTT -CCAACACTCTCTGTCGATGGTCTT -CCAACACTCTCTGTCGATACGCTT -CCAACACTCTCTGTCGATAGCGTT -CCAACACTCTCTGTCGATTTCGTC -CCAACACTCTCTGTCGATTCTCTC -CCAACACTCTCTGTCGATTGGATC -CCAACACTCTCTGTCGATCACTTC -CCAACACTCTCTGTCGATGTACTC -CCAACACTCTCTGTCGATGATGTC -CCAACACTCTCTGTCGATACAGTC -CCAACACTCTCTGTCGATTTGCTG -CCAACACTCTCTGTCGATTCCATG -CCAACACTCTCTGTCGATTGTGTG -CCAACACTCTCTGTCGATCTAGTG -CCAACACTCTCTGTCGATCATCTG -CCAACACTCTCTGTCGATGAGTTG -CCAACACTCTCTGTCGATAGACTG -CCAACACTCTCTGTCGATTCGGTA -CCAACACTCTCTGTCGATTGCCTA -CCAACACTCTCTGTCGATCCACTA -CCAACACTCTCTGTCGATGGAGTA -CCAACACTCTCTGTCGATTCGTCT -CCAACACTCTCTGTCGATTGCACT -CCAACACTCTCTGTCGATCTGACT -CCAACACTCTCTGTCGATCAACCT -CCAACACTCTCTGTCGATGCTACT -CCAACACTCTCTGTCGATGGATCT -CCAACACTCTCTGTCGATAAGGCT -CCAACACTCTCTGTCGATTCAACC -CCAACACTCTCTGTCGATTGTTCC -CCAACACTCTCTGTCGATATTCCC -CCAACACTCTCTGTCGATTTCTCG -CCAACACTCTCTGTCGATTAGACG -CCAACACTCTCTGTCGATGTAACG -CCAACACTCTCTGTCGATACTTCG -CCAACACTCTCTGTCGATTACGCA -CCAACACTCTCTGTCGATCTTGCA -CCAACACTCTCTGTCGATCGAACA -CCAACACTCTCTGTCGATCAGTCA -CCAACACTCTCTGTCGATGATCCA -CCAACACTCTCTGTCGATACGACA -CCAACACTCTCTGTCGATAGCTCA -CCAACACTCTCTGTCGATTCACGT -CCAACACTCTCTGTCGATCGTAGT -CCAACACTCTCTGTCGATGTCAGT -CCAACACTCTCTGTCGATGAAGGT -CCAACACTCTCTGTCGATAACCGT -CCAACACTCTCTGTCGATTTGTGC -CCAACACTCTCTGTCGATCTAAGC -CCAACACTCTCTGTCGATACTAGC -CCAACACTCTCTGTCGATAGATGC -CCAACACTCTCTGTCGATTGAAGG -CCAACACTCTCTGTCGATCAATGG -CCAACACTCTCTGTCGATATGAGG -CCAACACTCTCTGTCGATAATGGG -CCAACACTCTCTGTCGATTCCTGA -CCAACACTCTCTGTCGATTAGCGA -CCAACACTCTCTGTCGATCACAGA -CCAACACTCTCTGTCGATGCAAGA -CCAACACTCTCTGTCGATGGTTGA -CCAACACTCTCTGTCGATTCCGAT -CCAACACTCTCTGTCGATTGGCAT -CCAACACTCTCTGTCGATCGAGAT -CCAACACTCTCTGTCGATTACCAC -CCAACACTCTCTGTCGATCAGAAC -CCAACACTCTCTGTCGATGTCTAC -CCAACACTCTCTGTCGATACGTAC -CCAACACTCTCTGTCGATAGTGAC -CCAACACTCTCTGTCGATCTGTAG -CCAACACTCTCTGTCGATCCTAAG -CCAACACTCTCTGTCGATGTTCAG -CCAACACTCTCTGTCGATGCATAG -CCAACACTCTCTGTCGATGACAAG -CCAACACTCTCTGTCGATAAGCAG -CCAACACTCTCTGTCGATCGTCAA -CCAACACTCTCTGTCGATGCTGAA -CCAACACTCTCTGTCGATAGTACG -CCAACACTCTCTGTCGATATCCGA -CCAACACTCTCTGTCGATATGGGA -CCAACACTCTCTGTCGATGTGCAA -CCAACACTCTCTGTCGATGAGGAA -CCAACACTCTCTGTCGATCAGGTA -CCAACACTCTCTGTCGATGACTCT -CCAACACTCTCTGTCGATAGTCCT -CCAACACTCTCTGTCGATTAAGCC -CCAACACTCTCTGTCGATATAGCC -CCAACACTCTCTGTCGATTAACCG -CCAACACTCTCTGTCGATATGCCA -CCAACACTCTCTGTCACAGGAAAC -CCAACACTCTCTGTCACAAACACC -CCAACACTCTCTGTCACAATCGAG -CCAACACTCTCTGTCACACTCCTT -CCAACACTCTCTGTCACACCTGTT -CCAACACTCTCTGTCACACGGTTT -CCAACACTCTCTGTCACAGTGGTT -CCAACACTCTCTGTCACAGCCTTT -CCAACACTCTCTGTCACAGGTCTT -CCAACACTCTCTGTCACAACGCTT -CCAACACTCTCTGTCACAAGCGTT -CCAACACTCTCTGTCACATTCGTC -CCAACACTCTCTGTCACATCTCTC -CCAACACTCTCTGTCACATGGATC -CCAACACTCTCTGTCACACACTTC -CCAACACTCTCTGTCACAGTACTC -CCAACACTCTCTGTCACAGATGTC -CCAACACTCTCTGTCACAACAGTC -CCAACACTCTCTGTCACATTGCTG -CCAACACTCTCTGTCACATCCATG -CCAACACTCTCTGTCACATGTGTG -CCAACACTCTCTGTCACACTAGTG -CCAACACTCTCTGTCACACATCTG -CCAACACTCTCTGTCACAGAGTTG -CCAACACTCTCTGTCACAAGACTG -CCAACACTCTCTGTCACATCGGTA -CCAACACTCTCTGTCACATGCCTA -CCAACACTCTCTGTCACACCACTA -CCAACACTCTCTGTCACAGGAGTA -CCAACACTCTCTGTCACATCGTCT -CCAACACTCTCTGTCACATGCACT -CCAACACTCTCTGTCACACTGACT -CCAACACTCTCTGTCACACAACCT -CCAACACTCTCTGTCACAGCTACT -CCAACACTCTCTGTCACAGGATCT -CCAACACTCTCTGTCACAAAGGCT -CCAACACTCTCTGTCACATCAACC -CCAACACTCTCTGTCACATGTTCC -CCAACACTCTCTGTCACAATTCCC -CCAACACTCTCTGTCACATTCTCG -CCAACACTCTCTGTCACATAGACG -CCAACACTCTCTGTCACAGTAACG -CCAACACTCTCTGTCACAACTTCG -CCAACACTCTCTGTCACATACGCA -CCAACACTCTCTGTCACACTTGCA -CCAACACTCTCTGTCACACGAACA -CCAACACTCTCTGTCACACAGTCA -CCAACACTCTCTGTCACAGATCCA -CCAACACTCTCTGTCACAACGACA -CCAACACTCTCTGTCACAAGCTCA -CCAACACTCTCTGTCACATCACGT -CCAACACTCTCTGTCACACGTAGT -CCAACACTCTCTGTCACAGTCAGT -CCAACACTCTCTGTCACAGAAGGT -CCAACACTCTCTGTCACAAACCGT -CCAACACTCTCTGTCACATTGTGC -CCAACACTCTCTGTCACACTAAGC -CCAACACTCTCTGTCACAACTAGC -CCAACACTCTCTGTCACAAGATGC -CCAACACTCTCTGTCACATGAAGG -CCAACACTCTCTGTCACACAATGG -CCAACACTCTCTGTCACAATGAGG -CCAACACTCTCTGTCACAAATGGG -CCAACACTCTCTGTCACATCCTGA -CCAACACTCTCTGTCACATAGCGA -CCAACACTCTCTGTCACACACAGA -CCAACACTCTCTGTCACAGCAAGA -CCAACACTCTCTGTCACAGGTTGA -CCAACACTCTCTGTCACATCCGAT -CCAACACTCTCTGTCACATGGCAT -CCAACACTCTCTGTCACACGAGAT -CCAACACTCTCTGTCACATACCAC -CCAACACTCTCTGTCACACAGAAC -CCAACACTCTCTGTCACAGTCTAC -CCAACACTCTCTGTCACAACGTAC -CCAACACTCTCTGTCACAAGTGAC -CCAACACTCTCTGTCACACTGTAG -CCAACACTCTCTGTCACACCTAAG -CCAACACTCTCTGTCACAGTTCAG -CCAACACTCTCTGTCACAGCATAG -CCAACACTCTCTGTCACAGACAAG -CCAACACTCTCTGTCACAAAGCAG -CCAACACTCTCTGTCACACGTCAA -CCAACACTCTCTGTCACAGCTGAA -CCAACACTCTCTGTCACAAGTACG -CCAACACTCTCTGTCACAATCCGA -CCAACACTCTCTGTCACAATGGGA -CCAACACTCTCTGTCACAGTGCAA -CCAACACTCTCTGTCACAGAGGAA -CCAACACTCTCTGTCACACAGGTA -CCAACACTCTCTGTCACAGACTCT -CCAACACTCTCTGTCACAAGTCCT -CCAACACTCTCTGTCACATAAGCC -CCAACACTCTCTGTCACAATAGCC -CCAACACTCTCTGTCACATAACCG -CCAACACTCTCTGTCACAATGCCA -CCAACACTCTCTCTGTTGGGAAAC -CCAACACTCTCTCTGTTGAACACC -CCAACACTCTCTCTGTTGATCGAG -CCAACACTCTCTCTGTTGCTCCTT -CCAACACTCTCTCTGTTGCCTGTT -CCAACACTCTCTCTGTTGCGGTTT -CCAACACTCTCTCTGTTGGTGGTT -CCAACACTCTCTCTGTTGGCCTTT -CCAACACTCTCTCTGTTGGGTCTT -CCAACACTCTCTCTGTTGACGCTT -CCAACACTCTCTCTGTTGAGCGTT -CCAACACTCTCTCTGTTGTTCGTC -CCAACACTCTCTCTGTTGTCTCTC -CCAACACTCTCTCTGTTGTGGATC -CCAACACTCTCTCTGTTGCACTTC -CCAACACTCTCTCTGTTGGTACTC -CCAACACTCTCTCTGTTGGATGTC -CCAACACTCTCTCTGTTGACAGTC -CCAACACTCTCTCTGTTGTTGCTG -CCAACACTCTCTCTGTTGTCCATG -CCAACACTCTCTCTGTTGTGTGTG -CCAACACTCTCTCTGTTGCTAGTG -CCAACACTCTCTCTGTTGCATCTG -CCAACACTCTCTCTGTTGGAGTTG -CCAACACTCTCTCTGTTGAGACTG -CCAACACTCTCTCTGTTGTCGGTA -CCAACACTCTCTCTGTTGTGCCTA -CCAACACTCTCTCTGTTGCCACTA -CCAACACTCTCTCTGTTGGGAGTA -CCAACACTCTCTCTGTTGTCGTCT -CCAACACTCTCTCTGTTGTGCACT -CCAACACTCTCTCTGTTGCTGACT -CCAACACTCTCTCTGTTGCAACCT -CCAACACTCTCTCTGTTGGCTACT -CCAACACTCTCTCTGTTGGGATCT -CCAACACTCTCTCTGTTGAAGGCT -CCAACACTCTCTCTGTTGTCAACC -CCAACACTCTCTCTGTTGTGTTCC -CCAACACTCTCTCTGTTGATTCCC -CCAACACTCTCTCTGTTGTTCTCG -CCAACACTCTCTCTGTTGTAGACG -CCAACACTCTCTCTGTTGGTAACG -CCAACACTCTCTCTGTTGACTTCG -CCAACACTCTCTCTGTTGTACGCA -CCAACACTCTCTCTGTTGCTTGCA -CCAACACTCTCTCTGTTGCGAACA -CCAACACTCTCTCTGTTGCAGTCA -CCAACACTCTCTCTGTTGGATCCA -CCAACACTCTCTCTGTTGACGACA -CCAACACTCTCTCTGTTGAGCTCA -CCAACACTCTCTCTGTTGTCACGT -CCAACACTCTCTCTGTTGCGTAGT -CCAACACTCTCTCTGTTGGTCAGT -CCAACACTCTCTCTGTTGGAAGGT -CCAACACTCTCTCTGTTGAACCGT -CCAACACTCTCTCTGTTGTTGTGC -CCAACACTCTCTCTGTTGCTAAGC -CCAACACTCTCTCTGTTGACTAGC -CCAACACTCTCTCTGTTGAGATGC -CCAACACTCTCTCTGTTGTGAAGG -CCAACACTCTCTCTGTTGCAATGG -CCAACACTCTCTCTGTTGATGAGG -CCAACACTCTCTCTGTTGAATGGG -CCAACACTCTCTCTGTTGTCCTGA -CCAACACTCTCTCTGTTGTAGCGA -CCAACACTCTCTCTGTTGCACAGA -CCAACACTCTCTCTGTTGGCAAGA -CCAACACTCTCTCTGTTGGGTTGA -CCAACACTCTCTCTGTTGTCCGAT -CCAACACTCTCTCTGTTGTGGCAT -CCAACACTCTCTCTGTTGCGAGAT -CCAACACTCTCTCTGTTGTACCAC -CCAACACTCTCTCTGTTGCAGAAC -CCAACACTCTCTCTGTTGGTCTAC -CCAACACTCTCTCTGTTGACGTAC -CCAACACTCTCTCTGTTGAGTGAC -CCAACACTCTCTCTGTTGCTGTAG -CCAACACTCTCTCTGTTGCCTAAG -CCAACACTCTCTCTGTTGGTTCAG -CCAACACTCTCTCTGTTGGCATAG -CCAACACTCTCTCTGTTGGACAAG -CCAACACTCTCTCTGTTGAAGCAG -CCAACACTCTCTCTGTTGCGTCAA -CCAACACTCTCTCTGTTGGCTGAA -CCAACACTCTCTCTGTTGAGTACG -CCAACACTCTCTCTGTTGATCCGA -CCAACACTCTCTCTGTTGATGGGA -CCAACACTCTCTCTGTTGGTGCAA -CCAACACTCTCTCTGTTGGAGGAA -CCAACACTCTCTCTGTTGCAGGTA -CCAACACTCTCTCTGTTGGACTCT -CCAACACTCTCTCTGTTGAGTCCT -CCAACACTCTCTCTGTTGTAAGCC -CCAACACTCTCTCTGTTGATAGCC -CCAACACTCTCTCTGTTGTAACCG -CCAACACTCTCTCTGTTGATGCCA -CCAACACTCTCTATGTCCGGAAAC -CCAACACTCTCTATGTCCAACACC -CCAACACTCTCTATGTCCATCGAG -CCAACACTCTCTATGTCCCTCCTT -CCAACACTCTCTATGTCCCCTGTT -CCAACACTCTCTATGTCCCGGTTT -CCAACACTCTCTATGTCCGTGGTT -CCAACACTCTCTATGTCCGCCTTT -CCAACACTCTCTATGTCCGGTCTT -CCAACACTCTCTATGTCCACGCTT -CCAACACTCTCTATGTCCAGCGTT -CCAACACTCTCTATGTCCTTCGTC -CCAACACTCTCTATGTCCTCTCTC -CCAACACTCTCTATGTCCTGGATC -CCAACACTCTCTATGTCCCACTTC -CCAACACTCTCTATGTCCGTACTC -CCAACACTCTCTATGTCCGATGTC -CCAACACTCTCTATGTCCACAGTC -CCAACACTCTCTATGTCCTTGCTG -CCAACACTCTCTATGTCCTCCATG -CCAACACTCTCTATGTCCTGTGTG -CCAACACTCTCTATGTCCCTAGTG -CCAACACTCTCTATGTCCCATCTG -CCAACACTCTCTATGTCCGAGTTG -CCAACACTCTCTATGTCCAGACTG -CCAACACTCTCTATGTCCTCGGTA -CCAACACTCTCTATGTCCTGCCTA -CCAACACTCTCTATGTCCCCACTA -CCAACACTCTCTATGTCCGGAGTA -CCAACACTCTCTATGTCCTCGTCT -CCAACACTCTCTATGTCCTGCACT -CCAACACTCTCTATGTCCCTGACT -CCAACACTCTCTATGTCCCAACCT -CCAACACTCTCTATGTCCGCTACT -CCAACACTCTCTATGTCCGGATCT -CCAACACTCTCTATGTCCAAGGCT -CCAACACTCTCTATGTCCTCAACC -CCAACACTCTCTATGTCCTGTTCC -CCAACACTCTCTATGTCCATTCCC -CCAACACTCTCTATGTCCTTCTCG -CCAACACTCTCTATGTCCTAGACG -CCAACACTCTCTATGTCCGTAACG -CCAACACTCTCTATGTCCACTTCG -CCAACACTCTCTATGTCCTACGCA -CCAACACTCTCTATGTCCCTTGCA -CCAACACTCTCTATGTCCCGAACA -CCAACACTCTCTATGTCCCAGTCA -CCAACACTCTCTATGTCCGATCCA -CCAACACTCTCTATGTCCACGACA -CCAACACTCTCTATGTCCAGCTCA -CCAACACTCTCTATGTCCTCACGT -CCAACACTCTCTATGTCCCGTAGT -CCAACACTCTCTATGTCCGTCAGT -CCAACACTCTCTATGTCCGAAGGT -CCAACACTCTCTATGTCCAACCGT -CCAACACTCTCTATGTCCTTGTGC -CCAACACTCTCTATGTCCCTAAGC -CCAACACTCTCTATGTCCACTAGC -CCAACACTCTCTATGTCCAGATGC -CCAACACTCTCTATGTCCTGAAGG -CCAACACTCTCTATGTCCCAATGG -CCAACACTCTCTATGTCCATGAGG -CCAACACTCTCTATGTCCAATGGG -CCAACACTCTCTATGTCCTCCTGA -CCAACACTCTCTATGTCCTAGCGA -CCAACACTCTCTATGTCCCACAGA -CCAACACTCTCTATGTCCGCAAGA -CCAACACTCTCTATGTCCGGTTGA -CCAACACTCTCTATGTCCTCCGAT -CCAACACTCTCTATGTCCTGGCAT -CCAACACTCTCTATGTCCCGAGAT -CCAACACTCTCTATGTCCTACCAC -CCAACACTCTCTATGTCCCAGAAC -CCAACACTCTCTATGTCCGTCTAC -CCAACACTCTCTATGTCCACGTAC -CCAACACTCTCTATGTCCAGTGAC -CCAACACTCTCTATGTCCCTGTAG -CCAACACTCTCTATGTCCCCTAAG -CCAACACTCTCTATGTCCGTTCAG -CCAACACTCTCTATGTCCGCATAG -CCAACACTCTCTATGTCCGACAAG -CCAACACTCTCTATGTCCAAGCAG -CCAACACTCTCTATGTCCCGTCAA -CCAACACTCTCTATGTCCGCTGAA -CCAACACTCTCTATGTCCAGTACG -CCAACACTCTCTATGTCCATCCGA -CCAACACTCTCTATGTCCATGGGA -CCAACACTCTCTATGTCCGTGCAA -CCAACACTCTCTATGTCCGAGGAA -CCAACACTCTCTATGTCCCAGGTA -CCAACACTCTCTATGTCCGACTCT -CCAACACTCTCTATGTCCAGTCCT -CCAACACTCTCTATGTCCTAAGCC -CCAACACTCTCTATGTCCATAGCC -CCAACACTCTCTATGTCCTAACCG -CCAACACTCTCTATGTCCATGCCA -CCAACACTCTCTGTGTGTGGAAAC -CCAACACTCTCTGTGTGTAACACC -CCAACACTCTCTGTGTGTATCGAG -CCAACACTCTCTGTGTGTCTCCTT -CCAACACTCTCTGTGTGTCCTGTT -CCAACACTCTCTGTGTGTCGGTTT -CCAACACTCTCTGTGTGTGTGGTT -CCAACACTCTCTGTGTGTGCCTTT -CCAACACTCTCTGTGTGTGGTCTT -CCAACACTCTCTGTGTGTACGCTT -CCAACACTCTCTGTGTGTAGCGTT -CCAACACTCTCTGTGTGTTTCGTC -CCAACACTCTCTGTGTGTTCTCTC -CCAACACTCTCTGTGTGTTGGATC -CCAACACTCTCTGTGTGTCACTTC -CCAACACTCTCTGTGTGTGTACTC -CCAACACTCTCTGTGTGTGATGTC -CCAACACTCTCTGTGTGTACAGTC -CCAACACTCTCTGTGTGTTTGCTG -CCAACACTCTCTGTGTGTTCCATG -CCAACACTCTCTGTGTGTTGTGTG -CCAACACTCTCTGTGTGTCTAGTG -CCAACACTCTCTGTGTGTCATCTG -CCAACACTCTCTGTGTGTGAGTTG -CCAACACTCTCTGTGTGTAGACTG -CCAACACTCTCTGTGTGTTCGGTA -CCAACACTCTCTGTGTGTTGCCTA -CCAACACTCTCTGTGTGTCCACTA -CCAACACTCTCTGTGTGTGGAGTA -CCAACACTCTCTGTGTGTTCGTCT -CCAACACTCTCTGTGTGTTGCACT -CCAACACTCTCTGTGTGTCTGACT -CCAACACTCTCTGTGTGTCAACCT -CCAACACTCTCTGTGTGTGCTACT -CCAACACTCTCTGTGTGTGGATCT -CCAACACTCTCTGTGTGTAAGGCT -CCAACACTCTCTGTGTGTTCAACC -CCAACACTCTCTGTGTGTTGTTCC -CCAACACTCTCTGTGTGTATTCCC -CCAACACTCTCTGTGTGTTTCTCG -CCAACACTCTCTGTGTGTTAGACG -CCAACACTCTCTGTGTGTGTAACG -CCAACACTCTCTGTGTGTACTTCG -CCAACACTCTCTGTGTGTTACGCA -CCAACACTCTCTGTGTGTCTTGCA -CCAACACTCTCTGTGTGTCGAACA -CCAACACTCTCTGTGTGTCAGTCA -CCAACACTCTCTGTGTGTGATCCA -CCAACACTCTCTGTGTGTACGACA -CCAACACTCTCTGTGTGTAGCTCA -CCAACACTCTCTGTGTGTTCACGT -CCAACACTCTCTGTGTGTCGTAGT -CCAACACTCTCTGTGTGTGTCAGT -CCAACACTCTCTGTGTGTGAAGGT -CCAACACTCTCTGTGTGTAACCGT -CCAACACTCTCTGTGTGTTTGTGC -CCAACACTCTCTGTGTGTCTAAGC -CCAACACTCTCTGTGTGTACTAGC -CCAACACTCTCTGTGTGTAGATGC -CCAACACTCTCTGTGTGTTGAAGG -CCAACACTCTCTGTGTGTCAATGG -CCAACACTCTCTGTGTGTATGAGG -CCAACACTCTCTGTGTGTAATGGG -CCAACACTCTCTGTGTGTTCCTGA -CCAACACTCTCTGTGTGTTAGCGA -CCAACACTCTCTGTGTGTCACAGA -CCAACACTCTCTGTGTGTGCAAGA -CCAACACTCTCTGTGTGTGGTTGA -CCAACACTCTCTGTGTGTTCCGAT -CCAACACTCTCTGTGTGTTGGCAT -CCAACACTCTCTGTGTGTCGAGAT -CCAACACTCTCTGTGTGTTACCAC -CCAACACTCTCTGTGTGTCAGAAC -CCAACACTCTCTGTGTGTGTCTAC -CCAACACTCTCTGTGTGTACGTAC -CCAACACTCTCTGTGTGTAGTGAC -CCAACACTCTCTGTGTGTCTGTAG -CCAACACTCTCTGTGTGTCCTAAG -CCAACACTCTCTGTGTGTGTTCAG -CCAACACTCTCTGTGTGTGCATAG -CCAACACTCTCTGTGTGTGACAAG -CCAACACTCTCTGTGTGTAAGCAG -CCAACACTCTCTGTGTGTCGTCAA -CCAACACTCTCTGTGTGTGCTGAA -CCAACACTCTCTGTGTGTAGTACG -CCAACACTCTCTGTGTGTATCCGA -CCAACACTCTCTGTGTGTATGGGA -CCAACACTCTCTGTGTGTGTGCAA -CCAACACTCTCTGTGTGTGAGGAA -CCAACACTCTCTGTGTGTCAGGTA -CCAACACTCTCTGTGTGTGACTCT -CCAACACTCTCTGTGTGTAGTCCT -CCAACACTCTCTGTGTGTTAAGCC -CCAACACTCTCTGTGTGTATAGCC -CCAACACTCTCTGTGTGTTAACCG -CCAACACTCTCTGTGTGTATGCCA -CCAACACTCTCTGTGCTAGGAAAC -CCAACACTCTCTGTGCTAAACACC -CCAACACTCTCTGTGCTAATCGAG -CCAACACTCTCTGTGCTACTCCTT -CCAACACTCTCTGTGCTACCTGTT -CCAACACTCTCTGTGCTACGGTTT -CCAACACTCTCTGTGCTAGTGGTT -CCAACACTCTCTGTGCTAGCCTTT -CCAACACTCTCTGTGCTAGGTCTT -CCAACACTCTCTGTGCTAACGCTT -CCAACACTCTCTGTGCTAAGCGTT -CCAACACTCTCTGTGCTATTCGTC -CCAACACTCTCTGTGCTATCTCTC -CCAACACTCTCTGTGCTATGGATC -CCAACACTCTCTGTGCTACACTTC -CCAACACTCTCTGTGCTAGTACTC -CCAACACTCTCTGTGCTAGATGTC -CCAACACTCTCTGTGCTAACAGTC -CCAACACTCTCTGTGCTATTGCTG -CCAACACTCTCTGTGCTATCCATG -CCAACACTCTCTGTGCTATGTGTG -CCAACACTCTCTGTGCTACTAGTG -CCAACACTCTCTGTGCTACATCTG -CCAACACTCTCTGTGCTAGAGTTG -CCAACACTCTCTGTGCTAAGACTG -CCAACACTCTCTGTGCTATCGGTA -CCAACACTCTCTGTGCTATGCCTA -CCAACACTCTCTGTGCTACCACTA -CCAACACTCTCTGTGCTAGGAGTA -CCAACACTCTCTGTGCTATCGTCT -CCAACACTCTCTGTGCTATGCACT -CCAACACTCTCTGTGCTACTGACT -CCAACACTCTCTGTGCTACAACCT -CCAACACTCTCTGTGCTAGCTACT -CCAACACTCTCTGTGCTAGGATCT -CCAACACTCTCTGTGCTAAAGGCT -CCAACACTCTCTGTGCTATCAACC -CCAACACTCTCTGTGCTATGTTCC -CCAACACTCTCTGTGCTAATTCCC -CCAACACTCTCTGTGCTATTCTCG -CCAACACTCTCTGTGCTATAGACG -CCAACACTCTCTGTGCTAGTAACG -CCAACACTCTCTGTGCTAACTTCG -CCAACACTCTCTGTGCTATACGCA -CCAACACTCTCTGTGCTACTTGCA -CCAACACTCTCTGTGCTACGAACA -CCAACACTCTCTGTGCTACAGTCA -CCAACACTCTCTGTGCTAGATCCA -CCAACACTCTCTGTGCTAACGACA -CCAACACTCTCTGTGCTAAGCTCA -CCAACACTCTCTGTGCTATCACGT -CCAACACTCTCTGTGCTACGTAGT -CCAACACTCTCTGTGCTAGTCAGT -CCAACACTCTCTGTGCTAGAAGGT -CCAACACTCTCTGTGCTAAACCGT -CCAACACTCTCTGTGCTATTGTGC -CCAACACTCTCTGTGCTACTAAGC -CCAACACTCTCTGTGCTAACTAGC -CCAACACTCTCTGTGCTAAGATGC -CCAACACTCTCTGTGCTATGAAGG -CCAACACTCTCTGTGCTACAATGG -CCAACACTCTCTGTGCTAATGAGG -CCAACACTCTCTGTGCTAAATGGG -CCAACACTCTCTGTGCTATCCTGA -CCAACACTCTCTGTGCTATAGCGA -CCAACACTCTCTGTGCTACACAGA -CCAACACTCTCTGTGCTAGCAAGA -CCAACACTCTCTGTGCTAGGTTGA -CCAACACTCTCTGTGCTATCCGAT -CCAACACTCTCTGTGCTATGGCAT -CCAACACTCTCTGTGCTACGAGAT -CCAACACTCTCTGTGCTATACCAC -CCAACACTCTCTGTGCTACAGAAC -CCAACACTCTCTGTGCTAGTCTAC -CCAACACTCTCTGTGCTAACGTAC -CCAACACTCTCTGTGCTAAGTGAC -CCAACACTCTCTGTGCTACTGTAG -CCAACACTCTCTGTGCTACCTAAG -CCAACACTCTCTGTGCTAGTTCAG -CCAACACTCTCTGTGCTAGCATAG -CCAACACTCTCTGTGCTAGACAAG -CCAACACTCTCTGTGCTAAAGCAG -CCAACACTCTCTGTGCTACGTCAA -CCAACACTCTCTGTGCTAGCTGAA -CCAACACTCTCTGTGCTAAGTACG -CCAACACTCTCTGTGCTAATCCGA -CCAACACTCTCTGTGCTAATGGGA -CCAACACTCTCTGTGCTAGTGCAA -CCAACACTCTCTGTGCTAGAGGAA -CCAACACTCTCTGTGCTACAGGTA -CCAACACTCTCTGTGCTAGACTCT -CCAACACTCTCTGTGCTAAGTCCT -CCAACACTCTCTGTGCTATAAGCC -CCAACACTCTCTGTGCTAATAGCC -CCAACACTCTCTGTGCTATAACCG -CCAACACTCTCTGTGCTAATGCCA -CCAACACTCTCTCTGCATGGAAAC -CCAACACTCTCTCTGCATAACACC -CCAACACTCTCTCTGCATATCGAG -CCAACACTCTCTCTGCATCTCCTT -CCAACACTCTCTCTGCATCCTGTT -CCAACACTCTCTCTGCATCGGTTT -CCAACACTCTCTCTGCATGTGGTT -CCAACACTCTCTCTGCATGCCTTT -CCAACACTCTCTCTGCATGGTCTT -CCAACACTCTCTCTGCATACGCTT -CCAACACTCTCTCTGCATAGCGTT -CCAACACTCTCTCTGCATTTCGTC -CCAACACTCTCTCTGCATTCTCTC -CCAACACTCTCTCTGCATTGGATC -CCAACACTCTCTCTGCATCACTTC -CCAACACTCTCTCTGCATGTACTC -CCAACACTCTCTCTGCATGATGTC -CCAACACTCTCTCTGCATACAGTC -CCAACACTCTCTCTGCATTTGCTG -CCAACACTCTCTCTGCATTCCATG -CCAACACTCTCTCTGCATTGTGTG -CCAACACTCTCTCTGCATCTAGTG -CCAACACTCTCTCTGCATCATCTG -CCAACACTCTCTCTGCATGAGTTG -CCAACACTCTCTCTGCATAGACTG -CCAACACTCTCTCTGCATTCGGTA -CCAACACTCTCTCTGCATTGCCTA -CCAACACTCTCTCTGCATCCACTA -CCAACACTCTCTCTGCATGGAGTA -CCAACACTCTCTCTGCATTCGTCT -CCAACACTCTCTCTGCATTGCACT -CCAACACTCTCTCTGCATCTGACT -CCAACACTCTCTCTGCATCAACCT -CCAACACTCTCTCTGCATGCTACT -CCAACACTCTCTCTGCATGGATCT -CCAACACTCTCTCTGCATAAGGCT -CCAACACTCTCTCTGCATTCAACC -CCAACACTCTCTCTGCATTGTTCC -CCAACACTCTCTCTGCATATTCCC -CCAACACTCTCTCTGCATTTCTCG -CCAACACTCTCTCTGCATTAGACG -CCAACACTCTCTCTGCATGTAACG -CCAACACTCTCTCTGCATACTTCG -CCAACACTCTCTCTGCATTACGCA -CCAACACTCTCTCTGCATCTTGCA -CCAACACTCTCTCTGCATCGAACA -CCAACACTCTCTCTGCATCAGTCA -CCAACACTCTCTCTGCATGATCCA -CCAACACTCTCTCTGCATACGACA -CCAACACTCTCTCTGCATAGCTCA -CCAACACTCTCTCTGCATTCACGT -CCAACACTCTCTCTGCATCGTAGT -CCAACACTCTCTCTGCATGTCAGT -CCAACACTCTCTCTGCATGAAGGT -CCAACACTCTCTCTGCATAACCGT -CCAACACTCTCTCTGCATTTGTGC -CCAACACTCTCTCTGCATCTAAGC -CCAACACTCTCTCTGCATACTAGC -CCAACACTCTCTCTGCATAGATGC -CCAACACTCTCTCTGCATTGAAGG -CCAACACTCTCTCTGCATCAATGG -CCAACACTCTCTCTGCATATGAGG -CCAACACTCTCTCTGCATAATGGG -CCAACACTCTCTCTGCATTCCTGA -CCAACACTCTCTCTGCATTAGCGA -CCAACACTCTCTCTGCATCACAGA -CCAACACTCTCTCTGCATGCAAGA -CCAACACTCTCTCTGCATGGTTGA -CCAACACTCTCTCTGCATTCCGAT -CCAACACTCTCTCTGCATTGGCAT -CCAACACTCTCTCTGCATCGAGAT -CCAACACTCTCTCTGCATTACCAC -CCAACACTCTCTCTGCATCAGAAC -CCAACACTCTCTCTGCATGTCTAC -CCAACACTCTCTCTGCATACGTAC -CCAACACTCTCTCTGCATAGTGAC -CCAACACTCTCTCTGCATCTGTAG -CCAACACTCTCTCTGCATCCTAAG -CCAACACTCTCTCTGCATGTTCAG -CCAACACTCTCTCTGCATGCATAG -CCAACACTCTCTCTGCATGACAAG -CCAACACTCTCTCTGCATAAGCAG -CCAACACTCTCTCTGCATCGTCAA -CCAACACTCTCTCTGCATGCTGAA -CCAACACTCTCTCTGCATAGTACG -CCAACACTCTCTCTGCATATCCGA -CCAACACTCTCTCTGCATATGGGA -CCAACACTCTCTCTGCATGTGCAA -CCAACACTCTCTCTGCATGAGGAA -CCAACACTCTCTCTGCATCAGGTA -CCAACACTCTCTCTGCATGACTCT -CCAACACTCTCTCTGCATAGTCCT -CCAACACTCTCTCTGCATTAAGCC -CCAACACTCTCTCTGCATATAGCC -CCAACACTCTCTCTGCATTAACCG -CCAACACTCTCTCTGCATATGCCA -CCAACACTCTCTTTGGAGGGAAAC -CCAACACTCTCTTTGGAGAACACC -CCAACACTCTCTTTGGAGATCGAG -CCAACACTCTCTTTGGAGCTCCTT -CCAACACTCTCTTTGGAGCCTGTT -CCAACACTCTCTTTGGAGCGGTTT -CCAACACTCTCTTTGGAGGTGGTT -CCAACACTCTCTTTGGAGGCCTTT -CCAACACTCTCTTTGGAGGGTCTT -CCAACACTCTCTTTGGAGACGCTT -CCAACACTCTCTTTGGAGAGCGTT -CCAACACTCTCTTTGGAGTTCGTC -CCAACACTCTCTTTGGAGTCTCTC -CCAACACTCTCTTTGGAGTGGATC -CCAACACTCTCTTTGGAGCACTTC -CCAACACTCTCTTTGGAGGTACTC -CCAACACTCTCTTTGGAGGATGTC -CCAACACTCTCTTTGGAGACAGTC -CCAACACTCTCTTTGGAGTTGCTG -CCAACACTCTCTTTGGAGTCCATG -CCAACACTCTCTTTGGAGTGTGTG -CCAACACTCTCTTTGGAGCTAGTG -CCAACACTCTCTTTGGAGCATCTG -CCAACACTCTCTTTGGAGGAGTTG -CCAACACTCTCTTTGGAGAGACTG -CCAACACTCTCTTTGGAGTCGGTA -CCAACACTCTCTTTGGAGTGCCTA -CCAACACTCTCTTTGGAGCCACTA -CCAACACTCTCTTTGGAGGGAGTA -CCAACACTCTCTTTGGAGTCGTCT -CCAACACTCTCTTTGGAGTGCACT -CCAACACTCTCTTTGGAGCTGACT -CCAACACTCTCTTTGGAGCAACCT -CCAACACTCTCTTTGGAGGCTACT -CCAACACTCTCTTTGGAGGGATCT -CCAACACTCTCTTTGGAGAAGGCT -CCAACACTCTCTTTGGAGTCAACC -CCAACACTCTCTTTGGAGTGTTCC -CCAACACTCTCTTTGGAGATTCCC -CCAACACTCTCTTTGGAGTTCTCG -CCAACACTCTCTTTGGAGTAGACG -CCAACACTCTCTTTGGAGGTAACG -CCAACACTCTCTTTGGAGACTTCG -CCAACACTCTCTTTGGAGTACGCA -CCAACACTCTCTTTGGAGCTTGCA -CCAACACTCTCTTTGGAGCGAACA -CCAACACTCTCTTTGGAGCAGTCA -CCAACACTCTCTTTGGAGGATCCA -CCAACACTCTCTTTGGAGACGACA -CCAACACTCTCTTTGGAGAGCTCA -CCAACACTCTCTTTGGAGTCACGT -CCAACACTCTCTTTGGAGCGTAGT -CCAACACTCTCTTTGGAGGTCAGT -CCAACACTCTCTTTGGAGGAAGGT -CCAACACTCTCTTTGGAGAACCGT -CCAACACTCTCTTTGGAGTTGTGC -CCAACACTCTCTTTGGAGCTAAGC -CCAACACTCTCTTTGGAGACTAGC -CCAACACTCTCTTTGGAGAGATGC -CCAACACTCTCTTTGGAGTGAAGG -CCAACACTCTCTTTGGAGCAATGG -CCAACACTCTCTTTGGAGATGAGG -CCAACACTCTCTTTGGAGAATGGG -CCAACACTCTCTTTGGAGTCCTGA -CCAACACTCTCTTTGGAGTAGCGA -CCAACACTCTCTTTGGAGCACAGA -CCAACACTCTCTTTGGAGGCAAGA -CCAACACTCTCTTTGGAGGGTTGA -CCAACACTCTCTTTGGAGTCCGAT -CCAACACTCTCTTTGGAGTGGCAT -CCAACACTCTCTTTGGAGCGAGAT -CCAACACTCTCTTTGGAGTACCAC -CCAACACTCTCTTTGGAGCAGAAC -CCAACACTCTCTTTGGAGGTCTAC -CCAACACTCTCTTTGGAGACGTAC -CCAACACTCTCTTTGGAGAGTGAC -CCAACACTCTCTTTGGAGCTGTAG -CCAACACTCTCTTTGGAGCCTAAG -CCAACACTCTCTTTGGAGGTTCAG -CCAACACTCTCTTTGGAGGCATAG -CCAACACTCTCTTTGGAGGACAAG -CCAACACTCTCTTTGGAGAAGCAG -CCAACACTCTCTTTGGAGCGTCAA -CCAACACTCTCTTTGGAGGCTGAA -CCAACACTCTCTTTGGAGAGTACG -CCAACACTCTCTTTGGAGATCCGA -CCAACACTCTCTTTGGAGATGGGA -CCAACACTCTCTTTGGAGGTGCAA -CCAACACTCTCTTTGGAGGAGGAA -CCAACACTCTCTTTGGAGCAGGTA -CCAACACTCTCTTTGGAGGACTCT -CCAACACTCTCTTTGGAGAGTCCT -CCAACACTCTCTTTGGAGTAAGCC -CCAACACTCTCTTTGGAGATAGCC -CCAACACTCTCTTTGGAGTAACCG -CCAACACTCTCTTTGGAGATGCCA -CCAACACTCTCTCTGAGAGGAAAC -CCAACACTCTCTCTGAGAAACACC -CCAACACTCTCTCTGAGAATCGAG -CCAACACTCTCTCTGAGACTCCTT -CCAACACTCTCTCTGAGACCTGTT -CCAACACTCTCTCTGAGACGGTTT -CCAACACTCTCTCTGAGAGTGGTT -CCAACACTCTCTCTGAGAGCCTTT -CCAACACTCTCTCTGAGAGGTCTT -CCAACACTCTCTCTGAGAACGCTT -CCAACACTCTCTCTGAGAAGCGTT -CCAACACTCTCTCTGAGATTCGTC -CCAACACTCTCTCTGAGATCTCTC -CCAACACTCTCTCTGAGATGGATC -CCAACACTCTCTCTGAGACACTTC -CCAACACTCTCTCTGAGAGTACTC -CCAACACTCTCTCTGAGAGATGTC -CCAACACTCTCTCTGAGAACAGTC -CCAACACTCTCTCTGAGATTGCTG -CCAACACTCTCTCTGAGATCCATG -CCAACACTCTCTCTGAGATGTGTG -CCAACACTCTCTCTGAGACTAGTG -CCAACACTCTCTCTGAGACATCTG -CCAACACTCTCTCTGAGAGAGTTG -CCAACACTCTCTCTGAGAAGACTG -CCAACACTCTCTCTGAGATCGGTA -CCAACACTCTCTCTGAGATGCCTA -CCAACACTCTCTCTGAGACCACTA -CCAACACTCTCTCTGAGAGGAGTA -CCAACACTCTCTCTGAGATCGTCT -CCAACACTCTCTCTGAGATGCACT -CCAACACTCTCTCTGAGACTGACT -CCAACACTCTCTCTGAGACAACCT -CCAACACTCTCTCTGAGAGCTACT -CCAACACTCTCTCTGAGAGGATCT -CCAACACTCTCTCTGAGAAAGGCT -CCAACACTCTCTCTGAGATCAACC -CCAACACTCTCTCTGAGATGTTCC -CCAACACTCTCTCTGAGAATTCCC -CCAACACTCTCTCTGAGATTCTCG -CCAACACTCTCTCTGAGATAGACG -CCAACACTCTCTCTGAGAGTAACG -CCAACACTCTCTCTGAGAACTTCG -CCAACACTCTCTCTGAGATACGCA -CCAACACTCTCTCTGAGACTTGCA -CCAACACTCTCTCTGAGACGAACA -CCAACACTCTCTCTGAGACAGTCA -CCAACACTCTCTCTGAGAGATCCA -CCAACACTCTCTCTGAGAACGACA -CCAACACTCTCTCTGAGAAGCTCA -CCAACACTCTCTCTGAGATCACGT -CCAACACTCTCTCTGAGACGTAGT -CCAACACTCTCTCTGAGAGTCAGT -CCAACACTCTCTCTGAGAGAAGGT -CCAACACTCTCTCTGAGAAACCGT -CCAACACTCTCTCTGAGATTGTGC -CCAACACTCTCTCTGAGACTAAGC -CCAACACTCTCTCTGAGAACTAGC -CCAACACTCTCTCTGAGAAGATGC -CCAACACTCTCTCTGAGATGAAGG -CCAACACTCTCTCTGAGACAATGG -CCAACACTCTCTCTGAGAATGAGG -CCAACACTCTCTCTGAGAAATGGG -CCAACACTCTCTCTGAGATCCTGA -CCAACACTCTCTCTGAGATAGCGA -CCAACACTCTCTCTGAGACACAGA -CCAACACTCTCTCTGAGAGCAAGA -CCAACACTCTCTCTGAGAGGTTGA -CCAACACTCTCTCTGAGATCCGAT -CCAACACTCTCTCTGAGATGGCAT -CCAACACTCTCTCTGAGACGAGAT -CCAACACTCTCTCTGAGATACCAC -CCAACACTCTCTCTGAGACAGAAC -CCAACACTCTCTCTGAGAGTCTAC -CCAACACTCTCTCTGAGAACGTAC -CCAACACTCTCTCTGAGAAGTGAC -CCAACACTCTCTCTGAGACTGTAG -CCAACACTCTCTCTGAGACCTAAG -CCAACACTCTCTCTGAGAGTTCAG -CCAACACTCTCTCTGAGAGCATAG -CCAACACTCTCTCTGAGAGACAAG -CCAACACTCTCTCTGAGAAAGCAG -CCAACACTCTCTCTGAGACGTCAA -CCAACACTCTCTCTGAGAGCTGAA -CCAACACTCTCTCTGAGAAGTACG -CCAACACTCTCTCTGAGAATCCGA -CCAACACTCTCTCTGAGAATGGGA -CCAACACTCTCTCTGAGAGTGCAA -CCAACACTCTCTCTGAGAGAGGAA -CCAACACTCTCTCTGAGACAGGTA -CCAACACTCTCTCTGAGAGACTCT -CCAACACTCTCTCTGAGAAGTCCT -CCAACACTCTCTCTGAGATAAGCC -CCAACACTCTCTCTGAGAATAGCC -CCAACACTCTCTCTGAGATAACCG -CCAACACTCTCTCTGAGAATGCCA -CCAACACTCTCTGTATCGGGAAAC -CCAACACTCTCTGTATCGAACACC -CCAACACTCTCTGTATCGATCGAG -CCAACACTCTCTGTATCGCTCCTT -CCAACACTCTCTGTATCGCCTGTT -CCAACACTCTCTGTATCGCGGTTT -CCAACACTCTCTGTATCGGTGGTT -CCAACACTCTCTGTATCGGCCTTT -CCAACACTCTCTGTATCGGGTCTT -CCAACACTCTCTGTATCGACGCTT -CCAACACTCTCTGTATCGAGCGTT -CCAACACTCTCTGTATCGTTCGTC -CCAACACTCTCTGTATCGTCTCTC -CCAACACTCTCTGTATCGTGGATC -CCAACACTCTCTGTATCGCACTTC -CCAACACTCTCTGTATCGGTACTC -CCAACACTCTCTGTATCGGATGTC -CCAACACTCTCTGTATCGACAGTC -CCAACACTCTCTGTATCGTTGCTG -CCAACACTCTCTGTATCGTCCATG -CCAACACTCTCTGTATCGTGTGTG -CCAACACTCTCTGTATCGCTAGTG -CCAACACTCTCTGTATCGCATCTG -CCAACACTCTCTGTATCGGAGTTG -CCAACACTCTCTGTATCGAGACTG -CCAACACTCTCTGTATCGTCGGTA -CCAACACTCTCTGTATCGTGCCTA -CCAACACTCTCTGTATCGCCACTA -CCAACACTCTCTGTATCGGGAGTA -CCAACACTCTCTGTATCGTCGTCT -CCAACACTCTCTGTATCGTGCACT -CCAACACTCTCTGTATCGCTGACT -CCAACACTCTCTGTATCGCAACCT -CCAACACTCTCTGTATCGGCTACT -CCAACACTCTCTGTATCGGGATCT -CCAACACTCTCTGTATCGAAGGCT -CCAACACTCTCTGTATCGTCAACC -CCAACACTCTCTGTATCGTGTTCC -CCAACACTCTCTGTATCGATTCCC -CCAACACTCTCTGTATCGTTCTCG -CCAACACTCTCTGTATCGTAGACG -CCAACACTCTCTGTATCGGTAACG -CCAACACTCTCTGTATCGACTTCG -CCAACACTCTCTGTATCGTACGCA -CCAACACTCTCTGTATCGCTTGCA -CCAACACTCTCTGTATCGCGAACA -CCAACACTCTCTGTATCGCAGTCA -CCAACACTCTCTGTATCGGATCCA -CCAACACTCTCTGTATCGACGACA -CCAACACTCTCTGTATCGAGCTCA -CCAACACTCTCTGTATCGTCACGT -CCAACACTCTCTGTATCGCGTAGT -CCAACACTCTCTGTATCGGTCAGT -CCAACACTCTCTGTATCGGAAGGT -CCAACACTCTCTGTATCGAACCGT -CCAACACTCTCTGTATCGTTGTGC -CCAACACTCTCTGTATCGCTAAGC -CCAACACTCTCTGTATCGACTAGC -CCAACACTCTCTGTATCGAGATGC -CCAACACTCTCTGTATCGTGAAGG -CCAACACTCTCTGTATCGCAATGG -CCAACACTCTCTGTATCGATGAGG -CCAACACTCTCTGTATCGAATGGG -CCAACACTCTCTGTATCGTCCTGA -CCAACACTCTCTGTATCGTAGCGA -CCAACACTCTCTGTATCGCACAGA -CCAACACTCTCTGTATCGGCAAGA -CCAACACTCTCTGTATCGGGTTGA -CCAACACTCTCTGTATCGTCCGAT -CCAACACTCTCTGTATCGTGGCAT -CCAACACTCTCTGTATCGCGAGAT -CCAACACTCTCTGTATCGTACCAC -CCAACACTCTCTGTATCGCAGAAC -CCAACACTCTCTGTATCGGTCTAC -CCAACACTCTCTGTATCGACGTAC -CCAACACTCTCTGTATCGAGTGAC -CCAACACTCTCTGTATCGCTGTAG -CCAACACTCTCTGTATCGCCTAAG -CCAACACTCTCTGTATCGGTTCAG -CCAACACTCTCTGTATCGGCATAG -CCAACACTCTCTGTATCGGACAAG -CCAACACTCTCTGTATCGAAGCAG -CCAACACTCTCTGTATCGCGTCAA -CCAACACTCTCTGTATCGGCTGAA -CCAACACTCTCTGTATCGAGTACG -CCAACACTCTCTGTATCGATCCGA -CCAACACTCTCTGTATCGATGGGA -CCAACACTCTCTGTATCGGTGCAA -CCAACACTCTCTGTATCGGAGGAA -CCAACACTCTCTGTATCGCAGGTA -CCAACACTCTCTGTATCGGACTCT -CCAACACTCTCTGTATCGAGTCCT -CCAACACTCTCTGTATCGTAAGCC -CCAACACTCTCTGTATCGATAGCC -CCAACACTCTCTGTATCGTAACCG -CCAACACTCTCTGTATCGATGCCA -CCAACACTCTCTCTATGCGGAAAC -CCAACACTCTCTCTATGCAACACC -CCAACACTCTCTCTATGCATCGAG -CCAACACTCTCTCTATGCCTCCTT -CCAACACTCTCTCTATGCCCTGTT -CCAACACTCTCTCTATGCCGGTTT -CCAACACTCTCTCTATGCGTGGTT -CCAACACTCTCTCTATGCGCCTTT -CCAACACTCTCTCTATGCGGTCTT -CCAACACTCTCTCTATGCACGCTT -CCAACACTCTCTCTATGCAGCGTT -CCAACACTCTCTCTATGCTTCGTC -CCAACACTCTCTCTATGCTCTCTC -CCAACACTCTCTCTATGCTGGATC -CCAACACTCTCTCTATGCCACTTC -CCAACACTCTCTCTATGCGTACTC -CCAACACTCTCTCTATGCGATGTC -CCAACACTCTCTCTATGCACAGTC -CCAACACTCTCTCTATGCTTGCTG -CCAACACTCTCTCTATGCTCCATG -CCAACACTCTCTCTATGCTGTGTG -CCAACACTCTCTCTATGCCTAGTG -CCAACACTCTCTCTATGCCATCTG -CCAACACTCTCTCTATGCGAGTTG -CCAACACTCTCTCTATGCAGACTG -CCAACACTCTCTCTATGCTCGGTA -CCAACACTCTCTCTATGCTGCCTA -CCAACACTCTCTCTATGCCCACTA -CCAACACTCTCTCTATGCGGAGTA -CCAACACTCTCTCTATGCTCGTCT -CCAACACTCTCTCTATGCTGCACT -CCAACACTCTCTCTATGCCTGACT -CCAACACTCTCTCTATGCCAACCT -CCAACACTCTCTCTATGCGCTACT -CCAACACTCTCTCTATGCGGATCT -CCAACACTCTCTCTATGCAAGGCT -CCAACACTCTCTCTATGCTCAACC -CCAACACTCTCTCTATGCTGTTCC -CCAACACTCTCTCTATGCATTCCC -CCAACACTCTCTCTATGCTTCTCG -CCAACACTCTCTCTATGCTAGACG -CCAACACTCTCTCTATGCGTAACG -CCAACACTCTCTCTATGCACTTCG -CCAACACTCTCTCTATGCTACGCA -CCAACACTCTCTCTATGCCTTGCA -CCAACACTCTCTCTATGCCGAACA -CCAACACTCTCTCTATGCCAGTCA -CCAACACTCTCTCTATGCGATCCA -CCAACACTCTCTCTATGCACGACA -CCAACACTCTCTCTATGCAGCTCA -CCAACACTCTCTCTATGCTCACGT -CCAACACTCTCTCTATGCCGTAGT -CCAACACTCTCTCTATGCGTCAGT -CCAACACTCTCTCTATGCGAAGGT -CCAACACTCTCTCTATGCAACCGT -CCAACACTCTCTCTATGCTTGTGC -CCAACACTCTCTCTATGCCTAAGC -CCAACACTCTCTCTATGCACTAGC -CCAACACTCTCTCTATGCAGATGC -CCAACACTCTCTCTATGCTGAAGG -CCAACACTCTCTCTATGCCAATGG -CCAACACTCTCTCTATGCATGAGG -CCAACACTCTCTCTATGCAATGGG -CCAACACTCTCTCTATGCTCCTGA -CCAACACTCTCTCTATGCTAGCGA -CCAACACTCTCTCTATGCCACAGA -CCAACACTCTCTCTATGCGCAAGA -CCAACACTCTCTCTATGCGGTTGA -CCAACACTCTCTCTATGCTCCGAT -CCAACACTCTCTCTATGCTGGCAT -CCAACACTCTCTCTATGCCGAGAT -CCAACACTCTCTCTATGCTACCAC -CCAACACTCTCTCTATGCCAGAAC -CCAACACTCTCTCTATGCGTCTAC -CCAACACTCTCTCTATGCACGTAC -CCAACACTCTCTCTATGCAGTGAC -CCAACACTCTCTCTATGCCTGTAG -CCAACACTCTCTCTATGCCCTAAG -CCAACACTCTCTCTATGCGTTCAG -CCAACACTCTCTCTATGCGCATAG -CCAACACTCTCTCTATGCGACAAG -CCAACACTCTCTCTATGCAAGCAG -CCAACACTCTCTCTATGCCGTCAA -CCAACACTCTCTCTATGCGCTGAA -CCAACACTCTCTCTATGCAGTACG -CCAACACTCTCTCTATGCATCCGA -CCAACACTCTCTCTATGCATGGGA -CCAACACTCTCTCTATGCGTGCAA -CCAACACTCTCTCTATGCGAGGAA -CCAACACTCTCTCTATGCCAGGTA -CCAACACTCTCTCTATGCGACTCT -CCAACACTCTCTCTATGCAGTCCT -CCAACACTCTCTCTATGCTAAGCC -CCAACACTCTCTCTATGCATAGCC -CCAACACTCTCTCTATGCTAACCG -CCAACACTCTCTCTATGCATGCCA -CCAACACTCTCTCTACCAGGAAAC -CCAACACTCTCTCTACCAAACACC -CCAACACTCTCTCTACCAATCGAG -CCAACACTCTCTCTACCACTCCTT -CCAACACTCTCTCTACCACCTGTT -CCAACACTCTCTCTACCACGGTTT -CCAACACTCTCTCTACCAGTGGTT -CCAACACTCTCTCTACCAGCCTTT -CCAACACTCTCTCTACCAGGTCTT -CCAACACTCTCTCTACCAACGCTT -CCAACACTCTCTCTACCAAGCGTT -CCAACACTCTCTCTACCATTCGTC -CCAACACTCTCTCTACCATCTCTC -CCAACACTCTCTCTACCATGGATC -CCAACACTCTCTCTACCACACTTC -CCAACACTCTCTCTACCAGTACTC -CCAACACTCTCTCTACCAGATGTC -CCAACACTCTCTCTACCAACAGTC -CCAACACTCTCTCTACCATTGCTG -CCAACACTCTCTCTACCATCCATG -CCAACACTCTCTCTACCATGTGTG -CCAACACTCTCTCTACCACTAGTG -CCAACACTCTCTCTACCACATCTG -CCAACACTCTCTCTACCAGAGTTG -CCAACACTCTCTCTACCAAGACTG -CCAACACTCTCTCTACCATCGGTA -CCAACACTCTCTCTACCATGCCTA -CCAACACTCTCTCTACCACCACTA -CCAACACTCTCTCTACCAGGAGTA -CCAACACTCTCTCTACCATCGTCT -CCAACACTCTCTCTACCATGCACT -CCAACACTCTCTCTACCACTGACT -CCAACACTCTCTCTACCACAACCT -CCAACACTCTCTCTACCAGCTACT -CCAACACTCTCTCTACCAGGATCT -CCAACACTCTCTCTACCAAAGGCT -CCAACACTCTCTCTACCATCAACC -CCAACACTCTCTCTACCATGTTCC -CCAACACTCTCTCTACCAATTCCC -CCAACACTCTCTCTACCATTCTCG -CCAACACTCTCTCTACCATAGACG -CCAACACTCTCTCTACCAGTAACG -CCAACACTCTCTCTACCAACTTCG -CCAACACTCTCTCTACCATACGCA -CCAACACTCTCTCTACCACTTGCA -CCAACACTCTCTCTACCACGAACA -CCAACACTCTCTCTACCACAGTCA -CCAACACTCTCTCTACCAGATCCA -CCAACACTCTCTCTACCAACGACA -CCAACACTCTCTCTACCAAGCTCA -CCAACACTCTCTCTACCATCACGT -CCAACACTCTCTCTACCACGTAGT -CCAACACTCTCTCTACCAGTCAGT -CCAACACTCTCTCTACCAGAAGGT -CCAACACTCTCTCTACCAAACCGT -CCAACACTCTCTCTACCATTGTGC -CCAACACTCTCTCTACCACTAAGC -CCAACACTCTCTCTACCAACTAGC -CCAACACTCTCTCTACCAAGATGC -CCAACACTCTCTCTACCATGAAGG -CCAACACTCTCTCTACCACAATGG -CCAACACTCTCTCTACCAATGAGG -CCAACACTCTCTCTACCAAATGGG -CCAACACTCTCTCTACCATCCTGA -CCAACACTCTCTCTACCATAGCGA -CCAACACTCTCTCTACCACACAGA -CCAACACTCTCTCTACCAGCAAGA -CCAACACTCTCTCTACCAGGTTGA -CCAACACTCTCTCTACCATCCGAT -CCAACACTCTCTCTACCATGGCAT -CCAACACTCTCTCTACCACGAGAT -CCAACACTCTCTCTACCATACCAC -CCAACACTCTCTCTACCACAGAAC -CCAACACTCTCTCTACCAGTCTAC -CCAACACTCTCTCTACCAACGTAC -CCAACACTCTCTCTACCAAGTGAC -CCAACACTCTCTCTACCACTGTAG -CCAACACTCTCTCTACCACCTAAG -CCAACACTCTCTCTACCAGTTCAG -CCAACACTCTCTCTACCAGCATAG -CCAACACTCTCTCTACCAGACAAG -CCAACACTCTCTCTACCAAAGCAG -CCAACACTCTCTCTACCACGTCAA -CCAACACTCTCTCTACCAGCTGAA -CCAACACTCTCTCTACCAAGTACG -CCAACACTCTCTCTACCAATCCGA -CCAACACTCTCTCTACCAATGGGA -CCAACACTCTCTCTACCAGTGCAA -CCAACACTCTCTCTACCAGAGGAA -CCAACACTCTCTCTACCACAGGTA -CCAACACTCTCTCTACCAGACTCT -CCAACACTCTCTCTACCAAGTCCT -CCAACACTCTCTCTACCATAAGCC -CCAACACTCTCTCTACCAATAGCC -CCAACACTCTCTCTACCATAACCG -CCAACACTCTCTCTACCAATGCCA -CCAACACTCTCTGTAGGAGGAAAC -CCAACACTCTCTGTAGGAAACACC -CCAACACTCTCTGTAGGAATCGAG -CCAACACTCTCTGTAGGACTCCTT -CCAACACTCTCTGTAGGACCTGTT -CCAACACTCTCTGTAGGACGGTTT -CCAACACTCTCTGTAGGAGTGGTT -CCAACACTCTCTGTAGGAGCCTTT -CCAACACTCTCTGTAGGAGGTCTT -CCAACACTCTCTGTAGGAACGCTT -CCAACACTCTCTGTAGGAAGCGTT -CCAACACTCTCTGTAGGATTCGTC -CCAACACTCTCTGTAGGATCTCTC -CCAACACTCTCTGTAGGATGGATC -CCAACACTCTCTGTAGGACACTTC -CCAACACTCTCTGTAGGAGTACTC -CCAACACTCTCTGTAGGAGATGTC -CCAACACTCTCTGTAGGAACAGTC -CCAACACTCTCTGTAGGATTGCTG -CCAACACTCTCTGTAGGATCCATG -CCAACACTCTCTGTAGGATGTGTG -CCAACACTCTCTGTAGGACTAGTG -CCAACACTCTCTGTAGGACATCTG -CCAACACTCTCTGTAGGAGAGTTG -CCAACACTCTCTGTAGGAAGACTG -CCAACACTCTCTGTAGGATCGGTA -CCAACACTCTCTGTAGGATGCCTA -CCAACACTCTCTGTAGGACCACTA -CCAACACTCTCTGTAGGAGGAGTA -CCAACACTCTCTGTAGGATCGTCT -CCAACACTCTCTGTAGGATGCACT -CCAACACTCTCTGTAGGACTGACT -CCAACACTCTCTGTAGGACAACCT -CCAACACTCTCTGTAGGAGCTACT -CCAACACTCTCTGTAGGAGGATCT -CCAACACTCTCTGTAGGAAAGGCT -CCAACACTCTCTGTAGGATCAACC -CCAACACTCTCTGTAGGATGTTCC -CCAACACTCTCTGTAGGAATTCCC -CCAACACTCTCTGTAGGATTCTCG -CCAACACTCTCTGTAGGATAGACG -CCAACACTCTCTGTAGGAGTAACG -CCAACACTCTCTGTAGGAACTTCG -CCAACACTCTCTGTAGGATACGCA -CCAACACTCTCTGTAGGACTTGCA -CCAACACTCTCTGTAGGACGAACA -CCAACACTCTCTGTAGGACAGTCA -CCAACACTCTCTGTAGGAGATCCA -CCAACACTCTCTGTAGGAACGACA -CCAACACTCTCTGTAGGAAGCTCA -CCAACACTCTCTGTAGGATCACGT -CCAACACTCTCTGTAGGACGTAGT -CCAACACTCTCTGTAGGAGTCAGT -CCAACACTCTCTGTAGGAGAAGGT -CCAACACTCTCTGTAGGAAACCGT -CCAACACTCTCTGTAGGATTGTGC -CCAACACTCTCTGTAGGACTAAGC -CCAACACTCTCTGTAGGAACTAGC -CCAACACTCTCTGTAGGAAGATGC -CCAACACTCTCTGTAGGATGAAGG -CCAACACTCTCTGTAGGACAATGG -CCAACACTCTCTGTAGGAATGAGG -CCAACACTCTCTGTAGGAAATGGG -CCAACACTCTCTGTAGGATCCTGA -CCAACACTCTCTGTAGGATAGCGA -CCAACACTCTCTGTAGGACACAGA -CCAACACTCTCTGTAGGAGCAAGA -CCAACACTCTCTGTAGGAGGTTGA -CCAACACTCTCTGTAGGATCCGAT -CCAACACTCTCTGTAGGATGGCAT -CCAACACTCTCTGTAGGACGAGAT -CCAACACTCTCTGTAGGATACCAC -CCAACACTCTCTGTAGGACAGAAC -CCAACACTCTCTGTAGGAGTCTAC -CCAACACTCTCTGTAGGAACGTAC -CCAACACTCTCTGTAGGAAGTGAC -CCAACACTCTCTGTAGGACTGTAG -CCAACACTCTCTGTAGGACCTAAG -CCAACACTCTCTGTAGGAGTTCAG -CCAACACTCTCTGTAGGAGCATAG -CCAACACTCTCTGTAGGAGACAAG -CCAACACTCTCTGTAGGAAAGCAG -CCAACACTCTCTGTAGGACGTCAA -CCAACACTCTCTGTAGGAGCTGAA -CCAACACTCTCTGTAGGAAGTACG -CCAACACTCTCTGTAGGAATCCGA -CCAACACTCTCTGTAGGAATGGGA -CCAACACTCTCTGTAGGAGTGCAA -CCAACACTCTCTGTAGGAGAGGAA -CCAACACTCTCTGTAGGACAGGTA -CCAACACTCTCTGTAGGAGACTCT -CCAACACTCTCTGTAGGAAGTCCT -CCAACACTCTCTGTAGGATAAGCC -CCAACACTCTCTGTAGGAATAGCC -CCAACACTCTCTGTAGGATAACCG -CCAACACTCTCTGTAGGAATGCCA -CCAACACTCTCTTCTTCGGGAAAC -CCAACACTCTCTTCTTCGAACACC -CCAACACTCTCTTCTTCGATCGAG -CCAACACTCTCTTCTTCGCTCCTT -CCAACACTCTCTTCTTCGCCTGTT -CCAACACTCTCTTCTTCGCGGTTT -CCAACACTCTCTTCTTCGGTGGTT -CCAACACTCTCTTCTTCGGCCTTT -CCAACACTCTCTTCTTCGGGTCTT -CCAACACTCTCTTCTTCGACGCTT -CCAACACTCTCTTCTTCGAGCGTT -CCAACACTCTCTTCTTCGTTCGTC -CCAACACTCTCTTCTTCGTCTCTC -CCAACACTCTCTTCTTCGTGGATC -CCAACACTCTCTTCTTCGCACTTC -CCAACACTCTCTTCTTCGGTACTC -CCAACACTCTCTTCTTCGGATGTC -CCAACACTCTCTTCTTCGACAGTC -CCAACACTCTCTTCTTCGTTGCTG -CCAACACTCTCTTCTTCGTCCATG -CCAACACTCTCTTCTTCGTGTGTG -CCAACACTCTCTTCTTCGCTAGTG -CCAACACTCTCTTCTTCGCATCTG -CCAACACTCTCTTCTTCGGAGTTG -CCAACACTCTCTTCTTCGAGACTG -CCAACACTCTCTTCTTCGTCGGTA -CCAACACTCTCTTCTTCGTGCCTA -CCAACACTCTCTTCTTCGCCACTA -CCAACACTCTCTTCTTCGGGAGTA -CCAACACTCTCTTCTTCGTCGTCT -CCAACACTCTCTTCTTCGTGCACT -CCAACACTCTCTTCTTCGCTGACT -CCAACACTCTCTTCTTCGCAACCT -CCAACACTCTCTTCTTCGGCTACT -CCAACACTCTCTTCTTCGGGATCT -CCAACACTCTCTTCTTCGAAGGCT -CCAACACTCTCTTCTTCGTCAACC -CCAACACTCTCTTCTTCGTGTTCC -CCAACACTCTCTTCTTCGATTCCC -CCAACACTCTCTTCTTCGTTCTCG -CCAACACTCTCTTCTTCGTAGACG -CCAACACTCTCTTCTTCGGTAACG -CCAACACTCTCTTCTTCGACTTCG -CCAACACTCTCTTCTTCGTACGCA -CCAACACTCTCTTCTTCGCTTGCA -CCAACACTCTCTTCTTCGCGAACA -CCAACACTCTCTTCTTCGCAGTCA -CCAACACTCTCTTCTTCGGATCCA -CCAACACTCTCTTCTTCGACGACA -CCAACACTCTCTTCTTCGAGCTCA -CCAACACTCTCTTCTTCGTCACGT -CCAACACTCTCTTCTTCGCGTAGT -CCAACACTCTCTTCTTCGGTCAGT -CCAACACTCTCTTCTTCGGAAGGT -CCAACACTCTCTTCTTCGAACCGT -CCAACACTCTCTTCTTCGTTGTGC -CCAACACTCTCTTCTTCGCTAAGC -CCAACACTCTCTTCTTCGACTAGC -CCAACACTCTCTTCTTCGAGATGC -CCAACACTCTCTTCTTCGTGAAGG -CCAACACTCTCTTCTTCGCAATGG -CCAACACTCTCTTCTTCGATGAGG -CCAACACTCTCTTCTTCGAATGGG -CCAACACTCTCTTCTTCGTCCTGA -CCAACACTCTCTTCTTCGTAGCGA -CCAACACTCTCTTCTTCGCACAGA -CCAACACTCTCTTCTTCGGCAAGA -CCAACACTCTCTTCTTCGGGTTGA -CCAACACTCTCTTCTTCGTCCGAT -CCAACACTCTCTTCTTCGTGGCAT -CCAACACTCTCTTCTTCGCGAGAT -CCAACACTCTCTTCTTCGTACCAC -CCAACACTCTCTTCTTCGCAGAAC -CCAACACTCTCTTCTTCGGTCTAC -CCAACACTCTCTTCTTCGACGTAC -CCAACACTCTCTTCTTCGAGTGAC -CCAACACTCTCTTCTTCGCTGTAG -CCAACACTCTCTTCTTCGCCTAAG -CCAACACTCTCTTCTTCGGTTCAG -CCAACACTCTCTTCTTCGGCATAG -CCAACACTCTCTTCTTCGGACAAG -CCAACACTCTCTTCTTCGAAGCAG -CCAACACTCTCTTCTTCGCGTCAA -CCAACACTCTCTTCTTCGGCTGAA -CCAACACTCTCTTCTTCGAGTACG -CCAACACTCTCTTCTTCGATCCGA -CCAACACTCTCTTCTTCGATGGGA -CCAACACTCTCTTCTTCGGTGCAA -CCAACACTCTCTTCTTCGGAGGAA -CCAACACTCTCTTCTTCGCAGGTA -CCAACACTCTCTTCTTCGGACTCT -CCAACACTCTCTTCTTCGAGTCCT -CCAACACTCTCTTCTTCGTAAGCC -CCAACACTCTCTTCTTCGATAGCC -CCAACACTCTCTTCTTCGTAACCG -CCAACACTCTCTTCTTCGATGCCA -CCAACACTCTCTACTTGCGGAAAC -CCAACACTCTCTACTTGCAACACC -CCAACACTCTCTACTTGCATCGAG -CCAACACTCTCTACTTGCCTCCTT -CCAACACTCTCTACTTGCCCTGTT -CCAACACTCTCTACTTGCCGGTTT -CCAACACTCTCTACTTGCGTGGTT -CCAACACTCTCTACTTGCGCCTTT -CCAACACTCTCTACTTGCGGTCTT -CCAACACTCTCTACTTGCACGCTT -CCAACACTCTCTACTTGCAGCGTT -CCAACACTCTCTACTTGCTTCGTC -CCAACACTCTCTACTTGCTCTCTC -CCAACACTCTCTACTTGCTGGATC -CCAACACTCTCTACTTGCCACTTC -CCAACACTCTCTACTTGCGTACTC -CCAACACTCTCTACTTGCGATGTC -CCAACACTCTCTACTTGCACAGTC -CCAACACTCTCTACTTGCTTGCTG -CCAACACTCTCTACTTGCTCCATG -CCAACACTCTCTACTTGCTGTGTG -CCAACACTCTCTACTTGCCTAGTG -CCAACACTCTCTACTTGCCATCTG -CCAACACTCTCTACTTGCGAGTTG -CCAACACTCTCTACTTGCAGACTG -CCAACACTCTCTACTTGCTCGGTA -CCAACACTCTCTACTTGCTGCCTA -CCAACACTCTCTACTTGCCCACTA -CCAACACTCTCTACTTGCGGAGTA -CCAACACTCTCTACTTGCTCGTCT -CCAACACTCTCTACTTGCTGCACT -CCAACACTCTCTACTTGCCTGACT -CCAACACTCTCTACTTGCCAACCT -CCAACACTCTCTACTTGCGCTACT -CCAACACTCTCTACTTGCGGATCT -CCAACACTCTCTACTTGCAAGGCT -CCAACACTCTCTACTTGCTCAACC -CCAACACTCTCTACTTGCTGTTCC -CCAACACTCTCTACTTGCATTCCC -CCAACACTCTCTACTTGCTTCTCG -CCAACACTCTCTACTTGCTAGACG -CCAACACTCTCTACTTGCGTAACG -CCAACACTCTCTACTTGCACTTCG -CCAACACTCTCTACTTGCTACGCA -CCAACACTCTCTACTTGCCTTGCA -CCAACACTCTCTACTTGCCGAACA -CCAACACTCTCTACTTGCCAGTCA -CCAACACTCTCTACTTGCGATCCA -CCAACACTCTCTACTTGCACGACA -CCAACACTCTCTACTTGCAGCTCA -CCAACACTCTCTACTTGCTCACGT -CCAACACTCTCTACTTGCCGTAGT -CCAACACTCTCTACTTGCGTCAGT -CCAACACTCTCTACTTGCGAAGGT -CCAACACTCTCTACTTGCAACCGT -CCAACACTCTCTACTTGCTTGTGC -CCAACACTCTCTACTTGCCTAAGC -CCAACACTCTCTACTTGCACTAGC -CCAACACTCTCTACTTGCAGATGC -CCAACACTCTCTACTTGCTGAAGG -CCAACACTCTCTACTTGCCAATGG -CCAACACTCTCTACTTGCATGAGG -CCAACACTCTCTACTTGCAATGGG -CCAACACTCTCTACTTGCTCCTGA -CCAACACTCTCTACTTGCTAGCGA -CCAACACTCTCTACTTGCCACAGA -CCAACACTCTCTACTTGCGCAAGA -CCAACACTCTCTACTTGCGGTTGA -CCAACACTCTCTACTTGCTCCGAT -CCAACACTCTCTACTTGCTGGCAT -CCAACACTCTCTACTTGCCGAGAT -CCAACACTCTCTACTTGCTACCAC -CCAACACTCTCTACTTGCCAGAAC -CCAACACTCTCTACTTGCGTCTAC -CCAACACTCTCTACTTGCACGTAC -CCAACACTCTCTACTTGCAGTGAC -CCAACACTCTCTACTTGCCTGTAG -CCAACACTCTCTACTTGCCCTAAG -CCAACACTCTCTACTTGCGTTCAG -CCAACACTCTCTACTTGCGCATAG -CCAACACTCTCTACTTGCGACAAG -CCAACACTCTCTACTTGCAAGCAG -CCAACACTCTCTACTTGCCGTCAA -CCAACACTCTCTACTTGCGCTGAA -CCAACACTCTCTACTTGCAGTACG -CCAACACTCTCTACTTGCATCCGA -CCAACACTCTCTACTTGCATGGGA -CCAACACTCTCTACTTGCGTGCAA -CCAACACTCTCTACTTGCGAGGAA -CCAACACTCTCTACTTGCCAGGTA -CCAACACTCTCTACTTGCGACTCT -CCAACACTCTCTACTTGCAGTCCT -CCAACACTCTCTACTTGCTAAGCC -CCAACACTCTCTACTTGCATAGCC -CCAACACTCTCTACTTGCTAACCG -CCAACACTCTCTACTTGCATGCCA -CCAACACTCTCTACTCTGGGAAAC -CCAACACTCTCTACTCTGAACACC -CCAACACTCTCTACTCTGATCGAG -CCAACACTCTCTACTCTGCTCCTT -CCAACACTCTCTACTCTGCCTGTT -CCAACACTCTCTACTCTGCGGTTT -CCAACACTCTCTACTCTGGTGGTT -CCAACACTCTCTACTCTGGCCTTT -CCAACACTCTCTACTCTGGGTCTT -CCAACACTCTCTACTCTGACGCTT -CCAACACTCTCTACTCTGAGCGTT -CCAACACTCTCTACTCTGTTCGTC -CCAACACTCTCTACTCTGTCTCTC -CCAACACTCTCTACTCTGTGGATC -CCAACACTCTCTACTCTGCACTTC -CCAACACTCTCTACTCTGGTACTC -CCAACACTCTCTACTCTGGATGTC -CCAACACTCTCTACTCTGACAGTC -CCAACACTCTCTACTCTGTTGCTG -CCAACACTCTCTACTCTGTCCATG -CCAACACTCTCTACTCTGTGTGTG -CCAACACTCTCTACTCTGCTAGTG -CCAACACTCTCTACTCTGCATCTG -CCAACACTCTCTACTCTGGAGTTG -CCAACACTCTCTACTCTGAGACTG -CCAACACTCTCTACTCTGTCGGTA -CCAACACTCTCTACTCTGTGCCTA -CCAACACTCTCTACTCTGCCACTA -CCAACACTCTCTACTCTGGGAGTA -CCAACACTCTCTACTCTGTCGTCT -CCAACACTCTCTACTCTGTGCACT -CCAACACTCTCTACTCTGCTGACT -CCAACACTCTCTACTCTGCAACCT -CCAACACTCTCTACTCTGGCTACT -CCAACACTCTCTACTCTGGGATCT -CCAACACTCTCTACTCTGAAGGCT -CCAACACTCTCTACTCTGTCAACC -CCAACACTCTCTACTCTGTGTTCC -CCAACACTCTCTACTCTGATTCCC -CCAACACTCTCTACTCTGTTCTCG -CCAACACTCTCTACTCTGTAGACG -CCAACACTCTCTACTCTGGTAACG -CCAACACTCTCTACTCTGACTTCG -CCAACACTCTCTACTCTGTACGCA -CCAACACTCTCTACTCTGCTTGCA -CCAACACTCTCTACTCTGCGAACA -CCAACACTCTCTACTCTGCAGTCA -CCAACACTCTCTACTCTGGATCCA -CCAACACTCTCTACTCTGACGACA -CCAACACTCTCTACTCTGAGCTCA -CCAACACTCTCTACTCTGTCACGT -CCAACACTCTCTACTCTGCGTAGT -CCAACACTCTCTACTCTGGTCAGT -CCAACACTCTCTACTCTGGAAGGT -CCAACACTCTCTACTCTGAACCGT -CCAACACTCTCTACTCTGTTGTGC -CCAACACTCTCTACTCTGCTAAGC -CCAACACTCTCTACTCTGACTAGC -CCAACACTCTCTACTCTGAGATGC -CCAACACTCTCTACTCTGTGAAGG -CCAACACTCTCTACTCTGCAATGG -CCAACACTCTCTACTCTGATGAGG -CCAACACTCTCTACTCTGAATGGG -CCAACACTCTCTACTCTGTCCTGA -CCAACACTCTCTACTCTGTAGCGA -CCAACACTCTCTACTCTGCACAGA -CCAACACTCTCTACTCTGGCAAGA -CCAACACTCTCTACTCTGGGTTGA -CCAACACTCTCTACTCTGTCCGAT -CCAACACTCTCTACTCTGTGGCAT -CCAACACTCTCTACTCTGCGAGAT -CCAACACTCTCTACTCTGTACCAC -CCAACACTCTCTACTCTGCAGAAC -CCAACACTCTCTACTCTGGTCTAC -CCAACACTCTCTACTCTGACGTAC -CCAACACTCTCTACTCTGAGTGAC -CCAACACTCTCTACTCTGCTGTAG -CCAACACTCTCTACTCTGCCTAAG -CCAACACTCTCTACTCTGGTTCAG -CCAACACTCTCTACTCTGGCATAG -CCAACACTCTCTACTCTGGACAAG -CCAACACTCTCTACTCTGAAGCAG -CCAACACTCTCTACTCTGCGTCAA -CCAACACTCTCTACTCTGGCTGAA -CCAACACTCTCTACTCTGAGTACG -CCAACACTCTCTACTCTGATCCGA -CCAACACTCTCTACTCTGATGGGA -CCAACACTCTCTACTCTGGTGCAA -CCAACACTCTCTACTCTGGAGGAA -CCAACACTCTCTACTCTGCAGGTA -CCAACACTCTCTACTCTGGACTCT -CCAACACTCTCTACTCTGAGTCCT -CCAACACTCTCTACTCTGTAAGCC -CCAACACTCTCTACTCTGATAGCC -CCAACACTCTCTACTCTGTAACCG -CCAACACTCTCTACTCTGATGCCA -CCAACACTCTCTCCTCAAGGAAAC -CCAACACTCTCTCCTCAAAACACC -CCAACACTCTCTCCTCAAATCGAG -CCAACACTCTCTCCTCAACTCCTT -CCAACACTCTCTCCTCAACCTGTT -CCAACACTCTCTCCTCAACGGTTT -CCAACACTCTCTCCTCAAGTGGTT -CCAACACTCTCTCCTCAAGCCTTT -CCAACACTCTCTCCTCAAGGTCTT -CCAACACTCTCTCCTCAAACGCTT -CCAACACTCTCTCCTCAAAGCGTT -CCAACACTCTCTCCTCAATTCGTC -CCAACACTCTCTCCTCAATCTCTC -CCAACACTCTCTCCTCAATGGATC -CCAACACTCTCTCCTCAACACTTC -CCAACACTCTCTCCTCAAGTACTC -CCAACACTCTCTCCTCAAGATGTC -CCAACACTCTCTCCTCAAACAGTC -CCAACACTCTCTCCTCAATTGCTG -CCAACACTCTCTCCTCAATCCATG -CCAACACTCTCTCCTCAATGTGTG -CCAACACTCTCTCCTCAACTAGTG -CCAACACTCTCTCCTCAACATCTG -CCAACACTCTCTCCTCAAGAGTTG -CCAACACTCTCTCCTCAAAGACTG -CCAACACTCTCTCCTCAATCGGTA -CCAACACTCTCTCCTCAATGCCTA -CCAACACTCTCTCCTCAACCACTA -CCAACACTCTCTCCTCAAGGAGTA -CCAACACTCTCTCCTCAATCGTCT -CCAACACTCTCTCCTCAATGCACT -CCAACACTCTCTCCTCAACTGACT -CCAACACTCTCTCCTCAACAACCT -CCAACACTCTCTCCTCAAGCTACT -CCAACACTCTCTCCTCAAGGATCT -CCAACACTCTCTCCTCAAAAGGCT -CCAACACTCTCTCCTCAATCAACC -CCAACACTCTCTCCTCAATGTTCC -CCAACACTCTCTCCTCAAATTCCC -CCAACACTCTCTCCTCAATTCTCG -CCAACACTCTCTCCTCAATAGACG -CCAACACTCTCTCCTCAAGTAACG -CCAACACTCTCTCCTCAAACTTCG -CCAACACTCTCTCCTCAATACGCA -CCAACACTCTCTCCTCAACTTGCA -CCAACACTCTCTCCTCAACGAACA -CCAACACTCTCTCCTCAACAGTCA -CCAACACTCTCTCCTCAAGATCCA -CCAACACTCTCTCCTCAAACGACA -CCAACACTCTCTCCTCAAAGCTCA -CCAACACTCTCTCCTCAATCACGT -CCAACACTCTCTCCTCAACGTAGT -CCAACACTCTCTCCTCAAGTCAGT -CCAACACTCTCTCCTCAAGAAGGT -CCAACACTCTCTCCTCAAAACCGT -CCAACACTCTCTCCTCAATTGTGC -CCAACACTCTCTCCTCAACTAAGC -CCAACACTCTCTCCTCAAACTAGC -CCAACACTCTCTCCTCAAAGATGC -CCAACACTCTCTCCTCAATGAAGG -CCAACACTCTCTCCTCAACAATGG -CCAACACTCTCTCCTCAAATGAGG -CCAACACTCTCTCCTCAAAATGGG -CCAACACTCTCTCCTCAATCCTGA -CCAACACTCTCTCCTCAATAGCGA -CCAACACTCTCTCCTCAACACAGA -CCAACACTCTCTCCTCAAGCAAGA -CCAACACTCTCTCCTCAAGGTTGA -CCAACACTCTCTCCTCAATCCGAT -CCAACACTCTCTCCTCAATGGCAT -CCAACACTCTCTCCTCAACGAGAT -CCAACACTCTCTCCTCAATACCAC -CCAACACTCTCTCCTCAACAGAAC -CCAACACTCTCTCCTCAAGTCTAC -CCAACACTCTCTCCTCAAACGTAC -CCAACACTCTCTCCTCAAAGTGAC -CCAACACTCTCTCCTCAACTGTAG -CCAACACTCTCTCCTCAACCTAAG -CCAACACTCTCTCCTCAAGTTCAG -CCAACACTCTCTCCTCAAGCATAG -CCAACACTCTCTCCTCAAGACAAG -CCAACACTCTCTCCTCAAAAGCAG -CCAACACTCTCTCCTCAACGTCAA -CCAACACTCTCTCCTCAAGCTGAA -CCAACACTCTCTCCTCAAAGTACG -CCAACACTCTCTCCTCAAATCCGA -CCAACACTCTCTCCTCAAATGGGA -CCAACACTCTCTCCTCAAGTGCAA -CCAACACTCTCTCCTCAAGAGGAA -CCAACACTCTCTCCTCAACAGGTA -CCAACACTCTCTCCTCAAGACTCT -CCAACACTCTCTCCTCAAAGTCCT -CCAACACTCTCTCCTCAATAAGCC -CCAACACTCTCTCCTCAAATAGCC -CCAACACTCTCTCCTCAATAACCG -CCAACACTCTCTCCTCAAATGCCA -CCAACACTCTCTACTGCTGGAAAC -CCAACACTCTCTACTGCTAACACC -CCAACACTCTCTACTGCTATCGAG -CCAACACTCTCTACTGCTCTCCTT -CCAACACTCTCTACTGCTCCTGTT -CCAACACTCTCTACTGCTCGGTTT -CCAACACTCTCTACTGCTGTGGTT -CCAACACTCTCTACTGCTGCCTTT -CCAACACTCTCTACTGCTGGTCTT -CCAACACTCTCTACTGCTACGCTT -CCAACACTCTCTACTGCTAGCGTT -CCAACACTCTCTACTGCTTTCGTC -CCAACACTCTCTACTGCTTCTCTC -CCAACACTCTCTACTGCTTGGATC -CCAACACTCTCTACTGCTCACTTC -CCAACACTCTCTACTGCTGTACTC -CCAACACTCTCTACTGCTGATGTC -CCAACACTCTCTACTGCTACAGTC -CCAACACTCTCTACTGCTTTGCTG -CCAACACTCTCTACTGCTTCCATG -CCAACACTCTCTACTGCTTGTGTG -CCAACACTCTCTACTGCTCTAGTG -CCAACACTCTCTACTGCTCATCTG -CCAACACTCTCTACTGCTGAGTTG -CCAACACTCTCTACTGCTAGACTG -CCAACACTCTCTACTGCTTCGGTA -CCAACACTCTCTACTGCTTGCCTA -CCAACACTCTCTACTGCTCCACTA -CCAACACTCTCTACTGCTGGAGTA -CCAACACTCTCTACTGCTTCGTCT -CCAACACTCTCTACTGCTTGCACT -CCAACACTCTCTACTGCTCTGACT -CCAACACTCTCTACTGCTCAACCT -CCAACACTCTCTACTGCTGCTACT -CCAACACTCTCTACTGCTGGATCT -CCAACACTCTCTACTGCTAAGGCT -CCAACACTCTCTACTGCTTCAACC -CCAACACTCTCTACTGCTTGTTCC -CCAACACTCTCTACTGCTATTCCC -CCAACACTCTCTACTGCTTTCTCG -CCAACACTCTCTACTGCTTAGACG -CCAACACTCTCTACTGCTGTAACG -CCAACACTCTCTACTGCTACTTCG -CCAACACTCTCTACTGCTTACGCA -CCAACACTCTCTACTGCTCTTGCA -CCAACACTCTCTACTGCTCGAACA -CCAACACTCTCTACTGCTCAGTCA -CCAACACTCTCTACTGCTGATCCA -CCAACACTCTCTACTGCTACGACA -CCAACACTCTCTACTGCTAGCTCA -CCAACACTCTCTACTGCTTCACGT -CCAACACTCTCTACTGCTCGTAGT -CCAACACTCTCTACTGCTGTCAGT -CCAACACTCTCTACTGCTGAAGGT -CCAACACTCTCTACTGCTAACCGT -CCAACACTCTCTACTGCTTTGTGC -CCAACACTCTCTACTGCTCTAAGC -CCAACACTCTCTACTGCTACTAGC -CCAACACTCTCTACTGCTAGATGC -CCAACACTCTCTACTGCTTGAAGG -CCAACACTCTCTACTGCTCAATGG -CCAACACTCTCTACTGCTATGAGG -CCAACACTCTCTACTGCTAATGGG -CCAACACTCTCTACTGCTTCCTGA -CCAACACTCTCTACTGCTTAGCGA -CCAACACTCTCTACTGCTCACAGA -CCAACACTCTCTACTGCTGCAAGA -CCAACACTCTCTACTGCTGGTTGA -CCAACACTCTCTACTGCTTCCGAT -CCAACACTCTCTACTGCTTGGCAT -CCAACACTCTCTACTGCTCGAGAT -CCAACACTCTCTACTGCTTACCAC -CCAACACTCTCTACTGCTCAGAAC -CCAACACTCTCTACTGCTGTCTAC -CCAACACTCTCTACTGCTACGTAC -CCAACACTCTCTACTGCTAGTGAC -CCAACACTCTCTACTGCTCTGTAG -CCAACACTCTCTACTGCTCCTAAG -CCAACACTCTCTACTGCTGTTCAG -CCAACACTCTCTACTGCTGCATAG -CCAACACTCTCTACTGCTGACAAG -CCAACACTCTCTACTGCTAAGCAG -CCAACACTCTCTACTGCTCGTCAA -CCAACACTCTCTACTGCTGCTGAA -CCAACACTCTCTACTGCTAGTACG -CCAACACTCTCTACTGCTATCCGA -CCAACACTCTCTACTGCTATGGGA -CCAACACTCTCTACTGCTGTGCAA -CCAACACTCTCTACTGCTGAGGAA -CCAACACTCTCTACTGCTCAGGTA -CCAACACTCTCTACTGCTGACTCT -CCAACACTCTCTACTGCTAGTCCT -CCAACACTCTCTACTGCTTAAGCC -CCAACACTCTCTACTGCTATAGCC -CCAACACTCTCTACTGCTTAACCG -CCAACACTCTCTACTGCTATGCCA -CCAACACTCTCTTCTGGAGGAAAC -CCAACACTCTCTTCTGGAAACACC -CCAACACTCTCTTCTGGAATCGAG -CCAACACTCTCTTCTGGACTCCTT -CCAACACTCTCTTCTGGACCTGTT -CCAACACTCTCTTCTGGACGGTTT -CCAACACTCTCTTCTGGAGTGGTT -CCAACACTCTCTTCTGGAGCCTTT -CCAACACTCTCTTCTGGAGGTCTT -CCAACACTCTCTTCTGGAACGCTT -CCAACACTCTCTTCTGGAAGCGTT -CCAACACTCTCTTCTGGATTCGTC -CCAACACTCTCTTCTGGATCTCTC -CCAACACTCTCTTCTGGATGGATC -CCAACACTCTCTTCTGGACACTTC -CCAACACTCTCTTCTGGAGTACTC -CCAACACTCTCTTCTGGAGATGTC -CCAACACTCTCTTCTGGAACAGTC -CCAACACTCTCTTCTGGATTGCTG -CCAACACTCTCTTCTGGATCCATG -CCAACACTCTCTTCTGGATGTGTG -CCAACACTCTCTTCTGGACTAGTG -CCAACACTCTCTTCTGGACATCTG -CCAACACTCTCTTCTGGAGAGTTG -CCAACACTCTCTTCTGGAAGACTG -CCAACACTCTCTTCTGGATCGGTA -CCAACACTCTCTTCTGGATGCCTA -CCAACACTCTCTTCTGGACCACTA -CCAACACTCTCTTCTGGAGGAGTA -CCAACACTCTCTTCTGGATCGTCT -CCAACACTCTCTTCTGGATGCACT -CCAACACTCTCTTCTGGACTGACT -CCAACACTCTCTTCTGGACAACCT -CCAACACTCTCTTCTGGAGCTACT -CCAACACTCTCTTCTGGAGGATCT -CCAACACTCTCTTCTGGAAAGGCT -CCAACACTCTCTTCTGGATCAACC -CCAACACTCTCTTCTGGATGTTCC -CCAACACTCTCTTCTGGAATTCCC -CCAACACTCTCTTCTGGATTCTCG -CCAACACTCTCTTCTGGATAGACG -CCAACACTCTCTTCTGGAGTAACG -CCAACACTCTCTTCTGGAACTTCG -CCAACACTCTCTTCTGGATACGCA -CCAACACTCTCTTCTGGACTTGCA -CCAACACTCTCTTCTGGACGAACA -CCAACACTCTCTTCTGGACAGTCA -CCAACACTCTCTTCTGGAGATCCA -CCAACACTCTCTTCTGGAACGACA -CCAACACTCTCTTCTGGAAGCTCA -CCAACACTCTCTTCTGGATCACGT -CCAACACTCTCTTCTGGACGTAGT -CCAACACTCTCTTCTGGAGTCAGT -CCAACACTCTCTTCTGGAGAAGGT -CCAACACTCTCTTCTGGAAACCGT -CCAACACTCTCTTCTGGATTGTGC -CCAACACTCTCTTCTGGACTAAGC -CCAACACTCTCTTCTGGAACTAGC -CCAACACTCTCTTCTGGAAGATGC -CCAACACTCTCTTCTGGATGAAGG -CCAACACTCTCTTCTGGACAATGG -CCAACACTCTCTTCTGGAATGAGG -CCAACACTCTCTTCTGGAAATGGG -CCAACACTCTCTTCTGGATCCTGA -CCAACACTCTCTTCTGGATAGCGA -CCAACACTCTCTTCTGGACACAGA -CCAACACTCTCTTCTGGAGCAAGA -CCAACACTCTCTTCTGGAGGTTGA -CCAACACTCTCTTCTGGATCCGAT -CCAACACTCTCTTCTGGATGGCAT -CCAACACTCTCTTCTGGACGAGAT -CCAACACTCTCTTCTGGATACCAC -CCAACACTCTCTTCTGGACAGAAC -CCAACACTCTCTTCTGGAGTCTAC -CCAACACTCTCTTCTGGAACGTAC -CCAACACTCTCTTCTGGAAGTGAC -CCAACACTCTCTTCTGGACTGTAG -CCAACACTCTCTTCTGGACCTAAG -CCAACACTCTCTTCTGGAGTTCAG -CCAACACTCTCTTCTGGAGCATAG -CCAACACTCTCTTCTGGAGACAAG -CCAACACTCTCTTCTGGAAAGCAG -CCAACACTCTCTTCTGGACGTCAA -CCAACACTCTCTTCTGGAGCTGAA -CCAACACTCTCTTCTGGAAGTACG -CCAACACTCTCTTCTGGAATCCGA -CCAACACTCTCTTCTGGAATGGGA -CCAACACTCTCTTCTGGAGTGCAA -CCAACACTCTCTTCTGGAGAGGAA -CCAACACTCTCTTCTGGACAGGTA -CCAACACTCTCTTCTGGAGACTCT -CCAACACTCTCTTCTGGAAGTCCT -CCAACACTCTCTTCTGGATAAGCC -CCAACACTCTCTTCTGGAATAGCC -CCAACACTCTCTTCTGGATAACCG -CCAACACTCTCTTCTGGAATGCCA -CCAACACTCTCTGCTAAGGGAAAC -CCAACACTCTCTGCTAAGAACACC -CCAACACTCTCTGCTAAGATCGAG -CCAACACTCTCTGCTAAGCTCCTT -CCAACACTCTCTGCTAAGCCTGTT -CCAACACTCTCTGCTAAGCGGTTT -CCAACACTCTCTGCTAAGGTGGTT -CCAACACTCTCTGCTAAGGCCTTT -CCAACACTCTCTGCTAAGGGTCTT -CCAACACTCTCTGCTAAGACGCTT -CCAACACTCTCTGCTAAGAGCGTT -CCAACACTCTCTGCTAAGTTCGTC -CCAACACTCTCTGCTAAGTCTCTC -CCAACACTCTCTGCTAAGTGGATC -CCAACACTCTCTGCTAAGCACTTC -CCAACACTCTCTGCTAAGGTACTC -CCAACACTCTCTGCTAAGGATGTC -CCAACACTCTCTGCTAAGACAGTC -CCAACACTCTCTGCTAAGTTGCTG -CCAACACTCTCTGCTAAGTCCATG -CCAACACTCTCTGCTAAGTGTGTG -CCAACACTCTCTGCTAAGCTAGTG -CCAACACTCTCTGCTAAGCATCTG -CCAACACTCTCTGCTAAGGAGTTG -CCAACACTCTCTGCTAAGAGACTG -CCAACACTCTCTGCTAAGTCGGTA -CCAACACTCTCTGCTAAGTGCCTA -CCAACACTCTCTGCTAAGCCACTA -CCAACACTCTCTGCTAAGGGAGTA -CCAACACTCTCTGCTAAGTCGTCT -CCAACACTCTCTGCTAAGTGCACT -CCAACACTCTCTGCTAAGCTGACT -CCAACACTCTCTGCTAAGCAACCT -CCAACACTCTCTGCTAAGGCTACT -CCAACACTCTCTGCTAAGGGATCT -CCAACACTCTCTGCTAAGAAGGCT -CCAACACTCTCTGCTAAGTCAACC -CCAACACTCTCTGCTAAGTGTTCC -CCAACACTCTCTGCTAAGATTCCC -CCAACACTCTCTGCTAAGTTCTCG -CCAACACTCTCTGCTAAGTAGACG -CCAACACTCTCTGCTAAGGTAACG -CCAACACTCTCTGCTAAGACTTCG -CCAACACTCTCTGCTAAGTACGCA -CCAACACTCTCTGCTAAGCTTGCA -CCAACACTCTCTGCTAAGCGAACA -CCAACACTCTCTGCTAAGCAGTCA -CCAACACTCTCTGCTAAGGATCCA -CCAACACTCTCTGCTAAGACGACA -CCAACACTCTCTGCTAAGAGCTCA -CCAACACTCTCTGCTAAGTCACGT -CCAACACTCTCTGCTAAGCGTAGT -CCAACACTCTCTGCTAAGGTCAGT -CCAACACTCTCTGCTAAGGAAGGT -CCAACACTCTCTGCTAAGAACCGT -CCAACACTCTCTGCTAAGTTGTGC -CCAACACTCTCTGCTAAGCTAAGC -CCAACACTCTCTGCTAAGACTAGC -CCAACACTCTCTGCTAAGAGATGC -CCAACACTCTCTGCTAAGTGAAGG -CCAACACTCTCTGCTAAGCAATGG -CCAACACTCTCTGCTAAGATGAGG -CCAACACTCTCTGCTAAGAATGGG -CCAACACTCTCTGCTAAGTCCTGA -CCAACACTCTCTGCTAAGTAGCGA -CCAACACTCTCTGCTAAGCACAGA -CCAACACTCTCTGCTAAGGCAAGA -CCAACACTCTCTGCTAAGGGTTGA -CCAACACTCTCTGCTAAGTCCGAT -CCAACACTCTCTGCTAAGTGGCAT -CCAACACTCTCTGCTAAGCGAGAT -CCAACACTCTCTGCTAAGTACCAC -CCAACACTCTCTGCTAAGCAGAAC -CCAACACTCTCTGCTAAGGTCTAC -CCAACACTCTCTGCTAAGACGTAC -CCAACACTCTCTGCTAAGAGTGAC -CCAACACTCTCTGCTAAGCTGTAG -CCAACACTCTCTGCTAAGCCTAAG -CCAACACTCTCTGCTAAGGTTCAG -CCAACACTCTCTGCTAAGGCATAG -CCAACACTCTCTGCTAAGGACAAG -CCAACACTCTCTGCTAAGAAGCAG -CCAACACTCTCTGCTAAGCGTCAA -CCAACACTCTCTGCTAAGGCTGAA -CCAACACTCTCTGCTAAGAGTACG -CCAACACTCTCTGCTAAGATCCGA -CCAACACTCTCTGCTAAGATGGGA -CCAACACTCTCTGCTAAGGTGCAA -CCAACACTCTCTGCTAAGGAGGAA -CCAACACTCTCTGCTAAGCAGGTA -CCAACACTCTCTGCTAAGGACTCT -CCAACACTCTCTGCTAAGAGTCCT -CCAACACTCTCTGCTAAGTAAGCC -CCAACACTCTCTGCTAAGATAGCC -CCAACACTCTCTGCTAAGTAACCG -CCAACACTCTCTGCTAAGATGCCA -CCAACACTCTCTACCTCAGGAAAC -CCAACACTCTCTACCTCAAACACC -CCAACACTCTCTACCTCAATCGAG -CCAACACTCTCTACCTCACTCCTT -CCAACACTCTCTACCTCACCTGTT -CCAACACTCTCTACCTCACGGTTT -CCAACACTCTCTACCTCAGTGGTT -CCAACACTCTCTACCTCAGCCTTT -CCAACACTCTCTACCTCAGGTCTT -CCAACACTCTCTACCTCAACGCTT -CCAACACTCTCTACCTCAAGCGTT -CCAACACTCTCTACCTCATTCGTC -CCAACACTCTCTACCTCATCTCTC -CCAACACTCTCTACCTCATGGATC -CCAACACTCTCTACCTCACACTTC -CCAACACTCTCTACCTCAGTACTC -CCAACACTCTCTACCTCAGATGTC -CCAACACTCTCTACCTCAACAGTC -CCAACACTCTCTACCTCATTGCTG -CCAACACTCTCTACCTCATCCATG -CCAACACTCTCTACCTCATGTGTG -CCAACACTCTCTACCTCACTAGTG -CCAACACTCTCTACCTCACATCTG -CCAACACTCTCTACCTCAGAGTTG -CCAACACTCTCTACCTCAAGACTG -CCAACACTCTCTACCTCATCGGTA -CCAACACTCTCTACCTCATGCCTA -CCAACACTCTCTACCTCACCACTA -CCAACACTCTCTACCTCAGGAGTA -CCAACACTCTCTACCTCATCGTCT -CCAACACTCTCTACCTCATGCACT -CCAACACTCTCTACCTCACTGACT -CCAACACTCTCTACCTCACAACCT -CCAACACTCTCTACCTCAGCTACT -CCAACACTCTCTACCTCAGGATCT -CCAACACTCTCTACCTCAAAGGCT -CCAACACTCTCTACCTCATCAACC -CCAACACTCTCTACCTCATGTTCC -CCAACACTCTCTACCTCAATTCCC -CCAACACTCTCTACCTCATTCTCG -CCAACACTCTCTACCTCATAGACG -CCAACACTCTCTACCTCAGTAACG -CCAACACTCTCTACCTCAACTTCG -CCAACACTCTCTACCTCATACGCA -CCAACACTCTCTACCTCACTTGCA -CCAACACTCTCTACCTCACGAACA -CCAACACTCTCTACCTCACAGTCA -CCAACACTCTCTACCTCAGATCCA -CCAACACTCTCTACCTCAACGACA -CCAACACTCTCTACCTCAAGCTCA -CCAACACTCTCTACCTCATCACGT -CCAACACTCTCTACCTCACGTAGT -CCAACACTCTCTACCTCAGTCAGT -CCAACACTCTCTACCTCAGAAGGT -CCAACACTCTCTACCTCAAACCGT -CCAACACTCTCTACCTCATTGTGC -CCAACACTCTCTACCTCACTAAGC -CCAACACTCTCTACCTCAACTAGC -CCAACACTCTCTACCTCAAGATGC -CCAACACTCTCTACCTCATGAAGG -CCAACACTCTCTACCTCACAATGG -CCAACACTCTCTACCTCAATGAGG -CCAACACTCTCTACCTCAAATGGG -CCAACACTCTCTACCTCATCCTGA -CCAACACTCTCTACCTCATAGCGA -CCAACACTCTCTACCTCACACAGA -CCAACACTCTCTACCTCAGCAAGA -CCAACACTCTCTACCTCAGGTTGA -CCAACACTCTCTACCTCATCCGAT -CCAACACTCTCTACCTCATGGCAT -CCAACACTCTCTACCTCACGAGAT -CCAACACTCTCTACCTCATACCAC -CCAACACTCTCTACCTCACAGAAC -CCAACACTCTCTACCTCAGTCTAC -CCAACACTCTCTACCTCAACGTAC -CCAACACTCTCTACCTCAAGTGAC -CCAACACTCTCTACCTCACTGTAG -CCAACACTCTCTACCTCACCTAAG -CCAACACTCTCTACCTCAGTTCAG -CCAACACTCTCTACCTCAGCATAG -CCAACACTCTCTACCTCAGACAAG -CCAACACTCTCTACCTCAAAGCAG -CCAACACTCTCTACCTCACGTCAA -CCAACACTCTCTACCTCAGCTGAA -CCAACACTCTCTACCTCAAGTACG -CCAACACTCTCTACCTCAATCCGA -CCAACACTCTCTACCTCAATGGGA -CCAACACTCTCTACCTCAGTGCAA -CCAACACTCTCTACCTCAGAGGAA -CCAACACTCTCTACCTCACAGGTA -CCAACACTCTCTACCTCAGACTCT -CCAACACTCTCTACCTCAAGTCCT -CCAACACTCTCTACCTCATAAGCC -CCAACACTCTCTACCTCAATAGCC -CCAACACTCTCTACCTCATAACCG -CCAACACTCTCTACCTCAATGCCA -CCAACACTCTCTTCCTGTGGAAAC -CCAACACTCTCTTCCTGTAACACC -CCAACACTCTCTTCCTGTATCGAG -CCAACACTCTCTTCCTGTCTCCTT -CCAACACTCTCTTCCTGTCCTGTT -CCAACACTCTCTTCCTGTCGGTTT -CCAACACTCTCTTCCTGTGTGGTT -CCAACACTCTCTTCCTGTGCCTTT -CCAACACTCTCTTCCTGTGGTCTT -CCAACACTCTCTTCCTGTACGCTT -CCAACACTCTCTTCCTGTAGCGTT -CCAACACTCTCTTCCTGTTTCGTC -CCAACACTCTCTTCCTGTTCTCTC -CCAACACTCTCTTCCTGTTGGATC -CCAACACTCTCTTCCTGTCACTTC -CCAACACTCTCTTCCTGTGTACTC -CCAACACTCTCTTCCTGTGATGTC -CCAACACTCTCTTCCTGTACAGTC -CCAACACTCTCTTCCTGTTTGCTG -CCAACACTCTCTTCCTGTTCCATG -CCAACACTCTCTTCCTGTTGTGTG -CCAACACTCTCTTCCTGTCTAGTG -CCAACACTCTCTTCCTGTCATCTG -CCAACACTCTCTTCCTGTGAGTTG -CCAACACTCTCTTCCTGTAGACTG -CCAACACTCTCTTCCTGTTCGGTA -CCAACACTCTCTTCCTGTTGCCTA -CCAACACTCTCTTCCTGTCCACTA -CCAACACTCTCTTCCTGTGGAGTA -CCAACACTCTCTTCCTGTTCGTCT -CCAACACTCTCTTCCTGTTGCACT -CCAACACTCTCTTCCTGTCTGACT -CCAACACTCTCTTCCTGTCAACCT -CCAACACTCTCTTCCTGTGCTACT -CCAACACTCTCTTCCTGTGGATCT -CCAACACTCTCTTCCTGTAAGGCT -CCAACACTCTCTTCCTGTTCAACC -CCAACACTCTCTTCCTGTTGTTCC -CCAACACTCTCTTCCTGTATTCCC -CCAACACTCTCTTCCTGTTTCTCG -CCAACACTCTCTTCCTGTTAGACG -CCAACACTCTCTTCCTGTGTAACG -CCAACACTCTCTTCCTGTACTTCG -CCAACACTCTCTTCCTGTTACGCA -CCAACACTCTCTTCCTGTCTTGCA -CCAACACTCTCTTCCTGTCGAACA -CCAACACTCTCTTCCTGTCAGTCA -CCAACACTCTCTTCCTGTGATCCA -CCAACACTCTCTTCCTGTACGACA -CCAACACTCTCTTCCTGTAGCTCA -CCAACACTCTCTTCCTGTTCACGT -CCAACACTCTCTTCCTGTCGTAGT -CCAACACTCTCTTCCTGTGTCAGT -CCAACACTCTCTTCCTGTGAAGGT -CCAACACTCTCTTCCTGTAACCGT -CCAACACTCTCTTCCTGTTTGTGC -CCAACACTCTCTTCCTGTCTAAGC -CCAACACTCTCTTCCTGTACTAGC -CCAACACTCTCTTCCTGTAGATGC -CCAACACTCTCTTCCTGTTGAAGG -CCAACACTCTCTTCCTGTCAATGG -CCAACACTCTCTTCCTGTATGAGG -CCAACACTCTCTTCCTGTAATGGG -CCAACACTCTCTTCCTGTTCCTGA -CCAACACTCTCTTCCTGTTAGCGA -CCAACACTCTCTTCCTGTCACAGA -CCAACACTCTCTTCCTGTGCAAGA -CCAACACTCTCTTCCTGTGGTTGA -CCAACACTCTCTTCCTGTTCCGAT -CCAACACTCTCTTCCTGTTGGCAT -CCAACACTCTCTTCCTGTCGAGAT -CCAACACTCTCTTCCTGTTACCAC -CCAACACTCTCTTCCTGTCAGAAC -CCAACACTCTCTTCCTGTGTCTAC -CCAACACTCTCTTCCTGTACGTAC -CCAACACTCTCTTCCTGTAGTGAC -CCAACACTCTCTTCCTGTCTGTAG -CCAACACTCTCTTCCTGTCCTAAG -CCAACACTCTCTTCCTGTGTTCAG -CCAACACTCTCTTCCTGTGCATAG -CCAACACTCTCTTCCTGTGACAAG -CCAACACTCTCTTCCTGTAAGCAG -CCAACACTCTCTTCCTGTCGTCAA -CCAACACTCTCTTCCTGTGCTGAA -CCAACACTCTCTTCCTGTAGTACG -CCAACACTCTCTTCCTGTATCCGA -CCAACACTCTCTTCCTGTATGGGA -CCAACACTCTCTTCCTGTGTGCAA -CCAACACTCTCTTCCTGTGAGGAA -CCAACACTCTCTTCCTGTCAGGTA -CCAACACTCTCTTCCTGTGACTCT -CCAACACTCTCTTCCTGTAGTCCT -CCAACACTCTCTTCCTGTTAAGCC -CCAACACTCTCTTCCTGTATAGCC -CCAACACTCTCTTCCTGTTAACCG -CCAACACTCTCTTCCTGTATGCCA -CCAACACTCTCTCCCATTGGAAAC -CCAACACTCTCTCCCATTAACACC -CCAACACTCTCTCCCATTATCGAG -CCAACACTCTCTCCCATTCTCCTT -CCAACACTCTCTCCCATTCCTGTT -CCAACACTCTCTCCCATTCGGTTT -CCAACACTCTCTCCCATTGTGGTT -CCAACACTCTCTCCCATTGCCTTT -CCAACACTCTCTCCCATTGGTCTT -CCAACACTCTCTCCCATTACGCTT -CCAACACTCTCTCCCATTAGCGTT -CCAACACTCTCTCCCATTTTCGTC -CCAACACTCTCTCCCATTTCTCTC -CCAACACTCTCTCCCATTTGGATC -CCAACACTCTCTCCCATTCACTTC -CCAACACTCTCTCCCATTGTACTC -CCAACACTCTCTCCCATTGATGTC -CCAACACTCTCTCCCATTACAGTC -CCAACACTCTCTCCCATTTTGCTG -CCAACACTCTCTCCCATTTCCATG -CCAACACTCTCTCCCATTTGTGTG -CCAACACTCTCTCCCATTCTAGTG -CCAACACTCTCTCCCATTCATCTG -CCAACACTCTCTCCCATTGAGTTG -CCAACACTCTCTCCCATTAGACTG -CCAACACTCTCTCCCATTTCGGTA -CCAACACTCTCTCCCATTTGCCTA -CCAACACTCTCTCCCATTCCACTA -CCAACACTCTCTCCCATTGGAGTA -CCAACACTCTCTCCCATTTCGTCT -CCAACACTCTCTCCCATTTGCACT -CCAACACTCTCTCCCATTCTGACT -CCAACACTCTCTCCCATTCAACCT -CCAACACTCTCTCCCATTGCTACT -CCAACACTCTCTCCCATTGGATCT -CCAACACTCTCTCCCATTAAGGCT -CCAACACTCTCTCCCATTTCAACC -CCAACACTCTCTCCCATTTGTTCC -CCAACACTCTCTCCCATTATTCCC -CCAACACTCTCTCCCATTTTCTCG -CCAACACTCTCTCCCATTTAGACG -CCAACACTCTCTCCCATTGTAACG -CCAACACTCTCTCCCATTACTTCG -CCAACACTCTCTCCCATTTACGCA -CCAACACTCTCTCCCATTCTTGCA -CCAACACTCTCTCCCATTCGAACA -CCAACACTCTCTCCCATTCAGTCA -CCAACACTCTCTCCCATTGATCCA -CCAACACTCTCTCCCATTACGACA -CCAACACTCTCTCCCATTAGCTCA -CCAACACTCTCTCCCATTTCACGT -CCAACACTCTCTCCCATTCGTAGT -CCAACACTCTCTCCCATTGTCAGT -CCAACACTCTCTCCCATTGAAGGT -CCAACACTCTCTCCCATTAACCGT -CCAACACTCTCTCCCATTTTGTGC -CCAACACTCTCTCCCATTCTAAGC -CCAACACTCTCTCCCATTACTAGC -CCAACACTCTCTCCCATTAGATGC -CCAACACTCTCTCCCATTTGAAGG -CCAACACTCTCTCCCATTCAATGG -CCAACACTCTCTCCCATTATGAGG -CCAACACTCTCTCCCATTAATGGG -CCAACACTCTCTCCCATTTCCTGA -CCAACACTCTCTCCCATTTAGCGA -CCAACACTCTCTCCCATTCACAGA -CCAACACTCTCTCCCATTGCAAGA -CCAACACTCTCTCCCATTGGTTGA -CCAACACTCTCTCCCATTTCCGAT -CCAACACTCTCTCCCATTTGGCAT -CCAACACTCTCTCCCATTCGAGAT -CCAACACTCTCTCCCATTTACCAC -CCAACACTCTCTCCCATTCAGAAC -CCAACACTCTCTCCCATTGTCTAC -CCAACACTCTCTCCCATTACGTAC -CCAACACTCTCTCCCATTAGTGAC -CCAACACTCTCTCCCATTCTGTAG -CCAACACTCTCTCCCATTCCTAAG -CCAACACTCTCTCCCATTGTTCAG -CCAACACTCTCTCCCATTGCATAG -CCAACACTCTCTCCCATTGACAAG -CCAACACTCTCTCCCATTAAGCAG -CCAACACTCTCTCCCATTCGTCAA -CCAACACTCTCTCCCATTGCTGAA -CCAACACTCTCTCCCATTAGTACG -CCAACACTCTCTCCCATTATCCGA -CCAACACTCTCTCCCATTATGGGA -CCAACACTCTCTCCCATTGTGCAA -CCAACACTCTCTCCCATTGAGGAA -CCAACACTCTCTCCCATTCAGGTA -CCAACACTCTCTCCCATTGACTCT -CCAACACTCTCTCCCATTAGTCCT -CCAACACTCTCTCCCATTTAAGCC -CCAACACTCTCTCCCATTATAGCC -CCAACACTCTCTCCCATTTAACCG -CCAACACTCTCTCCCATTATGCCA -CCAACACTCTCTTCGTTCGGAAAC -CCAACACTCTCTTCGTTCAACACC -CCAACACTCTCTTCGTTCATCGAG -CCAACACTCTCTTCGTTCCTCCTT -CCAACACTCTCTTCGTTCCCTGTT -CCAACACTCTCTTCGTTCCGGTTT -CCAACACTCTCTTCGTTCGTGGTT -CCAACACTCTCTTCGTTCGCCTTT -CCAACACTCTCTTCGTTCGGTCTT -CCAACACTCTCTTCGTTCACGCTT -CCAACACTCTCTTCGTTCAGCGTT -CCAACACTCTCTTCGTTCTTCGTC -CCAACACTCTCTTCGTTCTCTCTC -CCAACACTCTCTTCGTTCTGGATC -CCAACACTCTCTTCGTTCCACTTC -CCAACACTCTCTTCGTTCGTACTC -CCAACACTCTCTTCGTTCGATGTC -CCAACACTCTCTTCGTTCACAGTC -CCAACACTCTCTTCGTTCTTGCTG -CCAACACTCTCTTCGTTCTCCATG -CCAACACTCTCTTCGTTCTGTGTG -CCAACACTCTCTTCGTTCCTAGTG -CCAACACTCTCTTCGTTCCATCTG -CCAACACTCTCTTCGTTCGAGTTG -CCAACACTCTCTTCGTTCAGACTG -CCAACACTCTCTTCGTTCTCGGTA -CCAACACTCTCTTCGTTCTGCCTA -CCAACACTCTCTTCGTTCCCACTA -CCAACACTCTCTTCGTTCGGAGTA -CCAACACTCTCTTCGTTCTCGTCT -CCAACACTCTCTTCGTTCTGCACT -CCAACACTCTCTTCGTTCCTGACT -CCAACACTCTCTTCGTTCCAACCT -CCAACACTCTCTTCGTTCGCTACT -CCAACACTCTCTTCGTTCGGATCT -CCAACACTCTCTTCGTTCAAGGCT -CCAACACTCTCTTCGTTCTCAACC -CCAACACTCTCTTCGTTCTGTTCC -CCAACACTCTCTTCGTTCATTCCC -CCAACACTCTCTTCGTTCTTCTCG -CCAACACTCTCTTCGTTCTAGACG -CCAACACTCTCTTCGTTCGTAACG -CCAACACTCTCTTCGTTCACTTCG -CCAACACTCTCTTCGTTCTACGCA -CCAACACTCTCTTCGTTCCTTGCA -CCAACACTCTCTTCGTTCCGAACA -CCAACACTCTCTTCGTTCCAGTCA -CCAACACTCTCTTCGTTCGATCCA -CCAACACTCTCTTCGTTCACGACA -CCAACACTCTCTTCGTTCAGCTCA -CCAACACTCTCTTCGTTCTCACGT -CCAACACTCTCTTCGTTCCGTAGT -CCAACACTCTCTTCGTTCGTCAGT -CCAACACTCTCTTCGTTCGAAGGT -CCAACACTCTCTTCGTTCAACCGT -CCAACACTCTCTTCGTTCTTGTGC -CCAACACTCTCTTCGTTCCTAAGC -CCAACACTCTCTTCGTTCACTAGC -CCAACACTCTCTTCGTTCAGATGC -CCAACACTCTCTTCGTTCTGAAGG -CCAACACTCTCTTCGTTCCAATGG -CCAACACTCTCTTCGTTCATGAGG -CCAACACTCTCTTCGTTCAATGGG -CCAACACTCTCTTCGTTCTCCTGA -CCAACACTCTCTTCGTTCTAGCGA -CCAACACTCTCTTCGTTCCACAGA -CCAACACTCTCTTCGTTCGCAAGA -CCAACACTCTCTTCGTTCGGTTGA -CCAACACTCTCTTCGTTCTCCGAT -CCAACACTCTCTTCGTTCTGGCAT -CCAACACTCTCTTCGTTCCGAGAT -CCAACACTCTCTTCGTTCTACCAC -CCAACACTCTCTTCGTTCCAGAAC -CCAACACTCTCTTCGTTCGTCTAC -CCAACACTCTCTTCGTTCACGTAC -CCAACACTCTCTTCGTTCAGTGAC -CCAACACTCTCTTCGTTCCTGTAG -CCAACACTCTCTTCGTTCCCTAAG -CCAACACTCTCTTCGTTCGTTCAG -CCAACACTCTCTTCGTTCGCATAG -CCAACACTCTCTTCGTTCGACAAG -CCAACACTCTCTTCGTTCAAGCAG -CCAACACTCTCTTCGTTCCGTCAA -CCAACACTCTCTTCGTTCGCTGAA -CCAACACTCTCTTCGTTCAGTACG -CCAACACTCTCTTCGTTCATCCGA -CCAACACTCTCTTCGTTCATGGGA -CCAACACTCTCTTCGTTCGTGCAA -CCAACACTCTCTTCGTTCGAGGAA -CCAACACTCTCTTCGTTCCAGGTA -CCAACACTCTCTTCGTTCGACTCT -CCAACACTCTCTTCGTTCAGTCCT -CCAACACTCTCTTCGTTCTAAGCC -CCAACACTCTCTTCGTTCATAGCC -CCAACACTCTCTTCGTTCTAACCG -CCAACACTCTCTTCGTTCATGCCA -CCAACACTCTCTACGTAGGGAAAC -CCAACACTCTCTACGTAGAACACC -CCAACACTCTCTACGTAGATCGAG -CCAACACTCTCTACGTAGCTCCTT -CCAACACTCTCTACGTAGCCTGTT -CCAACACTCTCTACGTAGCGGTTT -CCAACACTCTCTACGTAGGTGGTT -CCAACACTCTCTACGTAGGCCTTT -CCAACACTCTCTACGTAGGGTCTT -CCAACACTCTCTACGTAGACGCTT -CCAACACTCTCTACGTAGAGCGTT -CCAACACTCTCTACGTAGTTCGTC -CCAACACTCTCTACGTAGTCTCTC -CCAACACTCTCTACGTAGTGGATC -CCAACACTCTCTACGTAGCACTTC -CCAACACTCTCTACGTAGGTACTC -CCAACACTCTCTACGTAGGATGTC -CCAACACTCTCTACGTAGACAGTC -CCAACACTCTCTACGTAGTTGCTG -CCAACACTCTCTACGTAGTCCATG -CCAACACTCTCTACGTAGTGTGTG -CCAACACTCTCTACGTAGCTAGTG -CCAACACTCTCTACGTAGCATCTG -CCAACACTCTCTACGTAGGAGTTG -CCAACACTCTCTACGTAGAGACTG -CCAACACTCTCTACGTAGTCGGTA -CCAACACTCTCTACGTAGTGCCTA -CCAACACTCTCTACGTAGCCACTA -CCAACACTCTCTACGTAGGGAGTA -CCAACACTCTCTACGTAGTCGTCT -CCAACACTCTCTACGTAGTGCACT -CCAACACTCTCTACGTAGCTGACT -CCAACACTCTCTACGTAGCAACCT -CCAACACTCTCTACGTAGGCTACT -CCAACACTCTCTACGTAGGGATCT -CCAACACTCTCTACGTAGAAGGCT -CCAACACTCTCTACGTAGTCAACC -CCAACACTCTCTACGTAGTGTTCC -CCAACACTCTCTACGTAGATTCCC -CCAACACTCTCTACGTAGTTCTCG -CCAACACTCTCTACGTAGTAGACG -CCAACACTCTCTACGTAGGTAACG -CCAACACTCTCTACGTAGACTTCG -CCAACACTCTCTACGTAGTACGCA -CCAACACTCTCTACGTAGCTTGCA -CCAACACTCTCTACGTAGCGAACA -CCAACACTCTCTACGTAGCAGTCA -CCAACACTCTCTACGTAGGATCCA -CCAACACTCTCTACGTAGACGACA -CCAACACTCTCTACGTAGAGCTCA -CCAACACTCTCTACGTAGTCACGT -CCAACACTCTCTACGTAGCGTAGT -CCAACACTCTCTACGTAGGTCAGT -CCAACACTCTCTACGTAGGAAGGT -CCAACACTCTCTACGTAGAACCGT -CCAACACTCTCTACGTAGTTGTGC -CCAACACTCTCTACGTAGCTAAGC -CCAACACTCTCTACGTAGACTAGC -CCAACACTCTCTACGTAGAGATGC -CCAACACTCTCTACGTAGTGAAGG -CCAACACTCTCTACGTAGCAATGG -CCAACACTCTCTACGTAGATGAGG -CCAACACTCTCTACGTAGAATGGG -CCAACACTCTCTACGTAGTCCTGA -CCAACACTCTCTACGTAGTAGCGA -CCAACACTCTCTACGTAGCACAGA -CCAACACTCTCTACGTAGGCAAGA -CCAACACTCTCTACGTAGGGTTGA -CCAACACTCTCTACGTAGTCCGAT -CCAACACTCTCTACGTAGTGGCAT -CCAACACTCTCTACGTAGCGAGAT -CCAACACTCTCTACGTAGTACCAC -CCAACACTCTCTACGTAGCAGAAC -CCAACACTCTCTACGTAGGTCTAC -CCAACACTCTCTACGTAGACGTAC -CCAACACTCTCTACGTAGAGTGAC -CCAACACTCTCTACGTAGCTGTAG -CCAACACTCTCTACGTAGCCTAAG -CCAACACTCTCTACGTAGGTTCAG -CCAACACTCTCTACGTAGGCATAG -CCAACACTCTCTACGTAGGACAAG -CCAACACTCTCTACGTAGAAGCAG -CCAACACTCTCTACGTAGCGTCAA -CCAACACTCTCTACGTAGGCTGAA -CCAACACTCTCTACGTAGAGTACG -CCAACACTCTCTACGTAGATCCGA -CCAACACTCTCTACGTAGATGGGA -CCAACACTCTCTACGTAGGTGCAA -CCAACACTCTCTACGTAGGAGGAA -CCAACACTCTCTACGTAGCAGGTA -CCAACACTCTCTACGTAGGACTCT -CCAACACTCTCTACGTAGAGTCCT -CCAACACTCTCTACGTAGTAAGCC -CCAACACTCTCTACGTAGATAGCC -CCAACACTCTCTACGTAGTAACCG -CCAACACTCTCTACGTAGATGCCA -CCAACACTCTCTACGGTAGGAAAC -CCAACACTCTCTACGGTAAACACC -CCAACACTCTCTACGGTAATCGAG -CCAACACTCTCTACGGTACTCCTT -CCAACACTCTCTACGGTACCTGTT -CCAACACTCTCTACGGTACGGTTT -CCAACACTCTCTACGGTAGTGGTT -CCAACACTCTCTACGGTAGCCTTT -CCAACACTCTCTACGGTAGGTCTT -CCAACACTCTCTACGGTAACGCTT -CCAACACTCTCTACGGTAAGCGTT -CCAACACTCTCTACGGTATTCGTC -CCAACACTCTCTACGGTATCTCTC -CCAACACTCTCTACGGTATGGATC -CCAACACTCTCTACGGTACACTTC -CCAACACTCTCTACGGTAGTACTC -CCAACACTCTCTACGGTAGATGTC -CCAACACTCTCTACGGTAACAGTC -CCAACACTCTCTACGGTATTGCTG -CCAACACTCTCTACGGTATCCATG -CCAACACTCTCTACGGTATGTGTG -CCAACACTCTCTACGGTACTAGTG -CCAACACTCTCTACGGTACATCTG -CCAACACTCTCTACGGTAGAGTTG -CCAACACTCTCTACGGTAAGACTG -CCAACACTCTCTACGGTATCGGTA -CCAACACTCTCTACGGTATGCCTA -CCAACACTCTCTACGGTACCACTA -CCAACACTCTCTACGGTAGGAGTA -CCAACACTCTCTACGGTATCGTCT -CCAACACTCTCTACGGTATGCACT -CCAACACTCTCTACGGTACTGACT -CCAACACTCTCTACGGTACAACCT -CCAACACTCTCTACGGTAGCTACT -CCAACACTCTCTACGGTAGGATCT -CCAACACTCTCTACGGTAAAGGCT -CCAACACTCTCTACGGTATCAACC -CCAACACTCTCTACGGTATGTTCC -CCAACACTCTCTACGGTAATTCCC -CCAACACTCTCTACGGTATTCTCG -CCAACACTCTCTACGGTATAGACG -CCAACACTCTCTACGGTAGTAACG -CCAACACTCTCTACGGTAACTTCG -CCAACACTCTCTACGGTATACGCA -CCAACACTCTCTACGGTACTTGCA -CCAACACTCTCTACGGTACGAACA -CCAACACTCTCTACGGTACAGTCA -CCAACACTCTCTACGGTAGATCCA -CCAACACTCTCTACGGTAACGACA -CCAACACTCTCTACGGTAAGCTCA -CCAACACTCTCTACGGTATCACGT -CCAACACTCTCTACGGTACGTAGT -CCAACACTCTCTACGGTAGTCAGT -CCAACACTCTCTACGGTAGAAGGT -CCAACACTCTCTACGGTAAACCGT -CCAACACTCTCTACGGTATTGTGC -CCAACACTCTCTACGGTACTAAGC -CCAACACTCTCTACGGTAACTAGC -CCAACACTCTCTACGGTAAGATGC -CCAACACTCTCTACGGTATGAAGG -CCAACACTCTCTACGGTACAATGG -CCAACACTCTCTACGGTAATGAGG -CCAACACTCTCTACGGTAAATGGG -CCAACACTCTCTACGGTATCCTGA -CCAACACTCTCTACGGTATAGCGA -CCAACACTCTCTACGGTACACAGA -CCAACACTCTCTACGGTAGCAAGA -CCAACACTCTCTACGGTAGGTTGA -CCAACACTCTCTACGGTATCCGAT -CCAACACTCTCTACGGTATGGCAT -CCAACACTCTCTACGGTACGAGAT -CCAACACTCTCTACGGTATACCAC -CCAACACTCTCTACGGTACAGAAC -CCAACACTCTCTACGGTAGTCTAC -CCAACACTCTCTACGGTAACGTAC -CCAACACTCTCTACGGTAAGTGAC -CCAACACTCTCTACGGTACTGTAG -CCAACACTCTCTACGGTACCTAAG -CCAACACTCTCTACGGTAGTTCAG -CCAACACTCTCTACGGTAGCATAG -CCAACACTCTCTACGGTAGACAAG -CCAACACTCTCTACGGTAAAGCAG -CCAACACTCTCTACGGTACGTCAA -CCAACACTCTCTACGGTAGCTGAA -CCAACACTCTCTACGGTAAGTACG -CCAACACTCTCTACGGTAATCCGA -CCAACACTCTCTACGGTAATGGGA -CCAACACTCTCTACGGTAGTGCAA -CCAACACTCTCTACGGTAGAGGAA -CCAACACTCTCTACGGTACAGGTA -CCAACACTCTCTACGGTAGACTCT -CCAACACTCTCTACGGTAAGTCCT -CCAACACTCTCTACGGTATAAGCC -CCAACACTCTCTACGGTAATAGCC -CCAACACTCTCTACGGTATAACCG -CCAACACTCTCTACGGTAATGCCA -CCAACACTCTCTTCGACTGGAAAC -CCAACACTCTCTTCGACTAACACC -CCAACACTCTCTTCGACTATCGAG -CCAACACTCTCTTCGACTCTCCTT -CCAACACTCTCTTCGACTCCTGTT -CCAACACTCTCTTCGACTCGGTTT -CCAACACTCTCTTCGACTGTGGTT -CCAACACTCTCTTCGACTGCCTTT -CCAACACTCTCTTCGACTGGTCTT -CCAACACTCTCTTCGACTACGCTT -CCAACACTCTCTTCGACTAGCGTT -CCAACACTCTCTTCGACTTTCGTC -CCAACACTCTCTTCGACTTCTCTC -CCAACACTCTCTTCGACTTGGATC -CCAACACTCTCTTCGACTCACTTC -CCAACACTCTCTTCGACTGTACTC -CCAACACTCTCTTCGACTGATGTC -CCAACACTCTCTTCGACTACAGTC -CCAACACTCTCTTCGACTTTGCTG -CCAACACTCTCTTCGACTTCCATG -CCAACACTCTCTTCGACTTGTGTG -CCAACACTCTCTTCGACTCTAGTG -CCAACACTCTCTTCGACTCATCTG -CCAACACTCTCTTCGACTGAGTTG -CCAACACTCTCTTCGACTAGACTG -CCAACACTCTCTTCGACTTCGGTA -CCAACACTCTCTTCGACTTGCCTA -CCAACACTCTCTTCGACTCCACTA -CCAACACTCTCTTCGACTGGAGTA -CCAACACTCTCTTCGACTTCGTCT -CCAACACTCTCTTCGACTTGCACT -CCAACACTCTCTTCGACTCTGACT -CCAACACTCTCTTCGACTCAACCT -CCAACACTCTCTTCGACTGCTACT -CCAACACTCTCTTCGACTGGATCT -CCAACACTCTCTTCGACTAAGGCT -CCAACACTCTCTTCGACTTCAACC -CCAACACTCTCTTCGACTTGTTCC -CCAACACTCTCTTCGACTATTCCC -CCAACACTCTCTTCGACTTTCTCG -CCAACACTCTCTTCGACTTAGACG -CCAACACTCTCTTCGACTGTAACG -CCAACACTCTCTTCGACTACTTCG -CCAACACTCTCTTCGACTTACGCA -CCAACACTCTCTTCGACTCTTGCA -CCAACACTCTCTTCGACTCGAACA -CCAACACTCTCTTCGACTCAGTCA -CCAACACTCTCTTCGACTGATCCA -CCAACACTCTCTTCGACTACGACA -CCAACACTCTCTTCGACTAGCTCA -CCAACACTCTCTTCGACTTCACGT -CCAACACTCTCTTCGACTCGTAGT -CCAACACTCTCTTCGACTGTCAGT -CCAACACTCTCTTCGACTGAAGGT -CCAACACTCTCTTCGACTAACCGT -CCAACACTCTCTTCGACTTTGTGC -CCAACACTCTCTTCGACTCTAAGC -CCAACACTCTCTTCGACTACTAGC -CCAACACTCTCTTCGACTAGATGC -CCAACACTCTCTTCGACTTGAAGG -CCAACACTCTCTTCGACTCAATGG -CCAACACTCTCTTCGACTATGAGG -CCAACACTCTCTTCGACTAATGGG -CCAACACTCTCTTCGACTTCCTGA -CCAACACTCTCTTCGACTTAGCGA -CCAACACTCTCTTCGACTCACAGA -CCAACACTCTCTTCGACTGCAAGA -CCAACACTCTCTTCGACTGGTTGA -CCAACACTCTCTTCGACTTCCGAT -CCAACACTCTCTTCGACTTGGCAT -CCAACACTCTCTTCGACTCGAGAT -CCAACACTCTCTTCGACTTACCAC -CCAACACTCTCTTCGACTCAGAAC -CCAACACTCTCTTCGACTGTCTAC -CCAACACTCTCTTCGACTACGTAC -CCAACACTCTCTTCGACTAGTGAC -CCAACACTCTCTTCGACTCTGTAG -CCAACACTCTCTTCGACTCCTAAG -CCAACACTCTCTTCGACTGTTCAG -CCAACACTCTCTTCGACTGCATAG -CCAACACTCTCTTCGACTGACAAG -CCAACACTCTCTTCGACTAAGCAG -CCAACACTCTCTTCGACTCGTCAA -CCAACACTCTCTTCGACTGCTGAA -CCAACACTCTCTTCGACTAGTACG -CCAACACTCTCTTCGACTATCCGA -CCAACACTCTCTTCGACTATGGGA -CCAACACTCTCTTCGACTGTGCAA -CCAACACTCTCTTCGACTGAGGAA -CCAACACTCTCTTCGACTCAGGTA -CCAACACTCTCTTCGACTGACTCT -CCAACACTCTCTTCGACTAGTCCT -CCAACACTCTCTTCGACTTAAGCC -CCAACACTCTCTTCGACTATAGCC -CCAACACTCTCTTCGACTTAACCG -CCAACACTCTCTTCGACTATGCCA -CCAACACTCTCTGCATACGGAAAC -CCAACACTCTCTGCATACAACACC -CCAACACTCTCTGCATACATCGAG -CCAACACTCTCTGCATACCTCCTT -CCAACACTCTCTGCATACCCTGTT -CCAACACTCTCTGCATACCGGTTT -CCAACACTCTCTGCATACGTGGTT -CCAACACTCTCTGCATACGCCTTT -CCAACACTCTCTGCATACGGTCTT -CCAACACTCTCTGCATACACGCTT -CCAACACTCTCTGCATACAGCGTT -CCAACACTCTCTGCATACTTCGTC -CCAACACTCTCTGCATACTCTCTC -CCAACACTCTCTGCATACTGGATC -CCAACACTCTCTGCATACCACTTC -CCAACACTCTCTGCATACGTACTC -CCAACACTCTCTGCATACGATGTC -CCAACACTCTCTGCATACACAGTC -CCAACACTCTCTGCATACTTGCTG -CCAACACTCTCTGCATACTCCATG -CCAACACTCTCTGCATACTGTGTG -CCAACACTCTCTGCATACCTAGTG -CCAACACTCTCTGCATACCATCTG -CCAACACTCTCTGCATACGAGTTG -CCAACACTCTCTGCATACAGACTG -CCAACACTCTCTGCATACTCGGTA -CCAACACTCTCTGCATACTGCCTA -CCAACACTCTCTGCATACCCACTA -CCAACACTCTCTGCATACGGAGTA -CCAACACTCTCTGCATACTCGTCT -CCAACACTCTCTGCATACTGCACT -CCAACACTCTCTGCATACCTGACT -CCAACACTCTCTGCATACCAACCT -CCAACACTCTCTGCATACGCTACT -CCAACACTCTCTGCATACGGATCT -CCAACACTCTCTGCATACAAGGCT -CCAACACTCTCTGCATACTCAACC -CCAACACTCTCTGCATACTGTTCC -CCAACACTCTCTGCATACATTCCC -CCAACACTCTCTGCATACTTCTCG -CCAACACTCTCTGCATACTAGACG -CCAACACTCTCTGCATACGTAACG -CCAACACTCTCTGCATACACTTCG -CCAACACTCTCTGCATACTACGCA -CCAACACTCTCTGCATACCTTGCA -CCAACACTCTCTGCATACCGAACA -CCAACACTCTCTGCATACCAGTCA -CCAACACTCTCTGCATACGATCCA -CCAACACTCTCTGCATACACGACA -CCAACACTCTCTGCATACAGCTCA -CCAACACTCTCTGCATACTCACGT -CCAACACTCTCTGCATACCGTAGT -CCAACACTCTCTGCATACGTCAGT -CCAACACTCTCTGCATACGAAGGT -CCAACACTCTCTGCATACAACCGT -CCAACACTCTCTGCATACTTGTGC -CCAACACTCTCTGCATACCTAAGC -CCAACACTCTCTGCATACACTAGC -CCAACACTCTCTGCATACAGATGC -CCAACACTCTCTGCATACTGAAGG -CCAACACTCTCTGCATACCAATGG -CCAACACTCTCTGCATACATGAGG -CCAACACTCTCTGCATACAATGGG -CCAACACTCTCTGCATACTCCTGA -CCAACACTCTCTGCATACTAGCGA -CCAACACTCTCTGCATACCACAGA -CCAACACTCTCTGCATACGCAAGA -CCAACACTCTCTGCATACGGTTGA -CCAACACTCTCTGCATACTCCGAT -CCAACACTCTCTGCATACTGGCAT -CCAACACTCTCTGCATACCGAGAT -CCAACACTCTCTGCATACTACCAC -CCAACACTCTCTGCATACCAGAAC -CCAACACTCTCTGCATACGTCTAC -CCAACACTCTCTGCATACACGTAC -CCAACACTCTCTGCATACAGTGAC -CCAACACTCTCTGCATACCTGTAG -CCAACACTCTCTGCATACCCTAAG -CCAACACTCTCTGCATACGTTCAG -CCAACACTCTCTGCATACGCATAG -CCAACACTCTCTGCATACGACAAG -CCAACACTCTCTGCATACAAGCAG -CCAACACTCTCTGCATACCGTCAA -CCAACACTCTCTGCATACGCTGAA -CCAACACTCTCTGCATACAGTACG -CCAACACTCTCTGCATACATCCGA -CCAACACTCTCTGCATACATGGGA -CCAACACTCTCTGCATACGTGCAA -CCAACACTCTCTGCATACGAGGAA -CCAACACTCTCTGCATACCAGGTA -CCAACACTCTCTGCATACGACTCT -CCAACACTCTCTGCATACAGTCCT -CCAACACTCTCTGCATACTAAGCC -CCAACACTCTCTGCATACATAGCC -CCAACACTCTCTGCATACTAACCG -CCAACACTCTCTGCATACATGCCA -CCAACACTCTCTGCACTTGGAAAC -CCAACACTCTCTGCACTTAACACC -CCAACACTCTCTGCACTTATCGAG -CCAACACTCTCTGCACTTCTCCTT -CCAACACTCTCTGCACTTCCTGTT -CCAACACTCTCTGCACTTCGGTTT -CCAACACTCTCTGCACTTGTGGTT -CCAACACTCTCTGCACTTGCCTTT -CCAACACTCTCTGCACTTGGTCTT -CCAACACTCTCTGCACTTACGCTT -CCAACACTCTCTGCACTTAGCGTT -CCAACACTCTCTGCACTTTTCGTC -CCAACACTCTCTGCACTTTCTCTC -CCAACACTCTCTGCACTTTGGATC -CCAACACTCTCTGCACTTCACTTC -CCAACACTCTCTGCACTTGTACTC -CCAACACTCTCTGCACTTGATGTC -CCAACACTCTCTGCACTTACAGTC -CCAACACTCTCTGCACTTTTGCTG -CCAACACTCTCTGCACTTTCCATG -CCAACACTCTCTGCACTTTGTGTG -CCAACACTCTCTGCACTTCTAGTG -CCAACACTCTCTGCACTTCATCTG -CCAACACTCTCTGCACTTGAGTTG -CCAACACTCTCTGCACTTAGACTG -CCAACACTCTCTGCACTTTCGGTA -CCAACACTCTCTGCACTTTGCCTA -CCAACACTCTCTGCACTTCCACTA -CCAACACTCTCTGCACTTGGAGTA -CCAACACTCTCTGCACTTTCGTCT -CCAACACTCTCTGCACTTTGCACT -CCAACACTCTCTGCACTTCTGACT -CCAACACTCTCTGCACTTCAACCT -CCAACACTCTCTGCACTTGCTACT -CCAACACTCTCTGCACTTGGATCT -CCAACACTCTCTGCACTTAAGGCT -CCAACACTCTCTGCACTTTCAACC -CCAACACTCTCTGCACTTTGTTCC -CCAACACTCTCTGCACTTATTCCC -CCAACACTCTCTGCACTTTTCTCG -CCAACACTCTCTGCACTTTAGACG -CCAACACTCTCTGCACTTGTAACG -CCAACACTCTCTGCACTTACTTCG -CCAACACTCTCTGCACTTTACGCA -CCAACACTCTCTGCACTTCTTGCA -CCAACACTCTCTGCACTTCGAACA -CCAACACTCTCTGCACTTCAGTCA -CCAACACTCTCTGCACTTGATCCA -CCAACACTCTCTGCACTTACGACA -CCAACACTCTCTGCACTTAGCTCA -CCAACACTCTCTGCACTTTCACGT -CCAACACTCTCTGCACTTCGTAGT -CCAACACTCTCTGCACTTGTCAGT -CCAACACTCTCTGCACTTGAAGGT -CCAACACTCTCTGCACTTAACCGT -CCAACACTCTCTGCACTTTTGTGC -CCAACACTCTCTGCACTTCTAAGC -CCAACACTCTCTGCACTTACTAGC -CCAACACTCTCTGCACTTAGATGC -CCAACACTCTCTGCACTTTGAAGG -CCAACACTCTCTGCACTTCAATGG -CCAACACTCTCTGCACTTATGAGG -CCAACACTCTCTGCACTTAATGGG -CCAACACTCTCTGCACTTTCCTGA -CCAACACTCTCTGCACTTTAGCGA -CCAACACTCTCTGCACTTCACAGA -CCAACACTCTCTGCACTTGCAAGA -CCAACACTCTCTGCACTTGGTTGA -CCAACACTCTCTGCACTTTCCGAT -CCAACACTCTCTGCACTTTGGCAT -CCAACACTCTCTGCACTTCGAGAT -CCAACACTCTCTGCACTTTACCAC -CCAACACTCTCTGCACTTCAGAAC -CCAACACTCTCTGCACTTGTCTAC -CCAACACTCTCTGCACTTACGTAC -CCAACACTCTCTGCACTTAGTGAC -CCAACACTCTCTGCACTTCTGTAG -CCAACACTCTCTGCACTTCCTAAG -CCAACACTCTCTGCACTTGTTCAG -CCAACACTCTCTGCACTTGCATAG -CCAACACTCTCTGCACTTGACAAG -CCAACACTCTCTGCACTTAAGCAG -CCAACACTCTCTGCACTTCGTCAA -CCAACACTCTCTGCACTTGCTGAA -CCAACACTCTCTGCACTTAGTACG -CCAACACTCTCTGCACTTATCCGA -CCAACACTCTCTGCACTTATGGGA -CCAACACTCTCTGCACTTGTGCAA -CCAACACTCTCTGCACTTGAGGAA -CCAACACTCTCTGCACTTCAGGTA -CCAACACTCTCTGCACTTGACTCT -CCAACACTCTCTGCACTTAGTCCT -CCAACACTCTCTGCACTTTAAGCC -CCAACACTCTCTGCACTTATAGCC -CCAACACTCTCTGCACTTTAACCG -CCAACACTCTCTGCACTTATGCCA -CCAACACTCTCTACACGAGGAAAC -CCAACACTCTCTACACGAAACACC -CCAACACTCTCTACACGAATCGAG -CCAACACTCTCTACACGACTCCTT -CCAACACTCTCTACACGACCTGTT -CCAACACTCTCTACACGACGGTTT -CCAACACTCTCTACACGAGTGGTT -CCAACACTCTCTACACGAGCCTTT -CCAACACTCTCTACACGAGGTCTT -CCAACACTCTCTACACGAACGCTT -CCAACACTCTCTACACGAAGCGTT -CCAACACTCTCTACACGATTCGTC -CCAACACTCTCTACACGATCTCTC -CCAACACTCTCTACACGATGGATC -CCAACACTCTCTACACGACACTTC -CCAACACTCTCTACACGAGTACTC -CCAACACTCTCTACACGAGATGTC -CCAACACTCTCTACACGAACAGTC -CCAACACTCTCTACACGATTGCTG -CCAACACTCTCTACACGATCCATG -CCAACACTCTCTACACGATGTGTG -CCAACACTCTCTACACGACTAGTG -CCAACACTCTCTACACGACATCTG -CCAACACTCTCTACACGAGAGTTG -CCAACACTCTCTACACGAAGACTG -CCAACACTCTCTACACGATCGGTA -CCAACACTCTCTACACGATGCCTA -CCAACACTCTCTACACGACCACTA -CCAACACTCTCTACACGAGGAGTA -CCAACACTCTCTACACGATCGTCT -CCAACACTCTCTACACGATGCACT -CCAACACTCTCTACACGACTGACT -CCAACACTCTCTACACGACAACCT -CCAACACTCTCTACACGAGCTACT -CCAACACTCTCTACACGAGGATCT -CCAACACTCTCTACACGAAAGGCT -CCAACACTCTCTACACGATCAACC -CCAACACTCTCTACACGATGTTCC -CCAACACTCTCTACACGAATTCCC -CCAACACTCTCTACACGATTCTCG -CCAACACTCTCTACACGATAGACG -CCAACACTCTCTACACGAGTAACG -CCAACACTCTCTACACGAACTTCG -CCAACACTCTCTACACGATACGCA -CCAACACTCTCTACACGACTTGCA -CCAACACTCTCTACACGACGAACA -CCAACACTCTCTACACGACAGTCA -CCAACACTCTCTACACGAGATCCA -CCAACACTCTCTACACGAACGACA -CCAACACTCTCTACACGAAGCTCA -CCAACACTCTCTACACGATCACGT -CCAACACTCTCTACACGACGTAGT -CCAACACTCTCTACACGAGTCAGT -CCAACACTCTCTACACGAGAAGGT -CCAACACTCTCTACACGAAACCGT -CCAACACTCTCTACACGATTGTGC -CCAACACTCTCTACACGACTAAGC -CCAACACTCTCTACACGAACTAGC -CCAACACTCTCTACACGAAGATGC -CCAACACTCTCTACACGATGAAGG -CCAACACTCTCTACACGACAATGG -CCAACACTCTCTACACGAATGAGG -CCAACACTCTCTACACGAAATGGG -CCAACACTCTCTACACGATCCTGA -CCAACACTCTCTACACGATAGCGA -CCAACACTCTCTACACGACACAGA -CCAACACTCTCTACACGAGCAAGA -CCAACACTCTCTACACGAGGTTGA -CCAACACTCTCTACACGATCCGAT -CCAACACTCTCTACACGATGGCAT -CCAACACTCTCTACACGACGAGAT -CCAACACTCTCTACACGATACCAC -CCAACACTCTCTACACGACAGAAC -CCAACACTCTCTACACGAGTCTAC -CCAACACTCTCTACACGAACGTAC -CCAACACTCTCTACACGAAGTGAC -CCAACACTCTCTACACGACTGTAG -CCAACACTCTCTACACGACCTAAG -CCAACACTCTCTACACGAGTTCAG -CCAACACTCTCTACACGAGCATAG -CCAACACTCTCTACACGAGACAAG -CCAACACTCTCTACACGAAAGCAG -CCAACACTCTCTACACGACGTCAA -CCAACACTCTCTACACGAGCTGAA -CCAACACTCTCTACACGAAGTACG -CCAACACTCTCTACACGAATCCGA -CCAACACTCTCTACACGAATGGGA -CCAACACTCTCTACACGAGTGCAA -CCAACACTCTCTACACGAGAGGAA -CCAACACTCTCTACACGACAGGTA -CCAACACTCTCTACACGAGACTCT -CCAACACTCTCTACACGAAGTCCT -CCAACACTCTCTACACGATAAGCC -CCAACACTCTCTACACGAATAGCC -CCAACACTCTCTACACGATAACCG -CCAACACTCTCTACACGAATGCCA -CCAACACTCTCTTCACAGGGAAAC -CCAACACTCTCTTCACAGAACACC -CCAACACTCTCTTCACAGATCGAG -CCAACACTCTCTTCACAGCTCCTT -CCAACACTCTCTTCACAGCCTGTT -CCAACACTCTCTTCACAGCGGTTT -CCAACACTCTCTTCACAGGTGGTT -CCAACACTCTCTTCACAGGCCTTT -CCAACACTCTCTTCACAGGGTCTT -CCAACACTCTCTTCACAGACGCTT -CCAACACTCTCTTCACAGAGCGTT -CCAACACTCTCTTCACAGTTCGTC -CCAACACTCTCTTCACAGTCTCTC -CCAACACTCTCTTCACAGTGGATC -CCAACACTCTCTTCACAGCACTTC -CCAACACTCTCTTCACAGGTACTC -CCAACACTCTCTTCACAGGATGTC -CCAACACTCTCTTCACAGACAGTC -CCAACACTCTCTTCACAGTTGCTG -CCAACACTCTCTTCACAGTCCATG -CCAACACTCTCTTCACAGTGTGTG -CCAACACTCTCTTCACAGCTAGTG -CCAACACTCTCTTCACAGCATCTG -CCAACACTCTCTTCACAGGAGTTG -CCAACACTCTCTTCACAGAGACTG -CCAACACTCTCTTCACAGTCGGTA -CCAACACTCTCTTCACAGTGCCTA -CCAACACTCTCTTCACAGCCACTA -CCAACACTCTCTTCACAGGGAGTA -CCAACACTCTCTTCACAGTCGTCT -CCAACACTCTCTTCACAGTGCACT -CCAACACTCTCTTCACAGCTGACT -CCAACACTCTCTTCACAGCAACCT -CCAACACTCTCTTCACAGGCTACT -CCAACACTCTCTTCACAGGGATCT -CCAACACTCTCTTCACAGAAGGCT -CCAACACTCTCTTCACAGTCAACC -CCAACACTCTCTTCACAGTGTTCC -CCAACACTCTCTTCACAGATTCCC -CCAACACTCTCTTCACAGTTCTCG -CCAACACTCTCTTCACAGTAGACG -CCAACACTCTCTTCACAGGTAACG -CCAACACTCTCTTCACAGACTTCG -CCAACACTCTCTTCACAGTACGCA -CCAACACTCTCTTCACAGCTTGCA -CCAACACTCTCTTCACAGCGAACA -CCAACACTCTCTTCACAGCAGTCA -CCAACACTCTCTTCACAGGATCCA -CCAACACTCTCTTCACAGACGACA -CCAACACTCTCTTCACAGAGCTCA -CCAACACTCTCTTCACAGTCACGT -CCAACACTCTCTTCACAGCGTAGT -CCAACACTCTCTTCACAGGTCAGT -CCAACACTCTCTTCACAGGAAGGT -CCAACACTCTCTTCACAGAACCGT -CCAACACTCTCTTCACAGTTGTGC -CCAACACTCTCTTCACAGCTAAGC -CCAACACTCTCTTCACAGACTAGC -CCAACACTCTCTTCACAGAGATGC -CCAACACTCTCTTCACAGTGAAGG -CCAACACTCTCTTCACAGCAATGG -CCAACACTCTCTTCACAGATGAGG -CCAACACTCTCTTCACAGAATGGG -CCAACACTCTCTTCACAGTCCTGA -CCAACACTCTCTTCACAGTAGCGA -CCAACACTCTCTTCACAGCACAGA -CCAACACTCTCTTCACAGGCAAGA -CCAACACTCTCTTCACAGGGTTGA -CCAACACTCTCTTCACAGTCCGAT -CCAACACTCTCTTCACAGTGGCAT -CCAACACTCTCTTCACAGCGAGAT -CCAACACTCTCTTCACAGTACCAC -CCAACACTCTCTTCACAGCAGAAC -CCAACACTCTCTTCACAGGTCTAC -CCAACACTCTCTTCACAGACGTAC -CCAACACTCTCTTCACAGAGTGAC -CCAACACTCTCTTCACAGCTGTAG -CCAACACTCTCTTCACAGCCTAAG -CCAACACTCTCTTCACAGGTTCAG -CCAACACTCTCTTCACAGGCATAG -CCAACACTCTCTTCACAGGACAAG -CCAACACTCTCTTCACAGAAGCAG -CCAACACTCTCTTCACAGCGTCAA -CCAACACTCTCTTCACAGGCTGAA -CCAACACTCTCTTCACAGAGTACG -CCAACACTCTCTTCACAGATCCGA -CCAACACTCTCTTCACAGATGGGA -CCAACACTCTCTTCACAGGTGCAA -CCAACACTCTCTTCACAGGAGGAA -CCAACACTCTCTTCACAGCAGGTA -CCAACACTCTCTTCACAGGACTCT -CCAACACTCTCTTCACAGAGTCCT -CCAACACTCTCTTCACAGTAAGCC -CCAACACTCTCTTCACAGATAGCC -CCAACACTCTCTTCACAGTAACCG -CCAACACTCTCTTCACAGATGCCA -CCAACACTCTCTCCAGATGGAAAC -CCAACACTCTCTCCAGATAACACC -CCAACACTCTCTCCAGATATCGAG -CCAACACTCTCTCCAGATCTCCTT -CCAACACTCTCTCCAGATCCTGTT -CCAACACTCTCTCCAGATCGGTTT -CCAACACTCTCTCCAGATGTGGTT -CCAACACTCTCTCCAGATGCCTTT -CCAACACTCTCTCCAGATGGTCTT -CCAACACTCTCTCCAGATACGCTT -CCAACACTCTCTCCAGATAGCGTT -CCAACACTCTCTCCAGATTTCGTC -CCAACACTCTCTCCAGATTCTCTC -CCAACACTCTCTCCAGATTGGATC -CCAACACTCTCTCCAGATCACTTC -CCAACACTCTCTCCAGATGTACTC -CCAACACTCTCTCCAGATGATGTC -CCAACACTCTCTCCAGATACAGTC -CCAACACTCTCTCCAGATTTGCTG -CCAACACTCTCTCCAGATTCCATG -CCAACACTCTCTCCAGATTGTGTG -CCAACACTCTCTCCAGATCTAGTG -CCAACACTCTCTCCAGATCATCTG -CCAACACTCTCTCCAGATGAGTTG -CCAACACTCTCTCCAGATAGACTG -CCAACACTCTCTCCAGATTCGGTA -CCAACACTCTCTCCAGATTGCCTA -CCAACACTCTCTCCAGATCCACTA -CCAACACTCTCTCCAGATGGAGTA -CCAACACTCTCTCCAGATTCGTCT -CCAACACTCTCTCCAGATTGCACT -CCAACACTCTCTCCAGATCTGACT -CCAACACTCTCTCCAGATCAACCT -CCAACACTCTCTCCAGATGCTACT -CCAACACTCTCTCCAGATGGATCT -CCAACACTCTCTCCAGATAAGGCT -CCAACACTCTCTCCAGATTCAACC -CCAACACTCTCTCCAGATTGTTCC -CCAACACTCTCTCCAGATATTCCC -CCAACACTCTCTCCAGATTTCTCG -CCAACACTCTCTCCAGATTAGACG -CCAACACTCTCTCCAGATGTAACG -CCAACACTCTCTCCAGATACTTCG -CCAACACTCTCTCCAGATTACGCA -CCAACACTCTCTCCAGATCTTGCA -CCAACACTCTCTCCAGATCGAACA -CCAACACTCTCTCCAGATCAGTCA -CCAACACTCTCTCCAGATGATCCA -CCAACACTCTCTCCAGATACGACA -CCAACACTCTCTCCAGATAGCTCA -CCAACACTCTCTCCAGATTCACGT -CCAACACTCTCTCCAGATCGTAGT -CCAACACTCTCTCCAGATGTCAGT -CCAACACTCTCTCCAGATGAAGGT -CCAACACTCTCTCCAGATAACCGT -CCAACACTCTCTCCAGATTTGTGC -CCAACACTCTCTCCAGATCTAAGC -CCAACACTCTCTCCAGATACTAGC -CCAACACTCTCTCCAGATAGATGC -CCAACACTCTCTCCAGATTGAAGG -CCAACACTCTCTCCAGATCAATGG -CCAACACTCTCTCCAGATATGAGG -CCAACACTCTCTCCAGATAATGGG -CCAACACTCTCTCCAGATTCCTGA -CCAACACTCTCTCCAGATTAGCGA -CCAACACTCTCTCCAGATCACAGA -CCAACACTCTCTCCAGATGCAAGA -CCAACACTCTCTCCAGATGGTTGA -CCAACACTCTCTCCAGATTCCGAT -CCAACACTCTCTCCAGATTGGCAT -CCAACACTCTCTCCAGATCGAGAT -CCAACACTCTCTCCAGATTACCAC -CCAACACTCTCTCCAGATCAGAAC -CCAACACTCTCTCCAGATGTCTAC -CCAACACTCTCTCCAGATACGTAC -CCAACACTCTCTCCAGATAGTGAC -CCAACACTCTCTCCAGATCTGTAG -CCAACACTCTCTCCAGATCCTAAG -CCAACACTCTCTCCAGATGTTCAG -CCAACACTCTCTCCAGATGCATAG -CCAACACTCTCTCCAGATGACAAG -CCAACACTCTCTCCAGATAAGCAG -CCAACACTCTCTCCAGATCGTCAA -CCAACACTCTCTCCAGATGCTGAA -CCAACACTCTCTCCAGATAGTACG -CCAACACTCTCTCCAGATATCCGA -CCAACACTCTCTCCAGATATGGGA -CCAACACTCTCTCCAGATGTGCAA -CCAACACTCTCTCCAGATGAGGAA -CCAACACTCTCTCCAGATCAGGTA -CCAACACTCTCTCCAGATGACTCT -CCAACACTCTCTCCAGATAGTCCT -CCAACACTCTCTCCAGATTAAGCC -CCAACACTCTCTCCAGATATAGCC -CCAACACTCTCTCCAGATTAACCG -CCAACACTCTCTCCAGATATGCCA -CCAACACTCTCTACAACGGGAAAC -CCAACACTCTCTACAACGAACACC -CCAACACTCTCTACAACGATCGAG -CCAACACTCTCTACAACGCTCCTT -CCAACACTCTCTACAACGCCTGTT -CCAACACTCTCTACAACGCGGTTT -CCAACACTCTCTACAACGGTGGTT -CCAACACTCTCTACAACGGCCTTT -CCAACACTCTCTACAACGGGTCTT -CCAACACTCTCTACAACGACGCTT -CCAACACTCTCTACAACGAGCGTT -CCAACACTCTCTACAACGTTCGTC -CCAACACTCTCTACAACGTCTCTC -CCAACACTCTCTACAACGTGGATC -CCAACACTCTCTACAACGCACTTC -CCAACACTCTCTACAACGGTACTC -CCAACACTCTCTACAACGGATGTC -CCAACACTCTCTACAACGACAGTC -CCAACACTCTCTACAACGTTGCTG -CCAACACTCTCTACAACGTCCATG -CCAACACTCTCTACAACGTGTGTG -CCAACACTCTCTACAACGCTAGTG -CCAACACTCTCTACAACGCATCTG -CCAACACTCTCTACAACGGAGTTG -CCAACACTCTCTACAACGAGACTG -CCAACACTCTCTACAACGTCGGTA -CCAACACTCTCTACAACGTGCCTA -CCAACACTCTCTACAACGCCACTA -CCAACACTCTCTACAACGGGAGTA -CCAACACTCTCTACAACGTCGTCT -CCAACACTCTCTACAACGTGCACT -CCAACACTCTCTACAACGCTGACT -CCAACACTCTCTACAACGCAACCT -CCAACACTCTCTACAACGGCTACT -CCAACACTCTCTACAACGGGATCT -CCAACACTCTCTACAACGAAGGCT -CCAACACTCTCTACAACGTCAACC -CCAACACTCTCTACAACGTGTTCC -CCAACACTCTCTACAACGATTCCC -CCAACACTCTCTACAACGTTCTCG -CCAACACTCTCTACAACGTAGACG -CCAACACTCTCTACAACGGTAACG -CCAACACTCTCTACAACGACTTCG -CCAACACTCTCTACAACGTACGCA -CCAACACTCTCTACAACGCTTGCA -CCAACACTCTCTACAACGCGAACA -CCAACACTCTCTACAACGCAGTCA -CCAACACTCTCTACAACGGATCCA -CCAACACTCTCTACAACGACGACA -CCAACACTCTCTACAACGAGCTCA -CCAACACTCTCTACAACGTCACGT -CCAACACTCTCTACAACGCGTAGT -CCAACACTCTCTACAACGGTCAGT -CCAACACTCTCTACAACGGAAGGT -CCAACACTCTCTACAACGAACCGT -CCAACACTCTCTACAACGTTGTGC -CCAACACTCTCTACAACGCTAAGC -CCAACACTCTCTACAACGACTAGC -CCAACACTCTCTACAACGAGATGC -CCAACACTCTCTACAACGTGAAGG -CCAACACTCTCTACAACGCAATGG -CCAACACTCTCTACAACGATGAGG -CCAACACTCTCTACAACGAATGGG -CCAACACTCTCTACAACGTCCTGA